From 84c9206350364c30e8014485cbdaa9be76cfaf45 Mon Sep 17 00:00:00 2001 From: Enrico Deusebio Date: Tue, 19 Dec 2023 00:06:22 +0100 Subject: [PATCH 01/31] [2nd Edition][Chapter 1] Introduce poetry and update dependencies --- .gitignore | 2 + Chapter01/01_Introduction_Networkx.ipynb | 274 +++- Chapter01/02_Graph_metrics.ipynb | 301 ++--- Chapter01/03_Graphs_Benchmarks.ipynb | 277 ++-- Chapter01/poetry.lock | 1542 ++++++++++++++++++++++ Chapter01/pyproject.toml | 20 + Chapter01/requirements.txt | 57 + Chapter01/utils.py | 59 + 8 files changed, 2111 insertions(+), 421 deletions(-) create mode 100644 .gitignore create mode 100644 Chapter01/poetry.lock create mode 100644 Chapter01/pyproject.toml create mode 100644 Chapter01/requirements.txt create mode 100644 Chapter01/utils.py diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..337d25d --- /dev/null +++ b/.gitignore @@ -0,0 +1,2 @@ +.ipynb_checkpoints +__pycache__ \ No newline at end of file diff --git a/Chapter01/01_Introduction_Networkx.ipynb b/Chapter01/01_Introduction_Networkx.ipynb index f7be5b6..4d39c52 100644 --- a/Chapter01/01_Introduction_Networkx.ipynb +++ b/Chapter01/01_Introduction_Networkx.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -47,9 +47,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/euler/.conda/envs/chap1/lib/python3.9/site-packages/networkx/drawing/nx_pylab.py:305: UserWarning: \n", + "\n", + "The arrowsize keyword argument is not applicable when drawing edges\n", + "with LineCollection.\n", + "\n", + "To make this warning go away, either specify `arrows=True` to\n", + "force FancyArrowPatches or use the default value for arrowsize.\n", + "Note that using FancyArrowPatches may be slow for large graphs.\n", + "\n", + " draw_networkx_edges(G, pos, arrows=arrows, **edge_kwds)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2b0lEQVR4nO3deXRV5cH24ftkTsjAEKaGJIQZmSwoGLSiAqJFURFFBkGtgl+tqy/WERRREGlBoSpVsa+gQIEKWlQsCojSCpIXrIKUoAyBgEwJkJCRDPv7I+aQkAQSnpyzz/C71srqGfbZ+0kq2Xeeew8Oy7IsAQAAABcpwO4BAAAAwLsRKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAF4hClTpsjhcNTqKzo6Wj169NDjjz+ugwcP2j10APB7DsuyLLsHAQDbtm3Ttm3bJEkTJkxQRkaGYmNjNXv27ErLZWdna/PmzVq6dKnOnDmj6Ohovffee7r++uvtGDYAQARKAB6odevW2r9/vxITE5WWllbtMl9//bWuueYaFRYWKjIyUqmpqYqLi3PvQAEAkqi8AXipK664Qvfcc48kKScnR3PnzrV3QADgxwiUALzWNddc43y8YcMG+wYCAH6OQAnAa8XGxjofHzt2zMaRAIB/I1AC8Fq5ubnOx5GRkTUul5GRocmTJ6tXr15q2LChwsLClJiYqNGjR9c4s/n0009XObt8wYIFKigo0PPPP6+OHTsqPDxcSUlJGj9+fKWzzTMyMjRhwgQlJSUpNDRUSUlJevzxx5WTk3PB7+n48eOaNGmSevTooejoaIWHhysxMVHDhw/Xp59+WoefDgC4D4ESgNf6z3/+43x8xRVXVLvMp59+qnbt2mnq1KmKiIjQs88+q1dffVWDBw/WihUr1K9fPz3wwAMqLi6u9Lk77rhDCxcurHSWeX5+vq677jrt3LlTf/jDH/TUU0/J4XBo3rx56tu3rw4ePKgjR45o0KBBCggI0MSJE/Xwww/r6NGjmjlzpm666SaVlpbW+P189tlnat++vaZPn664uDhNnz5dr776qm6++WatWrVKN9xwg+666y4VFhYa/uQAoJ5ZAOBhEhMTLUlWYmJijcucPHnSiouLsyRZYWFhVmpqapVlNm3aZAUHB1uSrEceeaTK+1u3brUiIyMtSdYDDzxQ7Xb27dtnSbIkWXFxcdacOXMqvX/8+HGrWbNmznWMHDnSSklJqbTM559/7lzHe++9V+12Nm/ebIWEhFiSrNmzZ1d5/7///a/VsGFDS5I1fvz4mn4sAGALZigBeKzS0lJlZGRU+kpLS9OyZct05ZVX6tChQ2rWrJn+8Y9/qGPHjpU+a1mW7rvvPhUVFal169aaMWNGlfX37NlTTzzxhCTprbfe0vr16887ntDQUD388MOVXouNjdXtt98uSXrnnXcUEhKiyy+/vNIy1157rTp06CBJWrlyZZX1lo/1zJkz6tOnj/7nf/6nyjKdO3fWU089JUmaN2+eUlNTzztWAHAnAiUAj5Wenq6mTZtW+kpKStJdd92lkJAQvfvuu9qzZ48GDRpU5bNr1qzRzp07JUl33XWXgoODq93G2LFjnY///Oc/q6ikVNsPZelvKQc08YPtemLFNuf7DTv21tItB7X9UJaKSs5W1+Vh9syZMxo8eHC12+ncubMkOcdU0dq1a7Vjxw5J0siRI2v8eZSv27IsLV68uMblAMDdguweAADUpHnz5lq0aJHz+fHjx/XJJ59o0aJF+vbbb/Xhhx/qrrvuqvaza9eudT4+d8awovj4eDVv3lxHjx7V6jXr1Gvqp8ouLAuLQQEOFZzIcC67vyhaEz/YLkmKCQ/WqD4JGtk7QVFRUc5l2rdvX+12oqOjJUmnTp0671jbtGmjjIyMKstIUkREhPPx5s2ba/yeAMDdCJQAPFZYWJgGDBhQ6bURI0aoU6dOevrpp7V8+XLFxcVpzpw5VT67e/du5+Pz3UEnu6BIjgZNJB1VYV6OTmZmKjCykSSpuPScG4kFhzkfZuUX6Y0v9+j1L/fokuxDztcrhsuKAgLKCqFzT/6RpB9//NH5+Oabb65xrBUdOXKkVssBgDsQKAF4nSeeeEKLFy/Wzp07NXfuXD300ENVZgZPnz7tfBweHl7tejb8cFx/eO87nTxz9rXSwlxnoKzCUfkoofK8mZJ2wvlaeXCsi4pjffPNN9WmTZsLfqbibCUA2I1ACcDrBAUF6ZlnntHIkSNVXFysP/3pT3rrrbcqLVNxprCgoKDKOt7ZmKZnP9qhAIdkFZ9NlAGhDeo8HqvCROaKbw7qD61b1+nzFcfarVs3JScn13kMAGAnTsoB4JXuvPNO50zewoULdfjw4Urvt2vXzvm44kXHJendTWVhUiqbZSw+XXbMoiM0QgER0Ubjmr3mB727Ka1On6k4u7p//36j7QOAHQiUALxSYGCgHn30UUlSYWGhXn755UrvDxw40Pl4y5YtzscbfjiuyR/ucD4vzj6u0txTkqSwhO5yBAQaj23yhzu04YfjtV6+4lg3btx43mWnTZumoKAgTZ48+aLHBwD1jUAJwGvde++9at68uaSyYw8rnkE9YMAAXXLJJZKkpUuXqri4WNkFRfrDe98pwHF2Hbnff+58HH3ZkHoZV4BDenT5dzpdUFSr5fv376+uXbtKkpYtW1bjLRoLCws1f/58lZaWasSIEfUyVgCoDwRKAF4rLCxMv//97yWVndgyd+5c53sOh0Pz589XSEiI9u3bp6eeekrTV+1UZm6h82SaM0f3Kuvr5ZKkyB6DFJbYvV7GVWpJGTmFeuGTqtecrE75WENDQ3Xs2DGNGzdORUWVw2hRUZHGjx+vvXv3aty4cc7rWgKAJ+CkHAAeYdu2bdq2rewi4rm5uc7/Lb8OZdu2bas9WeW3v/2tZsyYoezsbL3yyitKTEyUJF166aXq3bu3PvroI915552aNWuWQlv9UxEd+8oREqYzR/cqd9taWcWFiux+vRpf//8qrbfo1BEVHtyp0vxs52uFP6VKAYEKadZaIc2SVHhop4pOHil7/Wd5P36tgPBohSddqmVbpO7ar9K8LO3du7fK93TbbbepQYOyk4Auu+wyrVq1SnfccYeWLFmib7/9ViNHjlTLli114MABLVu2TLt27dKtt95a7WWSAMBODsuyrAsvBgCuNWXKFD333HM1vj927FgtWLCg2veefPJJ/fGPf6z02tSpU/X0009LkjIyMnTX7yfrX+s+U9Gpw7KKixTYoKFCW12iqEtvVFhC1yrrzNm2VpmfzKl2ezFXjlDDX41Sxsezlfv9umqXaT5iuhq07i59/Jz2bv+/apfZt2+fWp9zRviJEyf06quv6qOPPtLu3buVl5enJk2a6PLLL9e9996r2267rdp1AYCdCJQAfF5RSakue2GtsvJrd0xjfYoJD9aWSQMUHMgRRgB8F7/hAPi81COnbQmTUtkddXYdOX3hBQHAixEoAfi87Yey/Hr7AOBqBEoAPu/7Q1kKqnitIDcKCnAQKAH4PAIlAJ937HShikvtOVy8uNTS8ZxCW7YNAO5CoATg884Ul9i6/cIie7cPAK5GoATg80KCzG+naCI02N7tA4CrESgB+LxmUaG2HkPZNDLUlm0DgLsQKAH4vK5xMbYeQ9ktLsaWbQOAuxAoAfg8uwOd3dsHAFcjUALweZ1aRCkmPNiWbceEB6tjiyhbtg0A7kKgBODzggMDNKpPgtx9GGWgQxrdJ4HbLgLwefyWA+AXRvZOkOXmwyhLJY3oneDejQKADQiUAPxCq0YRGn5ZvNtmKQMc0vDL4tWqUYR7NggANiJQAvAbkwZ3VmxkqMtDZYBDio0M1aRfd3bthgDAQxAoAfiNqLBgzRrWQ66+glCpJc0a1kNRYfacCAQA7kagBOBXru7QVM8P6eLSbUwd0kVXd2jq0m0AgCchUALwO2OSWztDZX3V3+XrmTqki+5Obl0/KwUAL+GwLHef9wgAnmHDD8f16PLvlJFTaFSDlx8zOWtYD2YmAfglAiUAv5ZdUKTpq3Zq2dZ0BUgqqcNvxEBH2aWBhveK16TBnTlmEoDfIlACgKSDJ/O0JOWAFm0+oKz8IklSUICj0j3AKz6PCQ/W6D4JGtE7gUsDAfB7BEoAqKCopFS7jpzW9kNZ2n4oSwczsrRn3wG1TUpQq9gYdYsr++rYIoo74ADAzwiUAHAehw8f1rx58zRu3Di1bNnS7uEAgEfiz2sAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAY8ftAOWfOHDkcjhq/AgIC1KhRI7Vr10433nijpk+fru3bt7t8XGlpaVXGcs0119R5PVOmTKmyngULFlS77KpVqxQbG6vk5GRlZWWZfQMAAK9T3T6juq/w8HC1adNGd999t7766iu7hy1JKioq0uDBgxUTE6O3337b7uH4nSC7B2C3G264QbGxsZKkCRMmKCMjQ7GxsZo9e7YkqaSkRBkZGdq7d6/Wrl2r1atXa9KkSRo0aJBmzpypbt26uWRcTZs21cKFCyVJL7zwglJTUy9qPUOHDlW7du2UkZGhCRMmnHfZN954Q5mZmcrMzNS6des0dOjQi9omAMA7le8zpOr3iVLZfvHAgQNasmSJFi1apEWLFumhhx7SK6+8ooAA++aptm3bpk8++URS2WTRfffdZ9tY/JIFp8TEREuSlZiYWOMyn3zyidWxY0dLkhUeHm4tWLDA5ePq16+fJcnq16/fRa9j3759liRLkjV//vxql1m5cqXVuHFj67LLLrNOnDhx0dsCfMlPP/1kTZkyxfrpp5/sHgrgVhfaJxYVFVl33HGHc9/y1FNPuXeA5ygsLLRuuOEGKyoqynrjjTdsHYs/8vvKu65uvPFGbdq0ScnJycrPz9e9996rFStW2D2sejFkyBBlZmbq//7v/9SoUSO7hwMA8GBBQUF66623FBkZKUmaNWuWDhw4YNt4QkJC9M9//lPZ2dkaP368bePwVwTKi9CoUSO99957atSokSzL0pgxY5Senm73sAAAcKuYmBgNHDhQUtkxjB9++KHNI4JdCJQXKS4uTo899pgkKS8vT9OmTbN5RAAAuF/5MZeS9MMPP9g4EtiJQGng/vvvdx6A/M477yg/P1+SanV2dmxs7EWfwb169WoNHjxYLVq0UGhoqJKSkvS73/1OP/3000V9HwsWLKgy5ilTplRa5umnn672bPGCggJNmzZNXbp0UUREhBo1aqTrr79e69evv6ixAAC8S1DQ2fN7i4qKJEn79u3TjBkzNHDgQLVs2VIhISGKjo5W9+7d9cgjj2j//v3Vrmv37t017kM///xz3XLLLWrZsqUCAwOd76elpal169ZVPleTr7/+WqNHj1ZSUpLCwsIUERGhDh06aNSoUVq4cKFycnLq74fjRwiUBpo2bapLLrlEklRYWKh///vfkqSFCxdq4cKF6tSpU42ffeONNy64THVefPFF3X333eratateeOEFTZ48WUFBQZo7d666dOmizZs31/n7uPrqq51jrskdd9yhhQsXVjrTLz8/X/369dOWLVv08MMPa+bMmbr00ku1Zs0aDRw4UKtWrarzWAAA3uXw4cPOx/Hx8dq9e7fatm2rp556Sqmpqbr//vs1d+5cPfroo4qIiNDs2bPVrVs3rV69usq6WrRoUe0+9JVXXtHo0aPVrVs3TZ06VePGjat0RvmcOXO0cOFC3Xbbbecd6+zZs9W3b199+OGHuuGGG/TSSy9p5syZuvrqq7V8+XKNGTNGLVq0qIefih+y+6wgT1Kbs7zPNXr0aOcZbjNmzKj0Xm3Ozq7LMrGxsVZSUpJ16NChSu/n5ORYffr0sSRZTZo0sY4ePVplHbU5y9uyLOcyzz77bLXvV1xPXFycNW3atErvl5SUWFdddZUlyerYsWON2wG8BWd5w1/VZp9YUlJiJSQkOPcLKSkp1s6dOy1JVo8ePaycnJxKy5eWllpPPvmkJcmKioqyDh8+XOO6y/d9LVq0sDp06FBl33bfffdZkqx9+/Y5X3v22WedYznXrl27rMDAQEuS9fXXX1d5f+vWrVZYWFi1n8WFMUNpqEmTJs7Hx48fd+m2MjIy9OKLL+oXv/hFpdcbNGigv/zlL5KkzMxMTZ482aXjKBcYGKgnnnii0msBAQG69957JUm7du3Sjz/+6JaxAADc77XXXnOe2T1o0CBdfvnlzveeffZZNWjQoNLyDodDU6dOVXx8vE6fPq0333zzgts4cuSIZsyYoWbNmlV6fdSoURo7dqzzLPML+fTTT1VSUqImTZqoT58+Vd7v2bPnBWc4UTO/v7C5qYr/IWdnZ7tkG5ZV9r/BIaHaqrZa8+4WnSkuUUhQoJpFhaprXIy6xbVVx06dtCs1VYsWLdKcOXMUFhbmkvGUGzx4cKVjZ8qVHwYgSampqWrfvr1LxwEAcJ3S0lJlZGQ4n5eUlCg9PV0LFy7Uq6++Kqns9375YVPt2rVTenq6WrZsWe36goKC9Mtf/lLp6en64osvNfT+LG0/lKXvD2Xp2OlC5/5tX0auJCksLFyDbvx1lfVcd911uu6662r9fRQXF0uSTpw4oR07dqhLly5Vlnnuuec0ZsyYWq8TZxEoDZ0+fdr5OCYmpl7XffBknv6WckBbD5z8eQMt9P62YyoutZzLBAU49LeUsr8Os4JbSEpVbm6uvvnmG/Xt27dex3Oujh07Vvt6xWtYcgtHAPBu6enpatq0abXvNW3aVA888IAmTpzonI0MCgpSq1atnMtYlqXTp0/rzJkzZz8YFCJJ2vT9j7r5tbLzD4ICHJX2b8dOF0qSSqJbKPlPX2pUnwSN7J2gVo0iLur7uPrqq+VwOGRZlq677jpNmjRJd999d6V9Vvv27ZkEuUgESkMV/2qr6R9cXWUXFGn6qp1atiVdDodUXFIqSQoIbVDpH5ukSs9Lwxs7H8/4+wYt7nm5osKC62VM1YmKiqr29dDQ0LPj+/kvQgCAd2revLkWLVpU6bWwsDA1b95c7dq1q/aM6qysLP35z3/WBx98oB07djjP/j5XcYWQee7+zfq5ngsIiVBWfpHe+HKPXv9yj4b3itekwZ3rvH/r1auXJk6cqBdeeEHHjh3T73//ez366KPq16+fbr75Zg0dOrRSEEbdECgN/ec//3E+7tWrl/H6NvxwXH947ztl5hb+fFRxhTcd5z/k1RF09h/Xxl0H1f/lLzVrWA9d3aF+gu657LxnKwDAPcLCwjRgwIBaL79r1y4NGDBABw8eVExMjB555BH16NFDhwuD9eaXe5VdUKRTm1eoYN9/LrwySfo5sJbnzb9vTdfnu45d1P5t2rRpuuGGGzR79mytWrVKhYWFWrt2rdauXasJEyZo6NChevnllxUfH1+n9YLLBhk5cuSIUlNTJUnh4eG68sor67yOkpIS5+N3NqZpzPwUZeYW6pw/1MpYpeddl1V89i9AR3C4MnIKNWZ+it7dlFbncQEAcDHGjBmjgwcPKiIiQikpKZoxY4bOJCbrlV3hKmrZRaGtL1Vgg8YXXlENSi0Z7d+uuuoqrVixQseOHdPixYs1ZMgQBQUFqbS0VMuXL1efPn104sSJix6fvyJQGpg3b55zSv6ee+6pchJM+QkrNU31S2dP5DmaXaBnP9ohSdWHSUmlhbnnHU9xTubZbTds7lzP5A93aMU3B8/7WQAATO3du1cpKSmSpCFDhqhDhw56d1PaBfdvdVVx/3axkybR0dEaOXKkVq5cqbS0NOcZ3ocPH9ZLL71UPwP1IwTKi3TgwAHnf3ANGjTQxIkTqyxTfpLOqVOnql1HSUmJ9uzZI0nOs9nOp+jET5VmIc915kjZuhzBYQpp3q7Se7PXcDssAIBrHTlyxPk4Pj5eG344rskf7qiynFWUX2/bnPzhDm344cKX7fv888/19NNPVzvJExcXp6VLlzovav7dd9/V2/j8BYHyImRmZur2229Xdna2AgICtHjx4moP5C0/C3rv3r2Vz2772dq1a5WbWxYkz3OXqLNKipS3u/o74RQe2a3iE2WzkA26XlvpeMparx8AAAMVLxX0/X//qz+8950Cztn/WFapcwKkPgQ4pEeXf6fTBTVPuEjShg0b9MILLzgPVTtXSEiI8+Ta6OjoehufvyBQ1tHHH3+sK664Qlu2bFFERITeeecd3XLLLdUue/PNN0uSCgoKtHTp0krv5ebmatKkSWrQsOzC6FZtaoCAQJ1aP18lOScrvVxaVKATn71etkh4tBpeNarKR2u1fgAADCQlJTkvbr76n//UwR2bq9TcWRv/ruKso/W2zfJjKl/4ZGetln/mmWcqnb9QbvPmzfrvf/8rSbrrrrvqbXz+wu/P8k5NTdWWLVskyTlbmJub67xEQklJiTIzM7Vnzx599tln2r17t6SyOwLMmjVLXbt2rXHdycnJGj58uJYtW6bx48dr69at6tGjh44dO6a3335bd425T9/PWyydylRJ3inlfL9ekhTRMVmypLwfNpWNIe+UJCk0rrOCopvqp/99SJE9rldwo1+oJPeUcravUfHJwwoIbaBmwyYrsEFD5xjOHNunM8fSVJp/9qLra7/4l4KCgtS8eXMNHDhQe/fu1caNGyuNfdu2bVq0aJEiIyN16623OpepeJmkTZs2KSgoSN27d1f37t119OhRrVmzptpl2rZtq+Tk5Dr9fwMAcK9t27Zp27ZtkqrfJ0rS6NGjz7uO+fPn6+p+1+hEZoaOLJ2sBl2uUUjL9rKKi1Sw7xsVpO9QYExzlWQdlVVUcHbf1yFZASFhzufl+76K+8fgRi0UGte5yjZzdm3S/36/XpdZZ+/OVj7mvn37qk2bNs5L3a1cuVKdOnXS8OHDlZCQoIKCAn333XdasmSJSkpK9Oijj2rIkCF1/tn5PXvv/Gi/2bNnO+/7Wd2Xw+GwYmJirKSkJGvQoEHWtGnTrO3bt9d6/WfOnLFefPFFq0uXLlZYWJjVsGFDq3///tYnn3xi/XH1TissoWuVbcb9doEV9+D/Vnk9NL6rlfjkx1aTwROs0IRuVkB4tKXAICswupkV2XOwFffQO1bikx9X+oq5ckSN31v5/cPnz59f4zLl93A93zLl9/1ev359jcuMHTu2fv+PA9yEe3nDn1S8F3ZNX7UxafGXVvTlt1hBjX5hKTDYcgSFWEGNWlqRPQZZv7j/datB1/5V930P/q+V+OTH5912g679q+znEp/82AqMblbjZ+bPn+8c19atW62JEydav/rVr6xmzZpZwcHBVmhoqNWmTRtr1KhR1oYNG1z0k/V9DsuiDLVDUUmpLnthrbLyz3/MhyvEhAdry6QBCg7kiAfgQg4fPqx58+Zp3LhxNd5KDsBZ7N/8Ez9xm6QeOW3LPzZJysov0q4jpy+8IAAAdcT+zT8RKG2y/ZC997i2e/sAAN9k9/7F7u37KwKlTb4/lKWgc6+l4CZBAQ7+wQEAXIL9m3/y+7O87XLsdKGK6+uWAXVUXGrpYEaWDh8+bMv2AW9SftWCilcvAFCz9ONZtu7fjucU2rJtf0egtMmZ4qrXwHKnPfsOaN68dbaOAfAm77//vt1DALzC3sL2kmJs235hkb37V39FoLRJSFCgrdtvm5SgcTdda+sYAG+QkZGh999/X0OHDlVsbKzdwwE83u6P9ujQPvtq59Bge/ev/opAaZNmUaEKCnDYUgsEBTjUKjaGS6AAdRAbG8u/GaAW4ptmKGh/tm37t6aRoW7fLjgpxzZd42JsPcakW5x9dQQAwHexf/NPBEqb2P0fvN3bBwD4Jrv3L3Zv318RKG3SqUWUYsKDbdl2THiwOraIsmXbAADfxv7NPxEobRIcGKBRfRLk7kt1BTqk0X0SuC0VAMAl2L/5J37qNhrZO0HuvpN6qaQRvRPcu1EAgF9h/+Z/CJQ2atUoQsMvi3fbX3EBDmn4ZfFq1SjCPRsEAPgl9m/+h0Bps0mDOys2MtTl/+gcshQd4tDEGzu5dkMAAL9nWZb6N8lWqHVGDrl2qjLAIcVGhmrSrzu7dDs4PwKlzaLCgjVrWA+5+goLlhzqXbpLq/6xQnl5ea7dGADAb+Xl5WnJkiXa+OU6PXhpA1ly7YxJqSXNGtZDUWH2nAiEMgRKD3B1h6Z6fkgXl25j6pAueuzum5Senq4333xT6enpLt0eAMD/lO9jDh48qJEjR+r3w693y/7t6g5NXboNXBiB0kOMSW7t/EdXX/V3+XqmDumiu5Nbq3379ho/frxiYmK0YMECbdy4UZa7j5oGAPgcy7L01Vdfaf78+YqJidGDDz6o9u3bS3LP/g3249aLHmRMcmu1btJAjy7/Thk5hUY1ePkxJbOG9aj0l1tMTIzGjh2r9evXa82aNdq/f79uueUWRURwIDMAoO7y8vL0j3/8Qz/++KOuvPJKXXvttQoMrHw/bXfs32Avh8UUlcfJLijS9FU7tWxrugIkldTh/6FAR9mlE4b3itekwZ3Pe0zJjz/+qA8++EDBwcEaNmyY4uPjjccO+JrDhw9r3rx5GjduHPfyBs6Rnp6u5cuXq6ioSLfddptzVrIm7tq/wf0IlB7s4Mk8LUk5oEWbDygrv0hS2Y3vK94jteLzmPBgje6ToBG9E2p96YSsrCytWLFChw4dUv/+/ZWcnCyHw81XowU8GIESqMqyLG3cuFHr1q1Tq1atNGzYMEVHR9f68+7Yv8G9CJReoKikVLuOnNb2Q1nafihLx3MKVVhUotDgQDWNDFW3uBh1i4tRxxZRF3WHgJKSEq1fv15fffWVOnToQAUOVECgBCqrTcVdW67ev8F9CJRwogIHqiJQAmfVteKG/yDuw4mzwAEA1TnfWdyAxFneOAdngQMAKqrPihu+ixlKVBEYGKgBAwZo5MiRXAgdAPzYuRcqHzBgAGES1SJQokZU4ADgn6i4UVdU3jgvKnAA8C9U3LgYzFDigqjAAcA/UHHjYhEoUWtU4ADgm6i4YYrKG3VCBQ4AvoWKG/WBGUrUGRU4APgGKm7UFwIlLhoVOAB4Jypu1DcqbxihAgcA70LFDVdghhLGqMABwDtQccNVCJSoN1TgAOCZqLjhalTeqFdU4ADgWai44Q7MUKLeUYEDgGeg4oa7ECjhMlTgAGAPKm64G5U3XIoKHADci4obdmCGEi5HBQ4A7kHFDbsQKOE2VOAA4BpU3LAblTfcigocAOoXFTc8ATOUcDsqcACoH1Tc8BQEStiGChwALg4VNzwNlTdsRQUOAHVDxQ1PxAwlbEcFDgC1Q8UNT0WghMegAgeA6lFxw9NRecOjUIEDQGVU3PAGzFDC41CBA0AZKm54CwIlPBYVOAB/RcUNb0PlDY9GBQ7A31BxwxsxQwmPRwUOwF9QccNbESjhNajAAfgqKm54OypveBUqcAC+hoobvoAZSngdKnAAvoKKG76CQAmvRQUOwFtRccPXUHnDq1GBA/A2VNzwRcxQwutRgQPwFlTc8FUESvgMKnAAnoqKG76Oyhs+hQocgKeh4oY/YIYSPocKHICnoOKGvyBQwmdRgQOwCxU3/A2VN3waFTgAd6Pihj9ihhI+jwocgLtQccNfESjhN6jAAbgKFTf8HZU3/AoVOID6RsUNMEMJP0QFDqC+UHEDZQiU8FtU4AAuFhU3UBmVN/waFTiAuqLiBqpihhJ+jwocQG1RcQPVI1ACP6MCB1ATKm7g/Ki8gQqowAGci4obuDBmKIFzUIEDKEfFDdQOgRKoARU44L+ouIG6ofIGzoMKHPA/VNxA3TFDCVwAFTjgP6i4gYtDoARqiQoc8F1U3IAZKm+gDqjAAd9DxQ2YY4YSqCMqcMB3UHED9YNACVwkKnDAe1FxA/WLyhswQAUOeB8qbqD+MUMJGKICB7wHFTfgGgRKoJ5QgQOei4obcC0qb6AeUYEDnoeKG3A9ZiiBekYFDngOKm7APQiUgItQgQP2oeIG3IvKG3AhKnDA/ai4AfdjhhJwMSpwwH2ouAF7ECgBN6ECB1yHihuwF5U34EZU4ED9o+IG7McMJeBmVOBA/aHiBjwDgRKwCRU4cPGouAHPQuUN2IgKHKg7Km7A8zBDCdiMChyoPSpuwDMRKAEPQQUO1IyKG/BsVN6AB6ECB6qi4gY8HzOUgIehAgfOouIGvAOBEvBQVODwZ1TcgHeh8gY8GBU4/BEVN+B9mKEEPBwVOPwJFTfgnQiUgJegAocvo+IGvBuVN+BFqMDhi6i4Ae/HDCXgZajA4UuouAHfQKAEvBQVOLwZFTfgW6i8AS9GBQ5vRMUN+B5mKAEvRwUOb0LFDfgmAiXgI6jA4cmouAHfRuUN+BAqcHgiKm7A9zFDCfgYKnB4EipuwD8QKAEfRQUOO1FxA/6FyhvwYVTgsAMVN+B/mKEEfBwVONyJihvwTwRKwE9QgcOVqLgB/0blDfgRKnC4AhU3AGYoAT9DBY76RMUNQCJQAn6LChwmqLgBVETlDfgxKnBcDCpuAOdihhLwc1TgqAsqbgDVIVACkEQFjvOj4gZwPlTeAJyowFEdKm4AF8IMJYBKqMBRERU3gNogUAKoFhW4f6PiBlAXVN4AakQF7p+ouAHUFTOUAM6LCty/UHEDuBgESgC1QgXu26i4AZig8gZQa1TgvomKG4ApZigB1AkVuG+h4gZQHwiUAC4KFbh3o+IGUJ+ovAFcNCpw70TFDaC+MUMJwAgVuHeh4gbgCgRKAPWCCtyzUXEDcCUqbwD1hgrcM1FxA3A1ZigB1CsqcM9CxQ3AHQiUAFyCCtxeVNwA3InKG4DLUIHbg4obgLsxQwnApajA3YuKG4AdCJQA3IIK3LWouAHYicobgNtQgbsGFTcAuzFDCcCtqMDrFxU3AE9AoARgCypwM1TcADwJlTcA21CBXxwqbgCehhlKALaiAq8bKm4AnohACcAjUIGfHxU3AE9G5Q3AY1CBV4+KG4Cnc1hMAQDwAPfcc4/eeeedKq8PGDBAb7/9tuLj4+u0vl/+8pf69ttvq7xe8VfelClT9NJLL2nEiBGaN29epeUcDkel561atbKlik9PT9fy5ctVVFSk2267jVlJAB6JQAnAI2zatEl79uyRJE2YMEEZGRmSpIiICE2YMEG//vWvlZycXCXoVWf16tW68cYbnc8nTpyozp07S5JGjx7tfD0qKko5OTmSpMzMTDVu3Nj53qJFiyRJr732mjZv3uz2QGlZljZu3Kh169apVatWGjZsmKKjo922fQCoCwIlAI/TunVr7d+/3/n8N7/5jeLj49WhQ4daVeDXXnutvvjiC+fz9evX65prrqmy3DPPPKPZs2dr2LBhWrBgQbXrGj58uP7+97+7NVBScQPwNpyUA8AjtWvXTsHBwZKkjz/+WLfffnutzgLfvHmzvvjiC11yySUX3MbUqVOVk5NTY5i0A2dxA/BGBEoAHikuLk6jRo2SJB09elQbNmyo1VngM2bMUJs2bTR06FB3D9kIZ3ED8GYESgAe64knnnAeMzlz5kw1aNBAY8eOVXJystasWaOlS5cqLy/PuXxqaqpWrlypRx55xKtm9fLy8rRkyRKtXbtWffv21dixYzleEoBXIVAC8FidOnXSrbfeKklKS0vTkiVLznsh9D/96U9q0qSJ7rvvvvOu95577pHD4aj0VfGYy7r6+uuv9fjjj+uKK65Q48aNFRwcrMaNG+uqq67SrFmznCf+nOuvf/2rHA6HGjRooFGjRmnKlCn697//LYfDoddee009e/ZUZGSkoqOjddVVV2nFihUXPUYAcCUCJQCP9uSTTzof//GPf3TW3OdeCH3lypVavHixfve73yk8PPy86xw/frwWLlyoiRMnGo/v7bffVnJysmbOnCnLsvT4449r7ty5Gj9+vA4cOKDHHntMPXv2VFpaWqXPWZal6OhoDR06VPfff7/z9dLSUg0dOlTLly/Xvffeq5dffln9+/fXV199pWHDhumNN94wHjMA1DsLADxMYmKi1a9fP+fza6+91pJkSbI++OCDSssWFxdba9assZKTk63Q0FDrwIEDlmVZ1rPPPuv8zPr166vdzvr16y+4zJ133mlJslq1alXt+6+//rolybr//vurvJebm2tdd911liSrd+/elV5fvHixNWXKFGvNmjVWcXGxcxxxcXHVrmvkyJGWJCsmJsbKz8+vdiwAYBdmKAF4vIqzlC+++GKl9wIDA9WrVy9t27ZNvXr10vLly40u71NUUqrth7L0t5QDmvjBdm1Jz5Ykncwv1sQPtutvKQe0/VCWikpKK43h3HFJZdfQ/Mtf/iJJSklJ0ZdffnnBs7hPnjypWbNmVVnXb37zG0lSVlaW/vWvf1309wcArsCtFwF4vOuvv149e/bUN998o5SUFK1bt079+/d3vj937lwVFBTo9ddf15YtW7RgwYI6h8rjpwv0p09TtXjzAWXlF0mSggIcOnq67HFBUan+viVdf0s5IEmKCQ/WqD4JuvWm23Xw1lsVGxtb7Xo7duyo6OhoZWdna+HChUpISDjvhcr79eunmJiYKq9XvAxSamqqBg4cWKfvDwBciRlKAF6hplnK/Px8vfLKK7rzzjvVvXt351ng5Xfdqa2Hl/xHb3y5xxkmJam4tPJliSo+z8ov0htf7tGgv6RozlfHdLqg7HPFxcU6efKkMjIynF/lwfHbb7+94FncHTt2rPb1Ro0and12VladvjcAcDUCJQCvcPvttzuvy7hu3TqlpKRIKjsp5vjx43r88cclyXkWeLdu3ZyfPXbsWLXr/C79VKXnpXW8b1ipJVmWtHjN12rb73a1SkxSSEiIGjdurKZNmzq/Dh48KElKSEi44IXKo6Kiqn09NDTU+bi4uLhuAwUAFyNQAvAKAQEBeuyxx5zPX3zxRZWUlOill17SwIEDdemll1ZavkmTJs7Hq1evrnIh9Hc2punFf+40Hlfero06+Nff6XjKRzqaXaA7f/uE3n//fX322WeaPXu2xowZ45yNrM21JQMC+LUMwPvwmwuA1xgzZoxatmwpSVq5cqUmT56sffv2OWcna9KlS5dKF0J/d1Oanv1oh/F4SnJPKWPVbKmkSMFNE/WL+1/X11FXKbNxFx0/flxZWVm6++67K9XVAOCLCJQAvEZoaKgmTJggqew6jtOnT1fPnj01YMCA836uV69ezguhT3xloSZ/aB4mJSl/d4qsM/mSpKieN8kRVHbv8Wmrf9TGfSedZ3EDgK8jUALwKg8++KAaNmzofF6xBj+f9u3ba+TY32htTks5VMeDJWtQknvK+Tgo+uxZ3g5Z2qwOahHfWpJqvFMOAPgKAiUArxIVFaWHHnpIkpSUlKQ77rij1p997d+HlFcaKEuOehlLYOTZKrso86DzsSWHMnPP6IVPdiotLU2ZmZn1sj0A8FQESgBe5/nnn1d+fr527dp13jOmK0o/madlW9LrfCb3+YS3vVyO4DBJUvbm91Wcc8L5XqklLf16r34z7sH62yAAeCgubA7AI2zbtk3btm2TJOXm5uro0aNatGiRJKlv375q06aNc9mAgACFhYVVu57yz5SvS5LWrFmjNz5JUd7ebIW3T1bhoZ0qOnlERZlnL36en/atik9nKrhRC4XGdVbO9+slScWnjkiSrKIC52vhSZcqsEEjBTZoqMY3PKTMVXNUkntSh9/6f4rscb2CGsepJOeE8nZu0EmdUVRUlE6fPq29e/dq0aJFioyM1K233qqjR49qzZo1VX4OixYtUtu2bZWcnKzc3Fx98MEH1S7TvHlzLnAOwCM4rIrX0QAAm0yZMkXPPfdcte/Nnz9f99xzT63W43DUXGcHRjdTq9++rYyPZyv3+3XVLtOga3/F3jRB+2fcVON6mo+YrrDE7s7nhUd2KzvlAxUe2K6SvCw5gkIU3OgXCm97ueJ+dbtylz6q/fv3O5dPTExUWlqavvjiC1177bXVbmPs2LFasGCB0tLSlJSUVO0y/fr10xdffFHjOAHAXQiUAHze9kNZuvm1f9u2/Y9/d5W6xlW9nSIA+AqOoQTg87YfsvdWhXZvHwBcjUAJwOd9fyhLQQH1c2Z3XQUFOAiUAHwegRKAzzt2ulDF9Xl6dx0Ul1o6nlNoy7YBwF0IlAB83pniElu3X1hk7/YBwNUIlAB8XkhQ7a5V6SqhwfZuHwBcjUAJwOc1iwq19RjKppGhtmwbANyFQAnA53WNi7H1GMpuXDIIgI8jUALweXYHOru3DwCuRqAE4PM6tYhSTHiwLduOCQ9WxxZRtmwbANyFQAnA5wUHBmhUnwS5+zDKQIc0uk+CggP5VQvAt/FbDoBfGNk7Qe6+0WyppBG9E9y7UQCwAYESgF9o1ShCwy+Ld9ssZYBDGn5ZvFo1inDPBgHARgRKAH5j0uDOio0MdXmoDHBIsZGhmvTrzq7dEAB4CAIlAL8RFRasWcN6yNVXECq1pFnDeigqzJ4TgQDA3QiUAPzK1R2a6vkhXVy6jalDuujqDk1dug0A8CQESgB+Z0xya2eorK/6u3w9U4d00d3JretnpQDgJRyW5e7zHgHAM2z44bgeXf6dMnIKjWrw8mMmZw3rwcwkAL9EoATg17ILijR91U4t25quAEkldfiNGOgouzTQ8F7xmjS4M8dMAvBbBEoAkHTwZJ6WpBzQos0HlJVfJEkKCnBUugd4xecx4cEa3SdBI3oncGkgAH6PQAkAFRSVlGrXkdPafihL2w9l6XhOoQqLShQaHKimkaHqFhejbnEx6tgiijvgAMDPCJQAAAAwwp/XAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIz8fzbyHT3nbrPQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import numpy as np\n", "import pandas as pd\n", @@ -66,9 +93,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "V = ['Dublin', 'Milan', 'Paris', 'Rome']\n", + "E = [('Dublin', 'Milan'), ('Dublin', 'Paris'), ('Milan', 'Paris'), ('Milan', 'Rome')]\n" + ] + } + ], "source": [ "print(f\"V = {G.nodes}\")\n", "print(f\"E = {G.edges}\")" @@ -76,20 +112,42 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "{2: 'Paris', 3: 'Milan', 1: 'Rome'}" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "{G.degree(v): v for v in G.nodes}" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Graph Order: 4\n", + "Graph Size: 4\n", + "Degree for nodes: {'Dublin': 2, 'Milan': 3, 'Paris': 2, 'Rome': 1}\n", + "Neighbors for nodes: {'Dublin': ['Milan', 'Paris'], 'Milan': ['Dublin', 'Paris', 'Rome'], 'Paris': ['Milan', 'Dublin'], 'Rome': ['Milan']}\n" + ] + } + ], "source": [ "print(f\"Graph Order: {G.number_of_nodes()}\")\n", "print(f\"Graph Size: {G.number_of_edges()}\")\n", @@ -99,9 +157,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nodes: ['Dublin', 'Milan', 'Paris', 'Rome']\n", + "Edges: [('Dublin', 'Milan'), ('Dublin', 'Paris'), ('Milan', 'Paris'), ('Milan', 'Rome')]\n" + ] + } + ], "source": [ "ego_graph_milan = nx.ego_graph(G, \"Milan\")\n", "print(f\"Nodes: {ego_graph_milan.nodes}\")\n", @@ -110,9 +177,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "V = ['Dublin', 'Milan', 'Paris', 'Rome', 'London', 'Madrid']\n", + "E = [('Dublin', 'Milan'), ('Dublin', 'Paris'), ('Milan', 'Paris'), ('Milan', 'Rome'), ('Paris', 'Madrid'), ('Rome', 'London')]\n" + ] + } + ], "source": [ "new_nodes = {'London', 'Madrid'}\n", "new_edges = [('London','Rome'), ('Madrid','Paris')]\n", @@ -124,9 +200,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "V = ['Dublin', 'Milan', 'Paris', 'Rome']\n", + "E = [('Dublin', 'Milan'), ('Dublin', 'Paris'), ('Milan', 'Paris'), ('Milan', 'Rome')]\n" + ] + } + ], "source": [ "node_remove = {'London', 'Madrid'}\n", "G.remove_nodes_from(node_remove)\n", @@ -136,9 +221,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "V = ['Dublin', 'Milan', 'Paris', 'Rome']\n", + "E = [('Dublin', 'Paris'), ('Milan', 'Rome')]\n" + ] + } + ], "source": [ "node_edges = [('Milan','Dublin'), ('Milan','Paris')]\n", "G.remove_edges_from(node_edges)\n", @@ -148,18 +242,38 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[('Dublin', 'Paris', {}), ('Milan', 'Rome', {})]\n" + ] + } + ], "source": [ "print(nx.to_edgelist(G))" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Dublin Milan Paris Rome\n", + "Dublin 0.0 0.0 1.0 0.0\n", + "Milan 0.0 0.0 0.0 1.0\n", + "Paris 1.0 0.0 0.0 0.0\n", + "Rome 0.0 1.0 0.0 0.0\n" + ] + } + ], "source": [ "print(nx.to_pandas_adjacency(G))" ] @@ -173,9 +287,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " source target\n", + "0 Milan Dublin\n", + "1 Milan Rome\n", + "2 Paris Milan\n", + "3 Paris Dublin\n", + " Dublin Milan Paris Rome\n", + "Dublin 0.0 0.0 0.0 0.0\n", + "Milan 1.0 0.0 0.0 1.0\n", + "Paris 1.0 1.0 0.0 0.0\n", + "Rome 0.0 0.0 0.0 0.0\n" + ] + } + ], "source": [ "import networkx as nx\n", "G = nx.DiGraph()\n", @@ -189,9 +320,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Indegree for nodes: {'Dublin': 2, 'Milan': 1, 'Paris': 0, 'Rome': 1}\n", + "Outegree for nodes: {'Dublin': 0, 'Milan': 2, 'Paris': 2, 'Rome': 0}\n" + ] + } + ], "source": [ "print(f\"Indegree for nodes: { {v: G.in_degree(v) for v in G.nodes} }\")\n", "print(f\"Outegree for nodes: { {v: G.out_degree(v) for v in G.nodes} }\")" @@ -199,9 +339,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6fElEQVR4nO3deXRU9eH+8WcmeyAJgUCCYd+RzQKCQSso4FIqIqIsIqC1UKueFnfBAhZRKihUS+tyfoAlCHyFWlCsliCLFYTiAogEZQmElAAJELKTZO7vj5ghQyaQ5M6aeb/O4XSWO/d+kprcJ5/nLhbDMAwBAAAAdWT19gAAAADg3wiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAB8wqxZs2SxWGr0Lzo6Wr169dLTTz+t48ePe3voABDwLIZhGN4eBADs2bNHe/bskSRNnTpVWVlZiouL04IFCxyWO3/+vHbs2KGVK1fqwoULio6O1vvvv69bbrnFG8MGAIhACcAHtWnTRkePHlXr1q2VlpbmdJkvv/xSgwYNUnFxsRo2bKjU1FQlJiZ6dqAAAElU3gD81HXXXadJkyZJkvLy8rRo0SLvDggAAhiBEoDfGjRokP3x1q1bvTcQAAhwBEoAfisuLs7++NSpU14cCQAENgIlAL+Vn59vf9ywYcNql8vKytKMGTPUp08fNWrUSOHh4WrdurXGjx9f7czm888/X+Xs8qVLl6qoqEh//OMf1blzZ0VERKht27aaMmWKw9nmWVlZmjp1qtq2bauwsDC1bdtWTz/9tPLy8q74NZ0+fVrTp09Xr169FB0drYiICLVu3VqjR4/Wp59+WovvDgB4DoESgN/65ptv7I+vu+46p8t8+umn6tChg2bPnq3IyEjNnDlTb7zxhoYNG6Y1a9Zo4MCB+vWvf63S0lKHz91zzz1atmyZw1nmhYWFuvnmm7V//3498cQTeu6552SxWPT2229rwIABOn78uDIzM3XrrbfKarVq2rRpeuyxx3Ty5EnNmzdPv/zlL2Wz2ar9ev7973+rY8eOeumll5SYmKiXXnpJb7zxhu644w6tX79et912m8aMGaPi4mKT3zkAcDEDAHxM69atDUlG69atq13m7NmzRmJioiHJCA8PN1JTU6sss337diMkJMSQZDz++ONV3v/qq6+Mhg0bGpKMX//61063c+TIEUOSIclITEw0Fi5c6PD+6dOnjWbNmtnXMW7cOGPnzp0Oy3z22Wf2dbz//vtOt7Njxw4jNDTUkGQsWLCgyvvff/+90ahRI0OSMWXKlOq+LQDgFcxQAvBZNptNWVlZDv/S0tK0atUqXX/99crIyFCzZs30z3/+U507d3b4rGEYevDBB1VSUqI2bdpo7ty5Vdbfu3dvPfPMM5Kkd955R5s2bbrseMLCwvTYY485vBYXF6e7775bkvTuu+8qNDRU1157rcMyN910kzp16iRJWrt2bZX1Voz1woUL6t+/v37/+99XWaZr16567rnnJElvv/22UlNTLztWAPAkAiUAn5Wenq6mTZs6/Gvbtq3GjBmj0NBQ/f3vf9ehQ4d06623Vvnshg0btH//fknSmDFjFBIS4nQbEydOtD/+85//rJIym/Zm5Oi9ncc07YO9embNHvv7jTr308pdx7U3I0clZRer64owe+HCBQ0bNszpdrp27SpJ9jFVlpKSon379kmSxo0bV+33o2LdhmFo+fLl1S4HAJ4W7O0BAEB14uPjlZycbH9++vRpffzxx0pOTta3336rdevWacyYMU4/m5KSYn986YxhZS1btlR8fLxOnjypTzZsVJ/Zn+p8cXlYDLZaVHQmy77s0ZJoTftgryQpJiJE9/VvpXH9WikqKsq+TMeOHZ1uJzo6WpJ07ty5y461Xbt2ysrKqrKMJEVGRtof79ixo9qvCQA8jUAJwGeFh4dryJAhDq+NHTtWXbp00fPPP6/Vq1crMTFRCxcurPLZgwcP2h9f7g4654tKZGnQRNJJFRfk6Wx2toIaxkqSSm2X3EgsJNz+MKewRG9uOaS/bTmkq89n2F+vHC4rs1rLC6FLT/6RpB9//NH++I477qh2rJVlZmbWaDkA8AQCJQC/88wzz2j58uXav3+/Fi1apEceeaTKzGBubq79cUREhNP1bP3htJ54f7fOXrj4mq043x4oq7A4HiVUkTd3pp2xv1YRHGuj8ljfeusttWvX7oqfqTxbCQDeRqAE4HeCg4P1hz/8QePGjVNpaaleeeUVvfPOOw7LVJ4pLCoqqrKOd7elaeaH+2S1SEbpxURpDWtQ6/EYlSYy13x9XE+0aVOrz1cea48ePZSUlFTrMQCAN3FSDgC/dO+999pn8pYtW6YTJ044vN+hQwf748oXHZekv28vD5NS+SxjaW75MYuWsEhZI6NNjWvBhh/09+1ptfpM5dnVo0ePmto+AHgDgRKAXwoKCtKTTz4pSSouLtZrr73m8P7QoUPtj3ft2mV/vPWH05qxbp/9een507Lln5MkhbfqKYs1yPTYZqzbp60/nK7x8pXHum3btssu++KLLyo4OFgzZsyo8/gAwNUIlAD81gMPPKD4+HhJ5cceVj6DesiQIbr66qslSStXrlRpaanOF5Xoifd3y2q5uI787z6zP47uO9wl47JapCdX71ZuUUmNlh88eLC6d+8uSVq1alW1t2gsLi7WkiVLZLPZNHbsWJeMFQBcgUAJwG+Fh4frd7/7naTyE1sWLVpkf89isWjJkiUKDQ3VkSNH9Nxzz+ml9fuVnV9sP5nmwsnDyvlytSSpYa9bFd66p0vGZTOkrLxizfm46jUnnakYa1hYmE6dOqXJkyerpMQxjJaUlGjKlCk6fPiwJk+ebL+uJQD4Ak7KAeAT9uzZoz17yi8inp+fb//fiutQtm/f3unJKr/97W81d+5cnT9/Xq+//rpat24tSbrmmmvUr18/ffjhh7r33ns1f/58hbX4lyI7D5AlNFwXTh5W/p4UGaXFatjzFjW+5WGH9Zacy1Tx8f2yFZ63v1b8v1TJGqTQZm0U2qytijP2q+RsZvnrPyn48UtZI6IV0fYardol9dRR2QpydPjw4Spf01133aUGDcpPAurbt6/Wr1+ve+65RytWrNC3336rcePGqXnz5jp27JhWrVqlAwcOaMSIEU4vkwQA3mQxDMO48mIA4F6zZs3SCy+8UO37EydO1NKlS52+9+yzz+pPf/qTw2uzZ8/W888/L0nKysrSmN/N0Ocb/62ScydklJYoqEEjhbW4WlHX3K7wVt2rrDNvT4qyP17odHsx149Vo5/fp6yPFij/u41Ol4kf+5IatOkpffSCDu/9r9Nljhw5ojaXnBF+5swZvfHGG/rwww918OBBFRQUqEmTJrr22mv1wAMP6K677nK6LgDwJgIlgHqvpMymvnNSlFNYs2MaXSkmIkS7pg9RSBBHGAGov/gNB6DeS83M9UqYlMrvqHMgM/fKCwKAHyNQAqj39mbkBPT2AcDdCJQA6r3vMnIUXPlaQR4UbLUQKAHUewRKAPXeqdxildq8c7h4qc3Q6bxir2wbADyFQAmg3rtQWubV7ReXeHf7AOBuBEoA9V5osPnbKZoRFuLd7QOAuxEoAdR7zaLCvHoMZdOGYV7ZNgB4CoESQL3XPTHGq8dQ9kiM8cq2AcBTCJQA6j1vBzpvbx8A3I1ACaDe65IQpZiIEK9sOyYiRJ0ToryybQDwFAIlgHovJMiq+/q3kqcPowyySOP7t+K2iwDqPX7LAQgI4/q1kuHhwyhtksb2a+XZjQKAFxAoAQSEFrGRGt23pcdmKa0WaXTflmoRG+mZDQKAFxEoAQSM6cO6Kq5hmNtDpdUixTUM0/RfdHXvhgDARxAoAQSMqPAQzR/VS+6+gpDNkOaP6qWocO+cCAQAnkagBBBQbuzUVH8c3s2t25g9vJtu7NTUrdsAAF9CoAQQcCYktbGHSlfV3xXrmT28m+5PauOalQKAn7AYhqfPewQA37D1h9N6cvVuZeUVm6rBK46ZnD+qFzOTAAISgRJAQDtfVKKX1u/Xqq/SZZVUVovfiEGW8ksDje7TUtOHdeWYSQABi0AJAJKOny3Qip3HlLzjmHIKSyRJwVaLwz3AKz+PiQjR+P6tNLZfKy4NBCDgESgBoJKSMpsOZOZqb0aO9mbk6Ovvf1SJYVG71i3VtGGYeiTGqEdijDonRHEHHAD4CYESAKqRnZ2tv/zlL5Kkxx57TI0bN/byiADAN/HnNQBUY+vWrfbHW7Zs8eJIAMC3ESgBwIns7Gzt2bPH/nzv3r06c+aMF0cEAL6LQAkATmzdulUWi+NFKpmlBADnCJQAcImK2cnKh5gbhsEsJQBUg0AJAJdwNjtZgVlKAKiKQAkAlTibnazALCUAOEegBIBKLjc7WYFZSgBwRKAEgJ9cbnayArOUAFAVgRIAflKT2ckKzFICwEUESgBQzWYnKzBLCQCOCJQAoNrNTlZglhIAyhEoAQS82sxOVmCWEgAuIlACCHh1mZ2swCwlABAoAQS4usxOVmCWEgDKESgBBLStW7ea+rxhGMxSAgh4BEoAAe3gwYM+sQ4A8GcWoy49DwDUEwUFBSooKKj2/fXr10uShg0bVu0ykZGRioyMdPnYAMBfBHt7AADgTVcKg6GhoZKkuLg4Tw0JAPwOlTcAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMCfhAuXDhQlkslmr/Wa1WxcbGqkOHDrr99tv10ksvae/evW4fV1paWpWxDBo0qNbrmTVrVpX1LF261Omy69evV1xcnJKSkpSTk2PuCwAA+B1n+wxn/yIiItSuXTvdf//9+uKLL7w9bElSSUmJhg0bppiYGC1evNjbwwk4wd4egLfddtttiouLkyRNnTpVWVlZiouL04IFCyRJZWVlysrK0uHDh5WSkqJPPvlE06dP16233qp58+apR48ebhlX06ZNtWzZMknSnDlzlJqaWqf1jBw5Uh06dFBWVpamTp162WXffPNNZWdnKzs7Wxs3btTIkSPrtE0AgH+q2GdIzveJUvl+8dixY1qxYoWSk5OVnJysRx55RK+//rqsVu/NU+3Zs0cff/yxpPLJogcffNBrYwlIBuxat25tSDJat25d7TIff/yx0blzZ0OSERERYSxdutTt4xo4cKAhyRg4cGCd13HkyBFDkiHJWLJkidNl1q5dazRu3Njo27evcebMmTpvC6hP3nvvPeO9997z9jAAj7vSPrGkpMS455577PuW5557zrMDvERxcbFx2223GVFRUcabb77p1bEEooCvvGvr9ttv1/bt25WUlKTCwkI98MADWrNmjbeH5RLDhw9Xdna2/vvf/yo2NtbbwwEA+LDg4GC98847atiwoSRp/vz5OnbsmNfGExoaqn/96186f/68pkyZ4rVxBCoCZR3Exsbq/fffV2xsrAzD0IQJE5Senu7tYQEA4FExMTEaOnSopPJjGNetW+flEcFbCJR1lJiYqKeeekqSVFBQoBdffNHLIwIAwPMqjrmUpB9++MGLI4E3EShNeOihh+wHIL/77rsqLCyUpBqdnR0XF1fnM7g/+eQTDRs2TAkJCQoLC1Pbtm316KOP6n//+1+dvo6lS5dWGfOsWbMclnn++eedni1eVFSkF198Ud26dVNkZKRiY2N1yy23aNOmTXUaCwDAvwQHXzy/t6SkRJJ05MgRzZ07V0OHDlXz5s0VGhqq6Oho9ezZU48//riOHj3qdF0HDx6sdh/62Wef6c4771Tz5s0VFBRkfz8tLU1t2rSp8rnqfPnllxo/frzatm2r8PBwRUZGqlOnTrrvvvu0bNky5eXlue6bE0AIlCY0bdpUV199tSSpuLhY//nPfyRJy5Yt07Jly9SlS5dqP/vmm29ecRlnXn75Zd1///3q3r275syZoxkzZig4OFiLFi1St27dtGPHjlp/HTfeeKN9zNW55557tGzZMocz/QoLCzVw4EDt2rVLjz32mObNm6drrrlGGzZs0NChQ7V+/fpajwUA4F9OnDhhf9yyZUsdPHhQ7du313PPPafU1FQ99NBDWrRokZ588klFRkZqwYIF6tGjhz755JMq60pISHC6D3399dc1fvx49ejRQ7Nnz9bkyZMdzihfuHChli1bprvuuuuyY12wYIEGDBigdevW6bbbbtOrr76qefPm6cYbb9Tq1as1YcIEJSQkuOC7EoC8fVaQL6nJWd6XGj9+vP0Mt7lz5zq8V5Ozs2uzTFxcnNG2bVsjIyPD4f28vDyjf//+hiSjSZMmxsmTJ6usoyZneRuGYV9m5syZTt+vvJ7ExETjxRdfdHi/rKzMuOGGGwxJRufOnavdDuAvOMsbgaom+8SysjKjVatW9v3Czp07jf379xuSjF69ehl5eXkOy9tsNuPZZ581JBlRUVHGiRMnql13xb4vISHB6NSpU5V924MPPmhIMo4cOWJ/bebMmfaxXOrAgQNGUFCQIcn48ssvq7z/1VdfGeHh4U4/iytjhtKkJk2a2B+fPn3ardvKysrSyy+/rKuuusrh9QYNGuivf/2rJCk7O1szZsxw6zgqBAUF6ZlnnnF4zWq16oEHHpAkHThwQD/++KNHxgIA8Ly//OUv9jO7b731Vl177bX292bOnKkGDRo4LG+xWDR79my1bNlSubm5euutt664jczMTM2dO1fNmjVzeP2+++7TxIkT7WeZX8mnn36qsrIyNWnSRP3796/yfu/eva84w4nqBfyFzc2q/B/y+fPn3bINwyj/35DQMH2l9trw9126UFqm0OAgNYsKU/fEGPVIbK/OXbroQGqqkpOTtXDhQoWHh7tlPBWGDRvmcOxMhYrDACQpNTVVHTt2dOs4AADuY7PZlJWVZX9eVlam9PR0LVu2TG+88Yak8t/7FYdNdejQQenp6WrevLnT9QUHB+tnP/uZ0tPTtXnzFo18KEd7M3L0XUaOTuUW2/dvR7LyJUnh4RG69fZfVFnPzTffrJtvvrnGX0dpaakk6cyZM9q3b5+6detWZZkXXnhBEyZMqPE6cRGB0qTc3Fz745iYGJeu+/jZAr2385i+Onb2pw0k6B97TqnUZtiXCbZa9N7O8r8Oc0ISJKUqPz9fX3/9tQYMGODS8Vyqc+fOTl+vfA1LbuEIAP4tPT1dTZs2dfpe06ZN9etf/1rTpk2zz0YGBwerRYsW9mUMw1Bubq4uXLhw8YPBoZKk7d/9qDv+Un7+QbDV4rB/O5VbLEkqi05Q0itbdF//VhrXr5VaxEbW6eu48cYbZbFYZBiGbr75Zk2fPl3333+/wz6rY8eOTILUEYHSpMp/tVX3A1db54tK9NL6/Vq1K10Wi1RaZpMkWcMaOPywSXJ4botobH889/+2annvaxUVHuKSMTkTFRXl9PWwsLCL4/vpL0IAgH+Kj49XcnKyw2vh4eGKj49Xhw4dnJ5RnZOToz//+c/64IMPtG/fPvvZ35cqrRQyL92/GT/Vc9bQSOUUlujNLYf0ty2HNLpPS00f1rXW+7c+ffpo2rRpmjNnjk6dOqXf/e53evLJJzVw4EDdcccdGjlypEMQRu0QKE365ptv7I/79Oljen1bfzitJ97frez84p+OKq70puXyh7xagi/+cG07cFyDX9ui+aN66cZOrgm6l/LmPVsBAJ4RHh6uIUOG1Hj5AwcOaMiQITp+/LhiYmL0+OOPq1evXjpRHKK3thzW+aISnduxRkVHvrnyyiTpp8BakTf/76t0fXbgVJ32by+++KJuu+02LViwQOvXr1dxcbFSUlKUkpKiqVOnauTIkXrttdfUsmXLWq0XXDbIlMzMTKWmpkqSIiIidP3119d6HWVlZfbH725L04QlO5WdX6xL/lArZ9guuy6j9OJfgJaQCGXlFWvCkp36+/a0Wo8LAIC6mDBhgo4fP67IyEjt3LlTc+fO1YXWSXr9QIRKmndTWJtrFNSg8ZVXVA2bIVP7txtuuEFr1qzRqVOntHz5cg0fPlzBwcGy2WxavXq1+vfvrzNnztR5fIGKQGnC22+/bZ+SnzRpUpWTYCpOWKluql+6eCLPyfNFmvnhPklyHiYl2YrzLzue0rzsi9tuFG9fz4x1+7Tm6+OX/SwAAGYdPnxYO3fulCQNHz5cnTp10t+3p11x/1ZblfdvdZ00iY6O1rhx47R27VqlpaXZz/A+ceKEXn31VdcMNIAQKOvo2LFj9v/gGjRooGnTplVZpuIknXPnzjldR1lZmQ4dOiRJ9rPZLqfkzP8cZiEvdSGzfF2WkHCFxndweG/BBm6HBQBwr8zMTPvjli1bausPpzVj3b4qyxklhS7b5ox1+7T1hytftu+zzz7T888/73SSJzExUStXrrRf1Hz37t0uG1+gIFDWQXZ2tu6++26dP39eVqtVy5cvd3ogb8VZ0IcPH3Y8u+0nKSkpys8vD5KXuUvURWUlKjjo/E44xZkHVXqmfBayQfebHI6nrPH6a6niml4AAEhyuFTQd99/ryfe3y3rJfsfw7DZJ0BcwWqRnly9W7lF1U+4SNLWrVs1Z84c+6FqlwoNDbWfXBsdHe2y8QUKAmUtffTRR7ruuuu0a9cuRUZG6t1339Wdd97pdNk77rhDklRUVKSVK1c6vJefn6/p06erQaPyC6MbNakBrEE6t2mJyvLOOrxsKynSmX//rXyRiGg1uuG+Kh+t0fqvIDMzUx9++KH9eWFh4WXrfABAYGnbtq394uaf/OtfOr5vR5WaO2fb/6k056TLtllxTOWcj/fXaPk//OEPTidDduzYoe+//16SNGbMGJeNL1AE/Fneqamp2rVrlyTZZwvz8/Ptl0goKytTdna2Dh06pH//+986ePCgpPI7AsyfP1/du3evdt1JSUkaPXq0Vq1apSlTpuirr75Sr169dOrUKS1evFhjJjyo795eLp3LVlnBOeV9t0mSFNk5STKkgh+2l4+h4JwkKSyxq4Kjm+p//+8RNex1i0Jir1JZ/jnl7d2g0rMnZA1roGajZiioQSP7GC6cOqILp9JkK7x40fWUzZ8rODhY8fHxGjp0qA4fPqxt27Y5jH3Pnj1KTk5Ww4YNdd1112nVqlXasmWLCgsv1hTHjx/XihUr1KdPH/Xs2VMnT57Uhg0bHC6ltH37dgUHB6t9+/ZKSkqq1f83AADP2rNnj/bs2SPJ+T5RksaPH3/ZdSxZskQ3DhykM9lZylw5Qw26DVJo844ySktUdORrFaXvU1BMvMpyTsooKbq47+uUJGtouP15xb6v8v4xJDZBYYldq2wz78B2/b/vNqmvcfHubBVjHjBggNq1a2e/1N3atWvVpUsXjR49Wq1atVJRUZF2796tFStWqKysTE8++aSGDx9e6+9doLMYhivmrvzXwoULNXXq1Grft1gsio6OVuPGjdWpUyf9/Oc/15133nnZIFlZSUmJXn31VSUnJ+vQoUMKDw9Xnz599MQTT2ivta1mTr5HRce+c/hM4m+XSrYyZbz5K4fXw1p2V8J9c5W3d6Py9qao5PRR2S4UKKhBY0V0uFYxSfcqOKqJw2fOfb5cOV+scDq2gQMHavPmzVq6dKn9domXiouL06OPPqrdu3frgw8+cLrMzJkzNWvWLG3evFk33XST02UmTpyopUuXOn0P8GUrVpT//IwdO9bLIwHcb9asWXrhhRcuu0xNYsPz723VGwtfU8HB/6r0/GlZLBYFRTVReKueir52hHK+XK387zY6fCbxN/9PwY3idXTuL6tdb4PugxX3y6r77ON/fVBl5085/cySJUs0adIkSdLXX3+tNWvW6PPPP9eBAwd09uxZWa1WJSYmKikpSVOmTNHPf/7zK359qCrgA6W3lJTZ1HdOinIKPV8Zx0SEaNf0IQoJcn7EQ2ZmpjZv3qwDBw7IarXKZqv+ckXPPPOM22/xCHgTgRKoHV/ev8F9Ar7y9pbUzFyv/LBJUk5hiQ5k5qp7ouOtIi8NkpIuGyYBALiUL+7f4H4ESi/Zm+Hde1zvzcix/8ARJAEAruJL+zd4DoHSS77LyFGw1VLl3qWeEGy1aG9Gjm4iSAIAXMwX9m8coOJ5BEovOZVb7JUfNkkqtRn6795UvbXnH/bX6hokV69eraCgIFcNDfA5GRkZki4eSwng8r5Ji1CpLeTKC7pBqc3Q6bxir2w70HHUqpdcKPXuBcFLDTdc6RwAEPC8vX8pLuGGG97ADKWXhAZ7d1avQ7s2mjL0Bm3ZskWpqalXPJu7OqNGjeIsb9RrnOUN1M7Gv+/Sj/tdd+Hy2goLoTXzBgKllzSLCvPqMSZNG4YpISFBo0ePVmZmpulgCQCA5Bv7N3gelbeXdE+M8eoxlD0qnQFXESynTJmiTp06SZL9JB0AAGrDl/Zv8BxmKL3E2//BO9s+M5YAALN8cf8G92Mayku6JEQpJsI7Z8HFRISoc0JUte8zYwkAqCtf3r/BfUgJXhISZNV9/VvJ6uGT4YIs0vj+rWp0WyqCJQCgtvxh/wbX47vuReP6tZKn76RukzS2X6tafcZZsAQAoDr+sn+D6xAovahFbKRG923psb/irBZpdN+WahEbWafPVw6WXbp0UXR0tEJCvFNrAAB8l7/t32AeJ+V42fRhXfXZgVPKyiuWO0+Ks1qkqBDp/u4NVFRUZOrakRXBEgAAZwzD0OAm57XWuKAihcqdk5VWixTXMEzTf9HVjVvBlRAovSwqPETzR/XShCU73bodmyH1N37Q6hW7yrcbFaXmzZsrISFB8fHxio+PV2xsLMdIAgBMKSgo0D//+U/9+OOP+s01SVrwbYlbt2czpPmjeikqnMbMmwiUPuDGTk31x+HdNGPdPrdt44U7rtbpbfuVn1/+PDc3V7m5uTp48KD9skDBwcFq2rSpmjdvbg+Z8fHx3AkHAFAj6enpWr16tUpKSjRu3Dh17NhRsa3S3Lp/mz28m27s1NRt60fNECh9xISkNpKkGev2yWqRS+rvivXMHt5N9ye10beRQ7R27VqHZSpfY7K0tFQnTpzQyZMnHV6vmM2Mj49XQkKCmjdvrtjYWPMDBADUC4ZhaNu2bdq4caNatGihUaNGKTo6WpJn9m/wPgKlD5mQ1EZtmjTQk6t3mz6msuKYkvmjetn/cuvZs6c2b96snJycy3720guZO5vNfPjhh9WsWbO6DxAAUC9Urrivv/563XTTTQoKcryftrv3b/A+DpjzMTd2aqqUxwfq3j4tZbGUX1erNoIsksUi3dunpTY+PtDhh81qtWrQoEF1HpvNZpPFYtFVV12lJk2a1Hk9AID6IT09XW+99ZaOHz+ucePGaciQIVXCZAV37t/gfRbD8PSVolBTx88WaMXOY0recUw5heUHNQdbLQ73SK38PCYiROP7t9LYfq2qvXSCzWbT66+/fsVZyuqEhYXp4YcfVkwMt7ZCYFixYoUkaezYsV4eCeA7Lldx14Q79m/wLgKlHygps+lAZq72ZuRob0aOTucVq7ikTGEhQWraMEw9EmPUIzFGnROianSHgG+//bbKsZQ1NXbsWC5ujoBCoAQc1aTirilX79/gPRxD6QdCgqzqnhij7okxcsUurabHUl4qKSmJMAkAAczZWdxmuHr/Bu8h7geg2h5LabVaddVVV2nw4MHuGxQAwGcZhqEvvvhCS5YsUUxMjH7zm9+YDpOoX5ihDFC1maUMDg7WvffeW+dKAwDgv1xZcaP+YoYyQNVmljIoKEjnz59374AAAD6nNmdxI7ARKANYz549r3i2dp8+fRQXF6elS5dq27Zt4hwuAKj/qLhRW1TeAaxiltLZGd9Wq1UJCQm6/fbbJUmbNm3Shg0bdPToUd15552KjOSyDQBQH1Fxoy6YoQxw1c1ShoSE2I+bDAoK0pAhQzRu3Dh7/ZGenu6F0QIA3ImKG3VFoAxw1R1LOXLkyCpBs2PHjpoyZYpiYmKowAGgHqHihlkESlSZpbzc9SZjYmI0ceJEJSUlacOGDVq5cqUKCgo8NVQAgIsVFBRoxYoVSklJ0YABAzRx4sRa3fUGkAiUkOMsZU2uN0kFDgD1AxU3XIVbL0JS+T2+t2/frh49etTqL9OcnBytWbNGGRkZGjx4sJKSkmSxWNw4UsCzuPUi6iOz9+IGLsVZ3pBUPkt5/fXX1/pzFRU4Z4EDgH/gLG64A5U3TKMCBwD/QMUNdyFQwmU4CxwAfBNnccPdqLzhUlTgAOBbqLjhCcxQwuWowAHAN1Bxw1MIlHAbKnAA8A4qbngalTfcigocADyLihvewAwl3I4KHAA8g4ob3kKghMdQgQOAe1Bxw9uovOFRVOAA4FpU3PAFzFDC46jAAcA1qLjhKwiU8BoqcACoGypu+Boqb3gVFTgA1A4VN3wRM5TwOipwAKgZKm74KgIlfAYVOAA4R8UNX0flDZ9CBQ4Ajqi44Q+YoYTPoQIHgHJU3PAXBEr4LCpwAIGKihv+hsobPo0KHECgoeKGP2KGEj6PChxAoKDihr8iUMJvUIEDqK+ouOHvqLzhVyoq8M8++4wKHEC9QMWN+oAZSvidoKAgDR06lAocgN+j4kZ9QaCE36ICB+CvqLhR31B5w69RgQPwN1TcqI+YoYTfowIH4C+ouFFfEShRb1CBA/BVVNyo76i8Ua9QgQPwNVTcCATMUKLeoQIH4CuouBEoCJSot6jAAXgLFTcCDZU36jUqcACeRsWNQMQMJeo9KnAAnkLFjUBFoETAoAIH4C5U3Ah0VN4IKFTgAFyNihtghhIBiAocgKtQcQPlCJQIWFTgAOqKihtwROWNgEYFDqC2qLiBqpihRMCjAgdQU1TcgHMESuAnVOAAqkPFDVwelTdQCRU4gEtRcQNXxgwlcAkqcAAVqLiBmiFQAtWgAgcCFxU3UDtU3sBlUIEDgYeKG6g9ZiiBK6ACBwIHFTdQNwRKoIaowIH6i4obMIfKG6gFKnCg/qHiBsxjhhKoJSpwoP6g4gZcg0AJ1BEVOOC/qLgB16LyBkygAgf8DxU34HrMUAImUYED/oOKG3APAiXgIlTggO+i4gbci8obcCEqcMD3UHED7scMJeBiVOCA76DiBjyDQAm4CRU44D1U3IBnUXkDbkQFDngeFTfgecxQAm5WUYGPHTuWChxwMypuwDsIlICHdOrUiQoccJNLK+4pU6ZQcQMeROUNeBAVOOB6VNyA9zFDCXgYFTjgOlTcgG8gUAJeQgUO1B0VN+BbqLwBL6ICB2qPihvwPcxQAl5GBQ7UHBU34JsIlICPoAIHqkfFDfg2Km/Ah1CBA1VRcQO+jxlKwMdQgQMXUXED/oFACfgoKnAEMipuwL9QeQM+jAocgYiKG/A/zFACPo4KHIGEihvwTwRKwE9QgaM+o+IG/BuVN+BHqMBRH1FxA/6PGUrAz1CBoz6h4gbqBwIl4KeowOHPqLiB+oXKG/BjVODwR1TcQP3DDCXg56jA4U+ouIH6iUAJ1BNU4PBlVNxA/UblDdQjVODwRVTcQP3HDCVQz1CBw5dQcQOBgUAJ1FNU4PAmKm4gsFB5A/UYFTi8gYobCDzMUAL1HBU4PImKGwhMBEogQFCBw52ouIHARuUNBBAqcLgDFTcAZiiBAEMFDlei4gYgESiBgEUFDjOouAFURuUNBDAqcNQFFTeASzFDCQQ4KnDUBhU3AGcIlAAkUYHj8qi4AVwOlTcAOypwOEPFDeBKmKEE4IAKHJVRcQOoCQIlAKeowAMbFTeA2qDyBlAtKvDARMUNoLaYoQRwWVTggYWKG0BdECgB1MilFfgXX3xBBV6PUHEDMIPKG0CNVa7AU1JSdPToUY0YMYIK3M9RcQMwixlKALVSuQI/fvw4Fbifo+IG4AoESgB1QgXu36i4AbgSlTeAOqMC909U3ABcjRlKAKZQgfsXKm4A7kCgBOASVOC+jYobgDtReQNwGSpw30TFDcDdmKEE4FJU4L6FihuAJxAoAbgFFbh3UXED8CQqbwBuQwXuHVTcADyNGUoAbkUF7llU3AC8gUAJwCOowN2LihuAN1F5A/AYKnD3oOIG4G3MUALwKCpw16LiBuALCJQAvIIK3BwqbgC+hMobgNdQgdcNFTcAX8MMJQCvCtQKPC8vT3l5ebX+HBU3AF9EoATgEwKpArfZbFq6dKneeustFRQU1OgzVNwAfBmBEoDPqKjAr7vuOqWkpGjFihU1Dlz+5Pvvv1d2drby8/P1j3/844rBuaCgQCtWrFBKSooGDBigiRMnKiYmxkOjBYArsxj1dQoAgF+ZNGmS3n333SqvDxkyRIsXL1bLli1rtb6f/exn+vbbb6u8XvlX3qxZs/Tqq69q7Nixevvttx2Ws1gsDs9bt26ttLS0Wo3BGZvNpkWLFunMmTP214YMGaLrr7/e6fLp6elavXq1SkpKdNdddzErCcAnESgB+ITt27fr0KFDkqSpU6cqKytLkhQZGampU6fq9ttv14ABA6oEPWc++eQT3X777fbn06ZNU9euXSVJ48ePt78eFRVlP44xOztbjRs3tr+XnJwsSZozZ45SU1NdFii/++47rVmzxuE1i8WiSZMmqVWrVvbXDMPQtm3btHHjRrVo0UJ33303s5IAfBaBEoDPadOmjY4ePWp//qtf/UotW7ZUx44da3QW+E033aTNmzfbn2/atEmDBg2qstwf/vAHLViwQKNGjdLSpUudrmvgwIHaunWrSwKls9lJqTxQNmjQQA8//LAiIyM5ixuA3+EYSgA+qUOHDgoJCZEkffTRRxo5cmSNzgLfsWOHNm/erKuvvvqK25g9e7by8vKqDZOu9v3331cJk1L5bGTF8ZTHjh3jLG4AfodACcAnJSYm6r777pMknTx5Up9//nmNzgKfO3eu2rVrp5EjR3p6yJdls9m0adOmat83DEOHDh3iLG4AfolACcBnPfPMM/ZjJufNm6cGDRpc9izw1NRUrV27Vo8//rjPzepVNzvpzM0338zxkgD8CoESgM/q0qWLRowYIUlKS0vTihUrLnsh9FdeeUVNmjTRgw8+eNn1Tpo0SRaLxeFf5WMua+vLL7/U008/reuuu06NGzdWSEiIGjdurBtuuEHz58/X+fPnnc5OfvXVV5o1a5bDv82bN+v999/Xa6+9pt69e6thw4aKjo7WDTfcUOVkHgDwFQRKAD7t2WeftT/+05/+ZK+5L70Q+j//+U8tX75cjz76qCIiIi67zilTpmjZsmWaNm2a6fEtXrxYSUlJmjdvngzD0NNPP61FixZpypQpOnbsmJ566in17NnTfgZ7ZW3bttVdd92lu+66y/6azWbT4sWL9c4772jSpEl67bXXNHjwYH3xxRcaNWqU3nzzTdNjBgBXI1AC8Gn9+vXTTTfdJEnat2+f1q5da3+v8oXQX3nlFVkslivOTkpSUlKSxo8fr6FDh5oe34ULFyRJDz30kHbs2KFnn31WkydP1ssvv6zU1FTdfPPNOnr0qFavXl3ls40bN1avXr3Uq1cv+2vffPONIiMjNWbMGPXp00eTJ0/WBx98oHHjxkkqD9hFRUWmxw0ArkSgBODzKs9Svvzyyw7vBQUFqW/fvtq9e7f69Omj1atXm7oXeEmZTXszcvTezmOa9sFeHcorPxYzO/+Cpn2wV+/tPKa9GTkqKbM5jOHScUnl19D8/e9/L0nKyMio0WWHioqKdMstt0iSNm7cqGPHjkkqv3SSJOXk5Ojzzz+v89cHAO4Q7O0BAMCV3HLLLerdu7e+/vpr7dy5Uxs3btTgwYPt7y9atEjFxcX629/+pl27dmnp0qX2IFZTp3OL9MqnqVq+45hyCkskScFWi85dKP+7u/BCmf5vV7re21m+3piIEN3Xv5VG/PJuHR8xQnFxcVXWabPZlJaWprCwMBUXFystLU1t2rS57Dhat26t8PBw+/P3339fDz/8sMNlkFJTU10yuwoArsIMJQC/UN0sZWFhoV5//XXde++96tmzp70CP3z4cK3W/9iKb/TmlkP2MClJpTbHyxJVfp5TWKI3txzSrX/dqYVfnFJuUfnnSktLdfbsWWVlZemLL75Qenq6wsLCJEm5ublXHEflYGoYhvLy8rR161bFxsZe3HZOTq2+NgBwN2YoAfiFu+++Wx07dtSPP/6ojRs3aufOnerXr58WL16s06dP6+mnn5Yk+1ng69at05YtWyRJp06dcrrO3ennHJ7bannfsIrll2/4UotfeV6hmXv1v/SjTq+PKZWHzSsJDQ2VJEVHR6t58+aKj49Xz5497aG0pusBAE8iUALwC1arVU899ZQmT54sqXyWcvXq1Xr11Vc1dOhQXXPNNQ7LN2nSxP74k08+UWJiosO9wN/dlqaX/7Xf9LgKDmzT6XXzpLISBTdK0L2/fUajB/dTVlaW/VjHf/zjH8rPz5ck+2WKbLbyYzCDg4PVrFkz+/p69+6tZ5991iFAAoCvI1AC8BsTJkzQzJkzdeLECa1du1YzZszQkSNH9Pbbb1/2c1dffbVSUlJ09OhRjRgxQqt3n9LMD/eZHk9Z/jllrV8glZUopGlrNZ+4UF8Gh+gXCd2UlbpC7du3l1QeGqXy2cdOnTopISFB8fHxio+PV2xsrCwWiz0ox8TEECYB+B2OoQTgN8LCwjR16lRJ5ccXvvTSS+rdu7eGDBly2c/17dvXfiH0aa8v04x15sOkJBUe3CnjQqEkKar3L2UJLr/3+Ix1+3Quork6dOigX/ziF4qKipJUHmzHjBmjQYMGqWvXrmrcuLF9xhQA/BmBEoBf+c1vfqNGjRrZnz/11FM1+lynTp00buKv9FlhC1ldlOHK8s/ZHwdHXzyZxmqRNhW00PC779W1116rwsJC12wQAHwUgRKAX4mKitIjjzwiqfxOM/fcc0+NP/uX/2Qor6T2J99UJ6jhxTOvS7KP2x/bDCkrr1hzPt6vtLQ0ZWdnu2aDAOCjCJQA/M4f//hHFRYW6sCBAwoKCqrRZ9LPFmjVrnSXhUlJimh/rSwh5deMPL/jHyrNO2N/z2ZIK788rF9N/o3rNggAPoqTcgD4hD179mjPnj2SpPz8fJ08eVLJycmSpAEDBqhdu3b2Za1Wq8PFvyur+EzFuiRpw4YNevPjnSo4fF4RHZNUnLFfJWczVZJ98Y46hWnfqjQ3WyGxCQpL7Kq87zZJkkrPZUqSjJIi+2sRba9RUINYBTVopMa3PaLs9QtVln9WJ955WA173aLgxokqyzujgv1bdVYXFBUVpdzcXB0+fFjJyclq2LChRowYoZMnT2rDhg1Vvg/Jyclq3769kpKSlJ+frw8++MDpMvHx8VzgHIBPsBjVXTANADxo1qxZeuGFF5y+t2TJEk2aNKlG67ncSS5B0c3U4reLlfXRAuV/t9HpMg26D1bcL6fq6NxfVrue+LEvKbx1T/vz4syDOr/zAxUf26uyghxZgkMVEnuVItpfq8Sf3638lU/q6NGj9uVbt26ttLQ0bd682X6f8ktNnDhRS5cuVVpamtq2bet0mYEDB2rz5s3VjhMAPIVACaDe25uRozv+8h+vbf+jR29Q98QYr20fANyNYygB1Ht7M7x7q0Jvbx8A3I1ACaDe+y4jR8GuulZQLQVbLQRKAPUegRJAvXcqt1ilrjy9uxZKbYZO5xV7ZdsA4CkESgD13oXSMq9uv7jEu9sHAHcjUAKo90KDa3atSncJC/Hu9gHA3QiUAOq9ZlFhXj2GsmnDMK9sGwA8hUAJoN7rnhjj1WMoe3DJIAD1HIESQL3n7UDn7e0DgLsRKAHUe10SohQTEeKVbcdEhKhzQpRXtg0AnkKgBFDvhQRZdV//VvL0YZRBFml8/1YKCeJXLYD6jd9yAALCuH6t5Okbzdokje3XyrMbBQAvIFACCAgtYiM1um9Lj81SWi3S6L4t1SI20jMbBAAvIlACCBjTh3VVXMMwt4dKq0WKaxim6b/o6t4NAYCPIFACCBhR4SGaP6qX3H0FIZshzR/VS1Hh3jkRCAA8jUAJIKDc2Kmp/ji8m1u3MXt4N93YqalbtwEAvoRACSDgTEhqYw+Vrqq/K9Yze3g33Z/UxjUrBQA/YTEMT5/3CAC+YesPp/Xk6t3Kyis2VYNXHDM5f1QvZiYBBCQCJYCAdr6oRC+t369VX6XLKqmsFr8RgyzllwYa3aelpg/ryjGTAAIWgRIAJB0/W6AVO48peccx5RSWSJKCrRaHe4BXfh4TEaLx/VtpbL9WXBoIQMAjUAJAJSVlNh3IzNXejBztzcjR6bxiFZeUKSwkSE0bhqlHYox6JMaoc0IUd8ABgJ8QKAEAAGAKf14DAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAlP8P5j9YYnXV9iIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "draw_graph(G, pos_nodes=nx.shell_layout(G), node_size=500)" ] @@ -215,9 +366,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " source target weight\n", + "0 Milan Rome 5\n", + "1 Milan Dublin 19\n", + "2 Paris Dublin 11\n", + "3 Paris Milan 8\n", + " Dublin Milan Paris Rome\n", + "Dublin 0.0 0.0 0.0 0.0\n", + "Milan 19.0 0.0 0.0 5.0\n", + "Paris 11.0 8.0 0.0 0.0\n", + "Rome 0.0 0.0 0.0 0.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+XklEQVR4nO3deXwU9f3H8ffsbk4g4SbILbcIyiGXoEHBAxUJYBGwHj9B0EdtvbXaKq1Fq+JRxWIqFmoRakVAEbEPLrkV5DIIAUSBEAg3gSSQa+f3R8yYNRtIMtns9Xo+Hnl0dmd25pvUZN58P9/vfA3TNE0BAAAAleTwdwMAAAAQ3AiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAACQmJiogzDKPdXTEyMevbsqQ0bNvi76QAQ9gzTNE1/NwIA5syZo6VLl0qSkpOTZZqmDMPQ+PHjPY47efKkNmzYoB9++MF674UXXtDvf//7am0vAOBnBEoAAcflcqmwsFBOp1MFBQVej5k2bZrGjRtnvd6wYYN69OhRXU0EAJRAoAQQcMoTKCXpkksu0Y4dOyRJffr00dq1a6uriQCAEhhDCSBoDRw40Nretm2bH1sCAOGNQAkgaDVt2tTaPnfunB9bAgDhjUAJIGidOnXK2na5XGUet3PnTl111VWKjY21Zom7XC61atVKb731ltfP9OvXr9TM8rFjx+rUqVO65pprFBkZKcMwFBERoY4dO3rMNt+5c6e6deumiIgI65iePXsqIyPjgt/Tjh07dOWVVyomJsajrc2bN9ekSZPK/8MBgGrEGEoAAae8YygTExO1YsUKSVKnTp28lr0nTZqkP/zhD5KkuLg4DRgwQHFxcdq0aZO+++47SVL79u21ZcsWRUdHW5/773//q+XLlysjI0Pz58+XJN1+++367LPPVLduXfXv318HDx7UqlWrVFBQIKfTqXXr1ikqKkq9e/fWJZdcoksuuUTbt2/Xxo0bJUnx8fE6duxYmeH3xRdf1NNPPy1JatCgga6++mrFxsZq8+bNSklJkSQ1a9ZM27ZtU1xcXEV+pADgWyYABBin02lKMp1OZ5nH7N2713Q4HKYkU5L5+eeflzrm3XfftfZ379691P6ZM2da+zt06OD1OqtWrbKOcTgcZlJSksf+1NRU0zAM6xwtWrQwZ8yY4XHMq6++ap3jkUce8Xqdf/7zn9YxQ4cOLbV/wYIF1nU6duxY5s8FAPyBHkoAAadkD2VxL2Kxo0eP6qOPPlJycrJyc3NlGIaef/55PfPMMx7Hud1uxcTEKC8vTy6XS5mZmYqNjS11rYEDB1rPv3z11Vf1yCOPeOxfvXq1+vfvb7Xr7NmzpXoYL730Uqudbdq00e7du0tdJzIyUvn5+WrVqpXHMzSL2xobG6vc3FzVqFFDWVlZXn8ugwcP1qJFiyRJCxcu1ODBg70eBwDVjTGUAAJWYWGhOnTo4PHVv39/vfnmm3I4HBo/frwOHjxYKkxK0ksvvaS8vDxJUo8ePbyGSUke4xJfeeUV5Re6lZKeqVnr9+vpeSn666Id1v46F7XSfzcdVEp6pvIL3db77dq1s7aHDBni9Tr16tWTJB0+fLjUvpdfflm5ubmSpOuvv77Mn0fJh7y/+OKLZR4HANWt7FHsAOBnDofDIzilpaVp4cKF+vHHH3X27Fl99tlneu2117x+dt68edZ2cQ+jN7169ZLD4ZDb7VZGRoa6/elznck3JEkuh6GsvSetY7Oj6+vpeUVjGeNjIjSmV3ON7tlc8fHxHufzpjjQFofcstraqVMn7dy50+s56tSpY21v3769zO8JAKobgRJAwDIMQ0888YTHe2+99ZYGDRqkJUuWKD09XVdeeaU2b95c6rMHDhywttu3b1/mNU6fy5fDFSl3XtFjh44f2KvIRq0kSQVuzxFBRuTPvZyZZ/P1zoo9mrpij+L2Z1rvN2zYsMzvRZK8jTJKS0uztp9//nk9//zzZba3WE5OzgWPAYDqQqAEEHQWLFig+Ph45eXlacuWLVq8eLEGDRrkcUxxCVmSRw9iSSt3HdWjH21VoQzrvcKs49JPgbIUh+cooeK8+cOxn8c8nu/xRWUp2dYxY8aoS5cuF/xMWd8TAPgDgRJA0ImOjtZ9992nKVOmSJIefPBBpaamehwTFRVlbZ85c6bUOf61dq+eW/CdHIYk98/jIZ0161W4PSX7HBdtO6R+/Sr2+ZJtveqqq3TfffdVuA0A4E9MygEQlF599VWrN3Dnzp3asmWLx/6Sq+gUr/dd7P11RWFSKuplNAt/HtfoqtfEVrveW/Wj3l+3t0KfadasmbXNEpIAghGBEkBQioyM1IgRI6zX48aN89g/bNgwa3v16tXW9spdR/Xspz8/iuhceqr007hGR406crgibbft2U+/08pdR8t9/PDhw63t4ge1l2XgwIEyDENXXXVVpdsHAFWNQAkgaE2dOlWOn8Y1fvPNN9q3b5+174knnrBKyRs2bNC5c+d0+ly+Hv1oa1GZ+yeZq2Za2/G9fg6hdjgM6bE5W3XmXH65jn/sscestqakpJS5ROPp06etwPnLyUoA4E8ESgBBq3bt2ho4cKD1euzYsda2w+HQ1KlTJUkFBQXq37+/Xli4Q8ezc63JNNnbV+rc3i2SJFfdporrmVQl7XKb0rGsXE36fMeFD/6prf/4xz8kFc0C7927d6lZ3Dk5OerWrZsKCgrUsWNH3XzzzVXSVgCoCqyUAyAgzJkzx1qxJjk5WaZpyjAM62HeXbt29TpZZf/+/WrRooUkeRx/3XXXKSkpyWN9bCMyVtEtusiIilV+xh7lHyvq0XTVaaLG9/xNjsif1/I+uz9FOdtXqjD7pM7u/qrouHpNFd2ss6JbXqYaHfrpzJZFysv4QefSUlRwvOgxRTFte8tZo45qdb9JUQ1b6vaIjTp15JBmzZql06dPe7TxT3/6k8djhl555RU9+eSTMk1TkZGR6t+/v5o2baoff/xRX331lfLy8tS4cWNt375dtWvXrrKfPQDYRaAEEBASExPPO36wdevW+v77773u6927t77++muP96699lotWbJEUtGknRtGjNG+1BSZBT9NwDEcctaqr7ieQxXXo/TqNsc+/5uyv13s9XpRzS5Vwpi/Kv2dcSo4dcjrMXWuGas6vYbq4JujdC679CxzSVq1apX6/WJK+J49ezR27FitX7/e6qV0OBxq0KCB7rrrLr300ktezwUA/kSgBBDy8gvd6jFpiTLPlm9MY1WKj4nQN88MVISTEUYAQhd/4QCEvNSMM34Jk1LRijo7M7z3UAJAqCBQAgh5KemZFz4ohK8PAL5GoAQQ8ralZ8pV8llB1cjlMAiUAEIegRJAyDtyJlcFbv8MFy9wmzqalXvhAwEgiBEoAYS8vIJCv14/N9+/1wcAXyNQAgh5kS6nX68fFeHf6wOArxEoAYS8hrWi/DqGskHNKL9cGwCqC4ESQMi7tEm8X8dQdm4S75drA0B1IVACCHn+DnT+vj4A+BqBEkDI65BQS/ExEX65dnxMhNon1PLLtQGguhAoAYS8CKdDY3o1V3UPo3Qa0h29mrPsIoCQx185AGFhdM/mMqt5GKVb0qiezav3ogDgBwRKAGGhaZ1YjezRrNp6KR2GNLJHMzWtE1s9FwQAPyJQAggbz9zUUfVrRvk8VDoMqX7NKD0zuKNvLwQAAYJACSBs1IqO0OQRl8nXTxBym9LkEZepVrR/JgIBQHUjUAIIK1e1a6A/D+nk02s8P6STrmrXwKfXAIBAQqAEEHbu7NPSCpVVVf4uPs/zQzrp131aVs1JASBIGKZZ3fMeASAwrNx1VI/N2apjWbm2yuDFYyYnj7iMnkkAYYlACSCsnT6XrxcW7tCHG9PkkFRYgb+ITqPo0UAjuzfTMzd1ZMwkgLBFoAQASQdO5mj2+v2a+fV+ZZ7NlyS5HIbHGuAlX8fHROiOXs01qmdzHg0EIOwRKAGghPxCt3ZmnFFKeqZS0jO1aftu5ZuGLm7RTA1qRqlzk3h1bhKv9gm1WAEHAH5CoASAMhw/flxTpkyRJD344IOqW7eun1sEAIGJf14DQBlWrlxpba9YscKPLQGAwEagBAAvjh8/rm+//dZ6nZKSohMnTvixRQAQuAiUAODFypUrZRieD6mklxIAvCNQAsAvFPdOlhxibpomvZQAUAYCJQD8grfeyWL0UgJAaQRKACjBW+9kMXopAcA7AiUAlHC+3sli9FICgCcCJQD85Hy9k8XopQSA0giUAPCT8vROFqOXEgB+RqAEAJWvd7IYvZQA4IlACQCqWO9kMXopAaAIgRJA2KtI72QxeikB4GcESgBhrzK9k8XopQQAAiWAMFeZ3sli9FICQBECJYCwtnLlSlufN02TXkoAYY9ACSCsff/99wFxDgAIZoZZmToPAISInJwc5eTklLl/4cKFkqSbbrqpzGNiY2MVGxtb5W0DgGDh8ncDAMCfLhQGIyMjJUn169evriYBQNCh5A0AAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbwj5QJiUlyTCM8345HA5FRESoQYMGuu666/Txxx/7vF2rV68u1Y7atWtX+DyJiYmlzjN27Fivx06cOFEOh0O1atXS/v37bX4HAIBg4+2eUdZXRESELr74Yk2dOtXfzZYk5eTkqGHDhjIMQ/fcc4+/mxN2DNM0TX83wp8+//xzLViwQJKUnJws0zRlGIbGjx8vSSooKFBGRob27t2rnTt3Kj8/X5JUr149JScna/jw4T5p15EjR/Tcc89Jkv75z38qLy9P8fHxOnXqVIXOM2fOHC1dulQZGRmaP3++JOnee+/VtGnTSh3bqFEjHTlyRJL0+OOP6+WXX7b1PQChYPbs2ZKkUaNG+bklgO8V3zMk7/dEqei++MMPP2j16tXKy8uTJHXu3FmbNm2Sy+XyS7slaebMmfr1r38tSYqOjtbZs2f91pZwFPaBsiSXy6XCwkI5nU4VFBR4PebPf/6zJk2aZP0SjR07Vu+++65P21W7dm1lZmZWKlAWW716tfr37y+p7ED5zDPP6MUXX1RMTIy2bdumVq1a2Wk2EBIIlAhXF7onnjt3Tm3bttWBAwckSX369NHatWuru5mWrKwstWrVSseOHdPo0aP1wQcf+K0t4SjsS94V9eyzzyo1NVU1a9aUJE2bNk2PP/64n1tVNSZNmiS3263s7GzCJADgvKKjo7VmzRrr9bp167Ru3Tq/tadmzZo6evSoTNMkTPoBgbISWrVqpeXLl8swDEnS5MmT9fXXX/u5VQAAVK/mzZurcePG1uvXXnvNj62BPxEoK6lHjx4aNGiQ9fruu+/2X2MAAPCTpk2bWtu7du3yY0vgTwRKG9544w1rOzU1VSdOnJCkcs3OdjgclZ7B/Ze//EUNGzaU0+m0Ztp16dJFmzZtqtT3MXbs2FJtTkxM9DimX79+XmeLnzp1SgMHDlR0dLQ1I75evXr8KxUAwkTJiTjFYy1XrlypG264QfXq1bPuVYZhKCYmRt27d/colZe0dOnSMu+hr776qho3buxxPsMwtHr1arlcrlKfK8u0adPUqlUrRUREWMdGRkaqZcuWmjBhgjIyMqruhxNG/DcdKwR07NhRUVFRys3NlST94x//0FNPPaUJEyZI+nl2tjcPP/ywcnJyznuMN9dff70WL16sK664QoMHD1Z6erpWrFihlJQU9ejRQ++++67uvffeCn0fd9xxhyIiIiRJ77zzjtdjfvvb36pz584es8Wzs7PVtGlT1apVS8OGDVNBQYEWL16sEydO6NFHH9Xp06c1ceLECrUFABBcjh49am03adJES5cu1cCBAyVJTqdTffv2VatWrXTgwAGtX79emzZtUr9+/fT888/rD3/4g8e5OnXq5PUeOnz4cM2fP199+vTRddddp2+++Ubbt2+3Pvf444/r1KlT+uSTT3To0KEy2zp06FB98sknkqRLLrlEnTp1kiRt3bpVu3btUnJysjW7HRVkwuJ0Ok1JptPpLPdnWrVqZUoyJZk33HCDx774+HhTkhkfH1/m5ytyjGEYpsvlMjdu3Oix//Dhw2aNGjWsY7Zt21bqHKtWrbLaee+995Z5reJjrr76aq/7S57H4XCYAwcO9Nifn59vxsXFmZLMyMjIMq8DBItZs2aZs2bN8nczgGpXnntifn6+dZwkc8aMGebChQtNSWZ0dLR5+PBhj+MLCwvN3r17W8dv3bq1zHMX3/scDocZERFR6t7Wtm1bU5K5atUq672rr77aOvcvffHFF9a+adOmldo/c+bMMj+LC6PkbVN8fLy1XfJfab5gmqYeeOABdevWzeP9hg0bKjk52Trmtttu82k7ihmGYT3Ds5jL5dKwYcMkSXl5eVq8eHG1tAUAUP1GjhypwsJCSUXPZ77rrrusfb/97W/VsGFDj+MdDoeWL18up9MpSfrd7353wWu43W49/PDDVm9isfHjx6t169Zq0KBBudpa/Ig/wzC8VvLGjBmjFi1alOtcKI2St001atSwtrOzs31+PWePX2ns+98or6BQkS6nGtaK0qVN4tUl8WZFRkYqLy9PO3bs0KlTpyq1sk5FdOjQQdHR0aXev/LKKzVjxgxJReNoSk5eAgAEn507d1rb+fn52rRpk1577TVt3bpVkhQVFaVVq1ZJkq655hqtX79el112mddzRUdHq0GDBsrIyNCWLVuUkp6plPRMbUvP1JEzudb97Vx+ofWZp//wx1LnefTRR/Xoo4+W+3soHt9pmqY++eQT3XrrraWOeffdd3lqSyURKG3KysqytoufTVlVDpzM0az1+3Xm3E8PlHVG6NPUTBW4fx7b4XIYmrW+aJlEM6a2lFe00s2HH37osbKBL7Rr187r+02aNLG2jx075tM2AAB8q7CwUB06dPC6zzAM9enTR/PmzbN6I6Ojo3XFFVdYx7jdbh08eNCj08XpKhq3n3kmS7dMWS2p6H5W8v6WV/jTtitSV72+VmN6Ndfons3VtE5spb6PESNGWOMnk5KSlJSUpMmTJ3s8d3nQoEF0glQSgdKmkivXlLfb/UJOn8vXCwt36MNv0mQYkqmiXyrD6fL4ZZPk8dqIiZcyiwJl8rzlGn3X/6lWdESVtMmbkuX+kmrVqmVtFy9VCQAITg6HQy+++KLHezVr1lTbtm117bXXyuEoPXpu//79uvvuu/XVV1+ddwlE0+22tn95f1Pxvc/hUubZfL2zYo+mrtijkd2b6ZmbOlb4/nbHHXfonXfe0Zo1a2SapubOnau5c+eqbt26SkxM1FNPPeURhFExBEqbSs4mGzBggO3zrdx1VI9+tFXHs3N/GhlcYud5HoMgSYbr51+uXWkZuva1FZo84jJd1a5qgu4vFY+BAQCELsMw9MQTT5T7+EWLFumWW26xxlb26tVLV1xxhfKj6+izbw8pJ69AmV9/LPfZM+VsQNH/FOfN/25M07KdRyp1f1u9erX+/ve/a9KkSTp48KAk6cSJE1a4bNKkiT7++GP16tWrQucFz6G05dtvv/V45M+4ceMqfA6zRGL819q9unP6eh3PzlWpf6gVHXz+cxX83BtoRNXUsaxc3Tl9vd5ft7fC7QJQZMiQIRoyZIi/mwEEjdtuu80Kk1988YW++uor9Rj1qL5w9VJk96GK6z1CjqjKDxFzm7J1f3vggQeUnp6utLQ0PfDAA0pISLD2paenq2/fvtqzZ0+l2xeuCJQ2PPTQQ9Z2p06dSk2CKS4DuEt06f9ScSDNK3TruQXfFR1fRm40CwvO257CnExrO7JRS+s8z376nRZtK/u5XADKVqNGDY/JdwDK9uWXX1pjJZs3b67rr79e76/be8H7W0WVvL9VttOkadOmevvtt3Xo0CFt2LDBWkLS7XbrzjvvrJqGhhECZSWtW7dOy5cvt15Pnz691DExMTGSVOaDy/Py8nTu3DlJ8pjNVqbCfLnP5ZS9O+uEtV2jw9Ue+95b9eOFzw8AgA0lZ4M3atRIK3cd1bOfflfqOLMgt8qu+eyn32nlrgs/tu/VV19Vv379lJNT+j7ao0cP7dq1y+oI+v7776usfeGCQFkJu3fvtlYBkKTf//73XgfyFj/PKjc312M2eLFXXnmlwtc+tWaW1/ezvlsuuYt6MF31m8kR7TkL7gLDLyslJSXFKmsAANCxY0dre9++fXr0o61y/OL+43YXqDA7U1XFYUiPzdmqM+fOPwl0wYIFWrNmjRYtWuR1f82aNRUZGSnp5w4hlB+BsoKeffZZderUyfoXzoQJE/TCCy94Pfbuu++2th955BGPfUeOHNELL7xw3vVGvTnzzQLlHfbsbSzIydSJL97+6ZWhBrc+VepzVbGKVEZGhpYsWWK9zs/PZxY3AMBy1VVXWUNEjhw5oj1LZ5Uqcx/58DnJrLrOiOIxlZM+31Gu43/zm994rRy+9957VtVwzJgxVda+cGGYZngvWPn5559bq70Ur99pGIb1DMeCggIdOXJEP/zwg3bu3GkFqHr16undd99VUlLSec/fvHlzpaWlSZIuu+wyde3aVYcOHdKyZcuUeO0gLVn+pczcHMnpUs3ORc++ir/qDsk0lbnqA0lSVspiqbBARlSsHNG1VJh5RJEXtVNE3aYqzDqhc/u/ldxFv5x1b3hQtS6/3rp+dupqndu7VYXZJ3V291eSpDbt2mvgNQPUokULPfXUU/ryyy/14YcfSvp5Le/GjRvr1ltvVe3atfW73/1Ob7/9thYtWqTs7GylpqZKkurXr6+kpCRdd911GjFihLZt26a3337bY73vDh06KDExUV27dtV9991n4/8pAICvzZkzR0uXLpXk/Z4oSVOnTj3vOT755BMlJSVZk05dtRMU0ai1zII85aXvkPtclmQ4JNMtyVDNy2+QJMX3HyNXjdo6/lMHSfG9r+T9MTLhYtW6/MZS1zz55Qy5c7NV49BmHc7IkCRrTfCRI0cqMTFRt9xyiz777DNJUkREhHr27KmWLVvq7NmzSklJ0e7duyUVlb83bNhQqZ9fWPPXmo+BYujQodbanef7crlcZr169cyBAweac+fOLff5s7Ozzeuvv96Mioqy1tquU6eO+ac//cl86YsdphEVW+paCXe+ZjYa/VKp942oWLPFU5+ZNS+73jSiapiSUbTPcJgR9VuYCXe/YbZ46jOPr6hml5b5PRWvH37vvfeWeYzD4TAnTpxoduvWrcxjitf9fv3118s8pnXr1j74fw8AUJVKroVd1ld5/HbKXDOy0cWmHD+v8y2H03TVbWo2GP6s6arduNR5G41+yWzx1GfnvxfXblzqPtfiqc9MGY4yP3Pvvfda7Zo5c6bZt29fMy4uzjQMw+Me37JlS/Ott97y1Y825IV9D6W/5Be61WPSEmWerf6ScXxMhL55ZqAinN5HPGRkZOjLL7/Uzp075XA4zjtL/cknn/S6/CIQbFatWqVXXnlFGzdu1KFDhzR//nyPxwXNmzdP77zzjjZu3KgTJ05oy5Yt6tKlix9bDASmQL6/wXf4iftJasYZv/yySVLm2XztzCj9QNmMjAz95z//UXJystX1f74wCYSS7OxsXX755fr73//udWxzdna2+vfvr5dffrnCY5+BcBKI9zf4Hivl+ElKetXNcKvs9S9tUrR04i97JCWCJMLPDTfcoBtuKBrL5a1wc8cdd0gqmrlKYQcoWyDd31B9CJR+si09Uy6H4WXtUt9zOQylpGdqAEESAFDFAuH+NqrarwwCpZ8cOZPrl182SSpwm9qQkqrkb+da71U2SM6ZM4c1vRE0rrnmGjVq1KharnX48GEtW7asWq4FBJLNe2NU4I7wy7UL3KaOZlXdQ9NRfoyh9JO8Av8+ELzAZAwYAKDq+fv+klueledQ5eih9JNIl3979dpc3FLjB/XTihUrlJqaesHZ3GUZMWIEs7wBLxo1aqRRoyi8Ifwsff8b7d5x2G/Xj4qgauYPBEo/aVgryq9jTBrUjFJCQoJGjhypjIwM28ESCCfM8gbKFgj3N1Q/St5+cmmTeL+OoexcYgZccbAcP3682rVrJ0nWJB0gXGRnZ2vr1q3asmWLJOmHH37Q1q1brZWuTp48qa1bt+q7776TaZpKTU3V1q1bdfiw/3pigEAUSPc3VB9Sg5/4+z94b9cnWCKcffPNN+ratau6d+8uwzD06KOPqlu3bnruueckSZ9++qm6du2qW265RYZhaNSoUerWrZuSk5P93HIgsATi/Q2+x0o5fhIMKwmUpxTOSjkAgJKC4f6GqsdP3E8inA6N6dVcjmoeiuU0pDt6NS/XLxs9lgCAigqG+xuqHj91Pxrds7mqu3/YLWlUz+YV+oy3YAkAQFmC5f6GqkOg9KOmdWI1skezavtXnMOQRvZopqZ1Yiv1+ZLBskOHDoqLi1NEhH8eXgsACFzBdn+DfYyh9LMz5/J17WsrdCwrV76cFOcwpFoR0qwxHdS6eRPGPQIAfMY0TS1ZsUa//d9RnVOkfBk0HIZUv2aUlj5ytWpF08nhLwTKALBy11HdOX29z69zXcQuNXGeliTVqlVLjRs3VkJCgho1aqRGjRqpTp06jJEEANiSk5Oj+fPna/fu3ardoY9e3+L7yTnv39NTV7Vr4PProGwEygDx/rq9evbT73x2/j/dcomOrv1Y2dnZHu+XnL3tcrnUoEEDNW7c2AqZjRo1ojcTYa34d6ZGjRp+bgkQ+NLS0jRnzhzl5+crKSlJbdu29fn97fkhnfTrPi19dn6UD4EygBT/0jkMVUn5u/g8xb9sW7Zs0SeffHLhz/3iEUHFvZmNGjVSQkKCGjdurDp16thvIBAEZs+eLUksowich2maWrt2rZYuXaqmTZtqxIgRiouLs/b7+v4G/2PpxQByZ5+Walmvhh6bs9X2mMriMSWTR1xmlQG6dOmiL7/8UpmZmef97C+fN3nmzBmdOXNG33//vbXv/vvvV8OGDSvfQABASChZ4r7yyis1YMAAOZ2e62n7+v4G/2PAXIC5ql0DLXnkav2qezMZRtFztSrCaUiGIf2qezMtfeRqj182h8OhxMTESrfN7XbLMAxddNFFqlevXqXPAwAIDWlpaUpOTtaBAwc0evRoDRw4sFSYLObL+xv8j5J3ADtwMkez1+/XzK/3WysOuByGxxqpJV/Hx0Tojl7NNapn8zIfneB2u/Xmm29esJeyLFFRUbr//vsVH8/SVggPlLyB0i5U4r4QX9zf4F8EyiCQX+jWzowzSknPVEp6po5m5So3v1BREU41qBmlzk3i1blJvNon1CrXCgHlHUvpzahRo3i4OcIKgRLwVJ4Sd3lV9f0N/sMYyiAQ4XTo0ibxurRJvKrillbesZS/1KdPH8IkAISxkrO4R48erbZt29o6X1Xf3+A/xP0wVNGxlA6HQxdddJGuvfZa3zUKABCwTNPUmjVrNH36dMXHx2vChAm2wyRCCz2UYaoivZQul0u/+tWvKl3SAAAEr6oscSN00UMZpirSS+l0OnX69GnfNggAEHAqMosb4Y1AGca6dOlywdna3bt3V/369TVjxgytXbtWzOECgNBHiRsVRck7jBX3Unqb8e1wOJSQkKAbb7xRkrR8+XItXrxY+/bt06233qrYWB7bAAChiBI3KoMeyjBXVi9lRESENW7S6XRq4MCBGj16tFX+SEtL80NrAQC+RIkblUWgDHNljaUcNmxYqaDZtm1bjR8/XvHx8ZTAASCEUOKGXQRKlOqlPN/zJuPj43XXXXepT58+Wrx4sf7zn/8oJyenupoKAKhiOTk5mj17tpYsWaK+ffvqrrvuqtCqN4BEoIQ8eynL87xJSuAAEBoocaOqsPQiJBWt8b1u3Tp17ty5Qv8yzczM1Mcff6z09HRde+216tOnjwzD8GFLgerF0osIRXbX4gZ+iVnekFTUS3nllVdW+HPFJXBmgQNAcGAWN3yBkjdsowQOAMGBEjd8hUCJKsMscAAITMzihq9R8kaVogQOAIGFEjeqAz2UqHKUwAEgMFDiRnUhUMJnKIEDgH9Q4kZ1o+QNn6IEDgDVixI3/IEeSvgcJXAAqB6UuOEvBEpUG0rgAOAblLjhb5S8Ua0ogQNA1aLEjUBADyWqHSVwAKgalLgRKAiU8BtK4ABQOZS4EWgoecOvKIEDQMVQ4kYgoocSfkcJHADKhxI3AhWBEgGDEjgAeEeJG4GOkjcCCiVwAPBEiRvBgB5KBBxK4ABQhBI3ggWBEgGLEjiAcEWJG8GGkjcCGiVwAOGGEjeCET2UCHiUwAGEC0rcCFYESgQNSuAAQhUlbgQ7St4IKsUl8GXLllECBxASKHEjFNBDiaDjdDo1aNAgSuAAgh4lboQKAiWCFiVwAMGKEjdCDSVvBDVK4ACCDSVuhCJ6KBH0KIEDCBaUuBGqCJQIGZTAAQQqStwIdZS8EVIogQMINJS4EQ7ooUTIoQQOIFBQ4ka4IFAiZFECB+AvlLgRbih5I6RRAgdQ3ShxIxzRQ4mQRwkcQHWhxI1wRaBE2KAEDsBXKHEj3FHyRlihBA6gqlHiBuihRBiiBA6gqlDiBooQKBG2KIEDqCxK3IAnSt4Ia5TAAVQUJW6gNHooEfYogQMoL0rcgHcESuAnlMABlIUSN3B+lLyBEiiBA/glStzAhdFDCfwCJXAAxShxA+VDoATKQAkcCF+UuIGKoeQNnAclcCD8UOIGKo4eSuACKIED4YMSN1A5BEqgnCiBA6GLEjdgDyVvoAK8lcBHjBihiIgIfzcNQCVR4gbsI1ACFVRcAm/ZsqU2bdokl+vCv0ZnzpxRYWGhateu7fsGAii3tLQ0zZkzR/n5+Ro9ejS9kkAlESiBSmrbtq1at24t0zRlGEaZx+Xl5WnmzJlatGiRRowYoTvvvLMaWwnAG9M0tXbtWi1dulRNmzbViBEjFBcX5+9mAUGLQAnY4HBceBhyZGSkmjVrpr59++ruu+/Wt99+q8mTJ1dD6wB4Y5qmFi9erHXr1lHiBqoIgRKoBjfffLPq1asnwzBUs2ZNZWdnq0aNGv5uFhCWTNNU37591bp1a7Vu3drfzQFCArO8AR8qLCy0tm+//XYlJSVpwoQJVphkljhQ/RwOh2rUqEGYBKoQPZSAj5imaZXRkpKSFBkZqWeffVYJCQnWMXl5eTJNU9HR0f5qJhAyvv32W7322msqKChQ7969NXLkSDVo0MDrsecb9wyg4uihBHykuPfxjTfe0Oeff65XX31VnTp1svYvW7ZMiYmJuvnmm3XjjTdqy5YtfmopEPySk5PVu3dvxcTEKDMzU9OnT9e///1vfzcLCBsESqCKnThxQidPnpTD4dDmzZv1yCOP6I9//KPHihspKSkaMmSI2rZtq+HDh6t79+7q16+f5s6d6+fWA8Fny5Ytmjp1qmbOnKmpU6dqwYIFqlevno4cOeLvpgFhg5I3UIVM09Sbb76p//73v5o1a5aGDx+uoUOHauzYsR7rf7/88svq0KGD3n//feu9/Px8LV68WMOGDfNH04GgdfjwYR08eFCXXHKJ9d5FF12kOnXqaOnSpWrVqpUuvvhiP7YQCH30UAJVyDAMTZw4US1atFC3bt10/PhxTZw40WPcpFS04k6bNm0kSdnZ2ZKkdu3aadGiRdZrAOWTkJCg5s2b6+9//7t2796tW2+9VbNmzdKyZcs0YcIE3XzzzUpNTfV3M4GQRqAEfGDRokWaMWOGsrKy9PrrrysrK8tj/yWXXKJFixbpu+++s2Z8z549W3379lWNGjWY/Q1UwGWXXaZ77rlHqampGjdunHbt2qXNmzfriy++0Lx589SyZUv99a9/9XczgZBGoAR85M4779TGjRu1efNmzZkzR5J06NAhSdIDDzyg3/zmN+ratav+7//+T127dtXXX3+t/v37S2IGKlBRDzzwgP73v/+pfv36GjVqlDp16iTDMHTppZcqJiZGp0+flsSjugBfIVACPnT55Zdry5YtGjlypDZu3KgPPvjA6q2cNGmSfvjhB0VFRencuXPq16+fhg8fLombHlBRhmHINE0VFBSoYcOG1vt5eXnKz89X586dreMAVD0m5QDVICYmRoWFhXrzzTeVnp6uiRMnWje/zZs3KyEhQY8++qgaNmwot9tdriUdgXBmmqaysrIUGxtrPT3B4XBo8ODBeu2113T48GFdccUVevnll3Xs2DFNmTLFzy0GQpth0hUCVJutW7dq2LBhqlOnjo4fP64TJ05owIAB+s1vfqOBAwf6u3nwYvbs2ZKkUaNG+bklKJaTk6P58+fr8OHDevDBB+V0Oj16Hh977DEtWrRI0dHR6ty5s2bMmOG/xgJhgkAJ+MFHH32kqKgoxcbGeg2SpmlSmgsQBMrAkpaWpjlz5ig/P19JSUlq27ZtqWPcbrfOnj2rY8eOqUWLFn5oJRB+KHkDfnDbbbd5vC4ZIE3TVH5+vrZt26auXbsSLAEV/V6sXbtWS5cuVdOmTTV8+HDFx8d7PbZ4re7iJygA8D0CJRAASoZGwzCUmpqqBQsWaOfOnbr11ls9HooOhJviEvfu3bt15ZVXasCAAda4SQCBgUAJBKAuXbooOjpa8+fPV3JyskaMGKFmzZr5u1lAtStZ4h49erTXEjcA/2MqKRCg2rVrp/Hjxys+Pl4zZszQ2rVreZwQwoZpmlqzZo2mT5+u+Ph4jR8/njAJBDB6KIEAFh8fr7vuukvLli3T4sWLtW/fPkrgCHmUuIHgQw8lEOCcTqcGDRqkUaNGKS0tTcnJyUpLS/N3swCfKP5v/MCBAxo9erQGDhxImASCAIESCBKUwBHKKHEDwY2SNxBEKIEjFFHiBoIfPZRAkKEEjlBCiRsIDQRKIEhRAkcwo8QNhBZK3kAQowSOYESJGwg99FACQY4SOIIJJW4gNBEogRBBCRyBjBI3ENooeQMhhBI4AhElbiD00UMJhBhK4AgklLiB8ECgBEIUJXD4EyVuILxQ8gZCGCVw+AMlbiD80EMJhDhK4KhOlLiB8ESgBMIEJXD4EiVuILxR8gbCCCVw+AIlbgD0UAJhhhI4qhIlbgASgRIIW5TAYQclbgAlUfIGwhglcFQGJW4Av0QPJRDmKIGjIihxA/CGQAlAEiVwnB8lbgDnQ8kbgIUSOLyhxA3gQuihBOCBEjhKosQNoDwIlAC8ogQe3ihxA6gISt4AykQJPDxR4gZQUfRQAjgvSuDhhRI3gMogUAIol1+WwNesWUMJPIRQ4gZgByVvAOVWsgS+ZMkS7du3T0OHDqUEHuQocQOwix5KABVSsgR+4MABSuBBjhI3gKpAoARQKZTAgxslbgBViZI3gEqjBB6cKHEDqGr0UAKwhRJ4cKHEDcAXCJQAqgQl8MBGiRuAL1HyBlBlKIEHJkrcAHyNHkoAVYoSeGChxA2gOhAoAfgEJXD/osQNoDpR8gbgM5TA/YMSN4DqRg8lAJ+iBF69KHED8AcCJYBqQQnctyhxA/AnSt4Aqg0lcN+gxA3A3+ihBFCtKIFXLUrcAAIBgRKAX1ACt4cSN4BAQskbgN9QAq8cStwAAg09lAD8KlxL4FlZWcrKyqrw5yhxAwhEBEoAASGcSuBut1szZsxQcnKycnJyyvUZStwAAhmBEkDAKC6B9+7dW0uWLNHs2bPLHbiCyfbt23X8+HFlZ2dr7ty5FwzOOTk5mj17tpYsWaK+ffvqrrvuUnx8fDW1FgAuzDBDtQsAQFBp06aN9uzZU+r9li1bauXKlWrWrFmFzhcbG6uzZ8+Wer/kn7zExEStWLFCHTp00I4dOzyOMwzD47XT6VRBQUGF2uCN2+3W22+/rRMnTljvDRw4UFdeeaXX49PS0jRnzhzl5+crKSmJXkkAAYlJOQACwhNPPKHNmzdLkpKTk63gt3fvXr355psaOnSo+vbtWyroefOXv/zFI0z27dtXXbp0KXXcihUrJEmpqanas2ePWrdube2bMGGCJOlf//qX12BaWdu3b/cIk5K0dOlSNWvWTM2bN7feM01Ta9eu1dKlS9W0aVMNHz6cXkkAAYseSgABx+VyqbCw0Hrdo0cP3XzzzWrbtm25ZoHXqVNHp06dsl6//vrreuihh0od179/f61evVqtW7fW999/7/VcCQkJOnz4cJX0UHrrnZSKekNr1Kih+++/X7GxscziBhB0GEMJICBFRERY25s2bdJNN91Urlng7733nk6dOqWoqKgLXmPVqlUyTbPMMFnVvPVOSkW9kcXjKffv388sbgBBh0AJICDFxsaqTZs2kop69iZPnlyuWeB//OMf5XK5dMUVV1R3k8/L7XZr+fLlZe43TVN79uxhFjeAoESgBBCw/va3v1nbH3/8saKios47C/zzzz/XoUOHlJSUFHC9emX1TnpzzTXXMF4SQFAhUAIIWIMHD1bjxo0lSQUFBXrooYfO+yD0hx56SIZh6J133jnvedu0aSPDMDy+3njjjUq3c9q0aerZs6dq1qwph8MhwzDkcDgUFxenm2++WQcPHvTaOzl37lxNnDjR42v69On68MMPNWzYMMXGxlrti4uL0+OPP17pNgKALxEoAQS0SZMmWdszZsyQ2+2WVPpB6O+99552796tq6++WnXr1j3vOZ944glNmDBBffv2td2+e+65R+PGjdOGDRskSdddd53GjBmjXr16KScnRwsXLlSLFi2sGewlXX755erevbu6d+9uvWeapv7yl7/oiy++0ODBgzVmzBg1btxYZ86c0eTJkzV69GjbbQaAqkagBBDQ7rnnHtWuXVuSlJubq2eeecbaV/JB6H/84x8leZbJy3Lfffdp6tSpuu2222y3Lzc3V5LUvn17ZWVl6YsvvtDMmTO1bt06ZWRkqE6dOiooKNDMmTNLffbiiy/WLbfcoltuucV6Ly0tTVFRUXryySf18MMPa+bMmTp48KBatGghSZo9e7bHDHYACAQESgAB74knnrC233rrLY99TqdTbdq00aFDh5SQkKClS5faWgs8v9CtlPRMzVq/X0/PS9GZ/KLnXrpN6el5KZq1fr9S0jOVX+j2+Nwnn3xS6lz169e3eljz8/P11VdfXfD6pmnq17/+taSi51Pu379fkvTggw9ax1yopA8A1Y1ACSDg/f73v1dMTIwkKTs7W6+88orH/nHjxkmS/vnPf1ol8MzMzApd41ROnl7+X6p6TFqiW6as1tPzUvTfb9KU5y4KlKZp6r/fpOnpeSm6Zcpq9Zi0RC//L1VPTHxBW7duVfv27Uud0+12ezy7MjU19YLtiI2NtXpkJemjjz5STk6OBg0aZL33zTffVOh7AwBfI1ACCArFK9dI0osvvmhtnzhxQsuWLVOLFi104403WiXwkydPVuj8by7drXdW7FHm2XzrvQK352OJSr7OPJuvd1bsUdKM7zRrt3TmXNHnzp07px9//FE7d+7UwoULtXPnTmt1n6ysrAu2Iy4uzto2TVNZWVlauXKlWrZsab1PyRtAoGHpRQBB4eWXX9aUKVOUn5+vkydPavr06brnnns0YcIEmaapl156SZKsWeANGzbUvn37JKnMcPn9Ec+A567gumHFx8+Y84n+9sAQ5Z9IV+F5VtMpufpPWSIjIyUVBcvGjRurUaNG6tKli0fQrIo1xQGgKhEoAQQFl8ul22+/Xf/+978lSc8884zGjBmjefPmqW7duho5cqTH8SWXZ1y/fr3WrFnjsRb4v9bu1ayv99lu18ll/9Tp9XOLXjicuqzPAF3f/wrl5eVp27ZtkorGQhY/hL34MUDFs9VdLpcaNmxona9x48Z66qmnyrXSDwAECgIlgKAxZcoUffDBB3K73Tp06JAGDBiggoICPfnkk+f9XMuWLbVkyRLt27dPQ4cO1ZytR/Tcgu9styfv6L6fw6QzQs0e/ECnomPVaUgnpX85W/369ZNUFCglyeFwqF27dkpISFCjRo3UqFEj1alTR4Zh6L777pMkRUdHEyYBBB3GUAIIGnFxcbrhhhus12vXrlVMTIzHLHBv2rdvbz0I/ek3/61nP7UfJiXp9Ndzre3Y9n3liC7qFX320+90Kqax2rRpo8GDB8vhKPpTW7t2bd1+++1KTExUx44dVbduXavHFACCGYESQFB59913PULY2LFjy/W5du3aafRd92rZ2aZyVFGGK8z6eSnFiLpNrG2HIS3Paaohw3+lK664wipvA0CoIlACCCoXXXSRtcKNy+XS5MmTy/3ZKavTlZVf8ck3ZXHWqmdt52V8b227TelYVq4mfb5Dq1evtsZPAkCoIlACCDpffvmlTp48qczMTGtW9IWknczRh9+kVVmYlKS4nknW9tk9G5R7+AfrtduUZq/eqaFJSd4+CgAhhUk5AALCnDlzrMkrbrdbZ8+e1f333y9JGjlypBITE61jXS6Xx8O/Syr+zK5du6z3PvroI/1n8Vc6eaJQtRPv1pkti5SX8YPyju61jsneuUb5J9IVmXCxal1+o45/8bYkqTDnpwekm6b1Xq3uNymyQUtFNmihml0HK2vz55JpKmP6bxWZ0Eauek1VeOa4ctN3yChR7j569Kjuv/9+1a5dWy+++KK2bdumt99+26P9u3bt0v3336+uXbvqvvvu05EjR/Tcc895PaZFixZ66qmnyvkTBgDfMUxqMQACQGJiolasWOF137333qtp06aV6zznneRiONTiyU+V/s44FZw65PUQV+3GajLhXe37681lnqbONWMV13Oo9Tpr23KdWvlvFZ45KhU/HsgVqciEtmox7FHteXucxzMonU6nCgoK9MYbb+jhhx/2eo3WrVvr+++/1+rVq9W/f3+vx8THx/OQcwABgUAJIOSlpGfqlimr/Xb9z37TT5c2iffb9QHA1xhDCSDkpaRXbF3vULs+APgagRJAyNuWnilXVT0rqIJcDoNACSDkESgBhLwjZ3JVUJXTuyugwG3qaFauX64NANWFQAkg5OUVFF74IB/Kzffv9QHA1wiUAEJepMvp1+tHRfj3+gDgawRKACGvYa0ov46hbFAzyi/XBoDqQqAEEPIubRLv1zGUnXlkEIAQR6AEEPL8Hej8fX0A8DUCJYCQ1yGhluJjIvxy7fiYCLVPqOWXawNAdSFQAgh5EU6HxvRqruoeRuk0pDt6NVeEkz+1AEIbf+UAhIXRPZuruheadUsa1bN59V4UAPyAQAkgLDStE6uRPZpVWy+lw5BG9mimpnViq+eCAOBHBEoAYeOZmzqqfs0on4dKhyHVrxmlZwZ39O2FACBAECgBhI1a0RGaPOIy+foJQm5TmjziMtWK9s9EIACobgRKAGHlqnYN9OchnXx6jeeHdNJV7Rr49BoAEEgIlADCzp19WlqhsqrK38XneX5IJ/26T8uqOSkABAnDNKt73iMABIaVu47qsTlbdSwr11YZvHjM5OQRl9EzCSAsESgBhLXT5/L1wsId+nBjmhySCivwF9FpFD0aaGT3Znrmpo6MmQQQtgiUACDpwMkczV6/XzO/3q/Ms/mSJJfD8FgDvOTr+JgI3dGruUb1bM6jgQCEPQIlAJSQX+jWzowzSknPVEp6po5m5So3v1BREU41qBmlzk3i1blJvNon1GIFHAD4CYESAAAAtvDPawAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANjy/zUCiePvUmSXAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import networkx as nx\n", "G = nx.MultiDiGraph()\n", @@ -240,7 +418,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -261,9 +439,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACge0lEQVR4nOzdeVzN+fcH8NddKm2ishXZ0iIthAwKI8ZYxtaU7PtuTEIyJMuUVJax72shxoxtxjqWGHsLiZZBUSqV9vXee35/+Lq/aSLFrc+9t/fz8fAw0733/TlXdc/5vFceEREYhmEYhqm1+FwHwDAMwzAMt1gxwDAMwzC1HCsGGIZhGKaWY8UAwzAMw9RyrBhgGIZhmFqOFQMMwzAMU8uxYoBhGIZhajlhZZ4kkUiQnJwMbW1t8Hi86o6JYRiGYRgZICLk5ubCwMAAfP7H7/8rVQwkJyejWbNmMguOYRiGYZia8/LlSzRt2vSjj1eqGNDW1pY2VrduXdlExjAMwzBMtcrJyUGzZs2kefxjKlUMvB8aqFu3LisGGIZhGEbBfGqIn00gZBiGYZhajhUDDMMwDFPLsWKAYRiGYWo5VgwwDMMwTC3HigGGYRiGqeVYMcAwDMMwtRwrBhiGYRimlmPFAMMwDMPUcqwYYBiGYZhajhUDDMMwDFPLsWKAYRiGYWo5VgwwDMMwTC3HigGGYRiGqeVYMcAwDMMwtRwrBhiGYRimlmPFAMMwDMPUckKuA5Cl/GIRXmTko0QkgaqQjxZ6mtBUU6q3yDAMw3BIWfOMwr+DuNRcBN1JxJWYNCRmFoD+9RgPgJGuBnqZNsQoOyO0aaTNVZgMwzCMgqoNeYZHRPSpJ+Xk5EBHRwfZ2dmoW7duTcT1SS8zC7D4t0cIjU+HgM+DWPLxt/H+cXtjffgMtUQzXY0ajJRhGIZRRMqQZyqbvxWyGDhyLxHLTj2GSEIVfnP+S8DnQcjnYfl3FhjRyagaI2QYhmEUmbLkmcrmb4UbJth0JQ4BF2I/67Xi/31TF514hPS8Yszu1UbG0TEMwzCKrjbmGYVaTXDkXuJnf4P+K+BCLI7eS5RJWwzDMIxyqK15RmF6Bl5mFmDZqccffbw0MwlZoYdQ/CoaksI8COo2gGbbHqhrNxR8lToffI3Xqcfo2lpfbsZ2GIZhGO58Ks8Up8Qj69oBFCc9AQCoGZihfq8JUG3U6qOvUZQ8ozA9A4t/ewTRR8ZtRDlvkLJ/HoqTYqDdYSDqO06BmqEZsm8EIf2k/0fbFEkIi397VF0hMwzDMAqkojxTnBKP1EMLIcpKQb1urtDpNgKlb5ORErwIpRmvPtqmouQZhegZiEvNRWh8+kcfz4+6AklxPpqMXgPVBs0BANo2/QCSID/qL4iL8iCoo1XudWIJITQ+HfFpuTBuqJjLQRiGYZgv96k8kx16CDyhKhqPDYBA/d1EPE2LXkjeMQ1Z1w6gwbDFH3ydouQZhegZCLqTCAGf99HHJSUFAACBZr0yXxdo6QI8Pnj8j9c8Aj4Ph24rxpgOwzAMUz0+lWeKXj5GnRY20kIAAIRauqjTrB0K/rkLSUnhR1+rCHlGIYqBKzFpFS7tqGNkCQDI+OMXlKQ+gyjnDfKfXEdu+B/Qth0EvuqH5wwA76q2K7FpMo+ZYRiGURyfyjMkLgVPqFru6zwVNUAsQumbhI++VhHyjNwPE+QVi5CYWVDhc9Rb2ULHfjRybh3D6/g70q/X7eqC+g5jPnmNxIwC5BeLlGJLSYZhGKZqKpNnVHSbojg5BiQRg8cXAHhXIBQnxwAARLkZUKvg9fKeZ+S+ZyAhIx+V2e5BqNMIas0soNtvNhoMXQxNqz7I+TsEOQ9Of/K1BOBFRv4Xx8owDMMonsrkGe0O/SHKTHrXA52eiJI3L5B+Zi3EeW8BACQqqfD18p5n5LNE+ZcSkeSTz8mPvobMc5tgMHU7hHX1AQAapl0BImRd3QfNtj3KjPN87nUYhmEY5VOZz3/t9v0hyklHzp0TyI+6DABQbdwGdbsMR87fRyscjq7Kdbgi98WAqvDTnRe5YX9AtVEraSHwnoZxZ+Q/uoSS1GdQb2HzxddhGIZhlI+qoHKf//V7jEVdu2EofZMAvpomVBu2wNtr+wEAQl3DT19HjvOM3BcDLfQ0wQMq7MIRF2SB/4GlgyQRv/uP939/BO9/12EYhmGUW2lpKWJiYhAREYHIyEhEREQgIuoJNMZtA4/38dUE7wnqaEHQzEL6/0UvIiDQ1oeKXtMKXyfveUbuiwFNNSGMdDWQUMHkDpX6Bih8EY7SzCSo/Ks6y4++BvD4UGnQosJrGOlpyO2kDoZhGObzZGdn4+HDh+8S/v+Sf1RUFIqLiwEALVq0gLW1NWZNm4zTADKKq9Z+/pPrKHkdh/q9JoLHq/iuX97zjPxG9i+9TBvi4J2Ejy77qGs3HIXPHiDlkAe0bQdAoF4XBfF3UfTsAbSs+0KorffRtgV8HnqZNKyu0BmGYZhqRkRITEwsk/QjIiLw/PlzAICqqiosLCxgY2ODsWPHwtraGtbW1qhXr97/N3LqcYV5pigxCtk3D6NOy/bgq9dFSfJT5D28hDqtbKHdaXCF8SlCnlGIYmCUnRH23Xrx0cfrGLVD4zH+yLoRjLywPyAuzIWwXiPUcxiLul2GV9i2WEIY3YX7YyYZhmGYTysuLkZ0dHSZpB8ZGYmsrCwAgJ6eHmxsbDBs2DBYW1vDxsYGZmZmUFFRqbDdYdYNK8wzAm09gM9Hzp0TkJQU/i/HjEHdzkOkSw0/RhHyDI+IPrlyr7LnIVenMbvv4O9nGVU6V/pTSCIGUmKwyrExRo0aBT5ffid3MAzD1DYZGRn/P67/vz9PnjyBSCQCALRp00aa8N//MTAwqNTY/3sSiQRBQUFYvHgxSrtPQ53m1sAnuvyrQsDnoWsrPRycZCezNquisvlbYYqBl5kFcFx3DcUyWppBROCTGObPj+PPY4dga2uLwMBA9OjRQybtMwzDMJUjkUjw7Nmzct38r169OwBIXV0dlpaW0oRvbW0NS0tLaGt/2V7/165dg7u7Ox48eIAhQ4ZAoqGL8CYDwBeqAlUoKCqiJuTjklsPzk4trGz+VohhAgBopquB5d9ZYNEJ2Zz+xOPxkHVpB14WJ+LgwYPYuHEjevbsiSFDhsDPzw8mJiYyuQ7DMAzz/woKChAVFVXmjv/hw4fIy8sDADRu3Bg2NjYYPXq09K6/TZs2EAgq7oqvitjYWCxcuBAnT55E586dcfDgQfj5+SE+Ph6Tfu6NM28q2kuwalZ8ZyH3xxcDCtQz8N6mK3EIuBD7xe0s6GsKB/1CODs7IzExEZs3b4aamhoWLVqE5ORkzJw5E15eXtDT+/jkQ4ZhGObjUlJSyiT9yMhIxMTEQCKRgM/nw8zMrEw3v7W1NRo1alRt8WRkZGD58uXYunUrDA0N4evri6KiIsyePRvNmzdHSEgI2rVrJ9M8M6uXsQwi/3xKN0zwb0fuJWLZqccQSahKcwgEfB6EfB5WfGcBl07vJnPk5+dj1qxZ2L9/P8aPHw9/f3/s2rULPj4+EAgEWLJkCWbPng01NdlVigzDMMpELBYjNja2XDd/amoqAEBbWxtWVlZlkn67du2grq5eI/EVFxdj48aNWLVqFYgIixcvxuTJk+Hu7o79+/dj3Lhx2Lx5MzQ1/38fAFnmGS4pdTEAvJtDsPi3RwiNT4eAz6vwm/X+cXtjffgMtfxgl83+/fsxc+ZMaXXYsGFDeHt7Y8eOHWjevDlWr14NJyenKk1MYRiGUTa5ubl4+PBhmTv+R48eoaioCADQrFmzMknfxsYGLVu25GSCNhHh+PHj8PDwQGJiIqZNmwZvb2+kpKRIe4W3bNmCcePGffD1ss4zXFD6YuC9uNRcBN1JxJXYNCRmFJTZqZCHdxs99DJpiNFdjGDcsOLJJtHR0XB2dsY///yDTZs2YeLEiXj69CkWLlyIM2fOoGvXrggMDESXLl2q9T0xDMNwjYjw6tWrct388fHxAAChUAgLC4ty3fy6urocR/7O7du34e7ujr///hsDBw7EmjVrYGZmht27d2POnDkwNjZGSEgIzM3NP9mWLPNMTat0/qZKyM7OJgCUnZ1dmadzJq+olKKSsigsIZOikrIor6i0ym3k5+fT5MmTCQCNGjWKcnJyiIjo0qVLZG1tTQDIxcWFnj9/LuPoGYZhuFFSUkKRkZG0f/9+cnNzo6+//pp0dXUJ73aCp3r16lHPnj3pxx9/pH379lF4eDgVFRVxHfYHPXv2jFxcXAgA2djY0OXLl4mIKCcnh0aOHEkAaPLkyZSfn/9Z7csiz9SkyuZvhe8ZqC7BwcGYNm0aDAwMEBISAmtra4jFYhw4cAA//fQTMjMzMXfuXCxevBg6Ojpch8swDFMpb9++RWRkZJk7/ujoaJSUvDuCt1WrVmW6+G1sbNCsWTO5HyLNysqCj48PNmzYAH19ffz8888YM2YMBAIBIiIi4OzsjNevX2P79u0YOXIk1+HWmFozTFCdYmNj4ezsjKdPn2L9+vWYNm0aeDwe8vPzERAQgDVr1kBDQwPe3t6YOnXqJ3e4YhiGqSlEhOfPn5fr5k9ISAAAqKmpwdLSskzSt7KyUrjP+NLSUmzfvh3e3t4oLCyEh4cH3N3doampCSLCtm3b4ObmBjMzM4SEhNS6ZeO1cpigOhQWFtKMGTMIADk7O1NWVpb0saSkJJo4cSLxeDwyNTWlU6dOkUQi4TBahmFqo8LCQrp//z7t2rWLZs+eTfb29lS3bl1pN3+DBg2oT58+tGDBAgoKCqKoqCgqLZXv7u1PkUgkdPLkSTI1NSUej0eTJk2i5ORk6eNZWVn0/fffEwCaOXMmFRYWchgtd9gwgYyFhIRg8uTJaNiwIY4ePQpbW1vpY5GRkZg/fz4uXbqEXr16ITAwEO3bt+cwWoZhlNWbN2/KHr8bEYGnT59CLBaDx+PBxMSkXDd/48aN5b6bvyrCwsLg7u6Oq1evwtHREQEBAbC2tpY+fv/+fbi4uCA9PR27du3C999/z2G03GI9A9UgPj6ebG1tSVVVlX755ZcyvQASiYTOnj1L5ubmxOPxaNy4cfTq1SsOo2UYRpGJRCKKiYmho0ePkqenJ3377bdkYGAgvdvX0NCgr776iqZPn07btm2j27dvU15eHtdhV6uXL1/S2LFjicfjkbm5OZ09e7bc5/CGDRtIRUWFbG1tKT4+nsNo5UNl8zcrBqqoqKiI5syZQwBo6NChlJmZWebx0tJS2rp1KzVo0IDU1dVp6dKllJuby1G0DMMogry8PLp16xZt3bqVpk+fTl26dCENDQ1p4jc0NKT+/fvT4sWLKSQkhGJiYkgkEnEddo3Jzc2lJUuWkLq6OjVo0IC2bt1abpgjMzOThg4dSgDohx9+kNvVDjWNDRNUs99++w0TJ05EvXr1cOTIEdjZlT2RKicnB76+vli3bh3q16+PlStXYsKECTLdX5thGMVCRHj9+nW5bv64uDgQEQQCAczNzct081tbW6NBgwZch84JsViMvXv3YsmSJcjKysK8efOwaNGicnnozp07cHFxQXZ2Nvbu3YshQ4ZwE7AcYsMENeD58+fUuXNnEgqFFBgY+MHJgy9evJCubbW0tKTz589zECnDMDWttLSUHj16RIcOHaL58+eTo6MjNWjQQHq3X7duXXJwcKA5c+bQ7t276cGDB7V2ktuHnD9/niwtLaV7viQkJJR7jkQioYCAABIKhWRnZ8f2f/kANkxQQ4qLi8nd3Z0A0MCBAyk9Pf2Dz7tz5w51796dAFC/fv0oKiqqhiNlGKa6ZGVl0fXr1+mXX36hSZMmka2tLampqUkTf/PmzWnw4MG0bNkyOnHiBD179oytPPqIqKgo6tevHwEge3t7unv37gefl56eTgMHDiQA5O7uTsXFxTUcqWJgwwQ17PTp0xg/fjw0NTVx5MgRdO3atdxziAi//fYbFi5ciOfPn2PKlClYvnx5tZ7SxTCM7BAREhMTy3XzP3/+HACgqqoKCwuLMt38VlZWqF+/PseRy7/U1FR4eXlh165daNWqFfz8/DB06NAProK4efMmRowYgYKCAuzfvx8DBw7kIGLFwIYJOJCQkEBdu3YlgUBAq1evJrFY/MHnFRcX07p166h+/fqkpaVFP//8MxUUFNRwtAzDVKSoqIjCwsJo7969NHfuXOrRowfVq1dPerevp6dHvXv3pnnz5tGBAwfo4cOHVFJSwnXYCqegoIBWrVpFWlpaVL9+fVq3bt1H7/LFYjH5+vqSQCCgbt26UWJiYg1Hq3jYMAFHSkpKaNGiRdLhgLS0tI8+NyMjg9zc3EhFRYWaNWtGBw8e/GgBwTBM9UlPT6fLly9TYGAgjR07lqysrEgoFEoTv7GxMTk5OdGqVavozJkz9PLlS9bN/4XEYjEdOHCAmjZtSioqKuTm5kYZGRkffX5aWpp0+MDT05MVXpXEhgk4du7cOYwZMwaqqqo4fPgwHBwcPvrc+Ph4LFq0CL/++is6duyIwMDACp/PMMznkUgkePbsWblu/levXgEA6tSpAysrqzLd/JaWltDWlq+T6BTdtWvX4O7ujgcPHmD48OFYvXo1jI2NK3z+yJEjUVJSgkOHDuGbb76pwWgVGxsmkAOvXr0iBwcH4vP5tHLlyk+uCw4NDaXOnTsTABoyZAjFxsbWUKQMo3wKCgro7t27tGPHDpo5cyZ169aNtLS0pHf7jRs3pm+++YY8PDzo8OHD9OTJk1q1dp8LMTExNGTIEAJAnTt3ptDQ0AqfLxKJaMWKFcTn86lHjx6UlJRUQ5EqDzZMICdKS0tpyZIlxOPxyNHRkVJSUip8vlgspuDgYDIyMiKhUEg//PDDR1coMAzzTkpKCp07d45Wr15Nrq6uZG5uTnw+nwAQn88nc3NzcnV1JT8/Pzp37hy9fv2a65BrlfT0dPrhhx9IKBRS8+bNKTg4+JNDoq9fv6bevXsTj8ejpUuXKvxZClxhwwRy5tKlSxg9ejSAd8cjf/311xU+v7CwEBs2bICPjw8EAgGWLl2KWbNmQU1NrSbCZRi5JBaLERsbW66bPzU1FQCgpaVVZrMeGxsbtGvXDurq6hxHXjsVFxdj06ZNWLVqFSQSCRYvXoy5c+eiTp06Fb7u8uXLGDVqFADg0KFDcHR0rIlwlRIbJpBDr1+/pq+//pp4PB55eXlVqksyNTWVZsyYQQKBgFq1akXHjh1jE5eYWiEnJ4du3rxJmzdvpilTplCnTp1IXV1d2s3frFkzGjhwIC1ZsoSOHz9O8fHxbAKunJBIJBQSEkKtWrUigUBAM2fOrHAy9XsikYi8vLyIx+NR7969WQ+ODLBhAjklEolo+fLlxOfzqWfPnpUeA4uOjqYBAwYQAOrWrRvdvn27miNlmJohkUjo5cuXdPr0aVq5ciU5OTmRsbGxNOkLhUKysrKisWPH0tq1a+ny5cts6EyO3bp1i7p27SrdiC06OrpSr0tKSqIePXoQn8+nFStWsPkbMsKGCeTc1atXMXLkSIhEIhw8eLDSs2MvX74Md3d3REZGwsXFBatXr0aLFi2qN1iGkZHS0lI8efKkTBd/REQEMjMzAQD16tWTHrv7vpvf3NycDY8pgOfPn8PT0xNHjx6FtbU1AgMD0bt370q99vz58xg9ejRUVFRw+PBh9OjRo5qjrT3YMIECSE1Npb59+0rXzVZ2goxIJKI9e/ZQkyZNSE1NjRYuXEhZWVnVHC3DVM3bt2/p6tWrtH79eho/fjy1b9+eVFVVpXf8rVq1oqFDh9Ly5cvp5MmT9OLFCzYEpoDevn1LCxYsIFVVVWrSpAnt2bOn0nf1paWl0n1ZvvnmG0pNTa3maGsfNkygIP69o1b37t3p5cuXlX5tXl4eeXt7k4aGBunr69OmTZvYRhxMjZNIJPTs2TM6ceIEeXl50eDBg6l58+bSpK+mpka2trY0adIk2rhxI12/fp0Vr0qgpKSENm7cSHp6eqShoUHe3t6Ul5dX6dcnJiZSt27dSCAQkK+vL5vvUU3YMIGCuXHjBlxdXVFYWIj9+/djwIABlX5tcnIylixZgn379sHExAT+/v4YOHDgB/f0ZpgvUVRUhMePH5fp5o+MjEROTg4AoEGDBuW6+U1NTSEUCjmOnJEVIsLp06excOFCxMbGYsKECVi5ciUMDAwq3cbZs2cxduxYaGho4MiRI+jWrVs1Rly7sWECBfTmzRvpJMH58+dX+S4/PDycevfuTQCoV69eFBYWVk2RMrVBWloaXbx4kfz9/WnUqFHUrl07EggEBIB4PB6ZmpqSs7Mz+fj40B9//EFJSUmsm1/JhYWFUa9evQgAOTo6UkRERJVeX1JSUqlTXhnZYcMECkosFpO/vz8JhULq0qULvXjxokqvl0gkdObMGTI3Nycej0fjxo2jV69eVVO0jDIQi8UUExNDR48epcWLF1P//v3JwMBA2s2voaFBXbp0oenTp9O2bdvo1q1bVeoOZhTfq1evaNy4ccTj8cjc3JzOnj1b5cLv+fPnZGdnR0KhkAICAljhWEPYMIGCu337NkaMGIHs7Gzs27cPgwcPrtLrRSIRdu7ciWXLliEvLw/z58/HwoULoaWlVU0RM4ogPz8fjx49KtPN/+jRI+Tn5wMADAwMynTx29jYoHXr1hAIBBxHznAhLy8Pa9asQUBAALS0tLBixQpMnjy5ysM+v//+OyZMmAAdHR0cOXIEXbp0qaaImf9iwwRKIDMzkwYPHkwAaO7cuR891rMiWVlZtGjRIlJTU6PGjRvTrl272PrdWkAikVBSUhL98ccf5OPjQ87OzmRqako8Ho8AkEAgoHbt2tGoUaPI39+fLl68WKlNYZjaQSQS0c6dO6lx48akpqZGixYt+qzP/6KiIpo7d670vJXMzMxqiJapCBsmUBISiYTWr19PKioq1LFjR/rnn38+q50XL17QyJEjCQBZWVnRhQsXZBwpw5XS0lKKioqiQ4cO0fz586lPnz7UoEEDaTd/3bp1yd7enubMmUO7d++m+/fvU2FhIddhM3Lq/PnzZGlpSQBo5MiRVR6qfO+ff/4hW1tbUlFRoQ0bNrBhAY6wYQIlc+/ePbi4uCAjIwO7d++Gk5PTZ7Vz9+5duLu748aNG/j222/h7+8PCwsLGUfLVJfs7Gw8fPiwTDd/VFQUiouLAQDNmzcv183fokULtrKE+aTHjx9j/vz5OHfuHLp3747AwEB07tz5s9o6fvw4Jk2aBH19fRw9ehQdO3aUcbRMZbFhAiWUlZVFTk5OBIBmzpz52Xd3EomEfv31V2rdujXx+XyaNm3aJ09TZGqWRCKhhIQEOnnyJC1fvpyGDh1KrVq1kt7tq6ioUPv27Wn8+PG0fv16unr1KuuCZT5LSkoKTZs2jfh8PhkbG9Ovv/762XfxhYWFNGPGDAJATk5ObD8JOcB6BpQUEWHr1q1wc3ND27ZtERISgjZt2nxWWyUlJdiyZQtWrFgBkUiERYsWwc3NjZ3wVsNKSkoQHR1d7iS+rKwsAICurm65tftmZmZQVVXlNnBGoRUWFmLdunXw9fWFiooKvLy8MHPmzM/+uYqLi4OzszOePHmCdevWYfr06axHSg5UNn+zYkBBhYeHw9nZGSkpKdixYwdcXV0/u63MzEysWrUKmzZtQuPGjeHj44ORI0eCz+fLMGIGADIyMhAZGVkm6T958gSlpaUAAGNj43Ld/IaGhuxDlZEZiUSC4OBgLF68GCkpKZg9ezaWLFkCXV3dz27z8OHDmDp1Kpo0aYKQkBDY2NjILmDmi7BhglogJyeHXF1dCQBNmTKFCgoKvqi9uLg4GjZsGAGgjh070rVr12QUae0jFospPj6ejh8/TkuWLKGBAwdSs2bNpN38derUoc6dO9OUKVNo8+bNdPPmTcrJyeE6bEbJXbt2jTp27EgAaPjw4RQXF/dF7RUUFNDkyZOlkw3Zz7D8YasJagmJREI7duygOnXqkKWlJT158uSL27x+/Tp16tRJuhwoNjZWBpEqr4KCArp79y7t2LGDZs2aRd26dSMtLS1p4m/UqBF988035OHhQcHBwRQdHV3pQ6kYRhZiYmJoyJAhBIA6d+5MoaGhX9xmdHQ0tWvXjurUqUM7d+5kqwXkFCsGapmHDx+SmZkZaWho0P79+7+4PbFYTEFBQWRkZERCoZB++OEHtnUovZtsde7cOfLz8yNXV1cyNzcnPp9PAIjP55O5uTm5urrS6tWr6dy5c/T69WuuQ2ZqsfT0dPrhhx9IKBSSkZERBQcHy+RAoP3795OGhgaZmZnRw4cPZRApU11YMVAL5ebm0tixYwkAjR8/XiZbxhYUFJCvry9pa2tTvXr1KDAwkIqKimQQrXwTiUQUHR1Nhw8fJg8PD+rXrx81btxYerevpaVF3bp1o5kzZ9KOHTvo7t27lJ+fz3XYDENE7zb7CQgIoHr16pG2tjb5+vp+8TAi0buTUsePH08AaNy4cWxbagXAioFabO/evaShoUFt27alqKgombSZmppKM2bMIIFAQK1ataJjx44pTbdgbm4u3bx5kzZv3kxTp06lzp07k7q6ujTxN23alAYOHEhLliyh48ePU1xcHDtulZFLEomEQkJCqFWrViQQCGjGjBmUmpoqk7YfPXpE5ubmpKGhQfv27ZNJm0z1Y8VALff48WOysLAgdXV12r17t8wS9+PHj6UnK3br1o1u374tk3ZrgkQioZcvX9Lp06dp1apV5OTkRMbGxtIteoVCIVlZWdHYsWMpMDCQLl++zIZGGIVx69Yt6tq1KwGgAQMGUHR0tEzalUgktGvXLlJXVycLCwt6/PixTNplagYrBhjKz8+nSZMmEQAaNWoU5ebmyqztixcvkpWVFQGgESNG0PPnz2XWtiyUlJTQw4cP6cCBAzRv3jzq3bs36enpSe/269WrRz169KC5c+fS3r17KTw8vFYMfzDK5/nz5+Ti4kIAyNrami5duiSztnNycmjUqFEEgCZPnsyGwhQQ23SIkQoKCsK0adNgaGiIkJAQWFtby6RdsViM/fv3Y8mSJcjMzMTcuXOxePFi6OjoyKT9ysrKypKu23//9+PHj1FSUgIAaNmyZblNe4yMjNjafUahZWdnw8fHBxs2bICuri5+/vlnjB07VmYnTEZGRsLZ2RnJycnYvn07Ro4cKZN2mZrFNh1iyoiJiYGzszNiYmKwYcMGTJ06VWbJMC8vDwEBAfD394eGhga8vb0xdepUqKioyKT994gIL168KLdTX0JCAgBATU0N7dq1K5P0raysarw4YZjqVFpaih07dsDb2xsFBQVYuHAh5s+fD01NTZm0T0TYvn07fvzxR5iZmSEkJAQmJiYyaZupeWzTIaacgoICmj59OgEgZ2dnmX8/X716RRMmTCAej0dmZmZ0+vTpL9rj/MGDB7R7926aM2cOOTg4kI6OjrSbX19fnxwdHWn+/Pl06NAhioqKYmv3GaUmkUjo1KlT0qOoJ0yYQElJSTK9RlZWFjk7OxMAmjFjBjvdUgmwYQLmo0JCQjB58mQ0bNgQISEh6NChg0zbj4iIwPz583H58mV8/fXXCAwMrHB70jdv3pTr5n/y5AnEYjF4PB7atGlTrpu/SZMmrJufqTXCw8Ph7u6OK1euoHfv3ggICJD5lr8PHjyAi4sL0tLSsGvXLjg7O8u0fYYbrGeAqVBcXBx16NCBVFVVaePGjTJfJiiRSOjMmTNkbm5OPB6Pxo8fT4mJiRQTE0MhISG0ePFi6t+/PxkYGEjv9jU0NKhLly40bdo02rp1K926dYutY2ZqtVevXtG4ceOIx+ORubk5nT17tlp+V3/55RdSVVUlW1tbio+Pl2n7DLdYzwDzScXFxViwYAE2btyIYcOGYffu3ahXr55M2i4oKMCjR4/w4MEDHDlyBLdu3YJIJJI+bmBgUOYwHmtraxgbG8ts8hPDKLK8vDysWbMGAQEB0NLSwooVKzB58mQIhUKZXuft27eYNGkSfvvtN8yZMwf+/v5QU1OT6TUYbrEJhEylnThxAhMnTkT9+vVx9OhRdO7cudKvJSKkpKRIJ/O97+aPjY0FEUEgEMDMzAxt27ZFeno6bty4IZ35PH78eJb8GeZfxGIx9u3bhyVLluDt27dwc3ODp6dntXzu3r17Fy4uLsjKysKePXswdOhQmV+D4R4bJmCq5NmzZ9SpUydSUVGhtWvXfrArsrS0lKKioigoKIgWLFhAffr0oQYNGki7+bW1tcne3p7mzJlDu3btovv375ebgPTixQsaOXIkASArKyu6cOFCTb1FhpFrFy5ckO7dMXLkSHrx4kW1XEcikVBgYCAJhULq3Lmz3O0RwsgW23SIqbLi4mKaN28eAaBvv/2Wzp49Sxs3bqRJkyZRx44dSU1NTZr4mzdvTt999x15eXnRiRMn6J9//qnSFr137tyhbt26Sa8lq22TGUbRREVF0bfffksAqHv37nTnzp1qu1ZGRgYNGjSIAJC7uzsVFxdX27UY+cDmDDCVQkR4+fJlmS7+mzdvIjU1FQAgEAhgaWlZZmzf2toa9evXl8m1T5w4AQ8PDzx//hxTpkzB8uXL0ahRoy9um2HkXWpqKpYtW4adO3eiZcuWWLNmDYYOHVptq2T+/vtvjBgxAvn5+di3bx8GDRpULddh5AubM8CUU1JSgujo6DIb9kRGRuLt27cAAF1dXWnCb9asGfbv34+oqCj4+Phg/vz54PP51RbX5s2bsXLlSohEIixatAhubm5QV1evlusxDJcKCwuxbt06+Pr6QkVFBV5eXpg5cyZUVVWr5XoSiQT+/v746aefYGdnh8OHD8PIyKharsXIHzZnoJbLyMigv/76i9auXUtjx44la2trUlFRkXbzGxsb0/Dhw2nlypV0+vRpSkxMLDdPoKSkhDw8PKRd+WlpadUe848//kgqKirUrFkzOnjwIDsdkFEaYrGYDh48SM2aNSMVFRVyc3OjjIyMar1mWloa9evXjwDQokWLqKSkpFqvx8ifWjlMkF8swouMfJSIJFAV8tFCTxOaarJdiiNvJBIJnj9/Xm42/8uXLwEAderUKdfNb2VlBW1t7Upf488//8TYsWOhqqqKw4cPw8HBobreDgAgPj4eHh4eOHHiBDp27Ii1a9fC3t6+Wq/JMNXp+vXrcHd3x/379zFs2DD4+fnB2Ni42q/p6uqKkpISHDx4EP369avW69UWipZnas0wQVxqLoLuJOJKTBoSMwvw7zfDA2Ckq4Fepg0xys4IbRpVPgHKo8LCQkRFRZXp5n/48CFyc3MBAA0bNkT79u3LrN9v06aNTNYmJyUlwdXVFTdv3sSKFSvg6elZbcMG74WGhsLd3R337t3D0KFD4efnhzZt2lTrNRlGluLi4rBw4UL8/vvv6NSpEwIDA6u9sBWLxfD19cWyZcvQvXt3BAcHw9DQsFqvqewUOc8ofTHwMrMAi397hND4dAj4PIglH38b7x+3N9aHz1BLNNPVqMFIP09qamq5sf2nT59CIpGAz+fD1NS03KY9jRs3rtaYRCIRli9fjp9//hmOjo44ePBgtU/2k0gkOHz4MDw9PfH69WvMmjULXl5e0NXVrdbrMsyXyMjIwIoVK7BlyxYYGBjA19cXI0aMqPYCOjU1FaNHj8bly5fx008/YdmyZTLfqKg2UYY8o9TFwJF7iVh26jFEEqrwm/NfAj4PQj4Py7+zwIhO8jGBRiwWIy4urtxJfCkpKQAALS0tWFlZldmXv127dtDQ4O4H7eLFixg9ejT4fD6CgoLw9ddfV/s1CwsLsX79evj6+kIgEGDp0qWYNWsW2y2NkSvFxcXSybBisRiLFy/G3Llza2Qy7F9//SU9ZvjQoUNwdHSs9msqM2XJM0pbDGy6EoeAC7Ff3M78viaY3atmu5zz8vLw8OHDMkn/0aNHKCwsBAA0bdq0TNK3sbFBq1atqv1u4nO8fv0ao0aNwtWrV+Hl5YWlS5fWyG6CaWlpWLZsGXbs2IEWLVrAz88Pw4cPZ4cWMZwiIvz666/w8PBAQkICpk6dCm9vbzRs2LDary0Wi7FixQqsXLkSvXr1QlBQULX3Eio7Rc4z/6WUxcCRe4lYdOLRRx8vTolH9o1gFL+KBolKIazXCFo2/VC343cffL7fMEu4VEPlRkRITk6WJvz3d/3x8fEgIgiFQrRt27ZcN7+enp7MY6lOYrEYP//8M5YvXw4HBwcEBwejSZMmNXLt6OhoLFiwAH/88Qe6deuGwMBA2NnZ1ci1Gebf7ty5A3d3d9y8eRMDBgzAmjVr0LZt2xq5dnJyMkaNGoXr169j2bJl+Omnn9gW31/oY3km/cw65Edd/ujrDGftg1Bbv9zXqyvPVJbSFQMvMwvguO4aikWSDz5e+DwMacdXQLVRa2ia2YOnWgeirBSAJKjfa+IHX6Mm5OOSW48vGtspLS3F06dPy3XzZ2RkAAB0dHTKHb/btm1bperevnr1KlxdXSEWi3Ho0CH07du3xq596dIluLu74+HDh3B1dYWvry+aN29eY9dnaq8XL17A09MTR44cgbW1NQICAmq0a/7ChQsYPXo0hEIhgoOD0bNnzxq7trKqKM8UJz1B6duU/3yVkHl+M4Q6jWAwecsH25RFnvkSSlcMjNl9B38/y/jg2I2kuABJO6ZCzdAcDYZ6gserXLe6gM9D11Z6ODipcneUWVlZiIyMLJP0Hz9+jJKSEgBAy5Yty3XzGxkZ1You7LS0NIwZMwYXL16Ep6cnli9fXmMTl8RiMfbv348lS5YgMzMTP/74Izw9PaGjo1Mj12dql+zsbPj4+GDDhg3SQ7fGjh1bY3fkIpEIXl5e8PX1Rd++fXHw4MEaGY6oDSrKMx9S9PIxUoM8UM9hLHS6On/wOVXNM7JW2fytENNM41JzERqf/tHH86OvQpKfhfoOY8Hj8SEpKQJPRfWTRYFYQgiNT0d8Wi6MG/7/chAiwosXL6RJ//3fL168AACoqamhXbt2aN++PSZMmAAbGxtYWVnV6uTTsGFD/Pnnn/Dz88PSpUsRGhqK4OBgNG3atNqvLRAIMHHiRDg7OyMgIAD+/v7YvXs3li9fjqlTp7LZ1IxMlJaWYseOHfD29kZBQQE8PT0xf/58aGpq1lgMr169gqurK27dugVfX18sXLhQLucUKaJP5ZkPyY++BoAHzbY9Pvqcj+UZeaMQPQPepx7j4J2Ej1Zrb37zQeGLCDQYuhiZF7ZClJkEnkodaLbrBd3eU8ATfnybTwGfh29aqaMj73mZ5J+dnQ0A0NfXL9fNb2pqChUVlWp5r8rgxo0bGDFiBIqKinDgwAH079+/Rq+flJSEpUuXYt++fTA1NYW/vz8GDBhQK3poGNkjIpw9exYLFixATEwMxo8fj1WrVsHAwKBG4zh79izGjRsHdXV1HD58GN27d6/R6yu7T+WZ/yKxCK82jYWKXlM0Hr2mwucK+DyMsWsO7+8sZBFqlVQ2fytESXklJq3Cb1BpZjIgEePNryuh3rIDGgxdDC2rPsgL/xPpZ9dX2LZYQjh5Nx6TJ0/GuXPn0LhxYyxcuBBnz55FUlIS0tLScPHiRfj7+2P06NFo164dKwQ+oXv37oiIiICdnR0GDBiAhQsXorS0tMaub2hoiD179iAsLAyGhoYYNGgQHB0dERERUWMxMMohPDwcjo6OGDRoEAwNDREWFoY9e/bUaCFQWlqKBQsWYODAgejSpQvCw8NZIVANPpVn/qvweRgkhTnQbNvzk88VSwhXYtO+ILrqJ/f9p3nFIiRmFlT4HCotApUWQ6v9t9DtMw0AoGHaFSQuRV7EOZTaj4KK7sd34FLRNUBK+ls01K293fyypq+vj9OnT2Pt2rXw9PREaGgojhw5UqOT+2xsbHDx4kX88ccfmD9/Pjp06IBx48Zh1apVbEc2pkJJSUn46aefcODAAZiZmeHMmTPo379/jfcuJSQkYMSIEbh//z78/f0xb948NixQDSqTZ/4rP/oawBdCw7xyhVliRgHyi0Vyu3WxfEb1LwkZ+fhUrfZ+GEDTvOy4jWbbnsiLOIfipKcVFgMAEBrxFC3rsTt+Wfv666+xc+dOeHp6wsrKCsuWLavxWc9NmjTBvn378Ntvv2H79u04cuQIxowZg7Fjx3K6eRMjfwoKCrB//34cPHgQ6urq8PDwwNChQyEUChEeHl6jsVy9ehXLli2DlpYWdu3aBUtLS9a7VU2eZ5V+Ms/8m6SkEIVxt6Hesj0E6pUbOicALzLyYWEgnzedcl8MlHxkKeG/CbT0UJqeCIFmvbJf13z3jy4pyvtkGyNHj0XJ6y/fZIKpmLu7O9chAAB27tyJnTt3ch0GI8eKi4uxevVqrF69mtM48vLyMH78eE5jUHaqTUzQZNzaSj+/IPY2qLQYmhY9q3SdyuQzrsh9MaAq/HSXmGrj1ih6EQ5RbgZU9P5/9rooNxMAIND4dCUWfOgA6xmoZkSEw4cPY8OGDTA1NYWvry9n3fXJycnYtGkTzp8/jzZt2uDHH39Ely5dOImF4dbt27exbt06xMfHo1+/fpg9e3aNbZ71X69evcKiRYsQFxeHuXPnwtXVlU18rQHPs0rhfrHyKwnyo6+Cp6oO9TZVWy5YmXzGFbkvBlroaYIHVNiFo2lmj5zbx5H38ALUW1hLv5738ALAF0DNyLLCa/AA9OtmK7djOcrE1tYWLi4ucHFxwZgxY7B7924MHz68xuPo0KEDBg4cKN09btasWejfvz/8/f1rbPc4hluPHz/GggUL8Oeff6Jbt24ICgpC586dOYvn+PHjmDRpEvT09PD333+jU6dOnMVS25gWizD/4vlKDRWIC7JR9CICmuYO4KvUqfQ1eHiXz+SV/JYp/6OpJoTRJ3ZuUm3cGppWfVAQfQ1vfvdDbthZvPl9NQqir6Gu3TAItSve5tdIT4MVAjWoU6dOCAsLg6OjI5ycnDB79mwUFRVxEoudnR1CQ0Nx/PhxxMTEwMrKCjNmzEBamnzP/GU+X2pqKqZPnw4rKyvExsbi+PHjCA0N5awQKCoqwqxZs/D999+jb9++CA8PZ4VADatMnnkv/8l1QCKu8hCBvOcZuS8GAKCXaUMI+BV3lel9Mws63UeiODkGmZd2oiT1H9TvPQX1e4yr8HUCPg+9TNjuXTWtXr16OHbsGDZt2oSdO3eia9euiI+P5yQWHo+H4cOH4/Hjx/D398eRI0dgbGwMX19f6SFSjOIrLCyEj48P2rRpg5CQEAQEBCA6OprTg67i4uLQtWtX7Nq1C5s3b0ZISEit3ryMS5XJMwCQ//gq+Br1UKeFTaXbVoQ8oxCbDsWl5qLP+uvV1v4lNwe53hlK2YWHh8PZ2RmpqanYsWMHRowYwWk8GRkZWLlyJTZv3gwDAwP4+PjA1dWVLelSUBKJBMHBwVi8eDFSUlIwa9YsLF26FLq6upzGdeTIEUyZMgWNGzdGSEgI2rdvz2k8tZ2y5hml2nSoTSNt2BvrV6pqqwoBnwd7Y31WCHCsffv2ePDgAQYMGABXV1dMmzaN0ztyPT09rF+/HtHR0bC1tcXo0aPRpUsXhIaGchYT83lCQ0NhZ2eHMWPGoFOnToiOjsa6des4LQQKCwsxbdo0uLq6YtCgQQgLC2OFgByo7XlGIYoBAPAZagmhjL9JQj4PPkMrnlzI1Iy6desiODgYO3bswIEDB2BnZ4enT59yGlObNm1w4sQJXLt2DUQEBwcHDBs2DHFxcZzGxXxaXFwchg0bBgcHB/B4PFy/fh2//vorjI2NOY3r6dOnsLOzw4EDB7Bjxw4EBQVBW1u+k0RtUpvzjMIUA810NbBcxvs6r/jOgrNjJZnyeDwepkyZgjt37qCkpAQdO3bEwYMHuQ4LDg4OuHPnDg4dOoT79+/DwsICbm5uyMzM5Do05j/en1rZtm1bPHjwAEFBQbh9+zbs7e25Dg0HDhyAra0tSktLcffuXUyZMoUtG5QztTnPKEwxAAAjOhlhfl8TmbS1oK8pXDoZyaQtRrasrKxw//59DBs2DGPHjsXEiRORn5/PaUx8Ph+jRo1CTEwMli9fjt27d8PY2Bjr1q2THmHNcKe4uBhr165F69atsWfPHqxcuRJPnz7FyJEjOZ/rkZ+fjwkTJmDcuHFwcnLCvXv3YGkp/3eKtVVtzTMKMYHwv47cS8SyU48hklCVDpYQ8HkQ8nlY8Z2FwnyDajMiwr59+zBr1iy0bNkSISEhsLCo+VO/PiQtLQ3Lli3Djh070LJlS/j5+WHYsGHsTq+GERF+/fVXeHh4ICEhAVOnToW3tzcaNpSPmduPHz+Gs7MzXrx4gc2bN7OdBBWIsuQZpZpA+F8jOhnhklsPdG31bv+AT034eP9411Z6uOTWQy6+Qcyn8Xg8TJgwAffv3wfwbn+CvXv3ohL1a7Vr2LAhtm7dikePHsHU1BROTk5wcHDA3bt3uQ6t1rhz5w7s7e3x/fffw9zcHA8fPsSWLVvkohAgIuzZswedOnUCj8fDvXv3WCGgYGpbnlHInoF/i0vNRdCdRFyJTUNiRkGZHaR4eLfRQy+ThhjdxUjuZ3MyH1dQUIA5c+Zgz549GD16NLZu3QotLS2uw5K6dOkS3N3d8fDhQ7i6usLX17dGT2isTV68eAFPT08cOXIEVlZWCAwMhKOjI9dhSeXl5WH69OkICgrCpEmT8Msvv7ADsRScIueZSudvqoTs7GwCQNnZ2ZV5OmfyikopKimLwhIyKSopi/KKSrkOiZGxgwcPkqamJpmamlJkZCTX4ZQhEolo9+7d1KRJE1JTUyMPDw/KysriOiylkZWVRQsXLiQ1NTVq0qQJ7d69m0QiEddhlREREUEmJiakqalJhw4d4jocphooWp6pbP5WqmKAqR2ePHlCVlZWpKamRtu3byeJRMJ1SGXk5uaSl5cXqaurk76+Pm3evJlKS+X7A0OelZSU0KZNm0hfX580NDRo2bJllJuby3VYZUgkEtq2bRupqamRlZUVPX36lOuQGIaIWDHAKLmCggKaNm0aAaARI0bI5c/mq1evaPz48cTj8cjMzIxOnz4td4WLPJNIJHT69GkyMzMjHo9HEyZMoFevXnEdVjnZ2dnk4uJCAGj69OlUUFDAdUgMI1XZ/K2QEwgZRl1dHdu2bcORI0dw9uxZ2NraIjw8nOuwyjA0NMTevXsRFhYGAwMDDBo0CI6OjoiIiOA6NLkXEREBR0dHDBo0CIaGhggLC8OePXs4O/L6Y8LCwtChQwf88ccfOHr0KLZu3Qp1dXWuw2KYKmPFAKPQXFxcEBYWhrp166JLly7YvHmzXKw2+DcbGxtcunQJp0+fRnJyMjp06IAJEyYgKSmJ69DkTlJSEiZMmIAOHTogOTkZZ86cwcWLF2FjY8N1aGUQETZt2oSvvvoKOjo6CAsLg7OzM9dhMcznk2U3A8NwpaioiGbPnk0AaPjw4fT27VuuQ/qgkpIS2rx5c5nx77y8PK7D4tz7eRYaGhrSeRYlJSVch/VBb9++pWHDhhEAmjNnDhUVFXEdEsN8FJszwNRKx48fJx0dHWrZsiXdvXuX63A+Kisrizw8POR6ZnxNEIlEtGvXLoVZgXHnzh1q0aIF6ejo0K+//sp1OAzzSWzOAFMrDR8+HOHh4dDX10e3bt2wfv16uRs2AAAdHR2sXr0aT58+RY8ePTBp0iR06NABly5d4jq0GnPx4kV06NABkydPRs+ePfH06VOsXr0aOjo6XIdWDhFh3bp16N69Oxo0aIDw8HAMGzaM67AYRmZYMcAonZYtW+LGjRuYPXs23NzcMGTIELk9VKhFixY4fPgwbt++DS0tLfTp0wcDBgxAdHQ016FVm+joaAwYMAB9+/aFtrY2bt++jeDgYLRo0YLr0D4oMzMTgwcPxrx58zBnzhzcuHEDLVu25DoshpEpVgwwSklVVRVr167FyZMnERoaivbt2+PWrVtch/VRdnZ2uHHjBo4dO4anT5/CysoKM2bMQFpaGtehyUxaWhpmzJgBKysrxMTE4Pjx4wgNDYWdnR3XoX3U33//DRsbG9y4cQOnTp1CYGAgVFVVuQ6LYWSOFQOMUvvuu+8QHh4OQ0NDODg4wN/fHxKJhOuwPojH48HJyQnR0dHw9/fHkSNHYGxsDF9fXxQWFnId3mcrLCyEr68vjI2NcfToUfj7+yM6OhrDhw+X24OdJBIJ1qxZAwcHBzRt2hQREREYNGgQ12ExTPWR5QQEhpFXJSUltHDhQgJA/fv3pzdv3nAd0ielp6fT3LlzSSgUkpGREQUFBZFYLOY6rEoTi8V06NAhMjIyIhUVFfrxxx8pIyOD67A+KS0tjb799lsCQB4eHnK7qoFhKoOtJmCYDzh79izp6emRoaEhXb9+netwKiU2NpaGDh1KAKhTp04UGhrKdUifdP36derUqRMBoGHDhlFcXBzXIVXK9evXycDAgPT19emPP/7gOhyG+WJsNQHDfED//v0RERGBVq1aoVevXvDx8ZHbYYP32rRpgxMnTuDatWsgItjb22P48OGIj4/nOrRy4uLiMGzYMDg4OAAArl+/jl9//RXGxsYcR1YxiUSCn3/+GT179kTr1q0RERGBb7/9luuwGKbmyLKyYBhFUVpaSj/99BPxeDzq06cPpaSkcB1Spbzvem/WrJlcdb1nZGRIhzSaNWtGhw4dUpghjZSUFOrTpw/xeDxasmQJO1SKUSpsmIBhKuHChQvUsGFDaty4Mf31119ch1NpBQUF5OPjQ9ra2lS/fn1au3YtFRcX13gcRUVFFBgYSPXq1SNtbW3y8fFRqIN6Ll++TI0bN6aGDRvShQsXuA6HYWSOFQMMU0nJycnUq1cv4vP55O3trVA7AaakpND06dOJz+dT69at6fjx4zVyMqJEIqFjx45Rq1atiM/n0/Tp0yk1NbXarysrIpGIli1bRjwej3r16kXJyclch8Qw1YIVAwxTBSKRiLy9vRU2OURFRUlnwHfv3p3u3LlTbde6ffs2devWTboy4/Hjx9V2reqQnJxMPXv2JD6fT8uXL1eo4o9hqopNIGSYKhAIBFi2bBkuX76MJ0+ewMbGBhcvXuQ6rEqzsLDAH3/8gQsXLiA7Oxt2dnYYOXIkEhISZHaNhIQEjBw5El26dEFubi4uXryIs2fPom3btjK7RnW7cOECrK2t8fTpU1y+fBleXl4QCARch8UwnGPFAMP8S69evRAREQFra2t88803WLJkCUQiEddhVVqfPn0QHh6OXbt24cqVKzA1NcWiRYuQnZ392W1mZ2dj0aJFMDU1xdWrV7F7926EhYXB0dFRhpFXL5FIhJ9++gn9+vVD+/btERkZiZ49e3IdFsPID1l2MzCMshCLxfTzzz8Tn88ne3t7evnyJdchVdn7Y4HV1dWpQYMGtGXLlirNlC8tLZUet6yurk5eXl6Um5tbjRFXj5cvX5K9vT3x+Xz6+eefFWaVA8PIApszwDAycP36dTI0NCQ9PT2F3YTm1atXNH78eOLxeGRubk5nzpypcJKhRCKh06dPk5mZGfF4PBo/fjy9evWqBiOWHUXcZIphZInNGWAYGbC3t0dERAQ6d+6M/v37w8PDA6WlpVyHVSWGhobYu3cvHjx4gCZNmmDgwIHo06cPIiMjyz03IiICjo6OGDRoEAwMDBAWFoa9e/fC0NCQg8g/X2lpKRYuXIgBAwbAzs4OERERsLe35zoshpFbrBhgmE/Q19fHmTNnsGbNGgQGBqJHjx5ITEzkOqwqa9++PS5duoTTp08jKSkJ7du3x8SJE5GcnIykpCRMmDABHTp0QHJyMk6fPo1Lly7BxsaG67CrLDExET169MC6devg7++P06dPQ19fn+uwGEau8YiIPvWknJwc6OjoIDs7G3Xr1q2JuBhGLt26dQsjRoxAbm4u9u3bh++++47rkD5LaWkpdu7cCS8vL+Tk5ICIoKOjgxUrVmDKlClQUVHhOsTPcurUKYwfPx7a2to4cuQIvvrqK65DYhhOVTZ/s54BhqmCr776CuHh4bC3t8fgwYMxb948lJSUcB1WlfH5fNSpUwdCoRASiQREBBUVFdSpUwd8vuJ9LJSUlMDNzQ2DBw+Gvb09wsPDWSHAMFWgeL/1DMMxXV1d/P7771i3bh02bdqE7t274/nz51yHVWmXLl1Chw4dMGnSJHz99deIj49HfHw8evbsiUmTJsHW1haXLl3iOsxKe/78Obp3747Nmzdj/fr1+P3336Grq8t1WAyjUFgxwDCfgcfj4ccff8TNmzfx5s0btG/fHidOnOA6rApFR0djwIAB6NOnD7S1tXH79m0EBwejRYsWaNGiBQ4fPozbt29DU1MTffr0wcCBAxEdHc112BX69ddf0b59e6Snp+PmzZuYO3cueDwe12ExjMJhxQDDfIFOnTohPDwcvXv3xvDhwzFnzhwUFxdzHVYZaWlpmDFjBqysrBATE4Pjx48jNDQUdnZ25Z5rZ2eHGzdu4NixY3jy5AmsrKwwY8YMpKWlcRD5xxUVFWH27NlwcnKCo6MjwsLC0KlTJ67DYhjFJct1igxTW0kkEtq0aROpqqpShw4dKC4ujuuQypxsWK9ePVq7di0VFRVV+vXyeiJhXFwctW/fnlRVVWnTpk01cjATwygqtukQw3DgwYMH1Lp1a9LW1qYjR45wEoNYLKZDhw6RkZERCYVCmjt3LqWnp392e+np6TR37lwSCoVkZGREQUFBnO3id/jwYdLW1iZjY2MKCwvjJAaGUSRs0yGG4UCHDh0QFhaG/v37Y8SIEZg+fToKCwtr7PqhoaHo0qULRo8eDVtbW0RHR2P9+vXQ09P77Db19PSwfv16REdHw9bWFqNGjUKXLl1w48YNGUZescLCQkybNg2urq4YMGAAHjx4gPbt29fY9RlG2bFigGFkrG7dujh8+DC2b9+Offv2oUuXLoiJianWa8bFxWHYsGFwcHAAEeHatWs4ceIE2rRpI7NrtGnTBidOnMC1a9cgkUhgb2+P4cOHIz4+XmbX+JCYmBh06dIFBw4cwI4dOxAcHMz2O2EYGWPFAMNUAx6Ph6lTp+Lu3bsoLi6Gra0tDh06JPPrZGZmws3NDRYWFrh//z4OHTqEO3fuwMHBQebXes/BwQF3797FwYMHce/ePbRt2xZubm7IzMyU+bUOHToEW1tbFBcX486dO5gyZQpbLcAw1UGWYw4Mw5SXm5tLo0ePJgA0ceJEys/P/+I2i4uLae3atVS/fn1OJ/cVFBTQzz//TFpaWlS/fn1au3YtFRcXf3G7+fn5NGHCBAJAY8aMUcjTEhlGHrAJhAwjRyQSCe3Zs4fU1dXJwsKCHj9+/NntHD9+nFq3bk18Pp+mT59OKSkpMo626lJSUmjatGnE5/OpdevWdPz48c+e5R8VFUVt27YldXV12rNnD1stwDBfgE0gZBg5wuPxMGHCBNy7dw9EhI4dO2Lv3r2gTx8NInX37l04ODjAyckJJiYmePjwIbZu3YpGjRpVY+SV06hRI2zbtg0PHz6EiYkJnJyc4ODggHv37lW6DSLC3r17pfsF3L9/HxMmTGDDAgxTA1gxwDA1yMLCAnfv3sWIESMwceJEjBs3Dnl5eRW+JiEhASNHjoSdnR1ycnJw4cIF/PHHH7CwsKihqCvPwsICf/zxBy5cuIDs7Gx07twZo0aNQkJCQoWvy8vLw9ixYzFx4kS4urpK5yIwDFNDZNnNwDBM5R04cIA0NTXJzMyMIiMjyz2elZVFHh4epKamRk2aNKHdu3eTSCTiINLPIxKJaNeuXdS4cWNSU1OjRYsWffAzJDIykkxNTUlTU5MOHjzIQaQMo7zYMAHDyLkxY8bg/v37UFFRgZ2dHXbs2AEigkgkwtatW9GmTRv88ssv8PDwQGxsLCZOnAiBQMB12JUmEAgwadIkxMXFwcPDAxs2bICxsTG2bt0KkUgEIsKOHTvQuXNnqKmp4f79+xg9ejTXYTNMrcQj+vSgZWXPQ2YYpuoKCwvh5uaG7du3w8HBASkpKYiLi8O4ceOwatUqGBoach2iTCQlJWHJkiXYv38/TExM0KhRI1y/fh3Tpk3DunXroK6uznWIDKN0Kpu/WTHAMHIgMjISo0aNwuPHj6Guro49e/ZgxIgRXIdVLQ4fPoxJkyahsLAQ7dq1w6FDh2Btbc11WAyjlCqbv9kwAcNwKDk5GRMnTkT79u0hFouxfft2mJmZYdy4cdiyZUuVVhvIOyLC5s2bMX78eJiZmWHbtm0oLS1F+/btMXHiRCQnJ3MdIsPUXrKcgMAwTOXk5eXRsmXLSENDg/T19Wnz5s1UUlJCRESFhYU0a9YsAkBOTk6UlZXFcbRf7u3btzR8+HACQLNnz5aenlhSUkKbNm0ifX190tDQoGXLllFeXh7H0TKM8mCbDjGMHBKJRLR7925q0qQJqampkYeHx0eT/fHjx0lHR4datmxJd+/ereFIZefu3bvUsmVL0tHRoePHj3/wOVlZWbRw4UJSVVVVyJUTDCOv2GoChpEzly5dQocOHTBp0iT06NEDT58+xerVq6Gjo/PB5w8fPhxhYWHQ19dHt27dsGHDBoUaNiAirF+/Ht26dYO+vj7Cw8MxfPjwDz5XR0cHfn5+iImJQY8ePTBp0iTY2tri0qVLNRw1w9ROrBhgmGoWHR2NAQMGoE+fPtDS0sLt27dx+PBhtGjR4pOvbdWqFW7cuIFZs2bhxx9/xNChQ6vlQCBZy8zMxJAhQ+Dm5obZs2fjxo0baNmy5Sdf16JFCxw+fBi3b9+GpqYm+vTpg4EDB+LJkyc1EDXD1F6sGGCYapKWloYZM2bAysoKT58+xbFjx3Djxg3Y2dlVqR1VVVWsW7cOv//+O65du4b27dvj9u3b1RT1l7t16xbat2+P0NBQnDx5EmvXroWqqmqV2rCzs8ONGzdw7NgxPHnyBJaWlpg5cybS0tKqKWqGqd1YMcAwMlZYWAhfX18YGxvjyJEjWLNmDaKjo+Hk5PRF++wPHjwYERERMDAwgL29Pfz9/SGRSGQY+ZeRSCTw9/eHg4MDDA0NER4eju++++6z2+PxeHByckJ0dDT8/Pxw+PBhGBsbY/Xq1SgqKpJh5AzDsAmEDCMjYrGYgoKCyMjIiIRCIc2dO5fS09Nlfp2SkhJasGABAaABAwbQmzdvZH6Nqnrz5g3179+fANDChQulKyNkKT09nX744QcSCoVkZGREQUFBJBaLZX4dhlEmtXI1QV5RKUUlZVFYQiZFJWVRXlEp1yExtURoaCh16tSJANDQoUMpNja22q955swZ0tPTI0NDQwoNDa32633M9evXydDQkPT09Ojs2bPVfr2YmBgaMmQIAaBOnTpx+t6Z2kfR8kxl87fC70AYl5qLoDuJuBKThsTMAvz7zfAAGOlqoJdpQ4yyM0KbRtpchckoqfj4eHh4eODEiROwtbXF2rVr4eDgUGPXf/XqFVxdXXHr1i2sXLkSHh4e4PNrZvRPIpFg9erV8PLyQteuXREcHIymTZvWyLUB4Nq1a3B3d8eDBw8wbNgw+Pn5wdjYuMauz9QeipxnlH474peZBVj82yOExqdDwOdBLPn423j/uL2xPnyGWqKZrkYNRsooo8zMTKxcuRKbN29G48aN4evrC1dX1xpLxP8mEomwbNky+Pr6ok+fPjh48CAaNmxYrddMS0vD6NGjcenSJSxevBje3t4QCoXVes0PkUgkCA4OxuLFi5GSkoLZs2djyZIl0NXVrfFYGOWjDHlGqYuBI/cSsezUY4gkVOE3578EfB6EfB6Wf2eBEZ2MqjFCRlmVlJRg8+bNWLlyJUQiETw9PfHjjz/KxSE7Fy5cwOjRoyEUChEcHIyePXtWy3WuXLmCkSNHQiKR4NChQ+jTp0+1XKcqCgsLsW7dOvj6+kJFRQVeXl6YOXNmlVcxMMx7ypJnlPZsgk1X4rDoxCMUiyRV+gYBgFhCKBZJsOjEI2y6EldNETLKiIjw66+/om3btpg/fz5cXFwQFxcHT09PuSgEAKBv376IjIyEqakpevfujRUrVkAsFsusfbFYjOXLl8PR0RHm5uaIiIiQi0IAANTV1bF48WLEx8fD2dkZ7u7usLCwwIkTJxRqoyZGPtTGPKNQxcCRe4kIuBArk7YCLsTi6L1EmbTFKLd79+7BwcEBTk5OMDExwcOHD7F161Y0atSI69DKadKkCS5duoSlS5fC29sbffv2RUpKyhe3+/r1a/Tt2xfLly+Hl5cXLl68iCZNmsggYtlq1KgRtm3bhocPH6JNmzYYPnw4evTogXv37nEdGqMgamueUZhhgpeZBXBcdw3Fosqtq87++yiyrh+Eir4RDCZv+eBz1IR8XHLrITdjO4x8SUhIwOLFixEcHAxLS0sEBgbKzZ1wZfz1118YNWoUJBIJgoKC4Ojo+FntXLx4EaNHjwafz0dwcDB69eol40irz8WLF+Hu7o5Hjx5h5MiR8PHxQfPmzbkOi5FTFeWZooSHSD28+IOvazwmAGqGZh98jOs8o3TDBIt/ewRRJbtrRDnpyL4VAp5KnYqfJyEs/u2RLMJjlEh2djYWLVoEU1NT/PXXX9i1axfCw8MVqhAAgK+//hoRERGwsrJC3759sWTJEohEokq/XiQSYcmSJfjmm29gbW2NiIgIhSoEAKBPnz4IDw/Hrl278Ndff8HU1BSenp7IycnhOjRGDlUmz2jbDoLeQPcyf4T1P95Lpih5RiGKgbjUXITGp1d67Obtld1QMzCFauOKlxmJJYTQ+HTEp+XKIkxGwYlEImzduhVt2rTBL7/8Ag8PD8TFxWHSpEkQCARch/dZGjVqhPPnz2PlypXw9fVF7969kZSU9MnXvXr1Cl9//TV8fX2xatUqnDt3Ti6HRSpDIBBg0qRJiIuLw8KFC7FhwwYYGxtj69atVSqOGOVW2Tyj1swCWu16lfkj0PjwYWOA4uQZhSgGgu4kQsCv3DauRYlRKHh6E/V7T63U8wV8Hg7dVowxHaZ6EBHOnj0LKysrzJo1CwMGDEBcXByWL18OLS0trsP7Ynw+Hz/99BOuXLmC+Ph42NjY4Ny5cx99/p9//gkbGxs8e/YMV69exeLFizlZMilrWlpaWLFiBWJjY9G/f3/MmjULVlZWOHv2LJtkyFQpz0iKC0CSyk/OVYQ8oxC/4Vdi0irVK0ASMTIvboOWdV+oNmxRqbbFEsKVWHb4SW0VGRkpPRmvSZMmePDgAfbu3QtDQ0OuQ5M5BwcHREREoFOnTvj222+xaNEilJaWSh8vLS2Fh4cH+vfvj86dOyMiIgL29vYcRlw9mjZtin379uHBgwdo3LgxBg4ciD59+iAyMpLr0BgOVTbPZPyxAS/XOSPRfyhSgj1R/PrTKwYUIc/IfTGQVyxCYmZB5Z4b/idEOW9Qz2FMla6RmFGA/GLWXVibJCcnY+LEiWjfvj1evXqFU6dO4dKlS2jfvj3XoVWrBg0a4MyZM/Dz80NAQAB69uyJxMREJCYmokePHggMDMSaNWtw5swZ6Ovrcx1utWrfvj0uX76MU6dO4dWrV2jfvj0mTZqE5ORkrkNjalil8oxABRqmXaHbewoaDF+Keg5jUPomAalBHihJ+eeT15D3PFPzW4ZVUUJGPirTgScuzEFWaBDqdXWpcPzmQwjAuZsP0LKeymfFyCiOwsJCHDhwAAcOHECdOnWwcOFCDBs2DEKhEOHh4VyHV2McHR3RoEEDeHp6wtzcHEQEHR0d7Nq1C1ZWVoiIiOA6xBpjaGiI/fv347fffsP27dsRHByMcePGYcyYMXKzhwRTvZ5nlX4yz9Rpao46Tc3//wtt7KBh1g2vd8/B22v70chlRYWvJwAvMvJhYVC1/FRT5L4YKKnkUsKs6wfBV9eCdsdBn3WdkaPHouS1bNaWMoqhqKgIfn5+8PPz4zoUuVBYWIgJEyZwHYZc2L59O7Zv3851GEwNUW1igibj1lb5dSr1DaDexg4FsX+DJGLw+BVPNK5sPuOC3BcDqsJPj2SUZiYhL+I86veeAnFupvTrJC4FScQQZaWCp6YBgfrHD5A4sHcP2jRgdwHK6M6dO1i3bh3i4uLQt29fzJkzBwYGBlyHxamkpCR4enoiJiYGc+bMAQBs3LgRpqam8PX1Vco5E1WRlJSETZs24cKFCzAxMYGbmxs6d+7MdVhMNXmeVQr3i+mf9VphXX1ALAKVFoOnVvFeApXJZ1yR+2KghZ4meECFXTji3AyAJHh7aTveXipfzSdtmwTtjt9B1/HDKwyICGOG9oN5m1awsbGBtbW19G89PT3ZvBGmxj158gQLFizA2bNn0bVrVxw8eBB2dnZch8W5EydOYOLEiahfvz7+/vtvdOrUCQAwYsQIuLi4YMyYMdi7dy+GDh3KcaTc6dChAwYNGoTbt29j3rx5mDFjBgYMGAB/f3+Ym5t/ugFGoZgWizD/4vlKDUn/lygrBTyhKniqFe9rw8O7fCav5L4Y0FQTwkhXAwkVTO5QadAcDYb9VO7rWdcPQlJSCF3HqRDW+/imEI01BfAI8ENkZCQiIiIQEhKCoqIiAO9mHtvY2JQpElq1aqUUS62UVVpaGry9vbFjxw40b94cx44dw/Dhw8HjVW7ZkLIqLi7G/PnzsWnTJgwbNgy7d+9GvXr1pI937twZ4eHhmDRpEoYNG4Y5c+bA398fampq3AXNsS5duuDmzZs4fvw4PDw8YGlpialTp8Lb27vaT4Zkak5l8oy4ILvcfLSS1GcoiLsL9Va24PEqzglGehrQVJPflKsQ2xF7n3qMg3cSqnxgRErQIkgKcz66HTHwbv3nGLvm8P7OQvo1sViMuLg4RERESP9ERkZK93jX0tKCtbW1tDiwsbFBu3bt2GQjjhUVFWH9+vXw8fGBQCDA0qVLMWvWrFqdzN6Lj4+Hi4sLoqKisHbtWsycOfOjxRERYfPmzXB3d0e7du1w9OhRGBtXvIFXbVBcXIxNmzZh1apVEIvF+OmnnzB37lzUqVPxHSGjGD6VZ1KCF4Ovogo1Q3PwNXRQmv4SeZHnAL4QTcYEQEW/2Ufb/lCeqSlKdYRxXGou+qy/XuXXVaYYAIBLbg4wbvjx+QTS9lJSEBkZKe1BiIiIQExMDCQSCfh8PkxNTcv0INjY2Cjsrm2KRCKR4MiRI/D09ERycjJmzZqFpUuXsiGe/zl69CimTJmChg0bIiQkBB06dKjU6x48eAAXFxekpaVh165dcHZ2ruZIFUNGRgZWrFiBLVu2wNDQEL6+vhgxYkSt73lSdJ/KMzn3TyH/8VWI3r6GpKQAAg0d1GluDZ3urlCp/+k5SJXNM7KmVMUAAIzZfQd/P8uocu9ARQR8Hrq20sPBSZ8/jlxYWIioqChp78H7v/Py8gAAjRs3LlMcWFtbw8TERGG3t5U3N27cwLx583Dv3j0MHToUfn5+aNOmDddhyYXCwkK4ublh+/btcHFxwY4dO6r8+5uTk4OpU6fi6NGjmD59OtauXct6wP4nNjYWHh4e+P3339G5c2esXbsW3bp14zos5gvIa575EkpXDFT11MLKqK7TpCQSCZ4/f15umOHly5cA3p29bmlpWaZIsLS0hLZ2zVeNiio+Ph4eHh44ceIEbG1tsXbtWjg4OHAdltyIiYmBs7MzYmJi8Msvv2DKlCmffedKRNixYwfmzp0LU1NThISEwNTUVMYRK65r167B3d0dDx48wPDhw+Hn54fWrVtzHRbzGRQpz1SW0hUDwLtzphedkN3pT37DLOHSyUhm7X1KRkZGuWGG6Oho6WEpxsbG5SYrGhoasu7Hf8nMzMTKlSuxefNmNG7cGD4+Phg5ciSb0Pkvhw4dwvTp09G0aVOEhITAyspKJu1GRkbC2dkZSUlJ2L59O0aNGiWTdpWBRCJBcHAwPD09kZqaitmzZ2PJkiXQ1dXlOjSmihQ9z/yXUhYDALDpShwCLnz55kAL+ppiVi/uJ0UVFxfjyZMnZYYZIiIikJWVBQDQ09MrN8xgbm4OFZXatVtiSUkJNm/ejJUrV6K0tBSenp5wc3NjXdb/UlBQgDlz5mDPnj0YPXo0tm7dKvODlvLy8jBjxgwcOnQIkyZNwi+//AINDW7ueORRYWEh1q1bB19fX6ioqMDLywszZ86Eqqoq16ExVaBMeUZpiwHgXeW27NRjiCRUpbEdAZ8HIZ+HFd9ZcFqpfQoRITExsUxxEBkZiWfPngEAVFVVYWFhUa5I+PcyMWVBRDhx4gQ8PDzw/PlzTJkyBcuXL2cTM/8jOjoazs7OePbsGTZv3ozx48dXW48SEWHv3r2YPXs2WrVqhZCQELRt27ZarqWoUlNT4eXlhV27dqFVq1bw8/PD0KFDWS+fAlGWPKPUxQDwbmxn8W+PEBqfDgGfV+E36/3j9sb68BlqydnYzZfKzs7Gw4cPyxQJUVFRKC4uBgA0b9683DBDixYtFPYD6N69e5g3bx5u3LiBb7/9Fv7+/rCwqPmlOfJu3759mDlzJlq2bImQkJAa+zd6/Pgxvv/+eyQkJEgLEKasqKgoLFiwAOfOnYO9vT0CAwOlmzwx8k8Z8ozSFwPvxaXmIuhOIq7EpiExo6DMDlI8vNvooZdJQ4zuYsTJso7qJhKJEBMTU26Y4c2bNwCAunXrlutBsLCwkOu10QkJCVi8eDGCg4NhaWmJwMBA9OnTh+uw5E5eXh5mzZqFAwcOYMKECdi4cSM0NWt2h7P8/HzMmTMHe/fuxdixY7F582aZD00ogwsXLmD+/Pl49OgRRo4cCV9fXxgZcX/XyFSOIueZWlMM/Ft+sQgvMvJRIpJAVchHCz1Nud7xqboQEV6/fl1umCE2NhZEBIFAAHNz83JbLzdo0IDTuHNycuDr64t169ahfv36WLVqFcaPH8+WYX7Ao0eP4OzsjJcvX2Lr1q0YM6Zqx3bL2sGDBzF9+nQYGRkhJCQElpaWnMYjj8RiMfbu3YulS5fi7du3cHNzg6enp1x/pjLlKVqeqXT+pkrIzs4mAJSdnV2ZpzNyKi8vj27dukXbtm2j6dOnU5cuXUhDQ4Pw7ugHMjAwoP79+9PixYvp6NGjFBMTQ2KxuNrjKi0tpS1btlCDBg1IXV2dli5dSrm5udV+XUUkkUhox44dVKdOHbK0tKQnT55wHZLUkydPyNLSkurUqUM7d+4kiUTCdUhyKTc3l5YuXUrq6urUoEED2rp1K5WWlnIdFqOkKpu/WTFQy4lEIoqJiaGjR4+Sp6cn9e/fnwwMDKQFgqamJnXp0oWmT59O27Zto9u3b1NeXp5Mri2RSOjMmTNkbm5OPB6Pxo0bRy9fvpRJ28ooOzubRowYQQBo6tSpVFBQwHVI5RQUFNCUKVMIALm6ulJOTg7XIcmtly9f0rhx44jH41Hbtm3p7NmzrIBiZI4VA8wXSUtLo4sXL5K/vz+NGjWK2rVrRwKBgAAQj8cjU1NTcnFxIR8fH/rjjz8oOTm5Sh9kERER1Lt3bwJAvXr1orCwsGp8N4ovLCyMjI2NSUtLiw4fPsx1OJ8UHBxMWlpaZGxszL63n/DgwQPq2bMnASBHR0eKiIjgOiRGibBigJG5wsJCun//Pu3evZvmzJlD9vb2VLduXWkvQoMGDahPnz60YMECOnToEEVFRZXr/kxKSqKJEydKC4pTp06xu6EKSCQS2rx5M6mqqlL79u0pNjaW65AqLTY2lmxsbEhNTY02b97Mvs8VkEgkdPLkSTIxMSEej0cTJ06kpKQkrsNilAArBpgaIZFI6NmzZ3TixAny8vKiwYMHU/PmzaUFgpqaGtna2tK4cePo22+/JTU1NdLV1aVNmzZRSUkJ1+HLtaysLHJyciIANGvWLCosLOQ6pCorLCykWbNmEQBycnKirKwsrkOSayUlJbRx40bS09MjDQ0N8vb2ltmwHFM7VTZ/K9VqAkZ+vH37Fg8fPkRYWBh+/fVX3L17F6WlpdLHW7VqVe6Ex2bNminsngiydu/ePbi4uCAzMxO7d+/G8OHDuQ7pixw/fhyTJk2Cvr4+jh49io4dO3IdklzLzs6Gj48P1q9fD319faxatQpjx45lK2uYKqts/mYbujPVon79+hCJRNi/fz9u3ryJ4cOHIyYmBpGRkdi/fz+GDBmCrKwsbNiwAYMHD0bz5s2hp6eHXr16wc3NDfv370dERARKSkq4fis1ioiwYcMGdOvWDfr6+ggLC1P4QgAAnJycEB4eDl1dXXTt2hUbNmxAJe5Dai0dHR34+fnh6dOnsLe3x8SJE9GxY0f89ddfXIfGKCtZdjMwDBFRdHQ0DRgwgABQ165d6fbt2x99rkQioZcvX9Lp06dp5cqV5OTkRMbGxtJhBhUVFbK2tqaxY8fS2rVr6a+//qKMjIwafDc1JyMjgwYPHkwA6Mcff6Ti4mKuQ5K5oqIi+vHHHwkADRkyhDIzM7kOSSHcunWLvvrqKwJAAwcOlKslpYx8Y8METI1LS0uDt7c3duzYgebNm8PPzw/Dhw//rK7/3NxcPHr0qMymSQ8fPkRRUREAoFmzZuWGGVq2bKmwpxfevn0bLi4uyMnJwb59+zB48GCuQ6pWJ0+exPjx46Gjo4OjR4/Czo6bs94VCRHh+PHj8PDwQGJiIqZNmwZvb2/ONwtj5BvbdIipMYWFheTr60va2tpUr149CggIoKKiIplfp7S0lKKjoyk4OJg8PDzom2++oUaNGkl7EbS1talbt240a9Ys2rlzJ929e1cu1+L/m1gsJn9/fxIKhdSlSxd68eIF1yHVmBcvXlCXLl1IKBRSQEBAjWxwpQyKioooICCAdHR0SFtbm1avXq2Qk0uZmsFWEzDVTiwWU1BQEBkZGZFQKKQffviB0tPTazyO169f07lz52j16tXk6upK5ubmxOfzCQDx+Xxq27Ytubq6kp+fH50/f55SUlJqPMYPefPmjXQ4ZcGCBbVydUVJSQnNnz+fANCAAQM4+flRVOnp6fTDDz+QUCik5s2bU3BwMFu+yZTDhgmYanXjxg3MmzcP9+7dw5AhQ+Dn5wcTExOuw5IqKCjA48ePywwzREZGIi8vDwDQuHHjcsMMbdq0qbHZ2jdu3ICrqysKCwuxf/9+DBgwoEauK6/Onj2LcePGQV1dHUeOHEG3bt24DklhxMbGwsPDA7///js6d+6MtWvXsn8/RooNEzDVIi4ujoYNG0YAyNbWlq5evcp1SJUmFospLi6Ojh8/TkuWLKGBAwdS06ZNpcMM6urq1LlzZ5o6dSpt2bKFbt68KfMzEsRiMfn4+JBAIKDu3buz7Zf/5eXLl9S9e3cSCATk4+PDhg2q6OrVq9ShQwcCQMOHD6f4+HiuQ2LkABsmYGQqIyOD3NzcSEVFhZo2bUoHDx5Umg/r9PR0unz5MgUGBtLYsWPJysqKhEKhdOvlNm3akJOTE61atYrOnDlDr169+qzu2NTUVOrbty/xeDxavHgxO5zmA0pLS8nT05MA0DfffEOpqalch6RQxGIxHThwgJo2bUoqKirk5ubGVmzUcmyYgJGJkpISbNmyBStWrEBpaSk8PT3h5uYGdXV1rkOrVsXFxXjy5Il0mOH9UENWVhYAQE9PTzq88H6owczMDCoqKh9s7+rVqxg5ciREIhEOHTqEvn371uC7UTznz5/HmDFjIBQKcfjwYfTo0YPrkBRKQUEB1q1bh9WrV0NFRQVeXl6YOXMmVFVVuQ6NqWFsmID5IhKJhH799VcyNjYmPp9PU6dOlZuJd1yRSCT04sUL+v3332n58uU0dOhQatmypXSY4f35ARMmTKANGzbQ1atXKT09nZYvX058Pp969uxJycnJXL8NhZGUlEQ9e/YkPp9Py5cvJ5FIxHVICuf169c0depU4vP5ZGxsTCdOnGCTDGsZ1jPAfLZ79+7B3d0doaGh6NevH/z9/dGuXTuuw5Jb2dnZePjwobT3ICIiAlFRUSguLpY+x8zMDN9//z06dOgAGxsbNG/enG29XAlisRgrVqzAypUr8fXXX+PQoUNo3Lgx12EpnKioKCxYsADnzp2Dvb091q5dy7aEriUqm79ZMcBIJSYmwtPTE8HBwbC0tERAQADrzv5M58+fx8iRIyEWi/HNN98gMzMTERERSE9PB/Buu9n3wwvv/7awsICamhrHkcunv/76CyNHjgQABAUFoXfv3hxHpJguXLgAd3d3REVFYdSoUfDx8YGRkRHXYTHViA0TMJWWnZ1NixYtIjU1NWrcuDHt3LmTdcl+ptLSUlqyZAnxeDxydHQsM7QikUgoKSmJzp49Sz4+PuTs7Cw9shYACYVCsrS0pNGjR1NAQABdvHiR3rx5w+G7kS8pKSnk6OhIPB6Pli5dyiZgfiaRSEQ7d+6kxo0bU506dcjT05N9tisxtpqA+aTS0lLaunUrNWjQgNTV1Wnp0qUyX0pXm7x69YocHByIz+fTqlWrKr3aIi8vj27dukVbt26ladOmUZcuXUhDQ0M6F8HQ0JAGDBhAixcvppCQEIqNjVWalRxVJRKJaOXKlcTn88nBwYGSkpK4Dklh5ebm0tKlS0ldXZ0aNmxIW7duZQWWEmJzBpiPIiL8+eefWLBgAZ48eYKxY8di1apVaNq0KdehKaxz585hzJgxUFVVxeHDh+Hg4PBF7YnFYsTHx0vnILyfj5CcnAwA0NTUhJWVVZlhBktLS2hoaMji7ci9a9euYeTIkSgpKcHBgwfRr18/rkNSWK9evcKSJUtw4MABmJubw9/fH99++y2b06Ik2DAB80ERERHk6OhIAKhXr14UFhbGdUgKraSkhDw8PAgAffvtt5SWllat10tNTaULFy6Qv78/jRo1iiwsLEggEEi3XjYzMyMXFxfy9fWlP//8k5KTk5V29nhaWhr169ePANCiRYtq5XbOsvTgwQPq2bMnASBHR0eKjIzkOiRGBtgwAVNGUlISTZw4kXg8HpmamtKpU6eUNknUlISEBOratSsJBALy8/PjrOu+sLCQ7t+/T7t27aI5c+aQvb09aWtrS4cZGjZsSH379qUFCxZQUFAQPX78WGm6g8ViMa1evZoEAgF17dqVEhMTuQ5JoUkkEjp58qR0LsukSZPYclgFx4YJGABAfn4+AgICsGbNGmhoaMDb2xtTp0796OY4TOWcPn0a48ePh6amJo4cOYKuXbtyHVIZEokEL168KDfMkJCQAACoU6cO2rVrV2bjJCsrK4X9/f77778xYsQI5OfnY//+/Rg4cCDXISm00tJSbN++Hd7e3igqKsLChQvh7u4OTU1NrkNjqogNE9RyIpGI9uzZQwYGBqSqqkoLFy6krKwsrsNSeMXFxTRv3jwCQIMGDaKMjAyuQ6qSzMxMunLlCq1fv57Gjx9PNjY2pKKiIu1FaN26NQ0bNoxWrFhBp06dooSEBIXpQUpPT6dBgwYRAJo3bx4VFxdzHZLCe/v2LS1YsIBUVVXJwMCA9uzZw1YaKRg2TFCLXbp0iaytrQkAubi40LNnz7gOSSk8e/aMOnfuTCoqKrR27VqFSZKfUlxcTJGRkbR//35yc3Ojr7/+mnR1daUFQv369alXr170448/0r59+ygiIkJuE61EIqHAwEASCoVkZ2dHz58/5zokpfDs2TNycXEhAGRjY0OXL1/mOiSmktgwQS305MkTLFiwAGfPnsVXX32FtWvXokuXLlyHpRR+++03TJgwAfXr18fRo0fRuXNnrkOqVkSEV69elRtmiI+PBwCoqKigbdu2ZYYZrK2toaury3Hk79y5cwcuLi7Izs7G3r17MWTIEK5DUgq3b9/GvHnzcOvWLQwcOBD+/v4wMzPjOiymAmyYoBZJTU2lGTNmkEAgoJYtW1JISIjS3LVyraioiObMmUMAaNiwYfT27VuuQ+JUTk4O3bhxgzZv3kxTpkyhTp06UZ06daS9CEZGRjRo0CBaunQp/frrrxQfH8/ZxMrMzEwaOnQoAaAffviBioqKOIlD2UgkEgoJCaGWLVuSQCCgmTNnVvsqGubzsWGCWqCwsJBWr15N2trapKOjQwEBAewDT4bi4+PJ1taWVFVVaePGjazA+ojS0lKKjo6m4OBgWrhwIX3zzTfUsGFDaYGgra1N3bt3p9mzZ9POnTvp3r17VFBQUCOxSSQS+uWXX0hVVZVsbW0pPj6+Rq5bGxQVFZG/vz/p6OhQ3bp1afXq1VRYWMh1WMx/sGJAiUkkEgoODqbmzZuTUCikH374gdLT07kOS6kcPXqUtLW1qXXr1nT//n2uw1FIr1+/pnPnztHq1atpxIgRZG5uTnw+nwCQQCCgtm3b0siRI2nNmjV0/vx5Sk1NrbZY7t+/T61ataK6detSSEhItV2nNnrz5g3NmTOHhEIhNW/enIKDg1nhLEdYMaCkbty4QZ07dyYANGTIEIqJieE6JKVSWFhI06dPJwDk7OzMfuZlLD8/n+7cuUPbt2+nmTNnUteuXUlLS0vai9CkSRP69ttvadGiRXTkyBF6+vSpzGavZ2VlkbOzMwGgGTNmsLtYGYuJiaHBgwcTAOrcuTPduHGD65AYYsWA0omPj6fhw4cTAOrQoQNdvXqV65CUTkxMDFlbW5Oamhpt27aN3d3UELFYTHFxcXTs2DH66aefaODAgdS0aVNpgaChoUF2dnY0bdo02rJlC/3999+ffYaGRCKhrVu3kpqaGllbW7NiuhpcuXKFOnToQADIycmJDc1wjBUDSiIzM5Pc3NxIRUWFmjZtSgcOHKi1h9RUp0OHDpGmpiaZmJhQREQE1+Ew9G7fgMuXL1NgYCCNGTOGrKysSCgUEgDi8XjUpk0b+v777+nnn3+mM2fO0KtXrypdwEVERJCJiQlpaWlRUFBQNb+T2kcsFtOBAweoadOmpKKiQvPmzaPMzEyuw6qVWDGg4IqLi2ndunVUv3590tLSolWrVlF+fj7XYSmd/Px8mjRpEgGg0aNHs1Mb5VxRURGFhYXRnj17aO7cudSjRw/S0dGR9iLo6+tT7969yd3dnQ4ePEiPHj366JkFOTk5NGrUKAJAkydPZr9f1SA/P59WrVpFWlpapKurS+vXr5fbPSqUFSsGFJREIqETJ06QsbEx8fl8mjp1KqWkpHAdllJ6/PgxWVhYkLq6Ou3evZsNCygoiURCL168oN9//528vb1p6NCh1LJlS2mBoKqqSh06dKCJEyfShg0b6Nq1a9LdOCUSCe3atYvU1dWpXbt2FB0dzfG7UU6vX7+mqVOnEp/PJ2NjYzpx4gT7fashbNMhBXT//n3MmzcPoaGh6NevH/z9/dGuXTuuw1JK+/btw6xZs9C8eXMcO3YMFhYWXIfEyFh2djYePnxYZtOkqKgoFBcXAwBatGgh3TSpfv362LhxI5KTk7FlyxaMGzeO4+iVU1RUFBYsWIBz587BwcEBgYGB6NixI9dhKTW26ZACSUhIkHZXWlpa0vnz57kOSWnl5ubS2LFjCQBNmDCB8vLyuA6JqUElJSX06NEjOnjwIM2fP58cHR1JX19f2ovw/pwGc3Nz2rp1K4WFhbG9O6rB+fPnqV27dgSARo0aRQkJCVyHpLRYz4ACyMnJwerVq7Fu3TrUq1cPK1euxIQJEyAQCLgOTSk9evQIzs7OSExMxLZt2zBmzBiuQ2LkABHh9evX0h6EkydP4t69e3j/0SgUCmFubl5u62V9fX2OI1dsYrEYe/bswdKlS5GdnQ03NzcsWrSI5RgZq2z+ZsUAB0QiEXbt2gUvLy/k5eVh/vz5WLhwIbS0tLgOTSkREXbv3o05c+agTZs2CAkJYfupMxV68uQJnJycEB8fj++//x6ampqIjIzEo0ePUFBQAABo2rQprK2tyxQJrVu3Bp/P5zh6xZKbm4s1a9YgMDAQ2traWL58OSZPngyhUMh1aEqBDRPIIYlEQmfPnqW2bdsSj8ejcePG0cuXL7kOS6nl5OSQq6srAaApU6bU2Da4jOIrKCigKVOmEAAaOXIk5eTkkEgkoqdPn9KRI0fI09OTvv32W2rSpIl0mEFLS4u6du1KM2bMoO3bt9OdO3fYKoVKevnypXQIr23btnT27Fk2yVAG2GoCORMREUGOjo4EgHr27EkPHjzgOiSlFx4eTm3atCEtLS0KDg7mOhxGQQUFBZGWlhaZmJhQeHj4B5+TmppKFy5coDVr1tCoUaPIwsKCBAIBASA+n09mZmY0YsQI8vX1pT///JNev35ds29CgTx48IB69uxJAMjR0ZEiIyO5DkmhsWJATiQlJdHEiROJx+ORiYkJnTx5klW71UwikdCWLVtITU2NbGxsKDY2luuQGAUXExNDNjY2pKamRlu2bKnU73BhYSHdv3+fdu3aRbNnz6bu3buTtra2tBehUaNG1LdvX1q4cCEFBwfT48ePqbS0tAbejfyTSCR08uRJMjExIR6PR5MmTaLk5GSuw1JIrBjgWF5eHnl7e5OGhgbp6enRxo0bP7r5CSM7WVlZ9P333xMAmjVrFtt/npGZwsJCmjlzpvTcivd7FVSFWCymf/75h3799Vfy8vKi7777joyMjKQFQp06dahTp040efJk2rRpE924cYNycnKq4d0ohpKSEtq4cSPp6emRpqYmLV++nK0AqiK2moAjYrEYBw4cwJIlS5Ceno65c+di8eLFqFevHtehKb379+/DxcUF6enp2L17N5ycnLgOiVFCx44dw+TJk6Gvr4+jR4/KZJ18ZmZmuT0RHj9+jNLSUgBA69aty0xUtLGxQdOmTcHj8b742oogKysLP//8M3755Rfo6+vj559/xtixY9lkzUpgEwg5cPnyZbKxsSEA5OLiQs+ePeM6pFpBIpHQ+vXrSUVFhTp27Ej//PMP1yExSi4+Pp5sbW1JRUWFNmzYUC1Df8XFxRQREUH79+8nNzc36tWrF+nq6kp7EXR1dalXr17k5uZG+/fvp8jISKXf6vfZs2fSkydtbGzo8uXLXIck99gwQQ168uQJDRw4kADQV199Rbdu3eI6pFojMzOThgwZQgDoxx9/ZBvEMDWmqKiI5s6dSwBo6NChNXIQj0QiocTERDp16hStXLmShg8fTq1bty6zaZKNjQ2NHz+e1q1bR1euXFHKA4L+/vtv6tKlCwGggQMH0pMnT7gOSW6xYYIa8ObNG3h7e2P79u0wMjKCn58fnJycak3XHdfu3LkDFxcXZGdnY9++fRg8eDDXITG10O+//44JEyZAR0cHR48ehZ2dXY3HkJOTg0ePHkmHGCIiIvDo0SMUFRUBAIyMjMoNM7Rs2VKhP6uICMeOHcOiRYuQmJiIadOmwdvbGw0aNOA6NLnChgmqUWFhIa1evZrq1q1LOjo6FBAQwO5Ia5BYLKaAgAASCoXUpUsXevHiBdchMbXc8+fPyc7OjoRCIQUEBMjFiqHS0lJ6/PgxBQcH08KFC6lv377UsGFDaS9C3bp1yd7enmbPnk27du2i+/fvK+SE26KiIvL39ycdHR2qW7cu+fn5KeT7qC5smKAaSCQSCg4OpubNm5NQKKQffviB0tPTuQ6rVklPT6cBAwYQAJo/fz5bocHIjeLiYnJ3d5d2XcvrZ8Pr16/pzz//pNWrV9OIESPIzMyM+Hw+ASCBQEAWFhY0atQoWrNmDV24cIFSU1O5DrlS3rx5Q3PmzCGhUEjNmzenw4cPy0VRxjU2TCBjN2/exLx583D37l0MGTIEfn5+MDEx4TqsWuXmzZsYMWIECgsLsX//fgwYMIDrkBimnDNnzmDcuHHQ1NTE4cOH0a1bN65D+qSCggJERUWVWc0QGRmJ/Px8AECTJk3KDTMYGxvL5TkqsbGxWLhwIU6ePAk7OzusXbsWXbt25TosztTKYYK8olKKSsqisIRMikrKoryiL9/AIz4+npycnAgAdejQga5evSqDSJmqEIvF5OvrSwKBgLp37862cGbkXmJiInXr1o0EAgH5+vqSWCzmOqQqE4vFFBsbS8eOHaOffvqJBgwYQE2bNpUOM2hoaFCXLl1o2rRptHXrVrp165Zc7QFw5coV6tChAwEgJycnio+Pl0m71ZFnqlOt6RmIS81F0J1EXIlJQ2JmAf79ZngAjHQ10Mu0IUbZGaFNI+1Kt/v27VusWrUKGzduRKNGjeDj44NRo0axda01LC0tDWPHjsX58+fh6emJFStWsANMGIUgEong5eUFX19f9OvXDwcOHFCKyW3p6enSnoP3PQlPnjyBSCQCj8dDmzZtyvQg2NjYoEmTJpxMVpRIJAgKCsLixYuRmpqKOXPmYMmSJahfv36V2qmuPFMTlP7UwpeZBVj82yOExqdDwOdBLPn423j/uL2xPnyGWqKZrsZHn1tSUoKtW7dixYoVKCkpwaJFi+Dm5gYNjY+/hqke165dg6urK0QiEQ4ePIhvvvmG65AYpsrOnz+PMWPGQEVFBYcPH4aDgwPXIclccXExoqOjywwzREREIDs7GwDQoEGDcic8mpqaQkVFpUbiKygowLp16+Dr6ws1NTV4eXlhxowZUFVVrfB11ZVnapJSFwNH7iVi2anHEEmowm/Ofwn4PAj5PCz/zgIjOhmVeYyI8Pvvv2PhwoV49uwZJk+ejOXLl6Nx48ayDp/5BLFYDB8fH3h7e8PBwQFBQUEwMDDgOiyG+WzJyckYOXIkQkNDsXz5cnh6esrleLssERESEhLK9CBERkbi+fPnAAA1NTW0a9euTJFgZWUFHR2daospJSUFXl5e2L17N1q1aoU1a9ZgyJAhH+y1qI48wwWlLQY2XYlDwIXYL25nfl8TzO7VBsC7bWznzZuH0NBQ9OvXD/7+/mjXrt0XX4OpupSUFIwePRp//fUXli5dCi8vL6X/0GRqB5FIhJUrV2LlypX4+uuvcejQoVp5s5GVlSXdevl9oRAVFYWSkhIAQMuWLcsNMxgZGcl0mCEqKgrz58/H+fPn4eDggMDAwDLbSldHnuGKUhYDR+4lYtGJR+W+Xvw6FvmPLqMo8RFE2angq9eFmoEp6jmMgYqu4UfbW9jTEH8fDEBQUBDatWuHwMBA9O3btzrfAlOBy5cvY9SoUQCA4OBgfP311xxHxDCy9++f86CgIPTu3ZvjiLhXWlqKmJiYcsMM6enpAIB69eqVG2Zo27Yt1NTUvui658+fx/z58xEVFYVRo0bBx8cHf6fig3mm5E0Csm8EoyQlHuL8LPBU1KCi1wx17YZBo83HN5ryG2YJFw57CJSuGHiZWQDHdddQLJKUe+zNbz4ofvUEGmbdodKwBcR5b5EbdgZUUoTGYwOg2qDFB1okkKgEJb95YYXHXEycOJHdgXJEJBJhxYoVWLVqFXr37o1Dhw6hUaNGXIfFMNWG9YB9GhEhOTm53DBDXFwciAhCoRBt27YtVyTo6elV6ToikQh79+7F0qVLkUtqaDxxI8Qo/70o/Ocecu6fhpqhGQRauqDSYhTE/I3iV4+h2282tG36fbB9NSEfl9x6cDaHQOmKgTG77+DvZxkfHLspevUEak2MwRP8/2SU0swkJO+eDU2zbtAfNP+DbfJA6NKyPg5Plf91wMoqOTkZrq6uuHHjRq0ZS2UYoOzcGHt7ewQHB7O5MZWQl5dXbuvlhw8forCwEADQtGnTcnsitGrV6pMrwXJzc9HX5xSSJdrg8Sv3GUQSMV7v+xEkKoXh1G0ffI6Az0PXVno4OKnmt6kGKp+/FWKNVlxqLkLj0z/6eJ2m5uW+pqJrCFV9I5Smv/zo6wg83Hqehfi0XBg3lK/lILXBuXPnMGbMGKiqquKvv/5Cjx49uA6JYWqMQCDA0qVL4eDggJEjR8LGxoatmqkELS0tfPXVV/jqq6+kXxOLxYiPjy/Tg7B79268fv1a+horK6syRUK7du3KrBJLKQBeox54VVg9zuMLINTWR3FK3EefI5YQQuPT5T7PKEQxEHQn8ZPLOv6LiCAuyIKKfsVjNQI+D4duJ8L7O4svDZOpJJFIhKVLl2L16tVKtf6aYT5Hjx49EBERgTFjxqBfv35YtGgRVq5cyfbTqAKBQABTU1OYmprCxcVF+vW0tLQywwzXrl3D9u3bIRaLwefzYWpqKi0OnmpaQsADxJ9IM5KSIpCoGJLiAhTG3UHhswfQMLevOD4FyDMK8dN2JSatSoUAAOQ/vgpxbgbqdR9V4fPEEsKV2DR4Q36/Scrk5cuXcHV1xe3bt7F69WosWLCAbeTE1HoNGjTAH3/8gTVr1mDJkiUIDQ3F4cOH0axZM65DU2gNGzZEnz590KdPH+nXCgsL8fjx4zLDDGfOnIH2yECo1P/0MM3bv3YhL+Lcu//h8aFh8hV0+86o8DWKkGfkvhjIKxYhMbOgSq8pzXiJzItboWZoBk3LT8/UTcwoQH6xCJpqcv/PodD+vWf79evXa/V+4QzzX3w+H4sWLYK9vT1GjBgBGxsbHDhwgJ3BIWPq6uro2LFjmaWEOYUlsFpxsVKvr9tpMDTMukOcm4GCpzdAJAHEpZ98nbznGbm/JUvIyEdV+gTEeW+Rdmw5+Gqa0B/iWamJIATgRUb+Z8fIVKykpATz58/HoEGD0K1bN4SHh7NCgGE+olu3boiIiEDXrl0xcOBALFiwAKWln042zOd7+baw0s9V0WsG9RY20LLsjYbfLwOVFCHt+Ap8ai6+vOcZuS8GSj6wlPBjJEX5SA1ZBklRPho6L4dQu/JLTKpyHabyXrx4AQcHB2zYsAGBgYE4efJklZf+MExto6enh1OnTiEwMBDr16+Hvb09EhISuA5LaX3J57+GWTeUvI6DKDOpWq9T3eSzv+JfVIWVq1dIVIK04ysgepuERiNWQfUTEwf/a4W3F7pbtJBOJtHX1/+ccJl/+f333zFhwgTo6Ojgxo0bsLPjZmkNwygiHo+HefPmoVu3bnBxcYGNjQ327t2LIUOGcB2awktPTy8zZ+DBs1TAYe5ntUWlxQAASfGn7/orm8+4IPfFQAs9TfCACocKSCLGm9/9UJz8FA2HL4GaYfmlhhUiQnJsJLyO7kFBwbv5CYaGhuW2xGzdujWb7FYJxcXFWLhwIX755RcMHToUu3fvrvIpYQzDvGNnZ4fw8HBMnDgRQ4cOxdy5c+Hn5/fFu+/VBhKJBP/880+5nQ2Tkt7dxWtoaMDa2hrdrDvgIgjvziD8MHF+FgSa9cp8jcQi5Ef9BZ5Q7ZMr13h4l8/kldwXA5pqQhjpaiChgkmEb//ajcL4O1A37gxxYR7yoq6UeVyrXa8Kr9FcXxPXblyHWCyW/uC8/6HZt28fkpOT38WiqSldq/q+SLC0tGQnGv7LP//8AxcXFzx69Ai//PILZs+ezcnRpQyjTOrXr48TJ05g48aNmD9/Pm7cuIGQkBC0atWK69DkRkFBwQc3I8rPf3fHbmBgABsbG4wbN076+d26dWvpJmc9/K9UmGcyzm0ClRRArVk7CLT1IM57i/zoqxBlvEL9ryeBr6peYXxGehpyO3kQUIBiAAB6mTbEwTsJH11eWJL6DABQGH8XhfF3yz1eUTEg4PPQy6Thu/8WCGBiYgITExM4OztLn/PmzZsya1VDQ0OxY8cO6VpVExOTcltiNm7cuNYlwWPHjmHy5MnQ19fH33//DVtbW65DYhilwePx8MMPP6Br165wcXFB+/btsXv3bjg5OXEdWo0iIqSkpJRJ+hEREYiLi4NEIoFAIIC5uTlsbGwwbNgw6Wfyp/Yy+VSe0TS3R97Di8gN/wOSwlzwVdWh2tgY9XtOqPBsAqBsnpFXCrEdcVxqLvqsv15t7V9yc6jyzlBFRUV4/PhxuX2zc3JyALxb3/rfYQYTExOl3EikqKgI8+bNw9atW+Hs7IwdO3ZU6zGkDFPbZWdnY8qUKTh27BhmzpyJwMBA1KlTh+uwZE4kEiE2NrZcN39aWhoAoG7duuU+Z9u2bftZ/xbymGdkoVadTfC5ZL1nNBHhxYsX5SrW97OA69Spg3bt2pXpQbCysuL8WOgvERsbC2dnZzx9+hTr16/HtGnTal2PCMNwgYiwbds2uLm5wdzcHCEhIWjThtvjcr9ETk7OB482LioqAgA0b9683JkDLVq0kOnnjSLkmapSumKgolMLP1dNnSb19u1b6Q/5+x/0qKgo6drh1q1blxtmaNasmdwn1eDgYEybNg0GBgYICQmBtbU11yExTK0TEREBZ2dnvH79Gjt27ICrqyvXIVWIiPDy5csyN0wRERF49uzdcK+qqiosLCzKJH0rK6samYSsyHnmY5SuGACAI/cSP3jO9Ofi8pzpkpISPH36tNwvRGZmJoB3E4b+2/1lbm4OVVVVTuL9t4KCAsydOxe7du3CqFGjsHXrVmhry+8BHAyj7HJzczF9+nQEBwdjypQp2LBhA9TVK57QVhNKSkrw5MmTct38b9++BQDo6upKP9/e/zEzM4OKisonWq4+ypRnACUtBgBg05U4BFyI/eJ2FvQ1xaxexjKISHaICElJSeV+ceLj4wEAKioqaNu2bZkeBGtra+jq6tZYjE+ePIGzszP++ecfbNy4ERMnTpT7HgyGqQ2ICHv27MHs2bNhbGyMY8eOwczMrMaun5mZKf3Mev93dHS0tAfU2Ni4XDe/oaGhXH5+KFOeUdpiAHhXuS079RgiCVVpbEfA50HI52HFdxacVmpVlZubK10y8/4X7eHDh9KxNCMjo3LDDC1btpT5ngj79+/HzJkz0bx5c4SEhKBdu3YybZ9hmC8XFRWF77//HomJidi6dSvGjh0r0/YlEgmeP39erlfz5ct3x8XXqVPng0uwFa33UFnyjFIXA8C7sZ3Fvz1CaHz6J483fv+4vbE+fIZacjZ2I0sikQhxcXHlVjOkpKQAALS1taW/iO//trCw+Kyuw/z8fMyaNQv79+/H+PHjsWnTJmhqyu/mGQxT28nqd/bfJ/y9/4yJjIxEbm4uAKBx48ZlbkRsbGzQpk0b6dp9RacMeUbpi4H34lJzEXQnEVdi05CYUVBmp0Ie3m300MukIUZ3MeJkWUdNS0lJKddVFxMTI11/+/787n8XCQ0bfnz9a3XfZTAMU32q0puXlpZWbiXU06dPIZFIwOfzy312vN9PpTZQ5DxTa4qBf8svFuFFRj5KRBKoCvlooacp1zs+1ZSCgoIPVvd5eXkAgCZNmpQbZjA2Nsa+ffswZ84cGBsbIyQkBObmVdzmmWEYzkVHR8PFxUU6z2fcuHGIj48v16v4+vVrAICWlpY02b//TLCwsGA7rf6PouWZWlkMMJUnkUjw7NmzcuN+r169AvBuN0axWAwzMzNMnz4dnTt3hqWlJbS0tDiOnGGYysrLy8OjR49w9+5dbNu2DU+fPpX+bgNAs2bNyt0ItGrVip3BokRYMcB8lqtXr2LMmDFIS0uDnZ0dsrOzER0dDZFIBB6P98EZwQYGBnI5I5hhagsiQnJy8gdXIhERhEIh2rZti7p16+LevXto0KABDh06hB49enAdOlPNKpu/5bdvg6lR/93N7PLlyzAxMQHw7hTC/64V9vf3R1ZWFgBAX1+/3CQiU1NTTtcKM4yyKi0tLbdHSWRkJNLT0wEA9erVg42NDQYMGCD9vTQ3N5eecvh+19BvvvmG7RrKSLGeAQbZ2dmYOnUqQkJCKr3POREhMTGx3DDD8+fPAbzbRez91sv/XtXAzixgmMrLzs4ul/SjoqJQUlICAGjVqlW5bn4jI6NPJvf/nieyc+dO9tmupNgwAVMpDx48gLOzM9LT07Fr1y58//33X9Rednb2B/cXLy4uBgC0aNGi3DBD8+bN2Z0JU6sRERISEsrN5n/x4gUAQE1N7YPnmnxpcR0SEoIpU6agQYMGOHr0KDtpVAmxYoCpEBFh06ZNmD9/PiwtLXH06FG0bt26Wq4lEokQExNTpgchIiJC2q2po6NTbpihbdu20m5NhlEmxcXFHzzxNDs7G8C7Ybf27duX+Z0wNTWtthNP//nnH7i4uODRo0cICAjA7NmzWXGuRFgxwHzU27dvMWnSJPz222+YO3cu/Pz8ajzxEhFev35d7k4oLi5OOuHp/Znk/x5m0NfXr9E4GeZLpKenl0v6T548kU7INTExKdfN36RJkxpPxsXFxVi4cCF++eUXDBs2DLt370a9evVqNAamerBigPmgO3fuYMSIEcjKysLevXsxZMgQrkMqIz8/X7r18vsP0YcPH6KgoAAAYGhoWKYHwdraGq1bt2ZLoRhOSSQS/PPPP+WK26SkJACAhoaGdIve9z+3lpaWcreT52+//YaJEyeiXr16OHr0KDp37sx1SMwXYsUAUwYRYe3atVi0aBFsbW1x5MgRtGjRguuwKkUsFks/aP/9YZucnAwA0NTULLdJSrt27dgmKUy1KCgowKNHj8ok/YcPHyI/Px8AYGBgUKZHy8bGBq1bt1aYLXpfvHgBFxcXhIWFwc/PD25ubmzYQIGxYoCRysjIwPjx43HmzBm4u7vDx8dHLo5C/lJpaWnS3RT/vX2qWCwGn8+HiYlJuQ/l2rJ9KiMbKSkpZea5REZGIjY2Vrq9t7m5eblu/gYNGnAd9hcrKSnB4sWLERgYiEGDBmHfvn01ejoqIzusGGAAADdv3oSrqyvy8/Oxf/9+DBw4kOuQqlVRUZF06+V/n9GQk5MDAGjYsGG51QwmJibVNjmLUQwikQixsbHluvnT0tIAAHXr1v3gwV+fWoKr6E6fPo3x48dDU1MTR44cQdeuXbkOiakiVgzUchKJBGvWrMGSJUvQpUsXHD58GM2aNeM6LE4QEV68eFFumCEhIQHAuyNXLS3/r707j4ryvPcA/h1WFRRZhAqIKLKv4aa1aaK5aprtZKlpZJVQlyaxxiQ2moqnuNBoYo6J8WoTE667qJAcm9ucnNpcranVXE3jieyyiaIiIgwwwyDM9t4/7ExneFEwLO/MvN/POTmeMDDzg1me3/t7nuf3xFtd4SUkJNjdkas0MCqVCiUlJVaDfllZmflI8MmTJ4sqSqGhobItlV+5cgVpaWk4e/YsNmzYgJUrV3KNjh1hMiBjN2/exAsvvICjR48iJycH69evZzfAPrS1tYmmGcrLy6HT6QAAYWFhokEhODhYtoOCvREEAVevXhUlgXV1dQAAV1dXxMXFiZJAb29viSO3PTqdDmvWrME777yDJ554Anv37nWI6RA5YDIgUydPnkR6ejp0Oh3279+Pxx57TOqQ7IpWq8WFCxdE5WKlUgkA8PHxEZWLo6OjHWINhj3TarXmltmWz1tbWxuA289b7+mhqKgoPm/36OjRo8jKyoKbmxsOHTqEmTNnSh0S9YPJgMwYDAa8/fbbWLt2LWbMmIGDBw8iMDBQ6rAcgukKs/d+8draWgC3rzBjY2NFC8l4hTk8lEqlqKJTUVFhruiYDtOyfD6CgoJY0Rki165dQ0ZGBk6dOoX169cjJyfHbnZKyBGTARm5ceMGMjMz8be//Q25ubnIzc3lgrgRoFarRXPPpaWl5rnnkJCQPueeOd86MEajsc+1Hg0NDQBur/VISEiwqtRwrcfI0Ov1yMvLw1tvvYU5c+bgwIEDCAgIkDos6gOTAZk4fvw4MjMzAQAFBQWYM2eOxBHJm16vR01NjahcfePGDQC3V6X3bj4TFxfn8KvS+3Pr1q0+d4Go1WoAQEBAgKjMHx4ezqRXYseOHcP8+fOhUChQUFCA2bNnSx0S9cJkwMEZDAbk5eXhD3/4A2bPno0DBw5wD70Na2pqEk0zVFVVmferR0VFiaYZ/P39pQ57WJj6Q1j+LSz7Q0RGRoraUPO1bbuampqQmZmJEydOIDc3F2vWrOG0gQ1hMuDAGhsbkZmZiZMnT2LdunVYvXo133x2qKurC2VlZaJOdp2dnQCAiRMniqYZpk2bZjfPtcFgQG1trajMf/36dQCAp6enVZXEtHefnSPtj8FgwMaNG7Fu3TrMnDkTBQUFXLNkI5gMOKi//vWvyMrKgqurKw4ePIiHH35Y6pBoCBmNRly8eFE0gF69ehXA7R738fHxoh73np6eksbd2dkpOlOitLTUfKZEcHCwqMw/depUrp9wMF9//TUyMjKg1+tx4MABPProo1KHJHtMBhyMXq9Hbm4u3nnnHTz22GPYv38/9/nKSGtrq6i0XlFRYT79Ljw8XDTNEBgYOOQr6AVBQGNjo1Us58+fR21trfm0yZiYGFGZ39fXd0jjINvV3NyMrKwsfPXVV8jJyUFeXh7XdkiIyYADuXLlCtLT03HmzBm89dZbePPNN3lFRejp6UFFRYUoSWhvbwcA+Pn5ia7GIyMjB9yASqfToaqqSlSlaGlpAQCMHz/eKgEx9VwY6eOwyfZYdkB94IEHcOjQIQQHB0sdliwxGXAQX375JV544QWMGTMGhw8fxoMPPih1SGTDBEFAQ0ODaACvr68HALi7uyM2NtYqSUhMTAQA0d79srIyaLVaAMCUKVNEiUVISAj37tNdnTp1Cunp6bh16xb27duHJ598UuqQZIfJgJ3T6XRYvXo1Nm/ejKeeegp79uxhqZV+sI6ODpSUlOD777/H6dOnce7cOVy6dAkGg8Hq+5ydnREaGork5GQ89NBDuO+++5CQkAAvLy+JIid719raiuzsbHz55ZdYuXIlNmzYwPboI4jJgB27fPkyUlNTce7cOZ4nTj+YaRqhd5Wgo6MDAODr64vw8HDz0bRKpRK1tbV9TgOY/o2JieE0AN0zo9GILVu2YNWqVbj//vtx+PBhTJ48WeqwZIHJgJ36/PPPsWDBAnh5eaGwsBDTp0+XOiSyAy0tLaIyf2VlpdUCw95l/okTJ4qSTEEQcP36dVECUVNTY14gGB0dLbovVq1oIM6cOYO0tDSoVCrs3r0bzz77rNQhOTwmA3ZGq9XizTffxNatW/GLX/wCu3btYm97EjEajairqxMtGrTcemjZojcpKQnx8fHw8PAY1ONqNBrz1kHTY5aUlFhtHey9mJBbB6kvbW1tWLhwIT7//HO89tprePfdd3lg1DBiMmBHLl68iNTUVBQXF2Pz5s1YtmwZpwXI3JSo9wBsakoUGBgo2k44kk2JTE2Fem8z7KupkCnOuLg4NhUiCIKAbdu2YcWKFUhMTERhYSGmTp0qdVgOicmAnfjss8+waNEi+Pn5obCwEPfff7/UIZEEmpqaROcZVFdXW7Ur7r0DwFbbFVu2Gzb9a9luOCIiQjTNwHbD8vTdd98hNTUVLS0t2LVrF375y19KHZLDYTJg47q7u/HGG2/gww8/xLx585Cfn88V2zKg1+tRXV0tKvObDjIaO3asqAVxbGys3R9k1N3dbT6IyPL3tjyIqPc0Aw8ikoeOjg4sXrwYn332GZYuXYrNmzfb/evdljAZsGE1NTVISUlBZWUltmzZgpdffpnTAg7IdMSx5eBnecTx5MmTRWV+OR1xbHlEsWVyZHlEsan1sunvxCOKHZMgCNixYweWL1+OmJgYFBYWIjw8XOqwHAKTARt16NAhvPjii5g4cSKKioqQlJQkdUg0SIIg4OrVq6JBra6uDgDg6uraZ6MfLhDtW1tbm2iaoby8HDqdDgAQFhZmVUFITExEcHAwE2oHcP78eaSkpOD69evIz89HWlqa1CHZPSYDNubWrVt47bXXkJ+fj4yMDOzYsYNXOHZIq9WisrJSVOZXKpUAAB8fH1GZPyoqiqulB0mr1eLChQuiaQb+3R2PWq3GSy+9ZL5w+uCDDzB69Gipw7JbTAZsyIULFzBv3jzU1tZi+/btWLhwIa9i7IDlFapp8OEVqu24l4qMZfMkVmRsnyAI2LlzJ5YtW4bw8HAUFRUhKipK6rDsEpMBG7Fv3z4sWbIEISEh+PTTTxEXFyd1SNSLIAior6/n3LWDUKlUfR6nbFqrERISItrNMGXKFCZxNqi0tBQpKSm4cuUKPvroI2RlZUkdkt1hMiAxjUaDV155BXv27EF2djb++Mc/DrrxCw1ed3c3ysrKrAb9kpISqFQqAIC/vz/uu+8+q3IzV7Xbv752cZw/fx7Nzc0AgHHjxpnXcjjSLg5H0NnZiaVLl2Lfvn1YsGABtm3bxs/Se8BkQELl5eVISUnBpUuX8OGHHyI7O1vqkGSpv/3ukZGRotX83O8uLwPt72D5OpkwYYLUYcvSnj17sHTpUoSGhqKoqAixsbFSh2QXmAxIQBAE7Nq1C8uWLUNYWBgKCwsRExMjdVgOz9QJr/eHuqkTnoeHh+jAHXbCozux7PxomUxqNBoA0nd+lLOKigqkpKTg4sWL2L59OxYsWMDpnX4wGRhharUaS5YsQUFBARYvXoytW7dysBkGnZ2dKC0ttRr0S0tLrXrk976SY498GiypzoQgsa6uLrz66qvYuXMn5s+fj48++gienp5Sh2WzmAyMoOLiYqSkpKCxsREff/wxMjIypA7J7g3k9LyYmBirK/7ExET4+flJHTrJyEBPi7RMEvo6LZLuXUFBAV566SUEBQWhqKgIiYmJUodkk5gMjABBEPDxxx/j9ddfR1RUFIqKihARESF1WHZHp9OhqqpKVOZvaWkBAHh5eYlWf8fExMDd3V3iyInEenp6UFFRIXo9d3R0AAAmTJggmmaIjIyEq6urxJHbn+rqaqSkpODChQvYunUrXnzxRSZavTAZGGYqlQq//vWvUVRUhCVLluD999/nyuMB6OjoELXoLSsrQ09PDwBgypQpoiupkJAQvsHJrgmCgMuXL4umGerr6wEA7u7uiIuLs3rdJyQk8LySAeju7sby5cuxY8cOpKam4pNPPuE4ZYHJwDA6d+4cUlNTcfPmTeTn5yMlJUXqkGyOIAhoaGgQlflNH35ubm6Ii4uzujpKSEjA+PHjpQ2caAS1t7ejpKTEKkkoKyuDVqsFwOT4XhQVFWHx4sXw9/dHUVERkpOTpQ7JJjAZGAaCIGD79u1YsWIF4uPjUVhYiLCwMKnDklxfZdHi4mK0t7cDAPz8/ERlfpZFifpmOW1m+Z4yTZuNHz9eNM3AabPb6urqkJKSgrKyMrz33ntYunSp7BMnJgNDrL29HYsWLcKRI0fw6quv4t1335Xlm6+1tVXUuIULpoiGlyAIaGxsFE0z3GlBrek96OvrK3XoI66npwcrV67Etm3b8Nxzz2Hnzp2yrjgyGRhC3377LVJTU9He3o5du3Zh7ty5Uoc07IxGIy5evCi6OrHcSmVq0Wv6Ly4ujlt8iEbQQLfaWiboctlqe+TIESxcuBDe3t4oLCzET37yE6lDkgSTgSEgCAK2bNmC3/3ud0hOTkZhYSFCQ0OlDmvImZqs9G7R29nZCQCYOHGi6AOFTVaIbJNlEy7LRN7UhMvT0xMJCQlW72lHbcJVX1+PtLQ0fP/999i0aRNef/112VUpmQwMklKpxK9+9St88cUXeOONN7Bx40aHOA61qalJVGqsqqqyar/au9To7+8vddhENEiW7blN7305tOfWarXIycnB+++/j2eeeQa7d++Gj4+P1GGNGCYDg/DNN98gLS0NGo0Ge/bswdNPPy11SPfMYDCgurpadHVw48YNAMDYsWNFb/zY2FieG04kI7du3UJ5eblo8a9arQYABAQEiKqCERERdlkV/OKLL5CdnQ1PT08UFhbigQcekDqkESHLZEDTo8elVg20eiPcXJwQ6usBD/eBnzZnNBqxefNmrF69GtOnT8fhw4cxadKkYYx4aKjVatH2pP6ObA0NDZXFvCER3Ruj0YhLly6JLiRMR3qPHj26z23B9nCkd0NDA9LT03H27Fls3LgRK1asuOfPwcGOMyNNNslAzQ01Cs424ERVMxqUXbD8ZRQAQnzGYFakPzKnhyA84M4v1ps3byI7Oxt/+ctfsGrVKuTl5dnc1jdBEHD16lVRqa+2thYA4OrqitjYWFHjEjmVxIhoeCiVSlHDsPLycuh0OgDAtGnTrD57kpKSEBQUZHNz9DqdDrm5udi0aROeeOIJ7N27t9+TKIdqnJGCwycDV5RdWP2nUvyjtgXOTgoYjHf+NUy3z5jmh41z4zHJx3qhzMmTJ5Geng6tVov9+/fj8ccfH+7w+6XT6VBZWSnKzpVKJQDA29vb6k2XmJiI6Ohoh1jXQET2QavVorKyUrTduK2tDQDg4+MjqkpGR0fbxIXW0aNHkZWVBTc3Nxw+fBgzZswQfc9QjjNScehk4PA/G7D2z+XQG4W7Pjm9OTsp4OKkwPpnYpH24xAYDAa8/fbbWLt2LR566CEcPHgQQUFBwxh539ra2kSHnVRUVJi7kIWFhYneUMHBwTaXcRMRmSqYvS9k6urqANzuPhoTE2P1mZaYmAhvb+8Rj/XatWvIyMjAqVOnkJeXh5ycHPO0wVCNM1Jz2GRg+4kabP6qetD38/LPAnH8v97E8ePH8fvf/x5r1qyBi8vwzvsIgoD6+npRmf/y5csAgFGjRiE+Pl50DKrUf3MiosFSqVQoLS21qiCUlZWZ1zZNnjxZNM0QGho67Bc9er0e69evx4YNG/DII49g//79+LRCNSTjzIpHI/DKrPAhiPKHc8hk4PA/G7DqSOmQ3Z/u1G7sXfsyHnnkkSG7T5Pu7m7zKl3ToF9cXAyVSgUA8Pf3F5X5IyIihj0hISKyFXq93rzryfIiqbm5GQAwbtw4q2PKk5KSEBsbOyyHwh07dgyZmZlwiXwYrg9mD9n9bnouHqkSVggcLhm4ouzCI1v+jh69sc/bBb0O7f84AE35CRi7O+E6IRTjZ2Zh9JT7+r5DQYC7ixOO/fY/Bz23c/PmTdGL2XL/bkREhKjM7wj7d4mIhkNTU5NomqGqqgqCIJj7ofS+mOpvEeBAnLtwCc/vPg+jwqXPioRRewuqs0fQ01gF7fVqGLs74fvk6/BMuPMFpbuLE44tf1iyNQQOlwxk7TyLby623nHu5ub/vIuuqtMYd/+zcPEJhKb0GHqu1yAgfSNGTYrt82ecnRT42VRf7F80fUAxGAwG1NXVWZW5iouL0djYCADw8PAwz39Ztuh1xM5eREQjydQp1fLzt6SkBBqNBgAQGBgoOhclLCzsnnoi9DfO6Ntv4NqORXAeNwEu43+EnobSfpOBex1nhppDJQM1N9T4+Qcn73h7T2MVmva9gfGzFsJr+nMAAEGvReN/L4Wzhxd+lLX5rvd/bPlMTPO33g6i0WjM81umzLSkpMTc8zsoKEiUmYaFhXHvPhHRCDEajeYLNMvK7LVr1wDcPkPF1HrZlCTEx8fDw8NDdF/9jTPA7Qq0sbsTzp7e6Lleg6a9y/tNBkz6GmdGwkDHb7uYoC4423DXbR1dVacBhRPGJv17S6DCxQ2eiT9H+9/3Qa+6CZdxfZeQnJ0U2HG8ErO9WqxeTJangUVHRyMpKQnPP/+8+UXl5+c3LL8rERENjJOTE8LDwxEeHo558+aZv97S0mLVUfH06dPIz8+HwWCwOl3VMkk48J2y3+2DChdXOHve+64HZycFDpxpwLpn+q5S2wK7SAZOVDXf9QnS3rgIV58gOLlbl+PdJkaYb79TMmAwCjj0dTHe++RFeHl5ISkpCY8//jhWrVqFpKQknhNORGRn/Pz8MGfOHMyZM8f8te7ublRUVFhd9G3atAkdHR0AgEm/2QmncQHDEo/BKOBEdTPWgcnAD9bZo0eDsuuu32PoVPaZrTl7+phvvxtXn4kor65F9LSp3LtPROSARo0aheTkZCQnJ5u/JggCLl++jDPnzmPVd8M7HDa0dkHTo7fZ1sU2P8F9uVWD/hY1CHot4CzuaKVwcfv37XelgODhx0SAiEhGFAoFQkNDEf/ALNxuLDx8BACXWjXD+hiDYfPJgPYOWwktKVzcAINO9HVTEmBKCgb7OERE5HhG6vPflscZm08G3Fz6D9HZ0weGzjbR103TA6bpgsE+DhEROZ6R+vy35XHGdiP7l1Bfj36LN27+U6FTXoOxx3ptgbbxdjtJt4Cpd/15xb8eh4iI5Gcg48xg2fo4Y/PJgIe7C0L66dw0JupBQDBCff6o+WuCXofO0v+FW2DkHXcSmIT4jrHZRR1ERDS8BjLODJatjzO2G5mFWZH+2H/28h23F7oHRmJM1ENo//teGLva4eIdCE3pceg7mhHwxGt3vW9nJwVmRfgPR9hERGQn+htnTFTnvoCxW2Oehr5V+y306hYAwLj/eBpOo8RX//YwzthFMpA5PQR7/u/SXb/H76nfov3kAWjKTsDQ3Qk3/1D4P78Go0Li7vpzBqOA+T+V/phJIiKSzkDGGQBQnf0TDKpm8/93VX8DVH8DAPCMndVnMmAP44xdJAPhAWMxY5rfXXtGK1zc4D17IbxnLxzw/Zp6RkvRIpKIiGzHQMYZAAj+za57ul97GWdsfs2Ayca58XBxGtolHi5OCmycGz+k90lERPZJzuOM3SQDk3zGYP0Q93XOeyZWsmMliYjItsh5nLGbZAAA0n4cghWPRgzJfa18NBKpP7btORwiIhpZch1n7GLNgKVXZoXDz9Mda/9cDr1R6HflpyVnJwVcnBTIeybWbp4gIiIaWXIcZxSCIPT7Ww70POSRdEXZhdV/KsU/alv6PXbSdPuMaX7YODfeLko2REQkLUcYZwY6ftttMmBSc0ONgrMNOFHdjIbWLqtDjRS43ehhVoQ/5v80xOZXcxIRke2x53FGNsmAJU2PHpdaNdDqjXBzcUKor4dNd3wiIiL7Ym/jzEDHb9v9DX4AD3cXxAZ6SR0GERE5KEcdZ+xqNwERERENPSYDREREMsdkgIiISOaYDBAREckckwEiIiKZYzJAREQkc0wGiIiIZI7JABERkcwxGSAiIpI5JgNEREQyx2SAiIhI5pgMEBERyRyTASIiIpljMkBERCRzTAaIiIhkjskAERGRzLkM5JsEQQAAqFSqYQ2GiIiIho5p3DaN43cyoGRArVYDACZNmjTIsIiIiGikqdVqeHl53fF2hdBfugDAaDSisbERY8eOhUKhGNIAiYiIaHgIggC1Wo3AwEA4Od15ZcCAkgEiIiJyXFxASEREJHNMBoiIiGSOyQAREZHMMRkgIiKSOSYDREREMsdkgIiISOaYDBAREcnc/wPcJ2zGj0mGaQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "from networkx.drawing.layout import bipartite_layout\n", "pos = bipartite_layout(B, bottom_nodes)\n", @@ -279,9 +468,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6fElEQVR4nO3deXRU9eH+8WcmeyAJgUCCYd+RzQKCQSso4FIqIqIsIqC1UKueFnfBAhZRKihUS+tyfoAlCHyFWlCsliCLFYTiAogEZQmElAAJELKTZO7vj5ghQyaQ5M6aeb/O4XSWO/d+kprcJ5/nLhbDMAwBAAAAdWT19gAAAADg3wiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAB8wqxZs2SxWGr0Lzo6Wr169dLTTz+t48ePe3voABDwLIZhGN4eBADs2bNHe/bskSRNnTpVWVlZiouL04IFCxyWO3/+vHbs2KGVK1fqwoULio6O1vvvv69bbrnFG8MGAIhACcAHtWnTRkePHlXr1q2VlpbmdJkvv/xSgwYNUnFxsRo2bKjU1FQlJiZ6dqAAAElU3gD81HXXXadJkyZJkvLy8rRo0SLvDggAAhiBEoDfGjRokP3x1q1bvTcQAAhwBEoAfisuLs7++NSpU14cCQAENgIlAL+Vn59vf9ywYcNql8vKytKMGTPUp08fNWrUSOHh4WrdurXGjx9f7czm888/X+Xs8qVLl6qoqEh//OMf1blzZ0VERKht27aaMmWKw9nmWVlZmjp1qtq2bauwsDC1bdtWTz/9tPLy8q74NZ0+fVrTp09Xr169FB0drYiICLVu3VqjR4/Wp59+WovvDgB4DoESgN/65ptv7I+vu+46p8t8+umn6tChg2bPnq3IyEjNnDlTb7zxhoYNG6Y1a9Zo4MCB+vWvf63S0lKHz91zzz1atmyZw1nmhYWFuvnmm7V//3498cQTeu6552SxWPT2229rwIABOn78uDIzM3XrrbfKarVq2rRpeuyxx3Ty5EnNmzdPv/zlL2Wz2ar9ev7973+rY8eOeumll5SYmKiXXnpJb7zxhu644w6tX79et912m8aMGaPi4mKT3zkAcDEDAHxM69atDUlG69atq13m7NmzRmJioiHJCA8PN1JTU6sss337diMkJMSQZDz++ONV3v/qq6+Mhg0bGpKMX//61063c+TIEUOSIclITEw0Fi5c6PD+6dOnjWbNmtnXMW7cOGPnzp0Oy3z22Wf2dbz//vtOt7Njxw4jNDTUkGQsWLCgyvvff/+90ahRI0OSMWXKlOq+LQDgFcxQAvBZNptNWVlZDv/S0tK0atUqXX/99crIyFCzZs30z3/+U507d3b4rGEYevDBB1VSUqI2bdpo7ty5Vdbfu3dvPfPMM5Kkd955R5s2bbrseMLCwvTYY485vBYXF6e7775bkvTuu+8qNDRU1157rcMyN910kzp16iRJWrt2bZX1Voz1woUL6t+/v37/+99XWaZr16567rnnJElvv/22UlNTLztWAPAkAiUAn5Wenq6mTZs6/Gvbtq3GjBmj0NBQ/f3vf9ehQ4d06623Vvnshg0btH//fknSmDFjFBIS4nQbEydOtD/+85//rJIym/Zm5Oi9ncc07YO9embNHvv7jTr308pdx7U3I0clZRer64owe+HCBQ0bNszpdrp27SpJ9jFVlpKSon379kmSxo0bV+33o2LdhmFo+fLl1S4HAJ4W7O0BAEB14uPjlZycbH9++vRpffzxx0pOTta3336rdevWacyYMU4/m5KSYn986YxhZS1btlR8fLxOnjypTzZsVJ/Zn+p8cXlYDLZaVHQmy77s0ZJoTftgryQpJiJE9/VvpXH9WikqKsq+TMeOHZ1uJzo6WpJ07ty5y461Xbt2ysrKqrKMJEVGRtof79ixo9qvCQA8jUAJwGeFh4dryJAhDq+NHTtWXbp00fPPP6/Vq1crMTFRCxcurPLZgwcP2h9f7g4654tKZGnQRNJJFRfk6Wx2toIaxkqSSm2X3EgsJNz+MKewRG9uOaS/bTmkq89n2F+vHC4rs1rLC6FLT/6RpB9//NH++I477qh2rJVlZmbWaDkA8AQCJQC/88wzz2j58uXav3+/Fi1apEceeaTKzGBubq79cUREhNP1bP3htJ54f7fOXrj4mq043x4oq7A4HiVUkTd3pp2xv1YRHGuj8ljfeusttWvX7oqfqTxbCQDeRqAE4HeCg4P1hz/8QePGjVNpaaleeeUVvfPOOw7LVJ4pLCoqqrKOd7elaeaH+2S1SEbpxURpDWtQ6/EYlSYy13x9XE+0aVOrz1cea48ePZSUlFTrMQCAN3FSDgC/dO+999pn8pYtW6YTJ044vN+hQwf748oXHZekv28vD5NS+SxjaW75MYuWsEhZI6NNjWvBhh/09+1ptfpM5dnVo0ePmto+AHgDgRKAXwoKCtKTTz4pSSouLtZrr73m8P7QoUPtj3ft2mV/vPWH05qxbp/9een507Lln5MkhbfqKYs1yPTYZqzbp60/nK7x8pXHum3btssu++KLLyo4OFgzZsyo8/gAwNUIlAD81gMPPKD4+HhJ5cceVj6DesiQIbr66qslSStXrlRpaanOF5Xoifd3y2q5uI787z6zP47uO9wl47JapCdX71ZuUUmNlh88eLC6d+8uSVq1alW1t2gsLi7WkiVLZLPZNHbsWJeMFQBcgUAJwG+Fh4frd7/7naTyE1sWLVpkf89isWjJkiUKDQ3VkSNH9Nxzz+ml9fuVnV9sP5nmwsnDyvlytSSpYa9bFd66p0vGZTOkrLxizfm46jUnnakYa1hYmE6dOqXJkyerpMQxjJaUlGjKlCk6fPiwJk+ebL+uJQD4Ak7KAeAT9uzZoz17yi8inp+fb//fiutQtm/f3unJKr/97W81d+5cnT9/Xq+//rpat24tSbrmmmvUr18/ffjhh7r33ns1f/58hbX4lyI7D5AlNFwXTh5W/p4UGaXFatjzFjW+5WGH9Zacy1Tx8f2yFZ63v1b8v1TJGqTQZm0U2qytijP2q+RsZvnrPyn48UtZI6IV0fYardol9dRR2QpydPjw4Spf01133aUGDcpPAurbt6/Wr1+ve+65RytWrNC3336rcePGqXnz5jp27JhWrVqlAwcOaMSIEU4vkwQA3mQxDMO48mIA4F6zZs3SCy+8UO37EydO1NKlS52+9+yzz+pPf/qTw2uzZ8/W888/L0nKysrSmN/N0Ocb/62ScydklJYoqEEjhbW4WlHX3K7wVt2rrDNvT4qyP17odHsx149Vo5/fp6yPFij/u41Ol4kf+5IatOkpffSCDu/9r9Nljhw5ojaXnBF+5swZvfHGG/rwww918OBBFRQUqEmTJrr22mv1wAMP6K677nK6LgDwJgIlgHqvpMymvnNSlFNYs2MaXSkmIkS7pg9RSBBHGAGov/gNB6DeS83M9UqYlMrvqHMgM/fKCwKAHyNQAqj39mbkBPT2AcDdCJQA6r3vMnIUXPlaQR4UbLUQKAHUewRKAPXeqdxildq8c7h4qc3Q6bxir2wbADyFQAmg3rtQWubV7ReXeHf7AOBuBEoA9V5osPnbKZoRFuLd7QOAuxEoAdR7zaLCvHoMZdOGYV7ZNgB4CoESQL3XPTHGq8dQ9kiM8cq2AcBTCJQA6j1vBzpvbx8A3I1ACaDe65IQpZiIEK9sOyYiRJ0ToryybQDwFAIlgHovJMiq+/q3kqcPowyySOP7t+K2iwDqPX7LAQgI4/q1kuHhwyhtksb2a+XZjQKAFxAoAQSEFrGRGt23pcdmKa0WaXTflmoRG+mZDQKAFxEoAQSM6cO6Kq5hmNtDpdUixTUM0/RfdHXvhgDARxAoAQSMqPAQzR/VS+6+gpDNkOaP6qWocO+cCAQAnkagBBBQbuzUVH8c3s2t25g9vJtu7NTUrdsAAF9CoAQQcCYktbGHSlfV3xXrmT28m+5PauOalQKAn7AYhqfPewQA37D1h9N6cvVuZeUVm6rBK46ZnD+qFzOTAAISgRJAQDtfVKKX1u/Xqq/SZZVUVovfiEGW8ksDje7TUtOHdeWYSQABi0AJAJKOny3Qip3HlLzjmHIKSyRJwVaLwz3AKz+PiQjR+P6tNLZfKy4NBCDgESgBoJKSMpsOZOZqb0aO9mbk6Ovvf1SJYVG71i3VtGGYeiTGqEdijDonRHEHHAD4CYESAKqRnZ2tv/zlL5Kkxx57TI0bN/byiADAN/HnNQBUY+vWrfbHW7Zs8eJIAMC3ESgBwIns7Gzt2bPH/nzv3r06c+aMF0cEAL6LQAkATmzdulUWi+NFKpmlBADnCJQAcImK2cnKh5gbhsEsJQBUg0AJAJdwNjtZgVlKAKiKQAkAlTibnazALCUAOEegBIBKLjc7WYFZSgBwRKAEgJ9cbnayArOUAFAVgRIAflKT2ckKzFICwEUESgBQzWYnKzBLCQCOCJQAoNrNTlZglhIAyhEoAQS82sxOVmCWEgAuIlACCHh1mZ2swCwlABAoAQS4usxOVmCWEgDKESgBBLStW7ea+rxhGMxSAgh4BEoAAe3gwYM+sQ4A8GcWoy49DwDUEwUFBSooKKj2/fXr10uShg0bVu0ykZGRioyMdPnYAMBfBHt7AADgTVcKg6GhoZKkuLg4Tw0JAPwOlTcAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMCfhAuXDhQlkslmr/Wa1WxcbGqkOHDrr99tv10ksvae/evW4fV1paWpWxDBo0qNbrmTVrVpX1LF261Omy69evV1xcnJKSkpSTk2PuCwAA+B1n+wxn/yIiItSuXTvdf//9+uKLL7w9bElSSUmJhg0bppiYGC1evNjbwwk4wd4egLfddtttiouLkyRNnTpVWVlZiouL04IFCyRJZWVlysrK0uHDh5WSkqJPPvlE06dP16233qp58+apR48ebhlX06ZNtWzZMknSnDlzlJqaWqf1jBw5Uh06dFBWVpamTp162WXffPNNZWdnKzs7Wxs3btTIkSPrtE0AgH+q2GdIzveJUvl+8dixY1qxYoWSk5OVnJysRx55RK+//rqsVu/NU+3Zs0cff/yxpPLJogcffNBrYwlIBuxat25tSDJat25d7TIff/yx0blzZ0OSERERYSxdutTt4xo4cKAhyRg4cGCd13HkyBFDkiHJWLJkidNl1q5dazRu3Njo27evcebMmTpvC6hP3nvvPeO9997z9jAAj7vSPrGkpMS455577PuW5557zrMDvERxcbFx2223GVFRUcabb77p1bEEooCvvGvr9ttv1/bt25WUlKTCwkI98MADWrNmjbeH5RLDhw9Xdna2/vvf/yo2NtbbwwEA+LDg4GC98847atiwoSRp/vz5OnbsmNfGExoaqn/96186f/68pkyZ4rVxBCoCZR3Exsbq/fffV2xsrAzD0IQJE5Senu7tYQEA4FExMTEaOnSopPJjGNetW+flEcFbCJR1lJiYqKeeekqSVFBQoBdffNHLIwIAwPMqjrmUpB9++MGLI4E3EShNeOihh+wHIL/77rsqLCyUpBqdnR0XF1fnM7g/+eQTDRs2TAkJCQoLC1Pbtm316KOP6n//+1+dvo6lS5dWGfOsWbMclnn++eedni1eVFSkF198Ud26dVNkZKRiY2N1yy23aNOmTXUaCwDAvwQHXzy/t6SkRJJ05MgRzZ07V0OHDlXz5s0VGhqq6Oho9ezZU48//riOHj3qdF0HDx6sdh/62Wef6c4771Tz5s0VFBRkfz8tLU1t2rSp8rnqfPnllxo/frzatm2r8PBwRUZGqlOnTrrvvvu0bNky5eXlue6bE0AIlCY0bdpUV199tSSpuLhY//nPfyRJy5Yt07Jly9SlS5dqP/vmm29ecRlnXn75Zd1///3q3r275syZoxkzZig4OFiLFi1St27dtGPHjlp/HTfeeKN9zNW55557tGzZMocz/QoLCzVw4EDt2rVLjz32mObNm6drrrlGGzZs0NChQ7V+/fpajwUA4F9OnDhhf9yyZUsdPHhQ7du313PPPafU1FQ99NBDWrRokZ588klFRkZqwYIF6tGjhz755JMq60pISHC6D3399dc1fvx49ejRQ7Nnz9bkyZMdzihfuHChli1bprvuuuuyY12wYIEGDBigdevW6bbbbtOrr76qefPm6cYbb9Tq1as1YcIEJSQkuOC7EoC8fVaQL6nJWd6XGj9+vP0Mt7lz5zq8V5Ozs2uzTFxcnNG2bVsjIyPD4f28vDyjf//+hiSjSZMmxsmTJ6usoyZneRuGYV9m5syZTt+vvJ7ExETjxRdfdHi/rKzMuOGGGwxJRufOnavdDuAvOMsbgaom+8SysjKjVatW9v3Czp07jf379xuSjF69ehl5eXkOy9tsNuPZZ581JBlRUVHGiRMnql13xb4vISHB6NSpU5V924MPPmhIMo4cOWJ/bebMmfaxXOrAgQNGUFCQIcn48ssvq7z/1VdfGeHh4U4/iytjhtKkJk2a2B+fPn3ardvKysrSyy+/rKuuusrh9QYNGuivf/2rJCk7O1szZsxw6zgqBAUF6ZlnnnF4zWq16oEHHpAkHThwQD/++KNHxgIA8Ly//OUv9jO7b731Vl177bX292bOnKkGDRo4LG+xWDR79my1bNlSubm5euutt664jczMTM2dO1fNmjVzeP2+++7TxIkT7WeZX8mnn36qsrIyNWnSRP3796/yfu/eva84w4nqBfyFzc2q/B/y+fPn3bINwyj/35DQMH2l9trw9126UFqm0OAgNYsKU/fEGPVIbK/OXbroQGqqkpOTtXDhQoWHh7tlPBWGDRvmcOxMhYrDACQpNTVVHTt2dOs4AADuY7PZlJWVZX9eVlam9PR0LVu2TG+88Yak8t/7FYdNdejQQenp6WrevLnT9QUHB+tnP/uZ0tPTtXnzFo18KEd7M3L0XUaOTuUW2/dvR7LyJUnh4RG69fZfVFnPzTffrJtvvrnGX0dpaakk6cyZM9q3b5+6detWZZkXXnhBEyZMqPE6cRGB0qTc3Fz745iYGJeu+/jZAr2385i+Onb2pw0k6B97TqnUZtiXCbZa9N7O8r8Oc0ISJKUqPz9fX3/9tQYMGODS8Vyqc+fOTl+vfA1LbuEIAP4tPT1dTZs2dfpe06ZN9etf/1rTpk2zz0YGBwerRYsW9mUMw1Bubq4uXLhw8YPBoZKk7d/9qDv+Un7+QbDV4rB/O5VbLEkqi05Q0itbdF//VhrXr5VaxEbW6eu48cYbZbFYZBiGbr75Zk2fPl3333+/wz6rY8eOTILUEYHSpMp/tVX3A1db54tK9NL6/Vq1K10Wi1RaZpMkWcMaOPywSXJ4botobH889/+2annvaxUVHuKSMTkTFRXl9PWwsLCL4/vpL0IAgH+Kj49XcnKyw2vh4eGKj49Xhw4dnJ5RnZOToz//+c/64IMPtG/fPvvZ35cqrRQyL92/GT/Vc9bQSOUUlujNLYf0ty2HNLpPS00f1rXW+7c+ffpo2rRpmjNnjk6dOqXf/e53evLJJzVw4EDdcccdGjlypEMQRu0QKE365ptv7I/79Oljen1bfzitJ97frez84p+OKq70puXyh7xagi/+cG07cFyDX9ui+aN66cZOrgm6l/LmPVsBAJ4RHh6uIUOG1Hj5AwcOaMiQITp+/LhiYmL0+OOPq1evXjpRHKK3thzW+aISnduxRkVHvrnyyiTpp8BakTf/76t0fXbgVJ32by+++KJuu+02LViwQOvXr1dxcbFSUlKUkpKiqVOnauTIkXrttdfUsmXLWq0XXDbIlMzMTKWmpkqSIiIidP3119d6HWVlZfbH725L04QlO5WdX6xL/lArZ9guuy6j9OJfgJaQCGXlFWvCkp36+/a0Wo8LAIC6mDBhgo4fP67IyEjt3LlTc+fO1YXWSXr9QIRKmndTWJtrFNSg8ZVXVA2bIVP7txtuuEFr1qzRqVOntHz5cg0fPlzBwcGy2WxavXq1+vfvrzNnztR5fIGKQGnC22+/bZ+SnzRpUpWTYCpOWKluql+6eCLPyfNFmvnhPklyHiYl2YrzLzue0rzsi9tuFG9fz4x1+7Tm6+OX/SwAAGYdPnxYO3fulCQNHz5cnTp10t+3p11x/1ZblfdvdZ00iY6O1rhx47R27VqlpaXZz/A+ceKEXn31VdcMNIAQKOvo2LFj9v/gGjRooGnTplVZpuIknXPnzjldR1lZmQ4dOiRJ9rPZLqfkzP8cZiEvdSGzfF2WkHCFxndweG/BBm6HBQBwr8zMTPvjli1bausPpzVj3b4qyxklhS7b5ox1+7T1hytftu+zzz7T888/73SSJzExUStXrrRf1Hz37t0uG1+gIFDWQXZ2tu6++26dP39eVqtVy5cvd3ogb8VZ0IcPH3Y8u+0nKSkpys8vD5KXuUvURWUlKjjo/E44xZkHVXqmfBayQfebHI6nrPH6a6niml4AAEhyuFTQd99/ryfe3y3rJfsfw7DZJ0BcwWqRnly9W7lF1U+4SNLWrVs1Z84c+6FqlwoNDbWfXBsdHe2y8QUKAmUtffTRR7ruuuu0a9cuRUZG6t1339Wdd97pdNk77rhDklRUVKSVK1c6vJefn6/p06erQaPyC6MbNakBrEE6t2mJyvLOOrxsKynSmX//rXyRiGg1uuG+Kh+t0fqvIDMzUx9++KH9eWFh4WXrfABAYGnbtq394uaf/OtfOr5vR5WaO2fb/6k056TLtllxTOWcj/fXaPk//OEPTidDduzYoe+//16SNGbMGJeNL1AE/Fneqamp2rVrlyTZZwvz8/Ptl0goKytTdna2Dh06pH//+986ePCgpPI7AsyfP1/du3evdt1JSUkaPXq0Vq1apSlTpuirr75Sr169dOrUKS1evFhjJjyo795eLp3LVlnBOeV9t0mSFNk5STKkgh+2l4+h4JwkKSyxq4Kjm+p//+8RNex1i0Jir1JZ/jnl7d2g0rMnZA1roGajZiioQSP7GC6cOqILp9JkK7x40fWUzZ8rODhY8fHxGjp0qA4fPqxt27Y5jH3Pnj1KTk5Ww4YNdd1112nVqlXasmWLCgsv1hTHjx/XihUr1KdPH/Xs2VMnT57Uhg0bHC6ltH37dgUHB6t9+/ZKSkqq1f83AADP2rNnj/bs2SPJ+T5RksaPH3/ZdSxZskQ3DhykM9lZylw5Qw26DVJo844ySktUdORrFaXvU1BMvMpyTsooKbq47+uUJGtouP15xb6v8v4xJDZBYYldq2wz78B2/b/vNqmvcfHubBVjHjBggNq1a2e/1N3atWvVpUsXjR49Wq1atVJRUZF2796tFStWqKysTE8++aSGDx9e6+9doLMYhivmrvzXwoULNXXq1Grft1gsio6OVuPGjdWpUyf9/Oc/15133nnZIFlZSUmJXn31VSUnJ+vQoUMKDw9Xnz599MQTT2ivta1mTr5HRce+c/hM4m+XSrYyZbz5K4fXw1p2V8J9c5W3d6Py9qao5PRR2S4UKKhBY0V0uFYxSfcqOKqJw2fOfb5cOV+scDq2gQMHavPmzVq6dKn9domXiouL06OPPqrdu3frgw8+cLrMzJkzNWvWLG3evFk33XST02UmTpyopUuXOn0P8GUrVpT//IwdO9bLIwHcb9asWXrhhRcuu0xNYsPz723VGwtfU8HB/6r0/GlZLBYFRTVReKueir52hHK+XK387zY6fCbxN/9PwY3idXTuL6tdb4PugxX3y6r77ON/fVBl5085/cySJUs0adIkSdLXX3+tNWvW6PPPP9eBAwd09uxZWa1WJSYmKikpSVOmTNHPf/7zK359qCrgA6W3lJTZ1HdOinIKPV8Zx0SEaNf0IQoJcn7EQ2ZmpjZv3qwDBw7IarXKZqv+ckXPPPOM22/xCHgTgRKoHV/ev8F9Ar7y9pbUzFyv/LBJUk5hiQ5k5qp7ouOtIi8NkpIuGyYBALiUL+7f4H4ESi/Zm+Hde1zvzcix/8ARJAEAruJL+zd4DoHSS77LyFGw1VLl3qWeEGy1aG9Gjm4iSAIAXMwX9m8coOJ5BEovOZVb7JUfNkkqtRn6795UvbXnH/bX6hokV69eraCgIFcNDfA5GRkZki4eSwng8r5Ji1CpLeTKC7pBqc3Q6bxir2w70HHUqpdcKPXuBcFLDTdc6RwAEPC8vX8pLuGGG97ADKWXhAZ7d1avQ7s2mjL0Bm3ZskWpqalXPJu7OqNGjeIsb9RrnOUN1M7Gv+/Sj/tdd+Hy2goLoTXzBgKllzSLCvPqMSZNG4YpISFBo0ePVmZmpulgCQCA5Bv7N3gelbeXdE+M8eoxlD0qnQFXESynTJmiTp06SZL9JB0AAGrDl/Zv8BxmKL3E2//BO9s+M5YAALN8cf8G92Mayku6JEQpJsI7Z8HFRISoc0JUte8zYwkAqCtf3r/BfUgJXhISZNV9/VvJ6uGT4YIs0vj+rWp0WyqCJQCgtvxh/wbX47vuReP6tZKn76RukzS2X6tafcZZsAQAoDr+sn+D6xAovahFbKRG923psb/irBZpdN+WahEbWafPVw6WXbp0UXR0tEJCvFNrAAB8l7/t32AeJ+V42fRhXfXZgVPKyiuWO0+Ks1qkqBDp/u4NVFRUZOrakRXBEgAAZwzD0OAm57XWuKAihcqdk5VWixTXMEzTf9HVjVvBlRAovSwqPETzR/XShCU73bodmyH1N37Q6hW7yrcbFaXmzZsrISFB8fHxio+PV2xsLMdIAgBMKSgo0D//+U/9+OOP+s01SVrwbYlbt2czpPmjeikqnMbMmwiUPuDGTk31x+HdNGPdPrdt44U7rtbpbfuVn1/+PDc3V7m5uTp48KD9skDBwcFq2rSpmjdvbg+Z8fHx3AkHAFAj6enpWr16tUpKSjRu3Dh17NhRsa3S3Lp/mz28m27s1NRt60fNECh9xISkNpKkGev2yWqRS+rvivXMHt5N9ye10beRQ7R27VqHZSpfY7K0tFQnTpzQyZMnHV6vmM2Mj49XQkKCmjdvrtjYWPMDBADUC4ZhaNu2bdq4caNatGihUaNGKTo6WpJn9m/wPgKlD5mQ1EZtmjTQk6t3mz6msuKYkvmjetn/cuvZs6c2b96snJycy3720guZO5vNfPjhh9WsWbO6DxAAUC9Urrivv/563XTTTQoKcryftrv3b/A+DpjzMTd2aqqUxwfq3j4tZbGUX1erNoIsksUi3dunpTY+PtDhh81qtWrQoEF1HpvNZpPFYtFVV12lJk2a1Hk9AID6IT09XW+99ZaOHz+ucePGaciQIVXCZAV37t/gfRbD8PSVolBTx88WaMXOY0recUw5heUHNQdbLQ73SK38PCYiROP7t9LYfq2qvXSCzWbT66+/fsVZyuqEhYXp4YcfVkwMt7ZCYFixYoUkaezYsV4eCeA7Lldx14Q79m/wLgKlHygps+lAZq72ZuRob0aOTucVq7ikTGEhQWraMEw9EmPUIzFGnROianSHgG+//bbKsZQ1NXbsWC5ujoBCoAQc1aTirilX79/gPRxD6QdCgqzqnhij7okxcsUurabHUl4qKSmJMAkAAczZWdxmuHr/Bu8h7geg2h5LabVaddVVV2nw4MHuGxQAwGcZhqEvvvhCS5YsUUxMjH7zm9+YDpOoX5ihDFC1maUMDg7WvffeW+dKAwDgv1xZcaP+YoYyQNVmljIoKEjnz59374AAAD6nNmdxI7ARKANYz549r3i2dp8+fRQXF6elS5dq27Zt4hwuAKj/qLhRW1TeAaxiltLZGd9Wq1UJCQm6/fbbJUmbNm3Shg0bdPToUd15552KjOSyDQBQH1Fxoy6YoQxw1c1ShoSE2I+bDAoK0pAhQzRu3Dh7/ZGenu6F0QIA3ImKG3VFoAxw1R1LOXLkyCpBs2PHjpoyZYpiYmKowAGgHqHihlkESlSZpbzc9SZjYmI0ceJEJSUlacOGDVq5cqUKCgo8NVQAgIsVFBRoxYoVSklJ0YABAzRx4sRa3fUGkAiUkOMsZU2uN0kFDgD1AxU3XIVbL0JS+T2+t2/frh49etTqL9OcnBytWbNGGRkZGjx4sJKSkmSxWNw4UsCzuPUi6iOz9+IGLsVZ3pBUPkt5/fXX1/pzFRU4Z4EDgH/gLG64A5U3TKMCBwD/QMUNdyFQwmU4CxwAfBNnccPdqLzhUlTgAOBbqLjhCcxQwuWowAHAN1Bxw1MIlHAbKnAA8A4qbngalTfcigocADyLihvewAwl3I4KHAA8g4ob3kKghMdQgQOAe1Bxw9uovOFRVOAA4FpU3PAFzFDC46jAAcA1qLjhKwiU8BoqcACoGypu+Boqb3gVFTgA1A4VN3wRM5TwOipwAKgZKm74KgIlfAYVOAA4R8UNX0flDZ9CBQ4Ajqi44Q+YoYTPoQIHgHJU3PAXBEr4LCpwAIGKihv+hsobPo0KHECgoeKGP2KGEj6PChxAoKDihr8iUMJvUIEDqK+ouOHvqLzhVyoq8M8++4wKHEC9QMWN+oAZSvidoKAgDR06lAocgN+j4kZ9QaCE36ICB+CvqLhR31B5w69RgQPwN1TcqI+YoYTfowIH4C+ouFFfEShRb1CBA/BVVNyo76i8Ua9QgQPwNVTcCATMUKLeoQIH4CuouBEoCJSot6jAAXgLFTcCDZU36jUqcACeRsWNQMQMJeo9KnAAnkLFjUBFoETAoAIH4C5U3Ah0VN4IKFTgAFyNihtghhIBiAocgKtQcQPlCJQIWFTgAOqKihtwROWNgEYFDqC2qLiBqpihRMCjAgdQU1TcgHMESuAnVOAAqkPFDVwelTdQCRU4gEtRcQNXxgwlcAkqcAAVqLiBmiFQAtWgAgcCFxU3UDtU3sBlUIEDgYeKG6g9ZiiBK6ACBwIHFTdQNwRKoIaowIH6i4obMIfKG6gFKnCg/qHiBsxjhhKoJSpwoP6g4gZcg0AJ1BEVOOC/qLgB16LyBkygAgf8DxU34HrMUAImUYED/oOKG3APAiXgIlTggO+i4gbci8obcCEqcMD3UHED7scMJeBiVOCA76DiBjyDQAm4CRU44D1U3IBnUXkDbkQFDngeFTfgecxQAm5WUYGPHTuWChxwMypuwDsIlICHdOrUiQoccJNLK+4pU6ZQcQMeROUNeBAVOOB6VNyA9zFDCXgYFTjgOlTcgG8gUAJeQgUO1B0VN+BbqLwBL6ICB2qPihvwPcxQAl5GBQ7UHBU34JsIlICPoAIHqkfFDfg2Km/Ah1CBA1VRcQO+jxlKwMdQgQMXUXED/oFACfgoKnAEMipuwL9QeQM+jAocgYiKG/A/zFACPo4KHIGEihvwTwRKwE9QgaM+o+IG/BuVN+BHqMBRH1FxA/6PGUrAz1CBoz6h4gbqBwIl4KeowOHPqLiB+oXKG/BjVODwR1TcQP3DDCXg56jA4U+ouIH6iUAJ1BNU4PBlVNxA/UblDdQjVODwRVTcQP3HDCVQz1CBw5dQcQOBgUAJ1FNU4PAmKm4gsFB5A/UYFTi8gYobCDzMUAL1HBU4PImKGwhMBEogQFCBw52ouIHARuUNBBAqcLgDFTcAZiiBAEMFDlei4gYgESiBgEUFDjOouAFURuUNBDAqcNQFFTeASzFDCQQ4KnDUBhU3AGcIlAAkUYHj8qi4AVwOlTcAOypwOEPFDeBKmKEE4IAKHJVRcQOoCQIlAKeowAMbFTeA2qDyBlAtKvDARMUNoLaYoQRwWVTggYWKG0BdECgB1MilFfgXX3xBBV6PUHEDMIPKG0CNVa7AU1JSdPToUY0YMYIK3M9RcQMwixlKALVSuQI/fvw4Fbifo+IG4AoESgB1QgXu36i4AbgSlTeAOqMC909U3ABcjRlKAKZQgfsXKm4A7kCgBOASVOC+jYobgDtReQNwGSpw30TFDcDdmKEE4FJU4L6FihuAJxAoAbgFFbh3UXED8CQqbwBuQwXuHVTcADyNGUoAbkUF7llU3AC8gUAJwCOowN2LihuAN1F5A/AYKnD3oOIG4G3MUALwKCpw16LiBuALCJQAvIIK3BwqbgC+hMobgNdQgdcNFTcAX8MMJQCvCtQKPC8vT3l5ebX+HBU3AF9EoATgEwKpArfZbFq6dKneeustFRQU1OgzVNwAfBmBEoDPqKjAr7vuOqWkpGjFihU1Dlz+5Pvvv1d2drby8/P1j3/844rBuaCgQCtWrFBKSooGDBigiRMnKiYmxkOjBYArsxj1dQoAgF+ZNGmS3n333SqvDxkyRIsXL1bLli1rtb6f/exn+vbbb6u8XvlX3qxZs/Tqq69q7Nixevvttx2Ws1gsDs9bt26ttLS0Wo3BGZvNpkWLFunMmTP214YMGaLrr7/e6fLp6elavXq1SkpKdNdddzErCcAnESgB+ITt27fr0KFDkqSpU6cqKytLkhQZGampU6fq9ttv14ABA6oEPWc++eQT3X777fbn06ZNU9euXSVJ48ePt78eFRVlP44xOztbjRs3tr+XnJwsSZozZ45SU1NdFii/++47rVmzxuE1i8WiSZMmqVWrVvbXDMPQtm3btHHjRrVo0UJ33303s5IAfBaBEoDPadOmjY4ePWp//qtf/UotW7ZUx44da3QW+E033aTNmzfbn2/atEmDBg2qstwf/vAHLViwQKNGjdLSpUudrmvgwIHaunWrSwKls9lJqTxQNmjQQA8//LAiIyM5ixuA3+EYSgA+qUOHDgoJCZEkffTRRxo5cmSNzgLfsWOHNm/erKuvvvqK25g9e7by8vKqDZOu9v3331cJk1L5bGTF8ZTHjh3jLG4AfodACcAnJSYm6r777pMknTx5Up9//nmNzgKfO3eu2rVrp5EjR3p6yJdls9m0adOmat83DEOHDh3iLG4AfolACcBnPfPMM/ZjJufNm6cGDRpc9izw1NRUrV27Vo8//rjPzepVNzvpzM0338zxkgD8CoESgM/q0qWLRowYIUlKS0vTihUrLnsh9FdeeUVNmjTRgw8+eNn1Tpo0SRaLxeFf5WMua+vLL7/U008/reuuu06NGzdWSEiIGjdurBtuuEHz58/X+fPnnc5OfvXVV5o1a5bDv82bN+v999/Xa6+9pt69e6thw4aKjo7WDTfcUOVkHgDwFQRKAD7t2WeftT/+05/+ZK+5L70Q+j//+U8tX75cjz76qCIiIi67zilTpmjZsmWaNm2a6fEtXrxYSUlJmjdvngzD0NNPP61FixZpypQpOnbsmJ566in17NnTfgZ7ZW3bttVdd92lu+66y/6azWbT4sWL9c4772jSpEl67bXXNHjwYH3xxRcaNWqU3nzzTdNjBgBXI1AC8Gn9+vXTTTfdJEnat2+f1q5da3+v8oXQX3nlFVkslivOTkpSUlKSxo8fr6FDh5oe34ULFyRJDz30kHbs2KFnn31WkydP1ssvv6zU1FTdfPPNOnr0qFavXl3ls40bN1avXr3Uq1cv+2vffPONIiMjNWbMGPXp00eTJ0/WBx98oHHjxkkqD9hFRUWmxw0ArkSgBODzKs9Svvzyyw7vBQUFqW/fvtq9e7f69Omj1atXm7oXeEmZTXszcvTezmOa9sFeHcorPxYzO/+Cpn2wV+/tPKa9GTkqKbM5jOHScUnl19D8/e9/L0nKyMio0WWHioqKdMstt0iSNm7cqGPHjkkqv3SSJOXk5Ojzzz+v89cHAO4Q7O0BAMCV3HLLLerdu7e+/vpr7dy5Uxs3btTgwYPt7y9atEjFxcX629/+pl27dmnp0qX2IFZTp3OL9MqnqVq+45hyCkskScFWi85dKP+7u/BCmf5vV7re21m+3piIEN3Xv5VG/PJuHR8xQnFxcVXWabPZlJaWprCwMBUXFystLU1t2rS57Dhat26t8PBw+/P3339fDz/8sMNlkFJTU10yuwoArsIMJQC/UN0sZWFhoV5//XXde++96tmzp70CP3z4cK3W/9iKb/TmlkP2MClJpTbHyxJVfp5TWKI3txzSrX/dqYVfnFJuUfnnSktLdfbsWWVlZemLL75Qenq6wsLCJEm5ublXHEflYGoYhvLy8rR161bFxsZe3HZOTq2+NgBwN2YoAfiFu+++Wx07dtSPP/6ojRs3aufOnerXr58WL16s06dP6+mnn5Yk+1ng69at05YtWyRJp06dcrrO3ennHJ7bannfsIrll2/4UotfeV6hmXv1v/SjTq+PKZWHzSsJDQ2VJEVHR6t58+aKj49Xz5497aG0pusBAE8iUALwC1arVU899ZQmT54sqXyWcvXq1Xr11Vc1dOhQXXPNNQ7LN2nSxP74k08+UWJiosO9wN/dlqaX/7Xf9LgKDmzT6XXzpLISBTdK0L2/fUajB/dTVlaW/VjHf/zjH8rPz5ck+2WKbLbyYzCDg4PVrFkz+/p69+6tZ5991iFAAoCvI1AC8BsTJkzQzJkzdeLECa1du1YzZszQkSNH9Pbbb1/2c1dffbVSUlJ09OhRjRgxQqt3n9LMD/eZHk9Z/jllrV8glZUopGlrNZ+4UF8Gh+gXCd2UlbpC7du3l1QeGqXy2cdOnTopISFB8fHxio+PV2xsrCwWiz0ox8TEECYB+B2OoQTgN8LCwjR16lRJ5ccXvvTSS+rdu7eGDBly2c/17dvXfiH0aa8v04x15sOkJBUe3CnjQqEkKar3L2UJLr/3+Ix1+3Quork6dOigX/ziF4qKipJUHmzHjBmjQYMGqWvXrmrcuLF9xhQA/BmBEoBf+c1vfqNGjRrZnz/11FM1+lynTp00buKv9FlhC1ldlOHK8s/ZHwdHXzyZxmqRNhW00PC779W1116rwsJC12wQAHwUgRKAX4mKitIjjzwiqfxOM/fcc0+NP/uX/2Qor6T2J99UJ6jhxTOvS7KP2x/bDCkrr1hzPt6vtLQ0ZWdnu2aDAOCjCJQA/M4f//hHFRYW6sCBAwoKCqrRZ9LPFmjVrnSXhUlJimh/rSwh5deMPL/jHyrNO2N/z2ZIK788rF9N/o3rNggAPoqTcgD4hD179mjPnj2SpPz8fJ08eVLJycmSpAEDBqhdu3b2Za1Wq8PFvyur+EzFuiRpw4YNevPjnSo4fF4RHZNUnLFfJWczVZJ98Y46hWnfqjQ3WyGxCQpL7Kq87zZJkkrPZUqSjJIi+2sRba9RUINYBTVopMa3PaLs9QtVln9WJ955WA173aLgxokqyzujgv1bdVYXFBUVpdzcXB0+fFjJyclq2LChRowYoZMnT2rDhg1Vvg/Jyclq3769kpKSlJ+frw8++MDpMvHx8VzgHIBPsBjVXTANADxo1qxZeuGFF5y+t2TJEk2aNKlG67ncSS5B0c3U4reLlfXRAuV/t9HpMg26D1bcL6fq6NxfVrue+LEvKbx1T/vz4syDOr/zAxUf26uyghxZgkMVEnuVItpfq8Sf3638lU/q6NGj9uVbt26ttLQ0bd682X6f8ktNnDhRS5cuVVpamtq2bet0mYEDB2rz5s3VjhMAPIVACaDe25uRozv+8h+vbf+jR29Q98QYr20fANyNYygB1Ht7M7x7q0Jvbx8A3I1ACaDe+y4jR8GuulZQLQVbLQRKAPUegRJAvXcqt1ilrjy9uxZKbYZO5xV7ZdsA4CkESgD13oXSMq9uv7jEu9sHAHcjUAKo90KDa3atSncJC/Hu9gHA3QiUAOq9ZlFhXj2GsmnDMK9sGwA8hUAJoN7rnhjj1WMoe3DJIAD1HIESQL3n7UDn7e0DgLsRKAHUe10SohQTEeKVbcdEhKhzQpRXtg0AnkKgBFDvhQRZdV//VvL0YZRBFml8/1YKCeJXLYD6jd9yAALCuH6t5Okbzdokje3XyrMbBQAvIFACCAgtYiM1um9Lj81SWi3S6L4t1SI20jMbBAAvIlACCBjTh3VVXMMwt4dKq0WKaxim6b/o6t4NAYCPIFACCBhR4SGaP6qX3H0FIZshzR/VS1Hh3jkRCAA8jUAJIKDc2Kmp/ji8m1u3MXt4N93YqalbtwEAvoRACSDgTEhqYw+Vrqq/K9Yze3g33Z/UxjUrBQA/YTEMT5/3CAC+YesPp/Xk6t3Kyis2VYNXHDM5f1QvZiYBBCQCJYCAdr6oRC+t369VX6XLKqmsFr8RgyzllwYa3aelpg/ryjGTAAIWgRIAJB0/W6AVO48peccx5RSWSJKCrRaHe4BXfh4TEaLx/VtpbL9WXBoIQMAjUAJAJSVlNh3IzNXejBztzcjR6bxiFZeUKSwkSE0bhqlHYox6JMaoc0IUd8ABgJ8QKAEAAGAKf14DAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAlP8P5j9YYnXV9iIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import networkx as nx\n", "directed_multi_graph = nx.MultiDiGraph()\n", @@ -296,9 +496,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "chap1", "language": "python", - "name": "python3" + "name": "chap1" }, "language_info": { "codemirror_mode": { @@ -310,7 +510,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.9.18" } }, "nbformat": 4, diff --git a/Chapter01/02_Graph_metrics.ipynb b/Chapter01/02_Graph_metrics.ipynb index da7aee7..d331bc1 100644 --- a/Chapter01/02_Graph_metrics.ipynb +++ b/Chapter01/02_Graph_metrics.ipynb @@ -1,153 +1,29 @@ { "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Collecting networkx==2.5\n", - "\u001b[?25l Downloading https://files.pythonhosted.org/packages/9b/cd/dc52755d30ba41c60243235460961fc28022e5b6731f16c268667625baea/networkx-2.5-py3-none-any.whl (1.6MB)\n", - "\u001b[K |████████████████████████████████| 1.6MB 10.0MB/s eta 0:00:01 |███████████████▍ | 778kB 10.0MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: decorator>=4.3.0 in /Users/aldo/.pyenv/versions/3.8.0/lib/python3.8/site-packages (from networkx==2.5) (4.4.2)\n", - "Installing collected packages: networkx\n", - "Successfully installed networkx-2.5\n", - "\u001b[33mWARNING: You are using pip version 19.2.3, however version 21.0.1 is available.\n", - "You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n", - "Collecting matplotlib==3.2.2\n", - "\u001b[?25l Downloading https://files.pythonhosted.org/packages/8d/b5/2309a0308d22cb8955c5140ad47080d990244df626877a86b86cebf153bc/matplotlib-3.2.2-cp38-cp38-macosx_10_9_x86_64.whl (12.5MB)\n", - "\u001b[K |████████████████████████████████| 12.5MB 2.6MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Users/aldo/.pyenv/versions/3.8.0/lib/python3.8/site-packages (from matplotlib==3.2.2) (2.4.7)\n", - "Collecting cycler>=0.10 (from matplotlib==3.2.2)\n", - " Downloading https://files.pythonhosted.org/packages/f7/d2/e07d3ebb2bd7af696440ce7e754c59dd546ffe1bbe732c8ab68b9c834e61/cycler-0.10.0-py2.py3-none-any.whl\n", - "Requirement already satisfied: numpy>=1.11 in /Users/aldo/.pyenv/versions/3.8.0/lib/python3.8/site-packages (from matplotlib==3.2.2) (1.19.1)\n", - "Requirement already satisfied: python-dateutil>=2.1 in /Users/aldo/.pyenv/versions/3.8.0/lib/python3.8/site-packages (from matplotlib==3.2.2) (2.8.1)\n", - "Collecting kiwisolver>=1.0.1 (from matplotlib==3.2.2)\n", - "\u001b[?25l Downloading https://files.pythonhosted.org/packages/0c/89/cdd752da48b66f31a0732902cd9800e6d232ce65f6cc4e83f9d9d2bd99aa/kiwisolver-1.3.1-cp38-cp38-macosx_10_9_x86_64.whl (61kB)\n", - "\u001b[K |████████████████████████████████| 71kB 6.6MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: six in /Users/aldo/.pyenv/versions/3.8.0/lib/python3.8/site-packages (from cycler>=0.10->matplotlib==3.2.2) (1.15.0)\n", - "Installing collected packages: cycler, kiwisolver, matplotlib\n", - "Successfully installed cycler-0.10.0 kiwisolver-1.3.1 matplotlib-3.2.2\n", - "\u001b[33mWARNING: You are using pip version 19.2.3, however version 21.0.1 is available.\n", - "You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n", - "Collecting pandas==1.1.3\n", - "\u001b[?25l Downloading https://files.pythonhosted.org/packages/30/09/3c2ee77531dc30d4265d1f148d08d283de2d57fdd00745a9b367137d54ac/pandas-1.1.3-cp38-cp38-macosx_10_9_x86_64.whl (10.1MB)\n", - "\u001b[K |████████████████████████████████| 10.1MB 5.1MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: numpy>=1.15.4 in /Users/aldo/.pyenv/versions/3.8.0/lib/python3.8/site-packages (from pandas==1.1.3) (1.19.1)\n", - "Requirement already satisfied: python-dateutil>=2.7.3 in /Users/aldo/.pyenv/versions/3.8.0/lib/python3.8/site-packages (from pandas==1.1.3) (2.8.1)\n", - "Collecting pytz>=2017.2 (from pandas==1.1.3)\n", - "\u001b[?25l Downloading https://files.pythonhosted.org/packages/70/94/784178ca5dd892a98f113cdd923372024dc04b8d40abe77ca76b5fb90ca6/pytz-2021.1-py2.py3-none-any.whl (510kB)\n", - "\u001b[K |████████████████████████████████| 512kB 9.4MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: six>=1.5 in /Users/aldo/.pyenv/versions/3.8.0/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas==1.1.3) (1.15.0)\n", - "Installing collected packages: pytz, pandas\n", - "Successfully installed pandas-1.1.3 pytz-2021.1\n", - "\u001b[33mWARNING: You are using pip version 19.2.3, however version 21.0.1 is available.\n", - "You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n", - "Collecting scipy==1.6.2\n", - "\u001b[?25l Downloading https://files.pythonhosted.org/packages/fc/c9/8d034cd5e0543e15e99a35836428c70618b87aff1fb80656094fba23c659/scipy-1.6.2-cp38-cp38-macosx_10_9_x86_64.whl (30.8MB)\n", - "\u001b[K |████████████████████████████████| 30.8MB 2.6MB/s eta 0:00:01 |████████████████████████▌ | 23.6MB 2.4MB/s eta 0:00:03 |███████████████████████████████▏| 29.9MB 2.6MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: numpy<1.23.0,>=1.16.5 in /Users/aldo/.pyenv/versions/3.8.0/lib/python3.8/site-packages (from scipy==1.6.2) (1.19.1)\n", - "\u001b[31mERROR: tensorflow 2.2.0 has requirement scipy==1.4.1; python_version >= \"3\", but you'll have scipy 1.6.2 which is incompatible.\u001b[0m\n", - "Installing collected packages: scipy\n", - " Found existing installation: scipy 1.4.1\n", - " Uninstalling scipy-1.4.1:\n", - " Successfully uninstalled scipy-1.4.1\n", - "Successfully installed scipy-1.6.2\n", - "\u001b[33mWARNING: You are using pip version 19.2.3, however version 21.0.1 is available.\n", - "You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n" - ] - } - ], - "source": [ - "!pip install networkx==2.5 \n", - "!pip install matplotlib==3.2.2 \n", - "!pip install pandas==1.1.3 \n", - "!pip install scipy==1.6.2 " - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "id": "uKraKcP_lyqO" - }, - "outputs": [], - "source": [ - "import networkx as nx\n", - "import pandas as pd\n", - "\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "\n", - "default_edge_color = 'gray'\n", - "default_node_color = '#407cc9'\n", - "enhanced_node_color = '#f5b042'\n", - "enhanced_edge_color = '#cc2f04'" - ] - }, { "cell_type": "markdown", "metadata": { "id": "ci5ithlNjeCM" }, "source": [ - "## Chapter 2.2: Graph properties" + "## Chapter 1.2: Graph properties" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "metadata": { "id": "rNOJ_ofKpb94" }, "outputs": [], "source": [ - "# draw a simple graph\n", - "def draw_graph(G, node_names={}, filename=None, node_size=50):\n", - " pos_nodes = nx.spring_layout(G)\n", - " nx.draw(G, pos_nodes, with_labels=False, node_size=node_size, edge_color='gray')\n", - " \n", - " pos_attrs = {}\n", - " for node, coords in pos_nodes.items():\n", - " pos_attrs[node] = (coords[0], coords[1] + 0.08)\n", - " \n", - " nx.draw_networkx_labels(G, pos_attrs, labels=node_names, font_family='serif')\n", - " \n", - " plt.axis('off')\n", - " axis = plt.gca()\n", - " axis.set_xlim([1.2*x for x in axis.get_xlim()])\n", - " axis.set_ylim([1.2*y for y in axis.get_ylim()])\n", - " \n", - " if filename:\n", - " plt.savefig(filename, format=\"png\")\n", - "\n", + "import networkx as nx\n", + "import pandas as pd\n", "\n", - "# draw enhanced path on the graph\n", - "def draw_enhanced_path(G, path_to_enhance, node_names={}, filename=None):\n", - " path_edges = list(zip(path,path[1:]))\n", - " pos_nodes = nx.spring_layout(G)\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", "\n", - " plt.figure(figsize=(5,5),dpi=300)\n", - " pos_nodes = nx.spring_layout(G)\n", - " nx.draw(G, pos_nodes, with_labels=False, node_size=50, edge_color='gray')\n", - " \n", - " pos_attrs = {}\n", - " for node, coords in pos_nodes.items():\n", - " pos_attrs[node] = (coords[0], coords[1] + 0.08)\n", - " \n", - " nx.draw_networkx_labels(G, pos_attrs, labels=node_names, font_family='serif')\n", - " nx.draw_networkx_edges(G,pos_nodes,edgelist=path_edges, edge_color='#cc2f04', style='dashed', width=2.0)\n", - " \n", - " plt.axis('off')\n", - " axis = plt.gca()\n", - " axis.set_xlim([1.2*x for x in axis.get_xlim()])\n", - " axis.set_ylim([1.2*y for y in axis.get_ylim()])\n", - " \n", - " if filename:\n", - " plt.savefig(filename, format=\"png\")" + "from utils import draw_graph, draw_enhanced_path" ] }, { @@ -161,7 +37,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 2, "metadata": { "id": "pnrTW0IDl9ch" }, @@ -175,7 +51,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -200,7 +76,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -212,9 +88,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABh4AAAYeCAYAAACwVVHbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAuIwAALiMBeKU/dgAAIABJREFUeJzs3XmUVdWdPvxvTVQxFqMMyhyRQVBRMU44RRBkDBiMtoJx\njIlDlMTumG5N4ptOq7E1JkZNHFBjxIDiBDghCmqcUEFURATBCS3mGaq47x/5hfZ6oSzkVN0q6vNZ\niz/O3vue/RSuJWvdp84+OalUKhUAAAAAAAAJyM12AAAAAAAAYPeheAAAAAAAABKjeAAAAAAAABKj\neAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAA\nAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAA\nABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKj\neAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAA\nAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAA\nABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKj\neAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAA\nAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAA\nABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKj\neAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAA\nAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAA\nABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKj\neAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAA\nAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAA\nABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKj\neAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAA\nAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAA\nABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKj\neAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAA\nAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAA\nABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKj\neAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAA\nAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKTn+0AAAAAAGTXrFmzYtq0aeWuGTBgQPTo\n0aNS9p87d25MmTKl3DWHHXZYHHbYYZWyPwDJUjwAAAAA1HLPPfdc/PSnPy13TfPmzSuteHjllVe+\ndv8rrrhip4qHBQsWxGOPPRZ77rlnDB8+PHJzHfwBUFUUDwAAAECtMX369DjmmGO+0Wdzc3Ojbt26\nUb9+/WjdunXstddese+++0bv3r3j6KOPjj322CPhtHxTM2fOjBNOOCHWrVsXERHDhg2LBx98MMup\nAGoPVS8AAABABWzdujXWrVsXn3/+ebz55pvx2GOPxf/8z//EqFGjolWrVtGnT5/44x//GKtWrcp2\n1J128cUXRyqV2vZn4cKFVbr/mDFj0vZPpVK7dL9LL710W+kQETFp0qSYOnXqrsYEoII88QAAAADU\nGp07d45rrrkmbWz8+PHx6quvpo2NGjUqDjrooLSxzZs3x7p16+Ljjz+O+fPnx6xZs2Ljxo0REZFK\npeKVV16JV155JS6//PK45JJLYuzYsVGvXr3K/YHYrrlz52aMvfXWW3HCCSdkIQ1A7aN4AAAAAGqN\ntm3bxtixY9PG3nrrrYzi4YQTTogxY8aUe68tW7bEtGnT4u677477778/tmzZEhERq1atiiuuuCLG\njRsXd9xxR/Tt2zfRn4Gvt88++8SsWbPSxrp06ZKlNAC1j6OWAAAAAL6BgoKC6N+/f9xzzz0xb968\nGDx4cNr8Bx98EMcdd1zcdNNNWUpYe1199dVRVFS07fo73/lODBo0KIuJAGoXxQMAAADALurYsWM8\n/PDDcf3110du7v993VJaWho/+tGP4tprr81iutrnuOOOizfffDOuv/76uO+++2LKlClp/10AqFyO\nWgIAAABIyEUXXRTFxcVxxhlnpI3/9Kc/jTZt2sQpp5ySpWS1T5cuXRyvBJAlql4AAACABI0ZMybO\nOuusjPFzzjkn3nvvvSwkAoCqpXgAAAAASNgNN9wQ++yzT9rYunXr4sILL8xSIgCoOooHAAAAgITV\nq1cvrrjiiozxxx9/PKZNm5aFRABQdbzjAQAAAKASjBw5MsaOHRuffPJJ2vjvfve7OPbYY7OUKlmf\nf/55vPTSS7Fw4cJYs2ZNFBcXR5s2beKggw6Kdu3aZTtepVuxYkXMnDkz3n///diwYUM0adIk2rZt\nG0ceeWQUFxdnOx5A1njiAQAAAKASFBQUxNlnn50x/vjjj0dJSUna2LBhwyInJ2eHfzp06FDuXo8+\n+mi5n8/JyYlFixYl9rM99dRTcfTRR0erVq1iyJAhcdFFF8UvfvGLuOCCC2LEiBHRoUOHOOyww2Li\nxImJ7VmeRYsWfe3PP2bMmB1+fvr06V/7+SuvvHLb+sWLF8fpp5++7ee/5JJL4vLLL4/zzz8/Bg8e\nHM2aNYuRI0d6pwdQaykeAAAAACrJMccckzFWVlYWjzzySBbS7LqysrK44IIL4vjjj49nn302UqlU\nRPyzZPmyVCoVL774YowcOTKGDh0aK1euzEbcSvHUU0/FfvvtF3fffXds3rx5u2vKyspi4sSJceCB\nBzpaC6iVHLUEAAAAUEkOPvjgyMvLi7KysrTx559/Ps4444xt12eccUYcccQR267Hjx8fr776aoX3\n6d69e1xzzTXbrl999dUYP378LiTfvvPPPz9uvfXWqFOnTpx//vlxyimnRI8ePaJevXqxbNmymDFj\nRtx4441pX7Y//PDDcfzxx8eTTz4ZjRs3TjxTRETTpk3Tfv6IiN/85jexYsWKCn2+Q4cOGe/k+OUv\nf5mx7pVXXokhQ4bEhg0bori4OPr16xft27ePVCoVH3zwQTz11FOxZs2abevXrl0bw4cPj7fffjv2\n3HPPb/CTAdRMigcAAACASlKvXr3o2bNnvPHGG2njr732Wtr10KFD067feuutnSoeOnXqFGPHjt12\nfeeddyZePNx///0xZcqUaNmyZTz55JPRs2fPtPlmzZrFsGHDYujQofGb3/wmfvGLX2ybe/XVV2PY\nsGHxzDPPRE5OTqK5IiIaNWqU9vNHRPzhD3/YqeLhy0cpRWQWDxs3boyTTz45Nm3aFP/5n/8Zl19+\neRQWFqatWbFiRZx11lnxwAMPbBtbvXp1/PznP49x48btxE8EULM5agkAAACgEm3vJcsLFy7MQpJd\nM2XKlMjPz4/JkydnlA5flpOTE5dffnmcddZZaePPPvts/OEPf6jsmJXmtttuiw8++CCuv/76+NWv\nfpVROkRENGnSJO67777o3r172vjf//73tCchAHZ3igcAAACASrS944VWrVoV69aty0KaXXPuuedG\n7969K7T2t7/9bTRs2DBt7Oc//3mNfd9DSUlJ9O3bNy644IJy1xUUFMSFF16YNrZhwwbvegBqFcUD\nAAAAQCVq0qTJdsdrYvHwox/9qMJrmzVrFqNHj04bW7t2bdx5550Jp6o6l112WYXWHX/88Rljb775\nZtJxAKotxQMAAABAJWrQoMF2xzdt2lTFSXZNly5dolu3bjv1mcGDB2eM/eUvf0kqUpVq2LBhfOc7\n36nQ2o4dO0ZRUVHa2IIFCyojFkC1pHgAAAAAqESrV6/e7njdunWrOMmuOfDAA3f6M3379o3c3PSv\nn+bOnRslJSVJxaoy++23X9SpU6dCa3NycqJt27ZpY6tWraqMWADVkuIBAAAAoBLt6J0GO3oSorrq\n2rXrTn+mqKgo4wv4iIh//OMfSUSqUvvss89OrW/UqFHatZdLA7WJ4gEAAACgEq1YsSJjrFmzZhlH\n8VR323tJdkV06tQpY+ydd97Z1ThVbmd//q8+0VJWVpZkHIBqTfEAAAAAUIkWLVqUMdaxY8eqD7KL\nvukTGg0bNswY214ZU93Vr19/p9bn5eVVUhKA6k/xAAAAAFBJ1qxZE2+//XbG+EEHHZSFNLvmq+9q\nqKjtFRY1sXjIycnJdgSAGkPxAAAAAFBJXnrppdi6dWvG+OGHH56FNNmRSqUyxnyJD7B7UzwAAAAA\nVJKnn346Y6ygoCAGDRpUqftur+zI1j3XrVuXMdakSZNdjQNANaZ4AAAAAKgEmzZtittuuy1jfNCg\nQTv9ouKd/dJ/7dq1O7W+Mu+5evXqjDHFA8DuTfEAAAAAUAnuvffe+OKLLzLGL7300q/97FdfTLxx\n48ad2nvlypU7tb4y77lgwYKMsW7duu1qHACqMcUDAAAAQMJWr14dv/71rzPGhwwZUqH3O3z1hczb\nO66oPO+9995Ora+Id999d6c/s379+vjoo48yxr/97W8nEQmAakrxAAAAAJCw888/PxYuXJg21qhR\no7j++usr9PlGjRqlXa9fvz6WL19e4f1fe+21Cq+tqFmzZu30Z5577rmMl0v37NkzmjVrllQsAKoh\nxQMAAABAgm666ab461//mjaWk5MTt99+e3Ts2LFC9/jWt76VMVbRJw7eeeedb/R0wteZN2/eTt/3\n4Ycfzhg766yzkooEQDWleAAAAABIyG9/+9v48Y9/nDF+ww03xIgRIyp8n/333z9j7JlnnqnQZ6++\n+uoK77OzbrrppgqvLSkpibvuuittrEGDBjF69OikYwFQzSgeAAAAAHbR/Pnz44QTToj/+I//SDta\nqKCgIP785z/HBRdcsFP369mzZ+y1115pY3/+859j06ZN5X5uypQpcdddd0WTJk12ar+K+tOf/hRv\nvPFGhdb+7Gc/y3g3xX//939HcXFxZUQDoBpRPAAAAAB8A5s3b44pU6bEySefHN27d4/HH388bX7v\nvfeO6dOnf6OjhXJzc2PMmDFpYx9++GGMGjUqVqxYsd3P3H777XHSSSdFw4YN46c//elO7/l1BgwY\nEKWlpTFw4MCYO3fuDtelUqm46qqr4o477kgbP+qoo+JHP/pR4rkAqH7ysx0AAAAAoKosWbIkxo8f\nnza2vS/Rp06dGiUlJWljW7ZsiXXr1sXHH38c8+bNi9dffz02btyY8dnGjRvH2LFj45JLLom6det+\n46yXXXZZ3HXXXbF48eJtYw899FB07NgxTjjhhOjSpUsUFhbGRx99FFOnTo1FixZFbm5uTJw4MVau\nXJlxvz//+c9pT0IMGzZs27skZs2aFdOmTds2t71y43vf+160bds2br311ujdu3f8+Mc/ju9///vR\no0ePqFu3bqxYsSKee+65uOGGGzKOhTrwwANj0qRJkZOTs92fde7cuTFlypRy/z5eeOGFuPbaa7dd\n77vvvnHCCSdERMTq1avj1ltvTVu/evXqjD2+/Pni4uI4++yzt11/ea4i+x922GFx2GGHbbueOnVq\nvPXWW9uulyxZkvb5JUuWpH2+bdu2MWrUqHL3BKipclJffv4PAAAAYDc2ffr0OOaYYxK/b05OTvTp\n0ydGjx4dp556ajRq1CiR+86ePTv69+8fn3322deuLSoqittuuy1OOeWUuPPOO+OMM84od/2DDz4Y\nw4YNi4iI66+/Pn7yk5+Uu/6OO+6I0047LS666KL44x//mDZXUFAQW7Zs2e7nBg8eHOPGjSv3+KeK\n5P2q0aNHx5133hkREYsWLarwi7v/pX379rFo0aJt1zsqRXbkiiuuiCuvvHLb9ZgxY2LcuHEV/vxR\nRx0V06dP36k9AWoKTzwAAAAAVEBubm4UFhZGgwYNolWrVtGuXbvo0aNH9O7dO4499tho0aJF4nv2\n6tUrXnvttbjyyivjrrvu2u47HnJzc2PgwIHx29/+Nnr06JF4hi/Ly8uLP/zhDzF06NC46qqrYsaM\nGZFKpbZbOhxyyCExduzYGDlyZKVmAqD68cQDAAAAQA2wYcOGmDlzZnzwwQexfPnyyM/Pjw4dOsQR\nRxwRrVu3zkqmpUuXxksvvRQLFy6MtWvXRsOGDaNNmzZx8MEHR/v27bOSCYDsUzwAAAAAAACJyc12\nAAAAAAAAYPeheAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAA\nAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKjeAAAAAAAABKTn+0AAAAAAFRvm0rLYv7S\ntfHF2k2xpWxrFOTlRosGhbF3ywZRmJ+X7XgAVDOKBwAAAAAyzPtsTdz3yuJ4edHyeG/pmthSlspY\nU5CXE11aNow+HZrGyQe3i31aNcxCUgCqm5xUKpX5rwYAAAAAtdK0d5fGzc99EC8vXL7Tn+3TsWmc\n17dTHNu1ZSUkA6CmUDwAAAAAEMvXbY4rHp4bj8z+ZJfvNbhXm/jlkB7RtH6dBJIBUNMoHgAAAABq\nuRcWlMSF970eJWs3J3bP5g3qxO9PPiAO69w8sXsCUDMoHgAAAABqsaffWRo//Ous2Fy2NfF718nP\njT+d0juO6+boJYDaJDfbAQAAAADIjhcWlFRa6RARsbl0a/zw3lnxwoKSSrk/ANWT4gEAAACgFlq+\nbnNceN/rlVY6/Mvm0q1x4X2vx/J1yR3jBED1pngAAAAAqIWueHhuou90KE/J2n++uBqA2kHxAAAA\nAFDLTHt3aTwy+5Mq3fOR2Z/EtHeXVumeAGSH4gEAAACglrn5uQ+ysu8tWdoXgKqleAAAAACoReZ9\ntiZeXrg8K3u/tHB5vLd0TVb2BqDqKB4AAAAAapH7Xlmc5f2XZHV/ACqf4gEAAACgFnl5UXaedti2\n/8JlWd0fgMqneAAAAACoJTaVlmX9qKN5S9fEptKyrGYAoHIpHgAAAABqiflL18aWslRWM2wpS8X8\npWuzmgGAyqV4AAAAAKglvli7KdsRIiKipJrkAKByKB4AAAAAaoktZVuzHSEiIjZXkxwAVA7FAwAA\nAEAtUZBXPb4KqlNNcgBQOfxfHgAAAKCWaNGgMNsRIiKieTXJAUDlUDwAAAAA1BJ7t2wQBXk5Wc1Q\nkJcTe7dskNUMAFQuxQMAAABALVGYnxddWjbMaoZ9WjaMwvy8rGYAoHIpHgAAAABqkT4dmmZ3/47N\nsro/AJVP8QAAAABQi5x8cLss7982q/sDUPkUDwAAAAC1yD6tGkafjtl56uGQjk2zftQTAJVP8QAA\nAABQy5zXt1NW9u3TcHWUlZVlZW8Aqo7iAQAAAKCWObZryxjcq02V7tkxd1msfe8fceedd8bKlSur\ndG8AqlZOKpVKZTsEAAAAAFVr+brN0e/6Z6Nk7eZK36sotsTwwrlRlFP6z+uiohgyZEh069at0vcG\noOopHgAAAABqqRcWlMSYO1+JzaVbK22PgtyI4+vMj5axKmPuoIMOiv79+0d+fn6l7Q9A1VM8AAAA\nANRiT7+zNH5476xKKR/q5OfGn07pHd2Ky2LixImxfPnyjDUtW7aMkSNHRvPmzRPfH4DsUDwAAAAA\n1HIvLCiJ82+ZFivz6id2z+YN6sTvTz4gDuv8z0Jh06ZN8dhjj8WcOXMy1hYUFMTAgQNj//33T2x/\nALJH8QAAAABQy214f2784/tHxl+6nx3Pt+m7y/cb3KtN/HJIj2hav07aeCqVijfeeCMmT54cpaWl\nGZ/r1atXnHjiiVGnTp2MOQBqDsUDAAAAQC235Nqx8fk9N0RExGstDoyHOg6Puc323en7HNKxaZzb\nt1Mc27Vlueu++OKLmDBhQnz++ecZc82aNYuRI0dGq1atdnp/AKoHxQMAAABALbZ186aY079DlK4o\nSRtf3KBtPL3X8fF20x6xuGH7KM3NfAF0QV5O7NOyYfTp2CxOPrhtdGnZsML7btmyJaZOnRqzZs3K\nmMvLy4t+/frFwQcfHDk5OTv/QwGQVYoHAAAAgFpsxRMT4oOffb/cNQ2H/iA2n3N1lKzdFJvLtkad\nvNxo3qAw9m7ZIArz83Zp/7lz58YjjzwSmzZtypjr2rVrDBkyJOrWrbtLewBQtRQPAAAAALXY/B8O\njNUvPlnumn3GPRcN9ju00jKsWLEiJkyYEJ988knGXHFxcYwYMSLatm1bafsDkCzFAwAAAEAttemT\nD+OtE/eOKOfroaJO3aP7xDcq/cijsrKyePrpp+PFF1/MmMvJyYljjz02Dj/8cEcvAdQAudkOAAAA\nAEB2LHtoXLmlQ0RE8+FjquTL/n+91+H73/9+xtFKqVQqnn766fjrX/8aa9eurfQsAOwaTzwAAAAA\n1EKpsrKYc+LeseWzJTtck5NfED2f+DAKmraowmQRq1evjgceeCA+/PDDjLkGDRrE8OHDo1OnTlWa\nCYCK88QDAAAAQC20+qWnyy0dIiIaHzO0ykuHiIhGjRrF6aefHkcddVTG3Nq1a+Puu++OadOmxdat\nW6s8GwBfT/EAAAAAUAuVPHD7165pNvyMKkiyfbm5uXH00UfH6NGjo0GDBhnzM2bMiHHjxsWqVauy\nkA6A8jhqCQAAAKCW2bL8i5jTr32kSrfscE2d1u1i30ffi5y8vCpMtn3r1q2LSZMmxfvvv58xV7du\n3Rg6dGjss88+WUgGwPZ44gEAAACglln+2D3llg4REc2GjqkWpUNERP369eOUU06J448/PnJz07/O\n2rBhQ9x3330xderUKC0tzVJCAL7MEw8AAAAAtczbJx0QG+a/teMFOTnRc/L7Uad1u6oLVUEfffRR\nTJw4MVauXJkx17p16xg5cmQ0bdo0C8kA+BfFAwAAAEAts3npx/H5pDtj4V03RL11KzLmGx3WL/a+\n6bEsJKuYjRs3xiOPPBJvv/12xlydOnVi0KBB0bNnzywkAyAiIu/KK6+8MtshAAAAAKg6eQ0axYK8\nhjF1S6NY1rx95G4ti/prl0fu//v91D0v/P+ibufuWU65Y/n5+dG9e/do0KBBLFy4MLZu3bptrqys\nLN55551YtWpVdOrUKfKqyXFRALWJJx4AAAAAaqHbb789lixZsu16n71ax7H1NsfKaQ/Ft256LHIL\n6mQxXcUtXbo0JkyYECUlJRlzzZs3j5NOOin22GOPLCQDqL0UDwAAAAC1zBdffBE33XRT2tj3vve9\n6NatW5YS7ZrNmzfHlClT4o033siYy8/PjxNOOCF69+4dOTk5WUgHUPvkZjsAAAAAAFXr9ddfT7uu\nX79+dOnSJUtpdl2dOnVi6NChMXz48KhTJ/1JjdLS0nj00Udj4sSJsXHjxiwlBKhdFA8AAAAAtUhZ\nWVm8+eabaWP77bffbvEuhF69esU555wTrVq1ypibO3du3HrrrfHxxx9nIRlA7aJ4AAAAAKhF5s2b\nF+vXr08bO+CAA7KUJnnNmjWLM888M/r06ZMxt2LFirj99tvjxRdfDKePA1QexQMAAABALfLVY5ba\ntWsXzZs3z1KaypGfnx8DBgyIUaNGRVFRUdrc1q1b44knnoi//e1vGQUMAMlQPAAAAADUEqtWrYr3\n338/bax3795ZSlP5unbtGuedd160bds2Y27+/Plx8803x4cffpiFZAC7N8UDAAAAQC3xxhtvpF0X\nFhZG9+7ds5SmahQXF8fo0aPjiCOOyJhbs2ZNjBs3Lp599tnYunVrFtIB7J4UDwAAAAC1wNatWzOO\nWdp3332joKAgS4mqTl5eXhx33HHxb//2b1G/fv20uVQqFdOnT4+777471qxZk6WEALsXxQMAAABA\nLbBw4cJYtWpV2tjufMzS9nTu3DnOO++86NSpU8bcokWL4uabb4758+dnIRnA7kXxAAAAALCbSpWV\nxcd/vCI2vD8342mHli1bRuvWrbOULHsaNGgQ//Zv/xbHHnts5OTkpM2tX78+7r333njiiSeirKws\nSwkBar6cVCqVynYIAAAAAJK3asaUeP+CIRERsaLpXrG4/X7xyV49oiy/TgwYMCD69OmT5YTZtXjx\n4pg4cWKsXr06Y27PPfeMESNGRJMmTbKQDKBmUzwAAAAA7KYWXHJSrJw2KW2sNL9OfNq2Rxz582ui\n6UF9M37rv7bZsGFDPPTQQzFv3ryMucLCwhgyZMhu/wJugKQpHgAAAAB2Q1uWLY3Z/TtElJbucE3x\nkQPjWzc+VHWhqqlUKhUvv/xyPPnkk9s9YunAAw+M/v3714oXcQMkwTseAAAAAHZDyx65p9zSISKi\nfq9DqigLtg0LAAAgAElEQVRN9ZaTkxOHHHJInHnmmdG0adOM+ddeey1uu+22KCkpyUI6gJrHEw8A\nAAAAu5lUKhVzh+0bmz58b8eLcnOj55QFUaflXlUXrAbYtGlTPPbYYzFnzpyMuYKCghg4cGDst99+\ntf6IKoDyeOIBAAAAYDez7o3nyy8dIqLRYf2VDttRWFgYw4cPjyFDhmQcrbRly5Z46KGHYtKkSbFp\n06YsJQSo/hQPAAAAALuZkgdu/9o1zYefUQVJaqacnJw44IAD4uyzz4499tgjY3727Nlx6623xqef\nfpqFdADVn6OWAAAAAHYjZWtWxZvHt43Uxg07XJPfdI/o+fjCyC2oU4XJaqYtW7bE448/Hq+99lrG\nXF5eXhx//PHRp08fRy8BfIknHgAAAAB2I8sfH19u6RAR0WzwaUqHCiooKIhBgwbFyJEjo7CwMG2u\nrKwspk6dGvfff39s2FD+3zlAbeKJBwAAAIDdyDunfDvWv5352/lf1uPBOVHUsWsVJdp9rFixIiZO\nnBgff/xxxlxxcXGMGDEi2rZtm4VkANWL4gEAAABgN7F+3pvxzqiDyl3T4IDDY587pldNoN1QWVlZ\nPP300/Hiiy9mzOXk5MQxxxwTRxxxhKOXgFrNUUsAAAAAu4mSSXd87Zrmw39QBUl2X3l5edGvX784\n5ZRTol69emlzqVQqpk2bFvfcc0+sXbs2SwkBss8TDwAAAAC7ga2bNsbs49tF2eoVO1yTW79h9Hpq\nSeTVrV+FyXZfq1evjgcffDAWLVqUMVe/fv0YPnx4dO7cueqDAWSZJx4AAAAAdgMrp00qt3SIiGg6\n4GSlQ4IaNWoUp512Whx11FEZRyutW7cu7rnnnnj66adj69atWUoIkB2eeAAAAADYDbx3Tr9Y8/Iz\n5a7p+tcXo36P8t8BwTezaNGieOCBB2LNmjUZc23bto0RI0ZEcXFxFpIBVD3FAwAAAEANt2nJgnhr\ncNdy19Tt0jO6jX/NS48r0bp16+Khhx6K+fPnZ8wVFRXF0KFDo2vX8v87AewOHLUEAAAAUMOVPDTu\na9c0H/4DpUMlq1+/fnz/+9+Pfv36RW5u+tduGzdujPHjx8eUKVOitLQ0SwkBqoYnHgAAAABqsFRp\nacwZ0Dm2fPHJDtfk1CmMXk8ujvziplWYrHb7+OOPY8KECbFy5cqMuVatWsXIkSOjWbNmWUgGUPk8\n8QAAAABQg6164fFyS4eIiMbHDlc6VLE999wzzj333OjRo0fG3GeffRa33nprzJ49OwvJACqf4gEA\nAACgBlv24B1fu6b5d39QBUn4qqKiohgxYkQMGjQo8vPz0+Y2b94cDz74YDz00EOxefPmLCUEqByO\nWgIAAACoobaUfBaz+3eIKCvb4Zo6e3aMfR95N3Jy/f5pNi1dujQmTJgQJSUlGXPNmzePkSNHRsuW\nLbOQDCB5/sUBAAAAqKGWPXJ3uaVDRETzYWcoHaqBli1bxtlnnx37779/xlxJSUn85S9/iVdffTX8\njjCwO/DEAwAAAEANlEqlYu7QHrFp8fwdL8rNjZ5TPog6LfesumB8rTlz5sSjjz663SOWunfvHoMH\nD46ioqIsJANIhuIBAAAAoAZa89qMeO/MY8tdU3zkwPjWjQ9VUSJ2xrJly2LixInx6aefZsw1btw4\nRo4cGXvuqTDa3Xz88cfx0EMPRXFxcZx00klRp06dbEeCSqF4AAAAAKiBFv5iTCx/9K/lrul83YRo\nfOzQKkrEziotLY0nn3wyXn755Yy53NzcOO644+LQQw+NnJycSs8yffr0OOaYY3b5PkVFRdG0adPY\nY4894sADD4zDDz88hg0bFk2aNEkgZc02d+7c6Nu3byxfvjwiIo444oh45plnMl48DrsDxQMAAABA\nDVO6emXM7tcuUhs37HBNfrOW0WvqwsgpKKjCZHwT8+bNi0mTJsXGjRsz5vbee+8YOnRo1K9fv1Iz\nJFU8bE/9+vVj9OjRceWVV0aLFi0qZY+aYOjQofHwww+njd1xxx0xZsyY7ASCSqR4AAAAAKhhvrj/\n5lj8mwvKXdNyzNjY6+L/rqJE7KpVq1bFxIkTY8mSJRlzDRs2jO9+97vRoUOHStt/yZIlMX78+LSx\n8ePHx6uvvpo2NmrUqDjooIO2e481a9bEp59+GjNnzox33nknY75Vq1Yxbty46NevX3LBa5Bvfetb\nsWDBgrSxSy+9NK699tosJYLKo3gAAAAAqGHeOeWQWP/2rHLX9HhobhS171JFiUjC1q1bY/r06TFj\nxoyMuZycnOjbt2/07ds3cnNzqyTPmDFjYty4cWljFf0N/Zdeeikuvvji+Mc//pE2np+fH4888kic\ncMIJSUatEU488cSYPHly2tgtt9wS55xzTpYSQeWpmv9LAQAAAJCIVCoVe/3kf6LxgJOjLHf7Z8M3\n6H2E0qEGys3NjWOPPTZOO+20jKOVUqlUPPvss3HXXXfF6tWrs5Sw4g455JCYPn16DBo0KG28tLQ0\nRo4cGe+9916WkmXPVVddFY0aNdp23bt37xg9enQWE0HlUTwAAAAA1CA5OTnR8OCjY8Opl8VTAy6K\nt3r1j1XFLdPWNB/+gyylIwmdOnWK8847Lzp37pwx9+GHH8Ytt9wS8+fPz0KynVNYWBh33313tGnT\nJm183bp1MXbs2Cylyp4DDjgg5syZEzfeeGOMGzcunn/++SgsLMx2LKgUigcAAACAGuj111+PLXXq\nxqLOB8eMY86K90/5RTQ/6ZwoaNU2mnxnRLbjsYsaNGgQp556ahx33HGRk5OTNrd+/fq4995744kn\nnoiysrIsJayYxo0bx4UXXpgx/sgjj8Tbb7+dhUTZ1a5du/jxj38cp59+ehQVFWU7DlQaxQMAAABA\nDbNixYr44IMP/m8gJye6D/hutL/8j9HzsfmRW7de9sKRmJycnDjiiCPijDPOiOLi4oz5F198MW6/\n/fZYsWJFFtJV3KhRo7Y7/uijj1ZxEqCqKB4AAAAAapjXX3897bqoqCi6desWERE5eXnZiEQlatu2\nbZx77rnRtWvXjLlPPvkkbrnllpg7d24WklVMhw4dokWLFhnjzz//fBbSAFVB8QAAAABQg2zdujXe\neOONtLGePXtGfv72XzTN7qFu3brxve99LwYMGBB5XymXNm3aFBMmTIhHHnkktmzZkqWE5WvdunXG\n2NKlS7OQBKgK/kUCAAAAqEEWLFgQa9asSRvr3bt3ltJQlXJycqJPnz7Rtm3bmDBhQixfvjxtftas\nWfHRRx/FyJEjt/uEQTY1bNgwY+yr+XcklUrFwoULY86cOfHJJ5/EqlWrIjc3N5o0aRItW7aMgw8+\neLvFRmWaN29evPbaa/HJJ5/Epk2bokGDBlFcXBzt2rWLTp06Rbt27SI3t/J+57u0tDTeeeedmDNn\nTpSUlMSaNWuibt260aRJk+jSpUv06tVru3/nUFUUDwAAAAA1yKxZs9Ku27RpE61atcpSGrKhdevW\ncc4558TkyZNj9uzZaXOff/553HrrrTFw4MDYf//9M15MnS1fLcsiIpo2bVru+gceeCAmT54cTz75\n5Ne+x6Jz585x1llnxbnnnhtNmjSpcK5WrVqV++TFPvvsE++++25E/LMAufPOO+Pqq6/eNrYjL774\nYuy///5Rt27dctf1798/pk6dWuG87777bvzv//5vjB8/PlatWrXDdTk5OdGrV68YMGBADB06NL79\n7W9XeA9IgqOWAAAAAGqItWvXxnvvvZc2dsABB2QpDdlUWFgYw4cPj6FDh0ZBQUHaXGlpaTz88MPx\n4IMPxqZNm7KUMN2nn36aMbajwuxHP/pRtG7dOsaMGRP3339/RulQWFiYUagsWLAg/uM//iM6d+4c\nDz/8cHLB/581a9bEgAED4gc/+MHXlg6V5Ve/+lX06tUrbr311ozSoU6dOmlPWKRSqXjzzTfjt7/9\nbRx66KHRrVu3uOuuu6o6MrWYJx4AAAAAaog333wztm7duu06Pz8/9t133ywmItv233//2GuvvWLC\nhAkZv7k/Z86c+Pjjj2PkyJFVfhTRly1atCi++OKLjPHDDz98u+snTpwY69at23bdsGHD+PGPfxwj\nRoyIfffdNwoLC6OsrCw++uijmDlzZtxyyy0xY8aMiIhYsWJFDB06NP70pz/Feeed97XZxo4dG2vX\nrt12PWHChIwXdW/ZsiUGDhwYM2fOjIh/viy7b9++0bp161i2bFm8/PLLGU+eREQUFBTENddckzZ2\n4403xuLFi78211ddfPHFccMNN2y7btGiRVx00UVx4oknRteuXaOoqChSqVR8+umnMWPGjPjDH/6w\nLW/EP5+UuPfee+P000/f6b3hm1A8AAAAANQAqVQqXn/99bSxHj16RFFRUZYSUV00b948zjzzzHji\niSfi1VdfTZtbvnx53HbbbXH88cdHnz59snL00vjx47c7PmjQoK/97N577x1PPvlktG/fPm08Ly8v\n2rdvH+3bt49TTz01brnlljj//PO3FXMXXHBB9OjRI4488shy7z927Ni063fffTejePjP//zPmDlz\nZnTo0CH++Mc/xsCBA9PmU6lUXHPNNXHZZZdlZPzq/SdMmLDTxcOTTz6ZVjp06tQpZs6cmVEm5eTk\nRJs2bWLUqFExatSouPrqqzMyQVVx1BIAAABADbBkyZJYtmxZ2phjlviXgoKCOPHEE+Okk06KwsLC\ntLmysrKYOnVqjB8/PjZs2FCluVauXBm///3vM8aHDh0a3bp1K/ezeXl58cADD2SUDttz7rnnxq9+\n9att16WlpXHppZfufOCv+Oyzz+K6666Lzp07x/PPP59ROkT88wv/n/3sZ3HooYfu8n7bc91116Vd\nX3XVVRV6guVnP/tZjBkzplIywddRPAAAAABUU6lUKpZP/luUrV+b8VLpZs2aRbt27bKUjOqqe/fu\ncd5558Wee+6ZMTdv3ry4+eabv9FRP9/Epk2b4vTTT49PPvkkbbx+/foZRxBtz8CBA3fqKLGxY8em\nvbD6lVdeienTp1f489uzatWqKC0tjXHjxkWbNm3KXdu3b99d2mt7SktL4+mnn04b25kXRV9yySVJ\nR4IKcdQSAAAAQDW19tXnYuHPT4/ceg0iWnaJxu16xcome0bk5MQBBxyQlWNzqP4aN24cZ5xxRkyb\nNi1eeOGFtLnVq1fHnXfeGUcffXQcccQRaS8kTtJLL70UF198cfzjH/9IG8/Pz48JEybE3nvvvcPP\nnnPOObF69eoKHcX0ZYWFhXHMMcfExIkTt4098cQTcfTRR+/Ufb6qf//+O3wfxZeNHj06unbtGhER\nnTt33qU9/+Wzzz6LLVu2pI3tzAvDe/bsGYWFhdXmJePUHooHAAAAgGqq5MHbIiJi6/q10XbhrGi7\ncFasbtgiPup4QPQ4c0xWs1G95eXlxfHHHx8dOnSISZMmxfr167fNpVKpeOaZZ2LRokXx3e9+Nxo0\naFDh+06dOjVKSkq2O7d27dr49NNPY+bMmfH2229nzLds2TLGjRsX/fv3L3ePLx+ZtLP22muvtOsv\nv2D5mzr11FMrtK5bt25fe3zUzvryy+T/ZdKkSfHv//7vFb7HSy+9FFu2bIni4uIko0G5FA8AAAAA\n1VDp6hWx4qkHMsYbrfkius9+Ij4Y3j2ajzw72l12fRbSUVPsvffecd5558UDDzwQixYtSptbuHBh\n3HzzzTF8+PAK/4b++PHjd/iy6B2pV69enH766fHLX/4y9thjj5367M766svWv3rM0zdx2GGH7fI9\nvqk2bdpE/fr1Y926ddvGfvWrX0WPHj1i8ODBFbrHfvvtV1nxYIcUDwAAAADV0PLJf4vU5h0fj5La\nsjny6lb8N9WpvRo2bBinnXZazJgxI5599tlIpVLb5tatWxf33HNPHH744XHMMcdEXl7eLu1VVFQU\nTZo0iRYtWsSBBx4YRxxxRAwbNizt3QvfxOeffx6zZ8+OpUuXxurVq2P9+vVpP8e/vPzyy2nXX30h\n+86qV69edOzYcZfusSvy8/Nj2LBh8de//nXb2IYNG2LIkCExcODA+MlPfhLHHXecY9eodhQPAAAA\nANVMKpWKkgdu+9p1zYaNqfww7BZyc3PjqKOOig4dOsTEiRNjzZo1afPPP/98fPjhhzFixIho3Ljx\nDu9zxx13xJgxYyo57T+99957cdttt8X48ePjww8//Eb32LBhwy5laNy4cda/1P/1r38djz32WKxc\nuTJtfPLkyTF58uTYa6+9YsSIETF06NA48sgjIz/fV75kX+W8PQYAAACAb2z9O7Niw3uzy13T4KCj\noqjdt6ooEbuL9u3bx3nnnRddunTJmPvoo4/illtuiXfffTcLyf7Pxo0b46c//Wn06NEjrr766m9c\nOiRhZ95/UVk6duwYTzzxRLRq1Wq78x999FHccMMNceyxx0aLFi3ilFNOib///e+7XLrArlA8AAAA\nAFQzyx6842vXNB/+gypIwu6oXr16cfLJJ0e/fv0iNzf968GNGzfG+PHjY/Lkydt9sXFlW79+fQwa\nNCiuvfbaKC0t3Tbepk2b+OUvfxnPP/98LFu2LEpLSyOVSmX8ueyyyxLNk+2nHf7l4IMPjrfffjsu\nvPDCqFu37g7XrVy5Mv72t7/F9773vdhjjz3iwgsvjMWLF1dhUvgnxQMAAABANbJ1w/pYNuVv5a7J\na1AcTY4bXkWJ2B3l5OTEoYceGmeeeWY0adIkY/6VV16J+fPnV3muiy++OJ5++um0sQEDBsTbb78d\n//Vf/xWHHXZYNG3adJffRVETNWnSJG644YZYvHhx/P73v49DDz203GJk7dq1ceONN0a3bt3if//3\nf6swKSgeAAAAAKqVFU9NjK1rV5e7pumJp0Ru0Y5/6xkqqk2bNnHOOedEjx49Muaq+qie2bNnx1/+\n8pe0sb322iv+/ve/R3FxcZVmqc6aN28eF1xwQbzwwgvx4YcfxnXXXRff/va3d1hCrF+/Pi655JK4\n9NJLqzgptZniAQAAAKAaKZnkmCWqVlFRUYwYMSIGDx6c1RcT/+1vf4tUKpU2dv7550f9+vWzlKj6\na9u2bfzkJz+JF198MRYuXBhXXXVVtG/ffrtrr7vuupg6dWoVJ6S2UjwAAAAAVBMbP3wv1r42o9w1\n9bodEPW67l9FiagtcnJyonfv3nH22WdHixYtdrhu1apVlZZh5syZGWNHHXVUpe23u2nfvn1cfvnl\n8f7778dNN9203Rdj/+53v8tCMmojxQMAAABANVHipdJk2R577BFnn312HHDAAdudf/bZZ+OVV17J\neDIhCZ9++mnGWOvWrXfqHpWRq6bJz8+PH/7wh/HYY49lHL80Y8aMrLw0nNpH8QAAAABQDaS2bIll\nD99V7pqcorrR5ISTqygRtVVBQUEMGTJku0f2bN26NSZPnhx///vfY+PGjYnum0RpsGLFigSSVB+f\nfvppjBkzJsaMGRMPP/zwTn22b9++0a9fv7SxTZs2VepTK/AvigcAAP5/9u48PKr6fv//PZkshCyQ\nBYLsW0D2fQuQIK5UQQQtWi11wQ+t1brbVn8/xU+tbS2tC+1HrK2ItSoWBZciWIVMIGGVzSAQlhDC\nFsi+kmXmfP+gTB0nM5mQZGaSeT6uy+vyvM9rzrnVUnTuvM8BAAB+oGTjGtUVnnU7E3PVHAVHd/RS\nIgS6mJgYl+f279+v1157TSdOnGi2+3Xu3Nlp7fjx4426RmZmZnPF8QslJSVavny5li9frvXr1zf6\n84MHD3Y4NplMioqKaq54gEsUDwAAAAAAAH4gf9UbDc7E33SPF5IAnikuLtayZcuUnp7eLLsVxo8f\n77T22Wefefz5nJwcbd++vck5/FV978BoSGFhocNxr169fPoCcQQOigcAAAAAAAAfq8k7qZL0tW5n\nwnomKnL0FC8lAuoXGhrqcGyz2fTFF1/onXfeUUVFRZOuPXfuXKe1pUuX1vvuh/o88cQTqqura1IG\nf/bVV18pNTXV4/mqqiqtW7fOYa2+v8dAS6B4AAAAAAAA8LGCj9+SGnjha/xNdzu9KBbwtmnTpqln\nz55O64cPH9bSpUuVnZ19yddOTk7WlVde6bBWUlKiWbNmKS8vz+XnDMPQz3/+c73//vuXfO/W4rbb\nbtOePXsanKurq9O9996rM2fO2NdiYmL06KOPtmQ8wI59NQAAAAAAAD5k2GzKX73M/ZDZrLiZd3gn\nEAJSbm6uVqxY4bC2b98+p7m0tDSNGTNGp0+f1tGjR+3rkydPVnl5ud566y0lJycrJSVFQUGN/5nn\nZcuWadKkSTp58qR9bceOHRo+fLgeeeQRzZ49W/3795fZbFZBQYE2bNigxYsXa+vWrWrfvr1GjBih\nzZs32z9rtVq1ePFi+3FwcLAeeugh+/Gnn36qAwcO2I8PHjzokKewsNDh8xfdd999at++vdu/FqvV\nqhdffNFh7bu7N44dO+Y233edOXNG48aN0/z583XLLbdo9OjRio+Pl8lkUl1dnY4cOaL169dryZIl\n2r9/v/1zYWFh+vvf/67LLrvMbWaguZiM5ngAGwAAAAAAAC5J6db1OrTwWrczHa+4Uf1eXOmlRAhE\nqampuuKKKy7584sWLXI47tWrl+bMmaPo6OhGX+vQoUO65ZZbXP5kv8lkUnBwsGpra+1r3bp10wcf\nfKBVq1bpd7/7nctrh4WF6fz58/bjW2+91alw8cTp06fVpUsXtzPnz59XeHh4o6773XxlZWV68skn\n9fbbb6u4uLjezwQFBSk0NNThc9/Wv39/vfHGG5o6dWqjsgBNwaOWAAAAAAAAfCh/VQO7HXThMUtA\na5KTk6OlS5cqKyur0Z9NTEzU1q1b9dJLL6lfv35O5w3DsJcOPXv21HPPPaesrCxNmDChybn9TVRU\nlJYsWaJTp05pxYoVmj9/vhISEhxmbDZbvaXDxIkT9eqrr2rfvn2UDvA6djwAAAAAAAD4SF1xgfZe\n3VNGbY3LmZBOXTXssyMyBfPEbPgnwzCUnp6u9evXq76vGidOnKirrrpKZrP5kq5/+PBhbd++XWfP\nnlV5ebk6dOigTp06aeTIkRo4cGBT47dKp06dUmZmpnJzc1VSUqLKykqFh4erQ4cO6t+/v0aOHKmO\nHTv6OiYCGMUDAAAAAACAj5x9Z4lyX3jE7UyXBb9Ut/v/10uJgEuXm5urDz74QCUlJU7nunbtqrlz\n5yo2NtYHyQB4G8UDAAAAAACADxiGof3fH62qQ5lu54Z+elBh3ft6KRXQNFVVVfrkk08cXmx8UWho\nqGbOnKmhQ4f6IBkAb6J4AAAAAAAA8IGKzO06cEeS25mo8VdowF8+91IioHkYhqEdO3Zo3bp1slqt\nTudHjx6t6667TiEhIT5IB8AbeLk0AAAAAACAD+SveqPBGV4qjdbIZDJp3LhxWrBggeLi4pzO79y5\nU6+//rrOnj3rg3QAvIEdDwAAAAAAAF5mrarQ3qt6yFZR5nLGHB2j4f8+rqCwdl5MBjSvmpoarVmz\nRnv27HE6FxwcrBkzZmjUqFEymUw+SAegpbDjAQAAAAAAwMuKPl/ptnSQpNjrf0DpgFYvNDRUs2fP\n1uzZs50erVRXV6dPPvlEH374oaqrq32UEEBLYMcDAAAAAACAlx24M0UVuzPczgx6/yu1HzDcS4mA\nlpefn6+VK1cqLy/P6VxMTIxuvvlmde3a1QfJADQ3djwAAAAAAAB4kWEYir1unsLdlArth4yldECb\nEx8frwULFmjcuHFO54qKivS3v/1NW7ZsET8nDbR+5kWLFi3ydQgAAAAAAIBAYTKZFDF0nAqGpWh9\nfo0Mk0kR5YUy26z2mcsWPqWIwWN8mBJoGUFBQUpMTFRCQoIOHz4sq/W//7s3DENHjhzR6dOn1a9f\nP6dHMwFoPXjUEgAAAAAAgA+8++67ysrKkiQF1dVqSFWehhQeVuU3OzX8i1yZI6N9nBBoWcXFxfrg\ngw904sQJp3PR0dGaM2eOevXq5YNkAJqK4gEAAAAAAMDLysrK9OKLLzo8UmbmzJkaPXq0agvPKSS2\nkw/TAd5jtVq1YcMGpaenO50zmUyaNm2apkyZoqAgnhgPtCb8igUAAAAAAPCy3bt3O5QOISEhGjJk\nyIU/p3RAADGbzbrqqqt0++23q3379g7nDMPQhg0b9Pbbb6usrMxHCQFcCooHAAAAAAAALzIMQ7t2\n7XJYGzp0qMLCwnyUCPC9/v3768c//rH69OnjdC47O1tLly7V4cOHfZAMwKXgUUsAAAAAAABelJ2d\nrbfeesth7Z577lH37t19lAjwHzabTZs2bVJqaqrq+9oyKSlJ06dPl9lsvqTrV9dZdSivXOfKq1Vr\ntSnEHKROkWFKTIhUWPClXROAs2BfBwAAAAAAAAgk393t0KlTJ3Xr1s1HaQD/EhQUpOTkZPXq1Usf\nfvihSktLHc5nZGTo+PHjmjt3rjp27OjRNQ+eKdN7249r27FCZeWVqdbqXGiEmE0akBCl8b1jdeu4\nnhrYJapZ/nqAQMWOBwAAAAAAAC+pqqrSH/7wB1mtVvvaNddco0mTJvkwFeCfKisr9dFHHykrK8vp\nXLt27TRr1iwNGjTI5efXH8jT0rSj2pZd2Oh7j+8Tqx8n99X0yxMa/VkAFA8AAAAAAABes23bNn32\n2Wf246CgID366KNOL9UFcIFhGNq6dav+/e9/y2azOZ0fO3asrr32WgUH//fBLoUVNXrm4336ZO+p\nJt9/5vCuenbWEMVGhDb5WkAgoXgAAAAAAADwAsMw9NprrykvL8++NnjwYN1yyy0+TAW0DqdOndLK\nlStVVFTkdC4hIUE333yz4uPjlXEkXz97b5fyy2ua7d7xkaF65dZRSuoX32zXBNo6igcAAAAAAAAv\nOHXqlF5//XWHtTvuuEP9+vXzUSKgdamurtann36qzMxMp3MhISHqPHK6XsgoUo3VeWdEU4UGB+nV\nH/zL1Y4AACAASURBVIzWlYN49BLgiSBfBwAAAAAAAGirDMNQ5f6dMgxDO3fudDjXoUMH9e3b10fJ\ngNYnLCxMc+bM0cyZMx0erSRJx8+30/Mbz7VI6SBJNXU2/eSdnco4kt8i1wfaGooHAAAAAACAFlKZ\nuU37b5ugfXNHqvSDvyikutJ+buTIkTKZTD5MB7Q+JpNJo0eP1r333qtOnTpJks4bwUqt7StbC3/V\nWVNn08/e26XCiuZ7jBPQVvGoJQAAAAAAgBaS878/Vv6Hf7Mf20xBOtP1ch3vNUK3//pldYyJ8WE6\noHWrra3V2rVr9cctRcq2xXntvjOHd9WS20Z57X5Aa8SOBwAAAAAAgBZgrSxX4doVDmtBhk1dT36j\niRnvKvcH45T39ss+Sge0fiEhIYpIHO/V0kGSPtl7SusP5DU8CAQwigcAAAAAAIAWUPT5P2WrLHd5\nvuZ0jmpO5XgxEdD2LE076pP7vuaj+wKtBcUDAAAAAABAC8hftazBmfib7vJCEqBtOnimTNuyC31y\n763ZhcrKK/PJvYHWgOIBAAAAAACgmVUd+UYVeza7nWk/dJzCE4d5KRHQ9ry3/biP75/r0/sD/ozi\nAQAAAAAAoJnlr/Zkt8PdXkgCtF3bjvlmt4P9/tkFPr0/4M8oHgAAAAAAAJqRrbZGhZ++7XYmKDxC\nsdfN81IioO2prrP6/FFHB/PKVF1n9WkGwF9RPAAAAAAAADSjktRPVFeU73Ym5pqbZY6I8lIioO05\nlFeuWqvh0wy1VkOH8ly/QB4IZBQPAAAAAAAAzSh/1RsNzvCYJaBpzpVX+zqCJCnfT3IA/obiAQAA\nAAAAoJlUn8pR6eZ/u51p13eQIkZM8lIioG2qtdp8HUGSVOMnOQB/Q/EAAAAAAADQTAo+fksy3D/+\nJf6mu2QymbyUCGibQsz+8bVmqJ/kAPwNvzIAAAAAAACagWG1quCjN93OmIJDFHv9Hd4JBLRhnSLD\nfB1BkhTvJzkAf0PxAAAAAAAA0AxKt36pmtPH3c50mDZLIbGdvJQIaLsSEyIVYvbtzqEQs0mJCZE+\nzQD4K4oHAAAAAACAZlCwalmDM/FzeKk00BzCgs0akBDl0wwDE6IUFmz2aQbAX1E8AAAAAAAANFFt\n4TkVb/jI7UxIlx6KnnCllxIBbdvp06fVsSbfpxnG94nz6f0Bfxbs6wAAAAAAAACtXeG/3pZRV+t2\nJv7GO2Uy89PRQFOcPn1aFotFBw8eVCdbO0lDfZbl1nE9fHZvwN9RPAAAAAAAADSBYRjKX/Wm+yGT\nSXE3/sgreYC26NSpU7JYLMrKyrKvxQSdV4KpTHmG9x+5NKFPrM8f9QT4M4oHAAAAAACAJqjYu0Xn\nj37jdiZ64lUK69rLS4mAtqO+wuHbhgWfUV6t9wuAhcl9vX5PoDWheAAAAAAAAGiC/FVvNDgTfxMv\nlQYa4+TJk7JYLDp06JDLmfDwcP1o0hiFHQ/XvzLzvJZt5vCumn55gtfuB7RGFA8AAAAAAACXyFpR\npqJ1/3Q7ExwTrw7TZnopEdC6eVo4JCUlady4cQoLC9OQihptPWZRfnlNi+eLjwzVs7OGtPh9gNaO\n4gEAAAAAAOASFa17X7aqCrczsdffrqDQMC8lAlqnEydOyGKx6PDhwy5n2rdvr0mTJmn8+PEKDQ21\nr8dGhOqVW0fpzje3q6bO1mIZQ4OD9MqtoxQbEdrwMBDgTIZhGL4OAQAAAAAA0Bod+OFkVXy9ze3M\n4JW7Fd6fn5AG6uNp4XBxh8O3C4fv+nJ/nn7yzs4WKR9Cg4P06g9G68pBPGIJ8ATFAwAAAAAAwCWo\nOpypb24e5XYmYvhEXf7WRi8lAlqP3NxcWSwWHTlyxOWMp4XDt2UcydfP3tvVrI9dio+8sKMiqV98\ns10TaOt41BIAAAAAAMAlyF+1rMGZ+Jvu8kISoPXIzc1Vamqqjh496nImIiJCSUlJGjt2rMeFw0VJ\n/eL1+UMpeubjffpk76mmxtXM4V317KwhPF4JaCR2PAAAAAAAADSSraZae6/uKWtJocuZoPaRGv5F\nrsztI72YDPBPx48fl8ViabBwmDx5ssaOHauQkJAm33P9gTy9lnZUW7Nd/zp1ZUKfWC1M7qvpl/No\nJeBSsOMBAAAAAACgkYo3fOS2dJCk2Gu/T+mAgJeTkyOLxaLs7GyXM81dOFw0/fIETb88QVl5ZXpv\ne662ZRfoYF6Zaq3OP4cdYjZpYEKUxveJ063jemhAQlSz5QACETseAAAAAAAAGinrxzNUtuULtzOX\n/32TIoZN8FIiwL94UjhERkZq8uTJGjNmTLMWDu5U11l1KK9c+eXVqrHaFGoOUnxkmBITIhUWbPZK\nBiAQsOMBAAAAAACgEQybTe16Jaoyc7us5SX1zrTrN0Tth473cjLA944dOyaLxaJjx465nPFF4XBR\nWLBZQ7t18Oo9gUDEjgcAAAAAAIBLcPibTKX+4Rn1PLZbcQXHHc51f2yxEu540EfJAO/ztHCYMmWK\nRo8e7fXCAYB3seMBAAAAAADgEuz+5oBO9hyukz2HK6KsQJfnH1KP3K9lLS1S3PW3+zoe0OIMw7AX\nDjk5OS7noqKi7DscgoP5OhIIBPxKBwAAAAAAaKTKykodOHDAflwRFadOt9yu4aNHq/LgbgXHxPsw\nHdCyGlM4XNzhQOEABBZ+xQMAAAAAADTS3r17ZbVa7cdms1nDhw+XKSREEUPH+TAZ0HIMw1B2drYs\nFouOHz/uci4qKkpTp07VqFGjKByAAMWvfAAAAAAAgEYwDEM7d+50WBs8eLDCw8N9lAhoWRcLh9TU\nVOXm5rqci46O1pQpUygcAFA8AAAAAAAANMbJkyd17tw5h7VRo0b5KA3QcgzD0NGjR2WxWBosHKZO\nnaqRI0dSOACQRPEAAAAAAADQKN/d7RATE6PevXv7JgzQAi4WDqmpqTpx4oTLuQ4dOmjKlCkUDgCc\n8P8IAAAAAAAAHqqpqdG+ffsc1kaNGiWTyeSjREDzMQxDR44ckcViabBwuLjDwWw2ezEhgNaC4gEA\nAAAAAMBD+/btU01Njf3YZDJpxIgRPkwENJ1hGDp8+LAsFotOnjzpco7CAYCnKB4AAAAAAAA89N3H\nLCUmJio6OtpHaYCm8bRw6Nixo6ZOnaoRI0ZQOADwCMUDAAAAAACAB86dO+f0+BleKo3WyDAMHTp0\nSBaLRadOnXI5R+EA4FJRPAAAAAAAALhRV1qk4OgYp90OERERSkxM9FEqoPE8LRxiYmI0depUDR8+\nnMIBwCWheAAAAAAAAHChMmuvDvxgoqKnzdQJWwcpuqv0nxdJ85x7tBaGYSgrK0sWi0WnT592ORcT\nE6Pk5GQNGzaM/20DaBKKBwAAAAAAABcKVi2TUVerki8+1EhJA8KjldtrpHJ7jeAxS/B7jS0chg8f\nrqCgIC8mBNBWmQzDMHwdAgAAAAAAwN/Yqs9r7zW9ZC0pdDpnyKQOSVer07yfqGPKDT5IB7hmGIYO\nHjwoi8WiM2fOuJyLjY2173CgcADQnNjxAAAAAAAAUI/iDR/VWzpIkkmGSjM+V2iXHhQP8BuGYejA\ngQNKS0ujcADgUxQPAAAAAAAA9chf9UaDM/E33e2FJIB7FwsHi8WivLw8l3NxcXFKTk7W0KFDKRwA\ntCiKBwAAAAAAgO+oPpmtsq3r3c6EJw5V+6HjvJQIcGYYhvbv36+0tDQKBwB+heIBAAAAAADgO/JX\nv9ngTNzsu2QymVo+DPAdFwsHi8Wis2fPupyLj49XcnKyhgwZQuEAwKsoHgAAAAAAAL7FqKtTwUfL\n3c6YQkIVd/3tXkoEXGAYhr755hulpaU1WDikpKRo8ODBFA4AfILiAQAAAAAA4FtKMz5X7dmTbmc6\nXnmTgjvGeSkRAt3FwsFisejcuXMu5zp16qTk5GQKBwA+R/EAAAAAAADwLfmrlzU4Ez/7Li8kQaCz\n2Wz2HQ4NFQ4Xdzjw+C8A/oDiAQAAAAAA4D9q88+oOO1TtzOhXXsravwVXkqEQGSz2bRv3z6lpaUp\nPz/f5Vznzp3tOxwoHAD4E4oHAAAAAACA/yj45G2prs7tTPxNd8nEY2zQAhpTOKSkpGjQoEEUDgD8\nEsUDAAAAAACALjxHv8HHLAUFKW7WfO8EQsCw2WzKzMxUWlqaCgoKXM4lJCQoOTmZwgGA36N4AAAA\nAAAAkFS+K13VOVluZ6KTrlVoQncvJUJb15jCISUlRZdffjmFA4BWgeIBAAAAAABAUv6Hf2twJn7O\n3V5IgrbOZrPp66+/VlpamgoLC13OdenSRSkpKRo4cCCFA4BWheIBAAAAAAAEPGtZiYq++MDtTHBs\nZ3Wcer2XEqEtonAAECgoHgAAAAAAQMArXPuejPNVbmfiZv5QppAQLyVCW2Kz2bR3715t3LixwcJh\n2rRpGjBgAIUDgFaN4gEAAAAAAAS8/FVvNDgTf9NdXkiCtsRqtdoLh6KiIpdzl112mVJSUigcALQZ\nFA8AAAAAACCgVR7YrcpvdrqdiRw9Re16D/RSIrR2nhYOXbt2VUpKihITEykcALQpFA8AAAAAACCg\n5a9e1uBM/Gx2O6BhVqtVe/bs0caNG1VcXOxyjsIBQFtnMgzD8HUIAAAAAAAAX7Cdr9Leq3vKWub6\nS+KgyGgN//dxmcMjvJgMrYmnhUO3bt2UkpKi/v37UzgAaNPY8QAAAAAAAAJW8frVbksHSYqdcSul\nA+pltVq1e/dubdy4USUlJS7nunXrpmnTpqlfv34UDgACAsUDAAAAAAAIWB69VJrHLOE7PC0cunfv\nrpSUFAoHAAGH4gEAAAAAAASk6twjKtue6nYmfMBwtR88xjuB4PesVqt27dqlTZs2NVg4TJs2TX37\n9qVwABCQKB4AAAAAAEBAyl/9ZoMz8XPu5otjqK6uzl44lJaWupzr0aOHUlJSKBwABDyKBwAAAAAA\nEHCMujoVfLzc7YwpNEyx3/uBlxLBHzWmcJg2bZr69OlD4QAAongAAAAAAAABqCR9rWrPnXY7E3Pl\nTQqOjvFSIviTuro67dy5U+np6W4Lh549eyolJYXCAQC+g+IBAAAAAAAEnPxVyxqciZ9zjxeSwJ9c\nLBw2bdqksrIyl3M9e/bUtGnT1Lt3bwoHAKgHxQMAAAAAAAgohtUqW6XrL5UlKbR7X0WOSfZSIvha\nXV2dvvrqK6Wnp7stHHr16qWUlBQKBwBoAMUDAAAAAAAIKCazWQP+8rmOZqRq+4tPq/vxvWpXXeEw\nEz/7LpmCgnwTEF5TW1tr3+FQXl7ucq537972wgEA0DCKBwAAAAAAEJC+PleiA0Ov1MHB09T5zGH1\nO7VPsScPSJLiZs33cTq0pNraWvsOBwoHAGh+FA8AAAAAACDgVFdXa9++fZIkI8isvK4DNWz+TzWs\nf2+V79qk0M5dfZwQLcHTwqFPnz5KSUlRr169vJgOANoOigcAAAAAABBwMjMzVVtbaz82mUwaMWKE\nQiMjFXvdPB8mQ0uora3Vjh07lJ6eroqKCpdzFA4A0DwoHgAAAAAAQMDZuXOnw/HAgQMVGRnpozRo\nKTU1NdqxY4cyMjLcFg59+/ZVSkqKevbs6cV0ANB2UTwAAAAAAICAcubMGZ06dcphbdSoUT5Kg5ZA\n4QAAvkXxAAAAAAAAAsquXbscjqOiotS/f38fpUFzqqmp0fbt25WRkaHKykqXc/369VNKSop69Ojh\nxXQAEDgoHgAAAAAAQMCoq6vT3r17HdZGjhypoKAgHyVCc/C0cOjfv79SUlLUvXt3L6YDgMBD8QAA\nAAAAAALG/v37df78eYc1HrPUetXU1Gjbtm3avHkzhQMA+BGKBwAAAAAAEDC++5ilPn36KCYmxkdp\ncKmqq6vtOxyqqqpcziUmJiolJUXdunXzYjoAAMUDAAAAAAAICEVFRcrOznZYY7dD61JdXW3f4UDh\nAAD+i+IBAAAAAAC0aYZhyGQyOe12aNeunQYNGuSjVGiM6upqbd26VVu2bHFbOAwYMEApKSnq2rWr\nF9MBAL6L4gEAAAAAALRZ53OydOjH31PsrPnaf65W3/4qZPjw4QoO5qsRf3axcNi8ebPTuzm+jcIB\nAPwLv7sCAAAAAACvysjIUEZGhtuZGTNmaMiQIU2+V/7qN1VzOkdnXvuVJkg617mvcnuP0pnLBmj0\n6NFNvj5axvnz5+07HNwVDgMHDlRKSoouu+wyL6YDADSE4gEAAAAAADTZkSNH9K9//UvdunXTTTfd\npKCgIJezn3/+uZ599lm314uPj29y8WDU1qrg47fsxyZJnc8eVeezR1XbLlI10VWqmn2XwvsNbtJ9\n0Hw8LRwuv/xyJScnUzgAgJ9y/W8BAAAAAACg2S1atEgmk8mjPz788MMWz/P00097lOXOO+90eY1N\nmzZpxIgRevDBB3XzzTdr7ty5LZ7bEyUb16iuIK/ecyHny3X27y/pzLIXvJwK9Tl//rxSU1P10ksv\nKTU11WXpcPnll2vhwoWaN28epQMA+DGKBwAAAAAA/NSvf/3rFr1+aWmplixZ0uTrPProo6qoqLAf\nr169WmvXrnU5v2jRIhmGYf8jOzu7yRnqk796WYMz8Tfd0yL3hme+XThYLBZVV1fXOzdo0CB74dCl\nSxcvpwQANBaPWgIAAAAAwIuuueYaRUZGOqytWLFCO3bscJrduXOn1qxZo+9973stkmXJkiUqLi52\nWo+JidGTTz7psDZ06FCX19m3b5/TWmZmpq677rqmh7xENXknVbLpM7czYT0TFTl6ipcS4duqqqq0\nZcsWbd261WXZIF0oHFJSUpSQkODFdACApqJ4AAAAAADAi5KSkpSUlOSwlpmZWW/xIEnPPfdcixQP\nFRUVeumll+o9Fx0drccee8zjaw0cOFA7d+50WBswYECT8jVVwcdvSTab25n4m+6SyWTyUiJIFwqH\nzZs3a9u2bW4Lh8GDBys5OZnCAQBaKYoHAAAAAAD82ObNm/Xll1/qyiuvbNbrvvrqq8rPz2+Wa73w\nwgu64YYb7M/lv+qqq3TDDTc0y7UvhWGzKf+jN90Pmc2Km/lDr+TBfwuHrVu3qqamxuUchQMAtA0U\nDwAAAAAA+JHw8HBVVVU5rD333HPNWjycP39ef/jDH1zer7GuvPJK7dmzR5999pm6dOmiuXPnKijI\nd6+VLNthUc2Jo25nOky9XiHxvCugpVVWVtp3OLgrHIYMGaLk5GR17tzZi+kAAC2F4gEAAAAAAD9y\n9913689//rPDWmpqqtLT0zV58uRmucdf//pXnTlzRpK0YMGCZnnB9IABA3z+eKWL8j98o8GZ+Dl3\neyFJ4PK0cBg6dKimTp1K4QAAbQzFAwAAAAAAfmTs2LG69tprtW7dOof1X/3qV1q7dm2Tr19TU6MX\nXnhBkhQXF6eFCxc2S/HgL+pKClW8fpXbmZBOXdUh6VovJQoslZWVysjI0LZt21RbW+tybujQoUpO\nTlanTp28mA4A4C0UDwAAAAAA+JmnnnrKqXhYt26dduzYobFjxzbp2suXL1dubq4k6aGHHlJEREST\nrudvCte8I6PG9UuLJSlu1nyZgvlKpDlVVFTYdzi4KxyGDRumqVOnUjgAQBvH77IAAAAAAPiZqVOn\nasqUKdq0aZPD+nPPPafVq1df8nWtVqt++9vfSpKio6N1//33q7i4uElZ/YlhGMpf5cFjlmbf2fJh\nAkRFRYUyMjK0fft2l4WDyWSy73CIj4/3ckIAgC9QPAAAAAAA4IeeeuopzZgxw2Ht448/1tdff61h\nw4Zd0jXfeecdHT164aXL9913nzp27NimiofKb75SVdbXKrMaOlwlHa82VGaTqm1SpFmKNktDx4zT\nyK69vZorJydHGRkZOnHihGw2m+Li4jRgwABNnDhRoaGhXs3SXCoqKpSenq4dO3a4LRwu7nCgcACA\nwELxAAAAAACAH7ruuus0evRo7dy5075mGIaee+45rVixotHXs9lsev755yVJ4eHhevjhhy8527Fj\nx9SnTx+3Mz/60Y/05ptvXvI9Gis9PV3Lf/5TfXmwTkfPuxk8vlWRHTtq5syZevjhhzVu3DiP77Fo\n0SI9++yzbmc2bNigadOmSZIyMjL05JNPymKx1DsbERGh++67T08++aQ6duzocQ5fKi8vV0ZGhkeF\nQ3JysuLi4rycEADgD4J8HQAAAAAAANTvySefdFpbuXKlDh482OhrrVy5UgcOHJAkLViwQJ07d25y\nPn+wdu1aDRw4UFOmTNHr6XucSgfzf/74tvLycr377rsaP3687r33XlVVVTV7rt///veaOnWqy9JB\nurBr4Pe//70mTpxof++GvyovL9e6dev08ssva/PmzfWWDiaTSSNGjNBPf/pT3XTTTZQOABDA2PEA\nAAAAAICfmjNnjgYNGqT9+/fb1y7uXFi+fLnH1zEMQ7/+9a8lSSEhIXr88ceblCs2Nla///3vHdae\nf/55FRUVNem6l2LLli3KyspyWEuKMmlOnEkjIkyKCTZJksqths5Mmq2NoV20bNkyVVZWSpL++te/\nKjMzUxs2bFC7du3c3uviToaLjh07Vu8/hz/96U964oknJEm9evXS9OnT1aVLF5WXl+vrr7/Wpk2b\nVFdXZ58/ePCg5s6dqy1btigoyL9+RrS8vNz+SKVvZ/62i4XD1KlTFRsb6+WEAAB/RPEAAAAAAICf\nMplM+uUvf6n58+c7rL/zzjtatGhRg487uujjjz/W3r17JUnz589Xjx49mpQrOjpajz32mMPan/70\nJ58UD99mkvRU9yDNjnP+8j7SbNLMR/9/zRs4Qg8++KBmzZpl3wGyZcsWLVy4sMEyZ9q0aQ7lQ2pq\nqtNnMjMz9cgjjygmJkb/93//p1tvvdXpOvv379fNN9+sb775xr62fft2LV++XHfddVcj/opbTllZ\nmdLT0/XVV19ROAAAGs2/anQAAAAAAODgtttucyoY6urq9Jvf/Mbja1zc7WA2m/WLX/yiWfP5k3nx\npnpLB0lqP3iM2g8cIUlKTEzU2rVrFRERYT//1ltvObxP41I9++yzCg4O1tq1a+stHSRp0KBB+vTT\nTxUSEuKw/re//a3J92+qsrIyrV27Vq+88oq2bt1ab+lgMpk0cuRI3X///brxxhspHQAATigeAAAA\nAADwY8HBwfbH9nzb8uXLdeLEiQY/v27dOm3fvl2SdMstt6h///7NntEfmCTN7+z6a474OXc7HPfq\n1UsLFy50WHvhhReanCM/P1+PP/64xo8f73auT58+mjt3rsNaenq6iouLm5zhUpSVlemzzz7Tyy+/\n7LJwCAoK0qhRo/TAAw9QOAAA3KJ4AAAAAADAz91111267LLLHNZqamo8+qL8ueeek3Thp9Tre1l1\nazd+7Bj9oHuE7k0IUucQU70zpnbhir12ntP6jBkzHI6/+OILGYbRpDwhISF6+OGHPZq9+uqrndYu\nPhLLW0pLS7VmzRq9/PLL2rZtm6xWq9PMxcLh/vvv16xZsxQTE+PVjACA1ofiAQAAAAAAPxcWFub0\nTgVJev3115WXl+fyc6mpqdq0aZMkaebMmRo2bFiLZfSVSeF1eiSuWv/TxfVXHLFX3yxzVAen9e7d\nuzscFxQUOLzI+1JMnz5dHTt29Gh28ODBTmtHjhxp0v09dbFweOWVV7R9+3aXhcPo0aP1wAMPUDgA\nABqF4gEAAAAAgFZg4cKFiouLc1g7f/68Fi9e7PIzF3c7SGqTux0kKX/VsgZnvvuYpYvatWvntHbq\n1Kkm5Rk3bpzHsz179nRaKykpadL9G1JSUqJ//etfHhcOM2fO9LhIAQDgomBfBwAAAAAAAA2LiIjQ\ngw8+qKefftphfenSpfrFL37hVEps2bJFX375pSTpyiuv1IQJE7yW1VtqzuSqNGOd87rN0JHz0ska\nQ+djusiyYZtsX25xmisqKnJaKygoaFKmgQMHejwbHR3ttFZWVtak+7tSUlKiTZs2adeuXfWWDdJ/\nH6k0ZcoUygYAQJNQPAAAAAAA0Eo88MADWrx4sUpLS+1r5eXlevHFFx12N0jSr371K/ufP/XUU17L\n6E0FH78l2WySpPM2Q2uLDK0psmlPhWT/aj3nlLT7UY+vWVVV1aRMjfnCPjw83GnNVSlwqUpKSrRx\n40bt2rVLtv/8vfquizscpkyZog4dnB9JBQBAY1E8AAAAAADQSnTs2FH33Xeffvvb3zqs/+lPf9Lj\njz9u/9J4165dWrNmjSRp0qRJuuKKK7yetaUZNpvyV78pScootel3J206WePbTNKFnSmeMpvNLZaj\nuLjYvsPBVeFgNpvtOxwoHAAAzYl3PAAAAAAA0Io8/PDDTj8pX1JSoiVLltiPA+HdDmXbNqjm1DF9\nXGjTQ9mOpUOQpGs6mvTqrCTl5OSosrJShmE4/ZGdnd3suUwmU7NfszGKi4v1ySefaMmSJfrqq6/q\nLR3MZrPGjRunn/3sZ7r++uspHQAAzY4dDwAAAAAAtCKdO3fWggULHIoGSXrppZf00EMPKScnR6tW\nrZIkjRgxQjfccIMvYra4/FVv6JtKQ8/l2vTtr9YjgqSX+5g1MtKk/o/9f+pQzwuc26Li4mJt3LhR\nu3fvdrvD4eIjlep7vwQAAM2F4gEAAAAAgFbm8ccf19KlS1VbW2tfKygo0Kuvvqpdu3bJMAxJbXe3\ng1Fbq4q9W7X4pFXf/Yr9qe5BGhlpUkjnbopOusYn+bypqKhIGzdu1J49e9wWDmPGjNHkyZMpHAAA\nXkHxAAAAAABAK9OjRw/98Ic/1BtvvOGw/rvf/U7FxcWSpAEDBujmm2/2RbwWZwoJUeQrn2nvgAEO\n65eFSFd3vPCoo7gbfyRTC75DwdeKioqUlpamvXv3Nlg4TJkyRVFRUV5OCAAIZBQPAAAAAAC0Qr/4\nxS/05ptvOnzpXFBQ4HA+KKjtvtoxY9s2p7XhHdvJZKqTJMXPvtPLibyjsLDQvsPh4s6W7woOGyGn\n/AAAIABJREFUDrbvcKBwAAD4AsUDAAAAAACtUGJior7//e/rvffeczrXs2dP3XHHHT5I5T0nTpxw\nWouZfqMSH1moir1bFdatT4PXcPXFvT+icAAAtCYUDwAAAAAAtFJPPvmkVqxY4fRF9BNPPKGQkBAf\npfKOM2fOOK11TkhQ9PgrFD3+Co+uUVRU1Nyxml1hYaH9kUruCoexY8dq8uTJioyM9HJCAACcUTwA\nAAAAANBKDRs2TDfccIM++eQT+1pCQoLuueceH6byjrKyMqe1s2fPNuoamZmZzRWn2RUUFGjjxo0N\nFg7jxo1TUlIShQMAwK9QPAAAAAAA0Io9/fTTqqmpsR/PmzdP7dq182GilldQUFDvX+OXX36pmpoa\nhYaGenSdf/7zn80drckqKyu1atUqff311xQOAIBWi+IBAAAAAIBWbOzYsVq7dq2vY3jVrl271KlT\nJ8XHxys/P9++fu7cOf35z3/Www8/3OA11q9fr08//bQlY16S7du3KyIiot5zISEh9sLB1QwAAP6A\n4gEAAAAAALQaVqtVu3fvliRNnz5d77//vsP5n//85+rTp49mz57t8hpbt27VvHnzWjTnpapvlwOF\nAwCgtaF4AAAAAADAi3Jzc7VixQqHtX379tn/fO3atQ4/xS9Jjz32WLPdf8WKFcrNzbUf1/eC5dLS\nUi1evNhhLSkpSUlJSfbzf/nLX5w+82379u1zuEaHDh107733SpIyMjKUkZHhNsN3/z5cvP+hQ4dU\nUVEhSRo8eLDGjBmjr776yj5XW1urOXPmaN68ebr33ns1YcIERUREqKamRnv27NFbb72lv/zlL6qp\nqdFVV12lL774wu19Z8yYoSFDhkhy/md35MgRp9wrVqzQjh077Mfz5s1Tjx497Mevv/66SkpKVF5e\nrqNHjzp9Pjc3V+np6ZIks9ms6667TgsWLKBwAAC0KibD1QMDAQAAAABAs0tNTdUVV1zRqM8053+6\nT5s2TRaLpdGfe+aZZ7Ro0SJJ0rFjx9SnT59Gfb5Xr146duyYJGnRokV69tlnL+n+7777rrKysuzr\nXbt21cGDB/XHP/7R5d+n0NBQh/dgmM1mPfHEE7r33nvVt29ft/ddtmyZ7rzzTkmX9s9uw4YNmjZt\nmv24Z8+eDsVPQ7799x0AgNYiyNcBAAAAAAAAPFFaWqpDhw45rI0dO1aLFy9WWlqabrjhBpnNZqfP\nXSwd2rdvr7lz52rPnj16/vnnZTKZvJJbks6ePauVK1c67QwBAKAtYscDAAAAAABoFdLS0rRhwwb7\ncWhoqB599FGFhoba10pLS7V582ZlZ2erqKhIISEhio+PV+/evTVp0iSFhYV5NfPZs2eVlpbm8Dit\n7woNDdWECRM0ceJEtW/f3ovpAABoGbzjAQAAAAAA+K2aM7nK+dVPFHfjndqz77jDuSFDhjiUDpIU\nHR2ta6+91psR65WXl6e0tDR98803LmcuFg6TJk1SeHi4F9MBANCyKB4AAAAAAIDfyv9ouUrT16k0\nfZ3GhLbXiZ7DlNtrpMqjO2n06NG+juckLy9PFotF+/fvdzkTFhZm3+FA4QAAaIsoHgAAAAAAgF8y\nrFYVrF5mPw6rqVS/w1vV7/BWlSX0UdjwnrLG3iJz+0gfprzgzJkzSktLo3AAAEC84wEAAAAAAPip\n0ox/69B933M7E3Pdrer72797KZGzM2fOyGKx6MCBAy5nwsLCNHHiRE2YMIHCAQAQENjxAAAAAAAA\n/FL+t3Y7uBI38w4vJHF2+vRppaWleVQ4TJw4Ue3atfNiOgAAfIviAQAAAAAA+J26onwVr1/tdiak\nSw9FT7zKS4kuOH36tCwWiw4ePOhypl27dvYdDhQOAIBARPEAAAAAAAD8TsGnb8uoq3U7Ez/rRzKZ\nzV7J42nhMGnSJI0fP57CAQAQ0CgeAAAAAACAXzEMQ/mr33Q/ZDIp7sYftXiWU6dOyWKxKCsry+XM\nxcJhwoQJCgsLa/FMAAD4O4oHAAAAAADgVyq+3qrzR/a5nYmacKXCuvVusQyeFA7h4eH2HQ4UDgAA\n/BfFAwAAAAAA8Cv5q95ocCb+prtb5N4nT56UxWLRoUOHXM5QOAAA4J7JMAzD1yEAAAAAAAAkyVpR\npr1X9ZCtqsLljLljnIZ/nqOg0Ob70v/EiROyWCw6fPiwy5nw8HAlJSVp3LhxFA4AALjBjgcAAAAA\nAOA3ij7/p9vSQZLirr+92UoHTwqH9u3b23c4hIaGNst9AQBoyygeAAAAAACAT1TXWXUor1znyqtV\na7UpxByk8k//pU5BwQqx1bn8XPxNdzX53rm5ubJYLDpy5IjLmfbt29t3OFA4AADgOR61BAAAAAAA\nvObgmTK9t/24th0rVFZemWqtzl9LBNtq1aPsuAYXfaOrcv+tnuXH7ecihk/Q5W9tuuT7e1o4TJ48\nWWPHjqVwAADgElA8AAAAAACAFrf+QJ6Wph3VtuzCRn92cGGmZh9dpTHnvlKvp5cqfs49jb7G8ePH\nZbFYdPToUZczERERSkpKonAAAKCJKB4AAAAAAECLKayo0TMf79Mne081+VpT8jL04u8eVadOsR5/\nxtPC4eIOh5CQkCbnBAAg0FE8AAAAAACAFpFxJF8/e2+X8strmu2a8ZGheuXWUUrqF+92LicnRxaL\nRdnZ2S5nKBwAAGgZFA8AAAAAAKDZfbk/Tz/5x07VWG3Nfu3Q4CC9+oPRunJQgtO5nJwcpaam6tix\nYy4/HxkZqcmTJ2vMmDEUDgAAtACKBwAAAAAA0KwyjuTrzmXbW6R0uCg0OEhv3jnOvvPh2LFjslgs\nFA4AAPgBigcAAAAAANBsCitqdM1LlmZ9vJIr8ZGh+uucPtq9dZNycnJczkVGRmrKlCkaPXo0hQMA\nAF5A8QAAAAAAAJrNA+/uapYXSXuqT1CBpoXW/x6HqKgo+w6H4OBgr2UCACDQ8bsuAAAAAABoFusP\n5Hm1dJCkbFuc+lkL1cNcYl+Lioqy73CgcAAAwPv43RcAAAAAADSLpWlHfXLfzLou6mEuUVRUlKZO\nnapRo0ZROAAA4EP8LgwAAAAAAJrs4Jkybcsu9Mm9zxhRGjblGs1KGUfhAACAHwjydQAAAAAAAND6\nvbf9uE/vn1nVgdIBAAA/QfEAAAAAAACabNsx3+x2sN8/u8Cn9wcAAP9F8QAAAAAAAJqkus6qrLwy\nn2Y4mFem6jqrTzMAAIALKB4AAAAAAECTHMorV63V8GmGWquhQ3nlPs0AAAAuoHgAAAAAAABNcq68\n2tcRJEn5fpIDAIBAR/EAAAAAAACapNZq83UESVKNn+QAACDQUTwAAAAAAIAmCTH7x9cLoX6SAwCA\nQMfvyAAAAAAAoEk6RYb5OoIkKd5PcgAAEOgoHgAAAAAAQJMkJkQqxGzyaYYQs0mJCZE+zQAAAC6g\neAAAAAAAAE0SFmzWgIQon2YYmBClsGCzTzMAAIALKB4AAAAAAECTje8d69v794nz6f0BAMB/UTwA\nAAAAAIAmu3VcTx/fv4dP7w8AAP6L4gEAAAAAADTZwC5RGt/HN7seJvSJ9fmjngAAwH9RPAAAAAAA\ngGbx4+S+PrnvQh/dFwAA1I/iAQAAAAAANIvhB9Zo8qk0r95z5vCumn55glfvCQAA3Av2dQAAAAAA\nAND6Fa57XznPLtSC4Ehlxg1XSVjHFr9nfGSonp01pMXvAwAAGocdDwAAAAAAoEmK0/6l7Kd+JBmG\nomvL9PDuxQqx1rToPUODg/TKraMUGxHaovcBAACNR/EAAAAAAAAuWem2DTr62Dyprs6+NqwwU4/t\neqHFyofQ4CC9+oPRSuoX3yLXBwAATWMyDMPwdQgAAAAAAND6lO/ZrEM/niFbVUW957+OHaoXRz7W\nrI9dio8M1Su3jqJ0AADAj1E8AAAAAACARqs8sFtZC66StbzE7VxpSJT+OvhepXdNbvI9Zw7vqmdn\nDeHxSgAA+DleLg0AAAAAABrlfPYBHfrJ9xosHSQpurZML87oqcyRY/Va2lFtzS5s9P0m9InVwuS+\nmn55wqXEBQAAXsaOBwAAAAAA4LHqk9k6eNcVqj170qP5rg88p8vu+bn9OCuvTO9tz9W27AIdzCtT\nrdX5a4kQs0kDE6I0vk+cbh3XQwMSopotPwAAaHkUDwAAAAAAwCM1eSd18O4rVHMy26P5Lnf/XN1+\n9pzL89V1Vh3KK1d+ebVqrDaFmoMUHxmmxIRIhQWbmys2AADwMooHAAAAAADQoNrCc8q6Z7rOZx/w\naL7TbT9VjydelMlkauFkAADA3wT5OgAAAAAAAPBvhmHoyENzPC4d4mbNV4/H/0jpAABAgKJ4AAAA\nAAAAbplMJnW9/39lCo9ocDbm6pvV65m/yBTEVw4AAAQq/i0AAAAAAAA0KGTYRGVe+z+qCWnnciZ6\nygz1fn65TGbezwAAQCCjeAAAAAAAAG5VV1fr7bffVrYpQlum3KHq0PZOM5FjU9Rv8QoFhYT6ICEA\nAPAnvFwaAAAAAAC4VFtbq3/84x/Kycmxr0WU5Ssp412FVZZcOB42XolL18ocEeWrmAAAwI+w4wEA\nAAAAANSrrq5O77//vkPpIEnmbn2V+LcvFdq9r8IHDFP/P39K6QAAAOzY8QAAAAAAAJzYbDatXLlS\n+/fvd1iPiIjQXXfdpbi4ONXknZQpOFghcQk+SgkAAPwRxQMAAAAAAHBgGIZWr16tvXv3Oqy3a9dO\nd955pxISKBoAAIBrPGoJAAAAAADYGYahNWvWOJUOoaGhuv322ykdAABAgygeAAAAAACApAulwxdf\nfKEdO3Y4rAcHB+u2225T9+7dfZQMAAC0JhQPAAAAAAAEsOINH6u2IE+StHHjRmVkZDicDwoK0ve/\n/3317t3bB+kAAEBrFOzrAAAAAAAAwDeK1q/W0cdvVVi3vir/8W+0Yftuh/Mmk0lz585VYmKijxIC\nAIDWiJdLAwAAAAAQgEoyPteRn82WUVcrSaoMj9aWKXeoMjLWPnPjjTdq5MiRvooIAABaKR61BAAA\nAABAgCn7aqOOPHKzvXSQpPZVpUpKe0tRpWclSTNmzKB0AAAAl4QdDwAAAAAABJCKzO3KWnitbBVl\n9Z6vCQmX7aEXNfn2e7ycDAAAtBUUDwAAAAAABIiqw5k6eM+VspYUup0LiohS/yUfK2r0FC8lAwAA\nbQmPWgIAAAAAIACczzmkrIXXNVg6SJKtokxVB3Z5IRUAAGiLKB4AAAAAAGjjak4fV9bCa1VXkOfR\n/GU/eUadf/BAC6cCAABtFcUDAAAAAABtWG3+GWX9z7WqPZPr0XzC/Ed02f881cKpAABAW0bxAAAA\nAABAG1VXUqhDP5mh6tzDHs3H3/I/6vbwb2UymVo4GQAAaMsoHgAAAAAAaIOs5aU6dN/1qjqU6dF8\n7PduU89fLqF0AAAATUbxAAAAAABAG2OrqtThB2erct8Oj+Y7XnGjev/vGzIF8TUBAABoOv6NAgAA\nAACANsRWU60jj31f5V9t9Gg+etLV6vO7f8gUHNzCyQAAQKCgeAAAAAAAoI0w6uqU/csfqjR9nUfz\nkaMmq98fVyooNKyFkwEAgEBC8QAAAAAAQBtg2Gw6tmiBir9c5dF8+8Gj1f+VjxQU3r6FkwEAgEBD\n8QAAAAAAQCtnGIZyf/MzFX76D4/m2/UbosT/WyNzVIcWTgYAAAIRxQMAAAAAAK2YYRg6+fKTOvfP\n1zyaD+vRXwOWfqbgjnEtnAwAAAQqigcAAAAAAFqxM3/9jfLeXOzRbEiXHkp8ba1COl3WwqkAAEAg\no3gAAAAAAKCVyvvHKzr152c8mg2OS9CA19YqrGuvFk4FAAACHcUDAAAAAACtUP7qZTrx+0c9mjVH\nxyjx1TVq12tAC6cCAACQTIZhGL4OAQAAAAAAPFe47n1l/+IOyYP/pA9qH6kBr61TxLDxXkgGAADA\njgcAAAAAAFqVYsunyn7qRx6VDqawdur/ykeUDgAAwKvY8QAAAAAAQCtReWCXDsyfKqOmusFZU3CI\n+r30oTpMuc4LyQAAAP6LHQ8AAAAAALQS4f2HKeaamxseDApSn9++TekAAAB8guIBAAAAAIBWwhQc\nrLr5Tyqnzxi3c70Xva6Yq+Z4KRUAAICjYF8HAAAAAAAAnsnJydH7//yn6kZcp7rgUPU7tNlppscv\nX1HcrPk+SAcAAHABOx4AAAAAAGgFTp48qXfeeUd1dXX/j737jq+qMP8H/twsNkKYMpQhiIu6V911\ni3tAFShWK6h1Sx1daq1fFeuerVUUVBC3VXFUbWttHXUvNgooeyUhZN7fH/5KexvGBXNzQ/J+v17+\nkec+55xP/Ivkk3NORCIRn29zQEzaat+Una7nXRMdB56ZpYQAAN9SPAAAAEA9N2/evBg7dmyUl5f/\nZ5hIRLOTzo5uF98QERGdT78sOp86MksJAQD+w6OWAAAAoB5btGhRjBkzJlauXJky79evXxx99NGR\nk5MTLbbbNVr03z1LCQEAUiWSyWQy2yEAAACAmpYuXRr3339/LF++PGXeu3fvGDRoUOTl+XtCAKD+\n8aglAAAAqIeKiopizJgxNUqHzTbbLAYOHKh0AADqLcUDAAAA1DMrVqyIMWPGxOLFi1Pmm266afzw\nhz+M/Pz8LCUDAFg3xQMAAABkWbKiIpa89FhERJSVlcVDDz0UCxYsSNnp0KFDDB48OJo2bZqNiAAA\naXNfJgAAAGRRsqoqZvxiWCx58dHo8Nm/4s+t+8TXX3+dslNYWBhDhgyJ5s2bZyklAED6vFwaAAAA\nsiRZXR1fXjU8Fj01etVsRq9d4tP+B0ckEhER0bp16zj11FOjTZs2WUoJALB+PGoJAAAAsiCZTMbs\nURellA4RET2nvxPfe+/ZiGR1tGjRIoYOHap0AAA2Kh61BAAAAFnw9Z1XxPxHbl/tZ92/+igKktWx\n413PRLt27eo4GQDAd+OOBwAAAKhjc++/Ieb+4Zq17nSa9UkUXXt2VK8sraNUAAC1Q/EAAAAAdWj+\n+Ltizi2XpbW74tN3onz+nAwnAgCoXYoHAAAAqCOLnh0Ts/7v3LR2c1q2jj53PhdNN9siw6kAAGpX\nIplMJrMdAgAAABq6Ja88EdN/9sOI6up17uY0bR597n4hWm6/Zx0kAwCoXe54AAAAgAxb9sbEmHHp\n4LRKh0R+QfS++QmlAwCw0VI8AAAAQAYVvfvXmHbRiZGsrFj3cm5u9Bo1Llrv/oPMBwMAyBDFAwAA\nAGRIycdvx9Rzj45k2cp1LycS0fPq0dFmvyMzHwwAIIMUDwAAAJABKyZ/FFPOHhDVK4rT2t/8l3dF\n4WGDMpwKACDzFA8AAABQy1Z+OTmmnHl4VC1fktZ+t4tviPbHnZbhVAAAdUPxAAAAALWo7OsvY/Lw\nQ6Ny0by09rucdUV0GnxehlMBANQdxQMAAADUkooF38SU4YdGxdxZae13GnphdP7J5RlOBQBQtxQP\nAAAAUAsqly6KySMOi7JZU9Pab3/iGdH1gmsjkUhkOBkAQN1SPAAAAMB3VFW8PKacdUSsnPZpWvuF\nR5wcm112m9IBAGiQFA8AAADwHVSXroip5x4dKz77V1r7bQ44Jnpc+cdI5PiRHABomPwrBwAAADZQ\ndXlZTLvwhCh+74209lvveXD0vHZsJPLyMpwMACB7FA8AAACwAZKVlTHj0sGx/B8vp7Xfcse9ovfv\nJkROQZMMJwMAyC7FAwAAAKynZHV1zPz1abH01afS2m++9U6xxa1PR06z5hlOBgCQfYoHAAAAWE9z\nbr4sFj/3cFq7TbfYJvrc+Vzktmyd4VQAAPWD4gEAAADWU+GAUyKvsOM695p03yL63j0x8tq0q4NU\nAAD1g+IBAAAA1lOzPtvF7FN+HqXNWq1xJ79z9+hzz8TIb9+5DpMBAGSf4gEAAADWQzKZjIkTJ8a7\nsxfEm3v/KEpatK2xk9euU/S958Vo0mXzLCQEAMguxQMAAACsh9deey3efvvtiIgobdEm3tx7aBS1\n7rDq89zWbaPv3S9E0837ZCsiAEBWKR4AAAAgTW+88Ub87W9/S5lVtNgkOv/uiWi+1Q6R07xl9Lnj\nT9Gsz3ZZSggAkH2JZDKZzHYIAAAAqO/efvvteOGFF2rMjz/++Nh2222jqmhZrPxycrTYdpcspAMA\nqD8UDwAAALAOH3zwQTz99NM15kceeWTsuOOOWUgEAFB/edQSAAAArMVnn30WzzzzTI35IYcconQA\nAFgNxQMAAACswZQpU+Lxxx+P/31YwP777x+77757llIBANRvigcAAAD4/0qnfx4rv5wcEREzZ86M\nRx99NKqrq1N29txzz9h7772zEQ8AYKOQl+0AAAAAUB+UzZ4eU4YfGsnqqmh95egY97d3orKyMmVn\n5513jgMPPDASiUSWUgIA1H9eLg0AAECjVz5vdkw6df8o/3pmRERUFDSLt/YYFEsLu67a6d+/fxxz\nzDFKBwCAdfCoJQAAABq1isXzY/LwQ1eVDhER+eWlsfvfH4rChV9GRMRWW20VRx99tNIBACANigcA\nAAAarcrlS2LKiMOibOakGp/lVZbHbm8+Et/LXRHHHXdc5OT4ERoAIB3+1QQAAECjVFVSFFN/emSU\nTv5ojTu5VZWx2VO3RdHrz9RhMgCAjZviAQAAgEanemVpTDv/uCj56K117iYrK2Lxcw+HVyQCAKRH\n8QAAAECjUl1RHtNHDoqid15Pa7/VbgdEz2vHer8DAECaFA8AAAA0Gsmqqpj582Gx7G/Pp7Xf4nt7\nRO+bHo+cJk0znAwAoOFQPAAAANAoJKur48urhseSlyaktd+s3/axxW3PRG7zlhlOBgDQsCgeAAAA\naPCSyWTMGnVhLHr6gbT2m/bsF33ufD7yWrfJcDIAgIZH8QAAAECD9/Xtv4oFj9yR1m5B157R5+6J\nkV/YIcOpAAAaJsUDAAAADdrc+66PuX+8Nq3d/A5dou/vX4yCTl0znAoAoOFSPAAAANBgzR93R8y5\n9edp7ea1bR997pkYTbr2zHAqAICGTfEAAABAg7Tw6Qdi1rXnp7Wb23KT6HPX89Gs11YZTgUA0PAp\nHgAAAGhwlrz8eHx55Rlp7eY0axFb3PFsNO+3Q4ZTAQA0DooHAAAAGpRlf3shZlw2JKK6ep27iYIm\n0fuWJ6Pl9/aog2QAAI2D4gEAAIAGo+idv8S0i0+KZGXFupfz8qLXDeOj9a77Zz4YAEAjongAAACg\nQSj5+K2Yet4xkSxbue7lnJzo+dsHos0+R2Q+GABAI6N4AAAAYKO3YvJHMeXsI6N6RXFa+5v/6u4o\nPOSkDKcCAGicFA8AAABs1FbOnBRTRhwWVcuXpLXfbeTvov0xp2Y4FQBA46V4AAAAYKNVNmdmTB5+\naFQunp/Wfpezr4xOp5yb4VQAAI2b4gEAAICNUuXyJTFlxKFRMW92Wvudhl0cnU+/LMOpAABQPAAA\nALBRym3VJtr84Ni0djucNCK6nndNJBKJDKcCAEDxAAAAwEYpkUhEy2GXxMwdDl3rXuGAwdH90luU\nDgAAdSQv2wEAAABgQxQXF8fYsWNjUY+do6SyOrb5+KUaO20OPC56XPGHSOT4uzsAgLqSSCaTyWyH\nAAAAgPVRWloaDzzwQMybN2/VrPvMD6L/+89FIr79Mbf19w+J3jc/ETn5BdmKCQDQKPmTDwAAADYq\nZWVl8dBDD6WUDhERpTsfGF2v/GNEXl603Gnv6H3Do0oHAIAs8KglAAAANhoVFRUxbty4mDNnTsq8\nTZs2MWTIkGjdunW07NI9mm+1Y+Q0a56llAAAjZtHLQEAALBRqKqqivHjx8eUKVNS5q1atYpTTz01\n2rZtm6VkAAD8N49aAgAAoN6rrq6OJ554okbp0Lx58xg6dKjSAQCgHlE8AAAAUK8lk8l49tln47PP\nPkuZN23aNIYMGRLt27fPUjIAAFZH8QAAAEC9s/zt1yJZXR3JZDJeeOGF+OCDD1I+z8/Pj5NPPjk6\nd+6cpYQAAKyJl0sDAABQryx47A/x1dVnRbsjh8S0vQfFO++8k/J5bm5u/PCHP4zu3btnKSEAAGvj\n5dIAAADUG4ueezhm/mJYxP//UfWbLv3ivV2OjWRObkRE5OTkxMCBA6Nv375ZTAkAwNooHgAAAKgX\nlr72TEy7+KSIqqqU+fxOvePd3U6IZF5BHHfccbHttttmKSEAAOlQPAAAAJB1y//xSkw99+hIVpSv\n9vNF7TeL9lc9EDvuuVcdJwMAYH15uTQAAABZVfz+GzHtguPXWDpERLRb+FU0u/NnUblscR0mAwBg\nQygeAAAAyJqSz/4VU845OqpXrljn7opP3onif/2tDlIBAPBdKB4AAADIitKpn8aUs46I6uLlae1v\ndvlt0eaAozOcCgCA70rxAAAAQJ0rmzUtppx5WFQtXZTWftfzr40OJ43IcCoAAGqD4gEAAIA6VT53\nVkw+45CoWPBNWvubnvHz6DzsogynAgCgtigeAAAAqDMVi+bF5OGHRvk3X6a13/GUc2PTM3+d4VQA\nANQmxQMAAAB1onLZ4phy5mFR9uXktPbbH/vj6HbxDZFIJDKcDACA2qR4AAAAIOOqSopiytkDonTy\nx2nttz10UGz2izuVDgAAGyHFAwAAABlVvbI0pp53bKz45J209jfZ78jo+Zv7IpGbm+FkAABkguIB\nAACAjKmuKI9pFw+M4nf/ktZ+q90OiF7XPRyJ/PwMJwMAIFMUDwAAAGREsrIyZl7+o1j+xgtp7bf4\n3h7R++YnIqdJ0wwnAwAgkxQPAAAA1LpkdXV8edXwWPLyY2ntN+u3fWxx2zOR26xFhpMBAJBpigcA\nAABqVTKZjFnXXxCLnnkwrf2mvbaKPnc+H3mt22Q4GQAAdUHxAAAAQK36+rZfxoJxd6a1W9CtV/S5\ne2LkF3bIcCoAAOqK4gEAAIBa880fr4u5912X1m5+x67R954Xo6BjlwynAgCgLikeAABOEmL4AAAg\nAElEQVQAqBXzH7k9vr7tF2nt5rXtEH3vmRhNuvbIbCgAAOqc4gEAAIDvbOFTo2PWdRektZvbqk30\nufuFaNqzX4ZTAQCQDYlkMpnMdggAAAA2XktffTqmXXxSRHX1OndzmrWIPvdMjJb9d6+DZAAAZIM7\nHgAAAPhOmvXbPpp07bnOvURBk+h9y5NKBwCABk7xAAAAwHfSpMvmUTXyjljeqsOal/LyovcNj0br\nXfevu2AAAGSF4gEAAIDv5PPPP4+nX/97/GPvIbG0zaY1F3JyoudvH4xN9jm87sMBAFDnFA8AAABs\nsGnTpsXjjz8eyWQyKpo0j3/uNTgWteuesrP5r+6JwkNOzFJCAADqmuIBAACADfLVV1/FuHHjoqqq\natWsMr9JJM+/KVrtcVBERHS/5KZof8ywLCUEACAbEslkMpntEAAAAGxcvv7663jwwQejrKwsZb7j\njjvGgAEDIllRHsv++ly0PfC4LCUEACBbFA8AAACsl/nz58fo0aOjtLQ0Zb7ddtvFMcccEzk5bq4H\nAGjM/GsQAACAtC1evDjGjBlTo3TYcsst4+ijj1Y6AACgeAAAACA9y5YtiwcffDCKi4tT5r169YoT\nTjghcnNzs5QMAID6RPEAAADAalWVlsSKSR9GRERxcXGMGTMmli1blrLTvXv3GDhwYOTl5WUjIgAA\n9ZB/GQIAAFBDddnKmHb+8VHy8VvRfdSjMeGjqbFo0aKUnU033TROPvnkKCgoyFJKAADqIy+XBgAA\nIEWyoiKmjRwYy15/NiIiqnPz451dj48FnbdYtdO+ffsYNmxYtGjRIlsxAQCopzxqCQAAgFWSVVUx\n45c/XlU6RETkVFXELv98NDad83lERLRt2zaGDh2qdAAAYLXc8QAAAEBERCSTyfjqqhGx8Mn7Vv95\nJGLS90+MI357R7Rp06aO0wEAsLFwxwMAAACRTCZj9u9GrrF0iIhIRDL6/f3RKJ/4cB0mAwBgY6N4\nAAAAIL6566qYP/aWtHbnPXBjVK0oznAiAAA2VooHAACARm7uAzfGN7+/Oq3dvPado889EyO3ecsM\npwIAYGOleAAAAGjEFky4J+bcdElau7lt2kXfuydG0822yHAqAAA2ZooHAACARmrRcw/FV9eck9Zu\nTsvW0efO56LZFttkOBUAABu7RDKZTGY7BAAAAHVryatPxfSRgyKqqta5m2jaLPre9Xy03GGvOkgG\nAMDGzh0PAAAAjczyN1+OGZeckl7pkF8QW9z4uNIBAIC0KR4AAAAakaL33oipFx4fyYrydS/n5kav\n6x6O1nselPlgAAA0GIoHAACARqLk03dj6jlHRXJl6bqXE4nocdV90eaAozMfDACABkXxAAAA0AiU\nTv0kppx1RFSXFKW1v9nP74h2R5yc4VQAADREigcAAIAGbuWXU2LyiMOiatnitPa7XXh9dDjhJxlO\nBQBAQ6V4AAAAaMDKv/kqpow4NCoXzk1rf9Phv4xOQy/IcCoAABoyxQMAAEADVbFwbkwefmiUf/NV\nWvsdh5wfm474ZYZTAQDQ0CkeAAAAGqDKZYtjypmHRdlXU9Lab3/86dHtwusjkUhkOBkAAA2d4gEA\nAKCBqSopiilnHRGlUz5Ja7/wsEGx2eW3Kx0AAKgVigcAAIAGpLp0RUw995hY8em7ae1vst9R0eOq\n+yKRm5vhZAAANBaKBwAAgAaiuqI8pl08MIr/9de09lvt9oPodd1DkcjPz3AyAAAaE8UDAABAA5BM\nJmPGZUNj+d8nprXfYvs9o/fNj0dOk6YZTgYAQGOjeAAAAGgAEolEtNppr7R2m2+1Q/S57ZnIbdYi\nw6kAAGiMFA8AAAANRLuTzoy5h50eyVjzS6Kb9to6+tz5fOS22qQOkwEA0JgoHgAAABqA6urqeOqp\np+Ldpp3jvV2PjepEzR/3mnTvHX3ufiHy2rbPQkIAABoLxQMAAMBGLplMxp/+9Kf45JNPIiLim65b\nx7u7nxRVuXmrdvI7dYs+d0+Mgo5dshUTAIBGQvEAAACwEUsmk/Hiiy/G+++/nzJf3K1fFF71QOQ0\nbxl5hR2j7z0To0nXHtkJCQBAo5K37hUAAADqq9dffz3eeuutlFlubm4MGjQoevfuHSWbbR6JgqbR\ntMeWWUoIAEBjk0gmk8lshwAAAGD9vfnmm/Hyyy+nzBKJRJx00knRr1+/LKUCAKCx86glAACAjdC7\n775bo3SIiDj22GOVDgAAZJXiAQAAYCPz0UcfxXPPPVdjPmDAgNhuu+2ykAgAAP5D8QAAAFDPlU79\nNKrLyyIi4vPPP4+nnnqqxs7BBx8cO+20U11HAwCAGrxcGgAAoB5b8cUHMfn0A6PF93aPOOv/4rEn\nnor/fVXfvvvuG3vssUeWEgIAQCovlwYAAKinVs74Iib9+ICoXLIgIiIWt9883t79pKjMb7JqZ489\n9oiDDjooEolEtmICAEAKj1oCAACoh8rmzIjJww9dVTpERBQu/DJ2//tDkV+2IiIidtxxR6UDAAD1\njjseAAAA6pnyeXNi0o/3j/I5M1b7+fLWHWLZ6VfHUYOHRU6OvycDAKB+8S9UAACAeqRi8YKYcuZh\naywdIiJaL18QvSdcH5XzZtdhMgAASI/iAQAAoJ6oXL40ppx1eKyc/vk6d8tnTYv54++qg1QAALB+\nFA8AAAD1QFVpSUw956go/eKDtPbbHnRCdD3n6gynAgCA9ad4AAAAyLLqspUx7fzjouTDf6S1v8ne\nh0ePax6IRG5uhpMBAMD6UzwAAABkUbKiIqb/7IdR9Narae232mW/6DVqXOTkF2Q4GQAAbBjFAwAA\nQJYkq6pixi9PjWV/+VNa+y222zV63/xE5DRtluFkAACw4RQPAAAAWZBMJuOrq8+KJRPHp7XfrG//\n2OKOP0Vui1YZTgYAAN+N4gEAAKCOJZPJmH3DxbHwyfvS2m/SY8voc/cLkde6bYaTAQDAd6d4AAAA\nqGPf3HVlzH/o1rR2C7r0iL73TIz8wo4ZTgUAALVD8QAAAFCH5o7+XXzz+9+mtZvfYdPoe8/EKOjU\nLcOpAACg9igeAAAA6siCCffEnJsvTWs3t0276HP3xGjSvXeGUwEAQO1SPAAAANSBRc89FF9dc05a\nuzktW0ffu56PZr23znAqAACofYoHAACADFvy6lMx81enRSST69zNado8+tz2TDTfasc6SAYAALVP\n8QAAAJBBy958KWb87OSIqqp17ibyC6L3zU9Eyx2+XwfJAAAgMxQPAAAAGVL0r7/FtAtPiGRlxbqX\nc3Oj1/WPROvdf5D5YAAAkEGKBwAAgAwo+eSdmHru0ZFcWbru5UQiel49Otrsf1TmgwEAQIYpHgAA\nAGpZ6dRPYsrZA6K6pCit/c1+cWcUHjYow6kAAKBuKB4AAABq0cqvpsbk4YdG1bLFae13u2hUdDj+\n9AynAgCAuqN4AAAAqEV5mxRGQefuae1ueuavo9OQ8zOcCAAA6pbiAQAAoBblbVIYhb99KJZ07LHW\nvU5DL4xNz/h53YQCAIA6pHgAAACoRUuWLImHnngq/rHbwJjfqfdqd9qfeEZ0veDaSCQSdZwOAAAy\nT/EAAABQS5YvXx4PPvhgFBUVRXVefry724nxTZd+KTuFh/8wNrvsNqUDAAANluIBAACgFpSUlMSY\nMWNi6dKlq2bVuXkx95ifRpvDT46IiDb7Hx09rrovEjl+FAMAoOHKy3YAAACAjd3KlStj7NixsXDh\nwpR5p06d4pQhQ6Npk5/Egv67RfvjTotEnh/DAABo2BLJZDKZ7RAAAAAbq/Ly8hgzZkzMnj07Zd6u\nXbs49dRTo0WLFllKBgAA2eH+XgAAgA1UWVkZ48aNq1E6tGnTJoYOHap0AACgUVI8AAAAbICqqqqY\nMGFCzJgxI2XesmXLGDJkSLRu3TpLyQAAILsUDwAAAGlIJpNROv3ziIiorq6OJ598MiZPnpyy07x5\n8xg6dGgUFhZmIyIAANQL3moGAACQhrn3/l98fc9vouc1D8YbK5vEp59+mvJ5kyZNYvDgwdGhQ4cs\nJQQAgPrBy6UBAADWYd7YW2L2DRdHREQykRMf7nB4zN58+1Wf5+fnx5AhQ6J79+7ZiggAAPWGRy0B\nAACsxcIn71tVOkREJJLVsf17f4oe096JiIjc3NwYNGiQ0gEAAP4/dzwAAACsweKJ42PGZUMi1vBj\n0xdb7x87/erW6NevXx0nAwCA+ssdDwAAAKux9C9/ihm/GLbG0iEiot9nr0Wrl8aEv+cCAID/cMcD\nAACsweuvvx77779/rZwrLy8v2rZtG4WFhbHtttvG7rvvHscff3z07NmzVs5P7Vr+1qsx9ZyjIlle\nts7dRF5+bDXu7Wi2xbZ1kAwAAOo/xQMAAKxBbRYPq5OTkxMDBgyIG2+8MXr37p2x67B+ij94M6aM\nOCyqV65Y93JOTvS6/pFoe+BxmQ8GAAAbCcUDAACswaxZs2L8+PEps/Hjx8e7776bMhs4cGDsvPPO\nqz1HMpmMpUuXxpw5c+Lvf/97TJ06tcZOy5Yt4957742BAwfWXng2yIrP34vJPzk4qoqXpbXf46o/\nRrujhmY4FQAAbFwUDwAAsB6GDRsWDzzwQMrs/vvvj2HDhqV1/Kuvvho//elP4/PPP0+Z5+XlxTPP\nPBOHHXZYbUVlPZVO/zwmn3ZAVC5ZmNZ+98tujY4Dz8xwKgAA2Ph4uTQAANShAw44IP75z39G//79\nU+aVlZUxePDgWLYsvb+0p3aVzZ4eU4Yfmnbp0PW8a5QOAACwBooHAACoY61bt65x10RExOLFi2PU\nqFFZSNS4lc+bE5OHHxoVC75Oa7/zaZdG51NHZjgVAABsvBQPAACQBdtvv33svffeNebjxo3LQprG\nq2Lx/Jgy4tAonzMjrf2OP/xpdPnpVRlOBQAAGzfFAwAAZMl+++1XYzZt2rSYOXNmnWdpjCqXL40p\nZx4eK2d8kdZ+u6N/FN1G/i4SiUSGkwEAwMZN8QAAAFmy9dZbr3Y+Y0Z6f33PhqtaURxTfzogSid9\nmNZ+24NPjM1/dU8kcvwIBQAA6+JfzQAAkCVt2rRZ7XzBggV1nKRxqS5bGdPOPy5KPnorrf1N9j48\nevx2dCRyczMbDAAAGoi8bAcAAABSfddH+cyYMSM+/PDDWLBgQSxcuDBatGgRHTt2jB49esTOO+8c\neXl182PApEmT4s0334y5c+dGfn5+dO3aNXbffffo2bPnOo+trq6Od955J95///1YvHhxtGrVKrp2\n7Rr77LNPtG/ffoMzJSsqYvrIQVH09msp85KqZHy8IhkLKyIWV0YkIqJNXkTXrfvH0ZfcHjn5BRt8\nTQAAaGwUDwAAkCVLly5d7XxDfrG+ZMmSuOGGG+Lxxx+PSZMmrXGvTZs2cfDBB8dFF10Uu+66a1rn\nvuKKK+LKK69c685rr7226p0Vb775Zlx88cXxj3/8Y7W7e+21V1x33XWx55571vgsmUzG6NGj46qr\nrlrtuy5ycnJiwIABMWrUqOjbt29a+Vedu6oqZvxiWCz763OrZn9eWh2PL0rGeyXJqEyu5qBZH8Tw\nzTaP7bffPgYPHhxnnXVWNG3adL2uCwAAjY1HLQEAQJZ89tlnNWY5OTmxww47rNd5br755ujVq1dc\nc801NUqH/Pz8lK+XLl0ajz76aOy2225x4oknxvz589c/+FrceOONsc8++6yxdIiIeOONN2KvvfaK\n2267LWVeVlYWAwcOjB//+MdrfMF2dXV1PPPMM7HzzjvHG2+8kXauZHV1fPmbEbHkxUcjImL6ymT8\neEplXPJldbxdnFo65EZEzn/ddJJMJuP999+Piy66KHr37h1PPvlk2tcFAIDGyB0PAACQJa+99lqN\n2R577LHGdz/8r4qKijjjjDNi9OjRKfMBAwbEGWecEXvssUe0b98+SktLY9KkSfHoo4/GrbfeGiUl\nJRER8dhjj8V7770Xzz//fGy55ZZrvM6/72T4t5kzZ8YDDzxQY+/uu++Oiy66KCIitttuu9hzzz2j\nsLAwFi5cGH/5y19i8uTJq3aTyWSce+650b179zjmmGMiImLYsGExYcKEyM3NjX333Te22WabaN68\neXz11Vfx8ssvx8KFC1cdX1RUFEcddVR88cUX0bFjx7X+f0omkzF71EWx6Klv/z+9W1wdF8+ojuLq\n/+x0KYgY2iEn9mqdiM369ou+974SC8uq4pVXXokbb7wxPvroo4iI+Prrr+P444+PUaNGrfpeAQCA\nVIlkMrm6G4oBAIDVGDZsWI1fut9///0xbNiw9TrPBx98sNo7G55++uk46qij0jrHSSedFBMmTFj1\ndW5ubtx3330xdOjQNR4zderUOPLII+OLL75YNWvfvn3861//is022yyt677++uux//77p8xuv/32\nuPDCC6NDhw7xwAMPxA9+8IMax/3hD3+IESNGRHX1f37j371795gyZUo89NBDcdppp8X3v//9eOCB\nB6J3794px5aUlMQ555wT999/f8r8Jz/5Sfz+979fa945d/w65v7hmoiI+KgkGcOnVUXFf/0UtE/r\nRFyzeU40zUlEQZceseX9r0VBp26rPq+qqoqRI0fGTTfdlHLesWPHximnnLLWawMAQGPkUUsAAFDH\nioqK4kc/+lGN+Y9+9KO0S4dbb701pXSIiLjhhhvWWjpERGyxxRbx3HPPRdu2bVfNFi5cGCeddFJU\nVFSkde3VueKKK6J58+bxyiuvrLZ0iPi2JLj00ktTZrNmzYqxY8fGJZdcEjvuuGO8+OKLNUqHiIgW\nLVrEvffeG7vttlvK/JFHHokVK1asMdfc+29YVTosr0zG5V+mlg79mkVc3+Pb0iG/w6bR956JKaVD\nxLeFzo033hgnnHBCyvyss85a4yOhAACgMVM8AABAHXrttddit912W/Xonn/78Y9/HH/4wx/SOses\nWbNi5MiRKbP+/fvHeeedl9bxvXr1issuuyxl9tZbb9X4i/71sXDhwvjlL38Z/fr1W+veBRdcEDk5\nqT+GnHfeebFo0aL4/e9/Hy1atFjjsTk5OXHhhRemzIqLi+PVV19d7f788XfFnFv+833e9k11zP2f\nbuXybrmRl0hEXtv20efuidGke83S499uueWWyMv7z9Nqly9fHldfffUa9wEAoLHyjgcAAPiOJk6c\nmPL+gf+WTCZj+fLlMXv27HjjjTdi6tSpKZ/vtNNOcdVVV8Xhhx+e9vV+97vfRXl5ecps5MiRkUgk\n1nBETWeffXZcddVVUVxcvGp20003xXnnnRdNmjRJ+zz/1rx58xgxYsQ699q3bx877LBD/Otf/1o1\nKykpiX333Td22mmndR5/0EEH1Zh9+OGHMWDAgBrz/MKOkcjLj2RlRSysSMZzS1KfMrtDi4itmyci\np2Xr6HPnc9Gs99ZrvXaXLl3i8MMPj2eeeWbV7OGHH47rrrsu2rVrt87sAADQWCgeAADgOxo/fnyM\nHz8+7f1DDjkkDj300Dj00EPXeYfA/yopKYl77703ZZaXl7faX7yvTfPmzePggw+OJ554YtVs7ty5\nMW7cuNU+BmpdDjzwwGjevHlau/369UspHiIijj766LSObdu2bXTq1CnmzZu3avbfL61O2T3o+Jj8\n5axI3HlZPL6oLMr/5+12+2+SEzlNm0ef25+N5lvtmNb199tvv5TiobS0NB5//PE444wz0joeAAAa\nA49aAgCAOvbaa6/FBx98EJ06dVrvY998880oKSlJme2www7Rpk2b9T7XAQccUGP28ssvr/d5/p0h\nXR07dvxOx3fp0iXl62XLlq1277333ouJc5bFW9//YfyzuObdILu0KYjeNz8RLbffM+1r9+/fv8bs\nn//8Z9rHAwBAY6B4AACA7+j++++PZDJZ478VK1bEp59+GqNGjUopGcrLy+OBBx6I/v37x/Tp09fr\nWq+//nqN2freNbG24/7yl79s0Ln69u2b9u7q3uOwPsf/750VRUVFNXY+/vjjePbZZyMiYm7rTeOz\n0tTPcyJi/5seita7r/5F2GvSvn37GjPFAwAApPKoJQAAyJBmzZrF1ltvHVtvvXUMHTo0DjzwwPj4\n449XfT579uw4/PDD4+23347WrVundc5PPvmkxmyLLbbYoHy9e9d8kfLs2bNj6dKl630HRbr5IyJy\nc3O/0/H//YLniIiqqqqUrydNmhRPPvnkqq8XLVoUVdXVKTvNmjWNMR9Nj/johrSv++9z/a+ZM2eu\n1zkAAKChUzwAAEAd6NixYzz99NOx/fbbx/Lly1fNJ02aFL/5zW9i1KhRaZ1ndb/4Xp9f2qdz3KJF\ni9a7eFjdXQx1efy/TZ8+PSZMmBDJ5H9e6LBixYoaeyWlK2PkyJG1cs3S0tIoKyvboJdyAwBAQ+RR\nSwAAUEd69uwZV199dY35rbfeGjNmzEjrHKsrHjb0l/YtW7ZM+xrrkkjUfIdCXR4fEfHVV1/FuHHj\natwB8b/vhMiEpUuXZvwaAACwsVA8AABAHTrzzDNrPBqpvLw8rrvuurSOr41f0NeHa9S2b775Jh5+\n+OGoqKhImW+//farfXF1t27dVvtejg39b0NeFA4AAA2V4gEAAOpQXl5eXHHFFTXmo0ePjm+++Wad\nx7dr167GrKSkZIOyFBcXp32N+qyioiLGjh0bZWVlKfNtttkmjjzyyNW+EHpN3zsAAPDdKR4AAKCO\nDRo0KPr06ZMyKysrixtuWPeLjldXCvz3OyPWx5qOq+/FQ7Iy9a6GefPm1XiPQ9++fePYY4+NnJyc\n1X4/RUVFKe+BAAAAao/iAQAA6lhubm5cfvnlNeb33HPPOt+vsN1229WYTZ06dYNyTJs2rcase/fu\nsckmm2zQ+epCVfHyKJ3yccqssrIy5euePXvGiSeeGLm5uRERseWWW0ZBQUHqeaqq4ssvv8xsWAAA\naKQUDwAAkAWDBw+Onj17psxKSkrilltuWetx++67b43ZZ599tkEZvvjii7TOX19Ul66IqeceHVUl\nRWvc6datWwwaNCjy8vJWzZo1axa77rprjd1PPvlkg7O8+eab8corr8Qrr7wS77///gafBwAAGiLF\nAwAAZEFeXl5ceumlNea33XZbFBWt+Rfre+65Z7Rs2TJl9uGHH8aSJUvWO8Of//znGrNDDjlkvc9T\nF6rLy2LahSdE8Xtv1Pgst/rbOx46d+4cp5xySo27GyJW/32t7vtPx5IlS2LfffeNgw46KA466KB4\n7LHHNug8AADQUCkeAAAgS4YNGxbdunVLmS1dujTuvPPONR7TvHnzOOOMM1JmlZWV8eyzz67XtVes\nWBEvv/xyyqxLly5x0kknrdd56kKysjJmXDo4lv/j5dV+3nrpvOiWVx2DBw+Opk2brnZn+PDh0axZ\ns5TZ448/HtXV1eudZ/z48SmPdzr++OPX+xwAANCQKR4AACBLCgoK4pJLLqkxv+mmm2LlypVrPO6C\nCy6IJk2apMyuv/769fol+u233x7FxcU1zru6uwWyKVldHTOvOD2WvvrUGndyqitjp1f+EIk5Nd9Z\n8W8dOnSI0047LWU2a9asGD169HrlWblyZYwaNWrV1/vss0/suOOO63UOAABo6BQPAACQRaeffnp0\n7tw5ZTZv3ry4995713hMt27dUn75HRHx6aefxo033pjWNadPnx7XXnttymz33XeP8847L83UdSOZ\nTMZX/3dOLP7TQ+vcrVqyIGZdd34kk8k17vz2t7+N3r17p8wuv/zy9XrJ9MUXXxzTp0+PiIhEIhG/\n+c1v0j4WAAAaC8UDAABkUdOmTWPkyJE15qNGjYqKioo1HnfOOefEiSeemDK75JJL4v7771/r9aZN\nmxZHHHFEyjsh2rdvH+PHj4/8/Pz1TJ85yWQy5tx8WSyc8Pu09pt03yJ6XfdwJBKJNe60bt06JkyY\nkPLIpXnz5sVBBx20zhd0l5eXxwUXXBB33HHHqtnFF18c++yzT1r5AACgMUkk1/YnQQAA0IjNmjUr\nxo8fnzIbP358vPvuuymzgQMHxs4775wy23PPPWPPPfdM6zorVqyIHj16xIIFC1LmP/nJT6Jv376r\nvu7YsWMMHTp01dcVFRVxxhln1Hhc0OGHHx4jRoyI73//+1FYWBilpaUxZcqUGD9+fNx6660pj1jq\n1atXPP/887HllluuMd///n+YNm1a3H333Sk7I0aMSLmbYODAgdG9e/eI+PZujBdeeGHVZy+99FKN\n90v89x0cm2yySQxIzo+v77zi2/0l1THvvzqYxxZVx5zy/3zdrVlenH3xzyKvdduIiOjevXsMHDhw\njd/PW2+9FUcddVTMnz9/1aygoCBOP/30GDhwYPTv3z/atGkTVVVVMX369HjppZfitttui0mTJq3a\nHzx4cNx///2Rl5e3xusAAEBjpXgAAIA1eP3112P//fffoGN//etfxxVXXJH2/rXXXhuXXXbZWne+\n973vxQcffFBjfsstt8QVV1wRS5curfFZfn7+Gu+cOOGEE+KOO+6Ijh07rvW6G/L/4bXXXov99tsv\nIiJGjx4dp556atrHdmvfNp7qWrTq6zOmVsZ7Jelfe999943XX399rTszZsyI4cOH1yhA/q2goCAq\nKipqPLqpWbNm8ctf/jIuvfTStd5dAQAAjZlHLQEAQD1w9tlnR2Fh4QYde95558X06dPj5z//eY07\nF/63dNhkk03ixBNPjH/+858xYcKEdZYO2VC1bMm6l76jnj17xksvvRSvvPJKHHnkkdGiRYuUz8vL\ny1NKh06dOsVFF10Un332WVx22WVKBwAAWAt3PAAAQAMzY8aM+OCDD2LBggWxaNGiaN68eXTs2DF6\n9OgRu+yyS719PNDiF8bFjMuHRqTxI0pOi1bR954Xo8W2u9TKtcvKyuKtt96KWbNmxfz586O0tDRa\nt24dHTt2jB122CG22GILZQMAAKRJ8QAAAGTd0tefjWkXnRhRVbXO3UTTZtHnjstzbvAAACAASURB\nVOei1U5710EyAABgfXnUEgAAkFXL//nnmD5yUHqlQ15+9L7xMaUDAADUY4oHAAAga4o/eDOmnX9c\nJCvK172cmxs9r3soNtnz4MwHAwAANpjiAQAAyIoVn78XU396VFSvXJHWfo8r7422Pzg2w6kAAIDv\nSvEAAADUudJpn8WUs46IquJlae13v+zWaDdgcIZTAQAAtUHxAAAA1Kmy2dNjyojDonLJwrT2u573\nf9Fx4JkZTgUAANQWxQMAAFBnyufNjslnHBIVC75Oa7/zTy6PzqdenOFUAABAbVI8AAAAdaJi8fyY\nPPzQKP96Zlr7HU8+J7qcdUVGMwEAALVP8QAAAGRc5fIlMWXEYVE2c1Ja++2OPTW6jfxdJBKJDCcD\nAABqm+IBAADIqKqSopj60yOjdPJHae23PXRgbP6Lu5QOAACwkVI8AAAAGVO9sjSmnX9clHz0Vlr7\nm+w7IHr+5v5I5OZmOBkAAJApigcAACCjEk2apbXXarcDotf1j0QiPz/DiQAAgExKJJPJZLZDAAAA\n9VtZZVVMmVccC4rLoqKqOvJzc6JDyybRp1PLaJK39rsTVpYUx99/9INoM/W9Ne60+N4e0eeu5yO3\necvajg4AANSxvGwHAAAA6qdJc4ti3DtfxdszF8fkeUVRUVXzb5bycxPRt1Or2LVHYQzaZbPYsnOr\nlM8rKytjwhNPxoxtDo3+5ZXR/aua73lotuX3YovbnlE6AABAA+GOBwAAIMWrX8yLu/86Pd6esXi9\nj921Z2GM2KdXHNCvU1RVVcVjjz0WX3zxxbcfJpOxzUcvRs/p767ab9qzX/T946uRX9ihtuIDAABZ\npngAAAAiImJxSXn8+plP49mPvv7O5zqy/6axS87MmPHFxynzZk2bxjHV30TR+DuioGvP2PK+16Kg\nU9fvfD0AAKD+UDwAAADx5rSFce6492NhcXmtnbNpVMR++dNj09yiiIgoKCiIoUOHRteuXWP+w7fF\nJvscEU269aq16wEAAPWD4gEAABq5P38+L8586L0or6qu9XPnRnXsnz8tejYpicGDB8fmm29e69cA\nAADqFy+XBgCARuzNaQszVjpERFRFTrxW0TsOPXBzpQMAADQSOdkOAAAAZMfikvI4d9z7GSsd/q0q\ncuLav82LxSW19xgnAACg/lI8AABAI/XrZz6t1Xc6rM3C4m9fXA0AADR8igcAAGiEXv1iXjz70dd1\nes1nP/o6Xv1iXp1eEwAAqHuKBwAAaITu/uv0rFz3nixdFwAAqDuKBwAAaGQmzS2Kt2cszsq135qx\nOCbPK8rKtQEAgLqheAAAgEZm3DtfZfn6s7J6fQAAILMUDwAA0Mi8PTM7dzusuv6MRVm9PgAAkFmK\nBwAAaETKKquy/qijSfOKoqyyKqsZAACAzFE8AABAIzJlXnFUVCWzmqGiKhlT5hVnNQMAAJA5igcA\nAGhEFhSXZTtCREQsrCc5AACA2qd4AACARqSiqjrbESIiorye5AAAAGqf4gEAABqR/Nz68SNAQT3J\nAQAA1D7/2gcAgEakQ8sm2Y4QERHt60kOAACg9ikeAACgEenTqWXk5yaymiE/NxF9OrXMagYAACBz\nFA8AANCINMnLjb6dWmU1w5adWkWTvNysZgAAADJH8QAAAI3Mrj0Ks3v9nu2yen0AACCzFA8AANDI\nDNplsyxfv3tWrw8AAGSW4gEAABqZLTu3il17Zueuh916Fmb9UU8AAEBmKR4AAKARGr53r+xcd5/s\nXBcAAKg7igcAAGiEtvrrH+L7X/+1Tq95ZP8ucUC/TnV6TQAAoO7lZTsAAABQt+aO/l18c9eVcXp+\nq/ikXf9Y1qRNxq/ZvmVBXHnUNhm/DgAAkH3ueAAAgEZk/rg7Ys7Nl0ZEROuKorjggxsiv6o8o9cs\nyMuJWwftEIUtCjJ6HQAAoH5QPAAAQCOx8Mn7Yta156fMtlv8SVz8/vUZKx8K8nLirpN3jD17t8/I\n+QEAgPonkUwmk9kOAQAAZNbi5x+JGT//UcQa/vn/ceG2cdP2F9fqY5fatyyIWwftoHQAAIBGRvEA\nAAAN3JI/PxnTf/bDiKqqte4tz28Vf9x2eLzRea/vfM0j+3eJK4/axuOVAACgEVI8AABAA7bsby/E\ntAuOj2RlxbqXc3Oj16hx8X6XPeKev06Pt2YsXu/r7dazMIbv0ysO6NdpA9ICAAANgeIBAAAaqOVv\nvRpTzzkqkuVl615OJKLnNQ9G4WGDVo0mzyuKce/MirdnLIpJ84qioqrmjw75uYnYslOr2LVnuxi0\nS/fo26lVbX4LAADARkjxAAAADVDx+3+PKWceHtUrV6S1v/kVv4/2x5y6xs/LKqtiyrziWFhcFuVV\n1VGQmxPtWzaJPp1aRpO83NqKDQAANACKBwAAaGBKPnknJg8/JKpLitLa737pLdFx0FkZTgUAADQW\nigcAAGhAyud/HZ+dsH1ULV+S1n7XC66Lzj+6MMOpAACAxiQn2wEAAIDak99h0+h48jlp7W565q+V\nDgAAQK1TPAAAQAOSSCQijjotJn/v4LXudf7xz2LTM35eR6kAAIDGJC/bAQAAgNozb968GDt2bJT2\n2jXKk4nY9qMXa+x0/OFPo8s5V39bUgAAANQydzwAAEADsXDhwhgzZkyUlpZGRMTM3rvEhzscEcn4\nT8HQ/rjTotvPblQ6AAAAGaN4AACABmDx4sXx4IMPRklJSco8/4DjY/Or74vIzY3CI06OzX5+h9IB\nAADIKI9aAgCAjdyyZcviwQcfjKKiopT5ZpttFgMHDoyCgoJo1q1XtNh210jk5mYpJQAA0Fgkkslk\nMtshAACADVNUVBSjR4+OxYsXp8y7du0aQ4YMiSZNmmQpGQAA0Fh51BIAAGykSkpKYsyYMTVKh86d\nO8cpp5yidAAAALJC8QAAABuh0tLSGDt2bCxYsCBl3qFDhxg8eHA0a9YsS8kAAIDGTvEAAAAbgeqK\n8pj/yO2RrKqKsrKyeOihh2Lu3LkpO4WFhTFkyJBo0aJFllICAAB4uTQAANR7ycrKmHHZkFj6yhOx\n/L2/x9+2PCDmzPk6ZWeTTTaJoUOHRqtWrbKUEgAA4FteLg0AAPVYsqoqZv7y1Fj8/COrZnM33TLe\n2+XYqM799u+IWrVqFcOGDYvCwsJsxQQAAFjFo5YAAKCeSiaT8dXVZ6WUDhERnb+ZFDu/NSFyqiqi\nRYsWMXToUKUDAABQb7jjAQAA6qFkMhmzr78w5j9y+xp3FnfqFdve80Js2qNXHSYDAABYO3c8AABA\nPZNMJmPOrT9fa+kQEVE4b3os+/WwqCpaVkfJAAAA1k3xAAAA9cw3v/9tzLt/VFq7ZV9NjYrF8zKc\nCAAAIH2KBwAAqEfmjv7d/2PvPsOjLPP2j5/TUiAJJIZuKIFEEAuowIqsNOnKAgqCSlMExQK4rA8r\nywIruiLCH0URZJdeRQEBKfqA7iKsgIoUCwkhkAihJqSROnP/X/iYdZyUSZlMyvdzHByHc81v5joT\nXhDnzH1fSnh3pluzlqBgRSzeJb8mkR5OBQAAAADuo3gAAAAAKohL6xfq3Pwpbs2aA4IU8e4O1Yi8\nzcOpAAAAAKB4KB4AAACACuDKlmWKf22CW7NmvxqKWLBVNVvf5eFUAAAAAFB8FA8AAACAlyXuXK+z\nM8e5NWvy8VXzt7YooO09Hk4FAAAAACVD8QAAAAB4UdLeLYr9yyjJMIqcNVltaj7vAwW17+r5YAAA\nAABQQhQPAAAAgJck79up2Bcfkez2ooctFjV7fa1qdert+WAAAAAAUAoUDwAAAIAXpBzcq5g/DpaR\nm1P0sMmkZrOWK7jbAM8HAwAAAIBSongAAAAAylnakf2KmTBQRnaWW/NNpi9WSJ+hHk4FAAAAAGWD\n4gEAAAAoR+knDiv62QfkyLzu1nzYlDcVOmC0h1MBAAAAQNmheAAAAADKyfWoY4oe30+O9FS35htN\nmq26Q8d7OBUAAAAAlC2KBwAAAKAcZMb+qOhxvWVPSXJrvuH4Gao/8gUPpwIAAACAskfxAAAAAHhY\nVnyMosb2Um7SZbfm6z/+ouo/+ZKHUwEAAACAZ1A8AAAAAB6UnRCnqLE9lXP5vFvzdYc9q4bPzZLJ\nZPJwMgAAAADwDIoHAAAAwEOyL51X1Nieyk6Ic2s+dNATuvHFeZQOAAAAACo1igcAAADAA3ISLyv6\nqd7Kio9xaz6k3yNqPPUdSgcAAAAAlR7FAwAAAOABca88o8zTP7g1W/u+B9V05j9lslg8nAoAAAAA\nPM9kGIbh7RAAAABAVZN96bxOPnmfss9GFzpX695+Cp/7vsw2n3JKBgAAAACexRUPAAAAgAfk1Kyl\n/9w7Usm16hU4E9ihu8LnrKd0AAAAAFClUDwAAAAAZSwjI0OrV69WQlqmvuz0mK4FN3SZCbijk5rP\n/1BmXz8vJAQAAAAAz+FWSwAAAEAZysrK0qpVq3Tu3Lm8NWtOljoe/kBBF2MlSTVuaafIRbtkCQjy\nVkwAAAAA8BiueAAAAADKSE5OjtauXetUOkhSzdC6arPicwW27yr/m25XxMKPKR0AAAAAVFlc8QAA\nAACUgdzcXK1bt06nT592Wg8MDNSoUaMUEhIiR1amHBnpsta+wUspAQAAAMDzKB4AAACAUrLb7Xr/\n/fcVFRXltF6zZk2NGjVKoaGhXkoGAAAAAOWPWy0BAAAApeBwOLRp0yaX0sHf31/Dhw+ndAAAAABQ\n7VA8AAAAACVkGIY++ugjff/9907rvr6+euyxx1SvXj0vJQMAAAAA76F4AAAAAIrhwrI5Sv16nwzD\n0Pbt23Xs2DGn5202mx599FE1bNjQSwkBAAAAwLus3g4AAAAAVBYXls/VuTdfksnPX4mPTNE3STlO\nz1utVg0bNkxhYWFeSggAAAAA3sfh0gAAAIAbLq1/R/GvTcx7bDdb9HX7B3WpQaQkyWw2a+jQoYqI\niPBWRAAAAACoELjVEgAAAFCEK5uXOpUOkmRx2HXXwQ/U4Nz3MplMeuihhygdAAAAAEDcagkAAAAo\nVOKOdTr7t6fyfc5sOHTHoc2y3dFWrVq1KudkAAAAAFAxccUDAAAAUICkPZsVO220VMjdSU0ylLv4\nr7r84T/KMRkAAAAAVFwUDwAAAEA+kvftVOz/PCrZ7UUPm82y1r7B86EAAAAAoBKgeAAAAAB+I+Xg\nXsX8cbCM3Jyih00mNXt5mYK7D/R8MAAAAACoBCgeAAAAgF9JO7JfMRMGysjOcmu+yfTFCuk7zMOp\nAAAAAKDyoHgAAAAA/k/6icOKfvYBOTKvuzUfNmW+QgeM9nAqAAAAAKhcKB4AAAAASddPHlX0+H5y\npKe6Nd9o4muqO/QZD6cCAAAAgMqH4gEAAADVXsbpHxT9VB/ZU5Lcmm/w9HTVH/VHD6cCAAAAgMqJ\n4gEAAADVWmbcKUWP66XcpMtuzdcb/Sc1GDvVw6kAAAAAoPKieAAAAEC1lZ0Qp+hxvZRzOcGt+TrD\nnlGj51+RyWTycDIAAAAAqLwoHgAAAFAtZV86r6ixPZWdEOfWfOjAxxX2p3mUDgAAAABQBIoHAAAA\nVDs5iZcV/VRvZcXHuDUf0neYGv9loUxmfnwGAAAAgKKYDMMwvB0CAAAAKC+5yYmKerKHMqKOuTVf\n+75BCn9tjUxWq4eTAQAAAEDVQPEAAACAasOelqKocb10/buv3Jqv9fu+Cp+3UWabj4eTAQAAAEDV\nwbXiAAAAqBbsGek69Vx/t0uHwA7dFf7GBkoHAAAAACgmigcAAABUeY6sTMVMHKS0I/vdmg9oe4+a\nz/9QZl8/DycDAAAAgKqH4gEAAABVmiMnW6cnP6zUg3vdmq/R+i61WLBVFv+aHk4GAAAAAFUTxQMA\nAACqLCM3V7F/Hq7kfTvcmvePvE0RCz+WJSDIw8kAAAAAoOqieAAAAECVlXroM137301uzfqFt1LE\nop2y1grxcCoAAAAAqNooHgAAAFBlBXXsobC/LJQhU6FzvmHNFbFol2whdcspGQAAAABUXRQPAAAA\nqLIcDof+ZdTWt3f1l8OUf/ng06CxIt/7RD51G5ZzOgAAAAComqzeDgAAAAB4gmEY+uijj/T9999L\nYbfKbrbqjsObZTYceTO2Og1+Lh0aNPZiUgAAAACoWrjiAQAAAFWOYRjavn27jh07lrd2oVErHbln\nmGTzkSRZg+soYvFu+YY191ZMAAAAAKiSKB4AAABQpRiGoV27dumbb75xWrdarerxx+mKeHubbPVu\nVMSinfIPb+WllAAAAABQdZkMwzC8HQIAAAAoC4ZhaM+ePdq/f7/Tutls1tChQxURESFJcmRnyezj\n642IAAAAAFDlccUDAAAAqox9+/a5lA4mk0kPPfRQXukgidIBAAAAADyI4gEAAABVwoEDB/TZZ5+5\nrA8aNEitWnFLJQAAAAAoLxQPAAAAqJR+fcfQw4cP69NPP3WZ6d+/v2655ZbyjAUAAAAA1R7FAwAA\nACqd5H07FTPpQTkyM3TkyBHt2LHDZaZv375q27atF9IBAAAAQPXG4dIAAACoVFIO7tWp5/rLyM6S\nqdVd2tGim+xWH6eZHj16qGPHjl5KCAAAAADVG8UDAAAAKo20I18o+ul+cmRez1tLDLlRhzoOVa7N\nT5LUpUsXde7c2VsRAQAAAKDao3gAAABApZB+4rCixvWSIz3V5blrtRvoYMdhat+th7p37y6TyeSF\nhAAAAAAAieIBAAAAlcD1k0cV9WQP2VOSCpzJrd9UbVfvk09o/XJMBgAAAAD4LQ6XBgAAQIWWcfoH\nRT/Vp9DSQZKsF84oasx9sqellFMyAAAAAEB+KB4AAABQYWXGnVL0uF7KTbrs1nztrv1lrhno4VQA\nAAAAgMJQPAAAAKBCyjp/VtHjeinncoJb83WHPatGz7/C+Q4AAAAA4GUUDwAAAKhwsi+dV/S4XspO\niHNrPnTQE7rxxXmUDgAAAABQAVA8AAAAoELJSbyk6HG9lBUf49Z8SL9H1HjqO5QOAAAAAFBBmAzD\nMLwdAgAAAJCk3ORERT3ZQxlRx9yar33fIIW/tkYmq9XDyQAAAAAA7qJ4AAAAQIVgT0tR1Lheuv7d\nV27N1/p9X4XP2yizzcfDyQAAAAAAxcGtlgAAAOB19ox0nXquv9ulQ2CH7gp/YwOlAwAAAABUQBQP\nAAAA8CpHZoZiJg5S2pH9bs0HtL1Hzed/KLOvn4eTAQAAAABKguIBAAAAXuPIyVbM5IeVenCvW/M1\nbmmnFgu2yuJf08PJAAAAAAAlRfEAAAAArzBycxU75TGlfLHTrXn/m25XxMKPZQkI8nAyAAAAAEBp\nUDwAAACg3Bl2u85MG61reza7Ne8X3koR7+6UNSjYw8kAAAAAAKVF8QAAAIByZTgcips1Xok717s1\n7xvWQpGLd8sWUsfDyQAAAAAAZYHiAQAAAOXGMAzFz3lBVzYvdWvep0FjRb63W7Y6DTycDAAAAABQ\nVigeAAAAUC4Mw9C5N1/S5XXvuDVvq9NAke99Ip8GjT2cDAAAAABQligeAAAAUC4SFs/SxeVvuDVr\nDa6jiMW75RvW3MOpAAAAAABljeIBAAAAHndh2RtKWPQ3t2YtQcGKWLRT/uGtPJwKAAAAAOAJFA8A\nAADwKEdOtpI+/cCtWXNAkCLe3aEaN93u4VQAAAAAAE+heAAAAIBHmW0+ily8W/bwWwqf86uhiAVb\nVbP1XeWUDAAAAADgCRQPAAAA8LiDx7/TJ6376kqdpvk+b/LxVfO3tiig7T3lGwwAAAAAUOYoHgAA\nAOBRhw8f1qeffiq71UeH7n5Yl+o5HxhtstrUfO5GBbXv6qWEAAAAAICyZDIMw/B2CAAAAFRNR44c\n0datW53WzPZc9Yn/j0xH/iVZLAp/fZ2Cuw/0UkIAAAAAQFmjeAAAAIBHHD9+XJs2bXJZ79Gjh+5u\n105nZoxRrXt6K6TvMC+kAwAAAAB4CsUDAAAAytwPP/ygjRs36rc/anbp0kWdO3f2UioAAAAAQHng\njAcAAACUqVOnTumDDz5wKR3uuece3XvvvV5KBQAAAAAoLxQPAAAAKDOxsbHasGGDHA6H03qHDh3U\nvXt3mUwmLyUDAAAAAJQXigcAAACUmCM7K++/4+PjtW7dOuXm5jrN3HHHHerVqxelAwAAAABUExQP\nAAAAKJHMuFP67g+tlfS/m3T+/HmtWbNGOTk5TjO33Xab7r//fkoHAAAAAKhGOFwaAAAAxZadEKeT\nj3dVdkKcZDbrRPtBOtOgpdPMzTffrAcffFBmM7/rAgAAAADVCf8XCAAAgGLJvnReUWN7/lw6SJLD\nodZffqCwM0fyZiIjIzVo0CBKBwAAAACohqzeDgAAAIDKIyfxkqKf6q2s+BindZOk2498LIs9R+Ye\nQzV48GBZLBbvhAQAAAAAeBW/ggYAAAC35CYnKvqpPso8/UOBM7cc+0Tdss7JauX3WwAAAACguqJ4\nAAAAQJHsaSmKHt9PGVHHipy98PY0Je5YVw6pAAAAAAAVEcUDAAAACmXPSNep5/rr+ndfuTUf2KG7\nancf6OFUAAAAAICKiuIBAAAABXJkZSpm4iClHdnv1nzAHZ3UfP6HMvv6eTgZAAAAAKCiongAAABA\nvhw52To9+WGlHtzr1nyNW9qpxVsfyeJf08PJAAAAAAAVGcUDAAAAXBi5uYqd8piS9+1wa97/ptsV\nsfBjWQKCPJwMAAAAAFDRUTwAAADAiWG368y00bq2Z7Nb837hrRTx7k5Zg4I9nAwAAAAAUBlQPAAA\nACCP4XAobtZ4Je5c79a8b1gLRS7eLVtIHQ8nAwAAAABUFhQPAAAAkCQZhqH4OS/oyualbs37NGii\nyPd2y1angYeTAQAAAAAqE4oHAAAAyDAMnXvzJV1e945b87Y6DRX53m75NGjs4WQAAAAAgMqG4gEA\nAABKWDxLF5e/4dasNbiOIt/bLd+w5h5OBQAAAACojCgeAAAAqrkLy95QwqK/uTVrCQpWxOJd8mvW\n0sOpAAAAAACVFcUDAABANXZp/Ts69+af3Zo1BwQp4t0dqhF5m4dTAQAAAAAqM4oHAACAaurK5qWK\nf22iW7NmvxqKWLBVNVvf5eFUAAAAAIDKjuIBAACgGrr68Vqd/dtTbs2afP3U/K0tCmh7j4dTAQAA\nAACqAooHAACAaibpfzfpzF8flwyjyFmT1abmczcqqH3XckgGAAAAAKgKKB4AAACqkeR/71DslMck\nu73oYYtFzV5fq1qdens+GAAAAACgyqB4AAAAqCZSDu5VzOQhMnJzih42mdRs1nIFdxvg+WAAAAAA\ngCqF4gEAAKCasKdek+Fw40oHSU2mL1ZIn6EeTgQAAAAAqIooHgAAAKqJ4PsGqcbkt2Q3WwqdC5vy\npkIHjC6nVAAAAACAqobiAQAAoJqIjY3VpphLOnz3w7JbrPnONJo0W3WHji/nZAAAAACAqoTiAQAA\noBqIi4vTunXrlJubqyt1w3Ww4yPKtfo4zTR4errqj3zBSwkBAAAAAFUFxQMAAEAVd/78ea1du1Y5\nOf89VDoxtLGujJwuS2BtSVL9x19Ug7FTvRURAAAAAFCFmAzDMLwdAgAAAJ5x8eJFLV++XJmZmU7r\nN998sx588EFlRh1T0p7Najh+hkwmk5dSAgAAAACqEooHAACAKurKlStavny50tPTndYjIyM1ZMgQ\nWSyFHzINAAAAAEBJcKslAACAKigxMVErV650KR3Cw8M1ePBgSgcAAAAAgMdQPAAAAFQxycnJWrly\npVJTU53WmzRpoqFDh8pqtXopGQAAAACgOqB4AAAAqOTsaSmypyZLklJTU7Vy5UolJyc7zTRq1EjD\nhg2TzWbzRkQAAAAAQDXCr7sBAABUYvaMdJ16/g9yZGao0dwPtHrzViUmJjrN1K9fX48++qh8fX29\nlBIAAAAAUJ1wuDQAAEAl5cjK1KnnByj14B5J0vUbGumLDkOU7Vszb6ZOnToaOXKkatasWdDbAAAA\nAABQprjVEgAAQCXkyMnW6ckP55UOklTj6jnd/e+V8s34+WyHkJAQDR8+nNIBAAAAAFCuKB4AAAAq\nGSM3V7F/Hq7kfTtcngtMu6qO+1aqrsWhESNGKDAw0AsJAQAAAADVGcUDAABAJWLY7Trz18d17X83\nFThTMz1JHfetlG/y5XJMBgAAAADAzygeAAAAKgnDMBQ3a7wSd6wrcjb34k86O3OsOM4LAAAAAFDe\nKB4AAAAqAcMw9NPrL+jK5qVuzfs0aKxms5bLZDJ5OBkAAAAAAM4oHgAAACo4wzB07q2purTubbfm\nbXUaKPK9T+TToLGHkwEAAAAA4IriAQAAoIJLeO8VXVw2x61Za3AdRSzeLd+w5h5OBQAAAABA/ige\nAAAAKrALy+cq4d2Zbs1agoIVsXiX/MNbeTgVAAAAAAAFo3gAAACooC6tX6hz86e4NWsOCFLEuztU\nI/I2D6cCAAAAAKBwFA8AAAAV0JUtyxT/2gS3Zs1+NRSxYKtqtr7Lw6kAAAAAACgaxQMAAEAFk7hz\nvc7OHOfWrMnHV83f2qKAtvd4OBUAAAAAAO6heAAAAKhAkvZuUexfRkmGUeSsyWpT83kfKKh9V88H\nAwAAAADATRQPAAAAFUTyF7sU++Ijkt1e9LDFomavr1WtTr09HwwAAAAAgGKgeAAAAKgAUg59ppg/\nDpaRm1P0sMmkZrOWK7jbAM8HAwAAAACgmCgeAAAAvCztyH7FPD9ARlamW/NNpi9WSJ+hHk4FAAAA\nAEDJUDwAAAB4UfqJw4p+9gE5Mq+7NR825U2FDhjt4VQAAAAAAJQcxQMAAICXXI86pujx/eRIT3Vr\nvtGk2ao7dLyHUwEAAAAAUDoUDwAAAF6QGfujosf1lj0lya35huNnqP7IFzycCgAAAACA0qN4AAAA\nKGdZ8TGKGttLuUmX3Zqv//iLqv/kSx5OBQAAAABA2aB4AAAAKEfZF88p/6GeogAAIABJREFUamwv\n5Vw+79Z83WHPquFzs2QymTycDAAAAACAskHxAAAAUI6stULkF97SrdnQQU/oxhfnUToAAAAAACoV\nigcAAIByZPbzV8i0JboS1rrQuZB+j6jx1HcoHQAAAAAAlQ7FAwAAQDlKTk7WqvUbdPCO/jp34835\nztS+70E1nflPmSyWck4HAAAAAEDpmQzDMLwdAgAAoDpITU3V8uXLlZiY+POC4dDt32xXWNyxvJla\n9/ZT+Nz3Zbb5eCklAAAAAAClwxUPAAAA5SA9PV2rVq36b+kgSSazLvYdo+BBYyRJgR26K3zOekoH\nAAAAAEClZvV2AAAAgKouIyNDq1ev1uXLl53W69Spo8eGj1CNGjUU2PJ2hTwwXGZfPy+lBAAAAACg\nbHCrJQAAAA/KysrSqlWrdO7cOaf1kJAQjRo1SoGBgV5KBgAAAACAZ3CrJQAAAA/JycnR2rVrXUqH\nWrVqacSIEZQOAAAAAIAqieIBAADAA3Jzc7V+/XrFxcU5rQcGBmrkyJGqVauWl5IBAAAAAOBZFA8A\nAABlwHA4lPr1PkmS3W7Xxo0bdfr0aaeZmjVrasSIEQoODvZGRAAAAAAAygWHSwMAAJSSYRiKn/OC\nLq97Rze+OE//ttVXVFSU04y/v7+GDx+u0NBQL6UEAAAAAKB8cLg0AABAKRiGoXNvvqSLy9/IW/uh\ndTfFRHbMe+zr66sRI0aoYcOG3ogIAAAAAEC54lZLAAAApZDw3itOpYMktfpuryJ/+JdkGLLZbHr0\n0UcpHQAAAAAA1Qa3WgIAACihC8vnKuHdmfk+F/njPlkNh+78+1KFhYWVczIAAAAAALyHKx4AAABK\n4NL6hTo3f0qhM+En98v6/psyHI5ySgUAAAAAgPdRPAAAABTTlc1LFf/aBLdmr25Zrqy4aA8nAgAA\nAACg4qB4AAAAKIbEHet09m9PuTVr8vFV8zc3y6/pTR5OBQAAAABAxUHxAAAA4KakPZsVO220ZBhF\nzpqsNjWfu1FBHbqVQzIAAAAAACoOigcAAAA3JO/bqdj/eVSy24setljUbPYa1fp9H88HAwAAAACg\ngqF4AAAAKELKwb2K+eNgGbk5RQ+bTGr28jIFdx/o+WAAAAAAAFRAFA8AAACFSDuyXzETBsrIznJr\nvsn0xQrpO8zDqQAAAAAAqLgoHgAAAAqQfuKwop99QI7M627Nh015U6EDRns4FQAAAAAAFRvFAwAA\nQD6unzyq6PH95EhPdWu+0aTZqjt0vIdTAQAAAABQ8VE8AAAA/EbG6R8U/VQf2VOS3Jpv8PR01R/5\ngodTAQAAAABQOVA8AAAA/Epm3ClFj+ul3KTLbs3XG/0nNRg71cOpAAAAAACoPCgeAAAA/k92Qpyi\nx/VSzuUEt+brDHtGjZ5/RSaTycPJAAAAAACoPCgeAAAAJGVfOq+osT2VnRDn1nzowMcV9qd5lA4A\nAAAAAPwGxQMAAKj2chIvK/qp3sqKj3FrPqTfI2r8l4UymflRCgAAAACA3zIZhmF4OwQAAIC35KYk\nKWrMfcqIOubWfO37Bin8tTUyWa0eTgYAAAAAQOXEr+kBAIBqy56Woujx/dwuHWr9vq+a/X0VpQMA\nAAAAAIWgeAAAANWSPSNdp57rr+snDrs1H9ihu8Lf2CCzzcfDyQAAAAAAqNwoHgAAQLUU++fhSjuy\n363ZgDs6qfn8D2X29fNwKgAAAAAAKj+KBwAAUC3VGz5J5hoBRc7VuKWdWrz1kSz+NcshFQAAAAAA\nlR/FAwAAqJb8bvudTj7wrLJtBV/F4H/T7YpY+LEsAUHlmAwAAAAAgMqN4gEAAFQ7ubm5Wr9+vU5m\nW/Vlp8eU7ePvMuMX3koR7+6UNSjYCwkBAAAAAKi8KB4AAEC1YrfbtXHjRp0+fVqSlFK7vg78foSy\n/ALzZnzDWihy8W7ZQup4KyYAAAAAAJUWxQMAAKg2HA6HNm3apKioKKd1e73GarzwY9nqh8mnQWNF\nvrdbtjoNvJQSAAAAAIDKzWQYhuHtEAAAAJ5mGIa2bNmiY8eOOa37+vpqxIgRatiwobLOnZEcdvmG\nNfdOSAAAAAAAqgCKBwAAUOUZhqHt27frm2++cVq32WwaPny4wsLCvJQMAAAAAICqh1stAQCAKs0w\nDO3atculdLBarRo2bBilAwAAAAAAZYziAQAAVFmGYWjPnj06dOiQ07rZbNbDDz+sZs2aeSkZAAAA\nAABVF8UDAACoUpI++UDZl85Lkvbt26f9+/c7PW8ymTR48GC1aNHCG/EAAAAAAKjyrN4OAAAAUFYS\nd6xT7NSR8r0xXCljX9Vn3xx3mRk0aJBatmzphXQAAAAAAFQPHC4NAACqhKQ9m3X6xWGS3S5Juu4f\npC87PabrASF5M/3791fbtm29FREAAAAAgGqB4gEAABRoyZIlSk5OLnRm8uTJ5ZSmYMn7dipm0oMy\ncnOc1jP9AvTlPY8pLShUffv2Vbt27byUEAAAAACA6oPiAQAAFKhp06Y6e/ZsoTPe/lEi5eBenXqu\nv4zsrHyfz/KpIdPkBbp7yIhyTgYAAAAAQPXE4dIAAK+aMWOGTCZToX9sNpvLAcHFdebMmSL3+e2f\nUaNGlc0XCY9JO/KFYiYMLLB0kCTf7Ovyf3uy0k8cLsdkAAAAAABUXxQPAIAKLzc3V0OHDtXVq1e9\nHaXaOXPmjAzDyPszffp0b0fKk37isKKf7S9H5vUiZ+0pSbr+wzflkAoAAAAAAFi9HQAAUL317NlT\nAQEBTmsbNmzQV1995bT2008/aeTIkdq2bZtMJlOx9wkJCdGcOXOc1mJiYrRo0SJJUnh4uJ5++mmn\n52+55ZZi74Pycf3kUUWP7ydHeqpb840mzVadweM8nAoAAAAAAEic8QAAqIBGjRqlFStW5Pvc66+/\nrj/96U9lss/nn3+url27SpI6d+6szz//vEzetyqbMWOGZs6c6bRW3j9KZJz+QVFPdFdu0mW35hs8\nPV0Nx/3Fw6kAAAAAAMAvuNUSAKBSeemll/Sf//zH2zHgJZlxpxQ9rpfbpUO90X9Sg7FTPZwKAAAA\nAAD8GsUDAKBS+eW8h6SkJG9HQTnLOn9W0eN6KedyglvzdYY9o0bPv1KiW3MBAAAAAICSo3gAAFRo\nzZs3d1mLi4vTqFGjyj8MvCb70nlFj+ul7IQ4t+ZDBz6usD/No3QAAAAAAMALKB4AABXalClT1LFj\nR5f1rVu3at68eV5IhPKWk3hJ0eN6KSs+xq35kH6PqPFfFspk5sccAAAAAAC8gf8jBwBUaFarVevX\nr9cNN9zg8tyUKVN06NAhL6RCeclNTlT0U32UGfujW/O17xukpjP/KZPF4uFkAAAAAACgIBQPAIAK\nLywsTCtWrHC5bU5OTo4efvhhznuoouxpKYoe308ZUcfcmq/1+75q9vdVMlmtHk4GAAAAAAAKw/+Z\nAwAqhX79+unFF1/U7NmzndbPnDmjxx9/XJs3b/ZSsp9dunRJx48fV2xsrK5du6bs7GwFBwcrJCRE\nt956q1q1alVu5w0YhqGjR4/q+PHjunDhgnJzc1W/fn01adJEnTp1ko+PT7nkKI7vvvtOP/74oy5e\nvKhr164pqIa/crcsUej5KN3kL5mL+N4Fduiu8Dc2yGwr/GszDEOnTp3St99+q0uXLik5OVk2m03B\nwcFq1qyZ2rRpk+/VNQAAAAAAwH0UDwCASmPWrFnav3+/vvjiC6f1LVu26M0339SECRPKLYvD4dCn\nn36qrVu3ateuXTp9+nSh88HBwRoyZIgmTpyoli1bur1P06ZNdfbs2UJnDMOQJGVkZGju3LlauHCh\nEhIS8p2tXbu2HnroIb388suqX7++2zk84cKFC5o9e7Y2bdqkuLiCD42uZZHaB5o0so5ZLWu4FhAB\nbe9R8/kfyuzrV+B7JCQk6P/9v/+n1atXF/i9+UWLFi3Up08f3X///erevbss3LYJAAAAAIBi4VZL\nAIBK45fzHkJDQ12ee/HFF3X48OFyybFy5Uo1adJEvXv31sKFC11KB5vN5vJhdVJSkhYvXqzWrVtr\n2rRpstvtZZopJiZGbdu21bRp0/I+WLdYLC5XWVy7dk3/+Mc/1KpVK61du7ZMM7jLMAy9+uqratGi\nhebPn+9SOtjMzpmT7dKn1wwNj7brz2ftSrMbec/VaH2XWizYKot/zQL3W7FihVq2bKk5c+a4lA42\nm03W39ya6dSpU1qwYIF69eqlJk2a6O9//3tJv1QAAAAAAKoligcAQKXSqFEjrVq1yuUD9ezsbD38\n8MNKTk72eIa9e/fqp59+yntsMpk0bNgw7d69W0lJScrOzlZOTo6uXLmiXbt2acSIEXkfbjscDs2a\nNUtDhgzJu1KhMFOnTtWcOXPy/vTo0cNlJiEhQV27dtXJkycVGRmpxYsXKz4+XtnZ2crKytLJkyc1\na9Ys1a5dO+81165d02OPPaalS5eWwXfEfVlZWRo6dKimTp2q9PR0ST9//0aOHKnP9+7VsecG6j+3\nWrTvFouWtrBoaKhJtv/7qzb0cwHxxCm7LmQb8o+8TRELP5YlIKjA/RYtWqRRo0YpJSVFklSzZk1N\nnjxZBw4cUEpKSt7f1eXLl7V9+3YNGDDA6fXnzp3T4sWLPfK9AAAAAACgqqJ4AABUOr1799af//xn\nl/XY2Fg98cQT5ZrFz89P27dv19q1a9WzZ8+8D/dNJpNuuOEG9erVSytWrNCBAwdUr169vNdt2rRJ\nM2bMKPL9n3zySU2ePDnvT8eOHV1mRo8erfj4eA0bNkxHjx7V2LFjdeONN8psNstmsykyMlJTp07V\nt99+q1atWuW9zjAMjRkzRrt37y79N8INhmFoyJAhev/99/PWatSood27d2vZP/+pxp8sVfa/t0mS\n/C0m3VbTpMmNLFoVYVGdX12UEJMpTTpnVdj8LbLWCilwv1OnTmnSpEl5j4OCgvTll19qzpw5uvvu\nuxUYGJj3XGhoqPr166fNmzdr48aNstlsZfiVAwAAAABQvVA8AAAqpb/97W+69957XdY//PBDLViw\noNxyvPrqq+rbt2+Rc+3atdO2bdtkNv/3n97Zs2fr/Pnzpc6we/du3XPPPVqxYoX8/Ao+56BJkyb6\n6KOPnD5wNwxDTz75pFJTU0udoyjz5s3T1q1bndZWrlyp+7p3V9ys8UrcuT7f17XwN2l+uEW/vnlV\ndEqWpr42p9D93nnnHWVmZuY9njhxom655ZYic/5yBgYAAAAAACgZigcAQKVksVi0bt061alTx+W5\nyZMn6+uvv/Z4hqCgID399NNuz7dr187pVj5ZWVl66623Sp3DZDLpzTffdOu39CMiIlwO4Y6Pj/f4\nOQZnz551uUrl/vvv16BBgxQ/5wVd2Vz4LZ9u8jdp4A3Ot9dauHBhoQdv79q1y+nx7373O7fzPvPM\nM/L19XV7HgAAAAAA/BfFAwCg0mrYsKHWrFnjdBWB9N/zHn65r39Z69mzpyZMmKBZs2YVeoVBfvr0\n6eP0+JNPPil1ng4dOujOO+90e37ChAkuh1//4x//UHZ2dqmzFGTu3LnKyclxWps0aZKSdm3Q5XXv\nuPUeDzWv6/TYbrfrnXcKfm18fLzT46ysLDfTSgEBAWrZsqXb8wAAAAAA4L8oHgAAlVqPHj00depU\nl/WYmBiNGTPGI3s+8sgjmj9/vp577rliv/bGG290enz06FGlpaWVKs9vD0QuSmhoqMtv/1++fFkf\nffRRqXIUJD093eUQ65CQEHXp0kXBPQcrpP+IIt/DGlxHD6zdq1q1ajmtr169usDXOBwOp8dbtmwp\nRmppw4YNOnz4sLZt21as1wEAAAAAUN1RPAAAKr3p06era9euLusbN27UwoULvZCoYL+9QsLhcOjC\nhQules+2bdsW+zWdO3d2WfvXv/5VqhwF2b9/v9LT053W7r333p+vVDGb9WOHQTrTrOArNixBwYpY\ntFM1mt+sW2+91em5hIQExcXF5fu6iIgIp8crV64s1vkfN910k+666y6XPQEAAAAAQOGs3g4AAEBp\nWSwWrV27Vm3atNHFixednnvhhRfUsWNHtWnTxqMZ0tPTdezYMcXFxSklJUWpqakuv3Ev/Xwlxm9d\nvXpVLVq0KPHeJbkl0G8/lJekL7/8ssQZCpNfoXHzzTfLMAzt2bNHh776Srq9t+wWq5qfOug0Zw4I\nUsTCj1Xjptsl/Xy1Rn65Gzdu7LI+ePBgHTt2LO+xYRh6/vnntXr1ak2ePFkDBgxw61wMAAAAAABQ\nPBQPAIAqoX79+lqzZo169uzp9IF/VlaWhgwZoq+//lqBgYFluue1a9e0cuVKrVq1St98802+RYM7\nMjIySpWjdu3axX5NeHi4y9oPP/xQqhwFOXHihMvajz/+qPHjxzsVMftVQ3WNxgq9fEaSZLLZFNp1\nqPbs+pe06+fyIr+rG86cOZPvvhMmTNDKlSsVHR3ttH7o0CENGTJEISEhGjBggAYMGKD77rtP/v7+\nJfwKAQAAAADAr1E8AACqjO7du+uvf/2rZsyY4bQeHR2tsWPHat26dWW21+rVq/XHP/5Rly5dKrP3\nLKmAgIBivya/Eub69evKzs6Wj49PWcTKc/XqVZe1TZs2ufHKLGl+0bfKSkpKync9MDBQn3zyie6/\n/3599913Ls8nJiZq6dKlWrp0qfz9/XXfffdpwIABGjhwoIKDg93IBwAAAAAA8sMZDwCAKmXatGnq\n3r27y/r69eu1ePHiMtlj5syZGj58uFPp4OfnpyeffFI7d+7UuXPnlJmZKcMwXP589tlnZZLh18zm\n4v9zXlBZUdCH+KWRX/FQlq5du1bgc02bNtXXX3+tWbNmKSQkpMC5jIwMbdu2TU888YTq16+vxx57\nTMePH/dEXAAAAAAAqjyueAAAVClms1lr1qxRmzZtXA5tnjhxou6++27ddtttJX7/TZs2uVxRERYW\npl27dunmm28u8fuWN8Mw8l03mUxlvld+79m/f3/dcccdeY/79u2rdu3alfnekuTr66upU6dq4sSJ\n+vDDD7VmzRrt3btXubm5+c5nZ2drzZo1Wr9+vSZMmKDZs2fLauVHJgAAAAAA3MUVDwCAKqdevXpa\nt26dLBaL03pmZqYGDx6stLS0Er2vw+HQxIkTXdbff/99r5YOJTlbIj09Pd91T9xi6IYbbnBZy87O\nzvvvHj16eKx0+LWaNWtqxIgR2r17ty5cuKAlS5aoZ8+eBZYKdrtd8+bN08CBA0t8fgcAAAAAANUR\nxQMAoErq0qWLy5UJkhQVFaVx48aV6D337dun+Ph4p7V7771Xv/vd70r0fmWlJEVKSkqKy1rNmjVl\ns9nKIpKT/IqHrKwsSVLXrl3VsWPHMt+zKDfccIPGjBmj3bt3KyEhQW+//bZuvfXWfGe3b9+ut956\nq5wTAgAAAABQeVE8AACqrJdeekk9evRwWV+7dq3+8Y9/FPv9vvjiC5e1zp07lyhbWSrsjIOCnD59\n2mWtVatWZRFHkpR+4rAuLH1dhmGoUaNGLs8nJiaqU6dO+v3vf19me5ZUaGionnnmGR07dkwffvih\nGjRo4DIzb948LyQDAAAAAKBy4obFAIAqy2w2a/Xq1Wrbtq3Onz/v9Nzzzz+v2bNnF+v9EhISXNby\n+5C6MAWdrVAaP/74oxo3blys10RFRbmsldWVG9dPHlX0+H6ypyTpavwZZVzPcJ25fl3dunUr0ZkS\nFy5c0IkTJ/Iet2vXTrVq1SpV5l8MGjRIbdq0UZs2bZSampq3Hh8fr9OnTys8PLxM9gEAAAAAoCrj\nigcAQJVWt27dfM97yMjI0P/8z/8U673KojRISkoq9Xv81pEjR4r9ms8//9xlrUuXLqXOkhHzvaKf\n6i17ys9fZ+bmJeqe+L18fHyc5mJjY5WYmFiiPd544w316NFDPXr00P333+/yd/uLUaNGadSoUVq8\neHGx3j88PFyPP/64y/rFixdLlBcAAAAAgOqG4gEAUOXde++9evnll13WMzJcfxO/MHXr1nVZi4uL\nK9Z7/Po39cvKRx99VKz5S5cu6dChQ05rdevW1QMPPFCqHJlxpxT9VG/lJl1xWm959hv1DnM+tDo3\nN1ebN28u9h45OTnasGFD3uOePXsqICAg39kVK1ZoxYoVJdonv8PCg4KCiv0+AAAAAABURxQPAIBq\nYcqUKerdu3ep3qN9+/Yuazt37nT79YZh6IMPPihVhvx8+eWXxbrqYf78+XI4HE5rY8aMcbkqoTiy\nzp9V9LheyrnsejsqSXrK94psZufbKs2ePVvZ2dnF2mfZsmX66aef8h5PmjSpyNccPHhQubm5xdrn\nt1dj2Gw2NWnSpFjvAQAAAABAdUXxAACoFkwmk1atWpXvQcfu6tq1q4KDnX9z/+jRo27/Rv2yZct0\n/PjxEu9fEMMwNGHCBLc+XI+KitKCBQuc1sLCwjRlypQS75996byix/VSdkLBV3/UtZn0QgPn4uHU\nqVP661//6vY+p06d0osvvpj3uHv37uratWuRr7t27VqxDxPfsmWL0+PCrqwAAAAAAADOKB4AANVG\naGioNmzYIKvVWqLX+/n5aerUqS7ro0eP1oEDBwp97fbt2/Xss8+WaN+i9OnTR/v27dPo0aOVlZVV\n4NzZs2f1hz/8QWlpaXlrJpNJS5YsUWBgYIn3jx7XS1nxMUXODQ416/6bmzqtzZ49WzNmzCiyNPn6\n66/VrVs3JScnS5JCQkK0fPlytzO+8MILbl+dMmPGDB08eDDvsdVq1cyZM93eCwAAAACA6q5kn7wA\nAFBGDhw44PKh/XfffZf337t27dKVK85nBvTp00etW7cu0X733HOPXnnllWIfLP2LCRMmaO/evdqx\nY0feWnJysrp06aInnnhCI0aMUNu2beXn56eMjAwdPnxYS5Ys0dq1a+VwONS9e3ft2bPH6T03bNig\nr776Ku/xww8/rLCwMLczLV26VO3bt9fq1at1+PBhTZ48WX369FGDBg3kcDgUGxur999/X2+88Yau\nXbuW97pfSodevXoV+N5LlizJ+7BfUr4Fy5KD3zs9HniDSQEWk8tc7fsGadOsFXr62Wf1z3/+M299\n5syZ2rJli5566in17t1bjRo1ks1mU0pKig4fPqw1a9Zo9erVysnJkSQFBwdr+/btuvHGG93+HmVk\nZKhv374aOHCghg8frvbt26thw4YymUxyOByKi4vTF198oUWLFmn//v1O36N58+bpzjvvdHsvAAAA\nAACqO5NhGIa3QwAAqq8ZM2YU+7fJly1bplGjRpV4T8Mw9MADD+jjjz/OW+vcubM+//xzt15//fp1\njRs3TqtXry5wxtfX1+nqA19fX82dO1etW7cu8vZAn332mbp06ZLvc/l9vwzDUExMjPr166eTJ0/m\nrVssFhmG4XKegyTVrl1bb7/9th599NFCszRt2lRnz54tdOa3trayqKGPc/FQ695+Cp/7vsy2n8+R\nWLBggaZPn66kpCSX15tMJlmt1ryi4dc6dOigZcuWqVWrVkXmmDZtmpYtW6Zz587l+7zJZMr7e8rv\nx6E6dero7bff1pAhQ4rcCwAAAAAA/Be3WgIAVDsmk0krVqwo1lUFv1ajRg2tWrVK27ZtU+fOnWUy\nuf52/y+lQ61atTR69GhFRUXpmWeeKVXuwjRv3lxHjhzRyy+/rPr160uS7Ha7S+lQq1YtjRkzRt9/\n/32RpUNZCezQXeFz1ueVDpL03HPP6fTp05o2bZpatmzpNG8YhlPpYDab1a1bN61bt04HDhxwq3SQ\npJdffllnz57Vjh079PTTT6tZs2Yu+2RmZrqUDjfffLNeffVVRUdHUzoAAAAAAFACXPEAAKi2vvnm\nG23dulXSz7/ZX9KrKK5evaoDBw4oPj5e165dk5+fn0JDQxUREaH27dvLYrGUWeaCrnj47eNvv/1W\nx48f14ULF2S321WvXj01adJEnTp1kq+vb4n3d2Rm6NTzf1Dqoc/cmg+4o5NavLNdFv+ahc6dOXNG\nR48e1cWLF3XlyhX5+PgoODhYzZs315133lmqMyh+7erVqzpx4oROnz6t5ORkpaWlydfXV0FBQWra\ntKnatGmjevXqlcleAAAAAABUVxQPAABUIu4UD57iyMlWzKSHlPKFe4c017ilnSIX7ZIlIMjDyQAA\nAAAAQEXCrZYAAECRjNxcxU55zO3Swf+m2xWx8GNKBwAAAAAAqiGKBwAAUCjDbteZaaN1bc9mt+b9\nwlsp4t2dsgYFezgZAAAAAACoiCgeAABAgQyHQ3Gzxitx53q35n3DWihy8W7ZQup4OBkAAAAAAKio\nKB4AAEC+DMNQ/OuTdGXzUrfmfRo0UeR7u2Wr08DDyQAAAAAAQEVG8QAAAFwYhqFz8/+sy+sXujVv\nq9NQke/tlk+Dxh5OBgAAAAAAKjqKBwAA4CJh8SxdXDHXrVlrcB1FvrdbvmHNPZwKAAAAAABUBlZv\nBwAAAAVbsmSJkpOT8x4fOHDAZeaNN95wejx27FgFBQWVeM8Ly95QwqK/uTVrCQpWxOJd8mvWssT7\nAQAAAACAqsVkGIbh7RAAACB/TZs21dmzZ4v1mtjYWDVt2rRE+11a/47iX5vo1qw5IEiRi3erZuu7\nSrQXAAAAAAComrjVEgAAkCRd2bzU/dLBr4YiFmyldAAAAAAAAC644gEAAOjqx2t15i+jJDd+LDD5\n+KrF29sU1L6r54MBAAAAAIBKh+IBAIBqzn49TSceaKncqxeLnDVZbWo+f5NqdepdDskAAAAAAEBl\nxK2WAACo5iw1AhS5eJcUFFLEoEXNXl9L6QAAAAAAAApl9XYAAABQNrJy7Yq+mKbLaVnKsTtks5hV\nJ8BXEfUC5Gu1FPraUxmGPmv/sH63f7X8M1JdB0wmNZu1XMHdBngoPQAAAAAAqCq41RIAAJXYyQup\nWn84TofOJCrqYqpy7K7/rNssJkXWC1T7piEa2q6xbqof6PT8Dz+DlN7FAAAgAElEQVT8oI0bN8ow\nDPmnJ+nuL1arxvVkp5kmM95T6IDRHv1aAAAAAABA1UDxAABAJbT3x4ta9O/TOhSbWOzXtm8Woqfu\nDVe3lvUUHR2t9evXy+Fw5D3vl5Girl9/KMvlc5KksClvqu7Q8WWWHQAAAAAAVG0UDwAAVCKJ6dma\nvvU7bTt2vtTv1a15kBpd2C+rPctpvUOHDup25+2KfrqPbnhghOqPfKHUewEAAAAAgOqD4gEAgEri\nQMwVPb/+iK6kZZfZe/opR11sp9XA8vO5DnfccYfuv/9+mUwmOTIzZPbzL7O9AAAAAABA9UDxAABA\nJbDnh4t6es03yrY7ih4uJosc6mqLUb+2TTRgwACZTKYy3wMAAAAAAFQfZm8HAAAAhTsQc8VjpYMk\n2WXW57ktVPfWTpQOAAAAAACg1CgeAACowBLTs/X8+iMeKx1+kWuYNGHDt0pML7vbOAEAAAAAgOqJ\n4gEAgAps+tbvyvRMh8JcSfv54GoAAAAAAIDSoHgAAKCC2vvjRW07dr5c99x27Lz2/nixXPcEAAAA\nAABVC8UDAAAV1KJ/n/bKvou9tC8AAAAAAKgaKB4AAKiATl5I1aHYRK/sfTA2UVEXU72yNwAAAAAA\nqPwoHgAAqIDWH47z8v7xXt0fAAAAAABUXhQPAABUQIfOeOdqh7z9Y696dX8AAAAAAFB5UTwAAFDB\nZOXavX6ro5MXU5WVa/dqBgAAAAAAUDlRPAAAUMFEX0xTjt3waoYcu6Hoi2lezQAAAAAAAConigcA\nACqYy2lZ3o4gSbpSQXIAAAAAAIDKheIBAIAKJsfu8HYESVJ2BckBAAAAAAAqF4oHAAAqGJulYvzz\n7FNBcgAAAAAAgMqFTxQAAKhg6gT4ejuCJCm0guQAAAAAAACVC8UDAAAVTES9ANksJq9msFlMiqgX\n4NUMAAAA+P/s3Xl01PXZ///XZLJvZGXfCZuBQEgIJJm4oSCKWBCoe1FUqhXB3trj0but/Wn1vruJ\nonXDKq2lBUEBFQVcm8kGYQv7voUlZGHLnszM7w++5HaYzCSBZCbL83EOp37en2s+1xUqeM7nmvf7\nAgCgbaLxAABAK+PnbVS/CH+P1jC4S4j8vI0erQEAAAAAALRN3p4uAAAA/J/8/Hylp6fLu6RCUheP\n1ZHUL9JjuQEAAAAAQNtG4wEAAA+z2Ww6dOiQ0tPTdfjwYUnSIKO/dlo813i4a3Qvj+UGAAAAAABt\nG40HAAA8xGazae/evUpPT9fx48ft7oV7VaqL4YIKbCFur2tMvwgN6uL+vAAAAAAAoH2g8QAAgJtZ\nrVbt2LFDZrNZp0+fdhqXEFSi1aXubwDMvra/23MCAAAAAID2g8YDAABuYrFYtHXrVmVkZKikpMRp\nXEhIiJKTk5WQkCDj8h36LO+E22q8Pa67bhziuSOeAAAAAABA22ew2Ww2TxcBAEB7VlNTo02bNikz\nM1Pnz593GhcWFqbU1FSNHDlS3t4XvxtQUlat8fN/UFFpdYvXGRXsq7XzrlNEkG+L5wIAAAAAAO0X\njQcAAFpIZWWlNmzYoOzsbJWXlzuNi46Olslk0rBhw+Tl5eVwP/NAkWZ+uEHVtdYWq9XX20sfzhyt\nlAFRLZYDAAAAAAB0DDQeAABoZuXl5crOztb69etVVVXlNK5bt25KS0vTkCFDZDAYXD7zm10Femzx\nphZpPvh6e+mte0Zp3FCOWAIAAAAAAFePxgMAAM3k/PnzyszM1KZNm1RTU+M0rk+fPkpLS1P//v0b\nbDj82A/ZeXpy6Tad8wtrjnIlXTxe6fW74tnpAAAAAAAAmg3DpQEAuEolJSXKyMjQli1bZLU635EQ\nExOjtLQ09e7d+4ryDMj+l+anv6OF1zyijO7XXmm5dW6P667fTY5lpgMAAAAAAGhW7HgAAOAKnT59\nWmazWdu3b5er/5xec801MplM6tat2xXnslZXaduEvqo9UyRJ2hidoJX9pmhH5LAmP2tMvwjNvra/\nbhzC0UoAAAAAAKD50XgAAKCJjh8/LrPZrN27dzuNMRgMiouLU2pqqqKjo686Z8lXS3To2fsc1o8G\n99I3PW/WzohYHQ3tq1qD0SHGx2jQ4C4hSuoXqbtG99KgLiFXXQ8AAAAAAIAzNB4AAGgEm82mI0eO\nKD09XQcPHnQaZzQaFR8fr9TUVIWFNd8shj2zxql0439cxvR99xud7DFCRaVVqrZY5Wv0UlSwnwZ2\nCZaft2NDAgAAAAAAoCUw4wEAABdsNpv279+v9PR0HTt2zGmcj4+PEhMTlZycrJCQ5t1RUHFwV4NN\nB//+QxUxOk2RTRhWDQAAAAAA0BJoPAAAUA+r1apdu3bJbDbr1KlTTuP8/f01ZswYJSUlKTAwsEVq\nKVr2XoMx0dMekYGmAwAAAAAAaAU4agkAgB+xWCzatm2bzGaziouLncYFBQUpOTlZiYmJ8vPza7F6\nrJUVyru5tywXzjqNMfj5K27dUXmHhrdYHQAAAAAAAI3FjgcAACTV1NRoy5YtysjI0Llz55zGderU\nSampqRo5cqR8fHxavK4zaz922XSQpIgJM2g6AAAAAACAVoPGAwCgQ6uqqlJubq6ysrJUVlbmNC4y\nMlImk0nDhw+X0ei+Qc2Fy95tMCZ6+qNuqAQAAAAAAKBxaDwAADqk8vJyrV+/Xjk5OaqsrHQa17Vr\nV5lMJg0dOlReXl5urFAq371FZXk5LmMCBo9Q4LAkN1UEAAAAAADQMBoPAIAO5cKFC8rKylJubq5q\namqcxvXq1UtpaWmKiYnx2NDmwuUMlQYAAAAAAG0Pw6UBAB3C2bNnlZGRoc2bN8tisTiN69+/v9LS\n0tSnTx+PvtC3lF1Q3s29ZS0vdRrjFRisuHVHZQwKcWNlAAAAAAAArrHjAQDQrhUVFclsNisvL0+u\neu1DhgyRyWRSjx493FidcxfWf+ey6SBJEbfeTdMBAAAAAAC0Oux4AAC0SydPnlR6erp27drlNMZg\nMGjYsGEymUzq3LmzG6trnMpDu5X75/+WMWeNfGsc51AM/fd6BQ6J90BlAAAAAAAAzrHjAQDQrhw9\nelTp6enav3+/0xij0agRI0YoNTVVERERbqyuaYw9Byij12hVRwxRt+O71OfQJkWU5EuSAoeNpukA\nAAAAAABaJRoPAIA2z2az6eDBg0pPT9eRI0ecxnl7eyshIUEpKSkKDQ11Y4VXZufOnaqsrJSMPjre\nO07He8dp9q03qnrdUgXHp3q6PAAAAAAAgHrReAAAtFk2m027d++W2WzWiRMnnMb5+fkpKSlJY8aM\nUVBQkBsrvDq5ubl21wMGDFDX0WnS6DQPVQQAAAAAANAwGg8AgDbHarVq+/btMpvNKiwsdBoXGBio\nsWPHavTo0fL393djhVevoKBA+fn5dmsJCQkeqgYAAAAAAKDxaDwAANqM2tpabdmyRRkZGTp79qzT\nuNDQUKWkpGjUqFHy8fFxY4XN5/LdDsHBwRo0aJCHqgEAAAAAAGg8Gg8AgFavurpaGzduVFZWli5c\nuOA0LiIiQqmpqRoxYoSMRqMbK2xe1dXVysvLs1sbNWpUm/6ZAAAAAABAx0HjAQDQalVWVionJ0c5\nOTmqqKhwGte5c2eZTCbFxsbKy8vLjRW2jG3btqm6urru2mAwaNSoUR6sCAAAAAAAoPFoPAAAWp3S\n0lJlZ2drw4YNdi/gL9ejRw+lpaVp0KBBMhgMbqywZW3cuNHueuDAgerUqZOHqgEAAAAAAGgaGg8A\ngFbj3LlzyszM1KZNm1RbW+s0rm/fvkpLS1O/fv3aVcNBkk6cOKGTJ0/arTFUGgAAAAAAtCU0HgAA\nHldcXCyz2ay8vDxZrVancYMGDZLJZFKvXr3cWJ17XT5UulOnToqJifFQNQAAAAAAAE1H4wEA4DEF\nBQVKT0/Xzp07ZbPZnMbFxsbKZDKpa9eubqzO/SorK7V9+3a7tVGjRrWLuRUAAAAAAKDjoPEAAHC7\n/Px8paena+/evU5jvLy8FBcXJ5PJpMjISDdW537H/vBLeYdF6ljfkaqpqalb9/LyUnx8vAcrAwAA\nAAAAaDoaDwAAt7DZbDp06JDMZrMOHTrkNM7b21vx8fFKTU3tEAOVa4pO6fTSt6TaWnkZvJTQdaCO\n9Bulos79NXjwYIWEhHi6RAAAAAAAgCah8QAAaFE2m0179+5Venq6jh8/7jTO19dXo0eP1tixYxUc\nHOzGCj2raMWH0v8bpG2wWdXt5B51O7lHZUFhigqepZqS6+UT0dmzRQIAAAAAADSBwebqUG0AAK6Q\n1WrVzp07lZ6ertOnTzuNCwgI0JgxY5SUlKSAgAA3Vuh5NotF2ycNVvXJI05jDH7+ilt7RN6dItxY\nGQAAAAAAwJVjxwMAoFlZLBZt3bpVGRkZKikpcRoXHByslJQUJSQkyNfX140Vth7nM9e6bDpIUmjS\njTQdAAAAAABAm0LjAQDQLGpqarRp0yZlZmbq/PnzTuPCwsKUmpqqkSNHytu7Y/9nqHD5ew3GRE17\nxA2VAAAAAAAANJ+O/cYHAHDVKisrtWHDBmVnZ6u8vNxpXFRUlNLS0jRs2DB5eXm5scLWqfrUMZ37\nzxcuY3y69lIn00Q3VQQAAAAAANA8aDwAAK5IeXm5srOztX79elVVVTmN69atm9LS0jRkyBAZDAY3\nVti6FX3yN8lqdRkTPXWWDEajmyoCAAAAAABoHjQeAABNcv78eWVlZWnjxo2qqalxGte7d2+lpaVp\nwIABNBwuY6utVdGnf3MdZDQq8icPuqcgAAAAAACAZkTjAQDQKGfOnJHZbNbWrVtlsVicxsXExMhk\nMqlPnz5urK5tOfefL1RTeMJlTNh1t8u3c3c3VQQAAAAAANB8aDwAAFw6ffq0zGaztm/fLpvN5jRu\n6NChSktLU7du3dxYXdtUuOzdBmOipz3qhkoAAAAAAACaH40HAEC9Tpw4ofT0dO3evdtpjMFgUFxc\nnFJTUxUdHe3G6tquqvyDOp+51mWMb8/+Chk7zk0VAQAAAAAANC8aDwCAOjabTUeOHJHZbNaBAwec\nxhmNRsXHxyslJUXh4eFurLDtK1y+sMGY6DsfkcHLyw3VAAAAAAAAND+DzdW5GQCADsFms2n//v1K\nT0/XsWPHnMb5+PgoMTFRycnJCgkJcWOF7YO1plrbxvdV7ZlCpzEGbx8NX3tYPhGd3VgZAAAAAABA\n82HHAwB0YFarVbt371Z6erpOnTrlNM7f319JSUkaM2aMAgMD3Vhh+3L22xUumw6SFHbTVJoOAAAA\nAACgTaPxAAAdkMVi0bZt22Q2m1VcXOw0LigoSMnJyUpMTJSfn58bK2yfCj9mqDQAAAAAAGj/aDwA\nQAdSU1OjLVu2KCMjQ+fOnXMa16lTJ6WkpCg+Pl4+Pj5urLD9qjy0W6W5P7iM8e83RMEJaW6qCAAA\nAAAAoGXQeACADqCqqkq5ubnKyspSWVmZ07jIyEiZTCYNHz5cRqPRjRW2f4XL3mswJurOh2UwGNxQ\nDQAAAAAAQMthuDQAtGMVFRXKyclRTk6OKisrncZ16dJFaWlpGjp0qLy8vNxYYcdgraxQ3vg+spw/\n4zTG4OevuLVH5N0pwo2VAQAAAAAAND92PABAO1RaWqqsrCzl5uaqurraaVzPnj2VlpamgQMH8k37\nFnRm3TKXTQdJihg/naYDAAAAAABoF2g8AEA7cvbsWWVkZGjz5s2yWCxO4/r376+0tDT16dOHhoMb\nNGaodNR0hkoDAAAAAID2gcYDALQDRUVFMpvN2rZtm6xWq9O4wYMHKy0tTT169HBjdR1b+d48leVl\nu4wJGDRcQcPHuKkiAAAAAACAlkXjAQDasJMnT8psNmvnzp1OYwwGg4YNGyaTyaTOnTu7sTpIUlEj\nhkpHT3uUnScAAAAAAKDdYLg0ALRBR48eVXp6uvbv3+80xsvLSyNHjlRqaqoiIpgd4AmW8lLl3dxb\n1rILTmO8AoIUt+6ojMGhbqwMAAAAAACg5bDjAQDaCJvNpoMHDyo9PV1HjhxxGuft7a2EhASlpKQo\nNJSX2Z5U8uW/XTYdJCni1rtpOgAAAAAAgHaFxgMAtHI2m027d++W2WzWiRMnnMb5+flp9OjRGjt2\nrIKCgtxYIZwpWtbwUOnoaY+4oRIAAAAAAAD3ofEAAK2U1WrV9u3bZTabVVhY6DQuMDBQY8eO1ejR\no+Xv7+/GCuFK2Y5cle/a7DImMDZRgUNHuakiAAAAAAAA96DxAACtTG1trbZu3aqMjAydOXPGaVxI\nSIhSUlKUkJAgHx8fN1aIxihszG6H6Y+6oRIAAAAAAAD3ovEAAK1EdXW1Nm7cqKysLF244HwuQHh4\nuEwmk+Li4uTtzV/jrZHNYlFpbrrLGGNwJ4VPmOGmigAAAAAAANyHN1YA4GGVlZVav369srOzVVFR\n4TSuc+fOMplMio2NlZeXlxsrRFMZjEbFfpKnI6s+0u53XlH06UMOMRGT7pUxgFkcAAAAAACg/aHx\nAAAeUlZWpqysLG3YsEHV1dVO43r06KG0tDQNGjRIBoPBjRXiahh8fLQzoIs2pN6rwNIS9Tm8Wb2P\nbpVPVbkkhkoDAAAAAID2i6/MtiMvvPCCDAZDo3598sknLV7Pb37zm0bVMnPmzBavBWhNzp07py+/\n/FLz589XRkaG06ZD3759df/992vWrFkaPHgwTYc2prq6Wnl5eZKk8uAI7Ro2TuUvLlG/l/+u6Lt/\noYCYYR6uEAAAAAAAoGWw46GD+v3vf6+pU6e22PPPnz+vBQsWtNjzgbaouLhYGRkZ2rp1q6xWq9O4\ngQMHKi0tTb169XJjdWhu27dvV1VVVd21wWBQwphkderUSRG33u3BygAAAAAAAFoWjYd2ZPz48QoO\nDrZbW7JkiXJzcx1iN23apNWrV+vWW29tkVoWLFigs2fPOqyHh4frueees1sbNoxv/aJ9KygokNls\n1o4dO2Sz2ZzGxcbGymQyqWvXrm6sDi1l48aNdtcxMTHq1KmTh6oBAAAAAABwH4PN1VswtHkzZ87U\nokWL6r2XnJyszMzMZs9ZVlamvn37qqioyOFenz59dPjw4WbPCbRG+fn5Sk9P1969e53GeHl5KS4u\nTiaTSZGRkW6sDi3pxIkTeu+99+zW7r77bg0aNMhDFQEAAAAAALgPOx46sKysLH3zzTcaN25csz73\nrbfeqrfpAHQENptNhw8fVnp6ug4dOuQ0ztvbW/Hx8UpJSVFYWJgbK4Q7XL7TLDQ0VDExMR6qBgAA\nAAAAwL1oPHQgAQEBqqiosFt76aWXmrXxUFlZqT//+c9O8wHtlc1m0969e2U2m5Wfn+80ztfXV6NH\nj9bYsWMdjkZD+1BZWant27fbrSUkJMjLy8tDFQEAAAAAALgXjYcO5KGHHtKbb75pt/b9998rIyND\nqampzZJj4cKFOnXqlCTp4YcfZsA02j2r1aqdO3fKbDaroKDAaVxAQIDGjBmjpKQkBQQEuLFCuNu2\nbdtUU1NTd20wGBQfH+/BigAAAAAAANyLxkMHkpiYqAkTJmjNmjV26y+++KK++uqrq35+dXW1/vCH\nP0iSIiMjNXv2bBoPaLcsFovy8vJkNptVUlLiNC44OFjJyclKTEyUr6+vGyuEJ9hsNodjloYMGaKQ\nkBAPVQQAAAAAAOB+NB46mOeff96h8bBmzRrl5uYqMTHxqp69aNEiHTt2TJI0b948BQUFXdXzgNao\npqZGmzZtUmZmps6fP+80LiwsTKmpqRo5cqS8vfmrtqPIz8/X6dOn7dYSEhI8VA0AAAAAAIBn8Das\ng0lLS5PJZJLZbLZbf+mll7RixYorfq7FYtH//M//SLo4RPWJJ57Q2bNnr6pWoDWpqqrShg0blJ2d\nrbKyMqdxUVFRMplMGjZsmIxGoxsrRGuwceNGu+vw8HD179/fQ9UAAAAAAAB4Bo2HDuj555/XxIkT\n7dZWrVqlbdu2afjw4Vf0zMWLF+vgwYOSpMcff1xhYWEt2nioqqpSdna28vPzVVhYqMrKSkVHR6tz\n585KTExUt27dmi2XzWbT/v37tWXLFp0+fVrnzp2Tj4+PwsPD1a9fP40cOVKRkZHNlk+SSkpKtH79\nep06dUqnT5+WzWZTp06dFB0drdjYWA0cOLBZX2qXlJQoJydHBQUFOn36tIxGozp37qxu3bp1+CHI\n5eXlys7O1vr161VVVeU0rlu3bkpLS9OQIUNkMBjcWCE87VzmWp3+x3yFTp6pHXm77O4lJCTw7wMA\nAAAAAOhwaDx0QLfccotGjRqlTZs21a3ZbDa99NJLWrJkSZOfZ7Va9fLLL0u6OED3qaeearZaL7d2\n7VotWLBA3377rcrLy53GjRw5UnfddZfmzJmjwMDAK8p18uRJvfrqq/roo4908uRJl7ExMTGaOHGi\nJk2apHHjxl1RU6C2tlbvv/++Fi1apPXr18tisTiN9ff317XXXqvbb79dU6ZMUY8ePa4439///nfl\n5OQ4zefr6yuTyaRHHnlEP/3pTxt8ifr999/rhhtuaHQdv/3tb/XCCy84vb906VL99Kc/rbveu3ev\nBg4ceNX5Dx06pL59+zq9f+HCBWVmZmrjxo12g4Iv17t3b6WlpWnAgAG8YO6gCpe+o/NZ63Q+a52u\n9w/W0T4jdbRvvKqDwzVy5EhPlwcAAAAAAOB2Xp4uAJ7x3HPPOawtW7ZMe/bsafKzli1bpt27d0uS\nHn74YXXu3Pmq67vcgQMHdNNNN2nChAn6/PPPHZoOl5+hv2XLFj377LOKiYnR4sWLm5xv0aJFGjJk\niP74xz86NB18fHwc8u3fv18LFizQhAkT1KdPH73yyitNyrdmzRoNHTpUP//5z5WVlWXXBPDy8nJo\nZFRWVmrt2rWaM2eO+vbtq+nTpysrK6vR+datW6drrrlGP//5z5WZmWmXz2g02r1Ar66u1rfffqu7\n775bo0ePdhic29I+/vhjl9fN7cyZM/r888/12muvKTs722nTISYmRjNnztSDDz6omJgYmg4dVHVB\nvs795/O6a//KUg3aY9a4NW/o+rwvVLvpP7K5aCICAAAAAAC0RwabzWbzdBFoOTNnztSiRYskSR98\n8IFmzpwp6eIOh9jYWO3aZX8syAMPPFAX3xg2m00jR45UXl6efHx8dODAAfXq1UuSdPjwYfXr188u\nvk+fPjp8+HCTfoasrCxNnjxZRUVFdWvR0dGaN2+epk6dqn79+snX11enT5/Wt99+q7/+9a8OMyz+\n+7//Wy+++GKj8r399tt67LHH6q6DgoL02GOPaerUqRo2bJhCQkIkSUVFRcrJydHChQsd5mM05ed8\n8803NXfuXLuX/8OGDdOcOXM0ceJEde/eXUajUSUlJdq4caP++c9/6p///Kdqa2vtnnPdddfp+++/\nbzDfW2+9pTlz5tjli4uLq8vXtWtXWa1W5efna9WqVXrttdd06NChutjAwEAtXrxYd9xxR73PP3bs\nWN3OmQMHDujtt9+2uz9jxgyNHj267jolJUUpKSn1Pqu8vFzR0dF2jab4+Hi73Tqu8kvSJ598UteU\neeaZZ+oaY48++qhCQ0Pr4k6fPq2MjAxt27ZNrv5aHDp0qEwmk7p37+40Bh3Hibf+P518x/XfLT2e\n+l91/dkv3VQRAAAAAACA59F4aOecNR4k6R//+IceeOABu3hvb2/t3bvXoWHgzMqVK/WTn/xEkjRr\n1iwtXLiw7l5zNB42btwok8mkysrKujWTyaRly5apS5cu9X7GZrPplVde0fPPP2+3/swzz+gPf/iD\ny3z79+/X8OHD6/KFhoYqIyNDw4YNc/m5ZcuW6Z577qn7dnxjf87XX39dc+fOtVt77LHHNH/+fPn6\n+jr9XE5Ojm699VaVlJTUrTWm8fDmm2/qiSeesFv7xS9+oVdffVU+Pj71fubChQv62c9+pk8//bRu\nzcvLSytWrNDtt9/uMl9ZWZmio6NVUVFRt3bffffpH//4h8vPXfLxxx9rxowZDusHDhxo9MDeIUOG\naM+ePerWrZuOHz/usDPhxIkTSk9Pr9u1Ux+DwaDhw4fLZDIpOjq6UXnR/tlqa7Vt4gDVFJ5wHmQ0\navjqA/Lt0vTj0AAAAAAAANoqjlrqwO6++26HxkBtbW2Tjgn6/e9/L+ni8TzPPvtss9Z39uxZTZ8+\n3a7p0L9/f61cudJp00G6+JL4ueee05NPPmm3/sc//lGrVq1ymfPNN9+0yzdv3rwGmw6SNG3atEbv\nqLgkJydHTz/9tN3alClT9Oabb7psOkjSmDFjmnzkUG5urn75S/tvXU+ZMkULFixw2nSQpJCQEC1e\nvFhJSUl1a1arVT/72c905MgRlzmDgoIcBpl/9tlnqq6ublTNzn7GZcuWNerz27Ztqzs+bOrUqXZN\nhyNHjuijjz7Se++957TpYDQalZCQoDlz5mjKlCk0HWDnXPpq100HSWHXTqLpAAAAAAAAOhwaDx2Y\nt7e3fvWrXzmsL1q0SPn5+Q1+fs2aNdqwYYMkafr06YqJiWnW+p577jm7I34k6Q9/+IMiIiIa9fmX\nX37ZYd7ErFmzXA6l/uqrr+yux44d28hqL+4c8PPza1Ss1WrVzJkz7eYH+Pv7a8GCBY2eFXDjjTc6\nPe7ocjabTTNnzrR74d+UfP7+/nrjjTfs1s6cOWN3JJUz06ZNs7s+d+6cvv766wY/V15eri+++KLe\ne41tPPw4btq0abLZbNq3b58++OADffjhhzpw4EC9n/Px8VFycrLmzp2rSZMmKTw8vFH50LEULnu3\nwZio6Y+6oRIAAAAAAIDWhcZDB/fggw+qW7dudmvV1dUNHkkkSS+99JKk/9th0JxOnTqlDz74wG4t\nJiZGU6dObfQzgoKCHI4VKioq0nvvvef0M8eOHbO7rqqqanS+4OBgDRkypFGxK1ascPiW/X333ace\nPZr2zegHH3ywUXErV67Ujh077NbuvffeJuUbPXq0brzxRus19KEAACAASURBVLu1L7/8Ulu3bnX5\nuUmTJjk0ZJYvX95gvtWrV9c1iXr27Gl3b8OGDTp69GiDz7jUeOjcubOioqL07rvvavHixU4/6+/v\nr2uvvVbz5s3T+PHj6+Z5AJeryj+o85lrXcb49uin0LE3uakiAAAAAACA1oPGQwfn5+fncNyPJL33\n3nsqKChw+rnvv/++boDz7bffruHDhzdrXe+8847dkUeSdMcddzR6N8All+ZP/Nj8+fOdxlutVrvr\ny4dGN2TJkiXasGGDPvvsM5dxr732msNafbU25IYbbpCXV8N/jJsrX1N/P6WLRzWNHz/ebm3lypUO\nw7Evd+mYJV9fX73++usO9xva9bBr1y7t3LlTkjRw4EAtX75cp06dqjc2KChIN910k+bNm6cbbrhB\ngYGBLp8NFH3yvtTAiKToaY/I0Ig/nwAAAAAAAO0Nb0Sg2bNnKzIy0m6tsrJSf/rTn5x+5tJuB0nN\nvttBktaudfwm8eXftm+M4cOHKyoqym7t8OHD2r9/f73xAwcOtLv++9//rgULFjQ63+DBg5WYmOiy\nEVNWVqbMzEy7NYPBoOuvv77ReS4JDQ3Vv/71L33wwQdOZ2yUl5crIyOjWfLV9//BunXrGvzc5cct\nFRcXuxyEXVFRUXfM0s0336zJkyc7zFdw1Xiora21a4g4G0QdGhqqiRMnau7cuUpNTW30UVno2Kw1\n1Spa8aHLGIO3jyLv+Jl7CgIAAAAAAGhlaDxAQUFBmjt3rsP622+/reLiYof17OxsffPNN5KkcePG\nacyYMc1aT3l5ed3siB9r7DFGjfmcs5fe06dPt7u22Wx68skn64Y5/3gmw5XKyMhw+LZ/r169FBQU\ndEXPmzFjhmbOnKlbbrnFab7L6+7Zs6eCg4ObnGvgwIEyGo12a8ePH3fayLlk8uTJDgOzXTUOvvzy\nS5WVlUm62LQwGo0Ouy2ys7N1/Phxu7WqqiplZmbqtddeq9utEhAQoL59+9rFRUZGavLkyXryySeV\nlJTkcrg2cLmz365UbclplzFh46bIJ6KzyxgAAAAAAID2isYDJElz5sxRaGio3VppaaleffVVh9gX\nX3yx7p+ff/75Zq9lz549Di/KjUajw8vjxhowYIDD2vbt2+uNnTt3rsOuB0lav369ZsyYoa5du2rW\nrFn67LPPVFFRcUX1XD5rwVmNzaW+n/VKB4H7+vo6zFtwluPHwsLCNG7cOLu1FStWOBxtdcmlY5Z8\nfHzqBmhfvmvCZrPVzYqoqKjQ999/r/nz52vdunU6cuSITp+++GJ4yJAhdc2SLl26aNq0aXr88ccV\nHx/v0EQBGqOoEUOlo6cxVBoAAAAAAHRcNB4g6eKL4ccff9xh/Y033tC5c+fqrjdv3qzVq1dLkpKT\nk3XDDTc0ey317bIIDg5u1CyD+lzeUHGWQ7o4j2Dt2rWKjY2t935JSYn+9re/afLkyXXfmv/b3/6m\nM2fONLqe+nLXV2Nzae58Tfn9/LE777zT7rqgoEDp6ekOcZWVlfr8888lXTzaKTw8vO6fIyIi7GKX\nLFmidevWaf78+frhhx/q5oL8uLkzdOhQ9ezZU3fffbdmz56t2NjYK/53Cag8vEcXNnzvMsav72AF\nJ17rnoIAAAAAAABaId6+oc5TTz2lgIAAu7Vz587ZzTho6dkOUv0vsa/0GCJJ9R4p5OpFed++fbVx\n40a99NJLDi+6f6yiokKfffaZZs2apa5du+q+++7Ttm3bGqynuX8+d+dr6u/nJT/5yU/k7e1tt1bf\ncUtffvmlSktLJdnvcvD29q7b/XBJVlaW1qxZo+rqarv1S0OlAwMD9Zvf/EYPPfSQBg0a1OTh5MDl\nCpcvbDAm+s6H+XcNAAAAAAB0aDQeUKdz5856+OGHHdbnz5+v0tJS7dixQ59++qkkacSIEZo0aVKL\n1OGOF3YN5fDz89Pzzz+vo0ePatGiRRo/frzDS/Mfq66u1j//+U/Fx8frv/7rvxxmODQld3NrDb+f\n0sW5CpcPtP70009ls9ns1i4ds+Tt7e0w1+Hmm2+2u7bZbNq1a5fdWklJiU6dOiXp4i6LwYMH8xIY\nzcJaWaHiVX93GWPw9VPk5AfcVBEAAAAAAEDrROMBdp555hmHQbvFxcV666239Pvf/77uJXFL7XaQ\nLr6gvtylQcNX4tK35xvKUZ+goCA98MADWrNmjU6dOqX33nvPZRPCYrHoL3/5i6ZMmeJ0fkFz/3wN\naU2/n5fPaTh+/LiysrLqrn98zNL111+vqKgoSdLJkyf18ccfa+fOnfL397d7xqXdDQaDQcOGDVNI\nSIjTfMDVOPP1clnOlbiMCR8/Xd6dnO+UAgAAAAAA6AhoPMBOr169dP/99zus/+///q+WLl0qSRo0\naFCLvtCt7yV2aWmp0xf5DTl//nyjcjSmrocfflhr1qzRyZMn9cYbb2j48OH1xn7++ed6/fXXnT6n\nMTU2l+bOdzW/n1OmTHGYr3BpQLQkffXVV7pw4YKki02DY8eOafHixXr33Xe1c+dOeXt7a9CgQXaf\nP3r0qPr166cnnnhCd955p9asWSPp4ryO8ePHN+lnA1wp/LgRQ6WnM1QaAAAAAACAxgMcPPvssw4v\nh4uLi2WxWJzeb06DBw+Wr6+v3ZrFYtHhw4ev6HkHDhxwWHPWMGisqKgo/eIXv1BeXp6WL1+ubt26\nOcT85S9/qfez9eWur8bmUl++/fv3X9GzqqurlZ+f36gc9encubPS0tLs1n7ceLg088FoNKqqqkp/\n+9vftG/fPrv4a665xu7aarWqoqJCEREROnLkiHJzcyVJt912m8PuCOBKVezbprKtWS5jAgYNV1Dc\nWDdVBAAAAAAA0HrReICDgQMHasaMGfXe6927t+67774WzR8QEKDRo0c7rF86Uqepdu/e7bB23XXX\nXdGz6jN16lSZzWa7I34k6dixYzp48KBDfHJyskNj5dixYy123FJ9+fLz8+t2FjTFvn376hpQl/Tq\n1Uv9+/dv9DMu3y1zqVlQWVmplStX1j3zzJkz9X4+NjZWgYGBdmuXGhY/HlbNMUtoToXL3mswJurO\nR5gnAgAAAAAAIBoPcOK5556r9wXar371K4cZEC1hwoQJDmvffvttk5+Tl5enoqIiu7UBAwZowIAB\n9cbPnDlTM2fO1DvvvNOkPP3799dDDz3ksF5QUOCwFhgYKJPJZLdms9n0ww8/NCmnJB0+fFhdu3at\n+7VgwYJG5/vuu++anO+bb75xWGvqcUZTp051+Hfrr3/9q+bNm1c3P+LyXQ3SxZ/jxhtv1NNPP607\n7rjD7t7333+v4uLiusHUgYGBmjhxYpPqApyxlJeq+POPXMZ4BQQp8rZ73VQRAAAAAABA60bjAfUa\nPny4Jk2aZLfWpUsXzZo1yy35Z8+e7XBMzsqVK+uGWzfWihUrHNbmzZvnNH7RokVatGiRPv300ybl\nkep/WR4aGlpvbH01XPq2f1N88cUXKigoqPvlbCdHffnq+71pSH2fmTt3bpOe0b17dyUnJ9utrVy5\nsm7ItMFg0NChQ+vuhYSEaMKECZo7d67S0tLk7+/vsJuhtrZWCxYs0Pr16yVJEydOdNgVAVypM18t\nkbXM9Q6hiIl3yRhc/593AAAAAACAjobGA5z6zW9+owkTJtT9euWVV9x2Zn7nzp0ddhAcPHiwbsB1\nY5SVlemNN96wW4uOjq53Z8LlcnJyVFtb2+hcklRSUmJ37ePjoz59+tQbO2nSJA0bNsxu7R//+IdO\nnjzZ6HxWq1VvvfVW3XViYqLi4uIanW/x4sU6evRoo/OtX7/eYZfEbbfd1uR5GdXV1UpMTLRbKykp\n0fbt2yVdPGYpJCRE4eHhmjRpkp588kmNHTvW7rioiRMnKigoyO4ZL7/8cl1jimOW0JwKlzU8VDpq\n2iNuqAQAAAAAAKBtoPEApxITE/XVV1/V/XrwwQfdmv/ll192mB3w7LPPOhyd5Mxzzz2nwsLCumuD\nwaD333+/Ud+EP3v2rBYuXNikei/fDTB+/HgFBwfXG2swGPThhx/avUyvqKhwuRvjcq+99pp27NhR\nd/3rX//aaWx9+aqqqvTEE0/IarU2mKuqqkpz5syxW4uIiNBf//rXRtdbWVmp//znP3rttdfqHU5+\nqY6kpCRNnTpVTzzxhBISEuTt7e0QGxAQoFtvvdVuraamRpLk7+/vsFsHuFJlO3JVvnOTy5jAaxIU\ndE2CmyoCAAAAAABo/Wg8oNXq1KmTli5darfL4vDhw5o8ebJOnTrl9HM2m02vvPKKXn/9dbv1p59+\nWrfffnuj8//yl7/Ul19+2ajYF154QTk5OXXX3t7e+t3vfufyMwkJCXr11Vft1pYuXaq5c+fWvUR3\n5sMPP9QzzzxTd33XXXdp8uTJTc732Wef6fHHH1d1dbXTz124cEF333133TFGkuTl5aVFixapd+/e\nLnNKF3eefPPNN5o/f76+++47lZeXKywsTD169HCINRgMevXVVzV8+PB6mxM/5mxXw4QJE5w2fICm\nKmrEUOno6Y+6oRIAAAAAAIC2w2Br6qH5aLWOHTumJUuW2K0tWbJEubm5kqSf/vSnDkfcPP30082W\nf8mSJTp27Fjd9ZkzZ/Tyyy/bxYSHh+u5556zW0tJSVFKSorT52ZlZWny5Ml2Ox2ioqI0b948TZs2\nTf369ZOPj48KCwv13Xff6c0331R6errdM55//nm99NJLDf4M9Q3UnjJliu6//34lJSWpe/fuMhgM\nslqtOnr0qMxms95++21lZGTYPeO1115z2CHgzFtvvaU5c+bIYrHUrY0YMUJz5szRLbfcoq5du8po\nNKqwsFBms1nvvPOO1qxZUxebkpKiL7/80uk8icbkGzZsmObOnauJEyeqW7duslqtys/P16pVqzR/\n/nwdOnSoLjYwMFCLFy92GPB8uXPnzikzM1ObNm2q99gqs9msr7/+2m4tOTlZmZmZjfo5ysrKFB0d\nrYqKCrv1v//977r//vsb9QzAFcuFc8q7ubesleVOY7yCQxW37qiMAUFOYwAAAAAAADoaGg/tyPff\nf68bbrihSZ9pzv/7r7/+ev3www9N/txvf/tbvfDCCy5jDhw4oNmzZ+ubb75xuGcwGGQ0Gut9ud2t\nWzf96U9/0j333NOoWn7961/rgw8+0PHjx+u9bzAY5Ofnp6qqqnp/76Kjo/XGG29oxowZjcp3ybp1\n6/SLX/xC+/btc7hnNBplMBjq/fnuvfdevfPOOw7zDq42n81mq/cIplGjRumdd95xaGD9WElJicxm\ns7Zu3eryGKdOnTrpqaeeslv785//rF/+8peN/jmmTp1qNwjc19dXp0+fVqdOnRr9DMCZ0//+q479\nj+vh6dF3Pa7ez77mpooAAAAAAADaBo5aQpswYMAAff3111qzZo0mTZpkN6fBZrM5vJQfMWKEXnnl\nFe3fv7/RTQdJevHFF3XkyBGtXr1ajz32mPr162d332azqbKy0qHpcM011+jll1/Wvn37mtx0kKSb\nb75ZO3fu1Ntvv63k5GQZjca6exaLxe7nMxqNuv322/XNN9/oo48+anLToTH5ftww8PHx0Q033KB/\n/etfys3Nddp0KCgo0PLly/XGG29o8+bNTpsO11xzjWbPnq158+YpPj7e7l5Th0JfHn/TTTfRdECz\nsNlsKlreiGOWGCoNAAAAAADggB0PaJOqqqqUnZ2tY8eOqbCwUFVVVYqKilKXLl2UkJCg7t27N1uu\n4uJibd++XQcPHtS5c+dUWloqPz8/hYaGqm/fvho5cqS6dOnSbPmki7sGcnJydOrUKRUWFspmsyk8\nPFwxMTFKSkpq9hkGl+fz8vJS586d1a1bNyUnJ7vMl5+fL7PZrD179jiN8fLyUlxcnFJTUxUVFdWs\ntQMtoXRLpvbMvM5lTNDIFA35sOm7vAAAAAAAANo7Gg8Amsxms+nw4cNKT0+3m/9wOaPRqFGjRikl\nJUVhYWFurBC4OgX/fF35f/mV9KNZKJfr+/sPFXnbve4rCgAAAAAAoI2g8QCg0Ww2m/bt26f09HTl\n5+c7jfP19VViYmKDuyWA1qy64LjW/PoJhW/7QQEVF+zuGTtFKG7tEXn5+XuoOgAAAAAAgNbL29MF\nAGj9rFardu7cKbPZrIKCAqdxAQEBGjNmjJKSkhQQEODGCoHmV2QxaFOPkTJ0i1Pngv3qc2ijOp8+\nKNlsipz8AE0HAAAAAAAAJ2g8AHDKYrEoLy9PZrNZJSUlTuOCg4OVnJysxMRE+fr6urFCoOVs3LhR\nkmTz8lJBt0GqGJyo66ffoZJPP1Dk5Ps9XB0AAAAAAEDrReMBgIOamhpt2rRJmZmZOn/+vNO4sLAw\npaSkKD4+Xt7e/HWC9qOqqkrbtm2zWxs1apQCevZXjzkveqgqAAAAAACAtoE3hQDqVFVVacOGDcrO\nzlZZWZnTuKioKJlMJg0bNkxGo9GNFQLukZeXp5qamrprg8Gg+Ph4D1YEAAAAAADQdtB4AKDy8nLl\n5ORo/fr1qqysdBrXtWtXpaWlaejQoTIYDG6sEHAfm82m3Nxcu7XBgwcrNDTUQxUBAAAAAAC0LTQe\ngA7swoULyszM1MaNG+2+3X253r17Ky0tTQMGDKDhgHYvPz9fp0+ftltLSEjwUDUAAAAAAABtD40H\noAM6c+aMMjIytGXLFlksFqdxAwYMUFpamvr06ePG6gDPujRU+pKwsDANGDDAQ9UAAAAAAAC0PTQe\ngA6ksLBQZrNZ27Ztk81mcxo3dOhQmUwmde/e3Y3VAZ5XUVGhHTt22K0lJCSw0wcAAAAAAKAJaDwA\nHcCJEydkNpu1a9cupzEGg0HDhw+XyWRSdHS0G6sDWo+tW7eqtra27trLy4uh0gAAAAAAAE1E4wFo\nx44cOaL09HQdOHDAaYzRaNTIkSOVmpqq8PBwN1YHtC71DZUeOnSogoKCPFQRAAAAAABA20TjAWgB\nVbUW7SsoVWFplWosVvkYvRQd7KeBXYLl521s0dw2m0379++X2WzW0aNHncb5+PgoISFBKSkpCgkJ\nadGagNbMZrPJYDDoyJEjKi4utruXmJjooaoAAAAAAADaLhoPQDPZc+qC/r3hqNYfLtHegguqsTjO\nUPAxGjSoS4iS+kbortG9Nbhr873wt9ls2rVrl8xms06ePOk0zt/fX0lJSRozZowCAwObLT/QFtlq\na7XrniSFjBmnrcG97e5FRkYyWB0AAAAAAOAKGGyuJswCaNC3uwv09n8Oav2hkiZ/NqlfhH5+bX/d\nOKTLFee3WCzavn27zGazioqKnMYFBQVp7NixGj16tPz8/K44H9CenP3+Mx2YN7Xuuiiqj470S9Cp\n7oM1fuKtGjt2rAerAwAAAAAAaJvY8QBcoZKyav121Q59lnfiip+x/lCJ1h8q0e1x3fW7ybGKCPJt\n9Gdra2u1efNmZWZm6uzZs07jQkNDlZqaqvj4ePn4+FxxrUB7VPjxu3bXUUVHFFV0RFV+QeraqVpV\nvbrIr0c/D1UHAAAAAADQNrHjAbgCmQeK9OS/N6uotLrZnhkV7KvX74pXyoAol3HV1dXKzc1VVlaW\nSktLncZFRETIZDIpLi5ORmPLzpUA2qKq44e0fdJgycV/Bv16DVDsql0yGAxurAwAAAAAAKBtY8cD\n0ETf7CrQY//cpGqLtVmfW1RarZkfbtBb94zSuKGORy9VVFRo/fr1ysnJUUVFhdPndOnSRSaTSddc\nc428vLyatUagPSla/r7LpoMkRf7kQZoOAAAAAAAATcSOB6AJMg8UaeYHG5q96fBjvt5e+nDm6Lqd\nD6WlpcrKylJubq6qq53vsOjZs6fS0tI0cOBAXpQCDbDWVGvbLf1VW1zgPMjbW3FrDssn8spnsAAA\nAAAAAHRE7HgAGqmkrFpP/ntzizYdJKm61qon/71ZHz84Uru2bNDmzZtVW1vrNL5fv35KS0tT3759\naTgAjXTuu1Wumw6Swm+cQtMBAAAAAADgCtB4ABrpt6t2NOtMB1eKSqs1669f6Tqfg05jBg8eLJPJ\npJ49e7qlJqA9KVz2boMx0dMfdUMlAAAAAAAA7Q+NB6ARvt1doM/yTrg150FLhPp7FauX8VzdmsFg\nUGxsrEwmk7p04ZvYwJWoPLJXF9Z/5zLGr88gBSde56aKAAAAAAAA2hcaD0AjvP0f5zsPWtL22q7q\nZTwnLy8vjRgxQqmpqYqMjPRILUB7UbR8YYMx0dMe5ugyAAAAAACAK0TjAWjAnlMXtP5QiUdyn7KF\nqGfsaE27OVWdOnXySA1Ae2KtqlTRykUuYwy+foq8/QE3VQQAAAAAAND+eHm6AKC1+/eGox7Nf9y/\nL00HoJmc+Xq5LOdcNxLDx0+Tdxg7iwAAAAAAAK4UjQegAesPe2a3Q13+Q8UezQ+0J4UfN2Ko9J2P\nuKESAAAAAACA9ovGA+BCVa1FewsueLSGPQUXVFVr8WgNQHtQsX+7yrZkuozxj4lV0MgUN1UEAAAA\nAADQPtF4AFzYV1CqGovNozXUWGzaV1Dq0RqA9qBw2XsNxkRPe5Sh0gAAAAAAAFeJxgPgQmFpladL\nkCQVtZI6gLbKUlGm4s8/chnj5R+oyNvudVNFAAAAAAAA7ReNB8CFGovV0yVIkqpbSR1AW3XmqyWy\nlp53GRM+8acyhjDIHQAAAAAA4GrReABc8DG2jj8ivq2kDqCtatRQ6WmPuqESAAAAAACA9o+3mYAL\n0cF+ni5BkhTVSuoA2qKynRtVvnOjy5jAa0YpKDbRTRUBAAAAAAC0bzQeABcGdgmWj9Gzg2Z9jAYN\n7BLs0RqAtqyoEUOlo+58xA2VAAAAAAAAdAw0HgAX/LyNGtQlxKM1DO4SIj9vo0drANoqy4VzKvny\n3y5jvIJCFDHxLjdVBAAAAAAA0P7ReAAakNQ3wrP5+0V6ND/QlhWvXixrRZnLmMjb7pUxkF1FAAAA\nAAAAzYXGA9CAu0b39nD+Xh7ND7RVNptNRcsaHiodNY1jlgAAAAAAAJoTjQegAYO7hiipn2d2PYzp\nF+Hxo56AtqosL1sV+7a7jAmKG6vAQXFuqggAAAAAAKBjoPEANMLPr+3vkbyzPZQXaA8KP254t0P0\n9EfdUAkAAAAAAEDHQuMBaIQbh3TR7XHd3Zqzv/GMQkuPyWazuTUv0B7UnivRmbUfu4wxhoYr/OZp\nbqoIAAAAAACg46DxADTS7ybHKirY1y25/FWjMd5H9MUXX2jFihWqrq52S16gvSj+7B+yVVe5jIm8\n/X55+Qe4qSIAAAAAAICOg8YD0EgRQb56/a54+Xq37B8bo6y63ueg/A21kqS8vDwtXLhQRUVFLZoX\naC9sNpsKl73XYFw0Q6UBAAAAAABaBI0HoAlSBkTprXtGtVjzwdfbS48N91E34wW79cLCQr377rva\nvt31oFwAUk3hSclicRkTnHid/PsNcVNFAAAAAAAAHQuNB6CJxg3tog9njm72Y5eign314czRevqe\nWzRjxgz5+fnZ3a+pqdHy5cu1evVq1dbWNmtuoD3x7dxdsSt3yPZfr+tE96GyGhz/U8dQaQAAAAAA\ngJZjsDG5FrgiJWXV+u2qHfos78RVP+v2uO763eRYRQT9XzOjpKRES5cuVUFBgUN89+7dNX36dIWF\nhV11bqA9stlseuedd1RQUCC/ylL1OrJFA/K3y+d8kbzDozV87WF5+bhnZgsAAAAAAEBHQ+MBuErf\n7i7QO/85qJxDJU3+7Jh+EZp9bX/dOKRLvfdramr05ZdfavPmzQ73/P39NXXqVA0cOLDJeYH2Lj8/\nX++//77d2j133aXOhYdUe7ZIkZPu81BlAAAAAAAA7R+NB6CZ7C24oH9vOKb1h4q1p+CCaiyOf7R8\njAYN7hKipH6Rumt0Lw3qEtKoZ2/evNnpEUtpaWm6/vrr5eXFyWnAJStXrtSWLVvqrsPCwvTkk0/K\nYDB4sCoAAAAAAICOgcYD0AKqai3aV1CqotIqVVus8jV6KSrYTwO7BMvP23hFzywoKNDSpUtVUuK4\ns6Jfv36aOnWqgoODr7Z0oM2rqKjQX/7yF7tG3bhx42QymTxYFQAAAAAAQMdB4wFoQ6qqqrRq1Srt\n3LnT4V5wcLCmTZumPn36eKAyoPXIzs7WmjVr6q69vLz01FNP0ZgDAAAAAABwE85mAdoQPz8/TZs2\nTRMmTHA4Wqm0tFSLFi1SRkaG6Ceio7LZbNq4caPd2tChQ2k6AAAAAAAAuBGNB6CNMRgMGjt2rGbO\nnKnQ0FC7ezabTV9//bWWLFmiyspKD1UIeM7Ro0dVVFRkt5aQkOChagAAAAAAADomGg9AG9WrVy89\n+uijGjBggMO9PXv26N1339XJkyc9UBngObm5uXbXkZGR6tu3r2eKAQAAAAAA6KBoPABtWFBQkO65\n5x5dd911DvfOnDmj999/Xxs3buToJXQIZWVlDvNPEhISZDAYPFQRAAAAAABAx0TjAWjjvLy8dP31\n1+u+++5TYGCg3T2LxaLPP/9cK1asUHV1tYcqBNxjy5YtslqtdddGo1EjRozwYEUAAAAAAAAdE40H\noJ0YMGCAZs+erZ49ezrcy8vL08KFCx3OvgfaOltt7cX/rWeodGxsrEMzDgAAAAAAAC3PYOMMFqBd\nsVgs+vrrr5Wdne1wz9fXV5MnT1ZsbKwHKgOa3/EFv9b5nG9ku+4nWn70vKzePnX3HnroIfXq1cuD\n1QEAAAAAAHRMNB6Admrnzp1auXJlvUcsJSUlafz48TIajR6oDGgetpoa5d3ST7XFBZKkGh8/5feO\n05G+oxQYE6uf//znzHcAAAAAAADwABoPQDtWXFysjz/+WAUFBQ73evTooenTp6tTp04eqAy4emfW\nLdfBZ+6q955t4Aj1f/C/FHbTVHn5+rm5MgAAAAAAgI6NxgPQztXU1Gj16tXasmWLw72AgABNnTpV\nMTExHqgMuDp7Z0/QhZxvXcYMfHetQpNucFNFAAAABONS+AAAIABJREFUAAAAkGg8AB3G5s2btXr1\natX+v2G8P5aWlqbrr79eXl7Mm0fbUHlkn3bccY3LGL/eAxW7cgfHLQEAAAAAALgZbxmBDiI+Pl6z\nZs1SRESEw7309HR99NFHKisr80BlQNMVLV/YYEz0tEdoOgAAAAAAAHgAOx6ADqayslKrVq3Srl27\nHO6FhIRo2rRp6t27twcqAxrHWlWpvAl9ZTlb7DTG4OunuDWH5R0e5cbKAAAAAAAAILHjAehw/P39\nNX36dI0fP97haKULFy7oww8/VGZmpuhJorU68/UnLpsOkhR+8500HQAAAAAAADyExgPQARkMBiUn\nJ+tnP/uZQkJC7O7ZbDatW7dOS5cuVWVlpYcqBJwrWv5egzHR0x5xQyUAAAAAAACoD0ctAR1cWVmZ\nPvnkEx08eNDhXnh4uGbMmKGuXbt6oDLAUcX+Hdo5baTLGP8Bsbpm2WbmOwAAAAAAAHgIOx6ADi4o\nKEj33nuvrrvuOod7Z86c0cKFC7Vp0yaOXkKrUNiY3Q7TGSoNAAAAAADgSex4AFBn//79+uSTT1RR\nUeFwb8SIEbrtttvk4+PjgcoAyVpRrrybe8tSes5pjME/QHFrj8o7NMyNlQEAAAAAAODH2PEAoE5M\nTIxmz56tnj17OtzbunWrFi5cqOJi10N9gZZSsmapy6aDJEXc8lOaDgAAAAAAAB7GjgcADiwWi9at\nW6ecnByHe76+vpo8ebJiY2M9UBk6sl33pah8+waXMUM+ylTQsNFuqggAAAAAAAD1ofEAwKkdO3Zo\n1apVqq6udrg3ZswY3XzzzTIajR6o7P9v786DrKzuvIH/emXpblkERBQElD2uuIxKcEGNSFAQ3EjE\nLUCiJsYZJ5k3lYmJ79RMEjOTmMmMryyRiBIE1KAo4hIXjAuo4AaiAooLIotAQ0vTy33/cOzxepum\ngYe+TfP5VFnFPb/znPO716ruqvvt5znsa8reXBhLLj6+zjkt+xwdvae+4HwHAAAAgCzzqCVgu/r1\n6xdjxoyJDh06ZNReeOGFmDx5cmzcWPejbyAJa2bu+FDpdiMcKg0AAADQGLjjAdihioqKePDBB+OV\nV17JqLVo0SLOP//8OOyww7LQGfuCqi2l8eqZXaK6bPN25+QWlcQRj7wXeUUlDdgZAAAAALVxxwOw\nQwUFBXHeeefF0KFDMx6t9Nlnn8Vdd90VTzzxRFRXV2epQ5qy9Q9NrTN0iIjY/5xRQgcAAACARsId\nD8BOWbVqVcyYMSM+/fTTjFr37t3j/PPPj6Kioix0RlOUSqViyUXHxmdvvVrnvD53vxgtex3ZQF0B\nAAAAUBfBA7DTtm7dGrNmzYo333wzo1ZSUhIjR46MLl26ZKEzmpotr70Qb146oM45RUecEL3veKaB\nOgIAAABgRzxqCdhpzZs3jwsvvDDOPPPMjMN8S0tL409/+lM899xzIddkd62ZMX6Hc9qPHNsAnQAA\nAABQX+54AHbLypUrY+bMmVFaWppR69OnT5x77rnRvHnzLHTG3q5y06fx6pldIlW+dbtz8kpaxxGP\nrozc5i0asDMAAAAA6uKOB2C3dOnSJcaNGxfdunXLqC1ZsiQmTJgQH3/8cRY6Y2+3fvaddYYOERH7\nD71U6AAAAADQyLjjAUhEdXV1PPXUU/H0009n1PLz8+Occ86Jo48+OgudsTdKpVKxeMSRsXX5kjrn\n9b331WjRvU8DdQUAAABAfbjjAUhEbm5unHbaaTFq1Kho0SL9L9ArKyvj/vvvj1mzZkVFRUWWOmRv\nsvnlZ3YYOhT3Hyh0AAAAAGiEBA9Aonr06BHjxo2Lgw46KKO2aNGimDRpUqxbty4LnbE3qdeh0hc4\nVBoAAACgMfKoJWCPqKqqikceeSTmz5+fUSssLIzzzjsv+vbtm4XOaOwq1q+J177RNVIV27Y7J79N\nuzh87ruRW9isATsDAAAAoD7c8QDsEXl5eTF48OAYOXJkFBYWptW2bdsWM2bMiIcffjiqqqqy1CGN\n1br776gzdIiI2P+8y4UOAAAAAI2U4AHYo/r16xdjxoyJ9u3bZ9ReeOGFmDx5cmzatCkLndFYVW3Z\nFDnNmtc5p/2I7zRQNwAAAADsLI9aAhrEtm3b4sEHH4xXX301o9ayZcs4//zz49BDD81CZzRGWz5Z\nFff9aGwcvOzFKCldm1bb78Qzo8etD2WpMwAAAAB2RPAANJhUKhUvv/xyzJkzp9ZHLJ1yyikxcODA\nyM11M9a+7oUXXoiHH344IpWKtutWRtd3F0anVUsjKiui+79PjzaDhme7RQAAAAC2Q/AANLhVq1bF\n9OnTY8OGDRm1Qw89NIYPHx5FRUVZ6IzGIJVKxa233hpr1qypGevbt28MG3RqrH9oanS46OrIKSjI\nYocAAAAA1EXwAGTF1q1b4y9/+UssXbo0o1ZSUhIXXHBBdO7cOQudkW3vvfdeTJ48OW1s9OjR0a1b\nt+w0BAAAAMBO8TwTICuaN28eF110UZxxxhmRk5OTVistLY3JkyfH888/H7LRfc9LL72U9rpt27bR\ntWvX7DQDAAAAwE4TPABZk5OTEyeffHJcdtllUVxcnFarrq6OuXPnxowZM6K8vDxLHdLQysrKYvHi\nxWlj/fv3zwinAAAAAGi8BA9A1h1yyCExbty4Wv+qfcmSJTF+/PhYvXp1wzdGg1u0aFHaweN5eXlx\n1FFHZbEjAAAAAHaW4AFoFIqLi+PSSy+Nr3/96xm19evXx8SJE2PRokVZ6IyGkkqlMh6z1K9fv2jZ\nsmWWOgIAAABgVwgegEYjNzc3Tj/99LjkkkuiefPmabXKysqYNWtWzJo1KyoqKrLUIXvSihUrYv36\n9Wlj/fv3z1I3AAAAAOwqwQPQ6PTs2TPGjRsXnTp1yqgtWrQoJk2alPEFNXu/r97t0L59++jcuXOW\nugEAAABgVwkegEapdevWccUVV8Rxxx2XUVu9enWMHz8+lixZkoXO2BNKS0vjzTffTBs79thjHSoN\nAAAAsBcSPACNVn5+fpxzzjkxYsSIKCgoSKuVl5fH9OnTY+7cuWmHEbN3qf6sLCIiFi5cGNXV1TXj\nBQUFccQRR2SrLQAAAAB2Q04qlUpluwmAHVmzZk3MmDEj1qxZk1Hr3LlzjBw5Mvbbb78sdLZ3qaio\niFtuuaXOOYceemgMHz58j/eydeU7seSiY6P1WRfE45Ul8WHBfhH/c4fDUUcdFeedd94e7wEAAACA\n5AkegL3Gtm3bYvbs2fHaa69l1Fq2bBkjRoyI7t27Z6GzvcfmzZujpKSkzjlDhgyJ2bNn7/FePvjd\n/4nVk39T83pjq47xXrdj4sOD+8UV37smDjrooD3eAwAAAADJ86glYK9RWFgYw4cPjyFDhkReXl5a\nraysLKZMmRJPPfVU7ChP/fnPfx45OTlZ+69r16578FPaO1RvK491syanjbXa+HEcseihOGvu76Py\n9n+NsqWvZKc5AAAAAHaL4AHYq+Tk5MSxxx4bV155ZbRu3Tqj/uSTT8Zdd90VZWVlWeiu8SsuLo5U\nKpX2X//+/Ru8jw2P3xeVn66ttZZXUR5rZ45PuxsCAAAAgL1HfrYbANgVnTp1irFjx8Zf/vKXeOut\nt9Jqy5Yti9tuuy0uuOCCOPjgg+tc58wzz4yzzjqrXnveeuutsXz58rSxn/zkJ9GmTZsdXvvpp5/G\nv/7rv9Zrn33Bmpnjdzin3QXjGqATAAAAAJImeAD2Wi1atIiLL744nn322Xj88cfTHrG0adOmuP32\n2+Oss86K448/PnL+59DirzrppJPihhtuqNd+s2fPzggexowZU69HJ7377ruCh//x2fIlsfmleXXO\nad69TxQffXIDdQQAAABAkjxqCdir5eTkxMknnxyjR4+O4uLitFp1dXU8/PDDMXPmzCgvL89Sh3zV\n2pkTdjin/cgx2w2LAAAAAGjcBA9Ak9C1a9cYN25crXcfLF68OCZMmBCrV69u+MZIU/1ZWax7YEqd\nc3Kat4i23/x2A3UEAAAAQNIED0CTUVxcHJdeemkMGDAgo7Zu3bqYOHFiLFq0KAud8YX1j8yIqtIN\ndc5p+40LI3+/HZ+bAQAAAEDjJHgAmpTc3NwYNGhQXHLJJdG8efO0WmVlZcyaNSuWLl2ape5Ye0/9\nHrMEAAAAwN7L4dJAk9SzZ88YN25czJgxIz766KO0WuvWreOKK66I448/Pk466aQG6ad9+/YxZcrn\njxj66lkU+4qyNxfFlldfqHNOi15HRsuvHd9AHQEAAACwJwgegCbri4Bh7ty58eKLL9aMd+zYMSIi\nNmzYEIWFhQ3SS1FRUXz72/v2uQVr6nO3wwVjHSoNAAAAsJcTPABNWn5+fgwZMiS6dOkSDzzwQFRU\nVNTUysvL4+67744TTzwxBg0aFHl5eVnstHbV1dXx8ssvx/Lly+OTTz6J0tLSaNu2bXTo0CH69u0b\nvXr1ynaL9VK1pTTWPzi1zjm5LYuj7eBLGqij/7Vp06Z4/vnn4+OPP45PPvkkUqlUdOjQITp27Bgn\nnHBCtG7dusF7AgAAANibCR6AfcLhhx8eHTt2jOnTp8fatWvTas8991x8+OGHMWLEiNhvv/2y1GG6\n119/PX7961/HnDlzMvr9sm7dusWwYcPiRz/6Uc2dHHvS5s2bo6SkpN7zhwwZEmeffXZ8//vfr8fs\nDRHF+8U111wTf/jDH2qd0a5du1i3bl2dq/Tr1y9ef/31OudUV1fHXXfdFZMmTYq//e1vUVlZWeu8\n/Pz8OPHEE+Pyyy+Pyy67rFGGUwAAAACNjcOlgX1G+/btY8yYMXH44Ydn1FauXBnjx4+P5cuXZ6Gz\n/7Vp06a44oor4sgjj4wpU6ZkhA4FBQVpr1esWBG//e1v47DDDoubbropqqurG7LdekmlUtluIc2z\nzz4bRx99dIwePTqeeuqptNAhNzc3cnP/91djZWVlzJs3L6666qo44ogj4qmnnspGywAAAAB7FXc8\nAPuUwsLCGD58eHTu3Dnmzp0bVVVVNbUtW7bEnXfeGaeeemp8/etfb/CzBt5///0455xz0v5av1mz\nZnH11VfHJZdcEn379o2ioqJYv359vPjiizFp0qSYPn16Te833nhjLFy4MKZOnRotWrTYIz02a9Ys\nbr755prXM2bMiPnz50dERElJSfz4xz+OZs2a1dQPPfTQ6Fi5Ja478PMv89/6LBVzNqQHEccX58Qp\nPbtEh0uujYiIo48+erv733TTTVFWVhYREevWrYtf/vKXERHRqVOnuP766yPi87sitmfatGlx+eWX\nR3l5ec1Yjx494rrrrotvfvObcdBBB0VOTk58+OGH8dBDD8Xvf//7WLJkSURELF68OM4888yYOHFi\njB49egefFAAAAMC+KyfV2P4UFaCBfPTRRzF9+vTYuHFjRu2www6L4cOHR8uWLWvGTj311Iy/eF+x\nYkV07dp1t3tZu3ZtHHPMMfH+++/XjHXp0iVmz55d6x0aX5g1a1ZcdNFFaV+kn3HGGTF37ty0v9yv\ny7HHHhsvvfRSzeshQ4bE7Nmzd3jd7373u/j7v//7SKVS0bZt23j44YfjuOOOy5j37o3fiXWz/hQR\nERsrU3HO4qoo/9JvnsOaRzw3bXK0O++yevX7hX//93+PG264ISIibrzxxvj5z39e5/xp06bFqFGj\n0u7A+Na3vhXjx49P+//8ZVu3bo3vfe97MXny5LTxyZMnx2WX7Vy/AAAAAPsKj1oC9lmdOnWKcePG\nRY8ePTJq77zzTowfPz4++OCDPd5HKpWKb3/722mhQ8uWLeOBBx6oM3SIiDjvvPNiwoQJaWOPPfZY\n/OIXv9gjvX7hxhtvjOuvvz5SqVQceOCB8dRTT9UaOlRu2hDr506ved0qPydOb51+J8k7WyOWtuqy\n0z188b7z8vLiO9/5Tp1zly5dGmPGjEkLHU499dSYPHnydkOHiIjmzZvHxIkT46yzzkobv/rqq+ON\nN97Y6Z4BAAAA9gWCB2Cf1qJFi7jkkkti0KBBGY9W2rhxY9x+++0xf/78PXpOwe233x5z585NG/vB\nD34QRxxxRL2uv/TSS2PgwIFpY//yL/+ywwOWd0UqlYof/OAHcdNNN0VERNeuXWPevHnxta99rdb5\n6x+8M1JbP0sbO79t5q+eiX+6Y6f6eOqpp2Lp0qURETF48OA4+OCD65w/ZsyY2Lx5c83r3Nzc+K//\n+q/Iz9/xEwfz8vLiD3/4Q9rcsrKyuPLKK3eqZwAAAIB9heAB2Ofl5OTEgAEDYvTo0VFUVJRWq66u\njjlz5sQ999yzRw5urq6ujl/96ldpY3l5efEP//APO7XOP/3TP+1w3d1VWVkZl112Wfznf/5nRET0\n7t07nnnmmTj00ENrnZ9KpWLNjAkZ40cX50S3Zulj23vk1faMHz++5t9jx46tc+4zzzwT8+bNSxsb\nOnRo9O3bt9779ejRI84///y0sfnz58fjjz9e7zUAAAAA9hWCB4D/0bVr1xg3blwccsghGbU33ngj\nVq1alfiec+bMibfeeittbMCAAXUekFybQYMGRUlJSdrYtGnTYvXq1bvdY0REeXl5jBw5MqZMmRIR\nnx8A/fTTT8dBBx203Ws2L/xbbF2+uNbasP3Tf/2UlZXVrL0j69evj3vuuSciIg4++OA455xz6px/\nyy23ZO4/bFi99trRNb/73e92eh0AAACApk7wAPAlJSUlMXr06Dj55JMzahUVFYnv98gjj2SMnX76\n6Tu9TmFhYUbPlZWV8cQTT+xyb18oLS2NwYMHx6xZsyLi82DkiSeeiPbt29d53doZt2239s02OVGY\n/mSrjLMqtueOO+6oOUz7qquuiry8vO3Ora6ujsceeyxjfFc+49quefLJJ6OysnKn1wIAAABoygQP\nAF+Rm5sbZ5xxRlx88cXRvHnzPbrXk08+mTHWu3fvXVqrtutqW39nrFu3LgYNGlQTYPTv3z/mzp0b\nrVq1qvO6yk/XxqeP3bvdeqv8nBjUPv2zffXVV+P555/fYU87c6j0K6+8Ehs2bEgbKyoqis6dO+9w\nn6864IADonXr1mljmzdvjhdffHGn1wIAAABoygQPANvRq1evGDt2bBx44IHbnbMz5xJ8VSqVisWL\nMx9FdNhhh+3SerWdtbA7B0x/9NFHMXDgwFiwYEHN2JIlS+L999/f4bVr778jUhXb6pxzxcjhGWNf\nPruhNs8880zNZ1afQ6Vre//du3fPOEi8vpL+jAEAAACaIsEDQB3atGkTV155ZfTv37/W+tSpU2Pp\n0qW7tPbGjRtrfUzPfvvtt0vr1XbdunXrdmmtZcuWxYABAzKCkbKyshg1alSdj51KVVfH2pk7fmzS\n0B/fFL169Uobu/vuu+sMc74cTIwbN26He9T2/nf1893etbv6GQMAAAA0VYIHgB3Iz8+Pb37zm7We\naVBeXh7Tpk2LRx99NKqrq3dq3e19YV1UVLRLfRYXF9d7j7qsWLEiBgwYECtWrIiIyDjo+uWXX46f\n/vSn272+dP4TUf7+O3XuUXLCoGje5bAYM2ZM2nhZWVnceeedtV6zYcOGmDlzZkREdO7cOQYPHrzD\n91Lb+9/Vzzciuc8YAAAAoCkTPADUU11fWD/77LPxpz/9KUpLS+u93q4+7mdn7Moeixcvjo8//jgi\nIm6++eaYN29etGjRIm3Ob37zm+0eXL2mHnc7tL9gbEREXHbZZdGsWbO02vYOmZ4yZUp89tlnEbHj\nQ6W/0Fg/YwAAAICmTPAAkJCVK1fGbbfdVnOnwI7sv//+tY5v2bJll/bfvHlzvffYkby8vJg0aVLc\ncMMN0bt37/iP//iPtHp1dXWMHj06Pv3007TxijWrYsOTs+pcO79dx2h9ytCI+PxuivPPPz+t/sor\nr8QLL7yQcd2XD5W+6qqr6vU+anv/u/r5RiT7GQMAAAA0VYIHgN2Qm5v+Y3TLli0xZcqUmDdvXqRS\nqTqvbdWqVeTn52eMb9q0aZd6qe26XflSvFmzZjFjxoy48sora8a++93vxrnnnps274MPPsh4VFLF\nutXRstdRda7fbviVkVNQUPN67NixGXNuu+22tNfPPfdcvPbaaxERcc455+zwUOkv1Pb+d/Xz3d61\nggcAAACAdIIHgN1w4YUXRqtWrdLGUqlU/PWvf40///nPNY8G2p6vfe1rGWPvvFP3+Qjbs2zZsoyx\nww8/fKfXOeOMM2L48OEZ45MmTYoDDzwwbeyee+6JSZMm1bxu2fuo6HPXc7FqzC/jva5HR2VeQfoi\nOTnRbviVaUOnnnpq9OzZM23s7rvvTvuS/8uHStcWVGxPbe9/+fLlOwyFtiepzxgAAACgKRM8AOyG\njh07xtixY6NHjx4Ztbfffjtuu+22+PDDD7d7/SmnnJIxtnjx4l3q5c0336zX+ruqXbt2MXny5Iwz\nDa677rq0sKSsrCwWffpZvHb0kHhs8HXx2pFnR3Wn7hER0WrA4GjW6ZCMtes6ZHrjxo0xffr0iKj/\nodJfOPzww6NNmzZpY1u2bIn33nuv3mt8YfXq1bFhw4a0sZKSkjjmmGN2ei0AAACApkzwALCbWrZs\nGZdcckmcfvrpGV/Kb9y4Mf74xz/GggULav0r+2984xsZY3/96193uodt27bF3/72t7SxgoKCOO20\n03Z6rbqcddZZ8cMf/jBtbMuWLTFq1KioqKiIiIhFixZFVVVVRERUFjSPD3qcEH1nvBy9Jj8VB37v\nZ7Wue/nll0dhYWHa2Bd3Odx1111RVlYWEfU/VPoLubm5ceaZZ2aM78pn/Pjjj2eMnX766bU+LgsA\nAABgXyZ4AEhATk5OfP3rX49LL700ioqK0mrV1dXx0EMPxb333hvbtm1Lq5199tnRu3fvtLFnn302\nPvnkk53a/7HHHovS0tK0sVGjRkWHDh12ap36+Ld/+7c48sgj08YWLFgQN954Y6RSqXjppZfSan37\n9o2ioqIoPuqkKOrbv9Y127Vrl/F4py8Omd6VQ6W/7KtBSUTEX/7yl51ep7ZralsbAAAAYF8neABI\nULdu3WLcuHHRpUuXjNrrr78eEyZMSAsVcnJy4kc/+lHavKqqqrj55pt3at9f/epXaa9zc3PjH//x\nH3dqjfpq1qxZTJ06NVq0aJHRw/Tp02P9+vVp4/371x42fFVtZzdce+21sWjRoojYuUOlv+zEE0+M\ngQMHpo09+OCDNYdV18fbb78d9957b9rYCSecEKeeeupO9wMAAADQ1AkeABJWUlISl112WZx00kkZ\ntbVr18bEiRPj1VdfrRm7/PLL4+yzz06b94c//CEWLlxYr/2mTJkSTz/9dNrYP//zP0e/fv12ofv6\n6du3b/zmN79JG6uuro5rr7027UDt9u3b1xrC1Oa0007LOCvjxRdfrPn3uHHjdrnfCRMmRElJSVqv\n11xzTc3joepSVVUV1157bc3joyI+f7zWH//4x13uBwAAAKApEzwA7AFfnC1w0UUXRbNmzdJqFRUV\ncd9998Xs2bOjsrIycnJyYsqUKdG5c+eaOVu3bo2hQ4emBRS1uf/++zMOZj7jjDPiZz+r/SyFJF19\n9dUxdOjQtLG1a9fG7Nmza173798/49yL7cnJyYnvfOc7tdZ29lDpr+rZs2dMmDAhrZd58+bF6NGj\na86PqM3WrVtjzJgx8cgjj6SN33rrrdG3b99d7gcAAACgKctJ1XbaKcA+7o033og5c+akjd16662x\nfPnytLGf/OQn0aZNm5rXrVq1yggCPv3005g+fXp8/PHHGfsceOCBccEFF0SbNm1i5cqVMWTIkHj9\n9ddr6oWFhfG9730vvvWtb9WclbBhw4ZYsGBBTJo0Ke6+++609YYNG1brY5C+7M4770zr5ZZbbokP\nPvig5nWfPn3iyiuvrHndrl27uPzyy2teP/DAA7F06dKIiFizZk38+te/ztjjhBNOiDZt2sTAgQOj\noKAgrrnmmjp7+sKaNWvi4IMPzjgL4xe/+EUiYcqf//znuOKKK6K8vLxm7LDDDosf/vCHMXTo0Djo\noIMiImLVqlXx4IMPxi233BJLliypmVtQUBATJ06M0aNH73YvAAAAAE2V4AGgFpMnT44rrrhip687\n5JBD4t13380Yr6ysjDlz5sTLL7+cUWvevHkMGzYsevXqFZs2bYrrrrsu7rjjjqiurs6YW1BQUOvj\ngYqKiuJHP/pR/PSnP43c3LpvZjv22GMzDoCuS79+/dLCkJEjR8Y999xT7+sjPg8U2rVrV6+5F110\nUUyfPr3mdV5eXrz33ns1ocDueu655+K73/1urXeTfPHZ1fbZ9+nTJ2699dY45ZRTEukDAAAAoKny\nqCWABpCfnx9Dhw6NYcOGRX5+flpt69atMW3atHjssceiuLg4br/99njllVfi0ksvzfiy/quhQ7du\n3eL666+Pd955J372s5/tMHTYG3z1kOkhQ4YkFjpEfH7Y9MKFC+OOO+6IU045JQoKCmpq1dXVaaFD\nXl5eDBgwICZOnBivvfaa0AEAAACgHtzxANDAPvnkk5g+fXqsW7cuo3bIIYfEiBEjag5Crq6ujpdf\nfjmWLVsWn3zySZSWlkbbtm2jQ4cO0a9fv+jVq1dDt1+radOm1Tx+KSKiY8eOMXbs2Hqf7/BlqVQq\nunXrFu+9915ERMyePTuGDBmSWK9ftWnTpnj++edj1apV8cknn0TE54did+zYMf7u7/4uWrduvcf2\nBgAAAGiKBA8AWVBeXh4PPPBAvPHGGxm1oqKiGDlyZHTt2rXhG9sJlRvWRV6rtrFp06a45ZZb4su/\nToYMGRLHHnvsLq27YcOGOPDAA2Pr1q3RpUuXWLFiRZO4kwMAAABgX+GbHIAsaNasWYwYMSIGDx6c\n8aX6li1b4o477ohnnnkmGnM2vOyGi+KN4YfH67/9aeSXl9WMFxYWxuGHH77L606dOjW2bt0aERFX\nXXWV0AEAAABgL+OOB4As++CDD2LGjBmxadNOruY/AAAPmElEQVSmjFrPnj1j2LBh0aJFiyx0tn1b\nV7wZbwz/33ChKjcvVh3UN97rdkx0P/O8+ObQobu89jHHHBMLFy5M/FBpAAAAABqG4AGgESgrK4v7\n7rsv3nnnnYxaq1at4sILL4xOnTplobPavX/zP8Qnd/2+1lp+115x4MVXx/7nXRZ5LYp2at2FCxfG\nMcccExER5557bsyaNWu3ewUAAACgYXl+BUAj0LJlyxg1alScdtppGbWNGzfGH//4x1iwYEGjePRS\n9dbPYt39d2y3Xvnu0vjgtz+OVMW2tPE1a9bEu+++G2vWrNnutRMmTKj599ixY3e/WQAAAAAanOAB\noJHIycmJgQMHxqWXXhotW7ZMq1VVVcVDDz0U9913X2zbtm07KzSMTx+dGVWlG+qc0/YbF0b+fm3S\nxr7//e9Ht27d4rzzzqv1mnXr1sWUKVMiIqJ79+4xePDgZBoGAAAAoEEJHgAame7du8e4ceOiS5cu\nGbXXXnstJkyYUOddA3vamhnjdzin3cgx260tWrSo1v5/9rOfxebNmyMi4vrrr3eoNAAAAMBeyrc6\nAI3QfvvtF6NHj44TTzwxo7Z27dqYMGFCvPbaaw3eV9nSV2LLq8/XOadFzyOi6PATtlv/7LPP4lvf\n+lYsXbo0qqurY/Xq1fHjH/84/vu//zsiIg477DCPWQIAAADYi+VnuwEAapeXlxdnnXVWdO7cOWbN\nmhXl5eU1tYqKirj33ntj5cqV8Y1vfCPy8xvmx/namRN2OKf9BWMjJyenzjmPPvpo9O7dO/Ly8qKq\nqqpmvEWLFjF16tQoLCzc7V4BAAAAyA53PAA0cn369ImxY8dGx44dM2ovvvhi3H777bFhQ91nLiSh\nqmxzrHtoap1zclsWR9tzRtVa69ChQ8bjk74cOvTp0ycee+yxOO6443a/WQAAAACyJieVSqWy3QQA\nO1ZRURFz5syJhQsXZtSaN28ew4cPj549e+6x/dfcMzFW/t/v1Tmn3YjvxCH/fOt26xs3bowFCxbE\nypUrY926dVFRURHt2rWLY445Jo499tikWwYAAAAgCwQPAHuZRYsWxYMPPhiVlZUZtQEDBsRpp52W\n+MHMqVQqllxyfHz25qI65/WZNj9a9j460b0BAAAA2LsIHgD2QqtXr47p06fH+vXrM2pdu3aNESNG\nRHFx8S6tXV5ZFW+v3hxrNpdHRVV1FOTlRvHqd6Lqh4OioDoz7PhCy68dF33ufHaX9gQAAACg6RA8\nAOylysvL4/7774/Fixdn1IqLi2PEiBHRtWvXeq219OPSmLZgZcx/d328tbo0KqoyfzXkV1dE59KV\n0ffTxXHG+49Gl80r0+qH/HxCtBt2+a68FQAAAACaEMEDwF4slUrF/Pnz45FHHonq6uq0Wk5OTpx+\n+ulx8sknR05OTq3X//XN1fH/nl4e81dk3jmxI33Xvx7Dlt8X/de8FHnFreKIR1dGbouWu/Q+AAAA\nAGg6BA8ATcD7778fM2fOjE2bNmXUevbsGcOGDYsWLVrUjK3fsi1uvP+NeODVj3Z775M/ejp+3Ls6\njvg/N+/2WgAAAADs/QQPAE1EWVlZ3HvvvbFs2bKMWuvWreOCCy6ITp06xbPL1sYPpi2MtZu3Jbb3\n/s1z4z+/fVycdGi7xNYEAAAAYO8keABoQqqrq2PevHnx5JNPZtTy8vKi3ZGnxX+8sCm2VVVnXryb\nCvNz49ZRx8SgPgckvjYAAAAAew/BA0ATtGzZsrj33nujrKysZmxVVUk8UtEjqiN3j+1bmJ8bky93\n5wMAAADAvkzwANBEbdq0KWbOnBnvv/9+bE3lx33l/WJrFOzxfdsVF8YjPzwl2hYV7vG9AAAAAGh8\nBA8ATVhVVVU89thj8cunV8eK6v0bbN+hR3SK/7zk6AbbDwAAAIDGY889bwOArMvLy4uCQ45q0NAh\nIuKBVz+Kv765ukH3BAAAAKBxEDwANHH/7+nlWdn3tiztCwAAAEB2CR4AmrClH5fG/BXrs7L3CyvW\nx1urS7OyNwAAAADZI3gAaMKmLViZ5f3fz+r+AAAAADQ8wQNAEzb/3ezc7VCz/4p1Wd0fAAAAgIYn\neABoosorq7L+qKOlq0ujvLIqqz0AAAAA0LAEDwBN1NurN0dFVSqrPVRUpeLt1Zuz2gMAAAAADUvw\nANBErdlcnu0WIiJibSPpAwAAAICGIXgAaKIqqqqz3UJERGxrJH0AAAAA0DAEDwBNVEFe4/gRX9hI\n+gAAAACgYfg2CKCJal/cLNstREREu0bSBwAAAAANQ/AA0ET1OKA4CvJystpDQV5O9DigOKs9AAAA\nANCwBA8ATVSz/LzoeUBJVnvodUBJNMvPy2oPAAAAADQswQNAE3Z817bZ3b/b/lndHwAAAICGJ3gA\naMIuPq5LlvfvnNX9AQAAAGh4ggeAJqxXx5I4vlt27no4oVvbrD/qCQAAAICGJ3gAaOK+O7B7VvYd\nl6V9AQAAAMguwQNAE3d67wNi6BGdGnTPoUd0itN7H9CgewIAAADQOAgeAPYBvzi3X7QrLmyQvdoV\nF8Yvzu3XIHsBAAAA0PgIHgD2AW2LCuP3Fx8dhfl79sd+YX5u/P7io6NtUcOEHAAAAAA0PoIHgH3E\nSYe2i1tHHbPHwofC/Ny4ddQxcdKh7fbI+gAAAADsHXJSqVQq200A0HCeXbY2fjBtYazdvC2xNdsV\nf35HhdABAAAAAMEDwD5o/ZZtceP9b8QDr36022sNPaJT/OLcfh6vBAAAAEBECB4A9ml/fXN13Pb0\n8nhhxfqdvvaEbm1j3MDucXrvA/ZAZwAAAADsrQQPAMRbq0tj2oL3Y/6KdbF0dWlUVGX+aijIy4le\nB5TE8d32j4uP6xw9DyjJQqcAAAAANHaCBwDSlFdWxdurN8fazeWxrao6CvNyo11xs+hxQHE0y8/L\ndnsAAAAANHKCBwAAAAAAIDG52W4AAAAAAABoOgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQP\nAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAA\nAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABA\nYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQP\nAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAA\nAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABA\nYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQP\nAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAA\nAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABA\nYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQP\nAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAA\nAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABA\nYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQP\nAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAA\nAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABA\nYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQP\nAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAA\nAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABA\nYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQP\nAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAA\nAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABA\nYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQP\nAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAA\nAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABA\nYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQP\nAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAA\nAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABA\nYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQP\nAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAA\nAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABA\nYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQP\nAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYgQPAAAAAABAYv4/AnxksmKZlJ0AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABhcAAAYXCAYAAABrTyvZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd5SV5bk34HsqvXeRJk06g4iKvWNiF0uSk4hRE4+xR5MczXfUk3JSNNHExKixoCdG7F00FjCIDRl6F1CkSe/MDDP7+yNHjtuBYTbM7D0D17WWa7nv/ez3+Q0azNo/nvfNSiQSiQAAAAAAAKik7EwHAAAAAAAAahflAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkBLlAgAAAAAAkJLcTAcAoOpNnDgx3nzzzQrXnHLKKdGnT59q2X/69OnxyiuvVLhm6NChMXTo0GrZHwAAAIDqpVwA2Au9/fbbccMNN1S4pmXLltVWLnz44Ye73P/mm29OqVz4+OOP46WXXor27dvHWWedFdnZDt8BAAAAZIpyAajVxowZE8cee+xufTY7Ozvq1asXDRo0iHbt2sX+++8fffv2jUGDBsUxxxwTrVu3ruK07K5x48bFsGHDYtOmTRERceaZZ8YzzzyT4VQAAAAA+y5/7BPYZ5WVlcWmTZvi888/j8mTJ8dLL70Uv/71r+P888+Ptm3bxpAhQ+JPf/pTrFu3LtNRU3bNNddEIpHY/teCBQvSuv+IESOS9k8kEnt0vR/+8Ifbi4WIiGeffTZGjx69pzEBAAAA2E1OLgC1WteuXeO3v/1t0mzUqFExYcKEpNn5558fgwcPTpoVFxfHpk2bYvHixTF37tyYOHFibN26NSIiEolEfPjhh/Hhhx/GTTfdFNddd11cf/31Ub9+/er9gdih6dOnl5tNmzYthg0bloE0AAAAACgXgFqtQ4cOcf311yfNpk2bVq5cGDZsWIwYMaLCa5WUlMSbb74ZjzzySDz++ONRUlISERHr1q2Lm2++OUaOHBkPPvhgHHXUUVX6M7BrPXv2jIkTJybNevTokaE0AAAAALgtEsD/ysvLi5NPPjn+53/+J2bPnh2nnXZa0vvz58+P448/Pv785z9nKOG+6ze/+U3UrVt3++sTTjghTj311AwmAgAAANi3KRcAdqBLly7x/PPPxx133BHZ2f/3W+W2bdviBz/4Qdx2220ZTLfvOf7442Py5Mlxxx13xGOPPRavvPJK0j8XAAAAANLLbZEAKnD11VdHkyZN4qKLLkqa33DDDbHffvvFN7/5zQwl2/f06NHDrZAAAAAAagh/7BNgF0aMGBGXXHJJufn3vve9mDNnTgYSAQAAAEBmKRcAKuHOO++Mnj17Js02bdoUV111VYYSAQAAAEDmKBcAKqF+/fpx8803l5u/+uqr8eabb2YgEQAAAABkjmcuAFTS8OHD4/rrr48lS5YkzW+//fY47rjjMpSqan3++efx/vvvx4IFC2LDhg3RpEmT2G+//WLw4MHRsWPHTMerdmvWrIlx48bFvHnzYsuWLdGsWbPo0KFDHHnkkdGkSZNMxwMAAACoMZxcAKikvLy8uPTSS8vNX3311Vi5cmXS7Mwzz4ysrKyd/tW5c+cK93rxxRcr/HxWVlYsXLiwyn62119/PY455pho27ZtnH766XH11VfHT3/607jyyivjnHPOic6dO8fQoUPjqaeeqrI9K7Jw4cJd/vwjRozY6efHjBmzy8/fcsst29d/+umn8Z3vfGf7z3/dddfFTTfdFJdffnmcdtpp0aJFixg+fLhnbAAAAAD8L+UCQAqOPfbYcrPS0tJ44YUXMpBmz5WWlsaVV14ZJ554YowdOzYSiURE/KtI+bJEIhHvvvtuDB8+PM4444xYu3ZtBtJWj9dffz0GDBgQjzzySBQXF+9wTWlpaTz11FNx0EEHuQ0WAAAAQLgtEkBKDj744MjJyYnS0tKk+TvvvBMXXXTR9tcXXXRRHHHEEdtfjxo1KiZMmFDpfXr37h2//e1vt7+eMGFCjBo1ag+S79jll18e9957b+Tn58fll18e3/zmN6NPnz5Rv379WLVqVfzzn/+MP/7xj0lfqD///PNx4oknxj/+8Y9o2rRplWeKiGjevHnSzx8R8ctf/jLWrFlTqc937ty53DMybr311nLrPvzwwzj99NNjy5Yt0aRJkzjppJOiU6dOkUgkYv78+fH666/Hhg0btq/fuHFjnHXWWTFjxoxo3779bvxkAAAAAHsH5QJACurXrx/9+vWLSZMmJc0/+uijpNdnnHFG0utp06alVC4ccMABcf31129//dBDD1V5ufD444/HK6+8Em3atIl//OMf0a9fv6T3W7RoEWeeeWacccYZ8ctf/jJ++tOfbn9vwoQJceaZZ8Zbb70VWVlZVZorIqJx48ZJP39ExF133ZVSufDl2x5FlC8Xtm7dGhdccEEUFRXF//t//y9uuummqFOnTtKaNWvWxCWXXBJPP/309tn69evjxhtvjJEjR6bwEwEAAADsXdwWCSBFO3qw8YIFCzKQZM+88sorkZubGy+//HK5YuHLsrKy4qabbopLLrkkaT527Ni46667qjtmtbn//vtj/vz5cccdd8R//dd/lSsWIiKaNWsWjz32WPTu3Ttp/sQTTySdaAAAAADY1ygXAFK0o1sBrVu3LjZt2pT+MHvo+9//fgwaNKhSa3/1q19Fo0aNkmY33nhjrX3+wsqVK+Ooo46KK6+8ssJ1eXl5cdVVVyXNtmzZ4tkLAAAAwD5NuQCQombNmu1wXhvLhR/84AeVXtuiRYu48MILk2YbN26Mhx56qIpTpc+Pf/zjSq078cQTy80mT55c1XEAAAAAag3lAkCKGjZsuMN5UVFRmpPsmR49ekSvXr1S+sxpp51WbvbXv/61qiKlVaNGjeKEE06o1NouXbpE3bp1k2Yff/xxdcQCAAAAqBWUCwApWr9+/Q7n9erVS3OSPXPQQQel/JmjjjoqsrOT/9Mxffr0WLlyZVXFSpsBAwZEfn5+pdZmZWVFhw4dkmbr1q2rjlgAAAAAtYJyASBFO3vGwM5ONNRUBx54YMqfqVu3brkv2SMi3nvvvaqIlFY9e/ZMaX3jxo2TXnugMwAAALAvUy4ApGjNmjXlZi1atCh325yabkcPpq6MAw44oNxs5syZe5gm/VL9+b96MqW0tLQK0wAAAADULsoFgBQtXLiw3KxLly7pD7KHdvekRaNGjcrNdlS41HQNGjRIaX1OTk41JQEAAACofZQLACnYsGFDzJgxo9x88ODBGUizZ7767ITK2lEpURvLhaysrExHAAAAAKi1lAsAKXj//fejrKys3Pzwww/PQJrMSCQS5Wa+qAcAAADYtygXAFLwxhtvlJvl5eXFqaeeWq377qjQyNQ1N23aVG7WrFmzPY0DAAAAQC2iXACopKKiorj//vvLzU899dSUHw6c6hf7GzduTGl9dV5z/fr15WbKBQAAAIB9i3IBoJIeffTRWLFiRbn5D3/4w11+9qsPA966dWtKe69duzal9dV5zY8//rjcrFevXnuYBgAAAIDaRLkAUAnr16+Pn/3sZ+Xmp59+eqWet/DVhyDv6NZCFZkzZ05K6ytj1qxZKX9m8+bN8dlnn5WbH3rooVURCQAAAIBaQrkAUAmXX355LFiwIGnWuHHjuOOOOyr1+caNGye93rx5c6xevbrS+3/00UeVXltZEydOTPkzb7/9drkHOvfr1y9atGhRVbEAAAAAqAWUCwC78Oc//zn+9re/Jc2ysrLigQceiC5dulTqGt26dSs3q+zJgZkzZ+7WKYNdmT17dsrXff7558vNLrnkkqqKBAAAAEAtoVwAqMCvfvWruOKKK8rN77zzzjjnnHMqfZ2BAweWm7311luV+uxvfvObSu+Tqj//+c+VXrty5cp4+OGHk2YNGzaMCy+8sKpjAQAAAFDDKRcAdmDu3LkxbNiw+I//+I+k2wDl5eXFfffdF1deeWVK1+vXr1/sv//+SbP77rsvioqKKvzcK6+8Eg8//HA0a9Yspf0q6+67745JkyZVau2PfvSjcs+K+O///u9o0qRJNSQDAAAAoCZTLgD8r+Li4njllVfiggsuiN69e8err76a9H737t1jzJgxu3UboOzs7BgxYkTS7JNPPonzzz8/1qxZs8PPPPDAA3HuuedGo0aN4oYbbkh5z1055ZRTYtu2bfG1r30tpk+fvtN1iUQifv7zn8eDDz6YND/66KPjBz/4QZXnAgAAAKDmy810AIA9sWjRohg1alTSbEdflI8ePTpWrlyZNCspKYlNmzbF4sWLY/bs2VFYWBhbt24t99mmTZvG9ddfH9ddd13Uq1dvt7P++Mc/jocffjg+/fTT7bPnnnsuunTpEsOGDYsePXpEnTp14rPPPovRo0fHwoULIzs7O5566qlYu3Ztuevdd999SScazjzzzO3Pdpg4cWK8+eab29/bUYFx3nnnRYcOHeLee++NQYMGxRVXXBHf+MY3ok+fPlGvXr1Ys2ZNvP3223HnnXeWu4XTQQcdFM8++2xkZWXt8GedPn16vPLKKxX+eowfPz5uu+227a/79u0bw4YNi4iI9evXx7333pu0fv369eX2+PLnmzRpEpdeeun2119+rzL7Dx06NIYOHbr99ejRo2PatGnbXy9atCjp84sWLUr6fIcOHeL888+vcE8AAACAvUVW4sv3+wCoZcaMGRPHHntslV83KysrhgwZEhdeeGF861vfisaNG1fJdadMmRInn3xyLFu2bJdr69atG/fff39885vfjIceeiguuuiiCtc/88wzceaZZ0ZExB133BHXXntthesffPDB+Pa3vx1XX311/OlPf0p6Ly8vL0pKSnb4udNOOy1GjhxZ4a2aKpP3qy688MJ46KGHIiJi4cKFlX5Y9hc6deoUCxcu3P56Z8XHztx8881xyy23bH89YsSIGDlyZKU/f/TRR8eYMWNS2hMAAACgtnJyAdhnZWdnR506daJhw4bRtm3b6NixY/Tp0ycGDRoUxx13XLRq1arK9+zfv3989NFHccstt8TDDz+8w2cuZGdnx9e+9rX41a9+FX369KnyDF+Wk5MTd911V5xxxhnx85//PP75z39GIpHYYbFwyCGHxPXXXx/Dhw+v1kwAAAAA1HxOLgBkyJYtW2LcuHExf/78WL16deTm5kbnzp3jiCOOiHbt2mUk0/Lly+P999+PBQsWxMaNG6NRo0ax3377xcEHHxydOnXKSCYAAAAAah7lAgAAAAAAkJLsTAcAAAAAAABqF+UCAAAAAACQEuUCAAAAAACQEuUCAAAAAACQEuUCAAAAAACQEuUCAAAAAACQEuUCAAAAAACQEuUCAAAAAACQEuUCAAAAAACQEuUCAAAAAACQktxMBwAgM4q2lcbc5RtjxcaiKCkti7yc7GjVsE50b9Mw6uTmZDoeAAAAADWYcgFgHzJ72YZ47MNP44OFq2PO8g1RUpootyYvJyt6tGkUQzo3jwsO7hg92zbKQFIAAAAAarKsRCJR/pslAPYqb85aHn95e358sGB1yp8d0qV5XHbUAXHcgW2qIRkAAAAAtZFyAWAvtnpTcdz8/PR4YcqSPb7Waf33i1tP7xPNG+RXQTIAAAAAajPlAsBeavzHK+Oqxwpj5cbiKrtmy4b58YcLCmJo15ZVdk0AAAAAah/lAsBe6I2Zy+Pf/zYxikvLqvza+bnZcfc3B8XxvdwmCQAAAGBflZ3pAABUrfEfr6y2YiEionhbWfz7oxNj/Mcrq+X6AAAAANR8ygWAvcjqTcVx1WOF1VYsfKF4W1lc9VhhrN5UdbdcAgAAAKD2UC4A7EVufn56lT5joSIrN/7rYdEAAAAA7HuUCwB7iTdnLY8XpixJ654vTFkSb85antY9AQAAAMg85QLAXuIvb8/PyL73ZGhfAAAAADJHuQCwF5i9bEN8sGB1RvZ+f8HqmLN8Q0b2BgAAACAzlAsAe4HHPvw0w/svyuj+AAAAAKSXcgFgL/DBwsycWti+/4JVGd0fAAAAgPRSLgDUckXbSjN+W6LZyzdE0bbSjGYAAAAAIH2UCwC13NzlG6OkNJHRDCWliZi7fGNGMwAAAACQPsoFgFpuxcaiTEeIiIiVNSQHAAAAANVPuQBQy5WUlmU6QkREFNeQHAAAAABUP+UCQC2Xl1MzfivPryE5AAAAAKh+vgkCqOVaNayT6QgREdGyhuQAAAAAoPopFwBque5tGkZeTlZGM+TlZEX3Ng0zmgEAAACA9FEuANRydXJzokebRhnN0LNNo6iTm5PRDAAAAACkj3IBYC8wpHPzzO7fpUVG9wcAAAAgvZQLAHuBCw7umOH9O2R0fwAAAADSS7kAsBfo2bZRDOmSmdMLh3RpnvHbMgEAAACQXsoFgL3EZUcdkJF9v5+hfQEAAADIHOUCwF7iuAPbxGn990vrnqf13y+OO7BNWvcEAAAAIPOUCwB7kVtP7xMtG+anZa+WDfPj1tP7pGUvAAAAAGoW5QLAXqR5g/z4wwUFkVvNv7vn52bHHy4oiOYN0lNkAAAAAFCzKBcA9jLNS1bGMTlzIyfKquX6+bnZcfc3B8XQri2r5foAAAAA1HzKBYC9yKpVq+LZZ5+NDjnr4sS8uVE3Sqr0+k1K1scD3+gXx/fynAUAAACAfZlyAWAvUVxcHI8//ngUFRVFRES7nA1xVp3pMXT/OlVy/cOXvB13jP1BdPvw8Sq5HgAAAAC1V1YikUhkOgQAeyaRSMSzzz4bU6ZMSZr369cvzjrrrHhr9udxz9vz4/0Fq1O+dp9V0+KMBc/EQSs+ioiI3Gatou/LcyOnXoMqyQ4AAABA7aNcANgLfPjhh/Hyyy8nzVq3bh0XX3xx5Of/30OX5yzfEI99uCg+WLAqZi/fECWl5f8TkFu2LTpu+CR6r54ex3/2j+i4cVG5Ne2v/u9oe9H1Vf+DAAAAAFArKBcAarnPPvssHnzwwSgr+78HONepUycuvfTSaNGixU4/V7StNOYu3xgrNxZFcWlZ5OdkR8uGdaLFh8/FklsurnDP3GYto+9LcyOnfsMq+zkAAAAAqD2UCwC12KZNm+Lee++N9evXJ83PO++86NWr125dM7FtW0w/u38UfTq3wnXtr/pFtP3uj3ZrDwAAAABqNw90BqilysrK4umnny5XLAwdOnS3i4WIiKzc3Gj3vRt3uW7ZyNujdNOG3d4HAAAAgNpLuQBQS40ZMybmz5+fNOvcuXMcf/zxe3zt5sMuiDqdelS4pnTd6vj873/a470AAAAAqH2UCwC10Jw5c+Kf//xn0qxRo0ZxzjnnRHb2nv/W/q/TCzftct3yh38XpRvX73IdAAAAAHsX5QJALbNmzZp45plnkmbZ2dkxfPjwaNiw6h6w3HzY+VG3y4EVrildvyY+//tdVbYnAAAAALWDcgGgFikpKYnHH388tm7dmjQ/8cQTo2PHjlW6V1ZOTiVPL/w+Sjesq9K9AQAAAKjZlAsAtUQikYiXX345li1bljTv06dPHHLIIdWyZ7OTzo26B1T8cOjSDWtj+aN/rJb9AQAAAKiZlAsAtcTEiRNj0qRJSbOWLVvG6aefHllZWdWyZ1ZOTrT7/k93ue7zR+6IbevXVksGAAAAAGoe5QJALbBkyZJ45ZVXkmb5+flx/vnnR35+frXu3ezE4VG3a5+dvp/VsEm0+c61kZWbW605AAAAAKg5lAsANdzmzZvj8ccfj9LS0qT56aefHi1btqz2/bOys2O/HZxeKMmrE7MPPCoWfP+2aPe9myKnftU9TBoAAACAms0fMwWowcrKyuKZZ56JdeuSH5h86KGHRp8+Oz9NUNWannB21OveN7bMnRaJuvVjbueDYn7XQ2Jbft2I+Z/EEcuXR5s2bdKWBwAAAIDMcnIBoAZ7++23Y968eUmzjh07xgknnJDWHFnZ2bHfFT+LtpfeGAc+NzM+LTj5X8XC/xo7dmxa8wAAAACQWcoFgBpq3rx55b60b9CgQQwfPjxycnLSnqfp0adG+x/cGg3b7BeHHnpo0nszZ86MZcuWpT0TAAAAAJmhXACogdauXRtPPfVU0iwrKyvOPffcaNSoUYZS/Z9DDz006tatmzRzegEAAABg36FcAKhhtm3bFo8//nhs3bo1aX7CCSdEp06dMpQqWZ06deKwww5Lms2aNSuWLl2aoUQAAAAApJNyAaCGeeWVV8p9Sd+rV69yX+Zn2iGHHBL16tVLmjm9AAAAALBvUC4A1CCFhYUxceLEpFmLFi3ijDPOiKysrAyl2rEdnV6YPXt2LFmyJEOJAAAAAEgX5QJADbF06dJ4+eWXk2Z5eXlx3nnnRZ06dTKUqmJDhgxxegEAAABgH6RcAKgBtmzZEo8//nhs27YtaX7aaadF69atM5Rq1+rUqRNDhw5Nms2ZMycWL16coUQAAAAApINyASDDEolEPPPMM7F27dqk+ZAhQ6Jfv36ZCZWCIUOGRP369ZNmTi8AAAAA7N2UCwAZ9s9//jPmzp2bNNt///3jpJNOylCi1OTn55c7vTB37tz45KP34pNbvx+L//DTDCUDAAAAoLrkZjoAwL7s448/jrfeeitpVr9+/Tj33HMjJycnQ6lSd/DBB8e7774bmzZtirqb10X32eNixXP/HVllpZFVt160/taVkdeiTaZjAgAAAFBFnFwAyJB169bFU089lTTLysqK4cOHR+PGjTOUavfk5+fH0AO7Rd9JL8dxr/0pOi0sjKyy0oiISGzdEsseui3DCQEAAACoSsoFgAzYtm1bPPHEE7Fly5ak+XHHHRddunTJUKrdU1ZcFJ/+8sqoe+u3ovOCiZGdKCu3ZsUT90TJymUZSAcAAABAdVAuAGTAq6++GosXL06a9ezZMw4//PAMJdp9WXn5sXnWpEiUFO90TWLrllj24G/TmAoAAACA6qRcAEizyZMnx4QJE5JmzZs3jzPPPDOysrIylGr3ZWVlxX7/fvMu16148t4oWbE0DYkAAAAAqG7KBYA0Wr58ebz44otJs9zc3DjvvPOibt26GUq15xodenw0GDi0wjWJoq2x7IHfpCkRAAAAANVJuQCQJlu3bo3HH388tm3bljQ/9dRTo02bNhlKVTUqfXrhqfuiePniXa4DAAAAoGZTLgCkQSKRiGeffTZWr16dNB88eHAMGDAgQ6mqVqMhx0bDQUdUuCZRXBTLHnR6AQAAAKC2Uy4ApME777wTs2fPTpq1b98+Tj755AwlqnqVPb2w8qm/RvHyz9KQCAAAAIDqolwAqGYLFiyIN998M2lWr169OPfccyM3NzdDqapHo4OPiYYHHVXhmkRJcSy7/9dpSgQAAABAdVAuAFSj9evXx5NPPhmJRCJpfs4550STJk0ylKp67XfZf+5yzcpnHojiZYvSkAYAAACA6qBcAKgmpaWl8cQTT8TmzZuT5scee2x07do1Q6mqX6ODj46Gg4+ucE2ipDiW3v+rNCUCAAAAoKopFwCqyWuvvRaffZb8bIEePXrEkUcemaFE6VOZZy+seubBKFrySRrSAAAAAFDVlAsA1WDq1KnxwQcfJM2aNWsWZ555ZmRlZWUoVfo0OujIaDTk2ArXJLaVxDKnFwAAAABqJeUCQBX7/PPP44UXXkia5ebmxnnnnRf16tXLUKr02+/fK/HsheceiqLFC6s/DAAAAABVSrkAUIWKiori8ccfj5KSkqT51772tWjbtm2GUmVGw4IjotEhx1e8aNu2WPbX/05PIAAAAACqjHIBoIokEol47rnnYtWqVUnzQYMGRUFBQYZSZValTi+88HAULV6QhjQAAAAAVBXlAkAVeffdd2PmzJlJs3bt2sUpp5ySoUSZ13Dg0Gh82IkVL9q2LZbe98v0BAIAAACgSigXAKrAJ598Eq+//nrSrF69enHeeedFbm5uhlLVDO0qcXph1QuPRNGij9OQBgAAAICqoFwA2EMbNmyIJ554IhKJRNL87LPPjqZNm2YmVA3SsP+h0fjwkyteVFrq9AIAAABALaJcANgDpaWl8eSTT8amTZuS5kcffXR069YtQ6lqnv0uq8TphZf+Fls/nZeGNAAAAADsKeUCwB54/fXX49NPP02adevWLY4++ugMJaqZGvQbEo2P2MWzJ0pLY+m9v0hPIAAAAAD2iHIBYDdNnz493nvvvaRZkyZN4qyzzoqsrKwMpaq59rvs/+1yzeqXH42tn8xJQxoAAAAA9oRyAWA3rFixIp5//vmkWU5OTpx33nlRv379DKWq2Rr0PTiaHPX1iheVlTm9AAAAAFALKBcAUlRcXByPP/54FBcXJ81POeWU2G+//TKUqnZoV5nTC688FlsXzk5DGgAAAAB2l3IBIAWJRCKef/75WLlyZdJ84MCBMWjQoAylqj0a9D4omhxzWsWLnF4AAAAAqPGUCwApeP/992P69OlJs7Zt28bXvvY1z1mopMo8e2HTjIlRtnVLGtIAAAAAsDuUCwCV9Omnn8Y//vGPpFndunXjvPPOi7y8vAylqn3qH1gQTY89Y4fvbWrQLPIv+1n0eXJSZNetl+ZkAAAAAFRWbqYDANQGGzdujCeffDLKysqS5meddVY0a9YsQ6lqr3aX/b9Y+9Zz219vqt805h54RCzu0C9aR9Pom5OTwXQAAAAA7IpyAWAXysrK4qmnnooNGzYkzY888sjo0aNHhlLVbvV7Doimx58Vm2cWRtnXvhNjVpREIvtfhcLy5ctj5syZ0bt37wynBAAAAGBnlAsAu/DGG2/EwoULk2YHHHBAHHPMMRnJs7foeNOfIqdRk4ic3HjnL3+JFStWbH9v7Nix0atXL8+xAAAAAKihPHMBoAIzZ86M8ePHJ80aN24cZ599dmRn+y10T+Q1bxXZefmRnZ0dRx99dNJ7n3/+ecyYMSNDyQAAAADYFd+MAezEqlWr4tlnn02aZWdnx7nnnhsNGjTITKi9VO/evaN169ZJs7Fjx0YikchQIgAAAAAqolwA2IHi4uJ4/PHHo7i4OGk+bNiw2H///TOUau+VlZVV7vTCihUrYvr06RlKBAAAAEBFlAsAX5FIJOLFF1+Mzz//PGnev3//GDx4cIZS7f169eoVbdq0SZqNHTs2ysrKMpQIAAAAgJ1RLgB8xYcffhhTp05NmrVu3TpOPfVUDxiuRjs6vbBy5UqnFwAAAABqIOUCwJd89tln8eqrrybN6tSpE+edd17k5eVlKNW+48ADDyx3euHtt992egEAAACghlEuAPyvTZs2xRNPPFHui+wzzzwzWrRokaFU+5asrKw45phjkmYrV66MadOmZSYQAAAAADukXACIiLKysnjqqadi/fr1SfPDDz88DjzwwAyl2jf17Nkz2rZtmzT74vTCxknjY8vHMzKUDAAAAIAvKBcAIuKtt96KBQsWJM06d+4cxx13XIYS7bt2dHqhdO7kmPSdo2P2iKNj8R9uykwwAAAAALbLzXQAgEybPXt2jBs3LmnWqFGjOOeccyI7WwebCT169Ih27drFlukTosest6P18o8j8b/vrRv7YmyaPiEa9Bmc0YwAAAAA+zLfmgH7tNWrV8czzzyTNMvOzo5zzz03GjZsmKFUbJ4+IYa8OyqOGPtgtF7+cbn3l/7lZxlIBQAAAMAXlAvAPqukpCQef/zxKCoqSpqfdNJJ0aFDhwylomTF0ph14ZFRWvj2Ttes++fLsWnqB2lMBQAAAMCXKReAfVIikYiXXnopli9fnjTv27dvDBkyJEOpiIjIa9UuWnz9W7tct8TpBQAAAICMUS4A+6SPPvooJk+enDRr1apVnHbaaZGVlZWhVHyh3aU3RuTkVLhm/TujY+OU99KUCAAAAIAvUy4A+5zFixfH6NGjk2b5+flx3nnnRX5+foZS8WV1OnSNFqd9e5frPHsBAAAAIDOUC8A+ZfPmzfHEE09EaWlp0vyMM86Ili1bZigVO9Lu0hsjcnMrXLN+/GuxcfK7aUoEAAAAwBeUC8A+o6ysLJ5++ulYt25d0vywww6L3r17ZygVO1OnfZdoedp3drluyd3/lYY0AAAAAHyZcgHYZ4wdOzY+/vjjpFnHjh3j+OOPz1AidqXtJf+xy9MLG957PTYWvpOmRAAAAABEKBeAfcTcuXPj7bffTpo1bNgwhg8fHjm7eHAwmVOnfedoecaIXa5b8henFwAAAADSSbkA7PXWrFkTTz/9dNIsKysrhg8fHo0aNcpQKiqr7cU/iazcvArXbHj/zdgwcVyaEgEAAACgXAD2atu2bYsnnngitm7dmjQ/8cQTo1OnThlKRSrq7NcpWpw5Ypfrlt59a/WHAQAAACAilAtADTFlypS44447YvTo0VV63ZdffjmWLl2aNOvdu3cceuihVboP1atdZU4vfDgmNkx4u8I1AAAAAFQN5QJU0pgxYyIrK2uP/6pXr160b98+CgoK4pJLLokHH3ww1qxZk+kfL6OeeOKJOOigg+Laa6+NU045Ja655poque7EiROjsLAwadaiRYs4/fTTIysrq0r2ID3y23WMlmd9d5frlji9AAAAAJAWWYlEIpHpEFAbjBkzJo499thquXaDBg3iwgsvjFtuuSVatWpVLXvUZG3bto3ly5dvf52VlRXTp0+PXr167fY1ly5dGvfff3+UlpZun+Xl5cWll166T/4a7w2Kl38W007tGYmS4grX9bjvH9Ho4GPSEwoAAABgH6VcgEpatGhRjBo1Kmk2atSomDBhQtLs/PPPj8GDB+/wGhs2bIilS5fGuHHjYubMmeXeb9u2bYwcOTJOOumkqgtew61cuXKHX/Y/8cQTMXz48N265pYtW+Lee++NtWvXJs3POeec6Nu3725dk5rh0/++KlaMurvCNQ0HHRE97n/T6RQAAACAaqRcgD0wYsSIGDlyZNLswQcfjBEjRuzys++//35cc8018d577yXNc3Nz44UXXohhw4ZVZdQaK5FIRKtWrWLVqlVJ88mTJ0f//v1363p///vfY+7cuUnzQw45ZJ/5Nd2bFS9fHNNO6xmJ4qIK13W/59VofMhxaUoFAAAAsO/xzAXIkEMOOSTGjBkTp556atJ827ZtMXz48JgzZ06GkqVXVlZW/P73v4+cnJzts+9+97u7VSxERLz99tvlioUOHTrEiSeeuEc5qRny27SPludcsst1S//yX6E7BwAAAKg+ygXIoDp16sQjjzwS++23X9J806ZNcf3112coVfp9+9vfjg8//DBuv/32eP755+P+++/frevMmzcvxowZkzRr0KBBDB8+PKm8oHZre9GPIqtO3QrXbCx8Jza8/2aaEgEAAADse5QLkGFNmzaNq666qtz8hRdeiBkzZmQgUWYUFBTEddddF6eddtpufX7t2rXx9NNPJ82ysrJi+PDh0bhx46qISA2R33q/aHXOpbtct+TuW51eAAAAAKgmygWoAc4///wdzl988cU0J6mdtm3bFk888URs2bIlaX788cdH586dMxOKatX2oht2eXph0+R3Y8O7r6cpEQAAAMC+RbkANUDnzp2jVatW5ebvvPNOBtLUPqNHj44lS5YkzQ488MAYOnRohhJR3fJatYtW535/l+uW/MXpBQAAAIDqoFyAGqJdu3blZsuXL89Aktpl0qRJ8dFHHyXNmjdvHmeccUZkZWVlKBXp0PaiGyKrbr0K12ya8n6sH/9amhIBAAAA7DtyMx0A+JdGjRqVm61evbrCz5SUlMTs2bNj+vTpsWLFili/fn3UrVs3mjVrFvvvv38MGTIkmjRpUl2RyykrK4uPPvoopk6dGitWrIjS0tJo3LhxNGvWLDp37hwHHHDADkuU3bVs2bJ46aWXkmaJRCK6du0af//732Pt2rWxefPmaNSoUbRo0SJ69+4dffr0ifz8/CrLQObktWgTrc+7LJY//PsK1y25+9ZoPPQkZRMAAABAFVIuQA2xYcOGcrPmzZuXmy1ZsiQef/zxeOWVV+Ltt9+OrVu37vSa2dnZMWjQoLjiiiviG9/4RqW/VF+4cGF06dKlwjUXXnhhPPTQQxERsXnz5rjtttviz3/+8y5PWyQSiRgzZkwce+yxFa67+eab45Zbbtnp+1u3bo3HH388tm3bFhER8+fPjw8++CA+/vjjKCkp2enn8vLyYujQoXHKKafE2WefHd27d68wBzVbmxHXx4rH74myrZt3umbztA9j/bjR0eTIU9KYDAAAAGDv5rZIUEMsXbq03Kxt27bb/37dunXx9a9/PTp27BjXXnttvPbaa+WKhTp16iS9LisriwkTJsSIESNiwIABMXXq1CrPPW/evBg0aFDcfPPNabuNUyKRiGeeeSbWrFkTxcXF8eSTT8bDDz8cs2bNKlcs1K1bN+lPrJeUlMTYsWPjJz/5SfTo0SOOOuqoGDduXFpyU/XymreOVuf/+y7XLbnbsxcAAAAAqpKTC1ADLFy4MFasWFFufvjhh2//+zVr1sTLL7+c9H7Hjh3juuuui2HDhkW3bt0iJycnSkpKYs6cOfHGG2/En/70p5gzZ05ERMyaNSsOOeSQePPNN+PQQw+tME/Tpk3j5ptvTprdcccdsW7duqTZkiVL4uijj97+MOWBAwfGwQcfHC1atIjPPvssxo4dG4sWLSp3/a5du8Zvf/vbpNkNN9xQYaYvGzduXMyZMydKS0vjf/7nf+LTTz/d/l6vXr3immuuiWOPPTYOOOCAyMnJidLS0pg/f3689tprcccdd8S8efO2r//nP/8Zr7/+ehxxxBGV3p+apc2FP4wVj/8lyrZs2uH7DQqOiPaX3+K2SAAAAABVSLkANcCoUaN2OD/11FN3+plTTjklnnjiiWjQoEHSPC8vL/r06RN9+vSJyy67LK655pq4++67IyJiy5YtceaZZ8akSZOSTkV8VdOmTcvdkuihhx4qVy5861vfiiVLlsTQoUPjL3/5S/Tr1y/p/c2bN8cll1wSf//735PmHTp0iOuvvz5pVtlyYf78+fHWW29FxL9Khi8XC6eccko888wz5U5w5OTkRPfu3aN79+5x8cUXx8UXXxyPPvpopfaj5str3ipaXXB5LH8wubBa1aJDzOl1VAw8/+I48OAjM5QOAAAAYO/ktkiQYWvXro0//OEP5eZnnHFG9OrVa4efad++fYwaNapcsfBV+fn58ac//SlOO+207bPly5fHL3/5yz0LHREvv/xyjBkzJk4++eR48803yxULERH169ePu+++O5o2bbrH+0VErF+/Pp566qlIJBJRVlYW77//ftL7f/rTn8oVC19Vt27dGDlyZPTt27dKMlEztP3OdZFdv2FERGxp3z3ePfxb8e6R34lVrbrE+HffjaKiogwnBAAAANi7KBcgg4qKiuI73/nO9tsKfaFBgwblbhv0ZZdffnk0atSoUntkZWXFL37xi6TZfffdF2vXrk0575etWLEimjdvHo888kiFX+g3adIkBgwYsEd7RUSUlpbGE088EZs3/+vBvUuWLNn+9xERrVu33uVDqL+Qm5sbV1111R5noubIbdYyOtxwe3S/+5U44L7XY1XrLhH/exukLVu2xAcffJDhhAAAAAB7F7dFggx5//3345prron33nsvaZ6bmxtPPvlkdO/ePWneuHHjuPrqqyMi4txzz01pr379+kX79u1j8eLFERGxdevWePvtt+P000/fg58g4qqrropWrVrtct1//dd/xfz58/dor1dffTU+++yz7a+/eoum4uLilK538MEH71Eeap6WZ303IiIaR0TPnj1j9uzZ298bP358DBkyZJcnWwAAAACoHOUCVLHRo0fHypUrd/jexo0bY+nSpTFu3LiYMWNGuffbtGkTI0eOjJNPPrnce82bN4877rhjt3Ptv//+28uFiH89r2BPy4VvfetblVp31FFHxVFHHbXb+0yZMiU+/PDDpNlXbwm1du3aGDNmTBxzzDGVumavXr22X3O//fbb7WzUTMccc0xSubB169Z4//339+jfQwAAAAD+j3IBqtioUaN2+oDmnalfv3585zvfiVtvvTVat25dLbnq1q2b9Pqrt2JKVevWraNbt257dI3K+Pzzz+PFF19MmuXm5sY3v/nNeOihh5LmI0aMiBdffLFSz1OoU6dODB48uCqjUoO0bds2DjzwwJg1a9b22bvvvhtDhgwp978FAAAAAFKnXIA0q1u3bjRr1ixatWoVBx10UBxxxBFx5plnRvPmzXfregsWLIjp06fH6tWrY926dTt9cO2iRYuSXq9atWq39vtCnz599ujzlVFUVBSjRo2KkpKSpPnXv/71GDBgQHTv3j3mzp27ff7JJ5/EoEGD4sILL4wrr7wy+vfvX+0ZqbmOOeaYpHLhi9MLRx99dAZTAQAAAOwdlAtQxR588MEYMWJEte4xbty4ePDBB+OZZ56JNWvW7NY1tmzZskcZmjVrtkef35VEIhHPPfdcrF69Omk+aNCgGDhwYERE3HHHHXHqqadGIpHY/n5JSUn89a9/jb/+9a/Rr1+/GD58eJx++unbP8O+o02bNtGrV6+YOXPm9tm7774bhxxyiNMLAAAAAHsoO9MBgMpbunRpnHPOOXHkkUfGAw88sNvFQlVo2LBhtV5/0aJFSV8KR/zr2QinnHLK9tdf+9rXYuTIkTv9onjq1Klx8803R0FBQXTs2DF+8IMfxFtvvRVlZWXVmp2a46unFIqKiso9RB0AAACA1CkXoJZYuHBhHH744fH0008nzfv16xd33XVXTJ48OdauXRtlZWWRSCTK/VXVt4LJysqq0ut91YIFC5Je16tXL84999zIzU0+cPXtb387pkyZEmeffXaFmRYtWhR//vOf47jjjosOHTrEr371q9iwYUO1ZKfmaNOmTfTu3Ttp9t577+3xyR0AAACAfZ1yAWqB0tLSOPvss8t94X7DDTdEYWFh/OAHP4j+/ftHkyZNqv1L/3T58q2OIiLOPvvsaNq06Q7Xdu/ePZ566qmYO3du3HzzzdGjR48Kr71kyZL4j//4jzjwwAPjlVdeqarI1FAVnV5IlJZGwkkWAAAAgJQpF6AWeOCBB6KwsDBpdsopp8RvfvObyMnJyVCq9DnmmGOiW7duu1zXtWvXuOWWW2L27NkxadKkuOmmmyosGpYsWRKnnXZaPPbYY1UZlxqmdevW5R5A/t748bHs+UdixrkFsea1JzKUDAAAAKD2Ui5ALfDoo4+Wm91www0ZSJJ+3bp1i6OOOirlzw0YMCB+/vOfx+zZs2PixIlx1VVX7fDkQ2lpaVx88cWxZMmSKkhLTbX99EIiEe0+mxGHjb4rFv/nd2Pr/Jmx9J6fR6K0NLMBAQAAAGoZ5QLUcIlEIsaPH580y83NjaFDh2YoUfo0bdp0l89SqIyCgoK48847Y+HChfHDH/4wsrOTf+vbvHlz3H333Xu0BzVbyxYtYkj2xjjqzXvjoA+fjkYbVm5/b+uCWbHm1cczmA4AAACg9lEuQA23atWqKC4uTpo1b9486tSpk9J1vvoMg5pkxYoV5WbZ2dlx7rnnRr169apsnyZNmsRtt90Wv/71r8u9N3bs2Crbh5ply/yZMfOCwdH6qTui8fry/65FRCy59xdOLwAAAACkQLkANVxVlQJr1qypkutUtaKionj88fJ/arx79+6x33777fRz48aNixEjRsSIESNi+vTpKe157bXXRosWLZJmy5cvT+ka1B75rdtH8fLFFa4pWjg7Vo/27A0AAACAylIuQA3XokWLcg9tXrVqVWzatKnS1ygqKop58+ZVdbQ9lkgk4vnnn4+VK1eWe69du3YVfnbevHkxcuTIGDlyZEydOjWlfXNycso96Llx48YpXYPaI6dh42jznet2uW7pPb+IxLZtaUgEAAAAUPspF6CGy87OjoMOOihpVlpaGv/4xz8qfY0XX3wxtmzZUtXR9th7770XM2bM2OPrjBs3LuXPrF69Oul1t27d9jgHNVfrCy6PnKYtKlxT9OncWP3K39OUCAAAAKB2Uy5ALXDOOeeUm/385z+PkpKSXX5206ZN8f/+3/+rjlh75JNPPkmpIKnII488Ep9//nml18+cOTNmz56dNNvRrzF7j5wGjaLthT/c5bql9/7S6QUAAACASlAuQC1w+eWXR5s2bZJmH330UVx00UXlHvb8ZRs3boxzzz03Zs6cWd0RU7Jx48Z48sknq+x5EuvXr4/TTz+9UgXDqlWr4t/+7d+SZoMHD46zzjqrSrJQc7U6/98jt1nLCtcULZoXq176W5oSAQAAANReuZkOALXFokWLYtSoUUmzHT1IePTo0Tt8hsD111+/23s3bNgwHnvssRg2bFgUFRVtn//tb3+LwsLCuP766+Okk07a/gDkRYsWxUsvvRS//vWv45NPPolOnTpFXl5e0nMXFi1aFLfddtv21x06dIjzzz9/++v77rsv1q1bt/31+vXrkzJNnz496fMREU2aNIlLL720wp+lrKws7rnnnnj11VcrXDd+/PgK833V+++/H7169Yrvfe97cdppp0W/fv2iUaNGERGxZcuWmDlzZrz00kvxxz/+MVasWLH9c+3bt4+//e1v5Z5rwd4np37DaHPh9bH4jp9UuG7pfb+MFl/7ZmTl5aUpGQAAAEDtk5Woqj86DHu5MWPGxLHHHrvbn6+K/6m9/vrr8a1vfWunf0L/iy/IS0tLt88OPvjgeO655+Ib3/hGjB07dqfXPvroo2PMmDHbX3fu3Dk++eSTlPJ16tQpFi5cWOGa1157LR599NEYOXJkStf+ar65c+fGT3/603j22Wd3enojNzc3srOzd/r+0UcfHSNHjoxOnTqllIXaq3TLppj29R6xbXXFp1w63XJvtDzzojSlAgAAAKh93BYJapETTjghpk6dGj/+8Y+jefPm5d4vLS3dXiwMGDAgHnnkkXj//fejXbt26Y66QzNmzIh33323Sq7VvXv3GDVqVHz22Wdxzz33xOmnnx4NGzZMWrNt27ZyxUJeXl6ceuqp8cwzz8SYMWMUC/uYnHoNou2IXZ8iWnrff0eiEs80AQAAANhXObkAtVRZWVlMnjw5Jk+eHKtWrYqioqJo3rx5tGnTJg477LBo27ZtpiMmWblyZdx3331JX/bn5OTERRddFO3bt6+SPcrKymL+/PkxY8aMWLp0aaxfvz6KioqiUaNG0axZszjwwAOjX79+Ua9evSrZj9qpbMvmmHpqj9i2anmF6zr951+i5dkXpykVAAAAQO2iXACqXXFxcfz1r39NetZBRMTXv/71GDx4cIZSsS9b/sgd8dntN1S4Jr9dp+jz/IzIzstPUyoAAACA2sNtkYBqlUgk4oUXXihXLAwYMCAOOuigDKViX9fq3O9HbsuKT/cUL/0kVj2X2rNBAAAAAPYVygWgWn344Ycxbdq0pFmbNm3i61//emRlZWUoFfu67Lr1ou1FFZ9ciIhYdv+voqxkxw8EBwAAANiXKReAarNo0aJ49dVXk2Z16tSJ8847L/Ly8jKUCv6l1TmXRl6rih92Xrz001j17INpSgQAAABQeygXgGqxadOmeOKJJ6KsrCxpfuaZZ0bz5s0zlAr+T3bdetH2uz/a5bqlf/1VlBUXpSERAAAAQO2hXACqXFlZWTz55JOxYcOGpPnhhx8eBx54YIZSQXktz74k8lq3r3BNyfLPYuUzD6QpEQAAAEDtoFwAqtybb74ZCxcuTJp16dIljjvuuMwEgp3IrlO3UqcXlt3/6ygr2pqGRAAAAAC1g3IBqFKzZs2Kd955J2nWqFGjOOeccyI722851Dwtz7448trsX+Gaks8Xx8pn7k9TIgAAAICazzd9QJVZvXp1PPvss0mz7OzsOPfcc6NBgwaZCQW7kJ1fJ9pd/ONdrlt2/2+cXgAAAAD4X8oFoEqUlJTE448/HkVFyQ++Pfnkk6NDhw4ZSgWV0+LMiyKvbcX/npasWBIrn7ovTYkAAAAAajblArDHEolEvPjii7F8+fKkeb9+/eLggw/OUCqovOz8OtHukp/sct3SB34TZVu3pCERAAAAQM2mXAD22EcffRRTpkxJmrVq1SpOPfXUyMrKylAqSE2LM0ZEfrtOFa7ZtnJZrHjy3jQlAgAAAKi5lAvAdkXbSmPa4nXx1uzP47UZy+Kt2Z/HtMXromhb6U4/s3jx4hg9enTSLD8/P84///zIz8+v7shQZbLz8qNtJU4vLHvwt1G2ZXMaEgEAAADUXFmJRCKR6RBA5sxetiEe+/DT+GDh6pizfEOUlJb/LSEvJyt6tGkUQzo3jwsO7hg92zaKiIjNmzfHPffcE+vXr09af95550WvXr3Skh+qUllJcUw/o08UL1lY4br9f/ibaPPta9MTCgAAAKAGys10ACAz3py1PP7y9vz4YMHqXa4tKU3E9CXrY/qS9fHg+IUxpEvz+N4RXWLpR/8oVywcdthhigVqrey8/Gh3yU/ik/+6rIJF2VGyYmn6QgEAAADUQE4uwD5m9abiuPn56fHClCV7fK0u2avi0LxFUTdrW0REdOrUKb7zne9EdrY7rlF7JUpKYtqZfaJ48YLkeWTF4o5949Cf3RNtBnhQOQAAALBvc3IB9iHjP14ZVz1WGCs3FlfJ9RaUtYilRY3jmLz50b1JIoYPH65YoNbLysuLdpf+R3xyy/ciIiIREYs79I25PY+MTY1aRCxcEmcMyGxGAAAAgExzcgH2EW/MXB7//reJUVxaVuXXzomy+MUpXeKCo/pW+bUhExIlJTH9nAFRv/dBMb/vMfHOx59tfy8rKyuuuOKKaN68eQYTAgAAAGSWcgH2AeM/XhkjHvywWoqFL+TnZsdDIw6OoV1bVtsekE5lWzZHdr36sWnTprjzzjujpKRk+3sDBgyIM888M3PhAAAAADLM/UtgL7d6U3Fc9VhhtRYLERHF28riqscKY/WmqrnlEmRadr36ERHRoEGDOPjg5GcsTJkyJVatWpWJWAAAAAA1gnIB9nI3Pz+9yp6xsCsrN/7rYdGwtzn88MMjLy9v++tEIhFvv/12BhMBAAAAZJZyAfZib85aHi9MWZLWPV+YsiTenLU8rXtCdatfv34MGTIkaTZ16tRYuXJlhhIBAAAAZJZyAfZif3l7fkb2vSdD+0J1Gjp0aOTn529/7fQCAAAAsC9TLsBeavayDfHBgtUZ2fv9BatjzvINGdkbqsvOTi+sWLEiQ4kAAAAAMke5AHupxz78NMP7L8ro/lAdvnp6ISKcXgAAAAD2ScoF2Et9sDAzpxa2779gVUb3h+pQr169OOSQQ5Jm06ZNi88//zxDiQAAAAAyQ7kAe6GibaUZvy3R7OUbomhbaUYzQHU47LDDok6dOkmzt99+O0o3bYhlD94W29avzUwwAAAAgDRSLsBeaO7yjVFSmshohpLSRMxdvjGjGaA6fPX0Qs624tj6zH0x5ZSusfjO/4jPH/1jBtMBAAAApIdyAfZCKzYWZTpCRESsrCE5oKoddthhUS8nKw6Y824c9+pd0Wv6m1G2fk1ERHz+P3c6vQAAAADs9ZQLsBcqKS3LdISIiCiuITmgKpVt2RzrHr87jh39x+g9/Y2oU7w56f3Sjevi8/+5M0PpAAAAANJDuQB7obycmvE/7fwakgOq0rrxr8Znv/tRZG9cu9M1yx/9Q2z735MMAAAAAHsj3/zBXqhVwzq7XpQGLWtIDqhKTY89I+r16FfhmrKN62P5I3ekJxAAAABABigXYC/UvU3DyMvJymiGvJys6N6mYUYzQHXIys6Odt//f7tc9/mjf4xt61anIREAAABA+ikXYC9UJzcnerRplNEMrfO3xacL5kdZmecusPf51+mF/hWuKdu0IZY//Ps0JQIAAABIL+UC7KWGdG6e0f2bFK+MRx99NO6888548803Y80a959n75GVnR37Xfafu1z3+d/vim1rVqYhEQAAAEB6ZSUSiUSmQwBVb/ayDXHynW9nbP8z86dFs+ytSbMuXbpEQUFB9OrVK3JzczOUDKpGIpGImd8YEltmTapwXdvv/ijaX/WL9IQCAAAASBPlAuzFzrv33fhgQfrv+d42a0OcUmf2Tt+vW7du9OvXLwYNGhRt27ZNYzKoWmvHvBAfX3N2hWuy6zWIvi/NjbzmrdKUCgAAAKD6KRdgL/bmrOXx3ZET0r7vTw5rEtnLZsTSpUt3ubZdu3ZRUFAQ/fr1i7p166YhHVSdRCIRs751aGyeMbHCdW1GXB/7X/PfaUoFAAAAUP2UC7CXu/LvhfHClCVp2++0/vvFH79REBERy5Yti4kTJ8bUqVNj69atFX4uNzc3evXqFQUFBdG5c+fIyspKR1zYY2vffik+vurMCtdk160ffV+eG3nNW6cnFAAAAEA1Uy7AXm71puI46Y6xsXJjcbXv1bJhfrx2zdHRvEF+0nzbtm0xc+bMKCwsjAULFuzyOs2aNYuBAwfGwIEDo3HjxtUVF6pEIpGIWf82NDZPr/iUUJvvXBf7X/frNKUCAAAAqF7KBdgHjP94ZYx46MMo3lZWbXvk52bHQyMOjqFdW1a4bs2aNTFp0qSYNGlSrF+/vsK1WVlZ0a1btygoKIgePXpETk5OVUaGKrPun6/EvCtPr3BNVt160e+luZHXok2aUgEAAABUH+UC7CPemLk8/v3RidVSMOTnZsfd3xwUx/eq/JemZWVl8fHHH0dhYWHMnj07ysoqztWgQYPo379/DBo0KFq2rLjAgHRLJBIx+ztHxKapH1S4rvW3r4kOP/xtmlIBAAAAVB/lAuxDxn+8Mq56rLBKb5HUsmF+/OGCgl2eWKjIpk2bYsqUKVFYWBgrVqzY5foOHTpEQUFB9OnTJ/Lz83e5HtJh3TuvxrwfnFrhmqy69aLfi3Mir2XbNKUCAAAAqB7KBdjHrN5UHDc/P71KHvJ8Wv/94tbT+5R7xsLuSiQSsXjx4pg4cWJMnz49iosrLkHy8/OjT58+UVBQEPvvv7+HQJNRiUQiZl94ZGya8n6F61p/66rocMPtaUoFAAAAUD2UC7CPenPW8rjn7fnx/oLVKX/2kC7N4/tHHRDHHVh9944vLi6O6dOnR2FhYSxatGiX61u1ahUDBw6MAQMGRIMGDaotF1Rk/fh/xNzLv1bhmqw6df91eqFVuzSlAgAAAKh6ygXYx81ZviEe+3BRfLBgVcxeviFKSsv/lpCXkxU92zSKIV1axAUHd4gebRqlNePKlSujsLAwJk+eHJs2bapwbXZ2dvTs2TMKCgqia9eukZ2dnaaU8L+nF0YcHZsmv1vhutbfuCI6/Pj3aUoFAAAAUPWUC8B2RdtKY+7yjbFyY1EUl5ZFfk52tGxYJ7q3aRh1cnMyHS9KS0tj7ty5MXHixJg3b17s6revxo0bx4ABA6KgoCCaNWuWppTs69a/90bMvWxYhWuy8utE3xdmR36b9mlKBQAAAFC1lAtArbR+/fqYPHlyFBYWxpo1a3a5vkuXLlFQUBC9evWK3NzcNCRkX5VIJGLOd4+NjYXvVLiu1QWXR8ef3JmmVAAAAABVS7kA1GqJRCI++eSTKCwsjBkzZsS2bdsqXF+3bt3o169fFBQURLt27nlP9Vj/wVsx93snVbgmKy8/+r44O/Lb7J+mVAAAAABVR7kA7DW2bt0aU6dOjcLCwli6dOku17dt2zYKCgqiX79+Ua9evTQkZF+RSCRiziXHx8aP/lnhulbnXRYdb/xjmlIBAAAAVB3lArBXWrZsWRQWFsaUKVNi69atFa7Nzc2NXr16RUFBQXTu3DmysrLSlJK92YYPx8acS0+ocE1WXn70fWFW5LftkKZUAAAAAFVDuQDs1bZt2xYzZ86MwsLCWLBgwS7XN2vWLAYOHBgDBw6Mxo0bpyEhe7PZl5wQGyeMrXBNy3O/F51u+lOaEgEAAABUDeUCsM9Ys2ZNTJo0KSZNmhTr16+vcG1WVlZ069YtCgoKokePHpGTk5OmlOxNNnz0z5hz8XEVrsnKzYs+z8+MOvt1SlMqAAAAgD2nXAD2OWVlZTF//vwoLCyMWbNmRVlZWYXr69evHwMGDIiCgoJo1apVmlKyt5jzvZNiwwdvVbim1QWXR8ef3JmmRAAAAAB7TrkA7NM2bdoUU6ZMicLCwlixYsUu1++///5RUFAQffv2jfz8/DQkpLbbWDguZl907A7fK82rG+0vvDbafPuayG3SPM3JAAAAAHafcgEgIhKJRCxevDgKCwtj2rRpUVxcXOH6vLy86NOnTwwaNCj2339/D4GmQnO+Pyw2vP/G9tfbcvNjwQEHx/xuh8T5F38vunbtmsF0AAAAAKlTLgB8RXFxccyYMSMmTpwYixYt2uX6li1bRkFBQQwYMCAaNGiQhoTUNhsnjY/ZI46O7HoN4pNuQ2JGh4IoqVM/Iv51Gua73/2uggoAAACoVZQLABVYuXJlFBYWxuTJk2PTpk0Vrs3Ozo6ePXtGQUFBdO3aNbKzs9OUktpgxVN/jabHnhFTFy6KF154Iem9b33rW9GtW7cMJQMAAABInXIBoBJKS0tj7ty5UVhYGHPnzo1d/dbZqFGjGDhwYBQUFESzZs3SlJLaoLS0NO66665Yu3bt9ln79u3j4osvTtvphfHjx8f48eMrXHPKKadEnz590pIHAAAAqH2UCwAp2rBhQ0yaNCkmTZoUq1ev3uX6zp07R0FBQfTq1Svy8vLSkJCarrCwMJ5//vmk2Te/+c3o3r37bl/z448/jpdeeinat28fZ511VoUnZ2655Za49dZbK7zegw8+GCNGjNjtPAAAAMDezT07AFLUqFGjOPLII+OKK66ICy+8MPr37x+5ubk7Xb9w4cJ45pln4ne/+1289NJLsXTp0jSm5atuueWWyMrKqtRfTz/9dLVk6N+///YTLW+++Wbccsst0aNHjwqzVPRF/7hx42LAgAFx9dVXx/Dhw+Occ86pltwAAAAAX1AuAOymrKys6Ny5c5x11lnxwx/+ML7+9a/Hfvvtt9P1W7dujQkTJsS9994b99xzT3zwwQexZcuWNCYmVb/4xS+q5bo5OTlx1FFHxdatW+ODDz7Y4+v98Ic/THomyLPPPhujR4/e6fpbbrklEonE9r8WLFiwxxkAAACAfcvO/6gtAJVWt27dGDx4cAwePDiWLVsWhYWFMWXKlNi6desO1y9btixeeeWVeO2116J3795RUFAQnTt3Tts99/dlJ510UjRs2DBpNmrUqJgwYUK5tRMnToyXX345vva1r1V5jv79+8dPf/rTHf470qxZs7jxxhuTZn379t3ptaZPn15uNm3atBg2bNieBwUAAADYAc9cAKgm27Zti1mzZkVhYWHMnz9/l+ubNm0aBQUFMXDgwGjcuHEaEvKFESNGxMiRI3f43mGHHbbLhx/vjk2bNkWHDh1izZo15d7r1KlTLFy4sNLXOuigg2LixIlJs+eeey5OP/30Sn1+4cKF0aVLl6SZZy4AAAAAFXFyAaCa5ObmRt++faNv376xdu3aKCwsjEmTJsX69et3uH7t2rXx1ltvxZgxY6Jr165RUFAQPXv2jJycnDQn58vefffdeOONN+L444+v0uvefffdOywWdsdvfvObOPXUU7efgjjhhBPi1FNPrZJrAwAAAOyIcgEgDZo2bRrHHntsHH300TF//vwoLCyMWbNmRVlZWbm1iUQi5s2bF/PmzYv69etH//79Y9CgQdGqVasMJN/31KtXr9yzMH7+859XabmwdevWuP322yPiX7fU+uqtkUpKSiIiYtv6NZHbuNkur3f88cfH5MmT45VXXom2bdvGOeecE9nZHqsEAAAAVB/lAkAaZWdnR7du3aJbt26xefPmmDJlShQWFsbnn3++w/WbN2+O9957L957773Yf//9o6CgIPr06RN16tRJc/J9x3e/+93405/+lDQbM2ZMvPPOO3H44YdXyR5//etfY9myZRERcckll8Rdd92V9H7Rls3xyS+uiFXPj4xef/8g6h3Qa5fX7NGjR/To0aNK8gEAAADsij/WCJAh9evXj0MPPTQuu+yyuPjii2PQoEGRn5+/0/WfffZZvPDCC3H77bfHc889F4sWLQqPzal6gwcPjpNPPrnc/Gc/+1mVXL+4uDh+85vfREREixYt4rLLLiu3Jn/T2lj5xD2RKNoaS+/9RZXsCwAAAFCVlAsAGZaVlRX7779/nHbaafHDH/4wzjjjjOjYseNO15eUlMSkSZPigQceiD//+c8xfvz42LRpUxoT7/1uuummcrNXX301JkyYsMfXHjlyZCxatCgiIq655ppo0KBB+UVf6ozWvPp4bJk3fY/3BQAAAKhKygWAGiQ/Pz8GDhwYF110UfzgBz+IoUOH7vjL5/+1cuXK+Mc//hG/+93vYtSoUTFnzpwdPseB1Bx55JFxxBFHlJv//Oc/36PrlpaWxq9+9auIiGjcuHFcccUVsfq1Jyv+UCLh9AIAAABQ43jmAkAN1bJlyzjxxBPjuOOOi7lz50ZhYWHMnTt3h7dCKisri1mzZsWsWbOiUaNGMWDAgCgoKIjmzZtnIPne4aabbopTTjklafb888/H1KlTo1+/frt1zUcffTTmz58fERGXX355NG3aNOp167PLz635x5OxZd6NUa9b393aN93Wrl0bU6dOjblz58batWtjy5Yt0aRJk2jWrFn07t07+vfvHzk5OWnL88knn8T48ePjs88+i7KysmjRokX06NEjDj300ApvRQYAAADsnHIBoIbLycmJAw88MA488MDYsGFDTJ48OQoLC2P16tU7XL9hw4YYN25cjBs3Ljp37hwFBQXRq1evyMvLS3Py2m3YsGExaNCgmDhx4vZZIpGIn//85zFq1KiUr1dWVha//OUvIyKiXr16ce211/7r7yvxsOZIJGLpPb+IA37794iIWLhwYXTp0qXCj1x44YXx0EMPpZxzd73zzjvxzDPPxOjRo2P69Ipv49SwYcM47bTT4tprr42DDz640nvccsstceutt1a45q233opjjjkmIiLGjx8fN954Y4wdO3aHaxs0aBCXX3553HjjjdG0adNK5wAAAADcFgmgVmnUqFEcccQRccUVV8SIESNiwIABkZu785544cKF8cwzz8Ttt98eL730UixdujSNaWu/G2+8sdzsySefjNmzZ6d8rSeffDJmzZoVERGXXHJJtG7dOqXPr/nHk7Fl7tSU961uo0ePjp49e8YRRxwRt99+e7liITc3t9y/oxs3boy///3vMWTIkLj00ktjy5YtVZ7rt7/9bRx55JE7LRYiIjZt2hS//e1v49BDD93+HAwAAACgcpxcAKiFsrKyolOnTtGpU6cYNmxYTJs2LQoLC2PJkiU7XF9UVBQTJkyICRMmRNu2baOgoCD69esX9erVS3Py2uXss8+OXr16xcyZM7fPvjiBMHLkyEpfJ5FIxC9+8a/nJuTl5cUNN9ywW3mW3PPz6HrbqGjevHn89re/TXrvl7/8ZaxZs2a3rrsn3nvvvZgzZ07S7JRTTonvf//7MXTo0GjVqlVERKxbty4KCwvjySefjAcffDA2b94cERF//etfY9q0afHWW29F3bp1K9zrixMJX1i4cOEO/zncdddd8aMf/SgiIjp16hTHHXdctG3bNjZu3BhTp06NcePGxbZt27avnz17dpxzzjnx3nvvRXa2P3cBAAAAlaFcAKjl6tatG4MHD47BgwfH8uXLY+LEiTF16tSd/mnwZcuWxSuvvBKvvfZa9OrVKwoKCqJLly6RlZWV5uQ1X1ZWVvzHf/xHfOc730maP/roo3HLLbfs8tZEX3j++edjypQpERHxne98Jzp06LBbeda+/nRsnj05GvccENdff33Se3fddVdGyoUvy8rKivvuuy8uvvjicu81adIkjjnmmDjmmGPi6quvjtNPP337SY733nsvvv/97++ysPni818YM2ZMuc9MmzYtrrvuumjWrFn8+c9/jgsuuKDcdWbOnBnDhw+PGTNmbJ99+OGHMXLkyLjoootS+ZEBAABgn+WP5wHsRdq0aROnnHJKXHfddXHOOefEAQccsNO1paWlMW3atHjkkUfiD3/4Q4wdOzbWrVuXxrS1wze+8Y1yJcK2bdviv//7vyt9jS9OLeTk5MRPfvKTPcqz9J6f79Hnq9OVV165w2Lhq7p37x6jR4+OBg0abJ89/PDDSc+32F233npr5ObmxujRo3dYLERE9OrVK1588cVyzyG5//7793h/AAAA2FcoFwD2Qrm5udG3b9/49re/HVdffXUcffTR0aRJk52uX7t2bYwZMybuvPPO+Nvf/hYzZsyI0tLSNCauuXJzc7ffYufLRo4cGZ999tkuP//qq6/Ghx9+GBER5557bnTr1m2P8qx989nYPGvSHl2jOmRlZe3w12lnOnXqFN///veTZr/5zW/2OMfKlSvjhhtuiCFDhlS4rkuXLnHOOeckzd55551Yu3btHmcAAACAfYFyAWAv17Rp0zjmmGPiqquuin/7t3+LPn36RE5Ozg7XJhKJmDdvXjzxxBPxu9/9Ll599dVYsWJFmhPXPBdddFG0a9cuaVZcXFypL8N//vN/nTTIysra4QOid8eSv/ysSq5TFQ499NC4+uqr4+abb4727dun9NlTTjkl6fXrr78eiURij/Lk5eXFtddeW6m1J554YrnZF7evAgAAACqmXADYR2RnZ0fXrl1j+PDhcd1118XJJ58crVu33un6zZs3x3vvvRd//vOf4/7774+JEydGUVFRGhPXHHXq1Cn3jIOIiPvuuy+WL1++08+NGTMmxo0bFxERp512WvTr169yG+7i8Rfrxjwfm2fu+S2EqsKwYcPijjvuiJtvvjnlz+6///5Jr1etWpX08Ozdcdxxx0XTpk0rtbZ3797lZh9//PEe7Q8AAAD7CuUCwD6ofv36ceihh8Zll10Wl1xySQwaNCjy8/N3uv6zzz6LF154IW6//fZ47rnn4tNPP93jP2Fe23z/+9+PFi1aJM22bt0at912204/88WphYhI6dRCdr0Gu1xTk04v7K66deuWmy1ZsmSPrnnwwQdXem3Hjh3LzTx3BAAAAConN9MBAMicrKysaN++fbRv3z5OPvnkmDFjRhQWFsann366w/UlJSUxadKkmDRpUrRs2TIGDhwYAwYMiIYNG6Y5efo1aNAgrr766vjP//zPpPlf/vKX+MlPflKueHjvvffijTfeiIiI448/Pg455JBK75XTsGlE9oqIsrKdrlk39sXYNH1CNOgzuPI/RJoUFRXFtGnTYv78+bFu3brYsGHDDp/hsWbNmnKzVatW7dHePXv2rPTaxo0bl5tt2LBhj/YHAACAfYVyAYCIiMjPz4+BAwfGwIEDY9WqVVFYWBiTJ0+OjRs37nD9ypUr4/XXX48333wzevToEQUFBdGtW7fIzt57D8VdeeWVcdttt8X69eu3zzZu3Bi///3vk04pRET87Gf/d7LgpptuSmmfrNzcaP61b8TqF/9W4bqlf/lZdPvjcyldu7ps2bIlHn300XjkkUfinXfeiW3btu32dfZEZW+JFBFRr169cjMPMgcAAIDK2Xu/AQJgt7Vo0SJOOOGEuOaaa+KCCy6Inj17RlbWjh8EUFZWFrNmzYq///3vcccdd8Qbb7wRq1evTnPi9GjatGlcfvnl5eZ33XVX0u10CgsL4+WXX46IiMMOOyyOPfbYlPdqd+lNETt58PYX1v3z5dg09YOUr13VRo8eHX369IlLLrkkxo4du9vFQlVo0GDXt5T6ws4ebA4AAADsmnIBgJ3KycmJnj17xgUXXBDXXnttHH/88dG8efOdrt+wYUOMGzcu/vjHP8bIkSNjypQpUVJSksbE1e/aa68t9yfe161bF3/84x+3v97dZy18Wd1O3aPF1765y3WZfvbCgw8+GF//+tdjwYIF22fZ2dlxwQUXxLPPPhuffPJJbN68ORKJRLm/vvyZqrKzEgwAAACoWm6LBEClNGrUKI444og4/PDD49NPP43CwsKYPn36Tv+U+sKFC2PhwoXx8ssvR79+/aKgoCDatWtX67/8bd26dVxyySVJZUJExB133BHXXHNNfPLJJ/HMM89ERMSAAQPi1FNP3e292n3vplj18qMRFdyqZ/07o2PjlPd2e489MWHChLjkkkui7EvPhmjcuHG89NJLccQRR2QkEwAAAJAeygUAUpKVlRWdOnWKTp06xbBhw2LatGlRWFgYS5Ys2eH6oqKimDBhQkyYMCHatGkTBQUF0b9//x3e7762uOGGG+Ivf/lL0qmMVatWxd133x2FhYWRSCQiYvdPLXyhToeu0eLUf4tVz42scN3SDJ1euPrqq5OKhYiIe++9V7EAAAAA+wDlAgC7rW7dujF48OAYPHhwLF++PAoLC2PKlCk7fSjv8uXLY/To0fGPf/wjevXqFQUFBdGlS5dad5qhQ4cO8e1vfzseeOCBpPmvf/3rWLt2bURE9OjRI4YPH77He7W79MZY9dLfIip4jsH68a9ForjlHu+VioULF8b48eOTZp06dYrzzjsvrTkAAACAzPDMBQCqRJs2bWLYsGFx3XXXxfDhw6Nr1647XVtaWhrTpk2LRx55JP7whz/E2LFjkx6IXBv85Cc/iezs5P+Mrlq1Kkr/9xZGO3p/d9TZ/4Bocdq3d7mudMPaPd4rFe+880652VFHHVXriiIAAABg9zi5AECVys3NjT59+kSfPn1i7dq1MWnSpJg0adJOy4O1a9fGmDFjYsyYMdGtW7coKCiInj17Rk5OTpqTp6Z79+5x3nnnxWOPPVbuvY4dO8a//du/Vdle7S65MVa98EiFpxfKirZW2X6VsXTp0nKzdu3apXSNL24fBQAAANQ+ygUAqk3Tpk3jmGOOiaOPPjrmz58fhYWFMWvWrO1/uv+r5s2bF/PmzYv69etH//79o6CgIFq3bp3m1JV34403xqhRo8p9Sf6jH/0o8vLyqmyfOu07R8vTL4yVT99fZdfcU1VRDKxZs6YKkgAAAACZoFwAoNplZWVF165do2vXrrF58+aYMmVKFBYWxueff77D9Zs3b4733nsv3nvvvWjfvn0UFBRE3759o06dOmlOXrF+/frFqaeeGi+88ML2WZs2beLiiy+u8r3aXvIfser5hyOxrWTXi9NgR6XPp59+mtI1pk2bVlVxAAAAgDRTLgCQVvXr149DDz00DjnkkFiyZEkUFhbGtGnToqioaIfrFy9eHIsXL45XX301+vTpEwUFBdGhQ4cac2////zP/4zi4uLtr88///yoW7dule9TZ79O0eLMEbHyyfuq/Nq7Y8iQIeVmb7zxRhQXF0d+fn6lrvHEE09UdSwAAAAgTZQLAGREVlZWtG/fPtq3bx8nn3xyzJgxIwoLC+OTTz7Z4fqSkpLtz29o0aJFFBQUxIABA6Jhw4ZpTp5s8ODBMXr06LTs1e7in8SqZx+qEacXevXqFb169YqZM2dun61YsSL+9Kc/xbXXXrvLz7/55pvx4osvVmdEAAAAoBplZzoAAOTl5cWAAQNixIgRccUVV8Thhx9eYWmwatWqeP311+P3v/99jBo1KubMmRNlZWVpTJwZ+e06RsuzvpvpGNv97Gc/Kzf78Y9/HM8++2yFn3v//ffj/PPPr6ZUAAAAQDo4uQBAjdKiRYs44YQT4rjjjou5c+dGYWFhzJkzZ4cPEC4rK4tZs2bFrFmzomHDhjFw4MAoKCiI5s2b7/T6ixYtilGjRiXNpk+fvv3vR48eHStXrkx6//rrr9/Dn+r/jBo1KhYtWrT99Y4earx+/fq47bbbkmZDhw6NoUOHRttLfhILn3ognl6WfBupjWVZEfF/v0bTp09PukaTJk3i0ksvjYiI8ePHx/jx4yvM8NVfhy/2/7Jzzjknvve978W99967fVZSUhJnn312nH/++XHppZfGIYccEg0aNIji4uKYPHlyPPzww3HvvfdGcXFxnHDCCfH6669XuO8pp5wSffr0iYjy/+w+/vjjcrlHjRoVEyZM2P76/PPPjw4dOmx/fd9998W6devKfe4L48ePT/p129HPDQAAAERkJXb0bQ0A1CAbN26MyZMnR2FhYaxatWqX6zt16hQFBQXRu3fvyMvLS3pvzJgxceyxx6a0f1X+p/KYY46JsWPHpvy5m2++OW655ZaIiHjnRyPiiN+OTOnznTp1ioULF0ZExC233BK33nrrbu//ZaWlpfHjH/84fve73+301yk/Pz/puRQ5OTnxox/9KC699NI44IADKtz3wQcfjBEjRkTE7v2ze+utt+KYY47Z/rpz5847vfXWjuzs5wYAAIB9ndsiAVDjNWzYMA4//PD4wQ9+ECNGjIgBAwaUKw2+7JNPPolnn302br/99njxxRdjyZIlVVoQZFqrcy/LdITtcnJy4rbbbou33347Tj311MjJySm35otioX79+nHOOefE5MmT45e//GWNeSg3AAAAkDonFwColYqKimLatGlRWFgYixcv3uX6Nm3aREFBQfTv3z/q1auXhoTVK1FWFlnZ2fHJJ5/EQw89lPTesGHD4pBDDslIrvXr18e7774bCxYsiDVr1kReXl60bNkyOnfuHIcddljUqVMnI7kAAACAqqVcAKDW+/zzz2PixIkxZcqU2LJlS4Vrc3JyolevXlFQUBBdunTZK/70/MMPPxwLFizY/rphw4Zx1VVXVXi6AwAAAGBPKBcA2Gts27YtZs+eHYWFhTt82O9XNW3aNAYOHBgDBw6MJk2apCFh9fj000/jwQcfTJqdfPLJceihh2YoEQAAALC3Uy4AsFdat25dTJo0KQoLC2PdunW7XN+1a9coKCiInj17Rm5ubhoSVq1HHnkk5s+fv/11gwYN4uqrr3Z6AQAAAKgWygUA9mqJRCIWLFgQEydOjFmzZkVpaWmF6+vVqxf9+/ePQYMGRevWrdOUcs8tWrQoHnjggaTZSSedFIcddliGEgEAAAB7M+UCAPuMzZs3x9SpU6OwsDCWL1++y/Xt27ePgoKC6Nu3b614EPH//M//JN0OqkGDBnHVVVdFfn5+BlMBAAAAeyPlAgD7nEQiEUuXLo2JEyfGtGnToqioqML1eXl50bt37ygoKIiOHTvW2IdAf/bZZ3H//fcnzU488cQYOnRohhIBAAAAeyvlAgD7tJKSkpgxY0YUFhbGJ598ssv1LVq0iIKCghgwYEA0bNgwDQlT87e//S3mzZu3/XX9+vXj6quvdnoBAAAAqFLKBQD4X6tXr47CwsKYNGlSbNy4scK1WVlZ0aNHjygoKIju3btHdnZ2mlJWbPHixfHXv/41aXbCCSfEwCb5sXr0qNj/h7+tsScvAAAAgNpDuQAAX1FWVhZz586NwsLCmDNnTuzqP5UNGzaMAQMGREFBQbRo0SJNKXfu0Ucfjblz50ZERJM1S6PXnHHRcsnsiIjo+odno+lRX89kPAAAAGAvoFwAgAps3LgxJk+eHIWFhbFq1apdru/UqVMUFBRE7969Iy8vLw0Jy1uyZEmM+u1/RY+Zb0fbZXOT3qvfe1Ac+Lf3nF4AAAAA9ohyAQAqIZFIxKJFi6KwsDCmT58eJSUlFa6vU6dO9O3bNwYNGhTt2rVL25f5m2dNiiV/+VmsG/P8Ttd0vePpaHrMaWnJAwAAAOydlAsAkKKioqKYNm1aFBYWxuLFi3e5vk2bNlFQUBD9+vWL+vXrV2u2xX/4aSx74NcVrql34MDo9fcPnF4AAAAAdptyAQD2wOeffx6FhYUxZcqU2Lx5c4Vrc3Jy4sADD4yCgoI44IADquXL/W1rV8XUr3ePsk0bKlzX9XdPRr2jTo25yzfGio1FUVJaFnk52dGqYZ3o3qZh1MnNqfJsAAAAwN5DuQAAVaC0tDRmz54dhYWFMW/evF2ub9KkSQwcODAKCgqiSZMmVZpl8V3/Gcv++t87fO/Thh3j9Q4nxqx2B8Wn9dtHSWn5/xuQl5MVPdo0iiGdm8cFB3eMnm0bVWk+AAAAoPZTLgBAFVu3bl1MmjQpJk2aFGvXrt3l+q5du0ZBQUH07NkzcnNz93j/betW/+v0wsb122cftToonj3grJjRvG/K1xvSpXlcdtQBcdyBbfY4GwAAALB3UC4AQDVJJBKxYMGCKCwsjJkzZ0ZpaWmF6+vVqxf9+/ePQYMGRevWrfdo7yV/viWW3vuLWJ/XKP7a+9J4Z7+j9uh6ERGn9d8vbj29TzRvkL/H1wIAAABqN+UCAKTBli1bYsqUKVFYWBjLly/f5fr27dtHQUFB9O3bN+rUqZPyftvWr4m/f+O0uK3nv8e6Ok13I/GOtWyYH3+4oCCGdm1ZZdcEAAAAah/lAgCkUSKRiKVLl0ZhYWFMnTo1ioqKKlyfl5cXvXv3joKCgujYsWOlHwL9xszlcdnDH0RJZFdF7CT5udlx9zcHxfG93CYJAAAA9lXKBQDIkJKSkpg5c2YUFhbGwoULd7m+RYsWMXDgwBg4cGA0bNhwp+vGf7wyRjz4YRSXllVh2mT5udnx0IiDnWAAAACAfZRyAQBqgNWrV0dhYWFMnjw5NmzYUOHarKys6NGjRxQUFET37t0jO/v/Ties3lQcJ90xNlZuLK7uyNGyYX68ds3RnsEAAAAA+yDlAgDUIGVlZTFv3rwoLCyMOXPmRFlZxacPGjZsGAMGDIiCgoJo0aJFXPn3wnhhypI0pf3XQ57/+I2CtO0HAAAA1AzKBQCooTZu3BiTJ0+OwsLCWLVq1S7XF7XoHo8ubpKGZMkeuHBwHHeg5y8AAADAvkS5AAA1XCKRiEWLFkVhYWFMnz49SkpKdrju5aKesTzRKM3pIg7p0jxGfe+wtO8LAAAAZI5yAQBqkaKiopg+fXoUFhbGZ599tn2+pqxuPFvcN2O5XrvmqOjRJv3FBgAAAJAZygUAqKU+//zzKCwsjClTpsRb61rEjNLM3Zrou4d3if88tXfG9gcAAADSS7kAALVcaWlpnPS7N+Pj1cUZy9B3v8bx4pVHZmx/AAAAIL2yMx0AANgz2xIRn67b8XMY0mX28g1RtK00oxkAAACA9FEuAEAtN3f5xigpzexBxJLSRMxdvjGjGQAAAID0US4AQC23YmNRpiNERMTKGpIDAAAAqH7KBQCo5UpKyzIdISIiimtIDgAAAKD6KRcAoJbLy6kZ/znPryE5AAAAgOrnWwAAqOVaNayT6QgREdGyhuQAAAAAqp9yAQBque5tGkZeTlZGM+TlZEX3Ng0zmgEAAABIH+UCANRydXJzokebRhnN0LNNo6iTm5PRDAAAAED6KBcAYC8wpHPzzO7fpUVG9wcAAADSS7kAAHuBCw7umOH9O2R0fwAAACC9lAsAsBfo2bZRDOmSmdMLh3RpnvHbMgEAAADppVwAgL3EZUcdkJF9Lz2kfUb2BQAAADJHuQAAe4njDmwTp/XfL617Hr7k7ejwhxFRumlDWvcFAAAAMku5AAB7kVtP7xMtG+anZa8mRWvjkhn3xcaP/hlzLxsW29avTcu+AAAAQOYpFwBgL9K8QX784YKCyM+t3v/E55UWx7WTbovGJf86sbBp6gcx53snxrY1K6t1XwAAAKBmUC4AwF5maNeWcfc3B1VbwZBXWhzXF/4m+q2eljTfMmtSzL7khChZsbRa9gUAAABqjqxEIpHIdAgAoOqN/3hlXPVYYazcWFxl12xStDaunXRbuWLhy+p07B497n018tt2qLJ9AQAAgJpFuQAAe7HVm4rj5uenxwtTluzxtY5c81F896M7tt8KqSL5+3WOHve+GnX2P2CP9wUAAABqHuUCAOwD3py1PO55e368v2B1yp89pEvz+P5RB8ThjbfGnO+dFMWfza/U5/Jat48e974adTv3THlPAAAAoGZTLgDAPmTO8g3x2IeL4oMFq2L28g1RUlr+/wbk5WRFzzaNYkiXFnHBwR2iR5tG298rXr445l42LLYumFWp/XKbt44e94yOet37VdnPAAAAAGSecgEA9lFF20pj7vKNsXJjURSXlkV+Tna0bFgnurdpGHVyc3b6uZLVn8fcy4bFljlTK7VPTpPm0f3ul6NB74OqKjoAAACQYcoFACBl29atjrn//rXYPOOjSq2v06Fr9HlmWmTl5lZzMgAAACAdsjMdAACofXKbNI8e97waDQYO3eXarAaN44Df/l2xAAAAAHsR5QIAsFtyGjWJ7n9+KRoNOXana7bl5sf4Q86LJbmNdroGAAAAqH2UCwDAbsup3zC6/eG5aHz4sHLvlebkxgeHnR+rmrSNxx57LGbNqtxDoAEAAICaT7kAAOyR7Lr1ouvvn4ymx525fZbIyY0PDz0vVrfsFBERpaWl8cQTT8S0adMylBIAAACoSsoFAGCPZefXiQN+/Wg0G3ZBRG5udL1tVLQ7/oykNWVlZfH000/HpEmTMhMSAAAAqDJZiUQikekQAMDeIVFaGptnfBQN+g2JsrKyePHFF6OwsLDcuq9//esxePDgDCQEAAAAqoJyAQCoNolEIkaPHh0ffPBBufdOOumk+P/s3Wd0VOXaxvFrShpJKCEQCD1AaIKgCAgIKr0pqBQVEBWwiwXb8ah4LMeKiA0EpSOIShWkYwEp0kEgAQJESkhIIQnps98PvuY4TgI7kMmk/H9rsdaZZ+699xX8cMJcs/dz/fXXeyAVAAAAAAC4UpQLAADArQzD0Jo1a7Rp0yaX92666SZ16tTJA6kAAAAAAMCVYM8FAADgVhaLRV27dlXnzp1d3lu/fr3Wrl2rv77rkHUuRnzvAQAAAACA4o9yAQAAuJ3FYtGNN96orl27urz3yy+/aNWqVUo7HqkDQ67TH+8+TcEAAAAAAEAxx2ORAABAkdq6datWrFjhtOZ3IVGdN8+XPSlWkhR8+0jVfvETWax8DwIAAAAAgOKIcgEAABS5HTt2aOnSpZIk37Tzuv7nWfJPTXCaCep7t+qOmyqL3e6JiAAAAAAA4CIoFwAAgEfs3btX3381W+1+mqHAlHN5zlTqdofqvjlDVi/vIk4HAAAAAAAuhq8CAgAAj2hSu4ay9i2TkU+xIEkJq7+RIzNdYe98JauPbxGmAwAAAAAAF8ODjAEAQJEzDENHnrxdxomIS84m/bhMh8cMkCPtQhEkAwAAAAAAZlAuAACAImexWFT9gZdk9S1naj558xpFPtpXOanJbk4GAAAAAADMYM8FAADgMck7ftHhx26Rw2Rp4N+8jRp8skz28pXcnAwAAAAAAFwM5QIAAPCo1L1bFflwH+UkJ5qa92t0tRp+tkJeQVXcGwwAAAAAAOSLcgEAAHjchYO7FPlQL2UnxJma9w1rqvDJP8irSnU3JwMAAAAAAHmhXAAAAMVC2pHfFflgT2XFnjY171OrgcI/Xynv6rXdnAwAAAAAAPwT5QIAACg20k8cVuQDPZR5+oSpee/qdRQ+ZZV8aoa5ORkAAAAAAPg7q6cDAAAA/MW3dgOFf7FO3ibLgszTx3Xo3puUHnXQzckAAAAAAMDfUS4AAIBixSe0jhp9sU6+9Rqbms+KPaVD93fRhYg9bk4GAAAAAAD+QrkAAACKHe+QGgr/Yq38wpubms+OP6uIUd2Uuv83NycDAAAAAAAS5QIAACimvIKqKnzKGpVreq2p+ZykeEU80EMpuza5ORkAAAAAAKBcAAAAxZa9QpDCJ6+Uf8v2puYdKecV+VBvnd+63s3JAAAAAAAo2ygXAABAsWYLrKCGn36vwDY3mZp3pKXq8GO3KOmXH9ycDAAAAACAsotyAQAAFHu2cgFqMHGxynfsZWreyEjXkSduU8K6Re4NBgAAAABAGUW5AAAASgSrr5/qf/CNKnYZYGreyM7S0WeGKP6H+W5OBgAAAABA2UO5AAAASgyrl7fC3p6roF5DzB2Qk6OoF4YpbtF0t+YCAAAAAKCsoVwAAAAlisVuV93Xp6ty/xHmDjAMpR894NZMAAAAAACUNRbDMAxPhwAAACgow+FQ9DtPKnbepxedy+nUX9d9+LUsFksRJQMAAAAAoPTjzgUAAFAiWaxW1XpugkLueTrfmRO1r9aKoGb6+eefizAZAAAAAAClH3cuAACAEs0wDJ2e9JpOT37Naf1kzaba2bq/ZPnzuxQdO3bUzTffzB0MAAAAAAAUAsoFAABQKpyZ9q5OfvgvSVLO1R31Q90bZFhtTjNt27ZVjx49KBgAAAAAALhClAsAAKDUOPvVx0r6ZaXqf/CNftu1WytWrHCZufbaa9WnTx8KBgAAAAAArgDlAgAAKFUMh0MW65+PQtq5c6eWLFniMnP11VfrlltukdXK9lMAAAAAAFwOygUAAFCq7d27VwsXLtQ/f+Vp1qyZBgwYIJvNls+RAAAAAAAgP5QLAACg1Dtw4IC++eYbORwOp/Xw8HANHDhQdrvdQ8kAAAAAACiZeBYAAAAo9Zo0aaIhQ4a43KUQERGhefPmKSsrS4bDoZg5E5WTluqhlAAAAAAAlBzcuQAAAMqMo0eP5pYJf1endm11PrVd8QsmK+Cajmrw0RLZ/AM9lBIAAAAAgOKPcgEAAJQpJ06c0Jw5c5SZmfnngmGoyf51qh/5a+6Mf/M2avDJMtnLV/JQSgAAAAAAijfKBQAAUOacPHlSs2fPVnp6uhoe+EmNDv7kMuPX6Go1/GyFvIKqeCAhAAAAAADFG+UCAAAok86cOaMfnx+lBrt+yHfGN6ypwif/IK8q1YswGQAAAAAAxR8bOgMAgDLJuuHbixYLkpR+9Hcduu9mZZ4+UUSpAAAAAAAoGSgXAABAmZOTlqqYGR+Yms2IPqxD992sjD+OujkVAAAAAAAlB+UCAAAoc2x+/gr/Yq18atU3NZ95+rgO3XuT0qMOujkZAAAAAAAlA+UCAAAok3xC6yj8i3XyrdfY1HxW7Ckdur+LLkTscXMyAAAAAACKP8oFAABQZnlXDVX4F2vlF97c1Hx2/FlFjOqm1P2/uTkZAAAAAADFG+UCAAAo07yCqip8yhqVa3qtqfmcpHhFPNBDKbs2uTkZAAAAAADFF+UCAAAo8+wVghQ+eaX8W7Y3Ne9IOa/Ih3oredsG9wYDAAAAAKCYolwAAACQZAusoIafLVdgm5tMzTvSUhX5aD8lbVzp5mQAAAAAABQ/lAsAAAD/z+bnrwYTF6t8x16m5o2MdB0ZM0AJ6xa5NxgAAAAAAMUM5QIAAMDfWH39VP+Db1SxywBT80Z2lo4+M0TxP8x3czIAAAAAAIoPygUAAIB/sHp5K+ztuQrqNcTcATk5inphmOIWTXdrLgAAAAAAigvKBQAAgDxY7HbVfX26Kg+419wBhqHj40bp7PzP3BsMAAAAAIBigHIBAAAgHxabTXVemqQqQx42fUz0fx9XzMwP3JgKAAAAAADPsxiGYXg6BAAAQHFmGIZOTnhBMTPeN31M6MPjVG3Uv2SxWNyYDAAAAAAAz6BcAAAAMMEwDJ2e/LpOT/qP6WOq3fecQh97jYIBAAAAAFDqUC4AAAAUwJlp7+nkhy+Ynq9612Oq+cz7FAwAAAAAgFKFPRcAAAAKoNq9Y1Xr+Qmm58/O/UinP3vVfYEAAAAAAPAAygUAAIACqjrkEdV5eZJk4m4Er5CaqnzrPUWQCgAAAACAokO5AAAAcBmCb7tfdV+fLtls+c6k+/jr6IAnZa9Wu+iCAQAAAABQBCgXAAAALlPlPncp7O25sti9XN7L9PbTlo53a3dMgr7++mtlZ2d7ICEAAAAAAO7Bhs4AAABXKOmn5ToydpCMzAxJUpaXj37tOFTnK1bPnQkLC9OQIUPk5eVaRAAAAAAAUNJw5wIAAMAVqtCptxp8tERW33KylgtQ5ddmKa2K86OQjh49qjlz5igjI8NDKQEAAAAAKDzcuQAAAFBIUnb+IiPHocDWnXTixAnNmTNHmZmZTjM1atTQ0KFD5evr66GUAAAAAABcOcoFAAAANzl58qRmz56t9PR0p/Vq1app2LBhKleunIeSAQAAAABwZSgXAAAA3CgmJkYzZ87UhQsXnNarVKmiYcOGKTAw0EPJAAAAAAC4fJQLAAAAbhYXF6eZM2cqOTnZaT0oKEjDhw9XhQoVJEmGwyGLlS2xAAAAAADFH/96BQAAcLPg4GCNGDEit0T4S3x8vKZPn66EhASl7tumA0NaKyP6iIdSAgAAAABgHncuAAAAFJGkpCTNnDlT8fHxTuvVslPUZsN0OZIT5VUlVOGfr5RvvcYeSgkAAAAAwKVRLgAAABSh5ORkzZo1S7GxsZKkgPNxuv7nmfLJ/N+eDPZKVdRw8g8qF97CUzEBAAAAALgoygUAAIAilpqaqlmzZin5yAG1/3mmfNNTXGZsFYLU8NPv5d+stQcSAgAAAABwcZQLAAAAHnA+KkL7h98g7+T4fGesAeXV8KMlCmjVoQiTAQAAAABwaWzoDAAAUMSy4s7oxOO3XLRYkCRHynlFPtRb57euL6JkAAAAAACYQ7kAAABQxKz+gfKuXtvUrCP9gg4/douSfvnBzakAAAAAADCPcgEAAKCI2fz81WDiYpXv2MvUvJGRriNP3KaEdYvcGwwAAAAAAJMoFwAAADzA6uun+h98o4pdbzM1b2Rn6egzQxS/Yp6bkwEAAAAAcGmUCwAAAB5i9fJW2FtzFNRriLkDcnIU9a/hils0zb3BAAAAAAC4BMoFAAAAD7LY7ar7+nRVHnCvuQMMQ8fHjdbZeZ+6NxgAAAAAABdBuQAAAOBhFptNdV6apCp3PmL6mOi3xujMjPFuTAUAAAAAQP4shmEYng4BAAAAyTAMnfzwX4qZ/p7pY6o/9Iqqj35RFovFjckAAAAAAHBGuQAAAFCMGIah05Nf1+lJ/zF9TLX7nlXoY69TMAAAAAAAigzlAgAAQDF0Ztp7OvnhC6bnq975qGo+874sVp56CQAAAABwP8oFAACAYursvE8U/dYTpueDB9yn2v/+VBabzX2hAAAAAAAQ5QIAAECxFrfwSx3/z4OSyV/ZgvrcpbqvfiGL3e7mZAAAAACAsoxyAQAAoJiLX/6Vol66V8rJMTVfsettqvffWbJ6ebs5GQAAAACgrKJcAAAAKAES1nynqOeHysjOMjVf4YbeCntvvqw+vm5OBgAAAAAoiygXAAAASoikn1foyNMDZWRmmJoPbNtF9Sd8K5ufv5uTAQAAAADKGsoFAACAEuT8lnU6MmaAHOkXTM0HXNNRDSYuli2gvJuTAQAAAADKEqunAwAAAMC88m1vVsPPvpfVP9DUfMqOX5T00/duTgUAAAAAKGsoFwAAAEqYgFYdFT55pWzlK11ytsqDLyuo951FkAoAAAAAUJZQLgAAAJRA/lddp/Apq2WvVCXfmYhGHbXMUVnJyclFmAwAAAAAUBaw5wIAAEAJlnb0gCIf6KGs2NNO60catNWBq7pKFouCgoI0fPhwVahQwUMpAQAAAAClDeUCAABACZd+4rAiH+ihzNMnJEmnG7XT9iZdJIsld6ZixYoaPny4KlW69KOUAAAAAAC4FB6LBAAAUML51m6g8C/WyadWfVXuN0wdJy1RUOXKTjOJiYmaNm2a4uLiPJQSAAAAAFCacOcCAABAKZEVHyt7hSBZbDYlJydr1qxZio2NdZrx9/fXsGHDFBIS4qGUAAAAAIDSgHIBAACglEpNTdWsWbMUExPjtO7n56ehQ4cqNDTUQ8kAAAAAACUd5QIAAEAplpaWpjlz5ujkyZNO6z4+Prr77rtVq1YtDyUDAAAAAJRk7LkAAABQivn5+WnYsGGqXbu203pGRoZmzZqlqKgoSZIjK1MXDuzwREQAAAAAQAlEuQAAAFDK/XWXQlhYmNN6VlaW5s6dq8hDBxX1wjAdHNFZSb/84KGUAAAAAICShMciAQAAlBHZ2dn6+uuvFRkZ+b9Fw6FW25eqRvReSZLF7qV678xVpZv7eyYkAAAAAKBE4M4FAACAMsJut2vw4MFq2rTpnwuGoRY7l+cWC5JkZGfp6DNDFL9inodSAgAAAABKAu5cAAAAKGMcDocWL1qknDnvqd6RbXkPWSyq88pkBfe/t2jDAQAAAABKBO5cAAAAKGMsFouuO7Et/2JBkgxDx8eN1tl5nxZdMAAAAABAicGdCwAAAGVM0saVOvxIX9PzNZ58W9XuecqNiQAAAAAAJQ13LgAAAJQx5dt3V8iIsabnT37wnE5Nfl18JwUAAAAA8BfuXAAAACiDDMPQ6c/f0OnPXjV9TLX7nlXoY6/LYrG4MRkAAAAAoCSgXAAAACjDzkx/XycnPG96vuqdj6rms+MpGAAAAACgjKNcAAAAKOPOzvtE0W89YXo++Lb7VfvFT2Sx2dwXCgAAAABQrFEuAAAAQHELv9Tx/zwomfzVMKjPXar76hey2O1uTgYAAAAAKI4oFwAAACBJil/+laJeulfKyTE1X7Hrbar331myenm7ORkAAAAAoLihXAAAAECuhLULFfXc3TKys0zNV+jUR2HvzpPVx9fNyQAAAAAAxQnlAgAAAJwk/bxCR54eKCMzw9R8YNsuqj/hW9n8/N2cDAAAAABQXFAuAAAAwMX5Let0ZMwAOdIvmJoPuKajGkxcLFtAeTcnAwAAAAAUB5QLAAAAyFPKzl8U+egtcqQmm5ovd9V1avjp97KXr+TmZAAAAAAAT6NcAAAAQL5S921T5MN9lHM+wdS8X6Or1fCzFfIKquLmZAAAAAAAT6JcAAAAwEVdOLRbkQ/2UnZCrKl537CmCp/8g7yqVHdzMgAAAACAp1AuAAAA4JLSjh5Q5AM9lBV72tS8T60GCv98pbyr13ZzMgAAAACAJ1g9HQAAAADFn19YE4V/sc50WZARfViH7rtZGdFH3JwMAAAAAOAJ3LkAAAAA0zJOHVfkAz1MlwZeVUIVPnW1fOuEuzkZAAAAAKAocecCAAAATPMJraPwL9bJt15jU/O2CpVkr1DZzakAAAAAAEWNcgEAAAAF4l01VOFfrJVfeIuLzqUGBqv8uOmyV6RcAAAAAIDShnIBAAAABeYVVFXhU1arXLPWeb6fWq6ifu1wl+Ys+0HR0dFFnA4AAAAA4G6UCwAAALgs9gpBCp+8UgGtOjitp/kGanPHu5XuV14ZGRmaNWuWoqKiPJQSAAAAAOAOlAsAAAC4bLaA8mrw6fcKbHOTJMkeVFUn73xBaf6VcmeysrI0d+5cHT582FMxAQAAAACFzGIYhuHpEAAAACjZHOlpOv7ag6p27zPyqttYCxYsUEREhNOM1WrVwIED1bixuc2gAQAAAADFF+UCAAAACl1OTo6+++47/f77707rFotFt912m6666ioPJQMAAAAAFAbKBQAAALiFw+HQ4sWLtWfPHpf3brnlFrVq1coDqQAAAAAAhYFyAQAAAG5jGIaWLVumHTt2uLzXu3dvXXfddR5IBQAAAAC4UmzoDAAAALexWCzq27ev2rRp4/Le8uXLtWnTJklS0saVipn5QVHHAwAAAABcJrunAwAAAKB0s1gs6tmzp7y8vLRx40an91avXi3H/q0qN/UlGRnpyklLVfXRL8pisXgoLQAAAADADB6LBAAAgCJhGIZ++uknbdiwIXet0rlotd04V/acrNy1kHufUY3H36BgAAAAAIBijHIBAAAARWrTpk1avXq1KiScUrtf5sgrO8Nlpsqdj6jWM+NlsfIUTwAAAAAojigXAAAAUOS2LfxK2W+OlndWer4zwQPuU+1/fyqLzVaEyQAAAAAAZlAuAAAAoEilRx3UoftuVnZC7CVng3rfqbr/+VIWO1uFAQAAAEBxwn3mAAAAKFJpR35X9vl4U7Pxy7/S0efvliMr082pAAAAAAAFwZ0LAAAAKHIJaxcq6rm7ZWRnXXpYUoUbeivsvfmy+vi6ORkAAAAAwAzKBQAAAHhE0s8rdGTsIBkZ+e+78HeBbbuo/oRvZfPzd3MyAAAAAMClUC4AAADAY85vXa8jj/eXI/2CqfmAVh3U4KMlsgWUd3MyAAAAAMDFUC4AAADAo1J2blTko/3kSE02NV+uWWs1/PR72SsEuTkZAAAAACA/lAsAAADwuNR92xT5cB/lnE8wNe8X3kINJ62QV1BVNycDAAAAAOSFcgEAAADFwoWIPYp8oKeyE2JNzfuGNVHDST/Iu2qom5MBAAAAAP6JcgEAAADFRnrUQUWM7qGs2FOm5n1q1VfDySvlE1rHzckAAAAAAH9HuQAAAIBiJSP6iCJGd1fm6ROm5r2r11b456vkU6u+m5MBAAAAAP5i9XQAAAAA4O98atVXoy/Xmy4LMk+f0KH7blLa0QNuTgYAAAAA+AvlAgAAAIod7+q1Ff7FOvmGNTE1nxV7WhH3d9GFQ7vdnAwAAAAAIFEuAAAAoJjyrhqq8Klr5RfewtR8dkKsIkZ1U+q+bW5OBgAAAACgXAAAAECx5RVUReFT16jcVdeZms85n6CIB3ooZecvbk4GAAAAAGUb5QIAAACKNXv5Sgqf9IMCWnUwNe9ITVbkQ310fss6NycDAAAAgLKLcgEAAADFni2gvBp8+r0C23YxNe9Iv6DDj92ipJ9XuDkZAAAAAJRNFsMwDE+HAAAAAMxwZKTr6NjBSvp5ual5i4+vmi+LkFeV6m5OBgAAAABlC3cuAAAAoMSw+vgqbPwCVex6m6n5Oi9+QrEAAAAAAG5AuQAAAIASxerlrbC35iio950XndvTspdO1GpeRKkAAAAAoGyxezoAAAAAUFAWu111X5smq4+f4hZ+6fL+/ubddKLetTqxZImysrLUpk0bD6QEAAAAgNKLPRcAAABQYhmGoT/eeUpnv/o4d+1g0xt1uFFHp7lu3bqpffv2RR0PAAAAAEotHosEAACAEstisajms+MVcu8zkqSQ+59Ttfufd5lbvXq1fvzxR/G9GgAAAAAoHNy5AAAAgBLPMAwl/7pGgdd3lcVi0U8//aT169e7zHXo0EFdunSRxWLxQEoAAAAAKD0oFwAAAFAqbdq0SatXr3ZZb9OmjXr27EnBAAAAAABXgHIBAAAApda2bdu0fPlyl/VrrrlGffv2pWAAAAAAgMtEuQAAAIBSbefOnVq6dKnLfgstWrTQrbfeKqvVqpwLKbJ6+8pit3soJQAAAACULJQLAAAAKPX27dun7777zqVgaNq0qfr36qmjj98ie1BV1fvvLFm9vD2UEgAAAABKDsoFAAAAlAkHDx7UggUL5HA4ctesOdnqvGeZ/I/tkyRVuKG3wt6bL6uPr6diAgAAAECJQLkAAACAMuPw4cOaP3++srOzZXHkqPWWbxRyJtJpJrBtF9Wf8K1sfv4eSgkAAAAAxR/lAgAAAMqUqKgozZszW1dtWqDQUwfynAlo1UENPloiW0D5Ik4HAAAAACWD1dMBAAAAgKJUt04d9Yvbk2+xIEkpOzcq4oEeyk6KL8JkAAAAAFByUC4AAACgTDk54XllbFh0ybkL+39TxKhuyoqPdX8oAAAAAChhKBcAAABQpgT1uVv2SlVMzaZF7FHEyC7KPHvKzakAAAAAoGRhzwUAAACUOWlHDyjygR7Kij1tat6nVn01nLxSPqF13JwMAAAAAEoGygUAAACUSeknDivygR7KPH3C5b3fUhx68IijUK5jt9tVqVIlBQUF6aqrrlK7du10++23q169eoVyfgAAAADwBMoFAAAAlFmZp08oYnR3ZUQfcVovzHIhL1arVX379tX48eNVv359t10HAAAAANyFcgEAAABlWubZU4p8sKfSjx7IXTuTaWh1ovOvyasTHfo9zfnYwYMHq3Xr1nme1zAMJSYm6uTJk9q4caMOHz7sMhMQEKCpU6dq8ODBV/6DAAAAAEARolwAAABAmZcVf1aRD/ZSWsSefGfGncjRsgTnX52nTZumESNGmLrGunXr9Oijj+rAgQNO63a7XUuWLFGvXr0KnBsAAAAAPMXq6QAAAACAp3kFVVX4lNUq1yzvuxDyk348wvTszTffrM2bN6tFixZO69nZ2Ro6dKiSkpIKdG0AAAAA8CTKBQAAAECSvUKQwievVECrDqaPiZn5gc5vXW96vnz58poxY4bLenx8vN59913T5wEAAAAAT6NcAAAAAP6fLaC8Gnz6vQLb3mxq3sjK1OFH+ynp5xWmr9GyZUvdcMMNLuvz5s0zfQ4AAAAA8DTKBQAAAOBvbH7+ajBxsSrc0NvUvJGZoSNP3q6EtQtNX+PGG290WTty5IiOHTtm+hwAAAAA4EmUCwAAAMA/WH18FTZ+gSp2vc3UvJGdpaPP3qn45V+Zmm/atGme61FRUaYzAgAAAIAnUS4AAAAAebB6eSvsrTkK6n2nuQNychT14j2KWzTtkqMVK1bMcz02NrYACQEAAADAc+yeDgAAAAAUVxa7XXVfmyarj5/04ZRLH2AYOj5utBzpF1R1yCMFv57Fchkp/ycqKkq7d+9WbGys4uLi5O/vr6pVq6pu3bpq3bq17Pai+fX/0KFD2rRpk86cOSMvLy/VqFFD7dq1U7169S55rMPh0LZt27Rz507Fx8crMDBQNWrUUKdOnRQcHFzoWZOTk7V582adPn1aMTExslgsCg4OVtWqVdWmTRu3XBMAAAAoDSgXAAAAgIuw2Gyq/dJn8l3ys5RwwNQx0W89IUd6uqqNeDrP9xMTE/Ncv5wPshMSEvTee+/p22+/1aFDh/Kdq1ixorp3766nn35abdq0MXXucePG6dVXX73ozPr163P3kNi0aZPGjh2rX3/9Nc/Zjh076u2331b79u1d3jMMQ9OnT9d//vOfPPeesFqt6tu3r959912Fh4ebyn8x3377rT777DP99NNPysrKynPGYrGoZcuWGjp0qB5++GH5+vpe8XUBAACA0oLHIgEAAACXYLFa5d/c3Afyfzk54XmdmvSaDMNwee/33393WbNarWrVqlWBrjFhwgSFhYXpzTffdCkWvLy8nF4nJibq66+/Vtu2bTVw4ECdPXu2QNe6lPHjx6tTp075FguS9Msvv6hjx4766KOPnNYzMjI0ePBg3Xffffluau1wOLRkyRK1bt1av/zyy2Xn/P3339WhQwfdcccdWrt2rVOxYLPZZLX+759IhmFo586devrpp1W/fn0tXGh+024AAACgtOPOBQAAAMBNkretV7X7n5PFy9tpff369S6z119/fb57MfxTVlaWRo8erenTpzut9+3bV6NHj9b111+v4OBgpaWl6dChQ/r66681ceJEpaamSpK++eYb7dixQ8uXL1ejRo3yvc5fdyT85dixY5oxY4bL3KRJk/T003/epdG8eXO1b99eQUFBiouL048//qiIiIjcWcMw9Pjjj6tWrVrq37+/JGnEiBFasGCBbDabOnfurGbNmqlcuXI6ceKEVq9erbi4uNzjk5OTdcstt+jgwYOqWrWqqb+vv2zYsEH9+/dXUlJS7lrdunX13HPPqU+fPqpRo4Yk6fTp01qzZo3Gjx+vPXv2SJJOnTql22+/Xe+++27uzwoAAACUZRYjr69SAQAAAHAyYsQIlw/WX6llVb+gvG8GzqoVrtZf/Sp7QHmn9V27duV5h8LixYt1yy23mMoyaNAgLViwIPe1zWbTl19+qeHDh+d7zOHDh9WvXz8dPHgwdy04OFjbt29X7dq1TV13w4YNuummm5zWPv74Yz311FOqUqWKZsyYoS5durgcN2XKFD344INyOBy5a7Vq1VJkZKTmzJmj+++/Xx06dNCMGTNUv359p2NTU1P12GOPado0542yR40apc8//9xUbkn69ddfdeONNyozMzN37ZZbbtG8efPk5+eX5zE5OTl65pln9MEHHzitz549W3fffbfpawMAAAClEY9FAgAAAApZUoVqWtviFq1Y/6PTB+rJycm65557XObvuece08XCxIkTnYoFSXrvvfcuWixIUoMGDfT999+rUqVKuWtxcXEaNGhQvnsOmDFu3DiVK1dOa9asybNYkP4sAp5//nmntejoaM2ePVvPPfecrrnmGq1cudKlWJAkf39/TZ06VW3btnVa/+qrr3ThwgVTGRMSEjRkyBCnYuGaa67RN998k2+xIP1Z2owfP1533HGH0/rDDz+c7+ObAAAAgLKCcgEAAAC4TJX7j5AsFqe15MBgbe5wl7K9fbVjxw4tXrxYDodD69evV9u2bXMfs/OX++67T1OmTDF1vejoaD3zzDNOay1atNCYMWNMHR8WFqYXXnjBaW3Lli0u38wviLi4OL300ktq3LjxReeefPJJp/0MJGnMmDE6d+6cPv/8c/n7++d7rNVq1VNPPeW0lpKSonXr1pnK+Pzzz+vEiRNOa5MnT3bZlyI/H374oez2/z1R9vz583r99ddNHQsAAACUVpQLAAAAwGXaeDZV3187SLPiDM0669CstPJ617uRNvy2Uxs3btS6dev0n//8RzVq1NDNN9+sAwcO5B577bXX6vvvv9cXX3xh+kPu999/3+nb95L0zDPPyPKPguNiHnnkEQUEBDitffDBB8rIyDB9jr8rV66cHnzwwUvOBQcHuzwOKjU1VZ06ddK11157yeO7devmsrZ79+5LHnf69GmXx1ndcMMNat269SWP/UtoaKh69+7ttDZ37lydO3fO9DkAAACA0oYNnQEAAIDLNH/+fOeF0/FSxI/5znfv3l29evVSz549L/lN/39KTU3V1KlTndbsdrv69u1boPOUK1dO3bt313fffZe7dubMGc2bNy/PRzZdSteuXVWuXDlTs40bN9b27dud1m699VZTx1aqVEkhISGKiYnJXfv7RtH5mTx5sktxctttt5m65t/deOONWrJkSe7rtLQ0ffvttxo9enSBzwUAAACUBty5AAAAABSRdevWaceOHQoJCSnwsZs2bVJqaqrTWqtWrVSxYsUCn+vmm292WVu9enWBz/NXBrOqVq16RceHhoY6vU5KSrrkMatWrXJZ++em1Ga0aNHCZW3z5s0FPg8AAABQWlAuAAAAAJdp2rRpMgzD5c+FCxe0cuVK9ezZ02kvgezsbM2aNUvNmzfX0aNHC3StDRs2uKwV9O6Hix3344/533FxMeHh4aZn89pXoSDH//MOieTk5IvOX7hwQb/99pvTmtVqvay/t+DgYJc1ygUAAACUZTwWCQAAAChkfn5+6t69u5o0aaLJkydrypQpOnv2bO77J0+eVK9evbRt2zaVL1/e1Dn37dvnstagQYPLyle/fn2XtT/++EOJiYkFvhPCbH5JstlsV3T83zdVlqScnJyLzh86dEhZWVlOa+XKldNHH31k+pp/yWt/hWPHjhX4PAAAAEBpQbkAAAAAuEmtWrX08MMPKzs7WxMmTHB69n9ERIRefvllTZgwQQnrFimgZXt5Bbk+NugveX24XZAP5s0cd+7cuQKXC3ndjVCUx19MXn9nKSkpeuaZZwrl/GlpacrIyJCPj0+hnA8AAAAoSXgsEgAAAOBGoaGhevLJJ9WzZ0+X9z755BNtnvyejo4drIiRXZV59lS+58nrg/LL/WA+ICDA9DUuxWKxXFaGwjr+Yi7n5ymoxMREt18DAAAAKI4oFwAAAAA3CwkJ0aRJk1ye25+dna13X3xOcjiUfvSAIu6/WRmnjud5Dnd+CF+U1yhKef08NWvWzHOfjMv9czmbcwMAAAClAeUCAAAAUASqVaumN954w2V9WbxDcVmGJCkj+ogi7r9Z6ScOu8xVrlzZZS01NfWysqSkpOS5ntc1SrK8fp78fnYAAAAABUO5AAAAABSR+++/32Uz5UxDmhXr+N/r0ycUcf/NSjt6wGkurw/Kz58/f1k58juuLJQLycnJMgzDA2kAAACA0oVyAQAAACgiNptNY4cPdln/7pyhxOz/feCdFXtaEfd30YVDu3PXmjdv7nLc4cOudziYceTIEZe1WrVqqUKFCpd1vuKqUaNG8vb2dlrLycnR8eN5P3oKAAAAgHmUCwAAAEARMQxDNxz7VTWcP+9WmkOaF+dwWstOiFXEqG5K3bdNktS5c2eX8/3++++XlePgwYMua3mdv6Tz8/NTmzZtXNb37dt32efctGmT1qxZozVr1mjnzp1XEg8AAAAo0SgXAAAAgCJisVjUaMK3GtUyzOW9+XGGUnOcH9eTcz5BEQ/0UMrOX9S+fXsFBAQ4vb97924lJCQUOMfatWtd1nr06FHg85QEef1cef38ZiQkJKhz587q1q2bunXrpm+++eZK4wEAAAAlFuUCAAAAUITs5Svp2RVbVK2cj9N6co604JzrXgCO1GRFPtRH2Xs3a/To0U7vZWdna+nSpQW6/oULF7R69WqntdDQUA0aNKhA5ykpHnjgAfn5+Tmtffvtt3I4HPkckb/58+crOzs79/Xtt99+xfkAAACAkopyAQAAAChifkHBeuG1N1zWv4p1KMORR8GQfkGHH7tF97dvKR8f51LinXfeKdAH5R9//LFSUlKc1p588kmXvQlKiypVquj+++93WouOjtb06dMLdJ709HS9++67ua87deqka665pjAiAgAAACUS5QIAAADgAaMffkTVqlVzWjuXLS2Kdy0XJMnIzFD6fx/QqyOHOq3v379f48ePN3XNo0eP6q233nJaa9euncaMGVOA5CXPG2+8ofr16zut/etf/yrQxs5jx47V0aNHJf35eKvXXnutUDMCAAAAJQ3lAgAAAOABvr6+euaZZ1zWZ511KNvIp2DIzlLXX2fr1o5tndafe+45TZs27aLXO3LkiPr06eO0R0NwcLDmz58vLy+vy/gJSo7y5ctrwYIFTo9HiomJUbdu3S65KXZmZqaefPJJffLJJ7lrY8eOVadOndyWFwAAACgJLIaRz79cAAAAgDIqOjpa8+fPd1qbP3++fvvtN6e1wYMHq3Xr1k5r7du3V/v27U1d58KFC6pbt65iY2Od1gcEWVTbx5L7upJd6hv0v+8FZUuaENRW89ZvdDqud+/eevDBB9WhQwcFBQUpLS1NkZGRmj9/viZOnOj0OKSwsDAtX75cjRo1yjffP/8ejhw5okmTJjnNPPjgg053BQwePFi1atWS9OddFStWrMh9b9WqVS77Pfz9UUMVKlTQqFGjcl/Pnz9f0dHRua8/++yz3LsH/voZHnroodzXtWrV0uDBg/P9ebZs2aJbbrlFZ8+ezV3z9vbWyJEjNXjwYLVo0UIVK1ZUTk6Ojh49qlWrVumjjz7SoUOHcueHDh2qadOmyW6353sdAAAAoCygXAAAAAD+YcOGDbrpppsu69hXXnlF48aNMz3/1ltv6YUXXrjoTLivNLeR64fZK66+Ve8vWavExESX97y8vJSVlZXn+e644w598sknqlq16kWvezl/D+vXr9eNN94oSZo+fbruvfde08fWqVNHx44dy31944036scffzR9fOfOnbVhw4aLzkRFRemBBx5wKTn+4u3traysLP3zn0l+fn566aWX9Pzzz8tiseR5LAAAAFCW8FgkAAAAwIMeeeQRBQUFXdaxvXYv1q+vP6UXX3zR5Q6EfxYLFSpU0MCBA7V582YtWLDgksVCaVWvXj2tWrVKa9asUb9+/eTv7+/0fmZmplOxEBISoqefflq///67XnjhBYoFAAAA4P9x5wIAAABQjBiGoVMf/VtnvnzH9DHVH3xZ1R/4t44dO6Zdu3YpNjZW586dU7ly5VS1alXVrVtX1113HY/yyUNGRoa2bNmi6OhonT17VmlpaSpfvryqVq2qVq1aqUGDBhQKAAAAQB4oFwAAAIBixjAMnZnypk59Os70MSEjxqrGmDf5IBwAAABAkaBcAAAAAIqpmJkf6I/xz5qerzLkYdV69gNZrDz9FAAAAIB7US4AAAAAxdjZ+Z8p+r+Pm54PHnCfav/7U1lsNjemAgAAAFDWUS4AAAAAxVzcouk6/upoyeSv7kG9hqjua9NkYY8FAAAAAG5CuQAAAACUAPEr5inq3yOknBxT8xW7DFC9t2bL6uXt3mAAAAAAyiTKBQAAAKCESFi3SFHP3iUjO8vUfMWut6v+e/PcnAoAAABAWcRObwAAAEAJUenm/qr/4UJZfHwvOWvx8lbwbfcVQSoAAAAAZRHlAgAAAFCCVOjQQw0+WiKrn3++Mw6LRVE9Rsr32s5FmAwAAABAWUK5AAAAAJQw5dvcpIaffi9rQHmX9wxZtLN1f+3zCtKsWbOUlpbmgYQAAAAASjv2XAAAAABKqNT9vyny4T7KSYrPXdt1TT/9Uefq3NchISEaNmyY/P3zv9MBAAAAAAqKcgEAAAAowS5E7FHkg72UHX9WFR99UwsTLUpNTXWaCQ4O1vDhwxUYGOihlAAAAABKG8oFAAAAoIRLjzqo5N9+VJWBDyguLk4zZ85UcnKy00xQUJCGDx+uChUqeCglAAAAgNKEcgEAAAAoZRISEjRz5kwlJiY6rVeoUEHDhw9XUFCQqfNkZOcoMiZFsSkZyspxyMtmVZUAHzUMCZCP3eaG5AAAAABKCsoFAAAAoBRKSkrSzJkzFR8f77QeEBCg4cOHq0qVKnked+hMsuZtO6Gtx+IVEZOsrBzXfy542SwKDwlUm7pBGnJdbTWqxuOWAAAAgLKGcgEAAAAopVJSUjRz5kzFxsY6rZcrV07Dhg1TtWrVJEmGYWj9obOa9NNRbY2Kz+tUF9WmXpAe7BSmmxuHFEpuAAAAAMUf5QIAAABQil24cEGzZs3SmTNnnNZ9fX01bNgw2Q2Lnn1vjjb4Nrnia/VrEapXb2mmIH/vKz4XAAAAgOKNcgEAAAAo5dLT0zVnzhz98ccfTusJDn+tv1BLSfaAQrtWcIC3Jg5ppfb1gwvtnAAAAACKH8oFAAAAoAzIyMjQV199pePHj0uSTmaW07rshsq2ehX6tbztVn121zXq0oTHJAEAAAClFeUCAAAAUEZkZWVp3rx52nTwtFZnN1K21e62a3nbrZo+4jruYAAAAABKKaunAwAAAAAoGl5eXurWs682ZtZxa7EgSZnZDj0+b6fiUzPdeh0AAAAAnkG5AAAAAJQRRlaWXnhnls4X4h4LFxOXkqlXluwvkmsBAAAAKFqUCwAAAEAZsS4iTuvt9Yv0mkv3nNK6gzFFek0AAAAA7ke5AAAAAJQRkzce88x1fzrqkesCAAAAcB/KBQAAAKAMOHQmWVuj4j1y7S1R8YqISfbItQEAAAC4B+UCAAAAUAbM23bCw9eP9uj1AQAAABQuygUAAACgDNh6zDN3LeReP+qcR68PAAAAoHBRLgAAAAClXEZ2jscfS3QoJlkZ2TkezQAAAACg8FAuAAAAAKVcZEyKsnIMj2bIyjEUGZPi0QwAAAAACg/lAgAAAFDKxaZkeDqCJCmumOQAAAAAcOUoFwAAAIBSLivH4ekIkqTMYpIDAAAAwJWjXAAAAABKOS9b8fi137uY5AAAAABw5fjtHgAAACjlqgT4eDqCJCm4mOQAAAAAcOUoFwAAAIBSrmFIgLxsFo9m8LJZ1DAkwKMZAAAAABQeygUAAACglPOx2xQeEujRDI1CAuVjt3k0AwAAAIDCQ7kAAAAAlAFt6gZ59vr1Knv0+gAAAAAKF+UCAAAAUAYMua62h69fy6PXBwAAAFC4KBcAAACAMqBRtUC1qeeZuxfa1gvy+GOZAAAAABQuygUAAACgjHiwU5hHrjuqbQ2PXBcAAACA+1AuAAAAAGXEzY1D1K9FaJFes8Opn1Rr4gjlpCYX6XUBAAAAuBflAgAAAFCGvHpLMwUHeBfJtSpkJGrk71OUsv1nRT7cRzkp54vkugAAAADcj3IBAAAAKEOC/L01cUgredvd+08Br5xMPbnrPZXP+vOOhdTdvyryoV7KPp/o1usCAAAAKBqUCwAAAEAZ075+sD676xq3FQxeOZkau/MdNY/f57SeunerIh/sqeykeLdcFwAAAEDRsRiGYXg6BAAAAICit+lInB6ft1NxKZmFds4KGYl6ctd7LsXC3/k1ulrhk1fKXrFyoV0XAAAAQNGiXAAAAADKsPjUTL2yZL+W7jl1xefqlLBd926fkPsopIvxC2+uhpNWyiuoyhVfFwAAAEDRo1wAAAAAoHUHYzT5p6PaElXwRxa1rRekBzqFqUP5dEWM6qbMk1GmjvOt30zhn6+UV+WQAl8TAAAAgGdRLgAAAADIFRGTrHnborU16pwOxSQrK8f1nwteNosahQSqTb3KGnJdLYWHBOa+l3kmWhGjuisj+rCp6/nWa6zwz1fJq0r1QvsZAAAAALgf5QIAAACAPGVk5ygyJkVxKRnKzHHI22ZVcICPGoYEyMduy/e4zJiTihjdXRnHI0xdx6dOuMI/XyXvkBqFFR0AAACAm1EuAAAAACh0WXFnFDG6u9KPHjA17xvWVE2/3i6L3e7mZAAAAAAKg9XTAQAAAACUPl7B1RQ+dY18GzS79LDdSzWeeJNiAQAAAChBKBcAAAAAuIVXUFU1mrJGfuEt8p1xWKza1/FO5TRrV4TJAAAAAFwpygUAAAAAbmOvFKzwKatVrkkrl/ccFot2XjdAxyrV1vTp0xUXF+eBhAAAAAAuB+UCAAAAALeyVwhSw8krVa5Z69w1w2LRrtb9dbpGE0lSSkqKpk+frrNnz3oqJgAAAIACoFwAAAAA4Hb28pUUPukH+bdoJ1ksqvHyZKlNN6eZ1NRUzZgxQzExMR5KCQAAAMAsi2EYhqdDAAAAACgbclKTlfzbj6rYua/S09M1e/ZsnTx50mnGz89Pw4YNU/Xq1T2UEgAAAMClUC4AAAAA8JiMjAzNmTNH0dHRTuu+vr4aNmyYQkNDPZQMAAAAwMVQLgAAAADwqMzMTM2dO1fHjx93Wvfx8dHQoUNVs2ZNDyUDAAAAkB/KBQAAAAAel5mZqXnz5ikqKspp3dvbW3fffbdq164tSTIMQxaLxRMRAQAAAPwNGzoDAAAA8Dhvb2/deeedCgsLc1rPzMzU7Nmzdfz4cWUnnlPE/TcrZdcmD6UEAAAA8BfuXAAAAABQbGRnZ2v+/Pk6fPiw07qfka3ue5Yo5+jvspYLUIOPlyrwmo4eSgkAAACAcgEAAABAsZKdna0FCxYoIiJCkmTPSle7jXNVMeFU7ozVt5wafLREgdd19lRMAAAAoEyjXAAAAABQ7OTk5Oibb77R4b271XbjXFVKOOkyY/H1U4MJC1W+XRcPJAQAAADKNsoFAAAAAMVSZnKStt3ZXr5/ROQ7Y/HxVf0PvlWF9t2LMBkAAAAANnQGAAAAUOw40tMU9cRtFy0WJMnISNeRMQOU9NPyIkoGAAAAQKJcAAAAAFAMWby85VMrzNSskZWpI0/docT1S9ycCgAAAMBfKBcAAAAAFDsWm011Xp6s4DtGmZo3srN05JnBSljznZuTAQAAAJAoFwAAAAAUUxarVbVf/ERVBj9k7oDsbB197i7Fr/zavcEAAAAAUC4AAAAAKL4sFotqPf+hqt71mLkDcnIU9cIwnft+rnuDAQAAAGUc5QIAAACAYs1isajmM+8rZPhT5g5wOHTs3yN0bslM9wYDAAAAyjDKBQAAAADFnsViUY0n31K1+54zd4Bh6NgrIxW38Ev3BgMAAADKKIthGIanQwAAAACAGYZh6PRn/9Hpz183fUztf3+iKneMdmMqAAAAoOyhXAAAAABQ4pz+/A2d+nSc6flaz3+oqkMedl8gAAAAoIyhXAAAAABQIp358h2dnPii6fmaY99TyNAxbkwEAAAAlB2UCwAAAABKrJiZH+iP8c+anq/xxFuqNuJpNyYCAAAAygbKBQAAAAAlWsycifrjXfOFQeijr6n6yOfdmAgAAAAo/SgXAAAAAJR4Z+d/puj/Pm56vvpDryj0gX+7MREAAABQulEuAAAAACgVYr+ZohOvm9+0udqofyn04XGyWCxuTAUAAACUTpQLAAAAAEqNuEXTdfzV0ZLJf+aE3PuMajz+BgUDAAAAUECUCwAAAABKlXPLZuvYy/dLDoep+arDnlDNp96hYAAAAAAKwOrpAAAAAABQmCr3Hap6r0+XrOb+uXN21gSdWzTNvaEAAACAUoZyAQAAAECpE9T7ToW9NUey2S45W/6G3grqc3cRpAIAAABKD8oFAAAAAKVSpe53KOydryS7Pd+Zs1XDtL/T3ZLdqwiTAQAAACUf5QIAAACAUqtSlwGq/97XsuRRHsRWqaff2g3U7t8PaNGiRXKY3KMBAAAAABs6AwAAACgDkn5eoSNPD5SRmSFJOleljra0GyLH30qHZs2aacCAAbKZeJQSAAAAUNZx5wIAAACAUq/CDb3UYMJCWXx8FdCqg+q8v0AWH1+nmf379+vbb79VTk6Oh1ICAAAAJQd3LgAAAAAoM1J2/yq/BlfJ5h+ow4cPa/78+crOznaaadSokQYOHMgdDAAAAMBFUC4AAAAAKLOOHj2qr776yqVgCA8P18CBA2W/yGbQAAAAQFlGuQAAAACgTDt27Jjmzp2rrKwsp/UGDRpo0KBB8vJy3QwaAAAAKOsoFwAAAACUecePH9fcuXOVmZnptB4WFqYhQ4bkFgxGTo4sPC4JAAAAYENnAAAAAKhTp46GDh0qb29vp/WjR4/mlg5nv/pYhx/tJ0faBQ+lBAAAAIoP7lwAAAAAgP938uRJzZo1SxkZGU7rLROjVHP9HElS4HU3qv7ERbL5+XsiIgAAAFAsUC4AAAAAwN+cOnVKs2bNUnp6uiSp1rGdunrn904zAdfeoAYTF8vmH+iJiAAAAIDHUS4AAAAAwD+cOXNGM2fOVOWDm3X1jqWy5DHjf/X1avjJMtkCyhd5PgAAAMDT2HMBAAAAAP6hWrVquqNmgK7esSzPYkGSUnf/qsiHeiknOalIswEAAADFAXcuAAAAAMA/JKxdqKPPDJEcjkvOlmt6rRpOWiF7+UpFkAwAAAAoHrhzAQAAAAD+wa9hc3lVCTU1e+H37YoY3V3ZiefcnAoAAAAoPigXAAAAAOAffGs3UKMv1sq7em1T82kHdylidDdlxce6ORkAAABQPFAuAAAAAEAefGqGKfyLdfKuUc/UfFrEXkWM6qasczFuTgYAAAB4HuUCAAAAAOTDJ7SOGn2xVj61GpiaTz+yXxEjuyor9rSbkwEAAACeRbkAAAAAABfhXa2WwqeukU+dcFPz6VEHdWhkV2XGnHRzMgAAAMBzKBcAAAAA4BK8Q2qo0Rdr5RvWxNR8xvEIRYzsoszTJ9ycDAAAAPAMygUAAAAAMMEruJrCp66Rb4NmpuYzoo/o0P1dlHHymHuDAQAAAB5AuQAAAAAAJnkFVVWjKWvkF97C1HzmqWOKGNlFGdFH3JwMAAAAKFqUCwAAAABQAPZKwQr/fJX8Grc0NZ95+oQO3d9F6ccj3RsMAAAAKEKUCwAAAABQQPaKlRX++SqVa9ba1HzW2ZOKGNlF6ccOuTkZAAAAUDQoFwAAAADgMtjLV1L4pB/k36Ktqfms2NM6dH8XpR353c3JAAAAAPejXAAAAACAy2QLrKCGny6Xf8v2puazz8UoYmRXpUXudXMyAAAAwL0oFwAAAADgCtgCyqvhp98r4NpOpuazE2J1aFQ3XTi4y73BAAAAADeiXAAAAACAK2QrF6AGHy9RYJubTM3nJJ5TxOjuSv19u5uTAQAAAO5BuQAAAAAAhcDm568GExer/PXdTM3nnE9Q5OgeSt271c3JAAAAgMJnMQzD8HQIAAAAACgtHBnpOvL0IJ3/ZYWpea+qNXTV0oOy+vi6ORkAAABQeLhzAQAAAAAKkdXHV/XHL1CFG/tdetjHT/Xemk2xAAAAgBKHcgEAAAAACpnV20dh785TxS4D8p3Jsdm1td0gxVYMLcJkAAAAQOGgXAAAAAAAN7B6eSvsrTmq1O0Ol/dyrHZtazdIZ4Nqae7cuTp8+LAHEgIAAACXj3IBAAAAANzE4uWlev+dpUo9h+SuGTa7fms3UHFVwyRJOTk5mjdvniIiIjwVEwAAACgwygUAAAAAcCOL3a56b0xXUN+7ZbF7qf4H3yiky61OMzk5OZo/f74OHjzooZQAAABAwVgMwzA8HQIAAAAASjsjJ0cXDu2Sf9Nr5XA4tHjxYu3Zs8dpxmq16vbbb1fTpk09lBIAAAAwh3IBAAAAADzA4XBo6dKl2rVrl9O6xWLRbbfdpquuusozwQAAAAATKBcAAAAAwEMMw9CyZcu0Y8cOp3WLxaL+/furRYsWHkoGAAAAXBx7LgAAAACAh1gsFvXt21etW7d2WjcMQwsXLnS6q8GRmVHE6QAAAID8US4AAAAAgAdZLBb17t1bbdq0cXlv8eLF2rFjhzJjTur3gdfo3JKZHkgIAAAAuOKxSAAAAABQDBiGodWrV+vXX391WvdJT1bX7d/JcjZaslhU5+VJCh5wn4dSAgAAAH+iXAAAAACAYsIwDK1du1YbN26UJHmnp+j6n2cpMOWc01ztFz9WlYEPeCIiAAAAIIlyAQAAAACKFcMwtGHDBm1evULtfp6t8smxec7Ven6Cqg55pIjTAQAAAH+iXAAAAACAYiY78Zx23NVetlNHLzpX8+l3FTLsiaIJBQAAAPwNGzoDAAAAQDHiyMpU5EO9LlksSNIf7z+jM9PeK4JUAAAAgDPKBQAAAAAoRqxe3qrcb5jp+ZMfvqDTU/7rxkQAAACAKx6LBAAAAADF0Nn5nyn6v4+bnq/+4Muq/sC/ZbFY3JgKAAAA+BPlAgAAAAAUU7HfTNGJ1x82PV9t1L8U+vA4CgYAAAC4HeUCAAAAABRjcYum6/iroyWT/3QLufcZ1Xj8DQoGAAAAuBXlAgAAAAAUc+eWzdaxl++XHA5T81WHPaGaT71DwQAAAAC3oVwAAAAAgBIgfsU8Rf17hJSTY2q+6p2Pquaz4ykYAAAA4BaUCwAAAABQQiSs+kZH/zVMys42NV9l4AOq9cJEWaxWNycDAABAWUO5AAAAAAAlSMK6RYp69i4Z2Vmm5oMH3KfaL31GwQAAAIBCRbkAAAAAACVM4o/LdHTsYBlZmabmK98yXHVe+VwWm83NyQAAAFBWUC4AAAAAQAmU9MsPOvLUHTIyM0zNB/W5S3Vf/UIWu93NyQAAAFAWUC4AAAAAQAl1ftNqHX7yNhkZ6abmK/UcrHqvT6dgAAAAwBWjXAAAAACAEuz81vU6/PitMtLTTM1X7Hqbwv47WxYvLzcnAwAAQGlGuQAAAAAAJVzybz/p8GO3yJGWamq+4k23qt47c2X18nZzMgAAAJRWlAsAAAAAUAqk7PxFkY/0k+NCiqn5Cp36KOy9+bJ6+7g5GQAAAEojygUAAAAAKCVS9mxW5MN95Eg5b2q+fIeeqj9+gaw+vm5OBgAAgNLG6ukAAAAAAIDCEdCincIn/SBbYEVT8+c3/qDYrye5NxQAAABKJcoFAAAAAChF/K+6TuGfr5StQtAlZyv0HKKqdz1WBKkAAABQ2lAuAAAAAEApU67JNQr/fJXslYLznTlZs6l+atBJmdnZRZgMAAAApQXlAgAAAACUQuUaXa3wKatlD6rq8t7p0MbadW1/RZ88pVmzZik9Pd0DCQEAAFCSsaEzAAAAAJRiaUcPKGJ0d2XHnZEkxdZsoq3X9pdhteXOVK9eXcOGDZOfn5+nYgIAAKCE4c4FAAAAACjF/MKaqNHUNfKqEqoKN/TWNZOXq1xgeaeZ06dPa+bMmbpw4YKHUgIAAKCk4c4FAAAAACgDMk4dl1flEFl9fBUXF6cZM2YoJSXFaaZq1aoaPny4/P39PZQSAAAAJQXlAgAAAACUQefOndPMmTN1/vx5p/UqVapo+PDhCggI8FAyAAAAlASUCwAAAABQRiUkJGjGjBlKSkpyWq9cubLuueceBQYGeigZAAAAijv2XAAAAACAMqpSpUoaMWKEKlas6LR+7tw5TZ8+PfeuBsMwlJNyPo8zAAAAoKyiXAAAAACAMqxixYoaMWKEKlWq5LQeHx+v6dOnKykpSacnvaYDd7VTZswfHkoJAACA4obHIgEAAAAAdP78ec2YMUPx8fFO682P/aY6O3+QJHnXDFOjKavlXb22JyICAACgGKFcAAAAAABIkpKTkzVz5kzFxcVJkupHbFKT/eucZrxD6yp8ymr51KjrgYQAAAAoLigXAAAAAAC5UlJSNHPmTAVuWqqm+9bkOeNdvbbCP18ln1r1izgdAAAAigv2XAAAAAAA5AoICFA/vwv5FguSlHn6hA7d30XpxyOLMBkAAACKE+5cAAAAAADkil+5QFHP3WVq1qtKdYV/vkq+9Rq7ORUAAACKG+5cAAAAAADkqtC+u/xbtDU1mxV7WodGdlXa4f1uTgUAAIDihnIBAAAAAJDLFlhBDT9dLv+W7U3NZ5+LUcSobroQscfNyQAAAFCcUC4AAAAAAJzYAsqr4affK+DaTqbmsxNiFTG6uy4c3OXeYAAAACg2KBcAAAAAAC5s5QLU4OMlCmxzk6n5nMRzihjdXam/b3dzMgAAABQHlAsAAAAAgDzZ/PzVYOJilb++m6n5nPMJihzdQ6l7t7g5GQAAADyNcgEAAAAAkC+rr5/qT/hO5Tv2MjWfk5KkiAd7KWXXJjcnAwAAgCdRLgAAAAAALsrq46v64xeowo39TM07UpMV+XAfJe/4xc3JAAAA4CmUCwAAAACAS7J6+yjs3Xmq2GWAqXnHhRQdfriPkrf96OZkAAAA8ATKBQAAAACAKVYvb4W9NUeVut1hat6RfkGRj/XT+c1r3ZwMAAAARY1yAQAAAABgmsXLS/X+O0uVeg4xNW+kp+nwmP5K2rTKzckAAABQlCgXAAAAAAAFYrHbVe+N6Qrqe7epeSMjXUfGDFDST8vdnAwAAABFhXIBAAAAAFBgFptNdV/9QpVvvcfUvJGVqSNP3aHE9UvcnAwAAABFgXIBAAAAAHBZLDab6rzyuYJvH2lq3sjO0pFnBithzXduTgYAAAB3o1wAAAAAAFw2i9Wq2i9+oiqDHjR3QHa2jj53l+JXfu3eYAAAAHArygUAAAAAwBWxWK2q9cJEVb3rMXMH5OQo6oVhOvf9XPcGAwAAgNtYDMMwPB0CAAAAAFDyGYahkx88r5iZ403N24Oq6qqlB2XzD3RzMgAAABQ27lwAAAAAABQKi8WiGk++pWr3PXfJWcO/vBp+tpxiAQAAoISiXAAAAAAAFBqLxaLQx15T9dH/zncm08tXP7cZqL2J6UWYDAAAAIWJxyIBAAAAANzi9Odv6NSn45zWsuw+2tzxbiVVCpUkde/eXddff70H0gEAAOBKUC4AAAAAANzmzJfv6OTEFyVJho+fNrYdrMTKNZ1munTpoo4dO3oiHgAAAC6T3dMBAAAAAAClV7X7npXF7qVTn72qhp8uU1qKoXXr1jnNrF27Vg6HQ506dfJQSgAAABQUdy4AAAAAANwu8+wpeVf981FIGzdu1Jo1a1xmOnfurM6dO8tisRR1PAAAABQQ5QIAAAAAoMj9+uuvWrVqlcv6DTfcoJtuuomCAQAAoJijXAAAAAAAeMTWrVu1YsUKl/X27dura9euFAwAAADFmNXTAQAAAAAAZVObNm3Up08fl/VNmzZp1apV+uu7cFnnYsT34gAAAIoXygUAAAAAgMe0bt1a/fr1c1nfvHmzfvjhB6UdO6TfB7fWH+OfpWAAAAAoRngsEgAAAADA43bt2qXFixc7rZVLiVfnLfNlO39OklT1zkdV89nxPC4JAACgGKBcAAAAAAAUC3v37tXChQtlGIb8UhPU/udZ8ks77zRTZeADqvXCRFms3IgPAADgSZQLAAAAAIBiY//+/Vo+6wu1+2mmyl1IynMmeMB9qv3SZxQMAAAAHkS5AAAAAAAoNjJj/tC+YTfIOPvHRecq3zJcdV75XBabrYiSAQAA4O8oFwAAAAAAxYKRk6MDQ1orLXKfqfmgPnep7qtfyGK3uzkZAAAA/ol7SAEAAAAAxYLFZlPNJ9+RxcfX1Hz893MV9e8RMrKz3ZwMAAAA/8SdCwAAAACAYuX8lnU6PKa/jPQ0U/MVu96msP/OlsXLy83JAAAA8BfKBQAAAABAsZP82086/NgtcqSlmpqveNOtqvfOXFm9vN2cDAAAABLlAgAAAACgmErZ+YsiH+knx4UUU/MVOvVR2HvzZfX2cXMyAAAAUC4AAAAAAIqtlD2bFflwHzlSzpuaL9+hh+qP/0ZWk/s2AAAA4PJQLgAAAAAAirXUfdsU+VBv5SQnmpoPbNdVDT74Vla/cu4NBgAAUIZRLgAAAAAAir0LB3Yo4sFeykmKNzUfeN2Nqj9xkWx+/m5OBgAAUDZZPR0AAAAAAIBLKdfkGoV/vkr2SsGm5pO3bdDhR/spJzXZzckAAADKJu5cAAAAAACUGGmH9ylidA9lx581Ne9/9fVq+Mky2QLKuzkZAABA2cKdCwAAAACAEsOvwVUKn7pG9uBqpuZTd/+qyId6Kft8onuDAQAAlDHcuQAAAAAAKHHSjx1SxKjuyoo9ZWq+XNNr1fCz5bJXCHJzMgAAgLKBcgEAAAAAUCKlnzisiNHdlXUm2tS8X6OrFT55pewVK7s5GQAAQOlHuQAAAAAAKLEyTkYpYmQ3ZZ4+bmrer+FVajh5lbyCqrg5GQAAQOnGngsAAAAAgBLLp0Y9hX+xVt41w0zNp0XuU8Sobso6F+PmZAAAAKUbdy4AAAAAAEq8zJg/FDGymzKiD5ua963XWOGfr5JXlepuTgYAAFA6cecCAAAAAKDE8w6pqfAv1sqnbiNT8+lRB3Vu2Ww3pwIAACi9KBcAAAAAAKWCd9VQNZq6Rr5hTS45W/62UQoZMbYIUgEAAJROlAsAAAAAgFLDK7iawqeukW+DZvnOHKt3rZYFNFBCQkIRJgMAAChdKBcAAAAAAKWKV1BVNZqyRn7hLVzeO1GnpfZd3VPnk5M1ffp0nTt3zgMJAQAASj42dAYAAAAAlErZSfGKfLCnLhzYKUmKbdRWW5p0lSyW3JmAgADdc889Cg4O9lRMAACAEok7FwAAAAAApZK9QpAaTl6pcs1aK6jv3bph6gpVq17daSYlJUXTp0/X2bNnPZQSAACgZOLOBQAAAABAqZaTmiyrj58sdrvS0tI0e/ZsnTp1ymmmXLlyGj58uEJCQjyUEgAAoGShXAAAAAAAlCnp6emaPXu2Tp486bTu5+enYcOGqfo/7m4AAACAK8oFAAAAAECZk5GRoTlz5ig6Otpp3dfXV8OGDVNoaKiHkgEAAJQM7LkAAAAAAChzfHx8NHToUNWpU8dpPT09XTNnztQff/whSTIcDmWcjPJERAAAgGKNcgEAAAAAUCZ5e3vrrrvuUt26dZ3WMzIyNGvWLB0/flzR/31cBwZfp9S9Wz0TEgAAoJjisUgAAAAAgDItKytL8+bN09GjR/+3aBhqvn+N6kRukSRZA8qr4SfLFHD19R5KCQAAULxw5wIAAAAAoEzz8vLSnXfeqQYNGvy5YBhqsm9tbrEgSY6U84p8qLeSd/zioZQAAADFC3cuAAAAAAAgKTs7Wwu+/lrWRZPVIGJTnjNW33Jq8NESBV7XuYjTAQAAFC/cuQAAAAAAgCS73a4b4g/mWyxIkiP9giIf66fzm9cWYTIAAIDihzsXAAAAAACQlLBukY4+NdDUrMXHV/U/+FYV2nd3cyoAAIDiiTsXAAAAAACQVLFzPwX1vdvUrJGRriNjBijpp+VuTgUAAFA8US4AAAAAACDJYrOp7qtfqPKt95iaN7IydeSpO5S4fombkwEAABQ/PBYJAAAAAIC/MRwOnXjjEcV9O9XcAXa7wt6eq0pdBrg3WBkwZcoUJSUlXXRm7NixRZQGAABcDOUCAAAAAAD/YDgcin5rjGK/nmTuAJtN9d6cpaAe5vZsQN7q1q2r48ePX3SGjzEAACgeeCwSAAAAAKDMGDdunCwWy0X/eHl5adOvv6rWCxNV9a7HzJ04J0dRLwxV/PKvJEnHjh275HX++WfEiBHu+8EBAAAKGeUCAAAAAAB/k52drSFDhig+Pl41n3lfIcOfMnegw6Gof4/QuaWz3BuwFDt27JgMw8j988orr3g6EgAAyIfd0wEAAAAAACgq3bt3V0BAgNPa/Pnz9dtvvzmt/fHHH7rnnnu0dOlS1XjyLVnsXjrz5duXvoDDoWMv36+gZybo3XffdXrryJEjmjTpz8cshYWF6aGHHnJ6/6qrrrqMnwgAAMAz2HMBAAAAAFCmjRgxQjNmzMjzvXfeeUfPPPOMDMPQ6c/+o9Ofv276vLX//Ymq3DE69/WGDRt00003SZI6d+6sDRs2XFHusmDcuHF69dVXndb4GAMAgOKBxyIBAAAAAJCPf/3rX/r1119lsVgU+vArCn14nOljT7z+iM7O+9R94QAAADyIcgEAAAAAgHz8tf9CQkKCJKn66BdV4/E3TB8f/dYYxcz+0F3xAAAAPIZyAQAAAACA/1e/fn2XtRMnTmjEiBG5r6vd96xqPvWO6XP+8d5YnZn+fmHEAwAAKDYoFwAAAAAA+H/PP/+82rdv77K+ZMkSjR8/Pvd1yPAnVfMZ84XByQnP69z3cwslIwAAQHFAuQAAAAAAwP+z2+2aN2+eKleu7PLe888/r61bt+a+Drn7cdV63vwjj+IWflEoGQEAAIoDygUAAAAAAP6mVq1amjFjhiwWi9N6VlaWBg8enLv/giRVHfKwav+bTZsBAEDZY/d0AAAAAAAAips+ffro2Wef1dtvv+20fuzYMd13331auHBh7lqVO0bJYrfr+KsPSIZh6vwZJ6NkGIZLgWHW2bNntXfvXkVFRSkxMVGZmZmqVKmSgoKC1Lx5czVp0uSyz11QhmFo9+7d2rt3r86cOaPs7GxVq1ZNderUUceOHeXt7V0kOQpi//79OnjwoGJiYpSYmKiKFSsqODhY9evXV6tWrWS1Fs53MQ3D0OHDh7Vr1y6dPXtWSUlJ8vLyUqVKlVSvXj21bNkyz7tkAAAoCSgXAAAAAADIw+uvv66NGzfql19+cVpftGiRPvzwQ40ZMyZ3Lbj/vbLY7Dr2ykjJ4bjkubPPnVVOUrzsFc19sOxwOLR69WotWbJEP/zwg44ePXrR+UqVKmnQoEF64okn1LhxY1PXkKS6devq+PHjF50x/r9ASUtL0/vvv69PP/1Up0+fznO2YsWKuuOOO/Taa6+pWrVqpnO4w5kzZ/T222/ru+++04kTJ/KdCwoKUrdu3fTcc8+pVatWl3Wt06dP64MPPtDs2bPz/bv5S4MGDdSrVy/17dtXXbp0kc1mu6xrAgBQ1HgsEgAAAAAAefhr/4Xg4GCX95599llt27bNaa1yv2Gq9/p0ycS33v0atTBdLMycOVN16tRRz5499emnn7oUC15eXi4fSCckJGjy5Mlq1qyZXnrpJeXk5Ji6lllHjhxRq1at9NJLL+V+eG6z2VzulkhMTNTUqVPVpEkTzZ3rmQ2tDcPQm2++qQYNGmjChAkuxYKXl5fT6/j4eM2fP1/XXnuthgwZovPnzxfoejNmzFDjxo317rvvuhQLXl5estudv+d5+PBhffTRR+rRo4fq1Kmj//73vwW6HgAAnkK5AAAAAABAPmrUqKFZs2a5fGiemZmpwYMHKykpyWk9qPedCntrjnSJb58npFzIvQPgUtatW6c//vgj97XFYtGdd96plStXKiEhQZmZmcrKylJcXJx++OEHDR8+PPcDbIfDoddff12DBg0ydb0XX3xR7777bu6fbt26ucycPn1aN910kw4dOqTw8HBNnjxZ0dHRyszMVEZGhg4dOqTXX39dFStWzD0mMTFRQ4cO1ZdffmnqZy4sGRkZGjJkiF588UWlpqZK+vPv75577tGPP/6olJQUZWZmKiUlRZs2bdLjjz+e+xgnwzA0f/58dejQQdHR0aauN2nSJI0YMSK3kPD399fYsWO1adMmnT9/Pve/VWxsrJYtW6b+/fs7HX/y5ElNnjy58P4CAABwI8oFAAAAAAAuomfPnnrhhRdc1qOionT//fe7rFfqfofC3vlK+sc31LO8/HL/d3JyshYvXiyHiUco/Z2vr6+WLVumuXPnqnv37rkf4FssFlWuXFk9evTQjBkztGnTJoWEhOQe991332ncuHGXPP+oUaM0duzY3D/t27d3mbn33nsVHR2tO++8U7t379bo0aNVs2ZNWa1WeXl5KTw8XC+++KJ27dqlJk2a5B5nGIZGjhyplStXFuhnvlyGYWjQoEH6+uuvc9fKlSunlStXavr06erUqZP8/f0l/VkCXH/99frwww+1fft2hYaG5h6zb98+9e7dW+np6Re93uHDh/Xkk0/mvi5fvrw2b96sd999V9dff70CAwNz3wsODlafPn20cOFCLViwwOXuCQAASgLKBQAAAAAALuE///mPOnXq5LL+7bff6qOPPnJZr9RlgOq/97Us9v//0Diwkg60cL4LYPfu3Vq0aFGBCoY333xTvXv3vuTcddddp6VLlzptTPz222/r1KlTpq+Vn5UrV6pDhw6aMWOGfH19852rU6eOFi9e7PShumEYGjVqlJKTk684x6WMHz9eS5YscVqbOXNmnndj/N1VV12l77//3unxRfv27dOzzz570eM++eQTpwLiiSee0FVXXXXJnH/tSQEAQElDuQAAAAAAwCXYbDZ99dVXqlKlist7Y8eO1fbt213WK97YT/U/+FZeVULVZOpqte0zwGVm7969+u6770ztiVC+fHk99NBDpjNfd911To/dycjI0MSJE00fnx+LxaIPP/zQ1LftGzZs6LTxtSRFR0e7fV+B48ePu9xt0rdvX91+++2mjm/ZsqVGjRrltPbpp59edLPrH374wel1u3btTKaVHnnkEfn4+JieBwCgOKBcAAAAAADAhNDQUM2ZM8fpbgDpf/sv5LXxb4UbeumqpQdVrtHVql27dp7n3b9/v7799tt8C4bu3btrzJgxev311y96p0BeevXq5fR61apVBTo+L23bttW1115ren7MmDEuG05PnTpVmZmZV5wlP++//76ysrKc1v7+yCIz/lku5OTk6JNPPsl3/p/7MmRkZJi+VkBAgBo3blygfAAAeBrlAgAAAAAAJnXr1k0vvviiy/qRI0c0cuTIPI+x+vq5rP1zg+gDBw5owYIFys7Odpm96667NGHCBD322GMFzluzZk2n17t371ZKSkqBz/N3/9yE+FKCg4NdvsUfGxurxYsXX1GO/KSmprpsHB0UFKQbb7yxQOdp2bKlKlSo4LQ2e/bsfOf/+XirRYsWFeh68+fP17Zt27R06dICHQcAgKdQLgAAAAAAUACvvPKKbrrpJpf1BQsW6NNPPzV1jpCQEKdn+kvSoUOH9PXXX+dZMFyuf97p4HA4dObMmSs6Z6tWrQp8TOfOnV3WfvzxxyvKkZ+NGzcqNTXVaa1Tp04ud5xcisViUfPmzZ3WTp8+rRMnTuQ537BhQ6fXM2fOzHM/jvw0atRIrVu3drkmAADFlf3SIwAAAAAA4C82m01z585Vy5YtFRMT4/TeU089pfbt26tly5YXPYevr6/uvvtuzZ071+nxPZGRkZo/f74GDRokLy8vpR35XT616svq7fw8/tTUVO3Zs0cnTpzQ+fPnlZycnOfG0EeOHHFZO3funBo0aFCAn9jZ5Ty+558fvEvS5s2bLzvDxeRVWjRt2vSyzhUcHOyytnnz5jwfcTVw4EDt2bMn97VhGHr88cc1e/ZsjR07Vv379ze1TwUAACUF5QIAAAAAAAVUrVo1zZkzR927d3f6UD8jI0ODBg3S9u3bFRgYeNFz1K1bN7dg+Pv+A4cPH9a8efN0S8tGinq4j/xbtFX99xfofHqGZs6cqVmzZmnHjh15lglmpKWlXdZxf6lYsWKBjwkLC3NZO3DgwBXlyM++fftc1g4ePKj33nuvwOfK6y6FY8eO5Tk7ZswYzZw5U5GRkU7rW7du1aBBgxQUFKT+/furf//+6tq1q/z8XB+XBQBASUK5AAAAAADAZejSpYtefvlljRs3zmk9MjJSo0eP1ldffXXJc9SpU0dDhw7V7NmznQqG2J2/6uDHj8qecUHnN67U+73b6b39p3X2bGxh/xgFFhAQUOBj8ipaLly4oMzMTHl7exdGrFznzp1zWfvuu+/03XffFcr5ExIS8lwPDAzUqlWr1LdvX+3fv9/l/fj4eH355Zf68ssv5efnp65du6p///4aMGCAKlWqVCjZAAAoSuy5AAAAAADAZXrppZfUpUsXl/V58+Zp8uTJps5Rq1YtDR8+XD4+fz76KPD8WbX7ZY7sGRckSZ+fcejZ9XucigVfX1+NGjVKK1as0MmTJ5Weni7DMFz+rF+/vhB+SmcF3btAyr+QyO+D+iuRV7lQmBITE/N9r27dutq+fbtef/11BQUF5TuXlpampUuX6v7771e1atU0dOhQ7d271w1pAQBwH8oFAAAAAAAuk9Vq1Zw5c1StWjWX95544gmnZ/BfTI0aNTR8+HAFZZxXu1/myCfzz2JhXaJDn8c4P/6oVs2a2r59uz7//HP17NlToaGhucVEcWUYRp7rFoul0K+V1zmnTp2aZ/lyOX8+++yzi17fx8dHL774ok6cOKEZM2aoe/fuLpt3/11mZqbmzJmjVq1a6emnny7UDb0BAHAnygUAAAAAAK5ASEiIvvrqK9lsNqf19PR0DRw4UCkpKabOE5SZrI6/zpNPRqokyWEYev+U674K7zSvrEa1a1558Mt0OXs9pKam5rnujscBVa5c2WXN7H+DwuTv76/hw4dr5cqVOnPmjKZMmXLRoiEnJ0fjx4/XgAEDLns/DQAAihLlAgAAAAAAV+jGG2902XtBkiIiIvTAAw9c8njDMBT1r3vkSDibu7YzVYrJcp67xl9qeGq/Ih/qpezziVeY+vJczgf158+fd1nz9/eXl5dXYURykle5kNf1i1LlypU1cuRIrVy5UqdPn9bHH3+s5s2b5zm7bNkyTZw4sYgTAgBQcJQLAAAAAAAUgn/961/q1q2by/rcuXM1derUix5rsVhU780Z8qoSmru2K9X1UULXBPz5yJ/UvVsV+WBPZSfFX2HqgrvYngP5OXr0qMtakyZNCiGNq7w+tD9y5IhbrnU5goOD9cgjj2jPnj369ttvVb16dZeZ8ePHeyAZAAAFQ7kAAAAAAEAhsFqtmj17tkJDQ13ee/zxxy+5Ya9v3UYK/2KtvKrVkiTFZbmWC8H2/+0ncOH37YoY3V3ZiflvYJzfXgdX4uDBgwU+JiIiwmWtXbt2hRHHxY033uiytm/fvss+35kzZ7RmzZrcP0lJSVeQztltt92mX375RYGBgU7r0dHReRYyAAAUJ5QLAAAAAAAUkqpVq+a5/0JaWpqee+65Sx7vW7uBGn2xVt7V65i6Xtqh3YoY1VVZ8bF5vp+QkGDqPAWxc+fOAh+zYcMGl7W8SoDC0L59e5cP63fv3q1z5/IvYS7mvffeU7du3dStWzf17dvX5b/tX0aMGKERI0Zo8uTJBTp/WFiY7rvvPpf1mJiYy8oLAEBRoVwAAAAAAKAQderUSa+99prLelpamqnjfWrUU/gXaxUcFOTy3pk87mZIi9yniFHdlHXO9cPoK/nGfn4WL15coPmzZ89q69atTmtVq1ZVv379CjNWLj8/P40ePdppLTs7WwsXLizwubKysjR//vzc1927d1dAQECeszNmzNCMGTMu6zpNmzZ1WStfvnyBzwMAQFGiXAAAAAAAoJA9//zz6tmz52Uf7xNaRz1fcX3u/qbzeT/mKP3IfkWM7Kqs2NO5a4Zh6JtvvrnsDPnZvHlzge5emDBhghwOh9PayJEj5e3tXdjRcj355JPy8fFxWnv77beVmZlZoPNMmzZNf/zxh9N5L2XLli3Kzs4u0HXi4533zvDy8lKdOubuXgEAwFMoFwAAAAAAKGQWi0WzZs1SjRo1Lvsc3W8fpEoVKzitRaRL65Mcec6nRx3Uofu7KDPmzw/Dp02bdsl9Hi6HYRgaM2aMqQ/QIyIi9NFHHzmt1apVS88//3yh5/q7GjVquGyKfPjwYb388sumz3H48GE9++yzua+7dOmim2666ZLHJSYmXnID739atGiR0+uL3SEBAEBxQbkAAAAAAIAbBAcHa/78+bLb7Zd1vK+vr17890su66+ecGh3at53MGSciNSh+7to4cxpevTRRy/rupfSq1cv/fzzz7r33nuVkZGR79zx48d16623KiUlJXfNYrFoypQpLnsiuMPDDz+sIUOGOK29/fbbGjdu3CWLke3bt+vmm2/O3bw5KChI06dPN33tp556SitWrDA1O27cOG3ZsiX3td1u16uvvmr6WgAAeMrl/YYDAAAAAEAJtGnTJm3atMlpbf/+/bn/+4cfflBcXJzT+7169VKzZs0u63odOnTQG2+8YWoz57yMGTNG69at0/Lly3PXUhzSA0dydGuQRX0qWdXIT/KxWpTuMPT7BWnhpkit/P4+OfTnt+3Xrl3rdM758+frt99+y309ePBg1apVy3SmL7/8Um3atNHs2bO1bds2jR07Vr169VL16tXlcDgUFRWlr7/+Wu+9954SExNzj/urWOjRo0e+554yZUruB/qSXP5bSX9usPx3o0ePznd/glmzZsnf319ffPFF7tqrr76qRYsW6cEHH1TPnj1Vo0YNeXl56fz589q2bZvmzJmj2bNnKysrS5JUqVIlLVu2TDVr1jT19yP9ub9G7969NWDAAA0bNkxt2rRRaGioLBaLHA6HTpw4oV9++UWTJk3Sxo0bc4+zWCwaP368rr32WtPXAgDAUyyGYeT9dQcAAAAAAEqZcePGFfhb4dOmTdOIESMu+5qGYahfv376/vvvc9c6d+6sDRs2mDr+woULeuCBBzR79ux8Z7wtUqbh/Hps48rqPO5D9Rg89KLnX79+vW688cY838vr78swDB05ckR9+vTRoUOHctdtNpsMw3DZX0GSKlasqI8//lh33333RbPUrVtXx48fv+jMP0VFRalu3boXnfnoo4/0yiuvKCEhweU9i8Uiu92eWyb8Xdu2bTVt2jQ1adLkkjleeuklTZs2TSdPnszzfYvFIh8fH2VkZCivj2KqVKmijz/+WIMGDbrktQAAKA54LBIAAAAAAG5ksVg0Y8aMAt0d8HflypXTrFmztHTpUnXq0EGWPGb+KhYCrFK/ShZ919im27yTFP3O05cf/CLq16+vnTt36rXXXlO1atUkSTk5OS7FQoUKFTRy5Ej9/vvvlywW3Omxxx7T0aNH9dJLL6lx48ZO7xmG4VQsWK1W3Xzzzfrqq6+0adMmU8WCJL322ms6fvy4li9froceekj16tVzuU56erpLsdC0aVO9+eabioyMpFgAAJQo3LkAAAAAAEAR2LFjh5YsWSLpz2/oX+7dEDHHjujbe/roxJFIJedI3lapok2q7WNRs3KSzeJcP3hVqa7wz1fJt17jfM6Yv/zuXPjn6127dmnv3r06c+aMcnJyFBISojp16qhjx47y8fEp+A/pZseOHdPu3bsVExOjuLg4eXt7q1KlSqpfv76uvfbaQtsT4ty5c9q3b5+OHj2qpKQkpaSkyMfHR+XLl1fdunXVsmVLhYSEFMq1AAAoapQLAAAAAACUMDnJSYp8pK9S92w2NW+vHKLwySvl16Bge0eYKRcAAEDZxGORAAAAAAAoYWyBFdTws+UKaNXB1Hz2uRhFjOqmCxF73JwMAACUFZQLAAAAAACUQDb/QDX4ZJkCWnc2NZ+dEKuI0d114eAu9wYDAABlAuUCAAAAAAAllK1cgBp+tESBbW82NZ+TeE4Ro7sr9fftbk4GAABKO8oFAAAAAABKMKtfOTX4cJHKX9/N1HzO+QSlbP/ZzakAAEBpR7kAAAAAAEAJZ/X1U/0J36l8x16XnC1395MKGfaE+0MBAIBSjXIBAAAAAIBSwOrjq/rjF6jCjf3ynYlofIMWZlVUVFRUESYDAAClkcUwDMPTIQAAAAAAQOFwZGUq6vmhSly70Gk9Mry9DjW9SbJYZLfbNWTIENWvX99pZsqUKUpKSsp9vWrVKq1evdpp5t1333V6PXr0aJUvX76QfwoAAFDcUS4AAAAAAFDKGFlZivrXcCWs/kaSlNC2tzZWbyVZLLkzNptNgwcPVsOGDXPX6tatq+PHjxfoWlFRUapbt26h5AYAACUHj0UCAAAAAKCUsXh5qd5/Zymo1xBVvesx3fjJt2rarJnTTE5OjubPn6+IiAgPpQQAACUZdy4AAAAAAFBKGTk5ktUqi8Uih8OhhQsXat++fU4zVqtVAwcOVOPGjT2UEgAAlESUCwAAAAAAlBEOh0OLFy/Wnj17nNatVqtuv/12NW3a1EPJAABASUO5AAAAAABAGeJwOLR06VLt2rXLad1isei2227TVVddZeo8Gdk5ioxJUWxKhrJyHPKyWVUlwEcNQwLkY7e5ITkAAChOKBcAAAAAAChjDMPQsmXLtGPHDqd1i8Wi/v37q0WLFjKys5WyZ7MCr+mY+/6hM8mat+2Eth6LV0RMsrJyXD9S8LJZFB4SqDZ1gzTkutpqVC3Q7T8PAAAoepQLAAAAAACUQYZhaPny5frtt99c3rulbx9VWDBBCasWqO5r07S7fhdN+umotkbFF/g6beoF6cFOYbq5cUhhxAYAAMUE5QIAAAAAAGWUYRj64YcftHXr1r8tOtRy+xLVjN6n816BmtpstDZWv+GKr9WvRahevaWZgvy9r/hcAADA8ygXAAAAAAAowwzD0KpVq7R582bJMHT1jqWqdWKP9gZdpQ9ajlWST8VCu1ZwgLcmDmml9vWDC+2cAADAMygXAAAAAAAo4wzD0NrVq5X8yYuqfXyXfqvSWu9e85yyrV6Ffi1vu1Wf3XWNujThMUkAAJRkVk8HAAAAAAAAntdw2xLVPr5Le4OucluxIEmZ2Q49NHeHNh2Jc8v5AQBA0aBcAAAAAACgjEvesk5xCybrvFegPmg51m3Fwl8ysx16fN5OxadmuvU6AADAfSgXAAAAAAAo48q366KaT72jqU1HFeoeCxcTl5KpV5bsL5JrAQCAwke5AAAAAAAAtL/NXdoY2qlIr7l0zymtOxhTpNcEAACFg3IBAAAAAABo0k9HPXLdyR66LgAAuDKUCwAAAAAAlHGHziRra1S8R669JSpeETHJHrk2AAC4fJQLAAAAAACUcfO2nfDw9aM9en0AAFBwlAsAAAAAAJRxW4955q6F3OtHnfPo9QEAQMFRLgAAAAAAUIZlZOd4/LFEh2KSlZGd49EMAACgYCgXAAAAAAAowyJjUpSVY3g0Q1aOociYFI9mAAAABUO5AAAAAABAGRabkuHpCJKkuGKSAwAAmEO5AAAAAABAGZaV4/B0BElSZjHJAQAAzKFcAAAAAACgDPOyFY+PBryLSQ4AAGAO/88NAAAAAEAZViXAx9MRJEmB5097OgIAACgAygUAAAAAAMqwhiEB8rJZPJrB7shS1gPtFPlIXyVtXCnDwSOSAAAo7igXAAAAAAAow3zsNoWHBHo0Q+3kE/JyZOv8xpU6/Ehf/X771Yr9epJy0lI9mgsAAOSPcgEAAAAAgDKuTd0gj16/afx+p9fpUQd14s3HtLd7Xf0x/jllnDruoWQAACA/lAsAAAAAAJRxQ66r7dHrd/ljdZ7rOcmJipk5Xvv6huvI04OUvOMXGYZRxOkAAEBeKBcAAAAAACjjGlULVJt6nrl7odm5faqdEn3xIYdDiWsXKuK+m3TgzjY6t2SmHJkZRRMQAADkiXIBAAAAAADowU5hHrnurVELCzSfdnCXjr18v6Keu9tNiQAAgBmUCwAAAAAAQDc3DlG/FqFFes0Op37StbHbL+vYoH5DCzkNAAAoCMoFAAAAAAAgSXr1lmYKDvAukmtV9rXqmRrxsti9CnzshXIVtSY2Q9HR0ezBAACAh1gM/l8YAAAAAAD8v01H4jRi+jZlZjvcdg1vu1XTR1yn9vWDlRV7WrELPlfsgsnKTog1dfzvV3XV0YbtJEmhoaFq27atmjVrJpvN5rbMAADAGeUCAAAAAABwsvZAjB6au8MtBYO33arP7rpGXZqEOK07MtIV/8N8nZ37kdIO7c73+Gybl9b0HKNsb1+n9YCAALVu3VqtW7eWv79/oecGAADOKBcAAAAAAICLTUfi9Pi8nYpLySy0cwYHeGvikFZqXz843xnDMJSy4xednTNRiRuWSA7nguNE/eu0p0WPfI+32Wxq3ry52rZtq2rVqv3vvNnZOr91ncq36yqLladEAwBwpSgXAAAAAABAnuJTM/XKkv1auufUFZ+rb/Nq+s+tzRXkb35Ph4yTxxQ7/1PFffelclKSJEkN5m/X/nMp2rZtmxITEy96fJ06ddS2bVs1atRISesW6ejYwfKpE66qdz6iyrcMl61cwJX8SAAAlGmUCwAAAAAA4KLWHYzR5J+OaktUfIGPrWZJ1lX2MxozsIuaN29+WdfPuZCic0tnKf3oAdV+YaIkyeFw6NChQ9qyZYuOHz9+0eMrVqyo9j/PlPXwntw1W0AFVR5wr6oOeVg+NepdVi4AAMoyygUAAAAAAGBKREyy5m2L1taoczoUk6ysHNePFLxsFjUKCZR/6mlVT4tSJWu6JKlatWoaPXq0LBZLoec6c+aMtmzZor179yonJ8fl/fKJZ9Rp/dS8D7ZaVbFzP1W9+3EFXHuDW/IBAFAaUS4AAAAAAIACy8jOUWRMiuJSMpSZ45C3zargAB81DAmQj92mAwcO6Ouvv3Y6Zvjw4apXz313CaSmpuq3337Tb7/9ppSUlNz1q7cvUa0Tey5y5J/8wluo6l2PKajXEFl9fC85DwBAWUa5AAAAAAAACp3D4dAnn3yi+Pj/PUqpQYMGuvvuu91+7ZycHO3fv19btmxR3NEIdVn5kWwO1zsa8mOvVEXBd4xSlYEPyLtqqBuTAgBQclk9HQAAAAAAAJQ+VqtV7dq1c1o7fPiwzp496/Zr22w2tWjRQiNHjtSASipQsSBJ2QmxOjPlTe3tXV9R/xqu1H3b3JQUAICSi3IBAAAAAAC4RcuWLeXn5+e09uuvvxbZ9Y3sLGWsmnf5J8jOVvzyr3RwaHsdHH6D4lcukJGVVXgBAQAowSgXAAAAAACAW3h5eem6665zWtuzZ4+Sk5OL5PpGVqaq3DFa9sohV3yu1D2bFfXcXdrbN1xnvnxH2YnnCiEhAAAlF3suAAAAAAAAt0lNTdUHH3ygnJz/PZqoQ4cO6tq1a5FlcGRmKGHVAp2dM1EXDuwslHNafP1UufddqnrXY/Jr0KxQzgkAQElCuQAAAAAAANxq6dKl2rFjR+5rX19fPfHEE/Lx8SnSHIZhKHXXRsXM+ViJ6xZKDkehnDewbRdVvfsxVejYSxYrD4kAAJQNlAsAAAAAAMCt4uLi9Mknnzit9ejRw2XD56KUceq4Yv+vvfuOsro698f/nGm0ocNQlCagiKAoUmNib1FRsSF6Y7/GJJbcNL96b2JuvJp2E2NvidcYERWNqDGW2KIyFBFEQekIKh1E6jDMnN8f/px4OAPMgRnOzPB6rcVafp7z+ez9nKMha5332Xs/elesePKPUbb2s2oZs0GnHlF07nei9akXRm6TptUyJgDUVsIFAAAAoMaNHj06Zs6cWXHdvHnzuOqqqyIny7/0L9u4PlY9+5dY9sgdsWneB9UyZk6TptHm1Auj/cU/jvw27atlTACobazVAwAAAGrckCFDUq7XrFkTM2bMyFI3/5LbqEm0Pevy6P3Eu9Hzzuei2ddO2OUxy9evjWWP3RXJr5wzAQD1jXABAAAAqHGdO3eOvfbaK6U2bty4qC0bKiQSiWg29NjoecczccBT70fbc66InEZNdnq8vEHHRX5Rx2rsEABqF+ECAAAAUOMSiUQMHTo0pbZ48eL46KOPstTRtjXsul90/n+3Rt8XFsTe//HrKOjYNeMxXstrF3fccUdMnDgxNm/eXP1NAkCWOXMBAAAA2C3Ky8vjtttui88++6yitu+++8a5556bvaaqIFlWFp+9/kwse/i2WDf5nzu8f3XLveKtIy6quG7QoEEcfPDBMXDgwGjZsmVNtgoAu41wAQAAANhtJk6cGH//+99Tat/5zneibdu2WeooMxs+nBrLRt0Wq/4+OpKlla9IeOfQ0+LTTn3S6olEIvbbb78YNGhQdOnSJRKJRE23CwA1RrgAAAAA7DabN2+O3//+97Fp06aK2sEHHxzDhg3LYleZK121LFaMuS+WPXZ3bFmx5F8vtGgbk868LpauXLnd59u1axeDBg2Kvn37Rl5eXkRELPnTryNZVhZtz7ws8lq2qcn2AWCXCRcAAACA3eqVV16JN954o+I6Nzc3rrnmmigsLMxiVzunvHRzrH7x8Vj28G2xYcbk6Pjd/472l14bCxYsiAkTJsTMmTO3+3zjxo3j0EMPjUN67xfzzzgwytatiUSDhtHqm+dGu5FXRqOefXfTOwGAzAgXAAAAgN1q3bp1ccstt0RZWVlF7etf/3ocddRRWexq1ySTyVj/bnE07LJvyqqDVatWxcSJE2PKlCnbPdi527y344B3n0+rNx1wRBSNvDKaf+OkSOTm1kjvALAzhAsAAADAbvf000/HlClTKq4bNmwY3//+96OgoCCLXdWckpKSmDp1akycODFWrVqV+mIyGUe8dFcUrl9V+cMRUbD3PlE04jvR5rSLIrewWQ13CwA7JlwAAAAAdrvly5fHnXfemVI78cQTY+DAgVnqaPdIJpMxe/bsmDBhQsybNy8iIoqWzImBxaOr9HxO48JofeoFUTTiu9GwS8+abBUAtku4AAAAAGTFqFGjYvbs2RXXLVq0iCuvvDJycnKy2NXus2zZspgwYUIU3P6jaLN0bmYPJxLR/LATo+i8q6LpoKMikUjUTJMAsA17xv9bAwAAALXO0KFDU64/++yz+PDDD7PUze5XVFQUx/TunnmwEBGRTMaaN56L2d8+IWaceXAsH3NflG/cUP1NAsA2CBcAAACArOjSpUt07NgxpTZu3LjYkzZZWPW3h3d5jE1zp8fCG78T007oFp/cen1sXrKoGjoDgO2zLRIAAACQNe+//3488cQTKbWLLrooOnfunKWOdq9kWVms+effYtmo22LtpNeqZ9Dc3Gh59PAoGvm9aHLQEFsmkeK+++6LNWvWbPP15s2bx2WXXbYbOwLqKuECAAAAkDXl5eVx6623pnzZud9++8WIESOy2FV2bJg1LZY9cnus+tuoSG4uqZYxG/fuH0XnXRUtjzszcvILqmVM6rauXbvGRx99tM3Xu3TpEgsWLNh9DQF1lm2RAAAAgKzJycmJwYMHp9RmzpwZK1asyFJH2dN43wOj68/ujb7Pz4+O3/3vyG/bcccP7cCGGZNjwfUXxPvf7BGL7/2fKF21rBo6rV9uuOGGSCQSWfvTtWvXbH8EADtFuAAAAABk1cEHHxwNGzZMqY0fPz5L3WRffqu20eGy/xd9npsd3W5+KJr0HbjLY5YuXxyf3nlDvHfCPrHgp5fEhg+n7nqj1EkLFiyIZDJZ8eeCCy7IdktAHZWX7QYAAACAPVuDBg2if//+8dZbb1XUpk6dGkceeWQ0adIki51lV05+QbQ6cUS0OnFErJs2PpaNuj1W/+OJiC1bdnrM5OaSWPn0n2Pl03+O1qdeEF1/fn81dlz3HXvssXHcccdV6d677ror5s2bl1K77rrromXLljt8dvXq1XHTTTftVI8AtYVwAQAAAMi6QYMGRXFxcZSXl0dERFlZWUycODGOPPLILHdWOxQeODgKDxwcm5f+KpY/dncsf+K+KPts5S6N2Xj/g6upu/pj6NCh8cMf/rBK9z777LNp4cJll11WpW2OFixYIFwA6jzbIgEAAABZ17Rp0zjwwANTapMmTYrS0tIsdVQ7FbTbK/a68hdx4PPzo8tP746GPQ7YqXG25DeID1t1jw0bNlRzhwDsKYQLAAAAQK0wZMiQlOuNGzfG1KlTs9NMLZfTsFG0GX5J9H58SvS898VofsQpEYlElZ9f2LlfvFo8IX7/+9/H008/HUuXLq3BbgGoj4QLAAAAQK1QVFQUPXr0SKmNHz++Yqsk0iUSiWg28MjoccuT0efpD6Jo5JWR06Tpdp9JRiLmdz80IiK2bNkSU6ZMibvvvjsefPDB+PDDD33eAFSJcAEAAACoNYYOHZpyvWrVqpg5c2aWuqlbGnTqHp1+/Ls48IUF0enHv4sGnbpXet/SDvvGxibphw4vWLAgHn300bj99ttj/PjxUVJSknZP6fLF1d43AHWTA50BAACAWqNr167Rvn37WLJkSUWtuLg49t9//yx2VbfkFjaLopFXRtsR3401b/49lj18a6yd8ErF672v/nls3pgT77//fqWrFFavXh0vvPBCvPrqq9GvX78YOHBgtG7dOta/NyE+vOAb0eKo06Pded+LJv2+FokMtmKqrYYPH16xYmbrcz9qStu2beOhhx6KiIjCwsLdMidAdUskk8lktpsAAAAA+NJ7770XTz75ZErt4osvjk6dOmWpo7pv45z3Y9mo22PjnPdjvwffiEQiEevWrYu333473n777Vi/fv12n993333jgHGPRekbz1bUGu9/cBSNvDJaHn925BQ0qOm3UOscccQR8frrr6fU5s+fH127ds1OQzvpwgsvjAcffLDiukuXLrFgwYLsNQTUGVYuAAAAALVK79694x//+Ed8/vnnFbXi4mLhwi5o1KNPdPnp3ZEsL69YbVBYWBhHHHFEHHbYYfH+++/HhAkTUlaMfNXCd9+OHm8+l7K/9oYPpsSC/7o4Pr7l/0Xbsy6Ptmf9e+S3brcb3s2eZcaMGfHhhx/GsmXLYtWqVdG8efOK80n69etXL1aPZFNJSUmMHz8+Pv7441i+fHls2rQp2rZtG0VFRXHooYdGhw4dst0i1FrCBQAAAKBWyc3NjcGDB8eLL75YUfvggw9i1apV0apVqyx2VvclctKP38zLy4t+/frFQQcdFAsXLowJEybEhx9+GF/d7KLLvMmRk6z8oOctK5fG4rv/O5b88ZfR8vizo915V0bj/Q+psfewJ/jkk0/iV7/6VYwdOzYWLly4zfuKioripJNOih//+MfRq1ev3dJb165d46OPPqrSvV26dIn/+7//iyOPPLLK4x9++OHx2muvVfpaZatFKlOVjVpefPHFuO222+KVV16JDRs2bPO+fv36xYgRI+LKK6+Mxo0b73Bc2JM40BkAAACodQ455JBo0CB1q53i4uIsdbNnSCQS0aVLlzj77LPjqquuiiFDhkTDhg0jp6w0uix4Z4fPJ0s3x6pn/xIfnDsoZl58ZKz+x5OR3LJlN3Ref2zZsiX+8z//M3r27Bm33XZbWrCQn5+fcr1s2bJ44IEHok+fPnH55ZfvcHsrIubOnRvHHHNMHH/88fHss8+mBQt5eam/xZ46dWpce+210aNHjxg1atTubBVqPSsXAAAAgFqnQYMG0b9//xg3blxFberUqXHkkUf69fBu0KJFizjuuOPiiCOOiHdvvzFyNm/M6Pl177wZ6955Mwo6dI6253wn2gy/OPKatayhbuuHtWvXxtlnnx3PP/98RS2RSMT5558fF154YRxyyCHRokWLWLt2bUyfPj3+8pe/xL333hulpaVRVlYW9957b0yePDmeffbZaN++fY31ef3118eaNWsiIuLNN9+MsWPHRsQXK45+8IMfRNu2bSvubd68eXTv3j1+85vfRETEkiVL4n//939TxuvTp09ccMEFFdfb2/7siiuuiJNPPjkivlid8J//+Z+xefPmyM/PjxtvvDFyKlmZ81XFxcUxbNiwWLFiRUWtbdu2cc0118Tw4cOjW7duUVBQEMuWLYtXXnkl7rzzznjzzTcjImLx4sVx3nnnxQcffBC/+MUvdvg5wZ7Agc4AAABArfT555/HH/7whygv/9d2PEcccUQcfvjhWexqz5JMJmPGWQfHpjnTd2mcnIaNo/Up/xZFI78XDbvtnu17alp1HuhcWloaRxxxREqY1qRJk3jyySfjuOOO2+ZzkydPjpNOOimWLl1aUevRo0e8/fbb0bx58yrNvbMHOj/77LNx1llnxaZNmyI/Pz8efvjhOOuss7b7TDKZjJ49e8bcuXMrak2bNo1PP/00CgsLq9Tvl1544YU44YQTIiLijDPOiDFjxmz3/smTJ8dhhx0WmzZtqqgddthhMWbMmGjXrvKzQpLJZNx8881x/fXXp9R/9KMfxa9//euM+oX6yLZIAAAAQK3UrFmz6NOnT0pt4sSJUVpamqWO9jzl69dGw849I3bwi/AdjrNpQyx//J6YfnrfmP2dk2LNm89HsrzyMxz2RD/5yU9SgoWIiL/85S/bDRYiIvr37x9jx46NgoKCitqcOXPikksuqZE+vzRq1Kg4/fTTY9OmTdGoUaMYO3bsDoOFiC9WYlx22WUptbVr18YjjzyScQ/33ntvxT9ffvnl2733s88+qwhCvrTPPvvE2LFjtxksfNnvddddF1dddVVK/Te/+U08/fTTGfcM9Y1wAQAAAKi1hgwZknK9YcOGmDZtWpa62fPkFjaL7r97PPo8MzPafev7kVtYtV/Db8/n416MOd87JaYPPzCWPXpXlG1YVw2d1l0TJkyI3//+9ym1k08+OU477bQqPT9o0KC49NJLU2pPPPFEPPbYY9XVYoo777wzzj///NiyZUs0a9YsXnjhhTjxxBOr/PxFF12UdnbEV4OCqli6dGk888wzEfFFSHDMMcds9/7rrrsu5s+fn1L79a9/XeUD4m+66aYoKipKqV1yySXbPQga9gTCBQAAAKDWat++fXTv3j2lVlxcHHZ53r0a7NU19v6PX0ffFxdEp2v/EA267LvLY5YsmBmLbr4q3juua3z8ux9HyScLdr3ROujmm29Oq/3kJz/JaIzK7v/lL3+50z1ty0033RTf/e53I5lMRps2beKVV16Jr3/96xmNUVRUFKeeempK7e23344pU6ZUeYw//elPFSuYLr300kgkEtu8d8mSJfHAAw+k1Hr06BHDhw+v8nxNmjSJ733veym1FStWxH333VflMaA+Ei4AAAAAtdrWqxdWrlwZs2bNylI3e7bcxoVRNOI7ccBf34setz8TzYZuf9ueqihbtyaW/vn38f4p+8XcH5wdaye/sceER/Pnz0/bXqeoqCiGDh2a0TidO3eOQw45JKU2ZcqUtDMhdsWPfvSjirMHOnbsGK+//nr0799/p8b693//97TaPffcU6Vnk8lk3H///RERkZ+fHxdffPF277/nnntStkOKiDj11FO3G0hUprKVJLfccktGY0B9I1wAAAAAarV99tknbV/0rfenZ/dK5ORE88NOiJ53/i16Pzkt2pz175HTsPGuDVpeHp+9/NeYdclR8cGIAbFi7INRXrJpx8/VYf/4xz/SgpTDDz88cnbijIujjjoqrfbSSy/tdG9fKisri0svvTR++9vfRsQX/3t88803o3fv3js95jHHHBP77LNPSm3UqFGxfv36HT778ssvx7x58yIiYtiwYds9MyEi4sUXX0yrVfZZ7Ujfvn2jTZs2KbUFCxbEnDlzMh4L6gvhAgAAAFCrJRKJtNULCxcujI8//jhLHfFVjfbZP7pcf0f0fXFB7HXNL6OgQ+ddHnPjzHfjo59dGpvmf1ANHdZer732WlqtV69eOzVWZc9VNn4mNm/eHCNGjIg//vGPEfHFqoo33ngjunXrtkvjJhKJtHMiqnqwcyYHOW/YsCEmTZqUVq9NnzHUZcIFAAAAoNbr06dPNG3aNKVWXFycpW6oTF6zltH+wh9En2dmxj6/GR2FB39tl8ZreNCQaNzr4GrqrnZ6//3302o9evTYqbG2PptkW+NX1YYNG2LYsGExZsyYitqyZcvi3Xff3ekxv+qiiy6KvLy8lNqODnZevnx5jB07NiKqdpDzzJkzK85m+FJubm507do184aj+j9jqOuECwAAAECtl5ubG4MGDUqpffDBB7F69eosdcS2JPLyouWxZ8R+D7wWvUaNj1Ynnx+J/IKMx3mr4V7x+OOPx8KFC+vtGQwrV65MqzVr1mynxqrsuTVr1sSWLVsyHuuzzz6LY489Nl544YW01y666KJYtmzZTvX4Ve3bt49hw4al1CZNmhRTp07d5jMPPPBAbN68OSIiLrvssh2em1DZ51tYWLhT205FVP4ZVzYH7CmECwAAAECd0L9//ygo+NeX1Mlk0uqFWq5J7/7R7cYHou/f50aHy/8r8loVVem5DY2bx+IO+8aMGTPigQceiPvuuy/efffdnfqivDar7IvpJk2a7NRYhYWFldZXrVqV0Tjr16+Pww8/vOJck63PGVi6dOkOD1GuqkwPdv7qQc4XXXTRDsevzs83ovLPWLjAnky4AAAAANQJDRs2jEMOOSSlNnXq1NiwYUOWOqKq8tu0j45X/DT6Pj8vuv7iT9GoV7/t3r9gnwERiX99bbV48eJ46qmn4pZbbonXXnst1q1bV8Md7x47+uV9NuZYsWJFTJs2LSIiLrnkkvjwww+jU6dOKff87W9/i9tvv32XezvuuOPStija1sHOr776asyePTsiIk499dQdHuQcUTs/X6hPhAsAAABAnTF48OCUL/NKS0vj7bffzmJHZCKnoEG0PuXfYv9HJsa+f3o1WhwzPGKrLWrKCxrGkp4DKn1+/fr18frrr8ctt9wSTz31VCxevDjl9dWvPBVr/vlcJMvLa+w9VKfWrVun1Sr7Yr0qKgtcEolEtGrVaqfG+9GPfhT3339/tG7dOh566KG0rYR+/OMfx4wZM3Zq7K/2d9lll6XUPv/88xg9enTavV89j6GyFQ+Vqc7PN6Lyz7iyOWBPIVwAAAAA6ozmzZtHnz59UmoTJ06sd9vl1HeJRCKaHnJYdP/to9Hn2VnR7oIfRG7TFhER0e60C+PKn1wXxx13XLRo0aLS58vKyuLdd9+Ne++9Nx544IGYMWNGlJWWxse//VHMuerUmH5an1j2yO1Rtn7t7ntTO6GyL6Y///zznRqrsueaN28eubm5GY/1y1/+Mn79619XXB9++OHxk5/8JOWejRs3xsiRI6OkpCTzZr/i4osvTjvYeeutkVasWBF//etfI+KLQ5V3dJDzlyr7fNetWxflOxk+VfYZCxfYkwkXAAAAgDplyJAhKdfr16+v2MaFuqdBxy6x9/d/GX1fXBCdr7stis67Kho2bBhDhgyJK6+8Ms4555y0rXO+auHChfH444/HqB9/OzZ/uiAiIkoWzo5Fv/p+TDu+ayz67Q+j5ON5u+fNZKhv375ptTlz5uzUWHPnzq3S+DvSpUuXtCAhIuLnP/95DBiQuqLk3XffjWuvvTbjOb6qffv2ccopp6TUJk2aFO+++27F9YMPPlgRYlx66aVV3opov/32SzmnJeKLYGrBggU71Wt1fcZQXwgXAAAAgDqlQ4cO0a1bt5RacXFxJJPJLHVEdcht1CTanv3taNilZ0UtJycnevXqFRdccEF8+9vfjn79+m3zl/jt3nstrVa+7vNY9pc/xPun9Io515wRaye9Vqv+Ozn88MPTaju71dCHH35YpfF3Vn5+fowaNSrtUOM//OEP8eKLL+7S2Ds62Pm+++6r6KEqBzl/qVGjRmmBSETt/YyhrhEuAAAAAHXO0KFDU65XrFhRcdgr9VO7du3i1FNPje9///tx5JFHRtOmTStea/bZkmi9YuG2H04mY81rT8esy46ND87pHyueeiDKSzbthq6379hjj007y+D111/fqW17Xn755bTa8ccfv9O9VaZHjx7xhz/8IaWWTCbjwgsvjBUrVuz0uJUd7Pzwww/H+vXr45///GfMnDkzIqp+kPNXVfYZvPLKKxn3OG3atLT32L179+jevXvGY0F9IVwAAAAA6pzu3btHUVFRSq24uDhL3bA7NWnSJL7xjW/E1VdfHcOHD4+99torus2dWOXnN856Lz664d/jvRO6xSe3/zQ2L/u0Brvdvi5dusRpp52WUluxYkW8+eabGY3z0UcfxZQpU1Jq/fv3j8MOO2xXW0xz8cUXx5lnnplSW7x4cVxyySU7PWZOTk7a818e7PzVg5wvv/zyjMe+/PLLo2HDhim1sWPHZryC5amnnkqrXXPNNRn3A/WJcAEAAACocxKJRNrZCwsWLIhPP83eF8XsXrm5udG3b9+4YPiw6PRp+nY1O7Jl9YpYcv/N8d43u8e8a/8t1r9X9YCiOlV2ZsHNN9+c0Ri/+tWvqjRudbn33ntj7733Tqk9/fTTcffdd+/0mJUd7HzLLbfEE088ERFfBIpHH310xuMWFRXFxRdfnFKbN29ePPbYY1UeY/369XH77ben1Nq2bZs2LuxphAsAAABAndSnT5+0/d+tXtjzrBhzX8SWzTs/wJYtsfr50fHhv30tPvzWYbHq+UcjWVpafQ3uwIABA+I//uM/UmrPP/98jBkzpkrPT5gwIf74xz+m1M4888y01QXVqWXLlvHQQw+lben0gx/8oNJzCaqiY8eOcdJJJ6XU3n///di06Yvtqy677LIqH+S8tZtuuin22WeflNq1115b5a2crrvuuli+fHnFdSKRiD/+8Y/RuHHjneoH6gvhAgAAAFAn5eXlxaBBg1Jq06dPj88++yw7DZEVbc68LDp+54bIa9N+l8daP21CzL/2/HjvpJ6x+P5fxpbVO3+OQCZ++ctfpp0jcsEFF8Tzzz+/3ecmT54cp556amze/K9wpUePHnH//ffXSJ9fdcQRR8SPf/zjlNqGDRti5MiRKf1korKDnSMyP8h5a82bN4/HHnssZXukBQsWxLBhw2LJkiXbfC6ZTMbNN98ct956a0r9hz/8YZxyyik73Q/UF4lkphuMAQAAANQSGzdujN///vdR+pVfmg8aNChOOOGELHZFNpSXbo7VLz4eyx6+LTbMmFwtYyYaNIzW3xwZKwacEK/OmJvy2l133RXz5s1LqV133XXRsmXLiuvmzZvHZZddVqW51q5dG2effXZaoHDeeefFxRdfHP3794/mzZvHunXrYvr06fGXv/wl7rnnnpT/9vv37x/PPvtstG+/7aDl+eefj/fff7/i+tFHH42333674rply5Zx3XXXpTzzwx/+sOKfx40bF+PGjYuIiNLS0vjv//7vitUFXzr77LNjwIABFdfnnHNOdOrUaYefQXl5eXTr1i0WLkw9nPuss87KaBujbSkuLo5hw4alrFho06ZNXHPNNXHmmWdGt27dIj8/P5YvXx6vvvpq3HHHHfHGG2+kjHH99dfHjTfeuMu9QH0gXAAAAADqtOeffz4mTJhQcZ2fnx/f//73o1GjRlnsimxJJpOxfuq4WDbq9lj9yl8jysp2ecxnVpXHzxeVZ/xcly5dYsGCBVW+f8uWLXHDDTfE7373u9i4cWPa6/n5+Slhwpdyc3Pjkksuid/97nfRpEmT7c5x4YUXxoMPPljlniIi5fDjG264IX7+859n9Pyrr74aRxxxaF8wzAAASZZJREFURJXu/cUvfhE//elPU2ovvfRSHHPMMRnNuS1z586Nyy+/PF5++eW01xKJROTm5saWLVvSXuvQoUP89re/jZEjR1ZLH1Af2BYJAAAAqNMGDx6cshd7aWlpTJ5cPb9cp+5JJBJRePDXYp/fPBJ9/zY72l30o8ht1nLHD9YCeXl5ceONN8bs2bPjqquuis6dO6e8vnWwUFRUFBdeeGG8//77cc899+wwWKgLLrnkksjNza243tmDnLele/fu8Y9//CNeeOGFOPnkk1POTUgmk2nBwkEHHRQ333xzzJkzR7AAW7FyAQAAAKjzxowZE9OnT6+4LiwsjKuvvjry8vKy2BW1RfnGDbHybw/HslG3x6Z5M6plzJzGhdHu/Gui43d+Vi3jbcuMGTPigw8+iGXLlsXq1aujWbNmUVRUFD169IiDDz54pw85rs1OOumkeO655yLii/MofvKTn9TYXCUlJTF+/PhYtGhRLF++PEpKSqJNmzbRrl276N+/f3Ts2LHG5oa6TrgAAAAA1Hmffvpp3HfffSm1U089Nfr165edhqiVkslkrB3/ciwbdVuseeO5XR6v/cU/ib2usv9+ddt3331j9uzZkZ+fHx9//HEUFRVluyWgErZFAgAAAOq8jh07RteuXVNq48aNC7+p5KsSiUQ0G3JM9LhtbBwwdka0Pfe7kdO4cKfGSiZyYu2A4/w3Vs3++c9/xuzZsyMi4rTTThMsQC0mXAAAAADqhSFDhqRcL1++PObOnZulbqjtGnbpGZ1/cksc+MKC2PsHv4mCvbpl9PynHXvFoy++GrfffntMmDAhSkpKaqjTPcv9999f8c+XX355FjsBdsS2SAAAAEC9kEwm484774wVK1ZU1Lp16xbf+ta3stgVdUWyrCzW/PNvsWzUbbF20ms7vP/Nb1wYn7Xeu+K6QYMG0a9fvxg0aFC0bFk3DpCubdasWRMdOnSIjRs3Ro8ePWLWrFn18kwJqC+sXAAAAADqhUQikbZ6Yf78+bF48eIsdURdksjNjRZHDot973sp9n9scrQ+7cJIFDSo9N7PWnaMz1rtlVIrKSmJCRMmxK233hqjR4+O+fPnV7plUrK8vEb6r+3WrFkTCxYsiE8//XSb9zz88MOxcePGiIi49NJLBQtQy1m5AAAAANQbW7ZsiVtuuSXWr19fUevbt28MHz48i11RV5WuWh4rnrg/lj92V5Qu/1dIlfj3/46JOS1j6dKl232+Xbt2MXDgwOjbt2/k5+dHyScLYubFR0bbMy+LNmdcFvmt2tb0W6g1brzxxviv//qvaN68eaxevTotOCgvL4/evXvHzJkzo2HDhrFw4cJo23bP+XygLrJyAQAAAKg38vLyYuDAgSm1999/P9asWZOljqjL8lu1jQ6X/b/o89yc6HbTn6NxnwGR37ZD9LvsB3H55ZfHBRdcEL169drm80uXLo1nnnkmbrnllnjllVfik4duidKlH8end/ws3juhWyz42aWxYea7u/EdZd+aNWtiwoQJafV77rknZs6cGRERF1xwgWAB6gArFwAAAIB6ZcOGDXHLLbdEaWlpRW3w4MFx/PHHZ7Er6ovSFUsiv037lNrq1atj4sSJMWXKlG0e7Jy7ZXMc8/wfIr80/fXC/t+IduddFc0PPzkSubk10ne2fblyISLigAMOiD/96U9xyCGHxPr16+Ohhx6KH/7wh1FSUhKFhYUxc+bM6NixY5Y7BnYkL9sNAAAAAFSnxo0bR79+/WLSpEkVtXfeeScOP/zwaNiwYRY7oz7YOliIiGjZsmUcf/zxccQRR8S7774bEyZMiFWrVqXcs/fCaZUGCxER6yb/M9ZN/mcU7NUtikZcEW1Ouzhymzavkf5rg+nTp8egQYMiNzc3ysrKKuqJRCLuvfdewQLUEbZFAgAAAOqdIUOGpOzpvnnz5pg8eXIWO2JP0KBBgxg4cGB873vfi5EjR0b37t2/eCGZjG5zJ+7w+c2fzI+P//fHMe24LrHwl1fHpo9m1XDHu0/r1q0jPz8/pfbVYKFDhw4xevToOPfcc3d3a8BOsi0SAAAAUC89/vjjMWPGjIrrpk2bxtVXXx259XTbGWqn5cuXx9SH7oxWf75xp55vdtiJ0W7kldF0yDFphyDXNZs2bYrJkyfHnDlzYtWqVbF+/fpo0aJF9OnTJw477LDIy7PJCtQlwgUAAACgXvr444/jj3/8Y0rttNNOi4MOOihLHbGnmv2dk+LzcS/u0hgN99k/ikZ+L1qfdH7kNGpcTZ0B7DzhAgAAAFBvPfDAA7Fw4cKK63bt2sXll19e538BTt1RtmFdfHDOgChZNKdaxstt1jLaDL8kis65Igo6dK6WMStTsqUsZi9dF8vXlURpWXnk5+ZE28IG0bNdYTTIs/oHEC4AAAAA9djMmTNj9OjRKbXzzz//X3vhw26QLCuLNW/+PZaNui3WTnilegbNzY2WR50eRSO/F036Da2WwGzmkrUxetLCmLhgVcxaujZKy9K/NszPTcS+7ZrGwK6tYsSAzrFf+6a7PC9QNwkXAAAAgHormUzGHXfcEStXrqyode/ePc4///wsdsWebOPs92LZqNtj5XOjIlmyqVrGbNz7kCgaeWW0PO6syClokPHzr3y4NO7+57yYOH9Vxs8O7NYqvv2NfeKoXu0yfhao24QLAAAAQL02efLkePbZZ1Nq3/72t6NdO1+Gkj1bVq+I5U/+MZY/eleULvukWsbMa90u2p797Wh75mWR33rH/32vWr85fvb09Hhm2qe7PPcpB3aMnw87IFo1KdjlsYC6QbgAAAAA1GulpaVxyy23xIYNGypqBx10UJx22mnZawr+f8nS0lj98pOxbNRtsX7ahGoZM5FfEK1OOCeKzrsyGvc6uNJ7xs1dEVeNnhIr1m2uljkjItoUFsStIw6Ood3bVNuYQO0lXAAAAADqvddffz1ee+21iuucnJy4+uqro1mzZtlrCray/r2JsWzUbbHqpTERW7ZUy5j7PfBqFB58WErt5Q+WxhUPvxOby8qrZY6vKsjLibtGHhJH729lENR3OdluAAAAAKCmDRgwIPLy8iquy8vLY8KE6vmVOFSXJn0HRrebH4q+z82N9pf+v8hruWsrABp07hFNDhqaUhs3d0WNBQsREZu3lMcVo96JcXNX1Mj4QO0hXAAAAADqvcaNG0e/fv1SapMnT46SkpLsNATbUVDUMfb63n9H37/Piy433BuN9u27U+O83653vPHmm7F+/fqI+OKMhatGT6mxYOFLm7eUx1Wjp8Sq9dW35RJQ+9gWCQAAANgjrFy5Mm6//faU2nHHHRdDhgzJUkdQNclkMta9/Xosffi2WPP6MxFV+DqvNK9B/OOEq6Isv0Hk5uZG375949lVbeOlWat3Q8dfOOXAjnHbuZWf+QDUfVYuAAAAAHuE1q1bx/77759SGz9+fJSVlWWpI6iaRCIRTQccET1ueSL6PPNhFJ1/deQUbv+8kEVd+kVZfoOIiCgrK4tnJs/frcFCRMQz0z6NVz5culvnBHYf4QIAAACwx9h6lcLnn38eM2bMyFI3kLkGe+8TnX742zjwhQXR6Se/jwadeqTdk4xELOh+aErtvS3td1eLKe7557yszAvUPOECAAAAsMfo1KlTdOrUKaU2bty4sGs0dU1uk6ZRdO734oCx06PHrWOj6eBjKl5rccQpcf73fxIHHXRQ5ObmxuryhrE02TQrfU6YvypmLV2blbmBmiVcAAAAAPYoW69eWLJkSSxYsCA7zcAuSuTkRPNvfDP2vfvv0XvM1GhzxqXR7t+uiQ4dOsRpp50W11xzTWzokN1zD0ZPWpTV+YGaIVwAAAAA9ij77bdftGrVKqU2bty4LHUD1adRjwOiy3/dFU37f72iVlhYGJ+UNspiVxET56/M6vxAzRAuAAAAAHuUnJycGDx4cEptzpw5sWzZsix1BDWnZEtZ1rclmrl0bZRscXA61DfCBQAAAGCP069fv2jUKPXX3MXFxVnqBmrO7KXrorQsu2eKlJYlY/bSdVntAah+wgUAAABgj5Ofnx8DBgxIqU2bNi3WrnXwLPXL8nUl2W4hIiJW1JI+gOojXAAAAAD2SAMHDozc3NyK6/Ly8pgwYUIWO4LqV1pWnu0WIiJicy3pA6g+wgUAAABgj9SkSZM46KCDUmqTJ0+OkhK/sKb+yM+tHV//FdSSPoDq43/VAAAAwB5ryJAhKdebNm2KKVOmZKkbqH5tCxtku4WIiGhTS/oAqo9wAQAAANhjtWnTJvbbb7+U2vjx46O83BYu1A892xVGfm4iqz3k5yaiZ7vCrPYAVD/hAgAAALBHGzp0aMr1mjVrYsaMGVnqBqpXg7zc2Ldd06z2sF+7ptEgL3fHNwJ1inABAAAA2KN16tQp9tprr5TauHHjIplMZqkjqF4Du7bK7vzdWmd1fqBmCBcAAACAPVoikUhbvbB48eL46KOPstQRVK8RAzpnef5OWZ0fqBnCBQAAAGCP16tXr2jRokVKrbi4ODvNQDXbr33TGNgtO6sXBnVrlfVtmYCaIVwAAAAA9ng5OTkxZMiQlNqsWbNi+fLlWeoIqte3v7FPVua9PEvzAjVPuAAAAAAQEf369YuGDRum1KxeoL44qle7OOXAjrt1zlMO7BhH9Wq3W+cEdh/hAgAAAEBEFBQUxIABA1Jq06ZNi3Xr1mWpI6hePx92QLQpLNgtc7UpLIifDztgt8wFZIdwAQAAAOD/N3DgwMjNza24Lisri4kTJ2axI6g+rZoUxI0n7hO5UV6j8xTk5cStIw6OVk12T5ABZIdwAQAAAOD/V1hYGAceeGBKbdKkSbF58+YsdQTVZ/369THrzb/FkflzayxgKMjLibtGHhJDu7epkfGB2kO4AAAAAPAVWx/svGnTppg6dWp2moFqUlpaGqNHj47Vq1dHp9w1cWz+7GgYpdU6R5vCgvi/CwfE0fs7ZwH2BMIFAAAAgK9o27Zt7Lvvvim14uLiKC+v2a1koKYkk8kYO3ZsfPzxxxW1Drlr49udV8RJfaonCDjlwI7x4jWHW7EAe5C8bDcAAAAAUNsMGTIkZs2aVXH92WefxYcffhi9e/fOYlewc15++eWYPn16Sq158+ZxyfnnRNOmTeOMD5fGPf+cFxPmr8p47EHdWsXl39gnjupltQLsaYQLAAAAAFvp0qVLdOzYMT799NOK2rhx42L//fePRCKRxc4gM++880689dZbKbUGDRrEyJEjo2nTphERcVSvdnFUr3Yxa+naGD1pUUycvzJmLl0bpWXJtPHycxOxX7umMbBb6xgxoFPs267pbnkfQO2TSCaT6X9LAAAAAOzh3n///XjiiSdSahdddFF07tw5Sx1BZubOnRsPP/xwfPXrv0QiEeedd1507959u8+WbCmL2UvXxYp1JbG5rDwKcnOiTWGD6NmuMBrk5dZ060AdYOUCAAAAQCV69+4d//jHP2LNmjUVtXHjxgkXqBOWLVsWjz/+eGz9u+KTTz55h8FCRESDvNzos1fzmmoPqAcc6AwAAABQiZycnBg8eHBKbebMmbFixYosdQRVs3bt2hg1alSUlJSk1L/2ta/FIYcckqWugPpGuAAAAACwDQcffHA0bNgwpTZ+/PgsdQM7tnnz5njkkUdSVtxERBxwwAFx9NFHZ6kroD4SLgAAAABsQ4MGDaJ///4ptalTp8b69euz1BFsW3l5eTz55JOxePHilPree+8dp556qsPIgWolXAAAAADYjkGDBkVOzr++QikrK4uJEydmsSOo3IsvvhgzZ85MqbVs2TJGjBgR+fn5WeoKqK+ECwAAAADb0bRp0zjwwANTapMmTYrS0tIsdQTpJk6cGBMmTEipNWzYMEaOHBlNmjTJUldAfSZcAAAAANiBIUOGpFxv3Lgxpk6dmp1mYCuzZs2K559/PqWWk5MT55xzTrRp0yZLXQH1nXABAAAAYAeKioqiR48eKbXx48dHeXl5ljqCLyxevDjGjBkTyWQypX7qqadG165ds9MUsEcQLgAAAABUwdChQ1OuV61alba/PexOa9asiVGjRqVt0XX44YenbeUFUN2ECwAAAABV0LVr12jfvn1Krbi4OEvdsKcrKSmJUaNGxbp161LqBx54YBx++OFZ6grYkwgXAAAAAKogkUikrV5YtGhRLFq0KEsdsacqLy+PMWPGxLJly1LqXbp0iVNOOSUSiUSWOgP2JMIFAAAAgCrq3bt3NGvWLKVm9QK7UzKZjOeeey7mzJmTUm/dunWcc845kZeXl6XOgD2NcAEAAACginJzc2Pw4MEptQ8++CBWrVqVpY7Y0xQXF8fkyZNTao0bN47zzjsvGjVqlKWugD2RcAEAAAAgA4ccckg0aNAgpWb1ArvDjBkz4qWXXkqp5ebmxogRI6Jly5ZZ6grYUwkXAAAAADLQoEGD6N+/f0pt6tSpsWHDhix1xJ7g448/jr/+9a9p9dNPPz06deqUhY6APZ1wAQAAACBDgwYNipycf32tsmXLlpg0aVIWO6I+W716dTzyyCOxZcuWlPoxxxwTBxxwQJa6AvZ0wgUAAACADDVr1iz69u2bUps4cWKUlpZmqSPqq40bN8aoUaPSVsYccsghMXTo0Cx1BSBcAAAAANgpQ4YMSbnesGFDTJs2LUvdUB+VlZXFY489FitWrEipd+/ePb75zW9GIpHIUmcAwgUAAACAndKuXbvo3r17Sq24uDiSyWSWOqI+SSaT8cwzz8SCBQtS6kVFRXHmmWdGbm5udhoD+P8JFwAAAAB20tarF1auXBmzZs3KUjfUJ//85z/j3XffTakVFhbGyJEjo2HDhlnqCuBfhAsAAAAAO2mfffaJdu3apdTGjRuXpW6oL6ZNmxavvfZaSi0/Pz/OPffcaN68eXaaAtiKcAEAAABgJyUSibTVCwsXLoyPP/44Sx1R13300Ufx9NNPp9XPOOOM6NixYxY6AqiccAEAAABgF/Tp0yeaNm2aUisuLs5SN9RlK1eujEcffTTKyspS6ieccELst99+WeoKoHLCBQAAAIBdkJubG4MGDUqpffDBB7F69eosdURdtGHDhhg1alRs3LgxpT5w4MC0/74AagPhAgAAAMAu6t+/fxQUFFRcJ5PJGD9+fBY7oi7ZsmVLjB49OlatWpVS33fffeP444/PUlcA2ydcAAAAANhFDRs2jP79+6fUpkyZEhs2bMhSR9QVyWQynnrqqVi0aFFKvUOHDnHGGWdETo6v74Dayd9OAAAAANVg0KBBKV8El5aWxttvv53FjqgLXnnllZg+fXpKrVmzZnHuueemrIYBqG2ECwAAAADVoHnz5nHAAQek1CZOnBhbtmzJUkfUdlOmTIk333wzpVZQUBAjR45MOyQcoLYRLgAAAABUkyFDhqRcr1+/PqZNm5albqjN5s2bF88++2xKLZFIxFlnnRXt2rXLUlcAVSdcAAAAAKgmHTp0iG7duqXUiouLI5lMZqkjaqNly5bFY489FuXl5Sn1k046KXr06JGlrgAyI1wAAAAAqEZDhw5NuV6xYkXMnj07S91Q26xbty5GjRoVJSUlKfWhQ4emHQoOUJsJFwAAAACqUffu3aOoqCilVlxcnKVuqE1KS0vjkUceiTVr1qTUe/fuHcccc0yWugLYOcIFAAAAgGqUSCTSzl5YsGBBfPrpp1nqiNqgvLw8nnzyybT/Dvbee+847bTTIpFIZKkzgJ0jXAAAAACoZn369InCwsKUmtULe7aXXnopPvzww5RaixYtYsSIEZGfn5+lrgB2nnABAAAAoJrl5eXFoEGDUmrTp0+Pzz77LDsNkVWTJk2K8ePHp9QaNmwYI0eOjCZNmmSpK4BdI1wAAAAAqAH9+/dP+UV6MplM+4KZ+m/WrFnx97//PaWWk5MT55xzTrRt2zZLXQHsOuECAAAAQA1o1KhRHHLIISm1d955JzZu3JiljtjdlixZEmPGjIlkMplSHzZsWHTt2jU7TQFUE+ECAAAAQA0ZPHhwykG9paWlMXny5Cx2xO7y+eefx6hRo6K0tDSl/o1vfCMOOuigLHUFUH2ECwAAAAA1pEWLFnHAAQek1CZMmBBbtmzJUkfsDiUlJTFq1KhYu3ZtSv3AAw+MI444IjtNAVQz4QIAAABADRoyZEjK9bp16+L999/PUjfUtPLy8hgzZkwsXbo0pd6lS5c45ZRTUlayANRlwgUAAACAGtSxY8e0/fXHjRuXtg8/dV8ymYy///3vMWfOnJR669at45xzzom8vLwsdQZQ/YQLAAAAADVs69ULy5cvj7lz52apG2rK+PHj4+23306pNW7cOEaOHBmNGjXKUlcANUO4AAAAAFDDevbsGW3atEmpjRs3LkvdUBM++OCDePHFF1Nqubm5MWLEiGjVqlWWugKoOcIFAAAAgBqWSCTSVi/Mnz8/Fi9enKWOqE6ffPJJPPnkk2n1008/PTp16pSFjgBqnnABAAAAYDc48MADo0mTJim14uLiLHVDdfnss8/ikUceiS1btqTUjz766DjggAOy1BVAzRMuAAAAAOwGeXl5MXDgwJTa+++/H2vWrMlSR+yqTZs2xcMPPxzr169PqR988MHxta99LUtdAewewgUAAACA3WTAgAGRn59fcZ1MJmP8+PFZ7IidVVZWFo899lisWLEipb7PPvvESSedFIlEIkudAewewgUAAACA3aRRo0Zx8MEHp9Teeeed2LRpU5Y6Ymckk8l49tlnY/78+Sn1tm3bxllnnRW5ublZ6gxg9xEuAAAAAOxGgwcPTvlV++bNm2Py5MlZ7IhMvfHGGzF16tSUWmFhYYwcOTIaNmyYnaYAdjPhAgAAAMBu1LJly9h///1TahMmTIiysrIsdUQm3nvvvXj11VdTanl5eXHuuedGixYtstMUQBYIFwAAAAB2syFDhqRcr127Nt5///0sdUNVLVy4MMaOHZtWP+OMM6Jjx45Z6Agge4QLAAAAALvZ3nvvHZ07d06pFRcXRzKZzFJH7MjKlStj9OjRaStMjj/++OjVq1eWugLIHuECAAAAQBYMHTo05Xrp0qUxb968LHXD9mzYsCFGjRoVGzduTKkPGDAgBg0alKWuALJLuAAAAACQBfvuu2+0bt06pVZcXJylbtiWLVu2xKOPPhqrVq1Kqffs2TNOOOGElMO5AfYkwgUAAACALEgkEmlnL8ydOzeWLl2apY7YWjKZjLFjx8bChQtT6u3bt48zzzwzcnJ8tQbsufwNCAAAAJAlBx54YDRu3DilZvVC7fHqq6+mHbTdrFmzGDlyZBQUFGSpK4DaQbgAAAAAkCX5+fkxcODAlNp7770Xn3/+eZY64ktTpkyJN954I6VWUFAQ5557bjRt2jRLXQHUHsIFAAAAgCwaMGBA5OXlVVyXl5fHhAkTstgR8+fPj2effTallkgk4qyzzor27dtnqSuA2kW4AAAAAJBFjRs3jn79+qXUJk+eHCUlJdlpaA+3fPnyePTRR6O8vDyl/s1vfjN69OiRpa4Aah/hAgAAAECWbX2wc0lJSbzzzjtZ6mbPtW7duhg1alRasDNkyJA49NBDs9QVQO0kXAAAAADIslatWsX++++fUhs/fnyUlZVlqaM9T2lpaYwePTo+++yzlPr+++8fxx57bHaaAqjFhAsAAAAAtcDWqxc+//zzmDFjRpa62bMkk8n461//Gp988klKfa+99orTTz89EolEljoDqL2ECwAAAAC1QKdOnaJTp04ptXHjxkUymcxSR3uOl156KT744IOUWosWLWLEiBGRn5+fpa4AajfhAgAAAEAtsfXqhSVLlsSCBQuy08we4u23347i4uKUWoMGDWLkyJFRWFiYpa4Aaj/hAgAAAEAtsd9++0WrVq1SauPGjctSN/Xf7Nmz47nnnkup5eTkxDnnnBNt27bNUlcAdYNwAQAAAKCWyMnJicGDB6fU5syZE8uWLctSR/XXkiVLYsyYMWnbTp1yyinRrVu3LHUFUHcIFwAAAABqkX79+kXjxo1Taltv28Ou+fzzz2PUqFGxefPmlPrXv/716NevX3aaAqhjhAsAAAAAtUh+fn4MGDAgpTZt2rRYu3ZtljqqXzZv3hyPPPJI2ufZt2/fOPLII7PUFUDdI1wAAAAAsu6GG26IRCJRpT9PPvlkjffz05/+tEq9XHjhhTUy/4ABAyIvL6/iury8PCZMmFAjc+1JysvLY8yYMbFkyZKUeufOnWPYsGGRSCSy1BlA3SNcAAAAAOqU//mf/6nR8T///PO47bbbanSOHWnSpEkcdNBBKbXJkydHSUlJljqq+5LJZDz//PMxe/bslHqrVq3inHPOSQlzANgxf2sCAAAAWXfcccdFYWFhSu3RRx+Nt99+O+3ed955J5577rn45je/WSO93HbbbfHZZ5+l1Vu2bBnXXXddSq1Pnz410kNExODBg2Py5MkV15s2bYopU6akHfhM1UyYMCEmTZqUUmvUqFGcd955aWdcALBjiWQymcx2EwAAAABbu/DCC+PBBx+s9LUhQ4bEuHHjqn3O9evXR9euXWPFihVpr3Xp0iUWLFhQ7XNuz+jRo2PmzJkV182bN4+rrroqcnJsRpGJDz/8MB599NGUWm5ubnzrW9+Kzp07Z6krgLrN/xMBAAAAdU5xcXG8/PLL1T7uXXfdVWmwkC1Dhw5NuV6zZk3MmDEjS93UTZ988kk88cQTafXTTjtNsACwC4QLAAAAQK3XqFGjtNqNN95YrXNs2rQp/vd//3eb82VDp06dYq+99kqpjRs3LmxEUTWfffZZPPLII7Fly5aU+lFHHVWjW1oB7AmECwAAAECtd/HFF6fVXnvttXjrrbeqbY77778/lixZEhERl156abWNuysSiUTa6oXFixfHRx99lKWO6o5NmzbFqFGjYv369Sn1fv36xWGHHZalrgDqD+ECAAAAUOsdeuihcfzxx6fVf/GLX1TL+Js3b45f//rXERHRunXruPzyy6tl3OrQq1evaNGiRUqtuLg4O83UEWVlZfH444/H8uXLU+rdunWLk08+ORKJRJY6A6g/hAsAAABAnXD99den1V544YV4++23d3nsBx98MBYtWhQREddcc000adJkl8esLjk5OTFkyJCU2qxZs9K+OOcLyWQy/va3v8W8efNS6m3bto2zzz47cnNzs9QZQP0iXAAAAADqhK9//euVbmezq2cvlJWVxS9/+cuIiGjWrFl873vf26XxakK/fv3SzoGweqFyb775ZkyZMiWl1qRJkxg5cmQ0bNgwS10B1D952W4AAAAAoKquv/76OPHEE1NqTz/9dLz33nvRt2/fnRpz1KhRFb9y/853vhMtWrSIzz77bFdb3aaSkpIYP358fPzxx7F8+fLYtGlTtG3bNoqKiuLQQw+NDh06pD1TUFAQhx56aLzxxhsVtWnTpsVRRx0VhYWF25wrmUzGnDlzYurUqbFs2bJYs2ZN5OfnR8uWLaNbt27Rr1+/aN26dbW+v1WrVsXEiRNjyZIlsWzZskgmk9G8efNo27ZtHHDAAdGzZ89qXT2watWqmDBhQixdujSmTZsW06dPjyZNmkRhYWHsvffe0aRJkzj33HPTtpYCYNcIFwAAAIA644QTTohDDjkk3nnnnYpaMpmMG2+8MR599NGMxysvL4+bbropIiIaNWoU3//+96ut1629+OKLcdttt8Urr7wSGzZs2OZ9/fr1ixEjRsSVV14ZjRs3rqgPHDgwxo0bF2VlZRHxxYqLiRMnxlFHHZU2xuLFi+P3v/99/OUvf4nFixdvt68ePXrEiSeeGCeffHIcffTRO/XF/5YtW+KPf/xjPPjggzFx4sSKHivTsGHD+MY3vhGnnHJKnH766bHXXnvt9Hx//vOfY8KECducLzc3Nw499NDo3r17nHPOOTs8a+G1116LI488ssp9/OxnP4sbbrhhm68/9thjcc4551Rcz5o1K3r27LnL88+fPz+6du1a5T4BaoJtkQAAAIA65brrrkurjRkzJmbOnJnxWGPGjIkPP/wwIiIuvfTSKCoq2uX+tjZ37tw45phj4vjjj49nn302LVjIy0v97efUqVPj2muvjR49esSoUaMq6oWFhXHggQem3Dtp0qTYvHlzSu3BBx+MXr16xW9+85u0YCE/Pz9tvjlz5sRtt90Wxx9/fHTp0iVuvvnmjN7fCy+8EPvvv398+9vfjuLi4pQv+nNyctLCik2bNsWLL74YV155ZXTt2jXOOuusjLZ4eumll6J3797x7W9/OyVsiYi08KCsrCwmTJgQ5557bgwYMKBazufIxOOPP77da4C6LJFMJpPZbgIAAABgaxdeeGE8+OCDERHxwAMPxIUXXhgRX6xUOOCAA+KDDz5Iuf9b3/pWxf1VkUwmo1+/fjFt2rTIz8+PuXPnRqdOnSIiYsGCBdGtW7eU+7t06RILFizI6D0UFxfHsGHDYsWKFRW1tm3bxjXXXBPDhw+Pbt26RUFBQSxbtixeeeWVuPPOO+PNN99MGeM///M/4xe/+EVERCxfvjzuvPPOlNdPPPHEGDhwYERE3H333XHFFVdUvNakSZO44oorYvjw4dGnT59o2rRpRESsWLEiJkyYEPfff3889dRTO/0+77jjjrj66qtTvuDv06dPXHnllXHiiSdGx44dIzc3N1atWhWTJ0+Ohx9+OB5++OHYsmVLyjiHH354vPbaazuc76677oorr7wybb4+ffpEx44do7CwMJLJZHz++eexYcOG+Mc//hHz58+vuLdx48YxatSoOPXUUysdf9GiRRUrYObOnRt33313yutnn312DBgwoOJ66NChMXTo0ErH2rBhQ7Rt2zYlTDr44INTVt1sb/6IiCeffLIiePnRj35UEX79+7//ezRr1myb4wDsDsIFAAAAoFbaVrgQEfHQQw/Ft771rZT78/LyYtasWWmhwLaMHTs2TjvttIiIuOSSS+L++++veK06woXJkyfHYYcdFps2baqoHXbYYTFmzJho165dpc8kk8m4+eab4/rrr0+p/+hHP4pf//rXERHxyCOPxKxZsypea9GiRVx55ZUxb9686Nu3b8V8zZo1i7feeiv69Omz3T7HjBkTI0eOjNLS0oze56233hpXX311Su2KK66IW265JQoKCrb53IQJE+Kb3/xmrFq1qqJWlXDhjjvuSDts+4orroiDDz44Pv3005R6z549Y8SIEbF+/fq44IIL4q9//WvFazk5OfHUU0/FKaecst351q9fH23bto2NGzdW1M4///x46KGHtvvclx5//PE4++yz0+pz586NffbZp0pj9OrVK2bOnBkdOnSITz75ZIfbOgHsTrZFAgAAAOqcc889N+3L/y1btmS0pc///M//RMQX+/Jfe+211drfZ599FmeddVZKsLDPPvvE2LFjtxksRHyxrc91110XV111VUr9N7/5TTz99NMRETFkyJC0uT788MO44447Uua75pprdhgsRESceeaZFSsjqmrChAnxwx/+MKV2+umnxx133LHdYCEiYtCgQRlvD/T222/Hf/zHf6TNd/TRR6cFC+3bt48zzjgjcnJyomnTpjFq1KiKlR0RX5yzccEFF8RHH3203TmbNGmSdnj4M888k7YN1bZs6z2OGTOmSs+/9957FVt9DR8+XLAA1DrCBQAAAKDOycvLix//+Mdp9QcffDA+/vjjHT7/wgsvxKRJkyIi4qyzzooePXpUa3/XXXddynY8ERG//vWvo1WrVlV6/qabbko7/+GSSy6JDRs2RJcuXaJjx44pr40bNy6ef/75lNrgwYOr3O93v/vdaNCgQZXuLS8vjwsvvLBipUPEF4c033bbbVX+Avyoo47a5tZEW0smk3HhhRemfKnfsGHDGDFiRLz//vsp9zZt2jTOPffclPfSsGHDuP3221PuW716dcr2Udty5plnplyvWbMm/vGPf+zwuQ0bNsTf/va3Sl+rarjw1fu27gOgNhAuAAAAAHXSRRddFB06dEipbd68uWL7oO258cYbI+JfKwWq05IlS+KBBx5IqfXo0SOGDx9e5TGaNGmStgXQihUr4r777otEIpG2euGTTz6JhQsXptRKSkqqPF9hYWH06tWrSvc+9dRTFYdgf+n888+Pvfbaq8rzRXzx768qxo4dG9OnT0+pnXDCCWlnbhQUFMTIkSMrPYtgwIABcdRRR6XU/v73v8e777673blPPvnktNDliSee2GHPzz33XMVZC3vvvXfKa5MmTUr7d1WZL8OFoqKi+MY3vrHD+wF2N+ECAAAAUCc1aNAgbWueiIj77rsvli5dus3nXnvttYpDk0855ZTo27dvtfZ1zz33pGxPFBFx6qmnZrytzZfnQXzVLbfcEhERvXv3jhYtWqS8tvUhyVsf1Lwjjz76aEyaNCmeeeaZ7d73hz/8Ia1WWa87cuSRR0ZOzo6/mqpsviZNmqRcJxKJOPPMM6N9+/bbHGd7n+e2NG3aNI477riU2tixY9M+6619uSVSQUFB3HrrrWmv72j1wgcffBAzZsyIiC/6rsrnBLC7+ZsJAAAAqLMuv/zyaN26dUpt06ZN8dvf/nabz3y5aiEiqn3VQkTEiy++mFbb+lfzVdG3b99o06ZNSm3BggUxZ86cyMnJSdv2qGXLlinXf/7zn+O2226r8nz77bdfHHroodsNW9avXx/jxo1LqSUSiTjiiCOqPM+XmjVrFo888kg88MAD2zzzYsOGDfHWW2+lzde5c+eU2oknnhg9e/bc7nyV/Tt46aWXdtjn1lsSrVy5cruHT2/cuLFiS6Rjjz02hg0bFm3btk25Z0fhwlfPa7AlElBbCRcAAACAOqtJkyZx9dVXp9XvvvvuWLlyZVp9/Pjx8fLLL0dExNFHHx2DBg2q1n42bNhQcZbDV1V1y6GqPPflF9sHH3xwNGzYsKLeu3fvlPuSyWRcddVVFQcof/WMhJ311ltvpf1qv1OnTmkrCarq7LPPjgsvvDBOOOGEbc63dd9NmzZN2apo8ODBMWDAgB3O1bNnz8jNzU2pffLJJzFnzpztPjds2LC0Q6q3Fw78/e9/j/Xr10fEF8FAbm5u2qqJ8ePHxyeffLLNMb4cv3Xr1nHkkUdutz+AbBEuAAAAAHXalVdembbP/rp16+L3v/992r2/+MUvKv75+uuvr/ZeZs6cmfZleG5ubnTt2nWnxuvevXta7ctDjAsKCuLQQw+tqA8ePDhtFUdExMSJE+Pss8+O9u3bxyWXXBLPPPNMbNy4caf62frsg231WF22PrA5IlIOxe7Vq1fatkXbUlBQkHb+wbbm+KoWLVrE0UcfnVJ76qmnory8vNL7v1x1kJ+fX3Fo9darD5LJ5DbPbpg9e3a89957EfHFdlp5eXnb7Q8gW4QLAAAAQJ3WokWL+M53vpNWv/3222PNmjUV11OmTInnnnsuIiKGDBlSI78Ir2y1RGFh4U7vmV/Z4cRfnWPgwIEVYzdo0CDOP//8bQYZq1atij/96U8xbNiwaN26dQwbNiz+9Kc/xerVq6vcT2Xvr7Ieq0tl8325aqFjx44xfPjwjM6y2NHnuS1nnHFGyvXSpUvjjTfeSLtv06ZN8eyzz0bEF9swfblV1VFHHZUSikRse/XDV7dE2npegNpEuAAAAADUed///vejUaNGKbU1a9aknDlQ02ctRFT+RfXObhkU8UUwsb05mjZtGgceeGDFdcuWLeOyyy6Ln//852lfZn/Vxo0b45lnnolLLrkk2rdvH+eff37Fr+W3p7rf387MV1BQEM2bN49zzz038vPzMxpvR5/ntpx22mlpKwgqCwf+/ve/x7p16yIidbVCXl5exSqGL7311luxZMmStDG+HLdFixZxzDHH7LA3gGwRLgAAAAB1XlFRUVx66aVp9VtuuSXWrVsX06dPj7/+9a8REXHQQQfFySefXCN9ZPIr+uqaY8iQISnXpaWlceKJJ8bChQvjwQcfjOOOO267W+ts3rw5Hn744Tj44IPjBz/4QdqZCtubu6atWLEirZaTkxPnnXdepUHBzqjKe2rdunXaodV//etfI5lMptS+XHWQl5eXds7C1lsjlZeXp22NNHfu3JgyZUpERJxyyilpZz0A1CbCBQAAAKBe+NGPfpT2S/aVK1fGXXfdFf/zP/9T8UVwTa1aiIhKzzz48nDfnfHlr+C3N0dRUVH06NEjpTZ+/Pho1KhRfOtb34oXXnghlixZEvfdd992g4aysrL43e9+F6effvo2zxOo7ve3PXPmzIlly5al1du2bRtt27bdqTGr8nluy9bhwCeffBLFxcUV11/dEumII46INm3apNx/zDHHRIsWLVJqW69++Or11vMB1DbCBQAAAKBe6NSpU/zbv/1bWv1Xv/pVPPbYYxERse+++9bol7aVfVG9bt26bX5ZvyOff/55leYYOnRoyvWqVati5syZKc9ceuml8cILL8TixYvj9ttvj759+1Y657PPPhu33nprpa9VNndlPe6qpUuXxuOPP5621VXEFyHIzqrq51mZ008/Pe3sjK+uPHj++edj7dq1EVF5MFBQUBCnnHJKSu2NN95ICVC+DBeaNm1a5YOqAbJFuAAAAADUG9dee23aF8ArV66s+EK6ster03777Ze2lU1ZWVksWLBgp8abO3duWq2yUKBr167Rvn37lNpXf1X/VW3atInvfve7MW3atHjiiSeiQ4cOaff87ne/q/TZyuaurMddsXbt2hg1alRs3rw52rVrl/b6nDlzdmrczZs3x8cff5xW31bIsrWioqL4+te/nlL7arjwZTCQm5sbp59+eqVjbB06lJWVVWzX9dFHH8Xbb78dEREnnXRSNGzYsEp9AWSLcAEAAACoN3r27Blnn312pa917tw5zj///Bqdv1GjRjFgwIC0+owZM3ZqvA8//DCtdvjhh6fVEolE2uqFRYsWxaJFi7Y7/vDhw+PNN9+Mpk2bpj07b968tPuHDBmSFp4sWrSo2rZG2rx5c4waNapihcHee+8dubm5Kfd8/PHHFSsEMjF79uy0VQ+dOnWKffbZp8pjbB0OfBkIlJSUxDPPPBMREV//+tejqKio0uePP/74tM/6y1DClkhAXSNcAAAAAOqV6667rtJDen/84x+nnclQE44//vi02iuvvJLxONOmTUs70Lh79+7RvXv3Su//7W9/G3/7298qfv0ese3VC1+1zz77xMUXX5xWX7p0aVqtcePGcdhhh6XUkslkvP766zucZ2sLFiyI9u3bV/y59dZb44knnoglS5ZU3FNQUBA9e/ZMm+/VV1/NeL6XX345rZbp1kPDhw9P+29rzJgx8cILL1QEItsLBho0aJB2mPhrr70WK1eurDgMunHjxnHiiSdm1BdANggXAAAAgHqlb9++aV/gtmvXLi655JLdMv/ll1+etqXN2LFjKw6UrqqnnnoqrXbNNdds8/4///nPMWnSpPjggw8qah988EGsWrVqh3P17t07rdasWbNK762sh7Fjx+5wjq397W9/i6VLl1b8ycvLi1mzZqXc06pVq/jFL36R9mxln82OVPbM1VdfndEYHTt2jCFDhqTUnnjiiYpgICcnJ4YPH77dMbYOH7Zs2RK33XZbTJw4MSIiTjzxxGjcuHFGfQFkg3ABAAAAqHd++tOfxvHHH1/x5+abb95te9gXFRWlrQSYN29exaHSVbF+/fq4/fbbU2pt27atdIXB1j755JOU7X+qsnph6wAiPz8/unTpUum9J598cvTp0yel9tBDD8XixYt3OM+XysvL46677qq43n///WP58uUp9zRq1ChGjhwZZ5xxRtp8o0aNioULF1Z5vokTJ6atdjjppJOqfN7CV20dDsyZMyceffTRiIj42te+VukZFl914oknRpMmTVJqN910U0X4ZEskoK4QLgAAAAD1zqGHHhrPP/98xZ+LLrpot85/0003pe3lf+2116Ztc7Qt1113XcqX7YlEIv74xz9W6RftmzZtinfeeafieurUqbFhw4btPrP1r/qPO+64KCwsrPTeRCIR//d//5dy9sLGjRu3u6pia3/4wx9i+vTpFdcHHXRQyuu5ublxzjnnROvWrSudr6SkJL73ve9FeXn5DucqKSmJK6+8MqXWqlWruPPOO6vc71edccYZabXS0tKIqFow0KhRo/jmN79Z6fMNGzZMW3UDUFsJFwAAAACqWfPmzeOxxx5LWS2xYMGCGDZsWMqZAltLJpNx8803x6233ppS/+EPfxinnHJKled/8cUXY/bs2RHxxbY7kyZN2ua9N9xwQ0yYMKHiOi8vL37+859vd/z+/fvH73//+5TaY489FldffXXFF+Xb8n//93/xox/9qOL6wAMPjF69eqXcc+qpp6asnKhsvmeeeSa+853vxObNm7c519q1a+Pcc8+t2HIo4outix588MHo3Lnzdvvcls6dO8fAgQPT6olEotLgoTLbCiGOP/74bYY6ALVNXrYbAAAAAFi0aFHF1jJf+uov259//vm0X/3/8Ic/rLb5H3300Vi0aFHF9erVq9Pu+fzzz+O3v/1tSm3o0KExdOjQSsfs379/vPLKKzFs2LCK3ouLi6Nv375xzTXXxJlnnhndunWL/Pz8WL58ebz66qtxxx13xBtvvJEyzvXXXx833nhjRu+ntLQ0Hn744ejVq1ccdNBBUVpaGkOGDImCgoIoLy+PhQsXxptvvhl33313vPXWWxXPJRKJ+N3vfhf9+/ff4Rzf+c53IpFIxJVXXlmxDdOtt94ar7/+elx55ZVxwgknRPv27SM3NzeWL18eb775Ztxzzz3xwgsvVIzRtWvXtF/xH3nkkZVuV1TZfPfcc0+89dZbcfXVV8eJJ54YHTp0iPLy8vj444/j6aefjltuuSXmz59fMUbjxo1j1KhRu7w64IwzzkgJLCIiBg8eHHvttVeVnj/ppJOiUaNGsXHjxrRxAeqKRDLT04QAAAAAqtlrr70WRx55ZEbPVOdXGkcccUS8/vrrGT/3s5/9LG644Ybt3jN37ty4/PLL4+WXX057LZFIRG5ubmzZsiXttQ4dOsRvf/vbGDlyZJV6+a//+q944IEH4pNPPqn09UQiEQ0aNIiSkpJKP7u2bdvG7bffHmeffXaV5vvSSy+9FN/97ncrVkp8VW5ubiQSiUrf34ABA+LYY49N2e6oX79+MWzYsEgkEjs9XzKZrHS7pEMOOSTuueeeOPTQQ6v61rZp3rx50b1795Ta//7v/8Z//Md/VHmM4cOHx1//+teK64KCgli2bFk0b958l/sD2B1siwQAAABQg7p37x7/+Mc/4oUXXoiTTz455dyEZDKZ9sX7QQcdFDfffHPMmTOnysFCRMQvfvGL+Oijj+K5556LK664Itq2bZvyejKZjE2bNqUFC717946bbropZs+enXGwEBFx7LHHxowZM+Luu++OIUOGRG5ubsVrZWVlKe8vNzc3Tj755Lj22mvjpJNOSgkWunXrFieffPJ2g4WqzPfVYCE/Pz+OPPLIeOSRR+Ltt9+ulmAhImKfffaJgw8+OKWW6UHMW99/zDHHCBaAOsXKBQAAAIDdqKSkJMaPHx+LFi2K5cuXR0lJSbRp0ybatWsX/fv3j44dO1bLPHPnzo177703li1bFqtXr45NmzZFr169Yq+99opmzZpF165do1+/ftGuXbtqme9Lq1atigkTJsSSJUti+fLlkUwmo2XLltGjR48YMGBAvPrqqzFlypSUZ9q0aROXXHJJyhkVOztfTk5OFBUVRYcOHWLIkCHOMACoIcIFAAAAgHoomUzGPffcE0uXLq2ode7cOS666KKs9fTmm2+mbQ/VpEmTuOSSS6Jly5ZZ6gqAnWFbJAAAAIB6KJFIxJAhQ1JqCxcujI8//jgr/UyfPj0tWMjLy4sRI0YIFgDqIOECAAAAQD3Vp0+faNq0aUqtuLh4t/exaNGilMOLv3T66afH3nvvvdv7AWDXCRcAAAAA6qnc3NwYPHhwSu2DDz6I1atX77YeVq1aFaNHj46ysrKU+rHHHhu9e/febX0AUL2ECwAAAAD12CGHHBIFBQUV18lkMsaPH79b5t64cWOMGjUqNmzYkFLv379/2pZNANQtwgUAAACAeqxhw4bRv3//lNqUKVPSvvCvblu2bIlHH300Vq5cmVLv0aNHfPOb34xEIlGj8wNQs4QLAAAAAPXcoEGDIifnX18DlZaWxttvv11j8yWTyXjmmWfio48+Sqm3a9cuzjzzzJReAKib/E0OAAAAUM81b948DjjggJTaxIkTY8uWLTUy3+uvvx7Tpk1LqTVt2jRGjhwZDRo0qJE5Adi9hAsAAAAAe4CtzzhYv359WgBQHd599914/fXXU2r5+flx7rnnRrNmzap9PgCyQ7gAAAAAsAfo0KFDdOvWLaVWXFwcyWSy2uZYsGBBPP300ym1RCIRZ555ZnTo0KHa5gEg+4QLAAAAAHuIoUOHplyvWLEiZs+eXS1jr1ixIh599NEoLy9PqZ9wwgmx7777VsscANQeedluAAAAAIDdo3v37lFUVBTLli2rqBUXF1d8+V+ypSxmL10Xy9eVRGlZeeTn5kTbwgbRs11hNMjL3ea469evj1GjRsWmTZtS6oMGDYqBAwfWzJsBIKsSyepc+wYAAABArTZ16tQYO3ZsxfXq8oZRsP+RMX15ScxaujZKy9K/KsrPTcS+7ZrGwK6tYsSAzrFf+6YVr5WWlsaf//zn+Pjjj1Oe2W+//eLss8+OnBwbZwDUR8IFAAAAgD1IWVlZ/OEPf4gZn+XEe1vax9Jk0x0/tJWB3VrFt7+xTxy5X1GMGTMmZsyYkfJ6x44d44ILLoiCgoLqahuAWsa2SAAAAAB7kDWbymJifp8YX1q602NMnL8qJs5fFQPb5UT3z2ZFw8S/XmvevHmce+65ggWAes7KBQAAAIA9xLi5K+Kq0VNixbrN1TZmwyiNI/LnRYfctdGgQYO4+OKLo6ioqNrGB6B2Ei4AAAAA7AFe/mBpXPHwO7G5rLzax86N8jiqwby49t9Oju7du1f7+ADUPk7UAQAAAKjnxs1dUWPBQkREWeTEa6U9Ymk0r5HxAah9hAsAAAAA9diq9ZvjqtFTaixY+FJpecRVo6fEqvXVt+USALWXcAEAAACgHvvZ09Or9YyF7VmxbnP87Onpu2UuALJLuAAAAABQT73y4dJ4Ztqnu3XOZ6Z9Gq98uHS3zgnA7idcAAAAAKin7v7nvKzMe0+W5gVg9xEuAAAAANRDM5esjYnzV2Vl7gnzV8WspWuzMjcAu4dwAQAAAKAeGj1pYZbnX5TV+QGoWcIFAAAAgHpo4oLsrFqomH/+yqzOD0DNEi4AAAAA1DMlW8qyvi3RzKVro2RLWVZ7AKDmCBcAAAAA6pnZS9dFaVkyqz2UliVj9tJ1We0BgJojXAAAAACoZ5avK8l2CxERsaKW9AFA9RMuAAAAANQzpWXl2W4hIiI215I+AKh+wgUAAACAeiY/t3Z85VNQS/oAoPr5Gx4AAACgnmlb2CDbLURERJta0gcA1U+4AAAAAFDP9GxXGPm5iaz2kJ+biJ7tCrPaAwA1R7gAAAAAUM80yMuNfds1zWoP+7VrGg3ycrPaAwA1R7gAAAAAUA8N7Noqu/N3a53V+QGoWcIFAAAAgHpoxIDOWZ6/U1bnB6BmCRcAAAAA6qH92jeNgd2ys3phULdWWd+WCYCaJVwAAAAAqKe+/Y19sjLv5VmaF4DdR7gAAAAAUE8d1atdnHJgx9065ykHdoyjerXbrXMCsPsJFwAAAADqsZ8POyDaFBbslrnaFBbEz4cdsFvmAiC7hAsAAAAA9VirJgVx64iDoyCvZr8GKsjLiVtHHBytmuyeIAOA7BIuAAAAANRzQ7u3ibtGHlJjAUNBXk7cNfKQGNq9TY2MD0Dtk0gmk8lsNwEAAABAzRs3d0VcNXpKrFi3udrGbFP4xcoIwQLAnkW4AAAAALAHWbV+c/zs6enxzLRPd3msUw7sGD8fdoCtkAD2QMIFAAAAgD3QKx8ujXv+OS8mzF+V8bODurWKy7+xTxzVq10NdAZAXSBcAAAAANiDzVq6NkZPWhQT56+MmUvXRmlZ+ldF+bmJ2K9d0xjYrXWMGNAp9m3XNAudAlCbCBcAAAAAiIiIki1lMXvpulixriQ2l5VHQW5OtClsED3bFUaDvNxstwdALSJcAAAAAAAAMpKT7QYAAAAAAIC6RbgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABkRLgAAAAAAABk5P8DzB8pkiA8rFsAAAAASUVORK5CYII=", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -236,7 +112,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -252,7 +128,7 @@ "2.1904761904761907" ] }, - "execution_count": 9, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -272,7 +148,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 6, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -285,7 +161,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.6111111111111112\n", + "0.611111111111111\n", "0.6666666666666667\n" ] } @@ -302,7 +178,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 7, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -314,9 +190,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADvCAYAAADFG66PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXlYU2fa/78h7IthCSCIyL7vi+z7oqBV0bq0isWqaK19\n2/ed1pnftJ2l02k7beedeWvHWsFKrTpV61KtSwk7YRdERKGKAgKKkrDKlu38/ujkXATCEkgg4vlc\nV64LyMk5TxLO9zznfu77e9MIgiBAQUFBQTHnqMz1ACgoKCgofoUSZAoKCgolgRJkCgoKCiWBEmQK\nCgoKJYESZAoKCgolgRJkCgoKCiWBEmQKCgoKJYESZAoKCgolgRJkCgoKCiWBEmQKCgoKJYESZAoK\nCgolgRJkCgoKCiWBEmQKCgoKJYESZAoKCgolgRJkCgoKCiWBEmQKCgoKJYESZAoKCgolgRJkCgoK\nCiWBEmQKCgoKJYESZAoKCgolgRJkCgoKCiWBEmQKCgoKJYESZAoKCgolgRJkCgoKCiWBEmQKCgoK\nJYESZIrnjnPnzsHLyws0Gg0nTpwY83xfXx8YDAaWLFmCP/7xj/j444/xl7/8BQDwwQcfYOHChfjT\nn/40y6OmeB5QnesBUFDMNklJSTAwMEBiYiK++OILvPzyyxLPf/vtt+Dz+UhOTsaf//xnDA8PgyAI\nAMAf/vAH3L9/fy6GTfEcQM2QKZ5bNm3ahGvXrqGiooL8G0EQYLFY8Pf3J/+moaEBTU3NuRgixXMG\nJcgUzy2WlpZYvXo1/u///o/8W2ZmJuLi4kCj0QAALBYLTk5OiIyMHHc/e/bsQUxMDCIjI/HSSy+h\nt7cXAHDo0CFYWVlh06ZN2LVrF3x8fJCYmIihoSGFvi+KZxdKkCmea/7rv/4Lp0+fRnt7OwDg6NGj\nSElJIZ+Pi4vD7373uwn34eTkhOzsbOTl5cHR0RGfffYZACA1NRUpKSkoLCzEJ598gmvXruHBgwc4\nd+6cwt4PxbMNFUOmeK6JiIiAs7MzDh48iOTkZCxcuBC6uroy7UNTUxNhYWFQUVHB48ePYWNjI/F8\nQEAADAwMAABubm5obGyU2/gp5heUIFM897zxxht47733wOVy8eabb8r02ry8PPzmN7/BzZs3YWVl\nhYyMDGRkZEhss2DBAvJnTU1N8Hg8eQybYh5ChSwonns2b94MPp+PpqYm2NnZyfTa8vJyODo6wsrK\nCgDA5/MVMEKK5wVqhkzx3KOpqYlvvvkGS5YsmXTbp8MCNHL60crvwPcVD7BoiTUaGhrA5XJhZGSE\nn3/+eRZGTDFfoQSZ4rmDxWLhnXfeQXd3N3R0dPDOO+9g1apV5PNbt25FdXU1GhsboaGhgePHj6O9\nvR0bXtmJvAdD6KzIBuhquN2nDn3vOEQsewEBAQHw8PCArq4uqqursW/fPnh5eSEjIwNDQ0P46quv\nQKfTcfXqVWhqasLBwWFM/jMFBY0QZ7xTUFCMy9NhAQI+zkL/sHDMczoadJT/v1joaFDzG4qZQcWQ\nKSimwPmqBxCJpM9dCAL4qebhLI+IYj5CXdIpnnsIgsDTp0/R09NDPrq7u9Hb20v+XNxvjEG+qdTX\nD/CEaOIOzPKoKeYjlCBPAXHM8caNGwgPDwdBEBgcHMT69evx3//931BTU5vw9eXl5UhNTUV3dzea\nmprGPH/o0CF89NFHiIyMJFOmEhMTsW/fvgkrxCimhkAgkBBbacKrqakJBoNBPgwNDWFtbQ0GgwE6\nnY6uC2W4dV8EgZSbSjWaCGrD3RCJRFBRoW46KaYPFUOeInl5eYiKigKfz4eqqiq4XC42b94MOp2O\nixcvTnoi5uXlISUlRaogA8Cf/vQnNDU1kYLc29sLPT09soSXQjrii6M0ke3u7kZPTw+GhoawYMEC\nCcEVP/T19bFgwQKpF1Uej4eioiJUVFTAxcMbbxfxMCQYOwYtNRr+a3E7hMMDCA0Nhbu7O+h0+iy8\ne4r5BjVDniZGRkbIyMiAjY0Njh07hq1bt8p1/yOLCZ5nRCIRGToQi21PT4+E4NLp9DFCu2jRIujr\n64PBYEBXV1emC5tIJML169eRl5cHa2trpKamQiAQIKHqe/w8ZAuhUIRhEaClpgKBgI+/xCzGuvAE\nNDU1obCwEHl5eQgODoa3t/ekd08UFCOhBHkGLFy4EMuWLcPp06dx4MABlJWVgSAINDY2IikpSWqI\n4sMPP0RWVhY6Ozvx2WefYdmyZWP2+9lnn+Hvf/87du/ejT/96U/Ys2cPTpw4gTfeeAP19fW4ceMG\nXnzxRXz00Uez9E4Vx/Dw8ISz26dPn0JXV1dCbBcuXAhHR0dScDU0NOQyFoIg0NDQABaLBW1tbbz0\n0kswNzeHUCjE4cOH8XJcAD708MZnJ7PBGVZBmJcjvI0I/HjmFDrdLGFtbQ1ra2u0traCzWajsLAQ\ngYGB8PPzk9sYKeY3lCDPECsrK/z888+4fPkyrK2tAQDW1tb45z//KWFSAwBtbW3w8fHBe++9h+Li\nYixbtgxNTU0wMjKS2O6dd97BrVu3yN8PHDiA27dvo6qqCj/99BPa29thaWmJvXv3wtzcXOHvcbqM\nXiwTi+zIh1AoHDO7tbW1JcVWT09vVm7/29vbkZmZid7eXsTFxcHBwYGcVefm5kJPTw9+fn6g0WgI\nW6QKNTU1hPtbAgCioqJw8uRJ7NixA+rq6rCwsMCmTZvw+PFjsNlsfPHFF/Dz80NAQAC0tbUV/l4o\nnl0oQZ4hIpFoyttqa2sjMTERABAcHAwTExNcunRpyuGOZcuWgUajwczMDEZGRmhqappTQR65WCYt\nlDDeYpmNjQ35u5aW1pzGyXt7e5GTk4OGhgZERETAx8dH4gLQ1NSEGzduYPfu3eQ4aTQaRi69+Pr6\noq2tDRcuXMC6devI7UxNTbFu3TpwuVwUFRVh//798Pb2RlBQEPT09Gb3jVI8E1CCPENk8T8QO36J\nMTIywqNHj6Z8rNk0qRm9WCZtdjtysUy8OLZ48WK4u7uDwWCMu1imDAwPD6OoqAjXrl2Dr68v3njj\njTFhhcHBQZw/fx6rVq2Cjo4O+ffRFxAajYbExEQcOXIEpaWlCAoKknjeyMgIq1atQkREBEpKSnDg\nwAG4uroiJCRkzP8ExfMNJcgz4NGjR8jMzMTBgwehrq4O4NcTXUNDA93d3WO27+rqkvidw+HAzMxs\nVsY6GqFQiL6+vnHFdrzFMgsLC/JnWRfLlAGRSISqqirk5+fD1tYWu3btAoPBGLMdQRC4fPkyHBwc\nYG9vL/X5kaipqWHDhg1IT0+HmZkZaTY0EgaDgeXLlyMsLAylpaVIS0uDvb09QkNDYWxsLLf3SPHs\nQgnyNOns7MS2bdsQGRmJ5ORkiEQiaGtro7a2Fr6+vrhy5cqY1/T19eHSpUtYsWIF2Gw2Ojo6sGLF\nCoWMT7xYNp7YjlwsE89uzczM4OTkRArufFqIIggCd+/eBYvFgp6eHl5++eUJL4Y3b97E48ePsXPn\nzjHPjQ5ZiNHX10dSUhLOnDmDnTt3jpspo6Ojg5iYGISEhKCiogLffvstLC0tERoaqtRrAhSKhxLk\nKSAuDAGAmJgYEASBgYEBvPjii/jNb34DFRUVqKio4G9/+xs2btxI3o62t7dj/fr1eOedd/DWW29h\n8WJLHDp1CXt/+0cIh57i6InvYWRkhEOHDpEmNH/961+hrq5OmtAsXrwYv/zyC6qrq/HJJ5/A0dER\nR48eRXt7O15//XV89NFHYDKZ4y6WicWWwWDA3t6eFNvZWixTBh4+fAgWi4X+/n7Ex8fDzs5uwpl9\nV1cXfv75ZyQnJ0sNudBotHHXDmxtbbF06VKcPn0ar7zyClRVxz/FxMb2AQEBqKqqwsmTJ2FsbIyw\nsLApOc9RzD+owpBZoqKpEykZ5SCIX0tttdXpoNGAjJSl8LcylNiWz+dLLI6NfoxcLBMLrjgrQVkW\ny5SBnp4e5OTk4P79+4iMjIS3t/ekBTwikQgZGRlwcnJCcHCw1G3y8/MhFAoRHR0t9XmCIHDq1Cno\n6urKdAckEAhQU1MDNpsNPT09hIaGTnrxoJhfUII8C0zkFKapCvwtkI7h/t4xi2WjRXbkY6KZ1/PO\n0NAQ2Gw2qqqq4O/vj+Dg4CmHXwoKCtDU1ITk5ORxhbCgoAB8Ph8xMTHj7md4eBhpaWkIDQ2Fl5eX\nTOMXiUS4desWCgsLQafTERYWBmdnZ0qYnwOos3oW+KnmIca77AmFBMrbhVjrZQsTExPo6+s/k4tl\nyoBQKERlZSUKCgpgb2+P3bt3y1Tx2NraSvqOTPT5jxdDHomGhgY2btyIjIwMmJqayrR4q6KiAnd3\nd7i5ueGXX35BYWEhcnNzERoaCjc3t+cm1PQ8QgnyLNDE6ccAb+zsGAD4BA2NnKfIzs6GSCQCk8mE\nkZER+WAymTA0NFTa9DFlgCAI/PLLL8jKygKDwcCWLVuwcOFCmfbB4/Fw7tw5JCYmTiriU71YGhsb\nIzExEadOncLOnTtlLgqh0WhwcnKCo6MjGhsbx5RlU3dJ8w/qG50FrJg60FJTwSB/7EKQKoRwXszE\nWy8mQSAQgMvlgsPhgMvlora2FlwuF11dXdDR0Rkj1EZGRmAwGM/1bLqtrQ0sFguDg4NYvnw5bG1t\np/V5XL16FZaWlnBxcZnS9lON9Lm6uqKtrQ1nz57Fyy+/PC03OBqNBhsbG9jY2KClpQVsNhsFBQUI\nCgqCr6/vvMqGed6hYsizwNNhAXw/uIph0Vih0FZXwbsu/WhvbUZoaCh8fX3HzHxEIhF6enpIoRY/\nOBwOBgcHYWhoOEaojYyMoKWlNVtvcdbp7u5GdnY2mpubERkZCS8vr2lbX9bV1YHFYmHXrl1TErei\noiIyY2MqiEQifPfdd7CwsJgw7iwL7e3tYLPZaGxshL+/PwICAub19/28QAnyLPDkyRN8nH4KmcN2\n4PH44EPlP05hAnwUb4H1kd549OgRcnNz0dHRgYiICHh4eExJYHg8noRIj5xhq6qqShVqQ0PDZzYO\nOTQ0hMLCQly/fh1Lly5FcHAwWZQzHXp7e3Ho0CFs2rQJFhYWU3pNcXEx+vr6pBpDjUd/fz8OHTqE\nhIQEODk5TXe4Y+ByuWCz2fjll1/IsmxdXV257Z9idqEEeRY4duwY7Ozs4O7th//55zEsdPCAiwUT\nPkzg/A8nsX37dhga/pr61tzcjJycHAwMDCA6OhpOTk7TugUXG/uMFGjxo6enBwsWLJAar1bWBUWh\nUIhr166hsLAQDg4OiIqKmrEfBEEQOHbsGCwtLRERETHl101HkIFfwysnTpzAq6++OsZQaqb09PSg\nuLgYNTU1cHNzQ0hICPT19eV6DArFQwmygmloaMCVK1ewZ88e0Ol0fPnll9i4cSNZKltRUYHKykps\n376dXLgT20Dm5ORARUUF0dHRsLGxkZtQCoVCdHV1jRFqLpcLPp8vIdIjFxbnIlZJEATq6+uRlZUF\nQ0NDxMXFwcTERC77LikpQV1dHVJSUmQKd5SUlKCnpwfLly+X+ZiVlZUoKysjneHkzdOnT1FaWoqq\nqio4ODggNDQUTCZT7sehUAzUop4CEYlEYLFYiI2NJUMEo0XVz88PLS0tuHz5MlavXk1uY29vDzs7\nO9y+fRtXrlyBnp4eYmJipnxbPRF0Oh1MJlPqiTo4OCgh0PX19eTPWlpaUhcW9fX1FdK6qLW1FZmZ\nmeDxeEhMTIStra3c9i2Owe7YsUPmsU8l7W08fHx80NraOsYZTl7o6uoiNjYWISEhKC8vx5EjR2Bl\nZYXQ0NA5802hmDrUDFmBVFVV4caNG0hJSSFPvAMHDuDFF1+UmOXxeDykp6cjMDAQPj4+Y/YjEolQ\nXV2N/Px8mJmZISoqCqam0htuKgqCINDT0zMmTs3lctHf3w99fX1yJj0yFKKtrS2z6HR1dSE7OxsP\nHjxAVFQUPD095Sr4fD4faWlpCAkJgaenp8yvLysrQ2dnJxISEqZ1fIFAgCNHjsDV1XXcakB5wePx\nUFlZiZKSEpiamiIsLAyWlpYKPSbF9KFmyAqCx+MhNzcXmzZtGiNIo6+B6urq2LBhA44cOQIzM7Mx\nMxkVFRX4+PjAw8MD165dw3fffQcbGxtERkaSsWdFQ6PRoK+vD319/TEzVT6fj87OTlKom5qaUFlZ\nCS6XCwBjYtXix+hsksHBQRQUFODGjRsIDAzEqlWrFHJbn5WVBRMTE3h4eEx7HzOZx6iqqmL9+vVI\nT0+Hubm5VGc4eaGuro6goCD4+/ujuroa586dA4PBQFhYmFzDYBTygZohK4jc3Fx0dXVh7dq1En//\n6quvsHbtWqkz3Fu3biE7OxupqanQ1NQcd9/Dw8MoLS1FWVkZXFxcEBERoZSG52ITJmkLi11dXdDT\n04ORkREMDAzw9OlTNDY2wsHBAXFxcQp7Pw0NDbh48SJ279497TSx8vJyuTj13b9/H+fOnZvQGU7e\niEQi1NbWgs1mQ01NDaGhodNeOKaQP5QgK4De3l4cPHgQqampY1a6Dx48iDVr1oxbSXblyhX09PRg\n48aNk54kAwMDYLPZqK6uhre3N0JCQp6ZFkEikQhdXV24fv06qqqqoK6uDh0dHfT29mJ4eFgit3pk\nvHqiC9Vk9Pf34+uvv0ZSUhLZbms6VFRU4PHjx1i5cuW09yGGzWajvr4eKSkps1p5J14sLSwshEAg\nIMuyFbEWQDF1KEFWAD/++CN0dHQQGxs75rmvv/4aq1atGneBRSgUIiMjA46OjggNDZ3S8Xp7e1FQ\nUIDbt28jICAAgYGBSl+91dLSgszMTAgEAsTHx0sI5PDwsESsurOzk5xhq6urSxVqAwODCXOrCYLA\n999/DyaTibi4uBmNXZ6CLHaG09HRkcv+pnP8+/fvo7CwED09PQgJCYGXlxdVlj1HUJ+6nGlvb8fd\nu3fxxhtvjLvNRNdAOp2O9evXIy0tDRYWFlOKLy5YsAArV65EcHAw8vLysH//foSGhsLPz0/pTqzO\nzk5kZ2ejtbUV0dHR8PDwGHMnoKGhAXNz8zFm7QRBoK+vTyIE0tTUBC6Xi97eXjAYDKkLi7q6uqis\nrERvby82bNgw4/cwkywLaftas2YN0tLScP36dXh7e8tlv7Ic39bWFra2tnjw4MGYsmxFxPApxoea\nIcsRgiDw3XffwdnZGf7+/lK3OXToEFauXDlpZ4h79+7h/PnzSE1NlTme+vjxY+Tm5uLRo0eIiIiY\nUVmxvBgYGEBBQQFqamoQFBSEwMBAuRomCQSCCXOrhUIhbG1tsWjRIonc6ukITmVlJdra2rBq1Sq5\njb+jowMZGRnYvHnznHcNefToEdhsNpqamrB06VIsXbqUKsueJShBliN37twBi8XCa6+9Nq4ApqWl\nITExEYsWLZp0f/n5+bh//z5eeeWVaQlqS0sLcnJy0NfXh6ioKLi4uMz64o1AIEB5eTmKiorg4uKC\nyMhIiYahikYoFCItLQ02NjYwMTGRCIV0dXVBW1t7XNOm8T7zqqoqtLa2ylWQAeD27dtgsVjTcoZT\nBBwOB2w2G3fu3IGPjw8CAwOpsmwFQwmynBCJRPjqq68QFxcHBweHcbdLS0tDQkLClAo8CILAiRMn\nYGJiMu24pzhGmJOTA5FIhOjo6FnpQkEQBJk1YmpqitjY2DmpGMvKykJHR4fU9EOxaZO03OqBgQEY\nGBhI9QKpr69HS0sLWcgjT1gsFtrb27F58+Y5v6sR093djaKiItTW1sLd3R0hISFSG8NSzBxKkOVE\nRUUF6urqJuw0AQDp6elYvnz5lCvuBgYGcOjQISxfvnxGpjTiVfWcnBxoa2sjJiZGYQUCzc3NYLFY\nEIlEiI+PV2ie7UQ0NTXhzJkz2L17t8yzch6PJ5FbPTIEIhKJoKamBgcHB4nZtaGh4Yxj9iKRCMeO\nHcOiRYvk5gwnL54+fYqSkhJUVVXByckJoaGhcvfkeN6hBFkODA8PY//+/di8efOk5amHDx9GfHw8\nFi9ePOX9i01pRpoQTReRSISamhrk5eXBxMQE0dHRMpu5jweXy0VWVhYePXqEmJgYuLm5zVl+6+Dg\nIL7++musWLEC9vb2ctsvQRAoKytDQ0MDnJ2dJYS6u7sbenp6Uk2b9PT0pvxZ9Pf3Iy0tbcYXYUUx\nODiIsrIyVFRUwNraGqGhoXL7H3reoQRZDmRnZ6Ovrw9r1qyZdNvDhw8jLi5O5tmpNBOimSAQCFBZ\nWQk2m40lS5YgKipq2rOdgYEB5Ofn4+bNmwgJCUFAQMCcZncQBIGzZ89CS0sLiYmJct9/dXU1Ghsb\nkZSUJPF3sWmTtJQ9Ho8n1bTJyMhIaoqi+CK8bds2pTUHGh4eJsuyzc3NERoaKtNEg2IslCDPkJ6e\nHnz99ddT7t/2zTffIDY2VmZBJggC586dA51Ol2vsksfjoaysDKWlpXB0dERERMSU44MCgQClpaUo\nKSmBm5sbwsPDZ3XBbjxqampQWFiI1NRUhbS+unHjBu7fvz9GkCdiaGhIqlB3dnZCQ0NDqlDfv38f\nFRUVCnOGkxcCgQDXr1/HwYMHwWKx0NLSgmPHjmHz5s0S2/X19cHCwgL6+vpISUnBn//85zkasfJC\nCfIMOXv2LAwMDBAVFTWl7Y8cOYLo6GgsWbJE5mNNZkI0EwYHB1FUVISqqip4enoiNDR0XHElCAI3\nb95ETk4OzMzMEBsbqzSxxK6uLqSnpyM5OVlht9E1NTVoaGgYUxY/HQiCQG9vr9RYdV9fH1RVVaGu\nrg5XV1cYGxuToq2jo6N05c5CoRBHjhzBnj17YGFhgcuXL8PR0ZEc55dffol9+/bhf/7nf/Dhhx/O\n8WiVE+WqGnjGaGtrQ2Njo8yeBtO9Bk5mQjQTtLS0EBsbi4CAABQWFuJf//oX/P39ERwcLHFL3dTU\nhMzMTNBoNCQlJU3rwqIoRCIRzp07h5CQEIXGNOVdGMJgMMBgMGBjYyPxnEAgwJMnT/DDDz+Q7bqu\nX78ODocDgiDGNW2aq4a4dDoddnZ22Lx5M7777jscPXoUixcvRmhoKFxcXMBiscbNz6f4FUqQpwlB\nEGCxWIiMjJSpTHmmsxomk4nExEScPn16UhOi6aCnp4fExEQEBQUhPz8f+/fvR3BwMKytrZGfn4/H\njx8jJiYGrq6uSjdDY7PZUFVVRVBQkMKPNRs3lqqqqjA3N8crr7yC9PR0rF27FtbW1iAIAoODgxIz\n6traWjK3WldXV2q8erYa4i5ZsgSrV6/GgwcP8Oqrr6KwsBAHDhyAk5MTSktLye36+vrw1ltv4Zdf\nfoFQKMSaNWuwb98+0Gg0FBcXY9++fVBXV4dIJMLbb79NlpYfP34c+/fvJ3O13333XcTExIDP5+P3\nv/89ioqKAADBwcH4+OOP0dzcjOXLl6O3txdvvvkm3n33Xbz77rsQCAT429/+hsOHD+P3v/89tmzZ\ngr///e8K/3wmhKCYFnV1dcSBAwcIoVAo0+syMjKI+/fvz/j4ly9fJv79738TIpFoxvuaiMbGRuKf\n//wn8ec//5k4efIkMTQ0pNDjTZfW1lbis88+I3p6ehR+rJs3bxKnT59W+HFGcu/ePeLzzz8nuru7\nJ9xOKBQSXC6XuHPnDlFSUkJcvHiRyMjIIP7+978TH374IXHgwAHi5MmTRFZWFnH9+nWipaWFGBgY\nkNs4c3NziT/+8Y9EXl4eoa6uTjx69IggCIJYvXo1kZ6eTtja2hIpKSnE8PAw8eqrrxKvvPIKQRAE\nMTAwQLi7uxNHjx4lCIIg/P39idLSUoIgCKK6uprcrqioiDA1NSWePHlCEARBnD59mnzugw8+IGJi\nYgiBQEAIBAIiPj6e+OCDDwiCIAgWi0U4ODiQ4/T19SXc3NzI3zds2CC3z2AmUDPkaSAUCsFisZCQ\nkDCt5H1CDrOr+Ph4ZGRkoKioaMomRLLA5/PJBTsPDw/Y29ujuLgYhw4dQmRk5JymtI2Gx+Ph7Nmz\nSExMnBUbS3mGLKaKjY0NAgICcPr06Qmd4VRUVGBoaAhDQ8Mx6X4jG+JyOBzcu3cP5eXlCmmIGxER\nAWdnZxw8eBDJycmwtbXF9u3bcfjwYfT09OCf//wnjh07hkuXLgH4NWS2ceNGHDlyBMnJyTA0NMR3\n330HKysreHp64sCBAwB+XYNJTEwkW6CtWbOGzOw4evQo3n//fXK8W7duxfvvv4/3338f4eHhePTo\nERoaGqClpQUfHx98++23aGlpAZ/PHxMumisoQZ4G165dg4GBAezs7GR+rbxEjE6n48UXX5TJhGgq\nEASBmpoa5OTkwMLCAjt27CBzn21tbdHY2Ijs7GwUFRUhOjoa9vb2cy7MV69ehaWlJVxcXGbtmLMt\nyAAQEhKChw8f4urVq9NyhlNXV5e69kD8pyHuyBBIc3PzjBvivvHGG3jvvffA5XLx5ptvkmNwcXHB\nihUr8Nvf/hZXrlwBjUZDYGAgjI2N0draCgA4ceIEPvnkE/j4+MDd3R2ffPIJvLy80NraKtFYQFVV\nFQEBAQB+bfklFmoAEvtTV1dHXFwcLl68CF1dXWzatAn379/HpUuXwOPxZuxtLS8oQZaRoaEhFBQU\nYOvWrdN6vTxnVwwGA0lJSTh79ix27tw5Y1P3xsZGZGZmQlVVFS+++KLUnFJra2ts374dv/zyC7Ky\nssBmsxEdHT1n1Xh1dXVoamrCrl27Zu2Yc3UBotFoWL16NdLT0+XqDEej0aCnpwc9Pb0xPtFCoZCs\nWORyuWhra8PNmzfB4XAgEAjGxKq5XC4EAgEAYPPmzfjtb3+LpqamMZMXZ2dnaGhoIDo6GkNDQ/jy\nyy9x+/ZtcjF2eHgYn376KT766CN8+umnWL16NZqbm7F48WJ0dHSQ+xEIBLh16xY8PT3HPNfR0SFR\nEbty5Uqyy3hKSgpWrFiBy5cvQ0dHB6+//rpcPsuZQgmyjBQUFMDR0XFGPe3kObuytbWFr68vzpw5\ng61bt04rhNLR0QEWiwUOh4OYmJhJTYhoNBqcnJzg4OCA2tpa/PjjjzAyMkJ0dPSsOpX19vbi0qVL\n2LRp06wCq2CaAAAgAElEQVT6P89FyEKMhoYGeWtvamqq8M+bTqfD2NhYYuYpZmRDXA6Hg/r6ehQX\nF+PGjRv43//9XxgZGeG1116Dvb097t69K5EaqaKigq1bt+Ls2bM4fPgw/P39ERgYiKVLl+LChQv4\n61//itzcXGhra8PHPxBP/28/PrlSB4uA5fjXu3vA4XDAZDJx8uRJXLt2Df/4xz+QkpJC5j/TaDQc\nO3YM27ZtI4+ZmJiI1157DVZWVlBTU8PKlSvx3nvvYePGjdMKyygCSpBloKurC9XV1dizZ8+096GI\n2VV4eDhaW1uRnZ0tkwnR06dPkZeXh7q6OoSGhmLDhg0yVdipqKjAw8MDrq6uqKqqwvfffw8LCwtE\nRUVJPYHlCUEQ+PHHH+Hv7y+XTtzTOf5cwWQysWLFCpw6dQqpqalz5gynpaUFCwsL8vNnsVjIzc1F\nd3c3nj59itWrV8PJyQlcLhelpaX44osvUFtbi5qaGty7dw8vvfQSjhw5An9/f9BoNKSmpuKNN95A\nRUUFmEwmvL29oalngDvt3TBZ9iYOFtyHtro2VIO3Iio+AUYLdMBkMvHNN98AAN555x309PQgLCwM\nwK9ZFr/73e/I8ZqamsLDwwMREREAAHt7eyxatGjGDQvkCVUYIgM//PADjI2NyS90Ohw/fhxLly6V\nq78CIJsJEZ/PR0lJCUpLS+Hl5YWwsDC5+N3y+XyUl5ejuLgYDg4OiIiIGNPCSl6UlJSgrq4OKSkp\ns+6KVl9fj+rqamzatGlWjzsaZXSGmwxxQ9zRRTAcDgc0Gk0iRa+d240/VNLBx9jZq44GHeX/LxY6\nGvNrTjm/3o0CaWlpwYMHD2bsgauo211tbW2sX7+etOuUZkIkNhbKycmBpaUldu7cCQMDA7mNQU1N\nDSEhIfD19SUzMtzd3REWFiZXH9329naw2Wzs2LFjToRoLkMWI4mJicGxY8eQm5urdM5w46GmpgZT\nU9MxIT/iPw1xxULN4XBQ9ogPYhyJIgjgp5qH2OivGMfCuYIS5ClAEAQyMzMRHR0tF08BRZ3MixYt\nQmRkJE6dOjXGhOjevXtgsVhktZ8ib/M1NTURHR2NpUuXgs1m48CBA/Dz80NwcPCMC1n4fD7Onj2L\n+Ph4uV5MZEFZBFlFRQXr1q1DWloazM3N4ezsPNdDkhmCINDT04OOjg50dHSAw+GQPzcPm0EA6eX7\nAzwhmrgDszxaxUMJ8hS4ffs2BAIBPD09Z7wvRa/Q+/n5oaWlBZcvX8bq1avx5MkTsFgsdHZ2IjY2\ndlZbvuvq6mL58uUIDAwkq/6CgoIQEBAw7fLerKwsmJiYSKQ+zQXKIMgAoKOjQ94ZGRsbK60znLjL\n+Gjh5XA40NTUJBcOzc3N4enpCXV1dXReKMPNJhEEGHsXpK1Oh5XR3HdVkTeUIE+CQCBAdnY2Xnjh\nBbkImaJnVzQaDStXrsTXX3+NI0eOgMPhIDw8HH5+fnO2kqyvr4/Vq1eDw+EgNzcXX3zxBcLDw+Hj\n4yPTmBoaGlBfX4/du3fPae7zXOddj0ZsZn/y5Ens2LFjTjuOC4VCcLncMbPdzs5O6OrqkhcNKysr\n+Pv7g8lkStw1DQ0Ngc1mo6qqCpHefrjQOgSBYOz5QqMBKz3mtvegIqAEeRLEK76j8zNngiIFmcfj\nobi4GP39/ejt7cXmzZvnLEd4NEwmE+vXr8fDhw+Rk5OD4uJiREZGwt3dfdJYcH9/Py5cuICkpKQ5\nb7ipLCGLkfj4+KC1tRUXLlzAiy++qPCLBp/Pl5jlioW3p6cHDAaDFF4HBweEhISAyWROeFckFApx\n7do1FBYWwt7eHrt370ZfXx8SKs7h5yFbgEbDAE8ILTUVqKjQkJGydN4t6AGUIE/IwMAA2Gw2UlJS\n5LZPRZ0oIpEI1dXVyMvLg5WVFXbv3k2eoIowIZoJ5ubm2LJlC5qampCTk0NW/Y20ahwJQRC4ePEi\n3N3d5XphnAnKJsjAr3m2R44cQXFxMUJCQuSyz+Hh4TGiy+Fw0NfXB0NDQ1J43dzcYGxsLHMbK+I/\nrcWysrJgYGCA5ORkmJqaor+/H6dOncKutQn40NoOP9U8xJnMQsQHe+OlYId5KcYAJcgTUlBQABcX\nF7nm1CpidtXQ0AAWi0X6AYg7Wuvr66OlpQXnz5/Hxo0ble5W28rKCtu2bcPdu3eRk5MDNpuNmJiY\nMaJbWVmJnp4erF+/fo5GKomyfY5iVFVVsWHDBqSnp8Pc3Fymi9fAwIBU4R0cHASTySSF18fHB8bG\nxjAwMJhxhktraytYLBaGhoaQkJBAVvOJRCL88MMP8PT0JFM4N/pbou/GIBIcGPNWjAFKkMeFy+Wi\npqZGISWV8hLk9vZ2sFgs9PT0IDY2VuoMU2xCJM9Zkzyh0WhwcHCAvb09amtr8dNPP4HBYCAmJgaL\nFi0i484pKSlKU02ljCELMQwGA2vXrsXZs2exY8cOie4vIz0rRi+uCQQCUnSNjY1ha2sLY2NjhVh2\ndnV1IScnB83NzYiKioKnp6eEuGdlZYFOpyMyMlLidRoaGhgeHpbrWJQNSpDHITs7G0FBQXJvSSSP\nf+7e3l7k5ubi7t27CA8Ph6+v77hiJTYhSk9Px6JFi5QmnjwaGo0Gd3d3uLi4oLq6GidPnoS5uTk6\nOzsRGRmp8Mo/WVBmQQZ+vfPw8vLCd999B29vbzKvt6OjAyoqKhLC6+zsDGNj40mNguTB4OAgCgsL\nUV1djYCAALzwwgtj0khra2tRV1eH1NTUMTNwDQ0NDA0NKXSMcw0lyFJobm7Gw4cPZeqZNlVmcjIP\nDw+juLgYFRUV8PHxwd69e6cUG2YwGFizZo3cTIgUCZ1Oh6+vLzw8PHDixAl0dnaipaUFdnZ2c5Z3\nLA1lEGSRSITu7m6pqWQaGhoQiUS4ceMGli5dCk9PTzCZzDnpeSgUClFRUYHCwkI4OTnhtddek/o/\n+OTJE1y5cgXJyclSF26pGfJzyMgiEEW1wpH1ZBaJRKiqqkJ+fj5sbGywa9euKTciFSMPE6LZpK2t\nDRwOB3v27EFNTQ3S0tLg6uqK8PDwOb+gzHYMWey4Nlp4uVyuRCrZkiVL4OfnR6aSDQ8PIz09HSoq\nKnPSaosgCNTV1SErKwtGRkZ45ZVXYGJiInXboaEhnDx5EsuWLRu3/Za6ujolyM8btbW1AAB3d3eF\n7F+Wk5kgCHLBTkdHBy+99NKM3L2ma0I02wwNDeH8+fNYtWoVDA0NERkZCX9/f7Lqz9fXFyEhIXOW\n/qaokAWfzydzeEcKb3d3t0Qqmb29PYKDg2FkZDRh5ehIZ7iFCxfOqhNfS0sLMjMzwefzsWLFCtja\n2o67LfGfjup2dnYTFvxQM+TnDHERSFJSksJmQVM9mR89egQWi4W+vj7ExcXJxQhe3Jj00KFDWLx4\n8aQmRHMBQRC4dOkSudAnRkdHB8uWLUNgYCAKCgqwf/9+BAYGIjAwUC7l7NMZ53QZHh6WurAmTiUT\nx3fFnaZlTSUbCZPJxMqVK2fNGa6zsxPZ2dlobW1FVFQUPDw8Jr0bKygowNDQEOLj4yfcTkNDA/39\n/fIcrtJBCfIISktLYWZmpvDbu4lO5p6eHuTm5uLevXuIiIiAj4+PXMMLUzEhmktu3ryJ9vZ2pKam\nSn2ewWDghRdeQHBwMPLy8rB//36EhobC19d32qIlK1O9MA4ODpKiO1J4xalkYuH19vYGk8mEoaGh\nQkJJzs7OaGtrw5kzZxTmDDc4OIiCggLcuHEDgYGBWLNmzZRCfnfu3EFlZSVSU1MnzaLR0NBAZ2en\nvIaslFCC/B/6+/tRXFyM7du3K/Q4453Mw8PDYLPZqKyshJ+fH/bu3auwEtiJTIjmkq6uLvz8889I\nTk6edExGRkZYt24d2tvbkZOTg5KSEkRGRk5pRjZTRt7lEASB/v5+qcIrEAhI0TU2NoaNjQ2MjY2h\nr68/63Ho6OhoHDt2DDk5OYiNjZXbfgUCAcrLy1FUVARnZ2fs2bNnys5+nZ2duHDhAjZu3Dil12ho\naIDH4810yEoNJcj/IS8vD+7u7hJdDRTB6JCFUCgkF+zs7Oywe/fuWWnU6efnhwcPHpAmRHONSCTC\nuXPnEBISMu6ijjQWLlyIl19+GQ8ePCB7/UVFRcHZ2VmuokcQBHp7e9HR0YGGhgZ0dnbim2++QUdH\nB2g0Gim6xsbGcHJygrGxMfT09JSmiGSkM9yiRYtm7AxHEARu3bqF7OxsmJiYICUlRabURB6Ph5Mn\nTyIiIkJqqzBpUDHk5wQOh4Pbt2/PWl8tgiBAEATu3LmDrKws6OnpYcuWLTIJ0Uyh0Wh44YUXkJaW\nhqqqKvj4+MzasaXBZrOhqqqKoKCgab1e3Cft3r17yM7OJqv+bGxsZBLFiVLJ1NXVYWxsDC0tLaip\nqSE6OhrGxsZzkko2HXR0dLBhwwYcP358Rs5wDx48QGZmJkQiEVatWiVzObu4FN7c3Bx+fn5Tfh0l\nyM8JLBYLISEhs9IKh0ajobu7G0ePHkV/fz/i4+NhZ2c3JzMpsTdyRkYGzM3NZ/WCMJK2tjaUl5cj\nNTV1Rp8DjUaDnZ0dbG1tcfv2bVy5cgW6urqIiYkZMwubKJVMR0eHnO1aWlrC19cXxsbGZM53W1sb\nLl++rLRFNhNhbm4+bWc4LpeL7OxstLW1ISYmBu7u7tP6vkpLS8HlcrFt2zaZXk8J8nNAY2Mjnjx5\nMis+CT09PWhubsbAwADi4uLg7e095/nAxsbGSEhIIFfhZ9uEiMfj4ezZs0hMTJRbqIZGo8HV1RXO\nzs6oqqrCqVOnoKurC3Nzc3KhraurSyKVzM7ODkFBQWAymZNmbSh7pd5k+Pj4oK2tDT/++CPWr18/\nqSgODAwgPz8fN2/eRHBwMJKSkqa97tDU1ISioiLs2LFD5n1QgjzPEReBxMbGKnSFfqTHK4PBQEBA\nAHx9fRV2PFlxc3ObMxOiq1evwtLSEi4uLjPaz8hUspEpZX19fTAwMABBELh58yYWLlyIuLg42NjY\nzOg7f5YFGQASEhIm9TgRCAQoKytDUVER3Nzc8Prrr88oPNPb24szZ84gKSlpWr0WKUGe59TU1EBV\nVXXGYjAeQqEQlZWVKCgoID1e8/PzlcYkZyRzYUJUV1eHpqYm7Nq1a8qvGZlKNlJ4BwcHYWRkRM54\nvby8SFcy8ec9PDyMsrIynD9/Hi4uLggPD5/WrFxZFupmgqqqKtavX4/09HSYmZnBxsaGfI4gCNTW\n1iI7OxtmZmZ49dVXZ9yJRCAQ4NSpUwgICJiwSGQixIJMEMS8+A6k8dwKMp/PR05OjkLMvAmCwC+/\n/AIWiyXh8arMzLYJUW9vLy5duoRNmzaNiWOOTiUbKbx8Pp+M74obB4hdySYL/2hoaJDdU4qKinDw\n4EF4eXkhNDRUpvWDZz1kIUaaM1xTUxNYLBYAICkpSW45+VeuXMGCBQtmdLGn0+lQUVGBQCBQmlRN\nefPcCnJJSQksLCymnHIzVdra2pCZmTnG41WMMp/Ms2VCRBAEfvzxR/j6+kJPTw8NDQ1jKtcASLiS\nOTo6yi2VTFtbG3FxcWSvvy+//BIBAQEIDAyc0iKXMn+HsmJtbY3AwECcOHECDAYDT548QUxMDNzc\n3OQ2UamqqsKDBw+wY8eOGe9TPEumBHke8fTpU5SWlmLnzp1y22d3dzeys7PH9XgVo+wnsyJMiEam\nkolTDDs6OtDa2oqqqipSeBcuXAh3d3cYGxtDW1tb4belenp6WLlypUTVX0hICPz9/SeNLyvzdygL\n/f396OrqApfLhZqaGvbu3SvX9ZS2tjZkZ2dj27Ztcil0EgvyVItPnjWeS0HOzc2Fl5eXXOwcp+Lx\n+qwRHh6OlpYWmU2IxKlko2e7HA6HTCXT1tYGh8PBmjVrYG1tPef98QDA0NAQa9euxePHj5Gbm4vS\n0lJERETAy8tr3Ivqsw6fz0dpaSlKSkrg7u6OvXv34vjx46ipqZFbTnp/fz9Onz6NlStXyq0b9nxf\n2HvuBPnJkyeor6/H3r17Z7Qfsccrm82Go6PjuB6vo1H2GTLw6xjXrl07rgmRQCCQ6krW1dWFBQsW\njJtKxufzkZaWhoSEBIUtpM4EU1NTbNq0CS0tLRJNWF1dXSVE+Fn4DseDIAjU1NQgJycHixYtwvbt\n28nqVLEznKmpKdkGbLqI2zC5u7vPuCpwJJQgzzNYLBbCwsKmPTMb7fG6devWcT1epfGsnMza2tpY\ns2YNvv/+e4SFhWFwcJAU3p6eHokGl87OzggPD4eRkdGEt7tZWVkwMTGBp6fnLL4T2Vm8eDG2bt2K\n+/fvSzRhHVnA8yx8h6NpbGxEZmYm6HQ61q1bB0tLS4nnxc5wp0+fxs6dO2eU4iZuwxQVFTXTYUtA\nCfI84t69e+js7MSmTZum9frW1lZkZmaCx+NN6vE6Hsp4uztSbEfOePv7+6GlpQU2my3RdcLQ0FDm\n1L2GhgbU19dj9+7dSvkZjIZGo8HW1hY2Njaor69HZmYm2Gw2oqOjn5lSaTEdHR1gsVjo6OhAbGws\nXFxcxv0ORjrDbdmyZVprCLdu3UJdXR127twp98InSpDnCSKRiCwCkVVMurq6kJ2djZaWlil7vE7E\nXMyuCIIgOwuPFl4ejyfhSmZtbQ0mk0m6kp09exa9vb3Tnu309/fjwoULSEpKUoqYsSzQaDQ4OzvD\n0dERNTU1OHfuHBgMBvh8/lwPbVKePn2KvLw81NXVITQ0FBs2bJjSgl10dDSOHz8+LWe4J0+e4PLl\ny0hOTlaIFQElyLOIk5MT6adQX18PgiDI+FN7ezvq6+ulvu7ChQvYt28fFi5ciLy8PKnbVFdXQ1NT\nUyZT9tEer6tXr55xuo2iQxYEQaCvr0+q8BIEIeFK5uDgAGNjYyxYsGDCWavYhOj69evw9vaWeTwX\nL16Eu7u7zCY0yoSKigq8vLzg5uaGwsJCFBYW4ocffkBUVJTCHQJlhc/no6SkBKWlpfD09MTevXtl\nuhCKneEOHToEc3PzKcf7p9KGaaZQgjyLjBTUlJQUCAQCHDt2DADGtAQfyapVq9DZ2YmMjAypz/N4\nPOTl5U25LFggEJALdrJ6vE6GvG7XCYKQ6krW0dEBNTU1UnQXLlwINzc30pVsOscfaUJkZmYm08lW\nWVmJnp6eWfEKmQ1UVVXh6emJmpoamJqa4ptvvoGjoyMiIiJk7nMob0QiEblgZ2lpiR07dky7AYG2\ntraEM9xk1ppTbcM0U+Z752mlEuSPP/54Ws9NRlFREaysrCZdOSYIArdv3yYXn2T1eJ0qssyQhUIh\nurq6pLqSaWlpkSeLhYUFvL29SXtIeTMdEyIOh4OcnBxs27ZNKcvFp4v4ohYWFgY/Pz8UFxfj66+/\nhoeHB8LCwuYkxnzv3j2wWCyoq6tj/fr1cil4Mjc3R2xsLE6dOjWpM9xU2zDNFA0NDfT09Cj0GHOJ\nUgnyRF64QUFBuHv3Lt544w0MDAxAIBDg/fffR0JCwphtDx8+jLfffhtOTk6Ij4/HJ598AisrK5iY\nmMDR0RHLli1DV1cXLly4ACsrK7z11luoqalBZ2cnPD098fnnn0vU9suT8UIWE6WS6enpkRkNNjY2\nCAgIAJPJVFhHkfGQxYRIKBTi7NmziIqKUshFbS4Z+R1qaWkhJiYGAQEBKCgowL/+9S/4+/sjKCho\nVpzznjx5AhaLBS6Xi9jYWLkb83t7e6O1tXVCZzhxG6adO3cq/MJLhSyUBIFAgBdeeAG/+93vkJKS\ngoaGBvj4+OD69etjsh3U1NTwm9/8Bu+99x5+/PFHJCYmwtjYGKGhoQCAzZs3w8fHB+7u7tiyZQta\nW1vx8ssvIzg4GDt37kRRUZHCBFkkEqG3txc3btyQEN6enh4YGBiQwuvk5ISwsDAYGRkpVZnoVE2I\ncnNzoaenJ5MB+bPE6Iuqrq4uEhMTERQUhPz8fImqP0V8f319fcjNzcWdO3cQFhaGTZs2KUwMJ3KG\nG9mGSVGl9iOhBFlJKCsrw/3797FlyxYAgJ2dHQICAnD8+HH84Q9/ILc7fvw4CgsLkZaWhvb2dty9\nexdvv/02Vq5ciS+++AKamprIzc3F7t27cfnyZZw8eRL/+Mc/sGvXLqipqZHJ8cnJyTMa79DQkNSF\ntb6+Pmhra5ONLj08PMjOws/Cbb3YhEjcCkiaCVFTUxNu3LjxzKS4ycpE78nAwABr1qxBR0cHWfUX\nHh4Ob29vuXy/PB4PxcXFKC8vh7e3N/bu3avwmfh4znDTacM0UyhBVhJaW1thYGAgkbZjbGyM1tZW\n8vebN2/i+PHjqK2tRW9vLzIzMxEREQF/f3+Ym5vjwoULsLW1hYGBAQ4cOABzc3MIBALExMSQs5jR\n+5yM8RpcjkwlYzKZsLKygrGxMaqqqqCuro7w8HD5fTizDIPBQFJSklQToqGhIZw/fx6rVq165vJ1\np8pUMmWMjY2xYcMGtLW1kVV/UVFR0zbtEYlEqK6uRl5eHpYsWYKdO3fKpfR/qox2hluwYAEuXrwI\nMzOzWb0LogRZSVi8eDG6urogEAhIUe7o6JBIY7O1tSWbdqampiIsLIw0gt+yZQv+9a9/gU6nIyEh\nAdu2bYOhoSG2b9+Ojo4OMr2uo6MDFhYWEscenUo2MqNBnEomFt/JUsnmukOIvLC1tYWPj4+ECRFB\nELh06RIcHBxgb28/10NUKFNdmF20aBGSk5PR2NhI9vqLjo6Gg4PDlIW5oaEBLBYLmpqa2Lhx44zL\nmqeLtbU1goKCcOrUKbi6uoLD4eDVV1+d1bsgSpCVhICAANjZ2eHEiRNkWWtZWRkOHjxIbqOhqYXv\nKx7AZf3/4B+7ViA6fjlUVFTQ3NwMOp2O4uJiBAUF4Z133iFfs3XrVnz77bcIDw/HwMAA/v3vf2Pr\n1q0oKiqS6EChqqpKCq+JiQlcXV2nnUr2LJbdSiMiIgKtra2kCdHNmzfR3t6O1NTUuR6aQpmOAFlb\nW2P79u24c+cOcnJyyCasE/lOt7e3g8Viobu7G3FxcXB0dJzzEFBQUBDu3LmD3NxcvP7667O+vkEJ\n8hywb98+XL16FQRBYN++ffj0009Bp9Nx8eJF7N27F+np6RAIBDh58iRsbW2Rk5ODP/3lr2hpe4Tb\nb/4G9IUOENDUseeNt3Dm4s9IiAhAQkICMjMzsWLFCohEIrLB5bp16/DZZ5/Bzs4OPB4PHh4eMDMz\nQ19fH5lKxmQy5VZ19Kx4WUyFkSZEhoaGyMnJQXJyslItQiqC6X6HNBoNjo6OsLe3R21tLS5cuABD\nQ0NER0fD3Nyc3K63txe5ubm4e/cuwsPD4evrqzTrC319fWQj2Hv37s16KzJKkOeATz/9FJ9++umY\nv9va2uLKlStj/r40JBw6yfuxeFhI/k3bMRgA0EwHgsIWgcvlYmhoCENDQ/j4448lUsk+//xz8mdF\np5LNJ0EGfi0gWLduHTIyMhAUFDRnnatnk5l+hyoqKvDw8ICrqyuuX7+O77//HhYWFggJCcGdO3dQ\nUVEBHx+fWVmwk4WRbZicnJxw5MgRLFy4cFZDKHQ6HQRBSIQu5xPz4h39VPMQ450fvKc9+NvhYiTH\n+UFLSwvbtm1TulSyZ53GxkYYGBjg7t27iIiIeC4+W3lcVOl0Ovz8/ODu7o7z588jPT0dBgYG2LRp\n0xgnNmXg6tWr0NPTQ0hICGg0Gl544QW5OMPJAo1Gg4aGBng83rwU5HmxwtTE6ccATyj1OZ5QiJ9P\nfI23334ba9aswZMnT9DR0TFntz3zbYbc1taG8vJyJCcnw8TEBJcvX57rISkceZa/37lzB+np6Rga\nGsIrr7wCNzc3fP/997hy5QqePn0ql+PIg6qqKjQ3N2PNmjXk+3dycoK7uzvOnDkDkUg0a2OZz2GL\neXGJsWLqQFudLlWUtfT0sTftLFY6G4LD4eDu3bsoLi4Gl8uFtrY2mEzmmIeurq7CFk/mkyDzeDyc\nPXsWiYmJYDAYMzIhepaQx3f46NEjsFgs9PX1ITY2lsy6sLKyQkBAAAoLC3HgwAH4+voiJCRkTkMX\nE7VhioqKwvHjx2XuLjMT5rOfxbwQ5JUe5vjLpdtSn1Ol06HRXouyXg1EREQgIiKCPKF6enrILIr2\n9nbU1taCw+FAKBRKFeqRLeUpfr2FtbS0JN3AZmJC9KwxXUHu6elBbm4u7t27h4iICPj4+IxJhdTR\n0cHy5csRFBRE9voLCgrC0qVLZ7092GRtmMTOcOJCodnoBEPNkJUcXQ1VZKQsRUpGOQgCGOAJoUYT\nQZVOx9HtgfC1XI7bt2/j559/hqamJiIiImBrawt9fX3o6+uPyZkdGBgge8FxOBxUVVWBw+Ggr68P\n+vr6UsV6qouB82WGXFdXh6amJuzatUvi79MxIXrWmM7d0/DwMNhsNiorK+Hn54e9e/dO+j/DYDCw\nevVqcDgc5ObmYv/+/WRu/WxMDEQiEc6cOTNpGyaxM9yxY8em5Aw3UyhBfgbwtzJE+f+LxU81D9HE\nHYAOMYChX4rgs3gZVFRU4ObmBhcXFwlhjoyMhI2NzZgTTFtbG5aWlmMWVsQGQGKhbmhoQGlpKbhc\nLjQ1NceItLGx8Zjwx3wQ5L6+Ply6dAmbNm2SKipubm548ODBlEyInkVk+Q6FQiGqqqqQn58POzs7\n7N69GwsWLJDpeEwmE+vXr8fDhw+Rm5uLkpISREZGwt3dXaGFRllZWVBRUZlSYwIzMzPExsbi5MmT\n2Llzp0KzleazINOIZ10dJuD48eOwtbVFYGCgxN9FIhFu376N/Pz8CYV5qojDHyNn1eIHn88nxdnI\nyAgcDgcqKipYuXLlMxn+IAgCx44dw+LFiyf0qBYKhThy5AicnZ0nNCF6FuHxePj888/x+9//ftxt\nxAt2WVlZ0NPTQ3x8vNxCOM3NzcjOzsbQ0BCioqLg5OQk94verVu3kJWVhZ07d8qUg//TTz9hYGBg\nXCxN1LkAACAASURBVGc4efDTTz/B1NQU/v7+Ctn/XDJvZsjSiI2NxXfffQcvLy+JW+fRM+arV6/O\nSJhpNBoZ/rCzs5N4TtyvTlz19/DhQzx9+hQ3b96EgYEBmEwmjIyMyDzoubDVlIXS0lLweLxJvTjo\ndDrWr18/oQnRs8xE85iHDx8iMzMTAwMDiI+Pl2iOKg+WLFmCbdu24e7duxJVf/JyKBS3YdqyZYvM\nBVHLly9HRkYGioqKSHdFeTOfZ8jzWpBNTU1hb28PNpsttTfYSGG+devWjIVZGlpaWli8eDHphqWr\nq4u+vj7ExMSgs7OTFOp79+5NGP5gMpnQ09Ob09v/x48fg81mY8eOHVO6VZ7IhOhZZrzvoLu7Gzk5\nOWhsbERkZCS8vb0VFlKg0WikZ8itW7dw6dIlMBgMREdHj/FikQVxG6b4+HiYmZnJ/HpVVVVs2LAB\naWlpMDc3V4iNLSXIzzBRUVE4ePAg/P39x22xo6KiAnd3d7i6upLCrKWlhYiICLkJsxjxvlRVVWFi\nYgITExOJ5wmCQG9vL5n98eTJE9y+fVsi/DH6MRvWnXw+H2fOnEFcXJxMLmPSTIiedUbHkIeGhsBm\ns1FVVQV/f3+sWLFi1u5yaDQa3Nzc4OzsjOrqapw+fRpmZmaIjo4e8781GeI2TLa2tvD09Jz2mBYs\nWIB169bhhx9+wI4dO6Cvrz/tfUlDQ0NDqXK05cm8F+QFCxbAz88Pubm5WLNmzYTbzpYwT3S7S6PR\nwGAwwGAwJgx/cDgcVFdXg8PhoKenZ9zsD3llOYjbWk3nRB1tQjQfIAgCQqEQ165dQ2FhIezt7ae1\nYCcv6HQ6fH194enpiYqKChw9ehS2traIjIyc8gW0oKAAg4OD2LBhw4zHY2VlheDgYJw6dQqvvvqq\nXKvqxJV685F5vagnZnh4GPv378eWLVtkWlgRiUS4desWCgoK5CbMpaWl6Orqktp6aroIBAIy/DH6\noaGhITX7Q5bwR0NDAy5evIjdu3dPu1/fwMAADh06hOXLl8vU+VsZEQgE+Oijj2BgYAADAwPExcXB\n1NR0roclwfDwMEpKSlBeXg5XV1eEh4dPGDK6e/cuLl68KNfQEkEQOHPmDNTV1bFq1Sq57BP4NeWy\npqYGGzdulNs+lYV5P0MGfr2ihoeHg8ViydQJZPSM+cqVK9DW1p6RMCsiBjxZ+GOkQNfX14PD4YDH\n45GLiUZGRqRQjw5/9Pf348KFC0hKSppR81RtbW2sX78eJ06cgImJybS7Ic81ra2tyMzMBEEQSEhI\nGHMXoyxoaGggMjISS5cuBZvNxldffQUfHx+EhISM+R47Ozvx448/YsOGDXKN89NoNKxatQrp6emo\nrKyUmzMcFUOeB/j6+qKsrAz37t0b04NvMsYT5sjISFhbWyutH/LI8Mfo9zw4OEjmVHd0dKCmpgYc\nDgfd3d1k+MPIyAj379+HlZXVtBZ4RrNo0SJERETg1KlT2L59+zNlQtTV1YWcnBw0NzcjMjISLS0t\nSivGI9HW1kZ8fDwCAwPJXn+BgYEIDAyEuro62YYpPDxcIYZG6urq2LhxI7755hu5OcPNZ0F+LkIW\nYurq6pCfn4/U1NQZLS6JQxn5+fkyC3N5eTk6OjqwYsWKaR9fkQgEAnR1dYHD4eDGjRtobm6GgYGB\nRPhjdJreeN1RpEEQBM6ePQtVVVWsXr1awe9m5gwODqKwsBDV1dUICAhAUFAQ1NTU8MEHH+CPf/zj\nXA9PZrhcLvLy8tDU1ISQkBC0traS34UiM3jq6+tx5coVpKamztgZjsPh4Pvvv8fevXvlNDrl4bmZ\nIQO/ulMVFxejpqYGXl5e097P6Bnz5cuXpyzMyl61Ju6MQqPR8ODBA7z66qswNjaWaGM1OvwxPDw8\nbvbH6MUcsW2jspsQCYVCVFRUoLCwEE5OTnjttdfG3M4TBKH03+dojIyMsG7dOrS3t+PMmTPo7OxE\nQkKCwt+Lk5MT2tra8MMPPyA5OXlGE6L5PEN+rgSZRqMhPj4eP/zwA1xdXWd8yzxSmGtra6cszMp+\nUyIUCnH27FlERUWRvgQ0Gg0LFizAggULxoQ/hoaGJOLUI8MfDAZDqlgrqwkRQRCoq6tDVlYWmEwm\nXnnlFZnTx54FhoaGMDg4iLVr16KiogJlZWWIioqCs7OzwoQ5KioKJ06cmHG2DSXI84jFixdj0aJF\nKCsrk1slkbgDhJubGynMOjo6iIiIGCPMz4KXRV5eHvT09KbcTVhTUxMWFhZjChKEQqFE9kdTUxOu\nXbsGDocDNTU1aGtr48iRIwgLC8PChQsnbA47G7S0tCAzMxN8Ph8rV66csKhB/D0+azNk4NcWUWfO\nnEFSUhJsbW3h4uKCe/fukVV/0dHRsLW1lft7U1FRwdq1a8miEVdX12ntR01NDQKBACKRaF7ktY/k\nuRNkAIiJicHhw4fh4+Mjt155wNSEWdkFuampCdXV1di9e/eMT0g6nS7V/Usc/uBwOMjPz0dlZSX0\n9fXJNlvjZX8oqkNEZ2cnsrOz0draiqioKHh4eEx6oiv79zgeAoEAp0+fxtKlS8k7HRqNhv/f3nnH\nNXX3e/yThCV7b2UIiIIsBZGNDBdYt/VxoRVtrW1tbWvHo4+t7W2vbZ/Wq9XW2mKrlUcRFa1WDQoC\nIgVrAAUUQZC9h+yE5Nw/uDmXESSBBKL+3q9XXpCzc07OJ9/z/X2HjY0NJk6ciLy8PFy+fBnq6uoI\nCgqiM0ylRe/KcIaGhsOqDCfsGtLV1TWiyB955IUUZD09PTg6OuLGjRtSjQcW8jRhluebuLOzE+fO\nncOCBQtk2pKnt/vDwsICUVFRsLGxwbp169DZ2dkn+kNYo7qxsZF2f/QfVBzuTdnR0YGkpCRkZWXB\n09MTCxculMiNJc/XcjCEYivq6ZDBYGDKlCmwt7dHVlYWYmNjYWhoiFmzZknVrWRiYoKQkJARVYYj\ngvyc4e/vj++//x4zZsyQWUysKGGmKAo6Ojpy97hLURQuXrxI10cYLUQVITIzMxsQHsXn8+noj9ra\nWjx+/LiP+0OUUGtpaYk8x93d3UhPT8fNmzcxefJkbNmyBerq6hIdtzxdO3G5c+cOiouLERkZ+dTj\nZzKZcHV1xdSpU3H79m0cP34cVlZWCAgIgJ6enlSOxcXFBWVlZTh37hyWL18u8fl8Xv3IL1TYW3+S\nkpJQU1ODpUuXjsr+BAIB/vjjD+Tm5sLIyAgBAQGwtLSUi5s7OzsbycnJ2LRp05jEBxcWFiIuLk7i\nTDGKotDa2ton+kP4Ero/hAKtp6eH5uZmZGRkwMjICMHBwcMupv7555/j/ffff2ZiqcvLy3HixAlE\nRERI/Jm5XC7S0tKQlpaGyZMnw9/fXyop4t3d3Th69Cjs7e0lHs/55ZdfEBwcLJfNYEcCa/fu3bvH\n+iDGClNTU7DZbIwfP35UahAwGAy0t7dDQUEBDg4OYLPZyM3NpUt3jpUwNzU14dSpU3j55ZcHLcAk\na3R1del0XycnJ7HPhdCfqKOjAzMzM9ja2sLZ2ZlueWRubg4VFRVUVFQgLS0Njx49QldXF/h8Pqqq\nqlBZWYnm5mbweDwoKiqKLbDJycnw8vJ6Jmpat7W14dixY5g3bx4sLCwkXp/FYsHCwgJubm6oqKjA\nhQsX0N7eDhMTkxH9IDGZTNjY2OD8+fMwMjKS6Ek1NzcXxsbGUrPY5YUXWpBZLBaUlZWRmpoKFxeX\nURHE6upqNDc3w9/fH+7u7lBQUBhTYRYIBIiOjoabm9tT2/SMBhYWFsjJyUFNTY3E2ZSiUFBQAI/H\nQ0ZGBkpLSxEaGoqlS5fCx8cHtra20NLSAo/HQ2VlJe7evUt348jPz0dZWRkaGhrQ2dlJf096X5eU\nlJRnQpAFAgFOnjwJGxsbeHh4jGhbioqKdCW4oqIiXLx4ETweDyYmJsMecFVWVoapqSnOnDmDKVOm\niF0MKz8/Hzo6Os9dSOIL60MW4uLigrS0NDx48GBUit70Hp3v7WO+e/cu/vjjD6irq4+qKyMlJQUK\nCgqYOXOmzPc1FAwGA4sXL8bhw4cxfvz4EV2P9vZ23LhxA3fv3oWXlxcWLVpEW3MsFot2Y/RG6P7o\n7fYoKChAXV0d2tvb+0R/CAQCVFdXw9jYWK7dFteuXQODwRCrDZO4aGhoYP78+Zg5cyadju3t7U0b\nGJJiaWkJb29viSrDKSkpPZc+5BdekJlMJkJCQnDlyhXY2dnJPK5RVLgUk8mEs7Mzpk6dSguzhoYG\n/P39ZSrM5eXlSE9Px6ZNm+TCjw30hEUtXboU0dHRwypC1N3djb/++gs3b96Eo6MjXn/9dbEjRhgM\nBjQ0NKChoQErK6s+87q6uvpEf1AUhbi4ODQ1NUFDQ4MW6t6DitIMqRwOOTk5yM3NRWRkpEy+17q6\nuli0aBGqq6uRkJCAtLQ0+Pn5Daswv6enJ8rLy3Hx4kUsWLBgyO/j8zqo90K7LITo6uriwYMH6O7u\nhqmpqUz3VV1djfr6epHt0hkMBoyNjeHu7g4mkwk2m428vDxoaWlJ3ZXB5XJx/PhxhIaGSj3WdKRo\nampCUVER8fHxcHZ2FsstQFEU7t27h5MnT4KiKCxZsgTOzs5QUlKSyjEpKChAQ0MDRkZGsLa2xq1b\nt/Daa68hICAAdnZ20NbWBo/HQ1VV1QD3R2lpKe3+YDKZA9wfsqCmpganT5/GypUrZV5ZT11dHY6O\njhg/fjz++usvpKSkQE1NjU7BFwdhLPSNGzfAYrGGvA/LysrQ3d094IfzWeeFt5CBni9DcHAwoqOj\nMXXqVJl2exDnCzoaFvPly5cxYcKEYWdLyRp3d3eUlpbi0qVLQxYhKi4uBpvNBgAsWrRoWANXkiK8\nBiwWC3p6etDT08OkSZPo+RRFoa2trU/0R3/3R/90cj09Pam4P4RtmEJCQqRSpU9czM3NsW7dOjx6\n9AjXrl3DzZs3MWvWLLF7CvauDGdkZPTUVlTKyspobm6W5uHLBUSQ/w9TU1NYWVkhNTVVqv62/kiS\n4fU0YR6JZZCXl4fi4mJs3rx52NuQNeIUIaqrq0N8fDyqqqoQFBQER0fHUXO9DHUdGQwG1NXVoa6u\nPuBacbncPn5qYYuuxsZGqKuri6z9Ia7bhaIonDt3DhMnThxRAa2RYG1tDSsrK9y/fx9sNptOx75z\n5w4++eQT5OTkICMjgz6+kpISrF27FpmZmfD398fevXsRExPz1MpwolwWQvdbU1MTiouLZf0xZcIL\nHYfcn6amJhw+fFhkZS9pce/ePeTl5WHZsmUSrysQCHD37l0kJSVBQ0ODHvyThJaWFvz4449YsWKF\n3LkqRFFbW4ujR49izZo1dLZYW1sbEhMTkZubC29vb3h4eMgsrXow9u7dK5F/WhwEAgGd/NL7VVtb\nCyaTKbLzi5aWVh9/bVJSEgoKCrBu3Tq5iAARfmcTExPplmIrVqyAk5MT0tPT+1y3gIAAJCYmAgCu\nX7+O0tLSQSvD5eTkICcnZ0C7qcTERERERDyzgkws5F5oa2vDxcUFiYmJCA8Pl8k+RmLB9beYL1y4\nIJEwC62n6dOnPxNiDAAGBgaYO3cuTp06hfXr1yMzM5OOVX799dfHbOBMFpY4k8l8qvujt0g/evQI\ndXV1aGtrg66uLu2vLSgowNKlSyEQCORCkIXfWUdHR/z999+IiopCYGAgbt++jf/+7//Gxx9/LHK9\ngIAAnDhxAvHx8QgNDR0wX0VF5bkc1COC3A9fX18cOHAAnp6ew87iehrSKEozXGFOS0sDl8uFn5/f\niPY/2jg4OODOnTv4n//5H9ja2uKVV14Z84SA0Swu1Nv90f/6crlc1NfXo7i4GAkJCTAzM8PVq1fR\n0NBAD6yJiv4Y7agaFosFDw8PNDc3Izo6Gvr6+vjkk08QHByMGTNm9Fk2JycH77//Pjo6OvDo0SNE\nRERg9+7d4HK5CA0NxY0bN7Bjxw5cuHABX375JdasWYMPPvhA5H5bW1vx5ptvIj8/HwKBAGvXrsWr\nr74KAIiLi8OXX34JVVVVMJlMfPrpp2Me/kkEuR/jxo2Dt7c34uPjsXLlSpnsQ1o3cm9hzs7Oxvnz\n56GpqSlSmKurq5GSkoKNGzc+UyULi4qKcPXqVbBYLGhra8PMzGzMxRiQn2pvSkpK0NfXR1xcHIKD\ng+nkD4FAgKamJtrlUVZWRncpZzAYImt/aGtry/y7oaioiAkTJmDHjh0oLS3FsmXL8MMPP8Df359e\nprW1Fbt27cKMGTNQUlICd3d3zJkzB56enkhMTASDwUBbWxu2bNmClStXwsHBAW5ubiIt6bfffht8\nPh8pKSloaWmhrXUfHx9ERkbi7t27MDIyQlxcHK5cuUIEWR7x8PBARkYGiouLJfbRDoWsHnVdXFzg\n5OREC7OWlhYdlcHj8RAbG4uQkBCxW8KPNbW1tWCz2aitrUVwcDCmTJmCJ0+e4KeffoK5ufmoRFIM\nhTwIMkVRuHDhAoyMjODu7k5PZzKZ0NXVha6uLuzs7Pos397e3if6o7/7Q1T0h7TCB4WMGzcOsbGx\nmDJlCs6ePYt79+6hqakJnZ2dsLW1xQcffIC3334bSkpKdMdyFxcXOpNv+fLlyMjIgK6uLubNm4f/\n/Oc/AwRZIBDg2LFjuHLlCoCehJbw8HAcO3YMPj4+0NXVxU8//YStW7ciPDwcs2fPlupnHA5EkEWg\noKCAWbNmgc1mY+PGjVIVUVlaVoMJs4qKCgwMDODs7CyT/UqT1tZWJCYmIi8vDz4+Pli+fDk98KOl\npYVFixYhNjZWqu3qh4O8JNL89ddfqK2txYYNG8Q6JgaDATU1NaipqQ3q/ujfokvo/hgs+mO458LI\nyAgHDx7E+vXrkZKSgt9++w379+9HQkICFBQUkJycDBaLhYCAAGhpadGdsQHA0NCQ9iHr6enh7t27\nA7ZfW1uLrq4uvP/++3SZzqamJjq6g81m47/+679gb28PX19f7N27d8zjmokgD4KjoyNu3bqFnJwc\nODo6SnXbsrasegtzfHw80tLSYG5ujsePH0vd4pcWPB4Pt27dQlpaGpydnbF161aRtW4nTpwINzc3\nxMbGYu3atWPmfpEHl0VxcTFSUlKk1sFbSUkJJiYmA2KXe7s/6urqUFFRgezsbNTW1gKAyOgPcd0f\nK1aswOnTp/H2229DX18fERER2LdvHzw8POhwRx6Ph6lTp6K1tRUpKSkAen64eTweBAIB6urqRMZb\nGxgYQFlZGQcOHKCfHng8Htrb2wH0GF6HDh3Cv//9b7z77ruIiIjAjRs3RnQORwoR5EFgMBgICQnB\n+fPnYW9vL7WwqtG0rDo6OnDv3j2sWrUKLS0tA1wZ8oBAIEB2djauX7+OCRMmYOPGjUNmlvn5+aGs\nrGzEvdlGylgKsrAN08KFC2XuhhrK/dE7+qO4uBh1dXVobW2Fjo7OgM4vPB5vwPYPHjwIBwcHTJky\nBQYGBnBzcwODwUBeXh7+/PNPZGZmAgBdNxsAYmNjoaGhgcrKSly6dAm//fabyONeu3Ytjh07Rgvy\nZ599Bn19fbzxxhsICwtDeno6xo0bBw8PD2RlZcni9EkEEeSnYGVlBQMDA2RkZEjN2T9alpXQtzh1\n6lS6ctpgPuaxorCwEGw2G0pKSli2bJnYoXjC3mzSKEI0XMbSZdG7DZONjc2YHUdv90d/nz6Px+tT\n+yM/Px8HDx5EXFwcurq6cPfuXWzcuJEeVPz2229x5MgRAD0x3qtXr8bBgwdhbm4OHR0dfPTRR2Cx\nWFi8eDHeffddKKuq4cAvv+PfB39C0JJ18PKfhfT0dGzbtg1VVVVYtmwZYmJi8O9//xvbtm2Dl5cX\nFBUV4erqil27dgHoaVLh6+sLJSUl8Pl8fP/996N+DvtDEkOGoKamBr/++uugj9CSkp+fj4yMDKxa\ntUoKRzc4f//9N27fvo1XXnllgHXP5/PpBJOxEOaamhqw2WzU19cjODh42J2Oy8rKEB0djVdeeUXm\n9Rr6s2/fPqxdu3ZMBkn/+OMPtLW1DavTxlgjEAjQ3NxMC3Vv65qiKJF+am1tbRQUFOD69etQUlLC\nxo0bYfnaT1DQMgIPTKgqscBgAEcjPOBuObrfA2lDLOQhMDQ0xKRJk5CSkiKVx+PRuIHq6upw7do1\nrF+/XqSrhcViwcXFhY5jFlrMAQEBMo1eaGlpQUJCAh48eAA/Pz+8/PLLI0peMDc3h7+/P06dOiU1\nP6okjIUtw+FwxGrDJK8wmUzo6OhAR0dnQKuw/tEf/d0fenp66OzuOec8igkKPT7qdi4fABBxNB3p\nHwZDTfnZlbVn98hHkcDAQBw6dAju7u7Q1tYe0bZk7bLg8/k4c+YMAgMDh0xs6S3M2dnZiIuLk4kw\nc7lcpKamIj09Ha6urnjjjTfELkQ+FJIUIZImYzGoV1FRgfj4eERERMi0ANZYoaqqCgsLiwHfva6u\nLhQXF6OwsBDb33wXAFB7fi8MFn0IBY3/r2lNUcAf2RVY4f7stnUigiwGGhoamD59OhISErBo0aIR\nb0+WN3JiYiLU1dUxffp0sddhsVhwdXWlfczSEmaBQIDMzEwkJibCwsICmzZtGvEPWn/EKUIkC0bb\nOm1ra8OpU6cQFhYmkwxSeUDYyLa2tpa2lIV/VVVVoaKiAo+1H+BOh+jEoHYuH8X17aN81NKFCLKY\neHt7Y//+/aisrBxRSUNZ3siPHz9GZmYmXn311WHtR5Qwa2trw9/fX2JhLigoAJvNpovJ9O8iLU2U\nlJSwfPlyHD16FCYmJlJtWT8Yo2khCwQCxMbGwtHRcczbbEmD7u5uNDQ00MIrfDU2NtLF/g0MDOiq\ncY8fP8aDBw9gbGwMX7OJyPu7AR3/56bojaoSC5Z6Y9sUYKQQQRYTZWVl+Pv7g81mY82aNcMWVlnd\nyJ2dnTh79iwWLFgw4gpk/YX53Llz0NHREUuYq6qqwGaz0dzcjODgYEyaNGlUrMneRYg2bdokNZfI\n0xgtQRa2YZo1a9ao7E9a8Hg82srtbfE2NTVBW1ubFl5hYoawHnR7ezuys7ORmpqK7u5uuLq64rXX\nXoOmpiZau7px5E68yP0xGECYk2wbTMgaIsgS4Obmhr/++guFhYXDDjeSlSBfvHgRdnZ2AwZKRoIk\nwvzkyRMkJCTg4cOH8PPzw7Rp00a92pijoyNKSkrojC5Z/hCMlstC1m2YpEFXV5dI4W1paaEr0enr\n68PR0REGBgbQ1dUdMNgsEAjw6NEjcDgcFBYWYtKkSXSX7N7nWl1ZAUcjPBBxNB0U1eOm6B1l8SwP\n6AFEkCWCxWIhKCgIbDYb1tbWw75BpC3I2dnZqKqqwqZNm6S6XSFPE2ZjY2OkpqYiIyMDbm5u2Lp1\n66hYp4Mxe/ZsREVFITU1Fd7e3jLbz2i4LGpra3Hp0iWsXr16zPvzAT2JRr2FV/hqb2+nEz/09fXh\n4uJCC+9Q90hTUxM4HA4yMzOhpqYGV1dXhIeHP/U75G6pi/QPg/FHdgWK69thqaeKMCfTZ16MASLI\nEmNvb49bt24hOzt7WB0ZpG1ZNTU14cqVK1izZo3Mw756C3NWVhZOnjwJLpcLS0tLbN68GVpaWjLd\nv7jHKMzoknURIlkK8li1YQLQp/VUb+Hlcrm08BoYGNCJU/2L5A9Fd3c37t+/Dw6Hg8rKSkydOhUr\nV66UyPevpqzwTEdTDAYRZAkRplSfPn0aDg4OEougNC0rgUCAs2fPwtvbe1QGsoAeESosLMStW7dg\naGgICwsLegAwICAAEyaM/U2ipaWFhQsXyrQIkSxdFsJGAlZWVjJrw0RRFFpbW/sIrlCA+Xw+DA0N\nafG1tbWFgYEBNDU1R/S5q6qqwOFwcPfuXRgbG8PV1RUrV64c9W4v8gw5E8Ng/PjxMDMzQ1paGnx9\nfSVeX1qCnJKSAhaLNWo1XCsrK8Fms9HS0oLg4GDY2dmBwWDAz88P2dnZOHv2LHR0dORCmG1sbGRa\nhEiWLovk5GS0tbUNq81XfyiKwpMnTwa4Gerq6sBkMmk3g4GBAV1LQl1dXWo/OJ2dnbh37x44HA5a\nW1vh4uKCyMjIZ6YM7GhDBHmYBAUF4eeff4abm5tEUQ3S+qKXl5fTTR1lPcDU3NyMhIQEFBYWwt/f\nH25ubn0Err8rQ16EWZZFiGQlyAUFBbh9+zYiIyMlGhTtX5C+t/AqKSnRbgZTU1M4OztL1DhVUiiK\nwuPHj8HhcPDgwQNMnDgRgYGBIxp3eVEggjxM9PT04OjoiKSkJMydO1fs9aRxI3O5XJw5cwZz586F\npqbmiLb1NLq6upCSkoK///4b06dPx9atW5+aIcZiseDm5gZnZ2damHV1deHv7z8mwizrIkTSFuTG\nxkacO3cOy5YtG9TNIhAI+sTw9k6eELZs0tfXx4QJEzBt2jTo6+tLpQaLOLS0tCAzMxOZmZn0j3Ro\naKjMhP95hAjyCPD398f3338PDw8PidoKjfRGvnz5MiZMmAAHB4cRbWcw+Hw+7ty5gxs3bsDGxgav\nvvqqRMIvT8KsqqqKpUuXIjo6GoaGhlIrQiTtpxIej4eTJ0/C19cXFhYWA5InhMLb0NBAJ0/o6+vD\n2toaM2bMgL6+/pikU/P5fDx8+BAcDgclJSWYPHkyFi1aBDMzs2ey1sZYQwR5BKipqWHmzJm4fv26\n2P6+kX5J8/LyUFxcjM2bN49oO6KgKAr5+fmIj4+HhoYGVq9ePaLBQnkRZlkUIZKWy0KYPPHnn3+C\noigUFRUhIyNjQPLEpEmT4OPjQydPjDV1dXXgcDjIzs6Gjo4OXF1dsWTJEqm3enrRIII8Qjw9PXHg\nwAGUlpaKVc93JDdyS0sLLl68iBUrVkjdGqqoqMDVq1fR3t6O0NBQ2NjYSM3CkQdhlkURIkmuI5fL\nFRnR0NLSAhUVFfB4PLi7u8PY2HjQ5ImxhsvlIjc3FxwOB/X19XB2dsa6deugr68/9MoEsZCv8qgI\n+QAAF5ZJREFUK/4MoqioiICAALDZbKxfv14sERuOIAtDoaZPny52IXdxaGpqwvXr11FUVISAgAC4\nurrKbOBlLIVZ2kWIBrvOnZ2dIoW3ra1NZPLEkydPcObMGWzevFkuIw8oikJ5eTk4HA5yc3MxYcIE\nzJw5E7a2tqOeifkiQARZCjg7OyMtLQ0PHjwYcuBouFZnWloauFwu/Pz8hrV+fzo7O5GSkoI7d+7A\n3d0dYWFho/a4OZgwBwQESPXHpj/SLEIkEAhQWVmJqqqqIZMnhEXW+//QPXnyBGfPnh2VNkySIqwn\ncefOnQH1JAiygwiyFGAymQgJCcHly5eHtByG47Korq5GSkoKNm7cOGLrlc/n4/bt20hOToadnR1e\ne+21Meve3F+YY2NjoaenJ1NhlqQI0dOSJzo6OpCRkQFzc/NhJU/ISxum3ohbT4IgO4ggS4mJEydC\nU1OTtjifhiSCzOPxcObMGYSEhIzIiqIoCvfv30d8fDx0dHSwZs0aGBkZDXt70qS3MGdmZspcmPsX\nIQIwIHlCKLwMBqNP1poweSImJgZBQUHDTs2+cuUK1NXV4ePjI82PNiyGU0+CIBuIIEsJYUr1iRMn\n4OTkNOigm6SWRnx8PPT19eHs7DzsYysrKwObzUZnZyfmzp0rNxZZf1gsFqZNmwYXFxdamPX19eHv\n7y8VYaYoCk1NTaitrYWGhgZycnLw3XffobOzs0/yhImJCZycnGBgYDBoDO1ILEYOh4OioqIxbcMk\njXoSBOlDBFmKmJiYwNraGqmpqQgMDBS5jCQui4KCAty/f3/YBecbGxtx/fp1PH78GIGBgXB2dn4m\nMqVGKsyDJU/U19dj3LhxtPB6eXkhJSUFS5Ys6dPeXhyGGy0z1m2YSD0J+YZcBSkTGBiIw4cPY/r0\n6YP6ZsW5kdva2nD+/HksWrRI4kyrjo4OJCcnIzMzEzNmzEB4ePgzGR86lDDz+XzU19ePKHnCyMgI\n58+fH1YRIkkFub29HadOncL8+fNHtQ0TqSfx7EAEWcpoa2vD1dUVCQkJWLBgwYD54obFXbhwAVOn\nToWVlZXY++bz+cjIyEBycjLs7e3HdMBOmggEApiZmSEwMBD37t3Db7/9BgaDAT6fDx0dHVp47ezs\n4O3tDX19fbGTJ4ZbhEjSJxaBQIDTp0/D0dERU6ZMkWjd4UDqSTybEEGWAb6+vti/fz9qampgaGjY\nZ544j7p37txBc3Mzli5dKtb+KIpCXl4e7W9et27dgP0+C/ROnuhdJOfJkyd05wkzMzM4OTmhvr4e\nHA4H2tra8PLyGpGPeThFiCR1WVy/fn1U2jCRehLPNkSQRwCbzcZ7772HrKws+Pn50V1zN2/eDB8f\nH8THx+Mf//hHn3WGupEdHBwQFhaGd999Vyy/XmlpKa5evQoej4ewsDBYW1uP+HPJGkmTJ3R0dESG\nEvr6+kpl8G84RYgkEeTc3Fzcu3cPmzZtkol1SupJPD8QQR4BISEh+O677xAYGIhr165BQUEBOTk5\ncHV1xfnz51FbW4uioqIBbofBbmQ+n4/IyEh4e3sP6WNsaGjAtWvXUFZWhsDAQDg5Ocndo2h7e7tI\n4e3q6uojvJaWljAwMBCZPPE0pBmVMZwiROIIcm1tLS5evIhVq1ZJvQ0TqSfx/EEEWco4ODhg6tSp\ndCo1m83uE970NIslMTERhoaGmD59+qDLdHR0ICkpCVlZWfD09MTChQvHtNiMMHlCVK81Pp9PRzRI\ns/NEf3oLM4fDoYU5ICAA5ubmYm9HWIQoJiYGGzZseOp5Fef4e7dhMjWVTjdkUk/i+YYIsgzg8XhQ\nVFREbGwsoqOjceTIERgaGuLw4cNQUVFBdnY27O3tYWRkBA8PDyQnJ6O8vBzW1tbIysoCl8tFREQE\n7t+/jy1btgDouRH9/f2hra2NKVOmYMuWLVBXVx+1zySq88RgyROTJ0+WeucJcWCxWJg+fTpcXV3B\n4XBw+vRpGBgYwN/ff4Aw93c3URSFyspKeHp6Ys6cOfjzzz9FDsoKGcplIc02TKSexIsDg5J169zn\nnMTERAQGBoLH40FBQQGJiYkIDg7GzZs3kZ6ejrCwMJw/fx7q6upITEzEvn37cOzYMWhpaWHLli24\nc+cOLC0tMW/ePPz444+IjIxEREQEIiIisHz5cixevBiOjo44e/YsYmNjwWazZRoy1Tt5ov/gmjB5\nonethqclT4w13d3dyMzMREpKikhh7n/tGhsbYW9vj02bNsHY2BheXl6DFiH6/fff4e7uPmj8clJS\nEh4+fIiIiIhhi6aoehLOzs6knsRzDLGQpURQUBD4fD5YLBZiYmIwY8YMVFZWYv369aiurgafz4eC\ngkIfi3HSpEmwt7dHbGwstm/fDltb2z7bVFJSwtdff43Fixdj9erV2L59u9T8kAKBAI2NjQPcDP2T\nJ8aPHw83N7dR7TwhLRQUFDB9+nTaxxwTEwNDQ0ORFjMA6OjowNfXFxwOB1FRUU8tQvQ0y7+goAAZ\nGRkSt2ECSD2JFx0iyFJCOKgn5OHDh1i+fDlu3rwJS0tL7Ny5E3/++WefR10tLS1kZ2ejqqoKmzZt\notdtbW3FqVOn4OTkBG1tbRw5cgSXLl3Cp59+KnHY1NOSJ9TV1WnhHevOE7JkMGEWNfjV3d1NFwya\nPHkyAgMDoaenB4FAgJ07d2Lu3LlIT0/HRx99BB6Ph23btuHcuXPg8Xg4deoUPvnkE1y+fBleXl7Y\nvn07vd3ffvsNBw8ehLKyMszMzPDDDz/0sXRJPQkCQARZZnA4HGhqatKFhkxNTdHV1QXg/0fnu7u7\nceXKFaxZswaKiopob29HQ0MDkpKS8Oabb8LT0xMTJkwARVE4fvw4wsPDUVNTI9JFwOPxRApvY2Mj\n3XliuMkTzwv9hTkqKgpAT60PS0tLlJSUgKIo7Ny5E93d3Xj33Xcxd+5ceHp6ws3NDdOmTQOHw4GH\nhwfWrl2LL7/8Er6+vnjvvfewcOFCLFmyBKtXr8aGDRuwZMkSpKWlwdPTEzdv3sQ777yDvLw8GBgY\n4L333sM777yDH374gdSTIPSBCLKMsLGxQWNjI/Lz82FnZ/d/4V5cnEgrRkqLHgwaalBTWwcvLy/o\n6+vj5s2bSE1NBdDj/vDx8cGcOXPw66+/wsjICH5+fuDxeODxeKioqBjgauidPGFgYAAHBwfo6+tD\nT0+P1Cnoh1CYm5ubcfDgQQQFBdGDel999RXMzMxw8+ZNPHr0CF988QWOHz+OmpoazJgxA7///jt2\n7doFoCdUztPTE0BPdE1VVRUsLCzg4+MDOzs7PHr0CJ6enjh69CjCw8Np339oaCjCwsJga2sLExMT\nUk+CQEO+ASNAOFIP9Ijop59+Cn9/fwCAm5sbPvroI4SGhsLZ2RksNR00t7Tig/fewTjHYDSyD4Hf\n2ojX3tqODatfhomJCYqKilBSUoJvv/0WhoaGCA0NxezZswH0lIdcuXIlvv/+e+jp6dHCO1TyBGFw\nhOcrJycH9+7dw/vvv4933nkHPj4+KCsrg46ODlRUVLBs2TL89NNPUFVVRVlZGb1+7yeV6upquisJ\ng8GAgoICuFwugB4LPCcnB9OmTUNrayt4PB50dHSwZMkSua28RxgbiCCPgJCQEGRmZg46f8+ePdiz\nZw9au7ox44t4THjv/xuhjov8AQDQyRDA1d0AasoK0NTUxMyZM1FbW0s/3u7evbtPVIOkyROEoRFa\nzOfOnYOlpSU+/PBDeHh4oLGxEd3d3dDS0sLChQtx+PBhODo6Aug7qPf48WOUlJTAysqqjxuIoigU\nFxeDz+fDzMwM77zzDlxdXWFtbY2GhgYSO0wYALmzR4E/siswWHChgKJwLCkXmZmZaGlpgaGhIby9\nvbFw4UL4+/vDyckJ48ePh7q6OrhcLhoaGtDY2IiWlha0t7eDy+WCz+dLpQPyi46mpia2b9+OrKws\nhIaGQldXF2+88QbKy8vBZDJRXl4OLS0tPOngIq+ZhVauAEeT8xEdcwb29vb0IGFLSwuam5tx7do1\nXLp0CUuXLkVFRQWCg4NhY2ODhw8fIjw8fIw/LUEeIRbyKFBc14Z2Ll/kvG6wwNIyhqlpzyBfe3s7\nWlpa0N3dDT6fT//t/b+ovxRFQUFBASwWS+K/w1lHnL/yHKbV39106NAhTJkyBVu3bsXevXvx1ltv\n4cSJE/jnP/8JPz8/sFgsHDp0CCUdinDe9jMqzh0Ft7Eeb735JjRsPcBPPYfurg5s2LABpaWlePjw\nIVpaWrB+/XoEBQVBVVUVc+fOhaqqKpSUlPDrr7+O8RkgyCMkMWQU+E9GCT79I1ekKKsqsfCvsClY\n4T6yrssCgWBI0R7J3+GsI/SlysuPBIvFGtaPRHd3NzgcDq4n3cTPDRPBFQx8sFRk8LHduh4zprnA\nwcGB1JMgDAtiIY8CYU6m2HMxV+Q8BqNn/khhMplgMplyE8pGURQEAoHUhJ7L5Y7ox6G7uxsCgWDY\nYs9isfBExxZUvWj7RUFBETrOQXB1HdkPK+HFhgjyKKCurICjER6IOJoOigLauXyoKrHAYABHIzyg\npvz8XQYGg0ELmbxAUdSInhKeVD8Bj+oUue0OngDF9e2j/IkIzxvPnxLIKe6Wukj/MBh/ZFeguL4d\nlnqqCHMyfS7FWF4RulCGG+9biBJcKxnc9WSpJ93ymoQXD+JDJhDERBi+2NY1UJDVlFlI/zCY/MAS\nRgQJeyMQxEToelJTZkFVqccVo6rEgpoy67l1PRFGF2IhEwgS0tbVTVxPBJlABJlAIBDkBOKyIBAI\nBDmBCDKBQCDICUSQCQQCQU4ggkwgEAhyAhFkAoFAkBOIIBMIBIKcQASZQCAQ5AQiyAQCgSAnEEEm\nEAgEOYEIMoFAIMgJRJAJBAJBTiCCTCAQCHICEWQCgUCQE4ggEyTG0tISX3/9tdjL7969G46OjqO+\nX1EIBAJs3rwZenp6YDAYSExMFDktIiICYWFhYm+XwWDg9OnTIzo2AoEIMoGmuroab7/9NmxtbaGi\nogJDQ0N4eXlh//79aG1tHevDG5KjR4+CwWCIfHV29vTCu3TpEqKionDhwgVUVlbCy8tL5LR9+/bh\n+PHjYu+7srIS4eHhsvpoUuPQoUMICAiAlpYWGAwGysrKxFrv1KlTmDx5MpSVleHg4IC4uDgZH+mL\nCamqTQAAFBcXw9vbG5qamtizZw+cnJwwbtw45OTk4MiRI9DT08M//vGPsT7MIVFVVUVhYeGA6Soq\nKgCAgoICmJiYwMvLi54napqSkpJE+zU2Nh7mEY8uHR0dmDNnDhYsWIDt27eLtU5ycjJWrlyJzz//\nHC+99BJiYmKwdOlSpKWlYdq0aTI+4hcMikCgKGrOnDmUubk51draKnK+QCCg/7ewsKC++uor+v3j\nx4+phQsXUurq6pS6ujq1aNEiqrS0lJ7/r3/9i3JwcKB++uknavz48ZSKigr10ksvUbW1tfQy6enp\nVEhICKWnp0dpaGhQ3t7eVGpqap9j6L/f/kRFRVFqamqDzl+3bh0FgH5ZWFiInCZcdv78+X0+/9df\nf03Z2NhQSkpKlJmZGfXBBx/Q8wFQMTEx9PuysjJqxYoVlLa2NqWtrU3NmzePys/PH3BOoqOjKWtr\na0pdXX3AOaEoijp69Cjl6OhIKSkpUYaGhtTatWspiqKo9evX9zk+iqIoPp9PjR8/nvrmm28GPQdC\nbt26RQHoc50GY/HixdScOXP6TPP396dWr1495LoEySAuCwLq6+tx5coVvP7661BTUxO5DIPBEDld\nIBDgpZdeQnV1NRISEpCQkICKigosXLgQVK9mNMXFxTh+/Dji4uIQHx+Phw8fYsOGDfT8lpYWrFmz\nBsnJyUhPT4eLiwvmzZuH+vp6qX3Offv2YdeuXTA3N0dlZSUyMjJEThPFRx99hD179uDDDz9ETk4O\nYmJiMH78eJHLtre3IzAwECoqKrhx4wZu3boFExMTBAcHo729vc85OXnyJM6ePYurV6+Cw+Hg448/\npuf/+OOP2Lx5M9avX4/s7GxcunSJ9sVHRkbi8uXLqKyspJdns9moqqrCmjVrAABHjhyRyC0xGLdu\n3UJoaGifabNnz0ZqauqItksQwVj/IhDGnrS0NAoAdebMmT7TzczMKDU1NUpNTY3avHkzPb23pXr1\n6lWKyWRSRUVF9PzCwkKKwWBQbDaboqgea5DJZFKPHz+ml0lOTqYA9LEaeyMQCChjY2Pq2LFjIvcr\niqioKAoAfczC18yZM+llvvrqK9oKftq03hZyS0sLpaysTB06dGjQfaOXhfzzzz9TNjY2fZ4quru7\nKV1dXerkyZP0OVFWVqaamproZT777DNq4sSJ9HszMzNqx44dg+7TwcGB+uKLL+j3y5cvp5YsWUK/\nj4mJoSZNmkRVVVUNWFcSC5nJZFK///57n2k///wzpaqqOuS6BMkgFjJhUJKTk5GZmQkPDw96UKw/\neXl5MDU1haWlJT3N2toapqamyM3NpaeZmZlhwoQJ9PsZM2aAyWQiLy8PAFBTU4PNmzfDzs4OWlpa\n0NDQQE1NDUpKSiQ6ZlVVVWRmZvZ5nTx5UqJt9Cc3NxddXV0ICgoSa/m///4bRUVF0NDQgLq6OtTV\n1aGlpYXGxsY+/m0LCwtoaWnR701NTVFTUwOg53yUl5c/dZ+RkZGIiooCADQ0NCAuLg6vvPIKPX/p\n0qW4f/8+jIyMJPq8hLGDDOoRYGNjAwaDgfv37/eZbmVlBaBH5IbDYG4OUaxbtw7V1dX49ttvYWlp\nCWVlZQQFBYHL5Uq8TxsbG0kPVaoIBAK4uLjgP//5z4B5urq69P+Kiop95jEYDAgEArH3s2bNGuzY\nsQMpKSngcDgwMDDA7Nmzh3/gg2BkZITq6uo+06qrq5+ZgcxnCWIhE6Cnp4fQ0FAcOHBA4vC2yZMn\no6KiAsXFxfS0R48eoaKiAlOmTKGnlZeXo7S0lH6fnp4OgUCAyZMnAwBSUlLwxhtvYP78+XBwcICG\nhkYf/+hYIgz3unbtmljLu7m5oaCgAPr6+rCxsenz6i3IT8PQ0BBmZmZP3aeuri4WL16MX375Bb/8\n8gvWrVsHJlP6t/TMmTPBZrP7TGOz2X2iUgjSgQgyAQBw8OBBCAQCTJs2DdHR0cjNzUV+fj6io6OR\nlZUFFoslcr3g4GA4OTlh1apVuH37Nm7fvo1Vq1bBzc0Ns2bNopcbN24c1q1bh8zMTNy6dQuvvvoq\n5s+fD1tbWwCAnZ0djh8/jtzcXGRkZODll1+WOPQMACiKQlVV1YAXn88f3okBoKGhgbfeegsffvgh\noqKiUFhYiPT0dBw6dEjk8qtWrYKRkRFeeukl3LhxA0VFRUhKSsL27dvx8OFDsff78ccf47vvvsO3\n336L/Px8ZGZm4ptvvumzTGRkJH7//XdkZWX1GSQFgNOnT8Pe3r6PdVtVVYXMzEz6OHJzc5GZmYnG\nxkZ6mYCAAOzcuZN+v23bNly9ehV79+7F/fv38dlnnyE5ORnbtm0T+7MQxIO4LAgAevy+HA4HX3zx\nBXbu3InS0lIoKipi8uTJ2LJlC7Zu3SpyPQaDgbi4OLz55psIDAwE0CPS+/fv7+OysLS0xMsvv4zw\n8HDU1dUhNDQUR44coef/8ssv2LRpE6ZNmwZTU1Ps3r0btbW1En+O9vZ2mJiYDJj+8OHDEbkyvvji\nC+jo6GDPnj0oKyuDkZER1q5dK3JZVVVVJCUl4YMPPsCyZcvQ3NwMU1NTBAYGQkdHR+x9vvbaa1BS\nUsI333yDHTt2QFdXF/PmzeuzTEBAAMzNzWFhYQFra+s+85qamvDgwQPweDx62oEDB/D555/T74Uu\njmPHjmH16tUAeuKye58rX19fnDhxArt27cI///lP2NjY4PTp0yQGWQYwKKpXbBKBQHim6OjogJmZ\nGfbv349Vq1aN9eEQRgixkAmEZxCBQIC6ujrs27cP48aNw/Lly8f6kAhSgAgygfAMUlJSAisrK5ib\nmyMqKmpAxAbh2YS4LAgEAkFOIFEWBAKBICcQQSYQCAQ5gQgygUAgyAlEkAkEAkFOIIJMIBAIcsL/\nArb15OBB7kk5AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/EUlEQVR4nOy9d1iUZ77//54Zeu+9DM2CKAgqoCCIgoggzYbdaGJyNtvObpKzv/1uTnazu9mcTbadTWLUJMYooEgvghUpIiDFhspQht57G2Bmnt8fnpkwUkSBKcz9ui6uxJlnnuczMPPc7/tTaRRFUSAQCAQCgSC30CVtAIFAIBAIBMlCxACBQCAQCHIOEQMEAoFAIMg5RAwQCAQCgSDnEDFAIBAIBIKcQ8QAgUAgEAhyDhEDBAKBQCDIOUQMEAgEAoEg5xAxQCAQCASCnEPEAIFAIBAIcg4RAwQCgUAgyDlEDBAIBAKBIOcQMUAgEAgEgpxDxACBQCAQCHIOEQMEAoFAIMg5RAwQCAQCgSDnEDFAIBAIBIKcQ8QAgUAgEAhyDhEDBAKBQCDIOUQMEAgEAoEg5xAxQCAQCASCnEPEAIFAIBAIcg4RAwQCgUAgyDlEDBAIBAKBIOcQMUAgEAgEgpxDxACBQCAQCHIOEQMEAoFAIMg5RAwQCAQCgSDnEDFAIBAIBIKcQ8QAgUAgEAhyDhEDBAKBQCDIOUQMEAgEAoEg5xAxQCAQCASCnEPEAIFAIBAIcg4RAwQCgUAgyDlEDBAIBAKBIOcQMUAgEAgEgpxDxACBQCAQCHIOEQMEAoFAIMg5RAwQCAQCgSDnEDFAIBAIBIKcQ8QAgUAgEAhyDhEDBAKBQCDIOUQMEAgEAoEg5xAxQCAQCASCnEPEAIFAIBAIcg4RAwQCgUAgyDlEDBAIBAKBIOcQMUAgzMAvf/lL2Nvbg0ajITs7W9LmEAgEwoKgIGkDCIT5hslkQk1NDUpKSgCAwcFBVFdXw9LSEnp6egCAsbExDA8Pg81mz3iuv//97wgNDcWmTZsW2mwCgUCQGEQMEBYlGRkZYDKZAIDs7Gxs2rQJf/jDH3DkyBEAAJvNhq+vr8TsIxAIBGmChAkIiw4fHx+oqqrOeIyqqip8fHzEZBGBQCBIN0QMEBYd33//PYyNjWc8xtjYGN9//z0uXrwINzc3ODg4wMrKCrt370ZNTc2Mr83IyMDSpUtBp9Ph4uKCP/3pT1i2bBloNBosLS1x9OhRAMDIyAhcXFygpqaGZcuW4dmzZwCAtrY2HDt2DNbW1li6dCmcnJzw5Zdfzs+bJxAIhNeAiAGC3PLvf/8bBw4cwEcffQQWi4WamhooKCjAw8MDDQ0N075u48aNMDU1xZkzZ1BeXo7f/va3uH//PnR1deHr64vvvvsOwHPvQ3Z2NvT09HD//n0sXboUvb298PLyQl1dHSoqKvDs2TOcOXMG//Vf/4X/+q//EtdbJxAIBBGIGCDIJQMDA/jNb36D4OBghISEAAAUFBTw97//Hb29vfjv//7vKV/X39+PoKAgvPHGG3jjjTeEjysrK2Pfvn2Ij49Hf3+/8PHY2FhERERAWVkZAPCPf/wDVVVV+Pzzz6Gurg4A8PDwwJEjR/DZZ5+htrZ2od4ygUAgTAsRAwS55M6dOxgcHIS7u7vI48bGxrCxsUFmZuak1/T19SEgIABaWlo4dOjQpOePHj2KkZERxMTECB/77rvvRERDVlYWVFRU4OzsLPJaT09P8Hg8XLt2ba5vjUAgEF4ZIgYIcklnZycACEsNJ6Kvr4+Ojo5Jj7/99tswMDBAenr6lGLBzc0NK1euFIYJHj9+jPHxcbi4uIhcV1dXd8prApjyugQCgbDQEDFAkEsMDAwAAN3d3ZOe6+rqgqGh4aTH//u//xuJiYlwdXXF8ePH0dvbO+mYo0ePorCwEBUVFfjuu++EyYQTr9vT0zPlNQFMeV0CgUBYaIgYIMgl69evh4aGBgoLC0Ueb29vR21tLQIDAye9ZtmyZVBUVMS5c+fQ2dmJn/70p5OOOXDgABQVFXHq1CnExcVh//79Is9v3boVHA4H9+/fF3n87t27YDAY8Pf3n4d3RyAQCK8GEQMEuURTUxOffPIJ0tLSkJGRAQDgcrn4z//8T+jo6OCjjz6a9rUrVqzAH//4R5w/fx5JSUkizxkaGmL79u3497//DQ8Pj0lhiF/84hews7PDe++9h6GhIQBAUVERvvvuO/z617+GjY3NvL5PAoFAmBUUgbCIiYyMpOzs7CgAlKWlJbV582aR52NiYihXV1fKzs6OsrS0pHbu3ElVVVUJn//jH/8ofL2dnR310e//QGUX3KOcnFZSAChNTU3K2dmZGh0dFb4mJSWFAkBlZmZOaVNrayt19OhRytLSklqyZAnl6OhIffHFFwvzCyAQCIRZQKMoipKsHCEQpJ9idjfO5NXgWkUb+BRApwH+jsZ408sWa5iiu//GxkZ4enqirq4OdDpxvhEIBOmHiAEC4SX8cLcOHyY/Ap1OA4//49eFQaeBz6fwcZgTDrhbCx///PPP0dPTgz/+8Y+SMJdAIBBeGSIGCIQZKGZ3Y/fXBZjpS0IDsK45CT85dhDr1q2Di4sLrl69CisrK3GZSSAQCHOCTC0kEGbgTF7NJI/Ai9DpNLB6edi9ezcMDAzwi1/8gggBAoEgUxDPAIEwDZxxHhz/OxMz6AAhdBpQ8ftAqCgyFt4wAoFAmGdIdhOBMA0DHO6shAAA8CmguPwROjo6wOfzF9YwAoFAmGdImIBAmAZNFQXQaZiVIKCBwtX0ZNykUVBQUIChoSGMjY1FftTU1BbeaAKBQHgNSJiAQJiBE+fvCcsJp4NOA/yXG+HvkSvQ1tYm8tPe3g4ejwfgeaOjFwWCgYEBKT8kEAgSh3gGCIRpoCgKqxQ7kUVReF4zMDV8ioJ+5wMMDFjBxsZGpIsgn89HV1eXiEB4+PAh8vPzAQAMBgOGhoYwMTGBkZERTExMiBeBQCCIHeIZIBCmgMvlIikpCY8fPwZjmS++KR8EDRT4E0QBDc9Fwvt+1qBV56GzsxObN2+Gh4cHaLTpxQMAjIyMTOlF4HK5AAANDY1JAkFfXx8MBklQJBAI8w8RAwTCC3A4HFy8eBENDQ2IiIiAo6Mjitld+K/vrqFmTBMCP4EVvRvv+q/ALl9XcLlc3LhxA3fv3oWtrS3CwsKgqan5Stfl8/no7u6eJBL6+voA/OhFeDHUoK6uPv+/BAKBIFcQMUAgTKC/vx8XLlxAf38/oqKihP0Curq68O9//xsRu/bAxNIGynQ+/vH5X6Gnp4d3331X+Prq6mokJSWBx+MhJCQEy5cvn7NNIyMjaG9vR1tbG1pbW4X/P9GLMFUuAvEiEAiE2UJyBgiE/6O9vR0XLlwAALzxxhswNDQUPsdms0Gj0bDEzgbKysoAAGtra7DZbHR3dwunE9rZ2eGdd95BamoqLl26hNWrVyMwMBBKSkqvbZeqqiqsra1hbf1jy2M+n4+enh60trYKQwyPHz/GnTt3AAB0On1KL4KGhsZr20EgEBYvxDNAIACoq6tDbGwstLW1sW/fPmhpaYk8Hx8fj56eHhw/flz4WFtbG06ePAkHBwfs27dP5HiKolBWVobMzExoamoiIiIC5ubmC/4+OBzOlLkI4+PjAAB1dfVJAsHQ0JB4EQgEOYd4BghyT0VFBRISEmBpaYk9e/ZARUVF5HmKolBbWwsXFxeRx42NjaGjo4Pq6mpwuVwoKPz4daLRaHB1dYW1tTUSEhLwzTffwNfXF15eXgtaSqiiojLJi0BR1KRchCdPnqCgoADAcy+CgYGBMGHR2NgYJiYmUFdXf2kiJIFAWBwQzwBBriksLERmZiacnJwQGhoqsqAL6OjowJdffon9+/fD3t5e5LmysjKkpKTA29sbfn5+U16Dx+Ph9u3byMvLg6WlJcLDw6Gjo7MQb+eV4HA4wvyDiT8CL4KamtqkigYDA4Mpf0cEAkG2IWKAIJdQFIXr16/jzp078PT0hL+//7S74OLiYmRmZuKDDz6YMvb/5z//GQoKCnj//fdnvGZ9fT0SEhLA4XAQFBSEVatWzct7mU8oikJPT88kgdDT0wPgRy/CVLkIxItAIMguRAwQ5A4ej4fk5GQ8fPgQW7duhYeHx4zHx8XFYWBgAG+88caUz6elpaGkpAT79u2Dg4PDjOficDjIyMjAw4cP4eTkhO3bt08KS0gjo6OjU1Y0jI2NAXjuRZgqF4F4EQgE2YCIAYJcMTo6iosXL6K+vh7h4eFYsWLFjMdTFIXPPvsMbm5u04YBOBwOPv30UxgZGeGdd96ZlR0PHz5Eeno6VFRUEB4eLhLjlxUoikJvb69IRUNra6vQi0Cj0ab0ImhqahIvwgLz17/+Fd999x2ePHmC7777DkeOHJn2WG9vb7BYLLS1tYEsB/ILke0EuWFgYAAXLlxAb28vDhw4ACaT+dLXtLe3Y3h4eMZjVVRUYGlpiYaGBvT390+qRJiKlStXwtLSEklJSTh79iy8vLzg6+srU1n9NBoNurq60NXVFemnMDY2NinMUFlZKfQiqKqqThIIRkZGcudFGBkZgaenp1BMLV++HEpKShgfHweNRsPGjRvxH//xH3Bycnrlc7/33nvYtWuXSGvs6cjNzcVHH32E3//+9yKPJycn48iRI7h27RrWrFnzyjYQZAv5+vYR5JbOzk6cP38efD4fR48ehbGx8axex2azwWAwYGlpOeNxgYGBOH36NK5cuYI9e/bM6tw6Ojo4dOgQ8vPzkZ2djZqaGkREREBfX39Wr5dWlJSUYGlpKfI7E3gRJgoEFouFwsJCAM+Fhb6+/qSExcXsRVBVVUV5eblwIc7IyBCKzubmZnz66adYvXo1/vjHP+KDDz4Qu31aWlqwtrYmczLkBCIGCIuehoYGxMTEQENDA/v374e2tvasX8tms2FhYQFFRcUZjzMzM4OWlhYqKyvB5/NnXT5Ip9Ph7e0NOzs7xMfH4+uvv8bWrVvh6uq6qBbBiV6EZcuWCR8fGxubVNHAYrEwOjoK4EcvwkSBYGho+NK/h6xjZmaGf/7znzAwMMB//dd/wcTEBIcPHxarDZs2bUJ5eblYr0mQHGR2KmFR8/TpU5w7dw5GRkY4evToKwkBiqLAZrNnFU4AAC8vL/D5fOTl5b2ynWZmZjhx4gRWrlyJtLQ0XLx4EcPDw698HllDSUkJFhYWcHNzQ1BQEI4ePYoPPvgAP//5z7F37154eHhATU0N1dXVSElJwenTp/HJJ5/giy++wOXLl5Gbm4vKykr09fUtynj3Bx98ACMjI/zmN7/B/fv34eLiAiUlJZEcgP3798PExGRa8Tg8PIy3334bbm5u0NXVxY4dO1BfXz/jdb/44gs4OjqCRqPh7NmzAJ6HEyZe/5///Ce8vLxgbm6OkJAQtLa2ztfbJkgA4hkgLFqKi4tx5coVLF++HOHh4a8ck25tbQWHw5m1GHBzc8PVq1dRWFiIjRs3vrK9SkpKCAkJgYODA1JSUvDVV18hLCwMdnZ2r3wuWYZGo0FHRwc6OjpYunSp8PGxsTF0dHSIVDRUVVUJvQgqKipT5iLIshdBSUkJmzdvRkxMDMbGxlBeXj7p83jhwoUpY/4C/vrXvyImJgYnT55ET08PNm/ejICAADx69Gja78RPfvITbN++XSTnwNvbW3j9q1evYtu2bcjLy0NPTw/WrFmD999/H+fOnZu3904QL0QMEBYdFEXh5s2byMvLw7p16xAYGPhaLnc2mw0FBQVYWFjM6ng6nQ4nJyeUl5ejtrZ2VslbU7Fs2TKYm5sjOTkZ58+fh7u7O7Zs2SJ3CXYvoqSkBHNzc5G2zhRFob+/X6Siobq6GsXFxaAoCjQaDXp6epNEgra2tsyEYQTDsthsNtauXfvKrxeM1QYAXV1dfPTRRwgNDcW5c+emLZd9Gfr6+sLcGF1dXWzduhXJycmvdS6CdCDfdxfCooPH4yE1NRX379+Hv78/PD09X/umz2azYWlp+UqLsL+/P8rLy3H16lWcOHHita4LAJqamti/fz8KCwtx/fp11NbWIiIiYtaJj/ICjUaDtrY2tLW1RbwI4+Pjk3IRCgoKwOFwAADKyspTehHmMlBqoRCEP173c/xic6t169YBAO7cufPaYmBi3gcAGBgYkDCBjEPEAGHRMDo6iri4OOHCuXLlytc+F5/PB5vNxoYNG17pdWpqajA3N0dTUxMGBwfnNCWQRqPBw8MDNjY2SEhIwOnTp7Flyxa4u7vLzK5WUigqKk7rRZgoEGpra3Hv3j3hgqunpzepokHSXoS6ujoAmHW46kVeLHUVTNhsamp6bZvU1dVF/k2n08Hn81/7fATJQ8QAYVEwODiI6OhodHV1Yf/+/bC1tZ3T+VpaWjA2NvZaN+CAgAB89913yMrKQmRk5JzsAJ4PRHrzzTdx/fp1ZGVloaqqCqGhodDU1JzzueWJiV6EJUuWCB8fHx8X5iIIfu7evTvJizBRIIjLi8DhcHDjxg2YmZnB1dUVAMBgMCYlSw4MDEx7jr6+PpF/d3V1AYBYpmgSZAciBggyT1dXF86fPw8ul4ujR4/CxMRkzuesra0V7i5fFSsrK2hoaODJkyevVGY4EwoKCggMDISDgwOSkpLw1VdfYceOHZPctYRXR1FREWZmZjAzMxM+RlEUBgYGRARCXV0dSkpKRLwIL4YadHR05tWL8Mc//hGdnZ04e/as8HNkbGyM7u5ukeOePn067TkePnwo8u+ioiIAwPr16+fNToLsQ8QAQaZpbGxETEwM1NTUcPjw4XmbBshms2FlZfXaHQE9PT1x7do13L17d15vunZ2dnjnnXeQkpKCixcvwtXVFVu3bpXKWLcsQ6PRoKWlBS0tLZF5E1wud1JFQ2FhIUZGRgA8T3KcKhdBWVn5la7f1NSEP//5z/j666/xySefiPQY8PPzw5dffonm5maYmZkhJydn0oI/kZSUFNy9exceHh7o6enB73//eyxduhSHDh16xd8KYTFDZhMQZJbKykrExcXB1NQUUVFRUFVVnZfz8ng8fPrpp9i4cSO8vLxe6xx8Ph9//vOfoaqqil/96lfzYtdEKIpCaWkpsrKyoKWlhYiICJGdLUF8UBSFwcHBSTMaOjs7hV4EXV3dSSJBRUUF69evn9SOeGxsDDQaDT4+PlO2I+7v78c777yD7OxsWFhYwN/fH3Q6HR9//DGcnZ3x//7f/0Ntba1wNsHnn3+OkpISVFRUoK6uDl5eXvj3v/8trFKYOJtA8Pq2tjZ88cUXePLkCSwtLeHr64v33nsPBw8eREVFBTQ0NODs7Ixbt27h0KFDuHr1qvD1n332GbZs2SL2vwNhbhAxQJBJSkpKkJ6ejqVLlyIiImJea8kbGhrw7bff4vjx43OKq8bHx+PRo0c4evSo8MY733R1dSEhIQGtra3w9fXFhg0b5iUsQZg7E70IE38EzaSUlJRgZGQ0SSS8qhfhZXDGeRjgcKGpogAVRdmZfUEQL0QMEGQKiqKQnZ2NnJwcrFmzBtu2bZv3xS8nJwf5+fn44IMP5nTuwcFBfP755zA3N8fx48fn0UJReDwesrOzkZeXB2tra4SFhc1buIQwvwi8CC8KhM7OTmE2vo6OzqSKBl1d3VfORShmd+NMXg2uVbSBTwF0GuDvaIw3vWyxhqm3EG+PIMMQMUCQGfh8PtLS0lBWVobNmzdjw4YNC1Lyde7cOSgoKGDfvn1zPtfXX3+N1tZWvPfeews+8KWurg6JiYngcDjYvn37nEorCeKFy+Wis7NTRCC0trYKvQiKiopTVjSoqKhMeb4f7tbhw+RHoNNp4PF/vMUz6DTw+RQ+DnPCAXfZG5tNWDiIGCDIBGNjY7h8+TKqq6uxY8cOODs7L8h1uFwuPv30U2zatGleEv9qamrwww8/wMXFBaGhofNg4cxwOBxkZGTg4cOHWLlyJYKCgqZdMAjSz1RehI6ODhEvwothhqo+CntPF2KmGzsNQNwJT+IhIAgh1QQEqWdoaAjR0dHo7OzEvn37FrRXf1NTE7hc7mu3En4RW1tbqKmp4dGjRwgJCVnweL6KigoiIiJgb2+PjIwM1NfXIyIiYsFyFggLi4aGBjQ0NEQ+8zweT+hFEFQ0lJSUYGhoCABwa9weNGiDwvReMzqdhjN5tUQMEIQQzwBBqunu7saFCxcwOjqK/fv3w9TUdEGvl52djcLCQrz33nvztnDn5OTg1q1bCAoKeq3e8q9Lb28vEhMT0dDQAC8vL/j4+Lx2qSRB+hkcHER9Uwu2n62c0SsggE4DKn4fSJIKCQDICGOCFNPc3IxvvvkGNBoNx44dW3AhADzvL2BtbT2vO3gvLy/Q6fTXGm08F3R0dHD48GH4+voiPz8f3377rbD7HGHxQFEUurq68OzZMxSVPZiVEAAAPgUMcLgLahtBdiBhAoJUwmKxEBcXB2NjY0RFRS148h3wvC1tY2PjvNdI0+l0LFmyBE+fPhU2ihEXdDodGzduhJ2dHRISEvD1118jMDAQq1evJvMNZBSKotDb24va2lqw2Wyw2WwMDAyARqPB0MQMNJjO2jOgqUKWAMJzyCeBIHWUlZUhNTUVDg4O2Llzp9jm0Tc2NoLH481bvsBEtm3bhqdPnyIrKwtHjx6d9/O/DHNzc5w4cQKZmZlITU0Fi8VCSEiIWEQWYe709vYKF/7a2lr09/eDRqPBxMQETk5OsLGxgZWVFSiKQvLn6Xg2qARqBscvg06D/3JjEiIgCCFigCA1UBSF3Nxc3Lp1C66urti+fbtYG+jU1tZCVVUVRkZG835uLS0tGBkZob6+HhwORyIZ/kpKStixYwccHByQmpqKr776CmFhYQuakEl4Pfr6+oSLP5vNRm9vLwDAxMQEjo6OYDKZsLa2FvkcNTc348KFC7Ado+Mplk5z5ufw+RSOe82/6CXILiSBkCAV8Pl8ZGRkoKSkBL6+vti4caPY3djffvstNDQ0sHv37gU5P4vFQnR0NNzc3BAcHLwg15gtAwMDSEpKQk1NDTw8PLB582YoKJC9gaTo7+8XWfx7enoAPB9KxGQyhYv/VC23KYpCUVERsrKyQFEUVqxYgRFzN3yYUgGAEqkqoIECQCN9BgiTIN9+gsQZHx9HfHw8KisrsWPHDqxevVrsNoyNjaGpqQlbt25dsGs4ODhAVVUVDx48kLgY0NTUxIEDB1BYWIjr16+jtrYWERERC+IVIUxmYGBAZPEXTCE0NDSEvb09bGxsYG1t/dIwDofDQXJysnBqoZ+fH7y8vECj0WCqSuHjuHw0UHrCDoSWtB687bsEUUQIEF6AiAGCRBkeHkZMTAza2toQFRUlMiFOnDQ0NIDP5y9IvsBE1qxZg9zcXJSVlUlE9EyERqPBw8MDNjY2iI+Px6lTp+Dv749169aR5MJ5ZmhoSBjvr6urQ2dnJwDAwMAAtra28PPzA5PJhLq6+qzP2dLSgosXL6K/vx90Oh2RkZFwdHQUPq823IoAtXr87Je7wOHRoKmigLjYaIw0PAbgPt9vkSDjEDFAkBg9PT24cOECRkZGcPjw4TkNBZortbW1UFdXh4GBwYJeZ+PGjcjPz0dOTo7ExYAAY2NjvPnmm7h+/ToyMzNRVVWF0NBQaGhoSNo0mWV4eFhk59/R0QEA0NfXB5PJhI+PD5hM5mv9jimKwr1795CZmQkajQZVVVXs27dv0veHxWLBxsYGmmoq0Py/x9zc3BAXF4f29nbiBSKIQMQAQSK0tLTgwoULUFJSwrFjx6CnJ9lOaGw2G0wmc8F3xAoKCrCzsxOOjDU2Nl7Q680WRUVFbNu2DQ4ODkhKSsJXX32FHTt2YOnSmRPRCM8ZGRkRWfzb29sBPB9dzGQy4e3tDWtra2hpac3pOqOjo0hNTcXjx4/BYDCgp6eHffv2TRpMxeFwUF9fj8DAQJHHly5dCnV1dZSUlGDbtm1zsoWwuCBigCB2qqurcenSJRgYGGDfvn2v5BpdCEZHR9Hc3AwXFxexXC8wMBAsFguZmZk4fPiwWK45W+zt7fHOO+8gNTUVsbGxcHNzQ0BAAJSUlCRtmlTB4XBQV1cndPu3trYCeN7oiclkYv369WAymdDW1p63a7a2tiIuLg59fX2g0WhgMpnYuXPnlJUpNTU14PP5k8JuDAYDLi4uKCkpwZYtW8RWtkuQfogYIIiV+/fvIyUlBXZ2dti5c6dULDJ1dXWgKGrB8wUE6OnpQV9fH3V1dRgbG5OK38FE1NXVsWfPHpSUlCArKwtsNhsRERFibZYkbQh22oKdf0tLCwBAW1sbTCYT7u7uYDKZCzI6mqIolJSU4MqVK1BVVQWPx4ObmxuCgoKmLb1lsVgwNDSc0h5XV1fk5+ejoqJiwQZ+EWQPIgYIYoGiKOTn5+PGjRtwcXERy9Ce2cJms6GpqSnWUIWfnx/i4uJw8+bNSa5caYBGo2HNmjVgMplISEjAN998I5zkKC1/t4VkdHR00uJPURQ0NTVhY2ODtWvXChf/hQwtjY6OIi0tDY8ePYKuri56enoQEBAADw+Paa9LURSqqqqmHWGtp6cHW1tblJSUEDFAEELEAGHB4fP5yMzMRHFxMTZu3AhfX1+pylZns9mwsbERq02Ojo5QVlZGeXm5VIoBAQYGBjh27Bhu3bqFGzduoKqqCuHh4fPq/pYGxsbG0NDQIHT7NzU1gaIoaGhowMbGBq6urrCxsYGurq7YPidtbW2Ii4tDf38/9PT0MDAwgD179mDZsmUzvq6lpQWDg4NYsmTJtMe4urri8uXLJJGQIISIAcKCMj4+jsTERDx9+hTBwcFwc3OTtEkijIyMoKWlRazTBAW4urqioKAAjx49gpOTk9ivP1sYDAa2bNkCe3t7JCYm4quvvkJwcLBU2/wyxsfH0dDQINz5NzU1gc/nQ11dHUwmE87OzmAymdDX1xe7cKUoCmVlZbhy5Qq0tbWhoqKCsbExHDlyZFahGhaLBSUlJVhaWk57zLJly6Curo7S0lKpFqME8UHEAGHBGBkZQWxsLJqbm7Fnzx6pzEyvq6sDADCZTLFf28/PD3fv3sWtW7dkYmFlMpl4++23kZ6ejvj4eLBYLAQFBUFZWVnSpr0ULpc7afHn8XhQU1MDk8lEYGAgmEwmDAwMJOq1GhsbQ3p6Oh48eAB7e3s0NDRAR0cHUVFRs/bGVFVVwc7ObsZx1RMTCTdv3kwSCQlEDBAWhr6+Ppw/fx5DQ0M4fPgwLCwsJG3SlLDZbGhra0NXV1fs11ZQUICNjQ1qamrQ1dUFfX19sdvwqqiqqiIyMhIODg7IyMhAfX09wsPDYWVlJWnTROByuWhqahJO9hMMoVJVVQWTyYS/vz9sbGxgaGgoNSGriWGB1atXo7y8XJhoO1vBNTQ0hMbGRuzYseOlx5JEQsJEiBggzDutra2Ijo4Gg8HAsWPHpHqRE+QLSIrAwEB8+eWXuHLlCg4cOCAxO14FGo0GZ2dnWFlZITExEWfPnoW3tzc2btw44250IeHxeGhqahLu/BsaGsDlcqGiogJra2ts2bIFTCYTxsbGUrP4C6AoCuXl5cjIyICuri5WrFiBsrIyrF27FoGBga+UsFldXQ3geYnoy9DT04ONjQ1KS0uJGCAQMUCYX2praxEbGwt9fX3s27dPqrvYDQ8Po62tDZ6enhKzwdDQELq6uqipqQGXy5WpYUG6uro4cuQIcnNzcfv2bVRXVyMiIkIsVRk8Hg/Nzc0ii//4+DiUlZVhbW0tbO9rbGws1dUPY2NjyMjIwP379+Hs7IyRkRGUl5dj69atcHd3f2XhwmKxYGpqCk1NzZcfjOcdCS9fvoyOjg4YGhq+zlsgLBJk585DkHoePnyIpKQk2NjYYNeuXVIfS2az2QAkky8wER8fHyQlJeHWrVvw9/eXqC2vCp1Oh4+PD+zs7JCQkICTJ09i27ZtcHFxmdcdOJ/PR0tLi9DtX19fj/HxcSgpKcHa2ho+Pj6wsbGBiYmJVC/+E2lvbxc2Edq2bRvu37+Pjo4O7N2797Xya/h8PqqqqrBu3bpZv2bZsmVQU1NDSUkJSSSUc4gYIMwZiqJQUFCAa9euwdnZGSEhIRJzF78KbDYburq6Ei+Tc3Z2RkZGBkpLS2VODAiwsLDAiRMnkJmZiZSUFLBYLAQHB7906t508Pl8tLa2Cnf+ggZNioqKsLKywsaNG8FkMmFmZiYzi/9EysvLkZ6eDj09PURERODKlSugKApHjx6Fqanpa52zsbERHA7nlYZ9CRIJS0tLsWXLFpnyTBHmF/KXJ8wJiqKQlZWFwsJCeHl5wc/PT+pistMhmEcgDTg7O6O4uBhPnz59aR25tKKsrIzQ0FA4ODggNTUVJ0+eRFhYGGxtbV/6WoqiJi3+o6OjUFBQgJWVFby8vISLvywIzekYGxvDlStXUF5eDhcXFyxduhSJiYnQ09NDVFTUnGYXsFgsqKmpvXKnSFdXV9y5cwcVFRVYtWrVa1+fINsQMUB4bbhcLpKSkvD48WMEBQVJpFb/dRkcHERHRwe8vb0lbQoAYMuWLbh37x5u3Lghs2JAgKOjIywsLJCUlIQffvgBnp6e8PPzE9l1UhSF9vZ2odu/rq4OHA4HCgoKsLS0hKenJ2xsbGBubi7Ti/9EOjo6EBcXh97eXoSFhWFsbAyXLl2Cg4MDIiMj59yWmsViwd7e/pU9Jfr6+rCxsUFJSQkRA3IMEQOE14LD4SA2NhZNTU3YvXs3li9fLmmTXglpyRcQoKSkBCsrK9TV1aG3t3dBetyLEy0tLRw8eBAFBQW4efMmampq4Ovri/7+fuHuf2RkBAwGAxYWFsLe/hYWFovSVX3//n2kp6dDR0cHx44dQ3l5Oe7evYt169Zh69atcw519Pf3o62tDRs2bHit17u6uiI+Pp4kEsoxi+9bR1hw+vv7cf78eQwMDODgwYNSV2M+G9hsNvT19WeddS0Otm3bhpMnTyIzMxN79+6VtDlzgqIodHZ2QlFREdbW1qitrcXFixdBo9FgYWEh7O1vYWGxqBvejI+PIyMjA+Xl5XB2dsaWLVuQlpaGyspKbNu27ZWS/WaCxWKBRqPNqqRwKgSJhKWlpdi6deu82ESQLYgYILwS7e3tuHDhAmg0Gt544w2Z3UVIU76AAGNjY2hra4PFYoHP58tUYhxFUeju7ha6/dlsNoaGhkCn02Fubg4PDw90d3fj2bNnUFFRwdq1a6W67HQ+6OzsRFxcHLq7uxEaGgo7OztcuHAB3d3diIqKeqVEv5dRVVUFCwsLqKqqvtbrFRQU4OLigrKyMmzevHlRemcIM0P+4oRZw2azERsbCx0dHezfv1+qdtWvwsDAALq6urBp0yZJmzIJb29vpKWl4fbt21JpnwCKotDT0yMc7MNmszEwMAAajQYzMzO4uLiAyWTCyspKJBbOYrGQnJyMr776CqGhoTMO05FlHjx4gLS0NGhra+PNN98En8/HmTNnAABHjx6FiYnJvF2Ly+Wiurp6zvkvgkTCJ0+eTDvxkLB4IWKAMCseP36MxMREWFlZYc+ePVLfQ2AmamtrAUhPvsBEVq9ejaysLBQXF0udGOjp6RHu+tlsNvr7+0Gj0WBqaoqVK1cKF/+ZPhsODg545513kJKSgpiYGKxZswYBAQGLJlQwPj6OzMxMlJaWYtWqVdi+fTvYbDbi4+Ohr6+PqKioeRfRgp4Lc/U06Ovrg8lkoqSkhIgBOYSIAcJLuXv3LrKysrBy5UqEhobKfHY3m82GoaEh1NXVJW3KJOh0OpycnFBWVoaqqqrXjgHPB729vSKLf19fHwDA1NQUK1asEC7+Kioqr3RedXV17N27F/fu3cPVq1fBZrMRERHx2vX10sLEsMCOHTvg4uKCoqIiZGVlYcmSJYiIiJhzxcBUsFgsaGpqwtjYeM7ncnNzQ3x8PDo7O2FgYDAP1hFkBSIGCNNCURSuXbuGgoICrF+/Hlu2bJGZHgIzwWazJbrIvoyAgACUlZXh+vXrYrWzv79fJObf29sL4Hkuw7Jly2BjYwMrK6vXjktPhEajYe3atbCxsUF8fDzOnDkDPz8/eHp6ylSuhICHDx8iLS0NmpqaOH78OAwNDZGZmYmioiJ4eHjA399/wd4Xi8WCg4PDvHw3ly1bBlVVVZSUlJBEQjmDiAHClHC5XCQnJ+PRo0cIDAyEu7u7pE2aF3p7e9HT0yPR4UQvQ0VFBRYWFmhsbER/f/+cGtHMxMDAANhstjDu393dDQAwMjLCkiVLwGQyYW1t/dpdBGeDgYEBjh8/jps3b+L69euoqqpCWFiYxLtCzpaJYYGVK1ciODgYFEUhNjYWVVVVC95/o7u7G11dXdiyZcu8nE+QSFheXk4SCeUM8pcmTILD4eDSpUuor6/Hrl274OjoKGmT5g1p6y8wHYGBgThz5gyysrKwa9eueTnn4OCgiNu/q6sLwPNhSXZ2dti8eTOsra3FHj5hMBjw9/eHvb09kpKScPLkSQQHB2PFihViteNV6erqQlxcHLq6uhASEoLVq1djYGAA0dHR6Onpwb59+xbcs8NisUCn0+dV3Lq5uaGgoIAkEsoZRAwQRBgYGMCFCxfQ19eHgwcPwtraWtImzStsNhsmJibz4upeSMzNzaGpqYlnz569dpnh0NCQyOLf2dkJ4MdEsU2bNsHa2lpqSvxsbGzw9ttvIz09HZcvXwaLxcK2bdukMln10aNHSE1NFYYFjI2N0dLSgpiYGNDpdLzxxhvzEsN/GSwWC0wmc15/RySRUD4hYoAgpKOjAxcuXBAOTDEyMpK0SfMKRVGora2VGU/Hhg0bkJmZiTt37sDLy+ulxw8PD6Ourk7o9m9vbwfwfG49k8kUDveR5pJQVVVVREZGwsHBARkZGairq0NERAQsLS0lbRqA5+GzzMxMlJSUwMnJCcHBwVBWVsazZ88QHx8PQ0NDREVFiUVgjY2Ngc1mY/PmzfN+bldXVyQkJJBEQjmCiAECgOflSTExMdDS0sL+/fsXLE4tSXp6etDf3y/1IQIBa9euxfXr13H37t0pxcDIyIiwxp/NZqOtrQ0AoKurCyaTiQ0bNoDJZMrc35JGo8HZ2RlWVlZISEjAd999h40bN2Ljxo0STS7s7u5GXFwcOjo6EBwcDFdXVwA/VtssX74c4eHhYiuTrK2tBY/HW5BeDcuXL4eqqipKS0sREBAw7+cnSB9EDBDw5MkTJCQkwMLCAnv27HnlUjFZgc1mg0ajyUzog06nw9HREQ8ePBCGNyYu/q2trQAAbW1t2NjYwNPTE0wmU2aS716Grq4ujh49ipycHOTk5KC6uhrh4eHQ09MTuy2PHz9GSkoKNDQ0cPz4cZiYmIDP5+PKlSu4d++eRKptWCwWdHV1F+T3oaCgAGdnZ5SXl08aMkVYnJC/sJxTVFSEK1euYMWKFQgLC1vUX3o2mw1TU1OZETujo6Owt7fHgwcPcOHCBfB4PFAUBS0tLTCZTKxbtw42NjYyP9RoJuh0Onx9fWFnZ4fExER8/fXX2LZtG5ydncWy8HK5XFy9ehXFxcVYsWIFQkJCoKysjNHRUVy+fBnV1dUIDg6Gm5vbgtsyEYqiUFVVhaVLly7Y78HNzQ13797F06dP4eTktCDXIEgPi/fOT5gRiqJw8+ZN5OXlwcPDAwEBAYuih8B0CPIFpHlE69jYGOrr64U7/+bmZlAUBTqdDi6Xi4CAACxduhS6urqL+m81FZaWljhx4gQyMzORnJwMFouF4ODgBU0E7e7uxuXLl9He3o6goCCsWbMGNBoNfX19iI6ORl9fHw4cOABbW9sFs2E6Ojo60NfXN6/zDV7EwMAA1tbWwvwIwuKGiAE5hMfjITU1Fffv30dAQAA8PT0lbdKC09XVhcHBQanKFxgfH5+0+PP5fKirq8PGxgarV68Gk8lEf38/zp07h5aWFrn4W02HsrIyQkNDYW9vj7S0NHz11VcIDw9fkJ4RFRUVSElJgZqaGo4dOybsjtjc3IyYmBgwGAy88cYbEkuyZbFYUFBQWPDPs5ubGxISEtDV1QV9ff0FvRZBshAxIGeMjo4iLi4OtbW1iIyMlBvFL8gXkOS45fHxcTQ2Ngqz/RsbG8Hn86GmpgYbGxusWrUKNjY20NfXF9n56+vrQ0NDAxUVFQgLC5PJDn3zyYoVK2BpaYmkpCScO3cO69evx6ZNm+YlxMXlcnHt2jUUFRXB0dERISEhwrDS06dPER8fD2NjY+zdu1eiJZksFgu2trYLHtYTJBKWlJSQRMJFDhEDcsTg4CAuXLiAnp4eHDhwQKq78M03bDYb5ubmYq1Z53K5aGxsFO78GxsbwePxoKqqCiaTia1bt4LJZMLQ0PClbn8PDw9cv35d2N5W3tHS0sLBgwdRUFCAGzduoKamBhEREXMaqd3T04PLly+jra0N27Ztw9q1a0Gj0UBRFAoKCnDt2jU4OjoiLCxMooOVOBwO6uvrERQUtODXEiQS3r9/nyQSLnLIX1ZO6OzsFCahHT16VCwNUaQFiqLAZrOxevXqBb0Ol8tFU1OTyOLP5XKhoqICJpMJf39/MJlMGBkZvXLM39PTE7du3cKdO3eIGPg/aDQa1q9fDxsbGyQkJODUqVMICAgQxvZfhSdPniA5ORmqqqp44403YGZmBuB5SO3KlSsoKSmBl5cX/Pz8JJ6vUV1dDYqiFjRfYCKurq4kkVAOIGJADmhsbER0dDQ0NDRw5MiRRVN6Nls6OjowNDQ07/FVHo+H5uZm4XCfhoYGcLlcKCsrw9raGn5+frCxsYGxsfGcFxA6nY5ly5bh8ePHaGxshIWFxTy9C9nH1NQUb731Fq5evYqMjAywWCzs2LFjVm58Ho+Ha9euobCwEMuXL8eOHTuEYQEOh4PLly+jtrYWO3bsWHAxOVtYLBaMjIzE9j02NDSEtbU1SktLiRhYxBAxsMh59uwZLl++DDMzM+zdu1fq2/AuBGw2G3Q6fc75Anw+H83NzcKdv2COvJKSEqytrbFp0yYwmUyYmJgsSFx/69atePz4MbKysnDs2LF5P78so6ioiO3bt8PBwQEpKSk4efIkQkNDZ9w99/b2Ii4uDq2trQgMDMS6deuEoq23txfR0dEYGBiQqpCaoKTQ2dlZrNd1dXVFYmIiSSRcxBAxsIi5d+8eMjIysGzZMkRERMhtvI/NZsPCwuKV47x8Ph8tLS0ii//Y2BgUFRVhbW0NHx8fMJlMmJqaiiWpTzCzvrGxERwOR2b6JYiTJUuW4O2330ZKSgqio6OxZs0aBAQETPrbP336FMnJyVBRUcEbb7wBc3Nz4XNNTU2IiYmBoqIijh07JlXteFtaWjA0NCS2EIEAR0dHXLlyBaWlpfD39xfrtQniQT5Xh0UORVHIzs5GTk4O1q5di8DAQLnNQBfkC8xmjCyfz0dbW5vQ7V9fX4/R0VEoKirCysoKXl5esLGxgampKRgMhhisn8yWLVtw4cIFXL16FTt27JCIDdKOhoYGoqKicO/ePVy9ehVsNhuRkZEwMTEBj8cTtnhetmwZQkNDRURVRUUFEhMTYWpqij179oh9guPLqKyshLKysthnNUzsSDhflRsE6YL8RRcZPB4PaWlpKC8vx5YtW7B+/XqJJzxJkra2NoyMjEyZL0BRFNra2oQ7/7q6OnA4HCgoKMDS0hLr168Hk8mEubm5xBb/F7G3t4eamhoePXqE4OBguRV5L4NGo2Ht2rVgMplISEjA6dOnsX79etTU1KC1tRVbt26Fu7u78LtBURTy8/Nx48YNODk5ITQ0VCoXvKqqKtjZ2Unk8+jm5obCwkI8e/ZM6sdLE14d6fu0E16bsbExxMXFoaamBuHh4VLdbU9csNlsMBgMWFpagqIotLe3iyz+IyMjwuc9PDyEi780LgQC1q5di9u3b6OsrEzsbXBlDUNDQxw7dgzx8fHIy8sDg8HAnj17RIb78Hg8pKeno6ysDN7e3ti0aZNUCuihoSE0NTVhzZo1Erm+oaEhrKysUFJSQsTAIkR673iEV2JoaAjR0dHo7OzEvn37YGdnJ2mTJA5FUXj27Bm0tbWRkJCAuro6DA8Pg8FgwMLCAmvXroWNjQ0sLCykevF/kY0bNyI3Nxe5ublEDLwEHo+Hmzdv4unTp7CwsEBvby8SExMREhICR0dHcDgcXLp0CXV1dQgNDYWLi4ukTZ6WqqoqAM+9Q5LCzc0NiYmJ6O7ulsjAKMLCITt3QMK0dHd34/z58xgfH8eRI0eErVPlDYqi0NXVJdz519bWYnh4GDQaDerq6nBzcwOTyYSlpaVEm8bMFTqdDgcHBzx79gwtLS1y+/d+GX19fbh8+TKam5sREBAADw8PcDgcpKWlIS4uDsuXL0dbWxuGh4dx8OBBqWpVPRUsFgtmZmYS7Xy4fPlyYd8Fkki4uCBiQMZpampCdHQ0VFVVcezYsUU9we5FKIpCd3e3cPFns9kYHBwEjUaDubk5HBwccP/+fezfv3/ReUq2bduGZ8+eISsrC0eOHJG0OVJHZWUlkpKSoKSkhKNHjwr7MqiqqmLnzp24desWcnNzQafTER4eLvVCgM/no7q6Gu7u7hK1Q1FRUWS0sbTk0hDmDhEDMgyLxUJcXByMjY0RFRUFNTU1SZu0oFAUhd7eXmG2P5vNxsDAAGg0GszMzIS9/a2srKCkpIT8/HwoKipK/Y3+ddDW1oahoaGw3FFJSUnSJkkFgrDAnTt3sGTJEoSFhU3qrfH48WPcuXNH6FERDOLx9vaW2oTMhoYGcDgcsZcUToWrqysKCwvx9OlTkjuwiCBiQEYpKytDamoqlixZgsjISJl2e89Eb2+viNu/v78fNBoNJiYmcHJyApPJhLW19ZQzB9hsNiwtLRft7mXz5s2IjY3F9evXxdKnXtrp6+tDfHw8Ghsb4e/vD09PT5FEQIqikJeXh5s3b2LlypXYsWMH6HQ6cnJycPv2bVRXVyM8PBy6uroSfBdTw2KxoKamJmyTLEmMjIxgaWmJ0tJSIgYWEUQMyBgURSEnJwfZ2dlwc3NDUFCQ1O5mXoe+vj4Rt39vby8AwMTEBI6OjsLF/2UNd3g8Hurr6+Hl5SUGqyXD0qVLoaKigvv378u9GGCxWEhMTISioiKOHj06qQ5/Ysmtj48PfHx8hELB19cXdnZ2SEhIwMmTJxEUFIRVq1ZJVUUBi8WCg4OD1Njk5uaGpKQkkki4iCBiQIbg8/lIT09HaWkp/Pz84OXlJTU3h9elv79fZPHv6ekBABgbG2Pp0qXCxf9V2yi3tLRgbGxMatrILhRubm7Iz8/H/fv3xd6iVhrg8/m4efMm8vPz4eDggLCwsEnhspGREVy6dAkNDQ3TltxaWlri7bffxpUrV5CUlAQWi4Xt27dLRfvuvr4+tLe3w9vbW9KmCHF0dERmZiZKS0uxZcsWSZtDmAeIGJARxsfHcfnyZbBYLKkvgZqJwcFBkZh/d3c3gOc1zPb29rCxsYG1tfWc8x9qa2uhpKS06DPtfX19cefOHdy+fVvuxEB/fz/i4+PR0NAwbYOt7u5uREdHCysGrK2tpz2fsrIywsLC4ODggLS0NJw8eRJhYWESF5QsFgs0Gk2qkmAVFRWxatUqYUfCxRqKkyeIGFgAnj17hj179qCqqgpr1qxBdnb2nM43PDyM6OhotLe3Y9++fRKtM35VhoaGhPH+uro6dHZ2AgAMDAxga2sLPz8/MJnMeW/7ymazYWVltehvUgoKCrCzs0NVVRU6OjpgaGgoaZPEQlVVFRITE8FgMHDkyJEph1DV19cjNjYWampqOH78+Kzd2StWrICFhQWSkpJw7tw5rF+/XqKZ81VVVbC0tJQKL8VE3NzcUFRUhGfPnsHR0VHS5hDmiNyLgebmZgQFBaG1tRVtbW3Yu3cvYmJipj0+LS0NISEh0NXVhZWVFc6ePQt9fX24ubnhww8/xLvvvoulS5eivLwcvr6+c7avp6cH58+fx+joKI4cOSIVCUQzMTw8LOL27+joAADo6+uDyWQKh/ssZK00j8dDQ0MDfHx8Fuwa0kRgYCD+/e9/IzMzEwcPHpS0OQsKn8/HrVu3kJeXB3t7e4SHh0/pRXr48CGSk5NhYWGBPXv2vPJCqq2tjYMHD6KgoAA3b95EbW0tIiIixD60iMvloqamBhs3bhTrdWeDIJGwpKSEiIFFgNyLATMzM5SXl+Ojjz7CH/7wB1y6dAkffvghli9fPuXxH3/8MQBgx44dOHv2LACgvb0d1tbW855I09LSggsXLkBZWRnHjh2TyiznkZERkcW/vb0dAKCrqwsmkwlvb29YW1tDS0tLbDY1NTVhfHxc4u5dcaGvrw99fX3U1taCy+XKVDfFV2FgYADx8fGor6/H5s2bsWHDhklhgYkJts7OzggJCXntHT2dTseGDRtga2uL+Ph4fP3119i6dSvc3NzElqtTV1eH8fFxqSgpnApBImFPT49U3p8Is2dx3jVek/DwcCQmJuLjjz9GdHT0pOfT0tJgbW2NoqIikceNjIxQXFw8r7ZUVVUhLi4OhoaGiIqKkprpaRwOB3V1dUK3f2trKwBAR0cHTCZTONxHW1tbYjbW1tZCWVkZJiYmErNB3Pj6+iI+Ph43b95EQECApM2Zd6qrq5GQkAAGg4HDhw9PGfvncrlITU3FgwcPsGnTJnh7e8/Lom1qaooTJ04gKysL6enpYLFY2LFjh1i+kywWC1paWjAyMlrwa70OExMJN2/eLGlzCHOAiIEJrFy5EgBw8eJFfPjhh1i2bJnI83/4wx/wzTffIC4uTvhYYWEhTpw4gYqKCuzbt0/oLZiO06dP49y5cxgZGcH4+Dg0NTXx4YcfitzA165di6dPn2JwcBBFRUWIjIxEbW0tGAwG/vrXv2L79u3z96ZfAofDQX19vXDn39LSAuC5G5XJZMLd3R1MJlOqOh+y2WxYW1svqpLLl+Hk5IS0tDSUlpYuKjHA5/Nx+/Zt5OTkwM7ODuHh4VMuwsPDw7h48SKampoQGRkJJyenebVDUVERwcHBcHBwQEpKCr766iuEhoYu+I6dxWLB3t5eaquGBImEZWVl8PX1XfQ5OosZIgZe4MMPPxR6By5cuCB8PC0tDZaWlkLBIMDd3R3l5eWz7nL3t7/9Df/zP/+DkJAQAEB2dja2b9+O3NxcrF69Gnl5eQgODoa9vT1iY2Nx5swZpKamQlFREb/85S8RFRWF+vr6BVt8R0dHJy3+FEVBU1MTNjY2wrGwOjo6UnmD4nK5aGhokMtdiouLCwoLC1FRUbEoYrgDAwPCAVMz7fS7uroQHR0NDoeDw4cPT+oxMJ8sXboU77zzDpKTkxEdHY21a9fC399/QZp+dXV1obu7W+rFnaurK0kkXAQQMfACzs7OCA0NRWxsLD788EMsXboUwHOvwOnTp+d8/sTERBGPg6+vL1auXInTp08jODgY9+7dg6+vL/h8PgDgrbfeEt5ooqKi8I9//APFxcXzNiRkbGwMDQ0NQrd/U1MTKIqChoYGmEwmXF1dYWNjA11dXalc/F+ksbERPB5PbvIFJuLn54eioiLcvHlT5m/KNTU1SEhIAI1Gw6FDh6YV23V1dbh48SLU1dVx7NgxsTTA0dDQwL59+1BcXIxr166BzWYjIiJi3sNSLBYLDAZD6j/LxsbGsLCwQGlpqcx/7uQZIgam4MMPP0RSUhI+/vhjnD9/HmlpaTAzM5uXOm46nY6jR4+ivLwcfD4fNBoNVVVVGBkZgampKUJCQuDq6opbt24BgIhwEGQyC+L0r8P4+DgaGhqEO/+mpibw+Xyoq6uDyWTC2dkZTCYT+vr6MrH4v0htbS1UVVVhbGwsaVPEjpKSEphMJmpra2W2Mxyfzxe2B7a1tUVERMS0sfn79+8jJSUF1tbW2LVrl1hL72g0GtatWwcmk4mEhAScOXMGfn5+k1ogzwUWiwUmkykTcyfc3NyQnJxMEgllGCIGpmD16tUICQlBbGwsfve73+EPf/gDTp48OefztrS0wMvLCxs2bMDt27ehpaWFkZERrF69GgMDA9i7dy+WLFki8pqJN0JBDJzH4836mgK3+cTFn8fjQU1NDUwmE4GBgWAymTAwMJDJxf9FBPkCi+G9vA6BgYH46quvkJmZiX379knanFdicHAQCQkJYLPZ8PX1nXZwEEVRyM7ORk5ODlxcXBAcHCyxWLWRkRGOHz+Omzdv4tq1a6iqqkJYWNicq2fGxsZQV1cnM939VqxYQRIJZRwiBqbhww8/RGpqKsLCwmBvbw9XV9c5nzMtLQ0dHR347W9/Cy0tLfT29uLChQsYHx+HsbHxJCHwOnC5XDQ1NQnd/g0NDeDxeFBVVYW1tTX8/f1hY2MDQ0PDRbdgjo+Po7GxUepjrAuJkZERdHR0UF1dLVNlhrW1tYiPjweNRsPBgwendY1zuVwkJyfj0aNH05YXihsFBQUEBATA3t4eSUlJOHnyJIKDg+fkMq+trQWPx5PaksIXmdiRkCQSyiaycaeQAGvWrEFQUBAyMjJw7ty5eTnn6OgogOc7/NbWVly4cAGKioqg0WhTTt2bDTweD01NTcKdf0NDA7hcLlRUVGBtbY0tW7aAyWTC2NhY4jfNhaahoQF8Pl/qY6wLjY+PD5KTk5GTkwM/Pz9JmzMjfD4fubm5uH37NphMJiIiIqZtSDU0NISLFy+ipaUFO3fulLqJeba2tnj77beRlpaGuLg4uLi4YNu2ba/l5q+srISenh709fUXwNKFwc3NDcXFxaisrJy2TwtBeiFiYAZOnz6NmpoarF27dl7OFxAQAGVlZXz00UdYt24djI2NQVEUqqurYWFhMevzdHd3Izc3V7j4j4+PQ1lZGdbW1sL2vsbGxnJVWgc8302pq6vLTUve6XBxcUFGRgbu3bsn1WJgcHAQiYmJqKmpgY+PDzZu3DjtZ7azsxPR0dEYGxvD4cOHX+n7Ik7U1NSwa9culJeX48qVK6irq0NERMQr2UtRFKqqqmRuQRUkEpaUlMic7QSARlEUJWkjJMnIyAg8PT2FSXkmJiYoKCiYMhnp73//O77//nvcv39f2I7466+/FvYZ0NDQgJWVFS5evIjdu/egqroKNEDoPmQymfjyyy/xxz/+ERwOBytXrsTatWtx+/ZtPHnyBPb29sjOzsbRo0dRUFCAtrY2ODs748MPP8Tjx49x8uRJNDc3Q0tLCytWrMBPfvITMJlM2NjYwMTERO4W/xf55ptvoK2tjZ07d0raFImTnp6Oe/fuYe/evcKKGGmCzWYjPj4eFEUhIiICtra20x5bW1uLS5cuQVNTE1FRUTKToNbd3Y2EhAQ0NzfDx8dn2hyIF2lra8PJkydx4MABqRpONBvKysqQkpKCn/3sZzLzdyI8R+7FwHxTzO7GmbwaXKtoA58C6DTA39EYx71sMNb0FNevX58x6YnP56O1tVXo9q+rq8PY2BgUFRVhZWUFJpMJJpMJMzMzuV/8JzI6Oor/+Z//wbZt27BmzRpJmyNxRkdH8Ze//AWGhob4j//4D0mbI4SiKOTm5iI7OxvW1taIjIyccU5FeXk5UlNTwWQysWvXLqioqIjR2rnD4/GQk5OD3NxcWFhYIDw8/KWLZF5eHnJycvD+++/LTM6HgPHxcXz++edYt26dVHulCJORrU+alPPD3Tp8mPwIdDoN/P+TWHwKuP6kHVmP2+CpUIc3N3lj06ZNwvg9RVGTFv/R0VEoKCjAysoKXl5ewsWfJOVMT319Pfh8/qybPy12lJWVYWVlhfr6evT19Um0PbSAoaEhJCQkCAfv+Pj4TCtoKYrCzZs3kZeXB1dXVwQFBcnk55/BYGDTpk2ws7NDYmIiTp48iaCgIKxatWraHB4WiwVbW1uZEwKAaEdCHx8fmfybySuy92mTUorZ3fgw+REoADy+qLNF8O8CrjX+09YZ7e3tqK2tFS7+HA4HCgoKsLS0hKenJ2xsbGBubk6+SK8Am82GhoaGTCVcLTSBgYE4deoUMjMzsWfPHonaUldXh/j4ePD5fBw8eHDGsMD4+DiSk5Px+PFjbNmyBevXr5f55FcrKyucOHECV65cQVJSEqqqqrB9+/ZJno6RkRE0NDSIteX4fOPq6koSCWUQIgbmiTN5NaDTaZOEwETooPDBt1nwYTzvLGZhYSHs7W9hYSGTOwFpgc1mw8bGRuYXjfnE1NQUWlpaqKysBJ/Pl0hYiaIo5OXl4datW7CyskJkZCQ0NTWnPX5oaAixsbFobW3F7t27F9VioqKigvDwcDg4OCAtLQ1fffUVwsPDRbxZ1dXVoCgK9vb2kjN0jpiYmMDc3BylpaWL6u+32CGrzzzAGecJcwRmgg8aase18b/7orDEzmZB+pnLIxwOBy0tLXBzc5O0KVKHl5cXMjIykJeXh40bN4r12kNDQ0hMTER1dTW8vb3h6+s7oyDp6OhAdHQ0xsfHceTIEZibm4vRWvHh5OQES0tLJCYm4vvvv8eGDRuwadMmMBgMsFgsGBkZSUVYZy64ubkhJSUFvb29UjXEjDA9RAzMAwMc7kuFgAAKwA+xcdBSokFVVRVaWlrQ09ODrq4uNDU1oaWlBU1NTWhqakJNTY3sdGdBXV0dKIqSm3yBiRUwbW1tWL58OZSUlDAyMgIul4v169fj448/BpPJhJubG65evYrCwsI5iQF3d3dYW1vj0qVLszq+vr4ely9fBo/Hm1VWfE1NDS5dugRtbW0cPnx40S8g2traOHToEO7cuYNbt26hpqYG4eHhqKqqwurVqyVt3pxZsWIFsrKyUFpaShIJZQQiBuYBTRUF0GmYlSCggYKZoT5GBvvQ39+P/v5+NDY2gkaj4cXCDhqNJhQIWlpa0NDQEBELgudkoXf5QsJms6GlpSU3pUyqqqooLy/HRx99hN///vfIyMgQCqHa2lr4+/tj7dq1ePDgAUxNTeHk5ITy8nLU1NTMGKufCSsrK5iZmb30OIqikJ+fj5s3b8LS0hKRkZEvbc1bWlqK9PR02NjYYNeuXa/dgEvWoNPp8PLygq2tLRISEvD111+Dx+PJdIhAgJKSElauXCkcbUwqn6QfIgbmARVFBvwdjXH9SfuMOQM0UFhrqoR333kLdDod4+Pj6OrqQmdnJzo7O9HR0YGOjg50d3eDx+OBoigMDg5ifHwcPT09oCgKY2Nj4HK5IudVUlKaJBImigVNTU1oaGgs2oREki/wIzY2Nvj1r3+Nd955B9988w3+3//7f/D390d5eTmuXbuGEydOvNZ54+LiXnrM8PAwkpKSwGKx4OXlhU2bNs24CFAUhRs3biA/Px9ubm4ICgqSy0XDzMwMb731Fs6ePYuWlhYUFBTA0NBw2gFNsoKbmxvu3buHyspKkYFrBOmEiIF54riXLa4+bpvxGAo0GHQ9xHffNSA0NBQGBgYwMTGZNPqUz+ejr69PKBIm/giEAI1Gg4aGBtTV1aGsrCy8iXZ2dqK+vh4DAwOTBhqpq6tPKxZkNTQxMjKC1tZWuLu7S9oUqcHa2hrA8/bMn3zyCZKSktDW1gYOh4NLly7h008/FfZiEIQc6uvroaWlhe+++w4ff/wx6uvrUV1djcuXLwv/raWlBTabLbxOdHQ0/va3v4HP52NkZAR0Oh1r1qzB7373u5fubsfHx5GYmIgnT54gICAAHh4eMvW5m2+UlJRAo9FgaWmJxsZGnDx5EqGhoTLtJRAkEpaUlBAxIAMQMTBPrGXq4eMwJ/wu6dGkqgIa+KBAxx/DnLDRdCWSk5Px9ddfw9fXF56enpN2Q3Q6Hbq6utDV1Z00qGR4eHhKkdDT0yM8Rk1NDebm5tDR0RGKBQaDAS6Xi8HBQQwMDKClpQXPnj3D0NCQyPkZDMaU4YgXxYO0hCYEi5O85AvMhsrKSgCAnZ0d/vSnP+HGjRswNjbGt99+i56eHvj5+aGiogIWFhbCkMORI0eQkJCA6OhoXL16FQwGA5s3bwaDwRA+n52dLbxGXl4ejh49igcPHqCzsxPXrl3DnTt3UFNT89IFbHBwELGxsWhvb8eePXvIQoHnv5Pm5maEhYXB1tYWycnJuHDhAtatW4ctW7bIbLKxq6srUlNTSSKhDEDEwDxywN0ay4w1cSavFlcrWoUdCJdr8rBKuQ371wWBRqPh7bffxq1bt3D9+nU8efIEoaGhs+6nr6amBisrK1hZWYk8zuVyRUIOnZ2daG9vF/EmKCgoQF9fH4aGhliyZAkMDAygp6cHZWVljIyMYGBgAAMDA+jv78fg4CD6+/vR3t6OgYEB4ZAlAcrKyjOKBXGFJthsNnR0dMiN5v8oLi7Gp59+CisrKxw/fhw7duwQLraamppgMBhQU1NDdHQ03n//fZHXDgwM4A9/+IOwxDU2NhZqampTXufu3btQUVFBQUEB6urq4OXlhePHjyMpKWlG+9rb2xEdHQ0ej4cjR47MKg9BHqiqqgLwvHW5uro69u/fj6KiIly7dg21tbWIjIyEsbGxhK18dZycnJCVlYWysjJs2rRJ0uYQZoCIgXlmDVMPa5h64IzzMMDhQlNFAZ1tLfjmm2/w5MkTODo6QlFREQEBAVi+fLmIl2D9+vWvHTNVUFCAsbHxpBsGRVFThhxqa2tFvAI6OjowNDSEvr4+DAwMhGJBsBiMjY2JiAXB/w8MDKCnp+eloYmZEiBVVVVf20XMZrPl3isQFBQEJSUlcDgcaGlpYf/+/fjNb34DPT091NbWYvfu3Xj69Ck4HA76+/vR1dWF6urqSefR09ODqamp8N9GRkbTXnPZsmUYHBzEBx98gBMnTmDZsmWwsLDAu+++O+1rqqurERcXBx0dHURFRcl8+dx8wmKxYG5uLswToNFocHd3h42NDeLj43H69Gls3rxZ5sIpSkpKIh0J5TEnRFYgYmCBUFFkQEXx+a7YwsICNjY2yMvLw/Lly4VfZktLS5w4cQLZ2dm4efOm0Esw0034VaHRaMKd84vu25GRkUkiobKyEoWFhcLKBlVVVRGRYGhoCEtLS2hra0/6YlMUhZGRkUliQeBpaG5unjY08TIvw1ShiaGhIbS3t2PDhg3z9vuSRSZWE0zk4cOH8PLywtGjR1FcXAxFRUX8+c9/xt/+9rdJnh4AMzYDEkBRFAoKClBWVobf/OY3qKiowF//+ld8/PHH8Pb2xmeffYZ169ZNet29e/eQkZEBe3t7REZGyk3FwGzg8Xiorq6Gh4fHpOeMjIzw5ptv4saNG7h69SqqqqoQFhY2q7+VtCBIJGSxWFI5NIvwHCIGxISXlxd++OEHVFdXiyzKioqK8Pf3x/Lly5GSkoJTp05h48aN2LBhw4K72FVVVWFpaQlLS0uRx7lcLrq7u0VEQmtrKx49eoTx8XEAP4YcDAwMhKEHwf9PlRQ5ER6PJ8xdmMrT8LLQhEAkCJ4fHx9HY2MjtLS0oK6uvmirJl6V2NhYcDgc/OEPfxAuvsuXLwefz58kyGYDRVGIjY1FZWUl1q9fDz8/PzAYDAwMDODSpUv46KOP4O/vDzabLSzzpCgK165dQ0FBAdauXYvAwECyO3yBhoYGjI6OYsmSJVM+r6CggK1btwqnn3711VcICQmRme5+JiYmMDMzQ0lJCREDUgwRA2JCMG8gNzd3ygQrCwsLvPXWW7h9+zays7Px9OlThIaGSiROqKCgACMjo0keCoqi0N/fL1IK2dXVhbq6OgwODgqP09HRmSQSBCEHGo0GBoMBbW3tl7qJBaGJF8XCwMAAuru70db2vHojLS1N5HUaGhov9TTMJTQhKwjE0sTFd8uWLRgaGkJTU9MrnWtoaAgDAwOor69HVFQU7t27h/T0dOzYsQOampo4duwYdHV1ERkZidraWujq6mJsbAyJiYl49uwZAgMDScXHNLBYLKirq4uEaKbCzs4O77zzDlJTU3Hp0iWsXr0agYGBUpPMOxNubm5ITU2VmqFZhMkQMSAmaDQavL29ERsbi7q6OmH510QUFBSwefNmYS6BwEvg5eUlFbtdGo0mXMRf7Cg3MjIiTGAUiISqqioUFRWJhBymEgk6OjpT7haVlJSgr68/7fChL774AtbW1ti0adOksITg/5uamjAwMDBjaGKmfAZZzeIGgODgYHz++ef4y1/+gk8//RQ0Gg3//Oc/weVyMTw8jOHh4WkTBAVQFIW7d++iqqoKdDodb7/9NrS1tREdHY2srCx4e3tDV1cXfD4fOTk5MDMzg6OjIwYGBhATE4POzk7s3bt32l0v4bkYcHBwmJU4VVNTw+7du1FWVobMzEzU1dUhIiJC6ls3CxIJS0tLSSKhlEKjXmx7R1gwKIrCyZMnhUleM8HlcpGTk4O8vDwYGRkhLCxsRte7tMLlctHT0yMiEgSehbGxMQDPF2ZByGHij76+/rS7noGBAfztb39DZGQknJycXmqHIDQxlZdhooAQ2CRAWVl5Vg2dxOn6nq4dcXl5+aRjz507h7/85S8YGRmBtbU1AgIC8L//+7/o7e2FtbU1nj59Cnd3d7BYLAwODsLR0RERERH48MMPMTIygsTERPznf/4nhoaGMDo6CkdHR3z55ZdQV1fH3//+dxQVFUFJSQlcLhdLlizBn/70J+jp6SE6OhoURSEqKuqlO155pre3F//85z+xc+dOrFix4pVe29XVhYSEBLS2tsLHxwdeXl5SHYJJS0tDZWUlfvGLX0i1nfIKEQNi5uHDh0hISMBbb701q5tkS0sLkpOT0dHRAS8vL2zcuFEqvARzhaIoDAwMCEVCZ2cnurq60NHRIRJy0NbWniQSDAwMUFtbi4SEBPzqV7+ChobGvNk1Ojo6rZdh4g+fzxd53VShiRdFhDSFJj777DOMjo7il79+H0NjfGiqKAgTXgGgqakJly9fBofDQVhY2KxjvSwWC5cvX4aenh6ioqJe2opY3hEkVr7//vuTxhnPBh6Ph9u3byMvLw+WlpYIDw+X2jLblpYWnDp1Cnv37iW5A1IIEQNihs/n49///jdMTU2xa9euWb2Gx+MhNzcXubm5MDAwQGho6KKuz+ZwOEJhMFEkdHd3C0MODAYDNBoNTk5OIiJBV1d3wXcdFEVheHh4RrHQ39+P4eFhkdcJQhMv8zSIIzRxJvkWfihqQj1fFxSe98PwdzTGcS8b8FpZuHbtGkxNTbFz585ZLy7FxcW4cuUKHBwcEBkZKROxbEkTExOD0dFRHDlyZE7nqaurQ2JiIjgcDoKCgrBq1ar5MXCeOX36NNTV1bFv3z5Jm0J4ASIGJEBJSQnS0tLwk5/8BAYGBrN+XWtrK5KTk9HW1oYNGzbAx8dH2CBGHuDxeOjp6UFHRwdSU1OhpqYGZWVlkZADnU6fMuRgYGAg9sWJx+NNKRJeDFe8GJpQUVF5qZdhLqGJH+7W4cPkR8D/dcYUwKDTwOPz4alQjyNedtiyZcusvFB8Pl84GdHd3R0BAQHEDTwLuFwuPv30U/j6+s5LeSyHw0FGRgYePnyIlStXIigo6LW8DQtJSUkJ0tPT8fOf/5wkEkoZRAxIAC6Xi3/961+wtbVFWFjYK72Wx+MhPz8ft2/fhr6+PkJDQ6U+eWi+6evrwz/+8Q/s2rULjo6OwoFOAk/CxJ+BgQHh67S0tKYUCRoaGhJ1308MTUznaXgxNEGj0aCurv5SL4OKiorIeytmd2P31wV42Zf+8glPrGHqvdT2sbExxMfHg8ViITAwcMoeA4SpqaqqwoULF/DOO+/Ma2+Rhw8fIj09HSoqKggPD58yWVlSjI6O4m9/+xs8PT3h6+sraXMIE5CfbaUUoaCgAE9PT1y7dg2+vr6vFONjMBjYuHEjli5diuTkZHzzzTdYv349fH195cZL8OI8AsGoZ01NzUkjekdHRycJhJqaGty7d0+4uCorK08pEnR1dcWSn6GsrCy0YToEoYnpGjo1NDRgYGBgUmhCQUFBRCRcqFMFjQbMtAVg0Gk4k1f7UjHQ39+PmJgYdHd3IyoqatIcDcLMsFgsaGtrz7oV+WxZuXIlLC0tkZiYiLNnz8LLywu+vr5SkWukrKwsHG28ceNG4kGSIuRj9ZBC3NzckJubizt37iAoKOiVX29sbIzjx48LvQTPnj1DaGgoLCwsFsBa6YLNZsPY2PilZXHA85uPubn5JO+JIOTwolB4+vSpSH2+np7elEJB3B30BJ6Al9WjTxxG9aKnobtvAOWdKqAwsxeEx6dwtaIVnHGeSFLhRFpbWxEdHQ0ajYajR4/KZKWLJKEoCiwWC/b29gvildLR0cHhw4eRn5+P7Oxs1NTUICIiYtoyXXHi5uaGkpISVFVVkZJTKYKECSRITk4OcnJy8Itf/GJOGfHt7e1ISUlBc3MzPDw8sGnTJpmuj38Z//jHP7Bs2TIEBgbO+7kFIYepJkP29/cLj9PU1JxSJGhqakpNxcCLdAyMYu2fr8/6+F/bdWKptZlQTGlpaYFGo6GyshKXL1+GgYEBoqKiZKo1rrTQ2dmJL774AlFRUQu+IDY1NSEhIQEDAwPYunUrXF1dJf4ZPXXqFDQ1NREVFSVROwg/QjwDEmTt2rXIz89HQUEB/P39X/s8RkZGeOONN1BQUIBbt26hsrISoaGhk9oMLwZ6enrQ19e3YMOJJoYcbGxsRJ4bGxubJBDYbDZKSkqEIQclJaUpRYKenp7E3bSaKgqg0wD+LOQ/DYCephoeP36MO3fuAHg+dEpNTQ0dHR2wsLDAzp07iRB4TVgsFhgMhliGbJmbm+PEiRPIyspCWloaqqqqEBISMivP2kLh5uaG9PR00pFQiiCeAQlz/fp1FBcX4xe/+AVUVVXnfL7Ozk4kJyejsbERHh4e8PPzW1RegrKyMqSkpOD999+fl9/XfMDn86cMOXR2doLD4QB4HnLQ1dWdUiiIM+P7rXPFuP6kDfwZQgUMOg3+y41x8oAbAGBwcBCNjY3IyclBS0sLGAyGcDqlnp6e0HNgbm4OExMTucldmQs//PADaDQaDhw4INbrPn36FCkpKWAwGAgLC5vUSVRcjI6O4vPPPxfmOxEkD/nWShgPDw8UFhaiqKgIPj4+cz6fgYEBjh49irt37wq9BDt27JCqjOK5wGazYWpqKjVCAPixnFFfX1+kmQpFURgaGpokEB49eoS+vj7hcRoaGpMEgqGh4byHHMbHx2HNqQYfM4ek+HwKx71+9IooKiqitLQUra2t2L59O9zc3NDd3Y2mpiY0NTWhubkZFRUV4PF4oNPpMDY2FhEI+vr6JFFsAqOjo2Cz2QgICBD7tZctWwZzc3MkJyfj/PnzcHd3x5YtW8Qu4EgiofRBPANSQEZGBh49eoRf/OIX81oL39XVheTkZDQ0NGDdunXYvHmzTDeCoSgKf//73+Hk5CSRG+l8MjY2JtKaWfDT1dUl3HULZjO8OEL6dUIOY2NjiI2NRUNDA9SdA/HP/FbQ6TTwJsQMaP/Xd+CPYU444P5cPPb39yM6Oho9PT3YtWvXlEO2gOcJmW1tbUJx0NTUhI6ODuH7MDMzg5nZ5PwDeeTp06e4ePEifvrTn0JP7+XlmwsBRVEoLCzE9evXoa+vj4iICLEPRWtubsbp06fFkjdBeDlEDEgBfX19+Ne//oUtW7bA09NzXs/N5/NRVFSEGzduQFNTEzt27BBLnHIh6Orqwr///e9FffPg8/no7e2dJBI6OjqEIQcajQZdXd1JImG6kMPo6Ciio6PR2tqKffv2wdraGvfY3TiTV4urFa3gU887EFrSurHFgo7fvfN8bkZzczNiYmLAYDCwb9++V66FHx0dFQoDwX8FSZgaGhowNzcXEQjS1iBnoUhJSUF9fT3effddSZuCtrY2JCQkoKurC1u2bIG7u7tYRdqpU6egpaWFvXv3iu2ahKkhYQIpQFtbG6tWrcKdO3ewdu3aeXXZ0el0eHh4YMmSJUhOTsb333+PNWvWwN/fX+a8BGw2GzQabdGEPKZCUM6op6cnIngEfQZeFAkVFRXo7e0VHqeuri4iErS1tXH79m309PTg4MGDwtLTNUw9rGHqgTPOwwCHC00VBXxz6iS6OrowNjaGmpoaJCQkwNDQEFFRUa9V7aKsrAwbGxuRREzBJEmBQLhz546wlFNfX19EICzG/AOKolBVVfXKQ4kWCmNjY7z55pu4fv06srKyUFVVhdDQULElhrq6uiIjIwP9/f1kjoWEIZ4BKUFQarR9+3asWbNmQa5BURSKi4tx/fp1qKurIyQkZFKTHmkmPj4ePT09OH78uKRNkSrGx8enDDl0dnYKQw4KCgpC78HEEdJ6enrCBbeiogJxcXGwsrJCfX09li9fjvDw8AVNQKUoCl1dXSICobW1VZh/YGJiIuI9MDAwkOnwQmtrK77++mscPHhQ6r57VVVVSE5OBo/Hw44dO7Bs2bIFv6YgkVDQXp0gOYgYkCLi4uLQ3NyMn/70pwuaUNPT04OUlBSw2Wy4ubnB399f7E10XhWKovD555/DxcUFW7ZskbQ5Us/g4CDOnTuHgYEBbNq0CTweT2SEtKBToSDkIBAJhYWF4PP5WLt2LbZt2yaRhZfL5U7KP+js7ATw3NswVf6BrJCbm4u8vDy89957Uun1GBoaQmpqKp49ewZXV1ds3bp1wT2IKSkpqK6uxs9//nOSSChBiBiQIgS7hvDw8AWfOkZRFO7du4dr165BTU0NISEhEiszmg0dHR348ssvsX///mmT2AjPGRgYwLlz58DhcHDo0KEp291ODDl0dHSgo6MDdXV14HK5wmPU1dUneRIEoQdxiwQOhyOSf9DY2Cgcda2pqSkSXjAzM5Pa/INvv/0W6urq2LNnj6RNmRaKolBaWoqsrCxoaWkhIiJiQaekChIJ9+3bR1paSxAiBqSM6Oho9Pb24p133hHLDbe3txcpKSmora3F6tWrERAQIJU30uLiYmRmZuKDDz6QuVwHcdLX14fvv/8ePB4Phw4dmlX72b6+PkRHR6Ovrw87duzA5cuXoaamhjVr1oiEHwRCQUFBYcp+Cfr6+mLd7fb394uEF5qamoQTIA0MDEQEgrGxscR34sPDw/jss8+E5ZnSTldXF+Lj49HW1iacrLgQO3eKonDq1Cloa2uTREIJIn1+KjnHy8sL3333HZ49eyaWmJ2Ojg4OHjyI0tJSXL16FdXV1QgJCZG63TebzYa5uTkRAjPQ09OD77//HjQaDUeOHIGuru5LX9PU1ISYmBgoKiri2LFjMDQ0hK2tLaqrq+Hk5CQcnkRRFPr6+oSeBEEZZE1NjchwpOkaKy1EtzstLS1oaWlh+fLlQhs7OztFBMLDhw/B5/PBYDAm5R/o6+uL1cNRXV0NiqJkZverr6+PY8eOITs7Gzdv3kR1dTXCwsJeabDabKDRaHBzcyOJhBKGeAakkLNnz2J8fBzHjx8X682qr68PqampqK6uhouLC7Zu3SoVXgKKovDZZ5/Bzc0Nfn5+kjZHKuns7MS5c+egqKiIQ4cOzarF65MnT5CQkAATExPs2bNHWDEgSGa1s7ObVYe84eFhdHV1iYiEjo4O9Pb2QnB7UVNTm1IkaGtrL2icmMvlorW1VcR70NXVBeDHIVYTBcJCZtEnJiaira0Nb7/99oJdY6Goq6tDYmIiOBwOtm/fjpUrV87r+UkioeQhngEpxNvbG+fPn0dtba1YM461tbWxf/9+lJeXIysrC9XV1QgODpZ4TX97ezuGh4cnzQogPKe9vR3nzp2DmpoaDh48+NIFjaIoFBQU4Nq1a1ixYgVCQ0NFKgYEVQY1NTXgcrkvda+rqalBTU1t0iwMLpeL7u5uEZEg2K2Pj48DeB5yEJRBvhhymI8qBgUFBVhYWIhM85yYf9DU1ITy8nLk5eUBeO5teDH/YD6Sa/l8PlgslkyEB6bC2toab7/9NtLT05GQkAAWi4WgoKB52ywoKyvDyckJZWVl8Pb2JomEEoCIASnE1tYWpqamyM3NFXv5EY1Gw+rVq2FnZ4fU1FTExMTA2dkZW7dulVgLYDabDQaDIRfjmV+V1tZW/PDDD9DU1MTBgwehrq4+4/E8Hg8ZGRkoLS2Fl5cX/Pz8pvQ++fr6IiEhAbdu3XrtIVoKCgowMjKa1KyIoij09/cLRcLEoU9DQ0PC43R0dKb0JrzsPb4MFRUV2NraCr9bFEWJ9D9oampCbm6uMP/A0NBwUv7Bq3aAbG5uxsjIiMyECKZCRUUFkZGRcHBwQEZGBurr6xEREQErK6t5Ob+bmxvKyspQXV0t078nWYWECaSUJ0+e4NKlS3jjjTckNn2Qoijcv38fmZmZUFRURHBwsEjvfXFx8eJFjIyM4MiRI2K/tjTT1NSE8+fPQ1dXFwcPHnypWONwOIiLiwObzUZwcDBWr1494/GffPIJ6HQ6Pvjgg/k0e0ZGRkam7JfQ09MjDDmoqqpOKRJ0dHTmbUfJ5/NF+h80NTWhra1NmH9gamoqEl7Q09ObMaR369YtFBUV4b333lsUu97e3l4kJCSgsbERXl5e8PHxmfNUTkEioY6OjlRXWyxWiBiQUiiKwpdffgk9PT2Jz/zu7+9Heno6KisrsXLlSgQGBopt/ClFUfif//kfuLu7k+lmE6ivr8eFCxdgZGSE/fv3v9Rd29vbi+joaAwMDGD37t2zCrlcuXIFRUVF2L17tzBJT1IIQg5TCQVByIHBYEwbcpiPxNOJ+QeCn+7ubgDPd80v5h9M7Np46tQp6OvrIzIycs52SAt8Ph95eXnIzs6GmZkZwsPDZ1W9MhPFxcW4cuUKfvnLX5Lx2GKGiAEp5v79+0hKSsKJEydgYmIiUVsoisLDhw9x5coVMBgMbN++XSwLREtLC06dOoUjR44s6jbErwKbzUZ0dDTMzMwQFRX10ph2Y2MjYmNjoaSkhH379gkrBF7G2NgY/vKXv0BfXx8/+clP5sP0eUcQcphKJAj6EADP82GmCznMJUl3ZGREJP+gqalJGOrQ1tYWVi3k5uYiJCQErq6uc37P0kZTUxMSEhIwMDCAwMBArF69+rV/pxwOB3/729/g5eWFjRs3zrOlhJkgYkCK4fP5+N///V+Ym5tj586dkjYHwPOGNunp6Xj27BlWrFiBbdu2zTmGOxN37tzBrVu38MEHH0i8TlwaqK6uRmxsLKysrLB3796XJtlVVFQgMTERpqam2LNnzyv/rb7//nuw2Wz87Gc/m1WpojTB4XCmFAnd3d3CkIOKisqUIkFXV/e13PkCcTJRHDQ2NoLH44FGo8HQ0FDEe2BkZDRn97o0MDY2hszMTJSVlWHZsmXYsmULNm/ejNbWVrS1tWH58uVQUlICl8tFX18fLCws8Jvf/AY7duyYdK7k5GTU1tbiZz/72aIIqcgKRAxIOffu3UN6ejrefffdObvg5guKovDo0SNcuXIFNBoNQUFBCzZ4JTo6GlwuF4cOHVqQ88sSlZWVuHTpEmxtbbF79+4ZxRFFUcjPz8eNGzfg5OSE0NDQ1xJTbW1tOHnyJJYsWSLxcNV8wePxpg05CJIGGQwG9PT0phQKrxpyuHjxInp6euDu7i6Sf0BRFBQUFCblH+jq6srs/IUnT54gNTUVCgoKCA0NxQ8//IDf//73qK2tFU5L5XA4OH78OKKjo3H9+vVJ5cKNjY345ptvSLdRMUO2WlKOi4sLbt++jby8PISGhkraHADPKw5WrlwJGxsbZGRk4PLly6ioqEBQUNC8egn4fD7q6uqwYcOGeTunrFJRUYH4+HgsWbIEO3funHE3yePxkJ6ejrKyMmzcuBG+vr6vvbgYGxtDR0cHVVVVsyozlAUYDAYMDQ0ntWkWVBW8KBDKy8sxMDAgPE5LS2uSQDA0NJwy5MDj8VBTU4P169dj9erVwqTN8fFxkfyDyspKFBYWAnieIPli/sFCet/mk+XLl8Pc3BzJyck4f/48qqqqJh2joqKCX/3qV7hw4QJ++OGHSWJAULFRUlJCxIAYkf1v9iJHQUEBnp6euHHjBnx9fWfVTEZcaGhoYNeuXaioqEBGRga++OILoZdgPnY2LS0tGBsbk/v+Ag8fPkRiYiJWrFiBsLCwGYXAyMgI4uLiUFdXh7CwMDg7O8/5+t7e3khNTUVubi42bdo05/NJKzQaTdjV8MWS3tHR0UkioaamBvfu3QOfzwfwvFb+xcmQHA4HY2Njk3p1KCoqwtLSUqRSaHh4WCT/4N69e8jJyQHwvMxyokAwNTWV2m6cWlpaOHDgAO7evYvbt28DeN7ISuAZACBsbS1oAAU8F0iffPIJzp8/j7GxMfT39yMvLw9/+ctfhGJo//79yM3NRUNDA7Kzs/GPf/wDT548AQB8/vnnCAwMxG9/+1tcv34dHR0deOutt/Db3/5WxL7+/n78f//f/4e0tDSoqKiAwWDgJz/5Cf7jP/5jIX8tUg8RAzLAmjVrkJubizt37mDbtm2SNkcEGo2GFStWgMlk4sqVK4iPj8fjx4+xfft2kWzq16G2thaKiooLOiRF2ikrK0NKSgpcXFwQEhIyYwy1p6cH0dHRGBwcxMGDB0VuvnNh9erVyMzMRHFx8aIWAzMh6FZobm4u8jiPx0NPT4+ISOjo6MCTJ08wOjoqPC4xMVEoEgSeBH19fZHkTzU1Ndjb2wt3w4IW0BPzD7KzszE+Pg4ajQYjI6NJ+QfSEmOn0Wjw9PSEq6srbt26hZiYGPB4PKxbtw49PT34+OOPAUDk87Rv3z7cvXsXN2/ehKWlJX7/+9/j4sWLKC8vx61bt6CgoIALFy7g7NmzOHr0KP71r3/h/PnzUFdXx3vvvYfIyEh88MEHOHbsGP7yl78gLS0NISEh2LBhg7ASaXx8HP7+/hgcHERRURGMjIxQWFiITZs2YWBgQKxltNIGEQMygJKSEtzd3ZGfn4+NGzdKpctQXV0dO3fuhKOjIzIyMvDll18iMDAQK1eufG0vAZvNhpWV1aJIsHodBPkirq6uCA4OnvH32NDQgNjYWKioqOD48ePzml8iCAuVlpaCxWKRhjATYDAYwlDBRCiKwuDgIL755htoamrCzMwMnZ2dePDgAfr7+4XHaWpqCoWBQCQYGBhAQ0MDNBoNOjo60NHREebk8Pl8dHR0iAiE8vJykfwDgTgwNzeHjo6ORPMPBBuCuLg4XLhwAWNjY+jt7YW+vj7ef/99vPvuuwCA7OxsXL58Gf/4xz+Eny8PDw+0tbXhu+++Q3R09KS8oQMHDgjvhXv37sVnn32G3t5e4euDg4OhoaGB69evC8XA+fPnUVRUhEuXLgmbYbm7uyMqKgp/+tOf8NOf/lRsZdPSBhEDMoK7uzsKCgpw9+5dbN68WdLmTIujo6PQS5CYmIiKigps3779lWuGeTwe6uvr5ba86O7du8jKysK6desQGBg44w390aNHSEpKgrm5Ofbs2bMgNzN/f3+Ulpbixo0bRAzMAhqNBh6Ph76+PgQEBMDR0VH43OjoqMg0SEH3xZKSEpGQw8Q+CQKRoKurC2NjYxgbGwvLFMfGxkTyD54+fYq7d+8C+DH/QPBjZmYmkc1ETk4OxsfHcfnyZVy6dAkWFhb43e9+J6yGycrKAvD8PifAzc0Nubm5AIDMzMxJYmBi6EVPT2/SY4LHW1pahP++evUqgOcD4SaycuVKfPvttyguLpbb2QhEDMgIqqqqWLNmDYqLi7FhwwapGCA0HWpqaoiMjMSKFSuQlpYm9BKsWrVq1ruU5uZmjI+Py2W+QF5eHm7cuIH169djy5Yt0/7OKIpCbm4ubt26hVWrViEkJGTBEvxUVFRgaWmJhoYGMllulrBYLNDp9En5B8rKyjAzM5sU/uLz+ZNCDp2dnXj69Kkw5ECn04VVDhNFgrGxsUhb4KGhIZH8g6KiIoyMjAD4Mf9A8GNqajovcyBehoODA372s5/BwMAAP/3pT7Fz506kpKRASUkJnZ2dAH5c1IHniYSC3iIdHR2TzjdR1Ai+Iy8KHYEoEyC4zovh1pGRERgbG6Onp2cub1GmIWJAhvDw8EBhYSGKi4vh7e0taXNeyrJly2BtbY3MzEwkJSXh8ePHCA4OntVCUltbCyUlJZiamorBUumAoijcvn0bt2/fho+PD3x8fKYVAjweD6mpqbh///5Lj50vtm7dijNnziArKwu7du1a0GstBlgsFqysrGYt3Ol0OvT19aGvry/S9puiKAwNDYnkJHR1deHRo0fo6+sTHqepqTlJJLi6ugp3ur29vSLhhWfPnoHL5QrzDyYKBENDwwXJP1BXV8fx48eRk5OD6OhofPLJJ3jzzTeFYRZBR0fg+UJuZ2cHAPM2Nllwndu3b0tVMrY0QMSADKGpqYnVq1fj7t27cHd3l9ps4omoqqoiPDwcjo6OQi/B1q1b4eLiMuPixWazYW1tLTUJUQsNRVG4ceMG8vPz4efnN6PYGxkZwcWLF9HY2Ijw8HCsWrVKLDaam5tDS0sLT58+BZ/Pl5u/zeswPj6O2traeUm4pNFo0NDQgIaGxqSk0LGxMWHIQSAS6uvrUVZWJtwRKykpiZRBWllZwdXVFdra2uju7hZpjlRWVgaKoqCoqDgp/0BbW3teBCeNRsMnn3yCixcv4vr166DT6UIvSWFhITw8PITHCko652ty6tatWxEbG4uysjKR9uZ9fX04evQozpw5I+KdkCeIGJAxNmzYgJKSEpSWlop8aaSdpUuXwsrKClevXkVKSgoeP36MkJCQKdU5l8tFQ0PDpPrjxQpFUcjKykJhYSECAgLg6ek57bHd3d2Ijo7G8PAwDh06NG8T42bLhg0bcOXKFeTn58uEd0pSsNlscLncBc+vEHjPXvSg8fl89Pb2CkWCwKtQWVkJDocD4PmiPLGxkqenJ7S1tTE+Po7Ozk40NTWhoqICBQUFAJ6H/17MP3jd/BQLCwvs2bMHly5dwjvvvAMWi4U1a9bgs88+Q3BwMOzs7NDe3o4//elPWL58OfT19UFR1JzFyP79+3Hq1Cm8//77SEtLg5GREUZGRvDzn/9cGIKRV0gHQhkkKSkJNTU1+PnPfy6TmfYsFgupqakYHR1FQEAAXF1dRb7kdXV1OHv2LN56661FHyagKArp6ekoKSlBUFAQ1q5dO+2x9fX1iI2NhZqaGvbt2yeRGxefz8cnn3wCZWVl/PrXvxb79WWFjIwMsFgs/OxnP5OqboIURWF4eHjS+OjOzk6RkIOGhoZQJGhqagpf19nZiebmZqGg0NXVFREIJiYmUFRUxMjICDw9PUXaETs6OuLy5cvCa9y/fx8uLi6wtLSElZUVwsLCkJmZCRaLBVVVVYyOjiI8PBwnTpxAbGwsDhw4gL/97W9ITU1FQ0MDli9fLuwh8Kc//QlPnjyBpaUlIiMj8fbbb2PPnj2oqKiAhoYGHBwchE2dBgYG8Lvf/Q5JSUnQ1NQEg8HAtm3b8N///d9SnYu10BAxIIN0dHTgyy+/lOnBJxwOB1lZWSgvL4etrS1CQkKEccHs7GwUFhbi/fffl6ob6XzD5/ORmpqK8vJy7NixY8aRwg8ePEBKSgosLS2xe/ful44rXkgSExPx4MEDHD58eN56GSwmKIrCv/71L9jb22P79u2SNmfWCDwCgp+uri5h6EEQclBUVISBgQG0tLTAYDAwNjaGgYEBdHR0CENHL+YfGBgYzCqkNDIygvT0dDx+/BirVq1CUFAQlJWVQVEUTp48CX19fewIj8QAhwtNFQWoKMreRkiaIWJARrl06RJaW1vx7rvvynTstqqqCqmpqeBwOPD394ebmxu+//57qKqqLuqZ5nw+H0lJSXj06BHCwsKmjftPTCp0dnZGSEiIxL1Bw8PD+Otf/wpTU1O89dZbErVFGuns7MQXX3yBqKioeYt1SxI+n4++vr4pvQmCCgUajQZNTU3hznpkZEQY7xc0DpsoELS0tKYU+hRF4cGDB8jIyICamhrCw8NhZWWFcxn5+Ca/Fg2ULvgUQKcB/o7GeNPLFmuY8uvan0+IGJBRmpubcfr0aURGRsLJyUnS5syJ0dFRXL16FaWlpbC2tkZDQwMCAgJEao4XEzweD/Hx8Xj27BkiIyNFatAnwuVykZqaigcPHmDTpk3w9vaWGk/J6dOn0dzcjF/96ldz7jS52BBM2nz//ffFUrInSaYLOfT29gqPUVJSgoKCArhcrnAQlKqqKiwsLGBhYSHMP5jo7erp6UFiYiIaGxsxzvTA+SfjAChQ+PHzz6DTwOdT+DjMCQfcyXjzuULEgAxz/vx5DAwM4O2335aaRWIu1NTUICEhAUNDQ/Dy8oKfn9+ieF8T4XK5iIuLQ3V1NXbt2iVSQjaR4eFhXLx4EU1NTQgLC5M6wVdfX4/vvvsOK1euREREhKTNkSrOnTsHBoOB/fv3S9oUiTE+Pj6psZIg9CCYSyD4bguWIA0NDZiamoLJZMLKygpGRkb4PiMPfyocBjD9fYAGIO6EJ/EQzBFSTSDDeHt74+zZs6isrJx2UZElbG1t4ezsjKKiIuTl5aGhoQE7duxYNBm+4+PjuHjxIurq6rB3795pJ7J1dXUhOjoaHA4Hhw8fFhlmIy1YWVlBQ0MDFRUVCAsLk+lQ1XwyOjqKuro6bN26VdKmSBRFRUWYmJjAxMRE5HGKooRVDoKf1tZWdHZ2YnBwECwWCywWS3j8bd4S0KEJ/gzXotNpOJNXS8TAHCFiQIaxtraGlZUVcnNzsWTJkkWxi25oaMCSJUuwZs0apKSk4OTJk9i8eTPWrVsn0+9vbGwMMTExaGpqwr59+6btrMhms3Hx4kVoaGjg+PHj0NXVFbOls8fDwwPXr19HUVGRTJW5LiQ1NTXg8/mkZfM00Gg06OrqQldXd9LvSFCt0N7ejvr6ejQ0t6G2SVMkNDAVPD6FqxWt4IzzSFLhHCByXsbx8vJCU1MT2Gy2pE2ZM2NjY2hqagKTyYSNjQ3eeecduLi4IDMzE2fPnhUZdypLcDgcnD9/Hs3NzThw4MC0QuD+/fv44YcfYGpqimPHjkm1EAAAT09PMBgM3LlzR9KmSA0sFks4Q4DwaqipqQkbInl6emLJilUvFQIC+BQwwOEusIWLG+IZkHHs7e1hYmKC3Nxcme/j39DQAD6fLyxXU1JSQlBQEBwdHYVeAj8/P7i7u8uMW3pkZATnz59Hd3c3Dh06NGkELvDcdZqdnY2cnBy4uLggODhY4hUDs4FOp2PZsmV4/PgxGhoapDKcIU4oigKLxcLKlSslbYpMwefz0dbWBjabjbq6OtTV1T3vY8BQBA2zEwR0GqCpQpazuUB+ezIOjUaDt7c34uLi0NjYCAsLC0mb9NrU1tYKm51MhMlk4u2338bNmzdx9epVVFRUIDQ0dNJx0sbQ0BDOnz+Pvr4+HDp0aMoGSlwuF8nJyXj06BE2b96MDRs2yFQ4JDAwEI8fP0ZWVhaOHz8uaXMkSmtrKwYHB0mI4CVMt/grKCjA0tISHh4eYDKZMDc3R9U3d5DH7p9REDDoNPgvNyYhgjlCxMAiYNmyZdDX10deXh727t0raXNeGzabDSaTOeViqKSkhMDAQDg6OiI5ORlff/01fH194enpKZVegsHBQZw7dw7Dw8M4cuSIcHb6RIaGhnDx4kW0tLRg165d05YYSjMaGhowMTFBU1MTRkZGJNoMSdKwWCwoKSmJvUW0tPMqi//EqZslJSXQarkHCjP3auDzKRz3km2vqDRAxMAigE6nw8vLC8nJyWhra4OxsbGkTXplRkdH0dzcPGMXPuB5FrvAS3D9+nU8efIEoaGhMDQ0FJOlL6e/vx/nzp3D2NgYjhw5MqUHo7OzE9HR0RgbG8Phw4dl2qPj7++PH374AVevXkVoaKikzZEYLBYLdnZ2MhHiWUimW/wZDMaMi//E12dlZaGoqAjb162Fh64jPkx5DDqdBh7/x0r4iX0GSCXB3CFiYJGwcuVKZGdnIz8/Xybrvuvq6kBR1Kza2yoqKmLr1q2TvATr16+XuJegt7cX33//PSiKwpEjR6Ysi6ytrcWlS5egqamJQ4cOzdt4Vklha2sLNTU1PHr0CCEhIRL/G0iC4eFhNDY2IiQkRNKmiB2KooSLv0AAvMriP5GRkRFcvnwZbDYb27dvx5o1awAAy021cCavFlcrWn/sQLjcGMe9bIgQmCeIGFgkMBgMrF+/HpmZmfD19ZW52nw2mw1NTc1XstvS0hInTpxAdnY2bt68KfQSTOWSFwfd3d34/vvvwWAwcPjw4SkX+bKyMqSlpYHJZGLXrl2LZjDKunXrkJ2djdLSUuENXJ6oqqoCALnIF5jPxX8iXV1diImJwfDw8KSqmzVMPaxh6oEzziOzCRYIIgYWEatXr0ZOTg7y8/NlbofCZrNhY2PzyslzioqK8Pf3x/Lly5GcnIxTp05h48aN2LBhg1jdtZ2dnfj++++hrKyMQ4cOQUtLS+R5iqJw8+ZN5OXlwdXVFUFBQYvKnezt7Y2cnBzk5eXJrRgwMTGBpqampE2ZdxZq8Z9IdXU1Ll++LOyvMd2mQEWRQUTAAkHEwCJCUVERHh4euHXrFnx8fCYtSNLKyMgIWlpaZhzf+zIsLCxw4sQJ3L59G9nZ2Xj69ClCQ0PFkj/R1taGH374Aerq6jh48OCkXv3j4+NISkpCRUUF/P394enpKVMVA7OBTqdjyZIlePr0KVpaWhb96OmJ8Pl8VFVVLRoRJI7Ff+K1ioqKkJWVBTs7O0RGRi4ab5msQcTAImPt2rXIz89HQUGBzLREraurA4A5j8NVUFDA5s2bJ3kJvLy8FmwX3tLSgh9++AHa2to4ePAg1NTURJ4fGhpCbGwsWltbsXv3bixfvnxB7JAGAgMD8fTpU2RmZuLo0aOSNkdsCCopZDVE8LLF393dHUwmExYWFnNe/CfC4/GQkZGB0tJSeHp6YsuWLXKZbyItEDGwyFBWVsa6detQUFAAb2/vSYuTNMJms6GjozNvXdvMzMzw5ptvIicnB7dv38aTJ08QFhY2qU/6XGlsbMT58+dhYGCA/fv3Tyqr6+joQHR0NLhcLo4cOTJlw6HFhLa2NgwNDdHQ0ICxsTEoKSlJ2iSxwGKxoKqqKjN/X0kt/hMZHh5GXFwc6uvrsWPHjpdWEREWHiIGFiHu7u4oKCjA3bt34efnJ2lzXoqgv8B8oqCgAD8/P6GX4PTp0/Dy8sLGjRvnxUtQV1eH6OhoGBsbY//+/VBWVhZ5vqamBpcuXYK2tjaOHDkCbW3tOV9TFti8eTNiY2Nx7do1bN++XdLmiAUWiwV7e3up3dVOXPzr6urAZrPFvvhPpL29HbGxsRgdHcXhw4dJXwYpgYiBRYiamhrc3NxQVFSEDRs2TFqopInh4WG0tbXB09NzQc5vamqKN998E7m5ucjNzRXmEpiZmb32OWtqahAbGwtzc3NERUVN2gGXlpYiPT0dtra22Llzp1T//uebpUuXQlVVFffv35cLMdDf34/W1lasX79e0qYIkbbFfyKVlZWIj4+Hjo7OoiirXUwQMbBI8fT0RHFxMYqLi+Hl5SVpc6ZFMGBpIecqMBgM+Pr6YtmyZUhOTsaZM2ewYcMG+Pj4vPLNkMVi4eLFi7CxscHu3buhqKgofI6iKFy/fh137tzBmjVrsG3bNqndLS4kbm5uyMvLQ3l5OVxcXCRtzoJSVVUFGo0GOzs7idkgzYv/RBsLCgpw7do1LF26FOHh4XIlkmUBIgYWKVpaWnB2dsbdu3fh7u4usmhJE2w2G3p6emKpfDAxMcHx48eRl5eHnJwcPHv2DKGhobOO9T59+hRxcXFwcHDAzp07RW6s4+PjSExMxJMnT7B161a4u7svuoqB2eLj44M7d+4IBy8tZlgsFiwsLMSamyMLi/9EuFwu0tPTUV5eDi8vL/j5+cntd0OakfwnhbBgeHl5oaysDGVlZVi3bp2kzZmShcgXmAkGgwEfHx+hl+Cbb77B+vXr4evrO+ON8/Hjx0hISMCyZcsQEREhkncwODiImJgYdHR0YO/evVi6dKk43orUoqCgAFtbW1RVVaG9vV1iTaAWGh6Ph5qaGmzYsGFBr/Pi4l9XV4eRkREwGAxYWFhI3eI/EcH8jebmZoSHh2PVqlWSNokwDdL1ySHMK7q6unByckJ+fj7c3NykrsnN4OAgOjo64O3tLfZrGxsb49ixY7hz5w5u374t9BJMNSPg/v37SE5OhpOTE8LCwkRc/+3t7YiOjgaPx8ORI0fmlIuwmNi2bRv+93//F5mZmTh06JCkzVkQ6uvrMTY2Nu8lhRRFob29XSTbf+Liv27dOmGdv7R6/IDnUxxjY2OF1TSyPH9DHiBiYJHj5eWFhw8f4sGDB1JXviPIFxCnZ2AiDAYD3t7eWLp0KZKTk/Htt9/Cw8MDmzZtEt5kS0tLkZqaitWrVyM4OFhECFRVVSEuLg66urrYt2+fzDR5Egd6enrQ19cHm81etGWGlZWVwqmNc2GxLP4Tefr0KRISEqCvr4+9e/fKTTWNLEPEwCLHyMgIy5YtQ35+PpydnaUqoY3NZsPAwEDiLVyNjIxw7NgxFBQU4NatW6isrERoaChaWlpw5coVrFmzBkFBQSJxznv37iEjIwP29vaIjIwkyVBT4Ofnh7i4ONy6dUtmGmC9ClVVVXBwcHjl+PdiXPwFUBSFvLw83Lx5E46OjggNDV2UQnAxQsSAHODl5YUzZ87gyZMnWLFihaTNESKYRyAN0Ol0bNiwQcRLADzv6Lht2zbhDZ/P5+PatWu4e/cu1q1bh61bt0qVwJImHB0doaysjLKyskUnBnp6etDZ2TmrPh6LefGfyPj4OFJTU/Hw4UP4+PjAx8eHJArKEEQMyAHm5uawtbVFbm4uHB0dpeILOjAwgK6uLmzatEnSpohgYGAAe3t7NDY2gk6no7q6GvX19bC2tsbY2BgSEhJQWVmJwMBAuLu7S9pcqWf16tW4e/cuHj9+LFVCdK6wWCzQ6XTY2tpOeu5li//atWuFCX+yvPhPZGBgABcvXkRbWxt27ty5qP7W8gIRA3KCl5cXzp07J3RtSpra2loAkssXmAqKonDr1i3k5ubC19cXTk5OSE5OxtmzZ7F69Wo0Nzeju7sbe/fuxZIlSyRtrkzg5+eHwsJC3Lp1a1EtECwWC9bW1lBWVhZZ/AWlfot98Z9Ic3MzYmNjAQBHjx4lSbQyChEDcoLgZpSbmwt7e3uJewdqa2thZGQEdXV1idohgKIoXLt2DQUFBdiyZYuwXOzIkSO4fv06CgoKQKPREBwcTITAK6CoqAgmk4na2lp0d3dPO5pWlhgbG0NtbS0cHBxw6dIluVv8J/L48WMkJSXByMgIe/fulXj+D+H1IWJATqDRaPD29kZMTIzQ7S1J2Gy21CyqFEXhypUrKC4unuT+r66uRklJCQwMDKCsrIzU1FS0tLTA39+fJEbNksDAQHz11Ve4cuUK9u/fL2lzXpkXd/7V1dXg8XiorKyEpaWlXC3+AiiKwu3bt3H79m2sXLkSISEhcvPeFytEDMgRDg4OMDY2Rm5urkTFQG9vL3p7e6UiREBRFNLS0lBaWorg4GC4ubkJnysqKkJmZiYcHBwQGRkJRUVFFBcX4/r166iqqkJISMiUMWOCKEZGRtDV1UVNTQ24XK7UNcZ5kZe5/fX19dHf34+f/exncikIx8fHkZSUhIqKCvj5+cHLy0vinkbC3JHubyVhXqHRaPDy8kJ8fDyam5slFtuTdH8BAXw+H8nJyXj48CFCQ0OFrXP5fD6ysrJQVFQEd3d3BAQECCsG1q1bBwcHB6SkpOCHH36Am5sb/P39SWnhS/Dx8UFSUhJu376NzZs3S9ocEWZa/M3NzUV2/goKCvjnP/8JR0dHuRQC/f39iI2NRWdnJ/bs2YNly5ZJ2iTCPEHEgJzh6OiIW7duIS8vD7t375aIDWw2GyYmJlBVVZXI9YHnrWQTExNRUVGBiIgIODk5AXgeD46PjweLxUJQUBDWrl076bW6uro4dOgQ7t27h2vXrgm9BJIcViPtODs7IyMjA/fu3ZO4GJhu8afT6S+N+Xd0dKCvr08qknDFTWNjIy5evAgGg4E33nhjzs2WCNIFEQNyhqCePjU1FR0dHTA0NBTr9SmKQm1tLRwdHcV63YlwuVzEx8ejsrISu3btwvLlywE83/XExMSgu7sbUVFRM97waTQa1q5dK/QSnD9/HqtXr0ZAQABUVFTE9VZkCmdnZxQXF+PZs2dind9AURQ6OjpESv2Gh4dntfi/SGVlJRQUFCTu1RI3Dx48QEpKCszMzLBnzx6pSfwlzB9EDMghzs7OuH37NvLy8hAeHi7Wa/f09KC/v19izYbGx8dx6dIl1NbWYs+ePcIkxpaWFsTExIBGo+GNN96AsbHxrM6no6ODgwcPorS0FFevXkV1dTVCQkJgb2+/kG9DJtmyZQvu3buHGzduLKgYeNniv2bNmtdO+KuqqoKNjY3cJMtRFIUbN24gPz8fLi4u2L59u9TnfBBeD/JXlUMYDAbWr1+PrKws+Pr6QldXV2zXZrPZoNFosLKyEts1BYyNjSE2NhYNDQ2IiooSuvWfPXuG+Ph4GBgYICoq6pXLo2g0Gtzc3GBvb4/U1FRcuHABLi4u2Lp1K/ESTEBJSQlWVlaoq6tDX1/fvPWrX8jFfyIcDgf19fUIDAycF7ulndHRUSQmJuLZs2fw9/eHp6cnSRRcxBAxIKe4uroiJycH+fn5CA4OFtt12Ww2TE1Nxb5Ijo6OIjo6Gq2trdi/fz+YTCYoikJhYSGuXr2KpUuXIjw8fE5JYdra2ti/fz/KysqEXgLSl0CUrVu34tSpU8jMzMSePXte6xziWvxfpKamBnw+Xy7yBXp7exETE4Pe3l7s27dPLt6zvEPEgJyiqKgIDw8P3L59Gz4+PmJpFiLIFxD3THMOh4MLFy6go6MDBw4cgKWlJfh8PjIzM1FcXAxPT0/4+/vPy66HRqPB1dUVdnZ2SEtLQ0xMDJydnbF161aJJkxKC6amptDW1kZlZSX4fP6s5jq8bPF3c3MDk8mEpaXlgrrvWSwWDA0NoaOjs2DXkAbq6+tx8eJFKCsr49ixYzAyMpK0SQQxQMSAHLN27Vrk5+ejoKAAAQEBC369rq4uDA4OijVfYHh4GOfPn0dPTw8OHToEMzMzjI6O4vLly6iursb27duxZs2aeb+utrY29u3bh/v37yMzM1PoJRBn4py04uXlhfT0dOTm5sLHx2fS8xMXf0G2vyQW/xdtYrFYYhey4qasrAxpaWmwtLTE7t27oaamJmmTCGKCiAE5RkVFBWvXrkVhYSG8vb0XfOfKZrNBp9PFli8wNDSEc+fOYXBwEIcPH4aJiQn6+vqE7s/9+/cvaDkgjUaDi4sLbG1tkZ6ejtjYWKxcuRKBgYFyfZN1dXUV9nHw8fGRysX/RVpaWjA0NLRoQz4Tp3G6uroiKCgIDAZD0mYRxAgRA3KOh4cH7t69i8LCQvj6+i7otdhsNszMzMTSrGVgYADnzp0Dh8PBkSNHYGhoiObmZsTExAjrpMXl/tTS0sLevXvx8OFDXLlyBTU1Ndi+fbuwpFHeoNFosLe3x9OnT/Htt9+iq6tL6hb/F2GxWFBWVoalpaWkTZl3OBwO4uPjUV1djcDAQKxbt44kCsohRAzIOerq6nBzc0NhYSE8PT0XrJMeRVFgs9lYvXr1gpx/In19ffj+++/B4/Fw5MgR6Ovr4+nTp0hISBAOVNHQ0FhwOyZCo9GwatUq2NjYID09HZcuXcKKFSuwbdu2RV+zPd3OHwBaW1vh4eEhdYv/i7BYLNjZ2S263XJ39//f3r3H9Xz//x+/vdNJqaSU0zpMSAmLskhyNnRwZmbmw2bHD/sx+2y+yHy3z+Yz2+ez7bPDhw/D0Jx1IsdyyjE1EaoViaSE0Pn9+v3h1/snHdA578f1cnGZ3q/T8/3S3s/7+/l6Hm6xYcMGcnJyar2lTDRsEgYEHh4enDx5ktOnT9O7d+9aucbNmze5f/9+rfcXyM7OZs2aNcDDFQebN29OVFQUu3fvpnPnzowaNapeKxwTExMmTJhAXFwcO3fu5Mcff2TEiBH1OglTTaus2b9t27aab/779+8nLS0Nd3f3Og9nz+L+/fukpaWVWrfieZCcnMymTZswMjJixowZWFpa1neRRD2SMCAwMzOjW7duREVF4e7uXiuTipT0F6jNZtasrCxWr16Nnp4er7/+OiYmJoSGhnL69Gn69OnDwIEDG0Tzp0qlwsXFBXt7e8LCwti0aRNOTk4MHz68UbYSPG3l365du1KPiPT09Fi5ciW7du1i7Nix9fgOKpeUlATwXA2vO3XqFDt37sTOzo6xY8fKSBchYUA81KdPH2JiYjhz5ky58/FXV0pKSq0u8ZqRkcGaNWto2rQpr7/+Ovr6+qxfv57k5GR8fHxwdXWtletWR7NmzRg3bhznz58nLCyMf//73wwfPhxnZ+cGEVoqoigKmZmZmqF+T1v5P+6FF17AxMSECxcuPPUww/qQkJBA69atG3TrxdN6dEitu7s7Q4cObbD3XdQtCQMCAAsLC5ydnTl69Ciurq41+my0pL9AbYQMePjcee3atZiYmDBlyhQKCwtZuXIld+7cYfLkyQ16mWGVSoWzszN2dnbs3LmTLVu2cO7cOUaMGNFgKp+aqvzLUzITZlRUFH369Kmld1B1arWaxMRE3N3d67so1Zabm8vmzZtJSUmptSG1ovGSMCA0PD09+fnnn4mLi6Nbt241dt4bN26Qm5tbK/0F0tLS+O233zA3N+e1114jOzubDRs2oKenx/Tp0+t8IaaqMjY2ZuzYsTg5OREaGsqPP/7IsGHDcHFxqfNWgtqs/B/n7u7O3r17OXbsWIMMA1evXiUvL6/RPyLIzMxkw4YN5ObmMmXKFK1baEk8mYQBoWFtbU3Hjh05fPgwXbt2rbFKKCUlhSZNmtCuXbsaOV+J1NRU1q1bR8uWLZk8eTJ//vkn27Zto1WrVkycOLFRPn93cnLStBKULLE8YsSIWp0hsi4r/8fp6Ojg5OTE2bNnuXLlSr2sWVGZhIQEjIyMaNOmTX0XpcqSkpLYtGkTJiYmzJgxgxYtWtR3kUQDJGFAlNK3b1/++9//cuHChRobB5+cnMwLL7xQox0TU1JSWL9+PW3atGHixImcPn2avXv34uzsjJ+fX4MdovY0jIyMGDNmTJlWgpoKaI9X/pcvX+b+/fuayt/V1VUz1K8u5oQYMmQIZ8+eJTw8nDfffLPWr/csEhIScHBwaJTP1RVF4cSJE4SHh+Pg4MDo0aNl4SxRIQkDopR27dphZ2fHoUOHcHR0rHblo1aruXz5Mh4eHjVUwoffdAIDA7GxsWHcuHHs3r2bM2fO4OnpyYABAxp057tn0blzZ2xtbQkPD2f79u2cO3eOkSNHYmpq+kznebTyL+nt/2jl/9JLL9Vp5f+4Zs2a0bp1a65du8aDBw8azOyMd+/e5caNG3h6etZ3UZ5ZcXExYWFhREdH4+HhwaBBgxploBF1R8KAKKNv376sXbuWpKQkHBwcqnWu9PR08vPza6y/wKVLl9i4cSMvvvgivr6+bNq0iZSUFPz8/OjevXuNXKMhMTIyYtSoUTg5ORESEsKPP/7I0KFD6d69e4Whp6FX/uUZMmQIq1evJjw8nFGjRtV3cYCHrQIqlarRTcTz4MEDNm7cSGpqKr6+vnUy0Zdo/CQMiDLs7e1p27Ythw8frnYYSE5ORk9Pj7Zt21a7XPHx8WzevJmOHTsycOBA1qxZQ05OjlZ0iOrUqRM2NjaEh4cTFBTEuXPn8PHxwczMrFFW/o+zs7PD2NiY8+fP4+fn1yC+xSYmJtKuXbtGNQY/IyODDRs2UFBQwNSpUxtcHwzRcEkYEGWoVCo8PT35/fffq92pKyUlBRsbm2oPVTx79izbtm3D2dkZNzc3Vq1apVliVVtmTmvatCn+/v507tyZoKAgvv/+e6ysrLh7926jq/zL06tXL/bv38+pU6fqfShfUVERSUlJ9O3bt17L8SwuXbrEli1baN68OVOnTn3ul1oWNUvCgChXp06daNmyJYcOHWLy5MlVOkdxcTFXrlyp9gdqTEwMO3bsoFu3bjg4OLB27Vpat27NxIkTG8zz5dpU3jf/krn9r1+/TvPmzTUhoTFV/o/r06cPERERHDlypN7DwJUrVygsLGwUQwoVRSEqKoo9e/bQqVMnRo8e3ah/D0T9kDAgyqVSqejbty9bt27l+vXrtG7d+pnPcf36dQoKCqrVhH/q1ClCQ0NxdXXFzMyMLVu24OLigq+vb61Mm9wQVNbs36ZNm1Lf/K9cuUJwcDBhYWEUFhbSo0ePRtuBUkdHB0dHR86fP09aWlqNPFqqqkuXLmFiYoK1tXW9leFpFBUVERISQmxs7HPXgVbUrefz01TUCGdnZw4cOMDhw4cZN27cMx+fnJyMvr5+lcdoHzt2jPDwcNzc3CgoKODAgQN4eXnh7e39XH3gKYpCVlZWqXH+FVX+j3/jc3Bw4N1332X37t2EhoZy/vx5fHx8MDc3r6d3Uz1Dhw7l/PnzhIeH85e//KXeypGYmEiHDh0a9O/ZvXv32LhxI9euXWPUqFF07dq1voskGjEJA6JCOjo69OnTh5CQEDIzM5/52XxKSgq2trZV6gx2+PBh9u3bh7u7Ozdu3CA1NRV/f/8anRmxvlSn8i+PgYEBPj4+ODk5ERwczE8//cSgQYNwc3Nr0JVZeUxNTbG2tiY1NZW8vLx6GRd/69YtsrKyGDRoUJ1f+2mlp6cTGBioWaa7pif0EtpHwoCoVLdu3YiMjOTIkSP4+fk99XHFxcWkpqbi7e39TNdTFIXIyEgiIyNxc3MjMTGR3NxcXn/9dWxtbZ+x9A1DTVf+FWnfvj3vvPMOe/bsYefOnZw/fx5fX99GN+PcoEGDWLduHXv27MHHx6fOr5+QkICOjk6DXdMiPj6ebdu2YWlpycSJE5953gkhyiNhQFRKV1cXDw8P9u7dS79+/Z66h3JaWhqFhYVER0fz7rvvEhsby6JFiwgICKjwGEVR2L9/P4cPH8bV1ZVz585haGjI9OnTsbCwqJk3VAfqqvIvj4GBASNHjsTZ2ZmgoCB+/vlnBg4ciLu7e6NpJXBwcKBp06acPXuWESNG1Pkww4SEBOzs7BpcJzxFUTh8+DD79+/HyckJf3//Rj3TpmhYJAw8p65du8bw4cNJT0/nxo0brFmzhilTppTaJygoiIULF5KYmEirVq3o2LEjYWFhZc7Vo0cPDh06xNGjRxk+fPhTXT85ORlDQ0Peffdd3n///SdWRIqiEB4ezvHjx3FxcSE2Npa2bdsyYcKEBj9ioKLKX6VS0bZtW7p3746dnR02NjZ1VsHY29vzzjvvsHfvXnbt2qVpJWgsocrNzY2DBw8SExNTp8tPFxQUkJKSwsCBA+vsmk+jsLCQoKAg4uLi6NevH/369Ws04U40DhIGnlNt2rQhJiaGgIAAFi9ezNtvv42rqyvOzs6afXx9ffH19cXb25uAgIAKm/T19fV5+eWXOXjwIF5eXk+1tO6z9BdQFIWwsDBOnTpFhw4dOHv2LF27dsXHx6dBjhh4tPIv6e1/7969eq38y6Ovr8/w4cNxcnLStBIMGDCAXr16NYhJfSrj5eXF4cOHOXjwYJ2GgeTkZIqLi+nYsWOdXfNJcnJyCAwMJCMjg7Fjx5b6f1iImtLwPmlFjRs5ciR79uxh7NixnDx58qkq88e5ublx5MgRjh079sSOVUVFRaSmpj5VByy1Wk1wcDAxMTG0a9eOhIQEvL298fLyajDffJ5U+Xfr1k3T7G9gYFDfxS3Dzs6Ot99+m/3797N7927NLH8NebKmJk2a4ODgwKVLl7hx40adDfFLSEjA3Ny8wfSzuHbtGoGBgQBMmzatUa+eKBo2CQNaoEePHvj7+zNjxgxmzJih+XCpyPLly1mzZg25ubkUFhZiYmLCwoULcXNz4+TJk3Tt2pUhQ4Zw5coVTE1N+frrr1m2bBkZGRkoisK0adNQq9VPnF/g9u3bTJo0iWPHjqGvr4+iKLz55pv069dPs8+9e/f45JNPiIiIQFdXF7VajaenJ3PmzKm1Dl6NvfIvj76+PsOGDcPJyYkdO3bwyy+/4O3tjYeHR4NtJXjllVe4dOkSu3btYurUqbV+PUVRSEhIqJEFumrCuXPn2L59O9bW1kyYMKFWl7EWQsKAlpg+fTrHjh1jxYoVeHp68v7771e47zfffMPSpUs1PbkjIiIYMWIE4eHhqNVq4uPjiYmJ4Y033iAwMJBt27Zx8OBB9PT0WL16NW+88QYTJkyo9NtcXl4ebm5u3Llzh1mzZmFkZESnTp2YNGkSpqamfPzxxwB8+OGHXL58mejoaPT09EhPT8fLyws3N7caCwPPY+VfERsbG00rwd69e4mPj8fPz4+WLVvWd9HKaN68OZaWlly+fJmCgoJaf+Ry8+ZN7t69W++zDiqKQkREBAcPHsTFxQUfHx/pKChqnYQBLfLDDz8QExPDnDlzcHd3r3DK123btuHo6Kj52dvbGxcXF9avX8/IkSM5fvy4Zkni/Px8vvrqK82H1dSpU1m4cCH79++vsBxFRUXMmjWLxMREJk2ahKWlJa+++iotWrRg0qRJfP7553zwwQcYGRkRFRWFh4eH5vytWrXiH//4R5VmRCxRWeXfpk2b56ryL4+enh5Dhw4t00rQu3fvBtdKMGDAADZu3Mi+fft45ZVXavVaCQkJ6Onp1euiVwUFBWzfvp34+HgGDBiAp6dng2ilEM8/CQNaxMDAgC1bttCjRw/GjRvHmTNnyn02qqOjw7Rp04iJiUGtVqNSqUhMTMTMzIzevXtz+vRpTp8+DYC5uXmpCU8KCwuxsrLi1KlTpKWllZkMpbCwkN9//52oqCjg4eI006dP16wM5+LiwsqVKzl58iT9+vVj4MCBfP/999y5c4fXX3+dgQMHPtN8B/Cw8r9161ap3v7aVPlX5IUXXmDmzJlERESwf/9+TSuBlZVVfRdNo3PnzhgaGhITE1MnYcDe3r7eOq3euXOHwMBAsrKymDBhQqlALkRtkzCgZWxsbFi/fj3Dhg1jypQphISElNp+/fp1PD096dOnD5GRkZoJTby9vcnPz6d58+Z07dqVqKgo1Gp1mQlPUlNTNbPGPR4GiouLWb9+PVeuXOH+/fsArFq1ilWrVmn2yc3NxdramuzsbAC+/fZbnJ2d+eWXX/Dx8aFZs2ZMmTKFL7/8ssLJVqTyf3p6enoMHjyYzp07s2PHDv7zn//g5eVFnz59qr3SZE1xdXXl6NGjnD17FhcXl1q5Rl5eHleuXHnqobM17erVqwQGBqKrq8tf/vIXWrVqVS/lENpLwoAWGjx4MEuWLGH+/Pl8/vnnpbaFhIRw8+ZN5s+fX2Fl26dPH2JiYsjOzubOnTultiUnJ1NYWAhQZqGZ2NhY9PX1UavV2Nvb8+effxIZGYmZmVmFZdXR0eGtt97irbfe4uLFi/z8889899135OTksHbtWkAq/5rQrl07Zs6cSWRkJBEREVy4cAE/P78GsVBP//79iYqKIiIiotbCQFJSEoqi1Et/gdjYWIKDg2nTpg0TJkzA2Ni4zssghIQBLfXJJ59w4sQJFi1aVGoimvz8fIAyz44fXbnQ0tISJycnwsLCuH37NlevXtW0AKSkpHDjxg1sbW01YSA3Nxd4OF4aYMyYMdja2rJv3z7OnDlTan6DO3fuMG3aNFasWEGLFi2YPn0633//vaaD4bfffktSUhLR0dGcPn1aKv8apKury8CBA3F0dCzVSuDp6VmvrQS6urq8+OKLJCUlcfPmzVrp7JiQkICVlVWlwbSmKYrCvn37OHLkCN27d2fEiBENcl4NoR0aVm8hUWdUKhVr1qyhffv23Lx5U/P6kCFDMDAw4Ouvv9Z8w1+zZg2XLl0qdbynpyf5+fkYGRmxYMECCgsLyc/PJzQ0lJSUFJYsWYJKpeLBgwesXLkSeDh2/I033qBLly5MnjwZDw8P5s2bR0ZGBvAwNMyaNQsdHR1NX4Z9+/bx3XffkZmZyenTp1m5ciVHjx7F1NSU0NBQsrOz6dq1K6+++ioff/wxM2bMYNCgQTg4OEgQqKK2bdvy1ltvaR4VLV++nPT09Hot07BhwwDYtWtXjZ9bURQSExNxcHCo8XNXJD8/n8DAQI4cOcLgwYOf6yW5ReMgv33PqUenIwbYvn07wcHBvPDCC5p9TE1N2bp1Ky+//LLmtY4dO7Jt2zbmz5+Pvb09Dg4O9OzZk549e3Lq1Cm6d+9OREQErVu3xtTUFENDQyZOnIh3//5cvnyFe/dyWLp0KVOmTOHevXuahXMAzp49y7Rp09i7dy96enqEh4ezYMEC3N3dMTExoUmTJrzyyissXLhQ09t/5MiRrFixgm+//RYdHR10dHQYOnQon376qVT4tUhXV5cBAwZo+hIsX74cT09PvLy86qWVwNLSkhYtWpCcnExRUVGNVpzXrl3j/v37dTbr4O3bt9mwYQO3b9/m1VdfrfehjEIAqBRFUeq7EKJxGjduHOF79jHy71s5lnoftQIqFIY4teLVHtacDPud+/fv07ZtW1577bUKl6N99Jl/yVC/nJwcTbO/ra2tZnpfqfzrXnFxMYcOHeLQoUNYWlri5+dXLzPhnT17lq1bt9K7d28GDx5cY+eNiIjg2LFjfPTRR7UedC5fvszGjRsxMDBg0qRJDXJ+B6GdpGVAVFn6A4UHih7HrtxDzcOx0Aoq9sbfIPx8Oh66Rozuasvo0aNLfcg+qfJ3cXGRyr8BadKkCd7e3pq+BCtWrKBPnz7069evTpu2XVxcCAkJITo6ukbDQGJiIu3bt6/1IBAdHU1oaCg2NjaMGzeuwS/AJbSLhAFRJSdTbnHmym0ATRAoUawAqIgqsuX/uL2Mjo5OmUl+pPJvfFq1asWMGTM0CwhdvHgRPz+/MqNGalP37t05ceIE58+fx8nJqdrnu3//PmlpafTs2bMGSlc+tVrNnj17OHbsGD169OCVV15pMMM2hSghjwnEM8vJycG+Sw+yM66jLshDz/IFWgx5F8N2nUvtp6OCLs2L8dZNlGb/58yNGzfYsWMH6enp9O7dG29v7zppJSgoKODLL7/EwsKC9957r9rni42NZfv27cyZM6dKC3g9SV5eHlu2bCEpKYlhw4bh5uYmMwqKBklaBsQz0zM0wnTytzR7QoxUK3A2W4eZ/brQsb29VP7PEWtra6ZPn87Ro0eJjIzUtBI8PuNkTdPX18fW1paUlBSys7MxNzev1vkSEhJo06ZNrQSBW7dusWHDBu7du8fkyZNp3759jV9DiJoiQwvFM8vJK0L9lO1JCira2rWnTZs2tb7QjKhbTZo0oW/fvrz11lvo6+uzcuVKdu/erRmSWltKhhnu3LmzWudRq9UkJibWSm/+5ORkli9fjqIozJgxQ4KAaPCkZUA8MxNDXXRUPFUgUKGwJXAduioFQ0NDLC0tsbCw0PwpGTImY6wbLysrK6ZPn05UVBQHDhzg0qVL+Pn5lRrGWpOsra1p3rw5SUlJ1RpmmJqaSn5+fo2HgZMnT7Jz507s7e0ZO3asZt0NIRoy6TMgqmTmb6fYG59BcSWJoImOikGOLVky1JbMzEyysrLIysrS/D0vL0+zb8lytY8HBRMTE3nG2ojcvHmTHTt2kJaWxssvv8yAAQNqZfndM2fOEBQURN++fRkwYECVzrF3717OnDnD3Llza+R3rLi4mPDwcE6ePIm7uztDhw5tcKtAClERCQOiSk6m3GL8L1FU9sujAjbN9KCnXdmVERVF4cGDB6XCQcnfs7OzUavVwMOFdEqCwaMhwcLCQh47NFBqtZpjx45x4MABTE1N8fX1xdbWtsav88UXX6Crq8u8efOqdPxPP/1E69at8ff3r3ZZcnNz2bRpE5cvX2b48OH06NGj2ucUoi5JGBBV9tvxyyzYHoeOjqpUC0ETHRVqtcIS/y681uvZK4Hi4mJu375dblAoWe0QwMTEpExAsLS0xMzMTL6RNQCZmZkEBQWRmpqKu7s7AwcOrNEAFxwcTHR0dJVm8btz5w7//Oc/GTNmDF26dKlWOTIzM9mwYQO5ubmMHz8eOzu7ap1PiPogYUBUy6mUW6w4nMzu8+molYfDCYc4tWKGp325LQLVlZeXVyYklPwpKioCHnZsa9GiRblBQZ7f1i21Ws2JEyfYt28fJiYm+Pr61lhlmZeXx1dffYWVlRXvvPPOMx176tQpwsLC+Oijj6r1O5GYmMjmzZsxNTVl4sSJmjU1hGhsJAyIGpFXWExOXhEmhroY6tX9hCqKonDnzp1yg8KjyywbGRmVCQkWFha0aNFCJoKpRbdu3WLHjh1cuXKFnj17Mnjw4BppJVi5ciWpqal8+OGHFS65XZ7AwEByc3OZNm1ala6rKArHjx9n9+7dODg4MGbMGBk2Kxo1CQPiuVdYWFim82LJ3wsKCoCHqziam5uX25pgbGwsnRhrgKIomlYCY2NjfHx8ePHFF6t1zmvXrrF8+XI6d+7M+PHjn+qYoqIili5dqlme+VkVFxcTGhrKmTNn8PDwYNCgQfJYSjR6Mp5LPPf09PRo1aoVrVq1KvW6oijcu3evTFC4dOkSx48fpyQnGxgYlBnlUPL32ugp/zx5dPXMGzduMHHiRP79738THBzM2rVr6dGjB4MHD9Z8qw4JCcHHxwdzc3NsbGz49ddf6d69e4Xnb9OmDaamply8eBG1Wv1UlfLly5cpLCys0pDCBw8esHHjRlJTU/Hz86u0bEI0JtIyIEQ5iouLuXXrVrktCg8ePNDsZ2ZmVm5QMDMzk9aERwQEBPDZZ5+hUqmIi4vD0dGRU6dOsWfPHoyMjPDx8aF9+/b06tWLEydOMHXqVH799denOvfJkycJCwujf//+eHl5PXH/Xbt2ER8fz+zZs5/p3ygjI4MNGzZQUFDAhAkTsLGxeepjhWjopGVAiHI0adKEli1blrvEbG5uriYcZGZmalZgjI6Opri4GABdXd1SIeHRoFDRUs7Pu1GjRrFt2zaWLFnC+vXrcXNzw8HBgeDgYH777TeKiopo164dJ06ceKbz9ujRg927d3P8+PGnCgMJCQl06NDhmYLApUuX2LJlC+bm5kydOpXmzZs/UxmFaOgkDAjxjJo2bcoLL7xQZoY9tVrNnTt3SgWFrKwsUlNTycnJ0exnbGxc7rwJ5ubmz/WzZxcXFwB+//13Fi5ciKOjI+bm5kyZMoXo6Gj8/f2ZOHFiuccmJiby6aefcuzYMQwMDDAzM+Pjjz9m3Lhx6Ojo4OzsrGlRiI6ORldXF7VajaenJ3PmzNH0TcjKyuLgwYP8/PPPfPjhhxgaGmJhYcH48eOZOXOmphPpo9dTFIXi4mImTJjAnDlz0NfXZ8WKFSxYsID09HRcXFyYP38+EyZMID8/HysrK5YtW8aMGTMA8PX15fDhw7Ro0YJ169bRq1evOrjbQjwbCQNC1BAdHR3Mzc0xNzcv8zy6oKCgzOOGa9eucfbsWc1c/iXHlxcUjIyMnovHDgsXLtS0Dqxbtw542Hnz+vXrvPTSS3Tt2hWAK1eukJeXh6GhIZcvX+bll19m2LBh/Pnnn+jq6hIUFMTo0aPJysri7bffZsiQISxZsoTc3FxiY2PR09MjPT0dLy8v3NzcNGHgiy++YOvWrWzduhU/Pz8UReHvf/877733Hq+++irNmzfXXG/IkCF8++23xMXFoaOjw+LFi+nUqRNvv/02M2bMwNraGl9fX3744QdNi8TevXu5e/cu27dv14SBoKAgunXrxp49e7CysqqHuy7Ek0mfASHqkaIo5OTklDvS4fbt25r9Sr7BPh4UGsu6DgEBAZr/jho1iqCgIM6fP0+nTp0AcHd3Z/ny5XTt2hUdHR1cXV2ZPHkyI0eO5IsvvmD9+vWkpaWVemzj6+tLZGQkaWlpNGvWjLZt29KqVSsiIyM1qxDu2LGD1q1b4+7uTk5ODlZWVnTp0oWTJ09qzqNWq7G1tSUuLg4zMzPeeOMN1q9fz9KlS7l37x5+fn64uLiUuV5eXh6WlpbMnDmTZcuWATB9+nT++OMPzp49S2ZmJs2aNSMxMZFp06Zx6NChOrrbQjy7hv8pIsRzTKVSYWpqiqmpKfb29qW2FRUVcevWrTLzJly8eLFRr+uwcOFCtm/fzpIlS/jtt98ICQmhTZs2dOvWTbNPp06dsLa2ZsOGDQQFBWFvb1+m/4aHhwfBwcEcPXqUIUOGMHToUFatWsWQIUP49NNPGThwIH5+fpr9IyMjycvLw83NrdR5dHR0SE1N1fy8c+dOzM3NKS4uZtq0abRt27bc6xkaGjJ06FB27NjBsmXLKC4u5uDBg6xcuRIvLy927tzJuHHj2LZtW6lyCNEQSRgQooHS1dXFysqqTNNyRes6JCYmcvLkyQa/rsNLL72Ej48PgYGBLFiwgM8++4yff/651D76+vq8+uqrxMbG8tlnn2mGD5a0JABYWFgADxdHAlixYgU5OTkcPXoUHx8fmjVrxpQpU/jyyy8xNTUlPj4eoNIhhfHx8WRmZmJnZ8ebb75ZaiKjx68H4O/vz9atW4mLiyMzMxN3d3c8PT1p3bo127Zt04SBNWvWVPOuCVG7JAwI0cioVCqMjY0xNjYuM7xNrVaTnZ1dJigkJyc3qHUdFi5cSHBwMP7+/jg4OODq6lru++zevTstW7akoKCAwMBAXFxcGDZsGEZGRmRlZQFoWgx0dHT48MMP6dKlC506deL48eN899135OTksHbtWs2Q0Pz8/DLXUhSFQ4cOaRZX0tXVLTOj4ePXAxg5ciS6urps376djIwM/P39UalU+Pr6EhgYyOXLl7l37x4ODg41c+OEqCUSBoR4jujo6Ggq+Y4dO5baVrKuw6NB4erVq8TGxtb5ug49e/Zk+PDhhIWFPfFb87Bhw1i/fj39+vXj+PHj/Pnnn4wYMYJjx45hampK7969gYfP6//1r3+xf/9+0tLS+Pbbb0lKSiI2NhZFUdDX16dp06Zlhi7ev3+fnj17MmjQIMaOHUtycjLr168nMzMTS0tLzX6PXw/A3NwcLy8vtm/fzt27d/niiy+Ahy0Gv/zyC7Nnz8bX17embpsQtUbCgBBawtDQkLZt22qegZeoaF2HuLi4Ctd1eDQoVHVdh+XLl/Pnn3+WeYb/uICAAEJCQli1ahX//Oc/CQ8PZ8mSJYSEhPDNN99oOgvu27ePf//73zg6OnLu3DnOnDnDuXPn8PPzIyMjg4KCAj766CO++OILdu7cySuvvMKdO3eYNGkSeXl5vPPOOzg5OWFra0tISAhz5szhv//9L7q6uoSEhBAaGsoPP/yguV4Jf39//vrXvzJixAjNtgEDBmBqasr27duZP3/+M98bIeqajCYQQlSoonUdsrKyNM3tFa3rYGFhQZMmTejduzfp6ekAtGrViqioqHJbGb799ltWr15NbGysZjriLVu20L59exITE/nkk084fvw4+vr66Ovr89JLL9G9e3dGjBiBk5MTv/76K2vWrOHGjRvcunULHR0d/vKXv7BgwQJOnDjBwYMHmTdvHps3b2bp0qVkZ2eTn5+PjY0NK1euxMnJSVOWx69XMq9BeesfpKamYmNjw/LlyzXDCQEmTpzIkSNHSnVOFKKhkjAghHhmiqJw//79MhMsZWVlkZ2dXSfrOty7d4+wsDDi4+NxcnJi+PDhGBsbA/DLL7+Qnp7OB7P/D8U6+mzbuB5T46aaSY3i4uLYsWMH1tbWTJgwARMTk+rdECEaOQkDQogaVVxcTHZ2drlB4dF1HUxNTcsd6fAs6zooisL58+cJCwtDURSGDx+Os7MzQVHn+CY0hivq5iioUKHg3saQuT4vcS/5Dw4ePKiZO6AxzNMgRG2TMCCEqDOPruvw6OOHW7duVWtdh/v37xMWFsb58+fJtuzCjquGgILC/w8VTVRQrCh46F7hvaFd6dOnT4Och0GI+iBhQAhR7ypa1yErK+uZ1nXYFBHNR+HXgMor+c0zPehp16KW35UQjYeEASFEg1beug4lf398XYed99oRf1cPdSWfak10VAzubM3Pr/Woo3cgRMMnYUAI0Sg9vq7D9YxMZh0uLvVooCI6Kji/eBiGes8+JFKI55H0nBFCNEqPr+twMycf5fDepzpWrUBOXpGEASH+n+d38XQhhFYxMdRF5yn7A+qoHu4vhHhIwoAQ4rlgqNeEwU7WNHlCImiio2KIUytpFRDiERIGhBDPjRmeL6KurPcgoFYrzPC0r3QfIbSNhAEhxHPDza4FS/y7oIIyLQRNdFSogCX+XWRYoRCPkdEEQojnzqmUW6w4nMzu8+molYd9BIY4tWKGp70EASHKIWFACPHcyissJievCBNDXekjIEQlJAwIIYQQWk76DAghhBBaTsKAEEIIoeUkDAghhBBaTsKAEEIIoeUkDAghhBBaTsKAEEIIoeUkDAghhBBaTsKAEEIIoeUkDAghhBBaTsKAEEIIoeUkDAghhBBaTsKAEEIIoeUkDAghhBBaTsKAEEIIoeUkDAghhBBaTsKAEEIIoeUkDAghhBBaTsKAEEIIoeUkDAghhBBaTsKAEEIIoeUkDAhRDSqVCm9v72qd44033kClUpGSklIjZXpcREQEKpWKgICAWjk/wN27d5k1axb29vbo6emhUqmIiYmpdFtNlKsm7r8QQsKAEBoxMTG8/fbbODk5YWpqir6+Pq1atWLw4MEsW7aMmzdv1ncR60RAQAAqlarSP49X4PPmzeO7776jS5cu/O1vf2PRokW0atXqidvEkx08eJC5c+fSv39/zMzMUKlUvPHGG1U+X3h4OP369cPExARTU1P69+/Pvn37aq7AolHSre8CCFHf1Go18+bNY9myZTRp0gQvLy+GDBmCsbExGRkZREVFMXfuXBYtWsTFixdp27ZtfRe5TowZM4YuXbqUu+3xb+MhISF07NiR4ODgMvtWtM3U1JT4+HgsLS2rXMb4+HiMjIyqfHxjsHLlSlavXo2RkRE2NjbcvXu3yuf67bffmDJlCi1bttQEit9//53BgwezceNGxo4dW0OlFo2NhAGh9ebPn8+yZctwdXXl999/x8HBocw+0dHRfPzxx+Tm5tZDCevH2LFjmThx4lPte+3aNby8vJ5pm5GREY6OjtUqY3WPbwzef/99PvroIxwdHTl58iQeHh5VOk92djYffPABlpaWREdH065dOwA+/vhjXnrpJd555x2GDh2KiYlJTRZfNBLymEBotUuXLvGPf/yDli1bsmvXrnKDAICrqyt79uzBzs7uqc6bmZnJ7Nmzsbe3x8DAACsrK8aPH09cXFyFx6jVapYuXUqHDh0wNDTE3t6ezz77jMLCwlL7FRQU8P333zN06FBeeOEFzflHjx7NmTNnnvq914SS/g6KohAZGal5jODt7V3pNqi8L0NGRgZz5syhU6dONG3alBYtWtCrVy++/vrrUvtV1GegoKCAb775BldXV4yNjTExMaFv374EBQVV+B6Sk5P57rvvcHR0xMDAAFtbWxYvXoxarS73ve/YsYMhQ4ZgYWGBoaEhdnZ2TJkyRfNv/Nprr6FSqThx4kS5xy9cuBCVSsWGDRsqucPQs2dPnJ2dadKkSaX7PcmmTZu4ffs2H3zwgSYIALRr147333+fzMxMtm3bVq1riMZLWgaEVlu9ejXFxcXMnDmTli1bPnF/Xd0n/y9z8+ZNPDw8SEpKwtvbm4kTJ5KcnMzmzZsJDQ0lPDwcT0/PMsfNnj2bI0eOMH78eJo1a0ZwcDCLFi3ijz/+YPPmzZr9bt26xezZs+nbty/Dhw/H3NycP//8k6CgIHbu3MnBgwdxc3N7thtRRf7+/tjZ2bF48WJsbW01Tc92dnY0b968wm2VuXjxIv379+f69et4enri7+/P/fv3OXfuHF988QVz586t9Pj8/HyGDRtGREQE3bt3Z/r06RQWFhIaGoqfnx/ff/8977//fpnjPvroIyIjIxk5ciRDhw5l+/btBAQEUFBQwOeff15q3zlz5vDNN9/QokUL/P39sbKyIjU1lb1799KjRw+6dOnCzJkzWbduHStWrMDd3b3U8cXFxaxatQoLCwtGjx4NPAw2AIqiVPr+qioiIgKAIUOGlNk2dOhQAgICiIyM5PXXX6+V64sGThFCi/Xv318BlH379lXpeEDp169fqdemTZumAMonn3xS6vXQ0FAFUBwcHJTi4mLN61OnTlUApWXLlkpqaqrm9fz8fMXLy0sBlM2bN2tez8vLU65evVqmLHFxcUqzZs2UQYMGlXr9wIEDCqAsWrToqd7TokWLFEAZM2aMsmjRonL/XL9+/Yn34UnbKipXz549FUD5z3/+U+aYR+9PRef+9NNPFUBZsGCBolarNa/fvXtX6dmzp6Kvr6+kpaVpXi+5//b29sq1a9c0r9+8eVNp3ry5YmJiouTn52teDw4OVgDFxcVFyczMLHXtwsJCJT09XfOzk5OTYmJioty7d6/UfiEhIQqgzJ49u9R7edJHclRUlAIoU6dOrXS/8pTc18fLrCiKkpmZqQBK3759n/m84vkgLQNCq6WnpwPQpk2bMtsiIiI036ZKeHt7VzqUraCggA0bNmBhYcH//M//lNo2fPhwBg8ezJ49ezhy5Ah9+/YttX3WrFmlmm/19fX5/PPP6du3L7/++itjxowBwMDAoNxOjM7OzvTv35/w8HAKCwvR09Or9L0/yZYtW9iyZUu52/z9/WtlRMCJEyc4deoUXl5evPnmm2W2P3p/yqNWq/npp59o3749ixcv1nzbBjAxMWHhwoX4+vqydevWMq0DCxYsoHXr1pqfLS0t8fPzY/Xq1Vy8eBEXFxcAfvzxRwD+9a9/YWFhUeocurq6WFtba36eOXMms2bNIjAwkOnTp2teX7FiBUCp9xgfH1/pe6uuO3fuAGBmZlZmm6mpaal9hPaRMCBEBSIiIli8eHGZ1ysLAxcuXCAvL4/+/fuX28u9f//+7Nmzh5iYmDJh4PGfATw8PNDV1S3TFyAmJoalS5dy+PBh0tPTy/QryMzMLFWxVcWGDRueugNhTSl5vl5eU/bTuHjxItnZ2bRp06bcf7uS4aEXLlwos61Hjx5lXisJH7dv3y5VRgMDA/r16/fE8rz++uv87W9/Y/ny5ZowcOPGDUJCQujduzdOTk6afbWhM6RouCQMCK1mbW1NfHw8165dK/NhHBAQoOncFhgYyKRJk554vpJhX49+O3xUSQVd3vCw8o5p0qQJFhYWpb6xHT16lAEDBgAPK80OHTrQrFkzVCoV27dvJzY2lvz8/CeWtSEqeZ9VHb5569YtAM6dO8e5c+cq3O/+/ftlXiv5dvyokj4ixcXFpcrYtm1bdHSe3P+6efPmjB8/ntWrVxMXF0eXLl349ddfKSoqKrflozaVtAjcuXOnTItGye9jea0GQjvIaAKh1Xr37g3AgQMHauR8JRXKjRs3yt1e8liivIqnvGOKi4vJysoq9SH9+eefk5+fz969ewkKCmLZsmUsXryYgICARj+ZT/PmzQFIS0ur0vEl93XMmDEoilLhn1WrVlWrjOnp6RWOMnjc22+/DcDy5csB+O9//4upqSnjx4+vchmqokOHDgAkJCSU2VbyWsk+QvtIGBBaberUqejo6PCf//yHzMzMap/P0dERQ0NDTp48yYMHD8psL+mD0L179zLbDh06VOa1qKgoioqKeOmllzSvJSUl0aJFizIjEh48eEB0dHT13kA9K+l1v3v37iod37lzZ0xNTTl16lSZRyc1xd3dnfz8fCIjI59q/5dffpmuXbvy22+/sXv3bhISEpg8eXKdT5ZU8lijvHsbHh5eah+hfSQMCK3WsWNH5s2bR0ZGBq+88gqJiYnl7vfoM+PK6OvrM2nSJDIzM/n73/9eatuuXbsIDw/HwcGBPn36lDn2X//6F1evXtX8XFBQwPz58wFKTT9ra2tLdnZ2qWbw4uJi5s6d2+inTHZzc8PNzY2DBw9qvkk/6kktBrq6urzzzjtcvnyZuXPnlhsI4uLiyMjIqHIZ33vvPeBhh8+SxxIlioqKym3hmTlzJrdu3WLatGkA5T4iuHDhQrl9GZ7VgwcPuHDhAleuXCn1+vjx4zEzM+P7778v9Xt29epVfvjhBywtLRk1alS1ry8aJ+kzILTe559/rpmkxtHRES8vL7p164aRkREZGRn88ccfnDhxgmbNmpX7jf5xX331FZGRkfzv//4vR48epVevXqSkpLBp0yaMjIxYtWpVuc+bX375Zbp168aECRMwNjYmODiYixcvMnr0aM1IAoAPPviA3bt34+npyfjx4zE0NCQiIoK0tDS8vb3LjICoqs2bN1dYOTk6OtZa58J169bh7e3NW2+9xdq1a/Hw8CAvL49z585x5swZsrKyKj1+8eLFREdH89133xEaGoqXlxdWVlakpaVx9uxZYmNjiYqKwsrKqkrlGz58OHPnzuXrr7+mQ4cOjBo1SnP+ffv2MXfuXGbPnl3qmNdee4158+Zx7do1evToUaqlp0Tnzp2BsvMMHD58WDP6oCTsHT58WBMQLS0tS03GdOLECfr370+/fv1K/S6Ym5vzww8/MGXKFFxdXZkwYQLwcDrirKwsfv/9d5l9UJvV36hGIRqW6Oho5a233lIcHR2VZs2aKXp6eoq1tbUyYMAA5R//+Idy48aNMsdQwRj6mzdvKn/9618VW1tbRU9PT7G0tFTGjh2rnD17tsy+JePck5KSlC+//FJxcHBQ9PX1FVtbWyUgIKDUGPcSmzdvVlxdXRUjIyPF0tJSGT9+vJKUlKQ5V3Jysmbfqs4zUNkfPz+/p7oPlW2rrFzp6enKrFmzlBdffFHR19dXWrRoofTq1Uv55ptvnurcRUVFyi+//KL06dNHMTU1VQwMDBQbGxtl2LBhyk8//VRq3H959+zxe3HgwIEy27Zs2aL0799fMTMzUwwMDBQ7OztlypQpSlxcXLn34bXXXlMA5eeffy53OxXMM7Bq1apK/y1sbW1L7V9yXyv699i5c6fSt29fxdjYWGnWrJnSr18/Zc+ePeXuK7SHSlFqaborIYQQGi4uLiQnJ3Pt2rVyO5AKUZ+kz4AQQtSynTt3EhcXx+TJkyUIiAZJWgaEEKKW/PTTT6SmprJixQpycnI4f/489vb29V0sIcqQMCCEELXEzs6Oq1ev0qlTJ7766itGjhxZ30USolwSBoQQQggtJ30GhBBCCC0nYUAIIYTQchIGhBBCCC0nYUAIIYTQchIGhBBCCC0nYUAIIYTQchIGhBBCCC0nYUAIIYTQchIGhBBCCC0nYUAIIYTQchIGhBBCCC0nYUAIIYTQchIGhBBCCC0nYUAIIYTQchIGhBBCCC0nYUAIIYTQchIGhBBCCC0nYUAIIYTQchIGhBBCCC33fwGI8GRoFFPb9gAAAABJRU5ErkJggg==", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -339,7 +215,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -351,9 +227,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclWX+//HXYV9FRARBFBUFAxExwA0EFVHc2vWropDf\nRnNanG/ZOmXTMi1OTU2T7UluWTY5TYkpLpimdiRFzSXc0NiVRfb1XL8//HlGAstUuA+Hz/PxOI+H\n577uc9+f+1Bvbq77uu9Lp5RSCCGE0JyF1gUIIYS4SAJZCCFMhASyEEKYCAlkIYQwERLIQghhIiSQ\nhRDCREggCyGEiZBAFkIIEyGBLIQQJkICWQghTIQEshBCmAgJZCGEMBESyEIIYSIkkIUQwkRIIAsh\nhImQQBZCCBMhgSyEECZCAlkIIUyEBLIQQpgICWQhhDAREshCCGEiJJCFEMJESCALIYSJkEAWQggT\nIYEsflVqaiohISHodDpGjRpFVFQUYWFhvPLKK9TX1//m5/V6PSEhIfj6+rbY/t577+Hr60tiYqJx\nWXx8PGlpaTfmAIRoR3RKKaV1EcK0paWlERMTQ319PVZWVhQVFTFz5kwsLS356quvsLD49d/raWlp\nJCYmkpWV1WL7M888Q1ZWFsnJyQCUlZXh7OyMTqe7wUcihGmTM2Txu7m5uZGcnMy2bdtYuXLlDd9+\np06dJIxFhySBLK6Jp6cncXFxrF27lqFDhxoD9PTp01fsonj++eeJjo4mODiYjRs3trjdJUuW4Onp\nyTPPPAPAggUL6Ny5M0899RR33nkn/fv354knnmitwxJCUxLI4pr5+vpy8uRJ1qxZY1zWu3dvXn/9\n9Wbr5uTkEBoaSlpaGu+88w533HEHRUVFzdZbtGgR48ePN75funQpISEh7Nu3j88++4zt27ezZMkS\ncnNzW+eghNCQBLK4ZgaD4arXdXBwID4+HoDhw4fTrVs31q9ff9Wfj4uLQ6fT0b17d9zc3K7YHy1E\neyaBLK5ZVlYWfn5+V7Wuq6trk/dubm7k5eVd9b46depk/LednR11dXVX/Vkh2gsJZHFN8vLy2LRp\nE7fffjs2NjYA1NbWAlBaWtps/ZKSkibvz58/T/fu3Vu/UCHaEQlk8bsVFxeTlJREdHQ0CQkJdOvW\nDQcHB3788UcANmzY0Owz5eXlxi6KnTt3cu7cOSZOnNimdQth6qy0LkCYttTUVBYtWgTAmDFjUEpR\nVVXFHXfcwUMPPYSFhQUWFha8/PLLTJs2jcDAQEaMGEF+fj533nknixYtYuHChfj49OS9z9Zz36OL\naaypYPnqNbi5ufHee++RnJxMTU0NL7zwAjY2NnzzzTfY2dnh4+PDTz/9REZGBi+99BL+/v6sWLGC\n/Px8Fi5cyOrVq7nppps0/oaEuHHkxhDR6vZmFZOYrEcpqKprxMHGEp0OkhPDCfPtonV5QpgMCWTR\nqipqG4h4cTOVtY3N2hxtLdE/PhZHW/lDTQiQPmTRyr4+mMuVfuUrdbFdCHGRnJqIVnX4TCFVdc3P\njuFi90XqngP0oQBvb288PDywtLRs4wqFMB0SyOKGa2xs5OjRo+zdu5fcPAO2lp600GOBnZUFfp7O\n5Obmkp6eTklJCd26dcPLywsvLy+8vb1xc3P7zYcXCWEupA9Z3DAVFRX88MMP/PDDD7i5uREWFkaP\n3n4Me3nrVfUh19XVkZeXR05ODrm5ueTm5lJZWUn37t3x9vY2hrSLi4s8fEiYJQlkcV2UUmRnZ7N3\n716OHz9OYGAgYWFheHh4GNe5nlEWVVVVxnDOzc0lJycHg8HQ5Cza29sbR0fH1j5UIVqdBLK4Jg0N\nDfz444/o9XpqamoICwtj8ODB2NnZtbh+ZW0DXx/MJauoCl83ByYFe13T6AqlFOXl5U3OonNzc7G1\ntW0S0t27d79iLUKYKglk8btcuHCBvXv3sn//fry8vAgPD8fPz0/TLgSlFMXFxU1COj8/HxcXlyYh\n7enpiZWVXDYRpksCWfwmpRRZWVno9XrOnDlDcHAwYWFhuLm5aV3aFRkMBgoLC43dHLm5uZw/f56u\nXbs26Y92d3eXi4bCZEggiyuqq6vjwIED7N27F4Dw8HCCg4ONDxNqb+rr68nPz2/SH11WVoanp2eT\n/mhXV1e5aCg0IYEsmikqKmLv3r0cPHiQXr16ER4ejq+vr1mGVE1NTbOLhnV1dU26Ory8vJo8/lOI\n1iKBLICL3RInTpxAr9eTm5tLaGgoN998My4uLlqX1uYqKiqa9Efn5ORgaWnZpKvDy8sLe3t7rUsV\nZkYCuYOrrq4mIyODvXv3YmdnR3h4OEFBQXLx6zJKKUpLS5v0R+fl5eHo6NgkpD09PU2uO+fS0/oO\nHDhAVFQUjY2NlJSUMG/ePB544IFr2mZwcDBffPHFVU9OIK6eBHIHVVBQgF6v58iRI/Tr14/w8HC8\nvb3NsluiNRgMBs6fP98kpAsLC+nSpUuTs2hTuB08LS2NmJgY6uvrsbKy4vDhwwwePJj169cTGxv7\nu7dXWlpK586dW6FSIYHcgRgMBo4dO4Zer6e4uJghQ4YwZMgQnJyctC7NLDQ0NFBQUNCkq6O0tNR4\nO/ilkO7atWub/uL7ZSADDBkyhOjoaF599dU2q0P8Nvm7tAOorKw03tLcuXNnwsPDCQgI0PzMzdxY\nWVkZR2pccvnt4MePHyctLY3q6mq6d+/eJKTb+nbw+vp6rK2tefbZZ0lLSwMuTkT73nvv4eXlxX/+\n8x8eeeQRPDw8CA8PZ8eOHRQUFHDbbbfx4Ycf8vrrr5OYmMixY8dYsGCBcZtz584lMTGxzY7D3MgZ\nshnLyclBr9eTmZnJgAEDCA8Px9PTU+uyOrxLt4Nf6urIyclBKWUM50tBfaNuB//lGXJaWhpjx47l\nu+++Q6/Xc99996HT6UhOTmbLli2sWLECgOTkZBYsWMC+ffsICAhg0aJFLFmyhOjoaBITE0lMTOSu\nu+7i9ttvZ9q0aeTn55OUlNTiFF7i6sgZsplpaGjgyJEj6PV6KisrCQsLY/z48TIiwIQ4ODjg5+dn\nvCimlKKsrMwYznv27CE3Nxc7O7smIe3l5YWtre0173fMmDE0NjZiaWnJ2rVriYiIIC8vj5iYGAwG\nA2VlZc1m8/b39ycgIACAJUuWNNtmly5d+Pzzz4mIiMDX15d//etf11yfkEA2G2VlZaSnp7Nv3z48\nPDyIjIykX79+chdaO6DT6XBxccHFxYUBAwYATW8Hz8nJ4dixYxQUFODi4tIkpH/P7eBbtmxpsu7x\n48e56667+O677wgLCyMtLa1Zd8NvDXv8+9//zquvvsro0aPx8vLi2WefZfTo0b/vCxBGEsjtmFKK\ns2fPotfrOXXqFMHBwSQmJtK1a1etSxPXSafT4ebmhpubG8HBwcDF50yfO3fO2NWxb98+ioqKcHd3\nb9LVcbW3g+/fv59OnToRFhYGXOwD/r1KS0v585//zJNPPsnKlSuZPHkyhYWF8vS9aySB3A7V1dVx\n6NAh9Ho9BoOBsLAwpkyZcl1/zgrTZ2lpiaenJ56engwZMgT47+3gOTk5ZGVlsWvXLsrLy423g3t5\neVFWVtbi9vz8/CgpKSEzM5P+/fvzzTffABfnQfz6YC7rD+ZSWF5LRW0DTld4Ml9SUhIff/wxHh4e\nREVFUV9fL0Mnr4MEcjtSUlKCXq/nwIED9OzZk7i4OHr37i3/A3Rg1tbW+Pj44OPjY1x26XbwnJwc\n1qxZQ3JyMgBBQUHMmzePCRMm4O3tTWhoKE888QTjxo1j0KBBeHp6kpeXT4/w8bgMGkvu+rcxVJbg\neVM427ZsJsy3Cw899BAZGRm89NJLuLu78z//8z/cdttt2NraUlZWxooVK3BwcNDo22j/ZJSFiVNK\ncfLkSfR6PTk5OYSEhHDzzTfj6uqqdWmiHbl0O/jlt4RbWVk1HXrn1o1Rr38nM4RrSALZRNXU1Bhv\naba2tiY8PJyBAwdibW2tdWnCDFy6HfzygN56ppbdNV7UtzAZvYONJYsn3cS0sJ4aVNtxyK87E3Pu\n3Dn0ej0//vgjffv2ZerUqfj4+Ei3hLihdDodrq6uuLq6EhQUBEBeyhG+3XG6xfWr6hrJKqpqyxI7\nJAlkE2AwGMjMzESv13Pu3DlCQ0NZsGABzs7OWpcmOpDe7k442FhSVde8y8LBxhJfN+kbbm0SyBqq\nqqpi3759pKen4+zsTHh4ODfddJPc0iw0MSnYi+fWH2mxTae72C5al/QhayAvLw+9Xs+xY8cICAgg\nLCwMLy/5j11o75czhFvRiI2NNR8nRfzmDOHi+kkgt5HGxkbjLc1lZWWEhYURGhoqQ4SEybl8hvCG\nkly61+eRlDBDrmO0gXYXyAEBAcYH5Bw7dgyllPF20/z8fI4dO9bi5y49vcrT09P4dKu2UF5ebnzS\nmru7O2FhYfj7+8stzaJdaGxs5O233yY2NhZ/f3+tyzF77a4P+fJATUxMpKGhgZUrVwIQHR19xc9N\nmTKF4uJi4yD51qSU4ueff0av13Py5EmCgoJISEigW7durb5vIW4kS0tLJkyYwPr16+nbt6/MJNPK\n2t23++KLL15TW1uor6/nxx9/RK/XU1dXR1hYGJMmTcLOzk7TuoS4Hn379sXDw4Ndu3YRFRWldTlm\nrd393Txs2LBfbTt+/Djjx48nKiqK4cOHX/HZrB9++CGurq4MGzaMF198EWdnZwYMGMDOnTuNQ896\n9+7NoUOHKC8vZ+7cuYwcOZJhw4bx8ssvc3lPT2lpKampqbz++uscPXqUMWPGcN999zF06FAJY2EW\n4uLi2LNnD6WlpVqXYtba3Rnyr2loaGDy5Mk89thjJCYmcuLECUJDQ9m/fz99+/Ztsq61tTUPPfQQ\nf/7zn4GLIx9qamoYOXIkADNnziQ0NJSBAwcyd+5cGhsb2blzJ9XV1URERNC9e3dGjhyJXq/n7Nmz\nDBo0iLlz59Kli1yJFubn0kwzqamp3HnnnVqXY7ba3Rnyr/n+++85deoUs2bNAi4+zSoiIoJVq1Y1\nWW/VqlXs2LHDGMYAs2fPZu3atdTU1ACwbds2oqOjMRgMrFq1irvvvhsACwsLRowYwQsvvMDGjRvp\n168fCxcuJC4uTsJYmLURI0aQm5vLqVOntC7FbJnVGXJ2djaurq5NLjy4u7uTnZ1tfH/o0CFWrVrF\njz/+SHl5ufFuuJtvvtk4l5i/vz9BQUHodDoKCwupra3FysqKlJQUDh06hMFgoK6ujvnz58tQINFh\nWFtbExcXx4YNG5g/f77cwNQKzOoM2cfHh5KSEhoaGozLzp07R48ePYzv+/btS0pKCoMHD2bRokVN\nPp+QkMDy5ctZsWIFCQkJGAwGiouLsba2ZuXKldjZ2XHvvffSs2dPeeyl6JD8/f1xcXFBr9drXYpZ\nMqtAjoiIwM/Pj9WrVwNw6tQpvv/+e2bOnGlc59KNGO+88w5r165l69atxrZZs2aRmprKgQMHuHDh\nAm+++SY7d+5k8uTJVFdXM3r0aKytrfnss89ISkpq24MTwgTodDrGjx/Pjh07KC8v17ocs9Pubgy5\n5JFHHmH58uUopZgzZw6vvPIKACdPnuS+++6jsrKShoYGnnrqKSZMmMDWrVtZsGAB+fn5RE6eTmff\nQL5++zmsLGDhgw/y5JNPkp+fT1xcHD4+PsydO5fw8HC8vb2pqKhg4cKFHDt2jIaGBm699VYeeeQR\nOUMWHVZqaiqVlZXccsstWpdiVtptIF+LX96n72BjiQ5YHO1OZdZBSkpKSElJ4b333qNPnz5alyuE\nyaqtreWtt97izjvvbDJbibg+ZtVl8WsqahtITNZTWdtofLxgVV0jlXWNPP7VT5RVVDNr1iw6d+4s\nYSzEb7C1tSU2NpaUlBQMBoPW5ZiNDhPIXx/M5Up/C1gAz73wAhMnTuTRRx9t07qEaK+CgoKwsbFh\n3759WpdiNjpMIGedr2zxwdsA9bYuLErewt69e41Togshfp1OpyM+Pp5t27ZRVSWzidwIHSaQfbs6\n4mDT8rhJmQ1BiGvj4eFBYGBgk9FK4tp1mECeFOzFlQZFyGwIQly7mJgYjh07Rl5entaltHsdJpCd\nbK1ITgzH3kqHje5iZ7KDjSWOtpYkJ4bL9OZCXCN7e3tGjx5NSkoKHWjQVqvoUMPeADan7WB7VgVO\nnr3xdXNgUrCXhLEQ10kpxQcffEB4eDiDBg3Supx2q8MlUXV5KVMCPQkLC9C6FCHMxqULfGvWrMHf\n318eO3uNOkyXxSUlJSW4urpqXYYQZsfb2xs/Pz+2b9+udSntVocMZHlMphCtY+zYsRw8eJBz585p\nXUq71KECubGxkfLyclxcXLQuRQiz5OjoSFRUFBs2bJALfNegQwVyaWkpzs7O8hxXIVpRWFgYlZWV\nHD16VOtS2p0OFcjSfyxE67OwsGDChAls2rSJuro6rctpVySQhRA3nK+vLz4+PuzcuVPrUtqVDhXI\nxcXFckFPiDYSGxtLeno6xcXFWpfSbnSoQJYzZCHaTqdOnRg+fDgbN27UupR2QwJZCNFqhg4dyvnz\n58nMzNS6lHahwwSyUkrGIAvRxqysrJgwYQIbN25sMvmwaFmHCeTKykqsra2xtbXVuhQhOhQ/Pz/c\n3d3ZvXu31qWYvA4TyMXFxdJdIYRG4uLi2L17NxcuXNC6FJPWYQJZ+o+F0I6rqythYWGkpqZqXYpJ\n6zCBLGfIQmhr5MiRZGdnc/r0aa1LMVkdJpBLS0vlgp4QGrK2tiYuLo4NGzbQ2Njy/JYdXYcJZDlD\nFkJ7AQEBODs7s3fvXq1LMUkdJpBlyJsQ2tPpdIwfP54dO3ZQUVGhdTkmp0MEcm1tLbW1tTg5OWld\nihAdnru7O4MGDWLLli1al2JyOkQgXxphobvStNNCiDY1atQoTp48SXZ2ttalmJQOFchCCNNga2vL\n2LFjSUlJwWAwaF2OyZBAFkJoYuDAgVhZWbF//36tSzEZHSKQZYSFEKbn0kzV27Zto7q6WutyTEKH\nCGQZYSGEafL09GTAgAFs27ZN61JMQocJZDlDFsI0jR49miNHjpCfn691KZoz+0A2GAyUlZXRuXNn\nrUsRQrTA3t6emJgYmamaDhDIFy5cwMnJCSsrK61LEUJcweDBg6mvr+fQoUNal6Ipsw9kuaAnhOm7\nNFP15s2bqa2t1boczZh9IEv/sRDtg4+PD3369OHbb7/VuhTNSCALIUzG2LFjycjI4Pz581qXookO\nEcgy5E2I9sHJyYnIyMgOe4HP7ANZ+pCFaF/CwsIoLy/n2LFjWpfS5sw6kC/NNC2BLET7YWlpaZyp\nur6+Xuty2pRZB3JVVRUWFhbY29trXYoQ4jLr1q0jJCQEnU7H6tWrm7V37dqVJ554Ah8fHxYvXsyL\nL77Ic889B8Czzz6Lp6cnzzzzTBtX3frMenCu9B8LYZpuvfVWXF1diY+P5x//+AczZsxo0v7xxx8D\nEBgYyMKFC3FwcDD2KT/99NOcOnWqzWtuC2Z9hiz9x0KYtunTp5Oent5kSielFKmpqYSFheHt7c3G\njRuxtbXFzs5Ow0rbhlkHsvQfC2HaevbsydSpU3njjTeMyzZt2kRsbCw6nY4ePXrw7bff0rdvX6Kj\no6+4nQULFjBmzBiio6P5n//5H8rKygB477338PX1Zfr06cybN4/Q0FDi4+Opqalp7UO7JhLIQghN\nPfDAA6xdu9b4cKHly5eTmJgIXLyDb+HChQwbNuxXh8EFBASwZcsW0tLS8Pf3Z8mSJQD84Q9/IDEx\nkR07dvDSSy+Rnp7O2bNnWbduXasf17Uw6z7k4uJiQkJCtC5DCPErRo0axYABA3jnnXdISEjA09Oz\nyfyX/fv3x9HR0XjW2xI7OzsiIyOxsLCgoKCAPn36NGmPiIgwnpwFBQVx+vTp1jmY62TWgSxnyEK0\nD/fffz9//vOfKSoq4sEHH2zWPnDgQDZv3kxZWRmdOnVq0paWlsZDDz3EoUOH8PX1JTk5meTk5Cbr\nXP4ZOzs76urqWuU4rpfZdlnU19dTXV3d7IcnhDA9M2fOpL6+nqysLPz8/Jq1Ozk54ezsTGpqarM2\nvV6Pv78/vr6+AO167LLZniGXlJTQuXNnmWlaiHbAzs6Ojz76iF69el1xHRcXF86ePcvR46c4fb6S\n7PpzrNl7Fu9evTlx4gRFRUW4ubmxcePGNqz8xjLbQC4uLpYxyEKYqNTUVBYtWkRpaSmOjo4sWrSI\nKVOmGNtnz55NRkYGp0+fxtbWllWrVpGfn499F0+eX5fOhX1bwNKaI+U2dB4cy6i4yURERBAcHIyT\nkxMZGRk88sgjhISEkJycTE1NDW+//TaWlpZ888032NnZ0b9//2bjn7WmU2b6BI/du3dTWlrKhAkT\ntC5FCHEDVNQ2EPHiZiprG5u1Odpaon98LI627fsc02z7kOWCnhDm5euDuVzp9FGpi+3tnVkHsnRZ\nCGE+ss5XUlXX/OwYoKqukayiqjau6MYz20CW26aFMC++XR2xs2r5Ir2DjSW+bg5tXNGNZ5aBbDAY\nuHDhgsw0LYQZCXKupbGhocU2nQ4mBXu1cUU3nlkGcllZGQ4ODlhbW2tdihDiBsjOzmbDV//m1Sl9\ncbS1xMHGErh4Zuxoa0lyYni7v6AHZjrsTfqPhTAfhYWFrFmzhilTpuDv78+YUH++PphLVlEVvm4O\nTAr2MoswBjMNZOk/FsI8lJSUsHLlSsaNG4e/vz8AjrZWTAvrqXFlrcMsuyxkyJsQ7V95eTkrVqxg\n5MiRBAcHa11Om5BAFkKYnOrqalauXElISAjh4eFal9NmzDaQpQ9ZiPaprq6O1atX06dPHyIjI7Uu\np02ZXSArpaQPWYh2qqGhgU8//ZSuXbsybty4DvdwsDYN5N+aaba8vBwXFxd69erF4sWLr2kf1dXV\nADLTtBDtjMFg4IsvvsDW1pbJkyd3uDCGNg7kW2+9lddffx17e3v+8Y9/NGv/+OOPqa+vJyEhgb/8\n5S/XtI9L/ccd8YcpRHullOKrr76itraW2267DQsLs/vj/apoctS/NdPs9ZDHbgrRviil2LRpE+fP\nn2fatGlYWZnlaNyrokkg/9ZMs5eUl5czd+5cRo4cybBhw3j55ZeNEx3u2rWLkSNHMnr0aKKjo/n6\n66+Bi2fI+/btY+jQoYwePZrRo0ezZcsW4OJMAosWLWL48OEMHz6chx9+mPr6ek6cOIGfnx/dunXj\nhRdeAODJJ5/k0UcfBeDDDz/Ew8ODhx56qE2+HyE6kh07dnDq1ClmzJiBjY2N1uVoS7Wxbdu2qcWL\nF6u0tDRlY2Oj8vLylFJKzZgxQ5WXl6tRo0apJ598Uiml1N13363mzJmjlFKqqqpKDRw4UC1fvlwp\npVRYWJjas2ePUkqpjIwM43ovvfSScnNzU4WFhUoppdauXWtse/bZZ9WYMWNUQ0ODamhoUOPGjVPP\nPvusUkqp1NRU1b9/f2OdQ4YMUUFBQcb3d911V+t8IUJ0YN9//7164403VFlZmdalmATNOmoun2n2\n5MmTzWaaNRgMrFq1irvvvhu4eJFu2rRpLFu2DIAuXbqwYsUKCgoKGDRoEEuXLgUgJSWFmJgY3N3d\nAbjlllu49957gYvTi8+ePRtLS0ssLS2ZPXu2cXtRUVHk5eVx4sQJcnJyCA0NJTMzk59//plTp041\nm8VWCHF9Dh48yM6dO0lISMDZ2VnrckyCpj3n999/P++++y6vv/66MTQvOXfuHLW1tcZgBXB3dyc7\nOxuA1atX4+DgQGhoKOPHjyczMxO4eN+7l9d/n/pkZWVFREQEcPEBJVfano2NDbGxsXz11VekpKQw\nffp0IiMjWb9+PV9//TUTJ05snS9BiA4oMzOTTZs2MWvWLBmiehlNA/nXZpp1d3fH1taWc+fOGZed\nO3eOHj16AFBbW8srr7zCmTNniIqKYurUqTQ0NODk5ERZWZnxMw0NDRw4cAAAHx+fK24PYNKkSXz9\n9dfs2rWLyMhIJk6cSEpKCrt372bYsGGt8h0I0dFkZWXx5ZdfMn36dLp166Z1OSZF00C+NNPs888/\n36zNwsKC2bNn8/HHHwMXxxd/9tlnJCUlAXDHHXdQVVWFlZUVI0aMoKGxkWXf/oTT4Ams+896snLy\nAfj0009JTk4GIDExkZUrV9LY2IjBYGDlypXG7QHEx8fz3XffYWFhgbW1NZMmTWLLli3Y29tjaWnZ\nyt+GEOYvNzeXtWvXcvvttzc5GRIXten4kt8z06yTkxOvvfYaCxcuZOTIkTQ0NDBjxgxmzZoFwNSp\nUxk7duzFs+iSMqzH3Mer285Q4xaBY1QNNw2NYYC3G717ePLRRx8BsGjRIi5cuGC8HXP48OE89thj\nxv17eHgQHBzMqFGjAOjXrx/e3t7Exsa21VckhNk6f/48n3zyCZMmTZJrMlfQ7med7ggz0QrR3pWW\nlrJs2TJiYmIICQnRuhyT1e5vh+kIM9EK0Z5VVlayYsUKhg0bJmH8G9p9IHeEmWiFaK9qampYuXIl\nQUFBDB06VOtyTF67D2Tfro7G+bV+yc5KZxYz0QrRHtXX1/PJJ5/Qs2dPoqOjtS6nXWj3gTwp2Isr\nPUeosbEB3c/7qaysbNuihOjgGhsb+eyzz+jcuTPjx4+Xh31dpXYfyE62Vv9/xtmWZqKNwMXRjqVL\nl5Keno7BYNC4WiHMn8FgYN26dVhYWDBlyhQJ49+h3Y+yuKSytuGKM9EWFBSQkpJCQ0MDEydObHIn\nnxDixlFKsX79eoqKipg5c2aHfnLbtTCbQP4tSikOHjzI5s2bL04lPmaMPMReiBts8+bNnD59mtmz\nZ2Nra6t1Oe1OhwnkS6qrq9m6dStHjx5lzJgxxhlMhBDX57vvviMjI4OkpCQcHORi+rXocIF8SW5u\nLikpKVhYWBAfH4+np6fWJQnRbv3www/s3LmTpKQkOnXqpHU57VaHDWS42I2xb98+tm7dysCBA4mJ\niZE/s4T4nQ4fPsw333xDYmIibm5uWpfTrnXoQL6kqqqKzZs3c+LECWJjYwkKCpJuDCGuwokTJ1i3\nbh0JCQlnD40BAAAXu0lEQVTyV+YNIIF8mZ9//pmUlBTs7OyIj49v8uxkIURTZ8+e5dNPP2XatGn0\n7NlT63LMggTyLxgMBvbu3cu3337L4MGDiYqKknm+hPiF/Px8VqxYwa233trsWebi2kkgX0FFRQWb\nNm3i7NmzxMXFERAQIN0YQgBFRUUkJyczfvx4AgMDtS7HrEgg/4asrCxSUlJwcXFhwoQJdOnSReuS\nhNBMWVkZy5YtY+TIkQwZMkTrcsyOBPJVaGxsZM+ePXz33XeEhYUxcuRIrK2ttS5LiDZVVVXFsmXL\nCAkJYcSIEVqXY5YkkH+HCxcusGnTJvLy8pgwYQL9+vXTuiQh2kRtbS3Lly+nd+/ejB07VutyzJYE\n8jU4ceIEGzZsoFu3bsTFxdG5c2etSxKi1dTX17N69Wrc3NyYOHGiXEtpRRLI16ihoYFdu3axZ88e\nhg0bxvDhw2UiVGF2Lj1G09ramttuuw0Li3b/gEiTJoF8nUpKSvjmm28oKioiPj5eJm8UZkMpxb//\n/W+qqqqYPn26nHC0AQnkG+Snn37im2++wdvbm3Hjxsn9/KJdU0qxYcMGCgoKmDVrllzEbiMSyDdQ\nfX09O3bsID09ncjISMLDw+WsQrRL27ZtIzMzkzlz5mBnZ6d1OR2GBHIrKCoqIiUlhYqKCuLj4+nV\nq5fWJQlx1fbs2UN6ejpJSUk4OjpqXU6HIoHcSpRSHDlyhE2bNtG7d29iY2PlP25h8jIyMkhLSyMp\nKQkXFxety+lwJJBbWW1tLdu3b+fAgQNER0czZMgQuVItTNLRo0dJSUlhzpw5dO3aVetyOiQJ5DZS\nWFhISkoKdXV1TJw4EW9vb61LEsLo1KlT/Otf/2LmzJky56SGJJDb0OXz+vXv358xY8bIVDdCc9nZ\n2XzyySfcddddcr1DYxLIGqipqWHr1q0cOXKE0aNHM3jwYLn7SWiisLCQ5cuXM2XKFPr37691OR2e\nBLKG8vLyWL9+PTqdjokTJ8qMC6JNlZSUsGzZMmJjYxk4cKDW5QhAri5pqHv37sydO5fBgwezcuVK\nNmzYQE1NjdZlCQ2lpqYaZ0IfNWoUUVFR9OvXj4SEBCorK2/YfsrLy1mxYgWRkZESxiZEzpBNRFVV\nFVu2bCEzM9N4xiLdGB1TWloaMTEx1NfXY2VlRUlJCQEBAdx7770888wz17396upqkpOTCQwMJCoq\n6voLFjeMldYFiIscHByYPHky2dnZrF+/nv3798u8fgIAV1dXIiMjSU9Pv+5t1dXVsWrVKvr27Utk\nZOQNqE7cSNJlYWJ69OjBPffcw4ABA0hOTiY1NZW6ujqtyxIaa2hooEePHgAcP36c8ePHExUVxfDh\nw9mwYQMAer2ekJAQfH19WbJkCSNGjCA8PJysrCzmz5/PwIEDGT16NO7u7sTGxqLT6Vi+fDlDhw5l\n1KhRzJgxg7KyMi0PUyhhssrLy9UXX3yhXnvtNXX48GFlMBi0Lkm0gW3btilA1dfXK6WUOnPmjJoy\nZYrKzs5W9fX1yt/fXy1btkwppdTx48eVs7OzOnHihPGz1tbWavfu3UoppaZOnaqGDBmiiouL1cqV\nK1WnTp3Ud999p5RSaufOncrNzU0VFhYqpZR6+OGH1dy5c9v4aMXl5AzZhDk5OXHrrbdy2223kZaW\nxqpVqygqKtK6LNFGxowZQ1hYGAEBAcTGxuLt7c3333/PqVOnmDVrFgB+fn5ERESwatUq4+ecnZ0Z\nOnQoAEFBQfTq1Ytvv/0Wg8FAUFAQWVlZACQnJzN58mRjt9iMGTNYtWoVSi4raUYCuR3o1asX8+bN\no0+fPnz44Yds27aN+vp6rcsSrWzLli3s3buX+++/n0WLFlFYWEh2djaurq5YWf338o+7uzvZ2dnG\n987OzsZ/W1paUlZWxvnz55k2bRrW1tbGLrDs7Gy2bt1KdHQ00dHR3H///Xh4eMgvfQ1JILcTlpaW\nDB8+nPnz51NUVMTSpUvJzMzUuizRBhYvXoyzszPvvvsuPj4+lJSU0NDQYGw/d+6csX/5l86ePUtF\nRQUzZszAxsamSZuPjw+TJk0iLS2NtLQ0du7cSXp6ujzHQkMSyO1Mp06duOOOO5g0aRIbN25kzZo1\nlJaWal2WaEUODg48+OCDvP322wwZMgQ/Pz9Wr14NXHwGxffff8/MmTOpqG1g67ECLlTXs2bvWbZ/\nt4f8/Hz69OmDvb19s+0mJiayfv16SkpKgIuTLEyePLlNj038gtad2OLa1dfXq+3bt6uEhATl5+en\nrKys1P79+43tZ86cUaNGjVIuLi5qypQp17yf77//Xg0aNEj16tXrBlQtfs2mTZvUoEGDFKCioqLU\n4cOHlVJKlZaWqk6dOqkhQ4aotLQ0NX78eBUZGamGDRumUlJSlP50keq74B1l69FHYWmtXAaPV93v\neEJ5eHkrDw8PtXTpUvWXv/xFubi4KH9/f7VlyxallFIrVqxQERERKiYmRsXFxamffvpJy8Pv8OTG\nEDNQWlrKa6+9xgsvvEBAQAAHDhxo0scYHR1NWlrade0jLS2NxMRE4wUhYToqahuIeHEzlbWNzdoc\nbS3RPz4WR1u55aA9kC4LM9C5c2dGjx7NnXfeSVZWFgkJCTKetAP5+mAuVzqtUupiu2gf5NemGQkI\nCGDChAncc889eHl5cfvttxMREWFsP3z4MI888gh1dXVUVFSQlJTEH/7wB+rq6hg3bhzbt2/nr3/9\nK9u2bSMnJ4eEhAQee+yxFvdVUVHBAw88QGZmJgaDgdmzZzN//nwAvvzyS1566SUcHBywsLDg2Wef\nZdiwYW3yHZgbg8FAVVUVlZWVLb6qqqr4zxkdVXVOLX6+qq6RrKKqNq5aXCsJZDMzZ84c/v3vf7N9\n+3YGDRpERkaG8YFFFRUVPP3000RERFBfX09wcDAxMTH069ePtLQ0dDodpaWlbNq0ieLiYgIDAwkN\nDWXcuHHN9vOnP/2JxsZGdu7cSXl5OYMGDSIoKIiRI0dyzz33cOjQITw8PPjyyy/ZuHGjBPL/p5Si\npqamxWBtKXBra2uxt7fHwcEBR0fHJi9vb28cHR0p7lzD/l15VNcbmu3PwcYSXzd55nZ7IYFsht55\n5x0CAwMpLCwkPj6e1157jXXr1jFkyBCef/55/vSnP2FjY0NeXh779++nX79+xs9Onz4dgC5duhAf\nH8+aNWuaBbLBYGDFihVs3LgRuDjudfLkyaxYsYKRI0fSpUsX3n//fe677z4mT55MXFxc2x28Burq\n6q4qXC+1WVtbNwtXR0dH3Nzc6NmzZ5Nl9vb2vznlV4/eDby1J7/FNp0OJgXLDCDthQSyGfLw8OCt\nt94iKSmJW265BW9vb5ycnLjttttwdHRk+/btWFtbEx0dTVVV0z9nXV1djf92c3Pj0KFDzbZ/7tw5\namtreeSRR4zDqUpLSwkJCQEuPkLyr3/9KwEBAURGRvLKK6/Qu3fvVjziG6uxsfGqgvXSv5VSzcLV\nwcEBZ2dnPD09my2//ILrjeBka0VyYjiJyXqUuthN4WBjiU4HyYnhckGvHZGflJmaNm0an3/+OXPn\nzkWn0xEbG8t9991HQEAAH330ERMnTmzxbr/i4mJ8fX0BOH/+PN27d2+2jru7O7a2tvzzn/8kLCwM\ngPr6emO4W1lZ8fbbb/Paa6/x8MMPk5iYyPbt21vvYH+DUorq6uqrCtfKykrq6uqadRFcet+lS5dm\n4Wttba35o1LDfLugf3wsXx/MJauoCl83ByYFe0kYtzPy0zJjS5cuJTAwkJtuugkAf39/dDodw4YN\n4/3332ffvn3U1tY2+cznn39OaGgoRUVFpKSksHz58mbbtbCwYPbs2axYscIYyM8//zxdu3bl/vvv\nZ9KkSej1euzt7QkPD+fAgQM39LiUUs26CX4tYKurq7G1tW0xYD08PJoFrJ2dneYBey0cba2YFtZT\n6zLEdZBANgPr1q3jL3/5C6WlpVhYWPD0008DF89k33nnHd58800AXnnlFWbNmsW8efPo378/np6e\nPPXUUyilmDdvHgCd3boyaOgo8nOzibl9DsNHjUav17Nw4ULy8/O58847Wbt2La+99hoLFy5k+PDh\nWFtbM3jwYON+R40aRWRkJDY2NjQ2NvLWW2/95jE0NDRcdcBWVlZiaWnZYsC6urrSo0ePZv2wlpaW\nrfTtC3HjyI0hHVx+fj7r168H4H//93/xezAZaxePZv2QYb5dftd2r2a41uXvGxsbm4VrS69LbdbW\n1q3xdQihKQlkgVKKXfofGDk0DO/5H2LV2aNJu6OtJd8/NgZL1fws9teGa9nZ2f1msF562dratstu\nAiFuJAlkQV1dHSHDRnF03x5svPxxv/VxrJz/+8QvKwwMtfmZIPuy3wzW3zNcSwjRlASyAOClDUd5\n59tTV2yfF9mbx+NvasOKhOh45BRGAODb1REHm5YvfDnYWNLHveVbc4UQN44EsgAu3s11pS5cudtL\niLYhgSyA/97t5WhraTxTdrCxxNHWUu72EqKNSB+yaKKytkHu9hJCIxLIQghhIqTLQgghTIQEshBC\nmAgJZCGEMBESyEIIYSIkkIUQwkRIIAshhImQQBZCCBMhgSyEECZCAlkIIUyEBLIQQpgICWQhhDAR\nEshCCGEiJJBFi3x9ffnb3/521es/88wzBAUFtfl+W2IwGJg3bx5ubm7odDrS0tJaXJaYmMikSZOu\ners6nY7PP//8umoT4tdIIHcwBQUF/OlPf6Jfv37Y2dnRrVs3hg8fzptvvklFRYXW5f2m5ORkdDpd\ni6+amhoAUlJSWLZsGV999RV5eXkMHz68xWVvvPEGK1euvOp95+XlMXny5NY6tBumpqaGP/7xj7i5\nueHo6Mgtt9xCTk7Ob34uJyeH2bNn07VrV+zt7QkMDGTnzp3G9s8//5xx48bh7u6OTqdr0iZuDHnQ\nbQeSlZXFiBEj6NSpE8899xzBwcHY29tz+PBhPvjgA9zc3JgxY4bWZf4mBwcHTp482Wy5nZ0dACdO\nnKB79+4MHz7c2NbSMhsbm9+1X09Pz2usuG3df//9bNiwgc8++4zOnTuzcOFCpkyZwt69e6848Wxx\ncTEjRowgJiaGlJQU3N3dOXnyJF27/ney28rKSkaMGMHMmTNJTExso6PpYJToMMaPH6969OihKioq\nWmw3GAzGf/fq1UstWbLE+P7MmTPqlltuUU5OTsrJyUndeuut6ueffza2L168WAUGBqr3339f+fj4\nKDs7OzV16lR17tw54zp6vV7FxsYqNzc35ezsrEaMGKF27drVpIZf7veXli1bphwdHa/YPmfOHAUY\nX7169Wpx2aV1J06c2OT4//a3vyk/Pz9lY2OjvL291WOPPWZsB9TatWuN77Ozs9W0adNU586dVefO\nnVV8fLzKzMxs9p188sknqk+fPsrJyanZd6KUUsnJySooKEjZ2Niobt26qdmzZyullEpKSmpSn1JK\nNTY2Kh8fH/Xqq6+2ePxFRUXKyspKrVmzxrjs1KlTClCbN2++4ve2aNEiFRUVdcX2y+Xl5SlA7dix\n46rWF1dPuiw6iKKiIjZu3Mgf//hHHB0dW1xHd4VJ9QwGA1OnTqWgoIBt27axbds2cnNzueWWW1CX\nzW+QlZXFypUr+fLLL9m8eTPHjx/n7rvvNraXl5eTkJDAjh070Ov1hISEEB8fT1FR0Q07zjfeeIOn\nn36aHj16kJeXx969e1tc1pInnniC5557jscff5zDhw+zdu1afHx8Wly3qqqKmJgY7Ozs2L59O7t3\n76Z79+6MHTuWqqqqJt/Jp59+yrp169i0aRP79+/nySefNLa/++67zJs3j6SkJA4ePEhKSoqxL/6e\ne+7hm2++IS8vz7h+amoq+fn5JCQkAPDBBx+g0+nIzs4GID09nYaGBsaNG2f8TO/evenfvz+7du26\n4vf273//m/DwcO688066detGSEgIS5cubfLzFW1A698Iom3s2bNHAeqLL75ostzb21s5OjoqR0dH\nNW/ePOPyy89UN23apCwsLNTp06eN7SdPnlQ6nU6lpqYqpS6eDVpYWKgzZ84Y19mxY4cCmpw1Xs5g\nMChPT0+1YsWKFvfbkmXLlinAWPOl17Bhw4zrLFmyxHgW/GvLLj9DLi8vV7a2turtt9++4r657Az5\nww8/VH5+fk3+qmhoaFBdunRRn376qfE7sbW1VaWlpcZ1nn/+edW3b1/je29vb/Xoo49ecZ+BgYHq\nxRdfNL6/66671O233258v3btWuXv76/y8/OVUkp9/PHHysbGptl2IiMj1YIFC664HysrK2Vra6ue\nfPJJtX//fvXBBx8oBweHFr8POUNuPdKH3MHt2LGDxsZG/vCHPxgviv3S0aNH8fLywtfX17isT58+\neHl5ceTIEcaOHQuAt7c3PXv2NK4TERGBhYUFR48epV+/fhQWFvLUU0+xbds2CgoKaGxspLq6mrNn\nz/6umh0cHMjIyGiyzNbW9ndt45eOHDlCbW0tY8aMuar1f/jhB06fPo2zs3OT5VVVVU36t3v16oWL\ni4vxvZeXF4WFhQAUFhaSk5Pzq/u85557WLp0KY899hjFxcV8+eWXrFu3zth+xx13cMcdd1xVzb/G\nYDAwbNgwnn/+eQBCQkL46aefeOutt5g/f/51b19cHQnkDsLPzw+dTsexY8eaLO/duzdwMeSuxZW6\nOVoyZ84cCgoK+Pvf/46vry+2traMGTOGurq6371PPz+/31vqDWUwGAgJCWHNmjXN2rp06WL8t7W1\ndZM2nU6HwWC46v0kJCTw6KOPsnPnTvbv34+7uztxcXFXXN/T05O6ujpKSkpwdXU1Li8oKCA2NvZX\nP3fTTTc1WTZgwADefffdq65VXD/pQ+4g3NzcGDduHP/85z9/9/C2AQMGkJubS1ZWlnHZqVOnyM3N\nbfI/cU5ODj///LPxvV6vx2AwMGDAAAB27tzJ/fffz8SJEwkMDMTZ2blJ/6iWBgwYgK2tLVu2bLmq\n9UNDQzlx4gRdu3bFz8+vyevyQP413bp1w9vb+1f32aVLF2677TY++ugjPvroI+bMmXPFkRIAN998\nM1ZWVqSmphqXnTlzhszMzCYjTH5pxIgR/PTTT02WZWZm0qtXr6s6FnFjSCB3IEuXLsVgMDBkyBA+\n+eQTjhw5QmZmJp988gkHDhzA0tKyxc+NHTuW4OBgZs6cSXp6Ounp6cycOZPQ0FBGjx5tXM/e3p45\nc+aQkZHB7t27mT9/PhMnTqRfv34A9O/fn5UrV3LkyBH27t3L9OnTf/fQMwClFPn5+c1ejY2N1/bF\nAM7Ozjz44IM8/vjjLFu2jJMnT6LX63n77bdbXH/mzJl4eHgwdepUtm/fzunTp/n222956KGHOH78\n+FXv98knn+T111/n73//O5mZmWRkZPDqq682Weeee+5h1apVHDhwoMlFUrg4NjggIICCggLgYoAn\nJiby8MMPs3XrVvbt28fs2bMJDQ0lJiYGgMbGRgICAnjnnXeM2/m///s/duzYwUsvvcSJEyf49NNP\neeutt/jjH/9oXKe4uJiMjAwOHz4MXBxKmJGRYdy3uAG07sQWbSsvL0898MADqm/fvsrGxkY5Ojqq\nm2++Wf31r39VZWVlxvVaGvY2depU47C3W265pcVhb++++67q0aOHsrOzU1OmTFGFhYXGdTIyMlR4\neLiys7NTffr0UcuXL1eBgYFq8eLFV9zvL126qNfS6/jx40qpa7uop9TFIWUvvvii6t27t7K2tlY9\nevRQTzzxhLGdXwx7y8/PV4mJicrd3V3Z2NgoX19flZSUZBzWduk7+WX9vxy298EHH6gBAwYoa2tr\n5eHhoZKSkpq0GwwG1adPHxUTE9Ps+3j//fcV0ORnUVVVpe69917l6uqqHBwc1JQpU1R2draxvb6+\nXgHqueeea7Kt//znP2rgwIHK1tZW+fv7qzfffLPJRctL+/rl65fbEddOp5SMaxHClFVXV+Pt7c2b\nb77JzJkztS5HtCK5qCeEiTIYDJw/f5433ngDe3t77rrrLq1LEq1MAlkIE3X27Fl69+5Njx49WLZs\nWbMRG8L8SJeFEEKYCBllIYQQJkICWQghTIQEshBCmAgJZCGEMBESyEIIYSL+HyNy7tBhB9U8AAAA\nAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZq0lEQVR4nO3deVxU9f4/8NcM+46AbMoqCiIIKosoIJjgkiiaWm6paept+VXfzPJ63bMsM+9N62piLqnp1QoQtRQVcAHRFBJxCxFBZBNlUdaZ8/vDy1xHFlFhBpjX8/HgUZ75nHPec8SZ1/mcz/kckSAIAoiIiEhliZVdABERESkXwwAREZGKYxggIiJScQwDREREKo5hgIiISMUxDBAREak4hgEiIiIVxzBARESk4hgGiIiIVBzDABERkYpjGCAiIlJxDANEREQqjmGAiIhIxTEMEBERqTiGASIiIhXHMEBERKTiGAaIiIhUHMMAERGRimMYICIiUnEMA0RERCqOYYCIiEjFMQwQERGpOIYBIiIiFccwQEREpOIYBoiIiFQcwwAREZGKYxggIiJScQwDREREKo5hgIiISMUxDBAREak4hgEiIiIVxzBARESk4hgGiIiIVBzDABERkYpjGCAiIlJxDANEREQqjmGAiIhIxTEMEBERqTiGASIiIhXHMEBERKTiGAaIiIhUHMMAERGRimMYICIiUnEMA0RERCqOYYCIiEjFMQwQERGpOIYBIiIiFccwQEREpOIYBqjDqKiogKenJywtLSESieDq6gpPT084OzujW7dumDp1Km7evNmi+/T19cWECRNadJtERIrGMEAdho6ODlJSUjB37lwAwMGDB5GSkoKrV68iNjYWiYmJ8Pb2xp07d1psn7a2trC2tm6x7RERKQPDAKkEBwcHzJs3D0VFRdi8eXOLbXfv3r345z//2WLbIyJSBoYBUhl2dnYAgOzsbHz++efw9fWFl5cXPDw8EBoainPnzsna1l1yMDExgb29PY4fP47BgwfDyckJIpEIP//8s9zrj9u1axe8vLzQt29f9O7dGyNHjkRkZKQC3ykR0bNhGCCVce3aNQBAt27dsGrVKnz77bc4d+4cUlNTMWPGDAwePBg5OTkA/nfJYdSoUSguLsauXbtw+PBhXL9+HcHBwVBTU5O9/riTJ09ixowZ2LVrF86fP48LFy6ge/fu7D0gojaNYYBUwtmzZ/HFF1/A1tYWs2bNwpkzZ+Dl5SV7feLEidDV1cWuXbvqrVtWVobly5dDXV0dIpEIu3fvxpAhQxrcT1JSErS1tWFjYwMAUFNTw/z58zFu3LjWeWNERC1AXdkFELWWESNGQFNTE5WVlTA0NMTkyZOxYMECmJiYIDMzExMmTMCVK1cgFj/KxMXFxcjIyKi3HRMTE1hZWcn+bG5u3ug+Bw0ahAULFqBfv3546623EB4ejq5du+Kdd95p+TdIRNRC2DNAHVbd3QRXrlxBcnIyVq9eDRMTE1y8eBH+/v4wMzPD2bNnkZKSgpSUFFhbW6OqqqredgwMDJq9T29vb5w+fRru7u746KOPYGNjg8DAQCQnJ7fkWyMialEMA6Rydu/ejcrKSixfvhxaWlotvn1vb2/s2bMHBQUFiIiIQGZmJkJCQnDv3r0W3xcRUUtgGCCVU3f2X3d5AAAkEgkKCgpeeNu7du1CdHQ0gEc9CjNnzsS//vUvlJaWIjMz84W3T0TUGhgGSOWMHDkSALBq1SoIggAAWLlyJSoqKl5429euXcPnn38u6wWQSqVISEiAtbU1XF1dX3j7REStQSTUfRoStXMVFRXw8/NDXl4e8vPz0bNnT2hqaiIlJaVe2+3bt2PVqlWoqKiAnZ0dQkND8d133+Hhw4dwcXHB6dOn4evri+vXr6O8vByurq4YO3YsFi9eDOBRT0K/fv1w69Yt2evfffcd9PT0sHbtWiQnJ0NTUxO1tbXo0aMHVq5ciZ49eyr4iBARNQ/DAFEjKmskKKushYG2OrQ11JRdDhFRq+GthURPOHuzGBEnb+BIej6kAiAWASGuFnjT3xFe9ibKLo+IqMWxZ4DoMT8mZWFxVBrEYhEk0v/901ATiyCVClgR7oYpvnZKrJCIqOUxDBD919mbxZiwMRFN/YMQAdg7x489BETUofBuAqL/ijh5A2KxqMk2YrEIESd5iyA9v6tXr8LT0xP6+voICgpSdjlEABgGiAA8Gix4JD1f7tJAQyRSAb9fykPCqURcvnwZt2/fRllZGaRSqYIqJUXKzc2Fp6cnLC0tIRKJMHHixCbbx8TEQCQSwcTEBJ6enkhJSUF2djbMzc2xfv16AICzszNSUlLkno1BpGwcQEgEoKyyFk/JATICgN+OxUNL+r+pi8ViMQwMDGBoaNjoj76+vtxER9T2WVtbIyUlBUuXLsXy5cvxn//8B4sXL270NtEVK1YAAEaNGoWtW7cCAAoKCmBnZwcTE15aoraLYYAIgKZIAhEECGj6MgHw6O6CRR/Pg1BbjdLSUpSUlKC0tFTu586dOygtLUVtba1sPZFIJAsMRkZGcuHByMiIgaGNGzNmDH799VesWLGiwadbxsTEwM7Ort5zKMzNzXH27FlFlUn0XBgGSOXduHED0dHRsFPvjFsS4yZ7CNTEIoT0tICOpjqgqQ5dXV1YWlo22FYQBFRUVNQLCnU/eXl5KCkpaTQwNPZjYGDAwKAE7u7uAIA9e/Zg8eLFcHFxkXt9+fLl2Lx5M/bu3StbdubMGcyZMwfp6emYNGmSrLegMZs2bcL27dtRUVGBmpoaGBgYYPHixQgNDZW1CQ4OxuXLl5Gfn48LFy7gk08+QWZmJtTU1LB69Wq8/PLLLfemSWUwDJDKqq6uxpEjR3Du3DnY29tjyZAAvLHzYpPrSKUCZvk7NGv7IpEIurq6Tw0MlZWVjfYw5Ofno7S0FDU1NXLb1dfXbzAoPN7DoKbGiZJa2uLFi2W9Azt37pQtj4mJgY2NjSww1PH19UVKSgrs7e2btf2vv/4aX375JcLCwgAAcXFxePnll3HixAn07dsXAHD8+HEsXboUy5Ytw7///W/s378fGhoa+OCDDzBx4kTcunULxsbGLfJ+SXUwDJBKysrKQlRUFMrLyzF8+HB4e3tDJBJhRbiARZFNzzPQkrcVikQi6OjoQEdHBxYWFg22eTwwNPSTkZGBkpKSZgeGx3sYGBiejYeHB0aPHo3du3dj8eLFcHZ2BvCoV2DTpk0vvP1ff/1VrschKCgI7u7uiIiIwHfffVev/ezZs6GhoQEAmDhxIv75z3/i7NmzCAkJeeFaSLUwDJBKqampwbFjx5CUlARbW1tMmTJFbmDXFF87uFgYIOJkJg6n5/1vBsKeFpjl76CU+QWaGxiqqqpkAeHJXoaMjAyUlpaiurpabr2n9TAwMNS3ePFiREZGYsWKFdixYwdiYmJgbW0NDw+PF962WCzGjBkzkJKSAqlUCpFIhL/++gtGRkYNtn88OJiZmQEA8vLyXrgOUj0MA6QycnJyEBkZifv37yM0NBS+vr4NXnv3sjeBl71Ju3o2gUgkgra2NrS1tWFubt5ou6Z6GDIzM1FaWip7xHOd5vQwqKurzkdJnz59EBYWht27d2PRokVYvnw5NmzY8MLbvXPnDvz9/TFw4EDEx8fD0NAQwKPegSf/Turo6enJ/r/ud1kikbxwLaR6VOdfMKms2tpaxMXF4fTp07C2tsbcuXNlZ1FN0dZQa/Mh4Fk1JzA83sPweC9DWVlZo4FBT0/vqT0MHSkwLF68GPv370d4eDicnJxk1/NfRExMDAoLC7Fw4UJZECBSlI7zr5OoAbm5uYiMjMTdu3cRHByMgQMHciT+U2hpaaFz587o3Llzo22eDAyP/2RlZaG0tBSVlZVy6zQWGB7/aS+BwcvLCyNGjMDBgwexffv2FtlmXcB68vfzzp07sLKyapF9EDWmffzLI3pGEokECQkJOHHiBCwsLDB79uxGr7fTs2tOYKiurm60h6GxwKCrq9toUKibm6FuwJyybdq0CTdu3IC3t3eLbC80NBRaWlr46quvsG3bNmhoaGD79u24du0awwC1Oj6oiDqc/Px8REZGoqCgAAEBAQgICOAguDaquroaZWVlDd5WWfdTUVEht46Ojo7c5Ye6/3/8p6UCQ0VFBfz8/GSD8iwtLZGYmAgdHZ16bdeuXYtt27YhNTUVnTp1gq2tLTZu3CibZ0BfXx+2trbYs2cPJkx4FX9l/AURACcnJ0RGRsLe3h6HDh3CwoULUVBQACcnJ3h5eSE+Ph6XL1+Gk5MT4uLiMGPGDCQmJiI/Px8eHh5Yt24d8vPzsXjxYly+fBk2NjYIDw/HN9980yLHgFQDwwB1GFKpFKdOnUJcXBxMTU0xZswYnlF1ADU1NfUCQklJCcrKymT/31BgaKqHoSUDw7M4e7MYESdv4Eh6/v/uVHG1wJv+jnwSJikVwwB1CIWFhYiKikJubi4GDBiAoKCgdnP9mV5cTU3NU3sYHj58KLeOtrb2U3sYNDU1W6zGH5OysDiq6Tkspvjatdj+iJ4FwwC1a1KpFElJSTh27BiMjY0RHh6Orl27KrssaoNqa2sbDQp1Pw8ePJBbR1tb+6k9DM0JDGdvFmPCxkQ09WErArB3jh97CEgpeOpE7VZxcTEiIyORnZ2N/v37Y/DgwW1mcBm1Perq6jAxMWny6YG1tbVylx+efPjU1atX6wUGLS2tp/YwRJy8Ua9H4ElisQgRJzMZBkgp2DNA7Y4gCDh79ixiY2Ohr6+P0aNHw86O3aukGI8HhsZ+ysvL/9deEGFHVd9mPxEzfdmwDje/BbV97BmgduX+/fuIiorCzZs34eXlhZCQkBa9rkv0NOrq6ujUqRM6derUaBuJRCILDFn59/DjLznN2rZUAMoqaxkGSOEYBqhdEAQB58+fx+HDh6Gjo4OpU6fC0dFR2WURNUhNTQ3GxsYwNjaGuVUXiH/NafLR2HXEIsBAmx/LpHj8raM2r7S0FPv378dff/2FPn36YOjQodDS0lJ2WUTNoq2hhhBXC8ReLmhyzICaWISQnhbsFSClYBigNksQBPz55584dOgQNDU1MWnSJHTv3l3ZZRE9s1n+jjh8Kb/JNlKpgFn+DgqqiEgewwC1SeXl5YiJicHVq1fRu3dvDBs2rMFZ34jaA297E6wId8OiyAbmGRABEkHAxO5qvJOAlIZ3E1Cbk5aWhoMHD0IsFmPkyJFyz2wnas/O3SxGxMlMHE7Pk81AGOpqCT+TCtw8exTjx4+Hq6urssskFcSeAWozHjx4gIMHDyI9PR29evXCiBEjoKurq+yyiFqMl70JvOxNUFkjQVllLQy01aGtoQZBEPDzwzxERUXBwsICpqamyi6VVAx7BqhNuHz5Mg4cOACpVIqXX34ZvXr1UnZJRApVVVWFTZs2QV1dHTNnzuQEWqRQDAOkVBUVFTh06BAuXrwIZ2dnjBw5Evr6+soui0gpCgoKsGnTJri5uWH06NHKLodUCMMAKc3169cRHR2NmpoaDB8+HL1794ZI9PRZ2og6stTUVERGRmLUqFHo06ePssshFcExA6RwlZWV+P3335GSkgInJyeEhYXB0NBQ2WURtQkeHh64desWDh48CCsrK1haWiq7JFIB7Bkghbpx4waioqJQWVmJoUOHok+fPuwNIHpCbW0tNm/ejKqqKsyePRva2trKLok6OIYBUojq6mocOXIE586dg4ODA0aNGgVjY2Nll0XUZt27dw8bN26Eg4MDJkyYwNBMrYphgFpdVlYWoqKiUF5ejiFDhsDb25sfbETNcOXKFezZswehoaHw8/NTdjnUgXHMALWampoaHD16FGfOnIGtrS2mTJnS5LPkiUiei4sLBgwYgCNHjqBLly6wtbVVdknUQbFngFpFdnY2oqKiUFJSgsGDB8PX1xdisVjZZRG1OxKJBNu3b8e9e/cwZ84c6OnpKbsk6oAYBqhF1dbW4vjx40hMTIS1tTXCw8NhZmam7LKI2rWysjJs3LgR5ubmmDJlCoM1tTiGAWoxubm5iIyMRHFxMYKCgjBgwAB+aBG1kMzMTPz4448ICAhAcHCwssuhDoZjBuiFSSQSJCQk4MSJE7CwsMDs2bNhbm6u7LKIOhQHBwcEBwfj2LFj6Nq1Kx/nTS2KPQP0QvLz8xEZGYmCggIEBAQgICAAampqyi6LqEMSBAE//fQTcnJyMGfOHBgZGSm7JOogGAbouUilUpw8eRLx8fEwMzNDeHg4rKyslF0WUYdXUVGBjRs3Ql9fHzNmzGD4phbBMEDPrLCwEJGRkbhz5w4GDhyIQYMGQV2dV5yIFOX27dv44Ycf4OXlheHDhyu7HOoAGAao2aRSKZKSknDs2DEYGxsjPDwcXbt2VXZZRCrp7NmzOHjwIF555RW4ubkpuxxq53g6R81y9+5dREVFITs7G/3798fgwYP5vHUiJfLy8sKtW7ewf/9+WFpa8hZeeiHsGaAmCYKA5ORkxMbGwsDAAKNHj4adnZ2yyyIiPHrmx6ZNmyASiTBr1ixoamoquyRqpxgGqFH3799HVFQUbt68CW9vbwwZMoQfNkRtTGFhITZt2oSePXsiPDycz/2g58IwQPUIgoDz58/j8OHD0NHRwahRo+Do6KjssoioERcvXsQvv/yCkSNHol+/fsouh9ohjhkgOaWlpYiOjkZGRgb69OmDoUOHQktLS9llEVET3N3dcevWLRw6dAhWVlawtrZWdknUzrBngAA86g1ITU3Fb7/9Bk1NTYSFhXGGM6J2pLa2Flu2bMHDhw8xe/Zs6OjoKLskakcYBghlZWWIiYnBtWvX4OHhgaFDh/KDhKgdun//PjZu3AhbW1u89tprHD9AzcYwoMIEQUBaWhoOHToEsViMkSNHwsXFRdllEdELuHbtGn766ScMGTIEAwcOVHY51E5wzICKevDgAQ4cOIDLly+jV69eGDFiBHR1dZVdFhG9oB49esDf3x9Hjx5Fly5dYG9vr+ySqB1gz4AKunz5MmJiYiAIAl5++WX06tVL2SURUQuSSqX48ccfUVRUhDlz5kBfX1/ZJVEbxzCgQioqKnDo0CFcvHgRzs7OGDlyJD8kiDqo8vJybNy4EWZmZpg6dSrEYrGyS6I2jGFARVy7dg379+9HbW0thg8fDnd3dw4uIurgsrKysG3bNgwcOBAvvfSSssuhNoxjBjq4yspK/P7770hJSYGTkxPCwsJgaGio7LKISAHs7Ozw0ksvITY2FjY2NujRo4eyS6I2ij0DHVhGRgaio6NRWVmJoUOHok+fPuwNIFIxgiBgz549yMrKwuzZs9GpUydll0RtEMNAB1RdXY3Dhw/jjz/+gIODA0aNGgVjY2Nll0VESlJRUYHvv/8eOjo6eOONN6Cuzk5hkscw0MHcvHkTUVFRePDgAUJCQuDl5cXeACLCnTt3sHnzZvTp0wcvv/yyssuhNoZhoIOoqanB0aNHcebMGdja2mL06NEwMTFRdllE1Ib88ccfiImJwZgxY9C7d29ll0NtCPuKOoDs7GxERkaitLQUoaGh6N+/P3sDiKievn374tatW4iJiYGVlRU6d+6s7JKojWDPQDtWW1uL48ePIzExEdbW1ggPD4eZmZmyyyKiNqy6uhoREREQBAFvvvkmNDU1lV0StQGchaKFrF69Gq6urhCJRNi6dWuTbQMCAmBpaflCZ++5ubn4/vvvcebMGQwePBhvvPEGgwARPZWmpiYmTJiA0tJS7N+/HzwfJEDFwkBFRQU8PT1lX8Surq7w9PREr1694ObmhrfeegtpaWnPte2PPvoIBw8ebFbbEydOYO7cufWWR0VFoVOnTjh37lyj60okEhw7dgwRERFQV1fH7Nmz4e/vz9nFiKjZzMzMEBYWhrS0tCY/b0h1qNQ3iI6ODlJSUmRfxAcPHkRKSgouXbqEw4cPQ0NDA3369MEXX3yhlPoMDQ1hZ2fX6AOD8vLysGnTJpw6dQqDBg3CzJkzYW5uruAqiagjcHNzg4+PD3777Tfcvn1b2eWQknEA4X9ZW1vjX//6F8zMzPDJJ5/A0tIS06ZNU2gNwcHBSElJqbdcKpXi5MmTiI+Ph5mZGWbNmgUrKyuF1kZEHU9oaChu376NvXv3Yvbs2XxyqQpTqZ6B5vj4449hbm6OBQsWIDU1FZ6entDU1MT06dNlbSZPntzkNf+HDx9i7ty56NevHzp16oRRo0bh1q1bTe7322+/rTfm4MSJE3Bzc4Ompibee+895OXlYceOHfDy8kJYWBjy8vJa6m0TkQpSU1PD+PHjUV1djcjISI4fUGEMA0/Q1NTESy+9hDt37qC6uhopKSmwtraWa7Nz584Gr/nXWb16NaZPn44//vgDN27cQE5ODkJDQ1FbW9voOm+//bbcmAOpVAqxWIzXXnsNRkZGyM3NRWBgIE6dOoW0tDSkp6dj/vz5L/6GiUilGRkZYezYsbh+/TpOnjyp7HJISRgGGmBrawvg0Wx+z+Oll15C//79AQCdOnXC0qVLcfXqVWzfvr1Z65eXl2Pr1q2IjY2Fj48PDAwMYG5ujldffVW2zaFDh+Lo0aPPVR8R0eOcnJwQGBiI48ePIzMzU9nlkBIwDDSgrqvseW/9e3JmLx8fHwDA6dOnm7Xf48ePo7y8HDNmzEBoaCgAwMXFRa6tmZkZLxMQUYsZNGgQ7O3t8fPPP6OsrEzZ5ZCCMQw0ICsrCwBgb2//XOs/+YjgummBmxqxe+/ePfz8888AHvVMzJ07V9ZDAQB6enpy7cViMaRS6XPVR0T0JLFYjFdeeQVisRj79u2DRCJRdkmkQAwDT6isrMTRo0dhbW2Nvn37Ang0yObJgTVNJeeSkhK5P9+9excA0KVLl3ptBUHAuXPnsGHDBpSWlgIAPDw8OCsYESmcnp4exo0bh+zsbBw7dkzZ5ZACMQw84dNPP0VRURE+++wz2UQ+FhYWKC4ulmt35cqVRrdx8eJFuT8nJycDAAYMGFCv7c6dO3HgwAG4ublh8uTJL1o+EdELsbW1RUhICE6fPt3k5xx1LAwD/3X79m28/fbbWLVqFT7//HO5OQYGDx6MU6dOITc3FwCQkJBQ7wv/cdHR0UhKSgLwqPt/2bJlcHZ2xuuvvw7gUW9A3fX+goICTJ48GWFhYdDS0mqtt0dE1Gz9+/eHi4sLIiMj650IUcekUg8qqqiogJ+fH/Ly8pCfn4+ePXtCU1MT1dXVEIlEGDRoEN566y24ubnJrVdaWoq//e1viIuLQ9euXRESEgKxWIwVK1bAw8MD//jHP5CZmYktW7bg8uXLWPXlaiSfPYeMa1dx61YW/P39sX79etja2qKsrAze3t7IycnBgwcP0Lt3byxatAj5+fn49ttvcfnyZdjY2CAoKAgfffQRpk6divT0dOjr68PDwwPHjx/H66+/jsOHDyM/Px8eHh746quvMGTIECUdVSLqiCorK/H9999DS0sLb7zxBjQ0NJRdErUilQoDre3szWJEnLyBI+n5kAqAWASEuFrgTX9H9LPrhLS0NBw8eBBqamoICwuDs7OzsksmImpUXl4eNm/ejN69eyMsLEzZ5VArYhhoIT8mZWFxVBrEYhEk0v8dUjWxCFKpgHCbKhgXXoSbmxuGDx/OaT+JqF24cOECoqOjMXr0aHh6eiq7HGolDAMt4OzNYkzYmIimD6SA1aFWGB/cT0FVERG1jKioKKSlpWHWrFmwsLBQdjnUCjiAsAVEnLwBsbjpCYrUxGIc5YPBiKgdGjFiBExNTfGf//wHVVVVyi6HWgHDwAuqrJHgSHq+3KWBhkikAg6n56GyhhN5EFH7oqGhgfHjx6O8vBzR0dF8oFEHxDDwgsoqa/GUHCAjFR61JyJqb0xNTTF69Gikp6fL5k6hjoNh4AUZaKvjKVcIZMSiR+2JiNojV1dX9O/fH4cPH0Z2drayy6EWxDDwgrQ11BDiagG1p44ZECHU1RLaGmoKqoyIqOUNGTIEXbp0wb59+/Dw4UNll0MthGGgBczyd4T0KdcKpFIBs/wdFFQREVHrUFNTw7hx41BbW4tffvmFD0zrIBgGWoC3vQlWhLtBBNTrIVATiyACsCLcDV72Jkqpj4ioJRkaGmLs2LHIyMjAiRMnlF0OtQDOM9CCzt0sRsTJTPyengfhvzMQhrpaYpa/A4MAEXU48fHxiIuLw5QpU9CtWzdll0MvgGGgFVzLyMQPP+7CO3PeRFcrc2WXQ0TUKgRBwM6dO3Hnzh3MmTMHhoaGyi6JnhMvE7QCU2ND6IhqUVvFwTVE1HGJRCKMHTsW6urq2Lt3LyQSzqPSXjEMtAI9PT0AwIMHD5RcCRFR69LV1cX48eORm5uL2NhYZZdDz4lhoBVoaWlBLBYzDBCRSujatStCQ0ORlJSE9PR0ZZdDz4FhoBWIRCLo6ekxDBCRyvDx8YGrqyuioqJw9+5dZZdDz4hhoJUwDBCRKhGJRBg1ahQMDAywd+9e1NTUKLskegYMA61EX1+fYYCIVIqWlhbGjx+Pu3fv4uDBg8ouh54Bw0ArYc8AEakiCwsLjBw5EikpKbhw4YKyy6FmYhhoJbq6ugwDRKSSPDw80LdvXxw8eBB5eXnKLoeagWGglbBngIhU2fDhw2FmZob//Oc/qKysVHY59BQMA61ET08PVVVVqK2tVXYpREQKp66ujvHjx+Phw4eIiooCJ7tt2xgGWom+vj4ATjxERKrLxMQE4eHhuHLlCpKSkpRdDjWBYaCVcBZCIiLAxcUFAwYMwJEjR3Dr1i1ll0ONYBhoJQwDRESPDB48GDY2Nti3bx8/E9sohoFWoqurC4BhgIhITU0N48aNg1QqxS+//AKpVKrskugJDAOtRF1dHVpaWgwDREQADAwM8MorryAzMxPx8fHKLoeeoK7sAjoyzkJIRKqkoqICfn5+yMvLQ35+Pnr27AlNTU3U1taipKQEXbt2xahRo5CQkAAbGxs4OTkpu2T6L/YMtCLONUBEqkRHRwcpKSmYO3cuAODgwYNISUlBWloarl+/jm7dumHhwoWorq7GL7/8gpKSEiVXTHUYBloRwwAR0SPa2tr48MMPIQgCbt26BU1NTezduxcSiUTZpREYBloVpyQmIvqfuknYSkpKMH78eNy5cwcHDx7E8uXL0aNHD7i4uMDR0REffvih3Gfn5MmTYWtrC5FIhPj4eIwZMwYuLi5wcXHBgQMHIJFI8Mknn8DLywt2dnZYuXJlvX2XlpbinXfegb29PVxcXNCrVy989913CnvvbZ5ArebYsWPCmjVrlF0GEZFCLVmyRAAgZGZmypbdvXtXCAsLEwAIX3/9tSAIgpCcnCy4uroKFhYWwrVr1wRBEIS8vDyhV69egr+/v1BTUyNbf8uWLQIAYezYsUJ5ebkgCIIwb948QUtLS1i8eLFs/f379wsAhOPHj8vWra6uFnx8fARXV1chPz9fEARBSEpKEnR0dIRVq1a15qFoN9gz0IrqBhAKnIaTiFTQiBEj4Onpia5du8LMzAyJiYmYP38+3nnnHQBAeXk50tPT4eXlhU6dOgF49NTD5cuX4+TJk9i1a1e9bU6ZMkU2j8trr72Gqqoq3L9/H927dwcAjBw5Evr6+oiNjZWts2PHDiQnJ2Pp0qUwNzcHAPj6+mLixIlYuXIlHj582KrHoT1gGGhFenp6kEqlfEgHEamkugGEf/31FyZOnIjQ0FAsWrQIGhoaAIDDhw8DeDRL4X/+8x9UV1cDAPz8/AAAv/32W71t9ujRQ/b/JiYm9ZbVLb9z547sz3X78ff3l2vn7u6OsrIynD179oXeZ0fAWwtb0eOzEOro6Ci5GiIi5dDW1sa6devg4OCADz/8EBs3bgQAFBUVAQDGjRuHY8eO4cCBAwgPD4epqSkAoLCwsN626j5XAUAkEtVbVrf88YGJdfsZPny4XLuKigpYWFjg3r17L/oW2z2GgVb0eBgwMzNTcjVERMpjYmKC2bNn45///CcWLFgAe3t7uc/FsLAw/PLLL7C1tYW1tTUAoHPnzi2y77r9xMfHw8jIqEW22dHwMkEr4vMJiIj+57333oNIJMJnn30GABg6dCgA4MyZM3B3d4eXlxcOHTqEQ4cOAQCGDRvWIvut28+FCxfklpeUlGDs2LEoLi5ukf20ZwwDrUhbWxtisZhhgIgIQNeuXfHqq69i27ZtuHXrFoKCgjBu3DisWbMGGRkZGDp0KHR0dPCPf/wDAwYMwKRJk1pkv5MnT4afnx/mz5+PgoICAI8uEbz33nsQi8WysQeqjJcJWpFIJOLEQ0SkMh6fjhh4dDeBq6sr9u3bJ2szb9487NixA/7+/ujRowcOHTqEzz77DMOGDYOamhoqKirQrVs3zJw5E2pqagCAt99+G/v375dtc+HChQAgm09g8eLFSE1Nxdy5c/Hqq68iNzcX0dHR8PX1xZkzZ6ChoYHff/8dixYtgo+PDwwMDKCmpobhw4djyZIlijxEbZZI4H1vrWrjxo3o2rUrXn75ZWWXQkTULly7dg0//fQThgwZgoEDBwIAKmskKKushYG2OrQ11JRcYcfDnoFWxp4BIqJn06NHD/j7++Po0aMoVuuEmL8e4kh6PqQCIBYBIa4WeNPfEV727N5vKRwz0MoYBoiInl1wcDDyDZ3xbtQNxF4ugPS/fdhSAYi9XIDxGxOx40yWcovsQBgGWhnDABHRs/vj1n0czNcHIIJEKn81WyIVIABYFJmGczd5J0BLYBhoZQwDRETPLuLkDYjFoibbiMUiRJzMVFBFHRvDQCvT09NDZWUlH9NJRNRMlTUSHEnPr9cj8CSJVMDh9DxU1vDz9UUxDLQyTjxERPRsyipr8ZQcICMVHrWnF8Mw0MoYBoiIno2BtjqecoVARix61J5eDMNAK2MYICJ6NtoaaghxtYDaUxKBmliEUFdLzjvQAhgGWhnDABHRs5vl7/jUMQNSqYBZ/g4KqqhjYxhoZerq6tDS0mIYICJ6Bp5dDBCsnwdAqNdDoCYWQQRgRbgbJx5qIQwDCsDbC4mInk1SUhIcpbnYMskdIT0tZGMIxCIgpKcF9s7xwxRfO+UW2YFw1IUCMAwQETXfgwcPcPLkSXh7eyPY3Q7B7nZ8NkErYxhQAIYBIqLmS0hIgEgkQmBgoGyZtoYaQ0Ar4mUCBWAYICJqnuLiYpw7dw7+/v7Q1dVVdjkqg2FAARgGiIia59ixY9DX14evr6+yS1EpDAMKUBcGBKGZU2oREamg27dv49KlSwgKCoKGhoayy1EpDAMKoKenB4lEgqqqKmWXQkTUJgmCgCNHjsDc3BweHh7KLkflMAwoACceIiJq2vXr15GVlYUhQ4ZALOZXk6LxiCsAwwARUeOkUiliY2Ph4OAAJycnZZejkhgGFIBhgIiocSkpKSgsLMSQIUMgEjXzCUXUohgGFEBHRwcikYhhgIjoCdXV1YiLi4Obmxusra2VXY7KYhhQAJFIBD09PZSXlyu7FCKiNiUpKQkPHjzA4MGDlV2KSmMYUBDONUBEJO/Bgwc4deoUfHx80KlTJ2WXo9IYBhRET08PDx8+VHYZRERtRnx8PEQiEQICApRdispjGFAQ9gwQEf3P3bt38ccff3Da4TaCYUBBGAaIiP6H0w63LQwDCsIBhEREj+Tk5CA9PR3BwcGcdriNYBhQED09PVRWVkIikSi7FCIipambdtjCwgK9e/dWdjn0XwwDClI38RAHERKRKrt27Rpu3brFaYfbGP5NKAhnISQiVff4tMPdunVTdjn0GIYBBWEYICJVd+HCBRQVFSEkJITTDrcxDAMKUhcGOIiQiFRR3bTD7u7usLKyUnY59ASGAQXR0NCApqYmewaISCUlJiaioqKC0w63UQwDCsS5BohIFT148ACnT5+Gt7c3jI2NlV0ONYBhQIE4JTERqaL4+HiIxWIEBgYquxRqBMOAArFngIhUzePTDuvo6Ci7HGoEw4ACcRZCIlI1R48ehYGBAacdbuMYBhSIPQNEpEqys7Nx+fJlBAcHQ11dXdnlUBMYBhSoLgwIgqDsUoiIWpUgCIiNjeW0w+0Ew4AC6enpQSKRoLq6WtmlEBG1qqtXr+LWrVucYKidYBhQIM5CSESqoG7aYUdHR0473E4wDCgQZyEkIlVw/vx53L17F0OGDFF2KdRMDAMKxJ4BIuro6qYd7t27N6cdbkcYBhRIR0cHIpGIYYCIOqzExERUVlYiODhY2aXQM2AYUCCxWAxdXV2GASLqkMrLy3Hq1Cn4+Phw2uF2hmFAwTjXABF1VPHx8VBTU0NAQICyS6FnxDCgYAwDRNQRFRUV4Y8//kBAQACnHW6HGAYUjGGAiDqiY8eOwdDQED4+PsouhZ4Dw4CCMQwQUUdTN+3w4MGDOe1wO8UwoGAMA0TUkQiCgCNHjsDS0hLu7u7KLoeeE8OAgunp6aGiogJSqVTZpRARvbArV64gOzub0w63cwwDCsaJh4ioo5BIJDh69Ci6desGR0dHZZdDL4BhQMEYBoioo7hw4QKnHe4gGAYUjGGAiDqCqqoqxMXFwcPDA5aWlsouh14Qw4CCMQwQUUfAaYc7FoYBBdPU1ISGhgbDABG1W+Xl5Th9+jR8fX1hZGSk7HKoBTAMKAFvLySi9iwuLg5qamrw9/dXdinUQhgGlIBhgIjaq6KiIpw/fx6BgYGcdrgDYRhQAoYBImqvjh49CiMjI3h7eyu7FGpBDANKwDBARO3RrVu3cOXKFU473AExDCjIBx98ACcnJ4hEIly/fp1hgIjalbpph62srODm5qbscqiFMdo1wd7eHrq6utDU1ATwaARtRkYGbGxsYGJiAgCorq7Gw4cPcfPmzSa3tXbtWowePRrBwcHQ0dHBvXv3IAgCp+8konbhypUryMnJwdSpU/m51QExDDzFwYMHYW9vD+DRCNrg4GAsX74c06dPBwDcvHkTQUFBz7RNbW1t1NbWorq6GlpaWi1bMBFRC5NIJIiNjYWTkxOnHe6geJmgCYMGDXrqaFkdHR0MGjTombarra0NgBMPEVH7cP78eRQXF3Pa4Q6MYaAJ27Ztg4WFRZNtLCwssG3bNuzZswf9+vVD9+7dYWtriwkTJuDGjRsNrlMXMPbv3w9nZ2eIxWJ4enpi5cqVcHFxgUgkgo2NDWbMmAEAqKiogKenJ3R1deHi4oKrV68CAPLz8zFz5kzY2dnB2dkZbm5u+O6771rwCBCRqqubdtjT0/Opn4fUfjEMtID169djypQpWLp0Ka5fv44bN25AXV0d/fv3R3Z2dr32dT0Dbm5usLKyQkREBFJSUrBw4UKkpqaiU6dOCAoKwpYtWwA8Cg9xcXEwMTFBamoqnJ2dcf/+ffj7+yMrKwvp6em4evUqIiIi8Mknn+CTTz5R6Psnoo7r9OnTqK6ufubLodS+MAy8oLKyMixYsAAjR45EWFgYAEBdXR1r167F/fv3sWTJknrraGlpobKyEm+++SbeeOMNvPHGG3KvTZo0CT///DNKS0tly3fv3o2xY8fKxhj885//xF9//YU1a9bInnfQv39/TJ8+HV999RUyMzNb820TkQooKytDYmIipx1WAQwDL+j06dMoLy+Hr6+v3HILCws4ODjgt99+q7dOWVkZdu3aBW1tbbz++uv1Xp8xYwYqKirw008/yZZt2bJFLjT8/vvv0NbWhoeHh9y6fn5+kEgkOHLkyIu+NSJScXFxcVBXV+e0wyqAYeAFFRUVAYDsVsPHmZqaorCwsN7yuXPnwtDQEImJiQ2GhX79+sHd3V12meDSpUuoqamBp6en3H47derU4D4BNLhfIqLmKiwsxIULFxAYGCi7tEkdF8PACzIzMwMAFBcX13vt7t276Ny5c73lS5YswQcffAAHBwfMmjUL9+/fr9dmxowZOHPmDNLT07FlyxbZYMLH93vv3r0G9wmgwf0SETVX3bTDXl5eyi6FFIBh4AUNGDAA+vr6OHPmjNzygoICZGZmYtiwYfXWcXFxgZGREWbNmoWioiK8++679dpMmTIFGhoa+P7777F3715MnjxZ7vWhQ4eisrISqampcsuTkpKgpqaGkJCQFnh3RKSKsrKycPXqVU47rEIYBl6QgYEBPv/8c8TExODgwYMAgNraWvzf//0fjI2NsXTp0gbX09XVhbGxMT799FPs2LEDkZGRcq937twZL7/8MtavX4/+/fvXuwzx/vvvo1u3bvjoo49k8xUkJydjy5YtmDdvHhwcHFr8vRJRx8dph1WTSBAEQdlFtAfjxo1DSkqKbDriHj16IDY2Vvb67t27sXr1apSUlKC6uhq+vr5YtWoVunXrBgBYuXIltmzZgoyMDHTr1g3BwcEwMDBAbGwsLl68CAMDAzg6OiI5OVk2/fH+/fsxatQo/Pbbbxg6dGi9mvLz87FgwQLExsZCR0cH6urqePvtt/HWW28p5qAQUYeTnp6OvXv34vXXX+dJhQphGFCSP/74A5H7D+Cd//sIRjqa0NZQq9cmJycHfn5+yMrKgljMThwial0SiQTfffcdTE1NMWnSJGWXQwrEi0FKcPZmMf6ZXIbTVX3x4+fHIBYBIa4WeNPfEV72/7scsGfPHkybNo1BgIgU4o8//kBxcTEmTJig7FJIwdgzoGA/JmVhcVQaxCJA8tiRVxOLIJUK6P7XXvzj3Tfg4+MDT09PHD58GLa2tsormIhUQlVVFb755hv06NEDo0ePVnY5pGDsGVCgszeLsTgqDQLkgwAASKSPFiTfrsCYV8bDyqIz3n//fQYBIlKIU6dOobq6GsHBwcouhZSAYUCBIk7egFgskn3xN8Q0eBpC3pqPDVP6KbAyIlJlddMO9+/fH4aGhsouh5SAF6MVpLJGgiPp+U0GAeBRD8Hh9DxU1kgUVBkRqbrjx49DQ0MDAwcOVHYppCQMAwpSVlmLp+QAGanwqD0RUWsrLCxESkoKpx1WcQwDCmKgrQ6xqHltxaJH7YmIWltsbCyMjY3h7e2t7FJIiRgGFERbQw0hrhZQe0oiEEGAndp9JJ5MQGVlpYKqIyJVdPPmTVy7dg2DBw+Gmlr9uU5IdTAMKNAsf0dIn3qtQITx7qY4ffo0/vWvfyEhIQFVVVUKqY+IVEfdtMPW1tbo1auXssshJeM8Awq240wWFkWm1buroG6egRXhbpjia4fy8nKcPHkS586dg6amJgYMGAAfHx/ZVMVERC/i0qVL2LdvH6ZNmwZ7e3tll0NKxjCgBOduFiPiZCYOp+dBKjwaIxDqaolZ/g5yMxACQGlpKU6ePIk//vgD2traGDhwILy9vaGhoaGk6omovZNIJPj2229hZmbGaYcJAMOAUlXWSFBWWQsDbfUGn03wuJKSEpw4cQIXLlyAjo4O/P394eXlxceLEtEzO3PmDH7//XfMnTsX5ubmyi6H2gCGgXbm3r17SEhIQGpqKvT19eHv74++ffsyFBBRs1RWVmLdunVwdnbGqFGjlF0OtREMA+1UcXExEhIS8Oeff8LAwACBgYHw9PTkiGAiatLRo0eRlJSEd999l7MNkgzDQDtXVFSE+Ph4pKWlwdjYGIGBgfDw8OCTDomontLSUqxbtw79+/fHSy+9pOxyqA1hGOggCgoKEB8fj/T0dJiYmCAwMBDu7u4MBUQkEx0djatXr+Ldd9/lbIMkh2Ggg8nLy0N8fDyuXLkCU1NTDBo0CL169WIoIFJxBQUF2LBhA4YOHQpfX19ll0NtDMNAB5Wbm4u4uDhcv34dnTt3RlBQEHr27AmRqJlzIhNRu7dz506sXr0aqampGDt2LAYNGoS3336bY4uoHp4udlDW1taYNGkSZs6cCUNDQ+zduxcbN27ElStXwPxH1Lpyc3Ph6ekJS0tLiEQi/Pjjj/XaREdHw9PTE/r6+nBycsKIESNavI7JkycjJSUFAHD37l289NJLDALUIPYMqIhbt24hLi4OmZmZsLKyQlBQELp3786eAqJWtHTpUixbtgy6urpITk5ucNrfoKAgLF26FEFBQa1SgyAIEIvFGDlyJKKjo/lvnhrEngEVYWtri9dffx3Tpk2DhoYGfvrpJ2zevBkZGRnsKSBqRSNHjoREIsG4ceNQXl6u8P1funQJANCtWzcGAWoUw4CKsbe3x/Tp0zF16lSIRCLs2LEDW7ZsQWZmJkMBUSvo168fvv32W1y5cgWzZs16avtNmzYhICAAXl5e8PDwgL+/Pw4fPix7vaysDJ6enjAxMYG9vT327dsHPz8/dOvWDY6Ojvjuu+9kbWtra3H06FEAgLGxsdx+SktL8c4778De3h4uLi7o1auX3LoAUF5ejnfffRfu7u7o06cPPDw88Pbbb+PGjRsvcESoLeK0dSpIJBLB0dERDg4OyMjIwPHjx7F9+3bY2dkhODgYdnZ2yi6RqEOZOXMmkpKSEBERAX9/f7zzzjuNtv3666/x5ZdfIiwsDAAQFxeHl19+GSdOnEDfvn1hYGCAlJQUTJ8+Hbt378avv/6KhIQEaGhoYNu2bZg+fToMDAwwdepUnDt3DiUlJfX2UVNTg5CQEJSXlyM5ORnm5uY4c+YMgoODUVZWho8//hgA8MEHHyArKwvnz5+HhoYG8vLyEBgYCG9vbzg6OrbOwSKlYM+AChOJRHBycsKsWbMwceJEVFVVYevWrfjxxx+RnZ2t7PKIOpT169fDy8sLH374IZKTkxtt9+uvv8qCAPBoTIG7uzsiIiLqta2qqsIXX3whe3DZtGnT0KdPHyxatAgVFRVISEiAp6dnvfV27NiB5ORkLF26VPZsAl9fX0ycOBErV67Ew4cPAQCJiYmws7OTbd/S0hKrV6+Gq6vrcx8HapsYBggikQg9evTA7NmzMWHCBJSXl+OHH37Azp07cfv2bWWXR9QhaGlp4eeff4ahoSHGjx+P4uLiBtuJxWLMmDFD1i3v6emJtLQ0ZGRk1GvbqVMndO3aVW6Zj48PsrKyEBUVhZqaGgQHB9dbr+6yg7+/v9xyd3d3lJWV4ezZswCAl156CZs3b8aECRMQExODiooKjB49Gj4+Ps91DKjt4mUCkhGJROjZsydcXFyQnp6OuLg4REREoEePHggKCoKVlZWySyRq12xtbbFr1y4MGzYMU6dORUxMjNzrd+7cgb+/PwYOHIj4+HjZswOCgoJQVVVVb3sNPVvAxOTRY9Dj4uIwYcIEGBgY1GtTVFQEABg+fLjc8oqKClhYWODevXsAgLVr16JXr17YuHEjwsLCoK+vj6lTp2LVqlV8rkEHwzBA9YhEIvTq1Qs9e/bEpUuXEB8fj++//x4uLi4ICgqChYWFskskardCQkKwYsUKLFy4ECtXrpR7LSYmBoWFhVi4cGGzvmwbGg9w9+5dAICpqSkGDhzY4HpmZmYAgPj4eBgZGTW6fbFYjNmzZ2P27Nm4evUqNmzYgG+++QZlZWUNzp1A7RcvE1CjxGIx3N3d8dZbbyE8PBz5+fnYsGED9u3bh8LCQmWXR9RuLViwAKNHj8aSJUuQnp4uW1539v/k9OF37txpcDv3799HTk6O3LLTp0/DyMgIo0aNgpaWVoPrDR06FABw4cIFueUlJSUYO3as7BLGzJkzZeMHnJ2dsXbtWrz88stITU1t7luldoJhgJ5KLBbLbikKCwtDTk4OvvvuO/zyyy+y7kYiaj6RSITt27ejW7ducsE6NDQUWlpa+Oqrr1BTUwMA2L59O65du9bgdvT19bFo0SJZ223btiEtLQ1hYWHw8vJqdP+TJ0+Gn58f5s+fj4KCAgCPLhG89957EIvFsksNR48exbp162S3HRcWFuLSpUsYMmTIix8EalM4AyE9M4lEggsXLuDEiRMoKytD7969ERgYKPsAIVJ1ubm5GDFiBPLy8gA8GoW/f/9+2NjYyLVLS0tD//79ERMTI5uB8NChQ1i4cCEKCgrg5OQELy8vxMfH4/Lly3ByckJcXByMjY0xffp0xMXF4fvvv8eKFSuQm5uL6upq9O7dWzbi//FnE1hYWMDNzQ2xsbEAHs1XsGjRIkRGRsLAwABqamoYPnw4lixZInui4datW7F9+3YUFhZCXV0dNTU1GDNmDBYtWgRNTU3FHVBqdQwD9Nxqa2tx/vx5nDhxAg8ePICnpycCAwPrTW5CRC2vLgxcuZ6Bsspa6Gup4cetP0AsFmPmzJmcbZCeCQcQ0nNTV1eHj48P+vTpg3PnzuHUqVNITU1Fnz59EBAQ0OTAJCJ6MUXlVbj7oBquS36DVABEAGzFuvgorC+DAD0z9gxQi6mursbZs2dx6tQpVFdXo2/fvggICGjw1iYien4/JmXhb2/ORFX2RXT52w+y5WIIECDCinA3TPHlTKLUfAwD1OKqqqqQnJyM06dPo7a2Fl5eXhg4cCD09fWVXRpRuxeXloXQl4IhKS2EtLoSGmY2MAl9C9pde8raiADsneMHL3uO46HmYRigVlNZWYkzZ84gMTEREokEPj4+GDBgAPT09JRdGlG7NWfHOcReLoBE2vhHt5pYhJCeFtgwpZ8CK6P2jGGAWl1FRQWSkpKQlJQEQRDg6+uLAQMGQEdHR9mlEbUrlTUS2RiBpxGLgPRlw6Ctodb6hVG7xzBACvPw4UOcPn0aycnJEIlE6N+/P/z8/GS3MRFRfYIgoKioCDk5ObiUkY1//NH8L/ezfx+CzgYNTzxE9DiGAVK4Bw8e4NSpUzh79izU1dXh5+cHX1/fRmdLI1IlVVVVuH37NrKzs5GTk4OcnBxUVlYCADqZWWBtTlcIePrdAuwZoGfBMEBKU1ZWhlOnTuHcuXPQ1NTEgAED4OPjw8lMSGUIgoDi4mLk5OTIvvwLCgogCAK0tbXRtWtXdO3aFTY2NujSpQu0tLQ4ZoBaBcMAKV1paSlOnDiB8+fPQ1tbGwMHDoS3t7fsGepEHUVNTU29s/66uf/NzMxkX/w2NjYwMzNrcL6AszeLMWFjIpr64ObdBPSsGAaozSgpKUFCQgJSUlKgo6MDf39/eHl5QV2dc2NR+yMIAkpKSpCdnS378s/Ly4MgCNDU1JSd9df9PMuA2h1nsrAoMg1isUiuh0BNLIJUKnCeAXpmDAPU5ty7dw8JCQlITU2Fvr4+/P390bdvX4YCatNqa2uRm5sr1+VfXl4OADAxMYGNjY3szL9z5871nkz4rM7dLEbEyUwcTs+DVHg0RiDU1RKz/B3YI0DPjGGA2qy7d+8iISEBFy9ehIGBAQIDA+Hp6Qk1NQ6IIuUrLS2VO+u/c+cOpFIpNDQ00KVLF7mz/tacW6OyRoKyyloYaKtzsCA9N4YBavOKiooQHx+PtLQ0GBsbIzAwEB4eHi98ZkXUXBKJBHfu3JE76y8tLQUAGBsby531W1hY8HeT2h2GAWo3CgoKEB8fj/T0dJiYmCAwMBDu7u784KUWV15eLnfWn5ubC4lEAjU1NVhbW8t9+XOabeoIGAao3cnLy0NcXByuXr0KU1NTBAUFwdXVlaGAnotEIkF+fr5sdH92djbu378PADA0NJT74re0tORlKuqQGAao3crNzUVcXByuX7+Ozp07IygoCD179uTjW6lJDx48kOvuz83NRU1NDcRiMaysrOS+/A0NDZVdLpFCMAxQu5eTk4O4uDhkZGTAwsICQUFBcHZ2ZiggSKVSFBQUyJ31FxcXAwD09fXlvvitrKx4xwqpLIYB6jBu3bqFuLg4ZGZmwsrKCkFBQejevTtDgQqpqKiQO+u/ffs2qqurIRKJYGlpKTepj5GREX83iP6LYYA6nJs3b+L48eO4desWunTpguDgYDg6OvKDv4Ope4DP4wP9ioqKAAC6urqys/6uXbvC2tqa01wTNYFhgDokQRCQmZmJ48ePIycnBzY2NggODoaDg4OyS6PnVFVVJdfdf/v2bVRWVkIkEsHc3FzurL9Tp04Mf0TPgGGAOjRBEJCRkYHjx48jNzcX9vb2CAoKgp0dp2pty+oe4PP4WX9BQQEAQFtbW+6sv+4BPkT0/BgGSCUIgoBr164hMjISa9euRWVlJUpKSvDaa6/hp59+anS9mJgYhIWFoVOnTrC1tcXWrVvh6empuMJVRHV1NW7fvi13vb+iogIA0LlzZ7mzflNTU571E7UwhgFSKYIg4MqVK5g3bx4OHjwIkUiEY8eOISgoqMH2vr6+SE5OxrRp07B161aF1tpRCYKA+/fvy5315+fnQxAEaGlpoUuXLnJn/tra2soumajD4300pFJEIhF69uwJLy8vVFdX4+jRo3j33Xfx97//HUFBQbCyspK1jYmJgZ2dHZKTk5VYcftXU1Mje4BP3Zn/gwcPAACmpqawsbGBl5eX7LG9nDyKSPEYBkgliUQiDBw4EAYGBoiKisKlS5dw7do1uLi4ICgoCBYWFli+fDk2b96MvXv31lv/r7/+wt///nckJSVBS0sLRkZG+PjjjzF+/HhZm/LycixYsABxcXFQV1eHVCqFv78/PvzwQzg6Osra7dmzB19++SVKS0uhra0NU1NTTJgwAXPmzJHNdve0/UVERGDRokXIy8uDu7s7Fi5ciFdffRVVVVUwNzfHmjVrMGvWLADAqFGjcPLkSZiYmGDnzp3w9fVtseMqCEK9B/jk5eXJPcCnb9++srN+XV3dFts3ET0/hgFSaUuWLEFkZCRu3LiB+fPnIyEhARs2bEBlZSXMzc3h7u5eb52srCz0798fw4YNw40bN6Curo7o6GiMHTsWd+/exdy5cwEAH3zwAbKysnD+/HloaGggLy8PgYGB8Pb2loWB9evX44MPPkBUVBRGjBgBQRDw+eef4+2338akSZNgbGzcrP3NmjULFhYWGDVqFNavX4/AwEAAQGxsLEpLSxEZGSkLA9HR0fDw8MCRI0dgbm7+QsevtrZW9gCfurP+srIyAECnTp1gY2MDT09P2NjYwNzcnGf9RG0UxwyQSlq6dKnsv2PGjEF0dDTS09Ph5OSE1NRUjBkzBiNGjEBISAheeeUVuTED06dPx65du3D79m107txZts1Ro0YhPj4et2/fhr6+Ptzc3ODn54dNmzbJ2kRFRcHKygo+Pj4oKyuDtbU1QkJC8Msvv8jaSKVS2NnZIS0tDUZGRs3eX2VlJczMzDBnzhysWbMGADBz5kz8+eefuHjxIoqKiqCvr4+//voLM2bMwIkTJ575uJWVldV7bK9EIoG6urrcA3y6du3KB/gQtSPsGSCVt3jxYkRGRmLFihXYsWMHcnNz4enpiZkzZyIhIQHAo9kNi4uLYWJigt9//x2Ojo5yX8wA4Ofnh/379+P06dMIDQ3FSy+9hHXr1qGkpASvv/46XnrpJYwePVrW/vTp0ygvL4ePj4/cdsRiMbKzs2V/bu7+tLW1MXToUERFRWHNmjWQSCRISEjADz/8gMDAQBw6dAjjx4/Hr7/+KldHY+oe4FP3xZ+dnY2SkhIAgJGREWxsbODm5iZ7bC8f4EPUfjEMkMrr06cPwsLCsHv3bixatAjLly/Hhg0b0LdvX3h6euLDDz9EWVkZ1q9fD09PTxQVFTU4eZGpqSkAoLCwEACwdu1a9OrVCxs3bkRYWBj09fUxdepUrFq1CoaGhrLZ8kxMTJqsr7n7A4Dw8HD88ssvSEtLQ1FREXx8fODv7w8rKyv8+uuvsjCwffv2ett78OCB3Bd/bm4uamtroaamBisrK/Ts2VN2e5+BgUEzjy4RtQcMA0R41Duwf/9+hIeHw8nJCX379gUA2YNrevbsiZCQEJw6dQra2tq4desWSkpKYGRkJNvG3bt3AUB2Bi8WizF79mzMnj0bV69exYYNG/DNN9+grKwMP/74I8zMzABA9uCcxpiZmTXY5sn9AcDIkSOhrq6OyMhIFBQUIDw8HCKRCKNGjcLu3buRlZWF8vJyODo6Ii8vT+7L/969ewAAAwMD2NjYYPDgwejatSsf4EOkAvgvnAiAl5cXRowYgYMHDzZ41iwWi+Hn54d+/frh2LFjOHz4MFatWoWAgAAEBATAwMAASUlJMDQ0xIABAwA8ul6/bt066OrqwtnZGWvXrkVGRgZSU1MBAAMGDIC+vn69Wxerq6sxePBg/PDDD+jRoweGDh2KXbt2oaioSBYgANTbH/Bo0F5gYCAiIyNRWlqKzz77DAAwbNgwbNy4EZMnT4a9vT1WrVole2yvpaUlunfvLjvrNzQ05KQ+RCqGYYDovzZt2oQbN27A29u70Taampr47rvv4OXlhQsXLsDAwAAXLlyARCLBgQMHsH79etnAuaNHj2LdunWYP38+RCIRCgsLcenSJdn1egMDA3z++ef44IMPcOjQIQwfPhxSqRTLli2DmpoaevToAeDRIMeYmBh8+OGH2Lx5M9TV1RETE1Nvf3VGjx6N9957D/7+/jh69Ciys7ORn58PLS0tnDp1Cp9++ikGDRoke4CPhoZGKx1RImoveDcBqZSKigr4+fkhLy8PAGBpaYnExETo6OjUa7t27Vps27YNqampsumIf/75Z3Tr1g1//fUXFixYgKSkJEilUgBAQEAAZs6ciQEDBkBPTw9bt27F9u3bUVhYCHV1ddTU1GDMmDH46JO/o0oqhoG2OrQ11LB79258+eWXKCsrg46ODnx9ffHFF1/IjSWo29+ZM2egqakpm2dgwoQJqKyslN3al5OTg7S0NHzxxRcYNWoURowYIZvKd+nSpTh79qzc4EQiIoBhgKhFVFRUIDExEWfOnIEgCPD19cWAAQPkQsbZm8WIOHkDR9LzIRUAsQgIcbXAm/6O8LJvehBhHUEQcPfuXbnb++oGEOro6Mi++Ose4MPH9hJRczAMELWghw8f4vTp00hOToZIJEL//v3h5+eHvSn5WByVBrFYBIn0f//k1MQiSKUCVoS7YYpv/Scp1j3A5/GBfpWVlQBQ77G9JiYmvNZPRM+FYYCoFTx48ACnTp3C2bNnUQhDRJY7NtleBOA/c/qjm6FI7ou/oKBA9gCfusl8bGxs0KVLFz7Ah4haDMMAUSsqKyvD1I0JSL0rQEDjZ+1iCLDXKMMgtWsAHt1O+HiXf+fOnXnWT0SthncTELUiDW1d/FmMJoMAAEghQmaNIb6Z+Bq62ds2OKCRiKi1MAwQtaKyylpIm9n3JgCw6GoPHR2tVq2JiOhJfIQYUSsy0FaHuJm9+2LRo/ZERIrGMEDUirQ11BDiagG1pyQCNbEIoa6W0Nbgw36ISPEYBoha2Sx/R0ifcq1AKhUwy7/+w4iIiBSBYYColXnbm2BFuBtEQL0eAjWxCCIAK8Ldmj3xEBFRS+OthUQKcu5mMSJOZuJwep5sBsJQV0vM8ndgECAipWIYIFKwyhoJyiprZc8mICJSNoYBIiIiFccxA0RERCqOYYCIiEjFMQwQERGpOIYBIiIiFccwQEREpOIYBoiIiFQcwwAREZGKYxggIiJScQwDREREKo5hgIiISMUxDBAREak4hgEiIiIVxzBARESk4hgGiIiIVBzDABERkYpjGCB6jEgkQlBQ0AttY/r06RCJRLh582aL1PSkuLg4iEQiLF26tFW2DwClpaV477334ODgAA0NDYhEIqSkpDT5WkvU1RLHn4ieHcMAdVgpKSmYO3cuXF1dYWhoCE1NTVhaWiIkJARr1qxBYWGhsktUiKVLl0IkEjX58+QX+Pz58/HNN9/Azc0Nn3zyCZYsWQJLS8unvkbNc+fOHcycORNWVlbQ1taGs7MzVq5ciZqammfeVnV1Nb7++mt4eXnBwMAABgYGcHNzw9tvv12v7f79+/Huu+9i4MCB0NPTa/VQSe2HurILIGppUqkU8+fPx5o1a6CmpobAwECEhoZCT08PBQUFSExMxLx587BkyRJcvXoVXbp0UXbJCvHKK6/Azc2twdeePBuPiYlBjx49sH///nptG3vN0NAQly9fhpmZ2XPXePnyZejq6j73+u1BXl4efH19kZOTgzFjxqB79+6Ij4/HP/7xDyQnJyMyMhIikahZ27p37x6GDRuG5ORkDBgwAHPmzAEAZGZmYs+ePfj222/l2q9Zswbx8fEwNDSEtbU1/vrrrxZ/f9Q+MQxQh7Nw4UKsWbMGffv2xZ49e+Dk5FSvzfnz5/Hxxx+joqJCCRUqx7hx4/Daa681q21ubi4CAwOf6TVdXV24uLi8UI0vun578PHHHyM7Oxv//ve/MXfuXACAIAiYNGkSdu/ejd27d2PixInN2tYbb7yBs2fPYufOnZg0aZLca7W1tfXar1ixApaWlnBycsKePXuavR/q+HiZgDqUa9euYfXq1ejcuTN+++23BoMAAPTt2xdHjhyBvb19s7ZbVFSE999/Hw4ODtDS0oK5uTkmTJiAtLS0RteRSqX48ssv0b17d2hra8PBwQHLly+v1xVcXV2NdevWYejQobCxsZFtf+zYsbhw4UKz33tLqBvvIAgC4uPjZZcRgoKCmnwNaHosQ0FBAT788EM4OztDR0cHJiYm8PX1xVdffSXXrrExA3Vd4X379oWenh4MDAwQEBCA6OjoRt9DZmYmvvnmG7i4uEBLSwt2dnZYtmwZpFJpg+89KioKoaGhMDU1hba2Nuzt7TF16lTZ3/GUKVMgEomQnJzc4PqLFy+GSCTCTz/91OjxLSsrw549e+Do6Cg7i69736tWrQIAbNq0qdH1H5eUlITIyEhMmTKlXhAAAHX1+ud6AQEB6N69e7N7Hkh1sGeAOpRt27ZBIpFgzpw56Ny581PbN/SB+aTCwkL4+fkhIyMDQUFBeO2115CZmYl9+/bhwIED+P333+Hv719vvffffx+nTp3ChAkToK+vj/3792PJkiX4888/sW/fPlm74uJivP/++wgICMCIESPQqVMn3LhxA9HR0Th06BASEhLg7e39bAfiOYWHh8Pe3h7Lli2DnZ0dpk+fDgCwt7eHsbFxo6815erVqwgODsadO3fg7++P8PBwPHjwAJcuXcJnn32GefPmNbl+VVUVhg0bhri4OHh6emLmzJmoqanBgQMHMHr0aKxbtw7vvPNOvfU++ugjxMfHY+TIkRg6dCgiIyOxdOlSVFdXY+XKlXJtP/zwQ3z99dcwMTFBeHg4zM3NkZ2djdjYWPTr1w9ubm6YM2cOdu7ciYiICPj4+MitL5FIsGXLFpiammLs2LEAIPvCFQRB1i4xMRFVVVUICQmp94VsZ2cHZ2dnnDp1ChKJBGpqak0elz179gAAxo8fj6KiIkRHRyM/Px82NjYYPnw4TE1Nm1yfSI5A1IEEBwcLAISjR48+1/oAhEGDBsktmzFjhgBAWLBggdzyAwcOCAAEJycnQSKRyJZPmzZNACB07txZyM7Oli2vqqoSAgMDBQDCvn37ZMsrKyuFnJycerWkpaUJ+vr6wpAhQ+SWHz9+XAAgLFmypFnvacmSJQIA4ZVXXhGWLFnS4M+dO3eeehye9lpjdXl5eQkAhO+//77eOo8fn8a2/fe//10AICxatEiQSqWy5aWlpYKXl5egqakp3L59W7a87vg7ODgIubm5suWFhYWCsbGxYGBgIFRVVcmW79+/XwAguLu7C0VFRXL7rqmpEfLy8mR/dnV1FQwMDITy8nK5djExMQIA4f3335d7L09+xK5fv14AIHz11Vf1joUgCMLIkSMFAEJGRkaDrz8uICBAACCsWbNGMDQ0lO0PgKCvry/s3r27yfV/+umnZ/o9oo6NYYA6lJ49ewoAhMuXL9d77fjx4/W+BI8fPy7X5skvo6qqKkFbW1swNTUVHjx4UG+bISEhAgAhISFBtqzuy+jTTz+t1/7EiRMCAGHkyJHNej9hYWGCpqamUF1dLfc+nicMNPVz4cIFuXVaKgycOXNGACAEBgY2q9Ynty2RSIROnToJ3bp1kwsCdaKjowUAwrp162TL6o7/Dz/8UK993Wt//vmnbNnw4cMFAMKxY8eeWt+//vUvAYAQEREhtzw8PFwAIFy6dEm27PLly/V+D1euXCkAEDZt2tTg9idNmiQAEM6fP//UWpydnQUAgpqamvD6668LGRkZwr1794QdO3YIhoaGgoaGhpCamtro+gwD9DheJiCVERcXh2XLltVb3tR97VeuXEFlZSWCg4MbHOUeHByMI0eOICUlBQEBAXKvPflnAPDz84O6unq9sQApKSn48ssvcfLkSeTl5dUbV1BUVAQrK6um3t5T/fTTT80eQNhS6q6vh4aGPtf6V69exb1792Btbd3g313d7aFXrlyp91q/fv3qLevatSsA4P79+3I1amlpYdCgQU+t5/XXX8cnn3yCTZs2YebMmQCA/Px8xMTEYMCAAXB1dZW1be3BkHVjH9zd3bF161bZZYfJkyejtLQUb731Fr755htERES0ah3UMTAMUIdiYWGBy5cvIzc3t96H8dKlS2WD25o7Yru0tFS23YbUfUHXtXuyliepqanB1NQUJSUlsmWnT5/G4MGDATz60uzevTv09fUhEokQGRmJ1NRUVFVVPbXWtqjufT7v7ZvFxcUAgEuXLuHSpUuNtnvw4EG9ZYaGhvWW1Y0RkUgkcjV26dIFYvHTx1MbGxtjwoQJ2LZtG9LS0uDm5oatW7eitrYWb7755lPXNzIyku2zIXW/R3XtmrOtsLCweuMPRo0ahbfeegvnzp176naIAN5NQB3MgAEDAADHjx9vke3VfaHk5+c3+HpeXp5cu8c1tI5EIsHdu3flPuxXrlyJqqoqxMbGIjo6GmvWrMGyZcuwdOnSdj+Zj7GxMQDg9u3bz7V+3XF95ZVXIDy6rNngz5YtW16oxry8vEbvMnhS3e2AdaP+N2/eDENDQ0yYMOGp63bv3h0AcP369QZfv379OjQ1NWFra/vUbTk7O8vqf1LdMlW6dZZeDMMAdSjTpk2DWCzG999/j6KiohfenouLC7S1tXH27Fk8fPiw3utxcXEAAE9Pz3qvnThxot6yxMRE1NbWok+fPrJlGRkZMDExqXdHwsOHD3H+/PkXewNKVjfq/vDhw8+1fs+ePWFoaIhz58491+x8zeHj44OqqirEx8c3q33//v3Ru3dv7NixA4cPH8b169cxefLkZk2W1L9/f2hqauLIkSNydxkAQFZWFq5evYqBAwc26y6Xut6k9PT0eq/VLWvurbNEDAPUofTo0QPz589HQUEBhg8f3ugMa49fM26KpqYmJk6ciKKiInz++edyr/3222/4/fff4eTkhIEDB9Zb91//+hdycnJkf66ursbChQsBQHZbHvDolrJ79+7JdYNLJBLMmzev3U+Z7O3tDW9vbyQkJDR4//zTegzU1dXxt7/9DVlZWZg3b16DgSAtLQ0FBQXPXWPdtL3vvfee7LJEndra2gZ7eObMmYPi4mLMmDEDABq8RHDlypV6YxkMDQ3x2muv4caNG9i4caNsuSAIWLBgQYPbKikpwZUrV3Dnzh255ePGjYOZmRl27tyJixcvypZXV1djyZIlANCs3goigGMGqANauXKlbJIaFxcXBAYGwsPDA7q6uigoKMCff/6J5ORk6OvrN3hG/6QvvvgC8fHx+PTTT3H69Gn4+vri5s2b2Lt3L3R1dbFly5YGrzf3798fHh4eePXVV6Gnp4f9+/fj6tWrGDt2LF555RVZu3fffReHDx+Gv78/JkyYAG1tbcTFxeH27dsICgqS9T68qH379jU40A541APSWoMLd+7ciaCgIMyePRs//vgj/Pz8UFlZiUuXLuHChQu4e/duk+svW7YM58+fxzfffIMDBw4gMDAQ5ubmuH37Ni5evIjU1FQkJibC3Nz8ueobMWIE5s2bh6+++grdu3fHmDFjZNs/evQo5s2bh/fff19unSlTpmD+/PnIzc1Fv3795Hp66vTs2RMA6vUArFq1CsePH8dbb72F2NhYODk5IT4+HklJSQgLC6v39/Drr79ixowZmDZtGrZu3SpbbmhoiE2bNmHcuHHo378/xo0bh06dOiE2NhaXLl3CiBEj5EInAERGRiIyMhLAoymL65bVPVTLxcUFn3zyyTMeQeoQlHUbA1FrO3/+vDB79mzBxcVF0NfXFzQ0NAQLCwth8ODBwurVq4X8/Px666CR2+YKCwuF//f//p9gZ2cnaGhoCGZmZsK4ceOEixcv1mtbd/taRkaGsGrVKsHJyUnQ1NQU7OzshKVLl8rd415n3759Qt++fQVdXV3BzMxMmDBhgpCRkSHbVmZmpqxta9xaOHr06GYdh6Zea6quvLw84b333hMcHR0FTU1NwcTERPD19RW+/vrrZm27trZW2LhxozBw4EDB0NBQ0NLSEmxtbYVhw4YJ//73v+Xu+2/omD15LJ68pVQQBOHnn38WgoODBSMjI0FLS0uwt7cXpk6dKqSlpTV4HKZMmSIAEDZs2NDg63XHtiG5ubnCG2+8IVhYWAiamppC9+7dhRUrVjT4u7FlyxYBgDBt2rQGt3Xy5Elh2LBhgrGxsaCpqSn06tVL+OKLL4SamppG339jP439nVPHJxKEJ2IrERE9lbu7OzIzM5Gbm9vgAFKi9oRjBoiIntGhQ4eQlpaGyZMnMwhQh8CeASKiZvr3v/+N7OxsREREoKysDOnp6XBwcFB2WUQvjGGAiKiZ7O3tkZOTA2dnZ3zxxRcYOXKksksiahEMA0RERCqOYwaIiIhUHMMAERGRimMYICIiUnEMA0RERCqOYYCIiEjFMQwQERGpOIYBIiIiFccwQEREpOIYBoiIiFQcwwAREZGKYxggIiJScQwDREREKo5hgIiISMUxDBAREak4hgEiIiIVxzBARESk4hgGiIiIVBzDABERkYpjGCAiIlJxDANEREQqjmGAiIhIxTEMEBERqTiGASIiIhXHMEBERKTiGAaIiIhU3P8Hj3b8cqNYwusAAAAASUVORK5CYII=", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -385,7 +261,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 9, "metadata": { "id": "1BuMAkinyt8-" }, @@ -399,7 +275,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 10, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -415,7 +291,7 @@ "0.6666666666666667" ] }, - "execution_count": 14, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -426,7 +302,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -448,7 +324,7 @@ " 7: 1.0}" ] }, - "execution_count": 15, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -459,7 +335,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 12, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -471,9 +347,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcUAAAE1CAYAAACWU/udAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX+P/DXzDCsAiKyuKCirCqKKMk6kOaueU1NhNx/\nbd5uy7eovt1rVrd7s7zdzMrMvqahWG7XMpeUL4oDrmgumQKymSgoyr7P8vn90TjfyI1lYAbm9Xw8\neMicOedz3nMePnjN+ZxzPh+JEEKAiIiIIDV2AURERKaCoUhERKTDUCQiItJhKBIREekwFImIiHQY\nikRERDoMRSIiIh2GIhERkQ5DkYiISIehSEREpMNQJCIi0mEoEhER6TAUiYiIdBiKREREOgxFIiIi\nHYYiERGRDkORiIhIh6FIRESkw1AkIiLSYSgSERHpMBSJiIh0GIpEREQ6DEUiIiIdhiIREZEOQ5GI\niEiHoUhERKTDUCQiItJhKAJISkpCYGAgJBIJoqKioFAoEBwcjA8++AAqleqB2584cQKBgYHo16/f\nXd9fs2YN+vXrh/nz5+uXTZw4ESkpKYb5AEREZBASIYQwdhGmICUlBQ8//DBUKhUsLCxw69YtxMXF\nQSaT4YcffoBUev/vDykpKZg/fz7y8/Pv+v5bb72F/Px8rF+/HgBQUVEBe3t7SCQSA38SIiJqKZ4p\n3oOzszPWr1+PgwcPYuPGjQZv38HBgYFIRGRiGIr34e7ujnHjxmHr1q0ICQnRh1heXt49u0vfffdd\nREdHY8iQIdi3b99d212+fDnc3d3x1ltvAQAWL16Mrl27YsmSJZg5cyZ8fHzwxhtvtNXHIiKie2Ao\nPkC/fv2Qk5ODb7/9Vr/M09MTK1asuGPdq1evIigoCCkpKVi9ejVmzJiBW7du3bFefHw8xo8fr3+9\natUqBAYG4qeffsKWLVtw6NAhLF++HNeuXWubD0VERHfFUHwArVbb5HVtbW0xceJEAEBYWBhcXV2x\ne/fuJm8/btw4SCQS9OjRA87Ozve8PklERG2DofgA+fn58PLyatK6Tk5OjV47OzujsLCwyftycHDQ\n/25tbY2GhoYmb0tERK3HULyPwsJC7N+/H9OnT4elpSUAoL6+HgBQVlZ2x/qlpaWNXt+8eRM9evRo\n+0KJiMggGIr3UFJSggULFiA6Ohpz5syBq6srbG1tcf78eQDA3r1779imsrJS312alpaG4uJiTJo0\nqV3rJiKilrMwdgGmICkpCfHx8QCA0aNHQwiBmpoazJgxAy+//DKkUimkUinef/99zJo1C4MGDUJ4\neDiKioowc+ZMxMfH48UXX0SfPn2QmpqK999/H6Wlpdi6dSucnZ2xZs0arF+/HnV1dfjHP/4BS0tL\n/Pjjj7C2toaHhwcyMzNx5swZLFu2DL6+vtiwYQOKiorw4osvYtOmTRg4cKCRjxARkXngw/tEREQ6\n7D4lIiLSYSgSERHpMBSJiIh0eKONATSotTiQcR05N6tRr9LAwUaOaB8XeLnaG7s0IiJqBt5o0wpl\nNQ1Yo8zFhuOXodUK1Ko00ArAUiaFVAr4uNrjL6O8MWagm7FLJSKiJmAottCVkhrM/OIoSqrr0aC5\n9yG0kcsQE+yBNycP5KwYREQmjtcUW6CkugEzVh/Bjcq6+wYiANSqNPg2/Qr+tT+znaojIqKWYii2\nwPL9mSipboC2iefYtSoN1qblIe9mddsWRkRErcJQbKbqejV2nC6AqqmJqKPRCqw7nNdGVRERkSEw\nFJtp59lrkKL51wZVWoFtpwpQp9K0QVVERGQIDMVmOnOlDDUtDDaJBCgqrzNwRUREZCgMxWaqqle3\neFuJRNLiQCUiorbHUGwmJ1t5i7fVaAXsrTheAhGRqWIoNlOktwvsrGQt2tbWUoaeXW0MXBERERkK\nQ7GZRvu5Qi5t/mGztpBiQXg/yKR8gJ+IyFQxFJvJQibFwnBPWMubeegkwOzgPm1TFBERGQRDsQWe\niRqAgT0cYGXRtMNnKQX+PXMonLtYtXFlRETUGgzFFrC0kGLjopEY0dcJtpb3vr4ol0lgbSHFKLtr\n8MCtdqyQiIhaggOCt4JWK5CSdQMf/HAG2aUq2FjJAQEI/PYzO9gD88L6wbKhEgkJCZgxYwY8PT2N\nXTYREd0DQ9EAvv76a3gOCoKFUw/UqTRwtJFjcC9HWFn831lkXl4etm3bhrlz58LNjVNJERGZInaf\ntlJtbS2uXbuG0KF+CBvQHaP83DC8b7dGgQgAnp6eGD9+PDZt2oSKigojVUtERPfDUGylS5cuwdPT\nE3L5gx/qDwgIQHBwMBITE1FXx+HeiIhMDUOxlTIzM+Hr69vk9cPDw9GnTx9s2bIFGg2HfCMiMiUM\nxVZQq9XIycmBj49Pk7eRSCSYMGECLC0t8f3334OXdImITAdDsRXy8vLg6uoKOzu7Zm0nlUoxffp0\nlJaW4sCBA21UHRERNRdDsRWa23X6e3K5HLNnz8aFCxeQnp5u4MqIiKglGIotJIRAVlYW/Pz8WtyG\nra0t4uLioFQqkZmZacDqiIioJRiKLXTt2jVYWVnB2dm5Ve1069YNMTEx2LlzJwoKCgxUHRERtQRD\nsYVa03X6R7169cLUqVOxefNmlJSUGKRNIiJqPoZiCxkyFAHAx8cHUVFRSExMRHV1tcHaJSKipmMo\ntkBpaSmqq6vRu3dvg7Y7YsQIDBo0CN988w1UKpVB2yYiogdjKLZARkYGfHx8IJEYfsLghx9+GN27\nd8e2bdug1WoN3j4REd0bQ7EFMjMzW3XX6f1IJBJMmTIFarUae/fu5cP9RETtiKHYTDU1NSgqKmrT\nKaBkMhkef/xxXLlyBYcPH26z/RARUWMMxWZqzgDgrWFlZYXY2FicPHkS586da9N9ERHRbxiKzWTo\nu07vx8HBAbGxsdi/fz9yc3PbZZ9EROaModgMarUaubm5zRoAvLVcXV0xY8YMbN++HdevX2+3/RIR\nmSOGYjPk5ubCzc0Ntra27brffv36YcKECdi0aRPKy8vbdd9EROaEodgM7dl1+keDBw/GyJEjOUEx\nEVEbYig2kSEGAG+t0NBQeHp6YvPmzVCr1Uarg4ios2IoNtHVq1dhY2ODbt26Ga0GiUSCcePGwdra\nmhMUExG1AYZiE2VkZBit6/T3pFIpHnvsMZSVlSE5OdnY5RARdSoMxSYy5vXEP7o9QXFGRgZOnDhh\n7HKIiDoNhmIT3Lp1C3V1dejVq5exS9G7PUFxamoqMjIyjF0OEVGnwFBsgszMzDYbALw1nJycMHv2\nbPzwww+4cuWKscshIurwGIpN0JYDgLdWz5498ac//QmbN2/GrVu3jF0OEVGHxlB8gOrqaly/fr1N\nBwBvLW9vbzz88MOcoJiIqJUYig+QlZWF/v37w8LCwtil3Nfw4cMREBCATZs2oaGhwdjlEBF1SAzF\nBzClu04fJDo6Gi4uLti+fTsnKCYiaoFOFYpJSUkIDAyERCJBVFQUIiIiMGjQIKxcubJF7alUKrz0\n0kuQyWQGrrRt/H6C4t27d/PhfiKiZupUoThmzBisWLECAJCcnIy0tDRs2bIFr7zyCpKSkprdXm5u\nLpYsWYLBgwcbutQ2c3uC4mvXriEtLQ0AsGPHDv2XhU2bNt2xTWVlJRwdHdG3b18sXboU7733Hv7+\n978DAN555x24u7vjrbfeas+PQURkFKZ9ocwABg0ahICAAPz4448YM2ZMs7bNzMxEUFBQG1XWdm5P\nULx27Vo4ODhg2rRpcHJywsSJE7Fy5UrExsY2Wv/rr7+GSqXCnDlz8Pbbb6O+vl5/lvnmm29yLkci\nMhud6kzxXlQqFeRyOd555x2MGjUKo0aNwuTJk3Ht2jUAwM6dO+Hn54eoqCjEx8cjJCQEnp6e+PDD\nDzFu3DisX78ewG9Dvd3ePjIyUr/cFNnb2yMuLg5JSUnIyckBAMTExODkyZNIT0/XryeEQFJSEoKD\ng/XLrKysYG1t3e41ExEZW6cPxZSUFFy4cEF/tpScnIwDBw5gxowZeO211wAAjz76KF5//XWkp6dj\n0aJFOHbsGMaNG4eYmBgMGzZM39abb76Jp59+GgcOHMDWrVuxefNmY32sJnFxccHMmTPxn//8ByUl\nJejTpw+mTp2Kjz/+WL/O/v37MWbMGP3ABElJSfDz80N0dPQ92128eDFGjx6N6OhozJ49GxUVFQCA\nNWvWoF+/foiJicHTTz+NoKAgTJw4kVNdEVGH0WlDcfTo0YiIiMDSpUuxdetWjBw5Eh4eHnj44Yeh\nUCiwYsUKnDp1qtE2vr6++of0p0+ffsddp926dcO2bduQn58Pd3d3bN++vd0+T0v17dsXEydOxP/+\n7/+irq4Ozz//PLZu3YqioiIAQEJCAubPn69ff8yYMXj99dfv26afnx+Sk5ORkpICX19fLF++HADw\n1FNPYf78+UhNTcWyZctw8uRJ/Prrr9ixY0ebfT4iIkPqtNcUk5OTGz1beOnSJTz++OM4fPgwgoOD\nkZKS0igMAMDR0VH/e2ZmJqZNm9bo/Y8++ggffvghRo0ahZ49e+q7Y03doEGDMGjQIOzZswdLly6F\nv78/Vq9ejTlz5sDd3R1dunRpVnvW1taIjIyEVCrF9evX0b9//0bvjxw5Ek5OTgB+mxw5Ly/PYJ+F\niKgtddozxT86ffo0HBwc9NfOVCrVPde9efMmGhoa0LNnz0bLy8rK8Le//Q05OTl4+umnMWXKlA4z\ngszAgQPh5OSEzZs3Y/Hixfjiiy+wYsUKPPvss81qJyUlBS+//DI2bNiAQ4cO4fXXX0dNTU2jdRwc\nHPS/W1tbczABIuowzCYUvby8UFpaiqysLADAjz/+eM917zUA+IIFC3D9+nVIJBIoFAqoVCqTGyT8\nXiQSCQYMGABbW1vY29tDpVIhPz8fXl5ezWrnxIkT8PX1Rb9+/QDc/8sFEVFH06lCMSkpCS+++CKA\n364pHjp0SP9eUFAQ3njjDYwdOxZTp05FVVUVioqKMHfuXBw4cADLli3DmTNnMHbsWP0A4C+//DLO\nnDmDZcuWYffu3Zg9ezYee+wxjBo1CtOnT8eGDRtga2trrI/bbBKJBNOmTUNtbS2ef/55vPvuu81u\nw8vLC9nZ2frBx/ft22foMomIjEYiOOxJI1VVVfj000/xyiuvmPx4p02VlJSE+Ph4lJWV4c9//jP+\n/Oc/46uvvkJwcDBGjhyJuXPnYufOnXB0dMT/+3//D4mJiSgqKsKcOXPg4uKCVatWwdraGkuWLMGC\nBQvw1FNPISUlBUOGDEGXLl2wc+dOPPXUUwgMDMQbb7yBuro6LF26FDKZDG+++Sasra3xz3/+847n\nI4mITA1D8Q9++ukn5OTkYObMmcYupU2VlpZi3bp1mDBhAvz9/Y1dDhGRSehU3aeG0JEGAG8NJycn\nxMTEYNeuXZygmIhIh6H4Ow0NDcjPz4e3t7exS2kXv5+g+ObNm8Yuh4jI6DrHRbMWEELgp19Lsfvn\nItyorIOlTApHSS26u/WGjY2NsctrN97e3hg1ahQSExOxaNGiZj+zSETUmZjdNUUhBHacvooVyZdw\ns6oetSoNbh8BC4mARCJBpLcr/nuCH7zd7I1bbDtKSUlBVlYW5s+fD0tLS2OXQ0RkFGYVikIILPn+\nPLb/dBW1Ks0915MAsLGUYe28YIT2d26/Ao1ICIGdO3eiuroaMTExkErZs05E5ses/vJ9mJT1wEAE\nAAGgpkGDRV+n42JhRfsUZ2QSiQSTJ0+GVqttNEFxZZ0KmUWVuHyrmpMWE1GnZzZnikXldYj610HU\nq7XN2i64rxO2PhPWRlWZnvr6eqxfvx4u/XxxsNQB+3+5DrlMCo1WwMlWjr+M8kZMsEeHGcmHiKg5\nzOZGmw3H8lu03bmr5bh8qxp9ne0MW5CJsrKyQuSEaXhs9TE0iGpoAf0XidpyDd7ZdQG/XKvAu38a\nbNxCiYjagFl0nwohsOHY5WafJQKAVretOfnrrkuohwx3O1q1Kg22/1SAIzl8hIOIOh+zOFOsqlc/\n8Drivag0Amd/vYWSkhJIpVJIJJJGP01d1lHkFFfhYmEF7tepXqvSYI0yF2EDurdfYURE7cAsQrFe\nrYVUIsFvt9A0X0HhDWzceBpCCGi1WgghGv38cdkfXwNoVoi2Jnxb2tbtn/SbUogmnFCfvlLWomNJ\nRGTKzCIU7a0toNI0v+v0toED+uD5edNbvP39ArMpodqe2zk21EIiqURLv0AQEXVkZhGKVhYyBPRy\nxNmC8mZva2cpw+QhPVq1/993ocpksla11dbc+tdgzZlDuH8oCgx2tYQQokN1DRMRPYhZ3GgDAM9G\nDYCdZcsCacLg1oViR+LRzRZBfZwgk9477KxkUnjW5eDLL7/ExYsX+fwiEXUaZhOKj/i7wdayeSfG\n1nIpngjpC2u5aZ/dGdqKWYFwtrOE/C7BaCOX4emoAfj7CwuhUCiQmpqK1atX4/z589BqW95FTURk\nCszm4X0AyCiqwGOfH0FNw4PvRLWykCKglyO+eTIEcpnZfHfQu1VVj08OZmPLySvQCgGNVsDb1R7P\nj/bG+EHu+vWEEMjOzoZSqURtbS0iIiIQEBBg8t3ERER3Y1ahCAC/XCvHE2uPo16tvWs4SiSAtVyG\nEM9u+DxuuNmdJf6RSqNFSXUDrOUyONrI77meEAL5+flQKpUoKytDREQEhg4dCgsLs7hsTUSdhNmF\nIgDUqTT44dw1rD6Ug4LSWshlUgghoNYKPOzrgicjByCoT1feRNJCv/76K1JTU3Hjxg2EhYUhKCgI\ncvm9A5WIyFSYZSj+XlF5HUprGiCXSeHmYAV7a/7xNpSrV68iNTUVV69eRWhoKEaMGMFpqYjIpJl9\nKFLbKyoqQlpaGvLy8jBy5Eg89NBDsLa2NnZZRER3YChSuykuLkZaWhouXbqE4OBgjBw5Era2tsYu\ni4hIj6FI7a6kpARpaWnIyMjAsGHDEBYWBjs785iFhIhMG0ORjKa8vByHDx/Gzz//jKFDhyIsLAwO\nDg7GLouIzBhDkYyusrISR44cwZkzZzBo0CBERESga9euxi6LiMwQQ5FMRnV1NY4dO4ZTp07B19cX\nERERcHZ2NnZZRGRGGIpkcmpra3H8+HGkp6djwIABiIiIgKurq7HLIiIzwFAkk1VfX4/09HQcO3YM\nffr0QWRkJHr0MJ/B2Ymo/TEUyeQ1NDTg1KlTOHr0KHr06IHIyEj07t3b2GURUSfEUKQOQ61W4/Tp\n0zh8+DCcnZ2hUCjQt29fY5dFRJ0IQ5E6HI1Gg7NnzyItLQ0ODg5QKBTw9PTkWLVE1GoMReqwtFot\nzp8/j9TUVFhZWUGhUMDb25vhSEQtxlCkDk+r1eLixYtITU2FRCJBZGQk/P39GY5E1GwMReo0hBDI\nysqCUqmESqVCZGQkBg0aBKm07SeJTkpKQnx8PM6ePQuFQgEhBAoLCxESEoLVq1dzGDuiDoKhSJ2O\nEAI5OTlQKpWorq5GREQEhgwZApmsbSeMTklJwcMPPwyVSgULCwuUlpbCz88Pzz77LN5666023TcR\nGQanRadORyKRwMvLCwMGDEB+fj5SU1OhVCoRHh6OwMBAWFi0z397JycnREZG4uTJk+2yPyJqvbbv\nVyIyEolEAk9PT8ydOxePPfYYMjMzsXLlShw/fhwqlapdalCr1fpnKi9duoTx48dDoVAgLCwMe/fu\nBQCcOHECgYGB6NevH5YvX47w8HA89NBDyM/PxzPPPIMhQ4Zg3rx5jdpNSEhASEgIoqKiEBsbi4qK\ninb5PESdniAyI1evXhXffvutWL58uUhLSxN1dXUGa/vgwYMCgFCpVEIIIS5fviweffRRUVBQIFQq\nlfD19RXr1q0TQghx6dIlYW9vL7Kzs/XbyuVycfToUSGEEFOnThXDhw8XZWVloq6uTri4uOjfS0tL\nE87OzuLGjRtCCCFeeeUVsWjRIoN9DiJzxjNFMis9e/bErFmzMGfOHBQWFmLlypU4dOgQ6urqDLaP\n0aNHIzg4GH5+fhgzZgx69eqF48ePIzc3F0888QQAwMvLCyNHjkRiYqJ+O3t7e4SEhAAABg8ejL59\n+8LR0RFWVlbw8fFBbm4uAGD9+vWYMmUKXFxcAACxsbFITEyE4O0BRK3Ga4pkltzc3DBjxgzcvHkT\naWlpWLlyJUaMGIGQkBDY2tq2qu3k5GRYWFjgtddeQ3x8PB5//HEUFBTAycmp0fVMFxcXFBQU6F/b\n29vrf7ewsLjjdUNDAwCgoKAAFy5cQHR0NIDfumjd3Nxw69YtdO/evVW1E5k7hiKZte7du+NPf/oT\nSktLkZaWhk8++QTDhg1DWFgYunTp0qq2ly5dinXr1uGLL77A6NGjUVpaCrVarQ/G4uJi+Pn5Nbtd\nDw8P9O/fH5999pl+2c2bNxmIRAbA7lMi/Han6JQpU/DMM89ArVbjs88+w969e1t1A4utrS1eeOEF\nfP755xg+fDi8vLywadMmAEBubi6OHz+OuLi4Zrc7f/587N69G6WlpQCAzMxMTJkypcV1EtH/4XOK\nRHdRWVmJo0eP4vTp0xg4cCAiIiLg5OR0z/X/+PD+559/joEDB6K8vBx9+vSBt7c3PvzwQyxbtgzV\n1dVQq9VYsmQJJkyYgAsXLiA2NhYZGRmYN28eJk2ahOeffx51dXVYunQpiouL8e9//xvu7u5YtWoV\nRo0ahY0bN+LTTz+Fra0tLC0tsXLlSvj4+LTjESLqnBiKRPdRXV2NY8eO4dSpU/Dx8UFkZCScnZ2N\nXRYRtRGGIlET1NbW4sSJEzhx4gT69++PyMhIuLq6GrssIjIwhiJRM9TX1yM9PR3Hjh2Dh4cHFAoF\nevToYeyyiMhAGIpELdDQ0ICffvoJR44cgbu7OxQKhX7kGiLquBiKRK2gVqtx+vRpHD58GN26dYNC\noUC/fv2MXRYRtRBDkcgANBoNzp07h9TUVNjb20OhUKB///6c05Gog2EoEhmQVqvF+fPnkZqaCisr\nK0RGRsLHx4fhSNRBMBSJ2oAQAhcvXoRSqQQAKBQK+Pv7MxyJTBxDkagNCSGQlZUFpVKJhoYGREZG\nYvDgwZBKOZgUkSliKBK1AyEEcnNzoVQqUVVVhYiICAwZMgRaSPD1kXxcKKzA4J6OmBvaFxYyBiaR\nsTAUidpZfn4+lEolbt0qwUEMRFaJBnVqLWzkUoT2746180awm5XISBiKREaiPHsJizZnQiX+LwCt\n5VLsfV4Bz+52RqyMyHyxn4bISJy6u8LSUt54oVaLiupa4xRERAxFImPxceuCrjZy3L6EKJMAdhZa\n7N28DkqlEnV1dcYtkMgMsfuUyIiuV9Thte3nkHWjEn5uDlg2PQDS+iqkpqbi0qVLCA4ORkhICGxs\nbIxdKpFZYCgSmaiSkhKkpaUhIyMDQUFBCA0NhZ0drzUStSWGIpGJKysrw+HDh3H+/HkEBgYiLCwM\n9vb2xi6LqFNiKBJ1EBUVFTh8+DDOnTuHgIAAhIeHw9HR0dhlEXUqDEWiDqaqqgpHjhzB6dOnMXDg\nQERERMDJycnYZRF1CgxFog6qpqYGR48exalTp+Dr64uIiAg4OzsbuyyiDo2hSNTB1dbW4vjx40hP\nT8eAAQMQGRkJFxcXY5dF1CExFIk6ifr6epw4cQLHjx9H3759ERkZCXd3d2OXRdShMBSJOpmGhgac\nPHkSR48eRa9evaBQKNCzZ09jl0XUITAUiToplUqFn376CUeOHIGrqysUCgU8PDyMXRaRSWMoEnVy\narUaZ86cQVpaGrp16waFQoF+/foZuywik8RQJDITGo0G586dQ2pqKuzt7aFQKNC/f39OU0X0OwxF\nIjOj1Wpx/vx5pKamwsrKCgqFAt7e3gxHIjAUicyWVqvFxYsXoVQqIZPJEBkZCT8/P4YjmTWGIpGZ\nE0IgMzMTSqUSGo0GkZGRGDhwIKRSzixH5oehSEQAfgvH7Oxs/VyOERERCAgIYDiSWWEoElEjQgjk\n5eVBqVSioqICERERGDp0KGQymbFLI2pzDEUiuqf8/HwolUqUlJQgPDwcw4YNg4WFhbHLImozDEUi\neqArV65AqVTi+vXrCA8PR1BQEORyubHLIjI4Xiwgogfy8PBAXFwcYmJikJeXh5UrV+LIkSNoaGho\ns33u2LEDgYGBkMvlOHPmjH75r7/+iujoaHTt2hVTp05tcfsnTpxAYGAgBzKgRnimSETNdv36dSiV\nSly+fBkjR47EQw89BCsrK4PvJyUlBY888giGDBmCEydONOq6jY6ORkpKSqvbnz9/PvLz81tXqBH5\n+fnpB37PyMiAEAL+/v4AgKKiImRkZNx1u507d+LVV1+Fu7t7q49jZ8IzRSJqNjc3N8ycORPz5s1D\ncXExVq5ciZSUFNTW1hp8X4sWLUJ+fj7ef/99g7fdGdwOtZSUFIwfPx5jxozRv77fLCmPPvooXn/9\n9XastGNgKBJRi7m4uOCxxx7DwoULUV5ejk8++QTJycmoqakx2D569OiBTz75BH//+99x4cKFO97/\n5ZdfMGnSJIwZMwahoaFYs2YNgN9mC4mOjoZEIsF7772HsWPHYtCgQVi2bNk991VVVYWFCxciIiIC\nYWFhWL16tf6977//HqGhoRg9ejTGjBmDo0ePGuwztsZ7773Xovfo7hiKRNRqzs7OmDp1Kp566inU\n1tbik08+wf79+1FVVWWQ9uPi4jBhwgQsXLgQWq220XtVVVV48803kZSUBKVSiY8++giXLl2CpaWl\nvluwrKwM+/fvR2pqKj7++GPs37//rvt56aWXoNFokJaWhn379uGDDz5AWloaAODJJ5/Ed999h+Tk\nZDz33HPYt2+fQT5ba4WGht73vUuXLmH8+PFQKBQICwvD3r1777ru2rVr4eTkhNDQULz33nuwt7eH\nv78/0tLSUFxcjKCgIHh6euLnn39GZWUlFi1ahIiICISGhuL9999HZ7kSx1AkIoPp2rUrJk+ejGee\neQZqtRqfffYZ9u7di4qKila3vXr1amRnZ+Ojjz5qtNzb2xtr165FWFgYxowZg8LCQpw+fbrROjEx\nMQCAbt3MTFdlAAAVG0lEQVS6YeLEifj222/vaF+r1WLDhg1YuHAhAMDe3h5TpkzBhg0b9Nt++eWX\nKCsrw5QpUzpE16NarcaUKVMQExMDpVKJhIQEzJo1Czk5OXesK5fL8fLLL+Po0aP47//+byxYsACR\nkZGIiIiAi4sL4uLi8NVXXyEgIAAvvvii/svDgQMHkJiYiI0bNxrhExoeQ5GIDM7R0RETJ07E4sWL\nIZVK8fnnn2PXrl0oKytrcZtubm747LPPsGTJEmRnZ+uX/9d//Rdu3LiB1NRUpKSkIDAw8I7uWycn\nJ/3vzs7OKCwsvKP94uJi1NfX49VXX0V0dDSio6Nx6NAh1NfXAwCSkpJw9epV+Pn5YdasWXdtw9Qc\nP34cubm5eOKJJwAAXl5eGDlyJBITExutl5iYiNTUVPztb3/TL5s7dy62bt2Kuro6AMDBgwcRHR0N\nrVaLxMRE/ZcHGxsbzJo1C+vWrWunT9W2GIpE1Gbs7e0xbtw4PPfcc7CxscGaNWvw/fffo6SkpEXt\nzZo1C5MmTcKiRYv0y06cOIFHHnlEP+KOSqW6Y7vf7+/mzZvo0aPHHeu4uLjAysoKn376qf5GlfT0\ndHz88ccAAAsLC3z++efIy8uDq6sr5s+f36LP0J4KCgrg5OTU6K5dFxcXFBQU6F///PPPSExMxL59\n+1BZWalfPmLECPTs2RM7d+7E2bNnMXjwYEgkEv2XBxcXl3u22ZExFImozdnZ2WH06NH4y1/+AkdH\nR/zP//wPduzYgZs3bza7rVWrVuHixYv6115eXjh+/DgAoLCwEOfOnbtjm23btgEAbt26hT179ui7\nU39PKpVi7ty5+u5SAHj33XeRkJAAAJg8eTI0Gg1sbGzw0EMPQaPRNLv29ubh4YHS0lKo1Wr9suLi\nYvTu3Vv/esCAAdizZw+GDRuG+Pj4RtvPmTMHCQkJ2LBhA+bMmQPg/748FBcX37PNDk0QEbWz2tpa\ncejQIfHBBx+IrVu3iqKiojvW+c9//iOGDh0q+vbtK95+++1G723fvl1ER0cLIYS4ePGiGD58uAgJ\nCRELFiwQAQEBwtfXVyQnJwshhAAgVqxYIcaOHSv8/f3FP//5TyGEEMePHxdDhw4VVlZWYsaMGUII\nISorK8WiRYtEaGioUCgU4oUXXhBqtVoIIcRLL70kQkNDRVRUlIiIiBBnzpxps+PTUvPmzRNxcXH6\n12q1Wvj7+4uvv/5aCCFETk6OsLe3F9nZ2UIIIdatWyeioqKEEEJcu3ZNdOvWTX/chBDiypUrwtLS\nUowdO7bRfp588kmxcOFCIYQQNTU1YsiQISIhIaEtP1q74cP7RGQ0DQ0NSE9Px7Fjx9C7d28oFIq7\ndm22hkQiQV5eXqcfuebVV19FQkIChBCYN28ePvjgAwBATk4OnnvuOVRXV0OtVmPJkiWYMGECDhw4\ngMWLF6OoqAhPPfUUQkNDsXjxYmg0Grzwwgv461//CgB45JFHMGnSJLz00kv6fVVVVeHFF19ERkYG\n1Go1pk2bhldffbVTzMXJUCQio1OpVDh16hSOHDkCd3d3KBQKg3XHmUsotpXY2Fj8+9//vu9AAJ0J\nrykSkdHJ5XKEhITg+eefh7e3N7Zt24YNGzbg8uXLLW7z9sP7wG+PZFy9etVA1XZ+JSUl2L17N27d\nuoWGhgazCUSAZ4pEZII0Gg3Onj2LtLQ0ODg4QKFQwNPTs1N0z3UEhYWFGDlyJNzc3LBq1SoEBwcb\nu6R2w1AkIpOl1Wrx888/IzU1FTY2NlAoFPDy8mI4UpthKBKRydNqtbhw4QJSU1NhYWGByMhI+Pr6\nMhwNIKe4Cqcul6KyTg07KxkG93TE4F6Oxi7LaBiKRNRhCCGQkZEBpVIJIQQiIyMxcOBAhmMzCSGw\n78J1rErJRlZRJSQSCTRaAZn0t+PYq6s1nonywp8Ce8JCZl63njAUiajDEULg0qVLUCqVqK+vR2Rk\nJAYPHgyp9M4/4HUqDf734nVcKa2FvbUFxvq7wdXB2ghVmwa1Rov4befw4y9FqFXdewACG7kMgR5d\nsXbeCNhaWtxzvc6GoUhEHZYQArm5uVAqlaiqqkJERASGDBmiH/Jt0/HL+Mee30a/qVdrIZdJoBHA\n+EHu+GD6EFjLZcYsv90JIfDKtrPY83MhalXaB65vZSFFUB8nbFj4kNmcMTIUiajDE0Lg8uXLUCqV\nKC0tRXh4OC42dMM/f8y86x9/awsphvVxQuKikZBKzafr9XD2TTy54SRqGpo+RJ2NXIa3pgzErOA+\nbViZ6WAoElGncuXKFSSnKPGPCw5Q3edRbFtLGb54YjgivV3uuU5nM2ftcaRmN3+82X7Otjj4crRZ\nXLs1j/NhIjIbHh4ecAqIhlx+/+tgNQ0arE3La6eqjK+ovA4n8ls2O8n1inqcudLyab86EvO5ekpE\nZuNKaQ3q1A++ZnYurxDr1q2DRCKBVCpt9O+DljVlHVNadiKvDHKpBPUtOJ5CCJy/Wo5hfZwevHIH\nx1Akok7HztICcpkU9Q8IRmfHLhg1KhBarRZCCP2/v//dEMu0Wi1UKtU912vK761dllFrh/oGVwDN\nv7lIrRWoasZ1yI6MoUhEnc7YQe5Y9mPGfdexkUsRF9offfv2baeqjOtgxg2kfnsaqnr1g1f+AwuZ\nBF2szCMueE2RiDqdXl1tEOXjAiuLe/+Js5RJMT2ok0yM2wQBvR2h0jy4S/luJACC+nQ1bEEmiqFI\nRJ3SilmBGNTTAbaWjbsLreVS2MgEFvSthJ2l+Tyn2L2LFRTeLmjJ/aN9utlhUE/zGPqNoUhEnZKt\npQW2Ph2GT2KGIWyAM3p3tYGvmz1eHeuHw6+NhpOkGvv37zd2me3qaUX/Zg9YYCOX4dmoAW1Ukenh\nc4pEZJbq6urw1VdfYdiwYQgNDTV2Oe3m77suYNOJX+87xNtt1nIpFN4uWB033GwGOeCZIhGZJWtr\na8TFxeHo0aO4cOGCsctpN3+d6I/ZD3nARi67b1eqraUMD/u44tPZQWYTiADPFInIzBUVFWHDhg2Y\nNWsW+vQxj6HMAOB43i2sTLqIY3mlsLGyhFYISCUSqDRaDOnliKejBmC0n6tZjGLzewxFIjJ72dnZ\n+O677zB//nx0797d2OW0G6VSiWslVXDyDkJVvRp2ljIM7OmIPt1sjV2a0TAUiYgAnD59GkqlEosW\nLUKXLl2MXU67+PLLL/HII4/A09PT2KWYDF5TJCICMGzYMAwdOhTffPMNGhoajF1OmysvL0dpaanZ\nDF7QVAxFIiKdqKgouLq6Ytu2bdBqW/age0eRmZkJHx+fu07MbM54NIiIdCQSCSZPngytVos9e/ag\nM19dysjIgJ+fn7HLMDkMRSKi35HJZJg5cyYKCgqQlpZm7HLaRG1tLa5evYoBA8znofymYigSEf2B\nlZUV4uLicOrUKZw7d87Y5RjcpUuX4OnpCblcbuxSTA5DkYjoLuzt7REbG4t9+/YhL69zTUbMrtN7\nYygSEd2Dq6srZsyYgW3btuHGjRvGLscgVCoVcnNz4ePjY+xSTBJDkYjoPjw9PTF+/Hhs2rQJFRUV\nxi6n1XJzc9GjRw/Y2prvA/r3w1AkInqAgIAAjBgxAps2bUJ9fb2xy2mVjIwM+Pr6GrsMk8VQJCJq\ngvDwcHh4eGDLli3QaB48w4Qp0mq1yMrK4vXE+2AoEhE1gUQiwYQJE2BhYYFdu3Z1yGcYr1y5AgcH\nB3Tt2tXYpZgshiIRURNJpVJMnz4dN27cwKFDh4xdTrOx6/TBGIpERM1gaWmJ2bNn49y5czh9+rSx\ny2kyIQQyMjLg7+9v7FJMGkORiKiZunTpgtjYWCQnJyM7O9vY5TTJ7UdKXF1djVyJaWMoEhG1QPfu\n3fH4449jx44dKCwsNHY5D3T7gX1zmzS4uRiKREQt1KdPH0yaNAnffPMNysvLjV3OfXEUm6ZhKBIR\ntcLAgQMRFhaGxMRE1NbWGrucuyorK0NFRQU8PDyMXYrJYygSEbVSSEgI+vfvj82bN0OtVhu7nDtk\nZGRw7sQm4hEiIjKAcePGwdbWFt9//73JPcOYmZnJrtMmYigSERmARCLBtGnTUF5ejuTkZGOXo1dT\nU4PCwkL079/f2KV0CAxFIiIDkcvliImJQUZGBtLT041dDgAgKysL/fv359yJTcRQJCIyIFtbW8TG\nxkKpVCIzM9PY5XAUm2ZiKBIRGVi3bt0QExODnTt34urVq0arQ6VSIS8vj3MnNgNDkYioDfTq1QuP\nPvoovv32W5SUlBilhpycHPTq1Qs2NjZG2X9HxFAkImojvr6+UCgUSExMRE1NTbvvnw/sNx9DkYio\nDQUHB8Pf3x/ffPMNVCpVu+339tyJvJ7YPAxFIqI2Nnr0aHTt2hU7duyAVqttl31evnwZXbt2haOj\nY7vsr7NgKBIRtTGJRIKpU6eitrYW+/fvb5d9suu0ZRiKRERtZMeOHQgMDIREIsGWLVswa9Ys5Obm\n4ujRowCAyspKODo6om/fvli6dKnB9iuE4Cg2LcRQJCJqI9OmTcOKFStgY2ODlStXwtraGnFxcTh6\n9CguXLiAr7/+GiqVCnPmzMHbb79tsP0WFRVBJpPBxcXFYG2aC4YiEVEbi4mJwcmTJ5Geng5HR0fE\nxsZi165d2LlzJ4KDgw2+v9sP7HPuxOZjKBIRtbE+ffpg6tSp+PjjjwEA7u7ucHFxgZ2dXaNZNSor\nK7Fo0SJEREQgNDQU77//vn5w8SNHjiAiIgKjRo1CdHQ0du3apd8uMTERISEhGDVqFEaNGoXvvvsO\nfn5+UKlUiI+PR1hYGMLCwvDKK69ApVIhOzsbXl5ecHV1xT/+8Q8AwF//+le89tprAIC1a9fCzc0N\nL7/8cnsdItMhiIiozRw8eFAsXbpUpKSkCEtLS1FYWCiEECI2NlakpaUJLy8vER8fL4QQYuHChWLe\nvHlCCCFqampEQECASEhIEEIIERwcLI4dOyaEEOLMmTP69Q4fPizc3NzEjRs3hBBCrFu3TgwfPlxo\nNBrxzjvviNGjRwu1Wi3UarUYO3aseOedd4QQQiQlJQkfHx99ncOHDxeDBw/Wv3788cfb7qCYMJ4p\nEhG1g6ioKPj7+2P16tXIycmBu7s7wsPDYWdnh19++QV1dXVITEzEwoULAQA2NjaYNWsW1q1bB+C3\noeM2bNiA69evY+jQoVi1ahUAYN26dZg4caL++uGAAQMQExMDqVSKhIQEzJ07FzKZDDKZDHPnztW3\np1AoUFhYiOzsbFy9ehVBQUHIysrClStXkJuba7azajAUiYjayV/+8hd88cUXWLFiBZ599lkAQNeu\nXWFnZ4f169ejvr6+0c0xLi4uKCgoAABs2rQJtra2CAoKwvjx45GVlQUAKCgoaLRNdnY2pk6detf3\nft+epaUlxowZgx9++AF79uxBTEwMIiMjsXv3buzatQuTJk1q24NhohiKRETtJC4uDiqVCvn5+fDy\n8tIv9/Lygq2tLeRyOW7cuKFfXlxcjN69ewMA6uvr8cEHH+Dy5ctQKBT64PPw8EBxcTEAoLq6Gteu\nXUNFRcUd7/2xPQCYPHkydu3ahSNHjiAyMhKTJk3Cnj17cPToUYSGhrbdgTBhDEUionZibW2Nr776\nCu+++26j5VKpFLNmzcLIkSOxfPlyAEBtbS22bNmCBQsWAABmzJiBmpoaWFhYIDw8HBqNBgAwf/58\n7NmzBzdv3kRmZiauX7+OjRs36t/buHEjNBoNtFotNm7cqG8PACZOnIjDhw9DKpVCLpdj8uTJSE5O\nho2NDWQyWXscEpNjYewCiIg6q6SkJMTHx6OsrAx2dnaIj4/Ho48+qn9/7ty5OHPmDPLy8tClSxds\n2bIF06ZNQ1BQECwtLREbG4snnngCADB16lQ88sgjsLKyQk1NDRISEgAAYWFh+Ne//oUpU6agvLwc\nvXr1wvbt2wEA8fHxKC8vR2RkpH7d119/Xb9/Nzc3DBkyBFFRUQAAb29v9OrVC2PGjGmX42OKJELo\n7vclIiKju3HjBhISEjB9+nR4eno2ebuGhgZ8+OGHeOmll2Btbd2GFXZu7D4lIjIhrq6umD59OrZv\n397o+uKDZGdnw8PDg4HYSgxFIiIT4+npiXHjxmHTpk2orKxs0jaZmZmcJsoAGIpERCYoICAAI0aM\nQGJiIurr6++7rkaj4dyJBsIbbYiITFR4eDjKysqwZcsWxMbGQiaTQaMVOJR1AztOX0VxZT0sZFK4\nWGrgau8GBwcHY5fc4fFGGyIiE6bVarF582bY2Nii1CUAnx7MQZ1Kg+oGjX4dKQALKeDj7oClUwYh\nuF834xXcwTEUiYhMXF1dPWZ8uBNZtbb4XRbelbVcin/NGIrJQ3q2T3GdDK8pEhGZuH8l5yCnvssD\nAxEA6lRavLLtLI7n3Wr7wjohhiIRkQkrKq/DhmOXUavSNnmbOpUWf/vufBtW1XkxFImITNiGY/lo\nyUWugtJanL9abviCOjmGIhGRCdt4/Fc0aJp+lnhbg1qLr4/mG7yezo6hSERkourVGlTWqVq0rUYI\nZN+oMnBFnR9DkYjIRKk1AlKJpMXbt+QM09wxFImITJStpaxF1xNv62ZrabhizARDkYjIREkkEkR4\nObdoWztLGaYN62Xgijo/hiIRkQl7OmoA7CxbNuHvxIAeBq6m82MoEhGZsND+znBzsIasGdcWbeRS\nzAvrB2t5y8LUnDEUiYhMmEQiwYZFI2FvYwFpE3LRWi5FUB8n/NcjPm1fXCfEsU+JiDqAK6U1iPuf\n47hVVd9oMPDbZFJALpVizEA3fDgzEJYWPOdpCYYiEVEHodUKHLpUjC8O5SD9cinkMgmEACQSYNqw\n3lgY1g/ebvbGLrNDYygSEXVAdSoNymtVkMukcLC2gIWMZ4aGwFAkIiLS4VcLIiIiHYYiERGRDkOR\niIhIh6FIRESkw1AkIiLSYSgSERHpMBSJiIh0GIpEREQ6DEUiIiIdhiIREZEOQ5GIiEiHoUhERKTD\nUCQiItJhKBIREekwFImIiHQYikRERDoMRSIiIh2GIhERkQ5DkYiISIehSEREpMNQJCIi0mEoEhER\n6TAUiYiIdBiKREREOgxFIiIiHYYiERGRDkORiIhIh6FIRESkw1AkIiLSYSgSERHpMBSJiIh0GIpE\nREQ6DEUiIiIdhiIREZEOQ5GIiEiHoUhERKTDUCQiItJhKBIREekwFImIiHQYikRERDoMRSIiIp3/\nD6BNQ3sQTrSdAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQ90lEQVR4nO3deVxU593///cMOwIK7ihIFAQ1CCouuOKKYtxSNTVm0ZqmaZJud9osv3yTGHOnTZq0SRvTO6neTbRZ3DXGgPseF9wwxgV3XBFXFtmZ8/vDMreI+wwMw7yej0cfyJkz1/kMmvr2us71OSbDMAwBAAAA98ns6AIAAADg3AiUAAAAsAmBEgAAADYhUAIAAMAmBEoAAADYhEAJAAAAmxAoAQAAYBMCJQAAAGxCoAQAAIBNCJQAAACwCYESAAAANiFQAgAAwCYESgAAANiEQAkAAACbECgBAABgEwIlAAAAbEKgBAAAgE0IlAAAALAJgRIAAAA2IVACAADAJgRKAAAA2IRACQAAAJsQKAEAAGATAiUAAABsQqAEAACATQiUAAAAsAmBEgAAADYhUAIAAMAmBEoAAADYhEAJAAAAmxAoAQAAYBMCJQAAAGxCoAQAAIBNCJQAAACwCYESAAAANiFQAgAAwCYESgAAANiEQAkAAACbECgBAABgEwIlAAAAbEKgBAAAgE0IlAAAALAJgRIAAAA2IVACAADAJgRKAAAA2IRACQAAAJsQKAEAAGATAiUAAABsQqAEAACATQiUAAAAsAmBEgAAADYhUAIAAKv33ntPbdu2lclk0ueff37bc3v16qUmTZrIZDJVT3GosQiUAAA4mYKCAsXGxlrDXNu2bRUbG6t27drpwQcf1LPPPqsff/zxvsb+wx/+oOTk5Ls6d8OGDXrmmWcqHf/mm28UGBio7du331cNcD4ESgAAnIyPj4/S0tKsYS45OVlpaWnau3evli9fLg8PD3Xo0EHvvvuuQ+oLCAhQixYt5Ovr65Dro/q5O7oAAABgP8HBwfrb3/6mBg0a6OWXX1aTJk305JNPVmsNffv2VVpaWrVeE47FDCUAALXQSy+9pEaNGumVV17R7t27FRsbK09PT02YMMF6zvjx4297D2R+fr6eeeYZderUSYGBgRo+fLhOnDhx2+t+/PHHle7B3LBhQ4Xr/+1vf1PPnj3VrFkzDRs2TJmZmfb62HAQAiUAALWQp6en+vfvr7Nnz6q4uFhpaWkKDg6ucM6XX35503sgy7333nuaMGGCduzYoaNHj+rUqVMaNGiQSktLb/me5557rtI9mL169bJef/ny5WrSpIk2btyoH3/8Ufv27dOLL75o24eFwxEoAQCopUJDQyVJx48fv6/39+/fX926dZMkBQYGavLkyUpPT9fMmTPvu6b69evrkUcesY6ZmJioVatW3fd4qBkIlAAA1FKGYUjSfbf1ad++fYXvu3TpIknatGnTfdcUFRVV4fsGDRqw5F0LECgBAKilMjIyJElhYWH39f6AgIAK3wcFBUmSTp8+fd811alTp8L3ZrNZFovlvsdDzUCgBACgFiosLNSqVasUHBysjh07SpLc3Nyss5blcnNzbzlGdnZ2he8vXrwoSWrWrJmdq4Wzo20QAAC10H//93/rwoUL+vzzz2U2X5s/aty4sS5dulThvAMHDtxyjD179lT4PjU1VZLUvXt3O1cLZ8cMJQAAtcjp06f13HPP6Z133tGf/vSnCj0o+/Xrp++//15nzpyRJK1fv75SaLze4sWLtWXLFknS5cuX9eabbyoyMlJPPPFE1X4IOB2TcePcNwAAqNEKCgoUHx+vzMxMnTt3Tm3atJGnp6eKi4tlMpnUp08fPfvss3rwwQcrvC8nJ0e//OUvtXbtWjVv3lwDBw6U2WzWW2+9pZiYGP2///f/dOzYMX322Wfav3+//vKXv2jHjh3at2+fMjIy1LNnT02dOtW6e7xXr146dOiQzp07Z33/uXPn9PHHH2v//v0KCQlRQkKC/vCHP+jxxx/Xvn375Ofnp5iYGK1Zs0ZPPPGEli9fbn3/+++/rwEDBjjiRwobESgBAABgE5a8AQAAYBMCJQAAAGxCoAQAAIBNCJQAAACwCYESAAAANiFQAgAAwCY8KQcAAFRwtahUR87nqbDEIl9PN7Vq6CcfTzdHl4UajEAJAAB0Ia9Is7ef1Pwdp3TswlVd36TabJLCG/lpbFyIxnQKUV0fD4fViZqJxuYAALiwMouhf31/TH9edkBlFkOWW6QC03++enu46bWH2mpc5xCZTKabnwyXQ6AEAMBF5RaW6KmZ27X12KV7fm//qEb6+NGO8vZgKRwESgAAXFJhSZnGTdui3aeu3HJW8nbMJqlXeEP975Nxcndjj6+r408AAAAu6C8r0u87TEqSxZDWHTqvTzcctW9hcEoESgAAXMye09mavuHYfYfJ632w4qCOXbhq+0BwagRKAABczPQNR2U222dDjSFpxubjdhkLzotACQCAC8kuKNF3e86qzB7Tk7q2S3zO9pMqLrXYZTw4JwIlAAAuZM/pbJXaKUyWyy8u08GsXLuOCedCoAQAwIXsPZMtO612V7DvTI79B4XTIFACAOBCsgtK5GbnhuRm07Vx4boIlAAAuBB3s0lV0YDarSqmPeE0CJQAALiQFvXr2P0eSoshhdX3teuYcC4ESgAAXEh0s7pVMu6DVTQunAOBEgAAFxLRyE+hQb6y1wK12SS1b1ZXjfy97TQinBGBEgAAF2IymTShe5jslSgthq6NB5dGoAQAwMU82iVUIYG+crMxVLqZTWoXHKDhMcH2KQxOi0AJAICL8fZw0wdjY23a7W3SteXuD8bGyt2NOOHq+BMAAIAL6tQiUB8+0uE/Tc7vLVqaTddmJ//5eJxaN/avkvrgXAiUAAC4qEGRQRoVeEa+ZstdL3+bTVKTut6a9fNu6hvZqGoLhNMgUAIA4IIMw9C3336rhmUXtfT5eE3o/oB8Pd0kXWt+Xs503fd1PEz6ZZ9WWvm7PooLC3JE2aihTIZhVEXDfAAAUINt27ZNycnJGjNmjNq2bStJyi8u1Zr08/rh1BUdPJer/OIy+Xm5K7KJv3KO7VGoe66efupnDq4cNZG7owsAAADVKzMzU8uWLVNcXJw1TEqSr6e7hkY31dDoppXes3t3kRYtWqScnBwFBARUZ7lwAix5AwDgQoqKijR37lw1bNhQiYmJd/2+yMhIubm5ad++fVVYHZwVgRIAABdhGIa+++475eXlafTo0XJ3v/uFSm9vb7Vq1YpAiZsiUAIA4CJ27dqlPXv26KGHHlL9+vXv+f1t27bVyZMnlZOTUwXVwZkRKAEAcAFZWVlKSUlRx44dFR0dfV9jREZGymw2a//+/XauDs6OQAkAQC1XXFysuXPnKigoSIMHD77vcVj2xq0QKAEAqOVSUlKUnZ2t0aNHy8PDw6ax2rZtqxMnTrDsjQoIlAAA1GK7d+9WWlqahg4dqoYNG9o8XlRUFMveqIRACQBALXX+/Hl99913iomJUUxMjF3GZNkbN0OgBACgFiopKdG8efNUt25dJSUl2XXs8mXv3Nxcu44L50WgBACgFlq6dKkuXbqkMWPGyNPT065jly97M0uJcgRKAABqmT179mjnzp0aMmSIGjVqZPfxWfbGjQiUAADUIhcvXtSSJUsUHR2tDh06VNl1WPbG9QiUAADUEqWlpZo3b578/Pw0dOhQmUymKrtWeZNzZikhESgBAKg1li1bpvPnz2vMmDHy8vKq0mv5+Piw7A0rAiUAALXAvn37tH37diUmJqpJkybVck2WvVGOQAkAgJO7fPmyFi9erLZt2youLq7arsuzvVGOQAkAgBMrKyvTvHnz5Ovrq2HDhlXpfZM38vHxUcuWLVn2BoESAABntmLFCmVmZmr06NHy9vau9uu3bdtWGRkZLHu7OAIlAABO6sCBA9q6dasGDhyo4OBgh9TAs70hESgBAHBKV65c0TfffKOoqCh17drVYXWw7A2JQAkAgNMpKyvT/Pnz5eXlpeHDh1frfZM3w7I3CJQAADiZ1atX68yZMxo9erR8fHwcXQ7L3iBQAgDgTA4dOqRNmzapf//+at68uaPLkcSyNwiUAAA4jZycHC1cuFARERGKj493dDkVlC975+XlOboUOACBEgAAJ2CxWDR//ny5u7tr5MiRDr9v8kYse7s2AiUAAE5g7dq1OnnypEaPHi1fX19Hl1OJj4+PHnjgAZa9XRSBEgCAGu7IkSPasGGD+vbtq9DQUEeXc0tt27bV8ePHWfZ2QQRKAABqsNzcXC1cuFCtWrVSz549HV3ObUVFRclkMrHs7YIIlAAA1FAWi0ULFiyQyWTSqFGjatx9kzfy9fVlt7eLIlACAFBDrV+/XhkZGXr44YdVp04dR5dzV9jt7ZoIlAAA1EDHjh3TunXr1Lt3bz3wwAOOLueuRUVFSRLL3i6GQAkAQA1z9epVLViwQGFhYerdu7ejy7knLHu7JgIlAAA1iGEYWrhwoQzD0MMPPyyz2fn+qmbZ2/U4359SAABqsY0bN+rIkSMaNWqU/P39HV3OfWHZ2/UQKAEAqCFOnDihNWvWqFevXmrVqpWjy7lvvr6+NDl3MQRKAABqgPz8fM2bN08hISFKSEhwdDk2a9eunTIyMnT16lVHl4JqQKAEAMDBDMPQokWLVFpaqp/85CdOed/kjVj2di3O/ycWAAAnt3nzZh06dEijRo1SQECAo8uxC5a9XQuBEgAABzp16pRWrVql7t27KyIiwtHl2FX5s71Z9q79CJQAADhIQUGB5s2bp+DgYPXr18/R5dhdmzZtJLHs7QoIlAAAOIBhGPrmm29UVFSkn/zkJ3Jzc3N0SXbHsrfrIFACAOAAqampSk9P14gRI1SvXj1Hl1NlWPZ2DQRKAACq2ZkzZ7R8+XJ17drVuhu6tmK3t2sgUAIAUI0KCws1b948NWnSRAMHDnR0OVWuTp06LHu7AAIlAADVxDAMffvtt8rPz9fo0aNrxX2TBQUFio2NVZMmTWQymdS2bVvFxsYqMjJSrVq10uOPP6569erZddm7a9euGjt2rF3Ggn0QKAEAqCbbt2/Xvn37NHz4cAUGBjq6HLvw8fFRWlqannnmGUlScnKy0tLSlJ6erpUrV2rz5s2aOHGicnNzdeDAAbtcMzQ0VMHBwXYZC/ZBoAQAoBpkZmZq2bJliouLU9u2bR1dTrV44IEH9Pvf/14XL17U0aNHtXfvXruMO3fuXH344Yd2GQv2QaAEAKCKFRUVae7cuWrYsKESExMdXU61atGihaRry/0zZ85U586dFRcXp5iYGA0aNEjbt2+3nlu+fB4UFKSwsDCtWbNG/fr1U3h4uEwmk+bPn1/h9et99dVXiouLU8eOHdW+fXs99NBDWrRoUTV+UtdGoAQAoAoZhqHvvvtOeXl5Gj16tNzd3R1dUrU6ePCgJKljx47auHGjfv3rX2v79u3avXu3Jk6cqH79+unUqVOS/m/5fPjw4bp06ZK++uorLV++XIcOHVLfvn3l5uZmff16Gzdu1MSJE/XVV19p586d2rVrlyIiIpjFrEYESgAAqtCuXbu0Z88ePfTQQ6pfv76jy6lW27Zt07vvvqvQ0FA9++yzmjx5coXXx40bJ19fX3311VeV3pubm6spU6bI3d1dJpNJs2bN0oABA256nS1btsjb21shISGSJDc3N7344osaPXq03T8Tbo5ACQBAFcnKylJKSoo6duyo6OhoR5dTLZKSkhQbG6uoqCg999xzGj9+vHbt2qWgoCA1a9ZM7777rh588EHFxsYqNjZWly5d0pEjRyqNExQUpKZNm1q/b9Sokfz8/G56zT59+ig/P1+dOnXS1KlTderUKTVt2lTPP/98lX1OVESgBAC4rPT0dMXGxsrPz08JCQl2Hbu4uFhz585VUFCQBg8ebNexa7LyXd4HDhxQamqq3nvvPQUFBWnPnj16+umn5evrq2nTpiktLU1paWkKDg5WUVFRpXH8/f3v+pqdO3fWpk2bFB0drT/84Q8KCQlR7969lZqaas+PhtsgUAIAnMKZM2cq9DscN27cbc9fsmSJTCaTgoKCFBsbq7S0NJ08eVKNGjXS1KlTJUmRkZFKS0tTXFyc3etNSUlRdna2Ro8eLQ8PD7uP72xmzZqlwsJCPfnkkzp8+LDdx+/cubNmz56trKwsTZ8+XceOHdPAgQN1+fJlu18LlREoAQBOITg42Nrv0GQyac6cObd9nN9bb70lSRo+fLjS0tIUGxsrLy8vtWjRQkFBQVVa6+7du5WWlqahQ4eqYcOGVXotZ1E+CxkVFaVjx44pPz9fZWVlysrKsnnsr776SosXL5Z0bWZz0qRJ+tvf/qacnBwdO3bM5vFxZwRKAIDTGTVqlAzDsIbGGy1ZssTaruZ6jRo10rZt2/Too49WWW0XLlzQd999p5iYGMXExFTZdZzNQw89JOna741hGNq/f7/efvttFRQU2Dz2wYMH9ac//ck6G2mxWLR+/XoFBwe7TM9PRyNQAgCcTnR0tEaNGqXZs2ff9OkrU6ZM0WuvvVbh2NatWxUbGytPT09NmDDhjteYNm2aevXqZe2Z2LNnTy1fvrzCOX379rUuwaelpSkxMVHt2rXTRx99ZNPncyblvSM/+eQTSf+3KedGCQkJmjFjhpYtW6apU6fqsccek7u7u5o1a6bFixere/fukq49VnHx4sXWWxymTJliHaOsrEyxsbEVXt+0aZNGjRqlyMhI9ejRQ7GxsWrfvr1OnDihlStXytvbu1p+Dq7OZBiG4egiAAC4W+WtZ0aNGqUOHTpo3Lhx+vLLL62vL1myRJ999pnmz58vk8mkJ598Up9//rn19bCwMCUkJFQ4Vr4hZ+3atdZjbdq00Z///GcNGzbM+trQoUO1YcMGdezYsUI9b775pp5++mkNHjxY+/bt04kTJ/T111/rxIkTqlevnr1/BE5v+/btSk5O1u9//3v5+vo6uhzYATOUAACnFBMToxEjRmjWrFlKT0+3Hp8yZYpef/11m8dfuHChNUxK10JndHS0pk+fftPz+/Xrpx9++EFDhgzRpEmTlJubq23bttlcR23Upk0bSbLbs73heARKAIDTev3112WxWKz3Ui5ZskTBwcF2uXfRbDZr4sSJ6tChg2JiYhQbG6sff/zxpj0TpWvhKDo6Wh06dFCDBg0kXXt+NyqrU6eOWrRooX379jm6FNgJgRIA4LQ6dOigYcOGWWcp7TU7efbsWfXs2VNXrlzRunXrrLu24+LiKvVMtFgskq414h46dKhMJpPM5mt/vZaVldlcS23Vtm1bHT16VPn5+Y4uBXZAoAQAOLXXX39dZWVlGjlypBo3blzh/sb7tWTJEp0/f16vvvqqAgICbntu+YzlmDFj5OXlZfO1XQXL3rULgRIA4NTi4uKUlJSkAwcO2GV2Uvq/nonlM43lzp49W+H7ffv26fTp05KkJk2a2OXarsLPz49l71qEQAkAcHrTpk3Thg0b1LlzZ7uMN2jQIHl5een9999XSUmJJGnmzJk6ePCg9ZzLly9r8eLFNC63AcvetQdtgwAATqGgoEDx8fHWjS5NmjTR5s2b5ePjU+ncDz74QDNmzNDu3bsVGBio0NBQffrpp/rFL36hffv2yc/PT6GhoZo9e7YeeeQR66MAw8PDtWjRIoWFhSklJUWvvvqqsrKyFB4erri4OK1bt0779+9XeHi4Jk6cqP/93/9VVlaWzp07p5iYGH300Uc6d+6cXn/9de3fv18hISEaOXKk/v73v1frz8pZ5OXl6a9//asShwyVd5NWOnbhqorLLPL3dldUkwC1CPKV2WxydJm4CwRKAADu0dKlS7Vt2zZNmjRJwcHBji7HKRmGoS3HLmnK1+uUnucpiyoHxwBvd/20c6ge79ZCIUH0q6zJCJQAANyD9PR0zZo1S4mJierWrZujy3FKF/KK9OqiPVq295zMJslymyTiZjLJZJL+a2BrPd2rpdzduFuvJiJQAgBwl65cuaJPP/1ULVq00COPPCKTieXYe5Wematx07You7BEZbdLkjfRvVV9TX8iTr6e7lVUHe4XMR8AgLtQVlam+fPny8vLSyNGjCBM3oeTl/L1yD8331eYlKQtRy/q5zO339d7UbUIlAAA3IXVq1frzJkzGj169E03AuH2LBZDv5uTptyi0vsOhBZD+v7IRf3r+2N2rg62IlACAHAHhw4d0qZNm9S/f381b97c0eU4pXk7T2l7xmW7zC7+edkBnblSYIeqYC8ESgAAbiMnJ0cLFy5URESE4uPjHV2OUzIMQ9M2HL3JPu77U2Yx9HXqCTuNBnsgUAIAcAsWi0Xz58+Xu7u7Ro4cyX2T92nvmRwdysqTve58tBjS19tOiH3FNQeBEgCAW1i7dq1Onjyp0aNHy9eXPoj3a9eJy3abnSx3Ia9YmTmFdh4V94tACQDATRw5ckQbNmxQ3759FRoa6uhynNqBc7lyq4In3hzIzLX7mLg/NHICALgsi8XQ5fxiFZdZVM/HUz6ebpKk3NxcLVy4UC1btlTPnj0dXKXzMQxDxcXFys/PV35+vjIvXJalCpanrxaV2n1M3B8CJQDA5WTlFGrWtpOaueW4LuQVS5JMkhIiG+rxri2UsXWpTCaTRo0a5fL3TVosFhUUFKigoED5+fnWr9f/+mZfLRaLdYwTJS1kGPVl74VRT3cWWmsKAiUAwKUs25upX329S6UWS4VH/hmS1h+6oDXp59XU7KlpT4yQn5+fw+qsCqWlpbcMg+W/vvF4YeHN71P08vKSj4+PfH195ePjo7p166pJkybW7319fa2/DtxzSR+uPS57T1KGN6xdvz/OjEAJAHAZqw+c0zNf7pAM3XTHcXmPxHOWAL2xOktftnxA3h5u1VvkXTAMQ0VFRfc8a1hSUlJpLJPJVCEY+vr6qmHDhpVC4Y1f3dzu/ufSucBTljXH7fgTkHw93RRWv45dx8T9I1ACAFxCUWmZfjdn9y3D5PUsknaevKx/b8nQz3u1rNK6ypeU72XW8MYl5XLu7u6VgmBQUNBNZw3Lv3p7e1f5sn7nFoGqX8dTF68W22U8N7NJI2KCZa6CjT64PwRKAIBLSNmTqeyCyjN0t2IY0uebjmtSjwfuOriUlJTc86zh7ZaUrw9/devWVdOmTW86W1geFD08PO7681UndzeznowP04erDsoej+Eusxh6rFsL2weC3RAoAQAu4avUEzKbdE+B5vSVAn23LV1RQW53nDXMz89XaWnlXcfXLymXB8CGDRvedtbwXpeUncFTvR7Q7O0ndTa7wKZQaTZJP+0conbBde1XHGxmMmgzDwBwAV3/tFLncoru+X093I+ptftFSdeWlG91T+GtZg29vLxcfqd4uW3HL+mn07bIYjHu66k5bmaTmtb11tLf9JafF3NiNQm/GwAAl3C/0yd9+iTokc4hNXpJ2Vl0DgvSx4921HNf7ZRhGPc0U+lmNqlxgJe+/nk3wmQNRAMnAIBLaBboo/uZKGzTorHq1q1LmLSTwe2aaM7T8Woe6HtXvx/lt6/2jWykb57tqZBAHoFZExEoAQAu4ZG4kHuepWzk76X4lvWrpiAX1qlFoJb/trdeSoxSk7rekq41lnc3m6z/K9cxNFCfPtZJ0x7vpIb+Xg6qGHfCnDEAoNbLyspS7o9r5KFAlcisa/Hl9swm6Yn4FnJ3Y+6lKnh7uOmZPq30814t9cOpK9pzOltHz19VcZlF/t7uatMkQB1C66kFvSadAptyAAC1VlFRkdauXautW7cqMDBQ3pE99Paas3d8n5vZpMjGfpr3THf5ejL3AtwJ/5UAAGodwzC0Z88erVixQkVFRerXr5+6desmd3d3BdY/pZfm/yCZ/u/JOOXK2wq1Cw7QZ092JkwCd4kZSgBArXLu3DklJyfrxIkTatu2rQYNGqS6dSv2LDx+4aq+2Jqhr1NP6GpxmfV4x9B6ejI+TEMebCpPd5a6gbtFoAQA1AqFhYVas2aNtm3bpvr162vIkCFq2fL2j00sLCnT2exCFZWWKaiOpxr5e1dTtUDtQqAEADg1wzC0e/durVy5UsXFxerTp4+6detW6540A9Rk3BwCAHBaZ8+eVUpKik6ePKkHH3xQAwcOVEBAgKPLAlwOM5QAAKdTUFCg1atXa8eOHWrQoIGSkpIUFhbm6LIAl0WgBAA4DcMwtGvXLq1atUqlpaVKSEhQly5dWN4GHIwlbwCAUzhz5oySk5N1+vRptW/fXgMGDJC/v7+jywIgZigBADVcfn6+dXm7cePGGjJkiFq0aOHosgBch0AJAKiRLBaLdu7cqdWrV8tisahv377q3LmzzGb6QwI1DUveAIAa59SpU0pJSdGZM2cUGxur/v37y8/Pz9FlAbgFZigBADXG1atXtWrVKu3atUtNmjRRUlKSQkJCHF0WgDsgUAIAHM5isWj79u1as2aNJKlfv37q1KkTy9uAk2DJGwDgUCdPnlRycrIyMzPVoUMH9e/fX3Xq1HF0WQDuATOUAACHyMvL08qVK7V7924FBwcrKSlJzZo1c3RZAO4DgRIAUK0sFou2bdumNWvWyGw2q3///urQoQPL24ATY8kbAFBtMjIylJycrKysLHXq1En9+vWTr6+vo8sCYCNmKAEAVS43N1crVqzQnj171KxZMyUlJSk4ONjRZQGwEwIlAKDKlJWVKTU1VWvXrpW7u7sGDBig2NhYmUwmR5cGwI5Y8gYAVInjx48rOTlZFy5cUFxcnPr27SsfHx9HlwWgCjBDCQCwq5ycHK1YsUI//vijQkJClJSUpCZNmji6LABViEAJALCLsrIybdmyRevXr5eHh4cGDBigmJgYlrcBF8CSNwDAZkePHlVKSoouXryoLl26KCEhQd7e3o4uC0A1YYYSAHDfsrOztXz5cu3bt0+hoaFKSkpS48aNHV0WgGpGoAQA3LPS0lJt3rxZGzZskJeXlwYOHKjo6GiWtwEXxZI3AOCeHD58WCkpKbp8+bK6du2qhIQEeXl5ObosAA7EDCUA4K5cuXJFy5Yt04EDBxQWFqYhQ4aoUaNGji4LQA1AoAQA3FZpaam+//57bdy4UT4+Pho0aJDatWvH8jYAK5a8AQC3dPDgQS1dulTZ2dnq1q2b+vTpI09PT0eXBaCGYYYSAFDJ5cuXtXTpUh08eFAtW7bUkCFD1KBBA0eXBaCGIlACAKxKSkq0ceNGff/996pTp44SExPVpk0blrcB3BZL3gAAGYah9PR0LVu2TDk5Oerevbt69erF8jaAu8IMJQC4uEuXLiklJUWHDx9WeHi4Bg8erPr16zu6LABOhEAJAC6qpKREGzZs0KZNm+Tn56fBgwcrMjKS5W0A94wlbwBwMYZhaP/+/Vq+fLny8vLUo0cP9ezZUx4eHo4uDYCTYoYSAFzIhQsXlJKSoqNHjyoiIkKDBw9WUFCQo8sC4OQIlADgAoqLi7V+/Xpt3rxZdevW1eDBg9W6dWtHlwWgliBQAqgVCgoKFB8fr8zMTJ07d05t2rSRp6enSktLlZ2drebNm+uVV17R8OHDHV1qtTIMQ/v27dPy5cuVn5+vnj17qkePHnJ3544nAPZDoARQq0yePFlvvvmmjh07prCwMElSYWGhnnrqKX311VdauXKl+vXr59giq8n58+eVkpKiY8eOKTIyUomJiQoMDHR0WQBqIbOjCwCAqubt7a0XXnhBhmHo3//+t6PLqXJFRUVavny5PvnkE2VnZ+vRRx/VT3/6U8IkgCpDoATgEkpLSyVJFy9etB4rKSnRlClT1Lp1a0VFRally5Z64YUXdPXqVes548ePV2hoqEwmk9atW6dRo0YpKipKUVFR+u6771RWVqaXX35ZcXFxatGihd5+++1K187JydHzzz+vsLAwRUVFqV27dvrHP/5h989oGIb27NmjqVOnatu2berTp49++ctfKiIiwu7XAoDrcRMNgFrv0qVLeuuttyRJffv2tR5/9NFHtWXLFq1evVoRERE6d+6c+vfvr9TUVK1Zs0bu7u768ssv9fnnn2vixIn6+9//ri+++EJ16tTRH/7wB/3kJz/RSy+9pEmTJumdd97RkiVLNGzYMPXo0UMJCQmSroXWgQMHKi8vT6mpqWrUqJG2bt2qvn37Kjc3Vy+99JJdPmNWVpaSk5OVkZGhNm3aaNCgQapXr55dxgaAO2GGEkCtlJSUpNjYWDVv3lwNGjTQ5s2b9eKLL+r555+XJK1du1bz5s3T73//e+sMXuPGjTVlyhRt3LhRX331VaUxH3vsMdWpU0eS9NOf/lRFRUW6cuWK9f0PPfSQ/Pz8tHLlSut7vvjiC6Wmpmry5Mlq1KiRJKlr164aN26c3n77beXn59v0OQsLC7V06VJ98sknysvL02OPPaaxY8cSJgFUK2YoAdRKycnJCgsLU2FhoSZNmiRJeu2116zNu5ctWybpWri7Xnx8vCRp6dKleuKJJyq8dn2bnfLejTe23gkKCtLZs2et3y9fvlyS1LNnzwrnRUdH61//+pd1afpeGYahH374QStWrFBxcbH69eun+Ph4ubm53fNYAGArAiWAWs3b21sfffSRHnjgAb3wwgv69NNPJV1r8C2pUlPv8mdYnz9/vtJY5bOTkqyPJ7z+WPnxsrIy6/fl1xkyZEiF8woKCtS4cWNdvnz5nj9TZmamkpOTdfLkSbVr106DBg1SQEDAPY8DAPZCoARQ6wUFBenpp5/Whx9+qFdeeUVhYWFq0KCBpGv3V16vfNNOw4YN7XLt8uusW7dOdevWtWmswsJCrV69Wtu3b1f9+vX1+OOPq2XLlvYoEwBswj2UAFzCb37zG5lMJv3xj3+UJCUmJkqStm7dWuG8LVu2SJIGDx5sl+uWX2fXrl0VjmdnZ+vhhx+uFGhvxjAM7dq1Sx999JF2796tAQMG6JlnniFMAqgxCJQAXELz5s31yCOPaMaMGTpx4oQSEhI0evRo/eUvf9GRI0ckXdsp/cYbb6hnz5569NFH7XLd8ePHKz4+Xi+++KKysrIkXVvu/s1vfiOz2XzH52ifPXtW//rXv7R48WK1atVKzz//vLp37869kgBqFJ6UA6BWuNmjF9u2bat58+ZZz9m9e7diY2MVEhKi1q1bKyUlRX/84x/1xRdfyM3NTUVFRRo1apTeeust672Rzz33nL799ludPHlSbdq00auvvipJevvtt7V//36FhIToJz/5iZ555hk98sgj2rdvn/z8/BQREWGd/czNzdVrr72mRYsWyd/fX25ubhoyZIjeeOMNeXt73/LzrFq1Sjt27FCjRo00ZMgQ65N/AKCmIVACQA1iGIZ27typVatWyWKxKCEhQZ07d2ZGEkCNxqYcAKghTp8+reTkZJ05c0YxMTEaMGCA/Pz8HF0WANwRM5QA4GD5+flatWqVdu7cqcaNGyspKUmhoaGOLgsA7hqBEgAcxGKxaMeOHVq9erUMw1C/fv0UFxcns5n9kgCcC0veAOAAp06dUnJyss6ePavY2FgNGDCgUpN0AHAWzFACQDW6evWqVq5cqbS0NDVt2lRJSUlq3ry5o8sCAJsQKAGgGlgsFm3fvl1r1qyRJPXv318dO3ZkeRtArcCSNwBUsRMnTig5OVnnzp1Tx44d1b9/f/n6+jq6LACwG2YoAaCK5OXlaeXKldq9e7eCg4OVlJSkZs2aObosALA7AiUA2JnFYlFqaqrWrl0rs9msAQMGqEOHDjKZTI4uDQCqBEveAGBHx48fV0pKirKyshQXF6d+/frJx8fH0WUBQJVihhIA7CA3N1crVqzQnj171Lx5cyUlJalp06aOLgsAqgWBEgBsUFZWpq1bt2rdunVyd3fXgAEDFBsby/I2AJfCkjcA3Kdjx44pOTlZFy9eVFxcnPr27cvyNgCXxAwlANzC5avFWr4vU/nFZereqoEim/hLknJycrR8+XLt3btXoaGhGjJkiJo0aeLgagHAcQiUAHATC3ed0ovzf1BJmSGTJEPSwx2CNbJpnjZu2CBPT08NHDhQ7du3Z3kbgMsjUALADY6cz9PAD9bJUun/HQ11cT+ln/UIU0JCgry9vR1RHgDUONxDCQA3mLP95LVZx5v8e/t0nXANHjzAAVUBQM3FQ2QB4Abnc4t0bZH7RiZdyi+t7nIAoMYjUALAdQzDUAO3ApVVXu+W2SRFN6vrgKoAoGZjyRsA/uPcuXNaunSp8o6dlJ97jArKTCq7LlcahvR833DHFQgANRSbcgC4vIKCAq1Zs0bbt29XUFCQBg8eLLd6TfX/LdyjzUcvSpKaB/ro1aQ2GvIgT78BgBsRKAG4LIvFoh07dmjNmjUqKytTQkKCunTpIjc3N+s5F/OKVFBSpuC6PjKbaQ8EADdDoATgko4fP66lS5fq3Llzio2NVf/+/eXn5+fosgDAKREoAbiU7OxsrVixQnv37lXz5s01ePBgNWvWzNFlAYBTI1ACcAklJSX6/vvv9f3338vb21sDBgzgKTcAYCfs8gZQqxmGof3792v58uXKzc1VfHy8evXqJS8vL0eXBgC1BjOUAGqt8jZAx48fV+vWrTVo0CDVr1/f0WUBQK1DoARQ69ysDVB4OP0jAaCqECgB1Bo3tgHq06ePunbtWqENEADA/riHEkCtkJGRoZSUFNoAAYADMEMJwKnRBggAHI9ACcAplZSUaNOmTdq4cSNtgADAwVjyBuBUbmwD1K1bN/Xu3Zs2QADgQMxQAnAatAECgJqJQAmgxruxDVBiYqIiIiIcXRYA4D8IlABqLIvFop07d2r16tW0AQKAGox7KAHUSLQBAgDnwQwlgBrl+jZAzZo105AhQ2gDBAA1HIESQI1AGyAAcF4seQNwKNoAAYDzY4YSgMNkZWVp6dKlOnbsmCIiIpSYmEgbIABwQgRKANWONkAAULsQKAFUG9oAAUDtxD2UAKpFRkaGli5dqszMTNoAAUAtwwwlgCp1YxugwYMHq3nz5o4uCwBgRwRKAFXi+jZAXl5eGjBggGJiYmgDBAC1EEveAOzKMAwdOHBAy5cvV05ODm2AAMAFMEMJwG5oAwQArolACcBmBQUFWrt2rbZt26bAwEANHjyYNkAA4EIIlADu241tgHr37q1u3brRBggAXAz3UAK4L9e3AYqJiVH//v3l7+/v6LIAAA7ADCWAe5Kdna2VK1fqxx9/pA0QAEASgRLAXSopKdHmzZu1ceNGeXp60gYIAGDFkjeA27qxDVDXrl3Vp08f2gABAKyYoQRwS7QBAgDcDQIlgEpubAOUmJio1q1bO7osAEANRaAEYGWxWLRr1y6tWrWKNkAAgLtmdnQBQG305ZdfKjY2ViaTSZMnT3Z0OXflxIkTmjZtmpYsWaLWrVvr+eefV48ePQiTAIA7IlCiVjlz5oxiY2PVpEkTmUwm/fvf/650zuLFixUbGys/Pz+Fh4crKSnJ7nWMHz9eaWlpdh+3KuTk5Gj+/Pn67LPPZDabNWnSJI0cOZKekgCAu0agRK0SHBystLQ0PfPMM5KkZ555Rnv37q1wzvDhw5WWlqa4uDhNnz5dycnJjijV4UpLS7V+/XpNnTpVx44d04gRI/TUU0/RUxIAcM9oG4Ra66GHHtKKFSs0evRobdu2TX5+fo4uqUagDRAAwN6YoUSt1alTJ3388cc6cOCAnnrqqTueP23aNPXq1UtxcXGKiYlRz549tXz5cuvrubm5io2NVVBQkMLCwjRv3jzFx8erVatWatmypf7xj3/cVV05OTl6/vnnFRYWpqioKLVr167Se/Py8vSrX/1K0dHR6tChg2JiYvTcc8/p6NGj9/ZDuMH58+f1xRdfaM6cOWrQoIF++ctfatCgQYRJAIBNmKFErTZp0iRt2bJF06dPV8+ePfX888/f8ty//vWv+vOf/6xhw4ZJktauXauhQ4dqw4YN6tixo/z9/ZWWlqYJEyZo1qxZWrhwodavXy8PDw/NmDFDEyZMkL+/vx5//PFbXqOkpEQDBw5UXl6eUlNT1ahRI23dulV9+/ZVbm6uXnrpJUnS7373O2VkZGjnzp3y8PBQZmamevfurc6dO6tly5b3/HO4sQ3QuHHjaAMEALAbZijv0Y2bPsaNG3fb85csWSKTyaSgoCDFxsY6zUaN2mTq1KmKi4vTCy+8oNTU1Fuet3DhQmuYlKSEhARFR0dr+vTplc4tKirSu+++Kw8PD0nSk08+qQ4dOui1117T7TpxffHFF0pNTdXkyZPVqFEjSVLXrl01btw4vf3228rPz5ckbd68WS1atLCO36RJE7333ntq27btPX12i8WiHTt2aOrUqUpLS1P//v31y1/+kjAJALArAuU9un7Th8lk0pw5c7R///5bnv/WW29J+r+NILGxsdVUKcp5eXlp/vz5CggI0JgxY3Tp0qWbnmc2mzVx4kTrEnNsbKx+/PFHHTlypNK5gYGBlTavdOnSRRkZGTp9+vQtaylfQu/Zs2eF49HR0crNzdW2bdskSf3799f//u//auzYsVqyZIkKCgo0YsQIdenS5a4/9/VtgCIiIqxtgNzdWZgAANgXgdIGo0aNkmEY1tB4oyVLlqhFixbVXBVuJjQ0VF999ZVOnTqlxx9/vNIs4tmzZ9WzZ09duXJF69at0+7du607wYuKiiqNFxAQUOlYUFCQJN02UF64cEGSNGTIEMXGxlr/9z//8z9q3LixLl++LEn64IMP9Mknn+jIkSMaNmyYGjVqpGeffVY5OTl3/Ky0AQIAVDcCpQ2io6M1atQozZ49WwcOHKj0+pQpU/Taa6/d9L2HDx/W2LFjFRoaqoiICMXFxWnu3LkVzrnbjRmzZ89Wp06dFBERoejoaCUkJOgf//iHysrK7vp606dPV9OmTWUymdS+fXvNnj1b0rWl3bp161ZY9h0+fLiCgoIUHh6urVu33vsPzkEGDhyot956S8nJyXr77bcrvLZkyRKdP39er7766k3D4o2ys7MrHbt48aIkqVmzZrd8X4MGDSRJ69atU1pamvV/6enpyszM1MiRIyVdmy19+umntWPHDuumok8//VTPPffcLce+sQ3Q8OHDaQMEAKgWBEobvf766zedpVyyZIlCQkIUHR1d6T0ZGRnq1q2bPD09dfToUR06dEivv/66xo0bp08++cR63u9+9zulp6dr586d2rVrl5YtW6YVK1Zo/fr11nOmTp2qxx57TG+99ZYOHTqkH374QYMGDdJzzz2n3Nzcu77eU089pX/+85/WMR955BFJ0sqVK5WTk6NFixZZr7l48WKFhIRo06ZN6tq1q31+kNXklVde0YgRI/TGG29o37591uPls5Bmc8X/JM6ePXvTca5cuaJTp05VOJaamqoWLVrcNlAmJiZKknbt2lXheHZ2th5++GHrcvykSZOs91NGRkbqgw8+0NChQ7V79+5KY5a3Afr444+1bt06xcXF6fnnn1eHDh1kMpluWQsAAPZCoLRRTEyMRowYoVmzZik9Pd16fMqUKXr99ddv+p433nhDOTk5+uCDD6z3sw0fPlxJSUl66aWXlJeXJ+nOGzNyc3P1yiuvaNiwYdanvZhMJr388stq3ry5NUzc7fUGDhyoOnXq6JtvvrHWumDBAsXFxWnlypXW8w4fPqyAgADrphJnYjKZNHPmTLVq1Urnz5+3Hi9vnfP++++rpKREkjRz5kwdPHjwpuP4+fnptddes547Y8YMpaWl6a233rptiBs/frzi4+P14osvKisrS9K1Hdi/+c1vZDabrcvmq1at0kcffWRdmj9//rz27t2rAQMGVBivvA3Q7NmzK7QB8vb2vs+fEAAA945AaQevv/66LBaLdZZyyZIlCg4OVkxMzE3PX7ZsmVq2bKmGDRtWOB4fH6+cnBxt2rRJ0p03ZmzatEl5eXmVNmqYzWadPHlSdevWvafreXt7KzEx0Rooy8rKtH79ev31r39VUVGRUlJSJF3bDT1ixIj7/nlVpfJd+J988ok++eQTxcbG6uTJkxXOCQgI0IIFC1SnTh3rsdatW2vhwoU6cOCAHnjgASUkJOiHH35QXFyctm/frtjYWF25csV6fv369TVu3Dj169dPrVq10uTJk/Xxxx9bWwaVP8tbkj755BNrEPTw8NCyZcvUvXt3denSRdHR0YqPj1fTpk31xRdfWMefPHmyli1bpvbt26tDhw7q27evHn30Ub3zzjuSpMLCQi1dulT/8z//oytXrmjcuHF69NFHrUvqAABUJ7Z72kGHDh00bNgwzZo1S6+99pqmTJlSYen6RhcuXNADDzxQ6Xj9+vUlyTpz9sEHH6hdu3b69NNPNWzYMPn5+enxxx/XO++8o4CAAOsGj/JZLVuvJ0kjR47UggUL9OOPP+rChQvq0qWLevbsqaZNm2rhwoUaM2aMFi5cqJkzZ97hp+IY5bvw7+TBBx+0zriWGzJkiIYMGXLX1xo0aJAGDRp009fGjx+v8ePH3/Q1f39/ffjhh/rwww9vOfaECRM0YcKESsfL2wCtXr1apaWl6t+/v7p27crObQCAQ/G3kJ28/vrr+vbbbzVy5EiFh4erY8eOtzy3QYMGN21dU76po3wmsXxjxtNPP6309HR98skn+vvf/67c3Fz9+9//ts5G3aoNzr1eT7r2uEJ3d3ctWrRIWVlZGjlypEwmk4YPH65Zs2YpIyNDeXl5Cg8Pv8NPBPZ24sQJpaSkKDMzUzExMerfvz87twEANQJL3nYSFxenpKQkHThw4Jb3TpZLTEzU0aNHrTOM5bZs2aKAgAB1795d0p03ZnTv3l1+fn6VmnUXFxerZ8+e1vv/7vZ60rX+ir1799aiRYu0dOlS64zdyJEjlZ2drd/+9rcaPnz4vf54YIOcnBwtWLCANkAAgBqLQGlH06ZN04YNG9S5c+fbnjd58mQFBATohRdeUGlpqaRr911+9913evfdd+Xn5yfpzhsz/P399ac//Unffvut9f5Gi8WiN998U25ubtanodzt9cqNHDlSO3bsUOvWra2v9evXTwEBAVq0aJG1tY2rKX+W9+LFi633apbff1oVrm8DdPToUdoAAQBqLJNxu+fEoZKCggLFx8crMzNT0rWd15s3b5aPj0+lcz/44APNmDFDu3fvVmBgoEJDQzV//ny1atVKhw8f1iuvvKKtW7fK09NTdevW1UsvvaSxY8da3//5559r5syZOn/+vNzd3VVSUqJRo0bptddek6enp/W8WbNm6c9//rNyc3Pl4+Ojrl276t13361wb+XdXK/cyZMnFRoaqmnTpumpp56yHv/pT3+q77//vtImF9iXYRhKT0/XsmXLlJOTo65du6p3797s3AYA1FgESqAGOX/+vJYuXaqjR48qPDxciYmJ7NwGANR4BEqgBigsLNTatWuVmpqqevXqafDgwYqIiKAxOQDAKRAoAQeyWCzatWuXVq9erZKSEvXu3VvdunWjDRAAwKnwtxbgICdOnNDSpUt19uxZtW/fXgMGDGDnNgDAKTFDCVSznJwcrVy5Unv27FFwcLAGDx6skJAQR5cFAMB9I1AC1aS0tFSbN2/Whg0b5Onpqf79+ys2Npb7JAEATo8lb+Aenc0u0NepJ7Q2/bxyCkvk5+2hHq3q67GuLRQS5Fvp/PI2QMuXL1d2dra6dOmiPn360AYIAFBrMEPpBAzD0P7MXKWdvKL0zBzlFZXJ28Os8IZ+at+8nmJD6snNzCxXVSsqLdNr3+zVvB3X+nBarvsvx2ySDEMaGt1Ufx7dXr6e1/6tdn0boFatWmnw4MG0AQIA1DoEyhrMYjE0b+cpTd9wVAez8mSS5GY2yZBkklRmGDIMqWldb03sHqYn4sPk7eHm4Kprp+JSiyZ+nqpNRy/qdv/FmE1SdLO6+vyJDtr6/QZt27ZNdevWVWJiolq3bs3yNgCgViJQ1lAnL+Xrv+akaVvGZZkk3ek3yWSSwurX0d8eiVX75vWqoULX8udlB/Q/647cNkyWM0lq63VJPTxP0gYIAOASCJQ10IHMHD3yzy3KKypVmeXuf3vcTCaZzdK0x+OUENmoCit0LQXFZer8x5XKKyq96/e4mQyt+213NW8UdOeTAQBwcmZHF4CKsnILNW7aFuUVltxTmJSuLYGXlhn6+b+368cz2VVUoetZsufMPYVJSbIYJi07yO8BAMA1EChrEMMw9MqCPcopLFXZfc4bG7q2WeR3s9NUXGqxa32u6oeTV+R+j5uezCZpz+krVVMQAAA1DDd21SAbD1/QqgNZNo9TZjF0OCtPX6ee0JPdw2wvzMkYhqHi4mIVFRXd8uuNx253/pbC5iqz1Ne9/PvLYkiFJQR6AIBrIFDWIJ9vOi43s+mel7pv5V+bjumJ+BY1fmexYRgqKyu7adC71ddbBcOioiKVlJTc9npms1menp7y8vKq9NXPz6/SsYv7C3Q0Pe+eZo3dzCYF+nrY+JMBAMA5EChriPziUq1Jz5KdsqQMSRkX83UgM1dtmgbYZ9DrWCwWu84CWiy3n83z8PCoEPLKfx0QECBPT89bBsQbv3p5ecnNze2eQrZb40taeGDzPf18Si2GBrVtck/vAQDAWREoa4h9Z3LsFiavt+d0tto0DZBhGCopKbmr2b+7mQUsLb39JhU3N7ebhjpvb29rCLxZQLzVV0fOsnYMDVRkYz8dzMq7q7ZB0rXeoH1aN6zawgAAqCEIlDXEkfN5dh/TLEOzU9bq6MrTKi4u1p06RN0q5NWrV+++ZgFrC5PJpJcHt9HPZmy76/e8PDhKZp5eBABwEQTKGqL4frd134bJZFJgg0bq1b7lHWcBPTw8avy9lo7UN6qRft2tgf625bzMJtNNZ5PNpmubcf5fUhuNiG1W/UUCAOAgBMoaws/L/jN6JpNJbVqFqUePSLuP7WouXryown2r9cvWkdpjCdbGwxclXWsmbzEMGZI6tQjUcwnhNJUHALgcAmUNURUbZ0otRpWM62pKSko0Z84c+fv76+ePDpWXl5eOX7iq749cUG5hqep4uavbA0GKaOzv6FIBAHAIAmUNEd7QT76ebsovLrPruDEh9ew6nqsxDEPfffedLl++rKeeekpeXl6SpLAGdRTWoI6DqwMAoGbgSTk1hLubWaM7NpebnTZyuJmk+Jb11ayej13Gc1U7d+7U7t279dBDD6lRI5ayAQC4GQJlDfJEfNgdd2LfrTJD+nmvB+wylqs6e/asUlJS1KlTJ7Vv397R5QAAUGMRKGuQ8EZ+ei4hXLbOUbqZTRryYBP1i2psl7pcUUFBgebMmaNGjRpp8ODBji4HAIAajUBZw/yqX4Q6hNaT23228HEzm9QkwFv/PeJBO1fmOgzD0KJFi1RYWKixY8fK3Z1bjQEAuB0CZQ3j6W7WjIld1CG03j3PVJpNUrN6Pprzi3jV9/Oqkvpcwffff6+DBw9q1KhRqlevnqPLAQCgxiNQ1kD+3h76+ufd9LsBreVmNt1xttLtPy+P6xyq5F/3YiOODY4fP67Vq1erZ8+eat26taPLAQDAKZgMe+0CQZU4cSlfX27N0KxtJ5VdUFLpdTdZ1LO5p/4wqpseDK7rgAprj9zcXH366adq2LChHn/8cZnN/HsLAIC7QaB0EoZh6NTlAu3PzFF+UZm8PMyKaOSnHWuXKif7in7+8587ukSnZrFYNHPmTF28eFG/+MUv5Ofn5+iSAABwGuw2cBImk0khQb4KCfKtcLygTZQWLFig7Oxs1a3LDOX9WrVqlU6cOKEnn3ySMAkAwD1iTc/JRUREyGw2Kz093dGlOK0DBw5o06ZNGjBggFq0aOHocgAAcDoESifn7e2tsLAwAuV9unTpkhYtWqSoqCjFx8c7uhwAAJwSgbIWiIqK0vHjx1VQUODoUpxKSUmJ5s6dK19fX40YMUKm++z9CQCAqyNQ1gKRkZGyWCw6dOiQo0txKikpKbpw4YLGjh0rb29vR5cDAIDTIlDWAgEBAWrWrJkOHDjg6FKcxq5du7Rr1y4lJSWpSZMmji4HAACnRqCsJSIjI3X48GGVlFTuVYmKMjMzlZycrA4dOqhDhw6OLgcAAKdHoKwloqKiVFJSomPHjjm6lBqtsLBQc+fOVYMGDTRkyBBHlwMAQK1AoKwlGjRooPr167PsfRuGYWjx4sW6evWqxowZIw8PD0eXBABArUCgrCVMJpMiIyOVnp4ui8Xi6HJqpC1btmj//v0aOXKkgoKCHF0OAAC1BoGyFomKilJ+fr5Onjzp6FJqnBMnTmjFihXq3r27oqKiHF0OAAC1CoGyFmnevLn8/PxY9r5BXl6e5s6dq5CQEPXv39/R5QAAUOsQKGuR65e9DcNwdDk1gsVi0YIFC2QYhkaPHi2zmT/yAADYG3+71jJRUVG6fPmysrKyHF1KjbB27VodP35co0ePlr+/v6PLAQCgViJQ1jJhYWHy9PRk2VvSwYMHtWHDBvXr109hYWGOLgcAgFqLQFnLuLu7KyIiQunp6Y4uxaGuXLmihQsXqnXr1urRo4ejywEAoFYjUNZCUVFROnv2rK5cueLoUhyitLRUc+fOlbe3t0aOHCmTyeTokgAAqNUIlLVQRESEzGazy85SLlu2TOfOndOYMWPk4+Pj6HIAAKj1CJS1kJeXl1q2bOmS91H+8MMP2r59u4YMGaLg4GBHlwMAgEsgUNZSkZGRysjIUH5+vqNLqTZZWVlasmSJ2rdvr44dOzq6HAAAXAaBspaKjIyUYRg6dOiQo0upFkVFRZozZ44CAwM1dOhQ7psEAKAaEShrKX9/fzVv3twllr0Nw9C3336r3NxcjRkzRp6eno4uCQAAl0KgrMWioqJ0+PBhlZSUOLqUKpWamqq9e/dq+PDhatCggaPLAQDA5RAoa7GoqCiVlpbqyJEjji6lypw6dUrLly9X165d1a5dO0eXAwCASyJQ1mL169dXgwYNam37oPz8fM2dO1fBwcEaOHCgo8sBAMBlEShruaioKKWnp8tisTi6FLuyWCxasGCBSktLNWbMGLm5uTm6JAAAXBaBspaLiopSQUGBTpw44ehS7Gr9+vU6cuSIHn74YQUEBDi6HAAAXBqBspYLDg6Wv79/rdrtffjwYa1bt04JCQlq1aqVo8sBAMDlEShrOZPJpMjISB04cECGYTi6HJtlZ2drwYIFCg8PV+/evR1dDgAAEIHSJURFRSk7O1vnzp1zdCk2KSsr09y5c+Xh4aFRo0bRvBwAgBqCQOkCwsLC5OXl5fTL3suXL9fZs2c1duxY+fr6OrocAADwHwRKF+Dm5qbWrVs7daD88ccflZqaqsTERDVr1szR5QAAgOsQKF1EZGSkzp07p8uXLzu6lHt24cIFffvtt3rwwQfVuXNnR5cDAABuQKB0EeHh4XJzc3O6JufFxcWaM2eOAgICNGzYMO6bBACgBiJQuggvLy+1bNnSqZa9DcPQkiVLdOXKFY0dO1aenp6OLgkAANwEgdKFREVF6cSJE7p69aqjS7krO3bs0J49ezRs2DA1bNjQ0eUAAIBbIFC6kNatW8swDB08eNDRpdzRmTNntHTpUsXFxSk6OtrR5QAAgNsgULoQPz8/hYSE1Pj7KAsKCjRnzhw1btxYiYmJji4HAADcAYHSxURFRenIkSMqLi52dCk3ZRiGFi5cqOLiYo0ZM0bu7u6OLgkAANwBgdLFREVFqbS0VEeOHHF0KTe1ceNGHTp0SKNGjVK9evUcXQ4AALgLBEoXExQUpEaNGtXI3d5Hjx7VmjVr1KtXL0VERDi6HAAAcJcIlC4oMjJSBw8eVFlZmaNLscrJydGCBQsUFhamhIQER5cDAADuAYHSBUVFRamwsFAnTpxwdCmSpLKyMs2bN09ms1k/+clPZDbzxxIAAGfC39wuqGnTpgoICKgxy96rVq3S6dOnNWbMGNWpU8fR5QAAgHtEoHRBJpNJUVFROnDggAzDcGgt+/fv1+bNmzVw4ECFhIQ4tBYAAHB/CJQuKioqSjk5OcrMzKxw/He/+53Cw8NlMpm0du3aKq3h4sWL+uabb9S2bVt17dq1Sq8FAACqDk3+aoGwsDD5+vpan3Wdl5enI0eOKCQkREFBQZKk4uJi5efn6/jx45Kk0NBQeXt7a//+/WratKl1rA8++EAjRoxQ3759q7TmkpISzZ07V3Xq1NHw4cNlMpmq9HoAAKDqMENZSyQnJystLU1paWmaPn26JGnKlCnWY8nJyRXOd3NzU+vWrR321Jzk5GRdvHhRY8eOlZeXl0NqAAAA9kGgrAX69OkjHx+f257j4+OjPn36VDgWFRWlrKwsXbp0qSrLq2Tnzp1KS0vTQw89pMaNG1frtQEAgP0RKGuBGTNm3DGYNW7cWDNmzNDs2bPVqVMnRUREKDExUfPmzdOqVatu+97k5GRFRkbKbDYrNjZWb7/9tqKiomQymRQSEqKJEydKuvYM7tjYWPn6+ioqKso6+3nu3DlNmjRJLVq0UHh4uIYMGaLMzEzFxMTY5wcAAAAcikDpQqZOnarHHntMkydP1qFDh3T06FEFBARo0qRJOnny5C3f17t3bzVt2lTTp09XWlqaXn31Ve3evVuBgYFKSEjQZ599JunaLOjatWsVFBSk3bt3KzIyUleuXFHPnj2VkZGhnTt36te//rUmTJigL7/8Ui+//HJ1fXQAAFCFCJQuIjc3V6+88ooeeughDRs2TJLk7u6uN998U1evXtWrr7560/fl5OQoKSlJP/vZz/Szn/3MetzLy0uPPvqo5s+fr5ycHOvxWbNm6eGHH7beF/nhhx/q8OHDev/997VixQoVFBTo5Zdf1oQJE/T+++/r2LFjVfipAQBAdSBQuohNmzYpLy+vUnue+Ph4BQYGKiUlpdJ7srOzNWjQIAUEBOiJJ56o9PrEiRNVUFCgr7/+2nrss88+qxA8ly1bJm9vb129elXp6ekaOXKkAgMDFR8fr7KyMq1YscKOnxIAADgCgdJFXLhwQZKsbYTK1alTR/Xq1dPly5crveeZZ55RgwYN9N1332np0qWVXu/UqZOio6OtS9579+5VSUmJYmNjK1w3ICBAq1atUo8ePRQZGSlJql+/viTp/Pnzdvl8AADAcQiULqJBgwaSdNMd3SUlJfL19VVRUVGF42+88YYWLlyojh076qmnntKVK1cqvXfixInaunWr9u3bp88++8y6QadcYGCgLl26pNDQUPXr1896/OLFi5Kkhg0b2vrRAACAgxEoXUT37t3l5+enrVu3VjielZWls2fPqlWrVjpy5EiF16KiouTh4aGZM2fqwoUL+tWvflVp3Mcee0weHh765z//qblz52r8+PHW1ywWi4KDg1VaWmrdJV5uy5YtcnNz08CBA+38SQEAQHUjULoIf39//elPf9KSJUusTc5LS0v1X//1X6pXr57GjBmjAwcO3PS97dq103//93/riy++0KJFiyq81rBhQw0dOlRTp05Vt27dKiypr169Wm3atFGLFi30xhtv6OrVq5Kk1NRUffbZZ/r973+vBx54oGo+MAAAqDYmwzAMRxcB+xk9erTS0tKsj15s3bq1Vq5caX191qxZeu+995Sdna3i4mJ17dpV77zzjk6ePKktW7aopKREM2bM0JEjR9SqVStNnDhRw4cP1/jx47Vnzx75+/urZcuWSk1NtT7q8dtvv9Xw4cO1dOlSJSYmSpLS09M1a9YsDRgwQOHh4XrllVe0cuVK+fj4yN3dXc8995yeffZZh/yMAACAfREoIUnKzMzUp59+qscee0ytWrW6p/eeOnVK8fHxysjIkNls1uXLl/XPf/5TLVq00COPPMJzugEAqOVY8oaka0/SqVu37i2XvW9n9uzZevLJJ2U2m1VaWqq5c+fKx8dHI0eOJEwCAOACCJSQJJlMJuvjEu9m0vpXv/qV1q9fr8LCQk2bNk1PP/20JCklJUVZWVkaM2aMvL29q7psAABQAxAoYRUVFaXc3FydOXPmjucGBARo7NixiouL029/+1uFhoZq9+7d2rlzp5KSktS0adNqqBgAANQE3EMJK4vFovfff1+dOnVS//797+m9586d0/Tp0/Xggw9q+PDhLHUDAOBCmKGEldlsVmRkpNLT0+/pfUVFRZozZ47q16+vpKQkwiQAAC6GQIkKIiMjdf78eeuTbO7EMAwtXrxYV69e1ZgxY+Th4VHFFQIAgJrG3dEFoGZp1aqVSt28NHPNDyr2a6ozVwpkMaT6dTzVrlmAuj5QX6FBvtbzyx+7OHbsWOvzuQEAgGshUMIq4+JVTV1zWAvyH1TZjny5m4/K8p9bbM0mk0ot137do1V9Pdc3XCGeBVqxYoW6deumNm3aOLJ0AADgQGzKgQzD0IzNx/XH5AMqMwyVWW7/R8LNZFKZYaid9xUNa1akn098Um5ubtVULQAAqGmYoXRxhmHo9cV79e8tGXf9nrL//BtkX2FdKd9f40ss8idQAgDgstiU4+L+sfbIPYXJ6xkyaX9mnn7xxQ5Z7jCrCQAAai8CpQvbdzZHf1lxby2CbmQxpE1HLurLrfcXSgEAgPMjULqwN7/da7eekX9aekB5RaV2GQsAADgXAqWLOpyVq63HLt1xA87dyi8u06K003YZCwAAOBcCpYtK3pMpNzs+0cYk6dvdd34GOAAAqH0IlC5q96krMmS/jTSGpD2ns0UXKgAAXA+B0kUdysqTvTdm5xeX6XxekX0HBQAANR6B0kWVllmqaFxmKAEAcDUEShfl7+1RJeP6edMrHwAAV0OgdFHRzevKzWy/TTmS1CTASwFVFFQBAEDNRaB0UR1DA+36dBs3s0lxYUF2Gw8AADgPAqWLeqh9U3m62++3v8xi6KedQ+02HgAAcB4EShcV4O2hcZ1DZY9VbzeTFN7IT91b1rd9MAAA4HQIlC7shUGt1cDPy+ZQaUj6y+gYme18TyYAAHAOBEoX5u/toanjOspsMsmWh+a8NDhKMSH17FYXAABwLgRKF9flgSB9NqGzPN3M97Tru/zUFwa21i96t6qi6gAAgDMwGTwrD5IyLl7VC3N3a3vGZbmZTSq7xQ5wk0kyDKlJgLf+MiZGPcIbVHOlAACgpiFQwspiMbT+0HnN3JyhDYfPq+SGp96YJLUNDtCT8WEa1j5YPp5ujikUAADUKARK3FRJmUWHsvJ06nK+DEOqX8dTbZoGqI4XT8IBAAAVESgBAABgEzblAAAAwCYESgAAANiEQAkAAACbECgBAABgEwIlAAAAbEKgBAAAgE0IlAAAALAJgRIAAAA2IVACAADAJgRKAAAA2IRACQAAAJsQKAEAAGATAiUAAABsQqAEAACATQiUAAAAsAmBEgAAADYhUAIAAMAmBEoAAADYhEAJAAAAmxAoAQAAYBMCJQAAAGxCoAQAAIBNCJQAAACwCYESAAAANiFQAgAAwCYESgAAANiEQAkAAACbECgBAABgEwIlAAAAbEKgBAAAgE0IlAAAALAJgRIAAAA2IVACAADAJgRKAAAA2IRACQAAAJsQKAEAAGATAiUAAABsQqAEAACATQiUAAAAsAmBEgAAADYhUAIAAMAmBEoAAADYhEAJAAAAmxAoAQAAYBMCJQAAAGxCoAQAAIBNCJQAAACwCYESAAAANiFQAgAAwCYESgAAANiEQAkAAACbECgBAABgEwIlAAAAbEKgBAAAgE0IlAAAALAJgRIAAAA2IVACAADAJgRKAAAA2IRACQAAAJsQKAEAAGATAiUAAABsQqAEAACATQiUAAAAsAmBEgAAADYhUAIAAMAmBEoAAADYhEAJAAAAmxAoAQAAYBMCJQAAAGxCoAQAAIBNCJQAAACwCYESAAAANvn/AfV9O0O9WjQ4AAAAAElFTkSuQmCC", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -497,7 +373,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 13, "metadata": { "id": "VV2e-FNe1kWf" }, @@ -511,7 +387,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 14, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -532,7 +408,7 @@ " 7: 0.3333333333333333}" ] }, - "execution_count": 18, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -543,7 +419,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 15, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -557,18 +433,18 @@ "data": { "text/html": [ "
\n", - "\n", "\n", " \n", @@ -606,15 +482,15 @@ "Degree centrality 0.333333 " ] }, - "execution_count": 19, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcUAAAE1CAYAAACWU/udAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlAVXX+//HnvewoIipuuEAuYJoaDuKCIiruCK1aLoM6\nY2mz9J3Gan71rcZpWqdmpiY1ZxrNbWqcCveFVCx3LbdUQFFUcEMFRBC4y/n9Ed1vjBsocFlej7/i\nnu19rsnL9znncz4mwzAMREREBLOzCxAREakuFIoiIiIlFIoiIiIlFIoiIiIlFIoiIiIlFIoiIiIl\nFIoiIiIlFIoiIiIlFIoiIiIlFIoiIiIlFIoiIiIlFIoiIiIlFIoiIiIlFIoiIiIlFIoiIiIlFIoi\nIiIlFIoiIiIlFIoiIiIlFIoiIiIlFIoiIiIlFIoiIiIlFIoiIiIlFIoiIiIlFIoiIiIlFIoiIiIl\nFIoiIiIlFIoiIiIlFIoiIiIlFIoiIiIlFIoiIiIlFIoiIiIlFIoiIiIlFIoiUqd88cUXdO/eHZPJ\nxJIlS65bnpeXh6+vL23btuXll192QoXiTApFEalTHnjgAf7yl7/g5eXFe++9d93yjz/+GIvFwoQJ\nE/j973/vhArFmRSKIlInjR07lj179rB7927HZ4ZhkJiYSFhYmBMrE2dSKIpIndSmTRtiY2P561//\n6vhs/fr1REdHYzKZHJ/l5eUxZcoUIiIi6N27N2+++SaGYQCwbds2IiIiGDhwIAMGDGDlypWO7RYv\nXkyvXr0YOHAgAwcOZMOGDQBYLBZmzJhBnz596NOnD7/97W+xWCwcO3aM9u3b07RpU/74xz8C8MIL\nL/Dcc88B8NFHH9GsWTOeeeaZSv9u6jRDRKSO2bRpk/Hyyy8bSUlJhru7u3H27FnDMAzj8ccfN/Ly\n8ozIyEjjhRdeMAzDMCZPnmz89Kc/NQzDMAoKCoz77rvPWLBggWEYhhEWFmbs2LHDMAzD2Ldvn2O9\nrVu3Gs2aNTMuXLhgGIZhLF261LFs5syZxqBBgwyr1WpYrVZjyJAhxsyZMw3DMIzExESjY8eOjjp7\n9OhhdOnSxfHzo48+WjlfiDioUxSROisyMpJOnToxZ84c0tLSaN68OfXr13cst9vtLF68mMmTJwPg\n5eXFmDFjmDdvHgCNGjVi4cKFnD9/nm7dujFr1iwA5s2bx4gRI/D39wcgLi6OadOmAbBgwQImTpyI\ni4sLLi4uTJw40bG//v37c/bsWY4dO0ZmZiahoaGkpqZy+vRpjh8/zj333FNl301dpVAUkTrtl7/8\nJR9++CF/+ctfHMH1g6ysLIqKihzhBuDv709GRgYAS5Yswdvbm9DQUIYNG0ZqaioAGRkZpbZxdXUl\nPDz8hst+vD93d3eio6NZsWIFq1evZuzYsfTr149Vq1axcuVKRo4cWTlfgjgoFEWkThs3bhwWi4X0\n9HTat29fapm/vz8eHh5kZWU5PsvKyqJVq1YAFBUV8dZbb3Hy5En69+9PbGwsAK1bty61jdVqZf/+\n/Tdc9uP9AYwaNYqVK1eybds2+vXrx8iRI1m9ejXbt2+nd+/eFf8FSCkKRRGp0zw9PfnnP//Jq6++\net0ys9nMxIkT+fjjjwG4du0a//73v5k0aRIADz/8MAUFBWTmFpFqasnZnAI6vLiaL22d+OTz5Wza\nnwbAp59+yvz58wGIj49n0aJF2Gw27HY7ixYtcuwPYMSIEWzduhWz2YybmxujRo1iw4YNeHl54eLi\nUsnfhrg6uwARkaqUmJjIjBkzyMnJoV69esyYMYPRo0c7lk+cOJF9+/Zx4sQJ6tevz7vvvsvTTz9N\nREQEVquVxx9/nPHjxwMQGxtLl54RnLtqw24pxG/E/2CxGdC0I/X7xzNi5CgaNahHeKe2zC+5bzhj\nxgxyc3Pp168fAH369OH55593HL9Zs2Z07dqVyMhIADp06EBAQADR0dFV9RXVaSbDKHm2WEREyuUf\nW47zzvpUrllsN13H081MdKdmvP9YaBVWJndKl09FRO7AlUILb69LuWUgAhRa7Hx55AIHMnKqqDK5\nGwpFEZE78Nk3GZh/NMj/VoqsNv6x5UQlVyQVQaEoInIHVn939rZd4g/sBiSlXKjkiqQiKBRFRO7A\n1SJrudYvstorqRKpSApFEZE70KSeR7nWr++hh/1rAoWiiMgdGBPWmnruZRs36GqGB+8PqOSKpCIo\nFEVE7sCQe5vjYi7bgzbY7TQ4v4+LFy9WblFy1xSKIiJ3wN3VzAePh+Lpdutfo15uLvx2aCfC7r2H\nefPmsX79eoqKiqqoSikvDd4XEbkLizd8w8wNmbi6uZNf/H9Po3q7u2A3DH43LISf9gkCID8/nw0b\nNnD06FEGDRpEt27dSs3dKM6nUBQRuUMFBQXMnj2bBx96hOSrbnyy+zSXrhZR38OVUV1bEHd/qxs+\nYJOZmcmaNWsAGD58OAEBut9YXSgURUTu0BdffIGXlxfDhg0r97aGYbB//342bNhA+/btGTRoUKm5\nHMU5FIoiInfg6NGjrF69mmnTpuHu7n7H+ykqKmLz5s3s37+fiIgIevbsqdkwnEihKCJSTkVFRcya\nNYvY2FjuueeeCtnnxYsXWbt2Lbm5uQwbNox27dpVyH6lfBSKIiLltHLlSux2e6kppyqCYRikpqay\nbt06mjVrxpAhQ/Dz86vQY8itKRRFRMohPT2dzz//nOnTp+Pp6Vkpx7BarWzfvp3t27cTFhZGREQE\nbm5ulXIsKU2hKCJSRhaLhdmzZzN06FCCg4Mr/Xi5ubl8+eWXnD59mujoaO69914N4ahkCkURkTJa\nv349eXl5PPTQQ1V63JMnT7JmzRrHk67NmjUrtTwkJITmzZsDkJycjGEYdOrUCYBz586RnJx8w/0u\nX76cZ599lubNm5OUlFSp51BT6A21IiJlkJmZyYEDB5g2bVqVH7tt27ZMnTqVb775hgULFtC5c2ei\noqLw8vICKBVq8fHxWK1WFi1aBMCAAQNuut/Ro0dz+fJl5s+fX8lnUHPoNW8iIrdhs9lYvnw5Q4cO\npV69ek6pwWw2ExYWxlNPPYVhGHzwwQd888032O12Xn/99Ztud6tlcj2FoojIbXz99dc0bNiQLl26\nOLsUvL29GTlyJOPHj+fAgQP8/e9/v+UbcXr37s3Ro0cZNmwY/fv3p0+fPo636fy3jz76CD8/P3r3\n7s3rr7+Oj48PnTp1YsuWLWRlZREaGkpQUBAHDx4kLy+PKVOmEBERQe/evXnzzTepDXfjdPlUROQW\nzp8/z+7du3niiSeq1UMuzZs3Jz4+nu+++47PPvuMtm3bMnjw4OvWs1qtxMTE8PzzzxMfH8+xY8cI\nDQ1l7969142FdHNz45lnnuHFF18E4OzZsxQWFhIREQHAuHHjCA0N5b777mPKlCnYbDa2bNnCtWvX\nCA8Pp2XLlkyYMKHyT74SqVMUEbkJu93O8uXLGThwIA0aNHB2OdcxmUzcd999PPXUU/j6+jJnzhzO\nnz+P3W53rLNz506OHz/O+PHjAWjfvj3h4eEsXry41L4WL17M119/7QhEgIkTJ7J06VIKCwsB2LRp\nEwMGDMBut7N48WImT54MgJeXF2PGjGHevHmVfcqVTqEoInIT27dvx8PDg9DQUGeXckvu7u4MGjSI\nn/3sZxQUFHD06FFSU1MByMjIwM/PD1fX/7sw6O/vT0ZGhuPngwcPsnjxYtatW0deXp7j85/85Ce0\nbNmS5cuXs3//frp06YLJZCIrK4uioiL8/f1vus+aSqEoInIDly5dYuvWrcTExFSry6a30qhRI4KC\ngmjZsiXr169nyZIlNGjQgOzsbKxWq2O9rKwsWrVq5fi5Xbt2rF69mvvvv58ZM2aU2ueECRNYsGAB\nCxcudFwa9ff3x8PDg6ysrJvus6ZSKIqI/BfDMFixYgX9+/evka9Z8/HxYdq0abRt25b9+/fTokUL\nPv74YwCOHz/Ozp07GTduHAAXrxaRdQ3GzN2OPeJnLFjyCYs+X+XY1/jx40lMTOTgwYN07twZ+P5J\n2IkTJzr2ee3aNf79738zadKkKj7TiqcHbURE/suePXuw2Wz07NnT2aWUy7PPPsvatWsxDIPf/e53\nvPXWW3Tt2hVfX1/+9Kc/MWvWLDw8PPj0009p3qotw5+bxYaPXsd2NZvL//wTHi1DKLabiZ8wjj8t\nHMtX/3qfVq1a0a9fv+umx3r33Xd5+umniYiIwGq18vjjjzvuW9ZkeqONiMiP5ObmMnfuXOLj40vd\nM6vpTp8+zZo1a3B1dSUqeihPfXGctKyrFFntN1zf3cVMm0beLP9FX34WP5F3333X8dac2kydoohI\nCcMwWLlyJeHh4bUqEAFat27Nz3/+c/bu3ctz8xI5WtgEi3Hze6XXruZy5NguXvvcneLi4joRiKBQ\nFBFxOHDgAHl5efTt29fZpVQKk8lE127dSVmZhcWw3nJdw2bh/JoPeOfrxXz5nwVVVKHzKRRFRICr\nV6+SmJjIuHHjavXM99+cysZ24yumpbjWb0Sr6fOo7+GKpVHFTKRcE+jpUxERYPXq1XTv3p0WLVo4\nu5RKdelqcbnWNwyDy/nl26YmUyiKSJ13+PBhLly4cMsZJWoLLzczhlGGVrGEyWTC2732ds7/TZdP\nRaROu3btGmvWrOGRRx4p9daX2sRut3Pq1CmSk5M5cOQohcWBlLUnKrbZCQtsVKn1VSe18/8AEZEy\nWrduHZ06daJNmzbOLqVCFRcXk5aWRkpKCqmpqTRs2JDg4GB++vijnE06w7L9Z7DfZkCe2QQDg5vS\nuL5H1RRdDSgURaTOOnbsGOnp6UyfPt3ZpVSI/Px8UlJSSElJIT09nYCAAEJCQoiKisLX19ex3m+H\nNmBD8gWuFN76CVRvd1eeHxZS2WVXKxq8LyJ1UlFREbNnzyYmJua6KZRqkkuXLpGcnExKSgoXLlyg\nXbt2hISE0L59e7y8vG66Xcq5PB77xw4KLTYKim2llnm7ueDuambRlHC6BPjeZA+1k0JRROqkVatW\nYbVaiY2NdXYp5WIYBpmZmY4gLCwsJDg4mODgYIKCgsp1X7Sg2MqyfWeY+/VxTl8uAKBlQy9+HhHE\nA6GtqO9R9y4mKhRFpM45efIkn332GdOmTbtlN1VdWK1WTpw44bg06unpSUhICMHBwQQEBNSYWTxq\nAoWiiNQpFouFOXPmEB0dTUhI9b1fVlhYyNGjR0lOTiYtLY2mTZsSHBxMSEgIjRs3dnZ5tVbd641F\npE5LSkqiRYsW1TIQc3NzSUlJITk5mczMTAIDAwkODmb48OHUr1/f2eXVCeoURaTOOHPmDEuWLOHJ\nJ5+sFiFjGAYXLlxw3B/MycmhY8eOBAcH065dO9zd3Z1dYp2jTlFEnOKLL77g97//PYcOHWL37t10\n794dgFOnTjFx4kT27dtHZGQky5Ytu6P979q1i6lTp5KTk0N6ejo2m41ly5YxZMgQpwbijwfSp6Sk\nABAcHMyQIUNo06YNZrNeNOZM6hRFxGmSkpIYPHgwXbt2ZdeuXaWenBwwYABJSUl3vf/4+HjS09PZ\nvHkzmZmZPPbYY1X+YMrNBtKHhITQtGlTPShTjahTFBGnmjJlCkuXLuXNN9/khRdeqJRjXLhwwdE5\nVlUA/fdA+latWhEcHHzdQHqpXhSKIuJULVq04P3332fKlCk88MAD3HvvvaWWHzp0iGeffZbi4mKu\nXr3KpEmTmDp1KsXFxQwZMoTNmzfz2muvsWnTJjIzM5kwYQLPP/98qX0sX76cqKgoXFxcmDx5Mqmp\nqdjtdiZOnMiTTz4JwLJly3jjjTfw9vbGbDYzc+ZMevfuXa5zudFA+i5duvDAAw/g6el5d1+UVAmF\noog43bhx4/jPf/7D5MmT2bZtW6n7alevXuWll14iPDwci8VC165diYqKokOHDiQlJWEymcjJyWH9\n+vVcvnyZzp07ExoaypAhQ4Dv31zj5uZGjx49mDp1KjabjS1btpCXl0e3bt3o0qULERER/PznP+fg\nwYM0a9aMZcuWsW7dutuG4s0G0vfr16/cA+mletCfmIhUC3PmzKFz5878+c9/5plnnnF83qFDB55/\n/nn+53/+B3d3d86ePcvevXvp0KGDY52xY8cC0KhRI0aMGMEnn3zCkCFDuHLlCkVFRcTExGAYBgsX\nLmTdunUA+Pj4EBMTw8KFC4mIiKBRo0b8/e9/5xe/+AUxMTEMHTr0hnXebCB9bGysBtLXAgpFEakW\nmjVrxgcffMCkSZNKvXrtN7/5DTk5OXz99de4uLgwYMAACgoKSm3bsGFDCi02PFzNNG7cmIMHD2IY\nBtu2bcPDw4NGjRpx/vx5ioqKePbZZx1vscnJyXE89ZqYmMhrr71GSEgI/fr146233iIoKAi4+UD6\n+Ph4DaSvZRSKIlJtjBkzhv/85z9MmTLF0XHt2rWL6dOn4+Ly/US3FosFAJvdYGPyBQD6/WEF7s3b\nYQBFm7+jU/MGbN+1B5vNhofH99Me+fv74+Hhwd/+9jfCwsIc+/ohYF1dXZk9ezbvvvsuv/3tbxk/\nfjx//vOfNZC+jtGAGBGpVmbNmsWRI0ccP7dv356dO3cCcPbsWQ4cOMD53EL6vLGBpz/dC0Be8hbs\nBlgLrnD+0HaO1u9K/LKzNGnf3bEfs9nMxIkTWbhwoeOzV199lQULFgAwatQozpw5w65duygoKODM\nmTOcOXOGsLAwnnnmGR577DFCQ0MViLWcximKiFP8MHg/JyeHyZMn89JLLzmWff7557z//vts2rSJ\n5ORkxo8fj5ubG506dWLrjl2kX8jFL3oanoHdOPnGKPwG/Zxrx/dgu3KRel2i8O39KEVnUshe9wFG\ndiajR8ewdOlSrl69ytNPP83hw4dxc3Oje/fu/OpXv+Lo0aO88cYbnDx5Eh8fHzw8PJg7dy7333+/\nE78hcQaFoojUGFabnd5vbuRiXhE//OI6+cYoAp78CNeGzW64jbe7C1ueHUijet+/Mk0D6eVWdE9R\nRGqML4+cp6DISnn+JW+3G3y89RiRTQo1kF5uS52iiNQYsR9sYX9GLgCGzcL5T/6XotPf4d4yGP8H\nfoerT5MbbudpsvL77sXc2ymEDh06aCC93JRCUURqBLvdoN2Lq7mT31hebi6s+VU/ApvUq/jCpFbR\n06ciUiPkF1txucP7fS5mE1eLrBVckdRGCkURqRG83Fyw3eGFLcMw8HJ3qeCKpDZSKIpIjeDqYqa1\nn/cdbWsAAQ29KrYgqZUUiiJSYzzR7x683Mr3a8vNbOLRn7TG002dotyeQlFEaozQJjas1vLdGzSb\nTcT3DqycgqTWUSiKSLVnsVhYu3Yta5Yn8NKgADzL2C16ubnw/LAQPXUqZaYhGSJSrWVkZJCQkECL\nFi0YPnw43t7eJB4+z68+2YvdMCiy2q/bxtVswtVs4tlhIUzuG+SEqqWmUiiKSLVktVpJSkpi3759\njBgxgnvvvbfU8nO5hSzckc7CHSex2Q3MZhOG8f3sGQ+FBjCpbxDt/PXybikfhaKIVDtnzpwhISGB\nxo0bM2rUKOrVu/nlT4vNzomL+eQVWvF2dyGwcT0Nv5A7plAUkWrDZrPx1Vdf8c033zB06FC6dOmi\nF3RLlVIoiki1cP78eRISEvDx8SEmJgYfHx9nlyR1kGbJEBGnstvtbNmyhZ07dzJ48GC6d++u7lCc\nRp2iiDhNVlYWCQkJeHp6Mnr0aE3jJE6nTlFEqpzdbmfHjh1s3bqVqKgoevTooe5QqgV1iiJSpS5d\nusSyZcswm83Exsbi5+fn7JJEHNQpikiVMAyDXbt2sXnzZvr37094eLi6Q6l21CmKSKXLyclh2bJl\nWK1W4uLiaNy4sbNLErkhdYoiUmkMw+Dbb79l48aN9OnTh969e2M265XLUn2pUxSRSnHlyhWWL1/O\ntWvXiIuLw9/f39klidyWOkURqVCGYbB//34SExMJDw+nb9++uLjotWtSM6hTFJEKk5eXx8qVK8nN\nzSUuLo7mzZs7uySRclEoishdMwyD7777jnXr1hEaGkpkZKS6Q6mRFIoiclfy8/NZtWoVWVlZxMXF\nERAQ4OySRO6YQlFE7tiRI0dYvXo1Xbt2JSoqCldXPaYgNZtCUUTK7dq1a6xZs4bMzEzi4uJo3bq1\ns0sSqRAKRREpl9TUVFauXMm9997LoEGDcHNzc3ZJIhVGoSgiZVJYWMi6detIT08nNjaWwMBAZ5ck\nUuEUiiJyW2lpaSxfvpwOHTowZMgQ3N3dnV2SSKXQXXERuamioiISExM5duwYo0ePpl27ds4uSaRS\nqVMUkRtKT09n2bJlBAYGMnToUDw9PZ1dkkilU6coIqVYLBa+/PJLjhw5wqhRo+jYsaOzSxKpMuoU\nRcTh9OnTJCQkEBAQwPDhw/Hy8nJ2SSJVSp2iiGC1Wtm4cSMHDx5kxIgRdOrUydkliTiFOkWROi4z\nM5OEhASaNm3KiBEjqFevnrNLEnEadYoidZTNZmPz5s18++23DBs2jM6dO2MymZxdlohTqVMUqYPO\nnTtHQkICvr6+xMTEUL9+fWeXJFItqFMUqUNsNhtbtmxh165dREdH061bN3WHIj+iTlGkjrhw4QIJ\nCQl4e3szevRoGjRo4OySRKoddYoitZzdbmf79u1s27aNgQMHEhoaqu5Q5CbUKYrUYpcuXSIhIQFX\nV1diY2Np2LChs0sSqdbUKYrUQoZhsHPnTr766isGDBhAWFiYukORMlCnKFIBEhMTmTFjBvv376d/\n//4YhsHZs2fp1asXc+bMqdKxf9nZ2Sxbtgy73U5cXByNGjWqsmOL1HQKRZEKkpSURFRUFBaLBVdX\nV7KzswkJCWHatGm88sorlX58wzDYs2cPSUlJ9O3bl169emE2myv9uCK1iS6filQSPz8/+vXrx549\neyr9WLm5uSxfvpzCwkLi4+Px9/ev9GOK1Eb6Z6RIJbJarbRq1QqAo0ePMmzYMPr370+fPn1Ys2YN\nALt27aJ79+4EBgby9ttv07dvX3r27El6ejpPPvkkXbt25ac//Wmp/S5YsIBevXoRGRnJ8OHDee+9\n9wgMDGTKlCkKRJG7YYhIhdi0aZMBGBaLxTAMwzh58qQxevRoIyMjw7BYLEZwcLAxb948wzAM4+jR\no4aPj49x7Ngxx7Zubm7G9u3bDcMwjNjYWKNHjx5GTk6OUVhYaPj7+zuWbdmyxWjcuLFx/PhxY/Hi\nxUZ0dLTx+OOPV/0Ji9RC6hRFKtigQYMICwsjJCSE6OhoAgIC2LlzJ8ePH2f8+PEAtG/fnvDwcBYv\nXuzYzsfHh169egHQpUsX2rZti6+vLx4eHnTs2JHjx48DMG/ePPr27ctnn31Gy5Ytee211/j8888x\n9HiAyF3TPUWRCrZhwwZcXV157rnnmDFjBo8++igZGRn4+fnh6vp/f+X8/f3JyMhw/Ozj4+P4b1dX\n1+t+Li4u5urVq+zZs4dTp06RlZXFypUrsVqtNGvWjEuXLtGkSZOqOUmRWkqhKFJJXn75ZebNm8eH\nH37IoEGDyM7Oxmq1OoIxKyuLkJAQDMOg0GK77f4yMzOZM2cOAQEB9O7dm9mzZzuWXbx4UYEoUgF0\n+VSkknh7e/PrX/+a2bNn06NHD9q3b8+SJUsAOH78ONt37OCwd1c6vLiGyR/vJjPnGo9+uJ2NyedL\nXQotKCggKyuLI0eOMHbsWF544QXWrFlDdnY2ACkpKcTExDjlHEVqG41TFKkA/z14f/bs2dx7773k\n5ubSpk0bOnTowDvvvMMbb7xBfn4+xy9cwRT6EK6BoRRlneLi8rexXMqg/n2DaBgcTvaXH1Lf1eDJ\nJ59k+/btbN26lYCAAGbPns3AgQNZtGgRf/vb3/D29sbd3Z333nuPjh07OvtrEKnxFIoiVeyPq4+w\naMdJrt3ikqmHq5l29awM9TpBXFwsbdu2rcIKReouXT4VqUIX8gpZsD39loEIUGS1cyzPTJ+YxxSI\nIlVIoShShf6181SZ17Ua8M9tZV9fRO6eQlGkCm1IvkCR1V6mde0GbD9+qZIrEpEfUyiKVKFC6+2H\nXvxYsa1sASoiFUOhKFKFmvl4lmt9P2/3SqpERG5EoShShcaFt6Geu0uZ1vV0M/NYWOtKrkhEfkyh\nKFKFOvnasFuLy7ayAWN7tqncgkSkFIWiSBWw2Wxs3LiRpZ9+wszBAXi53bpb9HQz89ZDXWlS36OK\nKhQR0OB9kUp37tw5EhIS8PX1JSYmhvr167PvdA5PLfmW7IJirhXb+OEvYT13F9xcvw/EIfc2d2rd\nInWRQlGkktjtdrZs2cLOnTuJjo6mW7dumEwmx3LDMNh54jJf7M0k62oRvl5uDO/SnIHBTXF10UUc\nEWdQKIpUgqysLBISEvDy8mL06NE0aNDA2SWJSBlo6iiRCmS329m+fTvbtm0jKiqKHj16lOoORaR6\nU6coUkEuXbrEsmXLMJvNxMbG4ufn5+ySRKSc1CmK3CXDMNi1axebN28mMjKSnj17qjsUqaHUKYrc\nhZycHJYtW4bVaiUuLo7GjRs7uyQRuQvqFEXugGEYfPvtt2zcuJE+ffrQu3dvzGY9MSpS06lTFCmn\nK1eusGLFCvLz84mLi6Np06bOLklEKog6RZEyMgyDAwcOsH79enr27ElERAQuLmV7j6mI1AzqFEXK\n4OrVq6xcuZLs7Gzi4uJo0aKFs0sSkUqgUBS5jUOHDrFmzRruv/9+IiMjcXXVBRaR2kqhKHITBQUF\nrF69mvPnzxMXF0dAQICzSxKRSqZQFLmB5ORkVq1aRZcuXRg4cCBubm7OLklEqoBCUeRHCgsLWbt2\nLadOnSI2Npa2bds6uyQRqUIKRZESx44dY8WKFQQHBzN48GDc3d2dXZKIVDE9MSB1XlFREevXryct\nLY3Y2FjuueceZ5ckIk6iTlHqtBMnTrB8+XKCgoIYOnQoHh6a6V6kLlOnKHWSxWLhyy+/5MiRI8TE\nxNChQwdnlyQi1YA6RalzTp8+TUJCAgEBAQwfPhwvLy9nlyQi1YQ6RakzrFYrmzZt4sCBA4wYMYJO\nnTo5uySBudD3AAAVUElEQVQRqWbUKUqdcObMGRISEmjSpAkjR46kXr16zi5JRKohdYpSq9lsNjZv\n3sy3337L0KFD6dKliyYAFpGbUqcotdb58+f54osv8PX1ZdSoUfj4+Di7JBGp5tQpSq1jt9vZsmUL\nO3fuJDo6mm7duqk7FJEyUacotUpWVhYJCQl4enoyevRofH19nV2SiNQg6hSlVrDb7ezYsYOtW7cS\nFRVFjx491B2KSLmpU5Qa7/LlyyQkJGA2m4mNjcXPz8/ZJYlIDaVOUWoswzDYvXs3mzdvpl+/foSH\nh6s7FJG7ok5RaqScnByWL1+OxWIhNjaWJk2aOLskEakF1ClKjWIYBnv37mXDhg307t2bPn36YDab\nnV2WiNQS6hSlxrhy5QorVqwgPz+fuLg4mjZt6uySRKSWUaco1Z5hGBw8eJB169bRs2dPIiIicHFx\ncXZZIlILqVOUau3q1ausWrWKy5cvExcXR4sWLZxdkojUYgpFqbYOHTrEmjVruP/++4mMjMTVVRc2\nRKRyKRSl2ikoKGDNmjWcPXuWuLg4WrVq5eySRKSO0GN7whdffEH37t0xmUwsWbLkuuV5eXn4+vrS\ntm1bXn75ZV5//XX+8Ic/ADBz5kyaN2/OK6+8UiG1pKSkMGfOHOrXr88TTzyhQBSRKqXrUcIDDzyA\nn58fI0aM4L333uPxxx8vtfzjjz/GYrEwYcIEfv/731NUVMQPFxheeukljh8/ftc1FBYWsnbtWk6d\nOsVDDz1E27Zt73qfIiLlpU5RHMaOHcuePXvYvXu34zPDMEhMTCQsLMzxmYeHB56enhV23LS0NGbP\nno2bmxtPPvmkAlFEnEahKA5t2rQhNjaWv/71r47P1q9fT3R0tOP1aYmJiYSEhDBgwICb7mf69OkM\nGjSIAQMG8Nhjj3HlyhUA5s6dS2BgIGPHjuWJJ57g/vvv5yc/+Qmff/45sbGxjBw5End390o9RxGR\nW1EoSim/+tWvWLp0KefOnQNgwYIFxMfHO5ZHR0fz/PPP33IfISEhbNiwgaSkJIKDg3n77bcBmDp1\nKvHx8Xz99ddMnz6diRMnkpWVRdOmTbnnnnsq7ZxERMpK9xSllMjISDp16sScOXOYMGECzZs3p379\n+uXah6enJ/369cNsNnP+/PlSgWez2QgMDGTDhg2MGjWKnTt3kpmZWdGnISJyRxSKcp1f/vKXvPji\ni1y6dIlf//rXN10v9Xwe+07ncOzCVQrcr3A6u4C0/bt45plnOHjwIIGBgcyfP5/58+cDcPr0ab75\n5hvc3d2ZNm0aXl5eeHp6UlxcXEVnJiJyawpFuc64ceN47rnnSE9Pp3379qWWGYbB/owcDmbmMvqD\nLZgwcSYzl5T8Cwx+dzOeh1cSENiOwMBAACwWi+NhnQMHDhAUFER+fj5eXl5OODMRkVvTPUW5jqen\nJ//85z959dVXS31utxs8/ek+Ptl9mvwiK4UWO9csNmx2A4vNTpHVzlmjIUePHuPlpdsxDIOEhATO\nnj1LdnY2Tz75JP7+/k46KxGR21OnKCQmJjJjxgxycnKoV68eM2bMYPTo0Y7lEydOZN++few9lIp7\n51PkHEzClp/N5fVzMHv7cu3EN5hc3HFp4E/9roPxTtvD6088xJLXg2hgKuTcuXPs3r0bq9XK/Pnz\nKSwsZPbs2bi4uLB27Vo8PT3p2LHjdeMjRUSqml7zJmVyICOHMXN3cM1iK/M2riaDdb/oRbuWmgBY\nRGoGXT6VMvn718cpspY9EAFcXFxIOHSpkioSEal4CkW5ratFVtYfPo+9nNcUiqx2Fmw/WTlFiYhU\nAoWi3NbZnGu4upjuaNu8QguF5bjkKiLiTApFua1imx0TdxaKLmYTxTZ7BVckIlI5FIpyW37ebhSX\n837iD+x2qO+uh5xFpGbQbyu5IbvdTkZGBikpKSQnJ1OPAIrxKNc+TEBkR3/M5jvrMkVEqppCURws\nFgsnTpwgOTmZ1NRU6tevT3BwMA8//DAtzlh5efkh8ovL3jF6ubswtb9e9C0iNYdCsY67du0aqamp\npKSkcPz4cZo3b05wcDD9+vXDz8/Psd6oJjbeXpfCNYutTE+huplNBDWpR3hQo0qsXkSkYmnwfh2U\nk5NDSkoKKSkpnDlzhqCgIIKDg+nYsSPe3t433e7ExXziZm0l75qFWz064+ZioqmPB8ufiqBx/fJd\nchURcSaFYh1gGAbnz58nOTmZlJQUrly5QseOHQkODqZdu3a4ubmVeV97jhznqSXfkkM9rHY7P36w\n1N3FhMlkotc9jXlv7P34epV9vyIi1YFCsZay2+2cOnXKEYTw/eS/ISEhtG7dGrO5/A8e22w25s6d\nS79+/fDwb8s/t6Wz8/glrlls1HN3ZWBIUyb2bksrv5t3myIi1ZlCsRYpLi4mLS2NlJQUUlNTadiw\nIcHBwYSEhNC0aVNMprt7CvSrr74iIyODxx577K73JSJSHelBmxouPz+f1NRUkpOTSU9Pp1WrVgQH\nBxMVFYWvr2+FHScrK4udO3cydepUBaKI1Fo1dvB+YmIi3bt3x2QyERkZSf/+/QkLC+Ott97CYrHc\ndvtdu3bRvXt3x2S4/23u3LkEBgYSHx/v+GzEiBEkJSVVzAnchcuXL7Nt2zbmzZvH+++/z7Fjx+jc\nuTNPP/00EyZMoGfPnhUaiIZhsGLFCiIjIyt0vyIi1U2NvnyalJREVFQUFosFV1dXLl26xLhx43Bx\ncWHFihW3vW+WlJREfHw86enpN1z+yiuvkJ6ezvz58wG4cuUKPj4+Vd4pGYbB2bNnSU5OJjk5mYKC\nAsdl0aCgIFxdK7fh3717NwcPHmTSpEnqEkWkVqtVl08bN27M/Pnzueeee1i0aBETJ06s0P03aNCg\nQvd3KzabjfT0dMeDMu7u7gQHBxMTE0OrVq2qLJxyc3Md/3hQIIpIbVdjL5/eTPPmzRk6dChLly6l\nV69ejl/kJ06cuOnl0ldffZUBAwbQtWtX1q1bd8P9vv322zRv3pxXXnkFgOnTp9OwYUP+93//l0ce\neYSOHTvy//7f/7ur2ouKijh06BCfffYZf/rTn0hKSsLX15eJEyfyi1/8gujoaFq3bl1l4WQYBqtX\nr6Znz574+/tXyTFFRJypVnWKPwgMDGTdunWsXr2aoKAgAIKCgvjLX/5S6h4hQGZmJqGhobz44ots\n27aNoUOHkp6eTuPGjUutN2PGDA4dOuT4edasWRw+fJhvv/2WlStXcu7cOdq0acMvfvELWrZsWeZa\n8/LyHAPpT506RZs2bQgODmbIkCH4+Pjc+ZdQAQ4dOkR2djaPPvqoU+sQEakqtTIU7fayT1Xk7e3N\niBEjAOjTpw9NmzZl1apVZb70OnToUEwmEy1atKBx48akp6ffNhQvXrzouD946dIl2rdvT/fu3Xn4\n4Yfx8Kgeb4ApKChg3bp1jBkzBhcXF2eXIyJSJWplKKanp9O+ffsyrfvj93vC9/clz549W+Zj/fg+\no6enJ8XFxdetYxgGGRkZjvuDxcXFjmETgYGB1TJ01q9fT+fOnWnVqpWzSxERqTK1LhTPnj3L+vXr\nmTNnDu7u7sD39+o8PDzIycm5bv3s7OxSP1+8eJEWLVrcdR1Wq9Ux40RKSgr16tUjODiYBx98kBYt\nWlTrh1bS0tJIT09n+vTpzi5FRKRK1apQvHz5MpMmTWLAgAFMmDABu92Ot7c33333HT169GDNmjWl\n1rfZ7OTl5fHXeZ8SN3oUp4/sJSsri5EjR97R8Q3DIC0tjaysLNLS0mjWrBnBwcFMnjyZRo1qxmwR\nxcXFrFy5klGjRjn+USEiUlfU2FBMTExkxowZAAwaNAjDMCgoKODhhx/mmWeewWw2YzabefPNNxkz\nZgydO3emb9++nDt3jrgHH6Jt1FjmvvY8rg38efWjz/ndK3/AXFzAr/44i4Z+jZg7dy7z58+nsLCQ\nP/7xj7i7u7N27Vo8PT1p3bo1KSkp7Nu3j9deew2bzcaSJUs4c+YMf/jDH3jnnXf45S9/Sb169Zz8\nLZXfpk2baNOmTZkvP4uI1CY1evD+ncjILuChOdvILrBQbL3+gRwvNxfCAv34x8Qw3F2vH7FiGAYX\nLlxwXBbNyckpNeNETe6uMjMz+de//sX06dNvOYWUiEhtVadCschqY+A7mzmXW4jtFqft6WZm1H0t\n+dMj3YD/m3EiJSWF5ORkAMcbZdq0aXNHM05UNz/MgBEREcF9993n7HJERJyixl4+vRNrvztHdkHx\nLQMRoNBiZ/n+MzzQzoWLp9NITU2lQYMGBAcHM2bMGJo1a1atH5S5E9u2baNBgwZ06dLF2aWIiDhN\nnQrFOZvTKCi2lWldm83KhxsP81S/tkRGRtKwYcNKrs55Ll68yI4dOzQDhojUeXUqFI9lXS3zujbM\nWHzbEB4eXokVOd8PM2D0799fM2CISJ1X82+GlUM5XnQDgLW8G9RA33zzDXa7nbCwMGeXIiLidHUq\nFJv4lP3JUBeTifb+9SuxGue7cuUKmzZtIiYmplY8LCQicrfq1G/C+N6BeN5gmMWNuJgMHgurva84\n+2EGjLCwMJo2bersckREqoU6FYpjwtrgYr79gySuZhP+HjaSvlhEcnIytXHUyuHDh7l8+TIRERHO\nLkVEpNqoU6HYqJ47cyf8BE+3m7+A29VsonE9d774nyGMHDmSDRs2sGjRIrKysqqw0sp17do11q5d\nS0xMDK6udepZKxGRW6pTg/d/sO90Di8t+46U83kAWG123F1dsBkGg0Oa8ofYLjSu//0UTjabjT17\n9vDVV1/RpUsXBgwYgJeXlzPLv2vLli3D3d2d4cOHO7sUEZFqpU6G4g+Ons9ja9pFCoptNK7nTvS9\nzWlU78YP4+Tn57Np0yaSk5MZMGAAoaGhNfLhlOPHj7N8+XKmTZtWbeZuFBGpLup0KN6Jc+fOsXbt\nWgoLCxk2bBiBgYHOLqnMLBYLs2fPZvjw4XTo0MHZ5YiIVDsKxTtgGAaHDx8mMTGRgIAAoqOja8Qb\nb9avX8/Vq1d58MEHnV2KiEi1pFC8CxaLha1bt7Jr1y7CwsKIiIjAzc3N2WXd0JkzZ1iyZAnTpk2r\nkVNaiYhUBYViBcjNzSUxMZGMjAwGDx5M586dq9U7RG02G3//+9/p06cPXbt2dXY5IiLVlkKxAp08\neZK1a9fi7u7OsGHDaNGihbNLAuDrr7/m5MmTjBs3rlqFtYhIdaNQrGB2u529e/eyadMmgoODGThw\noFMvV166dImPPvqIqVOn1oj7niIizlTzxhRUc2azmR49evDUU0/h5ubGrFmz2LFjBzbbzaesSkxM\npHv37phMJiIjI4mIiKBz58689957d1xH165dOXr0qGMGDAWiiMjtqVOsZFlZWaxbt47c3FyGDRtG\nu3btbrheUlISUVFRWCwWXF1dOXToEPfffz+rVq0iOjq63MfNyckhLS2NvXv3Mnny5Bo5plJEpKrp\nN2Ul8/f3Z9y4cQwePJhVq1bxr3/9i8uXL992u86dO3Pfffexdu3aOzqui4sLGzduZPTo0QpEEZEy\n0m/LKmAymQgODmb69Om0bt2af/zjHyQmJlJUVHTL7SwWC25ubsycOZOBAwcycOBARo0axZkzZwBY\nvnw5ISEhREZGMmPGDHr16kVQUBC/+c1vaN68ORcvXqRp06YkJyc7tu/Xrx/z58+vgrMWEal5FIpV\nyNXVlYiICKZNm0Z+fj4ffPAB+/btu+EsHElJSRw+fJgHHngAPz8/NmzYwMaNG3n44Yd57rnnABg9\nejTPP/88u3fvZsqUKezYsYOHH36Yn/3sZ7Rs2ZKOHTsC8NJLL/HEE0+wceNGli5dyqefflql5y0i\nUlNoigQn8PHxIS4ujoyMDNauXcuePXvw9fUFYNCgQdhsNlxcXFi6dCnh4eGcPXuWqKgo7HY7V65c\nobi4uNT+goODCQkJAWDmzJnMnj2bJk2a4OLy/WwgjRo14j//+Q/h4eEEBgby2WefVe0Ji4jUEApF\nJ2rVqhVTpkzhwIEDfPjhhwAkJCTg5+fnWOfo0aM8+uijbN26lbCwMJKSkoiPjy+1nx8CFb5/kjUk\nJKTUy77//Oc/88477zBw4EBatmzpuBwrIiKl6fKpk5lMJrp160ZcXBwAc+bMYcuWLVitVgD27t1L\ngwYNCAsLA76/zwhgsdk5l1tIboGFH66+njhxgrS0NAYNGlTqGDk5Obz44oukpaXxxBNPEBMTQ35+\nfhWdoYhIzaFQrCbc3b+fsmrKlClkZGQwa9YskpOTadeuHdnZ2aSmpgKwNGEFudcsdJ+5nqh3NvHG\nuiPsOXmZF77Yz8Iv1jBy5MjrpoSaNGkS58+fx2Qy0b9/fywWi95sIyJyA7p8Wg0kJiYyY8YMAB55\n5BFmzpxJWFgYa9eupUGDBjz99NMMGTKE1u078V22idxLWVg+e4t69w3m8pal2PKz+fNvJhHw+Ez6\n2nz58Jln2LdvH2+88Qb+/v489thjPPjgg3h4eHDlyhUWLlyIt7e3k89aRKT60eD9asxms7F7926+\n/vpr/II6884BE9cs9ltu4+lm5pOf96Z7a73BRkSkvBSKNUB+fj5jP9jEwWyA21/27BXUiE+m9q70\nukREahvdU6wBCuyupOa5UJZABNh7OofT2QWVW5SISC2kUKwBvsvMxc2l7H9Uri4m9p/OqcSKRERq\nJ4ViDVBku/V9xOsYUGwt5zYiIqJQrAlaNPDEXp5bvyZo7utZeQWJiNRSCsUaoGsrX3y93Mq8voeL\nC+FBjSuxIhGR2kmhWAOYTCamRbbDy83ltut6upn5Wb8gXMwanC8iUl4KxRpifHhbIto3wcvt5n9k\nnm5mftK2EVP73VOFlYmI1B4ap1iD2OwGb65NZuGOk5hMUFBsA8DLzQW7YTA2rDUvjry3XE+qiojI\n/1Eo1kAFxVZW7D/D4bNXAOjYzIfR3Vri41n2+44iInI9haKIiEgJXWcTEREpoVAUEREpoVAUEREp\noVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAU\nEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREp\noVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAU\nEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREpoVAUEREp8f8B6ei2\n+hVMkYUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTVUlEQVR4nO3dd3iV9cH/8c85J4OQxUiYIYwACTMng2lkz4Q9nFVBedSKfdo+Vq1Xf45ifbTV1g61WO2DUmtRQBCSMGXKCDNM2ZuEEEYW2cn9+4Pm1BhG4JzkJOe8X9fFdTV37vE5gcLH733f36/JMAxDAAAAwF0yOzsAAAAA6jcKJQAAAOxCoQQAAIBdKJQAAACwC4USAAAAdqFQAgAAwC4USgAAANiFQgkAAAC7UCgBAABgFwolAAAA7EKhBAAAgF0olAAAALALhRIAAAB2oVACAADALhRKAAAA2IVCCQAAALtQKAEAAGAXCiUAAADsQqEEAACAXSiUAAAAsAuFEgAAAHahUAIAAMAuFEoAAADYhUIJAAAAu1AoAQAAYBcKJQAAAOxCoQQAAIBdKJQAAACwC4USAAAAdqFQAgAAwC4USgAAANiFQgkAAAC7UCgBAABgFwolAAAA7EKhBAAAgF0olAAAALALhRIAAAB2oVACAADALhRKAAAA2IVCCQAAALtQKAEAAGAXCiUAAADsQqEEAACAXSiUAAAAsAuFEgAAAHahUAIAAMAuFEoAAADYhUIJAAAAu1AoAQAAYBcKJQAAAOxCoQQAAIBdKJQAAACwC4USAAAAdqFQAgAAwC4USgAA6rGCggJZrVa1aNFCJpNJXbt2ldVqVXh4uMLCwvTII4/o1KlTDr1mnz59dN999zn0nKjfKJQAANRjPj4+Sk1N1dNPPy1JSk5OVmpqqg4fPqzVq1dry5Yt6tWrl9LT0x12zdDQULVq1cph50P9R6EEAMBFtW/fXr/4xS906dIl/f3vf3fYeefPn68//vGPDjsf6j8KJQAALqxt27aSpLNnz+rNN99Unz59FBsbq8jISI0YMUI7duyw7Vtx+7xJkyZq166d1q5dqyFDhqhjx44ymUxauHBhpe9/3+eff67Y2FhFR0erZ8+eGjNmjBYvXlyLnxTORKEEAMCFHTlyRJIUFhamt956S++//7527NihPXv2aPr06RoyZIjOnTsn6T+3z8eNG6crV67o888/18qVK3X06FENHjxYFovF9v3v+/bbbzV9+nR9/vnn2rVrl3bv3q1OnToxiulGKJQAALio7du367e//a1CQ0M1Y8YMpaSkKDY21vb9Bx98UA0bNtTnn39e5djc3FzNmjVLHh4eMplMmjdvnoYNG3bD62zdulUNGjRQmzZtJEkWi0UvvPCCpkyZUjMfDHWOh7MDAAAAx4mPj5eXl5cKCwsVEBCghx9+WC+99JKaNGmikydP6r777tOhQ4dkNl8fU7py5YqOHz9e5TxNmjRRy5YtbV83a9bsptccOHCgXnrpJcXExOiZZ57RhAkTFBISomeffdbxHxB1EiOUAAC4kIq3vA8dOqRt27bp7bffVpMmTbRv3z7FxcUpKChI27dvV2pqqlJTU9WqVSsVFRVVOY+/v3+1r9mrVy9t3rxZPXr00PPPP682bdpowIAB2rZtmyM/GuowCiUAAG5g3rx5Kiws1KxZs+Tt7e3w8/fq1UtffPGFLl68qI8//lgnT57U8OHDdfXqVYdfC3UPhRIAADdQMQpZcatbksrKynTx4kW7z/35559ryZIlkq6PbD7xxBP605/+pJycHJ08edLu86Puo1ACAOAGxowZI0l66623ZBiGJOmNN95QQUGB3ec+cuSI3nzzTdtoZHl5uTZs2KBWrVqpa9eudp8fdZ/JqPhTBQAA6p2CggL169dPFy5cUEZGhrp06SIvLy+lpqZW2Xfu3Ll66623VFBQoLZt22rEiBH64IMPlJ+fr4iICG3evFl9+vTR0aNHlZeXp65du2rSpEl65ZVXJF0f0YyJidGZM2ds3//ggw/k6+urd999V9u2bZOXl5dKS0vVuXNnvfHGG+rSpUst/0TgDBRKAAAA2IVb3gAAALALhRIAAAB2oVACAADALhRKAAAA2IVCCQAAALtQKAEAAGAXD2cHAAAAzmcYhvKKSlVaZsi/gYc8LIw5ofoolAAAuLEDadn6LOWMFu0+p8KSctv2mNDGeqx/O43q1kJeHpRL3BoTmwMA4IbSswv0k3/t1o7TV2Uxm1RWXrkOmE1SuSE1buip30zooYQeLZ2UFPUBhRIAADdz8tI1Tf1ws67ml1Qpkjfz67Hd9Fj/djUbDPUWY9gAALiRq9eK9fDft95RmZSkV5ce0PL96TWYDPUZhRIAADcyZ/MpXcguvKMyWeG1pQfu6ji4PgolAABuoqSsXJ9tPa277YQXcoq07vBFx4aCS6BQAgDgJlYezNCV/OK7Pt5iMunTLaccFwgug0IJAICb2HHqijzMprs+vswwtP3UVQcmgqugUAIA4CZyCktl7xOQBSVlPEeJKiiUAAC4CW8Ps+5+fPI6D7NJdgxywkVRKAEAcBOtGjWQvbNPN/P3lslEo0RlFEoAANzEeGtrldvRKM0m6f5eoQ5MBFdBoQQAwE20adxQg8KDZbHjnvUDvdo4MBFcBYUSAAA3MiOuw129VGM2SWN6tlLzgAY1kAr1HYUSAAA3ck/HID03vPMdHWMxm9SxmZ/emNC9hlKhvqNQAgDgZmYOCtOoFkWSJMstm8D1kcwerQM177/6yb+BZ82HQ71EoQQAwM1s27ZNLbP26Q+jW2tUt5Yym67f0vYwm+RpMdmesWxkKtQroztp3n/1VRNfLyenRl3m4ewAAACg9qSlpWnVqlXq27evRg6wapKki7mFSt6XroycIpWUlSvQx1PRrf20dv7/qZOpuRp43tktcrgfCiUAAG6isLBQCxYsUIsWLTRs2DDb9mb+DTStf/sq+1/q0V27du3SPffcI7OZm5q4Of50AADgBgzDUGJiovLz8zVlyhRZLJbbHhMTE6OsrCwdP368FhKiPqNQAgDgBnbu3KkDBw5o7Nixaty4cbWOad26tZo3b66dO3fWcDrUdxRKAABcXEZGhpYvX67Y2Fh169at2seZTCbFxMToyJEjysnJqcGEqO8olAAAuLDi4mLNnz9fQUFBGjly5B0f37NnT3l4eGjXrl01kA6ugkIJAIALS05OVk5OjqZMmSIPjzt/F9fb21s9evTQ7t27VV5eXgMJ4QoolAAAuKjU1FTt2bNHCQkJCgoKuuvzxMTEKCcnR0ePHnVgOrgSCiUAAC4oMzNTycnJslqtioyMtOtcrVq1UsuWLXk5BzdFoQQAwMWUlJRowYIFCgwM1OjRox1yztjYWB09elRZWVkOOR9cC4USAAAXs2LFCl25ckVTpkyRl5djlkzs3r27vLy8eDkHN0ShBADAhezfv187d+7UqFGj1Lx5c4ed18vLSz179tTu3btVVlbmsPPCNVAoAQBwEVeuXNHSpUvVvXt3RUdHO/z8MTExysvL05EjRxx+btRvFEoAAFxAaWmpFixYIF9fX40ZM0Ymk8nh12jRooVCQkJ4OQdVUCgBAHABq1ev1sWLFzV16lR5e3vX2HViYmJ0/PhxXb16tcaugfqHQgkAQD136NAhpaSkaPjw4WrZsmWNXqtbt27y9vZmlBKVUCgBAKjHsrKy9PXXXysiIkK9e/eu8et5enoqMjJSqampvJwDGwolAAD1VFlZmRYuXChvb2+NGzeuRp6bvJHY2Fhdu3ZNhw4dqpXroe6jUAIAUE+tXbtWaWlpmjJlinx8fGrtusHBwQoNDdWOHTtq7Zqo2yiUAADUQ8eOHdOmTZs0ZMgQhYSE1Pr1Y2JidOrUKV2+fLnWr426h0IJAEA9k5ubq0WLFqljx47q37+/UzJ07dpVPj4+vJwDSRRKAADqlfLycn311VeyWCyaMGFCrT03+UMeHh62l3NKS0udkgF1B4USAIB6ZMOGDTp9+rQmTZokX19fp2aJiYlRQUGBDh486NQccD4KJQAA9cTJkye1fv16DRw4UO3atXN2HAUFBaldu3bc9gaFEgCA+uDatWv66quv1K5dO917773OjmMTExOjM2fO6OLFi86OAieiUAIAUMcZhqFFixapvLxckyZNktlcd/757tKlixo2bMgopZurO38iAQDADW3atEnHjx/XpEmT5O/v7+w4lVgsFkVFRWnv3r0qKSlxdhw4CYUSAIA67OzZs1qzZo3i4uIUFhbm7Dg3FB0drcLCQh04cMDZUeAkFEoAAOqogoICLViwQCEhIRo8eLCz49xUkyZNFBYWxm1vN0ahBACgDjIMQ19//bVKSko0efLkOvXc5I3ExMTo3LlzysjIcHYUOEHd/tMJAICbSklJ0eHDhzV+/HgFBgY6O85tde7cWX5+fqzv7aYolAAA1DFpaWlatWqV+vbtq/DwcGfHqZbvv5xTXFzs7DioZRRKAADqkMLCQi1YsEAtWrTQsGHDnB3njkRHR6u4uFj79+93dhTUMgolAAB1hGEYSkxMVH5+vqZMmSKLxeLsSHekUaNG6tSpEy/nuCEKJQAAdcSuXbt04MABjR07Vo0bN3Z2nLsSExOjtLQ0paWlOTsKahGFEgCAOiAjI0PLly9XTEyMunXr5uw4d61Tp04KCAhglNLNUCgBAHCy4uJiLViwQE2bNtXIkSOdHccuZrNZUVFR2rdvn4qKipwdB7WEQgkAgJMlJycrOztbU6ZMkaenp7Pj2C06OlqlpaXau3evs6OgllAoAQBwotTUVO3Zs0cJCQkKCgpydhyHCAgIUOfOnbVz504ZhuHsOKgFFEoAAJzk0qVLSk5OltVqVWRkpLPjOFRMTIwyMjJ0/vx5Z0dBLaBQAgDgBCUlJZo/f74CAwM1evRoZ8dxuLCwMAUGBvJyjpugUAIA4AQrVqzQlStXNGXKFHl5eTk7jsOZzWbFxMRo//79KiwsdHYc1DAKJQAAtWz//v3auXOnRo0apebNmzs7To2JiopSeXm59uzZc9N93n77bXXt2lUmk0mffPLJLc937733qkWLFjKZTA5OCntRKAEAqEVXrlzR0qVL1b17d0VHRzs7TrUUFBTIarXaylzXrl1ltVrVrVs3de/eXc8888wNl1v08/NTeHj4LV/Oef7555WcnFytHBs3btTTTz9dZfvXX3+txo0ba8eOHXf2weAwFEoAAGpJaWmpFixYIF9fX40ZM6bejLT5+PgoNTXVVuaSk5OVmpqqAwcOaOXKlfL09FRUVJR++9vfVjk2NjZWmZmZOnv2bI3lCwgIUNu2bdWwYcMauwZuzcPZAQAAcBerV6/WxYsX9cQTT8jb29vZcRyiVatW+tOf/qSgoCD98pe/VIsWLfTYY4/Zvt++fXs1btxYO3fuVGhoaI1kGDx4sFJTU2vk3KgeRigBAKgFhw8fVkpKioYPH66WLVs6O47Dvfjii2rWrJleeukl7dmzR1arVV5eXpo+fbpiYmJ04MAB3X///bd8BjI/P19PP/20YmJi1LhxY40bN05nzpy55XXff//9Ks9gbty40Xb9adOm6U9/+pPi4uLUunVrjR07VhcuXHD0x3d7FEoAAGpYdna2Fi9erIiICPXu3dvZcWqEl5eXhg4dqvT0dBUXFys1NVWtWrWSJFmtVhmGoZ/97Gc3fAaywttvv61p06Zp586dOnHihM6dO6cRI0aotLT0psfMnDmzyjOY9957r+36K1euVIsWLfTtt99q//79OnjwoF544QXHfGjYUCgBAKhBZWVlWrhwoby9vTVu3Lh689zk3ai4pX3q1KlK2319fdW1a9fbrpwzdOhQ9e3bV5LUuHFjvfbaazp8+LDmzp1715maNm2q+++/33bOkSNH6ptvvrnr8+HGKJQAANSgtWvX6ty5c5o8ebJ8fHycHadGVZTFG5XmmJgYXb58WdnZ2Tc9vmfPnpW+rhjN3bx5811nioiIqPR1UFAQt7xrAIUSAIAacuzYMW3atElDhw5VmzZtnB2nxp0+fVqS1K5duyrfa9u2rZo2baq0tLSbHh8QEFDp6yZNmkiSXcs3+vr6VvrabDarvLz8rs+HG6NQAgBQA3Jzc7Vo0SJ17NhR/fv3d3acGldYWKhvvvlGrVq1ss2vabFYKo1axsTE3LIc/nD08vLly5Kk1q1b11BqOArTBgEA4GDl5eX66quvZLFYNGHCBJd+brLCb37zG126dEmffPKJzObr41XNmzfXlStXbPtYrVZdunTppufYt29fpa+3bdsmSW5RyOs7RigBAHCwDRs26PTp05o0aVKVW66u5vz585o5c6beeustvfnmm5XmoBwyZIg2bdpku829fft2W8G80cs5S5Ys0datWyVJV69e1a9//WuFh4fr0UcfrYVPAnuYjFu9bgUAAO7IyZMnNXfuXA0aNEgDBw50dhyHKCgoUL9+/XThwgVlZGSoS5cu8vLyUnFxsUwmkwYOHKhnnnlG3bt3r3RcTk6OfvzjH2vdunUKCQnR8OHDlZubqz//+c/q0qWLZs2apZMnT2rOnDn67rvv9Pvf/147d+7UwYMHdfr0acXFxem9996zvT1+77336ujRo8rIyFBkZKT+3//7f8rIyND777+v7777Tm3atNGgQYP0/PPP65FHHtHBgwfl5+enyMhIrV27Vo8++qhWrlxpO/6dd97RsGHDnPEjdTkUSgCAWzp8+LDuv/9+HTt2TLGxsVq3bp3d57x27Zpmz56toKAgPfLII7Zbv/gPwzD017/+VUFBQbrvvvucHQcOwp90AECdl5aWJqvValtl5cEHH7zl/omJiTKZTGrSpImsVqtSU1N19uxZNWvWTO+9954kKTw8XKmpqYqNjXVIRsMwtGjRIpWXl2vSpEmUyZuoeDnn0KFDys3NdXYcOAh/2gEAdV6rVq2Umpqqp59+WiaTSV9++aW+++67m+7/+uuvS5LGjRun1NRUWa1WeXt7q23btrapaBxt06ZNOn78uCZNmiR/f/8auYariIyMlMVi0e7du50dBQ5CoQQA1CsTJ06UYRi20vhDiYmJatu2bZXtzZo10/bt2/XQQw85PNPZs2e1Zs0axcXFKSwszOHndzUNGjRQ9+7dtWvXLuaEdBEUSgBAvdKjRw9NnDhRX3zxhQ4dOlTl+7NmzdLLL79caVtKSoqsVqu8vLw0bdq0217jo48+0r333qvY2FhFRkYqLi5OK1eurLTP4MGDbbfg//znP2v+/Pl65pln1LVrVyUlJdn1Gd1BTEyMsrOzdfz4cWdHgQNQKAEA9c4rr7xyw1HKxMREtWnTRj169Ki0vU+fPkpNTVWrVq2qdf4//OEPeuGFF7Rjxw7t2bNHv/nNbzRx4kTt2rXLts/atWv11FNPSbo+TdDatWt1+PBhjRw5Ug8++KCysrLs+5AurnXr1mrRooV27tzp7ChwAAolAKDeiYyM1Pjx4zVv3jwdPnzYtn3WrFl65ZVX7D7/okWLNHbsWNvXgwYNUo8ePfTxxx9X2q9i1ZcXXnhBQUFBkqQHH3xQubm52r59u905XFnFyzlHjhxRTk6Os+PAThRKAEC99Morr6i8vNw2SpmYmKhWrVopMjLS7nObzWZNnz5dUVFRioyMlNVq1f79+yvdnk1LS7N9PWrUKNv2imJ54cIFu3O4uh49esjDw0M7d+7U7jNXtWRPmr7ccVbL9qfr7JV8Z8fDHWDpRQBAvRQVFaWxY8dq3rx5evnllzVr1izNnj3b7vOmp6crLi5O99xzj9avX6+AgABJ10cpi4qKJF1ft3rBggXy8/OTpEqr4VRMF1RWVmZ3FldXbJh1NaiHfv7NVWWt3FzpeyZJ93YK0mP92mlQeDNZzK6/fGV9xgglAKDeeuWVV1RWVqYJEyaoefPmio6OtvuciYmJyszM1K9+9Stbmfw+wzCUmJio/Px8de3a1e7ruau957I04O21WnDSrKwyryrfNyRtOnZZT8zdoQf+tkXZBSW1HxLVRqEEANRbsbGxio+P16FDhxzy7KQk2yjkDycmT09PlyTt2rVLBw4c0NixY+Xj4+OQa7qbPWezNPXDLcopKNH15fpuPPpY9u/F/HadydKU2ZuVU0iprKsolACAeu2jjz7Sxo0b1atXL4ecb8SIEfL29tY777yjkpLrBWbu3Lk6cuSIiouLtXz5csXExKhbt24OuZ67uXKtWI/N2aaSsnKVVXPx5zLD0PHMPP10HhOh11UUSgBAnVdQUCCr1arZs2dr9uzZslqtKigokHR9FZ24uDjbvu+++66sVqskacmSJbJarbZ5KNPS0mzbDh8+LKvVqh07dmjHjh2yWq06deqUOnfurEWLFunQoUNq3769Bg0apL179yomJkY7d+7U7Nmz1adPH02cONH2zKbVatXGjRu1YMECxcfHS7p+O/6///u/a/cHVQ98seOssgtLVF7NMlmh3JDWHs7UoQu8EV4XmQzDuMPfUgAA3M/ixYt18OBBPfnkk7Y3uXFnysoN3fO7NbqQXXhXx1vMJj3Yq41+M6HH7XdGrWKEEgCA20hNTdWePXuUkJBAmbTDpmOX7rpMStcL6YJd51RYwhv0dQ2FEgCAW7h06ZKSk5NltVodMselOzt1+ZpMds7+U1hSrsy8IscEgsNQKAEAuImSkhItWLBAgYGBGj16tLPj1GslJSW6eCX7Ju9z35lrRaUOOAsciYnNAQC4iRUrVujy5cuaMWOGvLyqzpWI/ygpKVFWVlalX9nZ2bb/fe3aNR0qDVa5EaqbTRNUXf4NPB0TGg5DoQQAuJWMnELtOH1VB9OylV1QIg+zWe2DfNUjJFCRIY1sK7IcOHBAO3fu1JgxY9S8eXMnp3a+6hTGCiaTSYGBgWrUqJGCg4PVqVMnNWrUSGcLPLXl65N25Qho4KFgP297Pw4cjEIJAHALu89c1Xtrj2nN4YsyDMnje0v5lZUbMiS1DGyg6f3baVxEoJYuXaru3bs7ZPWd+sARhbHil7+/f5WJ4SWpp2Ho3c0XdSLzmu5mihmLyaSH+rSVlwdP7NU1TBsEAHBpRaVlenvFYf3925Mym00qu80EiCaT1NijRKMDL+iVZ6fL29s1RsPutjDe6NfNCmN1/GPLKb2y5MBdFUqTpA3PD1abJg3v6tqoOYxQAgBcVmFJmWbM3aFNxy/JkG5bJiXJMKSrJR6afzVUCedy1T+sfhTKkpKSSgXxh78cMcLoCJOiQ/ThxhNKzy6s1u/HfzJLU6NDKJN1FCOUAACX9bMvdmvJnrQ7XpVFkswmycvDrGX/PUDtg3wdH+4O3W1hdPQIoyOcunRNk/66WdmFJdUqlWaT1LdDU30yrTe3u+soCiUAwCUtP3BBT3+2065zWMwmRYYEasFT/WU2O2LCm5tzpcJYHWev5mv6nO06lpkny00eRajYPjGqtd6a1EPeHhYnJEV1UCgBAC6nvNzQwHfW6tzVgrt6Vu+HPvxRjEZ2a2HXOdytMFZHWbmhDUcy9emWU1p/JLPS71UDT7OmxrTRj/q0VXgLf6dlRPVQKAEALmfj0Uw98n/bHHIui0nq06GpPp/R95b7URjtczGnUOezClRQUqaABp5qH+QrX29e9agv+J0CALicNYcuysNsUundPDz5A2WGtPXEZeXmF6ooP6/Ov/RSXzULaKBmAQ2cHQN3iRFKAIDLmfTXTdp1Jsuh5xzj9Z2CzddLIyOMQGWMUAIAXE5aVqHDz9mt1z2K79GKwgjcAIUSAOByDIe8ilNZ27bt1LZtS4efF3AF/OcVAMDltAr0cfg5m/N8H3BTFEoAgMuJDGlUaa1ue5lMUteWAQ47H+BqKJQAAJczMDzYIW94S9enDerdrol8vJhUG7gZCiUAwOUM7BSsFv5ekgOepSwzpMf6tbP7PIAro1ACAFxKaWmp1q9fp67FhyXZd9vbYjapR+tAu1fJAVwdb3kDAFzG8ePHlZycrKysLD18b395pQdq5cEM3c3db5NJsphMevc+qyw1vI43UN8xsTkAoN7Lzc3VypUrtX//frVr107x8fEKDg5WQXGZHp2Top2nr95RqTSbro9OfvxoLw3sHFxzwQEXQaEEANRb5eXl2rFjh9asWSOLxaIRI0aoZ8+eMpn+M6JYWFKm3yQd1GcpZ2QxmVR2m3/2zCapdSMf/emBKEWHNq7pjwC4BAolAKBeSktLU2JiotLT0xUTE6OhQ4fKx+fm809uPXFZ7609pm+PXZIkeZhNMnT9Kctyw1C5ITX19dK0/u00I64Db3UDd4BCCQCoVwoLC7VmzRpt375dzZs315gxYxQSElLt489eydf2U1d0IC1HWQUl8rKY1D7IVz1CGim2bWN5WnhfFbhTFEoAQL1gGIYOHDigFStWqLi4WIMGDVKfPn1YUxuoA3jLGwBQ512+fFnJyck6ceKEunTpolGjRikggJVrgLqCEUoAQJ1VWlqqb7/9Vt9++638/f0VHx+vTp06OTsWgB9ghBIAUCd9f07J/v37a8CAAfL09HR2LAA3wAglAKBOycvL04oVK7R//361bdtWCQkJCg5mLkigLqNQAgDqhOrMKQmgbuKWNwDA6dLS0pSUlKS0tDRFR0dr2LBht5xTEkDdwgglAMBpCgsLtXbtWm3fvl3NmjVTQkKC2rRp4+xYAO4QhRIAUOu+P6dkUVGRBg8ezJySQD3GLW8AQK26cuWKkpOTdfz4cXXp0kUjR45UYGCgs2MBsAMjlACAWlFaWqpNmzZp48aN8vPzU3x8vDp37uzsWAAcgBFKAECNO3HihJKTk3X16lX169dPAwcOZE5JwIUwQgkAqDF5eXlauXKl9u3bp7Zt2yo+Pl7NmjVzdiwADkahBAA4XHl5uXbu3KlvvvlGFotFw4cPV2RkJHNKAi6KW94AAIdKT09XYmKibU7JoUOHqmHDhs6OBaAGMUIJAHCIoqIirVmzRtu3b1dwcLASEhIUGhrq7FgAagGFEgBgF8MwdPDgQS1fvlxFRUUaNGiQ+vTpI4vF4uxoAGoJt7wBAHft+3NKRkREaNSoUcwpCbghRigBAHfsh3NKjh49WuHh4c6OBcBJGKEEANyRkydPKikpyTan5IABA+Tl5eXsWACciBFKAEC1fH9OydDQUCUkJDCnJABJFEoAwG18f05Js9msESNGMKckgEq45Q0AuKn09HQlJSXp/PnzioqK0rBhw5hTEkAVjFACAKooKirS2rVrtW3bNuaUBHBbFEoAgI1hGPruu++0fPlyFRYWauDAgerbty9zSgK4JW55AwAkSVevXlVycrKOHTum8PBwjR49mjklAVQLI5QA4OZKS0u1efNmbdy4Ub6+vswpCeCOMUIJAG7s+3NK9u3bVwMHDmROSQB3jBFKAHBDeXl5WrVqlfbu3cuckgDsRqEEADdiGIZtTkmTyaThw4fLarUypyQAu3DLGwDcxIULF5SUlKRz587JarVq+PDhzCkJwCEYoQQAF1dUVKR169YpJSVFQUFBGjNmDHNKAnAoCiUAuCjmlARQW7jlDQAu6OrVq1q2bJmOHj2qzp07a/To0WrUqJGzYwFwUYxQAoALKSsr0+bNm7VhwwY1bNhQo0ePVkREhLNjAXBxjFACcAkFBQXq16+fLly4oIyMDHXp0kVeXl4qLS1Vdna2QkJC9NJLL2ncuHHOjlpjTp06paSkJF2+fFn9+vVjTkkAtYYRSgAu5bXXXtOvf/1rnTx5Uu3atZMkFRYWasaMGfr888+1evVqDRkyxLkhHezatWtatWqV9uzZozZt2ighIUHNmzd3diwAbsTs7AAAUNMaNGig5557ToZh6B//+Iez4zhMxZyS7733no4cOaKxY8dq+vTplEkAtY5CCcAtlJaWSpIuX75s21ZSUqJZs2apc+fOioiIUIcOHfTcc8/p2rVrtn0efvhhhYaGymQyaf369Zo4caIiIiIUERGhpKQklZWV6Ze//KViY2PVtm1bvfHGG1WunZOTo2effVbt2rVTRESEunXrpg8++MCuz3PhwgX93//9nxITExUREaGZM2cqOjqaCcoBOAXPUAJweVeuXNHrr78uSRo8eLBt+0MPPaStW7dqzZo16tSpkzIyMjR06FBt27ZNa9eulYeHh/75z3/qk08+0fTp0/XnP/9Zn332mXx9ffX8889r8uTJevHFF/XEE0/orbfeUmJiosaOHat77rlHgwYNknS9tA4fPlx5eXnatm2bmjVrppSUFA0ePFi5ubl68cUX7+iz/HBOyWnTpqlt27YO+1kBwN1ghBKAS4qPj5fValVISIiCgoK0ZcsWvfDCC3r22WclSevWrdOCBQv0i1/8Qp06dZIkNW/eXLNmzdK3336rzz//vMo5f/SjH8nX11eS9MADD6ioqEhZWVm248eMGSM/Pz+tXr3adsxnn32mbdu26bXXXrOtld2nTx89+OCDeuONN5Sfn1+tz1Mxp+QHH3ygHTt2aMiQIXrqqacokwDqBAolAJeUnJys1NRUHTt2TA8++KBGjBihl19+WZ6enpKkFStWSLpe7r6vX79+kqTly5dXOWfnzp1t/7tJkyZVtlVsT09Pt329cuVKSVJcXFyl/Xr06KHc3Fxt3779tp/l6tWr+te//qUvv/xSLVq00MyZMxUXF8cE5QDqDG55A3BpDRo00F/+8he1b99ezz33nD788ENJ0qVLlyT9pxhWaNq0qSQpMzOzyrkqRicl2Z5V/P62iu1lZWW2ryuuM3r06Er7FRQUqHnz5rp69epNs/9wTsn7779f4eHhPCcJoM6hUAJweU2aNNGTTz6pP/7xj3rppZfUrl07BQUFSbr+fOX3Vby0Exwc7JBrV1xn/fr1CgwMrPZx359Tsm/fvho0aBBzSgKos7jlDcAt/PSnP5XJZNL//u//SpJGjhwpSUpJSam039atWyVJo0aNcsh1K66ze/fuStuzs7M1adKkKoX22rVrWrx4sT799FM1aNBATz31lEaMGEGZBFCnUSgBuIWQkBDdf//9+vTTT3XmzBkNGjRIU6ZM0e9//3sdP35cknTx4kW9+uqriouL00MPPeSQ6z788MPq16+fXnjhBV28eFHS9dvdP/3pT2U2m2233A3D0K5du/Tee+/p8OHDGjNmjB5//HHmlARQL7BSDgCXcKOlF7t27aoFCxbY9tmzZ4+sVqvatGmjzp07a9myZfrf//1fffbZZ7JYLCoqKtLEiRP1+uuv256NnDlzppYuXaqzZ8+qS5cu+tWvfiVJeuONN/Tdd9+pTZs2mjx5sp5++mndf//9OnjwoPz8/NSpUyfb6Gdubq5efvllLV68WP7+/rJYLBo9erReffVVNWjQQBkZGUpMTNS5c+cUGRmp4cOHV3k2EwDqMgolADhJcXGx1q1bp61bt6pp06ZKSEiwLRcJAPUJhRIAaplhGDp8+LCWLVum/Px8DRw4UP369WMaIAD1Fm95A0AtysrK0rJly3TkyBF16tRJo0ePVuPGjZ0dCwDswgglANSCsrIybdmyRevXr1fDhg01atQoRUREMKckAJfACCUA1LDTp08rKSlJly5dUp8+fTRo0CB5e3s7OxYAOAwjlABQQ/Lz87Vq1SqlpqYqJCRECQkJatGihbNjAYDDUSgBwMEMw9Du3bu1evVqGYahYcOGKTo6mtvbAFwWt7wB4Af2nM3SZymntfXEZeUUlsrbw6xWjXx0X2wbjY9sJV/vm//VmZGRoaSkJJ09e5Y5JQG4DUYoAeDfUk5e1q+XHtTB9BxZzCaVlf/nr0eTJEOSj5dFj/Ztq+eGh8vL4z+LjTGnJAB3RqEEAElL9qTp51+myjAMld/mb0WTSerdron+77Fe8vX20KFDh2xzSg4YMED9+/dnTkkAboVCCcDtbTyaqcfmbLttkfw+s0nq166R4v3P6tiRw+rYsaPi4+OZUxKAW6JQAnBrZeWG+r/1jS7mFelu/jYc4Z+un03ory5duvDSDQC3xUs5ANzamkMXlZFbdFfHmiRdCAhX165dHRsKAOoZ8+13AQDX9emWU7Lc5ciiIWnv+RwdSMt2bCgAqGcolADcVmlZuTYdu6QyO578sZik9UcyHZgKAOofCiUAt5VbWCp7HyI3m03Kyi9xSB4AqK8olADcltnsmJdoLA46DwDUVxRKAG7L39tDnhb7ymBZuaGmfl4OSgQA9ROFEoDbMptNiu/e0q4RRkPSqG4tHBcKAOohCiUAt/Zw75BKSyzeCYvZpCHhzRTSuKGDUwFA/UKhBOC2jh07pi1L/6XGpgLdzSBlWbmhx/q1c3guAKhvKJQA3E5OTo7mz5+vf/7zn2rcuJH+9lgfNfTyuONSOSOuvQZ0Dq6ZkABQj7D0IgC3UVZWppSUFK1bt07e3t4aMWKEunfvLpPJpD1ns/TYnG3KLSq95S1ws0kqN6RH+7bVa2O7OexNcQCozyiUANzCmTNnlJSUpMzMTPXq1UuDBw9WgwYNKu1z7mq+3l97TF/tPq/i0nKZ/l0eJcnDbFJpuaEuLf319IAwjYtsxdrdAPBvFEoALu3atWtavXq1UlNT1bp1ayUkJKhly5a3PCa7oERf7TqnHaevKrugRD6eFrUMbKDJ0SGKbNOodoIDQD1CoQTgkgzD0M6dO/XNN99IkoYNG6bo6GhGFQGgBng4OwAAOFp6erqSkpJ0/vx5Wa1WDRs2TL6+vs6OBQAuixFKAC6jsLBQa9as0Y4dOxQcHKyEhASFhoY6OxYAuDwKJYB6zzAM7du3TytXrlRJSYkGDRqk3r17y2KxODsaALgFbnkDqNcyMzOVnJysU6dOqWvXrho5cqQCAgKcHQsA3AojlADqpZKSEm3YsEGbN29Wo0aNNHr0aHXs2NHZsQDALTFCCaDeOXz4sJYtW6a8vDwNGDBA99xzjzw8+OsMAJyFEUoA9UZWVpaWLVumI0eOKCwsTPHx8WrSpImzYwGA26NQAqjzSktLtWXLFm3YsEE+Pj4aNWqUunTpwpySAFBHcI8IQJ124sQJJScn68qVK+rbt68GDhwob29vZ8cCAHwPI5QA6qTc3FytXLlS+/fvV2hoqOLj49W8eXNnxwIA3ACFEkCdUl5eru3bt2vt2rWyWCwaPny4IiMjub0NAHUYt7wB1Bnnzp1TUlKSLly4oJiYGA0dOlQ+Pj7OjgUAuA1GKAE4XUFBgVavXq1du3apZcuWSkhIUOvWrZ0dCwBQTRRKAE5jGIZSU1O1evVqlZWVaciQIYqNjZXZbHZ2NADAHeCWNwCnyMjIUFJSks6ePasePXpoxIgR8vPzc3YsAMBdYIQSQK0qKirSunXrlJKSoqZNmyo+Pl7t27d3diwAgB0olABqhWEYOnjwoFasWKGCggINHDhQ/fr1k8VicXY0AICduOUNoMZduXJFycnJOn78uMLDwzVq1Cg1atTI2bEAAA7CCCWAGlNaWqpvv/1W3377rfz9/TVq1CiFh4c7OxYAwMEYoQRQI44dO6bk5GRlZ2frnnvu0b333itPT09nxwIA1ABGKAE4VHZ2tlasWKHvvvtO7du3V3x8vIKCgpwdCwBQgyiUAByirKxMKSkpWrdunby9vTVixAh1796dJRMBwA1wyxuA3U6fPq2kpCRdunRJvXr10uDBg9WgQQNnxwIA1BJGKAHctWvXrmnVqlXas2ePWrdurYSEBLVs2dLZsQAAtYxCCeCOGYahnTt36ptvvpEkDRs2TNHR0dzeBgA3xS1vAHckPT1dSUlJOn/+vKxWq4YNGyZfX19nxwIAOBEjlACqpbCwUGvWrNGOHTsUHByshIQEhYaGOjsWAKAOoFACuCXDMLRv3z6tXLlSJSUlGjRokHr37s2SiQAAG255A7ipzMxMJScn69SpU+ratatGjhypgIAAZ8cCANQxjFACqKK4uFgbNmzQli1b1KhRI40ePVodO3Z0diwAQB3FCCWASg4dOqTly5crLy9PAwYM0D333CMPD/6qAADcHCOUACRJV69e1fLly3XkyBF17NhRo0ePVpMmTZwdCwBQD1AoATdXWlqqLVu2aMOGDWrYsKFGjRqliIgI5pQEAFSb2dkBAFf2z3/+U1arVSaTSa+99pqz41Rx4sQJzZ49W+vWrVPv3r01c+ZMdenShTIJALgjFEq4pLS0NFmtVrVo0UImk0n/+Mc/quyzZMkSWa1W+fn5qWPHjoqPj3d4jocfflipqakOP6+9cnNztXDhQv3jH/+Qr6+vnnrqKQ0fPlxeXl7OjgYAqIcolHBJrVq1Umpqqp5++mlJ0tNPP60DBw5U2mfcuHFKTU1VbGysPv74YyUnJzsjaq0qLy9XSkqK3n//fZ04cULjx4/XtGnT1KxZM2dHAwDUY7y6CZc3ZswYrVq1SlOmTNH27dvl5+fn7EhOce7cOSUlJenChQuKiYnR0KFD5ePj4+xYAAAXwAglXF5MTIzef/99HTp0SDNmzLjt/h999JHuvfdexcbGKjIyUnFxcVq5cqXt+7m5ubJarWrSpInatWunBQsWqF+/fgoLC1OHDh30wQcfVCtXTk6Onn32WbVr104RERHq1q1blWPz8vL0k5/8RD169FBUVJQiIyM1c+ZMnThxotqfPz8/X0uXLtXf//53mUwmzZgxQ2PGjKFMAgAchhFKuIUnnnhCW7du1ccff6y4uDg9++yzN933D3/4g373u99p7NixkqR169YpISFBGzduVHR0tPz9/ZWamqpp06Zp3rx5WrRokTZs2CBPT099+umnmjZtmvz9/fXII4/c9BolJSUaPny48vLytG3bNjVr1kwpKSkaPHiwcnNz9eKLL0qSfv7zn+v06dPatWuXPD09deHCBQ0YMEC9evVShw4dbvmZDcNQamqqVq9erbKyMo0ePVqxsbEym/nvSACAY/EvC9zGe++9p9jYWD333HPatm3bTfdbtGiRrUxK0qBBg9SjRw99/PHHVfYtKirSb3/7W3l6ekqSHnvsMUVFRenll1/WrWbk+uyzz7Rt2za99tprtucX+/TpowcffFBvvPGG8vPzJUlbtmxR27Ztbedv0aKF3n77bXXt2vWWnzUjI0Nz5szRkiVL1LFjRz377LPq3bs3ZRIAUCP41wVuw9vbWwsXLlRAQICmTp2qK1eu3HA/s9ms6dOn224xW61W7d+/X8ePH6+yb+PGjRUSElJpW+/evXX69GmdP3/+plkqbqHHxcVV2t6jRw/l5uZq+/btkqShQ4fq73//u+677z4lJiaqoKBA48ePV+/evW943qKiIq1YsUIffvihCgoK9Oijj2rixIlu+9woAKB2cMsbbiU0NFSff/65Ro0apUceeUSJiYmVvp+enq64uDjdc889Wr9+vQICAiRdH6UsKiqqcr6K739fxeoy58+fr1I2K1y6dEmSNHr06ErbCwoK1Lx5c129elWS9O6776pbt2768MMPNXbsWPn5+emRRx7RW2+9VenahmHo4MGDWrFihQoKCjRkyBD169dPFouluj8aAADuGoUSbmf48OF6/fXX9atf/UpvvPFGpe8lJiYqMzNTv/rVr25YFn8oOzu7yrbLly9Lklq3bn3T44KCgiRJ69evV2Bg4E33M5vNevLJJ/Xkk0/q8OHDmj17tv785z8rNzfXNrfm5cuXtWzZMh0/flzh4eEaNWqUGjVqdNvsAAA4Cre84ZZeeukljR8/Xq+++qoOHjxo214xCvnDZw3T09NveJ6srCydO3eu0rZt27apbdu2tyyUI0eOlCTt3r270vbs7GxNmjTJdjv+iSeesD1PGR4ernfffVcJCQnas2ePSkpKtHbtWv31r3/V5cuX9cADD+iBBx6gTAIAah2FEm7JZDJp7ty5CgsLU2Zmpm37iBEj5O3trXfeeUclJSWSpLlz5+rIkSM3PI+fn59efvll276ffvqpUlNT9frrr99y+cKHH35Y/fr10wsvvKCLFy9Kun67+6c//anMZrPttvk333yjv/zlL7YXfDIzM3XgwAHFxMTor3/9q7799lv1799fzzzzjMLDw+3/wQAAcBcolHBJFUsvzp49W7Nnz5bVatXZs2cr7RMQEKCvvvpKvr6+tm2dO3fWokWLdOjQIbVv316DBg3S3r17FRsbqx07dshqtSorK8u2f9OmTfXggw9qyJAhCgsL02uvvab333/fNmVQxVrekjR79mwNGzZMkuTp6akVK1aof//+6t27t3r06KF+/fqpZcuW+uyzz2znf+2117RixQr17NlTUVFRGjhwoKxWq0JCQtSoUSP9+Mc/1pAhQ2xvgQMA4Awm41Zzm6CKtLQ0xcfH68KFC8rIyNADDzygf/3rXzfdPzExUWPHjlXjxo0VGhqqTz75xFYwUL9NmzZN69at06lTp2r8WmVlZUpJSdG6devk7e2tkSNHqlu3brccBQUAoLYwQnmHvr9GtMlk0pdffqnvvvvupvu//vrrkv6zbjRlEnfq9OnT+vDDD7V69WpFRUVp5syZ6t69O2USAFBnUCjtMHHiRBmGYSuNP5SYmKi2bdvWciq4imvXrmnx4sX65JNP5OXlpf/6r//S6NGj1aBBA2dHAwCgEgqlHXr06KGJEyfqiy++0KFDh6p8f9asWXr55ZdveOyxY8d03333KTQ0VJ06dVJsbKzmz59faZ/qruP8xRdfKCYmRp06dVKPHj00aNAgffDBByorK6v29T7++GO1bNlSJpNJPXv21BdffCHp+lvPgYGBlVaJGTdunJo0aaKOHTsqJSXlzn9w9VzFWt5LliyxPau5efNmh52/vLxcO3bs0HvvvafDhw9rzJgxeuKJJ9SyZUuHXQMAAIcycFdeffVV49VXXzVSU1MNk8lkPPTQQ5W+v3TpUmPSpEmGYRiGJOOxxx6zfe/UqVNG06ZNjYcfftgoKSkxDMMwvv76a8NisRh//etfbfvNmDHDGD58uFFcXGwYhmGkp6cbnTp1MubMmWPb5y9/+Yvh4eFhJCUlGYZhGOXl5cYbb7xhSDKuXr16R9dbsmSJIclYv369bVtiYqIhyUhISKj0+Xr27GlkZGTczY8Ot3D+/Hnjo48+Ml577TVj8eLFRl5enrMjAQBwWxTKu1RRKA3DMCZMmGCYzWbj0KFDtu/36tXLSE1NNQyjaqF87LHHDE9PT+PixYuVzjl27FgjICDAyM3NNQzDMLp162bMmDGj0j6LFy82UlJSDMMwjJycHMPPz8+YOHFipX3KysqMkJAQIysr646uV1BQYPj6+hr/8z//Y9vn8ccfN2JjYw1vb2/bfkePHjXi4uKq/8PCbRUUFBhJSUnGr3/9a+ODDz4wTp8+7exIAABUG7e8HeCVV15ReXm57VnKxMREtWrVSpGRkTfcf8WKFerQoYOCg4Mrbe/Xr59ycnJst09vt47z5s2blZeXV2VdZ7PZrLNnz9pWYKnu9Ro0aKCRI0fq66+/lnT9zeINGzboD3/4g4qKirRs2TJJ0qJFizR+/Pi7/nm5guOZefrTN0f1+Kfbde/v1qj/W98o/s8b9cuv9mrR7nMqLCm7/Ul0fcnEvXv36r333tOePXs0fPhwPfXUUwoNDa3hTwAAgOOw9KIDREVFaezYsZo3b55efvllzZo1S7Nnz77p/pcuXVL79u2rbG/atKkk2Sbavt06zhXrQVdMgm3v9SRpwoQJ+uqrr7R//35dunRJvXv3VlxcnFq2bKlFixZp6tSpWrRokebOnXubn4prOnYxV68sOaDNxy/LYjap3DBUMfFWWnahjmTkat72s3rl6wN6amAHPTUgTJ6WG/93W2ZmppKTk3Xq1Cl169ZNI0aMqNZyjwAA1DWMUDrIK6+8orKyMk2YMEHNmzdXdHT0TfcNCgqyLa33fRVrQFeMJFas47xz504dOnRIM2bM0IcffqiZM2faziPphue6m+tJ0pgxY+Th4aHFixfrq6++0oQJE2QymTRu3DglJyfr9OnTysvLU8eOHW95TVf06eZTGvWnjUo5ef1nWVb+nzJZobT8+obcolL9fuURjX3vW529kl9pn+LiYq1evVqzZ89WTk6OfvSjH2nKlCmUSQBAvUWhdJDY2FjFx8fr0KFDeuWVV26578iRI3XixAnbCGOFrVu3KiAgQP3795d063WcJal///7y8/PTtm3bKp2nuLhYcXFxtuUCq3s9SWrcuLEGDBigxYsXa/ny5Ro9erSk6yOX2dnZ+tnPfqZx48bd6Y+n3nt/3TG9uvSASssNlZVXby0AQ9LRi3ma+NdNtlJ56NAhffDBB9q6dasGDBigH//4xwoLC6vB5AAA1DwKpQN99NFH2rhxo3r16nXL/V577TUFBAToueeeU2lpqaTrz10mJSXpt7/9rfz8/CTdfB3niuX7/P399eabb2rp0qW25xvLy8v161//WhaLRZ07d76j61WYMGGCdu7cqc6dO9u+N2TIEAUEBGjx4sWaMGGCA35a9cfawxf19orDd3VsWbmhq/klmj4nRZ99/i998cUXCg4O1jPPPKOBAwfKw4OnTgAA9R9LL96hgoIC9evXTxcuXJAktWjRQlu2bJGPj0+Vfd999119+umn2rNnj23pxYULFyosLEzHjh3TSy+9pJSUFHl5eSkwMFAvvvii7rvvPtvxn3zyiebOnavMzEx5eHiopKREEydO1MsvvywvLy/bfvPmzdPvfvc75ebmysfHR3369NFvf/vbSs9WVud6Fc6ePavQ0FB99NFHmjFjhm37Aw88oE2bNlVZE9uV5RWVatA7a3XlWrGqOTB5E4b6+l7Wq5N7KyIiglVuAAAuhUIJ3MInm0/q10sPyhH/J/H1smjHr4bLx8vigLMBAFB3cMsbuIW5W0477FzXisuUtC/dYecDAKCuoFACN3H1WrFOXLrmkNFJSfIwm5Ry8rKDzgYAQN1BoQRu4mB6jkPPV1puaM+5LIeeEwCAuoBCCdxEVkGJ48+Z7/hzAgDgbMxZArdmGIby8/OVnZ2tnJycSr9SzhdKCnTo9TzMvN0NAHA9FEq4rIqyWFEQb1Qac3JyVFb2n3W3zWazAgICFBgYqNDGgVKa4/KYJIU187vtfgAA1DcUynpi//lsfZZyWnvPZSu3sEQNvT3UMdhPD/YO1T1hTd1uXkPDMFRQUHDDkvj9bTcqixW/WrdurcDAwErbfH19bT/L0rJy/fm1FSoqLXdIZrPZJGtII4ecCwCAuoRCWcetP5Kpd1Ye1r7z2bKYTZWW/Tt2MU9J+9IV2qShnh3cUffFtnFiUsepKIu3G1msWPVHul4W/f39bQWxdevWtpJYse37ZbE6PCxmJfRoqa/3pFV7ucVbKSs3NKZnK7vPAwBAXcPE5nXYZymn9fLi/ZJJqs7v0uP3tNfLCV3q9GilYRgqLCy87cjijcpiRTn8fnGs+OXn51cjn3vP2SyN/2CT3eexmE2KatNIC57uf/udAQCoZxihrKOW7EnT/1u8//oX1az8/7fppPy8PfQ/wzvXXLBbqCiLtxtZLCn5z5vOJpOpUkFs2bLlDUcWzWbnTEgQ2aaR7osJ0YJd5+xcelF6fXx3x4QCAKCOYYSyDsouKFGf/12totLyu5pUe9l/36suLQMcmskwDBUVFd12ZPFGZfF2I4vOKovVlVNYojF/+Vbnswru+tb3r+K76L/u7eDgZAAA1A2MUNZBX+06d9dl0mI26bOU03pjQo9qH1NRFm81spidnV2lLPr5+dkKYvPmzauMLNaHslgdAQ08Ne+/+mr8n9fqUoEhQ9W7tW7696MK/z2ko2bEta/hlAAAOA+Fso4xDEOfbD5118eXlRtasPOcXhwVoYAGnpJ0w5HFH35dXFxsO0dFWawoh8HBwVVGFv39/V2iLFZX0dULGmns0qlWsfo2razKC1LfV1E3G/l46q1JPTWyW4vaCwoAgBNwy7uOOXnpmgb/fp3d53moTZ5CdFnZ2dmVyqIk223oH/76/siixWKxO4OryMvL0+zZsxUcHKxHHnlEe85la+6W00ral67isqpTCrVp0lCP9W2rqbFtFOjj6YTEAADULkYo65gr14pvv1M1FJs81b5d+xuOLFIWq6+8vFwLFy6UyWTS5MmTZTabFRXaWFGhjfW7KT117GKeTl66ppKycgX6eKpbq0AF+3s7OzYAALWKQlnHOGrmm969emm0i8xL6Uzr1q3T6dOn9eijj8rPr/IqN54Ws7q0DHD4C1AAANQ37vMQXD3R1NfLIedp3NAx53Fnx44d08aNGzV48GC1a9fO2XEAAKizKJR1TGiThuoY7FfN94hvrKGXRf3DmjoskzvKzs7WV199pY4dOyouLs7ZcQAAqNMolHWMyWTSY/3b3dWUQdL1aYPui2kjX2+eZrhbZWVlWrhwoTw9PTVx4sQ6vfIQAAB1AYWyDpoY1VoNvSx3NUpZVm7oR31DHZ7JnXzzzTc6f/68pkyZooYNGzo7DgAAdR6Fsg7y8/bQH++33tWxvxwVoY7N/B0byI0cOnRIW7Zs0bBhw9SmDS81AQBQHRTKOmpE1xb6/dRImU2S+TZDlRV3ZP97SEc9NYDl/e7W1atXtXjxYkVERKhv377OjgMAQL3Bg3Z12KToELVp0lB/WHVEW05crrI6i8UklRlS+8be+sWoborv0dKJaeu30tJSzZ8/Xz4+Pho/fjzPTQIAcAdYKaeeOJ6Zp89TzuhAWrayCkrk5+2hDsG+8jy9TdFtm2ry5EnOjlivJScna9euXXr88cfVqlUrZ8cBAKBeYYSynggL9tPLY7pW2b5pU57Wrl2rgoLR8vHxcUKy+m///v3avn274uPjKZMAANwFnqGs5yIjI2UYhvbu3evsKPXS5cuXtXTpUnXv3l2xsbHOjgMAQL1Eoazn/Pz8FB4ert27d4unF+5MSUmJvvzyS/n7+2vMmDE8NwkAwF2iULqAqKgoZWRkKD093dlR6pVly5bpypUrmjp1qry9vZ0dBwCAeotC6QLCwsLk7++vXbt2OTtKvZGamqrdu3crISFBzZs3d3YcAADqNQqlCzCbzYqKitL+/ftVXFzs7Dh13sWLF5WUlCSr1Sqr1ersOAAA1HsUShdhtVpVVFSkgwcPOjtKnVZcXKz58+erSZMmio+Pd3YcAABcAoXSRTRu3FgdOnTQ7t27nR2lzjIMQ4mJicrJydHUqVPl6enp7EgAALgECqULiYqK0pkzZ3Tp0iVnR6mTdu3apX379mnMmDEKCgpydhwAAFwGhdKFREREyMfHh1HKG0hPT9eyZcsUGxurHj16ODsOAAAuhULpQjw8PNSzZ0/t2bNHZWVlzo5TZxQWFmr+/Plq1qyZRo4c6ew4AAC4HAqli4mKitK1a9d05MgRZ0epEwzD0JIlS5Sfn6+pU6fKw4PVRgEAcDQKpYtp3ry5WrduzW3vf0tJSdF3332n8ePHq3Hjxs6OAwCAS6JQuqCoqCgdO3ZMOTk5zo7iVOfOndOqVavUt29fdenSxdlxAABwWRRKF9S9e3d5eHgoNTXV2VGcJj8/XwsWLFCrVq00bNgwZ8cBAMClUShdkLe3t7p166bdu3fLMAxnx6l1hmFo8eLFKi4u1pQpU2SxWJwdCQAAl0ahdFHR0dHKysrSyZMnnR2l1m3atElHjx7VxIkTFRgY6Ow4AAC4PAqliwoJCVFQUJDbvZxz+vRprVmzRnFxcerUqZOz4wAA4BYolC7KZDIpKipK3333nfLz850dp1Zcu3ZNCxYsUGhoqAYPHuzsOAAAuA0KpQuLjIyUYRjat2+fs6PUuPLycn311VcyDEOTJ0+W2cwfbQAAagv/6rowX19fhYeHa9euXS7/cs6GDRt04sQJTZ48Wf7+/s6OAwCAW6FQurjo6GhdvHhRaWlpzo5SY06cOKH169dr0KBBat++vbPjAADgdiiULq5Dhw4KCAjQrl27nB2lRuTm5mrhwoUKCwvTgAEDnB0HAAC3RKF0cWazWVarVfv371dxcbGz4zhUeXm5FixYIIvFookTJ8pkMjk7EgAAbolC6QaioqJUXFysgwcPOjuKQ61Zs0Znz57VlClT5Ovr6+w4AAC4LQqlG2jUqJE6dOjgUre9jxw5ok2bNmno0KEKDQ11dhwAANwahdJNREdH6+zZs8rMzHR2FLtlZWVp0aJF6ty5s/r37+/sOAAAuD0KpZsIDw+Xj49PvV85p6ysTAsWLJC3t7cmTJjAc5MAANQBFEo34eHhoZ49e2rPnj0qKytzdpy7tmrVKqWnp2vq1Kny8fFxdhwAACAKpVuJjo5Wfn6+jhw54uwod+XgwYNKSUnRyJEj1bp1a2fHAQAA/0ahdCPNmjVT69at6+XLOVeuXNGSJUvUtWtX9erVy9lxAADA91Ao3Ux0dLSOHTum7OxsZ0epttLSUs2fP1++vr4aN24cz00CAFDHUCjdTLdu3eTp6anU1FRnR6m25cuXKzMzU1OnTpW3t7ez4wAAgB+gULoZb29vdevWTbt375ZhGM6Oc1t79+7Vzp07FR8frxYtWjg7DgAAuAEKpRuKjo5Wdna2Tpw44ewot5SZmanExET17NlTUVFRzo4DAABugkLphkJCQhQcHFyn56QsLi7W/Pnz1ahRIyUkJPDcJAAAdRiF0g2ZTCZFRUXp0KFDys/Pd3acKgzDUHJysrKysjR16lR5eXk5OxIAALgFCqWb6tmzpwzD0N69e50dpYrU1FTt2bNHY8aMUXBwsLPjAACA26BQuilfX19FRETUuZdzMjIylJycrOjoaPXs2dPZcQAAQDVQKN1YVFSULl68qPPnzzs7iiSpqKhIX375pZo2bapRo0Y5Ow4AAKgmCqUb69ChgwIDA+vEyzmGYWjp0qXKy8vT1KlT5enp6exIAACgmiiUbsxsNstqtWr//v0qLi52apYdO3bowIEDGj9+vJo2berULAAA4M5QKN1cVFSUiouLdeDAgSrf+/nPf66OHTvKZDJp3bp1NZYhLS1NK1asUO/evdW1a9cauw4AAKgZHs4OAMdq166dGjZsaJtqJy8vT8ePH1ebNm3UpEkTSdfneMzPz9epU6cUGBiosLAw7d69u8rk4e+++67Gjx+vwYMH11jegoICzZ8/Xy1atNCIESNq7DoAAKDmMELpgpKTk5WamqrU1FR9/PHHkqRZs2bZtiUnJ1faPyoqSmfPnlVmZmat5jQMQ19//bUKCws1ZcoUWSyWWr0+AABwDAqlixk4cKB8fHxuuY+Pj48GDhxo+zo8PFwNGzbUrl27ajpeJVu2bNHhw4c1ceJENWrUqFavDQAAHIdC6WI+/fRTNW/e/Jb7NG/eXJ9++qm++OILxcTEqEuXLnr77bf1wgsv6OjRo7c8Njk5WeHh4bYXet544w1FRETIZDKpTZs2mj59uqTrt7KtVqsaNmyoiIgIHT58WNL1eSafeOIJhYSEaNy4cZozZ45Wr17tmA8PAACcgmco3dR7772nn//85/rqq680duxYpaena8SIEerbt69SU1PVpk2bGx43YMAAtWzZUi+++KIef/xxSdIvfvELtWzZUoMGDdKcOXMkXR8FXbdunbp37649e/bI29tbWVlZiouLU0hIiGbOnKkWLVqoc+fOGj16tM6cOaO33nqr1j4/AABwHEYo3VBubq5eeukljRkzRmPHjpUktWzZUtOnT1d2drZeffXVGx6Xk5Oj+Ph4Pf7447YyKUne3t566KGHtHDhQuXk5Ni2z5s3T5MmTZK3t7ck6Y9//KOOHTumYcOGycPDQ5MnT9Y999yjadOm6Z133tHJkydr8FMDAICaQqF0Q5s3b1ZeXp769OlTafvgwYPVqFEjLVu2rMox2dnZGjFihAICAvToo49W+f706dNVUFCgf/3rX7Ztc+bMqVQ8V6xYIS8vL5WWlmrSpEkKCAiQJPXr109lZWVatWqVoz4iAACoRRRKN3Tp0iVJsk0jVKFbt27y9fW94dveTz/9tIKCgpSUlKTly5dX+X5MTIx69Ohhu+V94MABlZSUyGq12vZJT0+Xt7e3BgwYoLCwMNv2ionMa/stcwAA4BgUSjcUFBQkSbpy5Uql7RWjh76+viovL6/0vVdffVWLFi1SdHS0ZsyYoaysrCrnnT59ulJSUnTw4EHNmTPH9oKOdH0+TMMwVFhYWOkNc0m6fPmyJCk4ONgRHw8AANQyCqUb6t+/v/z8/JSSklJp+8WLF5WZmakOHTpUeZ4xIiJCnp6emjt3ri5duqSf/OQnVc77ox/9SJ6envrb3/6m+fPn6+GHH5YklZeXa+HChQoPD1dJSYn27dtX6bitW7fKYrFo+PDhDv6kAACgNlAo3ZC/v7/efPNNJSYm2iY5Ly0t1f/8z/+oUaNGmjx58k3npOzWrZt+85vf6LPPPtPixYsrfS84OFgJCQl677331LdvX9st9XXr1un06dN65513FBYWpueff17Xrl2TJG3btk1z5szRL37xC7Vv377mPjQAAKgxJsMwDGeHQM2YMmWKUlNTbUsvdu7cudKcj/PmzdPbb7+t7OxsFRcXq0+fPnrrrbeUmZmpVatWqaysTJ999pmOHz+usLAwTZ8+XePGjdPDDz+sffv2yd/fXx06dNC2bdtsSz0uXbpU48aN0/LlyzVy5EgdO3ZM//znPzV06FDFxcUpIyNDL730klavXi0fHx95eHho5syZeuaZZ5z1YwIAAHaiUKKK/Px8/f73v9ewYcPUr1+/Ozr23Llz6tevn06fPq3c3Fx9+OGHCgkJ0YMPPiiTyVRDiQEAgDNxyxtVNGzYUF26dNHu3bt1p/+98cUXX+ixxx6TYRhauHChPD09NWHCBMokAAAujEKJG4qKilJmZqbOnz9/231/8pOfaMOGDSosLNRHH32kJ598Ut98843Onz+vqVOnqmHDhrWQGAAAOAtLL+KGOnTooMDAQO3atUshISG33DcgIED33XefgoKC9LOf/Uz5+fnasmWLRo4cedtjAQBA/cczlLip9evXa9OmTXruuedsyyfeztWrV/W3v/1N7dq103333cetbgAA3AC3vHFTVqtVJSUlOnDgQLX2Ly0t1fz58+Xj46Px48dTJgEAcBMUStxUYGCgOnbsqN27d1dr/5UrV+rixYuaOnWqGjRoUMPpAABAXcEzlLilqKgozZ8/XynfndZ3V8uVlV8iT4tZwf7eGt6luRr7Xp9/cv/+/dq+fbsSEhLUsmVLJ6cGAAC1iUKJmyorN3S8JFDLS7toztz9Mpkky79vY5eWG/K0mDQ+spUmdG2sjUuXqnv37oqJiXFyagAAUNt4KQc3dK2oVM98vkvrj2TKJOlmf0gsZpPKyg0NDLisD39+H7e6AQBwQzxDiSqKSss0bc42bTyaKenmZVK6PoopSetzmurvW8/VQjoAAFDXUChRxZvJh7TzzFWV3+HY9dsrDmvDkcyaCQUAAOosCiUqyS4o0efbztxxmZSuP1/5t40nHB8KAADUaRRKVLJw1zmVlJXf1bFlhqFvj13SqUvXHJwKAADUZRRKVDJv+xm7jreYTVq4i2cpAQBwJxRKVJKWVXDLl3BuyzB0PqvAUXEAAEA9QKFEJUWld3e7u0K5pMKSMseEAQAA9QKFEpX4etk3173FZJJ/A08HpQEAAPUBhRKVRLdtLIvZdNfHl5YbsrZp5LhAAACgzqNQopJH+7a1TVZ+Nxp6WTTe2sqBiQAAQF1HoUQlAzoFq1Wju1s+0WI26b7YNmpo521zAABQv1AoUYnZbNIrCV3v/DiTFNDAQ0/e26EGUgEAgLqMQokqRnVvqVfGVL9UWswmNfTy0NzH+6hVI58aTAYAAOoik2EYdk07CNf1dep5/WrxfuUVlcpkkn74J8ViNqms3FBYsK8+/FGMOjbzd05QAADgVBRK3FJhSZmW7k3TnE2ndDA9x7bdbJJGdmuhR/u1U9/2TWQy3f2b4QAAoH6jUKLacgpLlF1QIk+zWY0aeqqBp8XZkQAAQB1AoQQAAIBdeCkHAAAAdqFQAgAAwC4USgAAANiFQgkAAAC7UCgBAABgFwolAAAA7EKhBAAAgF0olAAAALALhRIAAAB2oVACAADALhRKAAAA2IVCCQAAALtQKAEAAGAXCiUAAADsQqEEAACAXSiUAAAAsAuFEgAAAHahUAIAAMAuFEoAAADYhUIJAAAAu1AoAQAAYBcKJQAAAOxCoQQAAIBdKJQAAACwC4USAAAAdqFQAgAAwC4USgAAANiFQgkAAAC7UCgBAABgFwolAAAA7EKhBAAAgF0olAAAALALhRIAAAB2oVACAADALhRKAAAA2IVCCQAAALtQKAEAAGAXCiUAAADsQqEEAACAXSiUAAAAsAuFEgAAAHahUAIAAMAuFEoAAADYhUIJAAAAu1AoAQAAYBcKJQAAAOxCoQQAAIBdKJQAAACwC4USAAAAdqFQAgAAwC4USgAAANiFQgkAAAC7UCgBAABgFwolAAAA7EKhBAAAgF0olAAAALALhRIAAAB2oVACAADALhRKAAAA2IVCCQAAALtQKAEAAGAXCiUAAADsQqEEAACAXSiUAAAAsAuFEgAAAHahUAIAAMAuFEoAAADYhUIJAAAAu1AoAQAAYBcKJQAAAOxCoQQAAIBdKJQAAACwC4USAAAAdqFQAgAAwC7/Hyv5eU5Jm/aDAAAAAElFTkSuQmCC", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -633,7 +509,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 16, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -654,7 +530,7 @@ " 7: 0.4}" ] }, - "execution_count": 20, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -665,7 +541,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 17, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -679,18 +555,18 @@ "data": { "text/html": [ "
\n", - "\n", "
\n", " \n", @@ -725,15 +601,15 @@ "Closeness centrality 0.4 0.4 0.545455 0.6 0.545455 0.4 0.4" ] }, - "execution_count": 21, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcUAAAE1CAYAAACWU/udAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlUldX+P/D3mRhFRAUERMAJZ4UuosSkiBOoWWaKiqCm\n5q9u3WtU31u3wduoSxtumdXXefhaeK/VZVDRxNBU1NRQc0BEQZkFBRnOtH9/dDxXBGQ6h8Pwfq3V\nWnGes5/zeY5L3u69n70fiRBCgIiIiCA1dQFEREStBUORiIhIh6FIRESkw1AkIiLSYSgSERHpMBSJ\niIh0GIpEREQ6DEUiIiIdhiIREZEOQ5GIiEiHoUhERKTDUCQiItJhKBIREekwFImIiHQYikRERDoM\nRSIiIh2GIhERkQ5DkYiISIehSEREpMNQJCIi0mEoEhER6TAUiYiIdBiKREREOgxFIiIiHYYiERGR\nDkORiIhIh6FIRESkw1AkIiLSYSgSERHpMBSJiIh0GIpEREQ6DEUiojrs3r0bI0aMgEQiwY4dO2oc\nLy0tha2tLdzc3PDWW2+ZoEIyNIYiEVEdpk+fjk8++QSWlpb47LPPahzfvHkzVCoV5s2bh3feeccE\nFZKhMRSJiOoxa9YsnDx5EidOnNC/JoRAUlISfHx8TFgZGRpDkYioHr169cK0adPw6aef6l/bt28f\nQkNDIZFI9K+VlpZi4cKF8Pf3x+jRo/HRRx9BCAEA+OWXX+Dv74+xY8ciODgYcXFx+nbbt2/HqFGj\nMHbsWIwdOxYHDhwAAKhUKsTExMDPzw9+fn54+eWXoVKpkJ6ejr59+8LBwQHvvfceAOD111/Hq6++\nCgBYv349HB0dsXz5cqN/N+2OICKiOh08eFC89dZbIjk5WZiZmYmcnBwhhBARERGitLRUBAUFiddf\nf10IIcSCBQvE/PnzhRBClJeXi6FDh4otW7YIIYTw8fERx44dE0IIcebMGf37jhw5IhwdHUV+fr4Q\nQojY2Fj9sRUrVoiQkBChVquFWq0W48ePFytWrBBCCJGUlCT69++vr/Oxxx4TQ4YM0f88c+ZM43wh\n7Rx7ikREDRAUFISBAwdi3bp1uHr1Knr06IFOnTrpj2u1Wmzfvh0LFiwAAFhaWuKZZ57Bxo0bAQBd\nu3bF1q1bkZeXh+HDh2Pt2rUAgI0bN2Ly5Mmwt7cHADzxxBN47rnnAABbtmxBZGQkZDIZZDIZIiMj\n9ecLDAxETk4O0tPTcfPmTXh7e+Py5cvIyspCRkYGevfu3WLfTXvCUCQiaqAXXngBX331FT755BN9\ncN1XUFCAqqoqfbgBgL29PbKzswEAO3bsgJWVFby9vTFx4kRcvnwZAJCdnV2tjVwuh6+vb63HHjyf\nmZkZQkND8Z///AcJCQmYNWsWAgICEB8fj7i4OISFhRnnS2jnGIpERA00Z84cqFQqZGZmom/fvtWO\n2dvbw9zcHAUFBfrXCgoK0LNnTwBAVVUVVq5cievXryMwMBDTpk0DALi6ulZro1arcfbs2VqPPXg+\nAAgPD0dcXBx++eUXBAQEICwsDAkJCTh69ChGjx5t+C+gA2AoEhE1kIWFBTZs2IB33323xjGpVIrI\nyEhs3rwZAFBRUYHvvvsO0dHRAIAZM2agvLwccrkcw7xHolKpwi9XCxEYNgMJCQkoLCwEAHz77bfY\ntGkTACAqKgrbtm2DRqOBVqvFtm3b9OcDgMmTJ+PIkSOQSqVQKBQIDw/HgQMHYGlpCZlMZuRvo32S\nm7oAIqLWKikpCTExMSgpKYG1tTViYmIwdepU/fHIyEicOXMG165dQ6dOnbBmzRq89NJL8Pf3h1qt\nRkREBObOnQsAmDZtGkYHBKOgQovbd0rhNP5FLNl2ClohYP74fPwpMBQu3Wzg5OiADRs2AABiYmJw\n584dBAQEAAD8/Pzw2muv6T/f0dERw4YNQ1BQEACgX79+cHFxQWhoaEt9Re2ORAjd/cJERGQUWq3A\nuwkX8H+pWahUa1Dbb11zuRQKmRQbo3zg49615YskAAxFIiKj+0f8Bew4fh0VKm2977VSyPDtktEY\n6mLbApXRwzinSERkRGeySrDj+I0GBSIAlKs0WLrtFNhfMQ2GIhGREX3981VUqTWNalNcrsSxa7eN\nVBE9CkORiMhI7lSocOBiPrSN7PRVKDX45ucM4xRFj8RQJCIykmuF92Ama/yvWQHg99y7hi+I6sVQ\nJCIykiq1BpDU/77a2zZsDpIMi6FIRGQktpYKaBo7dqrT2YLLyE2BoUhEZCT9HGxgqWj8zjLmcimm\nDHM2QkVUH4YiEZGRyKQSLPT3gIW88b9q545yM0JFVB+GIhGREc3y6QVFI0LRTCbB+EGOcOxsYcSq\nqC4MRSIiI+pqbYYt0SNhIZfgj/tK62Yuk8AW5VjmbdMyxVENDEUiIiPrZa3FNKt0uNiaw8pMBslD\nd6Say6Uwk0sxcagTdiz4E+J+/B7p6emmKbaD496nRERGpFQqsX79eowcORLe3t44db0YX6dk4ELO\nXVSptbAxlyN8mBPm+rrBQTdkeuPGDXz77beYPn16jec2knExFImIjEQIge+//x4SiQTTpk2D5OEu\n4iNkZWVh586dDMYWxuFTIiIjOXXqFHJzcxEWFtaoQAQAV1dXzJo1C7t37+ZQagtiKBIRGcGtW7dw\n8OBBzJw5EwqFoknneDAYr1y5YuAKqTYMRSIiA6uoqEBsbCzCw8PRrVu3Zp3rfjB+//33DMYWwFAk\nIjIgIQR2796NAQMGYODAgQY5p6urK2bPns1gbAEMRSIiA0pJSUFVVRXGjRtn0PP27NlTH4yXL182\n6LnpvxiKREQGkpGRgRMnTmDGjBmQyRq/52l97gfjDz/8wGA0EoYiEZEB3L17F7t378aTTz4JGxvj\n7UjDYDQuhiIRUTNpNBrs2rULI0eOhIeHh9E/r2fPnoiIiMCPP/7IYDQwhiIRUTMlJSXB0tIS/v7+\nLfaZLi4u+h7jpUuXWuxz2zuGIhFRM5w/fx6XLl3CE0880egF+s3l4uKi7zEyGA2D27wRETVRYWEh\nNm7ciLlz58LJyclkdfTt2xdCCHTr1g03btyAEEK/HCQ3NxcXL16std2PP/6IV155BT169EBycnIL\nVtx6yU1dABFRW6RUKvHdd99h7NixJg1E4I85xh07dmDHjh04cuQIrK2tsW3bNgBAcHBwne2mTp2K\n27dvY9OmTS1TaBvA4VMiokYSQiA+Ph7Ozs7w9vY2dTn44IMP4OzsjIiICGRlZeHu3bvVjlHDMRSJ\niBrp1KlTyMvLa9JG38YwevRoAICzszN69+6N7Oxs/ZDp6NGjceXKFUycOBGBgYHw8/NDYmJiredZ\nv3497OzsMHr0aHzwwQewsbHBwIEDcfjwYRQUFMDb2xseHh5IS0tDaWkpFi5cCH9/f4wePRofffQR\n2sNsHIdPiYga4f5G3wsWLGjyRt/GZGVlBQ8PD8TFxQH4Y75xypQpeO211xAVFYX09HR4e3vj9OnT\n6NOnT7W2CoUCy5cvxxtvvAEAyMnJQWVlpf6u2jlz5sDb2xtDhw7FwoULodFocPjwYVRUVMDX1xfO\nzs6YN29ey16wgbGnSETUQOXl5Qbb6NuYLC0tMWfOHMTFxeHbb79FRkYG5s6dC+CPkPT19cX27dur\ntdm+fTtSUlL0gQgAkZGRiI2NRWVlJQDg4MGDCA4Ohlarxfbt27FgwQL95z3zzDPYuHFjC12h8TAU\niYga4P5G3wMHDjTYRt/G5OTkhDlz5iAxMRGdO3eGXP7fgUF7e3tkZ2frf05LS8P27duxd+9elJaW\n6l//05/+BGdnZ/z44484e/YshgwZAolEgoKCAlRVVcHe3r7Oc7ZVDEUiogZISUmBUqlESEiIqUtp\nMCcnJ8ycORMlJSVIS0vTv15QUICePXvqf+7Tpw8SEhLg5eWFmJiYaueYN28etmzZgq1bt+qHRu3t\n7WFubo6CgoI6z9lWMRSJiOph7I2+jSksLAy9e/fGe++9hwsXLiAjIwPHjx/HnDlz9O+xsrICAKxb\ntw6xsbH46aef9Mfmzp2LpKQkpKWlYfDgwQAAqVSKyMhIbN68GcAfz4/87rvvEB0d3YJXZhwMRSKi\nR7i/0fdTTz1l1I2+DeGVV17Bnj17kJSUhFdeeQUAIJPJkJiYiPz8fISHh+Opp57Ct99+iz59+mDr\nv+Kx/I13kHL8JLr6zcDIl9binhp4csZMrPjHuwD+WAMZEBCAiRMnVvusNWvWQCKRwN/fH2PGjEFE\nRIR+3rIt4442RER10Gg02LRpEzw9PVt0X1Njyc3NxbZt2xAcOhGfnSpHamYR1BoBtbZ6DFibySCV\nSvDFbG8E9rdHREQE1qxZgx49epio8pbDniIRUR2SkpJgZWWFxx9/3NSlGESPHj3w5MzZeDb2Mo5e\nLUClSlsjEAHgnlKDkuJiRLy1Frt+uQClUtkhAhFgKBIR1er8+fO4fPmySTb6NqaVP+fiHiyg0j76\nfUKjQm7CF5g34wlELX2xZYprBbh4n4joIYWFhUhISMDcuXNhaWlp6nIMJu9uJQ5eyodSU/+smbxT\nV/RcthEKmQS/VnZFeAvU1xqwp0hE9ID7G32HhISYfKNvQ9t67Hqj26g0At+eyEKlSmOEilofhiIR\nkY4QAnFxcXBxcYGXl5epyzG4vedzUaWuZ9y0FhKJBOdv3a3/je0AQ5GISOfkyZPIz8/H5MmT29U8\n4n1lVeomtZNIgNJKlYGraZ0YikREAG7evInk5GTMnDmzVW703VxCCCia8Rvfyqxj3ILSMa6SiOgR\nHtzou2vXrqYuxyCEECgsLMT169f1/1mXO0IKW2jRuF5wlVqLfg6djFRp68KeIhGZ3O7duzFixAgo\nFAqcOXNG//qNGzcQHByMLl26YNq0aU0+f2pqKkaMGAF3d/cax+5v9D1o0KA2sdF3XYQQyMvLw/Hj\nxxEbG4vVq1dj+/btyM7OhoeHB6KiorB6cTjMFI3bpk4qAcYNcICdtZmRKm9duKMNEbUKycnJGDdu\nHIYNG4bU1NRqT3UIDg5GcnJys88fFRWFzMzMaq8fOnQIGRkZmD9/PqTSttNP0Gq1yM3N1fcCb9y4\nAUtLS7i5uen/69KlS4124f9MwYWcu6hlzX6tLBUy/N+zozDCtea52iMOnxJRq7Fw4ULExsbio48+\nwuuvv270z7t69SpOnTqFZ599ttUHokajQU5ODjIzM3H9+nVkZWWhc+fO6NWrF4YMGYKwsLAG7c36\n5ZzHEP55Cu5WqlFfl8hSIcOzAR4dJhABhiIRtSJOTk745z//iYULF2L69OkYNGhQtePnz5/HK6+8\nAqVSibKyMkRHR2Px4sVQKpUYP348Dh06hPfffx8HDx7EzZs3MW/ePLz22mu1ftbNmzcxe/ZsCCGw\na9cuREZGYunSpQCAH374AR9++CGsrKwglUqxYsUKjB492ujX/yC1Wo2bN2/qe4LZ2dmws7ODm5sb\nvLy88MQTT8Da2rrR53XtaoV/P/c4Zn1zDOVVatxT1lx/KJdKIJdKsCSwN14M6WeIy2kzGIpE1KrM\nmTMHu3btwoIFC/DLL79U68GVlZXhzTffhK+vL1QqFYYNG4YxY8agX79+SE5OhkQiQUlJCfbt24fb\nt29j8ODB8Pb2xvjx46t9hkajwezZs9GtWzckJiaitLQUw4cPx5AhQ+Dv749nn30WaWlpcHR0xA8/\n/IC9e/caPRRVKhWysrL0IXjr1i3Y29vDzc0NI0eOxIwZMwy2u04f+05IiRmDuN9ysO5QOm7croBC\nLoEQgBDAU94uiH7cA33sO8bNNQ9iKBJRq7Nu3ToMHjwYH3/8MZYvX65/vV+/fnjttdfwl7/8BWZm\nZsjJycHp06fRr99/ezOzZs0CAHTt2hWTJ0/Gzp07a4Tinj17cOzYMezbtw8AYGNjgylTpmDr1q3w\n9/dH165d8c033+D555/HlClTMGHCBINfY1VVFbKysvTDoXl5eXB0dISbmxv8/f3h6uoKc3Nzg3/u\nfRYKGWY81hMzHuuJ/NJK3ClXwUIhg72NOSwaeTNOe8JQJKJWx9HREV988QWio6Or3XX617/+FSUl\nJUhJSYFMJkNwcDDKy8urtbWzs9P/f7du3ao9cR4Azp07h9OnT0OlUuHVV1/V975KSkowYsQIAH88\nHeP999/HgAEDEBAQgJUrV8LDw6NZ11RRUYEbN27oe4IFBQVwdnaGm5sbxowZA1dXV5Otj3SwsYCD\njYVJPru1YSgSUav0zDPPYNeuXVi4cKF+d5nU1FQsW7YMMtkfPRmVquYuK0VFRXDq6QozmRSFhYXV\n9i/VarVITExEdHQ03n33XXz++efw8fHRn+t+wMrlcnz55ZdYs2YNXn75ZURFReHQoUONqv/evXvV\n1ggWFxejZ8+ecHNzw/jx4+Hi4lLtDltqHfgnQkSt1tq1azF48GD9DTd9+/bF8ePH8fzzzyMnJwe/\n/fYbAKBKrcGec7kAgHEvrIRdcCQ05XeRE/s9/t87H+NOhQoqlQr37t1DSEgIXFxcEBkZia1bt+pD\n8d1330X37t3xwgsvIDw8HKmpqbC0tMTIkSNx9uzZemstLS3F9evX9cOhpaWlcHV1hZubG8LDw+Hk\n5KQPc2q9uE6RiExu9+7deOedd1BSUoIFCxbgzTff1B/797//jX/+8584ePAgLl68iLlz50KhUGDg\nwIE4efIkiu6WQxH0LKzdh+PCikmwC3kWFRknoblbCOshY9AjcDbuZV9E2d5PUVZwE9OmTUNsbCzK\nysrw0ksv4cKFC1AoFPDy8sLq1ashk8nw17/+FceOHYOZmRk0Gg0+//xzDB8+vFrNJSUl1XqCFRUV\n6NWrl36NYI8ePVr9Mg+qiaFIRG3Wl8np+PSnK6jUPTH3+ofhcFm6HvIujjXeK5doMXZAD6yb+ydI\npY3b5kwIgeLiYn0v8Pr161Cr1dUWyjs4OLTLTcQ7Gg6fElGb9J+zt6oFYn3UQoqU9CKsiL+At6cM\nfuR7a9s3FIA+AAMCAtCtWzeGYDvEniIRtTlarYDPB/tRVKYEAAiNCnk7/46qrHMwc/aE/fT/gdym\ne61tzeRSpMSMgWPn/95teX/f0AdD0MzMrFpP0M7OjiHYATAUiajNOXgpH8/v+LXW3VjqYy6X4tkA\nD0QM6YzMzEz9MgkrKyt9ALq7u8PW1tYIlVNrx1AkojZn9jfHcDSjqMntzaHGn3vehLv7f3uCDdk3\nlNo/zikSUZtzKa+0We2FTIGIqEUd5nFI1HC8X5iI2pxKVeOHTR8kk0pRplQbqBpqTxiKRNTmWDZz\nb06NVsDGnANlVBNDkYjanAE9mjf/Z2UmQ2cL0+wzSq0bQ5GI2pzFgX1gbda03qK5XIooP/dGL+Cn\njoGhSERtzuBuUki0NTcDbwgBIMK3l2ELonaDoUhEbYZarcahQ4ewYf16LBzeCRbyxv0Ks1TIMG+U\nGx+TRHXiTDMRtQkZGRmIj4+Hg4MDlixZAltbW1g7XsWapMsN2urNUiHDGE97vD5pYAtUS20VF+8T\nUatWVlaGvXv3IisrC5MmTYKnp2e14z+cuYm//3AOGq2odYcbS4UMAgILH/fA8lBPziXSIzEUiahV\n0mq1OHnyJA4dOgQvLy8EBgbCzKz2xfYqjRb7LuRh3aF0XMwthVojIJVK4GRrgUX+HnjKuydseLcp\nNQBDkYhanVu3biE+Ph5yuRxhYWFwcHBoVHu1Rgu5jLdMUOMxFImo1aisrMRPP/2ECxcuYNy4cRg+\nfDifTEEtiqFIRCYnhMD58+exb98+9OvXDyEhIbCysjJ1WdQBMRSJyKSKioqQkJCAsrIyhIeHw9XV\n1dQlUQfGJRlEZBJqtRqHDx9Gamoq/P394evrC5mseXuaEjUXe4pE1OIeXHM4ceJEPtCXWg32FImo\nxZSWlmLfvn3Izs7GpEmT0L9/f1OXRFQNe4pEZHQPrzkMCgqCQsF1g9T6MBSJyKhu3bqFuLg4mJmZ\nISwsDPb29qYuiahOHD4lIqPgmkNqi9hTJCKDenjN4bhx42BpaWnqsogahKFIRAZzf83hvXv3EBYW\nxjWH1OZw+JSImu3BNYcBAQHw9fWFVMq9R6ntYU+RiJrl6tWrSEhIgKOjIyZMmMA1h9SmsadIRE3C\nNYfUHrGnSESN8uCaQ29vbwQGBnLNIbUbDEUiajCuOaT2jsOnRFSv+2sOf//9d4wbNw7Dhg3jmkNq\nl9hTJKI6CSFw7tw5JCUlcc0hdQgMRSKqFdccUkfE4VMiqkatViMlJQUnTpzgmkPqcNhTJCK9B9cc\nTpw4EZ07dzZ1SUQtij1FIkJpaSn27t2LmzdvYvLkyejXr5+pSyIyCfYUiTowrVaLEydO4Oeff+aa\nQyIwFIk6LK45JKqJw6dEHQzXHBLVjT1Fog7i/prDffv2wdPTEyEhIVxzSPQQhiKRASQlJSEmJgZn\nz55FYGAghBDIycnBqFGjsG7dOlhbW5u0vqKiIsTHx6O8vBzh4eHo2bOnSeshaq0YikQGkpycjDFj\nxkClUkEul6O4uBgDBgzAc889h7ffftskNXHNIVHjcE6RyEjs7OwQEBCAkydPmuTz09PTkZCQACcn\nJyxdupRrDokagP9kJDIitVqtH6q8cuUKJk6ciMDAQPj5+SExMREAkJqaihEjRsDd3R2rVq3C448/\njpEjRyIzMxNLly7FsGHDMH/+/Grn3bJlC0aNGoWgoCBERETg7t27+mOlpaXYtWsX4uPjMWnSJDz9\n9NMMRKKGEkRkEAcPHhQAhEqlEkIIcf36dTF16lSRnZ0tVCqV8PT0FBs3bhRCCHHlyhVhY2Mj0tPT\n9W0VCoU4evSoEEKIadOmiccee0yUlJSIyspKYW9vrz92+PBh0a1bN5Gfny+EEOLll18WCxcuFBqN\nRhw7dkysXLlSHDhwQCiVyhb+BojaPg6fEhlYSEgIysvLcf78eaxcuRIuLi44cuQIMjIyMHfuXABA\n37594evri+3bt+PNN98EANjY2GDUqFEAgCFDhkAmk8HW1hYA0L9/f2RkZGDUqFHYtGkTpkyZol9X\nGBERgdGjR8PHxwcWFhaIiorimkOiJmIoEhnYgQMHIJfL8eqrryImJgYzZ85EdnY27OzsIJf/96+c\nvb09srOz9T/b2Njo/18ul9f4WalUAgCys7Nx4cIFBAcHQ6vVoqioCFZWVvD09ERQUBDXHBI1A0OR\nyEjeeustbNy4EV999RVCQkJQXFwMtVqtD8ZbuXmwdrPHrK+PIiPtLPJLq/Dit6cx19cN4hE3hbu6\nusLDwwNLly5FUlISPD09MXz4cD7aicgAeKMNkZFYWVnhxRdfxJdffonHHnsMffv2xY4dO5BRUIaI\nNT8g5chR/G41HMeu3caNonIo1Vr8ePYW5m9MxcZfMpFZeK/WcHziiScQGxuL/fv345lnnkG/fv0w\nc+ZME1whUfvDdYpEBvDw4v0vv/wSgwYNwp07d9CrVy/069cPq1evxv+89Q+cvZYHjUYNW79ZsOzz\nJygLb6Dwx1VQFWWj09AQWPbxwe2krwCNCoGzliLQ1RyffPwxHB0dsXjxYmg0GpSXl2PPnj2wsrKC\nmZkZPvvsM/Tv39/UXwNRm8dQJGoh527dwcyvjqJcqWlwGwuFFFOHO+PZYVZITEyEk5MTJkyYwCUW\nREbCUCRqAVqtwOMrf0LOncpGtzWTCky2zcX/mx7E5xwSGRnnFIlawJGrhbhboWpSW6VWgmybgQxE\nohbAUCRqAV/9nIF7jRg2fVjarbu4XnTPgBURUW0YikRGVqnS4FhGUbPOodUKJJzLNVBFRFQXhiKR\nkZWUq6CQNW9BvUorkHunwkAVEVFdGIpERqYRAkDzd5lRaXhPHJGxMRSJjMzWUgGVRtusc0glgION\nuYEqIqK6MBSJjKyTuRx9HTo16xzmchmCPR0MVBER1YWhSNQCngvqA2szWZPb97C1wPCetgasiIhq\nw1AkMjIhBByqbumfctFYlgoZngvqw6dfELUAhiKREeXm5mLDhg34/Xwa3g3vDwtF4/7KmcmkGOhk\ng+leLkaqkIgexEdHERmBUqlEcnIyzp49i5CQEHh5eUEikUAls8S7CRdQqar/xhtzuRS97a2xKXok\nFDL++5WoJXDvUyIDu3jxIvbs2QM3NzeMHz8e1tbW1Y4fvJiP139IQ0m5ChVKDR7+C2ipkEErBKaN\ncMGKqYNhoWj6XCQRNQ5DkchA7ty5g8TERBQWFiIsLAweHh51vlcIgdTM2/jqUAZO3ShGhVIDhUyC\n7p3MMX+0O556rCdsLRUtWD0RAQxFombTaDQ4fvw4Dh8+DF9fXzz++OOQyzkzQdQWMRSJmiErKwvx\n8fGwtrZGWFgYunbtauqSiKgZ+M9ZoiaoqKjAgQMHcOnSJUyYMAGDBw/mkgmidoA9RaJGEEIgLS0N\nSUlJGDBgAEJCQmBhYWHqsojIQBiKRA1UVFSE+Ph4VFRUIDw8HC4uXDtI1N5w+JSoHmq1GocPH0Zq\naioCAwMxcuRISKVcN0jUHrGnSPQIGRkZiI+Ph6OjIyZOnIjOnTubuiQiMiL2FIlqUVZWhn379iEr\nKwuTJk1C//79TV0SEbUA9hSJHiCEwKlTp3Dw4EF4eXkhMDAQZmZmpi6LiFoIQ5FIJzc3F3FxcZBK\npQgLC4Ojo6OpSyKiFsbhU+rwlEolDh48iLS0NIwdO1a/eTcRdTzsKVKHdvHiRSQmJsLDwwOhoaE1\nNu8moo6FoUgdUklJCfbs2YPCwkKEh4fD3d3d1CURUSvAUKQORaPR4NixYzhy5AhGjRoFPz8/bt5N\nRHoMReowsrKyEBcXBxsbG0yePJmbdxNRDfwnMrV7FRUV2L9/P65cuYLx48dz824iqhN7itRuCSHw\n22+/Yf/+/Rg4cCDGjh3LzbuJ6JEYitQuFRYWIj4+HpWVldy8m4gajMOn1K6o1WqkpKTgxIkT3Lyb\niBqNPUVqN65evYqEhARu3k1ETcaeIrV5ZWVl2Lt3L7Kzs7l5NxE1C3uK1GZptVqcOnUKycnJ8PLy\nQlBQEBTBDlX6AAATVElEQVQKhanLIqI2jKFIbVJOTg7i4+Mhk8kQFhYGBwcHU5dERO0Ah0+pTamq\nqkJycjLS0tIQEhKCESNGcM0hERkMe4rUJgghcPHiRezZswe9e/dGaGgorKysTF0WEbUzDEVq9UpK\nSpCYmIjbt28jLCyMm3cTkdEwFKnVenDz7tGjR8PPzw8ymczUZRFRO8ZVzR3U7t279fNxO3bsqHG8\ntLQUtra2cHNzw1tvvYUPPvgA//jHPwAAK1asQI8ePfD2228brb4bN27g66+/xrVr17Bo0SIEBAQw\nEInI6HijTQc1ffp02NnZYfLkyfjss88QERFR7fjmzZuhUqkwb948vPPOO6iqqsL9QYU333wTGRkZ\nRqmroqICSUlJSE9Px4QJEzBo0CDeSENELYY9xQ5u1qxZOHnyJE6cOKF/TQiBpKQk+Pj46F8zNzc3\n6mbaQgicPXsWX3zxBRQKBZYtW8anWRBRi2ModnC9evXCtGnT8Omnn+pf27dvH0JDQ/WBlJSUhAED\nBiA4OLjO8yxbtgwhISEIDg7G7NmzcffuXQDA119/DXd3d8yaNQtLliyBt7c3Jk+ejMrKSn3bwsJC\nbNmyBcePH0dERAQmTZrEp1kQkUkwFAl//vOfERsbi9zcXADAli1bEBUVpT8eGhqK11577ZHnGDBg\nAA4cOIDk5GR4enpi1apVAIDFixcjKioKKSkp+PDDD3Hy5EncuHEDu3fvhkqlwk8//YQNGzZgwIAB\nWLRoEZydnY12nURE9eGcIiEoKAgDBw7EunXrMG/ePPTo0QOdOnVq1DksLCwQEBAAqVSKvLw89O7d\nu9pxX19f2NnZAQCGDBmCkydPoqCgAE5OTli6dCk37yaiVoGhSACAF154AW+88QaKiorw4osvNqpt\ncnIyli9fjrS0NLi7u2PTpk3YtGlTtffcD73S0lLk5uaipKQES5cuRb9+/Qx1CUREzcbhUwIAzJkz\nByqVCpmZmejbt2+d70vPL8P6w9dw/tYdHM8owrcnbuDnI0fh6empX1SvUqlqtBNCIDU1FevWrYO5\nuTl8fHwYiETU6rCnSAD+GP7csGED3NzcahwTQuC37BKcu3kH4f9MgVYAt3JKIS8vwvW4Cyi5cA9F\nv1/CL+cz4TfYHXv37q3WvrS0FFeuXMH58+cxf/58nD9/nmsOiahVYih2UElJSYiJiUFJSQmsra0R\nExODqVOn6o9HRkbizJkzuHbtGvZdLMLZ5DioyoqhTFgLqZUtKq6dgkRmhrzO9ug0bBzM+vkhOMAP\nXsOHw9PVHmfOnMHy5cshl8uxceNGSKVSVFRU4Pvvv8eePXtgYWGB/v3711gfSURkStzmjeqk1Qos\n2XYKKekFqFRpG9TGQiHF+9OGYIBlKfbu3cvNu4moTWEoUp22HbuO9xJ+R4VK06h2ColAtGM25jwx\nqdbhWCKi1oo32lCthBBYm5ze6EAEAAEJtH0CGIhE1OYwFKlWx6/dRklFzbtIG0ItgJ0ns1Glbnyg\nEhGZEkORavX9mZuoUDYv1E5kFhuoGiKilsFQpFrl3q1EcyabBQSKyqoMVg8RUUtgKFKtmn37FW/f\nIqI2iOsUqRohBAoKCiCvKsUfyda0RzdJJBJ062Ru0NqIiIyNodjBCSFQWFiIa9eu4fr168jMzIS5\nuTkG2bnjiFyOSnXTunwCgI+7nWGLJSIysnYVivd3aTl79iwCAwOh0WhQXFyMJUuW4M9//nOTzjls\n2DD8+9//fuR+oG3J/RDMzMxEZmYmrl+/DjMzM7i5uaF///4YP348bG1tIYTAvz76CbfuVNZ/0oco\nZBJEjHSFuZxbuRFR29LuFu8nJydjzJgxUKlUkMvlOH/+PLy8vBAfH4/Q0NBGn6+kpARdunQxQqUt\nQwiBoqKiaj1BhUIBd3d3uLu7w83Nrc7r23o0E+8nXmz0WkULhRRJfwmCqx13sSGitqVd9RRrM3jw\nYAwdOhR79uxpUii2tUC8H4L3e4IPhmDfvn0xbty4Bl/THF83HLpSgMNXClGpbtg2b5YKGd57YggD\nkYjapHYfisAfjzJSKBRYsWIFkpOTAQBWVlb4+uuv4ezsjB9//BGvvPIKHB0dMXLkSKSkpCAvLw9P\nPvkk1q9fj08++QRRUVG4ePEili1bpj/nwoULqz2h3hQeDMH7PUGZTNakEHyYVCrB57O98PSaBFy6\nK4VSW/dNN1IJYCaX4p2pg/Gkd8+mXg4RkUm1+1BMTk7GhQsX8M033yA1NRUHDhyARCLBpk2b8Oqr\nr2Lr1q2YOnUqbt++jWXLluGrr77CqlWrEBMTg1WrVuHUqVP6c7355ptYsmQJnnnmGeTm5iI6OrrF\nQ1EIgdu3b1frCUqlUnh4eKB3794YO3as/gn3hnD+t7OYZHMTz04Ix/8evo7L+aXQaAVUmj9G3S0V\nMmiFwPhBjlga1AeDnW0N9tlERC2t3YZiSEgINBoNZDIZYmNj4evri5ycHIwZMwZarRZ3796FUqms\n1sbT0xMDBgwAAKxatarGObt27Ypdu3bB19cX7u7u+Ne//mX063gwBO/3BCUSCdzd3fUh2KVLF0gk\nTVs68Si5ubn46aefEB0dje7du2PqCFdcySvFocsFuH1PCXO5FA6dLTBpSA90sTIz+OcTEbW0dhuK\nBw4cgFz+38u7cuUKZs6ciSNHjsDHxwfJyck1enm2to/u5Xz88cdYvXo1xo4dC2dnZ6xYsQJjx441\naN1CCBQXF1frCQKAh4cH3N3dMWbMGKOF4IOqqqqwa9cuTJgwAd27d9e/3s/RBv0cbYz62UREptJu\nQ/Fhp0+fRufOneHj4wPgjznBxiopKcEbb7yB119/Hdu2bcOUKVOQn58Pa2vrJtdVVwjevzs0ODgY\ndnZ2Rg/Bh2uKi4tDr169MGzYsBb7XCIiU+swodi3b18UFxfj8uXL6N+/P/bs2QMAuHG7HCXlSuTc\nqYRG++jVKdHR0di8eTMcHR0RGBgIlUrV6LASQqCkpKRaCAohTBqCD/v111+Rn5+PRYsWmawGIiJT\naFeheH/xPvDHnOKKFSsQFBQEAPD29sbf/vY3jB8/HoOHDkOFrBNu3LyFocFT0NVrPG7Ffw51WTHc\nho1Gwp49GOxsi+XLl+PMmTP48MMPYW9vj9mzZ+PJJ5+Eubk57t69i61bt9b7RPnaQlCr1epDMDAw\nEF27djVpCD4oLy9PP4+oUChMXQ4RUYtqd4v363Mx9y5mf3MMVSotymtZlC6TSKCQSxA5yh3/M2lA\nk8Lq4RDUaDT6EHR3d29VIfigqqoqfPPNNwgMDOSwKRF1SB0qFDMKyjD1iyMoq1LX+15LhQxzfHvh\njbBB9b734RBUq9Xw8PCAm5sb3N3d0a1bt1YZgg8SQmD37t2Qy+WYOnWqqcshIjKJdjV8Wp9lO37F\nPWX9gQgAFSoNth+/gUlDeuAxt67Vjt25c6fatmkqlUrfC/T3928TIfiw06dPIy8vj/OIRNShdZhQ\nPHfrDq4XlTfqOYGVag2++jkDq6bKqvUE74egm5sb/Pz80L179zYXgg/Ky8vDgQMHEBUVxXlEIurQ\nOkwobjh8DcoG7t95nxDAgQs5+PTWzxjY2xXu7u7tIgQfpFQqERsbi/Hjx8Pe3t7U5RARmVSHCcXT\nWSXQNGH61NJMgdAZkRjdp3v9b25jhBCIj4+Hq6srhg8fbupyiIhMTmrqAlpKVSMff3SfRCpp8BMi\n2prTp08jJycHkydPNnUpREStQocJRRuLps2VCQF0bmLb1uz+POLTTz/NeUQiIp0OE4qTh/SAubxp\nlzvEpbOBqzEtziMSEdWuw4RihK9bo9soZBJEjOwFc7nMCBWZBucRiYjq1mFC0d7GHBOH9IBFI3qL\nCqkU8/3cjVeUCZw5c4bziEREdegwoQgAHz05DH0cOjVoGFUhFXjCvhDdLNrH0gvgj3nE/fv3cx6R\niKgOHSoULRQy7FrihzGe9jCXS6GQ1Qw8azMZulqbYevC0fDv0xVbtmxBeXm5Cao1LKVSiV27diE0\nNJTziEREdehQe58+KKu4HFuOZiLutxyUVqphJpOir0MnLAnsjWBPB8ikEgghsH//fqSnp2PevHno\n1KmTqctuEiEEvv/+e0ilUkybNs3U5RARtVodNhQbSgiBQ4cO4dy5c4iMjETnzm3vTtTTp0/j6NGj\nWLRoEczMzExdDhFRq9Whhk+bQiKRIDg4GF5eXti0aROKi4tNXVKj5Ofn6+cRGYhERI/GUGygxx9/\nHKNGjcKmTZtQVFRk6nIa5P56RM4jEhE1DEOxEUaOHIng4GBs3rwZ+fn5pi6nXgkJCXBxccGIESNM\nXQoRUZvAUGwkLy8vhIaGYsuWLcjJyTF1OXU6c+YMbt68yfWIRESNwFBsgqFDhyIsLAzbtm1DVlaW\nqcupIT8/H0lJSZxHJCJqJIZiEw0cOBDTp0/Hzp07ce3aNVOXo/fgPKKDg4OpyyEialMYis3Qt29f\nzJgxA7t27UJ6erqpywHAeUQiouZgKDaTh4cHZs2ahd27d+P33383aS2cRyQiah6GogG4urpizpw5\niI+PR1pamklq4DwiEVHzMRQNxNnZGZGRkUhKSsLp06db9LPv72s6btw4ziMSETUDQ9GAzp49i40b\nN8Lb2xve3t4IDAyEj48PVq5cCZVKVW/71NRUjBgxAu7u7rUe//rrr+Hu7o6oqCj9a5MnT8bKlSvh\n7OzMeUQiombi3qcGlpycjDFjxmD16tXw9fXFgAEDMGfOHMhkMvznP/+BVProf4ckJycjKioKmZmZ\ntR5/++23kZmZiU2bNgEADh8+jDNnzmDx4sUcNiUiaib2FI0kKioKp0+fRlpaGjZu3IiDBw9i27Zt\nBv2MgoICHD16FDNnzmQgEhEZAEPRSDp37oyoqCj8/vvvOHfuHCZMmIDY2FiMGjUKEskfz3G8du1a\nncOl7777LoKDgzFs2DDs3bu3xnGlUonFixfjo48+wtq1awEAy5YtQ5cuXfD3v/8dTz/9NPr374+/\n/e1vRr1OIqL2hKFoRJ06dcL8+fORmZkJIQSuXr2KnTt36o97eHjgk08+qdHu5s2b8Pb2RnJyMtat\nW4cZM2bU2IQ8MTERkZGRCA8P17+2du1ajBgxAr/++iu+++47HDp0CKtWrcKtW7eMd5FERO0IQ9HI\nrKysMG/ePJSVlaG0tBRarbZBbe6vNfTz84ODgwPi4+P1x2/fvo3s7GyEhYXV2n7ChAmQSCRwcnJC\nt27d6pyfJCKi6hiKLcDCwgKWlpbo3r17rUOhD7Ozs6v2c7du3fSbj9+7dw+3bt3CjBkz6pxHfPBB\nyBYWFlAqlc2onoio42AotoCcnBzs378fzz//vL6neO/ePQBASUlJjfc//CDjwsJCODk5QaVS4cKF\nC3BycoKjo6PxCyci6mAYikZ2+/ZtREdHIzg4GNHR0Vi0aBHMzc2xZs0aqFQqJCYmVnt/cbkSpaWl\nWL3+/5CeX4qUlBQUFBQgLCwMCQkJ6NSpE7p162aiqyEiat/kpi6gPUlKSkJMTAwAICQkBEIIlJeX\nY8aMGVi+fDmkUinMzc2xatUqvP/++9i9ezdmzJiB3NxcBE+cCvPHpuHQ+vch72yPDzd+j7+veB+S\nqntYtuJzXL52Azt37sTx48dRWVmJ9957D2ZmZtizZw8sLCzg6uqKS5cu4cyZM/jwww/h6emJrVu3\nIjc3Fy+99BJ27NiBQYMGmfgbIiJq3bh430S0Wi3i4uKQk1+AVPlQHL12G+VKTa3vtZRLIdFUYXOk\nF3wGuLVwpUREHQdD0YQ0Gi2mrU7ExWIt1PWMZEsA2FopkPjnADjZWrZMgUREHQznFE3oP7/l4GqZ\nrN5ABAABoLRSjZhdvxm/MCKiDoqhaEJrD6WjQlX7kGltNFqBE5m3caukwohVERF1XAxFE/k95y6y\nbjc+3IQQ2HbsuhEqIiIihqKJXMy9C6mk8e2UGoHTWTXXNhIRUfMxFE2kSq2Ftom3OFU2YsiViIga\njqFoIraWCsia0lUEYGfFx0QRERkDQ9FE/Pp0h0pT/+bgD7M2k2HaCGcjVERERAxFE7G1VGDC4B6N\nnleUSCSYOKSHcYoiIurgGIomtCy4D8zkDf8jsFTI8GyAB8zlMiNWRUTUcTEUTWhAj85Y9dRwWCjq\n/2OwVMgQ1N8eL4zp1wKVERF1TNzmrRVIvpSPv3x3Fkq1Bvce2v/UUiGDVghEjnLD/0waCGkTb84h\nIqL6MRRbCY1WIPlSPv738DVkFt2DSqNFVyszzPRxxdOPucLWUmHqEomI2j2GIhERkQ7nFImIiHQY\nikRERDoMRSIiIh2GIhERkQ5DkYiISIehSEREpMNQJCIi0mEoEhER6TAUiYiIdBiKREREOgxFIiIi\nHYYiERGRDkORiIhIh6FIRESkw1AkIiLSYSgSERHpMBSJiIh0GIpEREQ6DEUiIiIdhiIREZEOQ5GI\niEiHoUhERKTDUCQiItJhKBIREekwFImIiHQYikRERDoMRSIiIh2GIhERkQ5DkYiISIehSEREpMNQ\nJCIi0mEoEhER6TAUiYiIdBiKREREOgxFIiIiHYYiERGRDkORiIhIh6FIRESkw1AkIiLSYSgSERHp\n/H8l0lULIsvgIwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABX2ElEQVR4nO3dd3hUdd7//9fMpJMEEiAkIZUagUCAUIL03kISxV5RVrF9793btv5c0dVl173VdXfd27Wzsq6LiiaB0Dso1RJ6hxRaQk0hfeb8/mCZ20gRmElmkjwf1+V1OWfO+Zz3jJi8eJ9zPh+TYRiGAAAAgOtkdnUBAAAAaNgIlAAAAHAIgRIAAAAOIVACAADAIQRKAAAAOIRACQAAAIcQKAEAAOAQAiUAAAAcQqAEAACAQwiUAAAAcAiBEgAAAA4hUAIAAMAhBEoAAAA4hEAJAAAAhxAoAQAA4BACJQAAABxCoAQAAIBDCJQAAABwCIESAAAADiFQAgAAwCEESgAAADiEQAkAAACHECgBAADgEAIlAAAAHEKgBAAAgEMIlAAAAHAIgRIAAAAOIVACAADAIQRKAAAAOIRACQAAAIcQKAEAAOAQAiUAAAAcQqAEAACAQwiUAAAAcAiBEgAAAA4hUAIAAMAhBEoAAAA4hEAJAAAAhxAoAQAA4BACJQAAABxCoAQAAIBDCJQAAABwCIESAAAADiFQAgAAwCEESgAAADiEQAkAAACHECgBAADgEAIlAAAAHEKgBAAAgEMIlAAAAHAIgRIAAAAOIVACAADAIQRKAAAAOIRACQAAAIcQKAEAAOAQAiUAAAAcQqAEAACAQwiUAAAAcAiBEgAAAA4hUAIAUAeOHj2qhIQEhYaGymQy6Y477rji/llZWTKZTAoODlZCQoKys7Prp1DACQiUAADUgfDwcGVnZ2vatGkymUz6/PPPtWvXrsvu/8orr0iSJk2apOzsbCUkJNRTpYDjCJQAANSxtLQ0GYZhD40/lZWVpejo6HquCnAeAiUAAHUsPj5eaWlp+uyzz7R79+6L3n/55Zf1wgsvXPLY/fv369Zbb1VUVJQ6duyoxMREffHFF7X2KS0t1RNPPKH4+Hj17NlTPXr00GOPPaaDBw/W2u+zzz5T79691bFjR8XHx2vo0KF6++23ZbVar/p8H3zwgcLCwmQymdS9e3d99tlnkqTKyko1b95cH3zwgX3fSZMmKTg4WB06dNDGjRuv/YtDw2EAAIA68+KLLxovvviikZ2dbZhMJuPOO++s9f68efOMm266yTAMw5Bk3Hffffb3cnJyjJYtWxp33XWXUV1dbRiGYWRmZhoWi8X4+9//bt9v6tSpxqhRo4yqqirDMAzj2LFjRseOHY2ZM2fa93nrrbcMDw8PY/78+YZhGIbNZjNmzJhhSDLOnDlzTeebO3euIclYvXq1fVtWVpYhyZgwYUKtz9e9e3ejoKDger46NCAESgAA6tCFQGkYhpGammqYzWZj9+7d9vf79OljZGdnG4ZxcaC87777DE9PT6OwsLDWmMnJyUZgYKBRUlJiGIZhdO3a1Zg6dWqtfTIyMoyNGzcahmEYxcXFhr+/v5GWllZrH6vVakRERBhnz569pvOVl5cbzZo1M/77v//bvs8DDzxgJCYmGt7e3vb99u3bZwwcOPDqvyw0WFzyBgCgnkyfPl02m81+L2VWVpbCw8PVo0ePS+6/ePFitWvXTq1bt661PSkpScXFxVq3bp0kacSIEfrwww916623KisrS+Xl5UpJSVHfvn0lSevWrVNpaan99QVms1n5+flq3rz5NZ3Px8dHY8aMUWZmpiTJarVqzZo1+tOf/qTKykotXLhQkpSenq6UlJTr/r7QcBAoAQCoJz179lRycrJmz56tPXv26OWXX9b06dMvu//JkycVHBx80faWLVtKkk6cOCFJevPNN/XOO+/owIEDSk5OVkhIiB599FEVFxfbx5F0ybGu53ySlJqaqgMHDmj79u1au3at+vbtq4EDByosLEzp6emSzgfK1NTUK54TjQOBEgCAejR9+nRZrValpqaqTZs26tWr12X3bdWqlU6fPn3R9lOnTkmSvZNoNpv10EMP6bvvvtPu3bs1depUvfvuu3rsscfs40i65FjXcz5Jmjhxojw8PJSRkaGvvvpKqampMplMmjRpkhYsWKDc3FyVlpaqQ4cOVzwnGgcCJQAA9SgxMVHjx4/X7t27r9idlKQxY8bo4MGD9g7jBRs2bFBgYKAGDBggSXrwwQdVVlYmSercubPefPNNTZgwQVu2bJEkDRgwQP7+/tq0aVOtcaqqqjRw4EDt3bv3ms4nSUFBQRo8eLAyMjK0aNEijRs3TtL5zmVRUZF++ctfatKkSdf69aCBIlACAFDP3n//fa1du1Z9+vS54n4vvfSSAgMD9eSTT6qmpkbS+fsu58+frz/+8Y/y9/eXJC1fvlxvvfWWDMOQdP7S9I4dOzRy5EhJUkBAgP7whz9o3rx59vsbbTabfvvb38pisahTp07XdL4LUlNT9d1336lTp07294YPH67AwEBlZGRwubsJMRkX/vQBAACnKS8vV1JSko4fPy5JCg0N1fr16+Xr63vRvm+++aY+/vhjbdmyRUFBQYqKitKXX36p9u3ba//+/Xruuee0ceNGeXl5qXnz5nr22Wd166232o//xz/+oVmzZunEiRPy8PBQdXW10tLS9MILL8jLy8u+3+zZs/U///M/Kikpka+vr/r166c//vGPte6bvJrzXZCfn6+oqCi9//77mjp1qn377bffrm+++Ub5+flO+S7h/giUAAAAcIiHqwsAAADOs7+wVCv3FGrr4SIdPlMmQ1LbFr6Kb9tcw+NC1KlNgKtLRCNEhxIAgEZg6+GzmrFglzYeOi2zSTJJsv7nN7zFJBmSbIaUGB2k58bdoN7RQa4sF40MgRIAgAbMMAz9efk+vbVin0wmk6y2K/9at5hMshmGHh7SXk+P7iyL2VRPlaIxI1ACANBAGYah5zO26dNN1/fwS1rPtnpjcg+ZCZVwENMGAQDQQP1zQ+51h0lJSv/hiN5be9CJFaGpIlACANAA5Z8u04wFuxwe5/Ule7S/sNQJFaEpI1ACANAAffj1IdX8zP2SV8OQ9N7aA44XhCaNQAkAQANTUW3V59/l/+wDOFfDajOU8cNRlVRUO6EyNFUESgAAGpgdR4tUVmV12nhVVpu2HC5y2nhoegiUAAA0MDuOFsuZz2WbTedDKnC9CJQAADQwReXVTp0/0mIy6UwZl7xx/QiUAAA0MBazSc6cRNqQ5GVhLkpcPwIlAAANTLtWzZzyQM4FNTZDsa2aOW08ND0ESgAAGpj4iBbOH7Ot88dE00GgBACggWnbwlcJkS3kjNsoTZI6t/FX+9Z0KHH9CJQAADRAD9wYK2dc9Tb+M5bJxD2UuH4ESgAAGqCJ8WHqHxvs0NPeFrNJPSKaa3LvSCdWhqaIQAkAQANkNpv0+i09FOjjcV2h0myS/LwsevPWBKdOQYSmiUAJAEADFRHkp88eSlKAt1nXMpGQSYa8zYY+fbCf2rX2r8MK0VQQKAEAaMBigrx1R+ABxTWrkKQrdhsvvNc3opkmeWxRxbF99VIjGj8PVxcAAACu39KlS1Vz7qw+eeR25Z0z658bcrVkZ4FKK2tq7dfMy6LhcSG6NylGidFBWriwXIsXL1ZERITCwsJcVD0aC5NhGM6cbB8AANSTffv26dNPP9W4cePUt29f+3bDMHT4TLmOFVXIkKHQQB9FBfvVepK7pqZGH374oaqqqvTQQw/J29vbFR8BjQSXvAEAaIDKyso0d+5ctW/fXn369Kn1nslkUmSwn/rGBqtfbEtFt2x20bRAHh4euuWWW1RaWqqsrCzRX4IjCJQAADQwhmFo/vz5qqmpUUpKynXPIRkcHKzk5GRt375d33//vZOrRFNCoAQAoIHZtm2bdu7cqQkTJiggIMChsbp166bevXtr0aJFKigocFKFaGoIlAAANCBFRUVasGCB4uPj1a1bN6eMOWbMGLVs2VJffPGFqqqqnDImmhYCJQAADYRhGMrMzJSXl5fGjRvntHE9PT01efJkFRcXa8GCBU4bF00HgRIAgAZi48aNOnTokFJTU+Xr6+vUsVu1aqWJEydqy5Ytys7OdurYaPwIlAAANAAnTpzQsmXL1LdvX7Vr165OztG9e3clJCRowYIFOnHiRJ2cA40TgRIAADdntVqVnp6uoKAgjRw5sk7PNW7cOLVo0UJffPGFqqur6/RcaDwIlAAAuLnVq1eroKBAaWlp8vT0rNNzeXl5afLkyTpz5owWLlxYp+dC40GgBADAjR0+fFhff/21Bg8erPDw8Ho5Z0hIiMaPH68ffvhBW7durZdzomEjUAIA4KaqqqqUnp6u8PBwDRo0qF7PnZCQoO7duysrK0snT56s13Oj4SFQAgDgppYsWaLi4mKlpaXJbK7fX9kmk0kTJkxQYGCg5syZw/2UuCICJQAAbmjfvn367rvvNHr0aLVs2dIlNXh5eemWW27RqVOntHjxYpfUgIaBQAkAgJspKyvT3Llz1b59eyUmJrq0ljZt2mjs2LH67rvvtGPHDpfWAvdFoAQAwI0YhqH58+erpqZGKSkpMplMri5JvXr1Urdu3TR37lydPn3a1eXADREoAQBwI9u2bdPOnTs1ceJEBQQEuLocSefvp5w4caL8/f01Z84c1dTUuLokuBkCJQAAbqKoqEgLFixQfHy8unbt6upyavH29tbkyZNVWFiopUuXurocuBkCJQAAbsAwDGVkZMjb21vjxo1zdTmXFBYWptGjR2vTpk3atWuXq8uBGyFQAgDgBjZu3KicnBylpKTI19fX1eVcVp8+fdSlSxdlZmbqzJkzri4HboJACQCAi504cULLli1T37591a5dO1eXc0Umk0nJycny9fXVnDlzZLVaXV0S3ACBEgAAF7JarUpPT1dQUJBGjhzp6nKuio+PjyZPnqzjx49r2bJlri4HboBACQCAC61evVoFBQVKS0uTp6enq8u5am3bttWoUaO0YcMG7dmzx9XlwMUIlAAAuEh+fr6+/vprDR48WOHh4a4u55r169dPnTt3VkZGhoqKilxdDlyIQAkAgAtUVVUpIyND4eHhGjRokKvLuS4mk0kpKSny9vbmfsomjkAJAIALLFmyRCUlJUpLS5PZ3HB/Hfv6+urmm2/W0aNHtWLFims69le/+pU6dOggk8mkVatW1U2BqBcmwzAMVxcBAEBTsm/fPn366acaP368+vTp4+pyrklMTIz8/Pzk5eUlSSotLdWBAwcUEhIik8mkoKAgmUwmlZWVKScn52fHW7VqlYYNG6aVK1dq6NChdVs86oyHqwsAAKApKSsr09y5c9WhQwclJia6upzrsmDBAsXExEj6v0D46quvytvbW0eOHNHYsWOVnJzs2iJRrxpujx0AgAbGMAxlZWXJarVq0qRJMplMri7pmg0ZMuSSE6+bTCalpqbKYrFo+fLlGjx4sAuqg6sQKAEAqCdbt27Vrl27NGHCBAUEBLi6nOvy8ccfq02bNpd8z8/PT5MnT1ZxcbHuv/9+ffbZZ+rdu7c6duyoqKgo3XrrrTp48OAVx1+wYIE6d+4ss9mshIQEzZgxQ3FxcTKZTIqMjNSUKVMkSeXl5UpISJCfn5/i4uLsUxcVFBTowQcfVHR0tDp37qxu3brp7bffdu6XgIsQKAEAqAdFRUVauHCh4uPj1bVrV1eXU2eioqI0bNgwvf7667r77rv10ksvad++fTp48KA8PDzUv39/5efnX/b4wYMHKywsTB988IGys7P1/PPPa8uWLQoKCtLQoUM1c+ZMSecfBlq1apWCg4O1ZcsWde7cWWfPntXAgQOVm5urnTt3as+ePfrggw/061//Wr/+9a/r6ytokgiUAADUMcMwlJGRIW9vb40fP97V5dS5Hj16aOXKlercubP9QRsPDw+9+eabOnv2rF588cVLHldcXKzx48frgQce0AMPPGDf7u3trTvvvFNffvmliouL7dtnz56tm266Sd7e3pKkP//5z9q/f7/eeOMNNWvWTJLUv39/3X///Xr99dd16NChOvrEIFACAFDHNmzYoJycHKWkpMjHx8fV5dS59evXq6KiQtHR0frqq69ks9kkSW3atFFsbKwWLVp00TFFRUUaPXq0AgMDde+99170/pQpU1ReXq5///vf9m0zZ86sFTwXL14sHx8f9ejRo9axSUlJslqtWrp0qbM+In6CQAkAQB0qLCzU8uXL1a9fP7Vr187V5dSLkydPSpJuvPFG5ebmas2aNfb3WrZsqRMnTlx0zLRp09SqVSvNnz//koGzd+/eio+Pt1/y3rFjh6qrq5WQkFDrvEFBQRcd27JlS0m65HnhHARKAADqiNVqVXp6uoKCgjRixAhXl1NvWrVqJUkym80aPHiwVq9ebb/cfOrUKbVu3fqiY1588UWlp6erV69emjp1qs6ePXvRPlOmTNHGjRu1c+dOzZw50/6Azo/Pe+bMmYuOO3XqlCRd8rxwDgIlAAB1ZPXq1SosLFRaWpo8PT1dXU69GTBggPz9/bVx40YNHjxYsbGx+uqrr3To0CEdOnRIY8eOveiYuLg4eXp6atasWTp58qSeeOKJi/a5++675enpqffee09ffPGF7rrrrlrvjxkzRhUVFdqyZUut7Rs2bJDFYtGoUaOc+0FhR6AEAKAO5Ofn6+uvv9aQIUMUHh7u6nLqVUBAgP7whz8oKytLixYt0k033aSamhrdfffdatGihV566aXLHtu1a1f97ne/0yeffKKMjIxa77Vu3VoTJkzQ3/72N/Xv31/BwcG13v/lL3+p9u3b6+mnn9a5c+ckSZs2bdLMmTP11FNPKTY21tkfFf/B0osAADhZVVWV3nnnHTVr1kxTpkxp0Gt1X8nkyZOVnZ2tAwcOKDIyUp06ddKyZcvs78+ePVuvvfaaioqKVFZWpqCgIL3wwgu6/fbbJUkzZszQzJkzdeDAAbVv315TpkzRpEmTdNddd2nbtm0KCAhQu3bttGnTJvtSj/PmzdOkSZO0aNEijRkz5qKaCgoK9Nxzz2nZsmXy9fWVh4eHHnvsMT366KP186U0UQRKAACcLCsrS1u3btXDDz9sfyAE0ooVK/T111/rvvvuU3R0dK33zlXW6NDJc6qsscrf21PtWjeTp+XiIH748GElJSUpNze30Qb1hoi1vAEAcKJ9+/bpu+++04QJEwiTPzF06FDl5ubqyy+/1LRp01RheOiL7/L1xbeHdeBEqX7c4fIwm9QjsoXu7BulCfFh8vG0SJI+++wz3XfffYRJN0OHEgAAJykrK9Pbb7+tsLAw3XnnnQ1yre66VlxcrHfeeVfH/GK0qDBAFTVWXS6JmE2SzZAqVr+v6f/vQT2QOkoJCQlasmSJoqKi6rdwXBHxHgAAJzAMQ1lZWbLZbJo0aRJh8jJ8m/lrR/O+Sj/ip/Lqy4dJ6XyYlKQKk7eemHqv2nfprl/+8peESTfEJW8AAJxg69at2rVrl2655RYFBAS4uhy3ZBiGnvxii9bkll7TcS0G36sWg8+vnuPXo/Gug96Q0aEEAMBBRUVFWrhwobp3764uXbq4uhy3lZF9RHO3HL1iV/LnvJy1U/sKSpxXFJyCQAkAgAMMw1BGRoa8vb01btw4V5fjts5V1mj63B1y9EYAQ9LzGdudURKciEAJAIADNmzYoJycHKWkpMjHx8fV5bitzC1HVVJRI0efBLbaDG3KOa09x+lSuhMCJQAA16mwsFDLly9Xv3791K5dO1eX49bSfzjscHfyAovZpLlbjjhpNDgDgRIAgOtgtVqVnp6uoKAgjRgxwtXluDWbzdD2I8UOdyd/PF52/lknjQZnIFACAHAdVq1apcLCQt10003y9PR0dTlu7URppcqrrU4bz5C0v/DanhRH3SJQAgBwjfLz8/XNN99oyJAhCgsLc3U5bq/aanP+mDbWZXEnBEoAAK5BVVWV0tPT1bZtWw0cONDV5TQIzX2d38FtUQdj4voxsTkAANdg8eLFKi0t1d1338160j/j7NmzOnTokHJycuRvNqnU5pwQaDGblBDZwiljwTkIlAAASPrXv/6l1157TVu2bNGLL76ol1566aJ99u7dq++//14TJkxQcHBw/Rfp5kpLS3Xo0CF7iDxz5owkKSwsTN1DIrSxwJDVCVeqrTZDfWP5/t0JgRIA4FJHjx7V+PHjdfz4cRUUFGjWrFm65557au0zd+5cTZ8+Xfv371doaKg6deqkBQsWOLWOu+66S3fddddl1+AuKyvT3Llz1bFjR/Xu3dup526oysvLlZOTYw+QJ06ckCS1bt1aHTt2VGxsrKKjo+Xr66s+eWeU9vd1Tjmvr6dFyd3DnTIWnINACQBwqfDwcGVnZ+ull17Sb3/7W02bNk29evVS167/t2bzpEmTNGnSJA0dOlQvvfSShg4dWq81GoahrKws2Ww2JScnXzZ0NnaVlZXKy8uzB8hjx45JkoKCghQbG6vBgwcrJiZG/v7+Fx2bENlCA9q31MZDp2V14IEak6RfDGqnZt5EGHfCfw0AgNuYOHGili5dqsmTJ2vz5s2XDCausHXrVu3atUu33HKLAgICXF1Ovamurtbhw4ftl7GPHj0qm82mgIAAxcbGqm/fvoqJiVGLFi1+diyTyaT/ubm7Rr65WjbDuK71vC1mk2JbNdPjwzpc+8GoUwRKAIDb6N27t1JTUzV16lRNnTpVs2fPvuL+77//vmbNmqXy8nJVV1crICBA06dP1+jRoyVJJSUlGjRokPLy8hQYGKjXX39db7zxhgoLC2UYhp566ik9+uijVzxHUVGR0tPTtWnTJs2cOVM+Pj6yWCx67LHHah1bWlqq5557TqtWrZKHh4dsNpsGDhyoJ598ssGsomO1WnX06FF7gMzPz5fVapWfn59iY2PVo0cPxcbGKjg4+Lq6tBFBfnrnrt6aOutb2WToWhqVFrNJLXw99dF9feTlwcNQ7oZACQBwKw8++KA2bNigDz74QAMHDtTjjz9+2X3/9Kc/6X/+53+UnJws6fxk4xMmTNDatWvVq1cvBQQEKDs7W/fff79mz56t9PR0rVmzRp6envr44491//33KyAg4KJ7Ni8wDENz5szRzJkz1axZM23atEkhISHauHGjhg0bppKSEj377LOSpF/96lfKzc3V999/L09PTx0/flyDBw9Wnz593DZQ2mw2FRQU2ANkbm6uqqur5e3trZiYGI0cOVKxsbEKCQlx2mX+oZ1DNOuBvnri3z/oTFnVVYfKuNAAvXNXb0UG+zmlDjgXgRIA4Hb+9re/KTs7W08++aT69u2rvn37XnK/9PR0xcXF2V8PHTpU8fHx+uCDD/T222/X2reyslJ//OMf7ava3HffffrLX/6iF154QXffffclA9OGDRs0b9485eXl6fPPP1dISIgkqV+/frrjjjs0Y8YMPfHEE/Lz89P69euVlJRkHz80NFSvvfaaW018bhiGTpw4Yb8HMicnRxUVFfLw8FB0dLQGDx6s2NhYhYWF1emUSAPat9KKJ4fqtcW79fm3h1VltcnDbFLNj9LlhddBfp6aNqS9HrwxVh4WOpPuikAJAHA73t7e+vLLL9W7d2/dcsst+uGHHy45TY/ZbNaUKVOUnZ0tm80mk8mk/fv3q3nz5hftGxQUpIiIiFrb+vbtq3fffVdHjhy56L3CwkItX75cZ8+elaSLJjGPj4/XRx99pM2bN2vIkCEaMWKE3nrrLRUVFenee+/ViBEjlJKS4uA34RjDMHTmzBl7gDx06JDOnTsni8WiiIgI9evXT7GxsYqIiJDFYqnX2pr7eup3qfF6ekycFm0/pi2Hi7T7eLEqqm1q7uupruGBSowO0vC4NlzibgAIlAAAtxQVFaVPP/1UY8eO1T333KOsrKxa7x87dkwDBw7UjTfeqNWrVyswMFDS+S5lZWXlReNdeP/HLoTUnwZKm82m9PR0BQcHy8Pj/K/KcePG1Tq2vLxcbdq0sc+1+Oabb6pr16569913lZycLH9/f91zzz169dVXL3nuulJcXFwrQBYVFclkMik8PFw9e/ZUbGysIiMj3Wb98ea+nrqtT5Ru6+PqSuAIAiUAwG2NGjVKr7zyip5//nnNmDGj1ntZWVk6ceKEnn/++asKbEVFRRdtO3XqlCSpbdu2tbbn5OTI09NTU6dO1dq1ayVJq1evvmTn8wKz2ayHHnpIDz30kPbs2aN33nlHf/3rX1VSUqJ//vOfP1vf9Tp37lytuSAvfKY2bdrohhtuUGxsrKKiouTj41NnNQAESgCAW3vuuee0adMmvfjii2rZsqV9+4Uu5E/v9Tt27Ngl71s8e/asDh8+XKsTuWnTJkVHR18UKPPz8zV16lSFhYVpzJgxmj17tn744Yda818WFRVpypQp+uCDDxQcHKwHH3xQb731lvz8/NS5c2e9+eabOnDggLZs2eKMr8GuoqJCubm59gdpCgsLJUktW7ZUbGyshg8frpiYGPn58fAK6g+BEgDg1kwmk2bNmqXExETt27fPvn306NHy9vbW66+/ro8//lienp6aNWuW9u7de8lA6e/vrxdeeEHvvfee/Snv7OxszZo1y/5ATlVVlSQpICDAfs/kXXfdpffee0/PPPOMsrKyFBISovLycv3Xf/2XzGaz/bL58uXL9dZbb+mZZ56RyWTSiRMntGPHDofvo6yqqlJ+fr49QB47dkyGYah58+aKjY3VjTfeqNjY2CY1PybcD4ESAOBSP156UZIyMjI0b948RUZG2vcJDAzUV199pf79+9u3derUSenp6Xr++ecVGxurDh06KDExUYmJifr222+VkJCgVatW6UyNpw6cKJXZN1C5LRIU3qWPqopPysNs0i+nv6o77rxL0vm1vF944QVJ0saNGzV69GgtW7ZMnp6eWrx4sV544QX17dtXAQEBslgsGjdunF588UV7PS+99JJmzZqlTz75RB4eHqqurtadd95pH/Nq1dTU2CcTz8nJ0eHDh2Wz2eTv76/Y2Fj17t1bsbGxCgoKuu7vHHA2k2Fcz1z1AAC4tzV7T+jt1fu14eBpncx6U5X529T2kY8kSWbT+c6n1WaoZTMv3ZsUo6GhVmXM+UwTJkxQYmJivdVps9nsk4nn5OQoLy9PNTU18vHxUWxsrGJiYhQbG6tWrVo12SUf4f7oUAIAGpWi8mr9dt4OffXDEZl/lL9+3D6xGf+34dS5Kv1l+V69b6rSHTFx6t27d53WZxiGfTLxC3NBVlVVycvLS9HR0Ro2bJhiY2MVGhpKgESDQaAEADQahcUVuu39Dco9dU6SrnoVFpshnTM89cFBL93wwxHd1Cvi5w+6SoZh6NSpU/Z7IHNyclReXi4PDw9FRkZq4MCB9snE63suSMBZuOQNAGgUSitrNOlvXyv3dJms/0mStsoyHf/Xs7IWn5CtqkKerSIVPPpR+UTccNlxTJLevae3RncJve5azp49aw+Qhw4dUmlpqcxms9q2bavY2Fj7ZOIX5rgEGjoCJQCgUXg+fZv+vTnvqruSl2OSFODjoeX/PVStA7yv6piSkhL7XJCHDh2yr64TFhZmD5BRUVHy8vJyrDjATREoAQAN3rc5pzX53fVOG89iNml8t1C9dUevS75fVlZWazLxkydPSpJCQkLsD9FER0fL19fXaTUB7oxACQBo8B7657davrvQfqnbGcwm6Ztnhyusua8qKyvtk4nn5OTYpzgKDg62B8iYmBj5+/s77fxAQ0KgBAA0aIUlFer/h+UOX+r+KbNJmhjroR7mwzpy5IgMw1BgYGCtqXyutBQj0JRwNzAAoEH7LveM08OkJNkMQ9/mFWlwj+bq0aOHYmNjFRwczFQ+wCUQKAEADdr2I0XyMJtU4/RUadJZc6BuvnkMIRL4GWZXFwAAgCOOF1eqru7dKquyqqzKWkejA40HgRIA0KDV9aMANh41AH4WgRIA0KAF+Xmpri5Ie1pM8vPi7jDg5xAoAQANWtfwwDq4f/K8zm0CZDFz/yTwcwiUAIAGrWdUUJ2MazGblBgTXCdjA40NgRIA0KDFtmqmnpEt5OxGotVm6NbESOcOCjRSBEoAQIP34MBYp85FaTGb1CuqhbqEBTpvUKARI1ACABo0wzAUVn1M4ZYSmZw4gdDv0+KdNhbQ2BEoAQANVmlpqWbPnq2srCz9oruvmnl7OOXS91OjOysulO4kcLWYCwEA0CDt3LlTWVlZMpvNuv3229W5c2f1zD+rOz/YoMpqm6zXOX/k/Ukxmja4nZOrBRo3k1HXM8ICAOBEFRUVWrhwobZu3aq4uDhNnDhRzZo1s7+/53iJHv/399pfWHrVF8AtZpPMJunZsXF68MZYlloErhGBEgDQYBw4cECZmZmqqqrSuHHj1L1790uGv6oam95dc0Dvrz2o4ooaWcwmWX/y1I7JJJllks0wNKRTa70wsYvat/avr48CNCoESgCA26uqqtKyZcu0efNmxcbGKiUlRc2bN//Z4yqqrVq0/bi+OXBSP+Sd1dGicllthgJ8PBTftrl6RgYptWdbRQX71cOnABovAiUAwK3l5+crIyNDxcXFGjVqlPr06cMlacDNECgBAG7JarVq1apV+uabbxQeHq60tDS1bNnS1WUBuASe8gYAuJ2CggJlZGSosLBQQ4cO1cCBA2U2M9Md4K7oUAIA3IbNZtP69eu1cuVKBQcHKy0tTWFhYa4uC8DPoEMJAHALp0+fVmZmpvLy8pSUlKThw4fLw4NfU0BDQIcSAOBShmHo+++/1+LFi9WsWTOlpqYqOjra1WUBuAb81Q8A4DIlJSWaO3eu9u/fr169emn06NHy9vZ2dVkArhEdSgCAS2zfvl3z58+Xh4eHkpOT1alTJ1eXBOA60aEEANSr8vJyLViwQNu3b1eXLl00YcIE+fkxsTjQkNGhBADUm/379yszM1M1NTUaP368unXrxiTlQCNAhxIAUOeqqqq0ZMkSfffdd2rfvr0mTZqkwMBAV5cFwEnoUAIA6lReXp4yMjJUWlqqUaNGKTExka4k0MgQKAEAdaKmpkYrV67UunXrFBERobS0NAUHB7u6LAB1gEAJAHC648ePKz09XSdPntSwYcM0YMAAlk4EGjECJQDAaWw2m7755hutWrVKrVu3VmpqqkJDQ11dFoA6xkM5AACnOHXqlDIyMnTkyBENGDBAQ4cOZelEoImgQwkAcIhhGPr222+1dOlS+fv7KzU1VVFRUa4uC0A94q+OAIDrVlxcrLlz5+rAgQPq3bu3Ro8eLS8vL1eXBaCe0aEEAFwzwzC0bds2LVy4UJ6enpo0aZI6dOjg6rIAuAgdSgDANSkrK9P8+fO1c+dOdevWTePHj5evr6+rywLgQnQoAQBXbe/evZo3b56sVqsmTJigrl27urokAG6ADiUA4GdVVlZq8eLF+uGHH9SxY0clJycrICDA1WUBcBN0KAEAV5Sbm6uMjAydO3dOY8aMUa9evVg6EUAtBEoAwCXV1NRoxYoVWr9+vaKiopSamqqgoCBXlwXADREoAQAXOXbsmNLT03X69GkNHz5c/fv3Z+lEAJdFoAQA2NlsNn399ddavXq1QkJClJaWppCQEFeXBcDN8VAOAECSdPLkSWVkZOjo0aMaOHCghgwZIovF4uqyADQAdCgBoIkzDEObNm3SsmXLFBgYqLS0NEVERLi6LAANCB1KAGjCioqKlJmZqUOHDqlPnz4aOXIkSycCuGZ0KAGgCTIMQ1u3btXChQvl5eWllJQUtW/f3tVlAWig6FACQBNz7tw5ZWVlaffu3erevbvGjRsnHx8fV5cFoAGjQwkATcju3buVlZUlm82miRMnqkuXLq4uCUAjQIcSAJqAiooKLV68WNnZ2erUqZOSk5Pl7+/v6rIANBJ0KAGgkTt06JAyMzNVXl6usWPHKiEhgaUTATgVgRIAGqnq6motX75cGzduVHR0tFJTU9WiRQtXlwWgESJQAkAjdOTIEWVkZOjMmTMaMWKE+vfvT1cSQJ0hUAJAI2K1WrV27VqtWbNGoaGhSktLU+vWrV1dFoBGjodyAKCROHHihNLT03X8+HENHjxYgwYNYulEAPWCDiUANHCGYWjDhg1avny5WrRoobS0NLVt29bVZQFoQuhQAkADdvbsWWVmZionJ0f9+vXTiBEj5Onp6eqyADQxdCgBoAEyDEPZ2dlatGiRfH19lZKSotjYWFeXBaCJokMJAA1MaWmp5s2bp7179yohIUFjxoxh6UQALkWHEgAakJ07d2r+/PmSpOTkZMXFxbm4IgCgQwkADUJFRYUWLlyorVu3Ki4uThMnTlSzZs1cXRYASKJDCaCRKC8vV1JSko4fP66CggLdcMMN8vLyUk1NjYqKihQREaHnnntOkyZNcnWp1+zgwYPKzMxUZWWlxo0bp+7duzNJOQC3YnZ1AQDgDL6+vsrOzta0adMkSQsWLFB2dra2b9+uffv2qX379kpNTdWKFStcXOnVq66u1oIFC/TPf/5TLVu21COPPKIePXoQJgG4HQIlgEbPx8dHTz75pAzD0D//+U9Xl3NVDh8+rHfffVc//PCDxo4dq3vuuUfNmzd3dVkAcEkESgBNQk1NjSTp1KlT9m3V1dV6+eWX1alTJ8XFxaldu3Z68sknde7cOfs+d911l6KiomQymbR69WqlpaUpLi5OcXFxmj9/vqxWq379618rMTFR0dHRmjFjxkXnLi4u1uOPP66YmBjFxcWpa9euevvtty9Zp9Vq1YoVK/TRRx/J29tbDz/8sPr160dXEoBb46EcAI3e6dOn9corr0iShg0bZt9+5513asOGDVqxYoU6duyogoICjRgxQps2bdLKlSvl4eGhf/3rX/rHP/6hKVOm6K9//as++eQTNWvWTE8//bRuvvlmPfvss3rwwQf16quvKisrS8nJybrxxhs1dOhQSedD66hRo1RaWqpNmzYpJCREGzdu1LBhw1RSUqJnn33WXk9hYaHS09NVWFioIUOGaNCgQTKb+Xs/APfHTyoAjdL48eOVkJCgiIgItWrVSuvXr9czzzyjxx9/XJK0atUqzZkzR0899ZQ6duwoSWrTpo1efvllff311/r0008vGvPuu++2P1l9++23q7KyUmfPnrUfP3HiRPn7+2vZsmX2Yz755BNt2rRJL730kkJCQiRJ/fr10x133KEZM2aorKxMNptN69at03vvvSer1aqpU6dqyJAhhEkADQYdSgCN0oIFCxQTE6OKigo9+OCDkqQXXnjBvizh4sWLJZ0Pdz+WlJQkSVq0aJHuvffeWu916tTJ/u/BwcEXbbuw/dixY/bXS5YskSQNHDiw1n7x8fH66KOPtGLFCp04cUJ5eXlKSkrS8OHD5eHBj2YADQs/tQA0aj4+PnrrrbcUGxurJ598Uu+++64k6eTJk5L+Lxhe0LJlS0nSiRMnLhrrx/M+Xrin8adzQZpMJlmtVvvrC+cZN25crf3Ky8vVsmVLzZ49W3369NF9992nmJiY6/mIAOByBEoAjV5wcLAeeugh/fnPf9Zzzz2nmJgYtWrVStL5+yt/7MJDO61bt3bKuS+cZ/Xq1fantEtKSjRv3jzt27dPPXv21JgxY+Tt7e2U8wGAK3CDDoAm4b/+679kMpn0+9//XpI0ZswYSdLGjRtr7bdhwwZJ0tixY51y3gvn+eGHHyRJO3bs0N///ncdOHBA33zzjQYOHEiYBNDgESgBNAkRERG67bbb9PHHHysvL09Dhw7V5MmT9cYbb+jAgQOSzj9l/eKLL2rgwIG68847nXLeu+66S0lJSXrqqaf00Ucfac6cOWrbtq327NmjwMDAiy65A0BDxNKLABqFSy292KVLF82ZM8e+z5YtW5SQkKDIyEh16tRJCxcu1O9//3t98sknslgsqqysVFpamp545nltOVahrUeK9Omfpis/+2uVnSlQ68h2unvaL9WpTYD++sb/aNeuXYqMjNTNN9+sadOm6bbbbtPOnTvl7++vjh072ruf2dnZ+n//7/9p27ZtatWqlZo1a6Zx48bpxRdflI+Pj6u+MgBwGgIlAPzHtiNF+vvqA1q0/ZhshuRhNqnG9n8/Ii+89jCbNCE+TA8Paa8uYYGXHa+qqkpLly7Vt99+q3bt2iklJUWBgZffHwAaKgIlgCavotqqN5ft1XtrDspsNslq+/kfixazSYZh6PFhHfT4sI7y8qh9B1F+fr7S09NVUlKi0aNHKzExkdVuADRaBEoATVpRebXu+Wijth0p0vX8NDRJSowO0kf391GAj6dqamq0atUqrVu3Tm3btlVqaqp9KiIAaKwIlACarPIqq259b712Hiu+qq7k5VhMUq+oIP0pOVbz52XqxIkTGjp0qG688UZWuwHQJBAoATRZv523Qx+vz5EDWdLOJKm7x3GNDa9SWlqaQkNDHR8UABoI/uoMoEn6Nue0/rHOOWFSkgxJW2tClTT+VsIkgCaHQAmgSfrrin0yO/kZGbPZpHfW5jh3UABoAAiUAJqcvNNlWrvvpKxOvuHHajO0ZOdxFRRXOHdgAHBzBEoATc7yXQXnb3qsAzZDWrWnsG4GBwA3RaAE0ORsO1Ikcx3NCelhNmnbkaI6GRsA3BWBEkCTs+t4iUPTBF1Jjc3Q7uMldTI2ALgrAiWAJqe8qqZOxy+rstbp+ADgbgiUAJocbw9LHY/Pj1YATQs/9QA0OR1D/GWpo4dyPMwmdWzjXzeDA4CbIlACaHLiI5qrrpYIs9oMxYc3r6PRAcA9ESgBNDmDOrZ22go5P2VIGtixdd0MDgBuikAJoMnpEhaohMgWzl8pxyQNaN9Ssa2aOXdgAHBzBEoATdIjg9s5vUtpM6RHhrR37qAA0AAQKAE0OSdOnFDe+izFmE877Yeg2SRN7hWhQVzuBtAEESgBNBk2m03r1q3Tu+++q6qqKv3vlMEKbeEji4PXvi1mk6KC/fTCxC5OqhQAGhaTYRh19bAjALiN06dPKyMjQ/n5+erfv7+GDx8uT09P5Z8p023vrVdBceV1rZ5jMZkUEeSrzx5KUmhznzqoHADcH4ESQKNmGIa+/fZbLV26VP7+/kpJSVF0dHStfU6WVur/S9+mJTsLZDJJV/NT0Ww6f89kcvcwvTypm4KaedXRJwAA90egBNBoFRUVae7cuTp48KASExM1atQoeXldOvgZhqGF24/rryv2affxElnMJtkMo1a4NJskk8kkq81Q97bN9cTwjhrVpU09fRoAcF8ESgCNjmEY2rJlixYtWiQvLy+lpKSoffure/raMAxtOVykVXsKtfVIkfYWlKiqxiZvD7M6hwaqe9vmGh4Xom5tmbwcAC4gUAJoVEpLS5WVlaU9e/aoR48eGjt2rHx8uLcRAOoSgRJAo7Fjxw7Nnz9fZrNZEydOVFxcnKtLAoAmwcPVBQCAo8rKyrRgwQLt2LFDXbp00YQJE+Tn5+fqsgCgyaBDCaBB27t3r+bNm6eamhqNHz9e3bp1k8nk5DUVAQBXRIcSQINUUVGhxYsXKzs7Wx07dlRycrICAgJcXRYANEl0KAE0OAcPHlRmZqYqKio0duxYJSQk0JUEABeiQwmgwaiqqtKyZcu0efNmxcTEKCUlRS1atHB1WQDQ5NGhBNAg5OXlKSMjQyUlJRo1apT69OlDVxIA3ASBEoBbq6mp0cqVK7Vu3TpFREQoNTVVLVu2dHVZAIAfIVACcFtHjx5VRkaGTp8+rWHDhikpKUlms9nVZQEAfoJACcDtWK1WrV27VmvWrFGbNm2UlpamkJAQV5cFALgMHsoB4FYKCwuVkZGh48ePa/DgwRo0aJAsFourywIAXAEdSgBuwWazaf369Vq5cqWCg4OVmpqq8PBwV5cFALgKdCgBuNypU6eUkZGhw4cPa8CAARo2bJg8PPjxBAANBR1KAC5jGIY2b96spUuXKiAgQKmpqYqKinJ1WQCAa0QLAIBLnD17VnPnztWhQ4fUp08fjRw5Ul5eXq4uCwBwHehQAqhXhmEoOztbixYtko+Pj1JSUtSuXTtXlwUAcAAdSgD1pqSkRPPmzdO+ffuUkJCgMWPGyMfHx9VlAQAcRIcSQJ0zDEM7duzQ/PnzZbFYlJycrM6dO7u6LACAk9ChBFCnysrKNH/+fO3cuVNdu3bV+PHj5efn5+qyAABORIcSQJ3Zs2eP5s2bJ5vNpvHjx6tbt26uLgkAUAfoUAJwuoqKCi1atEhbtmxRp06dlJycLH9/f1eXBQCoI3QoATjVgQMHNHfuXFVWVmrs2LHq0aOHTCaTq8sCANQhOpQAnKKqqkpLly7Vt99+q9jYWKWkpKh58+auLgsAUA/oUAJwWG5urjIzM1VaWqpRo0YpMTGRriQANCEESgDXraamRitWrND69esVGRmp1NRUBQcHu7osAEA9I1ACuC5HjhxRRkaGzpw5o+HDh6t///4ym82uLgsA4AIESgDXxGq1as2aNVq7dq1CQ0OVmpqqkJAQV5cFAHAhHsoBcNUKCgqUkZGhwsJCDRkyRAMHDpTFYnF1WQAAF6NDCeBn2Ww2rVu3TitXrlTLli2VlpamsLAwV5cFAHATdCgBXNGpU6eUkZGhI0eOaMCAARo6dKg8PPjRAQD4P3QoAVySYRjatGmTli1bpsDAQKWmpioyMtLVZQEA3BBtBgAXOXv2rDIzM5WTk6O+fftqxIgR8vLycnVZAAA3RYcSgJ1hGPrhhx+0ePFi+fr6KiUlRbGxsa4uCwDg5uhQApAkFRcXa968edq/f7969uypMWPGyNvb29VlAQAaADqUQBNnGIa2bdumhQsXysPDQ8nJyerUqZOrywIANCB0KIEm7Ny5c5o/f7527dqlbt26afz48fL19XV1WQCABoYOJdBE7dq1S1lZWTIMQxMmTFDXrl1dXRIAoIGiQwk0MeXl5Vq0aJG2bt2qzp07a+LEifL393d1WQCABowOJdCE7N+/X3PnzlVVVZXGjRun7t27y2QyubosAEADR4cSaAIqKyu1ZMkSff/992rXrp0mTZqk5s2bu7osAEAjQYcSaORycnKUmZmpc+fOafTo0erduzddSQCAU5ldXQDQmOzZs0cJCQny9/fX0KFDXVpLdXW1Fi1apI8//liBgYF65JFHlJiYSJgEADgdgRJN1tGjR5WQkKDQ0FCZTCbdcccdV9w/KytLJpNJwcHBSkhIUHZ2tvLz8xUSEqK//e1vkqTOnTsrOztbiYmJ9fERLuvw4cN699139e2332r06NG67777FBQU5NKaAACNF4ESTVZ4eLiys7M1bdo0mUwmff7559q1a9dl93/llVckSZMmTVJ2drYSEhLk7e2t6OhoBQcH11fZV2S1WrV8+XJ99NFH8vb21sMPP6ykpCSZzfyvDgCoO/yWASSlpaXJMAx7aPyprKwsRUdHX7Q9JCREmzdv1p133lnXJf6s48eP6/3339e6des0dOhQPfjgg2rdurWrywIANAEESkBSfHy80tLS9Nlnn2n37t0Xvf/yyy/rhRdeqLVt48aNSkhIkJeXl+6///6fPcf777+vQYMGKTExUT169NDAgQO1ZMmSWvsMGzbMfgk+OztbY8eOVefOndWlSxfNnz//kuPabDatWbNG77//vgzD0C9+8QsNHjyYriQAoN7wGwf4j+nTp1+yS5mVlaXIyEjFx8fX2t6vXz9lZ2crPDz8qsb/05/+pGeeeUbffvuttmzZot/97ndKS0vT999/b99n5cqVmjZtmiTp73//u+bNm6c9e/ZozJgxuuOOO3T27NlaY548eVIffvihVq1apQEDBugXv/iFQkNDr+PTAwBw/QiUwH/06NFDKSkpmj17tvbs2WPf/vLLL2v69OkOj5+enq7k5GT766FDhyo+Pl4ffPDBJfd/6KGH5OnpKUm64447VFJSos2bN0uSDMPQ+vXr9e6776qyslIPPPCARowYIQ8PppYFANQ/fvsAPzJ9+nRlZGTolVde0SeffKKsrCyFh4erR48eDo9tNps1ZcoUZWdny2azyWQyaf/+/ZedYDwuLs7+761atZJ0/j7JM2fOKDMzU7m5uerXr59GjBhhD54AALgCgRL4kZ49eyo5OVmzZ8/WCy+8oJdfflnvvPOOw+MeO3ZMAwcO1I033qjVq1crMDBQ0vkuZWVl5SWPadasmf3fL9wPuX//fv39739Xs2bNdN999ykmJsbh2gAAcBSXvIGfmD59uqxWq1JTU9WmTRv16tXL4TGzsrJ04sQJPf/88/YweS1KSkokSVu2bFF8fLymTZtGmAQAuA0CJfATiYmJGj9+vHbv3u2Ueycl2buQP33y+tixY1c8zjAMbdmyRZ988okkKSkpScnJyfL29nZKXQAAOAOBEriE999/X2vXrlWfPn2cMt7o0aPl7e2t119/XdXV1ZKkWbNmae/evZc95ty5c/r888+VkZGhdu3aSZLatGnjlHoAAHAmk2EYhquLAFyhvLxcSUlJOn78uCQpNDRU69evl6+v70X7vvnmm/r444+1ZcsWBQUFKSoqSu+++64efvhh7dy5U/7+/oqKitJnn32m2267Tfv375ckdejQQRkZGYqJidHChQv1/PPPq7CwUB06dFBiYqJWr16tXbt2qUOHDlq1apWmTJmi9evXq6CgQGFhYUpNTVWnTp303nvvadeuXYqMjFRqaqr++te/1ut3BQDAlRAoAQflnS7T3C1HlJ13VtuPFqm00iqL2aToYD8lRLbQoI6tNaxza3lYfv6CQHl5uRYuXKht27YpLi5OEydOrPVwDgAA7ohACVynfQUl+t2CXVqz94RMpvPbbD/5v8nDbFKNzVCbAG89NqyD7u4XLbPZdOnx9u3T3LlzVVNTo3Hjxik+Pl4m06X3BQDAnRAogWtkGIbeXXNQry/ZI0OS9acp8gp6RwXpz7cnKDLIz76tsrJSixcv1g8//KAOHTooOTn5up4EBwDAVQiUwDWw2Qw9n7FN/96cf13HW8wmtfD11GcPJalDiL8OHTqkzMxMlZeXa/To0erVqxddSQBAg0OgBK7BG0v26K2V+x0aw2I2KdjPU8/EV2vnD5sVHR2tlJQUBQUFOalKAADqF4ESuErf553RzX9fJ2f8D2OSoXaWM5oxsaP69etHVxIA0KAxDyVwFQzD0HNfbZXZScHPkEkHrMGyte5AmAQANHgESuAqbM45oz0FpbI6saFvMZs085scp40HAICrECiBq/D5d/myXGa6n+tltRlatrtAp0ornTouAAD1jUAJXIVNh05d0/RAV8swpK2Hi5w+LgAA9YlACfyMc5U1yjtdXidjW8wmbT9KoAQANGwESuBnnC2vrrOxzSbp9LmqOhsfAID6QKAEfkadPoNtiKe8AQANHoES+BnBzbzk5Odx7KyGoZAA77oZHACAeuLh6gKaivLyciUlJen48eMqKCjQDTfcIC8vL5WXl6umpkYDBgzQK6+8opiYGKeds1+/foqOjtbnn3/utDGbitLSUuXm5tr/CVRrnZWv089jM6TuEc2dPi4AAPWJQFlPfH19lZ2drZdeekm//e1vtWDBAnt4PHTokEaNGqU+ffpo69atCgsLc8o5o6KiFB4e7pSxGruioqJaAfLUqVOSpKCgIEVHR+tG7+ZatP+crE5+0NvTYlJ8WwIlAKBhI1C6gdjYWD311FN65JFH9OGHH+o3v/mNU8b94osvnDJOY2MYhs6cOVMrQJ49e1aS1Lp1a8XExGjo0KGKiopSYGCgJKnz8WLN/8tap9ZhMZuUmtBWAT6eTh0XAID6RqB0E9HR0ZKk/Px8/eEPf1BGRoasVquqq6vVpk0b/f73v1diYqKk/7t8npeXp8DAQM2cOVOvvPKK8vLydODAAc2ZM8f+OjAwUDk5OfbzfPrpp/rTn/4km82mmpoaRUVFaerUqUpNTXXBp64fhmHo5MmTtQJkSUmJJCk0NFSdO3dWdHS0oqKi1KxZs0uOERcaqKR2LbUp57TT5qO02QzdPyDGKWMBAOBKBEo3sXfvXklS+/btNWPGDC1fvtweIP/9739r+PDh2rlzpyIiIuyXz++//3599dVX+vTTT7VkyRJZLBaNGDFCFovF/v6qVavs5/j66681ZcoUbdu2TZ06dZLVatVTTz2lP//5z40qUNpsNhUWFionJ0d5eXnKzc1VWVmZTCaTwsPDFR8fbw+QPj4+Vz3uH9LiNfrPa2SV44HSZJIeGtROXcO53A0AaPgIlG5g8+bN+uMf/2jvFk6aNElxcXH29++44w796le/0qeffqpnnnmm1rElJSV6+eWX5eFx/j/l7Nmz5efnd8nzbNiwQT4+PoqMjJQkWSwWPfPMM/ryyy/r6JPVD6vVqmPHjtm7j3l5eaqsrJTFYlHbtm3Vu3dvRUdHKzIyUl5eXtd9nphWzfRKSlc9+9U2h+q1mE3qFOKvX43s5NA4AAC4CwKli4wfP15eXl6qqKhQYGCg7rrrLj333HMKDg7WoUOHdOutt2r37t0ym8/P7HT69GkdOHDgonGCg4NrPcQTEhJy2XMOGTJEzz33nHr37q1HH31UqampioiI0OOPP+78D1iHampqdOTIEXuAzM/PV3V1tTw9PRUZGamkpCRFR0crIiLCHrSd5bY+USqpqNHvFuySZOhaZ6k0m6QOrf31yYP95ONpcWptAAC4CoHSRX78lPePbdu2TQMHDtSUKVO0efNmeXufn6MwJiZGlZWVF+0fEBBw1efs06eP1q1bp9dff11PP/20nnjiCQ0aNEivv/66+vbte92fpa5VVVXp8OHD9gB5+PBhWa1WeXt7KyoqSkOGDFF0dLTCwsJksdR9SLuvf6R2bFylRWdaqcqwXNWT32bT+SmCbukdqd9MuIEHcQAAjQqB0s3Mnj1bFRUVevnll+1h0pn69Omjzz77TCUlJfr888/10ksvadSoUcrJyVFQUJDTz3c9KioqlJ+fb78H8ujRo7LZbPL19VV0dLRGjhyp6OhotWnTxt7BrU9Lly5Vq8pjmvvwWH2+/az+vSlfpZU18jCbZLUZ9jssf/y6X2xLPT6sg27s0Kre6wUAoK4RKN3MhS7kj4OS1WpVYWGhw2N/+umn8vf316RJkxQQEKAHH3xQQUFBuvnmm3Xo0CGXBcqysrJaT2AXFBTIMAz5+/srOjpa3bt3V3R0tFq3bu3yZQr37dunzZs3a9y4ceoYFa7no8L15KjOWrWnUFsOF2nnsWIVlVfL02xSTKtmim/bXAM7tFK71v4urRsAgLpEoHQzEydO1BtvvKFXX31Vf/zjH2UymTRjxgyVl5c7PPbevXu1ePFiDRo0SEFBQbLZbFqzZo3Cw8PVpUsXJ1R/dUpKSmoFyBMnTkiSmjdvrpiYGPXp00cxMTEKCgpyeYD8sXPnzmnu3Lnq0KGD+vTpY9/u42nR2G5hGtvNORPSAwDQ0JgMw3Dy2h+4lMstvZidnX3RvrNmzdKrr76q8vJyRUdHa/To0Xr77bdVVlamuLg4rVu3Tv369dO+fftUWlqqLl266KabbtL06dMlne9o9u7dW3l5efb33377bTVr1kxvvvmmNm3aJC8vL9XU1KhTp06aMWOGbrjhhjr77GfPnq0VIE+fPi1JatmypaKiohQTE6OoqCi1aNGizmpwlGEY+uyzz5SXl6dHHnnkmu5dBQCgsSNQNiA1VpsOnTynksoaeXuY1a6Vv3y93OtJYcMwdPr06VoBsqioSNL5J9Cjo6Ptc0A2pFD2/fffa968ebr11lvrNHwDANAQccnbzVXWWLVw23H9a1OusvPPqvpHjxSbTFL71v66tXeEbukdqaBm1z/H4vUyDEMnTpyoNYl4aWmpTCaTQkNDdcMNN9gD5OXmx3R3p06d0qJFi9SzZ0/CJAAAl0CH0o1tOHhK//1Fto6erbBPO3MpJpPk42HRi8lddFtiZJ3ed2iz2XT8+PFak4iXl5fLbDYrPDzc3oGMjIy8plVo3JXVatXMmTNVVlamadOmOTQxOgAAjRWB0k19sPagfrdg1xWD5KVMjA/Tm7clyNPinOl0rFarjh49WitAVlVVycPDQxEREfZ7ICMiIuTp2fjmVly1apXWrFmjBx54QBEREa4uBwAAt8Qlbzf0zw25/1mJ5drCpCTN335MFrNJf74t4bo6ldXV1RetQlNTUyNPT09FRUVp4MCBio6OVnh4uNNXoXE3+fn5WrNmjQYPHkyYBADgChp3ImiA9heW6Lfzdlz38YYhZW45qmGdQ5Tas+3P7l9ZWanDhw/b74E8cuSIrFarfHx8FBUVpWHDhtlXoXHFJOKuUllZqfT0dIWHh2vw4MGuLgcAALdGoHQzz2dsl6P3IJgkvTB3u0Z3bSM/r9r/icvLy+0Pz+Tm5urYsWMyDEN+fn6Kjo7WqFGjFB0drZCQkCYVIH9q0aJFKi0t1d13392kvwcAAK4GgdKN7C0o0cZDpx0ex5BUUlGjuVuOKrlLy4tWoZHOrwEeExOjnj17Kjo6Wq1atXKrScRdadeuXcrOztakSZMUHBzs6nIAAHB7BEo3MnfLUVn+s/6zo0wy9LeszdqzYLskKSgoSNHR0erfv7+io6PVokULAuQllJSUaN68eYqLi1NCQoKrywEAoEEgULqR7PwzsjkhTEqSIZMKa7yVeluaYmNiFBgY6JRxGzPDMJSZmSmLxaLk5GQCNwAAV4mbw9zIvsJSh++f/LEqm0mhMZ0Ik1dp06ZNOnDggFJSUhrsJOwAALgCgdKN1FidPyVoldXm9DEbo8LCQi1dulR9+/ZVhw4dXF0OAAANCoHSjQT6On9i8OZ1MGZjU1NTo6+++krBwcEaOXKkq8sBAKDBIVC6kYSIFrI48b69sOY+CvQhUP6clStX6sSJE7rpppsa5Wo/AADUNQKlG+nXLlhWJ62EaTGbdGP7lk4ZqzE7dOiQ1q1bp+HDhys0NNTV5QAA0CARKN3IxO7h8vW0OGUsq83Qnf2inTJWY1VeXq6MjAzFxMQoKSnJ1eUAANBgESjdiL+3h34xqJ0cvehtMZvUv11L9Yxs4YyyGiXDMLRgwQJVVlYqNTWV1XAAAHAAv0XdzGPD2qt9iL8s5uuLlSZJHmaTXpvcnXkUr2Dbtm3avn27JkyYoObNm7u6HAAAGjQCpZvx9rDoo/v6qIWv5zWHSpMMWcwmvXN3b0UGMY/i5Zw9e1YLFixQfHy84uPjXV0OAAANHoHSDUUF+yn90RvVuY3/VR9jNkleqtF/9/LWsM4hdVhdw2az2ZSRkSEfHx+NHz/e1eUAANAoECjdVFSwnzIfG6hnxnS2zyXp8ZOOpYfZJJMkT4tJt/eJ1BvDmuvkjm+Um5vrgoobhnXr1ik3N1epqany8fFxdTkAADQKJsNw0jw1qDOVNVYt31Wob3PPaMfRIhWVV8vH06K40AD1iGihcd1C1cLPSzabTbNmzdLp06c1bdo0lg/8iWPHjumDDz5QUlISE5gDAOBEBMpGpri4WO+8844iIyN1++2382DOf1RXV+u9996Th4eHpk6dKovFOdMzAQAALnk3OoGBgUpJSdHevXu1adMmV5fjNpYuXaqzZ8/qpptuIkwCAOBkBMpGqHPnzurbt6+WLl2qY8eOubocl9u3b582b96sUaNGqXXr1q4uBwCARodA2UhdCE9z5sxRVVWVq8txmXPnzikzM1MdOnRQnz59XF0OAACNEoGykfLw8NDkyZNVUlKiBQsWuLoclzAMQ/PmzZNhGEpJSeF+UgAA6giBshFr2bKlJkyYoC1btmjLli2uLqfeff/999qzZ4+Sk5Pl73/1c3oCAIBrQ6Bs5Hr06KHu3btr/vz5OnXqlKvLqTenTp3S4sWL1bNnT8XFxbm6HAAAGjUCZRMwfvx4BQQE6Msvv1RNTY2ry6lzVqtV6enpCggI0NixY11dDgAAjR6Bsgnw9vbW5MmTVVBQoGXLlrm6nDq3Zs0aHT16VGlpafLy8nJ1OQAANHoEyiYiLCxMo0aN0saNG7V3715Xl1Nn8vPztXbtWg0ZMkQRERGuLgcAgCaBQNmE9OvXT506dVJGRoaKi4tdXY7TVVZWKj09XW3bttWgQYNcXQ4AAE0GgbIJMZlMSklJkYeHh7766ivZbDZXl+RUixYtUmlpqdLS0mQ280cbAID6wm/dJsbPz0833XST8vLytHbtWleX4zQ7d+5Udna2xo0bp+DgYFeXAwBAk0KgbIJiYmI0ePBgrV69Wrm5ua4ux2ElJSXKysrSDTfcoISEBFeXAwBAk0OgbKIGDx6syMhIffXVVyorK3N1OdfNMAxlZGTIYrFo4sSJrIYDAIALECibKLPZrJtuuknV1dWaO3euDMNwdUnXZdOmTTp48KBSUlLk5+fn6nIAAGiSCJRNWPPmzZWSkqI9e/Zo8+bNri7nmhUWFmrp0qXq27evOnTo4OpyAABosgiUTVznzp3Vt29fLVmyRMePH3d1OVetpqZGX331lYKDgzVy5EhXlwMAQJNGoIRGjRql1q1ba86cOaqqqnJ1OVdlxYoVOnHihG666SZ5enq6uhwAAJo0AiXk4eGhm2++WcXFxVq4cKGry/lZhw4d0vr16zVixAiFhoa6uhwAAJo8AiUkSa1atdL48eOVnZ2trVu3urqcyyovL1dGRoZiYmKUlJTk6nIAAIAIlPiRHj16qHv37po/f75Onz7t6nIuYhiG5s+fr8rKSqWmpjJFEAAAboJACTuTyaTx48fL399fc+bMUU1NjatLqmXbtm3asWOHJk6cqObNm7u6HAAA8B8EStTi7e2tm2++WQUFBVq+fLmry7E7e/asFixYoPj4eHXr1s3V5QAAgB8hUOIi4eHhGjVqlDZs2KC9e/e6uhzZbDalp6fLx8dH48ePd3U5AADgJwiUuKR+/fqpY8eOyszMVHFx8TUf/9prr6lLly4ymUz6xz/+ccV9Bw0apNDQ0MveE7lu3Trl5eUpLS1NPj4+11wLAACoWwTKJqy8vFwJCQn2MNelSxclJCSoa9euio+P18qVK1VYWKj09HTZbLZrGvvpp5/WggULrmrftWvXatq0aRdtz8zMVIsWLfTJJ5/oxhtvVHR09DXVAAAA6geBsgnz9fVVdna2PcwtWLBA2dnZ2rFjh5YsWSI/Pz/9+c9/1ieffKKvv/663uvz8/OTv7+/2rRpo2HDhtX7+QEAwNXxcHUBcE/h4eH6y1/+olatWmn69OkKCAhQdHR0vXYJq6qq9Mgjj+ihhx6SxWKpt/MCAIBrQ4cSV/Tss88qJCREK1as0FtvvaXu3bvLy8tL999/v32fu+6664r3QJaVlWnatGnq3bu3goKCNGnSJOXl5V3xvC+++KLuv/9+/eY3v9H8+fMlnb80npCQYD//X/7yFw0cOFBt27ZVcnJyg1qLHACAxoRAiSvy8vLSiBEjVFRUpIqKCj3//PMKDw+vtc+//vWvS94DecFrr72m+++/X999950OHjyow4cPa/To0Zed5/LcuXMKCAjQ888/X2v7oEGDlJ2drfDwcC1ZskShoaH6+uuvtX37du3cuVPPPPOM4x8YAABcMwIlflZUVJQkqUOHDtq9e7eqqqqu6fgRI0aof//+kqSgoCC99NJL2rNnj2bNmnXRvoZhaN68eTIMQ6NGjbrsmC1bttRtt91mH3PMmDFuNW8mAABNCYESP8swDElSRESE+vTpo/LycpWXl1/18d27d6/1um/fvpLOTwf0U99//7327Nmj5ORkNWvW7LJjxsXF1XrdqlUrLnkDAOAiBEr8rNzcXElSTEyMRo8eLbPZrJycnKvuVAYGBtZ6HRwcLEk6cuTIRfsuXrxYvXr1uigw/tRPw6bZbL7mqY0AAIBzEChxRRUVFVq+fLnCw8PVq1cveXh4KDAwUNXV1Vq4cKF9v5KSksuOUVRUVOv1qVOnJElt27a1b7sQBgMCAjRmzBhnfgQAAFDHCJS4ot/97nc6efKkfv/738tsPv/HJSwsTAEBAcrOzta2bdskSbt3777sGBf2uWDTpk2SpAEDBti3XeiCpqWlycvLy6mfAQAA1C0CJS7pyJEjeuyxx/Tqq6/qD3/4g+677z77e8OHD9e2bdvUtm1bZWVlKSsr66LQ+GNz587Vhg0bJElnzpzRb3/7W3Xu3Fn33nuvJCk/P98+jVBEREQdfioAAFAXTMaFJy7Q5JSXlyspKUnHjx9XQUGBbrjhBnl5eamqqkomk0lDhgzRo48+qm7dutU6rri4WI888ohWrVolT09PdenSRb169dKMGTPUo0cP/eY3v9GhQ4c0c+ZM7dq1S2+88Ya+++477dy5U7m5uRo4cKD+9re/KSoqSpWVlerSpYtOnjyp4uJi+/EFBQX63//9X+3atUuRkZEaOnSonn76ad1zzz3auXOn/P391aNHD61cuVL33nuvlixZooKCAvXo0UOvv/66Ro4c6aJvFQCApodACYccPXpUH374ofr27XvRvY82m6H8M2UqqayRj4dZkcF+8vaoveJNZmamdu7cqYcfftj+sA4AAGhYWHoRDgkPD9fIkSO1ZMkStWvXTjHt2mvZrgL9a2Oevss9o/Jqq31fi9mkuNAA3dI7Qjf1itDhg/uUnZ2tSZMmESYBAGjA6FDCYYZh6N///re+yz2tzZYblHemQhaTZL3En6wLizP6eVnU3yNXozsF6dZbb7nsso0AAMD98VAOHGYymVTWNlFfFsco/8z5Cc8vFSYlyfjPP+eqarS8LELf2NrJauPvNAAANGQESjjss815+t2ifZJMMnS1ncbz+83bWqBff7VNNMoBAGi4CJRwyKGT5/SbzO3Xfbwhac73h5W17ZjzigIAAPWKQAmH/CZjmxy9Ym36zzjlVdaf3RcAALgfAiWu2/7CUn1z4JTD90AakorKazRv61HnFAYAAOoVgRLXbe6Wo7KYnfN0tskkffn9YaeMBQAA6heBEtctO/+MbE56QtswpK1Hipw2HgAAqD8ESly3vQWlcmb8K6+y6kRppRNHBAAA9YFAietWbbU5fcyqOhgTAADULQIlrlugr6fzx/Rx/pgAAKBuEShx3XpENJfFiUsmhgZ6q3kdhFQAAFC3CJS4bn1jW8rmpBVuLGaTktq1cspYAACgfhEocd2Su4fJ29M5f4SsNkN39otyylgAAKB+EShx3QJ8PPXgjbFy9Kq3xWxSYnSQEqODnFMYAACoVwRKOOSJ4R0VE+x33ROcmyRZTCa9PrmHTE68HxMAANQfAiUc4uNp0Yf39VGgj8c1h0qTzq+Q87c7eyqmVbO6KRAAANQ5k2E46akKNGmHTp7TL/75rQ4UXt1k5xazSf7eHvrLbQka2jmkzusDAAB1h0AJp6mqsenvqw/og7UHVVJZIw+zSTU/WkrRYjbJZhiymExKSQjX/zfuBrX093ZhxQAAwBkIlHC6imqrFu84rs05p7XtSJGKK2rk7WFWl7BA9YhooQndw9SKIAkAQKNBoAQAAIBDeCgHAAAADiFQAgAAwCEESgAAADiEQAkAAACHECgBAADgEAIlAAAAHEKgBAAAgEMIlAAAAHAIgRIAAAAOIVACAADAIQRKAAAAOIRACQAAAIcQKAEAAOAQAiUAAAAcQqAEAACAQwiUAAAAcAiBEgAAAA4hUAIAAMAhBEoAAAA4hEAJAAAAhxAoAQAA4BACJQAAABxCoAQAAIBDCJQAAABwCIESAAAADiFQAgAAwCEESgAAADiEQAkAAACHECgBAADgEAIlAAAAHEKgBAAAgEMIlAAAAHAIgRIAAAAOIVACAADAIQRKAAAAOIRACQAAAIcQKAEAAOAQAiUAAAAcQqAEAACAQwiUAAAAcAiBEgAAAA4hUAIAAMAhBEoAAAA4hEAJAAAAhxAoAQAA4BACJQAAABxCoAQAAIBDCJQAAABwCIESAAAADiFQAgAAwCEESgAAADiEQAkAAACHECgBAADgEAIlAAAAHEKgBAAAgEMIlAAAAHAIgRIAAAAOIVACAADAIQRKAAAAOIRACQAAAIcQKAEAAOAQAiUAAAAcQqAEAACAQwiUAAAAcAiBEgAAAA4hUAIAAMAhBEoAAAA4hEAJAAAAhxAoAQAA4BACJQAAABxCoAQAAIBDCJQAAABwCIESAAAADvn/AaZdmZN4+0WHAAAAAElFTkSuQmCC", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -752,7 +628,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 18, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -773,7 +649,7 @@ " 7: 0.0}" ] }, - "execution_count": 22, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -784,7 +660,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 19, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -798,18 +674,18 @@ "data": { "text/html": [ "
\n", - "\n", "
\n", " \n", @@ -844,15 +720,15 @@ "Betweenness centrality 0.0 0.0 0.533333 0.6 0.533333 0.0 0.0" ] }, - "execution_count": 23, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcUAAAE1CAYAAACWU/udAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVXX+P/DXXdhRQERARUBBLq64guxqmLmbZopLov6m\nacqmb4Y136msps1pasyZzPqOaSqkkllumaQiILiLG6IiqGGIrLLDXT6/P7zeAUFlv9zL6/l49Hhw\nzzmfc97nVvd1P+eez+dIhBACREREBKm+CyAiImovGIpERERaDEUiIiIthiIREZEWQ5GIiEiLoUhE\nRKTFUCQiItJiKBIREWkxFImIiLQYikRERFoMRSIiIi2GIhERkRZDkYiISIuhSEREpMVQJCIi0mIo\nEhERaTEUiYiItBiKREREWgxFIiIiLYYiERGRFkORiIhIi6FIRESkxVAkIiLSYigSERFpMRSJiFrZ\njh074OPjA4lEgujo6DrrS0pKYGNjA1dXV6xYsUIPFdJ9DEUiolY2ffp0rFq1ChYWFli9enWd9d9+\n+y2USiXmz5+Pd999Vw8V0n0MRSKiNjJ79mycPHkSJ06c0C0TQiA2NhYjRozQY2V0H0ORiKiN9OrV\nC1OnTsXnn3+uW7Z//36EhYVBIpHolpWUlGDx4sUIDAzEqFGjsHLlSgghAABJSUkIDAzEmDFjEBoa\nit27d+vaRUVFwc/PD2PGjMGYMWNw4MABAIBSqURkZCT8/f3h7++P1157DUqlEunp6fDw8EC3bt3w\nwQcfAAD++te/4vXXXwcArFu3Do6Ojli2bFmrvzfthiAiolZ36NAhsWLFChEXFydMTU1Fdna2EEKI\n8PBwUVJSIkJCQsRf//pXIYQQixYtEs8995wQQojy8nIxcOBAsXHjRiGEECNGjBBHjx4VQgiRkpKi\n2+7IkSPC0dFR3LlzRwghRExMjG7de++9J8aOHStUKpVQqVRi3Lhx4r333hNCCBEbGyv69u2rq3PY\nsGFiwIAButezZs1qnTeknWJPkYioDYWEhMDb2xtr167FtWvX4OTkBGtra916jUaDqKgoLFq0CABg\nYWGBZ599FuvXrwcAdOnSBZs2bUJOTg4GDx6MNWvWAADWr1+PCRMmwMHBAQAwbdo0vPDCCwCAjRs3\nYsGCBZDJZJDJZFiwYIFuf8HBwcjOzkZ6ejpu3bqFoUOH4sqVK/jtt9+QkZGB3r17t9l70x4wFImI\n2tjSpUvx1VdfYdWqVbrgui83NxdVVVW6cAMABwcHZGVlAQCio6NhaWmJoUOHYvz48bhy5QoAICsr\nq1YbuVwOX1/fetfV3J+pqSnCwsKwa9cu7N27F7Nnz0ZQUBD27NmD3bt3Y+LEia3zJrRTDEUiojY2\nd+5cKJVKXL9+HR4eHrXWOTg4wMzMDLm5ubplubm56NmzJwCgqqoKf//733Hjxg0EBwdj6tSpAAAX\nF5dabVQqFc6ePVvvupr7A4BJkyZh9+7dSEpKQlBQECZOnIi9e/ciOTkZo0aNavk3oB1jKBIRtTFz\nc3N88803eP/99+usk0qlWLBgAb799lsAQEVFBbZt24aIiAgAwMyZM1FeXg65XI6AgACo1WoAwMKF\nC7F3717k5eUBALZu3YoNGzbo1m3evBlqtRoajQabN2/W7Q8AJkyYgCNHjkAqlcLExASTJk3CgQMH\nYGFhAZlM1ppvRbsj13cBRETGLjY2FpGRkSgqKoKVlRUiIyMxZcoU3foFCxYgJSUFmZmZsLa2xmef\nfYZXXnkFgYGBUKlUCA8Px7x58wAAU6dOxRNPPAEzMzOUl5dj48aNAAB/f3/84x//wOTJk2FmZoau\nXbvim2++AQBERkbi7t27CAoK0m37xhtv6I7v6OiIQYMGISQkBADg6emJHj16ICwsrE3en/ZEIoT2\nPl8iIqIOjpdPiYiItBiKREREWgxFIiIiLYYiERGRFkORiIhIi6FIRESkxVAkIiLSYigSERkoIQSu\n5Zbiwq27UKo1+i7HKHBGGyIiA3QlpwR/3HwK2XcrIZUCMokEf5s6AFN9eui7NIPGGW2IiAxMebUK\n/isP4m65EjU/wC1MpNi82BfDXLvorTZDx8unREQGZs/5bFSrNHiwR1Op1OCLuGt6qclYMBSJiAzM\nzfxylFer6ywXADLzytq+ICPCUCQiMjBeTp1gZVr3kU5SCTCge2c9VGQ8GIpERAZmXD8nWMgByQMX\nUM3kMvwp1OMhraghGIpERAYm+9ZvmGh6CSN6dYaJTAK5FOhqJrDuueHwdmZPsTk4JIOIyIDk5eUh\nJiYGC2ZOR58+fVBapUJuQRFiNq2Hn/sEfZdn8NhTJCIyEKWlpYiKisITTzyBPn36AACszeRwd+4K\nW1sb3Lx5U88VGj6GIhGRAaiurkZ0dDQGDx4MHx+fOuu9vLyQlpamh8qMC0ORiKid02g02L59Oxwd\nHRESElLvNgqFApcvXwbnY2kehiIRUTsmhMDevXuhVqsxadIkSCSSerfr1q0bJBIJcnJy2rhC48JQ\nJCJqx44cOYKsrCw888wzkMnqjk28TyKR8BJqC2AoEhG1U+fPn8fJkycRHh4OMzOzx26vUCgYis3E\nUCQiaoeuX7+Offv2Yc6cOejcuWFjD11cXFBSUoLCwsJWrs54MRSJiNqZ3NxcfP/995g5cyYcHR0b\n3E4qlcLLywuXL19uxeqMG0ORiKgdKSkpQVRUFMLCwuDu7t7o9ryE2jwMRSKiduL+WMShQ4di8ODB\nTdqHu7s7bt++jfLy8haurmNgKBIRtQMajQYxMTFwdnZGUFBQk/djYmKC3r178xJqEzEUiYj0TAiB\n3bt3AwAmTpz40LGIDXV/ID81HkORiEjPEhISkJ2djZkzZz5yLGJDeXp6IjMzE9XV1S1QXcfCUCQi\n0qNz587h9OnTDR6L2BAWFhbo2bMnrl271iL760gYikREepKZmYn9+/dj7ty56NSpU4vum0Mzmoah\nSESkB3fu3NGNRXRwcGjx/Xt5eeHKlSvQaDQtvm9jxlAkImpjxcXFiI6Oxvjx4+Hm5tYqx7CxsYGd\nnR1u3LjRKvs3VgxFIqI2VFVVhejoaAwfPhwDBw5s1WNxgvDGYygSEbURtVqNmJgY9OzZEwEBAa1+\nPG9vb6SlpfEZi43AUCQiagP3xyJKpVJMmDCh2WMRG6Jr166Qy+W4fft2qx/LWDAUiYjaQHx8PHJy\ncjBz5kxIpW3z0SuRSDgXaiMxFImIWllKSgpSUlIQHh4OU1PTNj02Q7FxGIpERK3o2rVr+PXXXxEe\nHg5ra+s2P36PHj1QVlaGgoKCNj+2IWIoEhG1kpycHPzwww945plnWmUsYkPcf8Yie4sNw1AkImoF\n98ciPvXUU3B1ddVrLZwgvOEYikRELayyshJRUVEYOXIkBgwYoO9y4O7ujpycHJSVlem7lHaPoUhE\n1ILUajW2bdsGV1dX+Pv767scAIBcLoeHhwd7iw3AUCQiaiFCCOzatQsmJiYYP358m4xFbChOEN4w\nDEUiohYSFxeH3NxczJgxo83GIjaUp6cnrl+/zmcsPkb7+rdGRGSgTp8+jfPnz+tlLGJDmJubw8XF\nBenp6foupV1jKBIRNVN6ejoOHjyI8PBwWFlZ6buch+LQjMdjKBIRNUN2djZ27NiBWbNmoWvXrvou\n55EUCgWuXr0KtVqt71LaLYYiEVET3b17F9999x0mTpyIXr166bucx+rUqRPs7e35jMVHYCgSETXB\n/bGIo0aNQr9+/fRdToNxLtRHYygSETWSSqXC1q1b4e7uDj8/P32XA+Be2IWGhiI0NBROTk5wdHTU\nvVYoFLW2q/mMxZ07d+raEkORiNqpHTt2wMfHByYmJkhJSdEtv3nzJkJDQ2Fra4upU6c2ef/Hjx+H\nj48P3NzcGtVOCIGdO3fC3NwcTz75ZLsZi+jk5IS4uDjExcVh/PjxCAsL0712cnLSbde1a1eYmpoi\nOzsbADBlyhS88cYb+iq73WEoElG7NH36dKxatQpCCCxatAgqlQoA0KtXL8TFxcHHxwc//fRTk/c/\ncuRIrFq1qtHtDh48iMLCQjz99NPtaiziRx991OB1CoUCly5dau2SDFL7+TdKRFSPxYsX4/r161i5\ncqW+S8GpU6eQmpqK2bNnw8TERN/l1DJq1KhHrrt69SrGjx+P4OBgvPHGG/jhhx/q3XbdunWws7PD\nqFGj8NFHH6FTp07w9vZGYmIicnNzMXToULi7u+P8+fMoKSnB4sWLERgYiFGjRmHlypW6y7KGiqFI\nRO2as7Mz/vWvf+Fvf/sbUlNT66y/ePEiJk6ciLCwMIwaNQpff/01AKC6uhqhoaGQSCT46KOPMG7c\nOPTv3x8ff/zxQ49VWlqKRYsWITAwEP7+/li7dq1u3ZdffokZM2YgJiYG06ZNQ3JycsufbCtRqVSY\nPHkyZs+ejfj4eHz33XdYt24dTp48WWdbExMTLFu2DMnJyfjLX/6CiIgIBAUFITAwEA4ODpg7dy6+\n+eYbDBw4EK+88grUajUSExNx8OBBREVFYfPmzXo4wxYkiIjaqUOHDokVK1YIIYSYNm2a8PX1FWq1\nWgghREhIiBBCiKNHj4qjR48KIYSorq4WCoVCXLlyRbcPAGL58uVCCCHy8/OFk5OT+OWXX3T7d3V1\n1W27ZMkSsWDBAiGEEMXFxcLd3V0kJCSIW7duCSsrK3Hq1CkhhBA//vijrq726LnnnhNz587VvU5M\nTBQmJiZCqVTqlvn4+IjFixcLIYRYv369CAkJEZs3bxZLliypta8TJ04IW1tbUVFRIYQQYuLEiUKj\n0Qi1Wi3MzMzE4cOHddu+//77YvTo0a15aq2OPUUiMghr165Feno6/vnPf9Za7unpiXXr1sHf3x9h\nYWHIzs7GmTNnam0ze/ZsAECXLl0wYcIEbNmypc7+NRoNNm3ahEWLFgG4N6Zv8uTJ+M9//oMtW7ag\nW7du2Lt3L4qKijB58mSDujklKysLdnZ2kMvlumU9e/bE1atXda/Pnz+PqKgo/PLLLygpKdEtHz58\nOLp3746dO3fi7NmzGDBgACQSCXJzc1FVVVXr4ckODg7Iyspqm5NqJQxFIjIIjo6O+OKLL/DWW2/V\nmr/z1VdfxZ07d5CQkKC7Aae8vLxWWzs7O93f9vb2ujsva7r/Ib98+XLdUIZDhw4hLS0NAQEBOHz4\nMG7dugWFQoFnn3223n20Vy4uLigsLNTdrAQAFRUVMDU1RWlpKQCgT58+2Lt3L4YMGYLIyMha7efP\nn4+NGzdi06ZNmD9/PoB7AWhmZobc3Fzddrm5uejZs2cbnFHrYSgSkcF49tlnMXHiRCxevFi37Pjx\n43jiiScgk8kAAEqlsk67goIC3d95eXlwdnaus839D/l///vfiIuLw6+//oqXX34Zy5cvh6+vL+Ry\nOb788ktkZmaiW7duWLhwYcufYCvx9fWFh4cHoqOjAQAZGRk4fvw4pk2bpnuclKWlJYB7PfKYmBgc\nPHhQ137evHmIjY3F+fPn0b9/fwCAVCrFggUL8O233wK4F7Lbtm1DREREW55ai2MoEpFBWbNmTa3h\nBB4eHjh27BiAe/OQnjt3rk6b77//HgCQn5+PvXv36i6n1nT/Q37Tpk0QQuCnn37Cvn37dJcDJ02a\nBLVaDQsLC4wcObLdzh+6fPly7Nu3D7GxsVi+fDkAQCaTYdeuXfjuu+8QHByMefPmYevWrQgJCcH2\n7dvx8ccfIyUlBcuXL8fRo0dhamqK2bNn44MPPgBw71JrUFAQxo8fX+tYn332GSQSCQIDAzF69GiE\nh4dj3rx5bX7OLUrfP2oSEdXnhx9+EIMHDxaurq7i3XffrbVu+/btIjQ0VAghxKVLl8SwYcOEn5+f\niIiIEAMHDhReXl7iwIEDQoh7N9qsWrVKjBs3Tnh7e4sPP/xQCCHEsWPHxODBg4WZmZmYOXOmEEKI\nkpISsXjxYtGvXz/Rt29fsXTpUqFSqYQQQvzP//yPGDVqlAgJCRGBgYEiJSWlrd6KVlNZWSk+/PBD\nUVlZ+dht58yZI7Kzs9ugKv2SCGHgg0qIiB5BIpEgMzOzwTPXnDhxAseOHcOiRYt0lxSNWVRUFHx8\nfHSXRWsqKChAcnIy/Pz88Pzzz+t63MZM/vhNiIg6hsuXLyM+Ph4REREdIhCB/86FWl8oVlVV4YUX\nXoCjoyPWrFmjh+raHn9TJCKjdH/wPnBvSMatW7ceuf2tW7ewc+dOzJ49G126dGmDCtsHLy8vpKen\n1/sbqbOzM27evIkTJ05gxIgReqiu7bGnSERGydTUFHFxcbrXSrUGGo2AVFp3Au/CwkJs2bIFU6ZM\nQY8ePdqwSv2ztrZG165dkZmZCQ8PD32Xo3cMRSIySkIIJGfk46v4DCRdy4NKIwAB2FiYYM7IXpjv\n54ruthYoLy9HVFQUgoKC4OXlpe+y9eL+JVSGIsAbbYjI6Jy/dRfPbzqJogolyqvrXhY0lUkhkQCh\nfR0wtOoc3Hv1xLhx4/RQafuQn5+PDRs24NVXX203j8LSF/YUicioHM3IR8SGE6hQPnwcYbVaAwA4\ncOk2zpk7IHbe6LYqr12yt7eHhYUFbt26ZfAz0jQXb7QhIqORkVuKRd8+OhBrUgkJ8pVyLNl00uAf\nedRcti6e+GTvBXy49xKSM/I77PvBniIRGY1/HriCygYG4n3VKg3OZd3FqRuFGO7Wce46rWlDUiY+\nPKaESq2BJjMDm4/dwKje9vhq3jDIZR2r79SxzpaIjNbdCiX2X8yBpgkdnAqlGl8lZLR8UQbgt4Jy\nfPRzGqrVAhrc+z2xvFqNpGv52H7asJ940RTsKRKRUdh+KgtNvUdECCD+Si4Ky6phZ2XasoW1EiEE\nNBoNNBoN1Gq17u8HXz9u3dbzBVBrNHX2X6FUI+rYTTw7opcezk5/GIpEZBQu/H4Xlcq6H+4NJZcC\nxy5eg5eDeaPD5XHbNje46lsnhIBUKoVUKoVMJqv374as+y3HDGqNCYC63yga+tusMWEoEpFRKK1S\nPX6jR1ApVUg6cQo51urHhsvDlpmamjY5nBq7TiKRtMjwCcVvRTjyf0frBKCZXIpJA+s+YsvYMRSJ\nyCjYWpg0q72JqSmemTYZA3vYtFBFhmFwTxuE9XNEbGqOLhjN5FI4dDLDwgB3PVfX9hiKRGQURrrb\nY/f57HoH6zeESqNB765WLVxV+yeRSLBqlg92nv0dUcdvoLxajaf6O2GBvxs6mzfvi4Yh4ow2RGQU\nikrK4LsyDlVNyESZBJg5zAUrZwxq+cLIoLCnSEQGraKiAkePHsWJEycwsqs3knNl9+Y5bQQTuRSL\nAzvepUKqi6FIRAapZhh6eXlhyZIl0Jha4clV8Sgoq0ZDY9HCRIopg3ugr2OnVq2XDAMvnxKRQamo\nqEBycjJOnjwJLy8vBAcHw87OTrf+Wm4pZq5NRnGlEurH9BgtTGQI9uyKNXOHQVbPI6Wo42EoEpFB\nqBmGCoUCQUFBtcKwptt3KxH5/Vkcu14AiP9OAH6flakMEokEfwjqjZdGe9T7jEXqmBiKRNSulZeX\nIzk5GadOnXpsGD4o+24FNiXfwM8Xb6OkUgm5VApnG3Ms9HfD+AFOMJPLWrl6MjQMRSJql2qGobe3\nN4KCgmBra6vvssjIMRSJqF0pLy9HUlISTp8+zTCkNsdQJKJ2oaysDMnJyTh9+jT69euHwMBAhiG1\nOYYiEelVWVmZrmfYv39/BAUFwcamY021Ru0HQ5GI9KJmGA4YMACBgYEMQ9I7hiIRtSmGIbVnDEUi\nahNlZWU4cuQIzpw5g4EDByIwMBCdO3fWd1lEtTAUiahVlZaWIikpiWFIBoGhSEStorS0FEeOHEFK\nSgoGDRqEgIAAhiG1ewxFImpRD4ZhYGAgOnXiZNtkGBiKRNQiSkpKcOTIEZw9exaDBw9GQEAAw5AM\nDkORiJqFYUjGhKFIRE1SUlKCxMREnDt3jmFIRoOhSESNUlxcjCNHjuDcuXPw8fFBQEAArK2t9V0W\nUYtgKBK1gNjYWERGRuLs2bMIDg6GEALZ2dnw8/PD2rVrYWVlpe8Sm624uBiJiYk4f/48w5CMFkOR\nqIXExcVh9OjRUCqVkMvlKCwshEKhwAsvvIB33nlH3+U1Wc0wHDJkCPz9/RmGZLTk+i6AyFjZ2dkh\nKCgIJ0+e1HcpTXL37l0kJibiwoULGDJkCF588UWGIRk9qb4LIDJmKpUKPXv2BABcvXoV48ePR3Bw\nMPz9/fHzzz8DAI4fPw4fHx+4ubnhk08+QUBAAEaOHInr16/jj3/8IwYNGoTnnnuu1n43btwIPz8/\nhISEIDw8HMXFxS1W8927d7Fnzx589dVXMDU1xUsvvYRx48YxEKljEETUIg4dOiQACKVSKYQQ4saN\nG2LKlCkiKytLKJVK4eXlJdavXy+EEOLq1auiU6dOIj09XdfWxMREJCcnCyGEmDp1qhg2bJgoKioS\nlZWVwsHBQbcuMTFR2Nvbizt37gghhHjttdfE4sWLm11/UVGR2LVrl1i5cqXYv3+/KC0tbfY+iQwN\ne4pELWzs2LEYMWIEFAoFwsLC0KNHDxw7dgwZGRmYN28eAMDDwwO+vr6IiorStevUqRP8/PwAAAMG\nDICrqytsbGxgZmaGvn37IiMjAwCwYcMGTJ48GQ4ODgCA8PBwREVFQTTx9oCioiLs3r0bX331FczN\nzfHiiy8iLCzMKG4OImos/qZI1MIOHDgAuVyO119/HZGRkZg1axaysrJgZ2cHufy//8s5ODggKytL\n97rmGD+5XF7ndXV1NQAgKysLqampCA0NBXDvEq2joyPy8/PRtWvXBtdZVFSExMREpKamYujQoXjp\npZdgaWnZ1NMmMgoMRaJWsmLFCqxfvx5fffUVxo4di8LCQqhUKl0w5ubmQqFQNHq/Li4u6N27N774\n4gvdsry8vAYHYlFRERISEnDp0iUMGzaMYUhUAy+fErUSS0tL/PnPf8aXX36JYcOGwcPDA9HR0QCA\njIwMHDt2DHPnzm30fhcuXIg9e/agsLAQAHD58mVMnjz5se2Kioqwa9cufP3117C0tMRLL72EsWPH\nMhCJauA4RaIW8ODg/S+//BL9+vXD3bt30atXL3h6euLTTz/Fxx9/jLKyMqhUKrz11lt46qmnkJqa\nivDwcKSlpeG5557DxIkT8fLLL6OyshIrVqxAbm4uPvvsMzg5OWHNmjUYM2YMNm/ejH//+9+wtLSE\nqakpVq9ejb59+9ZbW2FhIRISEpCWlobhw4fDz8+PQUj0EAxFIiP1YBiOGjUKFhYW+i6LqF1jKBIZ\nmcLCQsTHx+Py5csYMWIE/Pz8GIZEDcRQJDISBQUFSEhIYBgSNQNDkUgPVGoNfk27g2+TruO3wnJU\nqzSwNpNjpHsXLA5wh6djwx/BVDMMR44cCV9fX4YhURMxFInakEYjsDb+Gr6Oz4BSrUFZtbrWepkU\nMJFK4elojRWT+mO4W5eH7qugoADx8fG4cuUKRo4cCT8/P5ibm7f2KRAZNYYiURupVmnwQtQpJF3L\nR4VS/djtzU2k+GTGYEwe3L3W8vz8fCQkJDAMiVoBQ5GoDQgh8NJ3Z3AgLQeVSk2D25mbSPH1vOEI\n7uuA/Px8xMfHIz09XXeZlGFI1LIYikRtIDY1B3/eegbl1Y/vIT7I2kyGFQMrcD2DYUjU2jjNG1Eb\nWBt/rUmBCABVVdXIVHXGy0uXMgyJWhmneSNqZZl5Zbhw626T2yshQ1yOKQORqA0wFIla2YFLOWju\njxRX75SgsKy6ZQoioodiKBK1srzSKlSrG35zTX1MZVIUljMUiVobQ5GIiEiLoUjUyrpam8FU1rz/\n1arVGthZmrZQRUT0MAxFolY21tsREknz9uHZrRPsrBiKRK2NoUjUymykVXA2VzW5vZWpDH8M6dOC\nFRHRw3CcIlErqfkIpymeQ/GfCyqUN2B6twdJJRKM7+/UChUS0YMYikQt7MHnGS7VDrq/qjyNQ5fv\nNHqat3+HD4WpnBd1iNoCp3kjaiFFRUWIj49/6JPuq1UaPL/5JI5mFDR4QvCVTw/CVJ8erVk2EdXA\nUCRqpqKiIiQkJODSpUsYNmwYRo0aBUtLy3q31WgE1hxOx/8lZEJV36OjJICJXIo+DtZ4Z3J/jHjE\no6OIqOUxFIma6O7du0hISMDFixcxbNgw+Pv7PzQMH6RUa3DgUg7WJ11HVmEFqlRqWJvJ4etuj8WB\n7ujbiIcME1HLYSgSNVJxcbEuDIcOHdqoMCSi9o2hSNRAxcXFSExMxPnz53VhaGVlpe+yiKgFMRSJ\nHqOkpASJiYk4d+4chgwZgoCAAIYhkZFiKBI9RM0w9PHxQUBAAKytrfVdFhG1IoYi0QNKS0uRmJiI\ns2fPYvDgwQgMDGQYEnUQDEUirdLSUhw5cgQpKSkYNGgQAgMD0akT7wIl6kgYitThlZWV4ciRIzhz\n5gwGDhyIwMBAdO7cWd9lEZEeMBSpwyorK0NSUhJOnz7NMCQiAAxF6oDKy8uRlJSEU6dOYcCAAQgM\nDISNjY2+yyKidoChSB1GeXk5kpOTcerUKfTr1w9BQUEMQyKqhaFIRq+iokLXM/T29kZQUBBsbW31\nXRYRtUMMRTJaFRUVSE5OxsmTJ6FQKBAUFAQ7Ozt9l0VE7RhDkYxOZWUlkpOTceLECXh5eSE4OJhh\nSEQNwieXGrkdO3bAx8cHEokE0dHRddaXlJTAxsYGrq6uWLFiBT766CP87W9/AwC89957cHJywjvv\nvNPGVTdNZWUl4uLisHr1ahQXF2PJkiWYOnUqA5GIGkyu7wKodU2fPh12dnaYMGECVq9ejfDw8Frr\nv/32WyiVSsyfPx/vvvsuqqqqcP/iwdtvv42MjAx9lN0olZWVOHbsGI4fPw5PT08sWbIEXbrwOYRE\n1HgG2VOMjY3V9X5CQkIQHByMESNG4O9//zuUSuVj2x8/fhw+Pj5wc3Ord/3XX38NNzc3LFy4ULds\nwoQJiIuLa5kT0IPZs2fj5MmTOHHihG6ZEAKxsbEYMWKEbpmZmRnMzc31UWKjVVVVIT4+Hv/6179Q\nUFCARYu6FjwpAAATIklEQVQWYdq0aQxEImoygwzFsLAwrFq1CgBw4MABxMfHY9++fTh48CCmTZsG\njUbzyPYjR47Uta/PH/7wh1qBCABbtmxBSEhIs2vXl169emHq1Kn4/PPPdcv279+PsLAwSCQSAPe+\nbCgUCoSGhj50P3/6058wduxYhIaGYs6cOSguLgbw3y8Ss2fPxvPPP4+hQ4diwoQJqKysbPFzqaqq\nQkJCAlavXo28vDxERERg+vTpsLe3b/FjEVHHYpChWB97e3ts2LABhw4dwubNm1t8/507d9aFh6F6\n+eWXERMTg9u3bwMANm7cWCv8w8LC8MYbbzxyHwqFAgcOHEBcXBy8vLzwySefAPjvF4mEhAR8/PHH\nOHnyJG7evIkdO3a0WP3V1dVITEzE6tWrcefOHURERODpp59G165dW+wYRNSxGU0oAoCTkxOefPJJ\nxMTEwM/PTxdimZmZD71c+v777yM0NBSDBg3CL7/8Uu9+P/nkk1o3nPzpT3+Cra0t3nrrLTzzzDPo\n27cv/vd//7e1TqvFhISEwNvbG2vXrsW1a9fg5OTU6Kc/mJubIygoCCEhIdiyZQtOnTpVa72vry/s\n7OwglUoxYMAAZGZmNrvummGYk5ODhQsXYsaMGQxDImpxRnejjZubG3755Rfs3bsX7u7uAAB3d3es\nWrWqziXRW7duYejQoXjzzTeRlJSEJ598EtevX69zGS4yMhIXL17UvV6zZg1SU1Nx+vRp7N69G7dv\n30avXr3w0ksvoXv37q1+js2xdOlSvPnmm8jPz8ef//znRrWNi4vDsmXLcP78ebi5uWHDhg3YsGFD\nrW1qzh1qbm6O6urqJtdaXV2NEydOIDk5GW5ubliwYAG6devW5P0RET2OUfUUATz298SaLC0tMWHC\nBACAv78/unXrhj179jS4/ZNPPgmJRAJnZ2fY29vj+vXrjS23zc2dOxdKpRLXr1+Hh4dHo9oeP34c\nXl5euh53Q25qagqlUomkpCSsXr0av//+OxYsWICZM2cyEImo1RldT7ExH/YPjl+zt7dHdnZ2g4/V\nkr2itmJubo5vvvkGrq6ujW7r4eGB9PR05Ofnw97e/qGXm5tKqVTi5MmTSEpKgouLC+bPnw9HR8cW\nPQYR0aMYVShmZ2dj//79WLt2LUxNTQHcu1PRzMwMRUVFdbYvLCys9TovLw/Ozs5tUmtbiY2NRWRk\nJIqKimBlZYXIyEhMmTJFt37BggVISUlBZmYmzMzMEBUVhdu3b2Pp0qVwcHDAvn37YG5uDhcXF0RE\nRGDv3r3w9fXFoEGDYG1tjZSUFCxfvhw+Pj7YsGEDKisr8eWXX0Imk+na9u3bt874yJqUSiVOnTqF\nI0eOoGfPnpg7dy6cnJza4u0hIqrFaEKxoKAAERERCA0Nxfz586HRaGBpaYkLFy5g2LBh+Pnnn+u0\nKSkpwZ49ezBx4kQkJiYiNzcXEydO1EP1rScsLAwpKSkPXb9x48Zar996661ar99+++1ar//zn/88\ndF8PBt8f/vCHR9amUql0Ydi9e3eEh4cb3ZcSIjIsBhmK93s/ADB27FgIIVBeXo6ZM2di2bJlkEql\nkEqlWLlyJZ599ln0798fAQEBuH37Np555hlERkbilVdeQa9evZCQkICVK1eisLAQMTExsLe3x9df\nf63r9XzwwQcwNTWt1WO6fPkyUlJS8PHHH8PLywubNm3C7du38corryA6Ohr9+vXT8zvUvqlUKpw+\nfRqJiYlwdnbGnDlzGIZE1C5wQnBqMyqVCmfOnEFiYiKcnJwQEhLS7u/WJaKOhaFIra5mGDo6OiIk\nJAQ9evTQd1lERHUwFKleuSVV2HXud2QVlKNKrUE3azOEeHWDj0vDH86rVqt1Yejg4ICQkBD07Nmz\nFasmImoehiLVcva3Ivzr0FUkXM0DAFSp7o37lEoAM7kMzjbmeCG0D2YM6QmptP5p79RqNVJSUpCQ\nkICuXbsiJCQELi4ubXYORERNxVAknS3Hb+Kd3RdRpdTgUf9RWJjI4OveBWvnDYO5iUy3XK1W4+zZ\ns0hISECXLl0QGhrKMCQig8JQJADAj2ey8MaO86hUNmxGIDO5FL697bH+uRGA0ODcuXOIj4+HnZ0d\nQkND0atXr1aumIio5TEUCbklVQj6+0FUqho+RR4AWJhI8dygTrD8/TRsbGwQGhrapJlyiIjaC4Mc\np0gtK/r4zUdeLn2YCqUGW84VYEfEZN3k60REhszoJgSnxlFrBNYnZepuqGmsaokp8iQ2LVwVEZF+\ndMieokqtwbojmfg26TpKKlUY4dYFy8d7QeHU+fGNjcyl28VQNjEQAaBCqcb+i7cxwq1LC1ZFRKQf\nHTIUX95yBgcv39HdVHLo8h0czczHjhcC4OXUSc/VNY4QAhqNBmq1GiqVCmq1WvdPzdcPW3fm93KI\nRjxuq+7xgTslVS14RkRE+tPhQvFKTkmtQAQAgXs9nk/2p+E/C0bUaXM/eJoSOg3d9sH9N6a9VCqF\nTCaDTCaDXC7X/f3g6/rWFZVIIUTzrqLLZfWPVyQiMjQdLhRPXC+od7kQQEJaNj7//PNGBU9jQqjm\nclNT08e2b+ixJJKmh1JmXhm+vhIPqJvWW5RLJXCxs2zy8YmI2pMOF4pdrEwhl0oB1A2Brp0tsWDB\ngnpDqDnB0565d7VCD1sLXMsta1J7mVSC6UM4jykRGYcOd/fpaK9uqG92MgsTGZYE9YGdnR06d+4M\nKysrmJmZQS6XG20g3vdCiAesTGWP37AeA3vYwNXeqoUrIiLSjw4XiuYmMmyIGInO5nJYmclhJgNM\nJALj+jtiwSg3fZenF5MGOcPMpPGhaGEiw5/HerZCRURE+tFhZ7SpUqlx+EoucgpLcTFuJ95//WXI\n5R3uarJOanYxnl6TqJ3V5vE9YwsTGf4U2gdLxzAUich4dLie4n1mchnG9XPC/AAPKHp0wbVr1/Rd\nkl51VhdjimU6bMzlsHxEr9FEJoGZXIpl4/oyEInI6HTcrlEN3t7eSEtLg5eXl75L0YvCwkJs3boV\nS2ZMxgrX3vgx5RbWHr6G/LJqyCQS3RRwGiEwa7gLFo5yg1tX/o5IRMaHoQhAoVDg8OHDUKvVkMma\ndsOJoaqsrER0dDSCgoLQt29fAMBcX1eEj+yFS7dLkHO3EtVqDWwtTTC4p22tR0URERkbhiIAGxsb\ndOnSBTdu3EDv3r31XU6bUavV2LZtG/r06YORI0fWWieRSNDPuTP6OXe8qe+IqOPqsL8pPsjb2xuX\nLl3SdxltRgiB3bt3w8TEBOPGjdN3OURE7QJDUUuhUCAtLQ0d5WbcxMRE5OTkYMaMGZBK+Z8BERHA\nUNSxt7eHpaUlfvvtN32X0uouXLiAkydPYs6cOTA1NdV3OURE7QZDsYaOcAn1t99+w88//4w5c+ag\nUyfDeiIIEVFrYyjWcD8UjfUSakFBAbZt24Zp06bByclJ3+UQEbU7DMUaunXrBplMhtu3b+u7lBZX\nUVGB6OhoBAcHw9OTg+6JiOrDUKxBIpHA29sbqamp+i6lRd0feuHp6YkRI+o+L5KIiO5hKD7g/uw2\nxkIIgV27dsHc3BxhYWH6LoeIqF1jKD6ge/fuqK6uRm5urr5LaREJCQnIzc3F9OnTOfSCiOgx+Cn5\nAIlEAoVCYRR3oZ4/fx6nT5/m0AsiogZiKNajX79+Bh+KN2/exL59+xAeHg5ra2t9l0NEZBAYivVw\ncXFBSUkJCgsL9V1Kk+Tn52Pbtm14+umn0a1bN32XQ0RkMBiK9ZBKpfDy8jLI3mJ5eTmio6MxevRo\n9OnTR9/lEBEZFIbiQxji7DYqlQpbt26FQqHAsGHD9F0OEZHBYSg+hLu7O/Ly8lBSUqLvUhpECIGd\nO3fCysoKTzzxhL7LISIySAzFh5DJZOjbt6/B9BYPHz6MgoICTJ8+HRKJRN/lEBEZJIbiIxjKQP6z\nZ8/i7NmzmD17NkxMTPRdDhGRwWIoPkKfPn3w+++/o7y8XN+lPNSNGzewf/9+Dr0gImoBDMVHMDEx\nQZ8+fXD58mV9l1KvvLw8xMTEYMaMGXBwcNB3OUREBo+h+Bjt9S7U+0MvxowZg969e+u7HCIio8BQ\nfAxPT0/cuHEDlZWV+i5FR6VSYcuWLejfvz+GDh2q73KIiIwGQ/ExzMzM4OrqiqtXr+q7FAD3hl78\n9NNP6NSpE8aMGaPvcoiIjApDsQHa0yXUQ4cOoaioCNOmTePQCyKiFsZQbAAvLy9kZGRAqVTqtY6U\nlBRcuHCBQy+IiFoJQ7EBLC0t0b17d6Snp+uthszMTPz666+YM2cOrKys9FYHEZExYyg2kD4H8ufl\n5WH79u0cekFE1MoYig2kUChw5coVqNXqNj1uWVkZoqOj8cQTT8Dd3b1Nj01E1NEwFBuoU6dOcHBw\nQGZmZpsdU6lUYsuWLRgwYAB8fHza7LhERB0VQ7ERFAoFUlNT2+RY94de2NraYvTo0W1yTCKijo6h\n2Aje3t64fPkyNBpNqx/r4MGDKC4uxtSpUzn0goiojTAU6xEbGwsfHx9IJBKEhIQgMDAQ/fv3x6ZN\nm9C5c2fcvHmz0fscNGhQg+9ePX36NFJTUzF79mzI5fJGH4uIiJpGIoQQ+i6iPYqLi8Po0aOhVCoh\nl8tx8eJFDBkyBB999BH69euHp556qlH7Kyoqgq2t7WO3y8jIwA8//ICIiAjY29s3tXwiImoC9hQb\nqH///hg4cCDS09Nx6dIlNPa7REMC8c6dO9i+fTtmzpzJQCQi0gOGYiMolUrY2Njg4MGDCAwMxJgx\nYzBp0iT8/vvvAICdO3dCoVAgJCQEkZGR8PPzg7u7O5YtWwZbW1ts2LABAJCWloYxY8ZgzJgxCAoK\nwoYNG1BaWorvvvsO48aNg5ubm/5OkoioA2MoNlBcXBxSU1Mxffp0uLu7Y8WKFTh48CBmzpyJ119/\nHQAwZcoUvPHGGzhx4gQWL16Mo0ePYubMmfj0009rDal4++238fzzz+PgwYOIiYnBli1bsGXLFgwe\nPBiDBw/W1ykSEXV4vIvjMcaOHQu1Wg2ZTIaYmBj4+vri4sWLePHFF+Hs7Izi4mJUV1fXauPl5QWF\nQgEA+OSTT+rss0uXLvj+++/h6+sLV1dXzJ07F9bW1ggJCWmTcyIiovoxFB/jwIEDte4AvXr1Kv74\nxz9i6dKlWL58OS5duoSFCxfWamNjY/PIff7zn//Ep59+ijFjxsDS0hITJkzAhx9+yKEXRER6xsun\njXTmzBl07twZ48aNQ2pqapOenFFUVIQ333wT27Ztw5AhQ/DFF1+gqqqqFaolIqLGYCg2koeHBwoL\nC2FmZoa0tDTs27ev0fuIiIjAsWPHEBcXh9deew1KpZK9RCKidkD2zjvvvKPvItqb2NhYLFu2DDk5\nOTh8+DB69+6tuyPU2dkZKpUK7733Hs6ePQtbW1scO3YMV65cgY2NDf7yl78gPT0dBw8exPz58wEA\ny5Ytw88//4yUlBS4u7vDwcEBr776KrKysrBjxw784x//wJAhQ/R4xkREBHDwfrPs2bMHNjY2CAwM\nbHCbkpISrFu3DmPHjsXAgQNbsToiImosXj5tBm9vb1y6dKnB21dXV2PLli0YMmQIA5GIqB1iKDaD\nq6srCgsLcffu3cduq9Fo8MMPP8DBwQHBwcFtUB0RETUWQ7EZZDIZvLy8GtRbjI2NRVVVFSZPnsyb\naoiI2imGYjM15BLqiRMncPXqVcyaNQsymayNKiMiosZiKDZT7969kZOTg9LS0nrXX716FfHx8QgP\nD4eFhUUbV0dERI3BUGwmuVwOT09PpKWl1Vl3+/Zt/Pjjj5g1axa6dOmih+qIiKgxGIotQKFQ1AnF\nkpISfPfdd3jqqafg4uKip8qIiKgxOPdpC+jdxwP/2n4IWXsvoLudNZ707ooft0Zj+PDhGDBggL7L\nIyKiBuLg/WYqrVJh1lfJSM+5i2qNBOYmUqjVajzvpcGy+bzTlIjIkPDyaTN98ksa0nNLUa25F36V\nSg2UGgm+zTSDUs3vG0REhoSh2Ew/nLmFapWmznIhgCPX8vRQERERNRVDsZmq6gnEewQqqtVtWgsR\nETUPQ7GZ/Hvbo75fDZVqAb/e9m1eDxERNR1DsZnenOgNKzM55NL/RqOFiQwvjfZAFytTPVZGRESN\nxbtPW8BvheX4Mu4ajmbkw7GzOf5fkDvGKBz1XRYRETUSQ5GIiEiLl0+JiIi0GIpERERaDEUiIiIt\nhiIREZEWQ5GIiEiLoUhERKTFUCQiItJiKBIREWkxFImIiLQYikRERFoMRSIiIi2GIhERkRZDkYiI\nSIuhSEREpMVQJCIi0mIoEhERaTEUiYiItBiKREREWgxFIiIiLYYiERGRFkORiIhIi6FIRESkxVAk\nIiLSYigSERFpMRSJiIi0GIpERERaDEUiIiIthiIREZEWQ5GIiEiLoUhERKTFUCQiItJiKBIREWkx\nFImIiLQYikRERFoMRSIiIi2GIhERkRZDkYiISIuhSEREpMVQJCIi0mIoEhERaTEUiYiItBiKRERE\nWgxFIiIirf8P8gd+pqCWs0MAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVB0lEQVR4nO3deXhV5b3+/3vtzGQOAUIYQiCQMIQkZIcIgkIRQeZB0EStUK3lOLRVq9afx6Faj9pacaS10C9ODSAoKIiKKI7ITgIkyDzPECADScicrN8fHHJIExDYSVaG9+u6vEr2XvtZn7WrcPM86/kswzRNUwAAAMAVslldAAAAAJo3AiUAAACcQqAEAACAUwiUAAAAcAqBEgAAAE4hUAIAAMApBEoAAAA4hUAJAAAApxAoAQAA4BQCJQAAAJxCoAQAAIBTCJQAAABwCoESAAAATiFQAgAAwCkESgAAADiFQAkAAACnECgBAADgFAIlAAAAnEKgBAAAgFMIlAAAAHAKgRIAAABOIVACAADAKQRKAAAAOIVACQAAAKcQKAEAAOAUAiUAAACcQqAEAACAUwiUAAAAcAqBEgAAAE4hUAIAAMApBEoAAAA4hUAJAAAApxAoAQAA4BQCJQAAAJxCoAQAAIBTCJQAAABwCoESAAAATiFQAgAAwCkESgAAADiFQAkAAACnECgBAADgFAIlAAAAnEKgBAAAgFMIlAAAAHAKgRIAAABOIVACAADAKQRKAAAAOIVACQAAAKcQKAEAAOAUAiUAAACcQqAEAACAUwiUAAAAcAqBEgAAAE4hUAIAAMApBEoAAAA4hUAJAAAApxAoAQAA4BQCJQAAAJxCoAQAAIBTCJQAAABwCoESAAAATiFQAgAAwCkESgAAADiFQAm0IEePHlVsbKxCQkJkGIaSkpIuevyKFStkGIaCgoIUGxurjIyMxikUANCiECiBFiQ0NFQZGRmaNWuWDMPQ+++/r23btl3w+GeeeUaSNGHCBGVkZCg2NraRKgUAtCQESqCFmjx5skzTrA6N/2nFihUKCwtr5KoAAC0RgRJooaKjozV58mQtWrRI27dvr/X+008/rccff7zOz+7evVvTp09X165d1bNnT9ntdi1evLjGMYWFhbrvvvsUHR2tuLg4xcTE6J577tHevXtrHLdo0SLFx8erZ8+eio6O1rBhwzRnzhxVVlZe8vnmzZunjh07yjAM9e/fX4sWLZIklZaWyt/fX/Pmzas+dsKECQoKClJERIQcDsflf3EAgMtnAmhxnnzySfPJJ580MzIyTMMwzOTk5BrvL1++3JwyZYppmqYpybz99tur39u/f7/Ztm1b85ZbbjHLy8tN0zTNjz76yHRxcTH//ve/Vx935513miNHjjTLyspM0zTNY8eOmT179jTnz59ffcxrr71murq6mp988olpmqZZVVVlPvvss6YkMzc397LO9/HHH5uSzG+++ab6tRUrVpiSzLFjx9a4vv79+5tZWVlX8tUBAK4AgRJogc4FStM0zUmTJpk2m83cvn179fsJCQlmRkaGaZq1A+Xtt99uurm5mSdOnKgx5vjx400/Pz+zoKDANE3T7Nu3r3nnnXfWOGbZsmWmw+EwTdM08/PzTR8fH3Py5Mk1jqmsrDQ7d+5s5uXlXdb5iouLTW9vb/OBBx6oPuZXv/qVabfbTQ8Pj+rjdu3aZQ4ZMuTSvywAgNNY8gZauCeeeEJVVVXV91KuWLFCoaGhiomJqfP4zz//XN27d1e7du1qvD5o0CDl5+dr7dq1kqQRI0boX//6l6ZPn64VK1aouLhYEydO1MCBAyVJa9euVWFhYfXP59hsNh06dEj+/v6XdT5PT0+NGjVKH330kSSpsrJS3377rV566SWVlpbq008/lSQtXbpUEydOvOLvCwBw+QiUQAsXFxen8ePHa+HChdqxY4eefvppPfHEExc8/tSpUwoKCqr1etu2bSVJJ0+elCTNnj1b//jHP7Rnzx6NHz9e7du319133638/PzqcSTVOdaVnE+SJk2apD179mjz5s367rvvNHDgQA0ZMkQdO3bU0qVLJZ0NlJMmTbroOQEA9YtACbQCTzzxhCorKzVp0iR16NBBAwYMuOCxwcHBysnJqfV6dna2JFXPJNpsNt11111av369tm/frjvvvFNvvvmm7rnnnupxJNU51pWcT5LGjRsnV1dXLVu2TB9++KEmTZokwzA0YcIErVy5UgcOHFBhYaEiIiIuek4AQP0iUAKtgN1u15gxY7R9+/aLzk5K0qhRo7R3797qGcZz1q1bJz8/Pw0ePFiSdMcdd6ioqEiSFBkZqdmzZ2vs2LHKzMyUJA0ePFg+Pj5KTU2tMU5ZWZmGDBminTt3Xtb5JCkwMFDXXHONli1bps8++0w33HCDpLMzl6dPn9bvf/97TZgw4XK/HgCAkwiUQCsxd+5cfffdd0pISLjocU899ZT8/Pz04IMPqqKiQtLZ+y4/+eQTvfDCC/Lx8ZEkffnll3rttddkmqaks0vTW7Zs0XXXXSdJ8vX11XPPPafly5dX399YVVWlP/3pT3JxcVGvXr0u63znTJo0SevXr1evXr2q3/vFL34hPz8/LVu2jOVuALCAYZ770wBAs1dcXKxBgwbp+PHjkqSQkBD9+OOP8vLyqnXs7Nmz9fbbbyszM1OBgYHq2rWrPvjgA/Xo0UO7d+/Wo48+KofDIXd3d/n7++uRRx7R9OnTqz//1ltv6Z133tHJkyfl6uqq8vJyTZ48WY8//rjc3d2rj1u4cKH+8pe/qKCgQF5eXkpMTNQLL7xQ477JSznfOYcOHVLXrl01d+5c3XnnndWv33zzzfrhhx906NChevkuAQCXjkAJAAAAp7Dk3cTdf//9ioiIkGEY+vrrr60uBwAAoBZXqwtoibp166Y2bdpUL/sVFhZqz5496tKlS/UyX1lZmYqKirR///6LjjV79mxNnDhRw4cPb+iyAacVlJQr41CeKqtM9enop/Z+nlaXBABoBATKBrJy5Up169ZNkvT1119r+PDhevrppzVjxgxJ0v79+zVs2DDL6gPqU3FZpZ7/bJsWph1SaUWVJMlmSKP6huip8X3VgWAJAC0aS94N4Nprr61zE8T5vLy8dO211zZSRUDDKa2o1G3/z6F31x2oDpOSVGVKq7ZmadKcH3SioMTCCgEADY1A2QDefvttdejQ4aLHdOjQQW+//bYWLVqk+Ph49ezZU127dtX06dO1d+/ei3525cqVioyMlM1mU2xsrJ599llFRUXJMAx16dJFM2fOlHR2x29sbKzatGmjqKgo7dixQ5KUlZWlO+64Q2FhYYqMjFS/fv00Z86c+rl4tDrvpx9W+oFcVdWxva+yytSJglK9vHpX4xcGAGg0BEoLvf7667r11lv11FNPadeuXdq7d69cXV111VVXXbT1yTXXXKOOHTtq3rx5ysjI0GOPPVbd+mXYsGGaP3++pLOzoF9//bWCgoKUmZmpyMhI5eXlaciQITpw4IC2bt2qHTt2aN68efrjH/+oP/7xj4116WhB3vlxv4yLvF9ZZeqDDYd1prSi0WoCADQuAqVFCgoK9Oijj2rcuHEaP368JMnV1VWzZ89WXl6ennzyyTo/l5+frzFjxuhXv/qVfvWrX1W/7uHhoeTkZH3wwQfVz1KWzvYAnDJlijw8PCRJL7/8snbv3q2//e1v8vb2liRdddVVmjFjhl588UXt27evoS4ZzZhpmiopKVFOTo4OHTqkHTt2aOPGjfr++++152Shfq73WGlFlY6dLm6UWgEAjY9NORZZu3atCgsLlZiYWOP1Dh06KDw8XJ999lmtz5w+fVrXX3+9goOD9ctf/rLW+zNnztQbb7yhBQsW6De/+Y0kaf78+XrzzTerj/n888/l6empmJiYGp8dNGiQXnvtNX3xxRe666676uMS0YRVVVWpqKio+p8zZ87U+evzf66qqqo1jqenp1zUR1WX8HdTD1eXhrgUAEATQKC0yLnnFp//tJBz2rZtW+d9lLNmzVJ8fLw++eQTffbZZxo9enSN9+Pj4xUdHa358+frN7/5jbZs2aLy8nLFxsbWOG9gYGCd55TOPj4PzU95efklB8OioiIVF9eeLbTZbGrTpo3atGkjb29vtWnTRsHBwTV+Pv/XXl5ecnFx0dGFG7Xip2OqrOsmSkmGpO7tvNU58OIb1QAAzReB0iLBwcGSpJycnFrvZWdnq127drVef/LJJ3XHHXfoqquu0p133qnNmzcrICCgxjEzZ87UAw88oK1bt2r+/PnVG3TOP+/hw4frPKekOs+LxnVueflyZg/Ly8trjePm5lYjCAYFBalz5861guG5X3t4eMgwLnY3ZN1+dXW4Pt509MLXI2nWtT2uaGwAQPNAoLTI4MGD5ePjI4fDUeP1EydOaN++fbr11ltrfSYqKkpubm565513FB8fr/vuu0/vvvtujWNuvfVWPfLII/rnP/+ppUuXauPGjTXeHzVqlNatW6fMzMway97r1q2Ti4uLRo4cWY9XCen/lpcvdfbwQsvLXl5eNYJgSEjIBWcP27RpIzc3t0a5vpguAXrxxhg9tCRTpmnK/N8tOi42Q5VVpn5zTXfdOKBzo9QCALAGgdIivr6+eu6553T//fdr5cqVGjNmjCoqKvTAAw8oICBATz311AU/27dvX/35z3/WQw89pKlTp2rSpEnV77Vr105jx47V66+/rqlTp9ZaUv/973+v9957Tw899JCWLl0qb29vpaamav78+frDH/6g8PDwBrrilqO8vLw6AF5KSCwpqd2D8dzy8rkA6OPjo3bt2lX//J8h0cvLSzZb091DN3VAZ7nmHdabX23TGf8wVZnSgK6B+uWgMMWH1b6tAwDQshimaf7cBk044cYbb1RGRkb1oxd79eql1atXV7+/cOFC/fWvf9Xp06dVVlamxMREPf/88+rRo4ck6dlnn9X8+fO1Z88e9ejRQzNnztSECRN0yy236KeffpKvr6+6d++u1NTU6kc9Ll++XBMmTNBnn32mUaNG1aopKytLjz76qFavXi0vLy+5urrqnnvu0d133904X0oTcv7ycl0hsa7QWFFRu/2Nu7t7nbOE5/98/utXurzclP3rX/+Sl5eXkpOTrS4FANDICJQt0OHDhzVo0CAdOHCgSc9qNYTKyso6w+DFQmJd/wl4eXldMBjWFRJdXVv3ZP+pU6f0xhtv6MYbb1Tfvn2tLgcA0Mha95+CLdSiRYt0++23N/swaZrmRXcvnzlzRsXFxTXeq2t52cXFpUYQ9PHxUfv27S+6e7m5f3eNLTMzU56enoqMjLS6FACABQiUzcj+U2f0/vpDOphTJF8PV42J7qirewTLZjN03333adq0aRo4cKDmzp2rVatWWV1uLaZpqri4+LJ2L19oefn8IHiutc2FZhLd3d1b3PJyU1JVVaVNmzapb9++rX6mFgBaK373bwaqqkw999k2zf1un1xshkzTlM0wtCDtkPqG+mn+jAT5+flp+vTpCg4O1u9//3t17dq1wes6t7x8ObuX61pe/s8gGBAQcNHdy4SWpmX//v3Kz8+v0e8UANC6cA9lM/Dql7v00uqddb7nYjMU0c5Hn9w3RK4uV75Ma5qmysrKLmv2sLS0tHY9Li4XDIJ1hURPT0+Wl5u5pUuX6siRI7rnnnuYCQaAVoqpnibuTGmF/vHtngu+X1llakdWgVZvP6HRfUOqXz+3vHyps4dnzpxRZWVlrfE9PDxqPTmla9euFwyNLC+3LqWlpdq2bZuGDh3K/+8A0IoRKJu4r3eeVFFZ7aB3PkOm3lju0PG03OqQWFxcXGt52TCMGruXvb29FRgYeNHehywv42K2bt2q8vJy9e/f3+pSAAAWIi00cblFZT97jClDBeWm/Pz8aj095fyQ6OXlxSwS6lVmZqbCw8Pl7+9vdSkAAAsRKJu4jn6eP3uMTaa6dwjQxIlD5eLi0ghVAVJubq4OHDhQ40lNAIDWid0QTdw1vdopqI37RY+pkiH3wxs0e/ZsffXVVzp9+nQjVYfWbNOmTXJ3d1fv3r2tLgUAYDECZRPn5mLT/zfmwn9g2wxpWK92+tM9t6hPnz5yOBx65ZVXtHDhQu3evbvONj2As0zTVGZmpvr06VP9yE8AQOtF26BmYlHaQT3zyTYVllbI1Wao8n//b5sU00nPTYmWp9vZpe7S0lL99NNPSk9PV1ZWlgIDA2W32xUbG6s2bdpYeQloQQ4cOKC33npLt99+u7p162Z1OQAAixEom5Hiskp9vuW4DuYUycfTVaP6hqhTgFedx5qmqUOHDik9PV1bt26VJPXr1092u12dOnVicw6c8vHHH2vfvn367W9/y79LAAACZWtw5swZbdy4UevXr1deXp46duwou92u6Ohoubm5WV0empny8nK9+OKLuuqqqzR8+HCrywEANAEEylakqqpKu3fvVnp6unbt2iUPDw/FxsbKbrcrODjY6vLQTPz000/68MMPdd999ykoKMjqcgAATQCBspXKzc3V+vXrtXHjRhUVFSk8PFx2u12RkZG0HsJFvffeeyovL9fMmTOtLgUA0EQQKFu5iooKbd26Venp6Tp06JB8fHwUHx+vAQMGyM/Pz+ry0MTk5+fr5Zdf1rhx4zRgwACrywEANBEESlQ7fvy40tPTtWnTJlVUVCgqKkp2u13h4eFsvIAk6fvvv9c333yjBx98UJ6eP990HwDQOhAoUUtpaakyMzOVnp6ukydPqm3btrLb7YqJiZGXV927ytHymaapOXPmKCQkRFOnTrW6HABAE0KgxAWZpqmDBw8qLS1N27Ztk81mU79+/ZSQkKDQ0FCry0MjO3LkiObNm6dbb71VPXr0sLocAEATwrO8cUGGYSgsLExhYWEqLCzUhg0btH79emVkZKhTp06y2+3q27cvrYdaiYyMDPn6+io8PNzqUgAATQwzlLgsVVVV2rVrl9LS0rRnzx55enoqLi5OdrudFjItWEVFhf72t78pPj5e1113ndXlAACaGGYocVlsNpsiIyMVGRmpnJwcpaenKyMjQz/++KN69Oghu92uXr16yWbjMfEtyc6dO1VSUqKYmBirSwEANEHMUMJp5eXl2rJli9LT03XkyBH5+flVtx7y8fGxujzUgwULFqiwsFC//vWvrS4FANAEEShRr44dO6a0tDT99NNPqqqqUu/evWW32xUWFkbroWaqsLBQL730kkaPHq2BAwdaXQ4AoAkiUKJBlJSUKCMjQ+np6crOzla7du1kt9vVv39/+hc2Mz/++KNWr16tBx98UG3atLG6HABAE0SgRIMyTVP79+9Xenq6tm3bJldXV0VHRyshIUEhISFWl4dL8I9//ENBQUGaPn261aUAAJooNuWgQRmGofDwcIWHhys/P18bNmyo/qdLly6y2+3q06ePXF35V7EpOn78uLKysjR8+HCrSwEANGHMUKLRVVZWaufOnUpLS9O+ffvUpk0bxcXFKT4+XoGBgVaXh/N8/vnn2rRpkx544AG5uLhYXQ4AoIkiUMJSp06dqm49VFpaqp49e8putysiIoLWQxarrKzU7Nmz1a9fP40ePdrqcgAATRiBEk1CeXm5Nm/erLS0NB07dkz+/v6y2+2Ki4uTt7e31eW1Sjt37tSCBQv0m9/8hvtdAQAXRaBEk3PkyBGlp6dr8+bNqqqqUt++fWW329WlSxdaDzWi999/Xzk5OZo1a5bVpQAAmjgCJZqs4uLi6tZDOTk5at++vRISEhQdHS0PDw+ry2vRiouL9be//U0jRozQoEGDrC4HANDEESjR5Jmmqb179yo9PV07duyQm5ub+vfvr4SEBLVv397q8lqktLQ0ffrpp3rggQd42hEA4GcRKNGsnD59WuvXr9eGDRt05swZde3aVQkJCerduze7kOvRvHnz5O3traSkJKtLAQA0AwRKNEuVlZXavn270tPTtX//fnl7eysuLk52u13+/v5Wl9esnTp1Sm+88YamTZumPn36WF0OAKAZIFCi2Tt58qTS0tK0adMmlZWVqVevXrLb7erRowebeK7A6tWrtX79ej344IM0nAcAXBICJVqMsrIy/fTTT0pLS1NWVpYCAwMVHx+vuLg4nkF9iaqqqvTyyy8rMjJSY8eOtbocAEAzQaBEi2Oapg4fPqz09HRt2bJFktSvXz/Z7XZ16tSJWcuL2LNnj9577z3dcccd6ty5s9XlAACaCQIlWrQzZ85Utx7Ky8tTSEiIEhIS1K9fP7m7u1tdXpPz4Ycf6ujRo7rnnnsI3gCAS0agRKtgmqZ2796t9PR07dy5Ux4eHoqJiVFCQoKCg4OtLq9JKC0t1YsvvqhrrrlGQ4cOtbocAEAzwh33aBUMw1DPnj3Vs2dP5eXlVbceSk1NVbdu3ZSQkKDIyMhW3Xpoy5YtqqioUExMjNWlAACaGWYo0WpVVFRo27ZtSk9P18GDB+Xj46MBAwYoPj5efn5+VpfX6ObPny9XV1fddtttVpcCAGhmCJSApKysLKWnp2vTpk0qLy9XZGSkEhISFB4e3iruJczNzdWrr76qyZMnq3///laXAwBoZgiUwHlKS0u1adMmpaen68SJE2rbtq3i4+MVGxsrLy8vq8trMF9//bV+/PFH/eEPf5Cbm5vV5QAAmhkCJVAH0zR18OBBpaena+vWrbLZbOrXr58SEhIUGhpqdXn16r333tMjjzyio0eP6sknn9RTTz1ldUkAgGbGZnUBQFNkGIbCwsI0depU3X///brmmmu0b98+zZ07V3PnzlVGRobKy8udOsfRo0cVGxurkJAQGYahd999t9YxH3/8sWJjY+Xj46OIiAiNGTPGqXPWZciQIbrrrrvqfVwAQOtBoAR+ho+Pj4YOHarf/va3uvnmm9WmTRt99NFHeumll/T5558rOzv7isYNDQ1VRkaGZs2aJUmaNWtWdSP2cyZMmKCMjAzZ7XbNmzdPK1eudPp6/lNmZqYCAgLqfVwAQOtB2yDgEtlsNkVGRioyMlI5OTlav369Nm7cqHXr1ql79+5KSEhQr169ZLNd/t/Txo0bpy+++EI33nij0tLS5OPj0wBXUFtZWZm2bt2qQYMGNcr5AAAtEzOUwBUICgrSyJEj9cADD2jSpEkqKyvTokWL9Morr+ibb75RQUHBZY0XHx+vN954Q9u3b9edd975s8fPnTtXQ4cOld1uV0xMjIYMGaJVq1ZVv19QUKDY2FgFBQWpW7duWrJkiQYNGqQePXqoe/fumjNnjiRp+/btKisru2Dvyfz8fN17773q1q2boqKi1Ldv3+rPnlNYWKj77rtP0dHRiouLU0xMjO655x7t3bv3sr4DAEDzxQwl4ARXV1fFxMQoJiZGx44dU3p6un744Qd9++23ioqKUkJCgsLCwi6p9dAdd9yhdevWad68eRoyZIjuvffeCx770ksv6S9/+YvGjx8v6ewu7bFjx+q7777TgAED5Ovrq4yMDM2YMUMLFy7U0qVL9e2338rNzU1vv/22ZsyYIV9fX0lSWFiYAgMDa52jvLxcI0eOVGFhoVJTU9W+fXs5HA4NHz5cBQUFeuSRRyRJ999/vw4cOKANGzbIzc1Nx48f1zXXXKOEhAR17979Sr5WAEAzwwwlUE86duyo8ePH64EHHtD111+vEydO6O2339acOXPkcDhUUlLys2O8/vrrstvtevDBB5WamnrB45YuXVodJiVp2LBhio6O1rx582odW1paqhdeeKG6HdDtt9+uuLg4PfbYY9qzZ88FZyffe+89paam6qmnnlL79u0lSYmJiUpKStKzzz6roqIiSdKPP/6osLCw6vFDQkL017/+VX369PnZ6wUAtAwESqCeeXp6KjExUXfffbduv/12tW/fXqtWrdJLL72k5cuX6/jx4xf8rIeHhz744AP5+flp2rRpysnJqfM4m82mmTNnVi8xx8bGavPmzdqzZ0+tYwMDA9W5c+carw0cOFCHDh1SUVHRBYPfuSX0IUOG1Hg9OjpaBQUFSktLkySNGDFC//rXvzR9+nStWLFCxcXFmjhxogYOHHjhLwkA0KKw5A00EMMw1K1bN3Xr1k0FBQXasGFD9TPEO3fuLLvdrr59+9b6XNeuXZWSkqLRo0frtttu04oVK2q8f+zYMQ0ZMkRXX321vvnmm+rHRA4bNkylpaW1xqvrMZLnlriDgoLk4eFRZ/2nTp2SJN1www01Xi8uLlaHDh2Um5srSZo9e7b69u2rN998U+PHj5ePj49uu+02Pf/8863yEZYA0BoRKIFG4Ovrq2uvvVZDhw7Vjh07lJ6ermXLlunzzz/Xnj17ajVLHzlypJ555hk99thjevbZZ2u8t2LFCp08eVKPPfbYBQObaZpK25+rzUdO6+jJHA1+/ktVVJny8XBVdCd/pWbslFR79vF8wcHBkqRvvvlG/v7+FzzOZrPprrvu0l133aUdO3boH//4h1599VUVFBTU2VsTANDysOQNNCKbzabevXvrtttu07333lu9mcfhcOjf//63duzYoaqqKknSo48+qokTJ+rJJ5/U1q1bq8c4Nwv5n+2Jjh07JklavumoRrz0jab/80ftyCpQeVGBDh46rBMFpdp76oxW/HRMGzZkyMWvvd7b76mDOUV11jpq1ChJ0saNG2u8fvr0aU2ZMqV6Of6OO+6ovp8yMjJSs2fP1tixY5WZmens1wUAaCYIlIBF2rZtq1GjRmnQoEGKjIxUUVGRFi5cqFdffVXfffedioqK9M4776hHjx46efJk9eeuv/56eXh46MUXX6x+Ws8777yjnTt3akdWge5bsFH7Tp2RJJmmZLh7Ke+792RWVkiSTmeuVtmJvQq45lZ9se2ERs7+Ru+uO1CrvltuuUWDBg3Sww8/rBMnTkg6u9z9u9/9TjabTUFBQZKkL7/8Uq+99prOPcX15MmT2rJli6677rqG+/IAAE0Kz/IGLHL06FGNGTOmepNOSEiI5s6dq6NHj2rz5s2qqqpSnz595OvrqylTpmjFihUaNmyYJOnTTz/VY489phMnTigiIkJ9omP13rLPVJh1QK6BHRWS/Jxsnj46tWK2Sg7+pLY33KvTPyxUZWGOTNOUf+IU+Q4YK0kq3LJG+Y4PVX5inzp06KB+/fpp9erVks72s3z88ce1bNky+fr6ysXFRTfccIOefPJJeXp6SpLeeustvfPOOzp58qRcXV1VXl6uyZMn6/HHH5e7u3vjf7EAgEZHoASaoOLiYmVkZCg9PV05OTlq37697Ha7+vfvX2sTTUl5pSa8/r32nDqjyqqa/zmfC5Sd7/5/l3Tex8b01q+H0jsSAHB5CJRAE2aapvbt26e0tDTt2LFDbm5u6t+/v+x2uzp06CBJev6z7Xrz2z2q67/kyw2UrjZDK387VL06+NbnZQAAWjh2eQNNmGEY6t69u7p37678/PzqtkPp6enq2rWrOvSM0ZvfHFN9/a3QlPTYsp+0+DeD62lEAEBrwAwl0MxUVlZqx44dSktL08Jdldpe2V6maj7asaq0SMf//Ygq80+qqqxEbsFdFHT93fLs3PuSzvHZ74YqKoQekgCAS0OgBJqpisoqRf/pcxWXV9XruK42Q78c1E1PjOPRiQCAS0PbIKCZ2nPyTL2HSUmqqDKVvr/uRz4CAFAXAiXQTG05errBxt52PF9VVSxeAAAuDYESaKbyistlM37+uCtRXmmqtKL+Zz8BAC0TgRJopmyG6m13d12MBgqrAICWh0AJNFMh/l519p6sD76ervJw5bcHAMCl4U8MoJmK7uTfIOMakmI6+8tgihIAcIkIlEAzFervqU4BXvU+rmFIg3sE1/u4AICWi0AJNFOGYej2QWH1fq+jYRiabu9Sv4MCAFo0AiXQjE23d5GPu6vqK1PaDGnagM4K9vGopxEBAK0BgRJoxgLauOvPk/rVy25vmyEFebvr0TGX9nhGAADOIVACzdyEmFDdOKCzk7OUpmyGoVdvjpO/l1s9VQYAaC0IlEAzZxiGnp8SrYmxna7o8y6GZJOp27uXalD3tvVcHQCgNSBQAi2Aq4tNs6fH6NlJ/eTpZpPLJezUOXdIVEc/vTaus6oOb9KaNWsauFIAQEvkanUBAOqHYRi6JTFMwyLba/4P+7Qw7ZAKSytkMyTbeQGz4n+f0R3ZwVczB3fT1AGd5epiU4CKtHr1agUGBiouLs6qywAANEOGaTbUszYAWKmkvFIZh/K0+chpHcgpUkVllXw8XRUV4qeYzv7q0c6nRvNy0zS1YsUKZWRk6NZbb1V4eLiF1QMAmhMCJYBqlZWVSklJ0ZEjR3THHXeoXbt2VpcEAGgGuIcSQDUXFxdNmzZN/v7+SklJUWFhodUlAQCaAQIlgBo8PT2VnJysiooKLVy4UOXl5VaXBABo4giUAGrx9/dXUlKSsrKytHTpUnFnDADgYgiUAOoUGhqqqVOnatu2bVq9erXV5QAAmjACJYALioqK0qhRo7R27VqtX7/e6nIAAE0UfSgBXFRiYqJycnL0ySefyN/fXxEREVaXBABoYpihBHBRhmFo9OjRioiI0OLFi5WVlWV1SQCAJoZACeBn2Ww2TZ06VUFBQUpJSVFBQYHVJQEAmhACJYBL4uHhoaSkJJmmqQULFqisrMzqkgAATQSBEsAl8/PzU3Jysk6dOqUPP/xQVVVVVpcEAGgCCJQALktISIimTZumnTt3atWqVVaXAwBoAgiUAC5bz549dcMNN8jhcCg1NdXqcgAAFqNtEIArkpCQoJycHH322WcKCAhQr169rC4JAGARZigBXLGRI0eqV69eWrJkiY4dO2Z1OQAAixAoAVwxm82mKVOmqF27dlqwYIHy8/OtLgkAYAECJQCnuLu7KykpSTabTSkpKSotLbW6JABAIyNQAnCaj4+PkpOTlZeXpyVLltBOCABaGQIlgHrRvn17TZs2TXv27NGnn34q0zStLgkA0EgIlADqTY8ePTR27Filp6dr3bp1VpcDAGgktA0CUK/i4+OVm5urVatWKSAgQL1797a6JABAA2OGEkC9GzFihPr06aMPP/xQR44csbocAEADI1ACqHeGYWjSpEkKCQnRggULlJeXZ3VJAIAGRKAE0CDc3Nx08803y83NTSkpKSopKbG6JABAAyFQAmgw3t7eSk5OVkFBgRYvXqzKykqrSwIANAACJYAG1a5dO02fPl379+/XJ598QjshAGiBCJQAGlx4eLjGjx+vjRs36ocffrC6HABAPaNtEIBGERsbq9zcXH355ZcKDAxU3759rS4JAFBPCJQAGs2wYcOUm5urpUuXys/PT126dLG6JABAPWDJG0CjMQxDEyZMUKdOnbRw4ULl5uZaXRIAoB4QKAE0KldXV910003y9PTUv//9bxUXF1tdEgDASQRKAI2uTZs2Sk5OVlFRkRYtWkQ7IQBo5giUACzRtm1b3XTTTTp8+LCWL19OOyEAaMYIlAAsExYWpokTJyozM1Pffvut1eUAAK4Qu7wBWCo6Olq5ublas2aNAgMD1b9/f6tLAgBcJgIlAMsNHTpUOTk5+vjjj+Xv76+wsDCrSwIAXAaWvAFYzjAMjR8/Xl26dNGiRYuUnZ1tdUkAgMtAoATQJLi4uGj69Ony9vZWSkqKioqKrC4JAHCJCJQAmgwvLy8lJyerpKRECxcuVEVFhdUlAQAuAYESQJMSGBiopKQkHTt2TB999BHthACgGSBQAmhyOnfurEmTJmnz5s1as2aN1eUAAH4Gu7wBNEl9+/ZVXl6eVq9ercDAQMXFxVldEgDgAgiUAJqswYMHKycnRytWrFBAQIDCw8OtLgkAUAeWvAE0WYZhaMyYMQoPD9eiRYt08uRJq0sCANSBQAmgSXNxcdGNN94of39/paSkqLCw0OqSAAD/gUAJoMnz9PRUcnKyKioqtHDhQpWXl1tdEgDgPARKAM2Cv7+/kpKSlJWVpaVLl9JOCACaEAIlgGYjNDRUU6dO1bZt27R69WqrywEA/C8CJYBmJSoqSqNGjdLatWu1fv16q8sBAIi2QQCaocTEROXk5OiTTz6Rv7+/IiIirC4JAFo1ZigBNDuGYWj06NGKiIjQ4sWLlZWVZXVJANCqESgBNEs2m0033nijgoKClJKSooKCAqtLAoBWi0AJoNlyd3dXUlKSTNPUggULVFZWZnVJANAqESgBNGt+fn5KTk7WqVOn9OGHH6qqqsrqkgCg1SFQAmj2QkJCNG3aNO3cuVOrVq2yuhwAaHUIlABahJ49e+qGG26Qw+FQamqq1eUAQKtC2yAALUZCQoJycnL02WefKSAgQL169bK6JABoFZihBNCijBw5Ur169dKSJUt07Ngxq8sBgFaBQAmgRbHZbJoyZYratWunBQsWKD8/3+qSAKDFI1ACaHHOtROy2WxKSUlRaWmp1SUBQItGoATQIvn4+Cg5OVl5eXlasmQJ7YQAoAERKAG0WO3bt9e0adO0Z88effrppzJN0+qSAKBFMkx+hwXQghQXF2vQoEE6fvy4srKy1Lt3b1VWVio3N1eGYah79+569NFHNWHCBKtLBYAWgxlKAC2Kl5eXMjIyNGvWLEnSypUrtWPHDqWkpOjXv/61goODNWnSJH311VcWVwoALQeBEkCrMGLECMXExKhr164yTVPvvvuu1SUBQItBoATQKhiGoUmTJikwMFCSdPz48er3ysvL9fTTT6tXr16KiopS9+7d9eCDD+rMmTPVx9xyyy3q2rWrDMPQN998o8mTJysqKkpRUVH65JNPVFlZqT/+8Y+y2+0KCwvTs88+W6uG/Px83XvvverWrZuioqLUt29fzZkzp+EvHgAaGE/KAdBqFBQUaOPGjZIkb29vlZSUyNPTU8nJyVq3bp2++uor9ezZU1lZWRoxYoRSU1O1Zs0aubq66t///rfeeustzZw5U6+++qree+89eXt766GHHtLUqVP1yCOP6I477tDzzz+vFStWaPz48br66qs1bNgwSWdD68iRI1VYWKjU1FS1b99eDodDw4cPV0FBgR555BELvxkAcA4zlABatDFjxig2NladO3dWcHCwUlNTde+992rAgAFavHixvvzySy1ZskR/+MMf1LNnT0lShw4d9PTTT+v7779XSkpKrTFvvfVWeXt7S5JuvvlmlZaWKi8vr/rz48aNk4+Pj1avXl39mffee0+pqal66qmn1L59e0lSYmKikpKS9Oyzz6qoqKihvwoAaDAESgAt2sqVK5WRkaHdu3crKSlJ119/vZ577jklJSVp//79+vvf/y7pbLg736BBgyRJn332Wa0xz39GeFBQUK3Xzr1+/qMfV61aJUkaMmRIjeOio6NVUFCgtLS0K71EALAcS94AWgVPT0+99tprCg8P14MPPqg333xT48eP17JlyyT9XzA8p41vgCQpbdt+3TJvnXKLynUkdack6f2MExrl2UFXhbeVYRiSVD1jeY5hGKqsrKz++dSpU5KkG264ocZxxcXF6tChg3Jzc+vtWgGgsREoAbQaQUFBuuuuu/Tyyy/r0UcfVWxsrCIjI7Vhwwalp6erV69eyjlTpjlf79a7X2VIko6XueuHPdmSpMLcYknS/LX79fbmIoUGeGpCuNslnTs4OFiS9M0338jf37/+Lw4ALMSSN4BW5Xe/+50Mw9D//M//SJJ+/etfS5L+/e9/692vN2v4377W/LX7lbtviyTJI3xArTGqqs4+D+JoXoleX7NbknQ49+L3QI4aNUqSqjcFnXP69GlNmTJFOTk5TlwVAFiLQAmgVencubNuuukmvf322zp48KCGDx+uKVOm6Ou1Dv1x4TrlF5errCBXed+nyKNzH3n3HXZJ47721S6t3pZ1wfdvueUWDRo0SA8//LBOnDgh6exy9+9+9zvZbLZaS+4A0Jzw6EUALUpdj17s06ePlixZUn1MZmamYmNj1aVLF/Xq1UuTH31djz31jM5sWSMZLjIry9Wm11UKGHqbbO6ekqTsVX9X8e5UVeaflFvbLvIbPF2SlL/2fZVnH5KLXzt5Rw7WP/78R73w8Cxt3bpVPj4+6tmzpxwOh6SzbYsef/xxLVu2TL6+vnJxcdENN9ygJ598Up6eno3/ZQFAPSFQAmjVMg7lafLff1B9/E5oGFKgl7u+evBaBbRxd35AAGgmWPIG0GqVV1bp/vczZJNRL+OZppRXXKanV2ytl/EAoLkgUAJotb7YmqV9p86osh4XaqpMaWnGER3NK663MQGgqSNQAmi13lq7Xy71MzlZgyEpJfVg/Q8MAE0UgRJAq3SmtEJp+3NU2QB3kVeZZ2c/AaC1IFACaJW2HstXQ+5I3H2yUKUVlT9/IAC0AARKAK3SnpOFDTp+ZZWpg9kXb3YOAC0FgRJAq1RaXiWjAe6frHGOiqqGPQEANBEESgCtkrurrV56T16Mhyu/xQJoHfjdDkCr1KOdT4OO72IY6hLUpkHPAQBNBYESQKvUN9SvntqZ161He295urk04BkAoOkgUAJolbw9XBUfFihbA6RKmyFd17tD/Q8MAE0UgRJAq3X74G6qaoD7KE1TSh7Ytf4HBoAmikAJoNUa1SdEXYPa1OvTclwMQ+NjQtU5kPsnAbQeBEoArZa7q02zp8fU2yylYUi+nq56anzf+hkQAJoJAiWAVi0+LEgPjOxVDyOZMiS9cnOcgrzd62E8AGg+CJQAWr17h0fonmE9JOmKdn7bjLOf+228t67t1a5eawOA5oBACaDVMwxDD42K0qs3x8nH01Uul7H12zCksLbeeizBQ6c3f6Pt27c3YKUA0DQZptnQz4oAgObjZEGp3lizW4vWH1JxWaVcbYYqzrvJ0pDk8r+vdfD10IyrwzVzcDd5uNq0ZMkS7dq1SzNmzFBoaKh1FwEAjYxACQB1OFNaodXbsrTp8GltOpyn3KJyGYbU0d9LMZ39FR8WqKE929WYzSwvL9fbb7+t06dP69e//rX8/PwsvAIAaDwESgCoR4WFhZo3b548PT31q1/9Su7ubNAB0PJxDyUA1CMfHx8lJSUpNzdXH3zwgaqqqqwuCQAaHIESAOpZhw4dNG3aNO3atUurVq2yuhwAaHAESgBoABEREbrhhhvkcDiUlpZmdTkA0KBcrS4AAFqqhIQEZWdn69NPP1VgYKAiIiKsLgkAGgQzlADQgK6//npFRERo8eLFOnHihNXlAECDIFACQAOy2WyaOnWqAgMDlZKSosLCQqtLAoB6R6AEgAbm4eGhpKQkVVZWauHChSovL7e6JACoVwRKAGgE/v7+SkpK0okTJ7Rs2TLRAhhAS0KgBIBGEhoaqilTpmjr1q366quvrC4HAOoNgRIAGlFUVJRGjhyp77//XhkZGVaXAwD1grZBANDIBg0apOzsbC1fvlwBAQHq1q2b1SUBgFOYoQSARmYYhsaMGaOwsDAtWrRI2dnZVpcEAE4hUAKABVxcXDR9+nT5+PgoJSVFRUVFVpcEAFeMQAkAFvH09FRycrJKSkq0aNEiVVRUWF0SAFwRAiUAWCgwMFA333yzjhw5ouXLl9NOCECzRKAEAIt16dJFEydO1KZNm/Tdd99ZXQ4AXDZ2eQNAExAdHa2cnBytWbNGQUFB6tevn9UlAcAlI1ACQBNxzTXXKCcnR8uWLZO/v7+6dOlidUkAcElY8gaAJsIwDI0fP16dOnXSwoULlZuba3VJAHBJCJQA0IS4urrqpptukoeHh1JSUlRSUmJ1SQDwswiUANDEtGnTRsnJySosLNTixYtVWVlpdUkAcFEESgBogoKDgzV9+nTt379fn376Ke2EADRpBEoAaKLCw8M1btw4rV+/XuvWrbO6HAC4IHZ5A0ATFhcXp+zsbK1atUqBgYGKioqyuiQAqIUZSgBo4kaMGKHevXvrww8/1LFjx6wuBwBqIVACQBNnGIYmT56sdu3aacGCBcrPz7e6JACogUAJAM2Am5ubkpKSZLPZtGDBApWVlVldEgBUI1ACQDPh4+OjpKQk5eTk6IMPPlBVVZXVJQGAJAIlADQrHTp00I033qhdu3bpiy++sLocAJBEoASAZqdnz54aPXq01q1bp7S0NKvLAQDaBgFAczRw4EBlZ2fr008/VWBgoCIiIqwuCUArxgwlADRTo0aNUkREhJYsWaITJ05YXQ6AVoxACQDNlM1m09SpUxUQEKCUlBQVFhZaXRKAVopACQDNmIeHh5KSklRZWamFCxeqvLzc6pIAtEIESgBo5vz9/ZWUlKSsrCwtW7ZMpmlaXRKAVoZACQAtQGhoqKZMmaKtW7dqzZo1VpcDoJUhUAJAC9G7d29dd911+u6775SRkWF1OQBaEdoGAUALMnjwYGVnZ2v58uUKCAhQt27drC4JQCvADCUAtCCGYWjs2LEKCwvTokWLlJ2dbXVJAFoBAiUAtDAuLi6aNm2afHx8lJKSoqKiIqtLAtDCESgBoAXy8vJSUlKSSkpK9P7776uystLqkgC0YARKAGihgoKCdNNNN+nw4cNavnw57YQANBgCJQC0YF27dtXEiROVmZmp77//3upyALRQ7PIGgBYuOjpa2dnZ+uqrrxQUFKS+fftaXRKAFoZACQCtwLXXXqucnBwtXbpU/v7+6ty5s9UlAWhBWPIGgFbAMAxNmDBBoaGhWrhwofLy8qwuCUALQqAEgFbC1dVVN910k9zd3ZWSkqKSkhKrSwLQQhAoAaAV8fb2VnJysvLz87VkyRJVVVVZXRKAFoBACQCtTHBwsKZPn659+/Zp5cqVtBMC4DQCJQC0Qt27d9fYsWO1fv16ORwOq8sB0MyxyxsAWqkBAwYoOztbn3/+uQIDAxUZGWl1SQCaKWYoAaAVu+6669S7d2998MEHOnbsmNXlAGimCJQA0IoZhqHJkyerXbt2WrBggfLz860uCUAzRKAEgFbOzc1NN998swzD0IIFC1RWVmZ1SQCaGQIlAEC+vr5KSkpSTk6OPvzwQ9oJAbgsBEoAgCQpJCREU6dO1c6dO7V69WqrywHQjBAoAQDVevXqpVGjRunHH39Uenq61eUAaCZoGwQAqCExMVHZ2dlauXKlAgMD1aNHD6tLAtDEMUMJAKhl9OjR6tGjhxYvXqwTJ05YXQ6AJo5ACQCoxWaz6cYbb5S/v79SUlJUWFh4RePs2LFDsbGx8vHx0bBhw+q3SABNBoESACBJOnr0qGJjYxUSEiLDMDRjxgwlJyeroqJCixYtUnl5eY3jV6xYIcMwFBQUpNjYWGVkZOjQoUNq3769Xn/9dUlSZGSkMjIyZLfbrbgkAI2EQAkAkCSFhoYqIyNDs2bNkmEYev/993X06FElJSXp+PHj+uijj2SaZvXxzzzzjCRpwoQJysjIUGxsrDw8PBQWFqagoCCrLgOABQiUAIBaJk+eLNM09cwzz6hTp06aPHmytmzZojVr1kg6OzsZFhZW63Pt27dXWlqakpOTG7tkABYiUAIAaomOjtbkyZO1aNEibd++XX369NGIESP03XffKTMzU08//bQef/zxGp9xOByKjY2Vu7u7ZsyY8bPnmDt3roYOHSq73a6YmBgNGTJEq1atqnHM8OHDq5fgMzIyNHr0aEVGRqpPnz765JNP6vOSATiBQAkAqNMTTzxRPUspSVdffbViY2P117/+VW3btlV0dHSN4xMTE5WRkaHQ0NBLGv+ll17Sww8/rPT0dGVmZurPf/6zJk+erA0bNlQfs2bNGs2aNUuS9Pe//13Lly/Xjh07NGrUKCUlJSkvL69+LhaAUwiUAIA6xcTEaOLEiVq4cKF27NghwzA0btw4rV27VpGRkcrOznZq/KVLl2r8+PHVPw8bNkzR0dGaN29encffddddcnNzkyQlJSWpoKBAaWlpTtUAoH4QKAEAF/TEE0+oqqqqepby008/Vd++fRUREaGUlBSnxrbZbJo5c6bi4uIUExOj2NhYbd68WXv27Knz+KioqOpfBwcHS5KOHz/uVA0A6geBEgBwQXFxcRo/fnz1LOXTTz+tP/3pT0pOTlZxcbEk1dj5fY5pSrtPFOqjjCOa/8M+Hc8vUc6ZMh3OLZJpmjp27JiGDBmivLw8ffPNN8rMzKxuL1RaWlpnLd7e3tW/ttnO/vFVWVnZAFcN4HLx6EUAwEU98cQTWr58uSZNmqSIiAgNGDBAknTTTTfpkUce0aFDh2SapgzD0IHsMzpdXK6PM4/om9nfSJJshnQ0+4xkSkP+skYhfp7qnr1OJ0+e1GOPPSY/Pz8rLw9APSBQAgAuym63a8yYMVq5cqXeeeed6tfPtQ3KycnR199+p4zyEL321S4VllbIo/L/Zi2rTEnnTWIezy/R7k2HJEmrt59QfPzZMCpJx44dU8eOHRv+ogDUKwIlAOBnzZ07V3v37lVCQkKt99q266A/fH5c2WaBpLPL3T/HI3yA5OKmZ577i/ZXtdWryQlamPKedu7cSaAEmiHDrOvmFwBAq1NcXKxBgwZVb3QJCQnRjz/+KC8vr1rHzp49W2+//bYyMzPl2sZXNp9gBY2+V9mfva7yU4dkc/eUi187tZv4iE5+9IIqco9JklwDO6r9lP+Wa0AHFe9JV96376qyKE/tO4Xp5jHD9N2332rbtm2KiIjQ119/rZkzZ+rHH39UVlaWYmJi9NprrykrK0tPPPGEtm3bpi5dumjSpEl69dVXG/W7AlATgRIAcMV+vyhDyzOPqrIe/ih5bExv/Xpo93qoCkBjY5c3AOCKfLU9S8syjtRLmJSkv3y+XftOnamXsQA0LgIlAOCKvLx6l2xG/Y1XZUr//G5v/Q0IoNEQKAEAl23z0dPadOT02R3c9aSyytSHGw4rv6S8/gYF0CgIlACAy/bNjpNyqcfZyXNKK6qUvj+n/gcG0KAIlACAy7bpSJ4aYkeni83QT0fyG2BkAA2JQAkAuGx7T56p1+Xu8x3IZmMO0NwQKAEAl62igdKkaZoqr6SbHdDcECgBAJfN16NhHrRmMwz5ePIQN6C5IVACAC5b307+cq3PnkH/q7LKVO8Q33ofF0DDIlACAC5bTGf/Bln2NiX17xxQ7+MCaFgESgDAZRvdN0Ru9d43yJS/S7mKDm9TaWlpPY8NoCHxLG8AwBV5eEmmPth4RJX1NFNpSJrQpVzB2T/J1dVVsbGxGjhwoNq2bVsv4wNoOARKAMAVOX66RL946WsVl1U63ZPSxTDUtW0bffa7oSotOqP09HStX79eRUVF6tmzpxITE9W9e3cZRgN0UwfgNAIlAOCKfbjhsB5YnOnUGIbO7u7+8L8GK6ZLQPXr5eXl2rx5sxwOh7KyshQcHKzExET1799f7u7uzhUOoF4RKAEATnl59U69/OWuK/qsIckwpFdvjtO4/qF1HmOapg4cOCCHw6EdO3bIw8NDAwYMUEJCggICAq68cAD1hkAJAHDauz/u19OfbFWVqUu+p9Llf3tOvjw9VsOj2l/SZ3Jzc5WWlqYNGzaorKxMUVFRSkxMVNeuXVkOByxEoAQA1Iu9Jwv1h0Xp2nDkjFwM6UIPvDnXvnJCTKieGNdXQd6Xv3xdVlamzMxMORwOZWdnKyQkRImJierXr59cXWmMDjQ2AiUAoN588MEH+unASblFXaO0/bnadixfpRVVkiQfD1dFd/LX4B5tNd3eRR38PJ0+n2ma2rNnjxwOh3bv3i1vb2/Fx8fLbrfL15cG6UBjIVACAOpFfn6+XnnlFV1//fVKTEyUJFVVmSqtqJJhSB6utgZdlj516pRSU1OVkZGhyspK9e3bV4mJierUqVODnRPAWQRKAEC9+Oqrr+RwOPTAAw/Iw8PDsjpKSkq0ceNGpaamKi8vT507d1ZiYqJ69+4tFxcXy+oCWjICJQDAaRUVFZo9e7b69eunG264wepyJElVVVXauXOnHA6H9u/fL19fXyUkJCg+Pl5t2rSxujygRSFQAgCclpGRoY8++kj33ntvk3yyTVZWlhwOhzZt2iTDMBQdHa3ExER16NDB6tKAFoFACQBwimma+uc//ykfHx/dcsstVpdzUUVFRVq/fr3S0tJUUFCgbt26KTExUb169ZLNZrO6PKDZIlACAJxy8OBBzZ8/X8nJyerZs6fV5VySyspKbdu2TQ6HQ4cPH1ZAQIAGDhyouLg4eXo6v/scaG0IlAAApyxZskTHjh3Tvffe2yybix85ckQOh0NbtmyRi4uLYmNjlZiY2CSX7oGmikAJALhi+fn5evnllzVq1KjqVkHNVUFBgdLT05Wenq6ioiJFREQoMTFRPXr0aJZBGWhMBEoAwBX78ssvlZqaanmroPpUUVGhzZs3y+Fw6Pjx4woODtbAgQMVExMjd/fLf6oP0BoQKAEAV6S8vFyzZ89WdHR0k2kVVJ9M09TBgwflcDi0fft2eXh4KC4uTgMHDlRAQIDV5QFNCg88BQBckc2bN6u4uFgDBw60upQGYRiGwsLCFBYWpry8PKWlpWnDhg1at26dIiMjlZiYqLCwMJbDATFDCQC4AudaBfn6+io5OdnqchpNWVmZNm3aJIfDoVOnTqlDhw5KTExUdHS0XF2Zo0HrRaAEAFy2c62CbrnlFkVERFhdTqMzTVN79+6Vw+HQrl271KZNG8XHxyshIUG+vr5Wlwc0OgIlAOCyLV68WFlZWbrnnnta/ZJvdna2UlNTlZGRoYqKCvXp00eJiYnq3Lmz1aUBjYZACQC4LKdPn9Yrr7yi0aNHt9j7J69ESUmJMjIylJqaqtzcXHXq1EmJiYnq06ePXFxcrC4PaFAESgDAZfnyyy+Vlpam+++/v8W0CqpPVVVV2rVrlxwOh/bt2ydfX1/Z7XbFx8fL29vb6vKABkGgBABcsnOtgvr376/Ro0dbXU6Td+LECTkcDm3atEmmaSo6OlqJiYkKCQmxujSgXhEoAQCXbOPGjfr444913333KSgoyOpymo2ioiJt2LBBaWlpys/PV1hYmBITExUZGSmbzWZ1eYDTCJQAgEtimqbefPNN+fv7KykpyepymqXKykpt375dDodDhw4dUkBAgBISEhQXFycvLy+rywOuGIESAHBJDhw4oLfeeku33nqrevToYXU5zd7Ro0flcDi0efNmubi4KCYmRomJiQoODra6NOCyESgBAJfk/fff18mTJ3X33Xe3+lZB9amwsFDp6elKT0/XmTNn1KNHDyUmJioiIoLvGc0GgRIA8LPOtQq64YYblJCQYHU5LVJFRYW2bNkih8OhY8eOqW3btho4cKBiY2Pl7u5udXnARREoAQA/a/Xq1UpPT9cDDzxAuGlgpmnq0KFDcjgc2rZtm9zd3RUXF6eBAwcqMDDQ6vKAOvHgUQDARZWXl2vDhg2Ki4sjTDYCwzDUtWtXde3aVadPn1ZaWprWr1+vdevWKTIyUomJierWrRvL4WhSmKEEAFzUhg0btHz5cloFWai8vFybNm2Sw+HQyZMn1aFDBw0cOFDR0dFyc3OzujyAQAkAuDBaBTUtpmlq3759cjgc2rlzp7y8vBQfH6+EhAT5+flZXR5aMZa8AQAXdODAAWVlZen666+3uhTo7HJ49+7d1b17d+Xk5Cg1NVWpqalau3atevfurcTERHXu3JnlcDQ6ZigBABdEq6Cmr7S0VBkZGUpNTVVOTo5CQ0OVmJiovn37ysXFxery0EoQKAEAdcrLy9Orr76qMWPGyG63W10OfoZpmtq1a5ccDof27t0rHx8f2e122e12eXt7W10eWjgCJQCgTl988YXWr19Pq6Bm6OTJk3I4HMrMzJRpmurXr58SExPVsWPHej9XcXGxBg0apOPHjysrK0u9e/eWu7u7iouLVVFRocGDB+uZZ55Rt27d6u2ciYmJCgsL0/vvv19vY8I5BEoAQC3l5eV66aWXFBcXx/2TzVhxcbE2bNigtLQ0nT59Wl27dlViYqKioqJks9nq9VxPPfWU/vSnP2nfvn3V4XHfvn0aOXKkTp8+rU2bNtVboJ02bZo6deqkl19+uV7Gg/Pq998mAECLsGnTJpWUlPBUnGbOy8tLV199tX77299q2rRpkqTFixfr1Vdf1Q8//KDi4uIGPX94eLj+8Ic/6NSpU/rXv/5Vb+MuXryYMNnEECgBADWYpqnU1FRFRkbyZJYWwmazqU+fPpo5c6buuusudevWTWvWrNHs2bO1YsUKnTx5ssHOHRYWJkk6dOiQnnvuOSUmJsputysmJkbXX3+90tPTq48tLi5WbGysgoKCqmv8xS9+Uf1c8w8++KDG++dLSUmR3W7XgAED1L9/f40bN07Lli1rsOtCTQRKAEAN+/fv14kTJ5SYmGh1KWgAHTt21KRJk/T73/9eV199tXbs2KE5c+bo3Xff1c6dO1Xfd8Lt3LlTktSjRw89//zzeuONN5Senq7MzEzNnDlTv/jFL3T48GFJZ2dUMzIyNGHCBOXk5CglJUWrVq3Srl27NHz4cLm4uFS/f77vv/9eM2fOVEpKijZs2KCNGzeqZ8+ezGI2IgIlAKCG1NRUtWvXrl43UaDp8fHx0bXXXqvf//73mjx5skpKSrRgwQK9/vrrcjgcKi0tdfocaWlpeuGFF9S1a1fdeeedcjgcNToGJCUlqU2bNkpJSan12YKCAj399NNydXWVYRhauHChrrvuujrPs27dOnl6eqpLly6SJBcXFz388MO68cYbnb4GXBoamwMAquXm5mrHjh0aM2YMfSdbCRcXF/Xv31/R0dE6fPiwHA6HPv/8c3311VeKi4vTwIEDL+uRm2PGjJG7u7tKSkrk5+enW265RY8++qiCgoK0b98+TZ8+Xdu3b6/eFJSTk6M9e/bUGicoKKjGJp727dtf8JzXXnutHn30UcXHx+vuu+/WpEmT1LlzZ917772X8U3AGQRKAEC1tLQ0eXh4qH///laXgkZmGIa6dOmiLl26KD8/X2lpaVq/fr0cDod69eqlxMREhYeH/+xfNFauXFnn7PZPP/2kIUOGaObMmdX/nklSt27d6pwN9fX1veTaExIStHbtWr344ot66KGHdN9992no0KF68cUXNXDgwEseB1eOJW8AgCSprKxMGzduVFxcHH0nWzk/Pz+NGDFC999/v8aPH6+8vDy9++67+sc//qH169ervLz8ssdcuHChSkpK9PTTT1eHyfqUkJCgRYsW6cSJE5o3b151y6Lc3Nx6PxdqY4YSACDpbKug0tJSZnRQzc3NTQMGDFBcXJz2798vh8OhFStW6Msvv9SAAQOUkJAgf3//Sxrr3Czk+f0vKysrdeLECafrTElJkY+PjyZMmCBfX1/dcccdCgwM1NSpU7Vv3z66FTQCZigBADVaBQUEBFhdDpoYwzAUHh6um2++Wb/97W8VExOj9PR0vfLKK1q8eLEOHjz4s7vDx40bJ0l6/vnnq4999tln66UX5s6dO/Xcc89Vz0ZWVVXp22+/VWhoqPr06eP0+Ph5PCkHAFqov/71r5o/f762bdum+fPna8aMGRc8NiEhQdu2bdOZM2fqvW0MWqaysjJlZGTo+++/11/+8hcVFxcrPz+/+tGLGRkZtT7zzjvv6Pnnn1dxcbHCwsJ0/fXXa86cOSoqKlJUVJTWrl2rxMRE7dq1S4WFherTp4+mTJmiJ554QtLZGc34+HgdPHiw+v05c+bI29tbs2fPVmpqqtzd3VVRUaFevXrp2WefVe/evRv5m2mdCJQAYKELPQe5vLxchmHommuu0d13361+/fpd0fj79+9XeHj4zwbKhQsX6t1339XKlStrBMqPPvpIM2bM0BdffFGj3Qtwjmma2r17txwOh/bs2SNvb2/Z7XbZ7Xb5+PhYXR4aCUveAGChc42cZ82aJensDtmMjAxt2bJFq1atkpubm+Li4vTCCy80WA3nWgV16tSp1nt+fn4KCwtTmzZtGuz8aN4Mw1DPnj1166236u6771bv3r21du1avfzyy1q6dKmOHj1qdYloBGzKAYAmKjQ0VK+88oqCg4P1xz/+USEhIbr99tvr/TxpaWny9PRUhw4dar03fPjwOpcugbq0a9dOY8eO1S9+8Qtt3LhRaWlp2rRpk7p06aLExET17t27xqac85VXVsmxL0c5Z8oU4ucpe1igbDZ6oTYXzFACQBP3yCOPqH379nr00UeVmZmp2NhYubu711jCvuWWWxQSEnLBHoFFRUWaNWuW4uPjFRgYqAkTJujgwYMqKyvThg0bNGDAALm4uNT4zBtvvKE+ffrIMAy99dZbkqTvvvuuxvlfeeUVDRkyRJ06ddL48eN1/Pjxhvoa0Ix4eXlp8ODBuu+++zR9+nTZbDYtWbJEr7zyir7//nsVFRVVH2uapt79cb8Sn/tSt/7Lod8u3Kjp//xRQ/+6Rit/OmbhVeByECgBoIlzd3fXiBEjdOzYseqNEKGhoTWO+fe//129bF6Xv/71r5oxY4bWr1+vvXv36vDhw7r++uu1YcMGlZWVKSEhodZn7rnnHq1cubLGa0OHDq0+/6pVqxQSEqLvv/9emzdv1tatW/Xwww/Xz0WjRbDZbOrdu7dmzJih3/zmN+revbu+/vprzZ49W8uXL9eJEyc05+s9evzjLco5U1bjs0fyinV3ygYt3XjYoupxOQiUANAMdO3aVdLZTTZXYsSIEbrqqqskSYGBgXrqqae0Y8cOvf7664qKirqiVkFt27bVTTfdVD3mqFGj9OWXX15RfWj5QkJCNHHiRN1///0aOnSodu3apb/NmacXV22/6Oce/2iLSsorG6lKXCkCJQA0A+d2Xl/p87X/81GK55qXb9269YobmUdFRdX4OTg4mCVv/Cxvb29dc801+t3vfie3yGt+9vjC0gp9upml76aOTTkA0AwcOHBAkup8RvKl8PPzq/FzUFCQpLNPLwkLC7uiMb29vWv8bLPZVFVVdUVjoeWprKxUSUmJiouLVVxcXOevdxwtl3TxvyS52gztO3WmcYrGFSNQAkATV1JSoi+//FKhoaEaMGCAJMnFxaVWA/KCgoILjnH69OkaP+/evVuS1LNnzyue9UTLZ5qmSktL6wyF5/9cV1gsKyurc0wXFxd5eXnJy8tLZnk7GfLSxRpiV5mmvNyJK00d/w8BQBP35z//WadOndJbb71V3XKlQ4cOysnJqXHc9u0Xvhftp59+qvHz+++/L0kaO3ZsPVeLpsY0TVVUVFxRKCwpKanzyUmGYcjT07M6GHp5ecnHx0fBwcE1XvvPYzw9PeXm5lY9Tr+dJ/XL+akXrb/KlK7vU7ulFZoWAiUANFFHjhzR//zP/+jNN9/Uc889V6MH5S9+8QvNmTNHR48eVWhoqL799ttaofF8H3/8sdatW6errrpKWVlZmjt3rrp06aKZM2c2xqWgHpy/hHw5obC4uFiVlXVvanF3d68V+Pz8/H42FHp4eNTLzPaQiGBFhfhq14lCVVbVDq4uhqFhke3Uox1P3GnqePQiAFjoQo9eLCsrk2EYuvbaa+t89GJ+fr7+67/+S19//bU6d+6skSNHymaz6ZlnnlFMTIz++7//W/v27at+lvff/vY3rV+/Xlu3btXevXvVsWNHLVmypHrcc7tus7Kyqj+flZWlN954Q9u2bVOXLl00bNgwPfTQQ7rtttu0detW+fj4KCYmRmvWrNEvf/lLrVq1qvrzL774oq677jorvtIm7fwl5AuFwgsFxEtZQj4//F3o1+d+9vT0rNV71ApH84p1y7x12pddJJtxdkby3P/GdQnQWzMHyt/L7ecHgqUIlADQipimqTlz5qhdu3aaPn261eU0W+Xl5VcUCi9lCflyQqGXl1eNJeTmqqS8Uis2HdOHGw8ru7BMoQGeusneRdf17iBXFxrSNAcseQNAK7J3716dOnVK48aNs7oUy1VVVV1yKLzcJeTzw9/5S8gXCoX1tYTcXHm6uejG+M66Mb6z1aXgChEoAaAFO1lQqkXpB7XhQJ4MQ3I/fVC9gjtWN0pv7s4tIV8sFF7pEvL54S8oKKjOGcTzf24qS8iAFQiUANBCfZRxRH9YkqnKKlP/t9/BQ6ttnRS9/YSu6910ds6Wl5dfUSi80BKypFrh7/xdyBcKhV5eXnJ1dW3Vs4XAleAeSgBogVL35eimuT+qrt/hDUkuNkPL7rla/UL96+2cVVVVVxwKKyoq6hzT3d39ojOCFwqFrX0JGWhszFACQAv0xprdskmq604/83//mfvtXr1yc1zN9+pYQr6UUPhzS8j/Gf4CAgLUsWPHi4ZClpCB5oNACQAtTGFphb7ddfKiTx+prDK1fNMR2Su2qrSk+JKWkP8z/LVp00Zt27b92Z3Ibm5uzBYCLRyBEgBamDOlFRcNk+dUmYbk4qr27dtfUs9CQiGACyFQAkALE9DGTR6uNpVWVF30OH8vN91683SCIgCn0S0UAFoYD1cXTR3QWS62CwdFF8NQ8sCuhEkA9YJACQAt0D3DI+Tn6VpnqHSxGWrn66E7hoRbUBmAlohACQAtUKcAL30wa7D6dvSTdLZV0LloOaBrgD74r8EK9vGwrD4ALQt9KAGghdt85LQ2HMyVIWlgeFtFhvhaXRKAFoZACQAAAKew5A0AAACnECgBAADgFAIlAAAAnEKgBAAAgFMIlAAAAHAKgRIAAABOIVACAADAKQRKAAAAOIVACQAAAKcQKAEAAOAUAiUAAACcQqAEAACAUwiUAAAAcAqBEgAAAE4hUAIAAMApBEoAAAA4hUAJAAAApxAoAQAA4BQCJQAAAJxCoAQAAIBTCJQAAABwCoESAAAATiFQAgAAwCkESgAAADiFQAkAAACnECgBAADgFAIlAAAAnEKgBAAAgFMIlAAAAHAKgRIAAABOIVACAADAKQRKAAAAOIVACQAAAKcQKAEAAOAUAiUAAACcQqAEAACAUwiUAAAAcAqBEgAAAE4hUAIAAMApBEoAAAA4hUAJAAAApxAoAQAA4BQCJQAAAJxCoAQAAIBTCJQAAABwCoESAAAATiFQAgAAwCkESgAAADiFQAkAAACnECgBAADgFAIlAAAAnEKgBAAAgFMIlAAAAHAKgRIAAABOIVACAADAKQRKAAAAOIVACQAAAKcQKAEAAOAUAiUAAACcQqAEAACAUwiUAAAAcAqBEgAAAE4hUAIAAMApBEoAAAA4hUAJAAAApxAoAQAA4BQCJQAAAJxCoAQAAIBTCJQAAABwCoESAAAATiFQAgAAwCkESgAAADiFQAkAAACnECgBAADgFAIlAAAAnEKgBAAAgFMIlAAAAHAKgRIAAABO+f8B5WAugKDBUPIAAAAASUVORK5CYII=", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -880,7 +756,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 20, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -896,7 +772,7 @@ "-0.6" ] }, - "execution_count": 24, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -907,7 +783,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 21, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -919,9 +795,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcUAAAE1CAYAAACWU/udAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcU/fdB/BPIAQEVO5BhBosVQoCgRa5lkt1Wiv0TtGu\nKmqtT2txWiedc5vt1ldb67an29Otm+sq4nSb7ebTldbW6sSVcC0EFRVrFVQqd+QW5Jb8nj8Ieaqo\n9UISQj7v18vXi+Tk5HwP8son55zf+f4kQggBIiIigo25CyAiIhotGIpERER6DEUiIiI9hiIREZEe\nQ5GIiEiPoUhERKTHUCQiItJjKBIREekxFImIiPQYikRERHoMRSIiIj2GIhERkR5DkYiISI+hSERE\npMdQJCIi0mMoEhER6TEUiYiI9BiKREREegxFIiIiPYYiERGRHkORiIhIj6FIRESkx1AkIiLSYygS\nERHpMRSJiIj0GIpERER6DEUiIiI9hiIREZEeQ5GIiEiPoUhERKQnNXcBRGS9lEolXFxcDI8DAgLw\n7rvvmrEisnYMRSIyG6VSiezsbHOXQWTA06dERER6DEUiukxWVhZcXFwMR3ArV66Eg4MD8vLy0NDQ\ngHnz5iE5ORnx8fHYvHmzYb2ysjIkJCQgMTERs2bNQlVVFQBg69atUCgUWLBgAVasWAGlUomkpCQA\nQF1dHR599FHEx8fjqaeeQk1NjYn3lugKgojoComJiWLbtm2Gx1OmTBEHDx4U69evF2+88YYQQoiu\nri4RFxcnhBCira1NeHh4iAMHDgghhMjNzRXTpk0TWq1WCCHEpk2bhFwuF42NjUKr1YqsrCwhhBDP\nP/+8qK+vF0II8T//8z/C19dXaDQaU+0m0TA8UiSiG+bm5oa9e/fi2LFjcHJywr59+wAAubm5cHZ2\nxv333w8AmD9/Purr61FcXGxYNyYmBp6enrCxsTEcYf7ud7+DXC4HAKxatQoDAwP46KOPTLxXRP+P\nA22I6IatX78eTk5OSE9Ph1QqxcaNG5GWloba2lq0trYaTosCgKenJ1paWgyPJ06ceN33lkgk8PX1\nxdmzZ41VPtF3YigS0TAymQy9vb2Gx21tbQCAxsZGZGZmIjMzE/v370dKSgoiIiLg5+cHX19f5OXl\nGdbp6OiAg4PDNbdRWVmJc+fO4cEHHzQ819DQAB8fn5HfIaIbxNOnRDSMv78/KisrAQCHDh1Cd3c3\nAGDDhg2oqKgAAERFRUEmk0EIgZSUFDQ3N6O0tBQAoNFokJycjPb29mtuo7m5Gb/5zW/Q398PAPjH\nP/4BjUZzWUgSmRqPFIlomLVr1yItLQ2JiYlITU2Fj48P1qxZg7S0NKxevRpSqRTt7e149dVXERAQ\nAAD45JNPsG7dOgghIITAK6+8Ak9PT+zatQvZ2dno6enB4sWLkZOTAwAIDQ1FYGAgEhMTYWtrC4lE\ngr1798LNzc2cu05WTiKEEOYugoiIaDTg6VMiIiI9nj4lohHT1TuA3CMXUNOsgcLDCSmhPnC258cM\nWQ6ePiWiEVFa04qM7BIIAXT3aeEos4VEAmRnzESkgtcJyTIwFInotnX1DiDq9f3Q9GqHLXOyt0XJ\nhtlw4hEjWQBeUySi25Z75AKu9fVaiMHlRJaAoUhEt62mWYPuvuFHicDgqdSalm4TV0R0axiKRHTb\nFB5OcJTZXnWZo8wWCndHE1dEdGsYikR021JCfSCRXH2ZRDK4nMgSMBSJ6LY520uRnTETTva2hiNG\nB6kETva2+uc5yIYsA0efEtGI0ejvU/yP+gQ8HYD16bMYiGRR+NdKRCPGyV6K9Mg7EOqsgVqtZiCS\nxeHpUyIacd7e3mhoaDB3GUQ3jaFIRCPOxcUFPT09uHTpkrlLIbopDEUiGnESiQRyuZxHi2RxGIpE\nZBRyuRz19fXmLoPopjAUicgoeF2RLBFDkYiMgqdPyRIxFInIKLy8vNDc3AydTmfuUohuGEORiIxC\nJpNhwoQJaG5uNncpRDeMoUhERsNTqGRpGIpEZDQcgUqWhqFIREbDEahjT1NTE9auXYukpCTExcXh\nwQcfxJkzZ8xd1ohhKBKR0fD06djz8ccf4/z58/j3v/8NlUqF8PBwPP744+Yua8QwFInIaCZMmICB\ngQFoNBpzl0IjZNq0acjKyoKNzWB8LFy4EBUVFWhqajJzZSODoUhERiORSODt7c3riiaQlZUFFxcX\nZGdnAwBWrlwJBwcH5OXloaGhAfPmzUNycjLi4+OxefNmw3plZWVISEhAYmIiZs2ahaqqKgDA1q1b\noVAosGDBAqxYsQJKpRJJSUmIjY3FzJkzDev39PTAwcEBzs7OJt1fY2EoEpFR8RSqabz55ptQKpWG\nx3/84x/h7e0NAPjVr36FpKQkHDx4EJ999hk++ugjAEB7ezseeOABvPzyyzh06BBefPFFPPzww9Dp\ndHj22WeRkZGBvLw8vPbaaygvL0dUVNSw7ebm5mLZsmUYN26caXbUyBiKRGRUDEXzc3Nzw969e3Hs\n2DE4OTlh3759AAYDzdnZGffffz8AYP78+aivr0dxcbFh3ZiYGHh6esLGxuayI0wAOH36NP71r3/h\ntddeM93OGBlnACUio/L29kZRUZG5y7Bq69evh5OTE9LT0yGVSrFx40akpaWhtrYWra2tSEpKMrzW\n09MTLS0thscTJ0686ntevHgRy5cvx1//+tdrvsYSMRSJyKg8PT3R2tqKgYEBSKX8yDEmmUyG3t5e\nw+O2tjYAQGNjIzIzM5GZmYn9+/cjJSUFERER8PPzg6+vL/Ly8gzrdHR0wMHB4brbuXTpEtLT0/Hm\nm29i+vTpaGxshL29/ZgIR54+JSKjkkqlcHV1Zbs3E/D390dlZSUA4NChQ+ju7gYAbNiwARUVFQCA\nqKgoyGQyCCGQkpKC5uZmlJaWAgA0Gg2Sk5PR3t5+zW1otVosXLgQy5cvR1BQELq6urBnzx6o1Woj\n751p8GsbERnd0AjUoYEfZBxr165FWloaEhMTkZqaCh8fH6xZswZpaWlYvXo1pFIp2tvb8eqrryIg\nIAAA8Mknn2DdunUQQkAIgVdeeQWenp7YtWsXsrOz0dPTg8WLFyMnJwcA8N577+HDDz/Ehx9+eNm2\nDx48aPL9NQaJEEKYuwgiGttUKhW6urowd+5cc5dCdF08UiQio5PL5Th9+rS5y6Br6OodQO6RC6hp\n1kDh4YSUUB8421tnPFjnXhORSQ2dPhVCQCKRmLsc+pbSmlZkZJdACKC7TwtHmS1+8fFxZGfMRKTC\nzdzlmRwH2hCR0Tk7O8PGxgadnZ3mLoW+pat3ABnZJdD0atHdpwUwGIyaXq3++QEzV2h6DEUiMgne\nxD/65B65gGuNKhFicLm1YSgSkUlwbsXRp6ZZYzhCvFJ3nxY1Ld0mrsj8GIpEZBKcW3F0OX/+PBpO\nV0IK3VWXO8psoXB3NHFV5seBNkRkEnK5HF988YW5y7BqQgicPn0a+fn5aG9vx2MzY7CvqRUDVzla\nlEiAlFAfM1RpXgxFIjIJDw8PtLW1ob+/H3Z2duYux6oIIXDixAnk5+djYGAA8fHxmDFjBmxsbJA9\nafjoU4kEyM6YCScrvC3D+vaYiMzC1tYW7u7uaGxsxOTJk81djlXQarU4evQoVCoVZDIZEhISMH36\n9Mtui4lUuKFkw+zB+xRbuqFwd0RKqI9VBiLAUCQiExq6rshQNK7+/n6o1WoUFBTAzc0N8+bNg7+/\n/zXvEXWylyI98g4TVzk6MRSJyGQ4AtW4enp68OWXX6K4uBiTJ0/GE088AV9fX3OXZVEYikRkMnK5\nHFVVVeYuY8zRaDQoLi7Gl19+iYCAADz99NOQy+XmLssiMRSJyGSGTp+y3dvIaG9vR2FhIQ4fPozg\n4GA888wzcHOzvtZsI4mhSEQm4+joCJlMhvb2dri4uJi7HIvV0tIClUqFEydOIDw8HM8//zzGjx9v\n7rLGBIYiEZnU0HVFhuLNq6+vR35+PqqrqxEZGYnMzEw4OlrfDfbGxFAkIpMa6oEaGBho7lIsxrlz\n55Cfn4+6ujrExMQgNTUV9vb25i5rTGIoEpFJeXt74/jx4+YuY9S7svtMXFwcnnzySUil/Ng2Jv52\nicik5HI5/v3vf5u7jFHret1nyPgYikRkUu7u7ujq6kJvby9PAX7LUPeZ/Px8ODg4XLX7DBkfQ5GI\nTMrGxgaenp5obGyEn5+fucsxuyu7zzz44IPX7T5DxsVQJCKTGxqBas2hONR9pqioCL6+vuw+M0ow\nFInI5IZGoFqjK7vPLF68GF5eXuYui/QYikRkct7e3qisrDR3GSbV3t6OgoICHDlyhN1nRjGGIhGZ\nnFwuR2Njo1W0e2tpaUF+fj6qqqrYfcYCMBSJyOQcHBwwbtw4tLa2wt3d3dzlGAW7z1gmhiIRmcVQ\nc/CxFopD3Wfq6+sRHR3N7jMWhqFIRGYxNAI1KCjI3KXctqHuM1988QU6OzvZfcaC8X+MiMxCLpfj\n8OHD5i7jtuh0OlRVVeGLL76AVqvFfffdh+DgYHafsWAMRSIyC29vb+zbt8/cZdySK7vPJCUlYdq0\naWN+0JA1YCgSkVm4urri0qVLuHTpEsaNG2fucm5If38/ysvLUVhYCDc3N8yfPx8KhYJhOIYwFInI\nLCQSCby8vNDQ0ACFQmHucq6rp6cHpaWlKC4uhp+fH9LS0jB58mRzl0VGwFAkIrMZ6mwzWkNRo9Gg\nqKgIZWVluOuuu9h9xgowFInIbLy9vfHNN9+Yu4xhruw+s2LFCri6upq7LDIBhiIRmY1cLkd5ebm5\nyzBobm6GSqXCyZMnoVQq2X3GCjEUichs5HI5mpqaoNPpzHobQ11dHfLz81FTU4OZM2ciMzPTYgb/\n0MjizTREY9Dnn38OpVIJiUSCxMREJCUlXfZvJJ07dw7R0dG3NAKzoqIC77zzjuGa4r/+9S8EBgbe\nco2PPfYYHBwckJeXd0OvP3fuHHbu3Im//vWv8PX1xQ9+8AMkJiYyEK2YRAghzF0EEY28vLw8JCcn\no7+//7LOKklJSTccGtcikUhQXV1tCLOamhr4+/vjVj5ONm3ahHfffddwbTE7OxvZ2dm3XKNCoUB2\ndvY1g/Vq3WfCwsLYfYYA8PQpkdV58803zV3CZVxdXaHVao2+HZ1OhxMnTiA/Px86nQ7x8fHsPkPD\n8K+ByErU1NQgIyMDM2fOBAB0dnZi+fLliI+PR0xMDDZv3mw40hNCYMuWLYiOjkZ8fDyWLVuGzs5O\nAMC8efMAAAsWLEBSUtJlo0f/9Kc/Yfbs2ZgxYwa2b99ueH7Pnj2YNWsWZs+ejYSEBKhUKsMyNze3\nGw7Fn//85/D29sYzzzyDRx55BJGRkZg/fz6am5uv+vpvvvkGjz32GKKjoxEQEIANGzYgKSkJYWFh\nePDBBzF58mS8/fbbAIDvf//78PDwwI4dOwDAsP/33XcfMjMz0dfXB+D/T9Fu2bIFDz30EDw9PZGd\nnX1D9ZMFEEQ0Jh08eFAAEAkJCSIxMVFERUWJJUuWGJYvW7bM8Li7u1uEhISInJwcIYQQOTk5Iigo\nSGg0GiGEEMuXLxfLli0zrAtAVFdXGx5XV1cLAOKPf/yjEEKIM2fOiHHjxokTJ04IIYTYsWOHaGlp\nMbzWz8/PsO5HH30kXF1dDY+3bdsmEhMTr7lfS5YsEXfeeafo6OgQQgixYsUKsXDhQsPyKVOmiIMH\nD4q+vj6xe/dusWLFCpGTkyPOnDkjkpKSxP79+4UQQvzjH/8Q06ZNM6z35Zdfip/97GdCCCH+8pe/\niMDAQKHRaIROpxNpaWniF7/4xWXbWLp0qeH3nJube816ybLwSJFojDtw4ADy8vLwt7/9zfCcTqfD\nzp07sWzZMgDAuHHjkJ6ejm3btgEAcnJykJ6ebpj/b+nSpdixY8d3HtGlpaUBAPz9/RETE4Pdu3cD\nAMLCwrB06VLEx8cjIyMD58+fR2NjIwDAyckJQghoNJob3qf58+cbbpVYtGgRPvjgA0NtQggcOXIE\nv/nNb9DT0wMbGxu88847WLp0KU6cOIGysjIAQEpKCpqbm1FUVAQA2LFjB55++mkAg9c1FyxYAEdH\nR0gkEixcuNBwBDnk4YcfBjB4jXb+/Pk3XDuNbrymSGQlhgagAEBTUxN6e3vh6elpWO7p6Yna2loA\nQG1t7bBl/f39aGhogI+PzzW38e0b3N3d3VFXVwcAeOihh7Bq1Sr88Ic/BDA4UKe7u9vws62tLRoa\nGjB16tQb2pcrt9Pf34+zZ8+iuroanZ2daG9vx8qVK/H73/8e5eXlOHToEMaNG4eMjAzDdmUyGdLT\n05GTk4N7770XZ86cwV133WXY/127duHgwYMAYAjXb5s4ceIN1UqWhaFIZIU8PT1hb2+PpqYm3H33\n3QAGg9LX1xcA4Ofnh6amJsPrm5qaYGdnB7lcft33bW1thZubG4DBG+FnzJiBxsZG1NTU4IEHHgAw\n2FT7Sra2tqivr7/hUGxtbTX8XFNTA6lUir///e8IDQ2Fs7Mz7rvvPnh5eaGkpAQJCQmGWyyu3Pbi\nxYsxf/58zJo1C3PnzjU87+fnh+9973tYv3694blrXbeksYWnT4mskI2NDRYvXmwYDHPp0iXs3r0b\nS5cuBQBkZGRg9+7duHTpEgBg+/btWLRoEWxtbQEAzs7O6O7uxl/+8hd88MEHhvcdOkV75swZFBUV\n4cknn4S7uztcXFxQXFwMAPj000+H1TN0pHij9u3bh5qaGnz44YfYtGkT7rvvPrzwwguYP3/+ZUd0\nAQEBKC0thU6ng0ajQX5+/mXvEx0dDQ8PD7z44otIT083PJ+RkYH3338fPT09AICDBw9i5cqVN1wf\nWTBzX9QkopG3b98+ERYWZhhos2/fvmGv6ezsFMuXLxdxcXEiKipKvPHGG0Kn0xmWb9myRURHR4u4\nuDixdOlSw8AWIYR46aWXREhIiIiLixNnz54VUVFRAoD49a9/LZKTk0VQUJDIzs42vH7Pnj3C399f\nzJkzR2zcuFEAEFFRUaK4uFiEhYUJe3t7ERERIT788EMxffp0MXHiRPHCCy9cdd+efPJJMWfOHBES\nEiKmT58u5syZI5qamoQQQjz66KPC3t5ehIWFiS+//FLU1dWJpKQkERYWJp566imRlJQkpkyZInbu\n3Gl4v1/84hfioYceGradX/7yl2LmzJkiOTlZPPzww6KhoUEIIcSiRYsM2/j2+9DYwJv3icjs+vv7\n8eabb+JHP/qR4Wj0SmfPnkV+fj7eeusthIaG4p133oFMJrvtbb/zzjvw8PAwDBIi68bTp0Rkdr06\nCc7Z+eLlPWr8rfQcunoHAAyOJD116hS2bduGDz/8EIGBgbj77rvh5+d324GYk5MDYLC1XGpq6m3v\nA40NPFIkIrMqrWlFRnYJ+vsH0KeTwFFmCwmATUmeuPjVl5d1n3n11Vfx+9//Hg4ODvjpT3+K5cuX\n3/J2Y2Nj0dPTg5UrV/J6IRkwFInIbLp6BxD1+n5oeoff/yiT6PD+9+9CaND0W2o2TnQrePqUiMwm\n98gFXOtrudTODlXdjgxEMimGIhGZzVd1bejuu3qXnO4+LY7X8t5AMi3evE9EJnfx4kUUFBTgdMU3\nkNn4oE83/GjQ3gY4f6wM712sQHh4OIKDg0dktCnR9fCaIhGZTF1d3WAYnj6Ne+65BzOU9+D+/ym6\n6jVFJ3tbFGYl48K5aqjVapw7dw533303wsPD4evry9OqZBQMRSIyKiEEqqurUVBQgMbGRkRHR+Oe\ne+6Bvb09gP8ffSrE4ClTR5ktJBIgO2MmIhVuhvfp7OzE4cOHoVarYWNjg/DwcISFhcHJyclcu0Zj\nEEORiIxiaFJflUqF/v5+xMbGIiQk5Koz3Gt6B5B75AJqWrqhcHdESqgPnOyvfnVHCIFz586hoqIC\nJ06cgL+/P8LDwxEQEMAJg+m2MRSJaEQNDAygoqIChYWFcHR0RFxcHKZPN85tFb29vaisrIRarUZH\nRwfCwsKgVCrh7u4+4tsi68BQJKIR0dPTg9LSUpSUlGDSpEmIi4vDHXfcYbJrf42NjVCr1Thy5Ag8\nPT0RHh6OoKAg2NnZmWT7NDYwFInotnR0dKCoqAgVFRWYNm0aYmNj4eXlZbZ6tFotvvrqK6jVapw/\nfx5BQUGIiIiAj48PB+fQd2Io3oJt27Zh2bJl4K+OrFlTUxMKCgpQVVWFsLAwxMTEjLqJdzs6OgyD\nc+zs7KBUKhEaGsrBOXRNDMWb1NPTg3vvvRfHjh1jKJJVOn/+PFQqFWpraxEZGYmZM2caJvEdrYQQ\nOHv2LNRqNU6ePImpU6ciPDwcd955Jwfn0GUYijdpy5Yt6O3txU9/+lOGIlmNodkqVCoVOjo6EBsb\nC6VSaZHX63p6egyDczo7O6FUKhEeHg5XV1dzl0ajgMWHYlZWFrZu3Yq33noLGRkZWLlyJbZv345P\nP/0Ud999NzIyMtDT04P+/n6kpqbipZdeAgCUlZVh7dq1kEgkkEql+N3vfofAwEBs3boVr732GqKj\nozF+/HiUlpbCxcUFeXl5aGtrwyOPPIL33nsPd955J0ORxjytVoujR4+ioKAAtra2iIuLQ1BQ0Jg5\numpoaIBarcbRo0fh5eWF8PBw3H333RYZ9jQyLD4UASApKQkZGRnIyMgAACgUCmRnZ+OTTz6Bu7s7\nXnrpJWg0GsydOxf5+flob29HQEAA/v73v+P+++/Hxx9/jBdffBEnTpyAjY0NXn75ZfzhD3/A0aNH\n4e7ujg0bNmDz5s146aWXkJCQgODgYPj7+zMUaczq6+tDWVkZioqK4O7ujri4OEydOnXMDlQZGBjA\nyZMnoVarceHCBQQHByM8PByTJk0as/tMVzeme5+6ublh7969SElJQXBwMPbt2wcAyM3NhbOzM+6/\n/34AwPz58/HUU0+huLgYMTExAICYmBh4enoCADZv3oza2lpUVFRg8+bNqKmpMcv+EBmbRqNBcXEx\nysrKoFAokJ6eDh8fH3OXZXRSqRTBwcEIDg5Ge3s7Kioq8P7778Pe3h7h4eEICQmBo6OjucskExjT\nobh+/Xo4OTkhPT0dUqkUGzduRFpaGmpra9Ha2oqkpCTDaz09PdHS0mJ4fOUoupdffhmbNm0yVelE\nJjXUoLuyshLBwcFYvnw53NzcvnvFMWjixIlITExEQkICqqurUVFRgYMHDyIgIADh4eHw9/cfM6eP\nabgxEYoymQy9vb2Gx21tbQAGb+bNzMxEZmYm9u/fj5SUFERERMDPzw++vr7Iy8szrNPR0QEHB4dr\nbqO8vBxff/01gMEL9cDgadvExES88sorRtgrIuOrq6uDSqXCmTNncM8992DVqlVwdnY2d1mjgkQi\nwdSpUzF16lRcunQJlZWVOHDgALq7uxEWFobw8HC4uLiYu0waYWMiFP39/VFZWQkAOHToELq7uwEA\nGzZswJo1a6BUKhEVFQWZTAYhBFJSUrB27VqUlpYiMjISGo0GycnJ+PTTTw2nTK9UXl5u+Lmmpgb+\n/v6XhSqRpRhq0K1SqdDU1ITo6GikpqYaGnTTcOPGjUNkZCQiIyNRX18PtVqNrVu3YtKkSVAqlbj7\n7ruv2tOVLM+YGGhTVVWFtLQ0uLm5ITU1FW+//TZcXFyQlpaGzz77DFKpFO3t7ViyZAlWr14NYHD0\n6bp16yCEgBACWVlZSElJwa5du/DjH/8YPT09mDNnDnJyci7b1tatW/Hee++huLgYiYmJePHFF/HQ\nQw+ZY7eJbsrVGnSHhobC1tbW3KVZpIGBAVRVVUGtVqOurg4zZswwDM4hyzUmQpGIrq2/vx+HDx9G\nQUEBnJ2dERcXh2nTpnFU5Qhqa2tDRUUFKioqMG7cOMPgnNHe1ICGs9pQ7BqaqqZZA4WHE1JCfeB8\njalqiCzRpUuX8OWXX6KkpAQ+Pj6GBt1kPDqdDtXVg5Mif/3117jrrrsMg3P4JcQyWGUo3uikpkSW\naLQ16LZW3d3dOHr0KNRqNXp7e6FUKqFUKkddf1i6nNWFYlfvAKJe3w9Nr3bYMid7W5RsmH3NyU2J\nRrNvN+hWKpWIjo7mB/AoIIRAXV0d1Go1jh07Bh8fH4SHh2P69OkcnDMKWV0o/q30HH6eexzdfcND\n0VFmi00pQUiP5CkmshzfbtA9c+ZMREZG8lrWKNXf328YnNPQ0IAZM2YgIiICcrnc3KXdkpycHKxa\ntQpHjx6FQqEwdzkjwuq+ptQ0a64aiMDgqdTqZo2JKyK6eUIIfPXVV1CpVOjs7ERsbCwef/xx9uwc\n5ezs7BASEoKQkBBcvHgRarUau3btgrOzM5RKJUJCQq57v/Ro8qMf/QiOjo7o6uoydykjikeK32In\n0SFxfBOejhmcVoannmi0GesNuq2RTqfDmTNnoFarcfr0aUyfPh3h4eGYMmXKqB6cU1tbC19fX0gk\nElRXV4+ZI0WrC8Xvuqb40bIQVFUeRmVlJSZPnoyIiAhMmzaN93KRWVlbg25r1d3djSNHjkCtVqO/\nv98wOGfChAk3tL4pZw0awlAcA25k9Gl/fz+OHz+O8vJytLa2Gto6ubu7m7l6siZXNuiOi4uzigbd\n1k4IgQsXLhgG5/j6+hoG53zXF3RTzRo0ZKyFotVdUwSASIUbSjbMHrxPsaUbCndHpIT6XDbq1M7O\nDmFhYQgLC0NzczPKy8uxbds2eHp6IiIigm2dyKjYoNu6SSQSTJ48GZMnT8bcuXNx/PhxlJSU4OOP\nP0ZoaCjCw8Nv+jabkZw1aCyz2k91J3vpDY8y9fDwwJw5czBr1iycPHkS5eXl2Lt3L0JCQix65BiN\nPmzQTVf69hf01tZWqNVq/OUvf8GECRMQHh6OGTNm3FDf2pGcNWgss9pQvBW2trYICgpCUFAQ2tra\noFarsXPnTkyYMAERERGYMWMGZDKZucskC8MG3XSj3NzcMGvWLCQnJ+Prr79GRUUFPv/8cwQGBiI8\nPBx33HGHSWYNGssYirfIxcUFycnJSExMxNdff43y8nJ8/vnnCAoKQkREBHx8fDgIgq7rygbdcXFx\nCAkJ4aCKy8snAAAcP0lEQVQu+k42NjaYNm0apk2bBo1Gg8OHDyM3Nxc6nQ7jxo0zzOpjrFmDxjKr\nHGhjLJ2dnaioqIBarYZMJkNERASbAtMw/f39qKioQGFhIRt004gRQuCbb77Bv/71L/z85z+Hq6sr\nUlNTsXv3bqPMGvTnP/8ZO3bswKFDhxAVFYUHH3wQP/vZz8y1+yOGoWgEQgjU1NSgvLwcp06dspj7\njsi4Ll26hNLSUpSUlGDy5Mls0E1G09fXh+PHj0OtVqOlpQWhoaGIiIiAh4eHuUsb9RiKRjZ031F5\neTl0Oh3Cw8MRFhbGwRNWpKOjA4WFhaioqMD06dPZoJtMqrm5GRUVFTh8+DBcXV2hVCoRHBw87Jo1\nZw4axFA0ESEEamtrUV5ejqqqKvj7+yMiIgJTp05lN5Ixig26aTTR6XQ4deoU1Go1zp49axic4+fn\nhy/PXuTMQXoMRTPo7e3F0aNHUV5eju7uboSHh3NKmTHk3LlzUKlU+Oabb9igm0alrq4uHD58GGq1\nGn06CbY2KtBzlZbQ1jhzEEPRzOrq6lBeXn5Z1wq2lbM8327Q3dXVhZiYGCiVSjboplFNCIF3PjuM\nt76oRZ9u+HgHa5w5yHrif5SaNGkS5s+fjzlz5uD48eMoKirCJ598grCwMERERLCLySjHBt1kySQS\nCTqE/VUDERg8lVrT0m3iqsyLoThKXK2t3J///Gd4eXmxrdwo1Nvbi/LychQVFcHDwwNz585lg26y\nSAoPJzjKbK85x6zC3dEMVZkPT5+OYlqt1jAhaV1dnaGtHEcums+3G3T7+/sjNjaWDbrJon3XzEG8\npkij0tCEpBUVFZg4caKh5yHbyplGa2srCgoKcOzYMQQHByM2NpantmnMuJGZg6wFQ9HC6HQ6Q1u5\ns2fPsq2ckX27Qfe9996LmTNn8h5TGpM0Q/cpXmPmIGvBULRgQ23lysvLYW9vz7ZyI+TbDbqbm5sR\nHR2NiIgINugmsgIMxTFg6ENcrVYb2spFRETgjjvu4NHjTdDpdDh+/DgKCgrYoJvISjEUx5ju7m4c\nPnwY5eXlEEIYGgM4OTmZu7RRiw26iWgIQ3GM+nZbuRMnTmDq1KlsK3cFNugmoisxFC3Y559/jvXr\n1+Pw4cNISEgYdmQzNGloT08PKisrL2sr5+HhgeXLl6O4uBg3+yfw+uuvY2BgAD/96U9HalcAAM8/\n/zx27dqFt956CxkZGZct6+vrw5w5c3Do0CFUV1dDoVDc8nba29tRVFSEiooKBAYGIiYmhre5EBEA\nhqLFy8vLQ3JyMvr7+y+7uT8pKemymbSHDLWVq6yshIODA9asWYOBgYGbum7W29sLIYRRZuZOSkpC\nRkbGsFAcIpFIbjkUm5qaoFKpcPLkSSiVSsTExGDChAm3VzARjSnWN97WSrz55ptXff7bbeU+//xz\nAMBbb711U23lLG0U5pUNulevXs0RukR0Vby4NMbU1NQgIyMDM2fOBADs2bMHs2bNwuzZs5GQkACV\nSgVgsK1cUFAQAEAmk2H9+vWYPn06fvKTn+Do0aMYGBjAK6+8gpiYGCQnJyM9PR11dXX4/PPPERgY\niKSkJMM2T506hQceeAAJCQmIjY3F3r17AQAlJSVQKpVQKBTYsmULEhMTERoaiq+++uq6+3Dq1Cmk\npqYiPDwcixYtQnf31XsvCiGwZcsWREdHIz4+HsuWLUNnZ6dh2WuvvYbJkydj9uzZKCsrw/r165GV\nlYWmpiZotVqsWbMGISEheOCBB7Bp0yY4ODjgscceAzA4i8CyZcsQHx+P2NhY/OEPfwAwGLDR0dGQ\nSCTIzs7GnDlzYG9vj5qamlv7DyOi0UWQRTt48KAAIBISEkRiYqKIiooSS5YsMSzfsWOHaGlpEUII\nUV1dLfz8/AzLqqurBQDx97//XQghxOuvvy5iY2NFTk6OWLdunfDz8xP19fVCCCHWrFkjDh48KIQQ\nYtu2bSIxMVEIIUR/f7+YPn262LZtmxBCiFOnTonx48eLr7/+2lCfnZ2d+OKLL4QQQjz33HPi2Wef\nveb+JCYmisTERNHX1ye0Wq144IEHxIYNGwzLAYjq6mohhBA5OTkiKChIaDQaIYQQy5cvF0uXLhVq\ntVps3LhR2NnZiU8//VRotVrx29/+9rJ1f/e734nQ0FBx6dIlodPpxBNPPCGmTJli2M4zzzwjFi9e\nLIQQoqOjQ/j7+xv2Yej3tn37diGEEL/61a/EhQsXrv8fRUQWgUeKY8SBAweQl5eHv/3tb5c9HxYW\nhqVLlyI+Ph4ZGRk4f/48GhsbL3vNAw88AAAIDw9HU1MTFi1ahCVLlqCtrQ0vvfQS/vjHP2LhwoWG\no89vKy4uxpkzZ/D0008DAAICAhAVFYWdO3caXuPs7Iz4+HgAQGhoKKqrq6+7Lw8//DDs7OxgY2OD\np556atg+DcnJyUF6ejocHR3R29uLyMhI5OTk4PDhw+jq6sJ9992HuXPnwsbGBt///vcvW/f999/H\nE088AQcHB0gkEixcuNCwTKfTYceOHVi2bBkAYPz48UhNTcWOHTuG1QkAL774IiZNmnTdfSIiy8Br\nimOMQqFAdna24fFDDz2EVatW4Yc//CGAwYEqV56OHBpsYm9vj76+PgBASEgIPvvsM7zxxhv4yU9+\ngpkzZyI6OhpKpRIXL140rFtbWwtXV9fLBvl4enqitrZ22PsDgIODg2Eb1+Lq6mr42d3dHXV1dVd9\nXW1tLSZMmIADBw6grKwMDg4O0Gq1+N73vofCwkJ4eHgYXnvltdK6urprLm9qakJvby+ysrIM1x7b\n2tqgVCovew9OCk009jAUx7DGxkbU1NQYjgT7+/tveN3u7m4EBQXhww8/RH19PR577DFoNBpMnDgR\npaWluHDhAkpKSuDl5YWLFy9iYGDAEIxNTU0IDAy85bpbW1sNPzc3N1/1KKy1tRUODg74+OOPcddd\nd+GZZ57BiRMnYGdnB7lcjkmTJl127bKlpeWy9SdNmoSmpqarLvf09IS9vT3efvttREZGAhj83V3r\n2iYRjR08fTqGubu7w8XFBcXFxQCATz/99IbXLSkpwaZNmwAA3t7emD59OqRSKRISEvC9730Pbm5u\nOHfuHAoLCyGXy/Hb3/4WQgicOXMGxcXFw05X3ox//vOf6O/vh06nw86dO7FgwYLLln/88cd49913\n8eCDD+Kbb77B/fffDzc3N2zfvh2LFi2Cra0tnnjiCRQWFuLMmTMAgN27d1/2Hk8++SQ++OAD9PT0\nQAiB999/37DMxsYGixcvvux06auvvoqcnJxb3icishDmvqhJt27fvn0iLCzMMNBm3759w16zZ88e\n4e/vL+bMmSM2btwoAIioqCjR0tIioqKiBADx0EMPibNnz4qwsDBhb28vFi1aJOrq6kRaWppISEgQ\nsbGx4tFHHxUXL14U+/btE9OnTxcTJ04UL7zwgtBoNGL37t0iKChI3HnnnWLGjBnin//8pxBCiGPH\njhne89lnnxXFxcWGddevXz+s1ueee05MnDhRrF27VsydO1eEhYWJ73//+6Krq0scP35cBAYGCgAi\nODhYnD59WgghxJYtW0R0dLSIi4sTS5cuFR0dHYb3e++990RQUJCYNWuW+NOf/iQAiJqaGiHE4ACh\n1atXi+DgYDFv3jzx+uuvC4VCYVi3s7NTLF++XMTExIiEhATxgx/8QAwMDFz2e0tMTBTHjh0b0f9T\nIjIv3rxPI0IIgfPnz0OtVuPEiRO48847DW3lbrWH6FCDbpVKBa1Wi9jY2Jtq0N3a2mq4VtjU1AS5\nXI6uri44Ojqip6cHOp0Ojo6Ds4q///77+OUvf2k4qiYi68RQpBHX09ODo0ePQq1WG9rKhYeHD+se\n0zU0f1uzBgoPJ6SE+sDZXjoiDboHBgaQlJSE//znP7CxscGvf/1r/O///i/+85//AAD279+PAwcO\n4PXXX4dOp8Pjjz+OkJAQ/PznPx/R3wURWRaGIhnVt9vK+fn5ISIiAnfddRfKz7cPn+kbwJpwGdq/\nLoevry9iY2NvuUG3EAJLlizByZMnYWdnB2dnZ/zhD38wtIerqanBs88+i56eHvT29kKpVOKtt95i\npxsiK8dQJJPo6+vD8ePHUV5ejoaWdmxvn4Ye7fDX2dsI7Hv+XkyZ7G36IonI6nH0KZmETCaDUqnE\nsmXL4HHPHFzrq5itVIqiC9e/j5GIyFgYimRyNc0a9Oquvqy7T4uaFt4PSETmwZv3ySSE/h7G/Px8\nNHyjhb2tHL1XOX3qKLOFwt3R9AUSEYGhSEam0+lQVVWF/Px89Pf3Iz4+Ho+kBSL2zYPo1Q5PRYkE\nSAn1MUOlREQcaENGotVqceTIEahUKjg4OCA+Ph7Tp0833FZRWtOKjOwSaLUCPQO6wdGnEiA7YyYi\nFd89pyMRkTEwFGlE9fX1oaysDEVFRfDw8EB8fDwUCsVV7zHU9A7gQ/V5/P2Tf2PB/Nl4SDkZTvY8\neUFE5sNPIBoR3d3dKCkpQWlpKRQKBdLT0+Hjc/3ToE72UjwV7Y+LZT1InmLPQCQis+OnEN2Wjo4O\nFBYWoqKiAoGBgVi6dOllUzLdCG9vbzQ0NMDbm/cmEpF5MRTplrS0tEClUuHEiRNQKpV47rnnhrVx\nu1FeXl5oaGgY4QqJiG4eQ5FuyoULF6BSqVBTU4PIyEhkZmYammrfKm9vbxQVFY1QhUREt46hSN9J\nCIGamhrk5+ejqakJMTExePjhhyGTyUbk/eVyOY8UiWhUYCjSNQkhcPLkSeTn56OnpwdxcXEICQmB\nVDqyfzbjx4+HTqdDV1cXnJ2dR/S9iYhuBkORhtFqtaisrIRKpYJUKkV8fDwCAwNhY2OcroASiQRy\nuRz19fUICAgwyjaIiG4EQ5EM+vv7oVarUVBQAFdXV8ydO/e2Jgm+GUOnUBmKRGRODEVCT08PSkpK\nUFJSAj8/PzzxxBPw9fU1aQ1yuRzV1dUm3SYR0ZUYilass7MTRUVFUKvVmDZtGpYsWQJPT0+z1CKX\nyzkClYjMjqFohVpbW1FQUIBjx44hNDQUzz77LFxcXMxak5eXF1pbWzEwMDDiA3mIiG4UP32sSH19\nPVQqFU6fPo17770XL7zwApycnMxdFgBAKpXC1dUVzc3N7GxDRGbDULQCZ8+ehUqlQl1dHaKjo5GS\nkgJ7e3tzlzXM0GAbhiIRmQtDcYwSQuDUqVPIz89HV1cX4uLi8OSTT47qU5NDt2WEhYWZuxQislKj\n9xOSbolOp8OxY8eQn58PiUSC+Ph4BAUFGe0ew5HEwTZEZG4MxTFiYGAAFRUVKCgowPjx4zF79mwE\nBASY5B7DkTJ0pCiEsKi6iWjsYChauN7eXpSWlqK4uBg+Pj545JFHcMcdd5i7rFsyfvx4CCHQ1dWF\n8ePHm7scIrJCDEULpdFoUFRUhLKyMgQEBODpp5+GXC43d1m3ZajdW0NDA0ORiMyCoWhh2traUFBQ\ngKNHj2LGjBlYsWIFXF1dzV3WiGG7NyIyJ4aihWhsbIRKpcKpU6cQERGBVatWjckZJby9vXHmzBlz\nl0FEVoqhOMrV1tYiPz8ftbW1iIqKwrx58+Dg4GDusoxGLpejsLDQ3GUQkZViKI5CQgicPn0a+fn5\naG9vR2xsLB5//HHY2dmZuzSj8/T0ZLs3IjIbfuqMIjqdDidOnEB+fj60Wi3i4+MRHBwMW1tbc5dm\nMmz3RkTmxFAcBQYGBnDkyBGoVCo4OjoiKSkJ06ZNs9p79YbuV2QoEpGpMRTNqK+vD2VlZSgsLIRc\nLkdqaiqmTJlitWE4ZGgEKhGRqTEUb0JfXx82bNiAoqIi9PT0wMnJCR988AG8vLxu6n26u7tRXFyM\nL7/8Ev7+/li4cCEmTZpkpKotDwfbEJG5MBRvwtq1axEUFIRf/epXAIDnnnsOGo3mhtdvb29HYWEh\nDh8+jKCgICxbtgzu7u7GKtdieXt7o6Ghge3eiMjkJEIIYe4iLEFDQwMiIyNRU1Nz0821m5uboVKp\ncPLkSSiVSsTExLBjy3UIIbBlyxY899xz/D0RkUmN/qkTvkNWVhZcXFyQnZ0NAFi5ciUcHByQl5eH\nhoYGzJs3D8nJyYiPj8fmzZsN65WVlSEhIQGJiYmYNWsWqqqqAABbt26FQqHAggULsGLFCiiVSiQl\nJeHQoUNQKBR45ZVXEBcXhzlz5uCLL764bm0XLlzA7t27sW3bNri4uCAzMxNz5szhB/13kEgkhqNF\nIiKTEmNAYmKi2LZtm+HxlClTxMGDB8X69evFG2+8IYQQoqurS8TFxQkhhGhraxMeHh7iwIEDQggh\ncnNzxbRp04RWqxVCCLFp0yYhl8tFY2Oj0Gq1IisrS2zevFlIpVLx3//930IIIQ4dOiQcHBxETU3N\nZbXodDpx+vRpsX37dvHrX/9aFBYWit7eXmP/CsacTz/9VHzxxRfmLoOIrIzFHylej5ubG/bu3Ytj\nx47ByckJ+/btAwDk5ubC2dkZ999/PwBg/vz5qK+vR3FxsWHdmJgYeHp6wsbGBps3b0Zvby9sbW2x\natUqAEBCQgLCw8Oxc+dOAIOn/E6cOIF3330Xe/fuRWhoKFavXo3o6GjIZDIT77nlk8vlaGxsNHcZ\nRGRlxvRAm/Xr18PJyQnp6emQSqXYuHEj0tLSUFtbi9bWViQlJRle6+npiZaWFsPjiRMnXvZerq6u\ncHNzu6yrjK+vL86fP4+KigqoVCrIZDLEx8cjMDCQA0Ruk1wuR0FBgbnLICIrMyZCUSaTobe31/C4\nra0NwGAT7czMTGRmZmL//v1ISUlBREQE/Pz84Ovri7y8PMM6HR0d1+0pqlQqL2s/1tfXh9OnT6Or\nqwtHjx7FvHnz4O/vzzAcIZ6enrh48SLbvRGRSY2J06f+/v6orKwEABw6dAjd3d0AgA0bNqCiogIA\nEBUVBZlMBiEEUlJS0NzcjNLSUgCDcxMmJyejvb39mtuIjY1FQEAA3nvvPRw6dAg/+clPcOzYMfz4\nxz/GokWLMHXqVAbiCBpq99bU1GTuUojIioyJr+Br165FWloaEhMTkZqaCh8fH6xZswZpaWlYvXo1\npFIp2tvb8eqrrxrm6fvkk0+wbt06CCEghMArr7wCT09P7Nq1C9nZ2ejp6cHixYuRk5MDYDA4161b\nh1dffRV2dnYYP3489uzZg/j4eHPu+pg2NAKVjQ2IyFR4n+J3aG1thUqlwvHjxxEWFoaYmJhh1xvJ\nOPLz86HRaDB37lxzl0JEVmJMHCneqq7eAeQeuYCaZg0UHk5ICfWBs/3gr6Surg4qlQrV1dW49957\nkZmZCUdHRzNXbF28vb052IaITMpqQ7G0phUZ2SUQAuju08JRZotffHwcr8/1Q+eZCjQ0NCAmJgap\nqamwt7c3d7lWaWi2DMF2b0RkIlYZil29A8jILoGmV2t4rrtv8Od1H51B9iPTDbdxkPk4OztDIpGg\nq6uLXYCIyCTGxOjTm5V75AKudSVVameHWokXA3EUkEgkhqNFIiJTsMpQrGnWGI4Mr3SpT4ualm4T\nV0TXwrkViciUrDIUFR5OcJTZXnWZo8wWCncOqBktGIpEZEpWGYopoT641rgNiWRwOY0OnC2DiEzJ\nKkPR2V6K7IyZcLK3NRwxOsps4WRvq3+e1xNHCw8PD0O7NyIiY7PaT/9IhRtKNswevE+xpRsKd0ek\nhPowEEcZqVQKNzc3NDU1sbMNERmdVSeAk70U6ZF3mLsM+g5D1xUZikRkbFZ5+pQsC2/LICJTYSjS\nqMcRqERkKgxFGvWGQpG964nI2BiKNOoNtXvr7Ow0dylENMYxFGnUk0gkvF+RiEyCoUgWwcvLi6FI\nREbHUCSLwCNFIjIFhiJZBI5AJSJTYCiSRWC7NyIyBYYiWYShdm+NjY3mLoWIxjCGIlkMnkIlImNj\nKJLFuJVQ7Orqwrp165CcnIyEhATce++9+Pe//22kConI0ll1Q3CyLHK5HF9//fVNrVNfX4+ysjLs\n378fUqkU27Ztw6OPPorm5mbY2dkZqVIislQ8UiSLMXRbxs20e/Px8cG7774LqXTw+9/MmTPR0dGB\nixcvGqtMIrJgDEUyi6ysLLi4uCA7OxsAsHLlSjg4OCAvLw8NDQ2YN28ekpOTER8fj82bNwMYbPd2\n4cIFxMfHIzExEbNmzUJVVRUAYOvWrVAoFFiwYAFWrFgBpVKJpKQkODo6IiAgAAAwMDCAd999Fw8/\n/DC8vLzMst9ENMoJIjNJTEwU27ZtMzyeMmWKOHjwoFi/fr144403hBBCdHV1ibi4OCGEEG1tbWL8\n+PFi+/btQgghcnNzxbRp04RWqxVCCLFp0yYhl8tFY2Oj0Gq1Iisry/DeOTk5wsfHR8THx4uGhgYT\n7SERWRoeKdKo4+bmhr179+LYsWNwcnLCvn37AAC5ublwdHSEv78/AGD+/Pmor69HcXGxYd2YmBh4\nenrCxsbGcIQJAIsWLcI333yDpUuXIjo6Gh0dHabdKSKyCAxFGnXWr1+Pxx9/HOnp6VAqlfj4448B\nALW1tdBoNPiv//ovJCUlISkpCZ6enmhpaTGsO3HixOu+97JlyyCRSLB7926j7gMRWSaOPiWzkclk\n6O3tNTxua2sDADQ2NiIzMxOZmZnYv38/UlJSEBERAT8/P/j4+OD555/HqlWrAAAdHR1wcHC45jYK\nCwvh7OyMkJAQw3NOTk7QaDRG2isismQ8UiSz8ff3R2VlJQDg0KFD6O7uBgBs2LABFRUVAICoqCjI\nZDIIIZCSkoK2tjZUVlaiv78fGo0GycnJaG9vv+Y2Tp48ibffftswYrWgoAAnT55EUlKScXeOiCyS\nRAhOZ07mUVVVhbS0NLi5uSE1NRVvv/02XFxckJaWhs8++wxSqRTt7e1YsmQJVq9eDQAoKyvDwoUL\n4e7uDjs7O2RlZSElJQW7du3Cj3/8Y/T09GDOnDnIyckBAJw7dw4vv/wyvvrqK9jY2KC7uxtZWVl4\n8sknzbnrRDRKMRTJ4uzZswcKhQLh4eHmLoWIxhheUySLM8HdCx+o6/BZvQMUHk5ICfWBsz3/lIno\n9vFIkSxKaU0rFr9XjIEBLfqFBI4yW0gkQHbGTEQq3MxdHhFZOIYiWYyu3gFEvb4fml7tsGVO9rYo\n2TAbTjxiJKLbwNGnZDFyj1zAtb7CCTG4nIjodjAUyWLUNGvQ3Tf8KBEAuvu0qGnpNnFFRDTWMBTJ\nYig8nOAos73qMkeZLRTujiauiIjGGoYiWYyUUB9IJFdfJpEMLiciuh0MRbIYzvZSZGfMhJO9reGI\n0VFmCyd7W/3zHGRDRLeHo0/J4mh6B5B75AJqWrqhcHdESqgPA5GIRgRDkYiISI+nT4mIiPQYikRE\nRHoMRSIiIj2GIhERkR5DkYiISI+hSEREpMdQJCIi0mMoEhER6TEUiYiI9BiKREREegxFIiIiPYYi\nERGRHkORiIhIj6FIRESkx1AkIiLSYygSERHpMRSJiIj0GIpERER6DEUiIiI9hiIREZEeQ5GIiEiP\noUhERKTHUCQiItJjKBIREekxFImIiPQYikRERHoMRSIiIj2GIhERkR5DkYiISI+hSEREpMdQJCIi\n0mMoEhER6TEUiYiI9BiKREREegxFIiIiPYYiERGRHkORiIhIj6FIRESkx1AkIiLSYygSERHpMRSJ\niIj0/g9TPqEjaygBIgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABa60lEQVR4nO3de1yUdd7/8fcMonhAxROoISAeElFGDoImHvOMQmXW3u2WZbvtph223epu+21Srmu/e1vLare613Y7rf1sq1u0k4fSjGAARczzAcFTKimiKKLAfH9/eDMr4oEcZGbk9Xw8fDx2Lq65rs9My8yb7/dzfS+LMcYIAAAAuEpWdxcAAAAA70agBAAAgEsIlAAAAHAJgRIAAAAuIVACAADAJQRKAAAAuIRACQAAAJcQKAEAAOASAiUAAABcQqAEAACASwiUAAAAcAmBEgAAAC4hUAIAAMAlBEoAAAC4hEAJAAAAlxAoAQAA4BICJQAAAFxCoAQAAIBLCJQAAABwCYESAAAALiFQAgAAwCUESgAAALiEQAkAAACXECgBAADgEgIlAAAAXEKgBAAAgEsIlAAAAHAJgRIAAAAuIVACAADAJQRKAAAAuIRACQAAAJcQKAEAAOASAiUAAABcQqAEAACASwiUAAAAcAmBEgAAAC4hUAIAAMAlBEoAAAC4hEAJAAAAlxAoAQAA4BICJQAAAFxCoAQAAIBLCJQAAABwCYESAAAALiFQAgAAwCUESgAAALiEQAkAAACXECgBAADgEgIlAAAAXEKgBAAAgEsIlAAAAHAJgRIAAAAuIVACAADAJQRKAAAAuIRACQAAAJcQKAEAAOASAiUAAABcQqAEAACASwiUAAAAcAmBEgAAAC4hUAIAvN4XX3yhUaNGKSYmRj179lRERIR+97vfubssoNEgUAIAvNqCBQv0wAMP6OWXX9a6deu0c+dO3XXXXfrggw/cXRrQaFiMMcbdRQAAcDX279+vXr166d1339Vtt93m3F5WVqY1a9Zo3LhxbqwOaDwYoQQA1MmcOXPUo0cPWSwWrV69WpKUn58vm82mpk2batq0ac59Fy5cqNjYWEVHR6t///5KSkrS4sWLaxxv+/btSklJUUhIiHr06KHExEStWrXK+fNFixbJZrPJYrHomWeeUWpqqgYPHqw2bdqobdu2kqR33nlHZ86c0YQJE2ocu0WLFoRJoAERKAEAdfL0009rwYIFNbaFh4crLy9PXbp0cW5LT0/Xvffeq4ULFyo3N1fr169Xz5499dJLLzn3KSgo0ODBg9W8eXPl5+dr165dmjp1qsaOHav09HRJ0h133KG8vDxJ0ptvvqnY2FhlZGQoLy9PVqvVea6goCBlZWVpzJgxioiI0IABA/Tss8/qzJkz1/YNAeBEoAQA1Cu73S4/Pz8FBwdLknx8fPTEE09oypQpzn1SU1N1/PhxzZs3T02aNJEkzZw5U926ddOsWbNqHTMyMlJJSUmSpLCwMOXk5EiS9u7dq6NHj+pXv/qVXn31VW3ZskV/+ctf9PLLL+vWW2+91i8VwP8iUAIA6tWwYcNUVlammJgYvfrqq9q/f786d+6smTNnOvdZvny5wsPD1blzZ+c2i8WiyMhIpaenq6KiosYxIyMjazwODw+XJJWXl+vMmTN6+umn1atXL0nS4MGDNXPmTH322Wdas2bNtXqZAM5DoAQA1Ku4uDhlZGSoX79+evzxxxUcHKyhQ4cqOzvbuc+RI0d04MAB2Wy2Gv82bNiggIAAHTt2rMYx/f39L3qu6u02m63G9gEDBkhSjXMCuHaauLsAAID38PHxkSRduEBIaWlpjcdxcXFatGiRSktL9cEHHyg1NVWjR49WYWGhAgIC1KFDBwUFBWn9+vUu1RMREaG8vDw5HI6L1nnhdgDXBiOUAIA6CwwMlCQVFxc7txUVFdV4vHDhQi1ZskTSuRHE6dOna/78+Tpx4oQKCgokSWPHjtWuXbt08uTJGsfPyMjQgw8+WOd6kpOTJUnfffddje2bNm2SJA0cOLDOxwJw9QiUAIA6Cw8PV0hIiD788EMZY2SM0fPPP6/WrVs799mxY4fmzp3rnLZ2OBxas2aNunTpooiICEnnLspp1qyZHn30UWe/5MGDBzVjxgznPnUxZcoUDRkyRH/84x916NAhSdLOnTv1yiuvaMKECRo+fHg9vXIAl0OgBADUmY+Pj95//31t375d4eHhGjVqlCZOnKiAgAAtWbJENptNt9xyi3r37q2bbrpJNptN/fv31969e7Vy5Ur5+flJkkJDQ5WZmamSkhKFhYVpwIABSk5O1syZM50X7yxbtszZG/n666/LZrM5lxGqZrVa9emnn+rmm29WfHy8+vTpo4kTJ+r+++/Xxx9/3JBvDdCocaccAAAAuIQRSgAAALiEQAkAAACXECgBAADgEgIlAAAAXEKgBAC4XXlFlX4oPaPyiip3lwLgKnCnHACA2+QUFmtB+m6t2HJYDiNZLdLoiED9fEh3xYa2c3d5AOqIZYMAAG7xrn2PnknbJKvVoirHv7+KfKwWORxGs1Mi9dP4EDdWCKCuCJQAgAaXU1isqW9k6nJfQBZJ/3pgECOVgBeghxIA0OAWpO+W1Wq57D5Wq0UL0gsaqCIAriBQAgAaVHlFlVZsOVxjmvtiqhxGy7cc4kIdwAsQKAEADaq0vFJXyJJODnNufwCejUAJAGhQ/n5NdIXZbier5dz+ADwbgRIA0KD8fH00OiJQPldIlT5Wi8ZEBMnP16eBKgNwtQiUAIAGd/+Q7nJcYd7b4TC6f0hYA1UEwBUESgBAg4sLbafZKZGySLVGKn2sFlkkzU6JZMkgwEuwDiUAwG3WFhZrQXqBlm0+KCOLrBZpTESQ7h8SRpgEvAiBEgDgdi+8OF/hN0Zq/M3D6ZkEvBBT3gAAt2tiMWrTzEKYBLwUgRIAAAAuIVACAADAJQRKAAAAuIRACQAAAJcQKAEAAOASAiUAAABcQqAEAACASwiUAAAAcAmBEgAAAC4hUAIAAMAlBEoAAAC4hEAJAAAAlxAoAQAA4BICJQAAAFxCoAQAAIBLCJQAAABwCYESAAAALiFQAgAAwCUESgAAALiEQAkAAACXECgBAADgEgIlAAAAXEKgBAAAgEsIlAAAAHAJgRIAAAAuIVACAADAJQRKAAAAuIRACQAAAJcQKAEAAOASAiUAAABcQqAEAACASwiUAAAAcAmBEgAAAC4hUAIAAMAlBEoAAAC4hEAJAAAAlzRxdwEAAACu2rt3r15//XWtWLFCVVVVKi8vl6+vr6ZPn66HHnpIFovF3SVe1wiUAADA63311Vd6+eWXtWLFCg0aNEiS9PHHH2vKlCkqLS3V008/7eYKr29MeQMAAK8XFBSkxx9/3BkmJenWW29Vv3799NFHH7mxssaBQAkAAH6UOXPmqEePHrJYLFq9erUkKT8/XzabTU2bNtW0adOc+y5cuFCxsbGKjo5W//79lZSUpMWLF9c43vbt25WSkqKQkBD16NFDiYmJWrVqlfPnixYtks1mk8Vi0TPPPKPU1FQNHjxYbdq0Udu2bSVJ48aN06xZs2rVWlpaqo4dO9b3W4ALECgBAMCP8vTTT2vBggU1toWHhysvL09dunRxbktPT9e9996rhQsXKjc3V+vXr1fPnj310ksvOfcpKCjQ4MGD1bx5c+Xn52vXrl2aOnWqxo4dq/T0dEnSHXfcoby8PEnSm2++qdjYWGVkZCgvL09W68WjTGlpqX73u9/p1KlTev755+v3DUAtBEoAAHBN2O12+fn5KTg4WJLk4+OjJ554QlOmTHHuk5qaquPHj2vevHlq0uTcpR0zZ85Ut27dLjriGBkZqaSkJElSWFiYcnJyau0TERGhgIAALVmyRB9//LEGDBhwLV4ezkOgBAB4BK7Cvf4MGzZMZWVliomJ0auvvqr9+/erc+fOmjlzpnOf5cuXKzw8XJ07d3Zus1gsioyMVHp6uioqKmocMzIyssbj8PDwWufdsmWLysrK9Nhjj2nkyJH605/+VM+vDBciUAIAgGsiLi5OGRkZ6tevnx5//HEFBwdr6NChys7Odu5z5MgRHThwQDabrca/DRs2KCAgQMeOHatxTH9//zqdu2nTprrvvvt0991366mnnlJ+fn69vjbUxLJBAADgR/Px8ZEkGWNqbC8tLa3xOC4uTosWLVJpaak++OADpaamavTo0SosLFRAQIA6dOigoKAgrV+/3qV6Tp8+raZNmzrrqmaz2VRVVaXc3NyLjmaifjBCCQAAfrTAwEBJUnFxsXNbUVFRjccLFy7UkiVLJJ0bWZw+fbrmz5+vEydOqKCgQJI0duxY7dq1SydPnqxx/IyMDD344IN1rmf8+PH64IMPam0vLCyUJHXo0KHOx8KPR6AEAAA/Wnh4uEJCQvThhx/KGCNjjJ5//nm1bt3auc+OHTs0d+5c57S1w+HQmjVr1KVLF0VEREg6d1FOs2bN9Oijjzr7JQ8ePKgZM2Y496mruXPnOgOkJH399dd67bXXNHDgQA0dOtTFV4zLIVACAIAfzcfHR++//762b9+u8PBwjRo1ShMnTnReXW2z2XTLLbeod+/euummm2Sz2dS/f3/t3btXK1eulJ+fnyQpNDRUmZmZKikpUVhYmAYMGKDk5GTNnDnTefHOsmXLZLPZJEmvv/66bDabcxmhan/84x8VHx+viRMnqn///goPD9cvf/lLPfTQQ1qxYkWtqXDUL4u5sPkBAIAG9tJLLykqKkojRoxwdykArgIjlAAAAHAJgRIAAAAuIVACAADAJQRKAAAAuIRACQAAPEJ5RZV+KD2j8ooqd5eCH4k75QAA3I4FRxq3nMJiLUjfrRVbDsthJKtFGh0RqJ8P6a7Y0HbuLg91wAglAABwm3ftezT1jUyt3Fokx//+XeEw0sqtRbr9jUy9l7XHvQWiTgiUAADALXIKi/VM2iYZSVWOmqPUVQ4jI+n3izdpbWHxRZ8Pz0GgBAAAbrEgfbesVstl97FaLVqQXtBAFeFqESgBAECDK6+o0ooth2uNTF6oymG0fMshLtTxcARKAADQ4ErLK3WFLOnkMOf2h+fiKm8AANCgiouL9e23mbLIyOjyU97Suau+/f2ILJ6M/zoAAKBB7Nu3TxkZGdq2bZtatGih6E79lHfEcdlpbx+rRaP7BMrP16cBK8WPRaAEAADXjMPh0LZt25SZman9+/erffv2SkpKUv/+/ZV3oFRT38i8wvON7h8S1kDV4moRKAEAQL07e/as1q9fL7vdrpKSEoWEhOjOO+9Ur169ZLGcm+aOC22n2SmR+v3iTbJaLTVGKn2sFjkcRrNTIlnc3AsQKAEAQL0pLS1VVlaW1q1bpzNnzqhv3766/fbb1aVLl4vu/9P4EN0Y6K8F6QVavuXQv++U0ydQ9w8JI0x6CQIlAABw2eHDh5WZmamNGzeqSZMmio6OVkJCgtq0aXPF58aGtlNsaDuVV1SptLxS/n5N6Jn0MgRKAABwVYwxys/PV2Zmpnbv3q3WrVtr1KhRio6Olp+f348+np+vD0HSSxEoAQDAj1JZWamNGzfKbrerqKhInTt31q233qqIiAj5+BAIGyMCJQAAqJPTp09r7dq1ys7O1smTJ9WrVy+NHz9eISEhzgtt0DgRKAEAwGUVFxfLbrcrLy9PDodDUVFRGjRokDp06ODu0uAhCJQAAOCiLlyIfPDgwYqLi1PLli3dXRo8DIESAAA4XW4hcl9fX3eXBw9FoAQAAHVaiBy4FAIlAACN2I9diBy4GAIlAACNkCsLkQMXIlACANBI1PdC5EA1AiUAANc5FiLHtUagBADgOsVC5GgoBEoAAK4zF1uIPCEhQR07dnR3abhOESgBALhO7Nu3T5mZmdq6dSsLkaNBESgBAPBiLEQOT0CgBADAC7EQOTwJgRIAAC/CQuTwRARKAAC8AAuRw5MRKAEA8FAsRA5vQaAEAMDDVFZWatOmTcrMzGQhcngFAiUAAB6ChcjhrQiUAAC4GQuRw9sRKAEAcBMWIsf1gkAJAEADYiFyXI8IlAAANAAWIsf1jEAJAMA1xELkaAwIlAAAXAMXW4g8Pj5ebdu2dXdpQL0jUAIAPML1MO3LQuRorKzuLgAAUD9Onz4tm82mdu3aKTQ01N3luOSOO+5Qt27dZLFYVFhYeMn9tm/fLpvNplatWmn48OENVt+FKisrlZeXp9dff13//Oc/dfr0ad166616+OGHNXjwYMIkrnuMUAKAm5w+fVqDBg3SoUOHdPjwYfXp00dNmzatsc/Zs2dVVlZ22VBVrXnz5srLy9O0adO0evXqeqnxjjvuUEFBgbKzs+vleHW1aNEivfXWW7r33nsvu1/v3r2Vl5fntjDJQuTAOQRKAHCT6gCYmpqqZ599Vp999lmtkcXCwkK3jrx16dJFDofDbef3VCxEDtREoAQADxYYGKi///3vbjv/iy++6LZzeyIWIgcujh5KuKSkpER33XXXFfucAPx4w4cPV1ZWlkaOHClJmjt3ruLj4xUbG6uoqCiNGTNGa9euveTzV65cqVGjRiksLEwxMTHKysqq8fMdO3YoJSVFNptNAwYMUFxcnFJTU1VWViZJGjt2rIKCgi46dbto0SLFxMSoZ8+e6tatm6ZOnardu3c7f/7iiy8qIiJCFotFr732mmbMmKGYmBgFBwfrkUceUUVFRZ3fh927d2vSpEmKjIxUp06d9PDDD6u8vLxOz/3LX/6iyMhI9e7dWyEhIbr//vtVVFRUYx+Hw6HU1FR16dJFvXv31tChQ/X111/LYrEoKChII0aM0JYtW/Tmm29q3rx5mj17tubNm6eFCxfq73//u9544w1ZLBZFRETUCOBZWVm6+eabFRYWprCwMI0bN055eXmXfI8efvhhxcfHq3nz5rLZbHV+fwCPYICrtGzZMhMWFmb69u1rJJmCggJ3lwR4pVmzZl30d2jYsGFm1apVzsetW7c2OTk5zscLFy40/v7+Zt++fTWed88995jWrVub3/72t8bhcJiqqipz2223mbCwMFNZWencr0ePHiY1NdX5OCMjwzRr1qxGHdW1ne+VV14xTZo0MUuWLDHGGFNRUWF+8pOfmI4dO5q9e/c69ysoKDCSTEREhNmyZYsxxpjc3FxjtVrNm2++WeOY8+bNq/FajTHmH//4h5Fkhg8fbg4ePGiMMSYvL8+0bdvW3HfffbXeq2HDhtXY9pvf/Ma0bt3a2O12Y4wxpaWlZvjw4aZXr17m+PHjzv2effZZ07RpU7Ny5UpjjDEnTpww48ePN5LM9OnTzfz5801qaqr529/+ZkJDQ01MTIw5duyYMcaYzMxM06FDh1r//bKyskyzZs3Mb3/72xr1+Pv7m507d9Z6j3r06GGysrKMMcasWrXKREVFGcCbMEKJqzZ79mx99NFHmjJlirtLAa4LEyZMkM1mc/67cPQxKytLsbGxzsc/+clP1KJFCy1cuLDWsUpLS/Xkk0/KYrHIarU6L66pHkU8cuSIdu3apR49ejifM2jQIM2ZM0etW7e+ZI2lpaV66qmnlJSUpEmTJkmSmjRpohdffFElJSWaNWtWreeMHDlSffr0kSQNGDBAvXv31pdfflnn92X69OkKCgqSJEVFRenee+/VW2+9pZ07d17yOfn5+XrxxRd13333KT4+XpLUqlUr/fnPf9aOHTv00ksvSZKOHz+uF154QZMnT9aoUaOczx8zZozzOF27dtXPf/5zWa1WFRYW6tlnn3WuJZmQkKDk5ORa53/88cfVsmVLzZ4927ntueeekzFGc+fOveh7NHDgQEnS0KFDtXjx4jq/P4AnoIcSV23VqlVq0qSJ0tLS3F0KcF248KKcCy/GOXXqlKZOnapt27bJaj03HlBcXKz8/Pxax2rfvr06dOhQ47EkHTp0SD179lT79u1ls9n0wAMPaO3atbrjjjs0cOBA/eY3v7lsjRkZGTp58qQzpFULDAxUWFiYvvjii1rPufHGG2s87tChgw4dOnTZ85yvf//+NR4PHDhQDodDWVlZ6tmz50Wfs3LlSjkcjlp1RkdHq1mzZvriiy/0zDPP6LvvvlNpaani4uJqLEReWVkpSYqPj9dtt90mSfr2228lSXFxcTWO2a9fvxqPy8rKlJ6erptvvrnGckEtWrRQeHi4vvrqq1r1RkZGOv+31Wr1+mWf0PgwQukF5syZox49eshisTiXAsnPz5fNZlPTpk01bdo0574LFy5UbGysoqOj1b9/fyUlJdX6S3f79u1KSUlRSEiIevToocTERK1atcr580WLFslms8liseiZZ55RamqqBg8erDZt2tS4w0OTJvw9AlxLq1evdobKjRs3asiQIerQoYNycnKUl5envLw8denSRWfOnKn13AsvEqkOoFVVVZLk/Dz59a9/rY8++kiDBg1St27d9OKLL8oYc8majhw5Iklq165drZ+1b99eP/zwQ51qqa6jLi4cMa0+94EDB66qznbt2jnrrD7Gtm3b9Prrr6ugoECjRo3SU089JUk1AuH3338vSQoICKhxvDZt2tR4fOzYMTkcDuXk5NQYcbbZbCouLr7oVfP+/v6XfC2ANyBQeoGnn35aCxYsqLEtPDzc+WVSLT09Xffee68WLlyo3NxcrV+/Xj179nRO7UhSQUGBBg8erObNmys/P1+7du3S1KlTNXbsWKWnp0s6t+5cdeP4m2++qdjYWGVkZCgvL8/5pQSgYf2///f/VF5erueee07NmjWrl2O2adNGs2fP1p49e/T111/LZrPpscceu+xV5dWjnsXFxbV+dvTo0WuybM7x48drnUeSunbtesnnXK7O4uJidejQQXl5ecrJyZF07gLD8xciv9hFP9Wftxces6SkpMbjgIAAWa1WDRs2zBn8q//t3btXe/bsucIrBrwP6eA6Yrfb5efnp+DgYEmSj4+PnnjiiRo9jqmpqTp+/LjmzZvnHGGcOXOmunXrdtHep8jISCUlJUmSwsLCnB++ABpW9Sjk+X/UVVVV1bpiua6Kior0yCOPSDo3Wjl06FClpaWpbdu22rBhwyWfN3jwYLVq1arWFeNFRUUqKCjQuHHjrqqey9m4cWONx9nZ2bJarbWms883evRoWa3WWnVmZmbqzJkzat26tdLS0hQREaFWrVrJarWqX79+8vHxueg5Jemmm26SpFqfgxfu26JFCyUmJmrDhg21RiMXL16s1NTUy79gwAsRKK8jw4YNU1lZmWJiYvTqq69q//796ty5s2bOnOncZ/ny5QoPD1fnzp2d2ywWiyIjI5Wenl5rKY/z+3qkcyOjABpe9R92zz//vHNKes6cOTp9+vRVHa+srEyvvfaavv76a+e2devWqbS0VDfffPMln+fv76+5c+fqk08+0WeffSbp3G0HH3vsMbVt2/aahKWXX37Z2XO5YcMGvfXWW5o2bdol+yclqXv37vr1r3+tf/zjH8rJyVFxcbE+/vhj/fSnP1X79u1133336cEHH9T06dP1+OOPa+nSpc7extLSUr3yyiu1jvmzn/1MvXr1UmpqqnNU0m63X7Qn8k9/+pMOHjzovBBHOtdu9Oijjyo6OtrVtwTwPO69yBx1tWrVKiOp1rIaISEh5p577nE+zs7ONlOnTjV+fn5GkklMTHQuRWGMMU2aNDEtW7Y0UVFRNf6FhoaawMBAc/jwYee+ksysWbOuWNulljwBcHllZWUmKirKBAYGGkmmT58+Jioqypw4ceKi+7/99tumT58+JjQ01AwbNszMmTPHdO3a1QQEBJhBgwYZY4wZOHCgCQgIML6+viYqKsrs2rXLzJ8/34SHhxtJJjw83MydO9eUlZWZ1NRUEx0d7fwciImJMe+8847zfGPGjHHWFhUVZf71r385f/b++++b6OhoEx4eboKDg82UKVPMrl27nD//+9//bvr06WMkmeDgYPPb3/7WnDlzxkRFRZmWLVs6P4eql9+5cNmgqVOnmuDgYCPJpKWlmVGjRpmIiAjToUMH89BDD5nTp08bY4zZtm1brWOe/1n03HPPmRtuuMG0b9/etG3b1owfP97s3r27xvtaVVVlUlNTTefOnU3v3r3NyJEjzdq1a42kGssqGWPMnj17zKRJk0xAQICJjo42DzzwgHn11VeNJFNYWFhj35ycHDNmzBjTtWtXEx0dbYYMGWIWL158yfcoKiqqxmcw4E0sxlym+xoe45tvvtHQoUP11VdfacSIEc7t7du316RJk/TWW2/V2L+0tFQffPCBUlNTdeLECRUWFiogIECdO3dWUFCQ1q9ff8VzWiwWzZo164ojDtW3jSsoKODKRABX5cUXX9SAAQPq5TaTDodD27ZtU2Zmpvbv36/27dsrISFBUVFR8vX1rdMxiouL1b59e73wwgtXvPJ93rx5+s1vfqMjR444r6YHGhumvL1EYGCgpJrN4EVFRTUeL1y4UEuWLJF0blpq+vTpmj9/vk6cOKGCggJJ5+58sWvXLp08ebLG8TMyMvTggw9e65cBANfM2bNnlZWVpVdffVX/+te/5OPjozvvvFMzZsxQbGzsJcPk66+/XmvaurovcsCAATW233nnnbX6Ijdu3Kjg4GDCJBo1AqWXCA8PV0hIiD788EMZY2SM0fPPP19jOY0dO3Zo7ty5OnbsmKRzf6WvWbNGXbp0UUREhKRzo4nNmjXTo48+6uyXPHjwoGbMmOHcBwC8SWlpqb788ku9+OKLWrZsmXMh8mnTpql3794XvXXk+QoLC5WamqrS0lJJ55b9+T//5/8oPj6+xoyQdG4pp/P7K7/55hstWrRI//mf/1n/LwzwIiwk6CV8fHz0/vvva8aMGQoPD1doaKiefvppffzxx1qyZIlsNpvefvttFRYW6qabblLTpk1VWVmpXr16aeXKlc611EJDQ5WZmamnnnpKYWFh6tixo3x9fTVz5kxNnz5dkrRs2TI9+eSTks795b548WK99dZbte4t+9xzz+njjz92NstPmDBBTZs2vei+AFDfzl+IvEmTJoqOjlZ8fHyN9XLrYsKECdq8ebNiYmLUtGlTlZaWauzYsfq///f/1gqjjz76qN555x397W9/U3l5uZo3b66XX35Z999/fz2+MsD70EMJAHC7P817Sb36RmnsyKHy8/W55H7GGO3evVuZmZnKz89X69atFR8fr+jo6BqLkANoWARKAIDb5BQWa0H6bi3ffEhGFlkt0uiIQP18SHfFhv77LjeVlZXatGmTMjMzVVRUpM6dO2vQoEGKiIhwrh0JwH0IlAAAt3jXvkfPpG2S1WpRlePfX0U+VoscDqPZKZG6rX8nrV27VtnZ2Tp58qR69eqlQYMGKSQk5Iq9kQAaDoESANDgcgqLNfWNTF3pC2hy853qZD2pqKgoJSQkXJNbOwJwHRflNHLlFVUqLa+Uv1+Ty/YtAUB9WpC+u9bI5IUsMjrg31tzfzFULVu2bMDqAPxYBMpGqrpvacWWw3IYXbJvCQDqW3lFlfOz53KMLFr/g0M+TbnYBvB0rEPZCL1r36Opb2Rq5dYi5we6w0grtxbp9jcy9V7WHvcWCOC6VlpeecUwWc1hzu0PwLMRKBuZnMJiPZO2SUaqNdVU5TAykn6/eJPWFhZf9PkA4CrHmVOq6+U0Vovk78dkGuDp+C1tZOrSt2S1WrQgvYCpbwD16sCBA8rMzNSWLVsU2qSH9lS1uexIpdUijYkIpL8b8AIEykakrn1LVQ6j5VsOqbyiig9yAC5xOBzatm2b7Ha79u3bp4CAAI0bN043B4Torr+vvfxzjVHQ8a06ejSM+2QDHo5A2YhcTd8SgRLA1Thz5ozWr1+vrKwslZSUKCQkRHfccYd69eolq/Vct9XslEj9fvGl16H8dWJXadduvf766xoxYoQSEhKczwXgWQiUjYi/XxNZLapTqKRvCcDVKCkpUXZ2tnJzc1VRUaG+ffvq9ttvV5cuXWrt+9P4EN0Y6K8F6QVavuXQv1ec6BOo+4eEKTa0nSoqIvXVV19pxYoV2rJli5KTk1mLEvBALGzeyDzw3lqt3Fp02R5KH4s0OiJIr/80pgErA+DN9u/fL7vdri1btqhZs2aKiYnRwIED1bp16zo9/0pr4u7bt09paWkqKSnRsGHDdNNNNzFaCXgQAmUjU7e7Uxg90rdKv5oyVn5+rP8G4OKq+yMzMzO1f/9+tWvXTvHx8bLZbGratGm9n6+yslKrV69WRkaGgoKClJycrMDAwHo/D4Afj0DZCL2XteeyfUu/iG4j7fpGfn5+mjRpknr06OHGagF4mjNnzig3N1dZWVk6fvy4QkJCNGjQIPXs2bNBRg0PHDigtLQ0HT16VImJiUpMTJSPD/3egDsRKBuptYXFtfqWxkQEOfuWjh8/riVLlmj37t2Kjo7WmDFj1KxZM3eXDcCNSkpKlJWVpdzcXFVWVioyMlIJCQnq3Llzg9dSWVmpNWvWKD09XZ06dVJycrJb6gBwDoGykbtc35IxRrm5uVq+fLmaN2+uyZMnq3v37m6qFIC77Nu3T3a7XVu3br2q/shr6eDBg0pLS1NRUZGGDBmioUOHqkkTLigEGhqBEldUUlKiJUuWqKCgQLGxsRo9evQ16Y8C4DkcDoe2bt0qu93u7I9MSEhQVFSUx/3+V1VVKT09XWvWrFH79u2VnJysrl27urssoFEhUKJOjDFau3atVqxYoZYtWyo5OVmhoaHuLgtAPSsvL3euH3n8+HGFhoYqISFBvXr1ksVS1xsmusfhw4eVlpamQ4cOadCgQRo+fLh8fX3dXRbQKBAo8aMcO3ZMaWlp2rNnjwYOHKhRo0Z53GgFgB/Pk/ojXeFwOJSRkaHVq1erbdu2Sk5OVnBwsLvLAq57BEr8aMYYZWdna+XKlfL391dycrJCQkLcXRaAq3Bhf2RsbKzi4uI8oj/SFT/88IOWLFmi/fv3Kz4+XiNHjuSPX+AaIlDiqh09elRpaWnat2+fEhISNHLkSKaXAC9Q3R+ZmZmpAwcOeHR/pCscDoeysrL01Vdfyd/fX5MnT6ZVB7hGCJRwyfkf2G3atGF6CfBg5eXlys3NVXZ2trM/snr9SE/vj3TF0aNHtWTJEu3du5cLC4FrhECJenHkyBEtXrxY33//vRISEjRixAhGKwEPcezYMWVlZWn9+vWqrKxUv379lJCQoKCgIHeX1mCqW3W+/PJLtWjRgmXQgHpGoES9cTgcyszM1KpVqxQQEKDk5GTdcMMN7i4LaJSMMdq/f78yMzO1bds2+fn5OdeP9Pf3d3d5bnPs2DEtWbJEhYWFGjBggMaMGcMtZoF6QKBEvfvhhx+0ePFiHTx4UIMHD9bw4cNZaBhoIA6HQ1u2bJHdbteBAwfUvn17Z38kswbnGGO0bt06rVixQn5+fkpKSlLPnj3dXRbg1QiUuCYcDoe+/fZbrV69Wu3bt1dKSoq6dOni7rKA69aF/ZFhYWFKSEi47vsjXXH8+HEtXbpU+fn5ioqK0tixY9W8eXN3lwV4JQIlrqnzFxoeMmSIhg0bJh8fnys/EUCd0B/pGmOM8vLytGzZMvn6+iopKUm9e/d2d1mA1yFQ4po7/7ZoHTt2VHJystctlgx4EmOMc/3I6v7I6vUjG3N/pCtOnDihTz75RDt37lS/fv00btw4tWjRwt1lAV6DQIkGc+jQIS1evFg//PCDEhMTlZiYyGgl8CNUVVU514/8/vvv6Y+sZ8YYbdy4UZ9//rl8fHw0YcIERUREuLsswCsQKNGgqqqqtGbNGn3zzTcKDAxUSkqKAgMD3V0W4NHKy8u1bt06ZWdn68SJEwoLC9OgQYPUo0cP+iOvgZMnT+rTTz/Vtm3bFBERoQkTJqhly5buLgvwaARKuMX333+vtLQ0HTlyRMOGDdOQIUNktVrdXRbgUYqLi539kVVVVerfv7/i4+Ppj2wAxhht3rxZn3/+uYwxGj9+vCIjIwnwwCUQKOE2lZWV+vrrr/Xtt9+qc+fOSk5OVqdOndxdFuBW1f2R1etHNm/enP5INzp16pQ+//xzbd68Wb1799bEiRP57wBcBIESbnfgwAEtXrxYx44d0/DhwzV48GBGK9HoVFVVOdeP/P7779WhQwclJCSof//+9Ed6gK1bt+rTTz9VVVWVxo4dq6ioKEYrgfMQKOERKisrtWrVKmVmZqpLly5KSUlRhw4d3F0WcM1d2B/ZvXt3JSQk0B/pgcrKyrRs2TJ999136tmzp5KSktS6dWt3lwV4BAIlPMq+ffuUlpamkpISjRw5UgkJCYxW4rp0fn+kw+Fwrh/JRWqeb8eOHfrkk0909uxZjRkzRgMGDCD8o9EjUMLjVFRU6KuvvpLdbldwcLCSk5PVvn17d5cFuMwYo7179zrXj2zRooWzP7JVq1buLg8/Qnl5uZYtW6a8vDx1795dkyZNUtu2bd1dFuA2BEp4rL179yotLU0nTpzQqFGjFB8fzygAvFJ1f2RmZqYOHjxIf+R1ZNeuXVq6dKnKy8t18803KzY2ls8pNEoESni0s2fP6ssvv1R2dra6deum5ORktWvXzt1lAXVy+vRpZ39kaWmpunfvrkGDBik8PJzQcR05c+aMVqxYoXXr1ik0NFSTJk3icwqNDoESXqGwsFBpaWk6deqUbr75ZsXFxfGFDI9VXFwsu92uvLw8+iMbkYKCAi1ZskSnTp3SyJEjmVVBo0KghNc4e/asVqxYobVr1yo0NFTJycn0LMFjVPdHZmZmavv27fRHNlLnz6rQA47GhEAJr7N7924tWbJEp0+f1ujRoxUTE8MoANymqqpKmzdvlt1ud/ZHDho0SP369aM/shHbs2ePlixZohMnTmj48OEaNGgQK1bgukaghFc6c+aMli9frtzcXK6whFtc2B8ZHh6uhIQE+iPhdP6KFV27dlVycrI6duzo7rKAa4JACa+Wn5+vJUuWqLy8XGPHjmU9OFxzR48eVVZWVo3+yEGDBnHbUFzSvn37tGTJEh07dkzDhg3T4MGD5ePj4+6ygHpFoITXO389uPDwcE2ePJm7V6BeGWO0Z88e2e12Z39kXFycYmNj6Y9EnVRWVmr16tXKyMhQUFCQkpOTuUgL1xUCJa4bO3fu1NKlS3X27FmNGzeOe+3CZRf2R3bs2NG5fmSTJk3cXR680Pfff6+0tDQdOXJEiYmJSkxMZLQS1wUCJa4rp0+f1rJly7Rhwwb17NlTkyZNkr+/v7vLgpc5ffq01q5dq5ycHGd/5KBBg9S9e3f+SIHLKisr9c033yg9PV0dO3ZUcnKyOnfu7O6yAJcQKHFd2r59uz755BNVVlZq/Pjx6tevH0EAV3T06FHZ7XZt2LBBDodD/fv3V0JCAv2RuCYOHTqktLQ0HT58WDfddJOGDRvGyDe8FoES162ysjJ98cUX2rhxo3r37q2kpCT63VBLdX9kZmamduzY4eyPjIuLU8uWLd1dHq5zVVVVSk9P15o1a9SuXTslJyfrhhtucHdZwI9GoMR1b+vWrfr000/lcDg0YcIE9e3bl9FKqKqqSps2bZLdbtehQ4fUsWNH5/qRjBKhoRUVFSktLU0HDx5UQkKCRowYwTqm8CoESjQKZWVl+uyzz7R582b16dNHEydOZPSpkaruj8zOztbJkyfVo0cPJSQk0B8Jt3M4HMrIyNDq1avVtm1bTZ48Wd26dXN3WUCdECjRqGzevFmfffaZJGnixImKiIhwc0VoKNX9kXl5eTLG0B8Jj3XkyBGlpaVp//79io+P18iRI9W0aVN3lwVcFoESjc6pU6f06aefauvWrerbt68mTJigFi1auLssXAPGGBUWFsput2vHjh1q2bKlc/1IRqjhyRwOh7KysvTVV1/J399fkydPVmhoqLvLAi6JQIlGyRjjHK20Wq2aOHGi+vTp4+6yUE8u7I/s1KmTEhIS6I+E1zl69KiWLFmivXv3KjY2VjfffLOaNWvm7rKAWgiUaNROnjypTz75RNu3b1e/fv00fvx4NW/e3N1l4SqVlZU5769NfySuF8YY5eTkaOXKlWrRooUmTZqk8PBwd5cF1ECgRKNnjNHGjRv1+eefq0mTJkpKSlLv3r3dXRZ+hCNHjjjXj5Tk7I/s2LGjmysD6s+xY8e0dOlSFRQUaMCAARozZoz8/PzcXRYgiUAJOJWWlmrp0qXauXOnoqKiNG7cOD6sPVh1f2RmZqZ27txJfyQaBWOMcnNztXz5cjVr1kyTJk1Sz5493V0WQKAEzmeM0YYNG/TFF1+oadOmfFh7oMrKSmd/5OHDh9WpUycNGjRIkZGR9Eei0Th+/LiWLl2q/Px8RUVFaezYsbTrwK0IlMBFnP9hzdSSZygrK3PeX/vkyZPq2bOnEhISFBYWRn8kGiVjjPLy8rRs2TL5+vpq4sSJuvHGG91dVr1444039Mtf/lKzZs1Samqqu8tBHRAogUswxmj9+vVatmyZ/Pz8NHnyZBrh3YD+SODyTpw4oU8//VQ7duxQZGSkxo8f79VLoR07dkw9e/bU0aNHCZRehEAJXEFJSYmWLFmigoICxcTEaPTo0SzbcY0ZY1RQUCC73e7sjxw4cKBiY2O9+osSuFbOv7jQx8dHEyZM8NobN8ycOVP79+9XWloagdKLECiBOjDGaN26dVq+fLlatGihyZMnq3v37u4u67pzYX9kYGCgEhIS6I8E6ujkyZP69NNPtW3bNvXp00cTJkxQq1at3F1WnX333XcaO3asPv/8cw0YMIBA6UWs7i4A8AYWi0WxsbH61a9+pYCAAL377rv69NNPdfbs2cs+LzExUUFBQfXW4/fPf/5TNptNFovF+SG7fft22Ww2tWrVSsOHD6+X85SWlspms6ldu3YNcneOsrIyrVmzRi+99JLS0tLUunVr/exnP9MDDzwgm81GmATqqFWrVpo6daqmTJmiPXv26K9//as2btyo88eO5syZox49eshisWj16tWSpPz8fNlsNjVt2lTTpk1z7rtw4ULFxsYqOjpa/fv3V1JSkhYvXlzjnNu3b1dKSopCQkLUo0cPJSYmatWqVc6fL1q0yPm59cwzzyg1NVWDBw9WmzZt1LZt2xrHevjhh/Xcc8/V2g7PR6DEdeH06dOy2WzO8BYRESGbzVbjX0REhMvhKCAgQHfffbfGjx+vDRs26LXXXlNhYaEKCwuVmpqqwsLCGvt/8803+uUvf+nSOc931113KS8vr8a23r17Ky8vT7GxsfV2Hn9/f+Xl5Wny5Mn1dsyL+eGHH7R06VK9+OKL+uabb3TjjTdqxowZ+o//+A8WIweuksViUd++ffXggw+qe/fu+vjjj7Vo0SKVlpZKkp5++mktWLCgxnPCw8OVl5enLl26OLelp6fr3nvv1cKFC5Wbm6v169erZ8+eeumll5z7FBQUaPDgwWrevLny8/O1a9cuTZ06VWPHjlV6erok6Y477nB+br355puKjY1VRkaG8vLyZLX+O4YsWrRIJ06c0PTp06/RO4NriT/7cV1o3ry58vLylJqaqmeffVafffZZrfBYWFhYLyN4FotFAwcOVI8ePZSWlqa3335bfn5+evbZZzV8+HDut3sF1f2RmZmZ2rVrl1q1aqXExET6I4F61rJlS02ZMkV9+/bVp59+qr/+9a8aO3asoqKi6vR8u90uPz8/BQcHS5J8fHz0xBNP6KOPPnLuk5qaquPHj2vevHnOmYSZM2dq/vz5mjVrlr788ssax4yMjFRSUpIkKSwsTDk5OZLOzVI88cQTWrhwYY2QCe9BoESjERgYqL///e/1drx27dpp2rRpysrK0t/+9jdJ0uHDh+vt+NebyspKbdy4UXa7XUVFRQoMDFRKSor69u3LlDZwDfXp00ehoaH64osvlJaWps2bN9dpSnnYsGF66qmnFBMTowcffFApKSm64YYbNHPmTOc+y5cvV3h4uDp37uzcZrFYFBkZqc8//1wVFRXy9fV1/iwyMrLGOapXzpg7d66GDBmim266ycVXC3fhzwA0CsOHD1dWVpZGjhzp3LZo0SLFxMSoZ8+e6tatm6ZOnardu3fXeu7KlSs1dOhQde/eXSEhIZowYYLWr18v6dwH5zfffOPsF/rVr36l8PBwRUVFqaSkpMZxcnNzNWrUKN14443q2rWrnn32WTkcDufPjxw5okceeUQ2m83Zr3TPPffo4MGD9fY+/PrXv3b2Tr3zzju69dZbFRUVpXbt2ulnP/uZiouLr3iMjz/+WGPGjFF0dLRsNpvi4uL0/vvvO3/+zjvv6IYbbpDFYlGfPn00b948ff3113r44Yc1btw4zZw5U5988okeeOABRUVFad26dbr55psVFhamsLAwjRs3rsa0/osvvqiIiAhZLBa99tprevjhhxUfH6/mzZvLZrPV23sDXM+aN2+uW265RT/5yU90+PBhpaWlSZIud11uXFycMjIy1K9fPz3++OMKDg7W0KFDlZ2d7dznyJEjOnDgQK0Wow0bNiggIEDHjh2rcUx/f/9a5ykoKNBrr72m//qv/6qnVwu3MMB1ZNasWUaSKSgoqLF92LBhZtWqVc7Hr7zyimnSpIlZsmSJMcaYiooK85Of/MR07NjR7N2717lfWlqasVqt5rXXXjPGGONwOMzjjz9uWrRoYdatW+fcb9WqVUaSeeWVV8zs2bPNK6+8Yvbt21ejpilTppgTJ04YY4xZsWKF8fX1Nc8995zzGJmZmaZ3796mqKjIGGPM2bNnzYwZM0xMTIyprKys8XokmVmzZtV6jcOGDbvie1Rda3h4uNm+fbsxxpg9e/aYbt26mZEjR9bY95577jEhISE1to0dO9a8/PLLzscbN2407dq1M4sXL3Zuy87ONpLMzJkzzR/+8Afzhz/8wSxdutQsWrTITJw40blfVlaWadasmfntb3/r3Pab3/zG+Pv7m507dzq3FRQUGEmmR48eJisry/k6oqKirvh6AdR0+vRpM2fOHCPJ/Od//qc5duyY82ft2rUz99xzT63nnDhxwixYsMDccMMNpnXr1qa4uNgYY0xQUJCx2Wx1Ou/FPreMMea///u/Tbdu3UxUVJTzX58+fYwkExgYaKKioszUqVOv5qWiAREocV2pDm99+vSp8eHUsmVLZ6A8ceKEadWqlUlJSanx3EOHDhlfX19z7733GmPOhcfQ0NBaH5ZnzpwxHTp0MCNGjHBuqw5pq1atMkVFReZvf/ubefbZZ83y5cvN73//eyPJfPPNNzWOc8sttxh/f39TUlJijDHm5MmTNcKsMcZs3brVSHKGqGr1EShnz55dY/v8+fONJPPll186t10sUO7YsaNWwL3jjjvM+PHjjcPhMLt27TLvvfee6dixowkNDTVr1qwxp06dcu730UcfOZ83dOhQ065dO3P69GnntlOnTplWrVqZ++67z7mtOlD+4he/cG6rqqqq9YcDgLrZvn27kWSmTZtm5syZY7KyssyhQ4eMJGeg/Oc//2nS0tJqPO+jjz4ykpx/UN9zzz2mVatWprS0tMZ+3377rfnVr35VY9ulAuXFVP/O13V/uB9T3rguffbZZ8rLy3P+O/8K6IyMDJ08eVLx8fE1nhMYGKiwsDB98cUXkqQdO3aosLCw1n5NmzZVdHS01qxZo9OnT9c6d8eOHXXfffdp5MiRysrK0tq1ayWdu8PL+QYOHKjS0lJt3LhR0rkGervdrtGjRysyMlI2m0233nqrpHNLetS3i9UjnXt/Lqdly5Z69NFHFRMTo/79+8tms2n58uXasmWLXn/9db333ns6efKkfvazn6mwsFCdOnVSixYtdOzYMX377beaNGmSpHNN+Onp6YqNja1xW8sWLVooPDxcX331Va1zn99/ZbVauQAKuErh4eEKCQnRqVOn1K9fP3322We6++67a0xJ79ixQ3PnznVOWzscDq1Zs0ZdunRxLpqempqqZs2a6dFHH1VFRYUk6eDBg5oxY4bXLqyOq0OgRKOwevVq5xXeR44ckXTuopoLtW/fXj/88EOd9quqqrpkz6HVatWQIUP0i1/8Qj4+PpKknJwcVVZWOvepPu6BAwckSQsWLNDUqVN19913a+PGjcrLy9Nnn30mSTpz5syPfs1X0rp16xqPL6znYk6dOqURI0Zo3bp1+uyzz5SZman58+ere/fuKikpUdu2bXX33XfrF7/4hZ544gk1adJE//jHPySdW89uypQpzgb9Y8eOyeFwKCcnp1b/VXFxcY3+0moX678C8OP5+Pjo/fff165du/TII49o+fLl6tGjh3x8fPTxxx/LZrPplltuUe/evXXTTTfJZrOpf//+2rt3r1auXOn8IzA0NFSZmZkqKSlRWFiYBgwYoOTkZM2cOdN58c6yZcuc/c6vv/66bDZbreXPqpWUlMhms2nChAk19n/nnXeu+XsC13BpJRqdDh06SNJFw+DRo0ed94i+0n4+Pj4XDZvn69SpkwYMGKBPPvlEX331lXbs2KGUlBR17txZR48elSR17dpVkvSPf/xDffv21c9+9rOrf3E/wvHjx2s8vrCei8nIyNCOHTu0YMECZWVl6bvvvpPFYlHbtm3VunVr/eQnP3HuGxgYqAkTJuidd97RnDlz9I9//MMZLqVza3parVYNGzZM//M//1PPrw7AlQwaNEi5ubnOx2fPnlVSUpKys7MVHBysrl276q233rricXr27KkPP/zwkj8fO3asxo4dW6ea2rZte8mwCc/GCCUancGDB6tVq1bKysqqsb2oqEgFBQUaN26cJKlXr14KDQ2tcUWjdO5Dd/369Ro6dKiaN28uSc5RN/O/V0yuW7dOO3bskCTnmmrx8fGyWq3629/+plWrVikrK0v+/v7q16+fpHOjkBeuv1afV3hfqHqqvVr16xw8ePBF9zfGOBduX758uXbu3Klhw4bp17/+tXx8fC66dty9996rgwcP6r/+679ktVqdr1U6N7WdmJioDRs21BqNXLx4MbdbAxpY06ZNNX78eE2bNk2nTp3SG2+8oW+//faiswXAhQiUaHT8/f01d+5cffLJJ84p5crKSj322GNq27atM8hYLBbNnz9fGzZscK4zaYzRrFmzdOrUKb3wwgvOY4aGhspisWj//v2SpIceekh2u73Ged944w3dcccdGjp0qN5++2198skn+uUvf6k2bdpIkiZNmqRNmzZp6dKlks7d/ecPf/jDNXsf/vWvfzlD7969ezVv3jyNHDmyxtJK1XJzc/Xaa69p165datmypXbv3q37779fiYmJstvttRYvrjZx4kR16tRJv//973XvvffW+vmf/vQnHTx4UM8995wzjG/fvl2PPvqooqOj6/HVAqirkJAQ/fKXv1RcXJxWrlypN998U0VFRe4uC57OvdcEAfWjrKzMREVFmcDAwBpXeVcv03Mx77//vomOjjbh4eEmODjYTJkyxezatavWfitWrDBDhgwxoaGhplu3bmbcuHE1lgyqNmvWLNOtWzcTGRlppkyZYsrLy82QIUOcNa1atcrcdNNNplevXiYwMNBMnDjRpKammtWrV5vKykpz5swZ8+STT5rg4GDTr18/M3LkSPPnP//ZSDLBwcHmoYceMu+9956JiopyLqcxatQos23bNueV7C1btjRRUVGXvfq5+irvDz74wNx5550mKirKBAQEmJ/+9Kfm6NGjxphzV8L369fP+Pv7Gx8fHxMYGGieffZZU1BQYDIzM82QIUNMUFCQGTp0qLn//vvNhAkTjK+vr4mKijKbN2+ucb7HHnvM+Pn51Via5Hw5OTlmzJgxpmvXriY6OtoMGTKkxhJEf//7351LiAQHB5uoqChz+PDhS74+APVn37595tVXXzWzZ882X3/9da0VHoBqFmMus6opgGumqqpKX3/9tdLT0xUUFKSUlBR16tTpmp939erVGjFihFatWnXRW1EWFRXJbrfru+++k9VqVVRUlBISEtS+ffurOt97772nzz//XP/85z9drByAO1RWVmr16tXKyMhQYGCgkpOTFRQUVGu/8ooqlZZXyt+vifx8fdxQKdyJQAm42ffff6/Fixfr6NGjGj58uG666aZrei/biwVKY4zy8/Nlt9uVn58vf39/DRw4UDExMc4+0as1adIkPfLII7r55pvroXoA7vL9998rLS1NR44cUWJiohITE+Xj46OcwmItSN+tFVsOy2Ekq0UaHRGonw/prtjQy1+4iOsHgRLwAOePAHTu3FkpKSnOq83r2/mBcsiQIfruu+9kt9v1ww8/qHPnzkpISFDfvn2dyx1djcGDB2vFihXau3evbr/9dm3cuFEWi6UeXwUAd6iqqtKaNWuUnp6ujh07qjJskP68er+sVouqHP+OEz5WixwOo9kpkfppfIgbK0ZDIVACHmT//v1avHixSkpKNGLECA0aNKheRyt//etfa+nSpcrPz1eXLl3Uq1cvDR8+XL1791ZCQoJCQkLqJfgNHz5cBQUFateunf7yl79c8spxAN7p0KFDenXR53rvUEdJl/7MsEj61wODGKlsBAiUgIepqKjQqlWrlJmZqRtuuEHJycnONTFdVVRUpMzMTG3cuFFWq1U2m03x8fFX3R8JoPH6xbs5Wrm1SI7LpAgfq0Wj+wTq9Z/GNFxhcAsCJeCh9u7dq7S0NJ04cUIjR450rmN5vro0wVf3R2ZmZmr37t312h8JoHEqr6hSxKwvLhsmq1kt0pZnx3GhznWOQAl4sIqKCn355ZfKyspScHCwkpOT1b59+zo1wVdUVOi7775TVlaWsz9y0KBBioiIcKk/EgB+KD2juD+urPP+Ob+7WR39m13DiuBuBErAC+zZs0dpaWkqLS2VI/wm/X3DqUs2wf+fcT3V3XFAa9euVVlZmW688UYlJCSoW7duXBgDoF4wQokLESgBL3H27Fm9/tEKzfvO6HJN8JLR5Oa7NC62lxISEq54v3EAuBoPvLdWK7cW1fjD9kL0UDYe3HoR8BJNmzbV5qpA+VxhlNFqseh06GBNmDCBMAngmrl/SHc5rjBE6XAY3T8krIEqgjsRKAEvUV5RpRVbDqvqCnMKDiN9ue0HlVdUNUxhABqluNB2mp0SKYvOjUSez8dqkUXS7JRIlgxqJJq4uwAAdVNaXlmnfiXpXKgsLa+kZwnANfXT+BDdGOivBekFWr7l0L8vEuwTqPuHhBEmGxECJeAFDh48qDUZdlnkK3PZ/slzrBbJ349fbwDXXmxoO8WGtuNe3o0c3ziAh3I4HNqxY4fsdrv27NmjNm3aKDYoQrlFlXVqgucDHUBD8vP14XOnESNQAh7m7NmzWr9+vbKysnTs2DEFBwfr9ttv14033qib9pZo6huZl30+TfAAgIbGskGAhzh+/LiysrKUm5urs2fPqm/fvkpISFDXrl1r7Pde1h79fvGmS65DOTslUj+ND2no8gEAjRiBEnCz/fv3y263a8uWLWrWrJmio6M1cOBAtWnT5pLPWVtYrAXpBVq2+aCMLLJapDERQTTBAwDcgkAJuIHD4dDWrVtlt9u1f/9+tWvXTvHx8bLZbGratGmdj/PyX15X4A3dlDxhLL1LAAC3oYcSaEDl5eXKzc1Vdna2jh8/rtDQUN15553q1avXVd0WsYnFobZ+NMIDANyLQAk0gOLiYmVlZSkvL0+VlZXq16+fEhISFBQU5NJxHQ4H9+cGALgdgRK4Rowx2rt3r+x2u7Zt26YWLVooPj5ecXFx8vf3r7dzECgBAO5GoATqWVVVlTZv3iy73a6DBw+qY8eOSkpKUv/+/eXr61uv53I4HLJauYMqAMC9CJRAPSkrK9O6deuUnZ2tkydPKjw8XHfddZfCw8Ov2SgiI5QAAE9AoARcdOTIEdntdm3YsEGS1L9/fyUkJKhjx47X/NwESgCAJyBQAlfBGKPdu3fLbrdr165datWqlRITExUTE6OWLVs2WB1MeQMAPAGBEvgRKisr9d133ykrK0tFRUUKCgpSSkqK+vbtqyZNGv7XiRFKAIAnIFACdXDy5Enl5ORo7dq1KisrU+/evTV+/HiFhIS4NdAxQgkA8AQESuAyDh8+LLvdro0bN8pqtcpmsyk+Pl7t27d3d2mSGKEEAHgGAiVwAWOMdu7cKbvdroKCArVu3VojRoxQdHS0mjdv7u7yaiBQAgA8AYES+F9nz57Vhg0blJWVpaNHj6pr16667bbb1KdPH/n4eOatDZnyBgB4AgIlGr0TJ04oOztb69at05kzZ9SnTx8lJycrODjY3aVdESOUAABPQKBEo3XgwAHZ7XZt2bJFvr6+GjBggOLj49W2bVt3l1ZnxhhGKAEAbkegRKPicDi0fft22e127d27V23bttXo0aM1YMAANWvWzN3l/WgOh4MRSgCA2xEo0SicOXNG69evV1ZWlkpKStStWzdNnTpVvXv39uoRPqa8AQCegECJ61pJSYmysrKUm5uryspK9e3bV7fffru6dOni7tJcZoyRJK8OxACA6wOBEtcdY4z27dsnu92ubdu2yc/PTwMHDlRcXJxat27t7vLqTXWgZIQSAOBuBEpcN6qqqrRlyxbZ7XZ9//33at++vSZMmKCoqCj5+vq6u7x653A4JBEoAQDuR6CE1zt9+rTWrVunnJwcnThxQt27d9d//Md/qEePHtd12GLKGwDgKQiU8FpHjx6V3W7Xhg0b5HA41K9fPyUkJCgwMNDdpTUIRigBAJ6CQAmvYoxRYWGh7Ha7duzYoRYtWmjw4MGKjY1Vq1at3F1eg2KEEgDgKQiU8AqVlZXatGmT7Ha7Dh8+rE6dOmny5Mnq16+fmjRpnP835qIcAICnaJzfxPAap06d0tq1a5WTk6NTp06pZ8+eGjNmjMLCwhp9kGLKGwDgKQiU8EhFRUWy2+367rvvZLFYFBUVpYSEBHXo0MHdpXkMprwBAJ6CQAmPYYxRfn6+7Ha78vPz5e/vr2HDhikmJkYtWrRwd3kehxFKAICnIFDC7SoqKrRhwwZlZWXpyJEj6ty5s2655Rb17dtXPj4+7i7PY9FDCQDwFARKuE1paalycnK0du1anT59WjfeeKOSkpLUrVs3QlIdMOUNAPAUBMpGZPfu3frv//5vffrppzLGqLKyUmFhYfrd736nxMTEBqvj4MGDstvt2rRpk5o0aaIBAwYoPj5eAQEBDVbD9YApbwCApyBQNiIPPvigioqKtGzZMnXp0kUVFRV6+OGHNWzYMP3P//yPkpOTr9m5HQ6HduzYIbvdrj179qhNmza6+eabNWDAAPn5+V2z817PGKEEAHgKAmUj8/vf/15dunSRJPn6+mrevHlasGCB/vznP1+TQHn27FmtX79eWVlZOnbsmIKDg3X77bfrxhtvJAi5iB5KAICn4Bv9GpkzZ47zXtKrV6+WJOXn58tms6lp06aaNm2ac9+FCxcqNjZW0dHR6t+/v5KSkrR48eIax9u+fbtSUlIUEhKiHj16KDExUatWrXL+fNGiRbLZbLJYLHrmmWeUmpqqwYMHq02bNmrbtq0kaenSpUpJSalx3ObNm6tdu3Y6duxYvb7+48ePa/ny5Zo3b56WLVumrl276v7779d9992niIgIwmQ9YMobAOAp+Fa/Rp5++mktWLCgxrbw8HDl5eU5RwglKT09Xffee68WLlyo3NxcrV+/Xj179tRLL73k3KegoECDBw9W8+bNlZ+fr127dmnq1KkaO3as0tPTJUl33HGH8vLyJElvvvmmYmNjlZGRoby8PGd48/X1rRU+iouL9cMPP2jkyJH18rr379+vDz/8UPPnz9f69esVExOjRx55RLfddpu6du1aL+fAOUx5AwA8BVPebma32+Xn56fg4GBJko+Pj5544gl99NFHzn1SU1N1/PhxzZs3z3mbwZkzZ2r+/PmaNWuWvvzyyxrHjIyMVFJSkiQpLCxMOTk5lzz/66+/rg4dOuipp5666tfgcDi0detW2e127d+/X+3atdO4ceOco7G4NhihBAB4CgKlmw0bNkxPPfWUYmJi9OCDDyolJUU33HCDZs6c6dxn+fLlCg8PV+fOnZ3bLBaLIiMj9fnnn6uiokK+vr7On0VGRtY4R3h4+EXPnZubqz/96U/6+OOPFRQU9KNrLy8vV25urrKzs3X8+HGFhobqzjvvVK9evQg5DYARSgCApyBQullcXJwyMjL0wgsv6PHHH9dDDz2kxMREvfDCCxo4cKAk6ciRIyotLZXNZqvx3OPHjysgIEDHjh1Tp06dnNv9/f2veN6tW7cqJSVF7777rkaMGPGjai4uLlZWVpby8vJUWVmpfv36KSEh4apCKa4eF+UAADwFgfIaqr7LS/UXf7XS0tIaj+Pi4rRo0SKVlpbqgw8+UGpqqkaPHq3CwkIFBASoQ4cOCgoK0vr16+ulrry8PKWkpOjNN9/U6NGj6/QcY4z27t2rzMxMbd++XS1atFB8fLzi4uLqFGBR/5jyBgB4CgLlNRQYGCjp3IhetaKiohqPFy5cqFatWmny5Mny9/fX9OnTFRAQoNtuu00FBQUKCAjQ2LFj9dFHH+nkyZNq1aqV87kZGRl677339Ne//rXONWVlZWnq1Kl67733aixmHhsbq7Vr19bav6qqSps3b5bdbtfBgwfVsWNHJSUlqX///jWm2dHwmPIGAHgKAuU1FB4erpCQEH344Ye69dZbJUnPP/+8Wrdu7dxnx44dWrZsmRITExUQECCHw6E1a9aoS5cuioiIkHTuopxPPvlEjz76qF577TX5+vrq4MGDmjFjhqZPn17netasWaOkpCRNmzZNe/bs0Z49e5w/W7duXY19y8rKtG7dOmVnZ+vkyZMKDw/XXXfdpfDwcEbEPART3gAAT0GgvIZ8fHz0/vvva8aMGQoPD1doaKiefvppffzxx1qyZIlsNpvefvttFRYW6qabblLTpk1VWVmpXr16aeXKlc47yISGhiozM1NPPfWUwsLC1LFjR/n6+mrmzJnOQLls2TI9+eSTks5dub148WK99dZbNfouH330UZWWluqVV165ZM1HjhyR3W7Xhg0bJEn9+/dXQkKCOnbseI3eJVwtprwBAJ7CYi5s8EOjY4zR7t27ZbfbtWvXLrVq1UpxcXGKiYlRy5Yt3V0eLmH37t1699139cgjjzgXrwcAwB0YoWzEKisr9d133ykrK0tFRUUKCgpSSkqK+vbt61zvEp6LEUoAgKcgNTRCJ0+eVE5OjtauXauysjL17t1b48ePV0hICOHEi3BRDgDAUxAoG5HDhw/Lbrdr48aNslqtstlsio+PV/v27d1dGq4CF+UAADwFgfI6Z4zRzp07ZbfbVVBQoNatW2vEiBGKjo5W8+bN3V0eXMCUNwDAUxAovVB5RZVKyyvl79dEfr4+F93n7Nmz2rBhg7KysnT06FF17dpVt912m/r06eNccB3ejSlvAICnIFB6kZzCYi1I360VWw7LYSSrRRodEaifD+mu2NB2kqQTJ04oOztb69at05kzZ9SnTx8lJyfrhhtuYCTrOsMIJQDAUxAovcS79j16Jm2TrFaLHP+70JPDSCu3Fmn55sP6zfAb1PnkLm3ZskW+vr4aMGCA4uPjWU7mOsYIJQDAUxAovUBOYbGeSdskI6nKUXPZ0OrHL6zep6ntjujW0aM1YMAANWvWzA2VoiFxUQ4AwFMQKL3AgvTdslottcLk+XwsFp3oHKOEhNgGrAzuxJQ3AMBTMFfm4corqrRiy+HLhklJqjLS8i2HVV5R1UCVwd2Y8gYAeAq+iTxcaXmlrpAlnRzm3P5oHJjyBgB4CgKlh/P3ayJrHfOC1XJufzQOTHkDADwFgdLD+fn6aHREoHyukCp9rBaNiQi65LqUuP4YYwiTAACPQKD0AvcP6S7HFea9HQ6j+4eENVBF8AQOh4P+SQCAR+DbyAvEhbbT7JRIWaRaI5U+VosskmanRDoXN0fjwAglAMBT0HDnJX4aH6IbA/21IL1Ay7cc+vedcvoE6v4hYYTJRohACQDwFARKLxIb2k6xoe3qdC9vXP+Y8gYAeAoCpRfy8/UhSIIRSgCAx2B4A/BSxhhGKAEAHoFvI8BLORwORigBAB6BQAl4Kaa8AQCegkAJeCkuygEAeAq+jQAvxQglAMBTECgBL0WgBAB4CgIl4KWY8gYAeAq+jQAvxQglAMBTECgBL8UIJQDAU/BtBHgpRigBAJ6CQAl4KQIlAMBTECgBL8WUNwDAU/BtBHgpRigBAJ6CQAl4KWMMI5QAAI/AtxHgpRihBAB4CgIl4KUcDgeBEgDgEQiUgJdiyhsA4Cn4NgK8FFPeAABPQaAEvBRT3gAAT0GgBLwUU94AAE/BtxHgpRihBAB4CgIl4KUYoQQAeAq+jQAvxUU5AABPQaAEvBRT3gAAT0GgBLwUU94AAE/BtxHgpRihBAB4CgIl4KUYoQQAeAq+jQAvxUU5AABPQaAEvBRT3gAAT0GgBLwUI5QAAE9BoAS8FD2UAABPwbcR4KWY8gYAeAoCJeClmPIGAHgKAiXgpRwOB1PeAACPwLcR4KUYoQQAeAoCJeClCJQAAE9BoAS8FFPeAABP0cTdBQC4Olc7QllYWKjIyEj16NGj1s9eeeUVJSYm1kd5AIBGhEAJeClXRihjY2O1evXq+i0IANBoMV8GeCl6KAEAnoJACVxDc+bMUY8ePWSxWJwjgvn5+bLZbGratKmmTZvm3HfhwoWKjY1VdHS0+vfvr6SkJC1evLjG8bZv366UlBSFhIToj3/8ox5++GGtWrXK+fNFixbJZrPJYrHomWeeUWpqqgYPHqw2bdqobdu21/4FAwAaJQIlcA09/fTTWrBgQY1t4eHhysvLU5cuXZzb0tPTde+992rhwoXKzc3V+vXr1bNnT7300kvOfQoKCjR48GA1b95c+fn5evLJJzVy5EiNHTtW6enpkqQ77rhDeXl5kqQ333xTsbGxysjIUF5eXo3p8cOHD+vuu+9WfHy8evbsqcmTJ2vlypXX7o0AAFzXCJSAB7Db7fLz81NwcLAkycfHR0888YSmTJni3Cc1NVXHjx/XvHnz1KRJExljdNttt6lbt26aNWtWrWNGRkYqKSlJkhQWFqacnBznsR0Oh37+858rKytLGzdulM1m05gxY2qFXwAA6oJACXiAYcOGqaysTDExMXr11Ve1f/9+de7cWTNnznTus3z5coWHh6tz586SzvVQ+vj4KDIyUunp6aqoqKhxzMjIyBqPw8PDJUnBwcHavn2782puPz8/Pffcc4qNjdVvf/tbnTlz5lq+VADAdYhACXiAuLg4ZWRkqF+/fnr88ccVHBysoUOHKjs727nPkSNHdODAAdlsNtlsNs2fP1/Tpk3Thg0bFBAQoGPHjtU4pr+//4+qISEhQcePH9emTZvq5TUBABoPAiVwjfn4+Eg6N6J4vtLS0hqP4+LitGjRIhUVFWnBggUqKCjQ6NGjnUGxQ4cO6tmzp/Ly8pSXl6eZM2fqnXfeUUFBgQ4dOqROnTrVqZ7jx4/r9OnTl6zT4XD86NcIAGjcCJTANRYYGChJKi4udm4rKiqq8XjhwoVasmSJpHMji9OnT9f8+fN14sQJFRQUSJLGjh2rXbt26eTJk5L+vQ5lRkaGHnzwwTrX88gjj+jFF1+stX3t2rVq0aKF+vbt++NfJACgUSNQAtdYeHi4QkJC9OGHH8oYI2OMnn/+ebVu3dq5z44dOzR37lznaKTD4dCaNWvUpUsXRURESDp3UU6zZs306KOPqqKiQsYYHT16VDNmzHDuU1evvfaaduzYUeNxenq6nnnmGbVo0aIeXjUAoDGxmAvn4QDUu8zMTM2YMUMlJSUKDQ3V008/renTp+vEiRPq1q2b3n77bb344ovKzs5W06ZNVVlZqV69emnOnDnq06eP8zg7d+7UU089JbvdrqqqKrVr106PPfaYpk+fLklatmyZnnzySW3YsEGBgYEKCgrSW2+9JZvN5jzGxo0b9eabb+qrr76SxWJRSUmJOnfurIceekh33XVXQ781AIDrAIES8ELGGD333HOaNGmSoqOj3V0OAKCRY8ob8ELVfwdy60UAgCcgUAJeqDpQnn/3GwAA3IVvI8ALMUIJAPAkBErACzkcDlUai0rKHSqvqHJ3OQCARo6LcgAvk1NYrP/+epdWbiuSkUVWizQ6IlA/H9JdsaHt3F0eAKARIlACXuRd+x49k7ZJVqtFVY5//+r6WC1yOIxmp0Tqp/EhbqwQANAYESgBL5FTWKypb2Tqcr+wFkn/emAQI5UAgAZFDyXgJRak75bVevmLcKxWixakFzRQRQAAnEOgBLxAeUWVVmw5XGOa+2KqHEbLtxziQh0AQIMiUAJeoLS8UlfIkk4Oc25/AAAaCoES8AL+fk10hdluJ6vl3P4AADQUAiXgBfx8fTQ6IlA+V0iVPlaLxkQEyc/Xp4EqAwCAQAl4jfuHdJfjCvPeDofR/UPCGqgiAADOIVACXiIutJ1mp0TKItUaqfSxWmSRNDslkiWDAAANjnUoAS+ztrBYC9ILtHzLITnMuZ7JMRFBun9IGGESAOAWBErAS5VXVKm0vFL+fk3omQQAuBWBEgAAAC6hhxIAAAAuIVACAADAJQRKAAAAuIRACQAAAJcQKAEAAOASAiUAAABcQqAEAACASwiUAAAAcAmBEgAAAC4hUAIAAMAlBEoAAAC4hEAJAAAAlxAoAQAA4BICJQAAAFxCoAQAAIBLCJQAAABwCYESAAAALiFQAgAAwCUESgAAALiEQAkAAACXECgBAADgEgIlAAAAXEKgBAAAgEsIlAAAAHAJgRIAAAAuIVACAADAJQRKAAAAuIRACQAAAJcQKAEAAOASAiUAAABcQqAEAACASwiUAAAAcAmBEgAAAC4hUAIAAMAlBEoAAAC4hEAJAAAAlxAoAQAA4BICJQAAAFxCoAQAAIBLCJQAAABwCYESAAAALiFQAgAAwCUESgAAALiEQAkAAACXECgBAADgEgIlAAAAXEKgBAAAgEsIlAAAAHAJgRIAAAAuIVACAADAJQRKAAAAuIRACQAAAJcQKAEAAOASAiUAAABcQqAEAACASwiUAAAAcAmBEgAAAC4hUAIAAMAlBEoAAAC4hEAJAAAAlxAoAQAA4BICJQAAAFxCoAQAAIBLCJQAAABwCYESAAAALiFQAgAAwCUESgAAALiEQAkAAACXECgBAADgEgIlAAAAXEKgBAAAgEsIlAAAAHAJgRIAAAAuIVACAADAJQRKAAAAuIRACQAAAJcQKAEAAOCS/w/ZRWy7dmmhRQAAAABJRU5ErkJggg==", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -940,7 +816,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 22, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -953,10 +829,10 @@ { "data": { "text/plain": [ - "-0.75" + "-0.7500000000000001" ] }, - "execution_count": 26, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -976,7 +852,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 23, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -1021,7 +897,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 24, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -1037,7 +913,7 @@ "0.5454545454545454" ] }, - "execution_count": 28, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -1045,13 +921,6 @@ "source": [ "nx.transitivity(G)" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -1062,9 +931,9 @@ "toc_visible": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "chap1", "language": "python", - "name": "python3" + "name": "chap1" }, "language_info": { "codemirror_mode": { @@ -1076,9 +945,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.0" + "version": "3.9.18" } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 4 } diff --git a/Chapter01/03_Graphs_Benchmarks.ipynb b/Chapter01/03_Graphs_Benchmarks.ipynb index aa98f16..a01b63e 100644 --- a/Chapter01/03_Graphs_Benchmarks.ipynb +++ b/Chapter01/03_Graphs_Benchmarks.ipynb @@ -12,93 +12,14 @@ "execution_count": 1, "metadata": {}, "outputs": [], - "source": [ - "%matplotlib inline\n", - "from matplotlib import pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], "source": [ "import networkx as nx\n", - "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "\n", - "default_edge_color = 'gray'\n", - "default_node_color = '#407cc9'\n", - "enhanced_node_color = '#f5b042'\n", - "enhanced_edge_color = '#cc2f04'" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "output_dir = \"./figures\"" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import os" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "def draw_graph(G, node_names={}, filename=None, node_size=50, layout = None):\n", - " pos_nodes = nx.spring_layout(G) if layout is None else layout(G)\n", - " nx.draw(G, pos_nodes, with_labels=False, node_size=node_size, edge_color='gray')\n", - " \n", - " pos_attrs = {}\n", - " for node, coords in pos_nodes.items():\n", - " pos_attrs[node] = (coords[0], coords[1] + 0.08)\n", - " \n", - " nx.draw_networkx_labels(G, pos_attrs, labels=node_names, font_family='serif')\n", - " \n", - " plt.axis('off')\n", - " axis = plt.gca()\n", - " axis.set_xlim([1.2*x for x in axis.get_xlim()])\n", - " axis.set_ylim([1.2*y for y in axis.get_ylim()])\n", - " \n", - " if filename:\n", - " plt.savefig(os.path.join(output_dir, filename), format=\"png\")\n", - "\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", "\n", - "# draw enhanced path on the graph\n", - "def draw_enhanced_path(G, path_to_enhance, node_names={}, filename=None, layout=None):\n", - " path_edges = list(zip(path,path[1:]))\n", - " pos_nodes = nx.spring_layout(G) if layout is None else layout(G)\n", - " \n", - " plt.figure(figsize=(5,5),dpi=300)\n", - " pos_nodes = nx.spring_layout(G)\n", - " nx.draw(G, pos_nodes, with_labels=False, node_size=50, edge_color='gray')\n", - " \n", - " pos_attrs = {}\n", - " for node, coords in pos_nodes.items():\n", - " pos_attrs[node] = (coords[0], coords[1] + 0.08)\n", - " \n", - " nx.draw_networkx_labels(G, pos_attrs, labels=node_names, font_family='serif')\n", - " nx.draw_networkx_edges(G,pos_nodes,edgelist=path_edges, edge_color='#cc2f04', style='dashed', width=2.0)\n", - " \n", - " plt.axis('off')\n", - " axis = plt.gca()\n", - " axis.set_xlim([1.2*x for x in axis.get_xlim()])\n", - " axis.set_ylim([1.2*y for y in axis.get_ylim()])\n", - " \n", - " if filename:\n", - " plt.savefig(os.path.join(output_dir, filename), format=\"png\")" + "from utils import draw_graph, FIGURES_DIR, DATA_DIR" ] }, { @@ -117,7 +38,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -128,14 +49,14 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAFkCAYAAADFWGGgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVRUV7o3/m8NFEUBFhbzjAiICioqIEQlThgjzkGcEjOZaCf9dq/Vd1i30+smb7pvenx73V933w5XExNxjsYZ53kWcUBlcsQBlEmmAgqqivP7g6YatBAoqqgCvp+1shI4dc5+ihSH8+z97L1FgiAIICIiIiIioi4RWzsAIiIiIiKi3ojJFBERERERkQmYTBEREREREZmAyRQREREREZEJmEwRERERERGZgMkUERERERGRCZhMUYeCgoJw9OhRa4dBRH3MyZMn4efnZ/i69b3mq6++wocffmit0IiIXqmgoAAikQg6na7b577++uv45ptvzB0i9RAmUzZu06ZNGDt2LJycnODt7Y0ZM2bg7Nmz1g7LqO7cWIio9zNnx8svf/lLPlwQkVkFBQXBwcEBTk5OGDhwIGbOnInHjx9bOyzq5ZhM2bA///nP+PnPf45f/vKXKC4uxqNHj/CTn/wEu3fvtnZoRERERL3O3r17oVar8fTpU3h6euKnP/1pl6/BTmNqjcmUjaqqqsJ//ud/4n/+538wf/58ODo6ws7ODrNmzcIf//hHNDQ04Oc//zl8fHzg4+ODn//852hoaADwz9KZP/zhD/Dw8IC3tzd27dqF/fv3IywsDCqVCl999ZWhrS+++AJvvfUWUlJS4OzsjNGjRyMrK8toXE1NTfjd736HwYMHw9XVFQsXLsTz588BABMnTgQAuLi4wMnJCRcuXAAArF27FkOHDsXAgQMxffp0PHz40JI/OiKyIa+6V73KF198gWXLlgH456j36tWr4ePjA29vb/zpT3/qVBst98OvvvoKbm5uCAoKwsaNGy3zZomo15DL5XjrrbeQk5MDAEhPT0dUVBQGDBgAf39/fPHFF4bXttyDvv32WwQEBGDy5MmGY2vXrjV6X3rV8xL1LUymbNSFCxeg0Wgwb948o8f/67/+CxcvXsT169eRlZWFjIwM/OY3vzEcf/bsGTQaDQoLC/Hll19ixYoV2LBhA65cuYIzZ87g17/+NR48eGB4/e7du5GcnIznz59jyZIlmDt3LrRa7Uvt/vWvf8WuXbtw6tQpFBUVYeDAgfjkk08AAKdPnwYAVFZWQq1WIy4uDrt378ZXX32FHTt2oLS0FBMmTMDixYvN+aMiIhvW0b2qK06cOIE7d+7g8OHD+P3vf28oKezM/bCsrAyFhYVYt24dPvroI+Tn55vl/RFR71RXV4etW7di3LhxAABHR0ekpaWhsrIS6enp+Prrr7Fr164255w6dQq5ubk4dOiQ4Xvt3Zde9bxEfYxANmnDhg2Cp6dnu8eDg4OF9PR0w9cHDx4UAgMDBUEQhBMnTghyuVzQ6XSCIAhCdXW1AEC4ePGi4fWjR48Wdu7cKQiCIHz++edCbGys4Zherxe8vLyE06dPC4IgCIGBgcKRI0cEQRCE8PBw4ejRo4bXFhUVCVKpVNBqtcKDBw8EAIJWqzUcf+ONN4RvvvmmzbUdHByEgoKCLv9MiMi2tb5XtOjoXuXr62v0/M8//1xYunSpIAiC4d6Sm5treO2//uu/Cu+//36n2pBIJIJarTYcT05OFr788kszvGMi6k0CAwMFR0dHQalUClKpVPD29hZu3Lhh9LU/+9nPhJ///OeCIPzzHnTv3j3D8Y7uS115XkpISBDWrFlj9vdLPYMjUzbK1dUVZWVl7dblFhUVITAw0PB1YGAgioqK2pwvkUgAAA4ODgAAT09Pw3EHBweo1WrD1/7+/ob/FovF8PPza3O9Fg8fPsS8efPg4uICFxcXDB06FBKJBMXFxUbjfPjwIX72s58ZXq9SqSAIAgoLCzvzYyCiXq6je1VXtL5Ptb5OR20MHDgQjo6OZomBiHq3Xbt2obKyEhqNBn/729+QkJCAZ8+e4dKlS5g0aRLc3d2hVCqRmpqKsrKyNue2vgcZ+17re0tXn5eo92IyZaPi4uJgb2//0hBzCx8fnzZzjx49egQfHx+T22u9mk1TUxOePHli9Hr+/v44cOAAKisrDf9oNBr4+vpCJBIZff3//u//tnl9fX094uPjTY6ViHoPc96rWt+nWl+nozYqKipQW1trlhiIqG+QSCSYP38+JBIJzp49iyVLlmD27Nl4/PgxqqqqsHLlSgiC0OYcY8857d2XXvW8RH0LkykbpVQq8eWXX+KTTz7Brl27UFdXB61WiwMHDuDf/u3fsHjxYvzmN79BaWkpysrK8OWXXxoma5viypUr2LFjB3Q6Hf77v/8b9vb2hjri1lauXInPPvvM8OBSWlpqWF3Q3d0dYrEY9+/fb/P63/72t8jOzgbQvLDGtm3bTI6TiGybVquFRqMx/GPOe9Wvf/1r1NXVITs7G9999x1SUlIAoFNtfP7552hsbMSZM2ewb98+JCcnd/u9ElHvJQgCdu/ejYqKCgwdOhQ1NTVQqVSQy+XIyMjApk2bOnWd9u5Lr3peor5Fau0AqH2/+MUv4OXlhd/85jdYunQpnJ2dMWbMGHz22WcYPXo0qqurMWLECABAcnIyfvWrX5nc1pw5c7B161YsX74cISEh2LFjB+zs7F563c9+9jMIgoDExEQUFRXBw8MDKSkpmDNnDhQKBT777DO89tpr0Gq1OHjwIObNmwe1Wo1Fixbh4cOHUCqVmDZtGh9kiPqoN998s83Xv/jFLzB27Fiz3KsSEhIQEhKCpqYm/Mu//AsSExMBAL/61a9eeT/08vLCwIED4ePjA4VCgdTUVISHh5sUAxH1brNmzYJEIoFIJEJgYCDWrVuH4cOH4+9//zt+8Ytf4NNPP0VCQgIWLlyIysrKDq/X3n3pVc9L1LeIhBfHMKnf+eKLL3D37l1s2LDB2qEQEb2koKAAgwYNglarhVTatT7AkydPYtmyZXjy5ImFoiMiov6MZX5EREREREQmYDJFRERERERkApb5ERERERERmYAjU0RERERERCZgMkVERERERGQCJlNEREREREQmYDJFRERERERkAiZTREREREREJmAyRUREREREZAImU0RERERERCZgMkVERERERGQCJlNEREREREQmYDJFRERERERkAiZTREREREREJmAyRUREREREZAImU0RERERERCZgMkVERERERGQCJlNEREREREQmYDJFRERERERkAiZTREREREREJmAyRUREREREZAImU0RERERERCZgMkVERERERGQCJlNEREREREQmYDJFRERERERkAiZTREREREREJmAyRUREREREZAImU0RERERERCZgMkVERERERGQCJlNEREREREQmYDJFRERERERkAiZTREREREREJmAyRUREREREZAImU0RERERERCZgMkVERERERGQCJlNEREREREQmYDJFRERERERkAiZTREREREREJpBaOwAiIiIi6jnqBh323ShCQVktgtwckTTCB072fCQkMoVIEATB2kEQERERkeVdLniOd7/PgCAAdY16KGQSiETA9+/GIDpIZe3wiHodJlNERERE/YC6QYfY3x5FbYP+pWOO9hJk/MdUOHKEiqhLOGeKegV1gw5bLj/C7w7kYsvlR1A36KwdEhERUa+y70YR2utCF4Tm40TUNex+IJtnrCTh1+k5LEkgIiLqgoKyWtQ1vjwqBTT/fS0or+vhiIh6P45MkU1TN+jw7vcZqG3QG/4A1DXqUdug/8f3OUJFRETUGUFujlDIJEaPKWQSBLkqejgiot6PyRTZJK1Wi6dPnyJ1fwZ0WuO9aCxJICIi6rykET5ob6q8TqdFYrhbD0dE1PuxzI+sqrGxEaWlpYZ/ysrKUFpaipqaGqhUKmQ3eKOhyc7ouSxJIFvBZYaJqDcQ6Row07EA+2uD0KjVQgcJ7CWARCzGFOkdfPu/+XjnnXfg4eFh7VCJeg2u5kc9oqGhoU3S1PJPbW0t3Nzc4O7ubvi3u7s7VCoVxGIxtlx+hC/23IJG9/LHVCGT4POkYUiJDrDCOyJqxmWGiag3EAQBW7Zsgbu7O8aNT8DH/7Uacnd/KMUN+PWKeWiorcbatWvR0NCAmTNnYtSoUdYOmahXYNcpmVV9fb3Rkab6+vo2ydLYsWPh7u4OFxcXiMXtV5uGydXQ63QAXq7xFomaSxaIrKX1nL4WLXP73v0+g8sME5HNuHLlCmpqarBw4UJoNBoMta/A66NH4syZM7ATNcFRpcJPfvITpKWl4cCBAygoKMDMmTNhZ2e8OoSImvGvPJmkrq7O6EhTY2OjIWFyc3NDcHCwIWkSiURdauP27ds4fmg//rJgNn62Mx+CAGgFMewlAAQB378bwwdVsqrOLDPMkVMisrbS0lKcOHEC7733HiQSCdRqNWQyGaRSKXx9ffHgwQMMGTIECoUCH3zwAXbs2IE7d+5gzZo1SElJgaurq7XfApHN4pMotUsQBEPSVFJS0makSafTGZImd3d3hIaGwt3dHQMGDOhy0mTM3bt3sXv3bixZsgS+vr64dPBH2IfG4+qdR0iMi0LJlYMIdo4zw7skMh2XGSYiW6fT6bBjxw5MnjwZbm7NC0zU1NQYRpxCQ0ORn5+PIUOGAADs7OywcOFCHDlyBDdu3MA333yDydPfxD2tkvNCiYzgbwJBEASo1WqjI02CIMDDw8NQohceHg53d3c4OzubJWky5t69e9i5cycWL14MX19f3Lt3D+ImLf7trfFYs2YNkoa5IgdRuHjxImbOnGmRGIg6o2WZYWMJFZcZJiJbcPz4cSiVSowePdrwvZaRKQAYMmQIzp8/D0EQDH/XRSIREhMTMXDgQGw6cglLfngAkUiCxiZwr0eiFzCZ6kcEQUBNTY0hUSopKTGMNInFYsMok4eHB4YPHw53d3c4OjpaLGky5sGDB9ixYwdSUlLg5+cHALhw4QLc3NwgkUhgb2+PhoYGxMTE4O9//zsmTZoEhYIPrGQdSSN88Ov0HKPHOKePiKzt/v37uHXrFlauXNnmb7larYadnR0EQYBKpYJcLsfTp0/h49P2njV0RBQO7i2FVhCAf5Q0c14oUVv8DeiDBEFAVVWV0ZEmOzs7w0iTt7c3RowYYUiarK2goADbt2/HwoULERDwz3kmDx8+xKRJkwAAcrkcGo0Gzs7OCA8PR2ZmJiZOnGitkKmfc7KX4vt3Y9qs5udgJ4Zep8O/x7rwIYOIrKaurg67du3CnDlzXup0bF3mB/yz1O/FZKp5L0cRDJlUK5wXStSMf+l7MUEQUFlZaTRpksvlhpEmPz8/REVFwc3NzWZHcR49eoRt27bhrbfeQmBgoOH7BQUF0Ol0iImJAQDDyBQAjBs3Dhs2bEB8fDykUn6UyTqig1TI+I+pzftMldchyFWB1/wdsHVjGvKD3QzzEIiIeoogCNi7dy+GDx+OwYMHv3S8trbWUOYHNJf6HTp0CBMmTEBxcTGePHmCwsJC/JhTh3rtQKNt1DXq8aBUbbH3QNRb8Am0F2hqakJFRcVLCVN5eTkUCoVh5byAgACMGTMG7u7ukMvl1g670x4/foytW7di/vz5GDRoUJtj58+fh6urqyFZap1MeXp6wtPTEzdv3kRUVFSPx03UwtFe+lLv7KJFi7Bp0yYsXrzYULJKRGQprTcPF9WWQ15eiQULFhh9bU1NDRwdHVFXV4ebN2/i8ePHePbsGX7/+9/D1dUVvr6+CAgIQHh1Ga7lN0JnZHsSOzThSf51VI/3w4ABAyz99ohsFpMpG6LX69tNmpycnAwjTcHBwYiNjYWbmxvs7e2tHXa3FBYWYsuWLZg3b57R3rOCggJMmDDB8LW9vT00Go3h67i4OBw+fBijRo3q0bldRB3x9fXFnDlzsHXrVrz33ntQqThRm4gs48XNw6XQQ2YXgPgn1YZFIurr61FYWIjCwkI8ffoUTU1NkEqlCA4Ohq+vL4KCgjBkyBDExsaiqKgI+/btg79UDjs7N+i0L5f5icQi+OqfITU1FQsWLDD6N5yoP2Ay1UWte35MXR5Ur9ejvLy8zca2JSUlqKiowIABAwwjTSEhIYiLi4Obm1ub4fi+oqioCJs3b8acOXMQEhLy0vHHjx9Dq9UiNjbW8D25XI76+nrD18HBwQCaVwA0dg0iawoLC0NCQgI2btyI999/3ybmJhJR32Js83AdJNBpm/D2txfxxcgGlD0rRE1NDby9veHr6wtBEBAREQEPDw/Ex8cDAAYMGIAbN26goqICt27dwtSpUxEZGYknf9+AbSXu0On10ApiKGQSiETAd8ujYV/tjwMHDuCHH35ATEwMJk2aBLFYbK0fBZFVMJnqghd7fjpaHlSn07VJmlr+qayshFKpNIw0DRkyBOPHj4erq2u/2Wn82bNn2LRpE5KSkhAWFmb0NefOnYNKpWqTSNrb26OystLwtUgkQlxcHC5cuMBkimzS2LFjUVlZiS1btuCdd97pN7/jRNQzXrV5eJO+CXcanPH+vHnw9vaGWCxGY2Mjzl7KxJUKe1SW1eGR3SPDyqN3796Fg4MDfvKTn0ChUCAjIwODnJpwecU0fPrH7xAyahxCvVyQNMLnHwvsuGLw4MHYvXs3Ll26hHv37mHJkiVwcnLquR8AkZUxmeokYz0/huVBv8vAnvcjUFv1vM3GtlVVVRg4cKBhpGnYsGFwd3dvMweoPyouLsaGDRswc+ZMhIeHt/u6Bw8eIC6u7ca8redMtYiIiMCxY8dQXFwMT09Pi8RM1B1TpkzBzp07sWPHDiQnJ7PnlojM5lWbhzcKIly5/Ri4fwF2dnZQKpUoEZyxqXY4cEcHrdCEwwU38Z+7sjDXpQjBnp6IiIiAQqFAVVUVTp48iffeew/2EiBEVILPkiJfKql3cnLCkiVLkJ2djT179uAvf/kLFi5ciJCQELNU8xDZOn6iO+lVPT8NjY344w/HMXVQ82IQkZGRcHd3h0qlgkTy8qTN/qykpAQbNmzAjBkzMHTo0HZfV1hYiMbGxpeSqZal0VuTSqWIiYnBhQsXMHfuXIvETdQdIpEIc+bMwYYNG3Do0CG88cYbnONHRGbxqs3D5VIRokL84K8XoaioCPXaJmx8poQWYsNq5819xGLsfO6NRXU3sG3bNri7u6OmpgYuLi7Izc2FSCSCg4MDSkpK4OzsDAcHhzb3MJFIhIiICAQHB2Pbtm3YtGkTnINH4Zu7sk5X8xD1VkymOulVPT86SDAoMgZvvdH+KAsBpaWl2LBhAxITEzF8+PBXvvbcuXNwcXF5aYENYyNTQHMp1V/+8hfU1NTA2dnZrHETmYNEIkFKSgrWrl2LCxcuGOYpEBF1x6s2D2/S67Eq6TV4DFRCr9dj9bFbQPFjY9tGASIRShUB8Gt4hMbGRmg0Gri4uCA/Px91dXXQaDTYsGEDGhoaoNfr4eDgAEdHRzg5OcHJyQlKpRIuLi6YMGECvAMG4ZPDldDCSDUPN/ulPoaf5E56Zc+PnRhBrra5f5OtKC8vx/r16zFlyhRERkZ2+Pr79+8jOjr6pe+3l0w5ODggMjISGRkZmDJlilliJjI3uVyOpUuXYu3atRgwYAAiIiKsHRIR9XLGNg+3EzVBJrPDTyNl2LTuO6SkpMDb2xtVehkam4yPimsFMVwDw+HwuBRqtRpxcXEYMGAAGhsb8ejRI9jZ2SEwMBBarRYajQb19fXQaDQoLy/Hs2fPoNVqodfr0dTUhNs6NwjwN9qOXt+EHZkFePs1znOmvoHJVCe9qudHr9VCpS5AU5Mf50IY8fz5c6SlpWHSpEkYOXJkh69/9uwZGhoajPbcGyvzazFu3Dh8++23mDBhQp9c/ZD6BqVSicWLF2P9+vVwdnZus0k1EZEpWm8e/qCsFneuncdny95AcIAvcnJ8sWHDBrzxxhsIclPCXgw0NL18DYVMghGDvPC8XAGJRILJkycbjmm1Wri7u3eqs1IQBPz75gvQ3awwelyjE/Dj4TN4em4H3Nzc4OrqCldXV8N/c4oE9TZMpjqppedn2ZrzECBCYxMghR52Uin+njIKT66dwtq1tzF37ly4ublZO1ybUVFRgbS0NEycOLHTG+uePXsWSqUSDg4OLx1rb2QKAFQqFQICAnD9+nXExMR0K24iS/Ly8sL8+fOxbds2LF++HO7u7tYOiYh6udabh590KEbuzesIDvDFsGHD4Orqii1btmBQaDiaa/xeHp0SiYCRKj321NRAqVS2OVZVVQUfH58OY3j69CmOHDmCkocaSOFldLNfhUyCRUlTkDRUhbKyMpSXl6OsrAyPHj1CeXk5qqqqoFQqjSZajo6OnG9KNofJVBdEeimw1DEbysjJyMh7AB9nO7hU38akiDchDF+GzMxMrF27FhMmTMC4ceP6/S98ZWUl1q1bh9deew1jxozp9Hn37t1rN/Gyt7dHY2MjBEEw+vONi4vDrl27MHbsWI4Skk0bPHgwpk6dik2bNuH999/nXD8iMpuoqCikpqZi2rRpkMlk8PT0xIoVK7B9+3a86ViN/XWDIAgCGptEcLATQ6fT4svJvjh2cD/efPNNpKent5mDXFNTgwEDBrTbXkVFBU6cOIH79+/DyckJMV4yXH4ig87I1AiRCJj1j6XVnZycEBQU1Oa4TqdDRUWFIdF68uQJrl+/jvLycgiC0Ca5avlvlUrVr1dJJuviJ68L8vLyEBYciISxfpAXXcXy5cvxhz/8AVlZWRg5ciSio6MN+y3k5+djzpw5GDhwoLXDtoqqqiqkpaUhLi7O6Nyn9pSWlkKj0bQ7OV8sFkMqlaKxsfGlxSkAwN/fHwqFAvn5+a9cLZDIFowaNQrV1dXYtGkT3n33XaOfaSKirlIqlfD390dOTg5GjRoFAFAoFFi2bBmK/9//w1LFLWh9RsDJaxCCXBWIGNCIvTu3w9/fH8OHD0d+fj5u375t6AhtGS16UV1dHU6fPo0bN25gxIgRUCgU8Pb2xsyZMxH9pPqlvTlFIuD7d2NeufiEVCo17MNprL2ysjJDonXjxg2UlZWhsrISzs7OhiSr9b+dnJy61bnN5d2pI/w0dEFOTg4iIyNhb28PjUYDuVyOIUOG4OjRo4a5QCqVCsuXL8fFixexZs0aTJ48GWPGjOlXo1TV1dVIS0tDdHQ0YmNju3Tu2bNn4ezs/MoN/+RyORoaGow+eLbexJfJFPUGEyZMQGVlJbZv345FixZxrgARmcWYMWNw9uxZQzIFNHdIikQiuDg5oO5ZFuaMG4Tw8ACUlpZCr9fDzs4OIpEIoaGhyMnJMSRT1dXVbUamtFotLl68iAsXLmD48OGYPXs20tPT8dprryE2NhYikajNPK6C8joEuSpabfZrGoVCgYCAAAQEBLT5vl6vR2VlpSHJKioqws2bN1FWVgadTvdSgtUyqtXRJuqXC56/lBByeXd6EZOpTtJoNHj48CEWLFgAvV5vWARh1qxZ+NOf/oTs7GzDct9isRjx8fEIDQ3Frl27kJeXh1mzZhnt1elrampqkJaWhtGjR7+0R1Rn3Llzp8PV/lqS2fZKDoYOHYqjR4/iyZMn8PPz63IMRD1JJBIhKSkJmzdvRnp6OmbNmtWvOl+IyDJCQ0ORnp6OkpISeHh4AACamppQV1cHrVaLlJQU7N69G8+ePcP9+/cxadIkZGZmIjc313CuVqtFU1MTmpqaIJfL0dTUhOvXr+PkyZPw9/fHBx98gIcPH2Lfvn2YN28eBg8e3CaG1vO4LEkikRgSpBfV19cb5mWVl5cjOzsbZWVlqKiogKOjY5tywZZEa8CAAaht1OPd7zNQ28Dl3enV+CnopLy8PAQHB8Pe3h56vR4NDQ0QBAEKhQIhISE4fPjwS3snubu744MPPsDZs2exevVqJCYmYsSIEX32QUmtViMtLQ0jR47Ea6+91uXzy8vLUV9f3+G5r1qEAmhOZmNjY3HhwgUkJyd3OQ6iniYWi5GcnIzvv/8ep0+fRkJCgrVDIqJeTiwWY9SoUbhy5QpmzJgBAKitrYVcLoeDgwOCg4OxYsUKrF27FvX19Vi8eDH8/Pywbds2rFy5Et7e3igoKIBSqYRSqcTt27dx7NgxKBQKLFy4ED4+Pjh06BDu3buH9957z2giYwscHBzg5+f3UudqU1MTKisrDYlWSUkJcnNzUVZWhoaGBjyW+UOrHQhji3UIArDvRlGPJIpk+5hMdVJLiR/Q3APSet7O7Nmz8ec//xn5+fkYMmRIm/PEYjEmTpyIsLAw7Ny5E7m5uUhKSnplGVtvVFtbi7S0NERERGDChAkmXePs2bNwcnJ65SRX4NXLo7eIiorC6dOnUVFR0W/nrVHvIpPJsGTJEnz77bdQKpVtSnOIiEwxevRorF69GtOmTYNUKkVNTQ1kMplhZT5BEKDRaDBo0CB89913WLRoEUaMGIH09HSEhIQgPz8fbm5uUKvVOHbsGKZOnYrQ0FBoNBps3LgRIpEIH374IeRyuZXfadeJxWKoVCqoVCqEhoa2OabRaPDrPTfRWF5i9Ny6Rj0Kyut6IkzqBbjcWSfU19fj0aNHCAsLM3yvZd4OADg5OWHQoEE4ePBgu9fw8vLCihUr4O7ujtTUVGRnZ1s87p5SV1eHtLQ0DB06tFs96rdv30Z4eHiHr+toZKrlNVFRUbh06ZLJ8RD1NCcnJyxduhRHjx7FvXv3rB0OEfVyLi4u8PHxQU5O8z6ZarUaAODt7Q0AOHDgAMaOHYvk5GRER0dj7dq1CAwMRFlZGerr65GVlYWTJ0/Cw8MDK1euRFhYGMrKyvDNN9/Aw8MDS5Ys6ZWJVEfkcjkiB3lCITM+h9VeAvgP7Hvvm0zDZKoT8vPzMWjQoDYLHrTM22kxe/ZsVFZW4u7du+1eRyqVYsqUKVi0aBFOnDiB7du3o66ud/ds1NfXY/369QgNDcXrr79u8nWeP3+Ourq6TpUHdiaZAoDY2FhkZWV1OIpFZEvc3NyQnJyMHTt24NmzZ9YOh4h6udGjR+Pq1asAmpMprVYLHx8f5LSkyGkAACAASURBVOXlobi4GBMnTmxeMCI6GsnJydizZw9EIhHOnz+PJokMFaqhuNzogx+uPEFWTj6+//57jB8/HtOnT+/TW5AkjfBBu7MyBAFPzu3G9evX0dRkZAdk6lf67m+BGeXk5GDYsGFtvvdiqZlSqURgYCAOHDjQ4fX8/Pzw8ccfw9nZGampqcjPzzd7zD1Bo9Fg/fr1GDRoEKZMmdKtuWDnz5+HQqGAi4tLh699MZFtz4ABAxAaGoorV66YHBeRNQQGBuLNN9/Epk2bUFVVZe1wiKgXGzJkiGE58aqqKmg0GqhUKhw4cACzZs0y7M/U0NCABw8eQKfTQa1Wo2GAH9Kqw7GjQIz9BTp8vvsm3tqQj2EJs9rdC7IvcbKX/mMZd4lhhEohk8DRXoINK+Kx6K15uHbtGlJTU5GbmwtBEKwcMVmL5IsvvvjC2kHYsvr6ehw6dAhJSUltNoTLzc2Fl5dXmwmXAQEBOHXqFIKCgjpMCiQSCUJCQuDt7Y309HQUFxcjKCio12w6p9FosGHDBvj7+yMxMbHbi2rs2bMHQ4YMeWnOmTGFhYXQarUYNGhQh691cXHBwYMHERMT06d70KjvaVl96/Dhw4iMjOw19wYisi1isRh1dXW4/6gQR+9VI0ftgNuFZQj1dsFrcbHQ6/W4cuUKtm3bBrlcjuTkZIyOjccvDpegURCj6R8LMOgFoAlinHpQjXfjgiCT9v2/qb4uDng3Lgg+SjlCPZwxd5QP/vjWSAS5ORrmtg4cOBAnTpxAVlYWBg4cyHna/RCTqQ5kZ2ejqanJsI9Ui9u3b8PFxQWenp6G7zk4OODevXvIyclBTExMp67v4uKCqKgoPHjwAIcOHYKnp6fN/yI2NDRg48aN8PHxwRtvvNHtRKqyshJnzpzBggULoFAoOnz9s2fPoFarX5owaoyzszNu374NiUTS5v8VUW/g5+eH8vJyZGRkICIigh0CRGSSB2ox/k96EfKrJSjUOSL3eRPOlsrgIarGifQdUKvVmDNnDmJiYmBvb49NF+7i3IMq6I0MtthJxPBRyhHh2/e3ewEAmVSMCF8lxoe4IcJX2SaJFIlEcHV1xZgxYyCTyXDo0CHcuXMHbm5ucHZ2tmLU1JP4l7kD2dnZL5X4Ae2vKDd79myUl5fj8ePHnW7D3t4eSUlJmDVrFnbv3o309HQ0NjZ2K25LaWxsxKZNm+Dp6YkZM2aYZZn38+fPw8HBAW5ubp16fWfnTLVo2cSXQ/DU24hEIkyfPh1yuRx79uzhZ5iIukzdoMP/2ZEHLSTQCs2PfTqIUduox2eHCxEdNx6jR4/GrVu3kJaWhj/84Q/YfyYTDcYyKXAlO2NEIhEiIyPxySefYMiQIdi8eTO2b9+O8vJya4dGPYDJ1CvU19fj8ePHbVbxa9HevB13d3d4e3tj3759XW4vJCQEq1atglarRWpqKh4+fGhS3JbSkki5urpi5syZZtsvq2WDwM5qvZJiZ4SGhkKn06GgoMCE6IisSywWY/78+aioqMCxY8esHQ4R9TL7bhShvX6YJkHAmkNXcfPmTdjb2yM+Ph6ffvopkt9IaHclO4VMgiDXjqtI+iOJRILo6Gj89Kc/haenJ9auXYu9e/eiurra2qGRBTGZeoW8vLyXVvFr8aoH+tmzZ6OkpARFRUVdblMul2Pu3LlITEzE9u3bcfjwYWi12i5fx9y0Wi22bNmCgQMHYtasWWZLpKqrq6FWq7u0yW9nF6BoIRKJMG7cOFy4cMGUEImszs7ODosXL0ZeXh4uX75s7XCIqBcpKKtFXaPe6DEdJAgb8xoWLVqEiRMnIiQkBI6Ojq9cyU4kal7pjtonk8kwYcIEfPrpp3BwcEBqaiqOHDnS61dwJuOYTL1CTk4Ohg8fbvTYqzaO9fLygqenJ/bu3Wty2+Hh4Vi1ahWqqqqwevVqFBYWmnyt7tLpdNiyZQucnZ3NmkgBwIULFyCXyw2T7Tujq2V+ADBy5EgUFRWhtLS0qyES2QSFQoElS5bg9OnTvXYFUCLqeUFujl0eZXrVSnbN3+eCOJ3h4OCAqVOnYtWqVWhoaMDf/vY3nD592mancpBpmEy141UlfkDHD/RJSUl49uwZiouLTY5BoVAgOTkZCQkJ2Lx5M44fPw693njvkqXodDps3boVCoUCc+bMMfsE+OzsbISEhHTpnFclsu2RSqUYO3YsR6eoV1OpVFi0aBH27Nlj1Q4WIuo9TB1lig5SIeM/puLzpGFYlTAYnycNQ8Z/TEV0kMqC0fZNzs7OSEpKwgcffIDS0lL89a9/RUZGRo8/05FlMJlqR15eHoKDgyGTyYwe7+iB3s/PD25ubtizZ0+3Y4mIiMDHH3+M4uJirFmzplsJWlfo9Xr88MMPkMlkmDdvntkTqZqaGtTU1CA+Pr5L55kyMgUA0dHRyM3NNewAT9Qb+fr6Yvbs2diyZQueP39u7XCIyMZ1Z5TJ0V6KlOgA/Psb4UiJDuCIVDe5urpiwYIFWLJkCe7cuYO//e1vuHHjBhcX6uW4NHo7jh8/jsjIyHbLz2pra3H79m2MHj263Wt4enrizJkzGD58OBwdHbsVj729PSIiIiCVSrFz5040NTXB39/frCV3ren1emzbtg1isRgLFiyARGK8RKA7Tp8+jZKSEsyYMaNL54nFYpw6dQoTJ07s0nkymQwVFRUoKyvr1B5VRLbKzc0NMpkM+/fvR2RkJOzs7KwdEhHZsFftl0Q9z9nZGSNGjICXlxfOnj2LS5cuQalUQqVSWey5jiyHI1NGdFTiB3RuRbnAwECoVKpuzZ1qTSQSISoqCh999BEKCgqwdu1alJWVmeXaren1evz4448QBAFvvfWWRRIpALh16xaCg4O7fJ5EIoEgCNDpdF0+Ny4uDpmZmTaxqAdRd4wdOxZDhw7F5s2b+Xkmog5xlMn2BAUF4f3338fkyZNx9OhRfPfddza3kjN1jMmUER2V+AGdX1FuxowZePz4sVn3GlAqlVi2bBlGjhyJtWvXmnUPpaamJuzcuRM6nQ7JyckWS6TUajWqq6u7XOIHNCeVXV0evYWbmxv8/PyQlZXV5XOJbM2UKVMwcOBA7NixA01NTdYOh4iIukgkEmHIkCFYuXIlxowZg127dmHTpk149uyZtUOjTmIyZUR7G/W21tlFEEJCQuDi4mK20akWIpEI0dHR+PDDD5GXl4d169ahoqKiW9dsamrCrl27oNFosHDhQkilluu1ysjIgJ2dHXx9fU06v6vLo7cWFxeHixcvskaZej2RSIQ5c+ZAo9Hg0KFD/EwTEfVSYrEYI0eOxCeffILBgwdjw4YN2LFjB+fG9gJMpl5QV1eHJ0+evLLED2ief6PT6TrVGzx9+nQ8evQIlZWV5grTQKVSYfny5QgLC8OaNWuQmZlp0gNVU1MT9uzZA7VajZSUFIsmUgBw8+ZNDBo0yOTaYFMXoQCayy9lMhlu375t0vlEtkQikSAlJQUPHjzgapVERL2cVCpFbGwsfvrTn8LV1RXffPMN0tPTUVNTY+3QqB1Mpl7QmRI/oLlHuLOjI+Hh4XBycjL76FQLsViM+Ph4vPfee7h27Ro2btyIqqqqTp8vCAL27t2LqqoqLF682OKT2Wtra1FVVWVSiV8LU8v8gOb/dy2jU0R9gVwux9KlS3Hp0iVkZ2dbOxwiIuome3t7JCQk4NNPP4VUKsXXX3+NY8eOmVyVQ5bDZOoFr9qo90VdeaBPTEzEgwcPUF1d3Z3wXsnd3R0ffPABAgICsHr1amRlZXU4SiUIAvbt24fnz5/3SCIFAJcvX4ZEIkFAQIDJ1+hOmR8ADBs2DM+fP8fTp09NvgaRLVEqlVi8eDH279/PCcxERH2EQqHA9OnT8fHHH6O2thZ//etfce7cuTYLD6kbdNhy+RF+dyAXWy4/grqh6wt0kem4NHordXV1OHLkCJKSkjq18ML169cREhICZ2fnDl/r7u6OzMxMPH36FJGRkeYI1yiRSITAwEAMHjwYR44cwb179xAUFGR0pE0QBOzfvx8lJSVYunQp7O3tLRZXa3v27IGPjw9GjBhh8jXu3LkDZ2dneHl5mXS+WCxGU1MT8vLyMHToUJPjILIlTk5O8PLywo8//ojQ0NBub8lARES2QS6XY8iQIRgyZAhu3LiBo0ePQiaT4XG9DLP+5yxO3S7FhfvPcf5eOb45ex8xQSr4ujhYO+x+gSNTreTl5WHw4MEdlvi16OwiFEBzkjN16lTcvXu3R+pevby8sGLFCri7uyM1NfWl0h9BEHDw4EE8ffq0RxOp+vp6VFZWYty4cd26TndHpgBgzJgxuHPnTpdKIols3eDBgzF16tTm1aDKKthbSUTUh7i5uWHhwoVISUnBtZs5WPbtBdQ26FHXqAcA1DXqUdugx7vfZ6CW9/wewWSqlZycnA5X8WutK8kUAIwcORJyuRz79+83Jbwuk0qlmDJlChYtWoQTJ05g+/btqKurgyAIOHz4MJ48eYJly5b1WCIFAJmZmRCLxSbtL9Vad+ZMtb7GyJEjcenSpW5dh8jWjBo1CorASEz881n8373ZSD19H1/uy0Hsb4/icgFXhiIi6u18fX3hNDyh3UoqQQD23Sjq4aj6JyZT/9Cyil9oaGinz+nqinIikQiTJ09Gfn4+1Gq1KWGaxM/PDx9//DGcnZ3x9ddf44cffkBBQQGWLVsGuVzeY3EAQFZWFgIDA7u9w3d3VvNrbdy4cbh+/bpZrkVkK9QNOvz39UY0CmLUa5tXHGVvJRFR31JQVguNzvjc+LpGPQrK63o4ov6JydQ/dLXED+j6yBQAjB49Gvb29jh48GBXQ+wWOzs7JCYmYtCgQbh9+zbc3Ny6ndB0VX19PZ4/f47Y2NhuX8scZX4A4OLiguDgYFy9erXb1yKyFftuFKG9tWfYW0lE1DcEuTlCITM+MqWQSRDkqujhiPonJlP/0NUSP8C0B3qxWIyEhATk5OSgrq5newxOnTqF4uJifPrpp7C3t8fXX3+N+/fv91j7V69ehVgsRkhISLevJZfL0djYaIaomjfxvXTpUqf2DCPqDQrKag318y9ibyURUd+QNMIH7fWLi0TNx8nymEzBtBI/wPR5OzExMbCzs8OhQ4e6fK6pTp8+jZycHLzzzjsYOHAgkpKSMGvWLOzevRvp6elmS0xe5fr16/Dz84NY3P2PnblGpoDmumOlUomcnByzXI/I2thbSUTU9znZS/H9uzFwtJcY7vkOdmLYQY//b+4QONpLrRxh/8BkCqaV+AGmlfkBzaNT48ePx61bt1BfX9/l87vq7NmzuHHjBt555502SyWHhIRg1apV0Gq1SE1NtejeNBqNBuXl5WYp8QPMN2eqRVxcHC5cuNDhvlxEvcGreishCOytJCLqI6KDVMj4j6n4PGkYViUMxhezhuPbWZ54eOU4K256CJMpANnZ2Z3eqLe17qwoFx8fD4lEgiNHjph0fmedP38e165dw/Lly+Hk5PTScblcjrlz5yIxMRHbt2/H4cOH22wEZy7Xr1+HSCRCWFiYWa5njtX8WgsLC4NGo8GjR4/Mdk0iazHWW6mQSaCwE2O6/B7UleVWjpCIiMzF0V6KlOgA/Psb4UiJDsCEuBhIJBKuVtxD+n0yVVdXh8LCwi6X+AHdKzWTSCSIi4tDVlaW2crVXnTx4kVkZmZi+fLlHW4sHB4ejlWrVqGqqgqrV69GYWGhWWO5evUq/Pz8OrUZcmeYs8wPaB4tHDduHC5cuGC2axJZ04u9lZ8nDcPlz6bhg9mvY9OmTaiurrZ2iEREZAEikQizZ8/GmTNnUF7OzjNL6/fJVG5uLkJCQmBnZ9flc00t82sxfvx4iMViHDt2zORrtCcjIwOXLl3C8uXLMWDAgE6do1AokJycjISEBGzevBnHjx+HXm98EntXaDQalJWVYezYsd2+Vgtzl/kBzXvzPH78mDce6jNe7K10tJciIiICMTEx2Lhxo8U6coiIyLpUKhUmTpyIPXv2cAqDhfX7ZMqUVfxadLfUzM7ODjExMbh27ZpZE4PMzEycP38ey5cvh1Kp7PL5ERER+Pjjj1FcXIw1a9aguLi4W/HcvHkTIpEIQ4cO7dZ1WrO3t4dWqzVrPbCdnR3GjBmDixcvmu2aRLYoPj4eAQEB2LZtm1k6TIiIyPbExMRAEARkZGRYO5Q+rV8nU7W1tSaX+AHmKTVLSEgAAJw4caJb12lx9epVnDlzBu+88w5cXFxMvo6zszMWLVqE2NhYpKWl4cyZMyYnLleuXIG3tzekUvOtKiMSiSCTycy+CmFMTAxu3brV48vWE/UkkUiEGTNmQCqVYu/evey1JCLqg8RiMebMmYNTp07h+fPn1g6nz+rXyVReXp7JJX7AP8v8uvMgIpPJMGbMGGRmZnY7Mbh+/TpOnjyJd955ByqVqlvXApofuKKiovDRRx+hoKAAa9euRVlZWZeu0dDQgJKSErOW+LUw97wpAHByckJ4eDgyMzPNel0iWyMWi7FgwQKUlpbi5MmT1g6HiIgswNXVFePHj2fHmQX162SqOyV+ACCVSiESiaDT6boVx6RJkwA0b6prqhs3buD48eN455134Orq2q14XqRUKrFs2TKMHDkSa9eu7dIS4rdu3YJIJOrWz7k9lpg3BTQvk3758uVu/38lsnUymQxLlizBzZs3cfXqVWuHQ0REFjBu3DhotVp2FFtIv02mulvi16K7i1C0XGPUqFHIyMgwaXTq1q1bOHLkCN5++224ubl1K5b2iEQiREdH48MPP0ReXh7WrVuHioqKDs/LzMyEp6dnl/fw6gxzL4/ewsPDA56enrh586bZr01kaxwdHbF06VIcP34cd+/etXY4RERkZi3lfidPnkRlZaW1w+lz+m0y1d0SvxbmeqCfPHkympqacO7cuS6dl5OTg0OHDuHtt9+Gu7t7t+PoiEqlwvLlyxEWFoY1a9YgMzOz3VGqxsZGlJSUYMyYMRaJxRJlfi24iS/1J66urli4cCF27tyJp0+fWjscIiIyM3d3d8TFxbHczwL6bTJl6ka9LzLXA71CoUBERAQuXLjQ6U1zc3NzsX//fixduhQeHh7djqGzxGIx4uPj8d577+HatWvYuHEjqqqqXnpddnY2BEFARESEReKwVJkfAAQHB0MsFuPevXsWuT6RrQkICMDMmTOxefNm9lwSEfVB8fHx0Gg0LOs2s36ZTNXW1qKoqAghISHdvpY5yvxaTJs2DXq9HufPn+/wtfn5+UhPT8fSpUvh5eVllva7yt3dHR988AECAgKwevVqZGVltentyMzMhIeHB+zt7S3SviWTKZFIxE18qd8ZNmwY4uPjsWnTJtTX11s7HCIiMqOWcr/jx48b7QQn0/TLZCo3NxehoaHdLvEDzJtMOTk5YejQoTh37twrFz+4c+cO9u7diyVLlsDb29ssbZtKLBZj4sSJePvtt3H+/Hls3boVarUajY2NePbsGUaPHm2xts35szcmMjISpaWl3d5ni6g3GTduHIKDg7F161YuwkJE1Md4eHggNjYW+/btY7mfmfTLZKq7q/i1Zu7RkZbRqfY2jr179y527dqFRYsWwcfHx2ztdpeXlxdWrFgBd3d3pKam4ujRoxAEAZGRkRZr05IjUwAgkUgQHR3N0SnqdxITE6FQKLB7927+sSUi6mNee+01qNVqZGVlWTuUPqHfJVPmLPEDzD86olQqERoaijNnzrzUK3z//n3s3LkTixYtgp+fn9naNBepVIopU6Zg0aJFuHbtGmQymUUfxCy5AEWLsWPHIj8/HzU1NRZth8iWiMVizJs3D5WVlTh27Ji1wyEiIjOSSCSYM2cOjhw5gurqamuH0+v1u2TKnCV+gGUe6KdPnw6dTofLly8bvldQUIAff/wRCxcuhL+/v1nbMzdPT0/o9Xp4eXkhNTUV+fn5FmlHLpd3e6Pjjjg4OCAyMhIZGRkWbYfI1tjZ2WHx4sXIzc3l3iRERH2Ml5cXxo4di/T0dFYgdFO/S6bMWeIHWGavo4EDB2LQoEE4deoU9Ho9Hj58iG3btiE5ORmBgYFmbcsS8vLyAADJycmYP38+Dh48iN27d5s96eyJkSmgeQ7J1atXLZ64EdkahUKBpUuX4tSpU7h9+7a1wyEiIjOaOHEiKisrua9mN/WrZMrcJX6A5RZBmD59OrRaLY4ePYoffvgBCxYsQFBQkNnbsYTMzEyoVCo4OjoiKCgIK1euhEQiwddff4379++brR1Lz5lqoVKpEBAQgOvXr1u8LSJbo1KpkJKSgt27d6OwsNDa4RARkZlIJBLMnTsXhw8fhlqttnY4vVa/SqbMXeIHWGZkCmhedtzT0xMXL17EnDlzEBwcbPY2LEGr1eLJkycYOXKk4Xv29vZISkrCrFmzsHv3bqSnp5tllMdSP3tj4uLicPHiRTQ1NfVIe0S2xM/PD7NmzcKWLVtQUVFh7XCIiMhMvL29ERUVxXK/buhXyZS5S/wAy5WaFRUVoaKiAmKxuFctftBSCtQ6mWoREhKCVatWQavVIjU1FQ8fPuxWWz1V5gcA/v7+UCgUFpv/RWTrwsPDMWHCBGzcuBF1dXXWDoeIiMwkISEB5eXlyM7OtnYovVK/SabUarXZS/wAy5T5PX36FJs2bcLcuXPh6+uLY8eO9ZoRkcuXL0OpVGLAgAFGj8vlcsydOxeJiYnYvn07Dh8+DK1Wa1JbPVXmBzRv4hsXF8dl0qlfi4mJwZAhQ7BlyxbuQUVE1EdIpVLMmTMHBw8eRG1trbXD6XX6TTJliRI/wPylZs+ePcPGjRsxc+ZMDBkyBNOnT0djY2Ov2AtAp9PhyZMnGDFiRIevDQ8Px6pVq1BVVYXVq1ebNBej5WffU8PSQ4cORU1NDZ48edIj7RHZoqlTp2LAgAHYuXMnS0KIiPoIX19fjBw5Evv377d2KL1Ov0mmcnJyMHz4cLNf15ylZiUlJdi4cSNmzJiBoUOHAmj+cHt4ePSK0ak7d+5AEASMGjWqU69XKBRITk5GQkICNm/ejOPHj0Ov13e6PYlEArFY3GM95GKxGLGxsRydon5NJBJh7ty5qK2txZEjR6wdDhERmcmkSZNQXFyMnJwca4fSq/SLZEqtVuPZs2dmL/EDmpOpxsbGbvfQlpaWYv369Zg+ffpLSV9iYiIaGhpsfunKy5cvw9nZGS4uLl06LyIiAh9//DGKi4uxZs0aFBcXd/rcnpw3BQBRUVF48OABJ+FTvyaVSpGSkoI7d+7g0qVL1g6HiIjMoKXc78CBA5wb2wX9IplqKfGTSqVmv7ZYLIadnV23Sv3Kysqwfv16TJs2DRERES8dDwoKgkqlwtGjR212dEqn0+HRo0eIjIw06XxnZ2csWrQIsbGxSEtLw5kzZzr1Xnty3lRLe1FRUbh48WKPtUlkixwcHLB06VKcO3cOubm51g6HiIjMwN/fHxEREThw4IC1Q+k1+kUyZYlV/FrrziIU5eXlWL9+PSZPnvzKuUaJiYnQaDQ2O/R69+7dLpX4GSMSiRAVFYWPPvoIBQUFWLt2LcrKyl55Tk8uj94iNjYWN27cQH19fY+2S2RrXFxcsGjRIuzbt49zCYmI+ojJkyejqKgIeXl51g6lV+jzyZQlS/xamJpMPX/+HGlpaUhISOgwCQkODoZSqcSRI0dsctJ3ZmYmHB0d4erq2u1rKZVKLFu2DCNHjsTatWtx4cKFdt9zT5f5AcCAAQMQFhaGK1eu9Gi7RLbIx8cHc+fOxdatW/H8+XNrh0NERN1kZ2eH2bNnY//+/ew47oQ+n0xZssSvhSmlZpWVlUhLS8OECRMwevToDl8vEokwbdo01NXV2VxJjU6nQ0FBgdESRVOJRCJER0fjww8/RF5eHtatW2d0nlJPl/m1iIuLQ0ZGRpcWzCDqq0JDQ/H6669j48aNXFaXiKgPCAwMxNChQ3Hw4EFrh2Lz+nwyZekSP6DrI1NVVVVYt24d4uPjMXbs2E6fFxYWBicnJ5sbnbp//z4AdKvErz0qlQrLly9HWFgY1qxZg8zMzDbv3RplfgDg5eUFNzc33Lp1q8fbJrJFY8aMwbBhw7B582aT944jIiLbMWXKFDx+/Bi3b9+2dig2rU8nUz1R4gd0LZmqrq7GunXrEBsbi5iYmC61IxKJMHXqVNTW1tpUHWtmZibkcjnc3d0tcn2xWIz4+Hi89957uHbtGjZu3IiqqioA1inza9Gyia8tJbZE1jR58mSoVCrs2LHDZhfLISKizpHJZJg9ezbS09Ot9qzVG/TpZKonSvyAzpea1dTUYN26dRg7dizGjRtnUlvDhg2Dg4MDjh49ahMP8Xq9Hg8ePMDw4cMhEoks2pa7uzs++OADBAQEYPXq1cjKyoJMJrPKyBQAhISEGN4/ETV3+MyZMwcajQaHDh2yiXsUERGZLigoCGFhYTh06JC1Q7FZfTqZys7OtshGvS/qzMiUWq3GunXrEBUVhfj4eJPbEolEmDx5MmpqanDnzh2Tr2Mu9+/f7/Yqfl0hFosxceJEvP322zh//jzy8vKgVqt7pO0XiUQiw+gUETWTSCRISUnBgwcPuIUAEVEfMHXqVDx48AB37961dig2qc8mU2q1GsXFxRg8eLDF2+qo1Ky2thbr1q3DiBEjMH78+G63FxkZCZlMZhNzp65cuQKZTAYvL68ebdfLywsrVqyAUqlEVlYWsrOze7T9FiNGjMDTp09RWlpqlfaJbJFcLsfSpUtx8eJFq/1uEhGRedjb22P27NnYu3ev1aqBbFmfTaZycnIQFhZm8RI/4NWLINTV1SEtLQ3Dhg3DxIkTzdKeWCzG5MmTUVVVhXv37pnlmqbQ6/W4d+8ehg0bZvESP2OkUilGjRoFPz8/nDhxAtu3b+/xHbulUimio6M5OkX0AqVSicWLF2P//v149OiRtcMhIqJuCA4ORkhICA4fTP5bYgAAIABJREFUPmztUGxOn06mLL2KX4v2yvxaEqmwsDC8/vrrZm1z5MiRkEqlVh2dapkr1FMlfsbY29tDLBbj448/hrOzM1JTU5Gfn9+jMYwdOxa5ublWKzckslVeXl6YP38+fvjhhw434CYiIts2bdo03L17F7fy7mDL5Uf43YFcbLn8COoGnbVDs6o+mUzV1NT0WIkfYHxkqr6+HuvXr8fgwYMxefJks4/cSCQSJCQkoKKiwmoLIFy9ehUSiQS+vr5WaR/458/ezs4O06dPx/z583Hw4EHs3r27x1aecXR0xPDhw3H58uUeaY+oNxk8eDCmTJmCjRs3ssOBiKgXk8vlCIqegnlpefi/e7ORevo+vtyXg9jfHsXlgv67aXufTKZyc3N7rMQPeHnOlEajwYYNGxAUFISpU6darARu9OjRkEgkVhmdampqwt27dzF06FCrlPi1ePFnHxQUhJUrV0IikeDrr7827IFlaePGjUNmZib31yEyIioqCiNHjsTmzZvR2Nho7XCIiMgE6gYdfnW0CFpBjHpt8/YXdY161Dbo8e73GajtpyNUfTKZ6skSP6BtmV9DQwM2bNgAPz8/JCYmWjTRsLOzw/jx4/H8+XM8fPjQYu0YU1BQ0KOr+LXH2LL09vb2SEpKwqxZs7B7926kp6db/AHOzc0Nfn5+yMrKsmg7RL1VQkICPDw88OOPP3IPKiKiXmjfjSK013cvCM3H+6M+l0z1dIkf8M9kqqGhARs3boS3tzfeeOONHhmxiY6OhkgkwpEjRyzeVmtXr16FSCSCv79/j7b7olct/hESEoJVq1ZBq9UiNTXV4pPg4+LicPHiRauvsEhki0QiEZKSkqDT6bB//37+nhAR9TIFZbWoa9QbPVbXqEdBec8uAmYr+lwy1dMlfsA/S802bdoEd3d3vPnmmz1W+iaTyRAXF4eysrIeG51qamrC7du3ER4eDrHYuh8hOzs76HQ66PXGf7nlcjnmzp2LxMREbNu2DYcPH7ZYKV5gYCBkMhlu375tkesT9XYSiQQLFy7EkydPcO7cOWuHQ0REXRDk5giFTGL0mEImQZCroocjsg19LpnqqY16X6TX6+Hi4oKkpKQen0MUGxsLQRBw7NixHmmvJWmzdokf0NzbbazU70Xh4eFYtWoVqqqqsHr1ahQWFlokFm7iS/Rq9vb2WLJkCS5fvoybN29aOxwiIuqkpBE+aO8RVyRqPt4f9alkqqamBiUlJQgODu6xNrVaLbZu/f/Zu/OoqO5tX/TfVT3VQNH3CNKIoNgiKoLGJrZJNNHYizEmmvHue//dccYe542399l7nLfPO/eOd/94777YpLGJqNHEmNg3MXYoonTSFaAgIH1B0RRS7Xp/sKs2SCNQqzqYnzEc0apaa00rCDXXnL/5Ows+n2/XYRMjkUgkSElJQWNjI2pra+1+vby8PLAsi8jISLtfazRGk0wBgFQqxZYtW7B06VKcPn0av//++7AVrfFKSEhAe3s76usnZ98wIaPh6emJHTt24Nq1a6iurnZ2OIQQQkZBLhbg2N4FkIn51gqVmM9AJub/43HHdYW5kgmVTJWUlGDatGkOa/EzGo04e/YsZDIZFAqFU6dULVq0CADsXp0ym81QqVSIi4tzeoufxUjrpoYyY8YMHDhwAE1NTTh69Ciampo4i4XP5yMlJYWqU4S8Q2BgIDZv3oxz586hubnZ2eEQQggZheRIHzz500r8eUMCNsZJsWmKEU/+tBLJkT7ODs1pXOPTMEccOcXPaDTixx9/tK7J8fDwcNi+RkORSqWYN28e6uvr7dLCZlFTU+MSU/z6e3s8+mgoFAps27YNKSkpOHHiBO7fv8/ZhLG5c+eisrISHR0dnJyPkIkqKioKq1evRmZmJrq6upwdDiGEkFGQiQXYmhyB//2DmQjSvhx2HdVkMWGSKUe2+JlMJpw/fx4CgQCbNm0Cj8cbc3XEHlJTUwHYtzqVn58PlmUd2kr5LqNt83sbwzCYM2cOvvzyS1RXV+O7775Da2urzfFIJBLMnj0b2dnZNp+LkIkuKSkJc+fORWZmptO/hxJCCBk9X19fmEwmtLe3OzsUp5owyZSjWvwsiRQAfPLJJ+Dz/9EzOo7qCNfkcjlmz56Nuro6u6zZMZvNKCsrQ3R0tPXv7QpsTWS9vLywa9cuzJo1C9999x0ePXpk89jmlJQU5Ofn04dDQkYhLS0NISEhOHfuHOfrGAkhhNgHwzCIioqa9GtfJ1QyZe8WP7PZjJ9//hkmkwmbN28ekFD037jXmZYsWQIA+P333zk/d21tLcxms0u1+AHcJLIMwyA5ORn79+9HWVkZjh8/btOdFqVSialTpyI3N9emuAiZDBiGwfr168Hj8XDp0iXag4oQQtxEVFQUqqqqnB2GU02IZKqzsxPNzc123ajXbDbjwoUL0Ov1+PTTTwdVwMbbasY1T09PJCYmoqamBo2NjZyeu6CgAGaz2aEbIo8Gl++9j48PMjIyEBcXh6NHj+Lp06fj/mC3aNEiZGdnc7YWi5CJjMfjYfPmzWhqasK9e/ecHQ4hhJBRiIyMRFVV1aS+CTYhkqnS0lJMmzbNbq1nZrMZFy9eRE9Pz5CJFOA6lSkASE9PBwDcuXOHs3OyLIuSkhJERUVBKBRydl4ucJ3I8ng8LF68GJ999hny8vJw6tSpcQ2TCA0NhZeXF0pKSjiLjZCJTCQSYceOHcjPz0d+fr6zwyGEEPIO3t7eEAqFnKw5d1cTIpkqKSmx20a9LMvit99+Q2dnJ7Zt2zZsIuFKyZS3tzfi4+NRVVXF2djv2tpal5viZ2Gv997f3x+ff/45IiIicOTIERQUFIz5zotlE9/JfMeGkLGQy+XYsWMHbt26hRcvXqBbZ8SZnBr8x9VSnMmpQbfO6OwQCSGE9GOpTk1Wbp9MdXZ2oqWlxS7T5SyJVHt7O7Zv3z5iRcZV2vwsLNWpP/74g5PzFRYWwmQyITY2lpPzccme7z2Px0N6ejp2796NrKwsnD17Ft3d3aM+ftq0aejt7UVNTY1d4iNkIvL398eWLVvw/569igX/fhN/vVSCQ/de4q+XSpDy91vIqW5zdoiEEEL+YbIPoXD7ZMpeLX4sy+Ly5ctobW3Fjh07IBKJRny9K1WmAMDPzw8xMTF4+fIlWlpabDoXy7IoLi5GRETEO98HZ3BEIhsUFIQvvvgC/v7+OHToEIqLi0d1HMMwWLhwIW3iS8gY+QaF4tqbqegxmNGj75vw16M3QaszYe+xJ9BShYoQQlyCJZmarF04bp9MFRcXcz7Fj2VZXL16FU1NTdi5c+eoEghX2GfqbUuXLgVge3Wqrq7OJaf4WTjqvRcIBFixYgW2bduGO3fu4Pz58+jp6XnncbNnz0ZtbS3UarXdYyRkorhUWA+GN/SPKJbte54QQojzKRQKSKVSzgefuQu3TqY6OzvR2trKaYsfy7K4fv06Xr9+jZ07d0IsFo/qOFfYZ+ptgYGBmDJlCioqKmxaGPj8+XMYjUbExcVxGB13HP3eh4WF4cCBA1AoFDh06BBUKtWIrxcKhZg3bx4eP37soAgJcX/VrVprReptPXoTqtXvvpFBCCHEMSbziHS3TqYsG/Vy1eLHsixu3ryJmpoa7N69GxKJZNTHulqbn8XSpUvB4/Fw9+7dcR3PsiyKiooQFhY2pvfDkZyxXk0oFGL16tX4+OOPce3aNVy8eHHE//8LFixAUVHRqCpZhBAg0k8GqWjo7+1SER+RvlIHR0QIIWQ4k3ndlNsnU1y1+LEsi9u3b6OqqmrMiRTguslUaGgoQkJCoFKp0NY29kXbr1+/hslkwqxZs+wQHTec2WIZGRmJgwcPgs/n4+uvv8bLly+HfJ1cLkd8fDyePn3q4AgJcU8bkkLAMEM/xzB9zxNCCHENkZGRqKmpgck0dEfBROa2yRTXLX5//PEHKioqsHv3bnh4eIz5eEt1xBUX3y1btgx8Pn9cG2FaWvzi4+PtEBk3nP3ei8VibNiwAR988AEuXryIy5cvQ6/XD3rdokWLkJOTA6ORFs4T8i5ysQDH9i6ATMy3Vqg8hDwIGTP+NdUbMvHg/f4IIYQ4h1QqhVKpRENDg7NDcTi3Taa4bPG7e/cuSktLsWfPHkil42sd4fP5EAgEMBgMNsfDtYiICPj7+6OkpATt7e2jPs7S4hcSEjLu98UReDweBALBkAmMI8XExOCrr76CwWDAoUOHBo1DDwgIQFBQEJ4/f+6kCAlxL8mRPnjyp5X484YEfLU0Gn/5IBG3/8sC1BfcH7YKTAghxDkm635Tbp1McdHid//+fRQVFWHPnj2QyWQ2ncsVh1BYLFu2DAKBYEzVqfr6ehiNRiQlJdkxMm64yj5fEokEGzduxPvvv49z587hxo0bAxJs2sSXkLGRiQXYmhyBf1kTj63JEYgICcSWLVvw008/cbYpOSGEENtN1iEUbplMdXR0cNLi9/DhQ+Tn52PPnj2Qy+U2x+Wq66aAvi9wpVKJkpISaDSaUR1TVFQEk8mE6dOn2zk627naaPr4+Hh89dVX6OjowJEjR/D69WsAff8feDweXrx44eQICXFfU6ZMwdq1a5GZmYnOzk5nh0MIIQR935tfv3496ZYzuGUyxcVGvY8ePcKzZ8+QkZEBhULBSVyunEwxDGOtTt2/f/+dr2dZFs+fP0dAQAAniaa9uWJVUCqVYsuWLVi6dClOnz6N33//HWazGQsXLsQfDx7hTE4N/uNqKc7k1KCbNiAlZExmzJiB5ORkZGZmutSNFEIImawkEgn8/f1RV1fn7FAcyi2TqeLiYiQmJo77+OzsbDx58gQZGRnw9PTkLC5Xq468LTY2FnK5HM+fP0dHR8eIr21oaIDBYHCLFj/Addr8hjJjxgwcOHAATU1NOHr0KBqMUvxf5V74y6/FOHTvJf56qQQpf7+FnOqxT1skZDJLTU1FWFgYzp07NyknSBFCiKuZjOum3C6Z6ujogFqtRlRU1LiOz8nJwaNHj5CRkQEvLy9OY3PF6kh/DMNg6dKlEIvFePDgwYivLS4uhslk4mz0vL25eiKrUCiwbds2JM1Nxv/2UxkMLB+9RjOAvg1ItToT9h57Ai1VqAgZNYZhsG7dOvB4PFy+fJnWIhJCiJNNxv2m3C6ZsmWK37Nnz/DgwQNkZGRAqVRyHpurJ1MAMH36dIhEIhQUFAy71oBlWRQWFsLX15fTyp09ufp7bzab0dHRgexGE3i8ob92WRa4VFjv4MgIcW88Hg+bN29GY2PjqFqYCSGE2E94eDgaGhqcPmHZkdxuo46SkhIsXbp0zMfl5eXh3r17yMjIgLe3tx0ic/3qCPDP6tStW7eQlZWFNWvWDHpNY2Mj9Ho9Fi5c6IQIx8dZbX4sy+LNmzfo6uqCRqNBc3Mz1Go1NBoNurq68ObNG+j1emsL0jNjGHTmoCHP1aM3oVrd48jwCZkQRCIRtm/fjm+//RZeXl4uvck4IYRMZCKRCMHBwaitrUV0dLSzw3EIt0qmxtviV1BQgDt37mDPnj3w8fGxU3SuPYCivxkzZuDOnTvIy8vDkiVLBg2YKC4uhtlsdpsWP4D7ZIplWeh0OnR1dVl/aTQaa6LU3d2Nnp4e650XhmFgNpshEong4eEBhUKBkJAQ+Pr6IiAgAIGBgfD29saPz+qguvgcuiGWd0hFfET6uu5+XoS4MoVCgZ07d+L48ePw9PQcdys4IYQQ21hGpFMy5YJKSkoQHx8/pha/58+f49atW9izZw/8/PzsGF1fMvWuwQ6ugMfjIT09HX/88QcePnyI1atXW5+ztPh5eXnZrYJnDxKJZNQbEhsMhgFJUv9kyVJR6unpqxAJBH3/REwmE8xmMzw8PCCXy+Hv729NlHx8fKBUKiGXy8Hjjdw5691VBdZsxlAdtgwDbEgKGdtfnBBi5e/vj08++QTnz59HRkYGAgICnB0SIYRMOpGRkbh586azw3AYt0umxtLiV1xcjBs3bmD37t3w9/e3Y2R9XHmi3NuSkpJw584d5ObmYsmSJdYNi5uamqDT6TB//nwnRzg2ljVTHR0dAxKkzs5OdHd3o6ury/qc0WiEWCwGn88HwzAwmUwwGAwwm82Qy+Xw8fFBbGysNUmy/JLJZGAYZtwx3r9/HxUlz3Fk50f44lQ++HwBeo1mSEV8MAxwbO8CyMRu9U+SEJcTFRWF1atXIzMzE59//jlnW18QQggZnbCwMLS2tqK3txcSicTZ4did23xyG2uLX0lJCa5evYrdu3c77O6ku7T5AQCfz0daWhoePnyIrKwsrFq1CkDf+8ayrE2j57lmNpuh1WqHrCZZfrW1tcFgMODFixdDJkpv3rwBgAHJUf9fXl5ekEqlNiVLI3nw4AEKCgqQkZGB3t5e7Pd9gSnpH+OVugeRvlJsSAqhRIoQjiQlJUGj0SAzMxOfffYZRCKRs0MihJBJQyAQICwsDK9evcK0adOcHY7duc2nt7G0+JWVleHKlSvYuXMnAgMDHRBdH3cYQNHfnDlzcPfuXWTl5KJBGoXXnQa8yKtGvFQBX19fu1+///CGkX5ptVpIJBLIZDJIJBJr653ZbIbBYIBer4fZbAaPx4NCobAmR/3/q1QqIZFI7JYsjeThw4fIy8vD3r17oVAoUFhYiBnxsVifHOHwWAiZLNLS0qDRaHDu3Dls3779nS24hBBCuGPZb4qSKRdSXFyM9957752vKy8vx6VLl7Bjxw4EBwc7ILJ/cvXx3G8TCATwjV+Aw1kd4F1RQWcGBPDDg55ALK1uQ3Lk+IZ1sCwLvV4/oNXO8ntLy53ll1AohEKhgFwuh4eHBwQCARiGgUgkgkKhgEAggEgksq5FEwqFkMvlgxKlnp4e3Lx5E19++SWXb5HNsrKykJubi4yMDGu7kUqlQnp6upMjI2RiYxgG69evx+nTp3H58mVs2LDBKTdTCCFkMoqKisKlS5ecHYZDuEUypdFo0NbWhsjIyBFfV1lZiYsXL2LHjh0ICXH8Qn53avMDgG6dEf89pwcGlgf8Y69LI/gwmoC9x57gyZ9WDmo9G254w9u/AMDT0xMKhQIKhQIymQxisRgSiQS+vr7W1rvOzk5oNBrU1NRAIpEMaLt7uw1vpFad1tZWl6sKZmVl4enTp9i7d691vy6tVovm5uZ3fi0TQmzH5/OxZcsWHDt2DA8fPsSSJUucHRIhhEwKISEh0Gg00Gq11nX5E5VbJFOjafF78eIFLly4gG3btiE0NNSB0f2TuyVTlwrrLTnUIEajCf/t7G3M9hzYhmcwGKwJUv9fAQEB4PF41tY7rVYLjUaDjo4O1NbWoqurC1KpdEByFB4ebv29l5cXhELhuP8urtZi+ejRIzx9+hQZGRkDNj6uqKjA1KlTra2KhBD7EovF2LFjh3UPqpkzZzo7JEIImfB4PB4iIiJQXV3tUuvw7cEtPtGVlJSM2OJXVVWFn3/+GVu3bkV4eLgDIxtIJBLBaDRa1++4GpZl0dnZiba2NqjVatzJaUaPfuh0SmcCWnUMpkyZAoVCAalUal3jZKkmdXR0oKGhAaWlpdBqtYPa76ZMmTJg7dJYRtqPlSu1WD5+/Bg5OTnIyMiAl5fXgOdUKhXi4+OdFBkhk5NCocCOHTtw/PhxKBQKqgwTQogDREVFUTLlCjQaDdrb24f94ffq1SucP38eW7ZsQUSEcxf0Mwxj/VAvlTpn81WWZa3T7dRqNdra2gb8srTZ+fj4IEwph6ShF73GwQmVmAdITT3Izc2FRqPBmzdv4OnpOSA5ioqKslaaFAqFXZOldxEIBGBZFkaj0alVn8ePHyM7Oxt79+4dlEgZjUZUVVXhgw8+cFJ0hExeAQEBA/agcsR2GYQQMplFRUXh2bNnzg7D7lw+mRqpxa+mpgY//vgjNm/e7DJ3Gi17TdkzmWJZFt3d3dYE6e2kSSQSWRMmHx8fzJgxw5rsWNrvNBoNInvUMJskGG4D2U+SIxHsP3fUG9I6kyWR1el0TkumsrOzkZ2dPWRFCuiroAYGBjot0SZksps6dSpWrlxp3YNKLpc7OyRCCJmwAgMD0dPTg87OzgFLHiYat0imhmrxq62txdmzZ/Hxxx+Peu8pR+Bq3RTLsujp6bEmSm8nTAKBAD4+PtakKSYmBiKRyHqcJWEqLS2FRqOBwWAYNNxhTkgI/sdUAf7rpSroDQYYwYcQZvAFfJz8fOG4p/k5i2XdlDMWOj558gSPHz9GRkYGlErlkK9RqVSTYkQoIa5s9uzZ6OjoQGZmJvbu3Ut7UBFCiJ0wDIPIyEhUV1cjKSnJ2eHYjUsnU5YWv7eTpdevX+PMmTPYuHEjoqOjnRTd0MaSTFnWIA2XMPF4PGt1ydPTE4GBgQgODrZuYtvR0YHGxkaUlZWBZdlByVJYWJj1seE2pJ0BQKprw/E7RQiKnYGGiueIl2oxN3w1x++M/Tlr3VROTg6ysrKwd+/eYRMplmVRXl6OjIwMB0dHCHlbeno6NBoNfvrpJ2zdutWlq+6EEOLOLPtNUTLlJJYWv/4/6Orr63H69Gl8+OGHiI2NdWJ0Qxtqqlz/hOnt1jwA8Pb2hpeXFyQSCaRSKaRSKYKCgtDd3Q2NRoOysjLw+fxB48IjIyM52ZC2vOQ5EiQd+K/bFuHatQ6oVCoUFhZizpw5Nr8fjmRp83OknJwcPHz4cMSKFAA0NDRY2y8JIc7FMAw2bNiAzMxMXL16FevWraM9qAghxA6ioqLw6NEjZ4dhVy6fTC1fvtz658bGRmRmZmLDhg0u1y7V29uLtrY29PT0oKCgAKWlpdaEyWg0wtvbGzKZDCKRCHw+HwqFAiKRCN3d3WhpaYFGoxlQWfL19cW0adOsf5ZIJHaJu6urC62trZgzZw4YhkFqairy8/Nx7949zJo1y63u2Dp6PPrTp0+tiZS3t/eIr6UWP0JcC5/Px6efforvvvsOWVlZSE1NdXZIhBAy4fj5+cFoNKK9vf2dn5XclcsmU29P8WtqasIPP/yAdevWOW20tE6nG9SOp1aroVarYTAY4OnpCZ1Oh+7ubigUCrAsC7FYDL1eD61WC6FQCKlUOqDCZPm9s/r2VSoVBAKBdWylp6cnZs6ciYqKCpSUlGDGjBlOiWs8HNnm9+zZM9y/f39UiRQAlJeXY+3atQ6IjBAyWmKxGDt37sS3334LpVI54cf3EkKIo1nWTVVVVVEy5Wj9W/yam5vxww8/YM2aNUhISLDrdfV6/ZAJU2trK/R6PaRSKcRiMXg8HkwmE3Q6nfVxmUwGPp8PiUSCmTNnDkiYbNmQ1p4KCwvBsuyA/blSU1Px/Plz3Lt3D4mJiW7T/uKoNr9nz57h3r17yMjIgI/Pu4d0dHR0oLOzE2FhYXaPjRAyNp6enti+fTtOnjwJhULh9C02CCFkorHsNzV37lxnh2IXLptMFRcXY8WKFWhtbcXJkyexatUqzqokBoNhUKLU0tKCtrY26PV6SCQS63htvV4PvV4PmUwGf3//AdUkyy9PT0/r67OystDV1YX58+dzEqs9vXnzBvX19UhKShrQzuft7Y3p06ejsrISFRUViIuLc2KUo+eIZCo3N3dMiRTQV/2LjY11q5ZJQiaToKAgfPzxx/jxxx+xd+9e+Pn5OTskQgiZMKKionDnzh2wLOs2N+jHwqWSqW6dEZcK61H2ug2vGoFVYilOnDiBFStWjHkKiNFotCZMzc3NaGpqglqthkajgV6vh0gkAsMwMJlMMJlMkEql8PPzg6+v74BEycvLC56enqPekFYikaClpWU8f32HKy8vh1AoHDJJXbJkCcrKynD37l3Exsa6xRe/RCKBVqu12/nz8vLwxx9/jCmRAvre54l6N4aQiSI6OhorVqxAZmYm9u3bR3tQEUIIR5RKJfh8PtRq9YS8WeUyyVROdRv2HnsClgV69CaIeMFY9T+f4C/LFmP27NlDHmNZ0NbU1IT6+nq0tLSgvb0dXV1dMBgM4PP5YFkWZrMZHh4e8PT0RExMDPz9/a0T9JRKJRQKBWdVA2dMlBuvwsJCmM1mTJkyZdBzfn5+iI6ORlVVFV69euUymyKPRCwWWyckci0/Px937txBRkbGmCby6XQ61NbWYsuWLXaJixDCnTlz5kCj0eDMmTPIyMhw2fZsQghxJwzDICoqClVVVZRM2Uu3zoi9x55AqzNZH9ObGQB8/J8PNVgQW4O25gY0NTWhtbUVnZ2d6OnpgcFgsFZMxGIx5HI5vL29ERcXh6CgIHh7e0OpVEIulzusssLVpr32ptfr8erVKyQkJAxbdUtPT8eLFy9w7949t0mm7JHI5ufn4/fff8eePXvGPNq8srISEREREIvFnMdFCOHesmXLrHtQffrpp9SeSwghHIiMjIRKpUJycrKzQ+GcSyRTlwrrwbJDP6fT6/GX735DokcHpFIpPD09ERUVhaCgIAQHB8PX13fYDWmdwV2SqcrKSgiFQsycOXPY1wQGBiIyMhKvXr3C69evERoa6sAIx84eo9ELCgqsidR47qaUl5e7zZozQkjfHdQPP/wQp06dwvXr17FmzRqX+flCCCHuKioqCtevX5+Q66ZcIpmqbtWiR28a8jkj+EhavBz/sna6g6MaH0fvdTRehYWFMBqNiIqKGvF16enpOHnyJO7du4ft27c7KLrx4Xo0emFhIW7fvo3du3ePK5Eym82oqKjAihUrOIuJEGJ//fegevz4MRYtWuTskAghxK15enpCIJHhyO1itBv4iPSTYUNSCORil0hFbOISf4NIPxmkIv6QCZWYD0zxkzkhqvFx5F5H42U0GvHixQvExsZapxAOJyQkBCEhIaiurkZLSwv8/f0dFOXYcdnmV1hYiJs3b2LPnj3j/jvX1NRYpz0SQtyLRCKx7kHl5eVl9205CCFkIsupbsPh5ilA8yvoTIBUxMffLpfg2N4FSI4c/VAvV+QSzeBz4OeAAAAgAElEQVQbkkIwXMWPNZvRWXQHGo3GsUGNk6XNjx2ub9EFVFVVgc/nj3pC4tKlS8Hj8XD//n07R2YbrqqCz58/x82bN7F7926bkkdq8SPEvXl5eWH79u24fPkyamtrnR0OIYS4JctsBJ2JgWU8Qo/eBK3O9I+ZCUbnBmgjl0im5GIBju1dAJmYD6mobxiCiNdXlTq5fxES42Jw9OhR5ObmunSSAgACgQAMw8BodN0vjMLCQphMJkRHR4/q9REREQgICEBZWRna29vtHN34cVEVLCoqwo0bN7B7924EBASM+zwsy0KlUmHatGk2xUMIca7g4GBs3LgRZ8+ehVqtdnY4hBDidkaajcCyfc+7M5dIpgAgOdIHT/60En/ekICvlkbjX9fEYre8BAn+YqSmpiIjIwM5OTnIzMxEZ2ens8MdkSsPoTCbzSgvL0dUVNSYxv4uXboUAoEADx48sGN0thGJRDAYDONOuIuKinD9+nWbEykAUKvVMBqNCAoKsuk8hBDni42NxXvvvYfMzEy77mVHCCET0UizEXr0JlSrexwcEbdcJpkCAJlYgK3JEfiXNfHISIvD/Nkz8fDhQwBAQEAA9u/fj9DQUBw+fBiFhYUuW6Vy5SEUNTU1YBgGs2bNGtNxUVFR8Pb2xvPnz9HV1WWn6GzD4/EgFArH9d4XFxfj+vXr2LVrl82JFACoVCrExcVNuIk1hExW8+bNQ0JCAs6cOQODweDscMatW2fEmZwa/MfVUpzJqUG3m7fXEEJcn2U2wlCkIj4ifaUOjohbLpVMvS01NRUFBQXWD+98Ph/Lli3Dzp078eDBA/z4448ueZfQlYdQPH/+HEajEbGxsWM6jmEYLFu2DAKBAFlZWXaKznbjSWSLi4tx7do17Nq1C4GBgZzEQS1+hEw8y5cvh7e3Ny5cuACz2ezscMYsp7oNKX+/hb9eKsGhey/x10slSPn7LeRU22ezc0IIAUaejcAwfc+7M5dOphQKBWbNmjXow3tISAi+/PJL+Pr64tChQygpKXFShENz1TY/lmVRUlKCiIgIiESiMR8fExMDuVyO3NxcvHnzxg4R2m6siWxJSQmuXr2KnTt3cpZIabVaNDc3u8VGx4SQ0bPsQdXT04ObN286O5wxsSwA1+pM1nabibQAnBDiuvrPRhDx+rrKpCI+ZGL+Px53ieHi4+bSyRTQV53Kz89Hd3f3gMcFAgFWrlyJTz/9FLdv38bPP//sMh/wXbXNr76+HmazGbNnzx7X8QzD4L333oNAIMDjx485jo4bYxmPXlpaiitXrmDXrl2crm2qqKjA1KlT3zl2nhDifgQCAbZu3YrKykpkZ2c7O5xRm+gLwAkhrs0yG2FbrAAfRovx5w0JePKnlW4/Fh1wg2RKoVAgKSnJunbqbeHh4Th48CA8PDzw9ddfo6KiwsERDuaqbX7Pnz+HyWSyaVx3fHw8JBIJsrOzXTJhHG0iW1paisuXL2Pnzp2cD4mgFj9CJjYPDw/s3LkTDx8+RFlZmbPDGZWJvgCcEOL6ZGIBVk6VYuNUHrYmR7h9RcrC5ZMpAFiyZMmQ1SkLoVCItWvXYtOmTbhy5Qp+/fVXp37Qd8U2P5ZlUVRUhJCQEEgkknGfx7J2is/n49mzZxxGyI3RJLJlZWXWRCo4OJjT6xuNRlRVVY15TRohxL0olUps27YNv/32G+rq6pwdzjtF+skgFgy9aGEiLAAnhLgHiUTiMp1kXHGLZOpd1SmLqKgoHDx4EAzD4Ouvv8bLly8dFOFArliZamlpgU6nG3eLX3+JiYnWMemutp/Wu9r8VCoVLl26hB07dnCeSAF9GyIHBgZCKqUPJoRMdCEhIfjoo49w9uxZtLW57hAHlmXhqamE2TR0ZWoiLAAnhLgHV10KYwu3SKaAd1enLMRiMT744AOsX78ev/zyC65cuQK9Xu+gKPu44hdKUVERWJZFfHy8zefi8XhYtmwZACA/P9/m83FppGRKpVLht99+w44dOxASYp8PDtTiR8jkEhcXh/T0dGRmZqKnx/Va5QwGA3766Sc01FTh291zIREwEKAvqRLCDA8hMyEWgBNC3IMrdm/Zym2SKUt1arRjuWNjY/HVV19Bp9Ph8OHDqKmpsXOE/+SKyVRhYSECAgI4q5gkJSWBz+fj7t27LjUieLh/pOXl5fj111+xfft2uyVSLMuivLyckilCJpnk5GRMmzYNZ86ccalqfVdXF44dOwY+n4+MjAykTw/F3+YasUj8GrOETfhfFgUgw0uFGYEezg6VEDJJUJufk6WmpiIvL++d1SkLDw8PbNq0CStXrsS5c+dw8+ZNh/ygc7U2v7a2NnR3d2POnDmcnZPP5yM9PR0mkwlFRUWcnddWQ1WmysvLcfHiRezYsQOhoaF2u3ZDQwNEIhF8fX3tdg1CiGtauXIlPD09ceHCBZfYUL6+vh7ffPMN4uPjsXHjRut00a72ViTJurEmWIc1cV6YlRCPa9euOTlaQshk4eHh4VKfkbngVsmUp6fnmKpTFtOnT8fBgwfR3t6OI0eOoL7eviNgXa2EWVxcDKDvfeCSJTm7c+eOS3x4AAYnUxUVFbh48SK2b99u10QKoBY/QiYzhmGwceNGdHd349atW06NpaSkBKdOncKaNWuQlpYGpt9umR0dHfDw8IBSqURtbS1WrFiB2tpaqFQqJ0ZMCJksXO0zMhfcKpkC/lmd0mq1YzpOJpNhy5YtSEtLQ2ZmJu7cuQPTMItxbeVqXygFBQXw9fWFXC7n9LwCgQBpaWno7e11mfHA/VssKysr8csvv2D79u0ICwuz+7XLy8ttGjtPCHFvlj2oVCoVnjx54vDrsyyLe/fu4fr169i1a9eQN9B6enogl8vh6emJuro6iEQifPTRR7h8+fKEa70hhLgeV/uMzAW3S6Y8PT0xc+bMd072GwrDMJg5cyYOHDiAhoYGfPPNN2hqauI8RldaM9XZ2Yn29nZOpvgNZd68eWBZ1mWqU5YWy8rKSly4cAHbtm1zSCLV0dGBjo4OhIeH2/1ahBDXJZVKsXPnTty/f9+h1R6j0YgLFy6gvLwc+/fvH3JaqdFohNFohJeXF2QyGRoaGmAymTBlyhRMnz4dV69edVi8hJDJSSAQgGVZl1pfaiu3S6aAvsl+46lOWSgUCmzfvh0LFizAiRMncP/+fU6HKLjSmqmSkhIwDIPExES7nF8kEiE1NRWdnZ1OG0Xfn1gsRmdnpzWRclRyo1KpEBcXBx7PLf9JEUI45O3tjW3btuHXX3/F69ev7X697u5uHDt2DGazGRkZGVAoFEO+zjK+XS6Xg2VZKJVK6w3FFStWoK6uzmW6DAghExPDMBOuOuWWn/xsqU5ZMAyDOXPm4IsvvkBVVRW+++47tLa2chKfWCyGXq93iUpNfn4+vLy84OnpabdrLFiwwFqdcrbm5mZoNBps3brVoVUiavEjhPQXGhqKDz74AGfOnEF7e7vdrtPY2IhvvvkGMTEx+OSTTyAUCod9bX19PXg8Hjw8PGA0GhEWFmbdcLh/u58rjngnhEwclEy5CFurUxZKpRK7d+9GUlISvvvuOzx+/NjmJIjH40EoFDq91a+npwctLS12a/GzEIvFWLhwIVpaWlBbW2vXa43k5cuXuHHjBkQiESIiIhx2XZ1Oh9raWkRHRzvsmoQQ1xcfH48lS5YgMzPTLuuRysrKcPLkSaxcuRLLli0bMGhiKPX19fDw8IBAIIDRaER4eLg1mQKAKVOmIDExkab7EULsipIpF2GpTo11st9QGIbBggULsH//fpSUlOD48eM230l0hS+U0tJSMAyDGTNm2P1aCxcuBMuy+P333+1+raG8fPkSP/30EzZv3gyDweDQqmBlZSUiIiIgFosddk1CiHtISUlBTEwMzp49y9kaAZZl8eDBA1y5cgU7duwY9ff4lpYWKBQKCIVCGAwGhIWFDboBtmLFCrx+/Zra/QghdjPR9ppy22QK6KtO5ebm2lydsvDx8cHevXsRFxeHo0eP4unTp+P+UO4KQyjy8/Mhl8vh7e1t92t5eHhg/vz5eP36NRobG+1+vf6qqqrw008/YcuWLZg6dSoYhnHowkZq8SOEjOT999+HVCrFxYsXbb7RYzQacfHiRRQXF2P//v1j2vJBo9HAx8fHWpny8/NDb2/vgL0bhUIhtfsRQuxqou015dbJlKenJ2bMmMFJdcqCx+Nh8eLF+Oyzz5CXl4dTp06ho6NjzOdx9hAKnU6H+vp6zJo1y2HXTE1Ndfjaqerqapw/fx5btmxBZGQkAMcmsmazGRUVFbS/FCFkWAzDYNOmTdBoNLh9+/a4z6PVanHixAno9Xp89tlnY14L293djcDAQAiFQhiNRjAMg9DQ0AGtfgAQERGBxMREmu5HCLELZ39G5ppbJ1MAd2un3ubv7499+/YhPDwcR44cQUFBwZjuKDq7za+8vNw6Ct5RZDIZZs+ejZcvX0KtVtv9etXV1Th37hw2b95sTaSAwRv32lNtbS2USqVdB3wQQtyfUCjE9u3bUVpaiqdPn475+ObmZnzzzTeIjIzEli1bIBKJxnR8b28vTCYTAgICIBAIYDAYAGDAEIr+VqxYgfr6epSWlo45VkIIGQlVplyMl5cXEhMTOa1OWfD5fCxduhS7du1CVlYWzp49O6AdYiTObvPLy8uDVCqFn5+fQ6+blpYGAPjjjz/sep1Xr15ZE6moqKgBzznyjodlJDohhLyLZQ+qu3fvoqKiYtTHlZeX4/jx43jvvfewfPnydw6aGIparQafz4e3t7e1MgVg0BAKC0u735UrV6jdjxDCKWcXHLjm9skUYL/qlEVwcDC++OIL+Pv749ChQyguLn7nMc4sYRqNRtTU1Dhk8MTbLK2XZWVl42qPHI1Xr17hxx9/xCeffDIokQIcl8iyLAuVSkUtfoSQUfPx8cGnn36KX375BfX19SO+lmVZPHr0CL/99hu2bduGpKSkcV+3tbUVJpMJSqVyQGUqNDQU9fX1MJlMg46JiIjAjBkzqN2PEMIpGkDhgizVqUePHtntGgKBACtWrMC2bdtw584dnD9/fsS7dc7MuisrKwHAoeul+lu6dCkA4N69e5yfu6amxppITZ06dcjXOCqRVavVMBgMCAoKsvu1CCETR3h4ODZs2IAzZ85Ao9EM+RqTyYTffvsNBQUF+Pzzz23eN6+xsRF8Ph9isXhAZUoikQzYvPdty5cvp3Y/QginnN29xbUJkUwBfdWpZ8+e2b0dISwsDAcOHIBCocChQ4egUqmGfJ0zK1N5eXkQi8UICAhwyvWVSiWmTZuGwsJCTquFNTU1OHv2LD7++ONhEynAcWumLFWp8bTcEEImt+nTp2Px4sXIzMxEa0c3zuTU4D+uluJMTg1a2jtx8uRJ9PT0YN++fVAqlTZfr6mpCXK5HAAGVKaA4ddNAdTuRwjhHlWmXJQ91069TSgUYvXq1fjkk09w7do1XLx4cVDi5Kys22Qy4eXLl0hMTHTqh/z33nsPAPDgwQNOzldbW4uzZ89i06ZN79wc19HJFCGEjMfChQth8onE4v+8g3/7rQSH7r3Ev/1WjMX/7S56ZMH49NNPxzxoYjhtbW3WpKx/ZQoYOZkC/tnu9/NvVwYkfd06x21BQQiZOGjNlAtLS0tDbm6uw+6eTZkyBV999RX4fD6+/vprvHjxwvqcs75QqqurwbIsZs+e7fBr9+fr64upU6fi6dOnNr8PtbW1OHPmDDZt2oSYmJh3vt4R771Wq0Vzc/OAKYKEEDIW3TojDpXyoDfz8MbQt2bpjcEMA8vD/yxm8cZg5uQ6LMuiq6sL/v7+AAZXpoYbQtGfZ/Qc/LVAjL/8WoRD917ir5dKkPL3W8ipbuMkRkLI5DHRpvkJnB0Al7y8vJCQkICsrCysXLnSIdcUiUTYsGEDXrx4gV9//RVxcXFYtWqVQ8dz95ebmwuhUIjg4GCHX/tty5cvx8uXL/H48WMsW7ZsXOeoq6vDmTNnsHHjxlElUkBfZaqrq2tc1xutiooKTJ06FQLBhPonRAhxoEuF9Rhuww2DwYi/nbiCJcE8CAQCCAQC8Pl86+/f/vNwvxcIBHjz5g0YhoG3tzfMZrN1014LPz8/vHnzBlqtFjKZbFAs3Toj9v+QCz3LA4x9Effo+5K/vcee4MmfVkImpu+FhJDRmWiVqQn33W/JkiU4cuQIFi9eDKlU6rDrRkdH46uvvsK1a9dw6NAhLFq0yOFfKCzLoqKiwuktfhaBgYEIDw/Ho0ePkJqaCqFQOKbj6+rqcPr0aWzcuBGxsbGjPk4sFqO1tXWs4Y6JSqVCfHy8Xa9BCJnYqlu11qTkbXozA53QE4GBMhiNRhiNRphMJuh0Omi1WphMJutj/Z+3/L7/n3U6HUwmE27fvo0bN26Ax+PBbDbjP//zP63Jl8lkwjfffAOZTDYoYXvaJoLBwAcw+OcKy/YlhVuTI+z8bhFCJgpLMsWyrEt8XrXVhEumlEolEhIS8OjRI6xYscKh15ZIJNi4cSNUKhV+/fVXmM1mGAyGMScR41VXVwez2Yy5c+c65HqjsXLlSnz//fd4+vQpFi1aNOrjXr9+jdOnT+Ojjz4aUyIF2H+9mtFoRFVVFT744AO7XYMQMvFF+skgFfGHTKikIj4WJk5FMgdJytOnT3Hr1i3s27cP/v7+MJvN+Pd//3d89dVXYFkWRqMRjx49gsFgwLx58wYlZo+eqaE3D73HYo/ehGo1DaYghIwej8eDUCiEXq+HWCx2djg2m1BrpiwcNdlvONOmTUNGRgaMRiOOHDmC169fO+S6z549A5/PR1hYmEOuNxohISEIDg7GvXv3htzHZCivX79GZmYmPvzww3FtiGvvFsuqqioEBgY6tPJJCJl4NiSFYLibsqzZjA1JIZxcp7W1FQaDAUqlEgzDgM/nQygUQigUwtPTEz4+PoiPj4dGo0F4eDiioqIQExOD+Ph4zJgxAwsSouAh5A95bqmIj0hf+l5ICBmbidTqNyGTKaVSienTp9t136nRxAD07bl0+vRp/P7776NOJsbDsoFsXFycy5VMV61aBaPRiPz8/He+tr6+HqdPn8aHH3447kl59h5LT1P8CCFckIsFOLZ3AWRiPqSivmRFABPEfOA9XinUTSNv6jtaLS0tEAqFAyYDvj3Rb6TNe9ckBMBkGnpyH8OAs6SPEDJ5UDLlBtLS0pxanRIKhTCbzZg+fToOHjyIpqYmHD16FI2NjXa5XlNTEwwGg0u1+FmEh4fDz88Pd+7cgdk8/HSqhoYGZGZmYsOGDTYlK/Zs82NZFuXl5eOqmBFCyNuSI33w5E8r8ecNCVg7hY/3vNT44ZNwpE8PxYkTJ4bd1HcsWltb4enpOeCxtyf6WTbvbW5uHvA6s9mM65cu4vPoXoh4LIRM3/dwqYgPmZj/j2Rwwq0YIITY2UTaa2rCJlPOrk4xDGOtkMjlcmzbtg0LFy7EyZMnce/evRGTivHIzc0Fj8fDlClTOD0vV1atWgWdTofi4uIhn29oaMCpU6ewfv16mwc72LMy1dDQAJFIBD8/P7ucnxAy+cjEAmxNjsD/mh6B+d56VJQWYevWrfDz88Phw4dtujlkMpnQ1dU16HvW25UpoG+/qdraWuufzWYzfvnlF5hMJny2IR17lSqs8G7HXEkL/rwhAU/+tBLJkT7jjo0QMnlNpPHoEzaZApxfnepfwmQYBrNnz8aXX36JV69e4dtvv0VLSwtn1yopKcHUqVPB47nm/9KoqCgolUrcvn0bLDtwGHD/RGr69Ok2X8uea6YsrZSEEMK14OBgaLVa1NTUQKvVYv/+/RAIBDh06NC428Q1Gg3EYjG8vb0HPP52ZQoYuHkvy7K4dOkSuru7sWXLFjx9+hQpc2djivE1UuVqbE2OoIoUIWTcqM3PTViqU48fP3bK9YdqN/Py8sKuXbswZ84cfP/998jKyrK5SqVWq/HmzRvMnz/fpvPYE8MwWLVqFbRaLcrLy62PNzY24tSpU1i3bh0niRTQt/eX0WjkvPoHAOXl5bReihBiF0qlEnq9HtHR0SgqKoJAIMDBgweh1Wpx7NixQTeiRkOtVkMkElnX8VoMVZmybN7LsiyuXbuG1tZWbNu2DUajEc+fP0diYiJ4PJ7LrcslhLgfe69vd6QJnUwBfdWpp0+fOqU6NdwXCsMwmD9/Pvbv3w+VSoXjx4+jrW38u8jn5eWBYRhERUXZEq7dxcbGQi6X4+bNm2BZFo2Njfjhhx+wbt06JCQkcHYdS4sl19Wpjo4OdHR0IDw8nNPzEkII0Pe9Kzg4GMHBwSgoKAAAyGQy7N+/H/X19bhw4cKYz6lWq8EwzKBkaqjKlJ+fH7RaLa5evYra2lrs2LEDIpEIeXl5iIuLg06nG1ThIoSQ8aA2PzeiVCoRHx/vlOrUu0qYPj4+2Lt3L+Lj4/HNN98gJydnXHcei4qKEBkZCT5/6NG1rsJSndJoNMjLy8MPP/yAtWvXcppIWdgjmbK0+LlqKyUhxP0FBQWBZVlotVrrMIiAgABs374dRUVF+OOPP8Z0PrVaDaPROKrKFMMwkMlkKC8vx65duyCRSGA2m/HkyROkpKRArVbD29t7XD+nCCGkP2rzczOW6pSjp4aM5guFYRgsWrQI+/btQ0FBAX744Qd0dHSM+hodHR3o6upy6Ra//qZPnw6xWIzLly9jzZo1SExMtMt17FE+pil+hBB7Cw4ORmNjI5KSkqzVKQCIiYnB2rVrce/ePRQWFo76fK2trejt7R1VZSorKwu9vb2Ii4uz7qNXVlYGLy8vhISEWJMpQgixFSVTbsbb2xvx8fEOn+w3luqIn58f9u3bh8jISBw5cgR5eXmjuvuXn58PhmEQExNja7gO0dLSYl1I/fYPdy5xPR5dp9OhtrYW0dHRnJ2TEELeFhwcjIaGBiQlJeH58+cD1n4mJycjJSUFv/zyC169ejWq87W2tkIkEkEoFA54/O3KVE5ODnJycrBmzZoB49Gzs7ORkpICAGhra6NkihDCCUqm3JAzqlNj/ULh8XhIS0vD7t27kZ2djTNnzqCrq2vEYwoLCxEWFgaBwPWnKjU3N+PkyZNYt24dJBIJbt68abdrcd3m9+LFC0REREAsFnN2TkIIeZuvry+6u7vh6ekJuVyOqqqqAc+vXr0asbGxOHny5DvX2ur1evT29g6ZAPH5fGtlKi8vDw8ePMCePXsQFxeHhoYGmM1m1NfXo6Ojw7pdBVWmCCFcoX2m3JClOuXItVPjbTULCgrCF198gcDAQBw+fBhFRUVDVqm0Wi3a29vdosWvpaUFJ0+exKpVq5CUlITly5ejrq6O0/Hw/XHd5kcj0QkhjsDj8RAYGGht9RuqpW/btm3w8/PDkSNHRvwwolarIZPJhkyALJWpoqIi/P7779i9eze8vb0hkUjg5eWFpqYmZGdnY8GCBeDxeDCbzWhvb4dSqaQ1U4QQm9EACjeVlpaGnJwch2XCtrSa8fl8LF++HNu3b8fdu3dx/vz5QRMJCwsLwTCMy4/qbmlpwYkTJ6yJFADMnj0bIpEI169ft8s1uaxMmc1mVFRUUDJFCHEIS6vfzJkzoVKpoNfrBzzPMAz27dsHoVCIw4cPD7sHlVqthlgshpeX16DnBAIB6uvrce3aNezatWvApr5hYWGorKxEeXk55syZAwDo7OyEVCqFSCTi8G9KCJmsqM3PTXl7e2PatGkOq05x8YUSGhqKAwcOwMvLC19//TXKysqsz+Xn5yM4OHhQL7wraW1txcmTJ7Fy5UprIgX0JYvp6emoqqpCe3s759fl8h9pbW0tvLy8hvxAQgghXAsKCkJjYyNkMhkiIiJQWlo66DUikQgHDhxAT08Pvv/++yGrRWq1Gjweb8jKVFdXF1QqFXbs2IHAwMABz4WFheH58+eYOXMmPDw8rOfy9fXl6G9ICJnsKJlyY+np6Q6rTnE1BEEgEOD999/Hli1bcOPGDVy4cAEajQYtLS0u3eLX2tqKEydOYPny5Zg1a9ag55OTkyEQCOyydorLypRKpXL56h8hZOKwVKYAYNasWQOm+vUnl8vx+eefo6GhAefPnx/0fFtbG8xm86BhP9XV1SgtLcW0adMQEhIy5PVbW1utgyeAvmTKx8cHAKjNjxBiM5FIBIPBMGDIjruadMmUI6tTXK/biYiIwMGDByEWi3H48GEAfaPGXVH/RGr27NlDvkYgECA1NRUqleqdgzbGiqtkimVZSqYIIQ4VEBCA9vZ2GAwG60CIzs7OIV8bGBiIrVu3orS0FLdu3RrwnFqthk6nG5BM1dXV4dy5c5gzZw4kEsmQ52xoaADDMAOet1SmGIbh4G9ICJnsLN9jJkJ1atIlU4DjqlP2+CIRiURYt24dZDIZGIbBjRs3ON+c1lZqtRonTpzAe++9N2wiZbFw4ULw+Xzcvn2b0xi4qgqq1WoYDAYEBQVxEBUhhLwbn8+Hn58fmpqaIBQKkZCQMOLeUnFxcVi9ejWysrKQm5sLoO9GUGtrK7RarbVFuaGhAWfOnMHGjRsRGBg4aNNey3HZ2dkIDAxEXV2d9XFq8yOEcI2SKTfmqOoU13sdWRgMBrS3t2PFihUwm804dOgQqqurOb/OeFgSqWXLllkXLo9EJBJhwYIFKCoq4jS55aoyZalK0d1YQogj9W/1s0z1G6m9LiUlBfPnz8elS5fw8uVLtLR3olTvjWemcPyU34CqugZkZmZi/fr1iI2NHbTPlEV1dTVYlkVsbCxqa2utj7e1tVEyRQjhFCVTbs4y2c+e/xMtbX5c95eXlZWBZVnMnTsXH330EdauXYuff/4Z165dG7SjvSO1tbXhxIkTWLp0KebOnTvq49LS0sAwDO7cucNZLFy1WFKLHyHEGfonUxERETAYDNY/D2ft2rWIjo7G/33yIpb+j4fI6g1BXq8f/u23YgGtXi0AACAASURBVLz//+UgdHa6tTVcIBAM+fPi8ePHSElJQXh4uLUyZTQa0dnZaW0XpDVThBAuTJS9piZtMuXj42P36hSfzx/2B5Ytnj59Cl9fX2s/e1xcHA4ePAitVovDhw8PaM1wlLa2Nhw/fhzp6eljSqSAvsRn7ty5yM3N5aySx0VVUKvVorm5GZGRkZzERAgho2WZ6Af0rS0Ybs+p/hiGwQcfb8ENXQzeGFkY2L4f8W8MZhhYPv52Xw2trq8aNVRlqq2tDXV1dUhKSkJoaKh189729nZ4eXmBz+dTlZ4QwpmJstfUpE2mgL6KyJMnTxxSneKKyWRCXV3doBY6qVSKTz75BMuXL8eZM2dw69atIVs47MGSSKWlpWHevHnjOseyZcsAAA8ePOAkJi7a/CoqKjB16lQIBAJOYiKEkNEKDAxES0uLdQ+ppKQkFBUVDbunlMWVokbwh/mexbLApcJ6AENXprKzszF37lwIhUJ4eHjA09MTTU1NtF6KEGIXXH9GdpZJnUw5ojrFdT9oZWUlWJYddrBDQkICDh48CLVajaNHj76zLcRW7e3tOHHiBNLS0mwa0+7h4YGZM2ciOzubkySQi3+g5eXl1OJHCHEKkUgEpVKJlpYWAICvry+8vb3x4sWLEY+rbtXijWHoUcM9ehOq1X2bv79dmert7UVhYSGSk5Otj4WFhaGurm7AWHSA2vwIIdygNVMThL2rU1wPoXjy5AmUSiWkUumwr5HL5fj000+xePFi/PDDD7h79+4772aOR3t7O44fP47U1FRO9rtauXIlTCYTJ8mtpTI13h/6RqMRL1++RGxsrM2xEELIePRfNwX07Tn1rla/SD8ZpCL+kM9JRXxE+vb97Hi7MpWXl4eYmBh4enpaH7Osm+o/fILa/AghXKE2vwnCx8cHcXFxdqtOcVnCNJvNqKmpQVJS0jtfyzAMZs2ahQMHDqC2thbffvstmpubOYkDADQaDU6cOIHFixcPuJNpC5lMhunTp+PBgwc2b+Jm63q1qqoqBAYGjpi0EkKIPb2dTCUmJqKysnLEnykbkkIwXLrDMH3PA33JlKUyZTab8eTJEyxcuHDA68PCwlBbW0ttfoQQu6ABFBOIZd8pe2THXJYwX716BZPJNKYqkKenJ3bu3Il58+bh+PHjePjwoc2JikajwfHjx7Fw4UIsWLDApnO97f3334fBYMCzZ89sPpct66ZUKhXi4uJsjoEQQsar/xAKoO8u7tSpU1FcXDzsMXKxAP/P5ukQMiYI0Pe9XswHhDDh/0j3g0zct55KKBRabzapVCrI5XKEhoYOOJe/vz96enrQ2tpKyRQhhHP22kLI0SiZQl91KjY2FtnZ2Zyfm8vKVHZ2NhQKBeRy+ZiOYxgG8+bNwxdffIHKykocO3YMarV6XDF0dHRYE6mUlJRxnWMknp6eiImJwZ07d2zuyx/ve8+yLK2XIoQ4XXBwMJqamgbcABvNVL8IDwP+S2g9PgjpxRxxM/51zTT8bZ4J5Q+vor7+nwMoLJWp7OzsQVUpoO9nR3BwMHp7ewe0/9GaKUIIF2jN1ASTlpaG7Oxszv+ncpV1syyLqqoqzJgxY9znUCqV2LNnDxITE/Htt98iOzt7TD8ULYlUSkqKXRIpizVr1lgXQ9tivO99Q0MDRCIR/Pz8bLo+IYTYQiKRQCaToa2tzfpYbGwsWltb0d7ePuxxarUaUhEf66d7Y0O4GelhAmz9ZCNCQkJw7NgxdHV1WQdQNDQ0oL293br/1Nu8vb0hFouta6VozRQhhCvU5jfB+Pr6Ii4ujvPqFFdZd319PQwGg83rkxiGQUpKCvbt24eioiKcOHECGo3mncdZEqnk5OQh72ByydvbG1OmTMHt27dtugM63jY/avEjhLiKoKCgAeum+Hw+EhMTR7zZpFarYTabERAQAD8/P7S2toJhGGRkZMDDwwNHjhwBy7IwGo14/PgxkpOTweMN/XGA1o0SQuzFzBfhiVqA/7haijM5NejWOWZLH65RMtWPPSb7cdXm9/jxY8hkMusO9Lby8/PDZ599hujoaBw9ehS5ubnDJi6dnZ04fvw45s+fj0WLFnFy/XdZv349uru7oVKpxn2O8b731OJHCHEVbw+hAPqm+hUUFAz7PbutrQ1v3rxBQEAA/P390draCqCvte/LL7+EXq/H999/Dx6PB5VKNeL+gAzDoLe3d0CrIbX5EUJslVPdhnWH8/C7xheH7r3EXy+VIOXvt5BT3fbug10MJVP9+Pr6IiYmhtPqFFdtfpWVlcO2YYwXj8fDkiVLkJGRgZycHGRmZqKrq2vAa/onUosXL+b0+iPx8/NDaGgobty4Me5zjKcy1dHRgY6ODoSHh4/7uoQQwpXg4OABQygAICQkBDweD3V1dUMe09raiu7ubvj5+VkrUxYymQyff/45mpubYTabER8fDw8Pj2Gv39nZCalUiqamJgDU5kcIsV23zoi9x55AqzfB+I9UpEdvglZn6nvczSpUlEy9JT09ndPqFBdtfs3NzdDpdHZrrwsICMD+/fsRGhqKQ4cOobCwECzLWhOpuXPnOjSRsli/fj00Gg2qqqrGdfx4Etny8nLExcUN2/JCCCGOZGnz618Nsmx9UVBQMOj1BoMBXV1dUCqVEAgE8Pf3t278axEQEIDNmzcDeHeVSa1WIzg4eNjEjRBCxupSYT2G+9bDsn3PuxP6xPgWS3XqyZMnnJyPi8rU48eP4eHhMWAHeq7x+XwsW7YMO3fuxIMHD5CZmYnvv/8ec+bMQWpqqt2uO5KgoCAEBgbiypUr4zp+PG1+tF6KEOJK5HI5hEIhOjo6Bjw+c+ZMlJSUWCfyWbS3t0MqlSIwMBAA4OXlhZ6eHuj1+gGv0+l04PF4KCwsRFFR0ZDXZlkWarUakZGRlEwRQjhT3apFj9405HM9ehOq1T0Ojsg2lEwNIT09nbPJflysmbJUSxwhJCQE27dvR11dHXp6epy+t8i6deugVqvx+vXrMR871jY/nU6H2tpaREdHj/lahBBiL0Otm1IqlQgMDER5efmAx9VqNUQiEQICAgD0tXP7+voOaPVjWRaPHz+GQqFAQkICfv75Z+vI9P56evo+0ERHRw9IpmjNFCHEFpF+MngIhxl6I+Ij0te9Bt9QMjUELqtTtrb5aTQaaLVahw1+6OrqwqlTp7B48WLs2rULt27dws8//+y00ZXh4eHw9fXF5cuXx3zsWKuCL168QHh4OMRi8ZivRQgh9vL2RD+LofacUqvVYFnWmkwBGLRuyrIBvEwmw6JFixAREYHvv/9+0JrZtrY2+Pr6IiAgAFqtFlqtltZMEUJstiEpZMBQm/4Ypu95d0LJ1DAs+07Z2qJna5vfo0ePIJFIBvxgtJfu7m6cOHECSUlJSEtLQ3h4OA4cOAAPDw98/fXXqKiosHsMQ1m7di0aGxvR3Nw8puPGWplSqVQ0xY8Q4nKGGkIBAAkJCaiurrZWkIC+ZKq3t3dQMtV/3VR2djZSUlKsG/fu2bMHCoUChw8fhsFgGHAuX19fMAyD0NBQavUjhHCiq60FayQvIGLMEKCv3U8IMzyEDI7tXQCZWODkCMeGkqlh+Pn5cTLZTyQSwWAwDJuBv0tpaalD2s66u7tx/PhxzJgxA+np6dbHRSIR1q5di02bNuHy5cv49ddfOZlOOBZTp06Fl9f/396dB0V5p/sC/769QnezdrPK0ggiomBcQGIixKjRKCZqzCRmJnfMmBidmltzzx935k7VrTp1c27dnDNVZ6amUnNiTGKMxiWayarRjEl0jCsuEQgIGBGBAdm6behuen/vHz3dQ0uD0IIsfj9V/mFvvI3SvN/3eX7PL2rY1anhtFh6PB5cu3aN66WIaNwJ1uYHeD/jpk2bFrDmqaOjAw6HAzExMf7b+o5HNxqNaGxsRH5+vn/jXolEgldffRUulws7duzwt/F1dXX51+qmpKQwTBHRPRNFEV9++SWyogS8uTwGj4S3YoHmNn6ep8YvYn7EQ1MixvoQh41hahAjUZ0SBCHkzWN7enrQ09Mz6i1+vorUzJkzUVJSEvQxGRkZ2Lp1KwRBwJtvvhnyhL1QLV++HE1NTTAajUN+znCqgk1NTYiKikJUVFSoh0hENCoiIyPhdrv7teEB3j2n+rb6dXZ2QqvVBkwk7dvmd/78ecyZMwcKhQIymcxfiVIqldi8eTM6Ojpw8OBBAP+sTAHelmtfmOKaKSIK1ZUrV+B0OmGz2ZA+JRF5qh6sy5KhKN4DfUoSTp06NdaHOGwMU4PQ6XTIzMy857VToQ6hKCsrg0KhQHLy6PWOWiwW7Nq1CzNmzMBjjz026GOVSiVWr16NVatW4ZNPPsGXX37Zb0LUaJk+fTo0Gs2wqlPDCbFs8SOi8UoQhAFb/aZOnQqTyYTOzk709vbC5XIhMTEx4DFarRZGoxFWqxUVFRUoKCgAAH+bn09sbCx++tOfoqamBsePHw8IU1OmTEFLSwuDFBGFrLe3F9988w0SExMxe/ZsOJ1OyGQyREdH48aNG1i+fDkuXLgAg2FibdzLMHUXxcXFOHfu3D1Vp0IdQvHDDz8gIyNj1Bb8DidI9TVt2jRs3boVdrsdb731Fpqamkbl+PoSBAFLly5FfX09zGbzkJ4z1BAriiLDFBGNawMNoZBIJJg1axbKy8vR1dUFpVLpH4vuI5PJEBkZiTNnzvjbpgFALpcHrJECvF0Iq1atwsmTJ9HZ2elv8wsPD0dkZGS/PauIiIbq22+/RU5ODq5fv465c+fCbrdDoVBApVKhs7MTcrkcjzzyCI4cOTKhLtwwTN3FSFSnQglTvb29uH379qht1OsLUtOnT8djjz027MAWHh6OtWvXYunSpThw4ACOHTvWb7+TkZaXl4fw8PAh7zs11Da/rq4uOJ3OfldziYjGi4HWTQHeVr/Kykp0dnZCEISgA4t0Oh2uXLmCBQsW+G+7szLlM2/ePDz00EPweDwBUwB966Ym0kkOEY0PLS0tqKmpQVpaGmJiYqDT6fxhyuVyITU1FTdv3kRRURFu376N2trasT7kIWOYGoJ7rU6Fsmbq4sWLkMlkSE9PD+lrDsZqtWL37t3Izs7G4sWL76nyNWPGDGzZsgVGoxHbt28PulfJSBEEAYsXL0ZNTc2QRrXLZDJ4PB643cE3hvPxVaU48peIxquB2vwAb9UqLCwM9fX1cDgcQcOUVCqFVCpFSkqK/7aBwhTgvXgVFhaGnTt3+tdqpaSkhLTnHxE92HxDJ5YsWYKqqirMmTMHAGCz2aBQKGC325GRkYH6+npIpVKsXLkSR48e7Vc5H68YpobgXqtToVSmKioqkJ6ePuIn+FarFbt27UJWVhYef/zxEXl9tVqNZ599FosWLcKePXtw/PjxuwaYUM2bNw9KpRJfffXVXR871OEfdXV1bPEjonEtNjYWVqt1wAtJ+fn5uHnzJgAgIqL/NKyOjg5ERUUFfOYHa/Pz6erqwowZMxAVFYVt27b5rxwzTBHRcF2+fBkSiQRTp05FY2MjZs6cCQCw2+3+LqKMjAw0NDQA8LYbp6am4rvvvhvDox46hqkhWrRoUcjVqeEOoHA6nejq6gpoxxgJvopUZmYmlixZMqJBTRAE5OXlYcuWLWhtbcU777yDtra2EXv9vl9n0aJFqKysHNLwi7t97y0WC9ra2qDX60fwKImIRpYgCAOumwK8laSenh7ExMT0+2y/deuWfzhFX4NVpnzDJzZv3gxRFPH2229Dp9PBYrGMzBsiogeC1WrF8ePHsXLlSpSXlyM3NxcKhQKAN0yFh4fD4XAgMTHRP8UaAJYtW4aLFy+iq6trLA9/SBimhiguLg5Tp04NqTo13I17fQk+Kytr2F9rIL29vdi9ezemTp2KpUuXjlpLW0REBDZs2ICCggLs2rULp06dCnmPrYEUFRVBKpXi66+/vutj7/a9v3btGqZOnQqZbGJtEEdED57ExMQBW/00Gg1EUUR4eHi/+86fP4958+ahs7MzYL3TYJUpg8EArVYLhUKBzZs3o6urC7v3HcAt1VSU2ZOw/0IjzPbRXSdLRBPfN998g5kzZyIhIQHff/895s6d67/PV5lyOByQSCTQ6/X+rXciIyPx6KOPTohhFAxTwxDq2qnhtvl9//33SElJGbHA09vbi127diEjI2NUg5SPIAiYO3cuXnnlFdTX12PHjh0Bi5jvlUQiwcKFC3H58uW7thPerc2vrq6OG/US0YQw2BCKnp4eSCQSWK3WgNstFgtqampQVFQEpVKJ7u5u/31DqUwBQHR0NB5a9gz+7w8qfNmmQoUrEa8dqsaC17/GhYaJNcKYiO6f5uZm1NXVYfHixbh58ybkcnnAdj92ux1qtdp/npaRkRGwj+mCBQvQ3d2Nmpqa+37sw8EwNQy+6tSFCxeG9bzhhCm324329nYUFhaGcoj9+CpSer0ey5Ytu69DFqKjo/Hiiy8iPz8fO3bswLlz50bs6sKiRYsgCAJOnDgx6OMGa/NzuVyor6/HtGnTRuSYiIhG02BhqqurC1KpFCaTKWBz34sXLyI3NxcqlSpg817AW5kKFqbcbjdMJhNiYmIAAGa7C789chNOSOEUvacNVocbFrsbG3eWwcIKFRHdwePx4Msvv8SyZcsQFhaGy5cvY86cOQHnoTabDSqVql+Y8p0r+oZRfPXVV/dtX9NQMEwNU3FxMc6ePTusf9ThTPOrqKiAIAjIyckJ9RD9bDYbdu/ejbS0NDzxxBNjMq1OEAQUFhZi06ZNqK6uxvvvvw+j0XjPryuVSjF//nycP39+0DbCwdr8bty4gYSEBKjV6ns+HiKi0abT6WAymYL+/uns7ITb7UZ2djYqKysBeC8YXbx40b/+VqfTBewTJZPJgrb53b59G5GRkf7250MVLRjoOpgoeu8nIurr0qVLkMvlyMvLQ29vL+rq6pCfnx/wGLvdDo1G4/9M0+l0cLvdAeeJer0eaWlpOHny5H09/uFgmBqmUNZODacydenSJSQlJUEiubd/mr5Bavny5WM+9lur1WLjxo3Izs7G22+/jUuXLt1zlerxxx+Hx+PB6dOnB3zMYEG2traWLX5ENGFIpVLEx8cHXTfV2toKmUyGuXPnoqKiAgBQVVWF+Ph4/6j0uLi4IVWmurq6/Jv1AkBDpwVWR/CWaqvDjYYua9D7iOjBYra7sP9CI177vAL/dfQKSpZ6zz8rKyuRlZUFlUoV8HibzQZBEY7vu8Px70eu4sOLTUhOnxrQ6gd4h1Fcvnx5RJeMjCSGqRD41k4NtTo11AEUHo8Hra2tmD9//j0dn81mwwcffICUlJRxEaR8fGudNm7ciEuXLmHPnj0B/fvDJZfLMXv2bJw+fXrAYDZQm58oihyJTkQTzkAT/dra2hAbGwu9Xo/e3l60trbi3LlzARu/39nmN1Blqu96KVEUIe01QobgHQAqhRR6rSrofUT04LjQYMCC17/Ga4eqseNsE87YkrH63QpcaDD0Gzzh02CR4ql3K3HKmohtJ+vx2qFqvFauxLeVNwMeFxERgeLi4nE7jIJhKgRxcXHQ6/VDrk4NdTR6TU0NRFFEXl5eyMfmC1LJyclYsWLFuAlSfcXHx2PTpk1ITU3FW2+9hfLy8pB/OJYvXw6n04mLFy8GvX+gylRraysUCgV0Ol1IX5eIaCwMtHmv0WhEQkICBEFAfn4+Tp8+DafTGTAVNi4uLqDNb7DKlFarhclkwt69e6G4VQmFPPjEU0EASvOTg95HRA8Gs931j/WTbn8V2+4BLHY3fr7jPLqt3n2k+urudeCINQMWhxsuSAF4K929LhHba2Uw2wIv9BQWFsJsNqO6uvr+vKlh4DzoEBUXF2PXrl0oLCz0z8sfyFDb/MrKyhAfHw+pVBrSMdntduzZswdJSUl48sknx2WQ8pFKpSgpKUF2djY+/fRTXL16FaWlpdBoNMN6HYVCgdzcXBw/fhzz58/v957DwsJw+/btfs9jix8RTURJSUn9Lh653W7YbDakpqYC8G7gu3379n77CWo0GrjdblitVqhUqkErUxKJBCdOnEBRURGef/4RLGwy4cV3z8LjEeHwCFAppBAEYOfGQqiVPJUgepANtq7S4XThmj0SBw8e9C9hEQQBZ9sFiAPGEAH7TtfilSWz/LdIJBKsXLkS+z/6BN+bwtFsskOvU6M0PxmaMf4MYmUqRPHx8dDr9UOa7OcLU4NVX0RRRHNzc9Ay6FDY7XZ88MEHSExMxMqVK8d1kOorKSkJr7zyCuLi4rBt2zZUVVUN+zVWrlwJm83mX3Td10CVKbb4EdFEFB8fj66uroCKktFohEQiQVJSEgBvxcntdiM6OjrguYIgBLT6BRuN3tXVhaamJjQ1NeGll15CcXExpFIpCvSx+NWUFvz3R5KwtSQT/1qai7LfLUWBPhZE9GAbbF2lCxJ02ETU1NTg+vXraGlpgcFgQEuPy1+RupMTEvzt8lXU1tYGbPfQLkZghyEL/3b4qr8tcDxs0cDLSffAV50qKCgYtDolk8kgCAJcLhfkcnnQx1y/fh0ejwdz5swZ9nH4KlIJCQkTKkj5yGQyLFmyBNOnT8enn36KmpoaPPnkk/0WKg4kPDwc2dnZOHbsWL9JMcFaLE0mE0wmk/8qLhHRRCGXyxEbG4v29nb/fi0dHR3weDz+tuWysjKkp6ejurq632RYX5hKS0sL2LTX4/Hg7NmzOHXqFERRxKZNmwI2M+/s7ITd0o1/WTHnngckEdHkotepoVJIgwYqhSDi+VVL8Oy8FJjNZphMJnR3d+Nm2U2UGYMHKhk8kFq7cPToUZjNZoSHh0ObkIzXayJg9/zzHNf39TbuLEPZ75aOWZWcn4j3YLjVqcGGUJw7dw5arXbAsDUQX5CKi4vDqlWrJlyQ6islJQWvvvoq1Go1tm3bhrq6uiE/t7S01L85ZV/Bvu91dXWYNm0aTwiIaEK6c7+p5uZmKBQKKBQK2O12XLlyBcuWLUNdXV2/z7++49F9lalbt27hnXfewfXr17Fu3TpotdqAIAV4t+2YNWsWPzeJqJ/S/GQMdPopCMCqPO+U6sjISKSmpiInJwcpnnYMdMYql0mRITVi9uzZyM/PR3R0NP7WYIbLFbz6NdZbNPBT8R4Ndd+puw2haGxsxOzZs4f1tR0OB/bu3QudTofS0tIJHaR85HI5VqxYgXXr1uHIkSP47LPPhrTeTKPRICMjA1999VXA7cHa/Gpra9niR0QT1p0T/VpbW/0tfeXl5cjIyEBycjL0ej2uXr0a8Ny+49EFQfBvozF//ny8+OKLcDqd/kl+PqIoorKysl/ln4gIADRKGXZuLES4XIBC8C5pkQsi5HBjQ7IRX37+SUAV/OOPP4bU48TP9RaESQHlP9KIDB6oFVLs2lSERF0MMjMzsXr1avziF79Aau68AdsCx3qLBoapexQfH4/09PS7VqcGG0LR2NgIp9OJwsLCIX9dh8OBPXv2QKvVYvXq1ZMiSPWl1+uxZcsWSKVSbNu2DfX19Xd9zurVq3H79m00NDT4b7szxNrtdjQ1NSEzM3M0DpuIaNTdOdHPYDAgPj4eoiji/Pnz/k168/PzUV5eHvBcX5tfc3Mz3n//fbjdbmzZsgVz586FIAj99pgCgKamJsjlciQmJo7+myOiCalAH4vtK3VYP1XE5kf1KFI04fUFAv73qxsgl8uxc+dOmEwmfPLJJ3A4HCgsLESOVo7X5rqwaW4UtpZkYnWyDW+t1KJAH4uMjAzU19fjxo0b2LdvHxp/uOgPXXca6y0aGKZGQElJyV2rU4OFqTNnziAmJuauUwF9fBWp2NjYSRmkfJRKJUpLS1FaWorPPvsMhw8fHvR7HB0djdTUVBw+fNh/251tftevX0dqaiqUSuWoHjsR0WhJTExEe3s7PB7v3k9msxkpKSm4du0alEqlfz1odnY22traYDKZ/M9Vq9UwmUzYt28fiouL/bf59N1jyqeiogJ5eXmT9ncNEY0MV68FT2RF4H89OQMzFEYopd524jVr1iA7Oxt//vOfYTQa8dxzz8HpdEKpVKLH2Inn5qfityty8C9PL8Clc2dgt9vh8Xhw+vRpHDlyBNnZ2fjP//FTAMEHuY31Fg0MUyPAV50aaK8jYPA1Uw0NDUPeW8oXpGJiYvDUU089EL/csrKysHXrVjidTmzbtg03b94c8LGrV69GZ2cn/v73vwPwjk53OBz+SYps8SOiiU6pVCIiIsI7FMJuh9vthl6vx/nz51FUVOT/vSCTyZCbm4uKigoAwI0bN7B9+3YoFAqsX78eeXl5/faaujNMud1uVFdX39P+h0T0YOjp6UFERASuXbsGrVaLmpoauFwuiKIIo9GI6OhoGAwGXL9+HXa7HUqlEp2dnf7hOdHR0RBFEX/4wx/Q1dUFURTx8ssvY968efjx6g94RtcGlUICGbxrp1QKKdRK6Zhv0cBpfiOkuLjY33cerMI00JqptrY22O32gF3qB+J0OrFv3z5ER0dP6opUMGFhYVizZg1qamrw0UcfIS8vD4sXL+43sCMuLg5JSUk4dOgQXn31VUgkEsjlcjgcDsjlcly7dg2PP/74GL0LIqKR4RtC4btI53a70d7ejpkzZwY8bvbs2fj0009hMBhQX1+PVatWoby8HGazGQD8e035fm8ZDIaAMHXt2jXExcX1G7NORHQns9mMiIgIXLp0CQsWLEBVVRUqKyvR2NgIk8mEV155Be3t7fjwww+h0+n8E0kNBgOOHj2KH3/8Eenp6Whvb8cLL7yA9957D83NzQCAkydP4n9u2oRnGv+OPd9dRUJWHvRaFUrzk8d8rztWpkZIQkLCoNWpgcLUqVOnEBkZifDw8EFf3+l0Yu/evYiMjMRTTz31wE5UysnJwdatW2EymbB9+3Z/Baqv0tJS3Lp1C+3t7QD++b1vampCVFQUoqKiFhBD9wAAD7pJREFU7vdhExGNKN8QioaGBiiVSly4cAEFBQX9Nn23WCwwGo2w2WzYunUrsrOzA/aa6luZ6u3thcvlCmj74+AJIhqqnp4eSCQSNDY2Ijc3FwUFBTh27Bi6urqwYYN37dSUKVOwadMm3Lp1CxUVFXC73fj444+RnJyMX//613juueegVqtx9epVZGRkoLq6Gh9//DHWr1+PmJgYdLQ2Y+3sRPx2RQ6eK0gb8yAFMEyNqOLiYpw5cyboup6B2vyuX7+O3NzcQV/XV5GKjIzE008//cAGKR+VSoVnn30WJSUl2LdvH7799lu43f8cl5mcnAydTocvvvgCwD+/92zxI6LJwjeEoqWlBRqNBlevXsW8efP891ssFvzlL3/BX//6V+Tn5yMiIgJhYWEA0G/jXt+ULV+Ln6/rwWazDel3FBER4A1TN2/eRG5uLuRyOWpra+F0OvHYY4/5q99WqxUVFRVwOp2wWq2QSqV4+eWX8fDDDyMsLAyCIGDRokX47rvvMGXKFJSXl+Oxxx6DXq8H4B3alp6ePobvsr8H+6x8hCUkJCAtLS1odSrYAAqDwYDe3l4sXLhwwNd0Op3Yv38/NBoNg9QdZs2ahS1btqCtrQ1vv/12wHSrVatWobm5Gbdv3/aPR6+rq2OYIqJJwRemOjo6IJFIMGPGDKjVav8Y8zfffBMRERHYunUrSkpKUFVV5b/oFBcX599rqm9l6s71Ur4rw3frnCAicrvdsFqtqKqqwpw5c3DkyBG0t7ejuLgYV65cQXt7O7744gu88cYbMBgMmDJlCjIzMxEXF4f33nsPBoPB/1rTpk0DAJw4cQIejwezZs0C4J3I3NnZ6W8PHC94Zj7CSkpKcObMGf+VPp9glalTp05Bo9EgIiIi6Gv5gpRarcaaNWsYpILQaDR4/vnnUVRUhN27d+PkyZPweDzQ6/WIiYnB559/DqVSifb2djgcDo72JaJJwSNV4JonDsfaVTjfKcWsOfPR3d2N/fv349SpU9iwYQOeeOIJyOVyxMTEQKvV4scffwQAaLVaGI1GeDyeoJUpn4qKCrb4EdFdme0u7Dp9HZc9aai2R+PC9xVoaWnBCy+8gJiYGFRVVeH9999HZGQkfvWrX+Hpp58G4K2gL1y4EEVFRdixY4d/wJggCIiKioLRaER6erp/y5vm5mYkJSX121R8rI2vo5kE+lanHn74Yf/twdZM1dXVIScnJ+jruFwufPjhh1CpVAxSdyEIAh566CFkZGTg888/R21tLdasWYMVK1Zg194PYdXNwDffNSMpMhsWhxuacdBfS0QUqgsNBmzcWQanIwEOUYDc5cGq7VewIrweTy+chZ/85Cf91k7Nnj0b5eXlmD59OuRyOTQaDYxGY0BlymAwIDs7GwBgMpnQ1tbmv0JMRBSM7/PI7fbA5oqD3OHBt2fd+G1RFt555x2EhYUhLS0NaWlpKCkp8T/PbrfDarVCp9MhJycHMTExOHDgAJYtWwYA6OzshFqtRlRUFG7cuIGcnBw0NjYiLS1trN7qgHiGPgqCVafubPPr7u6GxWLBo48+2u/5LpcL+/fvR1hYGNauXcsgNURRUVH42c9+hoceegjvvfceTtfdwoeO2fji70ocb5Ph45sSLHj9a1xoMNz9xYiIxiGz3YWNO8tgsbvhEL1rm5yiBL0uEV/ZMlHw8KP9ghQA5Obmor6+Hr29vQD+uW5qoMrUDz/8gBkzZoy7K8BENH70/Tyyubxb0DhFCRyiBL8/b8aylaV4+eWXsWLFCnz//fcB69ttNhvMZjNiYmIAAJmZmdi4cSO+/fZbHD58GM899xxKSkpw69Yt3LhxAwAYph4kCQkJSE1NDVg7dWeb3+nTp6FSqfqNm/VVpJRKJdatW8cgNUyCIKCgoAAb/ttLeP2MCU5RCuc//pvbXCIsdvc/fvBdd3klIqLx51BFC8Tg+1YCgoBDFS1B7woPD0dmZiaqqqoAeMNUR0cHZDKZfx+YvmGKLX5EdDeDfh5JJPiuwQK3242EhARotVpcvXrVf7fNZkNUVFTAxR+FQgGPx4OYmBicOHEC06dPh81mQ8ftHrx3shYfX3fjXIcE5nF2Dscz9VHim+znu+J3Z5tfTU0NsrKyAp7jcrlw4MABKBQKBqkQuN1udHd3o6WlBR9fbIAwwPdPFDHgCQcR0XjW0GmB1eEOep/V4UZDl3XA5+bn5/s38I2Li0NnZyfkcjmcTifMZjMUCgXCwsL8+x+OxyvARDR+DPZ5ZHeJ+PpcOf7jP/4Db7zxBhwOB44dO4aKCu96Krvd7t+sFwAcDgf27duHhQsXYvPmzZDL5di1axcips7BBz0z8O9//RHlzgS8/tW1cddlxPr9KElMTERKSop/7VTfNj+r1Yru7m488sgj/sf7gpRMJsO6deuCtmk8iDweD3p7e2E2m/v9sVgsAX+32+1QqVTQaDS4aNbB7g4L+pp3O+EgIhqv9Do1VApp0BOYMJkAvVY14HOzsrLw+eefw2AwQKfT4fLly4iPj4fL5epXlZo1a9YDtTE8EQ3fYJ9HComIpx5fiOcLn4fBYEBbWxsOHTqEiooK9PT0QBRFNDY2Yu/evdDpdGhoaEBkZCTmzJkDmUyGNWvW4K/HT+JXX9+GE1LgH1/C97U27ixD2e+Wjot9psb+CCaxkpIS7NmzB/Pnz4dSqYTD4YAoijh79iyUSiXi4+MBeIPUwYMHIZPJ8Mwzz0z6ICWKor9XdqBg5Pu71WpFWFgYNBoN1Go1NBqN/09iYmLA38PDw/3VvKgLjbh0qDroD7hKIR30hIOIaLwqzU/Gvx2uDnqf2+VClqJ7wOdKpVLMmjULFRUVKCwsREdHB5KSkvxhKjY2Fh6PB5WVlfjZz342Wm+BiCaJwT6PBAC3yg6jNXUNUlJSEBcXB6PRCKPRiDVr1uBPf/oTFi5ciPj4eJSVlcFkMkEURfzxj39EWFgY4uLiUOPUQhAkQJBWQl+X0XMFY19BZ5gaRb7q1KVLl1BUVAS5XA673Y6qqipMnToVgLc17eDBg5BIJBM+SDkcjqAVpDvDksVigUwmCwhCvqCk1WoDblOr1SF9Twb9ARe89xMRTTQapQw7NxZi484yiKL3Kq1KIYUgAP+5Oht/++YL2C3dePjhh4NWlmbPno2DBw+ipKQEMpkMoijC6XTCZDJBq9Xi5s2bUKvV/ot9REQDGezzaOfGQqitU7F//37Mnz8fxcXFmDt3Lv7wxn/h72HpOG9LRIw1EgU2JwwGA7Zu3QqNRgNRFGEymdDR0YEz31yHwxN8UdZ46jJimBplvurUvHnzEBYWhu7ubhiNRjzzzDP+ICUIAtavXz8ug5TL5Ro0FPW9TxRFRERE9KsgJScn9wtOcrl8VI/7rj/g46AsTEQUigJ9LMp+txSHKlrQ0GWFXqtCaX4y1EoZHs7ahL1798JoNOLJJ5/st/bWt0dLU1MT4uLi4HA44HK5YDAYkJqaioqKCuTl5Y3ROyOiiWawzyMgFikpKfjss8+wY8cOZBQuxQc9MyD+rRkOTyLqTrfA7XLhjfWr/EGqs7MTNTU1qKmpQW+HCIUkGQ5P/wtD46nLSBDFAedw0Aj58MMPkZ6ejsuXL0Ov16O8vBy/+c1v8NFHH0EURTz77LP3NUj5dqkeyjokl8sVEI7uDEp9b1MoFOOux95idw3wA05ENDnZ7XZ/x8P69euhUCgC7j916hSMRiMEQUBPTw90Oh3q6uqwdu1a7N69G7/85S8H3EyeiGi4RFHEiVPnsPnLDu/6pzuo5BL8fqEMDT/Wwul0Yvr06cjJyYE2cQoW/v44LPb+SzbUSum4WTPFMHUftLa2YucH+9EsjcctsxupMeGYq/VALniCbq4YClEUAwLSYBUkm80GlUrVLxgFC0phYWHjLiAREdHg3G43Dh8+jNbWVmzYsAGRkZH++0wmE9566y088sgjqK2tRWJiIi5fvoynnnoK5eXlePHFF8fwyIloMtp/oRH/54sq9Do9/e6TCx78NEeBzUvzkJSUFHDe6dsUOFiXUYE+9n6+hQGNfZx7ADTbldh5exo8HhFOSFBh8+DILQHv/2LBoEFKFEXY7fYhVZCsViuUSmXQcJSQkBDwd5VKxbHrRESTmFQqxerVq3H69Gm8++67eOGFF5CQkADAu8F5YmIi7HY7rFYrLBYLNBoNqqur2eJHRKOiodMSNEgB3o1+w+PTkZzcfz374G2E48P4OZJJyrc7tN0jwDvbxPufBiLwi/cv4oP1aXDbg1eUzGYzZDJZ0ApSbGxsv9vG45orIiIaG4Ig4NFHH0V0dDR27dqFtWvX+vc3zM/PR2VlJcxmMyIiIhAdHY2GhgasXbt2jI+aiCajwcao3239k1opGxdT+wbCMDXKBtsd2ulyYc+pGixO81aUkpKS+rXbjfagBiIimtxmzZqFyMhIHDhwAIsXL8a8efMwY8YMHD16FE6nExaLBeHh4Zg2bRqUSuVYHy4RTUKTecoyw9QoG2x3aKcoQfzUmShdkXOfj4qIiB4kaWlpeOmll/yT/pYsWYK0zGwcq+nC5Q4FtAoPflU4c6wPk4gmqck8ZZkDKEbZ/guNeG2QzWP/tTR3XJcuiYho8rBardi/fz+6JNHYUR8Gp9MFF6SQwQ2lQoGdL42fRd1ENPlMxinLDFOjzGx3YcHrX4/7sY5ERPRguG2xYcH/+/ofa3kD8fcSEdHwcKTbKPOVNdVKKVQK74AIlUIKtVI64cuaREQ08RytbodUFvx3jyh61/oSEdHQ8Ez+PpgIYx2JiOjBMNhaXqvDjYYu630+IiKiiYtn8/fJeB/rSERED4Z7GVFMRESB2OZHRET0ACnNT4bQf7kUgIk/opiI6H5jmCIiInqAcC0vEdHI4TQ/IiKiB9BkHFFMRHS/MUwRERERERGFgG1+REREREREIWCYIiIiIiIiCgHDFBERERERUQgYpoiIiIiIiELAMEVERERERBQChikiIiIiIqIQMEwRERERERGFgGGKiIiIiIgoBAxTREREREREIWCYIiIiIiIiCgHDFBERERERUQgYpoiIiIiIiELAMEVERERERBQChikiIiIiIqIQMEwRERERERGFgGGKiIiIiIgoBAxTREREREREIWCYIiIiIiIiCgHDFBERERERUQgYpoiIiIiIiELAMEVERERERBQChikiIiIiIqIQMEwRERERERGFgGGKiIiIiIgoBAxTREREREREIWCYIiIiIiIiCgHDFBERERERUQgYpoiIiIiIiELAMEVERERERBQChikiIiIiIqIQMEwRERERERGFgGGKiIiIiIgoBAxTREREREREIWCYIiIiIiIiCgHDFBERERERUQgYpoiIiIiIiELw/wGWeJ7W83sekgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAH4CAYAAAALhicKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d1SUaZ43/r+rCFXknCnJIEFUQEEEsy2GNmft1rad2dnt2d+efXaf/e7udyc/Z+f5zsbZ2Ynb0z3TbWu3GFptu02tthJEKASpIkhQkpJzKKhw//6gq0YaREIVhfB+ncM5enPXdV8gVnG/63N9LpEgCAKIiIiIiIiIiIiMTGzuCRARERERERER0ezE4ImIiIiIiIiIiEyCwRMREREREREREZkEgyciIiIiIiIiIjIJBk9ERERERERERGQSDJ6IiIiIiIiIiMgkGDwREREREREREZFJMHgiIiIiIiIiIiKTYPBEREREREREREQmweCJ5iyRSIQf/vCH5p4GERGZ2e3btyESiXD79m3DsaNHjyIwMHDYeXzdICKi6fDkyROIRCL867/+q9HGHO9rHZEpMHiiKausrMSf/dmfITg4GFKpFI6Ojli+fDl+/vOfo7+/39zTM7qnT5/ihz/8IQoKCsw9FSKiOe0Pf/gDRCIR8vLyzD0VIiKa5fSvOc9/eHp6YvXq1fjiiy/MPT2iGc3S3BOgV9vly5exZ88eSCQSvPnmm4iJicHg4CAyMjLwv//3/4ZSqcTvfvc7c0/TqJ4+fYof/ehHCAwMxKJFi8w9HSIimib9/f2wtOSvTkREc9mPf/xjBAUFQRAENDY24g9/+AM2bdqES5cuYcuWLeaeHtGMxN+eaNIeP36M/fv3IyAgADdv3oSPj4/hc++88w4qKipw+fJlM86QiIjIeKRSqbmnQEREZrZx40YkJCQY/v7222/Dy8sLp06dmnLwpNPpMDg4ONUpEs04XGpHk/azn/0MPT09+P3vfz8sdNILDQ3FX/3VXwEANBoNfvKTnyAkJAQSiQSBgYH4x3/8RwwMDAx7TGBgILZs2YLbt28jISEBNjY2WLBggWEt8rlz57BgwQJIpVLEx8fjwYMHwx5/9OhR2Nvbo6qqChs2bICdnR18fX3x4x//GIIgvPRrqq+vx7Fjx+Dl5QWJRILo6Gi89957hs/fvn0bS5YsAQC89dZbhjLbP/zhD4ZzcnJykJaWBicnJ9ja2mLlypXIzMwc1/eUiIiM68GDB9i4cSMcHR1hb2+PtWvX4t69e5Ma65s9nn74wx9CJBKhtLQUe/fuhaOjI9zc3PBXf/VXUKlUwx470dfBa9euYdGiRZBKpYiKisK5c+cmNWciIjItZ2dn2NjYDKuI/dd//VckJyfDzc0NNjY2iI+Px5kzZ0Y8ViQS4bvf/S4++ugjREdHQyKR4MqVK8PO+Y//+A8EBATAxsYGK1euhEKhGDFOaWkpdu/eDVdXV0ilUiQkJODixYvG/2KJJonBE03apUuXEBwcjOTk5Jeee/z4cXz/+99HXFwc/uM//gMrV67ET3/6U+zfv3/EuRUVFTh48CBef/11/PSnP0V7eztef/11fPTRR/jrv/5rHD58GD/60Y9QWVmJvXv3QqfTDXu8VqtFWloavLy88LOf/Qzx8fH4wQ9+gB/84AdjzrGxsRFJSUm4ceMGvvvd7+LnP/85QkND8fbbb+M///M/AQCRkZH48Y9/DAD49re/jQ8//BAffvghVqxYAQC4efMmVqxYga6uLvzgBz/AP//zP6OjowNr1qzB/fv3x/NtJSIiI1EqlUhNTUVhYSH+7u/+Dt/73vfw+PFjrFq1Cjk5OUa7zt69e6FSqfDTn/4UmzZtwn/913/h29/+9rBzJvI6WF5ejn379mHjxo346U9/CktLS+zZswfXr1832pyJiGhyOjs70dLSgubmZiiVSvz5n/85enp6cPjwYcM5P//5z7F48WL8+Mc/xj//8z8bnsdHWw1y8+ZN/PVf/zX27duHn//858OafX/wwQf4r//6L7zzzjv4h3/4BygUCqxZswaNjY2Gc5RKJZKSklBSUoK///u/x7/927/Bzs4O27dvx/nz5036vSAaN4FoEjo7OwUAwrZt2156bkFBgQBAOH78+LDjf/u3fysAEG7evGk4FhAQIAAQsrKyDMeuXr0qABBsbGyE6upqw/Hf/va3AgDh1q1bhmNHjhwRAAh/+Zd/aTim0+mEzZs3C9bW1kJzc7PhOADhBz/4geHvb7/9tuDj4yO0tLQMm+f+/fsFJycnoa+vTxAEQcjNzRUACO+///6w83Q6nRAWFiZs2LBB0Ol0huN9fX1CUFCQsH79+pd+r4iIaPzef/99AYCQm5s76ue3b98uWFtbC5WVlYZjT58+FRwcHIQVK1YYjt26dWvU15OAgIBh433zdeMHP/iBAEDYunXrsPP+4i/+QgAgFBYWCoIwudfBs2fPGo51dnYKPj4+wuLFi8f+hhARkcnoX3O++SGRSIQ//OEPw87V3zfoDQ4OCjExMcKaNWuGHQcgiMViQalUDjv++PFjw/1PXV2d4XhOTo4AQPjrv/5rw7G1a9cKCxYsEFQqleGYTqcTkpOThbCwMMOx8b7WEZkCK55oUrq6ugAADg4OLz33888/BwD8r//1v4Yd/5u/+RsAGJH8R0VFYdmyZYa/JyYmAgDWrFmDefPmjTheVVU14prf/e53DX/Wl7AODg7ixo0bo85REAScPXsWr7/+OgRBQEtLi+Fjw4YN6OzsRH5+/phfZ0FBAcrLy3Hw4EG0trYaHt/b24u1a9fizp07I6qziIjINLRaLa5du4bt27cjODjYcNzHxwcHDx5ERkaG4bVsqt55551hf//Lv/xLAH96/Zvo66Cvry927Nhh+LujoyPefPNNPHjwAA0NDUaZMxERTc4vf/lLXL9+HdevX8eJEyewevVqHD9+fNiSaBsbG8Of29vb0dnZidTU1FHvJ1auXImoqKhRr7V9+3b4+fkZ/r506VIkJiYaXlfa2tpw8+ZN7N27F93d3Yb7j9bWVmzYsAHl5eWor6831pdONGlsLk6T4ujoCADo7u5+6bnV1dUQi8UIDQ0ddtzb2xvOzs6orq4edvz5cAkAnJycAAAymWzU4+3t7cOOi8XiYTcZABAeHg4AePLkyahzbG5uRkdHB373u9+9cBe+pqamUY/rlZeXAwCOHDnywnM6Ozvh4uIy5jhERDR1zc3N6OvrQ0RExIjPRUZGQqfToba2FtHR0VO+VlhY2LC/h4SEQCwWG15zJvo6GBoaCpFINOzY869j3t7eU54zERFNztKlS4c1Fz9w4AAWL16M7373u9iyZQusra3x2Wef4f/8n/+DgoKCYb38vvncDgBBQUEvvNY3X1+AodeD06dPAxhqUSIIAr73ve/he9/73qhjNDU1DQuviMyBwRNNiqOjI3x9fUdtbvcioz3RjsbCwmJCx4VxNA1/GX0l0uHDh18YHMXGxo5rjH/5l3/BokWLRj3H3t5+8pMkIqJXwote78b7OkhERK8OsViM1atX4+c//znKy8vR1taGrVu3YsWKFfjVr34FHx8fWFlZ4f3338fJkydHPP756qiJ0t9//O3f/i02bNgw6jnffNODyBwYPNGkbdmyBb/73e+QnZ09bGncNwUEBECn06G8vByRkZGG442Njejo6EBAQIBR56XT6VBVVWV4dxgAHj16BADDmvU9z8PDAw4ODtBqtVi3bt2Y47/oxiEkJATAUCj3sjGIiMi0PDw8YGtri7KyshGfKy0thVgsHlFJO1nl5eXD3rGuqKiATqczvOZM9HVQ/w728683L3sdIyIi89FoNACAnp4enD17FlKpFFevXoVEIjGc8/777094XP2Kiuc9evTI8FqgX+VhZWXF+w+a0djjiSbt7/7u72BnZ4fjx48P21lBr7KyEj//+c+xadMmADDsDKf37//+7wCAzZs3G31u//3f/234syAI+O///m9YWVlh7dq1o55vYWGBXbt24ezZs6NWcTU3Nxv+bGdnBwDo6OgYdk58fDxCQkLwr//6r+jp6RlzDCIiMi0LCwu89tpruHDhwrBl1o2NjTh58iRSUlIMy8an6pe//OWwv//iF78AAGzcuBEAJvw6+PTp02E7EXV1deGDDz7AokWLuMyOiGiGUavVuHbtGqytrREZGQkLCwuIRCJotVrDOU+ePMGnn3464bE//fTTYT2a7t+/j5ycHMPri6enJ1atWoXf/va3ePbs2YjH8/6DZgpWPNGkhYSE4OTJk9i3bx8iIyPx5ptvIiYmBoODg8jKykJ6ejqOHj2Kv/qrv8KRI0fwu9/9Dh0dHVi5ciXu37+PP/7xj9i+fTtWr15t1HlJpVJcuXIFR44cQWJiIr744gtcvnwZ//iP/wgPD48XPu7//t//i1u3biExMRHf+ta3EBUVhba2NuTn5+PGjRtoa2szfN3Ozs74zW9+AwcHB9jZ2SExMRFBQUF49913sXHjRkRHR+Ott96Cn58f6uvrcevWLTg6OuLSpUtG/VqJiAh47733cOXKlRHHf/jDH+L69etISUnBX/zFX8DS0hK//e1vMTAwgJ/97GdGu/7jx4+xdetWpKWlITs7GydOnMDBgwexcOFCAMDChQsn9DoYHh6Ot99+G7m5ufDy8sJ7772HxsbGSb1bTkRExvXFF1+gtLQUwFD/pJMnT6K8vBx///d/D0dHR2zevBn//u//jrS0NBw8eBBNTU345S9/idDQUDx8+HBC1woNDUVKSgr+/M//HAMDA/jP//xPuLm54e/+7u8M5/zyl79ESkoKFixYgG9961sIDg5GY2MjsrOzUVdXh8LCQqN+/USTYs4t9Wh2ePTokfCtb31LCAwMFKytrQUHBwdh+fLlwi9+8QvDtp5qtVr40Y9+JAQFBQlWVlaCTCYT/uEf/mHYtp+CMLSN9ObNm0dcA4DwzjvvDDum32b0X/7lXwzHjhw5ItjZ2QmVlZXCa6+9Jtja2gpeXl7CD37wA0Gr1Y4Y8/ltsQVBEBobG4V33nlHkMlkgpWVleDt7S2sXbtW+N3vfjfsvAsXLghRUVGCpaWlAEB4//33DZ978OCBsHPnTsHNzU2QSCRCQECAsHfvXuHLL78c9/eUiIhe7kVbW+s/amtrhfz8fGHDhg2Cvb29YGtrK6xevVrIysoaNs54t5j+5uvGD37wAwGAUFxcLOzevVtwcHAQXFxchO9+97tCf3//sMdO9HXw6tWrQmxsrCCRSIT58+cL6enpRvmeERHR5Iz2miOVSoVFixYJv/71rwWdTmc49/e//70QFhZmeA5///33Da8ZzxvtHkcQht/n/Nu//Zsgk8kEiUQipKamCoWFhSPOr6ysFN58803B29tbsLKyEvz8/IQtW7YIZ86cMZwz3tc6IlMQCYIROjMTzRBHjx7FmTNnRl3qRkREZEw//OEP8aMf/QjNzc1wd3c3ypiBgYGIiYnBZ599ZpTxiIiIiMyNPZ6IiIiIiIiIiMgkGDwREREREREREZFJMHgiIiIiIiIiIiKTYI8nIiIiIiIiIiIyCVY8ERERERERERGRSTB4IiIiIiIiIiIik2DwREREREREREREJsHgiYiIiIiIiIiITILBExERERERERERmQSDJyIiIiIiIiIiMgkGT0REREREREREZBIMnoiIiIiIiIiIyCQYPBERERERERERkUkweCIiIiIiIiIiIpNg8ERERERERERERCbB4ImIiIiIiIiIiEyCwRMREREREREREZkEgyciIiIiIiIiIjIJBk9ERERERERERGQSDJ6IiIiIiIiIiMgkGDwREREREREREZFJMHgiIiIiIiIiIiKTYPBEREREREREREQmweCJiIiIiIiIiIhMgsETERERERERERGZBIMnIiIiIiIiIiIyCQZPRERERERERERkEgyeiIiIiIiIiIjIJBg8ERERERERERGRSTB4IiIiIiIiIiIik2DwREREREREREREJsHgiYiIiIiIiIiITILBExERERERERERmQSDJyIiIiIiIiIiMgkGT0REREREREREZBIMnoiIiIiIiIiIyCQYPBERERERERERkUkweCIiIiIiIiIiIpNg8ERERERERERERCbB4ImIiIiIiIiIiEyCwRMREREREREREZkEgyciIiIiIiIiIjIJBk9ERERERERERGQSDJ6IiIiIiIiIiMgkGDwREREREREREZFJMHgiIiIiIiIiIiKTYPBEREREREREREQmweCJiIiIiIiIiIhMgsETERERERERERGZBIMnIiIiIiIiIiIyCQZPRERERERERERkEgyeiIiIiIiIiIjIJBg8ERERERERERGRSTB4IiIiIiIiIiIik2DwREREREREREREJsHgiYiIiIiIiIiITILBExERERERERERmQSDJyIiIiIiIiIiMgkGT0REREREREREZBIMnoiIiIiIiIiIyCQYPBERERERERERkUkweCIiIiIiIiIiIpNg8ERERERERERERCbB4ImIiIiIiIiIiEyCwRMREREREREREZkEgyciIiIiIiIiIjIJBk9ERERERERERGQSDJ6IiIiIiIiIiMgkGDwREREREREREZFJMHgiIiIiIiIiIiKTYPBEREREREREREQmweCJiIiIiIiIiIhMgsETERERERERERGZBIMnMgqVWovm7gGo1FpzT4WIiIiIiIhmCd5rvvoszT0BerXlPmnDuxlVuF7cCJ0AiEXA+igvfCslGAmBruaeHhEREREREb2CeK85e4gEQRDMPQl6NX14rxrfv6CAWCyCVvenHyMLsQg6nYCfbI/B4cQAM86QiIiIiIiIXjW815xdGDzRpOQ+acPe32ZjrB8eEYD0P1vGNJqIiIiIiIjGhfeasw97PNGkvJtRBbFYNOY5YrEI72Y8nqYZERERERER0atuJt9rst/U5LDHE02YSq01rLMdi1Yn4FpxA1RqLaRWFtMzOSIiIiIiInolTfRes29ADVuJlcnnxX5TU8PgiSasW6V56ROBnk4AsvMeIEzmDXd3d0ilUtNOjoiIiIiIiF5JE73X/PFPfwYfF3s4OzuP+uHg4ACxeGoLvZ7vN6Wfm04AbpQ04Zqykf2mxoHBE02Yg9QSYhHG9YQggoCbVz/HHdHQyY6OjvDw8IC7uzs8PDwMHzY2NiaeNREREREREc1k/d3tEEGAgLGX2gFD95q2VmJYWFhgcHAQDQ0NKC8vR29vr+EcsVgMJyenEYGUi4sLnJ2dYW9vD5HoxdfKfdKG719QQACGNTnHc3//3qcKzPdyYOXTGNhcnCblz07k4UZJ04j/fM+zEIuwPtILv9gXi5aWFjQ3N6O5uRktLS1oampCe3s79D9+9vb2w4Io/Yetre10fUlERERERERkBt3d3bh16xYKCgrwlS4CjwfsoBsjfBKLgJRAR7wVpkFlZSXq6+sBAN7e3ggKCoKnpydsbGzQ1dWFjo4Ow0d7ezv6+/sN41hYWBjCKCcnJ0Mgpf/4m/OluFE6vvve3xyON943ZJZh8ESTkvukDXt+m/3S886MsdOARqNBa2urIZDSf7S2thoCKVtbW3h6eo6okLKzsxszmSYiIiIiIqKZbWBgAFlZWcjOzoalpSVWrFiBwqc9+GmuChiz6knAEd9W/NWh1+Hq6ore3l5UVVWhoqICFRUV6Ovrg7W1NYKDgxEaGorQ0FA4OTkZrtnZ2Yn29vZhoZT+Q6VSAQA0gggnBuLGVX0lFgHFP0pjb+MXYPBEk9LW1oa/+sUZ3FX5fl0K+ad1s0N/B5KtavCPe1cgJiZmQmNrtdphgZS+Qqq1tRU6nQ4AYGNjM2qF1MtKJYmIiIiIiMi8tFot8vPz8dVXX0GlUiEpKQkpKSkoKyvDp59+CiFkOf6oHIBYLBpWbWQhFkGnE/A3K/2ge3QHvb292LRpE2JjYw33gYIg4NmzZ4YQqq6uDoIgwMPDwxBCzZs3D5aWlobze3p60NbWhvb2djQ3N6OpqQl1LZ34dcP4ezfl/uM6eDhIjPuNmiUYPNGEqdVq/P73v4darYZj8CK8l1WNGp0LBAwlvTJRG769Mgw2PU+hUCiwc+fOCYdPo9FqtYYnguc/WlpaoNUObWcplUpH7SHl6OjIQIqIiGiOUqm16FZp4CC15LvRRERmJAgCysrKcOPGDbS2tmLhwoVYvXo1nJyc8PjxY5w4cQILFy7E66+/Dnl1O97NeIxrxQ3QCUMFDusjvfDtFSFICHTFwMAAvvjiCxQWFiImJgabN28edTOr/v5+lJeXo6SkBNXV1ejv74dYLIaNjQ1EIhH6+/sN95MA4ODgABcXF1hKbPD9IntWPBkBgyeaEEEQ8Omnn6KkpARvv/02rly5ArFYjOUrVuF373+A7xx/CzmZd9Hc3IzvfOc7uHjxolHDp9HodLphgZS+QqqlpQUajQYAYG1tPWqFlJOTEwMpIiKiWYrbXxMRTZ+Xhfx1dXW4fv06ampqEBwcjPXr18Pb2xsA0NTUhPfeew/+/v44cOAALCwsho1b29CMD37/Oxzavxfz588fNm5RUREuX74MiUSC1NRUWFtbo729fdhHd3e34XyxWAypVApBEKBSqSAIAhwcHBAYGIioqChIJBLk5OSgrKwMt9ShqNY6Dlvh800iCFgeYI8P/2wl7y1fgLva0YTk5eXh4cOH2LlzJ+zs7FBdXY0tW7bA0c4GNiINRFo1UlJS8O6776KsrAzbt28HAJw7dw4ATBI+icViuLm5wc3NbdiTkE6nQ2dn57DqqKamJiiVSqjVagCAlZWVIYR6vkrK2dl5yttuEhERkflw+2siounxspC/ra0NX375JYqLi+Hl5YXDhw8jJCTE8Pju7m6cPHkSTk5O2LNnz7DQCQCkVhYIk3nDy90VDx8+hIWFxYhgSavVoqurC5cvXwYw1CvY1dUVLi4uCAwMhIuLC1xcXODq6jqsPcvAwAAeP36MiooKlJSUoKioCABgaWkJa2trxKAJT7TOY379AgDHZ3L88Y9PsH79evj5+RnvmztLMHiicaurq8OVK1ewdOlSLFiwAPfv34dIJEJkZKShNFGlUiEiIgLBwcHIyMhAVFTUtIRPoxGLxYYnmPDwcMNxQRBGBFItLS0oKSnB4OAggKEnmm8u1/Pw8ICLiwsDKSIiohmO218TEU2Pl4X8+0NFsH0qh729PbZt24bY2Nhh91ODg4M4deoUdDodDh48CK1Wi/r6ekO/pec/urq60NraipKSkmH3egEBAVi0aJFhuZ5cLoebmxt27twJZ2fnMedvZWWFwcFB1NXVoa+vD56enrCysjLskueBQaxxbMLNLg9YiETQPveSou839ZNtMUh0i8CNGzfw7rvvIjo6GmvWrIGrK19f9Bg80bj09vbi9OnT8PPzw2uvvQYAUCqVCAkJgY2NjaGCaGBgAACQkpKCDz74ABUVFQgLCzNb+DQakUhk2B4zLCzMcFwQBHR3d4/oIVVeXm7Y2cDCwsIQSD0fTLm6uo5I5omIiMg83s2oGtGQ9pvEYhHezXjM4ImIaJLGE/KfqtDh+8tS8cbG5bCysoJWqzWESq2trcjOzkZXVxdcXFzwq1/9ylAIAAxtKKWvWpLJZNDpdMjKysKBAwcQGho6akFAVFQUFixYgHPnzuE3v/kNtmzZMuq9p1qtxoMHD5CdnY2Ojg6EhoZi9erVyM/Px6NHj5CYmIgVK1agrq4OFRUV8Ciuw712G9QILhAggggCVgQ74y/WzseSQDcAQEhICAoLC3Hr1i388pe/xJIlS7BixQrY2toa8bv+amLwRC+l0+lw5swZ6HQ6Q+ljV1cXampqDIGSpaUlLCwsDAFNYGAg/P39kZGRgbCwMIjF4hkVPo1GJBLB0dERjo6Ow0o/9bscfLNCqrKyEv39/QD+tNzvmxVSrq6uht0SiIiIyPRUaq1hucdYtDoB14oboFJr2QyWiGgSxhXyi0S4UNYDy45TaG9vR2dnJ77ZZtrb2xt+fn7DlsM5OzuPaBSu1Wohl8vx9OnTYStavmnevHn4zne+g8uXL+Ps2bOoqKjAxo0bIZFI0N/fj/v37+P+/fvo7+9HdHQ09u3bh4GBAZw7dw5qtRr79+9HREQEACA8PBzh4eHYtGloZ3dl6SPczrwHdV83LOp0uHsuB8++3ikvODgYixcvRkxMDO7du4eMjAwUFBRg+fLlSEpKgpWV1Yi5zpXNL3hHTC/15Zdforq6Gm+++SYcHBwADFU7WVhYGP5DikQiSCQSQ/AkEomQkpKCjz/+GNXV1QgICHglwqfRiEQiODg4wMHBAcHBwYbjgiCgr69vRIVUXl4eent7DY/VB1LPV0i5u7szkCIiIjKBbpXmpaGTnk4YOn82/7JPRGQK4w35dQLwsA1YY9MLZ2dnyGQyODk5GZbMpaamIjY2FtbW1oaPF7U2sbCwQGhoKMrLy7Fq1aoxryuVSrFz506Ehobi888/x5MnTyCTyVBWVgZBELBo0SIkJyfDyckJd+/exVdffYV58+Zh586dcHR0HHVMV1dXpCYnQWplgS+++AJ79+5DdXU1Kioq8ODBA4hEIshkMoR+HUQtXrwYd+/exe3bt5Gbm4vVq1dj4cKFEIvFc27zC9750piKi4uRlZWF1157DYGBgYbjSqUSYWFhw1JoqVRqWGoHDKXDnp6eyMjIQEDAUPPOVzV8Go1IJIKdnR3s7OyGfW8AjAikWlpa8ODBA/T09Bge6+LiMqJCyt3dfdQknIiIiMbHQWoJsQjjCp/EoqHziYhoYiYS8gsQoat/AL1d7YYWLXp3797F3bt3hx3TN/Ye7aO3txdPnz7F5cuXYW9vP+LzEolk2N/d3NwQHByM0tJSdHZ2IiAgALt27YKDgwO6urrwwQcfoKamBitWrMCKFSvG1c83ICAAgiBAIpFgw4YN2LBhAzo6OlBRUYGKigpkZGTg5s2bsLOzQ2hoKNavX48nT57g4sWLuHfvHvr9EvCL7KY5tfkFX2nphVpaWnDhwgVERUUhKSnJcLy9vR319fXYtWvXsPOfr3gC/lT1dO7cOTx9+hS+vr4AZlf49CK2trYICAgwBG56/f39aGlpGRZKPXz4EF1dXYZz9IHUN5ubW1tbT/eXQURE9MqRWllgfZQXbpQ0jbn8w0IswvpIL1Y7ERFNwkRCfhEEQK1CSEgIXFxccP/+fYSFhWHdunUYHByc0IdOpwMAlJSUQCQSYWBgYESYNRqxWAyxWIzq6mr84he/gL29PTo7OyEWixEUFITe3l58+eWXLw2yrK2t4eDgAIlEgurqagQFBQEAnJ2dkZCQgISEBGi1WtTU1BiCqMLCQgCAh4cHKruAMzWNAEYuUZzNm18weKJRDQ4O4vTp03B0dMTWrVsN200CQ9VOlpaWI9bVfrPiCQCio6Nx+/ZtZGRkYO/evYbjcyF8Go2NjQ1kMhlkMtmw4wMDAyMqpJRKJTo7Ow3nODk5jVoh9c21z6Y2V9YhExHRq+vYskBcVTYAEL3wHJ1OwPGUoOmbFBHRLDLekF8MATJxOyxFAurq6lBaWgoAaGxsRE5ODkJCQhAYGAiJRDLua7/33nuws7PDvn37AAy1QFGr1RgYGEB5eTny8vLw7NkzODg4ICIiAt7e3tBoNBgcHERjYyNKSkrQ3t4OqVQKHx8faDQa1NXVjQi5XubOnTvIzc19YXWWtbU1QkNDERISgq6uLrS1tSGv2w4iCBDGeH2ajZtfMHiiEQRBwMWLF9HZ2Ynjx4+PeBJQKpUIDw8fUYEjlUqHVTwBQwHT8uXLcenSJTQ3N8PDw2PY5+Zi+DQaiUQCf39/+Pv7Dzs+ODg4okKqtLQU2dnZhnMcHBzg6ek5okLKxsbGqHOca+uQiYjo1SQIAp4VZSDZ6hmy1PNg8Y3Gt4btr7fH8PWLiGgKjqcE45qyccxzBIjwT7uT0VtdZKj8kclkcHBwQEVFBXJzcyEWiyGTyRAcHIzQ0FD4+PgMK3z4prCwMNy9excajQaWlpYQBAGlpaXIyspCY2Mj/Pz8sG/fPkRERAwbp7W1FcXFxQAALy8vNDY2wtnZGWlpaSPubfVh1vNB1MDAgOHPxcXFKC0txdKlSw2h1vMffX19I48NqFGtjRszdAJm5+YXDJ5ohJycHCiVSuzZs2dYUAQM/WdtaGhAamrqiMdJJBJ0d3ePOB4bG4vbt28jMzPTEDTpMXwam7W1NXx9fQ3LFPXUavWwQKqlpQXl5eW4f/++YZcIe3v7ERVSHh4ek9rO88N71fj+BcWcWodMRESvpuvXr6OwsBD/sGcnBhz88G7GY1wrbvjTmyaRXjieEsTQiYhoipYEuuIn22PwT58WQQxA91yg8nzIvyrGFx/k34aNjQ3i4uKgUChQW1uLefPmISkpCYIg4MmTJ8jMzMStW7dgY2ODkJAQBAcHIyQkZESz7/DwcNy8eROVlZXo7OxEdnY2Ojo6EBoairS0NAQEBIwIrh4+fGjoC3X8+HF4e3vjwYMHuHLlCmpqarBz585h91wikchQtTQaJycnFBcXIyQkZETxgCAI6OjowNOnT1FVVYX6+vqhJYGweGnopDfbNr9g8ETDVFdX49q1a1i2bBmioqJGfF6pVMLa2hphYWEjPvfNHk96lpaWSE5OxrVr17Bq1So4OzsP+zzDp4mzsrKCj48PfHx8hh3XaDRobW0dViFVVVWF3NxcQyBla2s7aoWUnZ3dqO8s5D5pw/cvKCAAc2odMhERvXqysrKQnZ2NDRs2YMGCBQCAhEBXLhMnIjKRtBA7ZFmXocMrDvfq+kaE/PEBLjhz5gwaGhpw9OhR+Pn5Yc2aNSgrK0NOTg6++OILODo6YsmSJdi0aRPa29tRUVGBqqoqXLx4EcBQb6SQkBCEhIQgICDA0GPpzJkz0Gq1iI6Oxr59++Dt7T1ifoODg/j8889RWFiI2NhYbNq0ybCiJy4uDvPmzcO5c+fw+9//HmvWrEFycvKY1VZ6Pj4+sLKyQlVVFUQiERoaGlBfX4/a2lq0tbUZelHp2dnZIdzPC6JSYDw92Wfb5hez5yuhKevu7saZM2cQEBCAdevWjXqOUqlERETEqDuvjbbUTi8uLg537txBVlYWNm3aNOLzDJ+Mw9LSEl5eXvDy8hp2XKvVDgukWlpaUFNTg/z8fMOToo2NzagVUu/erYJYPLL53fNm4zpkIiJ6tRQWFuL69etISUkZtikKMNSLhIETEZHxPXz4EPNs1Pivb6dCI4hGhPzXrl1DcXEx9u3bBz8/PwBD936RkZGIjIzEs2fPcP/+fdy+fRtfffUVYmNjkZiYiDVr1qCvrw+PHz9GRUUFiouLce/ePUMoJAgCrKys8M4778DNzW3UuT179gxnz55FV1cXtm/fjoULF444x93dHW+//TZu3ryJGzduoLKyEjt27ICDg8Ow8wRBQE9PDxoaGtDY2IiGhgYIgoBbt27h1q1bw861srKCr68vAgMDERISAl9fX0PlVOYf7uFWWcuw6rBvmo2bXzB4IgBDwUR6ejpEIhF27do16jaSzc3NaGpqwpo1a0YdY7Tm4nrW1tZISkrCnTt3sGLFCtjb2484h+GT6VhYWMDT0xOenp7Djmu1WrS3tw+rkKqrq0NBQQG0Wi00ggjXBubmOmQiInp1lJeX48KFC1i8ePELf08hIiLjEgQBDx8+RHR0NCwtLWEJDLsXyM3NRXZ2NtLS0jB//vxRx/Dx8cG2bduwbt06yOVy5ObmIj8/H0FBQUhMTERkZCQ8PT0N17KwsICDgwM6OzuhVqvxu9+/D/+gUESGBiEyPBR2dnYQBAH379/H9evX4eHhgT/7sz97YTgFDN0rrV+/HiEhITh//jx+9atfYeXKlbC1tTUETc+ePUN/fz8ADAu/AMDNzc2wo7m/vz9cXFxGrZpqb2+He8tD6OA74nPPm42bXzB4IgBD/RDq6+tx9OjRUUMhAFAoFJBIJAgJCRn18xKJBGq1GlqtFhYWI8OHJUuWIDMzE9nZ2Vi/fv2oYzB8ml4WFhZwd3eHu7s7IiMjDcd1Oh3a29vxqOYZPjxdPa6xZts6ZCIiejXU1tbi9OnTCA8Px5YtW8a1RIKIiKauuroanZ2do1YSlZWV4YsvvkBiYiISExNfOpadnR1WrFiB5cuXo7i4GPfv38fHH38MKysrqNVq2NvbY926dYiPj4dEIkFG2TP804dfolrlDKFdBFF+LeaJi5DqMQgvi160tbUhISEBGzZsgKXli2OP/v5+QwVTY2MjbG1t0dTUhKtXrwKAoVJJv8udVCrFvHnz4O/vD0tLS1y7dg179uwZseLkmxobG3HixAn4S6zx/74Wgn++NnJVyWze/ILBE0GhUCAnJwcbN26ETCYb9RxBEKBUKhEZGfnC/7hSqRQAMDAwMGoDaxsbGyxZsgS5ublISUl54a5rDJ/MTywWw83NDaEiC4hQPSfXIRMR0czX3NyMkydPwtfX94UV20REZBqFhYVwcXEZcQ/59OlTnD17FhEREXjttdcmNKZYLIZUKjUUMohEIohEIgwMDKCjowPd3d04/aAB37+ggAjOhpUZAkSoFVxwolHAMssazLccml9XV5ehSblIJEJjY6Pho6GhAZ2dnYbr2traQiQSwdLSEhqNBsDQCpGIiAiEh4dDJpMNq2ZSq9W4ceMGampqxgyeamtrcfLkSTg7O+PQoUOwt7fH4iCvObX5Be8S57impiZcvHgRCxYswJIlS154XmNjI1pbW5GWlvbCc/TBk0qleuHOaUlJScjJycH9+/excuXKF47F8Ml8BEFAVVUV5HI5SktLEWARghqt05xbh0xERDNbZ2cnTpw4AUdHR+zfv3/U/pNERGQag4ODKC4uHtGMu6OjAydPnoSnpyd27tw57jcEdDodlEolMjMz0djYCD8/P+zbtw8RERHo6elBXl4e8vLy8FlOCT4fjAAgGtEOZKh4SIRsTQC2rUyAqPUx6uvr8ejRo2HnWVtbGxqUOzg4oLu7GzqdDlqtFjKZDP7+/vD394dEIsHFixdRVlY2InQC/tTLqbq6+oX30hUVFfjkk0/g5+eH/fv3G+6ZEwJd59TmFwye5jCVSoXTp0/DxcXlpaXpCoUCNjY2CAp68VpT/e4AL+rzBGAo3V28GDk5OVi2bNkLt6cEGD5Nt97eXhQUFEAul6O9vR2enp5IS0vDCjsfHD1ROOZjZ+M6ZCIimrn6+vpw4sQJiEQiHD58+IVV1EREZBqlpaUYHBxEbGys4ZhKpcLJkydhZWWFAwcOjOsNAbVajQcPHiA7OxsdHR0IDQ1FWloaAgICDPenDg4OWL16NVJTU3H4N19BXN8P3RhjiqDDr2+VYa3kMVxdXTFv3jwMDAygu7sbfX19GBwcRGtrK6ysrODu7o5FixZhwYIFcHd3H3FPfPz4cdy4cQNXr15FZWUltm3bNqw1zbx581BUVIT+QQ16BrTDAqSioiJ8+umnCAsLw65du0bfoGuObH7B4GmOEgQBFy5cQE9PD7797W+PGQA9v8xutN5Nes9XPI0lOTkZcrkccrkcy5YtG/Nchk+mJQgCqqurIZfLUVxcDJFIhOjoaGzfvh0ymQw6nQ4ff/wxUqU9uKvyhwg6CPjTuxazeR0yERHNTIODgzh16hT6+vpw7NixETsPERGR6T18+BDz5s2Di4sLgKElaZ988gm6u7vx9ttvw87ObszH9/f3Izc3Fzk5Oejv70d0dDT27dsHb2/vFz5GI4hw/6lqzJUYACBAjBqdC2zsW9HaOvRhY2NjqGRycXFBf38/qqurUVVVhbt37yI3NxdBQUEICQlBSEgInJ2dAQztGp6WlobQ0FB8+umn+PWvf43t27cjLCwMANAt9cSFVk/89w+v/mnJXJQXUtwHUJVzAwsXLsTWrVvn/FJwBk9zVGZmJkpLS7F//364uo4dGDx9+hQdHR2Ijo4e87zxVDwBgLOzM2JjY5GdnY0lS5aM2ewNYPhkCv39/YbqptbWVri5uWHdunVYuHChYZmkIAj49NNP8fjxY/zojYO4dK8Yl8p6UTnoAAFDxa3rI71n7TpkIiKaebRaLc6cOYPGxkYcOXJkzF2KiIjINLq6ulBVVYUtW7YAGLpvuHjxImpra/HGG2/A3d19zMdmZ2dDLpdDEAQsWrQIycnJhgDrmwRBQGNjIyorK/Hw0WPohNHPG/E4iNDa1Qsb0VCfKKlUCkEQ0NPTA2tra7i6uiI4OBjbtm1DU1MTKisrUVlZicuXL0MQBLi5uRlCqMDAQISGhuI73/kOLly4gJMnT2Lp0qVocorADz+vA+Bk6ImrE4DrxY24Kgg4GLYU27alcdMLMHiakx4/foybN28iJSUFERERLz1fqVTCzs4OgYGBY5433oonAFi+fDkKCgpQWFiI+Pj4l57P8GnqBEFAXV0d8vLyoFQqIQgCIiMjsWXLlmGlrPpzv/jiCygUCuzZswcBAQEYOHMG/0/KYlhYS/HlnSzYWAL/76HNfCIlIqJpIQgCLl26hMrKShw8eBB+fn7mnhIR0ZxUVFQEsViMqKgoAMDt27fx8OFD7Nq1CwEBAaM+prm5GVlZWXj48CGsra2RlJSExMTEUSuj9MGW/qO3txeWlpbw8PaFCMKI3k6jEYuA/9+ffxt93Z1oa2tDe3s72tra8OTJE+Tn50Or1RrOdXJygouLCzw8PBAcHAy1Wo329naUlZXh/v37EIvFmDdvHoKDg7F69WqEhITgxNVsfKbSAhABGF7NpO81dapch53V7XyTHgye5pzOzk6cOXMGQUFBWL169UvPf36Z3cvKAy0sLGBpaTmu4Mnd3R1RUVHIzMzE4sWLx1V6yPBpclQqFR4+fAi5XI6mpiY4Oztj1apVWLx48QtLYO/cuYPc3Fxs2bIFUVFRKC8vR39/PxYsWIDa2lpY61TQDg69gHh6ek7zV0RERHPR9evXUVhYiJ07dyIkJMTc0yEimpMEQUBhYSHmz58PqVSKBw8e4M6dO1i7du2o92Z1dXXIyMhAWVkZHBwcsHbtWsTHxxtWywBDS6irq6tRWVmJqqoqNDc3AwBcXV3h6uoKJycntLa24lldDeaJrVCrcx7Xxke+Xh6Al8eoX0N3dzfa2toMH+3t7Xj69Cna2towODhoONfGxgYSiQStra2oqanBzZs3IZFIUGkVDpEKY+7+LRaL8G7GYwZPYPA0p2g0GqSnp8PKymrcWw7X1dWhq6tr3AGPVCp96VI7vZSUFPzud7+DUqnEggULxvUYhk/j9/TpU+Tl5UGhUECj0Ri2Mw0ODh6zSik3Nxe3b9/G6tWrDdVoCoUC7u7u8PLyQlNTE4ChktXa2loGT0REZHJZWVnIzs5GWlrauH9nICIi42toaEBzczPWr1+PqqoqfPbZZ4iLi8Py5csN5wiCgIqKCmRmZqK6uhpubm7YunUrYmNjYWFhAZ1Oh/r6elRVVaGyshK1tbXQ6XSwsbGBra2tYae5trY29PX1wd/fH+Hh4ZDJZFinscPh9/PGnOPLNj4SiURwdHSEo6PjiFU9giCgr6/PUCH1fLWUVqtFX18felWDKB2wfmnllVYn4FpxA1Rq7ZxoID4WBk9zyNWrV9HQ0IC33nrL0MfnZRQKBRwcHDBv3rxxnS+RSMZV8QQAPj4+CA0NRUZGBmJiYsa9ZIvh04sNDg6iqKgIcrkcz549g6OjI5YvX464uLhxNV9VKpX4/PPPkZiYiNTUVABDO02UlpYatkrVL6l0d3dHXV3duJZKEhERTVZhYSGuX7+OlJQUJCYmmns6RERzkkqtRbdKg9z8AtjZ2cHe3h5//OMfERwcjM2bh9pv6HQ6KJVKZGZmorGxEX5+fti3bx8iIiLQ2dmJgoICw/I5lUoFCwsLSCQSiMVi6HQ69Pf3w8HBAWFhYfD394dMJoObm9uw+8RgAD/ZHoPvfaqAWCyCVvenmqOJbnyk0WjQ19f3wo/+/v5hf9dXQqlhMa7lfsDQsrtulYbBk7knQNOjoKAAeXl52LJly7h7Iuh0OhQXFyM6OnrcoZBUKh138AQAqampeP/99/Ho0aNx9ZvSY/g0XENDA+RyOR4+fIjBwUGEh4dj1apVCA0NHfcOCpWVlTh37hxiY2OxYcMGw7/5o0ePMDg4aPj+6stivby8UFtba5oviIiICEB5eTkuXLiAxYsXY82aNeaeDhHRnJP7pA3vZlThenEjdMLQBkOxrvPR+MGnCHVxwe7du6HVapGXl4fs7Gx0dHQgNDQUa9asgVarRWVlJa5cuYLOzk4AQ7vEaTQaw599fX0Nu835+fkZ3uQey+HEAMz3csC7GY9xrbjBsJvc6jA37F3ohjDnofvYsUKlvr4+qNXqEWOLxWLY2toO+3B1dTVUY9na2sLCWorTH5RDN9Y6O/14IsBBytiF34E5oKGhAZcvX8aiRYsQFxc37sfV1NSgp6dnQoHORJbaAcC8efMwb9483L17F+Hh4RNqVD3Xwye1Wg2lUgm5XI66ujrY29sjKSkJcXFxcHJymtBYdXV1+OSTTxASEoKtW7cO+3dQKBTw8fEx7BykD57c3NygUCjQ398PGxsb431hREREAGpra3H69GmEh4djy5Yt3MyCiGiafXivGt+/MFRZpA9ZBIjwsE1AIWT4f+ICkZOTg5ycHPT19SE4OBiBgYGor6/HqVOnAAwtaxOEoQe7ublh3rx5kMlk8Pf3h7u7+6jP7frqp5dVIiWo+hDm1Y/O3gEIg32wrBaQXQ1kfz2OSCQaESI5OTmNOPb8h7W19bheb9ZHdeFGSdOwiqtv0veamuvVTgCDp1mvv78fp0+fhru7OzZt2jShX9qUSiWcnJwmtGvMRJba6aWmpuKjjz7CkydPEBT04rW4o5mL4VNzczPy8vLw8OFDqFQqhISEYO/evQgPD4eFxcSf1Jqbm3Hy5El4e3tjz549w8ZQqVQoLy/H2rVrDcf0wZN+y9O6ujqEhYVN8asiIiL6E/1rk6+v77j7UhIRkfHkPmnD9y8oIAAjwhX9MrP/7+YTbLYuQ4CdALFYjKqqKsM5+mqmoKAgeHh4wNnZ2dAjqa+vD2VlZXjw4MGoAdOL7iefD4hsbGzg6emJwDFCJIlEYrI3LY6nBOOasnHMc17Wa2ouYfA0iwmCgPPnz6O/vx9vvPEGrKysxv1Y/TK7RYsWTeg/q1QqRUdHx4TmGRISAm9vb9y9e3fCwRMwN8InjUaDkpIS5OXloaamBra2toiPj0dcXBxcXSe/S0JnZydOnDgBBwcHHDhwYMTPSGlpKbRaLaKjow3H9OWvVlZWsLOzQ21tLYMnIiIyGv1rk6Oj46ivTUREZHrvZlSN6KH0TSIIUGg84dlfBUtLS9jb20MqlUIsFkOtVqOlpQW1tbWGiqfnSaXSYSGRu7u7IVAaLUTSjztTLAl0NVqvqbmAwdMsdufOHZSXl+PgwYOG6pTxevz4Mfr6+oYFDuMxmYonkUiE1NRUpKeno66uDv7+/hN6PDB7w6fW1lbI5XIUFBSgv78fgYGB2LVrF+bPnw9Ly6n99+3t7cWHH34IsViMw4cPj7pcrqioCAEBAXB0dDQcs7a2BgAMDAzA398fdXV1U5oHERGRXl9fH06cOAGRSITDhw+Pq9cHEREZl0qtNfR0GosAMWp0LhBbSeBgbzuiIulFlUg2NjYzKkSarBf1mlof6YXjKUEMnZ7D4GmWqqiowO3bt7Fq1apJVaMolUq4uLjAx8dnQo+baI8nvfnz58PNzQ0ZGRnYv3//hB8PzJ7wSavVoqysDHl5eXj8+DGkUikWLVqE+Ph4uLu7G+UaAwMDOHnyJFQqFY4dOzbqjnc9PT14/PgxNm3aNOy4hYUFrKysDMHT3bt3odPpZsWLBxERmc/g4CBOnTqFvr6+F742ERGR6XWrNONqnA0MLbv7zl/+NTwcJKad1AyVEOiKhEBXw65/DlJL9nQaBYOnWai9vR1nz55FWFgYVqxYMeHHa7ValJSUICEhYcJrYidT8QQMhUYpKSm4cOECGhsb4eXlNeEx9OO8quFTR0cH5HI5Hjx4gN7eXshkMmzfvh1RUVFGXWag0WjwySefoLW1FUePHn3hUr3i4mKIRCJERUWN+JxEIsHAwAACAwMxODiIpqYmeHt7G22OREQ0t2i1WqSnp6OxsRFHjhwxbGhBRERmoO6HCMB4sifu2jZEamXBwGkM/AmZZTQaDdLT0yGVSrFjx45JNVOrqqqCSqWaVGAjlUqh1Wqh0WgmvBRswYIFuH37NjIzM7Fz584JX1vvVQqfdDodHj16BLlcjoqKCkgkEsTGxiIhIQGenp4mud65c+dQU1ODw4cPjxkWKRQKhISEwNbWdsTn9MGTr68vxGIxamtrGTwREdGkCIKAixcvoqqqCgcPHpzQpiZERGQ8fX19yMjIQG5uLgItg1CtdRqz8om7ttF4MXiaZT7//HM0Nzfj2LFjk97iXqlUwt3dfVLBh74Xg0qlgr29/YQea2FhgeTkZFy5cgWrVq2aUtPsmR4+dXV1IT8/H/n5+eju7oavry+2bt2K6OhoQw8lYxMEAZcvX0ZpaSn27duHwMDAF57b0dGB2tpa7NixY9TP6yvbrKys4O3tjbq6OixZssQk8yYiotnt+vXrePjwIXbt2oWQkBBzT4eIaM5RqVTIzs7GvXv3AADJyclY5ReJw+/Lx3wcd22j8WLwNIvk5+fjwYMH2LZt24R7M+lpNBqUlpYiKSlpUtVSEsnQ2t6BgYEJB08AsHjxYty5cweZmZl4/fXXJ/z458208Emn06GyshJyuRyPHj2CpaUlFixYgISEhEn/e03ErVu3kJ+fj23btiEiImLMcxUKBSwtLTF//vxRPy+RSDA4OAgA8Pf3R0VFhdHnS0REs19WVhays7ORlpY2o94gIiKaCwYHB3H//n1kZmZCo9FgyZIlSElJMax44K5tZCwMnmaJ+vp6fP7554iPj8eiRYsmPU5FRQUGBgYmvJud3vMVT5NhZWWFpKQk3L59GytXrhy2m9pkzITwqaenBw8ePIBcLkdnZye8vLywadMmLFiwwBDUmdq9e/dw9+5drF+/flw/HwqFAhERES+svnq+ibxMJsP9+/fR29sLOzs7Y06biIhmscLCQly/fh0pKSlITEw093SIiOYMjUYDuVyOu3fvor+/H3FxcVixYsWITR24axsZC4OnWaCvrw/p6enw9vZGWlralMZSKpXw8vKCh4fHpB4/1eAJAJYsWYKMjAxkZ2djw4YNkx5HzxzhkyAIePz4MeRyOUpLSyEWixETE4P4+Hj4+flNqppssgoLC3H16lUkJycjOTn5pec3NzejsbERq1ateuE5EokE3d3dAIYqngCgrq7upZVUREREAPDo0SNcuHABixcvxpo1a8w9HSKiOUGn06GgoABfffUVuru7sXDhQqxYsQIuLi4vfAx3bSNjYPD0itPpdDh79izUajX27Nkz4Ybez1Or1SgrK0Nqauqkx3h+qd1Uxli6dCnu3buH1NTUUZtbT9R0hU99fX0oKCiAXC5HW1sbPDw88NprryE2NnbSPbem4vlf7NetWzeuxxQVFUEikSA0NPSF5+ibiwOAk5MT7O3tUVtby+CJiIheqra2Funp6QgPD8eWLVum9c0YIqK5SBAEKBQK3L59G21tbYiKisLq1avh7u4+7jG4axtNBYOnV9zt27fx+PFjHD58GE5OTlMa69GjR1Cr1ZNeZgf8KXiaSsUTACQlJeHevXvIycnB6tWrpzSWnqnCJ0EQUFNTA7lcjuLiYgBAVFQUtm7dinnz5pntF+qamhqkp6cjIiJi3L/Y61+UIiMjxwwxnw+eRCIRZDIZ6urqjDZ3IiKanZqbm3Hy5En4+vpi165dEIvF5p4SEdGsJQgCysrKcOvWLTQ1NSEsLAy7d++elv6yRM9j8PQKKysrw927d7F27VoEBwdPeTylUgkfH58p7yZnbW09pYonALC1tUVcXBzu37+P5ORko/VCMmb41N/fj8LCQsjlcrS0tMDV1RVr1qzBokWLjFKlNRWNjY04deoU/P39J/SL/dOnT9He3o4tW7aMed7zwRMwtNzu1q1b0Gq1sLDgOyFERDRSZ2cnTpw4AUdHRxw4cABWVlbmnhIR0awkCAKqqqpw69Yt1NfXIzAwEMeOHYNMJjP31GiOYvD0impra8P58+cxf/58LF++fMrjDQwMoLy8fMy+PuMllUqnXPEEDG3jmZubi7y8PKN8jXpTCZ8EQUB9fT3y8vKgVCqh0+kwf/58bNq0CYGBgTNiuUB7eztOnDgBZ2dn7N+/f0LLL4uKimBnZ4fAwMAxz9MHT4IgGCqeNBoNGhsb4evrO8WvgIiIZpu+vj6cOHECYrEYhw8fNvSEJCIi46qpqcHNmzdRXV0NPz8/vPHGG0YpUiCaCgZPryC1Wo1PPvkEdnZ22LZtm1HCjkePHkGj0UxpmZ2eRCIxSvDk6OiIRYsWITs7G0uXLjXqO6MTDZ8GBgbw8OFDyOVyNDY2wtnZGStWrMDixYthb29vtHlNVU9PDz788ENYW1vj0KFDE6oU0+l0UCqViI6OfmmFlP6GYXBwEBKJBD4+PhCLxaitrWXwREREwwwODuLkyZPo6+vDsWPHRuyaREREU/fs2TPcvHkTFRUV8PLywv79+xEeHj4j3hgnYvD0ihEEAZ999hna29tx/Phxo71jqFQq4e/vD2dn5ymPJZVKp7zUTm/58uV48OABCgoKsGTJEqOMqTee8Onp06eQy+UoKiqCRqNBeHg41q1bh5CQkBn3JK5SqXDixAloNBocO3ZswoFYdXU1enp6xlX99XwvL4lEAktLS/j6+qKuro5bYhMRkYFWq0V6ejqamppw9OhRuLm5mXtKRESzSnNzM27duoWSkhK4ublh165diI6OnnH3KjS3MXh6xeTm5uLhw4fYuXMnPD09jTKmSqVCRUXFuHc9e5lv9v+ZCldXV0RHRyMzMxNxcXFG7x80WvgUHh4OhUIBuVyOp0+fwtHREcnJyYiLi4Ojo6NRr28sarUaH3/8MTo7O/HWW29NKkBUKBRwdnaGv7//S88dbfdCf39/lJaWTvi6REQ0OwmCgIsXL6KqqgoHDx5kRSwRkRG1t7fj9u3bKCoqgqOjI7Zu3YqFCxdy0waakRg8vUJqa2tx9epVJCYmYsGCBUYbt7S0FFqtFlFRUUYZTyqVoqenxyhjAUBKSgp+85vfQKFQYOHChUYbV08fPqlUKpw9exaWlpbQaDQICwvD/v37ERYWNqOfwHU6Hc6ePYv6+nq8+eabkwoktVotiouLkZCQMK53R14UPN27dw/d3d1cRkFERLh+/ToePnyIXbt2ISQkxNzTISKaFbq6unDnzh08ePAAtra2SEtLQ1xc3IT6uhJNN/50viJ6enqQnp4OPz8/rF+/3qhjK5VKzJs3z2jVPBKJBC0tLUYZCwC8vLwQHh6OjIwMxMbGGrVsVK1Wo7i4GHK5HLW1tbCwsIBGo8HGjRuxdOlSo13HVARBwKVLl1BeXo79+/dPeqeKiooKqFSqcTdZHy140l+7rq4OkZGRk5oHERHNDllZWcjOzkZaWtqkd48lIqI/6e3tRUZGBnJzc2FtbY01a9YYvQ8ukakweHoF6CtadDod9uzZY9TlZn19faiqqkJaWprRxjRmjye91NRU/P73v0dpaalRQo2Wlhbk5eWhsLAQKpUKwcHB2LNnD8LCwnDp0iVcuXIFdnZ2Rmm2bkrXr19HQUEBduzYgbCwsEmPo1Ao4OHhAS8vr3Gdr+8t9vy/s6OjIxwdHVFbW8vgiYhoDissLMT169eRmprKvn9ERFOkUqmQlZWFe/fuQSQSISUlBcuWLZvQJkJE5sbg6RXw5Zdforq6GkeOHDH6EqaSkhIIgmDUoMBYu9o9z9/fH4GBgbh79y7mz58/qaonjUaD0tJS5OXlobq6Gra2toiLi0N8fDxcXV0N5+l7Pp09exYAZmz4lJmZaXg3OTY2dtLjDA4OoqysDCkpKeN+jLW1NQCM+HeWyWSoq6ub9FyIiOjV9ujRI1y4cAGLFy/G6tWrzT0dIqJX1uDgIHJycpCVlQWNRoOlS5di+fLlsLW1NffUiCaMwdMMV1xcjKysLLz22msICAgw+vhKpRKBgYET3gFtLFKpFCqVCoIgGHVZXGpqKj788ENUVlYiNDR03I9ra2uDXC5HQUEB+vr6EBAQgJ07dyIyMnLUtdDPNxyfqeFTfn4+bty4gRUrVkz53eRHjx5BrVZPqG+YSCQatYm8v78/bty4Aa1Wa/RG8ERENLPV1tYiPT0dERER2LJlC3dUIiKaBI1Gg7y8PGRkZKC/vx/x8fFITU1lD1V6pTF4msFaWlpw4cIFREdHIykpyejj9/T04MmTJ9i8ebNRx5VKpRAEAWq12lAZYwxBQUHw8/NDRkbGS4MnrVaLR48eIS8vD1VVVZBKpVi4cCHi4+Ph4eHx0mvN5PCppKQEn332GeLj47Fq1aopj6dQKODn5wcXF5cJPW604Ekmk0Gr1eLZs2fj2h2PiIhmh+bmZpw8eRK+vr7YuXPnjN6Ug4hoJtJqtSgoKMCdO3fQ3d2NhQsXYuXKlZParZpopmHwNEMNDg7ik08+MWyNaYp3DUtKSiASiYzej+f5xtPGDJ70a5o/+eQT1NTUYN68eSPO6ejoQH5+Ph48eICenh74+/tj27ZtiI6OnnDjvZkYPj158gRnz55FVFQUNm3aNOWfi/7+fpSXl0+qYf1owZO3tzcsLS1RV1fH4ImIaI7o7OzEiRMn4OTkhAMHDrDRLRHRBOh0OigUCty+fRvt7e2IiYnBqlWr4ObmZu6pERkNg6cZSBAEXLx4EV1dXfjWt75l1PDmeUqlEsHBwUZfJ6xvPK1SqYxeEhoREQEPDw9kZGTg4MGDAIaerMvLyyGXy1FeXg5ra2vExsYiISFh3M2yX2QmhU/Pnj3DqVOnEBAQgO3btxvl3WR9j6/JfE2jBU8WFhbw8fFhnyciojmir68PJ06cgFgsxqFDhwy/AxAR0dgEQUBpaSlu3bqF5uZmhIeHY+/evfD29jb31IiMjsHTDHTv3j0olUrs2bMH7u7uJrlGd3c3qqursW3bNqOP/XzwZGz6qqfz58+jsrISdXV1yM/PR1dXF3x8fPD6668jJibGqGHdTAifWltbceLECXh4eGDfvn2j9qaaDIVCgcDAwEkFhC/avVAmk0GhUBhjekRENIMNDg7i5MmT6Ovrw7Fjx9h/hIhoHARBQGVlJW7evIlnz54hKCgIW7du5WoBmtUYPM0w1dXVuH79OpKTkxEVFWWy6yiVSlhYWGD+/PlGH/v5pXbGJggCbGxsYGVlhRMnTsDKygoxMTFISEiAr6+v0a+nZ87wqaurCx9++CFsbW1x8OBBo4Vq3d3dePz4MV5//fVJPV4ikaCvr2/EcX9/f2RlZaGrqwuOjo5TnSYREc1AWq0W6enpaG5uxpEjR7gkhIhoHKqrq3Hz5k3U1NTA398fb775JoKCgsw9LSKTY/A0g3R3dyM9PR0BAQFYu3atSa+lVCoREhJikpJ4U1Q89fT0oKCgAHK5HB0dHXBwcIBarcbRo0dNGjg9zxzhU39/P06cOAFBEHD48GGjLotUKpUQi8WT7vFlbW2N9vb2EcdlMhmAod2NzN0Ti4iIjE/fEqCqqgqHDh2attdhIqJX1dOnT3Hz5k1UVlbC29sbBw4cQFhYGHf/pDmDwdMMoX/nUCwWY9euXSbdDaajowN1dXXYsWOHScbXV+RMteJJEAQ8efIEcrkcJSUlEIvFiI6Oxs6dO+Ht7Y3/+q//Qm5urkmWC77IdIZP+iUMPT09OHbsGJycnIw6vkKhQFhYGGxsbCb1+BcttbO3t4ezszODJyKiWer69et4+PAhdu3aheDgYHNPh4hoxmpqasKtW7dQWloKd3d37N69G1FRUQycaM5h8DRDXLt2DfX19Th69Cjs7e1Nei2lUglLS0tERESYZHyRSASpVDrpiqe+vj4UFhZCLpejtbUV7u7uWL9+PRYuXDgsJElOTsaNGzewatUqo4cyY5mO8EkfRDY2NuLIkSNG7/XV1taG+vp67Nq1a9JjjNZcXE8mk7HBOBHRLJSZmYns7GykpaUhJibG3NMhIpqR2tracPv2bRQVFcHZ2Rnbtm1DbGysSYsLiGYyBk8zQFFREe7fv4+NGzcalimZklKpRFhYmKEXkylIJJIJBU+CIKC2thZyuRxKpRKCICAqKgpbtmxBQEDAqO8KxMfH4+7du8jKysLGjRuNOf2XMmX4JAgCLly4gMePH+PgwYPw8/MzyrjPUygUsLKyQnh4+KTHGCt48vf3h1KphEajMVojdCIiml4qtRbdKg0cpJaQWlmgoKAAN27cQGpqKhITE809PSKiGaezsxN37tzBgwcPYG9vj02bNiEuLg4WFhbmnhqRWfGO0Myamppw6dIlxMbGYsmSJSa/XltbG549e4bly5eb9DovWob1TSqVylDd1NzcDBcXF6xevRqLFi2CnZ3dmI+1trZGYmIiMjIysGLFipeeb2ymCJ8EQcCVK1dQVFSEPXv2mGwJg0KhwPz586fUqFwikUCtVkOr1Y54MfX394dOp8OzZ8+mJUwlIiLjyX3ShnczqnC9uBE6ARCLgGXz7OD8TI60hDisXr3a3FMkIppRenp6kJGRgby8PFhbW2PdunVYsmQJrKyszD01ohmBwZMZqVQqfPLJJ3B1dcWWLVumZa2vUqmccqXLeIy11E4QBDx9+hR5eXlQKBTQarWYP38+0tLSEBQUNKHvw9KlS5GVlYV79+6ZvCH7aIwdPt25cwf379/H5s2bTbarYWNjI5qbm7Fu3bopjaNvIj84ODiiT5SXlxesrKxQW1vL4ImI6BXy4b1qfP+CAmKxCDph6JhOALKqeyAgAknuMexNQkT0tf7+fmRlZSEnJwdisRipqalISkoy6coSolcRgyczEQQBn376KXp7e/Htb3972tJwpVKJiIgIk19vtGVYAwMDKCoqglwuR0NDA5ycnJCamorFixfDwcFhUtexsbFBQkICcnNzsXz5cpPs0vcyxgqfcnNzcfv2baxevRoJCQnGnOIwCoUCUqkUISEhUxpH/4KqUqlGBE8WFhbw9fVlnycioldI7pM2fP+CAgIArT51+pqAobDp+xeViPRxREKgqxlmSEQ0MwwMDCAnJwdZWVnQ6XRYunQpli9fPulNe4hmOwZPZpKZmYmysjLs378frq7T88tbS0sLGhsbsWrVKpNfSyqVoqOjAwDw7NkzyOVyFBUVQa1WIywsDGvWrEFISIhRGuwlJSUhJycHubm5SE1NnfJ4kzHV8EmpVOLzzz9HYmKiSb8GQRCgUCgQFRU15bXm+uBprD5PhYWFEASB744TEb0C3s2oglgsGhE6PU8sFuHdjMcMnohoTlKr1cjLy0NGRgYGBgYQHx+P1NRUk28ORfSqY/BkBlVVVbh58yZSU1NNtrPcaBQKBSQSCUJDQ01+LUtLS3R0dODdd99FfX09HBwckJSUhLi4OKPvQOfg4IDFixfj3r17SEpKMtta6smGT5WVlTh37hxiY2OxYcMGk4Y0dXV16OjoMMpORC8LnmQyGTIzM9HZ2QlnZ+cpX4+IiExHpdYaejqNRasTcK24ASq1FlIrNsslorlBq9XiwYMHuHPnDnp6erBo0SKsXLlyWnfWJnqVMXiaZp2dnTh79iyCg4OnpfJITxAEwzI7U+4y1tTUBLlcjsLCQmi1Wnh6emLfvn0IDw836fahycnJkMvlkMvlSEpKMtl1Xmai4VNdXR0++eQThISEYOvWrSavDFIoFLC3t0dAQMCUxxpPxRMA1NbWMngiIprhulWal4ZOejph6HwGT0Q02+l0OhQVFeH27dvo6OjAggULsHLlSri5uZl7akSvFAZP00ij0SA9PR1WVlbYuXOnSYOYb2pqakJLSwvWr19v9LE1Gg2Ki4shl8tRU1MDOzs7yGQyPH36FIcOHTL69Ubj4uKC2NhYZGVlYcmSJWbdsnS84VNzczNOnjwJb29v7Nmzx+Rz1ul0UCqVWLBggVF+9vT9tF7URN7Ozg6urq6oq6vDggULpnw9IiIyHQepJcQijCt8EouGzicimq0EQUBJSQlu3bqFlpYWzJ8/H/v374eXl5e5p0b0SuJvDdPoypUraGhowLFjx2Brazut11YqlUZpKP281tZW5OXlobCwEP39/QgKCsLu3bsxf/58FBQU4MmTJ9Pa32f58uUoLCxEYWEh4uLipuWaL/Ky8KmzsxMnTpyAg4MDDhw4MC3LA588eYLe3l6jLLMDhpZTikSiF1Y8AUNVT2wwTkQ080mtLLA+ygs3ihuhHSN8shCLsD7Si9VORDQrCYKAiooK3Lx5Ew0NDQgODsb27dvh5+dn7qkRvdIYPE2TgoICyOVyvP766/D19Z3Wa+sbSkdGRk65qkar1aK0tBR5eXl48uQJbGxssGjRIsTHxw8rOdUvwxocHJy27UQ9PDwQGRmJzMxMLFq0aForykbzovCpt7cXH374IcRiMQ4fPjxtu18UFRXBxcXFaD9/IpEIUql0zOBJJpNBoVBArVabrfcWERGNzxtL/HBV2QDgxW8Y6XQCjqcETd+kiIimyZMnT3Dz5k3U1tZCJpPhyJEjCAwMNPe0iGYFBk/T4NmzZ7h8+TIWL15slkqcZ8+eob29HZs3b570GO3t7ZDL5SgoKEBvby/mzZuHHTt2ICoqatSeUc8vw5qu4AkAUlJS8D//8z8oLi42WmXPVHwzfFKr1cjNzYVKpcKxY8fg4OAwLfPQaDQoKSnB0qVLjVqBJpFIXlrxpNPp8PTpU6P0lSIiItMQBAG1+bexwqYbd/v9RuxuZyEWQacT8JPtMdzRjohmlfr6ety8eRNVVVXw8fHBwYMHERoayl2ZiYyIwZOJ9ff34/Tp0/Dw8MCmTZvMMgelUglbW1sEBU3sHUqdTodHjx4hLy8PlZWVkEgkWLhwIeLj4+Hp6TnmY58PnqZztwdfX1+EhIQgIyMD0dHRM+IFQx8+6XQ6XLhwAZaWljh27BhcXafvF/eKigoMDAwYvdfSy4InT09PWFtbo7a2lsETEdEMlpWVhUePHuGfDhxAl7U73s14jGvFDdAJQz2d1kd64XhKEEMnIpo1GhsbcevWLZSVlcHd3R179uxBZGTkjLh/IJptGDyZkCAIOH/+PAYGBnDkyBGT7iY31hyUSiUiIyPHvfSss7MT+fn5ePDgAbq7u+Hn54etW7ciJiZm3MulXrbjmSmlpKTgj3/8I8rLyxEeHj7t138RnU4HkUgEjUaDtrY2+Pj4TNu1FQoFvLy84OHhYdRxXxY8icVi+Pn5sc8TEdEMVl1djS+//BLLly83vG4mBLpCpdaiW6WBg9SSPZ2IaNZobW3F7du3oVAo4OLigu3btxtt8x0iGh2DJxO6c+cOysvLcejQIbNtJ19fX4/Ozs6XLjvT6XSoqKiAXC5HeXk5rKyssGDBAsTHx08qIHnZjmemFBAQAJlMhrt37yIsLMzs71oIgoDPP/8cpaWl2LNnD0pKSsbc7c7YBgYGUFZWhpUrVxp97Jf1eAKGltvJ5fJpbTRPRETj09vbi7Nnz2LevHlYs2bNsM9JrSwYOBHRjDfekLyzsxNfffUVCgoKYG9vj82bN2Px4sVm3Q2baK5g8GQi5eXluH37NlatWoXQ0FCzzUOhUMDe3h7z5s0b9fPd3d148OAB8vPz0dnZCW9vb2zatAkLFiyYUm8mcwZPIpEIKSkpOHXqFKqrq83eFPDWrVuQy+XYunUrIiMjERERAWD03e5MoaysDBqNxiQ9ryQSCbq6usY8Rx8Ctre3T+vyQiIiGptOp8O5c+eg0+mwa9cuvttPRK+U3CdteDejCteLG/+0LDjKC99KCR62LLinpwd3796FXC6HRCLB+vXrsWTJErOsRiGaq/i/zQTa29tx7tw5hIWFYcWKFWabhyAIKC4uRlRU1LBfJgVBQFVVFeRyOcrKyiAWixETE4OEhAT4+voapSrF0tISYrHYLEvtACAsLAxeXl64e/euWYOne/fu4e7du1i3bh0WL14M4MW73ZmKQqGATCYzSdXdy5baAUMVTwBQV1fH4ImIaAa5c+cOqqqq8Oabb07bZhdERMbw4b1qfP+CAmKxCPp9EHQCcKOkCdeUjfjJ9hjsivVEZmYm7t+/D7FYjBUrViApKQnW1tbmnTzRHMTgycjUajVOnz4NGxsb7Nixw6xLi2pqatDd3W0INXp7e1FQUAC5XI729nZ4eHjgtddew8KFCw0VSsYiEokgkUjMUvGkv35qairOnDmD+vp6+Pn5TfscHj58iKtXryI5ORnLly8f9rnpCp/6+vpQWVmJDRs2GH1sYHzBk42NDdzd3VFbW4vY2FiTzIOIiCamsrISX331FVatWjXhzUeIiMwp90kbvn9BAQEYtvsmnvv7P32qQO71SniJe5CYmIjk5GTY2NiYYbZEBDB4Mip9L5+Wlha8/fbbZn9yUyqVcHR0hFarxdmzZ1FcXAyRSITo6Ghs374dMpnMpMHYePr/mFJkZCRcXV2RkZGBffv2Teu1y8vLceHCBSxatAjr1q0b9ZzpCJ+Ki4shCAKioqKMOq7eeIInYKjqiQ3GiYhmhq6uLpw7dw4hISFmrcwmIpqMdzOqIBaLRoROzxNBQI1NCP75O6tgZ2c3jbMjotEweDKi/Px8FBQUYPv27fD29jbrXHp7e1FYWAgLCwt88MEHcHNzw7p167Bw4ULY2tpOyxykUqnZKp6AoWAnJSUFFy9eRHNzs9F3dHuRmpoanD59GuHh4Xj99dfHDPdMHT4pFAoEBwfD3t7eaGM+byLBU2FhIQYHB1neTERkRlqtFmfOnIGFhQV27tzJTR+I6JWiUmsNPZ3GIkCEwlbAwtq4qzqIaHIYPBlJfX09vvjiCyQkJGDhwoVmmYMgCKirq4NcLkdRURF0Oh2Cg4ORkpKCwMDAaf/lcryhhCnFxsbi9u3byMjIwI4dO0x+vcbGRpw6dQp+fn7jbtRqqvCpq6sL1dXV2LZt25THehGJRAKtVguNRjNmg0aZTAZBEFBfX88lHUREZnTz5k3U19fj6NGj0/ZGFBGRsXSrNC8NnfR0wtD53J2TyPwYPBlBX18fTp8+DW9vb5P10hmLSqXCw4cPIZfL0dTUBGdnZ3h7e6O3txeHDx8227uZ5q54AgALCwskJyfj6tWrWLVqFVxcXEx2rfb2dpw4cQLOzs7Yv3//hHbKMEX4pFAoYGFhgfnz509pnLHoe4MNDAyM+fV6eHhAIpGgtraWwRMRkZmUlZUhKysLr732GmQymbmnQ0Q0YQ5SS4hFGFf4JBYNnU9E5sd9c6dIp9Ph7Nmz0Gg02Lt377Ruy/n06VNcvHgR//7v/44rV67A1dUVhw4dwjvvvIP29nbExMSYtYR+JlQ8AUBcXBxsbGyQlZVlsmv09PTgww8/hLW1NQ4dOjSpZu368CkmJgZnz56FUqmc0pwUCgXCwsKM3jj+eRKJBABeGjCKRCL2eSIiMqP29nZ8+umnmD9/PpKSksw9HSKiSZFaWWB9lBcsXnKLYyEW4bUob1Y7Ec0QjICn6NatW3j8+DHeeOMNODo6mvx6g4ODKCoqglwux7Nnz+Do6Ijly5dj8eLFhutXVFSgv78fMTExJp/PWGZCxRMAWFlZISkpCV999RVWrFhh9C2jVSoVPvroI6jVahw7dmxK/ZSMVfnU2tqKZ8+eISUlZdJzGQ998DTePk/379+HIAjsKUJENI00Gg3S09NhY2ODbdu28TmYiF5pKzw1uKoUALz4uUynE3A8hVX2RDMFg6cpKC0tRUZGBtatW2fy5UMNDQ2Qy+V4+PAhBgcHERYWhv379yMsLGxEHyGlUgk3Nzd4eXmZdE4vI5FIZkTwBABLlixBZmYmsrOz8dprrxltXLVajY8//hgdHR146623jLKUzxjhk0KhgLW1NcLCwqY8n7FMJHiSyWT46quv0NraCnd3d5POi4iI/uTq1atoamrC22+/bdIqWCIiUxIEAV9++SUqsjOxNygO6Y9FI3a3sxCLoNMJ+Mn2GCQEuppxtkT0PAZPk9Ta2mooWU9OTjbJNdRqNZRKJeRyOerq6mBvb4/ExETExcXB2dl51MdoNBqUlJQgMTHR7O9oSqXSGbHUDhiay5IlS5CTk4PU1FTY2NhMeUz9Msv6+nq8+eab8PT0NMJMh0wlfBIEAUVFRZg/fz6srKyMNqfRPN/j6WX8/PwAAHV1dQyeiIimiUKhQF5eHjZv3gwfHx9zT4eIaFIGBwdx/vx5lJaWYv369Vi2bBn2Vrfj3YzHuFbcAJ0w1NNpfaQXjqcEMXQimmEYPE3C4OAgTp8+DXt7e5OUrDc3N0Mul6OwsBAqlQrBwcHYu3cvwsPDYWEx9jrlyspKDAwMGGVXtKmSSCQYHByETqcb1+5uppaUlIR79+4hJycHq1atmtJYgiDg0qVLKC8vx/79+03SpHWy4VNDQwNaW1unpdH9eHs8AUMhlYeHB2pra7Fo0SITz4yIiFpaWnDx4kUsWLAA8fHx5p4OEdGkdHd349SpU2hpacH+/fsREREBAEgIdEVCoCtUai26VRo4SC3Z04lohmLwNEGCIOCzzz5De3s7jh8/brSSdX2lklwuR3V1NWxtbREXF4f4+Hi4uo4/sVcqlfDw8DBq9c1kPV8NY4wKo6mys7NDXFwccnJysGzZMkNoMhk3btxAQUEBduzYYdLlbJMJnxQKBWxsbBAcHGyyeelZWFjA0tJy3JVtMpmMDcaJiKaBWq1Geno6nJycsGXLFrNXQRMRTcazZ89w6tQpAMCxY8fg7e094hyplQUDJ6IZjsHTBOXm5qKoqAi7du0ySrjT2tpqqG7q6+tDYGAgdu3ahfnz5094hzy1Wo2ysjKTLf2bKH3wpFKpZkTwBADJycnIy8uDXC6f9PcpMzMTWVlZSEtLQ2xsrJFnONJEwidBEKBQKBAdHf3S6jhjmcjuhf7+/sjPz4dKpWKfESIiExEEAZcvXza8SWZtbW3uKRERTVhpaSnOnTsHDw8P7N+/3+gbBBHR9GHwNAG1tbW4evUqEhMTp7RjnFarRVlZGfLy8vD48WNIpVIsWrQI8fHxU+p9U15ejsHBQbPvZqc3kcbT08XJyQmxsbHIzs7G0qVLJxzuPXjwADdu3EBqaioSExNNNMuRxhs+1dbWoqura1p/BiYSPOmXJNbX1yMkJMSU0yIimrMKCgpQWFiI7du3z4gKaCKiiRAEAVlZWbhx4wYiIyOxY8cOk/ctJSLTYvA0Tj09PUhPT4e/vz/Wr18/qTE6Ojogl8vx4MED9Pb2QiaTYfv27YiKijLKk6lSqYS3tzfc3NymPJYxPF/xNJOkpKSgsLAQBQUFSEhIGPfjSktLcenSJcTHx2P16tUmnOHoxhM+FRUVwdHREfPmzZu2eU0keHJzc4NUKkVdXR2DJyIiE2hoaMDnn3+OuLg4LFy40NzTISKaEK1Wi88++wwFBQVISUnBmjVruFSYaBZg8DQOOp0OZ86cgSAI2L1794SWMOl0OpSXlyMvLw8VFRWQSCSIjY1FfHw8vLy8jDbHwcFBPHr0CCtXrjTamFM1U4MnNzc3REVFITMzE3FxceNqfP7kyROcOXMGkZGR2LRpk9leAMcKn7RaLYqLi7Fw4cJpnd9EgieRSASZTIba2loTz4qIaO4ZGBhAeno63N3dkZaWZu7pEBFNSH9/P06fPo2amhps376d4TnRLMLgaRxu3LiBmpoaHDlyZNxri7u6upCfn4/8/Hx0d3fD19cXr7/+OmJiYkzSa+HRo0fQaDQzYjc7vZm41E4vJSUFv/3tb6FQKF7ap0nf1DAgIAA7duww+w59LwqfHj9+jL6+PixYsGBa5yOVSif0b+zv74+srCwIgsB3sIiIjEQQBFy8eBG9vb04dOgQl6UQ0SultbUVJ0+eRH9/P958800EBASYe0pEZEQMnl6iuLgY2dnZ2LBhw0ufAHU6HSorKyGXy/Ho0SNYWloatjD29fU16TyVSiX8/Pzg4uJi0utMhKWlJSwsLGZcxRMAeHt7IywsDBkZGViwYMELA5DW1lZ89NFHcHd3x759+ybcE8pURgufysvL4ebmNupuH6YkkUjQ1tY27vP9/f0xMDCAlpYWeHh4mHBmRERzx/3791FcXIw9e/ZMaDdcIiJze/z4MU6fPg17e3scP36cz2FEs9DMuIueoZqbm3HhwgVER0eP2Ui6p6cHDx48QH5+Pjo6OuDl5YWNGzciNjbWUPVjSgMDAygvL8fatWtNfq2JkkqlMzJ4AoDU1FS89957KCsrw/z580d8vru7GydOnICNjQ0OHTo043YF+mb4JBaLkZKSMu1VRBNZagcAfn5+EIlEqK2tZfBERGQE9fX1uHbtGhITExEVFWXu6RARjVt+fj4uX76MwMBA7Nmzh7seE81SDJ6+plJr0a3SwEFqCamVBQYGBnD69Gk4OTlh69atI27mBUHA48ePIZfLUVpaCrFYjJiYGMTHxxturKdLaWkptFrtjPxlc6LLsKaTTCZDQEAA7t69i4iIiGH/Zv39/Thx4gR0Oh0OHz4MW1tbM870xfThU2dnJ2pqaszyYj3R4EkikcDT0xO1tbWIi4sz4cyIiGa//v5+pKenw8fHZ9KbnxARTTedTocvv/wSWVlZiI+Px8aNGyfUR5eIXi1zPnjKfdKGdzOqcL24EToBEIuA9ZFeCNFUQ9vVhW9961vDKl36+vpQUFAAuVyOtrY2uLu7Y/369Vi4cCFsbGzM8jUolUrIZDI4OTmZ5fpjkUgkM7biCRiqejpx4gQeP36M4OBgAIBarcapU6fQ3d2Nt956a0Z+X58nFotha2sLqVSKa9euwcHBYVp7fU00eAKGlttVV1ebaEZERHODIAg4f/48BgcHsWfPHt60EdErYXBwEOfOnUNZWRk2bNiAxMRE9v0kmuXmdPD04b1qfP+CAmKxCDph6JhOAK6XNOKqIMF3E9fA3d0dgiCgpqYGcrkcxcXFAICoqChs3boV8+bNM+sTZX9/PyorK/Haa6+ZbQ5jmckVTwAQHBwMHx8f3L17F8HBwdBqtTh9+jQaGhpw5MiRV2IpmEqlQnl5OVavXo3GxsYRu92Zmj54mkizcJlMBrlcjv7+frMFtkREr7rMzEyUl5fj4MGDM/5NEiIiYGgDplOnTqGtrQ0HDhxAeHi4uadERNNgzgZPuU/a8P0LCggAtPrU6WtDfxXhlzkt8LDOQM/jQrS0tMDV1RVr1qzBokWLZszSq5KSEuh0uhm5zA6Y2T2eAEAkEiE1NdWwdWteXh6qqqpw6NAh+Pn5mXt646JfahkTE4Nly5YBwLSGTxKJBIIgQK1Wj7sPlkwmAwDU1dUhLCzMlNMjIpqVqqurcfPmTaSkpPB5lIheCU+fPsWpU6cgFotx7NgxeHl5mXtKRDRN5mzw9G5GFcRi0YjQaTgB72c+wTuLPLFx40YEBQXNuDJQpVKJwMBAODg4mHsqo5JIJOjs7DT3NMY0f/58uLm54fz58+jo6MDu3bsNy+5eBQqFAgEBAYZ3u7+5252pwyd9XymVSjXu4MnFxQW2trYMnoiIJqGnpwdnzpzBvHnzsHr1anNPh4jopUpKSnDu3Dl4eXlh//79sLe3N/eUiGgazcngSaXWGno6jUWACDWCC17fngap1czrm9Db24vHjx9j06ZN5p7KC830Hk/AUNWTp6cnSkpKkJqaOq39kaaqt7cXVVVVw34GvrnbHWDa8Em/c+NEllSKRCL4+/ujrq7OVNMiIpqVdDodzp07B0EQsGvXLojFYnNPiYjohQRBQGZmJr788ktER0dj27ZtsLKyMve0iGiazcngqVuleWnopKcTgPaefvi4zLxUvqSkBABm7DI7YOb3eAKAvLw8lJSUQCqVor293dzTmRClUgmRSDTiZ2A6w6fJBE/A0HK7u3fvQqfT8caJiGicvvrqKzx58gRvvPHGjK12JiICAK1Wi88++wwFBQVYsWIFVq1aNeNWjxDR9JiTwZOD1BJiEcYVPokg4De/+E/4eXvC398ffn5+8Pf3h6urq9mfOJVKJYKDg2dMv6nRzPQeT0qlEpcvX8bSpUvh5uaGK1euYNWqVXBzczP31MZFoVC88GdgusKnyQZP/v7+GBwcRHNzM9f4ExGNQ0VFBe7cuYPVq1cjKCjI3NMhInqhvr4+nD59GnV1ddixYwdiY2PNPSUiMqM5GTxJrSywPsoLN0qaxuzxZCECUoNdsGXhBtTX16Oqqgq5ubkAABsbG/j5+RmCKD8/v2ndnau7uxtPnjzB1q1bp+2akyGRSKDRaKDVamfcNs+VlZU4d+4cFixYgLS0NGi1Wty5cweZmZkz/vsKAJ2dnaitrTWES6OZjvBJ3+NposGTr68vRCIRamtrGTwREb1EV1cXzp8/j9DQUKSmppp7OkREL9TS0oKTJ09iYGAAb775JubNm2fuKRGRmc3J4AkAjqcE45qyccxztIKA/Ys8sCQhHEuWLAEA9Pf3o76+HnV1daivr0dOTg6++uorAICbm9uwqihPT0+ThS3FxcUQi8WYP3++ScY3lucbT9vZ2Zl5Nn9SX1+PTz75BMHBwdi2bRtEIhEsLS2xbNky3Lx5E6tWrYKjo6O5pzkmhUIBS0vLl/4MmDp80jcUn2hlm7W1Nby9vVFXV4eEhASjzYeIaLbRarU4c+YMLC0tsWPHDrNXXBMRvUhVVRXS09Ph4OCAN954Ay4uLuaeEhHNAHM2eFoS6IqfbI/B9z5VjNjdTgQBAkTY6N6F/GtnEGi/03Bzb2Njg9DQUISGhgIYapjX1tZmCKLq6upQVFQEnU4HS0tL+Pj4DAujHB0djfILo1KpREhIyLRWWU3G88uwZkrw1NzcjI8++gje3t7Yu3fvsHAwISEBGRkZyMrKQlpamhln+XIKhQLh4eGG7/FYTBk+icViWFtbT6qXl7+/PyorK40yDyKi2erLL79EfX09jh49OqOX1xPR3CaXy3H58mUEBwdj9+7dhjegiYjmbPAEAIcTAzDfywHvZjzGVWUDBABiERAg7sSBOC+89foenD9/Hp988gk2bNiAxMTEEaGRSCSCm5sb3NzcsHDhQgCAWq1GQ0ODIYwqLi5GdnY2AMDe3n5YEOXr6zvuLej1xrPEaqZ4vuJpJujs7MSJEyfg4OCAAwcOjNhVQyKRYOnSpcjKykJqauqMCcu+qbm5GQ0NDVixYsW4H2PK8EkikUwqeJLJZMjNzUVfXx9vpoiIRlFaWors7Gxs2LABMpnM3NMhIhpBp9Ph+vXruHfvHhISErBx40ZuHENEw8zp4AkAEgJdkRDoijuZ2bh26y7+6f/5G9y6cQ1FRfkQhBXYs2cPbty4gatXr6KtrQ1paWkvfSK1srKCTCYb9gtid3f3sCV6d+7cgVqthkgkgqenpyGI8vf3h7u7+5hVUcXFxbCwsJjxy+yAmRU89fX14cMPP4RYLMbhw4dfWC2WmJiI7Oxs5OTkYM2aNdM8y/FRKBSQSCQICwub0ONMFT5NNnjy9/cHANTV1SE8PHzK8yAimk3a29vx6aefIjIyEomJieaeDhHRCIODgzh79izKy8uRlpbG5yoiGtWcD570LKCDg5UAqZUFkpKSkJubi4KCAixduhTr16+Hi4sLPv/8c3R0dGDXrl3jWt70PAcHB8yfP98QFul0OjQ3NxuCqNraWuTn5wMYuonXNy7XB1LPV94oFAqEhYVNeA7mMNkdz4xtYGAAH330EVQqFd56660xt6C2tbVFQkIC7t+/j+Tk5BlXJiwIAhQKBSIjI2FpOfH/wqYInyQSyaTCRWdnZ9jb26O2tpbBExHRczQaDdLT02Fra4utW7eyrxMRzTidnZ04deoU2tvbceDAgQm/IUpEcweDp69pNBpDrx8XFxdERUUhOzsbCQkJEIvFSEhIgLOzM9LT0/H+++/j4MGDU2o+LRaL4eXlBS8vL8THxwMYCkeePn1qCKPy8/Nx9+5dAEM36P7+/nBxccHTp09fmXcT9MGTOSueNBoNTp8+jZaWFhw9ehRubm4vfcyyZctw//595OXlISUlZRpmOX7Pnj1DW1sbNm3aNOkxjB0+SSQSDA4OTvhxIpEI/v7+qKurm/S1iYhmoytXrqCpqQlvv/32jHsDhIiovr4eH3/8MSwsLPD222/D09PT3FMiohmMwdPXtFrtsCbTycnJ+J//+R+UlJQYbshDQ0Nx7NgxnDx5Eu+++y4OHDgAHx8fo81BIpEgKCgIQUFBAIYqWzo7O1FXV2cIo5RKJQDgwoULuH///rAles7OzjPuHVELCwtYWVmZLXjS6XQ4f/48qqurcfjw4XH/ezk4OGDRokXIzs5GYmLiiF5Q5lRUVAQ7OzvDz8lkGTN8kkqlk65q8/f3x1dffQWdTsd+AEREGHqel8vl2LJli1F/zyAiMgalUolPP/0U3t7e2LdvH+zt7c09JSKa4Rg8fU2r1Q5btuTr64vAwEBkZWUhKirKEOh4eXnh+PHjOHXqFN5//33s3r3bZEuERCIRnJ2d4ezsjJiYGADAb37zG9ja2iIiIgL19fUoLy/H/fv3AQwtEdM3Ltd/zIR3SacSSkyFIAj4/PPPUVJSgr179yIwMHBCj1++fDny8/Px4MEDLF261DSTnCCdTgelUomoqCijhDTGCp+sra3R2dk5qTnIZDKo1Wo0NjbyBouI5rzm5mZcunQJsbGxiIuLM/d0iIgMBEHA3bt3cevWLcTExGDbtm2TavtARHMPnym+9s2KJ2Co6unkyZOorq4eFlo4ODjg6NGjOHfuHD7++GOkpaVNSzDR2tqKxsZG7N27F5GRkYbjfX19wxqXZ2VlGYIed3f3YbvoeXp6TntVyWT7/0zVrVu3IJfLsXXr1kk1YndxcUFMTAwyMzMRHx8/4ufDHGpqatDd3Y0FCxYYbUxjhE9TCRd9fHwgFotRW1vL4ImI5rTBwUGkp6fD2dkZmzdvnnFVzEQ0d2k0Gly6dAkPHz7EypUrsXLlSj5HEdG4MXj62mjBU2hoKDw9PZGVlTWiWsba2hp79+7F9evX8cUXX6CtrQ2vvfaaSUMdhUIBa2trhIaGDjtua2uLsLAwQ0M/QRDQ2to6bIleYWEhBEGAlZUVfH19hy3RG6vRtjGYo+IpJycHd+/exbp167B48eJJj5OSkoKioiIUFRVh0aJFxpvgJBUVFcHJycmwG5yxTDV8muyudsDQLpA+Pj6oq6ubMZVlRETTTRAEXL58GR0dHfjWt74Fa2trc0+JiAjA0Jvcn3zyCerr67Fz506jvgFKRHMDg6evjRY8iUQiLFu2DBcuXEBzczM8PDyGfV4sFmPDhg1wdXXFF198gfb2duzatctkvywqlUpERES8tN+QSCSCu7s73N3dDWHJ4OAgnj17ZgiiioqKkJWVBQBwdHQcVhXl4+Nj1J5GUql0WiueHj58iCtXrmDZsmVYvnz5lMby9PREREQEMjIyEBsba9YeRFqtFiUlJYiLizPJO0xTCZ+mEjwBQ32eHj16NOnHExG96h48eICHDx9ix44dI37fICIyl+bmZpw6dQqDg4M4cuQIZDKZuadERK8gBk9fGy14AoAFCxbg5s2byMrKwrZt20Z97JIlS+Ds7IwzZ87gD3/4Aw4cOGD0KqKmpiY0Nzdj7dq1k3q8tbU1AgICEBAQYDjW1dVlCKLq6+tx69YtaDQaiEQieHl5DQuj3NzcJh12SCQS9PX1TeqxE1VeXo4LFy5g0aJFWL9+vVHGTE1Nxbvvvjus0bw5VFZWor+/36TvMk02fNLvajfZBuEymQw5OTno6elhg0oimnMaGhrw+eefIz4+HrGxseaeDhERgKHfPdPT0+Hk5IQ333wTzs7O5p4SEb2iGDx97UXBk4WFBRITE3Hz5k2sWbPmhYFSWFgY3nrrLcOOdwcPHoSXl5fR5qdUKiGRSBASEmK0MR0dHREVFYWoqCgAQ42rm5qaDGHUkydPkJeXB2CoaknfsFwfSNna2o7rOhKJBG1tbUab94vU1NTg9OnTCAsLw+uvv260qiA/Pz8EBwcjIyNjWKP56aZQKODh4WHy7WonEz7pm9gPDg5OqqG9fulgXV3dpPpxERG9qlQqFdLT0+Hh4YG0tDRzT4eICACQm5uLL774AiEhIdi9ezckEom5p0RErzAGT197UfAEAPHx8bhz5w5ycnKwbt26F47h7e1t2PHuvffew549e0b0Y5oMQRCgUCgQGRlp0p0jxGIxvL294e3tjYSEBABDvxA/37g8NzcXd+7cAQC4uroOq4ry8vIa9Xs4HT2eGhsbcerUKfj5+WHXrl1GXxKXkpKCDz74ABUVFYZeWtNJrVajtLQUKSkp0xJ8TTR80v8yolKpJhU8OTk5wcHBAbW1tQyeiGjOEAQBFy9eRG9vLw4dOsTdoYjI7HQ6Ha5du4acnBwsXboUGzZsMGurCSKaHfgbztfGCp6kUini4+ORl5eH1NTUMRN/R0dHvPXWWzhz5gxOnjyJTZs2GUKcyWpoaEBbWxs2btw4pXEmQyqVIiQkxFBpJQgC2tvbhy3RUygU0Ol0sLCwMDQu14dRTk5OJu/x1N7ejhMnTsDZ2Rn79+83an8qvcDAQPj7+yMjI8MswVNZWRnUajViYmKm7ZoTCZ/0/yemEjDKZDLU1dVN+vFERK+anJwclJSUYO/evXB1dTX3dIhojhsYGMDZs2dRUVGBTZs2YcmSJeaeEhHNEgyevqbVascMLBITE5GTk4P8/HwsW7ZszLGsra2xf/9+XL16FZcvX0ZbWxvWr18/6UoVpVIJGxsbBAUFTerxxiQSieDq6gpXV1dDHwqNRoOGhgZDGFVaWop79+4BAOzs7GBnZ4f+/n5UVVXBz8/PqKW6PT09OHHiBKytrXHo0KFJVduMh0gkQkpKCj7++GNUV1cP65U1HRQKBfz8/Kb9xmS84ZMxgid/f3/cvHlzzBCYiGi2qKurw/Xr15GUlITIyEhzT4eI5riOjg6cOnUKnZ2dOHjwoFFWbRAR6TF4+trLbnadnJwQExODe/fuYenSpS+9MRaLxdi4cSNcXV1x9epVtLe3Y+fOnROuxhEEAUqlEpGRkTP2ZtzS0hL+/v6GPj3AUCCkX6JXVlYGQRDw4YcfQiQSwcPDw1AR5e/vD3d390mV8KpUKnz00UcYHBzEsWPHTN6UOjw8HJ6ensjIyJjW4EmlUqGiomLMZZ6mNJ7wyVgVT/oQ08/Pb9LjEBHNdH19fUhPT4evr6/ZntuJiPTq6urw8ccfw8rKCm+//TZ31iQio2Pw9LXxVFkkJyfj4cOHUCqV4951JjExEc7Ozjh79qxhx7uJBCRPnz5FR0fHtC6xMgZ7e3tEREQgIiICMpkMp06dwptvvon29nbDEr2CggIIggBra2vD8jx9IPWy75FGo8HHH3+Mjo4OHD16FC4uLib/mvRVT+fOncOzZ8/g4+Nj8msCQElJCbRarVl31HtZ+KSvNJtK8OTt7Q0LCwvU1dUxeCKiWUsQBJw/fx5qtRq7d++esW8qEdHcoFAo8Omnn8LX1xf79u2DnZ2duadERLMQg6evjSd48vLyQkhICLKysrBgwYJxL52LiIgYsePdeHcmUygUsLOzm/alXcakr4ZxcHBAUFAQ4uLiAAztgPb06VPDEr2CggJkZGQAGKowe75xuY+Pj6Hpqk6nw5kzZ1BfX4833njDqLsHvkx0dDRu3bqFu3fvYu/evdNyzaKiIgQGBr5wR8XpMlb4ZGVlBZFINKVeXpaWlvD19UVtbS0SExOnPF8iopkoIyMDFRUVOHToEJycnMw9HSKaowRBwJ07d3D79m3Exsbi9ddf5wYHRGQyfHb52nj7yiQnJ+PDDz9EVVWVoeH2ePj4+OD48eM4efIk3nvvPezduxfBwcFjPkYQBBQXFyMqKuqV3k1CXw3zzVDC2toagYGBCAwMBDD09XZ1daGurs4QRpWVlUGj0Rh23PP19UVzczNqamqwb98+zJs3b1q/FrFYjJSUFFy6dAnNzc0mL0Xu6enBkydPsHnzZpNeZ7xeFD6JRCJIJJIp717o7++P4uLiqU6TiGhGevLkCW7duoXU1FT2TyEis9FoNLh48SKKioqwevVqpKamTsuuyUQ0dzF4+tp4g6egoCB4e3sjKytrQsETMFTFc+zYMZw5cwYfffQRNm/ebKj+GU1tbS26urrMusTKGMbb/0ckEsHJyQlOTk6Gr1mr1aKxsdEQRCkUCkOAdeHChWFVUX5+fiZrLv682NhY3L59G5mZmYYQxlSUSiVEIhGioqJMep2JeFH4ZKzgKTs7G11dXXB0dJzqVImIZoyenh6cPXsWAQEBWLVqlbmnQ0RzgEqtRbdKAwepJaRWQ/c5vb29+Pjjj9HQ0IDdu3e/8vcZRPRqYPD0tfEGTyKRCMnJyTh37hwaGhrg7e09oetIJBIcOHAAn3/+OS5duoS2tjasXbt21HcZlEolHBwcpr2qx9heVPE0HhYWFvD19YWvry8yMzPx8OFDrFmzBj4+PoYw6t69e4ax3d3dh/WK8vLyMnq1mKWlJZKTk3Ht2jWsWrUKzs7ORh3/eQqFAqGhobCxsTHZNSZjtPDJGMGTTCYDMNTkciaFbUREU6HT6QzPlbt27Xqlq5iJaObLfdKGdzOqcL24EToBEIuA9VFe2B3tguI7n0GtVuPo0aPsqUlE04bB09cmsoV7dHQ0vvzyS2RlZWHnzp0TvpZYLMbmzZvh5uaGa9euob29Hdu3bx+2451Op0NxcbFhGdOrTF/xNJX+Pw8ePMCNGzeQmpqK1NRUADAsUxAEAW1tbcOW6BUVFUGn0xn6Bj2/i54xKmni4uJw584dZGVlYdOmTVMebzTt7e2oq6ub1M/YdPhm+OTq6jrl4MnBwQFOTk6ora1l8EREs8bt27dRXV2NN9980+Q7sBLR3PbhvWp8/4ICYrEIOmHomE4AbhQ34qqyARtcXfGzb29ljzkimlYMnr42keBJLBYjKSkJ165dw9q1ayf1xC0SibBs2TI4Ozvj3Llz+OCDD7B//37DThLV1dXo6el55XazG81U+/+Ulpbi0qVLiI+Px+rVq0cd383NDW5ubli4cCEAQK1W49mzZ4Ygqri4GNnZ2QCGwo1vNi63trae0Jysra2RlJSEO3fuYMWKFSa5kVAoFLCyskJERITRxzaW58OnoqIiQ8g4FTKZDHV1dVMeh4hoJigvL8fdu3exZs0aQ09DIiJTyH3Shu9fUEAAoNWnTl/TCgAgwrU2V3yrXYsE5k5ENI0YPH1No9FMaEvjuLg4fPXVV7h37x42bNgw6etGRkbi6NGjOHXqlGHHOw8PDyiVSjg5Oc2aEliJRDKpiqcnT57gzJkziIyMxKZNm8Zd/WVlZYV58+YNW6bY3d2N+vp6Qxj11VdfQa1WQyQSwcvLa9gSPXd395dea8mSJcjMzMS9e/ewbt26CX9tL6NQKBARETHhUGy66cOnmpoaPH36FEqlckr9Avz9/VFSUgKNRsPdVYjoldbZ2Ynz588jLCwMKSkp5p4OEc1y72ZUQSwWjQidnicWi/BuxmMkBLpO48yIaK7jXd3XJlLxBAxVvCQkJOD+/ftYuXLllJpa+/n5Ddvxbvfu3SgpKcGiRYte+WV2elKpdMLB07Nnz3Dq1CkEBARgx44dU+6J4eDggPnz52P+/PkAhpYzNjc3G5bo1dTUQC6XAxgKyp4Povz9/WFraztsPBsbGyxZsgS5ublYvny5UfswNTU1oampCWvWrDHamKYkFosRHByMkpKSYQ3HJ0Mmk0Gr1eLZs2eGnk9ERK8arVaLM2fOwNraGtu3b581r+dENDOp1FpDT6exaHUCrhU3QKXWGhqOExGZGoMnDPUImmjwBABLly5FdnY28vLypvxOprOzM44dO4b09HR89NFHEARhViyz05NKpRNaatfa2oqPPvoI7u7u2Lt3r0kqX8RiMby8vODl5YX4+HgAQzvvPV8VlZ+fj7t37wIAXFxchi3R8/LyQlJSEnJycgwBpLEUFRVBKpW+Uttt29jYwMbGBmFhYVMKn7y8vGBpaYm6ujoGT0T0yrpx4waePn2Kt956a8QbF0RExtat0rw0dNLTCUPnM3giounC4AlDwROACYcbDg4OiI2NRU5ODpKSkqYcjkilUhw8eBC/+tWv0NbWhuLiYnh7e8+Kd0kn0uOpu7sbJ06cgFQqxaFDh4zSN2i8JBIJgoODERwcDGDoZ6Ojo2NYGFVcXGwIKn18fODm5obMzExERkbCw8Njyv9egiBAoVAgMjJywmGoOUkkEgwODo7Y7W6i4ZN+J0P2eSKiV1VJSQnu3buHtLQ0+Pv7m3s6RDQHOEgtIRZhXOGTWDR0PhHRdOEzDobK4QFM6iZ/2bJlePDgAYqKirB48WKjzKevrw+BgYHIyMhAR0cHtm3b9sr3upFKpejq6nrpef39/Thx4gR0Oh2OHj1q9neJRSIRXFxc4OLiYqhA02g0aGxsNARRNTU1UKvV+PWvfw1bW9thVVF+fn4TDs7q6+vR0dGBBQsWmOJLMhl9uPjN3e6AiYdPMpkMDx8+hCAIsyJ4JaK5o62tDRcuXEBkZCSWLl1q7ukQ0RwhtbLA+igv3ChpGrPHk4VYhPWRXqx2IqJp9WqnGUYyleDJw8MD4eHhyMrKMkpPpsrKSqhUKqSlpaG1tRXnz59HZ2cn9u/fb/YQZirG01xcrVbj1KlT6O7uxltvvTVjt3m1tLQ09H/SO3v2LCorK7F48WI8e/YMWVlZhgovDw+PYb2iPDw8xuxXVVRUBHt7ewQEBJj8azEmiUQCjUZjqAabSvjk7++PzMxMdHV1zdifAyKib9JoNEhPT4ednR22bt3K4JyIptXxlGBcUzaOeY5OJ+B4StA0zYiIaAiDJ0wteAKA5ORk/OEPf0B5eTnCw8OnNBelUgl3d3d4enrCy8sLjo6Ohh3vDh06BDc3tymNby4v6/Gk1Wpx+vRpNDQ04MiRI/Dw8JjG2U3dypUroVAo4OLignXr1kEQBLS0tAxboldYWAhBEGBlZTWscbmfnx8cHBwADDU8Ly4uRnR09JSbqU83fYP9gYEB/P/Z+++oKPN87/t9VxVQRc5RQBREQERAUUAw55za1Ha32vbM3rPv+96zZ84666x1nr3P8zyznnX/ca+ZHeeenh7tpG2DObY5I6ggoBQoBhQMoCI5Q9V1/mCokTYRqgjyfa211+6Bq67rR7Co+lzf7/dnZ2fXq8qnjtlOjx49kuBJCDFoHDt2jBcvXrBly5ZebToihBA9ERfkxu+WRfLPB/Sv7W6nUaswGhV+tyxSdrQTQvQ5CZ5ov0MJPQ+eAgMDGTZsGOnp6b0Kntra2rh9+zYJCQmmu6T+/v6mHe+2bt3K2rVrB10lDLy74klRFA4ePEhRURHr16/vVEk0WHh4eBAREcHly5eJiYlBrVbj6emJp6cn0dHRALS0tFBaWmoKom7evMnly5cBcHJywt/fH1tbW+rq6ggPD+/Hr6ZnOloKm5qaTNV5PQ2f7O3tcXV15fHjxx/UkH0hxIfr5s2bZGdns3jxYnx8fPp7OUKIIWrDpOGEeTuyNe0BJ/JLUVChVsHscG+2JI2Q0EkI0S8keKL3FU8qlYrExER2797NkydPehyc3L17l5aWltfeaLu6upp2vPv+++9ZunQpUVFRPbpGf+moePr5zB5FUThx4gR5eXmsWrWK4ODgflxl7yQlJfHVV1+Rn5//xvlMNjY2DB8+vFNwWFNTw+PHj01h1K1btwD4/vvv8fb27tSi5+bmNqDbNjqCp59XtvU0fAoICODRo0fmXaQQQljAixcvOHLkCOPGjTPbvEchhOipCUFuTAhy45//z/+bqbPmkjRpgsx0EkL0Kwme6H3wBBAWFoabmxvp6el89NFHPTpHfn4+3t7eeHh4vPY5W1tbPv74Y44cOcL+/fupqKhg6tSpAzqIeJVOp0NRFFpaWjoN27506RJXr15lwYIF3R5APdD4+voSEhJCWloakZGRXfrZODk5ERERQUREBG1tbfyv//W/GDNmjGlXt4cPH5KVlQW0fw9/Prjc1tbW0l9Wl70teIKehU/+/v7o9XpaW1uxtrY272KFEMJMWlpa2LVrFy4uLixYsGDQ/F0WQnzYjEYjVioFd3sbCZ2EEP1OgifMEzyp1Wri4+M5duwYlZWVuLq6duvxLS0t3Llzh+Tk5Lceo9FoWLJkCW5ubpw9e5bKykoWL148KHa8ezWU6PjvrKwszp07x7Rp04iLi+vP5ZlNUlIS3377LXfu3GH06NHdeuy9e/doaWkhPj4eLy8vJkyYALTv9Pf06VNTVdS1a9e4cOECAO7u7p2CKG9v7179HvfGqzOe3qS74ZO/vz9Go5HS0lICAwPNu1ghhDADRVE4cuQI1dXVfPHFF9jY2PT3koQQAmgPnoBBNzNUCPFhGviJRR8wR/AEEB0dzfnz58nIyGDBggXdeuzdu3dpbW197zwblUpFcnIyrq6uHDhwgOrqatasWTOgKl/epCOUaGpqwsnJifz8fI4ePcrEiROZMmVKP6/OfIYPH05gYCCXLl0iNDS0W3e+9Xo9Xl5eeHl5dfq4ra0twcHBpjZERVGorKzs1KKn1+vb72xZWeHr69upRc/JyalP7sC/OuPpbboTPnl7e2Ntbc2jR48keBJCDEjZ2dnk5eWxYsWKQbcphhDiw2au9zdCCGEOEjxhvidma2tr4uLiuHz5MtOmTTMNWO6K/Px8/Pz8ulwpFRkZiZOTEykpKWzbto3169fj5jZwhwW+WvFUVFTEvn37GDt2LPPmzfvg2hKSk5P54YcfePjwISNGdG272paWFgoLC5k6dep7j1WpVLi5ueHm5maa9dXW1kZpaalpF73bt29z5coVABwcHDq16Pn5+VnkrrxGo0GtVr9z90LoevikVqsZNmwYjx8/NvtahRCiJ5paDdQ2teGos6Ky/DnHjh1jwoQJb5zrJ4QQ/amj4kmCJyHEQCDBE+a9I9ARPGVmZnYpRID2MObu3btMnz69W9cKDAx8bce7gVoZ0lHx9OTJE86ePcvIkSNZunTpBxc6AQQHB+Pj48OlS5e6HDwVFhbS1tbW4x3crKysCAgIICAgwPSxuro6UxD15MkTLl26REtLCyqVCi8vr04tep6enr3+WahUKtMQ+ffpavjk7+9PTk7Oa0PphRCiL2U+rGBrWhGnCp5hVECtgpE2dSS4+TN37tz+Xp4QQrym4/2NtNoJIQYCCZ4wb/Bkb29PdHQ0165dIzExsUtDkTtCh54M13Zzc+Pzzz8nNTXVtOPdQLzz2hE8nTt3Dm9vbz766KMP9g5MRzvk7t27efz4Mf7+/u99TF5eHv7+/ri4uJhtHQ4ODowePdo0a8poNFJeXm5q0Xv8+DHZ2dlA+457w4YN69SiZ29v3+1rarXaLgVP0LXwKSAggLS0NKqqqro9N00IIcxh+5Vi/uWgHrVahVFp/5hRgfvN9twvdWD09SdsmDT83ScRQog+JhVPQoiBRIInzN8DnZCQQFZWFjdu3DANiH6X/Px8/P39cXZ27tH1bG1t2bBhA4cPH2bfvn1UVlaSnJw8oCpEGhoagPaAY/369R/8ANawsDDc3d1JS0tj7dq17zy2oaGB+/fvM2fOHIuuSa1Wm2ZIxcbGAu3Vdk+fPjVVRuXk5JCWlgaAi4tLpxY9Hx+f9w6y707w1LGmd4VPHaHdo0ePJHgSQvS5zIcV/MtBPQpg6Eid/kqh/W/sPx/QE+btyISggdvuLoQYeqTiSQgxkEjwxN+emM21O5ybmxvh4eFkZGQQGxv7zif8xsZG7t27x+zZs3t1TSsrK5YtW4arqyvnzp2jsrKSRYsWDYi7HA0NDfzwww8AjBs3bsAPQjcHtVpNUlISBw8e5Pnz568NDH/VrVu3UBSlRxVvvaXVahkxYoSpJVBRFKqrqzu16N26dQuDwYBare40uHzYsGG4urp2Cji7GzzBu8MnOzs73N3defz4sWmelRBC9JWtaUWo1arXQqdXqdUqtqY9kOBJCDGgyHBxIcRAIsETlnliTkxMZNu2bRQWFhIeHv7W427fvo3RaDRL6KBSqZg2bRpubm4cPHiQqqoqVq9e3a9BT0tLCzt37qShoQFHR8d+W0d/GDt2LOfPnyctLY0VK1a89Ti9Xs+IESNwcHDow9W9mUqlwsXFBRcXF9PvpMFg4NmzZ6Yg6t69e1y7dg1oD4ZebdGztrbudvAE7w6f/P39ZcC4EKLPNbUaTDOd3sVgVDhZUEZTqwGdtbzBE0IMDB2tdlLxJIQYCCR4wjLBk7+/P4GBgaSnp78zeMrPz2f48OFmDWWioqJwdnYmNTWVr7/+mvXr1/dLm1JbWxupqam8ePGCjRs3cujQoR6FEoOVRqMhMTGR48ePmwLBn6upqeHhw4csWbKkH1bYNRqNBj8/P/z8/Ewfa2ho4MmTJ6bKqCtXrtDU1AS0V98dPHjQFEZ5eXl16UXP28KngIAAsm/k8bSiFjdHO3ljJ4ToE7VNbe8NnToYlfbj5flJCDFQSMWTEGIgkeCJvz0xm3smUmJiIikpKZSUlLxxt7mGhgaKioqYP3++Wa8LMHz4cD7//HPTjnfr1q3r0pBrczEajezfv5/i4mI2bNiAr69vj9qwBruYmBguXrzI5cuXWbx48Wufz8/PR6PRvDOcHIjs7OwYNWoUo0aNAtpb9F6+fMlPP/1EWVkZz54948aNGyiKgrW1NX5+fp1a9JycnN543p+HT/nPm/jpfhMXmmL4/n9dRK2C2RHefJE0UtpahBAW5aizQq2iS+GTWtV+vBBCDBRS8SSEGEjkVRLtlTkajcbswVNoaCgeHh6kp6e/MXi6desWABEREWa9bgd3d3c+//xzUlJS+O6771i2bFmfzBFSFIWffvqJW7dusXr1aoKCgoD2ne06qmKGCmtra+Lj4zl//jxTp059LXDR6/WMGjXKtOvfYKVSqfDw8GDYsGFUVlbyi1/8gtbWVkpLS00tenq9nvT0dACcnJw6BVF+fn6mHSA7wqfLz9X8v0+WolGpTEN8jQqcvvWck/nP+N2ySNlJSghhMTprDbMjvDl96/k7Zzxp1Cpmh3tLtZMQYkCRiichxEAiwRPtT8yWeFJWqVQkJCRw+PBhysvL8fDw6PT5/Px8RowY0aNt67vKzs6OTz/9lIMHD7Jnzx4qKyuZPHmyRXe8O3/+PNevX2fx4sWEhYWZPq7T6aioqLDYdQequLg40tLSyMjIYO7cuaaPv3z5kqdPn5KYmNiPqzOvV6varK2tCQwM7BS61tbWmoKox48fc/78eVpbW1GpVHh7e5vCqHKc2VfcHkQZfvZ+r+MNoOwkJYSwtC1JIzmR/+ydxxiNCluSRvTRioQQomuk4kkIMZBI8ER78GSuHe1+LioqinPnzpGRkdGp1aquro6HDx+yaNEii1z3VVZWVqxYsQI3NzfOnDlDRUUFCxcutEjYdvXqVS5evMjMmTOJjY3t9Lmh2GoH7V/3xIkTuXLlCsnJydjZ2QHt1U42NjaEhob28wrNR6vV0tTUhKIobww3HR0dCQ8PN7UWGo1Gnj9/bgqiSkpKuH79OmdbggEX4O0BqewkJYSwtGE2TSRaF5PeOhzNz3a306hVGI0Kv1sWKc9DQogBRyqehBADiUTgWK7iCdpDn4kTJ3Ljxg3q6upMHy8oKEClUvXZbB+VSsX06dNZunQpN27cYOfOnWZve7t58ybHjx8nISGByZMnv/b5jlBiKIqPjwfagzlob0fU6/WEhYWZWsw+BFqtFkVRaGtr69LxarUaHx8fxo8fz9KlS/nVr37FP/7m/8UjxdXUXvc2r+4kJYQQ5mYwGDh06BBTh2lI/WISs8O9Uf/1aUmtgtnh3uz+ZYK0/AohBiSpeBJCDCRS8YRlgyeACRMmcOnSJa5du8aMGTOA9ja7kSNHYmtra7Hrvkl0dDTOzs7s2rXLtOOdi4tLr8979+5dDh48SHR0NLNnz35jtctQnPHUwc7OjtjYWK5du0ZiYiKVlZWUl5czZ86c/l6aWXXMqmpubu5xoNaKlewkJYTod5cvX+b58+d88cUX+Pp6MGmkB02tBmqb2nDUWcnzjhBiQJOKJyHEQCIROJYPnmxtbYmNjSUzM5OWlhZqamooKSnpk0HfbzJixAg2b95Ma2srW7du5cmTJ70636NHj9i1axejRo1i8eLFb50fpdPpaGlpMd2BGWoSExNpaWkhKyuLvLw8bG1tGTlyZH8vy6y0Wi1AjwLG5uZmrl+/zu6d36Oia8mT7CQlhLCEFy9ecPHiRRITE/H19TV9XGetwdNRK6GTEGLAk4onIcRAIs9EWD54gvZWq+bmZnJycigoKECj0XQavN3XPD092bJlC66urnz77bemHfa66/nz5+zcuZNhw4axcuXKd/5x6wglWlpaenStwc7JyYlx48aRnp6OXq8nIiLig7sL1fEz7uosL0VRePToEQcPHuT3v/89R48excXRnoRABzTqd7faadQq5kT4yBtAIYRZKYrC4cOHcXZ2ZurUqf29HCGE6BGpeBJCDCRSKkDfBE8uLi6MGTOGK1euYG9vT0hIiKktqb/Y29vz6aefcuDAAXbt2sXs2bNJSEjo8o53lZWVbN++HWdnZ9auXfve1qqOr7epqanfv/b+kpSURE5ODgCRkZH9vBrz62rwVF9fz82bN8nOzqa8vBwXFxeSkpKIjo7GycmJUQ8r+OjPGe88h+wkJYSwhMzMTB49esTGjRs/qBl8QoihRSqehBADiQRP9E3wBO2tVl999RVVVVWsWLHC4tfrCmtra1atWsXZs2c5deoUFRUVLFiw4L1/pOrq6tixYwfW1tZs2LChS0HSq8HTUOXm5oabmxuVlZX4+/v393LM7tUZTz+nKApFRUVkZ2dz+/ZtVCoVYWFhzJ8/nxEjRnQKPHW1T0iwKiajTXaSEkL0naqqKk6fPs348eMZPlyGhgshBi+peBJCDCQSPNF3wZOvry+urq5UVlYyatQoi1+vq1QqFTNnzsTV1ZWjR49SXV3NqlWrTNUrP9fU1MQPP/xAS0sLmzdvxsHBoUvX6W4b1ofIaDTS0NCAoijk5+czbty4/l6SWdnY2ACdw8Xq6mpyc3PJycmhuroaT09PZs+eTVRUFHZ2dq+do7S0lEOHDrE6NoLfxMSzLe0hJ/JLUVCZdpLakjRCQichhFkpisLRo0extbVl9uzZ/b0cIYToFaPRiEql6nIngxBCWJIET/Rd8ASYnvxLS0sZMWJgtQnFxsbi4uLSacc7Z2fnTse0tbWRkpJCZWUlmzZtwtXVtcvnl4onKCoqoqmpicDAQNLS0oiKivqgXhBoNBqsra1pbGzk1q1bZGdnc+/ePaytrYmMjCQ2NpZhw4a99Wuur68nNTUVT09PFi1ahLW1NROGu/F//z//k4mTpzI9KV5mOgkhLOLmzZvcu3ePdevWvfXGixBCDBYGg0Ha7IQQA4Y8G9F3wVNFRQUVFRU4OzuTnp5u8ev1xMiRI9m8eTPNzc1s3bqV0tJS0+eMRiN79+7lyZMnrF+/Hm9v726dWyqeQK/X4+bmxqxZsygvL+f27dv9vSSzKi8vB+D8+fPs2rWLpqYmFi9ezG9/+1uWLFmCv7//W0Mng8HAnj17aG1tZc2aNabZKk1NTWBoJdDLRUInIYRF1NfXc+LECSIjIwkNDe3v5QghRK8ZjUZpsxNCDBhS8UT7G14rK8t/K/R6PdbW1iQnJ3PkyBGeP3+Ol5eXxa/bXV5eXmzZsoUff/yRb775hpUrVxIaGsrhw4cpLCxk7dq1BAYGdvu8VlZWaDSaIVvx1NbWxu3bt5k0aRIBAQEEBQVx6dIlwsLCBnXVU2trKwUFBWRnZ1NSUoJKpcLHx4dly5Z16/f75MmTlJSU8Omnn3aqtKutrQXA0dHR7GsXQgiAY8eOATBv3rx+XokQQphHX3Z0CCHE+0jFE333xJyfn8/o0aNNO3cN1KonAAcHBzZu3EhwcDApKSls376d3Nxcli1b1uO7wSqVCq1WO2SDp7t379Lc3MzYsWMBSE5OprS0lKKion5eWc+UlpZy9OhRfv/733PgwAGsrKxYuXIlPj4++Pj4dCt0ys3N5dq1a8ybN++1gb41NTUAODk5mXX9QggBUFhYSH5+PvPmzcPe3r6/lyOEEGZhNBql1U4IMWBIxRN9Ezy9ePGC58+fM336dDQaDZMmTeLMmTPMmDFjwL6htra2ZvXq1Xz33Xc8ePCAgIAAIiMje3VOnU43ZFvt9Ho9Pj4+eHh4ADBixAiGDRvGpUuXCA4O7ufVdU1TUxN5eXlkZ2dTVlaGo6MjEydOJCYmxjTvKzs7m5aWli6f88mTJxw5coSYmBgmTJjw2uel4kkIYSlNTU0cPXqUUaNGmW4KCCHEh0AqnoQQA4kET/TNE3N+fj5arZaQkBAAxo8fz8WLF7l69eqA3j3nxo0bFBcXExwcTFFRESkpKaxatcq0e1l3DdWKp+bmZgoLC5k+fbrpYyqViqSkJFJTUykpKelR+2JfUBSF4uJicnJyKCgowGAwMHr0aKZPn05ISMhrd9O6Ey7W1dWRmpqKr68vCxYseGPLYW1tLXZ2dvLiSQhhdqdOnaK5uZmFCxcO6pZnIYT4Oal4EkIMJBI8YfngSVEU9Ho9YWFhpllSWq2W8ePHc/36daZMmTIgd9C5ffs2hw4dIjY2lkWLFnH//n12797NN998w7p163pUqTVUK55u376NwWB4rWJs9OjReHp6kpaWxvr16/tpdW9WV1dHbm4uOTk5VFRU4ObmxtSpU4mOjsbBweGtj9NqtaYqpXcxGAzs3r0bRVFYvXr1W+es1dTUDNiqQCHE4PXw4UOys7NZsGDBazu4CiHEYCcVT0KIgURicCz/xPzs2TNevnzJmDFjOn180qRJtLa2cv36dYtdu6cePnzInj17CAsLM90JDgkJYfPmzTQ0NLB161bKysq6fV6dTjckK570ej2BgYGvvbnpqHq6e/duj76f5mY0Grlz5w6pqan867/+KxcuXMDf35/PPvuM//bf/htJSUnvDJ2gPXjqSrh4/PhxHj9+zOrVq9/ZRldbWyttdkIIs2ptbeXw4cMEBga+scVXCCEGO6l4EkIMJPJshOWDp/z8fHQ6HSNHjuz0cScnJ8aOHcuVK1cwGAwWu353lZaWkpKSQmBgICtWrOj0R8vb25stW7bg4ODAN998w927d7t17q6GEh+S+vp67t+//9b5WJGRkbi4uJCWltbHK/ubyspKzp49y7/927/x448/UllZydy5c/nNb37D8uXLCQoK6nIbSld+xtevXycrK4uFCxcSEBDwzmMleBJCmNv58+eprq5m8eLF0mInhPggScWTEGIgkVY72re5t9QTs6Io5OfnEx4e/sZrJCYmcuPGDfR6PePGjbPIGrqjoqKCH374AXd3d9asWfPG9idHR0c2btzIvn37+PHHH5k/fz5xcXFdOv9QnPFUUFAAQERExBs/r1armTx5MkePHmX69Om4u7v3ybra2tq4ffs2OTk5FBUVodVqiYyMJDY2Fl9f3x6/GXtf8PTo0SN++uknxo8fT2xs7HvPV1NT0+OdFIUQ4ueePn1KRkYG06dPN232IIQQHxqpeBJCDCQSPGHZOwKlpaVUVlayaNGiN37ey8uLkJAQ0tPTiYqK6tc7r7W1tWzfvh2dTsf69evfOXfKxsaG1atXc/LkSX766ScqKiqYPXv2e//ADcVWO71eT3Bw8Du36Y6OjubChQukpaWxdOlSi67n+fPnZGdnc/PmTRobGwkMDGTp0qVERET0eGj8qzqCJ0VRXvt9rq2tZdeuXQwbNoz58+e/91wGg4H6+nqZ8SSEMAuDwcChQ4fw9vYmMTGxv5cjhBAWYzQapeJJCDFgSPCEZYMnvV6PnZ0dQUFBbz0mMTGR77//nvv375t2vetrjY2N7NixA6PRyMaNG98ZknRQq9XMmzcPNzc3jh8/TmVlJStWrHhneDHUhotXV1dTUlLCsmXL3nmclZUVCQkJnDlzhmnTppl90G1LSwt6vZ6cnBweP36MnZ0dMTExxMTEmP2Ov06nM13z1fCyra2N1NRUVCoVq1ev7tK/ubq6OgBptRNCmEV6ejrPnz/niy++kDdkQogPmsFgkIonIcSAIcET7U/Mb9tRqzcURaGgoICIiIh3PvEHBQXh6+tLenp6vwRPra2t/Pjjj9TW1rJp06Zuhx4TJ07ExcWFPXv28O2337Ju3bq3BgVarZbW1tYh03eu1+uxsrIiLCzsvcdOmDCBtLQ00tPTu1QN9D6KovDkyROys7PJz8+npaWFkJAQVq9eTWhoqMW+/x1hU1NTk+m/FUXh6NGjlJWVsWnTpvcOKO9QU1MDIBVPQoheKy8v58KFCyQmJuLr69vfyxFCCIuSiichxEAiwROWq3h6/Pgx1dXVr+1m93MqlYrExET27t1LaWlpn74g7tjSvqysjE8//RRPT88enSc0NJTNmzezc+dOtm7dyvr16/H29n7tuI5qmObmZuzs7Hq19sFAr9cTGhr6zrbFDjY2NkyaNIm0tDSmTJnSpaqzN2loaODmzZvk5OTw/PlznJ2dSUxMJDo6uk+2DO/4Wl+tbMvKyiI3N5elS5cybNiwLp+rtrYWkIonIUTvKIrCoUOHcHZ2ZurUqf29HCGEsDipeBJCDCRD/tlIURSL3RHIz8/HwcGBwMDA9x4bERGBi4sL6enpZl/H23S8EL9//z5r1qzB39+/V+fz8fFhy5Yt2NnZ8fXXX3Pv3r3XjukInobCnKfy8nLKysreupvdm0ycOBG1Ws2VK1e6dS1FUSgqKmLv3r384Q9/4NSpU3h4eLBhwwb+x//4H0ydOrVPQid4PXgqLi7m+PHjTJw4kejo6G6dq6amBo1Gg62trbmXKYQYQjIzM3n06BGLFy/G2tq6v5cjhBAWJxVPQoiBZMhXPBmNRgCzPzEbjUby8/Pf22bXQa1WEx8fz4kTJ5g5cyYuLi5mXc/PKYrCiRMnuHnzJitXriQ4ONgs53VycmLjxo3s3buXnTt3snDhQsaPH2/6/JuqYT5UeXl5aLVaRo0a1eXH2NraMmHCBDIzM5k8ebIpqHubmpoacnNzycnJoaqqCg8PD2bOnElUVFSPK6Z669WfcXV1Nbt37yYwMJA5c+Z0+1y1tbU4OTnJdudCiB6rrq7mzJkzjB8//p3zFoUQ4kNiMBjMsmmMEEKYw5APntra2gDzB08lJSXU1dV1q9olJiaG8+fPc+XKFebNm2fW9fzcpUuXuHr1KgsWLOjWGrtCq9Wydu1ajh8/zpEjR6ioqGDWrFmoVKohU/GkKAp6vZ6wsLBuzw+Lj4/n6tWrZGZmkpyc/NrnDQYDd+/eJScnh7t372JlZcWYMWOIjY3F39+/30Oajp9xQ0MDqampWFlZsWrVqh79G6utrZU2OyFEjymKwpEjR9BqtcyaNau/lyOEEH1mqMxTFUIMDkM+eDIYDID5g6f8/HycnJy61b5mY2NDXFwcV65cYerUqRZrL8rKyuLcuXNMmzaNuLg4i1xDrVYzf/583NzcOHHiBJWVlSxfvnzIVDyVlpZSUVHRoyHhjo6OxMTEcOXKFeLj401tIS9fviQnJ4cbN25QV1eHn58fCxcuJDIyskszpPpKx921zMxMXrx4webNm3tcfdVR8SSEED2Rl5fHvXv3WLt27XsrSIUQ4kNiNBplxpMQYsCQ4MkCwZPRaKSgoIBx48Z1u/pk4sSJpKenk5WV9cZql94qKCjg6NGjxMXFMWXKFLOf/1UqlYr4+HhcXFzYt28f3333HR999BHw4Vc86fV67OzsGDlyZI8en5iYyPXr18nMzMTBwYGcnBwePnyITqcjKiqKmJgYfHx8zLxq81CpVGg0Gh4/fsyKFSt6NSy/pqZGdp8SQvRIfX09x48fJzIyktGjR/f3coQQok81tRqoa1PT1GpAZy2VT0KI/iXBkwWCp4cPH9LQ0PDe3ezexMHBgXHjxnH16lUSEhK63ab1LkVFRezbt4/IyEjmz5/fZy1ZYWFhbNy4kR9//JFvvvkGKyurDzp4UhSF/Px8xowZ0+M7Tc3Nzbi5uXHq1CkAgoKCWLFiBWFhYQN+MO6DBw8wGAz4+/szduzYHp9HURRptRNC9Njx48cBLN66LoQQA0nmwwq2phVx8oEPygMV/7+c48yO8OaLpJFMCHLr7+UJIYYoCZ4sEDzp9XpcXV3x8/Pr0eMTEhLIzs7m5s2bxMbGmmVNT548ITU1laCgIJYtW9bnc4D8/PzYsmULO3fupLq6mrKysj69fl8qKSmhpqam27Ozmpqa0Ov15OTk8PTpU+zs7ACYMWOGRarfLKGqqordu3djbW3d49//Ds3NzbS2tkqrnRCi2woLC9Hr9SxfvrzfNloQQoi+tv1KMf9yUI9arUKh/bW+UYHTt55zMv8Zv1sWyYZJw/t5lUKIoWjIN/6aO3gyGAzcvn2bMWPG9Djc8fDwYPTo0WRkZKAoSq/XVF5ezg8//ICXlxerV6/ut0GDzs7ObN68GWtra27cuEFOTk6/rMPS8vLycHZ2JiAg4L3HKopCSUkJBw4c4Pe//z0//fQTDg4OrF27lt/+9reEh4eTm5tr2n1xIGttbSUlJQWtVounpyctLS29Ol9NTQ2AVDwJIbqlqamJo0ePEhIS0quqSyGEGEwyH1bwLwf1KIDB2Pn9g8GooAD/fEBP1sOKflmfEGJok+DJzMFTUVERjY2NPWqze1ViYiLl5eXcuXOnV+eprq5m+/btODg4sH79+n7fVlWr1eLl5YW7uzuHDh3izJkzZgnXBgqDwUBBQcF7g8f6+nrS09P54x//yDfffENJSQlTpkzh17/+NevWrWP06NGo1WqSkpKoqKigoKCgD7+K7lMUhUOHDlFRUcHatWuxs7Pr9QD52tpaQIInIUT3nD59mubmZhYtWtTvu3wKIURf2ZpWhFr97uc8tVrF1rQHfbQiIYT4G2m1M3PwlJ+fj7u7O97e3r06T2BgIP7+/qSnp/d4KGpDQwM7duxApVKxYcMGi+2S1106nQ4nJydiY2M5deoUlZWVLF26dMDPLuqKjuDxTXfZjUYjRUVFZGdnU1hYiEqlIjw8nIULFxIUFPTGN0h+fn4EBweTlpbWqyo6S0tPT0ev17Nq1Sq8vb3RarU0NDT06pxS8SSE6K6HDx9y/fp15s+fj7Ozc38vRwgh+kRTq4FTBc8wvudersGocLKgTAaOCyH6nARPZgye2trauH37NpMmTTJLQJCYmMiuXbt4/Pgx/v7+3XpsS0sLO3fupKGhgc2bNw+oOTlarZampiYSExNxdXVl3759fP/996xdu3bQz+LQ6/V4eHh0Ch6rqqrIzc0lJyeHmpoavLy8mDNnDmPHjjXNcXqXpKQkvvvuO+7evUtoaKgll98j9+7d48yZMyQlJZkq/WxsbKisrOzVeWtra7GzszPrgH0hxIertbWVw4cPExAQQFxcXH8vRwgh+kxtU9t7Q6cORqX9eAmehBB9aci/o+sInszx5vbevXs0Nzd3e6j024wePRo3NzfS09NZvXp1lx/X1tZGamoqL1684LPPPsPd3d0s6zEXnU5HVVUVAOHh4aYd77Zt28b69evx8PDo3wX2UGtrK7dv3yYxMRGj0UhhYSHZ2dncv38fGxsbIiMjiY2Nxc/Pr1vB5PDhwwkICODSpUuMGjVqQFU9VVRUsHfvXoKDg5k+fbrp4zqdrtetdjU1NVLtJITosgsXLlBdXc26desG1POkEEJYmqPOCrWKLoVPalX78UII0ZdkxpMZK57y8/Px8vLC09Oz1+cCUKvVJCQkcOvWLSoqujYI0Gg0cuDAAYqLi1m7dm2vdxazhI6Kpw7Dhg1jy5YtWFlZsW3bNh4+fNh/i+uFO3fu0NLSQnV1NX/4wx/YvXs3LS0tLFmyhN/+9rcsXryYYcOGdfsNkUqlIikpicePH1NcXGyh1XdfS0sLKSkp2NnZsXLlStTqvz2daLVas8x4GkiVekKIgau0tJT09HSmTp06aG9eCCFET+msNcyO8EbznhlPGrWKORE+Uu0khOhzEjyZKXhqbW2lsLCw10PFf27cuHHY2dmRkZHx3mMVReHYsWMUFBSwcuVKRowYYda1mMubqmFcXFzYvHkzfn5+bN++ndzc3P5ZXA+0tLSQm5vL0aNHAbh9+zZRUVH86le/YvPmzcTExPR6qPuoUaPw9vbm0qVL5lhyrymKwoEDB6iurmbt2rXodLpOnzdX8CQVT0KI9zEYDBw6dAgvLy8SExP7ezlCCNEvtiSNxPiekiejUWFL0sB8fyCE+LBJ8GSm4Onu3bu0traaPXiytrZm4sSJ5ObmUl9f/85jz58/T1ZWFosWLSI8PNys6zCnn1c8ddDpdKxfv55x48Zx8OBBzp07N2B3vFMUhadPn3LkyBF+//vfc/DgQRobG4mKiuI3v/kNc+fONVvlG7RXPSUnJ1NUVMSTJ0/Mdt6eSktL49atWyxfvvyNX6dWq6W1tdX076snJHgSQnRFeno6z549Y8mSJWbbKEQIIQabuCA3frcsEhW8VvnU/r8VZrqUE+bRvztcCyGGpiEfPLW1tQG9D57y8/Px8fGxyDyljiGpmZmZbz3m6tWrXLx4kZkzZxIbG2v2NZiTTqfDYDCYvvev0mg0LF68mJkzZ3Lx4kX279//xuP6S2NjI9euXePPf/4zf/nLX7h79y7x8fHMmjULgJkzZ1psGHZ4eDhubm6kpaVZ5PxddefOHc6ePcvUqVMJCwt74zEdFVAtLS09uobBYKCurk5a7YQQ71ReXs6FCxdISEgYkK3lQgjRlzZMGs7uXyYwO9ybjuxJrYLZ4d58vS6ScKtytm/fTmNjY/8uVAgx5Az5yXLmqHhqaWnhzp07TJs2zUyr6szOzo6YmBiuXbvG5MmTsba27vT5vLw8jh8/TkJCApMnT7bIGsypI5RoamrCwcHhtc93zDRydXVl//79VFdXs2bNmi7tAGcJiqJQXFxMdnY2BQUFKIrC6NGjmTlzJsHBwajVarZv305QUJBFgxK1Wk1SUhKHDh3ixYsXZq2o6qry8nL27dvH6NGjmTp16luP02q1QPvP2NbWttvXqaurA5CKJyHEWymKwuHDh3F2drbY318hhBhsJgS5MSHIjaZWA7VNbTjqrEwzncb6fso333zDjh07+PTTT02v14QQwtKGfMWTwWBArVb3agecwsJC2trazN5m96qEhASamppem3109+5dDhw4wLhx45g9e/ag2Mmn44/c+2YAjRkzhs8++4zy8nK2bdvGy5cv+2J5JrW1taSlpfFf//VffPfddzx9+pTp06fzT//0T6xevZpRo0ahVqupq6vjwYMHZtvN8F2ioqJwcnLql6qn5uZmUlNTcXR0ZPny5e/8Xevqz/htamtrAaTiSQjxVllZWZSUlLB48eLXbsgIIcRQp7PW4Omo7TRI3NPTk08++YSXL1+yc+fOHlemCyFEd0nwZDCYpc1u2LBhuLi4mGdRb+Dq6kp4eDgZGRkYjUYAHj16xK5duwgJCWHJkiWDInSCzhVP7xMQEMCWLVtQq9Vs27bN4ru6GY1GCgsLSUlJ4V//9V+5cOECAQEBbNy4kX/4h39g8uTJr1Vp5efno1Kp+mSulkajITExkby8PCorKy1+vQ6KorB//35qa2tZu3bte++Q9TZ4qqmpAaTiSQjxZtXV1Zw+fZrY2FiCgoL6ezlCCDFo+Pr68vHHH1NaWkpqauqAGmkhhPhwSfDUy+CpqamJe/fuWbTaqUNiYiKVlZXcvn2b58+fs3PnTvz8/Fi1alWnrewHuu4ET9Aeum3evBlvb2+2b9/OzZs3zb6miooKzpw5w7/+67+SkpJCTU0N8+fP57e//S3Lli1j+PDhbw329Ho9wcHBfdYKGBsbi62tLenp6X1yPYALFy5QWFjIihUrujTHzBwVTxqNpkdtekKID5uiKBw9ehStVsvs2bP7ezlCCDHoBAQEsH79ekpKSti9e3evNoMRQoiukBlPvQyeCgsLMRgMfRI8DRs2jOHDh3Px4kUaGhpwdnZm3bp1g67FoCehhK2tLRs2bODIkSPs37+fyspKpkyZ0qsqr7a2Nm7dukVOTg4PHjxAq9UyduxYYmNj8fX17dI5qqqqePz4MStWrOjxOrrL2tqa+Ph4Lly4wJQpUyxeFXT79m0uXLjA9OnTCQ0N7dJjuhsu/lxNTQ2Ojo6DpopPCNF39Ho9d+/eZe3atabnGiGEEN0TFBTEmjVr+PHHH9m/fz8rVqwYVDeyhRCDiwRPvQye9Ho9gYGBfTaLJjY2lv379+Po6MiGDRsG5YvuVwdPd4dGo2HJkiW4urpy7tw5KisrWbx4cbd/fs+ePSM7O5ubN2/S1NTE8OHDWbZsGREREd0O8fR6PVZWVowePbpbj+utuLg4Ll++TEZGBnPmzLHYdV68eMH+/fsJDw8nOTm5y4+zsrJCpVL1quJJ5jsJIX6uvr6eY8eOMWbMmD5/3hVCiA9NSEgIq1atYvfu3VhbWw+q0R1CiMFFgqdeBE8NDQ0UFRUxd+5cM6/qzZqbm8nIyECtVuPu7v7GHeEGA7VajY2NTY9CCZVKxZQpU3B1deXgwYNUV1ezevXq97ZkNTc3o9frycnJ4cmTJ9jb2xMbG0tsbGyXWsfeJi8vj9GjR2NjY9Pjc/SETqcjLi6Oq1evkpycbJGWtKamJlJSUnBxcWHZsmXdeiGiUqnQ6XS9Cp5kvpMQ4udOnDgBwPz58/t5JUII8WEIDw9n2bJl7N+/HysrKxYsWCDhkxDC7CR46kXwdPv2bRRFISIiwsyrel1bWxspKSlUVlaSnJzMhQsXePHiBZ6enha/tiXodLoet2EBjB07FmdnZ1JSUti2bRvr16/Hzc2t0zGKovD48WOys7PJz8+nra2NkJAQVq9eTWhoaK+Hyj9//pznz58zffr0Xp2np+Lj47ly5QpXr141+1biRqORvXv30tDQwBdffNGjYE2r1fZquLiPj0+PHiuE+DDduXOHvLw8li1bhr29fX8vRwghPhhRUVG0trZy5MgRbGxsmDVrloRPQgizkuCpF8FTfn4+w4cPt3jlUUcI8PjxYzZs2MCwYcO4fv06GRkZLFmyxKLXthStVtur4AkgMDCQLVu28MMPP7Bt2zbWrl1LQEAADQ0N3Lhxg5ycHF68eIGzszOTJ08mOjoaZ2dnM30F7W12Op2OkJAQs52zOzqqtq5evUpCQsJ7d5rrjnPnznH//v03Bnpd1dPgSVEUabUTQnTS3NzM0aNHCQkJISoqqr+XI4QQH5zx48fT2trKiRMnsLGxYerUqf29JCHEB0SCpx4GT/X19Tx48IAFCxZYYFV/oygKR44cobCwkLVr1zJ8+HAAJk2axPnz55k+ffqgbEnqTRvWq9zc3Pj8889JSUnh22+/xc/Pj6dPn6JSqQgLC2Pu3LmMHDnS7HdtFEVBr9cTHh6OlVX//TNKTEwkKyuL69evk5iYaJZz5ufnk5aWxqxZs3oVqvU0eGpubqa1tXVQ/l4LISzj9OnTNDY2snDhQrkLL4QQFhIfH09raytnz57F2trabK8thRBiyG9d0NPgqaCgAMDibXZnzpwhJyeHpUuXdtpRbMKECWg0Gq5du2bR61tKb9qwXlVTU0NmZiY1NTUYjUYeP35McHAw//RP/8SqVasIDg62yJuUp0+fUllZSWRkpNnP3R3Ozs5ERUWRkZFBW1tbr8/37NkzDh48SGRkZK9fbPQ0XKytrQWQiichBADFxcVkZWUxa9YsXFxc+ns5QgjxQUtOTiYpKYlTp06RmZnZ38sRQnwgpOKph8FTfn4+I0eOxM7OzgKrapeens7ly5eZM2cO48aN6/Q5nU5HbGwsWVlZJCUlmbXNqi/odDrq6up69FiDwcCdO3fIycnh3r17WFlZERkZSXR0NPfv3+fixYucPn2aRYsW9XqO09vk5eXh4OBAUFCQRc7fHUlJSeTm5pKbm8uECRN6fJ7GxkZSUlJwd3c3y64mWq2Wmpqabj+u4zFS8SSEaG1t5dChQwQEBBAXF9ffyxFCiCFhxowZtLa28tNPP2FtbU10dHR/L0kIMchJ8NSD4Km2tpbi4mKLzlfKzc3l1KlTJCUlkZCQ8MZj4uPjuXr1Kjk5OcTHx1tsLZag1WopLy/v1mNevnxJdnY2N27coL6+nmHDhrFo0SLGjBljCt4CAwNxc3Pj0KFDph3vdDqdWdduNBrJz88nIiICtbr/iwbd3d0ZM2YMly9fJjY2tkdrMhqN7Nmzh+bmZj777DOsra17va6eVrV1VDxJ8CSEuHDhAtXV1axbt05a7IQQoo+oVCrmzp1LS0sLhw4dwtramjFjxvT3soQQg5gETz0IngoKClCr1YSFhVlkTYWFhRw6dIjY2FhmzJjx1uOcnZ2JjIzkypUrTJw4cUCEIF3V1Tas1tZWCgoKyMnJobi4GFtbW6KiooiJicHb2/uNjxk3bhzOzs6kpqaadrxzdXU129qLi4upq6tj7NixZjtnbyUlJfHnP/8ZvV7fo8G7p0+f5sGDB3zyySdma2XpafBUU1ODnZ1dv87OEkL0v9LSUtLT05k2bRoeHh79vRwhhBhSVCoVixYtoq2tjX379mFtbd1p7IcQQnTH4EkqLMRgMHT7Da5eryckJARbW1uzr6e4uJjdu3cTFhbWpSGqiYmJVFdXk5+fb/a1WNL7drUrLS3l6NGj/P73v+fAgQOo1WpWrlzJb37zG+bNm/fW0KlDUFAQn3/+OQaDgW3btvH48WOzrT0vLw8XFxeGDRtmtnP2lo+PD6NGjSItLQ1FUbr12Ly8PDIyMpgzZw4jRoww25p6U/Ek1U5CDG0Gg4FDhw7h5eXF5MmT+3s5QggxJKnVapYtW0ZoaCi7du2iqKiov5ckhBikJHjqZsVTdXU1jx8/tki5aVlZGT/++COBgYGsWLGiSxVMPj4+jBw5kvT09G4HDv1Jp9PR1NTUac1NTU1kZmby1Vdf8dVXX1FYWMjEiRP5H//jf/Dpp58SGRnZrZDQw8ODLVu24ObmxnfffWcaCN8bBoOBW7duERkZOeDaPpKTk3nx4gWFhYVdfkxpaSmHDh1i3LhxTJo0yazr6U3wJIPFhRjaMjIyePbsGUuWLLHYrD4hhBDv13Hzd8SIEaSkpFBSUtLfSxJCDEISPHUzeMrPz0ej0TB69GizrqOiooIdO3bg5ubGmjVruhWwJCYmUlZWxoMHD8y6JkvS6XQoikJLSwvFxcXs37+f3//+9xw7dgwnJyfWrVvHr3/9a2bMmNGrNjk7Ozs+/fRTRo8eze7du7l8+XKvArp79+7R1NQ0oNrsOgQEBDB8+HAuXbrUpa+xvr6e1NRUPD09LbJFuVarxWAwdHu3vZqaGql4EmIIe/nyJefPnychIQE/P7/+Xo4QQgx5VlZWrF69mmHDhvHDDz/w9OnT/l6SEGKQkeDJYOjWbKT8/HxGjRpl1l3kamtr2b59Ozqdjo8//rjb5x45ciQ+Pj6kp6ebbU2WZjQaAfjzn//Mt99+y6NHj5g6dSr/9E//xNq1awkNDTXbzCorKytWrlxJcnIyp0+f5siRIxgMhh6dS6/X4+XlhZeXl1nWZm7Jyck8ffr0vSGkwWBgz549tLa2smbNGrMME/+5jqHu3a16klY7IYYuRVE4dOgQTk5OTJs2rb+XI4QQ4q+sra1Zu3YtXl5e7Nixg2fPnvX3koQQg4gET92oeKqoqODp06dmbbNrbGxkx44dGAwGNmzYgL29fbfPoVKpSEhI4P79+wP6j4DRaOTu3bukpqZy8OBBoL0d7rPPPuO///f/TlJSksUCB5VKxYwZM1iyZAm5ubns3LnznTOm3qSlpYXCwkIiIyMtskZzGDlyJL6+vly6dOmdx508eZKSkhJWr16Ns7OzRdbSEaB25/tsMBioq6uT4EmIIer69euUlJSwePFiiwTiQgghek6r1fLxxx/j7OzM9u3bu71DtRBi6BrywVNbW1uXg6f8/Hyz7ujQ2trKjz/+SG1tba93ExszZgxOTk4DsuqpqqqKc+fO8e///u/s3LmTyspK07DY5ORkgoKC+mxeUkxMDBs2bODJkyd8/fXXVFVVdfmxhYWFtLa2DujgSaVSkZyczMOHD3n06NEbj8nNzeXatWvMmzeP4cOHW2wtHcFTdyqe6urqAGTGkxBDUHV1NadOnSI2NtasGx0IIYQwH51Ox4YNG7Czs+P777+nsrKyv5ckhBgEhnzw1J2Kp/z8fEJDQ7GxsTHLdXfv3k1ZWRnr16/H09OzV+fTaDTEx8ej1+uprq7u9fp6q62tjfz8fLZv386///u/c+XKFUaNGsUXX3zBL3/5SyZMmAB0vw3LHEaMGMHnn39Oa2sr27Zt63Kful6vx9/fv1czp/pCWFgYHh4epKWlvfa5J0+ecOTIEWJiYkw/A0vpSfBUW1sLIBVPQgwxiqJw9OhRtFots2fP7u/lCCGEeAd7e3s++eQTrKys+P7776mpqenvJQkhBjgJngyGLg3yLi8v59mzZ2Zps+uYYXH//n1Wr16Nv79/r88JEBsbi7W1NVevXjXL+Xri+fPnnDhxgj/84Q+mGUJLly7lt7/9LYsWLcLPzw+VSmWa/9Pddjdz8fT0ZMuWLbi4uPDNN99w+/btdx7f2NjIvXv3BnS1UweVSkVSUhJ37tzp1HpZV1dHamoqvr6+LFiwwOJVZj2Z8dTxwkUqnoQYWvR6PXfv3mXBggWm5w4hhBADl6OjI59++ilGo5Ht27dTX1/f30sSQgxgEjx1seIpPz8fGxsbRo0a1avrKYrCiRMnuHnzJsuXLyckJKRX53uVVqtlwoQJXL9+vU8DnZaWFnJycti2bRt/+tOfuHnzJtHR0fzqV79i8+bNREdHv1YlZmNjg0ql6rfgCdrv1nz66aeEhoaSmppKRkbGW3eDKygoQFEUs873sqTIyEhcXFxMVU8dFXaKorB69epu7ZrYUz2Z8VRbW4tGo8HW1tZSyxJCDDANDQ0cP36cMWPGEBYW1t/LEUII0UUuLi589tlnNDU1sX37dhobG/t7SUKIAUqCpy4ET4qioNfrCQsL6/Ub9rS0NK5evcqCBQssUj0zadIk2trauH79utnP/SpFUXjy5AmHDx/m97//PYcOHUKr1fLRRx/xm9/8hjlz5ryzfVClUqHVavul1e5V1tbWrFq1ismTJ3Py5El++ukn0457r9Lr9QQFBeHg4NAPq+w+jUZDYmIi+fn5vHz5kuPHj/P48WNWr17dZ21sGo0GKyurbrfaOTo69tnMLyFE/zt+/DiKojBv3rz+XooQQohucnNz45NPPqGmpoYdO3b0+2t7IcTAZPmyhwGuK8HT8+fPKS8v7/XcievXr3P27FmmTp1KXFxcr871No6OjkRFRXH16lXi4+O7PL+qqxobG7l58ybZ2dk8f/4cJycnEhISiI6O7vZwdK1W268VTx1UKhWzZs3C1dWVo0ePUlVVxapVq0wVO7W1tTx8+JDFixf380q7JyYmhgsXLnDw4EEePXrE4sWLCQgI6NM1dDdcrK2tlTY7IYaQO3fukJeXx7JlywZNsC+EEKIzLy8vPvnkE7777jt27tzJxx9/bJaZuEKID4dUPHUheMrPz0en0xEcHNzj6xQUFHD06FHi4uKYOnVqj8/TFYmJidTW1pKXl2eW8ymKwoMHD9i7dy+///3vOXnyJB4eHnz88cf84z/+I9OmTevRjnw6nW5A3RUZP348H3/8MY8ePeKbb74xzRvKz89Ho9EQHh7ezyvsHisrK8LDw3n06BFRUVHExsb2+Rq6GzzV1NTIYHEhhojm5maOHj1KcHAwUVFR/b0cIYQQveDr68vHH39MaWkpqamptLW19feShBADyJAOnoxGI4qivDN4UhSF/Px8wsLCelw9VFRUxL59+xgzZgzz58+3eBuRp6cno0aNeufMoq6ora3l0qVL/Od//ifff/89ZWVlzJgxg9/85jd89NFHhISEoFb3/FdIp9MNiIqnVwUHB7N582aamprYunUrpaWl6PV6QkJCBt3codraWm7dumVqa+wPPal4kuBJiKHh9OnTNDY2smjRImmvFUKID0BAQADr1q2jpKSEPXv2YDAY+ntJQogBYkgHTx1Phu8KlMrKyqioqOjxUOmnT5+SmppKUFAQy5Yt67MX14mJiTx//px79+5163FGo5HCwkJ+/PFH/vVf/5WLFy8yfPhwNm3axK9+9SsSExOxt7c3yxoHwoynN/Hy8mLLli04Ojry9ddf8+TJk0Gxm92r2traSE1NRa1WM2nSJHJzc/tlt5Hu/IwVRaGmpkZa7YQYAoqLi8nKymLmzJk9qpgVQggxMI0YMYLVq1dz9+5d9u/f/8bZqUKIoWdIz3jqSvCk1+uxtbVlxIgR3T5/eXk5P/zwA15eXqxevdrs85beZfjw4fj5+ZGent6lnfgqKirIyckhNzeXuro6/Pz8TAPQLbW1tU6no6qqyiLn7i0HBwc2btzIV199RXl5uantbjBQFIWjR49SVlbGpk2bcHV15fr161y9epUZM2b06Vq6007Z3NxMa2urVDwJ8YFra2vj8OHDBAQEWGzeoRBCiP4zatQoVq1axe7du7G2tmbJkiVS2SrEECfBE28PnhRFoaCggIiIiG6HRjU1NWzfvh17e3vWr1/f5wP2VCoViYmJ7Nmzh6dPn+Ln5/faMW1tbdy6dYvs7GwePnyITqdj7NixxMbG4uPjY/E1DtSKpw4dOxh6eHhw6tQpqqurmTt3bq/aC/tCVlYWubm5LF26lGHDhgHt86uuXbtGYmKixYLEN9FqtVRUVHTp2NraWgCpeBLiA3fhwgWqqqpYs2bNgH8+FUII0TPh4eEsW7aM/fv3Y21t3SfjRoQQA5cET7w9eHry5AlVVVXdbrNraGhg+/btqFQqNmzY0G+zgcLDw3FxcSE9PZ1Vq1aZPl5WVkZOTg43b96kqamJoKAgli9fTnh4ONbW1n22voE44+lVHbsZrlu3jurqao4dO0ZVVRUrV64csDt1FBcXc/z4cSZOnEh0dLTp44mJiWRmZpKVlUVSUlKfrac74WJHVZlUPAnx4SorK+Py5ctMmzYNT0/P/l6OEEIIC4qKiqK1tZUjR45gbW3NrFmzJHwSYoiS4Im3B0/5+fk4ODgwfPjwLp+zpaWFnTt30tDQwObNm/u1ekOtVpOQkMDx48cpKyvj8ePH5OTk8PTpUxwcHBg/fjwxMTG4u7v3y/q0Wu2ADp7y8vKwtbUlODgYjUaDi4sLe/bs4ZtvvmH9+vUDLiCprq5m165dBAYGMmfOnE6fc3R0JDo6moyMDCZNmtRnAWN3gqeOiqeB9n0VQpiH0Wjk0KFDeHp6Mnny5P5ejhBCiD4wfvx4WltbOXHiBDY2Nhbf3VsIMTAN6Rr3dwVPHbvZhYeHd7kVwGAwsGvXLl68eMHHH3/cb4FOB0VR8PDwQK1W85e//IWffvoJBwcH1qxZw69//WtmzZrVr2vsmP/Tm533LEVRFPR6PeHh4abfj1GjRrFp0yYaGhrYunUrZWVl/bzKv2ltbSU1NRVra2tWrVr1xt/pyZMn09jYSE5OTp+tq7sVT7a2tqYWRyHEhyUjI4OysjKWLFnSpzMPhRBC9K/4+HimT5/O+fPnSU9P7+/lCCH6wZB+h/eu4KmkpITa2tou72ZmNBrZv38/Dx8+5OOPP37jTKW+Ul9fz40bN8jJyaG8vBydTkdLSwu//OUv8fb27rd1/ZxWqwXaq8Q6/nugePz4MdXV1YwdO7bTx318fNiyZQs7d+7km2++YdWqVV0a3m5JHcPEX7x4webNm9+666CrqyuRkZFcvnyZ8ePH98kbv47gSVGU95ZW19bWynwnIT5QL1++5Pz588THx5tmzwkhhBg6pkyZQmtrK6dOncLGxoYJEyb095KEEH1IKp7gjRUW+fn5ODo6EhAQ8N7zKIrCsWPHKCgoYOXKlT3aAa+3jEYj9+7dY/fu3fzhD3/g7Nmz+Pj48Mknn/AP//APqNVqCgsL+3xd79Ix5Hogttvl5eXh6OhIYGDga59zdHRk06ZNBAUF8eOPP5KZmdkPK/ybq1evcuPGDZYsWYKvr+87j01KSqKmpoa8vLw+WZtWq0VRFFpbW997bG1trbTZCfEBUhSFw4cP4+joyPTp0/t7OUIIIfrJjBkzmDhxIkePHuXGjRv9vRwhRB+Siider3gyGo0UFBQwduzYLg3Au3DhAllZWSxatIjw8HCLrPVtqqurycnJITc3l+rqary8vJg9ezZRUVHY2dmZjhs3bpxpV7OB0sr0avDk7Ozcz6v5m1d//m9rs7SxsWHNmjWcPHmSn376iYqKCmbPnt3nOzQ9ePCAkydPkpCQ8Fp11pt4eXkxevRo0tLSiIqKsvh6X/0Zv28ge21t7YCqyBNCmMf169cpLi7m008/7dMNLIQQQgwsKpWKefPm0draysGDB7Gysur2Jk5CiMFpYCQQ/eRtwVNxcTH19fVdeiK8evUqFy5cYObMmYwfP94i6/w5g8FAYWEhOTk53Lt3D2trayIjI4mNjWXYsGFvDMsSEhK4fv06N27c6LN1vk9He11XZwD1lQcPHlBfX//eIEetVjNv3jxcXV05ceIEVVVVLF++vM92vKuqqmL37t2MGDGCWbNmdflxSUlJbNu2jdu3bxMREWHBFXbvZ1xTU9PvbYtCCPOqqanh1KlTxMTE9Es1sBBCiIFFpVKxaNEi2tra2LdvH9bW1oSGhvb3soQQFibBE68HT3q9HhcXl/fOocjLy+P48ePEx8f3yQ495eXlZGdnc+PGDRoaGvD392fx4sWMGTPmvTOS3N3dCQsLIyMjg9jY2AGxlelAbbXT6/W4ubm9t22tw6RJk3B1dWXPnj189913rFu3DgcHB4uusbW1lZSUFHQ6HatWrepW5ZK/vz8jRozg0qVLhIeHW/R3oavBk9FopL6+XlrthPiAdMyfs7GxeW2nTSGEEEOXWq1m6dKltLa2smvXLtavX8/IkSP7e1lCCAsa0jOe2tragM7Bk8Fg4NatW0RERLzzDfm9e/c4cOAA48aNY86cORZ7897S0kJubi7ffPMNf/zjH8nNzSUqKoq///u/5/PPPyc2NrbLg7kTExN5+fLlgJn1NBCDp7a2Nm7dukVkZGS3fqahoaFs2rSJ2tpatm7dyvPnzy22RkVROHToEBUVFaxZswZbW9tunyM5OZmysjLu3btngRX+TVeDp7q6OhRFkeHiQnxA8vPzuXPnDgsXLjQ93wshhBDQ/v6rYzZuSkoKJSUl/b0kIYQFDeng6U0VTw8ePKCxsfGdu9k9evSIXbt2ERISwuLFi80eOimKwtOnTzly5Ah/+MMfTD3Qq1at4je/+Q1z587Fy8ur2+cNCAggICBgwGxjamVlhVqtHlCtdnfv3qW5ubnLuxm+ytfXly1btqDT6fj666+5f/++BVYI6enp6PV6li1b1uOZSEFBQfj7+5OWlmbm1XXW8WbzfT/jmpoaAKl4EuID0dDQwLFjx4iIiCAsLKy/lyOEEGIAsrKyYvXq1fj5+bFz506ePn1q+lxTq4EXtc00tRr6cYVCCHORVjs6B0/5+fm4ubnh4+Pzxsc8f/6cnTt34uvry6pVq8y6JX1jYyN5eXnk5ORQVlaGo6MjkyZNIjo6GldXV7NcIzExkdTUVB49etSlHfssSaVSodVqB1TFk16vx8fHB09Pzx493snJiU2bNrF3715++OEHFi5caNaZWvfu3ePMmTMkJSX1aj6TSqUiKSmJlJQUiouLGT58uNnW+KqOeVfv+xnX1tYCSMWTEB+IEydOYDQamT9/fn8vRQghxABmbW3NunXr2LFjBzt27GDcrBXsK6jiVMEzjAqoVTA7wpsvkkYyIcitv5crhOghCZ74W/BkMBi4ffs2cXFxb6xiqqqqYseOHTg7O7Nu3Tqz7M6jKArFxcXk5ORQUFCA0WgkNDSUGTNmEBwcbPZdx0aPHo27uzvp6emsWbPGrOfuCZ1ON2Aqnpqbm7lz5w7Tpk3r1Xm0Wi1r167l2LFjHDlyhIqKCmbNmtXryriKigr27t1LcHCwWbYkDw0NxcvLi7S0NIsFT2q1Ghsbmy5VPGk0mh61DQohBpa7d+9y8+ZNli5davF5d0IIIQY/rVbLxx9/zD/+5x7+9+7baFQqjEr754wKnL71nJP5z/jdskg2TLLMa1YhhGVJ8ASmcOf+/fs0NTW9sc2qvr6e7du3Y2VlxYYNG3o9r6Kuro7c3FxycnKoqKjAzc2NadOmMW7cOIu+UFepVCQkJHDkyBFevnyJu7u7xa7VFTqdbsBUPN2+fZu2trYetdn9nFqtZsGCBbi7u5t2vFu2bFmPw8qWlhZSUlKws7Nj5cqVZgkkO6qe9u3bR2lpaZeHqXeXVqt9b/BUW1uLo6PjgBh6L4TouebmZo4cOUJwcDDjxo3r7+UIIYQYJPLKGjhZ0d7hYVA6f87w1xTqnw/oCfN2lMonIQahIT/jSaPRmN7s6vV6PD09X5uf1NzczA8//EBzczMbNmzocTBkNBq5c+cOqamp/OEPf+DChQv4+/uzceNG/tt/+29Mnjy5T+4Ojxs3Dnt7ezIyMix+rffpSijRV/R6PQEBATg7O5vlfCqVivj4eNasWcPdu3f57rvvqK+v7/Z5FEXhwIEDVFdXs3btWrMO6R0zZgyurq4WnfXUneBJCDG4nTlzhsbGRhYtWiRBshBCiC7bmlaEWv3uvxtqtYqtaQ/6aEVCCHOS4OmvbXatra0UFhYyZsyYTse0tbWRkpJCRUUFGzZswM2t+wl7ZWUlZ8+e5d/+7d/48ccfqaqqYv78+fz2t79l+fLlDB8+vE9foFtZWTFx4kRyc3N7FISY00CpeGpoaKCoqMgs1U4/FxYWxsaNG6murmbr1q28ePGiW4+/dOkSt27dYvny5T2ePfU2arWayZMnU1BQQHl5uVnP3aErc7xqampkvpMQg1xJSQmZmZnMnDkTFxeX/l6OEEKIQaKp1cCpgmemyqa3MRgVThaUycBxIQYhCZ7+Gjzdu3ePlpaWTsGT0Whk7969PH78mHXr1r114PibtLW1odfr2b59O//xH//BtWvXGD16NL/4xS/45S9/SVxcXL9uLz1hwgTUajXXrl3rtzXAwKl4KigoQFGU14JHc/Hz82PLli3Y2Niwbds2ioqKuvS4O3fucO7cOaZOnWqxnaHGjRuHo6OjxaqetFotLS0t7zxGKp6EGNza2to4dOgQ/v7+xMXF9fdyhBBCDCK1TW28J3MyMSrtxwshBpchP+OpI3jKz8/H29sbDw8PoL296ciRIxQWFrJ27douD19+/vw52dnZ3Lx5k8bGRgIDA1m2bBkRERFmGUZuLnZ2dsTExJCZmUlSUlK/rW2gVDzp9XpGjhyJvb29xa7h7OzMpk2b2LNnDz/88AOLFi0iJibmrceXl5ezb98+Ro8ezdSpUy22LisrKxITEzl58iTTpk0ze6VCVwbIS/AkxOB28eJFqqqqWLNmjdk3xRBCCPFhc9RZoVbRpfBJrWo/XggxuAzpV4cdwVNLSwt37tzpVO1y5swZcnJyWLp0KaGhoe88T3NzM9nZ2WzdupU//elP5OXlERMTwz/8wz+wadMmxo0bN6BCpw7x8fE0NTWRk5PTb2voShuWpVVXV1NcXGyRNruf0+l0rFu3jujoaA4dOsSZM2dQlNf/yjY3N5OamoqjoyPLly+3eCtmbGwsOp2O9PR0s5/bxsbmnT/j5uZmWlpapNVOiEGqrKyMy5cvk5ycbPZ2YCGEEB8+nbWG2RHeaN4z40mFwnBNNbnXM02bRAkhBochHRd3BE937tyhtbXVFDykp6dz+fJl5syZ89ZdeRRF4cmTJ2RnZ6PX62ltbSUkJITVq1cTGhpqqqQayFxdXYmIiODKlSum1ru+1pVqGEvLz89Ho9EQHh7eJ9fTaDQsWrQId3d3Tp06RWVlJcuWLcPKqv2fo6Io7N+/n9raWr744gu0Wq3F12RjY0N8fDwXL15kypQpZh1y/76fcU1NDYBUPAkxCBmNRg4dOoSHhwdJSUn9vRwhhBCD1JakkZzMf/aeo1QsC3fixIkTXL9+nXnz5hEcHNwn6xNC9I5UPGk05Ofn4+fnh6urK7m5uZw6dYrJkyeTkJDw2mMaGhq4cuUKf/rTn0yzeiZPnsyvf/1rPv74Y8LDwwdF6NQhMTGRyspKbt261S/X1+l0tLS0YDQa++X60N5mFxoa2icBTweVSkViYiIfffQRhYWFfP/996ZB7xcuXKCwsJAVK1bg7u7eZ2uKi4tDo9Fw5coVs573fXO8amtrAaTiSYhBKCMjg7KyMpYsWTKo/vYJIYQYWOKC3PjdskhU8Frlk0atQgX8blkk/7h+Eb/85S+xs7Njx44dpk2ghBAD25CueGpsMdBg1PD8zj3mzJxOYWEhhw4dIiYmhpkzZ5qOUxSFBw8ekJ2dze3bt1EUhbCwMObOncvIkSMH9ZbRfn5+BAUFkZ6eTkRERJ9/LR1hT3NzM7a2tn16bYCXL19SWlrab3fqIyIicHJyIiUlhW3bthEfH8+FCxeYMWPGe1s8zc3W1pa4uDgyMzOZPHmy2X4e7wuepOJJiMHp5cuXnD9/nkmTJjFs2LD+Xo4QQohBbsOk4YR5O7I17QEnC8owKu0znWaHe7MlaQQTgtp3F/fx8WHjxo3k5+dz6tQp/vf//t/Ex8eTnJzcpzeShRBdNySDp8yHFWxNK+JkvoKCPyqGUZjbjEf5MZLDwli0aBEqlYqamhpyc3PJycmhqqoKDw8PZs6cSVRUlEWHUPe1xMREdu7cSXFxMUFBQX167Y6d/ZqamvoleMrLy8PGxoZRo0b1+bU7+Pv7s2XLFr7//nuOHTvG8OHD+y0Ii4+P5+rVq2RmZjJlyhSznLNjVzuj0fjGds7a2lpsbW1NrYZCiIFPURQOHz6Mo6Mj06dP7+/lCCGE+EBMCHJjQpAbTa0GapvacNRZobN+vaJWpVIRGRnJ6NGjuXz5MpcvX+bGjRvMmjWLqKioQV0YIMSHaMi909t+pZh/OahHrVah0P6EpKDiyqN6FEIY7xfOnTt3yM7O5t69e1hZWTFmzBhiY2Px9/f/IJ/EQkJC8PLyIj09vc+Dp1crnvqaoijo9XrCw8P7ffh7RwBnbW1NSUkJN2/efOt8MUtycHAgJiaGK1euEB8fj42NTa/P2fG1tbS0mP77VTU1NdJmJ8Qgk52dTXFxMZ9++qlZnieEEEKIV+msNW8MnH7O2tqaadOmER0dzenTpzlw4ACZmZnMnz9fqnGFGECG1IynzIcV/MtBPQpg+Nl+ne0hlIr/8+gt/uPHozQ0NLBw4UJ++9vfsnTpUgICAj7I0Ana7xgkJCRw9+5dXrx40afXfrXiqa+VlZXx8uXLPtnN7l2MRiN79+6lsbGRL774gnHjxnHgwAHOnTv3xh3vLC0xMZHm5mauX79ulvN1hItv+xnX1tZKm50QA1xTq4EXtc00tRqoqanh1KlTxMTEMGLEiP5emhBCCIGLiwurVq3is88+o62tja1bt3LgwAHTLFEhRP8aUhVPW9OKUKtVr4VOr1KrVDQGxrPl88l9uLL+N3bsWM6ePUt6ejpLly7ts+v2Z/CUl5eHnZ1dv79xOnfuHPfv32f9+vV4enqyZMkS3NzcOHv2LJWVlSxZsqRP29BcXFyIiooiIyODuLi4Xl/7fVVttbW1eHt79+oaQgjL6GhNP1XwzDRrI9yxlTCVE3PmzOnv5QkhhBCdBAUF8Ytf/ILs7GzOnj3LrVu3SE5OJj4+XsY6CNGPhkzFU1OrgVMFz94ZOgEYFbhwv4qmVkMfrWxg0Gg0TJo0iZs3b/bpnYH+arVTFIX8/HwiIiL6dSem/Px80tLSmDlzJiEhIUB7BVpycjIrV66koKCA7du309DQ0Kfrmjx5MrW1tdy4caPX53rfz1ha7YQYmLZfKWb1nzM4fes5HX86jQoU1GjYWz2cPTfet+21EEII0ffUajUTJkzgv//3/050dDRnz57lT3/6E4WFhf3STSCEGELBU21TG+/JnEyMCvzvrd9w+PBhrl+/TmlpKQbDhx9EjR8/HisrK65evdpn17SyskKj0fR5xVNJSQk1NTWMHTu2T6/7qmfPnnHw4EEiIyNJTEx87fORkZF89tlnlJeXs23btj7dKtbDw4OIiAguX76M0Wjs1bneFTwZjUbq6+ul1U6IAebdrentLx3++YCerIeyhbUQQoiBydbWlvnz5/N3f/d3uLi4kJKSwg8//NDno0WEEEMoeHLUWaHu4ogmFRDg48mTJ084evQoX331Ff/zf/5Ptm7dytGjR8nJyeHZs2e9fkM+0Oh0OsaPH09WVlafViDpdLo+D570ej1OTk4EBAT06XU7NDY2kpKSgru7O0uWLHnr/LCAgAA+//xzVCoVW7dupaSkpM/WmJSURGVlJfn5+b06T0c75Zt+p+rq6lAURYInIQaYjtb0d1GrVWxNe9BHKxJCCCF6xsvLiw0bNrBmzRoqKir48ssvOX78eL+M+hBiqBoyja46aw2zI7w5fev5O9vtVChMHu7IR8unAtDa2kpZWRlPnz6ltLSU4uJisrKygPZqHR8fH/z8/Ez/5+7u/sYt4weLSZMmcfXqVbKzs0lISOiTa+p0uj4NugwGA/n5+cTExPTLwHij0ciePXtobm7ms88+e++Oem5ubnz++efs2rWL77//nqVLl/ZJpZavry8hISGkpaURGRnZ4++VtbU1KpXqjX/cO9o6pdVOiIGjozX9fVXCBqPCyYIymloNXdp5SAghhOgvKpWKsLAwQkJCyMjI4NKlS+Tl5TFjxgxiYmIG9fs3IQaDIRM8AWxJGsnJ/HfPpFAAp9Isjh9vZNasWVhbWxMQENCpMqalpYXS0lJTGHX//n2uXbsGtL/J9vX17RRGubm5DZod8ZydnYmMjOTKlStMnDixT+YfabXaPr3jUFRURGNjY7/tZnf69GkePHjAJ598gouLS5ceY2try4YNGzh8+DD79u2jsrKS5ORki/9eJSUl8e2333Lnzh1Gjx7do3OoVCq0Wu0bw8WamhoAqXgSYgDpbmt6bVObBE9CCCEGBSsrK5KTk4mOjub06dMcOXKErKws5s2bx/Dhw/t7eUJ8sIZU8BQX5MbvlkXyzwf0r+1up1GrMBoVfrc0khA8OH36NMXFxaxcuRIPD49O57GxsWH48OGdnpyampo6hVGFhYVcuXIFaA9Wfh5Gubi4DNgwKjExkZs3b5Kfn09UVJTFr9fXFU96vR53d3d8fHz67Jod8vLyyMjIYO7cud3eTU+j0bB06VJcXV05d+4cFRUVLF682KLh4PDhwwkMDOTSpUuEhob2+Hf2bcFTbW0tGo0GOzu73i5VCNFLTU1N6PV6MrNzUeGDwvv/vatV7a3sQgghxGDi6OjI8uXLmTBhAsePH+fbb78lMjKSWbNm4ezs3N/LE+KDM+ReLW6YNJwwb0e2pj3gZEGZaXvo2eHebEkawYQgNyCIoKAg9u7dy1dffcW8efPe25al0+kYMWJEpzChsbGRp0+fmsKo/Px80tPTTce/GkT5+fnh5OQ0IMIob29vgoODSU9PZ+zYsRZfU1/OeGptbeX27dskJib2+fe6tLSUQ4cOMW7cOCZNmtSjc6hUKqZOnYqrqyuHDh2iurqa1atXY2tra+bV/k1ycjI//PADDx8+7HZY1uFdFU+Ojo4D4vdeiKHIaDRSVFTEjRs3uHXrFkajkZCQEOID7Lj6qAHjO8InjVrF7HBvqXYSQggxaAUEBLBlyxZu3LjB6dOn+a//+i+SkpJITEx87zgMIUTXDbngCWBCkBsTgtxoajVQ29SGo87qtRfOPj4+fPHFF5w4cYLDhw9z//59Fi1a1K03+La2tgQHBxMcHGz6WH19vaky6unTp9y4cYO0tDQA7OzsXguj+qsFKTExke3bt1NUVNRp/Zag1Wqprq626DU63L17l5aWlj5vs6uvryc1NRUvLy8WLlzY66AlKioKZ2dnUlNT2bZtGx9//DGurq5mWm1nwcHB+Pj4cOnSJbMHT7W1tdJmJ0Q/KC8v58aNG9y4cYPa2lo8PDyYPn06UVFR2Nra8nj7QTLQvvMcRqPClqSePScIIYQQA4VKpSI6Oprw8HAuXrzIxYsXycnJYc6cOYSHh8sNUiHMYEgGTx101pp33qm1sbFh8eLFBAcHc/jwYf785z+zYsUKAgMDe3xNe3t7QkJCCAkJMX2stra2Uxh1/fp1Ll68CICDgwN+fn6dWvUcHBx6fP2uGjFiBD4+PqSnp/dJ8NRXFU95eXn4+vri7u7eJ9eD9mHme/bsoa2tjdWrV5vt7snw4cP5/PPP2blzJ1u3bmXt2rUW2aVPpVKRnJzM7t27efz4Mf7+/t0+x9vaKWtra2WwuBB9pKmpifz8fHJzc3n8+DE6nY7IyEiio6Px8/NDpVLR0tLCjz/+SMuTYma5BHC6yh0VdGq7M7WmL4v8a5WwEEIIMfhptVpmz55NbGwsJ0+eZPfu3QQFBTFv3jy8vb37e3lCDGpDOnjqqoiICIYNG8a+ffv49ttvmTJlClOmTDHb7geOjo44OjoSGhoKgKIo1NbWmoKop0+fcu3aNRobG4H2HcB+HkaZe0aOSqUiMTGRffv2UVZWZtF5SH0146mpqYm7d+8yY8YMi1/rVSdPnqSkpIRPP/3U7D3j7u7ufP7556SmpvLdd9+xfPlyxowZY9ZrAISFheHu7k5aWhpr167t9uO1Wi11dXWvfbympkb+kAthQUajkYcPH5Kbm8utW7cwGAwEBwezcuVKwsLCsLL628uAxsZGdu7cyfPnz4mMjMRw4wYLbMqp8Izm6pNGFFSo+HlruhBCCPFhcXd3Z926ddy7d4/jx4/z5z//mfHjxzN9+nSZSypED0nw1EXOzs589tlnpvLLBw8esGLFCosMn1OpVDg5OeHk5ERYWBjQHkZVV1d3CqPS09NNgY2Li0unMMrX17fXc38iIiI4c+YM6enprFixotdf19v01Yyn27dvYzAY+rTNLjc3l2vXrrFgwQKL7ZRhZ2fHJ598wqFDh9izZw+VlZVMnjzZrGXBarWapKQkDh48yPPnz/Hy8urW421sbKTVTog+9PLlS1MrXU1NDe7u7kydOpWoqKg3VhnW1tayfft26urqmD9/PocOHcLNzQ0PtZply8L48i/bcPMeho+7M+tWj++Hr0gIIYToWyEhIfz93/89165d48KFC+j1eqZNm0ZcXJzZChCEGCokeOoGtVrNtGnTGDlyJPv27ePLL79k8eLFREREWPzaKpUKFxcXXFxcTNdTFIXKyspOYdSlS5doaWkBwM3N7bUwSqt998yOV2k0GuLj4zl58iQzZ8602A4PWq2WtrY2DAaDRXdo0+v1DB8+vM9au548ecKRI0eIiYlhwoQJFr2WlZUVy5cvx83NjTNnzlBRUcHChQvN+v0cO3Ys58+fJy0trdtB5Juq2pqbm2lpaZFWOyHMpLm5mfz8fG7cuEFJSQlardbUSjds2LC3htEVFRVs374do9HIJ598wp49e3B3d6e8vJzly5dTXV2NlUrBz82Bpsb6Pv6qhBBCiP6j0WhISEggKiqKM2fOcPz4ca5fv868efMYOXJkfy9PiEFDgqceCAwM5Je//CVHjhxh9+7dxMbGMnfuXGxsbPp0HSqVCjc3N9zc3ExVPIqi8PLly0676RUWFtLa2gqAh4dHpzDKx8fnneuOjY3lwoULXLlyhblz51rk69DpdEB7K5y9vb1FrlFXV0dRURELFiywyPnfdL3U1FR8fX1ZsGBBnwwlVKlUTJs2zbTjXVVVFatXrzZ9f3tLo9GQmJjI8ePHmT59ereGmb9puHhNTQ2AVDwJ0QuKopha6QoKCmhrayM4OJgVK1YQFhb23plyZWVl7NixA51Ox8aNG7l06RI1NTUEBARgNBqJjIzkypUr2NjY4OTkxMuXL/voKxNCCCEGDnt7e5YsWUJcXBzHjh1j+/bthIWFMWfOHItt8CPEh0SCpx6ytbVl1apV5OTkcPz4cUpKSli5cqVFZyF1hUqlwsPDAw8PD6KiooD2GR/l5eWdwqiONygqlQpPT89OYZS3t7fpzYqNjQ0TJkzg2rVrTJ061Wwhxqs6qrCam5stFjwVFBSgUqn6pDrNYDCwa9cuFEVh9erVnWao9IVx48aZdrz7+uuvWb9+PS4uLmY5d0xMDBcvXiQtLY3Fixd3+XFvCp5qa2sBpOJJiB6oqKgwtdJVV1fj5ubGlClTGDduXJf/TZWUlLBz507c3Nz4+OOPefLkCdevXycpKYm0tDSWLl2KWq2msrISV1dX7O3tqa+XiichhBBDl6+vL5s2bUKv13Pq1Cn++Mc/kpCQQHJycp8XIQgxmEjw1AsqlYrY2FgCAwPZu3cvW7duZdasWUyaNGlAbbupVqvx8vLCy8uL6OhooD0cefHiRacw6ubNmxiNRlQqFV5eXqbB5cOHDycjI4OsrCySkpLMvr5XK54sRa/XExwc3CcDAY8fP86TJ0/YuHFjv1XzBAUFddrxbt26dQwbNqzX57W2tiY+Pp7z588zderULr/BfVM7ZUfw1Be7NArxIWhubqagoIAbN25QXFyMjY2NqZXO39+/W3937t69y65duxg2bBjr1q2jra2NQ4cOMWrUKF6+fImrqytjx44FoKqqChcXF+zt7WlsbMRoNMpsCyGEEEOWSqVi7NixjB49msuXL3P58mVu3LjBrFmzGDt27IB6HyjEQCHBkxl4eHjw+eefc/r0aU6cOEFRURFLly61WPWOOWg0Gnx8fPDx8SE2NhaAtrY2nj9/3imMunHjBkajEYBz585RUVGBv78/fn5+eHp6mmWGkKWDp6qqKh49esTy5cstcv5XXb9+naysLBYvXkxAQIDFr/cuHb+XKSkpfPvtt6xYsYLw8PBenzcuLo60tDQyMjK63H7Z8TNubm42hX81NTXY2tq+txVIiKFMURSKi4tNrXStra2MHDmS5cuXEx4e3qN/P3l5eRw4cIBRo0axcuVKrKys2L9/P4qikJiYyHfffcfixYtNz++VlZWEhIRgb2+Poig0NjYO6L9vQgghRF+wsbFh+vTpxMTEcPLkSfbv309mZibz58/Hz8+vv5cnxIAiwZOZWFlZMW/ePIKDgzlw4ABffvkly5YtIzg4uL+X1mVWVlamKqcOra2tPHv2jDt37nDp0iXu3btHbm4uiqKYwquOx/j5+eHh4dHtO+GvttpZgl6vx8rKitGjR1vk/B0ePXrETz/9xIQJE0xhXn+zt7fns88+48CBA+zatYvZs2eTkJDQqzsxWq2WiRMncuXKFZKTk7tURdbxM25qajIdLzvaCfF2lZWVpla6qqoqXF1dSUpKMrXS9lRmZiY//fQT48aNY8mSJajVaq5fv05hYSFr1qzh+vXrODs7M27cOKA9+Oq4fkfYVF9fL8GTEEII8VcuLi6sXr2aBw8ecPz4cf7yl78QHR3NzJkzpbJfiL+S4MnMRo0axd/93d9x4MABduzYQWJiIjNmzLDobm2WZG1tjb+/P/7+/jx79ozKykr+4R/+oVNl1IMHD8jMzDQd//Mwyt3d/Z1Bx6uhhCXo9XpGjx7drR39uqu2tpZdu3bh7+/PvHnzLHadnrCysmLlypW4urpy6tQpKioqWLBgQa9aZeLj47ly5QpXr15l+vTp7z3+TeFibW2tzHcSH7ymVgO1TW046qzQWb/770BLS4uple7hw4fY2NgwZswYoqOjCQgI6FVgrCgKFy9e5Pz580yaNIm5c+eiUqmoqKjgxIkTxMTE4OHhgV6v77QjZl1dHQaD4bXgSQghhBCdjRgxgl/+8pdcv36dc+fOUVBQwNSpU5k0adKgfS8ohLlI8GQBjo6ObNiwgYyMDM6cOcPDhw9ZuXIlbm5u/b20XklMTOTbb7+luLiY0NDQTq1kzc3NlJWVmcKou3fvcvXqVaC9DNXX19c0vNzPzw83NzfTmyiNRoO1tbVFgqcXL17w7Nkzpk2bZvZzd2hrayM1NRWVSsVHH300IP+wqFQqZs6ciZubG0eOHKGqqoqPPvqox2GcnZ0dsbGxXLt2jcTExPee503BU01NDd7e3j26vhADXebDCramFXGq4BlGBdQqmB3hzRdJI5kQ9Le/BYqiUFJSYmqla2lpYcSIESxbtozw8HCzDCpVFIUTJ06YguLk5GRUKhVGo5F9+/bh4ODAvHnzOHr0KI6OjqZZgNBeeQWYZjyBBE9CCCHE26jVauLi4oiMjOTcuXOcPn2a7Oxs5s6dy6hRo/p7eUL0GwmeLESlUpGYmEhQUBB79+7lz3/+MwsWLCAqKmrQDpwLDAxk2LBhpKenExoa2ulzWq2W4cOHM3z4cNPHmpqaKC0tNYVRt2/f5sqVK6bjX91Jz8bGxiLBU15eHlqtlpCQELOfG9rf0B09epSysjI2bdo04MtpY2JicHZ2ZteuXaYd73ratpOYmEhmZiZZWVlMnjz5nce+OuOpQ21trcV+LkL0p+1XivmXg3rUahVGpf1jRgVO33rOyfxn/G5ZJItGO5ta6SorK3FxcSExMZFx48aZbRdKaN9I4tChQ9y8eZMFCxYQFxdn+tzFixd5+vQpmzZtoq6ujry8PObNm9dpJ85Xgydra2s0Gg0NDQ1mW58QQgjxIbK1tWXBggVMmDCB48ePs3PnTkaNGsWcOXPw8PDo7+UJ0eckeLIwPz8/fvGLX3Ds2DEOHDjA/fv3WbhwoUXbviylI0zbvXs3T548ee8uaTqdjhEjRjBixAjTxxoaGjqFUXq9nvT0dAAuX77MkydPOlVGOTk59TioUxQFvV5PeHh4pzdS5pSVlUVubi7Lli0zy65xfWHkyJGv7XjXkwGITk5OjBs3joyMDCZNmvTO7/HP2ymNRiN1dXXSaic+OJkPK/iXg3oUwNCROv1Vx//+Pw7kkW5TiL+2mTFjxrB06VICAwPNflOitbWVPXv2cO/ePVasWGHapQ7g8ePHXLx4keTkZAICAjh48CD29vavzaerqqrC3t7eVHllb28vFU9CCCFEF3l5efHJJ59w+/ZtTp48yZ/+9CcmTZrElClTTDdmhRgKJHjqA1qt1jRo/MiRIzx69IiVK1fi7+/f30vrtrCwMFxdXUlPT+ejjz7q9uPt7OwIDg7uNHS9rq6Ob7/91nQ3PTc3l7S0NKD9Tc6rlVF+fn5dHkj99OlTKisrWbhwYbfX2RXFxcUcP36ciRMnmgbxDhaenp6v7XgXFhbW7fMkJSWRm5tLTk5Op0qKn9NoNKjValPFU11dHYqiyHBx8cHZmlaEWq16LXR6lRqo9Irm375INksr3Zs0NTWRkpLCkydPWLt2bafy/paWFvbv34+vry9TpkwxDTKfPXv2awFyZWUlrq6upv8twZMQQgjRPSqVivDwcEaNGkV6ejppaWncvHmTmTNnEh0dPWi7YYToDgme+tDYsWPx9/dn7969fPPNN0ybNo3Jkyf3ashzX1Or1SQkJHDs2LHX3pD0lIODA66urlhZWbFmzRqgvQ2royqqtLSUrKwsU3uHo6Pja2HUm3ZY0uv12Nvbd6q4Mpfq6mp27dpFYGAgc+bMMfv5+4KDgwOfffYZ+/fvJzU1lblz5zJp0qRu/fFzc3NjzJgxXL58mdjY2LfOt1KpVOh0OlPwVFtbCyAVT+KD0tRqMM10ehcjKq4+acKossw8uPr6enbs2EFVVRWffPIJgYGBnT5/8uRJamtrWb9+PRqNhrS0NOzs7JgwYcJr56qqqurU+ifBkxBCCNEzVlZWTJkyhejoaE6fPs2hQ4fIzMxk/vz5nWbnCvEhkuCpj7m6urJp0ybOnz/P2bNnKSoqYvny5YPqDXh0dDTnz58nIyODBQsWmOWcWq2209wQR0dHRo8ezejRo4H2trmamppOYdTVq1dpbGwEwNnZuVMY5e3tTX5+PmPGjDF7sNfa2kpqairW1tasWrVqQA4T7ypra2s++ugjTp8+zYkTJ6ioqGDevHnd+p4lJSXx5Zdfotfr31n5pdVqTcFTTU0NgFQ8iQ9KbVPbe0OnDkal/fj37XTXXVVVVezYsYOmpiY2btz42gD/wsJCrl+/zsKFC3F3d6e6uprc3FxmzJiBtbX1a+errKzsFFzZ29tTUVFh1jULIYQQQ4mTkxMrVqwwzX/6+uuvGTt2LLNmzRpU7wmF6A4JnvqBRqNh5syZjBw5kv379/Pll1+ydOlSU8gy0FlbWxMXF0d6ejrTpk3Dzs6u1+fUarXvfDOjUqlwdnbG2dmZ8PBwoD2Mqqqq6hRGXb58udMA6+fPn3P58mVTKNXbXmpFUThy5AgvXrxg8+bNb6y0GmxUKhWzZ8/Gzc2No0ePUlVVxcqVK7s8h8zb25vQ0FDS0tLeOTz/1eCptrYWjUZjlt8dIQYKR50VahVdCp/UqvbjzenFixfs2LEDtVrN5s2bX9tJtb6+nsOHDxMaGsr48eMBSEtLQ6vVvrFV1mAwUFNT06niyc7OjkePHpl13UIIIcRQFBgYyBdffEFubi5nzpzhv/7rv0hKSiIxMdFi82mF6C/yG92PRowYwd/93d9x6NAhUlJSiIuLY/bs2W+86zzQxMXFcfnyZTIzM5k6dWqvz6fT6bq9q51KpcLV1RVXV1fGjBkDtAdDFRUVHDlyhNLSUoxGIxcvXqSlpQVobw3raM/z8/PDx8enW4Per169ys2bN1mxYgW+vr7dWu9AN378eFxcXNi1axfffPMN69ev7/Jdl+TkZLZt28bt27dNweDP/bziydHRUXraxQdFZ61hdoQ3p289f+eMJxVGhmtqeXj/bo9mq73JkydP+OGHH3B0dGTDhg2vVRMqisKhQ4dQFIXFixejUqmoqakhJyeHqVOnvnHWVFVVFcBrM55kVzshhBDCPFQqFTExMYSHh3Px4kUuXLhATk4Oc+bMISwsTF4riw+GBE/9zM7OjjVr1pCVlcWJEycoLi5m5cqVeHl59ffS3sne3p7o6GiuXbtGYmJir8OyV+f/9IZKpcLFxYWysjImTJjArFmzMBqNvHz5slNl1O3bt2lrawPAw8PjtTDqTV/PgwcPOHnyJAkJCZ12h/qQBAcHv7bjXVcCNn9/f4KCgrh06dJb/0i++jOuq6uTNjvxQdqSNJKT+c/eeYyCmgh1KampqQQEBLBq1apeldY/ePCAlJQUvLy8WL9+Pba2tq8dk52dzZ07d1i7di0ODg5A+06i1tbWTJw48Y3n7Qiefj7jqampCYPBMKjbjIUQQoiBRKfTMWfOHGJjYzlx4gS7du1ixIgRzJs3b8C/LxSiKyR4GgBUKhVxcXEEBgayd+9e/vKXvzB37lzGjx8/oFPuhIQEsrKyuHHjxhuH0naHVqulqakJRVF6/TXfv3+fpqYmUzikVqvx9PTE09PTNIPIaDTy4sWLTmFUfn4+BoMBlUqFp6dnpzBKq9Wye/duRowYwaxZs3q1voHOy8uLzz//nB9//JFvvvmGVatWERoa+t7HJScns337doqKijrtWthBq9Wa3sh2VDwJ8aGJC3Ljd8si+ecDekBB4W/PZ2oUjMD/tTiCFWOnkJKSwqNHj/j3f/93kpOTSU5O7naYc+vWLfbu3UtQUBCrV69+Y+XSy5cvOXHiBLGxsaaW7rq6OrKzs0lKSnpr1WdlZaWpzblDR3txfX29zKEQQgghzMzDw4OPP/6Yu3fvcuLECb788ksmTJjA9OnT33hjSYjBQoKnAcTb25svvviCkydPcvToUe7fv8/ixYsH7BwcNzc3wsPDycjIIDY2tldDvHU6HUajkba2tl5XT+n1ejw9PV8bqvsqtVqNt7c33t7exMTEAO3zTF4No54+fcrNmzcxGo1A+2wuBwcHcnJy8PPzw8vL64O94+/o6MjGjRvZt28fKSkpzJs3761VER1GjBiBn58fly5demvw9OqMJ7l7Iz5UGyYNJ8jFmv/v92coMbqhACoUpo1yx+7RFfzqtTg6juSLL77gxo0bHD16lAsXLpCdnc2KFSsICgrq0nVycnI4fPgwERERLF++/I3PRwaDgf379+Po6MjcuXNNH09PT0ej0TBp0qS3nr+yshJnZ+dOz+0SPAkhhBCWN2rUKEaOHMnVq1e5cOECer2e6dOnM378+EG1I7oQHSR4GmCsra1ZuHAhwcHBHDp0iC+//LJbb0T6WmJiItu2baOwsPCts326omPod1NTU6+Cp5aWFm7fvk1SUlK3H6vRaPDx8cHHx4fY2FjgbzvYPXz4kFGjRvHs2TPy8vJQFAWNRoO3t7dpJz0/Pz88PT0/mDDKxsaG1atXc+rUKY4dO0ZFRQVz5sx56x87lUpFcnIyqamplJSUvLaF+89nPMmbVvEh81BqmGFTxC9/tYC0q1kU37/Dbzcv4uLFVs6fP8/YsWPx8fFh3LhxjB49mgMHDlBYWMh3333H6NGjWbRokakl7k3S09M5deoU48ePZ8GCBW/9d3np0iWePn3K5s2bTdVQ9fX1ZGVlkZCQ8M4NF6qqqjrNd4LOwZMQQgghLEej0ZCYmEhUVBRnzpzhp59+4vr168ybN2/AvjcU4m0keBqgwsLC8PPzY//+/Xz33XckJyczderUARdq+Pv7ExgYSHp6eq+Cp45Wj+bm5l61YN25c4fW1lYiIyN7fI5XXbt2jfv37/PRRx8REREBtIdRz549M1VFlZSUkJ2djaIoWFlZ4ePj0ymM8vDwGLR3JtRqNXPnzsXNzY1jx45RVVXFihUr3tjOAzB69Gg8PT1JS0tj/fr1nT7XETw1NzfT0tIirXbig1ZcXIyzszM+nu6M9PMk//oVWltbmTx5Mnq9niNHjrB582bUajU6nY61a9dSVFTE3r17KSws5N69e8ycOZNJkyZ1ev5QFIWzZ8+SlpZGUlISM2bMeGt78uPHj7l48SJTpkzB39/f9PGMjAxUKhXx8fHv/BqqqqpeqxztqMCVAeNCCCFE33BwcGDp0qXExcVx7NgxvvvuOyIiIpg9e3anOYxCDGQSPA1gTk5OfPLJJ1y+fJlz587x4MEDVqxY8dod6P6WmJhISkrKG6tcuurViqfe0Ov1DBs27LVtxHvi3r17nDlzhqSkJFPoBO1Vaf7+/p3eyLW0tFBWVmYKo4qKisjMzDQd7+vr2ymMcnd3H9Dzu34uLi4OFxcX9uzZw7fffsu6deveGBypVCqSkpLYv38/ZWVl+Pj4mD7XMcerpqYGQCqexAft1edDT09PoH3Wko+PD4sXL+brr78mMzOzU6vbyJEj+fWvf82pU6fIzMzk5MmTZGVlsXTpUgIDAzEajaa7nbNnzyYxMfGt129paWH//v34+fmRnJxs+nhDQwPXrl1j4sSJ750VUVlZ+dque9bW1tjY2EjFkxBCCNHH/Pz82Lx5M3l5eZw+fZo//vGPJCYmMnny5LfeFBZioJDgaYBTq9UkJyczYsQI9u7dy5///GcWLVpktooecwgNDcXDw4P09PQeB0+vVjz1VGNjI3fv3mX27Nk9PkeHiooK9u7dS0hICNOnT3/v8TY2NgQGBnb6+pubmyktLTUNL7979y5Xr141He/n59cpjHJ1dR3QYdSoUaPYtGmTace79evXv3GOVmRkJOfOnSMtLY1Vq1aZPq7ValEUhcrKSgCpeBIfrI5/+x0tux3B04sXL/Dx8SEgIIDx48dz9uxZwsPDO4Ww1tbWLFiwgOjoaPbu3UtFRQXffPMNY8aMobW1lbt377JkyRLTbLq3OXHiBLW1taxfv75TpeyVK1eA9s0h3vc1NDY2vvFOqr29vQRPQgghRD9QqVRERUURFhbGpUuXuHz5Mrm5ucyePZsxY8a89b1EU6uB2qY2HHVW6KwHVgeNGBokeBok/P39+eUvf8nRo0fZu3cv9+/fZ/78+QMi3VapVCQkJHD48GHKy8vx8PDo9jnMUfF069YtFEVhzJgxPT4HtFcKpKSkYGdnx4oVK3rcJqfVagkKCurUg93Y2NgpjLp16xYZGRlA+/fg52GUs7PzgAqjfHx82LJlCz/++CNff/01H330ESEhIZ2OUavVTJ48maNHjzJ9+nTc3d2Bv/2MJXgSH7rHjx+jKIopiNbpdDg4OPDixQvTMbNmzaKwsJBjx46xZs2a187h5+fHr371K1PFa35+PgAxMTGm3Tlf9eoLyuKie2RnZ7No0SLTvz9of/65du0aEyZMMM1qepuOf6dvqrCV4EkIIYToXzY2NsycOZPY2FhOnjzJ3r17yczMZN68efj6+pqOy3xYwda0Ik4VPMOogFoFsyO8+SJpJBOCet8hIkRXSfA0iOh0OlasWEFwcDA//fQTJSUlrFq1qtOTS3+Jiori7NmzZGRksHjx4m4/vqPiqTfBk16vJygoqFeBhqIoHDhwgOrqarZs2fLOwbs9YWtry8iRIxk5cqTpYw0NDaYWvdLSUvLy8rh8+bLp+I4QquP/HB0d+zWMcnJyYtOmTezdu5edO3eyYMECJkyY0OmY6OhoLly4QFpaGkuXLgX+9jOurKzE1ta217sXCjFQFRcXY2dn1ymE9/T0pLy83PS/dTod8+fPZ/fu3dy6deuNM/I0Gg1xcXEUFBTw/PlzFEUhJyeHJ0+esGjRIgICAt74gjLIqobZgeGmiqsOV69exWAwvLNFr0NVVRUgwZMQQggxkLm6urJmzRqKioo4fvw4X331FbGxscyYMYN9eeX8y0E9arUKo9J+vFGB07eeczL/Gb9bFsmGScP79wsQQ4YET4OMSqUiOjqagIAA9u7dy9atW5k5cyYJCQn9GkZYWVkxadIkLly4wPTp09+5G9ObqFSqTruedVdtbS0PHjzoUej1qkuXLnHr1i3WrFljao+xNDs7O0JCQjpVDtXV1XUKo7Kzs7l06RLQ/qbv52FUd7/fvWVjY8OaNWs4ceIER48epaKigtmzZ5t+B62srEhISODMmTNMmzYNZ2dnU/BUU1Mj1U7ig9Yx3+nV52RPT0+Kioo6HRceHk5oaCjHjh1j5MiRpn8jHWpra9mxYwe1tbVs3ryZsrIyTpw4QXl5OV9//TV1PjHseah57QXlg1ZHvrqvIuBaiekFZVNTE1evXmX8+PFder6orKzE2traNEz8VXZ2djx79qy73xYhhBBCWMjIkSP5u7/7O7Kysjh37hynbzzgYH0wAIaOFwl/1fG///mAnjBvR6l8En1CcchilAAAQ9VJREFUgqdByt3dnc8//5wzZ85w6tQpioqKWLZsWZ8HEK+aMGECly5d4tq1a8yYMaPbj+8YPt0T+fn5qNXqXu2sd+fOHc6dO8fUqVNfG6jb1xwcHAgNDSU0NBRor8Sqra3tFEZlZmaadpZydHTsFET5+vq+t5Wmt9RqNfPnz8fNzY0TJ05QWVnJihUrTJVMHb8P6enpzJ8/3/Smuq6uTgaLiw9WW1sbjx8/ZtasWZ0+7uHhQVZWFgaDwTRzSaVSsWDBAv74xz9y5swZFixYYDq+oqKC7du3YzQa2bRpE56envj7+xMaGsqRI0dIKyzlp4ftbcA/f0Gp0B54vfqC8tq1a6Zd9bqisrISFxeXN97QsLe3l13thBBCiAFGrVYzceJEIiMjWffHc6jqjSi8fWSIWq1ia9oDCZ5En5DgaRDTaDTMmTOH4OBg9u/fz5dffsnSpUsZNWpUv6zH1taW2NhYsrKySEpK6vb8KZ1O1+PgSa/XM2rUqPfu0vQ25eXl7Nu3j9GjRzN16tQencOSVCoVTk5OODk5mUIxRVGorq7uFEZlZGSYvofOzs6vhVE9/f68y6RJk3BxcWHv3r2mHe8cHBywsbFh0qRJXL58mSlTppjaFuvq6no0B0yIweDp06cYDAaGD+9cuu7p6YnRaKSioqJTNaWzszPTp0/n5MmTREVF4e/vz7Nnz9ixYwdarZaNGzfi7OxsOt7JyYl169Zx+E/nUD1qoHPk1FnHC8qxvvZcuXKF2NjYLlcbVlVVvXUHVWm1E0IIIQYutbWWvEreGTpB+42rkwVlNLUaZOC4sDgJnj4AwcHB/P3f/z0HDhxg586dxMfHM3PmTKys+v7HGx8fz7Vr18jJyem0TXhX6HS6HrXaVVZW8uTJE1auXNntx0L77k2pqak4OjqyfPnyATXM+11UKhUuLi64uLgQEREBtIdRVVVVpjDq6dOnpKWlmb6vrq6ur4VRP2/v6YnRo0e/tuOdl5cXkyZNIiMjgytXrjBt2jSgfcCxtNqJD1VxcTE2Njav7fj46s52P2/jnTRpEnl5eRw+fJj58+eTkpKCm5sbH3/88RsrF5vbjFx93GiqbHqbjheU6VcbaW5u7nK1E7Q/r746i+5V9vb2tLa20tLSMiA2uBBCCCHE39Q2tWF8152pVxgV+M8v/4K3sx0ODg7Y29tjb2+Pg4OD6X87ODhgZ2fXaZfcwUp29+s/Ejx9IOzt7Vm/fj1Xr17l9OnTPHz4kJUrV/Z5ZYmLiwtjxozhypUrxMXFdWtHuJ7OeMrLy8Pa2trUltYdiqKwf/9+amtr+eKLL8wSwvQnlUqFq6srrq6upt39FEWhoqKiUxh1/vx5Wltbgfa2zVd30/P19e3Rm0lfX99OO96tXr2akSNHMmHCBDIzM5k8eTIqKxsqG9vQ2kvwJD5MHfOdfv7cZ2dnh62tbaed7Tqo1WoWL17MV199xfbt2wkICGDdunVvfT7q7gvKixnXGB8T06ly6l06Aux3VTwB1NfXS/AkhBBCDDCOOivUKrr0WkGFQmNNJeWtDVRVVWEwGGhubn7jezJbW9tOYdTbQip7e/sBF1LJ7n79T4KnD4hKpSI+Pp7hw4ezd+9evvrqK+bNm0dMTEyfVvEkJiby1VdfUVBQQGRkZJcfp9PpqKmp6fb19Ho9o0eP7tEboAsXLlBYWMi6des6bTv+IVGpVLi7u+Pu7s7YsWMBMBqNvHz5slMYdevWLdra2oD26oxXwygfH58u7ULn7OzMpk2b2LNnDz/88AMLFy4kPj6eg+l6Nnx5get1Y1FQsevAM2bfyZIne/FBMRqNlJSUkJSU9NrnVCrVazvbvaq8vByVSoWiKCxcuPCdIbiDVoMK3tlmZ7ouYGxueOOa3qa+vp62tjZcXFze+PlXg6e3hVNCCCGE6B86aw2zI7w5fev5a3MgX6XCSKC6CpWxDUWxoaamBoPBgJWVFYGBgXh7e+Pm5oaDgwMtLS3U19dTV1dn+v9lZWXU19fT2Nj4+hp0utfCqLf9f0t36Wy/Uiy7+w0AEjx9gHx9ffnFL37B8ePHOXz4MEVFRSxatMg0Y6cvrj9ixAjS09MZM2ZMl0OvngwXf/bsGS9evGDmzJndXuft27e5cOECM2bM6FG11GCmVqvx9PTE09OTcePGAe1vml+8eNEpjNLr9RgMBlQqFV5eXqYgys/PD29v7zf+odBqtaxbt45jx45x+PBhWobHc6QpFFVTq6k1SJ7sxYfo2bNntLS0vDbfqYOHhwdPnjx57eOZmZn89NNPREZGUlJSwokTJ/j444/f+NxZUlLCyZMnCVTreGR0wfiOdruOF5Qers7dCuYrKysB3lvxJAPGhRBCiIFpS9JITua/ewdaBTWJ7s0Ya400NDRgNBpxdXXFy8sLo9FIQUGBaaajp6cnAQEBBAQEEBgYiKurq+l1isFgeC2UevX/19fX8/z5c+rr69/42kGr1XY5pOrKjfBXZT6s4F8O6lGQ3f36mwRPHygbGxuWLFlCcHAwhw8f5ssvv2TFihUEBgb2yfUTExP54YcfePjwISNGjOjSY3oy40mv16PT6QgJCenW4168eMH+/fuJiIjoViXAh0ytVuPt7Y23tzcxMTFA+x+S58+fdwqjbt68idFoNB3/ahjl5eWFRqNBrVazYMECniuO/F+Xa2gv5O38Blme7MWHpri4GI1Gg5+f3xs/7+npyY0bN0z/fhRF4dKlS5w7d45JkyYxd+5c7t27x86dO8nLyyMqKsr02MrKSk6fPk1BQQG+vr78dlEM/3jo4TvXo6BijNVzKirq+I//+A9mz55NbGzse28GvC946tikQAaMCyGEEANTXJAbv1sWyT8faK/0eTV0UaNgBP4/s0bwyxkLuHv3LhcvXuTJkyc0NjZy584dAEJDQwkJCUGj0fD48WMePXpEdnY20H4T6tUgytfXt0u7VhsMBhoaGt4ZUpWXl5v+++dsbGy6HFLZ2NiwNa3ota//52R3v74hwdMHbsyYMQwbNox9+/bx7bffMnXqVJKTk7s1e6kngoOD8fLyIj09vcvBU3crnhRFQa/XExER0a0+4qamJlJSUnBxcWHp0qWDZph4f9BoNPj6+uLr68v48eOB9u3inz17Zgqinjx5Qk5ODoqioNFo8PHxMYVRF8o0aFQqDO/oCZIne/GhKCkpwd/f/60l456enhgMBtP8pBMnTnD16lWmTZvGlClTUKlUjBo1ijFjxnDixAlGjRqFSqXi4sWLXLt2DTs7O5YtW0ZUVBQqlYoatQP/xwE9KpROwa5GrcJoVJjm8Iz4AE+qq22oqKjgyJEjZGVlsXjx4reGY9C+o52dnd1bq6Q0Gg22trYSPAkhhBAD2IZJwwnzdmRr2gNOFpRhVNpb8GeFe+FefpO2Ww9pnhxMaGgoo0aN4sGDB1y8eJHi4mIcHBwoKyujsLAQe3t7oqKiWLVqFY6Ojjx+/JiSkhIePXrEuXPnaGtrQ6PRMGzYMFMYFRAQgJ2d3Wtr0mg0ODo6dmmjIaPR+N6QqqKiwvTfitL5DYfKyoaTfx3z8S6yu1/fkOBpCHBxcWHjxo1cuHCBCxcu8ODBA5YvX97lQbM9oVKpSExM5MCBAzx//hwvL6/3Pqaj4klRlC6FQY8fP6aqqqpbc6SMRiN79+6loaGBL774Qgbj9oCVlRXDhg1j2LBhpo+1trZSVlbG06dPKS0tpbi4mCuZ17nQHCtP9mJIUBSF4uJiU0D7Jh272T179oyLFy9y48YNFixYQFxcXKfj5s2bx3/+53/yww8/UFFRQVtbG8nJySQmJnYqMV8fF0DO2SMU2QRx4yV/fUGpMDvcm8kezTy4dp0FC36Fm5sb169f58yZMzx79oy//OUvxMTEMHv2bFP10qsqKyvfO7vJ3t5egichhBBigJsQ5MaEIDeaWg38+//+M2HBQSxdNJGXL4P5y1/+wv79+1m7di0qlYqRI0cycuRISkpKuHTpEvfu3cP5/9/enQdVded7v3+vzTzJJJMMmxlFFFEUBRzjFKc4JenuDN19OulO9+l7TtWpuvfWuXX73FvVp+qpe5/up+7p83R3pk6nY+ccTaIxaiIaZxE1CqICCoIKCAKiTAKbaa/7B4fd7jCInRCTzudVRSmbxV4LUq6s9Vnf7/fn709wcDDFxcWcPn2aKVOmkJ6eTnZ2Nl5eXgwMDNDQ0EBNTQ23bt3i4sWLnDp1ChgcMfBgVVRQUNAjPfC3WCyOweUPY7fb6e7udoRSd+/epbz6Nmbh+PZnNwcXb9G9yMRR8PQtYbFYWLp0KfHx8ezatYtXX32VDRs2MG3atAnbZ1paGocPH+b06dM89dRTD93e09MT0zTp7e0d1+pyJSUl+Pr6jjpPZSRHjx6lqqqK5557jqAgVdh8Wdzc3Bz/YxlSd7edbb86Oa7v18levumam5vp6uoa83zk5+eHm5sbR44c4d69e2zevNkx8H+IaZrU19fj5uZGXV0diYmJbNiwYcQngzU1NUzqbeY3z28gJHwKldW32PHnP/GDBc+xZ88e0tLSHCubzp07lxkzZnDixAnOnDnDhQsXKC0tZdWqVcMWoGhtbR11sPgQBU8iIiLfHJ5uLsRFTKb17uDqusHBwWzdupV3332Xo0ePsmzZMse2MTExPPfcc9TX13Py5EmuXr2Kv78/06ZNo729nby8PA4ePMjUqVNJT08nISHB8UB6aGXc2tpaR1XUhQsXgMEVfsMjowkOjyQpNpq4mNGrxB9Fb2+voxNjqBqrs7OTftPA4OEPwWFwlTs/T0UjE0m/3W8Zq9XKK6+8wt69e3nvvfeYPXs2q1evfuRBbePh4uLC/PnzOXz4MEuXLn1o3+9Q2NTT0/PQ4Mlut1NaWkpaWtq42wZLS0vJz89n+fLlJCQkjO+HkHEzTZPm5mZu3rxJTU0NVTdrMEjSyV6+FWpqajAMg6ioqFG36e3txTAM7t69y3e/+12SkpKcvt7Q0MDBgwe5ceMGsbGx+Pr60tLSMmJVEkBZWRmTJk0iKioKwzCYnhBDgJ8Pp06dor29nYULFzpt7+npycqVK8nMzCQvL49r166xd+9ezpw5w6ZNm4iIiAAGK54erGgciY+Pj4aLi4iIfIOEhoZy7tw5x+eJiYk88cQTHD58mPDwcFJTU522nzJlCs8++yyNjY3k5+dTVFSEn58fixcvxmKxcPnyZf7jP/4DPz8/Zs6cyaxZs5g8eTKBgYEEBgY6ZlXabDb2n69g22d1XLg8gHm5HYMSrC75LIkwyUkOdzzAHlrAZDQDAwM0NjZSV1fnGPlx585gmDb0EM00TTw9PUlISKCiwZNzdbYxF2NxMWBFargegE8w3el9C3l5efH0009TVFREXl4eNTU1bNmyhfDw8C99X3PmzOHEiROcPXuWFStWjLnt0Kp7NpvtoSHVzZs36ezsHFYtMJrGxkY++ugj0tLSyM7OHt/By5jsdjuNjY1UV1dTXV1NTU0NXV1dWCwWpkyZQsbMNLKr3DlT2znmQD8Xi8GKaWE62cs3WnV1NREREaOG5p2dnbz77rv09/cTFBTkFDp1dHRw5MgRiouLCQ4OdoRSzc3NvPrqq5w8eZKlS5c6vZ/dbufKlStOK4cOzYi6ePEiqampjta+zwsKCuJ73/se1dXV7N27lzt37vD6668zY8YMVq5cSXt7+0Nb7by9vbl3796j/IpERETkMQoNDXXMTBpqX8vJyaGxsZHdu3cTHBxMWFjYsO8LCwtjy5YtLF68mFOnTnH8+HG8vLyYP38+0dHRlJaWUlhYyKlTp4iKimLWrFlMnz7dcW/3fnEj//JxLRbLXxYbMjGosQfy9i2T6tYaYgsKgMFKrAfnRAGOgKm+vp6GhgbHits+Pj7Y7XbHcU6ZMsUxryo8PJy6ujrOvLuXs0QzlgHTZJbXPcfiLzIxFDx9SxmGwZw5c4iJiWHnzp28+eabrFixgnnz5n2pw7Y9PDyYM2cOhYWFLFq0aMxKpgcrnh7m8uXLBAYGjjkgd0hXVxfbt28nODiYDRs2aJj4X2lgYMAxv2koaOrp6cHFxYWoqCgyMzOxWq1ERUU5ZmcFJN3jmddOj/m+drvJS7njG0Av8nVVU1MzautyW1sb27Ztw2azMXfuXMcw/v7+fgoKCjh16hSurq48+eSTzJkzx7FYQkhICDk5OeTn55OWluYUJNXW1nL//n2mT5/utC93d3fsdvu4Zt9ZrVb+/u//nuLiYg4cOMDly5e5cuUKpmmq1U5ERORvzFCo1NTU5AieDMNgw4YNvPXWW2zfvp2XX355xKHgMDiz6amnnmLRokWOAMrNzY2srCx+9rOfUVNTQ3FxMR9//DF5eXlMmzYNl/Bk/mVvNSYMexA9+KnBsfvhvPW95Xh3NXDt2jUqKiooLi522tbLyws/Pz9CQ0NpaWnBZrPR399PYmIiSUlJJCYmOh13UVERn3zyCdMiIvjF/CT+Na9y2Op2Q4ux/GCGN02l+bzTUceWLVvGNfhcHp2Cp2+5kJAQXnrpJT799FPy8vK4fv06GzZseGiZ46PIysrizJkzFBYWjllt9GDF01j6+/u5cuXKuEKyoWHiPT09fP/735+QlsK/Vf39/dTV1TmCptraWvr6+hzznLKzs7FarURGRo7anz3WUq5DJ/tfbkzTinbyjdba2kpbW9uI852am5vZtm0bFouFv/u7v6O5uZmzZ89y5swZTp8+TVdXF/PmzWPRokWOc+CDFi1aRGlpKfv27eMHP/iB45xXVlaGn5+fU2uf3W6noqICwzDGXY1kGAYZGRlMnz6dY8eOcebMGQD27NnDs88+O2q4PxQ8jXcxCBEREXm8AgMDcXV1pampifj4eMfrbm5uPPvss7zxxht88MEHPP/882NW/gQGBrJu3ToWLVrkeIB2+vRp5s6dy8aNGxkYGODSpUsUFxfzfmEXEABjtLoZmPzrBwUsslQAgzMxExMTcXFxoa2tjZaWFrq7u+nu7nZ8PSEhgWnTphEbG+t039rf309eXh6FhYXMmTOHJ598EhcXF9KtIbxx8joHyxowMbAYsGJaGC/lxpEZG0R1dQI7d+7ktddeY/PmzU6/H/lyKHgSx5P2hIQEPvroI1599VU2bdr0pf2DmzRpEjNmzODs2bNkZWU5nuZ/3niDp8rKSnp6esbVZnfo0CFu3LjBCy+88NAn+N92vb293Lp1yzGj6datWwwMDODh4YHVamXx4sVYrVYiIiJG/W84kpGWcv38yV7km6ympgYYHMb5oPr6ev785z/j6+vLCy+8gJ+fH3V1dQAcPHiQ1NRUli9fPmZbm6urK+vWreOdd96hqKiIOXPmYJomV65cITU11Sn0KSkpoaWlhdjYWMrLy8nJyRn3z+Du7s7KlSvx9vbm8OHDtLe388Ybb5CcnMymTZuGhWI+Pj70Dpjcam4nJMBXrbIiIiJfcxaLhZCQEBobG4d9LSAggKeffpp33nmHgwcPsnr16oe+36RJk1i9ejULFy7k9OnTnDt3jrNnzzJnzhyys7OZM28+/+P/PsDoAzcG2TG43juJ//fZTbgaJrdu3eLatWu0tbXh5uZGXFwciYmJBAQE0NLS4hhcXlpaCgyOEIiOjiYkJITLly/T3NzM+vXrmT17tmMfmbFBTJ3szv9T9QlrN25h1vSpTtcuVquVn/zkJ+zatYtt27axZMkSFi5cqNa7L5GCJ3FITk7mlVdeYffu3Wzbto2cnByWLl36SCHDaLKzs7l48SIlJSWkp6ePuI2bmxuGYTy01a6kpISwsLBR55cMuXz5MqdPn2bVqlXExamV6/NsNhs1NTWOtrn6+nrsdjve3t5YrVaWL19ObGwsoaGhX/ik++BSrh22fvw8XXWjKn8zqqurCQkJcSrxvnHjBtu3byc0NJTvfe97dHV1sWPHDq5evQoMrjK3Zs2acb1/XFwcs2bN4tChQ6SkpHDv3j06OjqchoDa7XZOnDhBcnIyU6dOZc+ePXR2dj5y9WpPTw/+/v5s3bqVnTt3UlFRwa9+9SsWL15Mbm4uhmFw7uY9fpN/l/ye2Wz7H/mDQXJqGC/nxitIFhER+RoLDQ11DOP+vNjYWFavXs3+/fuJiIgY9Z7t83x8fFi+fDk5OTmcPXuWs2fPcv78eeJTZ2E3x1cVbQIffLQPT/rw9PQkIiKCuXPnMnXqVAIDA53uRebNmwcMjjKora2ltraWqqoqLl68CAw+TLt69SqdnZ1ER0cTGRmJm5sbXV1duBomkcGTRrwP8fHx4bnnnuPEiRMcO3aMmpoaNm/e/KV2An2bKXgSJ35+fjz//PMUFBRw5MgRbty4wZYtWwgK+mI3E6GhoSQmJlJQUMDMmTNHbM0wDANPT88xK556e3spLy9n8eLFY+7v9u3b7Nmzh/T0dLKysr7Qsf+t6OrqcrTNVVdX09DQAICvry+xsbGkp6djtVqZPHnyhLXOeLq5KHCSvxlDQWpVdS2JsX+pdrp69SoffPABVquVDRs2cPz4cc6dO4efnx+bN2/m1KlTDAwMPNK+VqxYQUVFBXl5efj4+ODn5+cYugmDrXd3795l06ZNjurOa9euMWvWrEfaT0tLC4GBgURFRfEP//APXLhwgQMHDnDkyBE+++wzXKcu5f/Lv43FwDEg1G7CoStNHCxt5Jcb03g+a3jLoYiIiDx+oaGhlJWVjdoqP3fuXG7fvs3evXuZPHnyQ1e5fZCXlxdLliwhMzOT/fv3U1JSjMGsca1wbWASFTYZV8Pk/v373Lhxgxs3bnDo0CEsFgsBAQEEBAQQGBjo+DMwMJD4+Hi6uro4f/480dHRZGVl0dzcTG1tLfn5+fT29mKxWIiIiHjo4lUwWBW2ZMkSxxzk1157ja1btw6ratfD9Een4EmGMQyDnJwcYmNjHf/g1qxZM+7UezTZ2dm88847VFVVkZiYOOI2Hh4eYwZPV69epb+/f8zBuZ2dnezYsYPQ0FDWrl37rZ0/0tHR4RQ0DT3dCAgIwGq1Mm/ePKxWK4GBgd/a35HIX+PczXu8mX+dT8sasZtgEMN8w5vwm/dwaRlcKW7q1KlERUXx6quvYrfbWbJkCfPnz8fNzY1r166N+rRxNN7e3qxatYoPP/wQLy8vZsyY4bRs8IkTJ0hMTHRcIEZFRVFeXv7IwVNra6ujmtQwDGbPnk16ejp5eXl8/NlVPsmvBwwGPlc3PzS/7Re7S5ga5qfKJxERka+h0NBQ+vr6aG1tHbHV3zAM1q5dS3NzMzt27ODHP/6xYxD5WEzTpK6ujgsXLlBaWkpPTw9xVitpjXZKWi1jhk8GJgvj/Pn7H69zvNbX1+eY79TS0kJraystLS3U1dVRUlIyrEPG29sbb29vbt26RWBgIFlZWaxcuZLe3l5u377tqIoCeOuttwgMDHRaPS80NNTpfig+Pp5XXnmFnTt38vbbb/PEE0+QnZ3N+eoWp2tAVX2Pn4InGVVkZCQ/+clP2L9/P7t376aqqoq1a9eOuTLdWGJjY4mIiKCgoGDU4MnT03PMVruSkhKio6NHndc0MDDABx98QH9/P88888y3aph4a2sr1dXVjhlNQ8OFg4ODsVqt5ObmYrVa8ff3f8xHKvLNte1MNf/y0eCw/KFZ+SYGn9Xb2PraaRa4VrMmOY6GhgauXr3K7NmzWbJkidNF2+TJk7l27dojD+YempVXX19PcnKy4/UrV65w584d1q9f73gtJSWFEydO0N/fP+rw/5G0tLQ4vTeAi4sLa9euZVdTMJaKZuyjfC+AxWLwZv4NXXyJiIh8DYWGhgLQ2Ng46oxJV1dXnnnmGV5//XXee+89XnzxxVGvJTo7O7l48SLFxcXcuXOHSZMmMW/ePKZMmUJDQwMZHdVcbg0e85hMwLfuMz78sJkVK1bg6+uLm5sbkydPZvLkycO3N02ampr44IMPuHfvHtOmTcPT05PW1lYqKipobW3Fbv/L1Yqfn5+jSqqrq4s5c+bQ1dVFY2Mjly5dAgaLHx4MoiIjI/Hz8+PFF1/kyJEjHDp0iPcu3GZPnZfTNaCqvsdPwZOMycPDg40bNxIfH8/HH3/MrVu32LJlyyOVXQ4xDIPs7Gx27tzJ7du3iYiIGHF/owVPXV1dVFVVsWrVqlH3cfDgQWpqanjxxRf/pgMW0zS5d++eI2Sqrq6mra0NGFwqNSEhgWXLlmG1Wsf1lEJEHu7czXv8y0clIy4JPPT56f4YAivLyU4K4zvf+Y7jAu9BISEh2Gw2Ojs7H+nfp2EYhISEUF9fT2VlJQkJCY5qp/j4eKfWu+TkZA4fPsyVK1eIjo6mr6+P3t5e+vr6Rv27zWZznGcbGxudtuns6eNIXcxDy+UH7CYHyxqw9Q2o9FxERORrxs/PD09PT5qampg6deqY2z377LO8/fbb7N+/n3Xr1jkeltntdiorK7lw4YJjNd2kpCSmTp1Ke3s7RUVFnDx5Eg8PD2YmJvLKlEBePd+KgR2Tv8xqsmBix+Bfn0oj1X0Khw4dory8nKVLlzJ37txRZ8xWV1fz/vvv4+bmxksvvTTsntJut9PR0eFUKdXa2srNmzcxDIPCwkLHti4uLnh7eztW+7tx44ZjHEJ4eDhWq5Xo6GiSc57knw83AaNfA6rqe2wKnmRcZs6cSVRUFLt27eKtt95i6dKl5OTkPHKLVmpqKocPH+b06dNs3rx52NfHmvE01I/84EDdBxUXF/PZZ5+xZs2aEZc1/yYbSvYfbJ3r7OzEMAwiIiJITU3FarUSExODl5fX4z5ckb9Jb+Zfx2Ixhl1wPMgAOqZk8vzzo8+hG2pla2hoIDIy0in8GSkQevDPsrIyvL29OXPmDPX19dhsNpqamvD39+ff/u3fnLYH2LVr15g/k8Viwc3NDXd3d8f53Gaz4erqipubG15eXri5udFtumLWjVXr9Bd2Ezps/QqeREREvmYMwyA0NJS6hibudPSMOaMoKiqKtWvXsmfPHsLDw4mLi6O4uJiLFy9y//59Jk+eTFJSEt3d3VRUVHD16lVCQkJIT08nKSmJ6OhoxyJVqVNK+fW+ImrNoP8aUwCJXt0kDtTQf/UOAYsW8fOf/5wjR46Ql5dHcXExa9ascXqoZpomZ8+e5eDBg8TGxrJ161anhV2GWCwW/P39hxUh5OXlcf36dV5++WVaW1sdodSDAVVPT48jeGpoaKCxsZGzZ89ypDcBg4AxV+hT1ffYFDzJuAUFBfHDH/6QY8eOcfjwYa5fv86mTZvw8/Mb93tYLBbmz5/PgQMHWLZs2bCWOU9PT0eL2OeVlJQQFxc3YoVAXV0d+/btIyMjg8zMzEf6ub6O7HY7DQ0NjpCppqaG7u5uLBYLkZGRZGRkOBL4v7b1UUTGz9Y34OjnH4uJQf7NDra/vxMGRq8yAnj33Xcful/DMJyCob6+Pvz9/enr66OhoQGLxYKvry8pKSmO7Yb+vHLlCnV1dWzZssXp9Qf/fHDV0vLycrZv387zzz8/7Lxu6xvgfz+Th/mwNZEZnHfg56nLCxERka+bczfvsbs5lEsVJv984dBDZxSlpqZy6dIlPvnkE2BwFfKh+bDNzc20trYSFxfH6tWrSUpKGnUcSmD/PZ70q+Mf/+m73O8ZwM/TFQ9XC+Xl5Zw8eZJt27YRGRnJwoULmTVrFvv37+ett95i1qxZLF++HHd3d/bu3cvly5dZsGABy5cvf+RVt7u6uvDy8qKnpwfDMPD29sZiseDj48PkyZPp6emhu7ubzs5OOjo66OzspLu7m/vdPdTYAlT1/QXpylAeiYuLC0888QTx8fHs2rWL3//+9zz11FOkpKSM+z0yMjI4duwYZ86cYfXq1U5fG63Vrr29nerqap566qlhX7t//z47duwgIiKCNWvWfCMHZQ8MDFBfX+8UNPX29uLq6kpUVJRjEHhUVNS3am6VyNdFh63/oaHTEBODu+2dBHq54u3tjZubm+NjKPA5ffo0ISEhZGZmOl4bLRgaOqcdOHCAkpISfvrTn1JfX88f/vAHAF588UXi4uKGHUdQUBDvvPMO3t7eTJky5aHH3dLSgqur67Bwv6uri/379xNjdFNrBmAf48LLxWKwYlqYLrhERES+ZobmVBoPWZnWNE1qa2u5cOECJSUl9Pf3Y7FYsNvt9PX10dPTQ0pKCsnJycTGxo7r3qSuro4pU6bg5e6Kl/tfIoipU6eSkpJCVVUVJ0+eZPv27YSFhZGbm0t3dzdHjhzhypUreHh4cP/+fdavX098fDxNTU309PRgs9kcHw9+PtLfu7q6ME2TX//61yMeo4eHB56ennh6euLh4YGPjw/u7u70GN2YbeO7v1TV9+gUPMlfJS4ujp/+9Kd89NFHbN++nblz57Jy5cpxDbF1d3dn7ty5nDlzhsWLFzu1ho22ql1paSkuLi7DepEHBgZ47733ME2TZ5555pGG6D5OfX191NXVOWY01dbW0t/fj7u7OzExMY5B4FOmTPnG/Ewif8v8PF2xGIwrfLIY8KMXnxvzoqOuro6urq5RW4c/zzRNysrKmDp1qqPy0cfHh66urlGHg8bExODp6Ul5efm4g6eAgACn8P7KlSt8/PHHDAwM8NNly/jnQ01jvofdbvJS7vAQTERERB6fB+dUfr56+cEZRbaGKtqriuno6HCETYZhMGXKFJqbm/H19eXll1/G3d193PseWvFu5syZ3L9/f8RwyGazYbVa8fLyoq6ujp07dzra/oe2Bdi7d++I+3BxcXGERkPBkaenJ/7+/o7XCgsLCQoKYv78+cO28/DwwDAMx4DyiooKx7wn34AgDMyHVjyBqr7Hot+K/NW8vb35zne+w7lz5zh48CDV1dVs3brVMb9kLPPmzaOgoIDz58+zcOFCx+ujzXi6fPkySUlJeHp6Or2+f/9+6urq+MEPfvBILX9ftZ6eHmprax0VTXV1ddjtdjw9PbFarY5B4OHh4Y9cNioiE8/TzYUVqWEcutL0kBlPdqb7m9g6O/AcpdwcBle2KyoqGvf+6+rqaG9vZ/r06QBcv36dzs5OvLy82L9/P9/5zneGVXu6uLiQlJRERUUFS5cufeg+HlxaeajKqaSkhJSUFNauXYufnx9VzSd4o7gdF8Ng4IFfg4vFwG43+eXGNM02EBER+ZoZz5xKsLPtszqWuXfg6elJSkoKSUlJJCQk4O7uTm1tLdu2beP9998nOzub3t7eESuOPh8odXd3093dTUFBAQUFBSPu+cFqo+DgYAIDA2lqaqK7uxvDMIiKiqK1tZWOjg4SExOZP38+AQEBju8bz4P6oqIioqOjnTp17HY7dXV1jrCpqakJi8WC1Wpl6dKltLW1UVRURLxHJzd7fZ2ufT5PVd9jU/AkX4hhGI42sJ07d/L666+zatUq5syZM2bLm6+vL+np6Xz22WcsWLDAcbLw9PSkt7cXu93uCGDu3r3L7du3ycnJcXqPwsJCCgsLWb9+vdPgua+D7u5ux2pz1dXV3L59G9M08fHxwWq1smrVKqxWK6Ghod/I1kCRb6OXcuM5WNo45jYmFpLNan7729+yYMECcnNzR3wqGBISwv379+nu7h7XggClpaX4+PgQExODaZocP36cyMhIsrOzef/997ly5cqI1VPJyclcvnyZtra2h6702draitVq5erVq+zbt4+BgQE2bdrEjBkzMAyD/v5+vOsL+V+mxnLNJYaDZQ3YzcGneyumhfFSbpxCJxERka+Z8c+ptFBjDyQ8Mho3C9y+fZsbN27Q09PjNAqlsrKSyspKx+eurq5OwdHQx1Aw1N7eTmlpKWvWrGHSpEnDKpOGqo2G9Pb2smfPHmpra8nIyMBms3HlyhX8/PyYNm0a169fp66ujieeeILZs2eP+16qq6sLb29venp6qKqqoqKigmvXrjlmPyUlJbFo0SISEhKoqalh//79dHR0kJ2dzRMxaXzvD+fGfH9VfY9NwZN8KcLCwnj55Zc5cOAAH3/8MdevX2f9+vVj3lAtWLCAoqIiLl26xOzZswEcg7J7e3sd1U0lJSW4u7uTnJzs+N7a2lo++eQTMjMzHd/7ON2/f98paGpsHLw5nTRpElarldmzZ2O1WgkODlbQJPINNTc2iF9uTOMXu0uGPTUcbMMz+aeFkfzkieWcOnWK06dPc+HCBZYtW0Z6erpTNeNQZeidO3eIiYkZc7+maXLlyhWmTZuGxWLhxo0b1NbW8t3vfpekpCRSUlLYv38/8fHxw6pCExMTsVgsVFRUMHfu3DH3ce/ePSwWC+fOnSM5OZl169Y5VZJeuHCBjo4OfvbCQiZPnoytb4AOW/+YK+KIiIjI4/WocyrvdXQz2dcdf39/IiMj8ff3x9fXFy8vLzw8PLh06RKXLl1i69atpKSkPLTa6MCBAwQEBIx5HTLk3r177Nixg9bWVp555hmmTZsGDF4v5efnc/nyZby8vPD392ffvn1cuHCBNWvWPHSkQFNTE319fRQVFfHpp59it9sJCQkhIyOD5ORkoqKisFgstLa2snv3bsrLy4mPj+f5558nODgYYNRrQFV9j4+CJ/nSuLm5sW7dOhISEtizZw+vvvoqmzZtIjY2dsTtJ0+eTEpKCqdPnyYjIwPDMBw3TTabDU9PT0zTpKSkhKlTpzoG13V0dPDee+8RFRU1bDj5V2Vo2PnQjKbm5mYAAgMDsVqtzJ8/H6vVOmxeioh8sz2fZWVqmB9v5t9wqvhZmRpGRPtVzGtV8EQqy5YtY/bs2Rw+fJg9e/bw2WefsWrVKsf5cCiEbm5ufmjwVF9fT1tbm6Oi6cSJE0RERJCUlIRhGDz55JP87ne/4/Dhw6xdu9bpe4faecvLy8e84Lt06RL9/f3cvXuXjRs3MnPmTKdzV39/PydPniQtLY3JkycPvrebiwInERGRr7lHmVNpYOLhYtLY2MjAwIDjdVdXV/z9/fH392fSpEkEBQWxe/du1q1bR3R0NJMmTRo1gKqrqyMyMvKh+7527Rq7du3C29ubl156yWl8S0hICJs2bWLx4sWcOnWK4uJi3N3daW1t5Y033iAzM5Nly5Y5ih7sdju3bt1ytNDdbmqmD1fshgsrV64kOTnZaUbmwMAA+fn5HD9+HC8vL7Zu3UpqaqrTtdBo14Cq+h4fBU/ypZs2bRqRkZHs2rWLd955h4ULF7J48eIRZxdlZ2fzxz/+kYqKClJSUpyCJ4DGxkaam5tZuXIlMHjzs2PHDgzD4Omnn3ZaCnyimKZJS0uLY7W5mzdv0traCgyeBK1WK4sXLyYmJoZJkyZN+PGIyOOVGRtEZmzQsIqflpYEXn31VfLy8njqqacICAhgy5YtzJs3jwMHDvCnP/2JqVOnsmLFCoKCgggMDOTOnTsP3d9Qm53VanUE3s8++6zjYsjf359ly5aRl5fHzJkzh7Uep6SkcPDgQXp6ehxVpUO6u7vJy8vj0qVLADz77LMkJCQMO4aioiLu37/PokWL/tpfm4iIiDwGjzKnMsWnl7WrVpCUlER3dzdtbW3DPoZWlOvv72f37t2O7/fx8XGEU0Mffn5+1NfXEx8fj2maIz6QN02TkydPcvToUZKTk9m0adOwCu4hQUFBrF+/nkWLFlFQUEBhYSEuLi6OFfjS0tLo6emhsrKS7u5uWt2CqXK1crnHiglYamGFnwsvh5lk/lfudOPGDT755BPu3r1LVlYWS5YsGXa9NGS0a0B5OAVPMiEmTZrEiy++SH5+PseOHePGjRts3ryZgM8N242JiSEqKoqCggJSUlIc/8iH+oiHyimHTlYff/wxDQ0N/PCHPxy25PeXxTRNmpubHW1z1dXVdHR0ABAeHk5KSgpWq5WYmBh8fHwm5BhE5Ovv8xU/gYGBrFq1ir1795KSkuJYhTM6Opof/ehHlJSUcOjQIX7729+SlZVFUFDQQ4Onz69md+LECcLCwpwGYwLMnTuXS5cusW/fPn784x87hfLJycnk5eVRVVXlNAeqvLycffv20dfXR2ZmJufPnx/xiWR/fz/5+fnMmDHDUe0kIiIi3xzjnVO5IKib7du3ExISQk5ODmlpaaO2sd2+fZs//vGPhIeHk5GRQXt7uyOcunbtGm1tbfT39wNw/Phx8vPzhwVT3t7elJSUUFtbS25uLsuWLRtXt4i/vz9PPvkkM2bM4PDhw9y8eZOBgQHOnz+Pq6sraWlpVLtbeftEHRbL4Jp0MFj1dehKEwdLG/k/VycS0FxCSUkJMTExbN26lbCwsHH9PlX1/egUPMmEsVgsLFq0iLi4OHbu3Mmrr77KunXrSEtLc9ouOzub9957j1u3bjmCKZvN5mizS01NxcXFhXPnzlFcXMzGjRvHVa45XqY5WE76YNDU1dXlWDp0xowZjqBptPRdRAQgIyODiooK9u7dS3R0tCOcNgyDGTNmMHXqVAoKCjh16hSmaeLq6uq0mMLnDbXZTZ8+ndraWq5fv87TTz897KLMYrGwfv16Xn/9dQoKCpxWCw0MDCQ0NJSKigpSU1Pp7u7mwIEDXLx4kaSkJNatW8fFixfx8vIa8RynaicREZFvtrHmVD44o+j5LCs1NTWcOnWK3bt3c/ToUbKzs8nIyHCMPRkSERHBli1b2L59OwkJCSxevNjp66ZpUlBQwOHDh9myZQv379+nra2N9vZ2mpubuXbtGp2dnY7t8/PzKSoqcmrpGymoerCFrrm5GRcXF2JjY3F1deXmzZv09/dzoKiST3pdgOEr+Q19/su8a2z2u833RxgxIF8+BU8y4aKjo3nllVfYt28fO3fupKqqiieffNKx0lNKSgpBQUGcPn2ajRs3AoMVT7W1tbS3tzNjxgyqq6vJy8sjKyuL9PT0L3Q8AwMDNDQ0OEKmmpoabDYbLi4uREZGMmfOHKxWK9HR0SOuRiUiMhrDMFi/fj2/+93v2Lt3r1NLHAzOwlu8eDGzZ8/mgw8+oKamht///vesWrWKxMTEYe9XVlaGt7c3VquV//zP/yQkJMQxaPPzwsPDWbBgAcePH2f69OkEBf1l1kBKSgrnz5+nvLycjz/+mN7eXp566inS09MxDIOWlpZhFangXO00NFxTREREvnnGO6MoJiaGmJgYGhsbOXXqFHl5eRw/fpysrCzmzp3rtHhUSkoKS5Ys4dixY4SFhTmqvWHwmujOnTtEREQwffp0p2MpLy/nww8/JDg4mDVr1mCxWJza+drb27lx4watra309fUN+1ksFgv+/v5MmzaN2NhYgoKC8Pf3x8PDgwsXLvB/fXqLwTqn0cMki2HQETXvC99byvgoeJKvhKenJ1u2bCEhIYH9+/dTW1vLli1biIiIwGKxsGDBAj755BOWLVuGaXGlobWLqpu1jqT7jTfeICYmhhUrVjzyvvv7+6mrq3OETDU1NfT19eHm5kZ0dDTz588nNjaWyMjIh67KICLyMD4+Pqxfv54dO3ZQXFxMRkbGsG38/PxYtWoVb7zxBq6urrz77rskJiaycuVKxzDNB9vsbt++TWVlJVu2bBnzidzixYspKytj3759vPDCC45tY2NjOXnyJNu3bycxMZH169c7zaRrbW11GrI5pLCwUNVOIiIifyMeZUZRWFgYmzdvZunSpRQUFHDixAlOnTpFZmYm8+fPd6x8u2jRIhobG/nwww+dhoLb+gYor64nJd7qeE/TNDl27BgnTpxg6tSpbNy4ccR5Snfv3qWiooLy8nKqq6sBCAgIIDg4GG9vb+x2O+3t7dTV1XH16lVM8y9VTW6e3lQPTBszdILBtrvDV+9g6xtQ29xXwDAf/K8k8hW4e/cuO3fupLGxkeXLlzN//nz6+/v53/77a1x3i+PSvcF02sAkPdhghvsdgu2tvPzyy+OaqdTb28utW7ccFU23bt1iYGAADw8PYmJisFqtWK1WIiIivpLh5CLy7fTRRx9RVlbGK6+8MmKo09vby3/7b/+Np556Cg8PDz799FNaW1vJzMxkyZIljpVaXnjhBc6ePcvdu3f52c9+Nmpb3pDKykreffddNm7cSHp6OteuXWPv3r10dHSQkJDAc889Nyy8+s1vfsO0adOcwv2+vj5+85vfkJCQ4KhGFRERkW+n+/fvc/bsWc6dO0d/fz/p6enk5OQQFBREb28vf/jDH+jv7ydj5Va2navj07JG7CYYwMrpYXx/XhTVhUepqKhg2bJl5ObmOq5HBgYGqK2tdbTQ3b17FxcXF+Li4khOTiY5ORl/f/8Rj6unp4e6ujpu375NU1MTt5rb+PX1kBG3Hcm5/2M5IX4jDxOXL4/KO+QrFxwczN/93d9x5MgRDh48yPXr1+mOmsuHHXFOJZEmBpfumhQzmf916exRQyebzUZtba0jaKqvr8dut+Pl5YXVamX58uVYrVbCwsIeesMmIvJlWb16NTdv3mT37t18//vfH3b+cXd3x9/fn+bmZpYvX05SUhJnz57l5MmTXL58mfDwcLy9vfHw8KCiooKNGzeO6xyWmJhIWloaeXl5VFZWUlJSQkJCAjExMTQ0NAwLnex2+4gVT0VFRXR2dqraSURERPD19eWJJ54gJyeH8+fPc+bMGS5cuEBqaio5OTk8++yz/OP/3Mmv3y7ExWJhaLSSCRwqa+RAaQOLvDr4xfe+51g1r7KykoqKCiorK7HZbPj6+pKUlMTy5cuJj4/H3d3dUd001HrX0tJCa2ur4+/37993HKPFYsHHPxCDyQ+teILBVkM/T0UiXwX9luWxcHV1ZeXKlcTHx/O79w+wq6QCMIadIOz/9fmvjtaSlRxFZmwQXV1d1NTUOIKmhoYGTNPE19cXq9XKzJkzsVqthISEaEiciDw2Hh4ebNy4kbfffpvTp0+Tk5MzbJuQkBCam5uBwfNiTk4Os2bN4siRIxQVFeHh4cH+/fsJDAxkxowZ4953cnIyJSUllJWVsX79esfQ89LSUpqbm51Wp2tvb8c0TacZT319feTn5zNz5kynWVEiIiLy7ebp6Ulubi5ZWVkUFxdTUFDA66+/jmtECie7B1fAGzbQ2wQwONEdSX75bU6dOkVNTQ2maRIeHs6sWbMIDQ3FxcWFtrY2Kioq+Oyzz2htbaWtrQ273e54Lz8/PwIDAwkMDCQuLo7AwEACAgIIDAzEz88Pi8VC+Z/Pc+hK07DjeJCLxWDFtDC12X1FFDzJY5WYmEhbRDOW9mbsY2xnMeBfPzjNKp8ampqagME+X6vVSmZmJrGxsQQGBipoEpGvFavVSnZ2NkePHiUxMXHYMr2TJ0+moqLC6TUfHx8yMzMpKirC19eXuro6goODaWpqIjw8fMz92Ww2Dhw4QHFxMSEhIdy5c8dxboyPj8fV1ZWKigqn4KmlpQXAqeKpsLBQ1U4iIiIyKjc3N+bOncucOXMoLS3lnz68ioEdk9Grsw3s/Ol0DZtC2wgJCaG/v5+7d+/S0NDg2MbT09MRLEVERDhCpYCAAAICAsY1k/el3HgOljaOuY3dbvJSbtz4f2D5QhQ8yWNl6xvgaMVdR2XTaAZMuHjX5PmESHJycrBaraP2+YqIfJ0sXbqUyspKdu3axcsvv+x0wRQSEsLZs2fp7+93er20tBQvLy/CwsKw2WyYpslrr71GRkYGy5Ytw9fXd9h+Kisr2bt3LzabjfXr1zNr1iz+9Kc/sW/fPl555RXc3NxISEigvLyc7Oxsx/cNBU9D59S+vj5OnTpFenq6qp1ERERkTBaLhaSpqVTZanjY8GgTC9X2AEyXdvz9/Z1CpaE/PT09v/AxzY0N4pcb0/jF7hIsFsOp8snFYmC3m/xyY5pjJT+ZeAqe5LHqsPUzRgWkExODxctXafibiHyjuLq6snnzZt544w2OHj3qNMA7JCQE0zS5e/euoxpqaDU7q9VKWVkZ69atY9asWZw/f57jx49TWlpKbm4uCxYswNXVFZvNxsGDB7lw4QLx8fFs2LDBESKtW7eO1157jZMnT7Js2TKSk5PZt28fXV1deHt7A4Mr2k2aNMkRfA1VOy1cuPAr/k2JiIjIN9Gj3tM99/0fTfg93fNZVqaG+fFm/g0OljVgNwe7aFZMC+Ol3DiFTl8xBU/yWPl5umIxGNeJSsPfROSbKiwsjKVLl3Lo0CGSk5OxWgeXFh5qebtz544jeGpoaKClpQV/f38mTZrErFmzcHFxISsri5kzZ3L8+HGOHTtGYWEhM2bM4NKlS9hsNtatW8fs2bOdWo5DQkLIzc3l5MmTpKWlkZycjGmaXLt2jfT0dACnweJDs51U7SQiIiLj9XW9p8uMDSIzNghb3wAdtn78PF010+kx0RJf8lh5urmwIjUMF8vYrXYuFoOVqeE6UYjIN9aCBQuIiYlh9+7d9PT0AODl5YWvry937txxbFdWVoaHhwfV1dXk5ubi4vKX856XlxerV6/mRz/6EaZpkp+fT09PD5s2bWLOnDkjzrnLzc0lMDCQffv24ePjQ2RkJOXl5Y6vt7S0OAaLnz9/nq6uLs12EhERkXH7ut/Tebq5EOLnoXvJx0jBkzx2L+XGY39IPK7hbyLyTWexWNi4cSNdXV3k5eU5Xn9wZbuhNjtvb298fX3JyMgY9j5VVVXs2LEDm81GVlYWkyZNYseOHXz44Ye0t7cP297V1ZV169ZRW1tLYWEhKSkpVFVV0d/fD/wleHpwttODg8ZFREREHkb3dDIWBU/y2A0NfzNgWEruYjEwQMPfRORvQmBgIKtWraK4uJirV68Cg+12QxVPjY2N3Lt3j9bWVnJycpwGjvf09LB3717+/Oc/ExwczE9/+lNWr17NK6+8wrp166iqquLf//3fOXr0KL29vU77jY2NJSMjg0OHDhEVFUVvby83b96kr6+Pzs5OAgMDOX/+PN3d3ap2EhERkUemezoZiwbmyNeChr+JyLdFRkYGFRUV7N27l+jo6MGV7c4X0djWRfHlUlxcXPD09GT27NmO77l+/Tp79uyhq6uLtWvXOrXVWSwW5syZQ1paGidPnuTUqVNcuHCBJ554gpkzZzq2W7FiBRUVFZw7d46AgADKy8sdQ8h9fX359NNPVe0kIiIifzXd08loDNM0xzl/XuSroeFvIvK3rrOzk9/97ncMBMZSOhBG/s12TAwMTGIsrfxgQQw/XLeInp4ePv30UwoLC4mLi2PDhg2OeUyjaWlp4dChQ5SVlTFlyhRWrVpFTEwMAJcvX2bXrl0kJyfT0NDAEytX8x/v72JJznzOnSng5z//uYInERER+cJ0TycPUvAkIiLyGPxq91n+59k7WAzDaRUYAxMw+MeccKg8SVdXFytWrCAzM3PE4eGjqamp4cCBA9TX15Oamsry5csJCAjg3Xffpai2jcL7/tTYA/9rbyYzAuFfnsnW00gRERER+VIpeBIREfmKnbt5j2deO83Y/wM2+VFMGz//zpq/ugrJNE0uXbrE4cOH6erqYv78+ZTbw/jvR6sxAJO/BFkuFrDbB+cvPJ9l/av2JyIiIiLyeZrxJCIi8hV7M/86FovBwBirv1gMgzq/lC/U+mYYBunp6UybNo2CggJ2nihmb7eNobqqBw3YB//8xe4Spob5qfJJRERERL4UCp5ERES+Qra+AT4ta+QhKw5jN+FgWSOVN6rxdHPBMAwMw8BisTj+/rCPB7fNysri7Uo3LFUt2MfYr8Vi8Gb+DQVPIiIiIvKlUPAkIiLyFeqw9T80dBpiN+HNP/0ZL6P/C++33zQ43jPbqb1uJAN2k4NlDdj6BjQMVERERES+MAVPIiIiXyE/T1csBuMKnywG/OzHP8LDxcA0zRE/7Hb7qF978ONeVx/b3q8Z1zHazcGATMGTiIiIiHxRCp5ERES+Qp5uLqxIDePQlaYxZzy5WAxWTAsjZkr4l7JfW98Alg9qxh14+XnqEkFEREREvjjL4z4AERGRb5uXcuOxPyQBsttNXsqN+9L2ORR4uVjGbrVzsRisTA1XtZOIiIiIfCkUPImIiHzF5sYG8cuNaRgwLAhysRgYwC83pn3pA74fR+AlIiIiIt9uhmma4xxxKiIiIl+m8zfv8Wb+DQ6WNWA3B1vcVqaG81Ju3IStKvfns9X8YncJFovh1OrnYjGw201+uTGN57OsE7JvEREREfn2UfAkIiLymNn6Buiw9ePn6fqVtLg9jsBLRERERL6dFDyJiIh8S33VgZeIiIiIfPsoeBIRERERERERkQmh4eIiIiIiIiIiIjIhFDyJiIiIiIiIiMiEUPAkIiIiIiIiIiITQsGTiIiIiIiIiIhMCAVPIiIiIiIiIiIyIRQ8iYiIiIiIiIjIhFDwJCIiIiIiIiIiE0LBk4iIiIiIiIiITAgFTyIiIiIiIiIiMiEUPImIiIiIiIiIyIRQ8CQiIiIiIiIiIhNCwZOIiIiIiIiIiEwIBU8iIiIiIiIiIjIhFDyJiIiIiIiIiMiEUPAkIiIiIiIiIiITQsGTiIiIiIiIiIhMCAVPIiIiIiIiIiIyIRQ8iYiIiIiIiIjIhFDwJCIiIiIiIiIiE0LBk4iIiIiIiIiITAgFTyIiIiIiIiIiMiEUPImIiIiIiIiIyIRQ8CQiIiIiIiIiIhNCwZOIiIiIiIiIiEwIBU8iIiIiIiIiIjIhFDyJiIiIiIiIiMiEUPAkIiIiIiIiIiITQsGTiIiIiIiIiIhMCAVPIiIiIiIiIiIyIRQ8iYiIiIiIiIjIhFDwJCIiIiIiIiIiE0LBk4iIiIiIiIiITAgFTyIiIiIiIiIiMiEUPImIiIiIiIiIyIRQ8CQiIiIiIiIiIhNCwZOIiIiIiIiIiEwIBU8iIiIiIiIiIjIhFDyJiIiIiIiIiMiEUPAkIiIiIiIiIiITQsGTiIiIiIiIiIhMCAVPIiIiIiIiIiIyIRQ8iYiIiIiIiIjIhFDwJCIiIiIiIiIiE0LBk4iIiIiIiIiITAgFTyIiIiIiIiIiMiEUPImIiIiIiIiIyIRQ8CQiIiIiIiIiIhNCwZOIiIiIiIiIiEwIBU8iIiIiIiIiIjIhFDyJiIiIiIiIiMiEUPAkIiIiIiIiIiITQsGTiIiIiIiIiIhMCAVPIiIiIiIiIiIyIRQ8iYiIiIiIiIjIhFDwJCIiIiIiIiIiE0LBk4iIiIiIiIiITAgFTyIiIiIiIiIiMiEUPImIiIiIiIiIyIRQ8CQiIiIiIiIiIhNCwZOIiIiIiIiIiEwIBU8iIiIiIiIiIjIhFDyJiIiIiIiIiMiE+P8BHJ/KuIx5EzgAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -153,12 +74,12 @@ "plt.subplot(1,3,3)\n", "plt.title(\"Barbell\")\n", "draw_graph(barbell)\n", - "plt.savefig(os.path.join(output_dir, \"SimpleGraphs.png\"))" + "plt.savefig(FIGURES_DIR / \"SimpleGraphs.png\")" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -169,7 +90,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -179,7 +100,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -195,7 +116,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -206,14 +127,14 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3TU153//+fMaGYkjXpBBVUkISEhITASTRTTbDA9trEBg43L2iZxNpvv2e9mz/6+65P8dp18v7vnt9l1NnESG0wzxaaKXkUTEtWAJEAFIQn13qd+fn/w1QRZAyYJoPZ+nKODNKP5zJ3RMK+593Pf96oURVEQQgghBgl1bzdACCGEeJYk+IQQQgwqEnxCCCEGFQk+IYQQg4oEnxBCiEFFgk8IIcSgIsEnhBBiUJHgE0IIMahI8AkhhBhUJPiEEEIMKhJ8QgghBhUJPiGEEIOKBJ8QQohBRYJPCCHEoCLBJ4QQYlCR4BNCCDGoSPAJIYQYVCT4hBBCDCoSfEIIIQYVCT4hhBCDigSfEEKIQUWCTwghxKAiwSeEEGJQkeATQggxqEjwCSGEGFQk+IQQQgwqEnxCCCEGFQk+IYQQg4oEnxBCiEFFgk8IIcSgIsEnhBBiUJHgE0IIMahI8AkhhBhUJPiEEEIMKhJ8QgghBhWn3m6AEEKIv16r0UL6tXKKa9uI8DMwLykYN728xTuiUhRF6e1GCCHEYPC0wulCcT1vrstGUaDdZMVVp0GlgnVvppIS4fMEWj6wSPAJIcQz8LTCqdVoYdwnR2kzWntcZ9BryP7ZTAzS8+tGgk8IIZ6yxw0nRVGwWCwYjUZMJhNGo7Hb944uO11uZXeJFpOi6nFsV52Gf54Xz9KUsGfxMPsN+RgghBBPWfq1ch7WxTCZzHz0718yXFOL0WhEo9Gg0+nQ6/Xo9Xr79zqdrtvl7u7u+Pn5YWtsw6S0ODx2u8lKcV37U3xk/ZMEnxBCPGXFtW20m3r29gDMihrf8Dh+tHg0er0ejUbz2MdtaWlBOX8YrUqHWek5Sd9FqybC1/UvbvdAJeUMQgjxlEX4GXDVOQ40vRqa7hXw2WefcfToUUpLS/m+M1CKonD16lV+97vfMSPGC62T4z6M1WLh+SjPv7r9A42c4xNCiKes1Wgh9V+O0G629bhOq7JxdE0KLlo1OTk55ObmYjKZiI+PJz4+npCQEFSqP52/a25uZu/evbS0tLBw4UICAwP5+Dcb2Frpi9Vmw6yoccKKXqfjx8laOkpusHz5cvz8/J7lQ+7TJPiEEOIps1gs/NOv17K7cSgqtZp2kxUnbKhQ+PtxbjTmX2LJkiVERUUBUF1d3SMER4wYQU1NDcePHyc1NZW0tDQ0Gg15eXlkZGQwIjGZQzdr8RwaTfO9QtLCXJgzazpXr17l6NGjvPLKK4SHh/fyM9E3SPAJIcRTduzYMerq6nhp4ZL7dXx17VgaK/BpuYPaZmb27Nns2LGDKVOmkJKS0u221dXVXLp0iStXrmC1Whk5ciRjx44lJCQEm83Gf//3fzN37lzy8vLw9/dn3Lhx1NTU8OWXX/K3f/u3ODk5UVhYyI4dO5gzZw4jR47spWeh79B8/PHHH/d2I4QQYqCqqKjg0KFDLFu2DDdXZ0YO9SQt2o+UqEAyThzHx+d+Dd+LL77IoUOHqKurIyoqCpVKhaIo5OXlkZ2dzaRJk5g1axZtbW2cOXOGs2fPkp+fj0qlYsaMGWRmZhIfH4+3tzcGg4HCwkLUajWBgYH4+PgQHR3N7t27sdlshIaGdhs+HWykxyeEEE+J1Wrlj3/8I+PGjSM5ObnH9Xv37kWv1/Ptt9/yxhtv4OXlxfbt21Gr1cycOZODBw9iNptZuHAh/v7+3W5bVlbG+vXrMRgM2Gw22traePXVV4mJiUGlUnH79m0yMjJ455137CHX3NzMpk2bCAsLY86cOajVg3N+4+B81EII8QycO3cOg8HAqFGjHF6fmprK9evXmTFjBrt27UKr1fL6669jNBr57LPPCAkJYfXq1T1CDyA/P58RI0bw4x//mMWLFwNw5MgR/uM//oODBw/i7OxMe3s79+7ds9/Gw8ODt956i/r6erZu3YrJZHo6D7yPk+ATQoinoLa2lszMTObNm/fQYcWAgAD8/PzQarV4eHhw6NAhNmzYAEBaWhpXr17tFlxdWlpauHDhAs8//zxwv7xh6NChrFmzhuXLl+Ps7Ex6ejqdnZ3s2rWrW4mEs7Mzy5Ytw8XFhS+//JLW1tan9Az0XXKOTwghnjBFUdi6dSupqan2mZoPo9frOX/+PKGhofbzdEuWLGHYsGH4+/vz9ddf4+HhQUBAgP02hw8fJjQ0lISEBOB+709RFGJjYzEYDERERJCSkkJ4eDhZWVncvXuXc+fO0dTUhF6vx9PTk7i4OFpaWjhw4ADR0dHYNDp2XCkj/Vo5ZY0dRPgZ0DkNzL6RrNwihBBP2IULFwB6zNB0xMfHh4qKCqxWK7NmzeLbb79l+vTpqNVqYmJiWLlyJV999RV1dXVMnTqV2tpabt68yQ9/+EP7MWpqahgyZEiPY4eGhjJ69GhcXV1JSEggNzeXvXv3YjQaGTFiBAkJCXh4ePCvf9jKwY5hoFLZF9D+xb7cAbu7g0xuEULIXm5PUGNjI7///e9ZvXr1I4vGbTYb586d49y5c4SFhaHX61m0aBFbt25lyJAhTJ8+3f67ra2tbN26FS8vL4xGI5GRkUyYMMF+/bp165gyZQrDhg3rcT/fLW2A+yUSubm55Obm0tJh4ov6aIy2nsOxA3V3h4HZjxVCPLYLxfWM++QoP0/P5Xenivh5ei7jPjnKheL63m5av6MoCunp6UyYMOGRoVddXc3nn3/OnTt3eO+991iwYAG3b9+mvb2dl156icuXL1NeXm7/fTc3N1atWkVbWxtFRUWMGDGi231WV1c7nAAD4O/vT2BgIDk5OfbLhgwZwrRp0/jwww/xSJzOw3o/inJ/ge2BZmDFuBAD3JPumbUaLby5Lrvbdjldiym/uS57QH7af5q+/fZb2tramDhxosPrrVYrZ86cITs7m+nTpzNmzBj7xJe4uDguX77M5MmTeeGFF9i1axfvvfeevZem0WgwGo0MHz6cdevW8frrrxMQEEB7ezuKouDm5vbQdqWmpnLy5Eni4uIoKioiPz+fe/fu0djYyLk2f0y2IIe3G6i7O8grWoh+wtFGpn/NeRhFUdh56S42m+PP+12f9mUvt8fT2trKkSNHeOONNxzusFBZWcnu3btxc3Pjvffew9Oz++LR48aN46uvvmLixImMHDmS3NxcDh47SavPcIpr29AZm9Ba4Z1XXiEnJ4f169ezcOFCtFotQ4YM6TFz1Gg0cufOHW7fvs29e/eorq7ml7/8JWq1Gnd3dwICAhg9ejSBJm/yjxTRaem5jqirTjMgd3eQ4BOiH/i+ntn5/zkdjWKhvb2djo4O2tvb7V9dPz94eUdHBx0dHVyyhNBh7jkpouv4A/HT/tOyf/9+xowZQ2BgYLfLrVYrp06d4uLFi8yaNYtRo0Y5LG8IDAzEy8uLmzdvkpCQQFBSGm+vv4TG6QadFgUtNrTaEMbfbSBl5Ei8vLzYtm0bQ4cOxdPTk5s3b5Kfn09ZWRmNjY2YTCZUKpU95Ly9vbHZbCxbtqzb/Q6trOFfD94Ceoa1SgXzkoKf6PPUF0jwCdEPPGojU6PRxAef/IFEQyuurq72LxcXF/u/3t7e3S5zdXVFp9Pxv785w41rrVgcvOk5O6kG5Kf9pyE3N5eamhqWLFnS7fLy8nJ2796Nl5cX77//Pu7u7o88TmpqKtnZ2YRHx/LB1uuY0WC23P/Dm1FjNtt4c202G18Oo6y4EJ1Ox82bNwG4ceMGbm5uDBkyhKSkJGJjY/H19bWHbGdnJ7/+9a9pbm7Gw8MDuN9L3bntK/7XlLH88nwzRqMJCxpcdRpUKlj3ZuqAHOoeeI9IiAHoURuZWtAQHJvMT15JQafTPdbxioqKOHDgAMHuXui0PlgcbJdjtVox5mdSH+VmX09S9NTR0cGBAwd49dVX7efjLBYLJ0+e5OrVq8yePZvExMTHWhszLi6OQ4cOsen0zYd/0DGZ+PftJ0j26CAgIACz2Yxer8fNzY1XX30VZ2dnh7dzdnYmMTGRixcvMn36dIxGI5s3byYpKYlp0ybyQmoTf/+brYxImUKEryvzkoIHZOiBFLAL0S+UNXZwrrAOs7Xnu6FeAxGqGq6f2s+dO3dobW1Fr9djMBh6vNk2NTWxd+9eLl26xKxZs5g5/XlCnY0cy29Ag4INFXqNCmedhrWrUvBUm9izZw9tbW0MHTrU/sYu/mTfvn0EBQXx3HPPAffX0Ny0aRMqlYply5Y99oLQVquViooKKioq2He9glKji8Pfs6FmzqTR/M9VCxk1ahRnzpzhrbfeoqGhgWPHjhEdHY2Li+Pbent7c+DAAcaMGcO2bdsYMmQIs2bNQqVSUV9bg7mqiI9enc3IoZ4DtngdpMcnRL8wLymYX6TnOrxOBXzy/ss4YaW4uJiCggK2bNmC1WolKiqKqKgowsPDuXr1KpmZmaSmprJo0SK0Wi0AbcXX+D+TvDlZ2IzaMxBVWy0/f3vh/U/70UNITk7m+PHjfPrpp0ybNo0xY8YM2sWNv6ugoIC7d+/ywQcfYDabOXHiBNeuXWPOnDnEx8c/MvCampq4desWBQUFVFZW2pcOc3JywtXqiU7th6lnRxwtNvSmJhRFob29HZvNhoeHBy+++CIXL17kiy++eOjee35+fgQGBrJx40Y8PDyYO3euvY319fV4e3s/mSemj5PgE6IfcNM78dOxrvzqfDMqtZpOi4KrToPNamWG0y2OH7Yxb948YmNjiY2NRVEU6uvrKSwsJDMzk2+++QZnZ2eSkpKIioqyzzqsqamhvLycyVFRTLeamTUrlV//+tdoVX96x3V3d2fhwoX27XUuXLjA7Nmzv3cproHowXKSEE895ef38YOF8+wzNoOCgvjggw8wGAzdbmc2myksLOTmzZvcu3ePhoYGrFYrGo0Gb29voqKiGD58OOHh4bi6urLlm11cuuK4DU5aJ/RVOXz22bfEx8fj7+9vD6+xY8fi4+PD9u3bmTlzZo8dIRRFQaPRUFNTw6pVq7p9gGloaJDgE0L0HTabjZaiK6S/s5iM4lYOnb3Eyy9MZV5SMDeu+nHkyBFaWlrs55lUKhVqtZqioiI6OjpYunQpOp2OgoIC0tPTaWlpYdiwYbS2tjJy5EhaW1vx9PTExcWFkJAQ8vPz7etAdgkKCmLVqlXcvHmTffv24e/vz6xZsx5ZqD2QfLecRKcGFVG4XLiF6V4ec+fOZcSIESiKQnl5OTk5Ody9e5fa2lqMRqN9hmVQUBDjxo0jJiamR0lDlykTUplfuIf9bREo3L8/vRqctBrWvZnK2HBvbt26xb59+7DZbBQVFREZGYlKpWLYsGG8+eabbN68mdraWmbMmGEPxrNnz9LQ0ICrqyuVlZWEhoba77OhoYHIyMhn8VT2OlmyTIh+4ObNm5w5c4Z33nkHq9XKJ598wj/8wz/Yz7ldunSJgwcPMmTIEF577TUuXbpEdnY2EyZMYMKECT3OzTU3N5Obm8uRI0fsQ56hoaFMmDCBuro67t69y8svv/zQ9lgsFrKysjh79ixJSUlMnTr1oeeVBoJWo4VxnxztVk7SRa9W+M/pbtRUlFFVVUVbWxuKouDq6oq/vz8RERE9emaP4/PPP2d0ynjyje5czi/FVFfO//ve4m4TTtLT0zGbzZSVleHh4cH06dPtYdbe3s7WrVsxGAwsWrSInJwcTp06xerVq8nJyaGsrKzb3/jzzz9n5syZDodIBxqZ3CJEP7Bv3z5SUlIICAhArVZz7do1hg0bZh9SCw4Oxt3dnStXrpCZmYmTkxPLli1j+PDhDs/H6fV6ioqK8PT0tL8R+vj4kJuby7Vr16iurkar1dpLIL77hq1WqwkLCyM5OZmioiL279+PVqslMDBwQJ7/23GljIzbNQ4nF6kUG03ldwjUm4mKimLGjBksWLCAtLQ0kpOTiYiIcDjR6PtotVq+vXKJ5XOnMj7Cm5uZR5g2Ja3bcc6dO8e4ceOYPXs2iqJw8OBBioqK8PPzw8fHh8TERAoLCzl27Bj5+fmsXLkSb29v/Pz8OHDgAElJSej1egCOHz/O5MmT7T8PZDLUKUQfV1VVRW1tLfHx8fbLfH19qaurs6/IX19fT15eHi4uLnR2dlJeXk5HR8dDh9KsVisXLlxgxYoVqNVqOjo6mDZtGl5eXnR0dLB27Vry8/PtIRodHU10dDQRERHd3hgNBgPz5s0jJSWl2/m/mJiYp/ukPCVWq5XGxkbq6+tpaGiw/7uzyEa7ycvhbSxo6NR60FWiV1FRQUdHB15eXnh5eTn84PA44uPjOXz4MFVVVQQEBKDRaGhqasLL60/tqKmpwd/fH7VazZgxY0hKSuLy5cts3ryZsLAw+2Sk3NxcdDodZrMZcFzaYDQaH7ns2UAiwSdEH5ednc3YsWO7LYPl6+tLbW0tZrOZ06dPc/HiRSZNmsTSpUvJy8tj3759fPnll7z88ssOJ6HcuHEDf39/AgICsFqttLa22ourXVxcSElJoaysjJUrV1JdXU1BQQFZWVns2LGD4OBgoqKiiI6OJiAgAJVKRUBAAG+88Qa3b9/m4MGDZGdnM3v27IcunNybjEZjj2Dr+r61tRUPDw+8vb3x9vbGx8eH8PBwWoZYuZ5RSoeDekcnrIR5OxMdHYKiKDQ2NlJaWkpjYyONjY1YrVZ7CHp6etq/7/pydXV1GIwajYaxY8eSnZ3N/PnzGTp0KOXl5fbga2trw2azdQsrJycnUlNTGT16NNnZ2axduxaz2czcuXNxdnZm48aNzJ8/n7i4OFJTU+27OnRNbPlLAro/kuATog9rb28nNzeXNWvWdLvc19eX69evc+nSJUJDQ3n//fftq3GMHDkSlUpFeno6X3/9NS+88EK32X2KonD+/Hn7tjctLS24ubl1C9a4uDiOHz+O1WolICCAgIAAJk2ahMlkspdMbN++HZPJZC+ZiIqKIjY2lujoaC5cuMC6detISEhg2rRpuLo+uxVgFEWhtbXVYbA1NDRgNpvtoebt7U1gYCDx8fF4e3vj6enpcJ3N0GEWfn26zOH96XU6pke7cerUKQICAuwTV7pCxGg02kOw66trgejGxkYsFku3QHzw+7i4ONauXcvMmTMJCgqivLzc3vPv6u05CiutVktiYiLZ2dmEhYVx5MgR4uPjWbhwIenp6dTV1TFx4kQCAwO5ceMGer1+UC1SIJNbhOjDzpw5Q21tLYsWLbJfVltby44dO6ipqWH58uVEREQ4vG1ubi7p6en2nsOUKVNQqVQUFxeTnp7OmjVr7D8fP36c1atXd7v92rVrSUtLe+SwZVfJRGFhIcXFxfj6+tp7gz4+Ppw6dYqcnBwmT55MSkoKGo3miewwYbVaaWpqcthza2hoQKvV2oPtwZDz8fH5i863geNFwruW9UqJ8MFisZCTk0NWVhadnZ2kpqaSnJz80JVUuhiNRpqamroF44M/d3R04OrqioeHB62traSmpuLl5cW9e/doa2tj8eLFPR5P13B1cnIyEydOpL29nbNnz3L58mXi4+MpLS1l6NChxMbGcuTkaRo9oihr7OT5lJGDYi9GCT4h+piuYLhT00rB1Uz+YdlsYiJCMRqNnDp1iitXrjBu3DiysrL4+7//+0ceKy8vj/T0dFxcXAgLC+Oll15i+/btREdHM3bsWOD+VjqFhYU91pk8f/48VVVVLFy48LHabbVaKSkpobCwkIKCApqamoiMjCQgIIA7d+7Q0tJC8KjJ/K/jlQ8NjweZTKaHDkm2tLTg7u7uMNi8vb2f2gSNtq7Qrmt/6LJeiqJQVlZGdnY2BQUFJCYmkpqa+heXfdy5c4edO3cyY8YM0tPTSUlJoampieLiYiwWCzabzd5L9PT0xMPDg2vXrhEUFMQLL7yAm5ubPRhbWlo4ffo0169fx2AwUIMHm8u9UaHCpKge+fcYSCT4hOhDvtur0Kps6HRa/tcUP8q/PU1kZCQzZ87EYDDwq1/9io8++uh7hxFv3brFnj178PHxQa1WU1NTw09+8hN7GUNGRgYWi4UZM2Z0u11TUxOfffYZP/3pTx0O/32flpYWe2+wsLAQnPT8oSYSs4MFsV2cVPx/U13oaPnTxBKj0dgtzB783svL6y9q07PW3NzMxYsXuXz5MoGBgYwbN47o6Og/u8f5hz/8gSlTpnDgwAHeeOMNfH197efnQkJC7D3EhoYGsrKysFqtGAwGmpqa6Ozs7HFuUavVkpdfxL/mujn8ewzUnde7DMxHJUQ/5GjrIbOixmy08v8crWDP24uIi/pTgXHXzM7vC77Y2FgWLlzI7t270Wq1qNXq+7P4bCrSr5Vz9Foz0YGejGntwFlzv0bPYrFgtVpxd3fn4sWLBAQE2C/vuu7Bnx92ndFopLOzE3d3dy7U6x6607fVZuN8hZlFiZGMGTMGHx+fbj2V/qqrtm7KlCnk5ORw4sQJDh48aB8Gfdye6bhx48jOziY4OJjy8nJ8fX3t5/h0Oh3+/v74+fmxd+9evL29ef311+0fDMxmc4+h1KqqKi7V8L07rw/UvRgl+IToIx619ZBao+Fgbg2WjjZ7qCiKQmZmJoWFhT2CyFEw6XQ6Ghsb0el0/P3/+YwjphgU7k/HP1neyOeXj/CS211CnU04OTnZd/w+deoU/v7+ODk5dfvSaDQoioLVasVsNmMymTCZTBiNRvvefyqVCjc3N9zc3DDqPBxufwRgsqlw8Q8jOTnu6T3BvcjJyYlRo0aRlJREWVkZWVlZnDx5kqSkJFJTU/H19X3k7btKGxITEykvL2fYsGE9ZnSeOHGCqqoqVq1a1a03rNVq8fPzsw+1dnR0kJuby847RQ/9ewz0vRgl+IToIx619VCnReHEhRuY8mrRarU4OTlhMploa7sfhHq9HmdnZ5ydnXFxccHFxQW9Xt8tqLpW66iqb+KYNQ7zA8fvegM8Yo4h+3/cH+LqWnpr48aNjB071t5raGpqorq6msbGRjQajX34zM/Pr8dUfWdnZ8rLyzl58iTO5mZ0aleHCy8P1J2+v0ulUhEaGkpoaKh9GHTt2rX2ZcyioqIc9nKdnJx47rnnqKyspLOzs8eMzuzsbHJycli9erXDraksFgv5+flcv36doqIihg0bxtjYCC5frKfD3PM1N9D/HnKOT4g+YsuFEn6enusw/HQqhXfHevPqcyH23lRxcTH37t0jPDy8xy7rHR0daDQa+6azzs7OlJaWMnz4cC7Ua9lRrHb4aV+nVngpsINo9f1g02q1mM1mgoODCQ4O7hZqnp6ej5yxWFlZycmTJykvLyctLQ2fgGDm/O7yoDyn9CgWi4UbN26QlZWF2WwmNTWVUaNG9RgGbWlp4Te/+Q2KojB9+nSqq6uZP38+OTk5HDp0iLfeeqvbItOKonD37l2uX79OXl4eAQEBJCYmEh8fj7Oz8yOXYRvofw8JPiH6iEe9ETk7qfibIcW4aNWMHz+ekSNH2ssaPvzwwx6/rygKJpPJHoK5ubncunWLsWPHsu5qIweKLQ9tx9JEb346MxpPT0/0ej2nT5+mpaWFuXPnPtbjqKqqIiMjg9LSUiZNmsRzzz2HxWLhj3/8I75xqfzL2YbHmtU52CiKQmlpKVlZWdy5c8c+DPpgfd2mbd9w9FY9uPsTE+TNwuSh7N+zkzfeeIPAwEAAqquruXbtGtevX8fFxYXExERGjhzpcBWf7yvRGKgk+IToQ3rsAKBSUKtVbHhnAmPDvSksLOT8+fNUVlYyZswYzp07xz/+4z8+cn1MRVH44x//yOTJk4mLi3tkz9JVp+Gf58V3m9RQV1fHunXr+Lu/+7tHTjapqakhIyOD4uJiJk6cSEpKClqtFpvNxqZNmxgyZAgvvPDCY5UEDHZNTU322aBDhw4lNTWVeo03b67NxmQ2Y0GDXgM2q5V/XxDFtIRQbty4wbVr12hvbycxMZGkpCQCAgK+974G499Dgk+IPubBNyI/Z4XKrH189OHf2JcUg/shc/78eS5fvsyIESOYMmWK/RP/d5WUlLBr1y5++MMfolar7/cs//UobQ6DT82Ff5zV443vt7/9LS+99BJhYT1n+dXW1pKRkcGdO3eYMGECKSkp3c4zHTx4kNraWpYtWzYgF7B+msxmMzdu3OBUZja/KQvGpPR8/nRqGyvdb5IUH0tSUhLh4eH9fjbs0zawY12Ifsigd+rW4zpquceRI0e6FZj7+/szf/586urq0Ol0bN68GV9fX8aPH8/w4cO7vfGdP3+ecePG2UPHoNOwMryVL4qc0WicaDdZceL+pqgLPe+htpn57lvDiBEjyM3N7RZ8dXV1nDp1ioKCAsaPH8+8efN6nJe6fPkyBQUFvPPOOxJ6fwGtVsvo0aO5afZFXXEDLD37KWq1hmHPv8KCcRHPvoH9lLwShejjpkyZwt27dykpKelx3ZAhQwgMDOTHP/4xY8aM4dSpU3z66adkZWVhNBppaGiguLiY0aNH22+TmZmJj7WB7J/N5J/nxfPB1Ch+Oi2clR55jAp2Y+vWrVgs3c8BxsfHk5eXh6IoNDQ0sHv3br744gt8fHz46KOPHG5nU1JSwrFjx3jttde+d9ku8Wh369rodBB6cH/Gb2lD5zNuUf8mPT4h+jidTsesWbM4cOAA7777breeU1chs0ajsU9iKCsr4/z582RkZODp6cmIESPsQ493797l3LlzvPPOO3ganLv1LMsSfPnqq6/w8fFh9+7dLFmyxN5z9Pf3R6PRsGXLFkpLS0lNTeVHP/rRQwOtqamJ7du3s3jx4kGzQ/vTFOFnwFWneeh52YFcevA0SI9PiH4gISEBvV7PpUuXul3u5+dHXV2d/eeuOrFXXnmFVatWUVNTQ25uLtu2bePmzZt8/fXXLFq0qNuebl1CQkJYtmwZ9fX1VFZWcuzYMeB+iKWnp9PS0kJ7ezs/+tGPmDZt2kNDz2QysWXLFiZOnEh0dPQTfBYGr4nyM6sAACAASURBVHlJwTzstJ1Kdf968fgk+IToB1QqFXPmzOHkyZO0t/9pRY2uZcscKSoqIi4ujp/85CeEhYXxzTffoFKpaG9vx2p1XCg/dOhQli9fTnt7O1euXGHdunV89tlnuLq6smzZMtra2h45bKkoCrt37yYgIIDx48f/dQ9a2LnpnVj3ZioGvQZX3f06SFedBoNe838vl8G7P4c8W0L0EwEBASQkJHD8+HHmzZsHgKenJx0dHZhMpm4zKW02G1lZWbz88svodDqam5sJDw8nJSWFrKwsjh49SkpKCs8991yPtT7d3d2JjIy0r/SycOFCEhMT6ZoAXllZSVBQkMM2nj59mubmZlatWiUzC5+wlAgfsn82c9CVHjwNmo8//vjj3m6EEOLxhISEcODAASIjI3F3d0elUpGTk0N4eHi3coe8vDxqamqYOnUqubm5ZGVlsWLFCoKCghg1ahTDhg0jPz+f/fv309DQgI+PD4qicPz4cdLT0wkPD2fatGncvn2bW7duERUVhYeHB83NzdTV1REZGdmjbXl5eZw+fZo33ngDFxeXZ/m0DBo6JzUjh3qSFu3HyKGe6Jxk0O4vIcEnRD+i1WrR6/WcOXOG5ORk+0ayrq6u3YqV9+7dy/jx41GpVGzbto3XXnut2wogbm5uxMXFMXr0aCoqKti7dy/nzp3DYDCwbNkyEhIS8PHxISoqimvXrnHt2jVGjhyJl5cXp0+fJiUlpVuPrqqqiu3bt/P6668PiMksrUYLO66UkX6tnLLGDiL8DBIyA4j8JYXoZ0aPHo3FYuHatWtAz/N8ZWVlNDc3M2zYMLZt28b06dMJDu45+aG9vZ3MzEyuXLlCUlISM2fOpKmpiQ0bNnDx4kVMJhOBgYG8+eab2Gw2Pv/8c7y9vTGbzdTU1NiP09bWxpYtW3jxxRcd3k9/c6G4nnGfHOXn6bn87lQRP0/PZdwnR7lQXN/bTRNPiKzcIkQ/VFZWxrZt21izZg03b96koKCAH/zgBwB8/fXXBAcHU1lZiVqtZuHChd16Zx0dHWRmZnLx4kXi4+OZPHmyfR3HroWNs7KyKCkpYfTo0aSmptLZ2ckf//hHPD09CQ6L5FqTFr1vCGE+LrTkZBAdHtJjI9v+aDAv3DyYyF9QiH4oJCSEYcOGkZGRQXx8PFlZWcD90oPCwkKCgoKorq7m7bfftodeZ2cnmZmZXLhwgbi4ON57770eZQ0qlYqIiAgiIiKor68nOzub3/72t0RHRzNv3jz+sOs4v75nRcGKWSlCp1ZQ4cuG55Of+XPwNDxqT8SBvjnrYCJDnUL0UzNnzuTq1auoVCrq6upQFIXs7GyioqI4d+4cr776Klqtls7OTjIyMviv//ovmpubeffdd1mwYIHDWr4H+fj48OKLL/LjH/+Y4OBgDh07yaHOKEyKGvP/XTPSZFNhtKl468sLtBkfvuNDf/GoPREH+uasg4n0+ITop9zc3Jg8eTIHj57gtsWPj3deofjGHeJc2lg8fz4Gg4HTp09z/vx5YmJiePvtt7tNcHlcWq2WESNGcLnJGVVtOTjoEQ2U3lC4jys6tYLJ1rMUQ1ZIGTgk+ITox9RDYvjV3loUPDFfqMCJQLJMGobcrmTv3r1ERUXx1ltvOZxpqSgK7e3ttLS00NLSQnNzs/37B3/u7OzEzc2NbFMwRpubw3YMhN6QzWZDVXYF0AA9g09WSBk4JPiE6KdajRZWb7jYbasaCxosVvjfWa1sX74AD1c9FRUV3Lp1q0eotba2otPpcHd3t395eHgQFBTE8OHD8fDwwN3dHYPBgEqlYsuFEr59xD5+/bk3pCgKe/fupbOlkXVvzuHdTVccbs4qE1sGBpnVKUQ/9agNZZ2w8rxnHRMD6BZqD37v5uaGVqt97PsbqDMeu0Kvvr6eZcuWodPpBuXmrIOJ/CWF6KceNRHDgobo5Am89WLcE7u/rvUiH9whvr/3hhRFIT09nbq6OpYvX25f9u27eyKKgaX/vVKFEMD9rWpcdBo6nuHQ40BaL1JRFPbt20dNTU230BMDnwx1CtFPtRotjP3FIToddPr689Djs6AoCvv376eqqorly5f32ERXDGxSxydEP1VRcod57iUYdLJVzZ9DURQOHDhAZWWlhN4gJT0+Ifqh5uZmfv/73/PKK6/gFzh0QAw9PguKonDw4EHu3bvHihUrHrm3oBi4JPiE6GdsNhtffvkl0dHRTJ48ubeb028oisKhQ4coKyuT0BvkZKhTiH7mxIkTaLVa0tLSersp/UZX6JWWlkroCQk+IfqTgoICvv32WxYvXiw7nD8mRVE4fPgwJSUlEnoCkOATot9obm5m9+7dLFmyBIPB0NvN6RcUReHIkSPcvXtXdoYXdhJ8QvQDNpuNHTt2MHbsWCIiInq7Of2CoigcPXqUO3fuSOiJbiT4hOgHTp48iUajkcksj0lRFI4dO0ZhYaGEnuhBgk+IPq6wsJCrV6+yePFi1Gr5L/t9FEXh+PHjFBQUsHLlSlxd++/i2eLpkP9FQvRhLS0t7Nq1i8WLF+Pm5nhLIPEniqJw4sQJbt++LaEnHkqCT4g+quu83nPPPUdkZGRvN6dfyMjI4NatWxJ64pEk+IToozIyMlCpVEyZMqW3m9IvnDx5ktzcXFauXCmzXsUjSfAJ0QcVFRVx+fJllixZIuf1HsOpU6fIycmR0BOPRRb0E6KPaW1tZefOnXJe7yFauzaJrW0jws+AT2sx+bnXWbVqlTxf4rFI8AnRh3Sd1xszZgzDhg3r7eb0OReK67tthKvXgGKz8YcVCyX0xGOTMRQh+pDTp0+jKApTp07t7ab0Oa1GC2+uy6bNaLXvPG+0gklR8+G2G7QZLb3cQtFfSPAJ0UfcuXOHixcvynm9h0i/Vs7D9pJRlPvXC/E45H+XEH1A13m9RYsW4e7u3tvN6ZOKa9vsPb3vajdZKa5rf8YtEv2VBJ8Qvcxms7Fz506Sk5OJiorq7eb0WRF+BvQax9e56jRE+Erdnng8EnxC9LIzZ85gtVqZNm1abzelTwunFpvNcY9PpYJ5ScHPuEWiv5LgE6IXFRcXc+HCBTmv9z2uX79O5umT/PbVRAx6Da66+10/V50Gg17DujdTMehlkrp4PPJKEaKXtLW1sWPHDhYuXIiHh0dvN6fPysvL49ChQ6xcuZIhQ4aQPSL0fh1fXTsRvq7MSwqW0BN/FpWiPGyelBDiSXqw8Drc10B73ikiQoKYMWNGbzetz7p9+zZ79uxh+fLlBAUF9XZzxAAhH5OEeAYcF157smHyqN5uWp9VWFjI7t27ef311yX0xBMlJxWEeMoeVXi9ev1FKbx2oLi4mB07dvDqq68SEhLS280RA4wEnxBPmRRe/3lKS0vZvn07L7/8MuHh4b3dHDEASfAJ8ZRJ4fXjKy8vZ8uWLSxevFj2IBRPjQSfEE9ZhJ8BF63j/2pSeP0nVVVVbN68mfnz5xMdHd3bzREDmASfEE/Z5DBXLBbH5/Gk8Pq+mpoaNm7cyJw5c4iLi+vt5ogBToJPiKeosbGRr7ds4p/SvKXw+iHq6+vZsGEDM2fOJCEhobebIwYBqeMT4ilpaGjgyy+/ZOLEiaSmptLWVccnhdd2jY2NrFu3jsmTJ/Pcc8/1dnPEICHBJ8RT8N3QEz01Nzezbt06xo8fL8+ReKYG98dNIZ6CrtCbNGkSKSkpvd2cPqm1tZX169czduxYCT3xzEnwCfEE1dfXs379egm9R2hra2P9+vUkJSUxceLE3m6OGIRkcosQT0h9fT1ffvklaWlpEnoP0dHRwcaNG4mNjWXKlCm93RwxSEmPT4gnoCv0pkyZIpM0HqKzs5ONGzcSERHB9OnTe7s5YhCT4BPir1RXV8f69esl9B7BZDKxefNmgoODmT17NiqVqrebJAYxGeoU4q8goff9zGYzX331FX5+fsydO1dCT/Q66fEJ8RfqCr2pU6cyZsyY3m5On2SxWNi6dSvu7u7MmzdPQk/0CRJ8QvwF6urq+PLLL5k2bZqE3gMe3Gw3zMcFU34mBr2eRYsWoVbLAJPoGyT4hPgz1dbWsn79ep5//nlGjx7d283pM7672a5OraDCnfWrx0voiT5FVm4R4s8goedYq9HCuE+O0mbsuf2SQa8h+2czB/3ybKLvkI9hQjymrtCbPn26hN53yGa7oj+R4BPiMTwYesnJyb3dnD7njmy2K/oRCT4hvkdNTQ3r169nxowZEnoONDQ0UF14A63K5vB62WxX9DUy6C7EI9TU1LBhwwZmzJjBqFGjers5fYrFYuHs2bNkZWUxN3UCh6pbMZt7hp9stiv6Ggk+IR6iq6c3a9YskpKSers5fUphYSH79+9nyJAhvPfee3h5ebEifyvrS9xRq9W0m6y46jSoVMhmu6LPkVejEHSvP4vwMzAuSMuOrZsl9L6jubmZQ4cOUV5ezpw5cxg+fDgA9+7dw6W1nKx/+ICDudWy2a7o06ScQQx6360/c9GqsVjM/GJGEK/NkF0WAKxWK9nZ2Zw+fZqUlBTS0tLQarX26zdv3kxMTIzsSiH6BfkoJga1VqOFN9dld6s/6zDbAA2/OF3H/DTLoO+xlJSUsG/fPtzc3Hj77bfx9fXtdv29e/eoqqri1Vdf7aUWCvHnGdz/o8Wg9zj1Z0tTwp5to/qItrY2jh49SmFhIS+88ALx8fEO19rMyMggLS0NJyd5OxH9g7xSxaBWLPVnPdhsNi5fvsyJEydISkpizZo16PV6h78rvT3RH0nwiUEtws+As5OKTkvPbt9grD8rLy9n3759aDQaVq5cSUBAwCN/X3p7oj+SV6sYtBRFwb+jFKvVAmh6XD+Y6s86Ozs5fvw4ubm5zJw5k1GjRn3vFkLS2xP9lazcIgYlm83GwYMHuXXjW36/LBmDXoOr7n74ueo0GPSaQVF/pigK3377Lb/5zW+w2WysWbOG5OTkx9o3T3p7or+SV6wYdMxmMzt27KCzs5PVq1fj7OxMdkzw/Tq+QVR/Vl1dzf79+zEajSxdupSQkJDHvq309kR/JnV8YlBpa2vjq6++wtfXlwULFqDR9BziHOhMJhMZGRlcvXqVqVOnMnbs2D97vzyp2xP92cD+SCvEA+rq6ti8eTMJCQk8//zzjzWcN5AoisLNmzc5ePAgERERfPDBB7i5uf3Zx5HenujvJPjEoFBaWsq2bduYNm0azz33XG8355mrr6/nwIEDNDU1sXjxYiIiIv7iY8m5PdHfyStXDHh5eXmkp6ezaNEiYmJiers5z5TFYuHMmTNkZ2czadIkxo8f/1cN70pvTwwEEnxiQMvKyuLs2bOsWLGCoKCg3m7OU/HdBbbnJQXjpneioKCA/fv3ExgYyN/8zd/g6en5V9/XyZMnmTx5svT2RL8mr14xICmKwuHDhykoKGD16tV4eXn1dpOeiu8usO2q0/Dz9FxWhbfi0np/B4Un1cstKyujurqapUuXPpHjCdFbZFanGHDMZjM7d+6kvb2dpUuX4uLi0ttNeipajRbGfXK02wLbXZw1cP4fpuPl9uQe+6ZNm4iNjWXs2LFP7JhC9AYpYBcDSnt7Oxs2bECj0bBixYoBG3rw6AW21RoNh/Jqnth9dfX2kpOTn9gxhegtMtQpBoz6+no2b95MXFwcM2bMGLDlClarlXv37nHqys1ntsB2RkaGnNsTA4a8isWAcO/ePbZs2cKUKVMGXFG1zWajoqKCO3fuUFxcTGlpKb6+vhhs/jjhhMXBwI1OreDv/GTOYsi5PTHQSPCJfu/WrVvs2bOHBQsWEBsb29vN+aspikJ1dbU96O7evYu7uzuRkZGMHTuW+fPnc+7cOepzbqJ1isXiYGcJtUpFRdY+vqnLJS0t7Xt3WXgU6e2JgUYmt4h+LTs7m9OnT/Paa68xdOjQ3m5ODw8rNXiQoijU19dz584de9g5OzsTERFBZGQkERER9hVWSkpK2L17N0OHDmXOnDn89uvD/P6WEwpgtIJeA4rNxoa3J5Ac4s7Fixc5f/48wcHBpKWlERoa+me1v6ysjO3bt/OjH/1Igk8MGBJ8ol9SFIWjR49y69Ytli9fjre3d283qQdHpQYqFax7M5UYL7U95O7cuYNKpbKHXGRkZI+aO7PZzLFjx8jJyeGll14iLi6OyspKNm7cyOr3PuCLo9+SV1bLrAnJtOedJiIkiOnTpwP3i9ivXLnCuXPn8PT0JC0tjaioqMc6ByozOcVAJMEn+h2LxcKuXbtobm7mtddew9W1720W+6hSA63Kxptet4gddj/kIiMj8fb2fmgQdfXygoODmTNnjv3xbtiwgdjYWFJTU8nPzycrK4sVK1bQ2trKZ599xpIlS4iMjLQfx2azcePGDc6cOYOTkxNpaWnExcV1W6D6wR6qp8ZE8/UT/PTHP5TenhhQ5NUs+pWOjg62bNmCm5sbK1eu7LNvyI8qNVChot13BD4+LhiNRoqLi6msrMTFxQVnZ2f7l1qt5uTJk9y4cYO5c+cyYsQI+zEKCwtpamqyrztqMBhoa2sDwM3NjUWLFrFz507ef/99e1Cq1WqSkpJITEzk9u3bnD59muPHjzNp0iSSkpK4XNrUrYeqUymoNcOZXtZMSoTP033ChHiGpMcn+o2GhgY2bdrE8OHDmTVrVp8uV/jlgTx+d6roodcvinFhcZSGzs5Oh1/t7e2YTCbUajUGgwGDwWAPRL1eT35+PpGRkYSGhuLi4oLVauXo0aOsWrUKZ2dnXFxcOHHiBHV1dbz22msOnytFUSguLubMmTOUV9extjGGTkvPthr0GrJ/NnPA708oBg95JYs+6buTQp7zV7Hnm22kpaUxbty43m7e94rwM+Cq0ziss3PChqazgejo8T0m5JjNZk6cOMH169dZsGABUVFRdHR0dAvF27dvo9Pp8Pb2pq6uzh6U7e3tbN++3f57VqsVlUrFv/3bv+Ht7d2tN9n15eLiwpgxYyi9UYu1rgVwFJD3e7BLU8Ke1tMlxDMlwSf6nO9OCnF2UmG1WPjkxemMGze6t5v3WOYlBfPz9FyH1+m0TiwY5c+2bdvw9fVl8uTJREREcO/ePXbt2kVgYCDvv/8+BoMBAGdnZ/ttzWYzBw8e5OWXX+4xQ/OXv/wlb7/9tv33LRYLFRUVbN68mZSUFAwGA52dnfYg7ejooKGhgY6ODm7cBbNicNjeJ10ML0Rvk+ATfUqr0cKb67K7TQrptCiAhn8+UcWc8ZZ+MeTmpndiTQL85zXQaO73/Fy0ahRFYb5HKWOTp5A2PoXr16+Tnp6OyWTCYrEwb948EhISHnrc8+fPExIS4rAsoes8X1fwOTk5ERoaypw5czh9+jTvvvsuOp0Oq9VKRUUFJSUl1NfXU1paiovFG63KBbPSsxjeVachwrfvTSAS4i8la3WKPuVRk0K6htz6A6PRSFvxNU58NJ5/nhfP9EALq5M9uPRPs5k9OorNmzdjtVrx8/NDpVLh5eWFh4cHGRkZXLt2DZvN1uOYbW1tZGZm2ssUvsvV1dU+weVBMTExuLm58cUXX7B27Vp+9atfsW/fPhobG0lISGDFihXMivV96GNRqe73YIUYKPr+R2cxqBTXtj2z9SefpitXrjBs2DCCh/iydIgvEbYKqqqqMOidmD59Os3Nzfz2t7/FbDYzZ84cEhISUBSFoqIizpw5w4kTJ5g4cSLJyclotVoATp06RWJiIr6+jkOqq8fX1YsrKSmhtLSUpqYmgoKCaGpqIiUlhWXLlqHX61EUhdzcXDZt2kR8fDx/WD6SdzddQaNxotOidKs77A+9bCEel7yaRZ8S6OaEVmXr10NuNpuNrKwsfvCDH9gvCwsL4+LFiwCUl5dTXl6OxWIhPDyc+Ph4AFQqFVFRUURFRVFaWsqZM2c4deoU48aNIyoqiuvXr7NmzZpu92W1WqmsrKSkpISqqip27dqFXq8nLCyM0NBQxo4dS0BAAGq1mvLycjZt2sSYMWMwGo3s37+furo6Xn31VUJDQzl8+DD/MlbBFjqSTbsPs+ylWSwYNVRCTww48ooWfUZVVRXVF/ajUUdjdtDp6y9Dbnl5ebi7uxMSEmK/LCAggKamJg4ePMiNGzd48cUXGT58OBs3buTIkSPMnj272zFCQ0N5/fXXqaqq4uzZs5w4cYKwsDA6OzspLy+39+YqKirw9vYmNDSUgIAAvL29mT17tsPyheDgYCZNmsT69evp7OwkJSWFl19+GScnJ+rq6rh69Soffvghbm5uFB2p5gfJQeh08hYhBh55VYs+oaCggJ07dzLnxRd53n3oQ5f66g+9j/PnzzNx4sRul1VUVAD3d5F4//337Wtvvv7666xduxY3N7cet1EUxV62oNFoqKio4NNPP8Xd3Z0RI0aQlpZGSEiIfTJLVlYWdXV1D61vrK+v5/bt27S3tzNy5Eief/55+3WHDx9m0qRJ9nZptVrMZjM6ne7JPClC9CF9/11EDHhdC00vXbqUsLD7tWLZP5t5v46vrp0IX1fmJQX3i9ArLS2lra3NvkuExWIhIyODK1euEBUVha+vrz1cAFxcXFi+fDlr167FxcWFgIAAe2+upKQERVGw2WzExsYyYcIEXF1dyc7O5sqVK5hMJry8vOzBZzAYKC0t7dEmm81GZmYmZ8+eZfLkySxZsoQ//OEPjBw5koiICAoKCqitreWVV16x36Yr+IQYiPr+O4kYsGw2G4cPH6awsJDVq1d3W2jaoHfqNwXTDxbb19zJY8FzqfZzart378bb25v333+fyspKzpw5Y79dZ2cnZWVllJSU4Obmxp49e/D09CQ6OprY2FhmzpxJRUUFp06dYvHixfY1NWfPns3kyZPJzs5m7dq1REREkJaW5nBWZ2VlJXv27MHZ2Zl3333X/hwvXLiQnTt38s4773Do0CFmz57dbfk3CT4xkEnwiV5hNBr55ptvsFgs3Yqu+5vvFts74cTBqkZ+VHmElqKrvPDCCyQmJgLg7u5OWVkZ6enplJWV0dDQQFBQEGFhYUydOhWVSsXOnTsZPXo0Q4cOxWq1snHjRubOndttIWm431OcOnUqEyZM4PLly3z11Vd4enrS2tqKoihYrVYyMjK4fPkyM2fOJDk5udsQaHR0NAkJCWzcuBEPDw+GDx/e7fgSfGIgk7U6xTPX1NTEV199RXBwMC+99BIajaa3m/QXedQODHq1wjdvxNLW9KfSApvNhsViITk5mcTERAIDA3s89lu3bpGens6qVasoKiri9u3brFix4nvbYrFYuHDhAkeOHMHPz4/Ozk5CQkKYM2cO7u7uDm/T0tLCf/zHfzBp0qQetYFffPEFM2bMIDw8/M94RoToH6THJ56p8vJytmzZwrhx45g4cWKfXmj6+zyq2N5qs/HpnkxeGuFNTEwM06dPx9vbm3379uHl5fXQTXNjY2Npb29n48aNmM1m3njjjcdqi5OTE8nJyRw5coTm5mZcXFyoq6ujuLiYhISEHj1GuF8XOHLkSC5dukRCQkK3Xdq1Wi0Wi4MVq4UYAGTlFvHM3Lx5k02bNjFnzhwmTZrUr0MPHl1sb0GDxcUbDw8PVCoVbW1ttLa2EhIS4nACyoNGjx6Nl5cXNpsNLy+vx2pLfn4+n332GRqNhnfeeYePPvqImTNncvHiRT799FMuXrzYLciqqqrIy8vjxRdfZPbs2Xz99deYTCb79TLUKQYy6fGJp05RFDIzMzl//jzLly8nOLjv1+I9jkftwKBVKYR6O2OxWMjPz6ehoYGGhgZMJhM2m43Nmzfj5eWFt7e3/cvLywu9Xk9zczPV1dXExsayZcsWVqxY8dB9B9va2jh06BBlZWUsWLCAgwcPYrPZUKlUxMTEEBMTQ0lJib0Yfvz48YwZM4aDBw8ydepUXFxcGDVqFEVFRRw6dIj58+ffb78EnxjAJPjEU2W1Wtm/fz/37t3j7bffxtPTs7eb9MTMSwrmF/sc78CgUavQVV6nSh3I5MmT7YtKd3Z28p//+Z/ExsZiNptpaGiguLjYHow6nQ5FUTAYDLi5uVFdXc2GDRtYsGABXl5e9nOCiqJw48YNDh06RGJiIu+//z46nc7hzM6wsDCWLVtmn1WakZGBk5NTt5Vl5s6dy+9//3tycnJISEjAyclJgk8MWDK5RTw1nZ2dbN++HY1Gww9+8AP0en1vN+mJ++6sTledBsVm4yW3u/yPVYspKyvj7NmzeHp6kpaWRlRUFNu3bycuLo6kpKRux+raGHbbtm3MnDmTtrY26urquH37NjabDavViru7O+7u7jQ1NWG1WklJSSEqKgpvb29cXV35+uuvGTFiBCNHjnTYXovFwn/9138xZMgQysrKGDVqFBMnTsTDw8O+pNmylW/x3/uyaMGFiYnRzEsKxq0f1FAK8bgk+MRT0dDQwObNmxk2bBgvvPCCw8kVA0VbVx3fA8X2+Xk3OH78OCtXrsTHx4ecnBzOnDmDWq1myJAhaLVa5s2b1+NYmzZtIjo6uttmu0ajkXXr1hETE4NGoyEzM5Pw8HB8fX1pamqisbGRhoYGLBYLTk5OuLu7ExkZaR8+7fpXp9Nx+vRpysvLWbp0Kc3NzWRmZnL16lVGjBjBpEmT2H0uh19mNqFSqTHa6LZqTkqEz7N8WoV4aiT4xBNXWlrKtm3bmDx5Mqmpqb3dnF5z9epVe/j5+fmhKAq3b9/m2LFj1NfX89JLL5GUlGQfviwqKmLfvn18+OGHPcocSkpK2LBhA25ubixbtgx/f/8e99fZ2cmxY8doa2sjJCTEHoiNjY00Njai1WoxGo3ExMQwZMgQeyA6OzuTl5dH5sUrrG+KxWjrOenIoNeQ/bOZ/WL1HCG+j7yKxRN148YNDhw4wKJFi4iJient5vSq5ORkANavX28Pv9jYWKKiovjlL3/JtWvXOHnyJBMmTGD06NEcOXKEGTNmdAs9q9XKuXPnyMzMGUd2NgAAGrtJREFUZOLEiVy6dIna2lqHwefs7ExAQAAVFRUO1/38+uuvcXJyYtiwYTQ0NHD37l2uXr1KY2MjbW1tFGuGYrMpQM/g69oLsb+spiPEo0jwiSdCURROnTrFlStXWLlyZbeasMHMUfg5OTkxdOhQ0tLScHFxse+/5+zsTEREhP225eXl7N27F4PBwHvvvYeXlxdxcXFs3LgRV1dXh8XlBoOB9vaeexbeu3eP0tJS1qxZg16vx2g0Ultba/+qqanhaoEF80MqnPrTXohCfB/Nxx9//HFvN0L0bxaLhT179lBaWmo/pyX+JDAwEBcXF3bt2kVMTAyurq7U1dXR2tpKYmIiw4cP5+LFiwQEBHDs2DFaWlq4ffs2x48fZ+rU/7+9ew+K+sz3PP7+dUODNNhod9MgKmiguSiMJsb7KGoANWp0S0bCmMSYbGJmUrUzOWe3KltbdabOTp3ZqsykZmaT2YyZycQ5usZLNEZGI04MxMF4AaNclLsGL0DT3OROX37nD0IfkQZNYkKkv68qqrg03U//KvHD83ue5/tdSmpqKuPGjQP6y55FRESwf/9+YmJiBhW8Bujq6qK8vJzZs2ejqiq3bt3i+vXrfPDBBxiNRkpLS/n44485efIk169fp6enh+DgYKKiomjsclFqd+L2En5BOi3rZ01iZuTY2ZUrfJes8YlvpKuriz179qDX69mwYYOnW7gY6vY1v2v1jbx7opiI2CScrXVMVRt5OmsTJSUlZGdn43A4SEpKYunSpYOKdw8oKSnh+PHjPPvsswQHB9PU1ITdbqe2tpYLFy5gNBqx2+0EBAQQGBhId3c3ixcvxmw2YzKZPAfrVVWlsrKSnJwcgsZP4NdVE+lyuIe8nqzxibFEgk98bXa7nd27d5OQkMCKFSse+Eos34ULFy6w89hnHOmMps/hwIkWP1zo/P15Ic6Ju6GSxx9/nMmTJ3P69GkKCwuJjY319Mq7/fZkVVWVp//ehAkTMJlMGAwGCgsL2bJlC0ajEY1GwxtvvEFGRobnLOGAhoYGcnJyuHXrFmlpacTGxno9niG7OsVYI8En7sntrXeiTXqSDQ6OfHiQ5cuX8/DDD4/28B4YHb1OHv1lDt3Oof/bBWhU/vHfl6B1Oz3h1tDQwBdffEFbWxsajQaj0UhkZCRGoxGTyURlZSX19fU888wznsPvv/zlL3n11Vfx8/PjxIkTtLW1sWHDBs/rdHZ28sknn1BWVsaSJUt45JFHBm2o8XY8Q2Z6YiyR/5rFXd05CwjQgtvl4jfrVvHwwzNGe3gPlOyimygaDTC0zJlbVXnlt7t4JLQXk8mEyWRiypQpzJ49G4PBQGVlJadOnaK1tZWZM2cyffp04uLi+PDDD9m3bx+ZmZlotVrPBheXy0VBQQHbtm0D+tdiz549S35+PklJSfz0pz/1rB3e7kHqhSjE1yEzPjGikVrvyLrPV/d/jl7mrU9rhv152mTYtiACs9mM2Wwe0qfQ5XJRUlLCP/7xD3Q6HYsXL8ZqtbJ3714CAwN5bNUa/scb72GMSqC7sZa0eCNpy5ZQVlbG8ePHMZvNpKamYjKZvu23KsT3lgSfGNF752r51+xLXgsxB+m0/MuaRJkdfAUjXc9AP4WnEgOZGdSOzWbDbrej0+kICwvDZDJ5wjAsLIzAwEDKy8s5efIkfX19zJ8/n0OnStjbYMLlVnGoCv648ff3IzOiGTP963gPPfTQKLxrIb5f5E91MaKRWu/I2a6vbsTC1loNP/svSzwz6IHjCI2NjdhsNm7cuMHFixdpbGzEz88Ps9lMZGQkiqKQf7aQ3XXhOFQYOIDuQIPD4eb/35zAuf+ZQcg43Xf0LoX4fpPgEyOaqHPhj9vrweYgnZZoY9AojOrBFRzgx7tb5g67c/L228aKomAwGDAYDMTExHi+r6oq7e3tNDY2ej4qekKGbYqr0Wg4UlIvM3MhviTBJ4ZVUVFBY+Ex/PwScHjZhago/TMY8dU8Gj2Rs68+9rV3TiqKwvjx4xk/frzn1mXp0cs4bd7XDmVmLsRgEnxiCFVVOXPmDPn5+TyTtYk0Z9A9zVDEvbvfOydHaoorM3MhBpPNLWIQt9vN0aNHqa2t5cknnyQ0NBSQs13fd7L7Voh7J8EnPHp6eti/fz+KorBx48Yx2Th2LJOqK0LcGwk+AfQ3jt29ezfR0dGsXLlyTDeOHctkZi7E3UnwCWpra9m3b5/PN44VQvgG+VPQxxUVFXHs2DFpHCuE8Bky4/NRqqqSm5vLxYsXycrKIiwsbLSHJIQQ3wkJPh/kdDo5dOgQLS0tZGZmDmlmKoQQY5kEn4/p6Ohgz549GAwGnnjiCWkcK4TwObLG50NsNhu7d+8mOTmZlJQUaRwrhPBJEnw+oqqqioMHD5Kenk5ycvJoD0cIIUaN3Or0AWfPnuXkyZNkZGQwdaoUKhZC+DYJvjHM7XZz7NgxampqyMrKYsKECaM9JCGEGHUSfGNUb28v+/fvx+12k5GRMaSTtxBC+CpZ4xuDWltb2b17N1OmTGHVqlVotdrRHpIQQnxvSPCNMdevX2fPnj0sXLiQ+fPny85NIYS4gwTfGFJaWsqRI0dYt24dcXFxoz0cIYT4XpI1vjFAVVVOnjzJ+fPnyczMJDw8fLSHJIQQ31sSfPegY6DVi72TaJOeNcmTCB6lVi93jmVlYhif5BzFbreTmZlJSEjIqIxLCCEeFBJ8d/F9au5551jG+WtwOZ08F9PLK09J+TEhhLgX0m10BB29Tra8e5bOXhddfS6gP3A6e11fft85qmPpdrjpUzX8tTaYPrdsYhFCiHshm1tGkF10k+Hmw729fWz71dsk6Fo8OycVRfF83O+vL7QH0dcXire/VVS1f6ybHpWqLEIIcTcSfCO4au/0zK7u5ERL4qNL+KfUWFRVZeCO8cDn9+vr7u5uamtrOXnWhkP1PkHv6nNxtanr/r1xIYQYwyT4RjDZEIC/4vYaOP6Kmwk6Fzqd7r6+pqqq2O12KisrqaiooKGhgWnTppEUPYkzza1exxKk0xJtDLqv4xBCiLFKgm8YLpeL3spTaDSh4GXSpwAtF//OwY5qVqxYwfjx47/Ra33xxRdUVFRQUVGBy+XCarWyePFipk2bRm9vL7//w3ZQH/L6+4oCa5Infe3XF0IIXyK7Or1QVZXs7Gxu3bpFzIJ0tu4ooLevDydaArQKqtvF87F9GN2tREZGUlRUxLx581i4cOE976zs6uryzOpqamowGo1YrVasVisWi8WzzldfX88777xDcHAwj6z8Ec//+3lcLjd9qoIfLgJ0Ot599rvfYSqEEA8qCT4v8vPzKS4u5tlnnyUgIIC6xmb+1/aDWB9ZRJQxCEfVaSzGUDQaDZcvX2bNmjUUFBRw48YNHnvsMWbMmDGkVJiqqjQ2NnpmdTabjWnTpmG1WomNjSU4OHjIOEpLS3n//feJjo5m8+bNaDQa3tt/kC9UE4SYuXb5PC+tnsuMuJjv6tIIIcQDT2513qG0tJSzZ8/y3HPPERAQAECgn0JycAf/bWU8AJ2JRt566y02btxIaGgoBw4cYNOmTTidTo4dO8bZs2dZuXIlFouFq1evesJOVVWsVitLliwhOjoaP7/hL39eXh65ubnMnTuXVatWAf1thmprKtn24nIMBgOfBtm4dqVKgk8IIb4CCb7bXLt2jSNHjvDUU08NWrNzuVyDOhzo9XrWrFnDBx98wLZt2zAYDOzevZs1a9aQlZXFiRMn+Mtf/oLb7cZisZCQkEBmZiZhYWH3VDR63759XL58mccff5w5c+YMGp/BYMBgMABgtVrZu3cv6enpUoxaCCHukQTfl1paWti7dy/r168fUuvyzuADiIuLo6ysjJycHObNm8eMGTN4//33gf5ASktLw263U1xcDIDRaLxrODmdTv70pz9ht9t56qmnmDZt2qCfV1RUYLVaPV9bLBZcLhd2ux2z2fy137sQQvgSqdxC/1m5Xbt2sWTJEmJjY4f8/M7gczqdVFdXo9FouHDhAjt27ABg7dq1TJgwgZCQEB555BFWrVrF888/z82bN3nzzTe5dOkSwy2ptre389vf/pa2tjZefvnlIaEHQ4NPURSsVisVFRXf9BIIIYTP8Pngczqd7Nmzh9jYWB599FGvj3G5+s8zXLhwgb179/LrX/+a3NxcQkNDWbt2LVqtlpSUFH7wgx/w3HPPYbPZ2Lt3Lw6Hg4kTJ7Jp0ybWrVvHp59+yo4dO6irqxv0/NevX+f3v/89gYGB/PznPyc0NHTIGJqbm+np6WHSpMHHFiT4hBDiq/G5XZ23dzeIMuqhthCNq48f/ehHg25FqqqKzWajoqKC4uJi7HY78fHxnl2Yer3e89icnBza2trYuHEjiqLgcrn48MMPaWpq4sknn/Q81u128/nnn/PJJ58QGxvLihUrqK6u5tChQ8TExJCZmYlG4/1vkdOnT2Oz2Vi3bt2g7zudTl577TV+9rOfMW7cuG/higkhxNjiU8F3Z3eDAC2objc7ts5jQUwYTqdz0C7MgVuJISEh1NTU8PTTT3t9XqfTyfbt2/nhD39IUlIS0B+cubm5FBcXk5WVRWBIqCdwIw06DK1VFH9egNPpZP78+aSnp4849r/+9a/MnTuX+Pj4IT977733SExMJDk5+ZtfJCGEGON8ZnPL7d0NBvR/qmHrjgJeTWjnZu0VwsLCsFqtZGVlYTabURSFiooKamtrh31uPz8/NmzYwM6dO4mKimL8+PEoisKyZcsIDQ3l397ew0fd00FR+tsJ6bS4nU5W+AXyg0nBlJeXM3XqVOLj471ugOnp6eHGjRtMnz7d6+tbrVYqKysl+IQQ4h74TPCN1GnB5XJzTRPGf926jJCQELRa7aDNLC6Xa9hbkAMiIiKYN28ehw4dYvPmzZ4Ai01M4ujBerodbs9ju/tcgEKumshrW1JpuFHrOf+Xnp4+ZFdpdXU1U6dOHbYuaGxsLMePH/e6+1QIIcRgPhN8I3Va6FMVCsqu4l97DlVVcblcOJ1OVFVFq9WiKAqqqvL666+j1Wrx8/PzhOPtn2u1Wurq6vjzn/9MWFgYWq2W0zYNbpfb6+uiKF+2E5rOiy++yPnz59m5cydxcXEsX77cszZ4527OO4WEhDBx4kSuXbtGdHT0N71UQggxpvlM8EWb9ATptF7DL0AD8ZEmJioubDYbQUFBWCwWzGYzZrOZlpYWGhoaWLlyJS6Xy/PhdDqHfB4VFUVubi5Wq5XAwEBa627R6+71OqauPhc1tnYANBoNc+bMYebMmeTl5fHmm2+yePFi5syZQ1VVFcuXLx/x/cXGxlJRUSHBJ4QQd+EzwbcmeRL/+2+XvP7MrbqYbVRZlbqJ4OBgT9A1NDRQXl5ObW0tXV1dtLa2YrFYCAsLw2KxYLFY0Ov1Q9bltFotRUVFbN26lRrlOjlXi+n1Mtn0V1TKC/P50FVNcnIyUVFRBAYGkp6ezpw5c8jJyeH06dP4+/vftfuD1WrlwIEDpKWlfe1rJIQQvkD7i1/84hejPYjvgs5Pw9zoiRwpqcNfq8HhUgnQglZx8+6Wufh1t3D48GFUVSUmJgaLxUJ0dDQzZsxAp9MRFBRESkoKfn5+NDU1cfnyZXJzc/nss8+orq6mrq6O9vZ2VFVl+vTplJWVcevWLZwtNzn2hRO3lyOT4wL8+PefptHb3UV+fj75+fl0dnYSEhKCyWQiKSmJ69ev09zcTHV1NeHh4V6LWQMEBweTn5+P1WolKEh68wkhxHB86jgDQOfAOb6mLqZOHEdb0QmSEqwsWrSI5uZmjh8/Tn19PampqSQkJKAoCmfOnKGpqYnVq1cPei5VVeno6PDMDm02Gw0NDTQ1NRESEkJLSwsApvh5vHlJBfp3dQ7XTqihoYGLFy9SUlJCcHAwycnJFBQUsG7dOurr6/n000+Jj49n2bJlg84RDjh8+DAmk4kFCxZ8q9dQCCEeZD4XfHdqbW3l7bff5sc//rGnKsqVK1c4duyY57bjlStXaG9vv+tZuwHd3d289dZbtLe3o9PpmDx5Mjca7FzqCMQROAG9u5NlDxlYNG8OFouFwMDAQb/vdru5evUq586do6ysjJiYGM+t0FOnTlFcXMzixYuZO3fuoF2c5eXlnD59mmeeeeb+XSAhhBhjfD74oL8V0YkTJ3jhhRc8rYhur7Iyfvx4Jk+ePGTG501LSwvbt29Hq9Xywgsv8NFHHxEaGkpaWhrd3d3YbDYuXrxIVVUVBoMBm81GYGCgZ81wYP3QaDR6evzFxMRQVFTEjRs3iIuLIyoqikuXLtHS0kJaWhqxsbEoioLD4eDfXnud6SkbudHWR7RJz5rkSQQH+MxSrhBC3JUE35cOHToEwBNPPDHo+z09PezatYv6+nqWLl3K/Pnzh+2jd+XKFXbt2oXZbOb5559Hq9XS2dnp6d0XFRUFgMPh4De/+Q0vv/wyer2elpYWz23SgVumbW1taDQaIiIisFqthIWFodfruXr1KkVFRXR2djJlyhRu3rzJxIkTSU9P54suPza/fQo0GnqdKkE6LYoC726RDu1CCDFAgu9LfX19bN++nZSUFGbOnDnoZx9//DEOh4PW1lZsNhupqalDqqycO3eOo0ePkpCQQEZGxqDfLy8v56OPPmLbtm2eGeXBgweJjIxk7ty5XsfT0dHB7373O9LS0mhqavKEoqIohIWFERISQnd3N3V1dSiKQnuPg91dM+l1D638og/QcvbVx9DLzE8IIXxnV+fdaLVapkyZwoEDB0hMTBxU8Lmqqorg4GBWr16N2Wzm448/5tKlS55dlkeOHCEvL4+UlBSvt0NNJhM2m43q6mri4uI8r1dQUMDs2bO9jqeqqoqenh5WrlxJTEwMs2bNYuHChSQnJ3t6+/X19eFwOGhra6PaZaLWEex196i/VsMkQyAzIw336WoJIcSDy+fbEt0uIiKCRYsWceDAAdzu/6y2cnspsOnT+6usJCYmsnPnTl5//XXOnTtHRkYGS5cuHfa5BzbJDLQQeuihh7Db7bS1tXl9vLdqLYqiEBISwuTJk4mOjiYmJoa4uDji4+Pp9gvGifdyZV19Lq42dX2layGEEGOV3Pu6w4IFC6ipqSEvL49ly5YB/Rtdbt89qdFoSE5OJj8/n/b29v4KLa2tOJ3OYdf/AgICeOKJJ3j//fd56aWXCAoKIj4+ntLSUhYuXDjosW63m4qKCmbPnk1lZSVNTU3Y7Xaamppoamqiu7sbo9GIyWTCaDRitVqZ2Wvj89Jur+EXpNMSbZSzfUIIARJ8QyiKwvr16/njH//I9OnTiYqKGlL8ubm5me3bt+Pv788rr7xCT08POTk5FBYWkpqaSlxcnNcuC9HR0SQlJZGdnU1GRgZJSUnk5OQwderUQeFWV1dHd3c3Bw4c8ISb2WwmISEBo9GIwWDwPH9LSwvZ2dlM6OhG5z8Fp2NoXVBF6a9cI4QQQja3DKuyspK//e1vbN7yHK/tOYEjMJS5idOYGdLLwX3vER4eztatWwcFYnV1NceOHSM4OJj09HQsFgvQP4NraWnBbrdjs9k4deoUer2e7u5uurq6MJvNhIeHYzQaMRqNVFVVodfrSU1NHXZ8brebM2fOcPLkSRYtWsSCBQsorG0d1G9QdnUKIcRQEnwjeGPPUf5vkQsV6HMrBGjB7XLxYryLf35mw5DHd3V1YbPZOH/+PGVlZQQFBaHRaLh165anDJnRaMTPz4/CwkI2b95MUVERQUFBg9YH//CHP7Bu3TomT57sdVz19fUcPnwYnU7H2rVrmTjxP0Pt9so00cYg1iRPkt2cQghxG/kXcRgdvU7+3yVl0PGA/kLTWt6p9md5USldt1oG3aJ0u92YTCZMJhPz58+nvr6ea9eusWzZMubPnz9odqjT6Thx4gRLly7l8OHDLFmyBEVRaGlpoauri8jIyCFjcjqd5OXlcf78eR577DFmzZo15JaqPsCPTY9O/bYuixBCPPAk+IaRXXST4abCDoeTnScvszK2v6LLrFmzMBqNXjs12O12cnJyOH/+PGlpaVitVhRFYfHixVRUVFBXV4fD4cBms2GxWKioqPBUYrnd1atXyc7OxmKx8NJLLw1brFoIIcTIJPiGMVLjWgcamno1+Pv7o9frMRgMXkMP+s/wZWVlUVVVNajLelhYGOvXr+edd94hPj6ekpIST/DNmTPH8/s9PT0cP36cyspKVq9eTXx8/Lf2noUQwhdI8A1jpMa14/w1zHooEre7g8LCQurr63G5XISHhxMeHk5ERIRns4pG039UMiYmhmnTplFQUMCOHTtITExk2bJlpKSkkH+2kEsdgXzWVUxFTRePr+8vbVZWVsaRI0ewWq385Cc/GVLMWgghxFcnm1uG0dHrZN6v/k6nlw6y3kqAdXR0UFdXR11dHfX19dTX19PR0YHFYvGEYUREBGazmb6+PvLy8igpKcGUMI9ffdaG263iRItOUfH39+PpqA70XfWsXbvWU+NTCCHENyfBN4JzV5u/0fGAnp4e6uvrB4Vhc3MzRqORiIgItIF6Xsnrpk8dWkAnUAtnXl2BQS+zPCGEuJ8k+O7ifh8PGNjIUldXx4EL9eyrUXF4Cb4gnZZ/WZMoOzSFEOI+kzW+u7jfxwP8/f2JjIwkMjKSvzdexlFd4/VxUl9TCCG+HVKkehQNbKDxRuprCiHEt0OCbxStSZ6ElxMQgNTXFEKIb4sE3ygKDvDj3S1z0QdoPTO/IJ0WfYD2y+/LnWghhLjfZHPL94DU1xRCiO+OBJ8QQgifIrc6hRBC+BQJPiGEED5Fgk8IIYRPkeATQgjhUyT4hBBC+BQJPiGEED5Fgk8IIYRPkeATQgjhUyT4hBBC+BQJPiGEED5Fgk8IIYRPkeATQgjhUyT4hBBC+BQJPiGEED5Fgk8IIYRPkeATQgjhUyT4hBBC+BQJPiGEED5Fgk8IIYRPkeATQgjhUyT4hBBC+BQJPiGEED5Fgk8IIYRPkeATQgjhUyT4hBBC+BQJPiGEED5Fgk8IIYRPkeATQgjhUyT4hBBC+BQJPiGEED5Fgk8IIYRPkeATQgjhUyT4hBBC+BQJPiGEED5Fgk8IIYRPkeATQgjhUyT4hBBC+BQJPiGEED7lPwCZPX/za7WtsgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACa+klEQVR4nOz9eVTU957v+z+/VcyDMgookwwyqiAqojhFcTbRRBNHNIlJOr13d+97u8+5fe9dO33O2mede8759d69+3Syk+xtEsUhaqJR4wjOojihKIPgwKwyI3MBVfX9/cGmIjKIogL6fqzlUqq+VfWhQuDF+/P5vD+KqqoqQgghhBBCPCNNfw9ACCGEEEIMbhIohRBCCCFEn0igFEIIIYQQfSKBUgghhBBC9IkESiGEEEII0ScSKIUQQgghRJ9IoBRCCCGEEH0igVIIIYQQQvSJBEohhBBCCNEnEiiFEEIIIUSfSKAUQgghhBB9IoFSCCGEEEL0iQRKIYQQQgjRJxIohRBCCCFEn0igFEIIIYQQfSKBUgghhBBC9IkESiGEEEII0ScSKIUQQgghRJ9IoBRCCCGEEH0igVIIIYQQQvSJBEohhBBCCNEnEiiFEEIIIUSfSKAUQgghhBB9IoFSCCGEEEL0iQRKIYQQQgjRJxIohRBCCCFEn0igFEIIIYQQfSKBUgghhBBC9IkESiGEEEII0ScSKIUQQgghRJ9IoBRCCCGEEH0igVIIIYQQQvSJBEohhBBCCNEnEiiFEEIIIUSfSKAUQgghhBB9IoFSCCGEEEL0iQRKIYQQQgjRJxIohRBCCCFEn0igFEIIIYQQfSKBUgghhBBC9IkESiGEEEII0ScSKIUQQgghRJ9IoBRCCCGEEH0igVIIIYQQQvSJBEohhBBCCNEnEiiFEEIIIUSfSKAUQgghhBB9IoFSCCGEEEL0iQRKIYQQQgjRJxIohRBCCCFEn0igFEIIIYQQfSKBUgghhBBC9IkESiGEEEII0ScSKIUQQgghRJ9IoBRCCCGEEH0igVIIIYQQQvSJBEohhBBCCNEnEiiFEEIIIUSfSKAUQgghhBB9IoFSCCGEEEL0iQRKIYQQQgjRJxIohRBCCCFEn0igFEIIIYQQfSKBUgghhBBC9IkESiGEEEII0ScSKIUQQgghRJ9IoBRCCCGEEH0igVIIIYQQQvSJBEohhBBCCNEnEiiFEEIIIUSfSKAUQgghhBB9IoFSCCGEEEL0iQRKIYQQQgjRJxIohRBCCCFEn0igFEIIIcQz07UaKK9rRtdq6O+hiH5k1t8DEEIIIcTgczm/io3JuSRllWJUQaNAXKgbH8X6Md7Xqb+HJ14yRVVVtb8HIYQQQohnp2s1UKfTY29lhpW59oW/3pYLBXy2LwONRsFg/CVGaDUKRqPK75aEsyba54WPQwwcEiiFEEKIQao/qoSX86t49+sUegoPCvDDJzFSqXyNyBpKIYQQYhDacqGAd79O4djNMtqLhEYVjt0sY/nXKWy9WPBCXndjci4ajdLjNRqNwsbkvBfy+mJgkjWUQgghxCBzOb+Kz/ZloEKHKWce+fi3ezMIdrPvVZXQaDSi0+nQ6XQ0NTV1+++6Rh2Jmdao9BwoDUaVxKwSdK2GlzIFL/qfBEohhBBikGmvEj4eJh+lUeD3B9P4zXhbUyjsLjC2tLR0+RyKomBlZYWVlRXW1tbozaxRsenVGI0q1On0EihfExIohRBCiEFE12owrZnsiUGFC8WNHK5Kwd7GqkMwHDJkCMOGDTN9/Oh9j/7bwsICRfmlGqlrNfD/+5cjT3xtaAu09lYSM14X8l9aCCGEGETqdPpeBToAFYVf/eafcLW3fC6vrWuoI9BGx60GC9QetmFoFYgLdZfq5GtENuUIIYQQg4i9lRlP2BNjoqCye8dWLl26RENDQ59eNzs7m6+//poxFuU9hkkAg6ryVrBdn15PDC7SNkgIIYQYZD7ZeoVjN8t6XEOpVSDa05pFDiXcvXsXAH9/f8aMGUNQUBDm5ua9ei2DwUBSUhIXL14kODiYN998kx1X7vFfD2WjAYyPbNDRoKKiMN+1Bq/mAlauXImvr29fPlUxSEigFEIIIQaZ3vSCBJX/MWsYK2ZPpKGhgczMTNLT0ykuLsbCwoKQkBBGjx7NyJEj0Wi6rjhWV1fz448/UlJSwpw5c5g4cSKKonDq1Cl2n0njwZAQUktbUVFQFPBWqvh/l8UwI8ybHTt2UFRUxLvvvktgYOCLeBvEACKBUgghhBiE/tuOU2y8Xo9WUTA88pNcQUUFlvkasC9JIy4ujsmTJ5vur6qqIj09nfT0dCorK7GzsyM8PJzRo0fj4eFh2oSTlZXF/v37sbGxYdmyZQwfPhyA5uZm/vjHPzJmzBgAcu7msXrdh9iYK3z1xX8QHBzMwoUL0ev1/Pjjj9y+fZu3336bsLCwl/beiJdPNuUIIYQQg0xjYyPmBRf5TVgI2YwgMavEdFKOl1LNaIsK3vAKwjIglqSkJBoaGpg9ezaKouDk5MT06dOZNm0a9+/fN4XLCxcu4OLiQlhYmCl0hoaGsnjxYqysrEyvnZqaSktLC1OmTOHAgQMMc3IwbfqJiIjg0qVLxMXFYWFhwfLly9m3bx+7d++mpaWFyMjI/nrLxAsmgVIIIYQYZE6dOoXRaGTDkjews7MzneVta6Hhz19+ga2tHZcvX2bDhg3Y2tpy9OhRGhsbWbx4sWl6W1EURowYwYgRI5gzZw65ublcuXKFM2fOoKoqjo6O+Pr6YjQaTa+r1+tJSUlh7NixDBkyhOrqavz8/Ez3R0VFkZycTEZGBuPGjUOr1bJ06VIsLCzYv38/zc3NTJo06aW/X+LFk0AphBBCDCLl5eVcuXKFWbNmYWfXtpPaylxratEzbtw4zp49y7Bhwzhw4AAfffQRtra27N27l8bGRpYtW9ZpQ45Go6GpqYm8vDwcHByIjIykqKiIw4cPc+TIEQICAhg9ejT19fU0NDQQGxuLqqpUV1fj5PTLSTwODg4EBASQmprKuHHjgLbgunDhQiwtLTl69CgtLS1MnTq1Q39LMfhJoBRCCCEGCVVVOXr0KA4ODkRHR3d5TWRkJKdPn8bf35+UlBQuXrxITEwM1tbW7Nq1iy1btrBy5Uqsra0BaG1t5fDhw1y7do3Ro0ebwh9g2sxz48YNdu/eDbSFxocPH6IoCgaDAUdHxw6vP378eHbs2MH9+/dN6y4VRWH27NlYWlpy8uRJdDodcXFxEipfIdKHUgghhBgk7ty5w927d5kzZw5mZl3XhOzt7QkKCuLu3btMmDCBkydPUlNTQ0BAAPHx8VRUVPDdd99RW1tLeXk5GzduJD09ncWLF7N06VJTmASwtbVl4sSJbNiwgVmzZgFtoXbLli385S9/AdraCj26vzcwMBB7e3tSU1M7jEtRFKZNm8bcuXNJSUnh4MGDHabTxeAmgVIIIYQYBAwGA0ePHsXX15egoKAer42KiqKsrIygoCCsrKw4fPgwAJ6ennzwwQc0Nzfz1Vdf8ec//xmj0chHH33EuHHjuq0YGo1G0tLSCAoK4h/+4R/YsGED7u7uAOzatYs//elPnDlzhurqajQaDePGjSM9PZ3m5uZOzzVp0iTefPNNrl69yt69ezEYDH18Z8RAIIFSCCGEGAQuX75MVVUV8+bNe+JUsZ+fH46OjqSnpzNv3jxycnLIzs4GYMiQIYwYMYKmpiZUVWXhwoUMGzasx+e7efMmlZWVprWP7Zt57O3tWb16NR4eHiQnJ/O///f/5ttvv0Wr1dLa2sqNGze6fL7IyEjeeecdMjMz+eGHH9Dr9c/2pogBQwKlEEIIMcA1NjZy+vRpIiMjcXNze+L1iqIwbtw4MjMz8fX1ZdSoURw6dIiioiL+8pe/cOfOHRYsWICHhwfbt283naTTFVVVSU5Oxs/PjxEjRphur66uxtnZmYCAAN5++23+6Z/+yTRlfvLkSQCOHz9OZmYmra2tnZ43LCyMFStWcPfuXbZv305LS8szvDNioJBAKYQQQgxwJ0+eRFVV3njjjV4/JiIiAqPRyI0bN5g3bx6NjY189913aDQaPv74YyZMmEB8fDy+vr5s376d9PT0Lp/nzp07lJSUMHXq1A63V1dXd9iQY2FhwZgxY1i9ejX/5//5fxIVFUVzczM//vgj//qv/8q+ffvIzc3tsG4yMDCQ1atXc+/ePbZs2YJOpzPdp2s1UF7XjK5VpsQHA9nlLYQQQgxgZWVlpKamMnv2bGxtbXv9ODs7O4KDg7ly5QrFxcWmtYoLFy7ExcUFAHNzc9577z1+/vln9uzZQ2NjY4fd46qqcvbsWTw9PfHx8enw/FVVVQQHB3f72gsWLODu3bt4eHgwbNgwbty4QVpaGvb29oSHhzNmzBjc3Nzw9fUlPj6erVu3smnTJkKnL2Zb6gOSskpNzdrjQt34KNaP8b5OXb6e6H9SoRRCCCEGqPY2QY6Ojt22CerJyJEjqaysJCcnh6VLl+Lm5saRI0c6VAm1Wi1vvfUWMTExHDlyhBMnTph2bRcUFFBUVNSpb2RTUxM6na5Ty6BHtW/OuX37NtHR0fzd3/0dH374IcHBwVy/fp2vv/6aL7/8krNnz2Jra8v69etJqTAjPuEax26WYfzrxnGjCsdulrH86xS2Xix46vdAvBxSoRRCCCEGqNu3b5Obm8uKFSvQarW9fpyqqly5coUjR46g1Wrx8/NjzJgxODk58c0333D58uUOAVVRFObMmYOtrS3Hjh2joaGBhQsXcvbsWdzd3QkMDOzw/NXV1QAdmpp3JTIyklOnTnHjxg2io6Px9PTE09OTuXPnkpubS3p6OmfOnOHEiRPg6s/pBg8ADEa1w/O0f/zbvRkEu9lLpXIAkkAphBBCDEDtbYJGjhzJqFGjev04nU7Hzz//TFZWFhMmTMDe3p7Tp0/T2NiIp6cn48eP58SJE4SEhDBkyJAOj50yZQq2trbs37+fyspKCgoKWLZsWadd5VVVVQA9Viih47T7xIkTTc+j1WoJDAwkMDCQlpYWsrOz+ecDd1EwovYwearRKGxMzpNAOQDJlLcQQrzCZGPD4HXp0iWqq6uZO3dur0+UuXfvHl9//TV3795l+fLlLFiwwHQE4vXr1wGYNWsWFhYWpt6Uj4uIiGDFihUUFhZiZmbGyJEjO11TXV2NlZWV6bSdnkRFRVFRUUFhYWGX91tYWDAqJIzseosewyS0VSoTs0rk63kAkgqlEEK8gi7nV7ExOVc2NgxSDQ0NnD59mnHjxvWqTZCqqly8eJGkpCTc3d2Jj483VQ9tbW0JCQkhNTWVSZMmYWVlxbx58/jxxx/Jycnpskm6g4MDqqqiKAoJCQmsXr0ae3t70/1VVVVPnO5uN3LkSJycnEhNTe2wsae9Mnnz5k1uF5diVP179XxGFep0etPZ5WJgkEAphBCvmC0XCvhsXwYajdJpY0NiZim/WxLOmmifnp9E9Kv2Po4zZ8584rVNTU3s27ePnJwcoqOjiYuL67TeMioqis2bN1NQUICvry+hoaEEBARw6NAhRo4ciYWFRYfrk5OTGTp0KO+99x7ff/893377LWvXrjWFyMdbBvWkvSfmiRMnGDp0KIWFhZSVlXVoEaQxt0RBReXJlViNAvZWEl8GGvkvIoQQL4Gu1UCdTo+9ldkLraxczq/is30ZqMjGhsGqtLSUq1evEhcX98Q2QUVFRezevZvm5mZWrFjR7ZGMPj4+ODs7k5qaiq+vL4qisGDBAv70pz9x8uRJ5s6da/oabW2sJSMjg/nz5+Ph4cEHH3zA1q1b+fbbb02n4lRXV+Pl5dXtuPR6PUVFRWRlZZGfn09VVRVGo5Hk5GSgrWrq7+9PUFAQYWFh2NjYULz1CsdulnX6un2UVqMQF+Im1ckBSAKlEEK8QC976nljci4ajdLjD2XZ2DBwtbcJcnJyYuLEiT1ed/78eU6cOMHw4cNZv349Dg4O3V6vKApRUVEcP36cxsZGbGxscHR0ZPr06WxPusj2IjvO5j7EqIKCykjzQOY4tlWxHRwceP/999m+fTubNm1i+fLl1NbWdpjyrqurIzc3l5s3b3L//n3q6uo6vHb7FLrBYODv/u7vMDc37zTGDbF+HM0sgR6qlEajyobYzms6Rf+TQCmEEC/Ii5x6NhqNNDY2Ul9fb/pTVVNHYmYt3UfJNo9ubJBKz8By69Yt8vLyWLlyZbdtghobG9m7dy+3b99m8uTJvPHGG71qKTR27FiOHz9OWloakydPBiBXM4JDLUFo7lZj/GuQU1HI1w9h5TeXTV+jtra2rFu3jp07d/L9998DUFhYyNWrVykrK+twbKKZmRnu7u74+fkRGhqKh4cHGo2GgoICNm3aRFFREX5+fp3Gp63KJ8askBS9D9rHfinSahSMRpXfLQmXX4QGKAmUQgjxAjzL1LOqqrS0tHQIid39aWhoMDWfbqda2qHS9cklj5ONDQOPXq8nMTERPz+/Tn0f2xUUFLB7924MBgOrVq3q9rqu2NjYEBoaSmpqKjExMVwpqOZffs4CFIyPXdv+JfvbvRn4OpjjSh23bt3i4cOHpqboaWlpAFhZWZnOCw8ODsbBwaHLXene3t64uLiQmpraKVAWFxdz6NAhVkdH8I/hMWxMzuVoZgkqSltVP8SNDbEjJUwOYBIohRDiBejN1LOiwH/ZcZa3h1WagmJra2uHa7RaLfb29tjZ2WFnZ8eIESM6fNz+x9bWFr2qsPlfjqA+qUSJbGwYiNrbBL333nudAln7EYinTp3Cy8uLd955p1MPyd6IiooiPT2d/Px8Np6rfOLXKKj8vwnHecMi13SLhYWFqSI5efJkZs+e3au2Ru3T7klJSdTX12NnZwdAfX09u3btYvjw4cyfPx+tVssoJzNc7xxi8dvLGRMySn7xGQTku4kQQjxnulaDac1kT4wqZNZoiR/lhLe3d6eQaGdnh6WlZa9+WDc1NXHo0CG8lSaKVAfT9GVXFFTGu1tgoe1db0Px4jU0NHDmzBnGjx/PsGHDOtxXX1/PTz/9RG5uLlOnTmXGjBloNM/WRrq9SnjhcipJWdZP/BpVUSg0OjJ23HjCQ4Lw8vLixIkT3L17lzFjxnDy5ElaW1uZN29er8bUPu1+7do1pk6disFgYNeuXQAsX77cNHVfW1uLmaLi4+YkYXKQkEAphBDPWZ1O/8Qf1O1UFCbETGWkh/Mzv96tW7f4+eef0ev1fPrGG/zfx8qe+Joulen8+c+5LFy4sMfduuLlOHHiBIqiMGPGjA635+XlsWfPHlRVZc2aNfj7965XY3dUVcXf35/TF69iVMf27jEoTJkxG1d7S6CtZZCzszPTpk3D1taWgwcP0tjYyJIlSzAz6zlWWFtbExYWxtWrV4mNjeXIkSPcu3eP999/v0Ofy9raWoBnqsKK/iGBUgghnjN7KzM0Cr0KlQoq3379Bd4jPBg1ahSjRo3C3d29V1VJnU7HkSNHuH79OoGBgSxevBh7e3uarXP5l5+z0ECHSuWjGxve8IrkwIEDfPvtt4wbN47Zs2f36tQT8fyVlJRw7do15syZg42NDdC26erMmTOcPn2akSNHsnTp0g6Bq7cMBgMPHjzg5s2b3L17l/LycoxGI2aq8sx9H6urq01rIKOiorCxsWH37t1s376d9957D0tLyx6fb/z48Vy/fp2jR49y5coVFi1ahKenZ4dramtrMTMzw8rK6qk/Z9E/JFAKIcRzZmWuJS7UrVc99d4Y5cLyyCXcunWLlJQUTp06hb29PYGBgYwaNQo/P78uW6zcuXOHn3/+mebmZt58800iIiJMITTSrp4FFjkUWvuTWWOGSlt4mBHozKczRpk2NmzYsIErV65w4sQJsrOziYuLY+zYsb0+5k/03aNtgiZMmAC0teDZs2cPBQUFzJgxg6lTp/Z6ittgMHD//n0yMzPJzc2lsrLStIkG2jbmeHl50dDQgF9RPfmtQ3pe54sRP4sGbmdnER4eDrQFykdbBoWEhLBmzRp27NjB5s2bWb16dY/9M0eMGIGTkxMXL14kKiqKqKioTtfU1tYyZMgQ+VocRCRQCiHEC7Ah1o/EzNIerzEYjXwwZSRjAoYxZswYDAYDhYWF3Lp1i1u3bnH16lXTWcqjRo0iMDAQKysrEhMTuXr1Kn5+frz55psMHTq0w/Neu3aNaD8XYjR1aHwtmT57Ln/503+wICSuwy5ZjUbDxIkTCQ0NJTExkX379pGWlsaCBQs6reMTz8+jTe7z794mPz+fVatWodVquXv3Lnv27EGj0RAfH4+vr2+Pz2UwGCguLiYjI4O8vDyqqqo67P4fMmQI3t7ehISE4Ovra6qAFhYWkvrND9w19lz1VNEw20vLnj17uHjxIpMnT8ZgMHQ6JcfX15f169ebGqCvWbOm25N0GhoaaGhoAGDKlCldXtMeKMXgoaiP950QQgjxXGw+/9epZ0XpMP3d1mPPSIxZIdOGK7z//vtdTu1VVlaSk5PD7du3KSgoQFVVtFotqqoSExPDG2+80alyVVVVxX/8x3+wZMkSUlJS8Pb2ZsGCBWzduhWj0Uh8fHy3483NzeXQoUNUV1cTExPDtGnTOh3JJ55dV03u/SzqeWO4yj9veJeTJ0+SnJyMv78/S5cu7bLK1/5Lx40bNygoKODhw4emANneQLz9aEVvb+9u//upqsqXX37JbdzZW2TZabf3o8sj1kT7kJeXR2JiIiUlJQCsXr2agICATs9bXV3Nli1baG1tZc2aNZ3OITcYDCQkJFBZWUlLSwuTJ0/utG4U4Ntvv8XR0ZGlS5f2+v0V/UsCpRBCvCAZGRn86Yej6Hwmc+pOlSlEzAl1Z/0kL64f/4mSkhJcXFxYv359t9OELS0tHD16lKtXr7a1B9LraW5uxtbWtsPUuKWlJSdOnODSpUv84z/+I//+7//OhAkTmD59OpcvX+bw4cP8p//0n3pcK6nX6zl37hxnz57Fzs6O+fPnd3ucn+i9R5vcPxrcFIyoaFg4rBa3utu88cYbTJkyxTTVazAYyM3NJT09ncLCQmpra00BUqPR4OTkhJ+fH2FhYYwYMaJXDc7bXbx4kcTERKYv+4DtqSUkZpWYTsqZG+bOhsdOc1JVlf3795OWloaiKERHRzNt2rROX0/19fVs27aN6upqVq5ciY/PL837Dx48yNWrV1m/fj1paWncuXOHf/iHf+j0i9Ef//hHRo8ezaxZs3r/Jot+JVPeQgjxgly/fp0obwc+/CCGmvpG/r9//TfeXryQiVERAER6rWfjxo1UVlbyzTffsH79+k7TfIWFhezbt4/a2lrmzp1LdHQ0qqpSVFTErVu3uH37NmlpaWi1Wnx8fLh//z6BgYFotVoaGxtNvf6CgoI4dOgQt2/fZsyYMd2O2czMjOnTpzN69GgOHz7Mjh07CAoKYv78+Z2m1kXv9NTkXqUtSB0ss+eLJcuZFBXIzZs3yczMpKioqMMRhmZmZri5ueHv78/o0aMZNmxYn9YYjh07lmPHjqFU5PLVmqnoWg2kZWZzcO9u/mnxP3T6760oCnZ2dgwZMoRx48Zx7tw5rl+/zrRp05gwYYIpzNrZ2bF+/Xp27NjB1q1bWbZsGUFBQVy7ds20CcfLywutVsvVq1e5fft2h19aVFWlrq5OprwHGQmUQgjxAtTV1XH37l0WLlwIwFA7G4YNsaa+psp0jaWlJe+//z4bN27k4cOHplDp6OiIXq/nxIkTpKSk4OnpyapVq3B2bmstpCgKPj4++Pj4EBcXR1VVlSlY6nQ6MjIyePDgAaqq0tTUhNFoZMiQIQwfPpycnJweA2U7JycnVq1aRVZWFkePHuWLL75g+vTpTJo06amqYKKX56sDfziUxpUju0y3WVhY4OnpSWBgIKNHj+52TeKzsrKyIjw83NTCx8pcS6ifF0cVlQcPHnT5C0T7hpzp06czbtw4Tp48SWJiIpcvXyYuLo6goCAURcHS0pLVq1ezZ88edu7cSWxsLOfPn2fcuHGmTTjDhw9n+PDhpKamdgiUDQ0Npq9ZMXhIoBRCiBfgxo0baDQawsLCTLe5uLhQWVnZ4TobGxvWr1/PN998Q319Pd988w3z5s3j9OnTVFdXM3v2bGJiYnrc5evk5ER0dDSFhYXo9XpmzpzJ9evXqays5Pjx45w/f57AwEAcHR3JyclBr9c/sV8gtAXXsLAwAgICOHnyJMePH+f69essXLiwwzSm6F6vm9yjkNtiz4pAH8KCRzF27Nged0o/L1FRUaSlpXH37l0CAgKwt7fH1taW+/fvExzc+RjPqqoq3N3dAbC3t+fNN98kOjqaxMREdu7ciY+PD3PmzGH48OGYmZmxbNky9u/fz9mzZxkyZAjz5s3r9Po///wzDx8+xMHBAZAelIPVs7XaF0II0S1VVbl+/TrBwcEdNts4OztTUVHR6fohQ4awfv16LC0taWxsZPfu3QB88sknTJkypVctYxobG8nOzmbcuHGEhoaaWtC89957jB8/ntLSUjIzM9Hr9WzcuJGUlBSqqqqe8KxtLC0tmTdvHh9//DEWFhZs2rSJffv20djY2KvHv26MRiOVlZVkZ2dz/My5p2py7+Dqjlar5d69e5SVlZmOOHxRRowYgZubG6mpqUDbLxHDhw/nwYMHXV5fXV3dqVLq5ubGmjVrWLVqFY2NjfzlL3/hp59+oqamBlVVqaqqwtzcnNraWo4fP95hF3p4eDiWlpZcvXrVdJsEysFJKpRCCPGcPXjwgPLycuLi4jrc7uzsTFpaGqqqdlr7ptPpsLa2pqmpCa1WS21t7VMFths3bgCYprPr6+sBCAgIIDg4mDfeeIOHDx/yl7/8haamJo4fP05iYiLOzs6mhurt69q64+7uzocffsjVq1c5duwYOTk5zJ49m8jIyNeyX2BrayuVlZWUl5dTUVFBRUUF5eXlVFVVYTAYANBaWKEQ1qsG4goqxfl3yblebXo8gK2tLQ4ODjg6OuLg4GD64+joyNChQ/u0BKH9fO3Dhw9TV1eHvb09Hh4epKamdvo6bWpqQqfTdehB+ejzBAYG4u/vz9WrVzl16hRZWVm4urpSWlrK+vXrKSkp4dChQzQ2NvLWW2+h1WqxsLBgzJgxXLt2jenTp5u+9rVaranFkRgcJFAKIcRzlpaWhp2dXadj8lxcXNDr9dTU1Jim9wwGA2fPnuXs2bO4urqydOlSDhw4gEajYevWrbz33ntdtmd5lKqqXLt2jaCgINM0aX19PVZWVh2mth0cHBg7diw3btzgn/7pnygoKCAnJ4f09HRSUlKwsrIiICCAUaNGERAQ0OVu8PYAEhwcTFJSEj///DNpaWksXLiwU4uYV0VTU5MpLD4aHB8+fGi6xtbWFldXV3x8fIiKisLV1RVXV1fs7Owo2pb6xCb3CkZGmtcROTqMCRMmYDAYePjwIdXV1Tx8+ND076Kiog47vRVFwd7evkPYbP+3o6Mj9vb2Twz7o0ePJikpiWvXrjFt2jQ8PDxoaGjotDGmvaLd01pOjUbD+PHjGT16NLt37+b27dtYWFhQVlZmOlVnz549NDY28u6772JhYUFUVBSXL18mJyeH0NBQamtrezVuMbBIoBRCiOfIYDCQkZFBREREp6nq9k01FRUVODg4UFZWxt69eykpKWHq1KlMmzYNrVbLkCFD2Lp1K1ZWVnz//fcsW7aMkJCQbl/zwYMHlJWVMXv2bNNtDQ0Nph3ejwoODiYlJYXy8nKCgoIICgpCVds2YbQ3VN+zZw+KouDl5WWqXrq4uHT4AW9ra8uSJUuIiIjg4MGDfP3110yaNIkZM2YMyt6VqqpSX19vCo2P/t3ehBvaQrmrqyshISG4uLjg6uqKi4tLj62YetPkHjS8HerAuXPnOH/+PJGRkcTExODt7d3pSoPBQG1trSlstv9dWVnJnTt3OoxXq9UydOhQUzXz0bDp4OCAjY1Np805w4cPB+D+/fsdAmV1dTVAlxXKx1VUVJCbm0t4eDgajYYDBw5w8eJF5syZw+rVq9m5cycJCQmsWrUKNzc3vLy8SE1NxS8wiHuVtVjbyXT3YCN9KIUQ4jm6efMmu3bt4tNPP+102ozRaOS///f/zuzZs9Hr9Zw6dQonJyeWLFli+iHe7tatW+zYsYOhQ4dSU1PDW2+9xdixY7t8zYMHD5KTk8NvfvMbU4jdvXs3dXV1rF+/vtMYfv/73xMREdFpSr5dXV2dqSXR3bt30ev1ODo6msKlj49Ph2lWg8HA+fPnOXPmDDY2NsybN4/g4OABWWEyGo08fPiwU7WxoqKC5uZmoK3K5uzsbAqL7cHR2dm5y2Mwe2PrxQJ+u7dzH8rHG4g3NjZy6dIlLl26hE6nIywsjClTppg2wvRGa2trh6D5eJWz/fMEMDc3x9HRESsrKwoLCxk3bhwBAQH8/PPPREZGdvgaOXPmDBcuXOA//+f/3OPr19fX8+c//5mhQ4eybt06zMzMuHfvHomJiRQWFuLv709ERASHDx/GxsaGNWvWcOhyDl+dvEWR6mjqhTknzJ2PHuuFKQYuCZRCCPEc7dixg9raWj7++OMu7/+P//gPmpubaWxsJCYmhpkzZ3a74zojI4Pdu3fj6upKeXk58+fPZ+LEiR2uaW1t5fe//z0TJkzo0AQ6ISEBGxsbli1b1ul59+/fT0FBAb/+9a+fGPpaW1vJz883VS9ra2uxsLAgICCAwMBAAgMDTdPs1dXVHDlyhFu3bhEYGMj8+fO7nB599OhBK/MX04JIr9d3ub6xsrLStD7RwsLCFBgfrTY6OTn1+uzsp3Elv4qNyXmmBuLtTe43xI7sFJpaW1u5du0aKSkpPHz4EH9/f6ZMmYKvr2+fg3pTU1OHgNn+d15eHkajscOmGWtra1NFsz10L1q0yDS9/vjXbvtJOFVVVXz88cfY2/9ytKOqqmRnZ3Ps2DGqq6sJCQmhuLiYG41DOVnvhoLaYa3p42FbDGwSKIUQ4jlpaGjgD3/4A3PmzCE6OrrDfUajkYsXL5KUlIRWqyU+Ph4vL68nPmdqaioHDhxgxIgR3Lt3jzfeeIOpU6ea7r9x4wY//fQTf/d3f9dhKvJPf/oTfn5+ndq0QFv18/vvv+dv//ZvcXV17fXnp6oqpaWlpuplcXExAJ6enqbqpaurK7du3eLw4cM0NjYybdo0Jk+ejFar7fLowbhQtz5VoXQ6XadKY/v6xvYfbzY2Np2qjS4uLgwZMqRfqqhPE6iNRiNZWVmcO3eOkpISPDw8mDJlCiEhIc899F65coVDhw7x0UcfcenSJW7evElMTAw1NTU8fPiQwsLCDpuFoK110KNT6EVFRRQUFPDOO+8QHBzc5RgNBgOXL1/m9OnT3Gu2Yn+TP/SwaUkBfvgkRiqVA5ysoRRCiOckPT0daNvk8Kiqqir27dtHYWEhw4cPp66urldhEtr69DU3N5OUlISfnx8nTpygubmZWbNmoSgKaWlp+Pj4dFrXVl9f320fw5EjR2Jubk5OTs5TBUpFUXB3d8fd3Z1p06ZRX1/PnTt3uHXrFsnJyZw4cYKhQ4cSGBjIvHnzKCgo4OTJk9y4cQO9bwx/TH6ARvPLueZGFY7dLCMxs7THKpSqqjQ0NHRa31hRUdHhJJmhQ4fi6upKUFBQh+A40HYLW5lre12Z1Wg0hIeHExYWRm5uLufPn+fHH3/E0dGRmJgYIiIinnka/nGjR48mMTGRnJwcgoKCSEtLIzIy0rSO8g9/+ANjxoxh/PjxXU6l37p1C51OB8APP/yARqNhyJAhXW4YCg8PZ8yYMaz+8iRKk7HHXfAajcLG5DwJlAOcBEohhOij9orTlWvXGTVqlCnAqKrK5cuXOXbsGLa2tqxbt46amhr27t1LS0tLrzevTJ48GZ1Ox9mzZwkNDeXcuXM0NzcTExNDXl4eS5Ys6XC9wWCgqampy0050LZuLiAggOzsbGJjY5/587azsyMiIoKIiAj0ej0FBQWmqfErV65gbm6Oj48PWeXN7Ey+D3Q+Lab949/uzSDIzY6AoZoug2N7UGk/v9rFxYWxY8d2qDwOxs1AvaUoCv7+/vj7+3P//n3Onz/P4cOHOXXqFNHR0UyYMKHHjUG9YWlpyejRo7l27Rrvv/8+8MvGnNbWVurq6nB2djaFQ19fX9Nj7927x3fffUdERASTJ0+mpqamQ+AsKSkhOzubpqamX15Qa05awxjT8ZPdMRhVErNK0LUaXtgSCdF3EiiFEOIZPT6FqzCCGOzwz68iwEHD/v37ycvLIyoqijlz5mBhYWGaJq6srMTDw6PXrzVz5kx0Oh2XL19m3LhxXLlyhcLCQiwsLDrtAG/f5dtdoIS2s7337t1r6j3YV2ZmZqbAM2/ePCoqKkzh8kK1Taf1cY9TUPlPG48w0/wO0BZ624NiYGBgh/WNr/vRj8OHD2fZsmVUVVWRkpLC2bNnSU5OZty4ccTExPTpzPWoqCiuXr1KSUlJhxNz2lskdbUmtr6+nl27duHh4cHChQsxMzPrtvLd3NxsCpr5JVV8d7S6V+MyqlCn00ugHMAkUAohxDPYcqGAz/ZldJjCVVG4WNzIsq9TmGpVzLghjaxZs6ZDP0oXFxegra3K0wRKRVGYP38+LS0tpKWlERMTQ0pKCg4ODp3WqVU+rKVJNcPMqvup3lGjRqEoCjk5OYwfP950u6qqGAwGWltbaWlp6fLv7m579OPm5mZ0Oh0NuhYKjf5PbOxtRKHA4MCyNSsZ4T6MoUOHDshd4gOJk5MTCxcuZMaMGaad4ZcvXyY8PJzJkyc/U1/Q4cOH4+HhwbVr1/Dw8DCdmNNdyyCDwcCPP/6I0Wjk3XfffeKRnpaWlqZlEz5+ejSJR3t1kpBGAXsriSwDmfzXEUKIp3Q5v4rP9mWgQrdTuGd1I/h05Xj8/Tu2e7GyssLW1rbTmd69oSgKb775JjqdjgsXLgBQU1PD5s2bmTlzJjceNLDrRiUphQ2oRLDzT2mMc0snzkuLj42+U/CzsLAgKSmJ8+fPdwiDvdmrqSgKFhYWaLVaNBoNiqKYwqhe3/ZaAE2qWa9OiQFQgWEjfHCwt3zq9+Z1Zmtry8yZM5kyZQpXr17lwoUL3Lhxg8DAQCZPnoyPj89ThfOoqCgOHjzIhAkTyMzMNB2fqNVqO1WzExMTKSoqYt26db2udDc2NpKWlkZqaipeiiOFqkOPXyNajUJciJtUJwc4CZRCCPGUNibnduon+DitRsN3KQWEuFp2quRZW1tz584drK2tO1X2elMJfHSnraqqFBcX8/9+d4QUvfdfp5bbKpYqcLVUT2qpnjjHKqKdWjA3N8fc3BwbGxtcXFy4d+8ekZGRWFtbY25ujoWFhekaCwsLzMzMaG1tpb6+nvr6empra02bMB7taajRaHB0dMTZ2RknJyecnJxwdnbGgIadf8noVaiUKlTfWFhYMGnSJFMQPHfuHJs3b2bEiBFMmTKFoKCgXu0Mb9+c09DQYDoxp/0M70eDaVpaGpcuXWLhwoVdNmB/lKqqFBUVkZqaSmZmJgChoaH804Rg/n5fXo+PNRpVNsSO7MU7IPqT/J8rhBBPQddqMK2Z7InBqHIsu5w/5B3FTOn64pKSElOAezzIWVhYYGdnh5mZWadrVFXl6NGjWFtbo9frcQmJ5ruLjbStROwY3No/PlbtzCfvdmy98vDhQ/793/8dT09PvL29qaqqorKykrKyMtO/q6ur0ev1QFtV0tHREScnJ/z9/U3h0dnZmaFDh3YIKy0tLZw9e5aUlBRGWviT3zqkx/dMqlDPj1arZcyYMYwePZq7d+9y7tw5du3ahbOzMzExMYwdO7bHqWkLCwtGjx5NdnY20LYxp7q6usN097179zhw4ACRkZFERUV1+1w6nY4bN26QmppKWVkZjo6OzJw5k4iICFMXghrF9olN32WH98AngVIIIZ5CnU7fqzVf0BbmWtFihr7L+21sbLCxscHa2rrbP4/fb2ZmxsWLF1EUhffff58ff/yR76+VolWGYOhhXBqNwlenb/Nbxd0UFquqqjAzM2PPnj0dzoYeOnQozs7O+Pr6Mm7cOFNwdHBweOKGGFVVuX79OsePH0en0zF58mRmeoay+rsr9NRrUKpQz5+iKAQEBBAQEMC9e/c4d+4cBw4c4OTJk6ad4VZWVl0+dvz48aSmpmJpacmDBw+oqqoynSnf0NDArl27cHd3Z8GCBV1Op9+/f58rV66QkZGBXq8nODiYOXPm4Ofn1+n6NdE+BLvZd2r6Hhfi1mXTdzEwSWNzIYR4CrpWA6H/cqTXGwnSP4tDMeppbGykqamJpqYm8vLyuHDhAtHR0RiNRtPtj/5pb5PzODMzM4xGI+bm5m2berTm/JfMIb2aUlZQWWN5FTNFZejQoTg5OaHT6SgrK+Odd97B1dW1y9NPequwsJAjR47w4MEDwsLCmD17Ng4ODpw4cYKNp7I53+qD9glHD4oXq7KykpSUFNLS0tBqtURFRTFp0qQOZ3a327hxI9XV1bi4eXC7oJj5s2YwOXoCW7ZsoaKigo8//rjD41paWsjMzOTKlSumdkPjxo1j3LhxvV5f+TJOURIvhgRKIYR4Sp9svcKxm2U9rqHUoOKlqea9EXVMmTKF8PBwU3WvsrKSzz//nLVr1+Ln59fl441GIzqdzhQw2wNpaWkpKSkpBAYGYmlpSXmdjv+R49DrsR/+OIJALzdTaCwpKeHrr7/utBv9aTx8+JBjx46RmZnJ8OHDmTt3rmlNXX5+Pps3b+aNN97A2ius10cPihervr6eixcvcuXKFVpaWhgzZgyTJ0/u0O5nW+IF/nz6DoXGtk0zGgXGOIFnfQ7/+YNlpv/GZWVlpKamcv36dZqbmwkICGD8+PEEBga+kCMsxcAkU95CCPGUNsT6kZhZ2uM1Kgr/+c3x1Ny9xt69ezl16hQxMTFERkbi6OiIRqOhoqKi20Cp0WhMU+KPOnjwIHZ2dqxYsQKNRoOu1cD/eoqK6UhPd8zMfqn8uLm5MXToULKzs586ULa0tJCcnExKSgpWVla89dZbjB071jSl2djYyJ49e/D19WXKlCloNBrG+zpJFWoAsLOzY9asWcTGxnL16lVT1XLUqFFMmTKF0/dVPjtZCfyyA9uowvVKI2kEMbHYQGRNuqkfqq2tLRMmTGDcuHFd9qoUrz4JlEII8ZQm+DrxuyXhXW4kUDCiouF3S8JZGO0D0SGUlpaSnJzMkSNHOHPmDNHR0Tg4ODx166DW1lYyMjIYP368qfJjZa4lLtTtiRXT7ja9KIpCcHAwWVlZ3a6He9yj6ySbmpqYPHkysbGxHU6qUVWV/fv3o9frWbp0aYdK1dMcPSheLEtLS2JiYpg4cSLp6emcP3+e//HNDxxqCaJtzevjm7za/jt+9nMmCyxyiPZzYdmyZQQHB7/2DedfdxIohRDiGXS3kSDYTs8Yi3JWjp9nutbNzY133nmHmTNncv78eU6fPo2qqty6dYupU6f2eKLNo7Kzs9HpdERERHS4vTcV0542vQQHB3Px4kUePHjA8OHDe3yewsJCjh49yv379zusk3zclStXyMnJYcWKFV2uzxMDi1arJSIigrFjx7Lm69NoCuox9nC9RlHQ+cSwbt3klzZGMbBJoBRCiGc03tep0xTuw8pyvv76a1JTU5k4cWKH652cnFi0aBHTp09nx44d3L9/nz/+8Y9ERkYyefLkJ04VXrt2DW9vb5ydnTuOw8eRJZ46fiq2RKvRdKhUalAxAv9ppk+36xS9vb2xtrYmOzu720D58OFDjh8/TkZGBh4eHrz//vvd9h4sLS3l6NGjTJgwgaCgoB4/JzGwNOuNpBQ2YHzSyUYqnLpTLedrCxNZLSuEEH1kZa7F1d4SK3Mt7u7uREREcPr06W53atvb25uOO5wyZQpZWVn8x3/8B3v27KGsrKzLxzx8+JC8vDwiIyM73Xfjxg0cKjL413kjiAtxQ/PXLKCgMtpJZa17OS1Zx01nfD9Oo9EwatQoU9/BR7W0tHDixAm++OIL8vPzeeutt/joo4+6DZOtra3s3r0bZ2dn5syZ0+U1YuB6mrZY7edrCwFSoRRCiOdu5syZZGRkcO7cOWbNmtXlNe1VxtDQUGJjY7l27Rrnz5/nyy+/ZNSoUcTGxuLl5WW6/tq1a1hYWBAaGtrheWpqajh8+DBjxoxh6fRIlvFL65XcnCyOHNzPuOBx3LxZzo8//siaNWu6XOsWFBTE9evXqaqqwsnJCVVVuXHjBsePH6exsZGYmBimTp3aYZ1kV44ePUp1dTUff/zxM7cfEv3H3soMjYKcry2emnwlCCHEczZkyBBiYmJISUlh/PjxDB06tNM1Li4uAFRUVODm5sbEiROJiooiIyOD5ORkvv32W3x8fIiNjWXkyJGkpaURFhbW5cYXCwsL5s+fb7q9fdOL6/hIMLRw5MgRIiMjuX79OomJiR2ubefv74+ZmRnZ2dl4eXlx5MiRJ66TfNzNmzdJTU1l0aJFHdrPiMGjr5u8xOtLAqUQQrwAU6ZMITU1lZMnT7JkyZJO97efgPPoTm+tVsvYsWMZM2YMOTk5JCcns23bNhwdHamtre20Gefy5cvk5uayZs2abk88iY6Oprm5mZMnTxIaGsqlS5dwd3fvNHVuYWGBl5cX586do7GxEQ8PD9avX4+PT++ajdfU1LB//35CQkIYN25crx4jBqa+bvISrydZQymEEC+ApaUlM2bM4Pr165SUlHR5jYuLS5etg9pb+Xz44YfEx8fT0tICwN69e0lNTUWv11NZWUlSUhLjx49/Yv/IqVOnEhMTQ1ZWFt7e3hw8eJDi4mLT/S0tLZw8eZKCggIaGxuZO3cuH330Ua/DpNFoZM+ePVhYWLB48eJetR4SA1d7WyyFtkrko7QaBQXkfG3RiVQohRDiBRk3bhwXL14kKSmJNWvWdApazs7O3W7CgbZg6e7ujk6nIzo6mtraWg4cOMCpU6fQarXY2dkRFxf3xHEoikJcXBzNzc1cu3YNJycndu3axYYNG8jLyzOtk5wwYQIXL17E0tLyqULh2bNnKSoqYv369VhbW/f6cWLgkvO1xdOSQCmEEC+IVqtl9uzZ7Ny5k7t37xIQENDhfmdnZ7KyslBVtdsAl56ejqqqxMbGYmdnR0VFBXv27OHBgwdYWFhw7tw5oqOjO52o8zhFUVi4cCHNzc1kZ2ej1Wr5/PPPaW1tJTQ0lNmzZ+Po6MiDBw/Izs7ucjd5VwoLCzl9+jTTp0/vdue3GJy6aoslayZFd2TKWwghXqCgoCC8vb1JSkrCaOzYKtrFxYWWlhbq6+u7ffy1a9cYNWqUqfm5wWCgrKyMqKgoIiMjSUlJ4Y9//CNHjhyhpqamx7FoNJq2M7WtrWlpaaG1tZXAwECWLVtm6oEZFBREbm6uaZq9J01NTezevRsvLy+mTp36xOvF4PRoWywhuiOBUgghXiBFUZgzZw5lZWVcv369w33trYO6O4LxwYMHlJSUmKqFBoOBn376CScnJ+bNm8e8efP4zW9+Q0xMDNevX+d//+//zb59+6ioqOj0XO3rJL/88ktUVcXZ2RmtVsvt27e5cuWK6brg4GD0ej13797t8fNSVZWff/6ZlpYW3n777Q5HKwohXj8y5S2EEC/YiBEjCA8P58SJEx1a/zg5OaEoChUVFfj6+nZ63LVr17CzszNNlZ8+fZry8nI2bNhg6vFoY2PDzJkzmTx5MlevXiUlJYW0tDRCQkKIjY3Fw8OD9PR0jh07ZuonGRsbC0BCQgJlZWUcPnyYYcOG4ePjg5OTE66uruTk5BASEtLt53T16lVu3rzJu+++22VbJCHE60V+pRRCiJfgjTfeoKmpiZSUFNNtWq0WR0fHLiuUer2e9PR0xo4di0ajobi4mOTkZKZNm4aHh0en6y0tLYmJieHv//7vWbx4MaWlpfzlL3/hf/7P/8lPP/2Ep6cnv/rVr5g1axaWlpZYWlqyevVqHBwc0Gg07NixwzRlHhwczK1btzpN0bcrLy/nyJEjREVF9Rg6hRCvDwmUQgjxEjg6OjJhwgTOnTvXYc2ks7Nzl4EyOzsbnU5HZGQkra2t7N27Fw8PjyeuVTQzM8Pf3990JrfBYACgtraW0tJSVPWXZtU2NjbEx8djZ2dHS0sL27dvp7W1laCgIJqamigsLOz0/Hq9nh9//BFHR0fmzp37TO+FEOLVI4FSCCFekmnTpqHVajl16pTpNmdn5y7XPF67dg1vb2+cnZ05duwYNTU1LF26tMe1ii0tLZw6dYrPP/+cvLw8Fi9ezD//8z+zevVqzMzM2LlzJ19++SXXr183BU17e3vWrVuHlZUVZWVlpuBqb2/f5dneiYmJVFZW8s4772Bubt73N0WY6FoNlNc1o2s19PdQhHhqsoZSCCFeEmtra6ZNm0ZSUhLR0dG4urri4uLCxYsX0ev1pnWRDx8+JDc3lzfffJO8vDwuXbrE3LlzTcc1Pk5V1Q7rJCdNmsTUqVOxtLQEICAggICAAIqKikhOTmbv3r2cPHmSmJgYxo0bh6OjI+vWreObb74hKysLNzc3goKCyMnJYfobs6lvNmBvZUZB7h0uX77MggULcHNze2nv26vucn4VG5NzScoq/aXfY6gbH8X6Sb9HMWgo6qPzH0IIIV4ovV7PF198wbBhw1i5ciUFBQVs2rSJTz/9lGHDhgFw6tQpUlJS+NWvfsW3336Lo6Mj8fHxXfaqLC4u5siRI9y7d4+QkBDi4uJMLYC6U1payrlz58jIyMDa2pro6GgmTpxIVVUV3377LQaDAY8xsWy78oAi1dEUcnzMapjrY87/9cEyOQ3nOdlyoYDP9mWg0Sgdzs7WahSMRpXfLQlnTXTvTiwSoj9JoBRCiJcsIyOD3bt3s27dOlxcXPj973/Pu+++S0hICKqq8u///u/4+fmhqipZWVl8+umnODg4dHiOmpoajh8/Tnp6Ou7u7sydO7fLneI9qa6u5vz581y7dg2tVsv48eMZPnw4/23naVJavVEAlV+Co4IKKBJynpPL+VW8+3UKPf0QVoAfPomRSqUY8GTKWwghXrKwsDAuXLhAYmIiGzZswNLS0rSOMi8vj5qaGtPaycWLF3cIk62trZw7d45z585haWnJ4sWLiYiIeKY+kI6OjixcuJDp06dz4cIFrly5wr7zGaS0BtIeHx/VHi5/uzeDYDd7CTl9tDE5t1Nl8nEajcLG5Dx5r8WAJ4FSCCFesvaztTdt2kRmZiYuLi48KK+kvK6ZS6ltZ22fP3+ewMBAU1NzVVXJyMjg2LFjNDQ0dFon2Rd2dnbMnj2b2NhY1nx1GkXX2mPVTEJO3+laDaY1kz0xGFUSs0rQtRrkpBoxoEmgFEKIfuDj40NQUBAJh8+RrQ4n464G9fIxFCwJsHYn3KyEv1m8GEVRKC4u5ujRoxQXFxMSEsLs2bNxcno+YU5VVRobG3n48CGlFVWkluo7THN3RUJO39Xp9E8Mk+2Matv18l6LgUwCpRBC9JOHLqP54XoeGn6ZTlZRuNNkxW38CEu9j3N1Fjdu3MDNzY1169Y99TpJVVVpaGjg4cOHHf7U1NSY/m5tbQWgSTVDJaJXzyshp2/srczQKPQqVGqUtuuFGMjkK1QIIfrB5fwq/ufxfEDh8fNo1L+2CP5vR2/zzpD7rO5hnaSqqtTV1XUIiY8HRr1eb7re0tISBwcHHBwc8PPzM/3bwcEBK1t7dv2P0xJyXgIrcy2zg4dx7GYpxh4qwlqNQlyImwR3MeDJdwMhhOgHvdqQoSjUjpiAv78/RUVFncLiw4cPqa2tNTUph7Zelw4ODgwdOpTAwEDTv02h0cqqx3HFhbpx7GZZj+OSkNN3ra2teDfdwYh9j9cZjSobYke+pFEJ8ewkUAohxEvW2w0ZRhWO3SzjX3OPYKa0XWxjY2MKh+7u7h0qjEOHDu3zJp0NsX4kZpb2PC4JOX3S0tLC999/j6byHv/H1Hn88eyDHvtQyuYnMRhIoBRCiJfsaTZkqCgsfns5Iz1cGDp0KBYWFi90bBN8nfjdknB+u7fnZtsScp5Nc3Mz27dvp6SkhDVr1uDt7c2U0Co2JueRmFXyy0k5IW5siB0p77MYNKSxuRBCvGS6VgOh/3Kk12sVs/7rvJc+vXwlv3PImRPqLiGnD3Q6Hdu2baO8vJw1a9bg6enZ8f5WA3U6PfZWZrKcQAw6UqEUQoiXzMpcO+DXKo73dWK8r5OEnOekqamJrVu3UlVVRXx8PMOHD+90jZW5Vt5jMWg9/dEKQggh+mxDrB/GJ5QoB8JaRStzLa72lhJ0+qCxsZGEhASqq6u7DZNCDHYSKIUQoh+M93HkzeFNgIpW07FtjFajoICsVXwFNDQ0kJCQQG1tLevWrcPDw6O/hyTECyGBUggh+sGNGzdwqsrkD/M9iQtxoz1Ttm/I+OGTGNZE+/TvIEWf1NfXs3nzZurr61m3bh1ubm79PSQhXhhZQymEEC9ZXV0dR44cYfTo0bw9LYK3kQ0Zr5q6ujo2b95MS0sL69evx8XFpb+HJMQLJYFSCCFeIlVVOXToEFqtlnnz5plulw0Zr46amhoSEhLQ6/WsX7/+uZ27LsRAJlPeQgjxEmVmZpKdnc2CBQuwsbHp7+GI5+zhw4ds2rQJg8EgYVK8VqRCKYQQL0lDQwOHDh0iNDSU0NDQ/h6OeM6qq6vZvHkzGo2GdevW4eDg0N9DEuKlkUAphBAvyeHDhwFYsGBBP49EPG+VlZUkJCRgZmbGunXrGDJkSH8PSYiXSqa8hRDiJbh58yaZmZnMnz8fW1vb/h6OeI4qKirYtGkTFhYWrF+/XsKkeC1JhVIIIV6wxsZGDh48SFBQEOHh4f09HPEclZWVkZCQgI2NDfHx8djZ2fX3kIToFxIohRDiBTty5AgGg4GFCxeiKMqTHyAGhdLSUhISErC3t2ft2rVSeRavNZnyFkKIFygnJ4f09HTmzp2Lvb19fw9HPCcPHjxg8+bNDBkyhPj4eAmT4rUnFUohhHhBdDodBw8eJCAggLFjx/b3cMRzcu/ePbZu3YqTkxNr1qzB2tq6v4ckRL+TQCmEEC/I0aNHaWlpYfHixTLV/YooKipi27ZtuLq6snr1aqysrPp7SEIMCDLlLYQQL8CdO3dIS0tjzpw5suv3FVFYWMjWrVtxc3NjzZo1EiaFeIRUKIUQ4jlrbm7m559/xs/Pj8jIyP4ejngO8vPz2b59OyNGjGDlypVYWFj095CEGFAkUAohxHOWlJREU1OTTHW/InJzc/n+++/x9vZmxYoVmJub9/eQhBhwZMpbCCGeo7y8PFJTU4mLi5Oj914Bd+7cYfv27fj6+rJy5UoJk0J0QyqUQgjxnLS0tLB//358fHwYP358fw9H9NGtW7fYtWsX/v7+LF++HDMz+ZEpRHekQimEEM/J8ePHqa+v580335Sp7kHu5s2b7Ny5k8DAQN59910Jk0I8gQRKIYR4DgoKCrh06RKzZs3Cycmpv4cj+iAzM5Mff/yR4OBgli1bhlar7e8hCTHgya9cQgjRR62trezfvx8vLy8mTpzY38MRfZCens5PP/1EeHg4S5YsQaORuosQvSH/pwghRB+dPHmSmpoa3nzzTQkgg4Su1UB5XTO6VoPptuvXr/PTTz8xZswYCZNCPCWpUAohRB8UFxdz4cIFZs2ahYuLS38PRzzB5fwqNibnkpRVilEFjQJxoW5MG6bnTspRIiMjpd2TEM9AUVVV7e9BCCHEYKTX6/n666+xsLDgww8/lIrWALflQgGf7ctAo1EwGH/50adRwKiqrPBX+P8+XCBhUohnIN/9hBDiGZ06dYqqqireeustCZMD3OX8Kj7bl4EKHcIkQNuHCjvvQmpBdX8MT4hBT74DCiHEM7h//z7nz59n+vTpDBs2rL+HI55gY3IuGk3PlUeNRmFjct5LGpEQrxYJlEII8ZQMBgP79u3Dzc2NKVOm9PdwxBPoWg0kZZV2qkw+zmBUScwq6bBRRwjROxIohRDiKZ05c4aKigreeust6VE4CNTp9DwhS5oY1bbrhRBPRwKlEEI8hZKSEpKTk4mNjcXd3b2/hyN6wd7KjCfMdptolLbrhRBPRwKlEEL0UvtUt4uLC9OmTevv4YhesjLXEhfi9sRQqdUozAl1x8pcqs5CPC0JlEII0Uvnzp2jtLRUproHGVVVibCuwviELnlGo8qG2JEvaVRCvFokUAohRC+UlZVx5swZJk+ezPDhw/t7OKKXVFUlMTGRsswUPhxjh0JbJfJRWo2CAvxuSTjjfeUcdiGehSwUEUKIJzAajezbtw9HR0dmzJjR38MRvaSqKkeOHOHSpUvMnz+fiRMnMj+mio3JeSRmlfxyUk6IGxtiR0qYFKIPJFAKIcQTpKSkcP/+fT744APMzOTb5mCgqiqHDh3iypUrLFy4kPHjxwMw3teJ8b5O6FoN1On02FuZyZpJIZ4D+c4ohBCPeTRs1NdUc/LkSSZNmoSXl1d/D030gqqqHDhwgKtXr7J48WLGjRvX6Rorc60ESSGeIwmUQgjxV5fzq9iYnEtSVqlpOnSUjY4Iq2G88cYb/T080QtGo5Gff/6ZtLQ03nrrLSIiIvp7SEK8FiRQCiEEsOVCAZ/ty0CjUUxNsI0q5DRYkN0wgvCr91kT7dO/gxQ9al/rmp6eztKlSxkzZkx/D0mI14aiqk/ooyCEEK+4y/lVvPt1Cj19M1SAHz6JkY0bA5TRaOSnn34iMzOTt99+m/Dw8P4ekhCvFWkbJIR47W1MzkXzhK7XGo3CxuS8lzQi8TQMBgO7d+8mKyuLZcuWSZgUoh9IoBRCvNZ0rQaSskoxPOGwZ4NRJTGrBF2r4SWNTPSGwWDgxx9/JDs7m+XLlxMaGtrfQxLitSSBUgjxWqvT6XlCljQxqm3Xi4FBr9eza9cubt++zXvvvUdwcHB/D0mI15ZsyhFCvNbsrczQKPQqVGqUtutF/2sPk7m5uaxYsYKAgID+HpIQrzWpUAohXmtW5lriQt3Q9ryEEq1GYU6ou/QuHABaW1vZsWMHeXl5rFy5UsKkEAOABEohxGtvzfjhGJ7Q8MJoVNkQO/IljUh0p7W1le+//57CwkJWrVqFv79/fw9JCIEESiHEa661tZVb5w4z3aYEaKtEPkqrUVCA3y0Jl5ZB/aylpYXt27dTXFzM6tWrGTlSAr4QA4UsBhJCvLaMRiO7d++mtLSU//7BOh60WrMxOY/ErBLTSTlxIW5siB0pYbKfNTc3s337dkpKSlizZg3e3t79PSQhxCOksbkQ4rWkqioHDx7k6tWrrFy5ksDAQNN9j57lLWsm+59Op2Pbtm2Ul5ezZs0aPD09+3tIQojHSIVSCPFaSk5OJjU1lcWLF3cIk9C2UUeC5MCg0+nYunUrlZWVrF27lhEjRvT3kIQQXZBAKYR47aSlpXHixAmmT5/OuHHj+ns4ohtNTU1s2bKF6upq4uPj8fDw6O8hCSG6IYFSCPFauXPnDj///DORkZFMnz69v4cjutHY2MiWLVuoqalh3bp1uLu79/eQhBA9kEAphHhtPHjwgF27duHv78+iRYtQlCc0nxT9oqGhgYSEBOrr61m3bh1ubm79PSQhxBNIoBRCvBaqq6vZtm0bw4YNY9myZWg00jVtIKqvrychIYHGxkbWr1+Pq6trfw9JCNELEiiFEK+8xsZGtm3bhqWlJStXrsTCwqK/hyS6UFdXR0JCAjqdjvXr1+Pi4tLfQxJC9JL8ii6EeKW1n6zS1NTE6tWrsbW17e8hiS7U1tayadMmmpubJUwKMQhJoBRCvLIebVy+atUqnJykOflAVFNTw6ZNmzAYDKxfvx5nZ+f+HpIQ4ilJoBRCvJJUVeXw4cPcunWL5cuXS//CAerhw4ds2rQJVVVZv369hH4hBilZQymEeCUlJydz5cqVLhuXi4GhqqqKhIQENBoN69atY+jQof09JCHEM5IKpRDilSONywcWXauB8rpmdK0G022VlZVs2rQJrVbL+vXrJUwKMchJhVII8Uq5e/euNC4fIC7nV7ExOZekrFKMKmgUiAt1Y/loZ64f24OVlRXx8fHY29v391CFEH2kqKqq9vcghBDieXjw4AGbNm3Cx8eHFStWSK/JfrTlQgGf7ctAo1EwGH/5MaNVwKCqxDlW8W9/+zZ2dnb9OEohxPMi322FEK+E9sblLi4u0ri8n13Or+KzfRmo0CFMAhhUAIVj1c5kV7T0x/CEEC+AfMcVQgx67Y3LLSwsWLVqlTQu72cbk3PRaHo+1lKjUdiYnPeSRiSEeNEkUAohBrVHG5evWbNGGpf3M12rgaSs0k6VyccZjCqJWSUdNuoIIQYvCZRCiEFLGpcPPHU6PU/IkiZGte16IcTgJ4FSCDEoPdq4fNmyZdK4fICwtzLjCbPdJhql7XohxOAngVIIMSi1Ny5ftGgRo0aN6u/hiL+yMtcSF+qG9gmhUqtRmBPqjpW59uUMTAjxQkmgFEIMOtK4fGCbP9ISwxM60hmNKhtiR76kEQkhXjQJlEKIQUUalw9st27dIuPkPt4arkOhrRL5KK1GQQF+tySc8b6y5lWIV4U0NhdCDBrSuHxgu3nzJj/++COjRo1i2bJlXCuqYWNyHolZJaaTcuaEurMhdqSESSFeMRIohRCDQnV1Nd988w1Dhw5l3bp10mtygMnIyGDPnj2EhoaydOlStNpf1kbqWg3U6fTYW5nJmkkhXlGyvU4IMeBJ4/KB7fr16+zbt4/Ro0fz1ltvdaocW5lrJUgK8YqT+SIhxIAmjcsHtmvXrrF3717Gjh3bZZgUQrwepEIphBiwHm1cvm7dOmlcPsBcvnyZQ4cOMX78eBYsWICi9LIBpRDilSOBUggxYDy61s7STGNqXL5ixQppXD7AXLhwgaNHjxIdHc3cuXMlTArxmpNAKYTod5fzq9iYnEtSVqlpN/C4YWYMq85mw1vSuHygSU5O5vjx40yZMoVZs2ZJmBRCSKAUQvSvLRcK+GxfBhqNYjoD2qhCamkLKsFMbnVGWpcPDKqqcubMGU6dOsW0adOYMWOGhEkhBCBtg4QQ/ehyfhXvfp1CT9+EFOCHT2Kkb2E/U1WVEydOkJyczMyZM5k2bVp/D0kIMYDIdjwhRL/ZmJyLRtNzhUujUdiYnPeSRiS6oqoqSUlJJCcnExcXJ2FSCNGJTHkLIfqFrtVgWjPZE4NRJTGrBF2rQXoZ9gNVVTl8+DCXL19m3rx5REdH9/eQhBADkARKIUS/qNPpnxgm2xnVtuslUL5cqqpy4MABrl69yqJFi4iKiurvIQkhBigJlEKIfmFvZYZGoVehUqO0XS9eHqPRyP79+7l+/TpvvfUWERER/T0kIcQAJmsohRD9wspcy3R/R5Qet+SAVqMwJ9RdqpMvkdFo5KeffuLGjRu8/fbbEiaFEE8kgVII0S/KyspwKL36hDgJRqPKhtiRL2VMAgwGAz/++CNZWVksW7aM0aNH9/eQhBCDgARKIcRLV1payubNmwlyMuOzBUEotFUiH6XVKCjA75aES8ugl0Sv17Nr1y5u3brFu+++S2hoaH8PSQgxSMiiJCHES1VaWkpCQgJDhgxh7dq12NjYMMbLmY3JeSRmlZhOyokLcWND7EgJky9Ja2sru3btIi8vjxUrVhAQENDfQxJCDCLS2FwI8dKUlJSQkJDA0KFDTWHyUY+e5S1rJl+elpYWduzYQVFREStXrsTPz6+/hySEGGQkUAohXor2MOng4MDatWuxtrbu7yEJoLm5me3bt1NSUsKqVavw8fHp7yEJIQYhmfIWQrxwDx48YMuWLRImBxidTse2bdsoLy9nzZo1eHl59feQhBCDlARKIcQL9eDBAxISEnBycmLt2rVYWVn195AE0NTUxJYtW6iuriY+Pp7hw4f395CEEIOYTHkLIV6Y+/fvs2XLFpydnVmzZo2EyQGioaGBLVu2UFdXx9q1a3F3d+/vIQkhBjmpUAohXoh79+6xdetWCZMDTH19PQkJCTQ2NrJu3TqGDRvW30MSQrwCpEIphHju7t27x5YtW3B1dWXNmjVYWlr295AEUFtbS0JCAi0tLcTHx+Pi4tLfQxJCvCKkQimEeK6Ki4vZunUrw4YNY/Xq1RImB4iamho2b96MwWBg/fr1ODlJf08hxPMjFUohxHNTVFTE1q1bcXNzkzA5gFRXV7N582YURWHdunU4ODj095CEEK8YqVAKIZ6L9jDp7u7OqlWrBm2YfNWaq1dWVpKQkICZmRnx8fEMHTq0v4ckhHgFSaAUQvRZYWEh27Ztw8PDg1WrVmFhYdHfQ3pql/Or2JicS1JW6S/HP4a68VGs36A4/rGrIFxeXk5CQgJWVlbEx8djb2/fz6MUQryqZMpbCNEnBQUFbNu2jREjRrBy5cpBGSa3XCjgs30ZaDQKBuMv3xK1GgWjUeV3S8JZEz0wT5DpLgi/E+bA9WM/YWdnR3x8PLa2tv09VCHEK0wCpRDimb0KYfJyfhXvfp1CT98IFeCHT2IGXKWy2yCsgEFVmev0kH/71dudzkwXQojnTdPfAxBCDE75+fls27YNT0/PQTvNDbAxOReNRunxGo1GYWNy3ksaUe9czq/is30ZqNAhTAIYVACFxCpHssp0/TE8IcRrRtZQCiGeWl5eHt9//z1eXl6sWLECc3Pz/h7SM9G1GkxTxT0xGFWOZpZw5lwKNpbmaLVazMzM0Gq1Hf79pL+1Wi2K0nN47a32IPx4mHxUexAeaJVVIcSrRwKlEOKp5OXlsX37dry9vQd1mASo0+mfGCbbqcDRE2ewVJvpy0qh9mD5NEHUzMwMjUZj+tioaEnM1PU4TQ9tQTgxqwRdq+GV2LEuhBi4JFAKIXotNzeX77//Hh8fH957771BHSYB7K3M0Cj0KlRqFPjtP/8TVuZajEYjBoMBvV7fq7+f9tr2j1tbW2lqaup0XW0LqPj16nM0qm3BWQKlEOJFkkAphOiVu3fvsmPHDnx9fXnvvfcwMxv83z6szLXEhbpxLKv0r+sOu6ZBZepIB1Mo02g0aDSalx6oVVWluLiYazcyUJINqDx5+lyjtAVnIYR4keS7jBDiie7cucOOHTvw8/Pj3XfffSXCZLvVUR4czSyBHsKZEbAtvsjPP1cze/ZsrK2tX9r4VFXl/v37ZGZmkpmZSW1tLXZ2dox1DuZGpYqxh3FrNQpxIW5SnRRCvHCvzk8FIcQL8SqHSYPBQO7FJGbY6jnd4IFGoUOlUsGIisKSEc2sGD+FU6dOkZ2dTVxcHGPHjn1uG2wep6oqJSUlphD58OFDbG1tCQkJITw8HC8vL6x+SCStUt/j8xiNKhtiR76QMQohxKOkD6UQolu3b99m586d+Pv7s3z58lcqTAIcPHiQq1evsm7dOsqMdvzb4RucL6xHRUGjQKBVI5E21dg0lhAZGcn06dNJSkoiIyMDb29vFi5cyLBhw57LWFRVpayszBQiq6qqsLa2JiQkhLCwMHx9fdFoNKZxX7lyhQILb07WDkOhY6VS+9d1oQO5IbsQ4tUigVII0aVbt26xa9cuAgICWL58OVrtqzVteuXKFQ4ePMiiRYuIiooCIC0tjd179/Pr/+OfGGpjSdmDe3z33XdERESQlpbGtGnTmDlzJrm5uRw6dIjq6momTZrE9OnTn7kPZ3l5uSlEVlRUYGVlRXBwMGFhYYwcObLT+75v3z7S0tJwcnLi008/5XJ+Ff/3d4kUGB1RAQWVKDcz/nnJRGkXJIR4aV6tcoMQ4rnIyclh165djBo1imXLlr1yYbKgoIDDhw8zYcIEU5gE0Ol0WFuY4Ta07WQZb29vxowZQ05ODtOnT+f06dPY2toyceJE/uZv/oZz585x9uxZMjMzmTdvHkFBQb2aBq+srDSFyLKyMiwsLAgODiYuLg5/f/9u3+89e/aQnp6Oi4sLn376KRqNBjdNPTMt7vLBR3+Dlb0DJ5MOU3Y/nyifuc/nzRJCiF6QQCmE6KA9TAYFBfHOO++8cmHy4cOH7Nq1C29vb+bO7Ri6dDodVlZWHW6Li4sjJyeHuro6Jk2axOHDh7G1tSUsLIzp06czevRoDh8+zM6dOxk1ahTz58/HwcGh0+tWV1ebQmRJSQnm5uYEBQUxc+ZMAgICnricYOfOnWRnZ+Pm5sbHH39smv4uKCjAxsYGT49hKIrCuDHhbEu/TklJCR4eHn17s4QQopckUAohTLKzs/nhhx9e2TDZ0tLCjh07sLCw6HIav6tAaWdnx4wZMzh69CgbNmygsbGRPXv2YG1tjZ+fH05OTqxatYqbN29y5MgRvvjiC6ZNm8bkyZOpr683hcj79+9jZmbGqFGjmDp1KoGBgb1uO7R9+3Zu377N8OHD+fDDD01hEqCwsBBvb29TZdTPzw8bGxvS09MlUAohXhoJlEK8pnStBup0euytzLAy13Lz5k1+/PFHgoODefvtt1+5MKmqKvv27aOqqooPP/wQGxubTtd0FSgBJk6cyLVr1zh8+DDr16+nsbGRnTt3sm7dOoYPH46iKISGhuLv709iYiInTpzgzJkz6PV6tFotgYGBxMTEMGrUqKdea5mQkEBeXh5eXl6sX7++Q5jU6/UUFxfzxhtvmG7TaDSEhYWRkZFBXFzcC9uJLoQQj5JAKcRr5nJ+FRuTc01nWGsUmORlg1PpNWaEh/D22293CC2virNnz5KVlcW7776Lm5tbl9d0Fyg1Gg0LFixg06ZN3Lhxg+XLl5OQkMC2bdv44IMPsLS0JCsri8zMTAoLC03HJOr1eoKDg5k3bx52dnZPNV6j0cjmzZspLCzE19eX+Pj4TuHwwYMH6PV6fHw67uQePXo0ly9fpqCgAF9f36d6XSGEeBYSKIV4jWy5UMBn+zLQaBTTcYNGFVIK61EZRfSI8FcyTGZnZ3Py5EmmT59OSEhIt9fpdDqGDh3a5X0+Pj6MGTOG48ePExISwpIlS9i0aRNfffUVBoMBRVHw8/PjrbfeIjg4GEtLS9LS0khKSuLzzz9n1qxZREVF9er9NRqNfPvtt9y7dw9/f3/WrFnT5XUFBQVYWFjg7u7e4XZPT08cHBxIT0+XQCmEeCkkUArxmricX8Vn+zJQAcNjh1ertIWcz/ZnEuIx5JVqN1NWVsZPP/1EcHAw06dP7/HapqamHvtKxsbGkpWVxVdffUVdXR3QVr20s7Pj/fffx9HRscP1kZGRBAUFcezYMQ4dOkRaWhoLFy5k+PDh3b6G0WjkL3/5CyUlJQQFBbFixYpury0oKMDb27tTSFUUhfDwcK5cucKCBQteueULQoiB59UrRQghurQxOReNpuf1dBqNwsbkvJc0ohevsbGRHTt24ODgwNKlS5+4nrCrKW+dTkdaWhrbt2/nq6++Qq/XU1tby5QpU/jHf/xHPv74Y1pbW9m3bx96feeTa2xsbHjzzTd5//330ev1bNy4kUOHDqHT6TpdazQa+eqrrygpKSEsLKzHMGk0GikqKsLb27vL+0ePHo1Op+POnTs9fs5CCPE8SKAU4jWgazWQlFXaqTL5OINRJTGrBF2r4SWN7MUxGo38+OOP6HQ6VqxY0avNMDqdDmtra5qbm7lx4wY7duzgX//1X9m3bx/Nzc3MnTuX3/zmNwwbNoz8/HxsbGwYNmwYK1eu5N69e+zZswej0djlc3t7e/Pxxx8TFxdHWloan3/+Oenp6bSfLWEwGPjTn/5EeXk5Y8aMYdmyZT2OtbS0lObm5k7rJ9sNGzYMNzc3MjIynvh5CyFEX8mUtxCvgTqdnidkSROj2na9lfngniY9evQo+fn5rF27ttNUdFd0Oh0tLS2kp6dz4sQJ9Ho9np6ezJ49m9DQUIYMGWK6tn2DTlpaGpGRkXh7e7Ns2TJ27txpOn2nq2qoVqslJiaGsLAwjh49yp49e7h27Rpz5sxh165dVFdXM27cOBYvXvzE8RYUFKDVanucPg8PD+f06dO0tLQ880k+QgjRGxIohXgN2FuZofnr+c5PolHarh9MHm+BdO3aNS5dusT8+fMZOXJkt49rbW3lzp07ZGZmcuvWrbbn0umYMWMGYWFhXTYoh7YNOqNHj+bYsWMEBwdjbW1NUFAQixcvZv/+/djZ2TFz5sxuX3fIkCEsX76c27dvc/DgQb7++msAoqKiWLRoUa8+58LCQjw9PXtsiB4eHs7x48fJzs5mzJgxvXpeIYR4FoPrp4YQ4plYmWsZN8yM1NIW0wacrmg1CnEhboOmOtlVC6RY3yEMuX+ZuVHjmDBhQqfH6PV67t69S2ZmJjk5ObS0tODu7s748eNJSUlh8eLFPYbQdu0n6Jw8eZIFCxYAbZtwGhoaOH78OHZ2dl2+/qO8vb0xGNqWFyiKwt27d7l9+zaBgYE9Pk5VVQoKCjocG9kVBwcHvL29ycjIkEAphHihJFAK8YpTVZVTp04xrDoDleAerzUaVTbEPjlMDQTdtUA6m1fT1gLJJcw07WwwGMjNzSUzM5Ps7Gyam5sZNmwYkydPJiwsDBcXF+7fv09KSkqXfSi7Ym9vz4wZM0hKSiIyMtJ0Ks2UKVNoaGjg0KFD2NjYEBYWBnSuoup0Oj7//HMaGhqYOnUqY8eO5eDBg2zfvt3Uu7K7FkaVlZU0NjZ2u37yUeHh4Rw+fJiGhgZsbW179bkJIcTTkkApxCtMVVWSkpJISUlh9ZzZTDbz5Ld720LYoxt0tBoFo1Hld0vCB0XLoJ5bILWFyM/2ZzHEWA8VuWRnZ6PT6XB2diY6OpqwsLBO7YHad133NlDCLyfoHDp0iA8++ABFUVAUhTlz5tDQ0MBPP/3E3Vo4eLepQxX1jSAX7O9dwqG1gZkzZzJt2jQA1q5dS2ZmJkePHuWLL75gxowZREdHd2r7U1BQgKIoeHl5PXGMYWFhHDlyhKysrCdWTIUQ4llJoBTiFaWqKocOHeLKlSvMnz+fiRMnMgUIdrNnY3IeiVklpoATF+LGhtiRgyJMwi8tkHreta7yh0NpvONWzfjx4wkLC8PNza3b1kHtgdLa2rrX49BqtSxYsIDNmzebNuhA2/T1W2+9xcliPX+/Pw+t0rGKejy7HJWRvD86zBQm2x8XHh5OQEAAJ0+e5NixY1y/fp2FCxd2aA9UUFCAh4dHrzba2NjY4O/vT0ZGhgRKIcQLI4FSiFeQ0Wjk559/Ji0tjcWLFzNu3DjTfeN9nRjv69RpCnawaG+B9KQNRioKRaoTa9cvxc7aEjMzsx77UDY1NQFgaWn5VOPx9fXttEEH4GpRDQcetE0xGx4ba3sVdVN6EwvzqzoFeSsrK+bPn09ERAQHDx7ku+++IyIigri4OGxsbCgsLCQ0NLTXYwwPD+enn37i4cOH3W40EkKIvpBAKcQrxmAwsHfvXjIzM1m6dGm3mzGszLWDKki2e9oWSP/zD/+OtdLWcLz9jG2tVouZmVmHfzc1NaEoCtu2betw++N/d/VvT09Pbt68yU8//cSkSZMwMzPj86RCNErnMPmo9kby3VWGPTw8+OCDD7h69SrHjx8nJyeHmJgYampqerV+sl1wcDBmZmZkZGQQGxvb68cJIURvSaAU4hWi1+vZvXs3t27dYtmyZU9VxRosnqYFkoKKOW27qG1sbLCzs8PGxgZra2usrKxM1Ui9Xk9RURGNjY1YWlqi1+vR6XQYDAb0ej16vb7bf7c3Jge4ffs2t2/fRq8qnGkeZ6pEdufRRvLdhXuNRsP48eMJCQkhKSmJEydOAE9XSbWwsCA4OFgCpRDihZFAKcQrorW1lV27dpGXl8d7773HqFGj+ntIL4SVuZa4UDeO3SzrcQ1l2+YXVz6auZ6KigrKy8upqKigoqKC/Px803V2dna4uLhgNBqxsrIiKioKFxcX7O3tn3hUI7QtLzAYDDQ3N/Pdd99haWnJtDmL2PL1tV59PkYV7pdX4TfctcfrbG1tWbJkCY2NjeTm5pKQkEB0dDQzZszoVbgMDw9nx44dlJWV9XheuRBCPAsJlEK8AlpaWvj++++5d+8eq1atws/Pr7+H9EJtiPUjMbO0x2uMqopHzU3MzLw6rCGFtvBdWVnZIWQ+ePCA5uZmtmzZArRVAF1cXEx/XF1dcXFxwdHREY3ml16eGo0GjUaDubk5ixcvZvPmzdRUlD5VFfW7P3+J13B3goKCCA4OZtiwYd2G2aqqKiIiInBwcOD06dNkZmYyd+5cQkNDewzAAQEBWFlZkZ6ezqxZs548MCGEeAqK+uh8jRBi0NHpdGzfvp3S0lJWr17dYTfwq2zrxYIuWyApqIDCP04fgVn+BUpLSxk/fjyzZs3qsSXQtm3b0Gq1xMXFdapolpeX09LSArTt7HZycjIFzPaw6ezsjLm5Obt37yY3N5cbQ6JJzq95YiP5WUEu/F2kNTk5Ody+fZuWlhYcHBxM4dLb29sUYOvr6/n973/PO++8Q3h4OA8fPuTIkSPk5OTg7+/PggULcHLqfqf+zz//TG5uLn//93/fq+qrEEL0llQohRjEGhsb2bp1K9XV1cTHxzNixIj+HtJLsybap8sWSD7aWpYE2/PreREYjWO4dOkSJ0+e5ObNm8yZM4fRo0d3GaZ0Oh0uLi44Ozvj7OxMUFCQ6T5VVamvrzeFzPa/r169Sn19vek6BwcHHBwcaGxsxL7+MipBnV7nUUajysfTAhjt68To0aPR6/Xk5+eTnZ1NVlYWFy9exNramlGjRhEUFERrayuAaUOOg4MDK1asICcnh8OHD/OnP/2JqVOnMmXKlC6PZBw9ejRXr16luLi4Vz0shRCit6RCKcQg1dDQQEJCAvX19axduxZ3d/f+HlK/ebQF0vWrVzhy5Agffvghnp6eANTW1nL06FGysrLw9fVl4cKFuLi4dHiOL774goCAAObOnft0r63TdQiZhYWFFBcXA5CtdyVF740CHTboaFBRUfjdW2GsmeTb5fOqqsr9+/fJzs4mJyeH8vJyFEXBzMyMefPmMWrUKOzs7EzXt7S0cObMGVJSUnBwcGDBggX4+/t3es5/+7d/Izg42HRcpBBCPA8SKIUYhGpra0lISKC5uZn4+HhcXXve0PE6MRqNbNy4EaPRyMcff9xhveOdO3c4dOgQNTU1TJ48mWnTpmFubg7A73//e8aPH8/06dOf+bXv3r3Ltm3bUBQFe3t7rKyscBo1np3XK7hapkdFQUHFW1NNmFkZnpbNHdZntv9xcnLqdDpOVVUVmzZtwmg00tjYiKqqeHl5mabGnZ2dASgvL+fgwYMUFBQQFhbG3Llzsbe3Nz1PYmIi169f51d//xsaWoyDrg+pEGJgkkApxCDz8OFDEhISMBqNxMfH97hm7nV1//59/vKXvzBnzhxiYmI63KfX60lOTiY5ORl7e3vmz5/PqFGj+G//7b8RFxdHdHT0M71mTk4OO3fuRKPR8MEHH9Dc3ExCQgJLlixh7NixpipqaXE+u3ftYO7cuRiNxg5rNdtP69FoNDg5OXVYo2lvb09CQgJvvvkmo0aN4tatW+Tk5HD37l30ej0uLi6mcDl8+HDS09NJTExEr9czc+ZMJk6ciEaj4Ujqbf6/PRcpUh1/OSkp1I2PYv0GzUlJQoiBRwKlEINIZWUlCQkJaLVa4uPj5dSTHhw8eJAbN27wq1/9iiFDhnS6v7KykkOHDpGbm2sKaO3h72llZWXxww8/oNVq+fjjj01teXbv3k1eXh6//vWvTRuCjEYjf/jDHxg9enSH6XVVVWloaOhyQ1BdXZ3pOjs7O9zc3Exh09HRkfr6evLz87l16xaNjY3Y2dkxatQoRo4cSW5uLteuXcPd3Z0Wn2j+cPoe/HXKvd2jZ7mvie59w3QhhGgngVKIQaKsrIwtW7ZgZWVFfHx8h2lM0ZlOp+Pzzz/Hx8eH5cuXd3mNqqpkZWVx+PBhGhoaiIiIYNGiRZ2mm3uSnp7Onj17MDMz45NPPumwNrO2tpYvvviCiIgI5s+fb7r98OHD3Lx5k9/85jcdpuS709zczKFDh7h16xbjxo2jsrKSiooKqqqqTI3Vra2tcXZ2xtrampaWFiorK6mvr8fCwoIRI0aQXtLID9We0EOzdQX44ZMYqVQKIZ6a7PIWYhB48OABW7duxd7enrVr12Jra9vfQxrwrKysmDt3Lnv27OH27dsEBgZ2ukZRFMLCwnBwcGDjxo1cv36de/fusXDhwl4dbXjt2jX279+Pubk5n376KY6Ojh3uHzJkCNOnT+fYsWNERkaaNk6NHj2aS5cuUVBQwMiRI5/4OpaWllRVVREQEEBcXJzpdoPBQFVVVaeKZkVFBXp923GTer2e4uJiLjV4ozxWmXzck46CFEKI7kigFGKAKy4uZtu2bTg5ObFmzRqsra37e0iDRnh4ONeuXePw4cP4+vqaNuA8zmg0AvDOO++QkpLCpk2biIiIYPbs2d2G98uXL3Po0CEsLCz427/9W4YOHdrlddHR0aYxrF+/HkVRGDFiBI6OjqSnp/cqULa2tnL//v1O57JrtVpcXV07bcpSVZWamhpTwLxfWsFfLirP5ShIIYToypPnWoQQ/aagoIAtW7YwbNgw4uPjJUw+JUVRWLhwIbW1tZw9e7bb69o3w3h5efHhhx+yaNEisrOz+fzzz0lNTeXxlUEXLlzg0KFDWFpa8utf/7rbMAltoW/BggUUFhZy48YN07jCw8O5efOmqZLYk+LiYoxGY6+qpu3Pb2VlhaIotLS0UFFT98Qw2c6oQp3uyWMSQohHSYVSiAHq7t277NixAy8vL1asWIGFhUV/D2lQcnZ2ZsqUKSQnJzNmzJhO/Sfhl0DZHsKioqIIDg4mKSmJAwcOkJaWxsKFC3F3dyc5OZnjx49jZWXFr3/9614tPxg5ciRhYWEkJSURFBSElZUVo0eP5uzZs9y5c4fg4OAeH19QUIC1tXW37aFUVaWiooKioiKKi4spLi6mvLzc9DkN8xjx116YT6ZRwN5KfjQIIZ6OfNcQYgDKycnhhx9+wM/Pj+XLl3c7VSt6JzY2lvT0dA4ePEh8fHynk3J0Op3pPO52tra2LFmyhMjISA4ePMif//xnhg8fzr1797CxseHXv/71U1WM58yZw+eff86pU6eYN28erq6uuLu7k56e/sRAWVhYiLe3t2ncTU1N3Lt3j6KiIu7du0dxcTHNzc0ADBs2DC8vL2JiYvD09MTFxQWj0cj+Px4hrcL4xKMg40LcZLpbCPHUJFAKMcBkZmayZ88egoKCeOedd55qx7Homrm5OQsWLGDbtm2kp6d3WovY1NRkqk4+zsfHh08++YQtW7ZQUFCAoijExcX1eC54V9o36Bw/fpzIyEjc3NwIDw/n1KlTNDc3Y2lp2eXjWltbKSoqIjAwkH379lFcXExFRQXQtrPb09OTyZMn4+npyYgRIzo9T319PT/++CPD66q41oujIDfEPnlNpxBCPE4CpRADyPXr19m3bx/h4eEsWbKkVy1lRO8EBAQQGhpKYmIigYGBHaqLOp2ux4CYlJREQUEBdnZ2eHh4sG/fPjIyMliwYMFTNZafNGkSaWlpHDp0iPXr1zN69GiOHTvGzZs3iYiIANrOZ2+fti4uLqaoqAi9Xs/Nmzdxd3fH19eX2NhYPD09cXJy6jIEtyssLOSHH34A4P/6YDkxD1R+uzcDjUbBYPxlAvzRPpSyw1sI8SykD6UQA0RqaioHDhwgMjKSRYsWSZh8Adr7Qo4ZM4aFCxeabt+/fz+lpaV89NFHnR5z4MABUlNTcXBw4Fe/+hVmZmbk5ORw+PBh6uvriY2NJTY2FjOz3v1+npuby5YtW1i6dCnh4eFs3LiR1tZWhg8fTnFxMVVVVUDblLunpycGg4H8/Hz+8R//sddVUVVVuXTpEomJiXh6erJs2TJT39Ir+VVsTM4jMavEdFLOnFB3NsSOlDAphHhmUqEUYgC4cOECR48eZeLEicybN6/HqpN4dkOGDGHmzJkcPXqUiIgIRowYAbRVKLtaD7lv3z7S0tJwcnLi008/NYXGoKAg/Pz8OHPmDGfPniU9PZ0FCxbg7+/f4+vX19fT0tKCi4sL+/bt48CBA7S2tgJtu8EDAgLw9PTE09MTBwcHFEVh+/bteHt79zpMtrS0cODAAdLT05k0aRKzZ8/usGxivK8T432dTEdBylneQojnQQKlEP2sfdfw5MmTmT17toTJF2zixIlcv36dAwcO8NFHH6HRaKhr1KGxtOnQf3H37t1kZGTg6urK3/zN33SqGJubmzNr1izGjBnDoUOH2Lp1K2FhYcydOxd7e3sMBgMlJSUdpq8fPnwItFUfVVXFw8ODKVOmsHPnTiIjIzudI240GiksLGTy5Mm9+twqKyvZtWsX1dXVvPPOO4SHh3d7rZW5VoKkEOK5kSlvIfqJqqqcOnWKM2fOMH36dKZPny5h8iUpLi7mm2++wXfCLM5XWZGYWYKKgkaBuFA3/Jrz0BVn4ebmxscff/zE5QftU8wnT56ktbWVIUOGUF9fj16vR6vV4uHhYao8enp6MmTIEM6dO8eJEyf45JNPOHHiBA0NDWzYsKHD85aUlPD111+zfv36J/agzM7OZu/evdjZ2fHuu++azhMXQoiXQSqUQvQDVVVJSkoiJSWF2bNnM2XKlP4e0mvF09OTxuFR/MvZh2g1GlPTb6MKSZklGLFmnksAv/14ZZdhUq/X8+DBgw7Vx9raWgAsLCx4+PAh9vb2zJgxgzFjxnS5vjImJsa0QWfChAns3r2bqqqqDpt8CgoK0Gq1pqn5rhiNRk6ePElycjLBwcEsWbKk2x3jQgjxokigFOIFe3ytmqqqHDp0iCtXrjB//nwmTpzY30N87VzOr2JXbluIfHS3M4Dxr+HyaIUDVwsfEuXjSG1tbYem4SUlJRgMBszMzBg+fDhhYWF4eXnh6emJvb099+7d4+DBg/z888/cv3+fWbNmdVqj2X6CzpYtWxg7dizm5uZkZGQwbdo00zWFhYWMGDGi2w0/jY2N7N69m7y8PGbPns3kyZOlyi2E6Bcy5S3EC3I5v4qNybkkZZWadtPGhbgRrNyj9m4aixcvZty4cf09zNfSJ1uvcOxmWacw+SiNAqFD9Mw0v0N9fT0ADg4OeHl5MWLECLy8vHBzc+u2T6jRaOTKlSucOHECrVZLXFwcY8eO7RT4fvjhBwoLC/Hx8aG0tJS//du/RVEUVFXl97//PZGRkcyaNavT89+7d49du3ah1+tZtmxZr84EF0KIF0UqlEK8AFsuFPDZvrZ+f+2ZxahCUlYJR9HytxPiJEz2E12rwRTye2JUIbNGy9/OGIOfT1v10c7Ortevo9FomDhxIiEhISQmJpp2jC9YsKDD+sY5c+bwxRdfoNfrqaiooLS0FHd3d6qqqmhoaOi0dlJVVa5evcrhw4dxd3dn+fLlPZ4lLoQQL4M0uhPiObucX8Vn+zJQ6W46VeHLy9Vcya/ql/G97up0+ieGyXYqCl5+gfj5+T1VmHyUvb0977zzDmvXrqW+vp6vv/6aY8eO0dLSAsDQoUOZNm0aOTk5WFlZcePGDXStBq7n5GJAg5eXl+m5Wltb2b9/v6lf6fr16yVMCiEGBJnyFuI56810avuZyV+tiXqJIxPQVqEM/ZcjvQqVCiprLK9ipqgMHTqUYcOG4erqiqurK8OGDcPFxQULC4tev7Zer+f8+fOcPXsWW1tb5s2bR3BwMAaDgS+//JL8Bi3XGh3Ja7XHqLa9/pwwdz6K9cN/qMKuXbuoqKhg4cKFppN1hBBiIJBAKcRz9DRhRaNA1n+dJ70A+0FvQ/+sIFf+y+wRlJWVUV5eTnl5OWVlZdTU1Jiuc3Bw6DJompubd/vc1dXVHDp0iDt37jBq1Cjmz5/Pd2fv8O/nS1BQUR+ZPNL+9ZjEadb3iBraxHvvvYe7u/vzeSOEEOI5kUApxHNUXtfMhP9+rNfXX/5/ZuNqLy1eXrbL+VW8+3UKPX3zU4AfPonp8jjC5uZmKioqOgXN9tZBAI6Ojh1Cpqura4egqaoqN2/e5MiRI+TVa/i5KfAJo1bZtj6KKUEeT/8JCyHECyabcoR4juytzNAo9LpCaW8l/wv2hwm+TvxuSTi/3du2cerRSqVWo2A0qvxuSXi3Z1tbWloyYsSITv0hm5ubOwTM8vJy0tPTTUFTUZROQXPZsmX8/a50lCZjh8rk47QaDVsu35dAKYQYkOSnmRDPkZW5lpmjnDmZU2HqZ9iV9jWUMt3df9ZE+xDsZs/G5DwSs0o6tHbaEDuy2zDZE0tLS9NpOI/S6XSdgub169epq6tDrypcbx7XY5iEtg1eiVklHY6HFEKIgUICpRDPUW1tLa6V6RjpuYpkNKpsiJW+gf1tvK8T432dOjWff96srKzw8vLqsGMb2oJmTsF9tmy62avnMaptu9QlUAohBhppGyTEc1JdXc13332Hu7aB/yfOD4W2SuSjtBoFBXqcThUvn5W5Fld7y5ce1KysrAjy80HTy8NtZJmEEGKgku9MQjwHlZWVbN68GXNzc+Lj4xk6dCjj/Nyf63SqeDVZmWuJC3XrdaspqU4KIQYi2eUtRB+VlZWRkJCAjY0Na9euxd7evsP9L3o6VQx+fd11LoQQ/U2mvIXogwcPHrBp0ybs7e1Zt25dpzAJ/TedKgaP9l3nskxCCDFYSYVSiGdUVFTEtm3bcHFxYfXq1VhbW/f3kMQgdyW/qtMyiTmh7rJMQggx4EmgFOIZ5OXl8f333zN8+HBWrlyJpaU0JxfPjyyTEEIMNhIohXhKd+7cYefOnXh7e7NixYoej9gTQgghXgeyy1uIp5Cdnc0PP/xAQEAAy5cvx8xM/hcSQggh5KehEL2UkZHBnj17CAkJ4e2330arlalIIYQQAiRQCtEr165dY//+/YwdO5Y333wTjUYaJAghhBDtJFAK8QSXLl3i8OHDREVFsXDhQhSll8eaCCGEEK8JCZRC9OD8+fMkJSUxadIk5syZI2FSCCGE6IIESiG6oKoqZ86c4dSpU0ydOpWZM2dKmBRCCCG6IYFSiMeoqsrx48c5d+4cb7zxBlOnTu3vIQkhhBADmgRKIR6hqipHjhzh0qVLzJ07l0mTJvX3kIQQQogBTwKlEH9lNBo5cOAA165dY9GiRURFRfX3kIQQQohBQQKlELSFyb1795KRkcGSJUsYO3Zsfw9JCCGEGDQkUIrXnsFgYPfu3eTk5PDOO+8QFhbW30MSQgghBhUJlOK11trayg8//EBubi7vvvsuQUFB/T0kIYQQYtCRQCleWy0tLezYsYOioiJWrlyJv79/fw9JCCGEGJQUVVXV/h6EEC+bTqdj+/btlJaWsmrVKnx8fPp7SEIIIcSgJYFSvHaamprYunUrVVVVrF69Gk9Pz/4ekhBCCDGoSaAUr5WGhgYSEhKor69n7dq1uLu79/eQhBBCiEFPAqV4bdTW1pKQkEBzczPx8fG4urr295CEEEKIV4IESvFaePjwIQkJCRiNRuLj43FycurvIQkhhBCvDAmU4pVXWVlJQkICWq2W+Ph4HBwc+ntIQgghxCtF2gaJV1pZWRlbtmzBysqK+Ph47O3t+3tIQgghxCtHAqV4ZT148IAtW7YwZMgQ1q5di62tbX8PSQghhHglafp7AKL/6VoNlNc1o2s19PdQnklX4y8uLmbz5s04Ojqybt06CZNCCCHECyQVytfY5fwqNibnkpRVilEFjQJxoW58FOvHeN+Bv2mlu/EvCrAh4+Q+3N3dWbVqFZaWlv09VCGEEOKVJptyXlNbLhTw2b4MNBoFg/GXLwGtRsFoVPndknDWRA/c02O6Hb8CBlVlsXsDv/90KRYWFv04SiGEEOL1IFPer6HL+VV8ti8DFTqEMf76sQr8dm8GV/Kr+mV8T9Lj+FUAhQMldty4X98fwxNCCCFeOxIoX0Mbk3PRaJQer9FoFDYm572kET2dwT5+IYQQ4lUjayhfM7pWg2nNYU8MRpWjmQ/Ysn0H5n/9tePx1RE9ffw01z7Nx61GSLzjikrPgdJgVEnMKkHXasDKXNvjtUIIIYToGwmUr5k6nf6JYbKdikJjq4q9uYqi/BLg2v/9+N+P39/Vx329trZFfWKYbGdU2z5fCZRCCCHEiyWB8jVjb2WGRqFXoVKjwLpV7/Z7IFNVlZKSEjIzM7mbkYWCX69CpUZp+3yFEEII8WLJT9vXjJW5lrhQN45llf51A0vXNKjMCHDu1zBZVlZGRkYGmZmZVFVVYW1tTUhICFOsh3A+vxZjD6FSq1GIC3Hr9zAshBBCvA4kUL6GVkd5cDSzBHoIZEbApugCp0+3MGXKFMzMXs6XSkVFBZmZmWRmZlJeXo6lpSUhISHMnz+fkSNHoigKqV9uIxnHHp/HaFTZEDvypYxZCCGEeN1JH8rXjNFoZMuWLZwsauV0gwcahQ6VSgUjKgqTzYt4M9SR27dv4+joyMKFCxk58sUEtOrqalOILCkpwcLCgqCgIMLCwvD39zeFWaPRyMaNG3nw4AGVTqH8fN8GBbVDpVL71+n8gd5HUwghhHiVSKB8zZw4cYLk5GTi4+OpYAifH7vJ6bvVqChoFBhloyPCqpKJfi6kp6czffp08vLyKCwsZMyYMcyZM+e5HGNYU1NjCpH379/HzMyMUaNGERYWRmBgIObm5h2uNxqNfPXVV5SXlxMSEsK7777LpbxK/q9vj5KvH4oKKKhEumr5f96OHhQn/QghhBCvCpnyfo3cvn2bs2fP8sYbb+Dr64sv8N8XjOTLPx9nxdr1+HuPoO5hFV999RVDh/ozYcIETp8+zezZs4mIiCApKYlbt24xe/Zsxo0b12kX9pPU1dWRlZVFZmYmRUVFaLVaAgMDiYmJYdSoUd2eaqPX6/nyyy+pqqpizJgxLF26FABPy2ZmmN1m1fvrcHD14PjRg9RUljPed34f3ykhhBBCPA0JlK+JmpoafvrpJwIDA4mNjTXdrqoqZoqKs60FVuZarFxdmTp1KmfPnuWjjz7CysqKY8eOMXXqVH71q19x7NgxDhw4QFpaGosWLcLNza3H121oaODmzZtkZmaSn5+PRqPB39+fJUuWEBwc/MRztltbW/niiy+oqalh/PjxLFy40HRfXl4e5ubm+Pl4odVqCR0VwE8/pVNXV4e9vX3f3jAhhBBC9JoEyteAwWDghx9+wMLCgqVLl3ZZWXz0ttjYWDIzMzlw4AAffPABlpaWHDt2DJ1Ox5tvvklERAQHDhzg66+/ZtKkScyYMaNDdbGpqckUIvPy2k6rGTlyJIsXLyYkJARra+tejbu5uZkvvviCuro6Jk2axNy5czvcn5eXh7e3N1pt207ugIAAAO7cuUNkZOTTvUlCCCGEeGYSKF8DiYmJPHjwgA8++KBTmGtfQvtooDQzM+PNN9/k22+/5dKlS0yZMgUrKysOHDhAS0sLb775Jn/zN3/D+fPnOXPmDJmZmcyePRuj0djWK/LuXYxGI76+vixYsICQkJCnXnfZ1NTE559/TmNjI9OmTWPmzJkd7jcYDBQWFjJ9+nTTbTY2NowYMUICpRBCCPGSSaB8xWVmZnLp0iXmz5/PiBEjOt3fVaAE8PLyYsKECZw4cYLg4GCioqKwsLBg7969NDc388477xAdHY25uTnJycns2bMHAA8PD+bMmUNoaOgzTzvX19fzxRdfoNPpmDVrVocp+nb37t2jtbUVX1/fDrcHBARw8eJFjEYjGo0cVS+EEEK8DPIT9xVWUVHB/v37CQ8PZ8KECV1e012gBJg1axbW1tYcPHgQVVUZPXo077zzDrdu3eKPf/wj/+t//S+OHj3KkCFDGDNmDLa2tlRUVGAwGLCxsXmmMdfU1PD555+j0+mYN29el2ES2qa7LS0t8fDw6HB7YGAgOp2O4uLiZ3p9IYQQQjw9qVC+olpbW/nhhx+wt7dn0aJF3e7I7ilQWlpasmDBAnbs2EFiYiINDQ3k5ORgNBppbGxkyJAhvPfee6ZQ19zczMmTJzl27Bg3btxg0aJFeHp69nrM1dXVfPnll7S2trJo0SKioqK6vTY/Px9fX99OVcjhw4djY2PD7du38fb27vVrCyGEEOLZSYXyFaSqKgcPHqSqqop33323x53U3QVKg8HAnTt3yM7ORqPRcOHCBe7fv8/kyZP51a9+xYcffkhLSwv79u2jvr4eaAug8+bNY8OGDWi1Wr755hsOHDhAU1PTE8dcXl7On/70J1pbW3n77bd7DJOtra0UFRV1mu5u/zz8/f25c+fOE19TCCGEEM+HVChfQdeuXeP69essWbKEYf//9u49Kqr77vf4e2ZEbo7IRQbxAgJRQMAoxEs0kZRCI1i0K21irLG1Js2xPac9p2lXz3qaPM86q+vpWj3N+asx1gSaC/akzUmi0QUGjIk2ajQaRAXBSwRFYRgQVJSLMLPPH5SpI3JJtiY1fl5rzdK4N3v2jCsrn3y/+/f9RUYOee71c+09Hg91dXVUVVVRXV1NZ2cnYWFh3HfffVRUVDBx4kSfRTA//OEPKSoq4tVXX+WJJ54gJCQE6KsSrlmzhoMHD/LBBx9QU1NDTk4OqampN62EOp1OCgoK8Hg8PProoyQlJQ15z/X19bjd7kF37klISODoUY0PEhER+bIoUH7NOJ1Otm3bxuzZs5k5c+aw53s8HgB27drFZ599xtWrVxk3bhyzZ89mxowZREVFYbFYcDgcbNmyhbS0NOLj4wGIjIxk9erVFBUV8ec//5lVq1YRHh4OgNVqZc6cOSQlJVFaWsqmTZuoqKggNzeXiIgI7/vX19fz6quvYhgGK1as8I7+GUptbS1BQUGDhmWNDxIREflyaevFO1xXj5v2rl7sAaPA3cPLL7/M6NGjWbNmjXcP7BsZhsH58+eprKzkyJEjdHZ2MmbMGFJSUkhJSSE6OnpAJdEwDIqKimhra2Pt2rU+cycvX75MUVERnZ2drFy5kqioqAHveerUKUpKSrh8+TILFizggQce4Ny5c7z++usArFq16qYt7JspLCxk7NixfO973xv0nIKCAkJCQoY8R0RERG4NBco71IG6Vgp2n2b7sSY8BlgtkDy2l/jeM/zHT1YSFua7l7VhGDidTiorK6mqquLSpUsEBwczceJETpw4wc9//nPGjRs35Hu2trayfv16MjIyBgwZ7+joYOPGjbS1tbFixQomT57sPdYfegNsBgf27WXPnj0EBQVx5coVrFYrq1evHvHine7ubn7/+9+Tm5tLRkbGoOft3LmT/fv386tf/Urjg0RERG4ztbzvQEX7zvDv71ZitVrw/ON/BzwGVF2yUkk8951sZ+XcMAzDwOVyUVVVRVVVFa2trQQFBZGUlMSMGTOIiYnhs88+48SJEyMKXWFhYWRmZrJjxw5SUlJ85loGBQWxatUq3njjDYqKili+fDkXrOMGhN7sZAf3pz9E3YEdAMTFxQ0bZK939uxZDMMY9PnJfgkJCezatYtz585ptbeIiMhtpkB5hzlQ18q/v1uJAbg9vsVl4x+L9p/dXElnwymuNdTQ0tJCQEAAiYmJ5ObmEhsb692qEIYeG3Qz8+fPp7Kykq1bt/LUU0/5XCsgIICVK1fy5ptv8uxrZey9NhnbDaH3/WNNlBoGC0ZH8l++mcK+fft44YUXyMrKIiMjY9j7qK2txW63D6jA3ig6OprAwECNDxIREfkSqBd4hynYfRqrdejQZcHD/y13Eh0dzeOPP84vf/lLli5dSnx8vE8AhM8fKK1WK/n5+bhcLj7++OMBx/38/EiY9y32XutrYd8Yet1G3x3uvTaFwMkz+OlPf0pycjIlJSUUFhbidDqHfP/a2lqmTp067P1arVYSEhI0PkhERORLoEB5B+nqcbP9WNOAkHYjAyt1veO4JzEZm81GfX099fX1nD9/HqfTSXNzM62trVy8eJGOjg4Arl27Rk9PDx6Ph+Eeq50wYQLz5s1j586dXLhwYcDxP39ch22YFrrVaqFgd99q7fz8fFavXk1PTw8vvfQSpaWldHd3D/iZzs5OnE7nsO3ufgkJCTidTtrb20d0voiIiHwxannfQdq7ehkmS3oZwMa/vUWgpXdE5//xj3/0+Wer1YrNZsNms9309/3PXL788stERUV5j3ssNsqqgjEYuoLo9hiUHXPS1eMmwM/GlClT+PGPf8y+ffvYuXMnx44d4+GHHyYxMdFbjayrqwMY8WpwjQ8SERH5cihQ3kHsAaOwWhhRqLRg4IcbPz8/IiIiCA8PJzw8nNDQUMaOHYvFYsHtdlNXV8fu3bvJz8/vC4QeD263G7fbPezv7XY7p06dore3l+DgYNxuN+3d7mHDZD+P0ReSA/z62vA2m40FCxYwY8YMtm3bxptvvsm0adNYvHgx48aNo7a2ltDQ0BEv4gkKCmLixIkKlCIiIreZAuUdJMDPRnayg/erXUO2va0WeOieCH744PdpbGykqanJOzII+qqPERER3j24oa/qFxoa+rnv6d1336WmpobHHnsMu91OV4+b3//HeyMMvdDTcRns433+fNy4cSxfvpyamhq2bdvGiy++yKJFi6itrR1xdbJfQkIC+/fvx+PxaHyQiIjIbaI5lHeYA3WtPLrhY4Z7ivLxiEae+k4WcXFx3j+9du0aLpcLp9Pp83K73QCEhIQQFRXl8woJCRlyAUxHRwfr1q0jNjbWO0T86Y0H2V7lxDNEpdJqgRjbJTJHnSQ2NpZZs2aRlJSEn5+fz3nd3d3emZKGYbBo0SIyMzOH+5q8zp07R2FhIatXr9ZqbxERkdtEgfIOtHH/GZ7b3DeH8vpKpQUPBlb+Z1Ys/vWfcPbsWVJTU8nJyWHMmDE3vdbRo0d55513yM/Pp6WlhaamJhobG72LdQICAoiKisLhcBAVFcWECROIiIjwWS1eWVnJ22+/zWOPPUZiYiLPv7aJF2r8YIhAaQHeWHMfQR1OysvLOXPmDAEBAaSmpjJ79uwBu+189NFHfPDBBwDMmjWL7OxsAgMDh/2uPB4Pzz//POnp6WRlZQ17voiIiHx+annfgVbOjSHRYadgdy1lx5zeoeHTg6+R5n+BHz2YjZ9fMhUVFWzfvp2TJ0+SlZVFenr6oNXGlJQUb3XQMAyuXLniU8U8efIk+/fvB/qedRw/fry3iulwOIiLi6OkpITy8nKu1p0kJzSO7W1hA0Kv7R/PgP52WQrzEiKBSNLS0rhw4QKHDh2ioqKCAwcOEB0dzaxZs0hJSSEgIIC2tjYiIiKYM2cOO3bs4Pjx4+Tk5JCWljZkBfX68UEKlCIiIreHKpR3uOv38u5ov8T69euZNWsWubm5QF9Levv27VRUVDBp0iTy8vJ8qn9Hjhxh06ZN/OY3vxl07+9+3d3d3ucx+18ul8vbMu9nt9vJzc2lyRPMG+VNlP1jpxwLBmlh8Nz37icj9uaDyd1uNydPnuTQoUOcPHkSm83GjBkzOH36NNOnTycvL48rV65QVlbG0aNHiY2NJS8vj4iIiEHvu/8zPvPMM4NWakVEROSLU6D8mtm/fz/vvfceq1at8pnXeObMGYqLi2lpaWHevHlkZmYyevRoDh8+zObNm3n22WcHDD0fCbfbTXNzM2+99ZZ3JuXo0aO5du0a0LfSOjwyirHhkVy9eAHn+XqeeeaZYcMrwOXLl6moqODTTz/l8uXL2O125s2bx8yZMwkODuazzz6jpKSEixcvsmDBAh544IEBz2ACXL16leeff56lS5dy7733fu7PKCIiIkNToPyaMQyD1157jUuXLrF27VpGjx7tPeZ2u9m7dy9///vfCQoKYvHixXR1dfHuu+9+4UDp8XgoLCykoaGB+Ph4uru76ezs5PHHH6elpcWnmnnx4kWgrw194+Ifh8Phc6/XO3ToEFu2bCEpKYkTJ05gGAbTp09n1qxZxMTEsGfPHvbs2cPYsWPJzc31zp+8XkFBASEhId6FQyIiInLrKFB+DbW2tvKnP/2JmTNnkpeXN+B4W1sbJSUlnDp1iqioKJxOJ88999znHqvj8XjYsGEDLpeLpKQkHn30UVwuFxs2bGDhwoU89NBDPud3dnaybt06wsLCCA8Pp7GxkebmZjweDwDh4eEDFgCNGTOGTZs24XK5ePrpp+no6ODo0aOUl5fjcrkYO3Ys9957LzExMezevZva2lpmzJjBt771Lex2u/e9+1eK/7f//guuXvNgDxjlnX8pIiIi5ihQfk198sknbNu2jSeeeMJndFA/wzCorq5m69atdHV1kZ2dzdy5c0dcpezt7WX9+vW0traSlpbGd77zHe+xDz/8kN27d/P0008TGRnp83PvvfceVVVV/OIXv8BisdDb2zugkul0Or1bLwYHB9PV1YXD4WD+/PlERUURFhaGxWKhoaGB8vJyKisruXbtGnFxcYSHh1NZWYnH4+Eb3/gGGRkZWK1Wij+p4X+/e5B6I9S7iCk72cFTC+MGfZ5TRERERkaB8mvKMAxef/112traWLt2Lf7+/jc9b9++fZSWlmKxWIiMjGTJkiVMmjRpyGv39PSwbt06Ll26RHp6OkuWLPE53tvby4YNG/D39+dHP/qRT+Xz7NmzvPLKK0POhTQMg4sXL+J0OqmtreXAgQMEBQV5Rxn5+fnhcDhwOBxMmDCB8PBwWlpaOHLkCPX19QQGBmK323G5XERHR3Ntylye31kPGD67+NisFjweg98uS2Hl3JiRfK0iIiJyExob9DVlsVjIz89n/fr1bN++fUDo6zdq1CgsFgtPPvkkxcXFFBYWemc23mzOY3d3N+vWraO9vZ358+eTk5Nz02t++9vf5pVXXuHAgQPMnTvXe2zy5MmMGTOG6urqQQOlxWIhNDSU0NBQrl69isVi4Wc/+xlut9s7J7OpqYn6+nrKy8sxDAOLxUJ4eDj33HOPdzU6wJHGq2w9fZa+yZe+44X6xxk9t7mSRIddlUoREZEvSIHyayw0NJTs7GxKSkpISkoiPj5+wDn9YSw6Opo1a9Zw8OBBduzYQU1NDTk5OaSmpnrnPHZ2dvLCCy/Q0dHBgw8+OOAZyetNmTKFjIwMduzYQWJiIiEhIUBfWExMTKS6upqcnJwhZ0gC1NXVMXHiRG+FderUqT6r13t7ewfs/tPU1ORdZX70WgSWGyqTN7JaLRTsrlWgFBER+YIUKL/mMjIyqK6uZsuWLfzkJz8Z0PruD5TQt/p6zpw5JCUlUVpayqZNm6ioqCAvLw9/f3/WrVtHV1cXWVlZLFy4cNj3zsrK4vjx4xQXF/P444973yc5OZmDBw/S2NhIdHT0oD9vGAa1tbXMnj170HNGjRpFdHS0z3UMw6C5uZmqmhO8uu3ikGES+iqVZcecdPW4tVBHRETkC1Cg/Jq7vvVdWlpKfn6+z/GbPUJrt9v57ne/y7333ktxcTHr168H+sYOLV68mDlz5ozovQMCAsjLy+Ovf/0rVVVVpKSkABATE0NgYCDHjh0bMlC6XC46Ojp8KpI36n/e0uVy0dTU5P31woULdHhsGNw7onv1GNDe1atAKSIi8gUoUN4Fxo0bR3Z2NsXFxSQnJw+Y0zhY2zkhIYHly5fz0ksv4fF4CA4OHnJHmpuZPn06ycnJbNu2jbi4OIKCgrBard62d1ZW1qDvX1tbi81mY/LkyUBfy/360OhyuXC5XN72dkBAAA6Hg6lTpzJ37lzGhY/nzZcr8Yxg2ZnVAvYA/esgIiLyRei/oHeJ9PR075igtWvXEhAQAPi2vG/U3NxMQUEBHo+H7OxsTpw4QVFREampqeTk5Ix4G8PFixezbt06ysrKWLZsGQBJSUkcOnQIl8uFw+HwOb9/lNDhw4cJDg7mb3/7Gy6Xi/b2dqBvL/GIiAgcDgeJiYlERkbicDiw2+3ez+J2u9m1axeTLW3UG+PwDNH2tlktZCc5VJ0UERH5ghQo7xL9re8XX3yR0tJSli5dCgweKBsbGyksLMTj8bB8+XKmT5/O/PnzOXz4MGVlZZw8eZKsrCzS09OHXVgzZswYsrOz2bp1K2lpacTFxREXF4e/vz/l5eXExcUNaFf3t+IDAgKw2WzMnDkTh8NBZGQk4eHhQ87LbGtr45133uH8+fM8MecB/nNfx5D35/EYPLlw8La6iIiIDE1zKO8y5eXlbN26lRUrVnDPPfew86M9fPDRx/zbr/6Ht0J39uxZXnvtNQzDYMWKFQNa5B0dHWzfvp2KigomTZpEXl4eUVFRQ75vR0cHRUVFXLp0ienTp9PS0kJDQ4N3l5z+dnVkZCSRkZHYbDa2bNky5LzKmzl69CjFxcUEBgbyyCOPMGnSJDbuP8NzmyuxWi3eUUGgOZQiIiK3igLlXcYwDP7yl79Qcb6di1Gz2VHTgsE/d47Jiw+kYvvbWCwWVq1aRUzM4EHrzJkzFBcX09LSwrx588jMzMRqtdLS0uLzjGNTU5O3XQ0QFBTkDalHjhzhBz/4ATExMT6Vzj179rBr1y5+/etfj2j3nu7ubrZt28bhw4dJTU0lNzfX29YHOFjXSsHuWsqOOb075eQkR/HkwqkaFyQiImKSWt53GYvFQufEDN6qOoX1YrN3pI7HgPePNVFaZXC/33j+8HQ+EydOHPQ6hmEwduxYMjMz+fTTT9m3bx/79+/3VhwBQkJCcDgcPu3qmpoadu7cydy5cxk/fjzV1dXU19cTGxvrc/3a2lqmTJkyojB5/vx53nnnHa5cucKyZctIS0sb0IbPiA0jIzaMrh437V292stbRETkFlKgvMscqGvld2WfARY8NxxzGwAW9vZMobEnkP44OZLV1RMmTODq1atcunSJKVOmkJeXN2Afb4Dw8HCOHTvG1q1befLJJ5k2bRrV1dU88MAD/7wPt5uzZ8+yaNGiIT+LYRjs3buXDz74gKioKL7//e8TFjZ0tTHAz6YgKSIicospUN5lCnafHvAs4Y2sFvjdO/t4xNHm0662Wq2MHz+eyMjIm66uNgyD6upq3nvvPQoKCsjMzGTu3Lk+VUabzUZ+fj4FBQXs27ePpKQk3nrrLdra2ggNDQX6Ko49PT1Dzp9sb29n8+bNnD59mgULFvDQQw+NqJopIiIit54C5V2kq8fN9mNNw85l9BhwqNnDMof1c62utlgsJCcnEx8fz4cffsj777/PkSNHWLJkCZMmTfKeFx0dzbx589i5cydr1qxh1KhRVFdXc//99wN97W5/f/9BF/ocP36cLVu2YLVaeeKJJ4iLi/v8X4aIiIjcMgqUd5H2rt4RDfkGMLCQkJTCjPgpjB07dtjRQNfz9/fn4YcfJi0tjeLiYgoLC0lPTycrK4vAwEAAMjMzqa6upqysjPj4eJ9AWVdXR2xsLFar1ee6vb29lJWVceDAAaZNm8bSpUsJCgoa8X2JiIjI7aFAeRexB4zCamFEodKCwbYtm9huMQgKCvLul93/stvtw14jOjqaNWvWcPDgQXbs2EFNTQ05OTmkpqYyevRolixZwsaNG5k1axbHjx/HdaENt9WP2rPneDg7y+daLpeLt99+mwsXLrB48WLuu+++zxVyRURE5PbR2KC7zNMbD/J+tWvIZyj7d475w9JpNDQ00NDQQGNjI+fPn6ejo29IuN1uHxAyh6oWtre3U1paSlVVFVOnTiUvL4/w8HA2b97Mh5VnqegM46wnFIO+MLsoPpT/+s0k0mNCOXjwIGVlZYSGhvLII48M2FlHREREvloKlHeZA3WtPLrhY4b6S7cA/+/p+QPmMxqGweXLl70hs//V1dUF9I0JmjhxIhMmTPCGzOtnQQKcOnWKkpISLl++zMKFCzlJFP9ZegoLeEcYwT+Hji+b1MW4lkoyMjLIycnBz8/vFn0TIiIicqsoUN6FbuXOMYZh0NbW5lPJbGho8I4UCgsL86liRkVFYbVa+eijj3j77xUUd0+DIfbZBoP/s3gijzw4y8QnFhERkdtJgfIudTt3jjEMgwsXLvhUMRsbG+nt7QVg/PjxREdH8/ppfyqa3XiGCJT97fc/rUw3dU8iIiJy+yhQ3uW+rJ1jPB4Pzc3N3oB55lwDf6ib4NPmHozVAsf+18MaSC4iIvIvSoFSvhLN7d3c97v3R3z+gX/7JuPt/rfxjkREROSLsg5/isit1z/CaCSslr7zRURE5F+TAqV8JQL8bGQnO7ANkyptVgs5yVFqd4uIiPwLU6CUr8yTC+PwDDNl3eMxeHLh4Ht6i4iIyFdPgVK+MvfFhvHbZSlYYECl0ma1YAF+uyzF9KpzERERub20KEe+crdzhJGIiIjcfgqU8i/jyxphJCIiIreWAqWIiIiImKJnKEVERETEFAVKERERETFFgVJERERETFGgFBERERFTFChFRERExBQFShERERExRYFSRERERExRoBQRERERUxQoRURERMQUBUoRERERMUWBUkRERERMUaAUEREREVMUKEVERETEFAVKERERETFFgVJERERETFGgFBERERFTFChFRERExBQFShERERExRYFSRERERExRoBQRERERUxQoRURERMQUBUoRERERMUWBUkRERERMUaAUEREREVMUKEVERETEFAVKERERETFFgVJERERETFGgFBERERFTFChFRERExBQFShERERExRYFSRERERExRoBQRERERUxQoRURERMQUBUoRERERMUWBUkRERERMUaAUEREREVMUKEVERETEFAVKERERETFFgVJERERETFGgFBERERFTFChFRERExBQFShERERExRYFSRERERExRoBQRERERUxQoRURERMQUBUoRERERMUWBUkRERERMUaAUEREREVMUKEVERETEFAVKERERETFFgVJERERETFGgFBERERFTFChFRERExBQFShERERExRYFSRERERExRoBQRERERUxQoRURERMQUBUoRERERMUWBUkRERERMUaAUEREREVMUKEVERETEFAVKERERETFFgVJERERETFGgFBERERFTFChFRERExBQFShERERExRYFSRERERExRoBQRERERUxQoRURERMQUBUoRERERMUWBUkRERERMUaAUEREREVMUKEVERETEFAVKERERETFFgVJERERETFGgFBERERFTFChFRERExBQFShERERExRYFSRERERExRoBQRERERU/4/OeNF9N4WwYIAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -240,7 +161,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -249,14 +170,14 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVBUaZo/+m+S7Akosm8JssiS7googuVWrqCl4g4K1tTtma6qnpmemJ5fx/3jN3HnRkxERXTMTHX1r+5U1YgLiAUqintpWRaQyCayJYgoO8m+Zya5n/uHZjbIDpl5Tma+n4gKSxLOeRLhPOd9z/s+D4uiKAoEQRAEYSYs6A6AIAiCIAyJJD6CIAjCrJDERxAEQZgVkvgIgiAIs0ISH0EQBGFWSOIjCIIgzApJfARBEIRZIYmPIAiCMCsk8REEQRBmhSQ+giAIwqyQxEcQBEGYFZL4CIIgCLNCEh9BEARhVkjiIwiCIMwKSXwEQRCEWSGJjyAIgjArJPERBEEQZoUkPoIgCMKskMRHEARBmBWS+AiCIAizQhIfQRAEYVZI4iMIgiDMCkl8BEEQhFkhiY8gCIIwKyTxEQRBEGaFJD6CIAjCrJDERxAEQZgVkvgIgiAIs0ISH0EQBGFWSOIjCIIgzApJfARBEIRZIYmPIAiCMCsk8REEQRBmhSQ+giAIwqyQxEcQBEGYFZL4CIIgCLNCEh9BEARhVizpDoAgzI1IpsTdKiGa+8QIcOUgfrU3HGzIryJBGAqLoiiK7iAIwlyUNg8g5WIJKAqQyFWwt2aDxQIupkQhMmAZ3eERhFkgiY8gDEQkUyL6359ALFNNeo1jw0bJH3eBQ0Z+BKF35LeMIPSEoiiIxWKMjo5iZGQENyq6oFAoAbAmfa5aTeFulRAnIrmGD5QgzAwZ8RHEAigUCm1CG/+n5v81f7e0tISlpSXUajX4IldUq7ymPeZG+wGcDLeDj48PfH194eXlBUtLcm9KELpGfqsIo2GIRSEURUEikUxKaB8mNoVCAUdHRzg6OsLJyQl2dnZQq9Xa48jlcjg4OMDX11ebyHyFKry+V4cpZjphb83G3tgNCHaWo6OjA1VVVejr64O7u/tfv97XF87OzmCxJo8Y6UIW6hDGiIz4CKOgi0UhSqVyymQ2/k+RSARra2ttQhuf3DR/cjgcjI6OQigUor29HR0dHRgeHoa3t7c2Sfn4+MDJyUl7boqikHPnPv5XkRpyavIuoqme8SkUCnR2dmrP0d7eDoVCoT2+5j87O7vFf4MXgCzUIYwVSXwE4822KKT4f+2EhVox6yhNMwqbLqFpPmZlZTXhHCMjIxOST2dnJ5YsWTJhNOfu7g4Li6m3xapUKuTk5EAkEiEkZi/+r6sVC04WIyMj2jg6OjrQ2dkJR0fHCbF4eHhMG4uukIU6hDEjiY9gvGulrfh/7tZCIp98kbWCGpus27DSfnTGUZqTkxPs7e1nnSaUy+WTRllKpXJCYvHx8YGtre2cYpfL5cjKyoKlpSUSExNhaWkJsWZ6sF+CABd7xK/2XnCSUKvV6OnpmRDv8PAwvLy8JkyRjh996sJM/yb21mz87/gIslCHYCxyS0Yw3puu4SkvsACggAUioj7Cvxzgzfu4FEWhv78f7e3t2sTR19cHDw8P+Pj4ICwsDLt27VrwczWJRIKrV6/Czc0NCQkJ2lEYx8ZSZ0nBwsICnp6e8PT0xMaNGwEAUqkUHR0d6OjoQEVFBe7duwc2mz0heXt5ecHa2npB55RKpSiubZr230QiV6G5X7Lg90QQ+kYSH8FYEokExcXFeFPRAGsLb8jVk5OPvTUbge6Ocz7e+GnCjo4O2NraahPC2rVr4enpqZOVlMPDw0hPT8eKFSuwa9cugy5IsbW1RVBQEIKCggC8S/BDQ0PaBP/48WP09PTAxcVlwijW1dV12jhlMhnq6+shEAjQ3NwMlmMIrFm2kFOTP9/OygIBLvZ6fY8EsRhkqpNgHJFIhOfPn6O8vBzh4eFYF7UZe/+/F/N6nqRSqdDV1TVhClAikUxagOLg4KDz+Pv6+pCeno6oqCjExMTo/Pi6oFQqJ31/pFLphO+Pu7s7Ojo6IBAI0NjYCC6XCx6Ph+DgYOQ++An/u9xyyoU6VlAh7RMvbInayKgVqAShQRIfwRjDw8MoLCxEVVUVVq1ahS1btmDJkiUAZl5BuNHfGcPDwxOmLLu7u+Hs7Dxhes/V1VXviz46Ojpw7do17Ny5E2vXrtXruXRNLBajubkZAoEAra2tEIvFsLS0hIeHB0JDQxEYGAgXFxfcvHkTACCy88CfysbAtrSERK6CnZUFLCxY+I9DIWgpewpbW1skJCRg6dKlNL8zgpiIJD6CdgMDA+Dz+aitrcW6deuwefNmODpOnr7ULAp52z0CJ7YcobYi9He/21LAYrEmLPP39vaGjY2NQd9HY2Mjbty4gYMHDyI0NNSg514MlUqFt2/fQiAQoL6+Hl5eXuDxeAgNDcXY2Jh2RNjW1oa+vj7Y2dkhLCwMAoEACYcTUT1ijQcFZViz3Au/2RcJjs37Dft8PoqKirBjxw6sX7+ejP4IxiCJj6BNb28vCgoK0NDQgI0bN2LTpk2wt5/4bEitVqO3t3fCs7nBwUF4enpOWrVI54VVIBDg/v37OH78OPz9/WmLY65UKhWampq0yc7NzQ08Hg8RERFTTv+Ojo4iPT0d/v7+CA8PR2FhIbq7u0FRFCiKgp2dHWxtbbF9+3b4+Phobzp6enpw+/ZtMvojGIUkPsLgurq6kJ+fj+bmZkRHRyMqKkq7PUAkEk147iQUCidVQPHw8ACbzab5XfxVWVkZ8vLycPr0aXh6etIdzrTUarV2KvPVq1dwdnYGj8cDj8ebcbvDwMAArly5gvXr1yM2NhZKpRJff/01kpKS4O7ujpGREVRWVqK4uBguLi7o6urC0qVLtf9m3t7eaGhoQHFxMRn9EYxAEh9hMO3t7cjPz4dQKMTmzZuxdu1a7XYCTaKTyWQTFp/4+PhMGgUyBUVRyMvLQ2VlJZKSkrBsGfOqlVAUhdbWVtTU1KCurg5OTk7aZDeX0VdnZyeuXr2Kbdu2YcOGDQCA4uJiNDU14eTJk9rPU6lU+Oqrr/CP//iPsLKyQnd394RR+ujoKFxdXTEyMgIOh4OEhAT4+Pjo7X0TxExI4iP0rqWlBXl5eejp6UFQUBAsLS3R2dmJ3t5euLq6Tkh0Li4uRjEaoCgKDx8+REtLC86cOTPlM0m6UBSF9vZ2CAQC1NbWws7OTpvsXFxc5nyc5uZmZGdn48CBA4iIiADwbjXon//8Z5w4cQLe3t4TPv/SpUuIiYlBSEjIpGNpnhW2tbWhpqYGAwMDsLOzw/Lly7XT1Z6enpOq5hCEPpDER+iFRCLBixcv8OLFC0gk7zYz29raws/Pb8ImamO80KlUKty+fRvDw8M4derUnKu46BNFUejs7ERNTQ1qa2thZWWlTXZubm7zPt6rV69w584dJCYmYvny5dqPl5WVob6+HmfOnJn0Nb/88gtUKhV27do16/G7u7tx8+ZNUBQFLy8v9Pb2ore3d0JRbh8fHyxbtswoboQI40ISH7FoarUa3d3d2u0ETU1NEIlEsLS0REBAANasWQMul8uoUdFCyeVyZGdnw8LCAomJibQmboqi0N3dDYFAAIFAAADg8XhYuXIl3N3dF5wwXr58iadPn+LUqVMTRnUqlQrffPMNjhw5Aj8/v0lf19jYiGfPnuH8+fNzOs+HKz9XrVo1YW9hR0cH5HK5dspbkwzpKspNmA5SuYWYN03R5vGFkpcsWQIOh4OBgQFYW1vj6NGjiIiIMKm79bGxMVy9ehUuLi44ePCg3vcETqe3txc1NTUQCARQKpXg8XhITEyEl5fXor/ffD4fpaWlSElJmTQtWl1dDWdn5ymTHgD4+vqiq6sLSqVyTtVvLCwsEBcXh9DQUNy+fRu1tbVISEiYsOl/dHRU+6yQz+dDKBROKsrt7u7OqMVOBPOREZ8Zmk8PtamKNqtUqgkr9oaGhlBUVARbW1ts3boVISEhJpXwgHfJPj09HcHBwfj4448N/v76+/u1I7uxsTHtNKaPj49OYqEoCo8fP8abN2+QlJQ0aZWnWq3GX/7yFyQkJCAgIGDa43z//ffYvXv3vLd0zHXfn2Z7y/gbr6GhoXkV5SY9BAmS+MzMbBVQ+vr6JqzG6+/vn9QMdenSpVCpVKioqACfz8fSpUsRFxeH5cuXm1zCA94lnStXriAyMhJbtmwx2HkHBwe1yU4kEiE8PBwrV66En5+fTr/ParUaubm56O/vx+nTp6ecSqyurkZpaSlSU1NnPPejR49gb2+PuLi4BcWykH1/Uql0Qm/E9vZ2sNnsCdOj3t7esLa2Jj0ECQAk8ZmVmXqoWVuocdbxFZzsbSZcMD4s2qxQKPDixQsUFhbCw8MDcXFx4HJNt/2MUChEZmYmduzYgXXr1un9fMPDw9pkNzQ0hPDwcPB4PPj7++tlalWhUOD69etQq9U4duzYlB0bKIrCt99+i927dyM4OHjG49XV1aG8vHzKxS9ztdiqL+OLcmueFXZ3d4Oz1AX/R+gDmWrysUgPQfNC/pXNyN0qIaa7zbGwYIMbexhnY6e+sMlkMpSWlqKoqAh+fn44efLkpOXspqapqQnXr19HQkICwsLC9Hae0dFR1NbWQiAQoK+vD6GhodixYweWL1+u1+eIUqkUmZmZcHJywieffDLtc7K6ujpYWVlpuz3MhMvl4vbt21Cr1QuOfbpnf3Ot+sJiseDs7AxnZ2esWrUKwLttGN8/rQWEbVN+DUW9+/0gPQTNA0l8ZqS5TzxtDzWpkkKnSDnp42NjYyguLkZpaSkCAwORnJwMDw8PfYdKu9raWty7dw/Hjh2b8ZnWQonFYm2y6+7uxooVKxAbG4ugoCCDLNQQiUTaEmR79+6ddkRFURTy8/Oxbdu2OY26OBwOHB0d0dPTs+gqNu7u7vj000/B5/Px/fffL6rqi6WlJYZVVphisgMA6SFobkjiMyMBrhzYW7On7Zo9voeaWCzWtgYKDQ1FamoqXF1dDRkubV68eIFnz54hKSkJXl5eOjvu2NgY6urqIBAI0NHRgZCQEGzatAnBwcE66QE4VwMDA0hPT8eaNWuwdevWGRPJ69evQVEUVqxYMefj+/n5oaWlRSfl2xY7+htvpp9/W0sW6SFoRsgzPjMy0zM+zTMOtXwMfD4flZWV4PF4iI2NNZvCwhRFoaCgAOXl5UhKSppXlZPpSKVSvHr1CgKBAG1tbQgMDASPx8OKFSto2QPY1dWFq1evIi4uDpGRkTN+LkVR+OGHH7BlyxZt5Za5qKysxOvXr3Hs2LHFhjvBYp/9zfTzbwUVrhz1w6aN+n+OS9CPJD4zM92qtm8SIyBuroJAIMCaNWsQExMz45JwU0NRFB49eoSmpiYkJSUtarO9TCbD69evIRAI0NTUhOXLl2uTnaFbJY3X0tKCrKws7N+/Hzweb9bPf/v2LR49eoS/+7u/m1eCGRwcxIULF/D73/9eL6t8F9PxYbqf///8ZAVqfrmNTZs2YfPmzTqPmWAWkvjMkKavXXO/BK62FBwHXqP5TT3Wr1+PzZs3g8Ph0B2iQalUKuTm5mJwcBCnTp1aUGUQhUKhTXbju5WHhoYyoqRZfX09cnNzcfToUQQGBs76+RRF4eLFi9i4caN2gchcURSF//iP/0BKSoreCncvZvQ3/uc/wMUe8au9wbGxxPDwMNLT0xEWFoYdO3aY5NYc4h2S+MxUd3c3CgoK0NjYiMjISERHR5tlKSiFQoHs7GwAwLFjx+Y1/ahUKvHmzRsIBAI0NDTAx8cHPB4P4eHhjPpeVlRU4MmTJzh16tScOyI0Nzfjzp07+Pzzzxe0OvPGjRsIDAzU+xYQXff7k0gkyMjIgKenJw4cOEBbdR5Cv0jiMzNCoRD5+floa2vDpk2bEBkZSev0G53GxsaQmZkJZ2dnHDx4cE6rKcd3K3/9+jU8PT21yY6JI+XCwkKUlJQgKSlpXouTLl++jFWrVi04cZWWlkIoFOLQoUML+vr50HW3d5lMhqysLNjY2ODIkSMGXXhEGAZJfGaitbUV+fn56O7uRkxMDDZs2GCUnRF0RdNRPDAwELt3757xQvlht3JXV1dtt3KmFt6mKApPnjzB69evkZSUhCVLlsz5a9va2nDz5k188cUXC95a0d3djaysLHz55ZcL+vqF0OXoT6lUIicnBxKJBCdPnjTbm0NTRRKfCaMoCs3NzcjLy8PQ0BC2bNmCtWvXmv0dbH9/P9LT07UdxaerCdnS0oKampoJ3cojIiLmlUTooFarcefOHfT29uL06dPzbuSbkZGB0NBQbNy4ccExUBSFr776Cp9//jkcHBwWfJz50uXoT61W4/79+xAKhThz5gwjR/TEwpDEZ4IoikJDQwPy8/MxNjaG2NhYrFq1ilSwx9QdxTU03co1DVwdHR21xaCdnZ1pinh+lEolbty4AYVCgePHj09ZgmwmQqEQP/74I7788stF3yBdvXoVa9eunddWCF3R1eiPoig8e/YMNTU1SE5ONputPaaOJD4TQlEUXr16hby8PKjVasTFxSEiIoI8oH9P01E8Pj4e4eHhAN59zzo6OrQNXBfarZwJpFIprl27BgcHBxw+fHhBNzrXrl3D8uXLER0dveh4CgoKMDo6in379i36WAuhy9FfcXExCgsLcebMGbi7u+s4UsLQSOIzAWq1GjU1NSgoKICVlZW20gVZjv1X4zuKBwQEoLOzU1sM2tLSEitXrlxwt3ImEIlEyMjIgK+vL/bt27egm53u7m6kp6fjd7/7nU6e/7a1teH+/fv4zW9+s+hjLYauRn/V1dV49OgRTpw4MW1PQsI4kMRnxFQqFaqqqlBQUAAHBwfExcUhKCiIJLwPlJeX45dffsGePXu0HcsB3XQrZ4LBwUGkp6dj1apV+Oijjxb8Xq5fvw5vb+8JjWAXQ6lU4quvvsI//dM/0b44RFejvzdv3iAnJweffPIJQkJC9BApYQgk8RkhpVKJ8vJyFBYWwsXFBXFxcXoppGzsKIrCTz/9hIqKCtjZ2UGtVmunMXXRrZwJuru7kZGRgdjYWERFRS34OL29vbh48SL+/u//ft7PBWdy8eJFxMbGztrOyFB0Mfpra2vDjz/+iN27d2P16tV6iJLQN5L4jIhcLkdZWRmeP38Ob29vxMXFwdfXl+6wGKe/vx81NTUoLi6GTCbDmjVrsH79ep11K2eK1tZWZGVlYe/evVi5cuWijpWTkwMXFxds3bpVR9G98/TpUwDAjh07dHrcxdDF6K+npwcZGRmIiYnRyfNQwrBI4jMCUqkUJSUlKC4uRkBAAOLi4nRS+d6UDA0NoaamBgKBACMjI7Czs4OFhQVSUlLmvZzfGLx+/Rq3b9/GkSNH5tQnbyYDAwP44Ycf8Lvf/U7n5dXevHmDgoICpKSk6PS4urDY0d/Q0BDS09MRERGB7du3m9RNlakjiY/BJBIJioqKUFZWhpCQEMTGxhrt4gt9GBkZ0S5QGRwcRFhYGMLCwlBaWgqKoqbtKG7sKisr8fjxY5w8eVInI/7c3Fw4Ojpi+/btOohuIplMhj/96U/4wx/+wMj9o4sd/YnFYmRkZMDb2xv79+8nK6iNBEl8DCQSiVBYWIiXL18iPDwcsbGxeiv2a2ym6lbO4/GwfPlyKBQKZGZmYsmSJTh06JBJ7lt8/vw5ioqKkJSUpJOboKGhIXz33Xf48ssv9VZf9LvvvsO+ffsYvRJyMaM/mUyGH3/8EXZ2djh8+DAjEzwxEUl8DDI8PAw+n4/q6mqsWrUKW7ZsYXyVEEMQi8XaBq5dXV1YsWIFeDzehG7lo6OjyMjImLWjuLGiKApPnz5FXV0dkpOTdfZzce/ePdjY2GDXrl06Od5UHjx4AEdHR8TGxurtHLqwmNGfUqnEzZs3IZVKceLECdpXsRIzI4mPAQYGBlBQUIC6ujqsW7cOMTExBi3zxEQfdisPDg4Gj8dDSEjIpDtqTUfxtWvXIi4uzuSSnlqtxr1799DV1YXTp0/rrHTWyMgIvv32W3zxxRd6LcdVW1uLiooKnD59Wm/n0KWFjv709e9E6B5JfAYg0vT/6hMjwJWD+NXecLCxRG9vLwoKCtDQ0ICNGzdi06ZNJrkQY66kUinq6+shEAjQ2tqq7VYeEhIy7bM6TUfxrVu3Lqq2JFPpcyTx8OFDsFgs7NmzR2fHnIpIJMJf/vIX/OEPfzCam5KFjv4oisIvv/yC2traeY3Mp7tGEPpBEp+eTdXxGRSFlOUSsPoaER0djaioKEY0K6WDXC7XJrvm5mYEBATMuVv5fDuKGxuZTIZr167B3t5e58+OxGIxvvnmG/z2t781SIeJP//5zzh+/Dg8PDz0fi5dWujor6ioCM+fP5/Ts9jpusJfTIlCZAB5tq8PJPHpkUimRPS/P4FYppr0mq0l8PwP2+HsaH4jPIVCgYaGBggEArx9+xZ+fn7g8XgICwub8w3AfDuKGxt9rxZ8/PgxFAoF9u/fr9PjTuf27dvw8vJa1CZ7uix09FdVVYWffvppxtW3M10jODZslPxxFzhk5Kdz5DuqR3erhJjutsLCgo2fXvXhRCTXsEHRZLpu5QcOHJj39G5FRQV+/vlnnD59es4dxY3J0NAQrly5gpUrV2Lbtm06nx6USCR4+fKlQWto+vv74+3bt0aZ+CwsLLT1b2/fvo3a2to5jf5Wr14NOzs7ZGZm4vDhw1NWr5npGkFR7143l2uEIZHEp0fNfWJI5JPv5IB3UxrN/RIDR2RYH3Yr9/DwAI/Hw969exf84J/P56O0tBTnzp2bV0dxY2GIiiDFxcUICwsz6IphLpeLp0+fgqIoo3nO9yF3d3d8+umn4PP5+P777+c0+gsJCcGJEyemrbBj7tcIupDEp0cBrhzYW7On/MG2t2YjwMX0pjnVajWamppQU1MzoVv5rl27FvUsaXxH8fPnz8PJyUmHUTODpgbknj17sGrVKr2cQyqVorS0FJ999plejj8dZ2dnUBSFoaEho+ltOJWFjP64XC6Sk5ORkZEBiUQyYdQb4MqBnTUbY2Z0jWAC8oxPj8xl/l7TrVwgEKCurg5Lly7VFoPWxahisR3FjUFDQwNu3bql96r/eXl5GBgYwCeffKK3c0wnOzsbK1aswJo1awx+bn2Y77M/zRT2+C4aIpkSkf/vTxhTTr4Mm9I1gmlI4tMzU12xRVEU2traUFNTg7q6Ojg4OOilW7lCocCNGzegVCoX1FHcGGgWQei7z5tMJsPXX3+N1NRUWqaJi4uL0d3djYMHDxr83Po0n5WfYrEY6enp2r6JLBYL//d/XkDOoDdYLBYkchXsrCygVCjwzbEI7FnPjK4WpoYkPgMQa/bo9EsQ4GKP+NXeRnkXp+lWLhAIUFtbC1tbW712K9d0FHd0dMQnn3xikiXIDNnZm8/no7OzE4mJiXo9z3S6urpw48YNfP7557ScX5/mM/rTbFPhcDgICwvD8+fPcSo5BfeqO7XXCH9WP8qK+Pjss89IFRg9IImPmBFFUejq6kJNTQ1qa2vBZrO1yU6fF2pNR3E/Pz/tnbEp0Wx0FggESE5OXnBX8LlSKBT4r//6LyQnJ9O2l06tVuOrr77Cl19+abJVTeY6+lMqlbh+/Tqamppw8ODBKfeh3rlzBzKZDEePHjW5n3+6sf/1X//1X+kOgmAWiqLQ09ODkpIS3Lt3DwKBAB4eHti+fTu2b9+O5cuX6/XCNTg4iEuXLmkXxZjaL71arcb9+/fR0tKCc+fOGWShjqZjBZ2941gsFlpaWmBvb2+yXUY4HA7WrVuH0dFR5ObmwtbWdsqmxxYWFrC0tERDQwP6+voQHh4OKyurCZ8TFBQEPp8PlUpF+m7qGBnxEVp9fX3annYKhQIRERFYuXKlQbuVazqKx8XFITIy0iDnNCSlUomcnByMjY0ZrJixUqnE119/jZMnT8Lb21vv55tJfn4+JBKJ3sukMcFMoz+KovA///M/2Lx5Mzo7O1FfX4+kpKRJi8EGBwfxww8/4NSpUyT56RAZ8Zm5gYEBlJaW4sGDBygrK4OzszPi4uKwe/duBAcHw9HR0WBJr7W1FZmZmdizZw/WrVtnkHMakubZjqWlpUEX6rx48QJyuRwxMTEGOd9sysvLsWHDBrrD0LuZRn+NjY2or6/H/v37ERQUBJVKhbt37yI4OHjCqmU7Ozu4uLggNzcXq1evnjQqJBbG+FZYEIs2NDSkbeA6MjKC8PBw7Nu3D1wul7ZpRV12FGcisViMq1evwtPTEwcOHDBYw1KVSgU+n0/bgpYP+fj4oLe3F3K53CRX6H5oqn1/8fHxyMvLm9BJZPPmzbC3t8fFixdx6tSpCRWJwsLC0NbWhpycHJw+fdrkpv7pQKY6zcT4buUDAwMIDw8Hj8dDQEAA7V2jdd1RnGmGh4dx5coVhIeHY8eOHQa9cL18+RI1NTVITk422Dlnk5aWho8++sgka6zORLPyk8/ng81m4/e///2klcqaGrQf3gCqVCpcvnwZQUFB2Lp1q6FDNzkk8ZkwkUik7Vbe09ODsLAwbbdypmwN0HVHcabp7e1Feno6Nm/ejE2bNhn03Gq1Gt988w0OHToEf39/g557Jk+ePAGbzcb27dvpDoUWP/zwA8RiMZYtWzblys/W1lZkZWVh3759E1Z7jo6O4rvvvsPhw4fN7qZB18hUp4mRSCTaZKfpVr5lyxYEBgbqtK3NYlEUhZ9//hn19fU4f/68SXaab29vx7Vr1/Dxxx/TUq2kpqYGjo6OjEp6wLuC1YWFhXSHQYu2tjaIRCJ8/vnnKCoqmrLm54clzjSLvBwdHXH48GHk5OTgs88+M8myfYbCnCshsWBjY2N49eoVBAIB2tvbERwcjKioKAQHBzPyYbharcbdu3fR3d2N1NRUkyxB9ubNG+Tk5ODQoUNYsWKFwc9PURTy8/Oxd+9eg597Nn5+fhAKhVCpVIyZeTCUvLw8xMbGwsrKasaanx4eHkhNTcWVK1cgkUiwdetWsFgsBAYGIjIyEjdu3MDZs2fN7ki0E70AACAASURBVPunK2RVp5GSyWQQCAR4+vQpfvrpJ1AUhdWrVyM+Ph6rVq2Cm5sbI38pNBt3JRIJTp8+DTs7O7pD0rmamhrcvXsXJ06coG1Kqra2Fp2dndi5cyfjFkNYWlpCIBDA29vbrEYtQqEQxcXFOHTokPa5+kwrP+3s7MDj8fD06VP09vYiODgYLBYLXC4XtbW16OnpMcmFYIZAnvEZEblcjtevX0MgEKCpqQn+/v7g8XgIDQ01irJG+uwozhSlpaXIz8/HmTNnaKuQQlEU/vu//xs7duygZbQ5F/fv38fSpUsZs8XCEK5du4bly5dPW0Rgun1/UqkUmZmZcHJy0pbuk0gk+O6777B3716EhYUZ8m2YBDLiYziFQoH6+no8e/YM9+/fx9jYGMLDwxEfH49169bBw8PDKBKIWCzGlStX4OHhgUOHDjFyNLoYFEXh119/RXl5Oe29Auvr69HS0oLdu3czbrSnIZPJ0NDQMKk/nanq7u4Gn8+fsebsdKM/KysrrFy5EjU1NaiqqkJYWBhsbW3h6+uLGzduIDw83CRnTvSJjPgY6MNu5d7e3uDxeAgPDzfK52H67ihON4qi8ODBA7S1teHMmTNwcHCgNZbvv/8ecXFxCA8Ppy2O2YyOjuLbb7/FP//zP5vcz8NUrl+/Di8vL2zZsmVOnz/V6E/Tnquvr0/7mKC4uBgVFRX49NNPjeIGmCnIiI8hNN3K8/PzcefOHQwNDSEkJAQHDhxAZGQkvL29GblQZTY9PT24fPkyNm3ahNjYWJO7yKlUKty8eRODg4NISkqi/cbk7du3ePPmDfbu3cvo77WNjQ1evHiBwMBAky1YrdHb24tnz57hyJEjc57pmGr05+3tjdDQUPT19eHp06cIDQ1FYGAgmpqa0NzcjNDQUD2/E9NBRnw00nQrFwgEePXqFVxcXLSdDxbTrZwpDNFRnE5yuRxZWVmwsrLC0aNHab/jpigKaWlpiIqKMoopxFu3bsHX1xcbN26kOxS9ysnJgYuLy4I3nk81+uPz+SgtLUVSUhIcHR21o3xTafKrb2RsbGBqtRqtra3aBq6abuW/+c1vTGovm6aj+OHDhxEcbHrNNCUSCa5evQp3d3fEx8fTXv0GAJqbmyGRSBAREUF3KHPC5XLR3Nxs0olvYGAADQ0N2Ldv34KP4e7ujk8//RR8Pl+77y8mJgb29va4dOkSTp06hWPHjuHy5cvw8vLSe19HU0BGfAag6VauaeCqr27lTGGojuJ0GR4eRnp6OkJDQxm1XeDSpUtYs2YN1q5dS3coc9Lf348rV67gH/7hH+gORW9yc3Ph6Oiosyo1H47+urq6cOfOHRw9ehQjIyMoKCggzWvngIz49ISiKAiFQm0DVxsbG/B4PNpX/OmbpqP42bNnTfLOs6+vD+np6YiKimLUUvzW1lYMDQ0Z1ZTysmXLoFQqMTw8bFKzHRpDQ0N49eoVvvzyS50dc6rRX2JiIq5fv44DBw6Ay+VqEyFTbsiYiIz4dEjTrVxTDNpQ3cqZQNNRvLa2FklJSXrvKE6Hjo4OXLt2DTt37mTcqCo9PR3h4eFG1+4nKysLYWFhWL16Nd2h6Ny9e/dgY2ODXbt26eX440d/0dHRuHPnDuLi4vDy5UusW7cOUVFRejmvKSAjPh3o6enRNnBVq9Xg8Xg4ceIEPDw8zOKuS9NRXCgUIjU11SRX6TU2NuLGjRs4ePAg41bPdXR0oLe3F6dOnaI7lHnjcrlobW01ucQ3MjKCmpoafPHFF3o7x/jR3+3btxEdHY3CwkKEh4fj2bNn8PHxmdDeiPgrMuJbIE238traWshkMu3Iztvb2yySnQYdHcUNTSAQ4MGDBzh27BjjCj4DQGZmJoKCgozyDl8oFOLWrVv47W9/S3coOvXw4UOwWCyDdZrXjP4sLS21nR+6u7vxm9/8hvYtNkxERnzviWRK3K0SorlPjABXDuJXe8PBZuK3Z2BgQDuNKRaLERERgYSEBPj6+ppVstOQyWT48ccfYWtri9OnT9O+nF8fysrKkJeXh6SkJHh6etIdziRdXV0QCoWMaTQ7X56enhgeHoZEIjGZC7RYLEZlZaVBk/n40d/z58+hVqthZWWFmzdv4lDiCdyr7pzx2mZuyIgPQGnzAFIuloCiAIlcBXtrNlgs4GJKFEKWWkzqVs7j8cDlchmxhJ0udHUUNxSKopCXl4fKykokJyczdvVtdnY2fH19sXnzZrpDWbArV64gKiqKcVPIC/X48WPI5XIcOHCAlvP39PTg1q1bGBoaQofcFo+kQbBgsydd2yIDltESHxOYfeITyZSI/vcnEMtUk16zZqlxbkk9VkeEMqZbORPQ2VHcECiKwsOHD9HS0oKkpCRaS5DNpLe3F5cuXcLvfvc7WFtb0x3Ogv3666+QyWTYvXs33aEsmkQiwTfffEP7vly1Wo3Hz/LxxeNhKDC5WgzHho2SP+4Cx0xHfmZ/Fb9bJcR0qd+CzUbgtmNISEhAYGAgSXp4d7G9cOECNm7cyKg9bLqiUqmQk5ODrq4upKSkMDbpAUB+fj6io6ONOukB7xrTtra20h2GThQXFyMsLIz27RksFgvdNr5gT/P4gaLeXfvMlXmm+3Ga+8SQyCeP9gBAqqTQOjhm4IiYi+6O4voml8uRnZ0NNpuNpKQkRtdG7e/vx9u3b2mbTtMlHx8f9PT0QC6XG3USl0qlKC0txd/8zd/o9TwqlQoikQijo6MYGRmZ8Of4/y+ReUGqnHoblUSuQnO/RK9xMpnZJ74AVw7srdlTJj97azYCXEzjgfti0d1RXN/GxsZw9epVuLq6IiEhgfGj+4KCAkRGRprEKlorKyt4eHigo6MDy5cvpzucBSspKUFISAiWLVvYszOKoiCTyWZNaBKJBBwOB46OjnByctL+6e7uPuHvNyu78PpuLbm2TcHsE1/8am/8273aKV9jsd69bu5qamrw8OFDnDhxAlwul+5wdG5kZATp6ekIDg7Gxx9/zPjp26GhIdTX1+u0IgjdNPv5jDXxyWQyFBcXIzU1dcrX1Wo1RCLRjAltZGQELBZrQkJzdHSEm5sbAgMDtR9zcHCY040ZubZNz+wTn4ONJS6mRE27qtNcH/5qlJSUoKCgAMnJybR1FNcnTb3IyMjIOfdKo1tBQQE2bNhgUs1HuVwuSkpK6A5jQWQyGX799Ve4ubmho6MDdXV1kxKbZrvG+ITm5OQEV1fXCaM0XY7gp7q22VlZwMKCZfbXNrNf1akh1uzj65cgwMUe8au9zfoHQ9NRvLq6GklJSYxdzr8YQqEQmZmZ2LFjB9atW0d3OHMyMjKCb7/9Fl988YVJVcgZGxvDf/7nf+Jf/uVfGDPNrFarIRaLZx2lqdVqqFQqeHl5wdXVdUJi0/w511GaPmiubY8KXyLM1wWfx28y62sbQEZ8WhwbS5yINL1pvIVQq9V48OAB2tvbkZqayuiVjQvV1NSE69evIyEhAWFhYXSHM2d8Ph/r1q0zqaQHAHZ2dli6dCk6OzsNUmZLLpdPSmgfJjaxWAw7O7tJozR/f/8JSa2iogItLS04ceKE3uNeCM21LYjVg/b2drNPegBJfMQHNMv5RSIRzp07B1tbW7pD0rna2lrcu3cPx44dQ0BAAN3hzJlIJEJVVRU+//xzukPRC81zvsUkPs0obbYFIiqVakLycnR0xLJlyxAQEDBhlDZbx3SlUonCwkKcPHlywTEbCpfLRWFhId1hMAJJfISWXC7Hjz/+CGtrayQlJZlkCbIXL17g2bNnSEpKgpeXF93hzEthYSFWr15tkiNw4N2Fuba2dtoqNAqFYk6jNFtb20kLRPz9/Sd8zNbWVieLmF6+fAlPT094ezN/oYibmxukUilGR0fh6OhIdzi0Mr0rG7EgTOworksURaGgoADl5eVITU1d8JJzukgkErx8+RJ/+7d/S3coOkdRlDZhNTU1obS0VJvMxic3pVI56fmZs7MzuFzuhCQ32yhNV1QqFfh8Po4ePWqQ8y0Wi8UCl8tFS0sLVq5cSXc4tCKJj2BsR3FdoSgKjx49QlNTE86fP2+Ud7tFRUWIiIigvSLIfCkUilmnHUUiEWxsbODo6AiVSoXm5ma4ubnBz89vQpKzs7Nj1M9mVVUVli1bBj8/P7pDmTPNdDJJfIRZY2pHcV1RqVTIzc3F4OAgUlJSjHILgFQqRVlZGT777DO6Q9GiKAoSiWTKpDb+T4VCMWnaccmSJfD19Z3wMc20ek5ODrhcLuMb6qrVauTn5+PgwYN0hzIvXC4XVVVVdIdBO5L4zFhHRwcyMzOxa9cuxnUU1wWFQoHs7GwAQHJyMqNLkM2kuLgYoaGhBttSolQqZx2ljY6OwtraetKyfR8fH4SHh2v/Pt9RmmZEwvTEV1NTA0dHR6NaHAUAXl5eGBwchFQqNcmFa3NFEp+Zevv2LW7evMnIjuK6MDY2hszMTCxbtgwJCQkGe+6jazKZDCUlJTh//vyij0VRFMbGxmZdICKXy+Hg4DBpGb+3t/eEj+njRoLL5aKgoEDnx9UliqKQn5+PvXv30h3KvLHZbHh7e6OtrQ0hISF0h0MbkvjMkEAgwP3793H8+HFGdhRfrNHRUaSnpyMwMBC7d+9m1HOh+SotLUVgYCBcXFxm/DyVSjUpmU01UrOyspoxoTk5OcHe3p6275mrqytkMhlGRkbg5ORESwyzqa2thY2NDQIDA+kOZUE0C1xI4iPMRmlpKfLz85GcnMzIjuKL1d/fj/T0dGzYsAFbtmwx6qQnl8tRVFSEEydOoLu7e8ZRmkwmg4ODw6Tnad7e3hM+xvTpXs3KQ6YuwNCM9oy5D6W/vz+ePXtGdxi0IonPTIzvKJ6ammqSJcg6Oztx9epVbN++HevXr6c7nFlpRmnTJbSenh5IpVJkZGRM2mzt6emJFStWaP/O4XCM9kL8ISYvua+vrweLxTLq0ZKvry+6urqgVCpNcq/uXJjnuzYzFEXhwYMHaG1txfnz501yA3RzczOys7MRHx+P8PBwWmOhKEq7UXimBSJjY2NTjtI8PT1hb2+PW7duISUlxSQ7YszE398flZWVdIcxiebmcevWrUZ9k2Ftba0tqG2KjzrmgiQ+E6dSqXDr1i2MjIwgJSXFJFdyvXr1Cnfu3EFiYqLe29rMtQmohYXFpITm4eGB4ODgCaO06QoFlJSUwMfHx+ySHgB4enpiaGgIY2NjjNp+8vbtWyiVSqOq7TodzXQySXyEyZHL5cjKyoKlpSXjO4ovVHl5OX755ZdFlyDTdRPQxXQS11QEOX78+IKPYczYbDZ8fHzQ1tbGmKbHmtFeXFycUY/2NLhcLsrLy+kOgzYk8ZkoY+soPl8URYHP5+PFixdISUmZcdUjHU1AF6OyshJubm4G6VLAVJoRCVMSX3NzMyQSCXg8Ht2h6ASXy8Xt27ehVqtN7towFyTxmSBj6yg+XxRF4fHjx3jz5g3OnDkDiqLQ2Ng47TJ+OpqALpRarUZBQQE++eQTukOhFZfLZdTKw7y8PMTGxppMktDMWnR3dxtdsXZdIInPxGhKkBlTR/GpTNcEdGRkBI2NjZBKpWCxWPjuu+8mrXh0dXVFYGAgI5qAzld1dTWcnJzM8tneeJqVhwqFgvYp+tbWVgwNDWHVqlW0xqFrmlE1SXyEUTOWjuILbQLK4XDQ3d0NJycnnDx5Ei4uLrCxsTGZEa2m/uP+/fvpDoV21tbWcHd3R0dHB+1lwTSjPWOt/jMdLpeL169fIzo6mu5QDI4kPhPR2NiIGzdu0NpRXJ9NQKVSKTIzM+Hu7o5Dhw6Z3EUIeFcRxM7OTu8rU42FZkRCZ+Lr6OhAb2+vUTSanS8ul4snT56AoiiTuXmcK5L4TIAhOorT2QR0dHQUGRkZCAgIwJ49e0zyl1RTEWTXrl0m+f4WgsvloqysjNYY8vLysGXLFpPc6L106VKwWCwMDg4aXX/KxTK9f00zs9iO4pomoLON0uhqAjowMID09HSsXbvWZJaST+XVq1dgs9kIDg6mOxTG4HK5uHXrFm0rD7u6uiAUCpGYmGjwcxsCi8WCv78/WlpaSOIjjINmhPDy5ctpO4rPtwno+ATGhCagXV1duHr1KrZu3YqNGzca9NyGpNkj9tFHH5lsYl8Ie3t7Wlce5ufnIyYmhvbFNfqkmU5m8poAfSCJzwip1Wrcu3cPzc3N2LZtG5qamlBZWTkhqS2kCSiTtLS0ICsrCwcOHEBERATd4ejVmzdvoFarTbI91GJp6nYaOvH19vaipaUFhw4dMuh5DY3L5aKoqIjuMAyOeVc8MzdbE1DNfywWC8uWLdM2xNQ0AR2/aISOUZou1NfXIzc3F0ePHjXa1i9zZSr1H/XF398fr169wqZNmwx63vz8fERHRy+qAo8xcHd3h0QigUgkMskavtMhic9AdNEE1N7eHvn5+XBzc8Px48dNcgqmoqICP//8M86cOQNvb2+6w9G7pqYmjI2N0V5Ym6m4XC5++ukng6487O/vx9u3b3HgwAGDnI9O49tAmfrMynhmk/hEMiXuVgnR3CdGgCsH8au94WCjm7dviCagptJRfCZ8Ph+lpaU4d+4cXF1d6Q7HIDT1H41lg72hLV26FGw2GwMDA7M249WVgoICREZGMqKSjyG4evkio6gZji0snV8bmcq03917pc0DSLlYAooCJHIV7K3Z+Ld7tbiYEoXIgOlXM2nay8w2StN3E9CRkRFkZGSYREfxqVAUhSdPnqChoQHnz59nbOdtXWtpacHIyIjJVQTRNc2IxBCJb2hoCPX19fjyyy/1fi4mKG0ewN8/FUGhVEHR0Djna6OxY1EURdEdhD6JZEpE//sTiGWqSa/ZW7ORcy4MyjHxtKse2Wz2pM3Wmv83RBNQU+ooPhW1Wo07d+6gr68Pp06dgr29Pd0hGcyVK1fA4/GMomkunUpLSyEUCg2y0OTu3buws7PDzp079X4uus10beTYsFHyx13gmOjIzzTf1Th3q4SYLrXL5Qp8fYuPj3ytJjQBHZ/k6Hy4bWwdxedLoVDgxo0bUCqVSE5ONvmFBOO1t7ejv78fa9asoTsUxvP398fz58/1fp6RkREIBAJ88cUXej8XE8x0baSod6+fiDTNmrEmn/ia+8SQyCff0QCAEhbgRmzA8b3MayzZ1NSE69evM6KjuD5IpVJcu3YNjo6OOHbsmEk+s5yJpiKIub3vhXBzc9N2tHd0dNTbefh8PtatWwcOh6O3czDJTNdGiVyF5n6JgSMyHJN/oh7gyoG99dQXF3trNgJcmDe1VldXh+vXryMxMdEkk55IJMKlS5fg7u6OI0eOmN3Fv7OzE11dXWa3aXihWCwW/Pz80NraqrdziEQiVFVVISYmRm/nYBpjvDbqisknvvjV3pjusRiL9e51JikvL8f9+/eRlJRkksWKBwcHceHCBYSFhWHfvn0m98xyLjQVQZhYOICpNAtc9KWwsBCrVq0yq71sxnZt1CWTT3wONpa4mBIFjg1be3dja8mCFUuFvxzjMebhLUVRKCgoQH5+PlJSUkyyR1Z3dzfS0tKwefNmsy3P1dPTg9bWVmzYsIHuUIyKPhOfRCLBy5cvjbp/5UJMdW20t2aDY8N+/3FmXBv1wXTf2TiRActQ8sdd7/bx9UsQ4GKPZaJmNBY/RlzYOdqn2iiKwk8//YS3b98iNTXVJJfzt7a2IisrC/v27QOPx6M7HNrk5+dj06ZNJll8QJ+8vb3R398PqVQKW1tbnR67qKgIERERWLJkiU6PawymujbGr/Y26aQHmEniAwCOjeWEFUoU5YfMznb8/PPP2L17N21xqVQq3LlzBwMDA0hNTYWdnR1tsejL69evcfv2bRw5cgRBQUF0h0Obvr4+NDY2Ij4+nu5QjA6bzYaPjw/a2toQEhKis+NKpVKUlZXhs88+09kxjc2H10ZzYPJTndNhsVg4fPgwamtrUVdXR0sMCoUCWVlZEIvFSE5ONsmkV1lZidzcXJw+fdqskx7wriJIVFSU2VQE0TV9THcWFxdjxYoVcHZ21ulxCWYz28QHAHZ2djh27Bju3r2LgYEBg55bKpUiPT0dNjY2OHnypElOfT1//hy//PILzp07Bx8fH7rDodXg4CBev36N6OhoukMxWrpOfDKZDCUlJYiLi9PZMQnjYNaJDwB8fHzw0UcfITs7GwqFwiDnHB0dRVpaGry8vHD48GHanzHqmqYEWXl5OVJTU+Hm5kZ3SLQrKCjAxo0bdf58ypz4+vqis7MTSqVSJ8crLS1FYGCgwWqAEsxh9okPACIjI+Hq6ooHDx7o/VwDAwNIS0sDj8fDnj17TG5lo6YEWXNzM1JTU81ywcCHhoeHUVtba/DWOqbGxsYGrq6uEAqFiz6WXC5HUVERGe2ZKZL48O55X3x8PFpbW1FRUaG383R1dSEtLQ0xMTEm2X9NqVQiOzsbw8PDOHv2rFnV3ZwJn8/H+vXryfdDBzSNaRfrxYsX4HK5cHd310FUhLEhie89GxsbHD9+HI8fP0Z3d7fOj9/c3IwrV65g37592Lhxo86PTzeZTIaMjAyw2WycOnXKrOpuzmR0dBTV1dXYvHkz3aGYBH9//0U/51MqlXj+/DkZ7ZkxkvjGcXd3x+7du5GdnQ2ZTKaz47569QrZ2dk4evSoSTZ7FIvFuHTpElxdXXHkyBFSkWScwsJCrFmzxqwqgugTl8tFW1sb1Gr1go9RXl4OLy8vkywSQcwNSXwfWLNmDfz9/ZGbmwtddGx6+fIl7t27hzNnziAwMFAHETLL0NAQLly4gBUrVmD//v2koeo4YrEYFRUVZlX/Ud84HA4cHBzQ09OzoK9XqVTg8/nYunWrjiMjjAm5Sk1h3759GBgYQElJyaKOw+fz8euvv+LcuXPw9ja9unc9PT1IS0tDdHQ0tm3bZnLPLBerqKgIPB7PJCvx0Gkx2xoqKyvh5uZm9ttrzB1JfFOwtLTE8ePHkZeXh/b29nl/vaYEWWVlJc6fPw9XV1c9REmvtrY2XL58Gbt27UJUVBTd4TDO2NgYXrx4gdjYWLpDMTkLTXxqtRoFBQXk2R5BEt90nJ2dkZCQgOvXr0MimXtfKrVajdzcXLS1tSElJcUk7/YbGhpw7do1fPLJJ1i1ahXd4TBScXExQkNDsXTpUrpDMTn+/v5oaWmZ96OI6upqODk5wd/fX0+REcaCJL4ZhIWFgcfjIScnZ06/ZJoSZKOjo0hOTjbJ5etVVVW4ffs2Tp06heDgYLrDYSSZTIbS0lIystCTpUuXgsViYXBwcM5fo1arkZ+fT57tEQBI4pvVjh07IJfLkZ+fP+PnSaVSZGRkwMrKymSX8xcVFeHnn3/GuXPn4OvrS3c4jFVSUoKgoCAsW7aM7lBMEovFmvd0Z21tLezs7EyyxyUxfyTxzYLNZiMxMRGlpaVobGyc8nNEIhEuXrxosh3FKYrC06dPUVZWRkqQzUIul6O4uJiM9vRsPomPoijtaI8swCIAkvjmxNHREYcPH0ZOTg5GRkYmvKbpKB4eHm6SHcXVajXu3bun7RVInlnNrKysDP7+/uTmQM/mk/hevXoFNptNpuYJLZL45igwMBCRkZG4ceMGVCoVANPvKK5UKnHjxg0MDAzg7Nmz4HA4dIfEaAqFglQEMRB3d3eIxWKIRKIZP4+iKOTl5ZHRHjEBSXzzEBcXB2trazx9+hQtLS24cuUK9uzZg8jISLpD0zmZTIarV68CAE6fPk16yM1BeXk5fHx84OnpSXcoJs/CwgJ+fn6zjvrevHkDtVqN0NBQA0VGGAOS+OZB07y2oqICV69exeHDh8Hj8egOS+c0JciWLVuGo0ePkhJkc6BUKlFYWEhWDRrQbNOdZLRHTIckvnl6/fo11Go1LCwsTHLV3tDQENLS0hAcHIwDBw6QEmRzVFlZCXd3d5Os0MNUsyW+pqYmjI2NITw83IBREcaAXNXmobCwEM+ePcP58+exbds2ZGVl6awpJhNoSpBFRkZix44d5C55jlQqFQoKCshoz8C8vb3R19c3bUH5vLw8xMXFkZs3YhLyEzEHmo7iL1++1C7nj4qKgouLi0Ga1xpCe3s7Ll++jJ07dyI6OprucIxKdXU1li5dCj8/P7pDMSuWlpbw8vKasqxgS0sLRkZGSGUhYkok8c1iuo7iLBYLCQkJaGlpQWVlJc1RLs6bN2+QmZmJQ4cOYfXq1XSHY1RIRRB6TdeYNi8vD7GxsWS0R0yJ/FTMYLaO4jY2Njh27Bh++umnBbdJoVt1dTVu3bqFkydPIiQkhO5wjI5AIACHw0FAQADdoZilqRrTtre3o7+/H2vWrKEpKoLpSOKbxlw7int4eGD37t3IysrSafNaQygpKcGTJ09w9uxZMk23AKQiCP38/PwgFAq1e2uBd6O9LVu2mFwFJUJ3yDr190QyJe5WCdHcJ4angyVGan5BENcH+/btm3W6ZM2aNWhpacGdO3dw9OhRxl8EKYrCs2fPUFNTQ6qxLEJdXR2srKwQFBREdyhmy8bGBi4uLhAKhfDz80NnZye6urpw/PhxukNjjPHXtgBXDuJXe8PBxrwv/eb97t8rbR5AysUSUBQgkatgBTXYbB9c3rtpzs8I9u3bhwsXLqC0tJTR/enUajUePHiAjo4OnD9/nlRjWSDNaI804KWfZluDn58f8vPzERMTQ/aevvfhtc3emo1/u1eLiylRiAwwve1Yc2X2U50imRIpF0sglqkgkb+bLlHAAlIVkHqpFGLZ3LYrWFlZ4dixY/j111/R0dGhz5AXTKlU4ubNm+jr68O5c+dI0luEhoYGUBSFFStW0B2K2dMkvp6eHrS2tmLDhg10h8QIU13bJHIVxDLV+4+bzlas+TL7xHe3SojpWu1R1LvX52rZsmWIj49Hdnb2vJrXGoJcLkdmZibUajXOnDlDSpAtAqkIwiyaBS55oz8aeQAAFq5JREFUeXnYtGkTrKys6A6JEXR5bTM1Zp/4mvvE2ruhD0nkKjT3zy+BhYeHIyIiArdu3Zp3h2h9kUgkuHTpEpYsWYLExEQyDbRIjY2NkMlkpCIIQzg4OMDGxgZv3741ybq5C6Xra5spMfvEF+DKgb311Ku/7K3ZCHCZfxf1nTt3QiqVoqCgYLHhLdrw8DDS0tIQGBiIhIQEsq9pkTSjvbi4ODLaYxBN0Woyk/FXzlYqWEI95WsLvbaZCrO/Csav9sZ01y8W693r86VpXltSUoKmpqZFRrhwvb29SEtLw/r167Fz505yodaBlpYWiEQirFy5ku5QiPcGBwchEonITMY4LS0t6Ct/BCvLqW/qF3ptMxVmn/gcbCxxMSUKHBu2duRnb80Gx4b9/uML+2VycnLC4cOHcfPmTYyOjuoy5Dnp6OjApUuXsH37dmzevNng5zdVpCII8xQUFGDNmjXo6OhgzOMFOtXX1yMrKwunEg/j8qebdH5tMwXm+87HiQxYhpI/7nq316VfggAXe8Sv9l70D0ZgYCA2btyI69ev49y5cwa7WL59+xY3b97EoUOHyKpDHWpra8PAwAAp68Ygw8PDqK2txRdffIG6ujoMDw+b9b7UiooKPHnyBKdPn4aPjw8CAb1c24ydeb/7cTg2ljgRydX5cbdu3Yq2tjb8/PPP+Pjjj3V+/A8JBAI8ePAAJ06cAJer+/djzjSjPVIRhDn4fD7Wr18PDocDf39/tLS0mG3iKywsRElJCVJSUuDq6qr9uL6ubcaMzNfoGYvFwpEjRyAQCFBfX6/Xc5WWluLRo0dITk4mSU/HhEIhuru7sXbtWrpDId4bHR1FdXW1dip/tv58poqiKDx+/FjbPWZ80iOmRhKfAdjb2yMxMRF37tzB4OCgzo+vKUFWVFSE1NRUeHh46Pwc5i4/Px9btmwhCygYpLCwEKtXr4aDgwMA80x8arUaubm5aGlpmdA9hpgZSXwG4uvri9jYWGRnZ+u0eS1FUXjw4AHq6+uRmpoKZ2dnnR2beKe7uxvt7e1Yv3493aEQ74nFYlRUVGDLli3aj3l4eGB0dJRxxSP0RdM9ZnR0dMruMcT0SOIzoOjoaDg7O+Phw4c6OZ5KpcLNmzfR09ODc+fOae98Cd3Kz88nFUEY5vnz5+DxeHByctJ+zMLCAr6+vmYx6pNKpUhPT5+1ewwxNZL4DIjFYuHgwYNoampCVVXVoo6lKUGmUCiQlJQEW1tbHUVJjNfX14empiZSEYRBxsbGUF5ejtjY2EmvTdeY1pSIRCJcunQJbm5uOHLkCFlstQAk8RmYjY0Njh8/jkePHi24ea1EIsHly5fh6OiI48ePk+dOepSfn4/o6GhyR80gxcXFCA0NnXL15lSNaU3J4OAg0tLSEBoaiv3795P9pAtEvms08PDwwMcff4zs7GzI5fJ5fe3IyAjS0tLg7++PgwcPkh98PRoYGEBDQwOj20yZG5lMhtLSUsTFxU35uo+PD3p7e+f9e2UMuru7kZaWhujoaNIOa5HIVZMma9euhZ+fH+7cuTPnahN9fX24cOEC1q1bh48//pj84OtZQUEBIiMjyTQyg5SUlCAoKAjLlk3dS87S0hKenp5ob283cGT61draiitXrmD37t3kRkwHSOKj0b59+9Db24uysrJZP1coFOLSpUvYtm0bYmJiDBCdeRsaGsKrV6+wadMmukMh3pPL5SguLp52tKdhatsaXr9+jR9//BGHDx8mNWJ1hCQ+Gmma1z579mzG5rWNjY3IyMhAfHw82UBtIJqKIHZ2dnSHQrxXVlYGf39/uLm5zfh5ppT4KisrkZubi1OnTiEoKIjucEwGSXw0c3FxQXx8PK5fv46xsbFJr9fW1uLGjRs4fvw4QkNDaYjQ/IyOjqKmpoYU92YQhUKB58+fzzraA94lvo6ODqhUU/eiMxbPnz/H06dPce7cOfj6+tIdjkkhiY8BwsPDERYWNql5bVlZGR4+fIjk5GT4+/vTGKF54fP5WLt2LTgcDt2hEO+Vl5fDx8cHnp6es36ura0tnJ2d0dnZaYDIdI+iKPz888948eIFzp8/P+sIl5g/kvgYYteuXRgbGwOfz9c2Oy0sLERKSsqcftkJ3RCLxaisrCTPURlEqVSisLAQW7dunfPXGOt0p1qtxt27d9HY2EhKkOkRSXwMoWleW1xcjKysLNTW1iI1NXXa1WuEfjx//hwrV66Eo6Mj3aEQ71VWVsLd3R3e3nNvnGqMiU+pVOL69esYHBzE2bNnyYyDHpHExyAcDgeurq5oaGhAYmIiufgamEQimbYiCEEPlUqFgoKCeY32gL8mPmNpTCuTyZCRkQEWi4XTp0/DxsaG7pBMGkl8DCGXy3Ht2jVYW1sjJiYGd+/ehVqtpjsss1JcXIywsDAyvcQg1dXVWLp0Kfz8/Ob1dU5OTrCxsUFfX5+eItMdsViMS5cuwcXFBUePHiWVmAyAJD4GGBsbw5UrV8DhcHDixAls27YNlpaWePr0Kd2hmQ2pVIrS0lIy2mMQtVqN/Pz8eY/2NDSNaZlsaGgIFy5cQEhICA4cOEAqMRkI+S7TTFOCzM/PD4cOHYKFhQUsLCxw+PBhVFdX4/Xr13SHaBZKSkoQEhJCnqkyiEAgAIfDQUBAwIK+nsvloq2tTbdB6VBPTw/S0tIQFRWF7du3k0pMBkQSH436+/uRlpaGNWvWYPfu3RN+8DkcDhITE5Gbm6uX5rXEX821IghhOBRFaUd7C00ITO7U0NbWhsuXL2PXrl2Ijo6mOxyzQxIfTYRCIS5evIitW7dOaKY5np+fH2JjY3H9+nWdNq8lJiotLcXy5cvh6upKdyjEe3V1dbCyslpUtRIXFxcoFAoMDw/rMLLFa2howLVr13Do0CGsWrWK7nDMEnmKagAimRJ3q4Ro7hMjwJWDVU5y3M/NQUJCAsLCwmb82ujoaLS2tuLRo0c4cOCAgSI2HwqFAkVFRUhKSqI7FOI9zWhvsR0IWCyWdnUnUxJMdXU1Hj16hJMnT05YsPPhNSJ+tTccbMjlWV/Id1bPSpsHkHKxBBQFSOQq2FqyoFIq8aeD+2dNesBfm9d+//33qK6uZswvsKl48eIFfH194eHhQXcoxHsNDQ2gKAorVqxY9LE0051M+L0pLi5GYWEhzp49C3d3d+3HP7xG2Fuz8W/3anExJQqRAeSZsz6QqU49EsmUSLlYArFMBYn8Xd1AqZKCAmz88VEbxLK5TV/a2tri2LFjePjwIXp7e/UZslnRVAQhz/aYQ1O1aDHP9sZjQmNaiqLwyy+/oKSkBKmpqROS3lTXCIlcBbFM9f7j5BGHPpDEp0d3q4SYbv8sRb17fa48PT2xa9cuZGVlmWSTTTpUVFTA09NzXhVBCP1qbGzE/9/evQU1dedxAP+GQBJzIVNDZ10mclut2nZpYwWhYu2My4wL1Et1oKPtKp3tOL70dWef9rGzj9vdaXcfqrTTFmcYatvFYq2jnSZSwKDTNLiKWBMFC3IxhCSY+z5AaJGAgElOTs738xLNkZPfeA7nm/+5/P5+vx+bNm1KyPrWrFmDiYmJuA3gUyESieD06dO4ceMG3nzzzXmzxifyGEFLx+BLIseod/Zb3MN8gTAcY75lrc9kMsFoNKKtrU00HSnSVawjCEd76SM22tu+fXvCbu3PysqC0WgUZNQXCoXQ2tqKsbExHD58OG4LskQfI2hpGHxJVJSngVohj7tMrZCjyKBe9jprampw79499PT0PG55kmaz2bB69epldwSh5HE6nfB4PAmfbFWIvp1+vx/Nzc2IRqM4dOhQ3BZkU1NTuH+nDzmI36FppccIejQGXxLVleZjoS+uMtn08uWKTV574cIF3L3L0yArEYlEVtT/kZLru+++Q1VVVcK7l6Q6+Hw+Hz766CPo9XocOHAgbguyvr4+vP/++yj/TTYUipy461npMYIejcGXRFplNpqOlEOjlM+O/NQKOTRK+cz7K7up1mAwoLa2Fi0tLYJduxAzu90OrVa74o4glHh37tzB+Pg4SktLE75uo9GI4eFhBIPBhK/7YRMTEzh+/DhKSkrwyiuvzAvxqakpfP7552hvb8e+ffuwf08tmhoTf4ygxcmivFiUdN7YMzpjPhQZ1KgrzU/IDn3mzBncv38fr732GtsdLVE0GsV7772HXbt2PdbD0ZRYn3zyCTZs2IAtW7YkZf0ffPABdu7cmdQvOyMjI/j4449RUVGBysrKecv7+vrQ1taGDRs2oLq6GgqFYnZZso4RFB//Z1NAo8xGQ1lBwtdbXV2NpqYmdHR0LNj9hea6evUqlEolSkpKhC6FZty9exfDw8NoaGhI2mesXbsWTqczacE3MDCAkydPorq6Gs8999ycZVNTU/j666/hdDqxb98+FBcXz/v5ZB0jKD6e6hSx2OS133//PRwOh9DlpL1E9H+kxDObzdi2bVtSp+NJ5vN8N2/eRHNzM3bv3j0v9GLX8nJycnDs2LG4oUepx+ATOb1ej7179+Kzzz6Dx+MRupy01tfXB5lMhvXr1wtdCs0YHh7GwMAANm/enNTPWbt2LQYGBhI+x6XdbsepU6fQ0NAwp9PMw9fyamtr55zaJGEx+DLAunXrYDKZ0NrayslrF5DojiCUGGazGRUVFcjJiX9nY6Ko1Wro9XoMDQ0lbJ2XLl3C2bNn8cYbb6Cg4JfTlBzlpT8GX4bYsWMHsrKycOHCBaFLSUs3b95EMBhcUn9USo2RkRHcunULZWVlKfm8RE1TFI1G8e2336KzsxONjY2zfV45yhMPBl+GyMrKwquvvgqbzcbJax+SjI4g9PgsFgu2bt2asnAoLCx87Ilpo9Eo2tvbcf36dTQ2NuKJJ54AwFGe2DD4MohGo8H+/fvx5ZdfwuVyCV1O2nA4HPD5fHjmmWeELoVmjI+Po7+/H+Xl5Sn7zNiIb6VPcIXDYbS2tuLevXs4fPgwtFotR3kixeDLMAUFBdi2bRtaWlo4ee2MZHUEoZWzWCzYsmULVCpVyj5Tr9cjJycHY2Njy/7ZQCCA5uZmhEIhvP7661CpVLOjPIVCwVGeyPBIkIEqKiqQm5uLs2fPCl2K4G7fvg2Xy5UW87HRNJfLhWvXrqGioiLln72S9mWxFmQ6nQ719fUIBoNzRnk1NTUc5YkMgy8DyWQy7NmzB/39/bDb7UKXI6jYaE8uj98snFLv4sWL2Lx5M1atWpXyz15u8E1MTODEiRMoLCzE7t270d/fz1FeBmDwZSiVSoX6+nq0t7djdHRU6HIEMTg4iJGRkXkPFZNwJicnYbfb47b0SoXCwsIl39k5OjqKEydOwGQyoaqqCl988QVHeRmCwZfB1qxZg507d0p28tpUdASh5bl48SKef/75uHPTpUJeXh78fj/cbvei/25wcBAffvghXn75ZeTl5XGUl2EYfBnOZDIhPz8fp0+fltTktUNDQxgcHITJZBK6FJrh9Xrxww8/4MUXXxSsBplM9sjTnT/99BM+/fRTVFdXw+FwcJSXgRh8GU4mk6G2thZDQ0O4fPmy0OWkjNlsRmVlZdI7gtDSdXR04Nlnn4VOpxO0jsWCr7e3F62traisrMS5c+c4ystQDD4JyMnJQX19Pc6fP4+ff/5Z6HKSbmRkBE6nM2lT3NDy+Xw+XLlyBVVVVUKXsmDwWa1WnDlzBkajET09PRzlZTBe/JAIg8GAmpoatLS04OCfGnHuxn04Rr0oytOgrjQf2gya+8tsNqe0Iwg9WldXFzZu3Ai9Xi90KdCtfhIdwzKM/vdHrFujR+3vf4vLXR2wWq2IRqPQ6/XYv38/958MxoloJeafJ7/Cv36MQJ6dDV8gDLVCDpkMaDpSjrKi1UKX99jGxsZw/PhxvP3221AqlUKXQwAePHiAd999F2+99dZsiy+hXHKM40hTNwKBEIJRGdQKOcKhEP6ovoVCdQh79+7laU0J4KlOCfH4Q/j3/7Lgj8jgC4QBAL5AGF5/GEeauuH1i7/Ti8ViQVlZGUMvjXR3d2P9+vWCh57HH5rZz8MIRqd7tvoCYfgjMrT7inHkz0cZehLB4JOQNttdLDS8j0anl4uZy+XC9evXsXXrVqFLoRl+vx9dXV3Yvn270KVM7/8L/ALIs7Nx9po0n3eVIgafhDhGvbMjvYf5AmE4xnwpriixLBYLXnjhBUE6glB8VqsVxcXFyMvLE7qUjN//aekYfBJSlKeBWhG/dZdaIUeRQZ3iihLH7Xajt7dXkP6PFF8wGERnZ2dajPaAzN7/aXkYfBJSV5qPhaajk8mml4uV0B1BaL6enh4YjcbZiVqFlsn7Py0Pg09CtMpsNB0ph0Ypn/3mq1bIoVHKZ94X5yMNHo8HNptN0I4gNFcoFEJHR0fajPaAzN3/afn4OIMEef0htNnuwjHmQ5FBjbrSfFH/0n/zzTcIBoOoqakRuhSaYbVa0dfXh4MHDwpdyjyZtv/T8nFrS5BGmY2GsgKhy0iIWEeQo0ePCl0KzQiHw7BYLDhw4IDQpcSVSfs/rQxPdZKodXZ2YtOmTWnREYSm2Ww2GAwGGI1GoUshiovBR6L14MEDWK3WtOj/SNMikQjMZnNaXdsjehiDj0Srq6sLTz31lOAdQegXdrsdOp0ORUVFQpdCtCAGH4mS3+9Hd3c3RxZpJBqNwmw246WXXhK6FKJFMfhIlC5duoSSkhIYDAahS6EZV69ehVKpRElJidClEC2KwUeiEwgE0qojCM0d7ckWekqcKE3wcQYSDc/M81cXbTegUJdArRf/NEpiF9smPX134PFocKiAsxtQ+uMD7CQKsXnUIhFgKhiGKjsLcrksY+YRFKPYNolGp5s8q7JlkMuzuE0o7TH4KO15/CFsfeccvP75nfU1Sjm6//oHdt5IMW4TEjNe46O0t9g8aqFgGP84ZUFvby9u374Nl8uFcDj+1DOUOIttk0yY25EyG7+SUdpbbB41fwRwjHvR23sPbrcbk5OT8Hg8UKlUyM3NhU6ng06nQ25u7uzfY68qlYo3YqwQ57YjMWPwUdqLzaMW70CrVsixs+xp1P+q92IkEoHX68Xk5ORsGLrdbjidzjnvhcPheWH46z/n5uZCq9VCLo8/h9tKxW4IcYx6UZSnQV1pPrQiOy34qG3Cue0onfEaH6W9ZF1PCgQCc4Lx16+xP3u9XqxatWrBYIy9KpXKJY0eH74hRK2QQyaD6G4I4TU+EjMGH4mCUIERGz0uFIyx12g0uujIMTc3F8hRofLv5zMmLDIlxEl6GHwkGuk8j5rf71905Oh2u3HFvQqdgbUIxbmnTK2Q4291T4tuupx03iZEC2HwEaXIO19dxX/MtxZcfmzH7/CXXRtTWBGRNPFxBqIUKX5SC7Ui/o0yvCGEKHUYfEQpUleaj4Xuf5HJppcTUfIx+IhSRKvMRtORcmiU8tmRn1ohh0Ypn3mf18aIUoHX+IhSjDeEEAmLwUdERJLCU51ERCQpDD4iIpIUBh8REUkKg4+IiCSFwUdERJLC4CMiIklh8BERkaQw+IiISFIYfEREJCkMPiIikhQGHxERSQqDj4iIJIXBR0REksLgIyIiSWHwERGRpDD4iIhIUhh8REQkKQw+IiKSFAYfERFJCoOPiIgkhcFHRESSwuAjIiJJYfAREZGkMPiIiEhSGHxERCQpDD4iIpIUBh8REUkKg4+IiCSFwUdERJLC4CMiIklh8BERkaQw+IiISFIYfEREJCkMPiIikhQGHxERSQqDj4iIJOX/V1Sr4zQGNBkAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUDklEQVR4nOz9d3CTZ94v/r8luVdw743qLoUWCCGBYDqEjjHGFtmwWfLb3WT3OWfmOWfmeZ45s7/5fnd+55xNdp9JYZesG6aZZtoCAR5ICKE4SO6mGfeGe5Fllfv+/eGVYuEmW+VW+bxmmNmNZemSLd/66Hpf1+fisSzLghBCCCGEkGnicz0AQgghhBBi3aigJIQQQgghBqGCkhBCCCGEGIQKSkIIIYQQYhAqKAkhhBBCiEGooCSEEEIIIQahgpIQQgghhBiECkpCCCGEEGIQKigJIYQQQohBqKAkhBBCCCEGoYKSEEIIIYQYhApKQgghhBBiECooCSGEEEKIQaigJIQQQgghBqGCkhBCCCGEGIQKSkIIIYQQYhAqKAkhhBBCiEGooCSEEEIIIQahgpIQQgghhBiECkpCCCGEEGIQKigJIYQQQohBqKAkhBBCCCEGoYKSEEIIIYQYhApKQgghhBBiECooCSGEEEKIQaigJIQQQgghBqGCkhBCCCGEGIQKSkIIIYQQYhAqKAkhhBBCiEGooCSEEEIIIQahgpIQQgghhBiECkpCCCGEEGIQKigJIYQQQohBqKAkhBBCCCEGoYKSEEIIIYQYhApKQgghhBBiECooCSGEEEKIQaigJIQQQgghBqGCkhBCCCGEGIQKSkIIIYQQYhAqKAkhhBBCiEGooCSEEEIIIQahgpIQQgghhBiECkpCCCGEEGIQKigJIYQQQohBqKAkhBBCCCEGoYKSEEIIIYQYhApKQgghhBBiECooCSGEEEKIQaigJIQQQgghBqGCkhBCCCGEGIQKSkIIIYQQYhAqKAkhhBBCiEGooCSEEEIIIQahgpIQQgghhBiECkpCCCGEEGIQKigJIYQQQohBqKAkhBBCCCEGoYKSEEIIIYQYhApKQgghhBBiECooCSGEEEKIQaigJIQQQgghBqGCkhBCCCGEGIQKSkIIIYQQYhAqKAkhhBBCiEGooCSEEEIIIQahgpIQQgghhBiECkpCCCGEEGIQKigJIYQQQohBqKAkhBBCCCEGoYKSEEIIIYQYhApKQgghhBBiECooCSGEEEKIQaigJIQQQgghBqGCkhBCCCGEGIQKSkIIIYQQYhAqKAkhhBBCiEGooCSEkAnIlWq86huCXKnmeiiEEGKxHLgeACGEWKJHNZ04crca31a0gmEBPg9IiQvEweUxWBjlw/XwCCHEovBYlmW5HgQhhFiSvPu1+PfCMvD5PKiZny+RAj4PDMPiD1sTkL4kksMREkKIZaGCkhBCRnhU04ndh3/ERBdGHoCCj5bSTCUhhPwTraEkhJARjtytBp/Pm/A2fD4PR+6+NNOICCHE8lFBSQgh/yRXqvFtRatOzD0WNcPiekULbdQhhJB/ooKSEEL+qU+uwiS1pBbDDt+eEEIIFZSEEKLl6eKASdJuLT5v+PaEEEKooCSEvMae+y66OAqQEhcIwWRrKMFi5VxfuDgKzDQyy2HPrw9CyPjo4zUhBAD1XdT4cHkMrpe3TngbBoBn4yM8e+aLOXPmmGdgHKPXByFkItQ2iBBCfRdfc/RBLf7t/Ng/DzXDYpljLRbNHEJvby/eeustrFy5EgKB7c5W0uuDEDIZKigJsXPUd3FsRTWdOHL3Ja5XtGhn5NbEBeHD5dFw6K5DYWEhwsPDUV9fj/DwcOzYsQPe3t5cD9vo6PVBCNEHRd6E2DlN38WJWuVo+i7aU8GwMMoHC6N8IFeq0SdXwdPFYcSaSR+o1WpcunQJCQkJqK2txeHDh7Ft2zabi8Dp9UEI0QdtyiHEjlHfxcm5OArg7+k8agPOggULsG7dOpSVlSEhIQFhYWE4duwYbty4AbXaNn5O9PoghOiLCkpC7NhU+y5Kyiohk8lMOygrsmTJEqxevRo//vgjQkNDkZKSgnv37iEnJwc9PT1cD89g1JeTEKIvWkNJiB2TK9WI+4+rehUNPLBId34MBx6LgIAAREZGav95eHiYfrAW7M6dO7h9+zZSUlIQHh6O06dPQ6lUWn0EPtXXx+HV7li8QIQZM2aYfGyEEMtCBSUhdu6jo0W4Udk2Yawp4POQEhuIP26ahdraWtTU1KCurg6dnZ0AAF9fX50C0xY3p0yEZVncunULd+/exfr165GQkIDz58/j2bNnVr8LXK/XBw9ImMniTVUpFAoFoqOjIRKJMH/+fDg6OppxtIQQrlBBSYidM2QXb19fH2pra7X/Xr16BQCYMWOGToE5c+ZM8Hh6HkFjpViWxfXr13H//n1s2rQJb7zxBn788UfcuHEDYWFhVrsLfCqvj6QQD1RUVEAqlaK2thbOzs5ISEiASCRCSEiIzb8GCLFnVFASQibsuziVPoMDAwOoq6vTFpgtLS0AAE9PT0RGRiIiIgJRUVHw8/OzyeKCZVlcuXIFRUVF2Lp1K5KTk1FfX2/1Efh0Xh+dnZ2QSqWQSqXo6+tDQEAAhEIhkpKS4O7ubu6nQAgxMSooCSEAJu67ON12MHK5XKfAbGpqAsuycHNzQ0REhHYGMzAwEHy+bewRZFkWFy9ehFQqxfbt25GQkACZTGb1Efh0Xx8Mw6C6uhoSiQRPnjwBy7KYO3cuRCIRZs+ebTO/d0LsHRWUhBAdY/ddNA6FQoGGhgbtGsyGhgao1Wo4OzvrFJjBwcFWV3CNxDAMCgsLUVpail27diE2NhYsy9pEBG7I60Mmk6G0tBQSiQStra3w8PBAcnIyhEIh/Pz8TDRiQog5UEFJCOGMSqVCY2Ojdgazvr4eSqUSjo6OCA8P1xaYoaGhcHCwrnMYGIbBmTNnUFVVhdTUVG3UbQsRuDE0NzdDIpGgtLQUcrkc4eHhEAqFiI+Ph7OzM9fDI4RMERWUhBCLoVar0dzcrC0w6+rqMDQ0BIFAgLCwMO0azLCwMDg5OXE93Emp1WoUFBTg+fPnSEtLQ0xMDADYRARuLCqVCk+ePIFEIsGLFy/g6OiI+Ph4CIVCRERE2ORaW0JsERWUhBCLxTAMWltbdXaSDw4Ogs/nIyQkRBuTR0REwMXFhevhjkmlUuHkyZOoqalBeno6IiOHN6/YSgRuTD09PSguLoZUKkVXVxd8fHwgFAqRnJwMLy8vrodHCJkAFZSEEKvBsixevXqlnb2sqalBf38/eDweAgMDdVoVubm5cT1cLaVSiePHj6OxsRHp6ekIDw/Xfo0i8NFYlkVtbS2kUinKy8uhVqsxa9YsiEQizJ071+qWPxBiD6igJIRYLZZl0dXVpTOD2d3dDQDw9/fXKTA9PT05HatCoUB+fj5aW1uRkZGBkJAQ7dcoAh/f0NAQysrKIJVK0dDQAFdXVyQmJkIkEiEoKIjr4RFC/okKSkKITenp6dEpMDs6OgAAPj4+OgUmF8cDDg0NIS8vDx0dHcjMzNQpiCgCn9yrV68glUpRXFyMgYEBBAcHQygUIjExEa6urlwPjxC7RgUlIcSm9ff36xSYbW1tAABvb2+dAtPHx8csG0Dkcjlyc3PR09MDsVgMf39/na9TBD45tVqN58+fQyKR4OnTp+Dz+Zg/fz5EIhGio6OptyUhHKCCkhBiV2Qy2ajTfFiWhYeHh3aDT2RkJAICAkxWYMpkMuTk5EAmk0EsFsPX13fU1ykC109/fz9KSkogkUjQ3t4OLy8vCIVCCIVCzJw5k+vhEWI3qKAkhNi1oaEhbYFZV1eHxsZGMAwDV1dXnWbrQUFBRp356u/vR05ODhQKBcRi8ajihyLwqWFZFo2NjZBIJCgrK4NCoUBUVBREIhFiY2Ph6OjI9RAJsWlUUBJCyAhKpRINDQ3aGcyGhgaoVCo4OTnpFJghISEGzxr29fUhKysLLMtCLBaPWTBSBD51SqUSlZWVkEgkqKmpgbOzM+Lj4yESiRAaGkq9LQkxASooCRmHKY8gJNZDpVKhqalJ5zQfhUIBBweHUaf5TGcWrKenB1lZWRAIBBCLxWPuRqcIfPq6uroglUohlUrR29sLf39/CIVCJCUlwcPDQ+/7oesBIROjgpKQ1zyq6cSRu9X4tqIVDAvweUBKXCAOLo/BwigfrodHOMYwzKjTfORyOQQCAUJDQ3VO89H3CMGuri5kZWXB2dkZYrEY7u7uo25DEbhhGIbBy5cvIZFIUFVVBZZlMWfOHIhEIsyePXvcAp2uB4TohwpKQkbIu1+Lfy8sA5/Pg5r5+U9DwOeBYVj8YWsC0pdEcjhCYmlYltWe5qNpti6TycDj8RAcHKydwYyIiJiwtU1HRweysrLg7u6OzMzMcRuzUwRuuMHBQZSWlkIqlaK5uRnu7u5ITk6GUCjU2XVP1wNC9EcFJSH/9KimE7sP/4iJ/iB4AAo+WkozE2RcLMuio6MDNTU12gKzr68PAEad5vP6TGRbWxtycnLg7e2NjIyMcY+TpAjceFpaWiCRSFBaWorBwUGEhYVBKBRC7hmG9Kwiuh4QoicqKAn5p4+OFuFGZZvOTMTrBHweUmID8XX6AjOOjFgzlmXR3d2t0wuzq6sLAODn56dTYHp5eaGlpQU5OTnw8/NDenr6uLE5ReDGpVKp8PTpU0gkErx48QK3FLNQp/YGg/E38ND1gJCfUUFJCIYX3Mf9x1VMUEtq8XnAzUNCuDhQ82QyPf39/WhubkZLSwuam5u1x0V6enoiODgY7u7uKCsrg6+vL9avXz/hZp+WlhbcvHkTKpUKK1euREREhJmehe3q6O7F5tznE85OavB5QMX/WkcbdYjdo4KSEACv+oaw6P+5offtU52lcOWpTDgiQghXBlkHnBgS6n37R/9zNfw99duARYitcuB6AIRYAk8XB/B50HuG8qNfiGmGkpiMXC5HS0sLnj17hpcvX2r/u4uLC4KDgxEUFITg4GD4+vpqeyqyLIuSkhI8ePAAgYGBeO+996bUFof8TK5icOorqd7XA08XeislhGYoCfknWkNJLNGLFy9w/PhxhISEIDw8HA0NDWhsbIRarYaLi4tOs/Xg4GA0NjbSLnADqVQq7Pz8Goo7GLAY/4MjXQ8I+RkVlIT8E+3yJpbq6dOnOHnyJGJjY7F9+3ao1Wo0NjbqNFvXnOYTHh6OkJAQvHz5Eg0NDbQLfIq6urpw+vRpFDf145J87oS3pesBIT+jgpKQEY4+qMW/nae+c8TyVFZWoqCgAImJidi6davO8YFqtVrnNJ+6ujooFArw+XwwDAMvLy+kpKRg3rx5dKb1BCorK1FYWAhXV1fs2rULt+qVY14PeBieufz/0vWAEC0qKAl5TVFNJ47cfYnrFS3akzHWxAXhw+XRNBNBOFVWVoazZ89CKBRi8+bN455JzTAMWlpaUFtbi6qqKtTX14NlWfD5fO1pPppm6/qe5mPLVCoVvv32Wzx8+BCxsbHYsmWLtgfoWNeDee5DSHRswx8+OUA/P0L+iQpKQsZBZ/cSSySVSlFYWIhFixZh/fr14xaVIw0MDODUqVOoq6uDr68v5HI5BgYGwOPxEBQUpHOaz3gn9NgqTcTd2tqKNWvWYNGiRWP+TEdeDwb7e/H1118jPj4eW7Zs4WDUhFgeKigJIcTK/PTTT7h06RKWLl2KlJQUvYrKkY3QQ0ND8d5776GzsxO1tbWoqalBb28vACAgIECn2bot7xR/PeIOCQnR+3s1v4O0tDTa+EQIqKAkhBCr9ODBA1y9ehVvv/02Vq1apff3jXcW+Oun+XR2dgIAfH19dQpMWziNZ6KIW18sy+LYsWNoaWnBxx9/POE57YTYAyooCSHESv3www+4ceMGVq5ciRUrVuj9ffqcBd7X16dTYL569QoAMGPGDJ0Cc+bMmXrNkFoKfSNuffT29uKrr77CnDlzsH37diOPlBDrQgUlIYRYsTt37uD27dtISUnBsmXL9P6+qZ4FLpPJdArMlpYWAMPHRWrWX0ZFRcHPz89iC0xDIu7xlJSU4Ny5c9i1axfi4uKMMEpCrBMVlIQQYsVYlsWtW7dw9+5drF+/HosXL57S948XgU9GLpejvr4eNTU1qKurQ1NTExiGgZubm06z9cDAQPD53J4qZYyIezwsy2o3PH388cdwd3c3yv0SYm2ooCSEECvHsiyuX7+O+/fvY9OmTViwYGont+gTgU9GoVCgoaFBO4PZ0NAAtVoNZ2fnUaf5mLPJujEj7vEMDAzgyy+/REREBHbv3m2xM7SEmBIVlIQQYgNYlsWVK1dQVFSErVu3Ijk5ecrfP5UIfDIqlWrUaT5KpRKOjo4IDw/XFpihoaFwcDDNWdimiLgneqxTp05h27ZtSEpKMtnjEGKpqKAkhBAbwbIsLl68CKlUiu3btyMhIWHK9zHdCHwyarUazc3NOqf5DA0NQSAQICwsTLsGMywsDE5OTgY9likj7omcPXsWT58+xccffwwvLy+TPx4hloQKSkIIsSEMw6CwsBClpaXYtWsXYmNjp3wfxojA9RlnW1ubdg1mbW0tZDIZ+Hw+QkJCdE7zmUoxaI6IezyDg4P46quvEBAQgH379lH0TewKFZSEEGJjGIbBmTNnUFVVhdTU1GnNMho7Atfn8drb27UzmDU1Nejv7wePx0NgYKBOq6LxTvMxZ8Q9nmfPnuHYsWPTWstKiDWjgpIQQmyQWq1GQUEBnj9/jrS0NMTExEzrfkwVgU+GZVl0dXXptCrq7u4GAPj7++sUmK6urpxE3OO5ePEiSktLcejQIcycOZOzcRBiTlRQEkKIjVKpVDh58iRqamqQnp6OyMjIad2POSJwffT09OgUmB0dHQAAgUAAhmGQmJiId999l/MibmhoCF9//TW8vb2RmZlJ0TexC1RQEkKIDVMqlTh+/DgaGxuRnp6O8PDwad2PuSNwfUgkEvzjH/8An8+Hm5sburq6AADe3t46M5g+Pj5mL+pqamqQk5ODtWvX4s033zTrYxPCBSooCSHExikUCuTn56O1tRUZGRkGrS3kKgIfabxd3IODgzq7yJubm8GyLDw8PLQbfCIjIxEQEGCWAvPq1av46aef8NFHH8HPz8/kj0cIl6igJIQQOzA0NIS8vDx0dHQgMzMTQUFB074vLiPwqeziHhoa0jnNp7GxEQzDwNXVVafZelBQkElO81EqlTh8+DBcXFzwwQcfcH5iECGmRAUlIYTYCblcjtzcXPT09EAsFsPf33/a98VFBG7oLm6lUjnqNB+VSgUnJyedAjMkJMRoBXJDQwP+/ve/Y+XKlXj77beNcp+EWCIqKAkhxI7IZDLk5ORAJpNBLBbD19fXoPszRwRuqkblKpUKTU1NOqf5KBQKODg4jDrNx9HRcdqPc+PGDfz444/45S9/icDAQIPHTYglooKSEELsTH9/P3JycqBQKCAWiw3eFW3KCNycjcoZhtGe5qNpti6XyyEQCBAaGqpzmo+zs7Pe96tSqfC3v/0NPB4PBw8e5GSHPCGmRgUlIYTYob6+PmRlZYFlWYjFYoPjalNE4Fw3KmdZdtRpPgMDA+DxeAgODtbOYEZERMDV1XXC+2pubsaRI0fw1ltvYdWqVWZ6BoSYDxWUhBBip3p6epCVlQWBQACxWAxPT0+D79MYEThXZ3FPhmVZdHR06Jzm09fXBwCjTvNxd3cf9f137tzBnTt38Itf/AKhoaHmHj4hJkUFJSGE2LGuri5kZWXB2dkZYrF4zEJoqgyJwLk8i3uqWJZFd3e3TrN1TS9MPz8/nQLTy8sLarUaf//736FQKPDLX/7SoHWZhFgaKigJIcTOdXR0ICsrC+7u7sjMzBz3rOypmE4EznXEbQy9vb06BWZ7ezsAYObMmdom67dv38aiRYuwbt06jkdLiPFQQUkIIQRtbW3IycmBt7c3MjIyjBYx6xOBW2rEbQwDAwM6zdZbWlq0X4uJiUFsbCyioqLg6+trsTOxhOiDCkpCCCEAgJaWFuTk5MDPzw/p6elT2sk8kYkicGuKuI1Bc5rPlStXIJPJwDAMWJaFu7u7zmk+gYGBNv1zILaHCkpiMnKlGn1yFTxdHODiSG0yCLEGjY2NyMvLQ2BgIPbt2wcnJyej3O9YEXhTU5PVR9zT1dnZia+//hrx8fFISEjQzmI2NjZCrVbDxcVFp9l6cHCwQSft0PWYmBoVlMToHtV04sjdanxb0QqGBfg8ICUuEAeXx2BhlA/XwyOETKK+vh55eXkICwvD3r17jbp5pL6+HgUFBZDJZFCr1TYXcU/Fo0ePcOXKFezbtw+zZ88GMHyaT2Njo06zdc1pPiObrYeEhMDBwWHyx6DrMTETKiiJUeXdr8W/F5aBz+dBzfz80hLweWAYFn/YmoD0JZEcjpAQoo+amhrk5+cjOjoau3fv1qt40UdXVxdOnTqF1tZWsCyLZcuWYdWqVXbZ7JtlWRw9ehSvXr3Cxx9/PGZRrVardU7zqaur057mExYWpi0ww8LCRhX+dD0m5kQFJTGaRzWd2H34R0z0guIBKPhoKX0yJsQKvHjxAsePH8ecOXOwc+dOg4u+kbu4d+7cidraWrOeBW6Jenp68NVXX2H+/PnYunXrpLdnGAatra06zdYHBwfB5/N1TvNpZTyRnlVE12NiNlRQEqP56GgRblS26XwSfp2Az0NKbCC+Tl9gxpERQqbr6dOnOHnyJGJjY7F9+/ZpreObaBe3Oc4Ct3RSqRSFhYXYs2cP5s+fP6XvZVkWr1690mlV1N/fj1uKWahnZoDB+Bt76HpMjIkKSmIUcqUacf9xFRPUklp8HlDxv9bRwnBCrERlZSUKCgqQmJiIrVu3Tmn3sT67uE15Frg1YFkWJ06cQGNjIz7++GOD+oCyLIum1nYs//PDCWcnNeh6TIxl+lvGCBmhT67Sq5gEAIYFnr6sg1qtNu2gCCFGoZmdLC0txcWLF6HvPERlZSUOHz4MmUyGDz74AIsXLx6zGHVzc8PevXuRkpKCe/fuIScnBz09PcZ+GhaLx+Nh8+bNYBgGly9f1vvn+zq1Wo3GxkYUV1TpVUwCw9fjPrlqWo9HyEjGWWVN7J6niwP4POhVVPLAouBYHi45OejsWgwNDTXawn9CiHElJCRApVKhsLAQDg4OWL9+/bgzldNpVM7j8bBs2TKEh4fj9OnTOHz4sF1F4B4eHti4cSNOnz6N8vJyJCQkTPo9KpVKZ0d4XV0dVCoV1OCDBxHYCeJuDT5v+PpNiKEo8iZGo88aSj4PSIkNwL+tDNa5CA4NDUEgEIzatWisHniEEOP46aefcOnSJSxduhQpKSmjikpjNCq35wj89OnTePHiBT7++GN4enrqfE2hUKChoUF77WxoaIBarYajoyPc3d0hk8mgUCgQGBiIS93BKO/hg50giKQ1lMSYqKAkRqPPLm+Axcdz5Pht2ibtjIVm16KmuKytrYVMJgOfz0dISIh212J4eLhd9qojxNI8ePAAV69exdtvv41Vq1Zp/7sxz+KezlngtkAmk+HLL79ESEgItm3bhoaGBu2O7qamJjAMAzc3N4SFhcHBwQHt7e1oa2uDq6srkpKSEBsbi/v37+NORQOuKOYBE8xS0i5vYkxUUBKjOvqgFv92fvy+Z/+fJX5QVf3XhG84LMuivb1dexGtqalBf38/eDweAgMDtTOYkZGRBi1eJ4RM3w8//IAbN25g5cqVWLZsmcnO4ranXeAymQy1tbWQSqV4+vSp9r97eHggKioKERERcHR0xMuXL1FRUQG1Wo1Zs2ZBJBJh7ty5aG1txenTp7VHOrZ6zsHFZvdR12MeGAB86kNJjIoKSmJ0RTWdOHL3Ja5XtGhPZlgTF4QPl0djYZSPNhJraWnBmjVrxl2or8GyLLq6unTaYnR3dwMA/P39dQrM1yMiQojp3LlzB7dv34aXlxcGBgZMdha3rUbgfX19Ote1V69eAQBmzJgBHo+H3t5epKenY8aMGSgpKYFUKkVXVxd8fHwgFAqRnJwMLy8vsCyLhw8f4vr16/Dx8UFPTw9CQ0ORlpaG4sa+UdfjSH439r4RiF9uX83xT4DYEiooiclMdHasWq3Gt99+iwcPHkxrRqOnp0fnQtzR0QEA8PHx0SkwZ8yYYcynRAgZoaKiAmfPnoVarcayZcuQkpJisseyhQi8u7tb57rV2dkJAPD19dW5bnl7e6O/vx9ffvklAGBwcBCOjo6Ij4+HUChERESEtmiXy+UoLCxEVVUVEhIS8Pz5c/j7+yM9PV1nDfrI6/HN61dRWVmJTz/9lDZCEqOhgpJwylhrrvr7+3Uu1G1tbQAAb29vnQu1j4+P0WdPCLE3I3dxz58/H56ennj06BE2bdqEBQtMu8HDWiJwlmXR2dmpc13StEIKCAjQuS55eHhov6+5uRkSiQSlpaWQy+UAhnfYb9q0Cc7OzjqP0djYiNOnT0Mul+Odd97Bd999h5kzZ2L//v0TfkBvb2/HF198ga1btyI5OdkEz57YIyooCeemGoHrY3BwUOdC3tLSApZl4eHhgcjISO1GH39/fyowCZmCsXZxA8CVK1dQVFRkliLFEiNwzYk1I49E1Kz9Dg4O1l5zIiIi4OrqqvO9MpkMpaWlkEqlaGlpgYeHB5KTkyEUCvHw4UNIJBL86le/gq+vr/axNBF3UFAQ3nvvPZw9exaenp7IyMgYdf9jyc/Px8DAAA4ePEjXQGIUVFASi2BoBD6ZoaEh1NfXay/2jY2NYBgGrq6u2gIzMjISQUFB0zpajhB7MFGiwLIsLl68CKlUiu3bt+vVR9EQXEfgDMOgpaVFp/3ZyDO1NbOP4eHho2YWNd9fXV0NiUSCJ0+egGVZzJs3D0KhELNnz9ZehxQKBb7++mu4u7vjwIEDUCgU2oh7yZIlWLBgAfLy8uDi4oLMzEy4u7vrNf7nz58jPz8fBw4cQEREhFF/NsQ+UUFJLIox245MRKlUjurnplKp4OzsrNNsPSQkhPOZD0K4pm+jcoZhUFhYiNLSUuzatQuxsbEmH5u5InC1Wo2mpiadAlKhUMDBwWFU/1xHR8dx76ezsxNSqRTFxcXo7e2Fv78/RCIRkpKSxi0G6+rqkJWVhUWLFuHZs2eQy+V4//33ERQUhOzsbDg4OEAsFutE55NhWRZffPEFAgMDsWvXrin/PAh5HRWUxOKYIgKfjEql0nmzqK+vh0KhgKOjo86bRWho6IRvFoTYmqk2KmcYBmfOnEFVVRVSU1PNssbRFBG4UqnUOYWmvr4eKpUKTk5Ooz50TraxRaFQoKKiAlKpFLW1tXB2dkZCQgJEIhFCQkImvb6xLIvc3FzU1NQgICAAqampEAgEyM7OBgCIxWJ4eXlN+Tk+evQI//jHP/DJJ59Y3QYnYnmooCQWydQR+GQYhkFzc7PObIRcLodAIBgVZ9FpPsRWTTcxUKvVKCgowPPnz5GWloaYmBgTj9TwCHxoaEiniXhjYyPUajVcXFx0lsUEBwfrtSyGZVk0NDRAIpGgvLwcCoUC0dHREAqFiI2N1fuD6chd3C4uLpgxYwZSU1ORl5cHlUoFsVg87W4WCoUCf/rTn7BgwQKT7tAn9oEKSmLRzBWBT4ZlWbS1teksuB8YGACPx9Oe5qN509FnQTwhlmw6Z3GPdR8nT55ETU0N0tPTERlpngba+kbgg4OD2r/l2tpaNDc3g2VZuLu762zcCwgImFJC0t/fj+LiYkilUrS3t8Pb21vbM3LmzJlTei4jd3G///778PLywt/+9je4u7uDz+dDLBbDx8ewU26uX78OiUSC3/3ud/ThmBiECkpi8biIwCfDsiw6Ojq0b0Y1NTXo6+sDgFGn+ei7SJ4QS2CMs7g1lEoljh8/jsbGRqSnpyM8PNzIox3bWBG4XC7X6fzQ2toKAPD09ERUVJT279XX13fKz1etVuPZs2eQSCR49uwZ+Hw+4uLiIBQKER0dPeX7e30X986dOzFz5kwMDg7iyy+/RH9/P3bt2oW4uLgp3e9Yuru78Ze//AUbNmzAwoULDb4/Yr+ooCRWgesIfDIsy45qWtzV1QUA8PPz0ykwp7PWiRBzMEUioFAokJ+fj9bWVmRkZJgtZejp6cGNGzdQVlYGBwcHqFQqAMDMmTNHHX4w3YK5ra0NUqkUJSUlGBgYQEhICIRCIRISEqadVIyMuJcsWYKUlBQIBAIMDQ0hLy8PnZ2dcHNzA5/Pxy9/+UujNCY/efIkOjo6cOjQIc4/rBPrRQUlsSqWEoHro7e3V6fAbG9vB2DcNzRCjMEYEfdENMVQR0cHxGIxAgMDjXbfwMQf6GbMmIGBgQEAwMaNGw3ukSmXy1FWVgapVIrGxka4ubkhKSkJQqHQ4Of1esQ9f/58AMNF+dGjR/Hq1StkZGSAz+fjb3/7m7bgNFRNTQ1ycnKQnp6OWbNmGXx/xD5RQUmsjiVG4PoYGBgYM3Lz8vLSKTCnE7kRMl3GjLgnIpfLkZubi56eHojFYvj7+0/7vjRLTkauae7t7QUABAUFadc0a5acGLoLnGVZ1NTUQCqVoqKiAmq1GrNnz4ZIJMLcuXMN3lE+XsQNDC8bOHbsGJqamrB//36EhYUBAO7evYubN2/igw8+MHgpAcuyOHz4MLy8vJCWlmbQfRH7RQUlsUqWHoHrY+SmgLq6OjQ1NRllUwAh+jL3jL9MJkNOTg5kMhnEYrH25JfJsCyL1tZW7d/KWJvioqKiEB4ePm7UPJ1d4D09PZBKpZBKpeju7oavr692g42np+eUn/9Yxou4geGZ4xMnTqCurg7p6ek6DcgZhkFWVhZkMhk++ugjgzfUSCQSXLhwAb/+9a/1/r0QMhIVlMSqWVMEPhlN2xLNDObItiUjZ1z0bVtCyHhMHXFPpL+/Hzk5OVAoFBCLxWPufDZl267JdoGrVCpUVVVBIpGguroajo6OiI+Ph0gkQnh4uFE/3I0XcQPDH5pPnTqF6upqpKWlITo6etT3d3R04Ouvv4ZIJMKGDRsMGotKpcJnn32GhIQErF+/3qD7IvaJCkpi9aw1Ap+MMRsrE6Jhroh7In19fcjKygLLshCLxXB3dx/zYAEHBwed17qxDhZ4PQJ/9913tRtsSktLIZfLERERAaFQiPj4eKO305ko4gZ+bg7/5MkTpKamYvbs2ePe14MHD3D16lXs37/f4H6ft27dwoMHD/D73/9+zOMiCZkIFZTEJthCBD4ZYx39RuyXpczoK5VKVFVV4fLly1Cr1WBZFmq1Gk5OTjqz8aY8+pRlWdy5cwd37tyBo6MjlEolPDw8IBQKIRQKTRb7ThRxA8PF5Pnz51FeXo7du3dj3rx5kz6P3NxcdHV14dChQwYVgn19ffj888+RkpKCN998c9r3Q+wTFZTEpljKG6Y5MAyDlpYWnXVlg4OD4PP5CA0N1VlXRrMN9o3LiBsYXs4xcr1wY2MjGIaBs7Mz1Go1nJ2dsX37dkRFRZl8OQfDMHjx4gWkUimqqqoAAHw+H3w+H9u3b5+0gDPERBE3MFwcXrhwAcXFxdi5c6fefSa7u7vx1VdfIT4+Hlu2bDFojGfOnEFjYyN+/etf09IaMiVUUBKbY6sR+GRYlsWrV6+0O19ramq0GxeCgoK0sz4RERFwc3PjerjETLiIuGUymc4pNC0tLWBZFh4eHjodDfz9/dHZ2YmsrCx4eHggMzPTZCdNdXR0QCqVori4GH19fQgICIBIJEJiYiJ4PJ7RzwIfabKIW3ObK1euoKioCNu2bUNSUtKUHuPx48e4ePEi9u7di7lz5057rA0NDfjmm2+Qmppq0uKa2B4qKIlNsocIfDIsy6Kzs1PnNB9Na5WAgACdN3YPDw+OR0tMwVwz9v39/Totsdra2gAA3t7eOq8zHx+fMYvZtrY25OTkwNvbGxkZGUb7W1UoFKioqIBEIkFdXR1cXFyQkJAAkUiE4OBgnbEYehb4eCaLuDWPfe3aNTx48ABbtmyBSCSa8uOwLItjx46hpaUFhw4dMuhD45EjR+Dk5ISMjIxp3wexP1RQEptmTxG4Pl5v/tzZ2QkA8PX11XnjN8YbKeGOqSPunp4enddRR0cHAMDHx2dU0359tbS0ICcnB35+fkhPT5/2Mg2WZVFfXw+JRILy8nIolUrExMRAKBRi/vz5k64v1vcscH1MFnFrxnvz5k388MMP2LBhAxYtWjTtx+vr68OXX36J2bNnY8eOHdO+n9LSUpw9exaHDh1CQEDAtO+H2BcqKInNs9cIXB99fX06hcGrV68ADJ8uMrIwmDlzJv3MrISxI26WZdHV1aXzOunu7gYA+Pv767xODO3N2NjYiLy8PAQFBWHfvn1T2lzW19eH4uJiSKVSdHR0YMaMGdqekVMpbIGxzwKfaiP0ySJujTt37uD27dtYs2YNli5dOqVxjkVTDO7cuRPx8fHTug+1Wo0///nPmDNnDjZv3mzwmIh9oIKS2AWKwPUjk8l0CoeWlhYAgKenp06zdT8/PyowLZAxZuQ1a3FHbvbq6+vTrsUduQvbFGtx6+vrkZeXh/DwcOzdu3fCllhqtRpPnz6FRCLB8+fPIRAIEBsbC5FIhKioKIML6elE4PpE3Bqa027ee+89LF++fNpjfX3cBQUFqKmpwccffzzt5Szfffcdvv/+e/zud7+jNddEL1RQErtCEfjUyOVy1NfXazf6NDU1gWEYuLm56RQWgYGBtCOUQ4ZE3AzDaE+h0RSRMpkMfD4fISEhOk3EzfUhrKamBvn5+YiOjsaePXtGFWRtbW2QSCQoKSmBTCZDaGgohEIhEhISjD7GqUTg+kTcGvfv38e1a9fwzjvv4N133zXqmAcGBvDll18iPDwce/bsmVZhPTAwgM8++wzvvvuu0YpdYtuooCR2hyLw6VMoFDqn+TQ0NGjbvrx+mo+p+gcSXVONuNVq9ahTaIaGhiAQCEb1MzV2Q++pePHiBY4fP445c+Zg586dUCqVKC0thVQqRVNTE9zc3JCUlASRSGTydX6TReBTibgBoKioCJcvX8Zbb72F9957zyTXn6qqKpw8eRJbt25FcnLytO6jsLAQ1dXV+OSTT+gDI5kUFZTELlEEbhwqlWrUaT5KpRKOjo6jTjih03yMT58Zd2v+HT158gSnTp2Cp6cn+vv7wTAM5syZA5FIhDlz5pj1Q8t4EfhUIm7g5zOzlyxZgrVr15r0w+y5c+fw5MkTHDp0aFob7VpaWnD48GGD1mMS+0EFJbFrFIEb12SzX5o1mFzPflm7iSJuzSyyZpnCyFlkzTpYS59F7u7uhlQqhVQqRU9PDwAgODgYqamp8PLy4nRsIyPwFStW4MGDB3pF3MDPG2YWLFiAjRs3mjwZGRwcxFdffQV/f3+kp6dP6/Gys7PBMAw++OADE4yQ2BIqKIndowjcdBiGQVtbm7a4qa2t1VmfpyluIiIiaIZYT69H3ImJiaivr9cW8c3Nzdp1riM3UgUEBFh0bKk5jlEikeDly5dwcnJCfHw8RCIRuru7ce7cOYhEImzatInzv8+BgQHk5OTg1atX2obsfn5+E35PRUUFTp8+jeTkZGzZssVsz+H58+fIz8/Hxo0bsXDhwil/f2VlJU6dOoWDBw/SB24yISooCQFF4ObCsiza29t1mq339/eDx+MhMDBQpwUN7SwdTTOj7uDggKioKHR0dGh34nt4eCAqKkr787OGnfgsy6KpqQlSqRSlpaUYGhpCZGQkhEIh4uLidGaxpVIpCgsLsXjxYqxbt46z5zYy4o6IiEBdXR3Cw8Mn3AWuie7j4uKwbds2sxf2ly5dQklJCQ4dOjTh2s6xMAyD//zP/0RERAS2bdtmohESW0AFJSEjUARuXubscWit+vr6UF1djXv37mlPoAGsu1fowMAASkpKIJVK0dbWBk9PTyQnJ0MoFMLX13fc7/vpp59w6dIlLF26FCkpKWZ/vmPt4p5sF7hmc9HcuXOxc+dOTmaJh4aG8PXXX8PLywtisXjKP7d79+7h5s2b+N3vfkenapFxUUFJyGsoAufWRKewaOLbqZ7CYk00pxlplgloTjMCgLCwMCxcuBBRUVFWd5oRwzB4/vw5pFIpnjx5AgCYP38+RCIRYmJi9C60Hjx4gKtXr2LFihVYuXKlKYesNdku7vF2gWvaH8XExGD37t2crlmtqalBTk7OtBqoy+Vy/OlPf8KyZcuM3uKI2A4qKAkZA0XglmOyc6I1ReZ450RbMs156yPXmGo2oQQEBMDLywu1tbVwc3PD7t27rXLGvL29HVKpFMXFxejv70dgYCBEIhESExOnvazhhx9+wI0bN7By5UqsWLHCyCPWpe8u7td3gS9duhTnzp1DREQEUlNTLWIH/dWrV1FUVISPPvoI/v7+U/rey5cvo7KyEp9++qlFPBdieaigJGQCFIFbnsHBQZ1d5M3NzWBZFh4eHjq7mAMCAiyuwGRZFm1tbToF8sDAAHg8HoKDg7XFcUhICO7evWuys7hNbWhoCBUVFZBIJKivr4eLiwsSExMhEokQHBxslMfQHFmYkpKCZcuWGeU+XzeVRuUa9fX1OHnyJAYGBhAQEIAPP/xwSkdImpJSqcThw4fh7OyMX/ziF1OK39vb2/HFF18Y1NeS2DYqKAmZBEXglm1oaEjnNJ/GxkYwDANXV1edZutBQUFmX7/GMAxaWlp0CuDBwUHw+XyEhobqnELj7OwMwPhncZsLy7Koq6uDVCpFeXk5lEolZs2aBaFQiPnz5xt9VotlWdy6dQt3797F+vXrsXjxYqPe91QalY/U0tKC7Oxs8Hg8yOXyaZ0FbkoNDQ34+9//jnfffXfKs7tHjx6FTCbDwYMHreI1ScyLCkpC9EARuPVQKpWjTvNRqVRwcnLSKTBDQkKM/iavVqvR1NSkU0AqFAo4ODiMOoVmrFkra5wR7+3tRXFxMaRSKTo7OzFjxgyIRCIkJyebfJ0ny7K4fv067t+/j82bN+ONN94w+D6n2qh8pLa2NmRnZ2PmzJlIT0+HRCKZ8lng5nDz5k3cu3cPBw8eRFBQkN7f9+zZMxw7dgwHDhxARESECUdIrBEVlDZMrlSjT66Cp4sDXBwt49OxtbPGN3x7p1KpdIq8+vp6bZH3+kkxU40mlUolGhsbtbOj9fX12uJ15H2HhIRMOENnyFncXFCpVHj69CmkUimeP38OgUCAuLg4iEQiREZGmnX2imVZXLlyBUVFRQbHsdOJuDXa29uRnZ0NT09PZGRkwNXVFcDUzgI3F5VKhSNHjgAAPvzwQ71nj1mWxRdffIHAwEDs2rVrSo9J70e2jwpKG/SophNH7lbj24pWMCzA5wEpcYE4uDwGC6N8uB6e1aMI3LoxDKM9zUezEUYul0MgECA0NFTnNB9NDK2hidc1xakmXndxcRl1Co2+8bo1Rdytra2QSCQoKSnB4OAgwsLCIBQKER8fz2kBzLIsLl68CKlUih07dkz5mEBDIm4A6OzsRHZ2NlxcXJCZmQl3d3edr092FjgXWlpa8Le//Q3Lli3De++9p/f3PXz4EFevXsUnn3yi14wrvR/ZDyoobUze/Vr8e2EZ+Hwe1MzPv1oBnweGYfGHrQlIXxLJ4QhtA0XgtkOzUWbkTmvNRpnAwEDtm2ZPTw9aW1vBsizc3d11ekBOdwOQNcx4Dw4OoqysDBKJBM3NzXB3d0dSUhJEItGUdwqbEsMwKCwsRGlpKXbv3q337KIhETcw3OYpOzsbDg4OEIvF4/ZpHO8scC599913uH37Nj744AOEhYXp9T0KhQJ/+tOfsHDhQqxevXrC29L7kX2hgtKGPKrpxO7DP2KiXygPQMFHS+mToZFYQ0FA9DcwMICamho8efIEtbW16O3t1fm6p6cnoqKiMG/ePERFRY2aidKXpUfcLMuiuroaUqkUlZWVYBgGc+fOhVAoxJw5czifXRsPwzA4c+YMqqqqkJqaOmm8bEjEDQyvH83OzgYAiMVivc4Zt6QInGEYfPPNNxgaGsJHH32k95KPa9euQSqV4ve///2430PvR/aHCkob8tHRItyobNP5JPg6AZ+HlNhAfJ2+wIwjs20UgVuv3t5enSbi7e3tAICZM2dqZx81mw80s5e1tbXo6uoCAPj5+enMVOpTUFhyxN3V1aXtGdnT0wM/Pz+IRCIkJSVZzQkparUaBQUFeP78OdLS0hATEzPqNoZG3MBwf9Ts7GyoVCqIxeIpNdq3pAi8vb0dhw8fxoIFC7Bu3Tq9vqerqwv/+Z//iY0bN2LBgrHfS+j9yP5QQWkj5Eo14v7jKib429Xi8wDJ/1wJbw86K9lYKAK3fCzLoru7Wyfanm5hqClENf/GKkQ1p/mMLBYtcUZbqVSisrISEokENTU1cHJyQkJCAkQiEUJDQy2m2J0KlUqFkydPoqamBunp6YiM/DlWNTTiBoYLwpycHAwODkIsFsPHZ+ozbJYUgf/444+4fv06MjMzERUVpdf3nDx5Eh0dHTh06NCo18hU348q/tc62qhjA6igtBGv+oaw6P+5offtU52lmOnqAG9v7zH/zZgxAx4eHlb5ZsIlSywY7BXLsmhvb9cp/Pr6+gAAQUFBOi2EphtdawwMDOg8TmtrK4CfI/LQ0FA0NTWhpKTEIj5wsCyLpqYmSCQSlJWVYWhoCFFRURAKhYiNjYWTkxNnYzMWpVKJ48ePo7GxEfv370dYWJjBETcwvKY0NzcXfX19EIvF8PPzM2iclhCBsyyLnJwc9PT04Fe/+tWozWhj0RzluH///lGzwFN9P3r0P1fD33PyxySWjQpKGzHVT4SndoVBPtCHnp4enX9DQ0M/347Ph5eXF2bMmDFu4WkpJ0BYEorAucGyLFpbW3UKO5lMBh6Ph5CQEO3u7fDwcG1LF1MZHBzUNluvrq7WFpiOjo6YNWuW9jzywMBAs742BgYGUFJSAolEglevXsHLywvJyckQCoXTmmWzdAqFAvn5+WhtbcUbb7yBBw8eTDviBoZ3+efl5aGzsxNisRgBAQFGGaclROBdXV346quvkJSUhE2bNk16e5ZlcfjwYXh7e2Pv3r06X6MZSvtEBaUNMcaaFblcrlNgdnd3o7e3F93d3ejp6dHO8Gi4ubmNObup+d9ubm52WUxRBG56I9v/aFoAjWz/M/IUGq5m3DQz1i4uLli2bJn2XPLGxkao1Wq4uLjozJROpd2QvhiGwbNnzyCVSvH06VPweDzMnz8fIpEI0dHRZj89yNx6enrw9ddfQy6XIzExEe+///60ijWFQoGjR4/i1atXyMjIMNoRkhqWEIEXFRXh8uXL2LdvH2bPnj3p7R8/foyLFy/iN7/5zagPJLSG0v5QQWlDzLGrTq1Wo7e3d9TM5sgCVKVSaW/v4DBxrO7l5WWxO0aNgSJw4zFlg3JTjHWiXdyahugjn8t0GqJPpL29Xdszsr+/H0FBQRCJREhMTDT5DK2l0ETcg4ODcHNzw9DQEMRi8ZTbHSmVShw7dgxNTU3a+NxUuIzAWZbVFs2HDh2a9HWiVCrx2WefITExEevXr9f5Gu3ytj9UUNqYow9q8W/nuev7xbIsBgcHtTOaY/0bGBjQ+R5PT89xi05vb2+4uLhY9SwnReDTo1QqtU3E6+rqzHqEoiGms4t7siMbRzZbn6hYHhoaQnl5OSQSCRoaGuDq6orExEQIhUKjz6hZsrF2cTs7OyMnJwcymQxisRi+vr563ZdKpcKJEydQV1eH9PR0sxw5yGUE3tPTg6+++grz5s3Dtm3bJr39zZs38fDhQ/z+978ftfaS6/cjYl5UUNqgoppOHLn7EtcrWrQnE6yJC8KHy6Mt4pOgUqnUznJqCs+RsXpPTw8YhtHe3snJSWdG8/VY3dPT0+JjO4rAJzc0NKTTmqepqQkMw8DV1VXbvicqKgqBgYEW+/s21ow0wzBoaWnROc1ncHAQfD5fe5qP5mfi5OSEuro6SCQSVFRUQKlUYvbs2RAKhZg3b960Zzit1US7uPv7+5GTkwOFQgGxWDzpOkq1Wo1Tp06huroaaWlpiI6ONsdTAMBtBF5cXIzz589j9+7diI2NnfC2vb29+POf/4w1a9ZgyZIlo77++vsRD8DaeMt5PyLGQwWlDbPWs1NZlkV/f/+Eaznlcrn29jweT1tojreW01J2rVIE/jOZTKZTQLa0tIBlWXh4eOi03vH397f4GV1TNypnWRavXr3S/qxqamq0M/0CgQBqtRoeHh4QCoVYuHAh5yewcEWfXdx9fX3IysoCy7IQi8Xj/qw0TdKfPHmC1NRUvdYUmgIXETjLsjh58iTq6+vx8ccfT9oF4cyZM2hqasKvf/3rcf9W5Uo1so4eh7uTABn79o55G2LdqKAkVmloaGjcSF0z4znype3q6jrhWk53d3ezFS32GoFrNqRo/rW1tQEAvL29dQpIHx8fq/p5mLNRuUqlwpMnTyCRSFBdXa3txKBQKLQFZkBAgM7P01oakhtiqo3Ke3p6kJWVBYFAALFYDE9PT52vMwyD8+fPo7y8HLt378a8efNM/RQmxEUE3t/fjy+//BJRUVHYtWvXhK/phoYGfPPNN9i7dy/mzp077u1u3bqFx48f41/+5V+s6m+c6IcKSmKTGIZBX1/fuGs5u7u7oVQqtbcXCASTtkgyZnRoDxF4T08PampqtLFtR0cHAMDHx2dU829rZa4Z55aWFkgkEpSWlmJwcBBhYWEQiUSIj4/Xrlvr7u7WKdg7OzsBAL6+vtrlApGRkTY3ezndRuVdXV3IysqCs7MzxGKxdhaOZVlcuHABxcXF2LlzJ+Li4kz9FPTCRQReUVGBgoICbN++HYmJiRPe9siRI3B2dsb+/fvHvc2TJ09w4sQJfPrppzb3OiRUUBI7xbKsTouksdZy9vf363yPu7v7hLG6q6vrlD9120oEzrIsOjs7tcVjTU0Nenp6AAD+/v46BeTrs0HWyBxncQ8ODqK0tBQSiQQtLS1wd3dHcnIyRCKRXs20+/r6dArMV69eARieEY6KitIWmTNnzrTa2SJDG5V3dHQgKysLHh4eyMzMhIuLC65cuYKioiJs27YNSUlJJhr59Jk7Aj9z5gyeP3+Ojz/+eMK/3dLSUpw9exaHDh0atz9nf38//u///b/YtWuXxRTqxHiooCRkHCqValSLpNfXcqrVau3tHR0dJ4zVPT09x5w5scYI/PU1fbW1tejv7wePx9OeQqMpWtzcbOuIT1NG3AzDoLq6GlKpFFVVVWBZFnPnzoVQKMTs2bMNijllMpnOLnJrXrNqjLO4Ndra2pCTkwNvb2+EhITgp59+wpYtWyASiYw8auMxZwQ+ODiIL7/8EkFBQUhLSxv3taFWq/H5559j7ty52Lx587j39/nnnyM+Ph4pKSkmGS/hDhWUhEwTy7KQyWQTtkiSyWTa2/N4vHFbJHl4eEAikaCoqMgiI3CGYUadQqPZdRwSEqLTRNySxm1spppR7uzshFQqRXFxMXp7e+Hv7w+RSISkpCSDj4Ucj1wu157mU1dXp91V7+bmptOWydJ21RvjLO7XNTc34+9//ztUKhXWrFmDpUuXGmm0pmPOCPzp06c4fvw4Nm/ejDfeeGPc23333Xf4/vvv8fvf/37cHpYFBQUYGBiAWCw2yVgJd6igJMSEFArFqBZJr28eGtkiycHBAWq1Gg4ODpg9ezZCQ0NHFZ7meHNXq9WjTqEZGhqCQCBAWFiYttgICwuzmB30pmSKiFupVKKiogJSqRQ1NTVwdnZGQkICRCIRQkJCzD5LqFAo0NDQoP2dNzQ0QK1Ww9nZedRpPlz1/TTGWdxjuXPnDm7fvg0HBweEhoZi3759nDfH15e5IvALFy6gvLwchw4dGnfd88DAAD777DO8++67WL58+Zi3+eGHH3Dnzh3867/+q0V9UCGGo4KSEA4xDDOqRVJrayuePn2KoaEhODg46Jw8pNnVO9Fazum8EapUKjQ2Nmpnq+rr66FUKuHo6DjqFBp762tozIibZVk0NjZCIpGgrKwMCoUC0dHREAqFiI2NtagiRvOaGHmaz8jXhGZZgzleE8aMuF939+5d3Lx5E++99x4iIyORl5eH8PBw7N2712pe6+aIwIeGhvDVV19h5syZyMjIGPdvoLCwENXV1fjkk0/GLBhramqQk5Mz4VpLYp2ooCTEAo3cBT537ly89dZbo85Z1/zr6+vTaZE01vnqIwtPNzc3nVNoRp4t7ezsrG2YzfVslCUwVsTd39+PkpISSCQStLe3w8vLC0KhEEKh0GiFkalNNmutec0Y++x0U0TcGvfv38e1a9fwzjvv4N133wUwXPDk5+cjOjoae/bssZrXvzki8JcvXyI3Nxfr1q0bs4k5MNyR4PDhw9i5cyfi4+NHfV2hUOCPf/wjNm3aNGF8TqwPFZSEWDB9Chq1Wj1hi6Senh6dFkkjCQQCzJw5E0FBQdq2MjNmzLCamRlTMUbErVar8ezZM0ilUjx9+hR8Ph+xsbEQCoWIjo62+riPYRi0tbVpZ7Vra2shk8nA5/MRHBysndWOiIiY9vIAU0XcAFBUVITLly/jrbfewnvvvacz4/bixQscP34cc+bMwc6dO62mqARMH4FfuXIFEokEv/rVr8Y9vjI7Oxssy+LAgQNjfv2rr75CWFjYhJt3iPWhgpIQCzedXeADAwOjTqEBfm7wrmlxNDg4iN7e3lHnq3t4eEx43KW1n68+EUMj7levXkEikaCkpAQDAwMIDg6GSCRCQkLCuBsVbAHLsmhvb9c5zUfTeisoKEhnJ/lkO/9NGXEDgEQiwYULF7BkyRKsXbt2zN/v06dPcfLkScTGxmL79u1W9QHAlBG4QqHA4cOH4ebmhgMHDoz5c6msrMSpU6fwy1/+cswz5AsLC9HS0oKPPvrIKGMiloEKSkKswGSN0DU9BzWzRZqegzNmzNB5Ix+v5+DI89XHagLf29ur0yJJc776eGs5reF89bFMN+KWy+UoLy+HRCJBY2MjXF1dkZSUBKFQiKCgIBOP2jKxLIuuri6dzgDd3d0AJu5NasqIG/i5X+KCBQuwcePGCT8sVFZWoqCgAElJSXj//fet6kOUKSPw+vp6ZGVlYdWqVWNuvmEYBn/5y18QFRWFrVu3jvp6UVERrly5gv/xP/6HRa0bJoahgpIQK6IpeJydnSEUCtHb24u6ujqdU1FGvlEb6w1krPPVX/83ODiovf1456uPLDwtaXf4dCJulmVRW1sLiUSCiooKqNVqzJ49G0KhEHPnzrX7ZQNj6enp0SkwR56eFBERAW9vb0gkEigUCqNH3MDwyS+nT59GcnIytmzZoleBWFZWhrNnz0IkEmHTpk1WVVQCpovANR9wDx48iMDAwFFfv3fvHm7duoVPP/101PGfzc3N+Otf/4oDBw4gIiLCKOMh3KOCkhALx7IsOjo6tG/CL1++1EaJnp6emDdvnnb9I5fnNg8NDek0fZ/sfHUXFxedWP31Yy89PDzM8uY91Yi7p6dH2zOyq6sLPj4+EAqFSE5OhpeXl8nHa0s057vX1NSgqqpK+7r28PBATEyMdqOPr6+vwa+FJ0+e4NSpU4iLi8O2bdumNIMulUpRWFiIxYsXY926dVZXVJoiAlepVPjrX/8KgUCADz/8cNT9DQ4O4rPPPsOyZcu0G5401Go1/vjHP2LVqlVW0fOT6Ic+QhNiYViWRVtbm85MzsDAAHg8HoKDg5GQkIDw8HBUV1fjp59+wsDAAGbNmsV5Q3FnZ2f4+/vD399/zK9rzld//bhLzZnfPT09UCgU2ttrzlefqEWSobOAIyPuDz74YNyIW6VSoaqqClKpFC9evICjoyPi4+OxdetWhIeHW12BYSk8PDwwa9YslJWVob+/HwsWLEBMTAzq6+tRV1eH0tJSsCwLd3d3nZn3gICAKf3MX7x4gYKCAsybN2/KxSQACIVCqNVqXLp0CQKBACkpKVb1O3dzc8PevXu1EXhdXZ3BEbiDgwO2bt2Kb775Bt999x1Wrlyp83VXV1ckJyejqKgIy5cv1/lbFQgECA4ORlNT07Qfn1gemqEkhGMMw6ClpUWngJTL5eDz+QgNDdU5hcbZ2Vnne23lLHBg9PnqY63l1Od89ZGF53jnq+sbcTc3N0MikaC0tBRyuRzh4eEQiUSIi4sb9bsgUzfZLu6hoaFR7a0YhoGrq6tOs/WgoKBxi0RNG6CYmBjs3r3boJm5Bw8e4OrVq1ixYsWoAspaGDsCv337Nr777jt8+OGHo64/7e3t+OKLL7B161YkJyfrfO3q1at4+vQpfvvb3xr0+MRyUEFJiJmp1Wo0NTVpN9DU1dVBoVDAwcFh1Ck0+ixYt8azwKdrrPPVX/83shH8yPPVNbG6g4MDHj9+jK6uLqSkpGDJkiU6Py+ZTIbS0lJIJBK0trbCw8MDycnJEAqF8PPz4+Jp25zp7uJWKpWjTvNRqVRwcnLSKTBDQkIgEAhQV1eHo0ePIiIiAqmpqUZZ1/rDDz/gxo0bWLlyJVasWGHw/XHBmBG4Wq3GN998A6VSiY8++mjUz/jo0aOQyWQ4ePCgzt9ZWVkZzpw5g//+3//7pLv+iXWggpIQExv5Jqg5hUbzJjjyFJqQkJBpv+FNtgvcXmjOVx/vqMuOjg6dWB0YXofq5eUFBwcH9Pf3azc4RUVFYcGCBYiNjbXKHeuWypi7uFUqFZqamnRO89F8OAsICEBrayv8/f2xf/9+oxYtmqMaU1JSsGzZMqPdrzkZcxd4W1sb/vrXv2Lx4sVYs2aNzteePXuGY8eOjdqA09XVhb/85S9IS0sz2XGRxLyooCTEyMaL6VxcXLSNnqOioiaM6abLliJwYxoZcc+bNw9vv/025HI5mpqa8OzZM7S0tECpVILP54NlWZ3NQ87OzhO2SDLX+eq2wJSNyoHh5SPNzc0oKyvDw4cPtb9LfZaPTAXLsrh16xbu3r2L9evXY/HixUZ8FuZlrAhcM3P7euHIsiy++OILBAYGYteuXTr//X//7/+NxYsXj9q0Q6wTFZSEGGhwcFCniXhzc7NRNhJMlz1F4Pp4fRd3cnIyKisrIZVKUVtbC2dnZyQmJkIkEiE4OHjSFknd3d0YGhrS3v9456uP/GdJLZK4YOpG5SO1tbUhOzsbM2fORHp6Onp7e3VO8xm5wW3kaT5TbTrPsiyuX7+O+/fvY/PmzVZ9jKAxInCGYZCdnY3+/n786le/0nnNP3z4EFevXsUnn3yiMwuan58PHo+HtLQ0oz0Xwh0qKAmZov7+ftTV1WnfpFpbWwEAXl5eOgWkMVqdTBdF4MNGztiuWLEC9fX1KC8vh0KhQHR0NEQiEebPnz/l5spyuXzCFkmvn6+uOaFovBZJ7u7uNlv0m7pR+Ujt7e3Izs6Gp6cnMjIyRhWJr7fgqq2tRW9vLwAgMDBQ5+/X3d190sdjWRZXrlxBUVHRmBtPrIkxIvCOjg58/fXXEIlE2LBhg/a/Dw0N4bPPPsPChQuxevVq7X+/ffs2Hj16hP/23/6bzb7+7QkVlIRMQjPDoVkD2d7eDgCYOXOmzhvQjBkzLO6iaK8R+MiIOyAgAEqlEl1dXfD29oZQKIRQKMSMGTNM9via89XHW8v5+vnqAoFgwlhds8bT2pg64h6ps7MT2dnZcHFxQWZmpt4FYXd3t06B2dXVBQDw8/PTLk+JjIwct8coy7K4ePEipFIpduzYgfj4eKM+L3MzNAJ/+PAh/vGPf2D//v2IiYnR/vdr166huLgYv/vd77Qf4DTrK3/729+abMaamA8VlISMMPK4OM0spOa4OD8/P50C0lqaWNtbBN7e3o7jx4+jq6sLLMtCIBAgLi4OQqEQ0dHRFvHcWZbF4ODgmEdcagrQ8c5XH6/wtKTz1c0ZcQNAd3c3srOz4eDgALFYbFCD/97eXp0CU/MBcsaMGYiKitIWmSM/QDIMg8LCQpSWlmL37t0mLZzNwZAInGVZ5OXloaOjA4cOHdImI5pNOJs2bcKCBQsAAAMDA/g//+f/YMeOHUhISDDZ8yHmQQUlsWssy6K9vV3nDaSvrw8AEBQUpH3ziIiI0GvGw1LZQwTe1taGmzdv4unTpwCGPwAsWbIECQkJVvlcVSrVhO2Renp6dM5Xd3R01JnRfD1W9/LyMsvmIXNG3MBwAZidnQ2WZXHgwAGjf9AbGBjQXhvq6urQ0tICYLg7wMgPmD4+Pjh79iyqqqqQmppq9TuXDYnAu7u78dVXXyEuLg7vv/++9r+fOHECnZ2dOHTokLYY//Of/4z58+dj7dq1JnkexHyooCR2hWGYUafQyGQy8Hg8hISE6OwCneoifWtgaxG4XC5HWVkZJBKJ9tQNHx8fvP/++zZ/RjDLshgYGJgwVn/9fHVPT88J13Ia2qzdnBE3MLyeOTs7G0qlEgcOHDDpMgaNwcFB1NfXa9dQNzU1gWVZuLm5ISIiAp2dnejo6MDevXsxa9Ysk4/H1KYbgUskEly4cAGpqamYN28eAODly5fIzc3VicNPnz6N3t5efPDBByZ7DsQ8qKAkNk2tVqOlpUWnibhcLodAIBjVRsReduJaewTOsixqamogkUhQWVkJlUoFZ2dnKJXKMRuV2zOFQjHqqMuRsfp456tP1CJprJ+tuSNuYDiWzcnJgUwmw4EDB+Dj42PSxxuPQqHQaRPW0NAAhmEAAGFhYYiNjUVkZCSCg4Ottr3UdCJwlmVx/PhxNDU14eOPP4abmxtYlsXhw4fh7e2NvXv3AgB+/PFH3Lp1C//6r/9q0plsYnpUUBKbolKp0NjYqI2n6urqoFQq4eDgoNNEPDQ0dMo7e22JNUbg3d3dKC4uhlQqRXd3N3x9fRESEoKnT5/azIyrub1+vvrItZya/z2yETyfzx9VbLq5uaG8vBz19fVYtGgR1q5da/LCYHBwELm5uejr64NYLLaoE4yUSiVqa2tx+fJl9PT0gM/nQ61Ww9HREREREdplNIYcZMCF6UTgfX19+PLLLzFr1izs3LkTAPD48WNcvHgRv/nNb+Dj44O6ujpkZWXho48+QlBQkDmeCjERKiiJVVMoFKOOYlOr1XB2dtZevEcexUZ0WXoErlQqUVVVBalUiurqajg5OSEuLg5JSUmoqqqa9CxuYhiWZTE0NDRupN7Z2QmZTKbzPW5ubhOu5XRzczNoBnloaAh5eXno7OxEZmYmAgMDDX2aJqFQKJCfn4/W1lasXbtWuxZTc9SqQCDQOWo1PDzcKj7kTjUC1xyxqNl4o1Qq8dlnnyEpKQnr1q2DQqHAH//4R2zcuFG7WYdYJyooiVWRy+U68VJTUxMYhoGrq6vOAvnAwECrjZfMzdIicJZl0dzcDIlEgrKyMsjlckREREAkEiEuLg4DAwPa8a5duxaLFi2iiNvMXo+4U1JSAGDcwnPk+eoODg6Ttkga78OfQqHA0aNH0dbWhszMTAQHB5vl+U7XWMUvwzBobW3VabY+ODgIPp+vs447IiLC4DWtpjKVCJxlWZw+fRovX77Exx9/DA8PD9y8eRMPHz7E73//ezg7O+Prr79GSEgItmzZYuZnQoyJCkpi0WQymc4pNC0tLWBZFh4eHjoFpL+/PxUVBrCECHxgYAClpaWQSCRoa2uDp6cnkpOTIRQK4evrC8DyZ1TtwVR3cY88X328Fkmvz3JqNg+93vz93r17aG9vR3p6OsLDw039VI1CLpcjNzcXPT09EIvF8Pf31/k6y7J49eqVzkbB/v5+8Hg8BAUF6RSYxjyP3FBTicBlMhm+/PJLhIaGIjU1FX19ffj888+xdu1aLFmyBBcvXkRDQwMOHTpk5mdBjIkKSmJR+vr6dE6haWtrAwB4e3uPatFBBaTxmbtgYxgGL168gEQiwZMnTwAA8+fPh1AoxKxZs7SzzCMblVPEzR1T7eJWKpUTtkfq7u7W2Tzk5OQ0Kkof+c/T09OiEoqRG4jEYrH2A9JYWJZFZ2enToHZ09MDAAgICNBptm5Iv01j0TcCf/LkCU6cOIH3338fQqEQp0+fRnNzM379619DIpHg0qVL+Nd//Ve72Rxpi6igJJzq6enRnkJTW1uLzs5OAMOtX14/hYaYhzki8I6ODkilUhQXF6Ovrw+BgYEQCoVISkoaNQszcjwUcXODi13cGmq1GidPnkR1dTVSUlLg7u4+ZtEpl8u138Pj8bTnq4/XIsnchUt/fz9ycnKgUCggFoun9PN7/TQfzXXS19dXu048KipqykclGou+Efj58+dRVVWFQ4cOobe3F3//+9+xd+9eeHt74+uvv4ZYLEZkZCQHz4AYAxWUxGz0+eStKSA9PT05Hq19M0UErlAoUF5eDqlUirq6Ori4uCAxMREikQhBQUFjFokUcXPP3I3KR2IYBmfOnMGTJ0+QmpqK2bNnj3vboaGhUS2S9Dlffby1nKY4X72vrw9ZWVlgWRZisXjaBWBfX5/OdfTVq1cAhpMczUEM5k5y9InA5XI5vvrqK/j5+WHfvn345ptv4OLign379uGPf/wj3n33XSxbtsws4yXGRwUlMZnJ1gaNPIXGktYGkZ8ZWtCxLIv6+npIJBKUl5dDqVQiJiYGIpEI8+fPH7dtCkXclsHcjcpHYhgG58+fR3l5OXbt2mXwY488X328tZz6nK8+8t902v709PQgKysLAoEAYrHYKB+eNWvNNUuFuFxrPlkE/uLFCxw9ehQbNmyAs7Mzzp07h48//hiXL1+Gu7s7du3aZdLxEdOhgpIYjWb34sgCcqzdi+Hh4VQcWJHpROB9fX3anpEdHR2YMWMGhEIhkpOTJ12+QBE397iMuDWPf+HCBRQXF2PHjh2Ij483y2PK5fJxd6r39PSgv79f53vc3d0nbJHk6uo65mu3q6sLWVlZcHZ2hlgsNvqxrlx3w5gsAr906RJKSkpw8OBB5ObmYt68eXByckJFRQU+/fRTo4+HmAcVlGTa1Go1mpubdU6hGRoaGtVfLSwsjBZaWzl9InC1Wo2nT59CIpHg+fPnEAgEiIuLg1AoRFRUlF5FIUXc3OMy4gaGC7srV66gqKgI27ZtQ1JSktkeezIqlUpnRlOf89XHi9Q1cb6HhwcyMzNNetSrPv16o6KiEBwcbLTf9UQRuEKhwFdffQUvLy9ER0fjhx9+wIYNG3DhwgX8y7/8i0VsNiJTRwUl0ZtKpRp1UVIqlXB0dBx1Co01nQBB9DdWwdfa2gqJRILS0lLIZDKEhoZCKBQiISFB75loirgtA5cRNzBchFy7dg0PHjzA5s2b8cYbb5j18Q018nz18dZyjjxfHRjeQOTg4IDZs2fDx8dnVOFpil6UI08Uq62tRX19vc61XLMGMywszOBr+XgReG1tLbKzs/HOO+/g7t27ePPNN/HDDz/onP1NrAsVlGRcr59R29jYqP1Uq+mLFhUVhaCgIDqFxo50dXWhoKAALS0t8PT0RG9vL9zc3LQ9IwMCAqZ8fxRxc4vriFszhps3b2pnqxYtWmTWxzeXkeer9/T0oLGxESUlJXBwcICzs/OozUPOzs6Ttkgy9O9FkzZpTvKpra3Vpk2hoaE6y5WmkzaNF4Ffu3YNjx49wpw5c9DU1ASVSoUFCxZg1apVBj0fwg0qKImWXC7XaSLe1NQElmXh5uams+4mICDAonq8EfNgWRYvX76ERCJBZWWlNtoLCwtDamrqtNaBUcTNPa4jbo07d+7g9u3bWLNmDZYuXWr2x+dSY2Mj8vLyEBQUhL1790543OVY56uPXL851lrOqR7pyDAM2tradE7zkclk4PP5CA4O1mm2rm+SMFYE7ubmhr/+9a/g8Xh49eoVgoOD4ebmhvT09CmNl1gGKiitkFypRp9cBU8XB7g4Tv/CPzAwMGpnIDB8SsXIAtLPz49mjOxYd3c3pFIppFIpenp64Ofnp91gU19fP62CkCJuy8B1xK1x9+5d3Lx5E6tWrcLbb7/NyRi4Vl9fj7y8PISHh2Pv3r0TRs1yuXzcSF3TImkkNze3CVskTXa+OsuyaG9v19lwqXmM10/zmeyD5esRuJubG7755ht4eXkBAAbkChz8+LfwcnU06P2NmB8VlFbkUU0njtytxrcVrWBYgM8DUuICcXB5DBZG+Uz6/X19fTpNxNvb2wEAM2bM0CkgZ86cSQWknVMqlaiqqoJEIsHLly/h5OSE+Ph4iEQihIWF6bw+proLnCJu7llCxK1x//59XLt2DStWrMDKlSs5GYOlqKmpQX5+PqKjo7Fnz55pzxSr1Wr09vaOWss5ckORPuerj/w3ciwsy6Krq0unwOzu7gYA+Pv765zmM1ZbpNcjcAA4+30xylWBqGNmgAVvyu9vhHtUUFqJvPu1+PfCMvD5PKiZn39lAj4PDMPiD1sTkL7k5xMGWJYddbpCV1cXgOHTFUYWkFydrkAsC8uyaGpqgkQiQVlZGYaGhhAZGQmRSITY2NgJ107p2widIm7uWUrEDQBFRUW4fPkyli1bhtWrV9MHCwz3aTx+/DjmzJmDnTt3muR3M9b56q/H6q+fr+7h4TFhrD40NKSzZKqjowMAMHPmzFGnnvF4PJ0IvNljNv7xygs8sGDx83Kq8d7fiGWigtIKPKrpxO7DP2KiXxQPwN9S4zBT9fNJNL29vQCAwMBAnSbi1JKBjDQwMICSkhJIpVK0tbXB09MTQqEQQqEQPj5TmxkYr2CkiNsyWErEDQASiQQXLlzA4sWLsW7dOiomR3j69ClOnjyJ2NhYbN++nZM160qlctIWSQzDaG/v5OQ0qgenQqFAb28v2tvbtYmYl5eXToF5/8Ur/Pr8Cwy/i42NB6Dgo6U0U2nhqKC0Ah8dLcKNyjadmcnX8cAigt+F95xfjlo0bcr+ZsQ6MQyD58+fQyKR4OnTp+DxeJg/fz6EQiFiYmIMegN7PQKfM2cOzpw5QxE3hywp4gaA0tJSnD17FgsWLMDGjRvp9TCGyspKFBQUICkpCe+//77F/YxYlkV/f/+EazlfP1/d1dUVAoEAKpVK2z7ptmoOalVeYCYoKAV8HlJiA/F1+gKTPy8yfVRQWji5Uo24/7iKCWpJLT4PkPzPlfD2oGMMydja29shlUpRXFyM/v5+BAYGQiQSITEx0ajHX46MwPl8Pjw8PLBnzx6KuDlgSRE3AFRUVOD06dNITk7Gli1bLK5QsiRlZWU4e/YsRCIRNm3aZHU/q5Hnq4886lLzv7t6+5EnF4GdoJjU4POAiv+1jjbqWDDqPm3h+uQqvYpJAGBYQMHSHxvRNTQ0hPLyckilUtTX18PFxQWJiYkQiUQIDg42yWOyLKvTS8/a3ghtxciIe8+ePZxG3ADw5MkTnDlzBvHx8di8eTO9LiaRkJAAlUqFwsJCODg4WN3SAGdnZwQEBIzbm7a1dxC5/+8tve6LYYffD6mgtFxUUFo4TxcH8HnQe4bS04V+pWS4oKurq4NUKkV5eTmUSiVmzZqFnTt3Yt68eSY9yWhk5L1+/XrMnj0bZ86cwTfffKP3WeDEMK9H3BkZGZxG3MDwZpOCggLMmzcPW7dupV62ehIKhVCr1bh06RIEAgFSUlJs5u/H29WJ3t9sCP12LJyLowApcYGTrqHUrDGhT2/2rbe3F8XFxZBKpejs7MTMmTOxfPlyJCcnm2U3/8hNOb/4xS+0EfcHH3yAb7/9FlevXkVtbS1tyjEhS4u4geF2OCdOnEBMTAx27NjB+XiszYIFC6BSqXD16lU4OjraTHslF0cBlkd54fuXPRPG3vT+Zh2ooLQCHy6PwfXy1glvwzAsPlwebaYREUuiUqnw9OlTSCQSvHjxAgKBQBspRkZGmmU2Y7Jd3AKBAOvWrUNkZCQKCwtx+PBhahtkApYWcQNAXV0djh07hoiICOzevZuKyWlasmQJVCoVbty4AYFAgBUrVnA9JIOwLIt79+7Bo/EhWEx8dje9v1kH2pRjJY4+qMW/nde/DyWxfS0tLZBIJCgtLcXg4CDCwsIgFAqRkJAAZ2dns41jqo3Kp9oInUzO0nZxazQ2NiI3NxfBwcHYt2/flI8AJKNpjqhMSUnBsmXLuB7OtIxsbO7i4oIn6gDc6gsADwz1obRiVFBakaKaThy5+xLXK1q0J+WsiQvCh8ujqT+XnRgcHERpaSmkUimam5vh7u6O5ORkCIVC+Pv7m308021Urm8jdDI5S4y4geEPPDk5OfD390d6evqEjfGJ/liWxa1bt3D37l2sX78eixcv5npIU6I5elGhUMDJyQksy0IsFuM/T1zB/S5XPBlwofc3K0UFpRUy1lnexDowDIOXL19CKpWisrISDMNg7ty5EIlEmD17NifFg7EaldPJOYaxpEblI7W1tSE7OxszZ87E/v376cOCkbEsi+vXr+P+/fvYvHkz3njjDa6HNClNxH3z5k0EBwdDoVBgcHAQYrEYSqUSf/3rX7Fr1y7EzJlH729WigpKQixUV1cXpFIppFIpent74efnB5FIhKSkJE5POzL2WdwUgU+dpUbcwHCv0+zsbHh4eCAzM5MOVjARlmVx5coVFBUVYevWrUhOTuZ6SOMaGXEvWbIEdXV16OnpQWZmJgICAlBYWIiXL1/it7/9Le3+t2K0KYcQC6JUKlFZWQmJRIKamho4OTkhISEBIpEIoaGhnBda4+3iNsTMmTNpF/gUWGrEDQCdnZ3Izc2Fm5sb9u/fT8WkCfF4PGzYsAFqtVrbpzI+Pp7rYY2iibiVSiV27dqFH3/8EV1dXdpicmBgAKWlpVi5ciUVk1aOCkpCOMayLBobGyGRSFBeXo6hoSFERUVh69atiIuLs4iNDKY+i5t2gevHEndxa3R3dyM3NxdOTk7IyMiAu7s710OyeTweD5s2bYJarcaZM2cgEAgs5jUxMuIOCwvD+++/j4sXL6KtrQ0ZGRkICgoCABQVFYHH41lFbE8mRpE3IRzp7+9HSUkJpFIpXr16BS8vLwiFQgiFQouJLwHjR9xTeTyKwIdZcsQNDPc/zc7OBsuyOHDgALy8vLgekl1hGAZnzpxBVVUVUlNTMWfOHE7HMzLifuutt/D222/j1KlTqK+vR3p6OiIiIgAMb877/PPPMW/ePGzatInTMRPDUUFJiBmp1Wo8f/4cEokEz549A4/Hw/z58yESiRAdHW1xkQ9Xm2ZoF/jPLDniBoY/GGVnZ0OpVOLAgQOYMWMG10OyS2q1GgUFBXj+/DnS0tIQExPDyThGRtzbtm1DTEwMTp48iZcvX2Lfvn2IiorS3rakpATnzp3Dxx9/zEmXCmJcVFASYgavXr2CVCpFcXExBgYGEBwcDKFQiMTERItcZ2bqiFtf9r4L3FJ3cWvIZDLk5ORAJpPhwIED8PGh9i5cUqlUOHnyJGpqapCeno7ISPP1bnw94t65cyfc3d1x+vRpPHv2DHv37sWsWbN0bn/kyBG4uLhg//79ZhsnMR0qKAkxkaGhIZSVlUEqlaKhoQGurq5ITEyESCTSrh+yROaOuKcyHnuJwC094gaGe6Lm5uair68PYrEYfn5+XA+JYHhj3/Hjx9HY2Ij9+/cjLCzM5I/5esS9cuVK8Hg8nDt3DhUVFdizZw/mzp2r8z319fX4+9//jr179476GrFOVFASYkQsy6K2thZSqRTl5eVQq9WYNWsWRCIR5s6dCwcHy94HZ6kzgvYUgVt6xA0Mf1jKy8tDZ2cnMjMzERgYyPWQyAgKhQL5+flobW1FRkaGSf+OX4+458yZA5ZlUVhYiJKSEuzcuRNxcXGjvu/06dNobm7Gr3/9a5v/gGgvqKAkxAh6e3u1PSO7urowc+ZMiEQiJCcnW8UGBUuJuCdjqQWvsVh6xA0MFytHjx5FW1sbMjMzERwczPWQyBhMXfSPFXF7eXmBZVlcunQJjx8/xvbt25GYmDjqe3t7e/H5559j7dq1WLJkiVHHRbhDBSUh06RSqfDkyRNIJBK8ePECjo6OiI+Ph1AoREREhNV86ra0iHsythiBW0PEDQzHqceOHUNTU5PZ4lQyfXK5HLm5uejp6YFYLDbaxpexIm6BQACWZXH16lU8fPgQ77//PoRC4Zjff/PmTTx8+BC///3v4ezsbJQxEe5RQUnIFLW0tEAikaC0tBSDg4MIDw+HUChEfHy81V0crXXGz5YicGuIuIHhD1AnTpxAXV0d9u3bZ9YNH2T6Rm6cEovF8PX1Nej+xoq4geEPRTdu3MC9e/ewceNGLFy4cMzvVyqV+Oyzz5CUlIR169YZNBZiWaigJEQPMpkMpaWlkEqlaGlpgYeHB5KSkiASiaxyM4K1RNyTsdaCWMMaIm5guIA/deoUqqurkZaWhujoaK6HRKagv78fOTk5UCgUEIvF05r9Hi/i1viv//ovfPfdd1i7di3efPPNce/n8ePHuHjxIn7zm99QVwAbQwUlIeNgGAbV1dWQSqWoqqoCy7KYO3cuRCIRZs+ebXE9I/VlbRH3ZKwxAreWiBv4uWn2kydPkJqaitmzZ3M9JDINfX19yMrKAsuyEIvF8Pb21vt7x4u4Nb7//nvcunULq1evxltvvTXu/bAsi6+//hozZszA3r17DXo+xPJQQUnIazo7O7U9I3t7e+Hv7w+RSISkpCSrP07O2mf0xmNNEbi1RNzAcDF5/vx5lJeXY9euXRY7g0r009PTg6ysLAgEAojFYnh6ek76PeNF3Bo//vgjrl+/jnfffRfvvPPOhPf18uVL5ObmYv/+/Zw1XiemQwUlIRjeuVpZWQmJRILa2lo4OzsjISEBIpEIISEhFj/jNRlbibgnY+kFs7VE3MDwbNKFCxdQXFyMHTt2ID4+nushESPo6upCVlYWnJ2dIRaLx/2QPFnEDQAPHz7EP/7xDyxfvhyrVq2a9Dp54sQJdHV14Ve/+pXVX1PJaFRQErvFsiwaGhogkUhQXl4OhUKB6OhoCIVCxMbGwtHRkeshGoWtRdyTscQI3JoibmB4vFeuXEFRURG2bduGpKQkrodEjKijowNZWVnw8PBAZmbmqNO6Jou4gZ/XQr755ptYs2bNpH9jXV1d+Mtf/oJNmzZhwYIFRn9OhHtUUBK709/fj+LiYkilUrS3t8Pb2xtCoRDJyckW/SY/HZY+Y2cqlhSBW1PEDQwXk9euXcODBw+wefNmvPHGG1wPiZhAW1sbcnJy4O3tjYyMDO3fx2QRN/DzGdwLFy7Ehg0b9PrAdu3aNRQXF+N3v/udzXxYJ7qooCR2Qa1W49mzZ5BKpXj69Cn4fD5iY2MhEokQHR3N+QyWsdlLxD0Zrgtqa4q4geFi8ubNm/jhhx+wYcMGLFq0iOshERNqaWlBTk4O/Pz8sG/fPvz0008TRtwAUF5ejjNnziA5ORlbtmzR69o5NDSEzz77DAsXLsTq1atN8VSIBaCCkti0V69eQSKRoKSkBAMDAwgJCYFQKERCQsKomMdW2FvEPRkuInBri7g17ty5g9u3b2PNmjVYunQp18MhZtDY2Ijc3FwIBAIMDg6OG3EDQFVVFQoKChAfH4+tW7fq3eni4cOHuHr1Kj755JMp7S4n1sWyDxYmZBrkcjnKy8shkUjQ2NgIV1dXbc9IWz9zeOSM3C9+8Qu7ibgnMnPmTHzwwQf49ttvcfXqVdTW1pp0xtbaIm6Nu3fv4vbt21i1ahUVk3aEYRg4ODhAJpMhKCgI77777piv12fPnqGgoADz58+fUjHJsqx26QkVk7aNZiiJTWBZFjU1NZBKpaioqIBarcbs2bMhFAoxb948q3hDNwRF3PoxdQRubRG3xv3793Ht2jWsWLECK1eu5Ho4xAxe38X95ptv4ty5c4iOjsaePXt0rpnV1dU4fvw4Zs2ahV27dk3pevrs2TMcO3YMBw4cQEREhCmeCrEQVFASq9bT0wOpVAqpVIru7m74+Phoe0aOtf7HFlHEPTWmiMCtNeIGgKKiIly+fBnLli3D6tWr6bVjB8bbxf3ixQscP34cc+bMwc6dOyEQCFBbW4v8/HxERkZiz549cHCYWrB59OhRyGQyHDx4kF5bNo4KSmJ1VCoVqqqqIJFIUF1dDUdHR8THx0MkEiE8PNyuLlpcbzqxVsbcBW6tETcASCQSXLhwAYsXL8a6devs6m/HXk22i/vp06c4efIk4uLisGjRIuTn5yMkJARpaWlT3p3d3t6OL774Alu3bkVycrIxnwaxQFRQEqvAsixaWlogkUhQWloKuVyOiIgICIVCxMfHw8nJieshmhVF3MZhaEFurRE3AJSWluLs2bNYsGABNm7cSMWkjdOnUblGZWUlCgoKwOPxEBoaivT09GldYy9fvozKykp8+umnU57ZJNaHfsPEoslkMpSUlEAqlaK1tRUeHh5YsGABRCIRfH19uR4eJ0ZGtuvXr6eI2wCxsbEICgrC6dOn8c033+gdgb8ecWdkZFhNxA0AFRUVOHfuHIRCIRWTdkCfRuUj+fj4wMHBAUqlEr6+vtPqGzk4OIji4mIsW7aMikk7Qb9lYnEYhsGLFy8glUpRVVUFAJg3bx7ee+89zJo1S+/dhbaIdnEb31R3gVtzxA0AT548wZkzZxAfH4/NmzdTMWnjRkbcaWlpYzYqH+nVq1fIzc2Fr68v3njjDVy5cgVOTk5TXhIhkUjAMAwWLlxo6FMgVoIKSmIxOjs7IZFIUFxcjL6+PgQEBCAlJQWJiYnjnjdrLyjiNi2BQIB169YhMjIShYWFOHz48JgR+MiIe8+ePVYVcQPAixcvUFBQgHnz5k2p9QuxPlOJuDU6OzuRm5sLDw8P7N+/H25ubuDz+bh06RIcHBz03rTFMAwePnyIhIQEeHh4GOspEQtHBSXhlEKhQEVFBSQSCerq6uDs7IzExESIRCIEBwfT7Ako4jan8SJwAFYdcQNATU0NTpw4gZiYGOzYscOqZlXJ1Ew14gaA7u5u5OTkwNnZWVtMAsCCBQugUqlw9epVODg46NVW6smTJ+jp6cGSJUuM8nyIdaBNOcTsWJZFQ0MDJBIJysvLoVAoEBMTA6FQiPnz59M5ryPQLm5ujNwFPnfuXLAsi2fPnlllxA0AdXV1OHr0KMLDw7F3715a02bD9DmL+3W9vb3IysoCj8eDWCwecybzhx9+wI0bN7Bq1Sq8/fbbE95fdnY2WJbFgQMHpv08iPWhqwoxm76+PhQXF0MqlaKjowPe3t5YunQphEIhZsyYwfXwLApF3NzSROCenp64ceMGeDweUlJSsGzZMq6HNmWNjY3a1i+pqalUTNqo6UTcwPB1OScnByzLjltMAsBbb70FlUqFW7duwcHBYdzTlFpaWlBbW4udO3ca9HyI9aErCzEptVqNp0+fQiqV4tmzZxAIBIiNjcXGjRsRFRVF0e0YKOLmnmYX961btxAQEAAej4ebN29CIBCY5SxwY2lpacHRo0cRGBg4rT6CxDpMJ+IGgIGBAeTl5UGpVEIsFk96NOKKFSugUqlw/fp17d/C6x48eAAvLy/ExsZO+/kQ60QFJTGJtrY2SCQSlJSUQCaTISQkBBs2bEBCQgLNtE2AdnFzb6xd3ADMdha4sbS1tSE3Nxc+Pj5IS0uzu16t9mKqu7g1BgcHkZeXB5lMBrFYDB8fn0m/h8fjYdWqVVCpVPjHP/4BBwcHvPHGG9qvDwwMoLS0FO+++y5t+LJDVFASo5HL5SgrK4NEIkFTUxPc3NyQlJQEkUiEgIAArodn0SjitgwT7eLWZxe4pWhvb0dubi68vLyQnp5OryUbNN2IGxi+Vh89ehR9fX3IzMyEn5+f3o/L4/GwZs0aqFQqXLx4EQ4ODkhKSgIA/PTTT+DxeFiwYMG0nhOxblRQEoOwLIuXL19CKpWisrISarUac+bMwe7duzF37lyr27zABYq4uadvo/LpNkI3J03rFzc3N+zfvx+urq5cD4kY2XQjbgAYGhpCfn4+Ojs7kZmZOa0P+zweDxs2bIBarcb58+chEAgwf/58PHr0CElJSfSas1O0y5tMS3d3N6RSKaRSKXp6euDr6wuRSISkpCR4enpyPTyrQbu4uTedRuXGPAvcmLq7u5GdnQ0HBweIxWLqAWiDprOLW0OpVCI/Px/Nzc3IyMhAaGioQWNhGAaFhYUoKyvD4sWLcf/+fRw6dIgSKTtFBSXRm1KpRFVVFaRSKaqrq+Hk5IT4+HiIRCKEhYVZ1CyNpaOI2zIYeha3JX0g6O3t1WnXom/8SayDIRE3MHzNOX78OOrr65Geno6IiAijjIthGJw5cwYVFRUICgrCRx99ZJT7JdaHCkoyIZZl0dzcDIlEgrKyMsjlckRGRkIoFCIuLo4W+k/DyIh77dq1FHFz4PWIe+fOndNuVD7y98lVBN7f34/s7GwolUocOHCA2nDZGEMibmB4Rv3kyZN4+fIl9u3bh6ioKKOOr66uDllZWRAIBEhLS0NMTIxR759YByooyZg0u/UkEgna2trg6emJ5ORkCIVC+Pr6cj08q2VJM1r2yhRncXMZgctkMuTk5EAmk+HAgQN67dYl1sOQiBsYfm2ePn0az549w969ezFr1iyjj/HMmTNobGyEj48P6urqsG/fPkRGRhr9cYhlo4LShsmVavTJVfB0cYCL4+RvmAzD4Pnz55BKpXjy5AkAYP78+RAKhZg1axa1gTAARdyWwdCIezLm/sAwODiI3Nxc9PX1QSwWT2m3LrFshkbcwPA1/dy5c6ioqMCePXswd+5co4+zt7cXf/7zn7FmzRq88cYbOH78OBobG7F//36EhYVpbzfV9yNifaigtEGPajpx5G41vq1oBcMCfB6QEheIg8tjsDBq9OxFR0cHJBIJiouL0d/fj8DAQIhEIiQmJmrPcyXTRxE394wZcU/GXBH40NAQ8vLytLt1AwMDjf4YhBuGRtzA8Gu+sLAQJSUl2LlzJ+Li4kwy1ps3b+Lhw4f4/e9/D2dnZygUCuTn56O1tRWZmZloGHKe0vsRsV5UUNqYvPu1+PfCMvD5PKiZn3+1Aj4PDMPiD1sTkL4kEkNDQ6ioqIBUKkVdXR1cXFyQmJgIkUiEoKAgKniMhCJu7pki4p6MqSNwhUKBo0ePoq2tDZmZmQgODjbafRNuGRpxA8PF5KVLl/D48WNs374diYmJJhjp8EbNzz77DImJiVi/fr32v2s+7HzXzOI7WQgEk7wfEdtABaUNeVTTid2Hf8Rkv9BP4lUYrCuHUqnErFmzIBQKMX/+fDrj14go4rYMpo64J2OKDxRKpRLHjh1DU1PTqFiRWC9jRNya+7l69SoePnyI999/H0Kh0PiD/afHjx/j4sWL+M1vfjNq7e4PT1uwL6sIwPiTEzwABR8tpZlKG0EVhA05crd61Mzk63hgcPm5HP+28i0IhcJJz24lU0eNyrmnb6NyUzN2I3SVSoWTJ0+isbER+/bto2LSRhgj4gaGX/c3btzAw4cPsXHjRpMWk5q/sblz5465ESz3YQMEfP6E70d8Pg9H7r6kgtJGUEFpI+RKtXaNykRY8FGt8MCSZctpYbQJ0Fnc3OMi4p7IzJkz8cEHHxh8FrharUZBQQFqa2uRlpZGu2htxHTP4h7L7du3ce/ePaxduxYLFy404ihHq62tRWtrK9asWTPqa/q+H6kZFtcrWiBXqun9yAZQQWkj+uSqSf94NRh2+Pb0B2w8FHFbhonO4uaSQCAw6CxwhmFw9uxZvHjxAqmpqYiOjjbxiImpGSvi1vj+++/x3XffYfXq1XjzzTeNONKxPXjwAP7+/mO+Fun9yD5RQWkjPF0cwOdBrz9iPm/49sQ4KOLmnqVE3JOZTgTOMAzOnz+Pqqoq7Nq1C7NnzzbjiIkpGCvi1vjxxx9x69YtvPvuu3jrrbeMONKxdXV1oaqqCps2bRrztUvvR/aJfos2wsVRgJS4QNyobJtwzYqAz0NKbCB9GjQSiri5Z2kR92SmEoGzLIuLFy+irKwMO3bssJgZVzJ9xoy4AWg/SC1fvhwrVqww0ignf0xXV1ckJSWN+XV6P7JPVFDakA+Xx+B6eeuEt2EYFh8up7jMUBRxWwZLjbgno08EzrIsrly5AqlUim3btiE+Pp7DERNDGTviBoZ3Wf/jH//Am2++iVWrVpklGVEoFJBIJFi4cCEcHR3HvR29H9kfahtkY44+qMW/nZ+8DyWZPmpUzj1zNio3tbEaoQPAtWvX8ODBA2zevBlvvPEGx6MkhjB2xA0AJSUlOHfuHBYuXIgNGzaY7Rr08OFDXL16FZ988smkXULo/ci+UEFpg4pqOnHk7ktcr2jRnkywJi4IHy6PpvYMBqJG5dyztohbHyMboc+fPx/e3t548OABNmzYgEWLFnE9PGIAYzQqf115eTnOnDmD5ORkbNmyxWzFJMuy+OKLLxAYGIhdu3bp9T30fmQ/qKC0YXR2qvFQxG0ZuG5UbmqVlZU4c+YM1Go1lixZgnXr1nE9JDJNpoi4AaCqqgoFBQWIj4/H1q1bwefzjTBa/Tx79gzHjh3DgQMHEBERMaXvpfcj20drKG2Yi6OA/nCNgHZxc89adnEbqqOjA2q1Gp6ennj06BFmzpxpsrPAiemYIuIGhgu6goICzJ8/3+zFJDDcKig4OBjh4eFT/l56P7J9VFASMgHaxc09W4y4x3L//n3cvHkTK1aswIoVKwxuhE64Yexd3BrV1dU4deoU5syZg+3bt5u9mGxvb8eLFy+wdetW+oBDxkSRNyFjoIjbMth6xK1RVFSEy5cvY9myZVi9erX2DZvW7FoPU0XcwPCpNPn5+YiMjMSePXvg4GD+uaDLly+jsrISn376KSePTywfvSoIeQ1F3Nyzl4gbACQSCS5fvozFixfrFJOA8c8CJ6ZhqogbABoaGnDs2DGEhoZi9+7dnBRzcrkcxcXFWLZsGRWTZFz0yiBkBIq4uWcvETcAlJaW4sKFC1iwYAHWrVs3ZqForLPAiWmYKuIGgObmZhw9ehRBQUHYu3fvhH0fTenx48dQq9UmPx+cWDeKvAkBRdyWwl4ibgCoqKjA6dOnp9T6hSJwy2HKiBsAWltbkZOTAx8fH+zfvx/Ozs5Gu++pYBgG//mf/4mIiAhs27aNkzEQ60AFJbF71Kice7bUqFwfT548walTpxAXF4dt27ZNaYPFWI3Q6fVqXqaMuAHg1atXyM7OhpeXFzIyMuDq6mq0+56qyspKnDp1CgcPHqQPMGRCVFASu0YzPtyzp4gbAF68eIHjx49j7ty52LFjx7Se68hG6DSjbl6maFQ+UmdnJ7KysuDm5obMzEy4ubkZ9f6nKjs7GwzD4IMPPuB0HMTyUUFJ7BJF3JbBniJuAKipqUF+fj6io6OxZ88egwtn+kBkPqaOuAGgu7sbWVlZcHR0hFgshoeHh1Hvf6paWlpw+PBh7Ny5k86SJ5OigpLYHYq4uWdvETcA1NXV4ejRowgPD8fevXuNtluWInDTM3XEDQC9vb3IysoCj8eDWCw2erE6HYWFhaiursYnn3xi9r6XxPpQQUnsCs3ocM/eIm5geCY2NzcXwcHB2Ldvn9F361IEbjqmjrgBoK+vD9nZ2VCr1Thw4AC8vb2N/hhTNTAwgM8++wzvvvsuli9fzvVwiBWggpLYBYq4LYO9RdzAcGyYk5MDf39/pKenw8nJyWSPRR+YjMccETcwXLjl5ORALpdDLBbDx8fH6I8xHd999x2+//57/O53v+N8HSexDlRQEptHETf37DHiBoC2tjZkZ2dj5syZ2L9/v1k+xFAEbjhzRNwAMDg4iJycHPT390MsFsPPz8/ojzEdarUan3/+OebOnYvNmzdzPRxiJaixObFp1Kice/YYcQPDZx/n5ubCy8sL6enpZpsRp0bohjFlo/KR5HI5jh49ir6+PmRmZlpMMQkM90jt7+/HkiVLuB4KsSI0Q0lsEkXclsEeI25guPVLdnY2XFxckJmZCXd3d07GQRG4/swVcQPA0NAQjh49ivb2dmRmZiIoKMgkjzNdR44cgZOTEzIyMrgeCrEiVFASm0MRN/fsNeIGhlu/ZGdnw8HBwSJav1AEPjlzRdwAoFQqkZ+fj+bmZmRkZCA0NNQkjzNdDQ0N+Oabb5Camop58+ZxPRxiRaigJDaFZmS4Z68RNzDc+iU7Oxssy+LAgQMW0foFoF3gEzHHLm4NlUqF48ePo76+Hunp6YiIiDDZY03XmTNn0NjYiN/85jf0wYNMCRWUxCZQxG0Z7DXiBoD+/n5kZ2dDqVTiwIEDmDFjBtdDGoU+cP3MnBE3MFzUnzx5Ei9fvsS+ffsQFRVlsseart7eXvz5z39GSkoK3nzzTa6HQ6wMbcohVm9kpLd+/XqKuDnwesSdkZFhNxE3MByZ5uXlYWhoyGKLSQCIjY1FUFAQTp8+jW+++cZuI3BzRtzAcDF5+vRpVFdXY+/evRZZTAJAUVERHBwcIBKJuB4KsUI0Q0msGs24cM+eI25guPVLbm4u+vr6LKr1y0TsOQI3Z8QNAAzD4Ny5c6ioqMCePXswd+5ckz7edKlUKnz22WdISEjA+vXruR4OsUJUUBKrRBG3ZbDniBsY3q2bl5eHzs5OZGZmIjAwkOshTYk9fSAzd8SteczCwkKUlJRg586diIuLM+njGUIikeDChQv4zW9+YzHN1Yl1oYKSWB3axc09e97FraFQKHD06FG0tbUhMzMTwcHBXA9pWuxhF7i5I25g+G/k0qVLePz4MbZv347ExESTPp4hWJbF4cOH4eXlhbS0NK6HQ6wUraEkVoUalXPP3iNuYLj1y/Hjx9Ha2or9+/dbbTEJ2H4jdHM1Kh+JZVlcvXoVjx8/xvvvv2/RxSQA1NbWorW1FSkpKVwPhVgxmqEkVoEibstg7xE3MPxaPHHiBOrq6rBv3z5ERkZyPSSjsaUInIuIW/O4N27cwL1797Bx40YsXLjQ5I9pqJMnT6KjowOHDh2yudlpYj40Q0ksHu3i5p697+LWUKvVKCgoQG1tLdLS0myqmARsZxc4FxG3xu3bt3Hv3j2sXbvWKorJ7u5uPHnyBBs2bLC63zOxLFRQEotGETf3KOIexjAMzp49ixcvXiA1NRXR0dFcD8kkrD0C5yLi1vj+++/x3XffYfXq1VbTx/Hhw4dwdnZGcnIy10MhVo4ib2KRKOK2DBRxD2MYBufPn0d5eTl27dplNz8Ha4rAuYq4NX788Udcv34d7777Lt555x2zPa4hFAoF/vSnP2HBggW0fpIYjGYoicWhiJt7FHH/jGVZXLx4EWVlZdixY4fdFJOA9UTgXEbcALR/K8uXL8eKFSvM9riGKi4uhkKhwOLFi7keCrEBNENJLIo1zYjYKoq4f8ayLK5cuYKioiJs27YNSUlJXA+JE5bcCN3cjcpf9/jxY1y8eBFvvvkm1qxZY3HF9nhYlsUXX3yBwMBA7Nq1i+vhEBtABSWxCBRxWwaKuH/GsiyuXbuGBw8eYPPmzXjjjTe4HhLnLOkDH9cRNwCUlJTg3LlzWLhwodVtann+/Dny8/Nx4MABREREcD0cYgOooCSco0bl3KNG5bpYlsXNmzfxww8/YMOGDVi0aBHXQ7IYltAIneuIGwDKy8tx5swZJCcnY8uWLVZ3zcrPz8fAwAAOHjxodWMnlokKSsIpS5rxsFcUcY92584d3L59G2vWrMHSpUu5Ho7F4TIC5zriBoCqqioUFBQgPj4eW7duBZ/PN/sYDNHe3o4vvvgCW7dupd3dxGiooCScoIjbMlDEPdrdu3dx8+ZNrFq1Cm+//TbXw7Fo5vxAaAkRNwA8e/YMJ06cwPz587Fjxw6rKyYB4PLly6isrMSnn34KBwfam0uMg15JxGTkSjX65Cp4ujjAxfHnGS/axc092sU9tvv37+PmzZtYsWIFFZN6MNcucEuIuAGguroap06dwpw5c7B9+3arKiY112NHqFBcXIylS5dSMUmMimYoidE9qunEkbvV+LaiFQwL8HlASlwgDi6PgftgK0XcHKOIe2xFRUW4fPkyli1bhtWrV9OHnCkwZQRuCRE3MHzedX5+PiIjI7Fnzx6rKcZevx7zAETwu/CH9JVYERvK9fCIDaGCkhhV3v1a/HthGfh8HtTMzy8twT///1KHWmxL9KOImyMUcY9NIpHgwoULWLx4MdatW0fF5DQZMwK3lIgbABoaGpCXl4eQkBCkpaXB0dGRk3FM1XjXYz5YsODhD1sTkL7Eto4PJdyhgpIYzaOaTuw+/CMme0EVfPQmFkX5mmVMZBjt4h5faWkpzp49iwULFmDjxo1UTBrIGLvALSXiBoDm5mbk5OQgMDAQ+/btg5OTEyfjmCp9rsc8AAUfLcXCKB9zDYvYMOuYsydW4cjd6lGfhF8n4PPwzd0aKijNiCLu8VVUVODcuXNITk6mYtJIDD0LnMuzuF/X2tqKvLw8+Pn5IS0tzWqKSUC/6zGfz8ORuy+poCRGQTOUxCjkSjXi/uMqJrh2afF5QMX/WqezUYeYBkXc43v69ClOnjyJuLg4bNu2zao2WFiLqUTglhRxA8CrV6+QnZ0NLy8vZGRkwNXVlbOxTBVdjwkXaIaSGEWfXKXXxQsAGHb49nQBMx3axT2xFy9e4NSpU5g7d65V9hG0FvruArekiBsAOjs7kZubCw8PD+zfv9+qikmArseEG1RQEqPwdHEAnwe9PxF7utBLz1Qo4p5YTU0NTpw4gZiYGOzcuZN+NiY2WQRuSRE3AHR3dyMnJwfOzs7Yv38/3NzcOB3PdND1mHCBXkXEKFwcBUiJC8SNyrZJ11CmxAbSp2ETGRlx79mzhyLu19TX1+PYsWOIiIjA7t27qZg0E4FAgHXr1iEyMhKFhYU4fPgwdu7ciZqaGouJuAGgt7cXOTk5EAgEyMjIgIeHB6fjmS66HhMu0BpKYjS0q5A7tIt7co2NjcjLy0NQUBD27dtnNa1fbE1XVxdOnTqFlpYWAMCyZcuwatUqzov7vr4+ZGdnQ61WQywWY8aMGZyOx1B0PSbmRguHiNEsivLBH7YmgIfhT74jCfg88AD8YWsCXbyMTC6X49SpU7h69SoWLVqEDz74gIrJ17S0tODo0aPw9/fH3r17qZjkUH9/PwYGBrQFZFdXF5RKJadjGhgYQF5eHpRKJTIyMqy+mAToekzMj2YoidEV1XTiyN2XuF7Roj0pZ01cED5cHk0XLyOjXdyTa2trQ05ODmbMmIH9+/dTQ32OjLWLu7GxkfOTswYHB5GTk4P+/n6IxWL4+fmZfQymRNdjYi5UUBKTGe8sb2I4irj109HRgaysLHh4eCAzM9Pqduvaiol2cRujEfp0yeVy5OXloaurC2KxGAEBAWZ5XC7Q9ZiYGhWUhFgZ2sWtn66uLmRlZcHFxQWZmZlwd3fnekh2SZ+zuE15Fvh4hoaGcPToUbS3tyMjIwPBwcEmfTxCbB0VlIRYEYq49dPT04OsrCwIBAKIxWJ4enpyPSS7M51G5cY8C3wiSqUS+fn5aG5uRkZGBkJDQ03yOITYEyooCbECFHHrr6+vD1lZWWBZFgcOHOC8FY09MqRRuakjcJVKhePHj6O+vh7p6emIiIgw2n0TYs+ooCTEwlHErb/+/n7k5ORAoVDgwIEDNrFb19roE3FPxlQRuFqtxsmTJ/Hy5UukpaUhOjra4PskhAyjgpIQC0YRt/5kMhlycnIgk8kgFovh6+vL9ZDsiinO4jZmBK5Wq3H69Gk8e/YMqampmD17tkFjI4ToooKSEAtEEffUyOVy5OTkoLe3F2KxGP7+/lwPya6Y8ixuY0TgDMPg3LlzqKiowO7duzFv3jyjjI0Q8jMqKAmxMBRxT83Q0BDy8vLQ2dmJzMxMBAYGcj0ku2KMiHsyhkTgLMuisLAQJSUl2LlzJ+Li4ow+PkIIFZSEWBSKuKdGoVAgPz8fra2tyMjI4KQxtr0yRcQ9malG4CzL4tKlS3j8+DG2b9+OxMREk46PEHtGBSUhFoAi7qlTKpU4fvw4GhsbsX//foSFhXE9JLthyoh7MvpG4CzL4urVq3j48CG2bNkCkUhklvERYq+ooCSEYxRxT51KpcLJkydRW1uLffv2ITIykush2Q1zRNyTmSwCZ1kWN27cwL1797Bx40YsXLjQ7GMkxN5QQUkIhyjinjq1Wo2CggI8f/4caWlpiImJ4XpIdoGLiHsy40Xg//Vf/4XvvvsOa9euxZtvvsnpGAmxF1RQEsIBirinh2EYnDlzBlVVVUhNTeVkdswecRlxT+b1CHxoaAj/9V//hffeew/Lly/neniE2A0qKAkxM4q4p4dhGJw/fx7l5eXYtWsXzeaaiSVE3JMZGYEDwFtvvYXVq1dzPCpC7IsD1wMgxJ6MjLj37NlDRZGeNLt1y8rKsGPHDvq5mYElRtzjEQgE8PHx0f7v8vJyxMXF0a5/QsyIZigJMQOKuKePZVlcuXIFRUVF2LZtG5KSkrgeks2z5Ih7LI8fP8bFixexZMkSLF68GGfOnDHZWeCEkLFRQUmIiVHEPX0sy+L69eu4f/8+Nm/ejDfeeIPrIdk8a4i4RyopKcG5c+ewcOFCbNiwATwez2RngRNCxkcFJSEmRLu4p49lWdy6dQt3797F+vXrsXjxYq6HZNOsKeLWKC8vx5kzZ5CcnIwtW7aMmok05lnghJCJUUFJiAlQxG24O3fu4Pbt21izZg2WLl3K9XBsmrVF3ABQVVWFgoICxMfHY+vWreDz+WPezhhngRNCJkcFJSFGRhG34X744QfcuHEDq1atwttvv831cGyatUXcAPDs2TOcOHEC8+bNw86dO8ctJjUoAifE9KigJMSIKOI23IMHD3D16lWsWLECK1eu5Ho4NssaI24AqK6uxvHjxxETE4Pdu3dP6cMaReCEmA4VlIQYAUXcxlFUVITLly9j2bJlWL16NUWTJmKNETcA1NbWIj8/HxEREUhNTYWDw9Q731EETohpUEFJiIEo4jYOqVSKwsJCLF68GOvWraM3eROxxogbABoaGpCXl4eQkBCkpaXB0dFx2vdFETghxkcFJSEGoIjbOEpLS3Hu3DmIRCJs2rSJikkTsNaIGwCam5uRk5ODgIAApKenw8nJySj3SxE4IcZDBSUh00ARt/FUVlaioKAASUlJeP/996mYNAFrjbgBoLW1FTk5OfDx8cH+/fvh7Oxs1PunCJwQ46CCkpBxyJVq9MlV8HRxgIvjz2++FHEbz9OnT3Hy5EnExcVh27Ztk+7WJVNnrRE3ALS3tyM7Oxuenp7IyMiAq6urSR5Hnwh8vOsBIWQYFZSEvOZRTSeO3K3GtxWtYFiAzwNS4gJxcHkMgh0HKeI2khcvXuD48eOYM2cOdu7cSUW5kVlzxA0AnZ2dyMrKgqurK8RiMdzc3Ez+mGNF4BNdDxZG+Zh8TIRYCyooCRkh734t/r2wDHw+D2rm5z8NwT///zLHOqwMd6CI20A1NTXIz89HdHQ09uzZQ8WkkVlzxA0A3d3dyM7OhoODA8RiMTw8PMz22CMjcMx5G38vHhjzesAwLP6wNQHpSyLNNjZCLBkVlIT806OaTuw+/CMm+4M4eXAJlsT4mWVMtqi+vh55eXkIDw/H3r17p9X6hYzPmiNuAOjt7UV2djYAQCwWczKrqlar8dXp6/g/UjWA8ddT8gAUfLSUZioJAUALlgj5pyN3q8HnT7wYX8DnIeterZlGZHsaGxuRn5+PkJCQafcRJGNjWRY//PADsrKy4O3tjV/96ldWV0z29/cjNzcXDMMgIyODs4heIBCgVOkPwSSbc/h8Ho7cfWmmURFi2ehqTgiGF9xr1khNRM2wuF7RArlSTQvzp6ilpQVHjx6Fv78/9u7da1AfQaLL2iNuABgYGEBubi4UCgXEYjFmzJjB2VjoekDI1FFBSQiAPrlq0jcPDYYdvj29geivra0NeXl58PHxwb59+4ze+sWejYy409LSrG5WEgAGBwdx9OhRyGQyiMVi+PhwGyHT9YCQqaOCkhAAni4O4POg15sInzd8e6Kfjo4O5ObmwtPTE+np6XQiiZFY+y5uDblcjqNHj6KnpwdisRh+ftyvT6brASFTR2soCQHg4ihASlwgBHqsoVwTF0SzEXrq6upCTk4O3NzcsH//fpP1EbQ3MpkMx48fx40bN7Bs2TJkZmZaZTGpUChw7NgxdHZ2Yv/+/QgICOB6SADoekDIdFBBScg/fbg8BswkUxIMw+LD5dFmGpF16+npQU5ODhwdHbF//364u7tzPSSbUF9fj8OHD6OhoQFpaWlYvXq11a2XBAClUonjx4+jtbUV6enpCA4O5npIOuh6QMjUUEFJyD8tivLBH7YmgAeMmpkQ8HngAfjD1gRqEaKHvr4+5OTkgMfjITMzE56enlwPyerZwi5uDZVKhZMnT6KxsRH79u1DaGgo10Maha4HhEwN9aEk5DVFNZ04cvclrle0aE/GWBMXhA+XR9Obhx76+/uRk5MDhUKBAwcOcLpb11bYwi5uDbVajVOnTqG6uhppaWmIjrbsGT66HhCiHyooCRkHnd07dTKZDDk5Odrdur6+vlwPyepZe6PykRiGwenTp/H06VOkpqZi9uzZXA9Jb3Q9IGRiVFASQoxCLpcjJycHvb29EIvF8Pf353pIVs1WdnFrMAyDc+fOoaKiArt378a8efO4HhIhxIio1wEhxGBDQ0Pa1i+ZmZlUTBrIliJuYLg4vnjxIsrLy7Fz504qJgmxQVRQEkIMomn90t7ejoyMDAQGBnI9JKtmC43KR2JZFpcvX4ZUKsX27dsRFxfH9ZAIISZABSUhZNqUSiVOnDiBlpYW7N+/HyEhIVwPyWrZWsQNDD+na9eu4aeffsKWLVuQmJjI9ZAIISZCBSUhZFpUKhVOnTqFhoYG7Nu3D2FhYVwPyWrZWsQNDBeTN27cwIMHD7Bx40aIRCKuh0QIMSEqKAkhU6ZWq3H69Gm8fPkSaWlpiIyM5HpIVsvWIm6NO3fu4N69e1i7di0WLlzI9XAIISZGBSUhZEoYhsHZs2fx7NkzpKamIiYmhushWSVbjLg1vv/+e9y5cwfvvfce3nzzTa6HQwgxAyooCSF6YxgG58+fR1VVFXbt2mUzs2nmZosRt8aPP/6IW7du4Z133sHy5cu5Hg4hxEyooCSE6IVlWVy6dAllZWXYsWMH5s+fz/WQrJKtRtwA8OjRI1y/fh1vvfUW3nnnHa6HQwgxIyooCSGTYlkWV65cgUQiwbZt2xAfH8/1kKyOLUfcACCRSHDlyhUsWbIE7733Hng83uTfRAixGVRQEkJ0vH7EHMuyuH79OoqKirB582YkJSVxPUSrY0sR91hHEJaUlODChQtYuHAh1q5dS8UkIXaIjl4khAAAHtV04sjdanxb0QqGBfg8ICU2ECK3LrSW3cP69euxePFirodpdWzlLO4xXx9xgVgdykPl95eRnJyMLVu2UDFJiJ2igpIQgrz7tfj3wjLw+TyomZ8vCXwewLAsPkhyx7/vXcnhCK2PLUXc470+BDxAzbLYGanC/++XW8Dn8zkcJSGES1RQEmLnHtV0YvfhHzHRhYAHoOCjpVgY5WOuYVk1W4q46fVBCNEHraEkxM4duVs9aubpdXw+D0fuvqSCQQ+2toubXh+EEH1QQUmIHZMr1do1cRNRMyyuV7RArlRrN2IQXbYUcWvQ64MQoi8qKAn5/7d3/6pNxXEYh79JFLqUgoO6iNqtoeAg4hIQB517AbpV7E049SYchCL0ApyLox0EV3VUN//h0qWiTRysmtA0ib5Qted5tpYznOE3fHpO8rbBdna/To2FH/qD79cLhoOO0yvuYc4HMCtBCQ02P3di/4s3069tt75fz6jj9op7mPMBzMpX8qDB5k526kb3THXak6deOu1W3eyebeTTp90ve/Vh53Ptftkb+f1gMKjt7e3a2NiohYWFWltbO1YxWeV8ALPz5yQ03Gpvsbaev5t4Tb8/qNXexSO6o3/DYbuLd3qL1T09dyxfcY/jfACzMBsE1ObTN3Xv0ZidwXar+v1Bra8s162r5//iHR6tQ3cX93++Pv+ulk58/K+Hyn+H8wFMIyiBqqp69vpTPXjyqrZevP35RO5m92yt9i42ag5mlt3FqkE9vH2prnXPHdFd/X3OBzCJoARGjPtfzU1yd/NZPX75fuLuYqfdqhtLZ+r+rctHeGf/hqafD2A8n6EERsyd7DQ2FOwuTtfk8wEczre8Afb9ye4iAIIS4Kcfu4uzsLsI8IugBNhndxHgzwhKgCGrvcXqT3nvbXcRYJSgBBhy5cKpWl9ZrlbVgSeVnXarWlW1vrJsKgdgiNkggDHsLgLMTlACTGB3EWA6QQkAQMRnKAEAiAhKAAAighIAgIigBAAgIigBAIgISgAAIoISAICIoAQAICIoAQCICEoAACKCEgCAiKAEACAiKAEAiAhKAAAighIAgIigBAAgIigBAIgISgAAIoISAICIoAQAICIoAQCICEoAACKCEgCAiKAEACAiKAEAiAhKAAAighIAgIigBAAgIigBAIgISgAAIoISAICIoAQAICIoAQCICEoAACKCEgCAiKAEACAiKAEAiAhKAAAighIAgIigBAAgIigBAIgISgAAIoISAICIoAQAICIoAQCICEoAACKCEgCAiKAEACAiKAEAiAhKAAAighIAgIigBAAgIigBAIgISgAAIoISAICIoAQAICIoAQCICEoAACKCEgCAiKAEACAiKAEAiAhKAAAighIAgIigBAAgIigBAIgISgAAIoISAICIoAQAICIoAQCICEoAACKCEgCAiKAEACAiKAEAiAhKAAAighIAgIigBAAgIigBAIh8A/TWPcJdJTDwAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -276,7 +197,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -286,7 +207,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -295,7 +216,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -304,7 +225,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -314,14 +235,14 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAF8CAYAAAAq3eFWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVRUZ7oG+odZKJBBpErAiAwiKDgAoknUxAkHUOMMSRSBNmMnufecrNXec//pe85Z3etmrXt6zokdo6e7QyEaBMExGKOZAAcQBEVBUQYBGYWiqHHfP+yqIxEUyqJ2FTy/tXotqWHvtypF9X74vu/97ARBEEBEREREREQjYi92AURERERERLaIYYqIiIiIiMgEDFNEREREREQmYJgiIiIiIiIyAcMUERERERGRCRimiIiIiIiITMAwRUREREREZAKGKSIiIiIiIhM4il0AERGR2BQKBd599104OzvjlVdeweuvvy52SUREZAM4MkVERGNSWloa/Pz8MHv27AG3nzp1CuHh4QgNDcVvf/tbAEBOTg62bNmCv/71rzh27JgY5RIRkQ1imCIiojEpNTUVp06dGnCbTqfDe++9h5MnT6KqqgpyuRxVVVVoaGjA1KlTAQAODg5ilEtERDaI0/yIiGhMWrJkCerq6gbcVlJSgtDQUAQHBwMAduzYgby8PAQGBqKhoQFz586FXq8f1vF9fX0RFBRk5qqJiMja1NXVoa2tbdD7GKaIiGjcaGxsNI5AAUBgYCCKi4vxwQcf4P3338fx48eRlJQ05PP37duHffv2AQAkEgkuXbo06jUTEZG4YmNjh7yPYYqIiMY9iUSCAwcOPPNxe/bswZ49ewA8/f9ciYhofOCaKSIiGjcCAgJQX19v/LmhoQEBAQEiVkRERLaMYYqIiMaNuLg43Lp1C3fu3IFarUZWVhbWr18/omPk5+djz5496O7uHqUqiYjIVjBMERHRmJScnIxFixahuroagYGB2L9/PxwdHfGnP/0JCQkJiIiIwLZt2zBr1qwRHTcpKQn79u2Dp6fnKFVORES2wk4QBEHsIoiIiGxNbGwsG1AQEY0DT/u+ZwMKIiKiEcjPz0d+fj6n+REREaf5ERERjQSn+RERkQHDFBERERERkQkYpoiIiIiIiEzANVNEREQjwDVTRERkwDBFREQ0AklJSUhKSkJsbKzJx8gtbcQnp6vR1KWEv5crPk4Ix8Z53DyYiMjWMEwRERFZUG5pI/bmVECp0QEAGruU2JtTAQAMVERENoZrpoiIiCzok9PVxiBloNTo8MnpapEqIiIiU3FkioiIaASed81UU5dyRLcTEZH14sgUERHRCDzvPlP+Xq4jup2IiKwXwxQREZEFfZwQDlcnhwG3uTo54OOEcJEqIiIiU3GaHxERkQUZmkywmx8Rke1jmCIiIrKwjfMCGJ6IiMYAhikiIqIR4Ka9RERkwDVTREREI/C8DSiIiGjsYJgiIiIiIiIyAcMUERERERGRCRimiIiIiIiITMAwRUREREREZAJ28yMiIhoBdvMjIiIDjkwRERGNALv5ERGRAcMUERERERGRCRimiIiIiIiITMAwRUREREREZAKGKSIiIiIiIhMwTBEREREREZmArdGJiIhGgK3RiYjIgCNTREREI8DW6EREZMCRKaJ/6lVpUVDehLo2BYJ8JUiM9oe7C39FiIiIiGhwvFIkAnCxrgOpB0sgCECfWgc3Zwf8+/EqHExdgLggH7HLIyIiIiIrxGl+NO71qrRIPVgChUqHPrUOwKNApVDp/nm7VuQKiYiIiMgaMUzRuFdQ3gRBGPw+QXh0PxERERHRz3GaH407/f396OzsRGdnJzo6OnDmcgf61A6DPrZPrUNta4+FKyQiIiIiW8AwRWOOIAjo6ekxhiVDcDL8rNFo4OHhAQcHB/T390PT4wYnu0BohCcHap3s9Ki+9B3+1n4ZoaGhCAkJgZ+fH+zs7ER4ZURERERkTRimaNSMZnc8rVaLrq6uQcNSV1cXXFxc4OPjA29vb3h7eyMgIABeXl6QSCSor6+Hk5MTQkJCEBoainSpP178f7+F5p/rpR7n7OyE//o/3sSD+w2oqanBoUOHoNVqERISgpCQEAQHB8PNzc0sr8kU7EBIRGLLLW3EJ6er0dSlhL+XKz5OCMfGeQFil0VEZBF2gjDUahEi0w3WHc/ODiPqjqdUKgeEpcf/rVAo4OnpaQxL3t7eA8KTvb097t69i9raWtTW1qKnpwfBwcHGEDRx4kTjeVQqFf6fv3yJrzqksLd3eGa9HR0dqKmpQW1tLe7evQtfX19jMAsICIC9vWWWIprjPSYi08XGxuLSpUtilyGq3NJG7M2pgFLzv3+McnVywG82RTFQEdGY8bTve4YpMrtelRbxvymEQvXkSI/ExQEle1dA4uIIvV6Phw8fDhqWOjs7odfrBwSkx//t6ek5ILQIgoD29nZjyLl37x78/PyMU/P8/f0HDTl6vR5yuRxeXl5YunwVjlfcR117H4ImuSEx2h+SZ4zyaLVa1NfXG8/b3d09ILSN1qaew32PiWj0MEwBL/32GzR2KZ+4PcDLFT/8apkIFRERmd/Tvu95tUVm97TueBqNDv/3vqMIsWtBV1cX3NzcBgSlmTNnGn92dXV96tqk/v5+3LlzxxhkBEFASEgI5s2bh02bNsHV1fWZtZ46dQqCIGDNmjWwt7fH9rgXRvRaHR0dMX36dEyfPh0rV65ET0+PcTTs7NmzkEgkxmA1bdo0ODk5jej4QxlOB8KRvhYiGp78/Hzk5+eju7tb7FJE1zRIkHra7UREYw3DFJldXZvCuF/Tz6n1gPMkf2xf+Qq8vLxGFC4EQcD9+/eN4am5uRlTp05FSEgIFi5cCF9f3xE1higpKUFdXR3S0tLMNjXPw8MDc+fOxdy5c6HX63H//n3U1tbiu+++w+HDh431hoaGjrjexz3tPe5T61DX3vc8L4OIniIpKQlJSUmIjY0VuxTR+Xu5Djoy5e/17D9mERGNBQxTZHZSiT2c7QSohSeDgpuzA+aHTcXkyZOHdaze3l7jSE9tbS3c3NwQEhKCxYsXP9dIz61bt/Ddd98hLS0NEyZMMOkYz2Jvb4+AgAAEBARgyZIlA0bSiouLjSNpoaGhCA4OHnYdLS0t6Gq4BUcAWjzZ0t3N2QFBk8RrikFE48fHCeGDrpn6OCFcxKqIiCyHYYrMRq/Xo6SkBI0/fQ97+whgkIETOzsgMdp/yGPodDrcu3cPtbW1qKmpQXd3N6ZPn46QkBAsX77cLGuQWltbkZubi+3bt8Pb2/u5jzdcEyZMQEREBCIiIgas8SotLUVeXh6kUqkxXE2ZMuWJNWE3b95EcXEx2trasGxeLHLv9kA72OCUIDz1PSYiMhdDkwl28yOi8YphisyiqakJBQUFcHFxwdvpqUjotR+y09zPGyMM1R1v7dq1CAwMNGt3vN7eXmRmZiIhIQEvvCDemiI7Ozv4+vrC19cXCxcuhFarxd27d1FTU4O8vDz09vYiODgY06ZNQ19fH65evQpXV1csXLgQkZGRuHnzJhI9KnGsOxB2Dg5QaQW4Oj16nxIm1OL2zUBERUWJ9vqIaPzYOC+A4YmIxi2GKXouKpUK33zzDSorK7Fy5UpER0f/MygAJXtXPNoD6Wfd8VQqFerq6owBSqPRIDQ0FFFRUdiwYcOo7duk0WiQlZWFOXPmIDo6elTOYSpHR0djowoAuHfvHs6fP4/Tp09DEAR4enrihRdegEQiMQbXjA1J8D5WgOlLtyD/XBGWzIvAzldmQdEdg8zMTHR0dGDJkiXcYJiIiIholLA1OplEEATcuHEDp06dQnBwMFauXDlkCBIEAc3NzcZ1T01NTQgICDBOafPz8xv1C35BEPDVV1/Bzs4OmzZtssqAIQgC7t69i+LiYty7dw/z5s1DXFwcPDw80NTUhJqaGlRXV6O5uRlTpkyBm5sbJBIJNm7ciGPHjiEgIMC4IL63txdyuRyTJ09GUlISHByeXFtFRM+HrdGJiMYH7jNFZtXV1YWTJ0+io6MDiYmJmDZt2hOPUSgUAxpHuLi4GPd8CgoKgrOzs0VrPnfuHG7fvo1du3bB0dG6BmS1Wi2uXbuG4uJiaLVaxMfHIzo6+on3SK1W48CBAwgPD4evry+OHTsGJycnODs7w8PDA87Ozti6dStcXFwAPBqJy8nJgVKpxPbt24fVKp6Iho9hiohofGCYIrPQ6XQoLi7G999/j4ULF+Kll14yjnjodDo0NDQYp+51dHQgKCjIGKAs2ejh58rLy3Hu3Dmkp6fD3d1dtDp+rre3F5cuXcKlS5cgk8mwcOFChISEDDpqptfrkZ2dDVdXV6xfvx537tzBmTNn8NZbb+HBgwe4ePEiKioqIAgCZDKZ8X2XyWQoLCzEzZs3kZKSAh8fHxFeKdHYxDBFRDQ+cNNeem4NDQ0oKCiARCJBRkYGfHx80NnZaRx5unPnDnx8fBASEoKEhAQEBgZaxdSye/fu4fTp09i1a5fVBKn79++juLgY1dXVmDVrFnbt2vXMVvGFhYVQqVTYunUr7OzsUFZWhrlz58LOzg5+fn5Yvnw5ysvL8S//8i+4e/cuamtrcfToUfT19SEkJASBgYHYv38/tm/fLmrjDSIic8ktbWQXQSISHcMUPVV/fz/Onj2LGzduYNmyZZBIJCguLkZtbS36+/sREhKCiIgIJCYmQiKRiF3uAJ2dnTh8+DBee+01+Pn5iVqLXq9HdXU1iouL0dnZibi4OCQkJAxr6t3ly5dRXV2NjIwMODg4oL+/Hzdv3sTq1auNj5kwYQJcXV3R09ODsLAwhIWFAXg0JdMQeDUaDQ4ePIiwsDAsWrQIU6dOtYrAS0Q0UrmljQP2t2rsUmJvTgUAMFARkUUxTNGgBEFAZWUlTp48CW9vb/j4+ODUqVOYMmUKQkJCsHnzZshkMqts5AA8CoGZmZlYvHgxQkNDRa2jtLQUJSUlcHd3R3x8PCIiIoYdYm7fvo1z585h9+7dxuBVWVmJ4ODgJxp+yGQyNDc3Y9KkScbbvLy8EBMTg5iYGOh0OlRUVODUqVO4f/8+1Go1goKCjF0EOQWQiGzFJ6erB2wUDABKjQ6fnK5mmCIii2KYogH6+vpQXl6OH3/8EQqFAm5ubsYANX36dGNzA2um0+lw+PBhBAcHY8GCBaLU0NHRgeLiYpSXlyM0NBSbN29GYGDgiI7R1taGnJwcbNmyZUBAKisrw+LFi594vFQqRUtLC2bNmjXo8RwcHDB37lyEhoZCLpfD29sbYWFhuHPnDs6fPw8XFxdjsJo+fbrFm4QQEQ1XU5dyRLcTEY0WhqlxTq/Xo7GxETU1NaipqUFLSwsEQUBoaCiWL1+OyZMnW+3o02AEQcDJkydhb2+PhIQEi5+7rq4ORUVFaGhowPz58/HOO+9g4sSJIz5WX18fMjMzsXz5cgQFBRlvf/DgAbq6ugYdbZPJZCgrK3vmsd3d3ZGamoqcnByUlpZi+/bt2LBhA1paWlBTU4OioiLk5OTA39/f2L5eKpXa1OeAiMY2fy9XNA4SnPy92LWUiCyLYWoc6u7uNq6juX37Njw9PTF58mT09fUhKCgI69atE7X73vMoKipCfX090tLSYG9vb5FzarVaVFRUoKioCIIgID4+Hlu2bIGTk5PJxzt06BAiIyMxb968AfeVlZUhOjp60NcmlUrR3Nw8rHM4OTlh27Zt+Prrr7F//36kpKRAJpNBJpPh5Zdfhlqtxp07d1BbW4vDhw9DrVYbR61CQkJGbWNlIqLh+DghfMCaKQBwdXLAxwnhIlZFROMRw5QN61VpUVDehLo2BYJ8JUiM9oe7y5P/STUajbHDW21tLXp7exESEoKwsDAsXboUxcXFuHXrFhISEhAZGWmzIxDV1dX48ccfkZ6ebpHpiD09Pbh06RIuX74Mf39/rFq1CsHBwc/1/gmCgPz8fEgkEixfvnzAfXq9HuXl5di5c+egz/X29kZ/fz+USuWwGlvY2dlh1apV8PHxwYEDB7B161Zjpz9nZ2eEh4cjPPzRhUlHRwdqa2tRWVmJ48ePY9KkScZRq4CAgCHXgA33M0okttu3b+M///M/0d3djSNHjohdDj2DYV0Uu/kRkdi4z5SNuljXgdSDJRAEoE+tg5uzA+zsgIOpCxA7zRttbW3GPZ/q6+shlUqNF79TpkyBnZ0dKioq8PXXXyMiIgLLli3DhAkTxH5ZJmtubsbf//53JCcnj3ht0kg1NTWhuLgYN2/exOzZsxEfHw9fX1+zHPvChQu4ceMGdu/e/cTI1s2bN3HhwgVkZGQM+fwvvvgCr776KqZPnz6i89bU1ODo0aNYvXo1oqKinvpYnU6H+vp64+ers7MT06dPN36+vLy8ADz9MxoXxGYXZD5paWkoKCiAn58frl27Zrz91KlT+PDDD6HT6ZCRkYFf/epXzzzWli1bhh2muM8UEdH4wE17x5helRbxvymEQqV74j4XewFpPjVwcYBxSlZwcPCAoNTe3o4TJ05AoVAgKSkJAQG2/Ze8np4efP7551i1atWQzReel16vx40bN1BcXIzu7m4sWLAA8+bNG9YI0HBVVlbizJkzyMjIgIeHxxP3Z2dnIzg4GLGxsUMewzBqtHDhwhGfv6WlBXK5HPPnz8fixYuHPcLW29trHPWsra2Fq6srAqYF4/+6CCg1T369SFwcULJ3BSQcoSIzuXDhAtzd3bFz505jmNLpdJgxYwa+/vprBAYGIi4uDnK5HDqdDnv37h3w/C+++MK4fQLDFBER/Rw37R1jCsqbMGQEtrPDpHmrkP5qxBMXw1qtFj/88AOKi4uxePFixMfHW2xd0WjRaDTIyspCTEzMqASp/v5+XLlyBSUlJfD09ER8fDxmzpxp9vetoaEBJ06cwJtvvjlokOrr68Pt27exfv36px5HJpOhvr7epBqkUinS09ORlZWFjo4OJCUlDauFu7u7O+bMmYM5c+ZAEATcv38f+7+9Dq22D8CT75MgPPoMb4/j5sFkHkuWLEFdXd2A20pKShAaGorg4GAAwI4dO5CXl4e9e/eioKBAhCqJiGgssu0r6XGqrk2BPvWTo1IAoNIB7Wr7J4JUXV0dPvvsMzQ1NeGtt97CokWLbD5ICYKAo0ePwtfXd9BW4c/DMHr3+9//Hi0tLdi2bRt2796NyMhIs79v3d3dyM7Oxvr16yGTyQZ9TEVFBWbMmPHMqZgymQwtLS0m1+Lh4YFdu3ZBpVLh73//O5TKkbUZtrOzg7+/P5y8/aERBn+f+tQ61LX3mVwj0XA0NjZi6tSpxp8DAwPR2Ng45OPb29vx9ttvo7S0FL/5zW+GfNy+ffsQGxuL2NhYPHjwwKw1ExGR7eHIlA0K8pXAzdlh0EDl5uyAoEn/22mtr68PX3/9NW7fvo3Vq1dj5syZNttg4ue++eYbKBQKvPnmm2Z5TYIg4Pbt2yguLkZTUxPmz5+Pd999d9CRInNRqVTIzMzEokWLjM0eBlNWVoaVK1c+83h+fn5oa2uDTqcb9sbAP+fs7PxEp7+Rbug7ks8okTWYNGkS/vu///uZj9uzZw/27NkDAE+dcktEROMDw5QNSoz2x78frxr0Pju7R/cLgoCrV6+isLAQs2fPxrvvvmsTG+4OV1lZGSorK5GRkQFHx+f7GGs0GpSXl6O4uBh2dnZYuHAhtm7danJr8+HS6/X46quvEBgY+NQ1Tvfv34dSqRxWUwknJyd4enqira0NUqnU5Noe7/T3xRdfYNu2bcZOf8Px1M/oP+8nGk0BAQEDprw2NDTY/PpQIiKyPgxTNsjdxREHUxcM2SlN2dOFI8ePQ6VSISUlBf7+Y+vCta6uDoWFhUhNTX2u/Y4ePnyIixcv4sqVKwgMDMSaNWsQFBRksZG7M2fOQKfTYe3atU89Z1lZGebMmTPsumQyGZqbm58rTBnExsbCy8sLhw4dGlanP4OhPqN6nQ7bpG1wMW3QjGjY4uLicOvWLdy5cwcBAQHIyspCZmamWY6dn5+P/Px8dHd3m+V4RERku9jNz4YpDHv4tPchaJIbVkf64UrJT7h48SKWLl2KuLg4m18X9XPt7e04cOAANm3aZFxYPlKNjY0oKipCTU0NoqOjER8fP+JpbM/r4sWLKCkpQXp6+lPXQWm1WvzXf/0XMjIyhr2R8nfffQelUolVq1aZq1yTO/39/DO6LmoKThw7CmdnZ2zYsGHMTDklcSUnJ+Pbb781jsj++te/Rnp6Ok6cOIGPPvoIOp0OaWlp+Ld/+zeznpfd/IiIxge2Rh8Hbt++jePHj0MqlWL16tWYOHGi2CWZnVKpxP79+7Fo0SLExMSM6Ll6vR7Xr19HUVERent7ja3Nxdhbq6amBnl5edi9e/czQ1xVVRVKSkqQmpo67OPfunULP/3005Cb+5qqp6cHWVlZmDx58rA7/Q1Go9HgwIEDiIiIMHvjECJLYpgiIhof2Bp9DFMoFDhz5gzu3r2LNWvWPLWJgS3T6XTIzs5GWFjYiIKUUqnE5cuXcfHiRXh7e+PFF19EeHi4aCN2ra2tOHr0KLZv3z6s0bCysjLMnTt3ROcwdPQTBMGsIz+GTn9Hjx7FP/7xD2zbts2kfbacnJyQnJyMzz//HD4+PqO2NxjRaOE0PyIiMhhbc8DGEUEQcOXKFfzlL3+BRCLBu+++O2aDlCAIOH78OJydnYfV0Q4AHjx4gIKCAvzhD39AW1sbduzYgdTUVERERIgWpBQKBeRyOVatWjWsZg49PT2or69HZGTkiM7j7u4O4NFmuubm7OyMrVu3YsqUKdi/fz86OjpMOo6HhweSk5Nx4sSJp7arJrJGSUlJ2LdvHzw9PcUuhYiIRMaRKRvU2tqK48ePQ6fT4c033xxyb6Kx4scff0RTUxPS0tKeGoQEQUBtbS2Ki4tx//59xMbG4r333jOGCzFptVpkZWUhKioKc+bMGdZzrl69ipkzZ8LZ2XlE57Kzs4NUKkVzc/OotHW3t7d/rk5/BjKZDOvXr8ehQ4eQnp7OC1MiIiKyOQxTNkSj0eDChQu4cuUKXnnlFcTExIy5BhM/d+PGDRQXFyM9PX3IUKFWq42tzR0cHLBw4UJs3779uVumm4sgCMjLy8PEiRPx6quvDvs5ZWVlWL9+vUnnNHT0CwsLM+n5w2Fqp7/HhYeHo6OjA5mZmUhLSxtT7fuJiIho7LOOq016ppqaGpw4cQL+/v54++23R3UjWWtx//595Ofn4/XXXx901KK7uxsXL15EaWkpXnjhBaxbtw7Tpk2zug5x58+fR2dnJ3bt2jXs2hoaGiAIAqZOnWrSOaVSKW7dumXSc0ciNDQUO3fuhFwuR2dn54g6/RksXLgQbW1t+Oqrr7Bjx44x/wcCsn1cM0VERAbs5mflent7cfr0aTQ0NGDdunUIDQ0VuySLePjwIfbv34/Vq1cjIiJiwH0NDQ0oKirC7du3ja3Nh9s23NIqKipw9uxZZGRkjGi6YX5+Pry8vEzudtfS0oIjR47gvffeM+n5I/W8nf50Oh2+/PJL+Pn5YfXq1aNUJZF5sZsfEdH48LTve/4J2EoJgoBLly7h008/haenJ959991xE6TUajXkcjni4uKMQUqn06GiogKff/45cnJyEBgYiA8//BCrV6+22iBVX1+PU6dOITk5eURBSqPRoKqqathrqwbj6+uLrq4uaDQak48xEoZOfyqVCv/4xz+gVCpH9HwHBwds3boVNTU1uHjx4ihVSURERGRenOZnhVpaWlBQUAA7Ozvs2rULfn5+YpdkMXq9Hjk5OZDJZHjppZfQ19dnbG0+adIkLF68GGFhYVY/FayzsxPZ2dnYuHEjpFLpiJ57/fp1BAQEPNdeYQ4ODvD19UVraysCAgJMPs5IGDr9FRYWYv/+/UhJSRnRZsiurq5ISUnBF198AW9v73HzxwMiIiKyXQxTVkStVuP8+fMoKyvDsmXLMH/+fKtb/zPaCgsL0d/fj6VLl6KgoABVVVWYOXMmXn/99RGHErH09/dDLpfj5ZdfNqkBRFlZGebPn//cdRg6+lkqTAEDO/0dOHAAW7duHVGnPx8fH2zduhXZ2dnj7g8JZDu4ZoqIiAys+8/748itW7fw6aefoqenB++88w5iYmLGXZC6fPkyrl27BgDIzMzExIkT8f7772PDhg02E6T0ej2OHDmCadOmYcGCBSN+fldXF5qbmzFz5sznrkUqlaKlpeW5j2OK2NhYbNiwAYcOHUJFRcWInjtt2jSsWrUKcrkcCoVilCokMh33mSIiIgOOTImsp6cHp06dQnNzMxITExESEiJ2SRanVqtRWFiIS5cuwdfXF/PmzcOsWbOsprX5cAmCgJMnTwIA1qxZY1IYLisrM9trl8lkuH79+nMfx1TP0+lvzpw5aG9vR1ZWFnbt2mVznwUiIiIaH3iFIhK9Xo9Lly7h/PnziImJwcaNG+Hk5CR2WRbV1dWFkpISXLlyBVqtFgkJCViwYIHNjsiVlJTg7t27z9xceCiCIODq1avYunWrWeqRyWRoaWmBIAiivadSqRTp6emQy+Xo6OgYUae/V199Fe3t7cjLy8OmTZts9nNBRONHbmkjPjldjaYuJfy9XPFxQjg2zrPcVGsisjxO8xPB/fv3sX//flRVVSE1NRXLli0bN0FKEATcu3cPhw8fxr59+6DRaDBhwgSsW7cO8fHxNnvBfPPmTXz//fdITk7GhAkTTDpGXV0dnJ2dMWXKFLPU5OrqigkTJqCrq8ssxzOVh4cHUlNTR9zpz87ODhs3bkRnZyfOnz8/ylUSET2f3NJG7M2pQGOXEgKAxi4l9uZUILe0UezSiGgUMUxZkFqtxunTp/Hll18iNjYWu3btwuTJk8UuyyJ0Oh3Ky8vx17/+FXl5eZg2bRref/99tLa2YtasWZg3b57YJZqspaUFeXl52LZt23O1aS8rK8PcuXPNGigNTSjEZuj0N2XKFOzfvx8dHR3Dep6TkxN27NiBsrKyEa+9Ihot+fn52LNnDxtQ0ACfnK6GUqMbcJtSo8Mnp6tFqoiILIHT/Czkxo0bOHXqFIKCgvDOO+9AIpGIXZJFKC96cUoAACAASURBVBQKY2tzPz8/vPLKK8YOd3l5eXBzc8OKFStErtJ0vb29kMvlWL16NaZOnWrycVQqFaqrq7Fq1SozVvdoql9zc/MTGx+LwdROf+7u7khOTsbf/vY3eHl5Pdf7TGQOSUlJSEpKQmxsrNilkBVp6hp81H2o24lobGCYGmXd3d04deoUHjx4gA0bNmD69Olil2QRLS0tKCoqwo0bNxAREYE333xzQJvr7777Dq2trUhNTbXZqX0ajQZZWVmYO3cuoqKinutYlZWVmD59utlDtlQqtboRndjYWHh5eeHQoUNYvXr1sN47qVSKjRs3Ijs7G2lpaVa7UTMRjV/+Xq5oHCQ4+Xu5ilANEVkKp/mNEr1ej6KiInz22WeQyWR4++23x3yQEgQB1dXV+Nvf/oYvv/wSPj4++OUvf4n169cPCFKVlZW4dOkSkpOT4ezsLGLFphMEAbm5ufDx8cHSpUuf+3iGKX7mZhiZsjaGTn9nz57FhQsXIAjCM58TFhaGl19+GXK5HP39/Raokoho+D5OCIer08AGO65ODvg4IVykiojIEjgy9Rx6VVoUlDehrk2BIF8JEqP94e7iiKamJuTn58PV1RXp6emYNGmS2KWOKpVKhbKyMpSUlGDChAlYuHAhIiMjB+3a1tjYiBMnTuCNN96Ah4eHCNWax7lz59DT04OdO3c+98haW1sbOjo6EBoaaqbq/pe3tzf6+vrQ399vcmOM0WJKp78FCxagra0NR44cQUpKyjO7Jg71O0pEZG6Grn3s5kc0vtgJw/mTMD3hYl0HUg+WQBCAPrUObs4OsAPwdoQe6sbrWLFiBaKjo212CttwdHZ2oqSkBFevXsX06dOxcOFCBAYGDvmau7u7sX//fqxbtw7h4bb7l7qrV6/i22+/RUZGhlmm5RUWFkKv15t9vZTB/v37sWLFCkybNm1Ujv+81Go1jh49iv7+fmzbtg2urk+fEqPX65GZmQkfHx+sXbt2yMcN+jtqBxxMXYC4IB9zvwwah2JjY3Hp0iWxyyAiolH2tO97TvMzQa9Ki9SDJVCodOhTP+rc06fWQaHW4U8VeuzK2IM5c+aMySAlCALq6upw6NAh/PWvf4W9vT3eeustbN26FVOnTh3yNatUKsjlcixcuNCmg9S9e/dw5swZpKSkmCVI6fV6lJeXj8oUPwNr6eg3lJF2+rO3t8eWLVtQV1eH4uLiQR8z5O+oSvfP27Vmfx00frCbHxERGTBMmaCgvAlDjec5ODri7M1OyxZkAVqtFmVlZdi3bx8KCgoQHByMjz76CCtXroSnp+dTn6vX6/HVV18hICAAixYtslDF5tfR0YHDhw9j06ZNZmtpX1tbCw8PjwFryszNWtdNPc7Q6S8+Ph4HDhzAvXv3nvr4CRMmIDk5Gd9//z1u3br1xP1P+x0VhEf3E5kqKSkJ+/bte+Z3HxERjX1cPGCCujaF8a/dP9en1qGuvc/CFY2e3t5eXLp0CZcvX4ZUKsWyZcsQGho6olG3M2fOQKvVYu3atTY7Wtff3w+5XI4lS5YgJCTEbMcdrcYTj5NKpbhy5cqonsNc4uLi4O3tjUOHDmHNmjWYPXv2kI/19vbGtm3bkJWVhZ07d0IqlRrvG0+/o0RERCQejkyZIMhXAjfnwRfKuzk7IGiSm4UrMr/m5mbk5ubiz3/+M3p7e7Fz50688cYbCAsLG1EgunTpEmpqarB169ZnNhewVjqdDtnZ2QgJCUFcXJzZjqtUKlFbW/vUwGAOUqkUDx48gF6vH9XzmIuh019hYeEzO/1NnToVq1evhlwuR29vr/H28fA7SkREROJjmDJBYrQ/hsoTdnaP7rdFer0eN27cwMGDByGXy+Hr64sPPvgAiYmJJk1rq62txbfffouUlJRnNhWwVoIg4MSJE3B0dDR7g4iKigqEhYWN+nvj7OyMiRMnoq2tbVTPY06GTn83btxAXl4edLrBR5kAICoqCnPnzkVWVhY0Gg2Asfs7SkRERNaFYcoE7i6OOJi6ABIXB+Nfv92cHSBxcfjn7bY1e1KlUqGoqAh//OMf8cMPPyA2NhYffPABXn75ZZMv9B88eICcnBxs3boVPj622zmtqKgIDQ0N2Lx58zPbcI+UJab4GchkMrS0tFjkXObi4eGB1NRU9Pf34x//+AeUyic3wzRYunQpfHx8kJeXB0EQjL+jzvZ6uDg+SlXO9gImOMAmf0eJiIjIOvGKwkRxQT4o2bvi0R427X0ImuSGxGh/m7pI6+joQHFxMcrLyxEaGorNmzcjMDDwuY+rUCiQmZmJVatWWW077uGorq7GTz/9hPT0dLi4uJj12C0tLVAoFBbbyNnQ0S8qKsoi5zMXZ2dnbNu2DV9//TX279+PlJSUQcO5nZ0d1q9fj//5n//BuXPnsGzZMoR52WPXxGpMf2UL6jv74edmh6af8hHq+aIIr4SIiIjGItu58rdCEhdHbI97QewyRsTQ2ry4uBj19fWYP38+3nnnHUycONEsx9dqtTh06BBmz56NOXPmmOWYYmhubsaxY8eQkpIyKh27SktLMWfOHLOPdg1FKpXi4sWLFjmXudnb2yMhIQE+Pj44cOAAtm7dihdeePL3ztHRETt27MDnn3+OSZMmoaurC3NnR2BdfJDxMRfQgjNnzmD79u0WfAU01uTn5yM/P5+t0YmIiNP8xgutVovS0lJ89tlnOHHiBMLCwvDRRx9h+fLlZgtSgiDg2LFj8PDwwLJly8xyTDH09PRALpdj7dq1CAgw/871Op0OFRUVFpviB9hGe/RniYuLw4YNG3Do0CFcu3Zt0MdIJBIkJyfj9OnTuHTpEubNmzfg/hdffBEtLS2oqamxRMk0RrE1OhERGTBMjXE9PT04d+4cfve73+H69etYuXIl3n33XcTExMDJycms57pw4QLa29uxceNGm22BrlarIZfLERMTg1mzZo3KOW7evAlfX1+LriWbOHEidDrdgI53tmg4nf78/Pzw4osvQqFQPDE909HREWvWrMHJkyeh1XLjXiIiIno+DFNjVFNTE44ePYq//OUv6OvrQ2pqKlJSUhASEjIqQefatWsoLS1FcnKy2UOapQiCgNzcXPj5+WHx4sWjdh5LNp4wsLOzs8kmFIN5vNPfsWPHBu309+DBA4SHhyMrKwv9/f0D7gsLC4Ovry+KioosVTIRERGNUQxTY4her0dVVRUOHDiA7Oxs+Pn54YMPPsC6devg6+s7auetr6/HyZMnkZycDHd391E7z2g7e/YsFAoFEhMTR21krbe3F/fu3Ru1Ua+nMTShGAsMnf6USuUTnf5UKhWqq6uRmJiI4OBgZGdnPxG4EhIS8OOPP+Lhw4eWLp2IiIjGEIapMaC/vx8//vgj/vCHP6CoqAjx8fH44IMP8NJLL436HkZdXV3Izs7Ghg0bIJVKR/Vco6m0tBRVVVXYvn07HB1Hry9LeXk5Zs6cCWdn51E7x1DGysiUgaHTn0wmw/79+9HR0QEAqKysRFBQECQSCRISEuDo6IgTJ04MmBLo4+ODuLg4nDlzRqzyiYiIaAxgmLJh7e3tOHHiBH7/+9+jubkZW7duRVpaGiIjIy3SJa6/vx+ZmZl46aWXMGPGjFE/32ipq6vD2bNnkZKSAjc3t1E7jyAIokzxMxhLI1MGhk5/8fHxOHDgAOrr6we8x/b29ti8eTMaGhqemNb38ssvo6GhAXfu3BGjdCIiIhoD2BrdxgiCgDt37qCoqAiNjY2IiYnBu+++Cw8PD4vWodfrceTIEUybNg3x8fEWPbc5tbe348iRI9i0adOoToUEHq1j02q1g7b1toTJkyejs7MTWq12VEffxBAXFwcvLy9kZmZCEASEhYUZ73NxcUFKSgr2798PHx8fhIeHAwCcnJyQkJCAkydP4q233oKDg4NY5RMREZGN4siUjdBoNLh8+TI+/fRTnD59GjNnzsRHH32EZcuWWTxIAcCpU6cAAGvWrLHZzn1KpRKZmZl49dVXERwcPOrnKy0txdy5c0V7vxwdHeHj44PW1lZRzj/awsLCEBERAUEQ8MMPPwyY1ufp6Ynt27fj2LFjA0bnZs6ciYkTJ9rsHlxEREQkLoYpK/fw4UOcPXsWv/vd73Dz5k2sXr0ab7/9NubPny9a17zi4mLU1dVhy5YtFtt01tx0Oh0OHTqE8PBwxMTEjPr5NBoNKisrRd/IeKytm3qcXq9HTU0NduzYMWinv4CAAKxduxZyuRw9PT0AHnU5XL16Nb777jubbxtPRERElmebV8LjQGNjI3JycvDpp59CrVYjLS0NycnJCA4OFnUk6NatW/j++++RnJyMCRMmiFbH8xAEAQUFBZgwYQJWrFhhkXPeuHED/v7+om/yORbXTRnU1tbCw8MD06dPH7LT36xZsxATEwO5XA61Wg0A8PX1xdy5c1FYWChW6URERGSjGKasiF6vR2VlJfbv348jR45gypQp+PDDD7FmzRpMmjRJ7PLQ0tKC3NxcbNu2Dd7e3mKXY7IffvgBzc3N2LRpk8VG1sRsPPG4sTwy9fh7/PNOf52dncbHLV68GH5+fsjNzTVOBVyyZAlu376Ne/fuiVI72Zb8/Hzs2bMH3d3dYpdCNKTc0ka89NtvMP1Xx/HSb79Bbmmj2CURjUkMU1ZAqVTihx9+wO9//3tcvHgRL774In75y19i0aJFVjP609vbC7lcjtWrV2Pq1Klil2Oy69evo6SkBMnJyRZrT97d3Y379+9j5syZFjnf00ilUrS0tAxYTzQWKJVK1NbWYvbs2cbbHu/098UXX6C+vh7Ao6l9iYmJUCgUOHv2LIBHTSpWrlyJkydPQq/Xi/IayHYkJSVh3759oo80Ew0lt7QRe3Mq0NilhACgsUuJvTkVDFREo4BhSkRtbW04fvw4/vCHP+DBgwfYsWMHUlNTERERYVVrkTQaDbKysjB37lxERUWJXY7JmpqaUFBQgB07dmDixIkWO29ZWRkiIyNFW+P2OIlEAkdHxzH3F/WKigqEhoYOuq9aXFwc1q9fj6ysLFy7dg3Ao2Yc27dvR1VVFUpLSwEAs2fPhouLCy5fvmzR2omIzO2T09VQagZuVq7U6PDJ6WqRKiIau6znin2cEAQBNTU1+PLLL3Hw4EFIJBK899572LhxI6ZMmSJ2eU8QBAF5eXnw9vbG0qVLxS7HZA8fPkRWVhYSExPh7+9vsfMKgoCrV69i3rx5Fjvns8hksjG3bupZ0yjDwsKwc+dOFBYW4sKFCxAEAW5ubkhJScHZs2dRV1cHOzs7rFmzBt9++y36+vosWD0RkXk1dSlHdDsRmY5hykI0Gg0uXbqEv/zlLygsLMSsWbPw0Ucf4ZVXXoG7u7vY5Q3p22+/RXd3NzZs2GCzLdDVajXkcjni4+MRERFh0XPfvXsXjo6OFg1wz2KY6jdWtLS0QKFQPLO9vVQqRXp6+oBOf76+vti0aROOHDmC9vZ2SKVSREVFGaf/ERHZIn+vJ0fpn3Y7EZmOYWqUdXd3o7CwEL/73e9QU1ODdevW4a233sLcuXOtfuPU8vJylJeXY8eOHVZf61D0ej1ycnIgk8nw4osvWvz8hhETawqiY60JRWlpKaKjo4c1NdbDw+OJTn/BwcF49dVXIZfLoVQq8corr+DmzZtoamqyQPVEROb3cUI4XJ0GbkTu6uSAjxPCRaqIaOximBolDQ0NOHLkCD777DNotVqkp6djx44dCAoKsqoL66Hcu3cPp0+fRnJyMiQSidjlmKywsBAqlQqJiYkWf99VKhVu3LiB6Ohoi573WcZSe3SdToeKiooRdUocrNNfTEwMZsyYgezsbDg5OWH58uU4ceLEmGvUQUTjw8Z5AfjNpigEeLnCDkCAlyt+sykKG+cFiF0a0Zhjm8MNVkqn06GqqgrFxcXo6+vDggULkJSUBBcXF7FLG5HOzk4cPnwYr732Gvz8/MQux2SXL1/GzZs3kZ6eDgcHh2c/wcyqqqowbdo0q5vGOWnSJPT29kKlUtncZ/Pnbt68CV9f3xFvHWDo9Ofj44MvvvgC27Ztw4oVK5CdnY2CggIkJSXh8uXLKCsrs6r1bkREw7VxXgDDE5EFMEyZQV9fHy5fvoyLFy9i0qRJePnllzFjxgyr6sg3XP39/cjMzMSSJUsQGhoqdjkmu337Ns6dO4fdu3cP2uHNEsrKyrBw4UJRzv009vb2mDx5MlpaWvDCCy+IXc5zed79u+Li4uDl5YWsrCysWbMGmzZtwoEDB/DTTz9hzZo1yMzMxMyZM0X7DBEREZF1Y5h6Dq2trSguLkZVVRVmzpyJlJQUyGQyscsymU6nw+HDhxEcHIy4uDixyzFZW1sbcnJysGXLFtE2O25vb0dbWxtmzJghyvmfxdCEwpbDVG9vL+7evYtNmzY913HCwsLw5ptvQi6Xo7OzEzt27MAXX3wBHx8fzJw5E99++y3WrFljpqqJiIhoLGGYGiFDa/OioiK0trYiNjYW7733ntVN5RopQRBw8uRJODg4ICEhQexyTNbX14fMzEwsX74cQUFBotVRVlaGqKgoUaYXDsdYaI9eXl6OiIgIs0xVlMlkyMjIgFwuR0dHB7Zs2YKsrCxs3rwZOTk5mD9/PqRSqRmqJiIiorHE9uahiUStVuPixYv485//jG+++QbR0dH48MMPsXTpUpsPUgBQVFSE+vp6bN682SanJwKAVqvFoUOHEBkZKeo6F71eb3V7S/2crXf0EwThuaf4/dzjnf6++eYbrFq1Crm5uYiPj2czCiIiIhoUR6aeoaurCyUlJSgrK0NQUBCSkpLwwgsv2ERHvuGqrq7Gjz/+iPT0dJttSCAIAvLz8yGRSLB8+XJRa7l9+zbc3d2teiRDKpWitbUVer3eJsNzU1MTtFqt2acpGjr9ff311/j+++8RFRWFyspKAMC1a9cQFRVl1vMRERGRbWOYGoQgCKivr0dxcTHu3LmDOXPm4Be/+AW8vb3FLs3smpubcezYMSQnJ8PLy0vsckz23Xff4cGDB9i9e7foQdfcIyajwcXFBRKJBB0dHfD19RW7nBErLS0dtf27Hu/0d+HCBUyZMgUqlQpnzpzBjBkzbPYPDkRERGR+DFOP0el0qKysRHFxMfr7+xEfH4/169eP2Yunnp4eyOVyrF27FoGBgWKXY7LKykpcvnwZGRkZcHJyErUWpVJp3JzZ2hnWTdlamNJoNKiqqsJbb701qucxdPrLzc2FRCKBq6srzp8/j1WrVo3qeYmIiMh2jJsw1avSoqC8CXVtCgT5SpAY7Q93l0cvX6FQGFubT548GUuXLkVYWJjoIxyjSaPRICsrCzExMZg1a5bY5ZisoaEBJ06cwJtvvgkPDw+xy8G1a9cQEhJiE620DR39Zs+eLXYpI3Ljxg1MmTIFnp6eo34uQ6e/zMxMaDQa/HjxCu46BqBdZf/E9wjZttzcXBw/fhwPHz5Eeno6QzMREQ3LuLgKuFjXgdSDJRAEoE+tg5uzA/79eBX+v/WhUDVU4fr164iIiMAbb7xh1etczEUQBBw9ehS+vr5YvHix2OWYrKurC9nZ2Vi/fr3VtKQvKyvDq6++KnYZwyKTyXDlyhWxyxgxS0+jlMlk+MUvfoHffJ6Nw12TgcLb0Aj2xu+Rg6kLEBfkY7F66ElpaWkoKCiAn58frl27Zrz91KlT+PDDD6HT6ZCRkYFf/epXQx5j48aN2LhxIzo7O/Gv//qvDFNERDQstrfyfIR6VVqkHiyBQqVDn1oH4FGgUqh0eP9IFSa4e+L999/H+vXrx0WQAoCzZ89CoVAgKSnJZkffVCoV5HI5Fi1ahPDwcLHLAfBo37Genh4EBweLXcqw2GJ79O7ubty/fx8zZ8606HntnF2R1xUADRygER59bRq+Rx59v2gtWg8NlJqailOnTg24TafT4b333sPJkydRVVUFuVyOqqoqVFRUIDExccD/Wltbjc/7j//4D7z33nuWfglERGSjxvzIVEF5E4bqaOzo5IxOj+mQSCSWLUpEpaWlqKqqQkZGBhwdbfM/v16vx1dffYXAwEAsXLhQ7HKMSktLMWfOHJvpjufp6Qm1Wo2+vj64ubmJXc6wXL16FZGRkRZbGycIAhQKBf72Qw20Ov0Qj3n0PbM9znY3QLZ1S5YsQV1d3YDbSkpKEBoaavzjxo4dO5CXl4e9e/eioKDgiWMIgoBf/epXWLNmDebPn2+JsomIaAywzavpEahrUxhHpH5Oqdahrr3PwhWJp66uDoWFhdi9e7fNXDwP5vTp09DpdFi7dq3VjKzpdDpUVFRg9+7dYpcybHZ2dpBKpWhubraJ0TTD3lKbN28263F1Oh26u7vR2dmJjo4OdHZ2Dvifg4MDSvUvQKUbfE1e3zj7HrEVjY2NmDp1qvHnwMBAFBcXD/n4P/7xjygsLER3dzdqamrw9ttvD/q4ffv2Yd++fQCABw8emLdoIiKyOWM+TAX5SuDm7DBooHJzdkDQJNsNFSPR3t6OI0eOYPPmzTbXve1xFy9exO3bt5Geng4HBwexyzG6desWfHx8MGnSJLFLGRFbClP37t2Do6Mj/P39R/xclUo1ICx1dHSgq6sLHR0d6Onpgbu7O3x8fODt7Q1vb28EBAQYf54wYQKyLt7D1YKqcf89MpZ98MEH+OCDD575uD179mDPnj0AgNjY2NEui4iIrNyYD1OJ0f749+NVg95nZ/fo/rFOqVQiMzMTr776qk1cNA+lpqYG58+fR1paGiZMmCB2OQPYwt5Sg5HJZLh7967YZQyL4T0ebDRSEAT09vYOGpY6Ozuh0WiMQcnb2xtSqRQRERHw9vaGl5fXM4M5v0dsT0BAAOrr640/NzQ0ICAgQMSKiIhoLBrzYcrdxREHUxc80c3Pzg44mLoAkjHe1lin0yE7OxszZsxATEyM2OWYrLW1FUePHsX27dvh42NdndMUCgXq6urw2muviV3KiMlkMpSUlIhdxjOp1WrcuHEDc+fOxa1btwadkufi4jIgMIWEhCA2Nhbe3t5wd3d/rimhg32PONsJcHJ2HBffI7YoLi4Ot27dwp07dxAQEICsrCxkZmaa5dj5+fnIz89Hd3e3WY5HRES2a1xcAcQF+aBk74pH+0y19yFokhsSo/3H/AWQIAgoKCiAi4sLVq5cKXY5JlMoFJDL5UhISMALL1jfIv/y8nLMnDnTJjd3njx5Mtrb26HT6axi2qRSqTSGo8fDUktLC/r7+5GXl2cMSz4+Ppg2bZrx59F+/x//Hrne0I7GG6X43f+5c8x/j9iC5ORkfPvtt2hra0NgYCB+/etfIz09HX/605+QkJAAnU6HtLQ0s+2pl5SUhKSkJE7zIyKi8RGmAEDi4jjuum39+OOPaG5uxu7du22mw9zPabVaZGVlISoqCtHR0WKX8wRDU4Q1a9aIXYpJnJyc4O3tjQcPHlhkry5BEPDw4cNBR5Y6Ojqg1+uNQcnb2xv+/v6YNWsWvvnmGyQmJiIyMnLUa3waw/eIPiYQv71+Eg6CFuPoa9RqyeXyQW9fu3Yt1q5da+FqiIhoPOFVwBh1/fp1FBcXIyMjA87OzmKXYxJBEJCXlwdPT0+r3Qj3/v37UKvVmDZtmtilmMzQhMJcYUqj0QxYr/R4WOrq6oKrq+uAZg8zZsww/uzm5vbEdDzD86xlPzEAsLe3h1QqRUtLi03/tyfTcJofEREZMEyNQU1NTSgoKMDrr7+OiRMnil2Oyc6fP4/Ozk7s2rXLalqg/1xpaemQTRFshSEUDJcgCFAqlYOGpc7OTvT19cHLy2vA+qXg4GDjv0e6R1RZWRmioqKsYhri4wwhlGFq/OE0PyIiMmCYGmMePnyIrKwsJCYmmtRC2lpUVFSgrKwMGRkZFtugdaS0Wi0qKyuNbZJtlUwmww8//DDgNr1eb9x7abApeXZ2dgPC0tSpUxEdHQ1vb29MnDjRbNNK9Xo9rl69ipSUFLMcz5ykUinu378vdhlEREQkIoapMUStVkMul2PBggWIiIgQuxyT1dfX49SpU9i5cyfc3d3FLmdIN27cgEwmg5eXl9ilmEStVqOzsxM9PT1obGxEQUEBurq60NnZie7ubkgkkgHNHiIjI43/dnV1tUiNd+7cgUQigVQqtcj5RkImk6G0tFTsMoiIiEhEDFNjhF6vR05ODmQyGV566SWxyzFZZ2cnsrOzsXHjRqu8gH6cte8tJQgCFArFkM0eVCoVvLy84OPjA0EQ4OHhYVy/5OXlBUdH8b8erPk99vPzw4MHD6DX6222wQuZhmumiIjIQPyrJTKLwsJCqFQqbN261WbX7/T390Mul+Pll19GWFiY2OU81cOHD9HY2Ijt27eLWodOp0N3d/eQ65ccHR0HNHsICgrC/Pnz4e3tDQ8PD+Nn5e9//zumTJmCGTNmiPp6HqdUKnHr1i2r7cbm4uKCiRMnor29HZMnTxa7HLIgrpkiIiIDhqkx4MqVK6iurkZGRobVLdIfLr1ejyNHjiAoKAjx8fFil/NMV69eRWRkpEXWc6lUqgFh6fF/9/T0wMPDY8D6pcDAQOO/J0yYMKxzyGQyNDc3W1WYunbtGkJCQiw2pdAUhiYUDFNERETjE8OUjbt9+za++eYb7N6926ovOp9GEAScPHkSALB69WqRq3k2w95Sr732mtmO19PTM2SzB41GMyAsyWQyREREwNvbG15eXmYJ0FKpFNXV1WZ4NeZTVlaGV155RewynsoQQqOiosQuhYiIiETAMGXD2trakJOTgy1btmDSpElil2OykpIS3L17F2lpaTax9qS+vh729vYICAgY9nO0Wq2xucPPw1JnZydcXFwGbFYbGhpq/FkikYz61E2ZTIYLFy6M6jlGorW1FT09PQgJCRG7lKeSSqW4ePGi2GWQhXHNFBERGTBM2ai+vj5kZmZi+fLlCAoKErsck928eRPff/890tLShj0lR0zwjwAAIABJREFUTWxD7S2lVCqHbPagUCgwceLEAeuXpk2bZvxZ7I2VJ02ahO7ubqjVatFrAR69x9HR0VYfrg0jUzS+cM0UEREZMEzZIK1Wi0OHDiEiIgLz5s0TuxyTtbS0IC8vDzt27IC3t7fY5TyTIAhob29HVVUVli5dirNnzw4IT3q9fkBY8vf3x+zZs+Ht7Q1PT0+rDgYODg6YPHkyWltbERgYKGotOp0OFRUV2L17t6h1DMfEiROh0+nQ29tr1W38iYiIaHQwTNkYQRBQUFAANzc3rFixQuxyTNbb2wu5XI7Vq1dj6tSpYpdjpNFo0NXVZQxIHR0dxp+7u7vh6OgIe3t7tLa2wtvbG+Hh4cbw5ObmZrOdFIH/baYgdpi6desWfHx8bGLqqp2dHWQyGVpaWhimiIhGKLe0EZ+crkZTlxL+Xq74OCEcG+cNfwo9kTVgmLIx33//PVpbW5GammqzF+4ajQZZWVmYO3euxRfuC4IApVI5aFjq7OxEX18fvLy8BmxWGxISYvz5yy+/xIIFCxAZGWnRui3BEKbEZs17Sw3G8L5Z+/ouIiJrklvaiL05FVBqdACAxi4l9uZUAAADFdkUhikbUllZiUuXLiEjI8Mq1rWYQhAE5ObmwsfHB0uXLh2Vc+j1enR3dw/ZHc/Ozm5As4epU6ciOjoaPj4+8PDwGHI6XkdHBx48eIDw8PBRqVtsMpkMlZWVotagUChQV1dntk6JliCVSnHnzh2xyyALYgMKouf3yelqY5AyUGp0+OR0NcMU2RSGKRvR2NiIEydO4I033oCHh4fY5Zjs3Llz6Onpwc6dO59rZE2tVg8Zlrq7uyGRSAasX4qMjDT+bGoL+bKyMsyePdtm9/J6FqlUitbWVgiCINqoZ3l5OcLDw+Hi4iLK+U0hk8nw008/iV0GWRAbUBA9v6Yu5YhuJ7JWDFM2oLu7G4cOHcL69esxZcoUscsx2dWrV1FRUYGMjAw4Oj79oycIAhQKxZDd8VQq1YC9l3x9fTFjxgzj3kvPOv5I6fV6XL16FcnJyWY9rjVxdXWFq6srOjs74ePjY/HzG/bvsoW9xh43efJkdHZ2QqvVmv1zR0Q0Vvl7uaJxkODk72Wbe2bS+MX/57dyKpUKmZmZWLhwoU1PL7t79y7OnDmD1NRUSCQSAI+6tnV3dw8aljo7O+Hk5DQgME2fPh3z58+Ht7c3PDw8LDp6cufOHbi5uUEmk1nsnGIwtPoWI0zdv38farXa5lr9Ozo6wsfHB62trfD39xe7HCIim/BxQviANVMA4OrkgI8TbPdah8Ynhikrptfr8dVXXyEwMBCLFi0SuxyTqFQq3LlzB7m5uYiMjERRUZExNPX09MDDw2NAs4fAwEDjz9a075StNUUwlaGZghgNNkpLSzFnzhybbKxi6OjHMEVENDyGdVHs5ke2jmHKip05cwZarRZr16612gtMQRDQ09Mz5Pol9f/f3r0HRX3f++N/LsttWZA7rICKiCJ3UcAYjcZEgxgwxiQonvaEaGJzkjTT6TmZxun0d6aTnoln8u2Zzmk6be3Y2NPWJcY7RtB4TUw1eGEBuQkBVEC5X5fLsruf3x9maVBQWPazn93l+ZjJjH529/N5svmwfl77fn9eb50OgiAgICAA7u7u8PX1RXR0NPz8/ODt7W0X9x8NDg6iuroa6enpUkcRXXBwMIqLi61+XL1ej7KyMuzYscPqx7YEW+mESERkTzYmhbJ4IrvHYspGXblyBTU1Ndi+fbvkBYder0dXV9eYxVJnZyfc3NxGNXuIjIyEn58fZsyYgSNHjiA4ONju7oP5vhs3biAiIgIeHh5SRxGdSqXCyZMnrX7cyspKqFQq+Pj4WP3YlhAcHIybN29KHYOshN38iIjIhMWUDaqpqcGFCxewbds2szvPTdbAwMC4zR60Wi28vb1H3b8UHh4+8uex2rSbFhd2cXHBc889Z5WfQSwajQYrV66UOoZV+Pr6YnBwEAMDA1Y79wD7n0ZpmuYnZSdEsh528yMiIhMWUzampaUFhw8fRlZWlkWbABiNRvT29o7b7MFoNI4aXQoNDUVcXBx8fX3h7e097tpL47l06RIaGxvx2muvTfq1tqS1tRXd3d2IjIyUOopVyGQyBAcHo7m52WqNIHp6etDY2IjNmzdb5XhiUCqVcHZ2Rnd3t92OrhEREdHksZiyIVqtFmq1Gs899xzmzJkz6dcPDw+PWSiZ1l5SKBSjFquNiooa+btCobDYN+pVVVW4fPkytm/fblfrBY2lqKgICQkJdl0QTpbp/h9rFVPFxcWIiYmBi4uLVY4nFlMnRBZTRERE0weLKRuh1+uRm5uL+Ph4JCYmjvkcQRDQ398/brOH/v5++Pj4jBRLfn5+mDdvHvz8/ODj42OVi9V79+7h2LFj2Lp1K7y9vUU/npgMBgNKSkqQk5MjdRSrUqlUaGhosMqxTGtLbdy40SrHE5NpRG/hwoVSRyEiIiIrYTFlAwRBwNGjRzFjxgysWrVq3GKpo6MDTk5Oo6bjzZ49G4sWLRpZe0nKEZTe3l6o1Wo8//zzCA21/+48NTU1IwsCTyfBwcG4evWqVY51584dyGQyhIWFWeV4YlKpVCgvL5c6BhEREVkRiykJ6HS6UcVSWVkZ2tvboVAo8OGHH8LT03NUs4fY2NiRP1uzKcBk6HQ6qNVqJCcnS7JGkRjsvSmCuYKCgtDW1gaDwSB6J8mioiIkJSU5RNOG4OBgnD17VuoYdm1wcBDHjx/HV199haamJigUCsTFxeH5559HbGys1PGIiIgewmJKBIIgQKvVjtvsYWhoaKQ4MhgM6OzsxPr16xESEgIfHx84O9vX/xZBEHDkyBEEBQVhxYoVUsexCK1Wi7q6OrzwwgtSR7E6V1dXeHt7o62tDcHBwaIdR6fTobKyEm+99ZZox7Amf39/9PX1YWhoyO7vFZTCf/7nf+L48eN4+umnsXTpUgQFBWFwcBA3b97E+++/j8HBQfz6179GQkKC1FHZGp2IiEbY11W7DTEYDOju7h4pkB4snFxcXEY1e5g7dy4WL14MPz8/eHp6QiaT4c6dO8jNzcWrr74q6kWr2M6cOQOtVotNmzY5xAgDAJSWlmLBggVwd3eXOookTK2+xTwvy8vLMWvWLHh5eYl2DGtycnJCYGAgmpubMXv2bKnj2J3U1FT88pe/HPOxn/70p2hpacHt27etnGpsbI1OREQmDlVM9Q3pcbykCfVtWoQHKJGREAJPN/N/xKGhoXGLpd7eXnh5eY00d/Dz88OsWbNGiqfHfTPd1dWF/fv3Y+PGjXZdSBUVFaG8vByvv/663Y2ojcfUFMHe18eaClNHPzFHATQaDVJTU0XbvxS8A4Kx73I9UGaZz6Dp5PnnnwcA1NXVYe7cuaMeu3LlClJSUhAUFCRFNCIionE5zL/yV+o7kLO3EIIA9OsM8HCV44PPy7E3JxUp4WOv1yQIAnp7e8dt9qDX60c1e1CpVIiJiRlZe8nc+0kGBwexb98+rFixAvPnz5/Kjy2p+vp6nDlzBjk5OfDw8JA6jsXcu3cPg4ODD13QTSfBwcH45ptvRNt/Z2cnWltbERUVJdoxrO1KfQf+v+vOMBp7oDP2TugziB720ksvIS8vb6SJzYULF/DOO++gtLRU4mREREQPc4hiqm9Ij5y9hdAOGUa29evu/znnk0Lk/ygJQ9qeUQVTR0cHurq64O7uPqrZw/z580f+rFQqLT5tzWg04sCBA5gzZ45dfyvf3t6OAwcOYNOmTQ7X7a6oqAiJiYkOM2XRHKY1kwRBEOV90Gg0iIuLE73BhbWYPoMG9QKA++/XyGfQ3kIU7lwDJUeoJuSPf/wjNm7ciLy8PFy/fh07d+7EiRMnpI5FREQ0Jof41/14SRMEYezHhnQ6/Or/8rEyzHnkHqbw8PCRgsnV1dWqWQsKCgAA6enpdnuxPjAwgH379mH16tWIiIiQOo5F6fV63LhxA2+88YbUUSTl5eUFQRDQ19dn8XuaBEFAcXExtmzZYtH9SulRn0GCcP/xzSm8j2oiUlJS8L//+7947rnn4O7ujtOnTyMwMFDqWERERGNyiGKqvk078i3wg/SQY96iJ/CDddIvpPnNN9+gvr4e27Ztk3Q9qKkwGAz49NNPERUVhSVLlkgdx+KqqqoQHBwMX19fqaNISiaTjTShsHQxVVdXB4VCAZVKZdH9SulRn0H9OgPq2/utnMj+ZGZmjvqCqb+/H97e3ti+fTsA4NixY1JFIyIiGpdDFFPhAUp4uMrHvJjxcJUj3F/6+3mqq6tx8eJFbNu2zW47xAmCgOPHj8Pd3R1r1qyROo4opuvaUmMxNaGIjIy06H4d8T22h88gW/cf//EfUkcgIiKaNIcopjISQvDB5+VjPiaT3X9cSs3NzThy5Ai2bNli1yMeX3/9Ne7du4fXXnvNbkfWHqWnpwcNDQ3IysqSOopNUKlUqKmpseg+TesGrVu3zqL7lZqtfwbZg5UrVz526rNY9/ARERGZyyGuiD3dnLE3JxVKNzk8XO/f0K5wcYILDPj95nhJb/zu6+uDWq3GunXrMGvWLMlyTFVFRQUKCwuRnZ1t9fvMrKWkpATR0dFwcXGROopNMI1MWdKNGzcQERHhUN0fgbE/gzxc5VC6yb/b7hDfW4lq9erV+O1vf/vQWlI6nQ5nz57Fq6++ir/85S8SpSMiIhqbw/wLnxLuh8Kda+6vM9Xej3B/DyhaK9B58yoQHSpJpuHhYeTm5mLRokWIj4+XJIMlNDU14fjx4/iXf/kXzJgxQ+o4ojCtLfXCCy9IHcVmBAYGoqurC8PDwxYrMDUaDVauXGmRfdmasT6DMhJCWEhNUEFBAf785z8jOzsbtbW18PX1xcDAAIxGI5577jn85Cc/QVJSktQxiYiIRnGof+WVbs6jOmYNDQXjd7/7He7cuWP1USFBEHD06FH4+vpi1apVVj22JfX09CA3NxcZGRkICXHcqUoNDQ0AgLCwMImT2A65XA5/f3+0tLSMrPkzFa2treju7rb4PVi25MHPIJo4d3d3vPXWW3jrrbcwPDyMtrY2KBQK+Pj4SB3tIXl5ecjLy0N3d7fUUYiISGIOMc1vPG5ublizZg3y8/NhNBqteuxz586hu7sbL7zwgt3O8dfpdFCr1Vi6dCmio6OljiOqoqIiLFq0yG7/X4nF1NHPEjQaDRISEhzyfjuausHBQfzmN7/BO++8g08++QSBgYE2WUgB9zsP7t69G97e3lJHISIiiTn8VU18fDxcXFxw/fp1qx2zuLgYpaWl2LJlC5yd7XPwz2g04uDBg1CpVHjyySeljiMqnU6HiooKJCYmSh3F5ljqvimj0YiSkhJO06Jxvfrqq7h69Sri4+Nx4sQJ/Pu//7vUkYiIiB7LPq/0J0EmkyE9PR1/+9vfEBMTI/qN77dv38apU6fw6quvQqlUinosMX3xxRfQ6XTIyspy+NGaiooKhIWFWXw9JUegUqlQWVk55f3U1NTAx8cHAQEBFkhFjqi8vBylpaUAgO3btyM1NVXiRERERI/n8CNTwP0LwpiYGJw9e1bU43R0dGD//v148cUXERQUJOqxxHTt2jVUV1cjKysLcrlc6jiic8R1jywlODgYzc3NEARhSvvhe0yP8/0mJ/Y6ok9ERNPPtCimgPttdysrK3H37l1R9j84OAi1Wo1Vq1bZ9Q32tbW1OHfuHLKzs6FQKKSOI7rOzk40NzcjKipK6ig2ycPDA66urujq6jJ7H/39/aitrUVsbKwFk5GjKS4uxowZMzBjxgx4eXmhpKRk5M+O2kWUiIjs37QpphQKBZ555hmcOHFiyt+yP8hgMGD//v2IiIhASkqKRfdtTa2trTh48CBefvll+Pv7Sx3HKoqLixEXF8dvwh9BpVJN6b6pkpISLFiwAO7u7hZMRY7GYDCgp6cHPT096O3thV6vH/lzT0+P1PGIiIjGNG2KKQBISkqCIAgoLi622D4FQcCJEyfg7OyMtLQ0i+3X2vr7+6FWq7F27VqEh4dLHccqTGtLsSnCo5mm+pmLU/yIiIjIUU2rYsrUjOLMmTMYHBy0yD4vX76MhoYGvPTSS3bb8lmv1+PTTz9FTEzMtLrora+vh7u7O1QqldRRbNpU2qPfvXsXg4ODmDt3roVTEREREUnPPq/+pyA0NBQLFizA+fPnp7yvqqoqXLp0CVu3boWbm9vUw0lAEATk5eVBqVTi2WeflTqOVZlGTBy9W+FUTaU9ukajQWJiIt9jIiIickjTrpgCgGeffRalpaVTmrp07949HDt2DJs3b7brhRu/+uortLW14cUXX5xWF7yDg4OoqqpCfHy81FFsnp+fH7Ra7aRHc/V6PUpLS6fVaCcRERFNL9OymPLw8MDTTz+N/Px8s5pR9Pb2Qq1WY/369QgNDRUhoXWUlZXh2rVr2LJly6i2xNNBWVkZ5s6da9drgVmLk5MTgoKCJv3lQ1VVFYKDg+Hr6ytSMiIiIiJpTctiCgCWLFmCoaEhlJWVTep1w8PDUKvVWLJkiV23em5oaMCJEyeQnZ09LRerZVOEyTGnCQXfYyIiInJ007aYcnJyQnp6Ok6dOoWhoaEJvUYQBBw+fBhBQUF46qmnRE4onq6uLuzfvx8bNmyYls0X2tra0NXVhfnz50sdxW5Mtj16T08PGhoaEB0dLWIqIiIiImlN22IKAGbPno2IiAh8+eWXE3r+mTNnoNVqkZGRYbf3Fw0NDUGtVmPZsmXTdqFajUaD+Ph4u+2+KIXJdvQrKSlBdHQ0XF1dRUxFREREJK1pfzW5Zs0aFBUVoa2t7ZHPKyoqQnl5OTZv3my3C7wajUYcPHgQs2bNwhNPPCF1HEkYjUYUFxdzbalJCgoKQmtrK4xG42Ofa1q/i1P8yJ5UVFTgzTffxMsvv4zf//73UschIgkcKWrE8l1nMff9z7F811kcKWqUOhLZgWlfTHl6euKpp556ZDOK+vp6nDlzBlu3boWHh4eVE1rOyZMnYTAYkJ6ebrcja1NVU1MDb29vBAYGSh3Frri5ucHT0xPt7e2PfW5DQwMAYNasWWLHIgIAbNu2DUFBQYiLixu1vaCgAFFRUYiMjMSuXbseuY/o6Gj84Q9/wP79+/H111+LGZeIbNCRokbsPFSKxq4BCAAauwaw81ApCyp6rGlfTAFAamoqent7UVlZ+dBj7e3tOHDgADZt2oSAgAAJ0lnGlStXUFtbi1deeQVyuVzqOJLhiIn5JnrfVFFREdeWIqvKyclBQUHBqG0GgwFvv/028vPzUV5eDrVajfLycpSWliIjI2PUfy0tLQCAY8eO4fnnn8f69eul+DGISEIfnazCwLBh1LaBYQM+OlklUSKyFyymAMjlcqSnp+PkyZMYHh4e2T4wMAC1Wo3Vq1cjIiJCwoRTU1NTgwsXLiA7Oxvu7u5Sx5FMf38/amtrH/r2miZmIh39dDodKioqkJiYaKVURMDKlSvh5+c3althYSEiIyMREREBV1dXbNmyBUePHkV8fDyOHz8+6r+goCAAwIYNG5Cfn4+///3vUvwYRCShpq6BSW0nMmEx9Z25c+ciLCwMFy9eBHD/W839+/djwYIFWLJkicTpzNfS0oLDhw8jKyvroYuN6aa0tBTz58+f1gXlVExkZKqiogJhYWGYMWOGlVIRja2xsXHUVNOwsDA0No4/Xef8+fN499138aMf/eiRI1O7d+9GcnIykpOT0draatHMRCSdEB/FpLYTmdhnJwWRrF27Fn/84x+RkJCAixcvws3NDWvWrJE6ltm0Wi3UajXS0tIwe/ZsqeNITqPR2PX/T6lNpKOfRqNBcnKylRIRWc7TTz+Np59++rHP27FjB3bs2AEAPNeJHMh7aVHYeah01FQ/hYsc76VNz87HNHEspr7H29sbTz75JHJzc+Hs7IzXXnvNbttn6/V65ObmIj4+HgkJCVLHkdy9e/fQ39+PuXPnSh3Fbs2YMQN6vR5arRZKpfKhxzs7O9Hc3DxtW+6TbQkNDcWdO3dG/t7Q0IDQ0FAJExGRLduYdP/z4aOTVWjqGkCIjwLvpUWNbCcaD4upB/j4+KC9vR0bNmyw2zVyBEHA0aNH4e3tjdWrV0sdxyaYmiLYa3FsC2QyGYKDg3Hv3j3MmzfvoceLi4sRFxdnt0sHkGNJSUlBdXU16urqEBoaitzcXOzbt88i+87Ly0NeXh66u7stsj8isg0bk0JZPNGk8crye5qampCfn4+0tDR8+eWX0Ov1Ukcyy4ULF9DZ2YkXXniBHdVw//63GzdusIufBZiKqQdxbSmSUnZ2NpYtW4aqqiqEhYVhz549cHZ2xscff4y0tDRER0cjKysLsbGxFjleZmYmdu/eDW9vb4vsj4iI7Be/Qv5OT08PcnNzkZGRgejoaNTV1eHSpUt46qmnpI42KaWlpdBoNHj99dfh4uIidRybUFVVhcDAwGnfgMMSVCoV6urqHtpeX18PNzc3zJw5U4JUNN2p1eoxt69fv55tzomISFQcmcL9ds5qtRqpqamIjo4GAKSlpeHSpUt2NY3jzp07KCgoQHZ2Njw9PaWOYzM4YmI54zWhML3HHAml6SAvLw87duywq38fiIhIHNO+mDIajTh06BBUKhWWL18+st3X1xepqak4deqUhOkmrrOzE/v378fGjRsRHBwsdRyb0dvbi9u3byMmJkbqKA4hMDAQHR0do6bADg4Ooqqqio1OaNrgND8iIjKZ9sXU6dOnMTQ0hIyMjIe+VV++fDmamppQW1srUbqJGRwchFqtxooVKzB//nyp49iUkpISREdH220zEVvj7OwMPz+/UevrlJWVYe7cuWN2+CMiIiJyZNO6mLp27RqqqqqQlZUFuVz+0OMuLi5IS0tDfn4+DAbDGHuQntFoxIEDBxAeHo6lS5dKHcemsCmCOB5sQsH3mIiIiKaradOAom9Ij+MlTahv0yI8QIk4ryGcO3cOr732GhSK8Ve3joqKwrVr1/DNN9/gySeftGLixxMEAfn5+ZDJZFi3bp3UcWxOY2MjjEYjFyy2sODg4JH7ptra2tDZ2YnIyEiJU1nHg58jGQkh8HSbNh+j9B22RiciIpNpcRVwpb4DOXsLIQhAv84AhYsT9MPD+PWGdPj7+z/ytaZCZc+ePYiPj4eXl5eVUj9eYWEhbt26hW3btnH9pDGY1pZiUwTLUqlUqK6uBnB/VCohIWHMkV1H8+DniIerHB98Xo69OalICWenyOkkMzMTmZmZSE5OljoKERFJzOGvwPuG9MjZWwjtkAH9uvtT9QaGjRiGHDtP3oF26PFrSfn7+2Px4sU4ffq02HEn7ObNm7h48SK2bt0Kd3d3qePYnOHhYZSXlyMxMVHqKA7H1NHPYDCguLgYSUlJUkcS3VifI/06A7RDhu+22+eadERERDQ1Dl9MHS9pgiCM/Zgg3H98IlauXIn6+nrcunXLgunM09zcjKNHjyIrKws+Pj5Sx7FJFRUVCA0NZbctESiVSjg7O6O0tBTe3t4IDAyUOpLoLPU5QkRERI7F4Yup+jbtyDfJD+rXGVDf3j+h/bi6umLt2rXIz8+H0Wi0ZMRJ6evrg1qtRnp6OmbNmiVZDlvHpgjiCg4OxvXr16fNe2ypzxFyDFxnioiITBy+mAoPUMLDdez7OTxc5Qj395jwvmJjY6FQKHD16lVLxZuU4eFh5ObmIikpCXFxcZJksAddXV24d+8eFi5cKHUUh+Xv74+mpqZpcx5a8nOE7B/XmSIiIhOHL6YyEkIwXv8Bmez+4xMlk8mQnp6OCxcuQKvVWijhxAiCgCNHjsDPzw8rV6606rHtTXFxMWJjY+HsPC36q0hicHAQSqVy2tyvl5EQgvHm+U32c4SIiIgch8MXU55uztibkwqlm3zkm2UPVzmUbvLvtk/ugjsoKAgJCQk4c+aMGHHHde7cOfT29mLDhg3sTvcIprWlpkNTBCk1NTVJOt3V2nTaHqxT1ELh4mSRzxEiIiJyDNPiCiAl3A+FO9fcXx+mvR/h/h7ISAgx+wJo1apV+N3vfofGxkaEhoZaOO3DiouLUVpaitdff52jLY9x69YtuLq6YubMmVJHcVj37t3D0NDQyH9ubm5SRxLV4OAg1Go1stek4oOEJIt9jhAREZH9mzZXAUo3Z2xOsczire7u7lizZg1OnDiB7du3i7rG061bt3Dq1Cnk5ORAqVSKdhxHYWo8wdE78Zje42+//RYtLS0O3QjFYDBg//79mDdvHlJSUgDAYp8jZL+4aC8REZk4/DQ/sZgWKi0qKhLtGB0dHfjss8+wadOmadF+eqqGhoZQWVmJhIQEqaM4LIPBgNLSUixatAjBwcG4d++e1JFEIwgCTpw4AWdnZzz33HNSxyEbwgYURERkwmLKTKZmFOfOncPAwIDF9z8wMIB9+/Zh1apVmDdvnsX374jKysoQHh7OETwR3bx5E4GBgfDz83P4Yury5ctobGzESy+9JOroMxEREdkvXiFMwcyZMxEdHY2zZ89adL8GgwGfffYZIiMjR6YW0eNxbSnxff89VqlUaG5uljiROKqqqnDp0iVkZ2c7/D1hREREZD4WU1P0zDPPoKKiAnfv3rXI/ji1yDzt7e3o6OjA/PnzpY7isPr6+nD79m3ExMQAuL9wb0tLi8N19bt37x6OHTuGzZs3cxoXERERPRKLqSlSKBRYvXo18vPzIYyzDs1kXLp0iVOLzKDRaBAfHw+5fOyFVWnqiouLsXDhQri6ugK434hFqVSio6ND4mSW09vbC7VajfXr11ulUycRERHZN16tW0BSUhIMBgNKSkqmtJ/KykpcvnyZU4smyWg0ori4mGtLici0fteD0ygdaaqfTqeDWq3GkiVLEBsbK3UcsmF5eXnYsWMHu/kRERGLKUtwcnJCeno6Tp8+jcHBQbP2cffuXeTl5XFqkRkK0kPoAAAgAElEQVRqa2vh5eWFoKAgqaM4rMbGRhiNRsyePbotuKM0oRAEAUeOHEFQUBCeeuopqeOQjWM3PyIiMmExZSFhYWGIjIzEhQsXJv3anp4e5Obm4vnnn+fUIjOw8YT4NBoNEhMTH1q/Kzg42CFGps6cOQOtVouMjAyuUUZEREQTxmLKgtasWYOSkhK0tLRM+DU6nQ65ublITk4eubGfJm5gYAA1NTWIi4uTOorDGh4eRllZGRITEx96TKVS2f3IVFFREcrLy7F582Y4O0+bdcyJiIjIAlhMWZBSqcSqVasm3IxCEAQcPnwYQUFBWLFihRUSOp7S0lJERkZCoVBIHcVhVVZWIjQ0dMwpTT4+PtDpdOjv75cg2dTV19fjzJkz2Lp1Kzw8PKSOQ0RERHaGxZSFJScnY2BgAOXl5Y997unTp9Hf38+pRVPAKX7ie9R7LJPJ7HaqX3t7Ow4cOIBNmzYhICBA6jhERETjOlLUiOW7zmLu+59j+a6zOFLUKHUk+g6LKQszNaM4deoUdDrduM+7fv06KioqOLVoCpqbm6HVahERESF1FIfV1dWFu3fvYuHCheM+xx6bUAwMDGDfvn1YvXo1zx8iIrJpR4oasfNQKRq7BiAAaOwawM5DpSyobASLKRHMmTMHc+bMwZdffjnm43V1dTh79iynFk2RRqNBQkIC1+MSUXFxMWJjYx9Z8Ntbe3SDwYBPP/0UUVFRWLJkidRxiIiIHumjk1UYGDaM2jYwbMBHJ6skSkTfx6tQkaxduxbXr19He3v7qO3t7e04ePAgXnrpJU4tmgKDwYDS0lJO8RPReGtLPcieRqYEQcDx48fh7u6ONWvWSB2H7BTXmSIia2rqGpjUdrIuFlMi8fLywooVK0Y1o+jv78e+ffvwzDPPYO7cuRIntG/V1dXw9/eHv7+/1FEc1q1bt+Di4oKQkJBHPi8oKAjt7e0wGAyPfJ4t+Prrr3Hv3j1s2rSJI5pkNq4zRUTWFOIzdpOt8baTdfFqQkRLly5Fd3c3qqqqYDAYsH//fkRFRWHx4sVSR7N7RUVFHJUSmWlU6nHNUVxcXODj44PW1lYrJTNPRUUFCgsLkZ2dDVdXV6njEBERTch7aVFQuMhHbVO4yPFeWpREiej7WEyJSC6XIz09HSdPnsSxY8c4tchC+vr6cOvWLa7LJaKhoSFUVlYiISFhQs+39fummpqacPz4cWzZsgUzZsyQOg4REdGEbUwKxYeb4hHqo4AMQKiPAh9uisfGpFCpoxEAtpETWUREBFxdXVFbW4sf//jHnFpkASUlJVi4cCHc3NykjuKwysrKEB4eDk9Pzwk933Tf1FgL+0qtp6cHubm5yMjIeOyURSIiIlu0MSmUxZON4pW9yCoqKtDf3w+9Xg+tVit1HLs30aYINDWTfY9tda0pnU4HtVqNpUuXIjo6Wuo4RERE5GBYTInINLVo69atWLZsGU6ePCl1JLvX1NQEvV6POXPmSB3FYbW3t6OjowPz58+f8GtUKhXu3bs30mzFFhiNRhw6dAgqlQpPPvmk1HGIiIjIAbGYEolpalFmZiZmzpyJJ598Ei0tLaiurpY6ml0rKipCYmLiY5sikPk0Gg3i4+Mhl8sf/+TveHp6QiaTobe3V8Rkk3P69GkMDQ0hIyOD5wsRERGJgsWUCL4/tWjhwoUAAGdnZ6xbtw4FBQXQ6/USJ7RPw8PDKCsr4xQ/ERmNRhQXF0/6PZbJZCOjU7bg2rVruHnzJrKysiZVFBIRERFNBospCzMajTh48OCYU4sWLFiAgIAAXL58WaJ09q2yshIhISFc20VEtbW18PT0RHBw8KRfayv3TdXW1uLcuXPIzs6GQsE1OIiIiEg8LKYs7IsvvoBOpxt3alFaWhr+8Y9/oKenR4J09o2NJ8Q3lffYFtqjt7W14dChQ3j55Ze5oDOJJi8vDzt27EB3d7fUUYiISGIspizo2rVrqK6ufuTUIj8/P6SkpODUqVNWTmffuru70dTUNDJtkixvYGAANTU1iI+PN+v1pvboUunv78e+ffuwZs0ahIeHS5aDHF9mZiZ2797NUXIiIuI6U1PRN6TH8ZIm1LdpoRT60Vt2AT/a9upjpxatWLECv/vd71BXV4e5c+daKa19Ky4uRmxsLFxcXKSO4rBKS0sRGRlp9tS4gIAAdHd3Q6fTwdXV1cLpHk2v1+PTTz9FTEzMqJG17/+OhgcokZEQAk83fuwRERGRZfCqwkxX6juQs7cQggD06wxwhgGuLtFY2yvD42YXubi4IC0tDfn5+fjRj37EG+Qfw7S21KZNm6SO4tA0Gg2eeeYZs18vl8sREBCAlpYWhIWFWTDZowmCgLy8PCiVSjz77LMj2x/8HfVwleODz8uxNycVKeF+VstHREREjovT/MzQN6RHzt5CaIcM6NcZAAB6yNE/bPxu++O79S1cuBBeXl4oLCwUO67du337NuRyOUJDufK3WJqbm9HX14eIiIgp7UeK+6a++uortLa24sUXXxy5T3Gs39F+nQHaIcOEf0eJiIiIHofFlBmOlzRhvLVJBeH+448jk8mQnp6Or776Cn19fRZO6FhMTRG4VpB4NBoNEhMT4eQ0tY8Ea983VVZWhmvXriE7O3vUFFBL/I4SERERPQ6LKTPUt2lHvu1+UL/OgPr2/gntJyAgAElJSTh9+rQl4zkUnU6HiooKJCYmSh3FYRkMBpSWllqkU6I1R6YaGhpw4sQJZGdnw8vLa9RjlvodJSIiInoUFlNmCA9QwsN17PucPFzlCPf3mPC+Vq5cidraWty+fdtS8RxKWVkZ5syZA09PT6mjOKzq6mr4+flZpJW4aa0pYbxhIQvp6urC/v37sWHDBqhUqoce93M1wgXGMV872d9RIiIiovGwmDJDRkIIxptxJpPdf3yi3NzcsHbtWuTn58NoHPvibzrj2lLi02g0SEpKssi+FAoF3N3d0dnZaZH9jWVoaAhqtRrLli1DVFTUQ49/++23aL1WAGfnsb/wmOzvKBEREdF4WEyZwdPNGXtzUqF0k4+MUHm4yqF0k3+3fXJNEuPi4uDm5oZr166JEddudXR0oK2tDQsWLJA6isPq6+tDfX09YmJiLLZPlUol2n1TRqMRBw8eRFhYGJ544omHHr927RoOHz6MH2x+Gf+3/QmL/Y4SERERjYVXFGZKCfdD4c4199ewae9HuL8HMhJCzLpIMzWj+L//+z/ExMRAqVSKkNj+aDQaxMfHs3W8iEpKSrBw4UK4ublZbJ+mqX6WLNBMTp48CYPBgPXr149qSCIIAk6fPo3Kykq89tpr8Pf3xxzAYr+jRERERGPhVcUUKN2csTlltkX2FRwcjLi4OJw9exaZmZkW2ac9MxqNKC4uxtatW6WO4rBM63etX7/eovtVqVQoKSmx6D4B4MqVK6itrcX27dtHFdjDw8M4fPgw+vv7sX37dnh4/PN+KEv+jhIRERE9iNP8bMjq1atx8+ZNNDY2Sh1FcnV1dVAqlQgODpY6isNqamqCXq/HnDlzLLpfMdqj19TU4MKFC8jOzoa7u/vI9r6+PvzlL3+Bi4sLfvCDH4wqpIiIiIjExmLKhri7u+PZZ59Ffn6+6N3QbB0bT4jPtLaUpdfv8vPzw8DAAAYGBiyyv5aWFhw+fBhZWVnw8/MbtX3Pnj2IjIzExo0b4ezMgXYiIiKyLhZTNsZ0cVtUVCR1FMkMDAyguroa8fHxUkdxWHq9HmVlZaIUrDKZDEFBQRZZb0qr1UKtViMtLQ2zZ/9zut63336Lv/zlL1i9ejWefvppLuhMREREkmAxZWNMzSjOnj1rsW/27c2NGzcwb948KBQKqaM4rMrKSsycORPe3t6i7N8SU/30ej1yc3MRHx+PhISEke2mjn1ZWVmjthNNlVarRXJyMo4fPy51FCIishMspmxQSEgIFi5ciHPnzkkdRRKc4ic+sd9jlUo1pZEpQRBw9OhReHt7Y/Xq1SPbvvjiC/zjH//Aa6+9ZvF7vch+bdu2DUFBQYiLixu1vaCgAFFRUYiMjMSuXbseu5///u//RlZWllgxiYjIAbGYslHPPPMMysrKRFuvx1a1tLSgt7cX8+bNkzqKw+ru7kZjYyMWLlwo2jGmWkxduHABnZ2deOGFFyCTyTA8PIzPPvsMDQ0N2L59O/z9/S2YluxdTk4OCgoKRm0zGAx4++23kZ+fj/LycqjVapSXl6O0tBQZGRmj/mtpacEXX3yBmJgYBAUFSfRTEBGRPeId2zbKw8MDq1evRn5+PnJycqbNPSEajQYJCQlwcmKdL5bi4mLExsbCxcVFtGMEBQWhtbUVBoNh0uuElZaWQqPR4PXXX4eLiwv6+vqQm5sLf39//PCHP2SjCXrIypUrUV9fP2pbYWEhIiMjERERAQDYsmULjh49ip07d445je/8+fPQarUoLy+HQqHA+vXr+TlERESPxX8pbNjixYsxPDyM0tJSqaNYhcFgQElJCZKSkqSO4rAEQUBxcbHo0yhdXV3h7e2N9vb2Sb3uzp07KCgoQHZ2Njw9Pdmxj8zW2NiIWbNmjfw9LCzskctO/Nd//Rd+85vfYOvWrXjjjTfGLaR2796N5ORkJCcno7W11eK5iYjIvrCYsmFOTk5IT0/H6dOnMTQ0JHUc0dXU1MDPz49TuER0+/ZtODk5ITQ0VPRjTbYJRWdnJ/bv34+NGzciODiYHftIEjk5OcjIyBj38R07duDq1au4evUqAgMDrZiMiIhsEYspGzdr1izMmzcPFy5ckDqK6Nh4Qnym99gahUlwcPCE75saHByEWq3GihUrMH/+fHbsoykLDQ3FnTt3Rv7e0NBglS8RiIhoemExZQeeffZZFBcXO/SUEq1Wi7q6OsTGxkodxWHpdDpUVlYiMTHRKsdTqVQTGpkyGo04cOAAwsPDkZqayo59ZBEpKSmorq5GXV0ddDodcnNzsWHDBovsOy8vDzt27EB3d7dF9kdERPaLxZQd8PT0xFNPPYX8/HwIgiB1HFGUlJQgKioKbm5uUkdxWOXl5Zg9ezY8PT2tcryJdPQTBAH5+fmQyWR49tln2bGPzJKdnY1ly5ahqqoKYWFh2LNnD5ydnfHxxx8jLS0N0dHRyMrKstiXNZmZmdi9e7do67QREZH94N3cdiI1NRVFRUWoqKhATEyM1HEsShAEaDQarFu3TuooDk2j0WDp0qVWO56XlxeMRiP6+vrGLeAKCwtx69YtbN68GX/961/h5+fHjn00aWq1eszt69evx/r1662choiIphOOTNkJUzOKkydPQqfTSR3Hou7evQudTofw8HCpozisjo4OtLa2YsGCBVY7pkwme2QTips3b+LixYt47rnn8Le//Q2RkZF48cUXWUiRzeM0PyIiMmExZUfCw8Mxe/ZsXLx4UeooFqXRaJCYmMhubSLSaDSIj4+f9JpPUzXefVPNzc04evQoVqxYgcOHD7NjH9kVTvMjIvqnI0WNWL7rLOa+/zmW7zqLI0XjL0PhiFhM2Zm1a9fi6tWrk16/x1bp9XrcuHGDXfxEZDQarbK21FjG6ujX19cHtVqNhQsX4quvvmLHPiIiIjt1pKgROw+VorFrAAKAxq4B7DxUOq0KKhZTdmbGjBlYvnw5CgoKHKIZRVVVFVQqFXx8fKSO4rDq6urg4eEBlUpl9WM/2IRieHgYarUaM2bMQH19PTv2ERER2bGPTlZhYNgwatvAsAEfnaySKJH18eYEO/TEE0+gqKgImrJKVA0oUd+mRXiAEhkJIfB0s6//pVxbSnxSvsfuXj641CJD5+dliAj0wnDNJfT19cHb2xvbt2+Hh4eHJLmIpiIvLw95eXm8Z4qIpr2mroFJbXdE9nXlTQAAuVyOsKRVyNpXA2dnFwwMG+DhKscHn5djb04qUsL9pI44IT09PWhoaEBWVpbUURzWwMAAqqurkZ6ebvVjX6nvQM7eQuh0YfjqYj1cnQDBqMCOqDn41x9sYKMJsluZmZnIzMxEcnKy1FGIiCQV4qNA4xiFU4iPQoI00uA0PzvUN6THz79oxLDgNDK02q8zQDtkQM7eQmiH9BInnJji4mLExMTAxcVF6igO68aNG5g3b57VR4D6hvTfnYsGDAv3P2Z0RmAYcuyt98CQ4TE7ICIiIpv3XloUFC6jm1spXOR4Ly1KokTWx2LKDh0vacJ4t0sJwv3HbZ1pbSlO8ROXVO+xI5yjRERE9Ggbk0Lx4aZ4hPooIAMQ6qPAh5visTEpVOpoVsN5Nnaovk2Lft3YX+336wyob++3cqLJu3PnDmQyGcLCwqSO4rBaWlrQ29uLefPmWf3YjnCOEo2H90wREf3TxqTQaVU8PYgjU3YoPEAJD9ex1wvycJUj3N/2b+ovKirCokWLuK6QiDQaDRISEuDkZP1fc0c4R4nGw3WmiIjIhMWUHcpICMF4NYhMdv9xW6bT6VBZWYnExESpozgsg8GAkpISyaZR2vs5SkRERDQRLKbskKebM/bmpELpJh/59t/DVQ6lm/y77bY9e7O8vByzZs2Cl5eX1FEcVk1NDXx9fREQECDJ8e39HCUiIiKaCF7R2KmUcD8U7lyD4yVNqG/vR7i/BzISQuziIlWj0SA1NVXqGA7NFpp72PM5SkRERDQRvKqxY0o3Z2xOmS11jEnp7OxEa2srFixYIHUUh6XValFXV4eNGzdKHcUuz1Gix2EDCiIiMuE0P7IqjUaDuLg4LtgqopKSEkRFRcHNzU3qKEQOiQ0oiIjIhMUUWY0gCCguLpZ8+pkj4/pdRERERNbDYoqspq6uDu7u7pg5c6bUURzW3bt3odPpEB4eLnUUIiIiIofHYoqshiMm4tNoNEhMTOT6XURERERWwGKKrGJwcBA3b95EQkKC1FEcll6vx40bN7h+FxEREZGVsAsAWcWNGzcQEREBDw8PqaM4rKqqKgQHB8PX11fqKEQOjd38iIjIhCNTZBWc4ic+vsdE1sFufkREZMKRKRJN35Aex0uaUH67FQ3NQNascKkjORzTe1zV1Inab7VY/wLX7yIiIiKyFhZTJIor9R3I2VsIQQD6dQa4Oc3Esv8+i705qUgJ95M6nkN48D12dQrBiv93ge8xERERkZVwmh9ZXN+QHjl7C6EdMqBfZwAADBkB7ZDhu+16iRPav7HeY51RxveYiIiIyIpYTJHFHS9pgiCM/Zgg3H+cpobvMREREZH0OM2PLK6+TTsyWvKgfp0BF4urEK/sg6+vL3x9feHu7m7lhPbvce9xfXu/lRMRERERTT8spsjiwgOU8HCVj3mx7yYHfJ0NKC0tRUdHBzo7O+Hs7Aw/P7+R4srX13fk715eXlyAdgyPeo89XOUI92cLeiIiIiKxsZgii8tICMEHn5eP+Zizsxw/y14Dpdv9U08QBGi1WnR2do4UV/X19SgqKkJHRweGhobg4+MzZrHl4+MDZ2fLncKmznj1bVqEByiRkRACTzfb/BV51Hssk91/nIjEwXWmiIjIRCYI4915QWS+BzvNebjKIZNh0p3mdDodOjs7RxVbpv+6u7uhVCofGs0y/VmhUFg9rzXZY2YiR5KcnIyrV69KHYOIiET2qM97FlMkGq1ppKe9H+H+HshICBkZkbIEo9GI7u7uMYutjo4OODk5jTl10NfXFzNmzICT0/3+K31Deiz98DS0Qw9PmVO6yVG4c41Fc1uS2O8xEY2PxRQR0fTwqM97XnWRaJRuzticMlu0/X+/WHqQIAgYGBgYVWDduXMHxcXF6OzsRH9/P3x8fODr64vyIR/ox+kkbuqMJ+bPMRViv8dEREREND4WU+SQZDIZPDw84OHhgbCwsIceHx4eRldXFzo6OnD5YgOGDINj7oed8YiIiIhoPFxniqYlFxcXBAYGIioqCssT5sPDVT7m89gZj4iIiIjGw2KKpr2MhBCM132dnfGIiIiIaDwspmja83Rzxt6cVCjd5CMjVB6ucijd5N9t52xYIiIiInoYrxKJAKSE+6Fw5xp2xiMiIiKiCeOVItF32BmPiIiIiCaDxRQREdEk5OXlIS8vD93d3VJHISIiifGeKSIioknIzMzE7t274e3tLXUUIiKSGIspIiIiIiIiM7CYIiIiIiIiMgOLKSIiIiIiIjOwmCIiIiIiIjIDiykiIiIiIiIzsJgiIiIiIiIyA4spIiIiIiIiM7CYIiIiIiIiMgOLKSIiIiIiIjOwmCIiIiIiIjIDiykiIiIiIiIzsJgiIiIiIiIyA4spIiIiIiIiM7CYIiKiae/8+fN46qmn8Oabb+L8+fNSxyEiIjvBYoqIiOzatm3bEBQUhLi4uFHbCwoKEBUVhcjISOzateuR+5DJZPD09MTg4CDCwsLEjEtERFZwpKgRy3edxdz3P8fyXWdxpKhRlOPIBEEQRNkzERGRFXz55Zfw9PTEv/7rv+LGjRsAAIPBgAULFuCLL75AWFgYUlJSoFarYTAYsHPnzlGv//Of/4yAgAA4OTmhubkZP/3pT/H3v//9scdNTk7G1atXRfmZiIjIfEeKGrHzUCkGhg0j2xQucny4KR4bk0Invb9Hfd47m52SiIjIBqxcuRL19fWjthUWFiIyMhIREREAgC1btuDo0aPYuXMnjh8/Pu6+fH19MTQ0JGZcIiIS2Ucnq0YVUgAwMGzARyerzCqmHoXFFBEROZzGxkbMmjVr5O9hYWH45ptvxn3+oUOHcPLkSXR1deGdd94Z93m7d+/G7t27AQCtra2WC0xERBbT1DUwqe1TwWKKiIimvU2bNmHTpk2Pfd6OHTuwY8cOAPenfRARke0J8VGgcYzCKcRHYfFjsQEFERE5nNDQUNy5c2fk7w0NDQgNtezUDiIisk3vpUVB4SIftU3hIsd7aVEWPxZHpoiIyOGkpKSguroadXV1CA0NRW5uLvbt22eRfefl5SEvLw/d3d0W2R8REVmW6b6oj05WoalrACE+CryXFmXx+6UAdvMjIiI7l52djfPnz6OtrQ3BwcH45S9/ie3bt+PEiRP4yU9+AoPBgG3btuHnP/+5RY/Lbn5ERNPDoz7vWUwRERGZgcUUEdH0wNboREREFsJpfkREZMIGFERERJOQmZmJ3bt3w9vbW+ooREQkMRZTREREREREZmAxRUREREREZAbeM0VERDQJvGeKiIhMODJFREQ0CbxnioiITFhMERERERERmYHFFBERERERkRl4zxQREdEk8J4pIiIykQmCIEgdgoiIyN4EBATA19f3kfdOdXd3P/Lx1tZWBAYGihHP6h73s9rTcae6T3NfP5nXTfS5j3sez1H7PO50Okcf9xxrnKP19fVoa2sb+0GBiIiIzPLGG29M6fElS5ZYMo6kHvez2tNxp7pPc18/mddN9Lk8R/+J5+jUXy/FOfq450h9jvKeKSIiIjNlZmZO6XFHItXPKsZxp7pPc18/mddN9Lk8R/+J5+jUXy/FOTrZ41obp/kRERFJJDk5GVevXpU6BtG4eI6SrZP6HOXIFBERkUR27NghdQSiR+I5SrZO6nOUI1NERERERERm4MgUERERERGRGVhMERERERERmYHFFBERERERkRlYTBEREdkIrVaLV199FW+88Qb+/ve/Sx2H6CG1tbXYvn07Xn75ZamjEI3pyJEjeOONN7B582acOnVK9OOxmCIiIhLRtm3bEBQUhLi4uFHbCwoKEBUVhcjISOzatQsAcOjQIbz88sv405/+hGPHjkkRl6ahyZyjERER2LNnjxQxaRqbzDm6ceNG/OlPf8If/vAHfPrpp6JnYzFFREQkopycHBQUFIzaZjAY8PbbbyM/Px/l5eVQq9UoLy9HQ0MDZs2aBQCQy+VSxKVpaDLnKJEUzDlHf/WrX+Htt98WPRuLKSIiIhGtXLkSfn5+o7YVFhYiMjISERERcHV1xZYtW3D06FGEhYWhoaEBAGA0GqWIS9PQZM5RIilM5hwVBAE/+9nPkJ6ejsWLF4uejcUUERGRlTU2No6MQAFAWFgYGhsbsWnTJhw8eBD/9m//hszMTAkT0nQ33jna3t6ON998E0VFRfjwww8lTEjT3Xjn6G9/+1ucPn0aBw4cwB/+8AfRcziLfgQiIiKaEKVSiU8++UTqGETj8vf3t8oFKpG53n33Xbz77rtWOx5HpoiIiKwsNDQUd+7cGfl7Q0MDQkNDJUxENBrPUbJ1tnKOspgiIiKyspSUFFRXV6Ourg46nQ65ubnYsGGD1LGIRvAcJVtnK+coiykiIiIRZWdnY9myZaiqqkJYWBj27NkDZ2dnfPzxx0hLS0N0dDSysrIQGxsrdVSapniOkq2z5XNUJgiCYPWjEhERERER2TmOTBEREREREZmBxRQREREREZEZWEwRERERERGZgcUUERERERGRGVhMERERERERmYHFFBERERERkRlYTBERERE5GLlcjkWLFiE2NhaJiYn49a9/DaPRKHUsAEBOTg4OHDggdQwii3CWOgARERERWZZCoYBGowEAtLS0YOvWrejp6cEvf/nLKe/bYDBALpdPeT9EjoAjU0REREQOLCgoCLt378bHH38MQRBgMBjw3nvvISUlBQkJCfjjH/8IADAajXjrrbewcOFCrF27FuvXrx8ZQQoPD8fPfvYzLF68GJ999hlOnTqFZcuWYfHixXjllVfQ19cHALh27RpWrVqFJUuWIC0tDXfv3n1ktl/84hfIycmBwWAQ900gEgmLKSIiIiIHFxERAYPBgJaWFuzZswfe3t64cuUKrly5gj/96U+oq6vDoUOHUF9fj/Lycvz1r3/FpUuXRu3D398f169fx5o1a/CrX/0Kp0+fxvXr15GcnIz/+Z//wfDwMH784x/jwIEDuHbtGrZt24af//zn42Z677330Nraik8++YQjXWS3OM2PiIiIaBo5deoUSkpKRkaduru7UV1djYsXL+KVV16Bk5MTVCoVVq9ePep1mzdvBgBcvk6+R4oAAAIgSURBVHwZ5eXlWL58OQBAp9Nh2bJlqKqqwo0bN7B27VoA96cDzpw5c8wMH3zwAZYuXYrdu3eL9WMSWQWLKSIiIiIHV1tbC7lcjqCgIAiCgN/+9rdIS0sb9ZwTJ048ch9KpRIAIAgC1q5dC7VaPerx0tJSxMbGPjSiNZaUlBRcu3YNHR0d8PPzm+RPQ2Q7OM2PiIiIyIG1trbizTffxDvvvAOZTIa0tDT8/ve/x/DwMADg5s2b0Gq1WL58OQ4ePAij0Yjm5macP39+zP098cQT+Prrr1FTUwMA0Gq1uHnzJqKiotDa2jpSTA0PD6OsrGzMfaxbtw7vv/8+nn/+efT29lr+hyayEo5MERERETmYgYEBLFq0CMPDw3B2dsYPf/hD/PSnPwUAvP7666ivr8fixYshCAICAwNx5MgRvPTSSzhz5gxiYmIwa9YsLF68GN7e3g/tOzAwEHv37kV2djaGhoYAAL/61a+wYMECHDhwAO+++y66u7uh1+vxk5/8BLGxsWNmfOWVV9Db24sNGzbgxIkTUCgU4r0hRCKRCYIgSB2CiIiIiKTX19cHT09PtLe3IzU1FV9//TVUKpXUsYhsFkemiIiIiAgAkJGRga6uLuh0OvziF79gIUX0GByZIiIiIiIiMgMbUBAREREREZmBxRQREREREZEZWEwRERERERGZgcUUERERERGRGVhMERERERERmYHFFBERERERkRn+f+ArPPrVy5b9AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAIYCAYAAAAsKiYVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADzuklEQVR4nOzdd3RUZ54n/G+VMso5Z4kgkkCgYGNswOQchSRsbEJ73bZnZt1zZrr33e4e77y78+52u4+nbTk0MsY2SuRosg0YkMhJCFDOOceK975/sLqNLAlUokql8P2c06etqntvPbdKVar75ff8HpkoiiKIiIiIiIiIiIj0TG7sARARERERERER0cjE4ImIiIiIiIiIiAyCwRMRERERERERERkEgyciIiIiIiIiIjIIBk9ERERERERERGQQDJ6IiIiIiIiIiMggGDwREREREREREZFBMHgiIiIiIiIiIiKDYPBEREREREREREQGweCJiIiIiIiIiIgMgsETEREREREREREZBIMnIiIiomHu2LFjGDduHEJDQ5GUlGTs4RARERFJZKIoisYeBBERERENjEajQVhYGH766SfY29sjIiICV65cgbOzs7GHRkRERMSKJyIiIqLh7Nq1a5g4cSK8vb1hY2ODxYsX4/Tp08YeFhEREREAwNTYAyAiIiIazS5evIg//elPuHnzJiorK3Hw4EGsWrWq2zaJiYn405/+hKqqKkydOhWffvopIiMjAQAVFRXw9vaWtvX29kZ5eXm/H18QBFRUVMDW1hYymUwv50REREQjmyiKaG1thZeXF+TyZ9c0MXgiIiIiMqL29nZMnToVW7ZswZo1a3rcn56ejg8//BBffvkloqKi8Mknn2DhwoV4/Pgx3NzcXvjxKyoq4Ovr+8LHISIiotGntLQUPj4+z9yGwRMRERGRES1evBiLFy/u8/6//OUv2L59O95++20AwJdffonjx49j586d+O1vfwsvL69uFU7l5eVSNVRvlEollEql9HNXu8/S0lLY2dm96OkQERHRKNDS0gJfX1/Y2to+d1sGT0RERERDlEqlws2bN/G73/1Ouk0ul+P1119HRkYGACAyMhJZWVkoLy+Hvb09Tpw4gd///vd9HvM//uM/8NFHH/W43c7OjsETERER6aQ/0/TZXJyIiIhoiKqrq4NWq4W7u3u3293d3VFVVQUAMDU1xccff4w5c+YgPDwcv/nNb565ot3vfvc7NDc3S/8rLS016DkQERHR6MaKJyIiIqJhbsWKFVixYkW/trWwsICFhYWBR0RERET0BCueiIiIiIYoFxcXmJiYoLq6utvt1dXV8PDwMNKoiIiIiPqPwRMRERHREGVubo6IiAicO3dOuk0QBJw7dw4xMTEvdOzExESEhYVh5syZLzpMIiIioj5xqh0RERGREbW1tSEvL0/6ubCwEHfu3IGTkxP8/Pzw4YcfYvPmzZgxYwYiIyPxySefoL29XVrlbqDee+89vPfee2hpaYG9vf2LngYRERFRrxg8ERERERnRjRs3MGfOHOnnDz/8EACwefNm7Nq1C7GxsaitrcUf/vAHVFVVITw8HCdPnuzRcJyIiIhoKJKJoigaexBEREREZBxdFU/Nzc2ws7Mz9nCIiIhoGNDl+wN7PBERERGNQuzxRERERIOBFU9EREREoxgrnoiIiEhXrHgiIiIiIiIiIiKjY/BEREREREREREQGweCJiIiIiIiIiIgMgsETERER0SjE5uJEREQ0GNhcnIiIiGgUM2Rzca0g4lphA2paFXCztURkoBNM5DK9PgYRERENPl2+P5gO0piIiIiIaBQ5mVWJj45mo7JZId3maW+JPy4Pw6JJnkYcGREREQ0mTrUjIiIiIr06mVWJd3ff6hY6AUBVswLv7r6Fk1mVRhoZERERDTYGT0RERESkN1pBxEdHs9FbL4eu2z46mg2twG4PREREowGDJyIiIiLSm2uFDT0qnZ4mAqhsVuBaYcPgDYqIiIiMhsETERER0ShkqFXtalr7Dp0Gsh0RERENbwyeiIiIiEah9957D9nZ2bh+/bpej+tma6nX7YiIiGh4Y/BERERERHoTGegET3tLyPq4X4Ynq9tFBjoN5rCIiIjISBg8EREREZHemMhl+OPyMADoET51/fzH5WEwkfcVTREREdFIwuCJiIiIiPRq0SRPfLFpOjzsu0+n87C3xBebpmPRJE8jjYyIiIgGm6mxB0BEREREI8+iSZ6YH+aBa4UNqGlVwM32yfQ6VjoRERGNLgyeiIiIiMggTOQyxAQ7G3sYREREZEScakdEREQ0CiUmJiIsLAwzZ8409lCIiIhoBJOJoigaexBEREREZBwtLS2wt7dHc3Mz7OzsjD0cIiIiGgZ0+f7AiiciIiIiIiIiIjIIBk9ERERERERERGQQDJ6IiIiIiIiIiMggGDwREREREREREZFBMHgiIiIiIiIiIiKDYPBEREREREREREQGweCJiIiIiIiIiIgMgsETERER0SiUmJiIsLAwzJw509hDISIiohFMJoqiaOxBEBEREZFxtLS0wN7eHs3NzbCzszP2cIiIiGgY0OX7AyueiIiIiIiIiIjIIBg8ERERERERERGRQTB4IiIiIiIiIiIig2DwREREREREREREBsHgiYiIiIiIiIiIDILBExERERERERERGQSDJyIiIiIiIiIiMggGT0REREREREREZBAMnoiIiIiIiIiIyCAYPBERERGNQomJiQgLC8PMmTONPRQiIiIawWSiKIrGHgQRERERGUdLSwvs7e3R3NwMOzs7Yw+HiIiIhgFdvj+w4omIiIiIiIiIiAyCwRMRERERERERERkEgyciIiIiIiIiIjIIBk9ERERERERERGQQDJ6IiIiIiIiIiMggGDwREREREREREZFBMHgiIiIiIiIiIiKDYPBEREREREREREQGYWrsARARERERjVZaQcS1wgbUtCrgZmuJyEAnmMhlxh4WERGR3jB4IiIiIiIygpNZlfjoaDYqmxXSbZ72lvjj8jAsmuRpxJERERHpD6faERERERENspNZlXh3961uoRMAVDUr8O7uWziZVWmkkREREekXgyciIiIiokGkFUR8dDQbYi/3dd320dFsaIXetiAiIhpeGDwREREREQ2ia4UNPSqdniYCqGxW4Fphw+ANioiIyEAYPBERERGNQomJiQgLC8PMmTONPZRRp6a179BpINsRERENZQyeiIiIiEah9957D9nZ2bh+/bqxhzLquNla6nU7IiKioYzBExERERHRIIoMdIKnvSVkfdwvw5PV7SIDnQZzWERERAbB4ImIXohCrUVtqxIKtdbYQyEiIhoWTOQy/HF5GAD0CJ+6fv7j8jCYyPuKpoiIiIYPU2MPgIiGp+tFDUi6VIAz2dUQREAuA+aHuWP7rCDMCOC/0BIRET3Lokme+GLTdHx0NLtbo3EPe0v8cXkYFk3yNOLoiIiI9EcmiiLXaSUinXyfWYw/HM6CXC7rttSziVwGQRDx76smYVOUvxFHSERE/dXS0gJ7e3s0NzfDzs7O2MMZdbSCiGuFDahpVcDN9sn0OlY6ERHRUKfL9wdWPBGRTq4XNeAPh7MgAt1CJzz18+8PZWG8uy0rn4iIiJ7DRC5DTLCzsYdBRERkMOzxREQ6SbpUAPlz/iVWLpch6VLhII2IiIiIiIiIhioGT0TUbwq1Fmeyq3tUOv2SVhBxOruKDceJiIiIiIhGOQZPRNRvrQoNnpM5SQTxyfZEREREREQ0ejF4IqJ+s7U0RX/7ncplT7YnIiIiIiKi0YvBE5GBKdRa1LYqR8S0M0szE8wPc3/uajsmMmBBmAcszUwGaWSGM5JePyIiIiIiosHGcgQiA7le1ICkSwU4k10NQXxSATQ/zB3bZwUN69Xets0KwukH1c/cRiuKWBRoNkgjMoyR+voRERERERENJpkoiv3s2EJE/fV9ZjH+cDgLcrmsWyNuE7kMgiDi31dNwqYofyOO8MXsvlqM3x/q/fy0goBXLCsQgkosX74c06dPN+JIB2akv35ERE9raWmBvb09mpubYWdnZ+zh0BCmFURcK2xATasCbraWiAx0em4VNBERjUy6fH9gxRORnl0vasAfDmdBBHqs/tb18+8PZWG8u+2wrZzZFOWP8e62SLpUiNPZVX+vCJrgjlUT7HDz5F3Y2Tnh6NGjaGpqwpw5cyCTDY8vpqPh9SMiItLVyaxKfHQ0G5XNCuk2T3tL/HF5GBZN8jTiyIiIaKhj8ESkZ0mXCnpUyvySXC5D0qXCYR1czAhwwowAJyjUWrQqNLC1NJV6OvlarsK+ffsQFBSEn3/+Gc3NzVixYgVMTIZ+z6fR8voRERH118msSry7+xZ++ZexqlmBd3ffwhebpjN8IiKiPrG5OJEeKdRanMmufmZoATypnDmdXTUiGlZbmpnA1daiWyPxiRMn4tVXX0VBQQGio6Px4MED7N69GwqF4hlHMr7R+PoRERE9i1YQ8dHR7B6hEwDpto+OZj/3bycREY1eDJ6I9KhVoUF/v3cJIlDb1GbYARnRq6++iokTJ+LmzZtYsmQJqqqqsHPnTjQ3Nxt7aH3S9fVrVWgMOyAiIiIju1bY0G163S+JACqbFbhW2DB4gyIiomGFwRORHtlamqK/PTZlELHj879i586duHjxIioqKjCSev3LZDKsXLkSLi4uuHDhAjZu3Ai1Wo2kpCRUVlYae3i90vX1a6wZWa8ZERHRL9W09q9aub/bERHR6MPgiUiPLM1MMD/M/bkrvJjIZZg7zgWrli+FjY0NLl++jB07duDjjz/GwYMHcf/+fXR0dAzSqA3HzMwMGzduhCAIOHPmDDZv3gw7Ozt88803yM3NNfbweujv6yeXAaGWHUjd/R127NiB+/fvQ6vltDsiIhp53Gwt9bodERGNPjKR/1xPpFfXixqw4auMXnshdJEB2PtOjNScWqvVorS0FHl5ecjLy0N1dTUAwNvbGyEhIQgJCYGXlxfk8uGZFZeXl2PXrl0ICwvDkiVLcODAAeTm5mLp0qWIiIgw9vC66e/rt+edaDhqGpGRkYGCggLY2dkhMjISERERsLTkl28iGlyrV6/G+fPnMW/ePOzbt0+nfXVZDplGH60gYtb//hFVzYpe/zbKAHjYW+LSv8597j/cEBHRyKHL9wcGT0QGsPtqMX5/KKvH6mgmchkEQcS/r5qETVH+fe7f2toqhVD5+flQKpWwsrKSQqjg4GBYW1sPxqnoTVZWFvbv34958+bhpZdewokTJ3Djxg3MmjULc+fOhUw2dL6s6vr6VVdXIzMzE/fv34dcLse0adMQHR0NR0dHYwyfiEah8+fPo7W1Fd9++y2DJ9K7rlXtAHQLn7r+cnNVOyKi0YfBE9EQcKOoAUmXCnE6uwqC+GR61oIwD2ybFShVOvWHIAgoKyuTgqiu/kheXl5SEOXt7T0sqqF++uknXLx4EbGxsRg3bhwyMjJw5swZTJ48GStWrICpqamxhygZyOvX1taG69ev4/r16+js7MSECRMQHR0NX1/fIRWsEdHIdP78eXz22WcMnsggTmZV4qOj2d0ajXvaW+KPy8MYOhERjUIMnoiGEIVai1aFBraWprA0M3nh47W1tSE/P1+qhurs7ISlpSWCg4OlIMrGxkYPI9c/URSxd+9e5OXlYcuWLfDw8EBWVhYOHToEX19fbNiwAVZWVsYeZjcDef3UajXu3buHjIwM1NfXw9vbG9HR0QgLCxsWASER6dfFixfxpz/9CTdv3kRlZSUOHjyIVatWddsmMTERf/rTn1BVVYWpU6fi008/RWRkpE6Pw+CJDE0riLhW2ICaVgXcbC0RGejE6XVERKMUgyeiUUIQBJSXl0vVUBUVFQAADw8PKYTy9fUdUmGHSqXCN998g87OTmzfvh3W1tYoLi5GWloabG1tER8fDwcHB2MPUy9EUURubi4yMzNRWFgIe3t7REZGYvr06ewDRTSKnDhxApcvX0ZERATWrFnTI3hKT0/Hm2++iS+//BJRUVH45JNPsHfvXjx+/Bhubm4AgPDwcGg0mh7HPn36NLy8vAAweCIiIqLBw+CJaJRqb2/vVg3V0dEBCwsLqRoqODh4SFxUNDc3Y8eOHXBycsKbb74JU1NT1NXVITk5GRqNBvHx8fD0HFll+1VVVVIfKFNTU0ybNg1RUVHsA0U0yshksh7BU1RUFGbOnInPPvsMwJN/VPD19cUHH3yA3/72t/0+NoMnIiIiGiwMnogIgiCgsrISubm5yM/PR1lZGQDA3d29WzWUicmLT/8biLKyMuzatQuTJk3CypUrIZPJ0NbWhtTUVNTW1mL9+vUIDQ01ytgMqbW1FdeuXcPNmzehUCi69YEiopHvl8GTSqXCmDFjsG/fvm5h1ObNm9HU1ITDhw/3+9j9DZ6USiWUSqX0c0tLC3x9fRk8ERERUb8xeCKiHjo6OpCfny9VRLW3t8Pc3BxBQUFSEGVvbz+oY7p37x4OHjyI+fPn46WXXgLw5CLswIEDyMnJwdKlSxERETGoYxosKpUKd+/eRWZmJhoaGuDj44Po6GhMmDBhSE2NJCL9+mXwVFFRAW9vb1y5cgUxMTHSdv/yL/+CCxcu4OrVq/067uuvv467d++ivb0dTk5O2Lt3b7fjPe3f/u3f8NFHH/W4ncETERER9ZcuwdPQWUKKiAxqzJgxmDx5MiZPngxRFFFZWSn1hjp+/DhEUYSrq6sUQvn5+Rl8lbkpU6agtrYWZ86cgYuLC8aOHQtzc3Ns2LABJ0+exLFjx9DU1IS5c+eOuFXhzM3NMXPmTMyYMQM5OTnIzMzEvn37YG9vj6ioKEyfPh0WFhbGHiYRDRNnz57t97a/+93v8OGHH0o/d1U8ERERERkCgyeiUUgmk8HLywteXl6YPXs2Ojs7UVBQgLy8PNy/fx8ZGRkwMzPrVg1lqIbfc+fORW1tLfbv34+tW7fCzc0NcrkcixcvhoODA86cOYPm5masWLHC4EGYMchkMowbNw7jxo1DZWUlMjMzcfbsWZw/fx7Tp09HVFTUiGm2TkQ9ubi4wMTEBNXV1d1ur66uhoeHh0Ee08LCgsE2ERERDRpOtSOibkRRRHV1tdQbqqSkBKIowsXFRQqh/P399RoCqVQq7Ny5E0qlEtu2bYO1tbV034MHD3Dw4EH4+PggNjYWVlZWenvcoaqlpUXqA6VUKhEWFoaYmBh4e3sbe2hE9IL6ai4eGRmJTz/9FMCTHn1+fn54//33dWouPlBsLk5ERES6Yo8nItIbhUIhVUPl5eWhtbUVZmZmCAgIQEhICEJDQ/WyMltTUxOSkpLg7OyMN998s1vT85KSEqSlpcHa2hoJCQmjpgJIpVLhzp07yMzMRGNjI3x9fRETE4Nx48axDxTRMNLW1oa8vDwAwLRp0/CXv/wFc+bMgZOTE/z8/JCeno7Nmzfjq6++QmRkJD755BPs2bMHjx49gru7u8HGlZiYiMTERGi1WuTk5DB4IiIion5j8EREBiGKImpqaqQQqqSkBIIgwMnJSQqh/P39YWZmNqDjl5aW4ttvv8WUKVOwfPnybn2d6uvrkZycDJVKhfj4eHh5eenrtIY8QRCkPlDFxcVwcHBAdHQ0wsPDOV2GaBg4f/485syZ0+P2zZs3Y9euXQCAzz77DH/6059QVVWF8PBw/PWvf0VUVNSgjI8VT0RERKQrBk807CnUWrQqNLC1NIWlmcnzdyCjUCqVKCwsRG5uLvLy8tDS0gJTU1OpGiokJATOzs46HfPOnTs4fPgwFixY0GNFpvb2dqSmpqKmpgbr1q3D2LFj9Xk6w0JFRQUyMzORlZUFc3NzREREIDIysl8rEvJ9RUS9YfBEREREumLwRMPW9aIGJF0qwJnsaggiIJcB88PcsX1WEGYEOBl7ePQMoiiirq5O6g1VXFwMrVYLR0dHKYQKCAiAubn5c4915swZZGRkIC4uDqGhod3uU6vV2L9/P3JycrBkyRLMmDHDUKc0pDU3N0t9oFQqFSZOnIiYmJheK8H4viKiZ2HwRERERLpi8ETD0veZxfjD4SzI5TJohb//WprIZRAEEf++ahI2RfkbcYSkC5VKhcLCQmlaXlNTE0xMTODv7y9Ny3N2du42na6LIAhIT09HcXExtm7dCldX1x73nzp1CteuXcPLL7+MefPm9Xqc0UCpVOLOnTu4evUqGhsb4efnh5iYGIwdOxZyuZzvKyLqE3s8ERER0UAxeKJh53pRAzZ8lYFn/TLKAOx9J4YVGsOQKIqor6+XQqiioiJotVo4ODggODgYoaGhCAwM7FYNpVQqsXPnTqjVamzbtg1jxozpcczMzEycPn0akyZNwsqVK/W60t5wIwgCHj9+jIyMDJSWlsLR0REOIRH4489NfF8R0TOx4omIiIh0xeCJhp13dt/A2Yc13SoyfslELsP8Ce74clPEII6MDEGtVqOoqEjqDdXY2Ai5XC5VQ4WEhMDV1VVa6c7NzQ2bNm3qttJdl+zsbBw4cAA+Pj6IjY2FlZWVEc5oaCkrK0NmZiY+va1AieAAEX1Xg/F9RUQMnoiIiEhXDJ5oWFGotQj740k8I3OSyGXAuXfDYWnKpeRHkubmZpSUlKC0tBSVlZXQarWwtraGr68vbGxscOvWLYwdOxavvPJKr1PqKisrcfr0aVhZWWHRokW8cAKg0AiY98Wdfr+vsj9axIbjRKMUgyciIiLSlS7fH0bvvBQaMloVmn5dHAOAIAJffb0LVjKNYQdFRtfe3o5Hjx5JPz969Kjbz71RKpVIS0sz9NCGhU7RFIIY3q9tBfHJ+5DBExERERER6RuDJzI6W0tTyGXod2XGO1vfYsXTKNLS0oLS0lLcu3cPra2tAIAxY8bAx8cHfn5+8Pb2hoWFBQCgs7MTJ0+eRGNjI+bNmwd//9HbNFuhEbBHh4onW0v+OSAabZ5uLk5ERERkKJxqR0MCezzR8wiCgJSUFJSUlCAsLAzl5eWoq6uDTCaDr6+v1BvK2dkZBw8exOPHj7F48WLMnDnT2EM3mnd238DZ7Gpon/Epz/cVEXGqHREREemKU+1o2Nk2KwinH1Q/cxtBELFtVuAgjYiGGrlcjnXr1uHrr79GaWkptm3bBqVSKa2Ud+nSJfz444+wsbFBUFAQgoKC8MMPP6CpqQmvv/56r72hRjJRFBHt0IFTogg8o7k431dERERERGRIrHiiIWP31WL8/lAW5HJZt8onE7kMgiDi31dNwqao0Tt1ip5oaGhAUlISPDw8kJCQIK10p9VqUVJSIgVRNTU10j6urq5YtmwZfH19R0UAJQgCTp06hWvXrkHtH43kx5oe7ysZBIiQ4//l+4po1GPFExEREemKq9rRsHWjqAFJlwpxOrsKgvik98yCMA9smxWIGQFOxh4eDRFFRUX4/vvvMX36dCxdurTXbVpaWpCXl4dbt26hvLwcwJPeUF1T8oKDgzFmzJjBHPagUKvVOHDgAB4/fowlS5ZgxowZvb6vwuzUmCCrxP/8r1thbm5u7GETkRExeCIiIiJdMXiiYU+h1qJVoYGtpSlX2qJe3bx5E8eOHcOSJUue28epuLgYKSkpkMvlsLGxQV1dHQDA29tbCqK8vLwglw/vpvXt7e1ITU1FTU0N1q1bh7Fjx3a7/+n3VWdbCxITE/Hyyy9jzpw5RhoxEQ0FDJ6IiIhIVwyeiGhUOHHiBK5fv45NmzYhKCjomdvW19cjJSUFSqUSK1asQHt7O/Ly8pCfnw+lUgkrKyupEiokJATW1taDdBb6UV9fj+TkZKhUKsTHx8PLy+u5+5w7dw6ZmZl477334ODgYPhBEtGQ8vSqdjk5OQyeiIiIqN8YPBHRqNC10l15eTm2bdsGZ2fnZ27f3t6OtLQ0VFdXY+3atRg3bhwEQUBZWZnUG6qyshIA4OXlJVVDeXt7D+lqqJKSEqSlpcHa2hoJCQn9DpFUKhU+++wz+Pj4YMOGDYYdJBENWax4IiIiIl0xeCKiUUOhUCApKQkAsG3bNlhaWj5z+6d7IC1atAiRkZHd7m9ra0N+fr5UDdXZ2QlLS0upEiokJAQ2NjYGOx9dZWdn48CBA/Dx8UFsbCysrKx02v/evXs4ePAg3nzzTQQGcnU7otGIwRMRERHpisETEY0q9fX1SEpKgre3N+Lj459bnSQIAk6fPo2rV68iJiYG8+fP73W1O0EQUFFRgdzcXOTl5aGiogIA4OHhIYVQvr6+RqmGEkURmZmZOH36NCZNmoSVK1fC1NR0QMf55ptvoFQq8c477wzpyi4iMgwGT0RERKQrBk9ENOoUFhbi+++/x8yZM7F48eJ+7ZOZmYlTp05h4sSJWLVq1XODm/b29m7VUB0dHbCwsEBwcLBUETUYF22CIODkyZO4fv06Zs2ahblz5/YanPVXRUUFduzYgcWLF/eoACOikY/BE412WkHEtcIG1LQq4GZrichAJ5jIB/53lYhoNGDwRESj0vXr1/HDDz9g2bJliIiI6Nc+Dx8+xIEDB+Dl5YXY2FiMGTOmX/sJgoDKykqpN1RZWRkAwN3dvVs1lImJfldlVKvV2L9/P3JycrBkyRLMmDFDL8c9cuQIHj58iA8++KDfzwERjQwMnmg0O5lViY+OZqOyWSHd5mlviT8uD8OiSZ5GHBkR0dDG4ImIRq0ffvgBN2/exKZNm/rds6isrAypqamwsrJCQkICHB0ddX7cjo4O5OfnSxVR7e3tMDc3R1BQkBRE2dvb63zcp7W3tyM1NRU1NTVYt24dxo4d+0LH++WxP/30U0yePBlLly7V23GJaOhj8ESj1cmsSry7+xZ+eTHUVev0xabpDJ+IiPrA4ImIRi2tVovk5GRUVVVh27ZtcHJy6td+DQ0NSE5OhkKhQHx8PLy9vQc8BlEUe1RDiaIIV1dXKYTy8/PTqSdTXV0dkpOTodFoEBcXBy8vrwGPry8ZGRk4c+YMfvWrX8HDw0PvxyeioSUxMRGJiYnQarXIyclh8ESjilYQMet//9it0ulpMgAe9pa49K9zOe2OiKgXDJ6IaFTr7OxEUlIS5HI5tm7d+tyV7rp0dHQgNTUVVVVVWLt2LcaPH6+38RQUFEhBVFtbG8zMzLpVQzk4OPS5f0lJCdLS0mBtbY2EhIRnbvsitFotvvzyS1hbW2Pz5s0v1DeKiIYPVjzRaJSRX4+4HZnP3S51ezRigp0HYURERMMLgyciGvXq6uqQlJQEX19fxMXF9Xu1NrVajYMHD+Lhw4cGabYtiiKqq6ulEKqkpASiKMLFxUUKofz9/aVqqAcPHuDgwYPw9fXFhg0bYGVlpdfx/FJeXh6Sk5Oxbt06TJw40aCPRURDA4MnGo0O3ynHP6bdee52/7kxHCvDB14FTUQ0Uuny/UH3tbeJiIYBFxcXrF+/HsnJyThz5gwWLlzYr/3MzMywfv16nD59GidOnEBTUxPmz5+vt+ofmUwGDw8PeHh4YNasWVAoFFI11IMHD5CZmQkzMzP4+/vDxMQEjx8/xuTJk7FixQqdpuYNVEhICMaNG4fTp09j7NixMDMzM/hjEhERDTY32/5VQ/d3OyIi6huDJyIasYKDg7Fw4UKcPHkSrq6umD59er/2k8lkWLhwIRwcHHDy5Ek0Nzdj9erVBgl+LC0tERYWhrCwMIiiiJqaGuTm5uLatWtobW0F8KT5+ZkzZxAaGgp/f3+Dh0ELFizA559/jsuXL+O1114z6GMREREZQ2SgEzztLVHVrOjRXBz4e4+nyMD+9YokIqK+MXgiohEtMjIStbW1OH78OJydneHv79/vfaOiomBnZ4cDBw7gu+++w8aNGzFmzBiDjVUmk8HR0RGlpaVoa2vDokWLYG9vj7y8PDx+/BjXrl2DqakpAgICpGl5Tk5Oeu/F5OTkhOjoaFy+fBnh4eEG6ylFRERkLCZyGf64PAzv7r4FGdAtfOr6q/rH5WFsLE5EpAfs8UREI55Wq8Xu3btRU1ODbdu2wdHRUaf9y8rKkJqaCktLSyQkJPR7pTxdtbW1ITU1FbW1tVi/fj1CQ0Ol+0RRRF1dHXJzc5Gfn4/i4mJotVo4OjpKIVRAQADMzc31MhalUonPPvsMfn5+WL9+vV6OSURDE3s80Wh2MqsSHx3N7ra6nae9Jf64PAyLJnkacWREREMbm4sTEf1CR0cHkpKSYGpqiq1bt8LCwkKn/RsaGpCcnAyFQoG4uDj4+PjodXx1dXVITk6GRqNBfHw8PD2f/WVXpVKhsLBQalLe1NQEExMT+Pv7IyQkBKGhoXB2dn6haqi7d+/i0KFD2Lx5MwICAgZ8HCIa2hg80WinFURcK2xATasCbrZPptex0omI6NkYPBER9aK2thZff/01/P39ERsb2++V7rp0dHQgLS0NlZWVWLt2LcaPH6+XcRUXFyMtLQ22traIj4/XeWqbKIqor6+XQqiioiJotVo4ODggODgYoaGhCAwM1LkaShRF7Ny5EyqVCu+8847OzxcRDQ8MnoiIiEhXDJ6IiPqQl5eHlJQUxMTEYP78+Trvr1arcejQIWRnZ2PRokWIiop6ofFkZWXh0KFD8PX1RWxsLCwtX3z1HLVajaKiIimIamhogFwul6qhQkJC4Orq2q9qqIqKCuzYsQNLlizBzJkzX3hsRDR0JCYmIjExEVqtFjk5OQyeiIiIqN8YPBERPUNmZiZOnTqFlStXIjw8XOf9RVHEmTNnkJGRgejoaCxYsEDnKW2iKOLKlSs4e/YsJk+ejBUrVhhk1TzgyTTBrt5QhYWF0Gg0sLOzk0KooKCgZ049PHz4MB4/fowPPvgAVlZWBhkjERkPK56IiIhIVwyeiIieQRRFHD16FPfu3cObb74JPz+/AR3n6tWrOHnyJCZMmIDVq1fDzMysX/sJgoATJ07gxo0beOWVVzBnzhy9r0zXF7VajeLiYqkaqr6+HnK5HL6+vlJvKDc3t27jaWtrw2effYYpU6ZgyZIlgzJOIho8DJ6IiIhIVwyeiIieQ6vV4vvvv0dtbS22b9+uc1+lLo8ePcL+/fvh6emJjRs3YsyYMc/cXqVSYf/+/cjNzcWyZcswffr0AT2uvjQ2NkohVGFhIdRqNWxtbaXeUEFBQbC0tJSqs9555x24u7sbdcxEpF8MnoiIiEhXDJ6IiPqho6MDO3bsgIWFBbZs2aJz8+0u5eXlSElJgaWlJRISEuDk5NTrdm1tbUhNTUVdXR3Wr1+PkJCQFxm+3mk0GpSUlCA3Nxd5eXmoq6uDTCaDr68vgoKCcPv2bTg4OGDz5s2DVqFFRIbH4ImIiIh0xeCJiKifampq8PXXXyMwMBCxsbEDDlQaGxuRnJyMzs5OxMXFwcfHp9v9tbW1SElJgUajQXx8PDw9PfUxfINqamrqVg2lUqkAAP7+/pgxYwaCg4PZ84loBGDwRERERLpi8EREpIOcnBykpqZi1qxZmDdv3oCP09HRgbS0NFRWVmLNmjWYMGECAKC4uBhpaWmwtbVFQkIC7O3t9TX0QaPValFSUoKjR4+iubkZgiBAJpPB29tb6g3l6enJSiiiYYjBExEREemKwRM9l0KtRatCA1tLU1iamRh7OERGd+XKFZw5cwarV6/GlClTBnwcjUaDgwcPIjs7GwsXLoSNjQ0OHToEX19fxMbGwtLSUo+jHnz19fX4/PPPERkZCVdXV+Tl5aGgoABKpRJjxoyRVsoLDg5+br+rX+LnEpFxMHgiIiIiXTF4oj5dL2pA0qUCnMmuhiACchkwP8wd22cFYUZA731piEYDURRx5MgR3L9/H2+99VaPqXK6Huv06dPIzMwEAEyZMgUrVqyAicnICFPOnDmDa9eu4f3334e9vT20Wi3Kysqk3lDV1dUAIFVDhYSEwMvLC3K5vNfj8XOJyLgYPBEREZGuGDxRr77PLMYfDmdBLpdBK/z9ZTeRyyAIIv591SRsivI34giJjEuj0eC7775DQ0MDtm/fPuApcYIg4IcffsDNmzcBAOPHj8eaNWtgZmamz+EajVKpxGeffQZ/f3+sW7eux/2tra1Sb6iCggIoFApYWVkhODhYCqKsra0B8HOJaChg8ERERES6YvBEPVwvasCGrzLwrBdbBmDvOzGsMKBRrb29HTt27ICVlRXefvttnVe6U6lU2LdvH/Ly8rBs2TJYW1tj37598PDwwMaNG6XAZbi7e/cuDh06hM2bNyMgIKDP7QRBQFlZmRREVVZWAgC8vLygdQrA/3dD9czH4ecSkeExeCIiIiJd6fL9ofd5DzTiJF0qgFz+7Ka/crkMSZcKB2lEREOTtbU14uLiUF9fj0OHDkGXbL6trQ27du1CcXEx4uPjMX36dIwbNw5vvfUWGhsbsXPnTjQ0NBhw9INnypQp8Pb2xsmTJyEIQp/byeVy+Pn5Ye7cufjVr36F3/zmN1i1ahWcnJyQfrcWMvS975P9+blEZCiJiYkICwvDzJkzjT0UIiIiGsEYPI0CCrUWZ7Kru01j6Y1WEHE6uwoKtXaQRkY0NLm7u2Pt2rV4+PAhfvrpp37tU1tbi6SkJLS1teHtt99GSEiIdJ+3tze2bt0KmUyGpKQklJaWGmrog0Ymk2Hx4sWorq7GrVu3+r2fjY0Npk6diqUrVqFYYw/xOX+G+LlEZDjvvfcesrOzcf36dWMPhYiIiEYwBk+jQKtCg+dkThJBBO4/yoNGozHsoIiGuHHjxmHevHn4+eefcf/+/WduW1RUhJ07d8LCwgJbt26Fh4dHj20cHR2xdetWuLq64rvvvsPDhw8NNfRB4+3tjfDwcPz444/o7Ozs1z6iKKKurg7nL1/V6XOpVcHPJCIiIiKi4cjU2AMgw7O1NIVchn5d5Mkg4sj+dJwxN0VgYCCCg4MRGhoKR0dHww+UaIh5+eWXUVtbi8OHD8PJyQne3t49trl//z4OHz4MPz8/bNiwAZaWln0ez8rKCm+88QYOHTqEPXv2YOHChYiOjjbkKRjcvHnzkJ2djfPnz2Px4sW9bqNSqVBYWCj1eWpqaoIWcsgwDSKePQUYeLLKna0l/1wREREREQ1H/CY/CliamWB+mDvOPqx55nQ7uQxYEOaB9+e/I10gnjp1CidOnICzs7O0GpW/v/+IWZ2L6FlkMhmWL1+OhoYGpKWlYfv27VLjPFEUcfnyZZw7dw5Tp07F8uXLYWJi8txjmpqaYu3atbC3t8epU6fQ1NSEBQsWQC4fngWoNjY2mD17Ns6dO4eIiAi4ublJVU25ubnIy8tDSUkJtFotbG1tYW5uDrlcDnNTU0y2EnG/Ec8Mn0zkMsyf4A5Ls+c/t0RERERENPRwVbtRoj+r2gEi/p9IK2xbNRcy2ZMLQaVSiYKCAimIamlpgampKQICAqQgytnZeTBOgcho2trasGPHDlhbW+Ptt9+GiYkJfvjhB9y8eROzZ8/Ga6+9Jr1ndHH9+nWcOHEC48aNw5o1a4ZtoKvVavH555/D1NQUPj4+yM/PR3NzM0xNTeHv7w97e3vU1NSgrKwMdnZ2iIqKgre3N/4z5RgOtPgDzwieuKodkeFxVTsiIiLSlS7fHxg8jSK7rxbj94eyIJfLulU+mchlEAQRb02yBPIuITw8HMuWLetRvSGKImpra6UQqri4GIIgwNHRESEhIQgNDUVAQMCwvXgmepaqqirs3LkTwcHB0Gg0KCgowLJlyzBt2rQXOu7jx4+xf/9+uLm5IS4uDtbW1noasWGJooiamhrp86CkpASCIMDGxgZhYWEIDAxES0sLrl+/jrq6Onh5eSEmJgZhYWHIz8/H3r17YW5ujlstY3BF7Q+TX3wuySACkOHfV03Cpih/450o0SjA4ImIiIh0xeCJ+nSjqAFJlwpxOrsKgvj36XXbZgViRoAT7t+/j0OHDiEgIADr169/Zr+a3vq2mJiY9KiGGkglCNFQdOvWLRw9ehQmJiaIi4tDcHCwXo5bUVGBlJQUmJubIyEhYchWESoUCqkCMj8/X6qADAwMREhICLKzs9HY2IjJkyfj1q1b6OzsxIQJExAdHQ1fX1/IZDLcvHkTx48fh5ubG6qrq7F48WLI3UJ6fC75yhrw3rwJ2DB3hrFPm2jEY/BEREREumLwRM+lUGvRqtDA1tK0R++UoqIipKenw87ODgkJCf36EiqKIurr65Gbm4v8/HwUFRVBq9XCwcFBCqECAwNhbm5uqFMiMqja2lokJyejs7MTKpUK69atw8SJE/V2/MbGRqSkpKC9vR1xcXHw9fXV27EHShRFVFdXS+FyaWkpBEGAi4tLt55vpqamqK6uxoULF/Dw4UOYmJggIiICUVFRcHJyko71448/4tKlSxg/fjxycnIwbdo0LF26VAqnn/5cSvn+W1hYWCAhIcGYTwHRqMDgiYiIiHTF4IleWNdFtiAIiI+P73V5+GdRqVQoKiqSLlgbGxthYmICPz8/aVqei4sLq6FoWCgqKkJaWhrs7e0RFxeHc+fO4dGjR3j77bfh5eWlt8fp7OxEeno6ysrKsGbNGoSFhent2LqM4em+bm1tbTAzM0NQUJAUNjk4OAB4Eibl5+cjIyMDBQUFsLOzg4ODAyoqKvD+++/D3t4eAKDRaHDkyBHcv38fs2bNws2bN+Hh4YGEhIQ+G7J3VUb91//6X2FraztYp080KjF4IiIiIl0xeCK9aGtrQ0pKCurr67Fhw4YXmlZUX18vXcgWFRVBo9HA3t4ewcHBCA0NRWBgICwsLPQ4eiL96G36qVqtxq5du9Da2ort27frNRjRaDQ4fPgwsrKysGDBAkRHRxs0oBVFEZWVldL7s6ysDKIowtXVVQqJfX19YWr690VQ1Wo17t+/j8zMTNTW1sLT01Pq36TRaPDpp58iMDAQa9euRWdnJ/bs2YPS0lIsW7YMV65cgUajwfbt22FlZdXnuBQKBf785z9jzpw5ePnllw12/kTE4ImIiIh0x+CJ9EalUmHfvn3Iz8/XSyNl4MlFa3FxsXShW19fD7lcLlVDhYSEwM3NjdVQZFSiKOLSpUv48ccfMXXqVCxfvrxbdU5rayt27NgBW1tbvPXWW3ptqi+KIs6dO4fLly8jMjISCxcuhFwu19vxOzo6kJ+fj/z8fOTl5aG9vR3m5ubdqpq6qpWe1t7ejuvXr+P69evo6OjA+PHjER0dDT8/v27v1zt37uDw4cNYt24dzp8/j/b2dmzYsAFXrlxBSUkJtm7dCldX1+eOc9++faipqcG7777LzwMiA2LwRERERLpi8ER6JQiCXpaO70tjY6PUG6qwsBBqtRq2trbSBXBQUNAzm5wT6ZsgCDh+/Dhu3bqFV199Fa+++mqvv/MVFRX45ptvMH78eKxZs0bv4ciNGzfwww8/YNy4cVizZs2Awy1RFFFRUSGFveXl5RBFEe7u7tL7zNfXt89pbzU1NcjMzMS9e/cgl8sRHh6O6OhoqX9Tb4/3xRdfoL6+Hvb29khISMDNmzeRmZmJ+Ph4hISE9Gvcubm5SElJwfbt2/U6pZGIumPwRERERLrS5fuD6TPvJQIgl8uxdOlSODg44Ny5c2hubu5R/fEiHB0dERkZicjISGg0mm7VULdv34ZMJoOvr6807cfd3Z3VD2QwSqUS+/btQ0FBAVasWPHMKj8vLy+sWrUK+/btg6urK2bPnq3XscyYMQN2dnbYt28fvv32W8TFxcHa2rpf+7a3t0sVTfn5+ejo6ICFhQWCg4Mxffp0BAcHP/MPhCiKKCgoQEZGBvLz82Fra4vXXnsNERERz5wiB0Dq6yYIAmbMmIHS0lJkZGRg4cKF/Q6dACA4OBg2Nja4e/cugyciIiIiomGKFU+kk/v37+Pw4cPw8/PDhg0bDF6J1NTUJIVQBQUFUKvVsLGx6VYN9byLYKL+am1tRUpKChoaGnTqa3b+/HlcuHABGzZswIQJE/Q+roqKCqSkpMDc3BwJCQlwdnbusY0gCCgvL5feLxUVFQAADw8P6f3i4+Pz3MBYo9FI/Ztqamrg4eGBmJgYTJw4sV9hc1dT8LFjx8Lc3Bw5OTnQaDSYOnUqli1bpnNofPr0ady5cwe/+c1v9BZ2E1F3rHgiIiIiXXGqHRlUcXEx0tLSYGdnh/j4+F57wRiCVqtFSUkJcnNzkZeXh9raWshkMvj4+EgX1p6enqyGogGpqalBSkoKBEFAQkIC3N3d+72vKIrYv38/cnJy8Pbbb8PT01Pv42tqakJycjLa29uxceNG+Pn5oa2trVtVU2dnJywtLREcHIyQkBAEBwf3u/F5e3s7bty4gevXr6O9vR1jx45FTEwM/P39+/WeEkURP/74Iy5duiT1paqoqMDXX38NW1tb/OM//uOAgqOamhp88cUXBgv1iEazxMREJCYmQqvVIicnh8ETERER9RuDJzK42tpapKSkQKvVIj4+Hh4eHoM+hubm5m7VUCqVCtbW1t0uuseMGTPo46Lhp7CwEOnp6XBwcEB8fPyALrzUajW++eYbtLe3Y/v27bCxsdH7ONvb2/H999+jpqYG9vb2aGpqAvBkyl9X+Ort7a1TI/La2lqpfxMAhIeHIyoqCi4uLv0+Rm8r8anVanz99ddobW1FZ2cn3n33Xbi5uel0vl3+9re/wc7ODhs3bhzQ/kT0bKx4IiIiIl0xeKJB0dbWhpSUFNTX12P9+vU69W7RN61Wi9LSUimIqq6uhkwmg7e3N4KDgxEaGgovLy9WQ1EP9+7dw+HDhxEQEIANGzbAwsJiwMdqaWnBjh07YG9vj7feegumpi/eRq+1tbVbwKpQKGBiYgKtVotJkyZh4cKFOodcoiiisLAQmZmZyM3NhY2NDSIjIxEREaFzWNvZ2Yn09HSUlZVhzZo1CAsLgyiKSE9PR2FhId566y3s27cPDg4O2LRp04Deg1evXsXp06fx4Ycf9rvHFRH1H4MnIiIi0hWDJxo0KpUK+/fvR25uLpYtW4bp06cbe0gAul+s5+fnQ6lUYsyYMd2qoXgBO7qJooiff/4ZP/30E8LDw7Fs2TK99BAqLy/Hrl27EBYWhlWrVukctPQWogKAt7d3tyml58+fx6VLlzBz5kwsWrSoX1VOGo0GWVlZyMzMRHV1Ndzd3aX+TQMJyXqb/gcAZ8+exeXLlxEXF4exY8ciJycHqampiI2Nxfjx43V+nI6ODnz88cdYsGABoqKidN6fiJ6NwRMRERHpisETDSpBEHDixAncuHEDs2fPxmuvvTakKosEQUBZWZnUG6qqqgrAi01PouFNq9Xi+PHjuH37Nl577TXMnj1br7+zWVlZ2L9/P+bNm4dZs2Y9d/uWlpZuVU1dQWnX72df00Zv3LiBH374AWPHjsXatWthZmbW6/E7Ojqk/k1tbW0IDQ1FTEwMAgICBnzefTU8v3v3Lg4dOoT58+fjpZdeAvAk5EtJSUFdXR3ee++9AYVc6enpaG5uxq9+9asBjZeI+sbgiYiIiHTF4IkGnSiKuHLlCs6ePYspU6ZgxYoVQ3YFqra2tm7VUAqFoltD5pCQEIP056GhQalUYt++fSgoKMDy5csRHh5ukMf58ccf8fPPP/da5dPVKL/r97CmpkZqlN81NbS/jfJzc3Oxd+9euLm5IS4urlslX11dHTIzM3H37l0AwNSpUxEdHa1T/6be5OTkYN++fT0es6ysDLt27cLkyZOxYsWKbuOvq6vDF198gVdffRWzZ8/W+TEfPXqE9PT0F+oVRUS9Y/BENDJoBRHXChtQ06qAm60lIgOdYCIfOv8YTEQjC4MnMpqsrCwcOnQIfn5+2LBhAywtLY09pGfqawl6T09PKQDw8fFhNdQI0draipSUFDQ2NmLDhg0ICgoy2GOJooi9e/ciLy8PW7duhaWlpVR1V1hYKDXDf7qqycrKakCPVVFRgdTUVJiamiI+Ph5tbW3IzMxETk4OrK2tERkZiRkzZuil2X5XldW4ceOwZs0aqcqqubkZO3bsgLOzM954441eq5pOnz6NGzdu4P3339f54lar1eLjjz9GeHg4FixY8MLnQUR/x+CJaPg7mVWJj45mo7JZId3maW+JPy4Pw6JJ+l9tl4iIwRMZVXFxMdLS0mBra4uEhATY29sbe0j91t7eLi1Pn5eXJy1PHxQUJAUE/V2enoaWmpoaJCcnQxRFJCQkwN3d3aCPp9FokJ+fjyNHjkChUEAQBMhkMvj6+kq/Sx4eHnqb4ldfX49du3ahvb0doijCzc0N0dHRmDx5sl6anIuiiHPnzuHy5cuIjIzEwoULpUBWpVLhm2++QWdnJ7Zv395n/zSFQoHPPvsMQUFBWLNmjc5jOHHiBB48eIAPP/yQYTCRHjF4IhreTmZV4t3dt/DLi7qubxhfbJrO8ImI9I7BExldXV0dkpOTodFoEB8fD0/P4ffHThAEVFZWSlUq5eXlAAB3d3cpOPD19R2yUwrp7woLC5Geng4HBwfEx8cb7MKqsbFRCi0LCwuhVqthbW0NpVIprXSn72mcnZ2duHHjBq5du4a2tjZYWVlBqVRi9erVmDRpkl4eQ6PR4PDhw8jKysLChQsRHR0t3SeKIvbs2YOCggJs2bLluYHe7du3ceTIEbz99ttSM/L+qqysxN/+9jfEx8cjNDR0QOdCRD0xeCIavrSCiFn/+8dulU5PkwHwsLfEpX+dy2l3RKRXDJ5oSGhra0Nqairq6uqwfv16hISEGHtIL6Sjo6NbNVRHRwcsLCwQFBQkTcvjF/ah5+7duzhy5AgCAwOxfv16WFhY6O3YarUaxcXF0u9EfX095HI5/Pz8pN8JNzc3aaW7SZMmYeXKlXqpcqqvr5f6NwmCgClTpiA6OhpOTk44cuQI7t+/j/nz5yMmJuaFHq+zsxPp6ekoLy/H6tWrERYW1u3+rl5WGzduxLhx4557PFEUkZSUBFEUsW3bNp0ql0RRxJdffglXV1esW7dO53Mhot4xeCIavjLy6xG3I/O526Vuj0ZMsPMgjIiIRgtdvj+8+PwLoj7Y2Nhg8+bN2L9/P1JSUrBs2TJMnz7d2MMasDFjxmDy5MmYPHkyRFFEZWWlFDgcP35cmt7UVQ3l5+fHaigjEkURP//8M3766SeEh4dj2bJlenk9GhoapCq4oqIiaDQa2NnZISQkBPPmzUNQUFCPcMvHxwcrVqzAwYMH4ebmJq32NpBzKi4uRmZmJh4/fowxY8bgpZdewsyZM7tNb1u9ejXs7e1x5swZNDU1YdGiRQOamtbY2IiUlBS0t7fjzTffhK+vb7f779+/j59//hmvv/56v0InAJDJZFi0aBF27tyJO3fu6PSZIJPJMHXqVPz444/o7OwccE8sIiKikaKmtfdKp4FuR0RkCAyeyKDMzc0RGxuLEydO4OjRo2hqasKcOXP0unS9MchkMnh5ecHLywuzZ89GZ2cnCgoKkJeXh3v37uHKlSswNzdHYGCgFEQ5ODgYe9ijhlarxfHjx3H79m289tprmD179oB/59RqNYqKiqSwqbGxEXK5HP7+/pgzZw5CQkLg6ur63ONPmTIFtbW1OHPmDFxcXDB27Fidzic7OxsZGRmorKyEq6srli9fjilTpvTav0kmk2HevHlwcHDA8ePH0dzcjLVr18Lc3Lzfj1lRUYGUlBRYWFhg69atcHbu/q+k5eXlOHz4MKZOnapzkObr64spU6bg3LlzCAsL02kRgsmTJ+Ps2bN48OABZsyYodPjEhERjTRutv37G9rf7YiIDIFT7WhQiKKIjIwMnDlzBlOmTMGKFStGbDWQKIqorq6WgorS0lKIoggXFxcphPL399dLw2fqSalUYu/evSgsLMSKFSswdepUnfYXRRH19fVSNVtRURG0Wi3s7e0REhKC0NBQBAYG6hTiPH3s9PR0FBYWYuvWrXBzc3vm9p2dnbh16xauXr2K1tZWBAcHIzo6GsHBwf0O0nJzc7F37164uroiLi6uXz2mHj9+jP3798Pd3R0bN27s0Sy8paUFO3bsgIODAzZv3jyg3+XW1lZ8+umnmD59OhYtWqTTvsnJyVAoFNi6davOj0tEPXGqHdHw1dXjqapZ0aO5OMAeT0RkOOzxRENWVlYWDh06BF9fX8TGxupU6TBcKRQKqRoqLy8Pra2tMDMzQ2BgoNQHyNHR0djDHBFaWlqQkpKCpqYmbNiwAUFBQf3aT6VSobCwUHqNmpqaYGJiAn9/fylscnZ21kulnkqlws6dO6FUKrFt27ZeV4BraGjA1atXcfv2bQiCgMmTJyM6OnrAK/FVVlYiJSUFpqamSEhIgIuLS5/bXr9+HSdOnMC4ceOwZs0amJmZdbtfrVbjm2++QXt7O7Zv3/5CzdIvXbqEn376Cf/lv/wXuLq69nu/rKws7N+/H++//36PSiwi0h2DJ6LhrWtVOwDdwieuakdEhsTgiYa04uJipKWlwdbWFgkJCbC3tzf2kAaNKIqoqamRAo6SkhIIggBnZ+du1VC/vNin56uurkZKSgoAID4+/pkhjSiKqKurk6rSSkpKoNVq4ejoKL0OAQEBA6pq6o+mpiYkJSXB2dkZb775JkxMTCCKIkpLS5GRkYFHjx5hzJgxmDFjBmbOnKmXlfCampqQkpKC1tZWbNy4Ef7+/t3uF0URZ8+exZUrVxAVFYUFCxb06AsliiL27duH3NxcbNmyBR4eHi80Jo1Gg88//xxOTk5ISEjod7Cn0Wjw5z//GTNnzsS8efNeaAxExOCJaCQ4mVWJj45md1vdztPeEn9cHsbQiYgMgsETDXl1dXVITk6GRqNBfHw8PD1H5x9EpVLZrRqqpaUFpqamCAgIkAIQVnQ8X0FBAfbs2QMHBwfEx8f3+sGnVCpRWFiI3Nxc5Ofno7m5ucdz7eTkNGj9x0pLS/Htt99i8uTJCAoKQmZmJioqKuDi4oLo6GhMmTJF7wGkQqFAeno6SktLsWrVKkyaNAnAkyDn0KFDePDgARYuXIjo6Ohe9z9//jwuXLiADRs2YMKECXoZ0+PHj5GWltbvVfG6HD16FHl5efinf/qnYd8zjsjYGDwRjQxaQcS1wgbUtCrgZmuJyEAnTq8jIoNh8ETDQltbG1JTU1FbW4v169cjNDTU2EMyKlEUUVtbK4VQxcXFEARBqsIJDQ1FQEAAq6F+4e7duzhy5AgCAwOxfv16aUW5vqrLnJycpOfTmNVlCoUCx44dw4MHDwAAQUFBiI6ORkhIiEGDFI1GgyNHjuD+/ft4/fXXMW3aNKSnp6OiogJr1qzpM1B68OAB9u3bh7lz5+KVV17R23hEUURycjIaGhrw61//ut/9okpLS7Fz50688cYb/Z5SSUS9Y/BEREREumLwRMOGSqXCgQMHkJOTg6VLlyIiIsLYQxoy+uo79MtqqNFa7SGKIi5evIjz589j2rRpWLp0KdRqdY9+Wqampt1WF3RycjLquBsbG6X+TRqNBs7Ozqirq0NcXNygha+iKOKnn37Czz//DEtLS8jlcsTFxcHHx6fX7SsqKvDNN99gwoQJWL16td5/52pra/Hll1/itdde63eoJYoiPvvsM/j4+GD16tV6HQ/RaMPgiYiIiHTF4ImGFUEQcPLkSVy/fh2zZs3C3LlzR22Y0pe+VlpzcHCQApWBrrQ2HGm1Whw7dgx37tyReiDl5+cP2RUERVFEWVmZ1L/J0tJS6t9kbW2N9PR0FBcXY+vWrTo12X4R5eXl+O6776BSqRAQEIC4uLhef39aW1uxY8cO2NnZYfPmzQarEDt16hRu3ryJ999/v98XvhcvXsSlS5fwm9/8Rqp0IyLdMXgiIiIiXTF4omFHFEVkZGTgzJkzmDx5MlasWGH0sGAoU6lUKCoqkoKoxsZGmJiYwM/PTwpcXF1dR2SA19TUJE3RNDc3h1KphJmZGYKCgqRzd3BwMPYwATwJVR8+fIiMjAyUl5fD2dkZ0dHRmDp1arcAR6lUYufOnVCr1di2bRvGjBlj0HE9fvwY+/btg4eHB6KionD06FG4uLggLi6uWyNztVqNXbt2oa2tDdu2bYOtra3BxqRQKPDpp58iJCSk3xVMzc3N+OSTT7By5UqEh4cbbGxEIx2DJyIiItIVgycath48eICDBw/C19cXGzZsgJWVlbGHNCz8shpKo9HA3t4ewcHBCA0NRWBg4LCtCBFFEZWVlcjLy8OjR49QWVkJALC3t0dYWBhCQ0Ph6+s7pIJKhUKB27dv4+rVq2hubkZAQABiYmIQGhraZxjY2NiIpKQkuLm5YdOmTTAxMTHI2K5du4aTJ09i/PjxWL16NczMzFBZWYmUlBSYmpoiPj4erq6uEEURBw4cwKNHj7Bly5ZBWQDg1q1bOHr0KLZs2QJfX99+7fPdd99BFEVs3rzZwKMjGrpKS0vxxhtvoKamBqampvj973+P9evX93t/Bk9ERESkKwZPNKyVlJQgLS0N1tbWSEhIGDLVK8OFWq1GcXGxFETV19dDLpd3q4Zyc3Mb0tVQHR0dyM/PR35+PvLy8tDe3i4FS6ampli/fv2QbCjd1NSEq1ev4tatW9BoNJg0aRKio6P7HdoUFxfju+++Q3h4OJYtW6bX10gURZw5cwYZGRmIjo7GggULuh2/ubkZycnJaG1txcaNG1FcXIyffvoJ69evR1hYmN7G8SyCICApKQkAsH379n6d/927d3Ho0CH8wz/8AxwdHQ09RKIhqbKyEtXV1QgPD0dVVRUiIiKQk5MDa2vrfu3P4ImIiIh0xeCJhr36+nokJydDrVYjLi4OXl5exh7SsNXY2Ijc3Fzk5+ejsLAQarUatra2UggVFBQES0tLo45RFEVUVFRIYVl5eTlEUYS7uztCQkIwZswYXLx4EY6OjoiPjzfolK+B6Orf9PDhQ1hYWEj9mwZyAXf79m0cOXIEixYtQlRUlF7Gp9FocPDgQWRnZz/zuAqFAunp6dIKgK+99hpeffVVvYyhv0pKSvDNN99g+fLlmD59+nO3V6lU+POf/4yXX3550MdKNFRNnToVx44d63flIIMnIiIi0pUu3x+GztwUoqc4Oztj69atSE1Nxa5du7B+/fpBW/FrpHF0dERkZCQiIyOh0Wi6VUPdvn0bMpkMvr6+CAkJQWhoKNzd3QelGqq9vV2qaMrPz0dHRwcsLCwQHByM6dOnIyQkBLa2trhz5w6OHj2KoKAgrFu3bshMGRQEAY8ePUJmZiZKS0vh5OSExYsXY+rUqS/U5H3atGmoqanBqVOn4OLiguDg4BcaZ0dHB9LS0lBZWYkNGzZgwoQJfW5raWmJ119/HV9//TUAQC6XQxTFQa2O8/Pzw+TJk/Hjjz8iLCzsuaGoubk5Jk6ciLt372L27NlDupKPRq+LFy/iT3/6E27evInKykocPHgQq1at6rZNYmIi/vSnP6GqqgpTp07Fp59+isjISJ0f6+bNm9Bqtf0OnYiIiIgMjRVPNKSp1Wrs378fOTk5WLp0KSIiIow9pBGlqalJCqEKCgqgVqthY2PTrRpKX322BEFAeXm59HgVFRUAAA8PDyn08vHxgVwuB/CkCurChQu4cOECpk2bhqVLlxqs75EulEql1L+pqakJ/v7+Uv+mrrG/KEEQkJqaitLSUmzbtg0uLi4DOk5jYyOSk5PR2dmJuLg4+Pj4PHP7trY27NixAzY2NggMDMTly5cRERGBJUuW6O3c+qOlpQWfffYZIiIisHDhwuduX1RUhG+//RZvv/02/Pz8BmGERLo5ceKE9H5as2ZNj+ApPT0db775Jr788ktERUXhk08+wd69e/H48WO4ubkBAMLDw6HRaHoc+/Tp01JVcENDA1555RXs2LEDL730Ur/Hx4onIiIi0hWn2g1jCrUWrQoNbC1NYWlm/IvsoUAQBJw6dQrXrl3DrFmzMHfuXFY1GIBWq0VJSYk0La+mpgYymQw+Pj5SEOXp6anTc9/W1iZVNOXn56OzsxOWlpYIDg6Wjvn0KmpPj+XYsWO4c+cO5s6di1mzZhn9NW9ubpb6N6nVakycOBHR0dEGmwaqUCjw9ddfQxAEbNu2TecAsLy8HCkpKbC0tERCQgKcnJyeub1Go8GuXbvQ3NyM7du3w87ODrdu3cKxY8cQEhKCdevWvVAll65+/vlnnD9/Hu++++5zgzdRFPGf//mfCAoKwooVK557bH7OkjHJZLIewVNUVBRmzpyJzz77DMCTv3u+vr744IMP8Nvf/rZfx1UqlZg/fz62b9+ON95447nbKpVK6eeWlhb4+voyeCIiIqJ+Y/A0DF0vakDSpQKcya6GIAJyGTA/zB3bZwVhRsCzLxhHA1EUkZmZidOnT2PSpElYuXLlkFrFbCRqbm7uFhqpVCpYW1tLoVFwcDDGjBnTbR9BEFBWViZVNXWtQOfl5SUFTd7e3s+snlEqldizZw+KioqwcuVKTJkyxaDn+Tzl5eXIzMzEgwcPYG5ujoiICERFRQ3KxVlDQwOSkpLg4eGBhISEfld8PXr0CPv374enpyc2btzY43X6JVEUcfDgQTx8+BBvvfUWvL29pfvy8vKwd+9eODs7Iz4+vteg0BA0Gg0+//xzODk5ISEh4bnB408//YSrV6/iN7/5DczMzHrdhp+zNBT8MnhSqVQYM2YM9u3b1y2M2rx5M5qamnD48OHnHlMURcTHx2PcuHH4t3/7t+du/2//9m/46KOPetzO4ImIiIj6i8HTMPN9ZjH+cDgLcrkMWuHvL4eJXAZBEPHvqyZhU5S/EUc4dGRnZ+PAgQPw8fFBbGys3qaB0bNptVqUlpZKgVJ1dTUAwNvbG76+vjA3N0dtbS0KCwuhUChgZWUlBU3BwcE6rayUkpKCpqYmxMbGIjAw0JCn1SdBEPD48WNkZmaipKQEjo6OiIqKwrRp0wa16gd4Mo3s+++/x/Tp07F06dLnbn/t2jWcOHECYWFhWLVqVZ8hzNMuXbqEc+fOYe3atZg0aVKP+6uqqpCSkgK5XI6EhAS4uroO6Fx09ejRI6Snp2Pjxo0YN27cM7dtaGjAp59+ijVr1mDy5Mk97ufnLA0VvwyeKioq4O3tjStXriAmJkba7l/+5V9w4cIFXL169bnHvHTpEmbPnt0tqP/+++97fS8ArHgiIiKiF8fm4sPI9aIG/OFwFkSg28UQnvr594eyMN7dlv8iDyAsLAw2NjZIS0vDzp07kZCQAAcHB2MPa8QzMTFBQEAAAgICMGfOHDx+/Bi3b99GaWkpysvLATxpRO3i4oKoqChERETovPLc0+HGli1bpL4mg0mlUkn9mxobG+Hn54cNGzZg3Lhxg9rj6GkBAQFYsmQJjh07Bjc3N8ycObPX7URRxJkzZ5CRkYGYmBjMnz+/X9MTHz16hHPnzmH27Nm9hk7Akz5cW7duRUpKCnbu3InY2FgEBAS8yGn1y7hx4xAUFIRTp04hODj4mVWOTk5O8PX1xd27d3tcbPNzlka6WbNmQRCEfm9vYWExZBZqICIiopGPwZORJV0q6PEv8L8kl8uQdKmQF0T/l5+fH7Zu3Yrk5GQkJSUhPj7eYH126ImWlpZuTciVSiXGjBkjBQNWVlZSRVRXQ3Bdptfl5+djz549cHJyQnx8vM6h1YtqaWmR+jcplUpMnDgRa9eu7TblzJgiIiJQU1ODEydOwNnZGUFBQd3u12g0OHjwILKzs7Fo0SJERUX167hVVVU4cOAAJkyYgNdee+2Z29rb2+Ptt9/Gnj17sHv3bqxcubLPagp9kclkWLRoEb744gtkZmZi1qxZz9x+6tSpOH78OFpaWrr9qws/Z2koc3FxgYmJiVRJ2qW6uhoeHh5GGhURERGR/jB4MiKFWiv1GnkWrSDidHYVFGotG+H+X87Ozti6dStSU1Oxa9curFu3DmPHjjX2sEaMrkbjXWHT043GX3rppV4bjY8dOxbz5s2TGorn5eXh2rVruHjx4jMbit++fRvHjh1DUFAQ1q9fP6hT2SoqKqT+TWZmZpg+fTqioqJgb28/aGPor4ULF6K+vh579+7Ftm3b4OzsDADo6OhAWloaKisrERsbi/Hjx/freG1tbUhLS4OzszNWrVrVr+qorkblR48exYEDB9Dc3IyXX37ZoI3fXV1dERkZiZ9//hlTp059Zig5ceJEnDx5Evfu3ZNCKn7O0lDX1Tvu3Llz0vQ7QRBw7tw5vP/++wZ97MTERCQmJkKr1Rr0cYiIiGh0Y48nI6ptVWLm/zrb7+3fcSuCj4sdnJyc4OjoCCcnJ+m/+9PHZSRSq9U4cOAAHj9+jCVLlmDGjBnGHtKw1dTUJAVGhYWFUKlUsLGxkfo0BQcH69xTSxAElJeXS8etqKgAAHh6eiIoKAjt7e24c+eO1L9oMKaziaKInJwcZGRkoLi4GA4ODlL/pqE+9UShUCApKQkAsG3bNnR0dCA5ORkKhQLx8fH9rtDSaDT47rvv0NjYKK1gpwtRFHH+/HlcvHhxUF47hUKBTz/9FKGhod2aL/dm//79qKqqwq9//WvIZDKdP2ev/7fX4Wo7tH8PaPjpCuQBYNq0afjLX/6COXPmwMnJCX5+fkhPT8fmzZvx1VdfITIyEp988gn27NmDR48ewd3d3eDj06VHAxERERHAHk/Dhq2lKeQyPPdf4gFABmDKhFC0NTeitLQUd+/ehVqt/vuxbG27BVJPB1OWlpaGOwkjMzMzw/r163Hq1CkcP34cTU1NmDdvnkErMEYKjUaDkpIS5ObmIi8vD3V1dZDJZPD19cWsWbMQEhICDw+PF3ou5XI5fH194evrizlz5qC9vR35+fnIyclBZmYmtFotTE1N0dnZibt37yIkJMRg0+xUKhXu3r2LzMxMNDQ0wNfXF+vXr8f48eON1r9JV5aWloiLi0NSUhJ2796NhoYGjBkzBtu2bYOjo2O/jiGKIo4dO4aKigq89dZbA7rIlMlkmDNnDhwcHHDs2DG0trZi3bp1BqtWs7S0xNy5c3Hs2DHMmDEDPj4+fW47depUZGVlSQ2bdfmclcuefC4T6duNGzcwZ84c6ecPP/wQwJOV63bt2oXY2FjU1tbiD3/4A6qqqhAeHo6TJ08OSuhEREREZGiseDKyd3bfwNmHNc/sPWIil2H+BHd8uSlCuk0URbS3t6OhoQENDQ1obGzs9v+dnZ3StlZWVn2GUtbW1iMmpMnMzMSpU6cwadIkrFy58pmNiEerxsbGblVNarUatra20hS4oKAggweVCoUCe/bsQXFxMWbPng1RFJGXlyc1KXd3d5fG4+vrCxOTF5v21NraimvXruHGjRtQKpUICwtDdHT0M8OLoe7ChQs4f/48bGxs8O6772LMmDH93vfy5cs4e/Zsn6u/6aqrP5ezszPi4uIMFhwKgoAdO3ZALpdj27ZtfX5uCYKATz75BOPHj8eSJUsADPxzlmi0YMUTERER6UqX7w8MnozselEDNnyVgWe9CDIAe9+J0anpbWdnpxRCdQVSXT+3trZK25mZmfUZStnZ2Q2bSpAu2dnZOHjwILy9vREbG6vz1LCRRq1Wo7i4WAqb6uvrIZfL4efnh+DgYISGhsLNzW3Qwsfm5makpKSgpaWlx8poHR0dyM/Pl8ba0dEBCwsLBAUFSWPV5YKosrISmZmZyMrKgqmpqdS/abivgnj16lWcPHkSHh4eqKqqwrJlyxAR0b+w5PHjx0hLS8OsWbMwb948vY3p6RUJExIS4OrqqrdjP62kpATffPMNVqxYgWnTpvW53ZkzZ3D79m18+OGHMDU1NdjnLNFIweCJiIiIdMXgaZjZfbUYvz+U1WPVJRO5DIIg4t9XTcKmKH+9PZ5are4RSnX9f1NTE7p+JeRyORwdHXsNpRwcHIZsRVFpaSlSU1NhbW2N+Pj4fk9BGikaGhqk6XNFRUXQaDSws7PrVtVkjF5GuoQToiiisrJSCqHKysogiiLc3NykEMrPz69HNZQoisjNzUVGRgaKiopgb2+PqKgoTJ8+fcj3b3oeURRx+vRpZGZmIiYmBvPnz8cPP/yAW7duYdOmTQgMDHzm/jU1Nfj6668RFBSEDRs26D1sbGlpQXJyMpqbm7Fx48ZuoaI+7d+/H4WFhfjggw/6fE1ra2vx+eefY/369QgLCwMw+J+zRMPB083Fc3JyGDwRERFRvzF4GoZuFDUg6VIhTmdXQRCf9BpZEOaBbbMCB/Vf4LVaLZqbm/ucwvf0yjf29va9Vks5Ojoa/SK/vr4eycnJUKlUiI+Ph5eXl1HHY0hqtRpFRUVS2NTY2Ai5XA5/f38pbHJ1dTXqlMqnp2PFx8d3W9WuPzo7O1FQUCAFUW1tbTA3N0dgYCBCQkLg7++P4uJiZGZmor6+Ht7e3oiJicGECROGXdVeb9RqNQ4ePIhHjx5h0aJFiIyMBPDk/ZqcnIyqqips27YNTk69f1a0t7cjKSkJFhYW2LJli8F6MSkUCuzduxdFRUVYuXIlpkyZovfHaGlpwWeffYYZM2ZgwYIFfW63Y8cO2NjYIC4uTrrtl5+zMohYONED22YFsdKJRjVWPBEREZGuGDwNYwq1Fq0KDWwtTYfckt6iKKK1tbXPUEqpVErbWltb9zmFz8rKalBCkPb2dqSlpaG6uhpr167FuHHjDP6Yg0EURdTX10shTFFREbRaLezt7RESEoLQ0FAEBgYaLFzQ1e3bt3H06FGEhITopQG1KIqorq5Gbm4uHj9+LPWGAgAnJyfMnDkTM2bMGLIVebrq6OhAamoqqqqqsG7duh6/x52dnUhKSoJcLsfWrVt79OjSarX47rvvUF9fj+3bt8Pe3t6g49VqtTh69Cju3r2LuXPnYtasWXp/v1+8eBEXLlzAu+++CxcXl163uXbtGk6dOoUPP/wQ1tbW3e5TqLXIepyPw/vS8E8fvAdnZ2e9jo9ouGHwRESDTSuIuFbYgJpWBdxsLREZ6AQT+cjoO0s0WjB4okEniiI6OzulUOqXwVR7e7u0rYWFRZ+hlK2trV4vUtVqNQ4cOIDHjx9j8eLFmDlzpt6OPZhUKhUKCwulsKmpqQkmJiYICAiQpp45OzsPqUbxoiji/PnzuHjxIiIiIrBkyRK9VR9VVVUhMzMT9+/fh6mpKfz9/WFmZobS0lK0trbCzMwMgYGB0nMzXKdbNjQ0IDk5GUqlEnFxcfD29u51u7q6OiQlJcHX1xdxcXHS8yyKIo4cOYL79+9j8+bN8PX1HZRxi6KICxcu4MKFC5g+fTqWLl2q18oztVqNzz//HC4uLkhISOh1m46ODnz88ceYP38+oqOje9zf3t6OP//5z92m4xGNVgyeiGgwncyqxEdHs1HZrJBu87S3xB+Xh2HRJE8jjoyIdMHgiYYcpVLZZ1+p5uZmaTtTU9NugdTToZS9vf2AVjgTBAGnT5/G1atX8dJLL+H1118fUgFNb0RRRF1dnTR9rqSkBFqtFo6OjtL0uYCAgCFT1fRLWq0WR44cwb179zBv3jy8/PLLL/ycd61+l5GRgcLCQtjZ2Un9m7qqfERRRE1NjRTQlZSUQBAEODs7S89bV0g11JWVlSE1NRVWVlZISEh4bniWn5+P5ORkREVFYeHChQCAjIwMnD59GqtWrcLUqVMHY9jd3LlzB0ePHkVQUBDWrVun1ym4Dx8+xJ49exAXF4exY8f2us2ePXvQ2NiId955p9f7P/74Y0yfPr3bMvdEoxGDJyIaLCezKvHu7ls9Fvzo+pb4xabpDJ+Ihgldvj+MjLkoNORZWFjAw8MDHh4ePe7TaDRoamrqEUrl5uaisbERgiAAAGQyGRwcHPrsK9VXmCCXy7Fo0SI4ODjg1KlTaG5uxqpVq4bcVCylUonCwkLk5uYiPz8fzc3NMDU1RUBAAObPn4+QkJBhMSVIoVBgz549KCkpwZo1azB58uQXOp5arca9e/eQmZmJuro6eHl5Ye3atZgwYUKPIFImk8Hd3R3u7u54+eWXoVQqpd5QDx8+xNWrV6XntCuIGorP6cOHD3HgwAF4eXlh48aN/VqdMTg4GAsXLsTJkyfh6uoKW1tbnDlzBi+99JJRQicACA8Ph62tLfbs2YNdu3YhPj4etra2ejn2+PHjERgYiFOnTiE4OLjXUHrq1KnSdFt3d/ce97u7u6O6ulov4yEajp5uLk5EZGhaQcRHR7N7XWVWxJPw6aOj2Zgf5sFpd0QjDCueaEgTBAEtLS09pvB1hVNqtVra1tbWts8pfF0VMQO5oDeUvqpznJycpF5Nw6U6p0tzczNSUlLQ0tKCjRs3wt9/4KuEtbW14fr167hx4wY6Ojowfvx4xMTEwNfXd0DVU6Ioora2Vnq+i4uLIQiCVEUWGhqKgIAAoz/fmZmZOHXqFCZOnKhzQCqKIo4fP47bt2/DxMQEgYGBiI2NNXqD9erqaiQnJ0MmkyEhIQFubm56OW5NTQ2+/PJLqarul7RaLf7yl79gypQpUhXY006fPo2HDx/iH//xH/UyHqLhihVPRDQYMvLrEbcj87nbpW6PRkzw0PuHQSLqjhVPNGLI5XI4ODjAwcEBQUFB3e4TRRHt7e09Qqmamho8fvwYnZ2d0rZWVlZSGDVp0iRkZ2fjq6++wrp16+Dt7T1oU+8UCkW31dlaW1thamqKwMBALFy4ECEhIX2uTDbUVVVVISUlBXK5HFu2bIGrq+uAjlNTU4OMjAzcv38fcrkc06ZNQ1RU1As/LzKZDG5ubnBzc8NLL73UrW9Wbm4url+/LvXNeroaarB+N/QxJVQmk+HVV1/F3bt3odFoMHfuXKOHTsCTyqJt27YhJSUFO3fuRGxsLAIDA1/4uG5ubpg5cyYuXryIKVOm9KimMjExweTJk3H//n28/vrrPaqiPDw8kJGRAYVC0aMpOxEREelXTavi+RvpsB0RDR+seKIRq7Ozs8++Uq2trdJ2JiYmcHFx6bWvlJ2d3QtduD+9AlteXh5KS0shiiJcXFy69RwaatP+dJWXl4e9e/fC2dkZ8fHxsLGx0Wl/URSRn5+PzMxM5Ofnw9bWVurfNBhVaX2tFOjg4CC9ToZcKVCtVuPgwYN49OjRCzXB12q12L17N6qrq2Fubg5zc3Ns3bpVr72VXoRSqcSePXtQVFSElStXYsqUKS98zM7OTnz66acYO3YsVq1a1eP+yspK/O1vf+u1F1R1dTW+/PJLvP322/Dz83vhsRANV6x4IqLBwIonopGFFU9EeFLlZGVlBS8vrx73qdVqVFRU4OjRo2hsbIStrS2USiUePnyIpqYmdOWxcrm8135STk5OcHBw6DUw6uzs7FbV1NbWBjMzMwQFBWHJkiUICQmBg4ODoU9/0Ny6dQvHjh1DaGgo1q5dq1M4o9FopP5NtbW18PT0xJo1axAWFjagRvIDJZPJ4OLiAhcXF0RHR0OlUqGoqEh6DW/cuAETExP4+flJQZSrq6teqqHa29ulPkSxsbEYN27cgI4jiiJ++OEHlJSUYPPmzbCyssLXX3+NAwcODInpdsCTXm/x8fE4duwYDh48iKamJrzyyisv9DxaWVlh7ty5OH78OGbMmAEfH59u93t4eMDNzQ13797tETy5uLhALpejurqawRMREZGBRQY6wdPeElXNil77PMkAeNhbIjJweFb/E1HfWPFEo9rTlSaLFi1CZGQktFotmpube0zh6/r/p5uw2tvbw9HREZaWllCpVNJ+oijC1dVV6h3k5+c3qEHKYBBFET/99BN+/vlnzJgxA4sXL+53uNHe3o7r16/j+vXr6OjowLhx4xATEwM/P78hueLgL6uhNBoN7O3tERwcjNDQUAQGBg6oqqihoQHJyclQKpWIj4/vNSTtr6tXr+LkyZNYsWIFpk2bBgDIzc1FamoqYmJiMH/+/AEfW99EUcTFixdx/vx5TJs2DUuXLn2h94cgCNixYwdMTEywdevWHr9DV65cwY8//ojf/OY3PSrovvzyS3h7e2P58uUDfnyi4Y4VT0Q0WLpWtQPQLXziqnZEww8rnoj6yczMDOvXr8fp06dx4sQJNDU1Yf78+dJUu18SRRGtra2oqKhAbm4uSktLUVpa2uuKQB0dHSgrK0N7eztKSkq6TeGzsrIakgFLf2m1Whw5cgT37t3D66+/jpdeeqlf51NbW4uMjAzcu3cPMpkM4eHhiI6OHpIryz3N2dkZzs7OiIqKglqtRnFxsRRE3bp1C3K5vFs1lJub23Ofj9LSUqSmpsLa2hpbt26Fo6PjgMeXn5+PU6dOISYmRgqdACA0NBTz58/H6dOn4erqivDw8AE/hj519aKyt7fH0aNH0dLSgvXr1w94SmDXypW7du3C3bt3e5znlClTcPbsWWRlZfWYxuju7o6ampqBngrRsMZV7YhosC2a5IkvNk3HR0ezUdn8915OHvaW+OPyMIZORCMUK56I/q+uipGwsDCsXr262zQ6URSlsCk/Px/l5eUQRRHu7u5S2ODj4wOlUtlnX6n29nbpeBYWFlII9cu+Ura2tkM6lFIoFEhPT0dpaSlWrVqFSZMmPXN7URRRUFCAzMxM5OXlwcbGBpGRkZgxY4ZRVxXUl8bGRun3orCwEGq1Gra2ttLvRVBQUI/G1dnZ2Th48CC8vb0RGxv7Qs9DXV0dkpKS4Ofnh40bN/aoOhNFEUePHsW9e/fw5ptvDrkpZQUFBdizZw8cHR0RHx/fo0G4Lvbt24fi4mK8//77PUKslJQUdHR0YNu2bd1uv3LlCs6fP4/f/e53Q/p9R2RIrHgiosGmFURcK2xATasCbrZPpteZyPl3mGg40eX7A4Mnoqc8fPgQBw4cgKenJ1asWIGKigrk5eUhPz8fHR0dsLCwQHBwsBQq6HKR/KxQqrm5WdrO1NS0z75S9vb2Rp2y19zcjOTkZLS2tmLjxo3w9/fvc1uNRoP79+8jMzMTNTU18PDwQHR0NCZNmjTiph120Wg03aqh6urqIJPJ4OvrK027LCwsxOnTpzFp0iSsXLnyhRrLd3Z2IikpSZpi1lfFkFarxffff4/a2lps3759yPUYq66uRkpKCgAgISEBbm5uAzpOc3MzPvvsM0RGRvaYWvjgwQPs27cP7733HlxcXKTb8/PzsXv3bnzwwQfDdkVJohfF4ImIiIh0xeCJaAAEQUB5eTlu3bqFe/fuQRAEAE+aE3eFBj4+PgZp0qzRaNDU1NRrX6mmpiZpLDKZDA4ODr2GUo6OjjAzM9P72LpUVlYiJSUFpqamSEhI6Hbx/rT29nbcuHED169fR3t7O8aOHYvo6GgEBASMuoqSpqYmKYQqKCiAWq0GALi5ueGVV15BcHDwgKudtFotkpOTUVVVhe3btz93ql5HRwd27NgBCwsLbNmyxWAr9A1US0sLUlJS0NTUhNjYWAQGBg7oOBcuXMDFixfx61//utsUTo1Gg48//hgRERF4/fXXpdvb2trw8ccfY8OGDZgwYcILnwfRcMTgiYiIiHTF4Imon9ra2qSKpvz8fHR2dsLS0hK+vr6oqKiAIAhISEiAt7e30cYoCAJaWlr6bHbeFWYAgK2tba+hlJOTU4/pXrrIzc3Fvn374OLigri4ONjY2PTYpq6uTurfBABTp05FdHR0nwHVaKJWq7F//37k5OQgICAA7e3tqKmpgUwmg4+Pj1RB5+np2e9w7vjx47h16xbeeOMNBAQE9GufmpoafP311wgMDERsbOyQCwKVSiX27t2LwsJCrFixAlOnTtX5GGq1GomJiXBzc0N8fHy3+44dO4acnBz80z/9U7cA+c9//jMiIiIwZ86cFz4HouGIwRMRERHpisETUR8EQUBZWZlUhVJZWQkA8PLyki7+vb29IZfL0dHRgbS0NFRWVmLt2rUYP368kUffkyiKaGtr63MKX2dnp7StlZVVn32lrK2t+wwhbt68iePHjyM0NBRr167tVikjiiKKioqQkZGB3Nxc2NjYYObMmZgxYwbGjBlj8PMfDtrb25GamoqamhqsW7cOY8eOBfBkWtjToadKpYK1tbU0lTM4OLjP5/D69ev44YcfsGzZMkREROg0npycHKSmpmLWrFmYN2/eC5+fvmm1Whw7dgx37tzBa6+9htmzZ+sckGVnZ2Pv3r2Ij49HaGiodHtZWRm+/vprbNq0CcHBwdLt33//PczNzREbG6u38yAaThg8ERERka64qh3RU1pbW7tNd1IoFLCyskJISAiio6MRHBwMa2vrHvuNGTMGb7zxBg4ePIj09HQsXrwYkZGRRjiDvslkMtja2sLW1rbXptGdnZ29hlJFRUVobW2VtjMzM+sWSjk5OcHBwQGPHz/G9evXMWPGDCxevFiqEtFqtcjKykJGRgaqq6vh7u6OlStXYtKkSS/Us2ikqa+vR3JyMlQqFd566y14eXlJ99nb2yMiIgIRERHQarUoLS2Vfk+7qsa8vb2laZ6enp6Qy+UoKCjAiRMnEBUVpXPoBABjx47F/PnzcebMGbi6umLKlCl6O199MDExwYoVK+Dg4IDz58+jqakJy5Yt06kv2IQJExAQEIBTp04hKChI2tfb2xvOzs64e/dut+DJzc0Njx8/1vu5EBERERERK55oBPrlRXx1dTWA3i/i+0MURZw5cwYZGRmIiYnB/Pnzh9wUpYFQq9XdQqlf9pXqIpPJ4OjoCGdnZ9jY2KCtrQ1lZWXo7OxEcHAwXnrpJQQGBo6I50SfSktLkZqaCmtrayQkJOjU0PvpsDQ/Px9KpRJjxoyBj48PCgsL4e3tjTfeeGPA/cZEUcThw4eRlZWFt956Cz4+PgM6jqHdvXsXR44cQWBgINavX99n8/TeVFdX46uvvsLrr7+Ol156Sbr9559/xsWLF/HP//zP0vHu3r2LQ4cO4be//a1Oj0E03CUmJiIxMRFarRY5OTmseCIiIqJ+41Q7GnVaWlqkJe0LCgqkC/Wu6XPPmrbUX1evXsXJkycRFhaG1atXj9jKHoVCgbS0NJSWliImJgZ2dnYoLy9HcXFxt9X3utjb2/fZV2qoNbAeLNnZ2Thw4AB8fHwQGxs74AbiwN+nhz58+BDXr1+HVqsF0Pv0UF1oNBp89913aGhowPbt22Fvbz/gMRpSQUEB9uzZAwcHB8THx+t0UfzDDz/g7t27+OCDD6S+ZM3Nzfjkk0+wYsUKTJs2DQBQVVWFr776Clu2bIGvr69BzoNoKONUOyIiItIVgyca8bRaLUpKSqSqkBdt1Nxfjx49wv79++Hp6YmNGzeOuD5GTU1NSElJQWtrq9TvJiMjAzk5ObC2tsbMmTOlqWF99ZVSKpXS8aytrXtM4ev6fysrqxFXJSWKIjIzM3H69GlMmjQJK1eu1EtAKQgCUlJSUF5ejvj4eNTX10vVUAqFApaWllJvqJCQkF6bv/emvb0dO3bsgJWVFd5+++0hGxTW1NQgOTkZABAfHw93d/d+7dfZ2YlPP/0U48aNw8qVK6Xbv//+e2i1Wrz11lsAnoRw//Ef/4HFixdjxowZeh8/0VDH4ImIiIh0xeCJRqSnl6YvLCyESqWCjY2NVNH0IkvT66KsrAypqamwtLREQkICnJycDP6Yg6GyshIpKSkwNTXFjBkzkJWVhaqqKri5uSE6OhqTJ09+bogiiiI6Ojr6DKXa29ulbS0sLPoMpWxtbYddKCUIAk6dOoVr165h1qxZmDt3rt7O4cSJE7hx4wY2bdqEwMDAbo9ZXl4uvS8qKioAAJ6enggODkZoaCh8fHyeWQ1VXV2Nr7/+GiEhIVi/fv2Qfd5bW1uRkpKCxsZGbNiwAUFBQf3ar6sR+7Zt26TVKe/du4eDBw/iH/7hH+Do6AgA+OKLL+Dr64tly5YZ7ByIhioGT0RERKQrBk80Img0GpSUlCA3Nxd5eXmoq6uDTCaDr6+vVNnh4eFhlAvlhoYGJCcnQ6FQIC4ubsj2yOmv3Nxc7N27F1ZWVtBqtWhvb5earwcFBentOVYqlX32lWppaZG2MzU17RFGdf2/vb29To2mB4Narcb+/fuRk5ODJUuW6LVq5saNGzh+/DiWLl363OO2t7cjPz9fCqI6OzthaWmJoKAg6T1ja2vbY79Hjx4hPT0dr7zyCubOnau3seubUqnE3r17UVhYiOXLlyM8PPy5+wiCgL/97W8wMzPDli1bIJPJoFKp8PHHHyMmJgavvfYaAODAgQNoamrCli1bDHsSREMQgyciIiLSFYMnGrYaGxu7VTWp1WrY2tpKF81BQUGwtLQ09jABAB0dHUhLS0NlZSXWrl2L8ePHG3tIA3LhwgWcP38eMpkMMpkMU6dORXR0NNzc3AZ1HBqNBk1NTX02OxcEAcCTZucODg69hlKOjo4wMzMb1HG3t7cjNTUVNTU1WL9+PUJDQ/V27MLCQuzevRsRERFYsmSJTvsKgoDKykopuC0vLwcAuLu7S+8nX19fKcS7dOkSzp07hzVr1mDy5Ml6Owd902q1OH78OG7fvo3XXnsNs2fPfm4wWlRUhG+//RarVq3C1KlTAQCHDx9GUVER/uEf/gEymQyXL1/GxYsX8dvf/nbIVn0RGQqDJyIiItKVLt8fRmZ3ZBo21Go1iouLpbCpvr4ecrkcfn5+ePXVVxESEgI3N7cheSE4ZswYvPnmmzh48CDS09OxaNEiREVFGXtY/SKKIoqLi3H06FE0NDTA1NQUL730EmbOnNnv/kD6ZmpqChcXF7i4uPS4TxAENDc395jCV1JSgrt370KtVkvb2tra9mhy3vXf+g4t6+rqkJKSArVajbfeegteXl56O3ZDQwP27t2LgIAALFq0SOf95XI5vL294e3tjddeew0dHR1SNdTt27dx+fJlmJubS9VQkydPRm1tLY4cOQInJydpWtpQY2JiguXLl8PBwQE//fQTmpqasGzZsmdWwQUEBCAsLAxnz57F+PHjYWFhgalTp+LOnTsoKSmBv78/3N3doVKp0NTUJE2/IyIiIiKiF8eKJxp0XY2R8/LyUFRUBI1GAzs7u25VTcNpSXNRFHHmzBlkZGQgOjoaCxYsGJJBGfCkWiQ7OxtXrlxBVVUVACAsLAwrV64cso2ln0cURbS1tfXaV6qhoQEKhULa1srKqs++UtbW1jq9biUlJUhLS4O1tTUSEhLg4OCgt3NSKBT4+uuvIYoitm7dqvfeZaIoorKyUnoflpWVQRRFuLq6orOzE1qtFtu3bx/yAcy9e/dw+PBhBAQEYMOGDc/83GhqakJiYiKioqLw+uuvQxRF/PWvf0VAQABWrlyJ1tZW/OUvf0FsbOywrV4kGihWPBEREZGuONWOhhS1Wo2ioiJpyk9jYyPkcjn8/f2lsMnV1XXIhjX9de3aNZw8eRLjx4/H6tWrB33K17N0dnbi1q1buHbtGlpaWmBpaQmVSoU1a9Zg4sSJxh6eQXV2dvYZSrW1tUnbmZmZ9RlK2dnZdWvQ/eDBAxw8eBC+vr7YsGGDXoMhQRCQmpqKsrIybNu2Dc7Ozno7dl86OztRUFCAvLw85OTkoKOjAzKZDCEhIRg7dixCQkL0GqzpU2FhIdLT0+Hg4ID4+Phn/tE7f/48Ll26hF//+tdwcnLC+fPnkZGRgX/+53+Gqakp/vznP2PmzJlS3yeikS4xMRGJiYnQarXIyclh8ERERET9xuCJjEoUxR5VTVqtFg4ODlLQFBgYOGwrbJ7l8ePH2LdvHzw8PBAXF4cxY8YYdTyNjY3IzMzE7du3IQgCxo4di6qqKigUCmzcuBF+fn5GHZ+xqdXqPpudNzc3o+vj0cTEBA4ODnB0dIRSqURpaSn8/f2xePFiODs7P3e1P12cOnUKV69eRUJCAoKDg/V23P4SRVEK1iwtLdHR0QEAcHFxkd6//v7+ej3nF1VTU4Pk5GSIooiEhAS4u7v3up1arUZiYiLc3d0RFxeHxsZG/PWvf8Xq1asxZcoUfPfdd7C0tMSGDRsG+QyIjIsVT0RERKQrBk806FQqFQoLC6WwqampCSYmJggICJCWdXd2dh72VU39UV5ejtTUVFhYWCAhIQFOTk6D+viiKKK0tBSZmZl4+PAhrKysMHPmTPj5+eHgwYMwMzNDQkJCr72U6O+0Wi2ampqkIKq+vh45OTloamqCTCbD0x+d9vb2ffaV0iVgvXXrFo4ePYrFixcjMjLSEKfVbw8fPsSePXvw8ssvw8vLS3pvt7a2wszMDIGBgdJ7eyhMyWttbUVKSgoaGhqwYcOGPkO7Bw8eYN++fUhISEBISAi++eYbmJqa4o033sCpU6eQk5ODDz74YJBHT2RcDJ6IiIhIVwyeyOBEUURdXZ00fa6kpARarRaOjo5SVURAQMCIrGrqj8bGRiQnJ6OzsxNxcXHw8fEx+GMKgoDs7GxkZmaivLwczs7OiImJwZQpU1BYWIh9+/bBzc0NcXFxsLa2Nvh4RhKVSoUDBw4gJycHS5cuxfTp09HS0tLnFD6VSiXta21t3ecUPisrKymMLS4uxnfffYdp06Zh6dKlQyKkvXjxIn766SesW7cOEydOhCiKqKmpkUKokpISCIIAZ2fnbtVQxppmqlQqsW/fPhQUFGD58uUIDw/vsY0oivj222/R1taGd999F3fv3sXRo0fxT//0TygsLMThw4fxu9/9btR+dtHoxOCJiIiIdMXgiQxCqVSisLAQubm5yM/PR3NzM0xNTREQECBddA5GP5rhorOzE2lpaaioqMCaNWswYcIEgzyOQqGQ+jc1NzcjMDAQMTExCAkJgUwmw40bN/DDDz9g7NixWLt27ZDqPTUctLW1ITU1FbW1tVi/fj1CQ0Ofub0oiujo6OgzlOqaugYAFhYWcHJygo2NDQoLC+Hg4IDFixfDxcUFtra2Rg+fRFHEgQMH8OjRI7z99ts9Vu17+jMhLy8PLS0tRv9MEAQBx48fx61bt/Dqq6/i1Vdf7fE8VldX46uvvsL8+fMxffp0/PnPf8bs2bMREhKCv/3tb9i6deughMVEQwWDJyIiItIVgyfSi6Fe3TAcaDQaHDp0CA8ePMDChQsRHR2tt2M3Njbi6tWruH37NjQaDSZPnozo6Gh4eHgAePL6nTt3DpcvX8bMmTOxaNGibg2y6fnq6uqQnJwMjUaD+Ph4eHp6vvAxlUpltzCqtrYWDx8+hEaj6TZ9z9TUtEeFVNd/Ozg4DNprqVarsWvXLrS2tmL79u2wtbXtdbtfVkEWFxdDEIRuVZCBgYGD8nkhiiIuXbqEH3/8EeHh4Vi2bBlMTEy6bXP8+HHcv38f77//Pk6fPo2Kigq88847+I//+A8sWbIEM2bMMPg4iYYKBk9ERESkKwZPNGAKhUJa3Woo93MZTkRRxNmzZ3HlyhVERUVhwYIFLxQaPN2/ydLSEhEREYiMjOwWCGg0Ghw+fBhZWVlYsGABoqOjjV49M9yUlJQgLS0NNjY2iI+PN8iqboIgIC0tDSUlJdi6dSscHR3R2NjYa7VUU1MTBEEAAMhkMjg4OPQaSjk6Ouo93GltbcWOHTtga2uLt956q1/HHwp93+7du4fDhw8jICAA69evh6WlpXRfR0cHPv30U0yYMAETJ07E7t27sXXrVhw5cgT+/v5YunSpwcZFNNQweCIiIiJdMXiifhNFEdXV1VKVQmlpKURRHNIrWA1X169fx4kTJzB+/HisXr1ap3BAEAQ8fPgQmZmZKCsrg5OTE6KjozF16tQevWg6OzuRnp6OsrIyrFmzBmFhYfo+lRGva1U3X19fxMbGdgss9OnMmTPIyMhAfHw8QkJCnrmtIAhobm7uNZRqbGyEWq2WtrW1te2z2flAz6WiogLffPMNxo8fjzVr1ugUGBlzpcvCwkKkp6fD3t4eCQkJ3f4oXrt2DSdOnMC2bduQnp6OcePGQaFQoKWlBW+//bbex0I0VDF4IiIiIl0xeKJn6uzs7FbV1NbWBjMzMwQFBUkXgYao7iDg8ePH2L9/P9zd3bFx48bnNvlWKpW4desWrl69iubmZgQEBCA6Ohpjx47t9cK/qakJycnJaG9vx8aNG+Hn52eoUxmRRFHElStXcPbsWUyePBkrVqwwWOh6584dHD58WC9TMEVRRFtbW599pRQKhbStlZVVn83Ora2tnxkoda0IN2fOHMyePXvA41WpVCgqKpI+gxobG2FiYgI/Pz/pM8jV1VVv1VA1NTVISUmBIAiIj4+XpqMKgoCvvvoKFhYW8PX1xa1btxAdHY2MjAz867/+K6sEadRg8ERERES6YvBE3YiiiMrKSukir6ysDKIowtXVFSEhIQgNDYWfn1+PHihkGBUVFUhJSYGFhQUSEhLg5OTUY5umpiZcvXoVt27dgkajwaRJkxAdHf3MHkNdxzU3N0dCQgIbvetIEAScOHECN27cwCuvvII5c+YYLHgoKSnBd999hylTpmD58uUGDzg6Ozt7VEh1hVJtbW3Sdubm5n32lbKzs4NcLsf58+dx4cIFbNiwQW8N839ZDaXRaGBvby9NyQsMDISFhcULPUZraytSU1NRX1+PDRs2IDg4GMCTiqjvvvsOr7/+Os6ePYtZs2bh0qVL+Md//EcG8ATgSZ+zqqoqdHR0wNXVtdfP7OGOwRMRERHpisEToaOjA/n5+cjLy0N+fj7a29thbm7erarJ3t7e2MMctRobG5GcnIyOjg7ExcXB19cXAFBWVobMzExkZ2fDwsJC6t/0vDdyTk4O9u3bBzc3N8TFxT23koq6U6lU2L9/P3Jzc7Fs2TJMnz7dYI/V1NSEHTt2wNXVFW+88YbRA1+VStVnX6nm5map4bmJiQkcHBzg6Ogo3Td//nwEBwfDwcFBb5VharUaxcXFUhBVX18PuVzerRrKzc1tQGGdSqXCvn37kJ+fj2XLlmHatGkAgL1796K0tBQ2NjawtLREYWEhNm7ciHHjxunlnGj4aW1txe7du5GWloZr165BpVJBFEXIZDL4+PhgwYIF+NWvfoWZM2cae6h6weCJiIiIdMXgaRQSRREVFRXIzc1Ffn4+ysvLIYoi3N3dpYs1X19fo1/k0t91dnYiLS0NFRUViIyMRGlpKUpLS+Ho6Ijo6GiEh4f3q+dNV++ocePGYc2aNVxlUEdtbW1ITU1FXV0d1q9f/9xeSy9CpVLh66+/hkqlwvbt2zFmzBiDPZY+aLVaNDU19Qil6uvrUV9fL20nk8lgZ2fXZ1+pF+nd1NjYKH2uFRYWQq1Ww9bWVvpcCwoK0qlvlSAIOH78OG7duoXZs2fjtddeQ3NzMxITE+Hv74+CggJYWFggOjoar7766oDHTcPXX/7yF/zP//k/ERwcjOXLlyMyMhJeXl6wsrJCQ0MDsrKy8PPPP+PQoUOIiorCp59+itDQUGMPe0ASExORmJgIrVaLnJwcBk9ERETUbwyeRon29vZuVU0dHR2wsLBAcHCwdFHW19LnZHxKpRI3b97E+fPnoVar4ejoiAULFmDs2LH9WvXu6dXyIiMjsXDhwhdaLW80qqurQ3JyMjQaDeLj4585lfFFiaKI9PR0FBYWYuvWrXBzczPYYw2G5uZm7NixA2PGjMHMmTN7ND5XqVTSttbW1n32lbKysup39ZJGo+lWDVVXVweZTAZfX1/pM8/Dw+O5xxNFEZcvX8a5c+cwdepULF++HBcvXsTly5chiiLs7e3h6emJ9evXv9BzRMNTXFwc/vt//++YOHHiM7dTKBTYtWsXzM3NsWXLlkEanWGw4omIiIh0xeBpiFKotWhVaGBraQpLM90rjwRBQHl5uXTRVVFRAQDw8PCQejX5+PgwfBjimpubce3aNdy8eRMqlQoTJ06EiYkJ7t69i6ioKCxYsOC5r6FGo8GhQ4fw4MEDvTSnHo2Ki4uRlpYGW1tbJCQkGHzq6dmzZ3H58mXExcVh7NixBn2swVJeXo5du3YhLCwMq1atkgIfURTR0dHRZ1+pjo4O6RgWFhY9Qqmu/7a1tX1miNTU1CR9HhYWFkKlUsHGxqZbNZSVlVWf+9+/fx+HDx+Gn58fVq9ejaSkJAiCAEEQYGJhhTfe3j7gz2ui4YTBExEREemKwdMQc72oAUmXCnAmuxqCCMhlwPwwd2yfFYQZAc9uUtrW1iZdWOXn50OhUMDS0rJbVZONjc0gnQm9iIqKCmRkZODBgwcwNzeX+jd1BR43btzADz/88Nwpc09P0Vu9ejXCwsIG8zRGhKysLBw6dAi+vr6IjY3VaarWQNy9exeHDh3C/Pnz8dJLLxn0sQZbVlYW9u/fj3nz5mHWrFn92kepVPYIo7r+u6WlRdrO1NS0z2bnDg4O3QJarVaLkpISaVpeTU2N1I+n67PS09OzR5BVVFSE9PR02NnZISIiAruO/4wHGneUCA4QIdPp85pGnp9++glz5szp9b7ExES89957gzwiw2DwRERERLpi8DSEfJ9ZjD8czoJcLoNW+PtTbSKXQRBE/PuqSdgU5S/dLggCysrKpIunyspKAICXl5d08eTt7c2qpmFCEATk5OQgIyMDJSUlcHR0RFRUFMLDw3tdpet5TcL7akpO/SOKIq5cuYKzZ89iypQpWLFihcH7npWVlWHXrl2YPHkyVqxYYfAV7Izhxx9/xM8//4zY2FiMHz/+hY6l0Wj6bHbe1NQEQRAAAHK5HPb29r2GUo6Ojujo6JAC+/z8fKhUKlhbW0uhfXBwsNRjq7a2FsnJybjTbofzbW6QQYSIv3/G9vV5TSOfo6Mjzp49i4iIiG63/+d//id+//vfdwtKhzMGT0RERKQrBk9DxPWiBmz4KgPPeoJlAL59YypslbXIy8tDQUEBFAoFrKyspKApODiYq5QNMyqVCnfu3EFmZiYaGxvh5+eH6OhojBs37rmhYUVFBVJSUmBubo6EhAQ4OzsDeDKtKTU1tcft1D+CIODEiRO4ceOG1FTa0CFQVx8kZ2dnvPHGG3pb+W2oEUURe/fuRV5eHrZu3Qp3d3eDPI4gCD16ST393xqNRtrW1ta2WxAlCAKamppQUVGB2tpaAIC3t7c0TTm3ScBbu+/iyady72QA9r4Tw8qnUSQpKQn/7b/9N1y8eFEKVT/++GP8j//xP3Ds2DG88sorRh6hfjB4IiIiIl0xeBoi3tl9A2cf1nSrdPolOUT4yhsx17yg20WQp6cnq5qGoZaWFql/k1KpRFhYGGJiYuDt7a3TcZqampCcnIz29nbExcWho6MD+/fvh7u7OzZu3MggUkcqlQr79+9Hbm4uli1bhunTpw/KY37zzTfo7OzE9u3bR/xrZuzzFUURbW1tffaVUigU0raWlpawsrKCVqtFe3s7tFotzmtCUayxg/CM4MlELsP8Ce74clNEn9vQyPN//s//wV//+ldcunQJ6enp+F//6/9v777DosrzfPG/qwDBAIVIVhTMAgoGQMwJxYBiINsSit7dmZ7Z3emZ+e3M3bvd28/M7Nz7zPbcvn2bmZ5tMHRLjuaAqG0CwQAGzGAkCUgVqYCqOr8/HNmxTSBVnCp4v57HP6g6dc6ngHOs8+b7/Xz/AwcPHsT8+fPFLk1nGDwRERFRbzF4MgCqLg3cPz2Mt2RO3SQALv5qEWxkXIHOWFVXV3f3bzIzM8OsWbPg6+sLa2vr995ne3s70tPT8ejRI2i1WkydOvWtvZ/o9VpaWpCSkoKGhgaEhIRg4sSJej/mixFA9+7dQ1xcnN5GABmaFyO8bGxssG3bNoMa4dXe3v7GUKqpuRW7O2ZBeEvo9IJUApR/FsiG44PMv/zLvyApKQkajQaHDh0acAs6MHgiIiKi3urN5wfDuSsYYJpV6h6FTgAgANBIh+i1HtI9QRC6+zc9ePAA1tbWCAgIwMyZM1/bv6m3LCws4OTkhAcPHgAAXFxcDOpG3hi86N2j1WoRGxsLR0fHfjnuiRMncOPGDYSHhw+a0AkAZDIZwsPDsXPnThw4cMCgeloNHToUo0ePfu3ow6rGZnz3h1M92o9WeH59Z/A0cH355ZevPDZ69GgMGzYMixYtQnFxMYqLiwEA//iP/9jf5REREREZHd7F6omlhSmkEvQofJJKnm9PxqGzsxNlZWUoKipCY2MjxowZg5CQEEydOlVn0yPVajXy8vJw/fp1rFy5Eq2trcjPz4dCocCqVas4DbMHHjx4gLS0NFhZWSEyMrJ79UB9u3r1Kk6fPo3ly5djypQp/XJMQzJmzBisX78eubm5sLOzM4pV/Gwsh/F6Td3+z//5P6993MTEBGfPnsXZs2cBABKJhMETERERUQ/w07OeWJiZIMDd4Z09nl70DOFfzw1fc3Nzd/8mlUqFadOmITg4WOcry7W1tSE9PR1VVVUIDQ3FtGnTAADW1tY4ePAgFAoFNm/ezCl3b3H16lXs2bMHY8eORWhoKCwsLPrluE+ePMGePXvg5eU1oPq/9NaMGTPw9OlT5Ofnw9bWFpMnTxa7pLeyMDNBwDQH5JfX9KjHE6/XA1tlZaXYJRARERENKAye9Ch+wXgcvV771m20WgHxC9z6qSJ6HzU1NSgqKsLVq1dhamqKWbNmwc/Pr0/9m97k2bNnSE5ORnt7O7Zt2/ZSqDVnzhxYWVkhKysLu3btQkRExIBvWN1bgiDg7NmzKCgogJeXF4KCgmBi0j8hgVKpRFpaGpycnLBu3TqDmWImlmXLluHp06fIzs6GXC6Hvb292CW9UUdHB8a234UWI966Ha/XRERERES9x/k6euTjaoPfBHtCgud/Kf9bJlIJJAB+E+zJpbkN0Iv+Td9++y3+8pe/4P79+1ixYgV+9rOfYdWqVXoJnZ48eYLExEQIggC5XP7akVSTJ09GTEwMFAoFkpKS0NDQoPM6jJVWq8WBAwdQUFCARYsWYcOGDf0WOnV1dSEtLQ1SqRRhYWHsxYXn05A2bdqEkSNHIjU1Fa2trWKX9FrNzc3YuXMnhLq78Dd9CACQQPvSNrxeDy7/63/9L7S1tfVo2/Pnz+PAgQN6roiIiIjIuHFVu35w4X4jEs9U4mh5DbTC8x4hK90dEb/AjTcxBqarq6u7f1NDQwNGjx4Nf39/TJs2Ta99lW7duoWsrCw4OjoiIiICw4YNe+v2TU1NSE5ORmtrK8LDwzF27Fi91WYMOjs7kZWVhXv37mHdunWYOXNmvx1bEARkZWXhzp07iIuL67cG5saiqakJiYmJsLW1xQcffNBvYWBP1NXVITk5GV1dXejo6IC3tzcqW6TYc7MZlV2WvF4PUtu2bcOhQ4cQEhKCoKAgzJkzB3Z2dgCe998rLy/HmTNnsHv3blRVVeHbb7/FokWLRK66b7iqHREREfVWbz4/MHjqR6ouDZpValhamLJHiIFpaWlBcXExLly4AJVKhalTp8Lf3x9jxozR+5Sp4uJiHD58GFOnTsXGjRt73Lupvb0d6enpePz4MTZu3AgPDw+91mmoWlpakJKSgoaGBoSGhmLChAn9evyTJ0/i+++/f6kfF73s0aNH2LVrF2bMmIGgoCCDmIZYWVmJ9PR0WFpaorW1Ffb29oiIiMAXX3yBWbNmYeGSZbxeD2JlZWX46quvkJWVBaVSCRMTE5ibm3ePhJo5cybi4+MRExPTbz3k9InBExEREfUWgyeiHqqtre3u3ySVSjFz5kzMnTsXI0eO1PuxBUFAfn4+CgsLMXfuXAQEBPR6VJVarcbevXtx9epVBAQEwN/f3yBu6vvL06dPkZycDK1Wi8jIyH4fbXT9+nVkZWVh2bJlWLhwYb8e29iUlpZiz549WLlyJfz9/UWt5cqVK93N51tbW6FWqxEfH4/79+8jMzMTP/7xj7tHuNDgptVqceXKFTx48ADt7e2wtbWFt7c3bG1txS5Npxg8ERERUW/15vMDG5HQoCMIAu7evYuioiJUVFTAysoKS5cuxezZs/vtL9dqtRq5ubkoLy9HYGAg/Pz83ms/pqam2LhxI2QyGfLz89HU1ITAwEC9Tgs0FPfv30d6ejqsrKwQFRXV7zdLVVVVyMvLw/Tp07FgwYJ+PbYx8vb2fmmlu0mTJvV7DYIg4PTp0zhx4gS8vLzQ1tYGpVIJuVyOYcOGoaysDM7OzgydCFqtFn/4wx+wd+9edHZ2Yvny5fj0008xdOhQsUvTqYSEBCQkJECj0YhdChEREQ1gDJ5o0Ojq6sKVK1dQVFSE+vp6ODk5YdOmTXB3d+/XvjNtbW1IS0tDdXW1TqZnSSQSLF++HNbW1jhw4ACUSiU2b97c4yl7xujq1avIy8uDq6srQkJC+n2qS3NzM9LS0uDg4GAwU8eMwfLly1FfX9+90l1/BjwajQYHDhzA5cuXsWTJEnR2duLKlSuIiIiAnZ0dWltbcffuXaxatarfaiLD9bvf/Q7//u//jhUrVmDo0KH4v//3/6Kurg7bt28XuzSd+uijj/DRRx91/8WSiIiISB841Y4GvJaWFpSUlODChQtoa2vD1KlTMXfuXIwdO7bfA4PGxkakpKSgvb0dERERGDNmjE73f+fOHWRmZnb3qxk+fLhO9y82QRBw5swZHD9+HF5eXggKCur3ZtVdXV3YuXMnmpub8eGHH8LS0rJfj2/sOjo6kJSU1D297V2N9HV1zMzMTFRWViIoKAgAXpn2V1RUhPz8fPz85z/vl5rIsE2aNAm/+MUv8Pd///cAgGPHjmHt2rVob28fkCNKOdWOiIiIeos9nojwfMWqwsLC7v5N3t7emDt3LmxsxFmZ6vHjx0hNTYWFhQWioqL0Vkd1dTVSUlJgamqKqKioAdOLRKvV4sCBA7h06RIWL16MxYsX93twKAgCcnJycPPmTcTFxcHJyalfjz9QPHv2DImJibC3t8fWrVv1Gh42NzcjJSUFz549Q2hoKMzMzLBr1y5Mnz4d69ev7/4d+stf/oKRI0ciNDRUb7WQ8TA3N8fdu3fh4uLS/ZiFhQXu3r2r8z8YGAIGT0RERNRb7PFEg5YgCKioqEBhYSHu3bsHS0tLLFmyBLNnzxa1N8fNmzeRnZ0NJycnhIeH63VEhZOTE+RyOVJSUrB9+3aEh4dj7Nixejtef+js7ERWVhbu3buHDRs2wNvbW5Q6Tp8+jWvXriEkJIShUx+8CHi+/fZbHDx4EOvWrdNLiFhXV4fk5GQAQGxsLMzNzZGYmIjRo0e/dMyamhrU1NRgyZIlOq+BjJNarX5lCq+ZmRm6urpEqoiIiIjIeDF4ogFBrVbj6tWrKCwsxNOnT+Ho6IiNGzfCw8Oj36di/dD58+dx+PBhTJs2DRs3buyX3kvW1taIi4tDeno6vv322+7vhTFqbm5GamoqGhoaEBkZiQkTJohSR3l5OU6cOIElS5bA3d1dlBoGknHjxmHt2rXYt28f7O3t37vB/ptUVlYiPT0d1tbWiIyMhIWFBbZv3w4zMzOEhoa+dF0oKyvDsGHDMHHiRJ3WQMZLEATExMTA3Ny8+zGVSoV/+Id/eGkKc05OjhjlERERERkVBk9k1FpbW3HhwgWUlJSgtbUVU6ZMwZo1azBu3DjRGz4LgoCjR4+iqKgI/v7+CAgI6NeaXkzp27t3L7KysqBQKODv7y/696U36urqkJKSAq1Wi7i4ODg4OIhSR3V1NfLy8uDh4YFFixaJUsNANGvWLDx9+hRHjhyBra2tzkLFsrIy7N27F25ubggJCcGQIUOQkZGBZ8+eQS6XvxQcaDQaXL16FdOnTxc9pCbDER0d/cpjW7duFaESIiIiIuPH4ImM0tOnT1FUVISysjJIJJLu/k2jRo0SuzQAzxtQ5+Xloby8HIGBgTofzdFTpqam2LhxI6ytrZGfn4+mpiYEBgYaRXPcH45YEavvSEtLC9LS0mBnZ4cNGzYYVXBnDAICAlBfX4/MzEzEx8f3qSeZIAg4deoUTp48iZkzZ2Lt2rUwMTFBQUEBbt68iYiICNjb27/0mnv37qG1tRVeXl59fSs0gOzYsUPsEoiIaIDQaAUUVzairlkFe0sL+LrZwETKz5M0uDB4IqMhCAIqKytRWFiIu3fvYsSIEVi8eDFmz55tUKtQtbW1IS0tDdXV1QgLC8PUqVNFrUcikWDZsmWQyWQ4cOAAFAoFNm/ejCFDhoha19tcuXIFe/bsgaurK0JDQ1+a7tKf1Go10tLSoNVqERYW1i/TJAcbqVSKzZs3IykpCampqYiPj3+vfmwajQb79+9HaWkpli5dioULF0IikeDKlSs4c+YMVqxYgcmTJ7/yurKyMtjb28PR0VEXb4eIiIio2+Fr1fhsXzmqFarux5xkFvg0yB2BnuwXSoMHV7Ujg6dWq3Ht2jUUFhairq4ODg4O8Pf3h6enp8FNjWlsbERycjJUKhUiIiIMbvWjO3fuICsrC7a2toiIiMCIESPELuklgiDgzJkzOH78OLy9vbFu3TrRfsaCICA3Nxc3btxATEwMRo8eLUodg0VjYyMSExPh6OiIqKioXv3cOzo6kJmZicrKSqxfv7579NLjx4+xc+dOeHp6vna0Wnt7Oz7//HMsX74c/v7+On0/RMaEq9oREene4WvV+NHuS/jhzfaLTyN/3jqL4RMZtd58fjD8+TY0aLW1teHUqVP44osvsGfPHshkMmzbtg1///d/Dy8vL4MLnR4/foykpCQAgFwuN7jQCQAmTZqEmJgYKJVKJCUlob6+XuySumm1Wuzfvx/Hjx/HkiVLsH79elF/xmfPnsXVq1exYcMGhk79wMbGBqGhoXjw4AEOHz7c49cplUrs2LEDjx8/RlRUVHfopFAokJaWBmdn5zeumnft2jVotVpMnz5dZ++DiIiISKMV8Nm+8ldCJwDdj322rxwaLceA0ODAqXZkcOrr67v7NwGAl5cX5s6d26feL/p28+ZNZGdnw8nJCeHh4QY19e+HnJycEB8fj+TkZCQlJSE8PBzjxo0TtaaOjg5kZWWhoqICGzZsgLe3t6j13Lx5EwUFBVi0aBE8PT1FrWUwcXV1xZo1a7B//37Y29vDx8fnrdvX1tYiJSUFABAXF9fdv6mzsxNpaWkwNTVFWFgYTE1f/19dWVkZJk6caHAj/4iIiMi4FVc2vjS97ocEANUKFYorG+E/wTB61BLpE4MnMgiCIOD+/fsoLCzEnTt3MHz4cCxcuBBz5swx6BAHAM6fP4/Dhw/D3d0dGzdufONNriGRyWSIi4tDeno6vvvuOwQHB4sWsDQ3NyMlJQXPnj1DVFQUxo8fL0odL9TU1CAnJwfTpk3DkiVLRK1lMJo9ezbq6upw6NAhjBo16o2/DxUVFcjIyMDIkSMRGRkJS0tLAM+vJXl5eWhoaEBcXNxLK9j9rfr6ejx58gRbtmzR23shIiKiwamu+c2h0/tsR2TsDP8OmQY0jUbT3b+ptrYW9vb22LBhAzw9PQ0+wBEEAUePHkVRURH8/f0REBBgVCueWVhYYOvWrdi7dy+ys7OhUCgwb968fn0PdXV1SE5OBgDExsbCwcGh3479Oi9WsBs1ahSCg4ON6uc5kKxatQoNDQ3dK939cLXK0tJS7Nu3D25ubggJCXmp+fzJkydx48YNhIWFvbVheGlpKSwsLDBlyhS9vQ8iIiIanOwtLXS6HZGxM+w7exqw2tracPHiRRQXF6OlpQUTJ07EypUr4ebmZhQ3+11dXcjNzcXNmzexevVq+Pr6il3SezExMUFwcDBkMhmOHTuGpqYmrF69GlKp/tu/VVZWIj09HdbW1oiMjBS9oa1arUZGRgbUajXCw8MNetW/gU4qlWLLli1ITEzsXunOwsICgiDg1KlTOHnyJGbOnIm1a9e+1Afs2rVrOHXqFJYtW/bW1SS1Wi2uXLkCDw8Pgw+4iYiIyPj4utnASWaBGoXqtX2eJAAcZRbwdbPp79KIRMFP3NSvGhoaUFRUhNLSUgiC0N2/yc7OTuzSeqytrQ2pqamoqalBWFiY0Y+YkEgkWLZsGaytrbF//34olUps3rxZr8HLlStXsGfPnteOWBGDIAjYv38/qqqqEBMTA5lMJmo99HxEXkREBBITE5GVlYWwsDAcPHgQpaWlWLp0KRYuXPhSSP3kyRPs2bMHM2bMwIIFC96678rKSjQ3N4veS4yIiIgGJhOpBJ8GueNHuy9BArwUPr349PJpkDtMpIb/B3ciXZAIgsBW+qRXgiDgwYMHKCoqwq1btzB8+HD4+Phgzpw5b+y/YqgaGxuRnJyMjo4OREREDLjVzu7evYvMzEzY2toiIiJC502XBUHA6dOnceLECXh7e2PdunUGsTrh2bNncezYMWzatIkrnBmYiooK7N69G5aWlmhpacGGDRswY8aMl7ZRKpX45ptvIJPJEBMT885RTDk5OaiqqsJHH31kFCMsifStN8shExFRzx2+Vo3P9pW/1GjcSWaBT4PcEejpJGJlRH3Xm88PHPFEeqPRaHD9+nUUFRWhuroadnZ2WL9+PaZPn26U01sePXqEtLQ0DB06FHK5HCNHjhS7JJ2bOHEiYmNju1e8i4yM1NloNI1GgwMHDuDy5ctYsmQJFi1aZBA3/bdv38axY8ewYMEChk4GyNbWFiNGjIBSqcTcuXNfCZ26urqQlpYGqVSK8PDwd15bOjo6cOPGDYP5/SMiIqKBK9DTCQHujiiubERdswr2ls+n13GkEw02xnf3Twavvb29u39Tc3MzJkyYgK1bt2L8+PFGe6N348YN5OTkwNnZGWFhYQa/0l5fODo6Ij4+HsnJydi+fTvCw8Mxbty4Pu2zo6MDmZmZqKysRHBwMLy8vHRUbd/U1dUhOzsbU6dOxbJly8Quh36gtrYWycnJkEgk8PDwQHFxMaZMmQJXV1cAz0fQ7dmzB/X19YiNje3RCL3y8nKo1WqD+R0kIiKigc1EKoH/hFHv3pBoAGPwRDrT2NjY3b9Jq9Vi+vTp8Pf3h729vdil9UlRURGOHDkCDw8PBAcHG+Vord6SyWSIi4tDRkYGvvvuOwQHB8PT0/O99tXc3IyUlBQ8e/YMUVFRGD9+vI6rfT+tra1ITU3FyJEjsXHjRqMNRQeqe/fuISMjAzY2NoiMjMSwYcPQ1taGjIwMxMfHw8bGBqdOncL169cREhICJ6eeDVcvLS3F+PHjOZ2IiIiIiKifDPw7aNIrQRDw8OFDFBUV4ebNmxg2bBj8/f3h4+Oj8/5A/U2r1eLo0aM4f/485s2bhxUrVgyqcMLCwgJRUVHYt28fsrOz0dTUhPnz5/fqe1BXV4fk5GQAQFxcnMGEkBqNBhkZGejq6kJMTAxXsDMwpaWl2LdvH8aPH48tW7Z0N58PCQnpXulu/vz5OHnyJJYsWQJ3d/ce7ffZs2d4+PAhNm7cqM/yifpdU1MTVqxYAbVaDbVajX/6p3/Chx9+KHZZRERERAAYPNF70mg0KC8vR1FREaqqqmBra4t169ZhxowZMDMzE7u8Puvq6kJubi5u3ryJNWvWwMfHR+ySRGFiYoINGzZAJpOhoKAATU1NWLNmDaRS6TtfW1FRgYyMDFhbWyMyMtJgRpi8WMHuyZMniI6O5gp2BkQQBHz//ff4/vvvMWvWLKxdu/al37WhQ4ciIiIC33zzDfbu3QsPDw8sWrSox/svKyvDkCFDMHXqVH2UTyQaS0tLnDp1CsOGDUNrays8PT2xadMmjBrFqR1EREQkPgZP1Csqlaq7f5NSqcT48eMRGRmJiRMnDpjRQK2trUhLS0NtbS3CwsIwZcoUsUsSlUQiwdKlS2FtbY19+/ZBqVRiy5Ytbx0lVFZWhr1798LNzQ0hISHdI1YMwYvpoMHBwXBxcRG7HPorjUaD/fv3o7S0FMuWLcOCBQtee00xNzeHiYkJOjs7MXz48B5fdwRBQFlZGdzd3TnCjQYcExOT7t6DHR0dEAQBXLSYiIiIDMW7hy0Q4fkUlUOHDuGPf/wjjh8/jvHjx+Mf/uEf8MEHH2DSpEkDJnRqaGhAUlISnj17hujo6EEfOv2tmTNnIjIyEg8ePMDOnTvR0tLyyjYvRqzk5eXBy8sLERERBhU63blzB/n5+Zg3bx6bSxsQlUqFlJQUXLlyBRs3bsTChQtfe03p6upCeno6TE1NsXTpUhQXF+PSpUs9OsbDhw/R1NQEb29vHVdP9G6nTp1CUFAQnJ2dIZFIkJeX98o2CQkJcHV1hYWFBfz8/FBcXNyrYzQ1NcHLywtjxozBL3/5S9ja2uqoeiIiIqK+4YgneiNBEPD48WMUFhbi5s2bsLCwwNy5c+Hj4wNLS0uxy9O5R48eITU1FcOGDYNcLsfIkSPFLsngTJw4EbGxsUhJSUFiYiKioqJgZ2cH4OURK0uXLn1jeCCWp0+fIjs7G5MmTcLy5cvFLof+SqlUIjk5GQqFAlu3boWbm9trtxMEAXv37kVtbS1iY2Ph5OQEpVKJAwcOYNSoUe9cebG0tBTW1tYYO3asPt4G0Vu1trbCy8sLcXFx2LRp0yvPp6en4+OPP8bXX38NPz8/fPHFF1i1ahVu3brV3RvP29sbarX6ldcePXoUzs7OsLa2RllZGWpra7Fp0yZs2bIFDg4Oen9vRERERO8iETgWm35Aq9Xixo0bKCwsxJMnTzBq1CjMnTsXXl5eA6J/0+uUl5cjNzcXzs7OCA8Px9ChQ8UuyaApFAqkpKRAqVQiLCwMTk5OyMzMRGVlJTZs2IAZM2aIXeJL2trakJiYCDMzM8TFxRnUKKzBrKamBikpKZBKpYiMjHxr8/nTp0/j+PHj2LJlCzw8PAA8Dzt3796Nuro6xMfHvzEs7uzsxOeffw5/f38sWbJEH2+FqMckEglyc3MRHBzc/Zifnx98fHzw1VdfAXj+/7CLiwt++tOf4le/+lWvj/HjH/8Yy5Ytw5YtW177fEdHBzo6Orq/ViqVcHFxgUKhMJh+fERERGTYlEolZDJZjz4/cKoddVOpVCgsLMSXX36JrKwsDBkyBBEREfjoo48wZ86cARs6FRUVITMzE1OnTsUHH3zA0KkHZDIZYmNj4ezsjN27d+NPf/oTHj9+jK1btxpc6KTRaJCZmYmOjg6Dm/o3mN27dw87duzAiBEjIJfL3xo63bhxA8ePH8fixYu7QyfgeV+bFz3EUlNTX7qR/ls3b95EZ2cnp1eSQers7MTFixexYsWK7sekUilWrFiBwsLCHu2jtrYWzc3NAJ7/YeDUqVNvnSr++9//HjKZrPsf+90RERGRPnGqHaGpqQnnz5/HpUuXoFarMX36dMydOxeOjo5il6ZXWq0WR44cQXFxMebPn4/ly5cb1NQwQ2dhYYHly5dj586dUCqV8PPzg6urq9hlvUQQBBw8eBAPHz5EdHQ0rK2txS6JAFy+fBn79+/HhAkT3tmovqamBrm5uXB3d8fixYtfeX7YsGGIiIhAUlIScnJyEBYW9sqqi2VlZRg7diynz5JBqq+vh0ajeWVanIODA27evNmjfTx48AB/93d/191U/Kc//SmmT5/+xu1//etf4+OPP+7++sWIJyIiIiJ9YPA0iL3o33Tjxg2Ym5vD19cXPj4+g2KYfVdXF3JycnDr1i2sWbMGPj4+YpdkdCoqKpCRkQEbGxu4ubmhqKgIXV1dWLt27Ss3/mJ50Xx6/fr17O1jAARBwMmTJ3Hq1CnMmjXrnb8rLS0tSE1Nha2tLYKDg98YDNvZ2WHz5s1ITU1FQUEBAgICup9TKBSoqKhAUFCQzt8PkaHw9fVFaWlpj7c3Nzfn6E8iIiLqNwyeBhmtVoubN2+isLAQjx8/ho2NDVavXg0vL69Bs8R4a2srUlNTUVdXh/DwcEyePFnskoxOaWkp9u3bh/Hjx2PLli0wNzeHvb099u/fj+bm5neOYukP9+7dw5EjRzB37lzMnDlT1Fro+ZTHffv2oaysDMuXL8f8+fPfOsJQrVYjPT0dWq0W4eHh75zqO2nSJAQEBODo0aOws7PrXr3uypUrMDU1fWmKHpEhsbW1hYmJCWpra196vLa2dsCPPCYiIqLBgcHTINHR0YHLly/j/PnzaGpqwrhx47pDl8E0vayhoQHJycno7OxETEwMnJ2dxS7JqAiCgFOnTuHkyZOYOXMm1q1b1z1iZebMmbCyskJGRgZ27tyJiIgI0VY/rK+vR2ZmJiZOnPjS6BcSh0qlQkZGBh4+fIhNmza9dQoQ8Pz3bN++faiurkZsbGyPR2HOnTsXT58+xf79+2FjYwMXFxeUlZVh2rRpHN1BBmvIkCGYPXs2CgoKuhuOa7VaFBQU4Cc/+Ylej52QkICEhARoNBq9HoeIiIgGN65qN8ApFIru/k1dXV3w8PDA3LlzB2Xg8ujRI6SmpmL48OGIiopiv59e0mg02L9/P0pLS7Fs2TIsWLDgtaFlbW0tkpOTIZVKERUVBTs7u36ts729HYmJiTAxMYFcLmfgILIfroDYkz5gZ86cQUFBQY9Cqh/SaDT49ttvUV9fj3Xr1iEjIwNbt27FhAkT3vMdEPVdS0sL7t69C+B5SP/HP/4RS5cuhY2NDcaOHYv09HRER0fjL3/5C3x9ffHFF18gIyMDN2/efKX3kz70ZlUaIiIiIqB3nx8YPA1QT548QWFhIcrLy2Fubo7Zs2fD19d30H6gLC8vR05ODsaMGYOwsDCuXNdLHR0dyMjIwP3797Fhw4Z3rlynVCqRnJwMhUKB8PDwfms6rtFokJycjJqaGnz44YdsJi2ympoapKSk9CqEvHXrFtLS0rBw4UIsW7bsvY7b2tqKxMREdHR0wMTEBD/72c8Mpu8YDU4nT57E0qVLX3k8OjoaO3fuBAB89dVX+MMf/oCamhp4e3vjyy+/hJ+fX7/Ux+CJiIiIeovB0yCl1Wpx69YtFBYW4tGjRxg5ciTmzp0Lb29v0fvtiEUQBBQVFeHo0aPw9PTEhg0bYGrKGaa9oVQqkZKSgqamJoSFhcHNza1Hr1OpVMjMzOxxWKULBw4cwKVLl/DBBx8Y3Ap7g83du3eRmZmJUaNGITIyEiNGjHjna2pra5GUlIQJEyYgNDS0T9OAq6qq8M0338DGxgY/+clPBtWUYqLeYvBEREREvdWbzw+8Ax8AOjo6UFpaivPnz+PZs2cYO3YswsLCMHny5EH9V36tVovDhw+jpKQE8+fPx/Lly3nz2Ut/O20uLi4O9vb2PX6thYUFIiMjsX//fuTm5kKhULxxep4ulJSU4MKFC1i3bh1DJ5FdunQJ+/fvx8SJE3vcaP5F038bGxts3Lixz78nz549AwA0Njbi+PHjWL58eZ/2R0RERERE74fBk4FRdWnQrFLD0sIUFmYmb91WqVTi/PnzuHjxIjo7O+Hh4YHNmzdj9OjR/VSt4erq6kJ2djZu376NtWvXYs6cOWKXZHTu3buHjIwM2NjYIDIy8r0ahZuYmGD9+vWwtrbG8ePH0dTUhLVr1+o8EK2oqMChQ4fg5+eH2bNn63Tf1HOCIODkyZM4deoUZs+ejTVr1vToZ/1iBTu1Wo2IiAidjNAsKyvD6NGj4e7ujvz8fNjZ2XWPuuvNdZZoIGNzcSIiIuoPDJ4MRMn9RiSeqUB+eS20AiCVAAHuDvhwwXjMcbV5aduqqioUFRXh+vXrMDMz6+7fJJPJRKresLwYOVFXV9e9ch/1zuXLl7F//36MHz8eISEhfQoCJBIJFi9eDJlMhn379kGpVGLLli06a/rd0NCAzMxMjB8/HitXrtTJPqn3NBoN9u7diytXrmDFihWYN29ej0YtCYKAAwcOoKqqCtHR0Tq5jr1o5Lx69WrMmTMHdXV12Lt3Lx6phmDv7ZYeXWeJBoOPPvoIH330UfdQeSIiIiJ9YI8nA/Bd0QN8sucapFIJNNr//nGYSCXQagX8JtgTkT4uuH37NoqKivDgwQNYW1t392/iql3/rb6+HikpKejs7ERkZOSgXL2vLwRBwPfff4/vv/8es2bN0vnopIqKCqSnp/dpFNXfUqlUSExMBADEx8fDwsJCF2VSL6lUKmRkZODhw4cIDg6Gp6dnj1977tw55OfnY+PGjTrrA1ZYWIiCggL8/Oc/x9ChQ6FWq/GPX2bi4FNLmEilb7zObvUbp5PjExkb9ngiIiKi3mJzcSNScr8RoX8pxLt+COGjnmBoazVcXFzg7++PKVOmDOr+Ta/z8OFDpKWlYfjw4YiKioK1tbXYJRkVjUaD/fv3o7S0FMuXL8f8+fP10o/pRd8oiUSCqKioXvWN+ltarRYpKSl48uQJ4uPjMWrUKB1XSj2hUCiQnJyM5uZmhIeHY9y4noc3t2/fRmpqKubPn48VK1borKavv/4ao0aNQkhICICeXWclADL/3p8jn2hQYvBEREREvdWbzw9MLkSWeKYCUunbb+4l0OK6xhFyuRxxcXGYNm0aQ6cfuH79Or799lvY29sjLi6OoVMvqVQqpKSk4OrVq9i0aZNem4A7ODggPj4eQ4cOxfbt21FZWfle+zly5AgqKioQGhrK0Ekk1dXVSExMRFdXF+Li4noVOtXV1SE7OxtTpkzRaePvmpoa1NbWwsvLq/uxnlxnpVIJEs+83+8iERERERG9GdMLEam6NMgvr31p2sfrCJDiusIEtg5O/VSZ8RAEAefOnUNWVhbc3d2xdetWDB06VOyyjIpSqcSOHTtQVVWFrVu3Yvr06Xo/ppWVFWJjYzFmzBjs3r0bV65c6dXrL1y4gOLiYqxevRpubm56qpLe5u7du9i5cycsLS0hl8thZ2fX49e2tbUhNTUV1tbWOlnB7m+VlpZi+PDhmDBhAoCeX2c1WgFHy2ug6mKTZRo8EhIS4O7uDh8fH7FLISIiogGMwZOImlVqvONeqJtWeL49/TetVotDhw4hPz8fCxYswMaNG2Fqyn75vVFTU4PExER0dHQgLi4Orq6u/XZsc3NzREREYMaMGcjNzcWpU6fQk5m/lZWVOHToEHx8fHizJJJLly4hJSUFrq6uiImJwYgRI3r8Wo1Gg4yMDHR2diIiIkKnPeo0Gg2uXr2K6dOnw8Tk+Wp1vM4SvdlHH32E8vJylJSUiF0KERERDWC8SxeRpYUppBL06KZIKnm+PT3X2dmJnJwc3L59G+vWrcPs2bPFLsno3Lt3DxkZGRg1ahQiIyN7FR7oiomJCdavXw9ra2ucOHECTU1NWLt2bXdo8EONjY3IzMyEq6srAgMD+7laEgQBJ06cwOnTpzFnzhysXr26V9N+X6xg9+jRI0RHR+t8Suzdu3fR1tb20jQ7XmeJiIiIiMTFT9gisjAzQYC7A47dqHvrNBATqQQB0xxgYfb6m/HBpqWlBampqXj69CkiIiIwadIksUsyOpcvX8b+/fsxYcIEbNmyBUOGDBGtFolEgsWLF0Mmk2Hfvn1QKpUICQl5ZSSMSqVCamoqhg4dii1btrDPWT/TaDTYu3cvrly5ghUrVmDevHm9niJ3/vx5XL58GRs2bMDYsWN1XmNZWRkcHBzg6OjY/Rivs0RERERE4uKdm8jiF4yH9h1/itdqBcQvYB8bAKivr0dSUhKUSiViY2MZOvXSixEre/fuxcyZMxEeHi5q6PS3vL29ERUVhcePH2Pnzp1obm7ufk6r1SI7OxstLS2IiIhgH69+plKpsHv3bly/fh2bN29+rxUP7969i6NHj8Lf3x/e3t46r7GtrQ23bt167b55nSUiIiIiEg+DJ5H5uNrgN8GekOD5X9z/lolUAgmA3wR7colvAA8fPkRSUhLMzMwgl8vh5MRm672h0WiwZ88enDp1CsuXL8fatWsNbtTQ+PHjERsbi7a2NiQmJqKurg4AkJ+fj3v37mHLli2wtbUVucrBRaFQYPv27aipqcEHH3wAT0/PXu/j6dOnyMrKwsSJE7FixQo9VAlcu3YNAF7bHJ/XWSIiIiIi8UiEnnTzJb27cL8RiWcqcbS8Blrhea+Rle6OiF/gxpshANevX0dubi5cXFwQFhYGCwsLsUsyKiqVChkZGXj48CE2bNjQLyvX9YVSqURKSgqampowa9YsFBYWYvXq1fD19RW7tEGluroaKSkpMDU1RVRU1HuFfi9CRFNTU8jlcp02E/9b33zzDUaMGIGIiIg3bsPrLNHLEhISkJCQAI1Gg9u3b0OhUMDKykrssoiIiMgIKJVKyGSyHn1+YPBkYFRdGjSr1LC0MGWvETyfGnbu3DkcO3YM06dPx/r167lyXS8pFAqkpKRAqVQiPDwc48aNE7ukHuno6MC3336LqqoquLq6Ytu2bb2e3kXv786dO8jMzISdnR0iIiLeq/m8RqPB7t27UVtbiw8//BAjR47UQ6XPR1T96U9/QkhICNzd3d+5Pa+zRC/rzQdHIiIiIqB3nx94B29gLMxMeCP0V1qtFocOHcKFCxewcOFCLF26lMFDL9XU1CAlJQUmJiaIi4uDnZ2d2CX1WFtbG549e4YRI0bg/v37OHXqFBYtWsTfgX5w8eJFHDhwAJMmTcLmzZvfqw+YIAg4dOgQHj58iG3btuktdAKeNxW3sLDA5MmTe7Q9r7NERERERP2HwRMZpM7OTmRnZ+POnTtYt24dZs+eLXZJRufu3bvIzMzEqFGjEBkZ+V4jVsTS0dGB1NRUWFhYQC6X4+LFizhx4gQUCgXWrl0LExOGBvogCAKOHz+OM2fOwMfHB4GBge/dB6ykpAQXL15EUFCQXkfZabVaXLlyBZ6enhwNSURERERkgPgpnQxOS0sLUlNTUV9fj4iICK5c9x4uXbqE/fv392nEilherGCnVCohl8sxfPhwLFq0CDKZDHv37oVSqURISIjeegUNVmq1Gnv37sXVq1cREBAAf3//9x5ddu/ePRw+fBh+fn6YNWuWjit9WUVFBZqbm/WyUh4REREREfUdgycyKPX19UhOToZarUZMTAxXruslQRBw4sQJnD59GnPmzMHq1asNbuW6dykoKMDdu3cRGRn50tRALy8vWFlZIT09HTt27EBkZCR7kehIe3s7MjIy8OjRI2zZsgUeHh7vva/6+npkZmZiwoQJWLlypQ6rfL2ysjLY2trC2dlZ78ciIiIiIqLeM647UhrQHjx4gKSkJJiZmSE+Pp6hUy9pNBrk5eXh9OnTWLFiBdasWWN0oVNpaSnOnTuHlStXYuLEia887+bmhri4OLS3tyMpKQm1tbUiVDmwNDU1Yfv27aitrcW2bdv6FDq1t7cjLS0NlpaW2Lx5s95//1QqFW7evAkvLy/2/iIiIiLSM41WQOG9BuwpfYLCew3QaLlOGfUMRzyRQbh27Rry8vLg4uKCsLAwWFhYiF2SUVGpVMjIyMDDhw+xefNmeHp6il1Srz18+BD79+/HzJkz4efn98bt7O3tER8fj5SUFOzYsQOhoaEYP358P1Y6cFRVVSE1NRWmpqaIi4uDra3te+9Lo9EgKysLbW1tiI+P75dzuLy8HBqNBjNmzND7sYgGooSEBCQkJECj0YhdChERGbjD16rx2b5yVCtU3Y85ySzwaZA7Aj05YIDeTiIIAmNKEo0gCDh79iwKCgowY8YMrF+/no2je0mhUCA5ORnNzc0IDw/XayNnfWlqasI333wDOzs7fPDBBz36Hejo6EBWVhYqKioQFBTEHj+9dOfOHWRmZsLOzg6RkZEYPnx4n/Z38OBBXLx4EVu3boWbm5uOqny7HTt2wMzMDFu3bu2X4xENVL1ZDpmIiAafw9eq8aPdl/DD4ODFePM/b53F8GkQ6s3nB+Oah0MDilarxcGDB1FQUICFCxciODiYoVMvVVdXIzExEV1dXZDL5UYZOnV2diI1NRVDhgxBaGhoj38HzM3NER4eDi8vL+zZswfff/89mKP3zMWLF5Gamorx48cjOjq6z6FTSUkJSkpKsHr16n4LnRobG/Hw4UN4eXn1y/GIiIiIBiONVsBn+8pfCZ0AdD/22b5yTrujt+JUOxJFZ2cnsrOzcefOHQQFBel95auB6M6dO8jKyoKtrS0iIiIwYsQIsUvqNUEQkJOTg6amJsjlcgwbNqxXrzcxMUFQUBBGjhyJ48ePo6mpCevWrWOA+QaCIOD48eM4c+YMfHx8EBgY2Oc+TJWVlTh06BB8fX0xZ84cHVX6bmVlZRgyZAimTp3ab8ckIiIiGmyKKxtfml73QwKAaoUKxZWN8J8wqv8KI6PC4In6XUtLC1JSUtDQ0IDIyMjXNpGmt7t06RL279+PSZMmYfPmzRgyZIjYJb2XgoIC3Lp1CxEREbC3t3+vfUgkEixcuBAymQx79uyBUqlEaGgozM3NdVytcVOr1dizZw+uXbuGlStXYu7cuX1uyN3Q0ICMjAy4ublh1apVOqr03QRBQFlZGTw8PGBmZtZvxyUiIiIabOqa3xw6vc92NDgxeKJ+9fTpUyQnJ0Oj0SA2NhaOjo5il2RUBEHAiRMncPr0acyZMwerV682upXrXrhy5QrOnj2LgIAATJ48uc/7mzFjBiwtLZGeno4dO3YgMjKSvUr+qr29Henp6Xj8+DFCQkLg7u7e532qVCqkpqZi+PDh2LJlS7/+Hj548AAKhYJ9vYiIiIj0zN6yZwvG9HQ7GpyM846VjNL9+/exfft2DBkyBPHx8Qydekmj0SAvLw+nT59GQEAA1qxZY7Sh0+PHj7F37154e3vD399fZ/t1c3NDXFwcVCoVEhMTUVtbq7N9G6umpiZs374ddXV12LZtm05CJ61Wi6ysLLS2tiIiIgJDhw7VQaU9V1ZWhpEjR8LFxaVfj0tEREQ02Pi62cBJZoE3jZOX4Pnqdr5uNv1ZFhkZ47xrJaNz9epV7N69G05OToiLi4NMJhO7JKOiUqmwe/duXL9+HVu2bMG8efP6PE1KLAqFAmlpaRg9ejTWrl2r8/dhb28PuVyO4cOHY8eOHaioqNDp/o1JVVUVEhMTodFoIJfLMXbsWJ3s9+jRo6ioqEBISAhGjerfufydnZ0oLy+Hl5eX0Z4DRERERMbCRCrBp0HP/3D5w09eL77+NMgdJlJ+LqM3Y/BEeiUIAs6cOYOcnBx4enoiKioKFhYchtkbL0as1NTU4IMPPoCHh4fYJb23zs5OpKWlwdTUFKGhoTA11c9sX0tLS8TGxsLFxQXJyckoLS3Vy3EM2e3bt7Fz505YW1tDLpfrLCC6ePEizp8/j8DAQIwfP14n++yNGzduoLOzk6vZEelAQkIC3N3d4ePjI3YpRERkwAI9nfDnrbPgKHv5Ps5RZoE/b52FQE8nkSojYyERuP446YlWq8XBgwdx8eJFLFq0CEuWLOEIhV6qrq5GSkoKTE1NERUVBVtbW7FLem+CICAzMxN3796FXC6Hg4OD3o+p1Wpx4MABXLp0CYsXL8bixYsHxe/ghQsXcPDgQUyZMgWbNm3SWQPu+/fv47vvvsOsWbOwdu1aneyzt7799ltotVrExMSIcnyigUipVEImk0GhULA3HhERvZFGK6C4shF1zSrYWz6fXseRToNXbz4/sLk46UVnZyeysrJw9+5drF+/HjNnzhS7JKNz584dZGZmws7ODhERERgxYoTYJfXJiRMncOPGDYSHh/dL6AQAUqkU69atg7W1NY4fPw6FQoF169bBxMSkX47f3wRBQEFBAc6ePQtfX1+sWrVKZ33Anj17hoyMDIwbNw6BgYE62WdvKRQKVFZWYv369aIcn4iIiGgwM5FK4D+hf9ss0MDA4Il0rrm5GampqWhoaEBkZCQmTpwodklG5+LFizhw4AAmT56MTZs2YciQIWKX1CdXr17F6dOnsXz5ckyZMqVfjy2RSLBw4UJYW1sjLy8PSqUSoaGhMDc379c69E2tVmPPnj24du0aVq5cqdOm7R0dHUhNTcXQoUMREhIiWnBXVlYGMzMznTRIJyIiIiKi/sHgiXTq6dOnSE5OhlarRWxsLFeu6yVBEHD8+HGcOXMGPj4+CAwMNNqV61548uQJ9uzZgxkzZmD+/Pmi1TF9+nRYWloiPT0dO3bsQGRk5ICZUtLe3o709HQ8fvwYISEhOg1mtFotsrOzoVQqER8f3+8r2L0gCALKysowbdq0ARcaEhERERENZMZ9R0sG5f79+9i+fTvMzc0hl8sZOvWSWq1Gbm4uzpw5g4CAAKxevdroQyelUom0tDQ4OTkhKChI9P5Krq6uiIuLg0qlQmJiImpqakStRxeePXuG7du3o66uDtHR0TofDXTs2DHcvXsXISEhovYYe/z4MRobG9lUnIiIiIjIyBj3XS0ZjKtXr+K7776Dk5MTYmNjIZPJxC7JqLS3t2P37t0oLy/Hli1bMG/ePNFDmr7q6upCWloapFIpwsLC9LaCXW/Z2dlBLpdjxIgR2LFjB+7duyd2Se+tqqoKSUlJ0Gg0kMvlcHFx0en+L1++jMLCQqxatQoTJkzQ6b57q6ysDFZWVnBzcxO1DiIiIiIi6h0GT9QngiDg9OnTyMnJwfTp0xEVFQULC4t3v5C6NTU1dY9Y2bZtGzw8PMQuqc8EQUBeXh7q6+sNsjG6paUlYmJiMG7cOKSkpODy5ctil9Rrt27dws6dOzFy5EjI5XKMGqXbRo8PHjzA/v37MWvWLPj6+up0372lVqtx/fp1zJgxw+gDWSIiIiKiwcYwhiCQURqsS9XrUlVVFVJTU2FmZqaX8EAs33//PcrLyxEaGmqwUy6HDBmC8PBwHDx4EHv37oVCoTCa3+GSkhIcOnQIU6ZMwaZNm2BmZqbT/b9Ywc7FxQVr1qwR/Xty69YtqFQqTrMjIiIiIjJCDJ7ovXR2diIzMxMVFRVYv349Zs6cKXZJRufOnTvIzMyEvb09IiIiMHz4cLFL0onr16/j+++/x9KlSzFt2jSxy3krqVSKtWvXwtraGgUFBWhqakJQUJBoq7a9iyAIOHbsGM6dOwc/Pz+sXLlS533AOjo6kJaWBnNzc4SGhhrE96KsrAxjxowRtccUERERERG9HwZP1GvNzc1ITU1FQ0MDIiMjRe/9YowuXLiAgwcPYvLkydi8ebPOR6yIpaqqCnl5eZg+fToWLlwodjk9IpFIsGDBAshkMuzZswdKpRKhoaEGN2VUrVYjLy8P169fx6pVqzB37lydH0Or1SInJwdNTU2Ij4/HsGHDdH6M3mpubsbdu3exZs0asUshIiIiIqL3wOCJeqWurg4pKSnQarWIi4uDg4OD2CUZFUEQUFBQgLNnz8LX1xerVq0y+pXrXmhubkZaWhocHBwMYgW73po+fTosLS2Rnp6OHTt2IDIy0mCa5Le3tyMtLQ1VVVUIDQ3V20iygoIC3LlzBxEREbCzs9PLMXrr6tWrkEqlA6L3GZGhSUhIQEJCAjQajdilEBER0QAmEQRBELsIMg6VlZVIT0+HTCZDVFQUrKysxC7JqKjVauzZswfXrl3DypUrMXfuXKMLZ96kq6sLO3fuRHNzMz788ENYWlqKXdJ7e/r0KZKTk6HVahEZGSl6j6pnz54hOTkZ7e3tCA8P1/nKdS+UlZUhLy8PK1euhL+/v16O0VuCIODrr7+GnZ0dtmzZInY5RAOWUqmETCaDQqHg/+1ERETUI735/DAwhlqQ3l25cgW7d+/G6NGjERsbyw+mvdTe3o7du3fjxo0bCAkJgb+//4AJnQRBwN69e1FXV4eIiAijDp0AwM7ODvHx8RgxYgR27NiBe/fuiVbLkydPkJSUBEEQIJfL9RY6PXr0CPv27YO3t7depvC9r5qaGtTV1bGpOBERERGREWPwRG8lCAJOnTqF3NxczJgxA5GRkQbX+8bQNTU1Yfv27airq0N0dDTc3d3FLkmnTp8+jWvXrmHjxo1wcnISuxydGDFiBGJiYuDq6ork5GRcvny532u4desWdu3ahZEjRyIuLg42NjZ6OU5TUxPS09MxevRorFu3zqAC0dLSUowYMYJ95IiIiIiIjBh7PNEbabVaHDhwAJcuXcKSJUuwaNEig7opNQZVVVVISUnBkCFDIJfLMWrUKLFL0qny8nKcOHECS5YsGXCB2pAhQxAWFoaDBw9i7969aGpqwpIlS/rlHCguLsbhw4cxdepUbNy4UW/N5zs7O5GWlgYzMzODWcHuBY1Gg2vXrsHLy2vA9EEjIiIiIhqMGDzRa3V0dCArKwsVFRXYsGEDvL29xS7J6Ny+fRtZWVmwt7dHREQEhg8fLnZJOlVdXY28vDx4eHhg0aJFYpejF1KpFGvXrsXIkSNx7NgxNDU1Yf369XoLaARBQH5+PgoLCzF37lwEBAToLXQRBAG5ubl49uwZ5HK5wf1+3rlzB21tbZxmR0RERERk5Bg80Suam5uRkpKCxsZGREVFYfz48WKXZHQuXLiAgwcPYsqUKdi0aZPeRqyIpaWlBWlpabCzs8OGDRsG9Eg4iUSC+fPnQyaTIS8vD83NzQgNDdX5lFO1Wo3c3FyUl5cjMDAQfn5+Ot3/Dx0/fhw3b95EeHg47O3t9Xqs91FWVgZHR0eunElEREREZOQYPNFL6urqkJycDEEQEBcXx5u+XhIEAQUFBTh79iz8/PywcuXKATdNSK1WIy0tDVqtFmFhYQMuVHsTT09PWFpaIi0tDTt27EBkZCRkMplO9t3W1oa0tDRUV1cjNDQU06ZN08l+3+TKlSs4c+YMVqxYgSlTpuj1WO+jra0Nt2/fxsqVK8UuhYiIiIiI+mhg3RFTj6m6NHja3AFVl6b7scrKSmzfvh1Dhw5FfHw8Q6deUqvVyMnJwdmzZ7Fq1SoEBgYOuNDpxQp2tbW1CA8PH3SrG44bNw5yuRydnZ1ISkpCTU1Nn/f57NkzbN++HQ0NDYiOjtZ76PT48WPs3bsXXl5emDdvnl6P1VsvrksXS68AeB72ERERERGRceOIp0Gm5H4jEs9UIL+8FloBkEqAAHcHLHUScOfcYbi5uSEkJATm5uZil2pU2tvbkZaWhqqqKoSEhAy4RtsvnD17FlevXsXmzZsxevRoscsRha2tLeRyOVJTU7Fjxw6EhIRg4sSJ77WvJ0+eICUlBRYWFpDL5Xpbue4FhUKBtLQ0ODs7G9QKdj+8LkkgwF02HTeedmCOgfWeIiIiIiKi3pEIgiCIXQT1j++KHuCTPdcglUqg0f73j10qAbSCgBA3Lf6XfK1BrWxlDJ49e4bk5GS0tbUhIiICLi4uYpekFzdv3kR6ejoWLVqEpUuXil2O6Do7O5GdnY07d+5g3bp1mDVrVq9ef/PmTWRnZ8PJyQnh4eEYNmyYnip9rrOzEzt27EB7ezvi4+MxYsQIvR6vp950XTKRAFoB+E2wJ7b6jROxQqKBT6lUQiaTQaFQDLqRrERERPR+evP5YWDNA6I3KrnfiE/2XIMAvHRzBzy/uQMkyKo0weVHCjHKM1pVVVVISkqCIAiQy+UDNnSqqalBTk4Opk2bhiVLlohdjkEYMmQIwsLCMHv2bOzbtw/Hjx9HT3P84uJipKenY9KkSfjggw/0HjoJgoC8vDw0NDQgPDzcYEKnt12XNAIgAPi3vGu4cL9RlPqIiIiIiKjvONVukEg8U/HKiIIfkkolSDxTiTmu+p3uM1DcunUL2dnZcHBwQHh4uMEtR68rra2tSEtLw6hRoxAcHGww07MMgVQqxZo1a2BtbY1jx45BoVBg/fr1bxw1KAgC8vPzUVhYiLlz52LlypX98v08efIkbty4gbCwMDg6Our9eD3F6xIRERER0cDH4GkQUHVpununvI1GK+BoeQ1UXRpYmHG63duUlJTg0KFDmDp1KjZu3DhgV3ZTq9VIT0+HWq1GeHg4hgwZInZJBkcikWD+/PmQyWTIy8uDUqlEWFgYLCwsXtpOrVYjNzcX5eXlCAwMhJ+fX7/Ud+3aNZw6dQrLli3D1KlT++WYPcHrEhERERHR4MCpdoNAs0r9zpu7F7TC8+3p9V6MWDl48CB8fX2xZcuWARs6CYKA/fv3o6qqCuHh4ZDJZGKXZNA8PT3xwQcfoKamBtu3b4dC8d/TVtva2vDtt9/i9u3bCAsL67fQ6cmTJ9izZw+mT5+OBQsW9Msxe4rXJSIiIiKiwYHB0yBgaWEKaQ9n80glz7enV6nVamRnZ+PcuXNYtWoVAgMDIZUO3FPo3LlzKCsrw/r16zFmzBixyzEK48aNg1wuR1dXFxITE1FdXY3GxkYkJSWhoaEB0dHR/TbqSKlUIi0tDQ4ODli/fr3BTZHkdYmIiIiIaHAYuHfN1M3CzAQB7g4wecddnolUgpXujpzO8hrt7e347rvvcOvWLYSGhmLu3Llil6RXt2/fxrFjx7BgwQLMmDFD7HKMiq2tLeRyOaysrLB9+3b813/9FwBALpf3W4DX1dWF9PR0SKVShIeHw9TU8EIbXpeIxJeQkAB3d3f4+PiIXQoRERENYAyeBon4BeOhfce8Fq1WQPwCt36qyHg8e/YMSUlJqK+vR3R0NKZNmyZ2SXpVV1eH7OxsTJ06FcuWLRO7HKM0YsQI+Pv7Q6PRoKOjA3PmzIGNTf80xxYEAXv27MHTp08NagW71+F1iUhcH330EcrLy1FSUiJ2KURERDSAMXgaJHxcbfCbYE9IgFdGGJhIJZAA+E2wJ1eO+oEnT54gKSkJgiD064gVsbS2tiI1NRUjR47Exo0bDW56lrE4f/58d3g3e/ZsHD16FAUFBRCEHjY16oNTp07h+vXrCA4OhpOTk96P1xe8LhERERERDXyGN/+C9Gar3zhMdbBE4plKHC2vgVZ43jslYJoD4he48ebuB27duoWsrCw4OjoiIiICw4YNE7skvdJoNMjIyEBXVxeio6O5gt17EAQBR48eRVFREfz9/REQEAAAsLGxQX5+PhQKBdavX6+3qW/Xr1/HyZMnsWTJEri7u+vlGLrG6xIRERER0cDG4GmQmeNqgzmuNlB1adCsUsPSwpS9U16juLgYhw8fxtSpU7Fx48YBu3LdCy9WsHvy5Amio6NhbW0tdklGp6urC7m5ubh58yZWr14NX1/f7ufmzZsHmUyG3NxcNDc3IzQ0FEOHDtXp8aurq5GXlwdPT08sWrRIp/vWN16XiIiIiIgGLgZPg5SFmQlv7F5DEATk5+ejsLAQc+fOxcqVKwfFdLOioiKUlpYiODgYLi4uYpdjdNra2pCWlobq6mqEhYVhypQpr2zj4eEBS0tLpKWlYceOHYiMjNRZwNfc3IzU1FTY29sb5Ap2PcXrEhERERHRwMMeT0R/pVarkZWVhcLCQgQGBmLVqlVGewPfG3fu3EF+fj7mzZsHLy8vscsxOo2NjUhKSkJDQwNiYmJeGzq9MHbsWMTFxaGrqwtJSUmorq7u8/FfrGAHAOHh4QN+dB4RERERERkXBk9EeD5i5dtvv8Xt27cRFhYGPz8/sUvqF0+fPkV2djYmTZqE5cuXi12O0Xn8+DGSkpIgkUgQHx+P0aNHv/M1tra2iI+Ph0wmw44dO3Dnzp33Pr4gCNi7dy9qa2sRHh4OS0vL994XERERERGRPjB4okGvsbER27dvR0NDA6KjozF16lSxS+oXbW1tSE1NhUwmw6ZNmyCV8nLQGzdu3MCuXbtga2uLuLg4jBw5ssevHT58OKKjozF+/Hikpqbi4sWL71XDmTNncO3aNQQHB8PZ2fm99kFERERERKRP7PFEg9rjx4+RmpoKCwsLyOVy2NgMjhW0NBoNMjMz0dHRgQ8++ADm5uZil2RUioqKcOTIEXh4eCA4OPi9VqkzMzNDaGgoDh8+jP3796OpqQnLli3r8fTOGzdu4Pjx41i8eDE8PDx6fXwiIiIiIqL+wOCJBq2bN28iOzsbTk5OCA8Px7Bhw8QuqV8IgoCDBw/i4cOH2LZtW69G6gx2giDgyJEjOH/+PObNm4cVK1b0qQ+YVCrF6tWrMXLkSBw9ehQKhQLr169/Z5BVU1OD3NxcuLu7Y/Hixe99fCIiIiIiIn1j8ESDUnFxMQ4dOgR3d3cEBwcPqobMxcXFuHTpEtavX49x48aJXY7R6OrqQm5uLm7evIk1a9bAx8dHJ/uVSCTw9/eHTCZDTk4OlEolwsLCMHTo0Ndu39LSgtTUVNja2iI4OHhQNMAnIiIiItInjVZAcWUj6ppVsLe0gK+bDUyk/JytKwyeaFARBAH5+fkoLCyEv78/AgICBtWN+71793DkyBHMnTsXM2fOFLsco9Ha2oq0tDTU1tYiLCzsrSvXvS93d3eMGDECaWlp2L59O6KiomBtbf3SNmq1Gunp6dBqtVzBjoiIiIhIBw5fq8Zn+8pRrVB1P+Yks8CnQe4I9HQSsbKBg92EadDo6upCVlYWCgsLsXr1aqxcuXJQhU719fXIzMzEhAkTEBAQIHY5RuNF8/lnz54hOjpaL6HTC2PHjoVcLodGo0FiYiKqqqq6nxMEAfv27UN1dTXCw8NhZWWltzqIiIiIiAaDw9eq8aPdl14KnQCgRqHCj3ZfwuFr1SJVNrAweKJBoa2tDd999x1u376NsLAw+Pr6il1Sv2pvb0dqaiosLS2xefNmrmDXQ48ePUJiYiIkEgnkcjlGjx6t92OOGjUKcrkc1tbW2LlzJ27fvg0AOHv2LK5cuYINGzb0Sx1ERERERAOZRivgs33lEF7z3IvHPttXDo32dVtQb3CqHQ14jY2NSE5OhkqlQkxMzKC7aX+xgl17ezvi4+NhYWEhdklG4caNG8jJyYGzszPCw8Pf2HNJH4YPH47o6Gjk5OQgLS0Ns2fPxoULF7Bw4UJMnz693+ogIiIiIhqoiisbXxnp9LcEANUKFYorG+E/YVT/FTYAcdgDDWiPHz9GUlISJBIJ4uPjB13oBACHDx/GgwcPEBoaChsbG7HLMQpFRUXIyMjA1KlT8cEHH/Rr6PSCmZkZQkJC4OHhgQsXLsDGxgZLlizp9zqIiIiIiAaiuuY3h07vsx29GYMnGrBu3ryJXbt2wdbWFnFxcRg5cqTYJfW7kpISXLhwAWvWrIGrq6vY5Rg8rVaLw4cP48iRI5g/fz42bdoEU1PxBoa2t7fj0aNHGDFiBBobG5Gbmwu1Wi1aPUREREREA4W9Zc9mgvR0O3ozTrWjAen8+fM4fPgwPDw8EBwcLGp4IJaKigocOnQIvr6+mD17ttjlGLyuri7k5OTg1q1bWLNmDXx8fESt58UKdmq1Gh9++CGePHmC3NxcNDc3IywsTJRRWEREREREA4Wvmw2cZBaoUahe2+dJAsBRZgFfN84a6SuOeKIBRRAEHDlyBIcPH4a/vz82b948KEOnhoYGZGZmYvz48Vi1apXY5Ri81tZW7Nq1C/fu3UN4eLjooZMgCDhw4ACqqqoQFhYGmUwGd3d3bNu2DXV1dd2r7BERERER0fsxkUrwaZA7gOch09968fWnQe4wkQ6eldD1hcETDRhdXV3IzMzE+fPnsXr1aqxcuRISyeC7SKhUKqSmpmL48OHYsmULV7B7h4aGBiQlJaGpqQkxMTGYPHmy2CWhsLAQpaWlCAoKgouLS/fjLi4ukMvl0Gg0SEpKQlVVlYhVEpGhaWtrw7hx4/CLX/xC7FKIiIiMQqCnE/68dRYcZS9Pp3OUWeDPW2ch0NNJpMoGlsE3FIQGpLa2NqSmpqKmpgZhYWGYMmWK2CWJQqvVIisrC62trVzBrgcePXrUHdLFx8fD2tpa7JJw+/Zt5OfnY/78+fDy8nrl+VGjRkEulyMtLQ07d+7Eli1bDCIsIyLx/e53v8PcuXPFLoOIiMioBHo6IcDdEcWVjahrVsHe8vn0Oo500h0OhSCj19jYiKSkJDx79gwxMTGDNnQCgCNHjqCiogKhoaEYNYpLfr5NeXk5du3aBXt7e8TFxRlE6FRXV4fs7GxMmTIFy5cvf+N2w4cPx7Zt2zBhwgSkpaWhpKSkH6skIkN0584d3Lx5E6tXrxa7FCIiIqNjIpXAf8IobPAeDf8Joxg66RiDJzJqjx49QlJSEiQSCeRyOUaPHi12SaK5ePEiiouLsXr1ari5uYldjsESBAGFhYXIzMzEtGnTsHXrVoNo1P1i1J61tTU2btz4zmmiZmZmCAkJga+vLw4ePIj8/HwIwuvaIhKR2E6dOoWgoCA4OztDIpEgLy/vlW0SEhLg6uoKCwsL+Pn5obi4uFfH+MUvfoHf//73OqqYiIiISHc41Y6M1o0bN5CTkwNnZ2eEh4cbRHgglsrKShw8eBA+Pj6iN8Y2ZFqtFkeOHEFxcTHmz5+P5cuXG0QfMI1Gg4yMDHR2diI6Ohrm5uY9ep1UKkVgYCCsra1x5MgRKBSKQbuKI5Eha21thZeXF+Li4rBp06ZXnk9PT8fHH3+Mr7/+Gn5+fvjiiy+watUq3Lp1C/b29gAAb29vqNXqV1579OhRlJSUYPLkyZg8eTLOnTun9/dDRERE1BsSgX8iJyNUVFSEI0eOwMPDY9DfaDc2NiIxMRGOjo6IioqCiYmJ2CUZpK6uLuTk5ODWrVtYs2YN5syZI3ZJAJ6PwNq3bx/KysoQHR2NsWPHvtd+GMQSGQeJRILc3FwEBwd3P+bn5wcfHx989dVXAJ6H5C4uLvjpT3+KX/3qV+/c569//Wvs3r0bJiYmaGlpQVdXF37+85/jk08+ee32HR0d6Ojo6P5aqVTCxcUFCoUCVlZWfXuDRERENCgolUrIZLIefX7gVDsyKlqtFocPH8aRI0cwb948bN68eVCHTi9WsBs6dChCQkIYOr1Ba2srdu3ahXv37iE8PNxgQicAOH/+PC5fvoygoKD3Dp0AYNq0adi2bRvq6+u7e54RkeHr7OzExYsXsWLFiu7HpFIpVqxYgcLCwh7t4/e//z0ePXqE+/fv4z//8z/x4YcfvjF0erG9TCbr/ve3q2cSERER6RqDJzJIqi4NnjZ3QNWl6X6sq6sLWVlZKC4uxpo1axAQEGAQ06TEotVqkZ2djZaWFkRERHCEyxs0NDQgKSkJTU1NiImJMagV4O7evYujR4/C398f3t7efd6fi4sL5HI5BEFAUlISnjx58tLzrzuviEhc9fX10Gg0cHBweOlxBwcH1NTU6OWYv/71r6FQKLr/PXr0SC/HISIiIgLY44kMTMn9RiSeqUB+eS20AiCVAAHuDtg6xxm3zx5CbW0twsPDDSo8EEt+fj7u3buHqKgo2Nrail2OQXr48CHS0tIwfPhwxMfHG8TKdS88ffoUWVlZmDhx4ksjHfrKxsYGcrkcqamp2LVrFzZv3gylud1rz6sPF4zHHFcbnR2biMQXExPzzm3Mzc173EuOiIiIqK8YPJHB+K7oAT7Zcw1SqQTav3Ye0wrAsfJaHLlegyXDBfxHXAycnZ3FLdQAXLp0CUVFRQgMDMSECRPELscgXb9+Hbm5uRgzZgzCwsIMakTYixXsrKyssHnzZkiluh18OmzYMGzbtg25ubn49+QCFHaNg8kPz6sbdTh6vRa/CfbEVr9xOj0+EfWcra0tTExMUFtb+9LjtbW1cHR0FKkqIiIiIt3hVDsyCCX3G/HJnmsQAGi0L/e71wgAIMH3rU6o6rQQozyD8uDBAxw4cACzZ8+Gr6+v2OUYHEEQcO7cOWRlZcHd3R1bt241qNBJo9EgMzMTKpUKEREReht1YGZmhnFzlqGw63mo9Mp5pRUgAPi3vGu4cL9RLzUQ0bsNGTIEs2fPRkFBQfdjWq0WBQUF8Pf31+uxExIS4O7uztVQiYiISK8YPJFBSDxTAan07f2apFIJEs9U9lNFhunZs2fIyMjA2LFjsXr16kHd4+p1tFotDh06hPz8fCxYsAAbN240qObzgiDg0KFDePjwIcLCwjBy5Ei9Hm/7ufsw4XlFJLqWlhaUlpaitLQUAFBZWYnS0lI8fPgQAPDxxx/jm2++wa5du3Djxg386Ec/QmtrK2JjY/Va10cffYTy8nKUlJTo9ThEREQ0uBnOHRkNWqouTXfvmbfRaAUcLa+BqksDC7PBt3pbR0cHUlNTYW5uzhXsXqOrqwvZ2dm4ffs21q1bh9mzZ4td0itKSkpw8eJFBAUFYdw4/U5v43lFZDguXLiApUuXdn/98ccfAwCio6Oxc+dOhIWF4enTp/jkk09QU1MDb29vHD58+JWG40RERETGiMETia5ZpX7nzfELWuH59oPtBlmr1SInJwdKpRJyuRzDhg0TuySD0traitTUVNTV1SEiIgKTJk0Su6RX3Lt3D4cPH4afnx9mzZql9+PxvCIyHEuWLIEgvP2E/MlPfoKf/OQn/VQRERERUf9h8ESis7QwhVSCHt0kSyXPtx9sCgoKcOfOHURGRsLOzk7scgxKfX09kpOToVarERsbCycnJ7FLekV9fT0yMzMxYcIErFy5sl+OyfOKiIiIiIgMAXs8kegszEwQ4O7wzl40JlIJVro7DrpRGaWlpTh37hxWrlyJiRMnil2OQXn48CG2b98OMzMzyOVygwyd2tvbkZaWBktLS72sYPcmPK+I6F3YXJyIiIj6A4MnMgjxC8ZD+46hGVqtgPgFbv1UkWF4+PAh9u/fj5kzZ8LPz0/scgzK9evX8e2338LBwQFxcXGwtrYWu6RXaDQaZGVloa2tDREREbCw6N9VGXleEdHbsLk4ERER9QcGT2QQfFxt8JtgT0iAV0ZomEglkAD4TbAn5rjaiFKfGJqampCeno4xY8Zg7dq1XMHurwRBwLlz55CVlQV3d3dERUX1e6DTU0eOHMH9+/cREhICG5v+/93leUVERERERGJjUw8yGFv9xmGqgyUSz1TiaHkNtMLz3jMB0xwQv8BtUN0cd3Z2Ii0tDUOGDEFoaChXsPsrrVaLw4cPo6SkBAsXLsTSpUsNNpC7cOECSkpKsHbtWri5iTeiiOcVERERERGJicETGZQ5rjaY42oDVZcGzSo1LC1MB13vGUEQkJOTg2fPnnEFu7/R2dmJ7Oxs3LlzB+vWrcPs2bPFLumNKisrcfDgQfj6+mLOnDlil8PzioiIiIiIRMPgiQyShZnJoL0xLigowK1btxAREQF7e3uxyzEILS0tSE1NRX19PSIiIjBp0iSxS3qjhoYGZGRkwM3NDatWrRK7nJcM5vOKiF6VkJCAhIQEaDQasUshIiKiAUwiCEIPFtsmov5w5coV5ObmIiAgAPPmzRO7HINQX1+P5ORkqNVqREZGGuTKdS+oVCokJiYCAORyOYYOHSpyRURE76ZUKiGTyaBQKGBlZSV2OURERGQEevP5gSOeiAzE48ePsXfvXnh7e8Pf31/scgzCgwcPkJaWBktLS8TExEAmk4ld0htptVpkZWWhtbUV8fHxDJ2IiIiIiIjA4InIICgUCqSlpcHZ2Zkr2P3VtWvXkJeXBxcXF4SFhRnsynUvHD16FBUVFdi6dStGjRoldjlEREREREQGgcETkcherGBnamqKsLAwmJoO7tNSEAScO3cOx44dw4wZM7B+/XqDX9Xv4sWLOH/+PFavXo3x48eLXQ4REREREZHBGNx3uEQiEwQBeXl5aGhogFwux/Dhw8UuSVRarRaHDh3ChQsXsHDhQixdutTgR3/dv38fBw8exJw5c+Dr6yt2OURERERERAaFwRORiE6cOIEbN24gPDwcDg4OYpcjqs7OTmRnZ+POnTsICgrCrFmzxC7pnZ49e4aMjAyMGzcOgYGBYpdDRNQrXNWOiIiI+gNXtSMSydWrV5GTk4Ply5djwYIFYpcjqpaWFqSmpqK+vh4hISGYOHGi2CW9U0dHB5KSkqDRaNhMnIiMGle1IyIiot7iqnZEBu7JkyfYs2cPZsyYgfnz54tdjqiePn2KlJQUqNVqxMbGwtHRUeyS3kmr1SI7OxtKpZKhExERERER0VsweCLSM1WXBs0qNSwtTGFhZgKlUom0tDQ4OTkhKCjI4HsY6dODBw+QlpYGS0tLxMTEQCaTiV3SK3748wOAY8eO4e7du4iKioKtra3IFRIRERERERkuBk9EelJyvxGJZyqQX14LrQBIJcCKqfZwaLoOG6l00K9gd+3aNeTl5WHs2LEIDQ2FhYWF2CW95HU/vwB3Byx2UONOYSECAwMxYcIEscskIiIiIiIyaIP3rpdIj74reoBP9lyDVCqB9q9d1LQCcOxGLbSwxf+3dDZGjBghbpEiEQQBZ8+eRUFBAby8vBAUFAQTExOxy3rJG39+5bU4cl1A2PhZXMGOiIiIiIioB6RiF0A00JTcb8Qne65BAKDRvty7XwsJAAn+cOIhLtxvFKU+MWm1Whw4cAAFBQVYtGgRNmzYYHCh09t+fhoBACTIqJDi4oNnYpRHRERERERkVBg8EelY4pkKSKVv79sklUqQeKaynyoyDJ2dnUhLS8OlS5ewfv16LF261CD7W/HnR0SDRUJCAtzd3eHj4yN2KURERDSAMXgi0iFVlwb55bWvjJT5IY1WwNHyGqi6NP1UmbhaWlqwc+dOPHjwAJGRkZg5c6bYJb0Wf35ENJh89NFHKC8vR0lJidilEBER0QDGHk9EOtSsUuMdmUU3rfB8+xcrpQ1UT58+RXJyMrRaLWJjY+Ho6Ch2SW/Enx8REREREZFuMXgi0iFLC1NIJehReCGVPN9+ILt//z7S09NhZWWFyMhIyGQysUt6K/78iIiIiIiIdItT7Yh0yMLMBAHuDjB5R48gE6kEK90dB8RoGVWXBk+bO16Zdnb16lXs3r0bTk5OiI2NNfjQCRicPz8iIiIiIiJ94p/riXQsfsF4HL1e+9ZttFoB8Qvc+qki/Si534jEMxXIL6+FVng+AijA3QHxC9zQ8fgGCgoK4OXlhaCgIINbue5tBsvPj4iIiIiIqD9wxBORjvm42uA3wZ6QAK+MnDGRSiAB8JtgT8xxtRGlPl34rugBQv9SiGM36rqnpWkF4NiNOoT8pRAJR65g8eLF2LBhg1GFTsDg+PkRERERERH1F454ItKDrX7jMNXBEolnKnG0vOa/RwRNez4iyJhDi5L7jfhkzzUIwCurvz3/WoJC9Tj83HUGJJK3T1kzVAP550dERERERNSfGDwR6ckcVxvMcbWBqkuDZpUalhamA6InUOKZCkilkldCp79lIpUg8UylUQc0A/XnR0T0QkJCAhISEqDRaN69MREREdF7kgiC0MPFw4losFN1aeD+6eEer/pW/lkgwxoiIgOnVCohk8mgUChgZWUldjlERERkBHrz+YE9noiox5pV6h6FTsDznk/NKrV+CyIiIiIiIiKDxuCJiHrM0sIU0h62bZJKnm9PREREREREgxeDJyLqMQszEwS4O7yy2tsPmUglWOnuyGl2REREREREgxyDJyLqlfgF46F9x3w7rVZA/AK3fqqIiIiIiIiIDBWDJyLqFR9XG/wm2BMS4JWRTyZSCSQAfhPsadQr2hEREREREZFusAELEfXaVr9xmOpgicQzlThaXgOt8LynU8A0B8QvcGPoRERERERERAAYPBHRe5rjaoM5rjZQdWnQrFLD0sKUPZ2IiIiIiIjoJQyeiKhPLMxMGDgRERERERHRa7HHExERERERERER6QWDJyIiIqJBKCEhAe7u7vDx8RG7FCIiIhrAJIIgvH1ddCIiIiIasJRKJWQyGRQKBaysrMQuh4iIiIxAbz4/cMQTERERERERERHpBYMnIiIiIiIiIiLSCwZPRERERERERESkFwyeiIiIiIiIiIhILxg8ERERERERERGRXjB4IiIiIiIiIiIivWDwREREREREREREesHgiYiIiIiIiIiI9ILBExERERERERER6QWDJyIiIiIiIiIi0gsGT0REREREREREpBcMnoiIiIiIiIiISC8YPBERERERERERkV4weCIiIiIiIiIiIr1g8EREREQ0CCUkJMDd3R0+Pj5il0JEREQDmEQQBEHsIoiIiIhIHEqlEjKZDAqFAlZWVmKXQ0REREagN58fOOKJiIiIiIiIiIj0gsETERERERERERHpBYMnIiIiIiIiIiLSCwZPRERERERERESkFwyeiIiIiIiIiIhILxg8ERERERERERGRXjB4IiIiIiIiIiIivWDwREREREREREREesHgiYiIiIiIiIiI9ILBExERERERERER6QWDJyIiIiIiIiIi0gsGT0REREREREREpBcMnoiIiIiIiIiISC8YPBERERERERERkV4weCIiIiIiIiIiIr1g8ERERERERERERHrB4ImIiIiIiIiIiPSCwRMREREREREREemFqdgFEBEREVHfuLq6wsrKClKpFCNHjsSJEyfELomIiIgIAIMnIiIiogHh3LlzGDFihNhlEBERkcg0WgHFlY2oa1bB3tICvm42MJFKRKuHwRMRERERERER0QBw+Fo1PttXjmqFqvsxJ5kFPg1yR6Cnkyg1sccTERERkR6dOnUKQUFBcHZ2hkQiQV5e3ivbJCQkwNXVFRYWFvDz80NxcXGvjiGRSLB48WL4+PggOTlZR5UTERGRMTl8rRo/2n3ppdAJAGoUKvxo9yUcvlYtSl0c8URERESkR62trfDy8kJcXBw2bdr0yvPp6en4+OOP8fXXX8PPzw9ffPEFVq1ahVu3bsHe3h4A4O3tDbVa/cprjx49CmdnZ5w5cwajR49GdXU1VqxYgenTp2PGjBl6f29ERERkGDRaAZ/tK4fwmucEABIAn+0rR4C7Y79Pu5MIgvC6uoiIiIhIxyQSCXJzcxEcHNz9mJ+fH3x8fPDVV18BALRaLVxcXPDTn/4Uv/rVr3p9jF/+8pfw8PBATEzMa5/v6OhAR0dH99dKpRIuLi5QKBSwsrLq9fGIiIhIfIX3GhDxTdE7t0v9cC78J4zq8/GUSiVkMlmPPj9wqh0RERGRSDo7O3Hx4kWsWLGi+zGpVIoVK1agsLCwR/tobW1Fc3MzAKClpQXHjx+Hh4fHG7f//e9/D5lM1v3PxcWlb2+CiIiIRFfXrHr3Rr3YTpcYPBERERGJpL6+HhqNBg4ODi897uDggJqamh7to7a2FgsWLICXlxfmzp2Lbdu2wcfH543b//rXv4ZCoej+9+jRoz69ByIiIhKfvaWFTrfTJfZ4IiIiIjJi48ePR1lZWY+3Nzc3h7m5uR4rIiIiov7m62YDJ5kFahSq1/Z5kgBwlFnA182mv0vjiCciIiIisdja2sLExAS1tbUvPV5bWwtHR0eRqiIiIiJjYyKV4NMgdwDPQ6a/9eLrT4Pc+72xOMDgiYiIiEg0Q4YMwezZs1FQUND9mFarRUFBAfz9/fV67ISEBLi7u791Wh4REREZj0BPJ/x56yw4yl6eTucos8Cft85CoKeTKHVxVTsiIiIiPWppacHdu3cBADNnzsQf//hHLF26FDY2Nhg7dizS09MRHR2Nv/zlL/D19cUXX3yBjIwM3Lx585XeT/rQm1VpiIiIyPBptAKKKxtR16yCveXz6XW6HunUm88P7PFEREREpEcXLlzA0qVLu7/++OOPAQDR0dHYuXMnwsLC8PTpU3zyySeoqamBt7c3Dh8+3C+hExEREQ08JlIJ/CeMEruMbhzxRERERDSIccQTERER9VZvPj+wxxMREREREREREekFgyciIiKiQYjNxYmIiKg/cKodERER0SDGqXZERETUW5xqR0REREREREREomPwREREREREREREesHgiYiIiIiIiIiI9ILBExEREdEgxObiRERE1B/YXJyIiIhoEGNzcSIiIuotNhcnIiIiIiIiIiLRMXgiIiIiIiIiIiK9YPBERERERERERER6weCJiIiIiIiIiIj0wlTsAoiIiIio/yUkJCAhIQFqtRrA8yahRERERD3x4nNDT9ar46p2RERERIPY48eP4eLiInYZREREZIQePXqEMWPGvHUbBk9EREREg5hWq0VVVRWWLVuGCxcu9Ph1Pj4+KCkpeed2SqUSLi4uePTo0TuXWx7Mevr9NARi1qrPY+t6333d3/u+vrev6832PJ97huez+MfV5f6N5VzuzWt0cS4LgoDm5mY4OztDKn17FydOtSMiIiIaxKRSKcaMGQNTU9Neffg0MTHp1fZWVla8UX2L3n4/xSRmrfo8tq733df9ve/re/u69zkOz+e34/ks/nF1uX9jOZff5zV9PZdlMlmPtmNzcSIiIiLCRx99pNft6e2M6fspZq36PLau993X/b3v63kui8+Yvqdi1arv4+py/8ZyLvflWPrGqXZEREREpDdKpRIymQwKhcJoRgAQ0evxfCYaGPr7XOaIJyIiIiLSG3Nzc3z66acwNzcXuxQi6iOez0QDQ3+fyxzxREREREREREREesERT0REREREREREpBcMnoiIiIiIiIiISC8YPBERERERERERkV4weCIiIiIiIiIiIr1g8ERERERERERERHrB4ImIiIiIRLF//35MmTIFkyZNQmJiotjlEFEfbNy4ESNHjsSWLVvELoWI+uDRo0dYsmQJ3N3dMWPGDGRmZvZ5nxJBEAQd1EZERERE1GNqtRru7u44ceIEZDIZZs+ejXPnzmHUqFFil0ZE7+HkyZNobm7Grl27kJWVJXY5RPSeqqurUVtbC29vb9TU1GD27Nm4ffs2hg8f/t775IgnIiIiIup3xcXF8PDwwOjRozFixAisXr0aR48eFbssInpPS5YsgaWlpdhlEFEfOTk5wdvbGwDg6OgIW1tbNDY29mmfDJ6IiIiIqNdOnTqFoKAgODs7QyKRIC8v75VtEhIS4OrqCgsLC/j5+aG4uLj7uaqqKowePbr769GjR+PJkyf9UToR/UBfz2ciMhy6PJ8vXrwIjUYDFxeXPtXE4ImIiIiIeq21tRVeXl5ISEh47fPp6en4+OOP8emnn+LSpUvw8vLCqlWrUFdX18+VEtG78HwmGjh0dT43NjZi27Zt+K//+q8+18TgiYiIiIh6bfXq1fjtb3+LjRs3vvb5P/7xj/jwww8RGxsLd3d3fP311xg2bBi2b98OAHB2dn5phNOTJ0/g7OzcL7UT0cv6ej4TkeHQxfnc0dGB4OBg/OpXv8K8efP6XBODJyIiIiLSqc7OTly8eBErVqzofkwqlWLFihUoLCwEAPj6+uLatWt48uQJWlpacOjQIaxatUqskonoDXpyPhORcejJ+SwIAmJiYrBs2TJ88MEHOjkugyciIiIi0qn6+npoNBo4ODi89LiDgwNqamoAAKampvj888+xdOlSeHt74+c//zlXtCMyQD05nwFgxYoVCAkJwcGDBzFmzBiGUkQGqCfn89mzZ5Geno68vDx4e3vD29sbV69e7dNxTfv0aiIiIiKi97R+/XqsX79e7DKISAeOHTsmdglEpAMLFiyAVqvV6T454omIiIiIdMrW1hYmJiaora196fHa2lo4OjqKVBURvQ+ez0QDh1jnM4MnIiIiItKpIUOGYPbs2SgoKOh+TKvVoqCgAP7+/iJWRkS9xfOZaOAQ63zmVDsiIiIi6rWWlhbcvXu3++vKykqUlpbCxsYGY8eOxccff4zo6GjMmTMHvr6++OKLL9Da2orY2FgRqyai1+H5TDRwGOL5LBEEQdDb3omIiIhoQDp58iSWLl36yuPR0dHYuXMnAOCrr77CH/7wB9TU1MDb2xtffvkl/Pz8+rlSInoXns9EA4chns8MnoiIiIiIiIiISC/Y44mIiIiIiIiIiPSCwRMREREREREREekFgyciIiIiIiIiItILBk9ERERERERERKQXDJ6IiIiIiIiIiEgvGDwREREREREREZFeMHgiIiIiIiIiIiK9YPBERERERERERER6weCJiIiIiIiIRLNkyRL88z//s9hlEJGeMHgiIiIiIiIycDExMZBIJJBIJDAzM4ODgwMCAgKwfft2aLVascsjInojBk9ERERERERGIDAwENXV1bh//z4OHTqEpUuX4p/+6Z+wbt06qNVqvR67s7NTr/snooGLwRMREREREZERMDc3h6OjI0aPHo1Zs2bhf/yP/4E9e/bg0KFD2LlzZ/d2TU1NiI+Ph52dHaysrLBs2TKUlZW9tK/f/va3sLe3h6WlJeLj4/GrX/0K3t7e3c/HxMQgODgYv/vd7+Ds7IwpU6YAAB49eoTQ0FBYW1vDxsYGGzZswP3791/ad2JiIqZNmwYLCwtMnToVf/rTn3r1Pg8cOACZTIbk5ORevY6IDBODJyIiIiIiIiO1bNkyeHl5IScnp/uxkJAQ1NXV4dChQ7h48SJmzZqF5cuXo7GxEQCQnJyM3/3ud/jf//t/4+LFixg7diz+/Oc/v7LvgoIC3Lp1C/n5+di/fz+6urqwatUqWFpa4vTp0zh79ixGjBiBwMDA7hFRycnJ+OSTT/C73/0ON27cwH/8x3/g3/7t37Br164evZ+UlBREREQgOTkZUVFROvgOEZHYTMUugIiIiIiIiN7f1KlTceXKFQDAmTNnUFxcjLq6OpibmwMA/vM//xN5eXnIysrC3/3d3+H//b//B7lcjtjYWADAJ598gqNHj6KlpeWl/Q4fPhyJiYkYMmQIAGD37t3QarVITEyERCIBAOzYsQPW1tY4efIkVq5ciU8//RSff/45Nm3aBABwc3NDeXk5/vKXvyA6Ovqt7yMhIQH/+q//in379mHx4sW6+wYRkagYPBERERERERkxQRC6g6CysjK0tLRg1KhRL23T3t6Oe/fuAQBu3bqFH//4xy897+vri+PHj7/02PTp07tDpxf7vnv3LiwtLV/aTqVS4d69e2htbcW9e/cgl8vx4Ycfdj+vVqshk8ne+h6ysrJQV1eHs2fPwsfHp4fvnIiMAYMnIiIiIiIiI3bjxg24ubkBAFpaWuDk5ISTJ0++sp21tXWv9jt8+PCXvm5pacHs2bNf23vJzs6ue8TUN998Az8/v5eeNzExeeuxZs6ciUuXLmH79u2YM2dOd5BGRMaPwRMREREREZGROn78OK5evYqf/exnAIBZs2ahpqYGpqamcHV1fe1rpkyZgpKSEmzbtq37sZKSkncea9asWUhPT4e9vT2srKxeeV4mk8HZ2RkVFRW97s80YcIEfP7551iyZAlMTEzw1Vdf9er1RGS42FyciIiIiIjICHR0dKCmpgZPnjzBpUuX8B//8R/YsGED1q1b1x0irVixAv7+/ggODsbRo0dx//59nDt3Dv/6r/+KCxcuAAB++tOfIikpCbt27cKdO3fw29/+FleuXHnnKKOoqCjY2tpiw4YNOH36NCorK3Hy5En84z/+Ix4/fgwA+Oyzz/D73/8eX375JW7fvo2rV69ix44d+OMf//jO9zd58mScOHEC2dnZ+Od//ue+fbOIyGBwxBMREREREZEROHz4MJycnGBqaoqRI0fCy8sLX375JaKjoyGVPh9TIJFIcPDgQfzrv/4rYmNj8fTpUzg6OmLRokVwcHAA8DxAqqiowC9+8QuoVCqEhoYiJiYGxcXFbz3+sGHDcOrUKfzLv/wLNm3ahObmZowePRrLly/vHgEVHx+PYcOG4Q9/+AN++ctfYvjw4Zg+fXqPg6QpU6bg+PHj3SOfPv/88/f/hhGRQZAIgiCIXQQRERERERGJJyAgAI6Ojvjuu+/ELoWIBhiOeCIiIiIiIhpE2tra8PXXX2PVqlUwMTFBamoqjh07hvz8fLFLI6IBiCOeiIiIiIiIBpH29nYEBQXh8uXLUKlUmDJlCv7n//yf2LRpk9ilEdEAxOCJiIiIiIiIiIj0gqvaERERERERERGRXjB4IiIiIiIiIiIivWDwREREREREREREesHgiYiIiIiIiIiI9ILBExERERERERER6QWDJyIiIiIiIiIi0gsGT0REREREREREpBcMnoiIiIiIiIiISC8YPBERERERERERkV78/5vgWpg7C7EQAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -337,24 +258,22 @@ "plt.plot(x, y, 'o'); plt.xscale(\"log\"); plt.yscale(\"log\")\n", "plt.xlabel(\"Degree k\")\n", "plt.ylabel(\"P(k)\")\n", - "plt.savefig(os.path.join(output_dir, \"Barabasi_Albert.png\"))" + "plt.savefig(FIGURES_DIR / \"Barabasi_Albert.png\")" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAFpCAYAAAAP/MD1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAARWElEQVR4nO3dz4td93nH8c9TC3eR0rtIvPKPykHG1LuAcBfddJEUGXXikIbGJpsWk8EFZ10F8gcoW1PTMCXG7cauCSVYSMFdBW+8sJKVHWMQRsHyxk4Cd1EKwe3ThSepUCVlJnNH59HM67W7Z2bOfRiGg9463/O91d0BAABgpj9YegAAAABuTbQBAAAMJtoAAAAGE20AAACDiTYAAIDBRBsAAMBgJ5YeIEk+97nP9cmTJ5ceAwAAYBE/+clPftHd993sa4tGW1VtJdk6depULl++vOQoAAAAi6mqn9/qa4suj+zuC929vVqtlhwDAABgLM+0AQAADCbaAAAABls02qpqq6p21uv1kmMAAACM5Zk2AACAwSyPBAAAGEy0AQAADCbaAAAABrMRCQAAwGA2IgEAABjM8kgAAIDBRBsAAMBgog0AAGCwE0u+eVVtJdk6derUkmPc0slzF5cegQO4ev7s0iMAAMCB2YgEAABgMMsjAQAABhNtAAAAg4k2AACAwUQbAADAYItGW1VtVdXOer1ecgwAAICx7B4JAAAwmOWRAAAAg4k2AACAwUQbAADAYKINAABgMNEGAAAwmC3/AQAABrPlPwAAwGCWRwIAAAwm2gAAAAYTbQAAAIOJNgAAgMFEGwAAwGCiDQAAYDDRBgAAMJhoAwAAGGzRaKuqraraWa/XS44BAAAw1qLR1t0Xunt7tVotOQYAAMBYlkcCAAAMJtoAAAAGE20AAACDiTYAAIDBRBsAAMBgog0AAGAw0QYAADCYaAMAABhMtAEAAAwm2gAAAAYTbQAAAIOdWPLNq2orydapU6eWHIMj6uS5i0uPMMLV82eXHgEAgANY9E5bd1/o7u3VarXkGAAAAGNZHgkAADCYaAMAABhMtAEAAAwm2gAAAAYTbQAAAIOJNgAAgMFEGwAAwGCiDQAAYDDRBgAAMJhoAwAAGEy0AQAADCbaAAAABhNtAAAAg51YegDgcJ08d3HpEY6Eq+fPLj0CAHBMudMGAAAwmGgDAAAYTLQBAAAMJtoAAAAGO5Roq6rPVNXlqvqrwzg/AADAcbGnaKuqF6vqo6p6+4bjZ6rqvaq6UlXnrvvSPyR5dZODAgAAHEd7vdP2UpIz1x+oqnuSvJDkiSSPJXm6qh6rqi8l+VmSjzY4JwAAwLG0p89p6+43qurkDYcfT3Klu99Pkqp6JcmTSf4oyWfyacj9V1Vd6u7/ufGcVbWdZDtJHnrood93fgAAgCPtIB+ufX+SD657fS3Jn3X3c0lSVX+b5Bc3C7Yk6e6dJDtJcvr06T7AHAAAAEfWQaLttrr7pcM6NwAAwHFxkN0jP0zy4HWvH9g9BgAAwIYcJNreSvJIVT1cVfcmeSrJa/s5QVVtVdXOer0+wBgAAABH1163/H85yZtJHq2qa1X1THd/kuS5JK8neTfJq939zn7evLsvdPf2arXa79wAAADHwl53j3z6FscvJbm00YkAAAD4rYMsjwQAAOCQLRptnmkDAAC4vUWjzTNtAAAAt2d5JAAAwGCiDQAAYDDPtAEAAAzmmTYAAIDBLI8EAAAYTLQBAAAMJtoAAAAGsxEJAADAYDYiAQAAGMzySAAAgMFEGwAAwGCiDQAAYDDRBgAAMJjdIwEAAAazeyQAAMBgJ5YeAOBucPLcxaVHuKtcPX926REA4MjwTBsAAMBgog0AAGAw0QYAADCYaAMAABhMtAEAAAzmc9oAAAAG8zltAAAAg1keCQAAMJhoAwAAGEy0AQAADCbaAAAABhNtAAAAg4k2AACAwUQbAADAYD5cGwAAYDAfrg0AADCY5ZEAAACDiTYAAIDBRBsAAMBgog0AAGAw0QYAADCYaAMAABhMtAEAAAwm2gAAAAYTbQAAAIOJNgAAgMFEGwAAwGCiDQAAYLBFo62qtqpqZ71eLzkGAADAWItGW3df6O7t1Wq15BgAAABjWR4JAAAw2ImlBwDg6Dl57uLSIxwLV8+fXXoEAO4Ad9oAAAAGE20AAACDiTYAAIDBRBsAAMBgog0AAGAw0QYAADCYaAMAABhMtAEAAAwm2gAAAAYTbQAAAIOJNgAAgMFEGwAAwGCiDQAAYDDRBgAAMJhoAwAAGGzj0VZVf1pV36uqH1TV32/6/AAAAMfJnqKtql6sqo+q6u0bjp+pqveq6kpVnUuS7n63u59N8jdJ/nzzIwMAABwfe73T9lKSM9cfqKp7kryQ5IkkjyV5uqoe2/3al5NcTHJpY5MCAAAcQ3uKtu5+I8mvbjj8eJIr3f1+d/86yStJntz9/te6+4kk39jksAAAAMfNiQP87P1JPrju9bUkf1ZVf5Hkq0n+MLe501ZV20m2k+Shhx46wBgAAABH10Gi7aa6+8dJfryH79tJspMkp0+f7k3PAQAAcBQcZPfID5M8eN3rB3aPAQAAsCEHiba3kjxSVQ9X1b1Jnkry2n5OUFVbVbWzXq8PMAYAAMDRtdct/19O8maSR6vqWlU9092fJHkuyetJ3k3yane/s5837+4L3b29Wq32OzcAAMCxsKdn2rr76VscvxTb+gMAAByagyyPBAAA4JAtGm2eaQMAALi9RaPNM20AAAC3Z3kkAADAYKINAABgMNEGAAAwmI1IAAAABrMRCQAAwGCWRwIAAAwm2gAAAAYTbQAAAIPZiAQAAGAwG5EAAAAMZnkkAADAYKINAABgMNEGAAAwmGgDAAAYzO6RAAAAg51Y8s27+0KSC6dPn/7mknMAwN3o5LmLS49w17t6/uzSIwD8TpZHAgAADCbaAAAABhNtAAAAg4k2AACAwUQbAADAYLb8BwAAGGzRaOvuC929vVqtlhwDAABgLMsjAQAABhNtAAAAg4k2AACAwUQbAADAYKINAABgMNEGAAAwmGgDAAAYTLQBAAAMtmi0VdVWVe2s1+slxwAAABhr0Wjr7gvdvb1arZYcAwAAYCzLIwEAAAYTbQAAAIOJNgAAgMFEGwAAwGCiDQAAYDDRBgAAMJhoAwAAGEy0AQAADCbaAAAABhNtAAAAg4k2AACAwRaNtqraqqqd9Xq95BgAAABjLRpt3X2hu7dXq9WSYwAAAIxleSQAAMBgog0AAGAw0QYAADCYaAMAABhMtAEAAAwm2gAAAAYTbQAAAIOJNgAAgMFEGwAAwGCiDQAAYDDRBgAAMJhoAwAAGEy0AQAADCbaAAAABhNtAAAAg4k2AACAwUQbAADAYKINAABgsBOHcdKq+kqSs0n+OMn3u/s/DuN9AAAAjro932mrqher6qOqevuG42eq6r2qulJV55Kku3/Y3d9M8mySr292ZAAAgONjP3faXkryj0n+9TcHquqeJC8k+VKSa0neqqrXuvtnu9/ynd2vAwCMc/LcxaVHOHKunj+79Ahw5Oz5Tlt3v5HkVzccfjzJle5+v7t/neSVJE/Wp76b5Efd/dObna+qtqvqclVd/vjjj3/f+QEAAI60g25Ecn+SD657fW332LeSfDHJ16rq2Zv9YHfvdPfp7j593333HXAMAACAo+lQNiLp7ueTPH8Y5wYAADhODnqn7cMkD173+oHdYwAAAGzAQaPtrSSPVNXDVXVvkqeSvLbXH66qraraWa/XBxwDAADgaNrPlv8vJ3kzyaNVda2qnunuT5I8l+T1JO8mebW739nrObv7Qndvr1ar/c4NAABwLOz5mbbufvoWxy8lubSxiQAAAPitgy6PBAAA4BAtGm2eaQMAALi9RaPNM20AAAC3Z3kkAADAYKINAABgMM+0AQAADOaZNgAAgMEsjwQAABhMtAEAAAwm2gAAAAazEQkAAMBgNiIBAAAYzPJIAACAwUQbAADAYKINAABgMNEGAAAwmN0jAQAABrN7JAAAwGCWRwIAAAwm2gAAAAYTbQAAAIOJNgAAgMFEGwAAwGCiDQAAYDCf0wYAADCYz2kDAAAYzPJIAACAwUQbAADAYKINAABgMNEGAAAwmGgDAAAYTLQBAAAMJtoAAAAGO7Hkm1fVVpKtU6dOLTkGAAAbcvLcxaVHOHKunj+79AgszIdrAwAADGZ5JAAAwGCiDQAAYDDRBgAAMJhoAwAAGEy0AQAADCbaAAAABhNtAAAAg4k2AACAwUQbAADAYKINAABgMNEGAAAwmGgDAAAYbNFoq6qtqtpZr9dLjgEAADDWotHW3Re6e3u1Wi05BgAAwFiWRwIAAAwm2gAAAAYTbQAAAIOJNgAAgMFEGwAAwGCiDQAAYDDRBgAAMJhoAwAAGEy0AQAADCbaAAAABhNtAAAAg4k2AACAwUQbAADAYKINAABgMNEGAAAwmGgDAAAYTLQBAAAMtvFoq6rPV9X3q+oHmz43AADAcbOnaKuqF6vqo6p6+4bjZ6rqvaq6UlXnkqS73+/uZw5jWAAAgONmr3faXkpy5voDVXVPkheSPJHksSRPV9VjG50OAADgmNtTtHX3G0l+dcPhx5Nc2b2z9uskryR5csPzAQAAHGsHeabt/iQfXPf6WpL7q+qzVfW9JF+oqm/f6oeraruqLlfV5Y8//vgAYwAAABxdJzZ9wu7+ZZJn9/B9O0l2kuT06dO96TkAAACOgoPcafswyYPXvX5g9xgAAAAbcpBoeyvJI1X1cFXdm+SpJK/t5wRVtVVVO+v1+gBjAAAAHF173fL/5SRvJnm0qq5V1TPd/UmS55K8nuTdJK929zv7efPuvtDd26vVar9zAwAAHAt7eqatu5++xfFLSS5tdCIAAAB+6yDLIwEAADhkG989cj+qaivJ1qlTp5YcAwAAxjp57uLSIxwpV8+fXXqEfVv0Tptn2gAAAG7P8kgAAIDBRBsAAMBgog0AAGCwRaPNh2sDAADcno1IAAAABrM8EgAAYDDRBgAAMJhoAwAAGMxGJAAAAIPZiAQAAGAwyyMBAAAGE20AAACDiTYAAIDBqruXniFV9XGSnydZJdnUriSbONfnkvxiA7OwjE3+Pd3N7tbfw7S5l5rnsN/3sM7ves4mTbseLOVu/T1Mm/uoXs8P6z1cz++cP+nu+272hRHR9htVtdPd21POVVWXu/v0Jubhztvk39Pd7G79PUybe6l5Dvt9D+v8ruds0rTrwVLu1t/DtLmP6vX8sN7D9XyGacsjLww9F3cnfwOfult/D9PmXmqew37fwzq/6zmb5G/gU3fr72Ha3Ef1en5Y7+F6PsCoO23THNeSBzhqXM8Bjobjej2fdqdtmp2lBwBgI1zPAY6GY3k9d6cNAABgMHfaAAAABhNtAAAAg4k2AACAwUTbPlTVZ6rqX6rqn6vqG0vPA8Dvp6o+X1Xfr6ofLD0LAL+/qvrK7r/N/62q/nLpeQ7LsY+2qnqxqj6qqrdvOH6mqt6rqitVdW738FeT/KC7v5nky3d8WABuaT/X8+5+v7ufWWZSAG5nn9fzH+7+2/zZJF9fYt474dhHW5KXkpy5/kBV3ZPkhSRPJHksydNV9ViSB5J8sPtt/30HZwTgd3spe7+eAzDXS9n/9fw7u18/ko59tHX3G0l+dcPhx5Nc2f2f2F8neSXJk0mu5dNwS/zuAEbZ5/UcgKH2cz2vT303yY+6+6d3etY7RXjc3P35vztqyaexdn+Sf0/y11X1T0kuLDEYAPty0+t5VX22qr6X5AtV9e1lRgNgH2717/NvJflikq9V1bNLDHYnnFh6gLtJd/9nkr9beg4ADqa7f5lPn38A4C7W3c8neX7pOQ6bO20392GSB697/cDuMQDuLq7nAEfDsb6ei7abeyvJI1X1cFXdm+SpJK8tPBMA++d6DnA0HOvr+bGPtqp6OcmbSR6tqmtV9Ux3f5LkuSSvJ3k3yavd/c6ScwJwe67nAEeD6/n/V9299AwAAADcwrG/0wYAADCZaAMAABhMtAEAAAwm2gAAAAYTbQAAAIOJNgAAgMFEGwAAwGCiDQAAYDDRBgAAMNj/AqAeNFSh+AQsAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMEAAAH+CAYAAACVwBnSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAg10lEQVR4nO3db2iV9/3/8XdUjNhpWhuITdXlzlo465pAPGaWFrQEJBNLO1p6q0294a3TMcg6iHfqnQ6FbiKlF0g3xO3GmHQ3HMyujIaJo3N4qjg6DmNz6AjtEivSRDOIW3J+t5r+/Kptkh5z5frk8YDcOH96rlcOUi6eXOekqV6v1wMAAAAAErYs7wEAAAAAcLeJYAAAAAAkTwQDAAAAIHkiGAAAAADJE8EAAAAASJ4IBgAAAEDyRDAAAAAAkieCAQAAAJC8FXkPmKvp6en4+OOPY82aNdHU1JT3HAAAAAByVK/X49q1a9He3h7Llt35eq/CRLAsyyLLsrhx40b885//zHsOAAAAAIvI8PBwbNiw4Y6PN9Xr9foC7vnKxsbG4t57743h4eFYu3Zt3nMAAAAAyNH4+Hhs3LgxPv3002hpabnj8wpzJdhnPvsI5Nq1a0UwAAAAACIivvRrs3wxPgAAAADJE8EAAAAASJ4IBgAAAEDyChPBsiyLUqkU5XI57ykAAAAAFEzh/jrk+Ph4tLS0xNjYmC/GBwAAAFjiZtuKCnMlGAAAAADMlwgGAAAAQPJEMAAAAACSJ4IBAAAAkDwRDAAAAIDkFSaCZVkWpVIpyuVy3lMAAAAAKJimer1ez3vEXMz2z14CAAAAkL7ZtqLCXAkGAAAAAPMlggEAAACQPBEMAAAAgOSJYAAAAAAkTwQDAAAAIHkiGAAAAADJW5H3gNnKsiyyLIupqam8p9wVHYMn8p7AEnfpwM68JwAAAMBdU5grwSqVStRqtahWq3lPAQAAAKBgChPBAAAAAGC+RDAAAAAAkieCAQAAAJA8EQwAAACA5IlgAAAAACRPBAMAAAAgeSIYAAAAAMkrTATLsixKpVKUy+W8pwAAAABQMIWJYJVKJWq1WlSr1bynAAAAAFAwhYlgAAAAADBfIhgAAAAAyRPBAAAAAEieCAYAAABA8kQwAAAAAJInggEAAACQPBEMAAAAgOSJYAAAAAAkTwQDAAAAIHmFiWBZlkWpVIpyuZz3FAAAAAAKpjARrFKpRK1Wi2q1mvcUAAAAAAqmMBEMAAAAAOZLBAMAAAAgeSIYAAAAAMkTwQAAAABInggGAAAAQPJEMAAAAACSJ4IBAAAAkDwRDAAAAIDkiWAAAAAAJE8EAwAAACB5IhgAAAAAyRPBAAAAAEieCAYAAABA8goTwbIsi1KpFOVyOe8pAAAAABRMYSJYpVKJWq0W1Wo17ykAAAAAFExhIhgAAAAAzJcIBgAAAEDyRDAAAAAAkieCAQAAAJA8EQwAAACA5IlgAAAAACRPBAMAAAAgeSIYAAAAAMkTwQAAAABInggGAAAAQPJEMAAAAACSJ4IBAAAAkDwRDAAAAIDkiWAAAAAAJE8EAwAAACB5IhgAAAAAyRPBAAAAAEieCAYAAABA8lbkPWC2siyLLMtiamoq7ymQpI7BE3lPWJIuHdiZ9wQAAIAloTBXglUqlajValGtVvOeAgAAAEDBFCaCAQAAAMB8iWAAAAAAJE8EAwAAACB5IhgAAAAAyRPBAAAAAEieCAYAAABA8kQwAAAAAJInggEAAACQPBEMAAAAgOSJYAAAAAAkTwQDAAAAIHkiGAAAAADJE8EAAAAASJ4IBgAAAEDyRDAAAAAAkieCAQAAAJA8EQwAAACA5IlgAAAAACRPBAMAAAAgeSIYAAAAAMkTwQAAAABI3oq8BwAsZR2DJ/KewF1y6cDOvCcAAAD/H1eCAQAAAJA8EQwAAACA5IlgAAAAACRPBAMAAAAgeSIYAAAAAMnLLYL95z//ia9//evxyiuv5DUBAAAAgCUitwj2ox/9KL797W/ndXgAAAAAlpBcItg//vGP+Nvf/hZ9fX15HB4AAACAJWbOEezUqVOxa9euaG9vj6ampjh+/Pgtz8myLDo6OmLVqlXR09MTZ86cuenxV155Jfbv3z/v0QAAAAAwF3OOYBMTE9HZ2RlZlt328WPHjsXAwEDs27cvzp07F52dnbFjx464fPlyRET85je/iYceeigeeuihr7YcAAAAAGZpxVz/g76+vi/8GOPBgwdjz549sXv37oiIOHz4cJw4cSKOHDkSg4OD8ec//zl+9atfxdtvvx3Xr1+P//73v7F27dp49dVXb/t6k5OTMTk5OXN7fHx8rpMBAAAAWOIa+p1gN27ciLNnz0Zvb+/nB1i2LHp7e+P06dMREbF///4YHh6OS5cuxY9//OPYs2fPHQPYZ89vaWmZ+dm4cWMjJwMAAACwBDQ0gl25ciWmpqaira3tpvvb2tpiZGRkXq+5d+/eGBsbm/kZHh5uxFQAAAAAlpA5fxyykV566aUvfU5zc3M0Nzff/TEAAAAAJKuhV4K1trbG8uXLY3R09Kb7R0dHY/369Y08FAAAAADMWkMj2MqVK6O7uzuGhoZm7pueno6hoaHYunVrIw8FAAAAALM2549DXr9+PS5cuDBz++LFi3H+/PlYt25dbNq0KQYGBqK/vz82b94cW7ZsiUOHDsXExMTMX4ucryzLIsuymJqa+kqvAwAAAMDS01Sv1+tz+Q9OnjwZ27dvv+X+/v7+OHr0aEREvPnmm/H666/HyMhIdHV1xRtvvBE9PT0NGTw+Ph4tLS0xNjYWa9eubchrLgYdgyfyngBAA106sDPvCQAAsCTMthXNOYLlTQQDoAhEMAAAWBizbUUN/U4wAAAAAFiMRDAAAAAAkieCAQAAAJC8wkSwLMuiVCpFuVzOewoAAAAABVOYCFapVKJWq0W1Ws17CgAAAAAFU5gIBgAAAADzJYIBAAAAkDwRDAAAAIDkiWAAAAAAJE8EAwAAACB5hYlgWZZFqVSKcrmc9xQAAAAACqYwEaxSqUStVotqtZr3FAAAAAAKpjARDAAAAADmSwQDAAAAIHkiGAAAAADJE8EAAAAASJ4IBgAAAEDyChPBsiyLUqkU5XI57ykAAAAAFExhIlilUolarRbVajXvKQAAAAAUTGEiGAAAAADMlwgGAAAAQPJEMAAAAACSJ4IBAAAAkDwRDAAAAIDkiWAAAAAAJE8EAwAAACB5IhgAAAAAyStMBMuyLEqlUpTL5bynAAAAAFAwhYlglUolarVaVKvVvKcAAAAAUDAr8h4AACnqGDyR9wTm4dKBnXlPAADgLinMlWAAAAAAMF8iGAAAAADJE8EAAAAASJ4IBgAAAEDyRDAAAAAAkieCAQAAAJA8EQwAAACA5IlgAAAAACSvMBEsy7IolUpRLpfzngIAAABAwRQmglUqlajValGtVvOeAgAAAEDBFCaCAQAAAMB8iWAAAAAAJE8EAwAAACB5IhgAAAAAyRPBAAAAAEieCAYAAABA8kQwAAAAAJInggEAAACQPBEMAAAAgOSJYAAAAAAkTwQDAAAAIHkiGAAAAADJK0wEy7IsSqVSlMvlvKcAAAAAUDCFiWCVSiVqtVpUq9W8pwAAAABQMIWJYAAAAAAwXyIYAAAAAMkTwQAAAABInggGAAAAQPJEMAAAAACSJ4IBAAAAkDwRDAAAAIDkiWAAAAAAJE8EAwAAACB5IhgAAAAAyRPBAAAAAEieCAYAAABA8kQwAAAAAJInggEAAACQPBEMAAAAgOSJYAAAAAAkTwQDAAAAIHkiGAAAAADJE8EAAAAASF5hIliWZVEqlaJcLuc9BQAAAICCKUwEq1QqUavVolqt5j0FAAAAgIIpTAQDAAAAgPkSwQAAAABInggGAAAAQPJEMAAAAACSJ4IBAAAAkDwRDAAAAIDkiWAAAAAAJE8EAwAAACB5IhgAAAAAyRPBAAAAAEjeirwHAAAsFh2DJ/KesCRdOrAz7wkAwBLgSjAAAAAAkieCAQAAAJA8EQwAAACA5IlgAAAAACRPBAMAAAAgeSIYAAAAAMkTwQAAAABInggGAAAAQPJEMAAAAACSJ4IBAAAAkDwRDAAAAIDkiWAAAAAAJE8EAwAAACB5IhgAAAAAyRPBAAAAAEjegkewTz/9NDZv3hxdXV3xyCOPxE9/+tOFngAAAADAErNioQ+4Zs2aOHXqVKxevTomJibikUceie9+97tx//33L/QUAAAAAJaIBb8SbPny5bF69eqIiJicnIx6vR71en2hZwAAAACwhMw5gp06dSp27doV7e3t0dTUFMePH7/lOVmWRUdHR6xatSp6enrizJkzNz3+6aefRmdnZ2zYsCF++MMfRmtr67x/AQAAAAD4MnOOYBMTE9HZ2RlZlt328WPHjsXAwEDs27cvzp07F52dnbFjx464fPnyzHPuvffe+Mtf/hIXL16MX/7ylzE6Ojr/3wAAAAAAvsScI1hfX1+89tpr8cwzz9z28YMHD8aePXti9+7dUSqV4vDhw7F69eo4cuTILc9ta2uLzs7O+OMf/3jH401OTsb4+PhNPwAAAAAwFw39TrAbN27E2bNno7e39/MDLFsWvb29cfr06YiIGB0djWvXrkVExNjYWJw6dSoefvjhO77m/v37o6WlZeZn48aNjZwMAAAAwBLQ0Ah25cqVmJqaira2tpvub2tri5GRkYiI+Ne//hVPPPFEdHZ2xhNPPBHf+9734lvf+tYdX3Pv3r0xNjY28zM8PNzIyQAAAAAsASsW+oBbtmyJ8+fPz/r5zc3N0dzcfPcGAQAAAJC8hl4J1traGsuXL7/li+5HR0dj/fr1jTwUAAAAAMxaQyPYypUro7u7O4aGhmbum56ejqGhodi6dWsjDwUAAAAAszbnj0Nev349Lly4MHP74sWLcf78+Vi3bl1s2rQpBgYGor+/PzZv3hxbtmyJQ4cOxcTEROzevbuhwwEAAABgtuYcwT744IPYvn37zO2BgYGIiOjv74+jR4/G888/H5988km8+uqrMTIyEl1dXfHuu+/e8mX5c5VlWWRZFlNTU1/pdQAAAABYeprq9Xo97xFzMT4+Hi0tLTE2NhZr167Ne07DdAyeyHsCAEAuLh3YmfcEAKDAZtuKGvqdYAAAAACwGIlgAAAAACRPBAMAAAAgeSIYAAAAAMkrTATLsixKpVKUy+W8pwAAAABQMIWJYJVKJWq1WlSr1bynAAAAAFAwhYlgAAAAADBfIhgAAAAAyRPBAAAAAEieCAYAAABA8goTwfx1SAAAAADmqzARzF+HBAAAAGC+VuQ9AACApa1j8ETeE1gELh3YmfcEABJXmCvBAAAAAGC+RDAAAAAAkieCAQAAAJA8EQwAAACA5IlgAAAAACSvMBEsy7IolUpRLpfzngIAAABAwRQmglUqlajValGtVvOeAgAAAEDBFCaCAQAAAMB8iWAAAAAAJE8EAwAAACB5IhgAAAAAyRPBAAAAAEieCAYAAABA8kQwAAAAAJJXmAiWZVmUSqUol8t5TwEAAACgYAoTwSqVStRqtahWq3lPAQAAAKBgChPBAAAAAGC+RDAAAAAAkieCAQAAAJA8EQwAAACA5IlgAAAAACRPBAMAAAAgeSIYAAAAAMkTwQAAAABInggGAAAAQPIKE8GyLItSqRTlcjnvKQAAAAAUTGEiWKVSiVqtFtVqNe8pAAAAABRMYSIYAAAAAMyXCAYAAABA8kQwAAAAAJInggEAAACQPBEMAAAAgOSJYAAAAAAkTwQDAAAAIHkiGAAAAADJE8EAAAAASJ4IBgAAAEDyRDAAAAAAkieCAQAAAJA8EQwAAACA5BUmgmVZFqVSKcrlct5TAAAAACiYwkSwSqUStVotqtVq3lMAAAAAKJjCRDAAAAAAmC8RDAAAAIDkiWAAAAAAJE8EAwAAACB5IhgAAAAAyRPBAAAAAEieCAYAAABA8kQwAAAAAJInggEAAACQPBEMAAAAgOSJYAAAAAAkTwQDAAAAIHkiGAAAAADJE8EAAAAASJ4IBgAAAEDyRDAAAAAAkieCAQAAAJA8EQwAAACA5BUmgmVZFqVSKcrlct5TAAAAACiYwkSwSqUStVotqtVq3lMAAAAAKJjCRDAAAAAAmC8RDAAAAIDkiWAAAAAAJE8EAwAAACB5IhgAAAAAyRPBAAAAAEieCAYAAABA8kQwAAAAAJInggEAAACQPBEMAAAAgOSJYAAAAAAkTwQDAAAAIHkiGAAAAADJE8EAAAAASJ4IBgAAAEDyVuQ9AAAAoGPwRN4T+AouHdiZ9wSAL+VKMAAAAACSJ4IBAAAAkDwRDAAAAIDkiWAAAAAAJE8EAwAAACB5IhgAAAAAyRPBAAAAAEieCAYAAABA8kQwAAAAAJInggEAAACQPBEMAAAAgOQteAQbHh6Obdu2RalUikcffTTefvvthZ4AAAAAwBKzYsEPuGJFHDp0KLq6umJkZCS6u7vjO9/5Ttxzzz0LPQUAAACAJWLBI9gDDzwQDzzwQERErF+/PlpbW+Pq1asiGAAAAAB3zZw/Dnnq1KnYtWtXtLe3R1NTUxw/fvyW52RZFh0dHbFq1aro6emJM2fO3Pa1zp49G1NTU7Fx48Y5DwcAAACA2ZpzBJuYmIjOzs7Isuy2jx87diwGBgZi3759ce7cuejs7IwdO3bE5cuXb3re1atX48UXX4y33nprfssBAAAAYJbm/HHIvr6+6Ovru+PjBw8ejD179sTu3bsjIuLw4cNx4sSJOHLkSAwODkZExOTkZDz99NMxODgYjz322Bceb3JyMiYnJ2duj4+Pz3UyAAAAAEtcQ/865I0bN+Ls2bPR29v7+QGWLYve3t44ffp0RETU6/V46aWX4sknn4wXXnjhS19z//790dLSMvPjo5MAAAAAzFVDI9iVK1diamoq2trabrq/ra0tRkZGIiLi/fffj2PHjsXx48ejq6srurq64sMPP7zja+7duzfGxsZmfoaHhxs5GQAAAIAlYMH/OuTjjz8e09PTs35+c3NzNDc338VFAAAAAKSuoVeCtba2xvLly2N0dPSm+0dHR2P9+vWNPBQAAAAAzFpDI9jKlSuju7s7hoaGZu6bnp6OoaGh2Lp1ayMPBQAAAACzNuePQ16/fj0uXLgwc/vixYtx/vz5WLduXWzatCkGBgaiv78/Nm/eHFu2bIlDhw7FxMTEzF+LnK8syyLLspiamvpKrwMAAADA0tNUr9frc/kPTp48Gdu3b7/l/v7+/jh69GhERLz55pvx+uuvx8jISHR1dcUbb7wRPT09DRk8Pj4eLS0tMTY2FmvXrm3Iay4GHYMn8p4AAAAwL5cO7Mx7ArCEzbYVzTmC5U0EAwAAWFxEMCBPs21FDf1OMAAAAABYjEQwAAAAAJInggEAAACQvMJEsCzLolQqRblcznsKAAAAAAVTmAhWqVSiVqtFtVrNewoAAAAABVOYCAYAAAAA8yWCAQAAAJA8EQwAAACA5IlgAAAAACRPBAMAAAAgeYWJYFmWRalUinK5nPcUAAAAAAqmMBGsUqlErVaLarWa9xQAAAAACqYwEQwAAAAA5ksEAwAAACB5IhgAAAAAyRPBAAAAAEieCAYAAABA8kQwAAAAAJJXmAiWZVmUSqUol8t5TwEAAACgYAoTwSqVStRqtahWq3lPAQAAAKBgChPBAAAAAGC+RDAAAAAAkieCAQAAAJA8EQwAAACA5IlgAAAAACRPBAMAAAAgeSIYAAAAAMkrTATLsixKpVKUy+W8pwAAAABQMIWJYJVKJWq1WlSr1bynAAAAAFAwhYlgAAAAADBfIhgAAAAAyRPBAAAAAEjeirwHAAAAUGwdgyfynsBddOnAzrwnQEO4EgwAAACA5IlgAAAAACRPBAMAAAAgeSIYAAAAAMkTwQAAAABIXmEiWJZlUSqVolwu5z0FAAAAgIIpTASrVCpRq9WiWq3mPQUAAACAgilMBAMAAACA+RLBAAAAAEieCAYAAABA8kQwAAAAAJInggEAAACQPBEMAAAAgOSJYAAAAAAkTwQDAAAAIHkiGAAAAADJE8EAAAAASJ4IBgAAAEDyRDAAAAAAkleYCJZlWZRKpSiXy3lPAQAAAKBgChPBKpVK1Gq1qFareU8BAAAAoGAKE8EAAAAAYL5EMAAAAACSJ4IBAAAAkDwRDAAAAIDkiWAAAAAAJE8EAwAAACB5IhgAAAAAyRPBAAAAAEieCAYAAABA8kQwAAAAAJInggEAAACQPBEMAAAAgOSJYAAAAAAkTwQDAAAAIHkiGAAAAADJE8EAAAAASJ4IBgAAAEDyRDAAAAAAkieCAQAAAJC8wkSwLMuiVCpFuVzOewoAAAAABVOYCFapVKJWq0W1Ws17CgAAAAAFU5gIBgAAAADzJYIBAAAAkDwRDAAAAIDkiWAAAAAAJE8EAwAAACB5IhgAAAAAyRPBAAAAAEieCAYAAABA8kQwAAAAAJInggEAAACQPBEMAAAAgOSJYAAAAAAkTwQDAAAAIHkiGAAAAADJE8EAAAAASJ4IBgAAAEDyVuQ9AAAAAFi8OgZP5D2BBrt0YGfeE3LhSjAAAAAAkieCAQAAAJA8EQwAAACA5IlgAAAAACRPBAMAAAAgeSIYAAAAAMkTwQAAAABInggGAAAAQPJEMAAAAACSJ4IBAAAAkLxcItgzzzwT9913Xzz77LN5HB4AAACAJSaXCPb9738/fvGLX+RxaAAAAACWoFwi2LZt22LNmjV5HBoAAACAJWjOEezUqVOxa9euaG9vj6ampjh+/Pgtz8myLDo6OmLVqlXR09MTZ86cacRWAAAAAJiXOUewiYmJ6OzsjCzLbvv4sWPHYmBgIPbt2xfnzp2Lzs7O2LFjR1y+fPkrjwUAAACA+Vgx1/+gr68v+vr67vj4wYMHY8+ePbF79+6IiDh8+HCcOHEijhw5EoODg3MeODk5GZOTkzO3x8fH5/waAAAAACxtDf1OsBs3bsTZs2ejt7f38wMsWxa9vb1x+vTpeb3m/v37o6WlZeZn48aNjZoLAAAAwBLR0Ah25cqVmJqaira2tpvub2tri5GRkZnbvb298dxzz8U777wTGzZs+MJAtnfv3hgbG5v5GR4ebuRkAAAAAJaAOX8cshHee++9WT+3ubk5mpub7+IaAAAAAFLX0AjW2toay5cvj9HR0ZvuHx0djfXr1zfkGPV6PSLS+26w6cn/5D0BAAAAWAJSayqf/T6fNaM7aWgEW7lyZXR3d8fQ0FA8/fTTERExPT0dQ0ND8fLLLzfkGNeuXYuI8N1gAAAAAPPQcijvBXfHtWvXoqWl5Y6PzzmCXb9+PS5cuDBz++LFi3H+/PlYt25dbNq0KQYGBqK/vz82b94cW7ZsiUOHDsXExMTMX4v8qtrb22N4eDiefPLJ+OCDDxryml+mXC5HtVq9a68/Pj4eGzdujOHh4Vi7du1dOw58kbv975zb875/LrX3oki/z2LbmueehTy28wuWgsX2/5elwvv+udTei6L8Pott51I5t7jbx1vM5xb1ej2uXbsW7e3tX/i8OUewDz74ILZv3z5ze2BgICIi+vv74+jRo/H888/HJ598Eq+++mqMjIxEV1dXvPvuu7d8Wf58LVu2LDZs2BArVqxYsDd9+fLlC3KstWvXLrp/SCwdC/XvnJt53z+X2ntRpN9nsW3Nc89CHtv5BUvBYvv/y1Lhff9cau9FUX6fxbZzqZxbLNTxFuu5xRddAfaZOUewbdu2felnLF9++eWGffzxTiqVyl19/byOBXnx7zwf3vfPpfZeFOn3WWxb89zj/AIay7/zfHjfP5fae1GU32ex7Vwq5xZ5HK9omupfVrS468bHx6OlpSXGxsYWZU0FAIrH+QUA0EgpnFssy3sAEc3NzbFv375obm7OewoAkAjnFwBAI6VwbuFKMAAAAACS50owAAAAAJInggEAAACQPBEMAAAAgOSJYAAAAAAkTwRb5H7729/Gww8/HN/4xjfiZz/7Wd5zAIAEPPPMM3HffffFs88+m/cUACABw8PDsW3btiiVSvHoo4/G22+/nfek2/LXIRex//3vf1EqleIPf/hDtLS0RHd3d/zpT3+K+++/P+9pAECBnTx5Mq5duxY///nP49e//nXecwCAgvv3v/8do6Oj0dXVFSMjI9Hd3R1///vf45577sl72k1cCbaInTlzJr75zW/Ggw8+GF/72teir68vfv/73+c9CwAouG3btsWaNWvyngEAJOKBBx6Irq6uiIhYv359tLa2xtWrV/MddRsi2F106tSp2LVrV7S3t0dTU1McP378ludkWRYdHR2xatWq6OnpiTNnzsw89vHHH8eDDz44c/vBBx+Mjz76aCGmAwCL1Fc9vwAA+L8aeX5x9uzZmJqaio0bN97l1XMngt1FExMT0dnZGVmW3fbxY8eOxcDAQOzbty/OnTsXnZ2dsWPHjrh8+fICLwUAisL5BQDQaI06v7h69Wq8+OKL8dZbby3E7DkTwe6ivr6+eO211+KZZ5657eMHDx6MPXv2xO7du6NUKsXhw4dj9erVceTIkYiIaG9vv+nKr48++ija29sXZDsAsDh91fMLAID/qxHnF5OTk/H000/H4OBgPPbYYws1fU5EsJzcuHEjzp49G729vTP3LVu2LHp7e+P06dMREbFly5b461//Gh999FFcv349fve738WOHTvymgwALHKzOb8AAJiL2Zxf1Ov1eOmll+LJJ5+MF154Ia+pX0oEy8mVK1diamoq2trabrq/ra0tRkZGIiJixYoV8ZOf/CS2b98eXV1d8YMf/MBfhgQA7mg25xcREb29vfHcc8/FO++8Exs2bBDIAIA7ms35xfvvvx/Hjh2L48ePR1dXV3R1dcWHH36Yx9wvtCLvAXyxp556Kp566qm8ZwAACXnvvffyngAAJOTxxx+P6enpvGd8KVeC5aS1tTWWL18eo6OjN90/Ojoa69evz2kVAFBkzi8AgEZL6fxCBMvJypUro7u7O4aGhmbum56ejqGhodi6dWuOywCAonJ+AQA0WkrnFz4OeRddv349Lly4MHP74sWLcf78+Vi3bl1s2rQpBgYGor+/PzZv3hxbtmyJQ4cOxcTEROzevTvH1QDAYub8AgBotKVyftFUr9freY9I1cmTJ2P79u233N/f3x9Hjx6NiIg333wzXn/99RgZGYmurq544403oqenZ4GXAgBF4fwCAGi0pXJ+IYIBAAAAkDzfCQYAAABA8kQwAAAAAJInggEAAACQPBEMAAAAgOSJYAAAAAAkTwQDAAAAIHkiGAAAAADJE8EAAAAASJ4IBgAAAEDyRDAAAAAAkieCAQAAAJA8EQwAAACA5IlgAAAAACTv/wHA4R3BV+9szgAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -375,7 +294,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -384,7 +303,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -393,14 +312,14 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVzM2/8H8NdMy7QrlVLaKFkKN6HFvlP2soVSkputSPYW2XcXFxHZLiq613JlF9qLiMpaikraC61zfn/4ma9Rrm3qM1Pn+XjM46H5nM8578+E95zP5ywsQggBRVEURTURbKYDoCiKoqiGRBMfRVEU1aTQxEdRFEU1KTTxURRFUU0KTXwURVFUk0ITH0VRFNWk0MRHURRFNSk08VEURVFNCk18FEVRVJNCEx9FURTVpNDER1EURTUpNPFRFEVRTQpNfBRFNTk+Pj4wMjJiOgyKITTxURT1SxwcHMBiscBisSAhIYHWrVvDw8MD7969Yzq0r/Lw8EB4eDjTYVAMEWc6AIqiRN/AgQNx9OhRVFVV4fbt25gxYwbevXuHPXv2/HBdVVVVkJCQqIco/0dOTg5ycnL12gYlvGiPj6KoX8bhcKCurg4tLS1MnjwZdnZ2+Pvvv0EIwcaNG9GmTRtIS0vD2NgYx44d452Xnp4OFouFEydOoH///pCWlsa+ffsQGBhYKzHdvHkTLBYLeXl5AABdXV1eT/PzV3p6Onx8fOo85uPjA4De6mzqaOKjKErgpKWlUVVVhRUrViAgIAC7d+9GcnIyli5dChcXF1y4cIGv/NKlS+Hq6ork5GSMHj2a935+WQXuZxYhv6yiVhtxcXHIzs7mvaytrdGuXTuoqanBw8OD79iRI0cgLi6Onj171vu1U8KP3uqkKEqgYmNj8ddff6Ffv37YunUrLl++jF69egEA9PT0EBsbi927d8PKyop3zty5c2FjY8NXTw2XwHLjdUiw2ajicjFVu4zvuKqqKu/PGzZsQFRUFGJiYiAtLQ0AvB7j48ePMW/ePGzatAkDBw6sl2umRAtNfBRF/bKwsDDIycmhuroaVVVVGDVqFDw8PBASEoKhQ4eCxWLxylZVVUFXV5fvfFNTUwBARUUFMjIyEJeYhIpqLsqruCgHFwCw79aLOts+d+4cvL29cenSJbRp04bvWFFREUaOHInx48fDzc1NgFdMiTKa+CiK+mW9e/eGv78/JCQkoKGhAQkJCcTExAD4mJi0tbUBAFwuF2/evEF2djYOHz6Me/fuAQDc3NyQl5eH3NxcaGpqQqyZGgDC14YY4dZq9+HDh7Czs8Pu3bvRp08fvmPV1dWwtbWFpqYmdu3aVQ9XTYkqmvgoivplMjIy0NfXByEE+fn5SEtLQ2pqKsTFxbFq1SpwOBykpaUhIyMDSkpK0NPTQ+vWraGkpAQAcHFxwdChQ9GqVSuIi4vj1JmzmDhuFLgV78HmyAAAyrKe8bWZl5eHESNGwNnZGU5OTrVicnNzQ3p6OmJiYup9lCglWmjioyjqh7x79w5paWm8V2xsLAoKCtC5c2ekpaWBzWbzElvXrl0RFxcHZ2dnuLu7Q1FREYmJiWCz2Zg5cybS09Oxa9cumJqa8t3+VGuuABZbDCW3DqOFxTiUZD5BcVQQXxzjxo2DpqYmFi5ciJycHN77qqqqOHLkCA4ePIiLFy+isrKSd5xOY6AAmvgoivpCVVUVMjIy+JLb56+SkhLo6upCT08Penp6kJGRgbS0NPbv3w89PT1eLw4ACCHYtWsX9uzZgz179kBBQQFdunSBp6fnf7bv7u6OuXNm4/yFf5Hh7wpzy554Z9QecXFxvHK3bt0CAGhqavKdn5aWhvDwcHz48AF9+/blO+bt7c2b0kA1XSxCCPl2MYqiGgsul4ucnJyvJrasrCxoaGjwEtuXL3V1dbDZ9TcTas2aNbhz5w7+/fdfvkExpaWl6N69Ozw8POq8tUlR34smPooSsL59+8LIyIg3oOLLnwXh5s2b6NevH96+fQsVFZVaxwsLC7+a2NLT06GgoPDVxKatrc3YM7FHjx6hb9++SEhI4A2I+VxKSgp69+6NsLAwdO3alYEIqcaA3uqkRNabN2+wdu1anD9/Hq9evYKKigo6deqEuXPnYvjw4b9cP4vFQnBwcK35ZcLgt99+Q3h4OGJiYpCens6X2F68eAEul8uXzAwNDTF06FDo6elBV1dXKJ9zVVdXw9HREatXr64z6QFA+/btsWfPHtjY2CA+Ph7KysoNHCXVGNDER4mk9PR0WFpaQl5eHuvWrUPnzp3B5XJx7do1zJo1CxkZGUyH+Euqq6vx6tWrOntsL168QGFhIbS1tfmSW/fu3Xl/VlZW5rtNKAq2b98OOTk5zJw58z/L2djYICYmBpMnT8a///4LMTGxBoqQajQIRYmgYcOGEQ0NDVJaWlrrWGFhISGEkC1bthBjY2MiIyNDNDQ0iJOTE+8YIYQUFRWRKVOmEFVVVcLhcIienh7Ztm0bIYQQHR0dgo8TyQgAoqOjwzvv7NmzxMTEhHA4HKKrq0uWLVtGKioqeMf79OlDZs+e/dWfjx49SkxNTYmsrCxRUlIi3bt3J56enmTGjBlkwIABRF1dnQAgKioqRF5enoiJiZGWLVsSHx8fEh4eTjIyMsjVq1cJAPL27VuBfaZMevz4MVFWVibPnz//rvJVVVWkb9++ZMWKFfUcGdUY0R4fJXIKCgoQFhaG1atX13nLTlFREQDAZrOxfft2tG7dGi9fvsTcuXMxd+5cHD16FACwYsUKJCUl4fz581BTU0NaWhrevn0L4OM6kC1atMD+/fthbW3N61VcunQJdnZ2WLNhM/SMuqG6NBeL3eehoqICmzdv5oujpKQEaWlpyMvLQ2JiIubNm4e0tDQkJCSgoKAA0tLSvHazsrKwfPly2NjYIDc3F9OmTYOenh42bNiAli1bYv78+Th58iS8vLzAYrHw/Pnz+vyIGxSXy4WTkxO8vLzQunXr7zpHXFwcJ0+ehKmpKbp3744RI0bUc5RUo8J05qWoHxUTE0MAkDNnzvzQeRcvXiSSkpKkpqaGEELIiBEjyPTp079aHgAJDg7me69Xr15k0u8exHDlv6Sj90XSdvkFMmneCsLhcMiiRYuIjY0NkZOTIxwOh8jIyJCOHTuS5s2bE2NjY7J161YSGhpKEhMTSXFxMa/OlJQUAoBkZmYSQgi5ceMGAUDCwsJ4Ze7cuVNnmcbQ49u5cyextLTk/V5+RGRkJFFVVSVPnz6th8ioxor2+CiRQ75zIPL169exbt06pKSkoLi4GDU1NbzJzBoaGvj9999hY2ODhIQEDBo0CCNGjKi17NWXEhIScCcyGmD/b4TmU8IFqa4Em83G2LFj8fz5c/z22284cOAAWCwWb1Snu7s7AODu3buYOnUqEhMTUVBQwLuejIwMtGrVildvp06deH/W0NAAAOTm5vKVEXVpaWnw8fFBRETET02RMDc3h4+PD8aOHYuoqCjIysrWQ5RUY0O3JaJEjoGBAVgsFlJSUr5a5uXLl7CyskL79u0RHByMhIQEHDx4EABQWVkJABg2bBhevnwJDw8P5OXlwcrKCtOnT//PtmtquFDuNQktHf/gvTQdtmLn0dNYvXo1Jk2aBAUFBUhLS9c5uOTdu3cYMmQIZGRkcPToUcTFxSEsLIwvrk8+n1LwqS4ut/Z6laKKEAJnZ2d4enrC0NDwp+v5/fff0aVLF8ycOfO7vxRRTRtNfJTIad68OYYMGYJdu3ahrKys1vGioiLEx8ejsrIS27Ztg7m5Odq2bYusrKxaZVVUVDB16lQEBgYiICAAhw8fRkXFx73fJCQkUFNTw1e+bbt2+JCbAQklDd6Lo6KNNSsWY9q0aXj69Ol/xp6amoq8vDysXbsWvXv3Rrt27ZCbm/sLn4boCggIQHFxMRYsWPBL9bBYLOzduxePHj3C7t27BRQd1ZjRxEeJpN27d4MQAlNTUwQHB+Px48dITU3Fnj170KlTJxgYGIDL5WL79u1IS0vDiRMnsH37dr46vLy88Pfff+Pp06dISUnBmTNn0Lp1a3A4HAAfd/i+du0acnJyUFhYiPfv36O0uAgfUm+jLOI4JIpfgVX8GuOaZ2HCaCt07NgR5ubmePLkSZ0JGQC0tbXB4XCwa9cuvHjxAhcuXMDKlSvr/fMSNq9evcLSpUtx8OBBiIv/+hMXGRkZnD59Gn5+foiMjBRAhFSjxugTRor6BVlZWWTOnDlET0+PSEpKkpYtW5KhQ4eSixcvEkII2bFjB9HQ0CBSUlKkf//+5NSpUwQASUtLI4QQsnr1atKhQwciLS1NlJSUyLBhw0hycjKv/rNnzxJ9fX0iLi5OdHR0iKOjI7GzsyNhYWHEzNyCSElJEzl5edK1a1eyc+dOQggh+fn5REtLi3A4HLJgwQKSm5tbazrDyZMnSevWrQmHwyHdunUjYWFhBAC5ceMGIaTugStpaWkEAImLi/tqGVHB5XLJ8OHDia+vr8DrPn/+PNHU1CTZ2dkCr5tqPOiSZRT1HY4cOYJ169YhLi7uu1Y9yc7Oxpo1a3DixAnMmTMHCxcuhIKCQgNEKvyOHj2KzZs3Iy4uDpKSkgKv39vbGzdv3sTVq1fpdkRUnWjio6hv+LR+5I0bN2BkZPRD56alpcHX1xcXL17EokWLMHv2bEhLS9dTpMIvJycHnTt3xsWLF2FiYlIvbdTU1MDa2hodOnTAli1b6qUNSrTRZ3wU9R/Kyspga2uLTZs2/XDSAwA9PT0EBgbixo0biIqKgoGBAfbt24eqqqp6iFa4EULg6uqKGTNm1FvSAwAxMTEcP34coaGhCAoK+vYJVJNDe3wU9RWEENjb20NMTAyHDh0SSJ1xcXFYsWIFnj9/Dl9fX0ycOLHJrDUZHBwMb29v3L17F1JSUvXe3r179zB48GCEh4ejQ4cO9d4eJTpo4qOorzhw4AB27NiBmJgYyMjICLTumzdvYtmyZSgtLcXq1asxcuRIkVtU+kfk5eXB2NgYoaGhMDMza7B2AwMDec9m6TNW6hOa+CiqDg8ePMCAAQNw+/ZttGvXrl7aIITgwoULWL58OaSlpbF27Vr079+/Xtpimp2dHdTV1Rl55jZr1izk5ubi9OnTjfrLBfX9aOKjqC+UlJSgW7du8PLygp2dXb23x+VyERQUhJUrV0JHRwdr1qxBjx496r3dhnL27FksWLAADx48EHjP+XtUVFSgd+/eGDduHDw9PRu8fUr40MRHUZ8hhGDSpElo1qwZ9u3b16BtV1VVITAwEKtWrULXrl2xevXqnxpQI0yKiopgZGSE48ePf3Md1PqUmZmJ7t274/jx4422V019Pzqqk6I+s3fvXqSmptZa5aUhSEhIwNnZGU+fPkWfPn0wYMAATJ06VaS3IFq4cCFGjRrFaNIDAC0tLRw7dgx2dnbIzMxkNBaKeTTxUdT/u3v3Lry9vREcHMzoXDspKSm4u7vj6dOnMDAwQI8ePfD777/XudaoMLt06RKuXbuG9evXMx0KAGDAgAFwc3ODjY0Nbz1WqmmiiY+iABQXF8PW1ha7du2CgYEB0+EAABQUFODl5YXHjx9DXl4exsbG8PT0RH5+PtOhfVNJSQlmzpwJf39/yMvLMx0Oj6enJzQ1NeHm5sZ0KBSDaOKjmjxCCBwdHTFs2DCMHz+e6XBqUVZWxsaNG5GUlITS0lIYGhpi1apVKC0tZTq0r1qyZAkGDhyIwYMHMx0KHxaLhcDAQFy/fh2BgYFMh0MxhCY+qsnbuXMnXr58KfTLW2loaGDPnj2IiYnB06dPoa+vj23btqG8vJzp0PjcvHkTZ8+eFdrPU0FBAWfOnMGiRYtw7949psOhGEATH9WkxcbGYvXq1QgKCuJtRyTs2rRpg6NHj+Lq1asIDw+HgYEB9u/fLxTLoL179w4zZszA3r17oaioyHQ4X9WxY0fs2rUL48aNQ0FBAdPhUA2MTmegmqyCggJ07doVW7duxZgxY5gO56fFxMRg+fLlePnyJVatWoUJEyaAzWbmO+2CBQuQm5uLY8eOMdL+j1qwYAFSUlJw4cIFxj4zquHRxEc1SYQQjBo1Cm3atMG2bduYDkcgrl27hmXLlqG8vBxr1qyBlZVVg65UEhUVhbFjx+Lhw4dQVlZusHZ/RVVVFQYOHIh+/frBx8eH6XCoBkITH9Ukbd68GSEhIbh161a97AnHFEIIzp49i+XLl0NBQQFr165F3759673d8vJy/Pbbb/Dz84ONjU29tydIOTk5MDU1xb59+2BlZcV0OFQDoImPanIiIyMxZswYxMbGQkdHh+lw6kVNTQ1OnjwJLy8v6OvrY82aNTA1Na239pYtW4YnT54gJCSk3tqoTxERERgzZgyioqLQpk0bpsOh6hlNfFSTkpeXBxMTE/z555+wtrZmOpx6V1lZiYMHD8LPzw9mZmbw8/MT+BY9CQkJGD58OO7fvw91dXWB1t2Qdu7ciYCAAERGRjKypijVcOjTXKrJ4HK5mDp1KiZNmtQkkh4ASEpKYtasWXj27BnMzc3Rt29f2NvbIy0tTSD1V1ZWYvr06diyZYtIJz0AmDNnDjp27IhZs2aB9gcaN5r4qCZjw4YNvP3vmhppaWl4eHjg6dOn0NXVhampKebMmYPs7OxfqnfdunXQ1tZukF0s6huLxYK/vz8SExOxd+9epsOh6hFNfFSTEB4ejh07duDkyZOQkJBgOhzGNGvWDL6+vkhNTQWHw0HHjh2xZMmSn5rL9uDBA+zatQt79+79pdGjPj4+QrMLhaysLM6cOQNvb29ER0czHQ5VT2jioxq9N2/ewM7ODoGBgWjVqhXT4TSYt2/fwtXVFbq6uuBwOFBTU8OAAQNw5coVqKqq4vTp03B1dUVBQQHatm2LNWvWoKys7Lvqrq6uhqOjI9atW/fLn6mHhwfCw8N/qQ5B0tfXx4EDB2Bra4s3b94wHQ5VD2jioxq1mpoaTJkyBQ4ODhg6dCjT4TSocePGITY2FgEBAXjy5AnOnz+PYcOG8S1yraioCH9/f0RFReHRo0fQ19fHjh07eMugcblc1NTU1Kp7y5YtUFRUhJOT0y/HKScnJ3Tz/kaOHAl7e3tMnDgR1dXVTIdDCRqhqEbM19eX9OnTh1RVVTEdSoMqLCwkAMiVK1fqPN6nTx8CgO9FyMfPS0xMjKiqqhINDQ0iJiZGkpKSSEFBAZk2bRpRVFQkHA6HSEhIkEuXLvHq09HRqVUfAJKWlka8vb3rPObt7U0IIcTb25t07Nix3j+TH1VdXU0GDRpEFi1axHQolIDRHh/VaF27dg179+7FiRMnIC4uznQ4DUpOTg5ycnI4e/ZsnYtYnzlzBq1atYKXlxeys7N5g1y0tbUBAC1atECLFi2gpaWFhIQE2NvbIzIqGpv2HYWBURcYGhrCyckJHz58AADExcXx6snOzoa1tTXatWsHNTU1eHh48B07cuQIxMXF0bNnz4b7QH6CmJgY/vrrLwQFBeH06dNMh0MJEtOZl6LqQ1ZWFmnZsiW5evUq06EwJiQkhCgpKREOh0PMzMzIwoULSXR0NO+4jo4O2bRpE985hw4dIgBIfHw84XK55PLly8TIyIgAIJpT1hODpf8Q3UWh5Hj4I6KgoED2799fq93169cTZWVl8uzZs1rHUlNTiaKiItm2bRvvPWHt8X0SFxdHVFRUSEpKCtOhUAJCe3xUo1NdXY1JkyZh1qxZGDBgANPhMGbcuHHIysrCuXPnMGzYMERGRsLMzAxr1679z/PExcXRpUsXsFgsDBo0CItXeAMsNsRatkMlEQMRk4D3pTQYGLZDcnIy37nnzp2Dt7c3Tp8+XWsFlKKiIowcORLjx48XqY1gTU1NsX79eowZM0ao90Ckvl/Tuv9DNQk+Pj6QkJDA8uXLmQ6FcVJSUhg0aBAGDRoELy8vzJgxAz4+PvDw8PjqORwOB2JiYryf88sqa5WprqxAYtJDpD1/hrKyMlhaWkJVVRV2dnbYvXs3+vTpw1++uhq2trbQ1NTErl27BHeBDcTJyQnR0dFwdHREUFBQgy7+TQke7fFRjUpYWBgCAwNx/Phxvv+8qY86dOiA6upqlJeXQ1JSss4Rm18y79oZIFxUvE7lvSfOJpCRFMfs2bNhbGyMv//+GyNHjkR1dTUuXLiALVu2IDo6GpWVH5Omm5sb0tPTERISIrLzKHfu3In09HRs3bqV6VCoX0R7fFSj8erVKzg4OCAoKAgtWrRgOhxG5efnw9bWFo6OjujUqRPk5eURHx+PjRs3YsCAAVBQUICuri5u376NKVOmgMPhQEVFpc66khPjIKuiicJLu6E5Yj6IpDSUUv9GuYICli5dCmlpaYSEhMDMzAzbtm1DfHw8YmNjcejQIaSlpUFTUxNpaWlYtWoVcnJyeMnw0wAcUSElJYWQkBD06NEDXbt2bZBdL6h6wvRDRooShMrKSmJpaUnWrl3LdChCoby8nCxdupSYmpoSRUVFIi0tTfT19Ym7uzvJz88nhBASFRVFOnXqRDgcDm86w6FDh4isrCyvnqSkJKKiokLu3LlDJkyyI/IKzYiUlBQZMGAAefjwIa8c6piuAIA8ePCADBo0qM5jI0eOJI8fPyZeXl5CPbjlS5cvXyYtW7YkmZmZTIdC/SS6OwPVKCxevBhJSUk4f/483UlbQMrKymBqaoqlS5fC3t5eIHVWV1cjKSkJERERvFd5eTksLCxgaWkJS0tLdO3aFRwORyDt1Ze1a9fi3LlzCA8Pb1T7OTYVNPFRIu/8+fNwdXXF3bt3v3q7jvoxhBBMmTIFUlJSCAgIqNe2MjMz+RLh48eP8dtvv/ESoYWFhdD9XrlcLsaMGQMtLS2RHKzT1NHER4m0ly9fonv37ggNDYWFhQXT4TQa+/btw+7duxEdHd3ge9OVlpYiJiYGkZGRiIiIQHR0NFq2bMlLhJaWlmjbti3jIyuLiorQrVs3eHl5YerUqYzGQv0YmvgokVVZWYnevXvDxsbmP4fnUz/m7t27GDJkCO7cuQNDQ0Omw0FNTQ0ePnzI1yt89+4dLCwseLdITU1NISUl1eCxJSUloX///rh69So6d+7c4O1TP4cmPkpkubu74/nz5/jnn38Y//bfWBQXF8PExARr167FhAkTmA7nq16/fs2XCFNSUtC5c2e+XqGqqmqDxHLixAmsWLEC8fHxUFJSapA2qV9DEx8lkkJDQ7FgwQLcvXuX/mcjIIQQ2NjYQF1dHbt372Y6nB9SVlaG2NhYXiKMjo5GixYt+BJhu3bt6u0L0vz58/H8+XOcPXuWDq4SATTxUSLnxYsXMDMzw/nz59G9e3emw2k0duzYgaNHjyIiIkLoR1V+S01NDR49esTXKywpKeEbPWpqagppaWmBtFdZWYn+/ftjyJAhWLlypUDqpOoPTXyUSKmoqIClpSWmTZuGefPmMR1OoxEdHY2RI0ciOjoarVu3ZjqcepGVlcWXCJOTk9GpUye+XuGXCx+wWCwEBwfDxsbmu+rv1q0bAgICau39mJ6eDj09PcTFxcHU1FSg1wUAffv2hZGRER1h+p1o4qNEypw5c5CTk4Pg4GD6XE9A8vPzYWJigh07dmD06NFMh9NgpkyZguPHj/N+ZrFYkJaWxuDBgzF8+HBYWlpCUVERysrK390Dvn37NmxsbBAdHQ09PT3e+/Wd+AoKCiAhIQF5eXmB190Y0ZvRlMgICgpCWFgYAgICaNITEC6Xi2nTpsHGxqZJJT3g4y4UAwcO5O0TGBsbCyMjI0RHR+PWrVuwtraGkZERxo0bh7Vr1yI8PJy3/+DX9OrVC0uXLsW4ceO+WVYQPi3/1rx5c5r0fgBNfJRIePr0KebMmYOgoCA0a9aM6XAajU2bNqGwsBDr169nOhRGcDgcqKurQ11dHaampli5ciVycnLg7++PFy9eoLCwEIaGhnj79i0WLVqEZs2agcPhQFxcHEpKSrC1teXVRQjBli1bsHv3bty/fx8qKiqYv3AR7mcWofBdBYCP804HDRoEGRkZdOjQAVeuXOGLJzk5GVZWVpCXl0eLFi0wadIk5OTk8I47ODjA2toaGzZsQKtWrdCqVSsAH291zpkzpwE+scaBJj5K6H348AG2trbw9fWFiYkJ0+E0Grdu3cK2bdtw6tQpkd0xQZBKS0tx6tQpGBsb8w16MTc3x7Zt27B48WJISUnBx8cH7u7u6NChAy5cuIA2bdpg2rRpGDZsGHx9fbF48WLcvXsXyh0t8dfDMkwJiIHNvigAwPLlyzFv3jzcv38f3bp1w8SJE1FWVgYAyM7ORu/evWFkZITY2FhcvXoVZWVlGDVqFLhcLi+e8PBwPHjwAGFhYbh27VrDfkiNBN2dgRJ6bm5uaNeuHWbNmsV0KI1Gbm4uJk+ejEOHDkFLS4vpcBgTFhbG2yHi3bt30NLSwr///ltn2ZcvX6Jly5bw8PDgfVHgcrlISUnBtWvX4O7ujubNm2PRokXo1rMfJPrPAZslhtKKalRXfUxczq5zMGLECAAf1/s8cuQIEhMT0bNnT+zZswedO3fGhg0beG0eOXIEzZs3R3x8PG8Es5SUFA4ePCjyI2+ZRHt8lFA7fvw4bt68if3799PnegJSU1MDOzs72NvbY9iwYUyHw6jevXsjMTERiYmJiI2NxYABAzB48GBkZmbWKmtra4vy8nLo6enByckJwcHBqKqqQseOHWFmZgYul4vIyEikpKRguO1UsFB73KCqdlvenzU0NAB8/BICAAkJCbh16xZvuyY5OTnel5Lnz5/zzjMyMqJJ7xfRxEcJrdTUVLi5uSE4OJg+uBeg1atXo6qqCr6+vkyHwjgZGRno6+tDX18f3bp1w4EDB1BSUgJ/f/9aZbW0tPD48WPs27cPCgoKWLhwIbp27Yp3797xlVNXV8fUscMhXseuDRrN/7f/4Kcvcp9uY3K5XFhZWfES8afX06dPYW1tzTtPVlZWINfelNFbnZRQev/+PWxsbLBu3Tp06tSJ6XAajatXr2Lfvn1ISEiAuDj95/8lFosFNpuN9+/f13lcSkoKVlZWsLKywpIlS6Curo6IiAiYm5uDw+Hg2rVrMDAwgLIcB0Onkv4AACAASURBVBvHdsLCoHvgVldBTOJjH0NR5utbGJmYmCAoKAg6Ojr0mWs9oz0+SijNnj0bJiYmcHJyYjqURiMrKwtTp07FsWPH0LJlS6bDEQoVFRXIyclBTk4OUlJSMHfuXJSVlfGew30uMDAQBw4cQFJSEtLS0nDo0CFISEjAwMAA8vLymD9/PpYuXYpDhw7h+fPnUK98jc4vTsC0NAohLubfjGX27NkoLi7GhAkTEBMTgxcvXuDq1auYOXMmSktL6+Pymyz6lY8SOoGBgYiJiUFcXBx9ricg1dXVmDhxIlxdXdG/f3+mwxEaV69e5X0JkJeXR7t27RAcHIy+ffvWKquoqIgNGzbAw8MDVVVV6NChA86cOcObqL5u3TooKSnBz88Pr169gpqaGgwMDGCqrQkl2W8/k9PQ0EBERASWLl2KoUOHory8HNra2hg8eDB9pidgdOUWSqg8fPgQ/fr1w82bN9GxY0emw2k0li5dirt37+LixYt0EeUGtHTpUsjLy2PZsmVMh0J9hvb4KKFRVlYGW1tbbN68mSY9Abpw4QKOHTuGu3fv0qTXwIqKipr0dBFhRRMfJRQIIZg1axYsLCxgb2/PdDiNRkZGBhwdHXH69OkG25+O+p+ioiIoKioyHQb1BZr4KKFw4MABPHjwANHR0UyH0mhUVlZiwoQJ8PDwQM+ePZkOp0miiU840cRHMS4xMRHLli3DnTt3ICMjw3Q4jcaSJUugqqqKhQsXMh1Kk0UTn3CiN/wpgfmZhXJLSkpga2uLP/74A4aGhnWWiY+PB4vFQnp6+i/HyGKxEBIS8sv1CLvQ0FCEhoYiMDCQPtdjEE18won+i2hiHBwcwGKxeC8VFRVYW1sjNTW1wWMhhGDGjBkYOHAgJk2a1CBtZmdn1zlHqzF5/vw5XFxccOrUKTRv3pzpcJo0mviEE018TdDne5BdvnwZHz58wJgxY366vurqavzMrJg///wTz549w7Zt23667e/1ad8ydXX1Rj0nqry8HOPHj8fKlSt5ixpTzKGJTzjRxNcEfb4HmYmJCdzd3ZGamsrbOHPJkiUwNDSEtLQ0dHV14enpifLyct75Pj4+MDIyQmBgINq0aQMOh8Nbr7C6uhrz58+HkpISlJSUsGjRIr4tVfYcOISOnU0gIyOLuXPnQk1NDfn5+XzxhYWFoV27dpCSkkKvXr3w5MmTWtdw5swZGBsbg8PhQEtLC2vWrOFLvrq6uvDx8YGjoyMUFRVhZ2cHoPHf6lywYAFat25N92YTAhUVFaipqeHb4ogSDnRwSxNX1x5ksrKyOHjwIDQ1NZGcnIxZs2aBw+HAz8+Pd15aWhr++usvBAcHQ1JSElJSUgA+7qbg4OCAqKgoPHjwAM7OzmjZsiUWLFiAfxJfY9XZB5DsOBpK3VUxSLkUL2MuYtKkSbh16xYAIDMzE6NHj4azszNmz56NBw8eYMGCBXwxJyQkwNbWFitWrICdnR3i4uLg4uICBQUFzJ07l1du69atWLFiBeLj43+qRypqTpw4gStXrvCeiVLMKi4uRrNmzejvQhgRqkmxt7cnYmJiRFZWlsjKyhIAREtLiyQlJX31nD179pA2bdrwfvb29ibi4uIkJyeHr1yfPn2IgYEB4XK5vPf8/PyIpqYmySstJ4Yr/yU6S87zXoYr/yVR8fcJAJKZmUkIIWTp0qV11gGApKWlEUIImTx5MunXrx9f297e3kRTU5P3s46ODrG2tq51LQBIcHDwd3xSoiUlJYWoqKiQe/fuMR0K9f8eP35M9PX1mQ6DqgO91dkEfWsPspCQEPTs2RPq6uqQk5ODu7s7MjIy+Opo1aoV1NTUatVtZmbG9w3X3Nwcr1+/RmrGG0iw2ajIeYbcED+8+nM6nm4Yh/69LQCAV39KSkqddXwuJSUFlpaWfO/17NkTr1+/RklJCe89U1PTn/l4RM779+9ha2uLtWvXokuXLkyHQ/0/+nxPeNHE1wT91x5k0dHRmDhxIoYMGYJz587h3r17vP3bPveje4JpKkqjovw9ck95gSXBgYr1Qmg7bUdw6FkA/xt88qs+T5hNZd+yOXPmoEuXLpgxYwbToVCfoYlPeNFnfBTfHmQRERHQ1NTEypUrecdfvnz53XXFxMSAEMJLQNHR0dDQ0ICuhipmdZLCwg8lUOs3FURWBTsmd0PFixi+89u3b4/Tp0/XquPLMhEREXzv3blzB61atWpyG9YeOnQI0dHRiI2Npc+ShAxNfMKL9viaoP/ag6xt27Z4/fo1jh8/jhcvXmDPnj04ceLEd9edlZUFNzc3PH78GCEhIdi0aRPc3d0BAFMHmYLD4cC8IgGlx+cjK/ocX4IFgFmzZiE9PZ2vjr179/KVWbhwIcLDw+Hj44MnT57g+PHj2LJlCzw9PX/9wxEhSUlJ8PT0REhICOTk5L59AtWgaOITXjTxNUGf9iBr2bIlevTogbi4ON4eZCNGjMCiRYvg5uaGTp064cqVK1i1atV3121nZ4eamhr06NEDzs7OcHJy4iU+VVVVHD58GNE3LqPozWv4+Phg69atfOdra2vjzJkzCAsLQ+fOnbFt2zasX7+er4yJiQmCg4Nx+vRpGBkZYcmSJViyZEmTGsJfWloKW1tbbN26FR06dGA6HKoONPEJL7ofH8WIFy9eoEePHsjMzORNhaC+DyEEkydPhpycHPbv3890ONRXLFu2DLKysli+fDnToVBfoD0+ihGtW7eGiYlJo55MXl/27duH5ORk/PHHH0yHQv2H4uJi2uMTUjTxUYxxcXHBvn37mA5DpNy9excrV65EcHAwXRFEyNFbncKLJj6KMSNGjMDz58/x6NEjpkMRCUVFRbC1tcXu3bvRtm1bpsOhvqGoqAjNmjVjOgyqDjTxUYyRkJCAo6Mj/P39mQ5F6BFC4OjoiOHDh2P8+PFMh0N9B9rjE1408VGMcnZ2xvHjx3kLZFN127FjBzIzM7F582amQ6G+E018wosmPopROjo66N69O4KCgpgORWhFR0dj3bp1CAoKatRbKjU2NPEJL5r4KMbRQS5fl5+fjwkTJmD//v3Q09NjOhzqB9DEJ7zoPD6KcdXV1dDV1cXFixdhbGzMdDhCg8vlYsSIEejQoQM2bdrEdDjUD6isrISMjAyqqqroUnJCiPb4KMaJi4vDycmJ9vq+sHHjRhQVFWHt2rVMh0L9oE9z+GjSE060x0cJhczMTHTu3BmZmZlNZleF/xIeHo4JEyYgPj4erVq1Yjoc6gc9e/YMQ4cOxbNnz5gOhaoD7fFRQkFLSwuWlpY4deoU06EIhK6u7jdHYMrJySEwMLDW+2/evIGdnR0CAwP5kp6Pjw+MjIz4yvr4+EBNTQ0sFguBgYF1lqEaHn2+J9xo4qOEhqgMcnFwcACLxQKLxYK4uDi0tbXx+++/o7CwkFcmLi4Orq6uP1x3TU0N7OzsMH36dAwdOvQ/yz58+BC+vr7Yu3cvsrOzMWHCBHh4eCA8PPyH26UEiyY+4UYTHyU0hg0bhuzsbCQmJjIdyjcNHDgQ2dnZSE9Px4EDB3Du3Dm+RKeqqgoZGZkfrtfPzw9cLhc+Pj7fLPvpNtro0aOhrq4OaWlpyMnJQVlZ+YfbpQSLrtoi3Gjio4SGmJgYZsyYIRK9Pg6HA3V1dbRq1QqDBw/GhAkTcPnyZd7xL291Pnv2DH379oWUlBQMDQ1x/vz5WnX6+/tj3bp1iIqKgqqqKhwcHFBcXFxn+z4+PhgzZgwAgM1m8wZR0FudwoH2+IQbTXyUUHFycsKpU6dQVlbGdCjf7cWLFwgLC4OEhESdx7lcLsaMGQMul4uoqCgcPHgQPj4+qKioAADkl1XgXMR9/O7qim7duiE2NhahoaGIjIyEo6NjnXV6eHjwtiTKzs5GdnZ2/Vwc9VNo4hNu4kwHQFGf09TURO/evXHixAk4OzszHc5XhYWFQU5ODjU1NSgvLweAWpvqfnL16lUkJycjLS0N2traAIDt27ejV69euJtRiPUbryMv5h8QcQ7mbAiAsbEhgI89wH79+uHZs2fQ19fnq1NOTo73H6u6unp9XSb1k2jiE260x0cJHVEY5NK7d28kJiYiNjYWc+fOxfDhwzFv3rw6y6akpEBTU5OX9ACgR48eYLPZCE7IRHkVF5WFOZBU1YXPpRfIL/vYE7SwsACbzUZycnKDXBMlODTxCTea+CihM3jwYOTl5SEhIYHpUL5KRkYG+vr6MDY2xh9//IH379/Dz8/vxyv6YhqtBJuNV4X8C3bTSdCihyY+4UYTHyV0xMTE4OzsLPS9vs95e3tjw4YNyMrKqnWsffv2eP36NTIzM3nvxcbGgsvloqqqGgAgoayFyrcvUfGhDK2UPm4wGxkZCS6Xi/bt2zfMRVACQxOfcKOJjxJKjo6OCA4ORklJCdOhfJe+ffuiQ4cOWL16da1jAwcORLt27TBt2jQkJiYiKioK7u7uYLFY0KzMgJQEGy1+GwC2uCS4F9chK+0Jbt26BRcXF4wdO7bW8z1K+H1asowSTjTxUUKpZcuW6N+/P/766y+mQ/luCxcuREBAAF6+fMn3PpvNRmhoKLhcLnr06IFp06bxJqfPshmKCM/+OPl7XxwOPIiM1AcwNTXFqFGjYG5ujoMHDzJxKdQvoj0+4UbX6qSE1uXLl7F48WLcvXu3UT3nysvLQ+fOnfHXX3+hT58+fMeuX7+OSZMm4fbt22jbti1DEVK/SktLC5GRkdDS0mI6FKoOtMdHCa2BAweipKQEcXFxTIciMIQQuLq6YuLEibWSHgD0798fa9asgZWVFfLz8xmIkBIE2uMTbjTxUUKLzWaL3CCXbzl58iQePnyINWvWfLXMjBkzMHr0aIwbNw6VlZUNGB0lCNXV1fjw4QPk5OSYDoX6CnqrkxJqb968Qbt27ZCeni7yax++fv0aJiYm+Pfff9G1a9f/LFtTU4Nx48ahefPmCAgIaFS3ehu7/Px8GBgYoKCggOlQqK+gPT5KqKmpqWHQoEE4duwY06H8EkIIZsyYAVdX128mPeDjlI7jx48jMTERGzdubIAIKUGhtzmFH018lND7tJKLKN+c8Pf3R15eHpYtW/bd58jKyuLcuXPYuXMnzpw5U4/RUYJEE5/wo4mPEnr9+vXDhw8fEB0dzXQoP+X58+dYsWIFjhw58tWFrL9GU1MT//zzD1xcXBAfH19PEVKCRBOf8KOJjxJ6bDYbM2fOFMlBLjU1NbC3t8eyZct+egWWrl27wt/fH6NHj8arV68EHCElaHTyuvCjuzNQIsHBwQEGBgYoLCyEkpIS0+F8ty1btkBcXBzz58//pXrGjBmDp0+fYsSIEbh9+zYdMSjEaI9P+NEeHyUSVFVVMWzYMBw9epTpUL5bUlISNm3ahMDAQLDZv/5PbdGiRTAxMcHkyZNRU1MjgAip+kATn/CjiY8SGaI0yKWyshJTp07Fhg0boKurK5A6WSwW9uzZg7KyMixevFggdVKCRxOf8KOJjxIZffr0QU1NDSIiIpgO5ZtWrVoFLS0tTJ8+XaD1SkpKIiQkBOfOnePtwE4JF5r4hB99xkeJDBaLxRvk0rNnT6bD+aro6GgcOHAAiYmJ9TLxvHnz5jh//jx69uyJ1q1bY8CAAQJvg/p5RUVFIr/YQmNHe3yUSLG3t8e5c+eEdh3L9+/fY9q0adi1axfU1dXrrR0DAwOcOnUKkydPRmpqar21Q/042uMTfjTxUSJFWVkZ1tbWOHLkCNOh1Gnx4sXo3r07bGxs6r2tvn37Yv369bC2tkZeXl69t0d9H5r4hB9NfJTIEdZBLlevXsXff/+NnTt3Nlib06dPh42NDcaMGYOKiooGa5f6Opr4hB9NfJTI6dmzJ9hsNm7dusV0KDxFRUVwdHREQEBAg88zXLt2LVq0aAFnZ2eh+zLQFNEJ7MKPJj5K5LBYLF6vT1jMnz8f1tbWGDx4cIO3zWazcfToUSQnJ2PdunUN3j7Fj/b4hB/dlogSSYWFhdDT08PTp0+hqqrKaCyhoaHw9PREYmIiZGVlGYsjKysLZmZm2LJlC2xtbRmLoymrqakBh8NBZWWlQBYtoOoH/c1QIklJSQmjRo1CYGAgo3Hk5ubC1dUVhw8fZjTpAYCGhgbOnj0LV1dXxMbGMhpLU1VSUgJ5eXma9IQc/e1QIsvFxQX+/v7gcrmMtE8IwcyZM+Hg4AALCwtGYvhSly5dEBAQgDFjxiAjI4PpcJoceptTNNDER4ksc3NzSElJ4caNG4y0f+TIEaSlpcHHx4eR9r9m5MiRWLBgAaytrVFaWsp0OE0KTXyigSY+SmQxOcglIyMDixYtwpEjR8DhcBq8/W9ZsGABzMzMMGnSJLqgdQOiiU800MRHibQpU6bg8uXLePPmTYO1yeVyMX36dLi7u6Nz584N1u6PYLFY2L17N8rLy7Fw4UKmw2ky6HJlooEmPkqkKSoqYuzYsTh06FCDtbl79268f/8eixYtarA2f4aEhASCg4MRFhaGPXv2MB1Ok0B7fKKBJj5K5Lm4uGD//v0NMsjl8ePH8PX1xZEjRyAuLvxrvCspKeHChQvw9fXF5cuXmQ6n0aOT10UDTXyUyOvevTvk5eVx9erVem2nuroa06ZNg6+vLwwMDOq1LUFq06YNgoODMWXKFCQnJzMdTqNGe3yigSY+SuQ11CCX9evXo1mzZvj999/rtZ360KtXL2zevBnW1tZ4+/Yt0+E0WjTxiQaa+KhGwc7ODtevX0d2dna91H/v3j388ccfOHjwoMhOTp42bRomTZqE0aNHo7y8nOlwGiWa+ESDaP4LpqgvKCgowMbGBgcPHhR43eXl5Zg6dSq2bt2KVq1aCbz+huTn5wcNDQ04OTnRBa3rQXJyMqZPn85I2ywWCyEhIYy0LWpo4qMajU+DXAQ9b83LywuGhoaws7MTaL1MYLPZOHz4MJ4+fQo/Pz+mw6kXb968gbu7OwwMDCAlJYUWLVrAwsICO3fuRFlZWb22/e7du3qt/79kZ2djxIgRjLUvSoR/WBpFfSdTU1MoKyvj8uXLGDZsmEDqvH37No4dO4b79++DxWIJpE6mycjI4OzZs+jRowfatm2LiRMnMh2SwKSnp8PS0hIKCgrw8/NDp06dIC0tjUePHuHAgQNQVlbG5MmT6619JhOfuro6Y22LHEJRjci+ffvIqFGjBFJXSUkJad26Nfnnn38EUp+wuX//PlFVVSVRUVFMhyIwQ4cOJa1atSJlZWV1HudyuYQQQgCQ4OBgvmM6Ojpk06ZNvJ+3bNlCjI2NiYyMDNHQ0CBOTk6ksLCQ75zDhw8TbW1tIi0tTaysrEjz5s3J5/+tPnv2jIwcOZKoqakRGRkZ8ttvv5Fz587x1ZGTk0NGjBhBpKSkiLa2Njl48CDp2LEj8fb25pUBQPbt20dsbGyIjIwM0dPTI0ePHuWrp65roupGb3VSjcqkSZMQHh6O169f/3JdHh4e6NOnD0aOHCmAyIRPp06dcOjQIYwdOxbp6elMh/PL8vPzcenSJcyePfurO2X8SK+dzWZj+/btePToEf766y/ExsZi7ty5vOMxMTFwcHDAzJkzkZiYiH6Dh6KwqJivjrKyMgwbNgxXrlzB/fv3MW7cOIwdOxapqam8Mvb29nj58iWuX7+Of/75B8eOHcPLly9rxbNq1SqMGjUK9+/fx4QJE+Do6EgXIv9ZTGdeihI0FxcX4uvr+0t1/Pvvv0RHR4cUFxcLKCrhtW3bNmJkZFTntUKIehH29vbEysrqq8ejo6MJAHLmzBm+9zU1NYmsrCyRlZUlLi4uhJDv6/F96eLFi0RSUpLU1NQQQgiZNGkSGThwICGEkL/vvSKGK/8lsh37EQDkn3uvvlpPjx49iJ+fHyGEkNTUVAKAr9edkZFB2Gx2rR7fkiVLeD9XVVURaWlpvl6fMP2uhB3t8VGNjouLCw4cOPDTg1wKCgrg7OyMQ4cOQUFBQcDR1cZisf7z5eDgUK/tz58/Hz179sSECRNQXV1dr239ih07duDYsWM/fN7t27eRmJiI7t27f/c0DkIILly4gF69ekFNTQ0yMjIYNWoUKisrsWLFCnh6euLSpUvIzMxEzwFDMf+vWJRXccHRNgYAuJ9KQNA//+LVq1fw9PREhw4doKSkBDk5OcTHx/N6aqmpqWCz2TA1NeW1raWlBQ0NjVoxderUifdncXFxqKqqIjc394c/D4oObqEaod9++w3q6uq4ePEirK2tf/j82bNnw8bGBv369auH6Gr7fO7h+fPn4ezszPeetLT0D9VXWVkJSUnJ7y7PYrHwxx9/wMrKCu7u7ti5c+cPtddQvrX4s76+PlgsFt9tREIIVFRUUFBQgKqqKmRlZSEoKAgsFgunT59GdHQ0CgoKkJ+fj+zsbGzatAlbtmxBfn4+qqqqICsrCzU1Nejo6AAA4uLiUFBQAD09PcjKysLY2BhDJs3Euph3+PxrFhsE2w8chZ1NCFgsFnr16oUJEyagR48eWLVqFSorK3/4+iUkJPh+ZrFYjO1FKepoj49qlH52JZdTp04hMTER69atq4eo6qaurs57fZr8/Pl7J0+ehL6+PiQlJaGvr4/9+/fznf9pJ4axY8dCVlYWy5Ytg4+PD4yMjHDy5Em0adMG8vLyGD16NPLy8njnxcXFYfDgwVBRUYGysjJKSkpw7tw57Nq1i6/+nJwcWFlZQUZGBjo6Ony9rvT0dLBYLMTHx9eK6fM5ZUlJSRg4cCCkpaXRvHlzODg4oLj4f8/DHBwcYG1tjR07dkBTUxNKSkqYPn063r9/D+BjAps8eTL69++PhIQEXLlyBSdPnsSff/6J1atXY8GCBVi4cCFUVFTg4+MDQ0NDqKmpQVJSEi1btkSvXr1w//59JCUlITg4GFJSUsjLy4OamhosLS0xevRoVFVVYerUqUhISMDhw4fBZrNRXFyM58+fIzY2ljf6dcmSJVi8eDF69uyJ/Px8/H08ANz/nxJZmfUx6YpJSOLciUAYGhrCwcEBY8eOxZMnTzBr1ixER0fj6tWrWL16NYqKisDlcpGQkMD7LF69eoWsrKwf+0tE/RCa+KhGaeLEiYiIiEBmZuZ3n5OdnY158+bhyJEjP9zLqi+hoaGYM2cO3Nzc8PDhQ8yfPx+urq44d+4cXzlfX18MHz4cSUlJmD17NoCPSenUqVMIDQ3F5cuXce/ePSxfvpx3TmlpKaZOnYrbt28jNjYWpqamKCwshJ+fH8LCwpBfVgEA8PLyxsiRI5GYmIiZM2di2rRptRLdf3n37h2GDBkCOTk5REdH48iRIwgPD8eYMWNw6dIlnDhxAikpKbh69Sr2798PU1NTtG3bFkePHoWOjg5UVVV5O01ER0fD2dkZGzZsQGhoKJKSkvDhwwdoamqiT58+8PPzg5ycHCorK+Hj44O4uDjcvXsXGzZsQLNmzTB8+HAEBwdj1KhRyMjIQL9+/WBiYoKgoCBISUlBXV0dGhoa6NixI7hcLrZv3460tDScOHEC27dv57uucePG4caNG3iT8RwLzRRRnnQZH55EAwA2ju0EZTkODA0NER0dDXNzcyxZsgSmpqaQk5ODgYEBiouL4e/vDzabjX79+mHcuHFYs2YNJk6cCBkZmUYzfUYoMfyMkaLqjaurK/Hy8vquslwulwwfPvy7y9eX4OBgvuHwFhYWZPr06Xxl7O3tiaWlJe9nAGTOnDl8Zby9vQmHwyFFRUW891avXk3atGnz1ba5XC5RV1cnK1euJOo9rIjB8gsEAGn22xC+wRoDBgwgkydPJnl5eeT69esEANm+fTs5duwY+eOPP4i3tzcBQHr16kWGDRtG9PT0CJvNJs2bNydiYmKkWbNmRF1dnQAgPXv2JBMnTiSGhoZEXl6ebN68mQQGBpKzZ8+SESNGEDMzM/LmzRtSWVn5zcEtn2RnZ5N58+aRNm3aEElJSSIrK0tMTU3J2rVrSUlJCSGEkNevX5OhQ4cSWVlZ0rp1axISElJrcMuOHTuIhoYGkZKSIv379yenTp0iAEhaWhq5ceMGUVNTI5MnTyZaWlpESkqKDBg0mCxZtYHv95eenk4GDBhAZGRkiKamJtm0aROxsrIi9vb2fGUsLS2JuLg4kZaWJoqKioTNZpMOHTqQjRs3ktu3b3/XYJy6ylB1o4mParTu379PNDU1SVVV1TfL+vv7ExMTE1JZWdkAkX3dl4lPSUmJHDhwgK/M/v37iZKSEu9nACQwMJCvjLe3N2nbti3fewcPHiTy8vK8n9+8eUNmzpxJDAwMiIKCApGVlSVsNptMme5E9Bb/TXSWnCcAiPKweUTXM5R0tehD2rRpQ6SkpAgAoqSkRLS1tQkAYm5uTiZPnkzmzJlDvLy8eMn4/PnzZOLEiaRr167k7du3vN9FRUUFYbPZvDmS9vb2ZPDgwXzxenl5EWNjY97P35v46tuff/5JWrRoQa5cuVIv9efm5hIJCQni5uZG5s6dS0xNTYmMjAzp0aMHcXNzI0FBQSQzM7Ne2m4q6OAWqtHq1KkTtLS0cOHCBYwaNeqr5V68eIFly5bh5s2btQYQCKsvb4PVNW/ty2shhKCmpga3b99Geno6Vq1ahYKCAmhqakJeXh65ublgsVi4fisSUuOsgM+a4EhIwH3lavTQV8fevXtx/fp13L17FxkZGdDR0cGOHTvQrVs3AEBVVRVWrVqFPn36wMrKCteuXcOrV6+goqLyn9ch7IM3qqqqMG/ePISHhyMiIgL6+voCqff69esoLS2FsbExcnNzsXz5cqioqGD16tW83+v79+8RHx+PyMhIHD16FK6urpCWloa5uTksLCxgYWGBLl26iMzfX6bRxEc1ap8GuXwt8dXU1MDBwQFLlixBx44dGzi6b2vfvj0iIiLg5OTEe+/OnTvo0KFDrbJcLhfZ2dlIT0/HgwcP8PbtW8yYMQPp6em8F5fLMrOB/QAAIABJREFUxZIlS6Crq4uMjAxMnjwZdnZ20NXV5Q2esRs/FmfFpVBT9THpVGQ9BkyHYmjPblCW4+D+/fto3749AEBVVRUA/8jUxMTEWtdw8OBBlJaWQl5eHgAQGRkJLpfLq0fY5eXlwcbGhvecUpDTXKqqqrBixQq8ePECMjIyMDMzw61bt/i+zMjIyKB3797o3bs3gI9fYp49e4aoqChERkYiICAAL168gImJCSwsLGBubg5zc3O0aNFCYHE2JjTxUY3a+PHjsXDhQqSnp0NXV7fW8U8DFtzc3Bo4su+zaNEi2NraomvXrhg4cCCCg4Nx7NgxuLm5Ye3atbwVV+bOnYspU6ZASUkJurq6KC0tBZfLRffu3TF+/Hjo6uoiPDwc7u7uiIiIAPBxDllGRgY0NDRQWFgIT09PSEpKQkZSHBtHd4LnmQcAgA9PojAQ/VGQrQ//kBBcu3YNMTExAD5OtTAzM8OGDRvQpk0bFBcXY+nSpXzXYGdnB29vb0ybNg2rVq1CYWEhXFxcMHbsWIH1mupTUlISRo0ahfHjx2PNmjUQExMTaP1DhgzBkCFDfugcFosFAwMDGBgYYNq0aQA+7v4eGxuLyMhI7NmzB/b29lBRUeH1CM3NzWFkZCTw+EUS0/daKaq+zZ07lyxfvrzW+w8fPiQAyIYNG3jv4QcGCBw6dIjIysoKLE4ul0v2799PAJCTJ0+SdevWERcXF9KhQwciISFBABAxMTGiq6tLxo8fTzw9PcmePXt4g0vev3/Pq8vb25t07NjxP+NNTEwk3bt3J1JSUqR169bkyJEjfGtE5pWWEwBk/eZtZMiQIURKSopoaWnVep6YnJxMLCwsiLS0NDEyMiK3bt2q9Tk+ePCA9O/fn0hJSRFFRUVib2/PN/Cmrud3X14DE8/4QkNDiYqKCjl27FiDtisINTU15OHDh8Tf3584ODgQQ0NDoqCgQAYMGEBWrlxJLl68SAoKCpgOkxEsQuimXJRwcnBwwOHDh+Ho6IiAgAC+Y4sXL8bGjRthZWWF8+fP/2c9jx49wqBBg/Dy5UveM5DKykqYmZkhOTkZe/fu5a2OkpOTAyUlJXA4nG/G9+HDB5SWln737SRCCPLy8ni3HdPS0vhuQ6anp0NWVvb/2rvzuJry/w/gr3vrtl6lTWhPIhQhUsg2GFskU1mTpUWGQchMM2PGlC2GocaSCtlH9rFOmtKUlJLsmtIoFMnS3v38/vDrfOdOZa3urd7Px+M+Hrrn3HPe95L3/WzvDwwNDbmHkZER92cDA4Naa1CSusUYw08//YRff/0VkZGR3PhlY/f06VPEx8cjLi4OcXFxuHLlCvT19cXGCk1NTRvtZsvvixIfkVqurq74448/UFBQgEePHnH/6VdUVEBPTw9ycnIwNzd/Z+IDgL59+2LBggVwcHAA8GaPvaSkJERHR2PTpk11UhaMMYZnz569NbHJy8u/NbFVjYERySkqKoKbmxsyMjJw5MiRGsuHNRUVFRW4du0aN1YYFxeHwsJCbozQxsYGvXr1glAolHSodYrG+IhUs7Cw4MpMVe1sffLkSSgoKKB///54+vQpd25oaCjWrFmDjIwM6Ovrw9PTE/PmzQOfz4eHhwfWbAyC/5p1uJacCFFlJXbs2IHo6Gix+/F4PBw8eBCOjo4AgJycHPj4+OD06dMoLi5Gu3btMHfuXGhpaWH//v04fPgwhg8fziU2Pp8vlsxMTU0xdOhQLrG9q+wWkazs7GyMHTsWnTp1QnR0tNQUMqgvsrKy6N69O7p3784VPsjNzeUSoZ+fH1JSUmBqaio2VmhkZCQ2I3fAgAHo0qVLtao/0ooSH5F6M2bMwI4dO7jEV/XnjIwM7pxt27bh22+/xS+//IIePXrg+vXrmDVrFgQCAby9vSHX3gZJ6V9DVqkFNJ38MVi7BBs3bkRpaWm1+2VmZuLo0aO4ffs2/P39ISMjAzU1NZSVleHevXtYtWoVunTpgqKiIvB4PLi5uXGJrqrkGGl8/vrrL4wfPx5fffUVFi1a1Ggrp7i6uiI/P/+9ekJq0qZNGzg4OHC9I6Wlpbh69Sri4uIQGRkJHx8fiEQise7R+lx28v333+PQoUO4fv163V1UguOLhLxV1WSGZ8+eMQUFBXbnzh2Wm5vL5OTkWFZWlthkBz09PbZz506x169fv56ZmZmx/JclTHfiCgYen+l47mAGS08wk2XHmcfcrxgA1r17d2ZpacnU1NQYAKanp8dGjRrFBg4cyOTl5VloaChLSkpiT58+5TYyZazuJ7cQyQkNDWVaWlrs5MmTkg7lk9X3JCCRSMQyMzPZ3r172dy5c1mPHj0Yn89n2tradb7AvqysrMaJWp+qaY9gkiZBTU0N48aNw44dOxAeHo4BAwZAX1+fO56Xl4fs7Gy4u7tDKBRCSUkJioqK8PHxwZ07d+Ayyxuvc+9DpoUGZFXfTESpKCvD8woBeDwerK2tsXXrVty5cwcAsG7dOhw/fhwdO3ZEjx494Orqiu7du0NdXb3RtgJIzSoqKrBgwQL89NNPiI6OxogRIyQdUr1at24dLCwsoKysDB0dHcycORPPnz/njoeFhUEoFOL3339Hx44doaSkhDFjxqCwsBCHDh1C+/bt0bJlS3zzzTewt7fHxo0bceXKFW4s8PLly5g0aRL09fWhoqICJycnbNiwAYmJiXj9+jWWLFkCXV1dKCkpwcrKCmfOnOHuffT3s+DxeNj321H06tULcnJy2LJlC5YvX4709HRum66wsDAAb5ZvzJ49G61atUKLFi1gZ2f33jVkqauTNApubm6YNm0aFBQU4Orqin379iEtLQ35+flc1fzKykrIyspy+5np6OhAR0cHHSx64GroWbHriQDwSwrA4/FgZWUlth8aaR6eP38OZ2dnVFZWIiEhAerq6pIOqd5V7SpvbGyMrKwszJ07F3PnzsWuXbu4c0pLSxEYGIiIiAiUlZVh/PjxGD9+PBQVFfHbb7/h6dOncHBwQFBQEBYuXAgAkJGRQVRUFFxdXRESEoLU1FTMnDkTfD4fN2/eREhICG7cuAElJSWMHj0a/fv3x7NnzzB69GgkJiYik2li7t6rAIBpnvOwbLk/9g2zhkAgQGZmJk6cOIGLFy8CeLM9FWMMI0eOhKqqKk6cOAF1dXWEh4dj0KBBuH37Ntq0afP2D6JO24+EfIKysjKWkZHBoqKiWFhYGOvWrRvT09NjgwYNYsbGxgwA4/F4rGfPnmzChAmsc+fOrHPnzuzYsWNMS0uLLV68uNZrL123g4HHZ+3nhbMOfqfY7phbzM3NjQFgPXv2ZFeuXGGMia/j27p1KxMKhSwvL6/Ga1JXZ+N169YtZmpqyr788sv3quXamHxIV+d/d5UPDQ1lANitW7e4cxYuXMj4fL7Y78F/72FnZ8fat28vNhTw448/Mh0dHcYYY/fu3WM8Ho/t3r2bff/992zYsGFMVVWVKSsrs3YdzFg732NM28WfAWCaY31ZB79TLP9lCWOs5jWpFy5cYMrKymJrVxljrGvXrmLrcmtDLT7SYIqLi5GVlVXjIzMzE48fP0br1q1hYGAAQ0NDiEQitGzZEkuWLIGBgQHU1NSgoKDAlYuqGsQfPXo0/P39MXfuXLRu3RojRoxAeXk5kpOT8fDhQ/j6+kKLFUBFRQWql7dhzdpAyPOeYUNaGmRlZWFiYgJ7e3uuDBj7/xU+EydOxMqVK2Fvb4+VK1dCR0cH169fR4sWLRpsk1pS906fPo2pU6fC398fM2fOlHQ4DeqPP/5AQEAAbt68icLCQlRWVqKsrAyPHj3ilm3Iy7/ZTqmKtrY2WrduLVZrVVtbGzdu3BC7trW1tdhQQJ8+feDn54cXL14gOTkZjDG4u7uLvaa0tBTg8cEqK7jn5Nu0h4DPxz8FxdAQ1ryeNikpCUVFRVzJvColJSW4f//+Oz8HSnwSlpmZCSMjIyQmJr53d5uhoSG8vb2xaNGiT7p3XU9BLiwsFEtk/01uhYWF0NPTg4GBAfcYOnQo92cdHR2xIrtViW3o0KHvvPfMmTOhrKyMNWvWwNfXF4qKiujcuTO8vb0hEokQHByMLb8GIzg4GMMG9oO+vj4CAwMxceJEDBs2DGFhYYiIiMC5c+ewbNkyCAQCjBkzBtHR0Vi4cCFGjx6NsrIydOjQAevXr6+Tz4s0LMYY1q1bh7Vr1+Lw4cPo27evpENqUFlZWRg5ciRmzZqFH374ARoaGkhOToaLi4vYjvCysuJpgcfjfXIBcZFIBB6Ph8TExGrXKhHx4bj79v+uLZBHuUgEXbXal5KIRCJoa2sjJiam2rH3qaNKie8T5eXl4bvvvsOpU6eQm5uLli1bokuXLli6dCk+++yzerlnYmLiB1XwCAsLg7e3N169eiX2/OHDh9+7mjtjDHl5edVaaf/+ubKyUiypGRgYoGfPnlwLTltb+4MqQlQNYr/vcRcXF7i4uFQ778yZMxAKhXBycuLGA6v8+zOpGkeMjIzEjz/+iK+//hpLlizB7t27a/ycXF1d62ThO6l/JSUl8PDwQGpqKhISEsQmRzUXV65cQVlZGdavX8/V6/zYJQ81SUhIAGOMa/XFx8ejbdu2UFFRgaWlJRhjePToUY29Jasd5OG97k1tWHkBn9vIFwDk5ORQWVkpdn737t3x+PFj8Pl8GBsbf3CslPg+0fjx41FUVISQkBCYmJjgyZMniI6OFltYXdf+27z/WP8ezK+srEROTk6t3ZAPHjyAoqIil8QMDAzQrl07DBo0iEty0jrrcdOmTfD29n6v2GRkZODo6Ijx48fj/PnzCAgIgJ+fHxYtWoQZM2ZASUmpASImdSk3NxcODg7Q1dVFbGxssyj79uLFi2q7ZLRv357bVd7BwQHx8fHVdpX/FDk5OZg/fz68vLyQlpaGNWvW4JtvvgEAmJqaYtKkSXB1dUVgYCC6d++OZ8+e4eLFizA2NoaDgwOYiyXG7gJOefeDqaEOd11DQ0NkZWUhOTkZ+vr6aNGiBYYMGQJbW1vY29tj9erV6NixIx49eoTTp09jyJAh6Nev39uDfffwJ6lNQUEBA/DWDSl37drFevbsyYRCIdPS0mKOjo7sn3/+t5v133//zQCwxMREVllZyXR1ddnGjRvFrnH79m0GgCUlJTHGqu+8HBgYyMzNzZmSkhJr27YtmzFjBisoKGCMMRYVFcUAiD3GjBnDvv32W6atrc3atm3LjIyMmJycHGvTpg2ztrZmTk5ObMmSJSwoKIidPHmSXb9+nb18+bIuP7oGk5GRwTQ0NNjr168/+hrx8fHM3t6etWrViq1YsYL7bIn0S0xMZLq6umz58uXcBI6mbtq0adV+5wGw8ePHv3VXecZqnrC1Zs0aZmBgIPbckiVLWI8ePbif7ezsmLu7O5szZw5TVVVlLVu2ZAsWLGAVFRXcOVVr8oyMjJhAIGDa2tps9OjR3MSyqv+r/juZrKSkhI0fP561bNmSAWChoaGMMcZevHjBvvzyS6ajo8MEAgHT1dVlTk5O7N69e+/8jCjxfYLy8nImFArZ3LlzWXFxcY3nhISEsJMnT7L79++zhIQENmDAANavXz/u+L8TH2OM+fj4sN69ezPG3lTHT3lQwBYtXcbMzMy41/w38a1fv56dOHGCnT17lq1atYq1bduWde7cmTk7O7PevXszFRUVBoDp6uqyPn36MBcXF+bn58dMTU2Zvb09u3v3LispKamPj0jifHx82MKFC+vkWunp6Wzq1KlMXV2d+fj4sJycnDq5Lqkfe/fuZZqamuy3336TdChEylDi+0SHDh1iampqTF5enllbW7OFCxey+Pj4Ws+/efMmA8BVNvhv4ktNTWUAWPCxWNbB7xTr8t1pJlBvy76YPZ8lJyezyMhIpqamxvr168fGjRvHunfvzjQ0NJiCggLr0KEDGzp0KBs+fDiTkZFh4eHh7M8//2SBgYE1Tru3s7Njc+bMqZ8PRgoUFRUxTU3N9/oG+CEyMzPZ3LlzmZqaGnN3d6/z65NPU1lZyZYtW8YMDQ1ZSkqKpMMhUogqt3yi8ePHIycnB8ePH8fnn3+OuLg4WFtbw9/fHwCQnJwMe3t7rvJ+1czNBw8e1Hg9U1NTGBoZY9nqIJSUi5D/dzrKn+UilnXAlFle2LFjByoqKqCiogIXF5c3sxW3bEHfvn3x6tUrxMXFITo6GpWVlVxfd3NYmFuTffv2oVevXmjXrl2dXtfAwAAbN27ErVu3oKmpid69e8PFxQWpqal1eh/y4V6+fIlx48YhJiYGCQkJ6Nq1q6RDIlKIEl8dUFBQwGeffYZvv/0WcXFxmDFjBr7//nsUFhZi2LBhUFJSwq5du5CYmIjTp08DADd9OC8vD8CbncD79OkDDQ0NlPLl8erGRQDA6/SLkNftBPW2RoiI/B3Hjh2Duro6BgwYgAkTJkBbWxuTJ0+GmZkZDh48iKSkJOzYsUPsHs0RYwybNm3iKs7Xh1atWmHFihXIyMiApaUlPv/8c4wcObLGKdak/mVkZKBPnz7Q1tbG+fPn33ufRNL8UOKrB506dUJFRQVSUlKQn58Pf39/9O/fH6amplwtuYCAALRv3x6DBw8GALRo0QL+/v548uQJzpw8jvKCRyh9eAuvb8ZAucvAWte1/HuKcp8+fWBqaoqcnByxc2qaDtzUJSQk4Pnz5xg+fHi930tFRQWLFy9GRkYGxowZA1dXV/Tt2xcnT57kFsOT+hUVFQUbGxt4eHhgy5YtkJOTk3RIRJpJuq+1McvPz2cDBw5ku3btYqmpqSwjI4MdOHCAaWtrsyFDhrDMzEwmEAiYra0ts7OzY8rKykwgEDAA7KuvvmJpaWns/v37YmN8VcytbJi8tjHjyQiYyaL97OjV/80E/ffklqoxwbVr17KMjAy2Z88epqenJzZT69KlSwwAO3v2LMvLy+NmODblMb7JkyeztWvXSuTe5eXlbO/evczCwoKZm5uziIiIJlcWS5ps3ryZtWrVip0/f17SoZBGghLfJygpKWG+vr6sZ8+erGXLlkxBQYG1bt2aWVpaMktLS6akpMRMTEyYqqoqEwgErFu3buz06dMMAIuKimKMVZ/cUiUkJIQBYIOGj+Jq1lX576zOd01RZowxDw8PpqGhwQCw7777jjHWdBPf48ePWcuWLdnTp08lGodIJGInT55kffv2ZcbGxiw4OLjW2b/kw5WVlTEPDw/WqVMnmmBEPgiPMeqL+RiVlZVIT0/HpUuXuMeLFy9gY2MDW1tb2NjYwMrKqsnv4CyN/P39kZGRge3bt0s6FE5sbCxWrlyJpKQkzJ8/H56enu9VWonULD8/H46OjmjRogUiIiLosyQfhBLfe3r16hUSEhK4JJeQkABtbW0uydna2qJDhw4fVJKL1L2KigoYGxvj6NGjsLS0lHQ41Vy7dg0rV67E2bNn4e7ujnnz5tEkjA907do1jB07Fk5OTlixYgVXfouQ90WJrxbZ2dlckouLi8Pt27fRrVs3sRZdXZUOI3UnMjISa9euxaVLlyQdyltlZGRgzZo12LdvHyZNmoRFixbB0NBQ0mFJvSNHjmDWrFnYsGEDJk6cKOlwSCNFiQ9vWgnXrl3jktylS5dQUlLCJTlbW1v06NED8vI1b5FBpMfgwYMxc+bMGotVS6Pc3Fz8/PPP2L59O0aOHIklS5agc+fOkg5L6jDG8NNPP2HLli04fPgwrKysJB0SacSaZeIrLCxEfHw8l+QuX74MXV1dLsnZ2trCxMREKgsuk9rduHEDgwcPRlZWVqObzv78+XMEBQVh48aN6N27N3x9fWFtbS3psKRCUVERpk+fjszMTBw5cuTdu2sT8g5NPvExxpCVlSU2CeX+/fvo0aMHl+Ssra2hoaEh6VDJJ/L29oa6ujp++OEHSYfy0YqKihAaGoo1a9bAyMgIS5cuxdChQ5vtl7Ds7GzY29ujS5cu2Lp1KxQUFCQdEmkCmlziKy8vR0pKitj4nEgk4pKcjY0NLC0tG12LgLzdixcvYGhoiLS0NOjo6Lz7BVKuvLwc+/btw8qVK6GgoIClS5fCwcGhWU3kiIuLg6OjIxYsWICFCxc22+RP6l6jSHy1baQKAAUFBfjrr7+4JHflyhUYGRmJjc8ZGRnRL00Tt3nzZly8eBEHDx6UdCh1SiQS4fjx4wgICMCzZ8+wePFiTJkypcmPN4eGhmLJkiUICwvDiBEjJB0OaWI+KPG5uroiPDwcwJvt6fX09ODg4IDly5fX6+aOxcXFePnyJbS0tHD//n1ubO7SpUvIysqClZWVWLdly5Yt6y0WIn0YY+jcuTOCg4NhZ2cn6XDqBWMM0dHRCAgIQHp6OhYsWIDZs2dDKBRKOrQ6VVFRgcWLF+P48eM4duwYzMzMJB0SaYI+eAf2IUOGYNeuXSgvL0dMTAxmzpyJ169fIzg4uM6DKy0txdWrV8W6LWVlZbkkN3v2bHTt2hWysrSRfHMWFRUFPp+P/v37SzqUesPj8TBgwAAMGDAAycnJWLlyJQICAuDl5YUvv/yySYxRFxQUwNnZGYwxXL58GWpqapIOiTRVH1LmZdq0aWzkyJFiz82cOZO1bt36nTuN2/TtV+OuwFFRUSw0NLTGY7Kysqxbt25s0KBBTF5enmVlZTGRSPSBxWlIUzdu3DgWHBws6TAa3O3bt9nMmTOZmpoamz9/Pnvw4IGkQ/pot27dYqampmz+/PlU15TUu08uM6KoqIjy8nKUlZVh+fLlSE1NxYkTJ5Cfn8+tpTqa8hBPrL3RYeEetPtqN8LOJcPd3R2ampq4evUqoqKi0K5dOwiFQvTv3x+TJ0+GQCDAhg0bcPXqVUyZMgWysrLQ19ensToi5sGDB4iOjsbkyZMlHUqDMzU1xbZt25CWlgY+n4+uXbvCzc0Nt2/flnRoH+T3339Hv379sGTJEqxfv556cEi9+6TEd/nyZezZsweDBw+Gm5sbRowYAWNjY/Tq1QvBwcGIiYlB2u37WHL4GspllVEiUEGFfEv4bNyDLVu2QlZWFleuXEGvXr1w6NAhPH/+HAcPHkRMTAy8vLzg5eVVV++TNFFbtmzB5MmTm9xY14fQ0dFBYGAg7t69CwMDA/Tr1w+Ojo7cFljSijGGwMBAzJgxA5GRkXBzc5N0SKSZ+OCvVqdPn4ZQKERFRQXKy8thb2+PX375BcnJyVi+fDlSUlLw7Nkzbh+y5Bv3IODzUQIRAKA09y7yT/8C3xVr4f/1ArFrl5WVwcHBAWZmZggMDKyDt0eastLSUmzfvh1//vmnpEORChoaGvjuu++waNEibNu2DePGjUPHjh3h6+uLgQMHSlVvSUlJCTw8PJCamor4+Hjo6+tLOiTSjHxwi69///5ISUnB7du3UVJSgsOHD0NZWbnWncZbKvBQLnqT9CpePkXebz9Cvfc4LJxXfWdsd3d3FBQUYP/+/c1qvRL5OAcPHkTXrl3RoUMHSYciVZSVlTF//nzcv38fEydOhJeXF6ytrREZGQnR//8uSlJubi4GDhyIoqIixMbGUtIjDe6DE5+SkhJMTExgYGAAgUAAALh165bYTuMdO3bEkydPAACqinJY7WABOV4FnkX+BEW9TgjZuAYaQvF1SGvXrsWJEydw4sQJ2mKEvJfNmzdjzpzqX6DIG3Jycpg+fTrS09OxePFi/PTTT+jSpQvCw8NRXl4ukZiqhjZGjBiB/fv31+syKEJqUyd76Ojr60NeXh6bNm1CRkYGTp48CT8/P+74mG466J55EK0URLi4fyt6t5HFo0eP8OjRI5SVleH8+fNYtmwZgoKCoKioyB0rLCysi/BIE5SUlIScnByMGjVK0qFIPRkZGYwfPx6JiYnYuHEjdu7cCRMTE2zcuBFFRUUNFse+ffvw+eefY+PGjfDz85OqrlfSvNRJ4tPS0kJ4eDiOHDmCTp06Yfny5Vi3bp3YOfFxscjKuIeeFp3Qpk0b7hEXF4fY2FiUl5fjiy++EDs2b968ugiPNEGbN2+Gp6cndYl/AB6PhyFDhuDChQs4cOAAoqKiYGRkhBUrVqCgoKDe7isSifD111/D19cXFy5cwLhx4+rtXoS8j0ZRsoyQf3v69ClMTExw584d2hPxE928eROrVq3CsWPHMGPGDHz11Vdo27ZtnV3/5cuXmDRpEgoLC3Ho0CH6+yJSgbYLJ43Ojh07MGbMGPpPtA6YmZkhLCwMV69eRWlpKTp37gwej4dffvkFAJCZmQkej/fWpRG1nZORkYE+ffqgTZs2OHfu3Hv9fYWFhTXrpSmkYVCLjzQqlZWVMDExwYEDB2gz0k+QnJwMKysrWFtbi+1Wn5eXh1atWkEoFGLkyJGYOnUqRo4cicTERPTs2bPGa1VWViIvLw+amprc4vOoqCi4uLjg22+/haen53uP51XV5W3VqtWnv0lCakEtPtKo/P7779DS0qKk94m2b98OLy8vXL9+HTdv3uSer2qVbd68GT169ICrqyuAN4mytu/IMjIyaN26NWRlZcEYQ1BQEJydnbFnzx54eXl90CQWRUVFSnqk3lHiI43Kpk2b4O3tLekwGrXi4mLs2bMHs2fPhqOjI0JCQqqdo6SkBB8fH8TExAAA/Pz8oKqqCjk5OXTs2BFnz57lzq3q6vzrr7/g6ekJHx8fPHnyBIMHDwaPx+MeFy9eRFhYmNhzVY+qBEtdnaQhUOIjjcbdu3eRnJyML774QtKhNGqHDh2CgYEBzM3NMWXKFOzcubPWdX1V+/4JBAJMnz4dxsbGyMvLw6hRo5CVlYWnr0pxI+cFAMDb2xs5OTlIT09Hbm4u9/Dw8IC2tjY6duwIJycnsWNnzpyBnJxck91OikgnqgZLGo2goCDMmDEDCgoKkg6lUQsJCcGUKVMAAHZ2dlBSUsLRo0fh6OhY62s8PT3x9ddfgzGGU6dOYcKECbDoNxxak1eDvcwHAGiXGY67AAAPMklEQVSZ98eRHYHg8//3fXr//v0ICwtDVFQUWrduDeBNdyYAPHnyBLNnz4anpyemT59eX2+XkGqoxUcahdevX2Pnzp3w8PCQdCiN2r179xAbG4uJEycCeLO2b9KkSTV2d/5bnz59uPNHjhyJUfZjUamohgrGR2nFm7G/W7KGKCj6X8vxypUrcHNzQ0hICKytrcWuR3V5iSRRi480ChEREejXrx8MDAwkHUqjtn37dlRWVorVx6yatJKdnQ09Pb33uk5RaSVk+OKTVmT5fPxTUAwNoTxycnJgb2+PBQsWcEn236rq8p46dYqKEJAGRy0+IvUYY1SXsw5UVFQgPDwcAQEBSElJ4R6pqamwsLBAaGhora+Nj4/n/swYw620q5DVEE+SFSIRdNUUUVJSgrFjx8LGxgY//PBDtWtRXV4iadTiI1IvNjYWpaWlGDx4sKRDadROnjyJ/Px8zJo1CxoaGmLHnJ2d8euvv4rV2P234OBgmJqawtzcHEFBQfgn+wGCNkVg9aV8iOTetNhm9dGDhlAe06ZNQ2FhIVatWoXHjx9z11BXV8eff/6JZcuWISIigqvLC7wZ91NVVa2nd06IOEp8ROpt3rwZXl5eYpMmyIcLCQnBwIEDqyU9AJgwYQKWLl2Kc+fO1fjalStXYt26dUhOToaBgQEiIyPx+TAr2NuWIuHabYzcCLy+fwWAA6Kjo5GVlYV27dqJXSMqKkqsLu+/TZs2DWFhYXX1Vgl5K6rcQqRabm4uOnXqhMzMTGoRSLHjx49j1apViI2NlXQohLwTfYUmUm3r1q1wdnampCflhg8fjrt37+L+/fuSDoWQd6LER6RWeXk5tmzZQpNaGgGBQAAXFxfs2rVL0qEQ8k6U+IjUioyMhKmpKbp06SLpUMh7mDp1Knbu3FlrTU9CpAUlPiK1qC5n42JpaQklJSWx3R4IkUaU+IhUunbtGjIyMmBvby/pUMh74vF4mDp1KsLDwyUdCiFvRbM6iVRyd3eHrq5urevKiHR6+PAhzM3N8fDhQ64mJyHShlp8ROo8f/4cBw4cwKxZsyQdCvlAOjo66NmzJ44dOybpUAipFSU+InXCwsLw+eefc9X8SeNSNcmFEGlFXZ1EqohEInTo0AHh4eGwsbGRdDjkI7x+/Rq6urq4efMmfXkhUolafESqnDt3DkKhkNsGhzQ+ysrKGDt2LPbu3SvpUAipESU+IlWqljDweLx3n0ykFnV3EmlGXZ1Eavz999+wsrLCgwcPoKSkJOlwyCcQiUQwNDTEiRMnYGFhIelwCBFDLT4iNYKDg+Hq6kpJrwng8/mYMmUKtfqIVKIWH5EKxcXF0NfXR3x8fLXtbEjjdOvWLQwcOBDZ2dmQlaUd0Ij0oBYfqXc8Hg+HDh166zn79u1Dr1690K5dO4SFhUEoFNZ5HIaGhli7dm2tP5O61bFjR+jr6+P8+fOSDoUQMZT4CCc5ORkyMjKwtbWt0+vm5uZi9OjRtR5njGHTpk3cLgxOTk7IyMio0xhqkpiYCC8vr3q/T3M2bdo06u4kUocSH+Fs374dXl5euH79Om7evFln123dujXk5eVrPZ6QkIDnz59j+PDhAABFRUW0atWqzu5fGy0tLRpPrGdOTk44deoUXrx4IelQCOFQ4iMA3oyx7dmzB7Nnz4ajoyNCQkLEjsfHx2PQoEFQVlaGqqoqBg0ahJycHABvWmyBgYFo37495OXloaurC19fX+61/+3qXLp0KTp06ABFRUXoGxhgyqw5mDzDA3z+m3+O/+3q/P7776ttTVRTd+iWLVtgYmICOTk5mJiYYNu2bW99z9TVWf80NDQwaNAgHDx4UNKhEMKhxEcAAIcOHYKBgQHMzc252Xjl5eUAgNTUVAwcOBAmJia4dOkS4uPj4eTkhIqKCgDAsmXL8OOPP8LX1xfp6ek4ePAg9PT0ar2XsrIyduzYgQ2/RaHSxg1/Z2Vh0+/JOJby8KPjj4yMhLe3N+bPn4/r169j3rx58PLywvHjxz/6mqRu0Jo+Im1oqhUBAISEhGDKlCkAADs7OygpKeHo0aNwdHTE6tWr0a1bN2zdupU738zMDADw6tUrrF+/Hj///DPc3NwAACYmJm+tvOLn54enr0oxY/UfEBj2hKqNE14kRGLx4WuwNdH8qPjXrl2LKVOmcPv3mZqaIikpCatWrXrr+CKpfyNGjMCsWbPw999/w8jISNLhEEItPgLcu3cPsbGxmDhxIoA3XZOTJk3iujuvXr2KQYMG1fjaGzduoLS0FIMHD37v+x06dAhDBtrh/rpJeBDoiIIL21HxIg8CPh//FBR/1Hu4efNmtUk5ffv2xY0bNz7qeqTuyMnJwcnJCbt375Z0KIQAoBYfwZtJLZWVldDX1+eeq1remZ2dXaf3io+Ph7OzM3x8v8azri6okFFE8d0EFETtQLlIBF01RVz9z2v4fD7+u9y0qhv2Xaj0mXSYOnUqJk2ahG+++Yb+TojEUYuvmauoqEB4eDgCAgKQkpLCPVJTU2FhYYHQ0FBYWlrijz/+qPH1ZmZmkJeXx4ULF97rfpcuXYKOjg4CflyOX7wd0UJbD7zX+QCA1Q4W0BBWn/2ppaWFx48fiyW/lJSUanFcunRJ7LnY2Fh06tTpveIi9cvKygqysrKIj4+XdCiEUIuvuTt58iTy8/Mxa9YsaGhoiB1zdnbGr7/+isOHD6NPnz6YPXs25syZAwUFBcTExGDo0KHQ19fHvHnz4OvrC3l5efTv3x9Pnz5FUlISPD09q93P1NQUDx8+REREBPr06YMZ6vcQcO9NwhrTTafGGAcMGIBnz57B398fzs7OuHjxYrUF8T4+PpgwYQJ69OiBoUOH4vTp04iIiMDhw4fr6JMin4LH43GTXGjnDSJxjDRro0ePZp999lmNx+7fv88AsDNnzrCYmBjWr18/pqCgwFRVVdngwYNZTk4OY4yxyspKFhAQwIyMjJhAIGC6urps2bJl3HUAsIMHD3I/L126lGlqajJlZWU2btw4FhQUxP79TzE0NJQpKyuLxfLrr78yfX19pqSkxJycnNjPP/9c7Zzg4GDWrl07Jisry9q1a8e2bt0qdtzAwICtWbOm1p9J/crKymLq6uqsuLhY0qGQZo5qdRJCGszgwYPh6ekJR0dHSYdCmjEa4yOENBha00ekAbX4CCEN5uXLl9DT08OdO3capCwdITWhFh8hpMG0aNECY8aMwb59+yQdCmnGKPERQhoUdXcSSaPERwhpUAMHDsSjR4+Qnp4u6VBIM0WJjxDSoGRkZDB58mRq9RGJockthJAGl56ejqFDh+LBgweQkZGRdDikmaEWHyGkwXXu3Blt2rSptRQeIfWJEh8hRCJokguRFOrqJIRIRF5eHtq3b4/s7Gy0aNFC0uGQZoRafIQQidDS0oKdnR0VEicNjhIfIURipk6divDwcEmHQZoZ6uokhEhMaWkp2rZti+TkZBgYGEg6HNJMUIuPECIx8vLy+OKLLxARESHpUEgzQomPECJRVbM7qfOJNBRKfIQQibK2toZIJEJiYqKkQyHNBCU+QohE8Xg8WtNHGhRNbiGESFxmZiasrKzwzz//QF5eXtLhkCaOWnyEEIkzNDRE586dcerUKUmHQpoBSnyEEKlA3Z2koVBXJyFEKrx48QL6+vq4d+8eNDU1JR0OacKoxUcIkQoqKioYMWIE9u/fL+lQSBNHiY8QIjWou5M0BEp8hBCpMWTIEGRnZ+PWrVuSDoU0YZT4CCFSQ1ZWFpMmTaJWH6lXNLmFECJV0tLSMGLECGRlZYHPp+/mpO7RvypCiFQxNzeHpqYmLl68KOlQSBNFiY8QInVokgupT9TVSQiROo8fP0bHjh3xzz//QFlZWdLhkCaGWnyEEIkyNDTE2rVrxZ7T1taGra0tIiMj6/ReAwYMgLe3d51ekzQ+1OIjhNSbx48fY+XKlThx4gSys7OhoqICExMTuLi4YPr06RAKhcjLy4OysjKUlJTEXnvgwAFs27YN586dq7N4nj17BoFAgBYtWtTZNUnjQ4mPEFIvMjMzYWtrCxUVFXz33XewsLCAoqIi0tPTsX37dnzxxReYOHFira8vLi6Gjo4Orl27Bl1d3U+KpaysDHJycp90DdJ0UFcnIaReeHp6gs/n48qVK3B2dkanTp1gZGSEUaNG4ciRI3BxcQFQvauTx+Nh69atmDp1Kl6+fImuXbti9+7dYtdOS0vDkCFDoKioCHV1dbi6uqKwsJA77urqilGjRmHVqlXQ1dXlEid1dRKAEh8hpB48ffoUZ86cwZw5c2qdnMLj8Wp9/Q8//AB7e3vs2rULPFk5THdzQ+rNuwCA169fY9iwYRAKhbh8+TIiIyMRFxcHNzc3sWtER0fj2rVrOH36NC5cuFB3b440epT4CCF17t69e2CMoUOHDmLP6+rqQigUQigUwsPDo9bXT5kyBZMnT4Zix35QnvwLKhkfw3234ljKQ+zZswevX7/Grl27YG5uDjs7O2zduhWHDx/GvXv3uGsoKChgx44d6NKlC8zNzevtvZLGhxIfIaTBxMTEICUlBb169UJJSUmt51lYWODpq1IsOXwNPDlF8JVUUPqyAIsPX0Ny6nVYWFiITVCxsbEBn8/HjRs3uOe6dOlCu7mTGslKOgBCSNNjYmICHo9Xrdi0kZERAFSbwflfAoEA/xQUQ8DnowQiADwwxiDg8/GqtKLW1/27+5TW/5HaUIuPEFLnNDQ0MHToUGzatAmvXr36qGvoqimiXCQSe65cJEJ3i85IS0vDy5cvuefj4uIgEolgZmb2SXGT5oESHyGkXgQFBUEkEqFHjx7Yu3cvbty4gTt37mDv3r1ITU2FjIzMW1+vIZTHagcLKAj44PMAgQwPqx0s4D7DFUpKSpg6dSrS0tLw559/wt3dHQ4ODjAxMWmYN0caNerqJITUC2NjY1y9ehUBAQHw8/NDdnY2BAIBzMzM4OXl9V7LCsZ004GtiSbMQ+XhPsAEY7rpAADOnDmD+fPno1evXlBQUIC9vT02bNhQ32+JNBG0gJ0QQkizQl2dhBBCmhVKfIQQQpoVSnyEEEKaFUp8hBBCmhVKfIQQQpoVSnyEEEKaFUp8hBBCmhVKfIQQQpoVSnyEEEKaFUp8hBBCmhVKfIQQQpoVSnyEEEKaFUp8hBBCmhVKfIQQQpoVSnyEEEKalf8Dq68HoRcm5v4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC3rElEQVR4nOzdd1hUx9cH8O/Se0dEVECKqCBgrxS7xBpLVFDA3hBi16iAFQv2GDuo2DWJirHSVVDsDZUqdorSOzvvH7zsz3VBUcBLOZ/n2eeJ9869c3ajy2HuzBkeY4yBEEIIIYSQHyTGdQCEEEIIIaR2o4SSEEIIIYRUCiWUhBBCCCGkUiihJIQQQgghlUIJJSGEEEIIqRRKKAkhhBBCSKVQQkkIIYQQQiqFEkpCCCGEEFIplFASQgghhJBKoYSSEEIIIYRUCiWUhBBCCCGkUiihJIQQQgghlUIJJSGEEEIIqRRKKAkhhBBCSKVQQkkIIYQQQiqFEkpCCCGEEFIplFASQgghhJBKoYSSEEIIIYRUCiWUhBBCCCGkUiihJIQQQgghlUIJJSGEEEIIqRRKKAkhhBBCSKVQQkkIIYQQQiqFEkpCCCGEEFIplFASQgghhJBKoYSSEEIIIYRUCiWUhBBCCCGkUiihJIQQQgghlUIJJSGEEEIIqRRKKAkhhBBCSKVQQkkIIYQQQiqFEkpCCCGEEFIplFASQgghhJBKoYSSEEIIIYRUCiWUhBBCCCGkUiihJIQQQgghlUIJJSGEEEIIqRRKKAkhhBBCSKVQQkkIIYQQQiqFEkpCCCGEEFIplFASQgghhJBKoYSSEEIIqYCEhATweDw4OTlxHQohNQ4llIQQQiqsNKn6/CUlJYUmTZpgzJgxePjwIdchEkI4wGOMMa6DIIQQUjskJCRAX18fBgYGcHBwAABkZWUhIiIC169fh7S0NAICAtC1a1eOI616hYWFiI2NhbKyMrS1tbkOh5AahRJKQgghFVaaUPbt2xcXL14UOrdkyRKsWrUK1tbWCA4O5iZAQggn6JE3IYSQKuHi4gIAiIyMFBw7c+YMevbsCVVVVcjIyMDU1BQbNmxAcXGx0LW+vr7g8Xjw9fXFuXPn0LVrVygqKkJPT0/k/JeCg4PB4/Hg4eEhOObk5CTyaP7zl42NjdC1X3slJCQAoDmUhHyNBNcBEEIIqVt4PB4AYNGiRfDy8oKOjg5+/fVXKCsrIywsDPPmzcPNmzdx8uRJkWtPnjyJy5cvY8CAAZg+fToyMjKEzidl5iHoeRL01OWhryFfbgxDhgwRJKOfCw8Px+XLlyEnJwcA0NPTg7u7u0i7rKwsbNq0CQAgIyNT4fdOSH1FCSUhhJAqsWPHDgBAhw4dcOXKFXh5eaFv3744ffo05OVLkj/GGKZPn46dO3fi9OnTGDZsmNA9Ll68iEuXLqFXr15Cx3PyiwAA6y4+h8LbkhFQKyNNbBttWWYsQ4YMwZAhQ4SOPX/+HFu2bIGamhq2bNkCoCSh/HxkEwD4fD4GDx4MPp8Pb29vNGzY8Ps/DELqGUooCSGEfLeYmBhBIpadnY2bN28iLCwMMjIyWLVqFby8vAAAu3fvFiSTQMnopZeXF3bt2oWjR4+KJJSDBw8WSSYB4PDNRJFj12NS4HL0HsY3+3a8KSkp+OWXX5CTk4MrV67AyMio3La///47/P39MWXKFMyePfvbNyeEUEJJCCHk+8XGxsLT0xMAICkpCS0tLYwZMwYLFy6EmZkZIiIiIC8vj/3795d5vaysLJ49eyZyvEOHDsjLy0NsbCyio6MRHR2NezFv8PwDT6RtMWMIjU5Gf/WvLwfIz8/H0KFDERsbC19fX1hZWZXbdseOHdi6dSt69+6N7du3f/W+hJD/oYSSEELIdytrlffnPn78iKKiIkHSWZa0tDScP38e0dHROHv2LABgw4YNWLx4MUoLkCgoKEC3sx0g2ajc+7xPz/tqrBMmTMC1a9ewePFiODo6ltvu4sWLmDVrFlq0aIGTJ09CQoJ+RBJSUfSvhRBCSJVTUlICj8dDZGQkoqOj8eLFC8GIY3R0NOLj4/HmzRsMGDAAMjIy0NDQAAB07NgRv/76K4yNjWFkZAQtLS3Ep2Sjg/MyAABjxSJ9yfMKyo3D09MThw8fxogRI7By5cpy2z1+/Bi//fYb1NTUcP78eSgrK1fyEyCkfqGEkhBCyA/j8/l4+/atSNKYn5+P7OxsNGtWMsFRUlISBgYGMDIywqBBgwQJo5GREXR0dHDw4EE4OztjxIgRImV5dJQkIZ6XBgAozkwVHOeBobtRA7yNjURZjh49Cg8PD3To0AEHDhwQrD7/0ocPHzBgwADk5+fjwoUL0NfXr/wHQ0g9QwklIYSQr2KMISkpCS9evEB4eDgA4P79+2jdujViYmKQm5sLABAXF4eenh6MjIzQs2dPnD17Fq1atcKBAwdgbm4u9Aj5/fv3+PTpE5o0afLN/jdv3ozU6ycBHg/ZUaFQ7jQcPAkp5CXcx9CubTF+zhaRa27cuAFnZ2c0bdoUZ8+ehaysbJn3zs3NxaBBg/Dy5UscPnwYXbp0+ZGPiJB6jxJKQgghAErmPX75aLr0z5mZmUJtCwsL0a1bNzg7OwtGGvX19SElJSVos2zZMqxYsQK9evVCv379oKuri9TUVMTExCAsLAwrV65EixYtvhrT27dvsXLlSsycMgHJyck4cuQIeP8ugo2tLf4+fxjDT2RjyJAh+Pvvv4WumzhxIvLz89GhQwf89ddfIvfV09ODk5MTtm3bhlu3bsHQ0BAvXrwQKSEEAG5ublBRUan4B0lIPUQJJSGE1CMZGRlCCePnSePHjx8F7bS1tWFkZIQ2bdrgt99+g5GREYyNjSEuLo4WLVqgffv2grqT5Vm+fDmsrKywdetWBAQEIC0tDerq6tDX14eHhwfs7e2/Ge/ChQshIyMDDw8PSEtLQ0NDA8ePH8exgz5o0qQJYmNjoaSkJHJdTk4OAODUqVM4deqUyHlra2s4OTkJ2sXExJS7gMjJyYkSSkK+gfbyJoSQOiYnJwcxMTEiCWN0dDQ+fPggaKehoSE0l7E0aTQ0NISCggKH76BEREQEOnfujN27d2PSpElltnF3d8eqVasQHh6O9u3b/+QICSGlKKEkhJBaKD8/H3FxcWUmja9fvxa0U1ZWFkoaP//vmjzqxufz0bFjRxQXFyMyMhLi4uJltissLESXLl2QkZGBe/fuCbZUJIT8XPTImxBCaqiioiIkJCSUWXbn5cuX4PP5AAB5eXlBktilSxehEUcNDY1yVzfXZL6+vrh9+zauXbtWbjIJlKwe9/Pzg6WlJebPn0/FyAnhCI1QEkLqDT09PQBAQkKC4Jivry+cnZ3h4+MjUq6mOtnY2CAkJATFxcV49eqVSNL44sULxMfHo6ioZA9raWlpGBoaiowyGhsbo2HDhrUyaSxPeno6jI2N0atXLxw+fLhC1/z555+YOXMmLly4gH79+lVzhISQL9EIJSGkXHfu3MGOHTsQGhqKt2/fgs/no1GjRujSpQvGjRuH3r17V2v/Tk5OOHDgAOLj4wXJYG3EGMO7d++EEsbHjx8DAOTk5JCfnw8AkJCQQLNmzWBsbIwBAwYIJY2NGzeGmNjXtxisK5YvX47s7GysW7euwtdMnz4d586dw/jx4/Ho0SOoq6tXY4SEkC9RQkkIEcHn8zF37lxs2rQJEhIS6NGjBwYNGgRJSUnExcXh/Pnz8PPzw/Lly7F06VKuw60RGGNISUkRGWWMjo5GTEwMsrOzAQBiYmLQ1dVFq1at0KRJE3To0EEw4qirq1vvt/t79uwZtm7dCk9PT+jo6FT4Oh6Ph/3798PU1BRTp07FiRMn6tSoLSE1Xf3+5iKElGnJkiXYtGkTLCwscOrUKRgYGAidz83Nxfbt25GamlrOHequT58+lVlyJzo6Gunp6YJ2TZo0gZGRETp16oSxY8cKkkZ9fX1IS0tz+A5qLsYY3Nzc0LRpU8yePfu7r2/UqBF27dqFkSNH4vDhw3BwcKiGKAkhZWKEEPKZ6OhoJi4uztTV1dn79++/2jYvL48xxtjz58/ZvHnzmKWlJVNTU2PS0tLMyMiILViwgGVmZopc9/btWzZr1ixmaGjIZGRkmLKyMjMxMWFTpkxhaWlpjDHGdHV1GQCRl7W1tdC94uLi2IQJE5i2TmMmKSnFNBtoMUdHR5aQkCDSr66uLtPV1RU65uPjwwAwHx8fwbHMzEy2YcMG1qVLF6ampsbExcWZuLg4k5CQEIqlYcOGrHv37mzEiBEMALOxsWH+/v5s4MCBTEVFhcnJybGePXuy+/fvi8RibW3N6CtY2NmzZxkA9u+//1bqPg4ODkxJSYm9fPmyiiIjhHwLLcohhAhZsmQJVq1ahcWLF2PVqlUVusbLywvr16+Hra0tmjZtCj6fj4iICNy8eROdOnVCaGgoJCUlAZTUSDQ1NUVCQgL69OmD1q1bo6CgAPHx8bh69SoePHgAQ0NDbN68Gb6+vnjw4AFcXV0FJW5KdzgBgJs3b6JP377IzMqCTLP2kFRrhKL0JORGh0NDXR0R4eGCvaRLrwVKFuXk5uYiNjYWu3btwvbt29G9e3fweDxER0fj3bt3gmukpaWhrq4OOTk5vHv3DtnZ2Zg3bx6WLl0KRUVFwf309fVhbW2Nx48fo1WrVmjXrh1iY2Nx5swZqKqqIioqClpaWoL7li7Koa/gEvn5+WjVqhWaNWuGS5cuVepxdVpaGlq3bg0DAwMEBATUm7mnhHCK44SWEFLD2NjYMADs6tWrFb7m9evXLD8/X+S4p6cnA8D8/PwEx0pHodzc3ETaZ2ZmCkY9GWPM0dGRAWDx8fEibQsKCpienh6TlJFjOs5bme5Cf8GrkcM6xhMTZ3Z2duzZs2fs3LlzzNvbmykoKDAZGRnWpEkTxuPxhEYbdXV12ejRo9myZcvYoUOH2N9//80+fvwoEp+ZmRlTVlZm2dnZguPx8fGC+3h5eQlds2TJEgaArVmzRug4jVAKW7NmDZOQkGBPnz6tkvsFBgYyAMzb27tK7kcI+Tr6tY0QIuT9+/cAgMaNG1f4Gh0dHaE9nEvNnDkTAHD16lWRc7KysiLHFBQUKjy/0N/fHwkJCZBrPxQSWs2Ezkk2bglZw47477//YGJigoEDB2Lp0qXIz8+HmJgYHBwcsG/fPly7dg1btmwBAHh4eODIkSPw9PSEg4MDhg4dClVVVZH4nJyckJ6ejsjISJGY9PX1MW/ePKFjEyZMAIAy25MSgv26Z8785t7eFWVra4vZs2dj0aJFghX1hJDqQ4tyCCGVxhiDj48PfH198fjxY6SnpwuKbgMlCUMpKysraGtrw8vLCw8ePMCAAQNgbW2NFi1afNdjzoiICABA0cc3SAsTrVVYnP0JALBz504MGDAAjRo1gr6+PgBg9erVgnbR0dFl3j8pKQleXl64cOECXr58idzcXKHzn7+nUhYWFiKPV0sT87S0tAq+s/pnwYIFkJOTg7u7e5Xed9WqVbh06RIcHBxw8+ZNWgxFSDWihJIQIqRhw4Z49uwZ3rx5g+bNm1fomlmzZmH79u1o0qQJBg0aBG1tbcEPb09PT0GdRaBkK8CIiAgsW7YM586dw3///QegZFX0woULMX369Ar1+fHjRwBA9pPgr7YzMTH5rvIzpfdu3749EhMT0bVrV/Tq1QsqKioQFxfH/fv3cebMGaH3VEpJSUnkWGkZoOLi4u+Kob64ceMG/Pz8sGfPnirfClJGRgZ+fn7o0KED3N3d4eXlVaX3J4T8DyWUhBAhXbt2RXBwMAICAtCjR49vtk9KSsKff/6J1q1bIzw8XGgv5ffv38PT01PkmqZNm8LX1xd8Ph8PHz7E5cuXsXXrVsyYMQOqqqoYPXr0N/stTd46T16JNypm4In9b3s+HhhyE+5DImwn3r17B8bYd41+7tu3D4mJiVixYgWWLFkidM7Lywtnzpyp8L1I+fh8PmbNmoW2bdvC2dm5WvqwsLDAihUrsGjRIvzyyy/o3r17tfRDSH1HcygJIUKcnJwgLi6O3bt3Izk5+att8/PzERcXB8YYevXqJZRMAkBYWNhXrxcTE4OFhQXmz5+Po0ePAgDOnj0rOF+6h3NZo3sdO3YEAMSf3wWxpBdC57obNcBl91Fo3749Ro8eDVtbWzx8+PCrsXwuNjYWADB48GCRc996T6TifHx8cOfOHWzduvWr+3VX1ty5c9G1a1eMGzcOGRkZ1dYPIfUZJZSEECGGhoaYP38+UlJS0L9/f8THx4u0ycvLw8aNG+Hh4QFdXV0AJY8uP583+fr1ayxatEjk2idPnuDDhw8ix0uPycjICI6pqakBAF69eiXSfvDgwVBRUcH7N68wr70cgubYwMepPYLm2ODg+A5oYaCLOXPm4NKlS3j//j0sLS3x8eNHoRjLU/qerl27JnT8yJEjgkf0pHLS0tKwaNEi2Nvbo0uXLtXal7i4OA4ePIiUlBS4ublVa1+E1Ff0yJsQImLlypXIy8vDpk2b0Lx5c/To0QOmpqaQlJQU1ItMTU3FypUroa2tjWHDhuH06dNo164devbsiQ8fPsDf3x89e/YUjPaVunLlCubNm4euXbvC2NgY6urqiIuLw9mzZyEjI4MZM2YI2vbo0QMbNmzA5MmTMWzYMMjLy0NXVxdjx45FdHQ0srKyICsrixkzZqDH6dMwMzMDj8fDy5cvERYWBnV1dTx79gwPHz7E1q1bMX/+fGRnZ2PPnj0YP358uaNiY8eOxdq1a+Hi4oKgoCDo6uriwYMHCAgIwK+//oq///67Wj//+mD58uXIycnB2rVrf0p/+vr62Lp1K8aPH4+BAwdi6NChP6VfQuoNjssWEUJqsMjISDZ+/HhmaGjIZGVlmbS0NNPT02NjxoxhV65cEbTLzMxkc+bMYXp6eoJdclasWMEKCgpEdrd5+vQpc3V1ZZaWlkxdXZ1JS0uzZs2aMUdHR/bkyRORGNatW8eMjIyYpKSk4F4FBQWsbdu2zMTEhMXExDBXV1dmZGTEpKWlmZKSEmvRogWbOHEiCwgIELpX48aNmby8PAPA2rZty8LDw8vcKYcxxu7fv8/69OnDVFVVmaKiIrO2tmZXr14ts31pHUpHR8cyP8cvPwPG6ncdyqdPnzIJCQm2evXqn9ovn89nQ4YMYRoaGuzdu3c/tW9C6jraKYcQUuusWrUKy5YtQ3h4ODp06PDd11+/fh0uLi64d+8eHB0d4eXlhYYNG1ZDpORLjDH069cPsbGxePz4sdAUh58hOTkZpqamaN++Pc6dO1epHXkIIf9DcygJIbXKw4cP4enpiQULFvxQMgmUrGSPjIzEzp07ce7cOTRv3hwbN25EYWFhFUdLvnTu3DlcvnwZGzdu/OnJJABoampi3759OH/+PPbs2fPT+yekrqIRSkJIrVFYWIgOHTqgsLAQd+7cqZJC1R8/fsTSpUuxc+dONG/eHFu3bkWvXr2qIFrypby8PLRq1QpGRka4cOECp6ODU6ZMgZ+fn2DveEJI5dAIJSGk1li9ejUePXoEX1/fKtv1RE1NDX/++Sfu3LkDdXV19O7dG8OGDcPLly+r5P7kfzZt2oTExERs3ryZ80fN3t7e0NbWxtixY1FUVMRpLITUBZRQEkJqhXv37mHlypVYtGgR2rVrV+X3t7CwQGhoKA4fPoyIiAiYmJjA09NTZMtF8mPevHmDVatWwcXFBSYmJlyHAwUFBRw6dAi3bt2iHXQIqQL0yJsQUuMVFBSgffv2AIDIyEhISUlVa3+ZmZlYtWoVNm7cCB0dHWzcuBFDhgzhfFStNnNwcMCVK1fw4sULKCsrcx2OwNKlS+Hl5YXw8PBq+UWFkPqCRigJITXeypUr8fTpU/j6+lZ7MgkAioqK8PLywuPHj9GiRQv8+uuv6NevH549e1btfddF169fx+HDh7F69eoalUwCwLJly2Bubo6xY8ciJyeH63AIqbVohJIQUqPduXMHHTt2xNKlS+Hu7v7T+2eMwd/fH25ubkhMTISrqyuWLVsm2EucfF1xcTE6dOgAMTEx3Lx5E2JiNW8cIyoqCm3atMGkSZOwdetWrsMhpFaihJIQUmPl5+ejbdu2kJSUxK1btyApKclZLHl5efD29saqVaugrKyMtWvXwsHBoUYmSDXJ3r17MWnSJNy4cQOdO3fmOpxybdu2DbNmzcKlS5fQp08frsMhpNahhJIQUmMtXrwYGzZswO3bt9G6dWuuwwFQsq/43LlzceLECXTu3Bnbt29HmzZtuA6rRkpLS4ORkRH69++PgwcPch3OV/H5fPTr1w9PnjzBo0ePBPvIE0Iqhn61JoTUSLdu3cLatWuxbNmyGpNMAkCTJk1w/PhxBAYGIjMzE+3atcOUKVOQkpLCdWg1Tukq+dqwilpMTAw+Pj7Izc3FtGnTQGMthHwfGqEkhNQ4eXl5sLS0hLy8PMLDwzl91P01RUVF2LFjB5YtWwYxMTGsWLECU6ZMgYSEBNehce7p06do3bo1Vq5ciYULF3IdToUdP34co0aNwuHDhzFmzBiuwyGk1qCEkhBS48yfPx9btmzBnTt3YGpqynU435SUlITFixdj//79MDMzw7Zt22BlZcV1WJxhjKFv376Ii4vDkydPqqwI/c9ib2+P8+fP49GjR2jSpAnX4RBSK9Ajb0JIjRIeHg5vb294enrWimQSABo0aIC9e/fi5s2bkJGRgbW1NcaMGYM3b95wHRonzp49iytXrmDTpk21LpkEgO3bt0NRURFOTk7g8/lch0NIrUAjlISQGiM3NxcWFhZQUVHB9evXa+WjYz6fjwMHDmDhwoXIzs7GkiVL8Pvvv9fKxOpH5OXloWXLlmjevDn++++/WlsMPiAgAL169cKmTZvg5ubGdTiE1Hg0QkkIqTGWLFmCly9fwtfXt1Ymk0DJ4g5nZ2c8f/4ckyZNwpIlS2BmZob//vuP69B+io0bN+LVq1fYtGlTrU0mAaBnz55wc3PDwoUL8eTJE67DIaTGoxFKQkiNcO3aNVhZWWHdunWYO3cu1+FUmSdPnmDWrFkIDAzEgAEDsGnTJhgaGnIdVrV4/fo1mjdvjmnTpmHDhg1ch1Npubm5aNeuHaSkpHDz5s2fsksTIbUVJZSEEM5lZ2fDwsICmpqaCAsLg7i4ONchVSnGGE6fPo3Zs2fjw4cPmDt3LhYvXgx5eXmuQ6tS9vb2uHr1ao3br7sy7t27h44dO2Lu3LlYvXo11+EQUmPRI29CCOcWL16M169fw9fXt84lkwDA4/EwfPhwPHv2DAsWLIC3tzdMTExw/PjxOlPv8Nq1azhy5Ai8vLzqTDIJAJaWlvD09MTatWtx7do1rsMhpMaiEUpCCKdCQkJgY2ODjRs34vfff+c6nJ8iLi4Os2fPxpkzZ2BjY4OtW7fCzMyM67B+WHFxMdq3bw8JCQlERETUue0oi4uLYWVlhXfv3uHBgwdQVFTkOiRCapy69a+eEFKrZGVlYfz48ejWrRtmzZrFdTg/TbNmzfDvv//iwoULePv2LSwtLTFr1ix8+vSJ69B+yP79+3Hv3j1s3bq1ziWTACAuLo5Dhw4hOTm53vzSQ8j3qnv/8gkhtcbChQvx7t07+Pj41MlH3d/Sr18/PHr0CGvWrIGPjw+MjY2xd+/eWlX78NOnT1i8eDHGjRuHTp06cR1OtWnWrBk2bdqEffv24cyZM1yHQ0iNQ4+8CSGcCAwMRM+ePbF161a4uLhwHQ7n3r59iwULFsDPzw/t2rXD9u3b0bFjR67D+iY3Nzfs27cPL168gLa2NtfhVCvGGAYPHoyIiAg8evQIWlpaXIdESI1BI5SEkJ8uMzMT48ePh7W1NWbMmMF1ODVCo0aNcOjQIVy7dg1FRUXo1KkTnJ2d8eHDB65DK9eTJ0+wfft2LF26tM4nk0DJ4qo9e/YAACZNmlRnFlQRUhUooSSE/HTz5s1DSkoK9u/fXyfn3FVG165dcfv2bfz11184e/YsjI2NsWnTJhQWFnIdmhDGGFxdXaGvrw9XV1euw/lptLS0sGfPHpw7dw779u3jOhxCagz6JieE/FSXL1/Grl27sH79ejRr1ozrcGokcXFxTJ06FS9evIC9vT3mzp0LCwsLBAQEcB2awL///ouAgABs3ry53mwrWWrw4MGYMGEC3NzcEBsby3U4hNQINIeSEPLTpKenw8zMDEZGRrhy5QqNTlbQvXv34OLiguvXr2PYsGHw9vaGrq4uZ/GU7tdtYmJSb7aU/FJmZibMzc3RsGFDhIaG1tqtQgmpKvRtTgj5aebMmYNPnz5h3759lEx+B0tLS4SFhcHPzw83btxAixYtsHz5cuTm5nISj7e3t2C/7vpKUVERhw4dws2bN7Fu3TquwyGEczRCSQj5KS5evIj+/ftj165dmDx5Mtfh1FqZmZlYuXIlNm3aBB0dHWzatAmDBw8Gj8f7Kf2X7tc9ffp0rF+//qf0WZMtXrwY69evx61bt2Bpacl1OIRwhhJKQki1S0tLg6mpKVq2bIlLly79tOSnLnv+/Dnc3Nxw8eJF9OnTB1u2bIGJiUm19ztmzBgEBgbixYsXUFJSqvb+arqCggJ07NgRBQUFuH37NmRlZbkOiRBO0DMnQki1+/3335GZmYl9+/ZRMllFmjdvjv/++w9nzpxBdHQ0zMzMMG/ePGRkZFRbn2FhYTh69Ci8vLwomfx/UlJS8PPzQ2xsLBYvXsx1OIRwhkYoCSHVyt/fHwMHDsS+ffswfvx4rsOpk/Ly8rBhwwasXr0aysrKWLduHRwcHKo0eS8uLka7du0gJSWF8PBwmgP7hc2bN+P333/H1atX0bNnT67DIeSno4SSEFJtPn78CFNTU1hYWOD8+fM0OlnNEhMTMXfuXJw8eRJdunTBtm3b0KZNmyq5965duzB16lRERETUih18fjY+n4/evXvjxYsXePjwIVRVVbkOiZCfin7FJIRUG1dXV+Tk5GDPnj2UTP4ETZs2xYkTJxAQEID09HS0a9cOU6dORWpqaqXu++nTJ/zxxx9wdHSkZLIcYmJi8PX1RWZmJmbOnMl1OIT8dJRQEkKqxZkzZ+Dn54etW7dCR0eH63DqlR49euDevXvYtGkTjh49CiMjI+zYsQPFxcU/dD8PDw/k5+djzZo1VRzp/zg5OYHH4yEhIaHa+qhuTZo0wY4dO3DkyBEcO3aM63AI+akooSSEVLnU1FRMmTIFAwYMwNixY7kOp9bKzs7G6tWr0aZNGygoKEBaWhqNGzdG9+7dsWjRIqFdWvT09KCnpyf4s6SkJFxdXREdHY2hQ4dixowZaNu2LcLCwr4rhsePH+PPP//EsmXL6sV+3ZU1evRo/Pbbb5g2bRrevHnDdTiE/DQ0h5IQUuXGjBmDixcv4vHjx2jUqBHX4dRKmZmZ6NatGx4+fAhDQ0P07NkT6urqSElJwa1bt3D//n3s2bMHEydOBABBMlneCN/Nmzfh4uKCyMhIjBkzBuvWrfvmyDFjDL1790ZiYiIeP34MKSmpqnyLQt69e4f09HQYGBhAUlKy2vr5GT5+/AgzMzO0atUKFy9epAVMpF6gvaIIIVXq9OnTOHr0KPz8/CiZrITNmzfj4cOHmDhxInbv3i0yBzU+Ph75+fkVvl/Hjh0REREBHx8fLFq0CM2bN8fSpUvh5uZW7l7c//zzDwICAnD+/PlqTSYBQFtbu86MgKqpqcHX1xd9+vTBn3/+CRcXF65DIqTa0a9NhJAqk5ycjGnTpmHIkCEYM2YM1+HUauHh4QCAGTNmlLmgSV9fHyYmJkhISACPx8PLly/x8uVL8Hg8wcvDwwMAEBwcDB6Ph+XLl6NFixYwNTVFYWEhFi5cCDMzM1y4cAHZ2dlwd3eHiYkJpGVkoKisAgfH8ejUqRPs7OwE/Zb297VXcHAwAMDGxuar7ZycnAT3rQtzKD/Xu3dvuLi4YP78+YiKiuI6HEKqHY1QEkKqzIwZM8Dn87Fz505a1V1J6urqAIAXL17AwsKi3HYqKipwd3fH5s2bAQBubm6CczY2NkJtb9y4gdWrV8PW1haurq549OgR8vLyYGdnBxUVFaSlpUFNtzlkLAeiODsNeVFhuHnrFg4cPgpH+9FC/X2puLgYGzduRE5ODuTk5ACUJIlfxgAAFy5cwK1btwTt6iovLy9cuXIFDg4OCA8Pr/ZRXkI4xQghpAocP36cAWDHjh3jOpQ64cyZMwwAU1RUZHPmzGGXLl1iKSkp5bbX1dVlurq6ZZ4LCgpiABgAtn//fqFzfD6fjRgxggFgMrqtme6Cs0x3oT/TXejPtJ22MIhLMCk5RZaRkfHVeKdNm8YAMBcXl6+2Cw0NZVJSUqxZs2YsOTlZcNzR0ZEBYPHx8V+9vraJjIxkEhISbMmSJVyHQki1okfehJBK+/DhA6ZPn47hw4dj5MiRXIdTJwwaNAje3t5gjMHb2xt9+/aFhoYGDA0NMXPmTERHR3/3Pdu0aQNnZ2ehYzweD3fu3IGEpCTUf5kN8P73Y0GqoQEUTHuiICcTew4dL/e+mzZtwl9//QU7Ozts2rSp3HYxMTEYOnQo5OTkcP78eWhoaHz3e6ht2rVrB3d3d6xevVowjYGQuogSSkJIpTDGMG3aNIiJiWHHjh30qLsKzZ49G2/fvsWJEyfg5uaGbt26ITExEX/++Sdat26Ns2fPftf92rdvL3IsIyMDcXFx0GmqDwkl0QRPRrc1AMDv6HE8evQIfD5f6Py5c+cwd+5ctG7dGseOHYO4uHiZfX/69Am//PIL0tPTcerUKZiYmHxX7LXZwoUL0aFDB4wdOxZZWVlch0NItaCEkhBSKceOHcM///yDHTt2QFNTk+tw6hxFRUWMGDECmzZtQlhYGJKTkzF9+nTk5eVhwoQJKCgoqPC9tLS0RI5lZGQAABo2FD0HAOLyJVsIPrwdgdatW6Nhw4b47bffsHv3bpw9exajR49GgwYNcO7cOSgqKpZ5j8LCQvz666948eIFduzYUe/2upaQkMChQ4fw7t07zJkzh+twCKkWlFASQn7Yu3fvMGPGDPz2228YPnw41+HUC8rKyti+fTt0dXWRkpKCR48eVfjaskaPlZSUAAAZH1OgnPMGjC+8mw7LSQMAzJg8HlevXsXEiRPx8uVLTJ06FYMHD0ZOTg7atWuHkJCQcgt5T5kyBcHBwZgzZw4mTZpU4XjrEkNDQ2zatAm7d++Gv78/1+EQUuUooSSE/BDGGKZMmQJJSUls376d63DqFR6PB3l5eaFj4uLiP7S1opKSEpo1a4YXL17g0U43GCsJP9JWTiuZq9muXTv07NkTq1evRkBAAFq3bg0ejwc7OzskJiZi3LhxaNy4MUxMTDB9+nScPn0aqampWLNmDXx8fDB48GCsW7fux990HTBp0iT88ssvmDBhApKTk7kOh5AqRQklIeSH+Pn54dy5c9i5c2e9WFzxs+3atQuRkZFlnvv3338RFRUFFRUVmJqaAigppp2SkoK8vLzv7mvYsGEoLi5Gk4aauLRoEILm2MDHqT129NNAYsR/UFZWxpAhQwAAfD4f9vb2ePDgAVatWgV/f388ePAAHz58wPHjx2FjY4MrV65g+PDh0NDQwOLFi9GgQQOMGzcO2dnZP/x51AU8Hg979+4Fn8/H5MmTwWijOlKHUB1KQsh3e/PmDWbNmgV7e3sMHTqU63DqpAsXLmDq1KkwNDRE165d0ahRI2RnZ+PevXsICwsTLIIq3eWmR48euH37Nvr374/u3btDSkoKVlZWsLKy+mo/jDE8f/4cEhISSExMRMeOHdGzZ08kJSXh+PHjKCoqwp49ewTzI0+dOoUzZ85AU1MT+fn5guLppRo2bIgrV65ATEwMRkZGKCgoQFZWFoYNGwYejwcdHR3o6+tDX18fv/zyS72rCtCwYUPs3r0bv/76K3x9fUVW3RNSa3FatIgQUuvw+XxmZ2fHGjZsyFJTU7kOp8569uwZW7duHevduzfT19dnMjIyTEZGhhkYGDBHR0d2+/ZtofaZmZls0qRJTFtbm4mLizMAzN3dnTH2vzqUpX/+3OHDhxkAdujQIbZ06VJmbGzMpKSkmIqKCuvfvz8LCwsTau/j4yOoaVneKygoiDHGvtlOTEyM9ezZk61atYrZ2dnVyTqU5XF2dmYKCgosLi6O61AIqRI8xmjMnRBScaWjKmfPnsXAgQO5DodUwrt379CqVSv07dsXR48e/Wn98vl8PHz4EIGBgQgICEBoaCiysrKgpKQEa2tr9OjRAz169ICpqSnExOrmzKyMjAyYm5ujcePGCA4OLrfcEiG1BSWUhJAKe/36NVq1aoWhQ4fC19eX63BIJTDGMGjQIERGRuLJkyeCrR65UFhYiNu3byMgIACBgYG4ceMG8vPzoampCVtbW/To0QM9e/aEgYFBnapzGhYWBmtra6xZswYLFizgOhxCKoUSSkJIhTDG0L9/fzx69AhPnjyBiooK1yGRSjhw4ACcnJzw77//YvDgwVyHIyQ3Nxc3btxAYGAgAgMDERkZWbJoqEkTQXLZo0cP6OjocB1qpS1cuBAbN27ErVu3vrpnOyE1HSWUhJAK2bt3LyZNmoTz58/Dzs6O63BIJbx+/RqmpqYYNGgQDh48yHU435SRkYHQ0FDBI/KHDx8CAIyNjQXJpY2NTa2sNpCfn4+OHTuiqKgIt2/fhoyMDNchEfJDKKEkhHzTy5cvYWZmhhEjRmDfvn1ch0Mq4fOR5sePH0NVVZXrkL5bcnIygoODBY/IS/c1t7CwEMy/tLKyKnfnnprm8ePHaNu2LWbOnAlvb2+uwyHkh1BCSQj5KsYYevfujefPn+Px48dQVlbmOiRSCXVxpPnVq1eCx+MBAQF48+YNxMXF0aFDB8Ej8s6dO9fo0b+NGzdizpw5CAgIQI8ePbgOh5DvRgklIeSrdu7ciWnTpuHSpUvo06cP1+GQSqgPI82MMURHRwsSzMDAQKSmpkJaWhpdu3YVPCJv164dJCRqTilmPp+PXr16ISYmBg8fPqQ5yqTWoYSSEFKu+Ph4mJmZwd7eHrt27eI6HFIJfD4fvXv3RnR0NB49elRvRpr5fD4ePXokGL0MCQlBVlYWFBUVhUoUmZmZcV6iKDExEWZmZhg0aBAOHTrEaSyEfC9KKAkhZSodMYmLi8OjR49qzXw0UrYdO3ZgxowZuHz5Mnr37s11OJwpLVFUOnp5/fp15OfnQ0NDQ6hEkaGhISclivz8/DB27FgcP3683u0iRGo3SigJIWX6888/MXPmTFy9ehU9e/bkOhxSCXFxcTAzM8O4cePw119/cR1OjZKbm4vw8HDBCGZpiaLGjRsLHo/36NEDjRs3/inxMMbw22+/4erVq3j06FGdKI1E6gdKKAkhImJjY9G6dWs4Ojpix44dXIdDKoHP58PW1haJiYl4+PAhjTR/Q0ZGBsLCwgQryB88eACgpERRaXJpa2tbrSWKUlNTYWZmBjMzM1y8eLFOFXMndVfd3NOKEPLD+Hw+nJ2d0aBBA6xbt47rcEglbdu2DaGhodi/fz8lkxWgpKSEX375BRs3bsT9+/eRnJyMEydOoEePHggMDMTIkSOhqakJCwsLzJ49G+fPn0dGRobQPWxsbCqVBKqrq8PHxweXL1/+6i90Hh4e4PF4CA4O/uG+KovH48HGxoaz/knNUXOWuBFCaoRt27YhLCwMQUFBUFBQ4DocUgkvXrzAokWL4OLiAltbW67DqZWysrLKnMv45MkTPH36FJs2bYKYmBg6dOggeETO5/Mr3W/fvn0xY8YMzJs3Dz179oSJiUml70lIdaJH3oQQgRcvXsDCwgITJ07E1q1buQ6HVEJxcTG6d++O5ORk3L9/H/Ly8lyHVCslJCRAX18fBgYGcHBwAFAyzzE5ORkXLlwQnG/bti2Cg4ORkpICKSkpWFpaYuDAgejRowfat2//QyWKcnJyYGlpCSUlJdy4cQOSkpJC5z08PODp6YmgoCDORgmfPXsGOTk5NG3alJP+Sc1BI5SEEAAlCYizszMaNWqENWvWcB0OqaRNmzYhIiICoaGhlExWAUNDQ3h4eAgdy8/PR+fOnXHv3j3s3bsXx48fF5QoCgwMxNq1a7FkyRIoKirCyspKsIK8oiWK5OTk4Ofnh86dO2PlypXw9PSspnf342jklJSiOZSEEADAli1bEB4eDh8fH0pAarmoqCgsWbIEv//+O7p168Z1OHWWtLS0YCpBSkoKxMTEYG5ujjNnzsDf3x8fP35EeHg4Fi5ciJycHCxYsAAWFhaQkJCAuLg4VFVV0aNHDwQFBYncOzQ0FEOGDMGAAQMAAMuXL4eNjQ2uXbtWZixHjhyBhYUFZGVloa2tDVdXV+Tm5pbZNjQ0FAMHDoSGhgakpaVhZGSEJUuWICcnR6hdcHAweDwePDw8cOPGDfTp0wcqKipC80NpDiUpRSOUhBA8e/YMf/zxB9zc3NC9e3euwyGVUFRUBEdHR+jp6WHlypVch1OnFRQUCJIuCwsLkfMSEhLo1KkTOnXqhPT0dAQFBaFRo0bQ1tbGu3fv8O7dOwQFBeH27dsYOnSoYATz9OnT+P333yErK4uhQ4eicePG2Lt3L65fv45dPodQqGkMPfX//dK3fft2XLx4EYMHD0aPHj1w8eJFbN26FSkpKTh8+LBQTH/99RdmzJgBFRUVDBw4EA0aNMDt27exatUqBAUFISgoCFJSUkLX3LhxA6tXr4atrS0mT56MxMTEavk8Se1GcygJqeeKi4vRtWtXfPr0Cffu3YOcnBzXIZFKWLNmDZYsWYLr16+jU6dOXIdT65U3hzIlJQWXLl3CmzdvsGLFCsydO1dwjY2NDUJCQvD5j1d1dXXIyMggOjpa8G8sMzMToaGhOH/+PMLDw3H//n1Bezk5Oaxbt06wqvz2oygMWH0aEupNIaGoDgBQfvovHp7dC2VlZdy8eRPNmzcHUFJb08LCAjExMXj16hUaNWoEAHj69CnMzc3RqlUrBAQEQF1dXdCfl5cXFi1ahA0bNmDOnDkASkYoS0dg9+/fD2dnZ5HPh8fjwdramtOV5qSGYISQem3t2rWMx+Ox69evcx0KqaSHDx8ySUlJtmDBAq5DqTPi4+MZgHJfAwYMYPfu3RO6xtramn3541VNTY3p6emxvLy8cvtKTk5mffr0YQCYlpaWoI/WrVuz9vMOML0FZ5nuQn/BS6XbGAaALVu2TORe7u7uDAA7e/as4NisWbMYABYaGirSvri4mGlqarK2bdsKjgUFBTEArE2bNuXGDIBZW1uXe57UH/TIm5B67OnTp1i6dCnmzJmDLl26cB0OqYTCwkI4OjrC2Ni4Ri7eqO369u2LixcvCv6cmpqK69evw9XVFV27dkVgYCA6duxY7vWjRo3Cjh07YGpqilGjRsHW1hadO3eGrKysoI2GhgZSU1MBAHfu3AFjDEFBQTgXfBO3xNVF7sn+fwS0sVErkXOlO/ukpaUJjkVERAAALl26hICAAJFrJCUl8ezZM5Hj7du3L/d9EVKKEkpC6qnSuXbNmjXD8uXLuQ6HVNKaNWvw8OFDREREQFpamutw6jx1dXUMGjQIcnJy6N27N5YsWYIrV66U237Lli3Q19eHj48PVq5ciZUrV0JGRgYjR46Et7e3YOed9PR08Hg8aGtrQ0xMDGPHjkXjDn1xyzey3Htn8SVFjpWWKSouLhYc+/jxIwBg1apV3/VetbS0vqs9qZ9olTch9dS6detw9+5d+Pr6Co2SkNrn3r17WLFiBRYtWoR27dpxHU69UjoqGRlZfsIHlCR4c+fOxZMnT/DmzRscOXIE3bt3x8GDB2Fvby9op6KiAsYY3r17Jzimq/b1ec0NlWUqFKuSkhKAku0lGWPlvr5EWz+SiqCEkpB66NGjR/Dw8MD8+fO/+piO1HwFBQVwdHREy5YtsXTpUq7DqXc+ffoEAN+1O06jRo0wevRoXLx4EYaGhrh69aqgxE+HDh0AAJcvXxa0b6apACsjTYh/kdiVJnrayhX7hbD033rpo29CqhIllITUM4WFhXBycoKxsbFIoWZS+yxfvhxRUVE4cOCASLkXUv02btwIALCysiq3TX5+Pm7cuCFyPDs7G1lZWZCUlBQUOp86dSrExcWxZMkSvHz5UtB222hLdDFQR1FmquBY02+MXH5p+vTpkJCQgIuLS5mlf9LS0nDv3r3vuichpWgOJSH1jJeXFx48eEBz7eqAyMhIeHl5wd3dvcw6iKTqxMTECP0C9vHjR1y/fh13796Fqqoq1q5dW+61ubm56Nq1K4yNjdG2bVs0bdoUWVlZ8Pf3x/v37zF37lzBv0UzMzNs3rwZs2bNQqtWrTBkyBDo6uri/fv3iAgNhbqKBjIk1RF49jgObI/Ew7MVfw+mpqbYsWMHpk2bhubNm8POzg4GBgbIzMxEXFwcQkJC4OTkhJ07d/7ox0TqMUooCalH7t+/j+XLl9NcuzogLy8Pjo6OMDc3x8KFC7kOp86LjY0VWj0vLS2Nxo0bY9q0aVi4cOFX97KWl5fH2rVrERAQgLCwMCQlJUFVVRXNmzfHmjVrMGrUKKH2M2fOhKmpKby9vXHhwgVkZWWhQYMG6NixIxhjiI2Nhb7Gj+1mNWnSJFhYWGDjxo0IDQ3FuXPnoKysjKZNm+L333+Ho6PjD92XECpsTkg9UVBQgA4dOoDP5+P27dv0eLSWW7BgATZv3ow7d+7A1NSU63DITzJu3DgkJCQgNDSU61AIEUIjlITUE6tWrcKTJ09w8+ZNSiZrufDwcGzYsAGrVq2iZLKeycjIEKzWJqQmoUU5hNQDd+/exapVq/DHH3+gTZs2XIdDKiEnJwdOTk5o166d0HZ/pH6ghJLUVJRQElLH5efnw8nJCWZmZli8eDHX4ZBKKl39e+DAAUHxalJ/UEJJair6NiKkjluxYgWePXuGyMhIetRdy4WFhWHz5s1Yv349TExMuA6HcIASSlJT0QglIXVYaVmZZcuWwdzcnOtwSCVkZ2fDyckJXbp0gZubG9fhEI6kp6dTQklqJBqhJKSOysvLg5OTEywsLLBgwQKuwyGVtHDhQrx79w4XL16EuLg41+EQjmRkZEBZWZnrMAgRQQklIXWUh4cHYmJicOfOHUhKSnIdDqmEwMBAbN++HVu2bIGRkRHX4RCOFBQUIC8vj0YoSY1ECSUhdVBERATWr19PZWXqgMzMTIwfPx7W1taYOXMm1+EQDmVmZgIAJZSkRqI5lITUIHp6etDT06vUPXJzc3+orIyHhwd4PB6Cg4Mr1f+38Hg82NjYVGsfdcncuXORkpKC/fv3C/Z7JvVTRkYGAEooSc1E306E/L+EhATweDyRl7y8PFq3bg1PT09kZWVxHeY3LVu2DAkJCfDx8aGyMrXc5cuXsXv3bmzYsAHNmjXjOhzCMUooSU1GP20I+YKBgQEcHBwAAIwxJCcn48KFC/Dw8MDFixdx7dq1Grso4saNG/D29sbatWvRsmVLrsMpU1RUFOTk5LgOo8ZLT0/HhAkT0KtXL0yZMoXrcEgNQAklqckooSTkC4aGhvDw8BA6lp+fj86dOyMiIgIhISHo0aMHN8F9RekOKh07dsTs2bO5DqdcVD+xYn7//Xekp6dj37594PF4XIdDagBKKElNRo+8CakAaWlp2NraAgBSUlIEx4OCgjB+/Hg0b94cCgoKUFBQQLt27bB79+4y71M6f/DNmzcYN24cGjZsCDExMZF5i2lpaZgyZQoaNmwIGRkZWFpa4ujRoyL3e/v2Ldzd3dGpUydoaGggOjoaiYmJcHFxQVJSUpkxvHr1CqNHj4aamhoUFBRgbW2N0NDQr75/Hx8fdOzYUfAeO3bsCF9fX5F2wcHB4PF48PDwwI0bN9CnTx+oqKgIJUQ0h/Lbzp8/Dx8fH2zatAlNmzblOhxSQ6SnpwOghJLUTDRCSUgFFBQUCJIlCwsLwfG1a9ciJiYGnTp1wtChQ5GWloaLFy9iypQpeP78Oby9vUXulZqais6dO0NNTQ2jRo0SKQNSUFCAXr16ISsrC2PHjkV2djZOnDiBMWPGICUlBS4uLoK2J/0vY92GDTBtbYHc3FzY2NhATEwMf/31Fy5duoS7d+8K1ax79+4dOnfujDdv3qBv375o06YNoqKi0Lt3b0HC/KVZs2Zh27Zt0NHRwYQJEwAAp0+fhrOzM+7du4ctW7aIXHPjxg2sXr0atra2mDx5MhITE7/7M6+vPn78iEmTJqF///4YP3481+GQGiQjIwPi4uI0ZYTUTIwQwhhjLD4+ngFgBgYGzN3dnbm7u7Nly5ax6dOnMwMDAyYjI8PWr18vdE1cXJzIfQoLC1nv3r2ZuLg4e/nypdA5AAwAc3Z2ZkVFRSLX6urqMgDMysqK5efnC46/evWKaWhoMGlpafb69Wv2KTufjd13kzV28WNNZp9kugv9mfGUrSw1M5cxxtiBAwcYALZy5Uqh+zs6OpZ5fNeuXYLYgoKCBMdDQkIYANaiRQuWlpYmOP7x40dmbGzMALDQ0FDB8aCgIMF99u/fX+bnDIBZW1uXeY4w5uDgwJSVldnr16+5DoXUMGvXrmWqqqpch0FImeiRNyFfiI2NhaenJzw9PbF8+XLs2LEDsbGx6NWrF3r16iXUVl9fX+R6CQkJTJ06FcXFxQgKChI5LyUlhXXr1n11Yc/q1auF9t1u3LgxXF1dkZ+fj2PHjmHWsfu4HpMCcXkViEnJAgAK1ZrB7cRDAMDYsWOhpKSEq1evCu5RUFCA48ePo0GDBpgzZ45QfxMnTiyzYPaBAwcAlJQU+nykU1VVFe7u7gBQ5qPvNm3awNnZudz3R8r277//ws/PD1u3boWOjg7X4ZAahvbxJjUZJZSEfKFv375gjAleKSkpOHPmDB4/foyuXbvi5s2bgraZmZlwd3eHubk5FBQUBKWGhg0bBqBkjuOX9PX1oaGhUW7/EhIS6Ny5s8jx7t27AwDCwiMRGp2MYsYAADnPb+DD8aV4uXkMDk3sDB6PBzExMWRkZAj1//z5c+Tl5aFdu3aQkZERureYmBi6du0q0ue9e/cAoMw5j6WPyO/fvy9yrn379uW+P1K2lJQUTJkyBQMHDsTYsWO5DofUQJRQkpqM5lAS8g3q6uoYNGgQ5OTk0Lt3byxZsgRXrlxBQUEBbGxscPfuXVhaWmLs2LFQV1eHhIQEEhIScODAAeTn54vcT0tL66v9aWholFnAuvS6D6kfgf8fTMy4+Tc+Be2HmJwyZPQtIaGogSHt9KGvIY/NmzcL9V86ob9BgwZl9ltWXBkZGRATE4OmpmaZ7Xk8nmDl6fe8RyJq5syZKCoqwu7du2lVNykTJZSkJqOEkpAK6tixIwAgMjISAHDmzBncvXsXEyZMwN69e4XaHjt2TPC4+EvfShZSUlLA5/NFksoPHz4AALTU1fAOAOMXI+3GcYgrqEHbeSvE5VUAAB5zbKCnLod169YJXV/6yLq81d+l9/+ckpIS+Hw+kpOTRRLRpKQkMMbK/AFHCdH3OXnyJI4fP44jR46gYcOGXIdDaihKKElNRo+8CamgT58+AQD4fD6AkrmWADB48GCRtmFhYT/cT1FREcLDw8u9Z/fO7WFlpAnkZoDlZ0O6kQnE5VUgzgOsjDShryGP27dvIzc3V+h6Y2NjyMjI4Pbt28jLyxM6x+fzcePGDZE+LS0tAaDM7RhLj32+6p18vw8fPmDatGkYNmwYRo0axXU4pAajhJLUZJRQElJBGzduBABYWVkBAHR1dQEA165dE2oXEhKCPXv2VKqvxYsXo6CgQPDn169fY8uWLZCWlsaoUaOwbbQlrFobgichjfwPseAX5sFYGdg22hKfPn0SKi1USlpaGiNHjkRSUpJIOaO9e/fixYsXItc4OjoCADw9PYUebaenp8PT01OoDfl+jDFMmzYNPB4PO3bsoJFd8lXp6emUUJIaix55E/KFmJgYoZ1yPn78iOvXr+Pu3btQVVXF2rVrAQADBw6Enp4e1q1bh8ePH8PU1BTPnz+Hv78/hg4dilOnTv1Q/9ra2sjOzkbr1q0xcOBAQR3K1NRUodW/hyZ2gsy9Kdi7Yyveb3eAnJ4u5kR3w4ULF6Crq4tGjRqJ3NvLywsBAQFYsmQJrl27BktLS0RFReG///5Dnz59cPnyZaH2VlZWcHFxwbZt22Bqaophw4aBMYbTp0/j9evXmDVrliDBJt/v6NGj+Oeff3Dy5Mly57YSUopGKEmNxmXNIkJqktI6lF++pKWlmYGBAZs2bZpIXcm4uDg2bNgwpqmpyeTk5Fj79u3ZsWPHBPUY3d3dhdrjGzUYdXV1ma6uLvv48SObPHky09LSYtLS0szc3JwdOXJEpH1BQQFbtWoVU1dXZwBYkyZN2Jw5c1hmZqbgXl96+fIl++2335iKigqTk5Nj3bt3ZyEhIczd3V2kDmWp/fv3s/bt2zM5OTnB+yyrzmR57/t7PoP64u3bt0xVVZWNGjWK61BILdGwYUO2fPlyrsMgpEw8xv6/9gghpNZ6+fIl9PT0cPDgQSo5UwswxjBo0CBERkbiyZMnUFdX5zokUgvIy8tj9erVcHV15ToUQkTQHEpC6gBdXV1YWVnBz8+P61BIBRw8eBD+/v7YtWsXJZOkQoqKipCTk0OPvEmNRQklIXWEvb09rl69ivfv33MdCvmK169fw9XVFWPHji2zQgAhZcnMzAQASihJjUUJJSF1xIgRIyAhIYFjx45xHQopB2MMEydOhLy8PLZs2cJ1OKQWKa2yQAklqakooSSkjlBVVYWdnR099q7B9u3bh0uXLmHPnj1QVVXlOhxSi1BCSWo6SigJqUMcHBxw584dPHv2jOtQyBdevnyJ2bNnY/z48bCzs+M6HFLLUEJJajpKKAmpQ3755RcoKyvj8OHDXIdCPsPn8zF+/HioqKgICuQT8j3S09MBUEJJai5KKAmpQ2RkZDB8+HAcPnwYVBGs5ti5cycCAwOxb98+wZ7qhHyP0hFK+vtDaipKKAmpY+zt7REfH1/mfuDk54uLi8O8efMwdepU9O7dm+twSC2VkZEBHo8HeXl5rkMhpEyUUBJSx1hbW6Nx48b02LsG4PP5cHZ2RoMGDbBu3TquwyG1WOm2i7TfO6mpKKEkpI4RExPDmDFjcPz4cRQUFHAdTr22bds2hIaGYv/+/VBUVOQ6HFKL0T7epKajhJKQOsje3h6pqam4dOkS16HUWy9evMCiRYvg4uICW1tbrsMhtRwllKSmo4SSkDqodevWMDMzo8feHCkuLoaTkxN0dHSwZs0arsMhdQAllKSmo4SSkDrK3t4eZ86cEawOJT/Ppk2bEBERAR8fH1pEQaoEJZSkpqOEkpA6asyYMcjLy8M///zDdSj1SlRUFJYsWYLff/8d3bp14zocUkekp6dTQklqNEooCamjmjRpAmtra9qK8ScqKiqCo6Mj9PT0sHLlSq7DIXVIRkYG1aAkNRollITUYQ4ODggMDMTbt2+5DqVeWL9+Pe7cuQNfX1/IyspyHQ6pQ+iRN6npKKEkpA4bPnw4JCQkcOzYMa5DqfMePXoEd3d3zJs3D506deI6HFLHUEJJajpKKAmpw1RUVDBgwABa7V3NCgsL4ejoCGNjY3h6enIdDqmDKKEkNR0llITUcQ4ODrh79y6ePn3KdSh11po1a/Dw4UP4+vpCWlqa63BIHVNcXIysrCxKKEmNRgklIXWcnZ0dVFRUaJTyM05OTuDxeEhISKhQ+4SEBPB4PDg5OYmcu3fvHlasWIFFixahXbt2X72PjY1NmVvnZWRkwNXVFfr6+pCUlASPx8P9+/cRHBwMHo8HDw+PCsVJ6qasrCwAoISS1GiUUBJSx0lLS2PEiBE4cuQI+Hw+1+FUudJk7/OXpKQkdHR0MHLkSNy+fbva+i4oKICjoyNatmyJpUuX/vB95s+fj61bt8LU1BQLFy6Eu7s7GjZsWIWRktqstJYsJZSkJpPgOgBCSPWzt7fHnj17cOPGjTpbG9HAwAAODg4AgOzsbNy5cwcnT57Ev//+i6tXr8LKykrQds2aNVi4cCF0dHQq1efy5csRFRWFyMhISElJ/fB9/P39YWxsjHPnzgkdV1JSQlRUFDQ0NCoVJ6nd0tPTAVBCSWo2SigJqQe6d++OJk2a4PDhw3U2oTQ0NBR5NOzl5YVFixZh6dKlCAkJERzX1taGtrZ2pfqLjIyEl5cX3N3dYWFhUal7vX37VijhLSUnJwcTE5NK3ZvUfqUjlFSHktRk9MibkHpATEwM9vb2OHHiBAoKCrgO56eZMGECAODOnTtCx8ubQ1lcXIy1a9fC0NAQMjIyMDQ0xJo1awRTBTLzChH0PAnP3nyEo6MjzM3NMWDAAIwcORINGjSAtLQ09PX14ebmhtTU1G/GVxoHYwwhISGCR/Y2NjYAQHMoCQB65E1qBxqhJKSesLe3h5eXFy5evIhBgwZxHc5PJSFRsa+6yZMnY//+/dDX18eMGTOQl5eHjRs3IiTsGgDg0pMPuOMbCQDIaz0anr2boFu3bigoKMDw4cOhp6eH8PBwbNmyBf7+/oiIiPjq4+ohQ4ZAT08Pnp6e0NXVFSz60dPTq9T7JXULJZSkNqCEkpB6wtTUFObm5vDz86s3CeXevXsBoEKP+YODg7F//36Ym5vj+vXrkJeXBwAsXrwYBiamIu1l9Mwxb/EM5OTk4OLFi+jbt6/g3Pz587F+/XosWLAA+/btK7fPIUOGYMiQIfD09ISenh6NRJIylSaUCgoKHEdCSPkooSSkHrG3t8fSpUuRnp5e5+ZjxcTECBKy0kU5QUFB0NLSwvr16795/cGDBwEAy5YtEySTAJAvpQwZywHIDxPeEz3vdRQyk17DumcfoWSy9B779u3DkSNH8Ndff1VqwQ4hGRkZUFRUhJgYzVIjNRf97SSkHhk9ejQKCgrw999/cx1KlYuNjYWnpyc8PT2xYcMGBAUFoWHDhrh27RpatGjxzesfPHgAoGQB0+defsyBTJNWIu0LPsQBAJpbdhQ5p6CggHbt2iEvLw/Pnz//kbdDiADtkkNqA0ooCalHGjduDBsbG/j5+X27cS3Tt29fMMbAGENSUhLWr1+PpKQkDBo0SFAY+mvS09MhJiYmMudRV00O4vIqIu35+TkAACPdxmXer3QVeenjSkJ+FCWUpDaghJKQesbBwQFBQUF48+YN16FUG01NTcydOxeLFy9GVFQUlixZ8s1rlJWVwefzkZKSInS8maYCTFWZSHsxKVkAAD8nrcz7vX//HgAtpCCVl56eTn+PSI1HCSUh9cywYcMgJSWFo0ePch1KtVu8eDEaNWqEHTt2fHObRXNzcwBAWFiYyDm52ECRY4xfDKBkMc+XsrOzcfv2bcjKyqJ58+bfHzghn8nIyKhzc55J3UMJJSH1jLKyMgYOHFgv9vaWlZXFggULUFhYiBUrVny17dixYwGU7H6TnZ0tOB4VFYUzf58GAPRr1RA+Tu0RNMcGbtZNAQAXLlzA1atXhe61cuVKpKamYvTo0bQgh1QaPfImtQEllITUQw4ODrh//z4eP37MdSjVbvLkyWjUqBEOHjyI2NjYctvZ2trC2dkZDx48gJmZGebMmYOZM2eiTZs2gtW1CjISsG3eAPoa8liyZAnatWsHALCzs4O9vT0WL14MW1tbeHl5wcDAAF5eXj/lPZK6jRJKUhtQQklIPdS/f3+oqqrWi1FKGRkZLFq0CEVFRfD09Pxq2z179mDNmjXg8XjYvn07/v33X+Tn52P+/PkibcXFxXH+/HloaGhAWVkZly9fxoYNGxAfHw9XV1dERERAU1Ozut4WqUcooSS1AY8xJjrbnBBS502dOhUXLlxAfHw81bcrA5/PR+fOnZGbm4s7d+5AUlKyzHYhISHo0aMHFi1ahJUrV/7kKEl90KRJE4wfP/6bvxARwiX6KUJIPWVvb4/ExERcu3aN61BqpL179+LWrVvYsWNHuckkAFhbW2PFihVYvXo1Ll269BMjJPUFjVCS2oASSkLqqa5du0JXV7dePPb+XsnJyVi4cCGcnZ0rtG3jwoUL0adPHzg4ONTpckzk5+Pz+cjMzKSEktR4lFASUk+JiYlhzJgxOHHiBPLz87kOp0ZZsGABAGDt2rUVai8mJoZDhw5BWloao0ePRlFRUXWGR+qRrKwsMMYooSQ1HiWUhNRjDg4OSEtLw4ULF7gOpca4du0afHx84OXl9V2LajQ1NXHs2DHcuHEDS5curcYISX1SutMSJZSkpqOEkpB6rGXLlrC0tKyTWzH+iMLCQkybNg0dOnTAxIkTv/v6bt26YdWqVfDy8sJ///1XDRGS+qY0oaTC5qSmo4SSkHrO3t4e/v7+SEtL4zoUzm3btg1Pnz7FX3/99cMr3+fNmwc7OzuMGzcOr169quIISX1DI5SktqCEkpB6bvTo0SgoKMDp06e5DoVTr1+/hru7O2bMmIE2bdr88H3ExMRw4MAByMrKYtSoUSgsLKzCKEl9QwklqS0ooSSknmvUqBF69OhR7x97z549G/Ly8t/corEiNDQ0cPz4cdy6dQt//PFHFURH6itKKEltQQklIQQODg4ICQmpt49oL126hJMnT2Ljxo1VNletS5cuWLNmDdavXw9/f/8quSepf0oTSkVFRY4jIeTrKKEkhODXX3+FtLQ0jh49ynUoP11eXh5mzpwJW1tbjB49ukrvPWfOHAwcOBDjxo1DYmJild6b1A8ZGRmQl5eHuLg416EQ8lWUUBJCoKSkhEGDBtXLIufr1q3Dy5cv8eeff4LH41XpvXk8Hnx9faGoqIjffvsNBQUFVXp/Uvelp6fT425SK1BCSQgBUPLY++HDh3j06BHXofw0sbGxWL16NebOnYsWLVpUSx9qamo4fvw4bt++jUWLFlVLH6Tuom0XSW1BCSUhBADQt29fqKmp1ZtRSsYYZs6ciYYNG2LJkiXV2lenTp2wbt06bNy4EWfOnKnWvkjdkpGRQTUoSa1ACSUhBAAgJSWF3377DYcPHwafz+c6nGr3zz//4OLFi9i6dSvk5OSqvT83NzcMHjwYTk5OSEhIqPb+SN1AI5SktqCEkhAiYG9vj9evXyM0NJTrUKpVVlYWXF1dMXDgQAwaNOin9Mnj8eDj4wMVFRWaT0kqjBJKUltQQkkIEejSpQv09PTq/GPv5cuXIzU1FVu2bPmp/aqqquLEiRO4d+8e5s+f/1P7JrUTJZSktqCEkhAiwOPxYG9vj5MnTyIvL4/rcKrF48ePsWnTJixZsgT6+vo/vf/27dtjw4YN2LJlC/7++++f3j+pXSihJLUFJZSEECH29vZIT0/Hf//9x3UoVY4xhunTp8PAwABz5szhLA4XFxcMGzYM48ePR1xcHGdxkJqPEkpSW1BCSQgR0qJFC7Rt27ZObsV46NAhhIWF4c8//4S0tDRncfB4POzbtw/q6uoYOXIk8vPzOYuF1GyUUJLaghJKQogIe3t7nD9/Hp8+feI6lCrz6dMnzJ07F6NHj0bPnj25DgfKyso4ceIEHj16hLlz53IdDqmBGGOUUJJagxJKQoiIUaNGoaioCKdOneI6lCrzxx9/IC8vD97e3lyHItC2bVts3LgR27dvx8mTJ7kOh9Qw2dnZ4PP5VIeS1AqUUBJCRGhra6Nnz5515rF3ZGQkdu7ciZUrV0JbW5vrcIRMnz4dI0aMwIQJExATE8N1OKQGycjIAAAaoSS1AiWUhJAyOTg4IDQ0FImJiVyHUinFxcWYNm0azM3NMX36dK7DEcHj8bB37140aNAAI0eOrLOr68n3o4SS1CaUUBJCyjR06FDIysriyJEjXIdSKbt27cKdO3fw119/QUJCgutwyqSkpISTJ0/i6dOnmD17NtfhkBqCEkpSm1BCSQgpk6KiIgYPHgw/Pz8wxrgO54d8+PABixcvxqRJk9CpUyeuw/kqS0tLbN68GX/99ReOHz/OdTikBqCEktQmlFASQsplb2+PJ0+e4OHDh1yH8kPmzZsHCQkJrFmzhutQKmTKlCkYNWoUJk6ciOjoaK7DIRyjhJLUJpRQEkLK1bdvX6irq9fKrRhDQkJw6NAhrFu3Durq6lyHUyE8Hg+7d++GtrY2RowYgdzcXK5DIhwqTSgVFRU5joSQb6OEkhBSLklJSYwaNQpHjhxBcXEx1+FUWEFBAaZPn44uXbrAycmJ63C+i6KiIk6ePInnz5/Dzc2N63AIh9LT0yErKwtJSUmuQyHkmyihJIR8lb29Pd68eYOQkBCuQ6mwzZs34/nz5/jrr78gJlb7vubMzc2xdetW7N69u9YviiI/LiMjg2pQklqj9n3TEkJ+qk6dOqFZs2a15rF3YmIiPD09MWvWLLRu3ZrrcH7YxIkTYW9vj8mTJ+P58+dch0M4QLvkkNqEEkpCyFfxeDzY29vj1KlTtaJGopubG1RUVODh4cF1KJXC4/Gwc+dONGnSBCNGjEBOTg7XIZGfjBJKUptQQkkI+SZ7e3tkZGTA39+f61C+6vz58/jnn3+wadOmOvGDWEFBASdPnkRMTAxmzZrFdTjkJ6OEktQmlFASQr6pefPmaNeuXY3eijE3NxcuLi7o3bs3RowYwXU4VcbU1BTbt2/Hvn37cOjQIa7DIT8RJZSkNqGEkhBSIQ4ODvjvv//w8eNHrkMp05o1a/DmzRts374dPB6P63CqlLOzM8aNG4epU6ciKiqK63DIT0IJJalNKKEkhFTIqFGjwOfzcfLkSa5DEfHixQusXbsWCxYsgLGxMdfhVDkej4cdO3ZAT08PI0aMQHZ2NtchkZ+AEkpSm1BCSQipEC0tLfTq1avGrfZmjGHGjBnQ0dHBokWLuA6n2sjLy+PkyZOIj4/HzJkzuQ6H/ATp6emUUJJagxJKQkiFOTg4ICwsDAkJCVyHInDy5ElcvXoV27dvh6ysLNfhVKuWLVtix44d8PX1ha+vL9fhkGpGdShJbUIJJSGkwoYMGQI5ObkaU2w7IyMDbm5uGDp0KOzs7LgO56dwdHSEs7Mzpk+fjidPnnAdDqkmjDF65E1qFUooCSEVpqCggCFDhsDPzw+MMa7DgYeHB9LT07F582auQ/mptm/fDgMDA4wYMQJZWVlch0OqQW5uLoqLiymhJLUGJZSEkO9ib2+PqKgo3L9/n9M4Hj58iK1bt8Ld3R1NmzblNJafTU5ODidPnkRiYiKmT59eI5J7UrUyMjIAgBJKUmtQQkkI+S69e/eGpqYmp4tz+Hw+pk2bhubNm8PNzY2zOLhkYmKCnTt34tChQ9i/fz/X4ZAqRgklqW0ooSSEfBdJSUmMGjUKR44cQXFxMScxHDhwADdu3MCOHTsgJSXFSQw1gYODAyZOnIiZM2fi0aNHXIdDqhAllKS2oYSSEPLd7O3t8e7dOwQHB//0vlNTUzFv3jyMHTsW1tbWP73/mmbr1q0wNjbGiBEjkJmZyXU4pIpQQklqG0ooCSHfrUOHDjA0NORkK8bFixejqKgI69ev/+l910SysrI4efIk3rx5g6lTp9J8yjoiPT0dACWUpPaghJIQ8t14PB7s7e1x+vRp5Obm/rR+IyIisGfPHqxevRpaWlo/rd+aztjYGLt378aRI0ewZ88ersMhVaB0hLJdu3YcR/JtPB4PNjY2XIdBOEYJJSHkh9jb2yMzMxPnzp37Kf0VFRVh+vTpaNOmDaZMmfJT+qxNRo8ejSlTpmDWrFl48OAB1+HUWPfv38fUqVPRsmVLKCkpQUpKCg0bNkTv3r3h7e2N5ORkrkME8L+EkpDagsfo+Qgh5Ad17NgRWlpaOHv2bLX3tW3bNri6uuLmzZto3759tfdXG+Xl5aFz587Izs7G7du36XHpZ/h8PubPnw9vb2+Ii4vDysoKrVu3hry8PJKSkhAeHo4nT55AXl4ez58/h46ODqfxrlq1CsuWLUOTJk1q1M5UZXn27Bnk5OTqXfkuIkyC6wAIIbWXg4MDZs+ejZSUFGhoaFRbP+/evcOSJUswdepUSia/QkZGBidPnkSbNm0wefJkHD16FDwej+uwaoQ//vgD3t7eaNOmDY4fPw5DQ0ORNnfv3sWCBQt+6jSO8mRkZEBMrHY8RDQxMeE6BFID1I6/rYSQGum3334DYwwnT56s1n7mzp0LaWlprFq1qlr7qQsMDQ2xd+9eHD9+HDt37uQ6nBrhxYsXWL9+PTQ1NXHx4sUyk0kAaNOmDa5cuQI9PT0AQHBwMHg8Hjw8PETaJiQkgMfjwcnJSeh4UFAQxo8fj+bNm0NBQQEKCgpo164ddu/eXW58Z86cQfv27SErKwstLS1MmjQJCSnZ4ElIoYgv/BDxxYsXmD9/Ptq0aQN1dXXIyMjA2NgYCxcuLHfXpIcPH8LOzg6KiopQVlaGnZ0dHj9+DCcnJ/B4PKERUF9fX/B4PPj6+uLy5cvo0qUL5OTkoK6uDkdHR6Smporcn+ZQEoBGKAkhldCgQQP06dMHhw8fxrRp06qlj8DAQBw5cgQHDhyAqqpqtfRR14wcORIhISFwc3NDp06dYGlpyXVInDpw4ACKi4sxZcoUaGpqfrO9hMSP/2hcu3YtYmJi0KlTJwwdOhRpaWm4ePEipkyZgufPn8Pb21uo/cGDB+Ho6AglJSWMHTsWMvKKOHj8b+TyxcGXkMH79DyM238L20ZbQllWEn///Tf27dsHW1tb2NjYgM/nIyIiAmvXrkVISAhCQ0MhKSkpuP+DBw/QvXt3ZGdn49dff4WRkRFu376Nbt26wdzcvNz3cfbsWZw/fx4DBw5Ely5dEBoaioMHDyI2NhbXrl374c+H1GGMEEIq4fDhwwwAi42NrfJ75+fns+bNm7Pu3bszPp9f5fevy/Ly8libNm2YgYEBS0tL4zocTtna2jIALCAg4LuuCwoKYgCYu7u7yLn4+HgGgDk6Ogodj4uLE2lbWFjIevfuzcTFxdnLly8Fx9PT05mSkhKTl5dnz58/Z4wxNnbfTaY//wyTbmLKADBxpQas2aLzbOy+m4wxxl6/fs3y8/NF+vD09GQAmJ+fn9Dxbt26MQDs8OHDQseXLl3KADAALD4+XnDcx8eHAWASEhLs2rVrguNFRUXMxsaGAWDh4eFC9wLArK2tRWIi9Qs98iaEVMrgwYMhLy+PI0eOVPm9vb29ERsbix07dtBcwO8kLS2NEydOIDk5GRMnTqzX9Snfv38PAGjUqJHIueDgYHh4eAi9KlOwX19fX+SYhIQEpk6diuLiYgQFBQmO//vvv8jIyICjoyMUFBRw4dodhEYngy8mDhWrsYJ2xYwhNDoZ8SnZ0NHRKXN3qJkzZwIArl69Kjj28uVLXLt2Debm5hgzZoxQ+wULFnx1xH/MmDHo2rWr4M/i4uJwdHQEAERGRn7rYyD1ECWUhJBKkZeXx9ChQ3H48OEqTVoSEhKwYsUK/P777zA1Na2y+9YnBgYG2L9/P06dOoU///yzzDY2Nja1PlmvzHsIDg6Gp6en0KsyCWVGRgbmz58PExMTyMnJgcfjgcfjYdiwYQBKdjYaMGAAOnXqhFmzZgEAduzYAR0dHfzq+L9yWNI6JoCYuNC9j/kH4OPHj9i/fz+srKygpqYGcXFx8Hg8qKurAwDevn0raF9aPurzxLCUvLw8LCwsyn0fbdu2FTnWuHFjAEBaWloFPglS39AcSkJIpdnb28PPzw93794t8wfRj3B1dYW6ujqWLVtWJferrO9NWGrKiOCwYcPg4uKCOXPmoFOnTrWiUHZV09LSQlRUFN6+fSuyIrl0VBIAjh07htGjR4tcn5GRgfv37yMlJQXJyclISUlBdHQ0gJKE1NbWFikpKUhKSkJSUlKZMUhKSqKwsBBJSUnQ0dFBq1atkJOTg0ePHmHBggXo1q0bCmRUMTsgDQDAExOHmKyi0D2WzZ6Gxc4lCaOioiLat28Pc3NzQXkoT09P5OfnC8UNlMx1Lu9zKU9ZJadK55YWFxeXex2pvyihJIRUWq9evdCgQQMcPny4ShLKs2fP4uzZszh9+jQUFBSqIMLKc3d3Fzm2efNmpKenl3muJlm/fj0iIiIwcuRI3L17FyoqKlyHVKUOHjyInJyccs936dIFwcHBCAwMhIWFhSAp/DxBTE5OFjzK3bNnDw4ePCh4VL5p0yZs2rRJcD8pKSnBZ1hQUABtbW2YmZnhw4cPOHHiBHr06IGlS5dCQ0MDGhoaUFdXx+nTpzF69GhMmDBBkMDOmTMHjx49Qtu2bWFnZ4c5c+Yg960q5Jq1AZ/PBz83E+IK6hDn8dDVUAMul/5Fx44doaysDFlZWQQGBiI4OBht27YVlNP6PNkrTQrLS3I/fPjwYx84IWWghJIQUmkSEhIYNWoUjh49ivXr10NcXPzbF5UjJycHs2bNQr9+/TB06NAqjLJyyiod4+vri/T09DLP1STS0tI4fvw42rRpg/Hjx+P06dO1/jE3AOTm5goSw5SUFNy9e1coQSw9/vr1awAlxcLLKj2lpqYmVEdVS0sLffv2RWFhIby9vdGrVy+sXr1akCAqKCjgwIEDcHZ2Rp8+feDr6wsA8PLywokTJ+Dm5iZSRicsLEyk39JV1iEhIfD398ehQ4fgvW0H7sk2wOXAYIBfkhx2NdTAttGWiHpwB4wxjB8/Hhs2bEBsbCyCgoIQFBQkmMN87do1dO7cGba2tmjZsiUA4MaNGyJ95+Tk0I5KpGpxuyaIEFJX3Lp1iwFgly9frtR9Fi9ezKSlpVl0dHQVRVZ9dHV1WVlfo8nJyczV1ZXp6ekxKSkppqmpyUaMGMEePXok0tbR0VGwSn7Dhg2sRYsWTEpKSrB6WFdXl+nq6rLMzEw2a9Yspq2tzaSkpJiZmRk7efKkyP2eP3/O5s2bxywtLZmamhqTlpZmRkZGbMGCBezIkSMMANu8eTNjjLHYpExm3r4LA8Byc3PZggULWJMmTZi0tDQzMTFhW7duFVld7+7uzgCwoKAgkb5LVwj7+PiInDt79iyzsbFhSkpKTEZGhrVu3Zp5e3uzwsJCxhhjxcXFLDk5mV29epUBYLa2tmzlypWsRYsWTFpamomLizN1dXXWsmVLpqury+Tl5QWrlD9/ycjIsCZNmjBLS0vWp08fNmbMGObq6sq6d+/OADADAwPm5+fHnjx5wj58+CDonzHG/vrrL6FV3fn5+UxRUZGpqamx1NRUQbv3798zAwMDkVXepZ/v/Pnzhd57cHAwk5SUFFkxnpaWxpSUlJi4uDgTFxdnR48eZYwxVlBQwDp2KVmdrdOkqaD927dvGQDWqVMnVlxcLDj+6tUrQTxGRkZs5MiRrEGDBgwA4/F4DAAbOnQoCwgIYDk5OYwxxjw8PL66yrus/4flrXoHrfImjDEaoSSEVIl27drB2NgYfn5+6N279w/d49mzZ1i/fj3++OOPcotP13TJycno3LkzYmNjYWNjg1GjRiE+Ph6nTp3C+fPncenSJXTr1k3kOhcXF0REROCXX37BwIEDhea9FRYWok+fPvj06ROGDRuGnJwcHDt2DCNHjsTFixfRp08fQduv1SksXQgyf6knAvkt8CCpEO/fl8yzM+rUBywlHsOHlyweOX36NGbNmoWEhASR2okVkZOTIxgl3LVrF/bs2QM5OTk0b94cxcXFiI2NxZw5c+Du7g5paWl8+vQJfD5fcH3pyJuEhAQUFRUhJiaG1NRUZGVlYcqUKdDT04OmpiY0NDTwxx9/4O7du8jKyoK8vHyZ8fD5fMybNw8bN26Eo6MjrKysYG5uDjk5OSQlJeHhw4e4desWFBQUBItVpKSk4OLigtWrV6NNmzYYPHiwYP96a2trxMbGCvUxcOBA6OnpYd26dXj8+DFMTU3x/Plz+Pv7Y+jQoTh16pRIXA0bNsSLFy8gJyeHoKAg3L17F/7+/pCVlYW2tjYkxP43kqytrY1hw4bh9OnTaNeuHXr27IkPHz7A398fPXv2RGxsLBo1aoTjx4+DMYanT5/i4MGD2LhxI/755x/8888/EBMTg7KyMnJycmBubo4HDx7Umh15SA3HdUZLCKk7PD09mYKCAsvOzv7ua/l8PuvRowczMDBgubm51RBd1StrhNLZ2ZkBYIsWLRI6fv78eQaAGRoaCo0ulY5QNm7cWKhG4Zd9DB48WKj+YOlIXt++fYXaf6tOoa+vLzOatJnpzj/DdBf6C+odSqo1Zr9t+1+dxrS0NNa8eXPG4/FYREQES0pKYk+ePGFOTk4MAPv999/ZypUrmaurK7O3t2d9+/YVxFo6GvflS0ZGhunq6rK2bduyPn36ME1NTQaADR8+nO3atYv9/fff7Pjx44L2q1evFnoPS5YsYQDYmjVrhI5bW1uXOVJclrt377LJkyczExMTpqCgwCQlJZmWlhbr0aMHW79+Pfvw4YNQ++LiYubh4cGaNGnCpKSkmLGxMduyZQuLi4srtw7lsGHDmKamJpOTk2Pt27dnx44dExnde//+PbOwsGAqKipszZo1rG3btkxaWpo1aNCATZw4kX38+FEwOv25zMxMNmfOHKanpycYfV6xYgUrKCgod6Tw3r17rE+fPkxOTo5JS0szLS0tpqSkJPicu3fvzlasWMHCwsLYnj17aISS/BBKKAkhVSYmJoYBEDy6+x6ljwsvXLhQDZFVjy8Tyvz8fCYjI8PU1dXLTKp79+7NALDQ0FDBsdKEcsuWLV/to6yC2bq6ukxNTa1CsaampjIAbNgoe6a70F/wKk0o1QfOYboL/dnoya5syJAhrFu3bqxhw4ZlJob4/0epmpqarGXLlszKyooNGzZMUPh69OjRzM/Pj126dIlNnTqVAWArVqwQien69esMAOvRo4fgWGnBcH19faHE+/Nzv/76q9Dx70koa4L4+HhmaGjItLW12cOHDzmJIT8/n2lrazMFBQU2YMAAQYIpJyfHevfuzVavXs3Cw8NZQUEBJ/GR2ofGuQkhVcbAwACdOnWCn5/fd12Xnp6O2bNnY/jw4ejXr181RVf9nj17hry8PHTo0AFycnIi521tbQEA9+/fFznXoUOHcu+roqJSZsHsxo0bi9QEZIwJ6hSqqqqK1Cm8fDWgzD5kGrcCADxJTEJ+fj6aNWuGAQMGACjZH/yff/7BtWvXMGPGDAAlBbSTkpLw5MkThISE4NSpU4LC13369IG9vT369OkjWEn8+WP5Up07d4aMjEyZn4eFhYXIo9i6UAfxyZMn6Nq1KxhjuHbtGszMzKq1v6KiIqSkpIgcX79+Pd69e4cxY8bg3Llz+PjxIyIjI+Hh4QEJCQmsXr0anTt3hpqaGvr3749169YhMjISRUVF1Rovqb1oDiUhpEo5ODjAzc0NycnJFdo3GQCWLVuGzMxModIstVFp3b/y6vtpa2sLtfvc12oCKisrl3lcQkICfD4f4eHhiImJQUxMDI4ePYro6GjweDyhWpjy8vLIzs6GjETZ4wji8iW7pvx7aA/0NUrmIebl5WHv3r2QkZHBkCFDAABXrlwBgArPu/vaZ8Lj8aClpYU3b96InKuLdRBv3rwJOzs7NG7cGJcuXULDhg2rvc+srCzo6Oigd+/eMDY2RmFhIW7evInIyEhoa2sLKhSIi4ujXbt2aNeuHebNm4fCwkLcvXtXMJfV09MTCxYsgJKSErp37w5bW1vY2trC3Ny8UlUdSN1BCSUhpEqNHDkSrq6uOHHihGA062vu3buH7du3Y926dYIRqNqqNAkqr75faV3DspKlr5XxKS4uxvXr1xETE4Po6GhB8lg6stelSxcAJQWsk5KSoKqqCldXV7Rs2RKGhoYwNDREdnY2tLW10bK5EZoaaeJ6TAqKPy++npMGq7YtBcnk5+/j84S2NJEsa6QqPT39q5+Jrq6u0DnGGD58+FDm51HXXLlyBUOHDoWFhQX8/f1/Wi1QOTk5TJgwAYGBgQgNDUVeXh60tbUxZcoULF26VPBLzpckJSXRsWNHdOzYEQsXLkRBQQEiIyMRHByMoKAgLFmyBHl5eVBRUYG1tTVsbGxga2sLMzMzWuRTT1FCSQipUpqamujXrx8OHz78zYSSz+dj2rRpaNmypWAbutrMxMQEMjIyiIyMRE5Ojshj79It/cra8i4pKQmvXr0SSRoTExPBGBOsDNfR0YGhoSEsLS3x8eNHxMfH48GDB2jWrBkeP36Mzp07w9nZWaTY+sWLFwX/vW20JVyO3kNodLLgWJPCRGwbbS90TWntREtLS8Gx0v2fyxpVvHfvnsgxS0tL/PPPPwgODhZ5rH/z5k3k5eUJEuK66uTJk7C3t0fv3r1x8uTJMqdDVBcpKSns2LGjSu7TtWtXdO3aFX/88Qfy8/Nx8+ZNBAUFITg4GAsXLkR+fj7U1dVhbW0tqDLQqlWrOlHzlFQApzM4CSF10tGjRxkAFhMT89V2u3fvZgBYWFjYT4qsan1tlfeSJUuEjv/3338ldQV1dNju3bvZggUL2LBhw5iqqqrIgpcmTZqwHj16sMmTJzNVVVWmqanJHj16JLLQ58vFKBWpU/j5aty45CxBHcrmzZuztLQ0wbnPV3lHRkYKjoeHhwsW0nzex40bN5iEhITICuGYmBgmISHBtLS02Js3bwTH8/PzmZWVFQPADh48KDheuvDmy9XTpb58D2V9DjXJrl27GI/HY/b29nV6gUtOTg4LDAxkS5cuZd26dROs9C+twbpjxw4WFRUlUteU1B01818gIaRWy87OZgoKCmz58uXltklKSmKqqqrMycnpJ0ZWtb5MKIuLi9m9e/eYtrY2A8CaNm3KjI2NmbKyssgKaV1dXdarVy9mbGzMALBdu3axJ0+eCApPf97Hl6VjSpWVSA0bNowBYJaWlmzu3Lls7NixTFVVlQ0fPvyrydjAgQNZ48aNmaurK3N1dWWNGzdmANjs2bNF+u3atSsDwDp06MDmzp3LRowYwaSkpNjQoUPLLDnj7e1dspJcXZ1NmzaNzZ07lzVv3lxQDunzJKOuJJR8Pp+tXr2aAWAuLi4iK9bruuzsbHblyhW2ePFi1rlzZ8EvGw0bNmSjRo1iu3btYi9evKAEsw6pWf8CCSF1xrhx45ixsXG5PzDGjx/PVFVV2datW8tMQspKHL5HdSUZRUVFLCEhgV29epWpqakJkqJWrVoxGRkZocRRQkKC8Xg8JiMjw8zNzdm2bdtYVFQUy8vLE9yvtGzQ57uVfO57E8rvrVNYeo/c3Fw2f/58Qb3F5s2bl7lTDmOMpaSksHHjxjE1NTUmKyvLOnXqxC5duvTVXVbOnDnDrK2tmaKiIpOWlmZmZmZCO+WUqgsJJZ/PZ3PmzGEAmKenJyVNrOTv5cWLF9mCBQtYhw4dmJiYmGDE3t7enu3du5fFxsbSZ1WL8Rj7fFY2IaQ+SEhIEJSh0dLSwuvXrwUraD8XFRUl2A9YV1cXCQkJFe7j8uXL6Nu3L27duoX27dsLnbt+/Tq6deuGnTt3QlpaGs7OzvDx8YGTk5OgDY/Hg7W1tWDe4feysbFBSEgIfuQrrri4GImJiYJ5jJ/PaYyLi0N+fj6AkpWxenp6MDIyEix+Kf1vPT09SElJ/VDspPYqKirCpEmT4Ovri23btmHmzJlch1QjZWRkICwsTLDI5+7du2CMoWnTpoL5l7a2tiILuUjNRYtyCKnHJCQk8OHDB/z3338YNGiQyPl9+/b98IrNHj16oGHDhjh8+LBQQllUVIRp06ahQ4cOmDhxIg4dOlTm9VFRUZVavHDw4EHk5OSUe76oqAgvX74USRhLk8bCwkIAJZ+Rvr4+jIyM0Lt3b6GkUVdXF5KSkj8cI6lb8vLyMGrUKJw/fx6HDx/GmDFjuA6pxlJSUsIvv/yCX375BUBJbdHQ0FDBIp+DBw+CMQZ9fX1BiSIbG5taXwmiLqOEkpB6rEuXLnjw4AH2798vklAWFRXBz88PvXr1QkhIyHffW0JCAqNGjcKRI0ewYcMGwQjotm3b8OTJE9y6deur9etMTEy+u8/PNW3aFIWFhYJk8cukMT4+XlD6RlJSEs2aNYORkRH69+8vlDQ2bdq0zNFbQj6XkZGBwYMH4+bNmzhz5gzs7Oy4DqlWUVFRwaBBgwTfQx8/fkRISIigDub+/fsBlBTZ/zzBLK/sEfn56FuSkHpMVlYWo0aNwr59+5CUlIQGDRoIzvn7++PDhw8YP358mQklYww+Pj7Yt28fHj16hKKiIrRs2RLTp0/H+PHjAZQUOd+8eTMCAgLQvn17uLq64vDhwxAXF8fUqVOxePHicmMr75F3QUEB/vzzTxw5cgTPnj0DYwwNGzaEqakpOnTogLdv3yImJgYhISHIy8sTXCctLQ0DAwMYGhpi4MCBQkljkyZNqDgz+WFJSUno378/YmNjcfnyZUGJJ/Lj1NTUMHToUAwdOhQAkJycLJRg7tmzBwDQvHlzoQTz8+8w8pNxOH+TEMKR0oUPffv2ZTdv3mQA2IYNG4TaDBw4kKmpqbG8vDwmLS0ttDCEz+ez0aNHMwDMyMiITZkyhbm4uDATExMGgM2ZM0fQzsTEhA1ymMiaGbdgAJikpCRzc3Nj9vb2TFJSkv3yyy/fXJSTm5vLnj59yk6ePMn09PQEew6X7j9c+pKSkmKmpqZsyJAhglXKAQEB7OXLl6yoqKg6P1JSTyUkJDBjY2OmpaXFHjx4wHU49cb79+/ZsWPH2JQpUwSVEgCwli1bshkzZrBTp06x5ORkQftvLX4jlf+MKKEkpB76PKFkjDFTU1PWqlUrwfl3794xCQkJ5uLiwhhjIgllaf1IZ2dnodp6+fn5bODAgQwAu337NvuUnc+6Lj7MlLuWJJ8K5n1Zr5X/sLSckmsuXrwo+EGwa9cu9vjxY/bvv/+y9evXMwBMRUWF6erqMh6PJ5Q4qqiosKFDh7L58+ez3bt3s6CgIPbkyROWnp4uiKWmrfwldc/Tp09Z48aNmb6+/jdrrtZlX36fcOH169fMz8+PTZw4UVBzFQBr3bo1c3V1Zba2tpwmlN+qXlATVDahpEfehBCMHz8es2fPxs2bN9GxY0ccOHAARUVFgkfXX9q+fTvk5eXx559/Ci1KkZKSwqpVq3Du3DkcPXoUSS2L8ZYpI/txICAuAZXuDojNlsRvmy+ih3gUYmJioKqqik+fPmHKlCmC+8jLl2z/JyEhgdGjR8PIyAh6enoYPHgwxMXFERcXJ9ixhRAu3Lp1C3Z2dtDW1salS5fQqFEjrkOq13R0dGBvbw97+5Ldnl69eiVY4HPmzBlBhYpffvkF/fr1g42NDaysrIS2FSWVQwklIQQODg5YsGAB9u/fj44dO8LHxweWlpZlbhGYk5ODR48eoVGjRli7dq3I+YyMDADAxauByJK0BT8/B0XpHyCp0RTiCqrgM+BZhhgi/PbCoIEiGjVqhE+fPmHChAlwcnKCoaEhtLS0ICYmhlatWmHNmjUAgMePHyMrKwu9evWiZJJwKiAgAIMHD0br1q1x/vx5+vtYAzVp0gTjxo3DuHHjAADDhw/H6dOn0bx5c5w4cQIbN26EmJgY2rRpI5iD2a1bNygqKnIcee1FO7gTQqCpqYmBAwfi2LFjuHr1Kp4/f17u6GRqaioYY3jz5g08PT1FXps2bQIARD2PBgDw80tK94jJCY8E/HMlDHfu3BHU6evWrRu6deuGhg0blrn3b3p6OoCSkQhCuPL333/Dzs4O3bt3x5UrVyiZ/A7p6elYu3YtrK2t0ahRI0hJSaFRo0YYN24cYmNjRdp7eHiAx+MhODgYPj4+MDMzg6ysLPT19bF161YAJYsDvb290bx5c8jIyMDIyAgHDx4UuZeCggIAYMOGDZg5cyZ0dXUhJiaGqKgo/PXXX7Czs4Oqqio6deqERYsW4fLly8jOzkZoaCgGDhwIDQ0NSEtLw8jICEuWLBGUJItLzkLQ8yQcPXMBPB4PHh4euHHjBvr06QMVFRXweDz4+voK6v4eOHAAPB5P8Pp80SFjDPv370fXrl2hpKQEOTk5tGvXTrDC/XN5eXnw9vaGubk5lJWVIS8vDz09PYwcORIPHjwQaX/mzBn06dMH6urqkJGRgZ6eHsaOHYvHjx+LtGWMYevWrTAxMYG0tHQF/s+WoBFKQggAYMKECfj777/h5OQEGRkZdOjQAf/99x9iY2NRVFSEpKQktGjRAnFxcYJreDweGjduDAMDA5GXhGojDN5zF2LSJbUk+TnpQv35bl8Pkz/m4MOHDxWKT0VFBQDw5s2bqnnDhHynvXv3YsqUKRg5ciQOHDhAheu/U1RUFJYtWwZbW1sMHToU8vLyePbsGY4cOYLz58/j7t27ZRYy37x5M4KDgzF48GD06NEDp0+fhqurK+Tk5HDv3j2cPn0aAwYMQM+ePXHs2DE4OjpCT08PVlZWIvdyc3PD9evXMXLkSCgoKODcuXN4/vw5+vbti6FDhwpKFHl5eUFMTAx8Ph8yMjLo3r07WrVqhfv372PVqlW4EhAIQ+f1uB6fBgDIe/kQABB67TpWr14NW1tbTJ48GYmJibCwsICrqyu2bNkCc3NzDBkyRBCPnp4egJIkzt7eHkePHoWRkRHGjBkDKSkpXLlyBRMmTMDTp0+xYcMGwXWOjo44ceIEWrduDWdnZ0hLSwse80dGRsLc3FzQds6cOdi4cSPU1NQwZMgQNGjQAK9evcLVq1fRtm1bmJqaCn1G8+bNQ0hICAYMGIC+fftW/H9wlc3mJITUGqUTxDt37sxOnDjB1qxZw8aPH8+kpaWFFr/g/1dO83g8Jisry2bNmsW2bNnCmjRpwmRlZdm7d+++2s/YfTeZ7oKzTEJZi0FcgjWeeYg1W+TPui89xlRVVZmsrKxgP+xvbb1YWFjIlJSUmLKyMvv48eM33yMtyiFVae3atQwAmz59er3bl/tbKrooJy0tjaWmpoocDwwMZGJiYmzixIlCx93d3RkApqamxmJjYwXHExMTmZSUFFNWVmbGxsYsKSlJcC4iIkKwN/3nShecaGpqslevXgmO5+fnMysrKwaAnTp1ijFWUp3izJkzTExMjCkrKwu2WJWSkmJWVlasR48eJXH1GM90F/oz3YX+TGv0asF35v79+8v9jMpblFPRhY6lnyOPx2Nt27YVqV5RVFTEPn36JPjzuXPnGABmZmbGUlJShNoWFhay9+/fi3xG+vr67O3bt2XG+TX0yJuQOooxhnfv3uHatWs4cOAAli1bhjFjxqBjx46wtLQEAISHh2PkyJHw8vLC/fv30a1bN/z6669Ys2YNgoKCkJiYiNzcXEhJSaFBgwbYsmULZs2ahcWLFyM3NxcuLi7Izs4W6Ts+Ph4JCQlYM9AIBYkPIW/aAyguQlqYH7oaauLcol8RFxeHIUOG4OXLlwCA8+fPf3VnGwkJCUyZMgXp6elwdXVFcXGx0Pn09HRkZWVV4SdISMm/o/nz52PBggVYtmwZtm/f/sO7R9V3ysrKUFNTEzlua2uLVq1a4erVq2Ve5+rqimbNmgn+3KRJE3Tr1g3p6en4448/oKmpKTjXsWNHNGvWrMzHvqX3+ny3ndKFhADg6+sLoOTJS0BAAPh8Ps6dO4fk5GQ8fPgQ69evh7q6Ou7HvoWYnDKynoaK3F9KywA2A0d++8P4wrcWOgLA0aNHBfExxiAjIyPyd1FcXFzwNAcAduzYAQDYsmUL1NXVhdpKSEhAS0tLJJalS5f+UMF4euRNSC1WWFiIly9fIjY2VuQVFxcnlKA1atQIBgYGaNmyJbp164aNGzeiU6dO8Pf3h5qaWpnzFsszZcoURERE4MCBA7h+/Tp69eqFRo0a4cOHD3j27Blu3ryJI0eOID8/H++OLsGV8HuYPO4e4h9cQuy+THhFW+HVq1c4deoUevXqhatXr+Lvv//G9evX4e7uXu78zeXLlyMiIgKHDh1CREQE+vfvD2lpacTFxeHixYu4du1amQuJCPkRRUVFmDp1Kvbt2yf4ZYpUTnBwMDZv3oybN28iJSVFsFsVgHKnEJT1b7o04Snv3M2bN8u8V/fu3UWOde7cGRISErh3757gWEREBADg0qVLCAgIEBxv3bo1FLWb4fBBHxSmvha5l5S2ERJSs6GvIV9m/2X51kLH0m1gnz17BqBk20o7Ozv8999/aNOmDUaMGAEbGxu0b99eZCvYW7duQVpaGtbW1hWOp23bthVu+zlKKAmp4bKysspMGGNjY5GYmCgYqSvdc9rAwADW1tYYP368YD6jvr6+0L7YCQkJ2LhxI5SVlUV+a62I0onmdnZ22LNnD/z9/ZGVlYUGDRrAyMgIGzZsQK9evTBy5EjY2tqiVycL3I64jkWLFuGff/7B3bt30apVKxw/fhzp6em4evUq1qxZg0ePHmHatGlCc4U+JyMjgytXrmD79u3w8/PDnj17IC4ujqZNm2Lq1KmC+UiEVFZeXh7s7e1x5swZHDp0CA4ODlyHVOudPHkSv/32GxQUFNC3b1/o6elBTk5O8H1S+rTiS0pKSiLHSrdDLe/c54nq58oakRMXF4e6urpg4R9QsvUjAMHoYEWJy6tCT73iySQAfPr0SWihY3k+fxp08uRJrF69GkeOHMEff/wBoOSzcHZ2xurVqwXf9+np6dDR0fmuUfWyPtOKoISSEI4xxpCcnFxu0vj5ohUFBQVBkjh8+HChRTBNmjSp8J7Tenp6YIxVOMbPtzD83MiRIzFyZNmPdxISEhAUFIQDBw4AKNlKbdeuXdi1a5dIWycnJ8F/z5s3D3/88QdiYmKQnp6Oixcvom/fvoIRVGlpacyZMwdz5sz5asxfbtlISEVlZmZiyJAhuHHjBv79918MGDCA65DqBA8PD8jIyODOnTswMjISOnfs2LGfEsOHDx/QvHlzoWPFxcVITU0VSjZLk6qMjIwySwmN238L12NSUPzF96iuuvx3jU5+3lfbtm1x+/btCl0jJyeHlStXYuXKlYiPj0dQUBB27tyJLVu2IDc3V/A9q6Kigvfv34PP51f7VA1KKAknSkeSSovNcnWPn9VHUVERXr16VW7S+PncPy0tLUGS2KdPH6GkUVNT87seTXPp0KFDUFBQwLBhw77rutatW+PcuXO4du0aFi1ahP79+8Pa2hpr1qxB586dqylaQkqkpKSgf//+ePHiBS5dulTmSmHyY2JjY9GqVSuRZPLdu3dC1SOqU1hYmMj/0/DwcBQVFQnmlgMlczHv3r2LiIgI9O7dW+Q+20ZbwuXoPYRGJwsd72/asMx+xcXFAUBk7jcAKCoqokWLFoiKikJaWprQHMiK0NfXh76+PkaPHo0GDRrg7NmzgoSytFpHSEgIbG1tv+u+34tmFpNyZWdnY/Xq1WjTpg0UFBQgLS2Nxo0bo3v37li0aFGZdcNqGycnJ/B4vCpJSnNzc/HkyROcPXsWmzZtwsyZM9GvXz8YGRlBVlYWzZo1Q+/evTFjxgycOnUKGRkZ6NSpE5YtW4a///4bDx48QGZmJt6/f4/r16/j4MGDcHd3h4ODAzp37owGDRrUmmSSMYYDBw5g+PDhgl1vvle3bt0QGhqK8+fP49OnT+jSpQsGDx5cZt00QqrCq1ev0K1bNyQmJiIkJISSySqmq6uLmJgYoacueXl5mDZtmmCeYHXbsmULXr/+39zHgoICwSPjz5+UTJ8+HRISEnBxcUFiYqLIfVh+Nn63lETQHBv4OLXHpt8sAAAykuJl9quqqgoej4dXr16VeX7WrFnIycnBpEmTvrrQEQCSk5PL/B789OkT8vPzISMjIzg2Y8YMACWLkUof45cqKiqqcNm2iqARSlKmzMxMdOvWDQ8fPoShoSEcHBygrq6OlJQU3Lp1C15eXoJRM658PlH6Z/TBGMPHjx/LHWV8+/atoK2srKzg8xk0aJDQKKOurq7IxOm65vr164iNjcW+ffsqdR8ejwc7Ozv069cPx44dw9KlS9G6dWuMHTsWnp6eNGeSVJlnz56hT58+EBMTw7Vr10RG0ci3PXr0SCgp+5yJiQlcXFzg4uICS0tLDB8+HEVFRbhy5QoYYzA3Ny93ZXZV6tSpE8zNzfHbb79BXl5eUIfy119/FXqaYmpqih07dmDatGlo3rw57OzsYGBggMzMTMTFxSEkJAROTk7YuXMn9DXkEfxO9qv9KigooH379ggNDcXYsWNhZGQEMTExjB07Frq6uhVe6Kinp4c3b97A0tIS5ubmaN26NXR0dJCamoozZ86gsLAQc+fOFfRrZ2eHuXPnYsOGDTAyMsLQoUPRoEEDvHnzBgEBAZg7dy7c3Nyq5sP97kJDpF5Yvnw5A8AmTpzI+Hy+yPm4uDgWFRX1w/fX1dVlurq6lYiwapTW3YqPj2eMMVZcXMwSExNZYGAg27NnD1u4cCEbMWIEa9OmDVNWVhaqz6iurs46duzIxowZw5YuXcp8fX1ZWFgYe/v2bZmfWX0yYcIEpqenV+X1+vLz89mff/7JtLS0mKSkJJs1axb78OFDlfZB6p/IyEimoaHBWrVqxV6/fs11OLVOaY3Fr72sra0Zn89nO3fuZK1atWIyMjKsYcOGbMKECSwpKanMurGldSiDgoJE+vzyu/tzZd2rtH1sbCzz8vJihoaGTEpKiunq6jIPDw+Wn59f5nu7desWGzVqFGvUqBGTlJRkGhoarE2bNmzhwoVCPwODgoIYAObu7l7u5/T8+XNmZ2fHVFRUGI/HK/O9HT9+nPXq1YupqqoySUlJpqOjw2xsbJi3tzdLTk5mjDH26dMn5uHhwaysrJi2tjaTkpJijRo1Yv369WMXLlwos+/Tp08zW1tbpqyszKSlpZmenh4bO3Yse/z4cYU+04qghJKUqX///gwAu3fvXoXaBwYGMmdnZ2ZsbMzk5eWZvLw8a9u2Ldu1a1eZ7b9MKEsT2AMHDgi1i03KZIHPPrAdPocZALZ48eJy78EYY2/evGHLli1jHTt2ZJqamoIvjGnTpgkSj7y8PBYVFcUaNGjw1S9AHo/HxMXFmYyMDJs4cSJbs2YNO3HiBLtz5w5LS0ur0OdSH2VnZzNFRcWvfrFWVlZWFlu1ahVTVlZm8vLybOnSpSw9Pb3a+iN1V2BgIFNQUGAdO3Yss+g2IaRieIx9x1JPUm+MHTsWfn5+OH78eLmreD/Xr18/xMTEoFOnTmjcuDHS0tJw8eJFvHz5ErNnz4a3t7dQ+y8Xu8THx8PAwAC9evXC5cuXkZZTgFnH7gsmPCedXonc6AjcuvcQ7S3MyrwHULJScOLEibCysoKysjKysrLw9OlTxMXFQUZGBurq6nj79q1ghXNpgVh9fX00aNAAqqqqMDExEZSgKV0NWJ0Lf+qaw4cPw8HBAbGxsULFiKvDx48fsXbtWmzduhXy8vJYvHgxpk+fLjSHiJDy/Pvvv/jtt99gbW2Nv//+W7DfMyHk+1FCScp09uxZDB48GIqKipg8eTL69OmDtm3blluzMD4+Hvr6+kLHioqKYGdnh8DAQMTFxaFp06aCc2Ulg927d0d4eDhevXqFBRdeCUoyFOdm4vX2sZDW1MfIVX44OL4DGGNo2rQpioqKsGbNGsE8xmfPniEhIQGfPn0S3FdFRQUqKipISEiAlZUVxo0bB0NDQxgYGOCPP/7AwYMHER8fX+Z8vJ+xkryu6d27NwoKChASEvLT+nzz5g2WL1+Offv2QVtbG56enhg3blyFyyiR+sfHxwcTJ07E8OHDcfDgQUhLS3MdEiG1Gq3yJmUaNGgQvL29wRiDt7c3+vbtCw0NDRgaGmLmzJmIjo4Wav9lMgmUFJedOnUqiouLERQU9M0+x44di+LiYmzf44vQ6GRBfa+cqDCguAhyrWwQGp2Mlh2tIS8vj9evX+P9+/dwdnaGj48P3rx5AwsLC8yZMwdHjx7FrVu3kJqaik+fPiEuLg5KSkoQExPDhAkTYG1tjcaNG9eaVdO1xatXrxAQEFDuxPzqoqOjg127duHp06fo2rUrJkyYADMzM5w+ffq76m2S+sHb2xvjx4/HpEmTcOTIEUomCakClFCScs2ePRtv377FiRMn4ObmJiin8eeff6J169Y4e/asoG1mZibc3d1hbm6O/2vv3uNyvB//gb+uO5UKScpCirDMkEzWCh2oiZS62SejYjabOcxhPjOGOTUs5mMnv2m6sTnlkMNQOqhFYokxFqlYTqWESqf7+v3h0/3VpyTu6urwej4e/eG6rvu6XnePx3jtel/X+92iRQsIggBBEFRvzT39BvSzjBkzBtra2ti08ady2/MuRgEyDei99mTpqNdtnbBixQoYGxujffv2yM/Pxz///IPjx4/j559/Ro8ePbBp0ya4ubmpptqRyWR48OBBtXLQy9uyZQt0dHQgl8sluX737t2xfft2/PHHHzAzM4NcLseAAQPqZEYAqv9EUcS8efMwZ84czJ8/Hz/88INqfkAiUg/Hg6hKLVu2xOjRozF69GgAT5Zx+vzzz/H999/jvffeQ0ZGBgDAwcEBiYmJ6Nu3L8aPHw9DQ0M0a9YMaWlpUCgUKCwsrPT8jx49QmxsLCIjIxEZGflk7ecbqTDJug6ttp1QnHMLhRmXoGPxBjT0WgMAVi6Yg85t9fDNN98AeDJFT5nAwEDMmTMHRkZGcHFxQceOHVX7v/nmm2fmIPWJ/5170tvbu9KVJeqStbU1jhw5gqioKMybNw9DhgzBkCFDsGLFCvTv31/SbCSN0tJSfPTRR/jpp5+wZs0azJw5U+pIRI0KCyW9EH19fXz77bc4dOgQ0tPT8eeff+LatWtITEzEe++9h40bN5Y7fvv27aql94Ank9jGx8fj/v37ePz4MQwMDFBSUoL27dvD2dkZdnZ2WL9+PdrcjEeBkRnuX3wyVK7X0xEaggC7rm2fuaxVSUkJli5dChMTEyQlJcHY2Fi1TxRFrFq1qhZ+I1QmPj4eycnJ+P7776WOouLo6IiTJ08iNDQU8+fPh42NDby9vbFs2TJYWlpKHY/qSGFhIcaNG4e9e/ciODgYfn5+UkcianQ45E0vTBCEcquflK2Y4+HhUeHYshczYmNjMWTIEBgYGMDR0REPHz6EhoYG1q9fj7///hv//PMPNm/ejMDAQBgaGiL3z2i81aUN8i5GQ9DSgU63N2HXtS3W+/StcI0yWVlZyM3NVa0q87QzZ86goKCgwmeqWg6LXkxwcDBMTU1rfXmvFyUIAjw9PXH+/HkEBwfj9OnT6NmzJyZNmvTMVSuo8Xj06BHc3d1x4MAB7Nmzh2WSqJawUFKlNmzYgNOnT1e6b9++fbh06RJat26N119/HWZmZgCA33//HUqlEufOncPatWtha2uLH3/8UbVPR0cHK1asQFJSEkxNTWFkZIQPP/wQ3bt3V70co6mpiXfeeQf/3LiOnlnRKMm5CZfhHjj+mSs2T7SBvs6zV5gxNjaGjo4OEhMTkZ+fr9qek5ODadOmVfqZNm3aAACLhZoKCgqwY8cO+Pr6Qiarn3+taGhowM/PD8nJyVizZg1CQ0PRrVs3zJkzB/fu3ZM6HtWCe/fuwdnZGfHx8Th69ChGjhwpdSSiRovTBlGlPD09ERoaiq5du8LOzg7t27dHXl4ezp49i9jYWMhkMmzduhX/+te/cPbsWbi4uODevXvQ1NREcXExZDIZRFFEz549ceHCBXzxxRdYsmSJ6vxVTccTHx8PW1tb1bkiIiLg5ORU4bjKzjFnzhwEBgaia9eucHd3x4MHD3D48GGYmZkhPT0dmpqa5Y4/fPgw3Nzc0K1bN3h7e0NPTw9mZmYYP378c3PS/9m+fTt8fHyQnJzcYJase/jwIdauXYvVq1dDJpNhzpw5mDlzJucibCT++ecfuLi4ICsrC0eOHIG1tbXUkYgaNRZKqtTff/+N/fv3Izw8HFevXsWtW7cAPJmepW/fvujZsyeuXbuGyMhIZGRkQENDA/r6+nj8+DGUSiV69uyJTz/9FO3atYOjoyMWLVqExYsXq87/vKLWvXt3XLlyBR07dkR6enqld70qO0dxcTFWr16N4OBgXL9+He3atcPo0aOxePFivP7665Vec/Xq1fjpp5+QlpaG4uJiDB48GNHR0dXKSU8MGzYMDx48QFxcnNRRXlhmZiYCAgLw3XffoXXr1liwYAE++OADTiXTgCUnJ2Po0KEAgPDwcHTv3l3iRESNHwslPdfdu3cRFRWFyMhIREREICUlBYIgoG/fvnBycoKTkxPs7e0lf7OXpHHz5k2Ymprixx9/xPvvvy91nJd2/fp1LF68GAqFAp06dcKSJUswduxYTivTwCQmJuLtt99G27ZtERYWho4dO0odiahJYKGkCu7fv4/jx4+rpvK5cOECAKBHjx6qAung4KB6/pCatlWrVmHRokW4ffs29PX1pY6jtr/++gsLFizA3r178frrr2P58uVwd3fnJPgNwPHjx+Hu7g5LS0v89ttvaNu2rdSRiJoMFkpCXl4e4uLiVHcgExMToVQqYW5uDmdnZzg5OcHR0REmJiZSR6V6puw5WSsrK/z6669Sx6lRp06dwrx58xAVFQVbW1t89dVXGDRokNSx6Bn279+PMWPGwN7eHnv37uWICVEdY6FsgoqKihAfH6+6AxkfH4/i4mK88sorqjuQTk5OlS6nSPS0hIQEDBgwAEePHoWLi4vUcWqcKIo4duwY5s2bhz/++APDhg3DihUrYGVlJXU0esrmzZsxceJEeHp64pdffuHzr0QSYKFsAkpLS5GYmKgqkLGxsSgoKICBgQEcHBzg5OQEZ2dnWFpacliPXsjHH3+M0NBQpKenN+pnDUVRxO7duzF//nwkJyfDx8cHS5YsQdeuXaWO1uStXbsWs2bNwvvvv8+lFIkkxELZCImiiIsXL6oKZHR0NHJzc6Gnp4dBgwap7kD26dOHf/nSSyssLISJiQkmT56MgIAAqePUiZKSEgQHB2Px4sW4c+cOJk2ahC+++ALt27eXOlqTI4oivvjiCyxfvhyfffYZVqxYwf8hJpIQC2UjIIoiUlJSVAUyKioKd+/ehZaWFt566y1Vgezfvz+0tLSkjkuNREhICEaPHo1Lly41uWUMCwoK8N1332HFihV4/PgxZsyYgblz58LAwEDqaE1CaWkppk6dih9//BGrV6/GnDlzpI5E1OSxUDZQGRkZqgIZGRmJ69evQyaToX///qoCaWdnBx0dHamjUiM1YsQIZGVlIT4+Xuookrl//z6+/vprrF27FlpaWvjss88wbdo06OrqSh2t0SoqKoKvry927dqFjRs3YsKECVJHIiKwUDYYWVlZqrkgIyMjkZycDADo3bu36k3sgQMHNoppW6j+u337Njp27Ihvv/0WH374odRxJHf79m0sX74cGzZsQNu2bbFw4UK899570NR89lKh9OLy8vLg5eWF6OhobN++HaNGjZI6EhH9FwtlPfXgwQPExMSoCuS5c+cAPFlB5um5II2MjCROSk1RYGAg5s+fj1u3bnGY9ynXrl3DokWL8Msvv8DCwgJLly7FmDFj6u365g1JdnY2hg8fjgsXLmD//v1wdHSUOhIRPYWFsp4oKCjAiRMnVAXy9OnTKC0tRceOHeHs7AxnZ2c4Ojpy1QeSnCiK6N27N1577TXs2LFD6jj10vnz5zF//nwcPHgQVlZWCAgIgKurK18aeUkZGRlwdXXFnTt3cPjwYbzxxhtSRyKi/8FCKZHi4mIkJCSoCuSJEydQVFQEIyOjcnNBWlhY8B8hqlcSExPRr18/HDp0CG5ublLHqdfi4uLw2Wef4ffff8egQYMQEBCAt956S+pYDcqVK1fg4uKC0tJShIWFNbkXwIgaChbKWuLg4IDjx4+j7NdbWlqKc+fOqQpkTEwM8vLy0KpVK9VckE5OTnj99ddZIKlemz59Onbt2oUbN26gWbNmUsep90RRxOHDhzFv3jycP38eI0eOxPLly/H6669LHa3eS0pKgqurKwwMDBAWFoZOnTpJHYmInqFBPdiTlpYGQRDK/WhpacHU1BRjx47F+fPnpY5YwXfffQcvLy8YGRmhX79+WLhwIUpKSrBgwQIkJCTg3r17CA0NxYwZM9CrVy+WSarXioqK8Ouvv2LcuHEsk9UkCALc3Nxw9uxZ/PLLL7hw4QJ69+4NPz8/pKWlSR2v3oqNjcXgwYPRqVMnxMbGskwS1XMN6g5lWloaOnfuDAsLC4wbNw4A8OjRI8THxyMuLg7a2tqIiIiAnZ2dJPlSU1NVdyDDw8ORmZkJTU1NvPnmm6o7kAMGDOCyYNRg7d27F15eXvjzzz95h+0lFRUVISgoCEuWLMG9e/fw4YcfYv78+WjXrp3U0eqNgwcPYvTo0bC1tUVoaCjX5SZqABpkoXR1dcWRI0fK7VuwYAGWL1+OwYMHIzo6uk7y3Lp1q9xUPqmpqRAEAf369VMVSHt7e+jp6dVJHqLa5unpiYyMDJw+fVrqKA1eXl4e/vOf/2DlypUoKSnBrFmzMHv27CY/9dfWrVvh7+8Pd3d3bNu2Dc2bN5c6EhFVh9iApKamigBEV1fXCvtu374tAhB1dXXFjIwMceHCheKAAQNEIyMjUUtLSzQzMxM/+ugj8c6dO+U+FxUVJQKo8ic1NVUURVE0NTWt8rh33nlHzM7OFkVRFAcPHiw2sF8vUZXu3LkjNmvWTFy/fr3UURqVe/fuiXPnzhWbN28uGhoaioGBgWJBQYHUsSSxbt06EYA4ceJEsbi4WOo4RPQCGtQzlNUhCAJiYmIQGBiIdu3awcfHB9OmTYOFhQV++OEH2NraIjc3FwBwP78I/0m4D307H9VP75GT8O/PF2D27NmQyWSQyWRYtWoV+vXrhxs3bgAADAwMYG1tDW9vb8yePRvdu3cHAFhbW3NOPmq0fv31VwiCAB8fH6mjNCpt2rTBypUrcfXqVcjlcsydOxfdunVDUFAQSkpKpI5XJ0RRxKJFizBjxgx8+umn2LhxI5/RJWpopG60L6KqO5QLFy4UAYiOjo7inTt3xIcPH1Y4RqFQiADEZcuWiaIoiuODTold5h0SzT47qPrpPO+g+OZnm0UDAwPVncf27duL48aNE3/++WcxLS2t3Dm3bdsmCoIgDhgwQMzPz1dt5x1KamysrKxELy8vqWM0esnJyeI777wjAhBfffVVMSQkRFQqlVLHqjWlpaXixx9/LAIQV65cKXUcInpJDfIZyqdfysnLy8OpU6cQGxuL5s2bIzIyEra2tpV+XhRFtG7dGtbW1gjaeQBOa45Xelx2+AY8/OMA7O3tsXHjRnTv3r3St69PnjwJJycnGBsbIyEhodxD9f87bRBRQ3bu3DlYWVlh//79cHd3lzpOk5CYmIjPP/8cR48eRf/+/REQEABnZ2epY9WooqIi+Pv7Y8eOHdiwYQMmTZokdSQiekkNcsg7JSUFX375Jb788kusW7cOqampGDt2LBISElRlcs+ePXB1dYWRkRGaNWsGQRAgk8nw4MED3Lx5E+nZ+ZWe+2HiITz84wD6vTUYUVFRePXVVystk2lpafD09ISmpiYOHjzINzSpUVMoFDAyMsLbb78tdZQmw9raGkeOHEFUVBQ0NDQwZMgQDB06tNG8EJWfnw9PT0/s3r0bO3fuZJkkauAa5EMqlb3l/bTAwEDMmTMHRkZGcHFxQceOHaGjowMA+Oabb1BYWAizNroVPldw7Q9kh2+ApqEpgrb8+sxneHJzczF8+HDcu3cPBw4cQK9evWrmixHVQ8XFxdi6dSvGjRsHTU1NqeM0OQ4ODjhx4gT279+Pzz//HDY2NvD29sayZcsa7KoxOTk5GDFiBM6dO4dDhw5hyJAhUkciIjU1yEJZlZKSEixduhQmJiZISkqCsbGxap8oili1ahUAoItRCwzqZoS4q1koFUUUZaYhM3QlZDotMfzT/6BPl/bPPP/o0aPx119/Yf369Rg2bFidfC8iqRw5cgSZmZnw8/OTOkqTJQgCPDw8MGLECGzduhULFy5Ez549MWHCBCxatAimpqZSR6y2W7duwdXVFTdv3kRkZCRsbGykjkRENaBBDnlXJSsrC7m5ubC1tS1XJgHgzJkzKCgoUP15vU9f2HVti9K8HNzdtQRiSTGGzvgawdOHP/P8U6dORXh4OKZNm4apU6fW2vcgqi+Cg4NhZWWFPn36SB2lydPQ0ICfnx+Sk5Oxdu1a7N+/H926dcPs2bORlZUldbznSklJgZ2dHbKzsxEbG8sySdSINLpCaWxsDB0dHSQmJiI///+ek8zJycG0adPKHauvo4kNPr1gGLcOpQ/uYu13G3BkxSTo61Q+rBcYGIgNGzbAzc0Na9eurdXvQVQflD3W4e/vL3UUeoq2tjamT5+OlJQUfP755/jpp5/QpUsXLF26FI8ePZI6XqXOnz8Pe3t7aGpqIi4uDj169JA6EhHVoEY35C2TyTBlyhQEBgaiT58+cHd3x4MHD3D48GGYmZmhffvyQ9nr16/HucQz6Nq1K+7fSsfixYsrnPOTTz7B48ePMXfuXMhkMlhaWmLp0qUVjnNwcICDg0MtfTOiurdt2zaIooixY8dKHYUq0bJlSyxcuBAfffQRAgICsGzZMnz77bdYsGABPvjgg3qzzGtcXByGDx8OCwsLHD58uMLoERE1AlLOWfSiqpqH8mlFRUXi8uXLxW7duona2tpip06dxNmzZ4sPHz4UzczMRDMzM9WxixYtqtZKOWXXrupn0aJFqvNyHkpqDPr16yd6eHhIHYOqKT09XZw4caIok8lEc3NzcfPmzWJJSYmkmQ4dOiTq6OiIgwcPFnNzcyXNQkS1p0HNQ0lEdefChQvo1asX9uzZg1GjRkkdh17ApUuXsGDBAuzZswc9e/bEihUr4O7uXukUaLXp119/hZ+fH9zc3LBjxw6uy03UiDW6ZyiJqGYoFAoYGhpi+PBnv6RG9VOPHj2we/dunDp1CsbGxvDw8ICdnR1iYmLqLMN3332HcePG4d1338Xu3btZJokaORZKIqqgpKQEW7duxdixY6GlpSV1HHpJNjY2iIiIQFhYGIqKijB48GC4ubkhKSmp1q4piiKWLFmCqVOnYubMmfj555+5LjdRE8BCSUQVhIWF4fbt23y7uxEQBEG1ws5rr72Gw4cPo2/fvvDx8cHVq1cRHBwMQRAQHBxc7XOam5vD3Ny8wnalUokZM2Zg0aJFWLFiBb7++mvIZC//z4y/vz8EQUBaWtpLn4OI6gYLJRFVoFAo0KtXL/Tt21fqKFRNEydOhCAIMDQ0RGFhYYX9giDAyMgIAPDTTz8hNjYWPXr0gEKhqJHrFxcXw9fXF99++y02bNiAefPm1fkzm0QkHRZKIionJycH+/btg5+fHwtBA/Hw4UPs3LkTgiAgOzsb+/btq/L4SZMm4cqVK/jqq69Ua4Pv2rULOTk51bpeREQEIiIiVH/Oz8/HqFGjsHPnTuzYsQMffPDBS3+XpwUEBODSpUvo0KFDjZyPiGoPCyURlbN9+3aUlpbi3XfflToKVdOOHTuQl5eHmTNnQiaTISgo6Lmf0dHRwezZs1XL0R47dgxdunTBypUryy0KURkLCwtYWFgAAO7fvw9XV1dERUXh4MGDGD16tPpf6L9MTExgaWnJNeSJGgAWSiIqR6FQ4O2338Yrr7widRSqpqCgIDRr1gxz586Fo6MjIiIikJ6eXq3P6urqAgBWrVqFt956C/PmzYOenh5atmwJf39/3Llzp8Jnyp6hvH37NhwcHHD+/Hnk5+fD1dUVgiBU+hMdHQ3gyQIQzzpGEIRyz+3yGUqihoOv3hGRyuXLl3Hq1Cns2rVL6ihUTX/99Rfi4+Ph5uaGdu3awdfXFxEREdi0aVOlK389y7FjxxAeHo4RI0YgNTUVFy5cgEKhwNGjR3HhwgUYGhoCAK5lPsLjYiUEsRT29vYoKCjAkSNHcPTo0QrnLC0txZo1a5Cfn68qrv7+/pWuKHb48GEkJCSojiOihoWFkohUFAoFDAwM4O7uLnUUqqay4e3x48cDALy8vDBlyhRs2rQJCxcurPZb1gcPHsSRI0fg6uoKAPjzzz/h5eWFq1evwtLSEj8EKbA/yxAxV7KQ9ejJSz/NXT/Ekc9GoderFrC1ta1wzilTpiA/Px/Tpk2DjY0NAFQ6c0BsbCwCAgLQpUsXLFmy5IV/B0QkPQ55ExGAJ3eTNm/eDB8fn3qzBjRVrbi4GFu2bEGrVq3g6ekJAGjRogVGjRqF69ev49ixY9U+15AhQ1RlEgB69eqFs2fPokWLFsjJycGUrQmISb5b7jOCSQ+sjrtX6fnWrl2LH374AW5ubli7du0zr3v16lWMGjUKurq6OHToENq2bVvtzERUf7BQEhGAJ2/u3rx5k3NPNiChoaHIzMzE6NGjy61E4+vrCwDVejmnzMCBAytsa9GiBd544w2UlpZCs00HQCj/T4ZSBGKuZCI1K6/c9gMHDmDOnDno3bs3tm/fDg0NjUqvmZOTg+HDhyM3NxchISGwtLSsdl4iql9YKIkIABAcHIwePXrgjTfekDoKVVNZYSwrkGWcnZ3RoUMHhIaGIjs7u1rnateuXZXblYXPfvM77d7/FcqkpCT4+PjA2NgYBw4cQMuWLSv9THFxMby8vJCcnIzvv/8ezs7O1cpJRPUTCyURITc3F3v37lW9VUv1340bNxAWFgYAGDx4cLk3pTU0NJCRkYHCwkJs3bq1Wuer7G3up7fLtJ/9soy5oR4A4ObNmxgxYgSUSiX279+PTp06PfMzkydPRnR0NGbPno3333+/WhmJqP7iSzlEhJ07d6KoqAjjxo2TOgpVU3BwMJRKJezt7fHqq69W2F9SUgKFQoGgoCBMnz79ueeLjY2tsO3Ro0dISkpCq1at4PRGL5y4lo1SUVTt1xAE2HVti85t9ZCXlwd3d3fcvHkTO3fuRP/+/Z95rYCAAGzatAkeHh6qeTCJqGFjoSQiBAcHw8XFBe3bt5c6ClWDKIrYtGkTBEGAQqFAly5dKj0uOTkZJ0+exJkzZ577KMOxY8dw9OjRci/mLF++HPfv38fUqVOx7N1+mLbtLGKuZKr223Vti/U+faFUKvHuu+8iMTERK1asgFwuf+Z1QkJCMH/+fFhbW+OXX35Ra61vIqo/WCiJmrgrV67gxIkT2LZtm9RRqJoiIyORmpqKwYMHP7NMAsCECRNw8uRJBAUFPbdQjhgxAu7u7pDL5TA3N0d8fDyioqJgYWGBJUuWQF9HE5sn2iA1Kw+9fyhG3qOH+OndPtDW1sTOnTsRGhoKIyMjFBYWVjr/pb+/P8zNzeHr6wtRFGFtbY3Vq1dXOM7Kykr1xjoRNRwslERNnEKhgL6+Pjw8PKSOQtVU9jLO897If+eddzBjxgxs27YNa9asqfJYb29vTJo0CcuXL8e+ffugq6sLf39/BAQEwMDAQHVc57Z6aKWng0e5OYiIiICbm5tqqcbMzEx8+eWXlZ7fwcEB5ubmKCgoAABs3Lix0uP8/PxYKIkaIEEUn3oghoiaFKVSCXNzcwwbNgwbNmyQOg41EKIowtLSEnZ2dvj555+ljkNE9QAfXiFqwqKionDjxg3OPUkvRBAEyOVy7Nu3D8XFxVLHIaJ6gIWSqAkLDg5G9+7d8eabb0odhRoYuVyOnJwcREdHSx2FiOoBFkqiJurBgwfYvXs3/Pz8OPckvTArKyt06dIFISEhUkchonqAhZKoiQoJCcHjx48xfvx4qaNQAyQIAry9vbF3716UlpZKHYeIJMZCSdREKRQKODs7w9TUVOoo1EDJ5XJkZmZWOik6ETUtLJRETdC1a9cQExPDl3FILf3794epqSmHvYmIhZKoKdq8eTNatmyJUaNGSR2FGrCyYe/du3dDqVRKHYeIJMRCSdTEKJVKKBQKjBkzBrq6ulLHoQZOLpfj9u3bOHHihNRRiEhCLJRETUxMTAzS0tI43E01wtbWFiYmJti9e7fUUYhIQiyURE2MQqGAhYUF7OzspI5CjYBMJoOXlxdCQkI47E3UhLFQEjUhjx49wq5duzj3JNUouVyOf/75B6dPn5Y6ChFJhIWSqAnZs2cP8vLyOPck1aiBAwfCyMiIw95ETZggiqIodQgiqhtOTk4AgMjISImTUGMzefJkhIeHIyUlhXe/iZog3qEkaiLS09MRFRUFPz8/qaNQIySXy5GamoqzZ89KHYWIJMBCSdREbN68GXp6evD29pY6CjVCDg4OaNOmDYe9iZooFkqiJkAURSgUCowePRotWrSQOg41QpqamvDw8MCuXbvAJ6mImh4WSqImIC4uDikpKRzuploll8tx5coVXLhwQeooRFTHWCiJmoDg4GCYm5tj0KBBUkehRszZ2Rn6+voc9iZqglgoiRq5/Px87Ny5E76+vpDJ+J881R5tbW2MHDkSISEhUkchojrGf12IGrm9e/fi4cOH8PX1lToKNQHe3t64ePEiLl++LHUUIqpDLJREjZxCocDAgQNhYWEhdRRqAlxcXNCiRQsOexM1MSyURI3YjRs3cOzYMfj7+0sdhZoIHR0djBgxgsPeRE0MCyVRI7ZlyxY0b94ccrlc6ijUhHh7eyMpKQlXr16VOgoR1REWSqIGwt/fH4IgIC0trVrHl8096e3tjVatWgEAoqOjIQgCFi9eXHtBK7F48WIIgoDo6Ohy2wVBgIODQ51modo3bNgw6OjocNibqAlhoSR6QRMnToQgCDA0NERhYaHUcZ4pPj4eycnJHO6mOqenpwc3NzcWSqImhIWS6AU8fPgQO3fuhCAIyM7Oxr59++rs2gEBAbh06RI6dOhQreMVCgVMTU3h6Oio2mZjY4NLly5h6tSptRXzhVy6dAmbN2+WOgbVAm9vb5w+fRrp6elSRyGiOsBCSfQCduzYgby8PMycORMymQxBQUF1dm0TExNYWlpCU1PzuccWFBRg+/btFeae1NXVhaWlJdq2bVubUavN0tISnTp1kjoG1YLhw4dDW1ubdymJmggWSqIXEBQUhGbNmmHu3LlwdHRERETEM+/AxMTEwNPTE+3atYO2tjZMTU3h5eWF33//vdxxoihi06ZNGDhwIFq3bg1dXV1069YNkydPxvXr11XHVfYMZVFREdavXw9XV1eYmppCW1sbhkZGsLZzwCOlVoW5J5/1DGVVzzKam5vD3Ny8wvasrCx88skn6Ny5M7S1tWFsbIwxY8a80LJ7fIay8WrVqhVcXV1ZKImaCBZKomr666+/EB8fDxcXF7Rr1w6+vr5QKpXYtGlThWPXrVsHBwcHhIeHY+jQoZg9ezacnJxw7ty5ctOpKJVKjBkzBhMnTkRqaip8fHwwbdo0WFtbY+fOnUhMTKwyU3Z2Nj755BMUFhbC2cUV3Zz/hcdtLXH5/FkoC3LxyZYTyC0orvHfRWZmJt58802sW7cO5ubmmDVrFpycnLBnzx4MGDCgQmmmpsnb2xsnTpxARkaG1FGIqJY1kzoAUUNRNrw9fvx4AICXlxemTJmCTZs2YeHChaqh5XPnzmHWrFkwMTFBXFxcubt7oiji1q1bqj9///33CAkJgbOzMw4cOAAdHR3VvoKCAhQUFFSZycDAANevX0eHDh3g+3MCCq5mwaiPiKLMdNzeMgfRW9dhWufXsHmiTU39GgAA//73v5GSkoJ58+ZhxYoVqu2//fYbhg8fjgkTJuDvv//mUo9NnLu7OzQ1NbFnzx5MmzZN6jhEVIv4tz1RNRQXF2PLli1o1aoVPD09AQAtWrTAqFGjcP36dRw7dkx17IYNG6BUKrFs2bIKQ8WCIKB9+/aqP3///ffQ0NDADz/8UK5MAk8miG7Tpk2VubS1tdGhQwdcy3yEmCuZKBVFAICWkRmad+qFghsXcPzyLaRm5anx7csrKirCtm3bYGhoiAULFpTb5+bmhqFDh+Lq1auIi4ursWtSw2RgYIAhQ4Zw2JuoCWChJKqG0NBQZGZmYvTo0WjevLlqe9kzik+/nJOQkADgyRJ0VXn06BEuXbqEzp07o1u3bi+dLSkpCe9P8MU/309A+ipPpH81AulfjUDB1QSgtASlBQ+Qdq/mCuXly5fx+PFj2NjYQFdXt8L+srfKk5KSauya1HDJ5XLExMTgzp07UkcholrEQklUDWWF8X9fcnF2dkaHDh0QGhqK7OxsAEBubi4EQYCJiUmV58zNzQWAak8DVJkTJ07gzTffxO/HfoOWcWe07DcC+nY+0LfzgaZx5ycHlRTD3FDvpa/xvx48eAAAaNeuXaX7y7532XHUtHl4eEAmk2Hv3r1SRyGiWsRCSfQcN27cQFhYGABg8ODBEARB9aOhoYGMjAwUFhZi69atAIDWrVtXeFayMvr6+gCg1gsLy5cvR2FhISKOHYN83noYDXkfrQe+i9YD34WGngEAwKZzG3RuW3WhFAQBJSUlle4rK75lylbdedYdp9u3b5c7jpo2Q0NDODo6ctibqJHjSzlEzxEcHAylUgl7e3u8+uqrFfaXlJRAoVAgKCgI06dPh42NDc6cOYOwsDBMmDDhmedt0aIFXnvtNfz999+4cuXKSw17p6SkoE2bNrC3t0evfsWYtu0sYq5kQln8GEV3UgAAi0f2fO55DAwMKi22aWlpuH//vqr8Ak/mjmzevDlOnz6N/Pz8CsPeZcsrWllZvfD3ocZJLpfj448/RlZWVr2ZA5WIahbvUBJVoWyOSEEQoFAosHHjxgo/wcHBsLW1xfnz53HmzBl8+OGH0NDQwIIFCyrMUSmKIm7evKn688cff4zS0lJMmTKlwhvdjx8/Vg2jP4uZmRlycnJw8eJF6OtoYvNEGxz7ZCD63jwIZf6TO4utmj9/IvT+/fsjLS0Nx48fV20rKirCrFmzKhyrpaUFHx8fZGVlISAgoNy+I0eO4OjRo+jatSvs7Oyee11qGjw9PaFUKhEaGip1FCKqJSyURFWIjIxEamoqBg0ahC5dujzzuLI7kUFBQejVqxe++eYb3Lp1Cz179sS4ceMwf/58vPfee+jevTtWrVql+txHH32EMWPG4NixY+jWrRumTJmCzz77DGPHjkWHDh0QExNTZb5p06ZBFEXY29tj8uTJmDFjBrxdBiIu7MALTRg+a9YsCIIANzc3TJo0CdOnT0efPn1w69atSp8FXblyJbp06YJly5bB2dkZn3/+OcaOHQt3d3fo6upi06ZNnDKIVNq1a4dBgwZx2JuoEePf+ERVKHsZx9/fv8rj3nnnHejo6GDbtm0oKCjA1KlTERkZCUdHRxw+fBhff/01wsLC0KdPH4wZM0b1OUEQsH37dmzcuBGmpqbYvHkz1q9fjzNnzmDMmDHo169fldcdMWIEQkJC0KVLF2zduhW//vorLC0tkZCQADMzs2p/TxcXF+zcuRMWFhbYsmULdu3ahaFDhyI8PBxaWloVjjcyMsKpU6cwffp0pKSk4Ouvv0Z4eDg8PT1x6tQp2NvbV/va1DTI5XIcO3YMOTk5UkchologiOJ/J64jIiKqJRkZGejYsSMUCkWF2RKIqOFjoSQiojphZ2cHQ0ND7N+/X+ooRFTDOORNRER1Qi6XIywsjHOUEjVCLJRERFQnvLy8UFhYiEOHDkkdhYhqGIe8iYioztjY2MDU1JRvfBM1MrxDSUREdUYul+Pw4cPIy6u59eWJSHoslEREVGe8vb1RUFCAw4cPSx2FiGoQCyUREdUZCwsLWFlZISQkROooRFSDWCiJiKhOyeVyHDp0qMJyo0TUcLFQEhFRnZLL5Xj06BHCwsKkjkJENYSFkoiI6tSrr76Knj17ctibqBFhoSQiojonl8tx4MABFBYWSh2FiGoACyUREdU5uVyO3NxcRERESB2FiGoACyUREdW5nj17onv37hz2JmokWCiJiKjOCYIAuVyO0NBQFBcXSx2HiNTEQklERJKQy+XIzs5GdHS01FGISE0slEREJAkrKyt07tyZw95EjQALJRERSaJs2Hvv3r0oLS2VOg4RqYGFkoiIJCOXy5GZmYnY2FipoxCRGlgoiYhIMv3794epqSmHvYkaOBZKIiKSjCAI8Pb2xp49e6BUKqWOQ0QviYWSiIgkJZfLcevWLZw8eVLqKET0klgoiYhIUra2tjAxMeGwN1EDxkJJRESSkslk8PLywu7duyGKotRxiOglsFASEZHk5HI5bty4gdOnT0sdhYheAgslERFJbuDAgTAyMuKwN1EDxUJJRESS09DQwKhRoxASEsJhb6IGiIWSiIjqBblcjtTUVCQlJUkdhYheEAslERHVCw4ODmjTpg2HvYkaIBZKIiKqFzQ1NeHh4cFhb6IGiIWSiIjqDblcjuTkZFy8eFHqKET0AlgoiYio3nB2doa+vj6HvYkaGBZKIiKqN7S1tTFy5EgWSqIGhoWSiIjqFW9vb1y8eBGXL1+WOgoRVRMLJRER1SsuLi5o0aIFdu/eLXUUIqomFkoiIqpXdHR0MGLECA57EzUgLJRERFTveHt7IykpCSkpKVJHIaJqYKEkIqJ6Z9iwYdDR0eGwN1EDwUJJRET1jp6eHtzc3DjsTdRAsFASEVG95O3tjdOnTyM9PV3qKET0HCyURERULw0fPhza2trYs2eP1FGI6DkEkQumEhFRPeXh4YGsrCzExcVJHYWIqsA7lEREVG95e3vjxIkTyMjIkDoKEVWBhZKIiOotd3d3aGpqYu/evVJHIaIqcMibiIjqNTc3N+Tn5yM6OlrqKET0DLxDSURE9ZpcLkdMTAzu3LkjdRQiegYWSiIiqtc8PDwgk8k47E1Uj3HIm4iI6r2hQ4cCAMLDwyVOQkSV4R1KIiKSlCAIcHBwqPIYuVyOqKgoZGVl1UmmtLQ0CIIAf3//OrkeUUPHQklERDUqKSkJH374IV577TW0atUKWlpaeOWVVzB06FAEBgYiMzPzhc/p6ekJpVKJ0NDQWkhMROrikDcREdUIpVKJuXPnIjAwEBoaGhg0aBB69+4NPT093L17FydPnsTFixehp6eHv//+Gx06dAAAXL58Gbq6uujUqVOV53dwcICuri5+++23Wv8uxcXFSElJgb6+PkxMTGr9ekQNXTOpAxARUeMwf/58BAYGwtraGjt27EDXrl0rHJOYmIh///vfKCgoUG2ztLSs1vnlcjlmzZqFnJwcGBgY1FjuymhqalY7FxFxyJuIiGpAcnIyVq9eDSMjIxw5cqTSMgkA1tbWCA8Ph7m5uWpbZc9Q+vv7QxAEpKam4j//+Q8sLS0xe/ZsFBcX419+7yHi0m2kZuWV+0xJSQnWrFmDPn36QEdHB/r6+nB0dMSBAwcq5AgODoYgCAgODsaBAwdgZ2eHli1bqnLxGUqiF8NCSUREalMoFCgtLcXkyZNhZGT03OObNaveANmnn36KpUuXwtbWFhPeex/NWhgg7MBeeL03A46B0fD9OQG5BcUQRRFyuRyzZ8/G48eP8fHHH2Ps2LE4d+4cRo4cibVr11Z6/l27dsHLywvGxsaYMmUKhg0b9kLfm4ie4JA3ERGp7eTJkwAAR0fHGj1vYmIizp8/DxMTE/j+nAATTVtkbJiMh38cQGt7H8RdzcK0bWcxpNllhIaGYvDgwQgLC4OWlhYAYN68eejXrx/mzp0LDw8PdOnSpdz5jxw5gqNHj2LIkCE1mpuoqWGhJCIitd2+fRsA0L59+wr7oqOjKyyb6ODg8NypggDgiy++gImJCa5lPkLMlUzIdFtDp9ubyLsQgeJ7GRCMzRFzJRNX434GAKxatUpVJgGgU6dOmDlzJubPn49ffvkFX3zxRbnze3h4sEwS1QAWSiIiqlXR0dH48ssvK2yvTqHs168fACA9O1+1TaNVWwCAsvCRatuF8+egq6sLGxubCucou2ualJRUYV9lxxPRi+MzlEREpLZ27doBAG7evFlh3+LFiyGKIkRRxLZt217ovK1atQIAmLXRVW0ThP/+06VUqrblP3oIY2PjSs9RNu3PgwcPnpmbiNTDQklERGp76623AABRUVG1cv4uRi0wqJsRNASh3HYNQcCgbkZo1aoV7t69W+lny4bjy8rp04T/OR8RvRwWSiIiUpufnx9kMhn+3//7f7W2POJ6n76w69q23Da7rm2x3qcv+vbti/z8fCQkJFT4XNnzm1ZWVrWSi4hYKImIqAZ0794dc+fOxd27dzFs2DBcvXq10uPu37//0tfQ19HE5ok28HvLHACw9h0rbJ5oA30dTfj5+QF48lZ3cXGx6jM3btzAmjVr0KxZM7z77rsvfW0iqhpfyiEiohqxfPlyFBUVYc2aNbC0tMSgQYPQp08f6Orq4u7duzh//jwSEhLQokULte4WGug+eYvbRF9HtW38+PHYs2cPQkND0bt3b4wYMQJ5eXnYsWMHsrOzERgYWGHKICKqOSyURERUI2QyGQIDAzFu3Dj8+OOPiImJwenTp1FYWIg2bdqgZ8+eWL16NXx9fZ/5As3LEgQBISEhWLduHRQKBdavXw8tLS1YW1tj1qxZGDlyZI1ej4jKE0RRFKUOQUREREQNF5+hJCIiIiK1sFASERERkVpYKImIiIhILSyURERERKQWFkoiIiIiUgsLJRERERGphYWSiIiIiNTCQklEREREamGhJCIiIiK1sFASERERkVpYKImIiIhILSyURERERKQWFkoiIiIiUgsLJRERERGphYWSiIiIiNTCQklEREREamGhJCIiIiK1sFASERERkVpYKImIiIhILSyURERERKQWFkoiIiIiUgsLJRERERGphYWSiIiIiNTCQklEREREamGhJCIiIiK1sFASERERkVpYKImIiIhILSyURERERKQWFkoiIiIiUgsLJRERERGphYWSiIiIiNTCQklEREREamGhJCIiIiK1sFASERERkVpYKImIiIhILSyURERERKQWFkoiIiIiUgsLJRERERGphYWSiIiIiNTCQklEREREamGhJCIiIiK1sFASERERkVpYKImIiIhILSyURERERKSW/w/8s3ZV35dQiAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -409,7 +328,7 @@ ], "source": [ "nx.draw_kamada_kawai(graph, with_labels=True, node_size=20, font_size=14)\n", - "plt.savefig(\"Florentine.png\")" + "plt.savefig(FIGURES_DIR / \"Florentine.png\")" ] }, { @@ -436,7 +355,36 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "import requests\n", + "from zipfile import ZipFile\n", + "from io import BytesIO\n", + "import shutil\n", + "\n", + "url = 'https://nrvis.com/download/data/ca/ca-AstroPh.zip'\n", + "filename = DATA_DIR / \"ca-AstroPh.mtx\"\n", + "tmp_dir = DATA_DIR / \"tmp\"\n", + "\n", + "r = requests.get(url, allow_redirects=True)\n", + "\n", + "myzip = ZipFile(BytesIO(r.content))\n", + "\n", + "tmp_file = myzip.extract(filename.name, path=tmp_dir)\n", + "\n", + "with open(tmp_file, \"r\") as fid_in:\n", + " with open(filename, \"w\") as fid_out:\n", + " fid_out.write(\"%\")\n", + " fid_out.write(fid_in.read())\n", + "\n", + "shutil.rmtree(tmp_dir)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -445,26 +393,25 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ - "file = \"ca-AstroPh.mtx\"\n", - "adj_matrix = mmread(file)" + "adj_matrix = mmread(filename)" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ - "graph = nx.from_scipy_sparse_matrix(adj_matrix)" + "graph = nx.from_scipy_sparse_array(adj_matrix)" ] }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -473,7 +420,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -482,7 +429,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -491,7 +438,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ @@ -504,7 +451,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -577,7 +524,7 @@ "4 6.722036e-07 1.000000 2" ] }, - "execution_count": 31, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -595,19 +542,17 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 29, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAfL0lEQVR4nO3dbYxc5XUH8P/Z8SzMOmbXBuOUtReD7RpBHOqwwov2C9BSOyEbVoY02eCoSqgRlZKKl1o1whIgQexqlaghTdOaQGmL49i8aIQTEjdqiJBc7LDO2nGc4BQI2Iyj4GDWJPaAx7OnH3buel7u28zc9/v/SUjsnd17z+zMHN99nvOcR1QVRESULB1hB0BERN5jciciSiAmdyKiBGJyJyJKICZ3IqIEYnInIkqgGWEHAAAXXHCBLly4MOwwiIhiZe/evb9X1blmj0UiuS9cuBBjY2Nhh0FEFCsi8qbVYxyWISJKICZ3IqIECjW5i8iQiGw+ceJEmGEQESVOqMldVXeo6u3d3d1hhkFElDiRmFAlIkqb/HgBozsP4ehEERf15LBu5VIML+/17PxM7kREAcuPF3DvswdQLJUBAIWJIu599gAAeJbgOaFKRBSw0Z2HphO7oVgqY3TnIc+uweRORBSwoxPFpo63gtUyREQBu6gn19TxVrBahogoYOtWLkUum6k5lstmsG7lUs+uwQlVIiIf2FXDjL15HO+fOTvm3pXtwFdWL2O1DBFRlNlVw4y9eRxP7j5c8/2nSpMYe/O4p8mdE6pERB6zq4bZuueI6c9YHW8V79yJiDxmVfVSsKmGKat6GgPv3ImIPNZK1UtGxNMYQr1zF5EhAEOLFy8OMwwiorbUT55ed9lcPLO30DA0Y2dkxQJPY2IpJBFRG4zJ08JEEYqpoZdn9hZw81XNTY4+NLzM07g4LENE1AarydMXXjmGXpfDM7O7sp7HxeRORNQGq0nSoxNFrFu5FG5G0j2eSwXA5E5E1LL8eMEyeV/Uk8Pw8l64ydsniiUvwwLA5E5E1LLRnYdMk7cA060E3AzNeNlTxsDkTkTUIqt6dsXZvuzXXTbX8Txe9pQxMLkTEbXI6o7buFvPjxew7af2K08F3m3QUY3JnYioRetWLkU2Uzvqns3I9J34A88dRGnSftT91oE+X2JjP3cionbU5+7K1/nxAiYcJkoF3te3G7iIiYioRaM7DzXcmZcmFQ/uODjdBdJOR4cgP17wJTYOyxARtSA/XrCscX/3VMlV64HypHq6b2o1JncioiYZLQe84OW+qdWY3ImImmTWcqBVftS4A0zuRERNs+vL3iw/atwBJncioqZsyHszHANMNQzzo8YdYHInImqKV9vhZTsE9w9d4cm5zHCbPSIiF4wNObzaDu9D587w7a4dYHInInJkVMd4NYkKTJVL+onJnYjIgnG37uUEalCY3ImITPhxtx4kTqgSEZnwspY9DGwcRkRkwq+Vo4bBRXN8PT8bhxERmejOeb9ptWHJhTOxZe01vp0f4LAMEVGD/HgBJ0+f8e38p05P+nZuAydUiYiq5McLuGf7fs/q2c34PeQDMLkTUYpVlzpmRFBWhaBx/w2v+dUsrBqTOxGlUn68gHVP70epPJXKjTt1vxM74F+zsGpM7kSUeMYd+tGJIi7qyWHdyqV4cMfB6cQepMFFc3xtO2BgcieiRKtfjFSYKIa2OGlw0Rzfq2QMrJYhokQzW4wU1uKkfUeCW9PD5E5EiRZEZYpbJ08H948KkzsRJVoQlSlRxORORImVHy/g5Af+LUaKMk6oElEibcgfwJbdhwMpbXRLArwW79yJKHHy44XIJXYgmBp6A5M7ESXO6M5DkUvsANAR4K07h2WIKDGivnPSOTOCu59mcieiRIjDzknvl/zvBmngsAwRJUIcdk4KsizTlzt3ERkGcCOA8wA8pqr/7cd1iIgMUVqsZCbbIYE0DDO4vnMXkcdF5G0R+UXd8VUickhEXhWR9QCgqnlVXQvgDgCf8TZkIqKz8uMFDG76cSQnUKuNfvrKQBqGGZoZlnkCwKrqAyKSAfBNAB8HcDmAERG5vOpbNlQeJyLynDHOHtUJVENGJNDEDjSR3FX1RQDH6w5fDeBVVX1dVU8D+C6Am2TKPwL4gar+zLtwiYimGDsmRX2cHYCvuzpZaXdCtRfAkaqv36oc+zKAvwBwi4jcYfaDInK7iIyJyNixY8faDIOI0sS4Yw8jabaiN4T+Nr5MqKrqIwAecfiezQA2A0B/f388XiEiioQ4VMZUC3Ii1dDunXsBwIKqr+dXjhER+SbqlTH1gh5vB9pP7i8DWCIil4hIJ4DPAnjO7Q+LyJCIbD5xIrgG9kQUf2lt49uMZkohtwJ4CcBSEXlLRG5T1TMAvgRgJ4BfAdiuqgfdnlNVd6jq7d3d3c3GTUQpFsYwR6tmd2VDua7rMXdVHbE4/jyA5z2LiIjIwfDyXty5bV/YYbjyfkhzA+wtQ0SRsiF/AFv3HEFZFRkRjKxYgIeGl9V8T368AEGwLXRbVQywn0y1UJO7iAwBGFq8eHGYYRBRRGzIH8CTuw9Pf11WxZO7D+M3x/6IN94p4uhEET1dWfzx/TOxSOxhCrVxGMfciaja1j1HTI/veu04ChNFKIB3T5VQmoxPag9rzJ1dIYkoMuKyKKkZ9w9dEcp1mdyJiHwURo07EHJyZ507ERny48lb/9iTC2dIBuCYOxEFyGjPe8n672Nw049rEvrozkMhRuaPBz4VzpAMwFJIIgpI/TZ4hYki7n32AICpoYu4tRRwI6whGYBj7kQUELNmX8VSefqOPWktBWZ2ZkK9PpM7EQXC6s7cOH7dZXODDMd3p06H27WSE6pEFAirO3Pj+AuvJGtfh7D/EuGEKhEFYt3Kpchla4cqctnMdBOwpI25h93cjBOqRIT8eAGjOw/h6EQRF/XksG7lUleTgc383FNjh0022FA8uOMg7tq2Dx0iiVrEFOZkKsDkTpR6+fEC1j21f3pJf2GiiHVP7Qdgn6Ccql+q3froS9j1Wv0WzFNNtYzGWklK7FHACVWilHvguYMNvVpKk4oHnrPemsFqc+rq6pdqZomd/MXkTpRyE8WS5XGzVaNOm1Mnbey8FWFsiF2P1TJEZOneZw80JHinzanrq0Q25A/4EluUhT2ZCrBahij17FrSmg2z2N2ZV1e/GKza+CbVvFmdoU+mAhyWIUq9+4euQDYjlo/XJ3Or+u2MCG6+qhejOw/V9I5J20Tp4gs/FHYIAJjciVJveHkvRm+5EhkxT/D1ydyqXn1kxQI8s7cwvalGYaKIeypVN2kSlcljJnciwvDyXnz1r660XWRU/b0bVy9Db08OgqnJw42rl+GFV441jMWXXeyYdM4MpiE/sM6diKYXIxVLZWQqi4l6bRYlDS/vbTh+17Z9LV37gzPhbCCddPwnkyjljNLGQmVsvaw6fcfezMRg2L1UomJw0ZywQwDAUkii1HNqxeuW2Vh8h/U8bSINLpqDLWuvCTsMACEPy6jqDgA7+vv714YZB1HctNoLxoxTK14317Qa1nn35Ac4VUrHsIsIIpPYAY65E8VOMz1d3LioJzc9JFN/3M01AdQ8VlZFtkMwcep0ahI7AESt4pPJnShm7IZRWunkeN1lc/HM3kLNOeurZKyuec/2/TgvN6PhsdKkohTyZhVBsyolDQsnVIlixu0wipnqyVOjFv2ZvQXcfFVvQ2lj9T8UVucuq+LdU+a9adImaou1eOdOFDNuhlGsWN2Bv/DKMexaf33T16SzurLRuleOVjRE5MhpRyM7rd71r1u5lMnCQTFi9fp8vYhiZnh5r+ndt5vxdqd9TK2MvXkcTqkramPOQYvYqAyTO1HcLFz//aaOV2v1rn/L7sOO547amHPQovaPW6hj7iIyBGBo8eLFYYZBlBrG3X0zNfL58QLSnbbdGVmxIOwQanARE1HKmPWFsdPsStU0WjPQh4eGl4UdRg1WyxBRjfo6eFbJ2OvtyUUusQNM7kSpZNVKwGwlqgAclrERhS31zHBClShm3th0Y1PH65ktZDL2SjWrg1cA0ZoqjI6ubEckttQzwzt3ohhym8jN2LUvsKp3V0wNP3CIptbqq+aHHYIl3rkTpYxVgjaGaMwwsZt74ZVjYYdgicmdKEXsauGNIZp6uWyGid2Cm34+YWFyJyJLs7uy+Fhfd9hhRFZ3Lht2CJaY3InIUlfnDOx+/d2ww4isiC1KrcEJVaII83LHpVYcrVTUkLmJCLc7ZnIniiivd1xqRU9XFu8Vz6S+b4yVKG8KzmEZoojyauPqas2WUH5QKkeuZ0pUuG2zHJZQk7uIDInI5hMnToQZBlEktbPjkp3BRXNcf++p0iSedNERMi3sdquKGjYOI4qodnZcsnLroy9h12vH2wkr1YKe82gHx9wpVcKeoGzGupVLa8bcAfOhAKfn5KbPO7njdhPyKGByp9SIwgRlM9z0Xnd6Tkzs3oryoqV6TO6UGlYTlHdu24d7tu/HyIoFkWvd6tR73W7SNYr/YMVdlKtj6rFahlLD7q6rrIondx/GhvyBACNqn1+TrmQuytUx9ZjcKTXc3HVt3XMkgEi8Y7X8PU53mHEhiObwnRUmd0oNs82h68VpsU5+vICTp880HM92SKzuMONCMfU7jwuOuVNqVE9QWnU5jNIO9q1ud5fNCEZ3HsJd2/axVa/H4jSXwTt3SpXh5b3Ytf56rBnoM308KqsxzXZLcutUabLm57IZ4QfdI3Gay+CdO6WSURWzdc8RlFWREYlUtYxZFUyrSuX4DDVFXZzmMvgPOqVW/8Vz8OHucyEAPtx9Lvovdr8s329xukNMiw6wWoYo8uw2iY6CON0hpsXnBvpiM94OMLlTSvnRcdFLbip7KFhR3i/VDJM7pZLVBGVUKkuGl/di4+plNV0IW9Hqz1GjuA2VcUKVKKLqWw802ycmI4Jd669nfxmPxG2ojMmdKEBBdqUsqzKxeySbid/CMCZ3ooDErSslnVWOYTkpx9wplazWofq5PjXqk7hkbRKI3evkeXIXkUtF5DERedrrcxN55TebbmxI5FI57pd2Ozha7X/6xqYbsWagDx3R6ZyQSImcUBWRxwF8EsDbqvqRquOrAHwdQAbAt1V1k6q+DuA2JneKOj8TuRkvts2zSvD9F8/BM3sLnq1qpUZxm1B1e+f+BIBV1QdEJAPgmwA+DuByACMicrmn0REliFntutm2ea3wsl0BNYpjp01Xd+6q+qKILKw7fDWAVyt36hCR7wK4CcAv3ZxTRG4HcDsA9PWZN3EiakX9JtCDi+Zgy9prWjpXdXVLT1cWqsCJYqmm0sVtBYybbfNajS1+033xMvrpK2M36S3qsn91Jbl/zxiWEZFbAKxS1b+pfP15ACsA3A/gYQA3YGqoZqPTufv7+3VsbKyV+Ilq1Cd2QysJvr66pV4um8HNV/U2DIfkshlsXL3M12TgFBt5p7cnh13rrw87DFMisldV+80e87wUUlXfAXCH1+clcsMssdsdt+M01FEslae7StYf97vvN4dhguHVsFkY2qmWKQCobn49v3LMNREZEpHNJ06caCMMIn+4qY6w2rnJ78qKuFVuxI3R8sHvv8D81M6d+8sAlojIJZhK6p8F8LlmTqCqOwDs6O/vX9tGHES+cLP7UUbENMG7rawwG68HgAeeO4iJYgkAMLsri/uHrsBTY4db+guEmpMRwWsbPxF2GG1zdecuIlsBvARgqYi8JSK3qeoZAF8CsBPArwBsV9WD/oVK5GxwkXlPdqvjdpw6M+ayGQxcOtv0sesum+t4frO2w+ue2o+7t++bTuwA8O6pEu7ato+JPSBR2Y2rXa6Su6qOqOqfqGpWVeer6mOV48+r6p+q6iJVfdjfUImcbVl7TUMib7Vapr4z4+yuLHpy2Zo/2d94x/zO3k17WLNx89KkYtJkpIfVMMFYM9AXmd242hVqbxkRGQIwtHjx4jDDoIRptezRTH1nxnp3bdtnetzNmDjHzaNFgMQkdqCJUkg/sRQy/trpduhlXXqrWo1/cNOPTcfle3ty6OrswP+9fbLmeFe2A8XSJC7qyeHkB2dqhl8oGrqyHfjK6o/GYiLVrhSSjcOobe1sWWdWl77rteO49dGXfIq2UTvxW606PVMuNyR2ADhVmpy+xnvvM7FH0anSJO7evi8yWy62ismd2tZOt0Mv69Jb1U78ZjsmbVy9DL/7w2nHnzUbW6domNT4dYGsxzF3alu73Q7D1m78ZuPyd1qMxVN8xOX9ayXUO3dV3aGqt3d3d4cZBrXJqqY7Ll304h4/+SPurz93YkqhDfkD08vmMyIYWbHAsUrAbsJx3cqlDX1OMh2CoxNF023eqidMBxfNsewF48eWdGbnvO6yudiy+3BDuWGhKv7zzsng5w+uajyhhSUXzjQdc6d46BDEtu2AgdUyKbMhfwBP7j7ccNyuvtesSVV9c6zqpNnVmcHJ0/Z9T6oTvFm1zKf7+xyv2Syz55HtEECAkott1JpN8Dd87SdM8DGUlGoZJveUWXTv86bL5e2WXNuV+5l1y7O6Rj2rjSdauaYbVudshl3MTrhZdbS189qGJbKlkGwcFjyrpGuXjJudcHST2J34MUkb9wkyomZwQjVlMmK+0abVcaD5CUe7c7nlxyRn3CfIiJrBOveUsWqKZNcsqdnt4dw0XnJq5OXHlnRm58x2CLIZd/8YnXeOdRMxN7h/dXS10lgu6lgtEwCrqg8/qkGcGJOmzVTLuN0erroKR2Df7GrXa8dxw9d+gh/dfa3l72HszeM1cd58lX2fFyfGz1bXoJcqK4l6ctma7fPWP70f71dNsp6bkZrJVLPJ0l6T38tH7/8h3vuAm2pEWRjtLoLACVWfWVWahLU9m1+cqnCsKkfmzerEe++XA/v9rHj4R5arR//pM382/Y+uXaWOXRVM9fe1m9gHF83BT99411UlDzUnmxGM3hK/fVHrRXZCNQ2slrZv3XOk5SXvUbR1zxHb41bJ8Hd/OB3o78euLYBxbqd2BHbljdXf1+4d+67XjjOx+6RU1th+1txitYzPmq0oiWtFRytVOK2cz8/fj3Hudit14voapk3SXydWy/is2YqSuFZ0tFKF08r5/Pz9GOdut1Inrq9h2iT9deKwjM+sqj5GVizwvBokTE5VOEsunGn6+LxZnYH+fubN6rR8zDi3U6WO1XOp/752q2sGF81xXclDzclmJLafNbeY3H1m1RL2oeFlpsfjOsHz0PAyrBnom77jzojUtDT40d3XNiTFJRfOxJ77bgj097PnvhsaErzg7GQqYP2aGY+bPReYfN/PH1zlmODPmdHRUCJp/O62rL0Go7dcidld2ZaeK5mb3ZVNxGSqE1bLxEx9pcaSC2fiR3df29Q5Wmkc5he35aD1/WfmzerE7/9YMn0OTufckD9g2iis2rxZnZiRyTS0K1hy4UysuPR808ogio55szobJs+TtD+qgb1lEsKqBK+ZBN9K4zC/uGlIBpjv1mRmzUAf+i+eY3tOq+dP6ZC0BM9SyISwKsFrpvOgU8likNzugOR2V6ate444njOM50nRkabXn6WQKeN1yWI7vG4OVlZ1PGcYz5OiI02vP0shU8brksV2eN0cLCPieM4wnidFR5pefw7LxIhVCZ5daV69VhqH+cVtczC3TZ1GVixwPGcYz5OiI02vP5N7jFiVEzZTLeNUshgkp5JDw5a11zQk+HmzOk2fg9M5jefvdP82b1Ynek3+Clhy4UysGehr9SlTQMzWMyRtMtUJq2WIiGKK1TJERCmTyH7uYfRJj1M8ZhtSt9vPur6V7rxZndhz3w2O13J63GzR1opLz8d39hzGpM0fncaf4HYtfinZjD0FzPrsp0HihmXcLowJStTisVoQ1E6Ct0qgMwQ4Y/L2Mq7lFItd33Q3zs1IzYYblF5x3ivBTqqGZdwujElrPFYLgtwuFDJjdWdsltirr+UUSzuJHQATO02L814JrUrcIiavF8a0K2rxEKVV2j5ziVvE5PXCmHZFLR6itErbZy5xwzJuF8akNR6rBUHt7P5u1SN9hkUxuXEtp1iaWZxl5lz2QqeKOO+V0KrEJXe3C2PSGo/ZgqB2q2XMeqTPm9WJVzfeaHstp1isFm2tGehDh0PeXjPQh1ce/oTt5hyUbMZbJOzPXFgSVy1DRJQWqaqWISIiJnciokRiciciSiAmdyKiBGJyJyJKoNg2DtuQP4Cte46grIqMCEZWLJju1Wz3WJS4aeAV1edS3wxt4fk57H793ek4By6djTfeKTY0S9uQP4Atuw+jukZrZmcGp06Xp8/TTCuE3p4cujo7aloVdAgamooZZXHh14ZRENLaLKxaLEshrXawNzZRsHosCknR4KaBl93zDPO5mDVDc5LLZvCxvu62etgQNSOpzcKqJa4U0moH8617jtg+FiVuGnhF9bmYNUNzUiyVmdgpUGlsFlYtlo3DrHYwL6vaPhY3UX0uaWvARPGV5vdqLBuHWe1gnhGxfSxuovpc0taAieIrze/VWA7LWO1gPrJige1jUeKmgVdUn4tZMzQnuWymreZkRM1KY7OwarFM7sYO9sYdbEZkepLR7rEocdPAK6rPxawZ2uCiOTVxDi6a09Asbcvaa7BmoA/1f3fM7MzUnKcZvT25huZiZk3FBGi4LiVXWpuFVYtltQwRESWwWoaIiOwxuRMRJRCTOxFRAjG5ExElEJM7EVECMbkTESUQkzsRUQIxuRMRJRCTOxFRAjG5ExElEJM7EVECMbkTESUQkzsRUQIxuRMRJdAMr08oIjMB/AuA0wB+oqpbvL4GBSM/XsDozkM4OlHERS52k7fa9BuY6vFeVp3elX7szePYuudIzZaB1TvW11/7usvm4nv7f4uJYsl1/F3ZDogITp4uT399qjTp+ucpuoz3U/XXA5fOxhvvFF2/X5POVT93EXkcwCcBvK2qH6k6vgrA1wFkAHxbVTeJyOcBTKjqDhHZpqqfcTo/+7lHT368gHufPVCzEbbdbvJ2ib1epkNQnjR/3+WyGdx8VS+e2VtoehNuomp279ek8KKf+xMAVtWdNAPgmwA+DuByACMicjmA+QCOVL6Nn86YGt15qCG52u0m7zaxA7BM7MY1tu45wsRObbN7v6aBq+Suqi8CqP/0Xg3gVVV9XVVPA/gugJsAvIWpBG97fhG5XUTGRGTs2LFjzUdOvrLaNT6I3eTLEdgdjJIhiPdrVLUzodqLs3fowFRS7wXwLICbReRbAHZY/bCqblbVflXtnzt3bhthkB+sdo0PYjd5Yy9WonYF8X6NKs+rZVT1pKp+QVX/lpOp8bVu5VLkspmaY3a7yTezsXXGbAfrqmuMrFjQcG2iZtm9X9OgneReALCg6uv5lWOuiciQiGw+ceJEG2GQH4aX92Lj6mXo7clB4Lyb/Ja119gmeONuvLcnh69++kqsGehruEM3rvHQ8LKGa68Z6ENPLtvUc+jKdmBmZ6bma0qG+vdORgSDi+a4fr+mgatqGQAQkYUAvmdUy4jIDAC/BvDnmErqLwP4nKoebDYIVssQETWv7WoZEdkK4CUAS0XkLRG5TVXPAPgSgJ0AfgVgeyuJnYiIvOdqEZOqjlgcfx7A855GREREbQt1EJJj7kRE/gg1uavqDlW9vbu7O8wwiIgSh+UDREQJ5LpaxtcgRI4BeDPsOOpcAOD3YQfhEmP1B2P1B2P1zsWqaroKNBLJPYpEZMyqxChqGKs/GKs/GGswOCxDRJRATO5ERAnE5G5tc9gBNIGx+oOx+oOxBoBj7kRECcQ7dyKiBGJyJyJKICZ3IqIEYnJ3SUQuFZHHROTpuuMzK9sFfjKs2OqZxSoiwyLyqIhsE5G/DDO+ahaxzhSR/6jEe2uY8ZkRkT4RyYvI4yKyPux47IhIh4g8LCLfEJG/DjseJ1H8PJmJ6uepWiqSe+VD+LaI/KLu+CoROSQirzp9SCt7xd5m8tA/ANge9VhVNa+qawHcAeAzUY4VwGoAT1fi/ZQXsXoZM4Bllfi+CGC5l/H5EOtNmNpIp4SprTCjHCvg8efJjEfvW88/T15z1fI3AZ4A8M8A/tM4ICIZAN8EcAOm3vQvi8hzADIANtb9/BdV9e36k4rIDQB+CeDcqMdaZUPlXFGOdT6AA5X/L3sUq2cxA9gN4GkR+SKA//I4Pq9jXQrgf1X13yp/Hf1PhGO9Et5/nnyJtep96+XnyVOpSO6q+mJlJ6lqVwN4VVVfBwAR+S6Am1R1IwC3fxJeC2AmgMsBFEXkeVWdjGKsIiIANgH4gar+rJ0Y/Y4VUx+u+QD2weO/Lr2IWUT+HsD9lXM9DeDfvYzR41jfAnC68qXX/1B6Heu18Pjz5GOsnn+evJaKYRkLvQCOVH39VuWYKRE5X0T+FcByEbkXAFT1PlW9E8B3ADzqxxvRq1gBfBnAXwC4RUTu8ClOwJtYnwVws4h8C8AO3yI9q6mYAfwQwN9V4n7Dx7jMNBvrswBWisg3ALzoZ2Ammoo1wM+TmWZ/r0F9nlqWijt3L6jqO5gaXzN77Ilgo7FnFquqPgLgkXAismYR60kAXwgnImeq+gsAt4QdhxuqegqA2VxRZEXt82Qmqp+namm+cy8AWFD19fzKsShirP6KU8yM1R9xitWVNCf3lwEsEZFLRKQTwGcBPBdyTFYYq7/iFDNj9UecYnVHVRP/H4CtAH6Ls+Vgt1WOfwLArwG8BuC+sONkrIyZsTJWr/5j4zAiogRK87AMEVFiMbkTESUQkzsRUQIxuRMRJRCTOxFRAjG5ExElEJM7EVECMbkTESUQkzsRUQL9P7Yyv42jYXv2AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGhCAYAAAC6URSFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJ40lEQVR4nO3de3wU9b0//tfsbjab68ImhiQEkohaXSlEkAAqVDhQLhaOHttvrQdFe4rW0m9tqT0Ff7VIrcSjrXJa1xv9+rPK6feg3x5RFPkW8QKF2FAiatxyFEyQS0IgC7knm+zO9490Yi57mdmd2ZnZfT0fD/7I7uzMeybs7juf+Xzeb0EURRFEREREBmHROwAiIiKioZicEBERkaEwOSEiIiJDYXJCREREhsLkhIiIiAyFyQkREREZCpMTIiIiMhSb3gEoFQwGcerUKeTk5EAQBL3DISIiIhlEUUR7ezuKi4thsUQeGzFdcnLq1ClMmDBB7zCIiIgoBsePH0dJSUnEbUyXnOTk5AAYOLnc3FydoyEiIiI52traMGHChMHv8UhMl5xIt3Jyc3OZnBAREZmMnCkZnBBLREREhsLkhIiIiAyFyQkREREZCpMTIiIiMhTTJCcejwdutxszZszQOxQiIiLSkCCKoqh3EEq0tbXB6XSitbWVq3WIiIhMQsn3t2lGToiIiCg1MDkhIiIiQ2FyQkRERIZiugqxREREpL5AUERNvQ/N7T0oyHGgstwFq0WfBrtMToiIiFLczrpGbNjuRWNrz+BjRU4H1i9zY/HkooTHw9s6REREKWxnXSPu2lI7LDEBgKbWHty1pRY76xoTHhOTEyIiohQVCIrYsN2LUDVFpMc2bPciEExs1REmJ0RERCmqpt43asRkKBFAY2sPaup9iQsKJkpOWCGWiIhIXc3t4ROTWLZTi2mSk9WrV8Pr9eLAgQN6h0JERJQUCnIcqm6nFtMkJ0RERKSuynIXipwOhFswLGBg1U5luSuRYTE5ISIiSlVWi4D1y9wAMCpBkX5ev8yd8HonTE6IiIiSVCAoovpoC145dBLVR1tCrrpZPLkIT66YhkLn8Fs3hU4HnlwxTZc6JyzCRkRElISUFFabf+k4HPd140BDCzLtNtw4rQRXXZSvW4VYQRTFxC5ejpOSlstERESpSCqsNvILXko1ho6IVO3wYvPeegwdVLEIwKo55Vi31K1aTEq+v3lbh4iIKIkoKaxWtcOLp/cMT0wAICgCT++pR9UOr9bhhsTkhIiIKInILay2/9Oz2Ly3PuK+Nu+th78/qHKE0TE5ISIiSiJyC6b98f0To0ZMRgqKwAvVDfEHpRCTEyIioiQit2BaZ2+/rO2O+briCScmTE6IiIiSSLTCapL3ZPbLKXVlxh+UQqZJTthbh4iIKLpIhdWGau+RN3Jy88xSFaJShkuJiYiITCoQFFFT70Nzew8KcgbKzEu1SXbWNeL+Vz9GU1tvXMf436tmYfakvLhjVfL9zSJsREREJhStyNriyUXIcaThn3/3l7iOk+iOxICJbusQERHRAKnI2sglw02tPbhrSy121jUCAM52xDdqAiS+IzHA5ISIiMhUlBRZizex0KMjMcDkhIiIyFTkFlmrqfcNrtyJ1X3XJb4jMcDkhIiIyFTkzgFpbu+B1SLgvusui/lYY7PsMb82HkxOiIiITETurRppu7FZ6TEfS4/JsACTEyIiIlM51+mPus3QuSLxJBh6TIYFmJwQERGZRiAo4oHXo3cKvu+6ywbnisSaYOQ4bLpMhgWYnBAREZlGtMmwkqG3cuSWsx/pwvwsXSbDAkxOiIiITEPJZFjJ0HL2SpTnZyl+jVqYnBAREZmE0smwksWTi/AvV5cpOtaNV5Qo2l5NTE6IiIhMItotGgGhC6dV7fDid/saZB8nzSrgqovzY44zXkxOiIiITCJSx2Hp5/XLhhdO2/FhI57eU6/oOI99Y6pu800AJidERESmsnhyEe6YWw5hRO4gCMAdc8uxeHLR4GOBoIifvVKnaP9Xlo7B1yrGqxFqzEyTnHg8HrjdbsyYMUPvUIiIiHSzs64Rz+ypR3BEc52gCDyzp36w6R8wsLrHJ6MuiiTLbsXWO69SK9SYmSY5Wb16NbxeLw4cOKB3KERERLqI1PRPIjX9A4A3vU2K9v/I16foejtHYtM7ACIiIpJHSdO/1m4//peCSbAAcO+2OlgswrBbQ3owzcgJERFRqpNb56TxfDc2bI9eSXak8119uGtL7bBbQ3pgckJERGQS+TKb+K39rw9lVZINRcTwW0N6YHJCRERkAjvrGvHjlz6Qta0/EF9iId0a0gvnnBARERnczrpG3LWlNuJEWLXF0804Xhw5ISIiMjA5K3S0EGs3YzUwOSEiIjIwuZ2I1RSqBH4iMTkhIiIyMD1ur4wsgZ9oTE6IiIgMTGkhtXhYBOCJm6/Qvc4JJ8QSEREZ1I4PG7H9w8QlJ49/axqWTtE3MQE4ckJERGRIsTTti5UA4ImbjZGYAExOiIiIDOm9oy2KmvbFQwRgMVBGYKBQiIiICBioa7L6D7UJPabeVWGHYnJCRERkIFLBtfPdfQk9rt5VYYdickJERGQQehVckzS16VcVdigmJ0RERAahR8G1oXwdvbodeyguJSYiItJZICiipt6HN+oadY3DlWXX9fgSJidEREQ62lnXiA3bvbqOmEgKnRl6hwCAyQkREZFu9Og2HM7YzDRd++kMxTknREREOtB78utID14/Wdd+OkOZJjnxeDxwu92YMWOG3qEQERHFTe/Jr0PdObccS6cU6x3GINMkJ6tXr4bX68WBAwf0DoWIiChuenQbHik73YYnbp6GdUvdeocyjGmSEyIiomTScLZL7xDQ2dtvqLL1EgOGRERElNx21jVi05uf6B0GAGOVrZcwOSEiIkogI02EFWGssvUSJidEREQJ9N5nLYaZCCsxwvyXoVjnhIiISANS1dfm9h7kZ6cDIrD78Gls/etxvUMbpSDHoXcIwzA5ISIiUpmRqr5GM8ZAxdckTE6IiIhUZKSqr3LcflW5YYqvSTjnhIiISCVGmuwqR3a6Fd+ff5HeYYzCkRMiIiIFhs4lKchxoLLcNTjyYKSqr3I8fOMUw42aAExOiIiIZAs1l6TI6cD6ZW4snlyEN71NOkanjNFK1g/F5ISIiEiGcHNJmlp7cNeWWnhunoaXD53UJTYlstNtePjGKVg6pUjvUMLinBMiIqIoIs0lkR6775U6+Dr7EhlWTDoMWrJ+KIOHR0REpL9oc0lEAC2d/sQFFCcjlqwfiskJERFRFEaroBovI5asH4rJCRERURRGq6Cqhsbz3XqHEBaTEyIioigqy10ocjoQadFtjsNca0zeP35O7xDCYnJCREQUhdUiYP0yNwCETVD6A4HEBaQC4844YXJCREQUVSAowplhx+1XlyErPfQISXefkb/uRyt1ZeodQljmGoMiIiJKMDM18VPiknE5eocQFkdOiIiIwpAKryVbYgIABxo454SIiMhUAkERa//rI0PPzYiPcc+MyQkREVEIj7/1Kc53Gb/ia6xmX5ivdwhhMTkhIiIaIRAU8f/va9A7DM1k2a2YNSlP7zDCYnJCREQ0Qk29D+e7k3fUxMi3dAAmJ0RERMMEgiL2HTmjdxia6vQHDV2+nkuJiYiI/i5Zlw2HYuR+QUxOiIiI8MWyYWPf8FCPkfsF8bYOERGlvEBQxIbt3pRJTApz01FZ7tI7jLCYnBARUcqrqfelxK0cyf3LL4fVEqmNob6YnBARUcoz8vwLNWWnW/HUimlYPLlI71AiSnhycvz4cVx77bVwu92YMmUKXnrppUSHQERENIyR51+o6YHrv2z4xATQYUKszWbDpk2bUFFRgaamJkyfPh1Lly5FVlZWokMhIqIUFgiKqKn3obm9B/lZ6SjMdeB0W09SzzspzDVHEpbw5KSoqAhFRQNZW2FhIfLz8+Hz+ZicEBFRwoRaMuzMsCV1YiIAmF46Vu8wZFF8W2fPnj1YtmwZiouLIQgCtm3bNmobj8eDsrIyOBwOzJw5EzU1NSH3dfDgQQQCAUyYMEFx4ERERLEI12m4tbtfp4gSQwRw8JhxOxEPpTg56ezsxNSpU+HxeEI+v3XrVqxZswbr169HbW0tpk6dikWLFqG5uXnYdj6fD7feeiueeeaZiMfr7e1FW1vbsH9ERESxCARF3P/qx0k9QhKJWSb+Kk5OlixZgl/+8pe44YYbQj7/6KOPYtWqVbj99tvhdrvx1FNPITMzE88+++zgNr29vbj++uuxdu1aXHXVVRGPV1VVBafTOfiPoyxERBSrx986gqa2Xr3D0I1ZJv6qulrH7/fj4MGDWLBgwRcHsFiwYMECVFdXAwBEUcRtt92G+fPn45Zbbom6z3Xr1qG1tXXw3/Hjx9UMmYiIUsTOukY89uYneoehmzEZVkMXXhtK1eTk7NmzCAQCGDdu3LDHx40bh6amJgDAvn37sHXrVmzbtg0VFRWoqKjARx99FHaf6enpyM3NHfaPiIhICakCbCq7alK+oQuvDZXw1TrXXHMNgsFgog9LREQpLNUqwIZy4QU5eocgm6ojJ/n5+bBarTh9+vSwx0+fPo3CwkI1D0VERCSbWSaCamn2pDy9Q5BN1eTEbrdj+vTp2L179+BjwWAQu3fvxuzZs9U8FBERkWxmmQiqlSy7FbMuNE9yovi2TkdHB44cOTL4c319PQ4dOgSXy4WJEydizZo1WLlyJa688kpUVlZi06ZN6OzsxO233x5XoB6PBx6PB4FAIK79EBFR6qksd6HI6UjZWzt3zJ1kmvkmACCIoqhoufc777yDefPmjXp85cqVeO655wAAjz/+OB555BE0NTWhoqICv/nNbzBz5kxVAm5ra4PT6URraysnxxIRkWw76xrx3S21eoehiyduvgJLpxTrGoOS72/FyYnemJwQEVGsvrflr9hRdzr6hkmmyOnAn386X9fREyXf3wnvSkxERKSXf55ZpncIumhs7UFNvU/vMGRjckJERClj1qQ8ONJS86vPTCuWEl7nhIiIKF7+/iBeqG7AMV8XSl2ZuGV2Gew2eUnHtZdcgJ0fp96tHTOtWDJNcsLVOkREBABVO7zYvLcewSEzJh/c8TesmlOOdUvdCARF1NT70Nzeg4IcByrLXbBaBOysa8SG7d6UXLHjykozTel6gBNiiYjIRKp2ePH0nvqwzy90F6DuZNuwBKTI6cDyqUV4Zk99ynYj/pery3Dfsst1jUHJ97dpRk6IiCi1+fuD2Lw3fGICALu8zaMea2rtiZjQpIIFbnNVaU/NWUFERGQ6L1Q3DLuVI1eqjpZIstNtprqlAzA5ISIikzjm69I7BFMKmmv2BgAmJ0REZBITxmbqHYIpdfkDpqpxAjA5ISIik7i0MEfvEEzLTDVOABMlJx6PB263GzNmzNA7FCIi0sHuw6lXm0QtZqpxAnApMRERmUAqN+2LlxH66gBcSkxERCYRrmDayG02bPfqFKH5rV/m1j0xUYrJCRER6SJUxdYipwPrl7mxeHLR4GM19b6UrOqqhh8tuHjYtTQL08w5ISKi5LGzrhF3bakdlXQ0tfbgri212FnXOPiY2SZzGoVFAO669iK9w4gJkxMiIkoo6TZNqAmP0mMbtnsR+HvFNbNN5jSKoAgcPHZO7zBiwuSEiIgSKtptGhFAY2vPYG2OynIXipxMUGJh1lEnJidERJRQcr8wpe2sFgHLp0aeN/EPl14Qd1zJyKyjTkxOiIgooeR+YUrbBYIiXv2gMeK23sZ23HhFMTLt1rjjSxZ5WXbT9dSRmCY5YRE2IqLkIN2mCbe4VcDAqh3pi1XOap3G1h788f1T6PIH1A3WxH7+NfMtIZaYJjlZvXo1vF4vDhw4oHcoREQUB6tFwPplbgAYlaBIPw+tzWHWeRN6O9vRq3cIMTNNckJERMlj8eQiPLliGgpHTHQtdDrw5Ippw2pzmHXehN7M3MWZRdiIiEgXiycXYaG7cLBCbH52OiACZzt7UX20ZbBarHQbqKm1J+TyYwqt1GXeLs5MToiIUoScUvGJ3p+/P4gdH53CXxvOoaGlE919wcHnCnPT8a3KiSjLz8JNMyZi05ufQACYoMh088xSvUOIGZMTIqIUsOPDU/jZK3XwdfYNPhaqVLxcckvPR7Lq+QPY5W0O+3xTWy8ee/PTwZ/HZKbhfFdf2O1puEPHz2P2pDy9w4gJ55wQESW5qh1efO8P7w9LTICBFS4jS8XLoaT0fDjREpNQmJgoY+aJxExOiIiS2I4PG/H0nvqwz4sYXio+Gn9/EPe+/JHs0vOhdPsDihMTUs7ME4mZnBARJalAUMTPXqmLut3QUvGR7KxrxKyq3aNGYIYaWXo+lI07vFGPRfEZWifGjJicEBElqZp6H3ydflnb7vI2RXxeupUjd3+Rbil8dqZT1j4odkPrxJiRaZITVoglIlJGyZyDZ/c1hJ0rEqmLcDjhbilU7fBi39EWBXsipR77xtSYJjkbiWmSE1aIJSJSRsmcAwHh54rIKR8/dD/hbilU7fBGnP9C8ZsyPhc3TC/RO4y4mSY5ISIiZaTiZXJEmiuidNVHqFsK/v4gNu9lYqIlqwV4efU1eoehCiYnRERJSupho2TmQahERO4IjCsrbVTpeckL1Q2QuSCIYhQIQtbEZjNgckJElMSkHjauLLus7UMlItG6CANAXpYd761bgMWTixAIiqg+2oJXDp1E9dEWBIKiqfu8mEmyrIRihVgioiS3eHIR5l86DrOq3gy7DFjAQNO9UHNFpBGYu7bUjiofLyUsD94wGXabJWzl2KtNWqnUbD462YZufwAZdqveocSFIydERCnAbrNg4w1fhgCMGgGRfo60/FROF+FIlWP/WHtSccyFuekYk5Gm+HWpLhlGTzhyQkSUIqQEY+TIRqHMnjgjuwgPbfYXablxrFNNvlU5cVhvHZKnocX8t9CYnBARpQCpg3BvfxC/+sZUQATOdvYq7iZstQghm8kpWW4sx9SSXNSfZbG2WJTlZeodQtyYnBARJblIHYTV6lqrdpO5D0604YMTbaruM1Xcu9Stdwhx45wTIqIkpkYHYTnM3GQumSx0F5h+MizA5ISIKGnJmQeipCNxJHKWG5O2FroLsPnW5GjxYprkhL11iIiUiTYPRE4HYbmk5cZA+NVApJ2qf5qcNIkJYKLkhL11iIiUkTsPRK35IuGWG8stAEex6+oN6B2CqjghlogowaSVMyOX46pN7jyQcNspjTMQFOHMsONfF30Jvk4/XNnpKMx1oKm1Gz968YOYzoHkcWWn6x2CqpicEBElUKSVM2q3uZfmgTS19oScdxKpKqzSOMNtf991l2HfkbNqnA5FUJibXBOSTXNbh4jI7BK1ckYiZx5IqKqwSuMMt31jaw++94f38X9iqA5L8o3NTAuZYJoZkxMiogRIxMqZUA335JSdVxKnCOD/e7kO/v5g1O0pMZLx2vO2DhFRAihZORNLYbRot2HClZ1XGicAtHT6MavqTWy84ctwZthVrQxLyp3v6ov5/41RMTkhIkoALVfOSLdVRv4FLd2GkUZI5Hx5yT2+r7MPd22pxbevLlMcL6lP7Qq9euNtHSKiBIh35Uw4at8uUnr8lw9xPokRJFuFXiYnREQJEK2CqoCB2zBKJzaqXWhNSaVXEQMjKK4sOwut6SjLbuWEWCIiUi7WlTPRqH27aGiccl1fUaxoe1JXV19AlRYERsLkhIgoQZSunJFDi9tFiycXYYG7QPb2Yx1BeG6+AgKHT3QhisAL1Q16h6EqJidERAm0eHIRHlg0fGTigUWxF2DT4nZR1Q4vdnmbZW//692fY2xWOsTk+uPdVI75uvQOQVVMToiIEqhs7ev4zou1wx77zou1KFv7ekz7U/t2kb8/iM176xXHkWyrRcym1JWpdwiqYnJCRJQg0RKQWBMUNW8XvVDdgFimL/y1If7OxhQbiwDcMrtM7zBUZZo6Jx6PBx6PB4FAcnVeJKLU8NahJtnbza8oVLx/JYXWIon19sAL730e0+sofqvmlMNuS66xBkEUzXWXsK2tDU6nE62trcjNzdU7HCIiWZSMijQ8dJ2GkUR2z4uH2AvHJCzCQGKybqmy1VV6UfL9bZqREyIi0lYgKOLPR1r0DoNkuH5qMR7+xtSkGzGRMDkhIkpRgaA47DZQUBTR1MaJrWbwzcqJSZuYAExOiIgS4tmbpuPb/3lQ1naJEKpR4JiMNNX2f3lxDk6e78H5rj7V9kkDBADTS8fqHYamkjftIiIyELmTXGOZDDtUICii+mgLXjl0EtVHW0JWDpUaBY4se3++W71E4uNT7Zg+cYxq+6MviAAOHjundxia4sgJEVGCNDx0XcSJsfFOhA01GlLkdGD9si+KvEVqFKi23YfPJOAoqSnZ68pw5ISIKIEaHrpu1K2bZ2+arkpiEmo0pKm1B3dtqcXOukYA0RsFkjkkWxfikThyQkSUYPMrCtFQod5y4UijISIG5ihs2O7FQneh7L+4x2SkqXqbh9QTS/dqs2FyQkRkctFGQ0QAja09qKn3yf6L23PzNFgsAt70NuF/7WtQJ1BSxfKpRYqL65kNb+sQEZmc3NGQ5vYe2Y0CZ03KgxAAExMDevWDxpATnZMJkxMiIpOTOxpSkOOQ3Shw0r07cNOz76kXJKlGGgVLZkxOiIhM7luboycRuQ4bXv/oFDbv+QxZaTbcfnUZxmbZh20jNQr87pbaMHsho0j21Tqcc0JEZGL7D5+VtV1bTz+2hGjO58pKww0V47HAXYjKchcOfpbc9TOSRbKv1uHICRGRid383F/iev25zj48u68Brd1+WC0C/sfvqlWKjLSSCqt1mJwQEaUwaVrlhu1edPsDusZC8tx33WVcrUNERMlNWmq8cYdX71BIhrFZ6XqHoDkmJ0REKpLT20ZNf7htpmr7amjpUm1fpJ1knwwLcEIsEZFq5PS2UdtVl+artq+yvEzs/VS13ZFGkn0yLMCREyIiVcjtbaOFePvyAMDYzDTcu9SNJJ/KYGpSgbxknwwLMDkhIopbtN42wMCEUy1v8TQ8dF1ct3iCogi7zYJVc8pVjIrUMrRAXrJPhgWYnBARxU1JbxstXXVpPv73qlkxvba1ux819T6sW+pWOSqKhTAi/5AK5Gl1e9BoTDPnxOPxwOPxIBDgUjciMhYlvW20Fs8x3vQ2obXbr2I0FKvbZpfiq5cXobm9BwU5A7dyUmHERGKa5GT16tVYvXo12tra4HQ69Q6HiGiQkt42Wun2B7BxhxeHjp+PeR/P7WvAf71/Ur2gKGbzLx2H2ZPy9A5DN6ZJToiIjErq9NvU2hNy3omAgWF5rSYyrnr+AHZ5m+PeTwDAua6++AOiuG07dAJzLrlA7zB0wzknRERxktvpV4thebUSEzKWP9ae0nSFl9ExOSEi1SS6AJmRLJ5chCdXTEOhc/itGzkTGWO5bt4TbShf+zoTkySm9QovI+NtHSJShR4FyIxm8eQiLHQXoqbeJ3siYyzXrWzt66rHTsYjrfBKxbknHDkhorjpWYDMaKwWAbMn5eEfK8Zj9qS8qImJ0uvGxCS1pEKp+lCYnBBRXKIVIBMBrHnxA2ze8xn8/cEER2dcsRRu855oS0hsZBypUKo+FCYnRBSXaAXIAKDLH8CDO/6GS+97A1XsfAsgtsJtX3t8bwIiI6NIlVL1oTA5IaK4KBl2DorA03vqmaAgtsJtHHdKLalSqj4UJidEFJdYhp03761P+Vs8sRRu4wd26vj6tPEpM5E8FP5fJ6K4SAXIlPx9FxSBF6obtArJFKTrFk6oDrSvfX9OAiIjvVkEYOM/TdE7DF0xOSGiuEQqQBbJMV+XNgGZhNUiYPnUyH8ZjxzWd5fkah0WGYAjzYq3Dp/WOwxdMTkhoriFK0AWSakrU8OIjG9nXSOe2VMf9vk75paHHNZveOg6LcMiA+jyB1JuCf5IgiiKpio/JzX+a21tRW4u/4ogMpJAUMT+I2dx67M1IZfISiwCcPiBJbDbkufvo0BQDFt87b9PtWPpb/cgIAJWAdi+eg7+5YUDYVfrSL143v3JPBw8di7kPg81nMf1T+1L1OmRDoqcDvz5p/OTZlKsku9vVoglItVYLQLmXHIB7phbjqcjjAqsmlOeVIlJpCqv391SO2zbgAgsjbIkWFpGPKtqN3yd/lH7BAZqoFByS+UKsUxOiEh165YOfIFu3luPoa1BLMJAYiI9nwykKq8jR4qaWntGJSZKDU1M1NonmUuqVohlckJEmli31I0ff/VSvFDdgGO+LpS6MnHL7LKkGjGRU+VVTWru894ll6Ktpx+AiNz0NGzceVjFvZNaUrVCLJMTItKM1SLAXexEfk46CnIcSXPvXCKnOq5RvfPfzbhz7iRAAJ5596je4VAIqVwhlskJEWkiFboUm3nIff9nPuz/zBd9Q9KFAFaIJSJSVap0KU7VIXfSXril5KmCyQkRqSqWbrtmFUt1XKJoBACvftCYFO+RWDE5ISJVxdJt16wiVcdlwkKxSqb3SKyYnBCRqmLptmtm4arjFjodeGrFNJ2iomSQLO+RWHBCLBGpKpZuu2a3eHIRFroLQ1aIbXjoOpStfT2m/VoFYMt3Zg3u83/+4SDOdvapHD0ZVTK9R5RickJEqpK79DHZlkhaLULISp4X3RtbYgIMVJN9579PDxate+1/zsWsh3bHvD8yB6l9QbK9R5TgbR0iUlXTeXlD0XK3M7PPz3ahPxjfPjbvrYf/7zspHONARho/tpOZNFcplZcRA0xOiEhlS37zrqrbJVIgKKL6aAteOXQS1Udb4l4tsfjf4z/HoAj8fn89qo+24OXaE7jnq19CmjXu3ZJBFTodeHLFtJReRgzwtg4RqayzN6DqdomiRdG47r44h03+7rE3P0WX31jXi9TnykrDfdddlvKJCcCREyJSWVa6vD/r5W6XCFoVjVPrFgwTk9Tg6+zD6j+8nzRFCuPB5ISIVPXGD76i6nZa07Jo3M67jXGOZB4ikqdIYTyYnBCRqsa7MmC3Rp7IZ7cKGO/KSFBEkWlZNG5ifiaiNWFO3SmPFE6qF2ADdEpObrjhBowdOxZf//rX9Tg8EWnskweXhk1Q7FYBnzy4NMERhad10bgjG68Lm6DYLED9Q9fhzrnlGLkwg0lLakvlAmyAThNi7777bnz729/G73//ez0OT0QJ8MmDS3HS140lv3kXnb0BZKVb8cYPvmKYERNJIorGHdl4HT4/24XF//4uuvuCyEizYOfdX8HE/EwAwLqlbvz4q5fiheoGNLR0ARCRbbfhyT2fyT5Ghk1Ad39q3wpIJqlcgA3QKTm59tpr8c477+hxaCJKoPGuDHx4/2K9w4hIat7X1NoTct6JWgWxJuZnwvvAkrDP220WjB+bgd/9uT7ibaZwmJgkj6IUL8AGxHBbZ8+ePVi2bBmKi4shCAK2bds2ahuPx4OysjI4HA7MnDkTNTU1asRKRKQ6Oc37ElEQK9yKIUotAliADYghOens7MTUqVPh8XhCPr9161asWbMG69evR21tLaZOnYpFixahubk57mCJiLQQqXlfIgpiRVoxRKmjiAXYBim+rbNkyRIsWRJ+aPLRRx/FqlWrcPvttwMAnnrqKbz++ut49tlnsXbtWsUB9vb2ore3d/DntrY2xfsgIoomUvM+rUVbMUSp4Vdfn4qrL87XOwxDUHXOid/vx8GDB7Fu3brBxywWCxYsWIDq6uqY9llVVYUNGzaoFSIRxaDbH8DGHV40tHShLC8T9y51I8OuTRG1QFAcliBMLx2Lg8fORU0YRr4ulsQiXPM+rUgxv8GiWwTgbGdv9I1ShKrJydmzZxEIBDBu3Lhhj48bNw6HDx8e/HnBggX44IMP0NnZiZKSErz00kuYPXt2yH2uW7cOa9asGfy5ra0NEyZMUDNsIopg1fMHsMv7xW3ZvZ8CL7z3ORa6C7D51hmqHitUCXmLMNBfRhKqpLwWpee1FipmSm2pvkJnKF3qnLz55ps4c+YMurq6cOLEibCJCQCkp6cjNzd32D8iSoyRiclQu7zNWPX8AdWOFW5C6MhCmSNLymtVel5LnPxKQwngCp2RVE1O8vPzYbVacfr06WGPnz59GoWFhWoeiog01u0PhE1MJLu8zehWoe+LkgmhQ0vK+/uDmpWe1wonv9JQiVwRZiaqJid2ux3Tp0/H7t27Bx8LBoPYvXt3xNERIjKejTu8qm4XidIJoVJJ+ReqGzQrPa8VTn5NbTmO4XO1ErUizGwUzznp6OjAkSNHBn+ur6/HoUOH4HK5MHHiRKxZswYrV67ElVdeicrKSmzatAmdnZ2Dq3di5fF44PF4EAiwOydRIgxUKlVvu0hiLdV9zCfv2EYqBW6kWCjxrq8owdIvFyV8RZjZKE5O/vrXv2LevHmDP0uTVVeuXInnnnsO3/zmN3HmzBn8/Oc/R1NTEyoqKrBz585Rk2SVWr16NVavXo22tjY4nc649kVE0ZXlZWLvp/K2i1esEwFLXfKObaSJhkaKhRKvLC8zoSvCzEoQRdFUtz6l5KS1tZWTY4k01O0P4LKf74y63d9+sTjuZcWBoIhr/u2tsCXkR5JKyr/7k3n4yiNvRy09/+efzo/5r9NoS5QDQRHvHW1B9WdnAQwsRZ51Yd7gNt3+AB58/WMcOt4KAJh9oQt/fP8UfJ3+mOIh87IIwOEHlsAerVV1klLy/a1Lbx0iMr4MuxUL3QURJ8UudBeoUu9EKiF/15ZaCEDEBGXoBEK7zYL1y9z47pbakNuKiG+iYbQlyjvrGrH2vz7C+a6+wecff/sIxmSm4aF/+jL+WHti1PWrO8VCkqlq1ZzylE1MlOJVIqKwNt86AwvdBSGfU7vOSbgS8iPzikRNIIy2RLlqhxff3VI7LDGRnO/qw3e31EZd7USpY6G7AOuWuvUOwzR4W4eIojJqhVjpdlC41S+x3taJtl9p36b68CRdFcV5ezEZ8LYOEakqw27FA9d/OSHHClVCPtwEwmjLcocuJVYyCVHOcl8mJqRELP8PU5lpbut4PB643W7MmKFuuWwiMi+5y3KVLt/lcl/SAv9fyWea5GT16tXwer04cEC9ctlEZG5yl+UqXb7L5b6kBf6/ko+3dYg0oEaH3JESOe9DK2pfl8pyF4qcjqhLiSvLXejo6cePtr6PYy2dAIDpZS5cdEE2bp5ZikPHzw+LKdp+iZRKtwn4z5rP0R8I4qqL8lN67okcnBBLpDItOuSGa8CnRWdgrWjVOVhaVQMMnwciffQ/uWIannjnCD48IW8JrxQTgLBLlInikWm34tH/MTXlStYr+f42zW0dIjPQokNuIjsDa0XLzsHhliBLS46VJCZDY3r/83Mxx0QUSZc/gO8atGO2UXDkhEglWixrTWSVVq1otdw31HFG3jLq9gcw+f7/G9P+LAJgoGbGlIQKc9Oxb+0/pMwtHo6cEOlAybJWuRLZGVgrWlyXUKQlyP9YMR6zJw2Uj//R1vdj3h8TE9JaU1uvoTpmG4lpkhMuJSaj02JZayI7A2tFq+W+cnx+rlv1fRKpicuLQzNNcsKlxGR0WixrldvxV43OwFrRarmvHBPHZqi+TyI1cXlxaKZJToiMTlp+Gu7usYCBlSCV5S7Z+7xXZi8OudvpQYvrItdj37wi5tdaBISNmUgNhbnpmvy/Twasc0JJyd8fxAvVDTjm60KpKxO3zC6LuRuo3NockTrrSlt/88oJeGzXfwMQMH3iGOw+fBrHfN1h65Yo7QysRX0VJcIdP1znYCmyH//DxViy6V00t/tRkGPHf95xFVzZ9rjjyXbYMKUkV9FqHckN0wrxx4NNccdAFM79yy9PmcmwSnG1DiWdqh1ebN5bP2xCo0UYaFeutCtoLLU5Qr1mbGYaevuD6PIHIh4vXN0SOXVOtKojIlek4wPA2v/6aFQH3zGZaQgGRbT19I/a3wXZdhz42UJVYlv++N6YEhSiWNltFnzlkny8+bdmjPyWzbJb8WvWOYm4LZMTSipVO7x4ek992OfvnCs/QZFqc4x8gwwt7hXuw2XoCELD2U489uanso4JhE9QIlWIjSdWNUQ6fjwfMGomKOEqxD70xmH0cWkOaWChuwCem6fj9/sbcKChBZl2G26cVpKyFWKZnFBK8vcHcel9b0RcAmoRgMMPLIl6i0et2hyBoIirH9qNprZeOacwSEndkkTVEYn1+PGq/dlCVW7xhHLS142rH35Lk30TAcauQZRorHNCKemF6oaotSmC4sB20ahVm6Om3qc4MQGU1S1JVB2RWI8fr5ue2a/Zvpf85l3N9k0EGLsGkZGZJjlhnROK5phPXq0POdupVZsj1hoGSuqW6FlHRMv9frF/v2b77uyNPAeIKF5GrkFkZKZJTljnhKIpdcmr9SFnO7Vqc8Raw0BJ3RI964houd8v9q/NLR0AyErncDtpy8g1iIzMNMkJUTS3zC5DtCkVFmFgu2jUqs1RWe5CYW561OONpKRuiZ51ROQcP17/ecdVGu0ZeOMHX9Fs30SAsWsQGRmTE0oadpsFq+aUR9xm1ZxyWfVOpNocwOhCXNLP65e5o04wtVoE3L/88qjHG2po3RI51Io1VnKOH+25cC7Itms2GRYAxrsyYLem3qoJSgyl72X6ApMTSirrlrpx59zyUSMoFkHZMmIAWDy5CE+umIZC5/DbFoVOh6KluYsnF+GpFdMwJjMt6rbhlhEnKtZYRTr+Uyum4akIz10QJvlQcxlxJJ88uJQJCqku1vcyDeBS4hQnt6Ko3pVHldKjQmy041stAt472oLqz84iVIXYH8y/BPe+/CE+P9eNiWMz8Ng3r0C244siznLiCATFYceYPSkPsy7MS9jvKhAU8c7Hp/HAG160dPmRl5WO+5ZehmsvGwcAYeP3dfjxzWf241RrD7LTbfjlsssx//LCsHH7+4N4bl89/uQdqOC64LJxuLzICV+3P+rvyNfhx03P7B9WjTbbYcO/7/obnny3AUEAditQdf0UtHT58Zd6H46e6UBmmgCHPQ2XFuagZGwmDja04ERrL4qddlyQ44D3VDsAYHqpEx8cb8VnZzvh7w/CYQW6+0VI9fcKctNQ4szARyfa4B/y6Tsh14KTbUEEVfg9UHwsACaOSceZzj509QUhArBbgHG5dowfm4UsuxWCIEAQBGSl27Ds8iK8feQMjvlG1yCiL7DOCckit6Ko3pVHzSaWCrXhKphOKcnFq9+fY5rf1VceeQvHWkZ3ArYIwBP/HH4ER0ncVTu8eGZPfcTibuFeO+OXu3CmQ/7qn0hF5EL9TnfWNYashEvJjZ+H8jA5oajkVhTVu/Ko2cRSoTZaafXSvAx83tJt+N9VuMRkqKdCxKAk7mjXN9JrlSYmckm/0511jSH7B1FqEMDPw2hYhI0iCgRFbNjuDfkXofTYhu1e+PuDsrYLsPQ3gIFbDZv3Rv7i3Ly3Hv7+LwbuO3r6o/Z8ORYiMQGM9btq7eqLmpgAwM+31Q2LQe7/xUBQlHV9w73W1+HXJDEBBn6n3f4A7n+VxbZSHT8P1cPkJAXJrSj6QnWDrpVHzSaWCrU/2vp+XMc0yu/q28/VyNquucM/LAYl1W3lXN9wr9WyymxQHKgC2tSmbTE6MjZ+HqrLNMkJK8SqR25FT7kVV7WuEGoWsVSo/fxc9NEGNY+t1e/qlILy9UNjUFLdVu45hnqtllVmAVYBpS/w81AdpklOWCFWPXIresqtuKp1hVCziKVC7cSxGQk9tla/q2Kn/P0OjUFJdVu55xjqtVpWmQVYBZS+wM9DdZgmOSH1yK0oesvsMl0rj5pNLBVqH/vmFbL2bfTf1bO3VcrariDbPiwGJdVt5VzfcK/VssqsRRioAlqYyy+lVMbPQ3UxOUlBciuK2m0WXSuPmk0sFWqzHTZMKYk8a700b2B0xci/K2dm2mCckfzi+snDYlBS3VbO9Q33Wle2PWyxt3itmlOODLsV9y9nmfJUx89D9TA5SVFyK4rqXXnUbGKpUPvq9+eETVCmlOTi3Z/MN8Xv6t2fzA+boFiE0MuIAWVxS9c32sd/qNce+NlCxQlKpOOM/J0qqQRMyaWIn4eqY52TFJesFWL1FkuF2o6efvxo6/txVYhVsp1WWrv6cPtzf0FDSxdyHWmDFWKjxaAkbi0qxP5+fwNq6s+iyx/E1JIxuPrifMwoc+FAgw/VR1vQHwygoycAQRBQlhf+dxoIinjvsxZUH21BIBBES2cv9h9tQXtPP8aPSceiycXYd/QMPjp+Ht39X7xuanEGOv0COvwBpAsBnGrrR1+cn85WARBFDKs6awUQiG+3Sc1uBWaVu7BiZjler2vEcV8nWrr8gAhkp1txYX42SlyZcGWlIz8nHYW5/DyUi0XYiIiIyFCUfH/bIj5LpIFoIwRqULO3jlHEMyLS7Q9g4w4vGloGen/c89VL8X8OHpd1fZSOaEjXvcSZAVEATp7vRqkrE4svL8LXn9yL0+19EATg6kkuPLFiBrIdtlHHcBfl4p6XDoX8PyKNmuysa0JzRw8KstPxpcJc2O3Azo+a0dbdhyy7FSuvLsWdcy/+e6G3OvzJexqBIHBFSS5mluehsb0Xpa5M3DyzFO8dOYuH/+/f8MnpzsFRBpswUMPEkSYgCMAGEUEIsFkt8PcHYREAZ4Yd2ekWNLX3IhAEgv1BdP99B1YBuKQgAy2d/ejpCyIYDKI3MPC3oM0iQICI3gAQMNWfh+YkAPjSOAdau4I419WH3oAYsvCfK8OCf7l6ElZdexHstoHf87N7P8Mfa0+gvbcfF16QhTvnTsI1F1/AkRKNceSEEipaDxk1xNLbxuji6Zmz6vkD2OVtjrhNuOujtOfNyOsuR2leBvz9YsRibMDA/5HZF+ZF7atDpIYpJblhqzen2yz495sqOMdEId7WIUOK1kNGjQQllt42RhdPzxw5iclQQ6+PFj1viJJJuEneFBp765DhyOkh8+GJNnT09EfcJpJYetsYnZLeMyN1+wOKEhPgi+ujVc8bomRy/6vspaMVJieUEHJ7yMTTayaW3jZGp6T3zEgbdyhvRCddHy173hAli6Y29tLRimmSE/bWMTe5PWTi6TUTS28bo1PSe2akWPu9HPN1JaTnDVEyYC8dbZgmOWFvHXOT20Mmnl4zsfS2MTolvWdGirXfS6krMyE9b4iSAXvpaMM0yQmZm9weMnK3CyWW3jZGp6T3zEj3xjDxV7o+Wva8IUoWUgE2Uh+TE0oIOT1kppTkxlXvJJbeNkanpPfMSBl2Kxa6CxQdT7o+WvW8IUom9y9nLx2tmOdTmkwvWg8ZNeqcxNLbxuji6Zmz+dYZshKUUNcnlp43sXxOl+ZloMgZfWh8SkmurL46RGqI9MdUus3CZcQaY50TSjhWiI0NK8SyQizFhhVijYFF2IiIiMhQWISNiIiITIvJCRERERkKkxMiIiIyFCYnREREZCjqLpFIAfGsmDCiZDsfycjVKfcudSPDbk3IsVu7+vDt52pwqrUHxU4Hnr2tEs7MtLjjk/uabn8Av3z9Y3x4ohXOjDSsmnPhqNUFofYFDPTj+exMJ3r6ArikMBsXXZATciXPyHP03Dwdnnc+xdHmdnzu60aG3YqJrkxcMXEMPjzRBodNQEdvAM3tvXBmpOGai/ORn52OD46fw+n2XmTZbbhxWglmXpiHvxxtwR/fP4ET57pQMiYTN04rweXjnfjO7/+CvzW1QwyKEEVAFIAsuxWzJ+WhND8buXYb/nz0LE74utDe48f5niBEEci2W/CPU4px8Pg5NLX2oLs/AEBAVhrQF7SgPxhEX0BE35B+kNlpQEAU0N0fer1AdpoFQYjoC4gQMLC0tF8UketIQ1leJjLsVnza1IpTbf2jVoWkW4Be8/SeTEo2ARBEIAAMrs6yAshxWFExYQxKXFmYNnEsisZkYHrpWBw8di7pPiONjqt1FNhZ14gN273DGqIVOR1Yv8xtyvXuyXY+klXPHwjZjXehuwCbb9W2N9NXHnkLx1pG9wcqzcvAuz+ZH3N8cl8Tbrt0mwX/flMFFk8uCrtNOBZhoDibVAMl3DkSJSPL35eUS5LhM1IvXEqsgZ11jbhrS+2ov4Kk/DlaMSyjSbbzkUT74tUyQYn2pV2al4FLxuUojk/uOclJOqaU5OLDE20Rtwnnzrnl2PlxExMTSmlm/4zUE5cSq2ygiJM3ZNEe6bEN270ImKRvfLKdj6TbH4j65bzL24xuf0D1Y7d29UX90j7W0q04Prnn5OvwyxoNiTUxAYCn99QzMaGUZ+bPSDNhciJDTb1v2K2PkUQAja09qKn3JS6oOCTb+Ug27vCqup0S336uRrV9DY1Pbqw3PbNfteMTUWRm/Yw0E9MkJx6PB263GzNmaDtnIJTm9vBf5LFsp7dkOx9JQ0uXqtspcSpCsqfU0Pjkxtrc7lft+EQkj9k+I83ENMnJ6tWr4fV6ceDAgYQfuyAnelMyJdvpLdnOR1KWl6nqdkoUy2hcJ9fQ+OTGWpBjV+34RCSP2T4jzcQ0yYmeKstdKHI6wnZDFTAwg7uy3JXIsGKWbOcjuVdmx2G52ynx7G2Vqu1raHxyY/3PO65S7fhEFJlZPyPNhMmJDFaLgPXLBr4kRn6hSz+vX+Y2zdr3ZDsfSYbdioXugojbLHQXaFLvxJmZhtK8jIjblOZlKI5P7jm5su1RtwMit4GP5s655VHPkSjZmfkz0kyYnMi0eHIRnlwxDYUjhu8LnQ5TLilLtvORbL51Rtgvaa3rnLz7k/lhv7ylOiexxCf3NZG2S7dZ8NSKaXj1+3NkJTFDWYSBxGTdUnfEcyRKRiPzD7N/RpoF65wolGwVVZPtfCSsEMsKsawQS+GwQqw+WISNiIiIDIVF2IiIiMi0mJwQERGRoTA5ISIiIkNhckJERESGwuSEiIiIDIXJCRERERkKkxMiIiIyFCYnREREZChMToiIiMhQbHoHYBT+/iBeqG7AMV8XSl2ZIUt2y9kmWcVSbj0Vrleo8v+BoBj2vKO1C5CuWf3ZTpxu68EFuemYlJ+Nm2eW4tDx8yFf19HTjx9tfR+fn+vGhLEO3HRlKQ6dOA9AxMyyPFisAk639uD94+cgAih1ZeLSwlz4uvzD9hWp7L2vw4+bntmP5nY/LshOw08WXYbu/gAKchyomDAGf/jLMRzzdWHC2ExcUpCNv9T78OGJ80i3WSAKIiACp9t6kZ42UNb+a1OK8ebfmvDeZz509PQh12FDht2KImcm3OOyseXAMfi6AgCA/EwbnBk2nGn3wx8EXFlpuGpSHk6e68KJc91obutFXxAQAWRYAYfdhk5/P3oHXg4LBp4bWgo7J12AzWpFt78fPf1fPG4TgLwsG3r6RHT3BeCPo8x8lg3o7I++HWnDCsBiAQJBIN0mwJVtxzUX5cOVmQ6LVYAzPQ3ne/wIigPvIUEQMNGVEfK9QYnH8vUAqnZ4sXlvPYJDroRFAFbNGWh2JnebZLXq+QPY5W0e9XikRnqpcL121jViw3YvGlt7Bh/LtFvR3ReAGOK8r5g4dtT2RU4H1i9zY/HkopDXLBzpdU+8cwQfnmiL6zyKnA5ckGMPuZ90mwXpNgvaevgtS6ln6PuT4sfeOgpU7fDi6T31YZ+/c245AETdJlm+cEcKl5hIQiUocq6p2a/XzrpG3LWldlRTN6Wkv8kWuAsiXudQrzPVG5fIhKT3J7sQq4O9dWTy9wexeW/4L1FgICmJts3mvfXw9ydfm9FufyDqF+YubzO6/YHBn+VcU7Nfr0BQxIbtXlWSA+l2g5LERHodEWlLep9t2O5FQM6QJqkmpZOTF6obZA2hR9smKA7sK9ls3OFVvJ2ca2r261VT7xt2a4aIkpcIoLG1BzX1Pr1DSSmmSU48Hg/cbjdmzAg9xyEWx3xdhtyXUTS0yDunodvJvQ5mvl7N7UxMiFIN3/eJZZrkZPXq1fB6vThw4IBq+yx1ZRpyX0ZRlifvnIZuJ/c6mPl6FeQ49A6BiBKM7/vEMk1yooVbZpdBziqxaNtYhIF9JZt7ZU5aHbqdnGtq9utVWe5CkdMBLjAkSn4CBlbtVJa79A4lpaR0cmK3WbBqTnnEbe6cWx51m1VzypOufgcAZNitWOguiLjNQnfBsHoncq6p2a+X1SJg/bKBhExpgjJye+Hv/6Jd52j7ISL1Se+z9cvcrHeSYOb9hlDJuqVu3Dm3fNRf+xbhiyWvcrZJVptvnRH2izNcnZNUuF6LJxfhyRXTUOgcPtSbabdCCHPeT4XYvtDpwJMrpmHzrTNCXrNwCp0OPLViGqaUxL+cvsjpCLufdJsFuQ7WaqTUJL0/uYw48VK+zomEFWIjY4XY0FghlhViw2GFWH2xQqzxsAgbERERGQqLsBEREZFpMTkhIiIiQ2FyQkRERIbC5ISIiIgMhckJERERGQqTEyIiIjIUJidERERkKExOiIiIyFCYnBAREZGhMDkhIiIiQ2FyQkRERIbC5ISIiIgMhckJERERGQqTEyIiIjIUJidERERkKExOiIiIyFCYnBAREZGhMDkhIiIiQ2FyQkRERIbC5ISIiIgMhckJERERGQqTEyIiIjIUJidERERkKExOiIiIyFCYnBAREZGhMDkhIiIiQ7HpcdDXXnsNP/7xjxEMBvHTn/4U3/nOd/QIg2iUQFBETb0Pze09KMhxoLLcBatFiGlf3f4ANu7wov5sJ9KsQE+fiPaefhQ6HVjkHocSVxaml47FwWPnQh7P3x/EC9UNOObrwoSxmbh0XA583f6wcYWLPRAU8d7RFlR/dhaAgJnlLnT7A6h6429o7elD6dgM3PmVi/DqB6fw9n+fRk+fCAFAjsOCS8flYN6lhRg3JgOFuY7BeJvaeuDr6IUry45CZwaml47FgXof9nzSjH1HWwAAFROcWLvEjQ+On8feT89gzydncPxcF/qDIi7ISsMlBVnYc8QHf3Dgr6TLCjORnZ6GY+e6YREE+PsDaOvuR5rNgkn5WchIE9DU5kdrTx+CQQAQkZ+TjsJcB9zFThw53YYPTrajvz8Af38QvcGB6zL0LzBBADJsAvoCIoIAbFYBNouAQF8QXcEvtrMAyM9Ow/XTivDywUac7eyDGOJ3nJsOtPdi2HNWAIEQ2wpAyH1QdGkWYPwYB3ydfvQHghAFIMOehlxHGmZf6IK7KAf3vfq3we0vys/ErEl5WLvEjY9Oto76/1oxYQz+8JdjOObrQqkrE7fMLoPdZlH1/U/xEURRTOj7pb+/H263G2+//TacTiemT5+O/fv3Iy8vT9br29ra4HQ60draitzcXI2jpVSys64RG7Z70djaM/hYkdOB9cvcWDy5SNG+Vj1/ALu8zVG3swhAcMg7UDre+5+fw+a99cOeG2pkXOFiXz61CFv/egLnu/oUxS83Xgm/eMnMLALwD5cVoO5kmyrvfwpNyfd3wpOT/fv345FHHsHLL78MAPjhD3+ImTNn4lvf+pas1zM5IS3srGvEXVtqR33BSn8zPblimuwPKLmJSShyv+SHxgUgZOxEFJ9Y3v8UnpLvb8VzTvbs2YNly5ahuLgYgiBg27Zto7bxeDwoKyuDw+HAzJkzUVNTM/jcqVOnMH78+MGfx48fj5MnTyoNg0g1gaCIDdu9Ib/cpcc2bPciEG4YY4hufyDmxGTo8eRud/+rH+P+V0PHTkTxUfr+J/UoTk46OzsxdepUeDyekM9v3boVa9aswfr161FbW4upU6di0aJFaG6O7QO7t7cXbW1tw/4Rqamm3jdsKHckEUBjaw9q6n1R97Vxh1fFyCITATS19aKpLXzsRBQfJe9/Uo/i5GTJkiX45S9/iRtuuCHk848++ihWrVqF22+/HW63G0899RQyMzPx7LPPAgCKi4uHjZScPHkSxcXFYY9XVVUFp9M5+G/ChAlKQyaKqLld3pe7nO0aWrriDYeIDEju5wSpQ9WlxH6/HwcPHsSCBQu+OIDFggULFqC6uhoAUFlZibq6Opw8eRIdHR144403sGjRorD7XLduHVpbWwf/HT9+XM2QiVCQ41Btu7K8zHjDISIDkvs5QepQdSnx2bNnEQgEMG7cuGGPjxs3DocPHx44oM2GX//615g3bx6CwSD+9V//NeJKnfT0dKSnp6sZJtEwleUuFDkdaGrtCTl3QwBQ6BxYVhjNvUvdeOG9z1WPMRQBwLjcdAACTreFjp2I4qPk/U/q0aUI2/Lly/HJJ5/gyJEjuOOOO/QIgWiQ1SJg/TI3gC9m50ukn9cvc8uqd5Bht2KhuyDmWORWVJC2u3/55bh/eejYiSg+St//pB5Vk5P8/HxYrVacPn162OOnT59GYWGhmociUtXiyUV4csU0FDqHD90WOh2KlxFuvnWG7ARl5OddodOBp1ZMw51zy0c9Fy6ucLEXOR24c245xmSmyY5dabwSfmyTmVkEYKG7AEUqvP9JHXHVOREEAS+//DKuv/76wcdmzpyJyspK/Pa3vwUABINBTJw4Ed///vexdu3auANmnRPSEivEskKs9BpWiDUOVohNDpoWYevo6MCRI0cAAFdccQUeffRRzJs3Dy6XCxMnTsTWrVuxcuVKPP3006isrMSmTZvw4osv4vDhw6Pmoijh8Xjg8XgQCATwySefMDkhIiIyEU2Tk3feeQfz5s0b9fjKlSvx3HPPAQAef/xxPPLII2hqakJFRQV+85vfYObMmUoOExZHToiIiMzH0OXr48XkhIiIyHw0LV9PREREpCUmJ0RERGQoTE6IiIjIUEyTnHg8HrjdbsyYMUPvUIiIiEhDnBBLREREmuOEWCIiIjItJidERERkKKp2JU4E6S5UW1ubzpEQERGRXNL3tpzZJKZLTtrb2wEAEyZM0DkSIiIiUqq9vR1OpzPiNqabEBsMBnHq1Cnk5ORAEJKnIVNbWxsmTJiA48ePp+REX55/6p5/Kp87wPNP5fNPtXMXRRHt7e0oLi6GxRJ5VonpRk4sFgtKSkr0DkMzubm5KfGfNByef+qefyqfO8DzT+XzT6VzjzZiIuGEWCIiIjIUJidERERkKExODCI9PR3r169Henq63qHoguefuuefyucO8PxT+fxT+dyjMd2EWCIiIkpuHDkhIiIiQ2FyQkRERIbC5ISIiIgMhckJERERGQqTEyIiIjIUJicmccMNN2Ds2LH4+te/HvL5rq4ulJaW4p577klwZIkR7vyPHz+Oa6+9Fm63G1OmTMFLL72kU4TaivT7f+211/ClL30JF198MX73u9/pEF1iPfbYY7j88svhdrvxgx/8QFYTsWRRX1+PefPmwe1248tf/jI6Ozv1Dinhkv2zLpxU+ayTMDkxibvvvhvPP/982OcffPBBzJo1K4ERJVa487fZbNi0aRO8Xi/+9Kc/4Yc//GFSfmCHO//+/n6sWbMGb731Ft5//3088sgjaGlp0SHCxDhz5gwef/xxHDx4EB999BEOHjyI9957T++wEua2227DL37xC3i9Xrz77rspWR8j2T/rwkmVzzoJkxOTuPbaa5GTkxPyuU8//RSHDx/GkiVLEhxV4oQ7/6KiIlRUVAAACgsLkZ+fD5/Pl+DotBfu/GtqanD55Zdj/PjxyM7OxpIlS/CnP/1JhwgTp7+/Hz09Pejr60NfXx8KCgr0DikhPv74Y6SlpWHOnDkAAJfLBZvNdO3R4pIKn3XhpMpnnYTJiQr27NmDZcuWobi4GIIgYNu2baO28Xg8KCsrg8PhwMyZM1FTU6Pa8e+55x5UVVWptj+l9D5/ycGDBxEIBDBhwgTV9x2Jnud/6tQpjB8/fvDn8ePH4+TJk6rsOxZaX4sLLrgA99xzDyZOnIji4mIsWLAAkyZNUvEMYqf1uX/66afIzs7GsmXLMG3aNGzcuFHF6OOXiPeB3p91kSTyc0Cvz7pEYnKigs7OTkydOhUejyfk81u3bsWaNWuwfv161NbWYurUqVi0aBGam5sHt6moqMDkyZNH/Tt16lTEY7/yyiu45JJLcMkll6h6Tkroef4Sn8+HW2+9Fc8884wq56SEEc7fKLS+FufOncNrr72GhoYGnDx5Evv378eePXsSdXoRaX3u/f392Lt3L5544glUV1dj165d2LVrV6JOLyqtz98In3WRJOpzQM/PuoQSSVUAxJdffnnYY5WVleLq1asHfw4EAmJxcbFYVVWlaN9vv/22eOONNw57bO3atWJJSYlYWloq5uXlibm5ueKGDRtijj9eiT5/URTFnp4ecc6cOeLzzz8fU8xqSvT579u3T7z++usHf7777rvF//iP/1AeuAa0uBYvvvii+L3vfW/w54cfflj8t3/7N1XiVZMW575//37xq1/96uDPDz/8sPjwww+rEq/atDh/o33WRaLV54CRPuu0xpETjfn9fhw8eBALFiwYfMxisWDBggWorq6Oe/9VVVU4fvw4Ghoa8Ktf/QqrVq3Cz3/+87j3qxatz18URdx2222YP38+brnllrj3pzatz7+yshJ1dXU4efIkOjo68MYbb2DRokVx71cLalyLCRMmYP/+/ejp6UEgEMA777yDL33pS1qFrBo1zn3GjBlobm7GuXPnEAwGsWfPHlx22WVahawqNc7f6J91kahx/kb/rFMbkxONnT17FoFAAOPGjRv2+Lhx49DU1CR7PwsWLMA3vvEN7NixAyUlJap8sSWC1ue/b98+bN26Fdu2bUNFRQUqKirw0UcfqXoO8dD6/G02G379619j3rx5qKiowI9//GPk5eWpeg5qUeNazJo1C0uXLsUVV1yBKVOmYNKkSVi+fLkW4apKjXO32WzYuHEj5s6diylTpuDiiy/G1772NS3CVZ1a7wOzUuP8jf5Zp7bUmuptYm+++WbUbW677TbtA9FJuPO/5pprEAwGExxN4kX6/S9fvtwUX9BqefDBB/Hggw/qHYYulixZkpIrVUZK5s+6cFLls07CkRON5efnw2q14vTp08MeP336NAoLC3WKKnF4/ql9/kOl8rVI5XMHeP6pfv6xYHKiMbvdjunTp2P37t2DjwWDQezevRuzZ8/WMbLE4Pmn9vkPlcrXIpXPHeD5p/r5x4K3dVTQ0dGBI0eODP5cX1+PQ4cOweVyYeLEiVizZg1WrlyJK6+8EpWVldi0aRM6Oztx++236xi1enj+qX3+Q6XytUjlcwd4/ql+/qrTe7lQMnj77bdFAKP+rVy5cnCb3/72t+LEiRNFu90uVlZWiu+9955+AauM55/a5z9UKl+LVD53UeT5p/r5q00QxRTqmkVERESGxzknREREZChMToiIiMhQmJwQERGRoTA5ISIiIkNhckJERESGwuSEiIiIDIXJCRERERkKkxMiIiIyFCYnREREZChMToiIiMhQmJwQERGRoTA5ISIiIkP5fwFSYYKScU+mAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -619,19 +564,17 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 30, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de4xU150n8O+vi0uoJrtdzRhrQ9kdbGyBzBDoTU/c3v7HeDbGEwen5UdYB1ajSYSVlWZXdmZbCxsUcOQRLbWSeGc2M7P2TiYzY5bgl1rGZIOjhSgSa5BhuhnCLB38iMHlrEximpWhMdXdZ/+ovs2tW/dd93Gq7vcjRTH1uPfUhfrdU+f8zu+IUgpERNT+OrJuABERpYMBn4goJxjwiYhyggGfiCgnGPCJiHKCAZ+IKCcWZN0ALzfccINavnx51s0gImoZJ06c+I1SaqnTc1oH/OXLl+P48eNZN4OIqGWIyLtuz3FIh4goJxjwiYhyggGfiCgnGPCJiHIitUlbEVkM4C8AXAPwM6XUniTOs2P0FPYeO48ZpVAQwaN33oynBtf4Ppe20bEKRg5O4P3JKSwrFTG0YSUGe8sAgM3Pvo4jb304/9qBFUuwZ+td8392+hzH3v4tzn5wef41t9+4GD/9xt2B27Nj9BSeO3qu7jH7eaN8rvcnp+BXnk8A39csEGA6ZJ2/IMclSsOiguDMn34h62ZAmqmWKSI/APBFAB8opX7X8vh9AP4LgAKA/66UGhaRfwtgUim1X0T2KaU2+R2/r69PhcnScQpaALClvwcAXJ9LO+iPjlWw/eVTmKrOzD9WNArY/eAavHD8XF2wN5nB1+0zOgka9L2OGSboO30uIqpJK+iLyAmlVJ/Tc80O6fwQwH22kxUAfB/AHwC4A8CjInIHgJsAnJ97WSIRYe+x866Pez2XtpGDEw1Bcao6g5GDE47BHsD842Haa+3xe/E6plt7nDh9LiKquTqT/e/NpgK+UurnAOwR4XMA3lRKva2UugbgRwC+BOA91IK+53lF5DEROS4ixy9cuBCqPTMuv1ZmlPJ8Lm3vT06FetwqifbGdcwg7Sei7CQxaVvG9Z48UAv0ZQAvA3hIRP4SwH63NyulnlFK9Sml+pYudVws5qog4vq413NpW1YqhnrcKon2xnXMIO0nouyklqWjlLqslPojpdS/S2rC9tE7b3Z93Ou5tA1tWImiUah7rGgUMLRhJQZWLHF8j/l4mPbefuPiQK/zOqZbe5w4fS4iqllUSL9zaZdElk4FgDWC3DT3WOLMyVevTBwdsnTMbBynLJ3B3rJnlo7bZ2wmS8c8ZrNZOk6fK64snSiYpUO6aIssHQAQkeUAXjWzdERkAYBfAvh91AL9GwC+opQ6HfbYYbN0qD0s33bA9blfDd+fYkvywyvDyswgG+wtY3SsgqEXT6KqwQRkqxAA76T479YrS6epHr6I7AVwN4AbROQ9ADuVUn8tIn8M4CBqaZk/iBLsqb15/YoZWLHENTU1D7zWaMTBaR3H4TMXXDOszAyywd4yRg5OMNiH1CGC0bFKrH+HUTXdw0+CiGwEsPG2227bevbs2aybQzGzB3uTNej7LT5rVZ//7s88h9681mg4BYywiwnDrOOw29LfE/m9lN6/Ya8evpYB38Qhnfak+5BNUj1se7A3WYP+wPAhVBzSW8ulIo5su6fuMa+Fhm5Bf8X2H2eSikw1aSz0TGxIh6hdWHvKVpXJKWx/+RQA1AX9KL9A3BbCnf3gMgaGD3lOcFvXOJg3JKcbA1CbfH/nwkfYs/Uu119TlI29x85nVs4FYPE0ovmeslvP1xzDNjkF0SNvfYjNz74euQ0Vn2wmc42DOeTjFuyt7fnMzp8w2Gsm619X7OFT6nSblA1SrsLaw/Yqf5FUgb73J6ewY/SU5+Sq3f/7mGUudJPFQk8r9vApdXu23tUQ3LOclA3S6wq6itj6S2FGKTx39Bx2jNaGhIIuhHOi5o7t17MnvWWx0NOKPXzKhE4ZNwUR36A/tGFl5OOb47Y//cbdDRO3BQGY5ZgfWY7fA5oGfEtaZtZNoRx49M6bPdMNB1YsqZuwdRuScmO9mdhXP7ulYbLqKCVByyEdpdR+pdRjXV1dWTeFcuCpwTXY0t/TML5aEMGW/p6GXyNuQ1JRCvQN9pax+8E1KJeKENTSL3c/uCbzsV5qT1r28InS9tTgmlA/t52GpNzy4v3Gbc0aSlbH3/2Qi5zajA4rxRnwiWISpHhf2GMx6LcPHeattBzSIaJa0H960zqWnKbYsIdPuZF0fR77kI6ZlglEz86wlpz2SskUAAs6gOpspNNQTrCHT7mQxOpYu6T2TR7sLePItntQdlkLUC4V8c7w/Qz2mrtl2wEMDB/C6Fgq24M40rKHn1RaZtJlZ6lR1Gse5X1Oq1wBONbIMQVNr7S3Z/2qpTh85kJd+7z2TTa/5LteOY3Jqer8c0WjA9emZz1z8QXAv1qxBBcvf+z4fGVyyrMgHelBwb02U1pyUy0zbNlZal7Uax7lfc2U/fWr0Om1OYipA4BXB9soCGZmlOdrKD+cqp/GxataZm6GdEYOTjR8Ye1FsSheUa95lPc1O2wStj12foG8ymBPFu9nVCJDyyGdJLhd4KwufB5EveZR3he1CqFTbrR9aCjrCofUfoLWZopbbnr4bhc4qwufB1GveZT3RVmZ6pSlYy+VzGBPSWimNlMzchPwhzasbMhnLhqFzC58HkS95lHeF6YK4Zb+Hvxq+H7HlMyoQ0N+XySjIPn5spGnDslmwhbI0ZCONZ+ZWTqNkqjjHvWaD/aWcfzdD+va89BnG8sPWLmtcnV6zOtzefXoy6WiZ5aOtc0dAnxiQQeuVmfnnweiZekAtdLKv/noGi5eqXq/kLQ3m+GPxtxk6ZC7KHujJinLjCq3PV8LInhr9xcSOWeQDCP7528mK4mylWSGDsAsHfKR1IKhqLLMqHIbGkpy44og13mqOoMn95/GwPAh3LLtAIN9C8tyGFnLgC8iG0XkmUuXLmXdlFzwWjCUhSwzquylks0SyUn+0gl6nS9eqfrufUt66+40Mh1G1nIMXym1H8D+vr6+rVm3JQ/cUg+zqsm+rFR0rBuTVkZV2FLJzWLqZ37c8al/lun5tezhU7qyGMbwkreMqqz3OaX0HH37Yqbn17KHT+mKs457HLLIqMqyzpL9+pvMnn+5VMTlj6frsnvsCiLov7Ubv/rtFDc611jWv+SYpUO5p0udJa92AGh4TgBsdphfCHscSpdf7aZmMUuHyIMudZa82jHYW8ZDny3DOquiALx0otJQbtdtn1xzK8XdD65BqWgk/nnIWZYlkjmkQ7mnS50lv3YcPnOhIUPHekOwcton1/rcyMEJzyEiSk6WJZI5pEO5NzB8yHHcu7vTQOfCBQ3j+kHG+83XVCan5sfiS0UDIsDklWrd+3aMnsKeY+cQx1dRAKZttoikFmB5Dekw4FPuOY15GwUBFFC1rIMvGgU89NkyXjpR8RzvD1I/33zfv+zpCrwJC7UXAfBOAuP5HMMn8uA05r144YK6YA/Uhk/2HjvvO94fpH6++T4G+/zqymAeRcsx/KS2OKTsNZv+mFT6pH3M223LQLe0Ouv4O/dYoCCyWNeoZQ9fKbVfKfVYV1dX1k2hGJlDHWZ5AHPyKmjGQrPvD9NOt++i2+pj6ypg7rFAQUxmUPlUy4BP7anZ9Me00idHDk44TnwKaqti/VYBO60UdlI0Co47blE+ZNExYMCn1DSb/phW+qTb8RRqq2LdctxN1jkB4PqvglLRQHenUfe+PVvvwpb+nkA/72+/cfH8eRcvLLj+CiH9ZVUqRMsxfGpPzRZFS6uomtt5zADuleNuCvIak1mszS091Ct9z+09pLfpmRk8sW8cIwcnUi3jwR4+pabZomhpFVVzOo8AWL9qaajjjI5V5uvX21dXOj3ndF6jILj88XTDMcz3M9i3puosEp2HcsM8fEqVrlk6djtGT2HP0XN1Y/lh6uuErWdjfc78fKVOAx9dnQ60FsCNueiLJZj1FuciLC68IgopyvBK0PcDCHRst2MEDd5Obe399mvcF1dDcS7C8gr4HMMncpDFBLP9ObfXBu2pO70/i1RA8pdWxg4DfkayrL/e6tK4dklPMAc5ttsxgvbwFdwXkJE+jA5JLWOHk7YZSGsBUTtK69olOcEc9Nhur7t1aWfQj0Et4JOLFjBLp53pUn+9FaV17bxqyjf7/qDHdnvd2xeuxPpZKVtpDrNpOaTT7rV0dKm/3orSvHZhcunDvj/osZ1e9/i+8chtIv2kueJWyx5+u9fScfsLZg0Wf7x27vV8qPVEWd/RDC0DfrtLawFRO+K1q9Xzofbgtk1lUrQc0ml35k90ZumE10rXLqlsInPT8r3HznMxVRtw26YyCVx4RZQAr5W2ad6cRscqGHrxJKoz+n7PKb2FVxzSIUqALplYIwcnGOxbQFpzUAz4RAnQJRMryvmKRgc6fOaFb79xccQWkZO05qA4hk+JauUVxWbbK5NTEGC+kJr1v0tFA7seWD3/mTY/+7rnPrXm6tdS0cAX134KB/7x13W1bezHM33+uz/D2Q8ux/bZvExVZ31fk1Zb8uATCzpS+04w4FNi7OPY5qpYANoHfXvbrYMi1v+enKpi6IWTAIAXjp8LvCn55FQVzx095/i4eTzzGqUZ7Cl9H0/PYsfoqfnJ+CRxSIcSo8s4dhRObXdTnVUYOTgRONgHPZ6Jwb797T12PpXzMOBTYnQZx44ibBvT2maR2lNa6bUM+JSYVl4VG7aNSWyzSPmR1uppBnxKTCuvinVquxuzvO3AiiWxnNteLpcZMe0vrdXTDPga8toLtZU0W3EyS9a2A7XMHJP1v0tFAyOPrMVgbxl7tt7lGvQ7jQ4sXlioe9+W/h50dxoNr51RCsffvT4f8NNv3M2g38YGVixJZcIW4Epb7eiyQpOiC/t3uGP0lGPGzpb+Ht9AEOZcTq+l7MW5ny3AlbYtpZUzW6gm7N+hW4ZGkMyNMOey/+Ji1U09pDlBr2XAF5GNIvLMpUuXsm5K6lo5s4Vqwv4dumVoBMnc8DuXfXgQqM1PLCsVWXhNE13FxmG9pGgZ8Nu9Hr6XVs5soZo0/w69zuW0HeTQiycx9MJJx71yKRtp/tDSMuDnWStntlBNmn+HXudyGu6pzihUZ9mz10nutzjMs1aq907Owv4dlktFxx532ecXgVnrZ6o6g4IIZpRCd6cBpYAn9o2DYb01lBwytZLCgK+hZvdSpeyF+Ttcv2qpY5aO19Z39oybGaVgFAQfXZ1mD77FXE0xa4pDOkQZO3zmQqjHAefsnCDDNUaBmTm6marOprbWhgGfKGNRMrPCZm2ZC99GHl4b6n2UjrTSrjmkQ5SxZS5j+F5ZPW7vcWJf2GPW+Cd9pJV2zR4+UcaiZPU4vccoCAzbVlVOxwlTJ4jSkVbaNXv4RBmLkpnl9p4gx7G+lz397Am4xSFRLti3gPzepnWBs3vcMoGCvN98za5XTmNyKr08cGq0ub8ntaw8DukQZcRpJez2l0+lkrFhnpvBPnuHz1xglg5Ru8uyUF6YLRwpWWne6DmkQ9QE+5BMmFXRWRXKGx2rcOxeM+aNPumhHfbwiSJqdkgmi0J5o2MVDL14MrHjU3Rp3IQZ8IkianZIxisds5ldz7zeO3JwAtWZYKUXuCo3XQIkPqzDgE8UUbNDMm5bQAKI/MvB71dHmOGiTb+Xzj6rVKMA/OeX/zHRc3AMnyiiKCtk7ZxSKweGD7n+cvAb4/X61THYWw68QrdcKnrW8qFkXKnOYsfoqcT2uGUPnyiipOreN/PLwe+9QxtW+g7VmJ+Bu6xlI8jWllGxh0+RNZOh0g6i7l3gd926ioZjfry5i5XX6tqOubr4Xu+tzih0CGAtrCnAfP38qeoMHt83Hu5iUGyS3HqSAZ8isddjN8eKgWArPdtF2L0L/K7b6FgFl69NN7zP6BCsX7UUQy+cnC+BXJmcwjeeH0dBZP4xp2BRNApYv2pp3XntVZRZQV8fSW4uzyEdiiTLRUOtzO+6uWXRfHLRArx68tcN9e5nFRxr4BdE6iaCD5+5wIVWLaL/1u7Ejq1lwBeRjSLyzKVLl7JuCrnIatFQq/O7bm7PT16phiqDMKsUvrdpHQDg8X3jXGjVQv7h3KXE0jO1DPhKqf1Kqce6urqybgq5yGLRUDvwu25xXdeuojGfnkmtJclfyloGfNJfUhkqWWlmoVMYftfN6/nugJtdF40CRMAhnBaW1I2aAZ8icVs01IoTtmlWrfS7bl7P79y4GgXbBieFDsGW/p6G109e8R/+2dLfE/vno3gktepWVIIpQM3q6+tTx48fz7oZ1OYGhg859qjsWwNmbXSsUpelA9Syd0YeWeu4eMurl2h+Nr/XUXai/vsTkRNKqT6n59jDp9xrlQnokYMTDRk51VnlON7rtY2h3xAS6SGJf38M+JR7rTIBHebGZB0aAq7ndgcZQhpYsWT+9UnmhJO3JP79ceEV5d7QhpV1i5IA/wnoIKuMg65EHh2r1G012N1pYOfG1Q2vdauD01U0HIdmRIDNd/bM12Ux2/P4vnE88fw4zNHcUtHArgdWA6hteXjkrQ/nj5Hkqk9yl1QCBMfwiRCuTIR9tSxQ+4Jae85BXmO+zj4uD9RKE488vLbhtfZjGh0CCDxLHm/p70Hfp5c0vNeqQ1C3YpeyU26yTInXGD4DPlFIQSZ5g04Ee02aOk3a2W9MV65N46JPRk5BBP+iaxEnZ1vA0yE2sXfjFfA5pEMUUpCx9KDj7V4Tc25j89aAcMu2A55tBWrDMrpNQFOj7k6DWxwS6SbIJG/QiWCvibkgk3ZBXlMQ0W4COu+cFtft3Lg68fMy4BOFFGSVcdCVyEMbVtbG4W2MggSatAuSVvnonTdjaMNKeOXbdAgc20HJyGrRIgM+UUhBVhkHXYk82FvGyCNrUSpeL5vQ3Wk0TNgGaYudSG3C9qnB2nk39/c4Bv2i0YHvfnldQzsoOYO9ZRzZdg829/fg/166isf3jWPF9h9jx+ipRM/LSVuiHAmaTvonz590TMm0bpRC0T29aR2Ov/shnjt6ruE58yYdFbN0iCiUHaOnsOfoubrgzmCfjoII3tr9hcjvZ5YOUZvyWrRl782vX7UUh89caOjdm6+rTE6hMLdFolNwZ7BPR5KL3djDJ2pRXou2Nv3ezXjpRMWzRDJ77HpiD5+IGjgVUwNqq273Hjvv21NksNfTo3fenNixmaVD1KK8FlPpUgOHiZ7h7Tl6LrFNeBjwiVqU12IqXapc6nHbaS1JbsLDgE/UorwWbT16582sc9/iktjblgGfqEV5Ldp6anANdj+4JrGefkEEn1jA8JG0uGsgcdKWqIXZi6nZn3ti37jre8tz9fXNVMwwZpXCx9McsEla3DWQGPCJ2pjbpin20svLA1TdDHJcCmfxwgKuXJtxnetYv2pprOfjbzKiNha0iNvAiiWuxzAK9cNC5vvd6u4UjQ7X+QPWZ6t32SPYA8DhMxdiPR8DPlEbC1rEbc/WuxqCvtFRq/ky8vBax/fvemB1w6Sx0SHY/eBnXPfT/e6X13neXKhe3GP4XGlLRJHtGD01v8irILXsoKCFv27ZdoBpmz6cdj3zw5W2RNQ0p9o8+964vqJ3Rinse+M8+j69JFBpZ84D+It7I3MO6RCRL3MD9crk1PzCoOeOnmvYPL06o/Dk/tOBjhlk85a8i3tTFPbwicjXyMEJz0JsVhevVLH6Wz/BlWszrjX3gevB7Mn9p303Ys+j7s74N6NhD5+IfIWdPDSzTyqTUxh64SR6v/0abtl2oKFGzGBvGZ0L2e90cv9nPhX7MXmlichXM+Pt1Vk134OvTE7hiX3jeHzfOEpFAyJg797FSycqgedDgmLAJ6IGThO09vr6Rkdtha5DhWZP5svNTVvImVlLJ86AzyEdIqrjNEH70okKHvpsuS4ff+SRtfjKnT1ZN7ettWwtHRG5FcA3AXQppR5O67xEQQXZ4Fv38zZzLOtWh3ZT1Rm8evLXGN95b93rXzoRf812uq4U88RtoB6+iPxARD4QkV/YHr9PRCZE5E0R2eZ1DKXU20qprzXTWKKkOPVqk6hHnuR5mzmW9b1uJqeqdccKk7lD0cS9LjbokM4PAdxnfUBECgC+D+APANwB4FERuUNE1ojIq7b/3Rhrq4li5hS8kqhHnuR5mzlW0OBtPVaU4YawpXR02cglK5dinucIFPCVUj8H8KHt4c8BeHOu534NwI8AfEkpdUop9UXb/z4I2iAReUxEjovI8QsX4i0cROTGLXjFPYaa5HmbOVbQ81lfF6V07/c2rZufB+g0vMOPAPjOl9eGPoeOSkXDM6/e7cYWd3nkZiZtywDOW/783txjjkTkd0TkrwD0ish2t9cppZ5RSvUppfqWLo23NCiRG7cvVtxfuCTP28yxgp7P+rqwK2ULIhjsLePItnvwzvD96F78iUDn0qWP34FaOWM7s33dnUZDMbmiUcDTm9ZhfOe92LlxtWPl0qc3rcN3vrw2UFXTZqWWpaOU+q1S6utKqRVKqd1pnZcoiKBlhHU+bzPHChK87ceyVuIMwr7JitevCkGtFvz2l09pU2BtFsDV6mzD4wq1rKWxb92LkUecK4sC3pVLg1Y1bVbgapkishzAq0qp3537810AdimlNsz9eTsAxBnMWS2T0sQsnetZOuYuWOb/l32OFbTypfU4A8OH2qZ4mgB4Z/j+rJsBwLtaZjMBfwGAXwL4fQAVAG8A+IpSKljlpAAY8IlaQ5jgXTQK2P1grYTyE/vGtenBN6O708DYt+71f6GPOG7+XgE/aFrmXgCvA1gpIu+JyNeUUtMA/hjAQQD/B8DzcQZ7Imod61ctbRhrdxt7n6rOYNcrpzHYW8bm/h5txuib8dHV6aZTeNNIDdZyAxQR2Qhg42233bb17NmzWTeHiDyYgcqa1ikANvf3YM/Rc4F68EYH4DA83nL8hr68uP1KCrsJStM9/LQppfYrpR7r6urKuilE5MMph1+hth9r0Oyf6iywsJBcX7+708DTm9YldnyTU698dKyCgeFDjtVCrdJIDdYy4BNRaxgdq7iO3b8/ORUq2+jajEpsk3MzuyZoRpEXt83bTdbFbmGGadJIDWbAJ6JIzGDmZlmpiMHecqiNPP75Iu/XRr0fmEG42TTbUtHArgca8+ntzF55mNXPaaQGM+ATUSRe5RisgcppwZEba8nkolHAlv6eutz0zf09kbdFDDM0snhhwTH47npgdaD1B2avPMwwTRq5+FpO2pqYlkmkL6/c+6c3rasLVNZ0w4ULOvDxdLAZWqcJS+t6AZHgBcZKRQOXrlZ9X1/oEHznkVpJB78USacJazPt1G+tQTMTvF5iycPPAgM+kb6aySrZ/OzrOPKWvTyXM+vOWE4LwdY9+Vpsm6l0dxrYuXF1qCDslTvvdEOwst4c4tJyAZ9pmUT68+vdhhFl1a11AdfQCydRDbv1lo39RjU6VsGuV07P30zC3AysN4FSpwGl3Hf4Cpt26YdpmUQUuzjHnMMWYgPqtwD85KLm93Jav6pWrHF0rILeb7+Gx/eN1wXpi1eq+JMXTvouhLJn5ly8UvUcwkq6IqsV97QlosjMwl9xHAeA645bbsxgORnDRuiHz1zwHYKZmVV4cv9pz8/slpljDkfZJV2R1UrLHj4R5Y9ZOjlMrrwZLOMImu9PTgXaCOaiz83Frcc+o1QmFVmtGPCJSCtDG1Y21JX3eq35//ZganQIjBCrd5eVirEMr7jdfMwhr6RLIHvhkA4RaWWwt4wn95/27UmXikZdrXmgMY3SfMxa8rm708BHV6frJnnNnnaQISW/lbZDG1Y6Tmab2TtpBng7BnwiSkzUcr9+Y/LmIigrt2Dq9JhXu7xKNhsd0nBet/NlsbeCH6ZlElEDp81Qwi4UaiZts/fbr7n28IO0o5m68su3HXB9zr6gTEdeaZla9vCVUvsB7O/r69uadVuI8sYeqM3MErPwF+Dca7bzqiMz2Ft2DcqjYxV8dHXa8ZilohEo2FvbH6Td1ra4ZdOU52oDtTItAz4RZccrU8UasP141ZHxCsojBydcF1FNTlV9g7dfwTKncX6nG5xV2tk0SWHAJ6I6fpkqQTNZlpWKjhOgy0pFz6Dsd3y/m47b+82biv0ms8jocLzBFUQwq5RWY/DNYlomEdXxy2kPmvPuVe7Xq/cf5PheNwW39xdEHG8ybnMFs0rhneH7cWTbPW0R7AEGfCKy8SpzEGZow6v0gtdmH0HKLHjdFNxuNE5DNVHP0ao4pENEdexlDqJm6ZjHcnq9U6660SG4cm0aT+wbR1fRwCKjAxevVCFAXZqk303HLS3SLce+VDTw8fSsY958u9EyLdPE8shE7cuaGdNVNHD52jSqM/WLocxqmHHktHulicZ1Dh20XHlkEwM+UT40U1s/jGby81tFy+XhWxZeZd0UIkpBmK0Am5F1aYOsaRnwufCKqP1Ze9sdGpQOzgMtAz4RtTe31bxWcU6c5mEoJwgGfCJKndtq3iQWO+0YPYU9R8/NZ/pYV/WabcnLjYCTtkSUulu2HXCsSCkA3hm+P7bzjI5VXKtfOqVjmimgUVJQddFyk7ZE1H6yGLMfOTjhWurYaVNxp18BrRj03XClLRElzr6xd1oFyprJ8rEWXGsXDPhElDivMfskt/tz+8UgALo7vXeuAuJPC80ah3SIKHFugdMsUJYUpxIOAmBzfw/6Pr0Ej+8b93y/9YbRDpk+DPhEKWuHwBGWV6lkL9ZrVeo0oBRwaaqKZaUi1q9aisNnLnheR7/tBne9ctpxLB+oH2KKsqmKjrQc0hGRjSLyzKVLl7JuClGs7GPZZuAYHatk3bREeZVKdmO/VhevVDE5VZ2/bs8dPRfoOg72ljG0YSWWlYp4f3IKIwcn5l+364HVjpU5uzuNuiEmv01VWoWWPXyutKV25bftX7uKsrG3185bTtyuY5DeuV+7opR+0PGXnJYBn6hdpVUzRkdh69hEuSZO7/G7yQZpV9AhKevm79ayzroMAWk5pEPUrrw2/qB6Ua6J07tTjfMAAAUSSURBVHviuMkGGZKyDkEBaMj/12EIiAGfKEVRxrLzKsjOV1Zu1zGOm6zX7l2mIENQWf+S45AOUYqijGXnlf1aRcnSAZxTM6PcZP2GfoIE86x/yTHgE6Us7zXZw4jjWqV1k3Ub5zfp8EuOAZ+I2l4aN1m3RV46FWNjwCciikErDNcx4BMRxUT34Tpm6RAR5QQDPhFRTmgZ8FlLh4gofloGfKXUfqXUY11dXVk3hYiobWgZ8ImIKH7M0iGitqJjlUpdMOATUdtol41KksIhHSJqG+2yUUlSGPCJqG3keb+BIBjwiahtcL8Bbwz4RNQ2uN+AN07aElHbaIUCZlliwCeitqJ7AbMscUiHiCgnGPCJiHKCAZ+IKCcY8ImIcoIBn4goJ7QM+KyHT0QUPy0DPuvhE7Wu0bEKBoYP4ZZtBzAwfAijY5Wsm0RzmIdPRLFhtUq9adnDJ6LWxGqVemPAJ6LYsFql3hjwiSg2rFapNwZ8IooNq1XqjZO2RBQbVqvUGwM+EcWK1Sr1xSEdIqKcYMAnIsoJBnwiopxgwCciygkGfCKinBClVNZtcCUiFwC8m3U7LG4A8JusGxEQ25oMtjUZbGt8Pq2UWur0hNYBXzciclwp1Zd1O4JgW5PBtiaDbU0Hh3SIiHKCAZ+IKCcY8MN5JusGhMC2JoNtTQbbmgKO4RMR5QR7+EREOcGAT0SUEwz4REQ5wYDfJBG5VUT+WkRetD2+WESOi8gXs2qbnVNbRWRQRJ4VkX0icm+W7bNyaetiEfnbufZuzrJ9TkSkR0RGReQHIrIt6/Z4EZEOEflTEflzEfnDrNvjR8fvkxNdv0+mXAf8uS/mByLyC9vj94nIhIi86ffFVUq9rZT6msNT/wnA87q3VSk1qpTaCuDrADbp3FYADwJ4ca69D8TR1jjbDGDNXPu+CqA3zvYl0NYvAbgJQBXAe5q3FYj5++Qkpn+3sX+f4pT3DVB+COC/Avg78wERKQD4PoDPo/ZFeENEXgFQALDb9v6vKqU+sB9URD4P4J8ALNK9rRY75o6lc1tvAnBq7r9nYmprbG0GcBTAiyLyVQB/H3P74m7rSgD/Wyn13+Z+Rf0vjdu6FvF/nxJpq+XfbZzfp9jkOuArpX4uIsttD38OwJtKqbcBQER+BOBLSqndAIL+nLwbwGIAdwCYEpEfK6VmdWyriAiAYQD/Uyn1D820Mem2ovaFuwnAOGL+dRpHm0XkPwLYOXesFwH8TZxtjLmt7wG4NvfHuG+ecbf1bsT8fUqwrbF/n+KU6yEdF2UA5y1/fm/uMUci8jsi8lcAekVkOwAopb6plHocwP8A8GwS/zjjaiuAfw/gXwN4WES+nlA7gXja+jKAh0TkLwHsT6yl14VqM4CfAPgPc+3+VYLtchK2rS8D2CAifw7g50k2zEGotqb4fXIS9rqm9X2KJNc9/DgopX6L2nid03M/TLc13pzaqpT6MwB/lk2L3Lm09TKAP8qmRf6UUr8A8HDW7QhCKXUFgNPck7Z0+z450fX7ZGIPv1EFwM2WP98095iO2NZktVKb2dZktFJbfTHgN3oDwO0icouILATwbwC8knGb3LCtyWqlNrOtyWiltvpTSuX2fwD2Avg1rqemfW3u8S8A+CWAtwB8M+t2sq1sM9vKtsbxPxZPIyLKCQ7pEBHlBAM+EVFOMOATEeUEAz4RUU4w4BMR5QQDPhFRTjDgExHlBAM+EVFOMOATEeXE/wdEYzMTS2xIgwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGhCAYAAABGRD9PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWoUlEQVR4nO3de3xU9Zk/8M9MriQkE5IIE66JiJchQgAJUIQVDBWw4KV21S7e2kar+Fsrdlfp1iJrlVpbtVumXlitVSrVbquIpVQQLYihIBE1jhYICWJIwCSQQEJuM/P7I54wmcyZ+Z4z58w5Z+bzfr3cbZJz+Z4zw5xnvpfnsfn9fj+IiIiILMBudAOIiIiIRDFwISIiIstg4EJERESWwcCFiIiILIOBCxEREVkGAxciIiKyDAYuREREZBnJRjdAaz6fD0eOHEFWVhZsNpvRzSEiIiIBfr8fJ0+exPDhw2G3y/erxF3gcuTIEYwaNcroZhAREZEKhw8fxsiRI2X/HneBS1ZWFoDeC8/Ozja4NURERCSitbUVo0aN6nuOy4m7wEUaHsrOzmbgQkREZDGRpnlwci4RERFZBgMXIiIisgwGLkRERGQZDFyIiIjIMhi4EBERkWUwcCEiIiLLYOBCRERElsHAhYiIiCyDgQsRERFZhikz577xxhu455574PP5cO+99+J73/ueoe3p6vHhxYpaHGpux5jcDNwwoxCpyQNjPtHtrMTr82NXTTOOnezA0Kx0lBblIsk+MKvh6S4vHt7oQW1TOwrzMvCjhS4MSk0Ke2y5+3Wqowd3v/wBPj9+GqOHDMLj107C4HTt3qpdPT48++5BvPrBF+j2+vG1s/Pw42+Mj9hepeTuXfOpLlz79Hs4fKIdqUl2fO/iInz/knFIstuws7oJ2/Ydw47qJgBAySgH/uvy3rad6ujBXX/Yg4++aEVachLOGZqJ4UMGYWz+YFw1aSTu/dOHIe9Z4P0cNSQdV5eMhPudAzh2shNDs9Lw9fFO/KO6EQeb2pGVnowrJ43AeUOz8fx7NWjp6MbEkb1t6Orx4Zbf/gO1ze3ITk/Bjxe6MPu8s7Dn0HHUNJ7Cb94+gJOdPcgblISRuVn49Ggr0pLt+NZFI5BkS8KGD4+go6sHx0914FQP4PMDNgB+mfs30pGK/MHp6PL50N7ZjboTnejx9e4DAL6v/n9OehIyU2yoO9kj+1qEOw+RVRQ5kpCXNQgf17eh2+vHoBQ7Zp13FsbkZuDA0ZM49GUrqpu7AACpdiAnIwUnO33IzUzBq3dcjLOy0wy+Am3Y/H6/qf499/T0wOVy4e2334bD4cCUKVPw3nvvIS8vT2j/1tZWOBwOtLS0aJLyf9VGD9Zsr4Ev4C7ZbUD5rCIsX+hSvJ2VbKqqx8oNHtS3dPT9rsCRjhWLXJhfXND3u/IXdmOz59iA/ee5hmLNjVNDHlvufuVlpuLLU10Dtp8wMhuv3zkriqs5c96nt9WE/Fu49iold+/aOnvQ2hH6AZuabEdXjy/k37LTk2X3kzNhZO/7/6MvWhXtR0TxKTs9GR89cJnRzZAl+vw2XXfArl27MH78eIwYMQKDBw/GggUL8OabbxrSFukh5wsK7Xx+4OltNVi10aNoOyvZVFWP29dW9nvwAkBDSwduX1uJTVX1AOSDFgDY7DmG8hd2D/h9uPsVKmgBeh++i1dvV3ElA88rR669Ssndu/qWjrDBh1zQAkBx0AL03jMGLUQkae3owYQH/mZ0M6KmeeCybds2LFq0CMOHD4fNZsNrr702YBu3243CwkKkp6dj2rRp2LVrV9/fjhw5ghEjRvT9PGLECNTV1WndzIi6enxYs13+IQcAa7bX4FRHj9B24R5KZuP1+bFygydk17r0u5UbPDjV0SMbtEg2e47hdJe372eR+yrnoy9acUrFA1w6b7igRRLcXqXC3TsiIqO1dvTgy9ZOo5sRFc0Dl7a2NkycOBFutzvk319++WUsW7YMK1asQGVlJSZOnIjLLrsMx46FfwDK6ezsRGtra7//tPBiRe2AHoFgPj9w98sfCG33YkWtJu2KhV01zQN6CwL50dt7cPfLHwgd7+GAHieR+xqO6DmDKbn/D0fRQxbp3hERGe2q37xrdBOionngsmDBAvz0pz/FVVddFfLvjz32GMrLy3HLLbfA5XLhqaeeQkZGBp577jkAwPDhw/v1sNTV1WH48OGy51u1ahUcDkfff6NGjdLkOg41twtt9/nx05oezwyOnRR78Ipee23TmWuP9j6InjOYkvMGtlcp0XtHRGSU5rZuo5sQlZjOcenq6sKePXtQVlZ2pgF2O8rKylBRUQEAKC0tRVVVFerq6nDq1Cn89a9/xWWXyU8mWr58OVpaWvr+O3z4sCZtHZObIbTd6CGDND2eGQzNShfaTvTaC/POXHu090H0nMGUnDewvUqJ3jsiIqPkZqYY3YSoxDRwaWxshNfrxbBhw/r9ftiwYWhoaAAAJCcn45e//CXmzJmDkpIS3HPPPWFXFKWlpSE7O7vff1q4YUYhQqz67cduAx6/dpLQdjfMKNSkXbFQWpSLAkc65C7Lht4VMo9fO0noeD8KWFUlcl/DET1nMCX3/0dRrAKLdO+IiIz26h0XG92EqJhuVREALF68GPv27cOBAwdw6623GtKG1GQ7ymcVhd2mfFYRBqcnC21npXwuSXYbVizqfXgHP4Cln1cscmFwejLmuYaGPdY819B++VFE7qucCSOzVedzSU2247bZkc8b3F6lwt07IiKjZacnWz6fS0yfpvn5+UhKSsLRo0f7/f7o0aNwOp2xbIqQ5QtduG120YAeArsNuG32mfwsottZyfziAjy5ZDKcjv5DH05HOp5cMrkvj8uaG6fKBi9yeVHC3a+zBqeGPJYWeVyk88rRKo+L3L0rcKQjO0zgFS64DbcfEZEIs+dxEaVrAjqbzYZXX30VV155Zd/vpk2bhtLSUvz6178GAPh8PowePRp33nkn7rvvvqjPqXUCOoCZc5k5V51YZM6tO96O/V9Gnkw8MicdmekpzJxLlKCevm4SLiuRX+hiBqLPb80Dl1OnTuHAgQMAgEmTJuGxxx7DnDlzkJubi9GjR+Pll1/GTTfdhKeffhqlpaV44okn8Morr+Czzz4bMPdFDT0CFyKzOt3lxQU/2RRxu0//e77mgRlZS6hszoFCZcUW3ZfM71fXleCKkhGRNzSQ6PNb8/7n999/H3PmzOn7edmyZQCAm266Cc8//zyuvfZafPnll/jJT36ChoYGlJSUYNOmTZoELUSJZlBqEua5hoZNBBjtvB2yPimbc7hvqVJW7MChYNF9yfziacWj6WoVRYs9LhQvlAy/qakXRdETHUqNBbmhV6/Pj4sf2SrUW2JD7zy2d++diyS7TdG+ZF65mSnYubzM9FMXDBsqMhoDF4oHagIRNfOM6Aylc6tEi5BGosXcuHBFXi85bxiuX7NT0fHWlU/HjLF5qKhuUrwvmVNGahIWFjvx8NUTTBvAJFzg4na74Xa74fV6sW/fPgYuZFnhClcC7EXRw+LV20MWpJRbzSY3fCL1tQQPt8jRoqp8pOKhl55/Ft767EuhY0mk+RDffX6X4n3J3GwAbjXpalfLVodWa+nSpfB4PNi9O/rqvkRGOd3lVVy40sq8Pj8qqpuwfm8dKqqb4I2mkJVKckELELoquWgR0kjXokVVeZGipVv/qTzwyM9Mw6qNHgYtccgP8feXWTE5BJGJiBZ4fHijBw9eeaHOrdFe4LDIyY5uvPlJA9q6zlROFx1q0WpY7FRHj2zQIvnoi1a0tHfDU9+KYyc70HiyU6gI6a6aZswYeybrd+B8mNyMVDwToVr5M9tqcM/Xz+/XrR943WNyM+D1+SMWLfX7gZQkG7q94kHh0t+/jxMd8REcU2hrtg98f1kFAxciExEt8BhNIUijhBoWCVYvs7IlUPBQ2vb9wIs7P1c1hCZabXzqQ5vRpeDBD/QvuKlmObEfwDd+vR1v3v0vAEJct4K2KAlaADBoSQA+P/BiRS2+O+tso5uimPVCLaI4JlrgMZpCkEaQGxYJxQ/5oZZw8382e46h/AVlQ8Wi1caVBi3AmeWn0nwYNStz9h09hfIXdkec90SkxqFm630BAhi4EJmKaIHHaApBxprIPIxg0lBLID3m/6itNh6OVIS0tCg37HwYUZs9xxi0kC7G5FrrC5CEgQuRiUgJ5cKxWkK5FytqhXpaggUOtQDK5v909fjw7PaD+Mn6Kjy7/SC6enwht1VbbTwcP4CZY/P65rQwBwqZkd0G3DCj0OhmqMI5LkQms+bGqXGVUE5td3Rwpk/ReT1bPzuG3//j837B0kMbPw25xHhwejImjMyOOEFXqf+rrMOfP6jDJeedpelxibRSPqvIkhNzAQYuRKa05sapcZNQTk13dFZ6EkqLcvv9rjAvA9v3R9637sTAHg5piTGAAcHL63fOCrskOpLpZ+di58HmAb/3+YGtXE5MJjS9KNeUeVxExU0COgkz5xKZS1ePD+ff/1dFw0WrryvBN4IKwokWlAzHbgM+e3BByG+awZlzf/GtEsz/1TY0tHSEnKNiAzA0KxVfnupSNRRGZJTf3ngR5rjMVx8w4RLQEZE5pSbbUT6rSHj7ea6hA4IWQGz+TyTSEtBQBqcnY81NU/G3H8zGmpumwpGRghWLer+VBlcfkn6eNe4s3YOWea6hUV83UaD1Hx4xuglRiZvAxe12w+VyYepUa43/EyWC5QtduG12EcLVH5RS3Yebw7PmxqmyD/FRgiuElMy5mV9cgCeXTIbT0X++jdORjieXTEZGmr6j7cUjsrHmxqlYc+NU4esjiuSLE9ZcBi3hUBERxUxg5tyRjkHw24C6E6cVFxcMNf/npX8cwoN/+TTivvdffoHipFtyVaCf3X5Q6JxqrSufjiljhuDFilr8taoB7x86rtu5KHFcMXE4fnW99ivqopVwRRYlDFyIEpPIXJpwc1z0Oqdazuw0LJo4HM++K5a4j0jUi98pxaxzzbfijXNciCihiMyl0XoJqNL5O0qMHDIoYokEIqUyU5PwtXPyjW5GVLgcmojihrTEM/iBL82f0WMJqHTMZ7bVRJUhN9ieQyc0PBpRr1/+60QkhZtsZgEcKiKiuBM4l0bp/Bm1tv/zS9zw2126niOUcUMz8eodF+Pl3Z9j2/4v8fd9jTFvA1lDWpIN/3xoodHNkCX6/GaPCxHFndRke8yr3n5tXD4KHOmyeV9E2dC79LtdsObS/mNteOuzo7h5ZpHimlCUWDpVFAs1I85xIaK4I1qrSEtJdpts3hdR0n6XKczbctcf9uKaJ3egoZV1kUhevDzwOVRERFEzU3mCVRs9MZ3jEmxTVT1WbvCoKq5Y4EjHWVmpmtdOIgKAorxBePs/5hrdDFkcKiKimAguCLl9P/Dizs8NKQi5aqOnryZRoHC1irQ2v7gA81xOPL+jRjivTH5WGoZmpePZdw9iy6cDi2sSaeGcoVlGN0ET8dJzREQGkKtiDQCbPcdQ/sLumLWlq8cXcY7Hmu01MRs2unlmEQoc6bLDRjb09rDcPLMIV5SMQMmoHAYtpKvHrzVf0jk1GLgQkSqnu7yyQYtks+cYTgtOMo3WixW1EXOehKtVpLVwc16kn1cscvUtTX14oycm7aLElGS3Ydu+L1FR3YT1e+tQUd0Er0WTBMXNUJHb7Ybb7YbXG5sPyVDk0oITBdLrfaLlccMtJ5b+9vL7nwsd6+GNHjx45YWq2iF3TaF+L1qDqLap/3bSsRpaTqO5rQtDMlJxvL0LuZmpcDoGYcqYIag40Iin/n4AB5vakGJPwqTROfjXKaNwUVEuXqioxWbPUQB+fP0CJ26++EySu3kuJ+66dBzWbK9GW9eZnp7MtCQU5Q3C6q0H8Kc9X2BqYS4qDzWrukdEIrw+P+54qbLf7woc6VixyIX5xQUGtUodTs7VSKgJeVZ9U5B+9HqfaHnccJNbgYHJ3SKZNS4fL353mqI2APLXtHhiAV7/sH7A72eOzcP/VdZFPG5WehIevWYi5hcXRDWRVo4NwK2zizBp9BDc9+ePcaK9W7NjE2lJ+lrz5JLJpnhOsVZRDAOXTVX1uH1t5YDcDWZ7U5Cx9HqfaHlcucmt0bhh+mjFPS5y1yTHBijKnSIFF1pnuyWyGht6q52/e+9cw0cIWKsoRrw+P1Zu8IT88JN+t3KDx7JjiaQNvd4nWh5XZHKrGj9SuIon3DXJUfOva812Bi1EfgD1LR3YVWOdoUoGLlHaVdMctpvZim8K0p5e7xMtjysyuVWpea6hivO5RLomLfgBFi8kCnDspHWSF8bN5FyjiL7YVnpTkPb0ep9oeVzRya2iRPK4hJoEzH8rRLE3NCvd6CYIY+ASJdEX20pvCtKeXu8TLY87JjdD0blDKcrPxMXn5Allzg01CfihjZ/i8gudUbeDiMTlDEpBaVGu0c0QxqGiKJUW5QolmbLSm4K0p9f7RMvj3jCjENHMzbPbgL/9YDYevPJCoaDl6W0DVyf5/MCGjxqQmZqkut6PCBsQ1bUSxZNbZhYaPjFXCQYuUVKaZIoSk17vEy2Pm5ps71vyrEb5rDP5S8IRmQQsVUYWvRtK7pq0bfmsIl2DIyIrGJKRgjvnjjO6GYowcNHA/OICPLlkMpyO/t3xTkc6l0JTH73eJ1oed/lCF26bXTSgN8JuA26bXRT2b6I1gEQmAfsBfHPyiAHXVOBIx22ze1PpB3I60vHUkskh2xdMui/LF7rw5JLJA44VLRt678dTSyYjJyNF02MTae2hKy+03Bdr5nHREDPnWkO4rLCxoNf7RMvrEsmcq/Y8P1lfhRcqDkXc7sYZY7Bi0XjhzLnSPQxu37enjcHewydk77do5twn39mPqvpW+P02jMnLwH/MOw/Tz8nH8+/V4NUP6tDt9eFrRXn48aLxfUNlXp8fOw82YceBRhw5cRojcgahtCgXnzWcxM6DX8JTfwopdhvOc2ZhSekYNJ/uxt7Dx+Hz+fGnyi/Q0RNXH89kQuvKp2PG2DyjmwGACegMCVzI/MJlhdW7arCerJS5+dntB4WrJn931tkxaFFkcu+bSy8Yiqq6VsX3PdTxbAAyUpPQFqPaTkQA8KvrSnBFyQijmwGACeiIBgg3IfTpbTVYZdEid1KW2eDcJw0tHbh9bSU2VdUb1LLQRCYB222925lBuPfNZs8xxfdd7nh+gEELxZwVV7wycKGEIDIhdM32GnT1+MJuYzZWzNwsMglYdKKv3tRkEw533/XKTkykhlVXvBr/yUAUAyITQn3+3u2sxKqZmyNNAjbLsJ3abMKB993r86Oiugnr99bhwTc+YcZeMg2rrniNmwR0brcbbrcbXi+7Wmkg0aywWmeP1ZuVMzcvX+jCPV8/39CJ0pFE+37Y4mnAslf26l7CgEipu8vGmW7+m6i4CVyWLl2KpUuX9k3uIQokmhVWi+yxsWT1zM2pyXbTTMANJdr3w7M7arVpCJGG7Dbg9kvOMboZqpnnqw2Rjqw2IVQUMzfrS202YWbmJTPz+YE9h44b3QzVGLhQQrDShFAlmLlZX2qyCdvA6tNkfn/7xFyrDZWw1qc0URSsMiFUKWZu1le4980819CQWXy/M7NQ8XlsADIj1Hgi0sqfK+tMtdpQCSago4RjdOZcvTBzs77k3jeh7vuummZcv2ZnxGPeMH00bDZb3/GS7DbsqmnGjgONWP32gYj7Txmdgz2fnxA+j9/vx4s7Pxe5XEoAZsqaC4g/v+Nmci6RKLNPCFUryW4z1YdQKFYOroLfN9IyZ+lavjFheN+1SHOPGlo6QubYsaG3Z+aBxcUDrn/G2DyUFuXiT5VfRNx/3a0z8C+Pvi18nq4eH/7ycT2a27pV3gWKJ2ZcbSiCgQsRxYSVyhJEEulapLlHt6+t7JvzIhGZeyS6f2qyXfg8UpsZtJDErKsNI7F+/zgRmZ7VyhKEI3otcnOPhmSmwP3tSRGDNdG5S+HO852ZhchKT8ETm/fh+yHaTIkrLQmYMmaI0c1QhXNciEhXXp8fFz+yVfahKQ1nvHvvXNMPG6m5lo0f1ePH66vQ3NbVt52SnibR4TVpu82eBry290i/8xGFYrYeTxZZJCJTsGpZglCUXsumqnosfalyQBChpKdJmrt0RckIzBibF3Z4qeV0F367o5ZBCwmxYo8nwMCFiHRm5bIEwZRcS6wLYIY7H1EoZi3EGgkn5xKRrpSUJRAZFlGzMknap6G1A82nOpGbmQqnY1BfRuFIx+vq8eF379UKJ+3aXdOM3EGpQr0z97/2MXIyUmC32TFjbB6mFuZid00zth04hh37mwAAJaNycN+CC/BxXQuOHG/H3i9OwOvz48uTnRialYYxuZk42HiKc1hIscBeQrOvSpQwcCEiXYkuDT7e1jlg/kjwGLyalUmh9pHkZKQAAE60n1lpE3y8VRs9eGZ7DZTMBlz7j8/x+3+I5Ut5adfhvv+9+u0DA1YHAUDVkVasFTwekRpW6PGUcHIuEelOWokDhF6ye+vsIjyzrWbAA1v6+5NLJgMAbl9bGXab4OBFOq+SD7nA433w+XE8va1Gwd5E1mSGZHSiz28GLkQUE3K9Jfdf7sKDfwndIwL0BhLDstMA2NDQKr6aJ9IKoHCk48n1EhHFk5yMFOz58TzDV/Uxcy4Rmcr84gLMczlDpsePNBekobUz7LFDjdNHOq7I8YgSQXePz+gmKBI3gYvb7Ybb7YbX6zW6KUQkI1RZAi3H1gOPZaUxeyIjtXV5sbO6CTPH5RvdFCFxsxx66dKl8Hg82L17t9FNIVJNqn+zfm8dKqqbNF+iqPfx1dAy7XjgsayazpzICBUHG41ugrC46XEhsjq9a/mYtVZQaVEucjJS+q3sCRQ4x+Voa/iVSdLyZum44VYzhcM5LpR4zJ21OlDc9LgQWZnetXzMXCtos6dBNmgBeuebPLB4PB5Y7AIw8ONVrmihVKhQqcDj3Tq7SPH+RFZk9IoiJRi4EBlM7wyrsc7gqoTUtnCGZKRgnsspXHQwkLRPgSP0sFFORkpfLpdQx1u+0IXbZhfBpuLLqM0GzHMNHXBuNcci0tOQjBRMP9s6gQuHiogMpqT+jZpvRXofPxoiK3+Ot3f3tU1uZVK4ZZyB+6jJnLt8oQv3fP38vsy57x86EfG6lkwbjZ8sGo/UZPuATL9TxgzB796rxUMbPxW7SUQ6W3X1hYYvhVaCgQuRwfSu5WPmWkFq2hZqZVIkkfaJdLzUZDvKZ5+NodlpeP/Q3ojnm1qUi9Rku+y5h2anRW40kc5s6E3+aJbq0KI4VERkMCW1fMx4/GiYuW2haNVes1wPJTY/gKe31bA6NBEpI61+keuotaF39U/gihkzHT8aZm5bKFq1N9JxiGLph3/8CK9WfmGaFAmRMHAhMljg6hfRFTNmOn40wrVNolXbRHPYhNtO5F5eN3U03vjoiOw5pDkvC4qd8Ic4jnSs22YXyU4qVouBEoVyqrMHd7/yIa5fsxMXP7LV9D0wrFVEZBKJmscF6G3bfX/+eMCy6JyMFPzs6gujbp/otUez3ZCMFPgRvtJ0uErVgTJSk/DYv07sm1S82dOA1/YeQXNb14BtM9OS0NbJjOGkjXBFS/XGIosMXMiCglegRFoxY7bjq7Wpqh7f/6p6dCAtPkTlKkQHH1t0O0ngvaxtbMPjW/aHbT8Qurp1OE8FnFM6X/DKqONtXbjjpYH3jkitUEVLY4GBCwMXIkuIVMU5mg9R0WP//T/m4F8efVtVG0TP4ff7IxaLDObMTsOO+y6Vve5oKmATRbKufHpMUySIPr85x4WIDKUkz4xex36xolZ1G0TPoTRoAXqrYoe77mgqYBNFYtZCpQxciMhQeuaZEd3nUHO76uPp/eEe7vhmfbBQfDDrsn0GLkRkKD1zuYjuMyY3Q/Xx9P5wD3d8sz5YyPrMlIYgGDPnUlhmncxJ6pntNY1UxTlU5Wetj33DjEL877s1qtogeg6/34+jrZ2KJuemJ9vQ0dmDHfsbceREO970HMXpbh+K8jNw7/wL0NHZg2Q70ONTcFAiAfdffoFpP+sZuJAsMy+fJXXM+JpKuVFuX1sJG9DvwR5tnhnRY6cm21W3QfQcQO+qIiU6evy45YX3B/z+3QPAizs/V3QsIiWGZJq3LAWHiigkaWlo8MS/hpYO3L620vQJimggM7+maio/a33saNogsu/84gKUuYaqvg6iWDLz/Ckuh6YB9FyeSsawymuq5zCW6LGjaUO4fbt6fDj//r/CAhnViWK+FBoQf35zqIgGULI8NdZvbFLHKq+pmsrPWh87mjaE2/fFiloGLWR60cwpi5W4GSpyu91wuVyYOnWq0U2xPD2Xp5Ix+JoaT3TJNZFRjK5dJipuApelS5fC4/Fg9+7dRjfF8vRcnkrG4GtqPNEl10RGGZKZAve3J5l+8UXcBC6kHWl5p1y8bYO51/jTQHxNjXfDjEKY+EssEZrbuvHgXz41/eILBi40gLS8E8CAB51VuhKpP76mxktNtqN8VpHRzSAKywyrDCNh4EIh6bk8lYyR6K+p1+dHRXUT1u+tQ0V1E7wGzJRdvtCF22YXseeFTEv6V7Fyg8eQfyMiuByawjJbllWKXiK+pmZLvNfV48OLFbWobjyFY62dsAHITEvGNyeNxEVFuVi78xB21zYjIzUJV5WMQHKSvS9z7hfHT6O2qQ2nu/uny7XZgPj6NCejmbU6NAMXIoprUuK94A86KVSzUm+T3LUQ6eFX15XgipIRMTuf6PObQ0VEFLe8Pj9WbvCEfNBboUs8ULhrIdKDWVcZMnAhorilJPGe2UW6Fj0tmuA05LxkHDOvMmTgQkRxK54S72nZxu/MLIQzW7yIXpnLiaeWTIYz25zfwEl7Zq4OzcCFiOJWPCXe07KN81xO7LjvUtx/+QXC555fXIAd983F3WXj4BiUollbyJxYHZqIyADxlHivtCgXuZmpUR0j8HqT7DbcPLNI0f3Z7GnAE1v2o+V0d1TtIPMzcy8kiywSGSARlyRHEnxPSkbl4KV/HMKh5naMGpKB851ZaGzrQvOpTuRmpsLpGBT2vp3u8uKhv3iQkmQLO6H12otG4fHN+wD4MePsfEwfm4ckuw1enx87DzahoroJfviRMygF+YPTIp5X0tXjw3PbD+LPH9Shq8eL5CQbcgen4kRbN/IGp6IofzCcmWl45YMv0NzWBbsdGJadjvEFDrgKsnGiowv1JzrQeKoTnd0+FDgG4dyzBmFnW5fqe+wH0NLeiQkr/orT3X7YbECKDbL3xw+graMLc37+Fnp8wJHWTtXnJmsxcy8kl0MTxZjZcoqYQah7IkLuvpW/sBubPcdUtSUnIwXXXjQSL7//BU60h+5ZiPR6rdrowdPbalSdn8ho6Sl2fLJyfsy/THE5NJEJSXk4gh/QVkizrRe5eyKiPsR9iyZoAYAT7d14eluNbNAid14Jgxayuo5uH36+6VOjmyGLgQtRjMRTThGtaJGbxI8z9+10lzeqoEXteSVdPT6s2c6ghaxvzfYadPX4Im9oAAYuRDESTzlFtKJVbhLpvj280aNBq5SfV/JiRS0SKO6kOObz976fzYiBC1GMxFNOEa1oea3HTnagtqlds+MpOa/kUHPsz0+kF7O+nxm4EMVIPOUU0YqW1zo0Kx2FeRmaHU/JeSVjcmN/fiK9mPX9zMCFKEbiKaeIViLdE1HSffvRQpcm7VJ6XskNMwqR4KvaKU7Ybb3vZzNi4EIUI0l2G1Ys6n2wBj/bpJ9XLHIlVD6XcPdElA1n7tug1CTMcw3VrH2i55WkJttRPqsoJucn0lP5rCKkJpszRDBnq4ji1PziAjy5ZDKcjv5DJE5HOp5cMjkh87jI3RMRBSHu25obpwoHL7YQ0VJORgpum12EnAz5tPahzitZvtCF22YzeCHrmucaiuUx7r1UggnoSBPMBKsM79dAemXO/fCLE8hOT8HF4/IwdHA6TpzuRu7gNDiz0zFlzBDsrm1GRXUTImXOzU5Pxon2btS3dGDEkEH42th8TD87T/b8SjLnNrV1wu/3wzEoFWefNRizz8lHS2f3gMy5aak2vLe/Ec3t3RiUnITWjh54dXxNKDHZAEO+SIk+vxm4UNSYCZbMTIv356aqetz3548HJKXLyUjBz66+MKr3eTTtk5L3Af3T9tu++jknIyVsIj2iUGzo7QV+9965Mf1Cxcy5FBPMBEtmpsX7c1NVPb6/tjJkAHCivRvfj+J9Hm375IbZHF8NczFoITXMnlOKgQupxkywZGZavD+9Pj8eeP2TiOdS8z7X6t/P/OICvHvvXKwrn45fXVeC3393GtKTkxS1hSgUs+aUYuBCqjETLJmZFu/PXTXNaBCoiKzmfa60fV6fHxXVTVi/tw4V1U39Apokuw2lRbkYmpWOioNNaGg15wOHrMWsOaWSjW6AVtxuN9xuN7xeTlWLFWaCJTPT4v2p5L2r9H2upH2R5sGora5NJMfMOaXiJnBZunQpli5d2je5h/THTLBkZlq8P5W8d/MHpwlvq+TYtY3teGLLvgFDStI8mFtnF+GZbTVRFaokCnb/5ReYdqUjh4pINWaCJTPT4v1ZWpSLIRmC3+8URg4i7XNmp2Hdrs/DzoNZs51BC2lvSKayQDyWGLiQaswES2amxfszyW7D1ZNGCp2vsS3yXBil7bu+dHTY+Sp+gNWoSRdmHuJn4EJRYSZYMjMt3p9lLqfQudQMiUZqX2F+puJjEmnBzEP8cTPHhYwzv7gA81xOZoIlU4r2/SkN6TS0dIQckpGSdakdEg3Xvt6MvkSxZfYhfgYupIkkuw0zxuYZ3QyikKJ5f0pDOt//KkNtILVDoqFKPgS2T1r63NByGrmZqTje1iUbNNlsHC4ibS2eWGDqL54MXIiIBIRKn+9QkfJfq6XN0mOlfFbvqiJA8fxgopDW7z2C/5zPVUVERJYkpeUPlT6/RWFK/Ugp/ldt9IT8eyjSPJjlC114csnkvjT/RNFqaO3E6q0HjG6GLPa4EBHJCJeWX7JygwfzXM6I304jpfi3IfLS5tzMFNz/jfFwZvefpzPP5YxYmkAqvEgk4vEt+3Cec7ApF1iwx4WISIaWZS1EjhVprkpzWzec2emYMTavX6AkUpqAQQspZdZacwxciIhkaFnWQqu8GKGOY+acG2RdZq01x8CFiEiGlmUttMqLEeo4Zs65QdZmxqCYgQsRkQwty1qIHCvcNJlw54p0bCK1zBgUM3AhIpKhZVkLkWOVzyrqzc2i8Fzhjk2kVl5mqikT0TFwISIKQ8uyFpGOJS1tVnMuuWMTqfXgFcWmzOVi8/v95psyHIXW1lY4HA60tLQgOzvb6OYQkcVJWW4bWk6jua0LuYPTBixHVntMuRIEkf4ucuwjJ07jgQ2f4GRHj6o2FuVnoKaxXdW+ZH23zS7C8oWumJ5T9PnNPC5ERDLCZbmN5ptopBIE0ZYoaDndhV+8+U/VQQsAZKczoV0iSk+247F/nYiFE4Yb3RRZHCoiIgohUpbbTVX1BrUsPLl2K/XhFy0atYisZM2NF5k6aAEYuBARDRApyy1gzuRcIpl+RZlvZgPpLSM1CV87J9/oZkTEwIWIKIiWGXNjKVK7lTBXSEax0N7lxeqt+7F+bx0qqptMF5hLOMeFiCiIlhlzY8ls7SHreXzL/r7/HVi13EzY40JEFETLjLmxZLb2kLWZdT4XAxcisjSvz4+K6iZNu7e1zJgbS1PGDEFupvhqoFDJ7ogkZp3PxaEiIrKscMuVo+neljLR3r62Ejb0n++hNGNurEj3ormtW3ifW2cX4ZltNQOukUgSOJ9L7RJ9rbHHhYgsSe/lylpmzNWbmiXQQzJS8J/zL9Ak2+6o3EFR7U/mt8XTYHQT+jBzLhFZjtfnx8WPbJV9UNvQG2C8e+/cqHtF9MxyG815A7cLdy/CWVc+HTPG5kWVbffS84di58EmtHV5FZ+frCM3MwW7/2uerr2MzJxLRHFLyXLlaLu3w2Wx1WuoSslxo1kCLa1CkrLtPrTRozjb7lufHVN1brKW5rZu0wwXcaiIiCzHDMuV9RqqUnrcaK5RWoUknVPJ/BhKPGZZbs/AhYgsx+jlynpl1lVzXDXXGLgqSstsuxTfahvbjG4CAAYuRGRBRi9X1iuzrprjRroXwYJXRWmZbZfi23Pv1phiWTQDFyKyHGm5MjAwD0kslivrNVSl5riB90JE8Koos3T/k/m1dPRgZ3WT0c1g4EJE1mTkcmW9hqrUHle6FwUyy5pzM1Pw3ZmFWFc+He/eO7ffvWG2XVKi4mCj0U3gqiKiaOm1HJYim19cgHkup2b3X/S1lIZnIi3HDhyqCnds6W8NLaeRm5mK421dIeecBB83+Jh//4852HPoOOpPnMYHh4/DD6AoLxM3zChEkt2GndVNeGzzP3Hk+Gk4HenIzUzDkIwUDE5LwqnOyMuZU+yA3W5DZ4/xwwVkFOM/2xi4EEVBr+WwJC7ccmUllLyWSXYbFk8swNPbamSPFzhUtamqHg+8/gkaWjv7/u7MTsMDi8cDwIDzhhI8BCbX3sUTC/D6h/X9fv/rtw+gq8eH9ihzrXT7AJhgjgMZxwzLoZmAjkglaQlp8D8g6QFjtuyqJE/paym3veS22UVYvtDVt+3311ZG3cbAICrS+Yn0MCQjBe//WL8kdKLPb85xIVJBr+WwFHtKX8tIy4dtAF7/sB5enx9enx/3/flj1W3LzUzB49eW9JubwuXLZJSZ5+SbYhicgQuRCnoth6XYU/paKtl+Z3UTTrSrT+rW3NYNZ3bvnJZdNc1Yv7cOz++o4fJl0lSKYDDyxkf1UdcA00LczHFxu91wu93welkvg/RnhsytpA2lr6WS7fcfPam6XZLNngYse2UvgxXSTbeCnuGVGzyY53Ia2vMSNz0uS5cuhcfjwe7du41uCiUAozO3knaUvpbKto/+w/25HbUMWsg0zNCTHDeBC1EsGZ25lbSj9LVUsn20KzBMMJ2AaACje5IZuBCpYHTmVqvy+vyoqG7C+r11qKhuMsXkZaWvpZLtp5+dh5yMFMVtko5jgttDNIDRPckMXIhUMjJzqxVtqqrHxY9sxfVrduKuP+zF9Wt24uJHtppisp/S11J0+yS7DT+7+sKw575tdtGAjLdORzq+O7NQ1bXMPf8s2Qy6RNEakpFieE8y87gQRYmZcyOzSs4bpa+l6PYbP6rHj9dXobmtq+93gXlZQh1nV00zrl+zU/E1rCufjtKiXDy/owYP/uVTxfsTRfKUTv9eRZ/fDFyISFdenx8XP7I1Ynr8d++dG5cBX6gMt7mZKfjpFcVYOGG47H7SfWto6RDK2RJ8H5XuH8hu4zAVhabnv1cmoCMiU0jknDdST1Pw9R9v68bSlz4IO0wWbi5NMKVzcSIdh0ELyTHDv1cGLkSkq0TNeaNFdmW5uTTBX3SVzsUpcKSHnFszNCs17DURSYz89xo3CeiIyJwSNeeNkp6mcMumQ1XAnjJmCPYcOi40F0eugjYAzB43FBUHGwH0Fqr0HGnFQxs5L4YiM/LfKwMXItKVlPdEbq6FNGZu9EoFrWnZ0xSqAraSHDHB+4ead/Onyi9w3rDBwsekxGSGf68cKiIiXSVqzhuz9jTJzbtpaOnAO/saY9oWsiaj/72yx4WIdCfNtQj+lu8MWBKshJol6NEsW5f2bWg5jea2LuQOTusrfih3DNGepiljhqCiugnHTnYgf3Aa4AcaWjuw9/BxAEBhXiZumFGI1OSB3zMDryk/Mw2wAcdOdqL5VCdyM1PhdAzq10avz48HXg8/74ZITl5mKh66qtjw1AVcDk1EMaNFzptQwxwFEQIgNfuE21fJeW9fWwmgf2AgXfGts4vw+of1EWsR2W1A+awiLF/oEmqXXBt/tWUfHt+yP+z2RKHkZqZg5/KykAG0VpjHhYELUdxRk8gumuR3cvsGHyfSMUIFTYsnFuCZbTWKejpum90bvIi0K7iNt84uwtPbahScjegMvZLOBWLgwsCFKK6oSWQXTfK7SPuKHCPwWMGrgv7l0bcVV32224BPVs7H3F++o2pf5mchNb47sxD3Lxqv+3mYgI6I4oqaRHbRJL+LtK/IMSTSqp4rSkZgxtg87Dl0XHHgAfQGHg9vjDw8JLcvkRplLqfRTeiHgQsRWYKa5cXRLElWmmBLyfbRJO+qbWpXvS9RsIzUJNnMyjb0DmuaLVUBAxcisgQ1y4ujWZKsdJmyku2jWQJdmJehel+iYLag/x/8e6OXPofCwIWILEFaXqzk26GafYL3jUTNt9JI7ZJjtwE/WugSaleofYmCtXV58YOycweUhZArI2EGDFyIyBLUJLKLJvmdtK/I817pt1I1BRCB3iXRg1KT+vYVZftqX8YuFEphfgbevXcu1pVPx6+uK8G68ul49965pgxaAAYuRGQhckUDw307VLNP8L5yPRwFUXwrlWtXKHbbmaXQ0r6/+fYkoV4UZ3YanlwyGcsXunrPl52mqJ0MduLf0Kz0fhPIS4tysbO6Cb/422f4xd/+iR0HGsMWA401LocmIsuxQuZcNdeiNHPuxo/qccdLlbLHvrvsXNw595x+bfT6/Fi99QAe37JPqH2/vGYChmal408ffIH2Li8uGjMELe1dcP/9oMIrJTNypCej8idf73uPbKqqx31//hgn2rv7bZeTkYKfXX2hrr0wzOPCwIWIEoDarMC/2rJfKHi5u+xc/GH356qWYJP5XTN5BB65ZiKS7DZsqqrH99fKB8KAvonoGLgwcCGiBKG2B2rmz95CQ2tnyL/bADgyUtDS3s06RnEuNzMF/71oPH668VPZ94OkIEKyxWiIPr9ZZJGIyOKk+QlK97miZLhsGQB/0P+n+NXc1o07/7BXaFsp2aLS95uWGLgQERlEydyZUL0qACL2tISaQ9PY1onaxrawtYumFw3Bzprj2l80WV40CRS1wMCFiMgASqpOh9o2JyMFAPpNohTZTxSDFpITTQJFLXCOCxFRjCmpOg1AuBJ0YMVrJfsRieIcFyKiBOP1+bFyg0cooHjg9U8A2ISDDz96g5cf/fljeP2cn0LaM0MJAAYuREQxpKTqdKQVHnL7NQfl4DCaDQyirC5nUDJ+9s0Jpsimy8y5REQxZPTERiPYmH7X8pbOGYfOHh8qqpsMz6LLHhciohgyemKjEaTn3C1fG4P/q/wCJzu8xjaIFHto46d9/1skwaGe2ONCRBRDSqpOO7N7l0fHS4fF/1V+gatLRhrdDIpSQ0sHbl9biU1V9Yacn4ELEVEMKak6/cDi8XhgsfIq0mZ1ssOL3+08ZHQzKErSQNHKDR5Dho0YuBARxZiSqtPSto6v8rboJS1EEcdQ7bptdhEyUpN0bQuZnx9nsujGGue4EBEZYH5xAea5nEKZc+e5nF8tjZYX7cqdzh5f2L/fXTYOd84dBwB4+f3eStFERkw2Z+BCRGQQ0RpDu2qaIy6NloIWPZYe2wD8Yfdh3Dl3HFZv3d8vWy8lNiMmm3OoiIjI5ES/1X5nZiGcAhN/lZKGBXZWN+G3O2o1Pz5ZU4HjTM2sWGKPCxGRyYl+q53ncuK/Lnf1K6r414/rsfYfn2vSjoqDjThxmr0t1MuoLLoMXIiITE5aQt3Q0hFyGMgGwOk4MzcmcPhpamEuXtr1ObRZ/CH2kMoZlAKbDTgeoyGlZDsQYYoOCcpMS0JbZ+T5Szk6TxYPh0NFREQmJy2hBgaGDtLPct9+U5PtKJ9VFPEcmalJsmGJDb3DAiLzcQDglplFWHX1hTFbws2gRdyU0Y6wf09JEgsLWtq7DcvlwsCFiMgCpGXRwXNYnAFLp+UsX+jCbbOLZAOJ22YX4Zf/OhFA+MBo+tl5KHCET4iXk5GCO+eeI7Tk+6klk3vbFQ9Jaixiz+ctIX+fMygF10weITzx2shcLja/3x9Xta9Ey2ITEVmR1+fvm8MyNGvg0ulwunp8eH5HDd70NACwYZ5rKG6ZeTZSv8rhsqmqHis3ePoVgQxO776pqh63r60EEHr10lNBQZTU3nBLvrt6fPjde7XYXduEjNRkjBwyCKvfrlZxd8gI68qnC/fGhSP6/GbgQkREfUQCI5EAJ5rzX/zIVqEK2mQOv7quBFeUjIj6OKLPb07OJSKiPiK5ZeYXF2Du+cPwYkUtDjW3Y0xuBm6YUdjXcxONXTXNDFosJta5XBi4EBGRrFA9MJs9DQN6XNzvVOOnVxRj4YToelyMyMRK6hmRy4WBCxERhRRqSCgnIyXkBM7mti7c8VIlbvuiCMsXulSf04hMrKSeEblcuKqIiIgGkCbhBg/bRFp18vS2Gmz86Ijq80o5a7jQyPzuLjs36jlNajBwISKifrw+P1Zu8KiuefTj9VWql8gG5qwh88pIsePOuecYcm4GLkRE1E+0E2Sb27rx3oFGVFQ3Yf3eOlRUNykKZKQcMDmDjMvOSuGVzz7bkHT/AOe4EBFREC0myN7w3K5+PytdLj2/uABZaSn4t2f/EXVbSFtpSTb8+6XnGnZ+9rgQEVE/ekyQbWjp6EsR7/X5hXpjphblcq6LCS2aONzQ8zMBHRER9SMlgZMr6qiWDYAjIwXpyUloaD3Tq5ObmYorS4ZjnsvZt7R2V00zdhxoxOq3D2jYAtKKVgkHAzFzLgMXIiLV5FL72xA61b9WpKrDojVzyBhST1ikOllKiD6/OVRERJSgwg3ZhCvq+NSSybj5a2N0adOJ9m4GLRZgZJFFTs4lIkpAIvWG5hcXYJ7LGbJ2UVZaCp5/75BRzScT8AOob+nArppmTYosimLgQkSUYKRhoODvydIE2sDuf7naRb74mmWQ8OQyIouIdZkGBi5ERAkkXHI5P3rnLqzc4ME8l1M2T8emqnrc96eP9WwmxcDSS8bCZrPB5/fhD7u/UH2cWJdpMOUcl6uuugpDhgzBNddcY3RTiIjiSqTkcoHd/6FIvTUnTiv7du7MTkNORgqXN5vIut2HsfrtA/jNOwfR3Nal6hgssviVu+66C9/5znfwu9/9zuimEJEOQlUcNioLp4hYt1ev83l9fuw40Ci0bajufzWlAFLswHdnnY1Z485CS3s3lr5UqWplku2r/8MRKu2oDVYCLZ5YEPN/u6YMXC655BK88847RjeDiHQgMinUTGLdXr3OF+q44dQ2tg/4nZpSAN0+4Km/H8RTfz+IAkc6bp1dhNc/rFd8HH/f/yEzef3Devzn/AtiGrwoHiratm0bFi1ahOHDh8Nms+G1114bsI3b7UZhYSHS09Mxbdo07Nq1a+CBiCjhyFUcDsyqaiaxbq9e55M7bjhPbNk34HzRTsKsb+nA09tqcP/lF2Bd+XR8d2YhcjP71yPKyUjpy+UiKvgYFDvhhhX1ojhwaWtrw8SJE+F2u0P+/eWXX8ayZcuwYsUKVFZWYuLEibjssstw7Nixvm1KSkpQXFw84L8jR9SXQicic4s0KRQwJieEnFi3V6/zRVPpOfh8Wk3C/NFrVSgtysX9i8Zj93/Nw7ry6fjVdSVYVz4de348Dw9fWSwcjORmpmDHvZeiwBHbCaJ6C+6/sIX5m6i8zFTcMrNQ5d7yYr2qSHHgsmDBAvz0pz/FVVddFfLvjz32GMrLy3HLLbfA5XLhqaeeQkZGBp577rm+bfbu3YuqqqoB/w0frrz+QWdnJ1pbW/v9R0TmE+2k0FiLdXv1Op/aSs+hzldalIsCR3rUE2xPtHdj9dbeVP7ScusrSkZgxtg8bPY0YOlLH6C5TWzyb3NbN/YePoEVi1xRtsp4NvQOC/7m25MGJP7LzUzFd2YW4u6ycRiWndbvb5FGaXIGpeD335uGXf9Vhq+7nBq32uKrirq6urBnzx6UlZWdOYHdjrKyMlRUVGh5qj6rVq2Cw+Ho+2/UqFG6nIeIoiP6rSzW397kxLq9ep0v2vYF7p9kt/UFCNEGL799r2ZA75Ha3qFjJzswv7gAv/n2ZEuvWvKjd7LrwgnD8e69c/sNpzW1deG5HbV4fMt+ADbcXXZuXy/V6usnwYbQvTQ2AD/75oWYeU4+kuw2oeAzNzMFj19bgt9/bxqc2Wmy20qBVqxXFWkauDQ2NsLr9WLYsGH9fj9s2DA0NDQIH6esrAzf+ta3sHHjRowcOTJs0LN8+XK0tLT0/Xf48GHV7Sci/Yh+K4v1tzc5sW6vXueLtn3B+8uVAlAaMJxo7x7Qe6S2dyg/Mw0V1U3o9vlw9SRjKxdH65ltNdhUVY8kuw0tp3uDleDep6OtHXhiyz6kJdsxY2weFk4YLlueIbiWULjgUwp0Hr7qQlw1aQRmnpOPBxaPl90WAFYscnFVEQBs2bJFeNu0tDSkpaVF3pCIDCV905OrOGxD7wdtrL+9yYl1e/U6X6Tjygl3vsBSAFs8DXh2R62qOTTBvUFqeodyMlJwzx8/7FdtWu9CkHryo3du0dzzhylKFBiuPEMwKfgMXmXmDLF6Tcm2saJp4JKfn4+kpCQcPXq03++PHj0Kp1P7cTUisg7pm97tawfm8TDy25ucWLdXr/OFO64ckfNJww7LXtmrqD2Bgntz1PQO9aap798jYdWgRVLf0oEXK2qF5zxJJRnkyjOEojTQEd02FjQdKkpNTcWUKVPw1ltv9f3O5/PhrbfewowZM7Q8FRFZULiKw8Fd2mYQ6/bqdT6548oRPZ/aoR2gt6fE5/P3m+ci9Q6JMkuQq4eapjah7aKZwxQ8MTrc/VSyrd4U97icOnUKBw4c6Pu5pqYGe/fuRW5uLkaPHo1ly5bhpptuwkUXXYTS0lI88cQTaGtrwy233KJpw4nImsz27S2SWLdXr/MFHzc/Mw2wAY2nOvv9byXni+aheaK9G//27D/6JdeTeoe+v7ZS6BhmWTqvh/V7xdKDmGVOWCzZ/H5lCZTfeecdzJkzZ8Dvb7rpJjz//PMAgNWrV+PRRx9FQ0MDSkpK8D//8z+YNm2aJg2OpLW1FQ6HAy0tLcjOzo7JOYmIElFFdROuX7MzqmNI4VFgD8/Gj+px57pKxHFcEpHIsJ7dBqy+fhIWTojNhGS9S1+IPr8VBy5mx8CFiCg2vD4/Ln5kq+xwkQ3AsOw0PHrNRPy/dR/IFmaUJgK/e+/cvgfhxo+O4I6XPtCp5fHDBsRkmDUWpS9En9+mrA5NRETml2S3YfHE8A+tBxaPR3KSPWw16VDJ7hZOGI6nlkyOu4y4akTq09A747TZSnUwcCEiIlU2VdXjmW01sn+/dXYR5hcXCM+FedPTgB37G/GLv32GX/ztn8hKT8Hf/2MO7pxzjlZN1oRUSylWs7LChSRS0LezukmXc5uxVIcp87io4Xa74Xa74fV6jW4KEVHci5Tl1oYzlYNFJ5D+dkctfrujtu/n1W8fQE5GCm75WmG0zdXEnXPGYuY5Z6G0KBebPQ144HVPv/wxRlr6UiV+9s0LNR8yUlKKQnQpdrTipsdl6dKl8Hg82L17t9FNISKKe0oeaEqXOQc60d6Nx7fsV1wxWmt5man490vP7VsKPL+4AL/81kTdz5ubmSq03YnT3WGHbbw+Pyqqm7B+bx0qqpuEe0jMWKojbgIXIiKKHSUPtMA081bV1NaFf3n07X6BQWNbp+7nvXH6GEWFLUMN22yqqsfFj2zF9Wt24q4/7MX1a3bi4ke2Cs1NMWOpDgYuRESkWP5gsVIr0gNtfnEBvjuzUPX5TrR34+6ycw3teQmejBrNwzozVezxW3RWpnDQF2qSc7QTayMVZTSi0CIDFyIiUmRTVT3uiZDqP9QDrcwVXemXwvwM7PnxPPz+e9NwxyVjcWXJcCy9ZCx+cOm4kNWRtRY8GXXKmCFQm8bkrkvPFdpuaFZ6X+bjnEFiQZvUG6bFxNpIRRmB2JfqiJvJuUREpD/pG3y4GRJyDzS1BR8ljSc78cZHRzA0Kx33fP28fsc+vyBrYCHA7DR09PjQ0t6tWf2i4F4NtYtpzspOV1RUc35xAbLSU/Bv//uPiMeWeoK0mlhrtkKLDFyIiEhIpJVEErkHmpqCjxIbgAf/8mnfz8HJz+RKJWz2NKg6XyTRTkZ1ZqcrLqo5/ew8RcGOlhNrzVSqg0NFREQkRLSo4i+umSj7LVxpwUdJ8IM61ByNUIUA1Z4vkvzMNBxrVT45N3AITWlRTaXDNlpPrDVLoUX2uBARkRDRb/CRVtsEf3uvbWzD41v2K2qLH70P65UbPJjncoZ9iA4oMDk4DZ4jLXho42eKzomvzunISME9f/xQdQ6XwOBCaU+GkmGbSENzUkkGn9+P9XvrTF/wVMLAhYiIhGj5DV769i45z5k1IKFbdnoyWjt6ZI8Rbo5GqIKAgdtMPzsPz+2oFepBCj7nifZuAPIlDOTI1fYJvheRiAY74YbmpJ87enz95s1oXX9IDyyySEREQqSiipHmWAQWS1R6/MCHcUPLadz9yocR97txxhgsKC7AlDFDsOfQcWzxNODVvXVobjsTXIR6IEsTjYHQ819yMlK+ClKid//lF+DmmUWG9GaEKpAod22hqnXHSsJVhw5M+b9v3z4GLkREOpB72OvxwKuobsL1a3YKb2+3ya/ykWvfpqp63Pfnjwc8xHMyUvDwlcXYf6wNj2/Zp7Tp/Tiz07DjvktDBi1enx87q5tQcbARQG/Py/SztZ8/EhgU5memhR3qijYAVSvhAhcJe1yIiPQV6hu8HkMMkXp4lAr1QJZb3i0NpWjR6/KUTDAXLmj62dXR1x0KNVyWZLcJB4TryqfHrP4QIP785hwXIiJSJFZLY6NZPh1K8JwYkQRt0QQtNpypkB1s40dHcMdLH4Tc70R7N76/tlI24BERLrjs7PEJHSOW9YeU4HJoIiJSLFZLY/VYziw9kEWXd0fjmW01A9Lqb/yoHktlgpZAkbLayomU5r+2sV3oOLGsP6QEAxciIjK1+cUFePfeuVhXPh03zhgT9fGkB7LePQqh0upvqqrHHS+FzzwsCa47JEKkF+kPuz+HMzvNVPWHlGDgQkREpif18CyIct5H4AM5Fj0KgcNTUlChhNJcMaJp/q8vHQ3APPWHlGDgQkRElhGpWnEk100d3fdAFql8nJORokkBx2MnO1QNTTWfUpadV7QXqTA/U1HWXjPh5FwiIrKMwAm7ahTmZ4Q8lly9oJ9dfSEADJjoqtTQrHRVQ1O5mamKzyO63YyxeaapP6QEAxciIrKU+cUFcH97Eu5c94Hi6szBD3bRFPr9SgZkpgE2oPFUJ/IHp+GeV/biaGtnxMKHSuer9LZjkKLtRdL8BxZiVJq11wwYuBARkeUMyUxTFLQEP7ADiSzvDveAf2DxeKEqz1JQIdpzo2aCrEgvkpnnr4jgHBciIrIcJcMuIg/saJZ3i1Z5TrLbcP/lLuHjqg0wlFadthr2uBARke7ksriqpWRFUKjKyVoTTco3RHDOyt1l46Jqb6ySBBohbgKXwFpFREQUWXAwIRUp1PpBp0eJgEhzOYDeFUHu6ydjusoEeUqDLZH5IkpW/UTLivNXRLBWERFRAgoVTAQXKdSi/lC4WkBAdEUZV2304OltNSH/Zovy2FoGW4EBUOPJTjz4l08j7hPrOkFmwFpFREQUklwwETzZVUoRrzYAiJTF1YbeZcbzXM6+ngzRXo5NVfV4RiZoAYA5558Fx6BUeH1+xb0tcvdHzf0QCRADhZtETL0YuBARJZBwwUQwueBClGgWV6nooWgvh8g1bP3sS2z97EvFvSRqgi05ogGiJF5W/eiNq4qIiBKI0uytgcGFUqLzOY6d7IhYGDCwUKGSawi1fzhKgi2gN9CpqG7C+r11qKhu6qtJJBJcBccm8bLqR2/scSEiSiBqCwuq2U905U9+Zhp++H8fCvdyKGmL0l4SpcGWXA+RY1BqxODK5wfuv/wC5GelxdWqH72xx4WIKIGoLSyoZj+RWkAFjnTABkW9HErboqTXSPTYtY1tYXuItngahI6Tn5WmKndMImPgQkSUQJQWKZSCCzWTRaUsrtJxgo8L9M7naBQsJCj1hqgttCjSmyIabK3b9blsDxEAvLq3TqhNsahQHW8YuBARJZBwwUQwLSaLimRxVVIYEFB2DaH2D0ck2Lpu6mg0tMoHW34AzW3dyM1MjRgAcfWQcpzjQkSUYOQKCwYv09Uq42ykLK5KCwOGu4ZQlC4xjlR4sbPHJ3ScK0uG47c7auO2ZpBRmICOiChBxSpzrghpVREQ+iHv/vYkDMlMG9A26Rq2eBrw7I7aAceNJtGdXE6ZiuomXL9mZ8T915VPR8vpLs2zBscr0ec3AxciIjIFuVU6iycW4PUP6yM+/PUoLRCK1+fHxY9sjdhD9O69c/sFV/FWM0hrDFwYuBARWU7wQ/54WxeWviReMiBWQUKkHiLmY1GOgQsDFyIiS5N6NuTmsAT3bMRarHp4EgVrFRERkaUpLRkQa5EmHZM+4iZwcbvdcLvd8Hq9RjeFiIg0oCSLrVGS7LaEq+JstLjJ47J06VJ4PB7s3r3b6KYQEZEGlOZ3ocQQNz0uRERkfYGTa/Mz0+DMTsfRVvH8LhT/GLgQEZEphJrsmpOR0lco0QxJ3Li02XgMXIiIyHDS8uLgnpWW9m4AgCMjBSe++t+Adll9lbaRq4iMx8CFiIgM5fX5sXKDR7ZooQ1AerIdv//eNDSe6jSkp0MusJKqQTNvS+wwcCEiIkOJLHtuaO2E3WbDFSUjYtewr4gEVis3eDDP5ewLpkINKQHgMJMGGLgQEZGhzL7sWWk+Gbm5OgD6DXdxmEmduFkOTURE1mT2Zc+bPQ1C2x072dE3pBQc6Jxo7+4XtABnhpk2VdVr1tZEwMCFiIgM4/X54fP7kTMoRXYbG3p7J4xY9uz1+fHa3iNC2+ZnpskOKYUibbdygwdeX1xV39EVh4qIiMgQoYZUghm17Fmyq6YZzW1dEbfLzUwBbAh7LaEYXbbAihi4EBFRzMmt0glmxLLnQKLzaq4qGYHGU526n4cYuBARUYyFW6UjyclIgfv6yZg+Ns/QlTei82rKXM6YnIcYuBARUYxFWqUD9E5mtdtthi8XLi3KRYEjHQ0tYmUHcjNThYaW5PanyDg5l4iIYsrsy58DJdltWLHIBeDMfBtJ8PybJLsNV5YMFz52uPk7Xp8fFdVNWL+3DhXVTZy8G4A9LkREFFNmX/4cbH5xAZ5cMnnAROJQ82/muZx4bket0HHl5u+wtEB4DFyIiAKwiJ7+lA6/iAh+3aaMGYI9h44PeB3Vvr7ziwswz+WMuK90beGGwnIGpcD9b5Mx/eyB83dYWiCyuAlc3G433G43vF6v0U0hIoviN93YkIZfbl9bqUnV51Cvm90GBI6uFDjSsXhiAV7/sF7165tkt0Vcshx4bUDoa/vZNy/EzHPyB+yrprRAIrL5/f64GjhrbW2Fw+FAS0sLsrOzjW4OEVmE3Ddd6fHAb7ra0yJQFF1WLUfN6yvSa6Pm2iqqm3D9mp0Rz7+ufHpc5nwRfX7HTY8LEZFa/KZrDNHhFzkiy6ojUfr6igYkaq7NSpOWjcTAhYgSntIieqQdkeEXOSLLqkWIvr5K558ovTY9Ji3H45wtBi5ElPD4TdeatH49wh0vFr1yWkxaDgxUahvbsG7X52hoPZPRNx7mbDFwIaKEZ7XludRL69cj3PFi0SsX7aRlkdpP8bA6iQnoiCjhSd905b4nG1mdmORFet1Eiby+seqVk3LGOB39gyinIz1ssCENY0UaOouHitTscSGihKf18lyKjXCvmyjR1zeWvXJKJ/YqnaRs9Tlb7HEhIoL6b7pkLLnXLfgZX+BIx22zi1Cg8vWNda+cNLH3ipIRmBGh0KTaScpWnbPFHhcioq9EuzyXjBHqdZPLnPuf8y9Q9fqauVdObQBi1TlbDFyIiAJEszyXjBPqdQv1Okbz+iqpWRRLSgMQq1ekZuBCREQkyIy9cpGWUQcyundICwxciIiIFDBbr5ySScpG9w5pgYELERGRxckNYxU40nHd1NEozM8wRe+QFhi4EBERxQEzDmPpgYELERFRnDDbMJYemMeFiIiILIOBCxEREVkGAxciIiKyDAYuREREZBkMXIiIiMgy4iZwcbvdcLlcmDp1qtFNISIiIp3Y/H6/mkrgptXa2gqHw4GWlhZkZ2cb3RwiIiISIPr8jpseFyIiIop/DFyIiIjIMhi4EBERkWUw5T8REVEAr88f9/V+rIyBCxER0Vc2VdWHrLC8YpEL84sLDGwZSThUREREhN6g5fa1lf2CFgBoaOnA7Wsrsamq3qCWUSAGLkRElPC8Pj9WbvAgVH4Q6XcrN3jg9cVVBhFLYuBCREQJb1dN84CelkB+APUtHdhV0xy7RlFIDFyIiCjhHTspH7So2Y70w8CFiIgS3tCsdE23I/0wcCEiooRXWpSLAkc65BY929C7uqi0KDeWzaIQGLgQEVHCS7LbsGKRCwAGBC/SzysWuZjPxQQYuBAREQGYX1yAJ5dMhtPRfzjI6UjHk0smM4+LSTABHRER0VfmFxdgnsvJzLkmxsCFiIgoQJLdhhlj84xuBsngUBERERFZBgMXIiIisgwGLkRERGQZDFyIiIjIMhi4EBERkWUwcCEiIiLLYOBCRERElsHAhYiIiCyDgQsRERFZBgMXIiIisoy4CVzcbjdcLhemTp1qdFOIiIhIJza/3+83uhFaam1thcPhQEtLC7Kzs41uDhEREQkQfX6zyCIREWnK6/OzujLphoELERFpZlNVPVZu8KC+paPvdwWOdKxY5ML84gIDW0bxIm7muBARkbE2VdXj9rWV/YIWAGho6cDtayuxqareoJZRPGHgQkREUfP6/Fi5wYNQkyal363c4IHXF1fTKskADFyIiChqu2qaB/S0BPIDqG/pwK6a5tg1iuISAxciIorasZPyQYua7YjkMHAhIqKoDc1K13Q7IjkMXIiIKGqlRbkocKRDbtGzDb2ri0qLcmPZLIpDDFyIiChqSXYbVixyAcCA4EX6ecUiF/O5UNQYuBARkSbmFxfgySWT4XT0Hw5yOtLx5JLJzONCmmACOiIi0sz84gLMczmZOZd0w8CFiIg0lWS3YcbYPKObQXGKQ0VERERkGQxciIiIyDIYuBAREZFlMHAhIiIiy2DgQkRERJbBwIWIiIgsg4ELERERWQYDFyIiIrIMBi5ERERkGXGXOdfv9wMAWltbDW4JERERiZKe29JzXE7cBS4nT54EAIwaNcrglhAREZFSJ0+ehMPhkP27zR8ptLEYn8+HI0eOICsrCzZb/BT1am1txahRo3D48GFkZ2cb3ZyYS+TrT+RrB3j9vP7Evf5Eu3a/34+TJ09i+PDhsNvlZ7LEXY+L3W7HyJEjjW6GbrKzsxPiDSwnka8/ka8d4PXz+hP3+hPp2sP1tEg4OZeIiIgsg4ELERERWQYDF4tIS0vDihUrkJaWZnRTDJHI15/I1w7w+nn9iXv9iXzt4cTd5FwiIiKKX+xxISIiIstg4EJERESWwcCFiIiILIOBCxEREVkGAxciIiKyDAYuceKqq67CkCFDcM0114T8e3t7O8aMGYMf/vCHMW5ZbMhd/+HDh3HJJZfA5XJhwoQJ+OMf/2hQC/UV7vV/4403cN5552HcuHH43//9XwNaFzuPP/44xo8fD5fLhX//93+PWKwt3tTU1GDOnDlwuVy48MIL0dbWZnSTYi7eP+vkJMpnHcDAJW7cddddeOGFF2T//tBDD2H69OkxbFFsyV1/cnIynnjiCXg8Hrz55pv4wQ9+EJcf5nLX39PTg2XLlmHr1q344IMP8Oijj6KpqcmAFurvyy+/xOrVq7Fnzx58/PHH2LNnD3bu3Gl0s2Lq5ptvxn//93/D4/Hg73//e0Lm/4j3zzo5ifJZBzBwiRuXXHIJsrKyQv5t//79+Oyzz7BgwYIYtyp25K6/oKAAJSUlAACn04n8/Hw0NzfHuHX6k7v+Xbt2Yfz48RgxYgQGDx6MBQsW4M033zSghbHR09ODjo4OdHd3o7u7G0OHDjW6STHzySefICUlBbNmzQIA5ObmIjk57srRhZUIn3VyEuWzDmDgEhPbtm3DokWLMHz4cNhsNrz22msDtnG73SgsLER6ejqmTZuGXbt2aXb+H/7wh1i1apVmx1PK6OuX7NmzB16vF6NGjdL82OEYef1HjhzBiBEj+n4eMWIE6urqNDm2Unrfh7POOgs//OEPMXr0aAwfPhxlZWUYO3ashlcQHb2vf//+/Rg8eDAWLVqEyZMn4+GHH9aw9dGLxb8Doz/rwonl54BRn3WxwsAlBtra2jBx4kS43e6Qf3/55ZexbNkyrFixApWVlZg4cSIuu+wyHDt2rG+bkpISFBcXD/jvyJEjYc+9fv16nHvuuTj33HM1vSYljLx+SXNzM2688UY888wzmlyTEma4fjPQ+z4cP34cb7zxBmpra1FXV4f33nsP27Zti9XlRaT39ff09GD79u34zW9+g4qKCmzevBmbN2+O1eVFpPf1m+GzLpxYfQ4Y+VkXM36KKQD+V199td/vSktL/UuXLu372ev1+ocPH+5ftWqVomO//fbb/m9+85v9fnfffff5R44c6R8zZow/Ly/Pn52d7V+5cqXq9kcr1tfv9/v9HR0d/lmzZvlfeOEFVW3WUqyvf8eOHf4rr7yy7+e77rrL//vf/155wzWmx3145ZVX/HfccUffzz//+c/9jzzyiCbt1Zoe1//ee+/5v/71r/f9/POf/9z/85//XJP2ak2P6zfbZ104en0OmOmzTk/scTFYV1cX9uzZg7Kysr7f2e12lJWVoaKiIurjr1q1CocPH0ZtbS1+8YtfoLy8HD/5yU+iPq5W9L5+v9+Pm2++GXPnzsUNN9wQ9fG0pvf1l5aWoqqqCnV1dTh16hT++te/4rLLLov6uFrT4j6MGjUK7733Hjo6OuD1evHOO+/gvPPO06vJmtLi+qdOnYpjx47h+PHj8Pl82LZtGy644AK9mqwpLa7f7J914Whx/Wb/rNMSAxeDNTY2wuv1YtiwYf1+P2zYMDQ0NAgfp6ysDN/61rewceNGjBw5UpOHXizoff07duzAyy+/jNdeew0lJSUoKSnBxx9/rOk1REPv609OTsYvf/lLzJkzByUlJbjnnnuQl5en6TVoQYv7MH36dCxcuBCTJk3ChAkTMHbsWCxevFiP5mpOi+tPTk7Gww8/jNmzZ2PChAkYN24cvvGNb+jRXM1p9e/AqrS4frN/1mkpsaacx7EtW7ZE3Obmm2/WvyEGkbv+iy++GD6fL8atib1wr//ixYst8wCP1kMPPYSHHnrI6GYYZsGCBQm5oiZYPH/WyUmUzzqAPS6Gy8/PR1JSEo4ePdrv90ePHoXT6TSoVbHD60/s65ck+n3g9fP6E/n6lWLgYrDU1FRMmTIFb731Vt/vfD4f3nrrLcyYMcPAlsUGrz+xr1+S6PeB18/rT+TrV4pDRTFw6tQpHDhwoO/nmpoa7N27F7m5uRg9ejSWLVuGm266CRdddBFKS0vxxBNPoK2tDbfccouBrdYOrz+xr1+S6PeB18/rT+Tr15TRy5oSwdtvv+0HMOC/m266qW+bX//61/7Ro0f7U1NT/aWlpf6dO3ca12CN8foT+/oliX4feP28/kS+fi3Z/P4Eq0JGRERElsU5LkRERGQZDFyIiIjIMhi4EBERkWUwcCEiIiLLYOBCRERElsHAhYiIiCyDgQsRERFZBgMXIiIisgwGLkRERGQZDFyIiIjIMhi4EBERkWUwcCEiIiLL+P+gCwJF590EUQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -657,7 +600,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 31, "metadata": {}, "outputs": [], "source": [ @@ -666,7 +609,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ @@ -675,7 +618,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 33, "metadata": {}, "outputs": [], "source": [ @@ -684,7 +627,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 34, "metadata": {}, "outputs": [], "source": [ @@ -697,7 +640,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ @@ -710,14 +653,14 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 36, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAFkCAYAAADFWGGgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3yUZbr4/88zNckkk94TEgi9BJAauggoTQURRVHcVY+se1zd6q7n9z3rcc93/W47Zz26e+wNpa0rIAi4FhKKdKUmJCSm955MZjL1+f2RnUcCCUIITa/365UXyZQnz0Tnnvt6ruu+bkVVVRUhhBBCCCGEEBdFd7VPQAghhBBCCCGuRxJMCSGEEEIIIUQPSDAlhBBCCCGEED0gwZQQQgghhBBC9IAEU0IIIYQQQgjRAxJMCSGEEEIIIUQPSDAlNE8//TTLly+/2qchhBA9UlRUhKIoeDweAObOnctbb711lc9KCCHEt5kEU0IIIa66N998kylTpvTqMbdt28aKFSsu2/GFEKIrv/3tb3nooYeu9mmIK0SCqeuY/+qrEEJ8F3i93qt9CkKI76DVq1czduxYgoODiY+PZ+7cuezevbvbxz/11FO8+uqrV/AMxdUkwdR1JjU1ld/97nekp6djsVj4z//8T9LS0ggJCWHo0KFs2LBBe6z/SuzPfvYzwsPD6du3L9u2bdPuLywsZPr06YSEhDB79mzq6uo6/a4PPviAYcOGERYWxowZM8jJyel0Hn/4wx+083jwwQeprq5m7ty5hISEMGvWLBobGy//H0QIcVWUlpayePFioqOjiYyM5F//9V8BeP311xkyZAjh4eHcfPPNFBcXa89RFIUXX3yRAQMGEBYWxg9/+ENUVSUnJ4eVK1eyd+9egoODCQsLA+CBBx7gBz/4AfPmzcNisbBjxw4+/PBDRo8ejdVqJTk5maeffrrbc5wxYwavvvpql8c/ePAgsbGxnQK0999/n5EjR16eP5gQ4rr0X//1XzzxxBM89dRTVFdXU1JSwqOPPsqmTZuu9qmJa4UqrispKSnqyJEj1ZKSEtVut6vr169Xy8vLVa/Xq65du1YNCgpSKyoqVFVV1TfeeEM1GAzqyy+/rHo8HvWvf/2rGh8fr/p8PlVVVXXixInqj3/8Y7W9vV3NyspSg4OD1XvvvVdVVVXNzc1Vg4KC1H/84x+qy+VSf/e736lpaWmq0+nUzmPChAlqVVWVWlZWpkZHR6ujR49Wv/jiC9XhcKg33nij+vTTT1+dP5IQ4rLyeDxqenq6+sQTT6g2m011OBzqrl271I0bN6ppaWlqdna26na71d/85jdqRkaG9jxAnT9/vtrY2KgWFxerUVFR6rZt21RV7RivJk+e3On3rFixQrVareru3btVr9erOhwOdceOHeqxY8dUr9erHj16VI2JiVE3bNigqqqqFhYWqoDqdrtVVVXV6dOnq6+88kq3xx8yZIi6detW7efbb79d/eMf/9j7fzAhxHWpqalJtVgs6vr16y/qeb/+9a+1+ZT49pPM1HXoRz/6EcnJyQQGBnLnnXeSkJCATqfjrrvuYsCAARw4cEB7bEpKCg8//DB6vZ4VK1ZQWVmpXVk5ePAgv/nNbzCbzUybNo2FCxdqz1u3bh3z589n9uzZGI1Gfvazn+FwOPj888+1xzz22GPExsaSmJjI1KlTmTBhAqNHjyYgIIBFixbx5ZdfXtG/ixDiyjhw4AAVFRX84Q9/wGKxEBAQwJQpU3jxxRf51a9+xZAhQzAYDDz11FMcOXKkU3bql7/8JWFhYfTp04cbb7yRI0eOnPd33XbbbUyePBmdTkdAQAAzZsxgxIgR6HQ60tPTWbZsGVlZWT16HStWrOCdd94BoKGhgY8++oh77rmnR8cSQnz77N27l/b2dhYtWnS1T0VcwySYug4lJydr37/99tuMGjWKsLAwwsLCOHHiRKdyvbi4OO37oKAgAGw2GxUVFYSHh2OxWLT7U1JStO8rKio6/azT6UhOTqa8vFy7LTY2Vvs+MDDwnJ9tNtulvlQhxDWotLSUlJQUDAZDp9uLi4t5/PHHtfEoIiICVVU7jRtnj0nfNE6cOd4B7N+/nxtvvJHo6GhCQ0N58cUXzylRvlDLly9n8+bNtLW1sX79eqZOnUp8fHyPjiWE+Papr68nKirqnLFOiDNJMHUdUhQF6Ji4PPzww7zwwgvU19fT1NTE8OHDUVX1G48RHx9PY2MjbW1t2m0lJSXa9wkJCZ2uJquqSmlpKYmJib34SoQQ16Pk5GRKSkrOaYKTnJzMSy+9RFNTk/blcDiYNGnSNx7TP6590+333HMPt956K6WlpTQ3N7Ny5coLGvO6On5iYiIZGRm8//77rFq1ivvuu+8bjyOE+O6IjIykrq5OGn6J85Jg6jrW1taGoihER0cD8MYbb3DixIkLem5KSgpjx47l17/+NS6Xi927d7N582bt/qVLl/Lhhx/y6aef4na7+dOf/oTZbL6gSZEQ4ttt/PjxxMfH88tf/pK2tjba29vZs2cPK1eu5Nlnn+XkyZMANDc387e//e2CjhkbG0tZWRkul+u8j2ttbSUiIoKAgAAOHDjA6tWrL+n4999/P7///e85fvw4ixcvvqBjCSG+GzIyMjCbzWzcuPFqn4q4hkkwdR0bOnQoP/3pT8nIyCA2Npbjx48zefLkC37+6tWr2b9/PxEREfzHf/wH999/v3bfoEGDeOedd3jssceIiopi8+bNbN68GZPJdDleihDiOqLX69m8eTP5+fn06dOHpKQk1q1bx6JFi3jyySe5++67sVqtDB8+vFMH0fOZOXMmw4YNIy4ujqioqG4f99e//pV///d/JyQkhGeeeYalS5de0vEXLVpEcXExixYt0kqhhRACIDQ0lGeeeYYf/vCHbNy4EbvdjtvtZtu2bfziF7+42qcnrhGKeiH1EUIIIcS3VFpaGi+99BKzZs262qcihLgGvfvuu/z3f/83OTk5hISEMGbMGP7t3/6t22qdp59+mvz8fK3Bjfh2k2BKCCHEd9bf//53nnzySfLy8tDppFhDCCHExZH2JEIIIb6TZsyYQXZ2NqtWrZJASgghRI9IZkoIIYQQQoiLMHfuXHbt2nXO7U899RRPPfXUVTgjcbVIMCWEEEIIIYQQPSB1DUIIIYQQQgjRAxJMCSGEEEIIIUQPSDAlhBBCCCGEED0gwZQQQgghhBBC9IAEU0IIIYQQQgjRAxJMCSGEEEIIIUQPSDAlhBBCCCGEED0gwZQQQgghhBBC9IAEU0IIIYQQQgjRAxJMCSGEEEIIIUQPSDAlhBBCCCGEED0gwZQQQgghhBBC9IAEU0IIIYQQQgjRAxJMCSGEEEIIIUQPSDAlhBBCCCGEED0gwZQQQgghhBBC9IAEU0IIIYQQQgjRAxJMCSGEEEIIIUQPSDAlhBBCCCGEED0gwZQQQgghhBBC9IAEU0IIIYQQQgjRAxJMCSGEEEIIIUQPSDAlhBBCCCGEED0gwZQQQgghhBBC9IAEU0IIIYQQQgjRAxJMCSGEEEIIIUQPSDAlhBBCCCGEED0gwZQQQgghhBBC9IAEU0IIIYQQQgjRAxJMCSGEEEIIIUQPSDAlhBBCCCGEED0gwZQQQgghhBBC9IAEU0IIIYQQQgjRAxJMCSGEEEIIIUQPSDAlhBBCCCGEED0gwZQQQgghhBBC9IDhap+AuD7ZnB62HKugqK6N1CgLC9ITCDbL/05CCCGE+G6TOdJ3i6Kqqnq1T0JcXw4WNfDAmwdQVbC7vASZ9CgKvPnAeMalRlzt0xPiO0k+vIUQ4uqTOdJ3jwRT17BrcXJkc3qY8OwntDm959xnMes58KtZWGQCJ8QVJR/eQghxYS7n3OpKzJGuxbnhd50EU9eoa3VytPZgCc9sycbuOnegCDLp+fWCodw1rs8FH08GBSEujVzgEEKIC3O551bnmyMFGnX8euEw7r6IOdLZrtW54XedfMJeg2xODw+8eaDT5Mj/xnzgzQNXdXJUVNfW5SABHedYVG+/4GN1NSj85sNsGRSEuAhbjlXQ3SUxj8fLG58d496JfbFarej1+it7ckIIcY24EnOr882RHG4fqz/4mIpdzVgsFu0rKCioy+8tFgtGoxFFUa7Y+Yuekb/6Neh8kyNV7bj/YrI/vSk1yoJZD11cBCfIpCc1MuiCjiODghC943wf3k4vfLr/KG3HPsblcmGxWAgLCyMsLIzQ0NBz/jUajVf47IUQ4sq4EnOr1CgLQSZ9l2OyUVG5cexwvjd9EHa7HbvdTltbm/ZVX1/f6ee2tjYALbDKdobhdgcCymU7f9EzMlu9BvVm9qc3qapKSONpVJ+PrrrqKwosSE+4oGNdywGjENeT8314G/Bi8dkJCAjAaDTidDpRVRWfz4fdbsdms5GdnU1TUxPNzc0EBAScE2Sd+b3ZbL4Kr1AIIS7dlZhbLUhP4JnNJ7u8z6DXYao6zqpVBxg/fjyjRo36xjHV5XJpgdXpnSW4yhsv6/mLnpFg6hp0vsnRxWR/epOqqnzyySeUflXAq/ct5Adrj+N0ufCgJ8CoQ69TePOB8RecTbpWA0YhrjcL0hP4zYfZXd6nAAPMrbS2etDr9QQEBBAREYFOp6OsrIympiaSk5MZOXIkKSkpWK1WbDYbzc3NNDU1UVNTw+nTp7Wf9Xp9l1kt//eBgYFaScqlkLWUQojediXmVsFmA9/r5+DVfBNerw8Pegz4UBR4+d4xTBk0l7KyMvbt20dWVhYjR45k/PjxhIeHd3k8k8mEyWQiJCSEAPcJDPjwdHEx+2rNDUUH+XS6Bp13cnQR2Z/eoqoq27dvp7S0lPvvv5+goCC2PKTw/1b/g0qbl4nD0nj89ikXVZZ3LQaMQlyPgs0G/mfxYFauOYYK//zw9qIAs02nMelUQE9kZCRNTU189dVXOJ1O+vfvz7Rp01AUhdLSUj766CPq6uqIikuiwhhPuzGEEanDuG12MsFmA6qq4nA4aGpq0jJZTU1NFBcXaz97vd5uywjDwsKwWCzfGGzJWkohxOVwJeZW1dXVKHVf8eqCaby07RC60FgCXK1kJJooOvgpkwfeS3JyMsnJyTQ1NXHw4EFeeeUVUlNTmTBhAn369DlnjCwrK2PTpk0MiIzBaLDg8XRR1qOqV3xuKL4m3fyuUWdPKMx6MBj0V3xCoaoqH374IdXV1dx7770EBAQAUFBQwJ49eygvLyc5OZnly5df1HGlA5kQvWfr1q3sPfgFX3nCaVHNWBUnffUNGBUfBoOB6Oho7HY7brebwYMHU1hYiM/nQ6fT4fV6GTVqFKNHj+ZkTTsPvfMFPq+K09dRJqhTFH58g5nZo/qRnJx83rKU9vZ2LcjyB1hn/uxyubBard2WESqmQDJ+95mMC0KIy+LsuVWAQUGv1/Xa3Gr9+vUkJyfjdDrZu3cvM2fO5PTp0zQ1NWG1WklISGDWrFmdnuNyuTh69Cj79+/HZDIxYcIEhg0bBsCOHTs4evQoc+fOZejQoTzzv+/yTqlVu3AWYFBQFIVbAgr4/sLpjBgx4pJfg7h48ql0jRqXGsGBX81iy7EK9p4oIMDTyv+5/+YrOpHw+Xxs3ryZhoYGli9f3mkS1draSkhICFFRUZSWlqKq6kWV9wSbDbz5wHgeePMALpcbt6rr1OJTJkxCXLhTp05hwMtAQx06nQ5VVfFfJ/P5fDQ2NjJixAhOnjxJYWEh4eHhDB48mCNHjtDW1kZpaSl7Dhzm7ZZBuHxfl5B40IMKzx1xo2vZTX1VBdHR0aSkpJCSkkJycjIBAQF4vV7tKzAwELPZTFRUlHabz+fD6/XS3t5Oa2ur9lVeXk5eXp62GPu4PQSnOxk4t+ugrKUUQlyqM+dWnx48TkpEIE8smtorc47KykpKS0tZtGgR27dvx2AwkJaWxp49ewgJCWH48OHs3LmT+Ph4LViCjlK+cePGMXbsWPLz89m3bx8fffQRiqKQmJjID37wAywWS8fY7WngLnMhtUF9CIpJQe9o4D++fyu2phtYs2YNDQ0NWsWBuHJkxnoNs5gN3DWuD9OSjGzYsOGKB1IbN27EZrNx7733YjKZOt3f2tpKcHAwOp2O5uZmqquriYuLu6jfMS41gh0/yuAXL6xj8Lip9P3n2ggJpIS4cDabDZvNhl6vR1VV9Ho9brdbu98fyOTk5HDLLbewbds2DAYDO3bsYNKkScTFxbF3716+8oTTVZcoAK/Xx4EqL0NMJurq6qiurmbv3r3a/YqioNfrMRqN6PX6Tl86na7b24xGI5GRkURHR6PX6ykoUvCUd/06ZS2lEN89l2P9pH9u1Y9qqqqqem3OkZWVxZQpUzAajdhsNkwmE5GRkeh0OkaPHs3+/ftZunQp7777LtHR0cTExHR6vqIo9O3bl+LiYiorK4mJiaGkpIRPPvmECRMmkJmZSUJCAjabjXERbpbfPZE///nP6HxuYmNjefDBB1m7di0NDQ0sXLgQg0HmUleK/KWvAzExMTQ1NeF0Oq9INy2v18vf//533G43y5Yt67JdcmtrKxEREQQGBlJZWUlhYeFFB1MANRWl3DLQyt1zh/TGqQvxnXPkyBEURcFsNuNyubQrkgEBAbS3twNowdWOHTt44IEH2LhxIwkJCRQUFHDixAkWLlzIqT0VuL6s6fJ3uNHR6NYTkxRDbGws8fHxxMfHExYWRnV1NcXFxRQXF1NSUoLFYtEyV/6mFhfC4/Fw9G+7MJS3dmTEzmJUfMQEydVWIb4rLvf6yaioKE6cONELZwoVFRVUVFSwZMkSoOMil9lsRlEU+vXrh8fT0QSoubmZOXPmsG7dOh5++GFt6QRAeXk5mzZtIioqikcffZTg4GDsdjuHDx/m7bffxu12Ex4ejtVqxWQyERAQQFpaGidPnmTs2LGEhISwYsUKNmzYwDvvvMPSpUsJCpL151eC/umnn376ap+EOD+dTkd+fj4RERHddnzpLR6Ph7/97W8ALF26tNt9Z7788kuSkpKwWCyUlpbicDh6VKu7f/9+EhMTSUpKuqTzFuK7asuWLej1enw+n1bep6oqYWFh2O12rezPaDTicDgoLi5mxYoVVFRUUFVVRXp6Otu3b6ddb+F0i4LHd+7vMOBlWp8gbhzVH4/HQ2FhIXv27GHPnj3U1tZiMplIS0tjypQpDBw4EI/HQ35+Pp9++imHDx+mqqqK9vZ2zGYzAQEBnUpQVFXlxIkTrF+/HqvOyd6GQHxddKvS46NP5U6Meh2JiYnodOc+Rgjx7WBzeljwwi7anF7c3o6SZbdXxe1V2XqikgcyUjEZLm0MMBgM7Nq1i0mTJl3y+W7evJnRo0eTnJwMwO7duwkODmbUqFF4PB5OnTpFRkYGmZmZzJ8/n4aGBo4cOcLw4cPxer189tlnfPLJJ9x0003MmDFDu3BuNBpJSUkhLy+Pfv36UVBQgNvtRqfTkZ6ejtls5tChQ4wePRoAvV7PsGHDqK2t5eOPP6Z///4SUF0Bkpm6TiQmJlJeXk6/fv169bhnptCTwwNoz92DNcjM4sWL0evPvTqsPc9mIzg4mMDAQJxOJ42NjdqC9otRWFjI+PHjL/VlCPGd1N7eTn19PdHR0TQ0NGA0GnG5XISEhGitzFVVJSgoCLvdTmpqKqWlpaxevZoVK1Zw8uRJPvroI6ZPn07uV8V4PWa6Wq+kAFH2Yj7+OJsRI0Ywb948QkNDaWtro7KykqqqKnJzc8nKyqK1tZWYmBji4uKYOXMmAQEB2Gw28vPz+eSTT9Dr9VrWSq/Xc+DAARRFYdKkSXz00UfMNtXxsWvAOZ0J745vQNfkZs+ePRw7dowFCxZoExchxLfLldiLMjg4GLfbjcPhIDAwsMfHKSsro7q6mqVLl2q32e12YmNjAejbty8ffPABd955J5mZmeTm5jJnzhzefvttNm/eTFlZGZGRkaxcuZLg4OBzjl9UVKQtuTh8+DAjR44kLy+P5557jhEjRlBXV0dDQwMRER3ZOkVRmDNnDpGRkbzxxhvceeedpKSk9Pj1iW8mwdR1IjExkWPHjvXqMc9OoRsVFZ0SxtsPTjxvIAVfN6CwWq00NzcTHh5OVVUVCQkX3pqzubkZp9N5Tt2wEOLCnDp1CoC2tjYt+9Te3k6fPn04efIkw4YN4+TJk7hcLnQ6HUVFRUydOpXPP/+ctWvXsmzZMuLj41m3bh1tbW3MNhm6DGTmBhZia2rCaDTS1NTEiy++yLBhw5gyZQr9+/enf//+2jk5nU6qqqqorKykrKyMqqoq6uvriYiIIC0tTdvLKjMzk7a2NkwmEzExMWzfvh2AJLOTu5SjFHojOnUmDGk3M2riRA4cOIDNZmPdunUMGjSIWbNmXdJESAhx7bkSe1EqikJUVBR1dXWXdGEmMzOTadOmaWuUvF4vbrdbywgFBQURFRVFeXk506ZNIysri7S0NOLi4jh48CATJkxgzpw53TaNyMrKYurUqeTl5aHX64mLi8Pr9TJ9+nQOHDiAy+Vi9erVLFy4sFNr9TFjxhAWFsb69eu5+eabSU9P7/FrFOcndRLXiaSkJMrLy+mtTvY2p4cH3jxAm9OrDVhuVcHpU/j+24doc3q6fa6qqlowZTAYCAkJIT4+nsLCwos6h8LCQvr27StdZ4TooS+//JKQkBCcTidWqxWj0YiqqgwePBhVVQkPD9eaUsTGxqLT6dizZw9z5syhsLCQ999/n8jISOLi4nC5XMTqbNxlPsoEQykj9JVMMJRyl/kokWoTaWlpqKrK6dOntYz0yy+/zKZNm2hoaNDOyWw2k5KSwsSJE7n99ttZuXIlTz75JLfddhsxMTGcOnWKY8eOYbfbCQ0NJTw8nLKyMm1sc7vdGBUfAw11jDWWM9BQh0mnau2D77jjDm2yYrPZ+Mtf/sKRI0d6bWwUQlx9/r0ou9Kbe1FGRUVRX1/f4+eXlJRQX1/PqFGjtNv8F4nOXOOelpZGQUEBgwcPxuVy8Ze//IXm5mbuvvtujh071u05FBUV0dzcTHp6Ojk5OYSGhnaMkUYjoaGhzJ49m/vuuw+Hw8EHH3zAyy+/zNGjR/F4PNrvXbFiBTt27CAzM1PGyctEgqnrhNVqRVEUmpube+V4F5JC7057ezsGg0FbTxUZGUloaChFRUUXdQ5FRUWkpqZe1HOEEB1cLhfl5eUkJSURFhamLUoGSE1NRVEU8vPzSUpKwu1209DQgNVqxefzceDAgY7SvtxcXn/9dSoqKvD5OhZLnR3IGJWO2wsKCpg+fbrW6CI3N5eQkBBcLhevvvoqGzZsoK6urstz9Xq95ObmsmfPHgYOHMjPfvYz/u3f/o0xY8ZQW1uLXq/HYDBo59DdMcLDw9m9ezcPPfQQAQEBFBYWMnjwYPbv389bb71FbW2t9nib08PagyX8v205rD1Ygu08F4iEENeWBekJdHedtbc22IWO+Ut349aF8GelzqzmaW1txWg0dlpznpaWRn5+Pjt27KCtrQ2dTsfSpUsZOHAgM2fOZN26dTidznOOn5WVxbRp09DpdJSXl9OnTx9cLlenDst9+vQhKCiIW2+9lZkzZ3L8+HGee+45srKyaGtrIyYmhgcffJD8/Hw2bNigBVqi90gw1Usu9we3oigkJSVRVlbWK8e7lBS6PyvlFxERgdFopLS0FK+362OeTVVVLTMlhLh4BQUF6HQ6goODsVgshIaGYjabUVUVi8WCyWSiurqaGTNm4PP5CAgIwGq1YjAYqK+vx+VykZaWRnl5Oa2trQDfuOZx586dLFmyBFVVSUlJoaWlhaqqKgIDA3G5XLzxxhv8/e9/p6amoyug1+vl4MGDvPDCCzQ1NfEv//IvzJ49m8DAQA4ePMiuXbuwWCwEBAQwbtw47fecna32X00tLy+noqKCt956i+HDh2O1WsnOziY4OJgBAwbw5ptv8umnn7I3v4YJz37CM1uyeXHnVzyzJZsJz37CwaIGhBDXPv9elBazXstQBRgULGZ9r+5FeSmZqaKiIpqams4pn/MHU2cGPHq9nurqaioqKnj00UcxGAwUFBQAHeV4ffr0YdOmTZ0yR8XFxVpWSlVVWlpaGDZsmJaZ8lMUhfT0dI4fP86AAQNYvnw59913Hy0tLbzwwgts2rQJm83GihUr8Hg8rFq1CrtdtpnoTRJM9YKDRQ1X5IM7MTGx14Kp+BCDdsX5bN+UQvc3n/CLjIyktbWVsLAwKisrL+j3NzQ0oKqqtmBSCHFx/Gso29vbMZlMhISEdFo75C/r8wdXNpuNhoYGBg4ciNFoZPfu3ZSUlGC1WrUrlf4mMv73tz+o8f/rdrv58MMPeeCBB6irq9M698XExNDe3o5er8flcvH222/z2muv8fzzz5OTk8M999zDokWLCAsLQ1VVsrKyyMrKIjAwEI/Hwx133MG+ffswGo0oitJpQmE0GjEYDNr6A6vVSltbG3v37qW5uRmHw0FBQQE7d+5k4sSJVNQ2cP/r+zuVMNtdXtqc3n+WNstVWSGuB/4Ndn+9YCiLBwczP87BgV/N6pW26H49zUypqkpmZibTp08/Z425f98/k8mkdepbs2YNsbGxjBo1CqvVqq2d8o91c+fOpaWlhd27d2vH8a+V0ul0Wil0v379zslMAaSnp5Odna2N5TExMSxcuJDHHnuMiIgIVq9ezerVq0lPTycpKYnXXnuN+vp6yeD3EgmmLlFXa48u1we3f93UpWptbaXhy4/Rd3MV+ptS6GdnpvxXdlJTUy943ZSslxKi5/ytx9PS0qiurkan02G1WrFYLNpj+vfvj9frJT8/n4yMDHw+H8HBwTQ2Nmq1/E6nE4fD0enYPp9PW3/lv/rpX3dlNptpampi3bp1LFu2rNPCbYfDwZw5c3C5XNjtdmpqanA6nRiNRq18T1VVPvroIw4dOoTJZEKn03HTTTdx8uRJfD4fiqKcs9YgJCQEn89HaGgoERERtLW1sWzZMoKCgrj99tuZOXOmVm742Wefsf1kTbfrAr6phFkIcW3xb7D77N0TiW49jeJ19erxIyMjaWxsvOCqGr/CwkJsNluXW8K0trai1+ux2+28/PLLVFdXs3LlSkaPHq1lo4YOHc7DWisAACAASURBVIrT6eSrr74COtq0L126lAMHDpCfn09xcTGNjY1a1uv48eMEBwej0+nOyUwBhIaGEhsbS15eXqfbg4KCmDp1Ko8//jhjxoxh9+7d5OTkEB8fz3++tIbx//djyeD3AgmmLtGlrD26WAkJCVRXV1/0m/5Mzc3NvPnmm4wdNYJVD2VgMesJMHQENGY9mHXqN6bQW1tbz8lM+YOpC103VVRUJCV+QvRQYWEhRqORQYMGUVdXh9vtxmq1dnpf9u3bF51OR15eHuPGjUNRFK28LzAwEJ1Oh8/n0/YsOfPCRlhYGIqiaN2poCMQcjqdBAQEUF9fz2uvvcYNN9yAy+Wivb2dQYMGsXHjRqqqqpgxYwZDhgxBVTsaR6xdu5Z33nmHNWvWkJeXh06n07r7DRo0iMOHDxMUFISqqrjd7k4bWUZERODz+WhoaKCtrQ1Ae02HDh1i8uTJ/PjHP+aWW24hMDAQuyG4y01/ofe6gAkhriyz2cyAAQM4efJkrx7XYDBgtVppamq64OecmZXqqjS6paWFtrY29u3bx6RJk7j77rsJCQkhLS2Nr776ClVV0el052SnrFYrS5YsYePGjXzyySdMnTpVy3oVFxcTHx8PdFQInJ2Zgo7sVHddn/V6PcOHD+ehhx5i8eLFtHthS2sf7G6fZPB7gQRTl+hKtO/0M5lMWgvynmhsbOwIpMaOZerUqVoK/fEpiUwKs/F/5g3hfusp0qznP47NZuuUmbJardjtduLj4ykrK/vGYM+/Xqq3m09Iulp8V2RnZ+NyuQgLCyMsLAybzdYpmPL5fMTFxWl19k6nk8GDB2sb+zY0NGgfzECnjBZ0rHXy+Xxa6Z5/U2CdTqf97PF42LdvH06nk9bWVnbt2sWIESMIDQ2loqKC2bNn84Mf/IDY2FitWUZBQQEtLS0kJCTg9Xq55ZZb+OCDD4CvgyZ/qZ8/uPNvVB4cHExycjJJSUl8+eWX3HDDDSiKws6dO2lpacFoNBIREUGQx4aBrseg3uwCJoS4ss4XLFyKiy31KygowOFwMGzYsHPuq6ys1MbnefPmMXLkSG0si4iIQFEU7XcNGzYMu93eqaInJSWF4cOHU1FRwdChQ7Xb6+vrGTRoENDRfOjszBR0ZLuKioq6XA+lqip2u52ysjIaGxspcIehKF2HAJLBv3iyz9Ql8rfv7Cqguhwf3P5Sv8TExIt6Xn19PatWrWLSpEmdNsm1mA0sHBaJoaSF5ZP6scPZkQa+9dZbuz1Wa2srSUlJ2s86nY7w8HAcDgeRkZFax5nu1NbWYjabCQsLu6jXcD5n75kVZNLzmw+zefOB8b1aXy3E1ebz+Th16hRRUVE0NzcTGxtLQUGBtn8TdHzYBgQEEBoaSnt7u9aJLycnh4aGBmJjYzt1vmttbUVRFGJjY6muriY/Px+v16s1vikpKdGCqLa2NpKTk6msrKSlpYWmpiatIUV+fj5333032dnZvPTSS9x2223ceOONVFZW0tjYSHt7O1arldzcXG3vvLy8PKxWK1VVVdpGwG63WwvY/FdtAwICCAoK0taNbtq0iejoaHbt2sXevXsZOHAgSUlJ9C07yAFP13vGeD0e5g6Lvcz/hYQQl0O/fv20rRh6c721f68pf7ByPv6s1IwZMzplpbxeLzt37uTQoUMEBgZiNpsJDQ3t9FxFUejXrx8FBQVER0ej0+mYOnUqO3fupF+/ftrjampqSEhIYOvWrSxatIimpia8Xq8WXHWXmTKZTKSmppKVlUVsbCyNjY00NDRo/0JHQBcREUFRnRGX2nUIIBn8iyeZqUu0ID0Bn6/rq6C92b7TrydNKGpra3nrrbeYOnVqp0DKz79IHWDixImcOnXqvCnvsxtQQOdSv29aN9XbXfyu5Lo1Ia42f2AzePBgqqqqiI6O1jaI9L8vXa6OdQUpKSk4nU7y8/O1K5kmkwmPx4Pb7e6UAVJVVXu+f5Kgqqp2YcTfXCI0NJTS0lI8Hg8ul4u4uDh++MMfYjAY0Ov1rFq1ir59+7Jo0SI2btzI888/r5UU3nHHHTgcDgICAnA6nWzZsgWA6OhoAgICUFUVn8+Hy+XSylv8V2H9V3D9pX4FBQWoqsqsWbMwm83U1NSwf/9+jIqP2abTGPFqGSoDXox4mWPOZ/3qVdoxhBDXD71ez7Bhwzh+/HivHvdiMlOnT5/G7XZ3yhpVVVXxyiuvUFlZySOPPKJl9rsKePylfn4jRoygtbVVWyJRWlpKY2Mj9957L7W1tezbt48TJ05gNpsJDAzE6/Vit9upqqriwIEDbN++nTVr1vCXv/yF3/72txQXF3PkyBFKSkowGAwMHjyY+fPn86Mf/Ygnn3ySBQsW4HA4UNpqJYPfiySYukRf5WYz31KMES+Bxo4/pwEvFlPvtu/0u9gmFNXV1bz99tvcdNNNjBkzpsvHKIqiLRAPDAzUFil25+wGFHBx66Z6u8TvSq5bE+Jqy8nJQVVVBgwYQHV1NcHBwdo+dFZrR42uf7+Sfv36odfryc/PZ+3atYwYMQK32019fT2KoqDX67XnAFo3zsWLF2u3ORwOdDodgYGBGAwGrYTEX45XXl7O8ePHueeee7jpppvQ6XSsW7eOkpISAgICUBSF4uJiZs2axY4dO5g3bx4/+clPSEtL05pO+BdzNzc3k5iYiMfj0dZrlZeX4/P5aGxsxG63k5KSQlpaGgaDAZvNhsFgoLW1lZqaGoxGI1artcvNh59IrSHV4qW+vl5bFC6EuL74S/16c/PZC22PfmZWSlEUvF4vmZmZrFq1iokTJ7Js2TKCg4Ox2+14vd4ug6l+/fpRXFysdd3zZ6eysrKAjg5+GRkZNDU1MWbMGDIzM/n8889RVZXnnnuOZ599ltraWrKzs6mpqcFqtTJq1CiWLFnCz3/+c37+859jMpmYMmUK06dPZ8SIESQmJmK323nvvfdYu3YtFouFNGMzRkPX89PLkQj4tpMyv0uQl5fHP/7xD6YPHUiGT8GbOIyiejv1Rae4eUjwZSkvi4qKoq2tDbvdrrUK7k5lZSXvvvsut9xyC8OHD+/2cWdmpqAjO/XCCy8wderUc9LUqqp2G0wVFxczYcIE3nvvvU6ToTP5fD6Ki4tZsGDBhbzcC3Il160JcTWpqkp2djY+n4/4+HiqqqoYM2aMFhD5W6PbbDaio6NJTExEVVU8Hg9hYWHMnz+f48ePYzAY8Hq9eDwe0tPT2bVrF4AWKA0aNIjg4GBsNhtHjhzBYDBoG4YrisLgwYMpKCggLi6OyspKMjMz6dOnDyNGjKB///68//77ZGZmEhoais/nIyMjg82bN9OnTx9GjhwJdASFer2eIUOGcPLkSW0cqqysRFVVLXvkdrtJS0vj9OnTDBkyhISEBLKyshg2bBhHjx4lJycH6Lhq7e9WCF9vPuwXYEii1e0mMjISm83GW2+9xW233XZBpT1CiGtDQkKCdhHnzOUGl8Jf5tcVm9PDlmMVFNW1YXa3oveiVQVs2rSJkJAQHnnkEW0MttlsBAYGdluKFxgYSFRUFPn5+QQHB2tleBUVFTz33HM0NzdTVFSkleOlpaWRk5PDwIEDufnmmwkNDeWFF15g8eLF3ZY6Dh8+nGPHjjFz5kyam5vJzMwkLy+PjIwMrFYreXl5rHzwAXQbPuX1rwIABbeqI8ikR1G4LImAbzv5a/VQSUkJmzZt4vbbb2fDhg088sgjWuBRUWFl3bp1zJiScc7+A5dKp9ORkJBAeXk5AwYM6PZxZWVlrF27lvnz5zNkyJDzHvPsfV0sFgujR49mz549zJs3r9NjnU4nOp3unEEiMjKSL774ArPZTExMDGVlZV1mn6qqqggJCTmnTPBSXOl1a0JcLRUVFaiqSv/+/bHZbFqbXP8Hub88z1+mGx4err234+PjOXnyZEfHu38GTREREWRnZ6MoCgEBAVqbdH9DC6/XS3t7u9ZUJjY2lrq6uk6tyxMTEykvL+edd97h8ccfx263U11dzaBBg8jNzSUoKAiXy0V8fDwOh4N169bRr18/WltbCQ0N1br3+UsP/Vk1f2mgxWJh4sSJ5OXlkZSURGFhIcHBwRw9elR7XHh4ODExMVpg1ZWamhrGjh3L3r17SUlJobW1lS1btlBbW8vkyZNlmwYhrgOKojBixAiOHTvWa8GUxWLB5/Odc5H67LXYRsWHQZ9E4KYdNJ0+zOzZszs1mICvK3caGhpwOBzU1dWds3aptraW9957j9jYWMLDwwkPD2fIkCHk5OQwc+bMTuNRe3s7OTk5NDU1YbVa0ev13QZqfiNHjmT16tW4XC6OHTvGmDFjWLlyJdu3b6e1tZUHH3ywY01qZS6v33ozqzKzSRg0kiFJkSxIT5BAqgekzK8HqqurWb9+PYsXL+arr75i+PDhnTI4CQkJRERE9HoLT79vWjdVUlLCmjVruPXWW78xkILOZX5+kyZN4vjx47S2tna6vausFHxdc6yq6nnXTV2OLn4L0hPobh7k8/kkXS2+NXJycrQWwVVVVcTGxtLa2tqpVA86WvMC2p4mOp2O/Px8Pv30U/r37w90vO9TU1Opr68/p4Peu+++S1tbG+3t7SiKok0wFEUhODiYkydPMmbMGJqbmxk5ciTBwcF4vV6ef/553n77bcaNG0dZWRl33nknOp2OQ4cO0b9/f77//e8TEhLCtm3btO5SeXl5OJ1OrYxw1qxZANqYVF1drS2erqmpITc3VyvJiYqKwufzkZycTFVVlbYurKusvc/n48SJE4wbN47i4mLMZrP2WjZs2KCV3Qghrm3p6emcPHnykraJOZOiKOdkp7pai+1WdTg8Kn84aOe+7z3EiBEjaGho4PTp0+zfv5/t27ezZcsWbQuKVatWkZmZSWlpKSaTiSFDhrBgwQKWLl1KTEwMDz/8MEuWLOGmm27ihhtuwO12k5SU1Ck4O3XqFDqdjqioKD788ENtu4muuvlBxwXvnJwcbDYbTU1NPProo0ycOJH169ej0+m4//77CQoKIisrC51Ox+TxYxlibuTHM/tx17g+Ekj1kARTF6mxsZF3332XuXPnEh0dzZEjR5g6deo5j8vIyGDv3r29Wtfrd751U4WFhaxbt47FixczcODACzre2WV+0NGGeOTIkXz++eedbu+q+QR8PXlxOBznXTd1OfaXCjYbeGnZyE4LzgONOoJMOuZbiqgoubCNhIW4lvlL/FpbW+nfvz9VVVXExcXR0tJyTjBls9loaGhg48aN2qaSFRUVpKWlkZubq2WwcnJyMBqNeDweRo0ahaqqKIpCdXU17e3t2hjif89WVVXhcDjwer3a1dzMzEwWLlyIyWTC7XbjcrnYt28fCxcuJDIyEp/PR1JSErt27eKPf/wjhw8f1l5PTEwMMTExpKWlaZ3+/PwlLD6fT1tP8MUXXwAde8MEBQVht9vR6/Xk5ubS0tLSaR3C2bxeL5MmTeLEiROkpKTQ3NyM3W7XXv+bb755zsUjIUTPXM6tSsLDw4mMjNQuFvWGs4Opb1qL/f+9soFnn32Wd999l/3791NXV0doaCiJiYn07dsXg8HAT3/6U773ve9x2223MW3aNIYPH05iYiJpaWmd9s0D2LVrF8OHDz9nvfqpU6cIDw/ntttuo6KigkOHDnW5aa/H42Hv3r08//zzNDU1MWnSJAIDA2lvb+e1116jb9++LF68WCvxPnToEOnp6eh0um6XZYgLJ8HURbDZbKxatYqpU6cybNgwdu3axejRo7vM1AwYMAC3233Bm9heDH9ZTWu7u9NgdSw7j/fee48777yTtLS0Cz5eV5kpgMmTJ3PkyBGt3TJ0n5lSFEVrQtGnTx8qKytxu92dHuP1eikpKen1zBSApzKXnw9s5NZEJ2ODGvj5TX05+NRsnrh3obaRqBDXs9raWlwuF9HR0QQFBVFdXU1sbGyXwVRraytr165l+vTpDB8+XNuU1+l0amuL/CXI/ve/v1W6oijodDpcLpf2vDlz5mgf3qqqEhYWxr59+5g+fToGg4FDhw7h8/mwWq14PB6cTieFhYW8/vrrqKqKzWYjISEBVVVRVRW9Xs+8efOora2lvr4es9lMREQEycnJVFRUaM0xAK3RhJ9/rPH/Lfr374/D4SAqKkrrSOifpJwdVOn1eu68805qamrw+XzExMRQXV2NzWajf//+vPrqq1RUSMMaIS7FwaIGJjz7Cc9syebFnV/xzJZsJjz7CQeLGnrtd/T2nlP++Yvf+dZiu1UFU0Qi9913H48++ijLly9n/vz5ZGRkYLFYiIiIOG8Znl6v71TBU1ZWRk1NDQsWLKCurq5T5VFFRQUpKSmYTCbuuusuMjMz0ev12tjm8/n48ssvef755ykuLua+++5j0aJFTJgwgezsbN544w2mTZvGzJkztYzXkSNH8Hq9TJ8+veP1uN0STF0iCaYuUHt7O++88w4jR45k3LhxNDU1cfLkSSZPntzl4xVF0bJTvS04OJg6JZQJv/16sHr6gxPcseoUQ6cvvOhgpavMFEBISAgjRozo9BpaW1u7Xe/kH4xMJhNxcXGUlpZ2ur+8vJyIiAhtkXxvcTqdHDx4kOgwK3eMTuCmKBvzB4djMRtITk5m/vz5rFmzRit9EuJ6lJOTg9Vq1dZKni8zVVpaSlJSEmPHjiU+Ph6n04nFYuH06dPo9XpUVcVgMNDe3o7L5cJgMFBQUIDJZEKn03HDDTegqip5eXkoikJjYyOjRo0COrr4NTU1YbfbCQ8Px+12c/r0aSZOnEhra6t25XP//v2YzWZWrFjBj370Ix588EGSk7/e/8nf9EJVVXJycmhvbycxMZGGhgYMBoPW3t3j8XQqe9HpdFRXV6PX6ykvLyc3N1fLpgEsWbKky/HMbDZz8uRJUlNTWbFiBTqdjuLiYmbMmEFFRQWnT59mzpw5vPvuu5etRFuIb7srtVXJ0KFDyc/P19ZYXqqzM1P+tdhdMeBF72hg27Zt/P73v+eVV15h69atHD16VNtH83zBFKDtNwUdHfymTp2KyWRi8uTJ7Ny5E+i4AN3a2qq1YY+IiODmm2/G6/XS0tJCdnY2//u//8vRo0dZsmQJd999N7GxHfvoFRQU4PF4GDNmjDZ2Q8d4m5WVRWJiova54fF4ui0bFBdGgqkL4Ha7WbNmDSkpKUybNg2AnTt3MmbMGCwWS7fPS09Pp6KiotPmmL3B5vTwQXMSdrdPG6zaPSpu9Pxia9FFD1bdZaagIzv1xRdfaAvWbTZbl5kp6Hij+6/sdLVuqrf3l/I7cOAAaWlpVFVVkZqaitls7jTADh06lAkTJrB69epeG3iFuNJycnKw2+0MGDAAl8tFS0sLUVFRXQZTbrebefPmoSiK1r3P4XCgqirh4eGMGzeOtLQ0LeiIi4tDp9Ph9XoZMGAARUVF2jooj8dDXV0daWlpWtmIXq9HURQ2btyo7Ve1e/duYmJitAY1/gzS1q1bsdls1NXVae3S/WV6Ho8Hi8WC2WzWJgf+Ujt/90DoKCPOyMgAOq7qGgwGFEXRyvr8EwGz2Ux7eztw7rgWEhJCWVmZlpF65JFHMJlM7Nu3j/vvv5+amhoyMzO55557+Pjjj8nMzLwsZdpCfJtdqa1KgoKCSE1NPW/TmYtxdjB1vrXYJqORGyI7Oo5OmTKFG2+8kfDwcE6fPk1eXh579uyhra2Nzz77jNzc3E6Zdb+0tDQKCgq0rJQ/4Bk9ejTV1dWcLirlrx8d4ZA7kX21eq1MMjk5GaPRyAsvvMDOnTu5+eabWbFihXahSlVVduzYQVZWFjfeeOM5VTkFBQXY7XYtK+Vfd9ZVabS4cPLX+wY+n4+///3vhIaGcsstt6AoCg0NDZw6dYpJkyad97lGo5GxY8eyb9++Xj2nLccq6O5d3pPBqrvMFEBoaCjDhg3TslPdlflB5zR5V+umLsd6KZfLxf79+xk7dizNzc3Ex8efE0xBxxq2pKQk/va3v/XaolUhrpSGhgZaW1txuVwkJCRQXV1NdHQ0Pp9PyzpBx4aS0NGdyr//UlZWFn369MHj8aCqKlVVVTQ0NJCbmwt0vP8dDgdGoxGv10v//v2JjIwkIiJCywgdP36clJQUXC4XPp9P25Syvb2d/v37a90Ap0yZwpAhQ/B4POj1epxOJ/369ePll19mw4YNAAQEBPDAAw9QU1NDYGAg4eHhWhdBs9lMW1tbpxJhnU7HihUrtIz2lClTOjX9URRFy2L5M2KAtv7Lz1++6C/jCwkJ4dFHH9U2D165ciVtbW2sXbuWu+++m4KCAt577z3t2EKIb3YltyrpzVK/8PBwmpubtflBsNnwzxbhei1DZVJUjIqPp2+M4Xv33cPy5cupra3l/fffx+FwMHfuXGJiYpg5c6Y2Tzp48CB/+ctf+POf/8x7773H559/TklJCSEhIeh0Oj7++GOmTJmildkZDAYiB41nwStHeX5PJce98fzfbaeY8OwnfHjglLb1TFRUFMnJydr4Cx0Zpg0bNlBQUMBDDz3E+PHjKSkp6RTM7dixg4CAAPr166c9R0r8Lp0EU2c4e8Fka7ubDz74AK/Xy2233ab9D5uVlcWECRMuqFxt3LhxZGdnd1poeKmK6tpwdhMP2F1evjhddlETgPNlpqBj8nL48GEcDke3DSig88Z3ycnJVFdXa+fhdrspLy+nT58+F3xeF+LQoUOkpKRgs9lITk5Gp9N1GUwpiqJdqd+6datccRbXlZycHKKiorQPTn8nv5aWFkJCQlAUhfr6ejZu3Njp/fyPf/yDMWPGaKVyBoNBa6sbFhamtR/3B0bQkRGaN28elZWVxMXFAVBcXMxLL72kHdefCVMUhdzcXEaMGIFer2f79u3k5uaSmJjI4MGDqampwW63M2nSJCoqKtDr9UyfPp26ujoSExOx2Ww4nU5iY2NRVVUL8M4UFBTEsWPHOHjwIAB1dXXo9Xqqq6tZsmRJp8d6PB4KCwu1sfrMCz8OhwOfz0d+fn6nY3//+9+noaGBdevW8eCDD6IoCq+//jozZ87EaDTyxhtvdMqSCSG6d77yuN7eqmTgwIFUVVX1Sgm/wWAgNDRU6xwKMC41ggO/msWvFwxlQnATM6x1bH14JCWHd9DS0kJsbCx33HEHDz30EHa7nRdeeIHa2lp0Oh2hoaHMnDmT5cuX84tf/ILly5czYMAAmpqa+Oijj/jDH/5Ae3s7ZWVlKIqireO0OT38bn8rTp+Cy9cxjvnLJJ/YmEd8cipxcXHcf//9FBYW8uWXX3Y8xm5n1apVeL1eVqxYgcViwWQyMWjQIE6cOAF07D1aU1PDpEmTOgVgUuJ36SSY+qeuFkyO+89/8GVZC3feeae2GLq2tpb8/HwmTpx4Qce1WCwMHTpUmwj0htQoC4HGrgcrsx4ctSX86U9/YtWqVezdu1drWd6d82WmAMLCwhg0aBD79u07b2YqIiKChoYGVFXFaDSSkJBASUkJ0LGGIzY2ttP+NJfK7Xazd+9epk2bRlFRkbZWzGQydVnOp9PpWLJkCRUVFed0KRTiWnbq1Cl8Pp/W1ry6urrTeimn08m6deu48cYbte5MX331FaWlpQwfPpzy8nJUVcXr9RIfH8/EiROx2WxaS/TQ0FB0Oh06nY7Dhw9z6tQpAgMDqays1D50vV4vEyZM0NZa+QMgf4OJuLg4HA4HKSkpLF26lKKiIoYOHcrhw4fZt2+ftpbq5MmTHDp0iOjoaAYPHkxDQwNVVVWdMklnLrD275Xy4IMPYjKZKC4u5osvvkCn03UqYVm4cKF2hdU/np2ZhbbZbJjN5nMCtpiYGG6++WYcDgfvvPMOd911FxaLhTVr1pCQkMDw4cN57bXXzrsdhRCiw/nK4xSFXt2qxGAwMHjwYI4fP94rxzvzgrCfxWzgrnF9WJii0sdTRkpiHBMmTGDDhg3aOBMREcGCBQtYuXIlbrebzz77jPr6+k5NfaKiohg5ciTz5s3j4Ycf5sknn8RisRAYGEhJSQnr1q3jd7/7HU+9+B4eT9dXyw0GE0VqJCaTiYCAAO666y4++eQTsrOzee2110hKSmLJkiWdgqORI0dq2Tv/OtXRo0dr90tmqndIMEX3CybbvfBebQxu9es/U1ZWFhkZGRcVFGRkZGjtLHvDgvQEuitv1et0PLtyCT/5yU8YO3YsdXV1rFq1iv/5n/9hy5Yt5ObmnpO1+qbMFMDUqVM5ePCgdiW8KyaTicDAQO0q7pnrpi5Hid8XX3xBYmIisbGxFBcXa8GU2WzuNjNnNptZtmwZBw4ckEXm4rrQ0tJCXV0dNTU1WjB1ZvOJkJAQNm7cSHJyMmPHjtWCqa1btzJq1CjefPPNTkFKfX29lukKDQ3FZDJRWlqqZajsdjtHjhxh6NChmM1mEhMTAWhra9M2yvV6vdpmu9AR3Pm78JWUlOB0OlmwYAGlpaVYrVZaWloIDAxk7ty5hISEUFJSQklJCeXl5dp7VafTaeWK/pbq0BFMDRw4EKvVqpXiREZGEh8fz759+7QJzYgRI7RNPP0Xv/xrPaEjwIqLi6O2tlbLwvmNHTuWhIQEoqOjWbNmjXaeu3btoqamhltuuYU1a9Zor18I0bUuy+N0KgF6/nl7707c09PTey2Y8u+X2RWLxYLVaqWiooLJkyfj8/nOuSir1+sJCgpi9uzZBAYG8tZbb7Fu3bout7KpqanB5XLhdru59dZbeeyxx3j88ccJjEnB2c10zOH2UtrYrjW3iI6OZuLEibz33nuMGTOG2bNnn7P5eGpqKjabjYKCAk6fPs2QIUM6VVVJMNU7JJjiGxZM8vUapKqqKoqKihg/fvxFHT8qKoqEhIReq+31D1ZmfUcmCjr2VQo0KMyzFOF2dFyBHTJkCAsXLuSJJ55g2bJlREREsH//fv70pz/x9ttv8/nnn1NTU4OiKN9Y9hYREUFaWho+n++8XWq6aUK3nQAAIABJREFUWzfV280nPB4Pe/bsYdq0adjtdm29FNBlmd+ZrFYry5YtY+vWred0HBTiWnPq1Cltoh8UFITP56OmpkYr82tpacFmszF37lyg4wPd4/HgcDg4cuSI9p41mUz4fD7CwsK0LQ+amppwu934fD7tA/Whhx6ipaWFtLQ0wsPDtc55/lJAn8+n1ewrikJsbCw2mw2fz0d4eDjR0dFs27aNgQMH0rdvX62hhM1mY8iQIQQEBBAcHEx9fb1WnuPPRPmDnDPLqgP+f/beOzrK+0z//jzTpBn1XkZCBTUESCBASIDpxQWwZTvGGOOCE8fZ3dib5JctOftudpOzvz3v5k2ydpL12o4dHGywMU2AMUZ0JEQVRUhCEqgX1PuMpj7vH9rnGw0aYZqzdjzXOTkOU555ZjTPd773fd3XdXl7U1VVxSeffCK0VevXrxfnDSPsUnl5ubhfycFSik8Fzc3NeHt7U1NT43K7JEmsWrWK1tZW5s6dS35+PnPmzEGr1dLR0cHx48fJy8vj2LFjHDx48AubTx548E3G6PG47y2YyE8eTGG9XwWJfvdvvF6RZWypMHOuW0dN470bW9xsQjEaer1emNioVCry8vI4efIkra2t4jGjJ3eMRiOvvvoq8fHxbN26lT/+8Y/U1NSIvZbi4BcWFib2IQaDgelJRvRa91tzg05NhEESzFNpaSmnTp1i8uTJVFdXu12XVCoVU6dO5dChQ6hUqjFTVffLFv3LzBX7OsBTTHH7gsmjR48yb968L7S8dIf7HeI7Kz6YP+YZWW20sCjCxrezAjn3T8v51sIsNm3a5BI+KUkS4eHhzJkzh+eee44f/vCHzJ49m+7ubjZv3sybb76JzWajoqLilkVIRkaGSN8eD6OLqZiYGDo7O+nr66OtrU10je8HLl68SEREBNHR0dTX1wu9FIw/5jcakZGR5OXlsXXrVpcZaQ88+Krh6tWraLVaURh0d3fj4+ODt7c3DQ0NtLe389RTT6HRaOjr6xNFRnZ2NlFRUQQHB5Oeni7Gb3t6eujo6BBi6w0bNri8nkajISkpifLycmRZJj4+HofDIQTTTqdTaBPT09MFm6TValGpVDQ3NwuDi8DAQBwOBwaDAUmS2LhxI8XFxaLoUalUaLVaZFnmlVdeEbbve/bsARB5U8PDw3R2doriq7S0lL6+PlEELly4kJKSEqFXUM5ztImGTqdjeHiYoaEhDh06NCag19fXl5UrV3LmzBnWrFnDsWPHmDp1KkNDQ4SGhrJr1y4WL15MU1MTH3/8sccZ1AMPbgFlPO7vH0zjhQdSWDx/Lp9++ul92QONlmW8dbyGE0MRPPzWhXvOsXI35qdAWXMVlikwMJAHH3yQ7du3i6kjxe3YarWKBtbs2bN59dVXycjI4LPPPuPdd9+lqKiIlpYWsrKyhKufgkemRuEczyRLlpkdrUWr1XL8+HEOHTrE888/T15eHmq1moKCArdPS01NpbW1lcDAQKKjXccs74dm6s+RK/ZVh6eY4vYEk83NzbS0tDBz5sy7e434eLRarXDbuh9Iio/FaGlgw4wQpuj78fHSMHv2bDIzM/nggw9cRlxGw8vLi9TUVFauXMlrr73G2rVrgREzh1/96le8//77FBUV0dbW5rLwabVa9Hr9LfVfo4spjUaD0WjkwoULGI3G+yZydDgcFBYWCpv6uro64uLiXN7f7Wx0kpKSWLhwIR9++OG4n5UHHvxvwmQy0dLSQldXF9FxiaLz16CNob6ljZqaGubNm4dWq6WgoID//u//Ft3J2NhYamtraW9v58KFCyKA18/PD51OR3BwMOHh4RiNRmFTrtPpOHnyJIsWLRLGOe3t7cBILopSmEiSRE1NDTExMdTW1hIWFsbw8DB6vR5vb2+cTif79++nqKgInU6HyWTCz89PaAgcDgeZmZnCFEPRUykap87OTvFaERERpKWl0dHRIcZTjhw5IjYws2fPJiUlhY6ODpxOJ15eXjidTsxms7BQV9634mDV3d3N66+/zieffOJiLpGamkpiYiIXLlzgpZdeoqKigoSEBOrr68nKyuLAgQPExcXh4+PDe++9R09Pz5f9FfDAg78IzJ49G5PJJMwQ7hbuZBkWJww74IU/3FuOlTLm567gMxgMaDQampqaXEaLjUYjn3/+OfCnHE6lmFKgVquZNm0af/VXf8XcuXMpLCxElmWuXLlCQkKCSzF1/lQRzxh70eJAK42s5QadGr1GYoX3dZrrRrSwV69e5aWXXhJxFE888QSVlZVuRx4bGhpQqVRMnDhxzH33Oub358oV+6rDU0zxP4LIcbolimDy6NGjPPDAA3f9pfsyQnyDg4OxWq0EBga6CLEfeOABkpKS+PDDD7+wqJAkibCwMCRJYv369fzoRz8iNzeXvr4+Pv74Y37961+ze/duysvL6e7uFjqF8dgpvX8Qn18bFFRvREwcVVVVdxwkfCtcvnyZ4OBgkasw2nwCbq2ZuhkzZswgLS2Njz/+WGTWeODBVwWVlZXExsZyrU8m7/1yfra3nG3l/ext9mbZb8/Qqw1haGiI3/zmN5jNZmbNmiWe+8EHHyBJEvHx8Wg0Gl544QVkWRbW4waDQbhrKgWYSqWiqqoKWZZJTk5mcHCQrKwsVCoVly9fJiIiArVajcPhEAyPn58fGRkZSJKEzWYjJiaG/v5+MbKn0WhQqVQu9rySJIlA4LS0NFJSUti4cSPXrl1DkiReeeUVnE6nMKUoKysjLCxMvD/Fml2SJAwGA2q1msDAQABx7Wu1Whetgs1mw263C7Zq2rRpVFdX88Ybb7BlyxbBUK9YsULouTZs2EBfXx/h4eGUlJSwYMECamtrGRwcJCMjg/fee4/6+vov68/vgQd/MVCpVKxcuZIDBw4IZvpucCtZhsPpvKccK4VBd9dcVRpOsiy7uAc+9NBDXL9+ncrKSlFMKY6pN0OSJAIDA9FoNDz66KNcvnyZnTt30tnZSW9vL5WVlVy4cIGX85awxusS30qElYk6froynXP/tJwfPfeYyK1at26di35dr9ezZs0a9u/f77IftNvtnDp1CkmS3OZd3Wsx9efKFfuqw1NMAZbBPh4y1KLXSIKh8tZIaCUHb66ZSlfbSPBuVlbWPb3O5MmT6e7udpmxvRdIkoTRaMTpdNLa2iq6JZIksXTpUqKiotiyZcsXGl+MNqDQ6XSkpKTw8MMP8/3vf5/nn3+e8PBwLly4wL59+2hvb8fHx4cjR46M6d6crevmma21fNriLajeHxw1UXrDdN/0Uk6nkxMnTghWymQy0dvbK/RScPvMlIKlS5fi6+tLfn6+xzLdg68UKioq0Oh92TcUP6YTa5VV5PcaqaiuITY2lsrKSoqKioQ5jp+fH7IsYzQamTRpEpGRkWi1WoaHRwTMg4ODTJgwAYvFIqzTLRYL6enpFBQUCF1RWloaMLIZio6OdmHn9Xo92dnZdHZ2otPphFYrMjISi8WC1WplaGgIWZbFeKAygjdnzhxiY2NpbW1l8uTJQtOlVqsJCAgQzFRtbS1Op5Pnn39+jF5VkiQuXLggHAVhJC8GRgouxXYYwGKx0NnZSWZmJhqNhp6eHv7u7/6OpUuX0tDQwO9+9zv++Mc/MjAwQF5eHvv27cNms7Fu3Tp8fHzw9fXl8OHD5ObmEhQUxPnz51mwYAGffPIJ58+f/7K+Ah548BeDmJgYUlNTOXz48B0/V5ZlOjo6KLpcPa4sY9gu31OOlRI07k43ZTAYMJvNxMTEuDh7ent7k5eXx969e+np6RFjfuNN4hw7dox58+aRnJzMc889x1NPPYW3tzf/9V//xfbt21m9evVIuLlGYvWUMB422lgzawJW0wD5+flEREQQGBjIpk2bxkgUIiIieOihh9i6dasoWEtLS9FqtWRmZlJVVTWm0Xyvmqk/Z67YVxnf+GKqv7+fTZs28eyKXM7903IhmPzX1VP49Xw9LZdOcOTIEebPny8cou4WarWa7Ozs+8pOGY1GOjo68Pb2dhk5kSSJRx55hICAALZu3XrLoFpls3FzIaEsLDk5Oaxbt44ZM2YwceJEwsPDhZFFfn4+ZWVldPYO8MLGM5isTmz/87UyWR2YbE72mxPx9g24L+/3ypUr+Pn5CSaqvr6eCRMmuPxt7rSYkiSJxx57jN7e3rta5D3w4MuAxWKhvr6e4mYrSO6Xahmok0NITEwkLS2NyZMni2yokJAQpk+fzqVLl0QREhgYiFqtxmq10t/fz4QJE+ju7hZsjVarxWQyUV5eztKlS1GpVGzevBmVSoXBYKC8vJz09HShT+zs7CQpKYnKykpycnLo6ekhOzt7TMNo8uTJpKSkiDE8jUZDYWEhRqORzs5OPvvsM3JycoRG6r333hOslPIclUrFoUOHXJxUtVotnZ2dfPDBBwwMDAgNFoxoHAIDAwXDpRSNkZGRGAwG6uvraWhoIDc3lx//+MesXLmS9vZ2fve73/H555+TlpZGfn4+arWavLw8kpKS0Gq17N69m9TUVBYuXMiRI0eYM2cOxcXFfPbZZx5jCg88+AIsWbKEq1ev3lbUwNDQEKWlpeTn5/PrX/+azZs34yeb8da4917X4CA28N7iV8YzoTAYDJhMJoxG45hznzBhAllZWVRXV7sd81PQ2tpKc3OzS2PeaDSK3KeIiAi2b99OcXExQUFB+Pn5MTg4SFNTE++99x6zZs1iwoQJZGRkMGPGDN59912uXr3q8hpTpkwhNTWV7du343A4OHnyJMPDw6J5dfPj75WZig/1Gffvcb9zxb7K+EYXU0quyKxZs5g+fbqLYHLNrAk8tGwx7e3tdHR0kJmZeV9ec8aMGVRXV9+3EMiYmBiam5uJioqipcWVTpUkiUcffRSNRsOOHTvG/aFXNAVfxMqYTCMM0xNPPEFqaipZWVlERUVx6dIlfvj6ZqxW9wyYDGwuGhvGeae4mZWCsXopGGHX7iS0GEY2ZU8//TRlZWUiBM8DD/43UV1dTWxsLHWdg1gc7q9NO2qut/Wzf/9+SkpKuHbtmnCGqqurEz/69fX1wu1O0T46nU58fHzo6uoiODhY2J1XVFQwceJEuru7UalU9Pf3ExkZydDQEEuXLmX79u0in0qWZT777DNiY2Px8vLC4XCwfft2UWwp6O7uFra8w8PDPPLII1gsFioqKnA4HCxatEhkn8TGxjJ16lRgpMETFhaGr68vb731FlevXhXXdkZGBn/zN3+Dj4+PcA318vKiv79fiL/7+/vFuqbVagkKChIaLoCdO3cyODiISqVi+vTp/OhHP+LJJ59kcHCQkpISGhoaKCgoEGz/3LlzkSSJrVu3EhgYyPr16zl37hzx8fF0dnby4Ycf3tMIkwce/KVDr9ezfPlyPv300zF7EiV0++DBg7z99tv85je/oaysjOjoaF544QVeffVVfrL+QdRq91tXlUpFsteA2/tuF19UTCl7rpuxYMECbDYbDQ0N4475HT9+nLlz57qwVrIsc+3aNWRZZsOGDbz88ssMDg7S09PD5cuXaW1tZcuWLaxatYrs7GxsNhteXl7MmjWLtWvX8tlnn41xGF22bBkOh4MdO3Zgs9mIiooiJCTEJXNKwb0aUCxJCsThcC+RuN+5Yl9lfGOLKavVyubNm0lKSmLu3LluH6M4VtlstvuSsA0jlHBmZianT5++L8czGo20tLQQGRnpdnxQESYODw+zZ8+ecQum28maGhwcxNfXF4D58+dz8eJFsrKyeOaZZ0ibOc8lj2s07Kgpb+y4w3c2FhUVFXh5eQkROeCSL6XgTpkpBbLGC8PUZfxs92Xe+PT8N87a04OvFioqKggLC8MYoBvXIEeDA3/JIlgcm80mWGhZlmlqamJwcJCCggK2bdtGV1cXw8PDmEwmZFnm5z//OTt37qSqqko8RymgioqKcDgcJCYm0tnZiUajYWBggIGBARITE0XGlLLu7Cs4zDU5grPWaK5ag5F0I2YROp2OlpYWfHx8iI2Nxd/fXwiiu7q6CAkJYdq0afT29gpNQXp6uniPKpWKsLAwYIStU1jooKAgfH19mTdvnjgXs9mMyWQSa0BaWpqLm5+fnx+9vb1EREQQFBREfHw8u3btchmRTk9P57XXXmP9+vX4+vpSXFzMG2+8QX19PbNmzeLRRx8F4MMPP8TpdPKd73yH/v5+bDYbAQEBvPvuu+M6gnnggQcj7Iler+fUqVN0dHRw6tQpNm/ezC9+8QsOHTqEWq3mwQcf5Mc//jFPP/00s2bNEuy5uxwrLzX4eKn510XhXLt6b/mRo020RkOv1zM8PExkZCQ3btwYM+2j7BcvX77MwMDAmGLqxo0bNDU1MWPGDJfbCwsLsVgsGAwGYbLjcDh4+umnGRoaore3l+joaAICRqZ7bDabKH5iYmJ4+eWXaW1tZdOmTWLUWaVS8eSTT1JZWYnD4RBa09TUVJqbm12cTO12+11PXcmyzOef7uYH071c/h4GnRofL/WXkiv2VcU3sphyOBxs3bqV0NBQli1bNu7jrl+/jt1uZ8GCBezcufO+jXDk5ORw8eLF+2Ktq2QfGAyGcbVYGo2GNWvW0NXVxf79+90WVCqV6guZqdEZClFRUURFRVFSUkJ3dzcDrTVocD9K6KUG1dC9bS5kWeb48ePMnz9fbI5MJhM9PT0ueim4u2JKsfb81dF6LgyH8kZhM9n/VvCNsvb04KsDm80m1p+VGdFI7qcokIAEdbdoMoxmhHx9fdFqtSxYsIA5c+YQFxfnMs6hVqvx8fERY3cworNyOp10dHQgyzKyLHP9+nWGh4exWq0cPnwYSZKoqKgQDIzVaqWwspUPBiZRZI6k1BHFaXssm/rTaJdH9AMajYbBwUHOnj3L7NmzuXLlisi/6unpoba2lr6+PmRZJjg4mC1btgAj65LZbKa6uloYWShGMQoDl5SUNCacd3BwkKGhIR544AGsTokqeyhFQ2FcHPChqa2T2NhYfH19hb7h5vBNgISEBF599VXmzZvHwMAAGzdu5I033kClUrF+/XpUKhXvv/8+/f39rF27lsTERK5du0Zqaip/+MMfXBy6PPDAgxGYTCbKysrw9vbm4MGDbNq0iY6ODqZNm8bf/u3f8u1vf5tFixaNGd8fjdE5Vs9khrAooIvT/7CEJ+ZPo76+nqGhobs+v/GYKaVYkmVZ5O+NhizLmEwmlixZQltb2xh2/tixY2NYqerqas6ePctTTz0lLNKrq6uRJIny8nKxdk6YMIEPPviALVu20NfX51Ko+fj4sG7dOmJjY3nnnXdoaGgAoLe3V2hjg4ODgRF2Pi0tzcXx716YqRMnTmCz2fju40tdcsV+ujKdM/+4lFnxwXd13K8jvnHFlCzL7Nq1C41Gw6pVq8akRY9+3JEjR1i4cCG5ubmo1Wq3P7h3g8DAQBITEykpKbkvxzMajdhsNhcTipuh0+l45plnaGho4MiRI2Puvx1manQxBSM6iIMHD/LOO+8wb4IBr3HytzRqNUb7jXta4CorK1Gr1SKHBtzrpeBPxdTtmkm4s/a0o8Zkc96z1aoHHtwNampqiIqKor6+noxJKf8T0i2LhoUGB1ocLNNVo5WcWCwWEUirsDhOpxOn08mRI0c4c+bMiL16dLQY650yZQo+Pj7IsiwMKPR6vVgTlfyo5ORk4ZwZFhZGXl4e6enp4rqzySoKrMnYUGNn5DY7amyoOWBJwo5auGD19PRw+PBhYYpjtVpxOBxs2rRJZNCcOnXKZaMSFBSEzWYTY4cKbg7cNhgMREREiA2PLMvsKirlY0smp+2xXBgOJb9Rw4+OD9PvFYbNZqOmpoYnnniC4uLicTUcixcvZuLEiUyfPh1/f382b97M1q1bWbhwITqdjnfffZfOzk5m5s5DnTKf/zrZQk9wOh9t38Xp06c9pjYefKPhcDioq6vj0KFDvP3227zxxhtcuXKF+Ph4Zs6cidFoZNWqVaSnp4vog9uBIsv4tzWzmezdR0/HDWGgVVZ29+xUUFAQ/f39bt19fXx8xtVNKYy44n46Wi7gjpXq7u4mPz+fJ598En9/fyZOnEhNTQ1XrlxBrVYzODjISy+9hCRJZGdn89prr5GUlERLSwtHjx4Vo4EwUugtXryYRx55hK1bt3Lq1CmKiooICQkhNTWVrVu3CnfVzMxMLl26JM7jbg0oamtrOXv2LE888cRIY+4mmcw3hZFS8I0qppT5/oGBAZ544okxnYPRUOjR9PR0YVBQXFx835z4cnNzOX369H1huxQRt1arpbe3d9zHeXt78+yzz1JRUUFRUZHLfV/ETFmtVtFJrq+v58MPP+TgwYP4+/uzcOFCHlm+hI0vZqPXSC4bPp3KycYXs5kYF3PXFsIKK/XAAw+4FL/u9FIw0nGXJOmWphujcStrT6vNxq6SRvd3euDBl4SKigri4+MZGhoiOjqajCgf1nqXMlvTyFR1K7M1jazxukSE6k9WtxaLhf7+fpHlZLfb+cEPfsAPf/hD5syZg8lkorGxURQa9fX1tLW1YbFYyMnJASArKwu9Xo+/v78oTMxms2iE9Pb2snv3bq5evYrD4UCSJGodwYy3cqg1GqxRU0UBp1arxViJv78/AP7+/i52w/39/eLH3el0umxarFaryMuy2Wz8/Oc/5/e//714/2azWYi/7aj5f08NuBR5VqeExSnxz4du0NLeRW9vr7Bs3r59u1u9kyRJrFq1iurqahYtWsTf/u3fEh4ezueff47T6USr1fKzNz8k+98KeOtsJxeGQ9l6zcEf+1LZVVTK3r17b3st8sCDrztkWaazs5PTp0+zefNm/uM//oODBw8iSRIrVqwQo3vZ2dksX76c9vZ2MWZ8N5AkiRkzZghHzYyMjDG6oDuBErNws1Me3Fo3pTSbJUnC29uburo6rl27BoxopebMmSMYIKvVyscff8z8+fNFPIWSZ1dVVUVAQABPP/00Xl5e+Pn5MTAwgEajYdasWSJ3r6CggLfffpuysjKxj0xJSeGll16ipKSEqqoq2tvbeeSRR0hMTGTnzp3IskxcXBwWi0XYp9+NAcXAwAA7duwgLy9PrOPfdHyjiqljx47R2NjI008/fUtaU2GlFi1aJDbvAQEBrFixgp07d96XPCKj0UhAQADl5eX3fKzRJhRfVOz5+PgI0fS5c+fE7V/ETPX39+Pt7c3GjRvJz88nLS2NV199lUcffZTi4uKRudz4YP51uo0cXRNPTPJjrncLr01oY1Z8MPHx8dTW1t7V+7t27RoOh0NYNCtwp5dScCejfuUNHeNae9pkFQeKL3hcujz4s8HhcFBVVSVCFhX7b63kJMN3kJnaZlI0nSLQERAME/zJnVOr1eJ0OvHz8yMlJQV/f39SUlIwGo2o1WpRvMiyLBiUY8eOsW7dOhwOB83NzURGRorQXmXETqVSMWXKFLRaLbIsM4C3KFZuxrBdprzhTyODSlHhcDjE64+e31cwumkyWgOm/Ff5/06nU1znSvaVYsNeYw9Cxv3kgdVmo9Lsi8Vi4be//S2ff/45VquV3/72t3z88cfs2bOHgwcPUlRUxPnz56mrq2PmzJls27aNoaEhHnvsMX7wgx8QHx9Pv8nCfnMiJptTrCM2WYXFKbG9M4LWzm42bdrkCQb34GuHQYtdBIV/dLZhXB2xMrq3e/du/vM//5NNmzbR1tZGZmYmr732Gt/+9rdZvHgxcXFxLpMkGo2Ghx9+mM8+++wLI1xuhWnTpnH16lXMZjOJiYn09vbek27xViYUQ0NDY+zRwVVTbrfbefDBB9m9ezd1dXU0NjaKSAlZltm9ezdRUVEuuYA9PT04HA5kWWbFihWi2e/r6+uSD2W320lLS+OVV15h0aJFnD59mt/97neUlJRgt9sJCgpiwoQJGAwjLnrDw8M8+OCDmM1mjh8/jiRJTJ06VbBTd1pMOZ1Otm/fzowZM1z06990fGN4uDNnzlBaWsqLL74oxMrjoby8HI1GQ0pKisvtU6dOpaqqikOHDrFixYp7Pqfc3FxOnDjB5MmTxx03vB1ERETQ09NDcnIyra2tLuJtd/D39+e5555j48aN6HQ6MjIyxmWmnE4nZWVlHD58GIvFQnZ2tos1cmxsLMHBwVy+fJnp06fT0dpEsqqTn6zN5d///SiDvV60tLQQHx9/Vy5547FS4+mlFCjFlDKq5A4tLS0UFhbSWNWPhgjsbnoLep2aII2N/fv389BDD93T38kDD24HdXV1BAcH09zczOTJk3E6nZw8eRJZlsf90RsaGsLb25vh4WFxHZtMJn7zm9+Qm5uLw+EgJSWFixcvEhcXJx6TkZEhwnPtdjvDw8P8/ve/R6vVolKp6O7uxmq1kpiYyLlz55AkCX9/fyoqKv5UrDmG0eBwW1BpcBDqLZOalEplZSURERF0dHQQFhZGV1cXcXFxNDU1sWDBAg4cOACMdFeDg4M5c+YMTqcTvV4vGCM/Pz+MRiMNDQ2YTKYxGw2tViuKr37Zy+01DSNjiAPyiIWy1Wp1cf+82Tr4Zrzzzjsu/66xh47LzEkqFaearTyYEsDvf/97nn76acLDw295fA88+CrgbF03L2w8gyyPxJwYdGp+/mk5G1/IJis2gMbGRq5fv05NTY24lhMTE5kzZw4hISG3/Vs5ceJEYmJiOHbsGEuXLr2rczUYDCQnJ3P58mVmz57NlClTKC0tZeHChXd1vPGypvR6PSaTidTUVAYHBzGZTKJoGS2DsNlsJCUl0drayvbt28nJyREN/OLiYrq7u3nxxRfFZ3T16lX27NlDbGws9fX1LrmcN69xCvMuSRIpKSkkJyfT0NDAiRMnOHr0KDNmzODKlSv4+PgwZcoUNm7cyEMPPcS3vvUt3nnnHaKiosjMzOT9999n2bJld1xMHTlyBLVa7eKq7ME3hJkqLS2lsLCQZ599VnQOxoPT6eTo0aOIKBVOAAAgAElEQVQurJQCJbuprKxMBFreC1JSUhgeHhaCwbuFWq0mMjISnU5322OIQUFBPPvssxQUFHD16tUxzJTdbufs2bP85je/4fz580yePJnk5GSmTJkyZjxywYIFnDhxApPJJMSRQ0NDqNVqEhISKCgoICIigsHBQbcJ3LdCbW0tZrN5TIFYX19PbGzsuALV8ZgpWZapq6vjgw8+4OOPP2bChAksSQ5EGm87JDv5f154hLq6uvvmwOiBB7dCRUUFqamp1NXVMXHiRMrLy8Va5I4hVcTIw8PDhISEiNsVK/AzZ85w8uRJTCYTAQEB1NbWIssy/v7+aDQaHA4HFouFwMBA/vEf/5E1a9YQFxfH8PCwYI3OnTuHWq0WwZkxMTH4+PjgcDhIUHWPw/+MGGQY7TeorKxEr9eLDYXFYsHX15e2tjZycnIoLCwUz6mvryc8PNzte/7ud7/LmjVreOGFF5AkiaGhISRJEmuScs07nU78Jcu4pjgaHCRHB5GYmIjBYOCf//mf+elPf8rf/M3fYDAYePnll/nJT37CX//1X/PUU0+xdOlSpk2b5rZ5M1K0uV+HLA6ISsmkqamJiIgINm7ceE8jTR548OeAOx2xyepgyOLg2XdO8n//45cUFBQAIzbcP/7xj1m7di2zZ88mNDT0jpuOK1as4MKFC4IFvxtkZWVRUlKCLMti1O9u9YqhoaFumS1lzE+lUmE0Gl1G/QYGBvD19UWWZRHam56ejslkEsVKTU0NxcXFrFmzRjD7xcXF7Nu3j3Xr1ok8vdHFja+vrwt7P9rND0b2pXFxcTz77LOsXbuWsrIyEZ4+d+5cnn32WQ4dOkRRURGPP/44+fn5oilWU1NzRwYU1dXVXL58mccff/yWMplvIv7imalr167x+eefs379eoKCgr7w8aWlpRgMBiZOnOj2fr1ez+rVq8nPz+d73/veF7Jct4JKpSInJ4fi4mK32p87gdFoxGq1ChOK21nMwsLCWLt2LR9++KEYnRkeHubcuXOcPn2a6OhoHn/8cWJjYykuLh6Xho+Li8Pf35/CwkLCw8MZHBykrq4Oo9FIX18fNpuNa9euERcXR11dHVOmTLnt96WwUjdfuHV1deOO+MHYrClZlqmurqawsJChoSHmzp1LRkYGx44d4/rVMp6LS2ZToz9OpxM7ajQ40GjUPKSvpf5aJOvWrePdd98lICCASZMm3fb5e+DBncDpdFJZWcmSJUsIDQ1Fr9dz8uRJbDYb/v7+bpsRo7/nfX19YkTFarXS29tLXFwc1dXVXL16FZvNhiRJxMfHI0kSLS0t2Gw29Ho9wcHBaLVaUlNTSUxM5Be/+IXINFGMIhQoI7v+/v709/ezTFdNgTUZGcT1I4EwyICRa7C5uRlZlkXO3oIFCzh37pwYgfPz88NisXDgwAEcDodw0LJYLERFRXH16lVaW1vHmO0o68PoUcAEdTdn7LFuP2dJkpge7OR6ZQ1arZaCggICAwPp6ekhICBA6LCUEGAlg0ur1aLRaLDb7QQHB9Pf34+/3TIuM6fXqshIiOThh77Dtm3bCA0NZc+ePeTk5IigTg88+KrhVjpiSaUifv7jrJ+bdN9ez9fXl4ULF/Lpp5+KRsmdIj4+HrvdTlNTEzExMajVapqamoR5zp0gNDTURQahwGAwiDVYKaYUU6zBwUFCQkKEoYNKpaKoqIicnByOHz9OWFgYO3bs4IknniAgIACn08n+/fupr69nw4YNBAYGCjZsaGhITNWMx0yNd96KQYbD4eC3v/0t06ZNY+3atRw8eJDDhw+Tm5vLxx9/7JI5dTvMVF9fH/n5+Tz11FO3nPj5puIvurRsampi586drFmzhoiIiC98vMPh4NixY25ZqdFISkoiNTWVffv23fM5Tps2jcbGxnvOJYmJiaGzsxNJku4oEys6Opo1a9YwPDzMvn37eOONN2hvbxddDmUhGhwcdHHyuxkLFizg4sWLhIaG4uXlRW1tLenp6fT19ZGTk0NBQQETJky4I91UfX09/f39IsDz5vtuVUwpGzCn08mVK1d46623OHz4MNnZ2fz1X/81WVlZnD9/npMnT+Lj48NPvrOGl8Nqme/bzgx9Fw/4tPFS8HX+fsOTnDhxggsXLrBmzRr27t3rNrDPAw/uB5qamjAYDLS3t5OUlERdXR1msxmn00lKSopw3YORgkC5PvV6vRjVVdYSlUqF1WqloaEBg8EgnitJEj09PQwNDdHW1kZoaCgWi0UIidva2nj99deBkR/Z0QzvzeuistZEqAZZ43XJrUGGUuhoNBpR7Cgd3JKSEhGaq7yPJUuWiALR6XSKrqzFYqGxsZHQ0FAWLVqEl5eXOI+bDR5kWUYrOUeKORxjXRC1VTTVXRfPLS4u5uDBg5SVldHT04Msy+h0OiIjI4UeLTY2lrlz57J06VK0Wi3d3d3Y7XYS1OMzc3abjWjHDXx9fXnuueeIiopCrVZz4cIF8vPz74v+1gMP7jfqOofG1REP22VaBu7/93bGjBk4HA4uXrx4V88fbUSh6ILu1ohCyZq6mdkyGAxi5PhmRz9FM6UE9ra3t1NfX8+CBQuYP38+W7ZsYc6cOSQkJGCxWPjoo4/o6urixRdfJDAwEFmWRQbe6MknPz8/UUzJsjyGmRqNS5cuERERIfZw3/ve9wD4wx/+gI+PD0ajkdOnT4usv9Kr1RS2OPnj5f5bauIcDgeffPIJubm5wjDDA1f8xRRTNwsla5ta+eijj3jsscduuzNx6dIlAgMDb7lJV7Bs2TJaWlq4cuXKPZ23VqtlxowZnDp16p6Oo1zY44X3jofe3l5KS0tFnsyjjz7K448/Pqb4vNkW/WbEx8eLC10ppiZOnEh6ejoDAwP4+/tjNpupq6u77XM7fvw48+bNG8NKmc3mW+qlYORzvXr1Kr/73e84c+YMS5Ys4bvf/a4YU7x8+bIYU9iwYQNqtRqraYA5EZClbiQnzElIgC+VlZW89NJLVFVVcf78eVauXMlHH31ET0/Pbb8PDzy4XVRUVDBp0iSuXbtGcnIyxcXFokGhXGOjf+CV69RsNosfZAUpKSkYDAYsFosI6Z0wYQJ6vR6LxUJbWxuyLBMfH4/T6cTX15eCggLeffddYCRLTtnsK+PRsiyTkJDAzJkz0el0Lh1KreQkRdM5xiDD6XSi0WjQaDSiYBsYGHBp/CijfO3t7RQUFLiM9smyjFqt5lvf+hYRERGUlJSwefNmlyJPq9WK9Wl0wXerIk95vlarRa/XCy2Z4jaodICXLVvG//k//4elS5dy6dIl9u/f71IEjVe0GbQq/mvNFK6WXuLDDz9kaGiIhx56iMWLF2Mymejo6OD999+/49FnDzz4shEf6jNuULhBpyY+xHDfX1OlUvHII49w6NChuzZrGW1EMXXqVMrLy+/KSdNgMAh78ptvV85NMf5S1lxlj6SsG8ePHyc3NxetVktzczN6vZ7BwUH6+/v5wx/+gJ+fH88884yYbmpvb8fpdDJ16lSXjLrRzJTioOpO3uB0OikuLhbTM97e3vj7+7NixQq+//3vExAQwOXLlwkODqalpYXzDb18OJjOnhYvtpX18bO95cz+94NuszULCgrw8fFhzpw5d/xZflPwF1FMKYGrP9tbzn8fr+Ff95Sx/L/OEjN9gUsu0a1gt9s5fvw4ixYtuq3Ha7Va8vLy2L9//x0xQe6QnZ3NlStX7sntKSAgAEmSCA4Ovq1iqr29nZ07d/L222/j5eVFQEAAy5cvZ+/evcJaeTRGO9WMB4fDQWNjo+h+BwcHM2XKFMrKyli2bBklJSWYzebb+ryampro6uoiMzNzzH319fWER8fySUnzGJchq9XKqVOnqK6upqmpidWrV/Piiy+SnJzsIvb89NNPcTqdPPbYYwQHB2M2m7Hb7SKjR8m8OHXqFHa7nRdeeIGBgQEuXLhAbm4umzdvdmuj7IEHdwtZlqmoqCAmJoahoSE0Gg0tLS10dHRgMplE8KJSmMiyTFlZmRjRMBgMwqobRhimJ554QhxfrVbT2NhIeHi4SzGgdILPnj0r1g6z2UxDQwMajQZJkoQeQKPR4OvrS21t7R1tUhRzi9H6gdGF32itl8PhwC8olCp7KOdsRqrsoVhlFW+99RYHDx7EarWKz0KBzWYT1+PN3eSbi7zR+SdKjILZbKalpYWEhATmzp1LcnIyGo2GhoYGurq6eO+993jvvfcYHBwU2rHRUIq2HG0j31swkRcz/fi7lF6WTUtkw4YNxMbG8tZbb3H58mWmTp3K888/j9lsRpZl3nnnnfsWueGBB/cDtwoKl51OVmZEfymvGxUVxZQpU0Sj804x2ogiKCiI0NBQYU9+p3Cnm1JypmCkyPHy8hKPGV1MqVQq6urqmDVrFmfOnKG9vZ0NGzZw6dIl3nrrLaZOncrKlStdiqLS0lK8vb1JTU3l+vXrLiy+UkzdasSvsrISb29vrl+/LpwDR38uCxcu5LXXXiMtLQ27pCG/14hVVmGTR8oARRM3opX70+9DeXk5lZWVPPbYY56x5Fvga19MuRNKmm1ObLKan5/ouu3A1ZKSEsLCwu5ovtZoNDJr1izy8/PvKZjR19eXtLQ0tzO6twtJkjAajWg0mlv+MDc2NrJlyxY2bdpEWFgYr776KkuXLhVmEUuXLuWDDz4Yw7x8ETPV1dWFwWBAo9EwMDBAQkKCGENSFhelU3477NTx48eZO3eu2w7MwUu1/KI6SBTPP9tbzuz/e5B3dh3m9ddfp7GxkbS0NDIzM4mLi3NZAK5fvy7s7TMyMsQIYXt7O5IkERgYiJeXF5GRkdTX15OVlUVBQQE6nY6nn34aHx8fysrKmDBhAlu3bvXkx3hw33Djxg1UKhU9PT0kJSVx6tQp0tLScDqdREVFifVBrVaLgiQpKUn8uDY1NREaGiqu056eHrZs2UJUVBQBAQE4HA6cTid1dXX4+voKFyrlO2y326mtrcVmswn7c8WqV6vV8sgjj2C326moqCAtLQ2tVntHDaDh4WHsdrsrq6PVIkmS2JD4+flxw+HDm62xnLbHUuqI4rQ9li2mKfRqQ4RuTKfTjck3CQgIuK3zGK39VKzV9Xo9Dz/8MI8//jgLFy7kqaee4plnnkGj0XDgwAE6OjpERpbSHQZcWHOt5GSyvp+/fzCNv3/yAfq62qmrq0OtVrNgwQLWrVtHYWEh27Ztw8/Pj+985zsYDAa0Wi2bNm26LzEZHnhwP+DrpWHjC9n4eKkFQ2XQqTHoVDziW09NVcWX9tqLFi2ipqbmrnMp3RlR3A3cOfqNZqbAlZ1SGs5WqxWz2Uxubi4tLS2cOHGCNWvW0N7eLtbTrKysMYVJTU0NkZGRBAUFodFoRFNbyZmCseYTo3Hy5EkSEhLw8/MjOtp9savT6cjNzSVq9koklXvmUZZHNHMwEiz86aef8uSTT95RoPI3EV/7YupWQsnRX4pbwWazUVhYeNus1Gg88MADWCwWzp49e8fPHY3c3FzOnj17TzP0RqOR4eHhMcWULMtcu3aNjRs3smPHDpKSknj11VeZN2+eoJgVvUVmZibz5s1j06ZNLgzSFxVTitAzMTGR/v5+YaghSRKTJ0+mtLSURYsW0d/f/4VuVi0tLdy4cYPp06ePuW/QYueNS3aGHbi6DFkd/H9nTaxZ9xzf+ta3CAkJcRHmAzQ0NLBt2zacTieBgYGsWrXK5TVlWSYgIACdTsfAwADJyckYDAZaWlqoqalBrVazevVqkpKSqK2tRZIk9uzZc0+FtAceKFBG/K5fv47RaBQumwEBAURFRYlcELVaLZoMer3epYhQtEgK7HY7U6dORaVSERMTA4xck2FhYWJToGiPlKJKp9Oh0+koKytjypQpeHt7YzQaqa6uFo/T6/Xo9fo7+u6Pfn0FNpvN5Rjd/UMUWJNdgnbtqLGhZu/ABHwCg1mwYAFBQUFifVKY8NvVncqyLMYTJUkSY4SHDh3C4XDQ2dnJ+++/z/vvv49arRYFn1KMKmvlaDZttOYLRtjDxYsXU1BQIN5fdHQ0L7/8MgEBAbz55ps0NDSwdu1a8ff59NNPOXbsmGc98eArgVnxwZz5x6X8dGU631swkZ+uTOfsT5bxdy8+wYEDB7604t/Ly4sVK1bcddj1aCOK9PR0rl+/zvDw8B0fx13WlJIzpUCRV5jNZrRaLVqtlvb2diwWC6mpqWzfvp28vDyqq6vZs2cPzz77LBkZGezdu3fMdd7Z2UlKSgqSJDFx4kQx6qeMajscjnGZqYaGBoaGhrhx44YLK2WxWGhqaqKkpIT9+/ezadMmfvnLX5J/qAjrONGZJquDui4TNpuNTz75hAULFmA0Gu/48/um4WtfTN1KKKl8Kb4I586dw2g0jlvN3woqlYq8vDyOHj3qNpfgdhEeHk5ERASlpaV3fYyYmBg6OjpwOBwMDAwI84W3336bgoICsrKy+P73v8+sWbPGdDdGW6PPmjWLrKwsNm3axNDQEDabDbvdfkvnwqamJoxGI76+vmLToWDq1KmUlZXh5+fH1KlTxaZsPJw4cYI5c+a4dZjZca4e57g2QxK7LjTS3d2NVqt10VS0trby8ccfi3yGZ5991oX1UoT/ipC/q6uL6dOnU1payoMPPshnn30mOtKLFi1izpw5tLe309zczLFjx275fjzw4HZQUVFBSkoKdXV1dHd3i2tFSatXHKokSRLsSllZGQsWLBDjqQ0NDWPy8Y4dO4bFYqGjo4OQkBCcTifV1dWiABi90VBMK4aHh4mPjyczMxONRkNvby8XLlwQxcehQ4fuWDfY1NQk7IBhhEm6eR2qdQSPm9kkA0drBjh27BhXr151cfCTZfmWGkoFSiGq0WgE66doyPr7+/nVr37Fm2++SVtbG4mJiTidTnQ6ndjUeXt743Q6kSSJ3t5esc4p/x2tIVNcS0frajUaDcuXL+fJJ59k//797N69m5ycHB599FEALly4wLZt2+4pwNQDD+4XfLw0rJk1gb9/MI01sybg46UhPDycdevWsW/fvi/N5n/SpEkEBQVx8uTJO37uaCMKvV5PQkICFRV3zqS5G/Pz8vJyYdcVZmq0DOLSpUsEBQWxa9cusrOzqa6u5uzZs2zYsIGYmBiWLl1KZ2enaI7BiJGPzWYTa8boYkqSJHx8fBgcHByXmSosLCQxMZHGxkba29vZsmULr7/+Or/85S/Zt28fDQ0N+Pv7k5uby3e+8x2eengROpX7lVbRxO3fv5+QkBCXYGEPxsfXvpi6V6Gk1WqlqKjorsPdYIQOXrx4MTt27Linsa/c3FyKi4vvujMZHR1NW1sbERERnDhxQpgvLFq0iFdeeUWE87rDzaG98+bNIy0tjQ8++IDOzk78/PxuOS/b3NxMTEwMvb296HQ6zp8/L44XERGBRqOhqamJZcuWYbPZxl2E29raaGpqYsaMGW7vL627cctMl7NX69i0aROHDh3i4sWLbNmyhV27drFx40ZB0T/22GNjbPLb29sJCgrCy8sLSZLo7u4mISEBs9mMn58fgYGBLjlTM2fOZNWqVQwNDXHu3DmXhdEDD+4UHR0dWCwWYbl9+fJl4uLi0Gg09PT0MDg4KMY/4E926FarlZSUFHFdO51Ois6cF3qja3I4ZruM2WzG19cXf39/dDodsiy7zaxSq9WEhYUREhKCRqPho48+YmhoiN7eXhG5oPzvbmIhRq8xSmzCaNwqs8mOmkH0REdHExoa6nL+/v7+bsebbx4TdjgcqNVqTCYT4eHh+Pj4iK6yw+HAbDaL0TtF06QcQyliIyIi8Pb2drvWj3YYlCSJ5cuXc+jQoTETB3FxcbzyyiuoVCrefPNNNBoNL730El5eIyHn77333j1rcT3w4MtCZGQka9euJT8/38Us4X5BkiQeeughiouL78rsKTMzUxhR3O2on7sxP0mSXELEo6Ki6OzspKenBz8/Pzo6OmhraxvRffr50dTURFtbGxs2bBB7Do1Gw+OPP05BQQHd3SNmD1euXHEx0UlISKCxsdHFAGhwcJDh4WEkSaK8vJyjR4+ydetWXn/9daqrqykvL8fPzw9vb2+mT5/O+vXr+Yd/+AdefvllHnvsMebMmUNSUtLI9EL9eWTZPTUlSRCv6qa+vp5Vq1Z5dFK3CfW//Mu//Mv/9kncC+JDffh9YQ02x9gCRCU7+Y8nMvDSju+hf/LkSbRaLdnZ2fd0HlFRUVRWVopN+N0gKCiIkpISgoKCxgisbwcOh4OSkhK6u7sxmUysXr2ahQsX3laI3vnz50lJSXEZ5UtISKC9vZ3Tp0/j5eU1boFjtVo5dOgQK1asoLi4WIR5BgQEiCR0s9lMc3MzkyZNorKykqqqKmbNmjXmvPbv38+kSZPGdVQ8fv4Klb3g5s+NVpJ5YdFkvvvUwwQFBWE2m0lNTeXMmTPo9Xp6e3tRqVRUVlZSVlZGbW0tbW1t9PX1ic1rQkICZWVlmM1msrOzGR4eprGxkYULF5Kfn09GRobYMIWGhhIXF8fly5epqqoiNjYWjd6XHRea2Hu5haZeM/GhPug0X/uehQdfMkpKSvD396evrw+r1UpoaChmsxmNRkN3dzd5eXnU1dVhMpkE46pomZKTkykpKcHpdNJqN5A/PIkmZwA3ZH9aHX6U2sKIUA2gGu5zyUpyx34YDAZhFNHd3Y1Op3N53OgcJ3cjyQqLc3NzRoFSACkMlbI5UY41KHvR6vTD6abPp8FBgtSFdvDGGK3WaBZ69GsrnWSNRiNeW2HOJUnCz8+Pnp4ebDYbBoNBFJnK52S1WhkaGiIxMZG+vj5kWSY8PFxk8in/VkZ/LBYLM2fOFEVvYGAgdXV1DA4OjtHjajQaUlNTCQkJIT8/H4vFwqOPPkpHRwft7e2cP39eZPh54MFXDf7+/sTGxrJt2zaMRiOBgYH39fjKGPG5c+eYOnXqHW3qdTodbW1tmM1mpkyZwsGDB8XI8u3C29tb5DKNbspcvHiR5ORkfH19UalUXL16VdxfV1eH0+kUhhHBwcE8+eSTY0bzFDOfY8eOkZmZyZEjR1z2WGq1mvLycrH/qK2tpaKigvPnz2MymcR6FR8fz/DwMCkpKbS1tfHcc88xadIkkVF482fmcDjYsWMHA309hMp91DuD0apV2BwyBp0anUbFfz6WwulDe3nmmWduW4d6txi02P9i9ktf+2JKp1GRHR/Mviut4kuhk2S0GhUvJphorrxIWlqa25Gx4eFhduzYQV5enhBj3y0kSSIhIYE9e/YwYcIEVF6GO/6SSJKERqPh/PnzY1zsbvWlM5lMFBYWsnPnTrRaLbGxsfj4+DBv3rzbXoAuXLhAcnKyyw+3JEkkJSWJ7JXs7Gy3zJZCLc+cOZOjR4+SkJBAZmYmhYWFTJ8+XaRtHzhwgJycHGRZprKykoiICBfdQUdHB0ePHuXxxx93azwBcOXUEc4O+LstptSSzMTOk0SGh6HT6airq+PatWukpaXR3NxMaGgor732Gjk5OUyYMAEfHx8sFgt1dXV0dHTQ2dnJ5cuXMZlMYrNmMBg4ffo0c+fOxeFwCF2LAn9/f9LS0igtLWX/uWr+8Vgfx6o7Ka7p5uT1Ln5fWEN2fDDGQI9404Px8fnnnzN79mxOnz5NX18fK1as4OjRo1itVnx8fFi+fDmnTp3C4XAIm3MY+XFUipfeoWF2mlKwoRbFiBMJJyrqHEFMUrcT6O8nRkpuhiRJWK1W7HY7er1eZKrIsoyXl5dbJkZZXxSHO19fXywWi8tonDtEREQwNDQ0pijzl4Ypc0S6LabUyMzT1qGWbs3cK5+NYhghSZJgnkajt7eXgYEB9Hq9y+ehNIK6urpwOBxkZWUJjaQS7Nvf3y9GHufNmye6806nk1OnTjE4OEhwcDAGg4HIyEh2797N9OnT3Y7ohISEMG3aNMrLyzlx4gRLliwhODiY69evc/nyZQICAm4rJ9EDD/7cCAgIIDo6mm3btjFhwoT7vvk2Go0UFRXh6+srRplvF3q9nhMnTpCdnS2u2TvJSJIkiStXrpCQkODiZFxWVobRaBRMU33zDQqu9VPWr6OioQ2NuQc1MjNmzGD58uXjTgMZjUYqKipoa2ujqqqK4OBg6uvrOXHiBAcOHMBsNtPV1UVgYCB2u53k5GSmT5+OLMusWbOGhIQEDAYDBw4cYNKkSQwPD5OTkzPu+3E4HGzfvh2r1UpfXx9Pr17Bj1bNIDrAm+RwPx6bFs2/rZ7E0b0jOqmkpPsXyuwOZ+u6WfnbExyr6viL2C997YspAGOgnhdy48WXYkGcngzzZX74nfW0tLRw7NgxUlNTXUYwYGTO1MfHh6ysrPtyHl5eXgQFBfH2zkP83aGuu/qShIWFcfjwYZcLeLwvXXqojqvnT7Jnzx4CAgJ49NFHCQgIoLu7m9bWVnJzc2/73C9cuMDEiRPHLIaSJGEymWhra6OhoYH09PQxBdqVK1fQ6/UkJiZy6NAhZs2axZQpUzh9+jTBwcEEBwej1+spKysjODiYyMhILl26RENDAzNnzhTHO3DgAMnJySQmJro9R7PZzImjRwhx9lDvDEajlnDIIy5aWhUs01WTkRBFSUkJ/f39NDQ0kJGRwaVLl1CpVDz//PPCcdDPz4+IiAji4+PR6XRcv36dvLw85s+fT0lJCTqdjoCAADo6Oujq6qKoqIju7m5aWlpobm5mYGBAFFxBQUEkpU3mJycGsDgQLKnNIWNzyOy70soLufFf246LB18uent7OXnyJHPmzKGoqIiwsDDi4uKoqamhu7tb2PcXFhYyPDyMWq3G4XAItqWjowONRkNA5jIKa3rcFiIqZHwkGwbL2CDKmxESEoLJZMLb2xuDwSC6oMAYNkopoiIjIxkcHMRutyPLskvh4uPj47Z4W7RoEYsWLaKkpORPx5NkIlSD1DmCUCHjRIUGB2pklumq8eXZiNEAACAASURBVFdZXI7h7e095pyU9UR5n0oui7viLikpCY1GQ39/PyqVCrvdjq+vL319fcDIhkxhC/Py8igrKxN/A8XIwtfXl5aWFiRJYubMmXR2dhIREcHnn39OXV0doaGhqFQqGhsbx92gaLVa0tPT8fHxYdeuXYSEhDBv3jzB4g8PDwuHVA88+CohKCiIiIgItm3bJtzk7hdUKhXh4eHs3buXrKwst03x8RAYGMipU6eIjo4mPDycwsJCl/3G7aCmpgZfX1/Cw8PFbVVVVQQFBREeHs7Zum6+v7eZyj411wZUNNt9uGILZ8aEANblPezyWmazmdbWVqqrq7l48SInT56ktbVVsFkxMTHExsaSkZHBkiVLhNHVmjVr6OnpQaVS4e3tTX9/v2joFhYWEhQURG1tLTk5OYSGhrp9H0rortPpJCgoCF9fX+bNm4dOo2KKMYB5SaFMjvZn/75PCQgIuCfZy+1g0GJn5W9PMGRx/MXsl75eZ3sLjBZKfm/FNAJ99VRVVfHwww+Tnp7Oe++95zL/ajKZOHPmDPPnz7+v5xGbmMyunmiGrA5Xtzk3/v3uoFarmTVrlgjxdWf9rhzv5Q8vYkfNX/3VX7Fq1SqCg4MxGo20t7eL8ZTbxXhjOTDyWWVmZmK3293awDc1NRETEyOsnYOCgpAkiQceeIDjx4+Lx0+ZMoXS0lJCQkJQqVTo9Xqxkeru7qa6uvqW45aKVWpSgMSGkGv8eEkCcwIHWRLUw3q/Cr61MIuamhomT55MXV0dDoeD8vJyVCoVq1evHqOTUtDe3o4sywQHBxMUFITdbicqKorU1FSeeuopVq9eTVxcHBs2bCA3N5fW1lb6+vo4d+4cmzdv5t///d/5p3d2Ae4X6dt1lfTgm4mKigpSU1O5du0aarWaOXPmcOXKFTGepjQXTCaTiBmAP1mBazQaNmzYQJdFdUu9Ub/s2kySJEk47I2GLMuEhYXR29tLXFwcPj4+PP30027ZYofDgZeXF+3t7eLfChQzBmUdGr2xGBoaIjo6mqNHj445prug3ef8rxKhGhtu686l6+b1SZZllzFAQGxGqqqqGBgYQKPRYLfb0el04nwnT56MWq2mv7+fxYsXc/bsWVJTU0WxKMsyOTk5IupBlmWio6PJycmho6OD1157jfT0dA4ePMj169cpKSmhra1tzPmOxuTJk/9/9t47OKo7T/f+nM7KOQsFFFEEJZJIJkdjY2w8Bpvx2DuzO+PZrTub5t26daveult737vJuzvr8dizGJtgsEkGjEXOlkRQRjmAcmylVur4/qE5P6uVEB5md431VFGA1H1Sn/Pr7/MNz8OPf/xjWltbuXDhAjt27MDLy4v79+9PMCqexSz+uyAyMpKtW7dy+PDhx97jT4rQ0FDmzp3L1atXn+h9Y4UoQkJCMBqNT3xsUyn6DQ4OithsyGzD9LtQWlYe/ajOka/v3Of8+fMcPHiQf/qnf+Ldd9/lwoULNDc34+npyfLly/npT38qYp5NmzaRlpYmjNWDgoLo6ekR4hb9/f0YjUZR3TYajdy/f5+oqCh6e3snCA/JMJvNfPbZZ0iSxOLFiykrK2P9+vUTXpeXl0drayubNm16omv0bfA0VLj/u+GZIVNjIUkSS5cu5datWwAsX76c5cuXs3//fhoaGoDRWal58+Z9q9mk6XC2qBnFFC1qM71J0tLSqKiooL+/f9qbTqVWM+gda5cJ8vHxwWAw4Ovr+0RGkGPV/Majv78fNzc3Xn75ZXp6ejh37pzd7IRMpurq6lCr1aICGB8fz+DgoAg24uPjKS8vx2KxEB4ezty5c4XS2M2bN0lPT5+2pzk7Oxuj0cjKlStxd3LgrVVxvBSlJszSTEJsFEqlkpiYGHJzc0VLQH9/P35+fsTGxk653ba2NkZGRgQJlE2MZSWf2NhYWltbAXjuuefw8vLCy8uL1157jZ///Of88pe/JDA6CZNtcjI1U1XJWXw/UV5ezrx58yguLkalUhEZGUlJSQkWi0VI5cLoPI6fnx9GoxGtVisqozExMeh0OkK9nKZUaFJhwVUamUCIGhsbv3nN77K+cgVWq9VSUFBAT08P77///pTJGVm2dzzGzjVJkmQ3N2Cz2di3b9+Uyp7jjXatxm8MsqfLLMuV88dln2V1L7VaLWahAAZGzFSYvegNX8Wp4g4MI2aio6O5du0ag4OD1NTU4OLiIq7jggUL7BS/XF1dyczMxGw2k5eXx4IFC/jxj3/M888/j7u7Ox9++CHnz5+fdqjexcWFV199lfT0dI4dO0ZMTAyJiYnU19fzwQcf0NPTM+25zWIW/xWIjY1l48aNHDx4UHgkPS2sXbuWkpKSJza3loUohoeHv5UQhZeX1wRFP5lMTRebWSxWTuU34OTkREZGBm+++SZ//dd/zVtvvcW2bdtYtGgRc+fOFVVwrVZLVlaW3TYUCgVhYWGiOiYrK8vraH5+PiEhIVRVVZGSkjJpO6HZbObo0aMolUq2b9/O2bNn2bhx44SxlpaWFq5cucLOnTun9LF6mngaKtz/3fBMkikYDTBMJhN1dXXA6Jfe888/z5EjRygsLCQvL++pV6Vg9CYZMk1OSmZ6kzg4OJCYmEhubu60N92QyTphewqFgsDAQOGPNFNMV5mSMyNqtZof/OAHNDc3c+nSJWw2G729vWImqq6uDpvNZuddtWzZMiEd7urqip+fH9XV1YSFhdHd3U1ERASXL1+moqJi2n7f7u5u6uvriY2NpaWlhbi4OGCUPJrNZubPn8+dO3cYGhpCq9XS0tKCzWbD29ub4eFhoUo2GVpbW9HpdGIR0el0uLi4iEVUpVKRkJBAQUGBUBm6fv262N7Dhw+pL81DxeSf00xUJWfx/YTBYKC9vZ05c+bQ1NTEkiVLqKqqwmQy4evrK6pS8jomm++aTCZBfvr7+xkeHkZfcBHbFAkRCQhX6rFYLKjVahQKBc7OzvzoRz8CRmeYxrYW63Q6RkZGZtRWMxVxGdtWPVl16NtAnlOaap+yiMT4tWyqGUyTyYSnpycWi4U2qzNHR5LJMQZzoqyfHGMQB/vnIflGYrPZ6OrqwmAwiMSTRqPh8uXLdtfI0dFR2GXcvHlTmIGHhoby9ttv4+DgwMDAAB9++CFHjhyhtrZ20nVXkiRSUlJ4++23qampobW1lRUrVtDf38/7779PfX3973EVZzGLPwzi4+NZs2YNBw4cEEp1TwOOjo6sXr2as2fPTpn0nQxOTk5ERUVRVFREYmIixcXFT/T+6bympovNzCjwCo0lMzOT6Oho3N3dp1yzZGGupqamCdY4ERER1NbWCuNeuTIlz2amp6fz4MGDSUdVTCYTR44cQavVsmPHDm7duoWvr6+InWQMDw/z+eefs3HjxinbBJ82/J1VqKXJP4fvarz0zJIpuTp1+/Zt8bOoqCh+8IMf8OWXX+Ln5/cHUSqZTqrdQa2Y8U2yaNEi8vLyCHbX4qCe/GOa6qYLCgpCkiRRTZkJHleZkqtfWq2W1157jaqqKm7duiWqUlarlYaGBtH2IyMxMZG+vj5RnUpISKCkpISwsDDq6urEzER8fPyUDts2m41Dhw4B8Pzzz1NWVib8GNzc3MRwvNVqZWRkhJUrV4pzWbZsGW+99Rbe3t785je/mSDjarFY6O7utqtQ6nQ6nJyc7L4MFixYQEFBgVDvSkxM5Ny5c7z//vscPHiQYGvbFE1+o1KjW5Ke3MNsFs8+ysvLiYyMFAaYaWlpXLlyBX9/f+F1BHDlyhUUCoVoUxlbAW5ra+Pdd9+lr6udnb4dqLEIYq/CghoLazVV4svLZDKhVCrp7+/n1q1bo/NWbm60trai0WhQKpUYjcYp22LHY+xs0tiAYXwL3lSE5kkwtiI+Ge7duzfpz+XjGlsdk3+m1+sx2RRTmgX/z0st+AeHCpI2MjKCzWZjy5YtooIob09ewzw8PFizZg0nTpwQM11qtZrnnnuOnp4e/vRP/5SoqCiysrL49a9/zf379yedK3N3d+eNN94gLi6O27dvs2jRIlQqFQcOHOD+/ftPfP1mMYs/NJKTk1mxYgWffPLJU62izp8/Xwh0PQlSUlLIy8vD29sbFxcXEYvMBLLX1Nj1RhbmmS7WU0tW3JTGx27fYrFgMBhITk5mx44dZGVl2V2zuXPnUlNTY+czpdFoKCsrw8XFhc7OTubOnTthTs1kMvHpp5/i6OjIiy++SHt7O3l5eRNa+Gw2G6dPnyYiIkLEVH9oNDc303bnS5RTCHN8V+OlZ5ZMwWgg39nZaVehcXV1RaFQ0N3dzbVr15662/yWpECm6jAxm0x4DTyakReVp6cnYWFheA08mlSCGMBiNrM5caJRZXBwMAMDA09UmZIzvpNhLJmC0cVkz5495Ofnc+/ePWFc5+npidlstiNTcnXqxo0bwGgbTnV1NU5OTuJzAIRvw2S4efMmer2ewMBAWlpacHV1FeRH/jwvX76Mq6srIyMjXLt2TZSxz507R0dHB2vXrmX79u188cUXXLhwQXwGXV1d6HQ6O1VBnU6HTqezy0gFBATg4OBAXV0dQ0NDdHR0UFpaSn9/PzqdjqiwOWxwqLULZHUqCSetkv17M3DSznxwdhbfH8gtfjk5OYSEhNDW1kZHRwdLlixBo9Hg7u5OXV2dEETQ6/UoFArRagKj7XQODg74+Pig7WucMG/0irYQP4XBjszIgXtFRQVWq5Xu7m76+/vZsmULTk5OojL7uGqSbH8Ao1ng8fLIY8nLWOPb6TBZNWyqxNdUSlnjIa+hk8m8w+PNgi9X9wjT7pGREVGN9/X1FdU+sK/GzZ8/Hw8PD65cuSJ+lpyczMjICLW1taSmpvLHf/zHbNiwgaqqKv75n/+ZixcvTghAJUli0aJF7N27l5qaGnx9ffH39ycrK4szZ848UaZ9FrP4z0BqaiqLFy/mk08+eWp+aZIksXnzZq5duyakx2eCsLAwzGYzjY2NT9zqJ3es9Pf3i5/Ja+90sZ5CoaC36AqHDh2ya6Uej4cPHyJJEiEhIQQEBLBkyRJOnjwpnmlPT0/UavXojJbBwMjICGq1WggW3bt3j7S0NLttGo1GDh8+jIuLC9u3b8dms/HFF1+wbt06O1VCgNzcXHp6eiadofpDoLi4mEOHDrF14zoOvLUYJ61SEFJHjfI7HS8902RKqVSyePFiu+rUzZs3SUlJ4a233qKysvKpfxk5a1W/uxmU6FSjT5oKCxrJyvuvJtHWNNr3Ls9uTYeEhATuZd/ib5a646hWiMyyCguOagU/COrhUtaXE44/KCiIjo4OO4nvx2GqNj+z2YzJZJpQNXJxceH111+nsbGRoaEh6urqmDNnDhqNZkI5Oykpie7ubhoaGnB0dCQkJISKigrCw8O5fv06KSkpPHr0aNJ+6I6ODm7cuIGXlxexsbGUlJQQHx9vdxzDw8P09fWxc+dOuru7cXZ2JiEhQWTZDx06hF6vZ+7cufzkJz9Br9fz29/+ls7OTtra2nBwcLALAnU6nTD2HBt8JScn8+WXX/IP//APtLa24u3tjdFoZPHixbS2thLtoeT/LlWx3KmNJFUru6JV3PnlGtLDnu5c3iyeDQwNDdHQ0IC/vz+dnZ0sXbqUkydP4uHhQX9/P+Hh4dhsNq5cucLcuXOxWq3CTHdwcNCOdAwMDNDU1ARMnDeS1w2LxYJOp5ugaiorAkqSxKFDh8TzNBVkYQkY9UuRnxGz2SxI32Tw8PBAqVQ+lqCNTx5N14I8HjK5GkscJUl6LOl6nFlwr2V0LRl7zb/44gtxzWUVw7HrhSRJbN26lZKSEpENVygUrFu3jkuXLglyNnfuXHbt2sVbb72F1Wrlgw8+4LPPPuPhw4d25+3j48Obb75JaGio8DMsKChg3759kwpxzGIW/5VYuHAhqampfPLJJ09EfqaDr68vCxYs4Pz58zN+z1ghioSEBCoqKiatAk+F8a1+MpkaG+vJa6yjRolGsvKPW+fyiz/9GdHR0Xz++edTkqqSkhJcXFzE+rRkyRIUCoWY94fR6tSjR4/QaDRibR4ZGUGn02Gz2ew8OUdGRjh06BDu7u48//zzKBQKbt++jYuLC0lJSXb7bmxs5ObNm+zcufOJVBK/DaxWK5cuXeLKlSu8/vrrxMXFkR7myZ1fruF/bYnjj1dE8L+2xH2n46VnQhp9Ovj6+nL+/HliY2MxGo189dVX7NixA2dnZxITE8nLy6O0tJSYmJin0oYC30i1O2HE0tXA+hhPEgcLmRfszcaNG3FwcOD06dPo9XpCQkImvZH1ej0nTpxAp9OxPDWBdLdBvBwULI4PZ66yi3cyPHht2zry8vKoqakhJiZGPJBarZa7d+/i7u6Oj4/PjEQ2SkpKCAgImNAz29vbS1lZ2aQy6yqVitu3b9PV1YVeryc+Pp6GhoYJr1UoFKjVau7fv09SUhI2m42SkhLmzJlDfn4+r7zyCs7OzuTk5JCcnCzImMViYf/+/VgsFhwcHEhLS+P69ets2LBBZLdv3rxJfX097u7uVFdXo9Fo6O/vZ8+ePRQVFQkVn4KCAuLj43FychJk7MSJEwwNDWE0GomOjsbf3x+AmpoanJ2d6ezsJDw8HCcnJ3Jzc7l8+TIDAwMsXLiQoaEhfH19MZvNVFVVIUkSZrOZlcsyGWquwtfWjZdikCWLFj722s/i+4nS0lLMZjPt7e1ibqqqqorFixdTV1fHvHnz6Onpoby8nMbGRqxWK8uXL6eyshKz2SwCePjGDNfFxQWjcWJ7yVi5cEdHxykJjdzKZrPZJpAYWQ5crVaLYGRgYABJkrBYLOzYsQODwWBXWbFarULCXZ7Bmq4yP9nxTzdvNRXJmkzRbzpMZxaslqxEqrrx0xgF0VMoFAwPD4vrKv+dn59PXl4ezc3NGAyGUWGQ0FDOnDkj2pQ8PT2pqqrCaDQSFBQk9uPg4EBkZCTp6ekMDw9z9epV8vPzUSqVeHt7o1QqxVC6TKQ8PT1paWkhLy+P6Ojo39svcRazeJoICQlhcHCQy5cvEx8f/1TEDebMmcPly5dnHNvAaIXn3LlzLF68mKamJpRK5Yy92xoaGlAoFOJZtVgs3L17l8WLF4tYr7Ykj4WxIbycEU68IZ+1i+fj6upKUFAQ6enpmM1msrKyqK6uxsPDQ1TaL168SGBgoIhJxvqVyobdsioxjK477e3tLFy4kLKyMmJjY4Uiq0ykvL292bZtm3jtl19+yauvvmrXETA4OMiBAwfYvHnzBDPxpw15Jqu7u5vXX3/drn18rDR7QpDbd04OfSy+u0c+Q2g0GtLT07l9+zY3btwgNTVVZFY1Gg2vvvoqDg4OfPLJJzOu4swETloVry4MJU3TzC9fWUmAjydXrlyhq6uLhIQEfvrTnwLw3nvv8eDBA7sv+66uLj7++GMyMzNZu3Yt2dnZND6s4c2V8/irDbH8ZG0SlaXF4vhHRkY4duyYXZASFBSEg4PDjNVvpsr+yuITk6GlpQUfHx9eeeUVOjs7hTfNZEhOTqa9vZ2mpiZiYmKor6+nublZDMKnpKRgMBjs1L2uXbtGX18fGzdupLu7WyjuyVWkmzdvUlNTg1arpbOzE0mSMBgMoyX23ynkZGRkoNPpcHV15eDBgyIASktL44c//CH19fX09PTYBSFarZbh4WG8vLwoLi7mH//xH7lw4QLJycmEhISQl5dHcnIy69evZ2hoCLPZzNy5cwkICECtVqPT6fD39xetU7OYxWQoKysjMjKSwsJCQkNDuXLlCmazmXnz5lFfX09YWBhZWVkMDAyINau6ulo8p+OrLSqViiVLlqBSqSZUh+XXWiwWUT2aqlojEzMHBwfUajUBAQHivRqNhsHBQbF9hULB0NAQzs7OXL16VVRg5PY+m83G/Pnzxb9lojSVF83Y52WmLXxjMX4Nm+k2wpX6KWcesdlYFeEmyKRWq+Uv/uIvhIEmfFMJc3Jywt/fH5vNRnV1NceOHePEiRPYbDY++ugjampqGB4eZu3atdy4cWPSipJGoyEjI4Of/vSnrFmzhtLSUt59910uX74sKoaBgYH80R/9EcHBweh0OqxWK++//z6VlZUzu1CzmMV/ElasWEFUVBQHDhx4KhVUtVrNxo0bOXfu3JQjEOMxmRDFTCHPTcmQK1Pys++kVbHAbYifLA7glfQQMI/YtTerVCrS0tL42c9+RmxsLMePH+fgwYMi9hgvCOHm5sbGjRs5ceIERqOR8PBw0dVjMBiEcFd1dTXJycnAKGE5ePAgvr6+bN26VczAnz59mlWrVtm1SdtsNk6ePElcXNy0KsdPA11dXfzHf/wHbm5u7Nmz55lO9jzzZAogIyOD0tJSysrKWLJkid3vlEolzz//POHh4ezbt29aydonhZOTkwg8du7cCSCM03Q6HVu2bGHnzp1cv36dTz/9lJ6eHjo7O/nkk09YsWIFaWlpxMbG0t/fj16vFxmI0NBQhoeHaWtrQ6VS8fLLLwNw9OhRsbgEBwdjs9lmTKamEqAYPy81Fo2NjQQFBWE0GvH19eXmzZtTZoBVKhWZmZncuHEDrVZLWFgYZWVlODo60tHRgUKhYO3atVy8eBGr1UpzczO5ubmEh4ej1WoJDg6mrKxMZHDu3LlDfn4+e/bsEa2Fer2eLVu2CJ8urVaL2Wxm586d6PV6XFxcOHLkiMiq+/j44ODgIBYdORCU56UePXrE7du38fPz4xe/+AVubm60t7fj7OxMRkYGx48fF8FMfX09KSkpDA8Pi/kVLy+vKaWfZ/H9htFoFPN3svFscHAwAQEB9PX14eHhQXZ2Nr29vWzcuFGQjLGtImNbVbRaLenp6dTV1eHh4THhOZysGjRVe7NcAZGleOVEhSRJwudK3r6fn58w9pa9puTjkTFeFMLd3X1GSYbp2q/HksXJCJP8s5kadKol66hIxxTiHc31daKDQKFQUFZWJoQ75HPSaDSYTCaCg4NRKpX09vbS29srZjy7u7s5c+YM//RP/8TJkyfR6XScOHECvV4/paJfZGQkr732Gm+++SZGo5Ff//rXHDt2jIaGBpRKJevWrWPnzp1otVocHBw4cuTIpN5ds5jFfxUkSWL16tWEhoZy8ODBp6LqGR0djZ+fHzdv3pzxe2QhCjmZO1MfzvFtfjJRGt/SKz/DY72gxkImVe+88w7z5s0TseBkBCM+Pp6QkBCysrLQ6XRine3t7RU2GvPmzUOn0zE8PMyBAwcICAhg8+bNYs3Lzc1FpVKRmppqt+1bt24xMjLC6tWrZ3T+3xbV1dXs27ePRYsWsXnz5qfW+fXfFc98mx+MZjIKCwtxdXWd1BRW7lsHOH36NGFhYU/FxVuhUJCTk0NKSgouLi64uLgIaU65z9XNzY2UlBT6+vo4efIkeXl5PPfcc+IBkCSJpqYmDAaDIIKSJDEwMEBLSwsREREoFArmzZtHVVUV+fn5wmulpKSEvr4+Fi58fKtZWVkZPj4+dk7fMOoAbjabJzWEk8lOc3Mz3t7eYhYqIiICV1fXCa/38/Pj8uXLhIWFUV9fz+DgIBEREVgsFoKCgvD09KSsrAyj0ShEIvbs2UNxcTGenp4UFRWxceNGysvLuXHjBm+88Qbd3d3cu3cPjUaDn58fa9aswcfHhy+/HHXy9vPzIzAwkJCQEG7fvo27uzvl5eXExcVhNBqFqfCLL77IqVOn6O3tpby8nNraWnQ6HWFhYbz00kucPn2alpYWIbzR2toqTABXrVpFSUkJS5cupbe3l4GBAfz9/enp6aGvr+8/TSVnFt8dVFRUMDAwQHV1tZjNc3d3Jzo6WphuFxYWsnbtWiorK+nq6hKtpDK8vLzEl6nFYuGVV17h2rVrBAcH2xGbsRhLLiRJEtUWBwcHse2x0uIxMTFiW87OzuK+liGTIln8RYZSqRTbk9v8ZPy+2Wn5HFQqFc7OzsJEdywep/o3GZwlI/OU7ThJJtylISJVejLVD3FTGrFaraKq9txzz3H16lUhVWw2mwXJjI2Npa+vj+3bt5Oens6SJUuYM2cOjo6OSJJEc3MzNpsNpVKJWq2msbGRwsJCcnJyaGhoEJUnWaBHhqOjI1FRUaSlpYm2qaKiIlQqFREREaSmptLT04Ner6empoampibi4+O/VXVvFs82DCNmTuQ3craomcaeUVW6P1R7lbyvL4ta0HoF4WQZ4P7dXGGI/ftgzpw5nD59mpiYmBlVPNzd3cnJyWHOnDkYjUaGhoYmNS0fD4VCQXZ2tp11izx/JXfi5OfnM3fuXNzc3Lh27RrLli2bcg5Jtq/p7e2lo6OD2tpaqqqq7Nr/AMLDw7l8+TIuLi5oNBpaW1vp6+tj9erVXL9+nXXr1gllz5CQEDZs2GCnUHrq1CleffVVu2vz8OFDLl68yJ49e6ZUT/59YbPZyM7O5tKlS+zcuVMYpD/r+F6QqY6ODnJzcxkcHCQ1NXXKvt2goCDc3Nw4fvw4/v7+T8XQt7CwkKioKJycnPDz86OhoYHi4mKioqIEYZPVuYqLi3F2dqalpYWAgABBSIqLi+no6CAhIUE8AC4uLly6dImFCxeKAevY2FgePnzI3bt3SU1N5dq1a5hMJtLT0x87YFhWVoaXl9eEPuKKigocHBwIDQ2d8J4LFy6wbNkyQRgVCgUGg4E7d+4QGRlpN6gun6ckSeTn51NfX4/FYiExMZFHjx4RHx+PJEn4+flx4sQJrFYr69atIzQ0lMuXLxMQEMDQ0BBubm5cuHCB119/XYhLyIFcREQEkZGRaDQaMccVGBiIn58frq6uODk5UV5ejkqlor6+HhcXF+rr69HpdKxevZqOjg7y8/MZHh4mKCiIbdu2UVJSwr179/Dz82PHjh04OjpSX19PVVUV4eHhuLm5ibmQqqoq3N3dsVgshISEUF1dTXNzM4sWLZoNamZhhxs3boh2keHhYTZs2MDdPkpF1gAAIABJREFUu3fZsmUL58+fp62tDV9fX6xWqzCYHQuNRsNrr71GTk6OICpWq5W6ujo6OzunJBFhYWH09PSITKrs2WQymYTFwFgYjUZBIiRJoru7W1SmxlaoxmebZSI1neXCdJC9VKaD1WoVs0uTQaPRzEg5dSyUkg0vxSBBKgOe0iBatRKr1SrIpkqlora2FoVCQX9/v8hOa7VaMRPW1tbG4OAg3t7eaLVaXF1dxVyEQqHAYrEIE195mNxoNDIwMEBbWxslJSVcvXqViooKurq6MBqNODg4oNFoUKlUBAcHk5GRgaurK3l5eVy+fBmLxcKSJUvEutPR0UFBQQFJSUl2LUez+H7j7kM9W351k+uVHWTX6vm6povf3qolI8yTIPenG1yP31d2bRfX2hTM89ZQ9yDv9yb7Wq0WpVJJTk4OSUlJj61Cy7Od1dXVJCUlkZOTM6FqM9V+rly5wqJFiwQBLCoqspMkLygoYO7cubi6unL16lVWrVr12OOR575+9KMfYbVaOX/+PJWVlYJUqVQqgoKCOHnyJCkpKeTn5wOjLb7d3d2kp6dz4MABwsPDWbdund1c7GeffUZKSopdEtxgMHDw4EG2b98uWrefNsxmM6dPn6auro49e/aIOfTvA55ZMjU2+3IpO4/M+TG4OjvS09MzKTGQ4ePjQ3BwMMePH8fZ2XnGQ4pToaysjMDAQDw8PETbxr1796ioqCAtLU0MCR44cIB169axefNmtFotp0+fpqenh+DgYC5cuEBiYiJNTU1ERUUBo5nL4uJiPDw8BOmTJImYmBgaGxu5c+eOkPj29/d/rGdMeXk5np6eE863qKgIX1/fCQ9ff38/ubm5LFu2jEuXLrFx40bRgpSamsqpU6eIiYmZkP3w8/Pjq6++IiwsjICAABQKBaWlpSxZsgRJkujs7KSwsBAHBwdeeOEFMYit0+lwc3Pj66+/5rXXXsPDw4MDBw4QExNDXV0dISEhDAwMiB5iDw8Pvv76a4KDg0X2yd/fH71ez9DQEL29vTQ3N6NSqRgZGeHKlSt0dnaK/uKamhqsVis1NTWsWbOGFStWiM/q6tWr2Gw2Ojs72blzJ+fOnePFF1/kwYMHDA8P4+HhQVRUFNevX8fHx8fuM5rFLMxmM2fPnhUkRaVSERkZycDAAAMDA5SVlQmlpra2NjtCIEkSHh4eWCwWamtr0Wq1wlZAtkKYrhozlkjJVSkYbQvu7e1lyZIldkqjY8Ug5OOYquqjVqtxc3ObtvI0vko1FaZ6zfjZTjnDOxlmQqQepxS4du1aampqxLacnJxYv369ELsxm82o1WocHR2FhLEkSdTW1lJYWMjVq1fJy8ujrKyMmpoalEoljY2NDAwMEB0dTXJyMoWFhezevZvU1FS8vb3Fmtne3k5rays1NTXcvn2bu3fvCvVUlUrFnDlzmD9/PlFRUdTV1YkZklWrVjEyMkJrays5OTki6TOL7zcMI2a2/OomAyMWTJbRe95ksWGy2DhX0sLexWFPrUI13b5KetWsCIAHxUXExcX9XoQqMDCQ3Nxc0ZnyOMhCFKtXr+b27dszEm2RJIkHDx4QGhoqyFNZWZldwj0/P5/w8HAcHR3JyclhxYoVjz2W8+fPs3DhQtHenZ6ejs1mE6TK3d2dkJAQTCYT94secLdDos7iwaOuATKTorh88QKRkZGsWbPGjrjdu3ePlpYWMTsFo+vpkSNHiI2NndTg92mgv7+fQ4cOodFo2LVr14Rk+rOO756Y+wxw96GevfvvYLPBoNGCChXnWgZ494Ukci+dYNGiRdOqyoSGhvL6669z6NAh+vv7RaD/bSCbrclwdHTkhRde4PPPP+fSpUvMnz+fQ4cOsX79etEOlpSURFRUFBcvXuRXv/oVGo2GzMxM3n//fVauXCm+bJOSkiguLiYiIkJsX5IktmzZQlZWFiUlJXh4eNDS0kJ4ePi0xzlVBnkqAQrZrLe+vp6goCDUarWQ60xMTMRoNHLgwAH27t1r90VutVpFW05CQgJXrlzBwcGBtrY23N3dOXnypCA4/f39tLS0EBgYSEVFBUqlkldffRV/f3+OHTuGj48PFRUVJCcnMzg4KKSE5QqXo6MjDQ0NduX5devWjZrsBgeTn58vFNFSUlJYv349Go2Guro6KisrKSwsFOpZMNqedPToUdavXy8UImV/LT8/PzZt2sSBAwfs2npCQ0OprKy0+4xm8f1GXV0dbm5umEwmenp6eOmll7hXWEJej5ZTdY9wUQQwZ6gDx9+1j8mQv8iHh4fFn5lCoVCI51uj0WCz2exaBltbW7FarWRnZwMTfedUKhU+Pj60tbXZtQGOhclkEnMIcvvh+GOY6cD4ZMcAE0mWbGI8nU/eVHB0dJz2GkqSRGNjI4GBgTQ3N6NUKlmwYAE5OTnMnz+fwsJC4BtS6e/vz4svvsiRI0dwdXXFaDTyzjvvMDw8LOan+vr6mDNnDsXFxTQ0NDA4OMjIyAj79+8nKCgId3d3XF1dSUpKIjMzU7R0d3R0UF9fT3V1tVAPtVqt+Pj4EBYWRmxsLJmZmZSWlnL27FmcnZ2FHPS+fftGv18WpHG2qJmHnQOEeTuxJSkQ5++gn8ssvh3OFjUz1SNiNJr45fvHyPAyo1Qq7f4oFIoJP3vc7y7UDGCxTJ4QsQFSaBqKhzkcO3aMl1566Vu3/CkUCjZv3szRo0eJiop6bOuaLERRUlJCQkICxcXFrFq16rH7kUUo5KTyWJ8/+Kb12Gg0zqgS3NPTg9lstrN5USqVpKSkkJycTFFREV988QVubm54RKfxD9V92GwemFFS2mbh/LlO/kdqBKtXr7aLTXt7e7l27Rp79+61I6nXrl1DkqQZkbxvg8bGRj777DPS0tJYtmzZt46Xv8t45ipTk2VErEiYLDauVHezLlSDxWQvSTsZnJyciIuL4+LFi+j1eiIiIr7VDfLo0SMUCoWd/KSXlxd6vZ6CggKKi4vZtGnThLkatVpNTEwMHR0dQjrZ09MTg8FASEgIMNoD/NVXX5GRkTHBVyUyMpKHDx/S1NSESqV67NxOZWUlbm5uEypQt2/fJjk5eQKhKigowMPDg87OTnx8fARpkKWAAwMDsdlsZGVlER8fLxaY7OxsdDodjY2NpKenc+fOHebMmYPVaqWgoICenh4WLlyIv78/lZWVGAwGhoaG0Ov17Nq1i7CwMG7evElzc7NQGouNjaW2tlY4icvD7y0tLdTV1bF48WI79TFHR0cuXrwofF5iYmLYsWMHSqWSgYEBvvjiCwwGA++88w5FRUUUFBSICmFAQABubm40NjaiUChobW0lOTkZf39/3NzcyMvLw2QykZSURFVVFSEhIRQWFpKRkfG9XGBmMRG3bt2it7dXJA38EpbwP863U2VQ02hyotHkxAOzH962XpwlI1FRUej1etFyJ1dJnuR+Gks0LBYL7u7uDA4OinVD9lobGBhAoVCQmZlJfX29eI/VasVgMKBWqx8rbT48PCxI09hWuyfxi5oOY+e75G2rVCocHR0nlYWfCmOJnXxsvr6+doPper0eX19fIRKxe/duuru7KSwsJCIigo6ODmC0zTEwMJCEhATi4+OpqKigt7eX7u5ukpOTcXd3x8/Pj5CQEObNm4erqytNTU387Gc/Y9GiRRQXFxMfH4+vry9Go5HOzk5qa2spLS3lwYMHoooudwl4eXnh5OTEwMAAdXV1FBUVkZubS2trKz4+Pri7u9PW1iZaE6+XNvJXV3u4Wd31B2/vmsV/T5wtaia7Vj/p76xIpEYEsjVj1CJElh13c3PD2dlZtJkqlUpB5E0mE8PDwwwMDNDX10dPTw9dXV20t7dz46GBGsPkBMlksRHt58KPtmRSXFxMdXU1sbGx3/r70dXVle7ubmprayed7R4PBwcHbt68yfLly7l69aoYlZgObW1tDA0NicTqo0ePRMstjI5zhIWFoVKpePDggV0CdzLcu3ePpqYmnnvuuQm/UygUBAQEkJaWxpDJyh+frsdkUwjbBisKLEjkd8HeJeGimmiz2Th+/DhxcXF2CoHV1dVcv36d3bt3T/AYfBooLCzkiy++YOvWraSmpn5v45xnLi01XfbFZoMhn3l8/fU1UlNTH1tednNz48033+TIkSMcP36c7du3P7G5mbOz86SqMQsWLKCwsBCVSiVa9yZDR0cHL774Ik1NTWRnZ1NbW8vChQtRq9U4OzsTHBxMeXn5BEM2SZJYv349H374IVVVVdOq8smvfxI1v8bGRpYvX86lS5fYtGkTMBpQjDW/Xbx4MSMjIxw4cIA33ngDpVJJbm4ub7zxBv7+/ty+fZu4uDgGBgYoLi6mt7cXR0dHli5ditls5t/+7d9Qq9X09fWxYMEC5s6dS3l5uXD9Li8vZ8eOHej1evr7+/H396e1tVUcb0BAAJWVlTx8+JDw8HC6uro4ffo0jY2NODs709fXh4+PD48ePaKyshJnZ2c+++wz0XLl5uZGREQEOp2OgwcP4uDgwJYtW/jggw/YsWMHR48exWazCTVFGCW49fX1dHZ24u3tjdlsxmKx0NXVNcHDaxbfP1itVsrLy8XMUUhENG9+fA8TytGULQjz2IvGKH7gWCIUIeXqkkxIJqvGyHMEJpMJk8kkyJIs6S23BEqShLu7Oz09PcIEWF6nbDYbZWVlYvtqtVoQD5msjK10jT2O8Wa/FotFBP0znV9SKpVTvlaSJHEOY2E2m6dU51KpVHbESVbWG3vtxp7L+OOvq6sT/z98+DC7d+/m/v37VFdXI0kSUVFRVFRU8OjRI3G9Xn31VT7//HOKi4sJDQ0V7ccykpOTqays5PLly6xfv54NGzZw+fJlfvKTn0z4XrLZbMKsU65u9fb2iutks9no6+tDqRyd72psbMRkMokqvUWh5qIxFhMSRuPodR383d9799/hzi/X4DRboXrmEebthKNGKT77sVBLVkK9nIiMjHwq+zLfqSfndDEjkzzGjholYV6OQon4008/5cyZM2zbtu1bB+KrV6/m3//935k/f/5jRSXCwsKET59araahoUEkqKeCt7e3nTLv+MoUIEy7Z1KZqqqqwsfHZ9rXKJVK6iUfFIpWmOQ62myj8e4r6aPHXlhYiMFgYOnSpeI1vb29nDp1ip07d05pcfNtYbVauXjxIhUVFbzxxhsTxMu+b3jmpuIfdg5MuljA6BdIr1WLm5sbDx48mNH2dDodu3fvxmazCZ+iJ4EcSIxFU1MTn3/+OWvWrMFisXDu3LlJ3zswMEBXVxfh4eGsWLGCt99+G0mS+Pd//3cxH5GUlERRUdGk7/fy8hJBz0cffTTlbAFMHpiZzWZGRkYm9BRbLBZaWlrw9PQUIg8wSqbGZz5WrFhBeHg4hw8fJicnh9DQUHx8fEhPT6empoY5c+bQ0tJCc3MzFouFbdu2oVQq0Wq1zJ8/n56eHhQKBatWraK9vZ0zZ86wevVqcnNzeemll1CpVLi6utLX14efn59o+4HRz87b25tbt25x4sQJ3nvvPdrb29m+fTtvvvkmGo2Gzs5O1qxZw/Hjx/nkk09Yt24da9asEZ+zl5cXBoMBrXb0vvnggw8IDQ0lLCwMT09PvLy87FpGTSYT8+fP56uvvsLHx4fOzk6ioqJm/V9mAYxmNGGUjHh4ePB1wzDWqYxngWqjfYus3e9tNpYtW2b3fCYmJpKUlCR+ZrFYBIkfu3YZDAbxvOt0OrsgRqfTMTg4KPyq5MDcZrOJZNLYY5G3I4uxjIXFYpkyiTNVYmo60jXWY2umBqDjWwtHRkbszmUsxq4fMhG1WCyiBaeuro7a2lo0Go0gtvPmzUOSJPr6+vjoo48wm0dbpV5++WXCw8M5ffo0ra2tdvuR27EfPHhAXV2dmN0oKCiYcEySJOHg4ICfnx/R0dGkpaWxevVqXnjhBfbu3cvPf/5z/uZv/oZ33nmH3bt3s23bNpYvX05sbCweHh7UmT2Yqh4oB2SzePaxJSmQqbiKQpLoKrhAVlbW7y1dPjIygqXuDrYp5h5tNitbkkZjBrVaza5du9Dr9Xz55ZffunKt0+lYt24dZ8+efexMpiRJpKamkpeXR2Ji4pTx01iMl0f/fdv82traZkRc6zoHJiWkMBrPPuwaPYb+/n4uXrwo4icYXbeOHTvGokWLptUJ+DYYGhri8OHDtLW18fbbb3/viRQ8g2RKzr5MBge1gjAvRzIzM7l169aMH1yVSsWOHTvw8/Pjo48+mpB9nQ7Ozs52M1ONjY0cPnyYrVu3snTpUhYuXMiDBw8m9SOqqakhLCxMPBxeXl688MIL2Gw2Dh06RFZWFuHh4TQ1NU3q2yJJEkFBQXh4eBAREcH+/fun9NEam2mWIc9Ljc8Wtbe34+7uTmtrKyEhIeL4hoeHJ5j2SpLEunXr8Pb25saNGyxevBgYzaAvXLhQVM0UCgUREREiq9TX10d+fj6SJOHt7Y1CoeDIkSOsWrWK69evs2nTJjH8KRM4Ly+vCcHQ4OCgaJdZvnw5f/7nf05iYiIdHR2iFfH69etotVoUCgVeXl6YUFI86MLfnSvlVouN4vIqdu7cycaNGxkZGaG2tlZU0vr7++3uo6GhIVJSUujv72doaIiOjg6ioqJm/aa+5zCMmDlyt57/faaY4kEXPHz8R5MIBrOoRI2HGSV9tm+SE/I8QFBQEEqlknnz5pGSkmJ3/xUWFlJSUmKXOPH09JxAHCwWC/7+/mJ9kuca5SrU4OAgGo0Gf39/8XzHx8dPOvMkG2+PT9aYbAoqzd6cbVBSafbGZLP/upFNgL8NZJI3tooz9jpM9+UuB4vyucjbkNcu+Xxl/zr5ZwUFBSgUCo4ePSrWKVmdFGDlypW0tLTw3nvviSTQq6++SlBQEPv27ZuwRjs6OrJt2zZOnToljHyvXbs2ZauizWZjcHCQtrY2qqqqyMvL4/r165w9e5ajR4/y6aefcuTIEU6cOMGdO3eE0EW3WTXlPTY2IJvFsw1nrYqP3khHLVntvNQc1Qq2ujawbtUKRkZGeO+99ygvL/9W+2hpaeGDDz7A3UnH/1zuZefbplWCo1rBRoc6qspKxHs0Gg0/+MEPaG1t5fz589+aUCUkJODk5ERubu5jX5ucnEx5eTlRUVGUlpY+tmru5eVFV1eXOLbJyJRsSv64NW14eJiRkZEJ3USTwck6iFqanBzKFT6bzca5c+dISUmxG9O4dOkSDg4OdpWqp4GOjg5++9vf4u3tze7du/9gEuvfNTxzZGpLUuCUGRGzyYTPUAPh4eFIkkR1dfWMt6tQKNiwYQOJiYns27dP9Mo/DmPJVENDA59++inbt28nJiYGQKjHnThxYkL7SnV19YTsRVRUFFqtls2bNzM8PMyHH35IQEAAJSUlTIbg4GA0Gg1eXl4sXryY/fv327l5y5isMvU48Ym6ujrRQwyTV6bkbcuCEDdv3hQLV0ZGBhUVFSKYkQOggYEBDhw4gLe3Ny4uLhgMBj7//HOio6Opq6sjIiLCbnBTkiRcXFxwcnISg/R3797lzJkzYuYhISGBFStWiECpra1NnJvFYmHevHls3LiRv99/goV/d4lc0xx+c7OOjwr6+HQogVaLE1999RXr169n9+7dYuZKp9MJs18YJVNOTk5s3LiRvLw82tvbhRfX03B/n8V3D3cf6ln4d5f4f8+WcrlFSY4xmP9b6U6rxQln66AINsZDhQVX6ZsssSzD3d7ejsViobS0lH/5l3+xWzcsFovwzJOxceNGO+VAGCUS8kxNaGgo3d3duLu7YzabhfLnwMAAer1ekIyx1XyNRiOqX1arVRyD/Cy3WZ05OpJMrnkOxZYAcs1zODqSTJv1m/XEZrPZtdfNRNVLrkbJa8hUWej29nZUKpXdNuV/j6+0y6pT8vMpXyMnJydhVvxnf/ZnQjXLbDbT0dEh2ijlY/H19WXv3r0YDAZ+85vfCKGIvXv34uzszK9//esJhCoyMpKYmBjOnDkj1umTJ09y69YtvvrqKz777DP+4z/+g3fffZe//du/5Ve/+hUnTpwgNzeXhoYGzGYzLi4uQk5Zq9WKKqLBYGBkZARXaWTKe0wOyGbx/YC/coAf+z5kibaZnfGuZDq2cmhnKH/15ktcu3aNuLg4XnjhBS5dusTRo0dnnDi22Wzcu3ePgwcPsmrVKtasWUNz4U1+GtTEYm0TryZ7scajh7t/s5b/5+1RP7yvv/5avF+r1fLaa6/x6NEjrly58q0IlSRJbNq0iZs3b07bhQPfCFE8evQIX1/fxyY7tVotOp1OXI+p2vymMuwdi9LSUpRK5YwUfh07SlFNIc4hSaPxbmlpKZ2dnXbiEmVlZZSVlbF9+/anOsNUWVnJ/v37yczMZMOGDbOWL2PwzF0Jy/AAGx3r0KkQjN5Ro8RJq+Q3P0imoa6a/fv3k5yczK1bt55o25IkkZmZyapVq/j444/tBrSngtzmV19fz5EjR3jhhRfsZqSUSiW7du3CbDZz6tQp8XObzUZNTc0EMiVJEosWLSI/P5/t27ezfft2Ojs7uX79+qQLX1BQEGazmZaWFjIyMlixYgUff/zxBDI4GZmabl5KJlNjVQInq0zBaOCWnZ0tZotOnTqF1WpleHgYq9WK1WoVBpbDw8McPHiQuLg4RkZGRJDW39+Ph4cHer2e9evXT9iHq6srCoWC7u5u3n33XS5cuICHhwe+vr7s2bOHiooKu8WvtraWiooKXF1d+ZM/+RMqKysZNFk5awhl0GgVmVwTCkw2JW/sy2XYPKr6FxgYSEBAAD4+PhgMBm7fvi0+M/kahIeHM2fOHGHoGRISQk1NzYTjnsWzDcOImb377zAwYhHtx2aUmFBy0RhFsKKHqb7qJCBc+c3A+FjRBYVCwXPPPYdOpxOmiAqFAp1ON8GX6l/+5V+E8MpYY96enh47VUB3d3eUSqWd4W98fPyEJIBSqWTlypV2z5NMKNLS0jDZFFw0RmFCKZ6jsec8tkIlH8+8efMmEKPJEjMmk2lGxEur1U7wqpL/PZbQODo6iv+PbdWB0WSS7CHn4ODA4sWL+cu//EsUCgV6vV6c97p164BRUZ7AwEB27NiBJEl88cUXQsBo/fr1mEwmfvWrX3HmzBmOHz/O/v37+bd/+zcKCgooLy/nk08+wWw2U1VVRW9vLx4eHsTHx7N27VreeOMN/vqv/5pf/OIXbNu2jcjISGHsfOfOHZqbm4XgBdi3dEbp+qe+x34XkM3i+4GCggLiYyJZ7Gfjf25LJlrZSU1FKT4+PuzatYtTp06hUCj4yU9+gp+fH7/5zW/Izc2dtnVuZGSE48ePc+/ePd58800SEhK4ceMGSqWS9AVJLPGD/70znTmmBiSLEW9vb958803y8/O5ePGiiDscHBzYs2cPlZWV3Lhx41udn5eXFxkZGWRlZT32tSkpKU/U6ufl5SVa/X6fNj/ZhuZxaG1tpU/fwYe7F6DGgoP6d8mg38Wz+/dmIFmMZGVlsW3bNpEE6u7u5uzZs7z00kszMjOeCWw2G7du3eLs2bPs2rWLBQsWPJXtPkt4ptT8ZC39zAVxrAgAL0cli+PC2T4/kL9/KZmYQE+Sk5MxmUxcv36dwcFB5syZ88QeHP7+/vj5+XHs2DE8PT2nHSRUqVRcuXJFiCVM1icre5Tcv38fT09PfH19aW5upqamhuXLl094vY+PD5cuXSIyMpLg4GBSU1P5+uuvuXfvHmq1msDAQPFwOzg4cP36dUwmExkZGQQEBODk5MTJkyeZO3euqM7IcwBjVQfr6uowmUwTFHIuXbpEcnIy+fn5rF+/Xuzr1q1bpKWlTSBUeXl5DA8Pk5mZSWxsLPfv36exsZH8/HycnJzo6+vD2dmZjo4OampqCAkJITMzk8uXL+Ph4SEy3/X19ezevXtS/4IHDx5QWFjI0NAQGo2Gl156iQULFlBSUkJmZiZ6vR69Xk9ISAg5OTnk5eURFxeHm5sbycnJhIeH83+OXKHR4obZOklWzGohMyWBtAg/DAYDly5d4o/+6I9wdXUlJycHm82Gn58fd+/eFZ9ZcHAwOTk5+Pn54ebmxqNHj4iNjZ3yXpnFs4cT+Y1cr+wQyqJjocCGq2QkXt3BQ4sHCmxYUaDCghIbazVVuComzi/IlYe6ujrxbBiNRlHpcXFxEf+H0fVKrVYjSdKk8xADAwOo1WpBEMYKXLS0tAghAxlKpRKj0WiX/ZV/39TURI3Fi0arm1CfGn/OTpIJL4V9VneySv9kEuxyZflxcxGy2IZGo8HT09Mu8BnrdbVu3To7gY+x+xvb0piRkYFarcZms5GdnW23//LyciGAUVRURGdnJ0NDQwwODtLQ0EB+fj5dXV14eHjQ3d1NZ2cn8fHxJCYmkpqaysqVK4mLi6OwsJA9e/aIfa9evRpnZ2e6urooLy/n5s2bZGVl0dDQgFKpxNXVFZ1OR1dXF319ffT19YnPytHR8Zu5OdMIfgqD3T3moFagVSvYvzeDMO/vlx/M9xVGo5EzZ86QmJjI0NAQqamp3Llzh46ODhYuXIiHhwf+/v4cP36cqKgoEhISiImJ4euvv+b+/fsEBgZO6FRpbW0VXSQvv/wyzs7OdHZ2cu7cOVQqFXFxcRgMBhITE2lsbESlUuHn54dWqyUhIYHbt2/T0NBAdHQ0kiShVquZN28eFy5cwGQyPVYYYjIEBwdz/fp13N3dpxV9cnd3JycnRxxHWlratAJjTU1NYvs2m42cnByWLFkCQHFxMcHBwQwMDDA8PDytquD58+eJioqaVngM4MKFC6PXZaiH+Y69PLdoAVG+LiKeDfN24syZMwQFBQnzYbPZzKFDh1i4cKGdot/vA5PJxKlTp6ivr+f111+fnY+aAs9UZer69euoVCqWLl1Ke3MDuxfP5a82xPJKeohQK5IkiYULF/L222+j0+k4cuTIlHNE0yEiIoKqMansAAAgAElEQVTXXnuNr776irt37075usbGRqxWK1u3bp3Wa2jRokX4+/tz+vRpDAbDpC1+MlQqFenp6cITRqPRkJaWRlxcHKWlpezbt08MPDs6OuLi4kJ3d7fIuCYlJbFhwwYOHjwohCymavMbX5mSVb/6+/sJCwuzyxBPVpmyWCzcvn1bEAx54LSmpoaOjg66urpIT0/HwcEBi8WCo6Mj69evp76+HrVaTW9vLzt37sRqtRISEjIho9Pd3c2nn35KdXU1BoOBoKAgVq5cSUREBFqtVgSPixYt4s6dOxw7dkz4R7m5ueHq6srDhw+pqKjAIDkwbJ6iRRQlPZbR8n1BQQGxsbFotVoWLFggfCsOHz5sl013c3MTqoXR0dFUVVU9FWnoWXx3MJ0gjjwT5acw8Iq2kEXqBhKVLSxUNfCKthA/hcHu9eO/6JVK5QS1UIvFwvDwsN1z6e3tbTc3Nb7tQ6vVEh8fP2Fucuy9Op5kjCdlDg4OeHl5AdBn0854DmwqmGwKyo2e3DMFiXkrSZKwWCwTiNRkHjUyeXJ2dp7Q9jiWJMnrHzBlRtnR0ZFjx45x+PBhfv3rX9vNV6jVaiHQIZv2uri4sGfPHlJSUggJCWHhwoX09/ezatUqli9fjouLC9nZ2Tg6OuLt7Y1WqyUgIIBFixbx2Wef4erqSmFhIe+++y7/+q//yp07d1CpVGRmZrJjxw6Cg4MpKysjLy+P8vJyQZyVSiWBgYFoNBoSEhKEhxVAoHqIXboilmibWaDt4OdLA7nzyzWkh82aiX9fUFZWRnBwMIODg+J7dM6cObi7u4uEQkREBBs2bODQoUN0d3fj7e3NG2+8QUpKCgcOHODChQvifrt37x4HDhxg5cqVbN26VbS3nT9/Hnd3dxYtWkRPT4/YV0REhF13hqOjI3v27MFgMHD06FHRxuzs7Mzrr7/O/fv3ZzT/NBaGETPH8ptp8knn74/fRt8/9TygLERRUlLC3LlzKS0tnXbbY0Uo5MrU+DXSZDJN2+ZnsVgYGBh47LxUb28vVVVVJCUlkZ2dzbrnVvBKeohdPFtZWUljY6OdvHpWVhbu7u5kZGRMu/2Zore3l48++ghJkvjhD3+Iq6vrU9nus4hnhkw9fPiQvLw8tm/fLtTmxlZZxsPT05Mf//jHWCwWPvjgA+7evfvEgW5gYCA//OEPycnJ4fLlyxPeX1tby+eff46rq+tjZbElSeKVV14B4PPPP6eqqmpatZf09HTKy8vFPFZycjI1NTWTLnzBwcE4OzvbiTPEx8ezZcsWDh06RENDw6QCFJO1+ckmlg8fPrSbl5J9J8YHJEVFRXh4eNh9Fn19fQwPD4v2t6VLl9La2orNZiM4OBhJkigvL2d4eJjNmzeTnZ1NbGwsjx49Eq2Mg4ODfPnll7z33nvU1tYSHh5OYmIi8fHx4jzHkimVSoXRaESv1xMXF4dSqeTevXtkZ2dz/Phxbt26hTPD086vNJUXcPfuXe7fvy8yQTCatZYDooGBAbs2q4SEBHp7e+no6MDJyUlkt2bx/cB0gjgqLLgpRpXl1JKVeIc+0tRNRKs6Jx06Hi+YYLFYRDViLIaGhuwIQ09Pj/CQ0mq1EwaGQ0JCqKystCMdMuEaXxn38PDAz89vgjrd0NCQmMWcbkZn/BzYZJhq3qrVMnkFRfaLm6z1LzQ0lDt37ky5r8nU88ZDTjSlpaURHR1NUlKSII5Wq5UNGzYIQYzBwUHKy8uprq5m06ZNODg40N/fz6ZNm/jss89Qq9W4uLgQGhrKJ598wp07d7hx4waHDx/m66+/pr29naKiIqKjo3Fzc+PP//zPWbp0Kf39/Zw8eZKsrCyqq6sxGo0ieaVSqYiNjcXZ2RkXFxfWrVvH3bt3xT0gzwi7OzsQp+thpUcvq0K1s3Lo3zMUFhYyf/589Hq9IDjBwcE4OTnZzUMmJCSwbNkyDhw4gMFgQJIkUlJS+JM/+RMMBgPvvfceH3/8MXfv3uWHP/whiYmJ4r2VlZV0dXXR3d1NSkoKer1ePCuRkZFUV1fbrVcajYZdu3YJ+xG5PdXV1ZXXX3+d7Oxs7t+/P6PzGzubeqSwixsDviz5/65y9+Hk3lrwjRBFbGzsY1v9ZBEKGE3gaDQacbwzbfOrqakRwmDTQTYGLyoqIjw8fEL30/DwMF9++SVbt24V+ysuLqauru73kpgfi4aGBn77298SHx/PCy+8MCP1VFlo6f98VcaRu/UYRmZu0v5dxzNBpgYHBzl58iTPP/88Li4uNDc3i4zfdNBqtWRmZhIaGkphYSEHDvz/7L1ncFR3nu7/6SyplXNGCZSRkBAIZDA5mGjyACYYHDCerfHu1m5tbdW9t7buv+7u3JmxJziNEyYYbAsMJoloTJJEUpaQQDnnLHXu/wvNOe5WtwSMvbcceN7YSKdPUp/f+Ybn+zwH6OnpeaJje3h48OKLL1JVVcXXX38tVi0rKys5evQoGzZswMPDw0rRbyy4uLiwYsUKGhsbaWlpGVfO0snJifj4eDFQ8PX1xcnJidraWpuFT6FQIJfLraqwADExMTz//PMcOXLEblBmT4BCmJcSvJsECIOXlgGNyWTi+vXrVgGZ0Wjk+PHjREREEBAQQHt7O4cPH8bd3R2FQkF5eTkGg4GioiJcXV3RarV0dXWJhnCXLl3i2rVrvPXWWxQUFDBp0iRef/11pk2bxuDgoI08uk6n46uvvuKdd97BbDbT1tZGWVkZcrkcvV6Pg4MDCQkJI6IWzsMoFPYDDJlMxosLkigtLaW3t5erV69SVFSETqcjIiKCwcFBkf554cIFTp48iU6nw8/PD1dXV7KysoiKinqq6vcLw3hyxBIgQj6y3gjJ/uPAZDLh5eXFhg0bbJIdeyILTU1NItUWRhIfy5ftgwcP0Ol0VoI8QrdHmH0Q4ObmRldXl83L2rJrFi7reuw5sNF4knkr4RzsddUFCIqgY0H4nDCfNBoeHh5oNBra2tqIioqir6+P8PBw+vv7cXBwwGg0UlRUhNls5h//8R+ZM2cOBoOBCxcucPz4cZ5//nk6Ojpobm5mw4YN3L59m+7ubrFYdO7cOVpbW5kyZQp79+5l79699PT0MGHCBFpaWvj9739PVlaWKDqi0WgYGhrC3d0dlUpFUlISkZGRNDQ0sHTpUsLDwzl16pRIWczIyKC5uRmpVCr6UNmz63iKnzd6enpoaWkhOjqa7u5uq2RqeHiYqqoqq25zWloaycnJVgmOWq0mIyMDk8lEc3MzXl5eVjGWwWDg3LlzBAQEkJSUJFJQhWTKw8MDlUplU4iRyWSsXr2agIAAPvnkE3GG0d3dnW3btvHtt99SUFAw7vXZm03VmSRojLD941wGxwjqBSGKwcFB2traxo3/HiWP/jhqfsXFxbi5uY27Jmk0GvLz80lJSSE7O9vuqMeFCxeIiooSY7COjg6ysrJYv3693bn1J8W9e/c4cuQIK1euJCMj47GSM8tk9r2rVfzHqVKm/5+L4yazPyf85JMps9nMiRMniI+PFzs5tbW1j821TUtLo66ujjVr1hAREcEHH3zA3bt3n6hLpVar2b59O4ODgxw5coSysjKOHTvGxo0bmTBhgo08+nhITEzEx8cHk8n0yBfejBkzuHv3rtget/ScUqvVrFmzhhUrVlBRUUFvby/19fU2+4iKimLdunWUlZXZqPzZ60w1Njbi4eGBTqezqpbYo/gVFxfj7OxslRReu3YNuVxOTU0NK1euJCgoiLa2NqZMmcKwwcy3DXpe+sspyrQexCQmc+XKFdatW4dUKsXV1ZXCwkKuXbsm0g/Wr1+Pm5sbLi4udHV10dnZSUNDA++//z6///3vgRF6w8yZM5kzZ444YO/i4oJSqWTx4sWUlZWhVqv5h9de4V+nu6CQfCfnqsCEUmJia3AvyQmxODs7M2/ePBISEigsLOQPf/gDX331FSEhIZSVleHu7s4rr7yCwWDgr3/9q6iq5e3tjVarfeo39QuDs0rOvh3TUI6SI1ZgZKHyATLzyEveUob7cYzBOzs7OX78uI2Kp9BdtjSuDAsLEyVzhd/bW98kEgmxsbFikiA8z5bb1tXViUaxlrDshCkkJhYqH1jJIlte81hSvwDVRs+xPZH+9nvx3387B+G/ozvrjo6Odjvu9uDp6SmqcloGDoKx99DQEPv27aOuro7g4GD0ej0qlUo0/ZbJZMjlcmbPns2//Mu/EB0dTVFREb/73e+QSqVcvXqVQ4cO4evri7Ozs6gOtm7dOmpqapBKpbS0tHD16lWMRiMXLlwYsWnQ6+nr66O9vR1nZ2fc3d1RKpWkpKSQkZFBXl4eXl5e7Nmzh8rKSs6dO4dKpcJgMJCSkkJtba0Y3A0NDYnqf6OVyJ7i5438/HwSEhKQy+VWnamAgAA6OzsJCQmhvLzc6jOzZs1iwoQJHD58GJ1Ox927d9m/fz8LFizgn//5n/Hy8uK9997jzp07mM1mcnNz8fLyoqamhunTpwMj65QlNV/oTo2GRCJh8eLFolqyEIt4enrywgsvcPHixXG9QU8VNjFWyKY3GDg5jpdaSkoK+fn5xMXFUVRUNOZ2bm5uDA8Pi0mnZTL1uJ2p+vr6cRlTAHfu3GHSpEncv3+fyMhIm65UVVUVDx8+ZOHCheIxv/jiC+bPn4+/v/+4+34UjEYjZ8+e5ebNm+zcufORc10C7CWzQzojg1rj337+8+9Q/eSTqVu3bjEwMMD8+fPFn9XV1T12MuXg4MCUKVPIzc3lmWeeYfv27dy9e5dDhw49kZ+U0K42mUxkZmayatUq8RyetBLo7e2NTCbj8OHD4yZ1Xl5ehISEiFSVhIQE7t+/LyZXMMJTfu211zCZTJSUlNilM4aHh5OQkEBpaalVsD86mTKZTDQ2NqLVagkLC7MKOkbLopvNZq5du8bs2bPF7Zqamrh9+zYSiYQZM2Zw7949urq62LVrFyduFnNEk0iOLphvWhXkGkL4h8sDhKTMobu7m3feeYfLly+jVCrx8PBg27Zt6PV6rl27xuHDhzl48CBdXV3U1NSgUCiYPn06oaGhSKVSgoODuXXrFvX19WLFLC0tDY1Gw8WLF1m+fDnLly9HKpXSef8WO9wq2JvuR6Ksme2Jav4pshNFTx1DQ0M8ePCA1NRUJk+ezJYtW/j1r39NaGgo3d3dVFZW0tbWRktLC6tXr+bZZ5/l6NGj6PV6Zs2aRWlpKW3dfey7VvGLbIP/UpEW5sk21/vMUreOORMl8O/lcrnVTM549GCBtmoPlh1QJycndu/ejbu7u43JtABhXrG2tpaVK1eKypSATbfZbDYjlUqtOkOj55aEObDp8vHnwEbjh5i3Eq5Pq9Wybt06m3Mbnaw6OTnR2NhoReGBkTXdbDaLTAcnJydRLl4Q+1i3bh0wcv8qKiq4dOkSn332GVVVVbi5uWEwGGhoaMDDw0NUYt29ezdLlixBq9Vy/vx5goKCOHLkCGfOnEEmkxEeHo7ZbKazsxOj0Yibmxve3t4YjUZSUlJYt24dRUVFPHz4kB07dvDss8+SmZnJ3bt3cXNzQ6PREBoayoQJE8TgLywsTPTVEyifT/HLgNlsFil+Op2O4eFhcfZFoVDg7e1NYGCgTbIikUhYsmQJLi4u/OUvfyE3N5edO3cyefJkFAoF8+fPZ9u2bRQUFPDhhx9y7do1goKCCAkJwdPTE41Gg8FgsGK3REVFjalqK6glz5o1i3379tHc3AyMCG5t3bqVs2fPjul/Nd5sqt4sJbekasz7ExYWhsFgwN/fn8LCwjFjLolEYkX1G51MCTNTYyVTZrOZ3t5eux1wAQaDgVu3bpGamkpOTo5NV0oQEVm2bBkODg6ix1RAQMD3VtgbGhri0KFDdHZ2snv37keOplhivGT2l2IM/pNOpoRK3tq1a61Unurr659IBSY9PZ3CwkKGhobw9fVl165dhIaG8v7775Ofn//YXaoHDx7Q0tLC5MmTOXfunBjoqNXqx+5MCSpdy5Yto729XZTdHgszZswgJydHVPEKCgqyqTA5ODgQEBCAVCqloKCAjz/+2IoKB9/RXL7++mvKyspESoklXaijowO1Wk1zc7MVxQ9sO1OlpaWoVCpxDkOv1/PVV1+JUstGo5HKykq2bNmCi6cPZwbD0Jmk1tQes5T/camFw18eo6+vT/SX6uzs5He/+x2XLl1iaGiIyZMn88orryCVSlm9ejXu7u6cPn2a2tpapFIpISEh/MM//AObNm1i8eLFDA8Pc/HiRZRKJXv27BE7msJ8l7ODgihpG3M8elHU32blc4vRarVcvnyZSZMmWc2cqNVq0tLSeOmll3B1dUUikXD27FneeustmpubWbVqFVKplLNnz6IOm8z+vmj+z7kHv8g2+C8Vw8PDmHTDzA6SjzsTBSMvU8v1xpJWAohKbWNBJpOhUCisKpRFRUX89re/pb+/n9bWVruCDUJyMDw8bGMZMbqzIyR9gnKc2WzGYDDY7FcpNTNJ3vHIaxauC8BNpvte81bwnR+XwFqwnO0E6y4aIAo1COcgVIL1er1okNzX10draysBAQFkZmYCIzTomzdvisnmt99+i1Qq5ZlnnuEf//Ef+c1vfsPu3btRqVTodDq0Wi0HDx4kOzubqqoq5HK5SL9KTEykp6eH4uJiWlpacHIaMeN0c3Ojo6OD5ORkdu/eTWtrK0ePHmXGjBls27YNtVrNhx9+SFVVFf7+/vT09ODq6sq6deu4dOmS6JXl6OiIv7//yOzU02TqFwWhOxkQECD6yVkWQoOCgpDL5dTW1tp4Xba1tdHc3Cx6RQqUPQF+fn68+OKLojhMbm4uU6dOBb7rSlkea8KECTQ3N9tVFRWQkpLCsmXLOHjwINXV1eJxNm/ezKlTp+x2tsabTXWQS+lteDDmd14QohB820bTEC1hT4RCwKNofk1NTZjN5nFn4YuKivDx8aGmpoaoqCibhOby5cuEhoaKaoF5eXk0NTWxbNmy7zUn1dbWxocffoi/vz+bN29+YqrgeMnsL8UY/CebTOl0OjIzM1m8eLFVG7mtrQ1nZ2e7ZrNjwcXFhbi4OFE5RiaTMXv2bF544QVycnI4cuSIjdniaJSVlXHy5Em2bNnCqlWrmDFjBp988glNTU02ilvjoaWlBZVKRXJyMomJiVy5cmVcg+DQ0FAcHBzEjpIl1c8SwcHBODk5sWTJEpKSkti/fz8XL14UAw+JRIKzszNbtmzh9OnT3L17F7VabVWVbmhoICgoyMZfCqw7U/a6UpcuXcLLy4vS0lLCwsIoKioS3bNPFTaNSe0xmc1UaF3EKoyPjw9z587Fw8ODnTt3snjxYuLj40WvqjfffJPW1lbc3d3Zs2cPvr6+TJo0SfTYEYRCXF1dCQ0NFRMjk8nEjRs3CAwMxNfXl4qKCqZNm4aHhwdZWVm4uLiQl5c3blXJz88Ps9nMq6++ypYtW5DL5WRlZSGRSOgd1PDHfD16swzt39acX1ob/JcKoRIbGGjt5/M4A72CaawAs9nM0NDQmD5LRqMRg8Fg9RJWKBQMDw+L9LzRAZMArVaLTCazSeAskyl/f39RGl04H8tjw3edLHtFKHu2Bpbbhkk6/655K3v30mw2o1QqbWZF7c17WcqwC+qucrkclUqFk5MTMTExYkJl2fn39fXF3d0dGAke586dS1RUlBiMBAUFsWHDBvR6Pb6+vphMJs6fP093dzcLFiwgJCSE/v5+SktLUSgU6HQ6vLy8cHFxwcnJCZ1OR3h4ONXV1bz33ntIpVL27t3L5MmT6e7u5r333qOzs5PIyEiamppQKpVs27aNO3fuiPOjrq6uYmBrNpvx8PB4mkz9gpCfn09ycjISicSK4icgODiY1tZWIiIixM6P2Wzm3r177N+/n9mzZ/P666/T29vLuXPnbJ7rxsZG+vr6WLJkidgpqaqqshKfEKBUKkWPyvEQExPD+vXryczMFFX2AgMD2bhxI1999ZXN58ebTZXJJKyaEsLFixfHPF5SUhLl5eXExsaOK0QxXmcKvpsdt4fCwkLUarXdYhYg2i5MnTqV3Nxcm65UXV0dJSUlos9mS0sLly5dYv369Y/0thoP9+/f59NPP+XZZ59l0aJFT2zEazabkWu6kWO/WPZ9jcF/KqIWP1mfqVOnTuHm5mbl+gzfuUtHR0c/0f58fHw4ffo0aWlp4pfd2dmZKVOm0NnZycmTJ3F2dsbX19fmZVxaWsqZM2fYsmWLGDAFBgbi6elJZmYm3t7edHZ2PlIOE0YWPmdnZyZOnEhUVBR3796ltLSUtLQ0u5UHiUSCSqUiNzeXKVOmiMF/cnKy1QOm0WioqanBw8ODtLQ0kpKSKCkp4fLly3h5eTE0NIROpyM5OZnIyEhOnDiBQqEgPT1d3Mft27dxc3OjtbWVuXPnWp2PsKDGxcVRXl5ObW0tixYtQiKRUF1dzbVr18QB1Pr6erZv3y76ex3Pq+dWjf3BTxNS3CXD+Et66enpoa6ujvr6egYGBsjJyeHGjRtcuXKFnJwcDAYDRqMRtVqNRqOhurqazs5OqquruXfvHhcvXqS1tRWJRMLAwAA6nY6amhpKS0vJzc2lv7+fzs5OOjo68PX1FYdSDQbDSHfBZKKpqYmenh5qamqorq6mtraW2tpa6urqRKqQ0WhkYGBA9O3SarXc7pBRq1Pb9d5RyKQEujmQEPRkfmdP8dPA1atX0Wg0hIeHU1VlTTcRAhNL7yN78PPzswqAR3s/BQUFWRV81Gq1OExtMplwd3e3qgbLZDKrfQgdJolEYtO5sYSQlI2Go6MjBoPBhqY4GuPtG0AmMdt4Ij3Kd0u4RqFgIlwbjAQ3wjGFxHR0MDj6vgvqgIJaomBsrNFoiIyMpLOzE6lUilqtprW1FZ1Oh6enJ729veh0OiIjI0Xz3WvXrnHt2jVcXV3p7e1l8eLFtLS00N7ezsOHD5FKpVbn5+TkREdHBxMmTGDHjh20tbVRU1NDS0sLGzduZNq0acjlcurq6ti3bx8Gg4HExERKSkpE2wknJydOnjyJv78/er2eyZMnU1JSIq7NM2fOpLCwkLS0tHH/Fk/x04dWq+XUqVOi6ltFRQUymcyqO6JQKLh+/brI0ImJieHkyZPcv3+fLVu2EBERgUwmIyYmhitXrqDRaMQ5aLPZzBdffMGsWbMoLi4mIyOD2NhYTp06RVNTE35+fjadmMHBQRobG8f1YoIRAYrIyEi++uor0T/Tzc2NoKAgMjMzrTxClXIp08I8OZnfgEwCRvNIZ1wugf270slImsT58+cJCAgQix+WUCqVYke4sLCQ9PR0u/HWwMAAdXV1xMfH09zczPDwMJGRkZSUlODn50dNTY2oxDkaFy9exMfHx0r90BIPHjygtrYWBwcH1Go1KSkp4u8E/6hFixYRGBiIVqvlwIEDLFiwwKaw/bgwm81cvXqVq1ev8qtf/eqx56Ms0draSmZmJoaeZvKGPNDb8ehUyqX833VJKOVP3ru5XdPF8r9c49uKdrKrurhZ2cmH16uYFuZJkLvjo3fw/xA/yc5UUVER9fX1LF261OZ3TzIvZQlPT0/Cw8O5d++e1c9lMhlz585l8+bNXL9+nS+++MKKsldSUsLZs2fZunWrOOQtICYmho0bN5Kbmztud8kSlv5ScrmczZs309vbO25VJS4ujt7eXhobG1EqlURHR9sMpgcHB6PRaMQqrbOzM2vXrmXp0qWcPn2a4uJisdrs5+fHnDlzGBgYsJIlbWxsxGQyiVK7lhA6U8IDKnSlNBoNJ06cYOrUqVRXV9Pa2soLL7wgLmhms5mu2nKUEvu9KaXEzPzpk0XazJ49e1iwYIG4oAQFBTF//nwCAwNxcnJi1qxZLF++HKVSyfLly/H39xcDmenTp5OcnExISAiurq6o1WqmTJlCYmIiAwMDJCcnMzQ0hLOzM0lJSUycOBGtVktqaioGgwFHR0fRrFSlUolGqAJXWq/X4+zsTEVFBZWVlRQVFXHr1i2am5tpHzaPOQvyS2mD/1JRX19PQECA1QymRCLBZDKhUqlElTXLiuVoP4+Ojg7xmRO6TpZJQWNjo9UzablGSaVSBgYGxO2VSqWY8IwWcTAajVaVydHPub1EaeLEiWK361HJ0uNQpv/eeavRvi+A1WyXVCp9rG6gZZdKuF7BCD0lJUUsUslkMjIyMsQkNywsjOzsbDIzM/n9739PdnY2QUFB7Nq1i+nTp+Ps7MzZs2fx8PAQBUe6u7tRKpXIZDIxsUpOTqapqYmPPvqIhw8fIpfLCQsLE+nbxcXFHDx4EKlUyowZM8jLy8PR0VEMrC5cuEBKSgr379+nt7cXLy8vfHx86O/vRy6Xo1arnwpQ/EIgMEEEpo69zpSnpyc6nY6AgADq6+t5//33kUqlvPTSS1biB46OjmzdupW8vDwxLsjPz0cqleLv709bWxvx8fFMmjRJnNPOz88nLy/P6rm0J5E+Fvz9/dmxYwc3b97k6tWrmM1mwsLCWLNmDZ9//rmV1UhamCf/K1nH7hQ39jwbyf9YHsdLPtWoh0bYPkuWLOH06dNjFntSU1OpqKjA1dV1zM7Z96H5dXV1ERMTM+a13rx5k9TUVG7fvm3Tlfr222/x9fUlLi4Os9nM119/LdrB/D0QmF0PHjzgpZdeeqRU+2hoNBqysrLYv38/8fHxvP7Kbj59cTpqlUykWzopZahVMvbtmPZ32TD81EQtfnLJVFdXF1lZWaxbt87mS2s2m6mtrR1XUnw8ZGRkkJ2dbfdhCwwM5OWXX8bb25v33nuPkpISioqKyMrKYuvWrWOqqISGhrJ+/Xr6+vq4du3auAuIRqOhpaXFiuMfEBDAjBkzyM3NFQcyR0MqlTJ9+nTRxNce1U+Q4xztczRx4kT27NmDg4MDBQUFopKhRCIhOjqaa9eukZubi0ajobu7m87OTruVEI1Gg5hrCDYAACAASURBVEql4uHDhxiNRnHROHfuHBEREdy+fRuj0cjWrVutWv9ZWVm491ViNtuvykskYK65w1//+lcOHz7MO++8Q1FRESkpKcTHx+Pq6kpOTg5RUVEkJSWhVCqZNGkSGo0Gs9lMe3s7/f397Nmzh/nz52M2m4mMjMTd3Z3u7m6ioqJQKBQ4ODgQGRmJyWRi06ZNpKSkkJaWhq+vL8HBwUilUrRaLYsXL6ampgZvb2+8vb2Ry+X09fVRV1dHT08P/f39tLe3I5PJCA0NJTo6GldX13G9d75vG/wpfrzQarUMDAwQFRVll4tvMpnw9vZGKpVarTujacWWCnodHR1Wa19AQIBNx8WyeGMymUhOTkYmk+Ho6EhERMS4/HpL0ZnH4eH/d8j9KyQmm3krYSbxUbC8jyaTSRScEIoeTwKhm1VWVobZbOabb75Bp9OJxZhvv/0WGLnfdXV1wEhB77XXXmPevHk0Nzfz0UcfUVpaio+PDzKZjKamJhYtWiQq8xkMBnQ6HUajkbS0NBoaGujp6aGjo4Po6Gg2b95MS0sLBQUFZGVlcerUKRwdHZk7dy7Xrl3DxcWF2NhY0tLSqKmpobGxEblcjq+vLxMmTKC9vZ3Q0FB6e3tRKBR2DUef4ucJgeInwFIWXYDge5STk4PRaCQkJIRVq1bZLTy4uLiwdetWUa788uXLLFmyRJyVEp41pVKJUqlkyZIl3Llzh08//VRMQnx8fESBlceBp6cnO3fupLS0lKysLPEdvnLlSg4fPmy1rvZ3d7Bp2gT+dUkMW2dEsGnd85w5c4be3l5iYmLw8PDg5s2bdo8jCFGEhISMSfXz8vKiq6tL7ISPpvmNJUDR3d2NwWAYc0ygsbGRnp4e+vr6mDRpktXfqLm5mby8PJ577jlgRHStq6uLJUuWPMbds0VPTw8ff/wxCoWCHTt22Cg2jwez2UxhYSFvv/02Op2O1157jbS0NKRSKWlhntz6twX8z+Vx7Hk2kv+5PO57GYP/1EQtflLJlNFo5OjRo8yePdtu8tLd3S0O2P49CAgIwNvbe0x5TLlczvz589m0aRNZWVl8/fXXrFu3Dj8/v3H3GxoaikQiobi4mLNnz45J56mqqiIkJMRmEZs3bx7u7u589tlnY1Z+U1JSqKqqoqenR/RBsQyoJBIJISEhdHZ22uxDqVQSExNDdHQ0eXl57Nu3j7a2Nry9vdmxYwe5ubmcP38ef39/amtrbQa64bvO1NWrV5k1a5ZovFtbW4tGo2F4eNgq6TQYDHz++efcunULiUHLCtd6HGRYSSkrJSbmy8sZ6uvGZDIxMDCAXC4nPDycSZMm4efnR15eHnPmzGHu3Lm4urrS19cnDlwfOHAAX19fUlNTxUp/W1sbfn5+othIYWEh169fJyMjg8uXL+Pr64uvry96vZ7W1lacnJzIysrCwcEBiUTCsWPH0Gg0HDt2jPz8fIaGhggODmbOnDl4enqya9cuvLy88PDwoKKigjt37tDT00OUqg/pGIGgRDLC+X6Knx8EQ+yAgACxGCJ0cGEk2F+9erVVN0hQkRsNy22ELrJEIqG3t5fNmzePex4tLS2YTCZmzpyJVqvFxcVlzMSkt7fXStDncfE4XR/hnP8eCHOTT7oP4Ros6X/Cv4ExfVSE7qGwnTBzAiOS6U1NTWLSq1QqCQwMRK1W09/fz4cffsjJkyeRSCQEBATQ0tKCl5cXL7/8MpMmTeL06dOo1WocHR2ZN28e27ZtQ6lUcvXqVbq7u4mNjUWhUNDY2MitW7dIT0/HZDKJVOslS5aQlZWFm5sbHh4eLF26FJPJRFZWFvPmzePu3bsYjUaSkpJEtkZfX5/YCVUqlWPOzj3FzwNdXV10dHRY0bfsdaZ0Oh39/f0UFxezcOFCent7x92vp6cnmzdv5vTp0/j5+eHu7k5ZWZkoPAF/Y5x0dTFp0iR27dpFbGwsH3/8MVeuXMFoNBIZGWlXSGIsuLi4sGPHDlpbWzl27BhGo5Ho6Giee+45Dh06RHt7O2azmY6ODqt50eDgYKZNm8bx48cxm80899xzZGdni3ORlhCEKPr7+ykvL7fr+6dUKnFycqK3t9eumt9YnanCwkJUKtWY3qfZ2dmkpKRw584dG1/OEydOsHDhQpydnWlsbOTq1ausX7/+sSw0RqO2tpaPPvqIpKQkVq1a9UT7aG1tZd++feTk5LBx40ZWrlxpMwOrVsnZmBbKvy6JYWNa6N9tDG4wGLh9v/YnJWrxk0qmLl26hLOzM9OmTbP7e+Gl8X1UTZ555hlu3LgxbtVOqLAkJCSQmZlJWVnZuPuUy+Uin729vX2EY2onKbKk+FlCKpWyZcsWhoeHOX36tN1jCKIVOTk5SKVSEhMTbaorISEhqFQq2trabD4vJCAvvvgiCQkJ5OXl0djYiLOzMzt27OD+/fvodDocHBzs8oE1Gg0DAwMMDw8TFxfH4OAgp0+fJiEhgbKyMtasWSN631RUVPCHP/yB+/fvExoaSkhICHMTQvn8V5Es9u4nUdbMbHUrG5T5pEf6oNfriYyM5Ne//jUvvPACnZ2dvPnmm9y8eZO4uDixIiwMWn/66acYjUbS09MJCQmxGpZva2vDx8eH7u5u0tPT+eabb+jq6qKuro7m5maMRiNvvvkmv/3tb8nMzGRwcJDOzk4mTpyITCYjPT2dwMBAIiMj8fLyYtGiRaSmphIeHo5Go+HOnTt0d3dz9+5dBgYGeOaZZ/inf/onnFVytk0YQCExiqpm37cN/hQ/flRVVYkqefaKPAqFgrq6OvGlJJFIrERhBFjONFlC6LbYWxcsk5uGhgbc3d0JCwujrq6O/v7+cde48eaeVCqV1ayVgMft+vy9HRHLdUvYh721aDSEazEYDFYJqXB/CgoK7AYVggS88Pno6Gir++Lq6iruQ6PR0NDQIFL++vr6GBwcpLa2ltjYWF577TXUajX79+8XO1BDQ0OsX7+ea9euiVQoPz8/dDod9+/fZ9KkSQwMDFBTUyN2DcxmM6mpqRw7dky89g0bNiCTycjLyxM9pry8vMTOu6BuOzg4KCpBPjXu/fkjPz+fxMREsRhgMBgYGBiwemba2tr44IMPUKvV+Pj4kJqaSktLyyMFt+RyOVKplKamJi5fvkxsbKxVYC0k6oLX2/Tp03n11VdpbW3lvffew83NbUyJ9LHg4ODAli1b0Ov1ovdVXFwcCxcu5MCBA9TV1aFQKKzUdmEkpjObzdy8eRN3d3dmzpzJmTNn7K5DSUlJVFZWEhQUNKYMuzAD/yQ0v4cPH45ZdO/u7hZNk4XumYDr16/j4uLC5MmTGR4e5ssvv2T58uU2CfHj4M6dO3z55ZesXr2aGTNmPHacbEnpS0hIYPfu3VY+hj8kurq6uHDhAm+99RaGriYc5PbP8cfI5vnJJFMPHz6kpKSEVatWjfkleBKz3rEQFhaGUqm0kRcXkJeXx+XLl9m+fTurVq1i/fr1XLx4kWPHjo1b6XN2dsZgMLBlyxakUikHDhyw2t5sNo+ZTMFINWjBggUUFhaK5pKjMX36dAoKCtBoNEyePJmioiKrBSMoKAiJRGKXLiiYW0qlUtLS0ggNDUWj0fDuu+/S0dFBQEAAPT09Y1bNtVot1dXVYlfq5MmTREZGcuPGDaZNmybOdX3yySd8/vnnaLVasZujUCgICQnh8vmzBAxXM1XRyD+vycBBPtJl3LRpE3l5eRw7dgwHBwfa29uJjIwkNTWVmpoaioqKuHv3Lo2NjVRXVzNp0iRmzZolzgh0d3dTXl7OlStX0Gq1ZGZmil3OgYEBZDIZJSUlSCQS5syZw86dO/m3f/s39u7dy6xZszCbzSxfvhwYqWK7uLigUqkoLS3lwYMHlJeXc/DgQfr7+2lraxPv5auvvsqsWbO4c+cOAFMnePBaQANL/QbZnOT1vdvgT/HjR2VlJZ6enlRVVYnBhiAE4enpicFg4PLly2LAI5VKrUQpBAg/8/LywtHR0UbhTxCbsMTo5Ka7u5uPPvrIijI4Hod/LGi1WptZq7HwpMpQjwNvb28rL6nRGOv9IMi/C+f1ON03wVcLRqh8QmVZpVKxbt064uLigJHkZHSAMzw8zMDAAGfPnhVnqOLi4khPT2fu3LkkJCRw9OhRcf1ZuXIlr7zyCgkJCXh4eIi2HL29vSKNWiqVkpWVhZOTExqNRhSc0Gg0fPPNNyxevJjs7Gzc3d1JSEigq6sLZ2dnMXmyTKaezk39fGEymSgoKLDyHurp6cHNzU18JvPy8vj000/JyMhg/fr1tLS0IJVKmTRpkqigNxbOnTvH7NmzWbFiBXl5eTaCX52dnXh5eVk9i66urmzcuJEFCxZw9+5dqqqqHtkFGw2FQsGGDRtwcXFh//79ojXK3Llz+fLLL+0WrKRSKc8//zzZ2dk0NjYyY8YMent77RbB1Wo1UVFRODs7j8lQ8vLyoqOjY0yfKXsd+ra2tjFju+zsbBITE8nLy7PqSrW1tXHr1i0x9jh+/DixsbHExsY++kZZwGg0cvr0adEnLDIy8rE+Nx6l74eE0WiktLSUAwcO8NFHH2E2m9m5cyf/36trkcnsH+vHyOb5SSRTAwMDnDhxgueff35cj5W6urq/e15KgGAcd/36dZtA4e7du1y5coXt27eLreTQ0FBeffVVHB0deffdd61Mby3h7Ows0tTWrl1LYGAgn3zyibiYtLW1IZPJbKRELTF9+nQCAgL4/PPP7bag3dzcRAVAf39/VCoVtbW14u+DgoLQarU2UsHCdVte7/DwMEuXLmXRokWcOHGC2tpafHx8GB4e5vz58zb3pqenh+HhYRITEykoKKCjo4OysjK8vLxYuHAh586d409/+hOtra14enqSnp5OZ2cn5eXl1NXViQIYu3btQiaTMWnSJNGRPCAggC1btlBcXMyf//xn4uPj2bRpEwsWLOA3v/kNERERnD59mpycHCQSCZ2dnRQWFlJQUMC3335LaWkpd+/epa2tDVdXV2JjY/Hz82PXrl04ODggk8lwd3fH29ub+Ph43N3dxQWjuroaiUQiShZ3dXWxevVqGhsbcXNz4/Dhw3zzzTdikOXn58fevXuJjo7m4cOHVFVVkZ2dTVpaGrW1tSTGTmKal4GdqV7fqw3+FD9+6PV6Ojs7CQ0N5cGDByIFVQgwgoKCUCqVaLVaFAoFarXaSgBidPdaLpfT2dlJRkaGlQ/Io0QfLD9vCZlMZlV9/T4dfXsQhDV+aHR0dIiJomAsbBnAjF6b7HWdTCaT2JkRlDrH2144lvD302g0fP7552Lw5ODggF6vJzU1FXd3d/E9pdfr8fLyEg1zb9++zWeffcZvf/tbrl+/Tk9PD1qtlhkzZnD69Gl6e3tZvnw5RqORGTNmoNPpxA6Z4M9nNpvp1+hRxs7h47udHLldx7lLV4iOjhaLQ7W1tSQnJ1sVGDUajTgf8bQz9fNGdXU1Tk5OVt0QgeKn0+k4fvw4N2/eZPv27SQnJ+Pg4ICrqyttbW0kJCTYGPhaoqKigu7ubqZPn45Op8Pb21ucSxIgSPHbQ0xMDHv37sXJyYn33ntvXKNce5BKpaxcuZKwsDAxhpoyZQqhoaG0t7fbTdDc3Nx47rnnRIrgsmXLyMrKsluMSU1Npbm5mYaGBrv+oIIIhYODA1qtVlw7DAaDKEplieHhYXQ6HUlJSTb7GhoaEpO22NhYMRk0mUx8/fXXzJ07Fzc3N27cuMHQ0BALFix47PsEI8qJBw4coLe3l927d48bX1ricSh93xc9PT1cvnyZt956i1u3bpGcnMwbb7zBokWL8PLywlkl/xtr54cTtfjvxI9eGl2Q3oyOjh7X4VkwUBTkuL8PvL29+fZGDve6FVx+2ENDzzDddeXk3LzB9u3bbb6QMpmMiRMnEhAQwKlTp0QRCcuX8oMHD3BzcxOl1aOiotDr9Zw6dUrkDzs5OY0rFyqIQty8eVNc9EbD3d2d8+fPM23aNPR6PTU1NWLVSC6Xk5eXR39/vw1VsrW1VRzSBLhy5QozZ84kMDCQ8PBwCgoK6O7uJiMjg4cPH9La2srEiRPFe33+/HmmTJmCt7c3X3zxhShT/swzz/DZZ59RV1fHjBkzcHR0pLe3l9raWtra2pg5cyarV68mICCAqqoq5s2bx7Vr18jIyMDb25uCggK0Wi06nY6mpiYMBgO9vb10dHSQm5vLpUuXxAFUd3d3hoaG6OrqIjg4mM7OTpYtW4ZcLmfDhg309/fj5OSEl5cXWq2Wuro6IiMjKS8vJyIiAm9vbyt+uV6v5+TJk/j4+ODt7U1fXx/Dw8MUFxfT2NhIf3+/6Dvh6urK0NAQu3btQqVSoVQquXHjBgUFBaxduxY3Nzdu377NvHnzaGxsxM/P74kcxp/ip4e6ujrKy8vFxNpkMqHX6zGbzWKXQZjzHBgYwGAwiBLnQgBtGWQIL+26ujqr7pIlxlv75s6dS0pKiliRHT0/9DiJz+i5o8DAwDEpQaPP/0lhqTr4KNg7d+FePM51WZ6nu7u7mKRZXq9A44GRZGTq1KmUlJSg1+tJSkriV7/6FcHBwQwODlJfXy/6XEkkElasWMHSpUtJT08XjUE9PDxwdHRkcHCQuro6dDodubm5PHjwAJVKRUlJCY6OjkyePBmNRiNWwVtNznw1FE1eq46cqi5uPOwgq0bPhrmpFOVeJTIykq6uLubOnUt2djaRkZH4+/uLpuNhYWFUV1ejVCqfWMXrKX4a+Oabb5g0aZIVHevBgwcMDw9z9epVXF1d2bRpk5VqqMBYiYuL49KlSyQkJNiYtxoMBo4cOcLSpUvx8vLixIkTLFiwAC8vL7KysoiPj0epVFJaWoqTk5Pd+WoYiUUMBoPokVlWVkZISIgNRW8sSCQSIiIiMBqNnDx5kqioKNrb23FychI7wKPnk3x9fWlpaeHhw4dMnz6dtrY26uvrbTpG7u7u5Obm4ufnh8FgsKG0abVa7t+/z5QpU7h16xZTpkyhsrISFxcXGhoamDlzptX2+fn5VFdXs3DhQpvruHnzJg4ODty/f581a9aI9zs7O5uenh6WLl1KXV0d58+f54UXXnjs+wMjc7IHDhxg4sSJrFix4rFmWjUaDRcvXuTChQtMmzaN5cuXPxaV+nFhMpmoqKjg3LlzXLlyBW9vb5YuXUpGRgZ+fn42Xa8gd0d2zAgj0M2Bib4urE4O5P+uSyLM+4dN7H4I/Og7Uzdu3MBgMNj4SY1GXV0dISEhP0h19U5tNx+0h/Ona428d7WK/3miiBdPtjJ5/vPjclXDwsLYs2cPCoWCd99912rAUq1W21Q5Zs6cyYIFC/j0008pLi4e1xnbcj+rVq2ivLzcLqc3MDAQDw8PSkpKSExMpKyszIruExoaSldXl02QIgxbA+KMh1CJaGtrIygoCA8PD+7fv49cLqehoYGvv/6avmEd754v4OagDw/NvhzO/AoYCYRUKhVZWVn4+/szc+ZMCgoKuH//Pv7+/sjlcl577TWeffZZnJ2dxRkBYcD71q1b5OXljfw97tzh8uXLqFQqAgMD6erq4uHDh+h0OlQqFbt27WLjxo0oFApcXFxYv349MpkMo9FIQUGBGOy1tbXh6+sryhFXV1fT1dVFaGioXSPikpISgoODCQkJ4c6dO9TU1JCbm4uPjw9LlizB0dGRzs5O3N3d8ff3t+qaClWyyZMnEx4ejlwuR6/XExwcLJ7bU/y8UVtbi9lsRqvV4ubmRnBwsLg+xcXFiQbdAsdeqVQSHh4uGlCPTgKE4ozRaBS/P5YvSLVaPWbyIpPJKC4utqtSFRcXN+730cHBQRSOGb3daMsHy/X3+37H7XXfRx8DGHOoe/SM2ehgYizzzK6uLkJCQgDra7DsAA4ODlJWVkZycjJOTk4EBgZy7tw53n77bQB+/etfk5KSgk6nw8fHh88//5xz586xb98+Ghsb2b17N6+99hp79+7l3//934mNjSUwMBA/Pz86OjpE1dWhoSHy8/PFgXkDMi7oJqJHxvDfhrOH9Sb0yHj1cCEtHd309vaKCm7CHLHQ4Xramfr5Q6PR8ODBAxvZ7IqKCtFnbPXq1TazPUFBQTQ2NoqeUva6U7m5uXh7exMVFUVtbS16vZ6oqCjS09OJi4vjs88+Q6vVijS/8SAonL700ktERkby4YcfcvXq1SdaN2bMmMG8efP49NNPaWxsFD00Dxw4YPf7vWTJEurq6igtLWXhwoUUFxfbjD0IQhQmk8nueinQ/GBEHn1wcFCcdbWXsJSXl9u9FwaDgdu3b6NQKIiLi7My/75+/TorVqxgaGiIo0ePsmrVqidKagTa3Lx585g/f/4jqXn/3ZS+vr4+rly5wh//+EeuX79OfHw8b7zxBkuWLLGS37eHH0rU4r8bP+pkqqGhgZycHNasWfPIP+oPMS8F32nbDxvM6MwjL2KtEfRmKb8+WvZIbXulUsmyZctYtWoVp06d4uTJk2i1Wpydne0+3ImJiaxcuZKWlha7LWd7SEhIIDIycsw5rRkzZpCdnY2LiwuBgYFW1MPQ0FAUCoVNEGRZRRa49cI9b2hoQC6XM3HiRHbt2kV8fDy9vb1cL28m7X+f580r9RQa/Hnr2wb+UOlFm9mFnp4eTCYT/v7+tLa2iua3zz//PLW1tcyePZuHDx+SlZXFZ599RnZ2Njk5OeKAdkdHBwqFQvSGmTJlCm+88Qa7d+9m4cKF9PT00NPTwyuvvEJwcDDR0dE4Ojoik8lQqVSsXr2ayMhIUS7/yJEj1NXV4evrS09PD+3t7UycOJHGxkZWrlxJf3+/Tafo1q1byGQy7t27R319PYmJifj5+VFWVsatW7dYuXIlc+bMQSaTcfv2bSsJ5jNnzuDl5SUGxA0NDchkMoaGhpDJZI9NzXqKny5qampEVcihoSGGh4fFZ2rChAkYDAZmzpyJRqMRPYays7PFF7PwfRYw2hsKRmSGhX0K3RR7MBqNtLe325gGA5SVlY1ZhJLJZLi4uIjiD6NldEfPZdlL5iwHqn8ICMcQrtty3RwdzFiej2WQJpVKx1VhFURtBOjNUioM3tzRB/HQ7EvQhAiCgoK4ffs2Q0NDnDx5EoVCwd69e1m6dClubm6sWLECZ2dnKisrkUql5ObmIpVK2bRpE76+vlbnsnbtWlxcXNBqtUgkEmQyGcuWLRNN4E0mExKJhCqDB2P1+gxGI7qARMrLy0lMTLRStx0cHEQmkz0VoPgFoLi4mIiICPFvrdPpOHHiBA0NDSxcuHBMhk9wcDANDQ0AxMfH2yRT/f393Lhxg8WLFwOQk5NjZW47d+5ccQzhcZKpgIAAhoaG6OvrY+bMmbz88ss0NDTw/vvv2zx/40FQpmtubmZgYIDZs2cTExPDwYMHbeIjlUrFmjVrOHPmDHq9nvnz53Pq1CmbwlVSUhINDQ309fXZxEqurq5otVo0Go3V3JTBYLArPtHc3GzXTqagoABfX1/u37/PrFmzgJH16uTJk8yaNQt3d3eOHj1KcnLyYxvqCvYN586dY8uWLY/lQ/XfRekzmUw8ePCAI0eO8O677zI4OMjmzZvZtWsXycnJj63++lPBjyrFG9AaOFXYRE3HIEFuSlpyT7N82bLHysjr6upEHf7vg/G07XU6Pf/8p8OkuI8EP8IQ81j/P2HCBOrq6vjDH/6Ap6enzfCzsG1HRwdubm6cPXtWFKF41L5nzZpFbW0tBw8eZO3atVbbCAp2lZWVJCQkUFhYKPobCC3r5uZmK3l5y85Uf3+/VdDU0NCAVColJSVFVOYJCY9i7h+z0Zq+C8K0JgAZJ3qC+JVjl2gW6evrS3FxMQ4ODhw9ehRHR0fKy8vx9PTE09MTb29vGhoaeOONN1AoFPzXf/0X4eHhnDt3jnnz5vHNN99QWlpKeno6N2/epK6ujueff56TJ0/y8ccf89JLLyGTyVi0aBEff/yxSPMLCgqip6dHVAMsLy/n7NmzaDQaBgcHGRwcZPHixWLyWFRUxJw5c6iqquLatWs0NzcTEhLCpk2b+PLLL6mtraWlpYVVq1aRkJCARCIhMjKSlpYWzGYz3d3d6PV67t27R2trK2vXrmX//v0sXLiQiooKPDw8RA+qp52pnzeMRiONjY34+vqKlCqhoACIppdC91oul6PVasWiRnR0tE3iIyQGlt8ff39/sbI63nfK3ndOoPY9StVvtGfVk0CgMP6/gqUS4ujrsjx3Nzc3K38agXZkD60mZy7oJmJmpDOkMJrIrYBXYoyiqIWDgwPBwcFWQYjZbCYjI4Nz586h1+tRqVQYjUb+/Oc/ExUVJc5tDQ0NodFo6O/vtzrH0QqNZrOZPrNqTPNvnUlCl05GWkgILi4u5Ofni+q2AwMDSKVSkSakVqut5mmf4ueD/Px8Ucigvb2dL7/8koCAANRqtd2gXoCvry99fX1oNBrCw8Pp7e21klK/dOkSKSkpeHp60tXVRX19PWvWrBE/L5FIeO6558jMzKSmpuaRFjXC+7OyslKcNfzVr35FaWkpmZmZTJw4kYULF9pQDe0hJCQEuVzO+fPnkUqlzJ07F71ez8GDB9m2bZtV9zooKIjp06dz/Phxtm7dSn5+Pnfu3LEafVCr1UycOFGcaZo3b57VeQv0fiGZkkgkdpMpg8HA0NCQzbyU2WwmOzubgIAA4uPjxRj3zp07GI1Gpk+fLpoUz5kz55HXDyNFpePHjzM4OMhLL70kGjWPBY1Gw5UrVygqKhIp4D9EJ6q/v5+8vDzu3buHWq0mNTWVNWvWjGlm/HPBjyaZul3TxY59tzCbRzTklVIzEkkkcxzH93ACxLayUMX7PqjpGBxT215vluIVFsNzMwMxmUwYjUZMJtO4/x8cHExraysFBQXIZDJxgFmv14vbNDQ04OzsTFBQEBUVFbS0tODt7S2+qMfat5OTE01NTXz00UfI5XKrbQwGzp0H+AAAIABJREFUA4cOHRLP/T/+4z+Qy+WimMKZM2e4cuWKmITpdDp0Oh0ffPABWq2WwcFB9u/fDyAGHfn5+ZSUlCCTychpl2FmDNUsoFHmT+TfgrWqqipiYmJoaGhgyZIlTJ8+3Wr77OxsYmJiRGqTwWDgwoULbN68WUyIysvL+fDDD0lKSuLVV19FqVQSHBzMe++9x7vvvssrr7xCYGAg7u7uFBYWMnnyZPz9/cXuQEREBK6ursyZM4fPP/9cDFonTJjA7du3iYyMJCcnh6KiIpRKJWq1mhkzZjB16lQuX76MRqMhIiKC1tZWMZGCkYV11apVvP3228jlcjIzM2lsbGTXrl14eHjg4+NDYWEhLS0txMbGPk2mfiFoamrC0dERV1dXBgYGcHV1Ra/Xi52H9vZ2XF1dqa2tJTg4WBSFEToQ6enpVFZW2vUDsuwi3bt377HOx2g0iiI4lj8TEiqBrjIWhO/sk3Yz/h6j3MfFeIndo2a1Fi9ezLFjx0Rhh7ESKb1ZKtLqxJ8hBTP8tVzC3iAfejvbcHFx4auvRijOKpUKvV4vUuvgu+6ZIGJRWFiIQqEQu9Tjdaot1wvB/NteQqWSgqmvlaT5I4GbJVtD+LtbJlNPO1M/HwiF6NK6dhpaYUNIGAUFBZw/f5758+czefJk/vM//3PcBEfww2tsbCQyMpLY2FhKSkqYNWsWDQ0NVFVVsXfvXmCE7jdlyhSbAFkqlbJw4ULKy8u5dOkSy5cvH3f0IioqirKyMlJTU4GRtS0+Pp7IyEguXbrE22+/zeLFi4mPjx93P+3t7fj6+rJq1SoOHTrE0NAQixYt4syZMxw6dIitW7danWtGRgaVlZVkZ2ezfPly9u3bR2xsrFUROTU1lZMnT4rzh5bHF0QoHB0dx02mKioqkEqlNr6o5eXlyOVyKisrefXVV4ERf78rV66wY8cOqquruXfvHi+//PJjJTjd3d0cOXKEoKAg1q5dO65/lEDpu3jxIhMnThTFQL4PzGYzVVVV3L17l+rqauLi4ti4cSMBAQHfa78/JfwokimBWjeo/S7A1P2t47Fj3y1u/duCcXmS9fX1BAYGjsmBfxKEeatxVMgY1tsGuwqJidbKYloipCQlJT2R4VlcXByZmZkUFxeLSjQw8iX84x//yLp16/D19WVoaIjDhw+jUChYuXLlI6/p+PHjFBcX8+qrr1otBHq9nj/+8Y9s376dq1evEhgYSGpqKkajkX379mEwGHjhhRfEBOzBgwdUVFSwYMECSktLaW9vJz09nZaWFjo7O5HJZCQmJoqJ2tmmFnQm+wGLARmdOgnDw8P09vbi5uZGV1cXiYmJNokUIPK4h4aGOHbsGCaTiRdeeAFfX1/RULCzsxOlUklGRoa4YHl6erJ3717eeecd3nnnHfbs2UNMTAy5ubn09/fj5+cnuqy3trbi7++Pv7+/ONzv4+PDn/70J7E67+joSGxsLHPmzOHNN9/EycmJDz/8kPT0dDQaDQEBAaKAhuVLSalUkpyczI0bN3jw4AGzZs0SqU1TpkwhOzub8PBw/Pz8aGtrQy6XP02mfuaora1FqVSi1+tFVT+9Xo+zszP9/f34+PiIHSVLWXOlUil2OoRnbTQsf6ZQKNDr9fj7+1t1WuzBXofIaDQSFhZmt0shkUhEnyWFQiF+Zy1//riw1yn6e7b5oXDq1CkMBoOYkFkWR4SZNb1eT7XRc0xandFk4larkYlSE1qtFn9/f7RarWgg6uPjg5eXF0NDQyJtSSh6wcgaLQiJCAmTm5sbISEhlJeXYzAYMJvNVvc5XNbFLUOI3fORyaT4DtcTHb0WGGFrpKenAyN/eyFphqfJ1M8JowvRKmkAaf/7PM97NvPGtm34+fnR1dWFi4vLI2MWgeoXGRlJfHw8WVlZPPPMM5w9e5b58+ejUqnQaDQUFhayZ88eu/vo7e0VjaovX77M/PnzxzxeZGQkZ86cEQs7AhwcHFi2bBmTJ0/m1KlTFBQU8Nxzz41JGRbMen19fdm5cycHDx5kcHCQpUuXcurUKQ4fPszmzZtFapkgl/7Xv/6V8PBwUlJSOH/+PGvXrhX3KcRoEonERilaSKYsaX56vd4mmSotLbXLrLp58yZubm6Ehobi6uoq0vumT5+OSqXi+PHjrF279pHdJRhRbjx69CizZ88mLS1t3KSztbVVpDhu3Ljxe/tFDQ4Okp+fz927d1EqlUydOpVVq1aNOcf6c8aPYmZqPGqdyWTmVKGtlLclfqh5KRjRrjeZxgoSzLw4P4mysjL+9Kc/kZOTM+aQ9GgIfkpCRTQrK0sMsoQXL4wMNG7btg2NRsPhw4cfOUe1YsUKHBwcOHTokFUgolAomDp1Kjk5OSQlJVFSUoJSqcTR0ZHw8HB6enpwdXUVaXYeHh6oVCqCgoJQKBQEBAQQEREhDi3HxMSIog2XLl1CNtwtms+Ohhwj/s5yNBoNPT09NDQ00NzcTHZ2Nm+//TbHjh0jPz+ftrY2+vv7aW5uxtHRkQ8++ABfX18cHR1xdHSkrq6O999/H6lUSkREBBMmTODq1atWx3Jzc+P1119Ho9Hwl7/8BXd3d9zd3fnmm29wd3dHr9ej0WhE8Ynr168jlUqJjIxkeHgYmUyGXq9HLpfj4eFBcXExmZmZ4pzb66+/zuzZswkJCaGxsVFs79uDUqlEJpNx584d+vr6gJEkur29nZCQEHx8fOjo6Hg6M/ULQG1trRhYw0i3wtnZGZlMhlwup7W1VQxsLRW1QkNDMZvNHDx4UAyyZTIZCoXC5kUtkUhE9c2WlharQV6pVPpYtAqpVEpNTY3dJMZsNotCBsILWqAaP0nS86gkSai82ttGuEePKyxkbzvLeacKgzd6s1RMLgSYzWYrHyqhmzYerc6AjGGZWjQ8b2trE33mlEol7e3tPHz4kIaGBpH+5+XlRUBAgBjUCd5+jo6O7Nmzh9dff12kJtu7H97uLix1qkaBETkj5yrHiEpq5o0UFckJscjlcgYGBhgaGhJns/r7+zEajU87Uz8zWBaiBUaN1gRak4STfSE4u4/MLVnS9caDIEIBI2vR0NCQ+M6cPHkyMNINnzhxotW6ZYmuri58fHzYsmUL9+/fJzs7e8zjCf5swqzWaISEhPDyyy8TGhrKBx98wI0bN+wWcYRkCkbU+Hbu3EllZSWnT5/mueeew8XFRVQZFmApl56enk5DQ4OVkbAgROHo6GgjRGGP5mc0Gm3W3IaGBpvYtL6+nt7eXurr63nmmWeAkfmpwcFB0tPTyczMZNq0aWMqIQowm83cunWLo0ePsnbtWqZNmzbmOmlpvJuYmPi9jHfNZjM1NTVkZmbyl7/8hY6ODtasWcMrr7zC1KlTf5GJFPxIkqnxqHXDehNHz139/9l77+A6z/Pa97f7RtvovbdNdJBoLAApkmIVKVIySVOiqi0lluwrO5OT3Jlk5tw5czO5mZw7TiblxonLiSRblmRS7J0ESYAgCgEQAIneK9HrBnYv9w/kew0Qm03xSWiF6z9g929/+/3e9TzrWYtz587R0tLidsj6d5EvJWGgu4P9voN4qRWCLEje9n/xYji3Sq6xadMmXnvtNfr7+/m7v/s7SktLHzn8DQgDCr1ez4cffojRaOSf//mfuX37NklJSStcpw4fPoyvry+ffPLJI2cOFAoFb775JmNjY5SXly+7LT8/n+bmZkJDQ4WdOCwOvysUCvE3uJ+ZstvttLa2MjExQU1NDTdv3iQkJIQ/+IM/4If7N/AwBiyTySiKXuzg+Pj4EB4ezvvvv8/mzZvx9fWlp6eH06dP89Of/pS/+Zu/wW6388knnxATEyMGLUtKSjh69Cjbt2/nlVdeoaCggPn5eVpbW4WzlQQfHx8++ugjHA4HxcXFqFQq2tvbBYGy2+2Mjo7i4eHBnTt3cDqdGI1G1q5dy6uvvkpUVBQfffQRnp6ezM3NCSek7du3i82cdJF5GJlqaWnBx8eHLVu2oFAo+Oqrr4RkCxazJoKDg0We2PPO1DcXTqeTgYEBYWetUqkwGo1iPkYi05LLpMViERfhwcFBHA4HFosFhUIhOqmSbEyCUqnE5XIxOTlJQkIC27ZtWzHb5M5G98GL7VJCIZGapdXr+vp6ACE1XCo1flI8jng96rmkqu+DphNP+lqjTm++tGRTZY/mniOcKns0X1qyGXV6PxFBk2R17qDEgdY2j8vlYmhoCIvFQkBAAGlpaeTm5rJmzRp8fHxwuVyYzWYUCgVjY2MUFBSImAi1Wo1cLhcxGX/5l3/50I1lVlYWRqORcKWRI56NHExwkaMdZ51qgJ++FIR5oEnMZjzobjs3N7csqNjDwwOLxfJ8Hfo9xyML0f92OywSnCcxgpE6U5J6Y9WqVZSVlbFr1y6xR7h9+7ZbhYkEKWPK09OTN998k6qqKrGOuIMUDfMwSDPi77//Pt3d3fzsZz8ThE/CUjIFiyTt7bffZmZmhuPHj7N3715UKhXHjh1bds6np6cTExPD1atXeemllzh37twyWfLq1auZnJykubl5GRGTOlNeXl5ibZRypiS4XC7m5uZWmECUl5cTEBBAZmYmOp0Og8HAlStX2LdvHyUlJWg0GkGyHgbJEr6mpob33nvvobNwLpeLhoYG4dL3gx/8gLy8vK81G2UymURB/Pz580RHR/OjH/2I/fv3L3Oq/a+KZyJnanDGRHnXJDaHm8qkWsGRQj2xOjnNzc1cunSJ9vZ2ZmdnRUXv8uXL7Nq166lkd+4wMzPDF198wfuvf4uPdmZyr7KEHWsz+VZONP/vwWxykqMJCQnh2LFjJCQksGnTJvR6Pe3t7Zw/fx6TyURISIjbirBcLqe8vJy8vDwhJ9PpdFy7dg1vb29SUlKWtbllMhl6vZ6FhQUuXrxIUlLSQ3Wt3t7eWK1Wbt68SVZWlthEqdVqpqenhbPOxMQE8fHxaLVaKisrCQ8PF1re6elphoaGSE1N5ebNm0xMTHD58mVmZ2dxOp188MEHFBYWCnOLX37yMSmBSpoNGlRyOQ4XeKjkaFRyfpStYqi1nrS0NGZnZ7FarYyNjZGVlcWmTZvYsGED69evJy4ujvb2diEjGh0dpbm5GbPZzMjICGFhYchkMoxGI4GBgdTV1aHX6+nt7RUVeQkqlYqcnByqq6uZmZmhsLCQuro6goODGRkZYWZmhq6uLlwuFzExMXznO98hODiYuro6LBYLpaWlIv18aGgItVpNaWkpTqeT4OBgvL29uXr1KqmpqUxPTy9z16mtraWlpYWioiLWrl3L8PAw9+/fF/NfIyMjjIyMiDBo6Zg/ahj4OX5/MTw8THt7u5D5ORwOIeGNiYlhYmJCZBDBYmdKIlx2u110Yqenp5mbmxMW31qtVlzQpf8ZDAahvff29l5W1FmwOui0B9Dj8GfepUEnMyN/iGhNWjt9fHyWzWg92O3+3xHC+zR4mo6YzSXntDUNGwqc/1Y3dCLHiZxehz+pilEUskc/n05mpskRJh6/FApcFKl6UcgWu1parRZvb2/u37/P5OQkXl5epKamkp6ejslkQiZblD6Pj48zNjZGcHCw6IybzWbRzV4qBZQQFBSE0WjEaDRis9kICQpk19p0DB01BCvNmBYWs8lefPFFZDIZtbW1BAcHi6r47du3MZvNFBYWAovXl+rqalavXv2NHwz/JuPs3ftUdE+5vc3ucDHRdQ9Tb72Q3j1OwaPRaKiurkav1wtTpqmpKXbv3o1MJqOlpYXx8fFHRtXU1NQQFxdHcHAwWq2WpKQkTpw4QWBgoNtsRckNV5qbehikzDWNRsPp06eZmZkhJiYGpVLJjRs3WLt27bI9klKpJD09nba2Nu7cucOrr75Ka2sr7e3tpKSkiM1/fHw8165dIzY2FqPRyOTkpLg2q9VqRkdHsVgs+Pn5ie6/RqOhuLiYrKws+vr60Gg0WK1WvLy8SExMBBY7UPX19bzyyivitSYnJ7l+/Trz8/McOHAAtVrNyZMnSUxMRKPRUF5evmK+60HMz8/z61//GplMxpEjRx4qBRwdHeXo0aPCsCs/P/+pHfRcLhcDAwNcu3aNc+fOodVq2bJlCy+++CJRUVH/7j33NwnPBJmKC/Li52XdbsmUWinnH94oIDE+lqysLNavXy/cZGpqaiguLhakSqPR4Onp+bUYssPh4PPPP2fNmjVkZGTgsFnprL7Bn333W2RE+qFWLl5MAwICiI2N5auvvsLLy4uEhARSUlJIT0+np6eHc+fOMTc3R0hIyAoXmvr6evR6vZB8+Pr6UlFRQUBAAGVlZURERCxrnctkMuLi4lCpVJw8eZLY2NiHttYTEhJoaGjg7t27y9q9gYGBnD9/ni1btlBSUiI0ueXl5SgUClJTU7FYLNy9e5fOzk6RtJ2amsr27dtpamoiNDRUVEqmp6f513/9V2w2GzFBPiQ6BgjyVJAVF8wbhXr+4uVV3L1VTFBQEF1dXRw4cIDdu3fjdDq5cuUKzc3N+Pj4oNFoOHfuHDMzM/zgBz9g69at2Gw2hoeHkclkhIaGMj4+zvDwML29vdTV1bGwsMD09DTDw8PY7XZkMhkajUYsECqViqysLCoqKhgeHsZgMDA0NkmrSUeXzRej3JMwLzm5a7KJioqivb2dy5cvCxOJoqIienp6GBkZ4fDhw6SlpdHa2sr58+exWCzMzs4SFxfHwMCAkDwMDAxw5swZwsLCSEhIIDg4mOTkZO7du0dHRwdms1kECoaGhjI6OopWqxVORs/xzUNjYyOzs7OCHMFi98Xb25uxsTEhKYuPjycgIIC+vj7MZjMul4vo6Gix4V4a3CttuiUslc5ZLBYOHz7M8PAwCwsLuFwuRp3enLakMuj0ZcSlY9jpQ5MjjFD5PN6y5R0uaW5S6oA9jLD8ZxOpR0GpVAprcQldjkAGnb5uiZAcF14yG4Fy4/L/PyBhVMhchCkW6HX4I8eFEzlKHChwsV3dgU7+29eTKtEKhYL8/Hx27txJbGws4eHhZGdn4+PjQ2trK0ajUbi4GgwGQVKl133wOO/atYvu7m5MJpM4FywWC+vXr6eurg6lUsnCwgKpqaki9P3atWvk5uaKeY1bt26hVCqXOZY1NDSQlJT0RHMZz/Fs4lGFaI0CVvvZYXqAiYkJuru7qaiooLOzE7VaTVBQkNu90uDgICqVCqVSybVr11CpVCQmJuLt7c2ZM2dYt27dI7OBSktLycnJEeeVFN577NgxIiMjV5hg+Pj4cO3atSci9tLeYM2aNXR2dnLp0iV8fHxoaGhg+/btKzoucrmclJQU7t+/T1lZGa+88gpNTU309PQIQqVUKomKiuLEiRPs3r2bS5cusWrVKkHMPDw8aGpqwmQykZGRASAiU6SumlTI8vPzE/K8srIyDAbDshDfa9eu4XA40Ov1pKen09zcTHNzMy+++CJffvkl3/72t90STgn379/n008/JTU1lT179rglM2azmStXrnDlyhXWrl3Lnid0xH7wOWprazl9+rTIAN2/fz9ZWVn4+vr+l+9CucMzQabUSjkFcQGcbxxGpZBjc7jQKmVoVAo+frdgWdqxXC7H39+fhIQEcnNzsdlsQiZRWlpKZWUlY2NjYtj7Satu169fx2QysWfPHmQyGZOTk/T09Cy7+EjQ6XQkJydz6tQpsQHSarXo9XpWr17N/fv3OXv2rGg9Sz/KpqamZYtJV1cXMzMzvPnmm3h5eXHy5ElMJhMxMTHLFoXw8HCCgoI4duyYGGp+EDKZjFWrVlFaWorVahUbdU9PT3p7e9FqtaLb4+vrS1tbG8PDw/T393Px4kVhy/zBBx9QV1fHvn37GB0dZXBwEL1eT3x8PJOTk3zyySfodDoSEhJob29nVXIS4Vo7f/LWy6SF6zh1fJFkjo6OsnXrVi5dukRUVBSpqamiMnL58mVKS0vx8/MTx/Lzzz/HarXy5ptv0tzczOuvv8727dtJT08nKCgIDw8P7HY7s7OzKJVK7t+/T1dXFyUlJSJQd2xsjOnpaXp6ehatqa1aji/oxYZyyO5FvSUQvb+ChvLrtLe3Yzab+eijj4R1/alTp8jOzqavr4/8/HxSU1PJzMxkeHiYnp4epqenmZmZYcOGDRgMBn75y1+yb98++vr60Ov1+Pn5oVAoSE5OFhbp27Ztw8PDQyy6JpMJlUr1xNkRz/H7hVu3bmGz2YSMNiwsjImJCWQyGWq1WnSP9u7dK2YAEhMTmZmZwWAwYLfbBcmROlCHDh2itbV1mdxNui0xMZGqqiqmpqZITExkymDkpGnVIzoyY6IjI5lJSM/7dQwgHnZh/Y+84DqdzhXzpT0Of0Zc7otPTuT4yUxEKAzL/v/g55fJZCSG+RNt6sZLZsNPZiJRMUWRqlcQKWkO7sUXXxRSzt7eXsrKyhgbGyM6OhqbzcaZM2eQy+VYLBZsNhsKhQK1Wk1SUpLI8Xrwtd955x0yMjLEhs7pdJKQkMDExISYuZUcTz09PcnMzMRisVBcXMyuXbvEdeTGjRv4+vouyxhqaWkhPDz8d54D9hz/cXhUIVqrVvCb/7aPF7dsFkVWk8nE6OgojY2NlJaWUlFRQVdXFyqVSpCr2dlZxsbGaGxsJDs7Gw8fP07fHeVK2xSt/WMc2r0Zjcr9HKHL5eLKlSts27ZtmdJGkvtLqp6lZllyuZyhoSGUSuUjs9+WQqVSsWrVKiIiIrhw4QIOh4Ps7Gy3NuoymYzk5GTm5+e5cuUK+/fvp7GxUextZDIZOp0Oh8NBbW0tOTk5YtZcymmrrq5mdHSUvLw8Ubzt7OzE39+fzs5OAgICMBqNBAUFie7flStXCA0NFQRsYWGBs2fPYjKZOHjwIHa7nS+++IL9+/dz7tw58vLyRISNOzQ2NnL8+HF2797tdj5Kcun78ssv8ff35/Dhw8TGxj7xOizJla9fv87Zs2dRqVS88MILbN++nejo6G9cLtTvGs8EmQKI9PPg3fVxRPhqsU0M8HJWGP/8buEyIuUO5eXl5OTkCIlVcnIydrtddB2amprEjI2Pj49bd7zu7m5KSkqWtVcHBweZnp5+aOiZl5cXaWlpQgqXkJAgNkuJiYnk5OQwOTnJuXPnuH//PoGBgYyMjODr6yuGgquqqkTrPSQkhKysLBoaGrh16xaRkZHLFpzAwEDREfPw8HBrOanValGr1ZSUlLBq1SpRGfL29ub69eukpqYKe/OBgQEsFgtFRUXs3buXkJAQhoeHyc3NFQ489fX1jI6Osn79+kVp3y9/ydq1a2ltbRV6+5mZGV5//XU8PDwoLi5mbGyM8fFxDh48SEZGBhERERw7dky0+Ht7e+np6WHt2rV0dHRgMBi4c+cOhYWF7Ny5E61WS3V1NZmZmXh6euLh4UFoaCjJycnk5eUxPj5OTEwMIyMjREdH43Q6mZ+fx2w2MzAwQGdn52KF3SXntGWlxMfhklExZOZ7m1eRkZbC7OyskBe0tbUxPj7Oyy+/zLlz58jOzkaj0aDVaklMTEQulzMzM8PExAQdHR3U1taSlZVFXl4e5eXlZGdni66jVqtFo9HQ0dEhggTPnz+PXq9nbGwMDw8PUUV+jm8OXC4XFy5cEBtmqdAjrQ1SdwHg3r17onM1Pz8v3NtgUV4i3SZZqSsUChHwK3UvFAqFkIe5XC7i4uIoHTAz4NA9UUdG6pL9rvEo04mnNbCAxc/5tI+Zd2kYdvq4PQ5KHCQqplZ0ptw+z/w8CpmLQLmRCIWBcK2dhLgYTCaT+M6USiUjIyO8//77pKSkYLfbGR8fZ2JigvLycioqKlhYWMBisYi8KT8/P4xGI6Ojo8DivIr0XcJity0sLIzw8HDOnDmDRqPBZDIJy/XR0VECAwMFQZ+bmyMtLY3R0VGmpqbEuuZyuSguLiYiImLZZq2zsxOdTvfEG9jnePawtBCtlMuwOxcL0TKXg1+8lUdiqA6n08nVq1c5cuQIBQUFbNq0iaKiIry9vZmdnV1BrmZnZxkaGsJqtRK9ZjP/x9lB6kdt1I8YGXJ4868VfRTEBRDpt3Imc3Z2lsbGRrczP/7+/gQEBHD8+PFlnR9Y7K739PSQmpr6VJ/fz88PT09PRkdHqaioQKFQEBERsYJASCofuVzO2bNn2bt3L3fv3mV0dFTMrEdHR9PQ0CAy6NRqNaGhocJcYnx8HE9PTxHBI81tdXV1ERYWhsFgICIigsjISAAuX75MYWGhkPXfunULg8FAWloaaWlpnDlzhsjISMbGxpDJZOzcudMt8XE6nRQXF1NZWckbb7zhdjxgZGSEY8eOMTAwwKuvvrqM9D0OFouF+vp6zpw5Q2NjI0lJSezfv5/s7Gz8/Pyed6GeEM8MmYLFhSEj0hfZaBvZMQHEREU+8v5Op5MLFy6wY8cO1Go1MpkMT09PIiMjycjIYP369YSGhjI3N0d9fT1Xrlyht7eX+fl5VCqVMIX47LPPeOWVV5ZdVLq6unA6nY/c8Gq1WjIyMigrK1tW5YDFyklcXBz5+fksLCxw4cIF5ufnRSUS4MKFC2zcuFGQHrVaTXp6OhqNhhMnTmC1Wpd1qXQ6HXq9nrNnz2KxWNxWHSRb3erqatatW8fCwgL9/f20trYyMDDA3NwcGzduJCcnh+bmZrZu3YpOp2N2dpaenh70ej0NDQ0UFRVx48YNpqenWbNmDZ9//jk7d+5kZGQEHx8fBgYG8PX1JT8/H71ez71796isrMRisbBz505x3Pz9/YmPj+err76itbWVoaEh3nrrLcLCwqioqECn0+Hj40Nvby9qtZqQkBBqamrIyMhwOyPm7e3N7du3yc3NxWg0kpiYyPj4uAjN9PX1ZWZmhm5XMIMOHU43WVhKmQwPLNjGugkMDBSL6eXLl8nKyiI6OlpU55YuXDKZjI6ODlQqFRqNRhArKWNh3bp1y5xs2trakMlk9Pb2EhAQIGRbo6OjwiHxOb5ZGBs9E0XCAAAgAElEQVQbo62tTWyKpRkkuVyO1WolJSVFdCE8PT2FNTYsbnolx7+ls08RERF873vfE1JXuVyOn58fZrOZgIAAQcT8/Pzo7u6m2+732I5MZogah8OBw+EgNDSUhYWF3+lMlESY3BGnr0Pevs5jnnTe6VEICQkRgcoSVCoVPj4+OJ1OMV8m5fd1dXVRWFiIXq9HqVTS39+/4pgmJiZitVqZnZ0Vn0smk4lzxsPDg3379jEwMEB3dzctLS3Y7XYmJycpKiqiv78fm82GSqXCYrFgtVoxm83k5ubS39/PwsICvr6+JCQkAIuSnaqqKmJiYpZdz/r6+lAoFP9ue+Tn+M+FVIgO1WkY77zHR/vWs817GPnCBElJSczOztLU1CTm5WDx9xkZGUleXh6bNm2isLBQxH5MTExgsVgwmKz8RbUNi1MmrqMOF9gcLs43DvPu+jgx/iDh/v37jI+PCxfQBxEcHIxGo+Hs2bNirwOLa+HVq1fZsGHDU2/eW1tbCQgIYPfu3VRUVFBdXU1ERMSyYrQ4VpGR6HQ6Tpw4wc6dO2loaGB6epqEhATkcjnx8fGcPn2ajRs3UlxczJo1a1CpVAQGBnLz5k3m5+fJyckBFmfsJycnGR4eJjQ0FIPBQExMDGFhYUxOTlJVVcWBAwfE2v/VV19hsVg4ePAgvb293Llzh/T0dOrq6njjjTfckh+LxcLRo0eZnp7mrbfeWuHIKEn6rl69+tSSvuHhYW7cuMGZM2cAKCoqYteuXcTExDyfo/waeKbIlIS+vj7kcjnR0e7zNCSMjo7S2dn5UOcTuVyOr68vcXFxrFmzhvz8fLy8vBgZGaG8vJySkhLu3LkjNO1LW8RNTU34+Pg8dmBTpVKRkZFBXV0dzc3NK4wkFAoF0dHR5Ofn09fXR1tbm3Cu6ejoYPv27csWD0kTnJWVRW1tLZWVlURFRS3TH2dkZHD9+nVGRkZWOAHCIqGqrKykpqaGyspKlEqlcHby8/MjOjqahIQEbt68KSqfc3NzdHd3ExMTQ29vL6tXr+bixYsEBQVx584dXn75ZaKiojh//rywFfby8mL//v0MDw9z/Phx1Go1BQUFKwZJ7XY7LS0tTE1NkZeXh8Fg4OjRo2g0Gv7oj/6I3NxcQkNDqamp4caNG1itVtLS0twuhjqdjsrKSsxmMx0dHWg0Gvbs2cPWrVtJT08nMzOT2dlZeh3+tM+6/84cyPCyG1BNdjExMUFJSQktLS0MDQ0Ja+qoqCguXbpEQUGB+D49PT25cuUK3t7ezM3N8dFHHxEXFyce63Q6CQoKEufRxYsX2blzJ/Pz89y+fZuCggJaWlqYnZ0lICDgqatwz/Hso7m5GZPJxNTU4lC4xWIRltt6vZ7m5mZxX6lzBYgwbynPSaFQ4Ovri8lkIjY2llWrVnHp0iVcLhdeXl7CCXCpWUR+fj5DQ0MYHKrHdmQ8LZOoVCrsdruwyP5dEKmAgIBlRFCSKwYEBKwIH/7fBTFnJnMRKp9/onknWCxmPehuJ3WTliIyMlLI7KTvUHLuNBqN1NXVcePGDbq7u3G5XCJrysvLS0jzljozSuYkEvbs2UN2djZr1qwRM6MWiwWlUslbb72FyWRicHAQmUwm3EVjYmJISEigoqICm81Gdna22HjNzMxw9+5dYmNjlxWHhoeHRRj5c/x+Q62UkxnlR0/lRd771g4S4+M4e/YsycnJzM7OPpLgwG/3KXl5eSgUCgYGBrBGrqFpGrcFSTkuwn09yIxaPv/U2dmJw+Fg1apVD32tiIgI7HY7V69eJSMjA5VKhVarpb6+nqioKLfX/UehtraWqKgoEhISRP7nqVOnBLl5UI0UEhJCeHg4J06cYPPmzcKWPC4uDq1Wi5+fHyUlJSQmJooCs1qtZmRkhIGBASG7tVqtwuXPz88Pg8FAYmIiwcHBVFRUMD4+zsaNG8V7HBkZISsri/j4eH7961+zefNmrly5wuuvv+5Wajs5Ocmnn35KWFgYBw4cWFao/bqSPqvVSkNDA2fPnqWuro6w6DhccfkMyIIxyrTEB3mvIMjP8WR4JsnU/fv3sVgsj13km5qaUCqVj/zhLoVSqSQoKIjk5GQKCgqwWCxMTk7i6+tLcXEx9fX1TE5O4nQ66enpEfK7x0GhUJCenk5nZyfV1dWkpqauGAyUqhMajYa0tDSuXr2K0+kU8rcHfwQajYaMjAyUSiUnTpzA4XAQFRUlMkwyMzOpra2ltbWVVatWMT8/T11dHVeuXOHWrVuEh4czMTHBkSNHKCwsJCEhQcj/uru7yc7OpqamBqfTSVpaGnNzc3R2dorHBQcH09jYiNFo5NChQ+j1eq5duyakbgDf/va3kcvlfPrpp3h6epKYmLgiKbyzs5PPP/+c9evXs3HjRs6cOcPg4CApKSlER0eTmJgoSF529qIxRF1dHY2NjYJYSsP3d+/e5ezZs6I6n5OTg81mE3NtRqNRmHD0jhsYcelwuFYuLhqFjKJoDfKZIVHhlzKnpqamaGxspKqqCofDQWtrKwsLC2LOqb29nampKdasWUNKSoqY+SovLycqKopz584JE42mpiZ27txJWloadXV1InvIarXi4+PzUAnpc/x+Yt5i558u1NAwrWDC6MRXbhHueV5eXiKkdym8vLxQKBRYrVb8/Pz4wQ9+wM2bN/Hw8MBsNgsp7c2bN8VGPzY2doU9v4eHB93d3cjlcrxdxifqyPyus87kcrnIlpHIgkTQHiRSnp6eyww1fld4UF7oLbOSqhh76LzTUjgcDmQyGb6+voJASZI86fO5XC7m5+ex2Wykp6cLOZAk95Nmt1QqlZhHs1gsHDp0iIyMDNra2twSNlgkotu3b6esrIyOjg4iIyMxmUwsLCwIY5GAgADm5uYYHh4WxhMul4vw8HAWFhYIDAyks7OTl156SVyDxsbGaG9vJz4+flmBcmJigsnJySe+fj7Hsw9J1aHT6VCr1ZSXl+Pt7Y3dbn+i79lgMHD8+HH0ej1tRi9aptwXWBwuGOtooOvWOZqamlAoFISEhNDY2Ii/v/9jC+HR0dFMT09TXl5Oeno6CoWC6elpDAbDU8fcSIYXPj4+yGQywsLCyM7OprW1latXrxIQELBiztzf35+4uDhOnz5NQUEBDQ0NQgkUEhLCyMgINpuNrq4uoqOj8fX1xdPTk9bWVtRqNbGxsSiVSm7evImXlxceHh7Mzc2RkpJCQEAAxcXF+Pr6snr1apxOJ0ePHsVsNnPw4EGKi4vx9/enubmZwsJCt99LV1cXn3/+OUVFRWzevHnZDP3XkfSNjo5SUlLCmTNnsNvtbNiwgaDUtXz/dD+3uqep6J6ivGuSn5d1P1TC+RyPxjNJpsbHx5menn7sj7+iooLExEShSX0aDA0NcfnyZb773e+Sm5vLhg0biI6OZmFhgcbGRrq6upicnGRhYQGFQiF+qA+D5BozOjrK9evXSUlJWRFeZjAY6OvrY9u2bfT09JCYmCjkcRqNhuDg4GU/GmlhyMjIoLq6mtu3bxMdHY2XlxdKpZKIiAjq6+u5evUqd+7cwdPTk9zcXPbs2UNOTg4DAwNUVlaydu1aUSEeHR2lp6eHnJwc7t+/z+joKGvXrmV+fp6Ojg4CAwOFNfng4CC7du0iIyOD+fl5zp49KyRFeXl5ZGVl8dlnnwGL1r379u1bFsB58+ZNrl+/zsGDB3E4HJw8eZK8vDwWFhYYHBwUuVNLodPpaGpqEsfo/PnztLe3c+3aNaxWK4WFhezYsYPS0lJeeuklrl27htPppKysjCtXriCXywkLCyMmwINbkxr3DpEKGf99RzxWs5H333+foqIiampq2Lx5MxEREXh6eor5Fknu19nZSVVV1eL8hEKBwWAQFWmHw0FTUxNvvfUWeXl5GI1Grly5gkwmIyAggODgYNLT0ykrK0PjpaPZ5EPrggc2jY64IK/nlaBvAKp7p9j7jzdpnIQe42JnqMkeKtzz3BEHlUrFK6+8gp+fH319fdjtdurr6zGbzdjtdvEYmUxGRkYGIyMjwGKnd+l8lfQ/WCQvT9KRcSe/e5yRhM0lp8sRuMxqXSFziXkmyRBDko8tff4Hn/tJidTXma968DWXzjsFyo2PlPZJxSQJDodDEL/g4GBBmHx9fZmamnpoVtNSAvbCCy/Q0tJCSUkJdrt9mXz5Qev55ORkdu/ejcVi4dSpU/T29ooOok6no7GxkdHRUWJiYigqKqKlpQWXy4XBYGBqaor8/Hza2trYuHGjqMgPDg7S29uLXq9fdq2cm5sTlfbn+GagoaGBxMREYfhw+/ZtDAbDE9miw+LoQUxMDDExMTT1DtO9oMbuXPl78VDJ2RzvjY99hpmZGdrb2yktLWVoaIipqSk0Gg0hISEPzTOSyWQkJCTQ399PfX096enpyOVy6uvrl5mkPA4ul4vLly+zffv2ZR0otVpNamoqISEhXLhwgf7+fmJiYpbtyaSxifPnz5ORkcHdu3eFKiUhIYEbN26QkpJCdXU1a9aswd/fn9u3bzMyMsLatWtFfIqfnx9yuRyDwUBmZia+vr5cvnyZnJwcoqOjaW5upr29nTVr1qBWq8V4g7e3N1u3bl22NrpcLiorK7ly5QqHDh0iLS1N3CZJ+oqLi1m3bh0vvfTSIyV9NpuNe/fuce7cOaqrq4mNjeXll18mNzcXjbcvL/9/ZSxYHGKPZHO4HinhfI5H45kkU5L99aOcTVwuFxcvXmTz5s1uwykfBbPZzC9/+Ut27dolKigymUzI+rKzs7l9+zZbtmxhdnaW27dvc+3aNYaGhjCZTGi1Wjw8PNwOOSYmJmI2mzl//jzJycnLLpxms5nm5mays7O5cOEChw8fpqCggKCgIG7fvk1paSkKhYLQ0NBli5BWqyUzMxOZTMbx48fp6ekR2uD4+Hh8fX2xWq28/PLLREZGisempqZSXl7O/fv3yczMJCQkhIsXLxIbG4vD4cDf35+mpiY2bdrE/Pw8bW1t6HQ6ZmZmaG5uRi6Xi+7TjRs3sFgsIkz0tdde4+LFi2Io8/Dhw6ISajab+eqrrxgdHeXAgQPcunWL1tZWDh8+LLpPNTU1mM1mUlJSViy4tbW1IhdrdnZWzJDo9XrR9evr66O2tpaFhQXGx8cpLCxk7969ZGZmIpfL6e3u5A/2b+F84zAuhx0nclQyFwqcvKhsQ21dtDmPjY2lq6uLwcFB9u3bR2RkJMnJyWRnZ7Nhwwba2tpYv349qampDA4OolQqcTgcGI1Guru7uXfvHlVVVdhsNjo6OhgfHyckJERUfBsbGykrK0Or1aII0/PXDTL67d70mbXPK0HfEMxb7Oz9x5ssWBxCEvMw97yIiAhhg+5wOOju7mZ6elrIvHx8fLBarcu6Rk6nUxApQPwGpa6PJBFcisd1ZB5HUKRKp3S/Uac3p61pK6zWI1QmPJy/7TpJ3Td3WUn/UZDL5Y80wHjwvkvvJwWkLz2e0lybv7+/KJDYbDZhbCTl2SwNTYbFY+fr60tzc7PYYEodR2moXXqd0NBQse5WVlaK2RKLxcLc3BwBAQG89957zM/PMzg4iN1uJy0tje7ubmw2GzqdDqPRiIeHhwiKlgbhu7u7GRoaIi0tbVmF3mQy0draKmZAnuP3H01NTURERIhzNSwsjJKSEjIzMx9bdB4cHKSsrIxDhw7h4eFBy+0Sao1+bmV+GpWcT7+/g82bFjsn2dnZWCwWRkZGMJvNtLW1UVpaSllZGa2trchkMrfFYr1eT0tLCx0dHeTn53PucjEDinAuNI4yOGN6bLFxZmaGpqamh456+Pv7k5OTw/j4OGfOnEGtVi8zqPD09CQtLU3kTDU2NoqxiKioKIqLi9HpdJjNZmJiYnA4HHR1dZGYmIhOp6O1tVWslQaDgdWrVyOXy7l58ybf+ta3UKlUfPXVVxiNRvbv389vfvMbUlJS6O/v5/XXX1+mYLLb7Zw5c4auri7efvtt8X09raRvfHycmzdvcurUKcxmM+vWrWPPnj3Ex8cLMnm8bpCS9nG3xWaVQk6Er5aMyKezU/+vjmeSTM3Pz9PV1fVIje/09DQNDQ0rZGWPg8vl4tSpU4SGhi4byFwKm81GSUkJBw8eJCkpiby8PFavXi0Gim/cuMHt27cZGxvDbrfj7e0tflAymYzY2FgRxhYfHy80wFJ6uGSVLNlb+vv7s3r1aiIjI0WnyeVyCYnb+Pg4NTU11NfX43A4xED7kSNHyMnJIT09HafTyenTp4mPjxfzVZKzzfXr1wkNDSU8PFxIVAYGBli/fr1wznO5XELSNjAwIJykcnJyMBqNnDx5koWFBaxWKwcPHqS/v587d+6gUCh4++23xZzQ2NiY0PlmZGRw/Phx4uLiOHjwoKii3L17VwQN37t3j9TUVBQKBSaTiZqaGhobG5mcnCQnJ4f9+/ezbt06Vq1aRV1dHRcuXKC8vBytVsvc3Bzf//73qa2tZcOGDSKDy+FwLIb07XiBd9fHcbeihJykCDJ8TGzxHCI2wJP+/n5CQ0NJSkri6tWrpKWlic2HBMmBrbGxUdhU79+/X8y8/fCHPyQ5ORmtVis2S/39/dy7d4+5uTkGBwdxOp14eHjQ1TfI/7wrX+Yu+LwS9M3Aoy5Mclx4y3/rnrewsLCskyEFtkqdHX9/fzw9PTEYDAQGBmIymYRBhPS7ViqVhISEiLmphxGXp+nIPAin0yk6Mo8Kv+2x+y0ji0sfvxSSm9bs7EMGGX9HkEimRqN5rIxxqSvi0v89SMKk42A0GrFarYL8yuVyvL29BeGRrM6Xdt2k+bGIiAgsFgtGo1F0tyR5s5eXF5OTk/zpn/4p3t7ewnhCmsvy9vbG19eXmzdv4uPjw8TEBE6nk8bGRpETKIU3j46Okp+fT01NDfn5+chkMlpbWxkbGyM7O3tZJdtut1NbW8vatWv/vYf9OZ4RdHR04O/vL8YTdDodFRUVyGSyR87oulwufvOb37Bx40YiIyPRaDSUXL/G+sRgmgxq4RToqVagVspXRNZI7rS3bt3iz//8z0lPT8dsNjM7Oys6Vzdv3hTkSi6XExQUJMY0ampquNU+wi+GginrmqKyZ/qJio2Dg4NMTU2RnZ390M+mUCiIj48nOTmZsrIy6urqiIyMFOupNFJRWVlJQEAAjY2N4vM4nU4hk83IyCAyMpLy8nJcLhd6vZ7+/n7RnZ6fnyc/P5/m5mb6+/t58cUXRdE3Ly+P/v5+5HI5nZ2dvPHGG8syQw0GA5999hkqlYrXX39duAKPjIxw9OhRBgcHHynps9vtNDU1ceHCBTFnv3fvXlGsX7pHtlqt/Kq0mYYR9zOsNoeL5BAfipIennf1HCvxTMYXe3h4PHZYua+vj5iYmKd2fqmrq2N8fJz333//ofeZnZ1Fp9Mte25vb2+ysrLIysrC5XIxMTFBV1cXDQ0NnDlzhoCAABISEkhMTCQ6OpqcnBw8PDz41a9+xcGDB4mPj8el1FA7o6XlYitRfjHMW+x4a377FURHR/P6668zPDxMcXExN27cEOF56enpwgQCoLq6mo8//piNGzeydu1a1q1bh4+PD7/85S/F68Gic5REav7kT/6EdevW8dOf/lRUs2UyGT09PULiODk5yaZNmygpKRHOTxUVFcL5MDg4GLVaTXFxsRiIXpqjdf78eTZv3szg4CDXrl3j29/+9gr9dFtbG4WFhSQlJXH69Gl+8YtfEBoaSnt7O8nJyfj7+7Nv3z4iIiLo7u6mqamJtrY2wsLC2Lp1K9PT00Kn3dnZyfr16ykpKeHQoUPAYnV/bm5ucVhfo0SvnGBfTgC1tT2sLdrMuXPnkMvlVFVVoVAo6O7uZt++fW7PhfT0dC5cuMDExAQffvghGo1GzCnI5XJiYmIwGo1MTU3x2muvAYvhzHfv3iUnJ4e+vj6Gh4dpHFfwsK2sy7WYZH84//EyjOd49tA7sYDRulLqBWBHwaxTA/+mQFnaTXK5XKjVahHC6nQ6MRgMgmxJxEOaj5IMD1QqlbDlBX7ns0+w2JmSLto9joCHn7v/drteuSiN27JlCw0NDcKAQ9zP5aK3t/d3/j4fhHTsHjSNcAd3BFQiYksfL3UNpeOcmZlJe3s7VqtVkBiXy8X27dvp6emhqalpGSFTKpXMzc0tu6bJZDIhhTSbzTidTj755BPeeecdCgoK+OlPf8rU1BQ2m028xrp164Ssed++fZw6dYq7d+8SFBREbGwsPT09uFwuNBoNXl5etLa2kpaWJgj8gwoOLy8vMa/1HN8MaLXaZeeZFMTd1dXF6OjoQ23wGxoakMlkIoz+9u3bKJVKduYk8cHhFM7evc/nZ4s5sHMT38qNxUuzcus4MzODj4+PyIs6cOCAeA+Dg4OUl5fT09PD8PAwp0+f5vTp0ygUCsLCwkhKSecPz09gdcnh32SF0pr67se3uf1n29y+ppTl+SQICQnhO9/5Dnfu3OHTTz9lzZo1vPDCC6hUKjw8PHj77bc5evQogYGBYn9TWFgorM8vXrzI4cOHiY+P5969e7z00ksEBgYyPT2N0+nEbrejVqtpb28X76mkpASn00lsbCynT59GrVazY8eOZaHHQ0NDfPnll+Tm5rJp0yZkMhlms5nr16/T1NTEli1bWLNmjVvJ5OTkJLW1tTQ0NBAWFkZBQQGrVq1aYboxOztLe3s77e3t9Pf3Y/VMQKPwxuLmsuWpVhAXuNJJ+TkejWeSTHl6ej6WTEka2KfB2NgYxcXFvPvuu48c2JuZmVmR0r0UUss6ODiYdevW4XA4GBwcpKuri+LiYpGFlJCQwLZt2zh27Bhx+S/yP26MYbFGYh8E7YiNL//qKh+/W0B+XIAITGtpaaG5uVksbPPz8/T394sqpkTwCgoKSEpK4tSpU7S2trJ//37S09Px8vLi6NGj7N69W2jhX331VX784x/z2Wef8d3vfpeEhAQMBgP37t3D19eXrq4upqamMBqNBAcHo1AokMvlJCQkYDKZqK6uFovFzp07+eKLLwB444038PPzEzkWLS0tbN68mbKyMlatWsX3vve9FRabUq5KbGwsTU1NTE5OMj09zfz8PO+88w4hISH85Cc/oaysjIGBAYKCgkhPT+fFF19c5vKzZcsWTp8+zYULF0hLS6Onp0dcLDQaDTKZDIvFglarFTkw09PTREZGsmbNGqqqqoT9e3BwsNuwP1hsmTscDmJiYsRmJDw8HIPBwOTkJFFRUZhMJjQaDZOTk0xNTVFZWYmHh4cwNDEYDBhkcdhxH3RotDronXx83s1zPJuIC/LCU61wS6iUONDJlm/sFQoFGo1GyLLgt5t/k8kkfjMSMZA28SqVCpvNhq+vr8idWtrlctdpeVpIz6FQKMRGe86leei5a0fBnOu3cwgVFRXL3Px+V1j62R4n4XuwGPfg/VevXk19fb3b26V1Yymk2zw9PQkICKC5uRmHwyGuIZKJz507dxgZGVn2WtK1TJIPqlQqQaLi4uKECsDb25uRkRF+/OMfExAQIGYyJXOhkZERMYep1Wq5dOkSWq2W9PR0IXdOSkqio6ODa9eusW3bNm7dukVqaqpQIzwYNSGZa0gE/Tl+//HguW8wGPDw8BA5h+++++6KArQU8vzaa68hk8kYGBigrKxMuElmZGRwOD+GidtGdiR6uyU1sLixf9C6GxAZTocPHwYWf09dXV1UVVXR39+/GBTbZ8Hpcm9a8ahi4/j4uNvMzYdBJpORm5sr3FF/8pOf8NJLL5GUlIRKpeLw4cOcPn0ak8nExYsXUSgUvPrqq/zLv/wLarWatrY2NmzYQG9vL11dXQQFBdHU1CRku5LrX25uLuPj4wwODpKXl8elS5cICAggKChoWRetoaGBy5cv8/LLL5OSkoLL5aK+vp7i4mL0ej3f//73V/xuJWOs2tpa0XF+7733lh17l8vF/fv3BYGanZ0lOTmZ1atXc+DAAewyJVf/6ioWN/OeMhnszYp44mP6H415i52zd+/TO7FAXJAXe7MiljUl/rPwn/8O3OBJOlP9/f2sW7fuiZ/TZrNx7Ngxtm3btqwq4A6zs7NP7NUPi5uj2NhYYmNj2bp1KyaTiZ6ensXMl+5uLE4Zf35pEBsKpBK12e4EO7zzv6r4f9ZCT3urGJo8fPiwCIuT3k9FRQX/9E//RHp6OoWFhSIA791336Wqqoqf//znvPDCCxQUFPD222/z61//GoPBwPr165HL5bz55pv87Gc/o7a2lvXr1/PFF18wNzdHZGQknZ2djIyMCN396OgoTqeT0NBQSktLRc5KSkoKp0+fxuFwcOjQIeEgdezYMSHjuXXrFvv373+oE2NDQwM+Pj784z/+I8HBwWzYsIHk5GTOnz/Pxx9/LJz74uLi+MM//MOHklovLy8OHTrE3/7t3+Ll5YXdbuezzz7jyJEjhIWFodPpmJubE2RKLpdjNBrx8fHBYrEQERHByMgInp6eTExMiCC/pTCZTHz55Zfs2rWLK1euMDs7K+RPk5OTXL9+XaS3m81m+vv78ff3Z3x8nE2bNhEeHi5CNf/qyxLquxxuN6XPK0G/39ibFcH/fbbZ7W0yIF6xsksjVQ4l2a5WqxXFjLi4OMrLy4Ub3NJui9PpFLM5DxoffB0ipVarl9l0O51OMjIylnVXdDILStyfuw+SxX8PkXK37nt6emI0Gpd9Nmku6GF48DkeJF4PI1Lu7vvg846OjrJu3Tpqa2uF7X12djb19fVCqpmWlsaePXv427/922Xvc6n1/Q9+8AN8fHyEyqG3t5eLFy+KsF9p7qutrY3Vq1dTVFTExYsXWVhYEMfYx8eHxsZGIiIiGB4epru7W6yfFRUVyOVy+vr6MBgM2Gy2FQUjmUyGl5cXRqPxqa53z/HsQpIIS5iamiIgIIDc3Fzq6uq4d++e6D5JKCkpISkpicjISHE937dvH0qlkpKSEnE/6WoEERcAACAASURBVJr6sO7W5OTkCtc8d5DJZCQlJYm8TYfDwf/52S3sLQa39zdaHZTf62R/ZsiKc3hiYmLF53kSeHt7c+DAATo6Ojh37hxRUVHs3LkTb29vXnnlFS5fvkxbWxtnz57llVdeYc+ePVy6dIkLFy7w4YcfolarqaqqYvv27ZhMpmVSa5PJRHZ2NteuXQMW1xSVSoXVamX37t0AogDd2toqisgjIyOcP38eh8PBa6+9tmLsYHp6mtraWurr6wkODiY3N5eUlBQxd2Wz2eju7qatrY2Ojg60Wi16vV54AzzY2fr43QLe/fg2LtfiMdYqZSgUixLOhxHm/2xU904te8+eagV/ca5ZNCX+M/FMHjEpPNJut6+wGIfFmSqj0fhEtuUSLl26RGho6CPnsCTMzMz8uy4uHh4eIuUa4Bc3WpFf7QI3LVWb3c7dGQ8+fPPNh5I8X19fdu3axcaNG6msrORnP/sZycnJFBUVie5YcnIyJ0+epLW1lX379vHd736XX/3qV8zNzbFjxw7Cw8MpKCjg/Pnz/PEf/zH+/v7MzCw68VgsFo4cOcKJEydYWFhgaGiI8PBwbDYblZWVQuMvyVp27dpFUlISQ0NDHD16lNjYWPr7+9HpdHzwwQcrFjxJ4lNdXU1bWxuxsbEcOnQIu91OY2MjFy9eRKPREBsby9DQEIGBgWRkZDyyOwiL8hnJevRHP/oRf//3f8+nn35KdHQ0arUag8FASEiIkNL4+voumlP09rJv3z5OnjyJTCbjW9/6FsePH8disfDqq68yNzfHxMQEly5dwsPDg7a2NgD+7u/+Dh8fH7RaLTabDZfLRV5ennDm2bJlC52dndjtdl544QUcDgc1NTWUlpaSn5LOV70y7G7OgWe9EvQcj4a3Rsl/3xjA/7g+hkwux2x3ocSBDNiu7kAlW7zISmuZ3W4XG575+Xni4uKE3HR2dlaYTSwlEAqFguTk5GU5Ve7wtN2ppURKQmNj47K/4xVT3La7rxq7I4tfF2azGa1Wu4yQuSNNjyJSTwKJQCUkJDA0NORWEvhg1w8W1zFPT08KCgoYHBykr68PWCwQwWKn58iRI8TExHD//v0VmxeXy4XJZOK9994TXfalKoegoCA+/fRT0a309vZmYmKC1tZWWltbxRrm6enJyMiIOIfGx8dxOp2ic6lUKpmZmSEiIoLy8nIRFu9OJiRJ/Z6TqW8GPDw8lhmhSGRKLpfz0ksv8eWXX6LX68U1enJykvr6er7//e/jdDo5fvw4WVlZ6PV6zGYzw8PDIvdOp9MtI2oPQnqtp4HT6aS9vR379DBKPLE/JBtvoqeFv/7rm2JeNCMjg+zs7KeS+blDcnIyH374ISUlJfzkJz9h69at5OTksGPHDry9vamsrOTEiRMcPHiQxMRE+vr6KC0tJS8vj7KyMnx8fFhYWMDT0xOFQkFbW5tQHrS3t5OWliYklO+99x4qlUoYdDkcDt5//33kcjkXLlxwK+lzOp20tbVRW1vL8PAwWVlZvPvuu+IzGwwG2tvbaWtro6+vj4iICPR6PUVFRY/9LvLjArj9Z9s4e/c+pXWt+Clt/Pkb7uWUzwLmLXbe/fg2C0u0iU8iBf2PwjNpQCGTyaiuriY7O3uFvTgsZheZTKYnrkg0NzdTW1vLkSNH3JKzB1FfX094ePjXslx3h8st41T1Tru9zYkMT/scsRqzkHs8bA5MrVaTkJBAbm4uMzMznDt3joGBAQICAgRRlMwifH192bFjBxUVFfT09LBq1SqSk5NFhtPGjRtpbGwUNsyZmZliMHR+fp68vDwGBwfp7+/HbrcTFhbG8PAw69evZ/369dy5c4fTp08TERFBf38/u3fvpqioaNnxtVgs1NXVcerUKTo7O0lJSaGvr4/k5GRKSkpobm4mLCyMbdu2sXnzZjIzM/Hx8aG2tpawsLAVlRl3CAgI4MKFCxQWFqLRaHA6nSQlJXHv3j0GBwcJCgri7t27xMTEYDabiY+P59atW2zYsIGOjg5mZmZQKpUoFAq6urooLS2lqamJjo4ObDYba9asISEhQeSI/fCHPyQlJYWamhqCg4N54YUX6OzsxM/Pj8jISCoqKoiMjMRms/HFF18wPz/PgQMHUCvl2IZa6HX4o1LIsTkePsz7HL9/6Gms5durQwjVabCO9xEvm6RI1UuA2iHIjdPpxMfHh7S0NIxGo9jEz8zMMD8/LyRXQUFBTE1NodPphAW6y+Vibm7OrQ03LJKoJyFSWq32qWesnjb81h1CQkKeaD7nwc/3dd7vk0KS27kjlA92qDw8PLDb7VitViorK1GpVMtInVwu57333iMyMpI7d+5w7NgxUYRaCsmwQq/Xr1jntVot5eXl2Gw29u/fT29vLwcOHGDt2rV0dnai0+mEJBoWO1N+fn5ihlMytXA6ncjlcubm5pieN9E078WAPASnh98Kd7SWlhZCQkKeqKPwHM8+ZmdnGRgYEBmGTU1NeHt7Exsbi06nY2JigoGBAdEVOnnyJFlZWSQmJnLjxg1mZmbYv38/MpkMpVLJvXv3iImJwcfHh+HhYaxWK3FxcW5fu6qqiuTk5Cc6lxYWFqiqquLEiROMjY3x4toszrTPY3ezfHloVPyv720l0H8xGHd8fJzOzk7Ky8ux2+10dXVhsVgICgr6WnJVhUJBYmIiiYmJlJaWcvfuXaKiokhJSRH5fU1NTbzwwgu0t7fT19fHxo0buXv3Ln5+fgwPDwvTGYdjcb2XimI2mw2Hw8HevXuJjY1lYmKCTz/9lMjISF555RVaWlrcuvRJaqSTJ08yMTHBmjVr2LdvH8nJyczNzVFbW8vly5e5efMmcrmc9PR09uzZQ15eHtHR0U/scK1WysmI9GVDQgDNty6xsXDDQ+3s/6MgrclS2PTQ0BA9PT18UtJCw5jdbXbos+BA+GxSUH4r5XCXhi2ZTzwJJNJx5MgRt8TMHZ5W5vcoLCwsYB4feKRMRmWe4e7dMWpqarBarcLIIiEhwW0ytlarZePGjaxbt447d+7w5ZdfEhwcTFFRERs2bECv13Py5ElaWlrYt28fxcXFfPbZZxw+fJh33nmHf/iHfxCDkZL0pLe3F4fDISrD8fHxfPLJJ8DiyT06OkpqaipFRUWcOXOG7u5uNBoNSqWSDz/8cJmud3x8nOrqau7du0d8fDxFRUVMT09TUVEhXvPgwYOEh4ev2FBkZmZy69Ytrl27RkBAgFj0HwZ/f38iIiJoamoiNzeX8vJyNm/eTEFBASMjI5w4cQJYtFt3Op38/Oc/x2Kx8LOf/QyTyURERASdnZ3s2LEDp9PJmTNn0Gq1WK1WPvjgA+GqA4thqQ0NDeTl5SGXy0UF0GQy4eHhgcvloqWlheDgYO7cucPOnTvR6/UMDw9z6dIl/ts77/B/+QYs6n0njcQFerI3K+KZrQQ9x5Ojr6+PtWvX4q0dwtU5ucS0wElQUJDILjKZTNTV1aHT6QgNDcVqtaJSqRgbGxPPNTAwACzmAEmQy+UrhoqX4km7UV93pipUPs9hTQM9jgDmXBp0MgvxiinRdXscln6+pXiwA/QgiQkPD6enp+drvWd49HzV0jwpd7C55OLzhqhkRCnGkDusy377AHq9/v9n772jozzTbN9fValKKpVUyjmijFBAASFkCwy2MDg0wQFw2zTtdtvd7jB9Zt1Z657/Zt25d525M6f7ruke220f2xh7jGkwjQyYaCFAiCAJgYSEAoVyVqmUSrHS/UPzvV0llQLYfRoz7LVqIaqkyt/7vft59rM3zc3NnDlzBi8vL+7cuSPy56SgXmkuSYpUuHjxIuvWrXN4vIsXL4qi1aVLl7BarURHR9Pf38/4+Di/+c1v+OyzzxgcHCQ5OZm+vj46Ojoc7kN6rVarlV6rB2dH4rEBZrOC28dvz5HEPDKheLgwWyprMBgcsoqeeuop3n33XTIyMhgeHsZgMLBjxw50Oh03btzgzTffdNhMh4WF0dHRQUhICFqt1sH4ZjaWIvPr7OykrKyMhoYGli9fzs6dOwkJCWFkZIRN6hJOT8aCTCYkXDLZjBwtKsyXqLBgYYEukY3KykoMBgNFRUUUFRWhUCjw9fVlxYoVZGdnO5y/F0NwcDCvv/46FRUVfPLJJ8IQQq1WU1hYyJdffsnTTz/NqVOnOHPmDCEhIVy7dg0/Pz/a29tRqVR0dXURExPDzZs3CQoKYnh4mJSUFJKTk7lz5w6FhYU8+eSThIaG8umnnzpI+qQu3fXr1wUhfvXVV/Hx8aG5uZlTp07R2NiIUqkkISGBjRs3EhERseB5Yanw8fHBz8+Pu3fvCuOx7xqS46Gzy9jYGEajkdHRUYxGIzKZDA8PDzw9PfHw8ECj0aCfdGHa6rzR8CDMnT+wu7iF5qba2tp45plnFr0Pi8XC4cOHeeyxx5bU5ZCwmAHFUiCRh1u3brEiMRml0gWzae5J3dVVxT+9sZW+rnba2trEnFVXVxdnzpzBzc2N+Ph4YmNjWbZsmYOETqlUsnr1arKzs4WroEaj4fHHH+f111/n8uXL7N27lw0bNtDd3c3evXvZuXMnAQEB9Pb28vjjj3P9+nVUKhXt7e1ioyWXy7l7966DzDI0NJQNGzbwySefMD09zfT0tAj0laqhDQ0NlJeX09fXR3JyMqtWrUKn03HmzBmSk5MJDg4mKiqKvLy8Bd87jUZDeno6hYWF4jGcwWazMT4+TnR0NBcuXMBgMKDRaNi3b5+oZgcGBmI0GhkeHkapVOLn58eqVatQKpV0dHQIiV9bWxvPPfccKpWKQ4cO4e/vP6e6k5uby9GjR8nOziY0NJSWlhYhIVQoFBQWFjI+Pk5cXJwISjYajfzpT3/iueeeE7LUR659DxdGR0eZmJggMDCQlpYW0emQXOEGBwdRKpXIZDKmp6dxdXVlZGSE0dFRXF1d+dWvfkVxcTGNjY309vY6nTuSvuuzodVqRe6ZtJFeqEMlPbf7MatQyqzCte9e4eLi4rTDZLVahZ24M9LzbYgUzHTz53P28/f3Z3R01OntvVYPzk7/JxFBgXLUCgSw0VVHkM3o8LuDg4Pk5eVx8eJFIbWTZqkaGxuJjIzEYDAwODiIWq3GaDRSVlaGVqsVAaUGg4GbN28ik8nIyMjgxo0brFmzBplMxpUrV8jJycHFxQW9Xo9SqeTpp58WRHFgYIC9e/diMplEJ9Nkk3N2Ov4/53Rn4EwS84hMPVxwRqbs5V7u7u488cSMo63RaGTz5s0YjUYKCwt56aWXhF24hPDwcNrb21m1ahVarZa6ujqnjytJl53tmyQ5f3l5OePj46xatYqnn35aFGBtNhvHjh1jS14K//eax5dUbPTy8hLmVFu2bGF8fJzGxkZu3LhBT08P58+f5/z588jlcnx8fMR+xFlx3h5yuZycnBySkpI4deoU7733Hs899xy7du3iiy++4PTp06SlpVFdXU16ejoVFRWEh4fT0tIignulY7Cvrw8/Pz8KCgooLS3l6tWrbNu2TZjErF+/nszMTIxGIxcuXKCyshJPT0+ysrLYtGkTzc3NnDt3jubmZkJCQkhISGD37t3fSta4EFJTU7l169Y9kSlJujwfSbK/TE1NodFo8PDwcLgEBASISB/pMtu4DGCkvI3izttOjZ4ehLnzB5ZMzefoNzU1xcDAAFq/QA6Uty3o6FFcXIybmxtr1qxZ8uNK7Nk+A+Be0NPTQ2lpKXfv3iUzM5Nf/OIXuLu7c6v9Mw72+WM2z3So7If9IkJ8iQgJJCsrC5vNxtDQEK2trbS0tNDU1ERVVZXQzPv5+ZGQkEBcXBzh4eEoFAoUCgWZmZmsXLmS27dvc+7cOc6dO0d+fj6vvvoqR48excPDg5iYGN555x3Cw8MJCAigurpaECa9Xo/FYmFycpKAgABKSkqQyWQiEDI/P58PP/wQhUJBYGAgu3fvFnrh69evc/36dXFgmEwmkYFSUFAgWte//e1vefrppxd9D6U5gtdee43PP/+ckZERsSGRHPOkn6WcrrGxMcbGxsjJyeGbb75hzZo1dHZ2snnzZvGaw8PDuXr1KmNjY8JeWCaT8eyzz/LBBx9QVVXFxYsX2bBhAyUlJbz33nu89dZbglBGRkbi5uZGY2MjERERtLW1MTw8zMDAAF9//TWenp5kZmaK/DKLxcLBgwdZuXLlghkfj/D9hn1MQ39/PyqVCrPZzNTUlCARWq0Wf39/uru7hUzL3d2dsbExPvjgA8LCwkhKSmJgYEAMkS/FGGF8fHwOSbHv9s7XmflrBupKa5K9fG4+qd58Mrt7wULdp4Xue77OlDMiYvrPWY4zU3HsdKsmJSme+vp6YKYTf+nSJUGWYSaSQqfTkZqaSmtrK2+99Rb79++nra1NDKOfPn0auVxORESEWD8CAwNZvnw5N27coKKigsDAQGpra9m4cSPXr18XxZqrV6+K7pfZbBZ5diEhIQwODnKpy7qkKIZHZOrhgv2+yWazOZ1jyszMpKSkBLVaTUxMDHv37mXNmjVERUXNub/w8HCuXLkC/MWAwhkGBwfFTLKEoaEhKioquHHjBqGhoaxbt464uLg5MjLJjTI/Px+FQrHkYqNerxdz5u7u7qxcuVLMxE9PT6PT6bh+/TqdnZ2UlJQISZyXlxeJiYnk5ubOq0DSarW8/PLLNDQ0iLzQHTt2cPDgQaqqqvD29ubmzZtiPhH+skbfvn0bpVKJzWbjxRdf5OjRo+j1evLy8vjqq69ITEzk5z//Od3d3Rw8eJCWlhaSk5PZuHEjAwMDVFRUcObMGWJjY0lOTmbLli1Llu19G6xYsYKioiKmpqaQyWRLIkhjY2O4uro6ECGJMAUFBTlc7+7ufs9RRvZ4Li2Uf/p6HqOnB2Du/IElU7PzEiS0t7dj8o4k71+KF3T0uHv3LtXV1bz11lv39AGOjo6i0WjuqXVqs9lobW2ltLSUnp4ekTgtdZEuXrxIvLecY8+l8v8dvoBV40+Ihwv/x8vr51RdJHIgBfnCjNyntbWV5uZm7t69y5UrVygvL8dsNhMaGsry5cuJi4vD39+flJQUVqxYwZ07dygpKWF8fJy8vDzRKdNqtfT19bF161YOHDhAYGAgvb29AMK1T9oMShbpK1euFI59GzZsICMjg87OTs6ePUtjYyOBgYF4eHhgMBgICAhg7dq1xMTEOLyH7e3twlrYGSYnJwVBGhwcpLS0VOTqnD17Fk9PTyIjI4X0z9fXFz8/P9RqNTKZjJKSEgYHB8nIyBBkbnp6WmziRkZGiIqK4saNG6xevZqioiKOHz9Ofn4+6enpbNu2jX379rFixQry8/NJS0vjvffe49///d/5xS9+IToLubm5XL16VRCmzz77jNHRUbZv387Fixcd5vhOnjwpKoGP8PCitbVVbES6u7sJDAyku7ubqakp1Gq16H6Eh4cLS+3BwUGxiR0cHKS3t5fw8HCCg4Pp6urC1dV1Sc54UjHEnqzMJ5ubbe7w14I0NyBBmk36axC4kJAQYdgxG4tZqM+HRXO1rL6EDAw4SBRnW9TfvXsXuVwu8nr+5V/+Rbx+ab7CbDZTWFjosAFWKBScOHFCfFanTp1CpVJx8+ZN8Tt6vZ7+/n5MJpPDGjc5OSk2uyO2sCVFMWg0GgfJ4iN8vyHtm2w2G2NjYyiVyjmGUGNjY0xNTWE2mzl58iQeHh7zqkUCAgJE530hMmUwGPDz88Nms9Hc3ExZWRltbW2kpaXx+uuvzyv/MxgMFBcXs2fPnnuWq+n1+nldg1UqlYMJmMVioaWlhbKyMtrb27l69SpXr15FJpOh1WqJj48nLy9vzlhFYmIi0dHRFBcXc/jwYfLz8yktLWVoaEgY0nR1dYnCs9QJN5vNPPfccxw5cgS1Wo1cLqempoYtW7bQ3d3Nhx9+iJubG5GRkSQnJ6PT6WhubiYhIYEnn3ySqKio70S+Zw+r1SrkdPaX0dFRcb3VauVf//Vfhcxu9kUKO7YnTkvxIfgu4OHqMseB0F4K+rcel3hgyZRkiTsb9Xdb+KLLh0nL/I4eNtMkhYWFbN++/Z40s3BvEj+bzUZ9fT2lpaVMTk6Sl5fHjh07HL5cPT09XLt2jTfffJPOzk6eiHQlJ2c5Z86cQeNasKTH0Wq1pKamiqHSsbExWltb0el0NDU18c0333Du3DkUCgURERGsWLGC+Ph4Xn/9dVpbW7lw4YIwqpDscI8cOUJ2djZlZWXicaT2dHt7u8hNkLo5AQEBbNmyhY6ODt5//32MRiPu7u7YbDa0Wq14zPkOrIaGBuLj4+np6ZnTXRoYGMBkMgmCZLPZCAwMZMWKFfj6+mK1Wvn888/RarWsX7/eKTnOyMjgnXfeYePGjWRmZnLp0iWmp6cxmUzIZDJGR0cZGhpi2bJl9PX1sXbtWiIjIykpKeHChQsEBASg0WgwGAxYrVa8vLz41a9+xbvvvsvvf/97fvGLX+Dm5kZycjJnzpwRg+Lh4eGMjY3h4+PD6OioCFWuqKigtbWVN95441tVYx7hwUdbWxsZGRlYLBb6+vrIzs5Gr9eLk6qHhwdGo5GrV6+ya9cuzpw5w9DQkLA9DwsLY3h4mM7OTuRy+ZxuzWKSPMkEZjEshUgtJZZiKZAyjwDhBrYU3CsB6u7unve2+yFSsHiulnd4HEP9FSJyQS6XO5BZpVJJfn4+RUVFxMTE8MILL+Di4sLk5CT9/f188cUXwlREJpMxPj6OUqlEo9EwMTHB8PCwuN+pqSl8fX2FO6m0loyPjy/4vi5kZ28viZG6o4/wcEAyU5qenp7XXa+oqIisrKyZMPmaGv7u7/5u3nOUXC4nNDSUzs5OYmNjsVgsTE1NzZk/7+3tZXp6mnfeeQeFQkFOTg7bt293KteSYLVaKSwsFK7E94p7cfKzN5mAvwQJX716ldbWVioqKqioqBAkIiYmhvz8fPz8/HB1dWXTpk2kpaVx/PhxEdQ7Pj7O6Ogo01YZzRY/Rk1ueDLJMoWJxLg4ioqKhEFFWloaw8PDfPnllwQFBYnrpfmnV199FX9//3veK0hjBkvpIk1OTuLu7j6HDPn6+hIZGSmy7hoaGti9e/cDuW+xdyB80ObO//bPYB7Md1I/XdcPMi9wUjs0mcz8P/9xisBRHb6+vnR0dNDb24tSqVzw4uLiIn5eivmE2Wymurqay5cv4+rqymOPPUZSUtKc9rXFYqGwsJCnnnoKLy8vampq8Pb2JiIiQrgyzdYoLwUajcah6jIxMUFraysNDQ00Nzdz9OhRYOZEGR4ezvDwMHFxcchkMtra2gQJqqqqmslFGhqlyeQ9a7B8Jui2u7ub3Nxcpqen+fDDD4VEJSYmhpSUFBISEhwWTJPJ5ECUpJ/b2tqQy+XodDOfja+vLxEREaSnp+Pn5+fgYnjgwAGWLVvmYDKyZ88e9u/fz9GjR3n++efnvNceHh7ExcVx8+ZNcnNzyc/P58SJEw4V387OTsLDw7lw4QJvv/02np6eREVFcfnyZYqLi8WAuBR6qdFo+PWvf80777zD73//e958802qqqqYmppibGxMmE5MT0/T0tJCQkICcrmctrY2zp8/z49//OMlm548wvcT4+PjDA8PExwczN27d1Gr1ahUKkFcJicn0Wg0QjZ87NgxXnvtNX73u98RHh4uOs4qlYrMzExqa2tFUUOCMyJlnw81m0jNJiT2RgqLGUcsRqSWOmul0+nE85AKM0vB/RKgxXAvJG2xXC13i0kQKJlMNkfCKIWgenl50dHRwf/8n/8TmUyGu7s77u7uonNpv4aZTCZWr17NwMAAtbW1ItDXaDTS29uLp6cnRqNxZh7KZCIqKkrcT2trq/hMQkJCmJycZLVSSdk8/NpeEvNI5vfwQep0OiNTHR0dNDU1sXPnTm7cuCGc4xaSkYWHh9PR0UFcXJywR5fOa319fZSXl3Pjxg0CAwN5/vnnheR5MUhZaPeSFyphenqasbGx+55tl4KEIyL+EvnQ19fH5cuXaWpqorq6WliaazQaoqOjefzxx3njjTe4du0aJSUlqFQqWsddHGYrXbBQZo5gpLGZUJVJFFxu3bolnAY9PDxISEjgpZdemhPIK8FkMs0xZZht1iBdJBdoZ7NIs2V2izn1hYWFceHCBYxG46LzZX8raFxdHsi58weaTBkMjvklZrOZNsMEk2bn80zTVhmdI1MEyWcCZKempkT6u9lsFrIx+8vs62Fmw/Db3/52DumSbMMNBgPu7u6EhYXh5+fHwMAAZWVlc8hZTU0NKpWK0NBQBgcH6evrIzg4GJlMRkxMDDqdbkm5V0t5r5KSkkhKSgJmTuatra3cvHmThoYGrFYrQ0NDaLVaIiIiMJlMwj73zpCVUxOpcxaDAtUdolzMImsBZg60jIwM4uLimJiYEPpee9I0Pj6Ot7c3fn5++Pr6EhoaKixB//7v/35JtpvONj5qtZrXXnuNgwcPcujQIVHttUd2djbHjh1j9erVZGZmcvLkSVpbW0X3rLm5GR8fH6KiosRCodfrKS0t5Uc/+hFKpZLi4mJKS0sxGo08/fTTqNVqfvWrX/Fv//Zv/Nu//Zvo+O3btw8/Pz96enpQqVTcuXOHnJwchoeHOXToEFu3bn1kN/xfAG1tbSIQsaamBh8fH3p6eoiJiaGxsRGZTEZaWhp6vV7M2klFGGkTKwWtVlZW4ufnx8j41ILkx8vLi8zMTIqLi50+J/tjZ7aRgv3xHSQ3Ov37hbBUqd5Sg3AXw70QQXtIRhBLfQ72kr3FcrVUPbeY+s/nYH+/9gTXZrNhNBrZtGmTMJzYsmULgYGB6PV6Kisrqa2tdbjvoqIilEolrq6u6PV6jEajeF5RUVHU1NSQl5eHTCbj+vXr6HQ6YGZtXLZsGXV1dYyOjvLEE09w9uxZClSjDp+9qwJcXBQOkphHZOrhg1SINhgMDrI1m83GqVOnWLdunXCVNe6TqQAAIABJREFUAzhx4gQ//vGP5yVAYWFhVFRUADMqmaGhIfr7+ykrK0Ov15OZmUlISAhPPPGE07krZ+jt7eXy5cv89Kc/va8OiOQc+F3aeAcGBrJ161bx/8HBQS5fvsydO3eora0V+Xvu7u6EhoYyMjHN2SF/h9lKqQBzcmIZu7glZmgl5Y6/v7/oJDU2Ns7bRZIUDbPnkIKDg+e43N2PHfx8UCqVJCUlcevWrUWNwh7BEQ80mZpdJe3q6iLMS8WdEYVTRw9XBSjGBtjzqz33ZW1us9n46quvCAoKIiUlRRCskZERqquraWxsJCgoiMceewyNRiPImFQlsSdoo6OjdHV1ERAQwOHDhzGZTIyOjnL79m3Onj0LQH19vTiBztcpW+i6hbpsPj4+9Pb2kp+fT15eHs3Nzdy6dYu2tjYhF7G5uHJqIsbpYnB2Op6d8mqUyini4+NxdXVldHSU8+fPc/z4cby8vARhCg4OJjk5GT8/P7Ra7ZwFrrS01Gnnbj7MV0VWqVTs2rWLI0eO8Pnnn7Nz506Hzk9kZKQI5V22bBk+Pj5iAVSr1UxOTtLQ0CBmmKampvjTn/7Ehg0bhDxv586dVFZWcurUKRoaGkhKSkKv1+Pu7o5SqaS5uRmFQkFaWhpdXV0MDw/j5uZGZ2cnERERfP755+Tm5i5q6f4IDwck8wmTySSkrDqdjvXr19PY2IibmxtarZbKykoiIyPp7+8X2WZbtmzho48+ws/PT8yt1PROcHY6fUHyMzw8PC+RsoczIwX743uHa5UgJvZE4G8BpVI5pyP3bYigPZEC52uKJKm02WwOnTOlzEqB6s6cx5YBm9RNaN1cHTreFotFzFNeuXIFPz8/rFYrBoOB48eP4+3tjVqt5vPPP0elUhESEoKXl9ecc5zZbMZsNpOeno5CoUCpVPLTn/6Uf/7nf+bWrVsAXL58GZipbm/cuJGcnBzeffdd0d3csmULJ0+eZGpqiiD5FDtcq2ix+hIcn4ptpJ//640tDpIYiUxJHcRH+P5DipUZHBwkPj5eXF9VVYXNZqOtrY2QkBAyMzOx2WxUVlYKdzpnCA8P56uvvsJoNDIxMcHhw4cJCAggJyeH5cuXo1AouHHjxpKLh/aKnfvtLPX39//VXO0k+Pj48Oyzz4r/j42NcenSJaEAqp9eeLayTx1Bjt/M/vD27dtUVFTg5uY2p4Pk5eU1ZxbJzc3tb3Y8pqWlcfr06Udk6h7xwJIpZ25+ra2tbEz040KF87+xWiwUJPrdtxOfNFuzYsUKPD09MRgMlJeXU1tbS0pKCj/72c+c5j7Nhtls5oMPPmDLli0OhgR/+MMf2LVrF35+fgwPD/PHP/6RN954Q4R1LtQxky7j4+ML3i4NJY+PjwtjhitXrgiyJR3MJpOJikHXBReDdnkgoWqLqJLExsaSk5ODr68vrq6uKJVKVCrVovMQjY2NIh9iqZ/DfBVwhULB9u3bOXHiBJ9++imvvPKKmIuTyWSsWrWKiooKli1bRkhIiMh8kclkBAcH09vbS1xcHDabjcLCQiIjI8nKynJ4jMzMTLq6umhsbBRkLCMjg7y8PL788kvef/99XnrpJcpuVNM4oWXS5Emkr5qvTpzGz8/v0SL0Xwitra1s2rSJO3fuEBoayujoKO7u7tTV1YnuSGtrK0lJSbi7u9PR0UF8fDw1NTXCKVOv1yOXy5k025ZMfmBmVqq7uxubzSakOPYdmUWNFCy+wur82xApe1IiQSaTiZkw6XecHdPS9bPJz70QwaXAWXHGxcWFgIAAp9k5IS7j7JDN5GpZ1D64TA4S4zKEqwImJy3iNUqvT1prpUw+qdCk1+sZGhoS1em7d+/S2dlJT0+PsGSX3j9XV1cx5ymR9HfffdfBun3FihVs2rQJDw8PRkZGOHjwIAaDgVdffZWrV69y8uRJh46nzGolXTPOW1tW8v777+OuclyrJcWFZNn/CN9/2HemJJmfJD1duXIlDQ0NYpZXJpPxzDPPcODAARITE+eYVUjuwhaLhX//93/H29ub1NRUh2gak8nExMTEkgvYFy5cQKvVfitVzr3MS90PJMtvSWIn/Wu1WgkJCcHT05Ob7QrM5vlnK3vHLBhdjaKTJUnt1Gq1uMz+/3dtOnE/iI6OZmJigt7eXoKCgv7WT+d7gweWTDnrTLW1tZGZmcknKUFzHD0sZjNvJdkwDg1w+PBhtmzZcl/tz6GhIUwmE19++SVNTU1kZ2fzy1/+8p6MLIqLi/Hz8xOGEYBIxfb29kYmk+Ht7Y2Pjw9DQ0NLbo0vBXq9ns8++4xnnnmGVatWYbFYRJp0X18f/f396PV6BgcHGTQpFhy0NkwrMBqHmZqawmAwiM6S1WoVJ31pE2TfHVOpVA7SyI6ODmpra9HpdHNut/9Z+r+kF56YmECpVM5sCuyqNHK5nGeffZZz587xySef8Oqrr4qFPC0tjXPnzjE6OopWq8XPz4/u7m4mJyeRyWSsXLkSuVxOSUkJo6OjvPDCCw6v22KxUF5eLvI0nnjiCdLS0rhy5Qrvv/8+y5cvRy6X8/svvubsdDJWmw2zWcGtbhtfd9nY9/rqRxXe/yKYnJxkYGCAsLAwDh8+TEpKCkVFRURFRdHd3U1UVBQ6nQ6dTsfu3bs5dOgQK1eupKqqCnd3dy5evIinp6ewN28leMnkB2Y69RKk8FZ7UrKYkcKI7bvZPDsjSbO7PfMVR+a7/l6I4FIwW/YHM8e6MyIlFXOUMmYew6RHo9UwNeVo8S4RNPvij0KhICgoiOXLl4t1Z3R0FJPJRG1tLYmJiahUKhoaGvD29iY5OZmqqiqsVisTExO4urpy/fp1ADFXFRYWRnd3N1arlWeeeQa1Wk15eTnnz58XERnR0dEcP36c6elpQb58fHzQ6/V4e3uj1WpxcXFhcHBwzhyN1J16RKYeDkh7p4GBAfFZX7x4kdDQUCorK/nxj3/sMOccFhZGYmIixcXFbN68GUA44paXl4tIloyMDGQymXD/lSDJCZdy3uvo6KCyspKf/exn3+o8qdfrHcKIlwrJ0W42SbKfS5Lc7ZRKpZDTzc4/GhgYwM2kxgVvp2usUmZFK5/GZrOh0Wjw8fHBw8MDq9XK6OgofX19TExMzLkoFIo5BGspl+/SUU8mk5GSksKtW7e+EzJlnDLPGEYsEGP0MOCBfUVSq1qC1Wqlvb2drVu3otFoHBw9MPaj7rvN27t+IgLg9u7dy44dO5ZcLbHZbDQ1NTE4OMjJkyfJy8vj+eefv+cTTHt7O1VVVfz85z93WCwky3X7L318fDx37tz5zshUT08Pn332Genp6VgsFo4dO0Z/fz/9/f0iuykgIIDo6GgiIyO5PtSAy/T8g9beChMajYagoCBUKpXQSkuLq7+/P/7+/vj5+eHl5SUWC6k7JkmfJiYmxKyWfedsdjdN+tlgMNDe3s758+fFfNd85AvgnXfeITY2Fk9PTyFxLCwsFKGpMLP4KhQKcnNzuX79OlevXmX37t0Orlo6nY7Tp0/j5eXFnj17kMvlfPzxx8TGxrJx40Yef/xxrl27RnVdI2emEzDZ/iJbnEnmlvHGf1SKQMxHeLjR3t5OaGgoZrOZpqYmVq9ezfT0NAMDA+Tn5zMxMYFOp0Or1TI1NYWPjw8RERFCsqXX6zGZTMKVbXBy4eLGbPIze97Fx8eHwcFB8e9iRgpamfMw28UwX5dJJpM5RC3YX++sM7SQVftSiOBiphJS4WpwcFAQKXsbefuu0mwL+dmFPKvVKmzo/f396enpEe+Di4uLuH+LxUJXVxcKhYLs7Gw2bNiAj48PZWVlFBUVCRJlsVgYHh4WoZ6FhYUADl2o7OxsNm/ezOnTpwkJCaGiooJPPvkEV9eZ175nzx5qa2vx8PAQfy+dM319fcV3Q1onIyIihKurPaTv0XyxFY/w/YJarRYW5mq1moGBASorK3F1dWXz5s1OOzobNmzg3XffJS4ujpaWFm7evEloaCjr168nLi6Oa9eu0dfXJ/Ys9pDmlxaDyWSisLCQZ5555r6Mt+xhnzEFfwkNno8gSf+fmJhArVY7kCQp3y02NtZhHsnFxQWbzUZ/fz91dXXcunWL4eFhbDYbnp6exCiH5p2txGYjVTvNM888g16vp6WlhaqqKjw8PIiOjiY+Pp6oqCiH90Eys3JGsqRg3P7+fofrxsfHBQlbCumaTdTmI2Hp6el8/vnnPPnkk9+K9Ja3GOY0PmbHGD0seGB3fFJ1Rdro9vX1iYE7+IujR19fH/v2HeOVH/9YfDG2bdvG5cuX+eijj3jppZccHFtmw2q1UldXR2lpKVNTUyiVSn7zm9/cV7vVfrGY3ckaHBycow+Oj4/n66+/5qmnnrqnx7HZbIyMjNDf3y+6TV1dXfT19eHq6kp3dzcmk4mgoCBSU1MJCAgQrjFNTU2cPXuW/v5+giwgw/kXWgZkB86EUI6MjNDb20tMTAzPPPMMkZGRDA4Oii5XTU0N/f39ovMmkayAgAD6+vrIzMycI6VbCEeOHCEmJkZouGcTtNk/NzY2UltbS1ZWFmq1muDgYGprawkLCxMbCinfp6ioSMxA7du3j+npaTHzAIj3qbCwEJVKhaenJ3v37iUxMRFXV9eZ2ZLgVGTDJqfP3T4Q8xEebkj5UvX19URFRVFVVYVarcZoNJKenk5raysKhQKVSkVjYyOrV6/m8uXLPPnkk5w6dQoPDw+xebbZbKyICqSuaX7y46VwlOLNNg4YHx9HLpeLEMkU7TRljh4+AjJmjBbuFZI0yBmkbBtn1zvDfEG+sLijnlY2taiphPQ+2MOZq+Ds+7EnNBImJiaQy+XIZDKRa2W1WoXLnnjeWi3j4+N0dHQwOTnJ9u3bhWNZfHw8X375pfh7rVbLsWPHHB5Hml1Tq9XcvHmTpKQkampqePLJJ3Fzc6O/v5/c3Fw2btwo3FldXFyEJElCfHw8RqOR+vp6IeGUyNTs2ZhHJhQPF9RqNV1dXSIKRVprJAfe2bDZbHR3d+Ph4cGBAwfIycnhJz/5iQO5Dg8Pp6qqiqysrDlZU/YdsIXwzTffEBoauuSOkkQuZpOjkZER9Hq9kLRKJmMajWYOSQoPDxfXeXp6otFoFp3dlt6P27dvU1dXJ8iK1WolPT2d9vZ2DAYDQb5eFPQ7n63cFTrIxNAQ+/fvJzs7mx07dgAzxhstLS1UV1dz/PhxQa6io6MFuXJ1db2nWTLJ4XM2wZIuY2Nj6PV6pwRNLpfPS7ysVitnz54lIiJizm1LUX0Zp8zs+aSMsan5Y4wepqLzA/tKpJBUKQhN0pDbQ5LjFRQUOFRbZDIZjz32GAEBARw4cICCgoI5+lyz2UxVVRWXL1/G3d2dtWvXotFoOHny5H3rVouKiuZdLKSKsT3CwsIYGRlhZGTE6ZyXpFeWukvSRa/Xo1KpRKdJrVYzPDzMtm3bHGa07O+noaGB8+fPMzg4iNlsRq1W4+PmxssmPQf7/OcsBhtddUyMmsjMzKShoYGQkBACAgK4cuUKx44dIzk5mfT0dNLT08Xmymw2YzAYxHNsbGykra2Njo4OLl686ECypH+dpWLPnpmSy+W4urrO2yVMTEwkLi6O48eP89JLL/H444+LQL/+/n6R6J2dnU1jYyObNm0iJyeHyclJLl68KOzU09LSxAJu3zWTQvqWLVs287q6LUzbnNuG2gdiPsLDjdbWVjZs2MDly5dJTEzkm2++AWbm6xQKBcHBwUK+1djYyMaNGzlz5gyBgYHIZDLGxsYcNs+KIR1yeTw4Ub7JgGjZADCjaTcYDHM2NfZOcgDT4yPzGikUqO6glFnv2XjC29ubwcHBeW83Go1Ltk9faFOzmKPeUoigs+exFGdBm83m4O4nwWq1YrVaCQ0NZXx8HI1Gg0wmE5bRFy5cYGRkBLlcTkpKCjqdjo8//pjExETWr1/P1NSUQyVa+vyk+WDJwEKSRysUCg4cOICXlxfnzp0T8yyVlZVs3LgRi8VCW1sbPj4+DuesyMhI2traWLlyJTqdjsHBQTFXd+PGjTmv9xGZerggdaZ8fX1pbGykq6sLHx8fNm7c6PB7k5OT3Lx5k4qKClxcXFi1ahXXr18nKChoDjkKDg6ekba5uc1ZdwwGgzBwmg9NTU3U19fzs5/9bN55pNlSO6lIYU+GPDw8BAHIz88X16vV6m/VQZGUT3V1ddTV1SGXy9FoNIyPjxMaGkpmZiZ9fX1cvXoVm83GypUrqaysJCM8GN/OGZOXYasrXvIp4lQjuE8oWL5yJXq9noqKCqqrq3n55ZeJjY0lJCSENWvWYLVal0SuFoNMJkOlUqFSqe7JeG02CZt98fPzo6GhgcHBwTlETSaTLdoFu9hpxmJxfh54GIvODyyZgr+cZFQqFW1tbSQkJDjcfurUKYKDg+d1oUlISGDPnj0cOHCA3t5eCgoKmJ6epqKigmvXrhESEsIPfvADkYtQW1t73+4yLS0t1NbW8vOf/9zp7c7IlFwuJzY2ljt37hAdHe1AlqR/1Wq1IE2SWYK/v7/Ihbh79y5//vOfefnll+ekgVutVmpraykpKWF8fFyQioyMDNrb2wkMDGSoro4drp0Oi0Gy5ySmcSMajR81NTWsWrUKlUrFxYsXSUhIoKCggLt373LkyBFh/ZyWloa3tzeBgYEEBgYCM0G94+PjvPbaawwPD4vX1NnZSVVVFXq9HplMNodkmUyme7ZTXr58OW5ubhw6dIgf/OAHZGdnc7m8kpuj7gyZvfBSmFBcv0lyfAxZWVlUVlZSXFxMXFwcb7/99pxFa2pqSgyKK5VKmpqa0Ov1LFu2jNToIG7WTjBpnvsc7QMxH+Hhhclkore3F19fX9rb2wkPDycyMpK7d++KiAJ3d3cRturh4YHBYCArK4s///nPKBQKkVMEM12mTZs2Edw3yf+4PDwv+YGZtcZZPomUaSIdO0qlkiCTkR2uVfPai9sTKXsJ3HywJ1LzZQEu1T59IRK3kKOe/XuxEOZ7HvayPnsyKRGo2fNe8Jf3xtXVldzcXE6dOoXJZMLDw4Nnn30WuVxOeXk54+PjuLq6cuvWLYKDg5mYmKC5uZmamhqHx/Xz8xNV98nJSby9vamurha5VXK5HKVSydTUFAMDA8TExBATE0N8fDzvvfeecIQFiI2Npby8HKVSicViITc3lxMnTog1TalU0tvbS3BwMAaDYU7o6qPg3ocHxikz59tNXO5SsVzhie7o18isVl566SVBuPv6+igrK6O2tpbY2Fh+8IMfEBERgUwmIyQkhP3795OYmOiQPeXi4kJgYCDDw8Oi2Ch1JwYGBkhPT8dqtc4hQ6OjowwPD1NTU4NWq+WPf/wjRqNRqD7sSZKUwWl/nbMCan19PXq9XgTw3i8sFgvNzc3U1dXR0NCAh4cH/v7+aLVaDAYDycnJbN++HaPRyLFjx0QR+qmnnqKwsJCoqChaW1tRyqwkuMwUumw2G5FhM66tOp2OrKws8vPzOXjwIP/xH/9BWFgYO3fuFKQwJCTkOydXS8ViJCwtLY333ntvTgyNzWbDbDbP2wmTzE9u3rUwaXYe2vwwFp0faDIlnay1Wi1tbW0Ocrja2lpaWlp48803F6xIBAQE8MYbb3DgwAH+8Ic/MDk5SXx8PK+++uqc4bqhoaH7slSfnp7mq6++4rnnnps3hM2+s2HfZWpra6O2thYvLy9BJqKjo1m1ahUBAQELzmw1NDRw9OhRduzY4dC1s1gsVFVVUVJSgkKhYHx8XAxTbt68mbNnzxIfH8+tW7ew2Wy4qxTEm/RIihqVTENiSgo1NTXk5uZy69YtoqOjefvttyktLWX//v3k5OTw5ptv0t/fT1VVFf/rf/0v/P39SUtLY8WKFbi5uVFfX09iYiJyuRwfHx98fHwcCLEkC7Injzqdjvb2dhoaGigvLxfviUS2fH195+0cLlu2jFdeeYUvvviCkLTH+a3OV2zElFYr1wZt/HcXLz766CNcXFzYtWsXoaGhQhfd0dFBe3s7nZ2dDA4OEhISQlhYGFlZWaxevZrCwkIKCgrYrPZgf/03YJ4rGbIPxHyEhxft7e0EBwdz584dYmNjqaysxMvLC41G43DMhoWF0dTURGRkJPX19TQ3N2M0GlGr1cLFU4JKpaKvtpgdriZBfnxVFiKsfXPIg/08aXR0NB0dHQ7kDP5iRjFzsl/crGExIjW707NYwO+9ZERJ3Wf7+wySL0wEF8JCHTf7Qo2z33FmVmE2m1GpVOTk5FBWViaqsy+//LJYj5KSkmhra8NsNjM5OSnkfBIkMhUYGMhPfvITXFxcuHz5MkVFRUIGLpfLxSyZ9NwkOV9aWhqBgYEsW7ZMdLAiIyOpqKgQs2oqlQqdTseKFSsYHx/HarUSFxdHQ0MDwcHBhISE0NHR4bAR1Wg0DA8PL/qePsKDDWk+xWKxMmn2oarBhM0Wy788G42Hhwe3b9+mrKyMgYEBsrKyRHC9PUJDQ0lKSqK4uFg49knzSF5eXlRWVqJSqTh9+jQWiwWj0UhnZyeHDh1icnLS6TxSf38/UVFRrFu3zmEe6X7xbZz8TCYTOp2O+vp6GhsbxQz5ihUrRE6bZPlusVj45ptvqKurw9XVlaCgIJ566ik+/vhjNBoNsbGxQsotuXFOTEzg5uYmTLquX7+OWq3mH/7hHygsLKSuro7f/e535Ofns27dOofu/N+aXM2GVqslJCSExsZGB7WVTCYTM+sLOWePXm3m6rHbTDlZrh/GovP3gkwNDg4KBzyYqY6eOHGCH/7wh4saRAwMDFBaWkpvb6/4+7Vr1zo9GIeHh+9rCPfMmTNERUWRmJgIzJCZgYEBB9LU2NjI7du30Wq1otMUFxfHypUrOXToEL/85S/vSV5YU1PDqVOneOWVVwgLCwMQwZ+XL18WZgxSlyc1NZWsrCz279/PihUrhBzHZrPh5eXFyMgI09PTuLi4iMXAx8dHGDWUlJRw7Ngxtm/fzqpVqygqKuKdd95h/fr1bN68WdhDV1dXc/bsWWJiYmhqauKxxx6b9zXIZDKx6EZHR4vrjx07RkBAABEREYJkVVdXO8xlzSZZ/v7+qFQqwsLCeHHXqxS8U+ZgqyyZRfyPy8N8vGUlQb7eNDQ0cO7cOTo6OnB3dyc8PJzw8HCys7MJCgqa83k89thjHD58mD179vDJnpw5g5UyGQ6BmI/w8EKal6qtrSU0NJSBgQGGhoZE1puE0NBQERwtZQSpVCpx8pUMGGQyGUePHkWpVKJWyklWDs2QGxszurYF0N7ejre3NwaDwelM0HeFpXac4N4zoiQ55GwslQhKUKlUIjbiXiF1dpz9rWRmU11dzfj4ODabDTc3N3FOGRkZEdlSs98nT09PpqammJ6eRi6X4+3tzR/+8AfWrVtHUFAQ/v7+mM1m8f2ZnJwUpiRubm7I5XJGR0cpKSkhJSWF3NxcmpubgRl3NLVaLUyGIiMjaWxsZOfOnTQ0NGA2m1mxYgXFxcWsW7eOiIgIp2TK3hnyEb5/cDafMm2TAQr++6l2Gq4VEeTrTU5Ojsh8nJqaEuHQ9p2k8fFxGhoauHPnDpOTk6IDK5fLMZlMoqseGRmJq6srLS0tvPXWW+J37FFfX09NTQ27d+92cBD8NtDr9XNGPhbC5OQkd+7coa6ujqamJkEYY2NjuX37NuXl5aSmpvLqq68KVU19fT0nT54kICAAm81GVlYW2dnZfPjhh5jNZvbs2cO+fftEnIHNZsPDwwOz2UxLSwsZGRl0dnYyPT3NxYsXUavVvPTSS7S2tnLgwAEuXrxIRUUFL774IsuWLXP6vJ2Rq56eHkGujh07hqen51+VXKWlpVFdXX1Pzok2m426ujo6L58FYnF2AnsYi84P9K5PcvST7MOlXI/Dhw+Tn59PaOj8H0ZnZyelpaW0traSnZ3Nr3/9a9zd3amsrGTv3r1s27ZtTrDq8PDwHKncQjCbzdy8eZPbt2+zcuVKDh48SH9/v6gySqQpKSmJ5uZmfvrTnzrNqfL396etrW3eg2o2bt68SVFREa+99hpBQUFMTk5SXl7OtWvXCA4OJjAwkJ6eHjw9PbFarfzwhz9Eq9Wyb98+Vq5cSWhoKEeOHBGbhqGhIXx9fenr60OlUjEyMsLo6Cg/+tGP+Oijjzhw4AC/+c1vOHXqFPv27WPXrl288MILdHZ2cubMGa5du0ZBQQFJSUkkJSUxMTFBSUkJVquVvXv3kpKSQlpaGqGhoUvSNUvzAmFhYYIo2r/n9nNZOp2OK1euMDAwgLu7OwEBAdSbfJHLFeBkX2kDPjh1nYIYDWFhYaxatYpt27Ytyfp+zZo1NDU1cf78eZ588kkHR8loP3eeSwt9RKT+i6CtrY2MjAwqKiqwWq3I5XIee+wxrly54kCmgoODcXFxQafTMTk5KUIaOzs78fT0JCoqioaGBmw2G97e3sI6V6vVLrlbIBVvvksolUqCgoKE5fq94LvOiLoXzNeNcjYDZQ8fH585syD2eOONN/jjH/9IXFycmDuamJjg0KFDTExMMDw8LIbUYebcJWV/SQGcVqsVi8VCT08PGRkZ3L59m46ODlJTUwkMDKSkpETI7Xx9fTEYDJhMJtLT0ykvL2dgYIC9e/diMBhEh0wulxMQEEBLSwsrV64UEpzQ0FCuXLmCm5sb0dHRDAwMYDQaiYiIoLy83OG1PZqZ+v7jeHUX8ynjLVYrBs0yYj1MXLt2jaKionnnkTw8PAgKCsLLy4vm5mbeeOMNMdc8ODjIxx9/THR0NDExMSK43s/Pebbn2NgYX3/9NS+99NJ3RqRghkwtZmg1NjZGQ0MDdXV1tLW1ER0dzfLly1m/fj0NDQ1cuXIFtVpNdnY227dvF89vdHSUU6dO0dPTQ1RUFC0tLbz88stERkbyxRdfMDQ0xNatW+np6RH5lYGBgXR3d+Pp6YlcLqe/v5/ly5e1X5ZBAAAgAElEQVRz69Yt/P39CQ0N5dSpU7i5uREXF8ff//3fc+rUKW7evMmnn35KbGzskvYgcrmc0NBQQkNDycvLc0qutFotUVFRgmDdS6SPMyxfvpxTp04xPj4+r+rKHv39/cIY5OXtW1iPlt0fXcVisTJtk+EqBxel4qEsOj/Qr0bqTHV2dopKxLlz59BoNKxevXrO70v25qWlpQwMDLBmzRq2bt3qcCBnZmbi7+/PoUOHyMvLIzc3V2zw55P5mUymOfK8/v5+4RYVHh6OUqkkOTmZgIAA/Pz8HDZU09PTHD16dN55rLi4OO7cubMkMlVeXs6lS5f40Y9+hLu7O+fOnaOiooKYmBiSk5OpqakhKioKq9XKsmXLWL9+PUajkU8++YSsrCyysrJ499130Wg0Ih9ibGxM6KOlsM3o6GiampooKCjgzJkz7N+/n9dff53i4mI++ugjfvjDHxIWFsaePXuor6/nxIkT+Pr6UlBQIAbsc3NzWblyJdXV1Rw+fBi5XE56ejqpqakLzqYtFNorabelCpIEKcerv7+faxfbmLI4t302o8Ci9uW1116+54FVmUzG1q1bef/994mJiWHZsmUP1QDlIywNZrOZrq4uYmNjiYyMpLOzE5lMRlZWFiUlJQ7HfkBAgKhcyuVy3N3dMRgMeHt7MzU1hU6nE7+7e/dufv/73wOOMj57LEYK7OdynFmHe3p6Ori+zQeVSjXH4nyxx5PwXWdE3S8SEhLo7u5mdHR00Y6dNAsml8tFIK49PvroIxQKBVVVVQQFBdHd3Q3MuHNJRSnpb61WKytXrmRiYoLdu3fzxRdfMDIygkwm48knn+TSpUvodDpGR0exWq00NTVRWVmJt7c3r7zyCl9//TUGw4zBxvT0NDdu3EClUiGXy+ns7CQ2NlZ0zaXBeblczpNPPsmRI0fQarXIZDJGRkbw9PREoVCI2dyEhASOHDkiXHLhEZl6GNCiHxNOabNhssmZVLqzfHnQovNIEtLS0vjoo49obGwkIyMDmDGfkTrq0vExny26zWbj+PHjpKen31MXaTHYbLZ5ZX4jIyPU1dVRX19Pd3c3cXFxpKen88ILL9Db20tFRQWnT58mKSmJF1980aG4a7PZuHHjBkVFRaSmpoosqjfffBMPDw/OnDlDe3s7GRkZLF++nHfffVfMV0q5glqtFrVaTW9vL42NjeTn59PQ0MDdu3fJz8/nyJEj7Ny5k4iICJ5//nlRgG9ubuZ3v/sd69at4/HHH1/UbVDC/w5y5erqSlxcHLdv3yY7O3ve35ucnOTChQtUV1ezdu1aVq1aNbOPBP7PpBH61BEMTisY6W7i/3375YeOSMH3hEy1tbWRm5uLTqejpqaGt956y2EjbLVauX37NqWlpVgsFh577DFSUlLmlc1FRkbyk5/8RBhTPPfcc7i4uDA8PMz4+Dg3b950IE1GoxFfX1/RaUpLSyMgIIDS0lIUCgXPP//8gq9jaGhIZJ44Q3x8PF999dUct53ZKC0tFa3h69evc/PmTZYvX87atWu5cuUKwcHBhIWFodfr2bVrF+Hh4QwODvLpp5+yevVqcnNzKSwsJDg4WARCjo+PY7FYxGbDbDajVCrx9vamsrKSX/7yl9y6dYuOjg5KSkrYsGEDXl5eIscrIiKC5cuXk5CQQEVFBfv27ROduBdeeAFfX1+eeOIJ1q1bR0dHB1VVVXzwwQcEBgaSnp5OcnLynEV9sfwYZ7Cfy3ps2I2i9ttOTy5qlQKtbIq7d+/O6UwuBR4eHmzdupUjR47w1ltvfevKzyN8/9DV1YW/vz/19fW4ubmhVqvJysoSJgUSmbJYLJw9e1Z8l319fRkYGGDXrl2cPn2aoaEh0tLSaGlpYWRkRLgBAsTExNDQ0ADMdE0kA5nFSMFix81ss4X5sNDmWpIH22w2h4wlCd9FWPBiz88e8xHExsZG4YC3FEizSrOJVEBAgHBBBQSRkpCVlUVaWhp6vZ6rV6/S399PTU0NZrOZtWvXEhQUhNFoRKPRcPnyZdatW8elS5dEXpUk77NYLJSVlbFjxw6OHz8upHfS40qWxHfv3qWpqUlIDyXTCXd3d2FxDTNVdqnoFB8fT319PRkZGWg0Gvr7+8VtkmvZI3x/Ee2vwV2lcHrOU8lspEYHObVFnw8ymYxnn32Wzz//nKSkJOGWFxYWhsViEceIwWBwOhpRXV2NwWDghRdeuP8X5QSjo6O4uLiI4q/BYBAOfAaDgYSEBHJzc4mJiRGz4x9//DE2m43s7GwRem2PgYEBYTBRUFBAcXEx6enpPPHEE8jlcioqKrh58yZ+fn5s3LgRnU7HxMQEISEhGAwGkXel1WrF+ERNTQ2//vWvKS8vZ9WqVZSWlrJ582b+9Kc/sXv3bgIDA4mIiODXv/41RUVFXL9+nfPnz1NRUcELL7xwX9mjfy1ylZaWxqVLl5ySKZvNRnV1Nd988w3x8fG8/fbbDvc5MTFBd3sL/+2/bUMul/Ov/3rur6ZK+FtD8Y//+I//+Ld+EvNBOtF0dXWRl5fH/v372b59u/jySjNCf/7zn9Hr9axdu5ann36a4ODgBdn95OQkQ0NDYijzwoULXLt2jYmJCXp7e5menkar1RIbG8uaNWsoKCggJyeH5ORkoqOjCQgIoLOzk4qKCnbs2LHoMGVHRweDg4OkpqY6vd3T05OLFy+SnJzs9ORvs9m4cOECN27cICIiggsXLhAUFEReXh51dXX09PSQkpJCQ0MDsbGxvPjii2KG4tNPPyUvL4/Vq1dTX1/P9evXMZlMmM1mzGYz/v7+uLm5YTKZxMCyNA9gNpvx9fUVlqlNTU3ExcWRmJhIQEAAX375pSCZcrmc8PBwMjMz0el0tLS0oNVqCQsLQ6FQIJPJ8PLyIiEhgdWrV6NWq6mtrRUtdSlsVyaTcffuXVxdXRfMB1sI0f4aPrzUhMkyd2Pp6iLnn55N4ErpJTIzM+/LTtXX1xej0UhlZSUpKSnfypL1Eb5/qK6uRi6X09HRwdDQEBaLhe3bt6NQKDh//jxr167FZrNx4MABmpubBcGRyJaUXWK1WikoKKCzs1O4XkkEQppVgBnJnbMgWQlxcXGik2EPFxeXOR1e6f7vtVghwdXVVbjNSbLr2TDaXOm2emJl7hrsgoVYhQE/+cKb93t5fvbSPh8fH4cgYImILHaMxsXFYTQanZpwSHks9u+lSqXCYrEQGxsr1jupA9Te3o6Hhwejo6NUVlbS398vNjHDw8M0NzcTFxdHY2Mjnp6eeHp64uvrK4LdL1++zOjoKM8//zwdHR3ie2C1WnnhhReora0FZhwBpfmtbdu20dfXR2trK6Ojozz++OOcP3+emJgYYd1++vRpcnNzRcdRksm7uLhw7tw51q5d+2gt+55ioXOe0kVGvOEaPV2dBAYGLrkA6OnpyeDgIM3NzcI4amhoiIGBAaanp0lJSeHGjRuEhoYSHBws/m54eJiDBw+yY8eOBQ0K7gcdHR10dXUxOjrKyZMnKS8vx8PDg5ycHDZv3kxycrKYUzp+/DgKhYJ169ZRUFAgFEQSLBYLpaWlHD16VLgkX7hwgeeff57s7GxkMhk6nY6vv/4auVzOnj17cHNz49ixY4yNjQmH1tWrV1NVVUVaWhqDg4MMDAxgMplYsWIFwcHBlJWVkZSURGtrK7m5uXz11VeCoCoUCuLi4li2bBlNTU1MTk5y48YNOjs7WbZs2beSR8pkMjw9PYmIiCA1NZW8vDzCw8OZmpqisbGRM2fOUF1dTV9fn8jpcvZ43t7enDt3juTkZAci2t3dzcGDB+no6GDbtm3C9dkekslZeno6CoUCnU6Hj4/PQxkQ/sCSKeOUmcOV7XxzZxCbuw99d2tYsTyRjIwMJiYmuHLlCn/+858xm81s3LiRJ554Aj8/P4eTwcTEBN3d3eh0Oqqrq7ly5QpFRUWUlJTQ2dmJ1WolJiYGNzc3BgYG8PDw4Je//CXLly8nKipq3hykiYkJ9u/fz9atW5fkKqPT6bDZbMTHxzu9XQolNplMc2aEbDYbX331FVVVVZjNZmJiYigoKKClpYWrV6+SlZXF1NQULS0tvPjii2RkZCCXy9Hr9Xz66aei5To2NsYXX3xBWloaAwMDTE3NhF4mJSXh7u5OT08PFotFZKcMDQ0JsiaF4TY3N3Pr1i1WrVpFYGAgMTExwh5dyplQKpUMDAwI6cg333yDWq0mKChIvI+Szj8lJYXMzEymp6cpKyujuLiYkZERJiYmcHd3v295gMpFTk60LydqulEq5JgsNtQqBa4ucj7Zk0N2YhRlZWV4eXktKbndGaKjoykvL8dkMi2asfEIDxfspXw2m401a9YQHR2NzWbj/PnzrFu3jgMHDtDU1IRcLhekRpoBDQoK4uc//zmXLl0SmSaS6QDMHB/2bnSSFfHszbzUsZLkyfYkAu7NMAJmjl1pDmA2JMcqezI2H+HRyiaptQQ7JVMKbDyubEEhuz8ytxAkW3GbzYZGo7knEwppPmk+SO9lamoqBoOB6OhoRkZGePrpp3nuueeIjIxkenqa1tZW+vr6GBsbEzOrNpuNxMREOjs7hUuf5Lwn5fb87Gc/E2tzV1eXKColJyfT29sr3u/a2lrxOY2NjYnPpampiampKaKjo8U836VLl8jKyiI4OBilUkljYyNeXl6oVCo6OzuFhb9cLufq1atkZmYuKYzzER48ODvnuasUqFzkfPp6LtsL8hkdHeXYsWP09vYSGBi4pBmYiIgITpw4QXR0tPg+S13XrKwsSktLSU1NFeMRNpuNgwcPkpqayooVK76T12az2ejs7OTatWsUFxczNjZGYGAgeXl5bNq0iYSEBDQaDbdu3fr/2XvP4DbvO9/3g0YQYO8UKyhWsYlFLBLVm2U1M7Jky7GdxCfZrG/GuzvnzJ27s/fFPeftmXPnlJ3N7Gx2nU3i2JKjYnWKkiiJpApV2MROir0T7ARIdNwX3OcfggQpyfY9cbz6vpIA8AHw4Cn/3+/3LVy+fJn6+nph+Z6VleWWFTQ4OMgXX3whgrXr6+sZGBjgww8/FGuw0dFRTp8+DcA777wjNKSPHz/G29sbvV6PVqslKSmJZ8+ekZeXR2dnJ35+fszMzKDVasnNzRXSi97eXhFxc+3aNdLS0kTx4efnJ9Zyo6OjTExM8PjxYxQKBVFRUd9Kk+PrFldyuZyZmRmmpqbQ6XTMz89TWlrKnTt32LJlC4cOHVq1aL516xZZWVliADI9Pc3U1NQreRP8ueA7WUw96Znk8D9UUjNsotuoosug5P6EJ0cKN9BR94hLly6h1Wo5fPgwhYWFKJVKhoaG6OjooL6+nocPH3Lr1i3u378vioTAwECSk5PZunUre/fuZdOmTaSkpBAbG0tqairz8/N0dnYSFBS0Qo+zHJcvX2bdunXk5eW91PdpbGwUGQqrwWaz0dra6jK9Ghoa4je/+Y2gORYXFzM6Oioubmlpady9exedTsfbb78tzC30ej2fffYZu3btIicnB6fTyYULF4iKiqKpqQlPT09BAVGr1URGRopFXUBAAF5eXtjtdvLy8rh37x5ZWVlCjCl1qrKzs/Hx8WHDhg2UlpYyOTlJfHw8MpmMW7dukZ+fz9atW4mOjubevXs8efKEoKCgFQYcKpWKyMhIcnJySE5OZmJigvr6eoaGhnA4HPj5+b0SVUdCpL+Gn2zWEeHnyWh7PX91tJD/9/hGdMGLxaKXlxcVFRVfezoll8uJi4vjwoULrF+/foXF7Gt8P+FwOCgpKcFisTA7O4vNZuPtt98WtLT79+8zODhIZ2cnCoUClUrFunXrmJmZwWQykZKSgpeXF0+fPhUGEzabDYfDIaYdgODjS/ibv/kbJiYmxATKbreTlZXlQtf9JpAcutZ6XnLKe+G2ZE7C5AZ67AHIceJAjhI7Cpzs8+jAV+5ez/htQCp6XlRIWZ1yOu1BdNsDMDjV+MpMLyzw5HK5sEhfWFhArVYLqqa0SElPT8dsNjM9PY1SqcRoNCKTyTCbzfj6+jI3NyeKYLvdLuykOzs7hR6jv79fvHZ4eBiHw0F0dLSgVi0teJ1OJ1u2bKGtrY2JiQkOHz5Md3c3ISEhNDQ0UFRUJBY6RqORoaEhUlJSePjwIfn5+eK71dXViUXpa/x5Yuk9LzHUh+KsCP7bv93zFAoFMTExbNq0iampKa5cucL4+DhhYWEraG9LoVKpFgNYKyrIzs5Gq9VSVlaG3W5ny5Yt3Lx5kx07doii4PHjx4yMjHD06NFvHKLb09PDw4cPuXLlCs+fPxfrFYmC5+fnh16vp6KigkuXLmGz2USBFRsb63bKYrFYuHnzJnfu3GHXrl2kpaVx5swZwsLCOH78uCgw5+bm+O1vf4uHhwcFBQVkZmYCUFJSAiw2U2dmZoiOjsbPz4+2tjaKioqora0lLS2Nzs5ODAYD+fn5hIWFcfXqVY4fP86lS5fYsWMHCoWC27dvk56eLhpz0mQ7Li6Onp4eZDIZHR0d1NbWEh4e/rUzUFfDqxRXvr6+1NbWolAoOHv2LGFhYcKYY7Xf2WAwUFZWxuHDh10kN7W1teTk5Hyr3+W7gO9cMWUw2zj8D5UYzXZs/9ZYtSPDjoxrDcNs8jWQtiFZ8GFv3rxJVVUVY2NjOBwOgoKCSElJYdu2bezZs4fc3FxSUlKIjo4mKChIOCstx/j4OCqVivr6eoxGI3FxcW5f19LSQn19vUsI3ovw5MkT4uLi1pxi+fj4cP36dTZv3szAwACXL1+mvLwclUrFxx9/jM1m49y5cygUCg4dOkR7ezstLS1iGiV9ltHRUT777DP27t1LVlYWsFjMtbS0EB0djdlsRq/XY7fbeeutt6ipqWHjxo20tLTgdDoJCQkRF1dPT0+8vLyEm6JOp6OmpkYYb+h0Ojw9PcnIyODRo0d0dHQQERFBRUUFBw8eRC6X4+vrS1ZWFlqtluvXr9PZ2Ul4eLjbm7ZWqyUuLg6TySQ67dLfOJ1OAgICXimfwkMpJy3Cl457V/jkh2/hofxjpzw4OJinT5/i6+v7tTMrNBoNvr6+lJSUkJWV9UrW9q/x54mhoSE6OzvFInnr1q3COMZkMvHgwQOmpqZQKpUolUpBA5N0gP7+/rS2tooAVWk6Ojs76zLtycjIYHR0VOiTMjMzGRsbExQtmUyGXq/HYrGwZ88eurq6vtH3ehGtTnKiWw7Jvnu5xslbZmGDYgwvmRV/2QLxikm2qnpeWEi5u+aq1epvZPm+NMgYFm3bL1lSGXD4MeL0ZdjhQ5M9nDC5AW/ZHymD0vvK5XI2b97M0NAQRqMRu92O0WgU4ZQDAwOMj48LQwmtVktHRwcGgwGn08nPfvYz+vr6mJiYIDQ0VOivNBoNVqsVq9XK7OwsVVVVmEwmWlpa+OijjxgaGhKF8tLJ5fLvNTQ0JCaZ+/fvp7e3F4Du7m52794tFpWenp7cvXuXXbt2cffuXZdJVFNTE5GRkd/6gu01/vfCQyknPdKPrQnBpEf6udzzYJHSGRsbS25uLnq9nsuXLzM5OUl4ePiqTcvw8HDq6uqAxUlVY2Mjs7Oz5OTk8PjxY3bt2oVMJmN8fJyLFy/y3nvvfa2i3Gaz0dnZyf3797l8+TKDg4NERkayZ88edu7cSVxcHNXV1SQmJjI0NERJSQlVVVXC0GHTpk0r2ElL0dHRwRdffIG3tzcnT55Er9dz4cIF9u7d62L8YLFY+Pzzz1Gr1QQEBPDmm2+K71deXo7RaCQiIgKj0UhSUhIWi4Wenh527txJRUUFO3bsoLGxEZPJRHp6unBXNhgMpKWlcfPmTY4ePcrk5CRVVVUr9P2+vr7k5uaysLDA2NgYNptNNJhjY2NfGAf0dfGi4mpsbExQlBMSEsSUezXU1taiVqtdJpSSmUdBQcH3br30nSumztcOUN6ud8v9leNEi5lo70VRcGpqKjt27GD37t1ishEdHU1gYOCqRdNqaGpqIjAwkEOHDvHgwQPa2tpITEx0WbxLVLljx469EuezsrKSnJycNTMAlEolDQ0N1NTUCE58YGAgBw4c4OrVq/T09HD48GH8/f356quviI2N5fjx4y6TnpGREX7/+9/zxhtviE7K3Nwcp0+f5ujRo9y8eZPAwECMRiNeXl7s3LmTO3fuUFBQQFtbm6AZKpVKFhYWMBgMFBUVUVZWRkFBAZ6enmi1WtF5j4uLw8/PD5VKRXp6Ou3t7dy7d4/IyEjx/rB4koaEhJCbm8v8/DyXLl1ienqayMhItydjd3c3Wq2W/fv3U1BQgFqtFrlaY2NjwiDjZX5fh8NBZWUlO3bscHlcyrgqLy8nNzf3a3fRJGev58+fC9rMa3x/0djYKChhdrud48ePC0vsL774QpgJSGYBAwMDbN++nZ6eHgAxFQ4KCsJut+Pt7e3WfvzEiRNUV1cLrU5AQABtbW1CN5WYmMjY2BiA20Lqm3SFpQnxy0ByhfP29l6h6VLInATJ54lQzBEkn38lap+Pj4+gOb5MIZWWlsb4+KJD4PLiaem/rU45lyypWFEIGqIDOQ7k9NgDyFBPInP+cToo/f3AwIBwYzSbFwtCyf4cFhdAAwMD1NbW8uTJE0wmk3jfZ8+eodPpOHbsGAUFBdhsNry8vFAqlVgsFkFN1Gq1dHV14XQ6hbb16NGjNDc3i8+z9Ls5nU4xzZQ+68zMDAEBAYyNjaHX69m7d684FrRaLY8fP2b9+vVCxyXRnDs6OggICBB0nNf4fkOpVBIXF0d2djYjIyNcuXKFmZkZwsPD3RpCrVu3jkuXLpGdnc34+LgItZdsyh0OB6dOnaKgoGBVOYM7WCwW2traqKio4OrVq0xMTBAbG8sbb7xBUVERsbGxojCbmpri9u3btLe3YzAYyMvL4/Dhw0KqsRqMRiOXL1+mpqaGw4cPk5eXR2lpKU1NTbz//vsuLsoOh4OzZ8/idDqZm5vjgw8+EA2HW7duoVarCQ8PZ2hoCLPZLDSIQ0NDopjas2cP9+/fR6PRCO13REQEly9fZt++fYyMjNDf38+bb75JT08P9fX1pKamrgjwjY+PF67KarWa4eFhnjx5glwuJzIy8qVd/74upOtGQ0MDIyMjrF+/nuDgYCIjI10mV3q9HqvVilardVnPlZaWkpeX5yKl+D7rpr5zxdSVZ0M87FoppobFm96eTan8h4OLFXNAQABqtfpb4ZPW1NQQHR1NVFQUmZmZ9Pb2cvfuXRISEtBoNIIqFxsb+0ojSqfTya1bt9i9e7fbqYrT6aStrY0LFy4ICoiPjw9KpRJvb2/u37/P5s2bxYna2NjI22+/TU5OjktlPzQ0xOeff87BgweFa4/T6eTcuXMkJyej1+vx8fGhs7OThYUFjh49Kvi5Es/eaDQK7YeU47R//34aGhrw9/cnMDCQ8PBwOjs7sVgs1NfXk5ubi0qlQi6Xs2HDBh4/fsz09LQQWC6FXC4nOjqanJwc+vv7uXz5Mg6Hg4iICJfv0tvbi0wmQ6fTCX1VRkYG2dnZmM1mqqqqKC8vZ25uDm9vb6HzcgeHw8H9+/fZvn37iueCgoKorq7G29v7a0+nYNF57c6dO0Ib9hrfX1RWVjI2NobZbKaoqIj4+HgcDgefffaZmAj4+/szOzuLWq1my5YtPHnyRGhnNBoNPj4+QlcjNTYsFgsymQyNRoPD4RALlpiYGKanpxkdHXVxmZuennYpEtxNb74ufVUqSl4WGo0Gf3//l87FetltOhyOl9Z9ubM/Dw4OXkF/7LQHMeDwc2+OIZehcZqEOYZKpRLFoqQdyMvLo6+vTzjgSVqCvr4+LBYLXl5ehIWFiWJULpcTFBSE2WymsrKSe/fu0dPTg4+PDwMDA7z55pvExMSsMJqQCu3a2lpMJpOgAIWHh4siGlwLTZlMxsjICKmpqTx//hybzca2bdtcnp+amhLXzaW5it3d3SL0/DX+/UClUrF+/XqysrIEI8ZoNLJu3TqXhbGPjw/T09N0d3cTGRkpjmHpvl9ZWYnBYBBTnLWwsLAgjL+uXbuG0WgkISGBgwcPUlBQQHR0tCiOHA4HbW1tXL9+nfLycqxWKz//+c/ZvHmzML5aDU6nk/r6ev7whz8QGxvLiRMnkMlk/P73v0ej0fDee++t0PrcuHEDvV7PxMQE77//vpjUSoYXDoeDTZs28ezZM0wmE2+88Qatra1MTk4Kml9qaipDQ0NMTExgMpnIyckRTqFtbW0cPHiQ0tJSAgMD2bx5M01NTXR1dZGSkrJi3/n6+pKTk4PRaGRsbAyNRsPz58+pra0lLCzMbW7ptwG73c6jR484f/682HfR0dHcvXuX48ePk5mZKSZX0vdaWlxNT0/T1NTEoUOHVvxG31fd1HeumBqYXuBB54R7JzYFvLUxkoyob5+K8ODBA9LT0/Hz80Mulwv3mgsXLrBu3ToGBwdpbm7mxIkTr9QRMBqN1NTUrFjMOxwOGhoaOH/+PP39/Wzbto3s7GwqKyuRy+VMTEyg0+k4ceIEc3NzfPnll8TExKyYRsGiw80XX3zBkSNH2LBhg3i8traW7u5udu3aRUlJCRERERgMBmQymeh4qlQqfHx8GB8fZ2ZmhqSkJAwGA/39/QQEBBAREYGvry9NTU3CuS4uLo4nT56IsbykO7LZbJSXl1NUVMSVK1eIjY11K0xUqVQkJCSIYLtbt26h1WqFSUVvby9Op3NF7pZ0s8/NzSUpKYnx8XHKysqoq6vDYrHg7++/oqtmt9t58OCB22JKGmvfvXv3G02nFAoF0dHRnD9/ng0bNqzJQX+NP184nU6uXr0qFvjvvPMOcrmc3/3ud6IBIJPJWFhYIDk5WWTkWSwWPD09RbdTsh0PDw9n165dxMTE0N7eDiwKkX19fYVBjlSgLNUASdefdevWCUvw5W5z8G+GDDIlz22BL60N+jouf1arlZmZGbfugbCjQKkAACAASURBVO6wfHK0/P8AZrP5lQw0VnPhW45uewAjTvdiabtThp9sgQjF4j5dqmGTyWTCYEJyMVQoFAQGBmI2m8WiNCQkhPb2dqxWK3K5XCyiDAaD0MU5HA6sVqugakrmEVLBDX8MTbZYLILiNz8/L+zS10Lf0Bj1s2p6HIE4tAHogr0E3Usul1NdXU1mZiZNTU2CCj44OIjVakWn0714Z7/G9w4eHh4il6mnp4crV65gMpmEeQks5mmWlJSQkpJCc3MzarWakJAQ1Go1JSUlvP/++6tOiAwGAw0NDdy+fZsbN25gs9nYsGEDhw4dIjc3l4iICJfiTaK9XrhwgbGxMbKzs8nNzWV0dNSlQbAaJicnOXfuHD09PZw4cYKNGzfS3t7Ol19+yZYtW9izZ8+K5vaTJ0+E0deuXbtcJmwVFRVotVpmZ2eJjo4WUQdSYWUwGCgsLKS5uZnIyEicTidjY2PMzc2xceNGoU0vLS0lMTGR5ORkvvrqKzZu3MjGjRuF1iwhIWHFOkQul7N+/Xp0Oh3t7e14eXkxOztLY2MjQ0NDxMTEfKvUv66uLk6fPs3CwgInTpwQNESNRkNLS4uYaK9GCzSZTFRXV2M0GmlubnY7ufo+6qa+c8XUWhafCpmTzPl61utiX8qJ5lVw+/Zttm7dKg5KKVMhPDycs2fP0trayrvvvvvKnPLR0VEGBwfFgWOz2aitreXcuXNMTEywe/du9u7di7e3N6dOncJoNBIWFsbJkyfR6XRcvXqVhoYGt9MogP7+fk6fPs1bb71FcnKyeHx6epqzZ8/y7rvvcu/ePeLi4oQebOfOnURHR/Po0SN0Oh1WqxWj0cj4+DhpaWmCqx8SEoLVaiU7O5vr16+Li4JarRYOgBMTE8JlsKOjg9nZWY4cOUJwcDBnz54lODh41amPRqMhLS2NyMhIKisrqa6uJigoiJmZGRE6vBokfVVBQQEhISH09PRQUlJCd3c3sEiRlHQcDx8+XPUCHBQURF1dHRqN5htRXKRwzLt375KVlfX/+wj+Nf73Y2xsjLq6OqxWK5s3byYxMVEYxMAfi5zw8HBGR0cxmUwEBwfjcDiEnkYul/OLX/yCmpoadDodGo0GuVwuiqmFhQURUQCL54iHh4copmQyGQqFQlDODAYDgKAaSu5uSqWSYZuWS+YNL9QGLcXSAmIppO3CIu99qR35UrxMMbb8NV+rgHuBgYS0P5ZjLdt2D7mT9fIJMZmSwtcVCgV/+7d/y+PHj0VmlMPhwMfHB5vNRlJSEpOTk+j1enp7e7FarSI3Soqh0Gg0ggqp1WoFC0GymAfXgtnpdDI5OSkcGgMCArDb7S+0eh91eHPOkECf1ZsBqxcPOif4l3td5OsCifTX4Ofnx82bNykqKuLu3bsUFRWJom56elo0EV/j3yfUajWJiYlkZGTQ1dXF1atXMZvNrFu3Do1Gg1arpeLhY2qnVTTOqnFqA2h9Usm+3btWuO9OT09TV1cnDB8UCgUZGRkcPnyYjRs3uhRqgHClvHnzJrdu3cLPz4833niD7du3Ex4eTk9PDxaLxaVhvBwOh4MHDx5w8eJFNm7cyFtvvYWXl5fQ1p88edLtBKijo4MbN24QGhpKaGgoO3fuFM+ZTCYuXrxIYGAgCQkJ9Pf3o1QqCQkJISEhgZqaGqxWK/n5+Tx//lzosDs6OvD29hZNYKVSiYeHB1VVVWzfvh2bzUZVVZUwnikvL2d+fn7VhoY0pZqdnWVsbIyQkBAGBgZ48uSJWK9+k3XH9PQ0ly5dorq6WjhkL19n22w2nj9/7vY3WFpc1dTUUFxcTHp6OiaTidbWVm7evMmzZ8+wWCw8f/6czMzMr2Uu9l3Fd66YWtvis4DoAE/Onz+PUqkkMjLyW6H4Wa1WysvLXfjlEvz9/enq6mJhYQGbzUZ8fPwrHbB9fX3Mz8+TmJjIkydPOHfuHPPz8+JgDQwMpKenh3/5l3/Bbrej0+lITEzEarVy+vTpVadRsEiH+/LLL/nBD37g0kWR7EkzMzMJDAykoqICnU7H5OQkZrOZ9957T7jubdmyhdHRURHwlp2dTVtbG2FhYXh6ejI8PExOTg7T09PCEhgQdD+pWxEdHU1zczOxsbFERUURFBSETqdz+a1Wg5+fH9nZ2Xh6elJSUsL4+DhardalOFwNMpkMf39/kpOTKSgoQKVSCX2VXq9HoVDQ1ta2ajElXQDu3LkjsiW+LiIjI2lra2NsbIz4+PivvZ3X+G6isbGRjo4OZDIZJ0+e5De/+Q2Dg4PieYmuZzKZ8PLywmQyMTMzQ1BQEFlZWdhsNmZnZ0lMTKS7u5uhoSHa29vp6OgQ25AcNaVFtEwmE7lmsNgdlhbd09PT4niVCgfJEtwmU3LRlLKqNmiDYszthGrpJGYplmuQ3BUqXze76lXxMgYSyz+LTqdjenp6Tdt2D6WCLYpOsV+MRqPIBtu6dSt1dXXMzMwgl8vx8/MTQcqBgYGMj48Lq3OLxSIWNk6nU2TUREdH09TURGJiIjabjbS0NLy8vNBqtdhsNgwGA1qtdoWTIyxqS1YrYCW404NZ7U6sdifXGof5yWYdatWi861KpUKv1xMdHS0oXIODg9+anfVr/HnD09OTpKQkUlNT6ejo4Nq1a9hsNuyBOv7v8hn67b70WzTUj5h4OufL0c2pRAZoGR8fp7q6mhs3bvDgwQM8PT3Jycnh0KFDwoxheUN4fn6eJ0+ecPHiRXp6ekhPT+ett94iNTXVRWfe0NAg8trcYXh4mFOnTmEwGDh58iTJycnMzc1x6tQprFYr77//vtsolJGREf7whz+Qnp7O2NgY77zzjstnrKqqEmHZBw8eFEyapKQkQkNDhY4pNzeXvr4+FAoFycnJ3L17Fw8PD+bm5sQEODw8nIcPH4o1T21tLfPz86xfv56UlBSuX78uNFHusHRK1dTUhL+/P3a7nf7+fqqrqwkJCXllLZLNZuPevXtcvHiR5ORkjh07RmhoqNu1kL+/PyUlJeTl5a1qBqbX66murubAgQP4+vq6NbSQLOYbGhpW1Vy5g8Fs43ztAFeeDTEwveAydf9T4ztXTMHqFp9xwd5ERESQkpJCeXk5zc3NxMXFfeMR59TUFO3t7RQWFq54rr6+nu7ubv7iL/6CZ8+eUVNTQ2Ji4kuHqTU1NaHX67lz5w4ABw8epKioCH9/f5H7cPv2bWJjY/n5z3+Ow+GgvLyc/v7+VadRsMhxP3PmDG+//faKhftSe9KLFy8K1x2DwUB6ejopKSksLCxQWVnJ/v37aW9vR6PRMDAwQH5+Pk+fPiUlJQWj0cjz58/ZvHmz6GgWFBQIOpNOp6OyshIvLy9qa2uZnJzkjTfeEN0GX19fNmzYwPXr1wU/f7ViRSaTERoayqZNm+js7KStrQ2DwbBi/L8WFAoFoaGhZGRkkJWVxcLCAo8ePWJ2dhaLxYK3t7dbE5DAwEDq6+vx9PR8oS3+WpDJZKxfv55r164RGhr6vRNY/nvHzZs3mZ6eJisri8rKSkZGRgDEdEHSPUmFRl5eHseOHSMoKIjOzk4xNW1oaMBqteJ0OoUuZ+ni+dixY8zOzjI7O4vD4SAsLIzJyUlhDGM2m/H29sZkMuHv749CoVgx1Wi3+K+qDZLjxEtmfWFw7mp41fyq1bBW40Kj0WCz2Va85kUGEqlKPXJcCxGVSiUs5d3ZtnvInMhxsEfZhq/cvEJ/ZrFYGB4eZmpqisTERAYHF8NP5+bmCAsLE6YRSqUSk8lEUlIS/v7+9Pf3C7MJs9lMV1eXuM7Gx8ej1WpRqVQsLCzQ1dWFVqslOzubiIgIpqenRfEk0Sel6aCnp6fo6C/9LdbSg6kUciL8PEmP9MNqtdLe3k5gYCAOh4PIyEjm5+fp6OgQi77XeA1YPA9TUlJISUmhrqmVv7k27HLu2Z0y7E4Zl+sGsDWXUVdTja+vLwUFBbz55pts2LCBoKCgFQ1op9NJf38/ZWVlXLt2DY1Gw549e9i1a5eY4iyHZJ6ynEFitVopKyvj1q1bbN++nf379wszl88//5zMzEwOHTrkdh0xNzfH7373OzZt2kRdXR0ffvihixOh5KKclJQkjDh6enqYnp5m586deHp6UlVVhUajISsri9HRUeHy19zczNTUFEajkZycHDw8PETz98aNG2zatIn4+HguXLiATqcjODiYpKQkLl68iLe395r6a19fX7Kzs5menmZoaIjo6GhGR0dpbW1lcHDQRXe2GpxOJ+3t7S5ZWikpKWu67Hl4eNDf349MJnMJal7+OwUFBa0wIlk6ubJarURERLBt27YVk6vViispMqm8Xc/DrskVU/c/Nb6TxRSsbfGp1WrJyspiZmaGS5cu4efn940WwUNDQ+j1ejZu3Ojy+OzsrEjyDggIIC0tjYmJCUpLS4mLi1vTnW9+fp7KykoePHiAVqvl3XffJT8/X1BD7t+/z/nz55mamqKgoIC33nqL1tZWbty4wcLCAr/4xS9Wpcd1dnZy7tw5Tpw4sYIKNzExwYULF3jvvfcYGRmhoaGBpKQkYTAhudP09fUxOTlJdnY2jY2NBAUF0dXVxZYtW6isrKSwsJCWlhbUajWhoaFERUXR2Njo4gAl0f2GhoYENWn5dE+j0ZCens7Dhw/p7OwkKSlpzcmeXC4XFBiZTMaVK1dwOp1ERES80kTQw8ODqKgoUlNTqa6uJjIykrKyMurr61foq2QyGb6+vty+ffsbaaek9w0PD+fChQtkZGR8owTz1/huYDFAfIAzjzoxODxQLkwyM/VHt7vl7moFBQUolUo6Ojq4d+8ejY2NTE9Pi4Wvp6cnKSkp6PV64uLiKCoqoq2tDVhcOB85ckQIlI1GI1NTU8Afiza73S70QCaTaUUh5XA41tQGOZDjv0QbBK40vu8CVgsFXqtgkOPEC8uKInF58bfctn29fMLFtn1pISX9e2FhAaPRiF6vx+l0Cqrf7OwsCoWCgIAAYW9vs9lQKBTC5MFisQhDEW9vb+bn5wkPD8dmszE9PU1jYyNeXl7CoXRoaEjQQpd+fml/2O12VCoVWq0Wh8OBp6cnVqt1zd/caneSGOrD1oRgfHx8KC0tZePGjfT397NhwwasVit1dXUu2VOv8RoStFotTUYvKp9PYHO4k2DAttw0Pnm/mKSkJHH/Xg6z2UxtbS2XLl2itbWVpKQkiouLycjIwNfXd8177927d8nPz3cpdjo7O/niiy9Qq9W89957gmpYWVlJWVkZx44dY+PGjW63a7FY+P3vf8+GDRuoq6vj8OHDwp1TQm1trYiTyc/Pp7e3F41Gw/j4uLCEv3//Pv7+/qSnpzM1NcXIyAgbNmxgbGyMhYUF/P39Rd4gLDZv29vbsVgsxMfH4+/vz7Vr18jKysLb25v4+HjOnz//wobs0ilVbW0twcHBeHp6MjY2xqNHj3A6natS/yYmJvjqq69obm7m4MGDbNu27aUpdzKZjGfPnrk4NktwOp1cuXKFHTt2rBrkK6G+vp7t27e71VwtL65m5s385FQLRotdSICWT93/1BOq72wx9SJIk5G4uDiuX79Of38/cXFxXyvBvbu7G4vF4mJt7XQ6OXv2LKmpqcIdT5o8eHl5ce7cOYKCglYUPLOzs9y9e5dLly6Jm+OePXuEKLGlpYXTp09jNpsxmUwUFRWRl5fHpUuXhDZqaf7McnR0dPDVV1/x7rvvrhh3OxwOTp8+TX5+PgkJCZw5c4YdO3ZQVVXF3Nwc4eHh4mbZ2NiIRqMhPj6euro6oqKixHSupqaGwsJCKisr2bBhA3Nzc+h0OmQyGQ0NDS7BwuHh4Tx//hyn08n8/Ly4QCyFSqUiIyOD1tZWnjx5QkpKypq/k+RsdeDAAVJSUqivr+f27dt4eXmtOn5eDRaLherqaj788EMKCwsJDg6mu7ubkpISYVcdEBBAcHAwDQ0Nonj8JpBCOaurq8nIyPhWqKiv8aeB1A272zbGoM2LYYcPNfMBLpQyhUIhqFo2m43+/n6mpqbEVCktLY1NmzYxMzODj48PVquVvLw8urq6mJ+fZ3BwUBRHkvukpGNciuVZTyqVSiy0JStxKc9qLW2QEjvxisk1J1Oenp5uTR3+dxzLcrmc9PR0kam1FK9aJMIijdjpdLrsOw+lnECZkQjFHMGKBeQ4xURKmgRFRUXh4eHB/Pw8f/d3f8ezZ8/YunUr3d3dIlBcJpORn5/P1NQUCwsLJCQkEBUVRUdHB15eXszNzYk8KclEQqvVMjMzQ19fH4ODg2Ki5evri81mY3h4GKVSSXJy8grXRrlczl/+5V+yZ88etFotra2twGJja8oiX/U313ooKM6KWGxMenjQ1tZGZGQkDQ0NFBYWikVhUVHR1/rNXuP7jyvPhqjqdu+0bHdCRmwIWxPd646Hh4e5e/culy9fRiaTiQlSdHT0C9dsBrONM0/7uFw/iCYkirgQb2wWE1evXuXx48ccPHiQrVu3inP1zJkzjI+P8+GHH6463ZEs0P38/BgfHychIWFFI8HhcHD+/Hny8/NpbGzk0KFD3L59m7CwMKH/gsXCLSwsjJSUFJcJr9lspq+vD09PTyYnJ0XxIZPJCAsL4/Lly+Tk5BAREcHo6CgdHR0i1D06OpqzZ88SExODn5/fmvvHx8eH7Oxspqam6O7uJiUlhfHxcQZHx/ldZSv3+01MmJzogr3AYePOnTtcu3aNjRs3Ulxc7HaduRYCAgK4ceOG0NAvxfDwMM3NzW4lM0vhLm9qLUOL04+6aJ6WvXDq/qfEn20xJUE6kPr7+7l+/frXole1tLSg0WhchH81NTX09fVRXFy8orIPCwtDp9Nx8eJFrFarsC++desWJSUlhIWFcezYMTIzM6moqKCwsJDp6WnOnTtHZ2cnW7dupbm5me3bt+Pj48OpU6eIjo7mxIkTBAQEiKT65WLgtrY2Ll68yMmTJ1eIPQHu37/P7Owsb775Jg0NDQwPD4uui2SHLmmvHj58SEJCguD8JiYm0tTURF5eHq2trSQnJ9Pc3ExaWhptbW1kZWURFBREaWkpGRkZooshk8mIiYnh7t27xMbG0trayrp161acoJKFql6v59atWyQmJq7qejcwMIDJZCIhIQGtVkt6ejrr1q2jvLycmpoagoODX9oIxGw2U11dzZYtW5DJZAQEBJCSkiKmBw0NDZSWljIxMUFMTAxVVVXfWDsFEBsby9OnTzGZTERHR3+jbb3GnwauAeKLC1p3uiOn04nVahVmBVLOnUKhwGg00t/fT0tLCwaDAYPBgNVqpbW1FbvdjsViwWw2iwWzTCYTE1932U1LDSKWmixIEytpO2tpgxQ42arqWdPVbyldUcLSAutlnfteBu70We4KKVjbQEKJnQyfBXztf7SQl8vlmM3mFaYakZGRLlbzarVa5EdJ3ysmJgYvLy/0ej0mk4nBwUH6+/vFflYoFJjNZnp7ezEajcI0YnZ2VtAw5+fnBaUzNjaWubk5bDYbMTExzM3NsX//ftavX4+HhwfvvPMOVVVVrFu3jsDAQI4ePcq9e/eEzkByEKyurqaqqoqBgQECAwPZt28fz58/x9M6u4YeTM5/O75RdG+NRiOTk5MMDQ2RmZmJl5cXd+7ccQkvfY3XWIq1nJaXFusSrFYrDQ0NXLlyhdraWuLi4jh69CjZ2dmrTq6WYym1a8DqxcOuSX5V/pz+mjskR4fyzjvviObnwMAAn332GXFxcRQXF685aSktLWVmZoaQkBBmZ2cpLi5e8XlaWloYHR1FoVAQHh5OREQEd+7cEaZaUjO7vLyc6OhoEhIShMFYfn4+np6e3L9/H7PZzOTkpIvOyNvbG71ez/DwMPHx8cTFxbnEq/j5+REWFsa5c+eIj49fkwUFi9e5uLg4dDodjx8/xqgN51+Hw+gyaWgYNVPROso/3+uiv+YOYT4evPvuuyQkJHytc12hUDAxMYHRaFyxtnn48CHh4eEvtD1/mbyppcVV3YScx73uozeWTt3/lPheXDVVKhVvvvkmR48e5dKlS5SUlLhQX16EmZkZl8X59PQ0t2/fpri4eFX+aGRkJD/72c9oamrif/2v/8WvfvUrvLy8+OSTT4Twzm63YzAYqKio4PPPPycjI4OjR49SVlZGUVERPT09lJWVceLECd544w3RoUlMTBTTHgktLS1cvnyZH/7wh24X56Ojozx8+JCjR49it9u5c+cO+/bto6qqCrlcjkajcaEEDg0NERERASC6pdLFxNvbG4PBQFhYGErlomDZarXi4eFBeno6tbW1Lu9tsVhQq9UYjUZ8fX05e/as28wZmUzG/v37ycvL49e//vWqNr9Sd30pYmNj+dnPfkZhYSFfffUVX3755UsFi0oC8OWQpmXvv/8+n3zyCWFhYYKOdfr0aZcsl68DhULB22+/zf3791/Kzvg1vnu48myI1ZhvTqDb/sebgFRQWa1WxsfHmZycxGAwCEqWt7e3Cwc8IiJCTFnlcrk4RjUaDWazmfDwcBeahHQdslgsqFQqQe0CxPaXQiVzsM+jAxV2lCwWEkrsqLAvPi5buxBy5+i31BTDnZ5pOaxOOe22YJ5aI2m3BWN1ur/dvIheuHQ/xCkmWe1dZUC45Y/nmuRE5W77S4s1Kd9rORobG0Vg7qNHj1hYWMDT0xMfHx9UKhUWi4VDhw65dFY9PT3Jz8/n448/5q/+6q8oLi4W1/Xh4WHS0tL46KOP6OzsxGw2YzQaqa2tJSsri2vXruHn58fo6ChHjhyho6MDp9PJ+Pg4drtd7Pel8PHx4erVq4vH2ZLf3FO5uJc85E5U2Pn1jzbhpf6jDiUpKYn29nYiIyMZGBgQ+2B5LtdrvIaEw5kRrHbKy2SLzwOMj49z/fp1/sf/+B+iafzXf/3Xonn8sjCYbfzkN48xmu0sWBevV/MWOws2J9cX1rNt1148PDxwOp08fvyYU6dOceDAAfbt27em7ufx48d0dnayadMm6uvrefvtt91quu7du8fmzZt59uwZ2dnZdHZ2otPpGBoaEnRAidYrXT98fHxEXIWvr6+YdkdERAgqt4Tdu3dTW1vL1NQUHh4evP3221y/fl3QuhMSEjhw4ACff/65eOxFiIiI4L0ffcRnfT6YHTJs/Nt9wynDZHNyeTaa3fvffKXfwR0yMjJoaGhweczpdIoInZeBTqcT7KAXvjbYC62H+99U66FAF/Ttunt/HXwviikJ8fHxfPzxx8zPz/OrX/3qpRexMzMzYpTqdDq5ePEiW7ZsWZPuNTQ0RElJCQaDAY1m0XI2NzdX8HltNhtlZWU4HA40Gg2ffPIJ4eHhfPHFF2RkZFBZWYmPjw8ff/zxiilTSEiIuInCoonF1atXef/99926vNjtdi5cuMDevXvx9/fnyZMnhIaG4uPjQ09PD/Pz8+Tl5YnFj9QdlQrIpcWU0+kUFwQpfDIsLIyBgQEANm3aRE1NjUtXuq2tjfT0dPz9/UlISMDpdHLq1Cm3CzKAgoICDh06xOeffy4soZfCXe4MLC5WMjIy+OSTT4iMjOTTTz+lpKRkzQWAFLq5Fry9vdm8eTMff/wxBw8epL+/n88++4x/+qd/4uHDh8JJ7VXh7+/PwYMHOXfunOh6v8afD3rGjcxb3B/DNhRYPReP96SkJNavX09AQABarZaQkBD8/f3FOSVReh0OhyhCZmdnhfmEzWYTHUvpHJTyqmBxCrT0GE5LS8NkMonOnZRLt5yjHiY38K66ngJlPxmKYQqU/byrridM/uLjeenEazkkbdhaRdCow5svzRt5ZIumwb6OR7ZovjRvZNSxdofV3Xsuvda8qEhUYhfFy1KL+eVYajUvTZlgUc8gvb8kFl/6mXQ6HVFRUchkMtLT0+nr68PpdOLl5YVarSYmJoaKigp++ctf8uDBA6KiorDZbGKqNzw8zKeffkpUVBR/8Rd/wcDAACMjI9TV1dHf349er+fIkSPMz89TUlICLBbQUgH3ox/9CLVaLbK9pKJQOlYiPUyc9HxGvqKPn26J5r8cSeMD72ZGGx+4fP/Q0FCcTieBgYH09/cDiCDi13gNd/BWK/nNT/LxUivEwlbrocBLreDXH26i53kbv/3tb/nNb36DSqXi5z//OT/84Q9fqJNeDWs1s5DJuPJsCLPZzPnz56mtreWnP/2pi1TDHTo6OqisrOTw4cOUlJRw/Phxt1Of7u5ukQUnyTmeP3/O+vXrGR0dFY1oqbkhTcGk4kkyj4mJiSEoKAgfHx9aWlpc3sPHx4f8/HzKysqAxdzArVu3cv78eXHdSk9PZ9u2bXz22WcvvQ653jyGfJVi0uF08n/+/Rdu112vAp1Oh8FgQK/Xi8ckSuPLyiR0Op0Iun8RXraQ/1Piz57mtxwqlYrU1FS0Wi3nz58XlIoXCRsLCwvRaDTCCe/IkSNu/6a3t5crV67w6NEj0tPT+cEPfkB+fj5Wq5VLly4RFRXF0NAQn536A49GoV8WQkxqNmrLDGf/8CXBwcEMDw9z7NgxcnNz3XZQZDIZ4+PjLCwsMD09TWlpKR988IEQMC5HeXk5FouFffv2YTabOXfuHMeOHRNOdlarleLiYsFv7enpEWFyTqeTsrIydu/eTVVVFbm5uej1ehwOByEhIXR3dwt3Kcl0o7m5GW9vb6EXu3nzJrm5ueTk5HDt2jUhqDcajSscXSRIY/Lz58/j4eEhLk6wWKgaDIZVM0/kcjkxMTFkZWXR09PD1atXhdPO8ov2wsIC9fX1bp0a3SE8PJyOjg62bNlCamoqXV1dXLt2TYR1SvlVL4vQ0FBGR0dpb29fMx/jNb57WIvWosSODj1MDWA0GgkMDBQZJe+//z6FhYVs2bKFbdu2sWPHDjZv3kxWVhaPHz8mJCQEhULBrl27aGxsBBZvrCaTSRy/8/PzwtDA19dXFGKAcBGExYW21LRwV7ArZE6C5PNEKINytAAAIABJREFUKOYIks+voPatdV10NyEGyM/PFwvwpRCuhg7Zmo577mzZ5XI5QUFBbhfzyy3BlxtIxCsmXQwkQkJCXLbj4eFBWFiY6BgvhUSblKZuMTExIudOoVAwPz+PQqHgxz/+Mc+ePWN8fBy9Xo/NZiM/P5+KigpkMhkeHh7Ex8fj4+PDxMQE+/bto7+/XwSUSkYRgYGB+Pv743A4ePTokdBodnR0YDab0Wg09Pf38+DBA5eF2r59+xgZGWHv3r1YLBaRbbbUgESj0bB9+3Y2F+Qz2FiFv2mUj4r34e/rQ0VFBRkZGaKDLpPJmJycxG63i/iLlpYW1q1b5zaG4zVeA1Y6Le9PCqB4nYHq8kXH3k2bNnHkyBHi4+O/cYbQlWdDPOxyr9Gy2p1EeMtpr7hEQEAA77zzzgupcJIF+vHjx4Wb3mpTlCtXrpCbm0tDQwOZmZmEhYVx9epVMjIyGB0dFeuJhYUFHj9+TEpKCuvWrUMmk1FXV0dycrLIARwfH8fhcNDb2+uiEYLFSdLNmzeJjo7G19eXqKgompubmZycFEyiyMhIzGYzZWVlpKenr2pJ/jL7zYGMIKUFU089PT09REVFrSq3WAsymYy5uTn0er2g9N2/f5/o6OhVreuXw51uajWsFZn0m5/kL+rB/sT4Xk2mliI9PZ2//Mu/pK+vj1//+terUsIkKp6vry8TExOUl5ev0Ek5nU6eP3/Ov/7rv3Lx4kU2bNjAX//1X1NYWCjsLqWF029/+1s+vXSXX08mcHPSjwfT3vyXS40c/XUjwzYtERERbqdRy5GYmEhtbS03btzgww8/XNWGcnBwkOrqalH83bt3j6SkJLy8vHj27BkLCwvExsa6jHUHBwdF8WIymfDw8EChULjQ/KTJ1OjoKHFxcS7j2NzcXKqrqwFEd0Kn0+Hj48P+/ftpamoiKSmJurq6Fd2YpYiKiuKjjz7i4cOH3Lp1y0U38jLOYl5eXhw8eJCPPvqIvr4+fvnLX9LY2LgiE+dVumIymYxdu3ZRWVmJTqejuLiY//Sf/hMZGRnU19fz3//7f+fixYt0d3e/tPvZgQMHGBoaor6+/qU/x2v86bFmNwxI8ZpHrVbj7+/PyMgINTU1PH36lH/8x3+koqJC2HHLZDJUKhW+vr6EhIQQFRXF7OysS7NAOj8dDgeJiYku05IjR464TFikc1Xq+Eo3V6VS6SLmfhlNwlrH8GrPPX782O1zDofj35wEA1ltq8vpkUv/VprEu8Py76KSOUjxmGR30BxJynEX2uLya2tYWNiqjajo6GgUCoVgJvT09LgUJ3K5HLvdjq+vLxqNBqfTyfr161EqlTx58kT8TvHx8czOzvLs2TNSU1MZGhqiuLiYAwcOoFarcTgcokAuLi7mRz/6EcePH6e/v5/29nbxPhaLRRiPSA5/Op1OOABKIdHe3t4rFiBOp5O8vDySkpLYuXMnU1NTnDt3juzsbIKCgoQFsoSkpCTGxsYYHR0VFu7LTU9e4zWWQ6OSk+1nInqyBv2jiyicNn7yk5/w4x//mLS0tFdqNq6FtahdaoWM/uYaioqKOHr06AtNLGZnZzl16hQHDx6ksbGRgICAVRusw8PD6PV6YmNj6e/vJzU1leHhYTw9PZmZmXFhB0kNsKXv7+PjI6ZIUnOmv79fGNMshYeHB7t27aK0tFQwEoqLi6mpqXGZ2mzbtg2dTicys77uflPiICkiELvdjtFo5Fe/+hV37tx5JVmMhMzMTBoaGoSDbHNz80tT/ADhcOiuMecOebpAHv/dXv7z4VT+jx3x/OfDqTz+u73k6b4bETTf22IKFjmrH3zwARkZGXz66afi5rcUc3NzeHl5IZPJuHjxItu3bxfmCZL73j//8z9z48YNcnNz+eSTT8jNzXXpDhgMBi5fvkxFRQW5hUVcnIli3urA/G8MIZPNiRUFpaZ4tu7c81KOgzMzM4yPj3Py5MlVx6ZWq5ULFy5w4MABfHx8mJmZoaamhp07d/L06VM8PT3RarXk5ua6/N3Q0JC4IEgUPwkSzc9gMBAUFITBYCA0NJSRkRHRIU5LS2NgYIDp6Wna29tJSEgQ+yMzMxM/Pz9Bc7pw4cKafN/AwEB++tOf0tvby1dffSVoUK9i0xwcHMzJkyc5evQoDx484NNPPxUn6MvQ/JZDp9Ph6+vLs2fPgMULXmZmJh988AG/+MUvCAkJobS0lP/5P/8nZWVlLqNud5D40Ddu3HgpnddrfDewlNYiaVCU2FEr4ICmC9uCEZvNRlhYGGazmbCwMGJiYvD09BRUr//6X/8rZ86cobW1VWihpHDfhYUFUehLtD2r1Up0dDTe3t7ifGtoaMBisYhFiuRO19vbS2pqqphgOJ1Oly7jq5xDLzLtkclkLz3dnXWqBVd/OWwomHUuTsiXNzlWc5UKDw9f8V0kg4ylJhISll/nnU7nquedh4cHAQEBYmq1dLqn0WhEd/3TTz/FarUSFhZGT08PGo0Gi8UiMp/0ej29vb2CcllbW4vVaqWxsVHoKyS79H/4h3/g008/5cKFC9jtdry8vLDZbHh4eJCWlia0dDMzM8zOzrJjxw7q6+tpa2tjw4YN5OTkYDAYREiwtD8UCoWYsO3YsYP4+HhaWlp49OgR7733HuPj4y56V51Oh16vJyAggOHhYbRa7eti6jVWhaT//vu//3sqKipITU3lP/7H/8iBAwdWjXH5JlirmeVw2Pl/fnzopXLRLBYLp06dYtOmTdhsNnp6ejh69Oiq64L79+9TWFhIU1MTaWlpeHh48Pz5cxISEhgcHHSxT5eu20sjUJbqpkJDQ1lYWBCGEu6ayxs3bsRqtQp9pre3N0ePHuWrr74S9F2ZTMYbb7yBv78/Z86cWVVCAWvvNw+VknWWIfz9/fH19UWhUNDZ2ckvf/lLWltbX+meER4ejlqtpq+vj66uLgICAl55qv0quikAL7WSd/Ni+NsDKbybF+OiA/1T43tH81sOmUxGVFQUycnJ3Llzh7a2NhH0azDb+F1lG49GbLT16/G0zfHW4UM4nU4aGho4f/48AwMDbNu2jTfffJPw8HCXE9Bms/Hw4UPOnz9PZGQk77zzDvWz6lWzGFTKl7NwfPr0Kffu3RO0oeUhdRLKyspQKpXs3LkTmUxGaWkpOp2OxMREzp49i81mw+l0cujQIbFwcTqdlJaWsnv3btRqNRMTE/T19ZGTk0NVVRU5OTk4HA7a2trIycmhtbWVqKgoxsfH8fPzEzS32dlZsYBITU0VFqSSZf3Vq1fZv38/bW1tdHR0kJOTs+qESDKDaGpqoqamRhRxL+I/L0dAQAA5OTkolUquXr3KwMAA/v7+dHZ2vnJ+imT/uWnTJpfPrVariY6OZtOmTaxfv57h4WFu3rxJY2MjNpuNgIAAt9lS3t7eqFQq7ty5Q1ZW1mvHrD8TSLQWjcOEY2qQGOcoO9R9/N0nP6O5uRmTycTo6Ch5eXkYjUZGRkZYt24dR48eJS0tDYvFQldXFw0NDdy/f5+5uTkMBgNGo5GgoCDa2tqEM55cLsfhcLBx40bq6urENGpkZISQkBDR7ZTc/7Kzs2lubhbPSeYV0rZe5saoUChQKpXY7XZsNpswznGnNZJ0k7D21OtFjnuJqikCZfMrPt9y58Kljy997eHDh106vC/qhKvV6hX6WX9/f0wmE0ajkfDwcDEVk/K2pFDKgoICurq6hOZtYWFBTJAWFhY4cOAA6enpdHZ2sm3bNvR6vZj0NDQ0oNfrRfiyRqPB4XBgNptRKpVMT08Di0YZOTk5/OAHP6Cjo4PW1lahvVAoFNTX1zMzM8PJkycJDAzkzJkzqFQqwsPDmZycFPRIu91OfX09CQkJeHt7k5GRQW1tLU1NTWRmZuJ0Onnw4AGbN28WpieDg4NiuilZtL/Iies1/v3A6XTS09PDrVu3uHHjBr6+vuzfv58dO3YQHh7+rU2h3MEdtUslc6CSw7/+JI/M9e6nzUvhcDg4c+YMAQEBZGZm8tVXX/H++++vajc+OTlJWVkZxcXFXL16ld27d+Pr60tZWRnZ2dlUV1dTVFQktPFjY2O0tLSQmZkpCom+vj5kMhnR0dHIZDJ6e3uFprK5uZnCwkKX+78kHygtLSU3N1dQnqenp2loaCA1NRWZTCbYCM3NzTx//pyUlBS312F3+81D7sTTQ8lvPyrgrd1bBB0xKioKg8GAWq2mra2Nzs5OIiMjXRrsa8FisdDT08Po6Cjr169fkdP1MqirqyM7O/uV/+67hu99MSVBCvqdnJzk8uXLDFo8+eD3DVT1ztEzr+LZqImnc774W8cpL7nA5OQku3fvZu/evYSEhLgctE6nk7a2Nk6fPo3NZuPEiRNkZGSgVCrXzGJ4GQvHR48e8eDBA3784x8jl8vp7+8nOTl5xet6e3u5e/cuP/zhD/Hw8GBsbIw7d+5w/Phxmpqa6O7uJjQ0lMTERBISEsTfTU9P8+zZM3bu3AksLtTGx8fJyMjg4cOHZGdno1KpePLkCYWFhQwODiKTyfDy8mJiYkJkSPn5+XH9+nUmJyc5dOiQy6ROrVbj7e3NvXv3KCoqor29nenpabffQ4JCoSA1NZXR0VFqamrw8vIiLS1t1devBmkRtGnTJqE3s9ls5OTkvFIGmb+/P21tbTidzlUpQlLAXmFhIQEBAXR0dFBSUkJfXx9yuZyAgIAV/Ojnz58zMjKyIovrNb678FDKSQz2RN9QSW5cKNOTEzgcDo4fP05nZycmk4m+vj7MZjObN28WEQLj4+MUFBRw8OBBoeMcGRkRU5L29nacTqew5fby8sJkMuHj4yPcJJcGtUpFj7TY1+v1FBUVYTQaMRgMopBaC8tvvjKZDG9vbzGRkLL01qLcvWi7L7JlL1J2u7VlX5qbtRTLi66enh7RmZXL5Xh4eLB+/XqX6ZNk+CCTyZifn3eZ9MHiFGxubg4fHx8GBwfFtiRzDbvdjt1uJzExkc7OTtLS0hgZGSE0NJSUlBQGBwdRqVT09vYyMDCA2WxGrVYzPj5OaGgo8fHxDA8Pu2jdrFYrCoWCTz75BJ1Ox9OnT0lJSWFycpLBwUGmpqYYGxsjMTERvV4vsqmCg4NFYPCjR4+w2+1ER0fT398v9KPJycksLCwwMzNDfX09kZGRBAYGkp2dTVVVFXV1dZw8eZKnT58yNjZGamqq+EzS55cMh9a6Tr/Gvw8sLCzw9OlTLl68SFdXF6mpqaJB9E2d4F4FUjNLvjCDRd/LofRQfv3zXSSEvVymUGlpKXNzcxw+fJjPP/+cPXv2rNksuH37NjExMahUKrq7u9m1axcmk4mysjJ27NjBw4cP2b9/v7jeDQ0N0dHRQXZ2tjAAGh0dxWAwiHv89PQ08/Pz6PV6fH198fLyWjHJCwgIoLOz08VuXKfTcf/+fRQKhViDyOVyUlJSePLkCSMjIyQkJLgtqJZq22L91XiPt3D+//oBcSHeQl+enZ3NyMgIg4ODhISEMDExgY+PD+Xl5ZjNZqKiol5YLPv5+VFSUsLExASHDh36/9h77+ioznTN91dJKqmUcxaSQEgCARI55xxMMCbaBKd22+3bfc85q1efmTtzZ+be6TlhzuluHzrYbgMGG0wwOWNyEmCCkEAZJJRzVuV9/6jeH1VSlQJ23zZYz1petktVO1Xtb7/heZ+ni+9UT+jL3NQPHT+aZAqeafEHhUXy5t4C9Gab2RzYBqRNVokrJe3851WTmDVjuoOyk4yqqir2799PXl4e8+fPZ8qUKQ5ZfF+9GOxx/fp1MjIy2LhxI/7+/nh4eHD+/HlhqijDaDTyxRdfsGDBAnGTHTp0iOHDhxMbG8u+ffuEgtiCBQscjk+ussrc1qdPn9Le3k5SUhI3btwgLS0NnU7HhQsXmDx5Mk1NTVRXV5OYmMidO3cEZVCn03Hnzh08PT0ZP358l3MJCQmhsLAQjUaDWq2moKAAHx8flyZ6YAvIBg4cSEVFBbm5uQwaNOi5F26VSkVsbCyRkZFkZ2dz69YtlEqlU5EKV/D39+fUqVOMHj2628/IlaXk5GTx3nv37nH69Gnq6+vRarXC4DM+Pp4TJ07g6RvAhSftHM0sp7SxgwFBur+5g3c/XEOj0fDNN98wbdo0SktLefLkCZMmTRIedyaTiY6ODoqLixk/fjxz584V4i6ZmZkEBQUxcuRI0tLSuHnzJhEREYIKIidIctBdX18vugUmk0kYAicmJjpQSqOjo0lOTiYvL4/2dsdOj6vOVFhYmIMqlCRJ+Pv709raKrpUsjBBbyCb1soJCdhEL0KVrTyx+KNEwooSNRZUSMx2y8dHaXAaAPTWt8r+2GQzXnd3dweBCbPZjJeXF0qlErPZjNFodPDG8vHxoaWlBaPRyMCBA6mvrxf0Sw8PD0Gb9vX1pbKyknnz5nH//n1aWlpEZ97NzY233nqLxMRErFaroPa1trZSUVGByWTCarUyZMgQEhMTKSsrw2Aw8OjRI27evCnmdN966y0mT55MYWEhJSUlQmDEarUyduxYUZxpaWkREultbTaK6dy5c7l//z4rV65k9OjRNDQ0UFlZSXZ2thhoHzx4MLdu3eLhw4fMnz+fixcvkpycjJeXF97e3ly4cIGWlhZB3+7L3EM/Xh5IkkRZWRnnzp3j2LFjaLVapk+fzsyZM4mMjOxR+OCvAavVyuWL56nKuc3frVvIognDcVP3LujOyMggOzub9evXc/ToUUJDQ5k8ebLL97e1tXH06FGWLVvG1atXGTx4sJhz6ujowM/Pj+bmZoYPHy4+8/TpUyGzLnerGhsbqaioEAULSZJ4+PAhtbW1pKWlUVJS4pR1ExYWxpEjR0RBW6lUEhsby4EDB4SgBdhim+TkZC5evEh7ezsD7PxR7eGmVjI00pepg0Mpz85gQEyUg+KrRqNh0KBBDBo0SBSOwbamG41GLl26hI+PD0FBQS6ZCFqtlszMTLRa7XMZfvfGb+pFwY8yertTp3C5MKjVau7Xd71Z29raOHLkCDt27CAlJYWf/OQnTrsLzyvheOXKFW7dusXGjRuFHG9AQABqtbqL59GZM2eIjY0VFcQnT55QU1PDqFGjKCwspL29nUGDBhEYGNhlDqGsrMyh09LR0eGg8CRXZmWzy7CwMKqqqgTVT+bkg63b5yoAUigULFy4kLt37zJu3Dg0Gg3Hjx/vcb4IbP4K4eHh7Ny5k4KCgh7f3x1k2fqNGzfy+PFjfv/73/Pw4cNeUaBiYmIICAjg3r17vd6fu7s7w4cP5/XXX+e9994jMDCQY8eO8dvf/pZz587R3t5Owrg5vLozl/92JJs/Xirivx99yNhfn+XWE+cdzX787aFSqfDw8CAiIkLQtI4dO4a7uzvr1q0jOjpa0Dt37tzJwYMHSUtL4/3332fSpElcuXKFLVu2CINwmXYlm/zCs6Sqo6OD9vZ2oUjX3t7OzJkzHXxK3NzcePr0KUVFRVRXV3dJflzdlzK1zB7y+qJUKuno6OiinmcPZwa7N2/e7PK+nmTZ5fvveeiuslS8vWiOMxuMztLo9tdITv5UKpUIAuS1TVYyValU3Lt3T3Sp5P09ffoUHx8fpk2bxoEDBwgODiYtLU0EHZ2/i46ODiElr9Pp8Pb2RpIkodZ448YNSkpKKCwsFEGWLMssiyPJXS35vGW59MePHzN27Fjc3d1RqVQsX76cefPmYbVaOXLkCOfOnSMkJISlS5fS1NREZmYmERERQozCy8uLwMBA8dvrn5l6+dBqMLP7Vgn/68Qjdt8qodXg6FVmMBi4ffs2f/rTn/j6668JCQnhww8/ZNmyZT0qIf9Vj7u1lR07dlBRUcE777zj1F/TFfLy8rhy5Qpr167l7t27NDU1MXfu3G4/k5GRIQQ08vLySE1NBWxy6gMHDqS0tLSLNY1erxcxkwx7AQqwqfHV1NQQHR2Nu7s7eXl5TotVwcHBpKSkcPHiRYfXZsyYwf79+x085rRaLevXryczM9Pp+tsZCQkJFBUVOf1bSEgIb7zxBjNmzKC1tRVPT0+qq6sJDg7m3Llz7Ny5s1umgpz4PS/6Ojf1Q8WPMpl6UtsmTOA6o91o4UndM1ldi8XCtWvX2LJlCxqNhvfff7/bToX90LrbX6gssheD7fWuSdylS5e4d+8eGzdudODyyp0a+/mAwsJC8vPzxcIgSRJnzpxhxowZqNVqLl26JLj96enpXfZlLz4BzgUoAAevqerqalQqFZGRkUJhRlbfamlpcSkwIav7nTx5khUrViBJErt37+42WANbgOXj48Pq1as5ePAgd+7c6fb93cFqtaJQKAgODmbt2rUsWrSIS5cusXXrVocZEFeYNm0aly9f7nWl3h4+Pj5MnDiR9957j1WrVmEymfhk6w7+/kgRJknlYETYZrD8xaDQ3MNW+/G3gre3Nx0dHQwdOpTY2Fiys7NpaWlBrVazcuVKdDodPj4+uLm5kZWVxT//8z/T2tpKcnIyb731FgsXLiQrK4v29nYhba3VasVa0p2U8OnTpx0KALJc+q1bt/p0DvbFEBlywuFK0akvFWn7oEKjsJKormWUpqyL4l7nffcGMk3XbDbj7u4u9mVfUe28bfu1xv762X/2ypUrAKI4pdfrCQkJwWw2M3v2bEwmkwhE7GmXAwcOpKOjg3//939n165dxMTEoFarSUtLE3NrKpWK1NRU0flra2vj6dOnWK1WYmJi2LhxI15eXhw+fJj29nahNCZbP6hUKqqqqgSdUT5/sFGRc3JyaG5udgjexowZw8aNG1GpVFy5coW9e/cydOhQRo4cSV5eHoMGDaKpqYkbN24ANlU/T09Pmpqa+pOplwy3ntQz9tdn+e9HH3Yp3FVVVXH06FF+85vfUFRUxOzZs/nZz37GhAkTej0z89dCcXExH3/8MbGxsaxbt050fXqDyspKDh06xKpVq2hububatWusXLmy23VMTignTJjAgwcPGDhwIJ6enkiSRGFhoVPxCUDMUnZW87Pvkms0GkJCQggICKCiooKAgACXycO0adN48OCBA2U5PT0df39/4Uclw8vLi/Xr13P16tUuBrqdER8f7zKZAtvamZKSwvvvv09CQgIWi4WOjg5RbP/zn//M2bNnu8RuBoNBmNS7mnntCX3xm/oh40eZTPXGTVmSJHJycvj973/PkydP2Lx5M/PmzeuVJr8s4bgk2sjKIb4uJRwlSeL8+fM8ePCADRs2dDHdBJtEupxM6fV6Dh8+zJIlS0TgJXdZhg4dSmVlJZWVlYwYMYKysjLRZrbfX0VFhYOnk30yZR+MeHl50drailarxcPDg/r6eocKglydHTFihJBJd4bU1FTBB540aRJ6vZ6jR4922xmSO2TR0dFs2rSJK1eucP78+T4pzdifs/15xcfH884775Cens6ePXvYt29ft2qD0dHRBAcHO6hg9RUyR3nu3LkMmLLcpaGeJNk8Ivrxw4SPj4+gedTV1eHh4cGhQ4cAWwEgNDSU0NBQfHx8CAsLQ6/X82//9m/cunULhUJBXFwcr7/+OqmpqVRUVAC2wFhOcOR/2xv4ypDpbHLiJVcKnd0T9oUeZ0WfvlSaVSqV8DsB24Ovu8/3VCj5LrAPhkwmk+jwAA4S8dD1HDtfU/t/y91vWU1LpuzJ0Gg0YlYJbL+DtrY2/vjHPxIdHY0kSSxbtowFCxYwfPhw8VlJkoiJiaGlpYUFCxYINUSZgllTU8OuXbt48uQJbW1t6HQ6AgMDaWhooKysjIKCAvLy8kRXVGYCSJLEiBEjaGhoQKPRUF1dzZYtW/jmm29EQBMdHc3PfvYzfH19efToEZ9++imzZ88mLCyMixcvkpKSIoIjed6qurq6P5l6idBqMP+lQGcR5uNy4W7dx1fZtnMX3t7evPfee7z22mskJCT8zbpQMiRJ4urVq+zdu5clS5Ywbdq0PnU9ZAn0hQsX4ufnx/79+1m6dKlg+7jCnTt3iI+PJyAggLt374pCdHV1NWq1Gn9/f8rKypx2piwWi0s1PxkxMTEolUqKiopITk4Wa01n6HQ6JkyYwNmzZ8VrCoWCxYsXC+EJe/j7+7Nu3TpOnTrVRXbdHrGxsZSXlzv1IrSHRqNh2rRpvPvuu/j4+KBUKikvLycwMJCamhq2bNlCdna2WHdzc3OJjY1l4MCBLs+pJ0RFRTmoRb+o+FEmUz1R8caEqdmxYwfnzp1j/vz5rF27ts/Snzp3NeOCrWwY4edUwlGSJM6dO0dOTg4bN250ORs0YMAAKisr6ejo4OTJkyQmJooBSovFwjfffMOsWbNQKBRcvHhRDLQPGTKki+BCbW0tOp3OISHsqTMFCKqfvd9Ubm4ugwcPZuTIkYIK4wwKhYJFixZx9+5d4uPjxSxVd90me2n0wMBA3nzzTQoLC4WUcF/gzGdKqVQyYsQIPvjgA4KDg4X0vavKitydsm+zPy+K69vRm50nhZ27ov34YUG+J+QH6pgxYygqKhLUVYvFwsiRI0lNTUWv15OWloZKpeL48eP8+c9/Fl2YQYMGiWKIxWLp8uCVf2cyrUuhUODn59ejZYD8O7cPiHoSdLAvrEDXLpRSqSQ/P1+83hd/te8b9vdfSEiISCg7J0hAl8q62WxGrVaLayRXuu1VpOwHoOVB6m+++UYIQcjX0mq1EhQUhNlsJiEhgVdeeYWDBw+KWSW1Wo2HhwceHh7o9Xq+/fZbjEYjeXl5gO07nz17Nr/4xS9ITk7myZMnonjV2tpKeHi4+KxGo8FiseDr6yt+Z8HBwTx9+pS2tjaGDRuGTqdDkiTy8/P56KOPuHz5sqABfvDBByQmJlJZWclHH33EqlWr0Gq1PHr0CLVazd69ewkNDUWpVFJaWorFYnkuz5l+/PBwNLMcV7eqUqUiZvIypk6d6rSI+7eAXq/nq6++4tGjR7z99tsOwlm9gcFgYNeuXYwePZqkpCQE8CCIAAAgAElEQVT27dtHWlpaj9uxWCzcuHGDiRMnUlFRgV6vFwWkgoICEhISqKurw9PTs0uHTKb52a+bMqXXPnGJiYmhtrYWSZIICwsjNzfXZVd+3LhxVFRUOHSvPDw8WLZsGYcOHXLoQoNtLVy1ahUHDx4UjIfOcHNzc2AW9QQ/Pz9ee+01li1bJiwXiouLiYuL4+LFi+zYsYOamhqysrIYOnQow4YNE1YyfUVf/aZ+qPhRJlMyFc9DrcBNaUfFc1PxTqKZ/V99SVJSEj/5yU/6fEPbQ5Y67gyZmpefn8+GDRu6bWFrNBpiY2O5fPkyJSUlzJ49W/zt22+/JTAwkPj4eJqbm8nPzxeu3b2h+IGNz99dZwpsppeVlZVERERQX19PW1sbubm5JCUlERwcTFBQEDk5OS7PwcvLi7lz53Lo0CFeeeUVwDb3JVfnO0P2kJGh0+nYsGEDBoOBL774wilVyRW685lyc3Nj6tSpvPfeexgMBrZs2eJQgZYRGRlJaGjod6Ibyojyc0fjRMkMnnVF+/HDhLe3N83NzSgUCoYNG0Zrayve3t6iO2U2m9FoNEyZMoUJEyaQn5/PrFmz0Gg0lJaW8utf/5ry8nLCwsIEddZqtbqkn8jFED8/P5qampAkqdtERr5neio42Hdp7O8lWazBHiaTCV9f3y4BlzP5/87obUW5NypOsgeXjNraWnG+8j2uVCrFvd65wyIrksrXxtPTE4VCQWFhoXiP/blv3rzZ4frYr9FyZ0mj0fD1119z8uRJrFYrn3zyCbGxsWLuzc3NTQhV7Nu3j4CAAHFNvLy8+Pzzz8nPzycwMJCBAwcKzxyVSkVraytWq5WWlhbCw8NpbGwU372Hhwfu7u6kpKRgsVh4/Pgx0dHR+Pj4YDabuXv3Lr/73e+EufKaNWuYMWMGbW1tbNmyhddee01cs4KCAqEYW19fj6enp5jV68eLjSe1baIj1Rl6s0RJ/fPRsv4aqKio4OOPP8bX15dNmza5lC53BavVyv79+wkPD2fixImcO3cOtVrN1KlTe/zsgwcPCAoKIjw8nDt37jBixAixjsj+UqWlpU5lvzs6OhxmN8G21nSem4qOjqa0tFQopXp7e7tMfNRqNTNnzuxC7R4wYABpaWkcOnSoy3MgOjqaZcuWsWfPHqqqqpxuNz4+3mG96w3i4+P5yU9+IixiSkpKMJlMBAUFsXXrVoqKioiLi7PRIKvr+OxijsvZvO7wMsxN/SiTKbBR8X49TsGGoZ78ZHIc65O1rNVlMThAzfvvv8+YMWO+sxeQs2RK9nl68uQJGzZs6BU3OSYmhlu3brF06VIRxBgMBi5dusSsWbMAuHz5MmBr57q7uzuV8+4sPgFdaX7yTerl5SUq5qGhoVRVVaFSqYiJieHBgweYzWbCwsIAGDlyZLdUP4ChQ4cSGBjIt99+y/Lly1EoFOzZs8dpYuRMiUyj0fDaa6+Jm7ipqan7i/YXyDNT3cHb25vFixfz+uuvU1BQwO9//3sePXrkcAzTpk3jypUr36k71dHRQXPWBZTPIVDSj789ZAU4sJlTP3z4kHnz5lFRUUFJSYnofgCMHj2a2bNnc+XKFZYsWYK/vz+SJPHJJ5+QkZGB2WwmKCgIq9Uq5mvsIScPXl5eNDQ0OMwFyb9n2SC4J9hTXFQqlfgNK5VK6uttoif2SnfgOL/V1NQk3qfVaoUAgitotdou2+sOvek2d14P5MRKvhayol9366nBYBCJmxzobNy40el7/+3f/g2FQiEM0+XkLDAwkLa2NhITE/nHf/xHoqKiaGtrw2q1olKpqKysFOfd3NxMR0cHjY2NFBYWig4S2NRX4+PjMZlMTJw4kfz8fNrb2wkLCxNmzhqNRki6y13z8PBwvLy8qKyspKCggJqaGsaNG0dkZCTNzc14enoKwYrLly/z29/+lnv37jFx4kRef/11rFYrn3/+OVOnTkWv16PVatm7dy+JiYmo1Wo0Gk0/1e8lQW/GGf7WkCSJb7/9lp07dzJz5kzmz5//XBLZp06dwmKxsHDhQnJzc8nKymL58uU9xnAyrXDixImYTCays7NFUcNgMFBeXk5cXJxT8QmwPdOdWa50pvrpdDq8vLwICgoSQjPODHxlDB06FIVC0WUWaurUqXR0dJCRkdHlMwMHDmTevHl88cUXYr22R09zU66gUqkYN24c77//PgMGDECv15OVlYWvry+enp588skn7L1whx0tSfzTmcLnEtV6GeamfrTJFEBDdSWTIlToCr9hgLWcdzdv7PVcVG/QOZmSJInjx49TWlrKG2+80av9yKZ5sgmcjGvXrjFw4EBCQ0MxGAzcu3dPBHhpaWlOEwhnnan29naH47Cn+ckBh0zzA9uPPisri8GDB4t9JCcnU1VV5fQGlmGv7qfVahk5ciSSJDmtsriiMymVSubPn8/w4cP57LPPhIRwd3BG83OF0NBQ1q1bx4IFC7hw4QLbtm0Tql8RERGEh4dz5catbpWRXKG1tZXt27cTHx3BjrfGo3NXiQddTwIl/fhhwP4B6e/vL9Tb/P39OXz4MCaTyaHLlJqayiuvvMKJEyeYPXs2AwcORKvVkpGRgSRJhISEiC6ss8RD7kzYIykpScxClpWV9apLa/8e+8TF3qvJbDaj0+nEvdJ5u7LniDxwDa67U33pHH+XGY3O64RswusMkiRhNBodOleSJHVLadNqtYJeKSegPj4+RERE8O2331JQUMC6desENW7Dhg3U19ejUqlYs2aNSO7kfdy5c0ccr9Vq5c6dO6hUKi5fvkx0dLSwrZgxYwaSJLFgwQL0ej1Go1EoDE6cOJGqqirc3NxE8lNcXMytW7ewWCzExcXh4eGBQqHA09MTo9HIyZMn+d3vfoder+fDDz/Ew8ODCxcuEBcXh16vp7W1VVD8+hX9Xh50O87A375wZzQaOXjwIBkZGWzatOm5fCXBpsL3+PFjVq5cSVNTE0eOHOHVV1/tVaE6Ly8PjUZDXFwcjx49IjIyUnTFHj9+TGRkJG5ubi47UzIVtzOczU3J8VtxcTGJiYldCrb2UCgUzJ07V9CMZahUKlasWMHly5edMnuGDh3KlClT2LlzZ5f9h4eH09bWRnNzcw9XxTl0Oh1Llixh/fr1+Pv7U11djV6vJzEllf/yTSUGiwLDXx4vfRXVehnmpn60yVRVVRVPnz4lMzPzueeieoJ9MiVJEkePHqWyspL169f3qqIMkJWVRVNTEz4+PuLmaWlp4datW0yfPh2wLSZWq5Xx48eTn5/PsGHDumzHYrFQXV3t0JmS6Sj20ugy7Gl+/v7+QtklLi6OqqoqB2NHtVrN8OHDe+xOeXl5MW/ePA4dOsTkyZPx8vKirKysS5Wlu9kQhULBhAkTmD17Njt27Oixbd0dzc8VEhISePfddxk+fDhfffUVX3/9NY2NjfgnjuLt4zX8tyNdlZG6Q2NjI1u3biU5OZm5c+cyJi6Qm7+axX9dlMJ7UxNcCpT044cFWYBChswTX7hwIQ0NDbS3t3eh7A0aNIhVq1Zx9OhRUlNTmTBhgpjHefDgAUp3T/LMQdw2RZJnDsIk2ZZkSZIcEiw3NzcUCgU5OTlkZ2cDOAhSdIb9HJF9cuPK30lOGFx5fdh3giVJwsfHR3g3Odtvbzu4Pc1f2c+NOfusRqNBq9WiUCjEjEJiYqJ4j32gI4t4wLPO1h//+EfgGY1P3o+3tzdms1nMiMn+eLK0/MyZMzlw4AA7d+4kMTERs9nM2bNnUSgUaDQaBg4cKF53d3cX27Wn+hkMBmJiYmhvbycvLw+r1UpNTQ179uxBrVaLWVSNRoMkSaxfv56IiAja29v58MMPefPNN0lNTRXHbjQaqaio4OnTp7i5uaHT6USC3NHRwYEDB9i+fTtLliwhIiKCx48fi89euXKFoKAgOjo6+pOplwT2ysJy4c5Do8JdKbEqrA6V9LdTjq2treXPf/4zAG+99dZzx165ublCAl2lUrFnzx6mTp3qNPFxBrkrpVAouHPnjsMMpUzxMxgMNDQ0CCaOPQwGg9Oikj2zR0ZMTAyVlZUEBQUJk297f77OiImJITIyUqhuyvD392fevHl8/fXXTpOPUaNGMWLECHbu3OkwBy77rD5Pd8oekZGRrFq1CpVKhUajYf+tJ7haxXsrqvUyzE396JKp9vZ2jh07xrZt23B3d+enP/3pd5qL6g5yMmW1Wjl8+DC1tbV9SqRaWlo4efIky5Ytc1D1u3DhAiNGjMDX1xer1cq1a9dISkqiqKiIQYMGOe14VVdX4+fn53Dj6/V64U8iwxnNT6a7VFVVodPpBEXJHrIQRU9B1JAhQwgKCuLy5cu8+uqrmEwmLl686HAT9TRoD7YKzGuvvcaBAwe69YF6nmQKbN9deno6H3zwAQEBAfzHnz7l5wfy/iJp7qiM1F31pba2lm3btjF69GimTp0qjkXnrmbV6Bh+OS/JqUBJP3546FxtHDJkCEVFRYSFhRESEkJLS4vT5CYmJobXX3+dkydPotPpRAW2Bh+2NyaSYY7mgSWcDHM0XxmGU2X1Ap4lUGALlOWZqaSkJHHPuhoet+8w28MVhUYemO7sJ6JUKh0MY+3fr9Ppuphwy94s3xcsFgt+fn4u1wOTySSSKIXC5h8oCz3As6ROrVY7nTmTq9Bjx44VSVtERASNjY24u7uLpEs+T6vVSlVVFaGhoYSHh1NZWcnIkSN54403BIPAx8eHq1evotFoMBgMmM1mce1mzJghClqpqamUl5cL1awPPviAoKAgYmNjiYqKorS0FK1WK0ycP/roIz7++GM8PT25du0axcXFBAcHs2DBAv7+7/+eNWvWMGzYMKEkWVtbK/bv5eWFJEm0tLSwd+9e9Ho9gwcPpq2tTfzGGlo6yGzz4tPbtX2eeejHDxOysrBcuPu/F6dw+z/PYVSsP9u2besS8P//gezsbLZu3cqYMWMcRhf6ioqKCg4fPszq1avx8/Pj+PHjBAcHM3r06F59vqSkRFhX1NXVUVtbK4rE9pLo5eXlhIaGOl07XSVTrhT9SkpKSEhIoLCwkOTk5G6pfgCzZs3i+vXrXUQnUlNTiYiI4NSpU04/N3nyZOLi4ti1a5dDZ+t5qX6d8fDhQ4YMGcKHH36IW2CkKAJ2Rl9EtWJjY1/ouakfTTIlK7Zs2bIFpVLJ7NmzGTBgwHPxc3sLpVKJxWLh0KFDNDY2sm7dOlGV7gmSJHHkyBFGjRpFREQEgwYNoqCggNraWnJycoST9927dzEajcyZM4e7d+86VFbs0RuKn33S0XmAUp6bKigowNvbu0sFITAwkJCQkG6FKOR9LFy4kHv37tHa2srixYtRqVTs27dPDD53FqBwhdjYWDZs2MDFixe5cOGC04CrNzNT3cHNzY1p06YROX4JVhcBnavqS0VFBdu3b2fatGlCFrkfLy60Wi0Wi0VUA7VaLQkJCWRnZ7Nw4UIkSXL5cAwLC2Pjxo1cvnyZx48fo/Xy5ZQ+ARMqzNjWIDMqTKg4YxyESbJR7+Tf7n/6T/+J1NRUPD09aWxsFMF5R0eHy86NSqWiubnZIcFzVexwVoDpjoLY2trKggULRGVV/nxPfifPg4aGhm49YuQkSe7G2CeQ8ppgfy3hmTiG3HFLSUkR3UA52dXpdOLc5XVNThZ3795Ne3s7a9as4cCBAxiNRlQqFRaLhbFjx3L16lWysrKEGp8ccLW3txMcHIwkSdTX19Pa2kpzczNz5szh0KFDxMbGEh4eLkx6jUYjnp6erFixgrfffhtJkhg/fjxqtZqioiJB4fuXf/kXjh07RnV1NTExMSxevJhp06aRlpZGYGAgTU1NQvBEnpXLzc0Vc1xVVi8+q08gwxTN0UJDv5H4S4TOhTtvDzfmz5/PkCFD+Oyzz7o1ZP0+YbFYOHHiBGfPnmXdunWMHDnyuZ/NTU1NQgI9MjKSO3fuUFZWxuLFi3u9zatXrzJhwgSUSiV3795l2LBhIh6sq6sT1FpXFD+r1SpmNTujc/wEtq602WwmNDTUIZnqrnAcEBDAsGHDuHDhQpe/LViwgMePHzuVJJdpggEBAezZs0c8L2Tz3u+qyJqVlcWQIUNwd3dn+uiheGicpxJ9mc170eemXvpkSpIk8vLy+MMf/kBhYSEbN25k/vz51NXVORVp+D6hUCi4f/8+ra2trF27tk8VmLt379LS0sKUKVMAW1WjpqaGU6dOMXHiRDw8PJAkiQsXLhAfH09bWxsGg8HBE8YePYlPyJBvMq1Wi9lsFlWNsLAwKisryc3NdZBIt0dvhCjAFqTMnz+fQ4cOkZiYSHJyMhqNhgMHDogZp97e7MHBwbz55pvk5eVx+PDhLsPsfZmZsv9MW1sbxcXF3LlzhzNnznDhdhZGq/NF2ln1paSkhJ07d7JgwQIx0NqPFxty18Ge6jd8+HAyMzOJiopCoVBw9epVl3M4gYGBbNq0icbGRp5Iga6pEUC1NprNmzeLh7ucTAwePNiB2mEwGHpU+espuNBqtQ50EPn93W1Tp9Nx8uRJ8f8dHR2i+wO2zvZ3hazQB7ZkSKlUdluMMplMGI3GLkGMDPuETP5vo9GIm5ubA70xKSmpy+yQvE5mZWVhsVhEouru7s7KlSvZs2ePoNEcOXIEo9GIwWDAw8ND0BABbt68KbxiioqKxBB3YWGhoEEXFxdTX1+PXq8X7IZBgwaRkZHB6NGjGTlyJFOnTmX58uW8/fbb/PKXv+T9999n9uzZxMbGYjQaefjwITdu3CAjI4P29naioqKIjo4mLCwMtVrtMDtmkpS2BN4use83En+5oVAomDx5MlOnTmXbtm1/dXpVU1MT27Zto7GxkXfeeaeLJUNfIEugjx07lpSUFCoqKvjmm2947bXXeh1jVVdXU15ezvDhw7Fardy/f78LxU/23XJm1isfh1qt7nVnSqFQEBMTg9lspr6+XvjkuVLfkzF16lQePXpEdXW1w+vu7u6sWLGCY8eOORXkkv2plEqlmE338/PD3d29x312h4aGBhobG4VFz6JhEShdqGr1ZTYvOjr6hZ6beqmTqZqaGr744gtOnz7N3LlzWbduHcHBwYDNJfuvmUxZLBby8/MxmUysWbPG6ZCiKzQ2NvLNN98IjX+wPfxDQ0MpKytjzJgxgO2Gb2trY8GCBYLv6ypwctWZsk+mOst7dlb0q6iooLi4mPT0dB4/ftxlH8nJydTU1PSq0jVkyBBCQkI4f/48c+bMQaVSUV9fz+XLl3tF87OHl5cXGzdupK2tjS+//NLB36E7mp/JZKKqqors7GwuXbrEgQMH+PTTT/nnf/5ntmzZwtmzZykpKUGr1TJiYCTaXlZfCgoK+Oqrr1i+fDnJycm9Po9+/PDR+SGZkJBAfX099fX1qNVqzGYz165dc/l5ef6lzqAUgWtnmFFR0Wrm008/FYnZv/7rv5Kfn095eTn19fV4eHj0WCSwWCz4+/t3KTCoVCqHpESeqZLpMa7uPXt6cmtrKy0tLYJmKM9cKZVKfHx8XHq29QWdkyer1erUdFK+vzUajYNingw5cbK/DvYP7ODgYAc5cHkWQP6eNRqNQ8BksViYPn06S5YsYdeuXcJw12QykZKSIrpZsoLjwoULMRqNaDQaGhsbCQwMdDg+X19fjEYjS5cupaGhgYqKCmJiYpAkiWHDhjF48GDa29t59OgR48ePd3r+Op2OmJgY0tLSmDVrFqtWreKnP/0pv/rVr9i0aROTJ08mMTGRqKgoIiMj8fb2FrTIx5aA7zzz0I8XEyNGjOCVV15h9+7d5Obm/lX2UVBQwCeffEJSUhKrV6/+TgJfsgR6ZGQkEyZMoKOjgz179rBgwYI+zV1du3aNMWPGoNFoyM/Px8/PT8SG8jEPGjQISZJ6FJ/obTIFtoShrKxMSIF3Z+Arw8PDg0mTJnHmzJkuf4uMjGT8+PEcOHDAKYNApVLx6quv0tzczIkTJ5Ak6bkk0u2RlZVFcnLyM5sHJ7N57irQYGGGKocHd2/3imn0os9NvZSDGu3t7Vy4cIHs7GwmT57M6NGju8wFVVRU/NWSKbPZzL59+5AkiaFDh3ZLUekMWeFuwoQJQpZXfr25uZnAwECxvVOnTokHY3Z2Nu+9957TbZpMJurq6rrMNzhLpuwDEblVHRAQQEhICDU1NcTGxhITE2OT+W5udpjZUKlUjBgxgm+//Za5c+f2eK4LFizgD3/4A8nJybz66qt89tlnXL5xC0WFlaxqT7S3Slg0LAKvXswTubm5sXr1ao4fP87WrVtZu3YtPj4+WCwWzGYzhYWF1NbWUldXJ/5pa2vD39+fwMBAAgMDGTBgACNHjiQoKKhLxy7NYObjW6ed7tte0jw7O5sTJ06wevVqB/XFfrwcsJdHB9tvfsiQIWRmZmKxWBgwYABXr15l9OjRTtWkioqKbEbW08Zy5+gjzE7qWWos+ChsSYNGo8FkMokuiZz49DZZaWho6PJaeHg4paWl4v99fX1pa2vj1q1b4pzkxMM+KNDr9V3WCDnZk40rzWYzY8eOdfrg7yssFgsdHR2kp6dz//59h2TI3d1dJFby8RgMBmGwKR+nJEmC2ujqge7r60tTU5PoAtXW1gr6jiynHhoaSnV1tagAX758mcTERNasWSMof9HR0Rw7dgxfX1/0ej0NDQ34+PhQW1uLWq1GrVbT3t5Oefmz5ETe3saNG5EkiT179qBQKMjLy8Pf35/KykphGp6ent4rhTJ7KJVK/Pz88PPzIyEhweFvZrOZsrIy/ufxh5hLnF+bfiPxlx+DBg1i7dq17N69m7a2Nqcelc8Dq9XKpUuXuHPnDq+++ioDBgz4TtuTJIkTJ05gsVhYsGABAAcPHmTw4MF9UgJsamoiLy+Pn/3sZ4CNBWR/ziaTiadPn/Lqq6/S1NQkGAmdodfrhaJmZ8iF6M7F3JiYGDIzM0lPT6ewsJD09HQOHz7MjBkzuj3mMWPGcOvWLQoLC7vcxxMnTqSoqIgrV64IJpM9NBoNq1evZvv27Vy8eJH4+Hhu377NxIkTu79QLpCVlcXChQsdXpNn845mlvOkrp0BgZ5MGeDFudMtnD17lps3b7Jy5coeY255bqrzOb4IeCE7U60Gs1N5avu5KID333+fcePGdZmLkvnj3wcVpTPMZrN4IA4dOrTPn7958yZms7lLBTInJwe1Wi24vBUVFdTV1bFo0SIePnwoTBudobKykuDg4C5JXeeZKXCsStt3ptzd3VGr1YLO5MpkLT09nczMzF6pednT/fz8/IhKm8q2xkQ+u9fMtQZdn3j7er2e8vJyoqKi8PDw4KOPPuKjjz5i//79PH36lCtXrlBTU0NAQADjxo3jjTfe4Fe/+hU//elPWbVqFbNmzSItLY2YmBinAUtHcwNztYVosODhQtL87t27nDx5kvXr1/cnUi8pZONeewwfPpz79+8jSRJz584V9FtnePToET4+PiwfNQC1yoUSHxCnsv3m5Zm/lStXisppdybfvYF9IgW29dD+fpWTFoVC0aW62rnrIyd19vLhvU2kejvbYC8pLt+bnTtU8hqfl5eHJEn4+/v3el85OTl8/fXXItm6dOkSVqtVqPApFAoHFT+NRoPZbKaiooKjR48SEBCAJElUV1eLBEym0gUGBnL16lVSU1NFImwymcSgu9lsZv369bi7u3Py5EkHT7BRo0aJTlZ2drbTrlRfYLFYKC0t5caNG+zfv58tW7awa9curE1VqHHu9fVD8SPqx18XkZGRbNq0iStXrricP+4L2tra+OKLLyguLuadd975zokU2FSLi4uLWblyJSqViitXrtDe3s7s2bP7tJ3r168zYsQIPDw8aGlpobi42CEZe/LkCWFhYWi1WtGVcrZ+6PV60cXuDHnt6ExZCw8Pp76+nqioKAoLC4mMjMRgMFBTU9PtMatUKmbNmsXp06e7FIUUCgVLly7l5s2bLrs6Wq2WdevW8eDBA+rq6igtLX0uz0xZDt1ZfNN5Ni88OIB169axbt06zGYb00KeL3WFF3lu6oXrTN16Us/GbTeRJFvVzNNNxf849pD/Z2YEZfcv4efnx4YNGxy6Op3x1+pKmUwmvvrqK9zd3Vm+fHm38xPOUFdXx6VLl9i8ebMDhcdqtfLNN98wb948jp46y5/OPuDS3Rx8POLQ+QVy98QJxo4d63K75eXlTjnKHR0dLml+4CiPLg9byoHcgAEDePz4cRcZ9oCAAMLCwnj48KFTifbOGDJkCA8fPuTEmXP8z5uSgyqM7N6+cdtNbv5qFlq1goaGhi4dprq6Okwmk+gwxcbGEhwczIMHDxg/fjx1dXW89tprPR6LK5jNZvbv309qmCcL4/2o9xogqi+LhkWgc1dz/fp1MjIy2LhxYxcaTz9eHnh7e3fp9oSHh6NSqVCpVISEhDBo0CDu3r3LhAkTHIJjQDycvdzV/NdpwfyXbyqRUGBGiZtSQrJame2Wj0Zhe2DKiY3sY+Xm5sYvfvEL9u/fL8Qu+kqLdQZnBuOygI49tFoter0eNzc3h4eiWq0Wa50889j5mNzc3DCbzQ52ETJMkpLHlgCaJXd8FAbiVPXiGsCzrpI9Hc/+vOXjtA8QdDod0dHRPQ55e3p6OlAYS0pKiIyMpLKyUghIyEIbISEh+Pr6snjxYg4ePChmHnx9fWlpaSEkJAR3d3dKS0uZM2cOJ0+eRKlUUlxcLIx9LRaL6EjJ8uWZmZkUFxczePBg8vLycHNzo729nZSUFK5du0Z6enqfkmiZyVBaWir+qaqqIiAggKioKMLCwlAqleTk5BBuLkeBc0l8+657P15uBAQEsHnzZr788ktaWlpYuHBhn+eNAZ4+fcq+fftITU1lxowZz7WNzsjJyeHatWts3rwZrVbL48ePuXnzJm+//XafRMQ6Ojq4f/++YPHcv3+f5ORkB6qeLIkOuDTrhWfJlN0BXuEAACAASURBVKs5Lbmrb09VVqlURERE0NbWhkqloq6uThj42tMMnSE5OZmMjAzu3bvXpXvo4+PDokWL+Prrr3n33XedKkZ7eXnx+uuvs3XrVnQ6HSUlJWLuqbeQhSf6IhwSFxfHz3/+c65du8aFCxfIyclh4cKFTuND+7mp51V5/FvhhUqmWg3mvwzEPnvAywH3L08Us3fdLIalDO7xi/5rJFNGo5Hdu3fj5eXF0qVLhaRwb7iiYAsWDh48yNSpU7sE43fu3MHHx4d6lT9/rIjGWl6K0eqFVu3NmP95hnnaNl6381bpjPLycmJjY7u83t7e3qWC25nmJ1emS0pKRCUHbDfI9evXne5v5MiRZGRk9CqZAhvd72e/2YXF4vyhbTKa+cW/7yTGXIqPjw9BQUEEBgYSERFBamoqQUFBeHl5dfneU1JS2L1793f2Dztz5gw+Pj6UlJSwdu3aLibH58+fJzs7m02bNgmp5X68nJB/B/ZQKBQi6AWbnG1+fj5nzpxh5cqV4n0Wi4Xm5mZhuhvppmeNxwNqdbE8bdDjpzLy9tyRXPzmPlarY4Ijd2I8PT35zW9+4/R+fl6o1WrRAbO//zsnUvCMZti5umifxNivefbn0PkzMr2uyurFGeMgJGzzYmos3DRHM9stn1DlMzEJuUtktVqFdLgr1NXVERQUxPTp03uUH9ZqtZSVlTlsv7q6WghNGI1GgoODRfXY3d2doKAgQkJCxOxBa2srgYGB6HQ6Hj9+zJw5c7h8+bLo4MuCR5WVlSgUCiorK/Hx8bGdf1UVp06dYuXKlezYsQOdToe7uzu5ubnMmDGDw4cP88EHH3R7DiaTifLyckpLSykrK6O0tFRcp6ioKGbOnElERATV1dVcv36dhw8fEh4eblMhBNZFNbG3OhiJZ0VKhYJ+I/EfGby8vNiwYQN79uxhz549rFixotfz3pIkkZGRweXLl1myZImDF+V3QXl5OUeOHGHt2rX4+fnR3NzM119/zbJly1yycVzh5s2bJCUl4ePjgyRJ3L17l2XLljm8p6CggFdffRWwCXfNnDnT6bYMBoPwlXMGOX7qHH9ER0fz9OlTMbuUkpLCqVOnnFL07KFQKJgzZw67d+9m6NChXZKNpKQkCgsLOXbsGMuXL3caB/v5+bFu3To+/fRTbt++3adkSpIksrKyHJ5pvYVSqWTSpEmkp6dz6NAhDh48yPXr11m1apVDwdF+bupFo/q9UDS/o5nluCowqjQacto9e5Uxf9/iE0ajkS+//BIfHx+RSAFCirY3uHbtGhqNpotHgtFo5OLFi4yfMp1N22+ht4DxL5vUmyXajVaOtw1Ab3ZdeS0rK3NaXelOgAJsC6s8q5Gbm0tsbKxQgQkKCsJkMgn6iz0GDx5MfX19j61rGTqdjoDYJJfnYJQUhCcO41e/+hUffvgha9euZe7cuYwaNYq4uDgxTN0ZAwYMYPLkyVRXV3Pp0qXnqt7n5eWRk5NDYGAgqampXRKpkydPkpeX159I/UjgjOYHtt+8PJ8XEBBASkoK+fn5Di715eXlYgAYoLi4GE83FdHGp4zSlDFQWcOdm9cFRcxqtTJq1CiH/VgsFtatW+eg7PRdu1Jyt0imAcv3UnfKefamwN0dQ3frX1NTk1MlOXuJeKvyWaASGBgokr7y8nJRydVoNE7v/6amJu7fv99jhbOtrU28Rz5eWclLTgDtZ8MsFgt/+MMf8Pf3x8PDQ0ixm0wmioqKGDJkCJcvX2bcuHEOiXdtbS0qlUpcq7i4OCRJYteuXcyYMYNz586hUCgIDQ0lODhYbC8tLc2hKyXLqmdmZnL8+HE+/vhj/uVf/oXTp0/T3NxMcnIymzZt4u/+7u9YvXo1EydORK/X88UXX7Bv3z4iIiLw9fWlqKgIjUbDkCFD+L9+spab/9hvJN4P232/du1a3N3d+fzzzx26wa5gMBjYt28fmZmZvPXWW99bItXU1MTu3btZtGgRkZGRWCwW9u3bx+jRo/vcVTGZTNy6dYsJEyYAtvVXpVI5xEb19fUYDAbCwsIwm81UVVW5VB6U1TZdrS/OjHvBNjclJwuFhYXExMTQ3NzsdL61MyIjI8VcrjPMmTOHqqoq7t+/73IbISEhzJkzh5ycnC6Fwe5QXl6OUql0al7cW3h6erJmzRo2b95Me3s7v/vd7zhx4oTDc+JF9Zt6oZKpJ7VtohPVGR19GJT9PjtTBoOBnTt3EhAQwCuvvOLQ0u5tZ6qqqorr16+zZMmSLkHB9evXGTBgAN/WSC4TSYVS6VJxSa/X09zc7LSF3JnmB847U5IkkZuby/Dhw6msrLTtU6EgLi7OqaqfvRBFbzFqcAxuSucn6KFRkhId9FyeYN7e3iQkJPDo0SOOHj3a6+QWbKbJR44cYfHixWRmZjp4RVmtVg4dOkRFRQUbNmz4znMs/Xgx0FmAQoaHh4eDYez06dMBOH36mWhJdna2kMrW6/WUlpbi7e1NWFgYGo0GpVJJUFAQRqMRpVKJSqXq4tvU0tLCn/70J1pbW/Hy8sIkKckzB3HbFEmeOcileaI9nNFulEqlQ8IAXeeSwEbVe+2114TgRE9wlejI6E5JDhQUGH1xd3dHo9FQW1uLRqMRksJyJ8lkMjmltVitVp48edKtepivr6+Y+5IkSVSZGxsbxXVQKBSiqHT8+HFqa2tZsWIFQ4YMoaWlBbPZzHvvvYckSahUKvLy8hg8eLCYvQLbOmQymUQHT04I4ZnaoCzBbDAYsFgsJCYmkpWVxahRoygqKuLSpUvs2rWLf/3Xf2X79u3k5ubi7+/P/Pnz+Yd/+Afefvtt5s+fT2pqKv7+/pjNZm7fvs2WLVu4fPkyo0ePZtmyZZw/f57Kykp8fX1JTU1l+fLlqFSqfiPxfgioVCqWLl1KTEwMn332mdOiqYyqqio+/vhjPDw82Lx5cxe2y/PCYDDw5ZdfMm7cOKGKe/bsWbRarfDZ7Avu3r1LVFSUiIVkX0779Uk26lUoFIIW6ypZkrv0PXWmOkNW9JNNfK1WK4MHD+6xgy5j5syZ3Lp1y2lRT6PRsGLFCs6cOUN9vetZ87S0NNRqNV999ZWI6XrCgwcP+kzxc4WoqCh+/vOfM2vWLL799luhVgsQEhHNgczqLpoIP3S8UMnUgCCdkF7sDK1a0atB2ZaWFiwWS5/bw86g1+vZuXMnISEhTs3iepNMWSwWDh48yKxZs7rMV7S1tZGRkcGMGTO6TyRNVpeJZEVFheDHd0ZvOlOtra3U1NRgtVpJSEhwUBZzJUIBNqpfZmZmr2fGFg2LQOMiOLOYzcwfEur0bz1BNvPcuHEjzc3N7Nq1q1c+BpIkcfDgQdLT02loaCA6OlrQL81mM3v37qW1tZX169c7DeT68XJCvic639cWiwWtVktmZiZgo1MMGzaMyspK4Tj/5MkToahZUFAgPIFk6qosLBMfHy/McuXAxNfX1yFI6ejo4HGrkq8Mw8kwR/PAEk6GOZqvDMOpsjoK6ygUChFAeHt7O137ZLpKTw9Ko9HIvn37ANt90FNXzGQydfueZsndpUS8CSXNkk3QQV5HzGYzLS0t+Pn5UVNTI5JQZ+qGFouF6urqbjvG8hyTvCYkJiaiVCqprq7G398fNzc3JEkS+9fr9UiSxLVr1zh48CAKhYIVK1ZQVFSEp6cnq1evxs3NjYcPH4rPhISEiOq+UqkUsvayhYRer+fkyZMkJSVhNBqpq6vj6dOnFBQUoFAo+OMf/8iFCxfQ6/UMHz6cd999l1/84hesXLmS8ePHEx0d7RDQtbW1ceHCBX7729+Sn5/P4sWLefPNNykoKGDbtm24ubkRGBhISkoKixYt+l5mWvrx8kGhUDB79mxGjx7NZ5995jTovnfvHp9//jlTpkxh0aJFfVIu7g5Wq5V9+/YRHR0thFeys7PJyclh2bJlfQ7orVYr169fFwp2er1eFIjt0dt5KXkbQI8zU52h1Wrx9/enqamJkJAQSkpKSElJ6XUy5efnR3p6OufPn3f699DQUKZOncr+/fudUrXBlizHxcWRmprKl19+2W3iBbbr9/DhQ2Fa/n1AoVAwYcIE/uEf/oGoqCi+/PJL/ut/fM5ruwo5Wa3jj5eKXijz8BdqFV00LAJX95DFYsavuajH5EXuSn3X7Lqjo4MdO3YQERHBwoULnW6vN8nUpUuX8Pb2dmrsevHiRYYNG4a/v3+3iWR3ikuuxCegd9LoLS0t5ObmiiAjNDRUUP1kEQpnwZKfnx+RkZE9eijI8HJXs23TGDzUCjRYxXnp3FVsjtdz7ZLzhaMnyBVsd3d3Vq9ejbe3N9u2bXO6yNnj+vXrmEwmpkyZwo0bN8SCbjQa2bVrFwqFQgRO/fjxQKVS4eHh4WDoCrYgX6fT8eTJExE4T506FYvFwqlTp7BardTV1ZH4l9nG3NxcYTFgMpnEQ7u9vZ2JEyeK4FgOYNra2tBoNAwaNMgmly4pOaVPcEmPs+9QBQUFicC9o6Ojy29fDu57SnxkuFrTOgflWq0WlUqFVqsV3SXAoUvuozC4VJKzl4gHW0Ipz5vJHXOj0eiQdHaGyWSioaHB5XpvL6oD8PjxY0ElTEpKcghGZO89sM1I1dXV2XyaHj/m/PnzLF++nISEBBYvXuxQsDEajVgsFkHdNJlMuLu7I0kSnp6etLW1IUkSHR0dVFRUYDAYsFqttLS0sHz5cn75y1+yefNm5syZQ0pKistCYG1tLUeOHOE//uM/aGlpYePGjaxZswY/Pz/+9//+32LY3tPTk6FDhzJ79uzvpcrcj5cbY8eOZe7cuezYsUMwUUwmE4cPH+bKlSts2LChS1LyXSBJEsePH0eSJBYsWIBCoaC2tpbjx4+zcuXK5/Kpys7OxsfHR6jQPXjwgISEBBH/tBrMfHHjCbtz9Nxp0tJqMLv0l5Ihd+6760y5MhCPjo4WAhCFhYXExcVRW1vrtNvkDJMmTSI/P99lV2n06NF4eXm5TLgA4uPjMRgMTJkyhZ07d3YbE5WUlKDT6b7z/LkzyLTSNW9s4styP9qNlhfSPPyFSqacmYPJAfen69OpLC1m586dLn/A8P1Q/Nrb2/n888+JiYlh3rx5Lh9IPSVTZWVlfPvtt067WnV1dWRlZYmhxO4Sye4Ul5yZ9QLi4d2dNLpV5cb9Vh2/v1pGIaG0GsyEhoaKGzggwMand1XVGDlyZJ+ofqMHBHD7P89hWayFudEKwdv/P9YtIjc3t9eJmT3kwAhsgfDixYtJSkriz3/+s8uZrvLycq5evcry5cspKChAq9WKwHfHjh34+Pjw6quvfm9VuH68WHBWcTSbzWg0GkHNkt+Xnp5OW1ubsDxITk7GYrFQUFCA2WwmISGB6upqgoODBf++vLwck8nk8JCOjo6mpqaG4uJiPvzwQ5RxY1wbrWKjzykUClQqFTU1NeIeMJvNTquVriqY9pCTJVe/+85rnV6vF0a7RqNR0PHs77s4VT2uwnkFEK9+NkfQ1NREdnY2CoUCi8XC4MGDBfW3u3mDlpYWl2t0e3u7Q2IsrxeBgYGCxQC2hFOlUpGSksLYsWPFZzQaDRkZGRiNRq5fv87Nmzc5ePCgUDFzc3OjsbFRFHTA9h3ICbf876ioKEaMGIFKpcLPz4/Q0FBGjhzJwIEDu6U3S5JEcXExu3fvZuvWrXh5efHBBx+wePFigoKCuH79Or/5zW8wGAwsW7aMiooK0tPTmTZtWn8i1Y9eY8iQIaxcuZL9+/dz48YNPvvsM4xGI2+//Xa3ysnPgxs3bvD06VNWrlyJUqnEaDSyZ88eZsyY4bIw3B0kSeLq1asOvkoyxQ9sCtFjf32W/3HsIfeNIfyv0wWM/fVZMopqu02m5PWtrzNT4Dg3VVRUhEqlIjExkZycnF6dk1arZerUqZw+fdppAUyhULBkyRIyMzMFM6Iz5H2PHDmStLQ0du7c6dK/8MGDB89l9dMX3KkFjcb5tXwRzMNfqGQKnpmDdR6UnZoSxeuvv050dDQff/yx01ke+O7iE21tbWzfvp2EhATmzJnT7QOpu2TKZDJx8OBB5s2bJwaY7XHu3DnGjx8vKifOEkk3peTgc+QMZWVlThcgvV6Pu7u7QzXZ/lxuPaln/D+d44YxiutN3vw+o4axvz5LgzpAdKa6m5sCG2WmsbHRYVi+J+jc1fzfb8whseMR40Nt/+/h4cHKlSs5duwYdXV1vd4WPOtM2Z/jlClTmD59Otu3b+9CUzQajezfv5/58+fj5+fH9evXGTdunPjeo6KiWLJkST815kcMHx+fLhVEs9mMWq1m2LBhguoHMHnyZEwmExcuXECtVuPn50dxcTGBgYEUFBSQnp5Oa2srOp1OUM6ys7Nt81Amk/jtlpaWCsnxkpISFN7BLulxZlQ0S+5CLEGpVDpdp+TXdDpdF4qxs/fKQb3ZbHb4/cvriLe3t+hyyZAl0uUHvkyNkaFR/EUKHovoUKmxoMHCUv9y8ZpOp0Oj0eDm5obVakWSJPLy8tBoNL0qanTXcZMTJpVKJY6vtbWV7Oxs8R45ydLr9ZhMJpqbmxk9ejRJSUnodDrc3NzIycnhxIkTeHl5cfv2bfz8/ETHTJKkLuduf9yenp4EBgbi5uZGa2sr1dXV3ZpqWq1WsrOz+fTTTzl8+DADBw7k5z//OdOnT0en02E0GvnTn/7E6dOnCQsLY/PmzZw9e5ZJkyaJAfx+9KMvGDBgAJMmTeL06dP4+fmxYsWKbkVqngc5OTlcv35dCGBIksTRo0eJiIh4bjPhwsJCJEli0KBBgC0GbGtrIz4+3kEhWhbAkrshB+rD8fB2vS7KyVRfZ6YAMS8VERFBQ0MDra2tJCcn95rqB7ZidUtLi5g16gydTsfSpUs5ePCgUxEReWyhrq6OSZMmER8f73QMwmKx8OjRoz4ZIz8Psp5UuxxleRHMw1/IiNDVoKxSqWT69OksXbqUr7/+mgsXLnRJZr5LZ6q1tZXt27eTlJTEzJkze6zsdZdMnT9/ntDQUKfZfmlpKU+fPnUQPIBnieR/WZTCaF0D/+e0mG4Vl9ra2tDr9aKDZI/OFD8ZkiQ5LDBywNbxlwXm/73SwNOKZ8lRd3NTSqWStLQ0bt++7fTvruDp6cnChQs5dOiQmDuIiIhg2rRp7N27t0/eXZIkOU18hg8fzvLly9m7d6/DkP+JEyeIiYlh6NChlJeX09DQQEREBFu3biU5ObnHBLofLz9cdabUajXx8fE0NTUJWp1Op2PMmDGYzWbRBZYpfg0NDcTHxxMSEsKTJ09EsC57k0iSRGpqqqDgWa1WFi5cyIkTJ5BaqtEonCcI9vQ4Ly8v1Gq1086TnGDU1tb2yJm3nxuCZ10ouXLs7e2NUqkU8172sL9fnCU+ocpWVrnfZ6z6KamqCia4l7PK/T4Blmf0vI6ODnEvq9W2Aou7u7sIaHqCq2TK/thkKp4kScLQXP7O5KS0vb2du3fvCjn83Nxc3nzzTWbNmiWUHKurq2lsbKS+vp7q6mrCw8OJiYlxSGrtTY4BioqKaGhowGQyoVarGTFihNMim8Fg4MaNG3z00UfcvHmTyZMn8/777zNq1CgR1BUWFvJP//RPVFZWMnv2bBYvXsyXX37JrFmzGDlyZI/Xqh/96AyLxcLp06e5ceMGK1eupLa2ljNnznxnJVF7yBLoq1evFnOOt2/fprq62uUoRW9w9epVJkyYID5/584d0tLSUP5FuMvlKSiUHHtQ4eKPtmTKYrH0ODPl7BqptDoeGvz5H0ceUOMziKzcAhISEqioqOhCIXcFpVLJ7NmzOXPmjEtmQXx8PKmpqRw6dKjLcSgUCkEzlGXXAwIC2Lt3r8P2ioqKCAoK6rHg9ryoqKhg9+7d/x977x0d1Zlm/f4qq5SzBJJQFgiJDCInk5NNMjbggO1psMehu+dO9/q+9d37rXt71kz3nTvdq3u62+1x223AARNMzgITTMYWCIEECijnrJIqV537h/q8rlKVAqFnNVj7Hxup6tSpUp33vPt59rM3NYW56Hppwj8J4eFPJJnqD0lJSWzevJny8nI+/fRTIfszGo2YzeaHcpsxGAxs3bqVjIwM5s6dO6ALuzcyVV5eTl5eHkuXLvX4nSRJnDp1ijlz5nitePjp1EyJcPJMmIEt80f16bgkz0t5O1d5s+AK+XGHb9Xg7GWBkVBwvcEpLrbExETKysp6XVTHjx/P7du3H4gAQXdmQkxMDKdPnxY/mzhxIhERERw7dmzAx3GV+fVEUlISr7zyCqdOneLChQvk5eVRUVHBkiVLgG65QWZmJtu3bycrK4vZs2cPEqlBeLVHl8mUUqlk1KhRbt2padOm4XA4MBqNmEwm7t27h9PpJD09XQT93r17F7VajSRJxMfH097ejlKpJD093S0DKicnh5dffhlNbR70IvRT0C2fg+6u0bx584SNsOyANxCziYFAtnHv7OwUrp894eqKJxdwem5A9BolaeomJmqqSVbUo1E4RYVUPs+EhAQCAgIYMWIEJpPJ7TN3e/8P8L56rltuQcI2m5C92O12bDYbhYWFSJLEkCFD2L17tyi0HDp0iICAABITEwkMDEStVgsb9Lq6Oqqqqpg1a5b4/Hu+rsVioba2FofDgdVq9ehKGQwGTp06xe9+9zsqKytZs2YNr732GiNGjBDvXx7a/+yzz9DpdLz33nvExsby+eefs3z58gHn/g1iEK4wGAxs376dxsZGNm/eLKz3q6qq2Ldv34Akwv1BtkBfsWKFUNJUV1dz9uxZ1q1bN+Csq56orq6mtbVVFK1tNhu3b98WM+p9GXvZJAU7j37N+++/z/bt29m7dy8nTpzgwoUL3Lx5k87OTqxWq3Df7AmtVotKpfJwRb1e1sKUX53mgjGKbddqOFzjw6t7q7hZbSA5OXnAUj+A1NRUAgICyMnJ6fUxzzzzDAaDgevXr3v8Tpb6wffSQJVKJQLJoTuo928h8ZNJ1I4dO0hMTOTXP96AWu2dTfU1yvL3gqeSTEH3hufll18mPj6e//qv/+L+/fvC2e5BNxHt7e1s3bqVMWPGMHv27AE/zxuZslqtHDhwgOXLl3vtDBUVFWE0Gr0aUsiQKyv9vY8HMZ8AxCzCtfxSTL06BzqwagJF5T04OFjYFntDUFAQsbGxYo7kQbB48WLy8/MpLy8X57d8+XIqKir6zFFwRU+ZX09ERUXxxhtvkJuby8GDB1m9ejVarZb29nbu3btHbm4uc+fOZfLkyQ98/oN4OuHNHl3e2ANC6iffjOTNrl6v5+TJkygUCsrKysQNSq1WY7fbiYyMRKf73r0uODgYg8EgujHBwcFUVlZy5swZUuJjWaAp9CqPW6AtQqPoXneMRiPZ2dnihunaqfW2/jwoZMmfw+Ggs7PTrdvSEzqdThS2rFarkA0qFIpeZxNkiaDT6aS4uJjGxkbu3bsnzBxUKpXHa/ZVLR+Ilby8cfP19XUjarJ5hMPhoKamBqPRyP3792lvb2fUqFHMmDGDiIgIOjs70Wq1xMbGMmvWLKKiolAoFJw9exatVuuRwSOf05+vNXDPFkZKeqYwmaivr2f//v28//772Gw2fvSjH/H88897fF7Nzc38x3/8B3fu3GHkyJH87Gc/o6WlhZ07d7J69WpGjBjR62cyiEH0htLSUj788EOSkpLYsGGDWDN8fX15+eWXRcamtxiFgUK2QJ86dar4nhqNRnbv3s3y5cu9KmsGiosXLzJlyhSx1ty9e5ehQ4eKLktCuB/6Phyin5s3nTVr1jB9+nRSUlIICAjAZDIJoyGTycSuXbv4t3/7N/793/+dP/7xj2zbto2vvvqK48ePo1KpuHbtGoWFhdTU1FDT0MymT7pVP1Zn977E4gCLU8GmrddISBm4RTp8H+R77tw5DxmxDJVKxZo1azh37pzHyEViYiLl5eWCDCqVStasWYPBYODYsWNYrVbu3bsnjH8eB3qSqHfffZfJkycT4q/v1RPhSQgP//s+u0eEUqlkzpw5DBs2jH379hEREfHAgWNtbW1s376diRMnPrDWXN5kuCI7O5v4+HivoXZOp5NTp04xb968XmdyzGYzhYWFLF68uN/Xr6mp6ZWU9SRTTqeTrq4u9u3bh00RjY86yGuIrq9WxbAwX+rq6oTNs+zq5y3LCrq1vd98840Y+BwofH19Wbp0KQcOHODNN99Eq9Wi0+lYt24d27ZtY8iQIf0Ov/ZHpqBbCqXT6QgMDOT8+fOsWbOGU6dOCVmVnHExiEFA3zI/gOjoaHx8fCgvLychIUFYXNtsNvLy8khLS6Oqqophw4YB3TcXHx8fIiIisFgsQvKnUqm4e/cuKpUKh8OBRqNh7ty5nDt3DqfTyeSkeEJLcyl1hNIh6Yj2VxFlrhJEChCdFZmkAUKa4ionkS3fHxROp1OsVREREbS0tPTahZZv9nKRSV4bJUkS79mVgGo0GnHOERERGAwGMbMEeK36ajSaXl+/3ulPtjUVie65MjUOrtnjWKAtIkrZ6fH89vZ2j7VDoVCIrlNwcDBNTU3o9Xru3LlDfn6+eE9ms5nKykphgR4ZGYmPjw+SJInKs06no8Kk+f6cOlWoCeDGLS0+0Xl0luZSX19PVlYW7733nlcXM0mS+Oabbzhz5gxKpZINGzaQmprK3bt3OXToEC+88IL4ng1iEL2h02Ln8K0aypq6SAj3Y9moIdy8foVr166xatUqrwG5Go2GdevWcfToUbZu3crGjRuF2+VA4XA42L17N8OGDRNjDU6nk71795KRkfFI997m5mbKy8tZuXKl+NmNGzfcpK7LRw/l/z6Y5+3pKBUK1k5KxE+nFnsdGZIkkZeXh0ql4t1330Wr1Qozm87OTvFftVpNRUUFlZWVdHV1caVRhcUaAV7mXR1OiXtmfyorKzGbzQOOXImOjiY1NZULFy4wf/58r48JCwtjwYIF7NmzIvlzygAAIABJREFUhx/96EeiYOTn50dISIjIvYLuv+uLL77Itm3bOHDgADExMQ/8d/WG2tpazp07R01NDdOnd5PUnh1HeZTl8K0aypqNJIT5snz00L97IgVPcWfKFUlJSWzZsoWGhgZKSkr6tcWW0drayrZt25g8efJDDe2qVCq3zlRJSQlFRUUsWrTI6+Nzc3PR6/XCPtkb8vLySElJ6beqLElSr+YT8D2Zcjqd3L59mz/96U90dnYyZcoU/u3NtahU3r8aCgUsHB4mTCjge6lfb0hNTcVgMAw4HM4VI0aMIDY21k3uFxkZyYIFC9i1a1e/mVG9zUy54ty5c/j4+PDWW2/h6+vLBx98wO3bt1m+fPkgkRqEB3ozoHB1XRs9erTonhYUFBAUFCSCJuvq6hg5cqTYaLe0tNDZ2SlsZx0OB0lJSRgMBsrLy91yp9LS0vD19RVGFL5alZDHxVkrBZHS6XRu80mu10l8fLyHa9NAiZQsz3MlGXJBo6WlhYSEhH6P0Zf0Frpv5k6n080CvLW11YM4BQUFedyMe5vXsknKbsv4fqzkexKxnucpz46ZzWbq6+vR6/X4+voydOhQsfnR6/UoFAr0ej0VFRXY7XZqa2spLS0V66ROp8Nkl7yek9Hq4OdHykhKS+fHP/4xM2fO9EqkjEYjf/rTnzhz5gzh4eH8/Oc/JzU1lby8PA4fPszGjRsHidQg+oXsZveLw/l8cP4+/8+hO0z8lxOcvlXGj370I69ESoZSqWTZsmXCIfdBDKIkSeLYsWMoFAqWLFkirrXz589jt9uZN2/eI72vS5cuMXHiRLFmtbS0UF9f71bIlqwmluhL0SkldH/dJuiUoMHB8oAKTAbvYcU2m010xWXJtJ+fH5GRkWJOaerUqcTHxzNq1Cg2btzI5s2bSRs/rVfjILPNSXW7lcTERK9y6b4wd+5ccnJy+gxXHjNmDFFRUWRnZ7v9XJ6bcoWPjw8vvfQSxcXFj6xgkDtRX3zxhVsnqjfp5pMaHv6DIFPwffchMTGRDz/80OPL0xPNzc1s3bqVadOmPbTEy1XmZzabOXjwIM8++6zXioPs+NVf9ocs8esP8mavt0ySrq4uOjo6+OCDD7hy5QqLFi0iKiqKIUOGEOCj6bPdmhA7xI1MySYUvclrZCOKB7FJd8WSJUsoKCgQcj+AsWPHMmzYMA4dOtSnrKe/jVt5eTk5OTmsXLkStVpNSkoKHR0dqFSqPgP7BvHDRX+dKYBRo0Zx9+5dbDYbVVVVxMXFidyi1tZW8d26cuUKEydOJDAwEK1WKzYjqampmM1m/Pz8RFXUarVy8eJFt26s6+ZfLhq4dngyMzM9ZnRcr6MHhUzKJEkSG/zW1lbh4ldcXOz2+N4yYSRJYsyYMaxYsQKAIUOGIEmSKED5+/vT3Nws3pOrg6DsIKZWq93cxLRaLQ6Hw43Uyu+71BHar5W8N1gcCFlgkTMCm6REp9Oh0+lITk4mKioKPz8/zGYzXV1dQn4IuHXfVCqVW1HHYrFQbAns9ZzUGg2ViohenQrz8/P59a9/TWNjI7Nnz+btt99Gp9Px3XffkZ2dzSuvvPJQNtKD+GHB1WxKnh0y2ZxYnAp2N0Sg0vW/kVYoFMyePZuZM2eydetWqqqqBvTaly9fpqqqirVr14pro7i4mJycHNasWfNIjrkGg4H8/Hy3vdvNmzcZNWqU2zV1+vRplk4azv9MN/DW5HAmB7QzVVfNL8bbWT8/i61bt1JZWelxfNkN2dvMpitc7xVGo5GO6hLUeDfM0SokEsJ8H9jVD7r3eZMmTXIrOveEQqFg2bJlFBUVuZE117kpV8jraHl5udsM8EBRW1vLzp07+eKLL0hISOC9997rk0Q96fjBkCnZJWvx4sWsXr2aAwcO8PXXX3s1iGhqamLbtm3MmjWLSZMmPfRrupKp48ePk5aW1muV5+rVq8TGxvaZa1BbW4vJZOqzUiSjN/MJSZLIz8/nxo0bVFVVsWDBAt544w1SUlLcFoXeLOgnJYSKrCl5oxIYGIivr68bweoJ2Yiiv06SN+j1euHu5/r8JUuW0NjY2KdbYF8yP5PJxN69e3n22Wfx9/cnJyeH48eP4+vry7Rp09i6dSsVFRUPfL6DeLrh4+MjjAJk9CRTAQEBxMTEcPfuXTo6OsjIyKC0tJTw8HCUSiW3b9/GZDJx584dJk2aRFRUFMXFxUiShFqtFoRHzmaC7u9rRUWFkFy4rl3yvCN8/52fP38+FRUVjBw5ss+sor7g6j7X8xhydyssLAyLxcLo0aNFLh50r39ms7nXQPP58+dz8eJFFAoFjY2NIjxXq9USGRnJhAkTxGYlKCiI+Ph4N+lfU1OTW0dN/nv0lFarVN1W8f1ZycvmEDLqnf7stIzhqj2OPMcQrlhj2WkZQ5VFh16vp76+nurqaiorK91mRi0WCzqdThBdX19f9Hq9x9+rr3PqzQrYZrOxY8cOdu/ejUaj4c0332TOnDlA9+b0m2++YdOmTY89+2cQTyf6crOTeLBsn/Hjx7N8+XJ27NhBYWFhn48tKCjgypUrrF+/XhRE2tvb2b9/P2vWrPHqZPkguHr1KqNGjRJdFafTyc2bN93s1auqqrh//z6zZs2io6WRl6Yl8+bUIaQoGwjy82HcuHE899xzfPnllx6dIrPZjFar7ZcY+Pv7097eztWrV/njH//IpCglWq33AokkOVmUHkFaWhqlpaUPvFeaPn065eXlVFdX9/oYHx8fVq9ezaFDhwTJGzZsGA0NDR4zV3fv3iUxMZGXX36ZkydP9vs3lVFXVydIVHx8PO+99x5Tpkx5akmUjB8MmZJnfJRKJYmJiWzevJnq6mq2b9/uVmVubGxk+/btPPPMM49sIyuTqbt371JRUcGCBQu8Ps5oNHLp0iWeeeaZPo83UOMJ8DSfkCSJgoIC/uu//osLFy4QFhbGwoULSU1NdTueawW7t3ZrQEBAt4W6y0ZGnpvqDYGBgcTHxz+UEQXA8OHDiYuLc6u8aDQann/+ec6ePUtNjfdFvzcyJUkShw4dIj09ndTUVC5fvsz58+eZMWMGwcHBPPPMM6xatYqdO3e65c0MYhAKhcJD6teTTEG31O/q1atIkkRSUhL37t0jNDQUlUpFTU0Np0+fZvjw4fj7+xMZGUlRUREKhYKQkBBx4zKbzYJQ2O12UlNTqaio8Ohu9+zObtiwgW+++YalS5eSn5/vNaNFoVD0acgg51rJx+9Nj19TU0NKSgrR0dFumw45D8pb51ipVHLgwAGCg4PdOkoySS0rK6OiogKr1YokSbS3t1NeXu5G6Fz/Pzo6mri4OMCzG+ZwdFvFy0YdPSFbycvnqlQq+5QFnnYMZ8HS5SxdupSZM2eiVCpRqVTCxU/uTtntdnx8fFCr1WI+LS4ujsWLF7Nw4UJigrS9npM3K+Dq6mp+/etfU1hYSGpqKj/72c+IiopCkiTOnj3Ld999x2uvvfZIA/uD+GGhLze7h8n2GT58OOvXr+fgwYPcuHED6O5+fXm9gl8dK+DL6xUUllZw+PBhNwt0u93O7t27hTTuUWA2m8nJyXEbzSguLiYwMFAUGWSJ4bx581CpVBgMBkJCQkhNTcXpdIpg8dTUVDZs2MDhw4fdlDUymerNFl2G0WgkLy+PwsJCXn31VVatWMqmBCMaHOjU3fsSDU58NUo2xrbTXF+DXq8nLi6u1/yo3qDVapkzZw4nTpzoU60TFxfHpEmT2LdvnyjexcbGeuzf7ty5Q2ZmJhEREbz44oscOHCgT1WDTKI+//zzHxSJkvGDIVM986X8/f3ZuHGjm+yvvr6e7du3M3/+/D7d9AYKOR/myJEjrFy5stcL7/z582RkZIgQNW+w2WzcuXNnwOdVU1NDTEyMGHj+8MMPOX/+PHPnzuVHP/oRSqVSVIJlDNTlUKFQEB0d7VXq1xcmTJjw0FI/6Hb3KygocHudsLAwli5dyu7du72md7sOyLsiJyeHlpYW5s2bx5kzZ8RG5Pbt22IQNjk5WVRlLl269FgzNQbxZKOn1M8bmRoxYgS1tbWiK1FRUUF9fT1TpkxBr9dz8+ZNIUORpSQREREirFcuWhiNRtHVuHPnDrGxsX265qnVam7evMnYsWM5evQo0dHRXm1x6xx+bp2Xq/Y4dlrGUO/0F9LAMWPGAN3X/IkTJzyOER0djVKppKioiLNnz3rtTntbV+x2O8XFxVRVVWGz2ZAkCYPBIDKxnE4nnZ2dHjlQkiSJm7Nr5VbOaAI81gG1Wk2iqoXeVjdXK3mZCPUlC7TZHPzysxNkZ2dz9uxZHA4HsbGxdHZ2YrPZ0Gq1WK1W1Go1U6dOZdasWSiVSjIzM1mwYAEFBQVcv36dVG1H7+fkYgXsdDo5ceIEH330ETabjdWrV7NhwwZhvZ6dnU1BQQGbNm0Sm9NBDGIgSAj3E1L+nnjYbJ/Y2Fg2bdrE+fPn+fP+rz3msZb9+SZJkxe4FXtPnjxJQEDAYwmU/vbbb0lJSXHLRbpx44bbeMTNmzdRKpWMHj2a5uZmgoODUalUhIWFIUkStbW1olgWExPDpk2buHjxImfPnkWSJCwWS5+dqZaWFr788ktyc3MJCAjgpZdeIjIystuJtOk+P0tr5Z9mxTE1sIONI3X8aoqSuZnDxPjJw0j9oHv8wWq19vvcmTNn4nA4uHjxIuAp9evq6qKyslLM78fGxrJ69Wp27drlMfv+QydRMn4wZKqurs4jrFepVDJ79mzWrFnDvn37+Pjjj1mwYMFjy+NQKBS0tbUxatSoXgeBW1tbuXXrVr+W6wUFBQwdOnRAN0vZfMJkMvHnP/+Zs2fPMnv2bDZv3szw4cNRKBSYTCav1ugDJQyy1E9GQkICFRUVfQZoJicn09XVRW1t70F4fUGv17N8+XIPuV9GRgZpaWleg+m8daYaGxs5ffo0q1ev5tSpUxQWFvLaa6/R0dFBZ2enm41wdHQ0r7/+Ojdv3uTYsWMDCggdxNOPnp0ph8PhQabkyqWvry8lJSVERHTPwMyaNUsQhba2NoxGI6WlpWg0GvR6PWazGbvdLgwWrl+/LgoC8g1Zni+SuyIyFAoFERERtLa2Ul1dTUdHBwaDgRkzZojHpKWlofUN7NOQITRyCHq9XtyUe1sX6urqsNvtggx5e1xfa4rVahWdFEmSCAoKEp+jw+EQs1jye9RoNB5FIOiW1vVmcGO329EonCzRl/ZpJe/j44Ovry9arbYfWaCSoNgUEdopE161Ws2IESOYOXMmkiTx5ptvMn36dC5cuIBarcZisbBnzx6GDx/e3dlva2aRTwm+GmWvVsCtra384Q9/4MqVKwQHB/OTn/yEUaNGAd0k6/Dhw1RUVLBp06bH4rg1iB8Wlo8eSm811EfJ9gkPD+eFja/w/13r8pjHskkq/vfXdXRZugtCeXl5lJSU8Nxzzz1y9p3dbufq1atupKyzs5PS0lIRRWE2m/n666+F6UVjY6NwIq6rq8PX15fo6Gi37KawsDBef/11CgsLOXTokLjeexbILRYLp06d4qOPPiImJoaXXnoJu90uAtmPHDmCVqtl3qwZLEsPYV5EF/+4aCwl9/JJSkoShGbEiBEUFxf3WTTzBjnI99SpU33mfymVSlavXs3ly5eprq52e23onslMTU11e3/JycksXbqUL774gpaWlkES1QM/GDLVszPlCq1WiyRJhIaG8t1333k4dT0s7t+/j81m61O+d+bMGbKysvq9Ed64ccOrVKcn5GBPu93OxYsXmTlzJlu2bGHEiBFuC5W3nCn5+QNBVFSUWxXa39+fgICAPomSUqlk/Pjxfc449Ye0tDTi4+M5deqU288XLlxIZ2cnly9fdvt5TzJlt9v56quvmDt3LpcuXaK2tpZXX30VPz8/rly5wpQpUzw6WUFBQbz++us0Njaye/fuBw4gHsTTh4F0pqC7oyxndWg0GjIzM1GpVOh0Onx9fTl9+jR79uzB398fpVJJXV0dSUlJYn5HqVRisVhEh7WyshKFQkFQUJCQ0bneNP38/GhsbGTEiBGUl5eL2R3XzlRzczNxM55DofROFiTgcrUVo9E4YN2+fI0NZEPvSoZ6bp4mTpxIcnKy6OZlZmYyY8YMnE4nQ4YMwWKxeJ2nkO3KlUoloaGhHn8LtVrNUK2JF3S5TFZXMkZTx8/nJbFenyds0WUTCavV2qcsUKNwYm2uISAgALVazVtvvYVWq0WhULBgwQLOnDnDxIkTCQsL4+jRo7S3twPdrqcvvPACFy5coLW1Fa1Wy+ZV87j+vxZ4zKZOjA/h22+/5Q9/+AOtra1MnjyZ9957T7x3p9PJ/v37aW5u5uWXX+7V6GMQg+gL/jr13yzb52ypAVUvBiqS1D2P1dDQwPHjx1m3bt2ArcD7Qm5uLtHR0W4ROLm5uaSnp4vZrHPnzpGamio6Y42NjcJJtaqqiiFDhqBUKsnJyXFbW/39/Xn11Vfp6Ojg0qVLIr6h+/1I5Obm8sc//pHOzk7eeustZs6cSUhIiAg0P3XqlIhIkB1alUql+JnT6aS9vR2DwYCfnx/R0dH9GqV5Q3JyMmFhYVy7dq3PxwUFBbFs2TL27t1LcHAwFotFuAH2FtSbkZHB2LFj+eCDD/jss88GSZQLfhBkymq10tra6jUHqaqqis8//5wVK1awZcsWkpOT+fDDDz1cqR4UBoOBy5cvixuuN8h2uf21tltaWmhoaPCaTSVDkiSKi4v5+OOPOX/+PNHR0bz55pukp6d7NaEwmUweN+AHqQr1lPnBwKR+48aNIz8//5FC/hYtWsTdu3fdNL4qlYq1a9dy6dIlN9OIntbo2dnZBAcHU1JSQmdnJy+//DI+Pj60trZSWlraq4xStgrVarVs27atO0eihxa80/JgVaRBPLkICAjod2aqvb0dh8OBw+GgsLCQxsZGMjIyqKqqcjN0KC0tZdWqVWg0GoKCgnA4HAQFBQnpmuxkJ9uj6/V6dDqdKHzIr6tQKLDb7cTGxnL8+HH8/PyIi4vD6XS6XW9Go5GCyiasvTRZZUMGGa7rZs9qrHzO8lriLZep5+cWEBCAv78/vr6+6HQ6N/OGsWPHMnbsWIKDg7Farej1ejQajZDe2Gw2mpubPQiVHOA7ZswYWlpa3IooarUavV6PzWZDo3CSpm5ivKqK2otfoZK8X7N9yQKVSiUTIrur7xMnTkSj0VBbW8usWbP46quv0Gg0zJgxgz179pCTk0N4eDg/+clPCA8PZ+vWrZhMJgICAsjMzGT06NEes6kKh5Vt27Zx9OhRVCoVr732GosXLxbvR54vMZlMbNy40c3RcBCDeFD0ZTb1KChr6sJk877IGK0OSuo72LVrFwsWLPDIcXoYOJ1OLl26xPTp08XPJElyk/g1NjZy69YtN9v1pqYmscZVVVWRnp5OTU0NwcHBHsYTOp2O9evXo1QqqaqqQqVSUVVVxccff8z169dZt24dK1euFOuTRqNBpVJRWFhIYWEhFouF6dOnCzmxvDfJyMjgzp07JCYmig7Rw0r9ABYsWMCFCxe8jj64YuTIkcTHx3P8+HFhkd7R0UFjYyPJycluj5U7UTdu3CAhIQFfX1/GjBnzgydRMn4QZKq+vp6IiAgPN6qKigp27NjBypUrRedm1qxZrF27loMHD4rg1geFbG4gV6F7e0x2djazZ8/ud4jxxo0bjB492uuxJEmipKSEv/zlL5w4cYIpU6aQnp7u0YlyhWzr6W2WaKCdqfDwcFpbW93a0P3lTUH3ZiohIYG8PO9BeQOBLPc7ePCgW+U8ODiYZ599lq+++koMfLtaoxcWFlJQUIDZbEalUrF+/XqxEFy9epVx48b1uTFRqVSsXLmSpKQkfvGnz8n6t2yhBf/F4Xwm//IU18taHvp9DeLJQWBgYL+dqTt37qDRaIT7pr+/PxEREVy5coXJkyfzzDPP0NbWJq5Ds9lMXFycqJR2dnaKm7G8DskdKdlCPT4+XlyDarUas9lMbW2t6Lb3zLqD7u5PWd71Pg0ZYoK+X5MaGxuF1M5ut4vXk2dClUolJpMJjUbjsab0XIMMBgOtra0kJyezZcsWj7Xv6NGjKBQKGhoagO4q8tdff41KpUKj0ZCS0i2vk81vlEoler2eV199FbVaLQxuZPmdWq3GbrdjMBg8Pge1Wi3+Zj3XVl+tikU+JW6yQA1OtAona8PreWbmdCorK5k1axZnzpwRLoNNTU3Ex8fzwQcfUFRUhI+PD6+//jq5ubns2bMHh8NBeHg4/v7+LFmyxOOzLy4u5re//S3l5eUMGzaMf/7nf3aTiFutVnbs2IFCoeDFF18c3MgM4rHgb5Ht0988VmtlIfHx8Y9lPh263ef0er2bgYXcyY+Li0OSJI4fP87MmTPduuNNTU2Eh4cjSRJVVVWkpKQQGhpKYmKiVxWNSqUiKSkJvV5PWVkZX375JRMnTuSNN97w6sbs7+/PsWPHyMrKorOzk5EjRwLu89yZmZnk5+eTmJjoNjdVWFjYp1yvN0RGRpKens65c+f6fezixYupqqrCqdSy41o5/2vXNVpC0jH/9WW9yfnWr19PSkoKX3zxxUM5ND+N+EGQKW8Sv/Lycnbu3Mnq1atJTU11+11CQgJbtmyhrq6Obdu2PbDs78aNGxgMBiZNmtTrhSBXAPrLjPJm6QndpOf+/ft88skn4kJ96623yMzMpLa2ts+MpN4kfg/SmVKr1YSGhopND3w/N9XfxS8bUTyKoUNaWhoJCQkeAXRpaWmMGjWKvXv30mGycr7azs67ZrZ+U8ieA4fx8fEhJCSENWvWiA2U2WwmNzd3QHliCoWCrOmzONgei9HqFFpwo9VBl8Xx18yOwQ7V0w5vMr+eG/KioiLCw8NRqVRYrVYyMjJoa2ujtLSUcePGodFocDgcREVFsWfPHsaMGYPJZKKtrU24U8pSPvjrdy8ri46ODnEDk6UxWq1WyE9tNhvjxo1j0aJF3Lt3z4PgXLlyhSR1a5+GDOFd3a5NshTGVU4obwLk82ptbQW6q7A9w397EhilUiliFD755BNBaOS1Jy8vjy+//FK8VmJiIikpKcTHxxMaGkpJSYk4pkqlQqVSYbFYiI6OZsSIER4S3L5mDux2u+hoyTIf+X0olUqyEsN4QZfLkqguRqlqme5by0v++fz8tTWcOnWKhQsXolKpuH37Nunp6Vy6dEkYUKSlpSFJEitXruTrr7/mwoULOBwOhg4dSldXF+vWrXMj3zabjf379/PFF19gt9tZsmQJmzZtciObZrOZzz//nICAANauXfvQdveDGMR/B/qax3I6HcQrmr0WFB4GkiRx8eJF0fWRIXelFAoF9+7dE/uy78/DSUtLC+Hh4bS1tQlXzuTkZOx2Ow0NDW6dc+heN8rKyujo6MDX1xeFQkFUVFSv+ye73U5wcDDV1dVMnTpVrMeuZCo0NJSgoCB0Oh33799HkiQCAwMJCwvr0yW5L8yZM4dbt27R0tJ3gVer1ZIydRH/86qT/RVqDpVY2F+hIutfs/nVx7v5/PPPGTZsmJucT5Y0h4eHs2vXrocifE8bfpBkqrS0lF27drFmzRqPVqYMPz8/Nm7cSEpKCh9++OGAbSrb2to4ffo0q1atQqvVeu1syfpZ2ZazLxQVFREcHOwmtSkrK2Pbtm0cOXKEiRMn8o//+I+MGjVKSIG8mW24oi8y9SAEp6fUT6/XExoa2qtNuYzk5GTMZnO/j+sPixYtorCw0GOxeeaZZ7hvUJD1r9nsLHRw+L6Vfz12j09aUpDCknj22WfdNpjfffcdqampvQYc98ThWzUoegnqk7Xgg3i6MRBr9Pr6ehITE6moqBA3x2vXrjF27Fi0Wi2HDh1iyJAhtLe3YzabSU9Pp6GhAZVKJZyo5A6LDNn1T6lUolAoxDXkShrUajWVlZUcP34cjUYjBqBl2Gw2tEqJhbpi986LwulmyADQ0NCAQqEQrk4yXEkedK9psiGDK3puMGTL8Dlz5jB06FDR3XY91qJFi8T7b2tro6ysjNLSUlQqFaGhocJxSzb9cDqd/PKXvyQnJ6fXDY0sjZQ/O51OR0ZGhngfruuYPOeWnp6ORuHkvWUTmaipJtFZy+iRwykoKMDPz4+RI0dy5swZJEni5s2bYoMxYcIE8vPzSUlJ4dtvv6W0tBSz2UxMTAxtbW2sXLnSzWmstraW//zP/yQ3Nxd/f3/efvttsrKy3M7faDSyfft2oqKieO655x4p0HQQg/jvQG/zWL4aJUt9y9j4wtpeRyAeFGVlZVgsFrdRCIvFQkFBAWPGjMFms3HixAkWL17studqbW3F398fjUZDVVUVMTExKBQKUlJSuH//PuPGjRPdKdkZ+f3338dgMJCSkkJ6ejpLlizhs88+8xp8W1NTQ1dXF7GxsVRUVLgVz3s6DWdkZFBWVoZOpxPr0YgRIx5a6ufv78/UqVM95st7otNi5/84VOJmRmS2SxhtTraW+fLGln9k6tSpHl1whULBihUrUKvV7Nu37wdvzvWDWJFdyUVJSQl79uzh+eef7zf8VqFQMHPmTJ5//nkOHz7cr0OKJEkcOHCAadOmERkZ6Rba64pbt26h0WjcXON6g6vet7y8nG3btnHw4EHGjRvH22+/zejRo90uyMbGRgICAvoc5jQajb0OLD8Imerp6Af9501B9+c6fvz4R7JJh+6qvCz3c5sJsTnZVR+O2QGWv378NkmJDRXvF+CWq+FwOLh27RpTp04d8Os+7myOQTx58Pf3p6urS1zfPcmU1WrFZDIRGxsrTBOKioq4efMmWVlZXLp0CZPJxJIlSzCbzQwbNoyCggKam5tRKpU0NTUJXb1r1pMsC3Q6nW6ELj4+XqwDs2fPprW1VWShuHZ+ZDidTsbGBPBK4F2maKsYra5jqraaF31uMT6u2zFUnsHS6/WUlJQIAtcbeiscuUpnY2P46xpsAAAgAElEQVRjMRgMfPnll+Tn56PRaEhOTnYr7mRnZ4vXks0boNvyPCgoSEgcAY+gSVna1xPDhw8XBSmn04nNZnPrLML3Nu/QLae8efMmgPiM9Xo9vr6+fPPNNyxevJjbt28La+H4+HjCw8MZP348e/bsQalU0tjYiMViob29XQSojx8/XighnE4n58+f56OPPqKrq4vRo0fz4x//2CMiw2AwsHXrVpKSkoQD2SAG8SSg5zzW/1iQwqtB93hzzQJCQkIe2+tcvHiRadOmue2Fbt++TVJSEn5+fly+fJkhQ4Z47Pl6mk/IMr3Y2Fja2toYMWIEt27dorq6ms8++4zTp0+zbNkyYRqh0WgYOXIk69at46uvvuLWrVvi2A6Hg4MHD4o90aRJk9wIiTcyJQflylK/kSNHcu/evYcmKlOmTKG6urrPfKi+gpuVShUnChp7fa5SqWTt2rV0dnZy7NixH3R8zFNNpjotdj6/UsbRag1nK63k5t9j7969vPDCCyQkJAz4OPHx8WzevFnI/lxv8K64du0adrtdbMy9kSm73c6ZM2dYsGBBvzdFg8FAeXk5gYGBbN++nf379zN69GjeeecdxowZ47U62TOs1xseh8wPPB39YGBzU/C9EUXPzdCDIjU11UPud/hWTa8ZMT07R/n5+YSGhvbZyZNhtVq5efMmNYW5DxS2OYinDyqVCr1eL2bzelqjFxUVCVLk6+vLhAkTuHfvHvHx8QQGBgrHt5MnTzJhwgQMBgO3bt1CkiRsNhs+Pj7i+nYtfEyZMkW8jlxACAoKIjIyUqw1lZWV2Gw2nE4nZrOZqKgoj9mkwMBAhg4dyuQJY0lTNTFBXUWKsoHhyQnU19eTnp6OJEmEh4djNBqx2+34+fmJm6UcfjkQuBY6qqurCQwMJDQ0lISEBCZNmkR1dTVWq1WQCFl6I4fousoJe1Z/5d/J8sH58+czbdo0/P393TZOFRUVQo4ok1S5y+d0OhkxYgStra3ieE6nk9raWpRKJcePHxfPKy8vJzExkYMHD3L8+HEUCgVDhgyhs7OTZ555hhMnTmA2m4WrYH19PZGRkQwdOhSVSiUiMNra2vjwww85e/YsSqWSF154gVWrVnkoFdra2vjkk08YNWoU8+fPHyRSg3jiIM9j/WxhGty/xKRxoz063Y+Curo66uvrPSJt5EJ0e3s7V65cYeHChR7PleeloHttksmUSqUiMTGRmpoadDod27dvJy0tjTfffJPk5GSxpsnranx8PK+++iqnT58WmZSXLl0iICCAmJgY6uvrPbrNDofDbQ8XFBREREQEfn5+gkyFhIQQEBDgZqr1INBoNMybN4+TJ0/2SnQetTisVqtZv3491dXVnD179qHO82nAU0umrpe1MPmXp/iXIwXk2qL4lyMFrP30HiNnr+g186kvyLK/tLQ0/vznP1NYWOj2++bmZs6fP8/KlSvFBeKNTF27do3o6OgBncP58+fRaDQcOXKEzMxM3nnnHcaNG9enxONRyBQ8WGdKlvm5PmfYsGFUV1f3m4/g7+9PcnKyWyXnYbFo0SKKiorERmugi4MkSVy+fFmE9HqD0+nk/v377Nu3j9/85jcUFBTwypxMtFrvg9+Pks0xiCcLrp2hnp2p/Px84QbV3t7O6NGjRQaUbLIQEhKCSqVi8eLFwigBusmT0WgUjlA2m01sspuamsSaIl93gYGBYoZKoVBw9+5dodOX5SuuRYvg4GDsdjvfffcdN2/eRJIkRo0aJXKvJEkiOTlZWLO/9NJLQHdxRyYt/enwe0NUVBQzZsygpaWF5cuXM3/+fCHNce04yZDJZW/rUnR0tAivHTJkCNOnTxfErL6+XqyV7e3tGI3fX/ey9bz8eZeUlAjyqFAo6OjoEERO7ljZbDbq6uqorq5m9OjRWCwWlEolo0aNws/PD4VCIQhxamoq5eXlhIaGMmXKFPLz81m9ejUKhUJYKDc0NBAVFcVPf/pTr06tzc3NbN26lcmTJzNz5syH+rwHMYi/F5w5cwbonuV5nLh48aJbkQm6JdYGg4Hk5GSys7OZNGmSm7RWhuzkJ89HyUVVp9OJWq3mxIkThIeHExISQlZWltuctdPpdOs0RUZGikzK/fv3c/nyZZYtW0ZdXR2BgYEee66enSno7k41NzdTXV0t5j8fxdUPELl0sjlPTzyO4GadTsfGjRu5c+cOV65ceehzfZLxVJKpTov9r0YADsz27o2H2S5hQ8XPj5Y9tEGAQqFgxowZrFu3jiNHjpCdnY3D4RCZH7Nnz3aTaPQkUyaTiYsXL7rZcnpDVVUVn332GTk5OaITNX78+AENHNfU1PRpPgGPrzPl5+eHSqVymx3x8fEhPDycqqqqfp//OIwo5NdcsWKFkPsNdHEoLy/HarV6rZI1NjZy6tQpfve735Gdnc2QIUN49913Wb9+PWNGDmdteANahROd6vvjPo5sjkE8OXA1oehJpqqrq4mOjhY36Pr6evz9/SkrKyMnJ4cZM2Zw/vx5VqxYgcViER0uOVAbYOXKlUD391uWyt26dUuQLovFIgag5Zki+VqKiIhg9uzZgkTJHRTornaaTCa3627FihVotVqam5tJTU3l9OnTzJw5k6amJoqKisTa43Q6Raeqt3nTnsjKyuKnP/0pCoWC1tZWTp48CcCHH37IL37xC3Jzc3E4HOh0Oq9rkI+Pj1tuDHxvB19XV4fD4UChUFBfXy9s4DUaDVarVUQjyHNWMlw7XiEhIdjtdvz9/TEYDG7rrPxZydLAuLg43nnnHSorK3E6nUyZMoUrV64wffp0du7cicPhIDMzk6KiIgIDA3n22Wc5duwYa9euRalU8uWXX3Lo0CEcDgezZs1i8+bNXtfi+vp6tm7dyuzZswdkjDOIQfw9o7CwkFu3brFmzZrHOu/X2tpKSUkJEyZMcPv5jRs3GDNmDBUVFVRVVbmFlrtCDuytq6sjLCwMrVZLWVkZH374IS0tLWg0Gl544QUsFovbjLfZbEaSJI+Of1BQEJs2beLu3bsidF2eg+oJ2fzGFSNHjqSkpISoqCghzZPJ1MPukxQKBQsXLuT06dNeMzIfV3Czn58fL730EpcvXyY3N/ehzvVJxlNJpvrSgD4Og4Bhw4axZcsWGhoa2Lp1K19//TUajcbNJQY8ydSFCxcYMWKE17wr6N6Aff755+zevZuIiAhCQ0MHZFIhw26309jY6LHx6AlvGVMyHvSCjY6O9pibGqjULzExEZvNNiDi1R9SUlJISkoiOzt7wIuDHNIrb+CMRiPXrl3jz3/+M9u3b0eSJDZs2MCWLVuYMmWKkDkdPHiQ4aFqXg2+x/9e9nizOQbx5MA1a8qVTEmSREdHB/7+/uj1ekaNGsWVK1eYNWsW1dXV6PV6KioqmDp1KiEhIXz11VfodDpUKpWQoDkcDvbt2wd0kwn5OyqTN1cXqI6ODgwGg5jnVCgU+Pj4cODAAXGuERERIstFPgfX43R1dQmp4v3798UcV2pqKjdu3MDf31/MX8kYiMupUqkkNTWVnJwcJEnCYrEIMiiTHfkzc+1ma7VacW52u522tja3DYnrZyK/jtVq5datW2LjI0mSCMPsmWvnarbT2NiIn58fra2tpKWlCdtkpVKJw+GgublZvNaMGTNoaGjgzp07qFQq/P39CQkJ4ejRo9hsNlJSUigpKUGv17Nx40YOHjzIrFmzsNls/P73v6eoqAitVss//MM/MGfOHK/ksbq6mk8//ZTFixf36/Y6iEH8vaO1tZWDBw+ydu1aN0vyx4HLly8zfvx4txlxu91OXl4eY8aM4fjx4yxYsMBrhIAkSULmV1VVRXh4OLt372b//v3MnDmTN954g8DAQOrq6pgwYYKbTbpMprwd9/bt20RGRhIcHMzHH39MXFyc17wnb50pf39/hg4dSmBgoJD6RUREoNPpqK6ufujPKT4+niFDhnD16lWP3z3O4Obg4GBeeuklsrOzPTK6nnY8lWTqv8MgwNfXlw0bNhATE8PFixfJzMz0uDG6kqn29nZu3LjhtcVdU1PDjh072LVrF2lpabz77ruYTCbGjx//QN2i+vp6QkND+80eeVydKfA+NzUQEwr59eTu1OPAwoULKS4upr6qvN/Fobm5mcrKSjIzM7l79y47d+7kP//zP6msrGTu3Ln89Kc/9Rom+M0339DS0oJarWbO9KlsnJr4WLM5BvHkwDVrypVMVVdXI0kSLS0tGI1GwsLCaG5uJioqCqfTSUREBJ2dnUybNo2zZ8/S1NTkZjsO3Tf6iRMn4uvrS2dnp5tEDb6/Vru6umhra3O75iVJEvNAOp2OyZMn4+PjI2Qey5YtA7qv066uLjQaDZ988gk2m41FixaJma2zZ88ye/ZsQQ5l5zwZjY3fDybbJCWF9nC+tcVQaA/HJn1v/7tv3z5ycnLcPjuZDOn1epRKJUqlkmHDhrlZlMsdY1my6EqIXLtw0G0wYbVaOXToEKWlpfj5+eHn54fJZEKhUHjMyLo+12azYbPZiIiIELJM+dzlrpfc4dLr9ezatQu9Xk9mZiYXLlygpaWFjo4OQkJCaGhoQK1Ws2nTJs6dO0dISAjNzc3s2LEDs9lMamoqP/3pT3uVYpeVlfHFF1/w7LPPkpGR4fUxgxjEkwK73c6uXbuYMWMGcXFxj/XYXV1d5OXleXRu7969S1RUFPfv30ev14tcp54wGAwixy8nJ4d79+4RGRnJ22+/TUZGBgqFguTkZIqLixk3bhwFBQWYTCahRpJjEFzR1tbG2bNnee6551i1ahWdnZ00NzfT2dnpUah2zcB0RUZGBkajUZAp6O5O5efnP+xHBcD8+fO5dOmSUEG44nEGN0dERLB+/XoOHjxIeXk5nRY7X16v4FfHCvjyegWdT2l0zFO5+5NlXt4I1eM0CHA6nZSXlzN9+nTOnTtHU1OTWydJJlOSJImBc3kOArotcc+dO0dNTQ0zZszg+eefF8Gbd+/eZcGCBQ90PgOZl4LHZ40O3WSqZwVi2LBh1NbWYrPZ+iV2Y8eO5fe//32f3bKBQnb3O3ToEG+99RbX/ud8Dt+qoazZSEKYL8tHD8VPp0aSJE6fPk1QUBC///3viYiIYPTo0axcubLP0N78/Hy+++47Vq5cyVdffcWqVase6XwH8WQjICBASDFcyVReXh6+vr6UlZURGxtLbm4uWVlZ7Nu3j+DgYCoqKnjjjTcoLCwU1U673Y6vry8+Pj7U19eL7CO9Xk9zczM6nc6NTMjkq6OjA5VKJeR8Wq1WzE+lpKRgNBppbW2lublZhO52dHQQHBxMXFwcdXV1YpMvu+v5+PjgcDioq6sTpjqSJAlCN2TIEJqbm8Xr1Dv9ybamIgF2VKhxcM0exwJtEVHK74kgfL/GhIWFCSLV3t5OQ0MDGzduRKVS8Zvf/EYEa8uoq6tDre6+dpOSkiguLhYzXQ6Hg/z8fHQ6HTabDZPJhMlkQqvVotfrMZlM3LlzB+iea5BJoLzWBQQEYDQaaWlpEd0x+TzlCrRcQb516xbt7e1CGmixWIThhEw0X331VUpKSigtLUWSJJG99eyzz/YZUFpUVMT+/ftZu3YtiYmJA/0aDmIQf7c4evQoYWFhfxOp6rVr1xg5cqTbngq6JX5ybMErr7zSa5G4oaEBvV7PH//4R0wmE+vXr/e47lJSUvj666+ZM2cOaWlp3Lx5k9GjR+Pj44PdbvcoYh05coSpU6cSHh7OjRs3iIuLIzExka+//pqqqio3QumtMwXdxOnkyZNidjMwMJD09HR27949IOOy3hAWFsaoUaM4e/asKKi5QjYKeRyIiYlhzZo1/PbzQ5wwJ4NCgdHqwFer4l+O5LN1U9ZTp+J5KjtTfcq8eHwGAefPnycwMJB58+axZcsWmpqa2Lp1K21tbQB0WR0UOsL5v/Z8x4HbTYyZ2L2gyInSX3zxBQkJCbz77rtkZWWJzdjt27dJTk5+4Jb4o5IpeDwyP61WS3R0tKiO9wU/Pz9SUlIeixEFfC/3O3nypEequ93cxTfffMMf/vAHYUH6D//wD2zatInx48f3SaRqa2s5cuQIL774It999x1Tp071qEoN4oeF3gwoysrKCAwMRKvVMnz4cO7du0dQUJDQ52u1Wtrb2zlw4AAOhwO73Y5Op2PmzJm0t7ejUCjE8LMsD/F2XQYFBeFwOASxkqVu0O1ymZmZSU1NDb6+vrz99ttibiA/P5+MjAxyc3OZPXu2MK3Q6XQcPHhQGFTY7XZhUCFDJi/y69gkJdnWVLeMEjsqbKi6fy6532L8/PyYPn06UVFRrFq1ioqKCjo7O/Hx8RHkSaPRYLPZmDx5sgjQlW3aHQ4HpaWlDBkyBJVKRXp6uvh8VCqVIDTh4eFu8ho5VFk2s3Cd9zIajYJoypD/lq6frdPp5Pr160yYMAGr1crt27cJDg5GkiR8fX1xOBy88sorGI1Gjh49isFgoKOjg6CgIN55550+iVR+fj4HDhzwuqEbxCCeRNy8eZPKykpWrFjx2F0orVYr3377LdOmTXP7eVtbG7W1tdTW1pKRkeGhLJFRU1PDkSNHMBqNLFmyBJVK5dXhediwYTQ2NmI0Gpk0aRLffvstJpMJnU6H1Wp12wPcunULg8HAtGnThJvfjBkzmDFjBv7+/uzYscPNlc/bzBR0G+LEx8cTFhYmTLWio6M98vAeBrNnzyY/P99NVfC3QmTMMI6bkjDanKKxYbQ66LI4/upp8HR1qJ5KMtWbBlSnlHhxSAta5aN74VdXV/Pdd9+xfPlyFAoFvr6+rF+/nvT0dD766CO+On+Tyb88xVVbHJ/l1HPJPISZ/3Ge//cve7wmSrsiJyfnobTyAzGfgO6Zqccl8wsLC6Ojo0NsrmQMVOoHj8+IQsaiRYsoKSmhpKQEq9VKbm4u27dv54MPPqCtrY34+HhGjx7NggUDy7qQc3GWLVuGSqWirKzMYz5uED88yAYU8ryPfGNsaWlBqVRisVgwGAxkZGRw4sQJhg4dSlNTE2PGjOHAgQOia61Wq8nKyuLs2bO88sorBAUFYbPZaG9vFyYUPa8vjUbjNrOk0WgEkdDpdDQ0NAiZ2XPPPYderxezlLW1tajVavz8/PD39ycgIEDMFcmW4HKQpTfpckNDg/h3qSO09xgCoJxwt8pxZ2cn9+/f5/bt2zgcDtLS0jAajSIw2+l0Cunkp59+SlJSEmFhYW6boqioKCIiInA6neTn56PValGpVG4dMLvd7hEKLud0uYYdh4SEuJFDQDj9KZVKQdLktSkoKIj6+npMJhORkZFiSN3pdPLyyy/jcDj4y1/+Iv62EydO5O233/bqJCbj5s2bHDt2jJdeeklYMw9iEE8y6urqyM7OZt26dX0WKR8WOTk5gnC44saNGyQlJXHv3j3mzp3r8bzOzk4OHjzIF198QVBQELNmzUKhUIiw3p5Qq9UkJCRw//59YmNj0Wg0lJSU4OPj46a86ezsJDs7m2effRaVSkVhYSEajUYQtIiICKZMmcLOnTuFM19vnSnolvrZ7XYh9VMoFI9F6ufr68v06dPdomT+Vjh8qwZFL+/vcXgX/L3hqSRT4F0D+u3/uZCRETp2797dZ/huf7DZbOzfv5/Fixe7bRQUCgXTpk1jxaq1/I/jlXRZHKJaa3F0h8l+Uqrn9c1veU2Uhu5FqKurq99A4Z6wWq20trb2m//idDofqwGFLEdy3WDBwE0ooJt4uea+PCq0Wi2TJk1i586d/OY3v+HOnTtMmDCBf/qnf2LJkiUUFRUNOKTXZrOxc+dOxo8fz8iRIzl//jxTpkwZ7EoNQnSm5JuiUqmko6MDu91OU1MTcXFx5Obm4uPjQ1dXFwaDgeXLl1NbWys270qlkrFjx5KTk8OmTZtoa2ujq6tLDDf3Zs4iW/fKkF2asrKyhGX3xIkT3Tow8lrl4+PDqVOnMBqN7N271y28VqlUCmONns5PcsfMFR2STqxxPWFHRbtdI54ro7GxEZvNxmeffUZGRgaSJIlza2pqEp9leHg4WVlZHgG7tbW1TJ06lXnz5gkiI6/nrmuq3JWSX1ueUXA1u3A4HB6zSd7s2OXjR0dHU1VVhUKhoLGxUUgA169fT11dHR988AEOhwOVSsXGjRtZunRpn+5l169f58yZM7z66qv9GgcNYhBPAsxmM7t27WLx4sW9mm09ChwOB5cvX2b69OluP3c6ndy4cYPm5mbmzJnjtsdxOBxcunSJ999/H51OxzvvvAN0k5yqqqo+i9ApKSlCVjxx4kTu3LmDj4+PW2fq+PHjjBkzRiiDLl68yPTp08XaExAQQGBgIBs3buTo0aNcv369TzI1fPhw4VQor0MjR458JIt0GVlZWTQ1NXlk9j1u/Hd4F/w94aklU4CHzCtArxU5UHv37n3oVOkzZ84QFRVFZmam19/faFF6bDpkKJUqTt5t6vXYOTk5jB079oHtQ2tra4mMjOzX+c9sNqPT6bwe/2Fb8d6kfrGxsdTX13u4aHmDQqFg/Pjxj2xE0dTUxOnTp/ntb39LXl4ekZGRpKamsmHDBjIyMtBoNMJpp7f2vytk577g4GBmzZpFY2MjZWVlHuF7g/hhQqfTIUkSXV1d4nq/deuW+H85DPratWtERkaSkpJCWVkZ9fX1YlM/fPhwiouLeeWVV/j22285ceIEK1euFJK0ixcven1th8PhQXaUSiUtLS0EBARgNpuprq4mLi5OzHZev34d6F4DbDYbHR0d+Pj4eFiGGwwGYRDR83c9Q7YDlRY0Cu8FGDUOAhQWjEYjEydOFOcoH7OhoYEdO3YA3evXyZMn+fTTT8V60NDQQExMDAaDga6uLlQqlXDt+stf/kJdXR02mw2Hw0FqaiqAIEltbW3o9XoUCoUbwZLXfJnMxsTEUFZWxuuvvy4eJ79v+TxdC2+tra34+/uLf2u1WlatWsWlS5c4ePAgkiQRFxfHT37yk34LYhcuXODy5cts2rTJzXhjEIN4UiFJEgcOHCAlJUXkGz1u3L59m9DQUA8CdP/+fbH/GT9+vPh5YWEh77//PqWlpbz++ussWrQIHx8fIbuuqqrqsyMskylJkhg9ejR1dXVifdZoNNy9e5fa2lphLiZLl2UJMiBiF4YOHcprr73GlStXKCoq6nXPpdPpSElJQaVSib1VTEwMFovlkSV6arVaBPk+7B54IHgc+VVPEp5qMuUNKpWKtWvXYrFYxM3vQVBeXk5eXh5Lly7t9TFlTV2YbN6/pH0xcpvNxu3btx9a4jeQeaneJH4yHkZq583RT6PREBMTM+Dk7rFjx3Lv3j03qc5AYDKZuH79Oh999BFbt27Fbrezfv163nzzTV5++WUqKyspLi4Gvg/pHWhXSnbue+6551AoFINdqUG4QaFQEBAQQFtbmyBQxcXF6HQ67HY7lZWVwurcZDKRkJDA5cuXRWisj48PLS0trF27ln379tHU1MTmzZsZPny4kIn1HK4Gev3+RUZGsmHDBmJjY7HZbJSUlHD79m1+9atfsWPHDlGskG/gkiQJtzuFQuEmZ5NNFXq+X0DMcup0OhKVLSh6EfrptFrSfLot22WSB/Dzn/+cuXPnunW6urq6uHbtmgjCvHPnDg6Hgz/96U9uXafIyEhCQ0OxWq3k5eURFRXF0KFDKS0tFfNL8mOzsrLQ6/UeEklXFBQUYLfbqaioQJIkt2N4fU86nbChVyqVzJw5kwMHDlBYWIjD4WDGjBm89tprfZrpyAY4ubm5bNq0aUBS40EM4knApUuXMBgMLFy48G9yfEmSRNcHcHOK+9PJXDpMVpYsWYJSqaSpqYnPP/+ckydPsnjxYjZu3CiKFkajEYfDga+vb7/jESEhIfj4+FBXV4dWqxUFHqvVitPp5OjRo6xYsUIUYy5dusTUqVPd1k/XTMLQ0FBef/11WlpaKC4u7lUllZGRgVKpdJP6jRgx4rF0p0aOHIlWq/2b5kE9rvyqJwU/ODIF3cz8hRdeoLW1laNHjw6YQPz/7L13dJRXmu77+yqoSqpSKUsoCyWQkBCSSA0mJxswBicwBozDdLe7T/d4esK9s+bee/rMObNm5pyzZqa95ji0u9tgDI2NsU00mByEQAJJSAIJCeWApFJOlavuH/K3R4UCAsR0qt9arHYXFT4Vql373e/zPo/VauXQoUOsX79+3IJkvIpcq5LGrMjLy8sJDw8fV18/FpNhPvGonanRiil4uLkpHx8fkpOTJ/ThdjgclJeX8/nnn/OLX/yCuro6lixZws9+9jPWrFkj5DIajYYNGzZw5MgRzGazcNeaSNhoWVkZN27cYMuWLajVaoxGI9XV1Z5ZKQ9uGAwGenp6RFHQ1taG1WolNDQUl8tFZWUlWq2WhQsXcuTIEVwuF06nkylTpjAwMMD8+fPZs2cPiYmJbN26FaPRyC9/+UtUKpWQDd5vO37/4K5CocDLy4uQkBCuXbtGU1OTcJqrrKzEZrO5dYjvD5uUuzA6nU7cHh4e7tZdl68HhgqfmTNn4uvri1pyslJdgRoHKoY2BV6SCy/JyTuZXqilITliSEgINpsNp9PJtWvXWLBgATt37nRbe2UZ3tKlS/mbv/kbMeQtnzb7+vrS0dFBe3u7WKvu3btHd3e3cCmUkSSJsrIyAgPdHaOGd5Xk985ms3H27FnsdjvJyclkZGS43Wf4+3+6ehCba6i7FhcXx6VLl4Rd8tq1a1mxYsW466jL5eLEiRPcvXuXnTt3ilkxDx7+0KmtrSU3N1e4Ej8J5ADxhIQE8ms7mfePp/n7o7f54GI1hxrUfNqXQoPZi5MnT/Kb3/yGqVOn8vbbb4vOtYzRaCQ4OJj29nb0ev24+zlAWKTD0NrY2dmJ1Wrl4sWLJCcni9koo9FIY2PjCLOZ4cUUDB1IpaenY7PZ2L9//6gHPklJSZhMJioqKsRtkyX1k4N8z507N+5h00ZggmsAACAASURBVOMwmflVfwj8SRZTMHRyuXXrVpqbmzl16tSECqpTp04RGxvLtGnTxr3feBW5w+HAVnVt1MDLwsJCt/b0wzBR84kHFVOP0pmaMmUKra2tIx4bFxc34bkpGN+IwuVy0dzczDfffMO//Mu/kJubS0JCAu+88w4vvvgiSUlJo0oX4+PjSUpK4uTJk6Ir9aCi8d69exw9epTNmzeL0/RLly4xf/78JzJM6+EPF3m+SKVSYbfbxcYahj5P8knm5cuXRbcpMDAQf39/goKCOHLkCJs2bSIrK4uvv/6agwcP4u/vj8PhwNvbmzaXL59bZ3HNHk2JI5xr9mg+s2TQ6hwqCuTsJ7lTc/LkSbe1RaVSIUmSMJSQ8fb2dtvIKxQKZsyYwcsvvyxkrUFBQaJjJTvpyc8xZcoU2tuH5Mphin42a24yX91AtncHT/nc45sfZNJSkkN6ejp+fn6Ul5eLtS03N5df/OIXQpYjX58kSQwMDHDs2DFhDSzbssN/rF1xcXH83d/9nVjv5NwU2QgIhg6+2tra3GbO1Gq12wyHJEkkJia62Zrn5eVx8+ZN0S1qder5zJIx4v3vVgeJ+AetVsuCBQseeNDidDo5fPgwzc3NvPbaa5MeYOrBw++Kvr4+vvzySzZt2oSfn98Te52cnBwWLFjAgFV2hHOIuRw7SixOiZ0f59E7aOFHP/oRCxYsGHX0ob29fUISPxk5jBuG1lR5namqqnKLsLly5Qpz584dMQ/v6+srIhJkJEkiIyMDvV7P7t27R+Q/qdVqkpOTaWpqEgVPTEwMvb29dHV1PfCaH0RUVBQxMTFcuXLlsZ9rLCYzv+r3nT/ZYgqGOhfbtm2jqqqKCxcujHvfqqoqKisrWbNmzQOfd7yK/JM35hERGsQHH3zAtWvXxJd4V1cXra2tDyzURsNkMtHf3z/C2WY0xium4NFkft7e3mi1WmEJLxMZGUlHR8eo6d+jERMTgyRJIrsHhnJ0Ll++zPvvv8+BAwfw9vbmzTff5PXXXyc7O9st+XwsVq1axd27d2lsbHygjru/v5/9+/ezdu1a0elrb2+nqqrKMyvlYQTyiaNKpaK8vFwU6j09PRiNRlEgyKYSvr6+REZGii/H4OBgjEYj7733nuiw6PV6li1bhrchgJPmBKwuxZi248PtvOE/YglgyGgiMDAQpVIpNP4w9CUeExMj8p7kYmLx4sUkJCSwadMmDh8+TFtbGzqdzk2GIne1zp07B8D06dMBUEtOpnt18T2fNtJ8+miur8HX15d79+4xODhIdHQ0TU1N4royMjLIzc0VRg+LFy8W7oFKpZLc3FysVqvoZsFQV+nFF18U2VpbtmwR1xUYGMjzzz8/4kR8+KbGZrON6KDb7XbxM0RERIjOXFdX17i270f7Yhi0Ds1qhYeHs3z58nF/TxwOB19++SU9PT1s3759QuuWBw+/rwyX1+27Vsvezw+SnZ09IdXHo9LQ0EBvby8zZszgaHEzY21VlCo1zqhZI7rQw5E7UxMtpuLi4rh37x5msxmLxSL2BuvWrRMHrL29vZSXl496qHJ/Zwr+wxp9w4YNJCQk8Jvf/IbOzk63+8ycORO1Wi0OpRUKxaRJ/QBWrFhBXl7eiGubTO73Lvhj60jJ/HH+VA+Bt7c327dvZ9euXXh5eY3ILYCh+YHDhw/z3HPPTfhLUK7IRwuNJXE5M2fO5NixY9y8eZP169dTXl5Oenr6I7XHm5ubCQ8Pn5BpxeDg4Jh6/sfJgggLC6OlpcVN/69SqYiKiqKurk5sWMZDkiSys7PJz8+nt7eXmzdv0tzcTEpKCuvWrRPF1sOi0WhE7tXwPKD7sdvt7N+/n8zMTDeHL3lWytOV8nA/BoOB+vp6VCoVZWVlSJKETqcTv2dRUVHCNcnHx4epU6dSU1NDamoq8+fP59NPP2VgYACFQoFer+fZZ58lODiYpqYmdl2qGNd2vMYRSLKqXRRDAQEBWCwWUTDIX/wajUZ0uuSZSZPJhM1mY3BwEH9/f7q6uvj1r38tnDUtFotb4Kz8Gna7XbgYSpJEZWWl23XJM2IXLlwgLS2Nuro6YXoju+BptVouX77M9OnT6e7upqWlhRMnTqBQKFCr1Xh5eeF0Ot2Go5VKJZ2dnVRUVNDd3c3Zs2eFJFilUtHZ2cmZM2fo6+tz67DfX2wOLyh1Oh0hISFUVlaK/Kzhph7j2b4jSXhPf4p79fn84Ac/GHfttdlsHDhwAEmS2Lp16xOTQHnw8J9Bfm0nO3fl4XINzYBrFOAimE+Xj27INVnk5OSIWaTxnOLMdidn8kuItjXi5+cn/sjdbxg6II2PjxeB6g9CrVYTHR1NTU0NZrNZdJGG73euXr1KRkbGqPsr2YBCnpeF/7BGlySJ5cuX4+vry8cff8wrr7wiirWEhAQRSp6cnAwMhfpeuHBh1L3qwxIQEEBmZiZnz57lueeee+zn+1PmT7ozJaPX69mxYwf5+fnC8Wo4J06cIDk5+aHtyseryIODg9mxYwfz5s1j3759XL16ldTU1Ee6/onOS8GT6UzB+HNTE5H6uVwuamtraWpq4vbt2xQVFZGZmcnPfvYzNmzYQGxs7CMXe/39/TQ2NjJ9+nROnjw55uvLzn1LliwRt3u6Uh7GQ5ZvqFQqGhoacDqdDA4OYjKZMBgMwtpWrVYTExNDRUUFS5YsYWBggC+++EJ0Tl555RVeeuklMSDt6+tLS79jROitjB0lva6h4l4uOnp6ejCZTEKaqlAoePrpp1m1apVbzpRaraarq0s4/UVFRaHT6TCbzQwODtLR0UFQUJBYC2SrclkuI8sIU1NTRddKqVSi0WhEAefl5UVgYCApKSmiKAsLC8PlctHR0YFerxfSQRg68JDths1mMzqdzu3zLhc67e3tqFQqcnNzhXGGfALd2dk5Yt70/vVMfq9k+/OKigqRCyZbncuMZ/tucym4WnqXl156adz11Gq1sm/fPjQaDS+//LKnkPLwB02/xT5CXmdxgtUp8fru/CcWxCrPIsnmXOPNpatwonMMrWO3bt3im2++4cMPP+Qf/uEfePfdd9m9ezf19fXcuXOHzs5O+vv7aW9vH+GOej+yq598AKTVarl+/TowdHBVVFQ0prmVSqVCo9G4GWzdH9o7Z84c1q1bx969e8V8ljwfNvzQaurUqbS3t486KvIoLFq0iMrKyhGOzB4eDs/K/h0Gg4EdO3awa9cu1Gq1GCAsLy+nvr6eH/7wh5P+mrJmVqFQcOLECb744gtWr17NjBkzHqpwaG5uHpGVMhaDg4NjygEfpzM1ZcoUSktLR9weFhnDvx68SJGrjLhgHetnRqAfVlR2dHRw8+ZNiouL0Wg0ZGRk4HA4iIqKGtN6/mG5fv06qamprFmzhvfff5/KysoRA6mXL1+mo6ODnTt3ur0Ply5dYt68eZ6ulIdRMRgMDAwMYDAYRuQ1yZINpVJJSEgInZ2dzJ49m5MnT6JWqzEYDMyaNYvr168TERGBxWLhzp073Lx5k/r6egwKf1QOx6gbehUO/BQW8fwOh4OYmBh0Op34UnQ6nRQUFBAYGOgmH3G5XFitViRJQqPREBsbi8lk4umnn+ajjz5CkiSWLFnCiRMngKHia+PGjeTk5IgZJIVCMeLLNzo6moqKClwuF97e3ixatEjIduvr60VXPyMjg8zMTPbu3UtAQICY3+rp6RHPLTttyZ0x+WeUu1FxcXEil25gYACdTofJZBpzlkDuVg3f0MTHx2MwGLh27Rrz5s0jJyeHoKAgDAYDZrMZQ4MFFaO//2rJyZzpU8eVCJlMJvbt20dISAjr169/6LgLDx5+3xhPXicHsW6eEzPpr3vlyhXmzJkjDp/Wz4zgvx8bPcBWqZBYGK3l9u3bREdH89RTT5GcnIzT6aS3t5f29nYOHDgg5h1zc3Pp6emhp6cHjUbj1s0a/ic8PJzc3FwGBwdJT0+nsbGRkpISVqxYwfXr10lKShp3Xkw+eJNnJUfLmZo+fTo+Pj58/vnnrFq1ioyMDObMmUNlZSU9PT34+fmhVCpJTk6mrKyMefPmPfZ7q9VqWbx4MadOnWLbtm2PtQ/8U8ZTTA0jICCA5zdv5b99fITA0n7S48Jozv2GVze/8ETtsG/fvs3y5csJDQ3l6NGjFBUVsXbt2hFOVGPR3Nw8YSvS8QJ7H9WAAoY6U6dPn3a7Lb+2k527y7BY/bBfrMbHS8l/P3abD1/JQNvXxM2bN+nq6iItLY0tW7YQFhaGJEnU19dz6NChCZlFPAibzcb169fZuXMnXl5ebNiwga+++oq3335bvA/l5eXk5+fz1ltvuc1YdHR0cPfu3XFt8D38aePr6ztCOivbZsNQYaDT6dDpdLS3t5OXl4dGo2HlypWkpaVhtVrJycnhV7/6Fa2trajVaux2O5GRkSjbu8jrGP11FQqJqcqhwkHufAUEBLBhwwYuXbpEXV0d9+7dIyMjg9bWVvz8/ERB1dPTg1KpFKefsg25PPtlt9u5evWqeC2tVktUVBT37t0TUkGFQkFHR4eQqTgcDqqqqlCpVNhsNsxmMz09Pfj7+2MwGGhubkar1aJQKCgqKiI8PJygoCCam5vx8vKip6cHs9mMJEkoFAq8vb3dCsD714Ha2lrx3oaGhmK1Wlm7di0HDhwQ1zw8E0uW2Wi1WlFMLVu2jK+//prAwEByc3MJCAigu7ubnp4e7HY78Solefbo0d9/SeInz40tsxkYGODTTz8lNjaWNWvWeDYoHv4o+F0EscqzSD/96U/FbfJcupvcUAkqpZKXw9pxWr34yU9+QmVlJVevXuXYsWPiEMfX15fg4GCCg4PR6/Vi7yRnBsqFlfynvr6enp4euru7xfx3XV0dFosFHx8fjh49yt27d3nuuedE9tRoyHNTcsblWKG9MTExvPbaa+zdu5e+vj6+973vYUPJu8euow6IIC5YR3LiNEoK8ielmIIh86+8vDzu3r074qDZw8TwFFPDGNICF+JwRGK+1cOh210oFcmsdOqZ/LOWIfr7+6mpqWHjxo1oNBq+//3vc/XqVX71q18xf/58FixYMK40pL+/H5vNNmE79Scl8wsMDGRgYEDMaAg5gNUB353syovw67vy+a8ZFhYtWkRCQsIIt53o6GiUSiW1tbVMnTr1ka5Hpri4mIiICCGfmjp1KtOmTRPhqC0tLRw5coStW7eOsCm+ePGipyvlYVz0ej1ms9mtKyXPDcmBsTqdTjjXLVu2jFmzZlFVVcWePXuor68XOVTBwcFYrVZ6e3tpamrC4XCwWnOXU7YknE4XdpSocKJUSHz6Zwtpu6Xg+vXrwiWwtLSUVatW0djYSGJiIo2NjTidTrq7u4mIiCA+Pp6CggKcTiexsbEEBweTl5cnrNO/+OILUWjIhYj8Zb9r1y4UCgWzZ88WzoQwtCHw9fVFkiRhDOHl5YXVauWjjz7C6XSK5+rq6sLlcqHVajl16hQxMTFC6ievO3PnzqWwsJD169ezd+9eUSjKryeH/soW8w6HA39/fyG1lF9bzskabl4hh/8O/7drbm4Wh0hdXV2oVCohPVThYJVXJaesSShUKix2FxoluJxOPt45F7129E1Tb28ve/bsITU1laVLl3oKKQ9/NMjyutEKqicVxJqbmzvqLNLwufQbFfXYu+7x3/9sExolHDlyhL1797JlyxYyMjLo6OigsLCQ3bt34+Xlhbe3Nw0NDW6ZnrJkWK/Xj+qMbDQa+fDDD1EoFCQnJ1NVVUVYWBjl5eUolUrhpKrRaPD398fPzw+DwSA6W3L2VUJCgviOGKtbHRISwhtvvMHevXspaOhhvzkdV+kgNtfQobQErFT38OJ3XfnHRalUsmrVKr799lsSEhI8XfRHQPnzn//857/ri/h9oN9iZ/2/X2LA4sDuHPpidyJhd8Hx0nvs/F4cXqrJ/wXLz89Hp9MJmZ5CoSAmJoYZM2ZQUFDApUuXCAkJGTPYsaamhr6+vhHZKGORk5NDZmbmqB/AO3fuiHb2wyJJEnfu3GHKlCn4+fnxZWEjFyqM2BwjizMvlZJl8zJZmjH6h1ZeaMrLyx95jgyGCsOvvvqK5cuXu71/cXFxnD59Gm9vb44ePcqaNWtITEx0e2xHRwdnzpwZ1SHMgweZQZuTT3MqKOv3pt/phUEyo/jOtkAO7x0cHGTu3LlkZmZSWlrK8ePHuXXrFgMDA6IT5XK5sFgsBAQEkJWVxbJly0hOTqa7uYaXZ4Vh7W7F4BokyaubZT5NrFs8l7a2Ntra2rDb7WJ+KD8/n46ODlatWkV+fj4qlYrGxkZMJhMrVqygoKAAhUKB2WxmyZIl3L59G39/f9E5mzlzppt8T61WY7FYGBgYwOl0ihDu4YcuDocDq9UqihzZSMJsNuPv78+yZcuw2+2sXbuWkpISnn76adrb25k6daqYp9yyZYvobEVERNDV1UVjYyNhYWHiteV1QbZTnzJlCl1dXcJlq7y8nLCwMCwWi5ulOgwdOskdNBnZTVUu0MLCwhgcHBQFmI+PD74KG+uTfVm1IJtwnYRfdyW/+f4y0uOmjPr70NXVxe7du8nKymLx4sWeQsrDHxVxwTp+dbl6jO91Bf/rxYxJ3SeZTCYOHTrEpk2bRjX/8lIpSIv0Y16cP3eunmHJoqdQKpVMnz5dxCxMnTqV0NBQ4uPjmTdvnug0NTU1oVAoMBgM4kBoLJxOJ5999hmJiYk0NTWRlZWF2Wzm+eef5+LFi6xatYrnn3+eRYsWMXPmTKKjo8XhrNzdampqorKykkuXLnHz5k2MRqPofnV1dWEymXA6nXh5eaFQKIZC0ZNT+MFXNVidCpwMXZ/N4cLmcFHrCGBugImYqAdH4kyEoKAgysrKcDgcE57B9/AfeHaJ3zGeFtjhcD4RLbDL5aKwsJANGzaM+Dt/f39eeeUVysvL+frrr5k6dSqrVq0aUQQ9jPkEINy8xrumR0V29IuJiXmA246L/cdO03XDQmhoqPgTFhaGv7+/mCU7d+6cmId4FO7evYtKpRKBejJeXl6sX7+effv2MX/+/FFnsy5dusTcuXM9FsYexkR2tbJaIrChQIWDPHs0q7wqiVCbsFgswuQhNzdXFBqyo5NCoSAsLIxp06ZRXFzM4sWL3Vwv5U5KX1c7C6YMWax3dnaSNn0mV65cwWq1Crc6jUYjOlROp1PMPlVWVuLl5SUs/+WCx2azcejQIZxOJy0tLWJO8X53vpiYGFFABQUFMTg4yJIlSzh27BiAkP0NRx7kVigUDA4O4uvrS1dXl+gyX716lcjISM6fPy+uvaWlhaioKFpaWlixYgXHjx8HoLW11c26/erVqyJo12634+3tjc1mY2BgAEmSaGhoIDs7G5PJNGKGU61WuwVUyu+dHCosW7fDkCXx3bt3USgUvPDcepRKJa25X/Pyc8uIjRy9kDIajXz66ac89dRTnnBvD3+UjCav8/FSIkk8kSDW/Px8pk2b9sDsKoPBgFKppLu7m4CAACRJEll5e/bsYcOGDUybNg2lUonL5WLOnDlcunSJsLAwvvrqK5RKJVlZWcycOXPU/VFeXh4KhYIVK1Zw48YN7HY7arWaiooK9Ho9jY2NzJkzB0mS8PX1xdfXd8Q8ZV5eHkajkVWrVtHT08PRo0cJDg7G6XRSW1srCitZjuzn50e5LQgYXRkjKRR8kVfDU/MmZ62Rg3z37t1Lenq6R5HzkHiKqe940Oa/tK5t0ospeYA6Onp0XT4MDSTGx8dz/vx53nvvPZYvX05WVpY4RWlubiY7O3tCryfLicaamXpchjv6jScH8PZSsnntCpbHamltbaWtrY0bN27Q1taGyWQSxVVQUBBnzpxhxYoVj1RQ5ebmMn/+/BEnTi6Xi+LiYvz8/EYE6cGQK1hlZSU/+clPHvo1PfxpMNzVSjZFlY0KTlmT2KoqRYFDfMZhqNMRGRlJamoqSUlJwkLdZDJhNpu5evUqkiRhMpnEH4fDQW1tLVqtVtiVl5aWirksuYtisVgIDw+npaUFl8slChOTyYRarSYjIwOlUikCGv/6r/+a9vZ2Dh06JDLqIiMjaWxsFLI6hUJBVVWVkASWlZURHh5OcXGxODmNjIykrq4Om82GUqkUBR0gisfPPvsMl8vFr3/9a2DIIbOzsxNvb2/MZjOpqalcv36drKws4uLiKCsrE0VPWloaa9as4V//9V9xOBzY7XZmzJhBbW0tr7zyCleuXBGmFHKhWFRUhNPpJCEhQQRtAm6FlIzsVDi8kHr++eepr6/H4XDw7LPPioHwxMTEMXPq7t27x759+1i5cuWEVQIePPwhMm7syyRis9nIy8tjx44dE7p/ZGQkTU1NbiqUGTNm4Ofnx+eff05nZyfz58/HaDQSGRlJTEwMTz31FAsXLqSuro7CwkLOnz9PQkICmZmZxMfHo1Ao6O7u5uLFi7z55ptCASDPt+bk5LB06VJOnjz5wBEKX19fampq8PLyIiQkBJ1OR0JCglDf2Gw2Ojs7aW9vp6WlhdbWVuprTFidoxc1ZruL2vb+Sd3ThYeHk5iYyOXLl1mxYsWkPOefCp5i6jvG2/xrVRJN5YW0tcUQGho6aa9ZWFjoVhiNhZeXF6tXr3bLplq3bh2hoaE0NzeP2tkaDTnvZSw97OMYUMCQo19xcTEwvtuO025nXdoU/HRaYdc8/Brb2tpobW3FZDJRUlLC7du3USqVhIWFuXWyQkNDxzQGaWlpob29fdSuU05ODkajkTfffJNf//rX3Llzxy0s+eLFi8yZM8fTlfIwJuO6WgF3rX6kaodOSQMCAoTtt8lkIjc3l7NnzwpZh7e3NxqNhq6uLpRKJXq9Hq1Wi7e3N35+fnR1dYkA7Pb2djQaDdHR0RiNRjGnFBUVRXx8PK2trWRnZ9PY2IhWqxWB3nKBIm8GZBmeUqlkYGCAFStW8M033+Dt7Y3VahVyuMzMTAoLC8nMzKS4uJiGhgYsFgtarRYfHx9RLA4vXDQaDS6XC7vdzpIlS2hqaqKkpER84csmF15eXphMJoqLi3E6nZSUlODj4yMKG41Gw/PPP48kSYSGhnLnzh1RPIaEhNDR0SEytBQKBaGhobS0tIjO2PDw7/uRpYJ2u13MdKnVahYuXIi/vz9Hjhxh6tSppKamcuXKFfr6+njhhRdGfa6GhgY+++wz1q1bR0pKykP8Fnnw8IeJHPvyJCkqKiIyMnLCe66IiAiamppGfOdHRUXxxhtv8Nvf/pb29na6urro6ekRc1GSJBEXF0dcXBxms5mSkhLOnj3L0aNHycjIoKamhgULFhAUFER3dzeotZyo6GVA4YPKrOLl6TOYVltLUVHRuNlPer2e3t5eOjo6RNFUUFDA9evX6ejoYHBwkICAAIKCgggMDCQ+Pp643nsU9o/uKOrjpSQh1I+KiopJPcBZvnw5H3zwAbNnz35gR9DDf+CZmfqO8bTAGrWS/7F+OkcPHyI5OXnc04eJYrFYOHLkCBs2bJiwU6BeryczMxOn08mhQ4fo6uqis7OTpUuXTujxPT093LlzZ0wHmIqKCnx9fR9ZL6vVajl9+jQLFy5Eo1YyNy6Q46X3UCsV2BwufLyUeCkVvB5vovnOTVJTU0eYT6hUKvz8/IiMjGTGjBncvn2b9evXs2TJEgIDA7Hb7TQ3N1NYWMjp06cpLCyktraWtrY2MVyu1Wo5e/YsSUlJIyR+5eXlnD9/nh07duDr60tYWBiHDx8mKSWNwyWtHMir5lppJds2rsFH++QcHD38YXO0uJnc6s5R/86JgkClmWivQSFB6+3txWIZsjKX7XdDQ0MJDw8nLCyM4OBgTCYTOp2O8PBwfHx8hI33wMAAfn5+DAwMYDKZSEtLo7OzE6PRKLpB2dnZlJSUYLFYiI2N5YUXXqCkpIS+vj78/PxIT0+nublZSNsWLVrEvXv3KCoqwuVyUVdXJ8whBgcHcblcxMbGsmDBAsrKyqirqyM2NlbMgMluhLdv30aSJDo7O/H19RXSQ/lQpr6+nuzsbMrKynA6ndhsNnx9fVm9ejW1tbVCqic7aclyPZfLhcPhIDc3VzzWaDTi4+MjDDWsViv5+fnicGjLli1iJkyWO8KQPNFkMmFzKahyBFHjCKDPoUbvGkQpDV1nSkoKVquVjRs3smfPHhwOB9u3b6elpYWTJ0+yffv2Udf96upqDhw4wKZNm9wOZDx48PDoOJ1OvvzyS1avXj3hDb3D4aC0tNTNVEJGq9Uyc+ZMrl27xsDAAHa7naysrBHGXSqVisjISLKzs4mLi6OwsFDInFUqFaWtJv75poK7A15UD6hosuv4OLeOp7OTuJV3SeRR9vX10dzcTFVVFSUlJeTn53P9+nWMRqPItuvr6yM8PJysrCwWLFjAypUrmTt3LsnJybS0tJCTk0N67BQuGdVjzqj97fJo7laUT1qMDAx9P1ksFsrKyjyHQw+BpzP1HQ/SAs+JC0SFgz179rBz584Ju+eNRWlpKfHx8Q8tX5MkidmzZzN9+nQOHDiA2Wwe0VkZiwfNS8HjzUxpNBp0Oh2dnZ0EBwePKQfwVis4fPgwe/fu5ZVXXhlTmytJEtnZ2RQUFPDyyy9jMBjcjCKcTiednZ1iEP/27ducP3+e7u5unE4nKSkpQhcdGhqKyWQa4dwXFxeHOmI6C//XBZQq1XcWq5Es+dfL4t/dg4f7Ga+TrcJBkJeT5ORk0tLSMBgMOBwOIVOTHezu/+/IyEhqa2sJDQ1lYGBA3O5wOGhvbxcmCq2trULOJ3dhcnJyxGHC5cuXycnJEZ/lnp4ecnJyhJGKy+Xin/7pn8TskcvlEu53cifM5XIRGhrKiRMnmDJlCvX19bS1tdHR0SFmk+QuFoBOp2PatGncvHlT3CY7+R09epTY2FiamppwuVxER0eLfK3e3l7MZrMw0UhOTqaurg6TycSsWbOERPHatWu0PhErBwAAIABJREFUtbWJDl5paamYW7DZbEiSxC9/+UvUajVz586lrKxMuIt2dHTQ6tRzypqEC75zRRyab1utuctf7tjIyZMnWb16NTk5OQwODrJ+/XpcLhcHDx5k48aNo27o7ty5w+HDh3n55ZeJjY2d9N8xDx7+VLl9+zZ6vZ6YmIl3vyIiIrh37x4Oh2PEIS0M7U/mzJnDmTNnaGlpeaA0Tq/X09rayhtvvEFXVxdX8m7wPyv8sQ3rElkcYHE4+MvDVWzTW3j33XcZGBhAo9GIDlNQUBCxsbH4+/vz0Ucf8dOf/hRJkoTjZ0JCAjA0w5mfn8/ly5eJi4vjrbfeIjAwkKh0I9t/lYtKrcZkc7rtS9PCvDl36gRWq3VS43sWLlzIv//7v9PU1DSqs6GHkXiKqWE8SAuclZWF1WoVBZWvr+8jv1ZBQcGEO0qjodfriYqKIiAggG+//ZbCwkKeeeaZcU9xHqTpfVyZHwxJ/VpbW4UV+VhygOeee45jx46xZ88eXn311TEXtpkzZ3L27Fn6+/vR6/Vuf6dQKERexHDXv1OnTtHd3U1SUhJtbW3k5eXR0tLCwMAAgYGBFBQUCKcwnV8gH5QpsDhdICe6f7dA7tyVR97frpx0LbiHP3zGk7EqFBLLE/2prq6mtLQULy8v4uLiyM7OJj4+fkx3SIfDwb/8y7+QlZUlMuba2tr4+OOPh0xdamsZHBxk06ZNVFdX8+233wp3u7/6q7/it7/9LS0tLZjNZrZv385vf/tbBgcHCQ4Opr+/H7PZLPKXZs+eTW5urujiqFQqZs6cKTpUPj4+qFQqWltbiYmJQa1Wi0Bc2fXpzp07wNC6YbFYuHHjhpAsy10h+ecaLrm7ffs2dXV1wk5efkxQUBB37tzB5XLh5eVFY2Mj3d3dKBQK7ty5g0qlQqlUiu51Z2enKCZdLhcGg4HBwUFyc3PdXt+l0nCqP8ltEyTLZs67Utna3olWqyUgIICDBw8SGxtLamoqe/bsISsra4TTJwwdhp04cYKtW7d6NhsePEwiLpdLzCI9DLJpg9FoHDE+INPR0UFMTAxOp5M9e/bw0ksvjVmwHT9+nKysLKKiooiKiuKW2Q9FVQmMMlrvAgaCphOl7uCHP/zhmAfEcudfp9OJuVSn00lxcTHnz58nNDSUV1991e36fQbu8X9P70WfunjUfWl0dDSVlZXCEXoy0Gg0LF26lCMnTuGXvpy6jgHignWsnxmB3rMfGhWPzO8+ZKvNpxKDSYv0G2HzGRUVhcVi4fTp08yYMWPMgLbxaG1t5fr166xdu/axrHMvX77M7NmzWbVqFV1dXRw6dAhJkoiIiBh1LqqhoYHBwUE3x7DhyM40j7M5aG9vp6+vj/j4+HHvJ0kSSUlJtLe3c+HCBVJSUkY9WVGpVHR2dtLd3T2h01+r1cqhQ4d44YUXmDp1qhjwrKioYMaMGSxYsABJkjAajZSWlvLR6ZvUWHTCdnQ4aqWCCD8taZEe3bAHd7xUihEyVm8vJUqXk43+zUgD7WzatImlS5cKt6YbN25w+fJlKisrcTgc+Pr6un3pKhQKent76ezsFPJUb29vLly4gI+PjwixnTFjBklJSVy4cAFJktBoNCxcuJCqqiqMRiNhYWEYjUaR0dTT00NISAhpaWk0NTUJkwiDwUBvby8wZI4RHR0tHOzmzp1LXFwcra2t6PV6ZsyYIWai1q5dK+zWf/SjH2GxWOjs7MTf35/ExETa29vdDmWGW/3KEhIvLy/8/f2F7XlgYCBOpxONRoPZbGbmzJk0NDRgMBjo7u5Gq9Wi1Wrp6urC4XAIB8GQkBCRjWUwGNxkgjJVjiAaHAacjFwTVQqJ9rq7vLFpFYcOHcJisfDaa69x6dIlTCYT69evH7FGFxQUcObMGbZt2/ZIMRIePHgYm+rqaiorK3n66acfen8k58aNNapw48YNEYOwcOFCvvjiCyH3H05ZWRmlpaW8+OKLYi91tLiZa7Vdoz6vwwULZkxlsKaQWbNmjTlvXVxcTHx8PHq9nsLCQpRKJcePH8doNLJ27VoWLVo04tD4+PHjfG/eXJZmJI66L7XZbFRWVj5WjMxoNJi9+JszHVysbOdqTRdXqjr41eVq5sYFEun/ZEzM/pDxJHM9AosXL2batGns2bNHDC8/DAUFBcyaNeuxgtFcLhf37t0jIiIClUrFkiVLePPNN6mqquKjjz6isbFxxGMGBwfHbW1PRmdquKPfg5CtOJOSkti9e7db8OlwZs+eTUFBwYSuraioiJiYGHGy73K5OHr0KHq9nlWrVhEXF8fcuXNZv349b7zxBtPnLMY+xsfgSSW6e/jjQO5k/9f1qby9JIGfr08l/+9WMTs2AIPBwKFDh8jLy2PFihW88847vPPOOyxduhSz2cyJEyd49913+cUvfsGpU6doaGjA6XSSkZFBcXGx+F1XKBQEBATQ3t6OzWYT0jmVSiU2GvLtPT09KBQKpkyZQmVlJd3d3URGRuJwOOjq6mLp0qVi83/v3j2RJ+Xj40NGRgY5OTnitDQxMZGSkhKSk5Oprq7GaDSiUChISUnh4MGDmEwmIiIiKC4uZsWKFTidTvr7+ykuLha273KX3GaziXDjgYEBfHx8hERXo9EQEhIiuk2yVDE7O5uUlBSmTJlCR0cHCQkJwt0QhgwklEolISEh4n1wOBzo9XpWrlwp1tbMzEwGFD6jDnADmGxOXPpgGhsb6erqYt26dTQ2NnLr1i2ef/75EWv01atXuXjxIq+99tqIDZgHDx4en5ycHHHo+bDIjn5jYTQaGRwcJCoqisTERF577TXOnTvHuXPnxJprMpn45ptv2LBhg5uKIDbQB7XkHPV5h8wgfJk5cyY3btwY8/V9fX3p6+ujpqZGzKyuXLmS119/fdTD4ra2Njo7O0lOTh7zOadPn87du3dFl34y6LfYeeOT61hdCsz2ofdl0OpgwOL4zsXWPmmv9ceCp5h6RJYvX05MTAz79u0b1XJ3LOx2+5hDkg9DR0cHPj4+brK9oKAgtm3bxsKFC/nss884evSoOMHtt9g5ebePw3US+/Pr6X9CHwZZ5jdRJEli+fLlpKens2vXLnp6ekbcJyIiAm9vbzeb49FwOp1cu3aN733ve+K2K1eu0NraysaNG0cszna7HbOxHtVofXueXKK7hz8eZBnr//X0dDbPicHgo+GFF14Qp53d3d189NFHtLW1YTAYWLRoEf/lv/wX/uIv/oLVq1fj7e3NtWvX2Lt3L//8z//MlStXsNvtbr/rkZGR9PX1odfrRbivbAPucrlQKpXcunWL5uZm0tPT6e7uxmazERwcLA4oMjIy8PLyEp30hIQEUZjExcVRVFTEunXrxBzVxYsXhQNgSkoKJSUlKBQKamtrCQsLQ5IkXnzxRQoLC6mqqhLhvnq9nmnTpqHVat1iB+Q5LHnOSnYMDA0NRaVS4XA4CA8Px2azERISwunTp4mIiKCsrAyXy0V3dzdbtmwBhrrVshTw7t274rY33ngDm83G6dOnxWe9sLAQb1v/mJ9xFQ5mT4/l7NmzREZGEhkZyZEjR3jxxRfd1laXy8WFCxfIz8/n9ddfJygoaLJ+hTx48PAdzc3NdHR0jBlB8CDGK6acTqdwRJXVN6Ghobz11ltUV1dz8OBBbDYb3377LdOnT3eT/7lcLmgoGPN1JWlI+j179mwKCwvdwsGHo1Qq+fbbbzly5Ag6nY7nn3+e5OTkMQvHgoICMjMzR50Bk5FNix60P3oYxnWrdQ39vQd3PMXUIyJJEk8//TRBQUHs379/wqcC5eXlhIWFuWUhPApNTU2jtrIlSSI9PZ0f//jHSJLEe++9x/4z+cz7x9Psr7BztNrK3x+9zbx/PE1+beeIxz5uZ8rf3x+z2TwiyPNBLFq0iDlz5vDxxx8LOdNwsrOzxz3xgSGZore3t8jtunPnDteuXWPLli0jJIQNDQ18+OGHJKh70IwxuCkvkB48PAxKpZIXX3wRlUqF0+lk7ty57N69m6tXr4rPl16vZ+7cuXz/+9/nZz/7GatXryY8PJzy8nLMZjP79u3j17/+NZcvX0av16NUKtHpdELiZrVaRddEpVJx4cIFfH19yczMpLa2FhjaWNy7dw8Y2jS4XC5x0CF/8ep0Om7fvk1sbKzYAEydOlWYZuTn59Pf34/T6USr1fLSSy/R3d1NXFwcZ86cITw8nCNHjrBkyRJhU97d3e3WRXK5XOLwSHb7i46ORqFQCIvg559/nvz8fGDoZLiuro7c3FxxPVqtlurqauFeKGfmJSYmEhQUhCRJfPDBByL+QX5tSZKYYbDgNYYcW6VUomgoRJIknn32WQ4cOMCSJUvcAjddLhenT5/m9u3bvP766x67YA8enhA5OTnMnz9/3OJhPMLCwujq6hr1gLunp0cc5gw/DNHpdLz22mvCxKaqqsotY0lWt1j6e/jpTCVa1dBBKwzF5qglJ7/aloVOMxT+LWfyDcdoNPL5559TW1tLYGAgP/7xj9FqteP+nDabjeLiYrKysh74c0+fPn3Eaz4O4+WuehQ7o+Mpph4D+QtYp9Nx4MCBMU8jhiNntjwuzc3N41qYa7Va1q1bx7ObXuT/O9PCgMWB1Tl0+jFWu3YyiilJkggLCxMSoodh/vz5LFq0iF27dmE0Gt3+Li0tjdra2jGlgOAe0tva2iqctoZvfqxWKydOnODzzz9n2bJl7HjlZXa9PhedRikWSB8vJTqN8okkunv400AuqCRJ4u7du+zcuZPS0lL27t074nfYx8eHrKwsdu7cyV/+5V+ybNkyYCgr7fr161y/fh2bzSYe19PTg8ViEcWUJEkMDg7i7+9PSEiIsD+XZ46USiX37t2jpKREHPooFAoMBgMWi4WUlBTMZrOQukyfPp3BwUEyMzPx9vamsrISgM2bN3Pt2jUWLFjArFmzKC8vZ2BggOnTp9PR0cGKFSuw2Ww0NzeLdUSj0aBWq0lKSkKpVOJwOJAkCbPZLCSFkiTR3d0t1k+bzUZGRgaDg4NkZWXR0dHBrVu3uHz5siikAAICAqiurqazs9MtL2q4+cTMmTP563d+wu435qFRuNB8t3fRqhWocfD/LAqkvaWJtWvXcunSJUJCQpgzZ454vMvl4vjx49TW1vLaa6+NmGfw4MHD5NDR0UFNTc2EioexUCqVIn/zfoxGIzqdjqioqBGdIJVKxfr16+nr6xOSaRj6/J84cYK2tjZeeeUVYn3s/Gp9qJB2/7cNafw8w4KpvlQ81+zZs7l+/TowtFYfOnSIXbt2ERkZydKlS/H19RWHQuONety+fZvIyMgJOUenpKRQUVExoT3oRJDdakfDo9gZHU8x9ZgoFAo2btyIQqHgyy+/dPsiv5+uri7u3bs3Kd79DyqmZAo6JJRjnMo+qXbtw8xN3U92djYrV67kk08+cSvINBoNM2bMoKBg9FZ7U1MTPT09pKamMjAwwP79+3n66afdTpirq6t5//33MZlMvP3222Jg8/7Zl/+6PpW8v13psUX38FgolUpeeuklnE4n586dY8eOHURGRvLhhx9SXl4+6mO8vb353ve+R2xsLOvXr2fFihVCbiIXC1euXOHgwYM4nU4kSWLevHnY7Xa6urpoaGgQwb/Nzc309/cTHBxMfX093377rZgBiI6OFs+3cuVKtm3bhsPhwOl00tbWRm1tLXV1dWKGKSkpiU8//ZSamhoaGho4efIkzz77LL29vcycOZOysjIRmOtyuQgJCUGj0YhsqWPHjuHj40NYWBgul0t0uxwOB1arlZMnT+JyufD19WXatGkioDcgIAAfHx9sNhs2m80tSsLpdKLX68UhkGx6I+d5+fn5sXHjRtRqNakhGrbpb/P/rk3h7SUJPB3Sx3ur/WkoOE9kZCROp5PGxkaeffZZN0fCr7/+mra2Nnbs2DEp+YIePHgYnStXrjB79uwxnfAmylhSP6PRiCRJYxpsnTt3jmnTprFmzRp2795NZWUlZ86cob6+nldffVWY4wTofdyk3c8+s1oE78JQl6i9vZ0vv/ySDz/8EL1ez09+8hMRCC7Ln+Ww8bG4ceMG2dnZE/qZDQYDwcHB1NTUTOj+D2L9zAjGGlnzKHZGx1NMTQLyKbTZbObw4cNjdneKiopIT08f0xp5ojgcDlpbWyfkJFXbPoBpgu3ayehMweMVUzB0mvzMM8/w6aefui2KcubUaAXr1atXmTdvHk6nk88++4z09HShu5b/XQ4dOsTatWvZtGnTiI3R/bMvno6Uh8lALqjsdjuHDh1i8eLFbN68mZMnT3LkyJEx5y3lAiU9PZ2tW7ei1Wrx8fERVua9vb3Cla+oqAibzUZ/fz9XrlxBoVBgMplwuVzMnj2bqKgojEYjwcHBojjy8/MT4boGg4G+vj4cDgfe3t7U19fjcDiE6YRarWbTpk0oFAocDgc1NTVMnTqVqVOnsmnTJr7++mtsNhsFBQXi1LW3txdJktysy9PT0zEYDEiSJLpsZrOZsLAwIQt+4YUXqK6uxuVyERAQIDJhZGQZn0ajoa+vj/b2dnx8fNBqtaKDJm/GhjuKFhcXk56SzLYF8byQqCKBVoz3GnE6nSxevJgzZ87w8ssvCzmw3W7niy++YGBggG3btj32Bs+DBw8j6bfY2Z9fz98fLuaLwnukzZpY8TAekZGRo3am2tvbsVqtbgesMrLpzJo1a0hPT2fz5s188cUX3Lx5k+3btwt3PovFMsKpT56FPX78OGazmYsXL2KxWGhtbeVHP/oRK1asEI+RDSgAEWsxGm1tbXR3d49rPHE/KSkpkyb1k3NXPYqdieMppiYJlUrFli1b6Orq4vjx4yOKEqfTSVFR0aRI/IxGI/7+/hP6gv9dtGunTJnySDK/4aSmprJhwwb27dsnMmrCw8PR6/Vi6Fymp6eHqqoqMjMzOXbsGDqdTkil7ty5w/vvv49CoeBHP/oRSUlJj3VdHjw8LCqVipdffhmbzcZXX31FZGQkP/zhD3E4HPzyl78c9Ys/NTVV5ErB0AGFw+FApVKJ0FsZSZJE4SJ3dGS5h8FgQK1W43Q6qaurE12XhoYGFAoFXl5eqFQq6uvrcblcxMXFCVdAhUKB3W5n7ty5fPTRRzidTt544w3+4i/+Am9vb/7P//k/HDx4UKxDGo2GuLg4ca2y2YUsQ2xububu3bu4XC636+/r63OT3YSHh2M2m4XFuiRJ4rliYmJEN0uWyXh5eWE2m0U+llwQpaWlAUOFXEFBAVlZWTidTk6dOkVaWhpVVVUsX76cY8eO8cwzzxASEgIMyQz379+Py+Viy5YtjxR/4cGDh/HJr+1k3j+e5u+P3uY3uQ3kWiJZ9m7uiFnuh2W8zlRPT8+IzpTdbufw4cOsWbNGHLI2NTWJteTChQviAFfO6rufrKws2tra+Ld/+ze6u7vZvn07vb29I2a17y+mxupM3bhxg8zMzIdyfE5JSaG8vHxcddTD4FHsPByeYmoSUavVbN26lebmZk6dOuWedVJVhV6vHzNM7mEYy3xiNB6mXTtZnanQ0FDa29sfW7+bnJzMCy+8wOeff051dTUwuhHFtWvXyMjIoKCggJaWFjZt2oTJZOLLL7/k5MmTbNq0ifXr13tOlz38zpALKovFwpdffolarWbjxo0sW7aMvXv3cunSJbcvQY1GQ1JSEqWlQ1r8qKgoBgcHhZtfaGiouF9KSorbLM/wzf/Zs2fdPi/Tpk0D4NlnnxVZVzBk3gJQU1MjvuTlU9MrV67Q29vLD37wAyIiImhra6Ourg6DwUB0dDQDAwPYbDaioqKor68nLS0Nu90uNg3ymuJyucTgd0ZGBjC0obDb7VitVlQqFbt27aKyshJvb29xX5fLJdYSo9FIRkaGKLJcLhcdHR0oFAqWLFmCXq8X3Tc5q6uhoQGXy0V0dDRFRUV4eXmRl5fHlClTqKurIzExURReFouFvXv3otPpeOmllx5bReDBg4eR9Fvs381sO4TRgdXJpFhvBwYGYrFY3NxEXS4XRqMRX1/fEfEwly9fJjAwUITe5ufnk5eXx86dO/mzP/sz2tvb+e1vf4vFYhlRTDmdTgoKCnjvvfcICAhApVKxdu1aYmJiiI2NpaSkxO215PVJnv0crViy2WyUlJQ89OxYQMBQJEd9ff1DPW48PIqdieMppiYZjUbDtm3bqKqq4sKFC6KN/Q9HS+nwnzYpluQTnZeC30271svLC4PBIDTEj0N8fDybN2/m4MGDVFRUkJaWRn19vRgQtVgsFBUVERoaytWrV9m8eTMVFRW8//776HQ63n77bbGp8uDhd4lKpWLz5s2YzWa++uornE4nM2bM4Pvf/z7V1dV88skndHd3i/vLmVOAGJp2OBxYLBbRsdLr9djtdubMmeM2WyUXMMNz8BQKhSiaZGtxg8GAy+WioqJCzB1FRkai1+ux2WwYDAYCAwNRKpVcuHCBTz75hMOHDzNv3jzefvttQkNDCQgIICUlhaqqKrRaLadOnRKF2HCTDD8/P3E9sssgIKSOdrsdb29v1Go1O3fudHP1lK91cHCQO3fuiJ/B5XIxZcoUdDodkiSJ/Ck56wqGTH+ysrKw2WycP38erVaLzWYjISGB/v5+1qxZAwzl8H3yyScEBweLOVgPHjxMPk/SelueixrenZILq+F25wCtra3k5+ezdu1aJEmiqKiIy5cvs2PHDvz8/NBqtWzduhU/Pz9+85vfMDg4iFarxeVycevWLd577z1KSkp46aWXeOONN0hMTOTChQsAzJkzh/z8fLcDaqVSiVarZXBwcMxi6tatW0RFRT2Sa2hKSgq3b99+6Md5eHw83xZPAG9vb7Zv386JG5XM/h8n+W9HbnG+zYvdJQOjWpI/LA9TTMHE27WT1ZmCyZH6ycTExLB161YOHz5MZWUlidPT+LcjefzTN2X876+uEDwlktOnT7Nu3TpOnDjBxYsX2bx5M2vWrPFIdDz8XiEXVIODg3z99dc4nU78/PzYvn07SUlJfPTRR+I0Mz4+np6eHtrb20VHW+5MyZsDPz8/GhoaiIiIoKmpyc2OXQ6ulueWnE4niYmJAOzduxebzcbg4CD79u3DYrHg7+9Pa2srra2totuzcuVKIf8rLS2lra2NDRs2kJ6ezoULF6ioqGDnzp1s2LCBjIwMWltbRaE2HJfLRW1tregaffvtt0iS5HZKrFKpMJlM+Pr68sEHH4i1SKlUolKpUKvVooCS0el0hIaGijBjWS4od6HNZjNlZWVkZGRw5coVQkJCqK6uFvOXL730Ekqlkv7+fnbv3k1cXBzr1q17pMBQDx48TIwnbb0tr4cy7e3tqNVqN4mf0+nkyJEjLF++HIPBQGlpKWfOnGH79u1u0TVKpZJ169Yxa9YszGYzN2/e5KOPPiInJ4dnnnmGHTt2iDmsVatWcfPmTdra2oiPj8dms9HY2Oh2bbLUb6xi6mGMJ+5HlvpN1j7Ow8Tx9OyeFGotR3qjMdsdwJB8x2Qb+t+du/LI+9uVj9QVstlsbpuriSK3a8djMoupxzWhuJ/IyEi2b9/O//z4IMf6Y7E7zNipRoUTSfLlxzOmc/jwYWbPni0yfjx4+H1ErVazZcsW9u/fz6FDh3juuedQKBQsXLiQ+Ph4Dh48SGVlJWvXriUtLY3i4mIxA6hUKrHZbKIoMRgM3Lp1C7PZjFKpRKPR0Nvbi8lkEt0r+XGSJIkDDnlIe/hndLhkDmDu3LkcOXIESZKYNWsWL7zwAnfv3uXgwYMiT27t2rWcP3+emzdv4nQ6SU1NpaamBrvdLqzQZXp7e1Gr1SJQ2Gg04u3tjclkIjU1VXSc5I6Ul5cXQUFBmEwment7hZ36wMAAYWFhtLW1YbVaGRgYEB07GDLokSWCpaWlxMfHi0BvhUJBUFAQZWVlbNq0CT8/P3p6evjkk0/IyMhg0aJFnkLKg4cnjDzLPVpBNRmz3JGRkeTl5Yn/bzQacTgcbuYT165dQ61Wk5WVRXl5OSdOnGD79u0EBwePeD5JksSe6/Tp08ybN4/Vq1ePWCt0Oh1Lly7l+PHjvPbaa2RnZ3P9+nWRfQnjF1Otra309vY+8my37KLa1NQ0qtGGhyeHpzP1hDha3MxYZcnjtLFbW1sJCQn5vS8WJruYAtD5B/HN4FTMDrB/96trR4HNpeS9W/DC5q0sW7bs9/698eBBLqj6+vo4dOiQmJcKDw/nBz/4ARqNhg8++IDQ0FAh9fP39xdSP7lQ8vLyIjg4mJs3b4pAX7nAkvOmJEkSnex33nkHGCpsbDYbSqVSnML29vaK/BMY2mwYDAb+/M//nEWLFuHl5UVqaippaWm0tLTQ1dXFgQMHaG1txdvbm7feeosXX3yRzMzMEYWUjNyJ6uvrQ6vViqJHNqYY3qlyOp1ERUUJgwr559FqtcydOxeXy4XNZqO7u1vMXcmzCPLmRZb4nTt3ThSA8gYqISGBjo4OPv74Y+bMmcPixYs9hZQHD/8JPGnrbfmwSD4cbmlpwWq1EhYWBgzF1Fy6dIlnn32Wqqoqjhw5wtatW8XfD6etrY39+/fz5ZdfotFoeOuttygrK+PSpUujHj5nZ2djtVopLi5m1qxZVFRUuB1sjVdMPYrxxP14pH6/GzzF1BPiSbWxH8Z84mH5fZX5yRwtbmasFVipVpPfOjmBdR48/GegVqt55ZVX6O3t5fDhw6KIUavVrFu3jrVr13L27FlsNhs1NTWEhoYKmZtsJW6324mIiKC6ulpkMMkRAXa7HbVajSRJzJ49G4fDITpacjGTkpJCe3u7uCa5AJJnkPr7+9m7dy/nzp2jqKiIX/7yl1y7do3Y2FjmzZuH1Wqlu7ubNWvWUFxczLvvvsutW7fw9fXFz89PFEsysjxRqVRitVqprKxEqVSSmJjInDlz3Ew4nE4n+fn5wpIdhgop+XbZPKOrqwu73Y7FYhH0dtJKAAAWtklEQVT3kwu+gYEBdDod5eXltLa2EhUVhbe3N0uWLKG1tZXdu3ezePFi5s+fP7n/uB48eBiTJz3Lrdfr0Wg0osvd3NxMUFCQiJY4cuQITz31FL29vXz11Vds2bJlxL6qq6uLr776ik8++YTY2FheffVV9Ho9ERERvPnmm9y5c4evv/5aHPLIKBQK1q1bx+nTp1EoFEybNo3CwkK3axutmLJarZSWlj5WaDEMOcGWlZV5pH7/yXiKqSfEk7Ikf9h5qd8VBoPh/2/vXmOjPM80jv/nfLTHZ7CNMVBsbIiB5VBKoJSELYSGVqEJaVrlQKqtom5bdXc/dLX7Zauu1O220qpSD+pu0DYSSZuF9aYbDq4CBAIEQiCQBRIChuA4NmPGNj6NZzzHdz8488aODYRhTBK4fpJlYw8z2GjGz/Xez3PfpFKpUR11bta1Amo0B/usRW61TKDq6+tj27Zto34B1tbW8tRTT+HxeGhsbKS4uNj8xZ15XmXmORmGwcDAAIsWLeK1114z78Pr9eLz+ejp6cEwDDZv3gwMbweJx+Pm2AGv1zvqsYeGhqiqquKBBx5gypQpHDt2jBdffJFgMEhNTQ0zZszg5MmTFBYWEo1GaWxsJBwO841vfIMf/vCHfOc738Hj8Zgd/TIyYWlwcNB8vNraWlpaWmhrayORSFBQUEAgEDBvm0gkmDlzJh6PB7vdTmlpKVeuXKG8vNxsOmG1WonFYmbIrKqq4vjx48yfP5/du3djGAZ+v5++vj6+/vWvc+nSJTZv3szq1atvevEiIjduoltvj2xC0dPTYzafOHHiBLFYjClTprB161YeeuihUdvwwuEwO3fu5Omnn6awsJAf/OAHLF26lGQyOWpe1MaNG0kkEmzevHlU5Snz2LW1tbz88sssXryYY8eOma93mcrUR4f2vvXWW1RVVZGfn39T3/ekSZNIGFb+Y/dpftZ0huePtuak8Zlcm8LUBJmoMvZEhqlcVqYsFkvOt/p9EjOzRCaa0+nkm9/8Jj09PWMCld/v5/HHHycej3Ps2DHz85lf3h0dHbS1tWG327FarcTj8VEXMOrq6ojFYmZTi0xjiEzVONMqPVPFguFwk5eXx9DQEFu2bOGNN97A6/Xi9Xq555576OrqYteuXYTDYVKpFEuWLGHt2rW0tLRw9OhRYrEY586dIxaLkUwmr7plJfN9RiIRysvLuXTpEk6nk+rqarOCBsNXetvb26muriaRSHD58mVzllamUme3283WxZktgadPn6awsJBgMEgsFiORSLBhwwY6Ozv5wx/+wFe/+lWzJbqI3HoT2Xo7E6ai0SiJRIIZM2YwMDDAnj17WLp0KVu2bOGBBx5g+vTpwPAFpD179vDb3/4Wm83G9773PVauXDmqmc3ItugOh4MNGzYwdepUNm3aNKrCD7Bq1Srefvtts9FOZj7myFlTI18bb6bxxEjH3uthU9cM/m1fK7/b/y4/2f52ThqfybUpTE2QiShjx2Ix+vr6zBkzuZbr8wK5DlMTvc9a5JPidDr51re+RXd395hAlZ+fz9SpU1m2bJn5uUyzBRgORolEwtxOYhgGbrebKVOmcOLECYqKiuju7iYvL4/Ozk7gw+1ymfNYmbNGMHx+KZ1O09DQwPe//31qamq4cuUKkUiEffv20dvby4oVK/jRj37EmjVriEaj7N+/H5vNxvnz5/n5z3/Onj17WLlyJfX19VcdIplZSLS2tnLhwgWsViuFhYWcOnWKZDLJ/PnzaWhowDAM4vE4wWAQp9OJYRj4fD5aWlrMwcIWi4V4PE4ymcTlcnHmzBkqKio4cOAAQ0NDZhCMRqNs2bKFBx980AySInL7yYSpzGteZWUlO3fupK6ujj//+c/cf//91NTUkEgkOHjwIL/61a8Ih8M89dRTrFmzxtw2nTHewF6LxcKqVatYsWIFzzzzjDkPE4ar/atWrWLnzp1mIwr4MEyNDFIdHR0MDAyY3VazlZnfNZSC2Acvu5F4Kifzu+TabD/+8Y9//En/I25XlQUeNi6dRkXATU1ZHg/Mr+AXD81jWonv+n95HG1tbXR2dk7YtpSLFy9isVhyNpcpHA7T3t5OfX19Tu7Pabfy+WlF7DwdxGGzkkgZeJ02nHYrz2z8fNY/V5FPA5vNxpw5czhy5AhtbW3U1taaFzgsFgvnz58399qn02ksFguFhYVEIhHzfFM8HjeHh9fU1HDs2DGSyaQZSCwWi3meyul04vF4RjVucLvdTJ06lcWLF3PhwgVeeuklenp6WL58OQ6Hw2zecPHiRfbu3Us6nWbWrFnU1NTQ2tpKIpHA4XDQ39/PO++8g8fjoa6ujo6OjjFV70zoS6fT5tcyi4yNGzeyZMkS6urqiEajtLe3k0gkzIpZJkz6fD7i8Tg2m81sSFFaWkooFKK4uJj33nvPPJNVWVnJiy++yCOPPKLZcyK3Oa/Xy0svvUR+fj7t7e1UVlZy6tQpOjs7WbNmDXV1dRw/fpytW7ditVpZv349CxYsGBOYMlpbW4lGo+NehJk8eTIVFRU0NjbicrnM3UOTJ0/mzTffpLS0lJMnTzJnzhzcbjeHDx8mnU6zYsUKAF555RWqq6vNKlm2/udEG6+c6ySRGrvDyGGzUhFwc1fljc+vkutT27MJ9nFakl9POJZk+8lLHPy/8xTYJhOOJfFPwLDdXG7zg+HK1MjzG7mQ2We9/eQlWrojTCv2sm5uhSZzy20hU6F67rnn2LFjhznzqK6ujp07dxIIBMztJJlW5oZhUFxcTFdXF1arlXXr1uH1etmyZQter5doNIphGGZbchie6WS320cNCYbhQ9Dvv/8+TqcTn8+Hz+dj/fr1NDU1UVFRwcMPP4zdbmflypX09/fz6quv8qc//Yl4PE5RURFut5tYLMayZctoa2ujvb2djo4O7HY7qVSKhGHlYqqIfsNFviXGjKEe7B+MjjAMA6vVSlVV1ahhv2vXrsXtdrN//366u7spLCykp6cHm81mDgEe2TmwrKyM5uZmgsEgyWSSwsJCpk2bRlNTE48++ijl5eUT/v8oIp+suGHlfWcV//5aB3n2Sl7Y3oTLanDvvfcC8Jvf/IbCwsJxm0+MZ7zK1EjTpk3jySef5I9//CNdXV18+ctfNptRPPvss9TX1/PGG2+wcuVKIpGIua0603jiu9/97k1/zxM9v0uuTpWpT7mjLVdY9+sDvHKuk7e6EpzttfCfhy7y+WlFVBZ4rn8HN6ClpSWnlSmPx8Pu3bu5++67b6rV50c57VbuqgywfGYJd1UGcNq1W1VuH3a7ndmzZ3P48GGz4YPdbqerq4uhoaFRHfEyISJzhuqLX/wifr+frVu3UlRURDgcJpFImBWpjEwnqZEhxGazsXDhQh577DESiQRvvvkmq1atYtu2bSxdupR7770Xm214y3JbWxtNTU20t7czc+ZMotEo6XQah8NBJBLB4/Ewb9485s2bR0tLC6WlpVzogz8N1dGWDtBh5BNM5/FWchKTrGH8ljjr1q1jw4YNpNNpmpqaaGlpoaSkhLy8PKZPn47b7eb8+fNEo1EztGUu/ox8P3nyZNLpNL29vdjtdhYtWsSRI0d47LHHxm19LCK3l8y66ULERUvUReuQmzeHilg6s5TL754hGAxy33338aUvfcnsCno9zc3NuFwuqqurr3obr9dLQ0MDR44c4ezZs9TW1pqz7CKRCO+88w5f+MIXzIYUy5cvN8da5OK8VFtvlEMXusetTHmdNh6YX6HK1ARRmPoUC8eSrPv1AQZjKfPJkTIgkTLYeTrIxqXTchok3nvvPQzDuOlSc0YkkWbr0VaOXU4RGkwyrcSn4CPyMdjtdubMmcOhQ4fo6Ohg5syZuFwuTp8+bW5x+2gVubS0FL/fz+HDh83PxWIxfD4fiURizNmlj86Bqqys5OGHH+bkyZPs27eP+fPnc/DgQR588EHuuusuLBYLwWCQbdu2ceTIEfLy8ujp6cHv97N69WpWr17N4sWLWbBgAYZhcPr0aV577TUqKiqIpeCZjskksJH+4KhuGitprLSkCvmrFTXU1daYrYcXL17M0NAQO3bsoL29nbKyMmbNmkVBQQFnz541z0mNV0kPh8NcuXIFi8XC7NmzaW5u5oknnhjTpl1Ebj8j100pY3ibdBoLaawc7zT4m6/8BV+5b7U5X+/jOnPmDPn5+VRWVl7zdg6Hg4aGBlpaWjhw4AC1tbXMnDmT3bt3k5+fj9vtJhgMkkgkWLZsGdu3b+fuu+/OyevTtBIfmw6+O26Yctqt/OKheVqDTRCFqU+xW73/taWlBSAnYWrklaETlwY5dKGbTQffnZCKmsjtKFOhevXVVwmFQixcuJBDhw6ZW/VG8vv9DA4O0t7eblahysvL8fv9dHZ2jjtA1+VymZ+32Ww88sgjXLhwgZdfftk8vP34449TXl5OKBRix44dHDhwAJvNRjgcZvr06Xzta19j8eLFBAIB83yXw+GgvLycuXPnsmjRIqxWK7svDHC2/8MgNZLTbsNvSfDuG69w5MgRuru7sVqtzJ49myVLltDf38+2bdsIhULMmzeP6urqaw6lzAw2Li0tZWBggI0bN1JQUJDtf4OIfIZcc91kt1JbWcK8qcU33HDr9OnTlJWVfazqttVqpba2llgsxrZt2/jc5z5HeXk5zc3NdHV14Xa7CYfDzJgxgxMnTrB27dqcNADTufJPjg6afIrd6v2vH90KlK1MR5nBWAoYfoHIfB8bn3md1//hL3XGSeRjcLvdPProozz77LPs2rWLWXPm8vyhZvPM0XTbFVw2zDbkFouFRCKB3W6nra2NVCpFfn4+6XTabF6RqeaM7Ai4cOFCQqEQu3fvxufzYbfb+fa3v83AwACNjY00Nzfj8/mwWq3U19ezYMECLBYL0WiUtrY2IpEI0Wh0zPvBwUH6+/t5tzuPJON3IR1KGkSsXtavX4/VaqW1tZVDhw7R2NhIdXU1NTU1PPHEE5w5c4ZNmzZRV1fH+vXreeGFFwDGnMOablzB47BjsVh48sknx3TlEpHb17XWTUNJg/99+TDvv7KFQCBgzrQrKCgw3wKBAHl5eWOOJlzvzNRHWSwWli1bRnFxMc899xz3338/gUCAjo4OpkyZAgy3Q1+wYEFOj0HoXPknQz/dT7HMXKXxXhgmYq5SrhpQbD95iavdjWEMf/1mm3KI3CkygeqnT/8X/9VRTCpdRRIbdlK8nqziy85mJqXDOJ1OM1Alk0mKi4tZt24dFRUV9PX18ctf/nLc+7fZbOTn57Njxw6sViuTJk2ipKSE3//+94RCIXMwLgw3yDh8+DB79+7F4XDg9XrxeDx4vV5cLhfpdJp4PE40GqW/v59oNEpxcTGzKos40wqxcdY4Lhu4k2F27dpFZ2cnLpeLsrIy5s2bh2EYnDt3jr179+L3+2loaCAajdLU1ER9fT373nqfXfEaDBj1M3m4oIu/2/hNPB5VwUXuJNdbN33jK/fw9fnl9PX10dvba741NzfT29trnm/Ky8sbFbC6u7vp6emht7eX/Pz8jx2A6urqCAQCPP/889TX13OxLcj+9iShaBlvHb/Ev/71suvfyQ3KReMzuTEWI5ft2ySnwrEkS/5l9wcVntF8LltOKzzhWJJ/++99XBpIsnLhbNbNrci6Y+DPms7wu/3vXvXr3/3S5/j7++qy/aeK3HHCsSRLfrqbwXEWCA5SPOI+SVlRgLlz5zJ9+nTS6TQHDhwgFArR0NCA0+nkxIkT9Pf3X/UxMq3WU6mUebvCwkJmzZpFVVUVPp/PDE42m43Lly9z6dIlgsEgwWDQnIFXXl5ORUUFFRUVlJaWYrVaP/ZrmWEY9PX1EQqFRr11dXXh8/lwOBzEYjFisRh2t4+nO6eTYOwgb5/Txuv/qAq4yJ0mF+umZDJJX18ffX19BDuvsOvsFd680E55np1plm7ikQEzbI1X4QoEAuYFqIz+/n5+/vtGtlwuIW0YJLHhtBg4nMMzSRdPK8rpz0FuLYWpT7mjLVfY+MzrGMbwVjmv04bFQk6ffJnHSCZTxFLc9GM8f7SVn2x/+6pXhv5p3WxdNRG5Add6TtlJsdTVTo21E4vFYrY9t9vtpNNpBgcH8fv95OXl8V57x+jW5PYe7KRwOp14vV76+voAKCkpobKyEo/HQyqVIhKJEA6HGRwcJBwOE4vF8Hq9+P1+883j8YxZQMCHw8DP9aT45Yk4hjE8UNJlG94E/LcLXNQW2sY9M5D5XDKZNB97cHCQgYEBjvd5eC1eSXKcMKXXGZE7V67WTR+9H4/DitVq4T8fW0Rtkc2sZGWqW5mPBwYG8Hq9o8KVy5fPd3Z0Ek2OXXLn+uK43HoKU58Bgx/MmZqI/a8TUf26lRU1kTvB9aq9C9ydrJ40RH5+Pnl5eWa4geG9/qdOneL9IScv9JRjGB9uibMAaz0XKaEPi8XClClTKCoqIhKJ0N/fz8DAANFo1AxjmfvPnJ8a79eHYRgYhkEqlTLfEonEcCiLpzjebSEUNSi0J5nti2IzkubtksnkqL+X+ZxhGNjtdmw2m/l2aLCUY5GrL4xUARe5c93suulm1jGZM6ojtxE2neun8aKFhDH2opEu/nz2aUX7GTCR+18n4nyT3zVctr7alSEFKZEbc61zAB6njbXLF7GkNM3ly5cJhUKcP3+eoaEhysrKKCsro+EvFvHrP18hMeK5nqnoNEWn84OqINZ0gvb2doaGhigpKWHGjBkEAgE8Hg+JRIJ4PE4sFiMej9Pf3z/qzx99H4/HcTgcuFwunE7nqPdLy5wffJyH0zlp3Ntk3mc+ttvtYypXFUdbefsaFfBcnykVkc+Om1033czayGq1EggECAQC5lyqw5EzJN4d/4KYBup+9mlVe4ebqI6B6igjkjvr5lbwzzvGbwdutcC3lteNeW5Fo1FCoRCXL1/mhZOXGW7UOfbQtAG83pFklqMHl8tFLBajq6uL/v7+UYEmE3A8Hg8FBQVXDUCZ2+ayQ9V4rvUzsViGvy4iko1cr41udUMxubW0sr3DTeQTXB1lRHIjm2qvx+Ohurqa6upqXu4+Q+LC+FdFk9iY84V7+IevzJ7obyOnVAEXkYmS67WRLv7c3vTb5g6nJ7jIZ8PNVHuvtzCYUeqfiH/yhFMFXEQmQq7XRrr4c3tTAwq5JR0DReSTo6YwIiI3ZiLWRhPZUEw+OQpTAugJLnK700UTEZEbo7WRfBwKUyIidwgtDERERHJLYUpERERERCQLE9u7VkRERERE5DalMCUiIiIiIpIFhSkREREREZEsKEyJiIiIiIhkQWFKREREREQkCwpTIiIiIiIiWVCYEhERERERyYLClIiIiIiISBYUpkRERERERLKgMCUiIiIiIpIFhSkREREREZEsKEyJiIiIiIhkQWFKREREREQkCwpTIiIiIiIiWVCYEhERERERyYLClIiIiIiISBYUpkRERERERLKgMCUiIiIiIpIFhSkREREREZEsKEyJiIiIiIhkQWFKREREREQkCwpTIiIiIiIiWVCYEhERERERyYLClIiIiIiISBYUpkRERERERLKgMCUiIiIiIpIFhSkREREREZEsKEyJiIiIiIhkQWFKREREREQkCwpTIiIiIiIiWVCYEhERERERyYLClIiIiIiISBYUpkRERERERLKgMCUiIiIiIpIFhSkREREREZEsKEyJiIiIiIhkQWFKREREREQkCwpTIiIiIiIiWVCYEhERERERyYLClIiIiIiISBb+H8K2FRzaAVMZAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAH4CAYAAAALhicKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gV55nw/++cpqPeG0KFDhKI3gUYMG644I5tbOMS4zibTbL72u+7+26SzZu9kt8m8a6TrBOTuNLsuIMb1QbTi2kqiKbeu3TUTp3fH8qMdVAXOoDt+3NdXEFHc2bmHOKZee7nfu5bUVVVRQghhBBCCCGEEEKIIWa42icghBBCCCGEEEIIIb6dJPAkhBBCCCGEEEIIIXxCAk9CCCGEEEIIIYQQwick8CSEEEIIIYQQQgghfEICT0IIIYQQQgghhBDCJyTwJIQQQgghhBBCCCF8QgJPQgghhBBCCCGEEMInJPAkhBBCCCGEEEIIIXxCAk9CCCGEEEIIIYQQwick8CS+tRRF4d///d+v9mkIIYQQXi69P73++usoikJBQcFVOychhBDfLP/+7/+OoihX+zSE6BcJPAkhhBBCdPLpp59e9YmLP/3pT7z++utX9RyEEEL4xsWLF1mzZg0jR47EarUSEhLC/Pnz+f3vf09bW9vVPj0hhpwEnoQQQgghOvn000/5xS9+ccWO9/DDD9PW1kZycrL+mgSehBDi2+mTTz5h0qRJvP3229x222388Y9/5Ne//jVJSUk8++yz/OhHP+rXfv7t3/5NglTiG8N0tU9AfHe0tLQQGBh4tU9DCCGEGDIulwuPx4PFYhn0PoxGI0ajcQjPSgghxLUoPz+flStXkpyczOeff058fLz+ux/84AdcuHCBTz75pF/7MplMmEwynBffDJLxJHxCW3Ock5PDgw8+SHh4OBkZGZw+fZrVq1fraaVxcXE8/vjj1NbWdvv+CxcusHr1asLCwggNDeWxxx6jtbXVa1u73c5PfvIToqOjCQ4O5vbbb6ekpKTb8zpx4gQ333wzISEhBAUFsXTpUg4dOuS1jVZrY9++ffzjP/4j0dHRhIWFsWbNGhwOBw0NDTzyyCOEh4cTHh7Oc889h6qqQ/sFCiGE0JWWlvLEE08wbNgw/Pz8GDFiBN///vdxOBwANDQ08OMf/5jExET8/PwYPXo0//mf/4nH49H3UVBQgKIo/O53v+Mvf/kLo0aNws/Pj5kzZ3L06FF9u9WrV/Piiy8CHbWYtD+X7uOFF17Q95GTk4PD4eBnP/sZ06dPJzQ0lMDAQBYsWMAXX3zR5+e7tMZTSkoK2dnZ7NmzRz/+ddddR15eHoqi8N///d9d9nHgwAEUReHNN98c9PcshBDCt37zm9/Q3NzMK6+84hV00owePbrfGU9S40l8k0iIVPjUvffey5gxY/jVr36Fqqrs2LGDvLw8HnvsMeLi4sjOzuYvf/kL2dnZHDp0qMvF87777mPEiBH8+te/5vjx47z88svExMTwn//5n/o2Tz75JBs2bODBBx9k3rx5fP755yxfvrzLuWRnZ7NgwQJCQkJ47rnnMJvNrF27luuuu449e/Ywe/Zsr+1/+MMfEhcXxy9+8QsOHTrEX/7yF8LCwjhw4ABJSUn86le/4tNPP+W3v/0tEydO5JFHHvHNlyiEEN9hZWVlzJo1i4aGBp566inGjx9PaWkp7777Lq2trbhcLhYtWkRpaSlr1qwhKSmJAwcO8C//8i+Ul5fzwgsveO1v06ZN2Gw21qxZg6Io/OY3v+Guu+4iLy8Ps9nMmjVrKCsrY8eOHaxfv77bc3rttddob2/nqaeews/Pj4iICJqamnj55Zd54IEH+N73vofNZuOVV17hxhtv5MiRI0yZMqXfn/mFF17ghz/8IUFBQfzf//t/AYiNjWXkyJHMnz+fjRs38pOf/MTrPRs3biQ4OJg77rhjQN+vEEKIK+ejjz5i5MiRzJs372qfihBXliqED/z85z9XAfWBBx7wer21tbXLtm+++aYKqF9++WWX9z/++ONe2955551qZGSk/vPJkydVQH3mmWe8tnvwwQdVQP35z3+uv7ZixQrVYrGoFy9e1F8rKytTg4OD1YULF+qvvfbaayqg3njjjarH49Ffnzt3rqooivr000/rr7lcLnX48OHqokWL+vhGhBBCDMYjjzyiGgwG9ejRo11+5/F41F/+8pdqYGCgeu7cOa/f/Z//839Uo9GoFhUVqaqqqvn5+SqgRkZGqnV1dfp2mzdvVgH1o48+0l/7wQ9+oHb3iKTtIyQkRK2qqvL6ncvlUu12u9dr9fX1amxsbJd72aX3J+2+k5+fr7+WlpbW7b1l7dq1KqCeOXNGf83hcKhRUVHqo48+2mV7IYQQ14bGxkYVUO+4444h2Z82XhLim0CW2gmfevrpp71+9vf31//e3t5OTU0Nc+bMAeD48eN9vn/BggXU1tbS1NQEdBSABfjHf/xHr+1+/OMfe/3sdrvZvn07K1asYOTIkfrr8fHxPPjgg+zbt0/fp+aJJ57wysCaPXs2qqryxBNP6K8ZjUZmzJhBXl5e91+AEEKIQfN4PHz44YfcdtttzJgxo8vvFUXhnXfeYcGCBYSHh1NTU6P/uf7663G73Xz55Zde77n//vsJDw/Xf16wYAHAgK7jd999N9HR0V6vGY1Gvc6Tx+Ohrq4Ol8vFjBkzur2/DdZ9992H1Wpl48aN+mvbtm2jpqaGVatWDdlxhBBCDC1trBEcHHyVz0SIK08CT8KnRowY4fVzXV0dP/rRj4iNjcXf35/o6Gh9m8bGxi7vT0pK8vpZGyzU19cDUFhYiMFgYNSoUV7bjRs3zuvn6upqWltbu7wOMGHCBDweD8XFxb0eOzQ0FIDExMQur2vnI4QQYuhUV1fT1NTExIkTe9zm/PnzbN26lejoaK8/119/PQBVVVVe2/d1X+mPS+9tmjfeeIP09HSsViuRkZFER0fzySefdHt/G6ywsDBuu+02Nm3apL+2ceNGEhISWLJkyZAdRwghxNAKCQkBwGazXeUzEeLKkxpPwqc6ZzhBx0ztgQMHePbZZ5kyZQpBQUF4PB5uuukmryKwmp66/KhXoJh3T8fu7vUrcT5CCCG68ng8LFu2jOeee67b348dO9br56G4r1x6bwPYsGEDq1evZsWKFTz77LPExMRgNBr59a9/zcWLF/u97/545JFHeOeddzhw4ACTJk1iy5YtPPPMMxgMMp8ohBDXqpCQEIYNG0ZWVtbVPhUhrjgJPIkrpr6+nl27dvGLX/yCn/3sZ/rr58+fH/Q+k5OT8Xg8XLx40Sub6ezZs17bRUdHExAQ0OV1gNzcXAwGQ5dMJiGEEFdXdHQ0ISEhvT6kjxo1iubmZj3DaSgMpkvQu+++y8iRI3n//fe93v/zn/98yM/hpptuIjo6mo0bNzJ79mxaW1t5+OGHB3UcIYQQV86tt97KX/7yFw4ePMjcuXOv9ukIccXI1Ji4YrRZ5ktnlS/tODQQN998MwB/+MMfet2n0WjkhhtuYPPmzXq7aoDKyko2bdpERkaGnv4qhBDi2mAwGFixYgUfffQRx44d6/J7VVW57777OHjwINu2bevy+4aGBlwu14CPGxgYqL+/v7q7xx0+fJiDBw8O+PjaOfR0fJPJxAMPPMDbb7/N66+/zqRJk0hPTx/UcYQQQlw5zz33HIGBgTz55JNUVlZ2+f3Fixf5/e9/fxXOTAjfkownccWEhISwcOFCfvOb3+B0OklISGD79u3k5+cPep9TpkzhgQce4E9/+hONjY3MmzePXbt2ceHChS7b/sd//Ac7duwgIyODZ555BpPJxNq1a7Hb7fzmN7+5nI8mhBDCR371q1+xfft2Fi1axFNPPcWECRMoLy/nnXfeYd++fTz77LNs2bKFW2+9ldWrVzN9+nRaWlrIzMzk3XffpaCggKioqAEdc/r06UBH44obb7wRo9HIypUre33Prbfeyvvvv8+dd97J8uXLyc/P56WXXiI1NZXm5uYBf+7p06fz5z//mf/4j/9g9OjRxMTEeNVweuSRR/jDH/7AF198wX/+538OeP9CCCGuvFGjRrFp0ybuv/9+JkyYwCOPPMLEiRNxOBwcOHCAd955h9WrV1/t0xRiyEngSVxRmzZt4oc//CEvvvgiqqpyww038NlnnzFs2LBB7/PVV1/Vlxx8+OGHLFmyhE8++aTL0rm0tDT27t3Lv/zLv/DrX/8aj8fD7Nmz2bBhA7Nnz77cjyaEEMIHEhISOHz4MD/96U/ZuHEjTU1NJCQkcPPNNxMQEIDFYmHPnj386le/4p133mHdunWEhIQwduxYfvGLX+iNIQbirrvu4oc//CFvvfUWGzZsQFXVPgNPq1evpqKigrVr17Jt2zZSU1PZsGED77zzDrt37x7wOfzsZz+jsLCQ3/zmN9hsNhYtWuQVeJo+fTppaWmcOXOGhx56aMD7F0IIcXXcfvvtnD59mt/+9rds3ryZP//5z/j5+ZGens7zzz/P9773vat9ikIMOUWVqshCCCGEEN84U6dOJSIigl27dl3tUxFCCCGE6JHUeBJCCCGE+IY5duwYJ0+e5JFHHrnapyKEEEII0SvJeBJCCCGE+IbIysriq6++4vnnn6empoa8vDysVuvVPi0hhBBDpLGxkba2tl63iYuLu0JnI8TQkBpPQgghhBDfEO+++y7/7//9P8aNG8ebb74pQSchhPiW+dGPfsQbb7zR6zaSOyK+aSTjSQghhBBCCCGEuAbk5ORQVlbW6zbXX3/9FTobIYaGBJ6EEEIIIYQQQgghhE9IcXEhhBBCCCGEEEII4RMSeBJCCCGEEEIIIYQQPiGBJyGEEEIIIYQQQgjhExJ4EkIIIYQQQgghhBA+IYEnIYQQQgghhBBCCOETEngSQgghhBBCCCGEED4hgSchhBBCCCGEEEII4RMSeBJCCCGEEEIIIYQQPiGBJyGEEEIIIYQQQgjhExJ4EkIIIYQQQgghhBA+IYEnIYQQQgghhBBCCOETEngSQgghhBBCCCGEED4hgSchhBBCCCGEEEII4RMSeBJCCCGEEEIIIYQQPiGBJyGEEEIIIYQQQgjhExJ4EkIIIYQQQgghhBA+IYEnIYQQQgghhBBCCOETEngSQgghhBBCCCGEED4hgSchhBBCCCGEEEII4RMSeBJCCCGEEEIIIYQQPiGBJyGEEEIIIYQQQgjhExJ4EkIIIYQQQgghhBA+IYEnIYQQQgghhBBCCOETEngSQgghhBBCCCGEED4hgSchhBBCCCGEEEII4RMSeBJCCCGEEEIIIYQQPiGBJyGEEEIIIYQQQgjhExJ4EkIIIYQQQgghhBA+IYEnIYQQQgghhBBCCOETEngSQgghhBBCCCGEED4hgSchhBBCCCGEEEII4RMSeBJCCCGEEEIIIYQQPiGBJyGEEEIIIYQQQgjhExJ4EkIIIYQQQgghhBA+IYEnIYQQQgghhBBCCOETEngSQgghhBBCCCGEED4hgSchhBBCCCGEEEII4RMSeBJCCCGEEEIIIYQQPiGBJyGEEEIIIYQQQgjhExJ4EkIIIYQQQgghhBA+IYEnIYQQQgghhBBCCOETEngSQgghhBBCCCGEED4hgSchhBBCCCGEEEII4RMSeBJCCCGEEEIIIYQQPiGBJyGEEEIIIYQQQgjhExJ4EkIIIYQQQgghhBA+IYEnIYQQQgghhBBCCOETEngSQgghhBBCCCGEED4hgSchhBBCCCGEEEII4RMSeBJCCCGEEEIIIYQQPiGBJyGEEEIIIYQQQgjhExJ4EkIIIYQQQgghhBA+IYEnIYQQQgghhBBCCOETEngSQgghhBBCCCGEED4hgSchhBBCCCGEEEII4RMSeBJCCCGEEEIIIYQQPiGBJyGEEEIIIYQQQgjhExJ4EkIIIYQQQgghhBA+IYEnIYQQQgghhBBCCOETEngSQgghhBBCCCGEED4hgSchhBBCCCGEEEII4RMSeBJCCCGEEEIIIYQQPiGBJyGEEEIIIYQQQgjhExJ4EkIIIYQQQgghhBA+IYEnIYQQQgghhBBCCOETEngSQgghhBBCCCGEED4hgSchhBBCCCGEEEII4RMSeBJCCCGEEEIIIYQQPiGBJyEu0e50U22z0+50X+1TEUIIIYQQQlwDZIwgxOCZrvYJCHGtOFpQx8v78tiRU4lHBYMCy1Jj+V7GSGakRFzt0xNCiKum3enG1u4i2GrCajZe7dMRQgghrhgZIwhx+RRVVdWrfRLi2+ObOjhZf6iQn23OwmBQcHu+/k/CaFDweFR+uWIiq2YnX8UzFEKIK08etoUQQnyXyRhBiKEhgScxJL7Jg5OjBXXct/Ygvf2HoADvrJl7zX8WIYQYKvKwLYQQ4rtMxghCDB2p8SQu2/pDhdy39iA7z1ShjU08Kuw8U8W9aw+y4XDh1T3BPry8Lw+DQel1G4NB4eV9+UNyPFkfLoS41h0tqONnm7NQwSvoxN9/VoGffpjFsYK6q3J+QgghhK9d6THCUJBxhrhWSY0ncVn6GpxAx+BkfGzwNTkT0O5061lavXF7VLbnVNDudA96CeE3OStMCPHdoj1sX3pd70x72JbrlxBCiG+bgYwRtmVXcCorh8iwEIKCgggMDMRsNl+ZE/07GWeIa50EnsRl+aYPTmztrj5vKBqP2rH9YAJPnZesXJoVtj27UpasCCGuGQN92D5w5BixkeGEhYURGhqKySSPFkIIIb7ZBjJGUIE33/0Af8Wlv+bn50dQUJD+JzAw0Ovnzq8bDJe3CEnGGeKbQJ4OxaBdyWwhXwm2mjAo9OvGYlA6th+ob3pWmBDiu2WgD9tbPt3m9bAdHBxMWFiYHojS/i6BKSGEEN8UAx0jPPvjH+Kyt9Hc3Oz1p6WlhebmZqqqqmhubqatra3L+y8NSvUUpLJarSiK99I/GWeIbwp5+hODdqWyhXzJajaydFw0u3Kr8NDzGm6jQWHZhNhBnf83PStMCPHdMpCHbQUVf5MCfy8lYbVa8ff3R1VVamtrKSoqoqmpic59TCQwJYQQ4lpnNRtZlhrLzjNVvT7Da2OEyLAQIITY2Nhe9+t2u/VgVHd/6urqKCoqorm5GafT6fVeg8HQJRj12gUTigK9tQuTcYa4FsjTnRi0K5Et5Gvt7e3EN53BQ2Sv23k8Kk9mjBj4/r8FWWFCiO+W/j5sK3hIMjSAu+PB2GQyERYWhtvtprS0FFVVCQ4OJi0tjZiYGEJCQvB4PDQ0NNDY2EhDQ0O3gamgoCCvYNS1FJhqd7qxtbsItprkWi2EEN9yT2aMZHt2Za/bDHSMYDQaCQkJISQkpM9tHQ5HjwGqlpYWissqOFEVj9rL5DnIOENcG669SID4xhjoTMC1dqFrb29n/fr1BLbW8eziqfzui2IMCrg7fZTObcMHM0vwbcgKE0J89/TnYVtFIc1UBXTUsrDb7VRVVeHxeBg2bBiJiYmoqkpJSQnZ2dl6IColJYXk5GQWLFhAREQErXYn5TX1uNqaaWtu8gpMFRcXXxOBKSnaKoQQ3z0zUyL45YqJ/NuHWSioXgEew9+zjAY7RugPi8VCREQEERHd77/aZuc3v9rZr30N1ThDJmDEYEngSVwWX8wEXAltbW2sX7+ehoYGHnnkEeLj45k9dji/35bJvgIbKgoKKotGRfDMknGDvqF8G7LChBDfPdrD9k8/zAI8qHxd+FTBg4rCXFMRw8xtuN3gdDqxWCyEhIRQU1NDdXU1ZWVl+Pn5MWnSJG688UbsdjsFBQUUFhaSlZVFhTuQXIaR7whGRekI5kyI5XsLJrO40zXX7XbT1NQRkNL+XMnAlBRtFUKI765Vs5PJObCTLGc0WQ1GPGrHMvNxgQ5++dB1V3Xy4UqOM2QCRlwuGeWKy9J5cHJpHaPLzRbylUuDTnFxcQDMSIngn2aFkFK+h9jhyVSWFHLnlFuZdhnn/k3PChNCfHetmp2Mu7aYV/fnU+QJ1wPySYYG0kxVxBqacbs7iqI6nU5UVaWmpobhw4djsVjIy8sDIDMzk2PHjjFs2DCmTZvGwoUL2XS0hFc/ye2YMf778TwqbM+pYFtOBd+bGsKaJalERkZiNBoJDw8nPDy82/N0u93YbDavwJT2p6/A1KU1psLCwrwCU1K0VQghvtsqKyvxayrhdw8sIGnEKN7Y9DccLTbqqisYHbbkqp5b3vmzJBkbKHSF9rrc7nLHGTIBI4aCBJ7EZVs1O5nxscG8vC+f7TkV+kzA9eNj+N6CUdfUw3hrayvr16+nqamJRx99tEsBwObmZoIDrIyIj6KxsoSCggKmTZt2Wcf8pmaFCSGEvSSHJZZyXKqCEyNm3JgU7wBMS0sLUVFRGI1Gqqurqampwe12M3/+fBoaGsjOzsZqteJwOPjkk09445N9bGkbBShdZmm1B+e/nmiiNPsNRgarpKSk6H8iIyO7dPQxGo160Kg7lxOY2lDoL0VbhRDiOywrKwur1cqoUaMwGo2MiI/izJlqzGYzp0+fZuHChVf8nNxuNzt37uTQoUMsHzWJP53tvcbT5YwzZAJGDBUJPIkhMSMlghkpEbQ73VwoLOFvG95gzeLHGT782rkAtba2sm7dOmw2G48++igxMTFdtrHZbAQFBREZGYnb7aagoABVVbsMdAbCe32495KVazUrTAghXC4XlZUdQXOTomLChaIo3QZhampqSEpKYtKkSZw6dYro6Gj279/P8OHDefDBB8nJyeH06dNYLBbOuxNR+DrTqTtGRaE2Kp1lw5spLy8nOzsb6KglFRMTQ2RkJBEREQQEBODxeHC73bjdbq+/d/7T3TYmk4nw8HCCg4NxOp36H+1zF5dVcLJ1shRtFUKI7yhVVcnOzmbChAkYjR3X9+joaA4ePMjEiRM5deoUCxYsuKxxwkDZbDbeffddSkpKuPHGG5k9ezbxR4p8Ns6Q7txiqEjgSQwpq9nIhBHD8TMZKC0tZfjw4Vf7lICOGfl169bR0tLC6tWriY6O7na75uZmgoODiYyMRFVVbDYb9fX1PRb1669Vs5Npr7jIxmPlFLrDvl4bPSGWJzNGyIVaCHHNuXjxIh6Px+s1s9mMw+Hosq3JZKKoqIigoCCWL1/O1q1biYqKoqWlhbfeeosFCxbwgx/8gC/3H2TtAbXvYI4KR8rsjK3N9MqwstvtFBcXU1xc7LW90WjEZDJhMpkwGAwYjcYufy593c/Pr8vrnf/e7FJ4/YvWfn1X0hxCCCG+fcrKyqivr+e2227TX9PGEMnJyWRlZVFSUkJiYuIVOZ+CggLeffddDAYDq1ev1o+7anYySmM5f9lzXl8aPxTjDOnOLYaSBJ7EkDMajcTHx1NaWnq1TwXoCCatW7eOtrY2Hn300R6DTtq24eHheqBJURQKCgouO/AE4NdUyvcmGLnr3pukG4QQ4pr31Vdf6X+3Wq20t7frgSftZ43L5cJqtZKTk0NAQACPPfYYb7/9Nk6nk9TUVPbu3UtOTg4Z19+MeiCnX8dXUfALDmNEXCQxMTHExsYSHx9PUFAQbrebsrIyioqKKCoqorS0FLvdjtFoJDExkeTkZFJSUoiOjh70TPSZcxdQyO0zSAbSHEIIIa42X3Rby8zMJCgoiOTkr+sXaeMIs9lMSEgIp06d8nngSVVVDhw4wK5du0hOTuaee+4hMDDQa5ugtkpuDi4lIcnMTbfdOSTfg3TnFkNJnpKETwwbNowLFy5c8eNeetNpbm7mjTfeoL29nUcffZSoqKhe39/c3ExiYiJhYWEYDAaCgoIoLCy87DpPLpeLoqIiFi9ejNVslIuyEOKa5vF4KCgowGAwoKoqYWFhVFRU6EEcu92ub2swGPB4PLS3t+Pn58exY8cICgpizZo1vPfee2RnZzNz5kxKSkp4Z9N6FKb3usxOo6AyYdQImuprOHbsmJ5pFRoaSnx8PPHx8SQnJzNnzhwsFgvFxcUUFhZSUFDAtm3b8Hg8BAQEkJKSMqBAVHV1NTt27OD8+fOM9BtHnj3Qa+lCd+c5I84Pi/HKLbUQQgjRwVfd1jweD9nZ2aSmpmIwfH0P8PPz0zu4pqenc+zYMW666aYBd0ztb6Csvb2dzZs3k5ubS0ZGBosXL/Y6H01JSUlHM46QIKKD/QZ0Lj2R7txiKMn/O4RPJCQkcOTIEdra2vD39/f58bq76SweE0lMfRbR2Fm9ejWRkZG97kNbWhccHKwXq/Xz8xuSOk9lZWW4XC5SUlIGvQ8hhLhSSkpKcDqdBAcH43A4CA8Pp6KiArfbjdFoxO12Ex4eTn19vddyPLPZjMvlYvfu3QQEBPDQQw+xe/du9u7dy7hx41i2ZBx7txdT6O69A4+Ch2RjI+fOFDNr1izuu+8+2tvbKS8vp6ysjIqKCg4ePKhnXQUHB+vBqPnz5xMVFUVDQwOFhYUUFhZ6BaKSk5P1QFRMTIx+bW9paWH37t189dVXhIWFMWHCBCqzi7nIuF6/KxWIqj3NK68UcNttt+mdUoUQQviWL7utFRUV0dzczMSJE7v8Ljo6murqaq6//nr27dvHuXPnSE1N7dd+BxIoq6ys5O2336alpYWVK1cyblz396O2tjZqamqwWq0EBQUN/MP2QLpzi6EkgSfhE1ptp9LSUkaPHu3TY/V00/n8XA0qcfzL9fP6DDpBxwy+y+XSL9iRkZE0NzfT1NREQ0NDj628+yM/Px8/Pz8ZkAghvhFOnz4NdCw3VhSF4OBgoGMGODIykqqqKmJjY6mvrwc6Ak5Op5Pm5mYmTJhAbm4un376Kf7+/ixZsoSEhAQ++OADqqur+ccbF/JPnxb3eGzoWGaXaqzE39+fw4cPc+TIEWbNmsXcuXP1QYCqqjQ0NFBeXq7/OXr0KK2tHXWZAgICGDZsGElJSUyfPh3oKIJeWFjI9u3b8Xg8+Pv7k5SUhKqqFBQUoCgKS5cupbm5mUOHDhFrgLmmIg66klBQvTKfOoq4KmT4lRKrNFNT42Dt2rXMmzePRYsWYbFYhvYfRQghhM7X3daysrIIDQ3ttl5tVFQU58+fJyoqioSEBE6dOtWvwNNAAmUnT57kk08+ISoqioceeqjXsh8lJSVAx1hmKANPIN25xdCRwJPwifDwcKxWq88DT73ddLTZ9P9vZz7TR8X1edNpbm4G0AdYERER1NTUAB3F/C4n8FRQUEBycnK3qbFCCHEtUVWV3NxcoOO6aDAYCAkJAToCTyNGjKCqqorq6mosFgsOhwOn06nXfTpz5gxLlizh888/57333sNqtTJu3Di+973v8fbbb5O9ewtzTZG9BnPmmoqINTTT2NixlC8lJaVLACogIIDw8HDCw8P1B34tc7WsrIzy8nIqKio4efKkfn23Wq3Ex8czc+ZMzGYzZWVlXLhwAbfbDaAvFWxoaNB/Hk814YY2sl0xetFWBZUkQwOTLDXMHxtHWVkzzc3NeqAsJyeHW265hTFjxlypfzYhhPhO8WW3NbfbTU5ODtOmTet2xUNMTAxHjhzB5XKRnp7Otm3baGlp6VJ3qbP+BsrGRAVQlXOI48ePM2XKFG655RbMZnOv51tcXExAQACtra1DHnjSunP/9MMswLs5iHTnFgMhgSfhE4qikJCQ4PMC40N507HZbABeGU+NjY3ExcVRUFDA1KlTB3WOLpeLkpISlixZMqj3CyHElVRVVUVLSwshISE0NTXh8Xi8Ak+jR4/m8OHD1NbWMmPGDI4dO4bBYNCDNwD79u1j6dKl7Nq1izfffJNHH32UpKQkrrvuOt5++23Gm3oO5qSZqog1NBMQEEBbWxsej4e8vDyCg4MZPnx4twEojaIohISEEBISwvjx4/XXbTYbFRUVemZUVlYWLS0t+nvi4uIIDQ2loqJCDzrB17WsYg3NxFqacakKToyYcWNSVAwGA+fOnePmm2/mq6++oqqqCrPZjNVqZdOmTaSlpXHTTTcN+UBACCG+y3zdbS0vL4+2trZul9lBx1I7VVWpra1l4sSJbNu2jczMTObMmdPjPvs3ZoGfbdrDAiWX2267rd81ZktKSoiOjqawsFCfQB9Kq2YnE2W08+sPDlOsRkh3bjEoEngSPpOQkMCxY8cuuz5ST4b6pnNpxlNkZCQej4e4uDjy8vIG/TlKSkqkvpMQ4hvjzJkzAMTGxtLU1ASgB55UVfVadjBs2DAAvc6TVvfC4XBQUFDAnDlzOHToEOvXr+eee+5hy5YtemZUT8EcTWtrK2PGjNGvoTabjTNnzhAZGUlUVFSvAahLBQcHExwcTFRUFJWVlbS0tBATE0N6ejqqquqZT06nU3+PVsuqM5OiYsKl/+zxeIiNjWXnzp089thj7Nq1i4sXL1JRUUFaWhp5eXn8z//8D9dffz3Tp0/v9h7ii05MQgjxbebrbmtZWVlERUURGxvb7e+1ZkXasvOxY8dy6tSpHgNP/R+zwLlWKy898xgjEhP6da4ej4eSkhLS0tIoLCz02URHUHsVNwYW86N/up9Wpyr3LDFgsu7nO6Ld6abaZqfd6e574yGSkJBAa2srjY2NPtn/YG46ve7PZsNiseh1ObS11Nqsf+dZ8IEoKCjAarVKfSchxDdCVlYW0LHMTFs20DnwZLVa9SBPSUmJHogymUzU1dXp19CLFy8SGxvLhAkTcLlc/O1vf8NgMOgFwTUmRcVfcXkFnTTnz59n0aJFhISEYLFY8PPzo76+nrNnzxIcHExycjKHDx/m97//Pbt27dLrO12qvb2d7du38+KLL1JcXMyKFSt4+umnmT9/PnPmzMHj8eB0OvXA0PDhw7sEnXpSWVmJ2Wzm/fff595772XKlCkAZGdnk5SUxNixY/nkk0947bXXqKqq0t93tKCONRuOkfrzrcz81U5Sf76VNRuOcaygrl/HFUKI7yqt21p/DLTbmtPpJDc3l4kTJ/Y44ezv709QUBDV1dUATJ48mYqKCioru6+FNJAxi4pCUFjvXbg7q6qqwul06gGn3pb7XY78/HxSUlIItFqIDva7IkGnqzF+Fb4jgadvuav5YJuQ0BGp1wreDbWhvuk0Nzd7zRKEhoZiNBr1ddUFBQWDOk+tvpMvsr6EEGIoNTQ0UFtbi8lk8qoVoWWCqmrHk7OW6XThwgUWLVoEgMPhwGAwEB8fr+/vo48+YunSpQQEBKCqao+Bod5s27aNu+++m5iYGNxutx7E93g8nD9/Hn9/fxITE7sNQLndbo4cOcIf/vAHjh07xoIFC/jhD3/I5MmTURQFp9PJW2+9xblz5wCwWCyMHDlSf3Dv73W7tbWVmpoafvOb39Dc3MzIkSOBjsBZZWUld911F62traxdu5Zdu3bx+v487lt7kJ1nqroUmL137UE2HC4c8PckhBDfFVq3NWMfAwGjQeGG1LgBBUnOnz+Pw+HocZmdJjo6Wq8FO2bMGPz9/Tl16lS32/oyUFZcXIzBYMBkMuHv74/JNPQLmlwuF0VFRYwYcWUKiMvEzLeTBJ6+xdYfKryqD7aBgYGEhYX5rM6T1WzkutERKPQ+hdDfm86lgSdFUYiIiKCpqYm4uDgKCwf+fWn1nWSZnRDim0ArKj5y5Eiqqqr07CaTyeQVhNGaRjQ1NREZGYm/vz/QkSVVWFhIXFwcBoMBj8fDq6++Smtrq1eXt0sfjHsL8Kiqyvr163nooYcYOXIkZWVlTJw4EZvNRlRUFDExMVy8eBGLxcKwYcP0ANTbb7/Niy++yGeffca4ceP44Q9/yKJFi/TJBLvdzoYNG8jPz0dVVb0pxtKlSzl79qx+7EsZjV/fSy5tGOHxeLhw4QJ5eXn6z9XV1WzZsoUZM2aQkZHBB/tO8+8f5/RYYFalo8CsPGALIUTPnswYiaePNKLBdFvLysoiPj6+z47Y2tJy6LgvTJw4kczMTH3peWe+DJSVlJQQHx/vk8LimuLiYlwulz6p4ktXe/wqfEcCT99SfXVOuFIPtgkJCZSVlflk33V1dURUn+wj7NT/m47NZutSkC8yMpK6ujqSk5MHlfFUXFyM2+2+YjMEQghxOXJycgBISUmhubkZo9GoXxc7B4c613nKy8tj5syZQEcA32q1EhwcrAdtWltbiY6OxuX6erlz578D3T4sdw7qtLW1sXbtWu68806mTZtGVlYWU6dORVVVCgsLWbp0KaNHj6aoqAhFUVAUhTNnztDQ0MCUKVNYtmyZ1/W9tbWVdevWUVpaisfjITExkaamJu677z62b98OdHTA03Q3g2w0GgkNDdUDajNmzGD48OH4+fkxceJEvQaIqqq4XC62bdvG3r17OaMOo6+Jb60phhBCiO5p3dYU6BLQMfy999pAu63Z7XbOnz9PWlpan9tGR0dTW1urL8ueMmUKzc3N+sTDpXwVKCsuLmb48OG0tLT4LPCUl5dHYGAgMTExPtm/5loZvwrfkMDTt5TWOaE3V+LBVgs8dRf9vxx1dXW88cYbpAS6+elNY4bkpnNpxhN01Hmqra0lJSWFxsbGAdd5KigowN/f3+cXaiGEuFytra0UFxcDXweCOne06xx4io2N1QM8Fy9eZNasWfo2QUFBnD9/ngkTJujbV1dX95jVpC0PALwKhGv3DS3o09DQwO9//3tSU1O57rrrOHbsGImJiaSmprJr1y7sdjtjxozB4XBgt9sxGo0MGzaM7OxsryV4zc3NvPHGG1RXV+N2uxk/fjzFxcXceuutAHp266W1qC49L1VVaWlp0ZcYHj9+nNtuuw2j0YjdbueZZ57h3/7t37jjjjswmUwYjUacHsizB3q1o+5O56YYQgghurdqdjLvrJnLsgmx+lI2BUgyNrDxsemsmp08oP3l5ubicrn6XGYH3p3tAOLj44mKiupxud3MlAj+/dbxdFRx8h4XGQ3KoAJlzc3N1NfXk5iYiM1m81ngKT8/nxEjRvi8bMi1Mn4VviGBp28hrXNCb+064co82CYkJOByubwKql6u2tpaXn/9dcxmM48++ihPLBqn33S0ZXcKkGho4NUHJ/b7ptNd4CkyMpLGxka9XtVAs54KCgpISUm5YvWdpAifEGKwtDpHkZGR2Gw2TCYT7e3teuBJy0BSVRWTyURkZCSqqnLx4kX8/f0ZOXIkqqpSU1NDUFAQeXl5KIqiL03TZoWjo6O9jms2m/Hz8+v2Omk0GnG5XPo5tLe3s2HDBhoaGrjppps4deoUra2tjBs3jtzcXM6dO8e8efP48Y9/zOzZs6mursbj8RAZGcnhw4d54YUXePHFF2lsbMTpdDJ58mTOnz/P9OnTmTJlCh9++CHQUeNPURQ9m6nzkjtVVbFYLHg8HhwOB2FhYYSHh+PxeDh69CgrVqzg/PnzHD58GKPRyJQpU3jqqacIDAzEaO076KTpT1MMIYT4rpuREsFLq6aT84ubOPqv13Pk2fksNl/Ev6V8wPvSmkKEhob2ua12L9OW2ymKwuTJk8nNze124qKmpoaWU9u43f8CcxMD9TuBQYFlE2J5Z83cAQfKtDq6w4cP73YcMxTa29spKyvz+eqNa2n8KnxDAk/fQkPd7e1yxMXFoSjKkNV5qqmp4fXXX8fPz4/Vq1frSye0m86/jqnh/011cPqnS7k1rJyWwsx+7dfpdNLe3t7tUjtVVTtaf8fGDijw5HQ6KSkpITl5YDeRwZAifEKIy3XmzBmMRiNjxozRW0R3XoKsBZAcDgeAfm1zOByUl5eTkZHhtV17eztTp07tszuc2+3GYrHomUKdA1Dae5uamvTaTCaTiZycHL788ktGjRrF+fPnOXv2LOnp6cTGxnLo0CGys7O5/vrr+fGPf0xGRgb19fU4nU7cbjft7e3Y7Xa9NlR8fDw33XQT58+f1wcQqqqiqqr+WS/N2tUCYVarlYiICOrr6zEYDHz11VfEx8cze/Zsdu7cSXl5OS0tLZSWlhIbG4vH3tpnXULNQAvMCiHEd5nVbCQ62I/oiDBGjBjB6dOnB/T+1tZWLl682K9ldtCRoRsYGKjfNwDS09NxuVz6snVNTk4Of/3rX1FVlZ9+/yE2PbOE9bdH8WBAJjm/uImXVk0fUKaTpri4mJCQEEJDQ30WeCooKEBVVZ/Xd7qWxq/CNyTw9C3ky84JA2WxWIiJiRmSwFN1dTVvvPEG/v7+PProo91eXC1GhSCTSnCAlTlz5nDy5Emampr63HdzczPQtc5IRETHTUBbbjeQAuPFxcV4PB6fzxBIET4hxOVyOBxcvHgRt9vN6NGjqaioIDo6mpaWli4ZT1owJikpCeiY5c3LyyMlJYWgoCDcbjfNzc0EBgZy8eLFLsfSHtK1znEOh4O6ujqMRiNut5vY2Nhuz1ELgLlcLoKCgnC5XFy4cIGAgAAsFgulpaXcc889zJkzhx07drBx40bcbjfXXXcdDz30EBaLRc9c8vPzo7q6mubmZuLj47Hb7Xz88ccAREVFed03/P39UVXVKyCmZcGGhobS0tICQGJiIqqqsmvXLiZOnIi/vz+vvvoqv/vd79i8eTOtra2MHzOKJENDl2UWlxpMgVkhhBAd0tPTKSgo6NcYQHPmzBlUVe134Am8C4xDx6TEyJEj9eV2brebbdu28c477zBmzBiefPJJPVMqyN8PP48d82WMxktKShg+fDgOhwOHw+GTwFNeXh7h4eGEhYUN+b47u5bGr8I3JPD0LaR3TujjP94r9WCbkJBw2YEnLegUEBDQY9AJOgZA2sz0rFmzMJvNHDx4sM/9a4GnSzOegoKCsFgs1NXVkZKSQkNDQ7/rPBUUFBAQENBlWclQkiJ8QoihoAWdjEYjw4cPp7q6Wl9qoAWetFpLWuBJC74YDAYuXryIoiikpqYCHdfi6OhoGhsbveo2debn56f/vb6+Xs9uSkxMBDqW4Gl1pKCjtp92TnV1dVgsFpYuXaoHxNra2njttdeYNGkSq1atoqKigpdeeokjR46wadMmAgMDMRgMHZlHHg+qqhISEsKJEyf47//+b32AEh4ejslkIigoCKPRSFxcnP45NdqEgtvtprKykpEjR1JX13GdPXnyJK+88gp2ux23201ycjI/+MEPcDqdHUVrTZX9qPHk4c7Uvpd6CCGE6GrChAmYTCaysrL6/Z6srCxGjBihT4r0R1RUlFfgCWDy5MkUFRVRXFzMunXrOHLkCDfddBN33323131P+7t2Tx0ot9tNWVkZiYmJPY5jhkJeXt4VaZJkMSpMjTbKxMy3mASevqVWTonB3U0b6M4G0zlhMBISEqiurh70hbWqqoo33niDoKAgHnnkkV5vCAaDwWtGe9asWRw7dkyfke6JzWYDumY8KYqiFxjXZvf7u9zuStR3kiJ8QoihkJubi9lsZsSIETQ0NODxePSAkRZ40pa62e12oCMj1Gw243a7KSoqorGxkbNnzwLo3eYURaG1tbXbY2rXZS2zVOt0px3X6XTqS960LnqNjY1Ax7VZy1Z65plnSEtLo7W1FafTyauvvoqiKDz99NOEhoby2WefAR0TDMnJycybNw+n00laWhomkwmXy6UHvbRi6S6XC0VRUFWV8PBw4OslhJ2/E+18Lly4gM1m02tCjRgxgv/9v/83y5cvp7CwkBdffFGvdRhraGauqYjuCsx2LMNTmWcu4thnf9O/TyGEEP3n5+fH2LFj+73czmazUVBQ0K+i4p1d2tkOYPz48ZhMJtavX099fT2rV69m9uzZXcYD2v1Cu6cOVEVFBS6XS6/vBN13iL0cTU1N1NbW+nyZXX19Pa+//jqxDdmofYQnrtT4VQw9CTx9C7W2tpK9ewuLgyoBtUvaolFhUJ0TBishIQFVVSkrKxvweysrK/sddALvjCdAv9AfOnSo1/dpbcO1zkqdRUZGUldXR0BAALGxsf1abudwOCgtLSUlJaXPbQdLivAJIYaC2+3m3LlzuFwuRo8eTWVlJfB1oOnSwJMWMFIUhWHDhgEdgaa3334bu92uz4yqqorVatW3vfSBWHvYnjt3rn4M6Ogqp2VXaTPCWgFVbV/aBMNbb72Fy+Xi9ttv55FHHiEgIACXy8WGDRs4cOAAVVVVhISE0NbWhqIozJw5k48//piJEydy991384Mf/MBrWYXJZNLvITabDY/HowecOgeetCLkTqcTi8VCbGwsQUFBjB8/HoPBQH5+PkVFRezfv9/rvKFjgmS8qZpbLGf/vuxOa4qhkmJq5Fa/c0wOtOmf78CBA17FzYUQQvQtPT2dysrKfjU4ys7Oxmg0enVj7Y+YmBg8Hg/19fVAx33v6NGjuFwuVFXlqaee0rN4L6UFngY7MV9cXIzRaCQ+Pt5ngae8vDwAn2Y8nT59mrVr12Kz2fiXJ+/jP1ZMpGNixvu+Z/j7xMwv70i7IuNXMfQk8PQt43A42LRpE21tbVyfYuW+8JJLWoyqTAxXB9U5YbCio6Mxm80DXm5XUVHBG2+8QUhIiD6g6EvnjCfomDmfMWMGR48e7bE1NqC3IO0uO0nLeIKOYrr9yXjS6jv5MvAkRfiEEEOhsLCQ9vZ2VFXVA0+hoaG0tbVhsVj04I8WROpcMyM5ORlFUTAYDJSVlXH33Xczf/58/fdtbW1Ax8P49OnTuz1+TEyM1+8KCgqIjIwEvB/IJ02aBHQEh7QHdpfLxRtvvIHb7WbEiBE888wzzJkzB1VVOXjwIP7+/rjdbiIjI7Farfztb3/D39+f2267DUVRsNvtelZR5+BX53vBmTNnvD4LdNwXtO9jxowZNDU1MXXqVHJzc0lPTwdg3bp1+mBEC5YFBwfrga1YQzNLLHms8jvOSr+TrPI7zu0RVUQrNtrb27FYLFitVnbs2MFHH33UZ5F2IYQQXxs9ejT+/v5kZvbdaCgrK4vRo0fr1/X+6tzZrr29nbfffpudO3cyceJEXC6XvgS7O5e71K6kpIRhw4ZhNBqx2WwYjcYBn39f8vPziYuL69cYbKDa29t5//33+eCDDxg7dixr1qwhMTGRG0cGcIvlLLMTrPr41aDAvORgbrGcZWb44DLExNUngadvEbfbzbvvvktVVRU33XQTFy5cYOX1s1j78Ay9xejLN4Yw036SCdF+fe9wiBgMBoYNGzagjKeKigrWrVtHWFhYv4NO0DXjCTpm010uF0eOHOnxfb11gtBaizscjn7XeSooKCAwMJCoqKh+nfdgSBE+IcRQyM3NxWKxEBoaSkREBJWVlcTFxWGz2byCMd0FnrSMVm1p3ujRo7tc67XaSPn5Xy/57RzYsVgsXa6/WtZV54mEsrIywsLCcLvdjBs3Tg8+1dbWsmXLFqAjKys+Pl4PhtlsHUGcBx54gNjYWAwGA01NTXz22Wc4HA727NmjL/HLyMjA6XTq79VoM8mdX5syZYpe48pisdDW1kZ8fDwOh8Orm5FW60qjLevu/B2YFBV/xYVJUWlpaWHmzJlAx2DEaDQSHBzMqVOn2LBhg1fwSwghRM+MRiOpqalkZmb2mjVaX19PaWnpgJfZQccEt7+/P/n5+fz1r38lPz+flStXctdddxEaGqoXGe/O5S61Ky4u1rOptHHMUJb3UFWVvLw8nyyzKy4uZu3atZw9e5Y777yTu+66S3/G2Lt3L2PCDGz8/mJ9/Jrzi5tYv2Yhc0ZFs3Pnzi5jPfHNIIGnbwlVVfn444+5ePEi999/P2fOnCEsLIzJkycDX7cYnTtrBoqicOzYsSt6fgkJCV5LJXpTXl7OG2+8QXh4OA8//HC3y996cmnGE3QU2ps6dSqHDh3qcVahr8ATdBSz1dqH97Xc7krUd9KLyPcRfZIifEKInqiqSm5uLoqiMHr0aBRFoaKigtjYWJqamrwKlWrXYi0QA3hNCrS2tlJSUsLevXv1gtwAHo+HkSNHUlRU1O37Pv/8c/0BXLtmdr52RkdH4+fnR21tLTNmzMDj8ZCZmcny5cv17U6fPs3Ro0f56quveP/990lNTSUsLAyTyYTb7eZPf/oT58+f57777uOOO+4gOzubP//5z/qERHBwMF999ZX+nbjdbgwGg9fscecHXZvNxtixYwGoqanBarWyZ88ewHv22mw209DQwPXXX9/td38pt9tNXl4eixYtwuVy4XK5cDgcREZGUlFRwSuvvKJn4AohhOjdpEmTaGxs9Lr/XCorKwuz2axf0wdCURQCAgI4duwYFouFp556inHjxqEoCunp6WRnZ+N0Ort97+UstWtsbKSpqUmvf9jbOGawampqaG5uHtJldh6Ph927d/Paa68RFBTE008/rWcJa8fMysoiIyOjI4Pr7+NXq9mIoigsW7aMmpoajh8/PmTnJK4cCTx9S3z++eecPHmSO+64g8DAQM6cOcPChQu9alJAx8P+5MmT9fXHV0pCQgJNTU1es73dKSsrY926dURGRg446ATetT86mz9/Pna7XR9YXKq3C7ZW+La2tpaAgABiYmJ6XW53Jeo7aZ7MGImnzxpPHp7I8P25CCG+ecrKyrDZbNjtdkaPHk1zczMtLS164KlzxpMWLNKKhTscDj766COvINFnn32Gn5+f/kCtiYmJ0f9utVq9Gj6cP3+eAwcOAF8HYzpfx7UlcdCRNTVs2DBMJhNfffUVixYt0rf79NNP+fjjj5k2bRo1NTXY7XaefvppZs6cqQeNsrOzGTduHA888ADNzc36cWw2G1VVVVgsFr1ltMfjYenSpXq9qc52795NRUUF0DHR4HA49CwtQG9G4XA4WLp0Kbt37+7x+7iUdq+aNm0adrtdrx+iZdC+/PLL/W5yIYQQ15J2p5tqm/2K1R1NSkoiNDS01+V2WVlZXlm0/eVyufjoo4+ora3Fz8+Pxx9/XB8zQEd3u87LuS91OUvttMn8SzOehlJeXh5Go1G/n12uhoYGXn/9db788ksWLFjAY489pjfv0Ozbt4+goCCmTp3a7T7i4+NJT09n9+7dg84UE1ePBJ6+BQ4fPsy+fftYtmwZ6enp7Nmzh/DwcK8Icmdz5syhpaWF7OzsK3aO2pIEbQlGdzee0tJSPei0atWqQa1T7m6pHUBYWBjp6ekcOHCg24CbzWbrsQVpQEAAVqtVX6edkpLSa8ZTUVERqqpekcDTzJQIftlDET4tE2quqQhX+Tmfn4sQ4ptH62anKAojRozQgyexsbFdltppEwFaPaiPP/6Y+vp6RowYoWcHlZWVMW3aNK/ZZa3GhhagSklJ6XJ9Ly8vB76+V2RkZOi/q6qqQlEULBYLeXl5zJ8/H5fLRVFREeHh4SQkJHgFhy5evEhjYyMPP/wwBoOBzMxMEhIS9L//9re/Zd26dV73gujoaD3TSSuYDjB8+HC9w13nh3qPx6MvoWhubtbvO4qiYDKZqKmpwWjsmKHdtWsXTqfT6x7T2yTMiBEjCAoKIjs7m7i4ONxut942OywsjPj4eNavXy8zvkKIb4yjBXWs2XCM1J9vZeavdpL6862s2XCMYwU910AaCoqiMGnSJHJycrqtk1dVVUVVVdWAl9k1NDTw6quvcurUKdLS0nA6nV0m+yMjIxk+fHiPnfWMRiMGg2FQAZTi4mLCw8P1+5IvAk/5+fkMHz58wAG57mRmZvLSSy/R1NTE6tWrWbx4sdfydehYWXL69Gnmz5/f7YSPZsmSJbS3t+sTVuKbQwJP33DZ2dls3bqVuXPnMm/ePCoqKsjNze0220kTFRXF6NGjOXTo0BXrlBMSEkJQUBBfZBV1e+P59OhZ1q9fT3R0NA8//PCgi+N1t9ROk5GRQUtLCydOnPB63ePx0NLS0usFW+tsBx3FdOvr6/U22pcqKCggKChIX6Lna7eND+NWv3OM8W/r1B0Jlk2I5d01c3l84Ri2b98ubbmFEF3k5ubi7+9PUlISfn5+VFZWYjabCQsL6xKQ1zKe7HY7hw8fJjMzkzvuuINRo0bh8XhwOBwYDAYKCwsxGo16F1K73U5LS4v+kKll8XQnNDQU6AgEjRo1Sn/dYDBgNptRVZWioiJGjx6N2Wxm165dRERE4HK59NnjxsZGhg8fjtFo1AuP19TU9HjMWbNmUVdXh6IoepAnJCQEs9ns1dFPu7eYTCaCgoK63d/MmTMxGo20tbVx7733oqoqTqeT8PBwPdgUFRXlVavp0ofvwsJCVq9eTUJCAtXV1RgMBiIiIvB4PFy8eJGAgACmTp3KRx99xI4dO6TWhRDimrb+UCH3rT3IzjNVelMcjwo7z1Rx79qDbDjcd7foyzFp0iTa2tq4cOFCl99lZWVhtVq97jd9OX/+PGvXrqWtrY0nnniCadOm4Xa79WYSnU2ePJkLFy54LVHvzM/Pb9AZT9oyOxj6wJPH46GgoOCy6zvZ7XY++OAD3n//fcaMGcPTTz/dYwbV3r17CQwMZNq0ab3uMzQ0lDlz5nDw4ME+V9KIa4sEnr7B8vPz+eCDD5g0aRLLli0DOtL/e8t20syZM4eKioo+axUNFUVRKPZL4f87Zu9648mp5Jn3z1NkSWbVqlX64GGwx+npITwyMpK0tDT279/vNeuhLfnoKeNJe2/nznZAj0sdrkR9p84OHDjAcKuD6635/HmJP09GXeTPS6y8tGo6M1IiuP766xk/fjzvvfeevjRECCFqamqoqamhpaWF0aNHAx1FvWNiYmhra8Pj8XhlPGkPtS0tLezYsYO5c+eSlpamP/x6PB48Hg+FhYW43W4cDgd+fn76NVm77ubn53s9aI8bN07/uxbgr6mp6VIXSQteHT9+nEWLFuF0OmlqaiIzM5MJEyZ4zRpfuHCBF198kcbGRkJDQ5k9ezZPPvkkP/nJT/SldJqQkBBUVdVnWPPy8vQi5dpgwWq16oEnl8vV48PukSNH8Hg8qKpKdXW1/nrnAck999zj9Z7OM7smk4mmpiYcDgcPPvggqampuFwuamtr9aBWdnY2drudG2+8kYMHD/L2228PuiuSEEL40tGCOn62OQsVcF9SGsLtUVGBn36Y5dPMp5iYGGJjY7tkHqmqSlZWFuPHj+81w0bj8Xj44osv2LRpE0lJSTz11FPEx8d7dba7VFpamp5t2x2LxTLg67fT6aS8vFxfZqdNoPc2jhmosrIy7Hb7ZdV3KikpYe3ateTm5rJixQqvAuKXqq+v5/Tp08ybNw+z2dznvjMyMjCZTHzxxReDPj9x5Ung6RuqoqKCt956i5SUFO644w4URaG8vJyzZ8+ycOHCLjOolxo5ciTR0dEcOnToipzv0YI6Piy1AkrXG48KoPBZdQiZ5S3dvb3fest4go4LVWNjo9cNQBtA9DZTEBERoQeeAgMDiYmJ6TZoZ7fbKSsruyLL7KBjIHb8+HF9NmfMyBQi/E3g/rqQoaIo3HnnnURFRfHmm2/K7IAQAujIdtKKb3cOPGn1nYBuA082m42kpCQ9MHRp11GDwUB4eDgul4vZs2f3eg5msxmbzaZnR2nB8aqqKmJjY/XlfVrQSlEU/aFbCyApikJpaWmP+7/xxhtZvHgxCQkJBAcHew0wIiIi9A45Ho+HxMREnE6nXlNJ62AaGBjYZTmExWLRJxhiY2P117Vz3bVrV5fziY2N9eruB3hlJ2sTL1ptjTvvvJO5c+cCcPz4ce6//378/f3JysqitLSUlStXkp+fz2uvvebVbVAIIa4FL+/Lw9BHExyDQeHlffm9bnO50tPTOXfunNd1vLy8nPr6+n4ts2ttbWXjxo3s3buXJUuWsHLlSv3+FBQUhNVq7Tbw5O/vz7hx43rsbmexWAa81K68vByPx6NP+rS2tqKq6pBmPOXl5WGxWPTl7wPh8XjYs2cPr776KoGBgTz99NNMnjy51wn5ffv24e/vz4wZM/p1DKvVyqJFizh58iRVVVUDPkdxdUjg6Ruovr6ejRs3EhkZyb333qs/tO7evZuIiIg+s52g40F9zpw5nD17Vp9h9qWX9+Vh7CMBaChuPL1lPEHHQ/+4cePYt2+fvp02o91XxlNrayvt7e1AR9ZTdxlPV7K+E8ChQ4f0QZ7BYCAxMRE/P79uB0gPPPAAqqry5ptvyuy4EILc3Fx9GXRsbCxut5vq6uoeA0+dA0z33HOPPsGxe/dur8kOLeNn7NixXVLmLRYLqamp+s+jRo2irKysy4N/dXW1XndKCxQZjUY9qLN161Y9KKSqKk1NTSQnJ2OxWPRlzkajkeHDh7Nx40b27NmDqqpkZ2fry9eMRiN1dXX4+/vr+9Zqbmid83JycvTzubQ+SGhoKDfccAPQESjTiqR2nq29dBLo7rvv7jLr3rnWlHYMbUmIoijccMMNLF68GLfbzZYtW3j66aeJiIggKyuLr776iscee4y2tjb++te/6nUUhRDiamt3utmRU9llwvlSbo/K9pwKnxYcnzhxIi6XizNnzuivZWZmEhgY2GdWj5a5U1FRwapVq1iwYIFXEEVRFKKjo7sNPEFH0KuysrLbVQeDWWpXXFyM2WzWJzy0ccxQBp7y8/NJSUnpM5HhUg0NDbzxxhvs2bOHBQsWsHr16i4FxC/V2NjIyZMnmTt3br+ynTQzZswgLCyMnTt3DugcxdUjgadrVE9dH1paWtiwYQMWi4WHHnpInx0tKyvj3Llz/cp20kyaNImAgAAOHz485OffmX7j6aOc1FDceHrqatfZggULqK2t1W8+WgaQNuPeHW0go2U9paSkdFvnKT8/n+DgYK+uFr7S3t7O0aNHmTFjBmVlZcTHx2OxWHpM2w0ODuaBBx6gpqaGDz/88IrV9xJCXHuampooLS3F5XIxatQoFEXR6yDFxcXR1NSE0Wj0Cjbt27cP6FgOpl0v8/LyyM7OZvjw4SiKoj+MNzQ0EBERwcsvv+x1XIfD4XWtTUxMZOrUqZw8edLr3lVfX4/H4yElJaXbhhAej4fQ0FCvwNiiRYtYtmwZtbW1WCwW3G437e3tLFy4kN27d7Np0ya2b98OdASrFi9ezOTJk2lra8Pf35+AgAAKCgr08xg+fLg+S33pOQQEBPC9733P6/t54okn8PPz88p+unQipLS01Kv7nZbBpdEmNy5cuOB1jV64cCEZGRk0Nzezfv16nnzySYYPH865c+f4+OOPefTRRwkNDeW1117Tg2VCCHE12dpd9BFz0nnUju19JSQkhJSUFH3FgzYRkZqa2uO4SVVVjh49ymuvvUZISAhr1qzpseZRVFRUj4Gn0aNHExAQ0G3W02CW2pWUlOgNM2DoA09Op5Pi4uIB13fKysripZdeorGxkUcffZTFixf3WG+4s3379uHn58fMmTMHdDyj0cjSpUs5f/58l0xicW2SwNM1preuDw6Hg02bNmG321m1apXXw/uePXuIjIxk0qRJ/T6W2WxmxowZnDhxQn/Y9YUreePpK+MJOromjRw5kr1796KqKs3NzQQGBvYasNMCSZ0LjANdltsVFhZesfpOR44cweVyMWfOHAoLC/Vz6i7jSRMfH8/dd9/NmTNnul0GIoT4bjh79iwGg4Gmpia9qKo2GxsTE0NTUxPBwcH6tezUqVMcO3YMQA+IuN1uPvvsM5KSkoiNjUVVVf13BoOBgwcP6sXCNRaLhYsXL+p1HlRV5frrr9czjTq//sEHH3D+/Hn9vZde21tbW2lqasJgMBAUFMTWrVs5deoUJpMJRVEICwujvLyc9vZ2HnzwQQoKCrDZbBiNRv0hVwvWa4VZtQ5/0HMdPz8/Pz1ItWXLFv31wMBA4uPjKSoqwmq1dpv5unnzZq/PoXXr68xkMtHe3t5l+cDSpUsZO3YsNTU1vPbaa9x3332MHDlS7wi7YsUKxo8fzzvvvKPf34QQ4moJtproY5WdzqB0bO9LkyZNIi8vD5vNRlFRETabrcdldg6Hgw8++IBPP/2UGTNmsHr1aq+JjktFR0f32MTCaDQyadIkMjMzu/x+oIEnVVUpLi7W6ztB/0qGDERRURFut7vf9Z3sdjsffvgh7733HqNHj+bpp5/WxyR9aWpq4sSJE8ydO3dQ3fNSU1MZPnw427dvl3veN4AEnq4hfXV9+F8vfUhNTQ0PPfSQV9piaWnpgLOdNDNnzsTtdvu0LfNAbjwKKl/s+Izs7Gyvrj/91VeNJ82CBQuorKzk3Llz2Gy2Pi/Wfn5+BAYGetV5io6O9hqYtLe3U15efkWW2TkcDg4dOsTUqVNxOBw0Nzfrx+0t8AQdhXyXLVvG/v37u3T4E0J8N+Tm5uoBdS3wVFlZSVhYGFarFZvNpj9kl5eX8/HHHzNlyhTg68DT4cOHqa2t5aabbuoy22gymXj88ccJCwvzWsYcFxdHXV2dnq2bm5tLQEAAy5Ytw+VyeRUezcrKoq6uDrPZrM+adp49dTqdREdHs3DhQlpbW6mqqqK0tJT7778fi8VCcHAwRqORI0eO0Nraqt8f3W63voQgMzNTn9Wtrq72yj7q6V5iMploaWnhrbfeYvTo0fj7+6OqKlVVVZSUlAAdSxE711zq6YHa4/F0WYYQGRmJoihcvHixy/Z33303wcHB1NbW8tprr3HLLbcwduxYGhoaePnll5k2bRqLFi3i888/Z/Pmzd1miwkhxJVgNRtZlhqLsY9BgNGgcENqHFZz39kxlyM1NRWj0UhWVhZZWVmEhoZ6BXA0NTU1vPzyy+Tm5nL33Xdz880395m5Ex0djcvl6rHj9eTJk2lpaenSWa+vZ/ZLNTQ00NLS0qWjnbZkfCjk5eURFBSkF03vjbYM8cyZM9xxxx3cfffdA+pMvn//fsxmM7NmzRrUuSqKwrJly6ioqOixgLu4dkjg6RrRn64PW8oDSFt0G/Hx8V6/37NnD1FRUf0qjnepoKAgJk2apHfi8YV+33gUmBptoLaynHfffZff/va3vPbaa+zbt4/Kysp+BZT6s9QOOjKWEhMT2bt3b5eW4T2JjIz0qoeVnJzslfF0Jes7HT9+HLvdzvz58yksLERRFP3m2Z/Zk7lz5zJt2jQ+/vjjHmf1hRDfTu3t7RQUFGAymRg2bJi+XEwrLA7oGU9tbW28/fbbREdHs3z5cqAjWGKz2dizZw8zZ86ksrKSmpoar2OEhIQwbNgwzp8/j8lk0gNN2lIE7UG7pKSEt956S+9M09DQ4FX822AwMGLECL1u1K233up1nOrqaux2u14XwmQykZCQwB133EFxcbGeBbx582YcDoee0ZSbm8ubb75Je3s7breb2NhY4uLiAPTgU+eJnM7Boba2Ntra2khLS+Pee+8lJiYGgDfffFMP9OTm5nrdL+65554e7w2dJ1kURSEwMLDHwJPFYuHee+/F4/Fgt9t59dVXWbBgAWPGjMFut7N+/Xr8/f258847ycrKYv369bS2tnZ7XCGE8LUnM0bi6WPZg8ej8mTG4Lun9ZfVamXs2LGcPn2anJwc0tLSuqxQyMnJ4a9//SuqqvK9732v32Mr7T7Q03K7uLg4YmJiutT4G2jGU3FxMUCXwNNQ13caOXJkr6s3PB4PX375Ja+++ioBAQGsWbOGKVOmDGjFh81m4/jx48yZM+eyOponJSUxfvx4Pv/8c5lsucZJ4Oka0Z+uD0ZF4dM876h4SUkJ58+fH1S2k2bOnDk0NjZ6Fdwbav268ajwr3fN4fvf/z4//vGPueWWW/D39+fLL7/kpZde4oUXXuCjjz4iNze3x4u0VhS2L4qisHDhQkpLS6mtre3XBbtzZzvoqPNUV1enz2rn5+cTEhLSZxG9y+VyuThw4ACTJk0iLCyMwsJC4uLi9BmG/syeKIrCLbfcQnJyMn/729+8PpcQ4tvt3LlzeDwe6uvr9W520H3g6b333sNut3PffffpASFVVdm+fTtmsxl/f3+v5WbQkRFaU1PDmTNncDgc2Gw2DAYDiqLoQZbOy7svXLjA2LFj9Vp6nWskVVdXk5eXp08oaPepzgVIDx486HVP+OKLLxg1ahQzZ84kKyuLsWPHei0PnDdvHrfeeqvetSc/Px+bzUZ5ebm+D0VRvO4LWg0N+HrJ39SpUzEajfp32NDQwLBhw4iOjubkyZNe30lSUhLz58/32r+mc2aUqqo4HA48Hg+FhYXdPkQnJiaSkZFBW1sbQUFBrFu3junTp+sDha1bt5KXl8dDDz2kz9z3NBgSQghfmpkSwS9XTESBLhPQBlRA5f/dnsaMFN/XRoWO5XYVFRW0trZ6BZXcbjfbtm3jnXfeYcyYMTz55JP9yvjRBAcHY7FYerzWKorC5MmTyc3N9ZpsGEzgKTIy0qu+4FAGnlpbWykvL+91mV1jYyPr1q3jiy++ICMjg8cee2xQtW0PHDiA0Wjss/ttf1x//fXYbDaf1y0Wl0cCT9eAfnd9UOlSfFvLdkpLSxv08ePi4khJSeHQoUOD3kdfOt94FLw/Z8eNSGVxSBXjIjsGE6GhocyYMYOVK1fy3HPPsWrVKiZMmEBBQQF/+9vf+M1vfsP69es5dOgQtbW1+qCivxlP0LG8JD4+noaGhn5dsCMjI72Opc1ea1lPV6q+06lTp7DZbGRkZOjH7byWur+tWY1GI/fddx9BQUFs2rRJZsWF+I44e/YsUVFR2O12PWjS3NxMS0uLXqvJZrNRVVVFXl4ed999N2FhYV77yMrK0lsmq6qqd/Xp7MSJEwQGBuJyuWhra/PKZNIsX74ct9vNmDFjiI6OJiIioktnNi34oigK586dIyEhAafTqZ+TtsQ6ICCA0NBQjh07RlVVFcuWLSM0NFSfIYaOoNGcOXP05YVOp1M/v860TnnQca38/ve/3+Xc161bx549e7w+16pVq7BYLF0CRllZWV32r7m0sUVpaSnQMRAqKirqclyA6667jpiYGFRVJTk5mbfffpvU1FQSEhIwm81kZWWxY8cOVq5ciclk4pVXXuk2g0oIIXxt1exk3lkzl2UTYvXSGwYFFo4K4xbLWcYoXbu9+UK70014fBIexYi/v7+e5Wqz2Vi3bh1Hjhzhpptu4u677x5wBk5fne2gI+jl8Xi8GkD095ldU1JS0mV5YHNzc79WbvSHtgqip8BTdnY2L730EvX19axevZolS5YMaolfS0sLx44dY/bs2QNamteTyMhIpk+fzt69e2U8cw2TwNM1YLDFt4uLi7lw4QKLFi0adLaTZs6cOZSUlOj1KXxBu/GMC2zXg08KKssmxPLaQ+lM9Ktnw4YNXQYAJpOJUaNGcdNNN/HDH/6Qf/iHf2DZsmUoisLOnTv5n//5H/74xz/y2Wef0djY2KXldU8URSEjIwO3292v1MzIyEjsdrt+Qetc56mtre2K1HfyeDzs37+f1NRUoqKiaGhooLGx0SvwpLVm7U8Azmq18sADD+jLafr73QkhvpmcTifnz58nODgYq9VKQkICgN5pLS4ujvb2dpxOJ3l5eSxZskQP0lxq2LBhhIeHExoaitVq1TOBWlpaCAoKIj8/3+sBcNiwYV32MWXKFFJSUti1axcWi4XAwEA9EHNpEF+7pt133334+fnp1z2Px8OIESNobW2lpqaG4OBgtm7dislk4rrrrutyT8nOzmbHjh1e+9T+V3t4nzx5sr50wmg0cvTo0S7nPnLkSPbs2aN3yjMYDHqtP43ZbGb06NGcPHmyS/BJu2+PHTu228+pLQnsjtFo5M4776Suro7o6GjS09P5+OOPGTlyJBEREXrB9Lfeeotly5aRmJjIxo0b9QLxQghxJc1IieClVdPJ+cVNHP3X68n5xU28/mQGt86ewBdffOGV+TnUOjdumvOfu1nXNoXPbMM5VlhHQUEBa9eu1QMps2fPHvQEcl+Bp+DgYEaNGuXV3U57Zu8Ph8NBZWWl1zI7QG+SdLnanW5O5uYREhHVpTGI3W5n8+bNvPvuu4waNWpABcS7c+DAAQwGA3PmzLnc09YtWrQIVVX58ssvh2yfYmhJ4OkaMNiuD3v27CE6OprU1NTLPocxY8YQHh7u06wn6Ljx/OO0AP5xWCF/viGM1YGn+dODU1k8MYmHH34Ym83Gpk2ber0IR0ZGMnv2bFatWsVzzz3HAw88wMiRIzl79iw5OTk0NDTw5ptvcvToURoaGno9H+2i2Z86R1oaaedlacnJyRQUFOhZT74OPGVnZ1NfX++V7QQdyzg0fn5+eDyefgeRIiIiWLlyJSUlJXz88cfSFUKIb7G8vDycTietra2MHDmyI1jidHO2sAzFZCE8PFzPsklOTtaXhzU0NPDee+/p+7nxxhtJT0+nvr6e5uZmRowY4XVtbG5uRlVVrFYroaGhhIaG8uijj3otD4COehpLly6lqqqK5uZmHA6HVxHzqKioLp/hwoULpKWleQVlSkpK9OwtVVXJz88nNzeXzMzMLoOIrVu3kpOTowd+FEXRA042m42kpCRWrFihPxA7HA4OHjyov1/bNi8vD7PZrF8zPR4PW7du9ZoIWrRoEVOnTtWXxXemBeo6z6x3Pletlfe2bdu6ncGNjY1l8eLFHDx4kClTprBw4UL27NlDQkIC/v7+KIpCZGSkXgR9xowZfPLJJ2zdutVnNR2FEKI3VrOR6GA/vZD4kiVLMJvNegB/qHXXuElFocAVzL1rD/Gvr35KTEwMa9as6bbQ+EBogafenqPT09MpLi7WawBqGbL9uSaXlpaiquqQZzx1Dsz961GFP5Sl6B3VteOuXbuW7Oxsbr/9du6++278/f0HfbzW1laOHj3KrFmzLms/lwoMDCQjI4OjR4961VgU1w4JPF0DBtP1obi4mIsXLw5JthN0zLzOnj2bnJycHjsyDJXhw4fTVFfDyGFR4HbqRWmjo6N56KGHqKqq6nf2jcViYezYsdx666386Ec/Yvr06XqNo88++4zf//73/OlPf2LHjh0UFBR02WdLSwvQ0Ua88yx1d7TAU+eLmVbn6dy5c4SGhvq0vpOqquzdu5cxY8boBeYLCgqIiYnxGsxp3ZMGkrqblJTE7bffzsmTJ9m/f//QnrgQ4pqhdbOrqqrCEZqoP2w+s6OJ15on8dT6o7yyuaPQ9y233ILdbtczS/Py8vT9jB07lp07d+Ln54fb7daXDhgMBsxms74Mrr29HUVRSEpKQlEUryV7fn5+7N+/n4SEBMaNG0dpaSktLS0cOXJE36a7TjcnT54kPDwcu92uB/s9Hg9VVVXEx8djs9mIjIzk008/5dy5c/pSwEuX+mkP+rNmzcJms+l1o2pra6mqqupzBn7MmDH6JIl2Hz537pxXBu28efMYN24c/v7+3QaPFEXxqlelDVi0elcAhw4d4vnnn2fr1q1d9jF37lwSExP58MMPmTdvHsuXL+fEiRP6+1tbW5k6dSpbt27F6XRy4403cuTIEd56660B3SOEEMIXrFYry5YtIzs7e8iXA/fWuEn9+xD4gDOZ8QuWD0nGUHR0NE6ns9dx1Pjx4/Hz89OznrRn9v5kPRUXF+Pn5+e1rN3hcOBwOAZd46n7wNzXHdX/fcMuXn31Vfz9/VmzZg1Tp0697JIi2kTO3LlzL2s/3ZkzZw6BgYF8/vnnQ75vcfkk8HSNGGjXh927dxMTEzMk2U6aqVOnYrFYvB76fUFb2qE99HcO+CQkJLBy5UoKCgr44IMPBjQrqxWDtVgsrF69mueee457772XhIQETp06xRtvvMFvf/tb3nnnHU6cOIHNZsNmswEdHZj27t3b6/7NZjMhISGUV9VQbbPT7nTrGVMXL170ebbT2bNnqa6u1rOdoKOT3qWprtrs+UAHFenp6SxYsIBdu3Z5rT8XQnw7eDwezp07R3R0NGecUfzbF7VdZoF3nani7frh5Lo6lhH/8Y9/5PDhw8yfP98rvf/FF1/EZrNht9uJjo7GaDSycOFCxowZg5+fn16MW6uVpM3Qdp4JDggIoKqqiosXL7JkyRLsdjvNzc0MGzZMDxJt27atS5ZUaWkpX375JWazWV8y6Ha7cTqdepZVbW0tzc3NGI1GAgMDUVUVl8vlVYvCbDZjsVj0YqTTp08HOgYCf/3rX/XXk5OTWbBggf4+7TOcP38eo9HI1KlTe7xX2e12jEaj1zJDbYZXq03VHS3rC77OpD18+DDPP/88n376qR6AMhgMrFixgpaWFrZv386MGTO49957ycvL07sSlpWVsXz5crKyssjMzGTFihUUFRXx6quv9pkVLIQQvpaenk5ycjKffvrpkHYl61fjJoPCq/sLhuR4WkCot+V2ZrOZ1NRUTp8+jaqq+jN7fwJPJSUlDB8+3Cvwo91rBxN46k9H9dez24hOncPjjz/uNSEyWG1tbRw5coSZM2d2ubcPBbPZzJIlS8jOzvZp+RgxOBJ4ukbMTIngpzePoePR3/s//o5rpsr/uX4EM1IiKCoqIi8vj0WLFg1pIWuLxcK0adM4fvz4gDosDFRERARWq5Xq6mrCw8OpqPAuKjhixAjuuececnJy+OSTTwa09KtzcXGr1Upqaip33HEH//zP/8xTTz3F3LlzaWpqYsuWLfzXf/0XH330EQBpaWmcOXOm15vF0YI6trcl88wX7cz81U5Sf76Vf/4wl7bAeJqamnwaeNKynZKTk/VldTabjbq6uh4DT4P5N1y8eDFpaWl88MEHXQr8CiG+2YqLi2ltbSXPpnDQldTtw6bn7y0gDrqSeP2TvSQkJDBt2jSysrI4d+6cvp3JZCIiIgKDwUBqaiqqqjJz5kwSEhJoa2vD5XLh5+eH0WjE4/GQmJiIqqrU19frtSO0INP+/fu9Mkk7FzN3u93ccsstXoEbj8eDv78/c+bMITc3Vw8YxcTEUFdX5/Vw7Ha7aWlp0QNZWtarwWDA6XTicDj0JXUmkwmz2cxjjz2G1WrVa0ONHDmSyZMn6/vsnHV0zz33cPvttzNy5Mhuv3NtBl+7HpvNZv3za8GqSx+O/f39cTgc+kN5a2sr//zP/8ycOXNQFIWjR4/y/PPP8/HHH9Pa2kpERAQ33HADx48f5/z580yYMIFHHnmE2tparFYrdXV1ZGZm8sgjj9Dc3Mz27du5+eabcTgcvPzyy/JwLoS4qrROyw0NDRw4cGBI9tnvxk0etUvjpsEKDQ3FbDb32UV08uTJNDQ0UFhY2O9VCqqqdltYXJtAH0zgqb8d1U+2RQyqgHh3Dh06hMfjYd68eUOyv+6kp6cTGxvLjh07pHzINUYCT9cIu92OK3c3d4cWsWRspFfXh+vHx3B/ZBmmgoN4PB52795NbGwsEyZMGPLzmDVrFna7vUsr6KGkKArDhg2jtLSU+Pj4bpe4jR8/nttuu43jx48PKF3SYDB0O/OsKArx8fEsWrSIJ554gmeffZY777xT76Rw8OBBFEVh06ZNZGZmdlnOoKWinrVZUOn4x/GoHamob9UOI9cV7dPAU15eHmVlZV6z7lpdqksDT4NZaqdRFIU77riDuLg43nzzTZ8vuxRCXDlnzpwhODiYncUeDH1MWiio5HriOX/+PKdPn6alpYXw8HCvwHZbWxvp6elkZmaSmppKUFAQCQkJenBHVVU8Hg9+fn7ExMTQ1tZGe3u7HhhyOp2MGDGCgoIC3n77bWJjY4GOB1NtmVtgYCB79uzh9ttv9z4/RWHatGk4nU6Cg4NRFIXCwkKWL19OWVlZl0kZbRZdC+Z0vk/U1NQQHh5OXV0dcXFxvPfee9jtdn0JXGZmpte1UHvv8OHDGT9+PO3t7XonOo229G7nzp20tbXpEywul0sPgpnNZkwmU5fOdYGBgdTX1zNixAgsFgtVVVVUVFRw44038r/+1/8iIyMDg8HAV199xfPPP8+WLVuYMGECo0ePZsuWLbS2tpKUlMRjjz2mH6+srIwvv/ySJ554gujoaLZs2cL06dMJDw/n9ddf71L4XAghrqSYmBjmzJnD3r17qa+vv+z9DbZx0+XoT2c76ChvERYWxqlTp/q91K62tpa2trZuC4vDwANPl9NRfbDa29s5fPgwM2bMGJKljT0xGAwsW7aMoqIizp4967PjiIGTwNM1wO128/bbb1NXV8ezq+/ilcfmenV9+MsjM/nBfTdRUlLCJ598Qn5+/pBnO2nCwsKYMGEChw8f9mmUOCEhgdLSUmJjY6moqOj2WFOnTuWGG25g3759/Z4B6Zzx1JuAgADS09NJSUkhMjKSxx9/nBEjRtDQ0MD777/P7373O1599VW+/PJLtn51Xk9F9eD9nXdcsDuyA06XNffrHAdj3759DBs2zGtWvbCwkMjIyC43m8EutdOYzWbuv/9+jEYjb775ptQBEeJbQFVVzp49S1xCIvnO4D4fyFUM5LtCefDhR1m4cCF2u5177rlHn/WMiIigra2NxMRE6urq9FpMnTOTtO6akZGRGAwGvfi49qBtNpv1h8KQkBAWLVoEwP79+3G73ZhMJuLi4qipqeHcuXN662uAxsZGKioqSE5O5uzZs0yYMEEPPoWEhHS5DwQHB/Pkk0/qQTGLxaJPPFy4cIH4+HiKi4upr6+noqKCVatW6du2trby7rvvdvmOampqqK2tZc+ePV2Wh2h1+BoaGnjxxRdxOp36v4M2wAgLC8Plcnmdq6IoWK1WampqGD58uP6+999/n9bWVqxWK0uXLuW5555jyZIlmEwmTpw4wfPPP4/FYsHpdOqZwjExMTzxxBMEBgZiMBjIy8tj27ZtPPjgg8ycOZNdu3YRERHBhAkTeO+999i9e7fMDgshrppFixYREBDAZ599dtnXosE2brpc/Qk8KYrC5MmTvZpc9BV4Ki4uBug28GQ0GvX7WX9djcDc4cOHcbvdPs120owaNYpRo0axc+dO6dh9DZHA01WmqiqbN2+msLCQ+++/X3+wvrTrQ1JSEvPmzeP48eNERkYyfvx4n53TnDlzqKur69KBZyglJCTQ0tJCaGgodru9x9mNuXPnkpGRwY4dOzhx4kSf++0p46knWieIxMREVq5cSWBgIBMnTuS2224jKCiI/fv38+v3DwO9X50VVF7afa7XbQaruLiYgoICFixY4BVsLCws7LaV6eUstdMEBQXx4IMPUl3XwOtvvU+r3TnofQkhrr7KykoaGhrwGP30rM2+qMAr6zayfft2DAYDGzdu1LNBGxoaCA0NZe/evQQHB9PQ0EBRUZHeLKJzIW/t79pyuvb2dqAj46mmpoZhw4bR2NioL22DjtlvbZncnDlz2L17d5dl2R988AHjxo0jPz+ftLQ0VFXl+PHj3WZqtra26gW1R48ejcPhIDk5WQ+UFRYWYrPZcDgcPProo0RHR+v3kieeeIKQkBCv/VksFgwGg14LqnNHoeTkZB5//HFmzpwJfN3EQtPU1ITRaMRkMmGxWLzqXBiNRoxGI7W1tfryREVRcDgcbNmyRR+Mmc1mFixYwHPPPccNN9yAn58fOTk5OBwOcnJy+Oqrr4COgN7q1auJi4tDURRycnL47LPPuPHGG1mxYgXZ2dnU1dUxb9489uzZw/vvvz+kNVaEEKK/LBYLN910E+fPn7/sTJX+Nm5S8JCo1LP9s0+GJMs/Kiqqz8520LEczOFw6BmvfU3ylpSUEBMT49UFFTrGMUFBQQNORhhoYC7QcnkhA7vdzqFDh5g2bdpldeAbiGXLllFbW8vx48e9Xm93uvVaveLKksDTVbZjxw4yMzO58847GTFiRK/batkubrfbp62QExMTSUhI4NChQz47hlZgXHvAvXRA0dmSJUuYPn06H330EWfOnOl1v/3NeNLYbDb9Amg2m5kzZw45OTmMGjWK++67j3/8yT9TrIb3OVBTMXCwuNUnF7G9e/cSHR3NuHHj9NdaWlqoqanpNvCkLQ+5nEylowV1/HR7Ea81T+LXuSGk/ft2r9aqQohvltzcXPz8/Gi31XepI9gTBRUzHdc0j8fjtQTZ4/HQ2NhIQ0MDNpuN999/n9dee41XXnkFwCt4UVRUxAsvvMD27dsxGo1d6sf5+fnh5+fHjh07gI46f1ombF1dHVOnTkVVVfz9/b0CQE6nk9zcXEwmE9u2bcOlKrSpJlyq9/U6ODhYD2L5+/szY8YMoGO58pgxY4Cvg0P3338/8fHx+gBEURQiIiK47rrrvv5e/p6VNHnyZP2e07lId3x8PAaDgRtuuAGz2dylNkZ7eztWq5X29nYSExP1pRLavrXPFhgYiNlsJjw8nMjISM6ePcuxY8e89mU0Gpk7dy7PPvssy5cv12e9P/nkE9588039Mz/88MOMHTsWgBMnTrB9+3bS09N5/PHHaW5u5tSpUyxevJjc3FzeeOMNr3MSQogrZfz48YwZM4bPPvvssuvN9qdxk4rCvIg2zp49yx//+Ec+/fRTvW7SYERHR+NwOPrcR0REBElJSfq4pj8ZT5fWd4KvJ9AHqr+BOQMqiUodf33pT+zfv7/b7qz9ceTIEZxOJ/Pnzx/U+wcjNjaWKVOmsHv3bux2O0cL6vROvlqtXhnbXFkSeLqKDhw4wMGDB7n55ptJS0vrc/u9e/cSGRlJY2Mje/bs8em5zZkzh/z8/F4DQpcjKCiI0NBQamtrCQ4O7rbOk0YrOpiamsp7773n1dL7UoPJeOq8VG3mzJlYLBZ9aV+rU+13KqqKMiSpqJ1VVFRw/vx5MjIyumQ7Qdf6TtDxfVkslkEHnnpqrbojp5J71x5kw+HCQe1XCHH15ObmMnr0aMpLipgR79evWeCRZhsmpfsLoMlkGlBHmqamJlpbW3G73V0esPPz87Hb7XomVH5+vj6B4HA4eOmll4CObjjaEjzoyBguKiqi1GHlw5poNtin8ZZ9Chvs09jtHkOlJwiTyYTNZsPf3x9VVbFYLOTm5hIWFobZbO4SyNGWA2qBJ7PZjKqq7N69W99GVVVaWlqoqKigvb3dK7sLOrLLtO8oJSWl2zR/RVFobW0lOTlZ73IH4PRAQ7sHl6rQ0NBAQkKCngE1ffp0tm/fTlVVVZf9GQwGZsyYwbPPPsstt9wCwLlz53j++ed5++239aWSWhbWoUOH2LNnD8OGDeOpp54iKiqKPXv2MGvWLOrr63n55Ze7PY4QQviSoijcfPPNtLa28uWXX17WvmamRPDLFRNRoMs9z/D3KeWnpobi31LOE088waJFi8jMzOQPf/gD27dvH1SQpT+d7TTp6enk5+cDvQee2tvbqa6u7rLMDrqOYwaiv4G5/3PnLJKTk/niiy/47//+bzZv3tzruO1SDoeDgwcPMnXq1C7Zw762ePFiHA4H//HWni5jG61Wr4xtrhwJPF0lp0+fZseOHWRkZOi1MXqTn59PYWEh119/PYsWLWLfvn1dipkOpQkTJhASEqK3k/aFhIQEysrKiI+P7zPAZTAY9Kywt956q8fPPtCMp0sv2H5+fsyePZuvvvqK4uJidu/cOqDsAMXV3u9j98fevXsJDw9n4sSJXq8XFhYSFhamd0e6lJ+f36BminprrepROwJQP/0wS2YHhPgGqa+vp7KykrCwMDweD2sWje7Xw+Y4pQyDwcBtt93G/Pnz9VoU0JHR1NraSkBAAPPnz+eBBx7gnnvuwWQyER4e3nV/3VyXuwucQ0dx7c7BHI/Ho7+/paXFK5sq1xXNp45xFHlC9cxUFYUCZzCfOsaR1d5xLtoyvsbGRk6dOkVISAhJSUm0tLRgMBj0INpnn31Gfn6+vvzbarVy4MABPZgEHcEoRVHIz88nJCSky9K0zgOOzt+F1WrVu/U1Nzdjt9sJCAhgwoQJVHqC+Nwxitdb0nmhMJYN9mn8748u0B48jObmZpxOJ+PGjSMiIoJ3331Xr/10KUVRmDlzJg8++CDQcS84c+YMv/vd7/jb3/7GggULWLJkCQB79uzhwIEDBAYG8vDDD5M+dTq79h8hISkFPz8/XnnlFZ8uuRdCiO6Eh4eTkZHBwYMH+xXA6c2q2cm8s2YuyybE6kvLFCDRUM8rD6Txk9tmYDAYOHfuHAsWLOBHP/oR8+bN46uvvuL3v/89n3/+uT4p0h9hYWGYTKZ+nXdaWhoGgwGTydTrZLHWebSnjKfBFurWAnPQMdnUmdGgoAC/XDGRm2eMY8WKFfzkJz9h4cKF5OXl8Ze//IVXX32VrKysPmsoHT16FLvdTkZGxqDO83KEhIQQOX4W63Md3Y5t3B5VxjZXkASeroILFy6wefNmpkyZoj8A9kabbY2Pj2fcuHFkZGQQHx/Phx9+2OPD5+UyGo3MmjWLzMxMn6Xca4Gn2NhYysvL+wwYGY1G7r33XuLi4ti4cWO3F/WBBJ4cDgcOh6NLiuqIESPweDy8+uqrFOVdYEacpc/sAKNBIclQT0Vpcb+O3R81NTXk5OR0GfBBR+Cpty56fn5+g8p46k9rVYMCL+/LH/C+hRBXR25uLkajkdbWVsLDw1mantLjw2bHzypzTUXEGprxeDx89NFHZGZmAl/XkNMedFtbW9m/fz9vvvkmH374IS6XS5/RNBgMhIWFERERwejRo72yNg0Gg9fytM6sViupqan6zykpKaxatYo777zT61pY6QnioCuJjrC/9zWy4+eOxg+VHu/ZYFVVKS4uJicnB/BeRqiqKuvWrWPbtm1Ax0P9zp07vd7vdrv1Jc1NTU36OWnfTXNzs5552/k63N7eTnp6ute+du3axamWkG6DZ0fL7fz6qIMTtiD8/f0pLCzk7rvvpr6+nu3bt3f73WnGjBnD9OnTcbvd3HrrrYSHh3Pu3Dn+67/+i6KiIm644QagY7n/us/288ybJ/jJAZW37FP41xMdGWTuiBTefPNNnzcbEUJc+650XZz58+cTFhamN0u4HDNSInhp1XS9cdPpny7l5uBSqMnD39+fMWPG6Pc4q9XK4sWL+dGPfsSMGTM4ePAgv//97/nyyy/79VxtMBj0Ok99sVqtjB8/Ho/H0+u+i4uLCQgIICIiosvvBrvUTrNqdjL/d5aVZEOjPtFuUGDZhFjeWTOXVbO/niAKDAzUg3P33XcfRqOR9957jxdeeIHdu3d3u7zQ6XRy4MABpkyZ0uNkua991RzaZ2VLg0GRsc0VIIGnK6ysrIy3336bUaNGcdttt/WrGFxBQQFFRUV6Jzuj0ciKFSuor6/n888/99m5Tps2DYPB0GUpwlBJSEjA6XQSEBBAS0tLvwJcFouFBx54gODgYNavX99l4DKQpXbaBVLLeCotLeWtt97i9ddfx2QyYTKZeOqpp3jujhl9Zgd4PCrzItopKCjo17H7Y//+/QQHBzN58mSv19va2qisrOwxWwAY1FK7q9FaVQjhe7m5uYwaNYqCggJGjRqFoig8ODORe8KKSDI06A+bCipJhgZusZxlvMn7obmpqcnr4djlcjFmzBj+7d/+jZUrVzJhwgR9W20psFYHKiwsjLy8PFRVZdKkSQBERkYybdo0r2NMmTIF6JgU6JzGX1BQwIYNG9i8ebN+fTcajWS7YvvMSDUqCjWR6V1e14p296Xz8Tq/1rkQendBpv/4j//g+eef1wcz2rEuLZhb0GLk5VM2ugueaZfig64kWgPiyMvLIyYmhhtuuIFjx46Rm5vb67nfcMMNBAUFcfLkSf7hH/6BRx55hMjISC5cuMD27duJjY0l1x3Nz76sZ0dOZael1QrnWq28XBBMQ/Qktm7dyqeffiqdgYT4DrpadXFMJhO33HILhYWF+nX0cmmNm4IDrEyaNImTJ0/i8XiYNGkSZWVlenMM6Oh+vWzZMn70ox+Rnp7Ol19+yR/+8AcOHDjQ56R/fzrbaSZPnozH4+lxIgY6Mp6GDx/e5Z7l8XhoaWkZ9FI7jbG+kCV+ebx2S7jeUf2lVdOZkdI10AUdY60JEybw6KOP8v3vf5/x48dz4MABXnjhBd59912Kior0YOGxY8dob29nwYIFl3WOg9XudLPrbHWftXrdHlXGNleABJ6uoNraWjZu3EhsbCz33ntvlyyW7mjZTsOGDdMLg0LHRW3p0qUcOnRoSIMdnfn7+zNlyhSOHj3qky438fHxKIqi77u/64X9/f1ZtWoVJpOJ9evXd1uYtT+zI9r7mpqaWL9+PS+//DI1NTXccccdPPPMMwAcP36811RU7edfrpjIvLFx+oDrcjU0NHD69Gnmzp3bpX6I1gGjt8DTYJbaDbS1akPL0C4rFEIMvZaWFoqKikhMTKS+vp7Ro0cDHfV/gturWGLJY5XfcVb6nWSV33GWWPKINfQ9CWC325k+fTpGo5Fx48Zx7733EhQURHp6ur50ADquxXl5eXpwRuts53K5+OKLL8jIyNA7u7W1tWE0GrHb7djtdj2DyGq1EhMTg8fj0WdM7S4PRZ6wLsGaS7lVOFpu71JwXMuO7bzMLjAwsNsZZZPJ1KWTUF+0OlDa59buSVoNKe1e1Z/gmQJ8WWWivLycjz/+mJaWFmJiYnj//fc5ceIEhYWFVFZW0tjYiMPh0I9lsVhYsWIFJSUlHDhwgBEjRvAP//APPPbYY0RHR3O6vIWDzo6MsUuv/R0P6QrvF5kJSknnq6++YtOmTQNaciKE+GbrrubnlayLM2rUKNLS0ti+ffuQX3umTp2KzWbjwoULjB07Fj8/v24DXEFBQdx888388Ic/ZPz48ezatYs//OEPHDlypMexkRZ46s9YZNSoURgMhh5Ljng8Hj3wdKnW1lZUVb2swJPD4aCkpARVVZkwdrRXR/X+iImJYfny5fzTP/0TN9xwA+Xl5bz22musXbuWo0ePsn//ftLT0/Vl5lfaQMc2Q12rV3gz9b2JGArNzc1s2LABf39/HnjgAT1Nvy/5+fkUFRXxwAMPdIl0z549m9zcXDZv3szTTz894Afj/pg9ezZHjx4lMzOTqVOnDum+LRYL0dHR1NfX4+/vT3l5uVdwrTfBwcE8/PDDvPrqq2zcuJFHH30Uq9WqB/P6ms1WVVWvXfHhhx8SGxvLPffcw4QJE/R9TJ06lcOHDzN3bkeqqbGpgpd2n6PI09HlTssOeGBaHKtmJ5OZ2cTx48cvq9Cf5sCBA/j5+TF9+vQuvyssLCQkJKTXi/hgltqZcaFAvypaKajs3rmN++++c8AtXIUQV87Zs2e9gizaEt2DBw/qr5sUFRPdP2xdmkXaeTnz1q1bMRgMjB49mqqqKhoaGpg+fToej4eEhASKi7suPdbq82nXfY/Hw6hRo7h48SJnz54lMDBQ7zA3fvx4srKyaG9vx2g0kp6erg8MnBj7nMHUqCh4jH4oql0/d+1/Oy+za2lp0Y/dmcvlGtTkS3eDDm0/qqriUpW/B8/66pqqkO8MYb5B4cSJE/p5A2zZsqXb9xiNRsxmsx4027VrF1lZWQQFBeHn50dSUhJbm1UUR+/XfIOisOVcM0+ljqK4uJhXXnmFBx98sNs6XkKIb4/ean5qP//0wyzGxwb3mBkzFG644QZefPFFPv/8c71xwlCIj48nLi6OEydOMHbsWCZMmEBmZibXXXddt8+1oaGher3DL7/8kq1bt3LgwAEWLlzI5MmTvbJio6OjaW9v79cyOIPBQFBQEHV1dbjd7i5dUKurq3E4HN3Wd7p05cZgFBYW6l1jY2JiBr0fq9XK7NmzmTVrFnl5eRw5coRPP/0U6HhuqK+vv6L3DYfDwblz5ziVlYNCQL+eFwwKBFslNOJLkvF0BdjtdjZu3Ijb7WbVqlX97gSkZTslJCToLZ87MxgMrFixgpaWlj7rPQxWZGQkY8eO5dChQz6p8ZCQkEBpaSlxcXED7qAXHh7Oww8/TENDA2+++SZOp1O/WfS03E5VVXJycvjLX/7C/v37URSFlStXsmbNGr3In2b+/PnY7XZ9qWGIo4Zbwyr4ftR5jvzLUh4NOMUtIWXU5h6hqalJH9BdbtZTc3Mzx48fZ86cOVgsli6/LywsJDk5udeAj8Vi6XfGU2trK59//jkvvfhHko0NGPpaumJQmJsYyNnsTJ93VxRCXJ7c3FySkpIoLi4mKSkJPz8/SktL9VT4Sx+Ku0vl7/x65/tAY2MjmzZtYsOGDRw/fhyLxUJbW5uevaS9b+TIkYSEhGAymRgxYgTQcf9qa2vjwIEDnDlzRr9eae8zmUxcuHBBP357ezunT59GVVXGjh2LGfeAGj+MH5Wsn3vnZYHjxo0DOupIxcfHExUVxUMPPaT/3mg08swzz7B48eIu35P2nVitVm677TZuuOEG/fs0GAxduvf4+/vr9xiz2Tzg4JkTo/4Z+sqYdrvd+sBHm4SorKzk4sWL5OTkcPjYcTLrlT6P71GhyBPB+bwCwsLCcLlc/PWvf9Uzb4UQ3079qvl5BerihISEcN1113Hs2DHKysqGbL+KojB16lTOnTtHc3Mz6enp1NfX99m4KSIighUrVvD973+f4cOH89FHH/GnP/2J06dP6/ergXS2g47xjNvt5sKFC11+V1xcjKIoDBs2rMvvtJUblxN4ysvL0yeQhmIiWVEURo0axb333ktgYCDR0dGcOXOGP/zhD2zatIkLFy74rGagw+EgOzubd955h9/+9re89957tNoamRFnoY//K2M0KNyQGjegbC8xcBLW8zGXy8Xf/vY36uvreeyxxwaUapiXl0dxcTEPPvhgjxeD8PBwbrjhBj755BPGjx/fbYDqcs2ZM4d169aRn5/PyJEjh3TfCQkJnDx5klmzZvVZr6I7MTExPPjgg6xfv5533nmHtLQ0oOtMs8fjITMzk3379lFTU0NKSgppaWmUlpbqA49LhYaGMnnyZA4ePMjMmTMpLS0lICAARVEIMLhQPC5cro4BxBdffMEdd9xBREQEBQUF+nkMxsGDB/Xi7pey2+2Ul5d3qY1yqf5kPNlsNg4ePKgH1mbMmEEiIfzfL2p6fZ/bo/JPt0ymtcjIF198QWRkpF63RQhx7bDb7eTl5bFkyRJ2797NokWLADh06JAenA4LC/MqCNrTA6E2I9q5tlFMTAxVVVUUFhaSl5dHeHg4eXl5JCQk6Bml0dHR1NbW4ufnh81m01tHL1u2jKlTp3Lx4kUyMzM5e/YsqqrqD+6tra1ewRW3243JZGLcuHGcO3cOk9KRcdpRkLvnIIyChyRDA3nn84COoHx5eTnBwcHYbDaGDx/O2bNnKSwsZPny5Xz22We89dZbXvt47733vIJVl35XN998s140PCQkhHfffRePx0NTU5PX9p2/O6fTifnvmbP9CT4pqKSNHUVNZTk//vGP9WeCXbt2sX//fh5//HGGDx+u1+GqqamhpqaG2tpa6uvrqaio0Jc5wkAzxuDulQ+x46P38Xg8hISEsG7dOm677bYuNQiFEN98Ws3PvpYoda6L48sB+6xZszh58iSffPIJTzzxRL9KlfTHpEmT2L59O6dOnWLevHkEBwdz+vTpbpe1XSo6Opp77rmHjIwMdu/ezQcffMC+ffu47rrrGDduHEajkerq6n6Nm0JDQzGbzZw6darLmKSkpIS4uLhuJ6KHIvB08eJFPfN4KJ04cYKWlhZWr15NaGgoWVlZHDlyhI0bNxIREcHMmTOZMmUKVqv1so7jdDq5cOEC2dnZnDt3DqfTSXx8PNdddx2pqamEh4cTtvsER7eVQi/3PI9H5cmMEZd1LqJvEnjyIVVV+fDDDykqKmLVqlXExsYO6L1atpNWk6Mn06dPJzc3ly1btvDMM8/g7+9/uafuJSUlhdjYWA4dOuSTwJOqqvj5+dHY2Ki35x6IxMRE7r//fq/6E9rgxeVycfLkSfbv309DQwNjxozh9ttvJzExkQ8++KDPFNiMjAxOnjzJsWPHqKys1GcctLpaLpdLL1A4d+5cUlJSLivjqa2tjWPHjjFz5sxuL8bFxcWoqtprfSfovbh4Y2Mj+/fv5/jx45hMJubMmcOcOXOorq7m4OuvM9cUzUFXcpcBUcfPMNdUhFodw4IFC6itrWXz5s2EhYV1mwYshLh6Lly4gNvtJigoCKfTyahRo2hsbCQ7O1tP5+9uibbZbO62eOrMmTPZt2+ffn2tqqrSayLV1tbS0NCAqqp6gdbY2FgMBgONjY0EBQXp13q73U5wcDB+fn6kpqaSmprKnj172L17t9fxLs1cdblcZGdnAx2zqmmmSgodYb1+ByoKaaYq/We3201DQ4M+cNm1axcASUlJbNu2jcDAQK+Akdvt7rZWR3BwME1NTfj5+TFhwgRKS0spLy8nLy+vyzn01G21/8EzlSRDPVXlVTQ3N1NTU0NISAj19fXExsbqzTbi4+Opr6/vEvDqjkXx9DvoZVBgTEoiI556infeeYeSkhKGDRvGhx9+SE1NDUuWLJEl10J8iwymLo4vA09Go5Hly5fz2muvcfz4cWbMmDEk+/X39yc1NZUTJ04wb948Jk6cyKlTp7jxxhu7LHnrSVxcHCtXrqS0tJQvvviCd955h7i4OIKDg6mqqup7B3Tcc61WK+fOnaOtrc1rHFdcXNzjOLC5uRl/f/9+n+ulWlpa9KysoRzfud1u9u3bx8SJE4mKigI6ypdMmTKF4uJijh49yo4dO9i+6wtGT5hExpwZJA2L6/f+XS6XV7DJ4XAQFxfHggULSEtL86rVePHiRc58+RHzzFEccCaj4PG63xr+fh/85YqJPl0yKjpI4MlHVFVl27ZtZGdnc++99+rLsPrr4sWLlJSU8NBDD/X5QKcoCrfffjt//vOf+eyzz7jrrrsu48y73//s2bPZsmULNTU1+kVkKMTExGA2m/W6FxUVFYO6+I0aNYq77rqLd999F+hYlnH8+HEOHjyIzWYjNTWV+++/n7i4ry9s/anFFBERQVpaGvv378fj8WA2mzEYDBQUFBAVFaUXwg0LC2PXrl1MnDiR48eP09LSorcbH4gjR47g8XiYO3dut78vKCggMDCQyMjIXvfTXXHxuro69u3bx6lTp/Dz82PhwoXMmjULq9VKRUUF69evB2BRgoGf3DiH517+jMK/1x9RUEk2NHDf5ChGhozk008/pbm5mVtvvZWGhgbeeustnnzySan7IcQ1JDc3V1/GHBQURGxsLDt37sRkMuF0OjEYDN0GRMaOHasHeDoHob788kuv7VRVpampSe92pgVYtOt5RESEnuHU3NyMoih6wKfz9bGyspL9+/fr+1AUpc/upIqiEGtoZq6piIOupL8HUb5+mOx4uFSYayryKpau1dC4tEPb+PHjaWxs9OospCgKS5cuZefOnV0GEFpwx2Qy8etf/1qvK6gtsbj0e+pJf4NnM4Jtei2qP//5z1771OpwFRcXe31v/v7+qKqqT8jExMTQ0tJCa2srRtXT74yx9AgDRjxYg4J45JFH2Lp1K8eOHSMhIYF9+/ZRW1vLnXfe2e/alUKIa1uw1YRBoV/BpytVFycpKYkpU6awa9cuJkyYMKhn7O5MnTqVzMxMiouLSU9P5+DBg+Tl5Q14BUlCQgKrVq2isLCQL774goqKCrKyskhLS2PEiBG9juX8/PwwGo14PB6ysrKYOXMm0JH5W1dX12MGVn9qSPVGuz9HRUVd1n4udfLkSZqamrp0slMUhaSkJCo9QXzalMDn52pRj4Jy9Bjjgxw8Pj+FuxdO6TajzeVy6UvFc3NzcTgcxMbGMn/+fNLS0rodFxUVFbFp0yZUVeXfVl7H9uMX2HKumXxniD62STQ08PP7M1iS3vuEvhgaEngaAu1ON7Z2F8FWkx7xP3DgAIcPH+aWW24hNTV1QPvTsp2GDx/e79THkJAQbr75Zj744APGjx8/4GP2ZdKkSezatYvDhw+zfPnyIduvwWAgPj6ehoYGzGYz5eXlg466p6WlceHCBU6ePMn//M//4Ha7SU9PJyMjo9tgWXNzc58BHIAFCxaQlZWlD9KsVisFBQWMGDGCkJAQ9u7dyy233MLmzZv15RaDWW7ncDg4fPgw06ZN6/GGWlRU1Gd9J/BealddXc2+ffvIzMwkICCApUuXMmPGDD1tt7a2ltdffx23243ZbOaRRx7B7Xaz2HIRv4AgGlraSYyLxtHWQu3ZfO77/vcJCgpi165dNDc3c++99/Lqq6/y5ptv8vjjj1922qwQ4vK53W7Onz/PnDlzOHPmDKNHj8bhcPDVV18RERFBXV0d8fHxXsu/NGlpaXrgqa+20Z1r610aDDlz5ozXtvHx8Xr30qCgIDweDwcPHmTXrl2oqkpsbCyVlZU9Bmq0h1Gj0aif13hTNeGGNrJdMV0aP6SZqrp06AsLC9ODS1arFafTidvtZtu2bV7H8Xg8el2NyMhIvRvdpUaOHElSUhLx8fGEhoaSnZ3N9u3beyzIfqn+Bs/CXXW4PR59cNKZoiiEhobS2NhISEgIra2tuFwuDAYDo0aNYtSoUcTGxrJr1y6vAFr/gl4GElvPs3ZtPnfddRfDhg1j+fLlDBs2jE8++YTIyEjOnz/P66+/zsqVK4d08CKEuDqsZiPLUmPZeaaqS2HxzowGhWUTYq9YXZzrr7+e3Nxcdu7cyR133DEk+0xJSSE8PJwTJ05w++23Ex0dTWZm5qBLlyQnJ/Poo4/y4YcfkpmZyfr160lOTmbJkiUkJSV1+x6LxYLL5WL06NGcOnVKDzxpDTp6WlFwuc2MLl68qNd3GipatlNqamq3xcrXHyrkZ5uzMBi+rtKoonC22cKz28r49MBJHssYzfTp07FarV7BJrvdTnR0NPPmzSM1NbXbiR5NaWkp69evx+PxcP311zNu3Dg+/vhj7k8Ipb6pvCNLz6hiNRtpKcyE9JQh+w5EzyTwdBmOFtTx8r48fR20QYFlqbEsjvNwdv9OFi5cqF88BuLChQuUlpayatWqAaWvT5o0idzcXD7++GOSkpIuu7NaZyaTiRkzZnDgwAGWLFkypMv5EhISyMnJGVSBcU1rayuHDh0iKysL6IiML1q0iOuuu67H99hstn49JMfExBAcHExbWxt2u52goCBqa2tZvHgx8fHx/z97/x0d9X3n++OPz3Rp1HtBFQkJNYQQIED0YgymF2ObYhNsgtPz29xsuffuzdm9e7LZ3CTO2gm2McZAMB3Te0dU0VEDJCTUC+plpCmf3x/K52ONZtQo+e4m8zjH5xjNzKdJ8y7P1+v1fHHmzBlUKhVBQUFcuXLluX2eMjMzaW9vZ+zYsXZfNxqNlJaW8tprr9kVO7ui0Wgwm83s3LmTnJwcXF1dee2110hJSbGKSjc2NvLVV1/J2VFvvfUWzs7OssGhp5sL7a3NBPn7cu9eOS4uLpw8eZK33noLvV7PwYMHaW1tZenSpXz11Vfs3r2bt99++6XV3ztw4OD5ePLkCe3t7YSEhHD+/HnGjx/PnTt3MBqNNDQ0IIoiERER3L171+azkpgkiSXu7u40NjbaiCezZs3iyJEjVp3itFotZrMZhUKB2Wy2yiwaNGiQbA7b1NTEnj175DE/NjbWxufP2dlZzvLx9vZmyZIlrF+/HovFYtVtz1/RjL+mGZPYacCtxoxKsN0s+fj4UFtbi06nw2Aw9NieWzquxWJh8+bN8s/tHX/cuHGUlJRw6NChXuevrt36utMf8Ux6jNKaIDExkerqaiorKzGbzTQ0NCAIAk1NTYwZM4bExET8/f0xGAwcPXqUffv22Zy3d9Grs7T6X+cnMnPwaPbu3csXX3zBxIkTSU9PZ/jw4fj6+rJz5040Gg319fVs2LCBt956yyqz2IEDB/89WZMeyYmsyl7fY/4L++Lo9XqmTZvGoUOHSE5O7tN2oj8IgkBycjKXLl1i5syZJCYmcvHiRTo6Ouz6KvX3mDExMdy7d48FCxZw+fJlvvzySwYPHszkyZMJDg62er9kjzFs2DB2794tV5eUlJTg4uKCu7u73fM0NzcPyDu4O6/C3+nevXvU19ezbNkym9d665Ro+XPZ99kmP/Rnb3Lu3Dk5+9nHx4e0tLQexazulJeXs3nzZkwmEykpKYwdO5YnT57Q1taGr68vbnonjIZnqAQVXl5e3L17l4kTJ9o0BHHw8nHsDp+TLVeLWPrpFU7lVMmpqBYRTmVX8venq2gJTOlV9OgJKdspJCRkwJk/giAwe/ZsBEHg0KFDL71rwMiRI7FYLNy8efOlHjc4OJiGhga8vb3laHh/aWpq4vjx4/zud7/j6tWrsmqfmprK+fPn7W6qoFORb2tr67c4Z7FYMJlMNDU1yZuV8PBwvLy8CAoKIjs7m2nTplFaWoq7u/uAfZ5MJhNXrlxh2LBhPU4wxcXFlJuc+cM9I3H/fIyR/3aKuH8+xtqtmWQWfmsaW1payo0bNwAoKyvjjTfe4Ic//CGjR4+2Ep1aW1vZsmULLS0tiKLI2LFj5Y5TUlcPT09PFAoFSqUSnU7HoEGDePjwIY8fP2b48OEsW7aMx48fc/ToUebNm8eTJ084evToK+tY4cCBg/6Rm5uLp6cnDQ0NQOd4dfXqVUJDQzEYDJhMJiIiIqzEEEnUuHPnjtVY0dbWhkrVGafquhBPTU21aSwgldolJCTIn5GO23Xu2Lx5szyW6nQ6u80lJNFJpVKhUqnkDCqFQmFX3FYJIk6Cya7oBFBTU0NISIgstPcU2JGuW6LS4sIFSwxb21PY3p7M1vYUznQMptLiwvr162XRSa/X4+fnZ3Ntoij2KDpJ+CuamaIpYLn2Fsu0d1iuvcVU7RObjC13d3dEUeTBgwdUVFTg6elJaGgoer0eURRRKpVysOHYsWP8+te/5v79+z0GA2JV1czS5BGqqJe7BCoEGBfmwixNHmN8TPj4+PCd73yHcePGce7cOb788ku5/OODDz7A29sbg8GAIAhs3LiRvLy8Xu/VgQMH//UZGe7Fv8xPQKAzs6krnf8WSdeW4K/sfWx72aSkpBAcHMyRI0dsSqafl+TkZEwmEw8ePCAxMRGj0fhcDY+6ImXjuLm5sXbtWpYsWUJDQwMbNmxg+/btVFZ+K+pptVqMRiNDhgxBq9Vy9+5dDEYzOU9KCAgO6XGuampqeu4kg7q6OpqamlAoFC9FwIPOvdLFixeJjY2162vcn06JAnC/wwedTievNzQaDR4eHlbeTT1RVVXF5s2bMRqNREREyPvirKwsPDw85AQCi8XC2LFjKS0tRalUcuXKlee6ZwcDwyE8PQe9KbZmEUBg1xMFN4vqBnzsR48eUVZWxqRJk57LrFOv1zNnzhzy8vJ6FF2eF71eT2JiItevX39pgz0gK/8ajYZnz57ZeBPZo66ujkOHDvHRRx9x+/Zt0tLS+PGPfyx3e5Misvv377e7CJY6QfQn46m5uZmWlhb8/f1paWmhubkZX19fuRwuPj6ehw8fEhQURHR0NJWVlVRXV/e50ejKnTt3aGlpYdy4cT2+58tLjznSEcPFJw3WYmdOFUs+vcLvj9xmy5YtbNiwQb6/FStWMGLECJuNVHt7O9u2baOurg6LxUJAQABTp06VX5eEJymSUldXR2JiIqWlpYSFhXHs2DHMZjNDhgxh5cqVVFVVcfbsWaZMmUJmZibXrl3r9707cODg5SKKInl5ecTExJCfn09wcDBPnz6lvr4erVaLTqdDpeqM9HUtlZPEicLCQtLS0uTjdXR0yGO+5N8EsG/fPtmoXDqGNH7funULi8ViFdntKmYNGTJE9kmSBKjBgwdbvWfo0KEEBwdjMpmorq7m/PnzpKSkYLFYnlvcLioqkjOaejpGV8+qXJMvRzpiKOjQy0bcIgJPLe4c6Ygh1/Rtqn9LS0uPZrL9zX7uKp7Z88x79uwZgiAQFRXFj3/8Y37wgx/w3nvv8dOf/pSlS5fi5eVFXV0dv/71r7l+/br8ud6eV1fR6wPfJ2T/YiZb1k5kZLgXp06dkgWtKVOm8N5779HS0sL69eu5desWer2eVatWkZKSQkNDA3q9nu3bt3P58mVHAMKBg//mLB8dxq61Y5g+1F9uR68QYPpQf7Z/ZxRTwzRs27btuasVngcpyF5dXf3S1ppubm5ERUVx69YtPDw8CA0N5f79+y90TC8vLxQKBdXV1QiCQFxcHOvWrWPBggVUVVWxfv16ObtJElgsFgu6kHj+7UI1cf98jF/n+/A/7+ptAswSL1JqJzXCCAkJeWn+fPfv36euro4JEybYvCZ1SuytdBM659di0Ysf/Pin/OxnP5MrMfbv389vf/tbTp8+LQfUulNTUyNXcXh7e/Pmm2/K2dG5ubnExcXJJekASUlJuLq64urqys2bN+Vgl4NXh0N4eg76o9gqFAIbLj0Z0HFFUeT8+fOEhobKmSfPQ2xsLMOGDePYsWM9fjmfl7S0NJqamsjOzn5px3R3d0ev11sZjPdEdXU1+/bt4z//8z/Jyclh4sSJ/PjHP2bKlCk4OztbRXXfeOMNYmNj2bVrl9yFTkJqH96fAbukpASACRMmIIoitbW1Vmbx8fHxmM1m8vLymDp1qjxw9TfryWw2k5GR0aM5HnSKnVtyOgDBVuy0dJZE/OZiKbnPOli8eDGLFi0CrDeJEiaTiR07dlBeXo7ZbEaj0diUx0ldqTw9PbFYLNTW1pKcnExTUxPx8fHU1tbKm5qQkBBWr16NwWDgxo0bJCcnc+LECR4+fNiv+3fgwMHLpaSkhObmZmJiYigoKCAqKkrOdiouLkan0xEWFsbZs2eBbzN8pMWnIAioVCqr4IfFYiEiIsJqgXr//n0sFgujRo0iOjra6v1SqZ7U6Q6wKm17+PChLAB5enoSHR1Nfn6+7N3k5+dHcXGxnPlrsVhITU2lra1NLuN7mXT11ZOut0p05YoplM7Cs25ZTCgAgSumUGoEdwRBICEhgXXr1lmVokvPVspCHQi1tbYbDen6ampqrLJjpWfd1RwdsBHZpHHenhefShDxc9OhU3cKidOmTaOiosJqAxYSEsLatWtJSEjg4MGD7NixA4PBwOzZs5kzZ45cwn7y5EkOHjz40n9PDhw4+MuSGu7F+uUjyP7FTG784zSyfzGT9ctHkBblx1tvvYWnpydbt27t0QfvVRAYGMjIkSM5d+5cv7p49ofhw4dTVlZGZWUliYmJ5Ofny0Hc50GpVOLt7S13jYPO8TcpKYnvfe97zJkzh+LiYv7whz9w69YtALZcKeR3DxQUdOjlALPItwHmrde+3Vd0dHRgNBqfW3jKz8+XgxgvAynbaciQIQQGBtq8PtBOic3tnSX7Q4YM4Z133uH73/8+iYmJ3Lhxg48++ogdO3bw5MkTeW6rra2VRScnJyeWL18ud+0tKiqitbWVqKgoDAaDPHeazWamTJnCs2fPEEXRKljj4NXgEJ4GSH8VW7NF5ER2BQZj/xddDx8+fKFsp67MnDkTrVbLgQMHXmrU0d/fn4iICK5evfrSjisIAsHBwdTX16NUKu0KT+Xl5ezatYs//OEPPHnyhBkzZvDjH/+Y8ePHWy2gpecmeYAsXLiQ0NBQvv76a6syvoFkPJWWluLi4sKQIUOAzsG+a1qqu7s7ISEhZGVl4e/vT3JyMoIgkJ+f36/7f/DgAfX19aSnp/f4ns8v5PfZ9FopCDzzGUZ8fLy88ZEMxiUsFgt79+7l6dOn8u9v0aJFVs9B6lSlVqvlzVhjYyM+Pj74+vpSVFTEiBEjOH/+vPwcfX19Wb16NWq1mry8PEJCQtizZ49VKrEDBw7+MuTm5uLs7IwgCBgMBlxdXWURp7W1lebmZtlMFbDKWILOxfGNGzdsfOoGDx5st9tcSEgIJSUlNlk9Li4uVsJDT1HV+vp6Hj16hJubG9OmTQM6x5zm5marcdvLy8vGsHyg9CTu28tQvd/hy7f2p/YREMm1BBIfH09raysbNmywOtaLzpNqtVpePEtRcRcXF+rq6rhx44Zc/v7//t//48SJE3Kk1+61/tkvw9nZuUd/q66iWUhICLGxsZw9e9YqiKHVapk7dy5vvvkmxcXF/PGPfyQvL4+UlBTeffdduQnHnTt32Lp1q10DewcOHPz3QqdW4uuqtfIV1el0LF++HCcnJzZv3vzSg929MXnyZDQajVVjiBdhyJAh6PV6bt++TXx8vFye9SL4+vpaCU8SSqWSlJQUfvCDHzBz5kwqKiqotLjwr8cfAdgEOqQA8//65oGc+TSQAHp3RFEkPz8fURRfmr9TdnY2z549s5vtBN92SuwP9jolent7M3PmTH76058ya9Ysnj17xubNm/nDH/7AhQsXZNFJFEXefvttq8BMdna2nOQAyNnEBoOBpKQkAgIC0Ol0XLt2zWbf5ODl4hCeBshAFdsmg23GiT2kbKewsDCrbJrnRafTMXfuXAoKCp4r0tobaWlplJWVyZlAL4OgoCDKysrw9fW12mgUFxezbds2PvvsM8rLy2W/orS0NLubmO7dlVQqFcuWLcPX15etW7fKmTxSXbOzs3Of11ZaWkpwcLBVCWB3YVDqqNfW1iZ7e/WnPlwURS5dusSQIUPs1kNDp9h5KrdKLvPoCbMIJ7IraWo1yBuVrtcsiiKHDh0iJycHlUqFKIqMHj1aFtQk6uvrMZvNuLm5WYl6dXV1JCcnk5uby5gxYxAEgTNnzsivu7u7s3r1atmrS6/Xs23bNnlydODAwatHFEVyc3PlbCedTkdBQQFeXl40NDTg4uKCyWSisLBQFiik7CYp20jys5s4caJVR9Br165ZLVIlkeLAgQO0trby9OlToHMhLGXgdBU4euqQJ4oiCoWClJQU+XxSVFJqdABw5swZWTx5XuxF5VUqFUqldZMGkyjw1OJhswGwuXYUPG7Xc+d+FoWFhTb3KAlv9srm+oNKpZJbaUvjuST4HzlyhF/96lccOnSItrY2goODcXZ2prGx0aa8WqvVyvNib+UE3RuHTJ06lYaGBjIzM23eGxsby7p16wgODmb79u0cPHgQPz8/PvjgA3x9fREEgdLSUjZs2PAXzYZw4MDBXw5nZ2dWrFiBQqGQfUP/Euh0Ol577TWys7Ot5onnRalUMmzYMO7du4darSY6OvqFy+16Ep4kVCoVo0aN4q233iLL5N9ngLlrNc1AAujdqayspKOjA61W+1KaQYiiyIULF4iKirIxTpeQOiV29wvrjlIhMCMuoMdOiRqNhtTUVNatW8eqVavw9PTk7NmzNDY20tHRwYwZMwgKCpLfb7FYyMnJIS4uTs6Ok9Y+kjfh9OnTaW5upr29/aX7GDuwxiE8DZAXVWx7Ii8vj/Ly8peS7SQxePBgUlNTOXXq1Etd9EVHR+Pt7c3Vq1df2jGDg4MxGAx4enpSUVFBQUEBX331FRs3bqS+vp4FCxbw/e9/365fUVekMoKuUWaplEyv17NlyxYaGhpobm5Gr9f3+awtFossPEkbKKVSaZOOGRcXJ9cQu7u7ExUVRWtra58ZPzk5OdTU1DB+/Pge3zNQsfP//ur/sWHDBgCuXr3KtWvXePz4MYcOHeL27dt4eXnR0dGBv78/06dPtzmG5FHi7e1tJTw9e/aMpKQkLBYL+fn5TJ48mdu3b8tdqqBz07Jy5UrCw8NpaGigo6OD7du399mS3YEDBy+HmpoaamtriY2NJT8/n5CQEHJychg9ejR5eXl4enqiUqmoqamRPfEUCgWCIFhlJ0VGRuLj4yOL2NAp2Ofm5mISBdpEFU2tneKQNDZK411sbOyArtnX15eEhAQuXLjAN998A3Rm+nSPnptMJkRRfOE5srsIZDKZbErCjCj7FPslRATMCrWNeCWh1+v75V3YHUEQ6OjooLW11arZSNfOO+3t7bi7uxMZGUlpaSkajQaj0WgVVHFxcaG9vR1BEPD09LR5fl3LDLv+P3R2Ahw+fDgXLlywmyXl4uLCsmXLeOONN7h//z6ffvopDQ0NrFq1iuHDh2M0GmltbeXzzz/nyZOB2Q84cODgvwdubm6sWLGC9vZ2tm7d2mNG5csmISGB8PBwjh49atdaYqAMHz6ctrY2cnNzZV/TF9k/+fr60tLS0qd3kEKt+3Ogo48Ac5dqGkl4ep6MJ8nfafDgwS9lz5mTk0N1dXWP2U4Sa9Ij+1Ux9N6Y0D7PKQgCPj4+1NXVyesUtVrN0aNH2bJlC3l5eVgsFp4+fUpLS4vs7yQIgiw8SdlNkZGRREVFodFouHLlykv5W3JgH4fwNED6rdgK9KrYdkXKdgoPD38p2U5dmT59Oi4uLuzfv/+FosRdEQSB0aNHk5OTY+Mn8bxICnlbWxsVFRVs2bKF9vZ2li5dyrp160hKSuqxK0/3awNs7tXZ2Znly5cjCAJbt26lrq6uX4N1TU0NHR0dDBo0SB6ggoKCKCoqkqP70BlxCAsLk9NypXKR3lKApWyniIgIOaJtD1edqs9yDwmFAAvemCV3mqqqquLkyZP86U9/kmvIJd+Q4OBg7t+/T3FxsdWkKAlPXTedkvG7i4sL0dHR3L17l9TUVPz8/Dh27JiV0KdWq3nzzTdJSkrCYDBQUVHBN998863Pi9FMdVP7gMpQHThw0D9ycnLQaDQEBARQWlqK2WxGq9Xi7u5Oa2srHR0dWCwWkpOT5ewWpVJpM2ZK4nFZWZk89lZaXDhnirbq7vZNjS/VYmfEVa/Xo1AouHnzpl0Poe5MmTKFMWPG0NTUxL1797BYLPKGRRKr7S2K7ZWvSd03+0Ndnf3GH5K3FYAac7/HXQERF62KKVOm2M3EbWlpea4sAEkMrKmpYfHixfKz6Opp4ufnR0NDA8XFxbi7u9PQ0IC7u7v8HldXV3mDMmzYMOrq6myen73Ohl2ZNGkSRqORjIyMHq9zxIgRfPe738XJyYmNGzdy4cIFXn/9dd544w1ZdNuyZYs8Dzlw4OCvCy8vL1asWEF9fT3btm17LrF9oAiCwKxZs6ivr+9xfBoIPj4+hIaGcvv2bYYMGYJGo3mhrCeps11vWU8wsECHVE3T3NyMUqm0Cg71l0ePOkv6Xoa/k5TtFBkZSUhISK/vHRHqwXSPZ4Bok8Sh+PN8O07zlHtnvulzf9m1M3dHRwcjRozgZz/7GQsWLKC9vZ3t27fz+9//ntOnT+Pi4iJburi5uclrn64C6fTp02lvb6e5uZk7d+4M9DE46CcO4ek5WJMeiaUvxVYUmTW474U3dJZkVVRUMHHixJdxeVZoNBrmz59PcXGxVavIF938Dxs2DK1W22dHif6cR8qgUSqVsgn466+/zvvvv8/QoUMHpMbby3iSkCIybW1tPHz4sN9ldtApNklRj/j4ePz8/Lh48aLVexMSEigoKKClpQU/Pz+cnJx48uRJjxNOfn4+5eXlvWY7AagVEKZs6DPTTkBkQqQHo1OHM336dNRqNWPHjmXmzJkAVumvvr6+PH78mP3797Nx40b+4z/+g1/96ld88cUX8sZAGoChM6IiCVbJyclyFGjmzJkUFxfbTMxKpZK5c+cybtw4LBYL2dnZrN9zkrVbM4n752OM/LdTxP3zsR47dThw4OD5yMvLIyoqShbGS0pKSE1N5eHDh7i7u1NVVYVCoWDatGmyACOKos2Y2draSmZmJhqNBm9vb7m7W6HJ1aq7W5HZnUPtQ8gz+9Lc3Cx3nJMyZ3obv8+cOcOVK1dQKpU2JV4S/fVIslgsPRpZ97QwVygUDBs2TBabRFGUI50qQSRUUY9A7wEbAQuhijqMhlaOHz/eZ3Zn92vpKpZ1F84kMdBoNLJlyxarZzF06FCgM1Dg6uqK0WjEYDDg7OwsZ4olJibKopJWq+XBgwdWvhfQOW915caNGzx8+NDqXK6urowZM4arV6/2auTr5eXF6tWrmThxIhcvXmTjxo2EhYXx7rvvolarUalUHDx4kBMnTry0QJgDBw7+6+Dn58fy5cuprKxk586df5HMEV9fX8aOHcvFixd7bMgwEIYPHy6v5ePi4rh///5ze/V5eXkhCEKfwpOXq9OAAsyuOhXNzc24uroOOGPJZDJRXFwM8FL8nfLy8qisrOzXHvbGjRsMMjxhoWsh6eGu8j0LiIQo6vh8aSz/sXYeLS0tfPrpp7JA1h2DwcDWrVtpamrCZDIRGRnJ66+/jlqtJikpiTVr1rBmzRrCw8MpKSmhpaWFAwcOUFFRgbt7ZzMQrVZr5efk5+fH8OHDUSqVXLp0yTFHvSIcwtNzMDLci3+Zn4AANplP0iJ1bmAr907v67P726vMdpIIDQ1l7NixnD17luO3Hr+Uzb9Go2HEiBHcvn3brhHbjcLaPs9jNpu5ffs2f/jDH9izZw9OTk74+PjY7ajUX3rKeJLw9vZm+fLldHR0UFlZ2eekWFJSgp+fH1qt1mqgTk9P5/Hjx1ZlZtJGQDK/jY6ORqFQcPr0abvHvnjxIsHBwX3+3svLy4lTVmDpY+ITAZfS67Lxu3TNhw8fZujQoZSXl6NQKEhOTmbdunX85Cc/4R/+4R9Yu3YtixcvJi0tDS8vL9mT6ebNm2zatAmAhoYGcnNzOXr0KI2NjbLoGB4eztChQzl16pRNdEvqivTaa6+Ra/Ll3292cDK7Ui4btIj2O3U4cODg+ZAylGJjY3n8+LHs55Samkpubi5eXl6IokhaWhp6vV4WKOyVAZSVlXHr1i3c3d15UNnWS3c3ARC4bAyl0tKZRerk5CQL9f1ZsLe1tSEIQo/iU2907cTXtUys67jak1moVqslOzu7x3kgXlXZZxRaRCBeVdXv6+16LV0zrIBes3rLy8vRarXye7p6CDY1NeHp6Ul7e7ssNKWnp8ulBlFRUXKpXUNDg9V5umfbmkwmvv76a/7whz+QmZkpj+tjx45FrVZz/vz5Xu9PoVAwceJEvvOd72AwGPj000+pqKjg/fffx9/fH0EQuHLlCjt37vyLZEQ4cODgL0twcDDLli2jsLCQvXv3/kU28OPHj8fFxYWjR4++cEOHuLg4NBoNt2/fJjExkdraWqu1/kBQqVR4eXn1KTy5OusIVdT3GWDu6n/U3Nz8XGV2JSUlmM1mPDw8rMq2n4eue9jQ0N7L45qamuT90JLJI/iX18JYrr3FiXUp/M+YWqY7FVGZdYWgoCDWrl1LSEgI27Zt48yZM1Z/Q+3t7fzpT3+irq4OlUqFh4cHixcvtgncBAcHM3z4cABSUlIoKCjg8ePH1NTUcP/+fTQajU1J6OTJk+V58sGDB44KjVeAQ3h6TpaPDmPX2jFMH+ovDxQKAaJ0bayLauW331vE0KFD2bVrV6/m3rm5uVRWVsqG1K+KyZMnU6QJZe2uXE7lVL2Uzf+oUaPo6OiwSUnccrWIpZ9e6fE8X10u4Pr16/znf/4nBw4cwMfHhzVr1pCenk5dXZ1sTv089JbxJCF1L2htbWX37t29ToqSvxMgd9vz8PAgPj4eLy8vq6wnvV5PRESEXG4XGRmJxWIhLy/PqiwPkEv1xo8f36fAVlRUxCBtO2NUT+nc5lhfb2fEQGSM6iljo/05fvw427dvBzo7OQwdOpSSkhKUSiWenp68/vrr8melkpz4+HgmTJjA3Llz5Wf3ne98h3fffReFQiFH1PPz8zlx4oRswPdv//ZvVFdX09zczNatW7l37x6lpaVWg7kyYAhXTGGAYONVZa9ThwMHDp6P3NxcFAoFUVFRPH78mI6ODhISEnj27JnsOadQKOT5RhKZOzo6ZAFEWrxVVFTQ2tpKVVUVz3yH9VkEICCSZfIDGHAXM6kLqdFolIUkpVLZq5+fxJgxY4DOMb+rgCZlz0rYK4Fra2tDoVCQkJDAggULbMZif0VzL+OuBWnc9Vc8X8ttURRthKieUCqVzJs3Dw8PD/mzXbsRdi0fDAsL486dO5hMJoKDg4mIiAC+LV+U5jxfX18bH0KprN3NzY0jR47w29/+Vg4sTJgwgdu3b/e5iYLORf/atWtJTk7myJEjHDx4kIULF8obgUePHrFx48aX1grdgQMH/3WIiIhgyZIl5ObmcvDgwZfaXdseGo2GmTNn8vjx43419unrWAkJCdy5c4fQ0FBcXFy4d+/ecx/Pz89PbmzUE4IgMEz3rE8/V4tFZE1653j+vMJTQUEBgiDYNBZ6Hh49etTvih3JlkOn0zFixAgsFgsqQcTHRcu4tFGYzWby8/N59OgRTk5OvPXWW0yZMoVLly6xdetWuaRu27ZtVFdX4+bmhsVi4e233+6xtD87OxtXV1dmz57Nj370I5ydnVGr1ezdu5eWlhby8/OtGiC5uroyduxYKi0u/HRfrqNC4xXgEJ5egNRwL9YvH0H2L2Zy4x+nkf2Lmfz7nCgMJdnU19ezcOFCRo8ezZEjRzh37pzNwCuKIufOnSMiIoKwsLBXeq23Sxo5WecNCDbGbs+7+XdzcyM+Pp5r167JC9kbhbX87/0PEP98XHvn+eeD2Xx1+CIhISF897vfZdmyZQQHBxMcHIzZbMbd3V0WeQZKXxlP0msGg4ERI0bw6NGjHifFjo4OqqqqZOGpqqpKjlArFArS09PJzc2VPZGgs2yhsLCQpqYm+Xfq4eHByZMnrc5x8eJF/Pz8+jXwSxuoWFU13wlrJErXJoudAiKhijp+nqImVlVNfn4+06dP5+nTpzQ3N+Ps7ExLSwttbW1YLBaWLFkit+S2R21trfzsAgMDCQsLw9nZmcDAQMxmM2vWrOGf/umfePPNN4HOUo7Q0FDc3NwoLi5m3759bNiwgX//93/n17/+NV9++SX/svNyn1Gcrp06HDhw8Hzk5eURERFBQ0ODvEhLS0sjKysLJycnWltbCQsLk8UlKTumawaMn1+neCRlo8yeO58bZe39yPxR8NTiiUm0fZ9arbYpbZZKziZPnkxKSopc1rt69Wo0Gg0TJkyQs0jtYW+s7z6OdxWbeiqBCw0NZeHChQQHB9sVfmJV1czS5P257O7bsoBQRT2zNHnEquyLMIGBgT1ee0/YywCSSuPMZjM7d+6UBSd7CILA8OHDKSoqoqWlBb1ez8yZMzl79iwxMTE27x83bpxNd9oJEybg4+NDS0sLH374IcnJyWRmZvLRRx9RXFyMi4tLj1m83dFoNMyePZu3336biooKPv/8c6KionjjjTeATg/FTz/99LmzCRw4cPBfl5iYGBYsWMCdO3dsvEBf1fmGDBnCsWPHXjibMiUlhcbGRgoLC0lISCArK+u5M7d8fHys9gk9Ea43szJOY7eaRqkQEIB/mZ9AargX0Bk4eh7hSSqlftEyOynbKTQ0tM897KNHj8jOzpa7aWs0GvnvQaFQMGTIENzc3HBxceHEiROYzWYEQWD8+PGsWLGCqqoq1q9fz6ZNmygvLycoKIja2lqWLVsmB2PsXV9OTo6VZYvBYGDcuHF8+OGHODs7U1FRwe9+9zt2795NUVERoihSqA7lSEcM+QYnR4XGK8AhPL0EdGolvq5adGolSUlJuLi4cPnyZQRB4LXXXmPKlCmcP3+eI0eOWA1cOTk5VFVVvfJsJ4ANlwr6NER/ns1/WloadXV1PHz4UD6Poq/zAG3hY1m0aBH+/v7yzwMCAlAoFKjVaioqKp5rkJcGl94muNbWVkRRJDIykvnz53Pnzh1OnDhh85ny8nJEUWTQoEFyW/CuG5mkpCTc3Ny4dOmS/LPY2FgUCgXZ2dl4eHjg4eFBQEAAJSUlchSmrKyM/Pz8fmU7WSwWuUV3REQEmoZi/mG8D9m/mMnbzvdZ6XSH96LNaJtKmTBhAhaLhXPnzsmDttTi3GQy8dprr1k9b3tIk6Orq6u8udHpdPL/P3v2DIVCQWxsLP7+/hgMBubMmcOHH36Im5sb0dHRvP/++yxcuJDU1FScXNy4X0efUZyunTocOHAwcFpbWyksLCQ2NpZHjx4hCAJhYWH4+/uTk5MjCy9dPX2kSJ9er5fH267moMOHDycsKrbfXTVFBIzYiiJSZ7OuSJk+Z8+e5c6dOygUCiwWC5s2bUIURZumBzbn+vN43XX8tXfe7nQXwB49esSJEydYv359j3OOv6KZKZoClmtvsUx7h+XaW0zRFDBIa7+ED+gxa9fLy6vHz9ijeyS3rq5O9rIym82dvlSiQLugwWiBp0+fIggCoigSFBTEiRMncHV1tbkeabEvZS9Jc5Fer2fBggVUV1dz9+5dXnvtNX7yk58wY8YMysvLaWpqIi8vj/Pnz/d7jo6OjmbdunWEhYWxc+dOSkpK5Ci1wWBg48aNfdoSOHDg4L8fiYmJzJ49m+vXr3Pu3LlXei5BEJg5cyatra19lgT3RVBQEH5+fty6dYukpCRaWlrkTnADxde30/+wr0xgjUZDur8oV9NIgQ6FANOH+rNr7RiWj/5W4HmejKf29nYqKysRBOGF7V3y8/MpKytj4sSJve5ljEYjR44cwcPDA4VCwahRo4Bv53BBEFAoFKSmptLW1kZNTQ03b96UPx8REcGaNWswmUyUl5fj7e3NkydPWLBgQa+NmUpKSmhqaiI+Ph5A9qB0d3fH19eXwMBAIiMjmTFjBhUVFWzatIn/+dGX/OJwLvZsBRwVGi8Hh/D0klGpVIwePZq7d+/S3NwsK7Zz5szh5s2b7NmzR24Jff78eSIjI/usi31RDEYzJ7Mr+9XCcqCb/+DgYEJCQrh69Wq/z2NB4NyjWpvzqFQqAgIC6OjowGQyPVcLUyly39uCWIqsu7q6kpiYyKxZs7h69aqNWXhJSQlqtRpfX1+5DXTXTYtSqWTcuHE8ePBANjR0cnJi8ODBcrldeHg4dXV1DB48mNOnT2M2m7l06RJeXl7ExcX1eT/5+fmYTCYUCgUpKSkYDAbi4+PRqZX4uepQiGbi4uIoLi4mOjqa0NBQjEYjZrPZaoPj5OREdHR0n+erqqpCpVLJrUahc+MjTSpdfyfJycnk5eXR2tqKRqNh2rRpPHr0CIPBQGJiIpMmTWLqzDcG3KnDgQMHA+fRo0eIokhMTIwcWRw7diyFhYVWC16p7Aq+7egiiT4qlYrHjx/Lr4eHh+OqU/WZsSghIKLGLHfykeir647FYkEQBJydnTEajRiNRh4/fkx+fn7/TtwD3UUmHx8fu2LW1atX+2WCqxJEnAQTKqFzjusqbPXHl1ChUAxYeOpaCtf9+JUWF850DGZrewrb2pLY2p7CrnIPKsx6xowZQ15eHsXFxcTGxtLY2GhlROvu7m4lRklzp1R+PWnSJDIyMiguLkar1TJ69Gi+//3vs3TpUjQaDefOneOjjz7i8uXL/Wqd7uzszNKlS5k3bx7Z2dkcOnSI2bNnExgYiMViYdeuXVy8ePGVZ0U4cODgL0tqaipTp07lwoULVk2OXgWenp6MHz+eq1ev9ivLqCek7NG8vDxcXV3x8fF57u520nzYV7mdRqOhvb1drqZ53yOHT6a5kv2LmaxfPkLOdILOObO1tXXAwpNUQREUFNRr9UNfSHvYQYMGWa0p7HHhwgUaGxtpa2sjJSVFnpe7Ck/QmWUmXdu5c+fkdYvZbOb48eN0dHQQFBRERUUFvr6+REZG9nrerKwsXFxc5GCa5GkpZRFrtVqMRiOjR4/me9/7HsuXL+eOwavPhiKOCo0XwyE8vQJSU1NRKpVWHd9SUlJYunQpeXl5bNu2jbt37/7Fsp2aDKZ+R6yfZ/OflpZGUVER+U9LX/g8QUFBcgvN5/F56k/GkxTllwbskSNHMmnSJM6ePWvlx1VaWkpQUBAKhYKioiKcnJxszG+HDx+Os7OzVdQ9ISGB4uJiGhoaCAsLo7KykvT0dJ49e8aFCxfIyclh3LhxvRrJSvdw8OBBAGbMmEF+fj7e3t5yKYyUXurs7IyHhweXL1+msbFRjnY/e/ZMNtxVqVR8+umnfda+V1VVoVQqrVJXdTodJpPJqrMddEayAB48eCDfd2hoKMeOHZMj8i5aZT9lp287dThw4GDg5ObmMmjQIDQaDRUVFej1eqKjo+UxLTg4GHd3d/m7LaWVazQaqwVeV8+dyspKtCoFyT6Kfnd3UwmiLFBLY9zixYtJT08Hvs3gGT16tDxeC4KA2WyWI5Ivi+4iU18L/+dFqVTKAaXeGDx4sBzEeB4EQZCfn9Rl8KnF3arL4FOLO0c6Ysg1+crPX1qLtLW1yddYV1dHVlaW/DuQ/KKkz4wbN47g4GD27dsnl60oFAqGDh3K0qVLgc7srdOnT/Ob3/yGo0eP9tlRShAEkpOT+e53v4urqys7d+4kLCyMpKQkoLPL4TfffPMX6YTlwIGDvxzp6emMGzeOEydOyJ2TXxVjx47F09OTw4cPv5CQnZSUhCAI3L9/n8TERHJycp6rhM/b27tfne0kIURCJYi4axXo1LZZxC0tLYiiOGDhSQrmvKi/05MnTygpKekz26m6uprLly8TERGB0WiUPRnBVnjS6/XEx8fT0tKC2WzmwoULWCwW9u3bx8OHD5k0aRIVFRVERETQ2NjIZ5991qMti70yu+7Ck06nkzOvBUEgODScnEa1TaZTdxwVGi+GQ3h6Beh0OlJSUqw6wkBnGdby5cspLS3l8OHDhIeHW5U1vCoGErF+ns1/bGxsZ+ejOzdf+DyDBg2itrbWJhrbX/pjLi5lPHUdsCdMmCD7cUlCimQsLooiT548wdnZ2SZyr1arGTNmDHfv3pUHtZiYGJRKJVlZWXIqq8FgICkpicuXL+Pq6sqwYcP6vJfr16/T1NSEWq1mxIgR5ObmEhcXJw+inp6eKBQKqqqqSElJkctpFi5cKN+/KIosXryYdevWER4ezo4dOzh8+HCPC/uqqirMZjOenp7yz7RaLQaDAS8vL6uMJ71ez5AhQ2RzeSnNubq6mszMTHJzc/n4o98Sqqjrc9PatVOHAwcOBoaUIRQbGyuPX6NGjcJisfDw4UOcnZ1pbW0lIiJCHj/Onj0LdH6/pXlKFEU5LR2guLiYTZs2EdCQPaDubpJ4JC3wdu/eLZ9DGkO7eguJooiTkxPe3t6oVKoePYx643k+87KQhPa+ePTokd33urq6AvRppi75E1ZaXHrpMqgABH5zsZQmrS9Dhw7FYrGg0Wjkc2u1WgYNGsS9e/esxL/uHfbmz59Pc3MzJ0+etDrH4MGDiYyMpLm5mR/96EeMGTOGBw8e8J//+Z9s376dJ0+e9DoHe3p68u677zJ16lSuXr1KZWUlEyZMQBAE7t27x6ZNm3ots3TgwMF/P6ZOnUpqaiqHDh2SqwJeBSqVilmzZvH06dMXMgV3dnYmNjaWW7dukZCQgNFoJC8vb8DHUavVeHp69ik8SRlP/aFr5cZAePToEcAL+TtJ2U5BQUG9HkcURQ4fPoy7uztVVVUkJibKawLpdbDO5B05ciQNDQ3ExsZy/fp1du3aRXZ2NjNmzODy5cuEhYXxzjvvsHbtWrRaLV988QW3b9+2OXdpaSmNjY1WlSUNDQ1otVo5eCPtbSRedZKGg04cwtMrIi0tjY6ODhtlPzw8nPHjx2MymaitrbXqRPOq0KmVTI/z79PjSUAkbZAzWtXA/iykmt2H2Q+YHO09oHag3ZGMvJ/XYLw/5uJNTU04OztbbVQkP65hw4axb98+7t27R2Njo+zv1NjYiEajsds5ITU1FY1Gw+XLl4HOwSw6OpqsrCzZ56mwsJCUlBRMJhP+/v59bpLq6uo4fvw40FnS9uTJEwwGg9UgKpVNlJeXy5NhTEwMN2/etPKiunHjBjqdjqVLlzJr1ixu377Nhg0bbCZBo9FIbW0tJpPJSniSfDi8vb1tItrDhg2jvLxcLgcJDAxk6NChHD9+nB07dtDW1tavluRdO3U4cOBgYEgludJiTRAExowZw+nTp7FYLIwbN47q6mo5Jf7p06cUFXUaZHYVQpydna26wRUXF/P06VNivdVM96ylr+5uQWprDwtpfmtvb5d9nEwmE1qtltLSUubMmQN0zottbW08e/YMk8nUbyGnK13LyHqi6+s9dcHp7TOvCikLt6eAQHej8izTt/4fPSEgcq1BT05ODtBpXC4t9JOSkli4cCEmk0meK6VSy654e3szffp0MjMzrUowAaZNm0ZNTQ2PHz9m8uTJ/PjHP2bOnDnU1tayefNmPv30U7mznj2kBh2Sd0dGRgYjR45Ep9NRVlbG+vXr+9U9z4EDB/89EASBWbNmkZCQwN69e2UR5FUQGRlJQkICJ06cGHCX1a4MHz6cmpoaWlpaCAkJeaFyu/4IT90zqnoS8O0F0PuiqamJ+vp61Gr1czW/kJC6cveV7XT37l2KioqIjY2lqamJcePGWb1uT3gKDg4mMDCQ5uZmVCoVubm5zJ49m2vXruHi4sLSpUvlDt3f+c53SEpK4sCBA+zfv98qWyw7Oxu9Xm9lZdPQ0GAlfHXNeIJXn6ThoBOH8PSKcHd3JyEhgatXr1otoi0WC3fv3iUsLAyVSsXGjRtt2hm/CtakR2LpQ8oVAY/KW+zYsWPALY5TUlJQqVQMNhVh6SO11WyxsCrNfqaXt7c3Wq0WpVJJRUXFgNNk+5vxZG+wFgSBuXPnEh0dzYEDB4DOQfDJkydyCYI9rxLJ/+LWrVvyZJCQkEBZWRm1tbWEhYVRWFjI/fv3UalUFBUVye+zhyiK7N69W76H2NhYsrOz8fLysjIHd3V1xWw2U1hYSFVVFfHx8dy7d4/CwkJUKpV8rTk5ORw7dgzojCa8//77mM1mPv/8c27duiWfp+uk2L3UrmvGU9dnGx0djbOzM3fu3KGtrY1t27aRk5ODKIqo1WpEUWRKYliPLcmVAjadOhw4cDAwcnNz8fX1xdnZmaqqKgICAjCZTNy4cQO1Wo2bmxvwrb/TuXPn5O9418wSURRpaGiwKgMODAzEaDQyqO1Jn93dehOMOjo6sFgstLS00N7ejl6vlxeXXcWu/hIaGkpaWpr874aGBrsZQ13Hsq5jV398ibp/pjt9eWT0V7Tq631dx2aTKPDU4tFnOUDXLoPdn0t9fT137961+pnFYrEKWEikpqYSGRnJgQMHrDZwgYGBJCYmcu7cOYxGI2q1mpSUFNatW8eKFStwc3Nj//79/O53v+PcuXNyB8XuBAYG8sEHH5Camsr169fx8/PDx8eHpqYmPvvssxf2+XLgwMF/HQRBYN68eURFRbFz5045APIqmDFjBiaTiTNnzjz3MSIjI3F3d+fWrVskJiby+PHjHsey3nge4am3eUHaQ+j1+n5fg1TmHRER0afVR2+cP3+egICAXn1jW1tbOXHiBAkJCTx8+JDY2Fgb70cp6NH1PgVBYOTIkRQUFMjP4tq1a7S3t8sNKSRUKhVz5sxh3rx5PHjwgC+++ELeo2RnZzN06FCr+2xsbLQSnqSMJ2mON7Q0EaVr7TOo46jQeDEcwtMrZOzYsTQ0NFillGZlZVFTU8P06dN57733cHFx4csvv3ylgy/AyHAv/mV+gt02nVLE+u+nRvCDZbMoLS3lk08+4caNG/0WfnQ6HYMGDcJYlsvSiM78lu5fXum043Wl5F06YrdWWhAEgoKCMBqNGAwG2e+pv/Qn46m3ThAKhYLFixfLg7nUKUrafPVkkjt69GgUCgVXr14FOgUZtVotl9tVVlZy+/ZtxowZg1Kp7LXjxrVr1ygrK0On06FQKAgKCrIps4NvU2xNJhMLFy4kKChI9mJSKBSyh4pareb69etkZGQA4O/vz/vvv09CQgIHDx5k7969GAwGKyPG7qV27e3teHt7097ebjXpKpVKEhMTyczM5D/+4z949OgRXl5e6PV6jEYj48aN48mTJyTo6ljkVkS0rs1q0xrvYbHp1OHAgYP+I5XTxcbGyl5zo0eP5syZM5hMJjlj0sfHB1dXVwoLC3ny5ImcXQrfZv+0t7ej1Wqtxs/y8nL5O99Tdzd/xbdCuiRy9JXV2dLSwtmzZ/s9x3RvmSyJ+BJKpdJuFzupBFqiu+H486LRaOwKNV2xd2+SCNjX+7oumLtmDRlR9rthg9RlUJoHJIqKirhw4YLVeyXRsPu8LG0UOzo6OHr0qNVrkydPpqWlRZ73pPdHRkby9ttv873vfY+hQ4dy+fJlfvvb37J//367gTa1Ws3MmTNZvnw5dXV1NDU1ERoaislkYuvWrVZ+mQ4cOPjvjVKpZMmSJQwaNIivv/76uWw1+oOrqyuTJ08mMzOT0tLS5zqGZDKelZVFVFQUgiA8V5mgr68vjY2NvZbSDaTUzl7lRl9IGWYv4u9UVFREYWFhn9lOp06dwmKxEBkZybNnz2yyneDbea/rXCeKojxHhIeH4+zsTHV1NUuXLrXal3QlOTmZNWvWYDQa+fzzz8nIyKChocGmgZO9jCdRFDEajTx9+pTPP/+cZKdaR4XGK8YhPL1C/P39iYqK4vLly4iiiMVi4cKFC0RHRxMcHIyLiwvvvvsugYGBbN269blqhwfC8tFhcptOSQQSEBnqauQN7UOE/EvExMTwve99j4SEBI4cOcKXX37Zr3T3u3fvyq1G3xwRxKYVSX/29pHOA5HqJnatTePfVs+ivLycrVu32h1kg4OD5RKNgU5I/TUX760uWqVS4eHhgU6nY+vWrRQUFBAWFobBYOhReHJycmLkyJHcuHGDtrY2NBoNQ4YMsfJ5UigUjB07lvT0dG7evGnX6La2tlb20wgICCA4OJji4mK5m52EKIpWteutra2cPXsWrVZLc3Mz8+bNw8PDA1EU0el0uLq6cvr0aTnKrdFomDt3LosWLeLRo0d8+umnFBQU4OTkhFqttoqidM14kq5Ruobbt29z69YtTCYTarWaSZMm0d7ejlKpxN3dnczMTLmcw934jF/MCOH7/gX8U1wzy7W3SCeHEWH2JxMHDhz0TVFREW1tbQwZMoRbt24hCAJeXl5yO+Lk5GQKCwuJiIhAFEXOnj2Lj4+P3GggKChIHi8tFovdgID0uiRQde/u1hWTyYRKpepX9zZRFHvNkuoqlnQvjSsoKJBFJZVKxf/4H//Drt9E97mgtbXVpklET/S00IVOgeZ5It/9zSbuKXiixtxnRFZCQMRZrZA7BULnHGk0GlEoFDablsbGRn75y1/y+eefc+zYMbKzs2lqasLNzY1Zs2Zx//59q02Xp6cnI0eOJCMjw64nk4+PD7Nnz+YnP/kJkyZNIj8/n/Xr17N582YePnxo87sZPHgw69atY/DgwTx9+lQuBzl27BgHDx58qcbzDhw4+P8OlUrFsmXL8PHxYevWra+srHbUqFH4+/tz+PDh5x4/kpOTMRqNPHnyhKioqOcqt5OyfXq7z65+i33RWwDdHqIoytmjL+LvdOHCBfz9/YmJienxPUVFRdy+fZupU6eSmZlJeHg4gwYNsntNYJ3xdP78ea5du0Z4eDglJSXyvNJXl3N/f38++OADuYO4SqWyOWd9fb1NxhPArVu32Lx5M76+vvyf763gX3tJ0nBUaLw4DuHpFTN27FgqKyspKCjgwYMH1NTUMHHiRPl1rVbLO++8Q3R0NDt27LBrkvYykdp0Zv9iJv8U18w/xzWw/fvTCNIYqKioICMjA51Ox5w5c3j33XdpbW1l/fr1nDt3rkevhrt37/LNN98wfPhwYmJiuHbtGq6GaqZoCrj59xO48Y/TOPF+POMVefjSREhICCtWrKCqqsqu+BQcHExLSwvOzs4D9nmSlPPnzXiSPltRUcGoUaNQq9W0tLTg7+9Pe3t7r74gaWlpWCwWOTobHx9PZWWl7N/h5+eHTqdj9OjRuLm52aT/WiwW9uzZgyiKJCYmUl1dTWhoqN0yu7Nnz8reHYIgcPLkSdzd3eVJS6lUyoPqvHnzaGlpwcfHhwMHDlh5dSQkJLB27Vr0ej33799HFEU8PDxsvFAsFov8zJ49e8bTp0/5/e9/z4EDB+TXPD09uXDhAr6+vnzwwQcEBQXR3t6OyWQiNDQUQRBISkrCaGgl1M8DlSDS1tZGWVlZj8/UgQMHvZObm4ubmxt1dXUYDAYCAwM5efIkWq0Wd3d3nJ2dqa2tJSIigoKCAp4+fUp9fb08VsbExPSri5iLi4vcUbOvKKvZbB7wRsLZ2RmdTodSqZQX6V0zmOzNBVLpl1RWKAU/uiOJ/90/B9ik/3flL+HBOFBUgvjncse+uwyGKxsIDQ60+n1NmjSJiIgIzGazjeinUqkYNmwYLi4u5OXlsWvXLn7zm9/w+9//nvz8fAIDAzl48KCVeDZhwgREUbTJoOqKk5MT6enp/OhHP2LRokV0dHTw9ddf8/HHH3P9+nWrzZaTkxOLFi1i4cKF1NbW4uzsjEql4tatW2zatKnfGQEOHDj4r420/3FxcWHLli0DrnDoDwqFgtmzZ1NeXi4HYwaKu7s7UVFR3L59m8TEREpKSvrs4NkdHx8foHfhaSAeTy0tLQMSnmpra2lra8PV1dUme7i/FBcXU1BQIDeCsIfZbObw4cMEBwfj7e1NWVmZ3WwnsBWeLl68yPnz55k6dSpDhgyRfSsTExM5c+ZMn2O/Vqtl0aJFODk5YTKZ2LJlizxXtbe3YzAYrIQnqVT++PHjJCUlsWLFCpydne0maSgEiFQ38+NE0VGh8YI4hKdXTHh4OIGBgWRkZHDhwgWGDBliVeIAnYu9xYsXk5KSwoEDB7h06dILtQDtDzq1kgAPZzraWnBzc+ONN94AOgUNqeQqLCyM7373u4wbN46LFy/y2WefUVxcbHWce/fuyaLTnDlzSEtLo7q6mnv37hEcHIyXuyu+rlqiIsLw8PCQIwWDBg1ixYoVVFdXs3XrViu/Den5uLm5vfSMJ1EU+xSeqqur6ejoICIighEjRgBw6dIluQylJ1xcXEhJSZHrkaOjo9FoNJw+fRpBEOTNnUqlYvLkyeTk5Fg9T6nETqPRMGrUKFpaWggNDbUps7t69SoXL15k6tSpKBQKFIrOiLbJZCIwMBA/Pz+uXbsmD6re3t7Mnj2bmpoafH192blzp1XasaenJ++99x4ajQaDwUBLS4uVB5UktlksFlxdXTl37hxffvkl9fX1DB06lB//+Md4eHhQWVnJsGHDWL58OUVFReTk5KDRaBBFkaamJmJiYnBycqK9vR0vLy+5i9KrNJh04OCvGVEUyc3NJSYmhitXriAIAh4eHhQXF2OxWEhISJD9k8LCwjh27BiCIBAQECCLDtnZ2VYCRE8LypkzZ1JVVdWrp4RURvY881draysGgwGz2Wwj+Li7u1ul4wuCgFKplM8TGBjImTNnejxvQ0NDj2LZf0VxqS/607BBRGCYUy1FRUXyvSuVSkaMGMFbb71l9TyljYjJZOLOnTs8fPiQlpYWgoKCiIqKwtPTk/LycioqKmhvb+ejjz5i27ZtXLx4kerqatLS0rhx40afz1KpVJKQkMCaNWtYvXo1AQEBHDt2jN/+9recPHlSzmATBIHExETWrVuHn58fJpMJnU5HcXExn3zyySvZoDpw4OAvj5OTE8uXL0elUrF582Y5UPsyCQkJYfjw4Zw+fbpXf9XeGD58OCUlJXh6eqLRaAac9aRWq/Hw8OiX8GQvE6g7TU1NAxKepKBMb75MfSEFlocOHdrje65cuUJNTQ1vvPEGGRkZBAQE9Jhh1fU+r169ypkzZ5g4cSIhISGcPn0aV1dX6uvrmTJlCu3t7bKVQG9UVFTQ1tbGzJkzaWhokKs5JAFKEp7a29s5d+4c0GlNMGfOHKs1QtckjRv/OI3sX8zkFzNCaCq480r+Rv+WcAhPrxhBEGSfm2fPnlllO3VFUuUnTpzI6dOnOXHixCsXn1xcXORSgcTERLnud+/evfJGRKVSMWXKFD744AM0Gg0bN27kyJEjtLe3c//+fb755huSk5OZM2cOgiAQFhZGQEAAxcXFVoONIAgkJCSQnZ0tCzDBwcGsXLmSmpoatmzZIotPrq6uuLm5oVKpnjvjqadnJ2Xg9FZqV1paKntNVVZW4ufnJz+nviL948aNo6Ojg8zMTFQqFdHR0Tx9+pSIiAiqqqrkSHtiYiL+/v6cOnUKURSpqanh1KlTALz++utUVlYiCAJms9mqzO7OnTscP36ccePGkZ6ejkqlwmw2o1QqMRgMLF68mLS0NB4+fCg/z/b2dlJSUkhJSaG6uhpPT0+2bdtmFbExGo10dHTg5ORER0cH69evl9NyJeHpyJEjNDU10djYSEBAAN///vd5/fXX2bFjB2VlZQiCgJ+fH3V1dezfv5/Q0FA5evPs2TOGDx8uX5Ner8fT0xN3d3eH8OTAwXNSXl5OY2MjXl5elJeXI4oiBQUFhIeH09HRQVxcHE+ePCEwMJBr165RU1NDYGAgsbGxclZo9xT27tmiCoUCHx8foqKiMBgMBAQE9JhROtCmFBLdF9hdM7C0Wi0NDQ1W5xRF0SpyWV5ebpO90zWqW1dXZ/N6WFiYzbleBl3nCHuRZXsG6APFX9HcY8OGrl0GfcROIUcah1UqFTt27KC0tBSLxSJfq1TOIGXILVmyhIkTJ+Lp6cmzZ88oKCigurpaLqGWsoIvXrzIpk2b5A3Btm3byM3N7VcJYkhICEuWLOGHP/whw4cP5+bNm3z00Ufs3r2bkpIS+XpWrlzJ9OnTZY/FpqYmPvnkk1fui+nAgYO/DK6urqxYsUL2dHuRLnQ9MW3aNBQKhbzO7gmD0Ux1UzsGo/V8ERMTg7OzMw8ePGDo0KFyhcBA8PX1tWuxIaHVamXPob4YaKmdZOXyvMJTaWkpjx8/7jXbqa6ujvPnzzN69GgsFgsFBQWMGzeux/dLz+/mzZvyviYhIYEdO3YQEhLC7NmzqaiooKmpiTFjxnDlypU+gw7Z2dmy9ckHH3xAQEAAW7Zskecod3d36urq+OKLL+TEBsm7yx46tRJfVy06tZLU1FRUKhVXrlzpzyNz0AMO4ekvQExMDAqFAldXV4KCgnp8nyAITJo0iVmzZnH16lW++eab52or3V/0ej0tLS2Ioih3dNNoNFRWVtooy/7+/qxevZrXXnuNO3fu8NFHH7Fv3z6GDRvG3Llz5S+tIAgMGTIEi8WCt7e31TGSkpIwGAxWpV5BQUGsXLmSuro6Nm/eLE84wcHBtLe309zcPCB1uS9zcelYvQ3YJSUl+Pn5oVarKSwsJCoqivnz5wOdWUm9bVTc3NwYNmwYV65ckTv9iKJIUlIS0NnGHDo3c9OmTePp06fk5uayd+9eoHMzlJSURFFREYGBgTx8+FAus8vNzeXAgQOkpKQwdepU7t+/T0dHBzqdjo6ODt544w08PT1JTEzE2dlZnmik9NTXX3+dwMBAWltbZf8qKfojZbl1dHSQnp6Ov78/W7du5eTJk7KnR25uLiqVCnd3d9auXUtrayufffYZDQ0NrF69mtjYWG7fvs3OnTtlUTM0NFQuZfH29paFJycnJ3x9fVEqlZSVlT13FMqBg79lcnNz0el0FBYWyv5sUumrh4cHAQEBPHnyBL1ez4ULF+To8sWLF+Vj2BvPuppyWiwWRo0aJY8noaGhA15wdxWJ7PkmdZ0/umcER0VF2RVwJOG8ezBACj5079rTfWH5qoQLac5WKBQ2xubw8oSuWFV1r10G47W1mM1mq2c7Z84cSktLOX78OEql0mZ9MWTIEARB4NatW4wdO5bFixfzwx/+kJ///OesXLmSSZMmMWjQIFkAMhqNqFQq3NzccHJyoqamhh07dvDrX/+ajz/+mP3793P79m1qamp6/Jvx8PBgxowZ/PSnP2XmzJmUl5fzxRdfsGHDBh48eIDFYmHs2LG8//77uLu7y9nDmzZtIjMz86U8SwcOHPx/i6enJytWrKCpqYk//elPL72k1tnZmWnTpnH37l27XVRvFNaydmsmcf98jJH/doq4fz7G2q2ZZBZ+O88kJSVx79494uLiePbs2YArMvrqbCdVKfTl89Sfyo2uWCwWeb6TOtsOlAsXLuDt7W1j2N31mo4ePYqzszOTJ08mIyMDT0/PHt8vfQY6S91Gjx7NmDFj+Prrr3F2dmbp0qUMGTIET09Pbty4QXp6Ok5OTr0Kh1I3u9jYWBQKBXq9nnfeeYeJEyfKnrhlZWV8/vnnmEwmVq5cCfS/w61Op2PkyJFkZmba9TR00D8cwtNfAGnx1Nzc3K+0/pEjR7J48WIePHjA9u3b+202N1D0er2cUSP9e968eUCnwVv37jMKhYK0tDSmTp1KW1sboijaNViVBpPuC3tfX18CAgJsUlQDAwNZuXIl9fX1bN68mdbWVoKDg2VleyBZT31lPEkCR18ZT8HBwTx79ozm5mYiIiLkjU91dTX79u3r1UMqPT2d1tZWMjMzefjwIUqlkurqatzc3KwmvMGDBxMREcGhQ4fkCWzOnDlA57MLCQkhLy+PuLg4ioqK2L17N0OHDmX27NlUVlZy4MABXFxc5N+fZMSqUqlITU2VN4pdo91LlizBYrHg7OyM0Whk27ZttLe3U1VVhUKhwGw24+/vz/Lly0lKSuLy5cuyZ9WwYcOYMmUKLS0tZGZmsmnTJry8vPjggw8IDg5m2LBhVFVVUVdXR2xsLLW1tUyfPp2GhgbUajWnT5+WhUUnJyd8fHzkfztaZjtwMHByc3MJDw+Xv+tGo5EJEyaQn59PfHw8tbW1NDU1yWL/G2+80adPzrvvvmsj5ri5uclRvrNnz/Z5Xd2zeroKMPbmwK5tlbuP91lZWdTX1/dY5txdPJGO1d2Do/uc0FvZ9MvA19e3T4FOEIQe56LeyiwkeusyKD0X6RpEUWT37t1YLBY5O67rtUKnX2N6ejr5+flWUV2dTkdERATjxo1j8eLF/OQnP8Hd3R0/Pz9ZjJI2TdC5SWtvb+fhw4ccOHCATz75hF//+tds376djIwMiouLbQQ4qcT8+9//PsuWLUOj0bBnzx5+//vfk5GRgZubG++//z5paWnyZw4fPszBgwdfeXa4AwcOXj2+vr4sX76c6upqduzY8dKzUYcPH86gQYM4cuSI1byx5WoRSz+9wqmcKix/HkosIpzKqWLJp1fYeq1zL5OSkkJraysdHR3o9XqrBj/9wdfXl/r6+h73dPaEJ3tjW0dHB0ajsd/CU0VFBSaTCT8/v+ea98rLy3n48CETJkywCehI5Obm8ujRI15//XWamprIzs5m3LhxPb4fvg3Ep6SkMG3aNHbt2kVbWxtvv/02Tk5OCIJAamoq2dnZGI1Gpk6dSlZWlo3li0RlZSV1dXVWjZgUCgWTJk0iISEBgJ07d+Lh4cGaNWvkRJCBiJxpaWmIosj169f7/RkH1jiEp1eElK7Z2m6UvZ10Op1V2+HeiI+P55133uHp06eyGPOykQatrsLR0KFD5S/onj17bBb1Dx48kI3YFixYQGFhIZ988gm3b9+WB8gnT57g6+vLvXv3bK47MTGRvLw8G4U5ICCAVatW0djYyObNm/H29sZoNKLRaAYUVXjRjKeOjg6qq6sJDg6msLAQQRAIDQ2VB6bp06eTk5PDoUOHelzsenl5kZCQwIULF2htbSUmJobs7GzCw8OthCdBEBgxYoT8jCZMmIC3tzf19fU0Njai0+loa2vD19eXr7/+mrCwMBYsWIDBYGDHjh14e3tjNpvlgb2rUJiamir/7roOqu7u7ixevJjS0lIGDx5MbW0tO3fupKKiQvZnMZvNfPrpp/KkKm0itVotXl5emEwmDh8+TEpKCitXrpSfpSQUBgcHk5mZSWpqKs+ePaO9vZ1JkyaRnZ0t379Op8PX15empiYCAgKssuAcOHDQN8+ePaO6ulr2v5GMQ/38/GhrayMuLk5uYKDT6QgICODo0aM9RlwlAaSlpYX79+9bLRi3b98+4LLn3tDpdMTExFiJFdA5bnftOOfj4yOPS/1ZHNorY+tJwHne4/WX2traPrsHSf53Pb3WX7p3GZTM1Ls+32HDhqHVanFyckKpVFrNkZLnX0dHB8ePH5cbVnzxxRccOHCA8+fPc+fOHdkyQKlUsmDBAjlTdtGiRfzwhz9kwYIF8rnCw8OtmnEYDAYKCws5c+YMGzdu5Je//CUbN27k1KlTPHz4UA5CCIJATEwMK1euZO3atURGRnL27Fl++9vfcvz4cUaMGMGqVavkv9dbt26xYcOGl75JdeDAwculpzK2rgQFBfH2229TXFzM7t27X2rVhyAIst+ptBe7UVjL/97/ABEwW6zHXLNFRAT+1zcPyCysxdfXl0GDBnHnzh0SEhLIysoaUKc8SeDvqdxOEoWkuamnuas/AfSuSOvr2NjYfl9rVy5cuCDva+zR3t7O0aNHGTJkCDExMWRkZODi4sKwYcN6PGZ2dja3bt0CYNasWRw6dIiSkhKWLVtm1RF3+PDhchbusGHDCAwM5Pjx43bnx6ysLJycnGyaiUil4dCZYFFZWcmDBw+Azmfe34wn6fNdvXwdDByH8PSS6Z6uGf9/TrCn0guvmJGMGjWK27dv91tEioyMZNWqVdTV1fHll1/aTdt/ESST2O4ZS7Nnz8bJyYnq6mqrkoysrCz27t1LYmIi8+bNIykpie9973vExMRw4MABtmzZQllZGaWlpQwfPhzAJhU+ISEBs9ksd2Trir+/P6tWraKpqYnTp08DnZH2gWx4+jIXb25uRqPR2Gx4JMrKyhBFkUGDBlFYWEhwcLBsug2dwty8efO4ffu2fI32GDt2LAaDgeDgYFJSUqirq8PDw4OKigr5WGazmUuXLiEIAoIgMHLkSODbTLHa2lrc3Nw4duwYfn5+vPnmmygUCvbs2UN7ezt+fn60t7ejVCrlwVTC1dVVVv2718tHRETIKcdpaWkUFRWRm5srT3q7d++msrKSoKAgvve97/HTn/4UgOvXr7N//36gU/WfPXu2nBlRUlLCiRMnCAgIoKSkBKVSyeTJk7l9+zbh4eGMGTOGQYMGcePGDeDbUjvozNR6/Pixo1W2AwcDIDc3F6VSSVFRkZyROWvWLHJzc/H09CQr9yG3sh+h0jphMHR2Le1qXNod6ft46NAhNBpNv7+P9iKaXUUASTiSGDNmjCxCdO3UKdG17LampqbfpdYajcbuJuVFsmEGImZ0fw4Wi+UvksnZPYKtUqmIiooCsOpympeXx+LFi3Fzc8NsNtuIUgBTp07Fzc0NpVKJTqejqqqK8vJybty4wf79+9m8eTMff/wx//f//l927dqFXq/n1KlT7N27lytXrqBUKvHz86OkpIQFCxbwgx/8gJ///OesWrWKqVOnEh0dLZddms1mSkpKuHLlCl9//TW/+tWv5E6pd+/epba2Fn9/f+bNm8ePf/xjxo4dS3Z2Nh9//DGXL19m1qxZ8kaorKyM3/3udzYeY/3Z6Dpw4ODV0lcZW3fCwsJYunQpjx49Yv/+/S81ozEgIIBRo0Zx/vx5Ghoa2HCpAIWi9+xShUJgw6UnQKcQkp+fT2RkJM3NzTx58qTf5+6rs11/S+2kObK/GU9SRrQ0LwyEyspKcnNzGT9+fI/ZS2fPnsVgMMjZTtLeoqfAzcOHD9mzZ4+ccZSRkcHdu3eZO3cuoaGhVu91cnIiISGBzMxMRFHktddeo7S01KZyRiqzi4mJscrYNhgMfP3117K/5U9+8hNGjhzJ0aNH2bt3L1qtdsAC0tixY+no6HjuLol/67y4y6UDmS1Xi/jf+x+gUAhyuqYIFFs8+O6uPP7X69GIosiNGzd6NBnvTlBQEKtXr2bLli1s3LiR5cuX99r+eSBIg1Z3fx2dTsfChQvZunUrFy5cICYmhrq6Ovbs2UNCQgLz5s2TByBnZ2fmz59PYmIihw4d4osvvkAURWJjY6mpqeHGjRuMGzdOHgjc3NwIDw/n/v37sjjVFT8/P959912++uor+TMDyXiSrqu3jKe+/J00Gg3e3t4UFhbK1ygNTFqtlmHDhtHW1sbx48dxcnKy2ypUuubm5mbCwsJwdnaWN1BFRUXExMRw6dIlWVRTKBRkZmYyYcIEioqK8PPz49GjR1gsFjw8PHj77bfRaDScPHmSJ0+eMGHCBM6fP8/w4cO5ffs2wcHBcvRZIi0tjfv371NSUiJ355MYM2YMZWVlXLlyhYkTJ3LmzBlZgNTr9cydO1c2m5fu22w2yyKWWq2WX2tpaWHXrl0EBQXJnRnj4+Npa2ujqKiIBQsWIAgCM2fOZMOGDQiCgEajkSdhV1dXDAYDJSUlNpOOAwcO7JObm4uXl5ec+eTk5ER0dDSf7j1FtiWI355sRiQZob3T9ydRXYVvh7WIo1AoUCqVGI1GysrKAFuhui96E6i0Wq2NGCCVcLW3t8sp84Ig2N1cxMTE8Pjx435FvTs6Ouz6FnWl+3kUCsVLE7y7H+dlRup7u6/ui2aTycS1a9fw8/OT54S0tDQKCgr45ptvmDBhAkePHrXa3EhzU0REBCkpKWzdupVnz55hsVgICAhg7dq1mEwmGhsbaWhokP+rq6sjOzub7OxscnNzrUxx//Vf/xUPDw/c3d1xc3PD3d2d8PBwhg0bJmfoVVdXy8Gq+vp66urqqKur4/bt20Dn309wcDCDBw8mOjqaMWPGkJ2dzbVr19ixYwd+fn6MGDGCO3fu0NLSwkcffdTZLRc3Nlwq4GR2JRaxsxX29Dh/3k+PJDXcCwcOHPxlsLcvksrYTmRV8i/zE+y2p4+OjmbhwoXs3r0brVbLrFmz+lV+3B8mT55MVlYWh44e52S2HksfupbZInIiuwKD0UxCQgLHjx+ntLQUb29v7t+/32dmq4RWq8Xd3f0vKjyZTCYqKipQqVQ2/on94cKFC3h4eJCYmGj39fLycq5fv87UqVPx8PDgxIkTqNVqUlNT7b4/Pz+fnTt3MmTIECIiIigvL+fs2bNMnDhR9sLtzqhRo+Ruq7GxsQwdOpTTp08zdOhQeS9SVVVFbW0tM2fOlD9XW1vL119/TXNzM3q9nsjISJRKJTNnziQkJIQDBw7Y7aLbF+7u7iQlJXHlyhVGjRr1UhqG/C3hyHh6SfSWrmn5s/Xnvxx9hGtkMtevX+9X1wIJb29vvvOd76DT6fjyyy/lji8vilarRalU2u1AM3jwYIYPH44oinz99dfs2rWLhIQE5s+fb1f1Hjx4MOvWrZPFhJ07d8oRAcmcWiIxMZEnT5702AHJ19eXd999F0EQqK2tpb6+vt+bof5kPPXl7xQUFERtbS0tLS1yyqaUpSRNDGlpaUyYMIFTp07J6aISFouFjIwMwsPDaWhoICcnh7i4OPLz82Wfp4qKCs6fP49KpSI5OZmRI0eSkZFBS0sLhYWFshij0WhYvnw5Tk5OZGVlcfnyZdLT07l69SpxcXHyQO3u7m6TGRYUFIRCobAbkREEgTfeeAOtViuX40Dn38RPf/pTK9Hpzp07tLe34+TkxKpVq1AqlVy6dInMzEzMZjN79+7FZDKxaNEirl+/jlqtprGxkdu3b6PVauXWq8HBwQQGBiKKonxv7u7umEwmnJ2dHd3tHDjoJ01NTZSUlNDU1ISXlxdms5lhw4bx0ZFb7GsK52GLFpE/j4UIPLW4c6h9CLmmzqCFtAC1WCzyXCSNcb15Mtija2lcd+yJOgqFwiZ4Mnr0aCsDcom8vLx+CzgKhULOHu2J7vPCXzLL8kUWp30ZpXenqanJ6nxKpZJ33nkHnU7HmTNncHZ2tooKS1m2Op0OZ2dnVq5ciZ+fH9A5/j948ACVSoWXlxcREREkJyczceJE5s+fz3vvvYcoiowePZqf/exnrF27luDgYLmc0sXFhbq6Ou7evcvhw4f505/+xBdffMG2bdu4ePEiNTU1+Pn5MXz4cFJSUkhMTCQsLAy9Xk97ezsFBQWcPHmSDRs28Ktf/YrLly8THBzMlClTcHV15ebNm6jVavR6PRaLhX/44ghL+uHX4sDB3yJ/ySzAgZSx2SM+Pp45c+aQmZlptU59UbRaLa+99hr3cx/1KTpJWERoMpjQaDTEx8dz9+5dEhISyMnJGdB+rjeD8e6ldmB/LyON7/3xayouLsZisRASEjLgub2qqors7GzGjx9vt6O3xWLh0KFD+Pr6kpaWRltbGzdv3mTkyJF2r62wsJDt27cTGRnJ4sWLqa+vl5sv9ZaMERgYyKBBg2RfpWnTptHS0sLly5fl92RnZ6PT6YiMjAQ6LV82bNiAKIqsXr2atrY2qzVGfHw877//PgqFgqysrAH7dY0bN47m5mbu3LkzoM85cAhPL43+pmveMXjR1tbG3bt3B3R8V1dX3nvvPXx9fdm8efNL2aQLgiB3trPHzJkz0el0NDU14evr26PoJKFWqzEYDCQkJCCKInv27MHd3Z0rV65YDZ5xcXEolUq5xtYePj4+pKenyxuDgoKCAd1Xb8JTT1ECURQpKSmR/Z0UCgUhISFA50Sg1WqtFvyTJk1i5MiRHDp0iOzsbPnnOTk5PHv2jGnTphEVFcXFixeJi4ujsbERX19fioqK+Oabb9BqtWg0GqZPny63KD1x4gT19fUUFxcjCALvvvsurq6uVFZWsn//fhISEigoKMDJyYk5c+bIZSx6vZ76+nqb6LeTkxMNDQ02WWP5+fl8+umnVmUszs7OtLe3y/diNps5evQo+/fvl7MpwsPDiYiIwM3NjcOHD7N+/XqePHnCokWLePToERUVFaSmpvLo0SNu3bpFYmKiVXaUtOGVDIql9rJRUVEOnycHDvqJlDpvMBh49uwZAEaPUH5/uZLO3mbW43TnvwWumEJpcQ6QPX3AtiucNOb2d5Ha9X32ys26l9oJgmCz8L569ardUvLuAktvgovFYsFkMtmM/QNdbL8qpNL2gSDdb/eNTdd77Oqj1PVcUgYbwMWLF9HpdHLLcpPJJP+eVSqVLO5JY7VOp2P58uUEBQUhCAIHDhzoMSocGBjIxIkTycjIoLa2loCAAObNm4fBYMDDw4NFixaxevVqfvKTn/BP//RP/OhHP+K9995j4cKFjBs3Tp5jy8rKyM7O5v79+xQVFdHS0oIgCDg7O+Pu7o5er0ehUFBTU8OtW7c4c+YM+fn56HQ61Go1ra2tVFpcuGLqzJp9no2uAwd/rQy03O1lMNAyNnukpKQwY8YMLl26ZNNt+0WIj48nOjxE7gjaFwoBXHUq+ZoaGhrw8PCgo6NDno/7Q2/CkzT+ShlPvXk8ubi49CsD7OHDhwByAHggXLx4EXd39x69mm7evElZWRlvvPEGSqWSGzduYLFYGD16tM17i4uL2bZtG6GhoSxdupSGhgYyMzPlbqt93cvIkSN58uQJNTU1eHl5MWrUKDIyMmhqarIps8vMzGTr1q0EBgbKSRsWi8UmuOXj40NoaCiurq7s27ePQ4cO9bu83sfHh7i4ODIyMhw2IQPkv8aK7L85BqOZk9mVNgud7pgtIuce1RIVM5TLly8P+I9VWgxGRESwffv2ASu09tDr9T22ss/Pz5eFjJqamj69lmpqamhsbCQpKYn333+fKVOm0NTUREVFhU2HnCFDhtjU6Hana9bNkSNHesyQ6k5v5RO9CU+NjY00Nzfb+DtBp/DUfYEvCAKvv/46CQkJ7N27l4KCAkRR5OLFi0RGRhIcHMz48eOprq6WjX+ljkKVlZUYDAamT5+Os7Mzzs7OpKeny8+ko6OD5ORkvL29aWtrY8eOHXh5eeHq6kp5eTmLFi1Cp9PJ2VvSdXYvt3NxcUGj0cid6aqrq/nyyy/ZunUr9fX1BAcHyxOSyWTC19eXffv2kZ2dzZYtW8jMzGTWrFn4+/vLk6GPjw8qlYr09HRqamrQaDSYTCbOnj1LcnIy48ePRxAEWltbbcopzWYzbm5uZGZmUlVVhY+Pjyw8VVRU9NvPxYGDv2VycnJQq9XodDp0Oh1arZY/nn3Y5yJaQORavXW2S08ZRd3HUEEQcHFxsSmHFUWxx6YOUkOCrtg7n1qtthKouy5Cu/5/TwGFnjz7pGsKCAjo8fX+YC/aO1Cex6MxJiamz/d0NUaVspy6BpNCQkIQRZFt27bh6uoqz4/S7y0tLU0W53bs2CH/DrVaLcuXLycsLEzugNrTvJqenk5QUBD79u2jo6MDX19fkpOTuXDhglUwRKlU4uHhQWhoKImJiaSnpzN79mzeeustvvvd7/Lzn/+cv//7v2fdunW88847zJ49mxEjRhAWFoavr698/d3vX9p8ZJn8+/wO9LXRdeDgr43+dm17mQxkXySVsfXEmDFjmDBhAqdPn7bxjX1eBEFgdGoKoYr6PscMpUJgRlwAOnXnPBAcHIyvry+PHz9m0KBBfe5luuLr60tdXZ3dLCmFQoFare6z1K6lpaXf/k6S8NTfckCJmpoaHjx4QHp6ut35T/LiTUlJISQkBKPRyLVr10hOTra5trKyMv70pz8RFBTEm2++idFo5Ouvv0atVqNSqfqVDRwXF4ezs7PsEzthwgTUajVnzpyhurqampoaYmNjOXLkCIcPHyY1NZV33nlHDr4DdrOqnZ2d8fDw4I033uDOnTts3LhRbpTUF+np6dTX1/eaROHAFofw9BJoMpgGlK6ZmDKSuro6cnNzB3wutVrNm2++SVJSEvv27bMSdJ6HnjKecnNz2b17N3FxcYwePVpuxdybGvz48WOUSiXh4eEolUrS09P58MMPUavVnDx5km+++UY2Vk9MTKSioqJH5R86/Z5UKhWurq50dHTw1Vdf9Ut86i3jqampqcdSOykLICgoiMLCQqvOCAaDwW7qqCAIzJs3j8jISLZv386VK1eorKxk/PjxAISGhhIWFkZGRgZxcXFy5pFarZb9LiQkc/Gu/7ZYLOzZsweDwUBaWhpXrlxhypQpDBo0SD6OVOqiUCisDMahU+ST6tB37drFH/7wB54+fYqLiwtvvfUWa9asQafT4eLiQkdHB+Hh4QQHB7Nr1y4qKytZuXIlI0eORKV1oqa5Mz3by8uLuro6bty4QUREhNx1z2g0MmXKFJycnNDr9ahUKpsNn8FgwMfHB09PT44dO4aPjw91dXWEhoYiCIIj68mBgz4wGAw8efIEo9GIwWDobDus0pDdoLTJdOqOiIKnFk/aTb0HPeLi4li1apXVz3x9fWlubpYzVCRaW1ttspq6vtZ1ztBqtTbjr06nw2g0YjQa5QWuNH6Lomh3LO8eHVUqlT1mNplEgbo2Myax54hqX9HWgfg19SaCDZS+IuldxTqwX84XGhqKUqmkoKCAx48fYzQaZc8/URTx9vaWj1NWVsann34qi0VqtZp33nmHQYMGUVNTw969e+1eh0KhYP78+TQ2NnLq1CmgMyO4o6ODjIyMAd2zVqvFz8+PqKgoRowYwZQpU1iwYAGrVq3ihz/8If/zf/5PfvjDH7J06VImTZpEUlISgwYNQqd35anFo8/vQH82ug4c/LXwouVuPWE0Gqmrq6O4uJicnBxu3LjB2bNnOXjwINu3b2f9F18NuIytNyZNmsSoUaM4fPjwgIQeu+ezWDh37hx79+5lpFtTnzlPFovImvQI+d+CIDB8+HByc3NlH8L+No3qq7OdRqPp0+y6L69aCYPBQG1tLc7OzjYBoL64ePEirq6uJCcn2339xIkTKJVKpk2bBsDt27dpa2tj7NixVu+rqKhgy5Yt+Pr68tZbb6FUKtm1axctLS2kpKT027dLpVKRkpLC3bt36ejoQKfTMWnSJO7cucO1a9fQaDRcv36dmzdvMnv2bF5//XV5TSAJSfaEJ8lcfMSIEXJJ3qeffioLdr0RGBhIVFQUGRkZL9UA/68dhyPWS8BVp0Ih0K9BViFAdHgI4eHhXL58maFDhw7YME+hUDB37lz0ej0nTpygpaWFqVOnPpfxnouLi80AmJeXx65du4iNjWXhwoVYLBYePnxIXV0d586dkwea7uTn5xMWFma1GPb29mbGjBkcPnyYnJwcHj16xMyZM4mNjUWn03H//n2mTJli93hKpZLAwEBaWlrkcoBNmzaxatUquwNI1+djLzJrNBppb2/vccAuKSnBzc0Ng8FAa2urlfDU0dHRYz21UqlkyZIlbNmyhVOnThEQEEBY2LdmiePHj2fr1q3ExcXJ0WmTycTs2bOtPKmOHj0qD16urq4EBARw+vRpCgoKWLRoEUePHmXw4ME2A7ubmxvNzc34+PjYZKWpVCqampqwWCxkZ2ejUqmYPHkyo0ePljd5VVVVBAcHk5eXx+3bt7FYLKjVahQKBfmN8G9bMzmR5YyIwL//8zHGhLrgbnImSi+wZMkSamtr5XbW+/btY8aMGTQ3NyOKIhUVFXLnCug0LnZxcWH06NF8/fXXREREIIoibW1tBAcH8+jRI7um8w4cOOiMIl+/l4vRAmqFwODBg3n8+DEG1LKnU1+ICBhRoqJzoS8J9ampqWRmZqJSqZgzZ45N1FUS/aWIY1e6CyBdiYqKkn0J29vb8fX1tcps7JqxI4oibm5utLS0yGJPXFycVSmz9D7p2l1dXe0GJKpEVx4Y/TrFiEoBgVBCFfXEqyrxVzTbPd7LoL+ZzK6urn1mePZ1XVLUXKVSYTKZbNpCC4JARkYGarUas9nMnj17rD4HnRuGjo4O1Go1gwcPJjc3l08++YQVK1bg6+uLSqXi3XffZf369WRlZeHr62vXj8PHx4fp06dz9OhRYmJiGDx4MKNHj+bq1auMHDmyX62/RVGkpaWFpqYmGhsbaWpqkv+/ublZ/ll3z0dBEGgTVf3+DkgbXSmDwYGDv1akcrfeMo+kLMDhIe40NzfT0tJCc3Oz1X/df9Z9flAoFOj1elxcXHBxcSHY3xuhiH4VsnUtY+sJqUFNe3s7+/btQ6PR9CsjtDu1tbXs27eP0tJSJkyYwJgxY6j9zTbONPqiVCisnpMCERGBf5mfYNOUICkpiVOnTmE2mzuzLbOybILH9uja2S4wMNDmda1Wa/Vs7c0B9gJA9igsLASQfY/6S21tLffv32fmzJl2gxn5+fk8ePCA+fPn4+TkhNls5vLlyyQkJODp6Sm/r7q6mi1btuDp6ck777yDRqPhwIEDFBUVsXLlSkpLSwe0b01NTSUjI4N79+6RmprKiBEjuHHjBvfu3UMQBMrLy+WqoK40NDSg1WrtlqXrdDpZ6AsKCuKDDz7gm2++4euvvyY9PZ3Jkyf3Wq4/fvx4vvzySx4+fPhcf49/iziEp5eATq1kepw/p3Kqeh3cBUTSBunRqZWMHTuWbdu28fTpUyuRor8IgsC0adOsxKc5c+YM2M9Cr9fLxqLQKTrt3LmTmJgYFi5ciEKhQKFQsHjxYj7//HMyMjIYOnSoTXcEo9FIUVERkydPtjnHsGHDOHPmDEOHDsVgMLB3716ioqIYPHgw9+/fZ/LkyT0OPsHBwdy7d4/W1lY+/PBDtm3bJotPUgtxe8+mp8Ea6DXjSSqz6+rvBJ2bI3uDloRarSY9PZ2vv/5a7vgjXZ9UdieVu0Gn4CdNQKIocvz4cdn3SzLIzcrKIiMjg2nTpskG5vPnz7d5VtIGxt/fXy61E0WRe/fuUVhYKG/gVCoVP/jBD6yyE0RRpLq6WjaSNZlM6HQ6Vq9ezd9/cZhPtt1HqVDIC3qLCFeKmrAQw5ogF3Q6HceOHcPPz48ZM2bwzTffsHHjRvke79y5YyU8SRlPQ4YMISoqSk6brqmpITo6moyMDMxm80spbXHg4K+FG4W1Vl26BFIIU9bTVNKIC6ASTQh/XiT3hYCImm89fSQRQvoumkwmfv3rX9tk+UjlxoMGDbLKTHRzc+Ptt9/m97//vd3zSYtCURTR6XQ2zTHc3d3lVHhRFOWyKekz3bMgnZycZOFBFEW7oleuyZcrplCrZyKZrBd1eDBG9ZRYlf1s294yZntDCnhIGV59Hacn0anr55ydnW0i6V1/ZxJOTk40NTXZnHPJkiXk5ORYlXA7OTlZef49ffoU6Iy0L1myhK1bt1JYWMhnn33G/PnziY+PR6lU8sEHH/DRRx9x7tw59Hq93a5FI0eOJC8vj/3797Nu3TrS09O5desW58+fZ/r06VZCkvT/3cWlrsKdVN7p6uqKi4sLnp6esj1AbW2t/DcqiuKAvgP92eg6cPDfHancrT9d245nlfN//uUwKsH6zc7OzrKY5OHhQXBwsPzvrv85OTnZrE1PtWT2uS9SCjC9SxlbbwiCwNy5c2lvb2fXrl0sX77cKkDcG6IocvfuXY4ePYper+e9996T1/h/v2gcuj8dpN4/haslrXInzBChjv/f7OHMtdN1T6/XExsbS3Z2tryX6Y/wJFlk9NbZrr8eT32Rk5MDDNzf6eLFi+j1ertBYKPRyOHDhwkPD5ebG2VlZdHQ0GDV4fvZs2ds3rwZFxcXli9fjk6n49KlS9y5c4f58+cTFhZGSUnJgIQnd3d3YmJiuHHjBiNGjEChUBAZGcm1a9dwcnJizZo1djO7GhoaekxW0Gq1VgEbJycnli1bxuXLlzl9+jQlJSUsWrSox+cdGhpKaGgoFy9eZMiQIS+t8+JfM45Su5fEmvTIPmuZRcCj8hZ79+4lODgYPz+/Aaehd2fMmDEsWLCAe/fusXPnzgF1VwBrj6eHDx/KotOiRYusNv9BQUFMmDABwG7J3dOnTzGZTERFRdmcQ61WM2LECB48eMCcOXNYtmwZlZWV5ObmUl9fLy987REcHCwvvA0Gg9ztbtOmTT2anQqCYDfqLC307Q0gkveSZCw+aNAgqw2NZC7eG9euXcPX1xcnJye2bNkiP1dBEBg6dChNTU3yMZubm+XB7uLFi1y7dk0e5EVRpLGxkW+++Yb4+HhEUaSgoICFCxfavXYp4u/n50dlZSWFhYX88Y9/5JtvvsFsNqNWq3nrrbcwmUw2Ju0NDQ10dHTIm7sxY8ZgMpnYfDSD0w2+gG2kzIIACGy428KO0zcoKSnh9ddfZ/Dgwaxdu1a+Bzc3N+7fv2/1t9LW1iYLeK+99hrNzc1oNBqqq6uJjo6mo6NDbrHuwIED+/4cIgJFZg921YeQa/JFraBfXhUCFkIVdfLmwt58IW00uiN1o+w+hrS2tnL69Gmgc9HWPUJaW1uLWq1GEAQ58qpUKvH395c/3/Uc0dHR8v+DdWtpjUaDwWCwCh5I5urQOU99azDdu8l6pcX6HruW+T3P4rH7nNMf8crHx8fmXF0/Z698w97vTBpju35WoVDIWcvr1q2Tn3dbW5tckq1Wq3nttdfkYwiCwLJly+RAxO7duzl+/LicBbtmzRqUSiWHDx/m9u3bQGcZYkNDAyUlJeTm5hIaGkprayufffYZO3fuRKFQcPPmTX75y1/yySefsHnzZr755hsyMjJ48uQJ7e3t+Pj4MGzYMGbOnMmbb77J+++/zwcffMDChQuJi4sD4NGjR+Tl5VFSUmKVESehEsQ/fwd6zzjr7tfiwMFfKwOxARERmDpzNm+//TYffPABP/3pT/lf/+t/8bOf/Yx169axYsUKFixYwIwZMxg7dixJSUlERkbi5+eHs7Oz3THzreH+mPvIADWLInOinft9TwqFgkWLFhEWFsbXX39t1SijJ1pbW9m9ezf79+8nLi6OtWvXWgWWhwwZwoShwaQabnP7Hydz4x+nkfV/XmNlZAeVWVd6HMuHDx9OVVUVgwYNori4uMc9SXekpjr26Co82cNisdDS0tKvDNL8/HwAmwyg3pA6kI4dO9ZuUOfSpUs0NDTIFRuiKHLp0iWio6PlOaauro7Nmzej0+lYuXIlzs7OZGVlcfr0acaPHy9bjDzPXDty5EiqqqooLCzk+vXrckBfo9H0WPLf2NjYo/AkZTx1/R0LgsC4ceNYuXIlNTU1fPrpp1YJGt1JT0+ntLRUzjBz0DsO4eklEe+nY5K+gs6lrfUgpVQICMC/zktg3eIZPHr0iPXr1xMVFcWjR49sDKEHSlJSEsuWLSM/P5+tW7fapNv3hl6vx2g0kp2dzc6dOxkyZIiN6CQxYcIEfHx8qK+vt2lt+vjxY1xdXW3aZEuMGjUKk8nE7du3iYmJ4Xvf+55cOyz5CdlDyqyS0ijd3d1ZtWoVSqWSTZs2UVtrW5euUCgGnPFUVVWF0Wi06+8EfQtPpaWlFBQUMHHiRFasWIHRaJR/F0ajkZs3b6JQKORNgyiKPH36VK6Lnzx5stwe1d3dXX7+w4cP58yZM6Snp/eYLuvm5kZTUxPOzs6yF1Z1dTWurq7ExMTg5ubGkCFDiI6O5urVq1bPRvIZa21tRa/XM2PGDObMmcOBvGb6aEaCApHPL+QTHx8vPy/JNHHEiBGUl5djMBi4efOm/Jm2tjbZk8rHx4fRo0djNBopKysjICAAFxeXl9Kx0YGDvwZ68+cQ/ywAXzGFUmHWE6+q7LOsQUQgXtX7fOPu7k5bWxuRkZE22bjBwcE2AovJZCIrKwvo/H7b8wE0m81otVo5Ams2m4mPjwfsCynSYrT7mPv9738fPz+/HrOFXFxc+mUwLSCSZfKzuUboFN6kMao7vfk3PU/JvNROuj/H1Gg0PZ6ja+mZ9J6u7/Xz8+O9996T/921o51kFt/e3s6FCxfQaDS8/fbbcmT+6tWrfPrpp1y5coW7d+/KY/2BAwf45S9/yb/+67/yu9/9ji+++IKdO3dy8eJFtFot9fX1GI1G4uPj0el0BAUFsWrVKn7wgx/wD//wD/z85z/nww8/ZMWKFcydO5eEhAQEQSAnJ4ddu3bx2WefsWfPHvLy8lCr1QQGBspzqD1BTq1W//k70PvvobtfiwMHf61INiD9QSFA2ohkoqOjCQwMtGvkPxDq6uq4e2ovk12r6Jx5rMc5SSCe7d/M7ZN7BtQsSaVS8eabb+Lv78+f/vSnXvdQBQUFrF+/noKCApYsWcK8efPsruVnzpxJW1sb1y5fwtdVi5NGxZQpUygrK+vRjzcyMhI3Nzfq6upQq9X99p7qrbNd91K77kievH1lPDU2NtLS0oKXl1eP85k9Ll26hLOzs92M1pqaGi5dukR6erpcsfHo0SOqq6vlbKeGhgY2b96MUqlk5cqV6PV6SkpK+Oabb0hISLCqinke4SkiIgJvb28OHjzI0aNHcXJyIioqisbGRquqkq40NDT0KEpptVpEUbS7DgkPD2ft2rX4+Pjw1Vdf9ejlFBUVRUBAABcvXhzQvfyt4hCeXgKiKHLgwAHiNM/YvCKZKKc2eZBVCDB9qD+71o5heVo4iYmJrFu3Dl9fXy5fvoxarX4pLUKjo6NZuXIlVVVVfPnll/3uDiYNXnv27CE6OprFixf3WOYkeRkJgsCVK1esSiby8/MZPHhwj4OIq6srCQkJXLt2DYvFglar5Y033iAhIYHW1lY+/fRTzpw5Y7Np8fDwkLu+Sf5FkvikVqv56quvbMSnnkocmpqaUCqVdkvmpJRPlUpFW1ubjfDUk7m4xMWLF/H29mbo0KF4eHiwfPlyGhsb2bZtGydOnKCxsVGexF1dXVGr1WRmZnLkyBHS0tIYP348hYWFctRZqVTKnhzBwcFMmjSpx3NrtVqam5s5ePAg0LmhmTZtGj/84Q8JCAiQ65fT0tKorKyUlfusrCxOnjwpZyJIouGQofE8tXj2GSmzIFBgdGXC5Knyz27duoW7uzuzZ8+Wo+PHjx/n3r17WCwW2RRQYsKECSiVSoqLixEEgaioKIfBuAMHf6Y/7aglEcVf0cwY1VM6F/ndOtJhAUTGqJ7a+Bt1p7y8nI6ODgoLCykrK7N6rbS0FL1eb/OZ0NBQfHx8UCqVducAs9mMwWCwGpe7By8kHj58KL+vu8nqhg0beu04k533qF8G05LJuj3D8dbW1h6NYnvbEAy0PE+tVsvzXU+lEF2PGRcX12u5d3fMZrPVhqz77xI6Basvv/wS6JxHzp07x+9//3s2bdpEW1ubvI6oqqrixIkTXL16lZaWFjl63N7eTnx8PG+//TZr167lZz/7Gf/0T//E3/3d3zF06FCePXvG+PHjef311ykrK0OpVOLl5YUgCBQVFXHx4kW2bdvGr371K/74xz9y5MgRuew6PT2duLg4WltbKSoqory83Er0lGwAdDodzs7OGI1G/BXNjFXb/w5IAUB7fi0OHPw1ItmAKPsxh6QNckKrejlbwpqaGr788ksUCgX/tHQCszR5pPgp5X2RgEicm5k3vUv57YcLSUxMZN++fZw+fbrf46gkkLu5ubFlyxabfYDJZOL48eNsDGZEvQABAABJREFU2bIFHx8f1q1bJ2dP2sPDw4OJEydy9epVORAeERHB4MGDOXPmjN0qCoVCQXJyMjk5OXKn7v5cv6+vL7W1tXaDNN3NxbsfTwqg9yU8SdlOA/Edqq+v586dO4wZM8Ym20kURQ4fPoy7uzvp6enyzy5dukRISAhhYWE0NTWxefNmRFFk1apVuLq6Ul9fz/bt2wkMDGTevHk2XWoHKjy1tbUhiiJ1dXWMHTuWtrY2UlJSSE1N5eLFi3abZfVWaifNqT0lbLi4uLBixQrGjh3LqVOn2LFjh10vxfT0dJ48eWJjJeDAFofw9BK4efMmeXl5zJ07l5ER3owTs9mxeBA3/nEa2b+YyfrlI6wWOm5ubixfvpxZs2ZhNpu5f//+c3W4605ISAirV6/GYDCwceNGqxKEnpDeM2jQoF5FJwk/Pz/ZDHzXrl0YjUYaGxuprq7us13n6NGjaWhosLrXcePGIYoi8fHxZGRksH79equURkEQCA4ORqFQWPlSuLm5yeLTpk2brO61J3NxqS7a3kBXWlqKv78/paWlKJVKuWuchORvYo+qqiry8vJIT0+XxSU/Pz/eeecdysvLyczMxMfHB5VKhaenJxqNBpPJxKNHjxg2bBgzZsygra2N6upqzGYz9fX1LFmyBDc3N9ra2pg7d67d34vJZJLrkCWUSiVpaWmMGzdOzqCSNktSB7orV65w6tQpdu/ejaurK8HBwbS0tODh4YEoipRWPeuXISR0Lu8FTWeadEdHB1lZWSQnJyMIAkFBQUyfPh1RFNm3b5/cEalr9EWn0zF06FDa29spLCwkKiqKqqqq52o97sDBXxP9bUfdVUSJVVUzS5NnVXYn0FmCNEuT16OvkT0sFovdKGBPCzuDwYDZbO4zSu7m5tZn2XJv2PP2i4yMRKvVYkQ5YJP1gWISO42se+uS15Xuc4lE181FUlJSn12H9Hq9jRBn71l33ahcvHiRs2fPsn//fg4fPiwHV7oibX46OjrQ6/XU1dXh7e3NtGnT5EYWw4YNY9CgQXR0dDB8+HA+/PBDfH195RKKyspKAgIC5JIbQRCYPXs2CoWCgwcPEhERgbu7O7t27WLDhg388pe/ZNOmTVy6dAmLxUJaWhrLly9n6dKl+Pn5ce/ePS5dusTDhw/l+Uu6L7VajaurKxaLhdjYWARBkIVChUJBjNL2O2AVALTj1+LAwV8ra9IjsfTLBuQ2n3/+eb9K13qjsrKSTZs2odPpePfdd8nMzCTWW83/mTaI5dpbbFsSynLtLX67KA7nlnLu3LnD3LlzmTZtGpcuXZL3Ff1Bp9OxfPlytFotW7ZskZtMVFVVsWHDBm7cuMH06dNZsWJFjxkvXRkzZgze3t4cPnxYHm+mTJlCTU1NjxlZw4cPp6OjA1dXV2pqamwa/NjD19cXURTt7tH68njqr/AkNeQYiPCUkZGBVqu161UlecbOnj1bFqWePn1KcXEx6enptLS0sGXLFoxGo9wAymAwsG3bNjQaDW+++abN3COK4oCy6qqrq9mwYQOtra2oVCrKyspQq9VERUUxadIkBEHg7NmzVp/p6Oigra2tV48nsA1ydUUK5i9btoyioiI+++wzq/0odAaPvL29X0oiyV87DuHpBamurub48eOMGDGC2NhY2Z8mOjIMX1dtjz4CgiAwcuRI1qxZgyAI7Nixg9OnT9tVwAeCr68vq1evRqVSsXHjRrtRTonHjx9z7NgxAKsuZ30xduxYAgMD5dbJkrLeV+eEoKAgQkNDuXr1qvwzf39/OdPmu9/9Lk5OTmzatIlDhw7JqnJQUBAGg4HKykorXwdXV1feffddtFotmzZtkmumezMX72mwLi0t7dHfSfI26WmzdOnSJdzd3UlMTLT6ua+vryxWVVZWMmPGDMaPH8+zZ8/k63vttdcQBMHK52rKlCnU19fT2NiIIAg2LbVFUeTBgwf8/ve/5+TJk/IzmTdvHiEhIVZ15pLwJEUWUlJSePjwIRkZGUyfPh2tVoter6e6uprS0lJ+85vfsOnz9X2WqkgIiFSWdBqYZ2VlYTQarQwJhw0bhkqlIj4+Xr6P7h2JpPcfPnyYiIgIBEFwlNs5+JtnoP4cZkXnmOWvaGaarpDl2lss095hufYWUzQFfWY6dV0ACoLQY9m0Pd566y2+853vAPQqoCQkJJCYmEh7e7vdBaezs7NVM4LuNDY22pRlazQaCgoKOv3sMA9o7JJM1vtDpcWFMx2D2dqewvb2ZLa2p3CmY7CNVxRgNZf2FQEdNGgQu3btsls23pXc3FyrgEpPQZSuZGVlcfv2baqqquSOrl2FsCFDhjB+/Hjg245yHh4ePH78GA8PD6ZPn8706dO5e/cuycnJpKamcvToUQ4fPsy8efNob28nKCiI06dPc+7cOURRRBRFampqyMvLw8/Pj4cPH/Kb3/yGhoYGOev4tddekzOkxo4dS2NjI3v27GHHjh3k5OTI6yApAxg657LQ0FCMRqOcMf3w4UOr+cTZuTMI4q9oZqr2ifwduPZ342wCgA4c/C0wMtyLf5mf8OfCbPvlbj9JDyTSVaS8vJwNGzawd+9eu51C+6K0tJRNmzbh5ubGu+++S319PXl5eUyePJna2lrc9E4Mi4lEJYiYTCaSk5O5cOECRqORcePG8eabb/L48WO+/PLLfp9fykixWCxs3ryZixcv8tlnn2GxWFizZg1jx47td1aNUqlk1qxZFBcXy81+goKCiIuL49y5c3b3Zx4eHkRGRlJSUoJer+9XyaA0t9ort+vL40nKQrWXeSwhWXkoFIoeAx/daWxs5Pbt24wZM8ampLytrY0TJ06QkJBglWCQkZGBn58fgwYNYsuWLbS2trJq1So8PT0xm83s2rWLpqYm3n77bbvXa7FY+v27efz4MV988QUqlYoPPviAYcOG8fTpU6Kjo1Gr1Tg7OzNhwgRu3bpllekrBbGfN+OpKzExMXzwwQfodDq++OILbt26Je/lFAoF48aNIy8v74Xtc/7acQhPL4DJZGLPnj14eHjIBp1Pnz6Vuz/0h8DAQMaMGYNSqSQjI4MNGzb06HfUX9zd3Xnvvffw9PTkq6++sjGDhc40zO3bt8vlcd3FgN6QutwpFAquX7/OvXv3CA4Olhd9vZGWlkZxcbEcVREEgcTERPLy8nB3d2f16tXMmjWL+/fv88knn5CTk0NwcDBGoxFRFG2+0C4uLrz77ruyYFVdXd1jxlNTU5Ndf6f29naqq6tl4al7mZ3ZbJbLA7tTW1vLgwcPGDt2rI1wd/LkSQwGg/xcysrKbDZz0qZEik54e3sTHR3N8ePHSU1NZeTIkVy6dEmO6BYXF7Nhwwb27Nkj38/cuXOBzgnL39/f6u9HmkA6OjqoqqriypUrQOfmMCcnR87WMhqNNDU1YTAYUAkig3Ut/TIqHqxtYc/O7fzmN7/hzJkzBAcHW0WWdDodsbGxVFZWMn/+fKBTYLp27Zo8YEtGtjU1NbI5raPczsHfOgPx5xAQUVq+jRJbLBZUgoiTYJKNxPta4FksFhQKBWq1Wu522V/Wr18vd7WrqamRy6C6k5eXx+XLl4mMjLQao6Wxs7W11e7YPWHCBEaNGmX33NIi3WQy9dtgurvJel/kmnw50hHDU4t7ty55HhzpiCHXZD2udze+7o3Gxka7Lau70z063tra2uvvVCpB+8lPfsKaNWuAzkBA16DM48ePZe+ouLg4XFxcqK+vl4Nh+fn5jBkzhpSUFI4cOcLQoUNZuHAhOTk5HDx4kPT0dMrKyoiMjOT8+fN8/PHH/PrXv+aTTz7h0KFDtLW1ySWY7777LhEREbS2tuLj40NmZia//e1v2bJlC7m5ufIz6OjowGw2y9fl5OTE8OHD0el0lJaWMnnyZKZMmcLhw4etNoLx8fFyNoCTkxNarVb+DliMPUezHTj4a2f56DA+mhtOqKKuSyYsRDu18V5IHT+clcIPfvADOQiYnZ3Nf/7nf3L27NleRZCuFBUVsXnzZnx9fVm5ciVOTk6cOnUKf39/EhISqKmpwcfHB71ej16vp7KykkmTJmEwGOR1aWxsLKtXr6alpYUNGzbYZJX0hLu7O4sWLaKuro4zZ86QnJzM+++/T0BAwICfVUREBImJiZw8eVLeF02ePJnGxka582t3UlJSKCkpITIykgcPHtidw7ri5OSEi4tLj8JTb9k3zc3NODs795ooUFNTQ0dHB4GBgf1OKMjIyECtVtudZ0+dOoXZbGbGjBkYjGaqm9opKi3n0aNHjBo1ij/96U80NTWxcuVKvL29EUWRI0eOUFhYyNKlS2U/qO70p9ROFEWuXr3Ktm3bCAsL4zvf+Q6enp7ExMRgsVis9hujRo3C09OTEydOyPNcX8KTtK/rrzeyp6cnq1evJjk5mYMHD7J//345Qy8pKQk3N7cXbhr2145DeHoBTp8+TU1NDYsWLZIzZIqLiwkNDR1Q3WpaWhrQ+aURRZHPPvtMTkF/XpydnVm5ciUhISFs27ZNNn+Fb0WnyMhIli5dirOzs7xg6y9eXl6y2GZPrOmJmJgYPD09rUzgEhMTMRqN5ObmyplgH374IUFBQezcuZMbN27I77WXxqrX61m1ahV6vZ6vvvoKi8UyoIwnSQTT6XQYDAa7/k7S693JyMjA2dnZpu1oQUEBmZmZhIWF0d7ezuTJk8nMzGTz5s1WA+WTJ08wGAzy72fmzJns2bMHLy8vZsyYwYQJExBFkRMnTrBz5042btxIeXk5SqWSKVOm8MMf/pDk5GSUSiWNjY34+/tTW1tLR0cHFotFFqy2bNnCH//4RzmKVFtbK/+NSvelUCgYNWoUqampDLGU9Muo+LuTh/DBBx8QHR1Nc3MzpaWlfPzxx5w7d07eKCUnJ1NTUyNHapKSkjh27Bjbt2+ntbVVNvP19/fn9OnThIeHU1BQ8MLZfw4c/Hem//4c1iJKTyJGf7wntFotycnJ/N3f/V2vkdLuXYy6ZpmKoohOp7M7fxmNRpRKpU0wpKtQY2+Mv3fvHtevX7crZnX/WX8Mpvtjsi7Re5e8bw3e7WU+daWnNUFjY2O/N3cSXl5euLm59VimoNPp6OjooLW1lcePH9PQ0EBzczODBg2yyqyyWCxyhD4wMJCf/vSnzJgxQ96sbN26lStXrjBr1izCwsLYsWMHXl5eTJs2jYaGBi5cuAB0zncKhYLa2lo8PT155513+PnPf87atWtZs2YNer2eI0eOoNPpqKmpYcuWLeTl5cl+h62trXIJpxQcUqlUTJgwgdDQUG7fvo23tzcffvghTk5O7Ny50+rvecSIETx69MhKvFIoFPJ92CsPdeDgbwmn5jJe0xfz4+Bi/jmpjX+IqmL98lSozufBgwdotVrmzp3L22+/jZOTk+zf8/HHH3Pnzp1e54/Hjx+zdetWgoODWb58OTqdjsePH/P06VOmTp2KIAiy8ASdlQ5VVVW4u7szcuRILl++LH9HAwICWLNmDa6urmzcuFFuSNEbubm57NixA61Wi1qt7rFjXH+ZPn06ZrNZtrHw8fEhOTmZixcv2hWFYmJi5GfW3Nzcr+5mPRmMdzcXt+fx1FeZ3cOHDwF69bTqSlNTEzdv3iQtLc0mwF5cXMytW7cIShrP3+3PI+6fjzHy304x6eObXBBjOHgli9raWlasWCEHka9cucKtW7d44403eu2o15fwZDabOXjwIMePH2fMmDG8+eab8vVVVlYiCIJVaahSqWT69Onk5+fLweuq2noMqFHr7CdGSPuf3sS+7qhUKt544w3mz59PdnY2GzZs4NmzZyiVSsaOHcv9+/epq6uTRTqDsf+BqL8FHMLTc/L48WOuXr3KtGnTZFXdZDJRWlpq1aazP7i6upKYmEh2djarV68mLS2N06dP99i1rb9oNBreeust4uLi2L17Nzdu3KCgoIDt27cTERHB0qVLUalU6PX651qYjRw5Uh5o+uMnBd+KG1lZWbII4uHhQWhoqFVHCHd3d5YtW8bixYvlckG1Wt1jBEQSn1xcXGhqarIrpPUmPGm1Wurq6lCpVHb9ncC2w1JjY6NdI7729nYOHDhAUFAQT548IT09neTkZHQ6HUajkeTkZDkL6kHuQ778ejcd5s7NWlZWFg0NDSxevBi1Wo1CocDf35+7d+/KpWpJSUn86Ec/Yvz48ahUKgRBkDtrSMr7V199xb//+79z9OhR+R69vLyYPXs2EyZMAJDLQqUsrCVLlvDkyRNu3brFm1NS+Ze5CQA22QOSUXG6tpRAVSuBgYGyePT2228TGhrKlStX+Pjj/z97/x0e1Zlme8O/XUk5R5SREEISEiCCyDkHkwwGA8bGpm23u6fHPTNnzpxvzpnrfPNNfz3z9pwOdtvGxmSDAZOjyFlCIikLIQlllHOoUoX9/qHej1XKuLtn5jRa1+XLQtpVe9euqiese91rfcrOnTtFwp4yGS5evJgNGzZQUlIiPL28vLxwdXXFaDSK19G1/XAIQ3gVMTh/DmsSpTvx9DIeCu3t7Tx8+JALFy706/Xh7u5uRcQPGzbMSp7fn4K2awXW19dXXF/3VuWur0NR4fRGZnX/3Z/KZF3BD03J647eNm4/NDVKUSb1R1gpc/Phw4dFe7u/v7+VUkqSJKqrq5FlGRsbGyRJYsqUKfzd3/0dsbGxQKdy9ze/+Q06nQ6j0cjOnTu5cOGCWDtA53sVGBjIkiVLKCsrIycnB61WS0lJCdevX8doNFJVVUV+fj4ODg5IkkRLSws1NTUYjUZ0Oh0eHh5A5/u5cOFCpk+fTlJSEiUlJaxZs4ZNmzbx8OFDzp8/b7VZCQkJES1+JpMJnU4nVMrKZ2iIeBrCq478/Hzs7OzwcndhRIAPddWVDB8+nMjISC5fvizGkvDwcH784x8THR0txtZTp07x1Vdf9Ropn52dzaFDhwgNDeXNN99Ep9MhyzJXr14lKCiIESNGiPZbhXjy9vYWyvwZM2YgSZJVIphioxERESGSMnsbPzs6Ojhz5gyHDx8mMDCQjz76iC1btlBeXs6RI0deSnnaFU5OTsyZM4eHDx+KroRZs2ZhMBisrEIUaDQaYmNjKSgowM3NbVDpdp6env222vVFygyGeFLIupEjRw54HQD37t1Do9EQHx9v9Xuz2czZs2d54TiCf7rdwJXsKtH+LyNRYHBkT5k7DmMXi31wdnY2ly9fZvr06T0K8t3RH/HU1tbG/v37SUtLY+XKlSxYsMBqvszKysLPz4+SkhKrLo+IiAhCQkLYdeYmP9qfwqYTlRzSjyHm/3uZ9w884EGh9Z5aUda+TBq8gjFjxvDee+9hNpv58ssvycrKIi4ujnqNO2/vvCtIuqh/utjruV9VDBFPPwCtra2cPHmSsLAwqy/qixcvMJvNIp74ZTB16lSam5vJzs5mwYIFvPPOO7S0tPDFF1/w4MGDl07MUaBWq1m9ejXx8fGcP3+eAwcOEBwcLEgn6FzE/pCFmZKGBp0Vh94mpd4wbtw4NBoNycnJ4ncxMTHk5+dbXYckSURHR/PRRx8JUiItLa3Paoai8lKpVGRkZFhVzi0WC62trb222pWVleHn50dxcTEBAQE9Nm59EU/37t1Dp9P1iB29dOmSUBq5ubkRFxfHgQMHxLG3bt0CrzCudYTxyYsQ/jXXjQOGOG6Ywkl4lMeSJUtwd3cnKSmJ3/72t2Lis7GxYfv27axatQpHR0fq6upITU3l7NmztLS0kJycLIgmk8nE5MmT8fHxAToXE35+fiQkJHDr1i0cHBxEX3RkZCQqlYoDBw7Q0dHBu+++y6xZs9g8OZg3vSsI1bVYGRXHuMHbAfWM0lRTVVWF2WwmLS2NmJgYwsPDWblyJX/7t3/L66+/joODA5cvX6a5udmqChQREcEHH3yAu7s7+/btw2g00tDQwIwZM0hPT8fBwYHMnNyhasEQXmlY+3MMjkTR6/VWi7muxIwkSQOSHRaLhczMzH7nnNLSUquF2siRI/m7v/s7UWHtr3VM2eCEhoZSUVEhYpiVduOu19oVfV1Pb4vwP5XJukmW/qiUvN7uQ/f3JjQ09KXXDMoc2Nt76e7ujl6vp6qqCg8PD5ycnLh//z42NjbY29tjNptRq9XY29uzcOFC8ThbW1vMZjNlZWU8fPgQo9EoyMWWlhaePn2Kg4MDGo0GPz8/fvazn/Hzn/+cOXPmYDKZKCoqoqWlhRkzZvDw4UN++ctfsmvXLjIyMhg+fDiurq50dHTQ2toq3ksnJyf8/Pzo6OhAr9ezZMkS3njjDTIzM7l06ZKY/6Oiojh+/Dj37t1DrVaLx7u4uDBnzhweP36MnZ0darUaX19f1Go1JpOps91Oo+kzpXAIQ3gV0NzcLDbnrq6uIu24oaFBhNt0JX7s7OxYvXo169evF22ver2ePXv2cOTIEeEjmpaWxtGjR4mMjLTaU2RkZFBZWSnUTo2NjZhMJlHk9PHxob6+HoPBgL29PdOmTSMlJcXKn1Sr1bJ27VpmzpzJtWvXOHXqlJUKvqysjB07dpCens7y5ct54403cHBwIDAwkDfeeIPnz59z4sSJH9w5MnHiRHx9fTl37hwWi8VKndXbeDJu3Dja2joLsVlZWQMapHt7e1NXV9eDHNPpdFgslj5Js5aWll73MQosFgsVFRXY2NgIMr8/tLS08ODBA+Lj43t0dSQlJZFe0cbFGldk6BF0oih+//1GKQ8K6ygrK+P48eNERUWJEKr+0BfxVFVVxVdffUV1dTVvvfUWY8eOtfp7fX09L168ID4+HkdHR6uuGEmSaBkWx6FqX65kV4mSkUWGK9lVrNuRyIH71gFWNjY2L6V46gpvb2+2b99OeHg4R48e5X/tv8yJ5uGk1SFIur7O/apiiHh6SciyzKlTp5BlmVWrVll9aYqLi9FqtT+or9jLy4uRI0dy7949ZFkmKCiIDz74gNjYWM6dO8fBgwd/kNkfdH6xRo4ciUqlQpZlXFxcrBasP1TxBJ0bkGHDhgGdKXeDaRmwsbEhLi6Ohw8fiuOjoqKQJImMjIwex9vZ2REfH48kSRgMBj7//HNu3brV68Bsb2+Pm5sbNjY27Nu3Tyik+kqCkGWZ0tJS/Pz8+mwZ7K3VrrW1lYcPHxIfH29FSOXl5fHo0SMiIyMpLy9n0aJFHDlyhNbWVrZs2cLSpUtp9Yvj9091PfxCclp0nO+I4EqRgd///vckJCRgMBhwcHBg7NixtLe3k5qayuHDh/n3f/93PvnkE06ePCl8xTw8PPjoo4/w8PDAx8eHtLQ0UVF59uwZFRUVzJo1i7/+679m48aNGI1G7O3tuX//PhaLhfHjx/P+++8Lc9/c3FxsmkpZaF/MZ3Ns+ZvQajbbPGKxYwk/3bAUWZbJz8/n2bNntLa2EhcXJ+6DVqslOjqajRs38jd/8zfMmjVLbBb+/d//nRMnTlBVVcXmzZuZNWsWL168oKqqisjISFrtfbnQHMBf3TYNVQuG8Mpjc3ww/3um60uRKF1Jmq7jkyzLg/Z8gP4VOV3P8fjxY54+fSraiBXCu7/HvXjxQiTSgHW7nYODw6CTjbqqW7u+Vh9VC3N1Bf2arA+UrqdzcP6jUvKUudHquG4E2sSJEyktLe3VB6M3XwpbW1ux8VHWH12TQpV7b7FYaGxspKOjA1dXVwwGA7t37wY6x2c3NzerBf3Vq1f55S9/yc6dO7l27RptbW1MmDCBVatWCZVSU1MTFouF8vJyzp49C3QqFhYvXixUC7dv3+5MGDQacXd3x8HBgaysLKvNmpOTE5Ik0dDQQEtLC0uXLuWDDz6goaGBXbt20dHRwTvvvMOKFSuQJIl9+/aRmZlpparTaDRs2rSJmzdv4ujoSFNTE2azWRBjZrMZOzs77O3thxRPQ3iloQQA6fV6XF1dxRhRWVmJq6srU6dOJTExsUeHRWRkJD/+8Y8JCwujvr4ef39/SkpK+P3vf8/+/fs5ceIEY8aMYc2aNWJeMZvNXL9+nZEjRwpCXVmHdm216/r7+Ph47O3tuXHjhtX5JUlizpw5rFmzhoyMDPbt20dzczO3bt1i165d2Nra8v777zN+/HirvVhYWBhr164lKyuLs2fP/qDCvUqlYtmyZVRUVAhvp+nTpwP0mlzm4+MjEqI7OjqEwr8veHl5YbFYetzzgVLWWlpa+jUWLy8vx2w2ExwcPCjLl8TERFQqlbB8UdDQ0MDNmzcpdxo1YLu/SiXx2fWnHDp0CB8fnx57477QG/GUm5vL119/LQrtvRVlsrKy0Gg0REREMH78eNLS0sQ+LaWwjl9dLwakHuEsZouMDPzPkxlW+wkbG5sfpHjq+vi1a9cyfOJ8Dj3rJDq7rxv6OveriIEdLYdghZSUFJ49e8bGjRt7kBjFxcUEBgb+YPn8tGnT2L17N8+ePWPkyJHodDqWL19OREQEp0+f5vPPP2fZsmWMHj36pZ63sLCQQ4cOMXz4cCIiIrhw4QJ6vZ7Vq1cLufxgTfy6or29nbKyMpYuXUp2djYFBQVcvHhRmF33h/j4eO7fv09qaioTJ07E3t6eESNGkJ6e3kPuCZ0tAsrkMWbMGG7cuEFmZiavvfYa/v7+Vseq1WpGjRpFRUUF+/btY8uWLeJv3SsFjY2NtLa24ujoiMFg6JV46k3xdP/+fSRJsjLi0+v1nD59muDgYHJzc4mNjSUpKYnq6mq2bt2Kp6cnKYV1HC3o/Hx0H5iUf//+fg3LbUz4qFX4+fkhy7Lw4UhJSSE4OJi4uDgCAwMJCAjAzs6OS5cu8fTpU+zs7LBYLELqq8h2lWhsZZBXyMeamhrUajX+/v4sWbLE6nru3r2Lr68vFRUVONjqqCsvwsnejurqalJTUwkPD+fp06fcunULPz+/Pjeb9vb2zJ49m0ePHtHe3s706dNJS0sjLS0NBwcHRo8eLT4PH//+OLf1/khYxP1QqgWXMiv551Wjh+Kwh/DKQV1XyFxdAcGhI8jJL0SLGY0k/8Fbqf/Hdl/A9kXouLu791gEK9ViSZKEikStVjNy5EgKCgrEczc2NvLdd9+Jxw2U5AbfK7MUMqQr+iIKlIp6X/5vvS3WNZKMhsEfD997VnW0NiEhD4p86i0lT2ln7g+HDx9GpVL12p6oGKN2RdcFskLWdSUTu6oGnJycqK+vp729nbi4ODEvdHR0UFNTw7/+679anWvBggUEBQX1MKUNCgpi165dIojEYrGQmprKixcvRHu0ra0tBoMBWZbx8PCgoqKCuro6K9XXiBEjyMvLE35/oaGhbNy4kYKCAr788ktaW1uZM2eOCOtoampi79691NXVYW9vj8lkEq953bp11NfXU1BQQGBgIAaDAWdnZ6qqqoiOjqakpAQ7OztUKtUQ8TSEVxr5+fkieMbV1RUnJyfs7OyoqKhg1KhRTJ8+nSdPnnDp0iU2bNhg9VgHBwfWrVtHRkYG58+fR6VS4eXlRUFBgSB5u+Lx48fU19fzxhtviN/V1NSg1WoFke7l5YUkSVRWVhIQEIBOp2PWrFmcO3eOKVOm9Cjex8TE4ObmxsGDB/ntb3+LxWJh+vTpzJo1q89CSmRkJK+99hqnTp3C1taWBQsWvJT3LnQmjsbFxXHt2jURvjBlyhTu3LnD5MmTrfxaoVP1dO7cOXx8fEhPTyc6OrrP51bUX1VVVVahQ10DgcC6UKF4SPWneFKUw4PZJ7a1tZGSkkJ8fLxV8QLg4sWLaGzsSKsFywCLDLNF5npuLf42nV59v/jFL5AkyaqlW6VS9fi/EiTxySefoFKp0Ov1tLS0YGdnh62tLWfPnkWj0aDRaFCr1Wi1WjQaDRkZGbi6upKYmIjZbMZkMnHq1ClCQ0P5VVIjkkS/6yKVBJ9cyeKXy8JQqVRoNBoaGxtpbGwUwShqtdrq54E+O5IkcbfOBrUkYe7v3CqJnXeev9IJq0PE00ugqqqKS5cuMWnSpB69s7IsU1JS0mfyzmCgEAn37t2zen6l5/r8+fMcO3aMnJwcli5dOqgUucLCQg4ePEhQUBBvvPEGWq0WJycnvvvuOw4ePCjkqS9rLg6dxtiyLBMeHk5kZCS//e1vefz4MTExMf0aykGn3HfUqFHcv3+fCRMmiHS7Y8eOUVdX1yOSW/ECsVgsDB8+nEmTJnH69Gl27txJfHw8c+fOFQO2Mqht2bKFAwcOsG/fPuFr1J0sVHxM9Ho9Go2mB4ml/A2s0w+Sk5OZMGGC1Xtw8eJFOjo6sLOzEz3DRUVFbN68WUzOO+8UoFJJPSSrXSEhk270wkvq9KoKDAwkNjYWi8VCQkIC06ZNEyoB6NyEtbW1UV9fz69+9Svx+9WrVxMREcEvf/lLq+htvV7P2bNnxabS0dGxx+suLi6mpKSE8ePHU1VVxZMnTxg+fDiOjo4UFRVx+/ZtQRC+ePFiULJaV1dXmpubGTt2LDNmzODFixekpaWRkZFBa2srlRZHbnd03qfurS3K/fqfJzMY5eP0Sg/aQ3j1UF5ejlqtJtDPl6KC7xMfZVlGo9H8SYz4+/MTVPxzoJPsaGtrw83NTbQzdzUXHywUX56+Uki7Ijg4mNLS0kG9zoHiqIEBpfXKa1FS8jrVqX0XlDoN3hsGnZLXHUFBQYMypO0LXefviooKEZQRGhrKw4cPkWWZJ0+eiPtsNpuxt7dn0aJFVulN9fX1TJ06tcfzu7m5sXnzZnbv3o2dnR0dHR0YDAaqqqrQ6XQsXrwYo9HIgwcPaGxspLy8HK1Wi8ViwWQy4ebmhqenJ8+ePRPXNnbsWNLT0zl8+DB5eXmEhYWJKG7oVGPs27eP9vZ2XFxcMJvN4n2dM2cOYWFhfP755wQEBFBSUoJKpRKqcUVZ4ejoONRqN4RXGrIsU1BQwMiRIwXxJEkSvr6+ov1Oq9WycOFCvvvuO/Ly8qzWl/B9+nRwcDD79u2joqICDw8PfH19OX/+PA8ePGDhwoUEBQVx8+ZNYmNjrQqRNTU1eHh4iDWoRqPBw8PDyptn3LhxJCYmcvXqVTZt2tTjNShtaYpqNygoaED17tixYzEYDFy8eBFbW1uxD3gZzJs3j5ycHC5dusSaNWuYMmUKKSkp3Lx5kxUrVlgdO3r0aBISEnB2dubZs2e0t7f3IHQU2NvbY29v38PnqSvx1J3s6OjowGg09uvxpCitwsLCBnxtSprglClTrH6fk5PD06dPmb98DZ99NzivVRmJYUHDcdZJggwym81W/ykthBaLBaPRiMlkQpZl6uvrrdYP7e3tA1q3tLa2WinkcnJyyMh+SrIhbsBCkVmGW/kNfLbjKzFn19bWDsqbqzuhpvxsRsWllpiBz22RuZRVgd5oxlY7ePX5XxKGiKdBwmg0cuzYMTw8PFiwYEGPv9fU1NDe3v6D/J0USJLE1KlTOXLkCKWlpVYm13Z2dqxdu5aIiAjOnTvH559/zmuvvUZ4eHifz1dUVMTBgwcJDAxkw4YNwgB71KhRbNmyhUOHDrF3715iY2PR6/XC+2GwyMvLw9PTU1QxVq1axdGjR/nuu+/42c9+ZiWL7w2TJ09m9+7d5OXlER4eTkREBDqdjvT0dGbNmmV1rFarxcfHh9raWl68eEFMTAzvvfceSUlJXL9+nZycHJYtW0Z4eLjYyNja2rJlyxa++eYbrl+/jiRJPSSqpaWluLq68uLFC4KCgnr15DAYDIJxh07Vkclkshqsnz59SmpqKpMnTyYpKYmgoCCePXvGG2+8IVRUeqOZy1mVPeSf3aH4hTi6uqPRqKisrKSqqgpJktDpdBw5cgQfHx9MJhOtra20trZabdwcHR1paWkhIyODZ8+eIUkSKSkpFBYW0traSmFhoagaK0x/VVUVV69eFdWIjIwMHBwcKCkpQafT0dDQQHR0NLW1tbS0tODj42MVLZuWloa7u7uoEPRW4VBktbdv32bcuHGoVCrGjRvHuHHjKC0t5efHswdUFwxVC4bwqqGtrY22tja8vLx6VFiBHi3HWq12UG1qw4YN61Xp2p1E8vf372E0XlZW1oMEUhZgXR87mGsZjAfHYNvMJUkaVLv3y6TIRWsqKepw7fcYxeC9PxLNyclJKH26oyvpNBgiriu6jq3KvVc+Ew8fPhTHaTQaq9fd3NxMcXGxFQH34MED5s+fb6Xura6uJjMzk8zMTAwGAwaDAScnJxYuXEhCQgIdHR1cvHgRSZLw9PQURKjRaMTFxUUoK5qbm1m2bBmxsbHs2bOHp0+fYjabKSwsZO3atURHR4vPkBKCovjCmM1mGhsbkSSJyMhIZsyYQXJyMrW1tcTGxlJRUYHJZBJKgK7/V6lUNDQ0DPp+DmEIf0l48eKFKBRAZwEQOlvDlMAa6LS7CAkJ4eLFi3z44Yc99gKyLIvv3KhRoygoKMBoNLJkyRIyMzM5cOAAHh4etLW1MXv2bKvHdjUWV6AosBQoSc3fffedle2FXq/n3LlzZGRkEBsby9y5czl//jwHDx5k0aJFTJo0qV81Snx8PHq9nuvXr2NjY9NrR0V/sLe3Z/78+Zw+fZpx48YxfPhwpk+fzuXLl5k6daqVj5KNjQ3R0dEUFBQgyzKZmZk9PGC7wsvLq4dnbX+tdn1ZhigwGo3U1dXh7Ow8oDChvb2d5ORk0XGioKOjgwsXLhAeHk5cTCSqY8UD7lmgU0W0bcubL0WmnD9/nsLCQmxtbSkrK2PZsmVERkYKUqr7/00mk5iL5s+fD3QW3mtra0lLSyMwdCRy9uBb4919/HHUWEQ4lru7ew+FWfef+/p/i0mF3DK4c1tkaNabhoinIfSPK1euUFtby49+9KNeyYni4mIkSepVMfMyiIiIwMPDg3v37rF+/foefx89ejTBwcGcPn2agwcPEhcXx6JFi3qQPEVFRXzzzTcEBARYkU4KgoODeeeddzhw4AB3794FOhnk3jY2vUHx94mMjBS/i4qKIiIigqdPn3L+/HlWrVrV73MEBgbi5+dHUlIS4eHhaLVaIiMjSUtLY+bMmT0mEz8/P2pra0WVXaVSMXXqVCIjIzl79iwHDx4kJiYGi8UiBgMbGxs2bdrE559/TmNjY4/UQcVYPD8/v9dKL3ROAIq/k9FoJCkpiXHjxonFbVtbG2fPniUsLEz4nBQXF7Nq1SoiIiLE8zTrTYMawKFzUAwOG4mTFvF6LBYL9vb2FBQUCCN7jUaDi4uL8Lfw8vISCrampiahvmpubqahoYHW1lZ0Oh329va0tLSg1WoxmUxUVVWJqoPRaKS9vR2NRiNaFFQqFYmJieJaui4YoHNh0bXVpj88ePDAirQCxcR3EJWKoWrBEF4xKOmOQUFBvbYMdVcaGY3GHoRPbyqg7qSTs7MzTU1NPZ6vt3S70aNHYzAYRHpOX2qnwfo0DYSu7WNdoURPd18EDoSXUWcpKXmJpqA/EOPfK5+UlmDF4L0/vqgr6dT1/ehO9L2sGW5fr12SJNzd3TGbzbS0tPDXf/3X/D//z/8jjps8eTIPHjwQ55s6dSr37t1j9+7drFu3TizwFVXTqFGjWLBgAXq9npMnT3Lx4kWMRqMgymRZprq6msDAQCRJoqSkhMbGRpqamhg9enRnRTojQxBJ7e3tgozz9PQU831qaiqnTp0COklP5bk0Gg3u7u6sXLkSvV7PjRs3iI2NJScnBwcHB9zd3ampqcHLy0t87pT1TH8JjUMYwl8y8vLy0Ol0olVJUeD4+vqSlJSEwWAQiZaLFy9mx44d3L9/32o9LMsyFy5cICUlhUWLFjF58mQaGxs5deoUFy5cIC4ujpiYGM6fP48syyQmJjJ79mxBaNTU1IggIgU+Pj7k5+db+fxERUXh5+fHlStXePfddykqKuLEiRMYDAbWrl0r2sfeeOMNrly5wsWLF6mpqWHx4sX9Fs1nzpyJXq8XyqcxY8a81D0cO3Ysjx8/5vz583zwwQdMnDhRFL1ff/11q2PHjRvHkydP8PPzIz09fUDiqXt6c/dWu64YiHgqKipCluVBqZ2SkpKwWCw99j03btygra2NJUuWYKfTsCDKhyvZVQN2acwZ6fnSa/K2tjZqa2uxs7PjnXfeEWKLvlRi0OmvFRER0ePzWVFRgZ2mkwAbLFH24XtvY6tVc/z4cZqamnj77bdf6voVGAwGkh8+ZseZmkG15askcLJ9demXIXPxQSA3N5fk5GQWLlwoIoq7o6SkBF9f3wHNSgeCSqViypQpZGdnCxa2O5ycnHjzzTdZtmwZ6enpfPHFF1aDV3FxsSCdNm7c2IN0UuDj48O2bduEJ9XLxNfX1NTQ1NTUY4BbuXIlNjY2pKamUlBQ0O9zSJLE5MmTKSgoEERGTEwMdXV1lJeX9zg+ICCAjo4OysvLrRbZShvAqlWryMvLo6qqitraWivyKTQ0FK1Wy4EDB8TrNJvNvHjxAicnJwwGQ5/tgXq9XryvDx8+pL29XSQxAVy4cAGTyYSnpycNDQ00NTWxaNGiHpPbi+KCAWO5xb1BJi4mikWLFjF37lyGDRtGTU0NBQUFQkW0adMm1q1bR1tbmyDBFi5cyFtvvYWtrS3R0dFs3bpVGPXq9XoWLVrEf//v/53Y2FhcXV1Zs2YNANHR0fz1X/81H3/8MSNHjsTZ2Zl3330X6DSz/W//7b/xj//4j/zDP/wDkiSxbNky4eXl4uLCpEmTUKlUvPXWW/zN3/wNP//5z/nrv/5rfvazn/HTn/6U7du34+LiIqpe/v7+eHp6is+mEfWgTXyVasEQhvAqQDGGHT58eK/xy4DwI1AW8N0Jn46OjgG9B7sXVPpbyD958mTA8X0w6F5c6J6qMxC6Fhn+nPhTpeQp6Lqp+HNcv9FoFC0Mer0ek8kk7pXyOcjLy2Pp0qXiMR4eHqjVaiorK/n000+5e/cuPj4+vPHGG/z85z8nMjKSBw8ecPLkSVQqFUajERsbGywWi0gGUqlUlJSUiDnWxcWFoKAgMjMziY2NpbS0lD179mCxWIiPj6e5uRlnZ2euXr2KLMvcunWLkydPAp2tIo6OjpSUlKDVatFqtWzYsAGdTsfNmzexWCy4u7tjNBppbGwkNjaWkpISAgMDhcJJqfwPeTwN4VVFfn4+w4cPp7GxUbTZAVYG4wp8fHyYMGECN2/eFCSHxWLh9OnTpKSksGLFCmFC7eLiIgJz0tPTuXLlCmq1mhkzZpCamsonn3xCYmIizc3NtLW19ap40uv1VmpWSZKYP38+ZWVlHDlyhL179+Lm5saHH35o5VmkUqlYuHAhK1as4NGjRxw8eLBfc2hJkli4cCHjxo3j1KlTomAyWChr3traWhITE9FoNMyePZvMzMweBZzAwEDRVlhcXNyv2lJRPHUtNnRvtes6PyjFi76IJ6VVLCYmpt/Xo9frhc1J1y6QiooKkpKSmDVrllDIvTc9tF/SCUAGXF88fKk9ZE5ODtnZ2ahUKrZv327V4dMXFPFAV8EDdL4/sbGxFDx7SqBUj2qAfZZaJbEwylcQZUr798uivr6ehIQEfv3rX3P9yiVCbVp7pA8PdO5XEUPE0wBoaWnh1KlThIeHM3HixD6PU4zF/xQYM2YMDg4Oov+2N0iSxIQJE/jggw9wdHRk9+7dXL58mYKCAr755hv8/f37JZ0UuLm5CTPBU6dODdhXqyAvLw+1Wt3DjFtpCQT47rvvBoyojIqKEnHP0Lm5cnBw6LXXVlGTGQyGHqarkiQxZswYPvroI2xtbSkuLubAgQOiUt7W1iYUVgcOHKCoqIiqqirRh6zVanuYJCpQKkJms5l79+4J0gY6jfwyMjKYNm0aycnJyLLMzJkzeyREVFVVcebk8T9sXPofmFTIjLBtZf+eXfzqV7/i3/7t3zh9+jRqtZrVq1ezfft2zGYz9+/f59ChQwQHB/Pee+8BnS0pkiTh4+NDRUUFt2/fprm5GUmS+NGPfsTkyZORJImqqiq8vb2Ft0dWVhYmk4nGxkbS09OZPHkyjx8/BrBqvdBqtXh7e1NeXk5RUREqlYrGxkacnJzw9PTkzJkzPH/+nCdPnnDjxg2OHz/O119/zVdffUVjYyM1NTUizSgwMJAZM2Ywd+5cRgQHDJqUe9WrBUN4tfD8+XOg79Y46CTRp0yZ0i+J0ZeSRiGc6urqrOYLi8XCqFGj+mxj6D62z5gxw+o5lcVvfwSWkrIKCHPRl8GfSlE1GPSVkhdsb+rXc2OwUNQ5L2uA2x8sFou4pzt37gS+f7/NZjPnzp0Tx545c+Z7byuNhr/9279l9uzZlJWV8emnn3L48GGam5sJDw8XBKHBYGDUqFGsXLmSjo4O0eIOne9tY2Mj7u7uRERE8OjRIywWCxqNBq1Wy8yZMxk+fDhGo5G8vDwOHjzI9evXgc5CiJubGzk5Oeh0OkwmE6+//jpubm7U1NSQkpLCtGnTePLkCT4+Pmi1WkJCQqiqqiIoKEisD+zt7XFwcBBWAkMYwqsEg8FAaWkpI0aMEMSTAi8vL1QqleggUDBnzhzUajVXr17FbDZz7NgxUlNTWbNmjVVyMXSOVRMnTmTz5s10dHRgMpno6Ojgww8/JDo6msuXL/PVV18B9Eo8AT3U805OTuh0OnJycpg7dy5vvfVWr+meAHFxcWzevJny8nJ27tzZr0+hJEksX76cyMhIjh07Jgo6g4WPjw/x8fHcunWLhoYGxowZg6enJ9euXetxnri4OJHa2p9vUG/JdgO12mk0mj4FDs+fP0eSpAH3ovfv38dsNvdQDZ09exZPT08rGxFnQzVTNJ37wu7pdhIWJOB/LRlJzDAH9u7da9Xe3RtkWeb27dscPnwYZ2dnvLy8+nx/uyMrKwu1Wm3VSWKxWEhJSeH27dsALAzW/OGq+obFIvPe9O+FBi+TaifLMkVFRRw+fJhPPvmE1NRUIiMjcXV1JVpV0a8XZG/nfhUxRDz1A1mWOXnyJJIksXLlyj4XhM3NzdTX1/9R/k5dodFomDRpEk+ePBmwUufu7s7bb7/N/PnzSUpKEn3WgyGdFCiJCq6uruzfv5+cnJwBH5Ofn09wcHCv5wgPD2f06NG0t7eLyOW+oFarmTRpEmlpabS2tqJSqRg9ejQZGRk9NkoeHh6iGtDXBszBwQEvLy+Cg4Opra3l888/F1UXZ2dn3nzzTQICAvjmm29ITU1FpVJRV1fXr1Gh0mqXmppKc3OzUDu1trZy7tw5IiIiePLkCbIsM378+B797YWFhXz55ZeYTCaiNZUDKnssQKT0QpxbqexGR0cTFRWFh4cHLi4u5OXlMWXKFDZs2ICDgwMODg6iIuLi4kJubi7Xr1/H2dmZsLAwK7WekqRRX1+PjY0Nra2tZGZmkpiYiE6nY+zYsaSmpqLT6awWG2azGXd3dwoKCkhPT8fGxkYsUpR2vePHj3Pv3j2qq6txc3Nj0qRJrF27Fq1Wy5w5c5gxYwZGo5Fhw4aRmZnJtWvXKC8pGhQpN1QtGMKrhI6ODpEMplKp+mw5g84iwvjx43somwZSEXX1aupK5MiyTG1tLW+99dagrlW5NltbW4KDg0Wld6B5SCEJXrbF7D8LGknGTjIJU1J7e3srtdgPTbVVFr69tfJ3XXt0N4IdLJS5QVFb1dfXW5ExISEhWCwWQfT8/ve/55NPPuHBgwcEBQURHh5OdXU1z58/FzHrkyZNIicnh5MnTwriLDY2lr/5m78hOLgzffTx48fk5OTg7e2NRqPB0dGR+vp69u3bx4IFCzCZTKhUKvLyOk3zJ0yYgLe3NykpKcKXauHChaJV5/Llyzg7O+Pm5kZDQwN6vZ7IyEihBgwMDBQqCjs7O1HRHzIYH8KrhufPn2OxWAgLC6OhocGKeFKr1Xh5efUgfuzs7Jg7dy5Pnjxh7969PH36lPXr1/eroklLS8PW1pY5c+bw4MEDDhw4wNixY3n//fcFSXLx4kUrksvZ2RkbGxtxflmWSUlJYceOHaLVysHBYcDxdPjw4aLwunPnzn5DGlQqFWvWrGH48OEcPnx4UKmjXTF79mxsbW1JSEhApVIxZ84c8vLyepxT6Xbw9PQkPT29z4KQsvfqqmRWUtb6arXrGhTUFW1tbTQ3N4txti8YDAaSkpKIi4uzSsd7+PCh8FlS9kKNjY2cPHmSldHuHH1/MgsifVC4JwmZEE0z/228lm0zR7Jlyxbi4uI4e/Ys58+f75XoN5lMnDx5kmvXronCw8vMl9nZ2YSFhYnPVFlZGTt37uT8+fNERUURFxeHtqGYhW51gNyDKFOrJCTgn1eNtvKJVRJZ+4PJZCI1NZUvv/ySPXv2UFNTw9KlS5k5c6bYC/3TR5v5/62MptOp1/o97+vcryKGiKd+cP/+ffLz81m1alUPU+quUAavPxXxBDBx4kRUKhXJyckDHqtSqQgKChIDVmVlpejfHQw0Gg22trbExMQQERHBkSNHePToUZ/HG41GioqK+u0jXrFiBXZ2dmRkZIgFZV8YP348kiQJ35+YmBhaW1tFpb/r6/Tz80OtVvdJPCnHOTo68uMf/5i4uDguXbpERUUFkiSh1WrZuHEjgYGBJCcn4+rqSmlpqVgk9waDwYBOp+POnTtERkbi5eWFLMucO3cOWZZxcHCgtraWkJAQli1bZpUed/r0afbu3YvZbEan0zE+yJVpus7PS/eBqZN0kZmiKcZDbmTq1Kn8j//xP9i2bRve3t6cOXOG//N//g+/+93vaG5uFpOLcj7Fo+XRo0dkZmZiMpnYvHkz3t7eVhtKRd7s4+NDfX09Hh4ejBgxgnv37vHo0SMmTpxIYmIiBoMBb29vLl68yDfffMPvfvc7/uVf/oXs7GwaGxtFi4XFYsHFxQWdTse4ceMAWLNmDe+99x6rV69m1qxZwjBQSRjq6Ojg/Pnz1NbWIkkS48eP5+9XTRyYlBuqFgzhFUJpaSmyLOPt7d1rhbbrAvTu3bvMmzevx6K0r0reYJQ1NTU1JCcn90rKd/cVzMzMBDrbfQMCAsQm44dI2PtC96r5fwXU1dVZtVP8UAJN2Wj09viu6w+TyfRSqii1Wo2Hh0evz9v1fVU2T8p1NDY2EhkZiYeHB1lZWVRXVzN37lw+/vhjoqOjOX/+PMnJyeLapk2bxtKlS0lOTiYrK4tRo0ZZbYBqa2uZOHGiMB9vbGzku+++w9bWVlzbqFGj8PPz49q1a6hUKmRZZsyYMcIQuKCggNzcXObPn09ycjLDhg2joaGB2NhYiouLcXR0xM3NTRTs7OzshM/MEPE0hFcNeXl5uLu74+rq2oN4gp4G3wpGjx6NTqejpKSEDRs2MGrUqD7PUVtby6NHj5g+fTozZ84UZNOuXbvIyMggNDQUR0dHmpub2bFjB6dPn6alpUUo86uqqmhpaeHQoUOcP3+esWPH8tFHHzF69Ghu3LgxKFWrh4cH7777Lr6+vuzfv1+o9XuDWq1m/fr1DBs2jIMHD/ZQfPUHGxsbFi1aRE5ODrm5uURGRjJs2DDRKqzAwcGBkSNH0t7eTnV1da/3WDnOzs6u12S7voinrmRRVyjrg65qoN6QnJyM0Wi0sgtpaWnh6tWrjB07VuyFFLWbjY0NK1euZGKIB79bH8PHAaW855lP8t9N579P96C54AlGoxG1Ws2yZctYtmwZDx8+ZP/+/VbCiZaWFvbu3UtWVhZr165lzpw5Vq3fA6GpqYmSkhKioqJoa2vjzJkz7Ny5E1mWeffdd3nttdeYMmUK7e3t+LcX8Pna8B5E2YJIH46+P4XN8db7PSXltjeCsLW1lZs3b/Kb3/yGkydP4ujoyObNm9m2bRsFBQUkJCQQFxfHu+++i4eHB/EeRpbqnjI91EWcWyXR57lfRQwRT32goqKCK1euMHny5B7Rot1RXFyMm5tbnwPCD4GdnR1xcXEkJycPmMBTWlrKgQMH8PPz4+OPP2bq1KncuHGDXbt29ekT1R0ODg60t7ezdu1axo8fz5kzZ7h9+3avX8Ti4mJMJlO/90Wn0wlz9IFa7uzs7BgzZoxIi/Pz88Pd3b3fdrv+JgulL1qJed62bRsWi4XHjx9z5coVADZs2IBGo6G+vp6Ojo4+/Z2gk3hqb2+nvr5etJNkZmaSnZ3N+PHjefToEU5OTmzevFmcOz09nd/85jdiAhw1ahQTJ06ktLSUf1g3gz2bYwlU1ffwC1lu+4zf/vR1bGxsuHfvHsnJyQQGBvLGG2/w2muv0dHRIQZzHx8f7t+/LzY99vb2PH36lDNnzghS0NbWVhjwKlAmOQcHB3EftVotVVVVGI1G7ty5I2SrZWVlFBQUoFarGTVqlJhYlPdi2bJlyLLM5s2bRXpRaGgop06dEtcpy7IgHy9fvsyTJ0/EZDNy5Eg++ugjli1bhq+6lSmaYjqt1YeqBUMYghJaERQURH5+vlWCDlj7A9XX13Pt2rVBtxQpj1UUUd2JJGUsy87O7vU5e0s9gk6fiYyMjB4bhoFSTgcDJQHoh6qK/qOh+GS8DHq710pLNHSmqr4M8aQo15T3x8nJidDQUJYvXz6gr0Z2djZlZWV4eHiIjdSBAwfYu3cver2e9evX8/Of/5xJkyZx/vx57OzsiI6O5sKFCyQkJIhNpFarxWKxcO/ePdrb2/Hz80Ov11NXVyeUWIonyunTp4HOzYCPjw/Lly8XBY6EhAQCAwNxdnamtLQUR0dHHB0dGT58uLA7kCTJinhSiLEhn6chvEpQAoDCwsJob2+no6OjT+KpKymt1+s5ePCg+F1fSZwKrl+/jpOTk7Ai8fLy4t1332X27Nncu3ePJ0+e4O7uzocffsjixYvJycnhk08+4fbt23h5eVFSUsIXX3xBWVkZGzduZNmyZUId39raKmw4BoKdnR2bNm1i3LhxnD59mkuXLvVZBFAK0G5ubhw4cGDQ+yTotAcJDQ0V3q7z5s2jtLSU3Nxcq+Pi4uJoaGjA1taWtLS0Xp9LkiS8vLx6JZ4MBkMPjydF8dQblP1SVy+s7ujo6CAxMZFx48ZZBUldunQJSZKsEttv3LhBaWkpa9euxc7ODovFwrFjx2hprGP75jfwcndl0qRJtLe3W+3VJkyYwFtvvUV1dTVfffUVFRUVvHjxgq+++oqGhgbefvttcY1djeUHQnZ2NpIkodfr+fTTT8nMzGTJkiVW/lC2trYivXzJhAi+2DyerP+9mIPrgths84j//7LQXvcPtra2yLJstU+qqKjg1KlT/PrXv+bu3btERkby0UcfsWnTJmxsbNixYwfPnz9n/fr1LF26VBRZkpKSGBfgzN73ppP1vxeT8j/mk/W/F/PF5vFDe5c/4P+O1dt/MIxGI8eOHcPT05N58+YNeHxxcfGfVO2kYPLkyRgMhn7Ze4V08vX1ZdOmTdjZ2TFv3jzeeecd2tvb+eKLL4T3UH9wdHQUrW5Lly5l1qxZXLt2jYSEhB6PzcvLw8nJSchE+0JISAjjxo3DYDCIlJr+XmtraysZGRnCKC47O7vH5sXf3x+z2dxvSo1SKVWgbNZGjx5NUlISX3zxhYiCHYwMv729naqqKkaMGMGwYcNoaWnh/PnzhIWFce/ePVQqFdu2bUOtVlNXV8fOnTs5fvy4INvi4+OJiIjg7t27jB8/nsLCQu6e3MdcXQE/HVbIBpsnXPtwLB/GaPGiiezsbH7yk59ga2vLxYsXuXv3Lvfu3ePMmTMMHz6cn/zkJ0ybNo26ujosFgt79uzh3r17FBUV0dbWxhtvvCF8tkpKSjAajWJT+t1334n0uf3791NRUUF5ebm4nzY2NkJVplKp+Pu//3s++ugjNmzYwMKFCxk/frzwwvLy8hL3tr29nfXr11NVVYW9vT2yLHPq1CkePnzIjh07+Pbbb4FOVZbJZBILoAULFuDh4cGLFy84f/4845xa+HBEO0GqeqF9GqoWDOFVxfPnz5FlGV9fXwoKCqza1pSFjqenJ2q1Go1Gw4MHD146WVUhcbqTOT/U9Pr58+c9FvJxcXF/0la6/1va8vprjXwZ+Pr6ip8VEmawkGXZah2jtEu/ePFCjPt2dnZMnTq1z01NbW0tycnJ3Llzh/LycmFkX1JSQnZ2NvHx8URFRXHs2DGysrLQ6XRotVomTpyIp6cnr7/+OrIsExgYSFtbWw8TWqVlW5mH3d3dsUhq5i9fjUnunAkeP35MVVUVixYt4v79+7i5uVFaWkpsbCwWi4Xy8nKxDmtvb0elUqHVaoeIpyG8klCUmCNGjBDFye7Ek6+vLyaTSXgMtbW1sXfvXqqrq3n77beJiYnh6tWrfapWX7x4QWZmJrNmzbKam1QqFTNnzmT79u2YTCaKi4u5c+cOEyZM4Kc//Snjxo3j+vXrPHnyhMbGRnx9ffnwww8ZOXKkeA53d3fGjx/P3bt3rYj3/qCobhYtWkRSUhJHjhzps3Bva2sr9kz79+/v4RvbFyRJYunSpTQ3N3P79m1CQ0MJCQnh2rVrVuNyWFgYTk5OODk59WodosDT07MH8dS9WKygpaWlz+4bJYShP1VwSkoKBoOB6dOni98pthkLFy4U6tD8/Hzu3LnD3LlzhV9UQkICz549Y926dcKfy83NjYiICO7fv2+1XggODuZHP/oRdnZ27Ny5k6+//hpHR0e2b99utT55GeLpyZMn2NjYcPHiRcLDw/nJT34iQo0UXLlyBa1WS2trqwiostWqiYsKR6uiz0AUpXWvvb2dnJwc9u7dy44dOygoKGDOnDl8/PHHLFu2DA8PD+7evcvu3btxcnLi/ffftzI6r6yspKCggClTpiBJErZaNV5ONkPWIN0wRDz1goSEBBoaGli7dm2/vbLQySBXVFT8yYzFu8LV1ZXRo0eLGHu90Ux1swG9sbMiWlZWxoEDB/D29ubNN9+0qigHBgby/vvvM3bsWC5cuMCBAwes0iO6w8HBQSzMJEli9uzZLF26lPv373PixAmrKqxSRRnMgLF06VIcHR3Jzs7uURHoCk9PT8LDw0lKSkKWZWJiYujo6ODp06dWxymDVltbm0jd6I7uC3OlYjNp0iQ++OADnJycrIgQe3t7jhw5wrNnz3p9vra2Ntrb25kxYwayLHPmzBmg8/5bLBYWLVqEo6Mjly5d4tNPP6W8vBwnJye0Wi0REREMGzaM06dPo9PpePjwIXl5ebi4uODr68valSuwk0w4O9gJQ/J79+6h1Wr56U9/iq2tLVeuXOHy5ctMnTqVjRs34uHhwezZs/n444+JioqisbGRy5cvi9a37Oxs9u/fjyRJXLx4kdzcXOrr63ny5AktLS3Y2Njg4ODAunXrkCSJJUuWMG3aNCRJwmAwUFZWhpeXFwEBAb2aGKalpaFSqTCZTLi7dzL4tbW1+Pn5sXz5cjIyMnB2dubZs2ecPXsWOzs7hg0bBnQuSDZs2MCPfvQjtFotqamptLe3c+TIEby9vQkNDUXXVMoSpzIubY9mg80Trn8UN1QtGMIrh64Eu0qlwmAwUF9fLxb4yhjn6emJ2WwWXk1NTU39xhF3hSRJYrO/devWl1Il9bYZ6GtOUMIL/qPxX0EZ1Z+5elf0d61dCy3dCcGB5mFZlq1aAdva2njw4AG5ubkMGzYMSZKQJEkUUWJiYtDpdGITosDe3h5vb2/RGvfixQsSExP57rvv+OSTT8jKyhLni4+Px9nZmYMHD9La2srIkSOZNGkS5eXlVpse5XUbDAbx+ai0OPJdhRtf1o9izu/uE/VPF9m+N5mDl5KIjY3FwcGBrKwsQkNDaW9vZ8yYMbx48QKTyURQUJCoXCvfE61WK1q8hzCEVwV5eXmoVCpCQkL6JJ66Gnw3NzezZ88empubefvtt/H392f+/Pl0dHRw8+bNXs9x7do1PDw8GDt2bK9/V1p8w8PDuXnzJl9//TXNzc2MGTMGV1dXsa9obm7ulfiZOXMmZrOZO3fuDPp1K2nZGzdu5Pnz5+zatatPUsnBwYEtW7YgSVKP1rD+4OHhwbRp07h37x61tbXMmzePqqoqMjIyxDEqlYqxY8fS0NBAc3Nzn8FNfSXbvUyrneJ15+/v3+d8YDQauXfvHmPHjhVm3iaTiXPnzhEcHCx8qVpaWjhx4gRhYWGiHS85OZnk5GSWLFnSo9MlPj6eqqqqHj5Xzs7OhIeHYzabMZvNDB8+vMe1D4Z40uv1nDp1ioqKCrRaLW+//TarV6/uUSQpLi4mNTWVBQsW4OzsTEpKivibra0tAQEBfRrKK3Pv7t27OXz4sAiz+Ku/+iumTZuGnZ0dra2tHDx4UHRCvf322z2+T0lJSTg7O/dI3RuCNf7zV2X/xZCTk8PDhw9ZtGjRgIoe+N6D48+heAKYOnUqufVmNn1+g6h/usjEX1wh6p8usvWrO/zb7mN4e3sL6V936HQ6li1bxubNm6muruazzz4jLS2t10q2g4NDDyJn4sSJvP7662RmZnLo0CE6OjpobGykurq6X3+nrtBoNCI179ixY/36fcTHx1NZWUlhYSHu7u74+/v3aLdzdnYWjH9fPk+9yVMBkby2detWUVkpLy8nNDSUsLAwDh8+3IMck2UZvV6Pm5sbQUFBpKWlkZubi0qloqOjg4CAAFxcXPg//+f/iJjVBQsWoNPp0Ol0wpwPIDIykq1bt/LRRx/R1NREVFSUGHQtFgvBwcG4urpiNBpFi2XXgdpoNJKbm8vdu3c5c+YMX3/9tVjsK89hsVjE7zw8PPDy8hImgj//+c95++23cXBwIDg4mGHDhiHLMm5ubiQmJooEKzs7O5qamnr1vTKZTKSlpeHl5SVSO5ydnamtraWwsFDcv4qKClxcXFCpVBQXF4vK/1tvvUVERAQ2NjZER0eTmprKsWPHMBgMrF+/Hm9vb5qbmwkNDcXJ3hY7yYRW+vPHpQ9hCP/V8OLFC8xmMxqNhqqqKiG/VxZJykK1pqZGjIlqtZrm5mbhuQD9ExNdx8ljx469lJKmN0JFrVYTHx/fY0H2p/R5UtCdGOkNf4r2vq4YqBDVGwZqfRzM+9QfBqNM666anj17NhMnTqSyslIs/tetW8fPfvYzVq9ezeLFi63UxiqVCrVazYoVK/j7v/97/vZv/5a33nqLmTNn9roRun37NrW1tTQ2NvLb3/6WU6dO4e/vj42NDbdv3xaG7A4ODlafuRyTF+c7IiixuKIkeFtkuPq0mmNNwdS6RZGcnIyNjQ0tLS34+vri7e0tqv1KRLssy2JNJEkS9vb2Q4qnIbxSyM/PJygoCJ1OR0NDA1qttkdBwsHBAScnJ4qKiti9ezcGg4F33nlHEFLOzs7MmDGD5OTkHqqcwsJC8vLymDt3bp+kuaJ8nTlzJu+++y4dHR188cUXfPXVV9jY2AhTcL1eLzoFupJEjo6OTJkyheTk5H4L570hPDycd999F71ez1dffUVpaWmvxzk7O7NlyxYMBgMHDhwY9Fw1ffp0nJycuHDhAv7+/kRERHD9+nWr8X7cuHEYjUbs7e37TLfz9vbGbDZbFQd6I54sFgutra29qlKzs7OB/tvsHjx4gF6vt0qfvXPnDg0NDcKb1mKxcPz4cSRJYvXq1UiSRG5uLhcvXmTy5Mm9JruHhITg7e1t1RJpNBo5fvw4t2/fZtasWcybN4+7d+/y7bffWtmuKMXy3iDLMqmpqXz66aekp6eLZO7e9iUWi4Xz58/j7+/P+PHjmTBhAhkZGVbFhtDQUGG2r6C+vp6LFy9y+PBhoLOI9+677/Luu+8SHR0t5ubCwkK++OILysvL2bRpEwsWLOix/mlpaSE9PZ34+PhBF5teVQwRT13Q3NzM6dOniYiIYPz48YN6THFxMXZ2dn8209PLhQbOd0Rwv7TNaiF2q6CBU62hqEbO6jNaU0FYWJiQsZ44cYKjR4/2WIR1VTx1RXR0NJs2baKkpIR9+/aJAU5JmBkM/P39mTRpEh0dHZw4caLP40JDQ/H29iYpKQnoNBnPy8vrUalUfBz68nlSqVS9Kp6UAVshppT2BaVKERISwuHDh61S/bJz82izqAkJC6epqYkLFy5ga2srFuUmk4lvv/1WVF5XrlzJ/fv3qa2tpbW1lZqaGpydnfn4449ZtWoVISEhFBUVYTQaiYiIEIOuLMvIsszo0aORZZmbN2/y6aefUl9fLzaVycnJHD58mJs3b/L06VMqKytxdnYWlYqZM2cCnTLX0tJSGhsbqa+vx9HRUUxisixTWVmJt7e3IINqampoaGjA09MTWZYxGo20tbUREhLS494+ffqU9vZ2oqOjqa2tpbm5Ga1WS0pKipBoL1iwACcnJ2FA7uDgwPz58wFrk9wxY8ZQX19Pfn4+a9aswdXVFUdHR2RZJiQkRAzeQzHYQ3gVUVRUhCRJDBs2jIKCAhwcHHBxcbFakDo4OFBXV0dHRweSJInvislkIjw8HK1WO+iWuebm5l5VSb1tKlQqVa/fS39/f2bPns3cuXN7PcfLKJAGImIGo2D5UxNefw7VlnIf+xvnBlrIenl5ERUV1fcBai3tska0rd2+fZubN28KAigmJobIyEiePXvGzp07OX36ND4+PsKoVhnH9+zZw8OHD7G1taWiooLExERkWWbdunX84z/+Ix999JEIY1HCPIxGI0+ePOHEiRPiPWtrayMoKIgZM2YIj7FKiyOJpiC+D+n+Hp1rH4l/ScjjXHIOsbGx5OXlERsbC3SuwwICAlCr1Vb+Tgr6Wt8MYQh/iTCZTBQWFooCsWIs3tuY6u7uLojpd955p4eP4JQpU3BxcbGy3ZBlmatXr+Ln59evukMhqzw9PXF0dMTBwUGsdZVQI1dXV6KiolixYgUFBQV8+umnXL9+XcxzU6dORafTcePGjZe+D97e3mzfvh13d3f27NljpUjqfg82b95MQ0MDBw8eHNBXFzqVlEuXLqWgoIDMzEzmzp1LQ0ODVTCTm5sbw4cPR6vV9qn67S3ZTmm161pEV8av3ognpdjclwm8onaKjY0VRaHa2lru3LnD1KlTxTXcuXOH58+fs2bNGuEBe+zYMUaOHGnl/9QVkiQxadIknj59Sn19vVDO5eTksG7dOmbPns306dN58803KSoq4uuvvxatnX0pnqqqqti7dy8nT54kJCQEX19fwsLC+mwFT0lJobKykqVLlyJJEnFxcciyzJMnT8QxYWFh6PV6ysrKKCws5PDhw/zud78jLS1NhCJNnjzZyvfQYrFw48YN9u3bh6enJx988EGf3sYpKSmo1WqrFPAh9I4h4ukPkGWZEydOoFaree211wZdfSwpKRFEyJ8aKYV1/K9TGfS2EOtM/5L43+dyeFBYN+Bz2dnZsWbNGtatW0dhYSGff/65VRubo6MjbW1tvVa8Q0ND2bp1K/X19Vy/fh0fH59BVZu7YuHChTg7O5Obm2tF7HSFJEnEx8eTm5tLbW2tIGG6qnrg+3Y7pYe3t+fprniytbUV1WpZlikrK8PW1hadTsfrr79OeXk5JSUleHt7c+TIEY7eeMz7Bx6wbM9TvjWM5Wd3LLzx6VVK9TrMZjNGoxGLxUJFRQUeHh6MGTOG/Px8vvvuO5qamhg9ejTe3t7Y2dnx7rvviqqwYjzu6OhIUVGRSC08ePAg//Iv/yIkxWazGVmWGT58OGPGjGHx4sVWJsDt7e3MnTuXn/3sZ6xcuZLAwEBxn2bOnMlPfvITgoKCMJlM3LlzB4PBQF1dHa2trbS3t1sRT6mpqQwfPpwHDx4QGRkpUpN6ax99/PgxAQEBwufpk08+EVWtTZs2MXXqVO7fv09LSwsajQZvb29aW1vJzs4WnhsKlMnd19dXDOYKSejs7Cw2W/8ZLTpDGMJ/NoqLi0XkdXl5OS0tLbi7u4uxTZIkgoODhdKx65in0WhQq9UDJgIp5ABgVYlUTDqhc/HVvVLelzKquLiYX/3qVxw/frzXvw9Wgu7j48OUKVMGdexfGrqOkdD5Hg1EPFVXV/doS4dOMudaRxi7mkfzrWEsBwxxXOsIo9xoh7+/v9gINjc38+WXX/Ltt9+i0WjYsmUL27ZtY8OGDWLzqiidz549y7//+79z6dIlYR4eFRWFWq3G09OTMWPG8OMf/xgPDw/s7e1F0QGsCbSCggIuXrwoyMFMk0+PUInukCRIbXfH0dERi8VCTEwMsiyLdRh8r3DuWuRwcHAYarUbwisDxdtTWVc1Njb2UKFCZ4tdeXk5FouFd955p9djNBoNixYtIj8/X4wxT58+pbS0tNcU1a6oqanB0dGRvLw8vvjiCxoaGti6dSvvvPMOra2tfPHFF+h0OqqqqoiLi+OnP/0pkydP5u7du3zyySc8efIEnU7HzJkzefLkSQ/V1WDg4ODAW2+9RXR0NMeOHePGjRu9FmN8fHzYvHkzlZWVHDlyZFDrzvDwcEaNGkVCQgIuLi6MGTOGW7duWRFX48aNo7GxEYPB0KvdiKOjIzY2NlRVVYnfKermruheQFcgyzIVFRU4ODj06f/06NEjWltbhdpJSeV2cnISBeuioiJu3LjBzJkzGT58OM3NzRw6dAh3d3fWrFnTb9EoNjYWOzs7rl+/zldffUVzczPbtm2zKoaEh4fz3nvvYbFY+Oqrr8jPz+9BPBkMBi5dusQXX3xBS0sLW7ZsYfHixZSVlfVZWGlpaeH69etW/rMODg5ER0fz4MED8V77+Pig0Wg4cuQIe/fupba2luXLl/Pxxx8LD8Suhaqmpib27dvHrVu3mDVrFlu2bOkzQMxoNJKSksLYsWPFPm0IfeOVJp66eiYlJiby/PlzVq9ePWhSxWKxWC14/tTYeacAlap/Qkulkth55/mgnzMqKoof//jH+Pv78+2333Lq1CkMBoNYgPZl4ufn58fbb78tjKpfdgJQq9W8+eabABw/frzP88TGxmJvb8/9+/dxcHAgLCysh0TV398fWZb7JJ56Uzx1HawbGhpoa2tDr9cTHBxMdHQ0H330ETExMVRUVJAnDePvEsq4nFX5B4IPZCCnWcNZw0gy9K7IsoxarcbFxYXa2lqePXsmCLEZM2bQ3t5OXV0d48ePJyUlhaNHj/LFF1/wi1/8grS0NFpaWrhw4YLo+w4MDGT+/PlCSaZSqbCxseH1119nwYIFTJo0ialTpwKdlY/o6GhmzJghTF7nz58vEp+amprw8PCwSp8D+PTTTzl69CiAIJ7s7e2prKxEp+sk1JYuXSpIn+5tJQ0NDeTn52MymThw4AAAw4YNY/r06ZhMJi5dusTp06cJCAjgJz/5iWjx9Pf3Jz8/H51OJyaZ+vp6Tpw4gbu7O7W1tWKiVrxMmpubhxRPQ3hlIcuySA9VvjNGo5G6ujqrhY1SqQwJCRHKV7VajclkEupU5XvUW9uZonDsDr1eb9VqPljVlCzL/bbrZWZmDlikUavVNDQ0cO/ePfG7H9Li1hXdSe//LAxG8dX9/VDaoQe6b93HSaVtrdji0mUekyi2uHK+YxR3KyXKysowm81kZmZia2srNoWhoaHifJs3b0atVmM2m8XGqb29HU9PT6ZOndrrQtve3p4tW7aIirHyXDqdjs2bN/cwwDfJndclD7AktchQZHElMyeXESNG4OjoSG1trVBQwffEU9c5f0jxNIRXCXl5eTg4OIiWOUXx1BXl5eXs3bsXe3t7LBZLv+T2yJEjGTFiBAkJCXR0dHDt2jWGDx8+YOeD0sp77NgxwsLC+OCDDwgJCSEoKIgPPviAsWPHUlVVRVFREQ0NDdjY2DBv3jx+8pOfEBwczKlTp/jqq6/w8vLCxcWFa9eu/aD7odFoWLVqFXPnzuXmzZscP36813nP39+fDRs2UFhYyPHjxwfVer548WIMBgPXr19n9uzZtLW1WbWdRUZGYmtri4ODQ6/tdkqynbJ+h95b7Xob16DzHptMpl47FKCzcHv37l1iY2OFJ2tGRgbPnz8XCYJtbW0cO3aMoKAgZs2aRUdHB4cOHUKWZTZu3Dhgy7pWqyUwMFAU1bdv3y58XbvC09OT9957j4CAAL755htRtJZlmczMTH7/+9+TkpLCnDlz+OCDDwgNDRVpdor6tjsuX76MSqXqEQQ2ceJE6uvrSU9P58aNG/zud7/DZDJhMpnYvHkzH374IePHj0er1aLVaoXHLcCzZ8/YsWMHdXV1vPXWW8yaNavfuTstLY329nbh0zuE/vHHreb+L0VKYR077xRwOasSi9yZmhUo1bNh7OSXaiGrrKzEaDT+Wfyd9EazuL7+YLbIJGS+4Muvd2OjUQkvhq7/V/7r+m8PDw9GjBhBeno6OTk54jUkJibi4uJidazyc319PbIso9Pp+Prrr1mwYAG+vr69Htvb77y9vZk+fTp37tzh2LFjbN68ucfr0Wg0TJgwgcTERObOnUtMTAwnTpywmjgVVrupqQm9Xt9j4dub4qkrU630etfU1BATEwN0VviXL1+O7BnK7lMFgNTj3iuL4nvGIFyldoap2nB3dycqKgqTycTDhw/R6XTcvXtXTFg3btzA2dkZDw8PAgICGD58OElJSbz22mvExsZSVVXFl19+SWxsLDdu3KCqqoqZM2dy69YtDAYDKSkpxMTEcPLkSZ4/f8748ePJzc0lPT0dOzs7lixZAkBQUBARERE8ffrUykhSp9Ph7u5OSUkJc+fOJTExEYDTp08jyzJmsxlvb2+ePn3KwoULcXBwoKOjA5PJxLNnzxg5ciQdHR2kpaUJqbPRaGTZsmWkp6ejVqt59uwZZrMZrVbLu+++K6Sq7u7uLFy4kISEBGxtbeno6ECv16NWqzl69Ch2dnasW7eOHTt2kJWVRXR0NM+fP8fBwYHq6mpR4RginobwqqG6ulpU35qbm7Gzs0OtVtPY2GjVnqssZFtbW8WiSfm+KGOgxWLB3d1dyNsHg9jYWCul6cu0rPVGUrm6uopxaSASSzEj7VpAUMi0H4q+CLa+0L148bJQiJru+KHPWVlZafXv7nNcj+O7tK3Jvaql4UqjJ0t1tfioWlCr1YwYMcKqzUAc/wez8K5EoK+vLy0tLXzxxRdMnz4de3t7GhsbaW5upqWlhba2NlpbW2lpabG6zvb2dlG06Aoj6h7X2RdkJArLKtj8+kqgU2UnSZK4doVg6lr9t7e379PjZQhD+EtD1wAgJVxAsWSAzu/MN998g7e3N4sWLeLrr7+msrKS4cOH9/p8kiSxaNEiPv/8c06cOEF1dTUrV67s9xqKi4tFYM+qVauIjY21Is8VD1p7e3tu3brFZ599xuLFixk3bhyurq68/vrrxMfHk5CQwP79+/Hz8yMnJ+cHF/slSWLGjBl4eHhw4sQJ6uvr2bBhQw8iZ/jw4axbt47Dhw9z5syZATtgXFxcmDVrFlevXmXs2LGMHz+ee/fuMWHCBOzs7NBoNMTGxvLkyROePXtGe3t7DwWxl5eXlXWIQjx1Lbj0puQExBpAaTvujsePH9PS0iJCHdrb20lISCAqKooRI0YgyzInT57EZDKxZs0aoFMcUFNTw7Zt23B2du73vsqyzI0bN0RRIjY2tk9lEHTutTZu3Mi1a9e4e/cura2t7Nu3j8LCQkaNGsWiRYusSNLs7GxCQ0N7FYQUFRWRlpbGihUretxTtVqNnZ0dJ06cQKvVMmbMGBwcHLh161YPE3ZJkrCxsaGtrY1Lly6RmJhIeHg4K1eu7FNF1vX1JyUlERkZiZubW7/HDqETrxzxtD+piP91KgOVSrLyTCqRXfm3RyacgooGHdmutEIoRMifEs1604CkkwIZCTtnN+xVZtF2oaQcKT93/X/Xn+3s7GhraxODhkJM9LdAVgbAs2fP/uDXl5+fz7/8y79gY2PTg6iCTnLj888/x9nZWSROeHh4iGOVgfm7777D1dXViuSqrKyko6ODW7duoVKpKC8vx87OTvTgKtVdxYRUMQtXqVQcSatFLUmY+7n3EjLZFl98LHk8f/6c58+fi3YIDw8PXrx4wfjx45k4cSLu7u5WlfabN29iY2NDbGwsarVaDH7Hjx9Hp9Oxbds2fH19yc7Oxmg0cvv2bW7fvo1Op2PLli2EhoZiMBj47LPPSE5Oxmw2s3z5cgDmz5/P06dPycvLY/r06UiShI+PjzBljIyMFCbgSnsCdPpteHh4MGnSJLHh9fT05M6dOxQWFvL48WP0ej1arZawsDA2bdpEQ0MD9+/fp6amRkwS8+fP77FxiY+Pp7y8XPTWX7hwAZVKRXV1Ne+++y6+vr4MHz6c1NRU7OzsMJlMBAcHU11dPaR4GsIrC8XfSaVSibYJRZXaVblRV1eHRqOxWrQqmw1Fxu7h4cGECRO4ePHioM+flpbWQ2Wk1WrF3NEX/P39rRLYFDQ0NAxIlnRH1zmoe9vBYNH1XrwM/hjSCQZnKD7Yce3NN9/kxo0bQqkLA5N3Sttaf2SOCsgy++KjyiMkJIQrV66IBbS9vT0tLS3U19dTXl5uRTx291e8evXqoF5Hf9BiHvB6xfkBRxuNqICXlJTg4+MjFH8tLS3CUFzBkLn4EF4VtLS0UFlZKRTy7e3tdHR0iHVafn4+3377LQEBAWzcuBGNRiPmkL6IJ+hUq0yaNImkpCRGjBjRQ7WowGw2c/PmTW7fvg3ArFmzrEiv7oiJieHWrVsEBQVx5swZsrOzee2113ByciIwMJB3332X9PR0Mc4cPXqUDz/8cNDJrd0RFRWFq6srhw4d4quvvmLjxo3C71VBREQEq1evFuvyxYsX90s+TZ48mdTUVM6dO8f69et58uQJd+/eFW3G48aNIzk5GUmSyMrK6uEh7OXlRXp6upizlVa7rh6NLS0t2Nvb91Cm5ebmIklSr6IJJRFw9OjRwof46tWrGI1GFi9eDHQmsT179oyNGzfi7OxMQkICubm5bNiwocd96Y6Ojg5OnTpFVlYWc+fOpaKiggcPHhAfH9/v/VKpVMyaNYsnT57Q2tqKXq9n5cqVPdIRW1tbKSwsFN0bXdHVUFzxaLJYLOTm5pKUlERRUZEQJbz99tv4+flRX1/PzZs3BcnVFYpXbVtbGwsXLmTy5MmDstDJy8ujpqaGFStWDHjsEDrxShFPimeSTKdSqCsUD6X/eTKDUT5Og4puLy4uxt/f/49uA+gNTrYaVBKDIp9UEqxbtQJb7Q9z0pdlmTt37nDt2jXs7e3ZuHGjSDzrSlodOHAABwcHli5dSkdHBxcvXqS4uJiZM2cSGhrag9Tqi/RqbGzkzp07WCwWxo0bh1qt7nGsLMs0NTUREhJCc3Mzra2teHl5YbFYMJlMgniqqakR3lTKY5ubm7FYLCQnJ2OxWGhvb6exsZGLFy/22FBcuXJF/GySJe4Y4gZc/MqoKDS5sOi1FQQM8xaGfHPnzuXixYtMmzbNyteiK3JzO1sE1Gq1kJdCpyJg8+bNgl0fM2aMuDZfX1/eeustMdHa2Njw0Ucf8dlnn/Hw4UMsFguvvfYanp6eODk5UVpaKpRgPj4+IkLUYDBQU1NDcHAwq1at4p//+Z+RZZmWlhbhBaUQcBqNhpKSEiorK5kwYQI+Pj6cOHGCSZMmkZCQQEpKiiDUtm7dyu9+9zvq6up6LFwkSWL58uXk5uaKRDyAlStXikltzJgxnDx5EgcHB5Fm+OjRoyHiaQivLIqLi7G1tcXJyUl4P9TV1fVoFxs1ahRlZWU0Nzfj4eEhDP2Vxaqvry8dHR2i5eJloCiMNBoNJpNpUIqh3kgnBUp7clxcnFXUcX+ws7Pr0Zb9MmqklyWcBoOXJdB6w8uMadXV1ZSXl/daee7t/nzfttb/PGZBosjsgkkjiTmipaWl1/dGrVaj1WpFscbFxYXW1tY/SoXWVQWnkWSCVA1/aAvsu6VBLcFwXQux0ZHiu1BcXGyVstvc3Iwsyz3MxfV6PWazeShxaAh/0VC+y12NxaHz+/b06VOOHj1KaGgo69atE98hb2/vHqrK3qCsT/vakNfW1nL8+HEqKiqIj4/n/v37A3aEuLu7o9FoGDFiBJMmTeLMmTN89tlnLFmyhJiYGCRJIjY2lsjISM6cOUN6ejq//e1vmTdvHuPHj3+pwAoFfn5+bN++nUOHDrFr1y7Wrl3bo5UrJiYGvV7P+fPnsbOzY/bs2X0+n1qtZunSpezdu5dnz54xefJkEhMTiY+Px8nJCV9fX4YNG0ZjYyPp6em9Ek8mk4mGhgbc3NyEuXhXdO/cgM55pLa2Fjc3t173oU+ePKGpqUl4O5WWlvLw4UMWL16Mk5MTZWVlXLlyhSlTpjBy5EgePHhAUlISixcvFsnffaGpqYlDhw5RW1vLG2+8wahRoyguLmb37t3k5+f3acItyzJPnz7l4sWLtLa24uLigsVi4erVq3h4eFip2RQ/4N68IZOTk6mqquJHP/oRHR0dPH78mPv379PQ0EBgYCCvv/46I0aM4De/+Q0ZGRn4+fnh5uaGu7s7+fn5VsRTVlYWLS0taLVatm3b1iep2huSkpLw9/f/s1nu/CXilSKeFM+k7qRTVyieSQMRT4oHR39M/h8DW62aBVE+XMmqHFB9E6Rq4ErCBaZPn96rOeBAUCSot27dQpIkvv76a2bOnMn06dPFxNTe3k5FRQXLli0TcsItW7Zw5swZbty4gU6neykzWJ1Ox7Vr1ygtLWXr1q09/l5RUcGOHTsYOXIk0dHRHDp0iNmzZwuyIiUlhfPnzxMYGMjatWutHnvq1Clqamp49913AfjFL37BnDlzmDJlCiaTiV/+8pe4uLjg7u7O6tWrBWGVkVfM/u+KB3X9MhInz13AUdNJzgUEBHD58mVGjhzZo9dYQXNzM+Xl5cTHx2MymTh//rxIE1m0aJGY1PPz80Wyn6urK83NzT0mFZ1OJ8inx48fYzabWbVqFQEBAeTk5HDnzh3mz5+Pj48PDx8+BDrbZaqqqhg1apQwlNRoNAQHB+Ps7MytW7fEhq6jowMbGxsiIyNZsGABR48exd7enmPHjgGdVayIiAi++OILqqurcXV1Ff3a3aHT6YQSDDon6a4EVWRkJOfPnyc3N5fx48fj5eVFS0uLmHiHzMWH8CpBlmXh/abVaoXfm8FgwGAwWBEfKpVKmI62tbWJSGToJKgVsqovokNJHesOnU4nSH6FeOqOvn7fHxwcHPolnfz8/Ky8+5ydnQWxopzvj1Uj/bHoK9Hvj4VJljCiRosZjfT9pH/58mWg93bH3rwSX7ZtzYia8OGBeHl5odPpKC8vp6CgAOj8HLi5udHY2Gh1/sbGxkEROCqVitDQUIKCgigrK7MyQO8aHw4QramkqMO13+czyzBSLmXMmNeBzs1YXV0dc+bMEcco34fuxBN0fkf6awMZwhD+b0d+fj7Dhg0Tn3nle/bixQvOnTtHZGQka9assfr++vj4iPVZXzAYDCQmJjIsIIi03OdMyH/OyLDOdZwsyzx69IiEhAScnJzYtm0bLS0t3L9/f8DEb8WGo7KyksmTJ/Phhx9y4cIFTpw4QXZ2NsuXL8fBwQGtVsvq1aupr6+npqaG8+fPk5KSwsKFC/skOfqDs7Mz77zzDidOnODbb79lwYIFTJkyxYpUmzhxIgaDgatXr2JjY9PvHickJITY2FiuXLnCe++9R0pKCrdu3RJqnbi4OM6dO0dRURGNjY24uLiIx3ZNtnNzcxOeq90tQ7q3BRYVFSHLcq+vX1E7RUdHi6L92bNnGTZsGBMnTkSv1/Pdd98xbNgw5s2bR15eHufPn2fSpEnEx8f3e+9KS0s5fPgwarVadGlAp1ftsGHDuH//fq/XVF9fz4ULF3j27BkjRozAxcVFiBkU0+9ly5YJBVNWVhYhISE92uyam5u5ceMGMTExpKam8vjxY0wmE9HR0bz++utWxNG4ceN4/Pgxc+bMQavVEhoaKshZk8lEQkICDx48wN7enpCQkJcinSorKykoKGDt2rV/loCxv1S8MubiimdSf6QTdCqhLmVVoDf2v7BsaGigpaXlz+LvpGDLRH/MA1RWZSQ2T/QjOzubTz75hFOnTr2Ul0dXODo6EhMTw/Tp07l58ya7du0ShncFBQU9BjiVSsVrr73GtGnTuHTpEleuXBl0JXj69Ol4eXlRWFgoVDBd4evrS0hICElJSYSFhWFvb29lzKcMDr35NnTdfBkMBoxGoxiwKysrMZvNNDY2Mnz4cGpra7l79y67du3i4pkTA6bqiHMg4+XmLDYgpaWlwnz1F7/4BV988QVnz54lLS2N6upqIQGVJAlfX1/27t1LWlqaiB1XqVQYjUYuXLjAgQMH8Pb2Jjo6GrPZTHt7Ow8ePOhxDVqtlh//+Me4u7uTlpbGsWPHxKSVlJREY2MjPj4+4j1paGigo6MDb29vIYO2WCw4OzuTlZWFxWIRLYP19fU4OzuTnp7O7du3ycrKor29nbFjx/JXf/VXzJw5U6T2lZWV4eHh0e/nrqOjQyx0NBoNJ0+eFO+RTqdj+PDhGI1GwsPDxSRcW1trFRE/hCG8CmhoaKC5uZn29nba29tFq5hWq8XGxsaquJCTkyMWZe3t7VbVX41Gg8FgoK2tjYMHD/Z6rr6+WyNGjBBFB71e36vPwcuktyjXpbT99gW9Xm+lzlKq8F2DCf6zMZDnw8tCSZ47YIizSp6rtFhvMgYT8Q3ft60NBhIyWswiBvzOnTuCdFKpVHR0dFBZWdkr6eXl5YWXl1efiu+RI0fyD//wD7z55pu0t7f3mrrXFYG2Hcx3qaFzVWNNLir/Xj/cQoS7Rqy7lHbxruuw3ogn5Tsy1G43hL9kyLIs/J0UNDQ0oFarOXv2LLGxsaxdu7YHaezr60t1dXW/a6295+9wrnEYv8z35lvDWBbtzOT9/Q+487ScI0eOcPbsWWJiYnj//ffx9/enpqYGnU43KKK3q+LK3t6etWvXsm7dOoqLi/nss8+E36DiNaXX65k9ezZ2dnbsPXCQHXsPUlI+sGKrO3Q6HevXr2f69OlcvnyZM2fO9LgH06dPF3ucR48e9ft8CxYswGKxcPfuXaZPn86jR4/Eunj06NHCUqS7ybizszM6nU6ENilm3gMRT6mpqQA9WtSgs12+oaFBqJ3u379PVVUVy5cvR5Ikzpw5Q3t7O2vXrqWmpoajR48yYsQIFi1a1O9rTE9PZ8+ePbi5ufHee+9ZteMpyeRK+5kCk8nEzZs3+eyzz6isrGT9+vW8+eabaDQaJEnC0dGRrVu3MmbMGE6fPs2FCxdoaWnh+fPnPdLsunpSpaenk5aWRnx8PD/72c9Ys2ZND+JowoQJ6PV6YfcRFhZGfX09+fn57Ny5k8ePH7Ns2TL8/f1fupCWlJSEs7PzoNN6h9CJV0bx9DKeSRYZsp49Z0zE8D6resXFncqYP5e8TpZlylNvM9Ougdvt/kjIoh0QQP0H5dYUTRHeUgCbf/pTHj9+zL1790hNTWX06NHMmDHDKploIDg6OtLW1sbKlSsZOXIkJ06cYMeOHcybN4/Kyko8PT2tWHpAJKo5ODhw6dIlWltbWbFixYDyV0mSePPNN/nkk084c+YMI0aM6MFqT548mW+//ZYXL14QFRVFRkYG8+fPF95FKpWKhoYGjEajVQuKSqWy6osGxORXWloqyIx79+7R2tqKo6MjkZGRREdHU3qljBt5tf3K/VXIhNm20tLQmTCl0+mQZZno6GjKysqoqqqisrKSyspKoTZS/KdsbGzYtWsXarWaTZs24ezszLVr16iurubMmTM0NDSwePFiJk2aRHl5OZmZmYSGhgqzwu6tNlqtlg8++IAdO3aQmZmJj48PRqMRGxsbbty4Ifq4ATER2NnZiU2AxWIhJyeH8ePHM3z4cL755hveeOMNGhsbuXnzJmazWSSJvP3221YLfEmShELB3d1dbFi6w2KxUF9fjyRJTJ48maSkJAoLC0lMTGTatGnA95tYWZbx8PBAkiTh8zREPA3hVYIytwBi0dp14999cdQ1Jt7FxUW05rW2tvZQJSnedmBN0CtQWpizsrKwt7cnKCgIlUpFYWFhj+9iW1tbnyqd7uhPpdRVwVVXV9drS9lgSZfuz/fnQG/k2Q81I88xeZFoCrLyN+pMnnOhqMOVKZpiRmleLkF2sG1rEhaCVA1oJBm9Xt/jc+Xo6IiHhwctLS1iLLa3txfETmVlJSNGjCAyMpKCgoIeRSB3d3fu3bvH3bt3B3z/PD09qampIZAilupqyTR5U2xxQ0b6g6q7kX/ePId7p/YTM2mSICGLi4txcXGx+swo34e+FE9DGMJfKl68eEFbW5tVgfjp06eYzWYmTJjA0qVLeyXwfXx8MJvN1NTU9NqW/fWtXH6R3I5KchP7KBmJy9mVJGRVMNO+if/xh3YrBTU1NXh6eg6qYODj40NGRgYWi0XsHaKioggKCuLcuXMcPXqUmJgYlixZQkBAAJGRkZy9n02j73gud3gj58Avc1IY4yHxtyvGMT1i8L67kiQxb948PD09OX36NHV1daxfv95qPzJv3jz0ej1nz57FxsaG6OjoXp/L0dGRefPmcf78ebZu3YqDgwM3btxgzZo12NraMnr0aLKyskhPTxdm38o1eHl5CeJJ8asDrPYy3YUOyrzc3YvJYrFw+/ZtIiMj8fHxobGxkevXrzNx4kT8/Px48OABWVlZot1y7969uLm5sXbt2j73brIsc+3aNe7cucOYMWNYvnx5r0WH6OhoLl++THJyMkuXLhVKqsbGRqZMmcLMmTOtiDXl86FWq1m+fDm+vr5cvHhRiB2Uz5TJZCIjI4Nbt25RX1+Po6Mjc+bMISYmpt/EWnd3d8LDw0lJSWHs2LEMHz4cSZI4ePAg7u7ubN++HR8fH0pKSnqocPtDS0sL6enpzJ07d6h9+yXxyhBPL+OZJCFz4shBEmy0hISEEBYWRlhYGO7u7lYLHi8vrx9scDcQHj16RHZ2Nv+wfj1/ZefD/9h3lWft9sh0ejotiPThvenD0TYGcOrUKQwGA6tXr2bChAk8fvyYu3fvkp6eTlRUFDNmzBjQJA6sI4f9/f15//33uXLlCgkJCajVapEA1xumTJmCg4MDp06dEiz6QPHVrq6uLFy4kIsXL/Ltt9+ybds2q7+PHDkSd3d3kpKSiI+P58GDBxQVFRESEoJarcbT01OQPF1NrbtuqJRFcktLCwkJCTx8+FAM5JGRkYwePZrAwECxcfBpuIRMzxjQrrAA0ZoqHGw6E+Camprw8/MjPDychQsXIkkSLS0tlJWVUVhYSFFRkUhA7NrWsm/fPrEgPnv2LG5ubmzcuFEMjH5+fvj6+gpD4UePHvUqgdVqtbz//vt8+eWXomo0efJkrl+/zuTJk3FzcxPyZI1GwzfffCPuwZIlSxg3bhxarZb79+8LciwzM5OWlharjerp06eZMmUKsbGx4r318/Pj0aNHhIWFCb+p7hOXQmCNHz+ehQsXUldXR35+PteuXSM0NJRhw4ZRUVGBTqcjPT2dsLAw3NzcxPUOEU9DeJVQVFQkigBKOyx0js9NTU39krH+/v5UV1eL77dCJowaNUqECijojZzpShDo9XoCAgJQq9WUl5db/a3S4khmh4/wElJavqM1lfioWgZ8jV0Jse7XMZAqaiD8OUmnvvBDSKf+k+c6x9BEUxBuqvZB3dOuGEzbmoxEtKaTpGxvb8fW1paJEyeKdUBFRQWlpaWinU+tVtPc3Iybmxvt7e3o9XrCw8NJT0/nxYsXjBo1ipycHGGKr7SLK+jvcztr1ixOnTqFyWTCR9WCj66F6bPmcPnGbUFqGsuHYTAYrOwNSkpKrDZjsiz3SzwNKZ6G8JcKvdHMw8xcVFobsR6+ffs2xcXFuLm59Uk6AYJsqqio6EE8pRTW8c8XntFb0nPnvyVut/nRYutt9TeFeBoMfHx8MJlM1NXVWT3G0dGR9evXk56ezoULF3j+/DkrVqygzj2ao4+fo2qoQu5ChKXWymze84htsU/5/6yf+VKEwJgxY3Bzc+Pw4cPs3LmTN998U1yLJEksW7aMjo4Ojh8/jo2NTZ/tfePHj+fx48ckJCQwY8YMzp8/z7Rp0/Dx8WHcuHGkpqaKfUvXe+3l5SWKRt0VT7Is09zcbKV46rr36P6+pqenU19fz/r16wG4ePEiNjY2zJkzh8rKSi5evMiECRMIDw9nz549mM1m3nzzTSvCqys6Ojo4ceIEOTk5zJ8/n6lTp/b5WdJoNIwfP57ExEQaGxvJzc1l+PDhVvdTQVfiSbnPEydOxMvLi/3796PRaKiurubBgwc8ePCA1tZWdDodnp6efPjhh4P295o4cSIHDx6ksLCQ1NRUZFnG2dmZ7du3i3ttY2PzUum9SlhVXFzcoB8zhE68MsST8EzKruq33U6tklgQ6cOP520nLy+PgoICEhISsFgsuLq6ChJKIUD+HKiurubixYvExcUJCd9cXT7/MHs6o8dNxMlW08VI3B1bW1uOHj3Kt99+y/r165k0aRLjx4/nyZMn3Llzhx07dhAREcGMGTP67V91cHCw6vPWarUsWbIEX19fTp8+TWZmJsHBwYwZM6bXQSc2NhY7OzuOHj3KgQMH2LBhw4DE3KRJk0hNTaWkpITHjx+L3l74XrZ58eJF5s+fj6urK2lpaeK+BwcHU1VVxYsXL6yIJ0XxVFJSwt27dwE4duwYjo6OqFQq7O3tCQgIsEpKMJvNHD16FLuWclb6uXGq3BYJrDYEapWExSKzyLMRt5Y6VHZOWCwW5s2bR1ZWFvv37ycwMJCZM2cSFhZGREQEERERmM1mDh06RH5+Pn5+fnh5eVFaWkptba3VQri+vp79+/djY2PDsGHD8PHxwcfHh7S0NCIiIrh79y7jx4/vtcqgkE+fffYZ9fX1PHv2DDc3N65cuYKbmxvVdQ2kPytEI5vR/mHx7+zszKRJk8RzPHv2DBsbG3bv3o2XlxcbNmzAaDRy7NgxoqOjRY/4tWvXmDRpEhMnTsTf35/bt29jZ2cnWhi7Rorm5uZy69YtAAICApAkidWrV7Njxw5aWlo4duwYGzdupLKykqioKLKysliyZImo/vyxMepDGML/bSguLsbGxgaLxdKpKvrD51/xfAgLCyM7Oxv4nvBwdHSkpaWF1NRUnJ2daWxstHrO+vp6DAaDFSkzkErHYrFw7949bGxsGDVqlGiJ/lOodJT5Q/Gu+o/An1sJ1RcUFVl3DCZ5TkIm0+SNj65v4qm31+WjamGKprjL+/T9Al3CgozEFE2xFaGl1+tFC7ZOpyMwMJBJkyYRGBiIv78/tra2PH/+nISEBOrr6wGE8W54eDg5OTnCMLw3gqkv0snX15eTJ0+Kvyufy9DgQOykzs++vb09jx49IiAgAA8PD6Az+fbFixdWRJRifg7WxJNWq0Wj0QwRT0P4i0NKYR077xRwOasSiwwSoyk9+Jhx9vVUZtzDwcGBESNG9Ks8srW1xdXVtVeD8c+vPx04IbObN64sy9TU1AxoUK3A27uTtFI6K7pCMRcPCQnhzJkz/OabM5zviKA3Iky5xl1prbSVfc3by2cSEREx6DbtoKAg3nvvPQ4dOsTOnTtZv369SIuTJImVK1diMBg4fPgwmzdvJji4ZwK6SqVi2bJl7Ny5E5PJhLu7O9euXWPjxo0EBQXh5uZGU1MT6enpVsSTp6cnmZmZyLLcg3jq6OjAZDJZEU9K10L3Ni9F7RQREYGvry9Pnz4lJyeH119/HZVKxdGjR/H09GThwoWcOHGC6upq3n777V6VxtDZqvntt99SX1/Phg0bepiwd4cSEmU0GiksLGTt2rVER0f3+h7IstwreeTj44PFYkGtVrNv3z5B8Oh0Ou7du8eaNWteylR+xIgRODk5cfjwYSwWC6NGjeL58+dWeylbW9tBr0WMRiMpKSmMGzfupSwHhtCJV8bjCeC96aFYBpA8WSwy703vVGHMmDGDrVu38vd///ds3LiRkSNHUlhYyJEjR6itreX58+fcuHGD0tLSP5nhqclk4tixY7i6uopeW71ej8FgwMvdFS8nmx7pdREREWzatImSkhL2799Pe3s7arWa8ePH85Of/IRVq1ZRU1PDzp07OXDggFUrR1d0VTx1hV6vR6VSMWrUKE6dOsXhw4f7XMCFh4fz1ltvUV1dzZ49e4TiqC9IksTGjRtRq9WcO3dOtMYpGDt2LDqdjpSUFGJiYsjKyhIbMaXNUfF5UMim4uJiampq2LVrF8XFxahUKrZu3coHH3yAwWCgvb3dytzabDbz3Xff8fTpUzQaDXHOrSzVPSXWHeGVoajM/udUR4a15OHv709zczPe3t5MnjyZ7du38+abb2KxWPjmm2/4+uuvyc3Npbm5mX379pGfn4+DgwPbt29n5cqVTJkyBa1WKyqxAQEB4meDwUBZWRmPHz8W7HxOTg7Nzc3s2bOHxMREnj9/3sNYVqPRsHnzZqCzpVCWZe7mVrAzR+KAIY5D+jEcMMRx1RBKg9ZdTHptbW1cuHCB/Px8jEYjK1as4IMPPiAiIoLi4mLh+bRu3Tp++tOfEhUVxZ07d/j1r38tNsDKgN3VYLyuro4TJ04IvwFlgLa1tWXDhg3imDNnziBJEjNnzsRoNJKVlYWnp+dQq90QXjm0trZSW1uL0WgUZIUkSbi5udHS0oKrq6v4zikIDg5mwYIFACI1FLBqFaisrOxBTihz1kALuDfeeEN8d61VOtaP6/y3RKIpqIc/EWClgFWUn/9RpBP85yihoPO1KgUPBd8nz/V/72VUFFvcMMl9b5z6el2jNNW8ZpdHkKpBzGMSMsO1zSzVPe2VHFQ2Bx0dHbS1tQnFt/L+Dx8+nB/96EdWbSIdHR0ifaihoWHQKb+zZ88mLi6OiooKzGazOLfyufTx8UGSJGxsbNBqtbS1tVnN22VlZVgsFivFk7J+UKlUVp83SZJwcHAYarUbwl8U9icVsX5HIleyq3q0wP3ygQEpvHNNNZjQIR8fnx7Ek95o5npu7YBhBd29cVtbW9Hr9YNWPDk4OODo6Nhvsp6zszNvvvkmtV5jBoxOUEsSaR1eHD58mH379lFRUTGo6wBwc3Nj27ZtBAYGcuDAASt/VbVazbp16wgICODQoUN9GrL7+/szfvx4bty4weTJk8nNzaW4uBhJkoiLi8NisZCWlmY1dnt5eWE0GmlqahLKI+Xvyj6qK/GkFIJiY2Otzp2ZmUltbS0zZ86ko6ODCxcuMGLECKKiojh//jxNTU28/vrr3Lhxg+zsbNasWYOfX++tiSUlJezcuRODwcC77747IOn0/PlzvvjiC+7evYunpyd2dnZERUX1Sfx1VzxZLBays7P5+uuvgc7ClNIGqlarSUlJYcKECQwb1n9XSvdzKGopg8HAli1bmDZtmthnKXgZxVNaWhrt7e0DmrAPoXe8MoongIkh7vzzqtH8z5MZPdLtFDXLP68a3SPRTqfTMXLkSMHeP3r0iDNnzuDm5kZSUhI3b97E1taW0NBQQkNDCQsL+0HpcgBXr16lpqaG9957T7Deykaiu79SVwwfPpytW7dy4MAB9uzZw+bNm3FyckKtVjNmzBhB2ty+fZvdu3cTEhLCzJkzCQkJEV98R0dHWltbewwG+fn5hISEsGbNms7e6rNn+eyzz1i+fHmvpmoBAQG88847HDhwgK+//potW7aIKmVvcHJyYunSpZw5c4ZDhw6xfft28TedTkdcXBwPHz7krbfe4vbt2zx79ozIyEih3iosLOTixYtkZ2fT1NSEVqtFp9OxYcMGwfaHhISQl5cHdA5EimrKZDJx5MgR8vPz0Wg0REdHk5qaynBHe4Itmbw5YSRzFy7FyVZDWXEh33xzjvDwcJ49e8bYsWPJyMjg4MGDbNiwgfDwcEaMGEFBQQE3b97k0KFDYgFsZ2dHbGwsLS0tnDlzhtzcXOLi4pgyZQq///3vmTVrFmFhYTQ1NVFaWkpZWRmlpaW8ePFCEG1Ky0t5ebmYkJydnfH19cXX1xcfHx/xuZMkiaQaLYmmMCvlllAmNLuia4WgO3e4c+eOIHfWrVtHeHg40LlhSk9PZ+TIkWRnZ1NaWkpgYCDLli1jzpw5pKSkkJycDHSa7KlUKmpraxkxYgRGo5EjR45gb2/PnDlzyM/Pt6pA+/j4sHLlSo4dO0ZRURHe3t74+PgQGhrKkydPiIuLo6mpCVdX1yHiaQivDJSigNJupqhZlPG4vb3dKoYeYNmyZdy4cUP8W1EL9rfJtrW1ZcuWLezdu7df/x0vr87Fe0dHBzqdjqxWnz+MJ32jL5WOSqX6T1Md/WdCMYfv+n78kOQ5DYNXfmo0ms71Qm0tc3WNg/Liio+Pp7y8nJKSElQqFS9evGDv3r04Ozsza9Ysxo4di0qlIi8vj/v374tClTI+KwmJ7u7utLS09Pv5W7x4MfHx8VgsFp4/f059fT2yLKNWqwkODqagoICkpCRkWbZSYnQNsFCUgV19LBXiydbWtsdmx97efkjxNIS/GKQU1vG/TmUgQ48uDqUFbnd6G0t0ukHtR3x9fUlJSbGabwrLKgc9TllkaGwzYOtiL/xEX8Zj1sfHR7SaKZBlGZPJhNlsxmw209JuIKXcMDARJkNOi45/27KBm9eusGPHDsaNG8fcuXN7GHT3BltbWzZu3EhCQgLnzp2jurqaRYsWoVKp0Gg0bNiwgf3793PgwAHefvvtXl/nvHnzyM7OpqioCB8fH65du8bWrVsZO3YsV69epbm52apzRlF9VVdXCyJImTuUca3rtZeWlmJra2ulVJJlmVu3bhEeHo6fnx+XL1+mtbWVrVu3kpqaSmpqKqtWraKoqIh79+6xcOFCK1+urkhNTeXMmTP4+/uzfv36fkM1mpubuXTpEhkZGQQFBfH6669jMpnYuXMnz54965OwUj5rer2ex48fk5ycTENDA7a2tqKdTpIkbt++zfXr11Gr1cIXdjDQ6/WcPn2a7Oxsxo0bR1paGoWFhUybNg1bW1vy8/OFgEFRPHXf//Z2zUlJSURGRlp1dwxh8HiliCeAzfHBjPJxYued5yRkVvTwTOpOOvWGuro6nJyc2LRpE7IsU1ZWRn5+Pvn5+Zw7d04YJCtteSEhIYJE6g95eXkkJSWxaNEiK0+mwRBP0Om3884777B//352797Nli1bxBdDpVIxevRooqOjycnJ4datW+zbt4/AwEBmzJjBiBEjcHBwwGw2YzAYRIXTaDRSVFQk4oojIyMJCgrizJkzHDlyhDFjxrB48eIeckMvLy+2bdvGgQMH2LVrF5s2beqTVYfOqNEnT55QUlJCSkoKEydOFH+Lj48nKSmJ0tJSfH19SUtLw9HRUaQUNDc3k5GRQVRUFNHR0Tx9+pSnT58SHBzMo0ePxGBdWlqKRqNBo9EIE+7Dhw9TVFQkTP+Uic/d3Z3a2lqWL16Ig4MN9fX1Ino0Pz+fuLg4li9fzpgxYzh06BD79+9n06ZN2NraEhYWRnNzM2VlZSJZCjo3k59//rlQeY0cOVJUMpTBzsXFBRcXF2FeaDabycrK4vjx4/j6+lox9DqdDrVaTXV1NYWFhVYbyCrZqYsywRpKlf1wgUxrWTLL4sfg6OjIzZs3rdpHc3Jy0Ov1zJ07l6qqKu7fvy8GaXt7e2bNmsXUqVP5+uuvqa2txWKxcOfOHVxcXMjOzqa2tpb33ntPXFf3z8jo0aMpLi4mJSWFuro6WltbGTt2LMePH2fy5MnivgwRT0N4VaD4OykLTVmWsbe3p66uTiTAdDfA3Lt3r9WGuuv3rDeiR61WI0kSO3futPpb92NVKhV2dnY0NTUhyzITJ0/ly0vNAy76u6p0upIc/5Hqpv/qUJLnBrOpU5LnXgYmk8lKfaqRZEFcKW1n3RWzycnJbNu2DY1GQ0pKCk+ePMFisdDU1MSZM2dISEgQJqyAlV+h8m8XFxeRngqdVWRl46jAxcVFbHbq6uqor68XpJXSomNjY8Pdu3exs7MTCionJyeys7Npbm7GycmJkpIS4c+oQPnedA8qAYYUT0P4i8LOOwU9CujdoZIg0+TdL/EkyzIWiwUPDw/a2tqoqKjAzs4Ok8nE3RtXkHAf9Dj1+e9+jZe7q9i4JyYmYrFYMJvNVgRSbz+3tLRgNBr513/9V/H77nNXu6zBIo8d1P2xyOATEMIHH3zAw4cPuXHjBpmZmUyfPp3JkycP6EGrUqlYsmQJnp6eXLhwgbq6OtauXYutrS02NjZs2rSJPXv2sH//frZt29bjHtvZ2bFgwQJOnTrF3LlzuXbtGvn5+YwYMYKRI0eSn59Penq6WHO7uLig1Wqprq4Wys6+QpJaWlrQ6/U9fKaysrKoqalh5cqVVFZWkpiYyJw5czCbzZw/f56xY8fi5OTEgQMHmDBhglhnW903i4WrV69y7949xo0bx7Jly/r0yrJYLNy/f58bN26g1WpZtWoVsbGx4v0PCAjg/v37fRJPHR0dlJaW8utf/xqTyUR0dDQrVqzgm2++YcKECWJs76pqVQr9A5E+paWlHDt2jPb2dtavX09kZKRQP02bNo3Q0FDy8/OZPXs28L2he0dHR59eV4BI7FuxYkW/5x9C33jliCeACSHuTAhx5+qNW9y5/4C///nPerSv9Yfi4mKCgoKQJAlJkggMDCQwMJDZs2ej1+spKCggPz+fp0+fkpycjEqlIigoSBBRvr6+PRjVlpYWTp48yYgRI3rI9xobG1GpVINi6hXCZ//+/ezatYstW7YIJh06NxeRkZGMGjWKvLw8bt26xcGDBxk2bJhYDCqm0sprNZlMVgOcg4MDb7zxBqmpqcLwb+XKlaIXWoGLiwvvvPMOBw8eZO/evbzxxhs9jumKDRs28Otf/5qLFy8yatQoMci6uLgQGRnJ3bt3cXFxIScnh5ycHBwdHUXV9c033xTE1rNnz6zMxZXnUYigkJAQjEYj3377LaWlpaxbt46TJ08SFhbG06dPsbW1pbS0lNdeew0Hh04D8cOHD6PT6aipqSE0NJRly5YhSRIhISG89dZbfPPNN+zZs4c333yTu3fvkpyczLhx41i6dCknT54kMzOTzMxMdDodCxcuFPeze3tBdyim7klJSdjZ2RETE0NhYSHLli2jvLycZ8+eUVlZKR6v0+mwWCxkGgZWJqiAtuApLFkyhcOHDxMQEGA1GT9+/JigoCA8PT2ZNGkSFy9epLGx0YoA1Wq1REVFce/ePby8vKivr+fw4cNAZ5uku7s7hYWFAL36fYWEhJCSkoLJZOL48eO88cYb2NjYWCUkDXk8DeFVgZLS1b3lGDq/B8p3QTHdV4IH4HvzZoUYgO8Xrl3bqM1mMyqViqVLl1JXV0diYqLVsd2vB/6goHz4BJneDVW7YyCVzl+K8umHptm9bPKcVgUvc7tsbGwwGo09rs3W1pZRo0aRn59v9XvFh2r//v28//77rFixgvnz5/PkyRNRhe7o6LD6bHVV48myTGRkpFUbqJ+fHxUVFT2uobW1lS+++IJ169aRnJwsiFYlarypqQlnZ2cMBgMqlUqonJycnDAYDCQnJzNnzhxKSkqYOnVqj+eWJKlP4qmrYmoIQ/i/FXqjWXg69QezDMWyG0ePn0Ij9U0AdcWXX35p9e8glWrQ45ROLVFfXy+eMz09HXt7exwcHLC1tUWr1WJjY4O9vT1qtRq1Wo1Go0GtVlNTU0Nubi6TJ0/GxsZG/L7rMSZZ4si+Z4MKiVJJnaFSarWaSZMmERMTw61bt7hx4wYPHz5k/vz5fXoPdcXEiRNxd3fn6NGj7Nq1i40bN+Lm5oadnR2bN29m9+7d7Nu3j3feeUfsNRSMGTOGx48f8+TJEwIDA7l69SphYWHExcWRm5tLRkYGS5YsEUUlJTBJGQu7Ek8ajUYIGJQ2u66BT4raKSwsDH9/f3bv3o2HhwcTJ05kz549uLi4MHHiRPbt20dYWBhLlizp8doNBgPHjx/n2bNnLFy4kMmTJ/d5f4qLi4UabMKECcydO7dHcTk+Pp5jx45ZGanLskxhYSH379+nsrIStVrN1KlTmThxIk5OTqLgERUVBSBIs8DAQJYvX87hw4f56quveP3113vdT8qyTGJiIlevXmXYsGFs3bpVkIKTJk3iyZMn5ObmEhoayrlz59Dr9dja2opr1+v1/RJPiYmJ+Pv7/9kS7V8FvFIeT93h4miPZGjBRjP422AymSgvL+/zQ2dra0tUVBQrVqzgZz/7GT/5yU9YtGgROp2OW7du8eWXX/KrX/2K48ePk5qaSnNzM7Isc+rUKQBWrlzZ44ve2NiIs7PzoM3UXF1deeedd3BwcGDPnj1WKhkFkiQRHh7Otm3b2LJlCzqdjuvXrwOIWFPoZHednJx6SEklSWLs2LF8+OGHuLu7s3//fi5cuNCjCmpvb89bb71FUFAQ33zzDZmZmX1et729PStXrhQ+SRaLhZKSEi5evEhhYSFNTU1Ccj916lQ+/vhjxo4dC2DVw919wHZ0dBTKNIPBQEBAAN988w1lZWVs2rSJ2tpaDAaDUDupVCqCg4MZO3Yssixz5swZoehxc3MTJn0K/P39efvtt2lpaeGTTz7hwYMHLF26lBUrVlBWVkZ2djYqlYrp06cTGBjI2bNn+fzzz616vAfahI0fP568vDzGjh1Lc3MzaWlpZGRk8OLFC3x8fJg3bx6vvfZap9GqWkuh0XnAKpUFieu5tezed4C8vDzs7Tsl0haLhfr6ep4/fy7M3hWvLaW1riv8/f0xGAz4+vqi1WqFJ82TJ0/4zW9+w+PHj4GeiidAmKDb2dlRUFDAkydPiI6OJiMjA2dnZ7FAGsIQ/tJhMBioqKiwGlvUanUPlcb48eOtqsHKYrT796Srv0ZXRZQkSYwbN44JEyb0SJDrWtzoagyrUqkwtDT2op/sHYpKR6VSWVWCuy4+eyMH/lQYrJnsH4s/xtsxWjNwG4uSPPeyJN2ECRN6fYxeryc9Pb1HBbqjowOtVivIp/b2dqGM6j6ni2v7QxvcwoULAaxIJ6UtvKuP2IYNG9iwYYNINNy/fz9Pnz4VLRzLly/H3b1Tca74nLS2ttLe3o5Go6GmpoaxY8fy4MEDysvLMRgMPeLFFQKrtyLHUKvdEP5S0Kw3DYp8gc4xxNbJlZCQEKKjo4mLi2Py5MnMmjWLhQsXsnz5clatWsWaNWvQaDSMGTOGzZs34+vri5ubG/999aQBvehARYyuhsmTJ/OP//iPBAcH4+vrS1hYGG1tbZSXl1NXV4ezszPjxo3jtddeY+XKlSxfvpzFixezYMEC0VURGhrK5MmTmTBhAuPGjSM2NpaoqCgiIiII9PMl0tmERP/jroSFKGcTtVXf7wvs7OxYtGgRP/7xj/H19eXYsWPs2rXLqsjZF8LCwnjvvfdE+5hSkHFycmLLli2YTCYOHDjQQ0WqpOHV19fj5eVFRUUFmZmZhIeHY29vT0dHB8+ePRPHe3l5iTZFGxsbq32Mk5OTmNeysrIAa2PxnJwcqqqqmDlzJo8ePaKkpITly5dz5coVamtrWbZsGUePHsXFxaXHHgY6A0h27dpFUVERGzduZMqUKb3Oo62trZw8eZLdu3ej1WrZvn07S5cu7XV9HxkZiZOTE8nJyZhMJh4/fsyOHTvYt28f9fX1uLi4EBsby9y5cwVpl52dTWBgoPh3cnIyNTU1LF26FG9vb9577z38/Pw4cOCAaMfuem0HDx7k8uXLTJ48mXfeecdq/TFs2DACAgJISUkhLCwMWZZ5/vy5uN/QvzK7srKS58+f90vIDWFgvJKKJwV2dnbIsmzVWjYQysvLMZvNPRY8vUGSJDw8PPDw8GDSpEmiGq205aWnpwOdg1dzc3OvjDHQQ2UyGDg6OvL2229z8OBB9u3bx4YNG6yMObteo+JNlZuby6FDh7h586aQpObl5REWFtbnl8zV1ZW33nqL+/fvc/XqVfLz81m9erVVep7it3Tq1Cm+++47WltbrdLUuiI6OprExETKy8v5t3/7NwwGA46OjkRHR1NYWIiDgwOSJFFeXi4Iort371JcXCxiLSVJEgtehXiqr68Xk0J6ejoNDQ1s3ryZYcOG8d133xEQEEBxcTEajQa9Xi8UTffu3SMjI0N4DfUVOaqoCMxmM/b29oSEhHD16lWRqqd4WkCn8urWrVucOHFCDIoDkSujR48mISGBK1euoFKpyMrKIjIyklWrVom0OIBx48bR1CEj3+/36QRkJCpqGzGZTGRnZ5OdnY1Go8HOzg6VSkV7ezslJSX4+PgQFxfHo0ePmDVrllXrqKI0M5lMNDc34+/vzzvvvENjYyOJiYk8evQIgMuXLzNlyhSxuZBlmWfPnomFxa5du0hISGD16tU8evQIPz8/6uvr/2TG/UMYwn9llJSUIMuyVSJd93EhPDychw8fAt8rTrp7NCkqHGUB2x1KlDB0tvYpzwVYKa0Uw2joDLDo6OggKGvwKh2NJGOxyFab/a7msYNpe3pZRZGinum6GFXauPpKl/vPCjD4Iclz3aGsHbpDmXe6IzAwkJKSEtGm3hVGoxG1Wk1jYyO///3vMRgMVmpTd3d3oRhSPnsNDQ0kJCRYPY+Hh4dVmx90Vr5HjhyJJEl88MEHHDt2TKinKisrsbW1ZcyYMQQHB/O73/0O6CTDQkJCKCwsxMfHh7KyMgIDA0lJSSExMRGVStUjpbe1tVW0iHbHUKvdEP5S4GSrQSUxKPJJ+n/Z+8+ouu88yxf+nEjOOecMQgIkJIFylpWTZVkuZ5erqm/fnnWfl8/MXevpO3dmetV090y3QznKlmxZEeWcQIggQEhEkXPO+cBJzwvq/zOHJGTJ1VU2ey2WBJxz/oFzfmF/93dvjDTWVNBaa8TBwQFPT088PT3x8PDAw8PDZD2bk5MjxsLW1tY/p5iF8v/ozZ7pjes5ZEFGRgYLFy6kp6eHBQsWsG7dOnQ6HbW1tZSXl1NeXk5OTg4qlYqgoCBCQ0MJCQnB2toaZ2dn5HI5bW1tUwr7BoOB3Nxcbt++TbjMjmKmpslNhBE50coWvvjiC/z8/EhKShLJfk5OThw8eFAkdH755ZfExMSwbt26WfdZzs7OvPfee5w8eZJvv/2W7du3Exsbi4ODA2+88QZff/013333HW+88YbJPZUCiHJycvD39+fu3btEREQQFxfHgwcPePLkiSCQXFxcKCsrE8l2UoFJ2sdIaGtrw9bWVnQoSGqngIAAnJycOH78OAsXLmRwcJC8vDw2b97M7du30Wq1vPXWW1P2MHV1dZw8eRIzMzPefffdaT2rDAYDeXl53LlzB5lMxrZt24iLi5uVgFEoFCxYsIDMzExKS0sZGRkhNDSUjRs3EhAQwGeffWbSxqfRaKiqqmL9+vXAeMfKvXv3SEhIEPYzFhYWHDp0iFu3bnH9+nXa2tp45ZVXaGxs5OzZs+j1el5//fUpbYgSFi9eTEpKCjqdDicnJ6qqqoiIiDBRPM2ErKwsbG1thRprHj8Nv3riCcYNW+dKPNXX16NWq01iMOcKhUKBv78//v7+rFu3jqGhIR49esTdu3dRqVTcuXOHtLQ0/Pz8RFuei4sLfX19YrP+PDA3N+fw4cOcOnWK7777jn379s1oJAfjmxq5XE5iYiJdXV2cO3cOGE9NklIFpoNMJmPp0qUEBweTkpLCl19+yYoVK1i5cqV4jkKhYPfu3VhaWnL16lWGhoZYvXq1WMA2NjZSXFwsDMJhnHnev38/4eHhyOVyioqKOHPmDKtWrSI1NZX+/n5BekysWkiKJ51Ox8jICDY2NuL3kkfKG2+8gZeXl0g7kDYqer2e5ORkXFxcqK6u5ubNmzg4ODA0NMTbb789beRoYWEhFy5cwNXVlQMHDnD69Gk+/fRTYFw1UFlZaRL57OXlxWuvvUZzczP37t2jt7eXq1evMjo6SmxsrMl9lsiZhw8fMjY2RktLC4sWLSI/P5+goKApE3RnZyeDPZ3IcJpzX/5IfzfSERUKBebm5qJyfPPmTXFv7Ozs0Gg0nDlzhvj4eNzd3bGxscHCwgIHBwfRvrF+/XoUCgWOjo688sorIpWwpKSE3NxcIiIiRIvE0NAQYWFheHt7s2nTJq5du8atW7dwdHRkbGyMkTEdPSM6NFr9c7XDzmMef2uor6/HzNKatr5hVMimmEDb2NiYVEcnkivW1tZotVpGR0cFUfPmm2+Sm5tLSUkJ5ubmJtXYx48f8+DBAxMvqYneUpNb4UpLSzEajUQprakbs5/1OiSVjoTJipnnabN7HtLJzMyMvXv38s0335j8XDr+TK8VGRkpikA/J6TrlhQ/MJ485yAfoVjnSr3BASMyZIy34UUp22clneDHtKPJBNRMhJ1ECC1btozMzMwpi2xp0ymRhRNb9np6erC2tuadd95haGiIEydOTNsSauItpVTi4+Mjklg3bdqEv78/CQkJJm17MD53TXxfKBQKMW93dXVhZWVFc3MzUVFRlJeX4+HhMcWnRTqfmRRPGo1m1rXMPObxtwBzlYINkW7cKm2f3eMJIxG2Ov7P938vgmmam5spLy8X46Kzs7MgoqysrGhpaaGrqwsfHx+hep3ojXujpBWDcao3rlbryZMnT7h27Rr9/f1CcatUKgkODiY4OJgtW7bQ3t5OeXk5FRUVXLhwARhfE4eEhGBnZzcl2a6trY2LFy/S1NREfHw869evR3bkGqfrlMhlMhPybSIRdmjxFsrKynjw4AHff/89rq6uLF++nOjoaBQKhUjofPz4MXfu3KG0tJRly5aRnJw8oyevpaUlb7zxBpcuXeLcuXN0dnaydu1aXFxcOHz4MN988w0nTpzg0KFDJumeq1evpqioCKPRSHd3N48fP2bRokWkp6dTUVEh2r1cXFwYHR1lYGAAtVot/kYTiafOzk50Op2JkKC8vJzW1lbefPNNbt68iUwmE211kZGR1NfX09rayltvvTWFXMvPz+fSpUv4+vqyf//+aZXITU1NXL58Wew/1q9f/0zFcktLC1lZWRQWFgrf4127dpkETU028i4vL0ev1wti58aNGyiVStauXWvy2nK5nI0bN+Lm5saFCxeorq5mYGAAPz8/9uzZM6XlcSIiIyO5fv06OTk5BAYGUlFRgdFoFGTcTMST1Gmybt26OXcfzWN6zBNPjBNPc3Wnb2howNvb+6W88dRqNQUFBbi6uvLuu+/S3d0t1FC3b9/mxo0b2NjYoNFoRLXuedsTJLVRSkoKJ0+eZMeOHaI9bTKkyGGVSsVrr73G3bt3SUtLIy8vj8rKSpKSkli0aNGMccnOzs688847pKenk5qaSkVFBbt27RIeUzKZjE2bNmFtbc3t27dpb2/H1taWp0+f0t/fj7W1NREREURFRTEyMsKJEye4d++eqAZERkZy8+ZNurq6UCgUFBUVsXz5ciwsLEQqjuS7NTkJQmoDkMlkvPnmm3h4eGAwGHjw4AGurq60tbUhk8mwt7dnxYoV9Pb2curUKWxtbent7eXQoUMmhu8wvpG5desWmZmZxMbGsnXrVvLy8hgcHEQmk6FUKhkaGsLf339aYtPT05O9e/fy3//7f8fe3p6LFy+SlpZGcnIy4eHhFBUV8fDhQ3p6evD09GTNmjXcvXuX4OBgRkdHSU9PF1WN4uJiCgsLaW1tRalU4itX0Gh0QD/L/k4hl7Ehwp1I5SCDg4OsWrWKrq4uqqqqqKysRKVSmVS8h4eHkcvlonIF4xsTDw8PRkZGxIA9WW5sMBiws7Pjgw8+oKCggMzMTL788ktRsfH29gbG+69ramooKytD5+BHWrOSeoMfxgIZ/1h4jQ2RbryfHDinAIB5zONvCTm13fxTZi9lg2GTyIc2QT5Mp2yRIJfLiYuL4+nTp/T09ADjm3WpYjr5Mzk0NISnpyd9fX1ivFy9ejWXLl0CTEmtiSTGy1DpTPQFmgvmksgG44qW2Qo0M3nF/SVIJ/jxnk4+Dzf5IG7qwTlf52RYWVlN+ftOJrhgfC0gKX6ktnoY30zNpAQaHR0VvoHOzs4cPHiQnJycGRVVEyGTyXj11VcJDg6moaGB69ev88033xAeHk5TUxOenp40NzcD44v9zz77jPj4eGBc4VtZWSnaHkZHR3FwcKCiooLdu3dTVFQ0bcrS4OAgBoNhRsUTjM9js21M5jGPvwW8lxzIjeK2WR9jAOKtxwvXzs7OLFiwYPznf1bETiSjiouLTZSfwcHB5Obm4unpiZubm/DG1Wj1DGh02JgrTYqBKpWKjRs3cvr0aWD6RDuZTIabmxtubm6sWLGCoaEhKisrKS8vJyMjg7GxMfLz8zEajQQGBtLQ0MDDhw9xcnLi7bffxtfXd9z+o+0J/33dFo7nt1HQLcOIbNqQKMnPtr6+ngcPHnDu3Dnu3LnDsmXLiIuLE6nZUVFRpKenk5GRQX5+PmvXrmXhwoXTqnkUCgU7duzA2dlZtLHt2rULT09PDh06xLFjxzh9+jT79+8XBLdarWbz5s2cOnUKX19fUlNTWbBgAd7e3jQ2NlJSUkJcXJy4Zx0dHZiZmYk9jESqAKKDQNrHSWonX19fDAYDT548Ydu2bVy+fBlLS0tsbW3JysriwIEDJgpRg8HAzZs3ycrKIj4+ni1btkwh5IeHh7l9+zaPHj3C3d2dd999V6zXp32/GQyUlZWRlZUl/CrXr19Pa2srdXV1U/bZk4mnkpISvL29sbW1pba2lqKiInbu3DmjMCQwMBA3NzdaWlpQq9UmLXszQalUEhcXR05ODtu3bycnJ0cUVWDmVrucnBzx3Hm8GOaJJ6ZulGeC0Wikvr5+2iSAn4Lr16/T29vLBx98gEqlEgPy8uXLRZqcpHaRDLU9PT2FGsrb23tOlTuFQsGePXswMzPj/PnzaDSaGa/B2tpaVDs7Ozvx8vJix44dpKenc/XqVdLS0li+fDkJCQnTpkIoFApWrVpFSEgIKSkpfPbZZ6xdu1b0xDY2Ngrz8qdPn6JQKFi4cCExMTHCsF1CaGgo5eXlPHjwgOTkZORyOUuWLOHu3bsEBQVRWFjI8uXLcXV1pa6uju7ubpycnMRGSRq0lUqlMONbvnw5Hh4ewLiXVW9vr4lcddu2bQDCILu/v59t27ZNkW0ODw9z5swZUcUNDw/n+PHj1NbWsnTpUpYvX84PP/xAU1PTjG2F8GOLS2JiIm5ubty8eZPLly9z+fJlZDIZkZGR7NmzBy8vL2QyGZWVleTl5bFy5UqOHDnCJ598QldXF0qlktDQUFauXIlKpaLp6HnqxmYnU/UGA28s9iT93C0SExMJCQkhJCSEhoYGXFxc+N3vfsfo6ChdXV10dnbS1dVFQ0MDtbW14h6Pjo5SV1dnsok8efIkTk5OQtLd0dGBWq1GpVIRHx9PXFwcZWVlnD17Fq1WyyeffMLSpUuJjY1l3759vPc/vuVei7NJ6pPBCLdK27lR3MY/7ormcOLsUut5zONvBUez6vgv54sAtXi/G5FRb7CjbsyeZcp6wpUdMz5fJpORnJxMa2urSSvZpUuXRHVToVBgMBjE53RoaEgoTqSfSaTTZExWzjyvSmcyATLxmBNhZmZmsuhrM1hTrHOj3mA/Ixnn6uoqvPm6u7v56KOPZrxPLwsWFhZzXjM8CxPb/CYmzz0PZDLZtPdXmluksdrDw4O6ujrCwsKoq6sThYJntZ+NjY0hk8lQq9V8+umn4nmSQk56/clkotFo5LvvvsPLy4vNmzfz7rvvUlhYyJUrVxgdHRWklre3t/DayM4e7xFfs2YNCQkJHDlyBBjf1EptftK1Tm7ng3HiSafTzUo8DQ0NzRNP8/ibx2J/R/5xV/S0LXDyP6+dlqkaUHS3c/ToURMliFwux9XVFVdXV0Fg6PV6CgoKuHDhggijuHbtGgaDQTxeWtN5enqisnSdck6RkZGi1Xa2JD0JVlZWxMbGEhsbi16v5/LlyxQUFPD06VPRUu7k5ERCQgL29vaMjY1x6dIlAgMDeXXdYjSN3/Cavw3rNm+bQoRJkMlk+Pn54efnJ5Lebt68SWpqKosXL2bJkiVYW1uzbt064uPjuXXrFhcuXODhw4dCoTndayYlJeHs7MyZM2c4cuQIBw8exM/PjwMHDvDDDz9w/vx5du/eLcbhiIgIgoODaW1tZXh4WKR3NzY2kp+fT1xcHPb29iiVSrFmnuxVC+O+qJLNCIz78DY3N3Po0CGuXLmCr68vnZ2dtLa2kpSUxP3791m/fr2JH5TUuVBVVcXmzZtZsmSJyd7LaDSSn5/PrVu3MBgMbNmyxSRlbjI0Gg35+fkiiEJST0ndKq2trRQWFlJaWioSu6XjSMcdHR2lsrKSdevWmRiKT+wWmYiKigrOnTuHQqFg//79ZGZm8s0334gWyNmQkJDAgwcPGBgYQC6XU1VVRUJCAjKZbFrFk1arJTc3l0WLFs25O2oeM2OeeGLuxFNHRwcajealuNmXlpaSl5fHK6+8Mm1lQKVSERwcjLOzMw8fPmTPnj3o9XqqqqrIzc3l/v37qNVqAgICBBE1W7VXLpezbds2LCwsuH79OiMjI6LVbSKkCcdgMFBdXc2SJUtwdXVlz549rFq1ivT0dG7evEl6ejrLli1j8eLF03oeeXp68sEHH3D79m3Bqk/sVY6JicHGxoa0tDS6urqmTfrbt28f//N//k/u3LlDdHQ09vb2xMXFkZqaikqlorW1lY6ODgIDA6mrq6OpqQknJyexAJYUAhcuXBCLVaniYzQaSU9Px8HBQcSTR0ZGEhAQQEpKCh0dHej1epKSkkQVVkJbWxs//PADo6OjHD58mMHBQT799FPMzMz4zW9+IySwiYmJpKSkkJeXR3BwMCEhIVPuk3TNzc3NPH78mOrqaiwsLLCxsaG9vZ26ujq8vb1xc3PDaDTi6upKXl6eMMTr6+tjx44dREZGir9DZ2cnbvJB/tMKD/71fsuURclEZULGhVI0Go2YXIeHh3n69Om4nFkmw9zcHC8vL1EpMRqNfP7551hYWLBt2zZqamq4cuUKFhYWJm0XXV1ddHV1magJ/sf/+B84Ozvj5eWFk5MTWq2W1atX09bWxuXLl7l79y72IfHcG/yzAfGkVkHpGv7zuSLC3WzmlU/z+JtHTm03/+V80Z8tu03f75KaKFPni4N8RJAttra2KJVKsRE3Go1cvXpV+N9JsLCwEGPgZA8jnU43bZvURCJkcmrZRDyPSmeuqZSST57BYOCpzmWCqmp6Mi7KrFuQThIk4u3nTM17UdJJIq4kT8AXxeS/o3TtUpuGhYUFQ0NDwqOppaXFZHEtBV8UFhYKtdxkWFtbC0Nd+HGdIPkpTr7fcrkcR0dHOjs7aWpqEgrXFStWYDQaTVoDHR0d2bx5MxkZGdy5cweAc+fOER0dLV5vbGwMW1tb+vv7ycrKAhCFEGk9NlHlPFOrHczNW2we8/hbwMQWuOvFLX8m6MFH3sP/9coi8m/msnr1avLy8vj000/ZvXv3jN43CoVCjBkJCQmsXr0anU5HW1ubUEU1NTUJRZJCocDd3R0PDw9BRrm4uODr60tXVxdPnjxh2bJlc74Wqf0tPz9fKHL9/f1pamri2rVrXL16FUtLS0ZGRti0aRMwboi9wMcHF5uZU8gmws3NjV27drFmzRqysrLIysoSvlTLly/H0dGRffv2kZiYaKLQ3LBhw7T7q7CwMN555x2OHz/OF198wcGDBwkJCWHPnj2cPn0aMzMztm7dKjoxtmzZwscff4yrqyvp6en87ne/Q6lU0tjYKNI8nZ2dTYgng8HA8PCwCEnq6urC2dlZjLmpqal4e3vT3NxMT08PS5Ys4erVq4JciYuLM0n/7O7u5vjx4wwMDPD6668TFBRkck2tra1cvnyZxsZGFixYwIYNG2ZMVO/q6uLhw4c8fvwYnU5HdHQ0+/fvFxYoEtzd3fHz8yM7O9uEeJLmDjBts8vOzqazs5MPPvhgyr5Qr9dz584dMjIyCAkJYefOnVhZWREaGsrly5c5d+4cra2tbNiwYUaizM7OjtDQUPLz8/H29qaqqorFixdjbm4+reLpyZMnaDSaKYnz8/hp+FUTT2q1WhgozwUNDQ3IZLJZpYZzQX9/PxcvXiQ8PHwKqTEZEini4eGBs7OzSFpraWkRbXlSVcLBwYHAwECCg4Onbe+SyWSsX78ec3Nzbt++jUajYfPmzSYfbCsrK7q6umhubkaj0ZhMUk5OTuzcuZOVK1fy4MED7t69y4MHD1i6dCmJiYnieJM9mwDRfrZ8+XKTHllfX1+OHz/OkSNHeP31100GOJVKxf79+zl27BhHjx7l7/7u77CwsGDhwoUUFxdjZmZGQUGBIHSqq6tZsGCBWAxL5rrSItvc3Fz0nT99+pSOjg5xHkqlkq1bt5KdnU1hYSFyuZyoqCjWrVtncg+Li4s5f/48Tk5OHDhwgPT0dEpKSliwYAFbtmwxuefV1dW4uLjg6OjIDz/8wJ49e0wGXY1GI6o6WVlZeHl5sXv3biIjI1EqlXR1dZGWliZMxaVJSC6X4+/vz4oVK/jmm2+QyWQm5J/kQ7XGW0nSb5eZLErkMvCR9RKj7iTUQUFPz/giXKpOScqwmSoGkp9XSkoKIyMjZGdnY29vz5tvvsm//Mu/4OHhgVKpZOPGjXR2dtLZ2Ulubi56vZ7R0VEaGxtN/LjS0tKwsbHBx8cHvV7Pd7nNyLCf1Z9KLpfxRXrNPPE0j795fJFePYUYngwZRop1bripxzfVk5PowHTTLUFKJoPxBZ65ubkYC6VNPIy3VHR0dDAwMICrqystLS3iNZ+Fn6rSmQ4SQdVmsCZT58v4lc+NjJuMmc5doVBgbW1tYuD+IpjJsHw2SOsNtVo9q5HpT4V07ZKpuqRgrqqqmrZd02AwkJ6ePqt9gPQ8tVqNj48P1dXVU9RN0u/t7Ozo6OgQG7D79+8L78bLly8D45sHBwcHBgYGyM3Npb6+XlTk5XI5DQ0NNDU14e7ujrOzM0VFRfT39yOXyykrK8PR0RGZTEZmZqYgniau456leJrHPH4pkFrg/vdHn+Lm7cv2zRv46vM/0fl0PIE4JCSEhIQEzp07x3fffUdSUhJr1qyZ0i2h1WpJT0/HzMxMfJaUSqVJ4VF6XGtrqyCjamtryc3NFY9XqVTCs9bT03NKJ8N0MBqNPH78mBs3bgDjRdtNmzaJ542MjJCTk8Pdu3dRKpWcPHlSkN+jo6OMjY3N6Ms0Hezs7Ni0aRMrV64kNzeX7Oxs8vLyiIyMZPny5fj4+AiF5u3bt/noo49ITExk5cqVU/ZV7u7uvP/++/zwww98/fXX7N69m6ioKEZHR7l48SLm5uZiH+Ho6EhycjJpaWkoFApyc3OJjo7m8ePHFBYWkpSUhIuLCx0dHTg6OmIwGMS8aG1tLboLJu55mpqa2LFjB5cvXyYuLo579+7h7+9PYWEh/v7+gvgCqK2t5eTJk1hYWPDee++ZJN9qNBru3r1LTk4Ozs7OvPXWW0JVNflvVVtbS1ZWFuXl5VhaWooUwtmUpImJiZw8eZLm5mZBTBmNRjHvlJSUiM4OSY022d6kt7eX06dP09LSwoYNG0yS95RKJTt27MDd3Z3r16/T3t7Ovn37pp0LYNza4+jRoyxatEi0mZqZmU2Zk41GI9nZ2YSHh8/Zkmces+NXTTzJZDIsLCzmXAGrr6/Hw8PjuQa4yTAYDKSkpKBUKtm+ffszB2RpgTzREE4mk4kKw4oVKxgdHaW2tlYQUXl5eYIgk9RQnp6e4gOenJyMhYUFly5dQqPRsGPHDjEJWVlZUVXXQF5xBQq1+ZTUGAAHBwe2bdsmCKj09HQyMzMJCwtDqVRSUVHBwMCAiWeTm5sb169fJyMjg87OTrZv3461tTV+fn68/fbbHDt2jK+++oo33njD5MMdFBREZGQkJSUlpKamsnr1ahITE8nJycHX15eioiJWrFgBjBvgwY+tBRkZGcJkT0p8kKoE9+/fx8rKSiT3rF27lvb2dq5fv45SqcTDw4Ndu3aJv4/BYODOnTs8ePCA6OhooqKi+P7779HpdOzbt8+EUJIeX1FRQVxcHKtXr+b8+fOcOXOGsbExvLy8ePjwIQUFBWJSWblypYiTNRgM1NTUUFhYKLyUVCqVSF90cXGhpaUFb29vwsPDSUtLY8GCBeLvq1arMTMzo7+/n+QF44uS/99//W+oLG156/VX+eyTj0hKSuLBgwfC3+Ozzz7jww8/JD8/n/Dw8Fm9xKKiorh58yZnzpxhYGCA9957DxsbG5ydnYUJ7cTFSnl5OX5+fmzevJm+vj46Ojq4du0aGo1G9LH39fWhM8qo08c90xRdbzByo6R13nB8Hn/T0Gj13Cxpe2YykRE59QZ7dMZxw/GJ6hKpjc3BwUF4plVVVWE0GomIiMDW1pbKykq6urpMiAWJqJbL5cIXx2AwCNLJ5PiTSJyfS00kXUuxzs1E6TQdxsk4V0HGSZg4pk8HvV7/0kgn4LlJp4mYLbb5eTGZAJvctgjjhKX0uMnJc5KX4dq1a+no6JjW90oul2NpaSlCJKaDwWDA0dGRjo4OMjMzWb16NQcOHGB4eJi0tDTRSqfX6+np6cHJyYnNmzeTlpZGamqqaC8fGBigrq6O1tZWkyAXqe1TqVSyePFirly5Qk9PDw4ODibE63SbDZVKJXwX5zGPXxrMVXKsFAYszVSsWrWKs2fPAuNFRUtLSw4dOkRGRga3b9+mvr6evXv3muwrHj58yNDQEIGBgVMMvidCpVLh4+Nj0vkxOjoqyCjpc6zVajly5AhqtdpEFeXp6YmDg4NYW3d1dXHp0iVqa2uJiYkRZMbEvZFaraakpAQPDw/eeecdmpqaePLkCfn5+eTk5PDo0SP8/f0JDQ0lNDR0Tm1+MD5OrFixgmXLlvH48WMyMzP54osv8Pf3JykpiZiYGCIiIsjIyBAJdKtXryY+Pt5kPrW2tubNN9/k/PnznDp1irVr15KcnIxGo+HmzZuYm5uTlJQEjO+/CgoKMBgMZGZm8uqrr/L48WNyc3NF+15FRQXu7u4mqbU2NjZC7RkfHy/UTh4eHhQVFWFtbU1bWxtKpZKenh5sbW1NfKby8vK4cuUK/v7+JoSM0WiksLCQGzduoNVqWb9+PYmJiVOISZ1OR2FhIVlZWbS3t+Pq6sqOHTuIjo6e1nZlMsLCwrCzs+Phw4fs2rVLHFsmkzE2NkZlZSVr1qzh5s2bqFQqsR+SUFJSwoULF7CwsODtt9+eVgAik8lITEzExcWF06dP8/nnn3Pw4EHhMzwRUgJgX18fY2NjNDU1Tat4qqysFHvWebwc/KqJJ3g+v4b6+nrCwsJe6HgZGRnU1tbym9/8Zk5G4X19fVhaWs76wTYzMyMsLEycW09PjyChMjMzuXfvHubm5gQGBgoiKj4+HjMzM1JSUhgdHWXfvn3kN/bzWYmR3NYAjK3DyIii4ftHMxo629jYEB0djVarpaioSKhl3N3d2bJlC+Hh4SaTx86dOwkPD+fixYt8/PHHbNu2jcjISNzc3HjnnXcE+fT666+bMN179uyhurpaECxOTk6EhobS3t5Ob28vra2tWFtbC4NxjUaDTqdDLpfj4uIilE9SC1x1dbXJBsva2prw8HA+//xzVCoVNjY2HDx4UJioj4yMcPbsWaqqqli3bh19fX2cOHGCoKAgduzYMW3SXWNjI8PDw4SFhQkzwqGhIZHiYW1tTVJSEnFxcfzzP/8zdnZ2NDU1UVhYSHFxMYODgzg4OLB48WKio6NxdXWlt7eX9PR0Hj16hNFoJCUlhaVLl3LkyBEKCwtNVEq2trYm1W0FBqyVBkYGx1UOcXFx9Pf3U1hYKExeP/roI8bGxtiwYcOM7zUYVw14eHhQUVHB9u3bxaDu6elJbW0tAwMDJhWokZERLCwskMvlODg4YGlpSX9/P+vXryc2Npauri5aW1sprqrH+PjZSXww7vk0oNHNE0/z+JvFgEY3pzhsGG8z06JAic6E9JFatQYGBtBoNCbjbXV1tUn1emKBRRoTDQYDHR0dz5Ue93O1sOl0OnRGmfB0mvUckFNvcBBknISNGzdSVlZGSUnJz3KOLwuTiZ8XxWQCbCZSy9vbm5qaGtGmCeOEUl9fH7t27aK9vX0K6SQRjQqFYlbSzsbGRqidJPzxj38kOTmZsLAwBgcHxXpLIsC6urr47rvvRNKR0WikuLhYBLhIZrkwXjGXiKv29nbs7e0xNzcnKyuLLVu2PJN4ksJT5omnefwSoVQqxXwQFRXFtWvXxNoLfvQl8vX15cyZM3z66afs2rWLsLAwNBoN6enpxMXFYWtry4MHD6YYP88GMzMz/Pz88Pb25tatW2zevBmtVsvNmzdZsGABw8PDlJaWkpmZCYx3H7i7u2MwGGhsbMTa2prXX3+d4OBgjhw5MqWFOjMzk/b2dt5//32USiV+fn6Mjo6Sn5/PW2+9RUtLCxUVFVy/fp2rV6/i4uIiSKi5hEEplUoSEhJEQMeDBw/47rvvcHV1JSkpieTkZOLi4rhz5w5XrlwhJyeHjRs3mnSEqFQq9u7di7OzM3fu3BFkxejoKLdu3cLMzIyEhATRXfHdd9+hUqkoLy/H3t6e3t5e2tvbcXFxEaobKZ0bxvcMNTU1qFQqHB0dqampoaGhgeXLl5ORkUFUVBQlJSW4uLgwNDTEW2+9hbm5OQaDgevXr/Pw4UMWL17Mpk2bBKnU3t7OlStXqKurIyoqio0bN07Zz0iq1NzcXIaHhwkNDWXz5s34+/vP+f0BCI/eO3fusH79etE6KJPJKC8vR6fTYW1tTVFREbt27RLKMp1Ox/Xr18nNzSUyMpLt27c/02cpMDBQqNC+/PJLdu/ePSXRXRIlXL9+HXNzc6qqqqYt2GRmZuLl5fVSLHbmMY554snCYk5y94GBAWGa9lPR1NTE3bt3SU5ONonCnA19fX1T4i+fBQcHBxISEkhISBADu0REXbp0CaPRiLOzM0FBQaxcuZL09HT+z38/w5U2a+QyTDw1Jhs6T2yjKykpEcqmRYsWERgYSGNjIzk5OZw9e5a4uDiSkpJMBrKwsDC8vb25fPkyp06dIiYmhi1btuDg4MA777zDd999x5EjR3jttdeEzFOhUPDaa6/x9ddfc/ToUf7+7/+epUuX8u2332JpaUlhYSFubm5UVVVRV1cnFqdeXl6oVCrhTSHd8/v372NmZoZer0en07F9+3ZOnjwpyJLXX39dkILt7e2cOHGC4eFhNm3aRE5ODn19fWzZsoXFixfPOPCWlZWJlKWMjAxycnLo7e0Vhqzx8fGsXLlSbABv377N8PAwVlZWREdHEx0dLWSnEuzt7dm2bRsrVqzgyy+/pKSkhKqqKpycnEhNTSUmJkZMsJPjtQ0GAwqFgp6eHmQyGXZ2diQkJFBYWIhWq2Xt2rXCX+NZctKGhgYqKyuRyWQmm1lPT09BPnZ3dwvyUKPRoNVqKSkpEal5er2e1NRUrl+/Lp5vYW2LjJBnbjphPMrXxvxXP3zN428YNuZK5DLmRD7JMKJiqh+QWq0WJs12dnaipVX6dyYCYiJ5ZGlpiVwup7+/H6PROGP72M+9aXdxcaG+vWdOn38wJeMkpKSk/Fyn91IxV9LJ3d2d1tbWFzqWv78/tbW1BAYGUl1dDUxVSNnb24sAk8kwGo2ibW8ibGxsGBwcxGg0snz5coaHh6mtrRX2ADDelpOWliZS9CwsLLC2tsbOzg65XI6VlRVlZWUm98PLy4uGhgYUCgXLly/n8ePHDA8PU1hYKAJHAM6fP8/ChQvJzR33sXkW8QSzJ/jNYx5/y1AoFIKkkMvluLu7U11dTXNzs0nngo+PD7/97W85f/48P/zwg1C36PV6Vq5cSUtLC6Ojo/T19c1ZOSShp6cHg8EgvJ4KCgpoaWnh3XffFevF5uZmSkpKKC4uFmNQf38/KSkpeHp6MjY2RkNDAwMDA9jY2NDV1cW9e/dYtmyZCAaSjqVQKPD19cXPz4+lS5cyOjpKVVUV5eXl5Ofn8+DBAywsLAgJCSE0NJSgoKBZSQu5XE5kZCQRERHU1dXx4MEDUlJSuHPnDkuXLmXLli0sWbKE69ev89133xEcHMzGjRuFT69MJmP16tU4Oztz7tw5enp6OHDgABqNhsuXL2NmZkZMTAzBwcFERESIDpWkpCSRIL548WJgfOycqHhSq9UMDAwIAiQtLQ1XV1cKCgrw9fWluLgYNzc3urq6ePPNN7G3t2dkZITTp09TU1PD1q1bxWuPjo6SmppKdnY2Dg4OvPHGGwQGBprci+bmZrKzsykqKkKhULBo0SKWLFkiigQ/BYsWLeLevXvk5eWxatUqQTxJarb79+/j6+srvHg7Ozs5ffo0nZ2dvPLKK8THx8+Z7HJwcODdd98lJSWFEydOsGbNGlasWGHy/NjYWG7fvo2NjQ1VVVVYW1ub8AGtra3U1NSwd+/e5yLZ5jE7fvU7t7kqniTy4qeynqOjo5w5cwZ3d3dWr1495+f9FOJpIuRyOb6+vvj6+rJmzRpGRkaoqamhsrJS+C60G2243Dbuf6CftAmSvEf+v+eK6K0tYaypVJBNkZGRREZGmvRwh4WFkZSURHZ2NllZWeTm5rJw4UKSk5MFoWFlZcX+/ftFwk1tbS07d+4kKCiIN998kxMnTnD06FH27dsnWGpfX19iY2N58uQJt2/fZt26dbi5uTE6OkpxcTHLly+nqqqKH374wUSpJC2OzczMcHJyor6+nrq6OnF9rq6uFBUV0dbWhlwu5+DBg8JEsLS0lHPnzmFvb09sbCzXr1/Hw8OD3/72tya90dOhtLQUc3Nz/uVf/gWj0UhUVBT79u3D09NTJGrk5uaKjZyjoyN79+7F39//mdUZOzs7NmzYwNmzZwkLCxP9ySdPnmTHjh0iQnVi5Vka4Ht7e7G1tUWhUNDc3IxCoaCjo4OxsTFRYf7Tn/7EBx98MO01Dg4OcurUKby9vXF0dCQnJ0cYSEoVDICbN29iNBrp7OxEq9WaVLrkcjlmZmYsW7YMR0dHnJyccHR0ZGBggHuf3ad0QGkS0z4ZCrmMDRFu82qnefxNw1ylYEOk2zPb7WQY8JX3TmveLbXgDg8Piw21VM2UyWSsWbOGyspK6uvrxeZiIumgUCgYHh7GaDSKz+5M7WMvQjpJ5qrTKavCw8OprKyko6MD1Z/T6+ZCPs1Exr0sqFQqdDrdFIXXX1I186KkEyA89erq6li0aBFlZWUm5MvChQt59OiRibG4u7s7hw8f5vr166I4MRFSmITRaOSVV14hISFB/K63t5fa2loKCwuprq42MauX1lqDg4N4enoSHBzMkiVL+Pbbb8X8I52vlZUVGRkZODk5MTIywvDwMBUVFUKBNTg4SFtbGwaDgby8PBQKhUm7+XSwsrKaJ57m8YvExGAIGF/7q9VqUlNTOXTokMljLSwsePXVV3n48CE3btzAaDQSHx+PjY2NGO9aW1ufm3iS1pzOzs7I5XK2bNnCkSNHePLkCQsXLkQul/P06VPy8/Px8vJi+/btWFpa0tLSIjyjurq6GBsb45//+Z+xtrZGr9ejUqnw9vZmaGhIeLX19PRgb29vQgiYmZmJfYnBYKC5uZmysjIqKiooKCgQ+yFJDTUTiSKTyfD398ff35+2tjYyMjK4ceOG8B7at28fDQ0N3Lx5k08++YT4+HjWrFkjCtZSGJKkuDl48CCjo6OcO3cOMzMzQkND2bRpE//+7/+OXC6nu7sbmUxGQUEBGzduRKFQMDo6KhRPEkEP42q2uro6amtrCQ4Opqenh87OTuzt7Wlra2Pfvn14e3vT1dXF8ePHGRoa4o033iAgIACj0UhJSYlJwNSyZcvEnslgMPD06VOys7Opr6/Hzs6O9evXv7Q0NwsLCxYsWEBubi7JycloDdAzoqe0vJLgAD+qqqrYt28fMpmMJ0+ecPnyZWxtbXnvvfem+D3NBWq1mgMHDojiR1tbGzt37hTzg7m5OQsWLKCoqIixsTEiIiJM+ICsrCzs7OyIjIx84Wufx4+YJ54sLExk5zOhvr4eBweHnxzDe/XqVYaGhjh8+PCU3tnZ0NfXNyV14EVgYWEhBmYpIeF33+cjbxlltmYLGQZSSvr5/yyNmEI2TYa5uTmrVq1i6dKl5OTkkJmZSX5+PrGxsSQnJ4vkuQULFuDn58eFCxc4duwYCQkJbNiwgUOHDpGSksLJkyfZtm0bcXFxAOzYsYOKigoePHjAwoULWbp0KefPnwcwYamXL1/OzZs3GRwcFOSJn58fMpmM+/fvi/uv1+sJCgoSpMju3bvx9fXFaDRy79490tLSCAoKYnh4mIcPH7JixQpWrlw549/PYDBQVlbGgwcP6OnpwdzcnOTkZNEPXlxczI0bN6ivr0culzM0NERQUBA1NTUsWLBgSsVhNkRERGBpaYmFhQX/8A//wFdffUVZWRn/+q//ypIlSzA3NxeKJ2lTKSmepMVEbW0tPj4++Pv7c+/ePQChfPrTn/7E+++/b9IbrdfrOXHiBFqtVrQ69vf38y//8i9i8yqhvb0dX19fIiIiePjwocnk9T//5/8kISGBlStXAqbVlxgLN0qY6itmep+NvJc8N8XgPObx14z3kgO5XtzK5ES7iTAiI0rZLhJ9Jn7OJqo8QkJCsLe3p76+nra2NoxGo1Axwo/+OBLxJJfLWbVqlcljYGYPJ8mD6adgIrE1GRNVNkqZEV95L/UGu1nJ59nIuJcFrVaLXC6fct5/yVatiX8LiZh5Xkh/s/Xr14s5+cqVK+L3jx8/NjmepOaF8ZaF6fyepMX54sWLTUgnGFdPLVy4kIULF/Lxxx+LzajUCiRdQ2dnJ5cuXRLHDQgIoKqqSrw/JfP7oaGhGZV41dXVeHt78/DhQ6KiopCrzNDLVYzqDNMWJqysrOa03pvHPP7WMLHVDsb3Dj4+PlRUVNDU1DTFr1Xyw6mrq+Pp06cUFBTg7+9PZGQkFhYWtLW1TWlPehY6OzsxNzcX5JCfnx/R0dHcunULGFf2j42NsWXLFhISEkwU+qGhocC4ov6rr75iw4YNokiuVqs5efIkMG4j4enpSUdHh2gln07hKJfL8fb2xtvbW1hklJeXU15ezu3bt7lx44aw7QgNDcXHx2fatb2bmxu7d+82ScLLzMxk4cKFvPbaa1RUVJCWlkZhYSGrVq1iyZIlKBQKvL29ef/99zl+/DhfffUVe/bsYXR0lJMnT3L48GH8/f2Fp1FxcTFeXl40NjbS0NAgyHaj0cjo6CjW1tZiHF64cCEnT57E0dGRyspKnJycGBwcFB59UVFRVFdXc+rUKaytrXn//fdFwujVq1eprq4mPDycTZs2ib2ARqPh0aNHPHz4kL6+Pnx9fTlw4ABhYWHPLIQ/LxITE7mSU8brn6aS3RGMsWMMGQvwK+1jX8xiHBwcOHfuHE+ePCE2NpatW7e+kK+yTCZj1apVuLq6kpKSwldffcWrr74qhBCLFy8WIU+jo6NiLzkwMEBhYaFJGNbLgkarZ0Cjw8Zc+assoM8TT3NUPDU0NPzkNrvCwkKePHnCrl27po3knAlGo/GFFU+zQSaTYW3nQF7rGIY5eGrUaG1ZsXot1hZziy41MzMjOTmZJUuW8OjRI2HOFxUVxYoVK3B1dcXOzo7Dhw+Tk5PDzZs3qa6uZteuXezdu5erV69y8eJFhoaGSE5ORi6Xc/jwYT777DORcnfr1i10Op0gj6ysrMQkNDQ0JKqbISEhtLS0UFlZKc7P1dVVPG/9+vVERUWh0WhISUmhvLycsLAwqqqqsLW15Z133pkxzXB4eFiYHEryZLlczm9/+1vq6+s5f/68SAEKCgpi165dhIeHU1JSwsWLF4GpcefPglKpFJXqdevWsXfvXr744gsCAwPJyclBp9NhMBjo7+8XVRi5XE5vby8uLi4YjUbq6upYunQpK1asIDMzE71eT0JCAubm5ly5coU//elPxMTECC+Ozs5OsWm4e/cuDg4OWFhYIJPJ2Lp1K05OTly7do3BwUFxnR0dHTx8+BBvb28sLS1paGgQfeKSqeHNmzfRaDSsWrWKiIgIWj5JIW3EE4VcbpL2pZDLMBiM/OOu6PlEu3n8IpDg58BqqzbuDbmjkJkqTmUYMCJjmbIeN/kgklAjODgYhUIhKqASqqqqphATixcvpqenh8rKSiwtLRkaGhLEiRSYMBkTiZaJxMfzjlE/FVHKNurG7Gd9jETG/dz4KUTPy4R0793c3PDz8yM/P3+K+miuuH79OlVVVVRXV5v8XaVrtLKy4ve//z2Wlpbo9Xpu3LjBw4cPTV5jMvn4LAX4m2++yR//+EdgnMh7++23+f777/H09MTCwoLq6mo0Gg1Go1GYlo+NjeHo6Iharaa1tVVsBCTSSTr3iQqpNoM1N3IGKRuKxIiMI//3NTZEuk3xp5TmoHnM45cGhUJh4g3U29vLwoUL6evrm1b1BOOWCGVlZaxatYqOjg5Onz5NQkICrq6usxqMz4TOzk6cnZ1NitJLliwRadDh4eFs2bJlWl9UCVKYgFwup7GxkdjYWHbu3Elvb69QRbW0tNDd3Y3RaOSf/umfcHBwwNPTU5iYe3h4TFHo2NnZsXjxYhYvXszY2Bg1NTWUlZVRWFhIZmYmZmZmBAcHExoaSnBw8BQPXnt7ezZv3syqVavIyckRSXgRERHs37+fp0+fcvPmTXJzc9mwYYMw03777bc5e/YsJ06cYP369YyNjXH8+HF+85vfkJiYSH5+vonaNDMzExcXF3H/dTod9vb2NDY2YmlpSXt7O9XV1djb22NtbU1XVxcymUx0ljx8+JBr164RGBjIvn37UCgU3L59m4yMDOzs7HjttdcEydfV1UV2djaPHz9Gr9cTHR1NYmKiSJ37OXCtapgrY2HIG4dNbF3q9Hb88bGBx7XHCdQ3sWvXrhnTtX8KIiIiRML4559/zv79+wkICBBza1NTE0NDQ+IzlJOTg1KpFMKHl4Gc2m6+SK8WKne5jGnnqV865omnORBPUmLD5MreXNDT08Ply5eJiYkRfatzxcjICFqt9mcjnuD5DG4NRvhvf/xXIgN/TMubPMlMB7VaLeI2pb7rTz75hIiICFasWIGHhwdLliwhKCiIlJQUvv76a5KSkti0aRNWVlbcuXOHoaEhNm3ahIeHBwkJCeTm5nL79m3Cw8MFW21tbU1/f784H6PRKKqbAQEB3Lp1y+R30mAfFxfH8uXL6ezs5IcffmBwcBAPDw/KysqIj49n48aN0zLura2tPHz4kMLCQoxGI9HR0cTHx3Pp0iUsLS356KOP0Ol0+Pr6snnzZiIjI0UlCMb7ndVqNadPnyY/P18YD84V8fHxZGRkUFJSQmxsLMHBwXR1dfH3f//3XL16leLiYv73//7fLFy4EBhfmHR2dhISEkJDQwMajUYYD0peMH/84x/FRkQydvX09MTGxob29nYWLVpEcnKyINfKysr44YcfcHd3x9vbGx8fH4qKioRnhzSIS2RgWVkZlpaWKBQKvv76axoaGoiMjGTjxo1YWlry5ZdfkmA/xm9fjedoTjM3Slp/HKAj3HgvOeBXNUDP45eNnp4eAvSN7HxlMedK+0ir7sP453YzX3kvUcp23OSmyW2VlZXY2NhgaWmJj48P5eXlGI3GaUmSnJwcMeZJVTuVSmXSajcboSSRExPNsOeSavciyXdu8kGWKevJ1Pn+ue3ux2rjZDLuefBTzunnSvB7XrS1tT3XRlBnHPe/crSxFIESMP7emU65plAoxHtqaGiIkydPCnsBCTKZzOR55ubmohV9JgKqtLRU/N/Kyoq+vj5GR0fZunUrzs7OZGdnc/36dVauXMmjR4+ESleatyVD8InKvsmE2VOdy/h7ZexHf0qDkSn+lNI5zLfazeOXiImKJ2nv4ODgwKpVqzhz5sy0qqd79+5hZWXF8uXLUSqVBAQEcPXqVczMzJ5rLSqhs7NTqOQNBgPZ2dncvXtXeMStW7duVtIJxvcLDg4O5ObmIpfL2bhxIzKZDAcHBxwcHIiKisJoNPJf/+t/ZdmyZbi6ugpCqry8XBDzTk5OJkl67u7uYh2vVqtFIJPRaKSlpUWooVJSUpDJZPj4+Ag11MR9joWFBStXrmTZsmU8efKEjIwMjh07RkBAAFu3bqW0tJQTJ07g7+/Ppk2bcHd359VXX+XWrVvcvHmThQsX4urqynfffcdbb73Ftm3bOHLkCI2NjajVaqqqqkhKShJF8rGxMczNzdFoNISGhpKWloaVlRW9vb3IZDKUSiXe3t5s2bKFK1eukJubS2JiIhs2bKCiokIUg1esWEFSUhJKpZLq6mqys7NFguCyZctISEj4yR09c0VObTf/5XwR4zO5KaSx+1avE18cXEls7MvvanBzc+P999/n9OnTHD16lM2bNwsysq6uju7ubnRGGS09g2Tl5BH3kloMAY5m1fFfzhchl8vEnnumeeqXjnni6c/E02wJDo2NjRiNxuf2dzIYDJw9exYLCwu2bt363OZkUoLM8/ZZPw8Gezqey1PDQjlOuFRXV3P9+nVsbW0FCRUYGDijqSf8GIEcFxfHkydPSE9P57PPPiM0NJSVK1fi5eXFO++8Q3p6OqmpqVRUVLB7926srKy4cuUKw8PD7Ny5k61bt1JWVkZ2drbJ5CgZd0+sCEsR0nq9XrR0SIO1VqslICCAV155hYqKCs6ePSsmpv7+fg4dOkRISIjJNUg90A8fPqSurg4bGxtWrFghIlCPHTvG2NgYtra2rF69mujo6FmJw6ioKM6dO0dnZyfHjx/n1VdfnbOs1NHRkcDAQPLy8oiNjWXVqlV8+eWX1NbWkpSURHFxMaGhoSIVqLm5WajDpNa6tLQ0VCoVMpkMb29vGhoaSExMJC4ujq6uLk6dOkVLSwsKhUIkSkx8H4eEhODg4EB2djbe3t54enqSl5cnNqkSqSsN3k+fPsXCwoIvvvgCFxcXfvOb34je85SUFLq7u3n33Xdxc3MjKczjVy9JnccvG5Lf3JaEUBZ5t/LlkbtoUaBCL9rIJMJI2mjL5XKxQZdScNrb24mLi6OkpGRKWIZEnkjPmdiuJJfL56Rkmmj+PBci5kXJmnBlBw7yEYp1rtQbHJ5Jxs0FP+WcpnuOra2taAP7a0ObwZpinZtIBpSNSvesDTf54BTyCMZ9GZuammhtbeX+/fvk5uZOKcZJxR4JarUajUaDpaUlx48f57333pui5h4dHeXevXuCtBwaGiIrKws/Pz+cnZ3FxjQqKorVq1dTXl4ufJri4+MpLy+nsbHRhHSa7nozdb6Mr05MIall//O5IsLdbEjwd8TS0hKNRoNer38uy4N5zOOvHRPNxSWDf3t7e9zc3EhNTeXevXu8/vrr4vGtra0UFhaybds2kZodHx+Pt7c3x44do7+/n7y8POLj4+d0fMnTMzIykpaWFi5evEhLSwtLlixh5cqVfPnll1y7do3XX3/9mXshKysrGhsb2bNnz7Tp34ODg+j1ery9vQkLCyMmJgYYnyO7uroEEdXc3ExpaSk6nQ6ZTIazs7MJGeXm5oZKpRLfr169moGBASoqKigvL+fevXvcunULe3t7QUL5+fmhVCpRqVQiCa+0tJQHDx5w+fJlXF1dWb58OWVlZfzpT39i4cKFrF27lo0bN+Ls7Mzly5fx9vbGxsaGo0eP8vbbb7NgwQIKCwtRq9UMDg6i0WhEMVin04kx0MfHh9u3b6NQKFCpVBiNRuzs7Ni+fTs//PADdXV1bNu2jcDAQE6cOEFFRQXBwcH85je/wcbGhsLCQrKzs2lvb8fNzY0dO3YQExPzk0jGn4Iv0quRy2UmnQyToZDLOV3YzfqfgXiCcdXr4cOHuXHjBlevXqW1tZVNmzbRo3Qkf9CBeoM9X/5TKjIiWNNsh3Nt9wsXuyXCzQhTrn26eeqXjnniycICg8HA2NgYZmbTt5A1NDRgYWGBs7Pzc22EU1NTaWpq4u233/5JrKk0ebxsxZPUZpWenk5VVRVB5uFUj1rPqnxSyGUs87EmMSiO2tpaMRCOjIxQUlJCfn4+gDAMDQoKwsvLa9rFnUKhIC4ujoULF1JUVMT9+/dFm9jKlStZuXIlISEhpKSk8Pnnn7NmzRr27t3LuXPnGB4e5sCBA6xbt45z585hMBiIiYmhpKREEE4TTbUNBgOenp7cv3/f5Pp1Oh1OTk4cOHCA9PR07t69KzYU4eHhwvRQwvDwMI8ePSInJ4f+/n58fHxYs2YNQ0ND5OTkMDg4iIODAwEBAZSVlfHuu+8+s7Iz8X4sXLiQgoICjh07xqFDh+b8flm0aBFnzpwhJycHg8GAra0t58+fF8+fWHGeGMtqa2uLUqnk8OHDfPLJJ8TGxvLKK6+QkpJCfn4+iYmJREREcPDgQY4fP45OpyMmJmbKgkEul5OYmMiNGzfYsGGDqKiNjIwwMjIiNsFmZmakpqbS1dWFUqlk06ZNLF68WLw/srOzKSwsZO/evUJqDeMGzPOE0zx+qaivr8fNzQ1zc3N0Oh1KmRGVTC8KIZKSSSqQSAbd0u+klEqABQsWsH37dr7++mva29vFZ2+2drHZ2rYmpqBNxF9KBeQmH8RNPSjUOxPJuJ8Cya/pWef+LC+r/wjSSSaT4eTkJFJQp4NQ/kwoJBmRUW+wo27MnmXKesKVHSbPkclktLa2sn//fr7++mvu3LmDmZmZeF/IZDLi4uLIzc3Fz89PEKVjY2PCmN7c3JzvvvuOd99912TOzMjIEPNAdHQ0RUVFNDc3s3v3bgDKy8vp6elh7969wLjKSVJFLF++nOXLl2MwGGhpaSEvL0+sMSaiWOf2zMKZXC7ji/QaEvwdheJ4eHj4Z6/uz2Mef0lMVK9OJJ4kL78zZ87Q2NgoLCPu3LmDo6OjUMRLcHNz48CBA3z11VdcunSJxsZGtmzZ8syC6MDAgEiku337Nq6urrz77rvieJs2beKHH34QNhYzYXR0lPb2dhQKBdHR0dM+RlJETk5glsvluLi44OLiItq09Ho9HR0dJm16hYWFGAwG5HI5rq6uokVPIqPi4uKIi4tDq9VSW1tLeXm5KDir1WqCgoJEUp6VlRVRUVFERkZSW1vLgwcPyMjIwNbWloiICJ4+fUpxcTHJyckiUOfkyZOYm5ujUCg4evQor776KqWlpWJfNXHe1Wq1Yp6vq6tDpVJhMBhEUMiWLVv47rvvGBkZ4dChQzQ2NvLxxx9jaWnJgQMH8PLyIjc3l7y8PIaHhwkLC2Pz5s34+/v/RZPaNFr9M4NUYJyIuVHSikar/9nW/nK5nM2bN+Pm5sbly5e5VjnElcFAoaiG8bkztaqHuxWZL6xGmgvhNnGe+qVjnnj6s0JnZGRkRuKpvr4eg2MAH36XN+fezLq6Ou7fv8/q1at/chJeX18fSqVyWsb/p8BoNFJeXk56ejqNjY24ubmxd+9eNlu68+rn2bM+12Aw8g+bY8S1jo6OUl9fT21tLXV1dTQ1NQHjFfi2tjbS0tJQq9UEBAQQFBREcHDwtJPEggULiI6OprS0lPv373PkyBH8/PxYuXIl77//vqg4+Pj4sH37dq5cucLnn38u0tn6+/vR6/Xo9XpRlZ/ckuDr60taWpo4psFgwNzcnIMHD3LhwgVKS0uFSeHOnTuJjY0VA3Jra6sgRWBc4RMUFERtbS13797F2tqaqKgoYmJi8PT05OzZs7i7u8+ZdILxxb29vT2/+c1vOHbsGN988w2HDx8Wi2Qpwaerq0t8dXd3i38Brly5ItolJCXX4OAgS5YsITw8nG+++UZEc0t9zO7u7mKyk/qYt27dSn19PWfPnuWtt96ioKAAhUKBwWDg5MmTvPrqq1MWDQsXLuTu3bvk5OSwZs0asQDq7u5mZGQEuVzOkSNHRELT7373O5PqeG1tLTdu3GDZsmUzLjTmMY9fIurr60V4hKREsrW1FWpXCSMjI4SEhFBZWWmywZhouHz+/HkOHTqESqUiICCA+vp6hoaGfjJRNJOh5l+69UwpM6Lkp5maT8Rc/ZosLCyEOuwvATs7uyl/78mQ1AQztUaaKn9MNxNSq2KmzhcH+YiJWkzykUxNTQXGCwRSpR3G05ny8vKIiYmhsLCQ5ORkNBoNubm54jwkBdGJEyd44403UCqVDAwMkJmZib29PTqdTgSDjI6OinubmZmJj48PXl5ejIyMiOPGxMQIglCv1+Pk5MTy5cvJz8/H39+fRYsW8fTpU4pKy4SyazZM3MhIc+rQ0NA88TSPXxQmK57UarUoQEZGRpKamkpqaiqvv/46dXV1VFRUCA+gyfDw8EAulxMdHU1xcTGNjY3s37/fJGxmMiRlfWVlJevWrWPp0qUmrx0aGkpQUBDXr18nKChoRpXN7du3xZp+aGgIa2vrKY+RbDIm7ylmui/u7u64u7uLda5Op6O9vd1EGfX48WMRwuPm5maijNqyZQtbt26lvb1dtORduHABAC8vL6GG8vf3JyAggNbWVjIyMigqKsLMzAxXV1dSU1OFJ+s777zDDz/8wPDwMEqlkjNnzrBq1Spu3bolLDEmQroPEz1q5XI5K1eu5NSpU9ja2rJhwwYuX75MX18fy5YtIyQkhLy8PE6fPi08YRMTE5/LZ/hFYDAYGBgYoKenh56eHmpbu5/L1uXfPv0cR0sV5ubmmJmZmXxN/Nnk30uE3lxItUWLFtGsteCLlPH7OjnQ5KeokQwGgzApHx0dpX9o5K+GcPtrwTzxNIF4mq6lTa/Xc6N6hPRRJxTy9jn1Zo6MjHD27Fl8fHxITk7+yecmGYu/KCttMBgoLi4mPT2d9vZ2fHx8OHToEMHBwchkMnp7e0k2ayR91As5mBiNz2TobGZmRkhIiGhFGx0dpaGhgdraWmpqamhubmZsbIyKigphgmtraysmn4CAAEH0yeVyUTEoKysjLS2No0eP4u3tLdRP58+f5/Lly4SGhlJcXIxKpeLw4cN89913lJSUCFJFJpOJSUkimSYSUVKVY/fu3Zw4cUI81t3dnV27dmFvby/a8h4+fEh9fT3W1tb4+/vT39/P06dPMTc3JyIigu3bt+Pn5yc2aHq9nsrKShITE5/r7yNtDB0dHdmyZQuXL1/mo48+wsfHh/7+frq7u02MVe3t7XFyciIwMJDFixfT0NBAeXk5/+k//SfMzc05evQovb292NjYoFKphIzaYDCgVCo5ePAgR44cobe3l0uXLmFubi6qWWZmZuzZs4evv/6a48ePi3hTR0dHvvzyS3744Qf27dtHVFSUyXth0aJF5OXlsXLlSjw8PGhsbKSxsZFHjx6Jey4Zyk6c+Pr6+jh16hT+/v6sX7/+ue7bPObxt4yBgQG6u7tZu3YtgCBmY2JiSE9PN1E9wXjL9+bNm4UHx+joqGjr7e/vp6enh48//hhbW1u8vLzw8/OjoqICmF3ZNBnSuDlxkfu3Bhsbm59MHr1M0ik+Pl54EM6EZ5FOEzFTW+RclD8yjJQa3PnHv9/Mp59+aqLqqq6uRqlUmpBOcrmcwsJCwsPDefr0KW5ubmJ+nEyWabVa6uvr+eSTT/D396e2tlYUHzw8PEQaKsCtW7fIz8+nq6sLa2tr/vVf/9Vkfvtf/+t/zXidtbW11NbWAjBmVM7JIgDG12sDGp0o4v0lkwnnMY+/BCZ6PPX29mJvb2/i7yepniRFkoeHx4wx8UqlEmdnZ5RKpfDE+fzzz9myZQuLFi0y2ZMMDg5y7do1iouLgfHCopOT05TXlMlkbN68mU8++YTMzExWrFgx5TENDQ3k5OSQnJxMeno6bW1tMxJP0vr2p0CpVApSSYJWq6WtrU0QUXV1daK9WKlU4u7uLp6zY8cOzM3NqaqqEknbUteEpITavn07a9euJSsri0ePHiGTyZDJZJw9e1Z4Mj148IDa2lq0Wi3FxcU4ODiIPclE/2G9Xi+eL60HoqOjuXnzJn5+fqjVai5cuIC/vz9LliyhpKSEBw8eYG9vb5Io/bIxOjoqiCXpq7e3l+7ubnp7e02KPZY2dsgInqOtC4QG+IJei0ajYXh4mJ6eHhNCZzZVslwun5WcmvizYzn9yGWyWYkhmQz+6UIuv1+gZnR0VHxJ5zLx/5PXWiNGJQbjwmdeM/w4T80TT79wTCSepsON/CrSR8fbh+bSm2k0Grl06RJjY2Ps2bPnhWIYXzTRTqfT8eTJEx48eEBPTw/BwcFs3boVP78fSTKj0ciFCxdIsB/h968s5v859YDSAbXw1Bg3dH62476UCBEcHAxMT0RJPeO5ubnIZDLc3d0JCwsjODhYVFjCw8NFmlxaWhrff/89Hh4erFmzhoKCAoqLizE3N0elUnH06FG2b9/O8ePHxWAtk8mEeajRaESpVE5Jf1qxYgVnzpxBrx9vadmwYQNLly5lZGSE+/fvk5OTw8DAAI6OjsKfQqPREBYWxtq1awkODp62WlNfXy8MAGeCVqsVaiXpa3R0lLS0NG7fvi0eJ5PJqKqqIjw8nJiYGJycnHBycsLe3n7KsUNDQykqKqKkpIS4uDhWrVrF119/jZOTEwMDA2IglNIxmpubUSqVvPPOO3zyyScYjUY++ugjoqOjWbFiBT4+PixcuJD8/HwiIyMFyfTBBx/w+eefc/r0aXQ6nUnixJIlS8jKyqKgoABPT08aGxu5efPmeHKitTWHDx/mj3/8I5s2bRLP0el0nDx5EpVKxd69e196ZOk85vHXDMm8WUpLldK2JOIJMGmv0mq1VFVVsXnzZq5duyYMW6XWL2nR2tfXx9DQEAsWLECn0z23QmniYnEmAuevxXR7Jrws8miu1znT4ybPPT8HdEbZnJQ/RuTU6uz413/7aNqWxckLeWHe/WdvxLa2Ni5duoRcLp9xrJZUriMjIygUCszMzIT34sSW0Z6eHhQKBVZWVqJCDOP3ca7piSr0c/anlMvAxlyJ3Phjq9085vFLwuRWu8mF9MjISNLS0rh69SotLS0cPnx41qK2u7s7bW1tuLi48N5773Ht2jUuXrxITU0N27ZtQ61W8+jRI27duoVcLicgIIChoaFpSScJzs7OJCYmcv/+fWJjY006A/R6PRcvXsTLy4tVq1YJLyJJETwRPT09c1I7PQ9UKhXe3t4m6dVjY2O0tLSIFr2qqiqR9KlWq/Hw8MDDw4OtW7cKk/KKigry8vJQKpUEBgYSGhrKe++9R2lpqXhuZ2cnx44dIyoqiujoaAoLC4Vf48RjT2wzn9ji7e7uTkFBAb6+vjQ2NmJmZkZMTAz19fVcv34dPz8/Dhw4QFhY2AutqyerliZ/TRxHVSqVMIAPDQ0V/3dwcBD7lspjudwqbX+Gx5OMDRFu7Nw2u7eYXq8XpM/Q0JAgvQYGBhgcHBRWH6OjowwODqLT6UTat6So1RllZI3GPXMOMRghp2WM7LEirMzVgrQyNzfH1tZ2WpJL+tcoV3Hy33LmpPaS5qlfOn75V/gMPIt4+iqjFhlMMa6ciIm9mfn5+ZSUlLB///4X9mbq6+sz8buZK8bGxsjNzSUzM5PBwUEiIyPZv38/Hh4eUx776NEjampqOHz4MEFBbmy2buT3i8Lw8A3k3Knj/GH9B7i7P780czYiqqqqira2NlpaWmhpaeHevXuoVCr8/PyIiIgQz5Na2tLS0khJSQHGDbWlSr+ZmRlnz55lwYIFPHnyRHhzjA/WSlRGPWZmpn4d7u7uoq3A2dmZffv2YTAYuHjxIgUFBcC4saGkBAsKCmLlypWEhYXN2Iopoby8HBsbG1xdXU2IpYmtcRMnD3Nzc5ycnJDL5Xh7exMfHy/IrpGREY4ePUpdXR0rV66cVeJsb29PcHAweXl5xMXF4evrS0BAAC0tLfT19Ynr12q1uLu7U1tbK9Kw5HI5f/jDH3j69Cnp6ekUFhYSGhpKQ0MDZmZmNDU1odFoMDc3x9XVlQ8//JA//elPnDt3Dp1OJ4wnHRwcCA8P5/79+2LxIykv+vr6qK6uxmAwCFLOaDRy+fJl2traeOedd0zS/uYxj18D6urqcHR0xMbGBoPBQHNzM4DJYlwiUKSWuvLycsLDw1mzZg13794FfiQ9enp62LJlCzdu3ECn0/Ho0aMXPkcHB4dpSZyXRTpJ6qqXDUdHR/r6+kxIjLm0tE3GXImnmR7zrMTclwEtijkrf4zI0MtVKI0/GszP1L63du1asrOzGRoaYuHChWzZskUEURgMBhoaGvj2229NTO8NBoPwItPr9VhYWIiKPvx4PwwGAwqFAq1WKzxLYNx/UErkehaUsnHj9HqD3ZQWiYmQNjLjVWQFSqVyXvE0j18cJnrT9fb2EhBgas4sl8tZsWKFsIMIDAyc9fXc3NwoLS3FYDCgUqnYvn07AQEBXLx4kU8++QQLCwtaW1tZuHAhGzZs4NSpUzg7Oz/zPFetWkVBQQE3b94U/m4A6enpdHV18cEHH6BUKnF1dZ0xybOnp2dWgutlQa1W4+fnZ1Ks12g0JmTU06dPycrKAsb3PR4eHvj7+6PT6eju7ubSpUvAePtiXFyc6EDRaDSC1Jf8FNva2rCysqJ6QEbx2ISQCH4MifC30tPe3o61tbXwiOzu7qa4uJiYmBgSExOn3evNhJlUS9K/E+cGW1tbHBwccHFxISQkBEdHR0EuWVpaPrM7573kQG4Uz57OqjcYiTXr5MKFCybk0djYGFqtFq1WK1oxJRJpLpAKJiqVSpjDj8nNMDbPfe5857d/wMVm9n3gdNgQ6TZnwu2XrnaCeeIJMzMzZDLZtAtEjVZPbsvYnD0EMnPyuHPjGmFhYbi4uNDb2ytanZRK5XMzz319fbOqZyZjeHiYhw8fkp2dzdjYGAsWLCApKWnGyaCvr48bN26waNEigoKCMBgM42SXsyMLwwO5rlZSUVGBu7v7c533dJhIRK1fv16YEFZXV1NRUUFHRweVlZWivcPa2pqgoCCioqJYuHAhdXV1WFpa0t3djYODA3Z2djQ3N2NpaUlRURHW1tZU9WOa6IMRX+2PiT5yuVy0syxduhR3d3dhnjixHc3R0ZGVK1cSGRk5o7+W0Wikv79fEEudnZ3k5+cjl8v5f//f/1cMhiqVSpBJsbGx4v9OTk7itf/5n/8ZX19fk/Y1tVrNW2+9xbFjxzhy5AiHDx82kQVPRnx8PCdOnKClpQUPDw9WrVrFkSNH6OrqEov4sbEx7OzsKCwsZNmyZeTn5xMREYGNjQ2LFy9m0aJF5Ofnc/36dfR6Pf7+/jQ3N3PlyhX27NkDjCsw/vCHP/Dxxx9z6dIldDodiYmJ9PT0MDQ0RF9fH05OTgwOjicoSVGw5eXluLq6iipcXl4ejx8/ZufOnbNe1zzm8UtFfX29UDvV1NQIw2apZQHGF4X29vYoFAq6urqwsbHh2rVrfPjhh0JNOnGBfvXqVSwtLXFwcKC5uVmMQz/FoFsmkwkV1lzwU47xc5BOMK68mazWel7SCWY/v7lc71zVOy+C51X+BPl60VhXg0wmQ61Wm7TXTYREOjk5OfH48WPKysqwsrJieHh4WsXQxHtlNBqxtrYWxsXp6emEhoZiZ2cnfAWlVryJkJRR8GMi18jIiFAHSrC1tWVkZIQYOqjT2M96zQaDkfeSf9yEW1lZzRNP8/jFQSKQjUbjtIon+PEzqlQqn0kSuLu7C2NrieQJDw+nvr6enJwc+vr6WLJkCZs3b0Ymk9HZ2Sk8lGaDmZkZ69ev5/z58yQkJODn50dHRwf3798nKSlJFNtdXV1paWmZ9jW6u7tFUfsvDXNzcwICAkyIveHhYUFGNTc3U1VVJYrMFhYW2NjYoNPpyM7ORqvVYmVlhb+/v1AoV1dXo1Kp0Ov15PVZzhoSsdzYQJhiRJCMAwMDLFu2jMWLF0/blvhTVUtSYvVk1dLE1x0aGmJgYICGhgaGhoaE0mh4eBiNRoNGo2FsbEyQRjqdjuVmdjwY9f7z9f24J5aMvZcp62kv6aBd+vmfWwwVivGigVKpxMLCArVaLZRF5ubmWFpaYmlpiZWVFdbW1tjY2GBjYzMrIabR6vnk/772s6uR5kK4TZ6nfsn41RNPMpkMCwuLaRdS/SPa5/IQOH/5GhYyHWVlZdNK7KUIzLl8yeVyhoaGaG9v5+HDh7M+dnR0lMePHwtzvLi4OJYvXz6r4spoNHLx4kXMzc3ZuHHj+PX292MwGMRGJzAwkKqqqml7sV8UUjJEUFAQGzZsEERURUUFlZWVdHV18eTJE2FYqFariY6OxtPTk+LiYsrLy7G0tBTeELm9FnNK9DE3NycsLIwnT56QlZUlBiQnJyeio6OJjo4W981oNDI0NDRFtST9Xxr45XK5MPWWWgclcsnGxuaZE/xMVXVra2vefPNNvv/+e7755hsOHTpkUnmZiNDQUGxsbMjNzRXeUw4ODvT29poQT5KPh6WlJV1dXWzdulW8hlKppLu7G6PRSFJSEiUlJYyNjVFYWIiTkxOrVq0CxpUDf/d3f8fHH3/MtWvXKCsro76+HisrK+zs7LC3t6evr4++vj6srKywt7enoqJCqKMaGhq4evUqixcvnpKoMo95/Bqg0Whoa2sTfnDFxcVYWFig1+vJyckR7UkwHmiQk5MjvJysrKy4cOECsbGx1NTU0N7eLl53YtLYa6+9xr8cuzCVjJf/SMZPhIWFBW+++SZffPHFc7XotRms53yMvyR+LoPwl3W9Uqvki2Kuyh8ZBnxkvTTW1QDj89tMpBP86INkMBhwc3Ojo6MDg8FAbGwsrq6uWFtbY2VlxePHj8nLy5uinBoaGqKoqEgkbJWXl896zZaWlixbtkwQqTk5OSbrKEnR4evrS319PdHR0ahralimq58w9/94/TP5U0rk2Tzm8UuCZC4+PDyMVqudQjzp9Xru3bsnrBAaGhpmDT6SCKDW1lacnJyora3l0qVL9PT0kJyczOjoKA8fPmRgYICNGzcyODg4J8UTQGxsLLm5uVy9epX333+fS5cuYW9vz8qVK02OX1BQIDxCJYyOjjI8PPzSW+1eBJaWlmI/I2FwcNAkSa+pqclkLS59P7EAMJeQiAytD/ayYRbYWbFx40ZiYmLQ6/X09PTQ0NAwJ9WSnZ2d6M6QRBFSoVgijBoaGqiqqhKkkaQyksjNuUAmkyGXywVpZGZmxnJrPUGGLnIHbCkdUP15DoXFHmbsjXYkMTBakEbPSlJ8UZirFH8RNdJif0f+cVc0//lc0ZR0u5nmqV8yfvXEE5iauE2EbmRgzpVEGWAmN3Jg/wHs7e2FJPBZXzqdTvxfmjC0Wq2IwpbMuZ+ncpqfn09RUdGsZFVfXx/19fVERkYKYkti6KV0OAcHB7Kzs2loaMDa2noKMfYyMZGIgvGB+e7du2RlZYk2k+zs8eQ9pVIpeqGHh4fpwHZOiT4eFgbQdAkyy9bWloULFxIWFoZMJqOrq4vHjx+bkEzS3wHGCRcnJyd8fX1ZtGiRie9SZmYm9+7dY+/evc9teDhbO4eFhQVvvPEGP/zwA8eOHePVV1+dttIjl8uJi4sjMzOTjRs3YmZmRnR0NPfv3xcR2EajkZGREZRKJY2Njdjb25tUbYqLi8nKymLz5s0kJiaydu1aCgsLuXLlCvfu3aO2tpZ169bh7e2NtbU1Gzdu5MKFC9TU1ODr68vrr79OSUkJ58+fF95Yw8PDon0iLCyMgYEBTp48iZeXl4nf0zzm8WuCpCTy8/NDr9dTWlqKq6srHR0dtLW1sWDBAgoKCpDL5YyOjmJjY4O7uzv9/f0oFApqa2tFFTokJITy8nLgR4VNd3c3//fRW2Row55JxsP4+CuXyzl27Nispp2T8VTnMifC/5eCl3m9L4N0khClbKNuzH7WxxiREaVsn/UxUnv7xPWGtNHcv38/J06c4NGjRyQlJaHX66mqqqKrq2vadj0pMU9qcZDWOjCeBNXU1CSCRYqKivDx8aGoqMikvUapVOLj40NNTQ0xMTHk5+fT3d3NwYMHyczMZGhoiHDlEA7yEYp1rtQbHCb4U7rzXnLAlMW8paXlvOJpHr84SObikt/pZOIpLy+Pvr4+XnvtNU6fPk1qaiqHDx+e8fUk5UhTUxOVlZU8fvwYHx8fXn31VbH+DgwM5Pz583z55ZcAJh5Fs0Emk7Flyxa++OILzp07R319PW+++aaJosbNzU2kVU98Xen6/lLpbD8V1tbWIu0OxsfDgYEBEzKqsbFRtJLBXEMioM48kMVmvcKza+JcIqmDJhrLS+3RUqfGRMuPmSCN25JgwszMTPxrZmaGhYUFFhYWQmVkZWWFra0t1tbWWFtbT5uWOBkarZ4BjQ4bc+V/WIvZX0qNdDjRj3A3G75Ir+FGSSsG47iKatxHeeo89UvGPPHE+OZ+IsEgoaO1GV95L404zsqGymXgI+tm0/q1REREvJRzqq6u5ujRo/zud7/DwcEBg8EgSKmWlhYePnxIVVUVZmZmhIeH4+/vDzAngksa/MzNzUV6g1arFeqh69evm5zLV199NeX85qreknppn/erqKiIrKws4uLi2LZtG1qtlrq6OgoKCqirq6Oj48fFfeGYy5wSffKG7NhoOe6bJZEhjx49Ii0tTTzOysoKJycnXFxcCA8PF+SSg4PDrIRSeXk5QUFBPyll41k+J2q1mkOHDnHq1CmOHz/O3r17p00jiYuLIy0tjcLCQhISEggMDOT+/ftiUwrjvf9eXl6UlpaSlJQkJqeOjg7Onz9PdHQ0S5YsEecVGxtLaGgo//7v/05jYyNffvklPj4+6HQ6WlpaCAoKoqWlhfr6elJTU1mzZg23bt1CJpOhM8roHBxFaTaAlZUV7u7ufPvttwAcOHBgThPTPObxS0RdXR3W1tY4ODhQWVmJRqPB0dGRlpYWnJycxFgM4/HUS5YsIT09HW9vbxobGwkKCuLx48cArF69mtraWsbGxkTsfZvBmgytD88i4x3kI7jJB4Uc/nkwl+rsxGP8pfEi/lEScT4Rf83X6yYfZJlyeuXP+PewwrwJD/kwE2/J5Hu0cOFCqqqqsLe3x9XVVcwd6enpZGVlCQIpNTUVmUyGk5MTzs7OREREUFRUNOW8JBPXyMhIwsLCuHXrFt7e3uzbt4/vv/+eiooKCgsLgR+N2GUyGd7e3qxbtw4/Pz8uXLiAXC4nPz8fGPeIefLkiSioSNfvbTWKh7cMSztHGmur+b8Ob5v2XllZWU1p8ZvHPP7WIa2npiOexsbGSEtLE2rFVatWcfr06VlVT0ajESsrK7Kzs1GpVGzbto24uDgTBX94eLjJuq6iogI3N7c5JXF7eXkJ0nnBggViDyNB8jWVDM4lSNf316R4mgtkMhm2trbY2toSHh4O/EjO19XVUVpRxZE89RxCImSU9KuoHm2YscVbSsSVWtMkwkitHjfGnkgaSUSRjY2NMMp+0ST1ucJcpfgP9zT6S6qREvwdSfB3/Ksg3P4jMU88MbPiqb6+nmTnMb5vn11WaDAaSXQYZunSpS/tnCQ/CsloVi6X097eTnp6OuXl5djZ2bF582YWLVr0XGSH0Wjk+++/x9ramt///vcmEZt37twhPz+f3//+94KkOnbsGG5ubiQmJs5ZxaXVahkZGaG/v39GEmyuKCws5OnTpyaklIODA87OzuOmeP2D1HfOLdGn3uCARjvemqLT6XBycsLf31+QS05OTj8pcnR4eJiGhga2bZt+ofsszMXAVqlUcuDAAc6dO8fp06fZsWPHlDY1W1tbQkNDycvLIz4+Xrx3pJYdGJdN+/v7o9VqxfNHR0c5efIk9vb2bN++fcqkY2FhwcGDB/nqq69wdHQUag03NzeSk5Px9PTko48+IiMjA51Oh23QIr7Pa6FO74dxVIasz0iMgytmp67T29TEW2+9NW0v+jzm8WuB5O8kk8koLi7GyckJmUyGVqslJiaG+/fvA+NtTsPDw3h5eWE0GkWKTVNTE9bW1vT19aHRaAgICKCsrIzS0lJgrpVTI8U6V9zUpiSJpDCV4OvrS0NDA0aj0cQ36UWO8XNjpjl9rphMOsF//PW6uLiYFFwmI8qse1rlj6+8hyhlO1HO5nR1mc4zk4m58+fPA+MFCqlFToJOp0Mmk7FgwQIGBweprq5mYGCA7u7uKa8jzSHSvCal3PX19bFmzRrOnTtHTU2NyXOsrKxYuXIlcXFxQr2RmppKfn4+arWa119/nZMnT/Lo0aMZvV9cHO3x9/fl6eMchoaGpg2tsLS0fC7vsnnM428Bklqou7tbEAwSsrKy0Gg0wi4hMjISFxeXGVVPPT09IvxFqVTyhz/8ARsbm2mPa29vT1hYGPn5+dy5c4eGhgZ27do1oz/qREhKn+lSoi0tLbGxsaGtrY3o6Gjxc+n65vL6fw0YGxsTKqO+vj7x78DAgPh+dHSUEaMSIwvn9JpGZCxJWkmAh7MJafRTCt/z+Murkf4aCLf/SMwTT4wvUicvsmB8c7AsxI+I5TOzoXqDgWSzJqyGWzl16hS7d+9+KX2pvb292NjYIJfLqaqqEi1Tzs7O7Nq1i+jo6J+kGHny5AmVlZW89tprU0iWvr4+HBwcBBsOEBYWRmlpKf7+/i+NBTcajSYKrIlfT5484dGjRwQHBxMeHj7j40ZGRhgbG8OgMHuuRB8tCpRaLW1tbbS1tSGTyQShpVarp/x/4s9m+nljYyNGoxF7e3u6urpMfj+Xv9Fck5MUCoV4f50/f57R0VHhESMhPj6e77//nubmZlExkjZhUttOd3c3QUFB2NnZYTQauXDhAv39/XzwwQfTvneNRiOdnZ2oVCq6u7uJi4sjICCABw8e8M033+Dn58crr7zC1atX+Taj5s9VdzuTVpSiXhkFPUbeX7RqVl+Beczjlw6tVktzczMbNmxAp9Px9OlTEhMTqaysRCaTMTQ0hFKpRK1Wi9bYhoYGoqKiKCkpEaqmkJAQCgsLyc/Px9nZmbKyMgwGAzqjTPgPzQaJjNcZZSaV08ktYBONnSXS6UWP8XPjZafJ/aWudzbj62cVRfR6PW7yQdzUg+iMMgwKM+T6UdSK8TaLzs5nk2E6nQ6FQoGzszMbN25EoVDQ3t5OVlaW8P+T0l/t7OwYHBxErVaj1WpFC0ZPTw9yudyk9a6qqor6+nrkcjnnzp2b9tjvv/++8FdsamriwoULdHR0IJPJWL16Nb6+viiVSlpaWkyUWtI90+l02Nvbizj0xsZGwsLCphxn3lx8Hr9ESGtNyVhcWq8PDw+TkZFBQkKCUEHJZLJpVU96vZ6srCzu3buHlZUVy5cvJyMjY1piaCK6u7vx8fFhyZIlnDt3jk8//ZS9e/fO6EkKUFpaSmVlJbGxseTn57NkyZIpKd5ubm4mHoYwToo5ODj8xVQ5s0Gr1U4hlSZ/P7mbZmJLmpWVlfBQUunnHhIhw8jDB2k0ubvi7+9PYGDgfDH3BTGvRvrLYZ54YnxjPrmCNjw8TGdnJytWrGDbgunZ0AR3FU6dBfzDoe0AnDlzhq+//pqDBw/Oauw9F/T19aFSqfj8889paWnB09OTAwcOEB4e/pMH3P7+fq5du8aCBQumTcvr6emZ0hceHBxMdnY2HR0dgsh4UUwkeyYiPT1d+EesW7dObMI6Ojpob2+no6ND/F/aWBjlSmT4znmwNpMb4c/7AYVCIVIPzM3NhRRVUh5otVqGhobExDAxzqaTC9kAAQAASURBVHO6tpSjR49O+ZlcLn8moTU0NERNTQ137tx55mPVajWrV69GqVRy7do1xsbGSE5OFu8JiVDKzc1l586dWFhYiLZCqWe7o6NDVL6ysrIoKSnhwIED08bTNjU1cfXqVZqamoiKiqK7u5uqqio2bNhAVFQU5eXlpKWlcfz4cfSO/mTqnJiuFWWcr5XxRf4Am5Z0/6r6mecxj4loampCr9fj5+dHVVUVo6OjhIeHk5GRgYWFBY8fP2bp0qW0trZSUVGBhYUFFRUVvPLKKxQUFLB69WqKi4spKSkBoKioyERtq0Xx/GQ8P6pQ50KCv+gx/tbwU67XzspsTgTHxMLDbI9/HpWOUmYEgwalSjmrwlipVGJpaWni+aHX62lra+PkyZNCkeDg4IC3tzctLS2CUNJqtezfv58LFy6g1+sZHh5m//79NDY2cvv27Sm+TxKhKZPJ8PHxITExkTNnziCTydDr9TQ0NGBpaSm8Hd3d3dmxYwfnz5/H39+fR48eCc8oiXRSKBTinknFHzs7O6ytrWckniwtLRkdHUWv18+3e8/jFwPpvdzX12eyjk9PT8doNE4JCZqsempqauLixYu0t7eTmJjImjVr6OvrIyMjg9bWVhM/0Mno7OwkNDSUkJAQfvvb33LmzBm++eYbVq9eTXJy8hRPWI1Gw5UrVwgLC2Pbtm1infnmm2+a7G9cXV1NUl7hR+Lp54ZOp5uWSJr4/eQCh4WFBXZ2dtja2uLr6yuMvG1tbbGxsWFsbIzy8nIKCwupqKgQz1MoFChlBgLVg1SPWT9DVWsgxHyENSuSGRgYoLS0lOzsbGQyGV5eXiJxz8fH55mE4Tym4teuRvpLYP5dyfSyfGmRJ8VdT2ZDh/u7Ofr1l8QvjRckzjvvvMPx48f54osvOHjwIF5eXs99Lnq9nsLCQkpKStBqtfj7+/PGG28QEBDwQgy/0Wjk8uXLqFQqNm/ePO1jent7p/RZ+/v7o1QqqaysfGnE03S4desWDx48ICQkhLGxMb799lva29tF+oxcLsfJyQlXV1cCAgJwcXERmzTf3Lkl+vgp+pEb9djb24tJYWBggI6ODhobGwWZpFQqcXZ2xsXFBW9vb/F/R0dHMYFKqq2RkRH+/d//nUWLFhEbGzsjSTX5Z9L3IyPjsai9vb0UFBSYxI7OBXfu3CEtLQ0rKytBTMlkMp48ecLIyIgwNITxidTMzAyZTIZGoyE1NZV79+4RFRWFnZ0dHR0dguSSPAHy8/Nxc3Pjrbfews/Pj97eXj799FMuX77Mnj17CAsLIzQ0lMrKSv7uxJNnVmzkchlfpNfME0/z+NWivr4eMzMzXF1dycjIwMXFRaRkSqqWpUuX8vDhQyoqKoSfmq2tLV5eXjx58oSkpCTRjmdpaUlOTg4w3jo1nhMz98qpClNT6OkUmG5ubrS1tWFubo5er0c3pnuhY/wcUCgU+Pr6TmnhmgsmtheGh4fz9OlTk9+reL5qtAr9nJLTJHJmrqrX58XkDZ/kESYdT9pcTQeDwcArr7xCZGSkaGsZGBjg4sWLVFRUMDw8zA8//CCOYzAYKC0txdnZGTMzsxkT83bu3ElsbKwICwkNDaW0tJSUlBTs7OwYGBhg3bp1LFu2jIyMDFQqFb29vVy6dMkk7RHGCy0VFRXi3klKD+k6p4PUfjc8PDxj+9A85vG3Bolk6OvrEwE0/f39PHz4kOTk5CltpxNVTydPnqS0tBQPDw/ee+89PD09gXGvO6VSSVtb24zEk06no6enRyTa2dra8uabb5Kamsrdu3epq6tj9+7dJoqcmzdvMjY2xtatW1EqlWzevJljx45RUlJCVFSUeJybmxsZGRloNBoxN/b09AiPpJ8KvV7/TFJp8vhtbm4uSCQvLy8iIiLE99LX5GK6TqejtraWJ0+eUFZWZrLPtLa2Ri6X09/fj7OzM76+vrRll1LFVLJ8IozICDY0cP9+KeHh4bzxxhvI5XKqq6upqakhNzeX+/fvo1Qq8fX1FYooDw+Plx4KNY95/BTME0+ME0/Dw8PCkA3GNwc2NjZTlEvmKgUKDJw6moKTkxMbNmwQv3Nzc+P999/nxIkTHDlyhJ07d5r0Js8GrVbLo0ePyMzMFGqnmJgY9uzZ81KusbCwkPLycg4ePCja6CZCp9MxMDAwpZKgVCrx9/ensrKS5cuXv/B5jIyMCPWS9O/EmNGqqiocHR1xdXVl8eLFuLi44OrqiqOjo4l5YlpamjDXjVJazynRZ6FFN3KDHJVKRUlJCTqdjsDAQBITEwkPD2dkZESoqjo6Oujs7KSiokJIZRUKhTAel8gojUaDVqslLi5uikx4rvj000/x9fVl69at4mcGgwGdTjeFtJpMaFVUVPD06VMsLCzw8/MT6Yi9vb3Cp2SiOkvaDFy6dEn8rLi4eEpVSYJCoWBgYIBz584JUsrW1paioiJ6enpwcXFBrVZjlCspH7LgWVsnvcHIjZJWNFr9fFVhHr9K1NfX4+Pjg16vp6ysjOXLl/Pw4UMsLCwYGhpi6dKlWFpaivFEGn8kk/GUlBQ2bNjAw4cPxedZIqoVCgXo9YTbjPF0YHajUhkGfOW9U1rCpiNApFZ06VyUMvCVz43wn+4YPwVK5ezqHb1eT3Nz80967YnthZNJJxhXED3v9c6FR5IUQS9COs1moj42NiZ+b2lpKcgY6XjTpdH5+vpSX1+PVqsVPi/r1q3D3NwcGxsbXnvtNR4/fsyVK1fE38NgMGBnZ8fDhw9nPD/p3wsXLuDg4EBBQYEoNEnnodVq+fDDD4X6tqGhARcXF86ePYuvr6+JobjUiurn50dtba3J/fT29iY1NXVKFDv8SDwNDQ3NE0/z+MVAWh/39/cLxdO9e/cwMzNj2bJl0z5HUsE/ffqUjRs3kpiYaPJ5kcvluLq6miRNTobUgisRT9Lz1qxZg5+fH2fPnuXTTz9lz549BAYGUldXx6NHj9i6davwIQ0KCiIsLIwbN24QEhIiLB+kObC9vR1fX18MBgN9fX2zJtrp9XoGBwdNyKTJxNJE8hrAzMxMqJM8PDwICwszUSvZ2trO2UKlr6+PiooKSktLqa2tNRmbXV1d8fLyorm5mba2Nry8vNiyZQuNjY08ePCAAGtLlvXPFBJhwIiMN8JVqOvHQyIqKyspKysjISGBVatWkZCQgNFopK2tjZqaGmpqakhPT+fOnTuYmZnh7+8vFFEuLi5/Fe2K8/j1YZ54Ypx4klLjpMGloaFBmL9Oxo0bN+jp6eH999+fImW0srLiN7/5DRcvXuTMmTN0dHSwevXqGT/gGo2GnJwcsrKyGBkZITo6mqSkJD7//HPhVfCiGBgY4OrVq8TExEwrPYcfNxaTW+1gvN1OqlDMdfDVaDRTCKaOjg4x4EuJONJ9j4mJITk5GScnpxnl793d3dy/f5/Hjx+b3M8wRyV93Q08GPOZcbBeYd6Mq2yAsMhInj59ipmZGdHR0XR3d5OSkoJarSYyMpKFCxeydOlSE3NUqd1vIiFVW1tr0hZx8uRJXF1dBSElkVNzMfubrtotteg9637HxcWRn5/PxYsXcXV1ZefOncjlck6ePElnZyfh4eFTKi3vv/8+V69epbe3l9dffx2VSiVSA7OysoTyTVLyTafW0mg0NDc3o9PpMBqN9IzoMTK3uFGDEQY0unniaR6/OhgMBhoaGlixYgWVlZWMjY3h5ubGvXv3sLa2xmg0CoJfWnQbjUZcXV2pqKhg79693Lhxg0ePHrFu3TquXLliMg5JG+94qz5KB2aPtjYiI0r5o39GbGwsxcXF05I707UWRynb5kT4TzzGi2AuKtCxsTFsbW3nFBc9EXMhfv7S1/uyIG18hoeHkcvlWFhYYGZmRnd3Nx4eHnR3dxMQECCKD/X19SiVSry8vGhpaSE3N5fCwkJWr17N4sWLUSgUxMbG0tPTI1R38GMgCozPaRYWFmK+gHHi0Gg0itASrVbL8uXLyczMFPPt4OCgKIwZjUbq6urQ6/V4eHhMMVZfvnw59+7dE6mOMO7r5Ofnh7e3N1qtlvb2dtzd3U2eN5F4msc8fimQ9iKS11lnZyePHz9m48aNmJmZmTy2v7+fq1ev8vTpU9zd3WltbcXLy2taRYybm9uMZv4w3mYHmCTPSQgMDOTDDz8kJSWFo0ePkpSURGlpKT4+PiQkJJg8dtOmTXz00Uc8ePCANWvWAODs7IxcLqetrQ1fX196enpEUba4uHhGUmnieK5WqwWJ5OrqSkhIyBRSafL9eR4YDAYaGxtFEVi6H/BjQmdMTAxyuZycnBzy8/Px8/PjjTfewNvbm/Pnz1NSUiII/yWOShx6y6YJieglStmORdMo77z/PidPnqSnpwelUkl+fj4FBQUkJyeTmJiIu7s77u7uLFu2TBRkJEXUzZs30ev1WFtbExAQIBRR0+395jGPnwPzxBOIhc7IyIgwymxqappWrVRWVkZubi5bt26dsfVMqVSya9cuXFxcuH37Nl1dXezcudOEhBgaGiIrK4ucnBx0Oh0LFy4kKSkJBwcHBgYG0Ov1L+wTBT+22CkUihlb7OBH4mm63ung4GCuXbtGTU3NFOJKo9GYeC9J/5fau2QyGY6Ojri4uLBo0SJcXV1F29rt27fJzs5m8+bNU0yyJ6Kjo4P79+9TWFgoSCnJz8Ha2prW1lbi7Syw65t+sI5WtuPKII6ObpSUlLBhwwaampp4/Pgx7u7u7Nmzh66uLp48ecLjx4+xt7cnNjaW2NhYHBwcRNzoZKnx0NAQn3zyCS4uLri5udHR0cGTJ0/EtcM4kScRURMJqYkT3Yu2WSxatAi1Ws3Zs2cZGxtj7969xMfHc+zYMby8vBge1aIxKlGhRykzcv/+fZqbm3nrrbdwd3enr6+Pu3fvUlxcjLe3N/v37xdS65nQ09PDl19+yfDwMI6OjnR0t8y5FUUuAxvz+aFnHr8+tLa2MjY2hq+vLw8fPsTNzY2Kigqsra0ZGhoS4w2Mj8WSysfMzIyqqipgPEAgIyPDpC3a0tLSpDXAariV/2NpJP+W1TEjGb9MWY+b/MfK75MnT5DJZNMqaKTxaWKrk5t8kGXK2auzE4+xYsUKE6Li54DRaHxu0gmmV/5MxvNe72T8XO100t9qptef2Eb44Ycfcvr0aSwtLenu7hbzgI+PD11dXbS2tgLjm9e6ujri4+NFet3169dFa2hTU9OMrXTSBkqj0bB8+XLS09OBcVLQ3NxckE8AGRkZyGQyVqxYgUKh4M6dO3z99df84Q9/oKamhtHRUezs7DAzM2N4eBhzc3M0Gg0qlQqlUolCoRAbXpVKRUVFBUlJSXh6eiKTyWhsbJxCPEltg/PE0zx+SZhYsLW3t+fu3bvY2tqaEDwGg4Hc3Fxu376NSqVi3759RERE8Kc//YnU1FTeeOONKa/r5uZGQUHBjJ5oHR0dWFpazpgyZ21tzeHDh4XyBmDbtm1TivH29vYkJCTw4MEDrK2tRTucSqUiNTWV9PR0sba+fv06gFDg29ra4uLiQlBQkPheIpYke4mXiZGRESorK6moqBBdEdK8KZPJ8Pf3Jzo6mpCQEKqqqkhPT6erq4ugoCC2bt2Kn58fg4ODfPPNN3R0dAgTd6lF2U0+irvZEFpDDVoUYu0+Ps9ruXDhAr///e+5fPmy6PxwcnLizp075OTksHbtWhYsWIBMJkOhUODj44OPjw+rVq1Cq9VSX18vFFGFhYXA+HpDUkMFBARMmwg6j3m8DMzv/jAlnuzs7GhubsZgMAh/JwkDAwOcP3+esLCwKWz9ZMhkMqHgSUlJ4ciRIxw8eBC9Xk9GRgb5+fnI5XISEhJYunSpieRbqhy+DOKpqKiIsrIyDhw4MGv8aE9PDzKZTEhfJ8LR0RF7e3uePHnC8PCwCcE0cZEvEUyxsbGCYHJ2dp6iCjMajVy5coXc3FxeeeWVGe9lW1sb9+/fp7i4WHgXSViyZAmdnZ3U19cTHh5OUVERbnLwtBhhVPfjYG2mlOPu7k5T0yDt7e1ERkZy/fp11q9fz+LFi7lx4wZnz54lPDycw4cPMzg4yOPHj8nMzCQ1NRU/Pz9iY2OJjIycUhUZHBxkaGiI3bt3ExQUJH6u0Wjo7Ow0UUiVlJSYJCdKE6WzszPDw8MMDAwwMjIybRvkXBAVFYVarebkyZMcP36cAwcOMGzlwceFWsqHYwUR56/qp62kkTe3bsTDw4P79+9z//591Go1u3btEpPVRBgMBjo6OmhoaKCxsZHGxkaTuHG1Ws36NauoLNLzoG7AJPlxMhRyGRsi3ObVTvP4VaK+vl6khpWXl7N06VKysrLw9fWlqqrKZJMsk8lwd3ensbERjUbD2NgY9fX1xMXFkZaWRmVlpXjs8PCwCXmybds23N3dqXqUPmPldDqCxGg0zkqOTG5RCFd24CAfmdMxJpNOPxcRMxk6o8xk8T4dnkU6SXie652Mma7VxsbGpFgxE2ZrqZvt9SXSSaFQCPWrdL1bt24ViVYLFy7k2rVrwI9tjXl5eYLgkdrxJ5+rp6cnycnJpKam0tbWJlIQ/f39BekECGXtxPlFUqd5enoSGhpKRkYGnZ2dFBcXi3OJi4vj7t27qFQq0erp7+9PaWkpwcHBgsSys7MThJe5ubn47ExeX6jVapRK5Zw8uOYxj78VKJVKMdb1DgxRUlLCzp07xfq7ra2NS5cu0djYSHx8POvXrxe+SatWreLUqVPU19dP2fe4u7uj1+vp6uqattje2dlp0mY3E6QODqVSyfHjxwkODkahUAjF0sDAgBjfrly5glKpxNbWViglFyxYQG9vL0VFRbz//vs4ODhgbm7+F2kXk9rXJKJJ8gCWxjS5XE5QUBCRkZGEhYWhUql4/PgxX331Fb29vYSFhbF7927h+9vW1sbx48cxGAzs2rWLM2fOAONjsOR9Z2ZmhlGjEaEcKpWK4eFh3N3daWlp4cGDB+zcuZPg4GBSUlJoa2vD3t4eR0dHzp07R3Z2Nhs2bJhSMFepVAQFBYk9y8jICHV1dUIR9ejRIwDhpxsYGIifn98LqcLmMY+JmCeeMCWeYLzNTq1WmwyyRqORlJQUFAoFO3bsmPNgFxERgb29Pd9//z3/9m//Jgxkk5OTWbJkybREg0Q8vaj0cXBwkKtXrxIVFUVERMSsj+3t7cXOzg6dTjdFvdTR0UFfXx+9vb2Ulpbi4OCAi4sLMTExJgTTXNrKjEYjFy9eJD8/nx07drBo0aIpj2lpaSEtLU14F5mZmaHT6ZDJZNjY2LB9+3YyMjKor69nw4YNXL16VTxXrVaj14+IwdpgMNDc3CzMRhsbG0lOTubWrVssWbKEd955h+LiYm7dusXHH39MYmIimzZtYuvWrZSWlvLkyRMuXLjAlStXiIiIIDY2loCAAORyOWVlZajV6imRsebm5nh7e09plRwbG6Orq8uEkKqsrKSvr4++vj7+6Z/+CSsrKxMPKenLysrqme+5kJAQXn/9dY4fP85/+ugsV7q8RCUexttAarU21GCLa8UA2dkf09fXR2JiIqtWrRITi0ajobGx0YRoGhsbExvhwMBAVq1ahbe3N0+ePCEtLQ1vb2/+D09r7v8pc9ZzNBiMvJc8t5a8eczjl4b6+nq8vb2pqakRG2ZJCm9paTllPnBzc6OpqYn+/n6sra2ntM1OJJsmkid9fX2kpqbiJh/ETT04J/JlOixevJi8vLxZCY+feoy5kE7P8nWaDW0Ga4p1btQb7CcRRG2zEkQSZiJ6XvSeTn7tuZBOwKx/g4mqpukgk8mIjo4mLy+PoaEhBgYGUKvVxMfHi8eEhIRw7do10Y43MDCATCZDp9PN+DdQqVTs3LkTV1dXwsLCSE9P5+7duwBUV1eLjZmVlRVDQ0NTyEapcCWtdV5//XW+/PJLkXbn4OBAamqqOJa0yYPxdMi9e/fS19eHTCbD09OTzs5OqqqqiIqKwtvbm+rq6mnPWzqfeczjl4Cc2m4+uVPB3dE4jMg48fVTgi0i2GLng1arJS0tjYyMDBwdHXn77benkEsRERG4urpOq3qSWr5bW1tnJJ5cXV1paWmZ0ahb6uKAH1umS0tLRfqbr6+vUCi1t7dz584dXn31VYKDg3nw4AFpaWmsXbuWW7duYW9v/0xF/svA2NgYNTU1lJeXU1lZSX9/v7DAgPG5NzAwkMjISEJDQzE3N0er1ZKXl0dGRgYDAwNERUVx8OBBE//XiooKTp8+jaOjI7t37+bYsWMYDAZWrlzJ48ePxdwgEe3SHCjdN7lcjpmZGffu3SMkJISoqCg8PDz4/vvv6erqor+/n8TERBobG/n2228JCQlhw4YN07ZCwvj+Nzw8XBi2DwwMCDXU06dP5xPz5vHSMf/OYSrxJJm/Tux3zsjIoKamhjfeeGNW5dBkNDc3k56ezuDgIHK5HJlMxpYtW4iJiZnxOX19fajV6hdimCVVkXS8yRgbG6Ozs1MQTAUFBYyMjPDf/tt/E4+xt7fH1dWV6Oho9Ho9WVlZ/Pa3v50iXZ8rJGPRgoICdu3aRWxsrMnvGxsbSUtLo6KiAltbW+zt7ent7cXKyorR0VESEhJYs2YNZ8+epa6ujldffZUbN26YJOiMjIyYLOqNRiNyuZzg4GBaWlpEWsUrr7zClStXGBwcZPfu3SLO/MGDBzx58oTVq1cTHx/PggUL6Ovro6CggCdPnlBYWIitrS0LFiygvLyc4ODgOQ/AarUaDw8PPDw8TH7+5ZdfYmVlRXR0tFBKSQaM0nVYWFhMIaNcXFywsbExIaT8/f2JXb+HP50dj2qdbIQrfX+kWMN7/i789rcHkclklJSUCKJJ8tKwsLDAx8eH5ORkfHx88PT0nOI5tXLlSqqrqzl79iwffvgh/7grmv98rgi5XGaifFLIZRgMRv5xV/R8ot08fpWQPGvi4+MpLi7Gw8OD4uJi3NzcaG1txdHRccpY4u7ujtFoZHR0lJCQEB4/fjylxWk6cub27dsm36sVMpSG8cc8j9IoNzdXnN+zoJQZBeH/svBTSaenOpcJLXE/Eu/1BjvqxuxZpqwnXNkx62vMRvTAi13vs157LpBSWY1G46ykE/zoVSipbiWj8IkwMzPD0tISjUYjyLCJ75Pp3jdqtZpPP/2U+Ph4Vq1aJYowkopLIp2k96wU4KJQKJDL5eK8JfsCT09P0U6nVCoZGRnBYDDg4eEhfGa8vb1pbW1FpVIRGhrK3bt3MRqNuLm5CS80iXjKycmZVkk8TzzN45eCo1l1/Jfz42uuiWNdtcaKA59lsc62gwB9IytXriQpKWna9aqUcDdZ9WQ0GjEYDNjY2FBaWsro6KgJqdTb20tvby+tra0UFBQA48TIxKQ3Ly8venp6KC0tZceOHYSEhGBpaUlWVha3b9+mp6eHdevWCfJZSkm+fv06AQEBuLm5MTY2Rm9vLz09PbMai78oenp6KC8vp6KigtraWvR6PRYWFmKNLZfLCQgIICIigtDQULFHGx0dJT09nczMTEZGRliwYAHJyclTlGDZ2dlcv36d0NBQdu3axYkTJxgYGMDX1xd7e3uTDhK9Xo9KpRLt7VqtFqVSSXNzM1u3buXKlSscO3aMf/iHf8DR0ZEPP/yQK1eukJ+fT3Z2NgEBAbzyyitkZGTwySefEBcXx+rVq03SBaeDjY0NCxYsYMGCBeP+rT09gojKy8sTiXk+Pj6CiPL09JxPzJvHnDFPPIGQa0rx8w0NDSxdulT8vrm5mTt37pCUlERgYOAzX0/aYKSnp4uUtu3btxMREcHly5c5e/Ysvb29JCcnT6tikdRHLyIhLSkpobS0lN27d9Pf309lZaWJF9PEti87Ozu0Wi1OTk4sW7ZMmGRPJBnGxsbIycmhtrb2JxFPBoOBlJQUiouL2bNnj4l/Vl1dHWlpaVRXV+Po6Cg8IqR4UoVCweHDh/Hz8+OHH36grq6OQ4cOUV1dTWdnp0mUcm9vr8l9k8lkODs7U1hYyM6dOzl79iyPHj3i0KFDHDhwgDNnznDs2DEOHjzIqlWriIuL486dO1y5coWcnBw2bdpEUFAQK1asIDk5maamJp48eUJOTg6jo6NotVpycnKIjo7+yW1ycrkcc3PzKZ5ier2enp4eE4VUc3MzBQUFYkOmVqtNvKNcXFw4XdiNQiZDP8veUoaR9A4Vqq+/Fu0Lrq6u+Pr6snz5cnx8fHB0dHzme1Aul7Nnzx4+/fRTLl++zOt79hDuZsMX6TXcKGnFYBz3dNoQ4cZ7yQHzpNM8frXo6upieHgYDw8PMjMziYmJIT8/H0tLS2JiYmhsbJyyKZhYKW1raxMbeJVKJcgLnU6Hm5vblOQhOzs7+vv7MRqNIjEPni9BzWg0zol0ehkICAigpqbmhV+nzWBNps6X8VHOdPySiPdMnS8O8pE5KZ/+IzEbSTgXL6sDBw6QkpKCVqs1mfPhx/mlvr6ewsJC4SE2HSQiKSQkhMrKSnFOYWFhWFpakpubS0FBAQ4ODjg4OPD73/+ef/u3f6O/v1+87yRVltFoRKfTER8fT35+PgaDgZycHJycnGhraxPzkWRMbm1tLYoh9vb2BAcHc/fuXSIiIlCr1SYK8ZCQEPLz8zEajUJx3NjYSEhIiMn1TPZEm8c8/haRU9vNfzlfhBGmWBxI67/b/c58+dpqVi3wN/m9VNCQFErDw8NYWVlx6tQpXFxcBLkkKXOfPn1KWVmZSPu2tbXFwcGB/Px8VqxYIZLgrK2tTdaNfX19fPTRRyQkJJh0OCxfvhxfX1/OnDnDn/70J3bs2EFERIQoln/22Wc8fPhQrIvb2tro6el5qWonvV5PfX29aKHr7OxEJpNhZ2eHhYUFg4OD6HQ6QkNDiYiIMEncg/FCd3Z2NtnZ2YyNjbFo0SLh1TsRBoOBa9eukZOTw9KlS9mwYQO3bt2itrYWc3Nz9u7dy7fffitajyWvXzMzM2xsbNDr9ej1eqEsq6ysZPHixeTk5HD69GkOHTqEUqlkx44d+Pv7c+HCBerq6mhubuaVV15hcHCQtLQ0CgoKSEpKYtmyZXMKipI8eh0dHYmPj59PzJvHS8E88cT4h8vc3Jzh4WE6OjrQaDSC8R8bG+PMmTO4u7uLpIWZYDQaqaio4P79+zQ2NuLm5sbevXuJjIwUbPDevXtxdnbmzp07dHR0sGPHjimbjYlxqHOFVqulq6uL9vZ2mpv//+z9d3hUZ7rlDf92VUlVyjminBAKCEQUEtHkZIIxxsY2tmnj07a7+/SZOfNd834z835z5ps5b8/pOd222ziAIyYZRDA5IwkkgoQkJEAJlEA554rvH+r9uEoZjN3Bta7LlyWxa9euXVVPWPe613rEzZs3sbGx4dChQ+IYZ2dnvL29mTBhAl5eXoJgUqvV/O53vyM2NpZJkyYNeX65paysrMyClBsLDAYDBw8epKioiOeee46YmBhMJhPl5eWkpaVRXl4uWveKioro7u7G29ub+vp6EhISWLp0KSqVyoJ0srW1JSMjA2dnZ7q6ujAYDGIhad5yIiue6uvrcXJyIjw8nLKyMvbv388//uM/8vLLL7Nnzx4+//xzXnrpJZydnXn22WeZNm0ap0+fZteuXURGRrJ48WI8PT1FC52Pjw/Hjx/Hzc2NkydPcvr0acaPH09CQgIRERGPxf5LkjRkBVz2gvH09LRolZQjZc1bIevr67lz5w7dfTohtx4JJhQUdWn4p0UzCA8JYty4cU+ssHN1dWXFihWkpqYSERHB1IQEpoa406sz0NGrx0mjsno6WfGzR0VFhShw6PV6WltbxUIzJSWFXbt2DTJvNW9tkDffCoUCV1dXurq6RFLZM888w+7du8WxycnJXLlyBYVCYWHmDD+sfe1JMFobmIw5c+Y8FeKpUO8zatCBhIlCvTc+tn954slcoTuQaBqOdBp4T+U2tIGoqKggJCSEkpISvLy8aGpqEp+H5uZm3nvvPXENAxEREUFpaSkbN27k6NGjODg4WJBOALm5uZhMJuLi4jCZTBQUFGBra8vly5dpb2+3SIfVarUW6uTs7Gx8fX2pq6vDZDIJT6c1a9Zw/fp1Hj16BPSr/mQ/s8WLF9PW1obJZBJkkjnx5OjoyJUrV3j48CHjxo3D3t5+SOLJwcGB5ubmod8QK6z4G8GOjPuD1OUDoZQkPk0rRdH0wEKt1N7ebjGGSJKEWq2mt7cXT09Pkf7m7OxMWVkZRUVF/NM//ZPFWFFaWsqtW7dITEwccs8ihxtpNBoWLlw46N8DAgLYtm0bR48eZf/+/UybNo3Fixfj6+vLlClTuHz5sijqysTTUKFPj4POzk5hDF5WVkZfXx92dnbitcokXFRUFDExMURERAyyEenq6iIzM5MbN25gNBpJTEwkOTl5SI/cvr4+Dhw4QFlZmfC0vX37NpmZ/bYUGzZsEL6p8vw/fvx4srKyxJgmJ/XJxH1xcTFvvfWWeB3Z2dmibXrixIn4+fmxb98+mpubSU1NJSEhgW3btnH9+nXS09PJzs5m/vz5JCQkPPZeZajEPJmIkhPzHBwcBAllTcyzYiCsxNOfYWdnR09PD5WVlaKfFeDkyZN0dHTw4osvDpnoAP1EQGFhIRkZGdTX1xMYGMimTZuIjIwcxPpKksS8efPw9PTkyJEjtLS0sHHjRgv5Y2tr6yB/IBl6vV60Y5n7MLW0tIgFobkZn7+/v/BhGo5Y6Ovro6enZ8hEO3NERERw4cIFdDrdmPyc5Os9cOAApaWlPP/880JGm5aWRlVVFX5+fsyePZvCwkIKCgoIDw+nurqarq4uNm7cSHR0NDqdzoJ0CgwM5JNPPsHNzY2Wlhagf+Gt1WrF+2iOhoYGXF1duXXrFmvWrOGPf/wjer2er776im3btvH666/zzTffsHPnTjZv3oyXlxf+/v5s2bKFu3fvcvbsWT788EOmTZvG3Llzsbe3p7S0lKCgIF5++WU6Ozu5ffs2ubm57NmzBwcHB+Lj45k0aZKFYmE4PK7JrkKhEJXlqKgo8XeTycSDmka+fv/6mM5jQsLLP3BMKr7REB8fT2lpKSdOnCAoKKjf+NFGaSWcrLDiz6isrMTX15fi4mJ8fX158OAB9vb2xMTE4OXlhV6vH1SEkFuuzdvrVCoVHR0d2Nvbo9Vq0ev1FqQTwIwZM8jNzRVqE/O5ayjSKTg4mIqKisd+TcONXeZkylhJriNHjjz28w+E3iQJT6eRYEJBpdENvUl6bH+mpwlZZXzs2LH+6xrjPDCQyBvucbI/ByD8GVtaWjAYDBbvnXlLd09PDzY2NmKzYDQaefPNN/nmm28s1EuLFi3izJkz2NvbU1ZWJgo/Hh4ewlQ8OjqaFStWcOHCBXJycga1idbV1REcHExlZaW4Bnt7ewv1nkw6eXh4EB0dzfHjx4Hvw1dkw3s3NzfUajUajYaSkhJRJKqurh50X+zt7YVBsBVW/C2iV2fg7J06RuCcgH7l07WHvSR038PdxQlXV9ch098cHR1RKBR8/PHHSJLEkiVLxDkUCgW3bt2iu7vbYq/S0NCASqUaNgipsLCQkpISXnjhhWH3HxqNhg0bNnDjxg3OnDlDdXU1zz33HPPnz6egoIALFy7g4+NDRfUjWnsN2Ds9XuiSyWSipqZGtNDJhLacRi17rBqNRsaPH09MTAzh4eFDtiR2dHRw5coVsrOzRThUUlLSsO1rra2t7Nmzh7a2Nl566SXCw8N59OiRmOtSUlIIDQ3l008/xcvLSxSXgoKCyMrKwt7eHgcHB4xGIyaTicbGRgIDA3n06BGZmZls3ryZDz74gBMnThAcHCxa+7y8vHjzzTc5duwYt2/f5vbt25SXl7N27VqmTZvGhQsXOHr0KFlZWSxatIiIiIjHuqcyzBPz5syZMygxr7CwUCSQyySUNTHPCivx9GfICy6ZDLG1taWgoIDc3FyeffZZPDw8Bj1Gr9eTl5fHlStXaGlpEVGZQUFBo8oM4+LicHNzY+/evezYsYNNmzYJkqKtrY2YmBjq6uoGEUzNzc1isejk5ISXlxeRkZGCXGpububw4cOsX79+zJUBmbwZjZWOiIjgzJkzVFRUjGmg0uv17Nu3jwcPHrBx40aMRiM7duzg0aNHjBs3jpUrV3Lv3j3S09MJCgrC3d2d0tJSYmJiWLFiBfb29uh0Ovbt2ydIp9DQUM6fP09jYyOurq7Y2dmJKFN7e3u8vb0pLy+3uA6DwUB4eDh5eXksXbqUlStXcvjwYerq6jh//jwLFy4U5NNnn33Gpk2bxHsoGwdeu3ZNSFVTUlIoKytj3rx5QH9cbFJSEjNnzqS2tpa8vDzy8/PJysrC19eXhIQE4uPjhx1sn1a6kyRJ+Hu5o5AYdTEC/VX/nGtXmRQdPvrBY8Dy5cupqqoiNTWV1157zdrzbYUVZqisrCQ8PJzc3FwCAwNFSs3s2bOB/nFq4GL30qVLFpt1ueUpJCSElStX8umnn6LX61Gr1cydO5czZ84AcObMGQsPm7CwMAoLC8XvCQkJ5OXlWVzbk0Am/AfCXME5Vj+jga1gMswN1J2dnenu7hYk3UBSS4dyVNJJhol+c/Cn7Us1ECOl0TU1NZGWlvZE51Wr1RatawPh7e1NQ0ODxXskz/Xwvd9SREQECQkJGI1GiouLuXPnDjqdjlu3bqFWqykoKCA6OhpfX1+hmFKpVJw5c4YFCxaQnp4u0rF6enqEF5ODgwN3796lt7eXRYsWERYWxoEDByyu0WQyiRRheR6USdSB7++iRYsAxPwutxr29PSgVCqFZUJERATFxcXMnz+fgIAArly5Il6rDKvHkxV/6+jo1Y9pnQf9Y11bdx/ani4aGxtxcHDAwcEBR0dHQW44Ojri4OBAdHQ0ly9f5t69e0RFRaFQKCwMxs3X/nKi3VD7nZ6eHk6dOiWS3kaCJElMnz6dwMBADhw4wMcff8yqVatYsGABnx9Lo9I+gsJWJSYmsX9vBYvye/lFStiw1g19fX2UlZWJFrquri5sbW0ZN24ckZGRYj+l0WiIjo4mJiaG0NDQYf1aW1tbycjIIDc3FxsbG2bNmsXMmTNHtNeorq5m79692NjY8MYbb+Dl5UVXVxd79+4F+tVe8+fP5/79+9TU1Fik/snjqZOTE05OThZrAH9/f6qqqrh9+zbz589n2bJlnDhxgm+++Ya3335bvAZbW1vWrl1LSEgIx48fp7u7my+++ILk5GTWrFnDzJkzOXPmDN988w3h4eEsWrRoTIXykTAwMa+3t5fy8nJBRN26dQv4PjEvNDSU4OBg8Xqt+HnASjz9GTKBUVtbS3R0NK2trRw7dozY2NhBJtharZabN2+SlZVFR0cHMTExbNiwYZBp9GgYN24cr7/+Ort372bHjh2MHz8enU5Hb28vFy9eFOkwjo6OeHl5ER4eTlJSkvD0GTjodXd3s2/fPqKjo4mNjR3zdcgL/tEUT56enjg7O1NaWjoq8WSuUkpJSeHChQvU1tYSFBTE888/T1VVFSdOnMDJyYmUlBRu3bqFwWAQ/k+SJA1JOj18+JArV64wfvx47t27J56vr68PtVqNm5ubWJjK6Q9arRaNRoPRaOT27dtMmzZNeFpcuXKFyMhIgoODee2119i3bx9fffUV69evF+1tKpWK5ORkEhISuHjxIufOnQP+HHdqtqCVJEmYhy9atIjS0lLy8vI4e/YsZ8+eJTIykoSEBKKioiwUCHI7zNOAxkbJohgfzt2tH1l+rZCYGWBPVXk2VVVVIlL7h0CtVrN27Vo+//xzLl++PGprqhVW/FwgG7EqFAoMBgO1tbWoVCpCQ0OFZ95AxVNaWtogUkI2ffbx8WH79u2CkJk6dSqxsbGCeCooKLBov7pz547FeVxcXPD09KSxsREYXjEj++YNh5+CXJZNVuVEMwcHB9ra2oYkW2wwjNpmJ0PChA2GUY/7oRiNeBuLV9NA2NnZYTKZ8PPzExX8gZBJopHaHE0mE9XV1SiVSkJCQpg9ezb+/v6iZQL6lVL/+3//b+G9FBYWxv3793F0dOT06dPMmTOHmzdv0t3djSRJeHh40NTURFdXF/7+/jQ3N/PJJ5/g5+cnkqBKSkrENWi1Wuzt7VmzZo2Fck9u7Yd+hVJUVBR1dXU0NTVhZ2dHU1MTBoMBnU5nEbIRGRlJQUEBHR0dBAQE0NfXR0NDg0Xbqmx4PpTK0Aor/hbgpFGNuciokGDLSy+g7+uhs7OTrq4u8V9DQwPl5eXCz0jGvn37gP7vnuzbdO7cOUpLSwVxJXuxyiFA5p0QZ86cwWAwDBluNBz8/PyEUufgwYN0+iVyQjseSYsY040mOHe3njOFdfzLmjg2zwjGZDLR1NQkVE2ygtLDw4PQ0FAxzj148ECkuMlk03CdLNA/hmZkZJCfn49Go2Hu3LlMmzZtVKKksLCQw4cP4+fnx8aNG3FwcMBgMLBv3z66u7tRqVQ899xzKBQKMjIy8PX15eHDh0D/uCerOF1cXHB0dBQdKb29vfT09GBvb09fXx9Xr15l6dKl3Llzh/Lyco4dO8aaNWvEdUiSRGJiIv7+/uzfv5/29nYyMzMpKytj3bp1bNmyhaKiIs6dO8dHH33EpEmTmD9//pAtg08CmdgbLTHP399fKKKsiXl//7C+u3+GUm1HTWMrTS1tBAQEkJqaikajYeXKlWJB093dzfXr17l+/Tp9fX1MnDiR5OTkQckFQ8FgMNDc3DxIwdTU1CQWpoWFheILn5SUxPjx4/H29h6zafXJkycxGo2sWLHisYzdWlpaUKlUo8of5WqiLH0fDlqtlt27d1NdXY2TkxOXL18mNDSUV155hba2Nk6cOEFvby/Jycm0tbWRkZFBREQEq1evFkk7MnFVWVkpSCe9Xs+RI0fw8fHh0aNHuLm5CR8JOXbcXPJqZ2eHWq1GkiRqamqIiooiJyeHadOmsWrVKt5//30MBgO7d+/mH//xH9FoNLz00kscPnyY/fv3s3z5cqZNmybO5+joyKpVq+jp6aGkpITjx49z9+5dFi9ePKhSoFQqGT9+POPHj6e7u5uCggLy8vLYv38/dnZ2xMXFkZCQgL+//1NTPMnYmhLGmcK6EY8xGk38ZtlEbp68x+XLl9m8efNTee7AwEDmzp3L5cuXCQ8PHxTba4UVP0fIbWyNjY24u7sLfxlZ7WQymSwUT1euXBGFB3OEh4dTWVnJtWvXUCqVLFy4kHPnzpGbmzuoVW6gr5NOpxNjTVpa2rBzhDlh1dPTM6InlExG/NiQr2ckEgz6k+aCFK1UGl0GJXqaQ8JIkKL1L9JmN1Q7+GjQm/rVWTYY+tP0/txuORzpBIPJREmSUCgUgvyU/QwfPHhAeXk5Z86cwWg0otFoLMzD79y5g62trXivq6qqGDduHLW1tdjZ2VmQoyqVivb2dmbOnImfnx/p6em0tbXh4eEhTOplP8fU1FTxuO7ubi5cuGBxvWVlZeLz2t3djVarpaCgADs7O6Hultv7zDdKERERSJJESUmJKGJVV1dbEE9yMnF3d/dT22RZYcVPibEWGRWYmBfhQXTk6Mp2rVZLV1cXhYWFnD9/nlmzZqFWq+nq6qKjo4POzk7u378v/AWhf0774x//CPSrbBwcHFAqlTQ2NhIUFMT169ctFFbyz+ZpceZQq9WsW7eOXqdx/F8XG+kvEVhCfr3/38MFtD4oxFhfSktLiyDQp0+fTm9vL/fv36egoEAouWJiYggJCRm1YFJXV0dGRgaFhYU4ODiwcOFCpkyZMqoht8lkEobb8fHxFh6+J0+epLq6GpPJxIYNG3BxcaG6upry8nKmTJkixscJEyaIYoSjo6PY03h7ews/pcmTJ5OVlUVOTg5z5sxhw4YNvPfee+Tl5QlvKnP4+vry5ptvcvToUe7evUtbWxuffPIJCxcuZPr06URGRpKdnc3ly5cpKCggKSmJ5OTkH5SsPhRGSszLyckhIyMDpVJJUFCQNTHv7xg/e+LpRnkzOzLuc6ZQjQkfJLwpOFWBf3sL/+mNDWg0Gjo6OsjMzOTmzZuYTCYSExOZNWvWkH3NRqOR5uZmC3Kpvr7egmCyt7fHy8uL4OBgpk2bJhRMWVlZwhth6tSpjxUbeu/ePQoKCli7du2ocZkD0draiqur65jIqoiICHJycmhpaRlSIdXT08OOHTvExsrT05N169ahUCg4efIkDx8+JDY2lvHjx3P+/Hl6enpYtWoVkydPFs8/FOkEcPnyZZqampgxYwZZWVliAQ39G7KHDx9aVCLs7OxQKpV0dnZSWVnJ+vXr2bdvn2j1W7ZsGceOHUOr1fLNN9/w+uuvo1KpWL9+PY6Ojpw4cYL29nYWLFhgYZJaXV3NlClTCA0N5ezZs3z88cckJiYyf/78Ick7e3t7pk+fzvTp02loaCA3N5fbt29z48YNvLy8MJlMw/bIPwmmhbjzL2vi+C+HCwYZTyoVEkajiX9ZE8e0EA/s58zhwIEDVFdXD+sr9riYPXs2ZWVlpKam8tZbb1lltFb87FFZWSnUmE5OTtja2goPGvg+EEGlUpGVlSVUlWBJVDx48ACj0YhCoeA3v/mNWKB2dXWhUqmGbOuyt7cX5zcnI2TVjDkJolQqmTRpEjk5ORgMBvr6+n6UdBrz9rmnjVhVHRVa1xGPMSERq6r/UZ5/NMj3e6B311CoMzpSqPcRvlUS/cRabFsdPqOsxeXPgUwcbtmyhc8//1wEqcgqBVmZqtPpqKqq4sGDB2RlZaHX64VSTv6czZ07F6VSSVFREQaDweKzI6fQNjU14eLiwsSJE4mLi+PevXucP38ek8mEvb09165dQ6VSDfoMyBsv8/siP6a7u5tdu3bR2dnJhAkTRNqiuTJAhr29PQEBAZSUlJCYmIi3tzfV1dUkJiaKY+R52ko8WfG3jDEVGQH7qiwyMgwkJSWNqPCxtbXF1taW5ORkCgoKqKmp4ZVXXuk/j9FIRUUFv/zlL4F+b7Xf//73LFy4EF9fX6Gg6ujoIDs7Gzs7O2FHIgcAmUOSJEFCDdX2d+J+3xjSmY0cvtvFr6eGkpiYSFtbG0VFRZSVleHo6MiECROIiYkhKChoTOTFo0ePSE9P5969e7i4uLBs2TImT548JgWOXq/n2LFj5OXlMXfuXObOnSvmzps3bwpfqGnTponWw4yMDDw9Pamvrxdzd3h4OFeuXAG+V5tB/xhXWlqKwWAgNDSUK1euoFQquXbtGgsWLGD9+vXs3r2bQ4cO4efnN2h/JntpXbt2jTNnzuDg4MCpU6coKSnh2WefZfr06UycOJErV66QmZlJTk4O8+bNIzEx8UchfoZKzKuvr+f+/fuUl5dbJOYFBwcLRZQ1Me9vHz9r4unrrAr+65H+zbk8tpmQyG00cItoEko78cv7jry8PFQqFTNnzmTGjBnC7E1OkRtIMMkDrJ2dHd7e3gQHBzN16lThwzScsuiZZ56ho6ODvLw8jhw5wsaNG0VlbiT09PRw7NgxoqKiiI+Pf+z70NraOmqbnYywsDAUCoWI85RhMBi4efOmkOgHBQWxePFiXFxcOH/+PLm5ufj4+PDSSy9RUlJCamoqISEhbNmyxcJbypx0eumllwgJCQEQLXYpKSncvHkTf39/i9QbvV6Ps7MzJpNJLFxl81251cDOzg4XFxeys7MZN24ciYmJFBQUUFlZSXV1Nenp6cyZM0cYKzo7O3P27Fk6OztZuXIlSqWSmpoaOjo6iI6OJiQkhIiICG7cuCEqBbNnz2bGjBnDTlReXl4sWrSIZ555hvv375OXl0dhYSGNjY3s2rWLhIQEoqOjx2zePhw2zwgm2seJHRkPOHOnFqMJJGDRBB+2poSK3vgJEybg6enJ5cuXeemll37Qc8pQKBSsW7eOjz76iOPHj7Nu3TrrRGHFzxqVlZU4OTnR0tIiNvGy2gm+N+AuLy8XPgjQrz6ys7Ojr68Po9GI0Whk4sSJ5Ofnk5aWRm5uLtBPLnR1dQ0yiYb++WGg+kWlUvHb3/6W3NxcYWwN/eO4RqPBYDCI5LSnqcY0f57RIEnSsB5SI8FH0UmSqpJMfdCf2+6+XzRLGDEhkaSqxEfxl020G410uqf3MnsNfy58IFFpdKFC60qSqpJoVcOozyPfa9mLqbe3F5PJhK2tLTdv3hStMDY2NoSFhREWFoZOpyMnJ0f4kMm4fPkyjo6OYn5zdXUVLTry51qtVnP69Gn0ej3JycnExMRQVVXFrVu3cHV1FZ5O8ucqNDTUIs1w4H0JDAykrKxMmITHxcXx8OFD7ty5I1pPB6rOIyMjSU9PR6/XExAQMMjDTF6DWX2erPhbxliKjP/3qhj8u9RcuHCBwsJCVq9ePaotiCRJzJ07l/3791NRUUFwcDC+vr5kZ2eL9lS5uCx7zMo4d+4cBoOBN998U3jjyi2/A9v8urq66OzsFET4w4cP+//W08fVMaYzl2mduFNURG9XB05OTsTExBATE0NgYOCY152VlZWkp6dTWlqKu7s7q1evZuLEiSOSdObo7u5m//79VFdXs3btWiZOnGhx7hMnTqBWq3F3dxdedfX19RQVFbFo0SLOnj0L9JP35u3t5sSTo6MjBoMBpVJJfX09ERER1NTUcOPGDZKTk4mMjGTy5MncunWLvXv38uabbw66fkmSmDlzJgEBAXz77bfY2try6NEjtm/fzsqVK4mJieGZZ55h6tSpXLhwgePHj3Pt2jUWLVo0ZFjW04TcueLj4zNkYp78uTJPzAsNDR3z3tWKvx78bImnG+XN/NcjBZhgkExVXqj+z7P3We9cydIZM0T6wenTp6mvr6exsVEs6DQaDd7e3gQGBooKm0wwPe4X1cnJCUdHRxobG4XpuJeX14iPOXXqFAaDwaIt8HHQ0tIiCJ7RoFarCQwMFMSTXq8nNzeX9PR02tvbBekQExPDtWvXuHz5MkqlkuXLl+Pt7c3Ro0dpb29n6dKlTJ8+3eJ6hyOd5BY7X19fEQXd1tYm2kfmzp3LjRs38Pf3p7u7G41GIyJS5UWzjY0NFRUVTJo0iatXr7JkyRLUajWrV6/mww8/BODixYtERESI9rdZs2bh6OjIkSNH6OzsZMOGDRQVFaHRaIQnklKpZObMmUycOJHLly9z/vx5srOzWbhwIRMmTBj2/VAoFERERBAREUFfXx9tbW1otVpSU1NRq9XCW+xxJs+BmBriztQQdzp7+vgf/8+/sX71CqYlThp0HXPmzCE1NVVEUD8NuLq6smLFClJTU4V5rRVW/BzR09NDfX29mBN6e3vx9/e3GHNl4smcdJI94zo6OixUTEFBQeTn53Pjxg3htyM/Xo6DNj/eZDINMlPW6/X09vYOObdkZGRgY2OD0Whk+vTpXL8+tpTMp43R/InktjG5TdEc0aoG3BQ9FOq9qTS6WaqFVPVPhXQai2LpSVFndCRTH0R/m4nl+C+vTzL1Qbgpega9FvNWyYiICCorK9FqtUO2yN+8eROFQoGvry9eXl54enpia2tLREQE165ds2jXfPXVVykuLubGjRvifsu+ZebPKd+T8+fPc+fOHRYvXszt27eFf8inn34qUnglSbIgncwht9kVFRUxadIkQbIGBwfT29tLX1+fUEmZb3yhfzN84cIFKioqCAgIIDs7m97eXqG+lQt6VuLJir91DFVkVEgDi4xhxMbGcvToUT799FOSkpKYN2/eiAVOOVDg0qVLvPrqq/j4+AhVir+/Pw0NDUK1IqOmpoarV68yf/58i0AmSZJQq9Wo1eohg5oGoq6tm6//dXCr+VAwAWHjY0iaHMe4cePGvF42mUyUl5eTlpZGeXk5Xl5erFu3jtjY2MdS+DQ1NbF79256e3t55ZVXLOwl2tra2LdvnwhKWr9+vSDtMzIycHFxEd6FcqoefK8wlRVggHiv3N3duX//PlOmTGHfvn0oFApu3rxJcnIyy5Yt4/79+9TX13Pu3DmLZEJzBAQEsG3bNg4fPkxJSQmenp58++23JCQksGzZMlxcXFi7di0zZ87k7Nmz7Nmzh5CQEBYvXvzYXsZPiqES86qqqoQiamBinvzf43b8WPHT42dLPO3IuD+oQjAQEpDd5YLz1atA/0LT29ubcePGMWnSJEEwycZ7TwNtbW24u7uzdu1a9uzZw86dO3nuueeGNfMuKioiPz+fNWvWCH+kx4HJZBKtdmNFREQEaWlpZGZmkpmZSUdHh4gxfvXVV+no6GD79u00NzczdepUZs+ezbVr1zh58iT+/v5s2rRpUIVSJp2qqqosSCf4vsVu8+bN7Nmzh7CwMIqLi4F++WlUVBRHjhwhKSmJlpYWNBoNbW1touqvUqlwdXWloqKC1atXk5aWRkFBAVOmTMHNzY2FCxdy6tQpAHbt2sWvf/1r0ds8ceJEHB0d2bdvH19++SV6vZ6IiIhBlQR7e3uWLVvG1KlTOXv2LN9++y3BwcEsWbJk1IFapVLh7OzMSy+9RHNzM3l5eeTl5ZGTk4O7uzsTJ04kISHhsd4jc9gqJewkPRqboas3sbGxwsh406ZNT/QcQyE+Pp7S0lJOnDhBUFCQtTJhxc8SstpCXqibTCbmzp1rcUx+fr74WT7GPGbezc2N7u5u+vr6OHbsGGq1Gr1ez/3791EqlcTFxQlDZWBQEt5vfvMb/vVf/9WCSHj06BH3798Xv6vVauzt7WlpaRHH5eTkPP0bMgADFS9jhdFoxNvbm7q6uiFb93wUnfjYdg7yR3paeBzSyc3NzSJRbjQU6n1GNUmXMFGo98bH1pJ4kt87SZKorKwUBuTmfzeZTEJJlJuba+HV5ezsjIeHxyDvwStXrlBaWkpsbCxLly5FqVRy69Ytzp49i5OTE21tbRbX4eDgQE1NDV9++SXQv7b58ssvaW9vZ+vWrXz33Xe0tLQM6xNmMpmEH1pubq64nqysLJGaJCfoDdzM+vj44OzsTElJiVBmP3z4UDzO1tZ2kJrLCiv+ViEXGXt1Bjp69ThpVIPWe/7+/vziF7/g6tWrIrVu1apVwxadZdXTvn37KC8vx9/fH+j3P/L396exsRE3NzdBpBiNRr777ju8vLyYNWvWE70OnU5HYWEhWTeykfAZU0iEQoJVSxcNu74dCJPJRElJCenp6VRXV+Pn58fzzz9PdHT0Y+/jysvL2bdvH46OjmzdutVijSuHI8kedevWrRPjVEtLCwUFBSxZsoSbN2+iUqnQarVifJLncTs7OxGo0dfXh4eHBxqNhvLycjZs2CDa9rOyspgxYwY2NjZs3LiRTz/9lKysLMLCwoiMjBzy2u3t7dm0aZNoafP09OTu3btUVFSwZs0agoOD8fPz4+WXX6a0tJSzZ8/yySefMHHiRBYsWPBU7UHGAnNFLoycmBcSEkJYWJg1Me+vFD9L4qlXZ+DsnbpR0yBMSFQY3Njw8osE+PlYJKf8WGhra8PV1RVXV1def/11UlNT2b17N0uWLBmkEJJb7CIjIy2knY+D7u5udDrdmEkB2XxQp9Nx5swZYmJiqKmpQavVsnr1ai5evEhxcTEhISFs2LABo9HIrl27aGxsZP78+SQnJw+qJpiTTi+++KLFRCi32M2bN4979+6hUCjo6OgQvg8LFiygtbVVqAgePXokBhpZ8SQTP5WVlTg6OgqfqilTpgAwffp0CgsLqauro6enh/3797N582Zxr8PCwtiyZQtff/01PT09TJ48edj74+XlxYsvvkhpaSlnzpzhk08+YdKkSSxYsGBYYtB8ge/u7s78+fOZN28e5eXl5OXlceXKFS5dukRISAgJCQnExMSManJoDvncI6mvZs+ezaFDh3j06JFYYDwNLF++nKqqKlJTU9myZcuYpctWWPH3goqKCgt1jK+vr1g8QX8CnSy1h/7vq6enJ+Xl5ahUKlatWsXNmzcFcaFSqcS5Vq5cyZkzZ8jPz7cgCcy9njo6OgYZj0O/X5R52t1Qfk7DmYoDg4iJkTCSOkhuoRoJwxmcy4qXkVr3VJIJFcO/jrEiJiZmUDrgWOHp6Ulra6tQ+Yx03/QmSXg6jQQTCiqNbuhN0rCEmlarpbKy0uL55J+rq6uFKnvp0qXi+J6eHpqbmwddZ2lpKZ6enqjVagoKCvD09KSurg4nJyc2bNjAjh07iImJobi4GL1eP0hNVFxcjNFoxMbGhqtXr4p2EltbW3Q63ZD3pLm52aI9EPpbeeQ5WG73GViUkYNQSkpKWLJkCXZ2dlRXV4uNHfRvvKyKJyv+nqCxUY5IwCiVSmbPns2ECRP47rvv+PLLL0lMTGTRokVDbtDHjx+Pr68vly9f5tVXX7UICWhsbLQoIGdlZVFTU8PWrVsfe53X0NBAdnY2eXl59Pb2EhoaymQvJbkNBowjjINKhcSiCT5jIp1MJhP37t0jLS2N2tpaAgICePHFF0UYwePi1q1bHDt2TOx1zO+fyWTiu+++o76+HkmSmDRpkoUNypUrV7CzsxMEHvSPWSEhIRiNRtEmLyszHR0d6ezsxM/Pj/r6evR6PQ8fPiQxMZErV64IL60pU6bg5+fH/PnzuXDhAgcPHuSXv/zlsD52kiQxe/ZsAgMDOXjwICqVCltbW7744guSk5OZP38+SqWSyMhIwsPDuXXrFhcvXqSwsJCZM2eSkpLyFyN2BibmdXZ28uDBA+7fv09RURHXr1+3SMwLDQ0lMDDwB9uYWPHD8bMknjp69WOKIIV+GaeXfxDOTk/X3X84tLa2CqmmWq1m48aNnDt3jlOnTtHQ0MCyZcvEoH7mzBl0Ot0Tt9gBYjMzmpqmr6+PGzdukJmZKVRE0dHR1NTUoNPpGD9+PPv27ROL0PHjx5ORkUFaWhpeXl68+eabg5LfYGTSybzFLiYmhu3btzN58mSys7ORJAmNRkNcXJzYDPj5+dHd3S0Gazmdx93dndraWovBet++fdTW1uLr64skSaxevZrt27ejVqu5f/8+165dY+bMmeJa/Pz8mDFjBpcuXSI9PZ2goKARCZqIiAjCwsLIzs4WA3VKSgpJSUmDBj5JkgYZAkuSJAbL5cuXc/fuXeH9deLECWJiYkhISCAkJGTU93404gn6fTNk1dMLL7ww4vkeB3JCyWeffUZaWpowsrXCip8LKisrUSqVggyaN2+e+C4WFhZy8OBBcaxKpUKSJBobG/H39ycsLIzjx48P+u4mJSWRmZlp4c8UHBwsCCbz8USSJE6dOoXRaESSJLy8vKivr+fGjRuDyJyh1CfmbVQD/y63wo2mKhpJHTTUuc2v3WQyjUiA/VTtgMXFxSMm/I2EkpIS8bM5weLk5CSq2zJ0KMdU6Yf+4pgO5ZDEmvw8skH3ypUr2b9/v3hOrVYr3hdZ8SvDzs5u0Jzk4eGBs7MzVVVV5Ofni/ugUCj45ptvsLGxwdvbm7CwMLKysmhubrY4h/yzra0tZWVlFsbkkyZNQpIki1ZTGQM/kyaTiQMHDuDk5ERrRxd9ki0oB28m5BTb5uZmAgICBhGcA9tPrbDi5wJPT0+2bNlCdnY2Z8+epbi4mBUrVohNvIyBqicfHx/q6vrNzBsbG0V6WktLC5cuXWLGjBljtmuQwwuys7OprKzE3t5eEC8VFRX49jRgZPyI5zAaTWxNCR3lGCMFBQVkZGTQ0NAgErbHsnYeCiaTifPnz3PlyhUSExNZvnz5IKItMzOT27dv4+zsjK2trfDRg/5CUG5uLnPnzhWJoVqtloCAANRqtWizk9sT4XviKTAwkLt37+Lg4EBZWRnTp08nLS0NX19frly5wuTJk1EoFCQnJ1NcXMzDhw85cOAAW7ZsGbF9MCQkhG3btpGamsqDBw8ICwsjMzOTsrIy1q1bh5eXFwqFgilTphAXF8fVq1eFAfncuXOZOnXqX7yo7OjoSHx8PPHx8aKT5/79+0Mm5smKKGti3l8GP0viyUmjQiExJvJJIfUf/1PAaDTS0dFhQQIpFAoWL16Mp6cnx48fp7m5mQ0bNlBdXU1ubi6rV6/+QaksctVxOMVTb28v165dIysrC51Ox6RJk0hJSeHs2bNi0FQqleTn5zN79mySk5NpbW3ls88+o6amhpSUFJGEMxAjkU7wfYvdm2++SXp6uqhQymqnWbNmoVAoqKmpwcXFBQcHB3p6ekTPuZ2dHdDfOnD37l1sbW0pLy8nOTkZR0dHcnJyWL58OdA/Ec+fP5/z588jSRJnzpwhJCQEX19fcT3V1dUEBQVhMBj44osveP7554dtgQREgkV8fDxpaWlcvnxZ+D/JMc8wunLA1taWhIQEEhISaG1tJT8/X7TjyelBCQkJw/bOy+ceaYCVVU+HDx+mpqbmqfZxBwQEMHfuXC5fvkx4eLhFD7wVVvw9Q6vV8ujRIwtFY1RUFAB3797lwIEDFsfr9XokSWLixIk8ePCAK1euoNFoxCZdqVSi1+vJzMwUv8utUS+99BL/9m//JjbT5qqn+vrvE9zkn4cjUMLDwykrKxO/D0cMabXa4VPXVHVPxUdpLIoqmXT6MZPyYGT116Bjx9jeN5B0ArDBMGqbnQwJEzaM/ppl81vz55SVdY2NjUiSRFhYGAEBAZhMJrKzswedo6mpiaamJqD/syUrkVxdXWlubsbOzo4rV64M+3mRk+zGjRtnYfYtSZLwbxorMkvrKVMFU9ytwYTE3v92ikUxPvwiJUwEZ4SGhqJUKikuLmbcuHFkZWUJxRn0E0/WVjsrfq6QJImpU6cSFRXF8ePH2bdvHzExMSxbtszCJ8dc9RQWFsbVq1fRarW0trbi6emJyWTi+PHj2Nvbs2DBglGft6mpiezsbHJzc+np6cHLy4vAwEBqa2u5d+8e3t7eJCUl8UZMDLPud4+azix/3wfCYDCQn59PRkYGzc3NREZGsmrVKuHP+iTQ6XQcOnSIu3fvsnjxYmbOnDmIvCotLeXcuXP4+vrS2NjISy+9ZNGhkJWVhUqlYsqUKWzfvh1bW1th4QHf+ztpNBpxbkdHR5qamvD398dgMODv709ZWRkLFy4kKiqKhoYGWlpauHPnDnFxcSgUCtavX8+HH35IVVUVly9fHrXo6+joyObNm0VxPTAwkO7ubj755BMWLlwoOm7UajXz589n6tSpXLx4kVOnTnH9+nUWLlz4RO2KPwYkScLNzY0pU6ZYJObJbXlXrlzh4sWLFol5oaGheHt7/1Vc/987fpbEk8ZGyaIYH87drR/F48lIjLMRo64PbEZPl/uh6OjowGQyDdk7m5iYiLu7O/v37+fTTz8V/cCTJk36Qc8peyINlEt2d3eTlZXF9evXMRgMJCYmkpycjLOzM62trZSVlWE0Gunt7SUmJoZFixbh4uJCVlYW58+fF62Cclz4QIxGOpm32EG/B8r8+fO5dOkSNjY2KJVKkpKSACzaw7q7uwXhZP5/g8FAQEAA5eXlzJkzh0mTJnHjxg0WLVokFEizZs0SSTmdnZ188803vPPOO6jVarRaLQ8ePGDhwoUkJiZy8OBB9uzZw+rVq0c1ztZoNCxevFj4P6WmpnL9+nWWLFlCQECAMMgdC1xdXZkzZw6zZ88W5OP169fFRJGQkEBsbKzF+ylvPkcbUGWCLC0tjY0bN47pesaK2bNnU1ZWRmpqKm+99Za179qKnwUePnxo8d1esGABkiRRVFQkiAD4niSys7PD2dmZ/Px8bG1tMZlMuLm54eTkRH19vSBWAgMDRbyyv7+/iJX38PAQxJP8vR84tsjE/XCQ00JHgkKh4I7W4welro2mHpKJjbHixySdxorHJeKGeo0qqf8xlUYXi0S+gZDPbU5subu7C+NuW1tbXnvtNQ4dOkR9fb1F0iH0v4c9PT2iDbKsrMyCcLS4pj+/V0FBQaKI9PDhQ9RqtUV64lCPkaHX69Hr9cKfUYavr6/FZ3s0iLQ/7fefO6MJzt2t50xhHf+yJo7NM4KxtbUlJCSEkpISUlJSuHTpEk1NTaI9yN7eXhBpVljxc4WzszMvvPAChYWFnDx5kj/96U8sWbKEhIQEJEmyUD2FhYXR29srlLWenp7k5+dTVlbGiy++OKwFhMFg4N69e9y8eZPy8nJsbW1xdHREp9PR0NCAr6+vaAE0b9/b7MUYjNMtodfrycnJ4erVq7S1tTFhwgSee+65H1xM7ejoYO/evTQ0NPDCCy8II3BzNDU1cfDgQXx8fKitrWXlypUWwQc9PT3cvHmTadOmUVNTI+ZtQLQBmxuLy3B0dKSiokK8BicnJ0pKSujq6mLKlCns3r2bcePGkZGRQWxsLJIk4erqysqVKzl06BBpaWmEhIQQGjqyOkyhULBgwQKCgoJITU1FpVIRFRXFqVOnKC4utvASdnJyYvXq1cyYMYNz586xf/9+AgMDWbx48bD7vr8UzBPzZs6cidFoFB6X1sS8nx4/S+IJYGtKGGcK60Y8xoSCCEM5H330EWvWrLHw5fgxIKuPhjNtCwkJYevWrXzyySf09fWJieGHPqe5wqqrq4urV69y8+ZNTCYTU6dOFelu0K/6+eqrr0RVMykpicWLF9PS0sKXX35JRUUFM2fOZMGCBcP20o5GOpm32CUnJ7Nv3z7c3d3p6uoS7R3x8fGoVCpMJhM1NTUkJydjMpno6ekRhJNMbsjXISuf9Ho9kydPJiMjgzt37gjiSKFQ8Oyzz/Lxxx8LM9hDhw6xceNGysrKMBgMREVFYWtry8aNGzl27BiHDx+mo6OD5OTkUd8Ld3d3Nm7cyIMHDzh9+jQ7d+4kPj4evV7/2JHlkiSJxIelS5dSVFREXl4ex48f5+TJk0RHR5OQkEB4ePiYWu3k1z979myOHDki2hCfFuS0w48++ojjx4+zbt06a2XBir97mHsrOTo6MmHCBEpKSti7d6/FcTJJ1NPTI9rXHB0d6erqEkSQUqlErVbT3d1NZGQkISEhFBQU0NvbS3NzM998882QfkkDW4qGIp3c3d0xmUy0tLQMIhDMFZkymVCjt3/i1DUZoymIzAkZuTovz0t/jRCEyGMQccMRa7GqOiq0rqM8o8QM1y4wezvb29uFt6HRaBR+Yo2Njfj5+QkzeoPBgJ2dHX19fWzbto3t27fj7+9v8flxcHDAy8uLyspKUZWXU2Xb29tHTBw0n/tHU/TKBuHmxw/Vfg4jp/3JRcT/criAaB8npoa4ExkZyZkzZ1izZg0AVVVVFsRTVVXVsNdlhRU/F0iSRFxcHGFhYZw+fZojR45w+/ZtVq5ciZubm1A9yaRxUel9ekwqFDYaTp8+TXx8/JAm1i0tLWRnZ3Pr1i1RFFYoFGi1WjQaDZMnTyYmJsYiGW8gxmKcDv0K3OzsbK5evUpXVxdxcXGkpKQMSrx8EtTW1rJnzx5MJhOvvfbakCRWX18fe/fuRaPR0NzcTGxsLImJiRbH3LhxA6PRKNLi5LlZo9GIc7a3tyNJkkizg+9b7WxtbfHw8BAk/f3794mNjcXV1RWNRkNZWRmlpaXivYiPj6eoqIh79+5x4MABfvnLX1qcdzhERESwbds2Dhw4wL1795gyZQpFRUVs376dlStXihZL6A9yeOmllygrK+Ps2bPs3LmT2NhYnnnmmb9a4kahUBAQEEBAQIBFYp6siHraiXmjfXZ/bvjZEk/TQtz5lzVxo8o4V0/obz/6+uuvmTlzJs8884xIcXjakFNhRkoLaG5upq+vDy8vLw4dOkRfXx9Tp0594udsbW3Fzc2Njo4OQTgpFAqmT5/OzJkzxSBlMBi4cOECV69eRZIkFixYQHFxMS0tLdy8eZMzZ87g4ODAq6++OmxKBoxOOoFli111dTUlJSU8++yznDp1ShBPckyofD/8/f2FAalMOCkUCuzs7NBqtTg5OYk2lUePHhEUFERoaCg5OTkWiiUfHx/mzJnD5cuXUavVFBUVkZOTQ3V1NZ6enmKCVCgUrFq1CicnJ86fP097eztLly4dU79waGgob775Jrm5uVy4cIHu7m6cnJzQarWPZRouw8bGhri4OOLi4ujo6BCteLt378bR0VH07Y+F6DFXPT3//POPfS0jwdXVlRUrVpCamkpERMSoSjErrPhbh3lq3IIFC7h//z67d++2OEapVGI0GsXm3NbWVpBJcgtUSkoKFRUVZGVlAf1pc/K5ZZXKUG1bMDgyfu7cuWRlZVn4LsneHUP5OQ1lTP1DUteGPHYUcsJkMnHjxo1Rz/M08Dim6TJGIkTGSsQplUrCwsIoKSnBR9FJkqrSjMj6fl7p/x1W+nbj2FaH+ZXKqiLon7Pl1+Hg4CA+L5GRkdy7dw8bGxu6urrYuXMnCoWC6upqEhISyMvLA/o/N2q1WpjdytXvlJQUTp06xe3bt5k9ezZnzpxh8+bNqFQquru76e7upq6uTrxf4eHhdHZ2Ul9fPySZNBAmk2nY+z+Wz51CIbEj4wFTQ9xFtf7hw4d4e3tTXV0tjMmtHk9WWGEJe3t71q5dS3x8PMeOHWP79u3Mnz+fGTNmMG/ePP64+xh3jBF8kabDxCT2/fEaITYB/PeY7/1QDQYDxcXFXL9+nfLycgtFv4eHBxMmTCAmJuaxU5qHM07v7e0V/rN9fX1MnDiRlJSUYa0nHhfFxcUcPHgQd3d3Nm3aNKS1iclkIjU1lfb2dlxdXZEkaZD3rlarJSsri8mTJ2Nra8u9e/dwcnJCp9MRHh4u9g7t7e2oVKpBiie9Xi/2Ok1NTXh7e3P//n3i4+NJTEzk8uXL+Pn5kZGRIYgn+ToqKyvp7u7m0KFDvPTSS2PaC7i4uLBlyxbOnTtHVlYWkZGRKBQKvv32WxISEli6dKlF50J4eDihoaHk5+dz4cIFPvjgA6ZPn86cOXOEGOCvFUMl5lVUVAhFlOw96OXlJUiokJCQUTs3bpQ3syPjvggzU0gMagn/OeJnSzwBbJ4RPCYZ58svv0xmZiYXLlzgwYMHrFu37qmw6APR1taGnZ3dsORDX18f3333HWFhYbz44oucOXOG48eP09jYyOLFi5/IJK2pqQmNRsMf//hHVCoVs2bNYubMmRYDRWlpKcePH6e1tRWNRsPrr7+Ol5cXPT09XLt2jXv37pGYmMjixYuFGd5QGAvpZN5i5+3tzeeff46fnx89PT3odDox8MqEmKwG8Pf3H5QEYTKZRKXAx8dHLKTLy8sJCgoSLXMNDQ14eXmJa5g9e7ZQRvX19XH8+HHUarVIwZMhSRLz58/HycmJEydO0NnZybp168ZETCoUChITE4mNjeXzzz+nrq6O999/n2eeeeYHKdmcnJxITk5m1qxZ1NTUkJeXJ6LaT506RUtLC/Hx8RaTmjmUSiUpKSl899131NXVDWkI/0MQHx9PaWkpJ06cICgo6K+2ImKFFT8EvToDbd19lFc9REk/meTg4MA333xjcZxCoRjUYiSrNqdPn860adPo7e3l3r17FBYWCrKotbVVKGSHgxxQsHz5cnbs2IFWq8VoNFJeXj7I7Fs+n52dnQXxZE7CyC16TzN1TRz7V6RicnJyEu0OMpRKJba2toPUYDJ+KBEnK3zMTcijVQ24KXoo1HtTaXQTrXsxznqCe8vwbO0UpJP8PsmbPPm/999/H3t7e5RKpVDxGgwGQTAOJF/u3bsHIAxYb9++DSBa9/Lz85EkiZycHHx9fUlLS8PDw4OKigqMRiNGo5Hu7m7xODc3NxwdHXFwcMDGxmZUhZEkSdja2mIwGCyIMxh72p/BaOLMnVp6dQbc3Nzw9PQUPk8DFV19fX3o9fofrZhohRV/i4iIiOAf/uEfuHDhAmfOnKGgoABt8ExOaMcjgYWis0Lvwitf3uI/L24jWFdFTk6Oxfzi5+dHXFwcEyZMGLGo/rjo7u7m2rVrXLt2TXQxJCcnPzahNRxMJhPXr1/n9OnTREVFsW7dumH3ZpcuXaK4uJjo6GiKi4t5/fXXB5ESOTk59Pb2MmvWLIqKitBqtbS0tGA0Gi26aTo6OpAkyWKNLre3ycl2d+/eZerUqUKZM3nyZC5duoSvry+3bt2isrJSeKna2dmxbt06vvrqK8rKyrhy5QopKSljugdKpZIlS5YQFBTEkSNHsLOzY968eVy9epXy8nLWrl1LcHCwOF6hUDBp0iRiY2PJzMzkypUr5ObmMmfOHKZNm/Y3M85qNBrGjx8v2inlxLwHDx4IUnW0xLyvsyr4r0f6hS2yrmWolvCfI/42PgU/IsYi45QkiVmzZhEWFkZqaiqffvqphdna00JbW9uIA/OZM2fo7e1l1apVKJVKli1bhqenJydPnqSpqYn169eP2TunpaWF9PR02tra6O7uZs6cOUyfPt3i8c3NzZw+fZri4mIUCgXu7u68/vrr2Nvbk5eXx82bNzEajSxatIhZs2aN+Hw6nY49e/ZQXV09LOk0sMWuuLhYkFQnTpzA0dGR9vZ2CwPDR48e4ebmhp2dnfBrMH8NTk5OgngqKCggODhY+DxFR0djZ2dHTk6OUFBB/2D77LPPsmPHDpEU1dvbO2yr5dSpU3F0dOTgwYPs2rWLjRs3jpnhV6vVIgXE09OTI0eOCP8n8wH9cSEPiv7+/kyfPp0PPvgABwcHzpw5w5kzZ4iKiiIhIYHIyMhBxu8JCQmkp6eTlpbGhg0bnvgahsPy5cupqqoiNTWVLVu2/MXTMKyw4mlhYIVLYjJBilaeDXNiz549g44fqAAJDAwkMTGRlpYWSkpKRFTycJD9eQCef/55zp07JyLmTSYToaGhGAwGent7RbKXefufDLndaaACxHzjL7fo/dDUtSdRFP2UGEg6QX8Vf7i5/ocScSPdDx9FJz62nZZm5VoTA62f5McP/Dy1tLSI5FoZMrk1lAm4/FmqrKy0MAAHhJrpwoULGI1GampqhBl+Xl6eKHzJym3ZyFuO/25sbLQwvB/yHplMwyYgPs7nzmjqTy/W2PRHgd++fZv58+dz69Yt+vr6UKvVYmPX3d39gwJarLDi7xFqtZply5YRFxfHh9+eZs/FCvrpc0vIm+r//5kyltsW4aPow8/Pj0mTJhEdHf3Uv1udnZ1kZmYKReWUKVOYNWuWIGeeBoxGIydPnuTmzZskJSWxcOHCYQv7d+7cIS0tTahFFy9ePCjZz2AwkJmZycSJE3F1deXEiRMi2AG+93eC/vnHZDJZ7CHkFq/Ozk78/f3R6/V4eHjQ0dFBQ0MD3t7eREdHU1lZiZeXFxkZGbz44ovi8aGhoSQlJZGVlcWFCxcIDg5+LJP1CRMm4OPjw7fffkt6ejpz586lpKSEL774guTkZObPn2+xjrexsWHOnDkkJiZy6dIlzp49y/Xr13nmmWeEB9XfEswT86B/XpWJqFu3bonEvMDAQEJDQ+nQePNfj5RhgkE+0kO1hP/c8LMnnmQMJ+M0h6+vL7/4xS84d+4cp06dorS0lGefffaJ+z4HYiTi6f79++Tk5LBixQoLRn/atGl4eHjw7bffsnPnTl588cURVSTNzc2kp6eTl5cn1Elr1qyx6NnVarWkpaWRlZWFRqPB1tYWd3d3XnnlFYxGI/v37+fevXvExcUNikUeCuak00svvTQsoWLeYidJEufPnyc0NBSdTkdrayuSJGFnZ2dBAJknsMkbI3nAlhVPra2tREdHi7jRjIwMUeWUJ4uBLZT+/v7MmjWLzMxMYcqak5MzLPkUHR3NK6+8wp49e/j888/ZvHnzmCdcSZJQKBQ899xzTJ8+ndOnT/PFF18QExPDwoULf7AqSJ4w58+fLwi4vLw89u3bh729PXFxcUyaNAlfX18kSRKqp2PHjlFfX//U1X1qtZp169bx2WefkZaWNmrahhVW/C1gqAqX7PHz3h2JJJXXkGbbNjY22Nvb09bWxsOHD4dVhbi4uNDR0YGLiwstLS2sWbOGqKgofve73wH989PAsfju3bvCl2M0hdRY8UNT1+QxZiChNlSb318ThjNk/6FEnDnp5OTkNGTLpEoyicfIhuTmpKM5QkJCKC8vB2Djxo3cvHmTR48eYTQaLY7XaDSoVCo8PDzo7Oykvb0dnU6Hu7s7ra2tqNVqpk2bhq2tLefOnRPPazQasbe3F+0fSUlJdHV10dHRQWFhIZIkYWNjQ19fnzA6HytmzZqFr68vDg4O2Nra8uWXXxIQEEBDQwP6zu4xf+7M04gjIyPJzMwU652HDx8SFhYmVNNdXV1W4skKK4ZBYGAgTZ4JKBrrR0wCl4BGj3h+9/qsp7YnMkdbWxtXr14lJycHhULBjBkzLOxAnhZ6e3s5cOAADx48YOXKlYM6HcxRV1fH4cOHiYqKori4mMjISGbOnDnouPz8fNrb20lOTqarq4vS0lLGjRuHWq3GycnJYt/X3t4uxlgZ5sSTuZeWUqmkrKwMb29vpkyZwtdff83s2bNJT08f1LGwYMECSktLaWlp4cCBA7z11luP1QLn7u7OG2+8walTp7hw4QLx8fGEh4eTlpZGWVkZ69ats+gcka975cqVwoD84MGDZGVlsXjx4r/pdGs3Nzfc3NxITEzEZDLR0NAg2vKuXr3KyY4AwBXG2BL+c8Pj92b9zGFjY8OyZct48cUXqampYfv27RQVFT2Vcw9HPPX19XH06FFCQ0OHHATDwsJ44403MBqNfPrpp0NWtBsaGkhNTeWDDz6gtLSURYsWsX79egAxWJhMJvLz83n//fe5du0aEydORKfT4eXlxauvvkp5eTkffvghlZWVbNiwgfXr1xMREUFpaemwr2mspJPcYjd37lx8fHzIz8+noaGBZ555hmvXruHk5ITJZGLatGmCLZerrnKinbzpMlc8OTo60tHRIQZgebEst+glJibS09MjWgzMMXfuXNzc3NBqtUiSRGFh4Yixz4GBgbz++utotVp27txpEWE+Eswr3kFBQWzdupW1a9dSVVXFn/70J86ePTtsFXgsMDcXd3BwYMaMGbz55pu89dZbJCQkUFhYyCeffMJHH33E1atX6ejoYNKkSbi4uJCWlvbEzzsSAgICmDt3Lunp6YMq61ZY8beGG+XN/NcjBUNWuPr9eSQy9UHUGb9fkMuEsE6nEyoRWQ3i7OzMhAkTmDNnDitXruS5554jOTkZBwcHYep8+vRpPvroI3G+9957bxDx9OjRI0FkmSfoDIT54t08rUepVBIXF2dxrJy6JjGyX4+EkSBFy6A2O6PROKSK66+ZdAoJCRmWgJeJuLFgKCIO+lsxJUkaknQauLGSDcmHu1/m6mMXFxdcXV1xdXUlKirK4jij0UhnZ6eI6pbP5+bmJlS86enpnD9/3uJ5oZ+Eq6+vp7m5mePHj3Pjxg3y8/Pp6+sjODgYnU5HQEAAy5YtE1ViFxcX3NzceOedd76/HwMq32VlZfj4+NDY2MihQ4fQ6/VUV1cTGhqKu4vTmD53SoXE4hhfUUgMCgpCrVbT0NCAWq0W7XbyfR0p4dEKK37u6NUZOHdvZNIJ+kn1m7U6VOqn6+fT0tLCd999x3vvvcft27dJSUnhN7/5Dc8888xTJ51aW1v57LPPxH5lJNKpu7ubvXv34u7uTm9vLyqVijVr1gwa04xGI1euXCE6OhovLy8KCgqQJEl0aJgXs00mE+3t7RgMBgviydbWFhsbGzo7O1Gr1Xh6elJXV0dwcLDw7gsNDRWppi4uLly5csXiOlQqFevXr8doNNLV1cXRo0cfW3msUqlYuXIl69atE+3/69evR6/X88knn3Dt2rUhz+nl5cWmTZt49dVXMRqNfP755+zbt+/vIlVUkiS8vb2ZOXMmmzZt4lf/+E9UmdweqyX85wYr8fSEiIyM5B/+4R8IDAxk7969fPfddyOmvIwGk8k0LPF07tw5uru7WbVq1bASRU9PT7Zu3YqPjw9fffWVMEOrq6vj22+/5cMPP6SiooKlS5fyq1/9iqSkJLERcXV15dGjR3z22WccOnSIoKAg1q5dS2FhIT4+PmzYsIGTJ0+yf/9+goKC+OUvfykUUhEREdTW1g65qRkr6TSwxU6v13Pp0iUmTJiAJElUVlaKFpBp06aJxzU1NaHVagXx1N3dLQZo+Z7KHk8eHh4oFAr0er3weYL+ATEoKIicnJxB12VjY8P8+fMxGAyCnT927BgNDcNHhHt6evLGG29gZ2fH559/PiQJOBDm5ovQP5BNnDiRd955h5SUFK5fv877779Pdnb2mMxZB0I+90CpsI+PD4sXL+a3v/0tL774Il5eXly4cIF///d/Z+/evYSHh1NYWDji6/0hmD17NoGBgaSmpj5WbLoVVvy1YUfGfRSKkRcassePDPm7rFAohNpSo9FgY2NDR0cHd+/eJS0tjWPHjnHgwAFOnDhBR0eHGAt7enpEAg4wrL+eQqHA3t5+xOQg8xY780KKwWCgoKBg0PGxqroxtJZJxKrGRr7/mNCbJHpMKvSmJ5f3l5eXD1tIeBwiLsq+Z0i/K51ON2jBLr+vQ7WQODg4DDsXmPuQHDhwgIcPH1JfX8/t27eFuhYQ3mKFhYUWjy8rK+POnTuidcDcpFdOnAsJCcHW1haVSoVGo8HR0RGDwcArr7zCtGnTMBgMrFy5En9/fwoLCwkMDKS9vZ1169aJtYK9vb1ox5PR0NDA9u3bOXXqFFqtFhcXF15//XWamppob28f0+fOaDSxNeX72HClUkl4eDilpaWi3VR+fhjcXmqFFVZ8j45e/aikkwy5xfVpoKGhgUOHDvH+++9TVFTEggUL+PWvf83cuXN/FLPq6upqduzYgV6v54033hgxxdxoNHLgwAG0Wi0hISFUVVWxfv36Ib1T7927R1NTk/BVun37NgEBAfT09NDX12fRZienkQIW55IkSexloN83q6amhrCwMMrLy0XL85QpU4T/U0FBwaA2ax8fHxYuXIjBYODevXtcv379ie5VfHw8v/jFLwA4fPgws2bNIjExkVOnTrFr164h29Whv4Dzi1/8grVr11JTU8OHH37IiRMn/ubHYKPRSFVVFZcvX2bnV9/8Rb4vf0uwEk8/AA4ODmzcuJEVK1aQn5/PJ598IpQ0j4ve3l6x0DLHgwcPuHnz5pharuzs7Ni8eTOTJk3i6NGjvP/++3z00Uc8evSIlStX8u677zJ9+nRBzLS0tODg4MDJkyf59NNP0Wq1YuF4+PBh/P39SUpKYufOnRQVFbFmzRqef/55iyqDPGgOVD2NlXSC71vsnn32WZRKJTdv3hReTllZWdjZ2QkDPnMJr+xLYt5qZ2dnZ7GQdXR0RKfTodfr8fLyor6+Xvg8yUhMTOTBgwfCG8UcnZ2dSJJEdXU148ePx2AwsHfv3hGr805OTmzZsgVfX1++/vpr7ty5M+yx8L2x7EDY2toyb9483n33XcLDwzl27Bgff/yxRVLWWCCfezjSUqFQEBkZyXPPPcc//dM/sXz5cnp7ewUZJxvCP21fFoVCwdq1a+nt7eX48eN/1b4vVlgxHHp1Bs7eqRukdBoIc48fc5grgHp7e4ckIYaDQqEQ3gpDfc/lxDx3d/dRU37MCTBzDKX0kVPX+ukly7Gr/3cTSarKYRPcfgrUGR25oA1nV18ie/smsasvkQvacAvV2Q+B+X0eKxEXrrdUd8pk4VDvt/w32QfEHOaqXnNDU4AvvvhC/Nzc3ExtbS0GgwFbW1tRmJEkCR8fH2bPnm3xWPlcc+fOZdu2bbz22mu8/fbbTJ06VShzTSYTFRUVTJ06lXfffRdnZ2fq6upQq9U0NzeTm5uLn58fLi4uHDx4EA8PD6qrq0lJSSEgIEDMh3Z2dtjZ2Vm8dqPRiEqlQq1W09PTg5+fH5999pnYyFh+7gYQdX/+HP7LmrhB7QuRkZEWyXayWbqc7GeFFVYMDSeNilFqKgLmLa5PitraWlEsLy8vZ8mSJfz6178mOTl5xPCiH4KCggK++OIL3N3d2bp166CWsYE4c+YMFRUVzJ49m+vXrzN37twh9zgmk4n09HRCQ0MZN24cTU1NPHz4UBSYFAqFhd+tOWEzkFwzJ578/f2pq6sjNDQUvV4vVM2TJk0Sz2tnZ8fVq1cHXdPMmTMJDQ3FxsaGs2fPin3U48LLy4utW7cyYcIEjh49il6vZ9OmTdTX17N9+/Zh9z3mhfUFCxaILpuMjIy/atWzOUwmE42NjVy/fp29e/fyu9/9js8++4zMzEzcHO3G2Hj/dL4vf4uwEk8/EJIkMXXqVLZt24atrS07d+4kPT39sZUpcquFuX+TVqvl6NGjBAcHWyh9RkJNTY0YvJqbm4Uv1ZQpUyw2FQaDgZKSErq7u7l79y7Lli1j27ZtmEwmvvnmG8aNG4erqyv79+/H29ubX/7yl0OmrTk4OODv729BPD0O6TSwxa6vr4/09HQmTZqEra0thYWFYlM28B48evQId3d3sQjv6emxqBLIiidAGIzL8tSqqipx3piYGNRqtVCJmaOoqIiQkBCcnJzo7u7GxcVFtBeMBI1Gw0svvcSECRP49ttvR6wsjGa26+zszNq1a9m6dStqtZqvv/6aPXv2jFmmat5qNxrs7OyYOnUqb7zxBm+//Tbh4eE0Nzfz2Wef8ac//UkY0j8tuLq6smLFCgoKCkT6nhVW/C3hcSrCssfPaFAqlWg0GpycnHBzc8PHx4fAwEBhWiqPa4mJiSQnJwPfK13MF6yhof3Kj2eeeYbo6Gjx96FIpuDg4EEtcGq1elilz0T7NpbbFv1Z7fPnMYZ+9c9y26Ih/ax+KMYannFP78UJ7XgqjS4WCUyVRhdOaMdzTz/yxmIsMB+zH5eIk9+rsbRQD9WWaL5BGZg8OpRfkYeHB5GRkfj7+6NWqwkLC6OmpsbCZ8Pe3h5nZ2ckSeL48ePs2rWLe/fuYTQaiY6Otni9JpOJq1ev8s0331BfX8/cuXMJCwvju+++o6ioCB8fH44dO0ZXVxcGgwEfHx/mzp2LVqvl1q1botWkp6dHkF1yS55er0ev14uqfEBAgAU5FK1q+PPnrkV87hQShNp0ssL2HqsnDC7QRUREiJ97enpEkUlOarTCCiuGhsZGyaIYH5SjsE8DW1wfF9XV1ezZs4ePP/7Yolg+Y8aMQeT604LJZCItLY2DBw8SExPDK6+8Mmzis4xbt25x7do15s+fz9WrVwkODh5E4MsoKyujtrZWqJ3y8/NRq9U0NjZiZ2dHYGCghULVfFwfeB0DFU+yysnBwYGysjLxmJiYGHJzc5kxYwa3bt0a1I0iSRJr1qxBoVBgY2PDgQMHntjKw9bWljVr1rBq1Sry8vK4ePEiL7zwAmFhYXz77bccPnx42G4GlUpFcnIyv/rVr0hISODixYt88MEH5OXl/VUWoTs7O8nPz+fIkSP84Q9/4E9/+hOnT5+mr6+PWbNmsXXrVv75n/+ZzZs2sjj2x/++/C3j50e1/UiQW6wuXbrEhQsXKC0tZe3atWOO9pSNX80VT+fPn6ezs5OXX355VNKgoqKCtLQ07t+/j6enJ2vXrkWj0XDw4EG++uorXnjhBXEtZWVlfHfyNLWNLXi7u/PW1v6kutLSUvbu3Yuvry8tLS08fPiQFStWMGXKlBGfPyIiguvXr2M0GjEYDGMmnQa22AFkZmbS19fHvHnzuHHjBgqFAp1Oh52dnYWpHvQTT3KbHfQrnuzt7cW1mkwmixhSHx8fQbLJPk9BQUHY2NgwceJEcnNzmTdvnlAQ9Pb2UlFRwZIlS/D09OTrr78mOTmZq1evkpeXR1hYGBMnThz29alUKtatW4ejoyMnT56ko6ODBQsWDLqXY015GjduHK+99hp37tzh7NmzfPjhh0ybNm1U6fHjEE/m8PT05IUXXuC9997D09MTJycn0tPTuXDhAqGhoSQkJDBhwoRhI2bHivj4eEpLSzlx4gRBQUE/2EzdCit+SsgV4bGQTxImbCUj3t7eREVFERERgVKpJDMzk6qqKhYtWoRWq0Wn06HVasV/Op0OnU4nFnFym5QcWw/ftwyZb6TlgsCXX35pcR1y27EMe3t7oQI1Tx4zX5AOHKe0Wi0+Cu3g1LUhWsmeBhQKxZhacuuMjmTqg+i/25ZjnunPtbZMfRBuip5hFVkDX+vANDbZaNsc0aoG3BQ9FOq9qTT2ezzIRFysqt7iuZ60LV+pVGIwGMT7D/2eXA8fPhTXa+4T5e7uTnNzM01NTXR1deHq6kpvby8hISG0tLRw+PBhcWx4eDgFBQXMmzePixcv0tXVxb59+3BychKVdBkhISG4uLiQl5cH9M/Fs2fPxtXVVURoQ/+cVVtby4YNG7h8+TI3btwQVW2NRoNWq2XGjBlkZWXx7LPPEhcXx/79+y0+m+bqZOh/L15dmsKpU6fQmyQWLlvJjMQEHlVV8PXXX7N//362bt1q8RhHR0f8/f0F4VRdXY2HhwcODg5WxZMVVoyCrSlhnCmsG/GYgS2uY8XAvcuaNWuIj48fNkXuaUGv1/Pdd9+Rn5/PvHnzmDNnzqhr5Orqao4fP86kSZOoqKjAYDCwbt26Ya81IyODcePGERoaislk4vbt24SFhXH37l1UKhVTp061OF5unTeZTEMST7IfqtzlUVtbS3h4OGVlZSxcuBDoT/m7ffs23t7eKJVKsrKyxL/JcHZ2ZtWqVRw4cAC9Xs/x48dZu3btE6XNSZJEYmIi/v7+fPvtt3z99desXr2aqKgoTpw4QXl5OWvXrh12L2hvb8+yZcuYPn0658+f5/Dhw1y7do1FixaJwtlfAlqtloqKCu7fv8/9+/dFAc7Hx4fY2FjCwsIICgoacv/zY35f/h5gJZ6eIpRKJc888wwREREcOnSIjz76iBUrVohK3khoa2tDqVSKNraKigquX7/O0qVLh/XmMJlMlJeXk5aWRnl5Od7e3jz33HNMmDBBDIRvvPEGe/bsYceOHSxbtozvMu9w8kEflcYgTAQj1UBR6h2WBKkovPwdLi4uPHz4kKCgIF599dUxkQARERGkpaVRWVlJWlramEgnsEyxUyqVdHV1kZmZyfTp09FoNGRnZ4tWkoSEBIu4TqPRSG1trUUVv6enZ1CaxkDFk06nQ61WC58nueI7ZcoUbty4QUlJiThnWVkZRqOR8ePH4+LiQmJiIjdu3CA5OZmMjAy+++47/P398fT0HPY1SpLEkiVLcHJy4uzZs3R0dLBq1SqL1/I48eKSJBEbG8v48ePJzMwkIyNDTJxTpkyxOK+M4TyexgKVSkVKSv8i/+2332b58uXcuXOHvLw8Dh8+zIkTJ4iJiSEhIYHg4OAnjkldvnw5VVVVpKamsmXLliFfhxVW/DVCrgifu1s/Yrtdv9l2K7bK/oj5+vp6MjIycHR0FAljsbGxo35P33//fUJCQsjJycHf359XXnmF//W//pcgM7y8vIQvm0y89/X1WZAdcXFxlJSUiE13b2+vGCeMRuOQsfcjjVHmqWs/BCMpUIKDg6mpqRmRfJIkiUK9z6jpZ7Lflo9tp3ic/PrkyrKrq6soCA28F8Ndg4+i04KIUytMKEyW5qGOjo54eXnx4MGDQY839yAaCvb29nR0dFhcT1FRkUVxwfx9WrduHefPn+fBgwfodDrq6uowmUzk5OTg6elJSUkJkiQRGhpKdXU1Go2Gjo4ONBoNYWFhPPvss9y8eZOsrCyL69BqteTn5zN58mSCg4O5cuUKn332Gba2tvj4+NDU1IRCoeDhw4colUr27t2Lra0tOp1OpBeaTCYSExNpbGxk3LhxGI1GSktLLUi1gVAqlUydOpUZM2ZQX19PTk4Ol08fIzpknNgIVFZWUlJSMqhQFRkZSVZWlmj9S0hIwMHBwap4ssKKUTAtxJ1/WRPHfzncn9pqPs8pFRJGo2nIFtfhYDKZuH//vtg3+Pj4DNq7/Jjo7u5m3759PHz4kPXr1w8K0BgKHR0d7Nu3D39/fzw8PMjNzeXFF18c0oMPoKqqioqKCjZu3IgkSVRVVdHS0kJoaKhIdTX3d4J+4klOKx2o7pWDkqBfaeTp6cmjR48ICwsjPz+frq4uHBwcCAoKwtPTk9u3bzN16lRu3LhBSkrKoPPFxsZSUlJCQUEBt2/fJjQ0lMmTJz/ObbSA3F1z9OhRvv32WxFidPToUb744guSk5OZP3/+sGt7Dw8Pnn/+eSorKzlz5gxfffUVUVFRLFy4cNTWx6cBo9HIo0ePKCsr48GDB1RVVWE0GnF2diYsLIyUlBRCQ0PHlNg4LcSd/3tlNP/t2F0ksFiLPMn35e8N1la7HwHBwcG89dZbREVFkZqaOibzZNlYXJIkdDodR44cISgoiOnTpw861mQyUVpayueff85XX31FX18fGzdu5K233hq0cfH29ubVV19FqVTyP/Ze5qMyO6rNHPdNwLk7dfz2ZDXFRm/a29tZvHjxmEkn6K9qajQaDh8+PGbSaWCLHUBaWhqSJDF79mzy8vLo6elBq9ViMBgGDYiNjY3odLpRFU9qtRqVSmWRbNfQ0DDI58nHx4dx48ZZmIzLLQOyCm3RokVoNBoePXpESEgIBoOB/fv3j6kvedasWaxbt47bt2+zZ88ei03gQHPxsUClUjF79mzeffddoqOjOXnyJB999BElJSWDjh3N42k0JCYm4uDgQHp6Omq1msmTJ7NlyxZ+9atfMWvWLCoqKvjyyy957733uHjx4pBeWaNBrVazbt06Hj58+KMl6VlhxY+FrSlhGEf1eOo325YrZE5OTnh4eNDd3U1jYyMtLS38z//5P/niiy/IyckZNoXO19eX5uZmbG1tqavrr6qZLyrN1SKdnZ1MnjzZYryRJIn58+dbKD2MRqMYH+zs7ES11XyRONwC+2liJBLgwYMHo86jOiNUGl2Fsmk4DPTbMh9/5fsuk05PApVkwt3eBpshLqOzsxNfX99Bf582bdqo91guipi30z18+FD8bDKZCAwMFL/rdDocHR1xdXXFYDCIxEKNRmMxV8hpSEFBQeTl5REbG0tubi6enp6sXLnSIk0W+hVOHh4ezJ8/n4SEBP7hH/6BZcuWodVqqaurQ6/Xi8+cvB6xs7NDo9Gg0+lwcHBAr9eTkpJCZWUl7u7ufPrpp9y6dWvYTaBMhsqpfStXrsTX1xeTycSXX35Jb28vzz//PJIkcejQoUFzalRUFH19fbi6uloYjFsVT1ZYMTo2zwjm221JLJrgIzyfFBIsmuDDt9uS2Dxj5DU/9I9PRUVF7Nixg127dmEwGHjhhRfYtm3bmIouTwONjY3s2LGDxsZGXn311TGRTnq9nn379on9ycWLF0lKShpEbpsjIyMDLy8vMebm5+fj5OREfX09rq6u2NnZDZoHOjo6UKvVg7xqoZ946u7uFsS8v7+/MBgHhPerbP9y79494uPjMRgM3LhxY8hrXLZsGU5OTjg4OHDixIkxJ3EPB41Gw4YNG1i6dCk3btzg8OHDrFmzhmeeeYbMzEx27Ngx6nMEBQXxxhtv8Nxzz4mwiWPHjo2YyvskGMqnaefOnWRmZmJnZ8fSpUt55513+M1vfsOzzz5LfHz8mEgnGRPt21luW0SwolXQTo/7ffl7hVXx9CNBo9Gwbt06IiMjOX78OJWVlcPKDXt1Bqob27B36ic4zp8/T0dHBy+99JLF4GMymSguLiYtLY1Hjx4xbtw4Nm3aRGRk5JCkgiztPHfuHPc7JNF+YBiwP+r/XSK9dxyvblxE0qTh0xyGgsFgQKFQ0N7ezquvvjoq6WTeYif3Pre0tHDz5k3mzZuHRqPh2rVrwvzTxcVlkMGtbOIuS07he3Nxc5inQTg6OuLg4CB8ni5evIherxdeJ4mJiRw7doy2tjacnJwoKSmx8JXSaDSsXLmS3bt3s3jxYmpra2lsbOT06dOsXLly1PsUHx+Pg4MD+/bt44svvuDFF1/E0dFxWHPxscDR0ZHVq1czffp0Tp8+ze7duwkPD2fx4sXinj1pq50MuRf7zJkzzJkzRyjw3NzcmDt3LnPmzKGyspK8vDyysrJIS0sjKCiIhIQEYmJixuzLEhAQwNy5c7l8+TJhYWGjfo6ssOKvBSNVhCWMmJCY51CLj6GTnp7+iqWHhwfl5eW4u7ujUCjo6urCaDRSUVEh0jBdXFyIiYlh/PjxBAQEoFQq8fb25tq1a6LiqdVqLQgiuT1O3qjHxMRw7do18XdbW1sOHjwIINQn0K8IKS4uFkbUKpXKgsTq7u62+NvAfx8rzJ9zNHh7e9Pd3T3mRacO5agm3zJkv63hlFqjKVFHe/09PT3D/ltmZuagv/n7+w+7QZAhq2vN78fAa5SNZgGOHDmCs7MzTk5OtLW1iWJLVFQUNTU1onVP9jeUySitVkt3dzd37twhLi6OgoICgoKCLFJaW1pa+MMf/sCECRPw9va28OiT752bmxtz5syhrq7OQjXV29vL1KlT0el0dHd3k5ubi7e3N2+++Sb79u0D+klPSZLEPTYajbi4uIg5XpIkXn/9dX7/+9/T09PDnj172LJli1Aknz17lsWLF4vn9PPzw8HBAZPJRF1dHVqtFgcHB9G+YoUVVoyMqSHuTA1xp1dnoKNXj5NGNSaPGqPRyN27d0lPTxfr782bNxMWFvbE69InwYMHD9i/fz9OTk68/PLLYyqum0wmjh8/Tm1tLS+99BJHjx7Fz8+PZ555ZtjH1NXVUVxczJo1a5AkCYPBQGFhIbGxsdy8eRNXV1fCwsIGEW3t7e2oVKohPa1k0qO7uxsnJyf8/PwoLCzE3t4eb29v7t+/L7prJk6cyLlz5ygpKWHSpElcu3aNmTNnDjqvWq1mzZo1fPHFFzg4OHDgwAF+8Ytf/CBPLUmSmDFjBuPGjePbb7/l008/FR61qampfPLJJyxatIjp06cP+96bd3bcuHGDtLQ08vPzSU5OJikp6YntPTo7O3nw4IFon2tvb0ehUBAYGMisWbMICwvD39//qRCgt27dYlqIOz6VZWx44UW8/IPG/H35e4dV8fQjIz4+nrfeegsXFxe++OILzp8/LxjrG+XNbNt1k5j/dor/ftue/1HkziufpHM0s5AFCxaIFCKTycSdO3f45JNP2Lt3LyqVis2bN/PGG28QFRU15Je3pqaGzz//nEOHDhEQEEB34EyUo3yZlAoFBwpaRjxmIHQ6Hbt376avrw+TyTRi25kM8xQ7+Qt+6dIl7O3tmTFjBiUlJTQ1NYnF70B/Cfi+4mqeCiSbi5srnqB/wJarmrLBeEhIiPB5khEXF4eNjQ23bt2iqqqK3t5eUa2QERkZSUJCApcvX2bp0qWYTCays7OHjBwfCmFhYbz22mt0dHTw2Wef0dzc/FitdsPB19eXV155hY0bN9Lc3MxHH33E8ePH6erq+sHEE/S3Isqqp4GQJIng4GBWr17Nf/gP/4F169ZhY2PDd999x+9//3sOHjwo2hZHw+zZswkMDOTQoUNj8nOxwoq/FgxVETY32/4fW5aK8VGr1VJeXi4Un42NjWi1WubPn8/WrVuZNWsWrq6utLW1kZmZyRdffMG//uu/8s0339DV1UVPT49Qe1ZWVloQOea+TAqFAltbW4u/GQwGKisrBxmMm7d+TZ8+Hb1eLxagCoUCg8Fg8R1+XNJJJscGFgdGWuQZjcbHqnTaYBiUdjYcJEzYMHxb13At7jKGahkYyth7rDhy5MioqbhqtXrUQsV/+A//QVxHa2srlZWVIpVU/hzIBNeyZcuYOHEiarWaefPmYTQaRcFKqVRy/vx5rl+/Tnt7+6DxeOrUqfj5+XHnzh0uXrwowi5iYmIwmUwkJSXh6enJkSNHuH79Ok5OTuK9NhgMaLVa9uzZI861detW8vLyaGpqQqVSCVWUOdra2vjyyy+FMs7GxoY333wTSZKorKzk4sWLLFiwAHt7e7Kysiw+O5IkERkZSUtLCyaTiUePHlnNxa2w4gmgsVHi5aQedRNtMBjIy8vjww8/5MCBAzg6OrJlyxa2bNlCeHj4T0o65eTksGvXLsaNG8frr78+5o6O69evk5uby8qVK7l58yY9PT2sX79+RDuIjIwMXFxchJqqrKyMnp4eYaXS2to6qM0Ovvd4GsqzVSae5HY7f39/DAYDDQ0NwudJXuvb2dkRFxdHdnY2M2fOpLu7e8jwJOjv0ElJSaG7u5vm5mZOnjw5pvsyGgICAti2bRsBAQHs3r2bu3fvsnXrVqZMmcKpU6fYtWuXhZm6OXp1Bho6+tCbJJKSkvjVr37F1KlTSU9P54MPPuDWrVtj2k9otVpKSko4ffo0H330Eb///e9JTU2lpqaGmJgYXnzxRf7Tf/pPbNmyhTlz5hAQEPBUSKeGhgaqqqqE+nicr/eYvi8/F1gVTz8BXF1defXVV7ly5QqXLl3q34SHJfP/nC9HoZCEKa0JifQHbZgYTxJ+zDAauXPnDmlpaTQ0NBAaGioURcMN2F1dXVy4cIGcnBy8vLx45ZVX8AsI4v/z306Nan5rMJo4c6eWXp1hTF8QeeH48OFDnnvuOfbt22fBug8FucVu3rx5ovWtrq6O/Px8li9fjq2tLVlZWdjY2ODg4EBnZ+eQ56upqbFos9PpdBgMBgviSYZ5b7S3tzdFRUX4+voO8nmytbUlLi6OW7du0dfXJwxJB2LJkiWUlpZy9+5dpk2bxs2bNzl69Cj+/v6jblagnyR644032LVrFzt37hyUGPSkkCSJ6OhoYfaelpbG7du3SUhIAJ7M40mGjY0Ns2bN4uzZs8yZM2fYSdvGxob4+Hji4+Npb28nPz+fvLw8du3ahZOTExMnTiQhIWHYnm2FQsHatWsFcbZu3bqfdHFihRU/BOYV4W8Pf0dHcwONdTWYTCZOnTrFG2+8wTfffCNafczVfc3NzZw+fRp7e3tmzpzJW2+9RW9vL/fu3SM/P59Hjx5ZpIcWFhYC/QvjgcQS9JM2arWa27dvW5Dx8mY+MDDQQsEik1eenp6cPXsWtVpNcHAwxcXFYpFn3rY70pg1lEeUwWDA0dFRLDYVCgW+vr4jki2NjY2jntccKqmf6OtPsxt+vJMwEqxoG9EIfbTU0IFJQFOmTKG4uHjQcXZ2diOqn2SMGzfOom0O+l+vnZ2dKJycOnUKjUYz4vmUSiVOTk4WRrXOzs4Wv3d3d2NjYyPa2AsLCzEYDERFRVFfX09rayuurq40NTVx+vRpFAoFdXV1Fu/7tWvXcHV1ZdasWfT29pKdnQ3AnTt3cHJyIiYmhnHjxnHhwgUyMjIsTM+dnZ3FRsjOzo5FixaRnp7OlStXgP65WH6NTk5OwlzfYDDw6NEjduzYIRQL7u7ubNiwgf3795Oenk5wcDDr1q1j165d7N+/n9dff108b2RkJLm5udjY2FBdXY2joyN9fX0WymcrrLDih0Gv15OXl0dGRgatra2MHz+etWvXilTWnxImk4lz585x9epVpkyZwvLly8e8Fn7w4AGnT59m5syZ6PV67ty5w4YNG0YkrZqbmyksLGTp0qWCnMrPz8fb25uamho8PT1pbGwULXLm19ne3o6Li8uQyXrmfrXQv4+QJIlHjx4RHh5OZmYmDQ0NotNhypQp5Obm0tLSQmxsrHj9QxFm8+bNo6ysjPb2dm7dukVoaOiYvIlHg729PZs2bSIjI4OLFy9SVVXF+vXriYqK4vDhw2zfvp2VK1cSGxsL9IsxdmTc5+ydOoymP7emxfjwi5QwFi9ezLRp07hw4QJHjx4lKyuLxYsXWxB4sk+TrGga6NOUnJw8Zp+mH4Jbt26J1nIbG5sfVJD6e4RV8fQTQaFQMHv2bN544w3ud0j86/kHmGCQGW1/m4DEfzlayP/17zs5ePAgzs7OvPbaa7zyyiuEhIQMuRE3GAxkZWXx/vvvc+fOHZYtW8Zbb71FaGjoY8V9G0398eCjwZx02rx5M9HR0fj6+lpsjAZiqBY7gAsXLuDm5kZiYiJ1dXXCCFWOcR7YqiUbiw/0dwLLavpAs1joVzy1tLSg1+sH+TxBf7tde3s7hYWFw7Yw2tnZsWLFCoqKihg3bhyenp4YDAa+/fbbMasAXF1def3113F3dyc3N3fMrSdjgUqlYtasWbz77rvEx8dz/fp1oH8S/SEE19SpU7G3tx9S9TQUnJ2dSUlJ4Ze//CVbt25l/PjxZGdn8+GHH/Lpp59y48aNITdQrq6urFy5koKCAtG+IVdAenXDKxSssOKvBRobJf7uTmh7upgwYQI2NjY8fPiQ5uZmXnnlFYsWg/v371NRUYGPj4/wbLt06RJ/+MMfyMnJIT4+nl/84hf88z//M2vXriUqKgr4vpWrpKRk0PghK5XkNiqTyWSx2Lazs6OiomLIBbicUObi4jJs+tpo48hw/26umrGxsaGpqWlIH8PhMBzpZC69j1XVjdpuZ0IiRjVy6szjBhzcunXLglyRERwcPCTRPrCqXVNTM2iuM5lMFsdJkmQxZsqfIfPWiIaGBvH7nDlzgO+r5ObzrouLC6dPn+bLL79EpVIJT5LW1lYxt8obIPn9NFfP2tvb884777BgwQKKioqQJInw8HBUKhWSJLFz504+/vhjrl27xvjx40V8N/RX9t3d3QXB9Pvf/560tDTxWGdnZzGXJiQk0NfXx8svv4ynpycmk4nW1lZ27NhBTU0NABMmTGDmzJkA7N69Gy8vLwIDA6mqqhJR49Cf3KdQKHB2dqa6ulooEKyqJyus+OHQ6XRcu3aN9957j2PHjjFu3Di2bdvGCy+88BchnbRaLfv37+fq1assWbKEFStWjJl0amlp4dtvvyU0NJSJEydy+vRppkyZQkxMzIiPu3r1Kvb29sKXtq+vj6KiImJjY7l//z5qtRpPT0+LBHP5OJlcH0rxJI9V8l7G3GA8KCgIpVIpfJ6gv5Dh4+NDdnY2KSkptLW1iWLVQCiVStatW0dvby/u7u4cO3bsibxah4Lsi/XKK6/Q2NjIRx99hFKp5B/+4R8ICwvjwIEDHDp0iM/TS3n+40zO3a0X+1WjCc7drWfDx5nsulaBm5sb69evZ+vWrWg0Gnbt2sVnn33G+fPn2bdvn/Bpunr1KhqNhiVLlvD2228/sU/Tk0BW+U2cOJGmpiY8PT2txfMBsBJPPzH8/f1p8koY9cZLGMnXerF161Y2b94sVDlDoaysjI8++ojTp08TFxfHu+++y/Tp08UAK8d9jwUKqf/4kTCQdJKvLTw8nNLS0mE3HUO12FVWVlJcXMyCBQtE9KdSqcTT05P29vYhUxYaGhrQ6/VDEk/DtdqZE08A9fX1BAcHU1VVZUEWyYkVHR0dg9rszDFhwgRiYmI4c+YMK1asQJIk6urqOHPmzIj3zhz29va88soruLm50dvbKyKonxYcHBxYsWIFzz77LAAnT57kq6++ora29onOJ6ue8vLyHst4V5Ikxo0bx4oVK/inf/onNmzYgKOjIydPnuT3v/89+/fvp6ioyCLNKC4ujokTJ7Lz6CVe/yyTmP92imn/8xwx/+0U23bd5Gb505kUrbDix4KTkxMdHR3ExcUJYujIkSPY2NiwadMmi0ROgNLSUoqLi1m5ciW/+tWvmDRpEpmZmfzhD3/g9OnT6PV6Jk6cyKZNmwgMDCQoKGhYlYY8pun1elpbW1GpVBbfL/l6EhMTBz3WxsaGBQsWoFKp6OrqeqJFU0hIyKC/KZVKi0puX18ffX19FoEOjwuZ6DAnyHwUnSSpKumnlyyJqv7fTSSpKvFRjNzCN1K62lAYihRTKBTU1tYOea6enh6LDYbRaKS3t3eQr6M5qSYbc8uQiSpbW1vx90OHDon51c3NDW9vbzEXygo3hUKBu7s7//E//kc2bdokWkJkxVFtbS1NTU2CKJT9mubPn2+hmvo//+f/sGPHDjo7OwkICKCsrIzVq1fz61//mk2bNtHb24tOp6OkpASFQiE+d6GhobS2tqLVanFychLqMb1ej7u7O7W1tZhMJhENHhcXR3BwMG+++Sbjx48Xz79z505BLC1ZskSk4+3cuZPnnnsOSZJITU0Vr19W8RmNRqqrq8X9txqMW2HFk6Ovr48rV67wxz/+kdOnTxMWFsbbb7/Nc889N2SQwk+Bjo4OvvjiC8rKynjhhReYOXPmmOcyrVbLvn370Gg0rF69mtTUVDw8PFiyZMmoz5mbm2vhp3T37l30ej2Ojo7o9Xra29uHbbOD/jFwKMWTPH+atw/LBuM2NjYEBwdbkOyyyXhxcTF2dnZERkaSkZEx7P7M09OTJUuWiOCSAwcOPJGH43AICQlh27ZteHt789VXX5Gdnc369etZs2YNFwsq+f+duDekGMNgNGEC/svhAm6WN9PV1UVzczPu7u7Y29tTVVVFRkYGVVVVJCYm8sYbb/DP//zPvPDCC0yfPv0nJ36Ki4vp7u4Wia0/RSLf3xqsxNNPjF6dgfP3GjCOWpFVcLfDBg/v4QftlpYW9u3bx65du7C3t2fbtm2sXLly0KAlx30rR2GflAqJxTG+I7bZyaTTo0ePBhFiERERdHd3iyqkOYZKsZMlsL6+vsTGxtLZ2Ul+fj4GgwFnZ2dcXFwIDQ0ddC65NcN8QpOrwEMN2E5OTsK418vLS5BEQ/k8SZIkfFhGGzCWLVuGyWTixo0bwu/pxo0b3LlzZ8THmcPGxoaEhASUSiVHjhwhPT39qbTdmUOurKxatYrOzk4+/vhjjh49+kQpEVOnTkWj0YxZ9TQQKpWKmJgYNm3axG9/+1ueeeYZmpub2bt3L//+7//OqVOnBDHW6jWRo93hXCppGrYCYoUVf61wdnbGaDSK1E850aa8vByVSsVzzz3HxIkTge+VK6dOnWLnzp04OjqyZMkSfvOb3zBz5kxu3brFH//4R44dO0ZLSwu+vr50d3cPuYCFwYojhUJhsfjS6/VMmjTJwoga+r+fOp2Ohw8fotPpaGhoeOzxyMbGZkhi2mAwDOnp8EMWt9XV1UM+PlrVwHLbIoIUrcLzydxvK1rV8MTPORbIaimj0Uhra+uw1WP53ppX4Qeqnszn00mTJjF16tRBjzeZTKLNu7OzU8xpBoMBNzc3cU6ZeFqyZAnFxcXcuXOHqKgoVq5cKTZV8udWvn7z5x4/frzFnOzh4SGur6qqCldXV9RqtTACb29vZ+LEiRiNRvE+qdVqJk2axLJly4D+zZr5Z1NucdRoNPj7+9PW1iaUWjY2NmzcuJF58+aJ17dr1y6hjN2yZQsajYb29naOHz/OrFmz6O7u5sKFC+L8kZGRtLW10dXVJQhBq+LJCiseHz09PVy+fJk//OEPXLhwgfHjx/Puu++yZs2aMfm9/liora3l008/pauri9dff33EIvJAmEwmDh8+TEtLCy+88AKXLl2ira2N5557blTT7czMTFQqlcUYnZ+fT0hIiBgfOzo6RiSe+vr6htzHgGURHfoDE+rq6jAYDISFhVFeXm4xH8bHx6NSqcjJySElJYWGhoYh28FlTJ06lYiICPR6PfX19Zw9e3bE1/u4cHR0ZPPmzcyePZsLFy6wZ88eIiMj6Rw3fXQxhgT/11fn+bd/+zdSU1N59OgREydO5IUXXmDRokVi/zWUAvynRE5ODuPGjcPLy4vGxsa/6PfgrxXWpvafGE/S9jaQCNJqtaSnp5OZmYmDgwPr168nNjZ2RFZ3a0oYZwpHbi0wGk1sTRlM9Jg/r0w6vfTSS4NUWIGBgdja2lJaWmqhRhquxa64uJiqqiqR3nfz5k1MJhMeHh5UV1cPW6F49OgRXl5eFpVg81a7gW0BsrSyq6sLJycnPD09qaurY/LkyYN8nuRzSZJEYWEhs2fPHvZ+ODo6smzZMlJTU0XyVElJiUi9GKt5odyCkJKSwoULF2hvb2fZsmVPLVpWvg9hYWEkJCSQnZ3NpUuXKCwsJCUlhaSkpDH7W9ja2jJr1iwuXLjAnDlzBsmFHweOjo4kJSWRlJREbW0teXl53L59m2vXrqF1CeSbOh8YpFn4viLyXw4XEO3jxNSQ0X21rLDip4aTkxPQP57ExsZSVFQEwNGjR3n33XdRKBSsWbMGW1tbbt68iVqtpq+vj+rqav7X//pfvPnmm3h5ebFgwQJmzZrFjRs3yMrKIicnB39/fxobG5k+fbo4rzkGJscNbJlTqVQ0NjZSV2c5J8iL1t27d4+4GR/J40mpVNLS8nghFUNhND8nGOyzZGtrK16rj6ITH9tO9Kb+9DobDCN6Oj2NkAcZMqExmr+TrCgyf50Djze/pvv374vCjSRJ4vE6nQ5PT0+qqqqIjIwUnwk59MPV1VUQ+pIkMX36dGprazl16hQKhYLy8nJRMOnt7cXT05OWlhbxOhQKBenp6Vy8eFEEeiiVSmpra9FoNMKUXJIk9uzZg1qtRqVSYWdnx927d8X129jYoNFoOHTokJjbZWPcoe7NqVOnCAsLs0i1lSSJuXPn4ufnx/79+zEYDBw6dIj29naSk5N56623+OMf/0hxcTGhoaHY29tz5coVkpKSsLe3JyoqSiiTZULQqniywoqxo6uri6ysLK5fv47RaCQxMZHk5OS/Ci+boqIiDh48iKenJ5s2bRLz8FiRnp7O3bt32bhxI7W1teTm5vLss8+OSiD09PSQnZ3N9OnTBdHf3t7OgwcPWLVqFefPn8fHx4f29vYhE5tl4kmr1Q5LPDk5OQ0ingwGA/X19YSHh3Pu3DmqqqpEcUCtVhMfH09OTg5z5swhKCiIjIyMYUOpJEni2WefZfv27Xh4eHD9+nVCQ0MHqbN/CBQKBfPnzycwMJDU1FT+9NEnXGqMHFWMYTRBcY8d/2PDs0yIihjUMpeYmEhGRgZXr14lOzubefPmkZiY+NT2UWNBW1sbZWVlrFixgq6uLjGXWmEJq+LpJ8YPaXuT02Y++OADMjMzmTVrFm+//TZxcXGjSgnluG8JBimflAoJCfiXNXHDbuJHI52gfyEaFhY2yOdpqBY7o9HIhQsXCAkJITw8HL1ez7Vr1zCZTISGhqLVaodMs4N+4mmg6Xd3dzdKpXLEGFLzdru6ujoUCsUgn6fu7m6qq6sZN26c8EYZCXFxcURFRXHy5EkWL16Mvb09BoOBAwcOjLlVQ97wzJs3j5UrV5Kdnc2BAweeGmtvbgisVCqZPn067777LpMnT+bSpUt88MEHFBYWjnnTNW3atB+kehoKvr6+LFmyhH/8x39k06ZN5PV6jJpOpVBI7Mh4MOIxVljxl4K84O3o6GDixIl0dnbi5+dHS0uLIAYkSWL58uVoNBr6+vrEglSv1/Phhx9y6dIloF/9MXv2bH7zm9+wZMkSoSgyj7A3h8FgEHPCUNHDer1eGJybQybLR1OAjDRWDCSDngROTk5i3LK1tX2sFomBUEkm7CT9iKQTjO5bNRwGKpTMMZQfEwwf9DDa62xubhbzq8lkEvOgTqcTRQCdTkdkZCTQn14nJ8jJMJlM5ObmolQqRVGosrKSWbNmsXLlSrRarfAtlGE0GnnxxRd5+eWXRVuewWBAp9PR29uLVqslKSmJbdu2Ce+Orq4uuru70el02NnZCTVdcnKyCNSQJImysrIhfTfc3NzQ6XQ8ePCAI0eO0NbWZvHvUVFRvPXWW6LF8Pz58xw/fhwnJyc2bdoEwOnTp5k7dy4mk4n9+/cD/Sotd3d31Go1tbW12NjYWIknK6wYAzo6Ojh9+jR/+MMfuH79OlOnTuXXv/41y5Yt+4uTTiaTiczMTPbu3Ut4eDhbtmx5bNKpqKiIixcvMnfuXLy8vDh+/LgIxBkNMgkne80BFBQUiLCH7u5u9Ho9QUFBQ87J7e3tgnAayuMJBiueZIPxmpoafHx8cHBwGETiT506lY6ODoqLi0lJSaG6utoiVGSo51i1ahX19fX4+voOOfY+DURERLBt2zZsHVzGLMYwIRESOWHI+UKj0bBw4ULeeecdwsPDOX78ONu3b6e4uPipd5EMh9zcXFQqFXFxcSIYxUo8DYaVePqJ8aRtbzU1NXzxxRekpqYybtw43n77bRYsWDDkADYczOO+5WdXSLBogg/fbkti84zBLDyMjXSSERERQXV1tVhwD9ViB3D79m3q6+t55plnkCSJ27dv09vbi4uLC42NjYSEhAypGDIYDNTV1eHn52fx956eHuHvNJTHE2CRbFdXV4fJZBrk8yR7VCUnJ9PS0mIRMT4UJElixYoV6HQ60tPTWb9+PXq9npqamjHLVM0r7VOmTGHjxo2UlJSwa9euMaUhjQZzQ1gZdnZ2LF26lF/+8pf4+Phw4MABPv/880GpSkPB1taWpKQkbt269dQnJKVSSVBoOHfaVaMaBJunMFphxV8bzMedwMBAXFxcxJh24sQJi++l7D1TUVFBVFSUaNW6fPky27dvF+OTjY0NM2bM4J133gGGT14zGo1P5GswFqXSaBXEH7rIU6vVgjiBfiLFw8Pjr9agU6vVWlybjY2NxVwnw/y+PA7xJKtR5c+EeUHCvE1c9mdqamrC0dERSZJoa2vj0aNHopoufyaPHDlCYWEhEyZMQJIkJk2aJCrEPj4+3Lt3z+IanJ2dyc3NJSwsjJUrVw4i22xsbEhLS+N3v/sdR48eFcSqnOjT09MjPsMXL17k3r174rX6+flZtIcolUrmzZsn5hZPT0/u3bvH+++/z+nTpy1IUU9PT9555x2xHsjOzmbPnj2EhoYKtfLZs2fx9/enoqJCzOeRkZEYjUaqqqpwcHCwttpZYcUIaG1t5fjx4/zxj3/k1q1bzJo1i1//+tcsWrToRzdrHgsMBgPHjx/nzJkzzJo1i+eff/6x9kbQ7x2bmppKdHQ0ycnJHDhwAEdHR5YvXz7q3KPVarl27RqTJ0+28ODLz89n/PjxPHjwAAcHB2pra4dtj29vbxePHU7xJCd9yzA3GJfDHcwNxqF/fPX39yc7O5uIiAh8fHzIyMgY8fVER0czefJkGhsbsbGx4eDBg4/teTgWuLi4sPXVl0ZZ6X+PsXgQu7i4sHbtWt58800cHR3Zs2cPX3311ZAWME8TckEnNjYWtVpNY2Oj8FK0whJW4ukvgK0pYRhHoXjltreuri6+++47PvnkE3p6enj55ZfZuHHjmNu4BmJqiDsfbZ7CwReCeEGdy63/PJ+PNk/5QUonc0RERGAymbh///6wLXZ6vZ6LFy8SHR1NQEAAJpNJDIRTpkyhvLx8WLVTfX09BoNhSMWTPFgPnCQGpkH4+PjQ19dHe3v7IJ+n4uJi/P39GT9+PJ6enmMyvnV2dmbx4sXk5uai1+tJSUnBZDJx7dq1QQv4oaBQKCw2JePHj+fVV1+loaGBzz///AeTO0MRTzI8PDzYtGkTL7/8Mn19fezYsUO0LYyEadOmoVarxWbnaeLHSGG0woqfGgqFAkdHRxFjHx8fz/3794mMjKSjo4O8vDxxrMFgIDQ0lKVLl1JcXMz48eNxdXUF+se8f/3Xf7VQKGk0Gjw8PIYkOGTIiiFztYv5otjGxmbMyW1KpVIc+zQJoOFSQ+Vx18bGBkmSaGxs/Mmqlo8DSZIGjd96vd7C02kokmk4X6vhDMqhnzSKiIiw+De57Q2+b+9rbm4WbetqtdqC9Onq6hKqYI1Gw3PPPUdycjKXL1+mpqaGqqoqUamVYWNjg5OTE4WFhXR3d1NfX2+RTqhUKvntb3/L22+/zZQpU3j06JF4HTqdDpPJhI2NDXPnzgW+V4HJfw8JCbEwVZckiUuXLmE0GomLi8NkMtHb24ujoyPZ2dm89957pKWlic+1RqNh69atYs1QWlrKjh07SEpKIjAwEL1eL4ilgwcPYjKZiIyMRKfTUVtbi52dnVXxZIUVQ6CpqYkjR46ItOy5c+fym9/8hvnz5w9LjvzU6O3tZc+ePdy6dYtVq1axaNGix56jenp62Lt3Ly4uLqxZs4Zz587R0NDAhg0bLMbY4ZCTk0NfXx+zZs0Sf6urq6Ouro74+HiKiorw9/dHp9MNSzx1dHQIpdNoHk/m841sMA79dho1NTWDxrOpU6dSWlpKa2srycnJlJWVjUrELF26FCcnJ9RqNdXV1Vy8eHHU+/AkcNDYsjjWB+Uob9lYPIjN4efnxyuvvMKmTZvo6urik08+4dChQz+Kegv6U8NbW1tFYEtDQwNubm6PnY77c4CVePoLwKLtbcCXTW57+++rYzDUlfDBBx9w584dli5dyrZt2wgLC3sq12Bnq8JO0mM7wrddq9Wye/fuMZNO0M82e3l5UVpaOmSLHfRXJdvb21mwYAHQ/4Vtbm7G3t4enU6Hra3tsJGlMrM/MCljYEIQfE+4DEyDkDdrdXV1+Pr6Cp8ng8FAaWmp6H9OTEzk3r17Y6qGTp48mbCwML777juSkpLw9/fHxsaGw4cPj5oAJ0nSoA1HQEAAr7/+Olqtlp07dw7yYnkcDGVgOxBhYWHCnL60tJT333+fS5cuDRunrlarmTlzJjk5OaOSVI+Lp53CaIUVfynIyXYAEydOpLe3l6ioKADOnDkjyAK9Xo9KpWLGjBmsXr2au3fv4u/vL8Z7g8HAzp07OXXqlDi3j48P9fX1Y74WBwcHsSB1cHBAr9ePuYppMBjEsWN9zEDfuKHCGswX0PJmwXy81Ol0o/o8/SVhMpkGkUh+fn4WqiSj0YharbbwKYLhCbyBmw45hrytrW2QSbn5+Pzb3/5WLHLlwtRQflHyHNvS0sL777+Pk5MTrq6u7Nu3j2+++YaAgACx2bK1tcXGxkYohOU2cJkUhf6Nj0ql4ubNm9y4cQPo99uws7PD3d2djo4O9Ho9ly9fBiA4OFh8Njw9PcnMzBTX5ufnx1tvvYWTkxO2trYUFBSg1+uJj49HrVaj0+lQqVRcvnyZ9957T7QSKhQKnn32WZYvXw70z+0ffvgha9euxc7OjtbWVjw9Penq6uLSpUviGkwmE0ql0qp4ssIKM9TX13Pw4EH+9Kc/UVpaysKFC/n1r3/N7NmzR2wt/qnR0tLCZ599JhK2h0ppHQ1Go5HU1FS6u7t54YUXePDgAdevX2fx4sVjSuTT6/VcvXqV+Ph4i3Hx9u3b2NnZ4erqSnNzMzY2Ntjb2w97zvb2dqHSGsnjSafTWYz7Aw3GgUGqJ1mFk5OTQ2xsLG5ubqOqnmxtbVm3bh1NTU2EhIRw5cqVQTYqTwtbU8JGLTYbjEZemT7usc4rSZJoyV65ciVlZWW8//77nDt3zqJ48jRw69YtPD09CQgIAPpJW2ui3dCwEk9/IchtbzMC7ISXjdz29sdVwXTcOsmpU6eIiYnhnXfeYcaMGU+VOTX3WhoKMulUU1MzZtJJRkREBMXFxWRkZAxqsevr6yMtLY2EhATxpZS9gpKTk8nPzycuLm7Y9AjZWHzgvw+leDLf1Jib8jk7O6PRaAb5PFVUVNDX1ycSMOS+bnNlwnCQJIlVq1bR09PDhQsXeO6554D++zuaTHU4U1tPT0/eeOMN7O3t+fzzzy28qB4H5h5PI0GhUDBlyhTeffddpk+fTkZGBh988AF5eXlDXt+MGTOwsbF56qonjY2ShdHeKEbxeHrcCogVVvzUMCeevLy88PPz4/79+8TExNDT0yM26jLxBP0k9vr167l37x4qlYqkpCRxvmvXrvHee+/R19eHj4/PkBvm4b7n5lVQf3//YRVEctjBD8VAQqah4fskuaGu0fx67O3tLYirsYYfmENWIz0OHrc9YyiYt7/J6OvrG0QSDnf/B943+X0LDw8f5Ptnfo7S0lJxn+SWSdlfQr7fclKcHKzR0tLCyZMnaW5upq2tDa1WS0dHh/DpcnR0pLu7G5PJhKenJ1euXKG5uZlFixaJ5+3t7eXTTz/l5s2beHt74+joiKOjo/iM2tvbC+8ylUplkUQ4kEirra3lgw8+oKOjg4SEBDZu3EhISAh3796lsbGR4OBgHB0dRUreiRMn+NOf/kRBQQEmk4lp06bx2muvoVQq6ezsZPv27WzYsEGo5mxsbMjIyBDKA0mSMBgMVsWTFVbQP3bt27eP7du3U1VVxbJly/j1r39NUlLSUxkbnyaqqqrYsWMHer2eN954Y8gE7LHg/PnzlJWVsWHDBpEuHR0dzbRp08b0+Pz8fDo6OkhOThZ/k/14Y2NjKSkpwcbGhpaWFsLCwoadn9vb28X4PRy5N9CvFvrnctlg3MnJCW9v70HEk62tLRMnThS+tbNmzeLOnTvDturLCAgIYM6cOTx48IBx48Zx6NAhsZ55mhjNgxhgjt0jcs+lPlFwifneJjk5mevXr/P+++9z7dq1EfdmvToDDR19o9p5dHd3c/fuXSZPnize34aGBjw8PB77Wn8OsBJPf0FMDXHntUgDb3uXceM/L+TKb2Yw36aUW2cPotFoePPNN1m1apVFe8TTwkjE0w8hnQBCQ0Pp7u7G09PTosUO+uNG+/r6RBxyY2Mj5eXlole5ra2NyZMnD3vumpqaQW120P/FH86QDyxN+SRJEgbjgPB5unfvHs7OzoIos7e3Jzo6mpycnDG1ebi6urJw4UKys7NpbW1l5cqVIpr8/Pnzwz5upDQlJycnXnvtNfz9/dm1axeFhYWjXsdAjNRqNxQ0Gg2LFi3i7bffJjAwkMOHD7Njx45B0euy6ik7O/upTkZarZaAruJBaXYDMVoKoxVW/KVhTjxBf7xxcXExc/9f9v47PKo7TddG71VROWckJCQkkggSQQgJMBlssjG2CTY2uO1up+7ds+c7Z589s8+c3ntmvvmmezq43W0bMNjYJmeDTTBJILJAQgIkhCLKOatUVev8Ub2Wq1RRAjye7rqvy5eRqmqtVUtVv/C87/u8M2ciCAJnzpxBp9NZCE9gilC+9NJLPHz4kNraWpYtW4ZKpUKhUNDc3My//du/yVHP/p0lHY1VkgBQVFRk9znx8fEulReY0//5zsaa/tfYf1MjGbFK89RAxzDpNQPNlrKX4fk4SCKeVK7oLIDU/xokUSQ0NJSxY8fafd3Bgwfl9yvN2dLGQqPRMGzYMHp6eujt7WXBggX88pe/lOdMb29v+W9g7lklCUPSxqa3t5egoCCLzLv6+npEUWTRokXU1dUxY8YMLl++zNixY7l37x4eHh5UVlYSExODWq2Whc2wsDCLqLNKpSIuLg4PDw+0Wi03btxg165d1NfXk5GRQWZmJp2dndTW1uLv729h3r9v3z4++ugjiouLiYmJ4b333sPHx4e+vj4+//xz5syZA3yfQbd7926SkpLkMj638OTmrxVXNs8VFRV88cUXfPLJJ9TV1bF06VLeffddJk+ePCjR/2mTl5fH9u3bCQkJYdOmTYM2cM7Ly+PSpUvMmzeP2NhY9u3bh1arZenSpS7NNUajkYsXLzJq1CiL7JaysjLa2trkMrvY2Fiqq6vtltnpdDp6enpQKBR4enraDZjYEp4kg3Ep4CF1Ce0/x06aNInOzk7u3bvHhAkT8PHxcSloPGPGDIYMGUJHRweCIHDgwIGnkoVs7kEsaU8CIsNUbWx+cRS/+dlKDAYDmzdvpry8fFDn0Gq1zJo1i3fffZcRI0bwzTff8OGHH3L37l2L+3WttIk3d1xn9P/6hsn/fIrR/+sb3txxneulTTaPm5eXhyiKcrKCTqejra3NnfFkB7fw9J9MTU0NUeGh5F27yJaP/8yjR49YuXIlr732mpWB9pPEnvBkLjqtW7duwKITIGfmJCQkWAygnZ2dZGdnM2XKFHmzJGU7TZs2jby8PEJCQuTSgv7o9Xpqa2ttCk+SuTjYznjq3w1CMhgHZJ+nu3fvWrUZTU1NpaGhwUp0scfkyZMZOnQoR44cYeTIkYwbNw6FQkF2djaFhYU2X+OsjbdWq2Xt2rWMHj2avXv3cuXKFZeuRWIwmzYwlWu88MILbNiwAVEU2bp1K3v37rUohUlLS0OlUnHx4kWXowOO6Onp4fPPP0fdUs4vZwwZdBdGN25+DPQXnpKTkzEajVRWVpKcnIxOp5MXf/0X+ImJiaxdu5bKykpu3rzJunXr8PX1RalUygtegKCgIFPpnCjQLarQi/a/5/a62UhZIQCVlZUWY6Ur9M+QckWoN28EYUvwUSgUsm+PFJUciM/TQDOEn5Z5uZSlJM21zkoV+1+3JM54eno6FAzhexFS2uCIoih7UEVGRuLt7U1jYyNff/01KpWKV155BTDNzS+//DKxsbHy337WrFn4+PhYrEMEQaCxsdEq0NDb28vJkyfx8/OjoKAAURTp7OxEoVDQ3t7O2rVrqa+vp7u7mwULFtDX10d9fb1cfhgSEsLMmTPp7u6WxTEvLy9iYmIwGo1kZWVx/vx5lEolEyZMIDQ0lKamJpRKpRyYq6+vZ8eOHWzfvp329nbef/99YmJiEEWRU6dOyYb1giBQWloqi25tbW3uUjs3f3U42zyLokhJSQnbt29n69attLa2snLlSt5++21SUlJ+lN40oihy7tw59u/fz5gxY1i/fv2gvaaqqqo4fPgw48ePZ+rUqZw9e5bKykqef/55h0Fsc+7evUtTU5NVgD03N5eAgAACAgJ49OiRXIJnzyrFfDx1FkAHS+FJrVYTGhpqITy1t7dbefWFhYURExPDjRs3UKlUTJ06ldu3bzu1ylAoFKxcuZKuri4iIyMpKSl5oh2tzZE8iAv+aSFX/99zeDPoPvO9y7l6bCdVVVVs3LiR0NBQPvvsM7sdfV3B19eXpUuX8tZbbxEYGMju3bvZtm0blZWVfH65jNUfZXPqbp1c/mcU4dTdOl74KJsdVyzXUKIocvPmTUaMGCHPRe6Odo5xC0//iUgbkPLyci5dusS0adN45513GDt27FPv4GNLeOovOsXExAz4uI8ePSI7O5vg4GArX6ILFy4gCII8SHd1dcntRsePH8/du3eZMGGC3fdeV1eH0Wi0KciZl9rZwsfHx2JwDw8Pp7GxEb1eT0REBGq1mo6ODrnMTmLYsGEEBga6ZDIOpkXt0qVLaW9v58yZMzz77LP4+vri4eHBwYMHbQ7y/aP6tlAqlaxYsYL09HS++eYbTp065fImzBWPJ0fExsbyxhtvsGzZMsrKyvjggw84ffo0vb29eHh4EDRiMv+a1ehydMAeXV1dbN++nYaGBl555RXeXZRiFQFxpQujGzc/Fvz8/Ojs7JTFBl9fX4YNG0Zubi5z585FEAQuXboE2C4ni4uLY/369dTX1/PNN9+wdu1aYmJiLMbIa6VNnO6NZ0dvKjt7J7CjN5XvdAnUGr/vNmTr2B4eHnJK/8mTJ+VxYjDeBwMVqsAkqDsT3G/dumU1brnaJWagXXgGImq5ujExj3CLoihfk6OgUv/rln6urq62KFfsj7e3t1yGYF7WJ4qiRRbTyJEjuXHjBt988w3fffedvMHcv3+/nBEHMGXKFGbPnk11dbUsLGo0Grul2729vfT19VFSUkJfXx8PHjzAYDAQGBjI8ePH6enpYejQoXIWVXBwsHydr7/+OhkZGajVaiIjI1m7di1jx45Fp9NRXV2NwWDA398fvV7PnTt3ePDgAYGBgbIwJV0bmMTVzZs3s3fvXpYsWSKXzBQVFeHr6yv/nY8dO0ZAQAAGg4He3l67hu9u3PxXw9nm+TdHrrF161Y+++wzent7Wb16NT/96U8ZO3bsoNeJTxu9Xs+BAwc4e/Yss2bNYvny5YPOxuro6GDXrl2EhYWxePFiHj58SFZWFrNnz3Z53yM1RYqPj7cIhuv1egoKChgxOplrefcwoKC3t5fQ0FD8/PxsHkvaF4ii6HAfo9VqUalUVsK/ucH40KFDUSqVFBcXW71+4sSJlJSU0NjYyKRJk1Cr1bLHniOCgoJYuHAhDx48YMyYMZw7d85uEOtJ4KFWEubnwZiRSXh6ejJq1CgOHDjA6dOnefnllxk7diwHDhzgu+++e6ymI+Hh4axbt45169bR29vLP3+yi384lIeIqWu2OQajiAj8w8E7Fnubqqoq6urqLCp13MKTY36cI8zfADU1NWzZsgWdTkdISAhvv/02s2fP/sHqqPsLT09CdDLvYjd58mTKy8tlr4iWlhauX7/OtGnT5IH18uXLGI1GJk6cSFFREUajUU5VtEVVVRUKhcKqk5Ner6evr0/eDDjKeJJ+Fx4ejiiK1NfXo1Ao8Pf3RxAE4uLiLI4tCAIpKSnk5+e7vCELDg5m1qxZXL58mbq6OlatWkVvby8Gg4F9+/ZZZZnZul5bCILA/PnzmT9/PhcvXuTgwYMuba5c9Xhydu4JEybINdKXL1/mD3/4A/+85wL/crWHMoO/S9EBe7S3t7Nt2zba29vZsGGDnPVmHgG59j/mUvBPCx12YXTj5seEVA5kLsyMHTuWsrIyRFFkwoQJ8obXXoQ5OjqaDRs20N7ezu7du1m2bBlTpkwB4J4+lCPdw7nXoUb8S1NiEYFyoz/HdCO4pzeletvaVPf09Mhjmq0GCEql0mrMsDWGDHRckZ4/YcIEp1F1o9FoNV5KwkV/s25wLK4/qblVpVLR3d3t0gatv4eRRH/Tb1eOZZ4xm5CQYHXvOjs75QwxqSQ7ODhYvk83btygu7ubuLg4nn32Wa5evUpRUREvvvgi06ZNo729nezsbDlDqqioiPHjx+Pt7S1nbUnzOUBmZqYcgW9vbyc1NZX4+Hh8fHzke52SkoJKpZIFJinIBt+XAfr5+ZGfn8+VK1eoqKhg5syZDB8+nPnz5/PWW2/xy1/+kpUrVzJs2DC5LFWhUNDT00NFRQXt7e14e3vj5eVl4et1//59PvzwQ3p6eliwYIF8ndLjHR0d8vXrRYGK+pbHytZ14+bHwLXSJv7x0B2Hm+ffX6qlolvNmjVreOONNxg1atRTD3Y/Dp2dnXz22WcUFBSwatUqZsyYMejrNRgM7NmzB6PRyIsvvkhPTw8HDhwgISHBwqfJGcXFxdTU1FhlOx3IyuV4ezQ/O9PDxqP1fN6Twh9v6xBD7DeGkoSnvr4+h8KTIAhW1RvwvcG4Xq9HrVYTGxtrU3gaPXo0np6e3LhxA61Wy+TJk+V5wRkpKSmMHDmS4uJioqKi2Ldv31PPFE1KSqKpqYnp06ezZMkSbt++zbZt28jMzGTOnDlcuHCBffv2WXkfDpSEhAR+8pOf0Bg6AWefKoVCYHNWifxzTk4Ofn5+FkGmhoYGuSOgG2vcwtMPTFdXF0ePHuXjjz+WVesXXnhB7kLzQyEtvgwGwxMRnQDOnj1LY2Mjy5cvJykpCaPRSElJifyYh4cHU6dOlc975coVBEFgxowZ3Lp1i8TERHkhaIuqqirCwsJsGosDVqV25vj4+KDX6+WFs7QYl7KyHA1cEyZMwGAwDCi1c+rUqQwZMoTDhw8THh7OrFmz0Ol0VFRUWLUldVV4kkhPT+f5558nPz+fr776ymIzYIvBltrZQqPRMGvWLN555x0ITeDjm62IIG96JexFB2zR0tLCp59+Sk9PDxs2bLDZIt5DrSTUV+s2EnfzXwpzHxqJUaNGoVKpyMvLY9asWQ7LzSTCw8N57bXX0Ol0bN++nSlTplBr9CFbPxSTE4LlVG76WSBbP1TOfLIl8pgLHubZLmAao/uPSbbGqIFGHKXnX7582aFwbmsxLM2TmZmZNtsip6Wl2T3ek/Jv0uv1eHl5ueRzIWUg9R97+wt95seyZ+y+YsUK+d+jR4+2uHdSxP3GjRsWr9HpdPL91mq1GI1G2traLD6Pjx49Yt68eURERMgeSImJiRw7doyCggLZ/0h6D9LnaMKECXL5miiKjBgxgvz8fDnDasaMGSQlJVFdXS13qZX+Pt7e3vJ1iaLIsWPH+PbbbwFT5tXHH3/M/v37OXfuHKWlpYSEhLBo0SJ+8Ytf8LOf/Yz58+czZMgQ+Vp6enpobW1FFEVUKpXFPczLy+PEiROMHj0ahUJhca9vlLfwnS6BHb2pzPr9lUFn67px82Nhc9ZDFE7aAisFgZqA0SQmJv6oBScwbeK3bNlCU1MTGzZsYMyYMY91vOPHj1NZWcnq1avx9fXlwIEDACxfvnxA9+LChQsMGTLEIlj9+eUy/vu3VVQYA+RArIjAQ503/0+OwW4gtq2tDU9PT3p6epyWDvr4+Fh50kVFRWE0GmWBPz4+ntLSUquAk1qtZvz48dy6dQu9Xs/UqVMRRZGrV686fb+CILB48WKUSiVqtRq9Xs/BgwcfK+PIGcOGDUOpVFJUVERqaiqbNm1Cp9PxySefEBwczOrVq7l//z7bt28fVNa1OTqDyLWqHqu9TH8MRpETBTX09Jn2znl5eUyYMMFiLdXQ0OD2d3KAW3j6gTAajVy5coU//OEP3Llzh/nz55OSkoKnp6fd9MunifQl6e3tfSKi06NHj7h06RIzZ84kLCyMwMBAgoKCePDgAbW1tdy+fZuZM2fKkdDbt2+j0+lITk6ms7OTqqoqOVprj6qqKpslCtIGpf+A3b+rHXyfeaDRaAgKCqK2tpbOzk550WqrI5Gvry8jRoxw2WQcTPd36dKlNDU1ce7cOTIyMoiLi5O76pi3JZUmu4EY9iUnJ8v+L84G3ScpPEn4+/tTpIxB6bRTnmV0oD9NTU18+umniKLIa6+95k5NdfNXhS3hSavVMnLkSHJzc/Hx8ZEX0nl5eQ6PFRwczGuvvYZCoWDr1q3k68OdRucERPL1JpHdYDDIG3Vvb2/+8R//kYyMDDQaDQqFQk7Vh4H7Iw2ExxmHmpub8fX1lbum9ceVsoEnQVdX14DukTQGS52XHJUL9g+CSPdLGuOVSiUjR460eM7w4cMBa+Gto6NDziyaPXs2AJcuXeLChQvMnTuXOXPmcO7cObKysiwE/+TkZFQqFQcPHpR9o6T3IAleNTU1FiUmp0+fRqlU0t3dja+vL/Hx8ezbt49Ro0aRlJQEIHdx7OrqQhAEvLy8+PnPfy57TWVkZDBjxgwiIiJobW3l6tWr7Nu3j48//ph/+Zd/4be//S3Hjx+noaGBYcOGsXLlSp5//nmmTZsmm+xKWVFgWcZeUFCA0WiUy3Pu6UM5phtBudFf3mwMJlvXjZsfCz19Bk4W1FplOvXHIMKJgtoffYbfw4cP2bx5MyqVik2bNsmt6gfL9evXuXHjBs899xwxMTFkZWXx8OFDVq5c6TDo3Z/y8nLKy8vJzMyUx2cp0wwEjP1mZikwZC8Q29bWhp+fn9MmSWDtVwumwFR/g3G9Xm/Tm3bixIl0d3dTUFCAt7c3KSkpXLlyxaXAjLe3N8uWLaO0tJTRo0dTVFTE5cuXnb5usEhNMSRvw4iICN544w3i4+PZvXs3ZWVlvPrqq7S1tfHJJ59Y2bsMhPYePU6+NjJG0fT8goICdDqd1d7V3dHOMW7h6QegpKSEjz76iG+++YbRo0fz7rvvMnXqVGpra4mMjPxPiThIC7Jjx449tuhkXmJnnnY6fPhwHjx4wOnTpwkMDCQ1NRUwLQLPnj0LwNy5c8nJycHLy0tenNpCMiO119EOcFpqB5YlL1JnO6mEQaPRyMbo/UlNTaW2ttamMGWPsLAwZs6cycWLF6mpqWHFihUoFAq8vb0t2pK64vFki2HDhsklOFu3brXbGvVxPZ76H6ujo4PC4hJO5NdicHLJ5tGB/tTV1fHpp5+iVqt57bXXfvCsPzdunjaenp4olUorb7exY8dSX19PbW2tPC4+ePDAaXvjgIAAXnvtNQwoKDcGOI3OiSgoNwbiFxTC//yf/1MWF6QyOlEUZZ8nyQAVXPNHMu/W5irmmS6DZdasWXJ2jMQP6UsizS/SPRrI+5cygO2V4Nk6nnQ+KSrt5+eHl5eXxfOkbnf9vT/M23JXVlZaPNbb20tGRgYzZ87k9OnTsvCpUCg4dOgQHh4eGAwGWltb5b+1FCRTqVRcv36d27dvy8erq6uTje8nT57Mrl27GDJkCCtWrKChoUEuEwHTPKLVahkzZgwKhYJLly4RGhrKnDlzyMjIYOnSpbz22mv89//+3/n7v/97Nm7cyPLlyxk3bhweHh6Ul5dz+vRpdu7cyb59+7h06RI6nY7ExERGjhxJbGys3aw0vV7vMFtwINm6btz8mBjM5vnHyo0bN9ixYwfR0dG8/vrrFvPTYCgrK+P48eNMnjyZ1NRUysvLOXPmDJmZmXZNv+2RlZVFaGiohSfs5qyHONvK2QvEtre34+fnZ9EkyR79/WoBuUuoFDwKDw/H29vbZrldSEgIcXFxcnbstGnT6OnpcdnHNjExkcmTJ3P79m3Gjx/PqVOnePTokUuvHQxJSUmUlZXJtgAeHh688MILLFy4kGvXrvHtt9/y4osv4uXlxdatW+02cXKGr4cKJ4mCMgrB9PycnBzi4+Mt9i4Gg4GmpiZ3xpMD3MLTU6SlpYXdu3fz2WefodVqeeONN1iyZInsfF9TU0NERMR/yrVJi+aGhobHEp3AssTOfAMwfPhwWltbKSoqYtasWfJC+eHDh7S3t5OQkIC3tze5ubmMGzfO4QK+trYWo9HoUHhyZi4O1sJTTU0NhYWFxMTEEBcXZ1d4SkhIwM/Pz+XBWSIjI4OwsDAOHz4sRwsks2HJ72mgpXbmREREsHHjRjkLwtYEMJjWpwaDgfr6eu7evcuFCxc4ePAgmzdv5t/+7d/49a9/zdbPv8TVq7W1wKmurmbbtm14e3uzYcOG/5SsPzdunjaCIFh1tgPTeOLp6UleXp6FD8CpU6ecHtPHxwefwBCnopOEiEBtYwu/+c1vZOG8q6uLgoIC2traEASBxMRE6urq5LHIlWBI/wwYV5BKBMwFkYFy4sQJRFG0uMan0d7ZFmq12mqcNhgMLnk5qFQqUlJSnIpk/e+n9N6ksr3+JZEKhYKQkBAEQeD+/fsA8vX09PTIr5eyjYYNGyb7Yxw8eJDMzEwSEhIwGo34+vry8ssvYzQaaWhosPD5Gjt2rDx/6vV6SkpKqKystNgQRkZGEhAQwPXr1/Hx8eHFF19EpVLJnlPS2icsLIyenh6Sk5OpqqqiqKiI6dOn2/zceXp6Eh0dzfjx45kzZ45shPw//sf/4P3332ft2rXMmzdP7k5bVVVFaWmpvC5Qq9VotVqLY5uyBR3PYM6ydd24+bExmM3zjw2j0ciJEyc4evQoEydOZM2aNY81XwC0traye/duhg4dyoIFC+ju7mbfvn1ER0cza9asAR2rpqaGoqIii2wnKdPMmehnLxDb1taGj48P3d3dg8p4AtPYK83vgiAQHx/Pw4cPbR5j4sSJlJeXU1dXR0BAAGPHjiU7O9vluXzevHkEBARQW1tLREQEe/fuHVRTEldITEzEaDRaiGiCIJCWlsZrr71Ge3s7X3zxBTNmzCA+Pp6dO3dy+fLlAe+nPNRK5o0Ot+qi3R+lQmD+6Ag6WpspLy+3MBUH0zxtNBrd1RsO+PGNOn8F9PX1kZWVxaVLl/D09GTlypUkJydbLHy6urpobW39TxGedDodx48fB2DBggWPJTpJJXbPPPOMldmrtED29fUlOTlZ/v3JkycBWLRoEUVFRXR1dblUZqdQKGwaynZ3dyMIgtXi33zg0Wg0qNVqq8523d3dPHjwgJkzZ6JQKDhz5gx6vd6qW4ZCoSAlJYXs7GwWLFjgslGtUqlk2bJlfPLJJ2RlZTFz5kwmTpzIrVu3KC8v59y5cwQEh9ItqujW6QdlRhcQEMDrr7/Ozp072b59Oy+88ILsvSHdB/PW5ea/7+rqoqGhgcbGRov/Nzc3y/fPw8OD4OBgQkJCGDFiBCEhIfj4B7H7g+suRdf6L3AqKir44osvCA4OZt26dS53iHLj5r8itoQnpVJJcnIyeXl58ndVoVBw7949qqurHXY9A2hrrEMgyCXxSUBEjcHCCFSv17Nnzx75Z8kvScqCcmXRptebxit7HnNSRml/VCoVHh4e6HQ6lwQj6ZokpAWut7c3HR0d8uOSf49KpWLs2LHk5OQ4PfZA6evrk8+j0Wjk8gTpHqjVart+gXq93uE19fcfssfEiRPR6/XyJkEyYNdoNPT29qJSqeTHAgMDaW1ttdhQNDc3M3z4cAICAuROq1JGXnt7u0U2ma+vLy0tLXh6ejJnzhzy8vJQqVTyOf39/eVNkCAIlJWV4e/vjyiKrF27Fk9PT27fvk1zczORkZFUV1cjCAJRUVH09PQQExPD7t27CQoKGrB3iyAIcstyqdRQQqfT0dTUZDWv1dfX09NncClb0HyT6PYWdPNfAWnzfOpuncNyO6VCYN6o8B/d51qn07F//34KCwtZuHAhU6ZMeeyKkL6+Pnbt2oVarWbVqlUoFAoOHz6MTqfj+eefH3C27MWLFwkICLDY0wwm08z83re1tcll2K5kPHV1dWE0Gi2uPTIyktzcXHn/kpCQQF5eHp2dnbLgLzFq1Ci8vLy4ceMGixYtIiMjg9zcXHJzc62EFFuo1WpWrlzJ5s2bSU1NJS8vjyNHjrBq1aonXsETEBBAWFgYRUVFVnNEdHQ0P/nJTzh48CC7d+8mIyODqVOn8u2339LQ0MCiRYsGlJG8KTOeE/mOy/WMRpFNmcPIybmBp6enVdm7u6Odc9zC0wDo6TPQ3qPH10Nlc8AWRZH8/HxOnjxJZ2cn6enpTJ8+3aZIUVNTAzhuq/w00Ol0fPHFF3Jb5sf5ctgrsZOQsoe8vb3lwaihoYHa2lqioqIIDg7mxIkTREVF2TSUNqe6uprw8HCb7VO7urrkjjYStrox9Y8USOfU6/UkJSWh1+vliOnQoUOtzpOSksK5c+e4c+eOXB7jCpGRkWRkZHD+/HlGjRrFggULKC8v50GryP/31CPKjV2ITGD3v5xl3uhw3siMH3DXNi8vL9avX8++ffv46quvWLJkiTyBSJuOe/fuWSzCGxoa5E2ctIgPCQkhKSmJkJAQQkJCCA4Otvj7mTOYBU5JSQlfffUVkZGRrFmzxt31wc1fPX5+flbCE8C4ceO4du2anKU4fvx4cnJyOHHiBK+++qrd4/X09KDr7iTRq5viHm+H3z8BI0MVLagE03PsRUslBpo55ChCautYAQEBtLS02OyiJ+Hv729hHG5PBJPEnv4eduPGjZMzbJ4GRqORYcOGUV5ebvWYs+46Wq2W8PBwm6/tf7/sCVEdHR1Wn6empiZZBAsNDZXXF2AKupgbtQuCwObNm1m0aBHr1q3jq6++QqfTodFoMBgMNDQ04OXlRXh4OCUlJbLAJzXFMDes7f93kjr+vf766/j7+9PQ0MDXX3+NSqWSxa0xY8ZQVFTE2LFjqaur4969eyxbtuyJlktqNBoiIiKsAnudnZ1cy7vH54dq7LzSElubRDdufswMZPP8Y6KtrY2vvvqKpqYmXnrpJYfWG64iiiJHjhyhvr6ejRs34u3tzZUrV7h37x4vvfSS7F/nKk1NTeTn57No0SKL8aq1oQYB0aVAUP9ArMFgoLOzU14LuyI8iaJIZ2en7CEJlgbjUVFRcvngw4cP5VJsCaVSSUpKCtevX2fu3LmEhYUxYsQILl68yPjx410aiyMjI5k1axanT5/mmWee4ezZs9y4cYNJkyY5fe1ASUpK4ubNm1ZiG5ju18svv8zFixf57rvviI2NZd68eZw+fZrm5mZeeOEFlzPmJscF8avlyfzDwTsoFILF2kqpEDAaRX61PJmUGH/+Y+9txo4da7UnbWhoQKvVDsgz7G8Nt/DkAtdKm9ic9VBOpVQIWAkENTU1fPPNN5SVlTFixAjmz5/v0EC0pqYGtVrt8DlPGkl0qqmpYfny5XJL0cEildi9+eabVoOB0WiUvZ3q6+tp6+ym16jgyNemTKtnn32Wjo4OioqKWLRokdNzVVVV2c3MsmfI13/D0n/TFRAQgEKhQKvVEhoaKvtOlJaW2hSe/P39GT58ODdv3hyQ8AQwc+ZM7t27x6FDh9i4cSMMn87+M2UIICf8S8amJ/Jr+dXyZNalxTo6pBV9fX1MnTqVnp4eDh8+zMWLFxFFUc5e2rVrF1qtVhaVJIEpODiYoKAgm6KeIzZlxvPtABY4RUVF7N69m9jYWF588UW73ZvcuPlrwsfHx2bmz5AhQwgMDJRTyNPS0sjNzaW0tJSSkhI5AtofSbRYNsKXf89xnBovIjBGVSf/3NHRgVKpxGAwsH79ek6dOmVhKj5Q+nfNMUcKbpjjSHBSqVTo9Xqb3epsYS7yeHp6yuLKQMuhwTqrCkAvCvShRI1BFu4kSkpKLMR46drtIYlIvb298vvz9vams7PT4rXm12Fvbt61a5eVoHLmzBn5dZ6envK/9Xq9HFzIzMwkKyuLlpYWIiMjOXr0KMnJycTExFBcXIxOp8PDw0POhJWErM7OTkaNGsXt27fx9PREoVBYdFUSBAG1Wi2ber/66quEh4fT19fH3r178fPzo7GxUX6PcXFx3Llzh+TkZC5cuCCXejxpjEYj9fX1VFRUUFlZSUVFBU1NTehFAYHUQW0S3bj5seNo8yxgRETBr5YnDzi4+TSprq7mq6++QhAEXnvttSdWCXLp0iXy8vJYtWoVERERVFdXc/LkSaZMmWLhz+QqFy9exMvLSw7qVlRUcO7cOYqLi4lVJlBuCLAyFjfHVqaZFESQ1sOuCE9gmsvNhSdzg/GoqCh8fX0JCwuzKTyBKXP24sWL3Llzh5SUFDIzM9myZQv3799n1KhRLt2PadOmUVRURE5ODikpKXzzzTdER0c/8UqepKQksrKyePTokc19oCAIZGZmEh0dzb59+6ivr2fu3LmcP3+eLVu28PLLL7u8116XFsvIcF82Z5VwoqDm+z3/qHA2ZQ5jUlwQ9+7do7Oz0+Y+sKGhQS59d2Mb94zqhM8vl/GPh0wDuDR+mwsE//BsEmGt97l586ZcOpSQkOD0uDU1NYSHh/9gpqjmotO6detkT53BCk+OSuwA7ty5Q11dHSOnP8e+0/fY+n++wyiCQCAJHiN5rs+T0tu3USgUFimrtpCMxadMmWLzcVuGfLa+9L6+vlbRfkEQ5IweQRCIjY2ltLSUGTNm2DxXamoqu3fvpra21mmWljkqlYply5axZcsWtn19gf/nUgfYcJmQFgn/cPAOI8N9rRYHBoOB5uZmm+Vx5lFtDw8PGhsbCQ8PZ+TIkRQWFvLzn//cbvbSYEgKVDLD8xHnu6P+IqB9f1zz6MCkuCDu3r3L3r17SUxMZNWqVQMWudy4+a+KvYwnQRAYO3Ysly5dkp+XlpZGdnY2J0+e5I033rD5XZV8fBanjcI/Fv7nwTvyhkJCgYgRSFeVE66wHPOkLKUDBw7IUda4uDjWrFnDr3/9a7ulc08bR8KNeUmfrUyg4cOHO+0KKGFLZDL/udboQ74+XC7HEhAZqmhhjKrW4l6av8bRtYPlPCsJT15eXnR2djJ79mxOnDhhdUxHmJdNAhQUFMiCovm1dHR0yAEVHx8fFAoFGRkZZGVlERgYyL179+Tne3h40NPTQ1paGo8ePaKyspLJkydz69Yt7t69iyAIGI1GPD09LYQnT09PWQSUjGvB5MXV2NjIggUL+Prrr+VzVFZWEhgYiEajIT8/n+eee+6JdFHs7u6msrLS4j+dTocgCERERMibsbKyMoYqWv7Szc7++uvHWo7kxo0z7G2eh2u7mR0tDDio+TS5f/8++/btIzQ0lJdeeslCTHkcHjx4wKlTp8jMzGTMmDH09vayd+9ewsLCmDdv3oCP197ezu3bt3nmmWeoqanh7NmzFBcXy00Rak9eodTguEGOrUwzKRNUGgOdWU/079AtIRmMmzdAio+PJz8/38oTEUxl2AkJCdy4cYOUlBSio6OJi4sjKyuLkSNHurRPUCgUrFixgj/96U/09fUREhLC3r17+clPfuKyHYkrDBkyBE9PT9mP1x5xcXG8+eab7N+/XxYYi4qK2Lx5My+++KKVP6I9JsUFMSkuyG6V082bN+1W6jQ0NLiNxZ3g3v05QGqPKYJVOYP08//v2H2WeT/k5fnzmTx5sssLqOrqanmB9rQxF53Wr19PdHS0vBEajPDkrMROr9dz5swZmkOS+X+drAUCZIFFRKCk14cXPspmbkAjC0eNcjrQ1tTUIIqiTWNx+L7Uzhxbmwtvb2+5/lY6bv+FemxsrF2fJzAp797e3ty4cYNnn33W4XX3Jzo6mqlTp/IvFypRCAEOO8IpFAJ/OJnPzyf5WHkvSX8zjUYjZy8NHz5c/reUvXTz5k2OHj2KKIoolconmvppNBo5cOAAE3w68DMWUhuYzI3aPpvRgdzcXA4ePMjo0aNZsWLFU23V7sbNjw1fX196e3vlciZzxo0bx/nz5wGTOJ2RkcHVq1eprq7m3r17NiOPZWWmNu9DhgxhXawKH30r/3HsNuXGIERMcvYwTTtLR/jS+qABe1qGRqORu+ip1WoqKiqYNGkSFy9efHJv3g62xmdHmIthtuYsc9FJGuvsZU5J46GtMsF7+lCy9UMtyiZEBMqN/pTpAkhXlTNSZZ3J1R9X3p90fZMnT+bkyZMu3w9BEGy2vo6IiODRo0cWJq9GoxG1Wi37P3l6ejJ79mwSExPZtWuXxdyn0+nw9fXl6tWrKJVKuZnG3Llz+fbbbxFFEZ1OR29vLwqFQvYCMxfBWlpaEEWRgoICrl+/znPPPUd2djZgyjAODQ3l3r178ufM19fXqb+jLURRpKGhwSKbSZrbvby8iI6OZvr06URHR2M0Grl69Sp37tyR1xpjVLWU6QIcnuPHWI7kxo2r2No83y+4w8GDB/9TGxtJiKIoB1lGjRrFihUrnlgWfGNjoxzonDVrFqIo8vXXX9PR0cGaNWsGFfjMzs5GoVBQUlLC6dOnCQ0NZdWqVYwePZpvv/2WeF+RX2WM4R8P5zss0+ofTO7f8dbZfkjya7JnMG6ewZyQkMDly5ftiiETJ05k9+7d1NTUEBAcyujUqRzet4uSkhKXO/0FBATw7LPPcvDgQebPn8+ZM2c4duwYy5cvd+n1rqBQKEhMTKSoqIg5c+Y4fK6Pjw/r1q3j3LlznD9/nmHDhuHt7c1nn33G0qVLGT9+vMvn9VArrQIPbW1tPHjwwOb+TxRF6uvrrXyf3FjiFp4csDnrodUA0h8F0BWTxtSpaS4ft6+vj8bGRtLT05/AVTrGlugE37efHozw5KjEDkxtUO836Tmmk+pqLZVzSXA52RLE4gjnCnRVVRVKpdJmZhWYIp22Huu/kO+f8VRYWIhKpZLNV5VKpUVnHFvldkqlkgkTJnDjxg3mzZs34Ily2vSZlJ095bQjnMEocv5hK0MfnSEk0N9CXJKMvn18fBxGJVJTU/Hx8WHXrl2IouhSxwxXuXTpEmVlZYwbN46eu3f5f34yHUGlsYoO3Lhxg6NHjzJhwgSWLFnyg7Y9d+Pmx4AUoWxvbyc4ONjiseDgYNn3SKVSoVarmTp1KhcvXuTUqVOMGDHC4jsjlc76+/vLi+cgQwuzNQ8ZPkJL3r0iuTRsVEg6pR0RdkvpmppMreJVKhUtLS18/vnnA/a8GCxSts/TwGAwOC3X6y86eXl5UdKhIFs/FJN0168Rw18yY7L1QwlUdFtlkZlnYY0cOZJ79+45vU6dTodCoaCvr4+EhAQePHjg9DVgCmBUVFRY/V4qY5TERPi+fEOtVtPb24tWq6Wjo4MLFy7Q2dkpC3DS9UdFRVFdXU1bWxtJSUm0trZy+vRpgoKCaGpqkufUiRMnyl3ypPcviiJ6vZ6HDx9y5MgR2QhW+px1dnYSGxtLT08PQ4cO5auvvmLBggUubQJ7e3t59OiRLDRVVlbS09ODIAiEhYURGxsrl1pIJRX379/nu+++o6KiguDgYKKjo6msrAQgXNHB62O9+TSva0CbRDdu/qthvnlOTk7m7NmzZGVlsWrVqv+0azIYDBw7doybN2+SkZHBnDlznlgmfm9vLzt37sTHx4eVK1eiUCjIyckhLy+PlStXWs3BrlBcXCx3Smtra+P5559n9OjR8rgplQ4vTI9jVKQfm7NK+Da/GhHBKhDbn7a2NjQaDX19fWi1WqeBWaVSiaenp03hKSoqysJgPDY2FqVSKWdm9ScpKYl2jzDe/Pw6ec3CX6pSUrm+8xa/WhPg8vg3btw4ioqKOH/+PLNnz+bbb78lLi5uUEEFeyQlJZGbm0tLS4tFJ1VbKBQKZs2aRUxMDPv375fN1g8ePEhDQwOzZ88e9Oft9u3bcgOT/rS3t6PT6dwZT05wC092cLU9phGB0/cbBtT5pLa2FlEUn3rEwZ7oBIMXnpyV2PX29nL+/HkqvUei1DsW7QTgeEkvyzIcn7OqqoqIiAi7A7K9jKf+SN0gJJHp/v37xMTEUFJSQkNDA+Hh4URERDj0eQKToHPx4kUKCgoGpJ4D9BisNzX2EBH42fv/jcjAwWcqJSUlyZuErVu3sm7dusfeXFZVVXHmzBnS09O5ffs2EyZMkAUt8+9AdnY2J06cYPLkySxatMhd8+zmbxJHwhOYFostLS1yyXB6ejqXL1+mqamJ27dvW3SZqa+vx2g0WozlhYWFeHl5UVtVSbi/lxxBzc7OJikpySoCWl5ebuGPpNfrycjIwN/fn/379z/x92+LpyU6DZauri7y9QlODWIFRPL1YYRrvl/0S6KMxL1792T/JjCJi+ZikDmiKPLJJ58wY8YMl4Wnnp4em55SQUFBGI1Gi5Jrg8GAIAioVCo5a+xPf/oTgiCwaNEijh8/LpfYKZVKioqKMBqNjBw5kuvXrzNq1CiioqIszNC9vLysfLREUSQoKIjGxkYOHz6Ml5cXM2fO5KOPPgK+N4zv6OggJCSEu3fv4uXlZdMjQxRFmpqaLLKZ6upMPmUeHh5y5nBMTAxDhgyxaFAhdQ68dOkSjY2NDB06lOXLl3Py5EkaGxvlTLRFixYxZcoUni1tcujl4cbNXxNKpZLMzEyOHj3KM88885/Seaunp4c9e/ZQWlrK0qVLXeqi5iqiKLJ//37a29vZtGkTHh4e1NfXc/z4cSZMmDBgL7mqqirOnTtHYWEhAM899xypqakWwaCSkhI6OzsZN24cYMo0mxgbyD/9739G6xPAL955y+HesK2tDT8/P5v7GHvYsg2B7w3Ga2trGTJkCGq1mtjYWIqLi5k6darV87+8VsneFinD14SIwL12Nas+yuZ/u+g1KwgCzz33HH/6058oLCxk/PjxHDt2jOjo6Cf2GUtISEChUFBUVMTkyZNdes3w4cN588032bdvHw8ePJC9opqamli+fPmAEwdEUSQnJ4fRo0fbbIzk7mjnGm7hyQ6P2x7TEdXV1SgUCrsZPE8CSXSqra21Ep3g+3rigQhPzkrsAC5fvkxnj4473QqMTkoHRAROFNQ6Fe2qq6sd1uYOxFwcvt/0VFdXs3jxYkpKSmTPJoVC4dTnKSgoiGHDhnHz5s0BC0++HioUAi59thQCBPo8foaSr68vHh4e6PV6tmzZwtq1awfkT2VOX18f+/fvJzw8nODgYLq6ukhLs8z2E0WRCxcucObMmScezXLj5r8akvDUP6VeQoqOFRQUMGnSJFl8ysrK4syZMxadU6QFsGSM2tHRwaNHj4iLi6O0tJTU1FRZFAgODqawsNCi7Ku4uJiIiAiLrmcABw8eJDAwkPb2dkJDQ2VjcEcG2z8kgiCwZs0avvjiiwG/1l5ZnTl6UZA9nRwhoqDcGIgBBZ4aFTqdThadhgwZIncoNF/QNjY2WtxTi+OJIgqFgq+//tql61SpVNTX16PVamXhSYq619bWWpXgSfO71MhDymRaunQpR44cAUwbwVmzZlFTU8Pdu3dlASo1NVU2FJfQaDRW/lLS+wgICKCxsZG2tjY2bdrE4cOHMRgMBAYGolarUSqVlJeXM3HiRK5evcrs2bNlU/KqqiqLbCbpHKGhobLQJG1ibM0lPT09XL9+nStXrtDR0cHIkSNZtmwZ9fX1HDx4EPjeJ2zx4sVMnDgRcO7l4cbNXxvjx4/n3LlzZGVlPdFyKFdobm7myy+/pKOjg/Xr1z9xu5EzZ85QWFjImjVrCAkJkRsc+Pv7u9TESKK6uppz585x//59goKCUKvVTJgwwWbHttzcXIKDgy06lDc0NCAY9QR4KJyOJ+3t7QMWnux1p5X2MFVVVQwZMgQw+TydPXvWyj5EspIB7Gb42vOatYWnpyfLly/n888/Z/bs2fj7+7N37142btz4REooPTw8iI2NpbCw0GXhCUxBj1dffZXTp0+TnZ1NdHQ0RUVFbNu2bcCeYqWlpTQ3N9v93jQ0NKBUKgkMdOz19beOu+7FDpJA4AoD7XxSU1NDaGjoUzNY7u3tlUWndevWWYlOMLiMJ6nEbvny5TZLpjo7O7l06RJjJkwcsGhnD51OR319vV1/J6lTkKsZT2Aa6KUN2ejRo/H397foOhUbG0tFRYVDw9jU1FTKy8stPKNcwUOtZN7ocJROPlwKAeaPjngii2DJ00RqJ/vpp59SWlo6qGN9++23tLa2smLFCq5du0ZiYqJFFocoipw+fZozZ84wa9Yst+jk5m8ejUaDVqu1aTAOJmFEqVSSm5sr/y49PR2VSkV7e7tFSVNRURGA7L8g/SyNbeYRXfMMD2m8ViqVsugkCIJFFmlzczNgWuDVGn34TpfAjt5UdvZOYEdvKt/pEqg12s++7N81Rjq2rUWn+SLdFTQajcX9GQjOxByAPpQDykTtQ2kl8piLTi0tLQQFBcljny3RSaKpqYmwsDCXrlMqXzP3vJLMVh3N5V1dXbS1taFWq0lJSUGtVsufneHDh5ORkUFHRwfe3t5yJPfmzZuEhIRYbHCMRqPd8Vx6/4IgUFtbS2VlpXwP9Ho9gYGB9PX10dTUhEqloqmpiY8++oh//dd/Zfv27Vy8eBG9Xs+kSZNYu3Yt/9f/9X/xs5/9TM6KCA0NtTp3W1sbJ06c4D/+4z84e/YsiYmJvP3227zwwgucPn1aFtdCQ0PR6XQsX75cFp3M8VArCfXVukUnN3/1qFQqpk2bRm5urjzm/xCUl5ezefNmjEYjmzZteuKiU0FBARcuXGDOnDkkJiYCpvVqU1MTL7zwgktm1zU1NezcuZOPP/6Y+vp6VqxYwcSJEzEYDGRkWJdm6HQ67t69y7hx4yzGpuLiYrlhkTOkjCdbTZLsYU94UqlUhIWFWWU56/V6q/JsyUrGEQoBNmeVuHRNYFqXTJ06lXPnzjFr1iwaGhr49ttvXX69MxITEykpKbHpcegIpVLJ/PnzefHFF6mvr8fDw4PW1lY2b95sFYRzRE5ODsHBwXYNzhsaGggKCnJbijjBfXfsMDCBYGCdT56msV9vby9ffvmlQ9EJBi48SSV2M2fOtJupdeHCBQRBYM6MjCcm2kkDqD3hSSorsDVg2/J4AlP0t7CwkKFDh+Lp6Ul4eLicyg9Y+DzZY+TIkXh6eg6qdfemzHiMTpQ5oyiyJNG1ScgZUkcLHx8fNmzYwJAhQ9ixYwf5+fkDOs79+/e5ceMGCxYsoKOjg9raWov0XVEU+eabb7h48SLz589nxowZbtHJjRtMY4894Umv16PRaKioqJA3Ap6enqSnpyMIAufPn5cNo+vq6tBqtbLBqNTlRTq2SqWyEJOUSiVJSUnyOG8wGOSxMiAggKSkJKumAydLejimG/GXrl+WBtvHdCO4p7f2L/D09LTI6PL395cX+tK1miP5EdnC1pjR29vrctc6Z8e0dXw1Bhs9Ru0cCxGVaD8oYTAYZGFFOp+jhagoilRVVbkUJbXl1yWVTuv1ejkz2FZZulqtRqFQsGvXLn7zm99gNBrRaDQsX76cy5cvU1FRwerVq3n77bfljDrzgIxarcbT09NqXpXOJX1GRVHk2LFjCILA8uXLaWpqorW1lba2NgRBoLCwEJ1OR1lZGRERETz33HO89dZb/P3f/z3r169n1qxZDB8+HA8PD+xRV1fHoUOH+N3vfsfNmzeZMmUK77//PkuXLkWv1/Ov//qvlJWVoVarGTZsGA0NDTz//PMDzlB24+avkYkTJ+Lp6fmDNJIAU1bQZ599RmhoKBs3bhyUz5IjamtrOXjwIGPGjJEFovz8fG7cuMHChQudVpfU1NSwa9cuPvroI+rr61m+fDlvv/02o0eP5vLly4wbN86mRcX9+/fp6+uzKuErLi7Gz8/PJYGkra0NX1/fJ5LxBKagjvneJTw8HG9vb4qLi+XfSVYyjqxQwOTHe6Kghp4+50ERiTlz5hAcHMy5c+eYP38+N27cGPBewx5JSUkYDAZKSlwXw8wZOXIkb775Jt7e3vLecevWrXKnYEd0d3dTUFBASkqK3X2Nu6Oda7iFJwe4KhAM15e73ILaYDBQW1v7VIQnV0Un+H7x7Yrw5EqJXUtLC9evX2fatGkE+fu6JNopFYLTrJ6qqipUKpXdL7OUkt+/1M7WwODl5YUBBaU1TRQ9LCUpKQkwDczmC2xznyd7qFQqxo8fz+3bt5220u7P5LggfrU8GQFT23NzlAoBAXgurJ37F4/bLGsYKOatVLVaLWvWrGH06NHs3buXy5cvu3SMjo4ODh8+LHtGXb58mbCwMIYNM3X9MRqNHDlyhKtXr/Lcc8/9IMb5btz8V8HPz8+h8OTh4YFarbYQV9LT02VT6OzsbLq6uujp6ZHLZPV6PcXFxcTHx8umybW1tRaLbC8vL4YPH25xPmlMaW5upqamBj8/P8AUjKg1+pgZbFsuD0w/C2Trh1plPimVSotxsLe3V17YmYtMGo0GpVJp4UPUn4F0uzPHkbhjLn5JxzfvGKgSRIYqWhBwPB8KGBmqaLYoO/Tw8OCZZ56RhRIpw0c6lyiKDkUUCXufD3Pq6uos5jZvb2+5yyGYyiuVSqXVPQwLC5Ozg729veX1il6v59ixY3z33XdMmzaNoUOH4uXlZRXBB9NnSbpG6V4LgmCxWZKypQwGg5xdK/0sdc1Tq9W89957vPPOOyxbtoyJEyfKJSKOEEWRsrIyvvzyS/70pz9RXFzM3Llz+cUvfsGcOXPw8fHh1KlTfPTRR/T19TFkyBCGDRtGWVkZq1evlrPF3Lj5W0etVpOens6tW7fsloA/CURR5OzZsxw4cIDk5GTWr1/vsrjiKl1dXezcuZPg4GCWLVuGIAg0NzfLDQ5s+chJ1NbWsnv3bj766CNqa2tZtmwZb7/9NuPHj0ehUJCbm0t7e7vNbCcwCWoxMTEWQQO9Xk9paSkhISFO94VGo9Gi1M7V5j+OhKeoqCjq6+tlH0dBEIiPj+fhw4fycwZjJeMqKpWKlStX0tjYSFNTE6NHj+bIkSNPJLsuODhYthAYLIGBgWzcuJGUlBTa2trw9PRk586dXLp0yeHaIy8vD1EUHQYv6uvrn7io+teIW3hygLlA0F9EkQSCn00Opq/6Pp988olF1ow9GhoaMBgMAy41cMZARCdATgN1RXg6e/asbMZmb3F49uxZPDw85AwYl0Q7F9oVV1dXExERYfe80ibKVqmd+SByrbSJn355k897Unjzmya2dY7jk7twvbSJ8PBw2tvb5WOZ+zw5IjU1la6uLpfU8v6sS4tlz5vpzBkVJkfaJWPTPW+m8y8bn0Ov13Pw4MFBb8Qk+pdHKJVKVqxYwbRp0/j222+dtvIWRZFDhw4hCAJLly6lqamJwsJC0tLSEAQBg8HAgQMHuHXrFsuXL7dZB+/Gzd8yzjKe1Go1o0aNkhc3YBI0JAE3Ozubu3fvAqbUeTCZmvb19cneQIGBgdTW1lqUJEnlVbaIiYmRxachQ4bwy1/+khLtMKeZP5LBtjkdHR0WY7SU/dIfnU7nUkmZhHk2lrl4Yyuw4Ggu6+npsbg+hUIh30+JMapaFzyeBMaoLOf5np4ezp49Ky/0lUolycnJFqX0rgQQ9Hq90wxRqXuchE6nkzv4+fr6cv/+fdRqtdW9iIqKwsfHhwkTJlgsjL29vbl79y5Go5Gqqiru379Pfn4+u3fvJikpyWIjZN4pULoGURQtPtfmG624uDgrL46uri7S09MH5IFhNBq5e/cuW7duZdu2bbS0tLB8+XLef/990tPT0Wq1dHd388EHH8gZHAsWLMDT05Pi4mJeeukld3trN276MXnyZNRqNZcuXXoqx9fr9ezfv59z584xe/Zsli1b5rRj20AxGAzs2bMHnU7Hiy++iFqtxmAwsHfvXry8vFi8eLHNMbW2tpY9e/bw5z//merqapYuXcrbb7/NhAkTLKpBLl68yKhRo2yaRXd0dFBcXCybiktINh0RERFOhafOzk5EURxUqZ1Op7OZURUZGSl7/kkkJCRQXV0t+9sOxEpGYGBWMmAK5s+ZM4crV64wduxYPD092bt374DmfnskJiZSWFj4WPsilUrF4sWLWblypSz4nTx5kqNHj9q8RlEUuXnzps0McYmenh46OjrcGU8u4BaenCAJBPNGhctfVHOB4O9XpvPGG2+gVCrZvHkzt2/fdng8qZ70SWY8ueLpZAvzFtD2cKXErq6ujtu3bzNjxgy5vMKRaKf4y/LelXbFVVVVDkU6V0rtPr9cxuqPsjl1t86idOT8wxZe+CibC38p8R2oz1NoaCgxMTGDKrcDk7HpJ69M4eDaeF7S3mLXqiH8ed1EJsUF4efnx4oVKygqKnrshYG5x4uEIAjMmzePBQsWcOnSJQ4cOGB3Urh27RoPHjxg2bJleHt7c/XqVby8vBg7dix6vZ49e/ZQUFDAqlWr3KUMbtzYwJHwJHXZHDt2LA0NDRblVFOnTkWj0WA0GuVxQNpEFxYWEhAQQEVFBTExMURFRVFbW0twcLA89gmCYNdfqKurC29vb4xGI76+vggqDfc7tFaZTv2RDLb1Yj9DUrOFoL1AQXR0tE2PHXuYR3XNxSzpXOYbGUEQ7EaM9Xq9xVxna94LV3SQrirHNDtYPm76WSRdVU644vtrMt+QSOOnTqcjPz9/wJmw5u/LFrbm6/7dCTs7O22KfhqNhp6eHvz9/WUvpgULFsjZUQqFgtraWnbu3MnevXsJDQ0lOTmZ7u5u4uLiLPxY+gd17F3r888/L68ZNBoNvr6+KBQKq2YU9tDr9dy4cYMPP/yQ3bt3o1QqWbNmDT/96U8ZP368/Le/f/8+//7v/05TUxOenp789Kc/pbCwkLKyMtasWSP7vbhx4+Z7tFotaWlp3Lhx44l3Ge3s7OSzzz7j3r17rFq1iunTpz8V24UTJ05QXl7OCy+8QEBAAACnT5+mpqaG559/3irTtK6uThacqqqqWLp0Ke+88w4pKSlWolhBQQFNTU12qzzy8/Nln1hziouL8fb2JiQkBIPB4HAekLLNfH196e7uHlDGE+DQYNx8HSF5QkpZTwOxkolVtmDQ2Q4kOWLq1KkMGzaMY8eOsWTJEmpqajh16tSAj9OfpKQkOjo6BuTNZI+xY8fyk5/8BB8fH5RKJTk5OXzxxRdWGdnV1dXU1tY67MDo7mjnOm7hyQUmxQXx53UTKfinhVz7H3Mp+KeFskAApg/apk2bGD16NAcPHuTIkSN2B5vq6moCAwNttmIcDJLoVFdXNyDRCZwLT+YldvZSTQG+++47AgICrDYUtkQ7AZHp8f7seTPdaZvO3t5eGhsb7fo7wfeR5P4TjDTJSZ0bRLCqZzYYTS1E/+9TpTQIlgbjrvg8gSnr6eHDh4+VRjo+eTSTx47kzKkTFhNJYmIi06ZN4/Tp01bGgAPBvNSuP1OnTmXVqlUUFBTw5ZdfWkVo6urqOHnyJJMnTyYxMZGenh5ycnLkrKadO3fy4MEDXnrpJasJ2I0bNyYk4cnWhl3qNhMfH4+3t7dFuZ2HhwfTpk3DaDTS1NSEIAiEhoYiiiKFhYUkJCRQXFzMmDFj5JJh83OEhITYzdxsbGyks7MTb29v7t27x95DX7ucfi8ZbFv8zuy89uaV6upqp8EZCSljyFGZmnSeIUOG4OXl5XLJuz1GqupZrC38S9ndX8Q7TGV4z2rus3C4pV+VtNiUzEalcdb8XgykiYijjABnQSJpsdzf5B2QSzbv3buHwWAgJCSE6OhoWltbSU9PZ+bMmbJYKIlQ+/btA0ylkuafIVcizVIJSVNTEwqFAp1OR1dXl9y10dn7uHDhAr/97W85evQoYWFhbNy4kQ0bNpCYmGhhE7Bnzx527tyJ0WhkxIgRvPfee3z99dc8evSItWvXyhsuN27cWJOWloZCoXDZcsEV6uvr2bx5M01NTWzYsOGplbjm5ORw9epVFi5cKAvjhYWFZGdnM3fuXLmrm3RNe/fu5U9/+hOPHj1iyZIldgUnMI1xWVlZJCQk2N1/5ObmkpiYaDWeFRcXk5CQIM9bjnyeJOFJo9EgiuKAMp7AtvAkGYyb7118fX0JCwuzKLdzpSpFFGGcpp4rV664dF3mSB5/fX193Lx5k7lz53L58uXHKpMDGDp0KFqt9rGPIxEaGsqmTZtITk5GFEXZBF/yaATTZ83X19fKtsAcaS3gLrVzjlt4GgCOOp+o1WqWLVvGkiVLuH37Nlu2bLH44ErU1NQ8sTK7xxGdwLnw5EqJXUVFBffv32fWrFk2B3Bz0e6fJvTyXlQZ2zZlutSe05mxOJiEJw8PD5vXJ4qia50bFAKFQvSAfZ7A1GVIq9UOOutJYuHChQiCwPHjxy1+P3v2bKKjo9m3b59DXxRHOBKewPQe1q1bx6NHj9i2bZs8mUmp0oGBgcybNw8wdToyGAyMGzeOL774gvLyctauXeuOKrtx4wBfX18MBoPN77AkPCkUCpKTk7lz547FuJyWliZnkmo0GrlrWFtbm5wNNWrUKMLDw+nt7bUwEQUsFqA+Pj5WqeCBgYGm7MqC3AEZbKsxEBoaSmJiImFhYS5FtJ1FgM2RnmevbA++F0FUKhWdnZ2y55wz7KXLA4QK7czWPGSd9iYvaW+xTnuTZ/2qCFd0UFpaajXPabVaOTAg+TmZ3+OBZD49bilCQECAzewF6ZqlOW7WrFkcPHiQqKgo5s6di0ajobOzk4CAAKuou+TRFRERwYIFC1y+lpycHBoaGiw+y468/1pbW/n222/57W9/y7lz5xg5ciTvvPMOq1evtlrbNDY28u///u8UFBQgCAKrVq1i2bJl7Nixg9raWtavXy8brbtx48Y2np6eTJo0iatXrw56fWlOcXExW7ZsQaPRsGnTJgvx50lSWVnJ119/TWpqqhwEbWtr4+DBgyQmJsqWH/X19ezbt48PP/yQyspKFi9ezLvvvktqaqpDkf/BgwfU1tbazXZqaGigqqrKqsyus7OTmpoa4uPj5eQCR8GQtrY2C0++gQpP9rKoIyMjrRpRxMfHU1xcLJ/LFSuZXy1P5tkpI7l27dqggjp+fn4sXryY/Px8vLy8SEpK4uDBg4/lK6ZUKhk+fPgTE57AtK6S9u9gmos++eQTSktL6evrIy8vz6IM0xYNDQ0WTVXc2MctPD1BBEEgNTWVTZs20dvby8cff8y9e/fkx0VRfGId7cxFp/Xr1w9YdAKT8GRvoetKiZ0oipw6dYrw8HCrrg5WGPqofHCXKakTXE65raqqQq1WO0xdtFcXLQgCOoPoWucGo0hhlwePar737nDV50mtVjN27Fhu3brlcodAW3h7e7No0SIKCgooKCiQf69UKnn++efp7e3l0KFDg6prdtQCWyIuLo7XXnuNzs5OtmzZQmNjI9999x0NDQ2sXLlS9g25evUqI0eO5MCBA9TU1LB+/XqXN3tu3PytInXUtLVQlLqggSn1u6Ojw6Jri1arlcfX3t5eamtrKSwsRKvVUldXx9ChQ/Hz85PnFUkEUalUdHR0WGTchISEWGWBVFZWEhISwgsrlw/YYLu+vh6dTkdmZqbdMtun1VrY/H1VVVUhCIKV6GaL/t6G9sZGlSDiKehRCaKF+CXNmdL7kgJJ06dPR6vV0tPTQ319vV1vrYGgFwW6RZVVWaM92trabG4QpDlFEAS0Wi0FBQU0Nzfj7e3Nr3/9a7nltV6vJyYmxqYwV1NTw4kTJwgJCXFYciBx43YeJdWN8rVPmjTJ5nFra2s5cOAAv//977l16xZpaWn8/Oc/Z/HixVbRY1EUyc7O5oMPPqC7uxs/Pz9++ctfMmzYMD777DOampp49dVXB7UecuPmb5H09HR5bfc4XL9+nS+++IKYmBhef/11ufTtSdPe3s6uXbuIiori2Weflcfz/fv3o1KpWL58OY2Njezfv58PP/yQ8vJynnvuOd59910mTpzoks9UVlYW0dHRdsXrvLw8tFqt3KBIQsooGojwJPk7gevCk4eHB0ql0qHBeF1dnUUpdkJCAu3t7XJmDji3klmXFsu0adPQ6XTcuHHDpWvrz5gxYxg3bhzHjx/nmWeeQa1Ws2/fvsfaLyUmJlJVVWX3/Q8G8/27r68vvb29fPbZZxw/fpze3l6nc15DQ4O7zM5FBuYY5sYlIiIi+MlPfsKhQ4fYtWsX6enpzJkzR14UPq7w1F90GmxUwV7Gk6sldg8ePKC8vJw1a9Y4FTbu3LkjZ8q4ijNjccBhC9KuPuOASkce1TVhNBrl88XGxnLmzBk5I8EeEydO5Pr16xQWFj6WiemYMWPIz8/n2LFjxMXFye/L39+f5cuXs3PnTq5cuSJHc1zFlseTLcLDw9m4cSM7duzg448/RqfTMW/ePPnzeu/ePVpbW+WuVK+++uoTN8l34+avEalzXFtbm9yVTkIyFwfTgjE4OJi8vDzZRBy+F1lUKhXfffcdnZ2dxMXFUVRUJGeh+Pr6ys+TWjl3dHTI0U8pqyUmJoYrV66gUCgICQmhrq6OrVu38vrrrzM3RsGWMtcNtlUqFeXl5Rad1SQk0/PHWWA6wjyTyHyB7Qzzkjy1Wm31Wlc8jOD70jcpOHH9+nU8PDzkrC5bx3aVWqMP+fpwyo0BiAhyud8YVa2Fx5S9a+qPtNkQRZHe3l65vbVkUB8ZGcn8+fOJiYmhuLhYDphFR0dTVVXF0KFDqampoaenh4aGBrltdEREhEVpqMW1V0nXHsdQRQvPDP2+5EbqUHfx4kUePHiAn58f8+bNIyUlxa4NQU9PD59//rmcwZeamsrixYtlP5nOzk5effVVq++XGzdu7OPj40Nqaqq8thyoDYjRaOTkyZNcvnyZyZMns3DhwqcWbNDr9ezatQtBEFi9erUsIp0/f57y8nKWLVvGt99+S15eHr6+vjz77LOkpKQMqNy5rKyM8vJyXnrpJZv7GlEUyc3NZdSoUVbHLS4uJjw8HF9fX7nEzpHwZN7RDqy7c9tDEASnne1EUaS2tlYW4WNjY1EqlRQXF1tk5E6KC2JSXBA9fQbae/T4eqgsqnr8/PwYN24c2dnZTJkyZUD3UmLRokWUlZXxzTffsGLFCj777DPOnTvHrFmzBnwsQK6wKCoqcikIMhAiIiJ46623OHToEHfv3iUnJwd/f3+nQmpDQ4PDUjw33+POeHpKeHh4sHr1aubPn8+VK1fYvn27rIY/zmb9SYlOYNoY2FqoulJiJ4oip0+fJjY21qUvW05ODomJiXLk3xWqqqocltkBDg35utqaXS4dUQigMPRalEe66vMUERFBVFTUY5fbCYLAs88+i8FgkCPQEiNGjGDq1KmcPHlSNod1FWeldub4+/vz8ssvYzAYEATBIuJ88eJFVCoVOp2ODRs2uEUnN25cxNvb5A1kK+PJXNgWBIGxY8dy9+5dC2+I8vJy+bmFhYU8evQILy8vjEaj7K3W19eHwWDA39+f0NBQ+ZhSt1WtVktra6uc/WI0GvHw8CAqKgqDwcCnn36Ktq2SaWrXDbbNO7H1jyRLnfb68yQygR6Hzs5OWbSyJQwpFApUKpX8vqT/O9sUdHd309raKh/blU52trinD+WYbgTlRn+LZhjlRn+O6UZwT//9psFWWn94eLjL4730/qurq9m+fTv/5//8H7766ivg+7+TVqtl5cqVeHh4MGTIEPlzVV9fbyU62bv2CmMAGz7P5fPsUgoKCti8eTPbt2+nra2NFStW8N577znc9JaWlvLv//7vVFVVoVQqWbduHUuWLKG9vZ1t27bR1dXFhg0b3KKTGzeDYNq0afT29nL9+vUBvU6n07Fr1y6uXLnCokWLePbZZ5+a6CSKIl9//TW1tbW89NJLcvZkaWkp586dIywsjEOHDlFSUsLChQt59913mTx58oCFkqysLMLCwqyymSQqKytpaWmxCqKLokhxcbGcUfw0M54Ah8JTWFgYCoXCYu+iVquJjY21mxXsyEomIyODjo4Ol/0ZrY7t4cGKFSsoLy+nsrKSZ555hvPnz1t4Tg0ELy8vYmJinmi5nTlarZYXXnhBLrVsbW3liy++sOvXZTAYaGpqcne0cxG38PQUEQSB9PR0NmzYQEtLC9988w2enp4O/SUc8SRFJ7Cd8eRKiR2YUk1ra2uZM2eO00VuXV0dVVVVTJgwweVr6+7upqmpyanwZCvjqbS0lN7eXu7m3SbJuxelkzW4UiEwZ0QIKkEclM8TmKKvDx48eKzaZTBlLSxYsIDc3FyrQXXu3LlERkayd+9eh74n/RmI8CSVT2o0GuLj49m1axc3b97k/v37VFVVodFo2LBhg8PPhhs3bixRKpV4e3vbFZ7MRZtx48ah0+m4f/++/LuGhga8vLzw9PSUBYGmpibi4uLk+eT27duIooheryckJEQWFaTSsJ6eHnQ6nUUpr9FoJCwsjNTUVPR6Pd3d3WRGwLOa+3YNtkeqLLvkSXNIfxFEEASbTRccmYW7ivl4plQq8fHxeWJCuJSxJGU9Sf/v7u622MRIZWt+fn7y9TjbdHl5eTl8Tq3Rh2z9UEx33PJ5pp8FsvVDqTWa/ua2FsL9Deal84Jp8yEZ2YMpo2ncuHFyeZ356/r6+qisrKS7u5vf/OY3tLS0UFdXhyiKTJ8+ncmTJ7t87ca/fJL+4fAdPth1HI1Gw9q1a3nrrbcYN26c3fIXo9HI0aNH2b59OwaDyVPs7/7u70hISKClpYVt27ah1+t57bXX3GUObtwMEn9/fyZMmEB2drbLWZptbW18+umnlJaW8vLLLzNlypQnek09fQbq23vp6TPNX1evXuXWrVssWbJE3hdUVlbyxRdfAKaAwoIFC3jvvfcGnZlTU1PDgwcPyMjIsLtmzs3Nxc/Pz6LTJ5iE+I6ODjlT2VXhydfXl66uLjQajUtlgBKOhCeVSkV4eLhNn6eysrIBd1wNCQlh1KhRXLx4cdAZzLGxsWRkZHDmzBkSEhIYNmwYBw4cGHS5XGJiIsXFxYPqHusKUuazRqPB09OT4uJi/vznP9vc4z2qrafLqMQ3wLl3sRu38PSDEBMTw5tvvolGo6G7u5tz584N2KvnSYtOYC08uVpiZzAYOHPmDCNGjJC7+TgiJydHNpZzFVeMxcEkPEmR6MrKSj7//HO2b98OmPxSfrX2GafldkajyJszTdlY5sKTqz5PAMnJyahUKnJycpw+1xnjx48nISGBo0ePWghMkt9Td3c3hw8fdvkz5IrHk8StW7e4e/cuixcvZs2aNUycOJEjR46we/duFAoFGzdudHdtcONmEPj5+TnNeAKT2Xd0dLScTdLR0YFOpyMqKoqMjAx5Y1BWViZnO4miyNWrV4mMjKS1tdXKZDo8PFx+XVRUlCx+6HQ6BEGwKBGur68nXNFhZbA9R1siZzqp1WorAaW/Oa29ucGeIaoj+m8ipLEvLi4Og8FAR0cHTU1NT8VQ2vzc/v7+8uZAFEV0Oh1tbW3y9ZjPp7Y2Pl1dXVbaChGfAADFq0lEQVQLd/P7mK8Pd5qlKyCSr3dN+Jc8oto6TX+bvr4+9Hq9HGmurKwkNzeXiooKi7lGpVLJf2MpW096vcFg4MKFC1y7ds3i+a5cuwLojEnj1VdfZfjw4Q7npebmZn73u9/J3iKZmZn89Kc/xcPDg6amJrZt2wbAhg0bbHbyc+PGjetkZGTQ1dXl0hq2qqqKzZs3093dzeuvv/5Em8tcK23izR3XGf2/vmHyP59i9P/6hnUfneezY1mkp6czbtw4mpqaOHjwIFu2bEGv1/PMM8/w/vvvk5aWNijBSSIrK4uAgACSk5NtPm4wGMjPzyc5Odlq7CouLkalUjF06FAAOWvWnvAkiqKc8eTIMsQejoQnMFXW9K/WSEhIoK+vb1BdsjMzM2lubrYIXA2UWbNmERYWxsGDB1myZAmiKHLw4MFBedcmJSXR19fn0v5sMBiNRm7fvs348eN55513GDp0KM3Nzfzxj3+Uq06kz+rMD26ws3cCC7cU8OaO61wvtW4s5uZ73MLTD4S3tzcKhYKhQ4dy9uxZvvjiC5vdZ2zxNEQnsBaeXCmxA7hx4watra3Mnj3b6TkMBgO5ubmMHTt2QGq+lF3jTOTo7u7GYDDw1VdfsWXLFtrb21m9ejWenp4EBwczZViwS50bJsUFER4eLpelSMTGxlJRUeFUVddqtSQnJ5OTk/PYniaCILBkyRJ6e3s5efKkxWOBgYEsW7aMu3fvWiz8HeGqx1NTUxPffPMNEyZMYPTo0SgUCiZOnCgbi4eHhz81w0g3bv7a8fX1dUl4AlPW04MHD+js7KSoqAgwLbQkPwNpLJUEo4cPH9LQ0MDEiRMBSzFDEASLcuiUlBQ566irq4u+vj4OHjxoc14xN9juvzg0Go14eXnJ/lX9kcoDnwT2mmBUVlZaLPBteU058iyR7tO4ceN4/fXXAdP9Mr9/0vsWBIHGxkaLazEfW83/hhERES4bXEvzhV4U/uLp5HisFlFQbgx0aDhea/ThO10CO3pT2dk7gR29qXynS6BJaSp9jIyMZMyYMSQlJZGQkEBsbKyVaNbX14darXapm1FPn8GlazcicOFhq5zFYI8bN27whz/8gba2NtRqNRs3bpSzqxsaGti2bRsqlYoNGza45yQ3bp4AQUFBjB07losXLzrsrnnv3j22bduGn58fmzZteqLlrZ9fLmP1R9mculsnB4yNIlwsbeNr3QhKlNEcOnSIDz74gLt37wKwevVqZs6c+ViCE5g6ZRYUFJCRkWF3vfzgwQO6u7ttetUWFxcTGxsrZyRLGbH2xk9p7/K0hKeoqCjq6+stMtjCw8Px9vZ2qQmHrePFx8eTlZU1KKEITOuWlStX0tLSQnZ2NitWrKC4uJiLFy8O+FhhYWH4+/s/tXK7oqIiOjo6SE1NxcvLiw0bNpCZmYlOp2PLli38y54s+bMqmn1WT92t44WPstlxxXot4saEW3j6gejo6KCjo4O0tDTWrVtHdXU1H330kVPl+WmJTmApPLlaYqfT6Th//jzjx493qdyqqKiIrq6uARvAVVdXExkZ6TAiWltbS1dXF9euXaOxsZGVK1fy1ltvMWrUKAuDWFc6N4BpIKupqbE4h6s+T2Aqt2ttbR103bI5/v7+zJs3j5s3b1odb9SoUUyZMoUTJ05YpdLawpVSO4PBwP79+/H29mbhwoWASfz77LPP0Gg0KBQKampq2L1796ANc924+VtmIMLTmDFjEASB/Px8ueRu5MiRcqRN2hhI3e+uXLlCeHg448aNQxAEOaihUCgQRdFCfDEajXJZXG9vLw8fPkStVg9oA9/X1ydnW3l7ezNixAiXXjfQLm2SQGZvoRsZGUlISAiiKBIXF2d1HYIgyOOVrTFQaiaxaNEibt26JZ9LyhIVBEH2u5s5cyZeXl4W5XKRkZHyMcyDEzU1NVaRWHtjsCAIJqEHpeyL5AwRgT5sB3IceUQd6oynSIyQ56mKigoePXpERUWFhfAkZT/19va6VMowkGs3itDeY/uYkoH40aNHEUWR6Oho/u7v/k4W8erq6ti2bRseHh5s2LDBrujpxo2bgZOZmUlbWxu3b9+2KnUTRZFLly6xa9cuEhMTefXVVwdtG2KLa6VN/OOhO4hg1YnaNLYI/Muph5wvqGTKlCn09fWRnp7OqFGjnsj5L168iLe3t0NLkLy8PMLDw202CCkrK7PqGOtIeJJKtiSPp8EIT52dnXYD3ZGRkXIndQlBEIiPjx/0HiUzM5Pa2loePHgwqNcDhIaGMm/ePK5du4bRaCQzM5PvvvtuwIEqQRBISkqiqKho0EKYI3JycoiMjJSbKwmCwJw5c1i7di11oi8f3Wyx+Vk1GEVTWfnBO+7MJzu4hacfCOnLHxERQUJCAm+++SYBAQFs27aNy5cv2/ziPE3RCb4XnlwtsQPIzs6mp6eHmTNnunSOW7duERkZOeCoSFVVlV3PDqlV6p///GcAJk+ezM9+9jPGjh0rbwj6L/InxQXx53UTKfinhVz7H3Mp+KeF/HndRCbFfZ+iHx4eTmtrq0XJwUB8noYMGUJYWNhjm4xLTJw4kdjYWI4cOWLl5TFv3jzCwsLYs2eP04i0K8LT+fPnqaqqYuXKlWi1WsrLy9m+fTtBQUEYDAYmTZrEyy+/zMOHD/nss88GbZzrxs3fKvaEJ4PBYJUN6uXlxfDhw8nNzaWqqgq1Wo2vry/379/H398fMIkyZ86cob6+nqKiItLS0lCr1YSEhMhjkFSqbN4qu6WlRRai+vr66O7uZsKECXKnM1cyU4cNG8aDBw9YtmwZjY2NPHz40GF2qr0MHMmryBGOvHsqKirkhhCrVq2yilRLIpL0b1skJydTXl7OzZs3LbKUgoKC5NeEhoZSXV1NWloaXV1d8t+goaGBsWPHOn0Pjs4v+XKpMbjcDENARI11VoIrHlFZvUOo7vOU/am0Wi1GoxGlUolKpZI3QJGRkS4LO0G+XgNq5OHrYZ2dUFZWxm9/+1t5UzRv3jw2btwoi6TV1dVs27YNX19fNmzY8EQ3vW7cuDGNcx4xY/j7w0UWpW4/+fwav/viCCdPniQzM5NVq1Y98SYRm7MeolA4XqcqBIHWyEncv3+fqKgo5syZ80TOLYltU6dOtZs51dPTw/37922O9+Xl5ej1eotOtOC68GRuGeIqvr6+iKJody0eFhaGUqm0Ck4nJCRQXV3tcsWNOXFxcQwZMmRQGUrmTJ48meHDh3P48GGmTJlCdHQ0+/btsyrXd0ZSUhItLS3U19c7f/IAaG9vp7Cw0GbCxPDhw+kemu40zKJQCGzOKnmi1/XXglt4+oGorq5Gq9XKXX78/Px49dVXSUtL49tvv2XPnj0Wgkdvby87dux4aqITfC88uVpi19XVxaVLl5g8ebJL0fGOjg67X15HdHV10dLSYuXv1NLSwqFDh/jjH/9IaWkpzzzzDIBcFtYfWwt9R50bJHHMvNxuID5PgiCQmprK/fv3B22Y1/94S5cupaOjg9OnT1s8plKpWLVqFV1dXRw5csSh4u9MeKqoqODChQvMnDmT6OhoHj58yI4dO4iKimLcuHH09PSQlpYmR7mampr49NNPaWlpeez36MbN3wq+vr50dHRYlTHYyngCk0fdo0ePaG9vl7N6ioqKCAwMRBAEenp6aG1t5euvv8bLy0teEAcGBtLS0oJKpZI35+bjUW1trUUGVEBAAFlZWURFRckZPs5YsWIFnp6eXL58mQkTJtDX14dCobA5ztw3hLncpa0/RqPRaTRTClA0NzdbGLK7SkFBAfv27SM4ONjiPrW2tsr/rqur4/79+5w5c0Y+F5iEu8LCQgICAqzKG82Jiopi2LBhNh+TUAniXwzdHZdqCxgZqmhGJXx/X6RjuuKzpBQE6oLGkp6ejq+vr/w+JQFM2si0trbKm6P+n09BEJg+fTqvvPIKL7zwAn7eni5du1IhMH90hMX8azQaOXHiBNu2baO3txdPT0/eeustpk2bJj+nsrKSzz77jMDAQF555ZUBZwe4cePGOZ9fLuNPRZ4U93pZlLqdKqjlt/kKtGPmutRQaKD09Bk4WVBrlT3SH6MIp+/X097Vw/PPPz8g+w5HZGdno9FomDRpkt3n3L17F71eb1N4Ki4uxsfHx6oKxJnwJAgC3t7eg854AhwajIeFhVlVa0hZWVK29EAQBIHMzEzKysoG5RNlfpxly5ZhNBo5duwYK1euRKfTcejQoQFlL8XFxaFWq594ud3t27dRKpU2/9Y9fQbOFDU6zfA1GEVOFNQ4LSv/W8QtPP1A1NTUEBERYdWNZ/78+axevZqHDx/yySefUFNTI4tO9fX1T010ApOo0tHR4VKJHcCFCxcA5BaTzsjNzUWhUNg16rNHf2PxtrY2vv76a/7whz9QVFTE/Pnzee+99+Togq0BezATY0hICAqFwsJgHEyDmys+T2DyClEoFHLZxuMSFBTE7NmzuXr1qlUqalBQEEuWLCE/P182YLWFVApii97eXvbv3090dDTTp0+nsLCQL7/8ktjYWF5++WWuX7/OiBEjZPPWIUOG8Prrr6PX69myZYtVaaIbN25s4+vrC2AVabQnPI0YMUJeWA8bNoyamhra2tro7u6Wu9kFBARQVlbGhAkT5GNI38nhw4fLkUClUomvry+CIFj52LW0tDBkyBC6u7udLvqk0rcDBw6waNEiSkpKuHHjBsHBwRZRR2n8rTX6cKkvBmdd2ur+kvmk0WjkbkEKhQKdTkdjY6PNawkJCUEQBNnXaf/+/YPy19Pr9fJ5zMV0W+N9/859YBpDm5qaLM7d/z7W19fT3t4ulz7aQqPRMEZV63RBKyIwRmX5NxRF0WWPKIMIF8va+fqbE3LJhL+/P76+vhbzhCRA+fj4kJaWxrJly+T3v3TpUkaOHMn58+fZs2cPgiAwVlPv9NqNRpFNmcPkn5ubm/nwww/Jzs4GTJ/Z//bf/ptFhnR5eTmff/45oaGhvPLKKwPODHDjxo1zpFI3wGZXShD46EbLUykfau/RO20CJCEiMGv+s3IQ/3Hp6urixo0bTJ482aEfYF5eHsOGDbOZBVpcXExCQoLVvsOZ8CSNuYPJeHImPIFpD9U/48nX15ewsLBB+TyBaV0SEhJCVlbWoF4v4ePjw5IlS7h37x4PHz5k+fLl3L9/3yI72xlSh1bJB/NJIIoiOTk5jB492mYH3oF8Vh2Vlf8t4xaefiAk4ckWo0aN4ic/+QkajYYtW7bw0UcfPdVMJwlp0e5KiV1rayvXrl1j2rRpFl1u7CF9eUeNGjXgAbWqqgqtVotWq+Xbb7/l97//Pfn5+cyaNYv33ntPToeVFsa2jm/u8eQqSqWS0NBQm8KTqz5Pnp6ejB49mpycnCdWd5yWlkZ0dDSHDx+28lcaM2YMkyZN4ptvvrErAjnKeDp+/DhdXV2sWLGCu3fvyvX7L774IhUVFdTX1zN16lSL1wQHB7Nx40Z8fX3Ztm3boCInbtz8rSEtWPu347UnPKnVanlxPWrUKAoLC9FoNNTW1pKcnCx3mTHn0aNH8vHDwsJobGxEqVRiMBjw9fXFw8ODzs5Oi8WoKIqEhITQ3Nzs1KBVFEUiIiKorKzk8uXLBAQEYDAYaGxsZOTIkfKYJ4oiiYmJLndpu6MPkwWnhoYGBEFwKiI1NjZajLH978VgUCqVFmOlh4eHxeJTEl6kOVAqNwkODiYxMVEuwetPX18fDQ0NDt+TTqcjXNFBuqoc0/bK8rmmn0XSVeVyd0GLcwzCI0oSNltbW2ltbcVoNBISEsK8efMA03z2/vvvM3fuXO7du0dfXx9DhgyhqKiITz75hM7OTmbMmEFdXR2htMnX7qyRB5jK8D/44AMaGxvlhhpr1661+AyWlJTI2bfr1q1zuDF048bN4HGp1O0plQ/5eqhwcmoZAZGJ40Y/sXNfuXIFwGqda05bWxslJSU2M2A6Ojqora218ncCx8JTe3s7fn5+crncQDOepDnIWWe7+vp6K6uO+Ph4iouLB7VHEQSBjIwMCgsLrfZKA2XkyJGkpKTwzTffEBoaSlpaGidOnHBpryWRlJRERUXFE7P/KCsro6mpidTUVJuPD+Szaq+s/G8dt/D0AyBFRO0JT2DKXlm7di1arZbm5mZiY2NdMu9+HNra2tDpdE5L7MDU8U6r1ZKenu7SsR89ekRDQ4NDoz57VFZW4uHhwe9//3tycnKYPn0677//PpmZmRYRZ2mgsTdgD2ZQDQ8PtxpMw8PDXfZ5ApPJeFNT0xNr86lQKFi6dCktLS2cPXvW6vEFCxYQGhpq1+/JnvCUn5/P7du3efbZZykrK2Pfvn2MGTOGF154AZVKJRsW22pR7uPjw6uvvkp0dDQ7duzgzp07T+S9unHz14qU8WTu8ySVktkTfKSsG6PRSGFhIUFBQSgUCkaOHElqaiqCIKDRaLhx4wZdXV3s379ffm1DQwOA3NFOoVCgVqvlkipzbt68KQtUErbKGHp7e+np6WHNmjVUVFTIGUJhYWEWEWhBELhb+IByY6DLXdoelJSh0+no6Ohwaex+GoaiBoPB4ri9vb0Wi/bOzk6USqUsOElCUmNjIzqdzm5Qpv/86kjgeyZaybOa+38pXftLRz1gqKKF5zT3Gamy7WcxGI8og8HA8OHDmT59unxdr7zyCrdv3wbgxRdfRKVSWZjcV1dXU1FRwdKlS5k8eTLnz5+XzdhnxajY9cZUh408enp6+Oqrrzh06BBGoxFfX1/eeecdq4X+gwcP+PLLLxk6dChr1qyxmW3mxo2bx8fVUrenVT7koVYyb3S4lWDdHwGR+aPDbVplDIbe3l6uXr0qdy6zR15eHiqVyqaRueRJN1Dhqa2tDT8/P3p7exFFccDCk0qlwtPT02nGkyiKVnuahIQE2tvb5TXCQBk7diz+/v6P7fUEsHDhQnx8fNi/fz+zZ88mPDycvXv3utRNFSAxMRFRFB/L8NycnJwcgoKCGDp0qM3HXf2s2iord2PCLTz9AEiZKPbMssE0AO7atQu9Xs/MmTMpKSlh8+bNdssMHpdHjx7R2tpKaGioU4Grrq6O27dvM2PGDJcXfzk5Ofj5+cm+Fq7Q29vL2bNnKSwspL29nbS0NN5//31mzpxpM9LZ3d2NRqOxuUEabA16WFgYdXV1FpuPgfg8AQwdOpTg4OAnZjIOJtPHmTNnkp2dLXe2kpD8njo6Ovj666+tNmS2hKfW1laOHj3KmDFj6O3t5dChQ6SkpMgiZENDA0VFRUydOtXuvdRqtbz88sskJyezb98+uVzCnP6dUdy4+VvF09MTpVJpITxJApA9IaKjowNBEMjJyaGqqoq+vj7i4+Px8vKitLQUURTR6XQYjUYOHTpEU1MTI0eOxMPDQ04/l4Snnp4e2UdQEk4kQcTT0xODwSCXrwFyNzdzVCoVra2tfPvtt7JIFRgYSF1dncX3XxRFAsMiXZRBrLu0DdY42tXuevB9QKE/5hm069at4xe/+AWALNqNGjWK999/n6ioKAwGA4mJiYApYGIvUisJVBqNBkEQrDyhAFlErKmpYUSQitmah6zT3uQl7S1OvzWO1VFthNnIdJLwUCtd9IgSidd0EBczhKCgIF588UW5XDEjI4OCggLq6upISEggNjaW5uZmDhw4AJjEyFmzZvHOO+9QX1/PsWPHANPnSKPRsHr1atLiQ+w28qioqOAPf/iD7MmRnJzM+++/L5dyS9y7d4+dO3cSHx/PSy+99MSNjN24cfM9P4byoU2Z8RidXIQIzI1+ctvWGzduoNPpnAbU8/LyGDFihM3Sq4cPHxIREWFzznKl1M5ZAN0RPj4+NhuWSEgG4/3npdjYWJRK5aDL7ZRKJenp6dy5c+exM401Gg0rV66kqqqKS5cusWrVKjo7O+XOps7w9fUlMjLyiZTb9fT0UFBQQEpKisM95OvT4jA4ycjuX1bu5nvcwtMPQE1NDUql0m53HnNPp1deeYVnnnmGN954A4PBwMcffyx3G3pS6PV6Dh48aGF27ojvvvsOf39/h8Z75vT19ZGfn8/48eOdZlKBqcQgKyuL3/3ud3Ld8LPPPsucOXMcluk5S08dbMaTTqezMs4eiM+TZDJ+9+7dJ9r9bdq0aYSHh3P48GErA+Dg4GAWL15MXl4eOTk5Fo/193gyGo0cPHgQjUZDaGgox48fJy0tjcWLF8vPu3LlCt7e3k79uZRKJcuXLycjI4MTJ05w4sQJRFHkWmkTb+64btEZ5c0d193tRd38zSIIglVnO0fCU2trK3q9nqCgIAoKChAEgcbGRkaPNpUZXLlyhcjISHx8fAgMDKSwsBBBEFi+fDlqtRqDwYBKpUKn06FUKuUMV0D+vzQ2SN1k9Hq9PG4qlUqrMVSv1xMRESEHU+bPn2+zO44gCDTXVbtY+GXdpa3/eW3NI4IgEBgYaCFauLr4lEoWIyMjUalUKJVKOahi3llHrVbL91c6T1NTE/fu3ZNFPOmcBoOB+Ph4q0CItIAVBIHIyEi0Wq3NsjvzAIEUxVYJIp6Cns+3bbUZnTb/3Oj1ehc9ouDVqTGUl5ezYMECurq6KC8vR6PRMHz4cL799lsEQWDx4sVcv36dP/7xjxgMBnx8fPj5z39OWloaBw4ckIVGlUqF0WhkxYoVFk1HzBt5GI1GTp8+zdatW+nq6kKhULBq1SqbBsH5+fns2bOHESNGsHr1aqfln27cuHk8fgzlQ5PjgvjV8mQEsMomkcT054fqKTh/lEuXLj12xqteryc7O5tx48bZLZEGUzOO2tpam2V2oihSXFxsM9sJXMt4cmQZ4gwfHx+H3emUSiXh4eFWPk9qtZqhQ4fK2VqDITU1FU9PTy5dujToY0hER0czY8YMzp8/T1dXF0uWLOFWXj5nsq+7FLROSkriwYMHLjVGcUReXh4Gg4Hx48c7fF5naS7T1CbPXVfKyt1Y4haefgBqampk5bk/kujU0NDAK6+8Ihtqh4WF8cYbb5CUlMTevXs5fvz4Y3+pJM6ePUtzczMRERFOB++Kigru37/PrFmzXO4gcffuXXp7e52W2en1ei5fvszvf/97zpw5w5gxY1iyZAmAS5lSjgz5BpvxJJmaPo7PE8D48eMRRVEuWXgSKJVKli1bRkNDg2z0bs7YsWNJTU3l+PHjFgbC/TOesrOzKS0tZdiwYZw9e5bp06ezYMEC+Tnd3d3cvn2bSZMmubToFwSBuXPnsnDhQrKzs/m7Px9i9UfZnLpbZ9kZ5W4dL3yUzY4rZY95J9y4+a+JPeHJ1thaUFAAwIQJE+QyLqnMrr6+nuLiYtLS0mSPHTAZbtfW1tLe3o6HhwehoaE0NDTg5+dn5fMgYS6AmHdyk0oD+1NTUyN3sMvPz7fZ4VSlUpE6fixDFc0udWmL17Tjqfl+rOm/mLY1T0klg1LEVaFQ2AxE2Lq3Op1OLp9eunQpa9euRa/XWwlcWVlZdHd3ExUVJd+bqqoqdu3aRVPT9yJ6UlISYIqYms/TgiAwZswYpk+fjiiKVFRUOPR5kjYptgIc5qa20rjc/3nxvqIDjygREPnF9CiaC68zfPhwkpKS5I1DZmYmBw8eBEylGDt27ODrr7+WM99effVVALZt2yaX3alUKgwGA+np6XazzZqbm/n444/loFJQUBDvv/8+Y8aMsXpubm6uXPL9JLtWuXHjxj4/lvKhdWmx7Hkz3aJUV0BkbCDseXMq//7WMjIzMzl58iTHjx8fVDMJidu3b9PR0eHU3zY3NxdPT085c9icuro6Ojo65EZH/bEnPEkl3H5+fnKgY7AZT846aEdGRtrctyQkJFBaWupSMN0WarWatLQ0cnJynkgX7+nTpxMVFcUfdh7jdze72NGbyutH6lwKWiclJdHT0/NYnfbAVKmTlJRkd+0DUFhYyIULF/jZ/HHs7fdZ7V9W7sY2buHpB6C6utqmv5O56LR+/XpZdJLQarWsXLmSRYsWcf369SfSwv7Ro0dyFztPT0+HA7coipw+fZrw8HCbar89bt26RWxsrFX6vITBYOD69ev8/ve/58SJEyQlJfHuu+/y3HPP0draioeHh0uZWM5akA4mIuLj44OXl9dj+zx5e3szcuRIbt68+US9SCIiIsjMzOTChQs2jf0WLlxIUFAQe/bs+T67wSDSoVfQ02egurqa06dPExUVxe3bt5k9ezazZ8+2EKZu3ryJ0Wh0OcNNIi0tjdEzl7CvXIUIVn4BBqOICPzDwTvuzCc3f5MMJONJyqSRom+9vb0kJCTg6enJ1atX8fb2ZsyYMRbRufr6eg4ePEhAQABdXV0EBQVRV1cnZ+eAtShvHq2V5gNPT0+7kVRPT080Gg3r16+ntrbWqksemMb4O3fuuNylbQRVcuMEW+XcoijKopB52VV7e7ssrAcEBNhcANsL2EgbglOnTlFeXs748eMxGo0WYkdhYSH/9m//Rn5+vnwPJa+sF198ETCVQUulav0X+KIo0tzczOzZs1m+fDlGo9GuAOgMc1N6W+XxWq2Wzs5ORqrqeVZzn3h1h5lHlMhQRTO/WRRNik8HbW1tLFiwAFEUuXnzJhqNhqamJpqammS/DF9fX/lez549G1EU+eSTT+RSdKVSiYeHB9HR0cyZM8fmNefm5vLHP/5RnqsmTZrE22+/bbMz1M2bNzlw4AATJkxwyXfSjRs3Tw5XSt1+iPKhSXFB/HndRHL/YS7vxVTxbmQpe96fz+S4YARBYM6cOXI25q5duwY1nhqNRi5evMjo0aPtVqKAafy+c+cOY8aMsSmCFxcXo1Kp7PoBabVa+vr6rPZZ0lhunvH0NErtwOTz1NDQYHWfEhIS6OvreyyxZvLkySiVSi5fvjzoY0golUr0w9LZ1RjF6bt18rrBlaC1lPktlXAPhurqaqqrq0lJSbH7nJaWFg4cOEBSUhIZGRnyZ9VWWbkb+7hn9qeMXq+nvr7eyt+pp6fHoegkIQgCU6ZM4fXXX6ejo4OPP/540LWsUomd1MVOoVA4FJ4ePHhAWVmZlTDhiObmZkpKSmx+eY1GIzk5OXzwwQd8/fXXxMXF8fbbb7N06VI5al5VVUVUVJRL53NUajfYjCdBEGwajA/U5wlMqagNDQ2PrcL3Z/r06QQHB8vmrOao1WpWrVpFa2srH+w6zps7rvO/7vjyz3d9Gf2/vmH9xxdoUQVRVVXFggULZFNZCYPBwNWrVxk7duygfFZOVRpROrn3T6szihs3P3Z8fX0tBARJFLElPNXW1uLh4SGnyff19cmRPfOMxDNnzsiv0Wg0NDc3y0KAVqulurraSngyHx/j4+OtvI6GDBkiC0H9x9Kuri4SExNRKBSycCaJBNJzjUYjRqNxwF3aBEGQ74nU5U5CGuv6d/YEk9Df/305Q6VSsWnTJoYPH87FixfJyclBo9E4zSweMWIESqWSa9euASaxr7e31ypYolarUSqV1NfXc+rUKb7++muXr80cyftJQqvVWglcKpVKzjIWBIFwRQf/n2fCZY+oddqb/GKyL3PGD+PChQtMnTqVkJAQbty4QV9fH5GRkdy6dQtRFPH29mb9+vV4enqi1+sJDw8nKiqKLVu20NvbK2eGRUZGYjAYbGYm9fT0sGfPHg4cOCCXfK5Zs4bnnnvOpqB09epVjhw5wqRJk1iyZIlbdHLj5gfGlVK3H7J86MLZ7+hqqmXN6lVW89PEiRN5+eWXKSkpYfv27QPOuMnPz6e5uZnMzEyHzysrK6OtrY1x48bZfPzhw4fExcXZrQyQrru/6NNfeFKr1YMqKXYl40kyGO/f9To8PBxvb+9B+zyBKQg1adIkrl+/brHGGAzXSpv4v0+VYvq0WX7+nAWtBUEgMTHxsXyecnJy8PHxkT0b+6PX69m9ezceHh4sX77csvutWVm5G+e4Z/enTH19PUaj0SLjqaenhy+++MKp6GTOkCFDePPNN4mOjubLL7/ku+++G3CaqVRiJ0UTHQlPUrbT0KFD7X4RbXH79m00Go1F9wdRFMnLy+OPf/wjhw8fJioqip/+9KesXLmS4OBgi9dXVVU5NGE3p7u722Gp3WAzjcLCwmxmEw3E5wlMG7qAgIAnajIOpk3GsmXLqKmpsVlfHRoaiiJpJr8vUHKyoNYiclDc48n+9jg0o2fbbB9779492traSEtLG/B1yZ1RnNz2p9UZxY2bHzuuZjzp9Xq6uroICwujsLBQNjUVRZGcnBwMBgOTJk1Cp9Nx9epVvLy88PHxkRe4vr6+CIIgzz/mUV1RFC3GxrKyMqtyAPPyuf5d97y9vcnPz2fXrl0olUq8vLzkecTWmCtl4Fh2aRMZqmhhsbbQokubKIqy8FNRUeGy+C0IAm1tbQMa8/V6Pd9++y3e3t7yPGIreu7v7897770nLzTv3r2LKIo8fPgQQRAYMmQIEydOtIo8SyKWTqfj4sWLNgWz/vSfDyVWr14t/9tW6Yb0OZI2GWDanEkeUSpBZMSIEZw8eRIPDw9mzJiBKIp89913gOkzoFAoUKlU/PSnP6Wnp4e7d+8CMHr0aHbs2IFWq6WnpwdBEBg/fjyVlZWsWLHCyh+loqKCDz74QC4VDQ8P5+c//7nddcSlS5c4fvw4U6dO5dlnnx100MiNGzePh61SN4UAiR7dvBnf8YOVD927d4+rV68yf/58u93AExMTee2112hra2PLli3U19vu9tkfURS5ePEiCQkJTvcaubm5BAQEEB0dbfVYX18fZWVldv2d4Hvhqf+YLQlPkrn4YLKdAHnOd5T1FRoaatNgXBAE4uPjH8vnCWDq1Kno9Xo5EDNYNmc9ROGk1NNR0DopKYmGhgaLEnhX6evrIy8vjwkTJtgNenzzzTfU1dWxevXqQflxufket/D0FOnpM3C3pBK9KMjeQYMRnSQ8PT15+eWXmTNnDllZWXz++ecuK/3mJXZSmr4j4enOnTvU1tYyZ84clxeCoihy69YtxowZg0ajQRRF7t69y5///Gf2799PSEgIP/nJT3jhhRdslgq0t7fT3t7u8j15GubiYFooNzU1WQ3mA/V5EgSBlJQUizKNJ8WQIUNIT0/n7NmzVqaz10qb+OhGCyBYdSoxtTYX+Phmm83IweXLl4mLi7M72Tvix9AZxY2bHzO+vr6yvwPYF57MWzQXFhbKrZOlBXlycjI+Pj5y1uNzzz0nL3IDAgI4e/Ysfn5+VFZWAqYAiLSgEkXRIoOmqKjIqvSpvLxc/ndAQIDFOPv888+j0WhkbwrzBgr2OowmBSpZ4F0hZ+Cs98hhtuYhoUK7zcW/h4cHBoNB7urXfw7q/3N7e7tLwo7EkCFDUCgUVFRUcOHCBXkjEB0djVqttlh8tra2smvXLovXS+cSRVEu9+sfkBhMY4n4+HimTJli8TtRFK2y2sB0D8wXwF5eXty5c0f+uX+Eu6Wlhfz8fObMmYMoinz11Vfy39DT0xOFQkF6ejqCIHD06FEAYmJiOHPmDEFBQfI9euaZZ7h16xaZmZkWYpLRaOTs2bNs3bpVLtPMyMjgzTffxNvb2+b7PX/+PCdPniQzM5P58+e7RSc3bv6TsVU+9O8rRqKrumdlUv00aG1t5dChQ4wcOZLJkyc7fG5kZCSbNm1CrVazdetWueTZEUVFRdTW1lpl+/dHr9dTUFDAuHHjbI5L5eXl6PV6u/5O4Fh48vb2RqlUOrUMcYQUmHG0D7RnMA6m+aa6utqhQbkzfH19GT9+PFeuXBnQHGyOHLR2soFwFLSWGnsMptzu7t279PT02C2zy83N5caNGyxatMjlxAg39nELT08B845erx+pY0dvKu/uzuVSYc2gRScJQRDIzMzklVdeob6+no8++sjpYNu/xE7CnvBkMBg4c+YMSUlJdmuXbVFSUkJraysTJkygqKiITz75hN27d+Pj48PGjRt5+eWXHX5ppYHRlfsiiuJTMReH7w3G+0dQBurzBJCSkoLBYCAvL2/Q12OPZ555Bn9/f6uSu8FGDiorK6msrLSZCeWMvr4+yh7ckzManPG0OqO4cfNjRhJ4pOwYe8KTebZIe3s7HR0djBgxgocPH9LS0sKUKVNoa2ujoKCAwMBAent7aWxsxNvbG19fX0pLS2lvb5cFlICAAHmM0Gq1FuVkSUlJFkKUUqmUfZu8vLwIDg62eP6DBw9kIV36vZeXF35+flZlakqlknXr1tHR0UFmZqacgaPkey+p+vp6q6yZ/kK9FESQytke1zfv0aNH8v3w8PBAo9Hg4+NDZWUlfX19KJVKi2uqra21OOewYcPkTUVbW5tVJ1Fb1yiJL0uXLpU3Gv2baFy7ds2mZ9ajR4/kOU0ymu8vIOr1elloBNizZ4/FMa5fv05UVBRdXV387ne/k8sSBEEgISFBbpF97Ngxuru70Wg0lJeXEx0dTWNjIwALFizg+vXrDB06lFmzZsnHbmlpYcuWLZw7dw4wfcY2bNjA3Llzbc7FUrbVmTNnmDVr1oACXG7cuHn6mJcPJScnExgYKDcIeFoYDAb27duHVqtl6dKlLo0J/v7+vP7660RGRvL55587XGuLokhWVhYxMTF29zY9fQbq23vJK7hHb2+vXX/b4uJifH19CQ0NtXs+R8KTtBZwtI9xhivCE5j2VPYMxsG0d3scMjIy6Orq4tatW4N6/ZMIWms0GoYNGzYo4SknJ8euL3FdXR1Hjx5l/PjxpKamDvjYbqxxC09PmM8vl1l19BIROHW3jjWfXufcI8OgRSdz4uLieOuttwgJCWH79u1cvHjR7mK8f4mdhD3h6caNGxY+Ia5y69Yt/Pz8OHnyJF9++SVqtZpXX32V9evX20xV7U9VVRWenp4OW5tK6HQ6jEbjU8l4Cg0NRRCEJ+Lz5OvrS1JS0hM3GQeTh8jSpUuprKzk6tWrwONFDq5cuUJgYKDLpZVSl6YjR47w61//mq8PH2SET6/TtrxPuzOKGzc/VqRuKf2Fp/6ZQhUVFSiVSmpqalCpVCgUCmbOnAmYRKQhQ4awb98+ABYtWsSJEycYN24cs2fPpqKiAo1Gg9FoxGAwoFQqaWlpkRfx/YUnb29vi6YV5o95eHjg6ekpZ8YAVuW9I0eOpLu728K7Cr43AZd8fqQAiSAI8mNDhgxBr9cze/ZsWURZtWqVRYmd+bjZ3Nz8RASK0NBQXn/9dZRKJT09PaxevZpf/OIXcklbX1+fRYe//pSUlFhkONkb280zR7u6ulizZg0pKSno9Xo8PT2tsmo9PDxszi9+fn4W59BqtcTGxlpcozQnSp8lyfdKoqmpidbWVk6dOmVRevnMM89w9+5d0tPTKS0tJT8/X74H8fHxspi1YMECuWX1888/L68lpDJ6aWMTExPD+++/T2ys7bIcURQ5efIkFy5cYO7cucyYMcPm89y4cfPjQKFQkJmZSUFBgcslbYPh7NmzVFZW8vzzzw9IjPHw8GDt2rUkJyezf/9+srKybI7J5eXlVFRUkJmZaTWPmCcMTP7nU6z8qpRLijGUdtjeJj98+JD4+HiH85E94am9vV0Wnh4n40laT7jS2c6Wwbivry9hYWGP5fMEpk6lY8aM4dKlS4PqNOjroXK6b5AQsB+0TkxMtGkd4IimpiZKS0ttikq9vb3s3r2bwMBAnnvuOXdw5AnhFp6eINdKm/jHQ3fsdvQCgfPdQ6jSeTyR8/n4+LB+/XoyMjI4deoUO3futNgggO0SOwlbwpNOp+P8+fOMHz/eZjmcPR48eMCdO3dkn41169axYcMGK4NYR1RXV7tsLO6sBenjDBBqtZrg4OAn4vMEJpPxmpqap5KmHBsby+TJkzl9+jRNTU2Djhy0tbWRn59PWlqaU2PXtrY2Lly4wB//+Ee2bt0qt3V/9913+dXaWU7P/0N0RnHj5seIPeHJPONJFEVaWloIDAyksLAQtVpNUlKSxWKqurqa8vJyhgwZQl5eHoIgMH/+fMaPH4+Hh4fFAlMSkiTxv78X0aNHjyzGM3MjV6PRaLMrD5iEjVmzZnHv3j2bi3xJ+JLS+KUmCzNnzpTFkYqKClQqFbm5ufI1f/3117z99ttW/k5qtfqxvPvMs4MaGxtlTwqVSsWwYcPo7Ox0OVoqvTdnSEEMMIlHw4cPRxRFdDodwcHBVFVVWYy39kqyzUW90NBQmpqa5HJIe/N0VFSU1Vg+dOhQNm7cKG8ew8LCaG9vR6PRMG7cOA4dOgSYhNCkpCS55HPmzJnodDqKi4tZuXKlXDK6b98+9u/fL39+Zs+ezWuvvWZ30yiKIsePHyc7O5uFCxc6bWXuxo2bHwfjx4/Hz8/vqWU9FRcXk5WVxaxZs4iJiRnw65VKJcuWLWPGjBmcPn2ao0ePWs1bWVlZhIeHWwVX7SUMFHV72uym1t7eTm1trcMyO3Cc8SStBR4n48nDwwOFQuFSxhNYl1+DqUStuLj4sQPjGRkZtLS0WJR7u4qHWsm80eFWpvb9UQgwVNFEyQPb83RSUhJGo3FAQlpOTg5ardbClxhMc9Xhw4dpb29n9erVFt103TwebuHpCeJKiZPyCXf0UigUzJkzh5dffpny8nI+/vhjOfJor8TO/LX9B+bLly/T09PDM88849L5q6qq+OKLL/jiiy8QRZFly5axceNGEhISBiT+iKIod7RzBck/w9GA/TgDqa3OdjBwnyeA4cOH4+vry40bNwZ9PY6YO3cu3t7eHDlyBB+t0uXIgXm529WrV9FoNEyYMMHmc/V6PXfu3GHHjh389re/5fz58wwZMoT169fz/vvvM2vWLIKCgtC2VZKuKsPkJmV5/5UKAYEftjOKGzc/JjQaDVqt1qHw1NjYKDekqK6upru7m9GjR3P16lU8PDxoaWmRy6gmT55MXl4e8+fPx9vbm8LCQlm86J/dKmXz9B8X+5d2mS+Se3t7LfyeJLy8vHjxxRflTEsJ80CDVFYtiiIKhUI+7/Dhw+Vxpre3l4SEBIqLi9FqtaSmptLd3c3u3bvR6/UW96Wvrw9RFAkODrbrGWSPwMBAfvnLXzJ79mz5mgoLCzEYDOj1ev73//7f/OY3v7EoFbDlV2VOWFiYzTIL82vOy8uT33draysVFRWyD4bRaEQURYtjuJLtK815oiiSnJxslZllNBoRBIG6ujoLceyFF15g9erVFBQUyH/jBQsWcPPmTaZNm8bRo0fp7e2VOwTdv38fgLS0NGJjYzl79iwzZswgISGBiooKPvzwQ3mT4enpyRtvvMH06dPtzvuiKHLkyBGuXbvG4sWLB9XAwo0bN/85KJVKpk2bRl5e3qAMnB3R0dHBgQMHiI+Pd9ppzhGCIDBr1iyWLl3KrVu3+Oqrr+Sxrrq6mgcPHpCRkWExRjlKGDCK2OymZu7B6Agp2OGs1G6wGU+CILjU2c6ewTiYyu3a29utvGIHSkREBMOHD7ebbeaMTZnxGJ1ErUURno334PDhwxZZ2hIBAQFyQxZXMBqN3L59m7Fjx1oJS1evXqWgoIBly5bZbfrhZnC4hacnxJMwR3sckpKSePPNN/Hy8mLr1q1cu3aNM2fO2Cyxk+gvPHV1dXHp0iUmTZpk0dXIFrW1tezcuZNPPvmElpYWgoKC5A3FYLKNJB8TV43bJOHpaWQ8wffCU/8BdDA+TwqFgpSUFO7cueOw+8Rg0Wg0LF261FQmkXvLpciBebmbTqfjxo0bpKSkWGQ7iKJIZWUlR48e5de//jX79u1Dp9OxePFifvnLX7JixQqLVONHjx5x+PBh5g3z4FnNfWYkBFh0Rpk3Kpw9b6b/YJ1R3Lj5MeLr6ytnsEjCgLlYIW3mpYwfpVJJTEwMubm5pKWloVKpaG5uJjExkbNnzzJs2DDGjx9PY2MjBw4ckEUZaWxXKpUYjUa++uor+RxKpdLhGCmJLj09PVZZtAAjRozg008/tTAl1Wq1vPDCC/LPjx49sij7kkQ2KYNKes+Sv4S3tzdz5sxBqVRSUlJCT0+PzShjR0fHgBeCa9eupbGxUQ4miKJosRmwl7HVX7wzRxJ2+l+jLTFKqVSiVCq5evWqfF5J8DMXm+yV95n/rcrLy+VraW5upq+vz6rduCAIVpvD0aNH09raSnZ2NmAqc8zPz8fDw4OOjg55MxUXF8e9e/cQBIEJEyaQkZHB/v37iY2NZfr06Zw7d46tW7fKn+GEhATef/99h0Ejo9HIwYMHuXXrFsuXL2fixIl2n+vGjZsfJ6mpqXh5eXHx4sUndkxRFDlw4AAAK1aseCLlTCkpKaxZs4by8nK2bdtGe3s7WVlZBAYGMmbMGIvnDsYT9eHDh0RERDgNgAiCgEajsZhr+vr66O7ulsunH0d4AtN6wpnwpFQq5UBWf2JjY1EqlY9dbgeQmZlJfX39oHyWJscF8avlyQhgtX8xD1q/t2YxWq2Wffv22cw6TkxMpKioyKWSvwcPHtDe3m5VZldRUcGJEyeYOnUqo0ePHvB7ceMYt/D0hPgxdPQKCAjgtddeIzU1lWPHjnHp0iUyMjLspuL3F54uXLiAKIoOuz00NDSwd+9e/vznP1NXV8eKFSt4/vnnaWpqeizjtYEYi4NrpXaPm/HU09NjVZYyGJ8nME2EOp1uUGmorhAfH09KSgonT57kpQlhTiMH5uVuubm59Pb2yt2U2tvbuXjxIh9++CFbtmyhqKiISZMm8c477/D666+Tmpoqt3eXaG9vZ9euXURERNDV1UXmiEi2bcq06Izy53UT3ZlObv7mMV8o6vV6BEGwEDWkBWBjYyMajYakpCTu3LmDKIoWXX4CAwNpb2/nueeeo6+vj127dqFUKuns7LTI1pHGwaamJtnM2vz7a35uadEvPc/eGJqTk2PxWHR0NIIgsHPnTvl3KSkpxMTE4OnpaTGOHjx4kJqaGvR6PaNGjZLF+KamJhobG5k4caJ8/d3d3SgUCovrtZeFpRcFukUVetF6E/HRRx/x8ccfy/5FtlCr1Vb3zVx8GjlypEVARq1WExAQYNXJx1Znn9DQUAwGA/n5+RYeWQEBARabAXsZp/3/DkajkaCgIB49ekRcXJyViCY9X/p7SpH3Q4cOyY+NGTOGnJwcIiIiuHLlCmDy6igpKUGhUDBy5Eiee+45Dhw4gCiKzJ07l+3bt3P27Fn52IsWLWLt2rVWwpc5BoOB/fv3k5eXx8qVKxk/frzd57px4+bHi1qtJj09nVu3bjn0wBsIWVlZPHz4kJUrV1qVVz8OCQkJvP7663R2dvLxxx9TUFBARkaGZWnzIBIGRFGkuLjYaZmdhFartRifpbnQz8/PJa9aZ7iS8QSmDGRbGU9qtZqhQ4fKgYfHITY2lpiYmEFnPa1Li2XPm+nMGxVuN2jt6enJqlWrqKqqsuj2KpGUlERXV5dLVSnS/Gee8NDZ2cnevXsZMmQIc+fOHfB7cOMct/D0hBiIOdrT7OilUqmYP38+vr6+CILg0AzQXHhqbW3l2rVrpKen21Txm5ubOXjwIB9++CGVlZUsWbKEt99+m3HjxpGbm4uXlxdJSUmDvu6qqiq8vb2t2nrbo6urC5VK5bDu9nGFJ+CJ+TwFBASQkJDAzZs3B31Nzpg/fz5arZaq2xf41bIxTiMHk+KCEEWRK1eukJSURFVVFV9++SX/8R//wdmzZ4mIiGDdunW8//77zJkzx26WgV6vZ/fu3YiiyIQJE2hsbJQNY807o7hx48Yy46l/ORmYuml6eXlRUlKCTqdj1KhRXLt2jbFjx1JQUCCPO9euXWPmzJkEBQVx5MgRmpqa6OnpkUUaQRDw8vKSx/jp06czadIkwCToSOOjebmy9DvzOcOR55skaKSmphIdHS37OAEkJydTVlbGrFmzLAQdQRCoqKhAoVAwf/58i2OdOXOG9PR0DAaDLJoYjUa73kcAtUYfvtMlsKM3lZ29E9jRm8p3ugRqjd9vYuy1efb29pbfv8FgICAgAKVSiUql4r333uO5556TM5LMS9SkYz58+NCqJM9eyYI0V12+fBkwzQmdnZ3yRkShULhk3CuZs3d0dCAIgs2ORNJYLf09tVotDx8+pKSkBG9vb9RqNVVVVSiVSnnDoVKpaGpqQqVSERcXx8qVK8nKyqK0tJSUlBS2b9/Oo0ePANNn+M0332TKlCkOMxT0ej179uzh7t27vPDCCyQnJzt9f27cuPnxMmnSJDQajVWTicFQXl7OmTNnyMzMdFq2NhjCw8PZtGmTPGf2L2UeTMJAbW0tnZ2dgxaepLnfz8/PJcsQZ3h7e7skPEVFRdHQ0GDTeDshIYHS0tIB7WnskZmZSWVlpdNu6/aYFBfEn9dNdBi0jo6OZvbs2Vy8eJEHDx5YvD46OhpPT0+nWVcdHR3cv3+flJQU+XdGo1H2LFy1apXTcns3g8MtPD0hXDVH+yE6ep09e5auri5efPFFBEHgk08+ITc31+p5elGgXS/Q02fg7NmzaLVa0tPTLZ7T2trKkSNH+OCDDyguLmbhwoW8887/v73/jo7qvvPH/+e9UyXNqEujgjpCXYAA0UTvHRsbMKbEPbaz2U++2ezndz7nt7vf3fw+e06yG282WSdxi6k2NtVg0zsCUYQKKggJVdR719R7f39M7psZjSpoANuvxzk+RtLMnTsjuOX1fpWfISUlBTKZDBaLBXfv3kVSUtIT/SOV+juNNM12uIZ8T5qu6+7uDpVKNWZ9ngDrzVlNTc2A2xwLarUaq1evxoMHD5Dk0jHsyoEoirh16xaam5tRXl6OgwcPoq+vD6tWrcIvf/lLbNiwAVFRUUPeeIqiiO+++w51dXXYtGkTMjMzERkZOaIphoT8GGm1WrseT7aBJ4PBAIPBAA8PD5jNZshkMoiiiM7OTkydOhXnzp2DTCYDz/NQqVSYNWsWbt26hfz8fFgsFtZYXKFQYMaMGezCFgALVACwm342ENsMpcFS1r28vFjg6MKFC6isrMT48ePZz6ULQl9fX1gsFnYciYiIgCiK4DgO6enp7P0bjUaUl5ezksD+CwehoaEOK8NFZj+cMMagSvCACOt7E8GhSvDACWMMisz2ZW/9j2UGgwETJ05EbGwsVCoVIiIioFQq4e7uDi8vL0ydOpX1R/T29sbEiRMdtmGb7h8bGwvA8fzT0NDAgl/Sz5qbm+0u9AVBYIEd20an/X9PSqUSZrOZTSwcaIFF+r1L+6pQKHDgwAEWtIqIiEB+fr7d65vNZiiVSgQGBmLTpk2oqqrC5cuX4e/vj/T0dNZjKz4+Hn/3d3/HFmcGI2XhPXjwAJs3b3Zo3koI+f5RqVSYMWMGsrKyRhTwGExfXx8OHTqEcePGYcGCBWO4h44MBgN8fHzw5ZdfIjc3l31/dNPUROz5/BN8++23kMlkIy73HizwpNVqh63cGImRZjwN1WA8KioKJpPJbuHocUVHR8Pf3/+JyzGHW7SeNWsWxo8fjyNHjthdr/A8j+jo6GEDT7m5uZDJZEhKSmLfu3z5MsrLy7Fhw4YRJ0GQ0aPA0xgaSXM0Z0/0sp1iFxMTgzfffBPx8fE4cuQIvv32W5jNZjY29Kfn+/BpcxTi/+UUPrjVBf+EmSxlvqurCydPnsQf//hHFBUVYfHixfj5z3+O1NRUuxulkpIS9PT02EWNR0tqLD7S/k7AyEaQPknGE8dxgzYYf5w+T4C1L4qbm5tTs54mTJiApKQknDp1CjE+igFXDmJ9ratVf/7zn3Hq1CnwPI+pU6fi/fffxxtvvIEpU6Y4lNIN5ubNm8jJycGaNWvQ3d2NhoYGGo9NyBCkwJMoig6Bp6KiIgDW7BNpstidO3cQGhqKwsJCGI1GREVFQRAECIKAqqoqnD59GjKZDGq1GgaDATKZDCtXrkRubq5dkCQnJwdff/01+1o6PvbvO+fq6upw7OwfSPH09MSrr77K+gUFBgbi/fffx5YtW9hjiouLERERgfv378PNzY1lu2RnZwOwBkPu3LkDX19fu1It22bnUpbQQD2LGgQNMsyhsN4S2F/KWL/mkGEOtct8koJoPM/jxRdfhNlsRnR0NBYtWoS+vj7U19eD53k2cQh4NGmura0NqampQx4bi4qKoNPpIIoiPDw82DlKFEWWHSZ9tn5+fg7TlSS2ATypjFFiNBrB8zxrjD6Q/oGn3t5e6PV6TJo0Ce3t7SxLyjZjWK1Ww8vLC1u2bIHBYMCBAwcgl8vZ74Pneaxfvx4vv/zysBN+jEYjvvzyS1RUVGDLli2Dvk9CyPdPamoqeJ5nx//RkiaGGY1GbNiwYdhJyk/i+vXrUKlUeP3115GcnIyjR4/i8uXLEEVxVAkDs0LdEBMVwXr7/dd//Rc++ugjnDlzBiUlJYP2bx0o8KRWq6FUKoftVTsSUun+cPc7fn5+kMvlAy6Y63Q6uLm5jUm5HcdxSEtLw4MHD5wyydv2daT+xYcPH7ZbIIuOjkZDQ8Og5aCiKCI7OxtxcXEsgeHBgwe4cuUK5s+f75TsO/IIBZ7G0HDN0QARiz1bEO8/spv60Rpoip1SqcS6deuwZs0a5OTk4P3ff8XGhkqHKUEEqgRP/L9XO/DXqyU4e/Ys/vCHP+Du3buYN28efv7zn2PmzJkDXmzm5OQgMDBw2NXPoXR2dqK3t3fE/Z2A4SdBjEWDwsECT4/b50kmk2HixIm4e/fuoKUfY2H58uWQyWQ4ceIEO7l6u8pRVnIfX375JT744ANcuHCBpR2vWbMGS5Ysga+v76hep6ysDGfOnMHMmTORnJyMK1euICwsDGFh1DyckMG4u7vDYrGgr6/PIfAkTRJraWmBxWJBcHAwqqqqMHXqVNy4cQMqlQrl5eVISEiA0WhkfZ14nofBYADP81iyZAm+++47eHl5Yfny5QCsx56+vj7Mnj2bBUCkC7X+xyIXFxe7i9j+WTUymQxKpRKffPIJ2traEBwcjFdeeQUeHh7gOI5l6DQ3N2PChAnIy8tDUlISXF1d7QJMUkCnvr6eXZhL+yaR9k0URXR3d9tlcBWYdeAw9MU2BxEFZsceh4IgIC8vD35+frh+/Tp8fX0RHh6OpqYmiKJoF3hqbGxkn8nHH39sVwbY/zyjVqvZOaOjo8NuLHj/G5Pu7u5BV2WlACRg7X1l+/mLojhgU9X+JZvSYwHrZ+3u7g69Xg+O42AymeDn58c+X1dXV7i6umLr1q2Qy+X47LPPoNfrYbFYe5p4eXnhvffeG1F/JoPBgH379qGmpgZbt26li3hCfmBcXFyQmpqKzMzMAYdPDOfWrVsoKirC+vXrRzTJ83H19vYiKysLqampcHV1xdq1a7FgwQJcunQJx44dg8ViGXHCwC9WTMTSpUshCALmzZuH9evXQ6fTIT8/H1988QV+85vf4PPPP8elS5dQWVnJjtEDBZ5sJ9oBT57xJDUpHwrP84M2GOc4DpGRkWPSYByw9g/09PQc0yb0A3Fzc8OGDRtQWVmJq1evsu+PHz8eHMehpKRkwOdVVVWhpaWFJUx0dHTg8OHDiI6OHrLHMRkbFHgaY0M1R/vslURM4Buwb9++Aetsn9SlS5cGnGLHcRxSUlIwdcUmnG7xGHBsqPi3S/h/O3Ef394oxKxZs/D3f//3mDNnzqCNQ6UL58Eaoo6UFIEfTeCpr69v2LroJ8l4AqyBp/7lEJLH6fMEWMvt9Ho97t2790T7NhRXV1esXLkSRUVFuHbtGk6ePInf/e53OHDgAHp6erBixQr88pe/hLu7OzQajV2q6Ui1trbiwIEDiIyMxOLFi9nqBmU7ETI0KajR1dUFi8ViFzCoqamBXC5Hb28vZDIZGhsb4e7ujvv377OG0iqVCitWrIBcLofBYIAoijCZTOA4DvPmzcOZM2cQGBiIbdu2sWOqdBGs1+vh5eU15P61tLTYfW0b5AgNDYUgCGhsbER8fDw4jmP/l9iWhuXn57Oy6Hv37g143lMoFFAoFPDx8Rnx1E+zyKFK8HTIdOpPBI8qwQvjY+IcStZKSkrQ3NyM0tJS1NTUYOrUqTAYDDCbzXZNbhsaGtiNgVwux8aNG+16J9lavXo1/u7v/o41Zx8q3X+oGzbbC+b+Ay4G0/9c1H94SEpKCu7du8eatUv9pFxcXCCXy7F9+3aYzWb88Y9/ZCvFUt++9957b0SlJXq9Hnv27EFDQwO2bdtGixCE/EDNmDEDgiCwwQQjVVdXh7NnzyI1NRUxMTFO2jsrad+mT58OwHovNHfuXLzwwgu4e/cuvvjiCyQHug2aMMBzsOuJKgWUEhISMHHiRKxfvx6/+MUv8P7772P58uVwc3PDzZs3sXPnTvzmN7/Bvn370NHRYZeR1NXVZRd4Gq5X7XCkc9WTNBgHrAOK6urq7CbVPi6e5zFr1iwUFhY6XE+MtfDwcMydOxeXL19myQBqtRphYWGDnn+zs7Ph5eXF2qYcOHAASqVyzKYqkqFR4MkJBmuOtig5HNu2bUNLSwu+/PLLMc16sS2xG2yK3ZF7HZANk9LKcxx6Q2dgwYIFw5Zb3b17FzzPP1bgwlZtbS00Go3dKvNwnN3jCQArmRio4evj9nny8fFBeHi4U8vtenp60NHRAZVKhfPnz6OgoACTJ0/Gu+++izfffBPTpk2DKIq4e/cupk2bNureXAaDAfv374erqys2bNgAjuNw5coVjBs3jt1wEUIGZht4kvo4Adab/K6uLqhUKnAch/Hjx6OgoADJyckoLCyEq6sr6urqsHLlSqSnp7NAgxQYmj59Oi5duoTIyEi8+uqrKCwsxM6dO+0uarOzs4ccAc3z/KDHztDQUFRXV7ML6MmTJ8NisTj0c5MWPVQqFaqrqwEAFy9eHDTt3WQywWQyjeoC1QQZ6+k0HBEc8opKHLKE5HI5ey+ff/45Ox8bjUb2O9Lr9WhsbGT7xvM8wsPDoVKpoFAoHJqeHzp0CD09PUhOTra+9hCLHzzPQ6FQDFhmYhuMtP19SM3OR3J+EwSBvb5SqWTT6CwWCwsAKhQKcByHbdu2oaqqCh9++CHrQSKXy/Hyyy9j3bp1A2ZT9dfb24tdu3ahtbUV27dvpz5/hPyAubm5YcqUKbh58+aIF9INBgMOHjwIf39/LFmyxKn7ZzAYcOvWLUyZMsUhoyg5ORlbt25FTU0NPv/8c6yN83JIGOAARMg78dXbM7B1ujWAXlpaCq1Wa1cdwHEcfH19MW3aNGzcuBG/+tWv8NZbb2HevHkQRRF1dXVoaGjAf/zHf+DAgQOoq6uDUqmEKIojahkynNEEnoKCgtDS0jJog3EAAw6reByTJ0+Gq6vrmDShH87cuXMRFhaGw4cPs8BZdHQ0ysvLHe6z9Xo9uyfiOA5nzpxBfX09Nm7c+ERN3snIUeDJiQZqjhYQEIAtW7agpqYGBw4cGDBlfrSkErvAwEBWYtffSMeGCiJw/n4z9Kah90sUReTk5CA2NvaJ/7HW1dWNKtsJGFmp3ZNmPEkBvLHs8wRYV54rKysHnX70OCwWC4qKirB//3588MEHOH/+PMLCwlgj2SVLltgFJO/cuQNRFDFlypRRvY4oijh8+DA6OjqwefNmuLi4oLy8HNXV1Zg7dy6tFhAyDOlCUQo8STf1tbW1EEWRBQykoEBlZSVEUYQoioiJiYHZbGaT0SSTJ0/GjRs3kJCQgBdffBEnT57EsWPHkJSUZHdO4Hl+0D4OHMfZBSv6e/jwoV0vv6KiIvA8j6CgIIiiiOrqapw7d44FY2wvbuVy+ZB9PHieH1WfDwUsw5bZSTiIUMCCgIAAu15Dtu/TYrHgm2++YV/n5ubiyJEj+OMf/whRFJGSkgJvb290dnZCr9dj3LhxdtlEUhaZKIrYvXs3u3iXjoe25WZSlpQgCKxhd3+225Z+LpPJcPPmTZjNZrz33nt2ZXzDMRqN8PLyYkFNqbk7x3HYuHEjrl69yqb5ANZ+IO+//z7i4+NHtP3u7m7s2rULnZ2d2LFjx6jP54SQ759Zs2bBZDLh9u3bwz5WGkTT3d2NDRs2jCiY/SQyMzNhNBodBiZJIiIi8Prrr0Ov1+PTTz/FOLXRLmHgwnuTMFdWDB+hnT2nrKwMUVFRQ17nSufE2bNnY+vWrZg9ezbc3Nwwbdo0dHV1oaOjA4WFhfj973+PgoICcBw34qzWgdheTwxH6qM7ULmdVquFv7//mJXbyeVyzJgxA7m5uU/0/kZC6tlosVhw9OhRu2ul/tc70iCWSZMmIT8/H7dv38ayZcvonPUUUeDpGQgNDcWmTZtQWlqKo0ePDjo1aKSkErt169YNevH+OGNDh1JTU4OmpqYnaioOPF5jccD5zcUB6yqxl5fXmPZ5AsAa2o1F1lN9fT1OnTqFDz74AF999RU6OzuxbNky/D//z/+DV155BatWrUJ+fj7rHQNYb7Ju376N5OTkIbMfBnLx4kUUFxdjw4YN8POzToy6cuUKAgMD7RriEkIGJpPJ4Obmhs7OTrvAU15eHgDrsU0mk6GiogLR0dF4+PAhXF1dYbFYkJqaahcgAaylUtnZ2UhJScHChQuxe/du5ObmYs2aNVi7di2Cg4PZY+2mmIkc+kQ5zKL1Inq4G4FNmzZh5cqVLEOrsrISnp6eOHHiBP7zP/8Tn3322aCrm2azmZ3nbPsj2U7ZG+48KJ3bOI6DnBMRyrcPG3yScUAo3w45Z11dth2B/e6772L58uUsEGR7M9HW1oa7d++yvhlZWVmsufknn3yC5uZmu0WjiIgIlllmNpvZFNlVq1YBsPaUkAKJtgG5WbNmOby29Hn0Z7FY0NzcDDc3N7S3tw/5vvsLCQlBW1sbK82UXnPJkiU4evQo+7sHWBdG3nnnHXh6eo5o252dndi5cyd6e3vxk5/85In6PRJCvj/c3d0xadIkZGRkDFvBkZOTg7y8PKxevXrEE+Eel7Q4M3HixCGnk/n7++ONN96ARqPB559/jtLSUpYwED4uCD4+PuzY2NXVhcbGRrtzyEi4uLjAbDZjwYIF2LFjBwBrc/b4+Hh0d3ejo6MDH3zwAT788EOcOHECRUVFDpm0Q5HL5VCr1SPKeJIajA/W9DsyMhJlZWVPfO8kmTZtGuRy+WM3oR8NrVaL9evX48GDB8jIyICPjw+8vb0dyu2ys7MRHR0NvV7PFuemTp3q9P0jjzg35EwGNX78eLz44os4dOgQVCoVVq1a9VjZIlKJ3YIFCwYtsQMejQ0dSfCJ56yPH0pOTg7c3d2fuLSqo6MDfX19o4o2S6UZzi61A6yZTbZTlmyFh4fjwoULDg2ChyOXy5GcnIzc3FwsWrRo1KVuvb29uHv3LnJzc1FfXw83NzdMnDgREydOdLjoT05ORkFBAb799luEhYVBrVajsLAQXV1dmDFjxqhet6CgAFevXsWiRYswYcIEANabz8rKSmzatImynQgZIWmynW2Pp8rKSvZznU6H2tpaNvq4t7cXixcvxvHjx+0CHt7e3mhtbcW0adMQExODjz/+GEqlEq+//jqCgoLQ3t5ud9HH8zzqzK4oMOv+1iOJAwdrECdBaICOH/zmITIyEr29vdBqtejo6EBNTQ0Aa5BGulAdaBqeWq2262fUv1G2SqUadEKbXC63+77Ut0gulyNBaECl0XPwDxnW812iooFt69SpU+xnDx8+xPTp0zFx4kR88cUXdqOkTSYTeJ5HVFQU6urqsGnTJlRUVOD8+fPQ6/UONwaDLSJIWa1msxleXl5oa2uze1/SRX5wcDD7PPvr36upqakJ+/btA2Dt57d+/Xp8+eWXA94smEUOJsjAyZUOP0tISMCJEyfA8zx77pIlS1gwbCTa29uxe/duWCwWvPbaa/D29h7xcwkh33+zZ89GVlYW7ty5M+g1ZVNTE06ePIlJkyY9cWuOkcjJyUFPT8+gFSC2tFotfvKTn+DgwYPYt28f1qxZw8qwkpKScP36daxatYplAo12WILUXFwakAFYy8DGjx+PhoYGKJVKJCYmory8HA8ePMDt27fBcRwCAwMRERGByMhIhISEDNkHSqPRjCjwJDUYH6xFSFRUFG7cuIHm5ma2sPwkVCoVpk2bhlu3bmHOnDlOL2WLjo7GrFmzcP78eYSGhmLChAkoKChgGb719fWora3Fhg0b8PXXX8PT0xOrV6+me5enjDKenqGEhASsWbMGd+7cwYULF0b9/JGU2ElGOjaUg4AkLxGiefAmryaTCfn5+Zg4ceITj0F93MbiwJNNghipwSbbAY/f5wkApkyZgt7eXrvpRUOxWCy4f/8+vvrqK/zud7/D2bNn4enpic2bN+MXv/gFli5dOuBKM8dxWL16NUwmE06fPg1RFHHjxg1ERkYOGajsr66uDkePHkViYqLd37UrV67A39/f6U0iCfkhkQJPtkHrlpYWFoQ2GAzQ6XRoa2uDUqlEUFAQKioq7DJddDody8Jpa2vDvn37EBQUhLfffhs6nQ7p6en48MMP0djYyI7ThUYfnDDGoErwYD2SRHCoEjxwwhiDIvOji02O49jz5HI5du7cid/97ndob293CB5J+gfgRVG0C9LYXuCJogie52E0GpGSkoI1a9Y4fE62QSdBEDB58mS4ubnBbDZDx3djprzqb+/APkNIxlnf2WLPFoS6mtlntGXLFnbxe+zYMZw6dQp6vR6bNm1yWAAQBAElJSUwm81wc3PD7NmzWV8n2x4fERERLDvI29vbbjXftiSyra2NfT5msxk8z7PAYv+g06JFi+z2QyL1BpH09vbi22+/dcgYbhA0uGCMwl5DCvYbJuHf7nnigjEKDYK1LMPLywt5eXl2E/LmzJkzqqBTa2srdu7cCVEUKehEyI+Ul5cXkpOTcf369QEXD0wmEw4ePAgPDw+sWLHC6fsjCAKuXbuG+Pj4EWdWKZVKbN68GSkpKTh27BguXLgAURSRmJgIo9GIkpISlJWVITAwcNT3HVJGrclkYv3zpB6C0kJOYmIi1qxZg5///Of4+7//e6xevRre3t7IycnBnj178Jvf/Aa7du3ClStXUF1d7ZARq9FoRtwUPDAwEFW19WjqMji0VAkLC4NMJhuzcjvgURP6W7dujdk2h7Jw4UIEBQXh4MGDCAsLQ1dXFyqqa9HUZcDNzCy4ubmhqKgInZ2d2Lhxo8MkXeJ8lPH0jE2ePBl6vR5nzpyBSqVCWlraiJ8rldi9/fbbIwoAvZkWiTMFAwdRJCJ4hBtK8eGHRVi+fDkSEhIcosHSdKInnWYHWANP0nS1kRrJCNKx6PEEWG/uenp60N3d7bCPtn2eQkNDR7VdPz8/hISEICsrCwkJCYM+rqGhgaUo9/T0ICAgAEuXLkViYuKIy+Tc3d2xZMkSfPvttyyT4pVXXhnxvvb09GD//v3w8/PD2rVr2d+H6upqlJWV4aWXXqIVA0JGQavVoq6uDmq1GiqVCj09PaxUged5tLS0sOEOJpMJ48aNs7twk0qAlyxZghs3buDBgweYO3cu5s2bh4cPH+K7775DU1MTQkND0dDQAFEU0a7wQYY+FNauR/b/XqXpcBnmUHjxfQhW6mE2m9kxdLgAO8dxcHNzg8lksrv5cHd3hyAIbDVWWnkMDg7GsmXL4OPjg48//hj19fUsi3KgbUv7UVRUBG9vb3aRHStvghffhwKzP6oEL5bBlRrsgmnu3egqK0fi1KnIzMyERqNBeno6/Pz8UFVVBVEUkZ2djVu3brHxyxLbTCu9Xo8//vGPiI2NtfsdScrLy+Hl5QWO4zB79mxMnjwZJ0+etOt7IpPJwPM8VCoV+yyGKi0cqCfG9OnT0djYiMrKSrvndnZ2orOzEzKZDKIootDogwxzKDiIDsHFSqMnZikeIqGr1e69RkREYMGCBYPuT3/Nzc3YvXs3lEoltm/fPmQ5CyHkhy0tLQ25ubnIzc1FQvIkdOnN0KrlUCtkOH36NFpbW/HWW289lZv8goICtLe3Y+PGjaN6Hs/zWLVqFby8vHDu3Dl0dHRg7dq1CAoKQl5eHqqqqpCSkjLq/ZECTwaDgQWebKfa9b+P8fT0REpKClJSUthwo7KyMpSXl+PatWu4ePEiVCoVwsLCWEaURqMZUR+l2xWt2F2mws3aMPz3v5+zTlyP1+GttEhMDfeGQqFAaGgoysrKRl0RMRg3NzdMnjwZN2/exMyZM53+d0Amk2HDhg346KOPcPRaHi6Zo7HzTzkQYb3yidVGIiKvHO9vXGu3gESeHgo8PQdmzpwJvV6P8+fPQ61Wj6jedKQldramhXvj1+sT8U9H88HznF2jcRnPQRBE/Hp9ItbFz8XJkydx6NAh5ObmYtWqVXb9HnJychAWFjYmK5y1tbWjbuomZTw9jQkEUhZRQ0ODQ+DJts/T3LlzR73tlJQUfPPNN2hra7Mbcd7b24v8/Hzk5OSgrq4Orq6uSEpKwqRJkxAQEPBY7yMlJQUFBQW4cOECvL297ZrsDsViseDrr7+GxWLBpk2b7NJ9r1y5Al9fX8TFxT3WPhHyY6XValFcXAy5XA65XI78/Hz2Mzc3N1gsFvT29oLjOMTHx9sFnTQaDdra2rBw4ULcuXOHZRRFRkbi2LFjyM3NhZeXFzQaDR4+fIgpU6ZAEAT81+1uu2DEQDgABWZ/6PiBG5AD1oC/FPwfN24cWlpa0NfXh56eHocANMdxbDXWthwvICCATT1bt24ddu3ahYMHDw74elJmFGA9HkklcdHR0SgpKYGO74ZO2Q2Rl0NvAXw9NIgeF46HDx9CqVSy1dvExERcv36dHdP9/PwgiiLGjRuHnJwc9noqlQqzZs3C5cuX7QI89+7dY0Ew2/JrjUaDd999F3/+85/R3NwMjuOwYsUKZGZmsvccFhaG6dOn48svv4RarXYo1UtMTLT7O2C7P5KysjJ4e3sjLi4OBQUFcHFxgSAIrGeUxWJBg6BBhnno4OJ1Uwg8uV6EuZqh1WphNBpHNUa6sbERu3fvhqurK7Zv3z6qRSNCyA+Pr68vXMOS8I/HH6D8UD0E0dqyY/o4V3g13Mcba5ePKsP+cYmiiPT0dIwfP37UfWMBsMUDDw8PHD16FJ2dnYiNjcWlS5cgCMKo+zsBjoEnhUIBtVo9oql2HMfB398f/v7+LHOopqYG5eXlKC8vx7lz51i5Ps/zyMrKQmRk5ID9+fbcqMQ/f5MPngM7NwgicO5eI84UNODX6xOxdXoYoqKicPny5VG3EBnKrFmzkJmZiaysrDELaA3F09MTfMx8fHizCTxcWCdIERyKuhS4h1jM6tZg8CV/4kwUeHpOzJ8/H3q9Ht999x3UajUSExMHfexoSuz62zo9DLE6LT5NL8eZwkcniCVxOryZFoGp4dZg0saNG3H//n2cOHECf/rTnzB//nzMmDEDnZ2dKC8vx7p1657o/QJgo0YHmzoxmKeZ8eTl5QWFQoGGhoYBTzqP2+cJAOLj43Hq1ClkZ2dj/vz5ePDgAXJzc3H//n2Ioojo6GjMnTsX0dHRo+4D1R/HcZg3bx527twJrVY74puMkydPorq6Gjt27ICHhwf7fl1dHUpKSvDCCy88cbklIT827u7u6OnpgUajgUwmQ0lJCfuZlM3DcRy0Wq1dOa5KpUJvby9mzJiBq1evwtvbG2+++SY+/fRT7N27FxzHwd3dHW1tbYiLi8PChQvh6+uLW3dyUG6qHjLoBEiZMV4wi9YG3hJfX18EBASwBqsSqVQMAJu8J2UL6XQ6zJ8/H8eOHcO4cePw8OFD+Pr6orm5GXl5eYiIiGBZXVKvqsEIggCdToempib22fQvgeYEM3w1blDwYA1aly1bhvPnz0Mul0Ov12PChAnssw4PD8ft27fR3NyMiIgIcByHsrIyGAwG5ObmsqBTUlISazA70DlFyoj19PREQ0MDurq6kJ6ebvfYsrIyREdHw8fHBy0tLQ7bqK6utvs6ISEB2dnZ7L2KoojQ0FC0t7ezKT22fbOkPlAFZt0IgosiypURWJmgRHZ2Nl5//fURL+LU1dVhz5498PDwwNatW0c9nIIQ8sOz50YlPryvAgcFu8kXRODGwx6IiMEskw9GNz/58RQXF6OxsRErV658ou0kJiZCq9Vi//796OzshCAIkMlkbLFkNPoHntzd3cFxHIxGI8xm86gW0HmeR0hICEJCQjB37lyYTCZUVVXh6tWrqKqqwvHjxwFY71siIiLYf4VNBvzzN/kQAVj6ncKkBIR/OpqPWJ0WUVFROHfuHKqrqxEeHj7q9zsQT09PJCUlISMjA9OmTXvi+5nh3K5oxZ9uNgMORfiPFmCk9yvd85KnhwJPzwmO47B8+XLo9XocOXIESqVy0NKD0ZbY9Tc13BtTw72hN1nsUmL7i4mJQXh4OC5evIizZ88iLy8PQUFBUCqVIx6zPJS2tjbo9fpRZzz19vaysoXBjFXpl7TiMFSDcakMZbTldkqlEuPHj8eNGzeQnZ2N7u5u+Pv7Y9GiRY81cW449+/fh1wuZw3Bw8LChnz87du3cefOHaxZs8bhvV25cgVeXl5DBkgJIQPTarUQRRFGo9FuyoztlDcAdj14FAoFzGYzJkyYgBs3biA5ORlTp07F8ePHYTKZWIAiICAAL730EkJCQtjruXn6QMTAzav7E2FtSC3Ho5K55uZm1ijb1kA9PaTvNTQ04KuvvgIAlqUkbcNgMODAgQMj2h+JbaBJFEVWtmCrf5+L06dPsz/3bwBuWwpXXl5u9zPbIJjtxLeBiKKIP/zhD+zrDz74YMDH2e5Lf/2n1ElBJ2n7AHDnzp1Bny8IAswixxrGD7m/4HG/R4WbmXewavlSu6mHQ6mursa+ffvg7e2NrVu3PpWMY0LI8+12RSv++RtrtqbYr22wdCz6p28KEBvg7tSbfCnbKSQkZNhr25EICwvDG2+8wQY5SNnJo2UbeOrq6mJldmPRq1ahUCAqKgrd3d2orKzEL37xC7uMKOmcd42LB8e5Yqi1eJ7n8Gl6Of78agpcXV1RWlo6ZoEnwNqE/u7du8jLyxuTNi1D+TS9zKGqpz/p/VLg6emjVIXnCMdxWLduHSZMmIADBw7YTTmSSCV28+bNe+LUVWls6EBBJ4lKpcLy5cvx5ptvQhRFZGVl2WW+PAmpZ8hoU2L7+vrg4uIybHBprEaCDtVgXOrzVFxaPmCzvoH09fXh9u3b+OSTT1BQUACTycSaAv/0pz/FzJkzxzzoZDQakZWVhWnTpiEkJATHjh0bcvxtRUUFTp06hdTUVIe69oaGBhQVFWHOnDmU7UTIY5Cai0pNpqUsTo7jWNDJw8OD9W3geR4cx8HX1xfFxcVYunQp1Go1/vrXv7IsIFEUsWDBArz22mt2QSeTyYS+zlZwGNnxkIMIBQY+jrm5udmV+6akpOBXv/oVfvWrX8Hf399uyum4cePg7++PsLAwdjyTVqKlfkKpqanw8/ODj4+PXcmWdFwZqOxcJpPZNd+W9A+EzJ8/H2+99RbeeOMNuLq6gud5vPrqq+x8w/M8O4ZNmjQJUVFRkMlkcHNzg4+Pj135s7Q/g/UyCgsLQ3JyMts/nU7Hss9sz1M8zw85nehJ8CrXYYNOEkEEwqNjMX369BE9vqqqCnv27IGfnx+2b99OQSdCCIBHN/lDkW7ynamyshLV1dWYM2fOmG3T19cX27dvB2ANHN29e3fU2+if8WTbWBwYmyFJ0jYtFgvi4uKwcuVKvP/++/jFL36BFavXoaTPZdiJ5hZBxJnCehjM1pLCsWwwDoANIbp27dqY3ZsNRG+y4Gxhw5BBJ+DR+x3JPRsZW3TX+JzheR4bNmxASEgIvvjiC5RXVbOAxpOU2D2p4OBgLF68GIB1NfjDDz/E/fv3n2ibtbW18PDwGHWQZaCGfP2NVakdAFbiYTvGXHKnqh1XxVi8daYL0/79HOL/5RTe2ZuJzAr7shFpQtLBgwfxu9/9DidPnoRGo8HGjRvZjVxgYKDTmnTn5OTAaDRi+vTpWLt2LTo6OnDx4sUBH9ve3o4DBw4gLCwMS5cudfj51atX4eHhwW60CCGjI10omkwmu6agUtBJJpOho6MDgPVYplQqIZPJ0Nvbi/nz5+P69evIzMwEz/OQy+VYuXIlPDw80NHRAY7jYLFYUFJSgsOHD+M//uM/8N2xowjl2wdIPLfHQUAo32ZXZiftb3JyMry8vOyygbKysvCnP/0Je/fuRWNjo135V29vLxobGxEcHMwykaSgy9SpU7FgwQLcunULTU1NWLFihcM46KSkpAGPMRaLxS77h+M4cByH8ePHs+8pFAr09fUhKCgI48aNQ3JyMgRBwMWLF1l2mVKpxNy5czFjxgwUFBTAbDZDEATExMSgpaWFZSHJ5XKIogiZTGa3j7ZNUisrK9lNSVRUFFuo6OzsBMdxUKvVLKg4VMB/MFqtFmvWrGF/b5YvXw4ArGQhJiYG/l7uowoubli7akTnm/LycuzduxdBQUHYunXrkJnGhJAfj+fpJj89PR06nc7uPDAWbDN9jxw5gszMzFE9XzpP2JbaAWMbeJIWbfqfQ93d3RExIW5UCxJdejMiIyNRV1c34kl5IzV79mw0NzePeJr34+jSm4cNskmk90ueLiq1ew7J5XJEzViGfV9fxcd/zoEIDjwHTPTlENxlxD+/+/IzyTS5e/cufHx8sGXLFpw8eRL79+9HfHw8li9fzi6IR6Ourm7UZXbAo4ynp0Wn08FisaClpcUuy0xq1sdx9nXtts36lke5IScnB3fv3kVXVxf8/PywcOFCJCcns5NFT08PTpw4YXdSGkuiKOLmzZuIi4tj2WoLFizA+fPnER8fb1e3bjQasX//fiiVSrz00ksOtdjNzc0oKCjAypUrnV6nTcgPlZSBYzabB+z5YxvkVigUMBgMCAoKglwux4ULF8DzPHiex6xZszBr1iyoVCp0dHTg9u3b1slmhYUwGAys949cLscUZQcqOz2H3C8RHBLkjmXFRqMR69atA8/zOHLkCCorK9HR0cGGYUgXkraZoa2treB5Hrdu3YKLiwv6+vpQWVnJsn4SExNx6dIl8DyP4uJiu9eTJgydO3fOYRFBoVDYlaZJP7N9bUEQ7DKGpeN2bW0t6yel1+tx5coVpKam4s6dO6ivr2eljbavaTabERoaCkEQWNBK+kwGIr0X6RytVCrh5uaGSZMm4fbt2+x3K/1ubNm+ru2fw8PDER0djePHj8Pf3x9nz54Fx3EsKCYtAoXyrqgSPBxKXuxeAyLmRXnCUzv8gs+DBw/w1VdfISwszGG4BCHkx+1xbvKHqrB4XLW1tSgtLcWGDRvGfPG2tLQU7u7uCAwMRHV1Nb777ju0t7dj0aJFI3otmUzGegzaltpJgaexuJcZLPAEAFq1HDyHEf2eeM76eKmfbXl5+Zi205DKINPT0xEbG+uUhfbHeb/k6aKMp+fQnhuV2Pp5Jh70udpNH8hpsuBb/QScKe8bZgtjT6/X4969e5g0aRK8vb2xZcsWvPjii6isrMSHH35oN8FnJERRRG1t7WNNnngWGU+A/Y2NVNcuwvEAZxFEiAD+v0fz8M9/3IU7d+4gNjYWb731Ft59913MmjXLrqwkKSkJcrncrq/HWCopKUFra6vdNImZM2ciICAAx44dYz1ZRFHE0aNH0drais2bNw/4Gaenp0Or1WLy5MlO2VdCfgykxuEWiwVtbW2DPk6hUMBoNCI4OBg1NTWoqqoCx3GYPHkyfv7zn2P+/PloaWnB6dOncefOHRiNRmRnZ8NgMECpVEKn08HHxweCIMDD2IyZ8ipYw0v9Ah5/+/rf1iRg8cQIh/0wGAysT9PDhw9Z7we9Xs+GQ0RGRkIURbvyOJ1OB7PZzC4wc3JyIAgC/v3f/x1//vOfwfM8ZDKZ3dQ+wBrsuXPnDpvuFhMTw35mmzHk7e3NLuSlPnxKpRIWiwX19fW4du0azpw5g7Nnz7KfSRlbHMfh6tWr+P3vfw+DwcCmw+Xm5rJzh7Ra3dPTA29vb/b94RZ+OI5DVFQU5HI5AgICEBAQgMWLF9uNb+4fdAJgVyLZ//tShmpjYyMsFgtEUYTBYLC7eE+QN4yogfzPFg/fo7GoqAj79+9HZGQkNm/eTEEnQogd6SZ/JJx5k3/t2jV4e3uPSe/Z/srKyhAVFYXk5GT09PRg9uzZuHbtGg4fPjxgj8OBqFQqdHd3QxAEu8CTTCazy5x9XC4uLuB5fsDAk1ohw5J4HWTD/KJkPIel8QFQK2TQarXw9/cf83I7AEhLS0Ntba1DX8Wx8jjvlzxdFHh6ztgGNPqnr9p24+9fyuVs+fn5sFgsmDhxIgDrhXVSUhLef/99xMfH47vvvsPnn38+aBPu/lpbW2E0Gh8r46m3t/epZjyp1Wp4eHjYBZ5GVNcOoF2Xgl/+8pdYuXIlgoKCBozwq1QqNsXIGbXPN27cQHBwsF1mE8/zWLduHVpaWnDlyhUA1obh9+7dwwsvvMCCbbba2tpw9+5dzJo1a8zGrBLyY6XVamG0iGjrM8MsOh4XZDIZRFGEi4sLm3o2fvx4vPvuu5gxYwZu3ryJDz74AJ988glu3LgBvV7PnieTyWA0GlFXV4eWlhaIoggvLy/EypuwUnkfM8a5srIsDiIiFN14P8aA7bMiBi2hPX78OCorK9HW1oaoqCgWiCgpKUFDQwPrj2Q7FMNisSAyMhLTpk2Dm5sb4uPj4efnh0mTJsFsNiMwMHDAY55CocDZs2fZdDwp06j/cae1tdWhybhtJtL58+ftPhtfX1+2DR8fH7i6usLX1xevvPKK3TakAFFUVBTb16lTp7Jg0UDNUaWSP8AaxC8uLobBYIDJZILJZMKlS5cG7RUosT1/2n4uOp2OBeH6s8081fHdQwQXRQAi/n/rEoZtqFpQUIADBw4gJiYGGzdupOM9IcTB83CT39zcjMLCQsyaNWvMK0E6OzvR1NSEqKgoREdHQ6lUQqFQ4OWXX8a9e/ewZ88eu/LywahUKlZSL1WHjLRX7UhwHAeNRjNg4AkA3kyLhDBMCpAgiHgz7dGiU2RkJMrKysb8niQqKgoBAQFIT08f0+3aepz3S54eCjw9Z56XRn395eTkYPz48Q4ldS4uLli7di1+8pOfoLe3Fx999BEuXLgw7EqA1Fj8cUvtnmbGE2C98JduCkZa1y6Aw43qXpiGbqsCAJgyZQo6OjrGfIWhoaEB5eXlmD59usMJTqfTYc6cOUhPT8f169dx6dIlzJ8/H3FxcQNu6+rVq3B1dcWUKU9jMC4hP1y3K1pxpMkXew0p2G+YhL2GFFwwRqFBsG+wbTab0dfXB39/f7z00ksIDAzE3r178eGHH+LatWvo7u6GTCazu+CWSrnGjRvHmo3/n//zf/D6668DsAYn/nGWN7aqsvC2Xzm2qrKwLUKPvqp8tLa2sswf2wwXpVKJtrY27Nq1C4C18bkUnM7Pz4dCoUB1dTWSk5PZ8ziOQ2NjI6Kjo1FbWwuO41BfXw+z2Yy8vDy4u7tDr9cP2PPI9nv19fUsuNT/vCIFXfqX/UqfhyiK8PHxwf/6X/8LMpkMycnJWLZsGQBrxtGGDRvQ3NxsN7lu0qRJSEhIgEKhQFFREWJiYtDR0cEC9DzP2x2npdfSaDQQRREcx9lNVaqurkZ5eTnS09ORlJQEAINOXdLr9QMuqnz++ecQRdHu96zRaODq6moXaON5HgmqVqxU3sckX55lI3AQMV7dgy9en4atM8IHfG3J3bt3cejQISQkJGDDhg1UUk0IGdSzvsm/du0atFotWxQfS2VlZQCAiIgIKBQKxMXFIS8vD3FxcdixYweamprw2WefDZm1DFgDT1K/JNuMp7Ho7yTRaDR2/SJtTQ3zwouhJgCiQ5BQxnPgAPx6faLdgkRUVBQ6OzsHnGb7JDiOQ1paGsrLy1FTM7JJu6M1Ldwbv16fCA4Y8fslTw8Fnp4jz1OjPluNjY2oqakZcgRmWFgYfvrTn2LOnDm4fv06/vznPw+ZSllbWwtPT8/HylwaScbTWNcO+/v7s9Xq0da1/+aD/8auXbtw8uRJZGVlobq62qE/SHBwMPz9/R1Gfj+pmzdvQqvVDpqCPGfOHHh5eeHcuXOIjY3F3LlzB3xcR0cHcnNzMXPmTCq5IOQJ7LlRiY0fZaCwU87KokRwqBI8cMIYgyKzHwBr8MXV1RXx8fEwGo04ePAgrly54pDhY7FYIJfLER4ejnnz5gGwNp9+4403MHfuXISGhkIul0Oj0cDNzQ0KhQIdHR1wVSng7SqHnBPR2toKV1dXZGRkOASepH5SgiCw4+7OnTtZb6qSkhLwPI++vj7k5uZi9+7d1vf0t8D/6dOnUVJSgu7ubrS1taGjowOiKMLd3X3A/lb9zzPSRf+LL75o932pibr0GdiyLYnr6OhAb28vvLy80NbWhsjISADWbClRFKHRaJCfn8+eW1dXh4aGBgQGBkKtVqOiogKBgYHsfCYIgt3vYPr06eB5Hnq9nk2xq66utssSko739+7dA2CduDfYqOqBSvBsf8bzvDVbzmhkfUIAa9mhtM1oTx5f/d0SFP7rcvz7NBE7XHOx5515mBXtmMlqKysrC0eOHMHEiROxfv16mlpKCBnSs7zJ7+jowN27dzFz5kynZGWWlpYiKCiIBYiSkpLQ0tKC+vp6hISE4I033oAgCPjss8+GDKKoVCr09vaC53k2TGkkC+ijodFoBm0GnpeXB/fGXPx2SQCWxOnYggTPAUvidDjwzkxsnW6/GBIWFgaZTOaUcru4uDh4e3vj2rVrY75tydbpYTjwzswRv1/y9FD+9HPkeWnU119OTg5cXV3t+mwMRC6XY/78+UhMTMS3336L3bt3Y+LEiVi6dKnDAba2tvaxsp0sFgsMBsOIDthjnfHU2dmJvr4+aNXKUTWvm506Be0tTSgtLWXNfwHAy8sLOp0OOp3ObtRod3e3XQ+ox9XT04O7d+9i3rx5g65aS6UgoijCz89v0IBdeno6VCoVpk2b9sT7RciPlW0pdf/Dk1RKnWEOhRffh1AXE3p7e1FYWOiwHbVajeDgYMTGxiIqKgqenp7s3+7Dhw+Rn5/Pei0JggC9Xo++vj54eHigubkZpaWlUCgULDW/u7sbWq0WmZmZLLgkBTWk59t+Ty6XsxIDQRDAcRzc3NwwZcoUZGRksIylFStWYPz48Th16hQEQUBVVRVMJhPWr1+P27dvs22ZzWbI5XLwPI+cnBzWADwxMRH5+flISEiwW83lOA4xMTGDTseRjrGCIEAQBHz00UdQKpUoLCxknxPHcdi7d6/d87RaLRoaGtDd3Y3ExESEh4cjIyMD06ZNs2ssnpycDI7jkJOTAxcXF/Y68+fPx9mzZ/HOO+8gMzPTbvoe8Chjq6SkBJWVley925ICf/1JpXyCIKC7u9vu/JacnIwJEybg4MGDAIC1a9dCqVQiLy8PJXl3sGb1ajY9dTC3bt3CyZMnMXXqVKxcudJpE1YJIT8sW6eHIVanxafp5ThTWA9BfHST/2ZahNMyS65fvw6VSuWULHxRFFFWVma37YiICLi5uSEvLw+BgYHw8fHBG2+8gf3792Pnzp146aWXBrxPkoZ/SAsTgHMynurr6x2+39bWhhMnTiA5ORkvLJyKjbAmOXTpzdCq5YPeQyoUCoSGhqKsrMyuP+xY4Hkes2fPxvHjx9Hc3GzX+3AsTQ33xtRw7xG9X/L0UODpOTKabvwcRLgpnb8aabFYcPfuXSQlJY045d7X1xc7duxAdnY2zp49i5KSEixdupRdrAuCgPr6+kGza4Yi3ew8i1I7wFq6Fh4ejiXxOpy71zhkdpqM57AkToclCx+duEwmE5qamtDY2IiGhgY0NjYiMzPTbqXi448/RlRUFAtK6XS6xzpBZWZmguO4QU/KFosFBw8ehMViwZQpU3D9+nUkJSXBz8/P7nFdXV3Izs7G3Llzx6QRIiE/VlIp9VDHDQ4iCsz+0BnK2PdcXV0RGBiI6OhoFkDo6+tDX18f7t27x/4sTc5pamrCf/3Xf9k1zbZVXV1t15OI53kYjUZwHAeFQgG9Xg+VSgW9Xg+FQoHo6Gh0dHSgpqYGarUaFosFqamprCm4Xq9HTEwMtFqtXZnctGnTwHEcTCYT1Go1TCYTdDod2tvbUVNTw8oJpYwqhUIBnufR29sLnU6HmJgY5Ofno7m5GQ8ePAAA9pjS0lKo1WoWFBvsmD9r1ixkZmayANrdu3cB2C9MSFP3LBYLgoKCUFtbCw8PDyQlJeHatWvIyMhgj3377bcRGBiI+vp65OTk2K10S4spfX19WLhwoUPgSdrH69evg+M4BAcH203fs2UWOZgggwIWyDkRoiiyfe4fdFq1ahX+53/+BxzHITk5GVFRUWhubsa3336LpKQkpKSkDPgakoyMDJw5cwYzZszA0qVLKehECBmVp32T39PTg6ysLMyePdsp16X19fXo7e1lE96Av5UyJyQgPz8fixcvZhlM27dvx5EjR/DVV19h+fLlSE1NtduWSqWC0WiEj48P+56UhTtWBurxJAgCjhw5ArVajRUrVrDvqxWyEf1uoqKicPnyZbYwNJaSk5Nx6dIlXLt2DevWrRvTbfc30vdLng4KPD1HpEZ9wwY0OCCEa8eZk99h3bp1Tr1ILCkpQU9Pz5BldgPhOA4pKSmYMGECTp8+jaNHj+Lu3btYtWoVLBbLYzcWlwJPT7O5OGBtRCuTyVjg6c20SJwpGLpRrEUQsGmifSRfoVAgKCjI4b13d3ejsbER586dQ2trK+rr65Gfn89WwzUaDcuMkv7v5+c36MnAbDYjMzMTEydOHDRodebMGVRWVmLbtm0YN24cKioq8M033+D111+3lo787QIi40o6FAqFw8mUEDJyUin1cAsLInhUCV5QqF3hopRDFEXo9XqUlpYOmPauUqng4uLC/vPx8UFzczO8vb0RHR1t97OqqipcuHABMpkMSUlJqKioQHt7O0JCQlBZWYmYmBg8ePAAHMexhYaoqChUVlYiISEBNTU1WL9+PR48eOAwia6kpAQlJSXw8PBAR0eHXWBLr9ez8rS4uDhcvnzZ+l5FETKZjJXKCYKAtWvX4ujRo/D19UVOTg58fX3tmnLPnTsX58+fB8/z7HkhISFs6h5g7UkllbcZDAbs2LEDn332GQRBYM+xbQSu0WjQ19eH3t5eltV15swZnDt3zq70TQocGY1G6HQ6yOVy1gcEsN4M8TyPlpYWdjPk6uqK3t5eTJw4EeXl5exzEEVxwKBTg6BBgVmHKsETIjhwEBHKtyNB3gAd/+jGQqFQQK1WY82aNTh37hy6u7vh4uKCZcuWwWQy4cCBA3B3d8fq1auHvEa4cuUKLl68iLS0NCxcuJCCToSQx/a0bvJv3rwJjuOcdl1aWloKpVJpN5QHsJbb3bp1C1VVVay0WWo4fubMGZw8eRLt7e1YsmTJo+xauRLtegHBbo965Doj40nKhJVeNz09HdXV1fjJT34CtVo96m1GRkbi3LlzqK6uHrQ0/HHJ5XLMmDED58+fx/z58+Hh4TGm2yfPLwo8PWdGEtAQRODdxbHIvfodVCoVli9f7rSLxZycHAQGBg6bpj8YjUaDDRs2YOLEifjuu+/w5z//mU09CgwMHPX2pJuCp53xxPO8XZ8nqa79n47mO2QwyHgOgiBioXszcs4dxsTgHfD2HjrVWKPRQKPRYOnSpdi1axeWLVuG0NBQtLa2oqGhgWVH3bt3j62+cxwHX19fu2CUTqeDh4cHCgoK0N3djenTpw/4ellZWbh16xZWrlzJTihr167F559/jl0n0nGj3ZXdJHMQMdk/Gfn1vZgaPvqTFyFkdKXUIjh09hlh0luPdxzHQS6Xs4l1CoUCCoUCcrmc/V/6uVwuh4eHB+rr66HT6djYZtvyOIvFgs7OTnY81ev1bICCFJiRAjfR0dEoKipijxVFEatWrUJAQAC+/fZbANbA/Jw5c3D06FF0dHSwx0k9ibq7u9lq7J07dyCKIhQKBby8vOwmuW3evJk9X5rkt3btWpw8eRImkwnu7u6YNWsWWlpakJubyxpuP3z40C6AZTQaIZPJIAgCsrOzERERAVdXV3R3d8PPzw+NjY0QRRHbt2/HpUuX2D5wHIfQ0FAWEOrfb0kURXzyyScArGV5MpmMlX739fWhtLQUXl5eaGhoYMfpvr4+yOVyLF68GB9++OGgv3MXFxdkd2mQYQ4FB9Gh/1el0RMz5VWIlTdhwoQJKC4uxpo1a9DY2IibN28CANasWQMXFxccO3YMra2teOuttwbNBhBFERcvXsTVq1cxf/581h+MEEKeZwaDAbdu3cKUKVPGNHhjq7S0FOHh4Q6VHsHBwfD09EReXp5dMIbjOCxbtgyenp44deoUOjo6MG7yPOy8UYUzBYCIBHDZwCVjJt5Ki3RKjydBENh2a2pqcOnSJaSlpSE0NPSxthkQEABXV1f2WYy1KVOm4OrVq8jIyMDy5cvHfPvk+USBp+fMSAIav16fiE3Tw5DpDnz33XdwcXHB/Pnzx3xfuru7UVxcPCYHBGkM+KVLl5CRkQGZTIampiaEhISMajsjDTw5g+1kO2D4uvYJ3nLs3r0bO3fuxPbt20dUxxwWFgYfHx9kZWUhPDwcvr6+8PX1RUJCAnuMwWCwK9VraGhAaWkpKzlRKpWseW9FRQWbiiWteFRVVeG7777DlClT7Ho2hYaGQh8yDf96rRMyrovdJIvgkNss4uWPMvDr9YnUlI+QxzDaUuqFc2ZB5+sNs9kMi8UCs9nM/rP9uv/P9Ho95HI59Ho9iouLAcDucRLbTB3bjCKJVDJ3/PhxAGANuA8cOAC1Wm23rZaWFhw7dswu+AMAv/3tbxEUFMSm71ksFnR1dYHneTZxTjqmentb3+vt27fh7+8Pk8mEtrY2tLa2sn2Rgknx8fHIyckBYA0OyWQyTJs2Dbdv33ZoOC6KIg4ePMgmskrvVSaTISIiAp6envif//kf6+9Iq7XLQnJxccGUKVPY6GdpsSQ1NRWtra3IysqCwWBAX18fRFFEdnY2gEeNywGw8vIPPviAfW/t2rU4duwY3NzcWJl1RY8MGebQv/327ReSbPt/vbhwOjrLrAtC8fHx+Pjjj8FxHOLi4hAbG4vc3FxkZ2dj7dq18Pf3d/i9Sp/J2bNnkZGRgcWLF2P27NkDPo4QQp43mZmZMJlMmDlzplO2bzQaUVVVhaVLlzr8jOM4JCUl4fbt21ixYoVD1cH06dPh4eGBX++/hGtZtyDjeUinfBHAuXuNOFPQgBlyT6waw8oNqS9sd3c35HI5Dh8+jKCgoCdaUOA4DlFRUSgtLcWiRYvGalcZlUqF1NRUZGRkYO7cuc/kvo48fRR4eg6NtFHf1KlTodfrcf78eajV6jFvAHf37l3wPM9GQD8ppVKJpUuXoqysDJ2dnfjrX/+KqVOnYtGiRSNOA5VW7Id7/FhnPAHWyXb5+flsFR8Yvq79Jz/5CXbv3o1du3Zh+/btDv2TBtrvyZMn4+LFi1ixYsWAJYUqlQohISF2QTtRFNHZ2YnGxkYUFRUhKysLrq6urKkvYB2B7u3tjerqanh7e2PKlCmwWCxsRed2RSv2l4gAOFj6fXRSAPSfjuYjVqelMaSEjNJIS6mtpVVtyEi/A7lcjpCQEEyZMgXR0dEj7mVhsVjwwQcfIDY21uHi+c9//jOampqQnJyM3NxcANaAi9SnoqGhgQVtZDIZXnzxReTm5qK4uBgajQZmsxnTp09HRkYGa45t21+if8NsaRqc7fFYOiZJU94Aa7Bm3759Du9FCvoA1kap//f//t8B329ubq7DdDuJNHWu/3OkqToKhQIGg8Gugbmnpyfa29tZgAuwLj7k5OTA398fYWFh7PlSFhXP8/D19UVjYyP7HPpnTXEcxwJUUtBJJpOhwKizy3QaiIzncLSoExMaq7F9+3bcunULjY2NUKlUWLlyJZqamvDdd99h4sSJmDx58oDbEEURJ0+exO3bt7F8+fJBs2IJIeR5YzabkZGRgUmTJsHd3d0pr1FZWQlBEOz6O9lKSkrC1atXUVpaOmAz8S61P64ZrNfn/c/10tcZ5lCUdXGYOEb7LAWeurq6cOPGDXR1dWHLli0j7s07mMjISOTl5Y15aaBEupa4efMmFixYMObbJ88fCjw9p0baqC8tLQ16vR6nT5+GSqUa9GJztERRRE5ODmJjY8e0n5IgCGhtbWWT1i5cuID79+9jxYoViI2NHbZksLe3Fy4uLsOOeXZG4Emn08FsNqOtrc2uSSAweF27RqPBjh077DKfpEblg5k0aRIuXLiA3NzcEQcTOY6Dh4cHPDw8kJWVBV9fX7z33nsQBAHNzc1oaGhAbW0tcnJyYDab0dzcjI8//hgymQx+fn7w9/fHF1Vu4Dk4BJ1s8TyHT9PLKfBEyGMYSSm1CODvliZC0e6O4uJilJeXo7y8HBzHQafTYeLEiYiNjYWnp+eg25DJZA5NUCUBAQFoa2uzazpuMpng6+uLpUuXYufOnez7Wq0W8fHxcHV1RXFxMUJCQnDv3j34+vqyzCrAer6QGnTbBp3eeOMN/OlPfwJgX7Y2a9YsxMfH49NPP2Xfe/vtt1FSUoJLly5hzpw5uHLlCmbMmIEbN24AsC60tLW1sT5X7u7u6O3thcVigYuLC4xGI9zd3dHT0+MQgJIapQPWIJOUQXXp0iW7/bU9Z7S3twOAXcNWKQglldtJpKwtQRDYn81ms10fKW9vbxiNRvT09Nj1owIAg1lgPZ2GYhGA61U9WBI/Hl5eXixQt3LlSigUChw4cACenp5YuXLlgM8XRRHffvstsrKysHr1aqdMgyKEEGfJzs5Gb2+vU7M0S0tL4eHh4XCdL/Hz84NOp0NeXt6AgadP08sgG8EQkaNFnXghbWz2WQo8FRcXIzs7G2vWrBl0/0dDCr6VlZUhMTHxibfXn6urK1JSUnDr1i3MmjULKpVqzF+DPF+cPxaNPBG1QgY/rWrIZn2LFi3ClClTcPz48QFHbz+O2tpaNDU1jbqp+HCam5thMpkQHByMGTNm4P3330dgYCC+/vprfPXVV6y/x2CkwNNIOCPwBAxcljIUNzc37NixA+7u7ti1a9eAI0/7Pz42NhZZWVmjfg9tbW0oKirC9OnTWYNgnU6HpKQkdkP29ttv4x//8R+xY8cOLF26FEFBQahvakFmvXHIoBNgXa05U1gPvWngzAJCyOCkUmoO1uwVW9YvRcxzrcf99BMYN24c/uEf/gHvvfceUlNT4ebmhvr6epw+fRr//d//jd///vc4e/YsqqurHbJqAOvUmK6uLocG1lIA3Ta7RwrEhIWFQaFQsO9LGVZS0EYQBMjlcty+fRtKpZIFbXp6euDq6gpfX19s2rSJPX///v0DNg2tq6uzy27y8vJCYGAgSktLERUVhaqqKoSFhdkFaORyOXufcrkcP//5z7Fo0SKIosgm0gUEBLCgk22wTSqFk46J0j6ZzWbEx8c7rJwHBgZCrVYjOjoagDWQt3DhQgDWRuZSwC0+Ph7BwcHsMba8vLygVqvZMVwmk6Gnp4f1t7IlytXDBp3YY8Fh2qy5+PbbbyEIAiIjI5GUlIQTJ06gvb0dL7/88oCZcYIg4OjRo8jOzsa6deso6EQI+V4RBAHXr19HfHz8sH1Tn0RpaSkiIyOHXAhPTEzE/fv3HabGSkNEhgo6Adby6atlHWN2La1QKKBSqZCVlYXY2NgxS0LQarXw8/MbcLDJWJk5cyaMRqPDFFjyw0SBpx8AjuOwcuVKJCQk4NChQ2NygMjOzoa7uzsiIyPHYA8fqa2tBfCoV4aHhwc2b96Ml19+GTU1NfjTn/6EmzdvDngjBQAdPX0QlJphD9bOyHhyc3ODRqMZdeAJsEb1t2/fDi8vL+zatYt9DoNJSUlBU1MTa7A7Urdu3YJarcbEifYJvNeuXUN+fj7Wr1+PgIAAuLi4IDw8HKmpqVizZg1eemXbiG98BNHaKJkQMnpbp4fhwDszsSROByn2xHPA0vgA/J9pakQKNaxx94EDB6DRaLBixQr88pe/xHvvvYe0tDS4u7ujo6MD169fx2effYbf/va3OHLkCAoLC9mFcHBwMLy8vHD37l2719fpdBBFES0tLZDL5eA4DhaLhQVsbIMiUk+9mpoaKBQKlJeXIywsDNXV1VCr1QgODmYBl5aWFqSlpdllrra2ttody3mex6JFi1BZWcnKpjmOw/jx49HR0cEmBVVUVCA2NhY1NTUAgPDwcNy4cQOVlZWQyWQwm824efMmpk6dCg8PD3AcB6VSieLiYnAcB4VCMeA5xMPDA3q9ni1wKBQKdHZ2sklz0sV6ZGQkRFFkx1+FQoHZs2fD398fPM/DbDZDrVbD29sbra2tABwXOmJiYtDX18c+n6amJnh4eMDPzw+xsbHscWq1GrOmTQaHkZ2vOIgw9nSgtLQUMpkMa9euRU5ODnJzc7F69eoBy7ktFgsOHz6MvLw8vPjii2O+oEQIIc6iN1nQ1GXAnZy7aG9vR1raGKUJDaCjowPNzc2DltlJEhMTYTabcf/+fbvvj2aIyFheS0vDPDiOw5o1a8Z04FRUVBTKysrG/J5K4uHhgeTkZNy4ccMuA5n8MFHg6QeC53msX78eUVFR+OqrrxxS+UfDZDIhPz8fEydOHLakbbRqa2vh4+Njl07JcRzi4+Px/vvvIzk5GadOncJnn31mlxl0u6IV7+zNxD/ekuG/KvwR/y+n8M7eTGRWtI7p/g1Hp9M9VuAJsDaq3bZtG3x8fLB79+4hg0qRkZHw9PREVlbWiLdvMBiQlZWFKVOm2N08FhcX4/z585gzZ45dk3JbUuPjkeA56+MJIY9narg3/rJ1Cgr/dTlu/5/FKPzX5fjL1il464VFmD17Nqqrq5GSkoLy8nL85S9/YVlLfn5+WLRoEX7xi1/gvffew7x58+Dp6QmDwYC8vDwcOHAAv/3tb7F7927cunUL48ePR2FhIctoAh5lbur1ejaZDQALWNmWqXV3d+Phw4eorq7GuHHjYDQaWe+izs5OJCYmsotRjUbD+gFKF73BwcF2mVUxMTGorKyEXC5nY6pFUURbWxvu3LH2tGpvb4erqysePHgAwJp19fDhQxZMmj59OmbMmIGLFy+ivb0dCQkJEASB7f+ECRPselTZam9vt7sgj4uLY8dhuVwOHx8fcByHW7duYfr06Sw4ptfrkZ+fj5kzZ7LfhV6vx61btxAXFwee51mgi+d5qNVq3Lx5E3K5nO3Lxo0bERISAkEQkJeXx/ZNr9fj9o3rCOXbwWHgBRcJBxHzx3vj7KkTAIBly5ZBr9fjxIkTmDx5MpKTkx2eYzabceDAAdy7dw8vv/yyU8olCCFkrEnX/fH/cgrT/v0cNh6oxk3lRFTrR9br8HFIQzeGW3T39PREaGgo8vLy7L7/rK6lb968yapJxroXU1RUFDo7O9Hc3Dym27U1e/ZsdHV1ITc3lwUaqbLih4kCTz8gMpkML7/8MoKCgrBv375hS7oGc+/ePRgMBqesitbV1SEoKGjAn6nVaqxatQqvv/46TCYTPv74Y5w9exY7r5Vh40cZOHevkWXlCKJ1OsTLH2Vg781Kh205I+MJsDYYf9zAE2B9j9u2bYO/vz/27NmDqqqqAR8nNRkvKChwSOUdjNS/KTU1lX2vqakJhw4dQkxMzKCN+ywWCzLSryCEawM/zKq7jOewND5gyNJPQsjI9C+l5jgOixYtwvTp05GVlYW0tDSWJXnx4kW7LB4/Pz/Mnz8ff//3f8+CUD4+PhAEARUVFTh9+jRu374No9GIQ4cOoaqqCoIgQKPRsHJllUrFFhek44xtkEqtVuPatWuoqalBVFQUAgIC2PGP53k2sQ0AIiIi2LQ66dhr2x8JACoqKvDgwQNs3LjR7vhcXV2Nq1evwsPDA3l5eYiPj2eZu0ajEbGxsdDpdOB5HiUlJUhLS4NWq8Xnn3+O69evQ6lUguM4aLVauywr2yBa/35LgHWAhnQ+kslkaGxsRGBgIDQaDZviB1hvQk6cOIELFy7YvZ8tW7Zg/vz5dr8XQRCg1+shiiLc3NzY9y0WC0pKStDS0uKwbwCQIG8YNutUBIeJqmb09fVh3LhxSExMxIEDB+Dj44MVK1Y4PN5kMuGrr77CgwcPsHnzZsTFxQ25fUIIeR7suVHJrvttJyzf71IMet0/FkpLSxEcHDyilh6JiYkoLS1lQyKAR0NE+pfS98dBHLNr6YaGBpw7d25MejoNJCwsDDKZzKnldr6+vlCHJOB/f/uABRqfVYIBcS4KPP3AKBQKvPLKK/D29sbevXvZRe5o5OTkICwsbMxrqC0WC+rr6wcNPElCQkLwzjvvYMGCBfjmej7+328LIWLg6RAirJPWntaBSafTob29fcTBoIGoVCps3boVgYGB2Lt3r0MPFsmkSZNgNpsdVlQGIggCbt68adevpK+vj/VYeeGFFwZMva2rq8Mnn3yC9PR0vDo1cNgbH0EQ8WZaxAjeJSHkcXAch2XLlmHq1Kk4d+4cJk2ahPnz5+Pq1av4/PPPWdNrW35+fpg3bx5+9rOf2QWhJMXFxfj888/xn//5nzhy5AhrRGo7Clqv10MQBLsgCsdxuH//PkwmE8aNG4f4+Hj2+lqtFnfu3GETRqUAVmFhIQsq9e/Z19fXB6VSib6+PtTV1QGwZkW9+uqrAMCankurzoC1h2FMTAyqq6uxcuVKtLe346uvvkJvby96e3sRHx+PTZs2QRRFdHV1oampib0/WwkJCQgICAAAVh4HgPV7MhgMePjwIQICArB+/Xq7x5SVlcFgMLBMUo7j4Obmhrt37+LIkSMse8k2Q9jDw8Ouj9KhQ4fsGrL3t3ZmAv5tjTUjtX/mk3VBQMTfz9KhozSbZTifOHECXV1dePnllx36RhmNRnz55ZeoqKjAli1bWL8qQgh5nt2uaMU/f5M/8HW/CKdd9wuCgLKyshG3GElISADHcQ69dd9Mi4QwbI8njMm1tNlsxuHDh+Hj44OoqCiHxZ6xoFAoEBoaandeHmt7blTizyUuKNW7skDjcAkG5PuJAk8/QFJgw8XFBXv27Bm2Ybet9vZ2lJeXOyXbqampCWazedjAE2BdfZ4zZw56xk0f9i+pNGnNlrMynqQyFWly0eNSKpXYsmULxo0bh71797KR47bc3d0RHR09onK74uJitLW1sSl4giDg0KFD6O3txebNmx0mRVgsFly8eJFNZ3rrrbfw9guLBm18LOM5cAB+vT6RJtoR4mRS377Jkyfj2LFj8Pb2xmuvvYbu7m785S9/scvG6U8KQr3//vt47733MH78eHYsNBgMKC4uRlNTE4BHx2TAGniSAupSkLqvr48FNIKCguyCWb29vWhqamKNx+vr69HX14eTJ0/aBbmVSiULyMTExCAyMhKHDh1iAa7o6GiUlJRApVLB398frq6uLOgTEhKClJQUnD17FrGxsZgwYQL8/f3x8OFDeHh4ICUlBffv34e7uzvrycHzvN3Ft/TaVVVVWLx4sd1nFRoainv37gGwlkK3tbVBoVDYLQYoFArwPI/4+Hi0tbUhODgYKpUKnp6eyM3NRXl5Octekt6TVqtFR0eHQ4YU4Jjp5OLigq1bt2L58uXYPisCv5osQ4Si267/Vwjfjn+epYWs/DoAYOHChaioqEBeXt6A04sMBgP27duHmpoabN26dcx7NRJCiLN8ml4GfpiMoYGu+5+UdA4brr+TxNXVFVFRUQ6Lw0MNEbF+LWKVrntMrqXPnTuHlpYWvPjii9BqtU4JPAHWrN+Kigqn9GCSAo2Atem6rWeRYECciwJPP1Curq7Ytm0bAGDPnj12qaBDycnJgVKpRHx8/Jjvk9RQW1p1Ho7eZMHl0jYIw46Ydpy0NpaN9Wz5+vqC5/knKreTKJVKvPLKKwgLC8MXX3wxYBprSkoK6urqWHbAYG7evIlx48axCUvnzp1DWVkZXn75ZYfMtbq6Onz88cdIT0/H3Llz8dZbb7HfyWCNj5fE6XDgnZnYOj3sid83IWR4UpPQpKQkHD58GN3d3XjnnXcQHR2NQ4cO4ZtvvoHRaBxyG35+fli3bh04jsPcuXMxd+5cuwluJpOJBUuOHDmC8+fPA3jUKHv8+PHs53q9HlVVVeA4DjzPw2QyQaVSwc3NDRzHobW1FWfOnIHZbLYL+kdERLBtLF26FBs3bmS9oADrIkNeXh7Cw8NRX1/PGppzHIfq6mr84Q9/QE9PD4KDg/GnP/0JbW1tmDBhApqamhAXFwcPDw8cPXoUoaGhAB4Ff6RMLElnZycOHDgA4NHo6aqqKnbMlAJsN2/exMWLF9nz3N3dodVq0dDQAFEU4eHhgWnTpqG+vp4Fkfqfb6SLf9t+SkqlEkql0mFB5Gc/+xm70bFYLOitzMP/nu3N+n/9W1I3XvBrRoRGQFtbG/z8/BAREYGTJ09iypQpDj2b9Ho99uzZg4aGBmzbtg1hYXTMJoR8P4x0KpwzJiyXlpZCqVSy/oMjkZiYiIcPHzpkIg91Lf1WRBfmBT357feDBw9w8+ZNLF68GDqdDlqtFnq93inBoaioKJhMplEPPBqJZxVoJM8GBZ5+wNzd3bF9+3bo9Xrs3buXrUwPRhRF5OTkICEhYcBxzE+qtrYWfn5+I972k06HcEbGk1wuh6+v75gEngDrzc7mzZsRERGBL7/8EsXFxXY/j46OZiUtg6mvr0dFRQXLdsrNzUVGRgaWLl1qt9JtNptx4cIFfPLJJ+B5Hm+99Rbmz5/v0IB3sMbHlOlEyNPFcRzWrVuH+Ph4HDx4EJWVlXjxxRexbt06FBQU4KOPPhp2QqZGo0FUVBTKy8sxb948vPvuu9i0aRMA+2OkxWKxW7nleR4hISGwWCzgOA4ZGRkoKCiwe57BYEBaWho8PDxgMpmQk5MDT09Pto3JkyejvLycBWakCXS2E+3Onz+PtrY2FlyXHrt48WJs3rwZBoMBgiDg/Pnz0Ol0eO+997Bp0yaEhYXh6NGjSExMRE1NjV2wSKFQQKPR2PWgkl7f09OTBZsAsMl50mQ7hULBzlFxcXFob2+HTqdDS0sLtFotioqK0NTUZJe51P9cIwWxbDPTfH19HQKFbm5udo1gi4uL0dvbi8mTJ0OtkKGvrQGlxUVITU1Feno6AGDt2rU4dOgQ/Pz8sHz5crvt9fb2Yvfu3WhtbcX27dtHdQNFCCHP2rOaCgdYA08REREO18RDiY2NhVwuHzALebBraT90jaiH1FB6enrwzTffICoqCtOnTwfwaEHFGVlPAQEBcHV1HfM+T88y0EieDQo8/cB5e3tj27ZtaG9vx5dffmnXOLa/iooKdHR0OG3U8lCNxQfyJNMhnFVqBzzZZLuByOVybNq0CdHR0fjqq69QVFTEfsbzPCZNmoS8vLxBsxtu3LgBd3d3xMXFoaamBsePH8ekSZPYyQiwBv0++eQTXLt2DfPmzcObb745bOZZ/8bHhJCnj+d5vPDCC5gwYQIOHDiA0tJSTJo0Ce+88w5UKhU+++wzXL9+fcjjXXJyMh4+fIi2tjYA1oB2/2Mkz/MOxxjbYM7NmzfR3d1t1zyc53lMmTKFlSC7u7vbHRsfPnwIQRBYgEUmk0EURTZ1NSoqimXkdHZ2QqvVQhRFyOVyVmIHWDN4AwICUFlZiX379qG8vBxpaWnQ6/W4cuUKKyWOiYlh2VgtLS0On0lISAi8vb0H7JMlBYtSU1NZyeHcuXOxePFitiDQ29sLQRDsjtGS2bNnsz9Ln6NtrykpQGhb9ty/RC47OxvBwcHw9/eHKIo4d+4cdDodCgsLIQgC0tLSkJGRgZ6eHrz88st2/aK6u7uxa9cudHR0YMeOHaM61xJCyPPgWU2Fk3r8jbYsWalUIjY2dsherP2vpfv6+p5o8pwoijh+/DgsFgvLaAacG3jiOA5RUVFjHnh6loFG8mxQ4OlHQKfT4dVXX0VdXR2+/vprhx4TkuzsbPj4+CAkJGTM98FisaChoQGBgYEjfs5Ip0M87UlrUuBpLANbMpkML730EmJjY3HgwAG7ZoUpKSkwGo0s28BWd3c38vPzkZqaip6eHuzfvx+BgYFYtWoVOI5jWU6ffvopy3KaN2/eqFZ0CCHPlnR8iIqKwldffYWysjL4+PjgjTfewIwZM3D27Fns3bsXXV1dAz4/JiYGCoWCXRzLZDK7zCQAmDhxItasWcO+FgSBHSdEUWSZQ7bHDkEQYDAYWKBGyhqSLoRbWlowbtw4yGQyaLVaAI8aiAPWLKCqqirWh0na/4kTJ+Kzzz5Dc3MzoqKi8POf/xzvvPMOduzYAVEUsXfvXuzduxdqtRocx8FgMEClUqG7u5sF3DmOczjOFRYWora2lgXHgoKCWNDMZDJBqVTi2rVr7PFFRUV2GbpS9ld/Go0GmZmZdt9TKBQDDuiIiopi24iIeNRctqurCw8ePGALP0VFRexGqKamBh4eHtBoNCgsLMTatWvttt3Z2YmdO3eit7cXP/nJT9h7IoSQ75Nndd1fWVkJQRBG3N/JVmJiIhobG0e8IN3b2/tEGU9ZWVm4f/8+1q5dy86rgHMDT4C1z1NdXR0rhx8LzyrQSJ4dCjz9SIwbNw6bN29GeXk5jhw5Yld+oDdZUN3cgbzCIkyaNMkp/ZEaGxthsVhGvQo7kukQA01ac3bGk9FoHFXT9pGQyWTYsGEDK6uRUnc9PT0RFRU1YJPxzMxM8DyP5ORkfPXVV+A4Dhs3boRcLn+sLCdCyPNJJpPh5ZdfRlhYGPbv34/KykrIZDIsWbIEW7duRWNjI/7yl784lOsC1lXZuLg45OXlseOidCyWjve9vb12fZHi4uIQHBzscD7oXyq9e/duVFRUsK85jmMX1VIQSBAEdoEsZTsB1mxNqW+Sv78/+/6dO3fQ0tLCJt6pVCr09PTg3r17aGhogIuLC7RaLXp6etj7mTZtGmpqaqBSqaBQKCAIgsMiS19fHzQaDcsU8vb2trtwNxqN7P3J5XJcvnwZx48fZ+/L09OTvZ7tFLnu7m4kJCQ49JWqqqpif546dSoAa4BLCrTZ9mfKzc2FTCZDYmIiLBYLzp8/j/DwcBbQWrBgAc6ePYvU1FS7Hozt7e3YuXMnTCYTXnvtNfj5+YEQQr6vHve6/0mUlpbC09PzsaZ5jx8/Hmq1esihHxKz2Qyj0fjYGU8tLS04ffo0UlJSEBsba/czV1dXcBzn1MATgDGbbtfW1oZzp08ilG8Dh6F/3087wYA4DwWefkQiIyOxYcMGFBYW4ttvv8Wt8ha8szcT8f9yCmm/S8fOnmR8XiJ3yuSA2tpacBw36sDHcNMhnsWkNWk1eSzL7SRSWY3UUPju3bsArFlP1dXVdtP0zGYzMjMzMXHiRJw/fx719fXYtGkTXFxccP78eZbl9Pbbb1OWEyE/AFJZ7rhx4/DFF1/Ylaz99Kc/RXBwML788kucPHnSocFoUlISmpubWS8lKfAkBVB6enpYJhJgLUuTyWSYMGEC5s6dy74v9WeSntvc3Gz3Ov7+/mxF1N3dHXq9HhaLhQV4SkpK2GP9/Pyg1WrR1tZmV/6mUqkgiiI8PT3R3d2NK1eu4A9/+ANyc3OxYMEC/OIXv8Dq1avBcRwLIl27dg0xMTG4cuXKoFm9gLUnh/TZGAwGh4t0qUzO9vOLjY3FmjVr7PbRZDKxoBzHcaioqLD7/KSydpVKBZlMxm40DAYDC15JpXaiKCI7Oxvx8fFQq9XIzs5GS0sLOI6DyWTCpEmTcOnSJeh0OixZsoS9RmtrK3bu3AlRFPHaa6891k0TIYQ8T57FdX9paSkiIyMfa+FdJpMhPj7ebmFnMNL583ECTxaLBYcPH4ZWq8WyZcscfs5xHDQazaCZz0/K3d0dfn5+T1xu19TUhCNHjuCPf/wjioqKsC11HDDMEKmxDjSSZ4dy1n5k4uLisHbtWvzm0HVkZNyAjOdYfa0IDpcetOJCcQZ+vT5xTCeYSY3FbVeJR2rr9DDE6rT4NL0cZwrrIYiPpkO8mRYx4MnHmRlPGo0GLi4uaGhoQExMzJhvn+d5rFu3DjzP48iRI7BYLEhOToarqyvu3LmDBYuXoktvRtn9QvT09EClUiEzMxMvvPACOI7Dxx9/jJaWFsybNw9paWkUcCLkB0QaSLBv3z7s27cP27dvR1BQENzc3PDKK6/g1q1bOHv2LCorK7FhwwaWARMZGQk3NzfcvXsXQUFBbBFAutDu6+uzCyp5eXmhpqYGc+bMYb2hJDzPQyaTDdgz0DYgn5+fj66uLphMJmi1WrS3t+PevXsArFm4zc3NcHd3R19fHwv4vPDCC6xpalFRESs7Tk1Nxdy5c+Hq6oqysjIcOHAAEyZMwIsvvojs7GycOXMG9+/fd9gfnuftMnxtg0ctLS2sPBCwBomk4JFMJmOlddXV1Q4BKp7nodVq4ebmhrq6OrS2tiIlJcUhMzU4OBhVVVVsu319fRAEATzPs8++qqoKra2tWLNmDYxGIy5duoTIyEiUlZXB1dUVvb290Ov12L59Owu0NTc3Y/fu3VAoFNixY4fdtEJCCPk+e5zr/sfV3t6OlpYWLFy48LG3kZSUhKysLFRXVw/ZrkRalHmcwNOlS5dQX1+P119/fdAhTRqNxmkZT4B1kauwsBCiKI46SFdbW4v09HTcu3cP7u7uWLZsGVJSUqBQKKDSVeKfjuaD5zm7RuMynoMgiE89wYA4DwWefoRMnqHIMFsn+fSfJCB9/U9H8xGr047ZP/TRNhbvb2q4N6aGe0NvsqBLb4ZWLR8y5dIZ5YK22x7rBuP98TyPtWvXQiaT4dixY9YGveHJ+O31Frx/9RQEEeAgYoJrAhqv5mLtrBloamrC0aNHERAQgLfffpv6fBDyA6VUKrFlyxbs3bsXe/bswY4dOxAQEACO4zB9+nSEh4fj4MGD+Pjjj7F8+XKkpKSA53kkJiaioKAAS5cuZccHKSij1+vtejdYLBYYjUYEBweziWqS2NhYBAYG4vz58w775uLiAg8PD9TX16OpqYkFp/Lz85GRkcFeLywsDNXV1XbTVmfMmIGCggKo1Wq0t7fDYrHAzc0NPT09EAQBcrkclZWV2L9/P8LDw/HSSy+xII5CobDLOPLy8kJbW5td0AmA3Wpta2srOI5jwSnb59tmTXV3d9tdzEulch0dHXblfgOVQ0uPlbYtfca2PT5ycnLg5eWFsLAwXL58GX19fSwzLT4+HpmZmdi0aRO8vLwAWEvXd+/eDVdXV2zbts2uXJAQQn4IRnvd/7jKysrAcZxdz73RCgsLg1arRV5e3ogCT6Pt8VRZWYn09HQsXLjQbiprfxqNBj09PaPa9mhERUXhxo0baG5uHnFZd2VlJa5evYrS0lJ4e3tj7dq1SE5OtlsUf5qBRvJsUeDpR+jT9DLI+kWV++N5Dp+ml4/JP3az2YyGhgZMnjz5ibelVshGfOJxVsYTYC23e/DggdO2D1gDXKtWrQLP8/jPozeRYQ4DBy2rhBbBobhXjfuIgTGnAaHGSsyfPx+zZ8+mLCdCfuBUKhVeffVV7N69mwWfpD5JOp0Ob7/9Nk6fPo1vv/0WpaWlWLNmDZKTk3Hz5k2Ul5cjKioKSqWSZRoZDAa7C9bOzk42IU5q3i0FT1pbW+0yhQBrGaDZbIZSqUR9fT0AQK1Ws8BTa6t9CfedO3fsvuY4DiqVivWoCggIwIYNGxAQEIDbt2/j3LlzKCoqQl9fH8aNG4f58+fj9OnTuHv3LoxGIziOQ1xcHIqKiqDRaOyytGwzYPv6+uymAHV1dbFJetJkvxUrVuDkyZMA4DD5T6VSoa+vj/WRMpvNdtv39va2e6/SFEDpc5Y+Y6nMzmAwoKCgAGlpaejp6cH169fh7++P+vp6REREICsrCzNmzGD9POrq6rBnzx64u7tj27ZtcHNzG+JvCSGEfL+N5rr/cZSWliI4OPiJGn5zHIfExETk5uZi2bJlg16DP06pnV6vx5EjRxAaGmo3PXUgGo3GqYviYWFhkMlkKCsrGzLwJIoiSktLcfXqVVRVVcHf35/1sJUWY/p7WoFG8mxRj6cfGb3JgrOFDUMGnQBr5tOZwnroTYP3yhiphoYGCIIwqol2T8qZpXaA9cautbV1wFKTscRxHHzjpiPDbC17FPv9kxXBAeBwtt0b01e/grlz51LQiZAfCbVazTJedu/ebddvSaFQYPXq1di4cSPKy8vxl7/8BQaDAT4+Pqx3nG1PIIPBwC6KOY5DQ0MDdDodCgsLWVBIUl9fj+rqava1bdnY5MmTkZaWBgB22UxeXl4IDw9nX9v+DLCuAF++fBlKpRKvvvoqtm3bhsDAQHAch9TUVLz44ovo7u6G2WxGU1MTPv30Uzbp083NDW+88QY2btyIhQsXoqurC0qlku1T/3OBu7s7RFFkvTDkcjkmTJgAo9EInudx+vRp9jnYEgQBMTExCAkJsTv2225//vz57M9SME4URbtsKgDssygoKIDJZMLEiRNx+fJlcByH+vp6KJVKtLS0ICgoCIsXLwYA1NTUYPfu3fDy8sKOHTso6EQIIU9AEASUlZWxxtlPIikpCb29vSgvLx/0Mb29veA4zmEQxVBOnDgBvV6PF154YdCgjcTZpXYKhQKhoaGD9nkSRRH37t3DJ598gn379sFisWDz5s346U9/isTExGH3H7AGGv20Kgo6/UBR4OlHpktvxjAxJ0YQrY9/UrW1teB5/gdV+qXT6SCKIpqampz+Wp9dKx/BaFkehwvGdsoeIeT55+Ligm3btsHV1RW7du1yyCyKi4vDT3/6U3h5eWHPnj3QaDQoLCyE0Wi0K382m80sGKRSqVBdXY3g4GDcu3cPoiiyDKiBLtAFQWDBkYcPH7KVUNtyNakBN4ABLz6lEoTg4GB0dXXZXTwXFRXh4MGDLMAjTeAzGo3w9fXFO++8A1dXV1y/fp31kDIajRBF0S5gJpEmkko9By0WC5vUw3EcPDw84Ovri+TkZLvnqdVq5OTk4OHDhw7vQZooJDUFlxgMBgiC4LBIIW07JycHUVFRbFiE1MPJ19cXJpMJL730EmQyGaqqqrB79274+flh27ZtT7Q6TwghxJpBqtfrERUV9cTbCggIgK+vL/Ly8gZ9TG9vL1xcXEbcDiQvLw95eXlYuXIlPD09h328FHhy5sJ7ZGQkKioq7AZwCIKA3Nxc/OlPf8LXX38NlUqFbdu24Y033kBMTIxT25+Q7xcqtfuR0arl4DmMKPjEc9bHP6m6ujr4+/s/VmPxJ+HMA6+fnx/LCniS3lXDkTLUhvt92Wao0SoBIT8ubm5u2L59O3bu3Ildu3bhtddes7tI9fDwwPbt25Geno5Lly5BFEVkZWUhNDSU9SWyWCws8OTi4oKWlhbExMTAaDSyMrtp06bZBduljB7AerzleR5NTU0OwS+O4+wyfvo3/HZ3d0d3dzfGjRsHs9mMY8eOAbBmSZnNZnR1dbHMp9TUVNy4cQOZmZlsW1988QXq6+shl8sxfvx4pKSk4Pr16w4N0/uT9kEURfbeV65ciePHj2PBggW4ePGi3eNts7Rs91+hUECr1aK3txeZmZnw9fVFU1MTzGYzC6j1z3jy8fFBU1MTHj58iJdeegnnz5+HSqVCb28vvL29UVtbi1deeQUeHh4oLy/Hl19+ieDgYLzyyiuDNpYlhBAycqWlpVCpVEP2TRopqdzu+vXrMJlMA97z9Pb2jrjMrr29Hd999x2SkpIcFkEGo9FoIAgC+vr6HquB+UhERUXh/PnzKK2ogoevDqX3C5F54zra29sxYcIErF27dsg+V+THjTKefmTUChmWxOtGkEHDYWl8wJgEMWpra59qmR3g3ObigPVGw9vb26m11MCzyVAjhHz/aDQabN++HTKZDLt27WJZPRKe5zF37ly89tprkMlkOHv2rENKvhRYkQIbUpDJYDCwoQpSZhBgzZLy9fWFUqnEgwcPoNVq0dXVhcuXLwN41MdCFEXWGFt6nq3Ozk4IggCtVovk5GSkpKRAqVSira2NlcNpNBqYTCYcPHgQmZmZbNvV1dVobW3FwoUL8atf/QqbNm3ClClTsHnzZpjN5iFLj20zsqT3fevWLQQHB+P69evs+zNnzhzwnDJp0iRwHAeTyYSGhgbI5XL09PTY9b6Q9l/qQwU8Oj/l5OTAxcUFbm5uuHfvHiv1a2trw6xZszBhwgQ8ePAAX3zxBUJDQ7FlyxYKOhFCyBjQmyy4W1yOcWERY9aiIikpCUajkfUq7G+kASFBEHDkyBGo1WqsXLlyxK+v0WgAwKnldg/1SlyyRGP5Z4WY8ZtL2Hq0AWf1EZix5lW88sorFHQiQ6LA04/Qm2mREIaJZgiCiDfTHn/Cg8RkMqGxsdGpWUGDcWbGEwCnT7YDHmWojcRYZagRQr6f3N3dsWPHDgDA7t27WdDDVkhICBYuXAhBEHDu3Dm7n0kNsAFrFpVtH4fExMQBp9ilpqbCaDSirKyMlbdNnToVwKOLXw8PD3ZBPND+ANYSu+LiYnz33XfIysqCm5sb1Go1PD09sXjxYri6uiI7O5s1LpfJZJg6dSpeffVV+Pr64uLFi7h69SrMZjNMJhOKi4vBcZxDcGko0jHdaDSyDKVJkyYhPz/f4bFyuRxVVVXQ6XSQyWSQyWSshML2c5fOQyaTid3cuLq6wmKxIDc3F0lJSbh48SIUCgVEUYRSqWS/o/v372P//v2IjIzE5s2bn3rWMCGE/NDcrmjFO3szEf8vp/Cfpb74p7savLM3E5kVrcM/eRje3t4IDg4etNxOKrUbzrVr11BVVYUXXnhhVP2gpAmnzgo8fX71ATZ+fAMVJve/9Zi19pq91ynHTw/cx96blU55XfLDQYGnH6Fp4d749fpEcIBD5pOM58AB+PX6xDGZaNfQ0ABRFJ964Olp1BNLNynODHA9iww1Qsj3l1RWZzabsXv37gEvQKVMnaSkJLvvS32IjEYjPD09IQiC3bFUmsgmBVkAsEwfQRBYsEZqPC49V6/Xo6ioCIB1RdZ2dbmpqQk8z6OmpgYBAQFYtGgRUlNT0dHRAb1ej/b2dpw7d469zpw5c7Bw4UJ4eXnhzp072LdvH0RRRHh4OK5du4b//u//xu9//3tcuHABSUlJSExMHPFnV1NTAw8PD5bpFR4ejvz8fDb5TiaTsQCa2WxGe3s768lksVhYwOnhw4cOmUm2WV7e3t548OABenp64OXlhaqqKphMJiiVSvA8jw0bNqCoqAhff/01JkyYgI0bN7LXIYQQ8nj23KjExo8ycO5eI6smEAGcu9eIlz/KGJPASWJiIkpKSgYs8x5JxlNtbS0uXbqEtLQ0hIWFjeq1pYETYx146unpwZ8PnsG/nrCex6Wgk8QiiBAB/NPR/DEJ4JEfLgo8/UhtnR6GA+/MxJI4Hcuo4TlgSZwOB96Zia3TR3ewG4zUWFwa8/20OHuqHWANPPX19Q2YVTCWnmaGGiHk+8/Lywvbt2+HXq/Hnj17WJ8hiaurK6Kjo9Ha2mpXBi0FR7q6uljZnRTUkVZwOY6DVqvFK6+8AgDIzs5mz5PK6Wyn6wHW7CCpGXd3d7ddFpJer2cN0JcsWYL29nZkZmZCEASoVCp4eHiwx/I8j/b2dvj7+2Pbtm34h3/4B7zwwgvw8vJCdXU1RFFEd3c3ent7ERQUhPb2duTn549okg7HcRAEgZUoenh42DVQDQoKwv/+3/8bP/vZz+Dr6wvAWg5RXV1tt7AiBYj631xYLBbWFyo8PBzZ2dkICAhAZmYmC9AZjUa88MILqKiowKFDh5CQkMCaixNCCHl8tyta8c/f5EMEHCZ7j2XgJCEhgU1362+4jCej0YjDhw9Dp9PZTUgdKaVSCaVSOWaBp46ODpw8eRK///3v8VVuE/hhFvV5nsOn6YNP9SOEltB+xKaGe2NquDf0Jgu69GZo1fIxzZjRmyy4X1kHbz/dM1mtfRqBJ8C64u/u7u6015Ey1P7paD54nrM7Ycp4DoIgjlmGGiHkh8HHxwfbt2/Hrl27sGfPHmzfvt3ugjcpKQmHDh3CpEmTUFdXZ/dcs9mMlpYW9rVtIEmhUODVV1+Fl5cXvLy80NbWxibpSM9RKBQwm83sGJycnIyMjAyHfeR5HtHR0XBzc8O+fftYE3G5XI7Vq1ejoaEBN2/eREpKClJTU1FUVITCwkLk5eVBqVQiJiYGnp6eaGpqgslkwrhx48BxHKqrq1nWlbe3NyZNmoSMjAyHFWizyMEEGRSwQMlzLPgEwK5H1rJlyzBjxgz29dtvv42//vWvrOzv4cOH8PHxQWtrK8sa678gIQgC23ZUVBTS09ORkJBgV8Y3Z84cdHZ24vjx45g0aRLWrFkzoqAZIYSQoX2aXuZwDd2fFDh5kutprVaLiIgI5OXlISUlxe5nwzUXP336NDo7O/H2228/9oKDVqt94sBTa2sr0tPTkZubC5VKhdSZs/HZuR4adESeGAWeCNQK2ZgeIG5XtOLT9LK/TWOTg0MQ7u7NxFtpkU8tOPI0Su08PDygVCrR0NCA6Ohop77W1ulhiNVp8Wl6Oc4U1kMQH2WovZkWQUEnQogDPz8/bNu2Dbt27cLevXuxbds21i8iJiYGSqXSodF3f56enmhvbwdgPa5u2rQJarUae/bsQVtbGwDHtH7b6W8ABuyRJJPJYLFYcP/+fWi1WkyYMAHl5eXQ6/XYsmULLl68iLKyMixfvhypqamsufm8efPQ1NSEa9euoaCgAGazGRzHwdfXF21tbejp6UF4eDjGjRuHnJwctLa24sKFC3av3SBoUGDWoUrwhAgOHESE8u1IkDdAxztesHd0dKCnp4eVMSgUCrzxxhvYtWsXC3C1tLTYTfnr31vKdgpedXU1eJ7HgwcP2OcaGhoKNzc3HD9+HFOnTsXKlStpBDUhhIyBpz0hOjExEceOHUNnZydbmLZYLDAYDIMGnoqKipCVlYXVq1ezrNrHIS0EPY6Ghgakp6ejoKAAbm5uWLRoEaZMmYJOIyCcPTf8BvBo0BEFnshAKPBExtSeG5X452+smTmP6qc5nLvXiDMFDfj1+sQxK+MbjrMznqQbocbGRqe+jsTZGWqEkB8enU6Hbdu2Yffu3di3bx+2bt0KlUoFhUKB+Ph4VFRUODzHtlRZCjoBwKpVq6BUKvHxxx/DbDbDz8+P9UOSSNlOtvqX+gHWi/CoqCjMnz8fvr6+2Lt3L/r6+rB+/XocOXIEPT09ePXVVxEVFWX3vJqaGly4cAFlZWUICAiARqNBRUUFy8pSKBTQarUYN24c0tLScO3aNVy9ehWenp5QKBS4WgdkmEPBQbRrjloleKDS6ImZ8irEypsQGxuLdevW4caNG8jIyEBWVhZmzpyJmTNnQqVSQS6X47XXXsOePXvYZ2gbXOr/Odqej3JycuDt7c0+O5VKhfDwcJw6dQrTp0/HsmXLKOhECCFj5HEmRD/J9XVcXBy+++47FBQUYObMmQDAMm4HCjx1d3fj+PHjiImJcciSGq3HCTxVV1cjPT0d9+/fh4eHB1asWIHJkyezahUtbwHPYUSfIQ06IkOhvxlkzAxXPw1Y66djdVqnZ+g8rYt2nU6H0oqHaOoyPLVA0FhnqBFCftgCAwOxdetW7N69G19++SW2bNkCpVKJpKQk5OTkODx+oKC9dPH8+eefQ6PRwGAwgOd5qFQq9mdBEGCxWBye3z/7h+d5BAYG4tVXX4XJZMLevXvR0tKChQsX4siRI3Bzc8Obb74JHx8f9pympiZcuHABRUVF8PLyQmRkJCoqKtDS0oIpU6ZgxowZMJlMKCwsdCjHW7JkCbKzs1HYZECGORoA59AcVfxby8sMcyheWjITG+ZOBgDMnz8fqampSE9PR3p6Om7duoW0tDRMmzYNCoUC27dvx/79+1FcXAxBENjnMNjnqFQq0dzcbHeOio2NxeXLl5GWloaFCxdS0IkQQsaQNCH6aQVO1Go1JkyYgLy8PHbulBZg+vd4EkURR48eBc/zWLNmzRMf/zUaDWrqm4a9LxFFERUVFbh69SrKy8vh4+ODdevWISkpyaHMTxp0dO5e45ClijKew5I4Hd2jkEFR4ImMmadVPz1Szs54ul3Ril1lKtyuHYcP/v2ctfQtXvdUSwoJIWQkgoODsXXrVuzZswf79+/HK6+8gvDwcGg0GvT19TkEh2xxHIeHDx8iIyMDarUanZ2dcHFxQU9PD+Li4lBfX8/K7vpn/QxEEASsXLkSZrMZX375Jerr6zFlyhScPHkSUVFR2LBhAysJbGtrw+XLl5GbmwuNRoOAgADU19fDZDJh/vz5mDp1qt2F/Lx581g5Xv8g1H0uyi7TacD3ChEfX3oAL3MbJkyYgODgYLi6umLp0qWYMWMGLl++jHPnzuHGjRuYN28eJk2ahM2bN+PgwYMoLCwc9v3L5XKIosh6QYWGhiInJwfz58/H3LlzKehECCFj7FkEThITE3HgwAE0NzfD19d30IynW7duobS0FK+++ior535ctyta8WkRhzsNIfivQe5LRFFESUkJrl69iurqagQEBOCll15CXFzckD0F30yLxJmChiFfnwYdkeFworPvzsmPgt5kQfy/nBrxakLhvy53akT85MmTqKiowLvvvuuU7bOSQg6w2Lxn22bfT6ukkBBCRqqyshJ79+5FeHg4Nm3ahAsXLuDmzZswWkTWaFvOPTqoubm5QRAEdtEs9TEKDAyEi4sLKioqIIrioIH+gSaMpqSkYMWKFdi/fz8qKysRGRmJ4uJizJgxA0uWLAHP8+jq6sLVq1dx584dKBQKqNVqdHR0wNfXF7NmzUJSUtKIh1Y0NTUhJ68Ab5/tHjLoxPYZIt7yvAeTvhdubm6Ijo7GhAkTEBkZCZVKhZaWFly6dAn5+fnw9vbG/PnzWU+PgTLIgEeNzFW8CF60BvmkkojFixdj9uzZI3ovhBBCRu92RSs2fpSBoW5TOAAH3pk5JovHJpMJv/vd7zBjxgzMnz8f9+7dw9dff41f/epXLPjU2NiIjz/+GFOmTMGKFSue6PWk+xKuX2aXdF/yb2sTkOLeg6tXr6KhoQEhISGYM2cOxo8fP+IFj703K4cddET3PmQolPFExsTTrp8ezkA3O2PFrqSw30s87ZJCQggZjbCwMLzyyiv44osvcPDgQbhHTcY5feOAjbYDZD0wmUwsOwewls25uLigrq4OCoWCBZ2USiWMRqPD6/U/FiuVSsyfPx8HDx5ERUUFfH198eDBA6xduxaTJ09GX18frl27hps3bwKw9j/q6+tDYGAgVq5ciejoaHaRLAXE+vr60Nvby/6z/bqvrw89PT2ob++FiMgRfUYiOOx48x1YetpRXFyM4uJi5OTkQCaTITw8HNHR0Vi0aBFmz56NCxcu4PDhw7h27RoWLlwImUyGO3fusG0N1sg8Ud4AdHdj+fLlmD59+mP9LgkhhIzM054QrVAoEBcXh7y8PMybN4+V2knZvGazGYcPH4a3tzcWL178RK9le1/S/9aH3Zccy8dK5X3MHO+PHTt2ICwsbNQZtjToiDwpCjyRMfG066dHwlmBp+etpJAQQkYjMjISmzZtwr/sPY/ruSXg4Dl4o23R2gBbynQSRZFlP/n5+SEhIQFxcXEAgD/84Q8Or9W/9Gzx4sU4deoUSkpK4OLigu7ubuzYsQN+fn44f/48bt68ycr+BEGAt7c3xo8fD57ncefOHVy9epUFlfpPz5MolUooFAoA1ot7o9EIk4Bhy+wkHET85Y+/h7+PF/z9/REXF4epU6eiu7sbNTU1OHPmDE6dOgU/Pz9MmDAB0dHRyM/Px5dffomQkBDEx8ejsLAQRWa/IRuZvzXZnYJOhBDylDztwEliYiJycnJQV1eH3t5euLi4sHK28+fPo7m5GW+99RY7Xz2uEd2XAOgJmY5t29Ke6LVo0BF5EhR4ImPieWs8ZxKAHgv/xCNR+3vaI1kJIcQZ2hU+uG4MAQCH0gPbRttefB90fDebVBcUFAQ3Nzc8ePAAPM8jLi4OXl5eAICIiAiUl5cP+ppqtRo3btxAa2srOI6D0WiEWq3G7t27B+0x1dXVBYvFAldXV7i4uMDX1xcuLi7sa4vFgu7ubnR0dKC5uRmNjY0wGo0wGo3w9fVFcHAwAgMDERQUhIaL9Th/v2nYc1RahAdenLIGDQ0NaGxsxJ07d9DT0wPAGoDz8/ODWq2GyWRCZmYmG5EdERGBtrY2PHz4ED2uAchoDcZQjcw/ze7CstRWWqAghJCn5GkGTiIiIuDm5oa8vDyYBEBUaaA3WVBTVYEbN25g6dKl0Ol0T/QaI70vEcDhalnHmN2X0KAj8jgo8ETGzPPQeO52RSs+TS/DmQILRITiL/9yakwbfj9vJYWEEPI4Pk0vg2yYFVIOIgrM/kgMdsGECRMQGBgIwDqdR6PRoKCgAP/zP/8DX19fyGQyuxHOUk8j255RRqORZSm5urrC09MTjY2NLOikUqmQmJiISZMmwdvbG2q1mq0Oi6KI9vZ21NbWora2FqWlpaitrWXlfd7e3ggKCkJCQgKCg4MREBAAlUpl937emuuGs/cah/xcBEHE3y2Ox+R+54uenh4WiJL+39TUxMoQjUYjqqur2de3OtyGzbCizFhCCHk2nkbghOd5qMbF4zfXW1Fu1EJEGD76l1OIUHRhQdAEzJgx44lfg+5LyPcJBZ7ImHna9dP9sYbfPMdW8AUROHevEWcKGsak6d3zWFJICCGjMdIVUhE8qgQv1DWWo6mpye5ncrkcMpkMPM+jsbERKpUK7u7uqOiWIdfg49DTKEnZBD+hEwDg6emJnp4e1NTUALCWxgUFBcHHxwc8zyM3Nxcmkwm9vb3o6elBd3c3enp6WIBKqVTCzc0N/v7+0Gg00Gg0rNF4V1cXioqKcP/+fYf3w3EctsTIsO++xeE4Ln39aowcHaXZOF/q+FyJVquFVqtFVFQU9Ho9urq62D729vaiR29EpcVz2LI+yowlhJAfrj03KvG7XBEcNOx8IIhAmVGDsgoO4beq6L6E/KjQ3z4ypp5V4zm7ht/9jr5j2fD7eSspJISQ0RrNCqkIDnIXDTxUPOudZBuEEUURvb296OjoQHoDj+vGqIF7GumtPaPiFM1ob28HYA1eSUGj9vZ2lkFkNptZbyie5yGXy6FWqyGTyaBQKFgWlMFggF6vR3Nzs/0+D9DfT/peAIDNPirc6fbAA4MbC45FKLowyaUNHk09uNP4aEqfKIpsX6RG6rZT/AZ6LRPkI+olBdAKNCGE/BBJ9yXAo/JqiXR+oPsS8mNDgScy5p5F47mn2fD7eSgpJISQxzWaFVIOIpScgI6OLgDWbCN/f3/odDq7/64W1eKv+wswVE8jqWdUcqAbQkND0d3djdraWhY4cnFxQUhICIKCgth/Wq2WTcYzm80wGAwwGAwwGo0j+vNAP3MztCONq8MMVb9yQAPQ+7d9ViqVUKlU7P+2fx7qZyqVCgIvx9f/c4dWoAkh5EeK7ksIcURXO8Rpnlbjuafd8PtZlxQSQsiTGN0KaQD+P6+uQnd3NxoaGth/Dx8+RHZ2NssGuiLGgocbhEG3BnAACsz+0DWUoaWlBe7u7vDw8EBgYCDrx2Q0GlFTU4OysjKHoNFQk0o5jhs0EOTm5jaigJHtz0c7Zro/WoEmhJAfJ7ovIWRgFHgi33vPorHesyopJISQsTCaFVKO41hfo/Hjx7Ofm81mNDc3o6qmHjsP1jhMx+vPWnbnBbPIAWYz2tvb0dfX5xD8UavVcHd3HzI41P/Pcrn8iYNFY4lWoAkh5MeJ7ksIGRgFnsj33rNqrPcsSgoJIWQsjMUKqVwuR0BAAGRuXhBRM6LXFcHhzXf/DsE+WshksucqWDSWaAWaEEJ+nOi+hJCBUeCJfO8968Z6T6ukkBBCxtJYrZCO9iJb5+0OufyHf8ykFWhCCPnxofsSQgZGgSfyg0BlDYQQMnpjsUL6rC+yn2e0Ak0IIT8+dF9CiCN++IcQ8vyTyho4WG9ubMl4DhxAZQ2EEDIItUIGP63qsYMib6ZFQhgm5enHfJH9pJ8vIYSQ7w+6LyHEEScONSaGkO+ZzIpWh7KGpfEBVNZACCFOtvdm5bA9jbZOD3uGe0gIIYQ8PXRfQsgjFHgiP0hU1kAIIU8fXWQTQggh9ui+hBAKPBFCCCFkjNFFNiGEEEIIkVDgiRBCCCGEEEIIIYQ4BTUXJ4QQQgghhBBCCCFOQYEnQgghhBBCCCGEEOIUFHgihBBCCCGEEEIIIU5BgSdCCCGEEEIIIYQQ4hQUeCKEEEIIIYQQQgghTkGBJ0IIIYQQQgghhBDiFBR4IoQQQgghhBBCCCFOQYEnQgghhBBCCCGEEOIUFHgihBBCCCGEEEIIIU5BgSdCCCGEEEIIIYQQ4hQUeCKEEEIIIYQQQgghTkGBJ0IIIYQQQgghhBDiFBR4IoQQQgghhBBCCCFOQYEnQgghhBBCCCGEEOIUFHgihBBCCCGEEEIIIU5BgSdCCCGEEEIIIYQQ4hQUeCKEEEIIIYQQQgghTkGBJ0IIIYQQQgghhBDiFBR4IoQQQgghhBBCCCFOQYEnQgghhBBCCCGEEOIUFHgihBBCCCGEEEIIIU5BgSdCCCGEEEIIIYQQ4hQUeCKEEEIIIYQQQgghTkGBJ0IIIYQQQgghhBDiFBR4IoQQQgghhBBCCCFOQYEnQgghhBBCCCGEEOIUFHgihBBCCCGEEEIIIU5BgSdCCCGEEEIIIYQQ4hQUeCKEEEIIIYQQQgghTkGBJ0IIIYQQQgghhBDiFBR4IoQQQgghhBBCCCFOQYEnQgghhBBCCCGEEOIUFHgihBBCCCGEEEIIIU5BgSdCCCGEEEIIIYQQ4hQUeCKEEEIIIYQQQgghTkGBJ0IIIYQQQgghhBDiFBR4IoQQQgghhBBCCCFOQYEnQgghhBBCCCGEEOIUFHgihBBCCCGEEEIIIU5BgSdCCCGEEEIIIYQQ4hQUeCKEEEIIIYQQQgghTkGBJ0IIIYQQQgghhBDiFBR4IoQQQgghhBBCCCFOQYEnQgghhBBCCCGEEOIUFHgihBBCCCGEEEIIIU5BgSdCCCGEEEIIIYQQ4hQUeCKEEEIIIYQQQgghTkGBJ0IIIYQQQgghhBDiFBR4IoQQQgghhBBCCCFOQYEnQgghhBBCCCGEEOIUFHgihBBCCCGEEEIIIU5BgSdCCCGEEEIIIYQQ4hQUeCKEEEIIIYQQQgghTkGBJ0IIIYQQQgghhBDiFBR4IoQQQgghhBBCCCFOQYEnQgghhBBCCCGEEOIUFHgihBBCCCGEEEIIIU5BgSdCCCGEEEIIIYQQ4hQUeCKEEEIIIYQQQgghTkGBJ0IIIYQQQgghhBDiFBR4IoQQQgghhBBCCCFOQYEnQgghhBBCCCGEEOIUFHgihBBCCCGEEEIIIU5BgSdCCCGEEEIIIYQQ4hQUeCKEEEIIIYQQQgghTkGBJ0IIIYQQQgghhBDiFBR4IoQQQgghhBBCCCFOQYEnQgghhBBCCCGEEOIUFHgihBBCCCGEEEIIIU5BgSdCCCGEEEIIIYQQ4hQUeCKEEEIIIYQQQgghTkGBJ0IIIYQQQgghhBDiFBR4IoQQQgghhBBCCCFO8f8H5tVf4Ud0lyoAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -730,7 +673,7 @@ " plt.subplot(1,3,ith+1)\n", " plotSubgraph(graph, idx[title])\n", " plt.title(title)\n", - "plt.savefig(os.path.join(output_dir, \"PhAstro\"))" + "plt.savefig(FIGURES_DIR / \"PhAstro\")" ] }, { @@ -749,11 +692,11 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 37, "metadata": {}, "outputs": [], "source": [ - "nx.write_gexf(graph, 'ca-AstroPh.gexf')" + "nx.write_gexf(graph, DATA_DIR / 'ca-AstroPh.gexf')" ] }, { @@ -765,7 +708,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 38, "metadata": {}, "outputs": [], "source": [ @@ -780,7 +723,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ @@ -791,21 +734,19 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 40, "metadata": {}, "outputs": [], "source": [ - "\n", - "\n", "B = nx.Graph()\n", "\n", "B.add_nodes_from(bottom_nodes, bipartite=0)\n", - "B.add_nodes_from(top_nodes, bipartite=1)\n" + "B.add_nodes_from(top_nodes, bipartite=1)" ] }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 41, "metadata": {}, "outputs": [], "source": [ @@ -814,7 +755,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 42, "metadata": {}, "outputs": [], "source": [ @@ -823,14 +764,14 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 43, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd1gUZ9fG76UoIqJiAwEpIuyiwV5iiWIXO4OJxvImgsQWo9G8GsU0ipoYNVGxYmI0b2KyYwMbKthjwIbiLlVRUJHe2WXL8/2Rj4m4C8KysAs8v+viQndmZw6wc8+Z85zCI4SAQqFQKPWDga4NoFAolKYEFV0KhUKpR6joUigUSj1CRZdCoVDqESq6FAqFUo8YVbWxffv2xN7evp5MoVAolMbB7du3swghHdRtq1J07e3tcevWrWqfKKtICuHtNMSlF6BAIoe5iRH4luaY0dcG7cya19BsCoVCqV+0pWE8Hu9JpduqytPt168fqY7oxqTmYeelJFxOyAQASOVKbpuJkQEIgBEuHbB4uBN62raptuEUCoVSH2hbw3g83m1CSD+122oruodvpiDwdBwkcgWqqrPg8QATI0Os8+BjziD7NxpNoVAo9UFdaFhVoltleKF6xopRKlO+cV9CgFKZAoGnxQBAhZdCoegcXWiYxtkLMal5CDwdVy1jX6VUpkTg6TjcT8vT9NQUCoVSa3SlYRp7ujsvJUEiV6i8Ls97iezwYJQ9iwOMjNHSZQjajvYFz8CQ20ciVyD4UhJ2z1HrfVMoFEqdU5mGybJSkR2+C2Uvk2DYojXaun8IU5fBFfapjYZp5OlmFUlxOSFTbfwjOzwYhqZtYPPxIXT+cDskqbEovHOqwj6EAJHxmcgukmpyegqFQqkVlWkYUSqQwfrD1Kk/bD/5DRbjlyIr7HvIcp5V3K8WGqaR6Apvp1W6TZ7/Ei0FQ8EzagZDs7Zo4dAXsqynKvvxAAjvVH4cCoVCqSsq0zBZdioURTlo1X8aeAaGaGHfE82tXVEcG6Gyr6YappHoxqUXVEipeBXzflNRLLoCpUwCeWEWSh/dQguHPir7SeRKxL0o1OT0FAqFUiuq0jBVCMoyVdNuNdUwjWK6BRJ5pdtMbHug6N5ZpG55FyBKtOwxCi2c31a7769/HsW2mb01MYFCoVA0pgOzHqbdBqq8bmxhA0PT1ij4m4V5/2mQPL0PydNYmNi9pfY4BRJZjc+tkeiam6h/GyFKvPzjC7TqNR6WczdDKStF9qkfkHfpJ7R1n6+y/+wZntgq/EYTEygUCuWNEELw7NkziEQiiMVi7nsy1DuOPEMjdGD8kHN+Dwpusmhm5YSWgqGAobHa/c1N1L9eFRqJLt/SHM2N0lXcc2VpIRQFmWjVZxJ4RsYwNDKGmdto5F05pCK6PKUc0oxHKCpygpmZmSZmUCgUCgBAoVAgJSWlgrCWfzc1NYWrqysEAgHc3Nzw3nvv4XaJBfb//UJtiKFZRwdYzt7I/T/90Cq07DFKZT8TIwPwrVrV2FaNRNerrw22XkhQed3QtDWMWndC4d3TMB/oCVJWiqIHF2Hc0UFlXwNDQySc+wnWfh/C3d0dXl5emDRpEtq0oWXCFApFPTKZDElJSSrCGh8fjw4dOkAgEMDV1RWDBw+Gj48PBAIBLCwsVI7jViTF/r9fqD1HWcZjGFtYgxAlCu+chrwoF2ZvjVbZjwDw6mNT459BI9Ftb9Ycw5074Lz4pUrKRQfPdci5sBcFN4WAgSFM7NxgMcqnwj48HjDG1RK7g44jNzcXoaGh+PPPP7FkyRIMGTIEDMNg6tSpaN++vSbmUSiUBk5paSni4+NVPNdHjx7B1taW81zHjx+PFStWgM/no1Wr6nudPGkRzAqfQtq8M2BQMZ+gODYSRTHnQJQKNLftjk4z/cEzqhhG4PEAd5cOGjXy0rj3QkxqHmbuu4lSmWpy8ZtoYWyII76D4GZT0astLCzE6dOnwbIszp07h379+oFhGEyfPh1WVlY1Pg+FQtFvCgoKEBcXB5FIVEFcnz9/jq5du3Kea/l3Z2dnmJiYaHw+QghYlsWyZcsw+j1vRJkNhqTaWQz/UpmGlVNnDW9qUrf8r7EGWOcheGPdcklJCc6dOweWZXHq1Cn06NEDDMPA09MTXbp0qfb5KBSK7snKylIbb83JyYGLi0sFYXV1dYWjoyOMjWu+SFUVL168wJIlSyAWi7F//34MGTKkzjSswXcZk0qluHjxIliWxYkTJ+Do6AiGYcAwDJycnGp0LAqFUjcQQvDixQsVYRWJRJBKpSrCKhAIYGdnBwODuh1gQwjBzz//jNWrV8PX1xd+fn4VvOX67jKmlX6699PyEHwpCZHxmeABFdz18l6U7i4dsHiEU6XueHWRy+W4fPkyhEIhjh07hk6dOsHLywsMw8DV1bVWx6ZQKG9GqVTiyZMnaj3XZs2aVRDX8u9WVlbg8Xj1buvjx4/h6+uL7OxsHDhwAL169VK7n7Y1rM5Ft5zsIimEd9IQ96IQBRIZzE2MwbdqBa8+dTM5QqFQ4MaNG2BZFizLwszMjPOAe/XqpZM/MoXSWJDL5UhOTq4grCKRCPHx8bCwsFARVoFAoDeL3wqFAjt27IC/vz8+++wzrFy5EkZGb84b0JaG1Zvo6hJCCKKjoyEUCsGyLADA09MTXl5e6N+/f50/wlAoDRWJRIKEhIQKwioWi5GcnIzOnTurCKtAIIC5ubmuza4UkUgEHx8fGBkZYd++fXBxcal3G5qE6L4KIQQxMTGcB1xYWAhPT08wDIMhQ4bA0NDwzQehUBoZRUVFEIvFKmGB1NRUODo6qsRbXVxc0KJFC12bXW1kMhk2bdqEbdu24ZtvvsHChQt15mw1OdF9HbFYDJZlIRQKkZ6ejmnTpoFhGIwYMULrK6QUiq7JyclRG2/NzMyEs7NzBWF1dXWFk5NTg78Obt++jfnz56Nz587Ys2ePzjOcmrzovkpycjLnAScnJ2PKlClgGAajR49G8+Z0YjGlYUAIwcuXL9VmCpSUlKiNt9rb2ze6p7zS0lJ89dVX+Pnnn7F582bMmTNHL9ZyqOhWQmpqKo4ePQqWZfHgwQN4eHiAYRiMHz8epqamujaPQoFSqURqaqqKsIpEIhgaGqrNFLC2ttYL4alrrly5Ah8fH/Tu3Rs//vgjOnXqpGuTOKjoVoP09HQcO3YMLMsiOjoaY8aMAcMwmDhxol4vGlAaB3K5HI8fP1apzIqLi0Pr1q1VhNXV1RUdOnTQtdk6oaCgAGvWrMHJkyexY8cOTJs2TdcmqUBFt4ZkZWXh5MmTYFkW165dw/Dhw8EwDKZMmYK2bdvq2jxKA0YqlSIxMVElUyAxMRGWlpYqwsrn82kTqFc4ffo0Fi5ciLFjx2Lz5s16+7uholsL8vPzERYWBpZlcfHiRQwaNAgMw2DatGno2LGjrs2j6CnFxcWIi4tTCQs8efIE9vb2ajMFWrZsqWuz9ZasrCwsX74cN27cwL59+zBqlGqrRX2Ciq6WKCoqwpkzZ8CyLM6ePYvevXtzDXmsra11bR5FB+Tl5anNFEhPT4ezs7NKWMDJyYku2NYAQgj++OMPLF++HDNnzkRAQECDuDlR0a0DJBIJwsPDwbIswsLC4OLiwlXD2dvb69o8ihYhhCAzM1NlIUssFqOgoEBtpoCDg0O1KqAolfP8+XMsWrQISUlJCAkJwaBBg3RtUrWpSnTpp0JDTExMMGXKFEyZMgVlZWWIjIyEUCjEgAEDYGtry/WDcHZ21rWplGpCCEFaWpqKsIpEIhBCKgjrxIkT4erqChsbG1rtqGUIIQgJCcHnn3+ORYsW4Y8//mhUTwfU09UycrkcV69eBcuyOHr0KNq1a8d5wD169GgSqTz6TvloF3WZAi1btlSbKdCxY0f6t6sHkpOT4evri4KCAoSEhMDNzU3XJmkEDS/oCKVSiZs3b3LFGM2aNeMEuG/fvvQirmPKysrUjnZJSEhAhw4d1LYapNkpukGhUOCHH35AUFAQ1qxZg+XLlzfo8AwVXT2AEILbt29zAlxWVsYJ8KBBg+gjai0oKSlRO9rl8ePH6NKli4qw8vl8OgxVj4iNjYW3tzdatGiB/fv3N4oe2VR09QxCCGJjYzkBzsnJwfTp08EwDIYNG9ag7/B1SUFBgdpMgefPn8PJyUklLNCtW7dajXah1C1lZWXYsGEDduzYgYCAACxYsKDROB9UdPWchIQEriFPamoqpk6dCi8vL7i7u6NZs2a6Nq/eycrKUpspkJubCz6fr5Ip0LVrV3qjamBER0dj/vz5sLOzw+7du2FjU/OpuvoMFd0GxOPHj7l+EPHx8Zg0aRIYhsHYsWMblddGCMHz58/VZgrIZDK1PQW6dOnSaDyhpkpJSQm++OILHDp0CFu3bsWsWbMa5doGFd0GyrNnz7h+EHfv3sX48ePBMAw8PDwaRII48M9iYkpKitqwgImJiUq81dXVFZaWlo3yQmzqREZGYsGCBRgwYAB++OGHRt07gopuIyAjIwPHjx8Hy7K4efMmRo0aBYZhMGnSJLRu3VrX5kEmk6mMdhGLxdxol9eFVSAQoF27dro2m1IP5Ofn47///S9Onz6N4OBgTJ48Wdcm1TlUdBsZOTk5CA0NBcuyuHz5MoYOHQqGYTB16tQ6FzKJRKI2UyA5ORk2NjYqwsrn82mXtiZMaGgoFi9eDA8PD3z77bd64SDUB1R0GzEFBQU4deoUWJbF+fPn0b9/f64fhKWlpcbHLSwsRFxcnMqCVlpaGrp27aoSb3V2dm5Qo10odUtmZiY++eQTREVFYd++fXB3d9e1SfUKFd0mQklJCc6ePQuWZXH69Gm89dZbYBgGnp6esLW1Vfue7OxstfHWrKwsuLi4qBQQdO3atcGPdqHUHYQQ/Pbbb/j0008xZ84cfPPNN01yIAAV3SaIVCrFhQsXwLIsTp48iS5duqBfv36wsrJCZmYmJ7ClpaVqK7Ps7Owa3WgXSt2SlpaGRYsWISUlBSEhIRgwYICuTdIZtOFNE0GpVOLp06cVPNa4uDjI5XIkJSXhxYsXyM/Ph4WFBUaPHo0vv/wSw4cPp5kClFqhVCqxb98++Pn5YenSpVzJO0U9VHQbIHK5HI8ePVIJCcTFxaFNmzac19qvXz/MmzcPAoGAS89RKBS4fv06WJbF3Llz0apVK64cuWfPnlSAKTUiMTERCxYsQGlpKSIjI9GjRw9dm6T30PCCHiOVSpGQkKBSQJCUlAQrKyuVTAGBQFCj1WGlUono6GgIhUKwLAsDAwN4enqCYRgMGDCACjClUuRyObZt24aNGzdi3bp1WLZsGQ1HvQKN6eo55aNdXq/Mevr0KRwcHFQyBVxcXLS+OEEIwb1797h+EMXFxZwADx48mF5QFI779+/D29sbrVq1wr59+9C1a1ddm6R3UNHVE3Jzc9VmCmRkZKBbt24qC1pOTk46i42JRCJOgF++fIlp06aBYRiMGDGC9jlookilUgQFBSE4OBgbNmyAt7c3fRqqBCq69QghBBkZGSrCKhKJUFRUVOloF332JJOSkjgBfvz4MaZMmQKGYTBq1KhG1dGfUjk3b96Et7c3nJycEBwcTGcCvgEqunUAIQSpqakqwioSiQAA3bt3VxFYGxubBu8ZPH36lGvI8/DhQ3h4eIBhGIwfP54WRzRCiouL4efnh99++w0//PAD3n333Qb/Ga4PqOjWAoVCgcePH6sIa1xcHFq1aqXWc20qo11evHjBNeS5desWxo0bxzXkadWqla7No9SSixcvYsGCBRgyZAi2bt2K9u3b69qkBkO9iW5WkRTC22mISy9AgUQOcxMj8C3NMaOvDdqZ6fdjaFlZGRITE1UyBRISEtCpUye1mQJ0tMu/ZGVl4cSJE2BZFtevX8eIESPAMAwmT55Mf08NjLy8PKxatQrh4eHYtWsXJk6cqGuT6g1taVidi25Mah52XkrC5YRMAIBUruS2mRgZgAAY4dIBi4c7oadtm2obXheUlJQgLi5OJSyQkpICOzs7taNdGkobRX0hLy8PYWFhEAqFiIyMxNtvvw2GYTBt2rRG3c6vMXDixAksWbIEU6ZMwcaNG5tMsyJta1idiu7hmykIPB0HiVyBKg4FHg8wMTLEOg8+5gyyf6PRtSU/P19tpsCLFy/g5OSk0mqwW7dudFGoDigqKsLp06fBsizOnTuHPn36cA15OnfurGvzKP/Py5cvsWzZMty5cwf79+/H8OHDdW1SvVEXGlZnovuPsWKUypSV7vM6LYwNsM5DoDXhzczMVJspkJ+fr3a0i6OjI0150hGlpaUIDw8Hy7IICwuDQCDgquHs7Ox0bV6ThBCCw4cPY9WqVfjggw/w1VdfNakF0brSsDoR3ZjUPMzcdxOlMoXKtmLRZeRd/w2KgkwYtmyLdhOXw8T23/LAFsaGOOI7CG421Qs1EELw7NkztaNdFAqF2tEutra2dLSLHlNWVoaLFy+CZVmcOHECdnZ28PLyAsMw6Natm67NaxI8ffoUCxcuxLNnzxASEoJ+/dRqRKNFnYY9/d6rwj5EXoZWvT1gMXZhhdffpGF1Irq+h27hvPilijte+vguss/8iA5TV6NZZ2coinIAAEat/l355PGAca6dsHtORZsUCgWePHmidiihqamp2kwBOtql4SOXy3HlyhWwLItjx46hffv2nAfcvXt3+vfVMkqlErt378YXX3yB5cuXY/Xq1U2yXWdlGlaOsqwUadvnouOMr2DSpWJPico07N/tWu4yllUkxeWETLXG5l/7Fa2HzEJza/4/J2ilmmZCCHBRnIGDv7NITao42qV9+/acoA4ePBg+Pj4QCASwsLDQxFRKA8DIyAgjR47EyJEjsX37dvz1119gWRYTJ06EiYkJJ8B9+vShAlxLEhIS4OPjA5lMhitXrsDV1VXXJumEqjSsnJL4GzA0bY3mtt1VthECRMZnIrtIWuPMLI1EV3g7Te3rRKmA9EUSWjgNxLPdC0AUZTDtNght3OfDwLiiYbIyKXadu4sRneQYP348VqxYAT6fT/M7mzgGBgYYMmQIhgwZgu+//x63bt0Cy7KYOXMm5HI5J8ADBw6k4aMaIJfL8f333+O7777D+vXrsXTpUr2ugqxrKtOwVyl6cBEte4ys9EbPAyC8k4aP3qlZ7wmNRDcuvaBCSkU5iuI8QClHSfx1dJqzCTwDQ2SyAci/cQRth8977czN8PZ4L2x8r5cmJlCaADweD/3790f//v2xYcMGPHjwACzLYsGCBcjLy8P06dPBMAyGDRvWpAXkTcTExGD+/PmwsLBAdHQ0HBwcdG2SzqlMw8qR52dAmhqLdh7LKt1HIlci7kVhjc+tkatQIJGrfZ33/95sq76TYWRmAUPT1mjVfxpKk9XHhR8mPkJUVBQKC2tuOKVpwePx4Obmhq+//hqxsbG4cOECLC0t8emnn6Jz587w9fVFeHg4ZDKZrk3VGyQSCfz8/DBmzBgsXboU4eHhTVpwJRIJ7t+/jyNHjuBWzMMq9y2KjUBzG1cYt6l6zmCBpOafN408XXMT9W8zNDGD4Wsx3KpicLkZz7FwYUCFMd2vL5bRMd0UdfD5fKxbtw7r1q3Do0ePcPToUXz55ZeYNWsWJk+eDIZhMGbMGJiYmOjaVJ1w48YNeHt7QyAQICYmBlZWVro2qd4oKipSO1Q1NTUVjo6OEAgEUNiNAZpXXilZHBuB1oO8Kt1ejrlJzRcgNRJdvqU5mhulq3XPzd4ajcLbYWjh2BcwNEJB9HGYOvVX2c/EyAA+XhPw0Y9LoVQqK2Qt3Lx5EwcOHIBYLIaJiYnarAUrKyu6qEIBADg6OmLVqlVYtWoV0tLScOzYMWzevBlz587FhAkTwDAMJkyY0CQqC4uKirB27Vr8+eef2L59OxiGabTXSU5ODsRisUqmU2ZmJpydnTmtKJ+ekp+fj5MnT4JlWZQVtwWvpxWIgaoEStLEUBRlw5Q/tMrzmxgZgG9V8zUojVLGsoqkGLIpQq3oEoUcORf2olh0GTwjY7TkD0Nb9w/BM6rYF7a5kQFurB5Z5cofIQTPnz9XW1lWVlam1jPu0qULXWChAPinyur48eNgWRZ///03Ro8eDYZhMGnSpEZZ3hoeHo6PPvoI77zzDrZs2dIonhIJIXj58qXaHP2SkhKuD8qrGmBvbw9DQ0MolUrcvHkTQqEQR48eRbNmzTB9+nSYmJjgsPAEFJO+BtSIbvbZHSAyKdpPXlmlbVVpWL3m6VaHN+W4VYfyibavC3Jubi74fL5KD4WuXbvSSrQmTE5ODuflXLlyBcOGDQPDMJg6dWqDT0fMzc3Fp59+ioiICOzZswfjx4/XtUk1RqlUqm2VKhaLwePxuGv5VXG1trZW8eLlcjmuXr3K5XxbWFhwjZeio6OxadMmdO3aFX5+fvhfqlmdaVi9V6S9iZpWpNWE/Px8lXiOWCzG8+fP0bVrVxXv2NnZucnG/ZoqBQUFCAsLA8uyuHDhAgYMGAAvLy9MmzYNnTp10rV5NeLo0aNYunQpPD09sWHDBr1PuZTL5SqtUsudJ3NzcxVhLR+qWlWIpKysDBEREVx1Y5cuXbjUQltbW+zbtw/ffvst3NzcsH79erz99tsA6lbDGnXvhepSUlKChIQElUeUx48fo0uXLiqPKHw+H2ZmZvVqI6X+KS4uxtmzZ8GyLM6cOQM3NzcwDANPT0/Y2Njo2rxKSU9Px9KlS/HgwQPs378fw4YN07VJFZBKpWpbpSYmJsLS0lJtq9Q2barvhEkkEq6PR2hoKPh8Pvd3c3BwQFFREXbt2oUtW7Zg0KBB8PPzQ9++fVWO06B6L5Sjr13GqktZWRmSkpJUHmsSEhLQoUMHtXFj2h+2cSKRSHDhwgWwLIuTJ0+iW7dunMfk6Oioa/MA/BPjPHjwIP773//Cx8cHX3zxhU6f1IqLixEfH6/izDx58gT29vZqh6pquqBZVFSEM2fOgGVZnD17Fr179+Y61pWPD8rPz8eOHTvwww8/wN3dHevWrYObm1uVx21QXcbKuZ+Wh+BLSYiMzwQP/yQNl1Pei9LdpQMWj3Cqk5BCXaBQKJCSkqK2g1nLli3VPgZ16tSp0a4UNzVkMhkiIyPBsiyOHz8Oa2trToD5fL5ObEpJScFHH32EjIwMhISEoE+fPvV27ry8PLXx1vT09EqHqmqjVWp+fj5CQ0PBsiwiIiIwaNAgrjdzx44duf1ycnKwbds2BAcHw8PDA2vXrq3R30nbGlZvkyOyi6QQ3klD3ItCFEhkMDcxBt+qFbz66P/kiOpCCEFaWpra2WiEEJUFvPKOZ1SMGy4KhQLXrl0Dy7I4evQoWrduzQmwm5tbnf9tlUoldu7cia+//horV67EqlWr6qRBDSGk0lapBQUFFTIFXh2qqu0F6uzsbG4KybVr1zB8+HAwDIMpU6aoPGVmZGTg+++/x/79++Hp6Yk1a9bUaiS8tjSMzkirB6r6wBYWFqrNqHB0dKTlqw0MpVKJqKgoCIVCsCwLIyMjToD79eundQGOi4uDj48PCCEICQnRipddmeMgFouhVCrVhtRsbGzqNBUzPT2dm7cXHR2NsWPHgmEYTJw4Ue3i4PPnz/Hdd9/h4MGDmDVrFlavXo0uXbrUmX01hYqujil/NHt9UUHdo5lAIKBTLBoIhBDcvXuXG09fWloKT09PMAyDwYMH10qkZDIZvvvuO2zZsgVfffUVFi9eXOPjqQuRlQ9VNTU11XmILDU1FUePHoVQKERsbCw8PDzg5eWFcePGwdTUVO17njx5gk2bNuH333/HBx98gFWrVunlBBIqunrKq4sQr14UlS1C8Pn8Sj+MFN1CCIFIJOI84MzMTK4hz/Dhw2v0CH7nzh14e3ujU6dO2LNnzxunary+GPzqUFV1i8G6bJWanJzM3aSSk5MxZcoUMAyD0aNHV+loJCUlYePGjTh27Bh8fX2xYsWKCjFdfYOKbgPj9XSb8u/aSreh1D2JiYmcuKSkpGDq1KlgGAajRo1Cs2bN1L6ntLQU33zzDUJCQvDdd99h3rx5FbzO0tJStZkC+p72KBKJuN9Fenp6hZvRm2LTYrEYQUFBOHPmDJYsWYJPPvmkQRSzUNFtJNRFYjml7nny5AmOHj0KlmUhEokwceJEMAyDcePGcfPIrl27Bm9vb7i5uSEoKAg5OTlVFvi8PlRVnwp8CCGIiYnhhLawsJALuwwZMqRa6xj3799HQEAALl26hOXLl2PJkiVo3bp1PVivHajoNnKUSiXS0tJUPCCRSARDQ0O1GRXqSigpdc/z58+5BaPbt2+jZ8+eyMrKQkpKCpydnZGVlcWVsr9+A9XnUnZCCKKiojihBcAtMPbv37/a8ehbt24hICAAf//9N1auXImFCxfqhbdeU6joNlFq0yyEoh2qatpUXFwMqVSK5s2bQ6FQoHfv3pgxYwY++OCDBvEIrVAocOPGDa6hjJmZGSe0vXr1qtFN/caNG/D390dsbCxX+NGQpxJT0aWo8HpbvPLvr7fFK//u5ORUaSySApX2pK/e5F5vT2pjY4P//e9/iI6Oxt69ezF27Fjk5eUhNDQUQqEQkZGRGDJkCFcE0L696pxBXSGXy3Hp0iWuaKRTp06c0NZ03hohBJcuXYK/vz8eP36Mzz//HP/5z38aReYOFV1KtamqAbSDg4NKmMLFxaVBeyQ1RSaTITk5WcVrVdeIv/zf5S0WCSEQCoVYtmwZ3n33XQQGBqp9dC4sLMTp06fBsizOnTuHfv36ceWuumhGLpVKK5RHOzo6wsvLC56ennBycqrx8QghCA8Ph7+/PzIyMrB27VrMnj27UU0kpqJLqTUSiQQJCQkqnnFycjI6d+6sIjQCgaBB96yVSCSIj49X+XkfPXoEa2trlZ+Xz+dX+fO+ePECixcvRlxcHEJCQjB48OBq2VFaWopz586BZVmcOnUKrq6unGdZl8UAJSUlFc7bo0cPrqGMpuclhCA0NBQBAQEoLi6Gn58f3n333UYZzqKiS6kzZDIZHj16pOL5xcXFoW3btmo9P316XC4sLFTbCrR8tMvrnr2zs3ONPHtCCH766SesWbMGvr6+8PPz0zjTQMH2G0IAACAASURBVCqV4uLFi5zH6eDgwAmwJh7n6xQWFuLUqVNgWRbh4eHo378/F+KojYetVCrBsiwCAwPB4/Hg5+eH6dOnN+phA1R0KfWOUqnE06dPVRbwxGIxmjVrpnYEU+fOnesso0JdCpZIJEJWVhZcXFzUxrBr+7j7+PFj+Pr6IicnByEhIejVS3uTr+VyOS5fvsw16+7YsWOF2Gp1f4+5ublcQ5nIyEgMHTqUa+5e25ujXC7HkSNHEBgYiFatWmH9+vWYOHFik8iaoaJL0RsIIXjx4oXajAqpVKq27t/Ozq5aXhEhBOnp6WqbEZWWllZ6bG0/3ioUCuzYsQP+/v747LPPsHLlyjpN9VIoFPjrr7+4LAJTU1NOgHv37q0icpmZmdwYo7/++gsjR47kxhhpo8hGJpPh0KFD2LBhA6ysrLB+/XqMHj26SYhtOVR0KQ2CrKwstRkVOTk5FbxRPp+PNm3acI3pX93f0NBQJSTg6upap170q4hEInh7e8PY2Bj79++Hs7NznZ/zVQghiI6O5vJllUolGIbBO++8g5SUFBw9ehR3797FuHHj4OXlhQkTJmgtD1YqleKnn37Cxo0b4eTkhPXr12P48OFaOXZDoyrRBSGk0q++ffsSCkVXyGQyEh8fT3799VeyaNEi8vbbb5NOnToRQ0NDYmhoSAwMDIiFhQXp06cP+c9//kP27NlDYmJiSGlpab3bKpVKyTfffEPatWtHgoODiUKhqHcbXufRo0dk5cqVxMbGhhgYGBBTU1MyceJEcu7cOSKXy7V2nuLiYrJt2zZibW1NPDw8yI0bN7R27IYKgFukEl3Vz/IWSpNCKpWqzYxISkqClZUV57EuWLCAy4xo3bo114ugfP/w8HBs27YNjx49gq2trdoMg7qYIXbr1i14e3vD2toad+7c0WmLwYSEBM7Lffr0KaZOnYp9+/Zh5MiRXLOZ1atX4/nz51wPhBEjRmgUvy4sLORG4gwePBgnTpxQOxKHUhEaXqDUG8XFxWozBZ48eQIHBwe1o1006aomk8mQlJSkNpe2ffv2ajMqNKkAKy0txZdffomDBw/i+++/x+zZs+s9bkkIwcOHDzmhzcrK4sT0nXfeqTSWnJyczPWDSEpKwuTJk8EwDMaMGfPG4oT8/Hxs374dP/74I0aOHIl169bhrbfeqosfr8FCY7qUeiU3N1dt/+CMjIxK+wfXR7WbQqGotGrM1NRUbUaFpaWlWiG9fPkyfHx80KdPH2zfvr1e2wwSQnDnzh1OaCUSCbdw9vbbb9c4FSs1NRXHjh2DUCjEgwcPMGHCBHh5eWH8+PEVbnrZ2dnYtm0bdu3ahYkTJ2Lt2rVwcXHR9o/XKKCiS9E6hBBkZGSozUIoKipS29fBwcFBLxPhCSF49uyZ2qwHhUKhku1w7NgxREREIDg4GNOmTasXG5VKJf7++28uQ6GuJlakp6dzmQ1RUVEYM2YMRo8ejbi4OBw6dEgrI3GaAlR0KRpD/n+0i7p8W0KI2kwBGxubRpMe9OoIptOnTyM8PByGhobg8XhqO4E5OjpqLT1MoVDg6tWr3Gy2tm3bckL71ltv1fnvODY2FitWrMDly5fB4/EwbNgwzJkzB1OmTGkQDXl0SVWiSxfSKAD+ucAr69VrZmbGCWqvXr3w/vvvQyAQoGPHjo1GXCujQ4cO6N69O/bt24eHDx/i1KlTGDVqFPLz8yv8nvbu3QuxWIwXL17AyclJ5UZU3RFMMpkMERERYFkWJ06cgLW1Nby8vBAREVFvj/JPnjzBxo0bceTIEXz44Yf45ZdfYGpqirCwMLAsi08++aTSqbyUN0M93SZGWVmZ2qkUCQkJ6NSpk9qpFK9PYG0qEEJw5MgRLF++HO+//z78/f3RsmXLKt9TUlKidrpDSkoK7Ozs1E53MDQ0xPnz58GyLEJDQ+Hs7Mz1OXB0dKynn/afkTgbNmzA8ePH4evri08//RQdOnRQ2a+4uBhnzpwBy7I4c+YMevXqxdlrbW1db/bqMzS80AR59eJ/NUZZ2cXv4uLSIJtF1xXPnj3D4sWLkZSUhJCQEAwaNKhWx3v9Znf//n3cunULaWlpUCqVaNu2LXr27AkPDw8MHjy4Xm92YrEYgYGBOHv2LJYuXYply5ZVO3wgkUgQHh4OlmURFhbG3TAYhoGDg0MdW66/UNFtxJQ/5r6+oKXuMVcgEMDZ2blR9CutKwgh2L9/P9auXYvFixdj7dq1Wvt95efnc4/oFy9exMCBA+Hp6YlevXpVWJQs/3u2atVKbUaFtsI6MTExCAwMxOXLl7F8+XIsXry4ViNxysrKEBkZyfXatbW15QS4qWU5UNFtBLy6oPPq9/z8fPD5fJW8U20u6DQVkpOTsWDBAhQWFiIkJARubm61PmZ2djZOnjwJlmVx9epVvPPOO2AY5o2LUYQQpKamqs2o4PF4akcwVXcB89atW/D390d0dDQ3EudNYZOaIpfLce3aNZ0tAuoaKroNhMpSl8RiMeRyudoLzdbWtlG3yKsPFAoFfvjhBwQFBWHNmjVYvnx5rW5YL1++5OagladdMQyDiRMn1rrHcHmqnrob8OupeuWfk/JUvevXryMgIACxsbFYvXo1vL2966UBvVKpxM2bN7m8YmNjY3h5eYFhGPTt27dRCjAVXT1DqVQiJSVFbaaAiYmJ2qm+lSXpU2pHbGwsJz779+/XuC9tWloajh49WqHAgGEYjB8/XuteZGWUF6W8/rlKT0/nbiIjR47ErFmz0LNnT52MYHq9sEMqlXKTgjUp7NBXqOjqiPJy1NcvBHXlqOUeSvloF0rdUlZWhg0bNmDHjh0IDAyEj49PjS/4R48eceKRmJiIKVOmgGEYjB49Wucj0QkhOHfuHDcSZ86cOejSpQsSExO5MMXTp0+1Wn6tiY0PHz6EUCgEy7LIzs6uVglzQ4CKbh1TWlqKhIQEldjb641XXk0TqovGK5TqERUVBW9vb9jZ2WH37t2wsbGp9nvFYjEntM+fP8e0adPg5eWlcdMYbUMIwcmTJxEQEIDS0lKsW7eu0pE4b2o0pM4pqM1C25tQ16yHYRiMHDmywQ1FpaKrJQoLC9U+vqWlpaFr164qCfHOzs4693go/1JSUoIvvvgChw8fxtatWzFz5sw3hmwIIbh//z4nBvn5+dzj8NChQ/WmrLl8JE5AQAAMDQ3h5+eHadOmafS4LpfLKx3B1KZNG7UZFeryeWtDee9flmUhFosxadIkMAyDsWPHNohBqPUmullFUghvpyEuvQAFEjnMTYzAtzTHjL42aGfWcNKUsrOz1S5UvN5Mu/x7165d9cLLoVROZGQkFixYgIEDB2Lbtm1VigSppBE4wzAYMGCAXsUd5XI5fv/9dwQFBcHc3Bzr16+Hh4dHncT/y0cwqcuoMDY2VrvQq43m8c+ePeMWJu/evYvx48eDYRitNmAvR1saVueiG5Oah52XknA5IRMAIJUruW0mRgYgAEa4dMDi4U7oaVv7cSDagLw2NubV7xKJRO0HqLpjYyj6Q35+Pj777DOcOXMGwcHBmDx5str9lEolbty4waU4tWjRosqRN7qmrKwMhw8fRlBQEDp37qzTkTjktTFJr15P5dfS69eTvb29RtdSRkYGTpw4oTJqaPLkybUKfWhbw+pUdA/fTEHg6ThI5ApUcSjweICJkSHWefAxZ5D9G43WFq8OSHxdYHUxIJFSf4SGhmLx4sWYOHEiNm3apHJRamu4Y30ikUjw008/YdOmTejWrRvWr1+Pd955R9dmVUp2drZaxyY7OxvOzs4qIbmaPDWWD9UUCoW4dOkShg4dCi8vL0ydOrVGC9J1oWF1Jrr/GCtGqUxZ6T6v08LYAOs8BFoXXrlcjuTkZJW7rbpR4OV3Xm3HoSj6QWZmJpYtW4bo6Gjs27cP7u7u3LaysjJcvHgRQqEQJ0+ehL29Pby8vODp6Ylu3brp0OqqKSkpwd69e/Hdd9+hd+/e8PPzq3Vpsi4pLCxUaWgvEom49ZHXnSFnZ+cqY7mVjY+fPn06LC0tK31fXWlYnYhuTGoeZu67iVKZQu12Wc4zPA9Zipb8IWg/edVrRhviiO8guNnUPNQgkUjUrrgmJyejc+fOajMF6nLFlaI/EELw22+/4dNPP8XcuXPx9ddfw9TUFKWlpTh37hxYlsWpU6fg6urKNWixs7PTtdlV8vpIHD8/P/Tp00fXZtUZ5ZlA6q5vGxsbtc7T65lAJSUlFf7ePXr04P7er45SqkzD0n9dA+nzePAM/lkkNWzVDta+eyrs8yYNqxPR9T10C+fFLyt1x1/+vh5ELoVR644qosvjAeNcO2H3HPXDMgGgqKhI7WiX8txCdZkC9ZFbSNFPUlNTsWjRIjx58gQhISFwdXWt4Pn07duX83ysrKx0be4bycvLw/bt27F9+3aMGjUK69atQ48ePXRtls6QyWRITk5Wm1HRrl07tQVF7dq1g1QqxYULF8CyLE6ePImuXbtyIaRNN3LValj6r2vQsoc7WvUcV6k9b9IwrffTzSqS4nJCZqWCWyy6DAOTljBux4c874XKdkKAyPhMZBdJYSArURtvzczMrBDzmTdvHgQCgU6qaCj6i1KpxN69e7F+/Xr4+PiAYRgEBQUhIiICQ4YMAcMw2LlzZ4MJJWVnZ2Pr1q3YvXs3Jk2ahKtXrza5ZjHqMDY2Bp/PB5/Pr/C6UqnkRjCJRCLcvHkTBw4c4Ko7y0W4d+/eeO+995CXl4fIyEgMGTUeJu9+BxhqlnX0qobVNDNLI9EV3k6rdJtSWoK8q7+i06wgFMWcq3S/MqkUbtN8UfD30Qp3KHd3d7i6usLe3l5vciAp+kliYiL+85//ID09HXw+H8HBwXB3dwfDMPj555/Rpo1+ZMpUh5cvX+L7779HSEgIGIZBVFRUvfbSbagYGBjAwcEBDg4OmDhxIvc6IQTPnz/nnLjyyjeRSASZTAbbsR+iiMdDZc/5eZcOIu/SQRhbWKPNO3NhYqfa/IgHQHgnDR+9U7PRRRqJblx6QYWUigrGXjkEs55jYWTevspjEENjTJrti93nf9bLVWKK/pKamoply5YhLCwMRkZGmDRpEry8vODh4dHgKv2ePXuGb7/9FocOHcLs2bNx9+5dnY5wbyzweDxYW1vD2toao0ePrrAtMzMTn/x+Bzeey9W+t637hzBuZwueoTGKxVeQwfrD6sMfYdy2YlhKIlci7kVhjW3TSHQLJOqNLXv5CJInMbD68IdqHefYqXPYO3+oJiZQKAD+yVoRCoUQCoW6NqXW7NixAzt27NC1GU2CDsx6mHYbqHZb887/hnPM3hqFYtFllCbfgnE/1RzvAomsxufWKNPf3ES9VkuePoA8/yXSgj9E6vY5KIg6hpL4G3jx0ydq9589wxOEEPpFv9R+JSQkYMOGDejXrx/at2+PXr16wdzcHLt27YJSqdS5fZp8JSYm4sMPP4SFhQU+//xzZGRk6Nympvj1/ozp1Rc8Hg+oJBBhblLzmLBGni7f0hzNjdJVQgxmvcahpeDfRO2CqKOQ57+ExbglKscwMTIA36phPQpS6hZCCEQiEVd+m5GRgenTp2PevHnYtWsXunTpgrCwsAY5h0skEiEoKAjnzp3D0qVLkZiYSCfq6pDKNEwpKYL0eTxMurwFGBiiWHwF0tRYWIz2VTmGphqmkafr1Vd9VyYDYxMYmrXlvnjGJuAZNYOhqWqeLAHg1af63Z0ojRNC/umvum7dOggEAkyYMAG5ubnYuXMn4uPj0bx5cwQFBeGrr77C8ePHG5zgxsTEYMaMGXB3d0f37t2RnJyML7/8kgqujqlMw4hSgbwrh5H642yk/vA+Cm+HoYOnH4wtVD93mmqYRp5ue7PmGO7coco8XQBoM2y22td5PMDdpUODaoJD0R5KpRJRUVEQCoU4evQoDAwMwDAMfvnlF/Tv3x88Hg8XLlxAr169MGTIEMTGxja4PsPR0dEICAhAdHQ0Vq1ahZ9//rnemplT3kxlGmZo2hpWH2x94/tro2EadwleMsIJVxOzKq1IqwoTI0MsHqFZh35Kw0ShUFSYmdW6dWswDINjx47Bzc2Ny2DJy8vDypUrcf78eezevRseHh46trxmXL9+Hf7+/nj48CFWr16N33//vUG0ImyK6ErDNG6Z1dO2DdZ58NHCuGaH+Kduma9RCTClYSGTyXD+/Hl89NFH6Ny5M5YvX45OnTrhwoULePjwIb755hv07NmTE9zjx4+je/fuaN68OWJjYxuM4BJCEBERAXd3d8ydOxcMwyA5ORlLly6lgqvH6ErDajUPo7zhgz53GaPUL1KpFOfPnwfLsggNDYWTkxMYhsFff/1VabL/y5cv8fHHH+PevXv47bff9Lpr1qsQQnD27FkEBAQgKysLa9euxfvvv097KzcgdKFhtR5CNGeQPdxs2iD4UhIi4zPBwz9Jw+WU96J0d+mAxSOcqIfbCCkpKcGZM2fAsizOnDkDNzc3MAyDb775Bra2tpW+jxCCw4cPY9WqVfjggw9w8ODBBuEZKpVKhIaGciNx/Pz8MGPGDFpB2UCpbw3T6uSI7CIphHfSEPeiEAUSGcxNjMG3agWvPg1rcgTlzRQUFHANZc6fP48BAwaAYRhMmzatylZ65Tx9+hQfffQRnj9/jpCQEPTrV3nzI31BoVCAZVkEBgbC0NAQ69evx9SpU2lj+0aEtjSsqoY3VSYQ9+3bl1Ao5WRnZ5OffvqJTJo0iZibm5OJEyeSAwcOkKysrGofQ6FQkB07dpB27dqRgIAAUlZWVocWaweZTEZ++eUXwufzycCBA0lYWBhRKpW6NouixwC4RSrR1YY745hSL7x8+RLHjx8Hy7L4+++/MXr0aMyaNQuHDx+ucZ/i+Ph4+Pj4QKFQ4OrVqxAIBHVktXYoKyvDoUOHsGHDBlhbW3NtFmmvEEptoKJLUeHZs2fcJNZ79+5hwoQJ8PX1xbFjxzTKNZXL5di8eTM2b96ML774AkuWLNHr+KdEIsGBAwewadMmuLi44MCBAw1mcY+i/1DRpQAAHj9+zJXfJiQkYPLkyVi5ciXGjBlTqzHy9+7dg7e3NywsLBAdHQ0HBwctWq1dXh2J06dPHxw5cqRBj8Sh6CdUdJsw8fHxYFkWQqEQaWlpmDZtGr7++mu4u7vXOu1JIpHA398f+/btw6ZNm/DBBx/o7WN5YWEhgoODsXXrVgwZMgRhYWHo3bu3rs2iNFKo6DYhCCF48OAB59Hm5ubC09MTW7ZswbBhw7T2yH/9+nV4e3vD1dUVMTExejse59WROKNHj8aFCxea9EgcSv1ARbeRQwjBrVu3OKGVyWTw8vLCvn37MHDgQK2mOxUVFWHt2rUQCoXYvn07GIbR2rG1SVZWFrZt28aNxLl27RqcnZ11bRaliUBFtxGiVCrx119/cX0OmjdvDoZh8Pvvv6NPnz518pgfHh4OX19fjBgxArGxsXrZRSs9PZ0biTNjxgw6EoeiE6joNhLkcjmuXLkClmVx7NgxtG/fHgzDICwsDN27d6+zeGpOTg5WrlyJyMhI7NmzB+PGVT5BVVekpaXhu+++40bixMTEVFkpR6HUJVR0GzBlZWWIiIiAUCjEiRMnYGdnB4ZhcOnSpXp5XGZZFh9//DEYhsGDBw/0bj5ZSkoKNm7ciD/++APz58/Hw4cP9Ta+TGk6UNFtYJSWliI8PBwsyyIsLAwCgQAMw8DPzw/29vb1YkN6ejqWLl2K2NhY/PHHHxg6VL/m3CUmJmLDhg04ceIEFi5ciPj4+AYzgp3S+KFF4w2AoqIi/PHHH3jvvfdgZWWFbdu2YeDAgYiNjcX169fx6aef1ovgEkLw888/w83NDc7Ozrh3755eCa5IJMLs2bMxePBg2NnZISkpCYGBgVRwKXoF9XT1lPz8fISGhoJlWURERODtt98GwzDYvn07OnbsWO/2pKSkwNfXF5mZmTh37pxe5bHeu3cPAQEBuHr1KlasWIFdu3bB3Nxc12ZRKGqhnq4ekZWVhZCQEHh4eKBLly74888/MX36dKSkpODs2bNYsGBBvQuuUqnE9u3b0a9fP7i7uyMqKkpvBDcqKgpTpkyBh4cHBg8ejEePHmHNmjVUcCl6DfV0dUx6ejqOHTsGoVCIW7duYezYsZg3bx6OHDmi84UpsVgMHx8f8Hg8XLt2DXw+X6f2lHPt2jX4+/tDLBZj9erV+OOPP2pVqkyh1CdUdHXA06dPuYYysbGxmDhxIpYuXYpx48bB1NRU1+ZBJpPhu+++w5YtW/DVV19h8eLFOu8ZS/5/JI6/vz9SU1Px+eefY968eWjWrJlO7aJQagoV3XoiKSmJqwp79OgRpk6dis8//xyjRo1C8+b60+D9zp07mD9/PiwtLXH79m3Y2dnp1B7y/yNx/P39kZOTw43EMTKiH11Kw4R+cusQkUjECW16ejqmT5+OoKAgDB8+XO/maJWWluLrr7/GgQMHsHnzZsydO1enDWqUSiVOnjyJgIAASKVS+Pn5wcvLS69bQlIo1YGKrhYhhODevXuc0BYVFXEZB4MHD9Zbwbh69Sp8fHzg5uaGBw8eoFOnTjqzRaFQQCgUIjAwEMbGxvDz86MjcSiNCiq6tYQQgqioKE5oAYBhGBw8eBD9+/fX23aGwD8tDdesWYPjx49j+/bt8PT01Jktcrkcv/32G4KCgtCmTRts3LgREyZM0OvfH4WiCVR0NUChUOD69etcQ5lWrVqBYRiwLIuePXs2CKE4c+YMFi5ciFGjRiE2NhZt27bViR1lZWX45ZdfsGHDBtja2mLHjh0YOXJkg/gdUiiaQEW3mshkMly+fBlCoRDHjx+HpaUlGIbBuXPn4Orqqmvzqk12djZWrFiBq1evYv/+/RgzZoxO7Hh1JA6fz8fPP/+MYcOG6cQWCqU+oaJbBVKpFBcuXADLsjh58iS6du0KhmFw/fp1dO3aVdfm1QhCCP7880988skneO+99/DgwQOYmZnVux0lJSXYs2cPNm/ejD59+uCPP/7AwIED690OCkVXUNF9jZKSEpw9exYsy+L06dN46623wDAMvv766wbbDvD58+dYsmQJ4uPjcfToUbz99tv1bkNhYSF27tyJbdu2YejQoXQkDqXJQpeE8Y8g/P7775gxYwasrKwQHByMoUOHQiwW48qVK/jkk08apOASQhASEoKePXuiR48euHv3br0Lbl5eHr755hs4Ojri/v37uHjxIoRCIRVcSpOlyXq6ubm5OHnyJFiWxeXLlzF06FAwDINdu3ahffv2ujav1jx69Ai+vr7Iy8vDhQsX0LNnz3o9f1ZWFrZu3Yrdu3djypQpuH79Oh2JQ6GgiXm6GRkZ2Lt3L8aNGwd7e3scP34c7733Hp4+fYpTp05h/vz5DV5wFQoFtm3bhgEDBmDs2LG4efNmvQpueno6Vq1aBWdnZ2RlZeHWrVv46aefqOBSKP9Po/d0nz17hmPHjoFlWdy9exfjx4+Hj48PWJbVyUJSXSISieDt7Y1mzZrhxo0b9Sp0aWlp+Pbbb3H48GHMmTMH9+/fh42NTb2dn0JpKDRK0U1JSeGKFeLi4jB58mSsWLECY8eObZTdqMrKyrBp0yb8+OOP8Pf3h6+vb71VcD1+/BgbN27En3/+CW9vb4hEIlhaWtbLuSmUhkijEd2EhASwLAuhUIjU1FRMnToVX3zxBUaOHNmoO1FFR0fD29sbNjY2uHPnTr0t+CUkJGDDhg04efIkFi5ciISEhAYfmqFQ6gOtim5WkRTC22mISy9AgUQOcxMj8C3NMaOvDdqZabeTFiEEsbGxnEebnZ0NT09PbN68GcOGDWv0XahKSkrw1Vdf4eDBg9iyZQvef//9eqnievjwIQIDA3H+/Hl8/PHHSEpK0lk1G4WibepDw7SiTDGpedh5KQmXEzIBAFK5kttmYpSOrRcSMMKlAxYPd0JP2zYan4cQgtu3b3NCK5VKwTAM9uzZg0GDBjWZpiiXL1+Gj48P+vbtiwcPHtTLNIm7d+8iICAA169fx4oVK7B79246oYHSaKgvDQMAHiGk0o39+vUjt27dqvIAh2+mIPB0HCRyBao4FHg8wMTIEOs8+JgzyL7aBiqVSty8eZMT2mbNmoFhGDAMg759+zapGv2CggKsXr0aoaGh2LlzJ6ZOnVrn54yKioK/vz/u3LmDVatWwdfXFy1btqzz81Io9UVdaBiPx7tNCOmnblutPN1/jBWjVKZ8476EAKUyBQJPiwGgSqPlcjmuXr0KlmVx7NgxWFhYgGEYhIaGokePHk1KaMs5deoUFi1ahPHjxyM2NhZt2tTubvsmrl69Cn9/f8THx2P16tX4888/G+UiJKVpU1caVhUai25Mah4CT8dVy9hXKZUpEXg6Dm42beBm869wlJWVITIyEizL4vjx47C1tQXDMIiIiICLi4umZjZ4MjMzsXz5cty8eRM///wzRo4cWWfnoiNxKE0JbWtYddFYdHdeSoJErqjwGpHLkB0eDEnKPSglRTBqY4m2w/+DFl0retkSuQLBl5KwzasHwsPDwbIswsLC4OLiAoZh8Pfff8PBwUFT0xoFhBAcOXIEy5cvx+zZs3H//v06e6wnhODMmTPw9/dHbm4u1q1bh1mzZjX6xUhK00adhgFAVuhmSFJioJRJYNiyLcwHMWjVc1yFfco1bPcctRGEKtHoqsoqkuJyQqZK/IMoFTBq1R6W72+EYesOKE2+hcwTm9B5/g4Ytfl3GgEhwLkHz2C1ajp68rvCy8sLQUFBsLa21sScRsezZ8+waNEiJCcn48SJE3XWhUupVOLEiRMICAiATCaDn58fGIbR2wkXFIq2qEzDAMB80Ay0m/AJeEbGkGWnIv1/n6NZp65obunE7UMIEBmfiewiaY2zGjQSXeHtNLWvGzQzQZths7n/mzoNgFHrTpCmJ1UQXQAwNDSAOdGprAAAFHVJREFU34EwrPSo354A+gwhBPv378fatWuxZMkS/Pnnn3UytLJ8JE5AQACaNWuG9evXY8qUKU0m+4NCqUzDAKBZh1eHsfLAAw/y3BcVRPefLYDwTho+eqdmbV41Et249IIKKRWVoSjOhSznGZp16KKyTU4MkFZYxVJhEyM5ORkLFixAYWEhIiIi8NZbb2n9HHK5HP/73/8QFBQECwsLfPvttxg/fnyTXJikNG3epGHZ54JR/OAiiFyKZp26qoRIAUAiVyLuRWGNz62R6BZI5G/chyjkyDq5GWZvjYJxO/VVUgUSmSanb1SUN6jZsGEDPv/8c3zyySdaj6WWlZXh4MGD2LhxI7p06YLg4GC4u7tTsaU0Wd6kYe3GLYbFmI8gfRYHydMH4Bmqn96tiYZpdHWbm1T9NkKUyAr7HjA0gsWYhVUcR7/GkNc3sbGxmD9/Plq2bImbN2/CycnpzW+qARKJBCEhIdi0aRMEAgEOHjyIoUOHavUcFEpDQCKRICEhASKRCGKxGDFZ7QDzqsMCPANDmNh2R/HDSBTePQ3zflNU9tFEwzQSXb6lOZobpat1zwkhyD79IxTFeeg44yvwDNWfwsTIAHyrVpqcvsFTVlaGoKAg7Ny5E4GBgfDx8dFqPLW4uJgbidOvXz8IhUIMGDBAa8enUPSVoqIiiMViiMViTmBFIhFSU1Ph6OgIV1dXCAQC9He2RkQmUKaavKCKUgl57guVlzXVMI1E16uvDbZeSFC7LefcTsiyU9FpZgAMjCtfBCIAvPo0vdZ/UVFRmD9/PhwcHHD37l2ttj8sKChAcHAwtm7dimHDhuH06dPo1auX1o5PoegLOTk5KsIqEomQlZUFFxcXCAQCuLq6Yt68eXB1dYWTkxOMjf/1SrOKpBiyKQJARcdRUZwHyZMYtHAaAJ5RM0hS7qFYfBntp/xXxQZNNUwj0W1v1hzDnTvgvPhlhZQLeX4Giu6dBQyNkbZ9Lve6xfglMOvuzv2fxwPcXTpovQmOPlNSUoL169fj119/xdatWzFz5kytxVRzc3Px448/YseOHRg7diwiIiLQvXt3rRybQtEVhBC8fPmSE9RXRbakpIQTVoFAgJEjR8LV1RV2dnbVSnmsTMPA46Hw7hlknwsGiBJGrTui7agFMO1WMW2zNhqm8YrNkhFOuJqYhVLZv/65UeuOsFsT9sb3mhgZYvEI7cYv9ZnIyEj4+Phg0KBBePDgATp06KCV42ZlZWHLli3Ys2cPpk6dihs3bqBbt25aOTaFUl8olUqkpqaqCKtIJIKhoSEnrK6urpg2bRoEAgGsra1r7bSo0zBD09awnL3xje+tjYZpLLo9bdtgnQe/2nXL5bQwNsA6D75G5XMNjby8PPz3v//FmTNnsGvXLkyaNEkrx01PT8fmzZtx4MABvPvuu7h9+zbs7e21cmwKpa6Qy+V49OiRirDGxcWhdevWnLD269cPc+fOhaurq9YcFHXoSsNqlZtU3vChLruMNVROnjyJxYsXY9KkSYiNjUXr1q1rfczU1FR8++23+PXXXzF37lw6Eoeil0ilUiQmJqp4romJibCysuLEdcSIEVi8eDH4fH6dN3CqDF1oWK1bOwLA/bQ8BF9KQmR8Jnj4J2m4HBMjAxD8E/9YPMKp0Xu4GRkZWLZsGW7duoX9+/djxIgRtT7m48ePsWHDBgiFQnh7e2PlypV0JA5F5xQXFyMuLq7CQpZYLMaTJ09gb29fISwgEAjg4uKit21Bta1hVbV21IrolpNdJIXwThriXhSiQCKDuYkx+Fat4NVH+5Mj9A1CCP73v//h008/xbx58/D111/D1NS0VsdMSEhAUFAQQkNDsWjRIixfvpyOxKHUO3l5eSrCKhKJ8PLlSzg7O1cQVldXV3Tr1q3BdqbTlobVWT/d12ln1rzGdciNgdTUVCxatAhPnz5FWFgY+vfvX6vjxcbGIjAwEBcuXMCyZcuQnJyss8cvStOAEILMzEy1mQKFhYXg8/mcsA4fPhyurq5wcHBodM2R6kPDaO++WqBUKrF3716sX78eH3/8MY4ePVqrO/zrI3H27t2LVq2aZgEJpW4ghCAtLU1tpgAhpILHOmnSJAgEAtjY2NBmSFqEiq6GJCYmwsfHB1KpFJcuXapVXuzff/8Nf39/3L17F5999hkOHTpU69AEpWmjUCjw+PFjFWEVi8UwMzPjxLVXr16YNWsWXF1d0bFjR9qPox6goltD5HI5tmzZgm+//RZ+fn74+OOPNX7EunLlCgICAhAfH481a9ZAKBTSkTiUGlFWVoakpCSVyqzExER07NiR81qHDh0KX19fCAQCOr1Zx1DRrQExMTHw9vZGmzZtEBUVBUdHxxofgxCCixcvwt/fH8+ePcPnn3+OuXPnNtiFB0r9UFJSgvj4eJUFrcePH6NLly6c5+rh4YGVK1eCz+fDzMxM12ZT1EBFtxpIpVIEBARg9+7d2LhxI+bPn1/jxzBCCE6fPo2AgADk5eVh3bp1mDlzJh2JQ6lAQUGB2kyBFy9ewMnJifNcZ86cCYFAgG7dutGnowYGveLfwF9//QVvb284OzsjJiYGnTt3rtH7lUoljh8/joCAAMjlcjoShwLgn4Gj6uKtubm5XKaAq6srfHx84OrqCkdHR3qDbiTQv2IlFBUVwc/PD0eOHMH/tXf3MU2dexzAv0XKi04ul8IQhYGK0HM0uquyOzEiSww447wMNCxXgm50vnBhUSYuOhOmgDNcCCOkU7YsblODcTiXe6OLb/EtOG8ivgS1tCsMAQEtL6OgtBxOz/1D6ezaIi2Vl/b3+acJ5zzlaQJfDs/5nedXUlKCNWvW2HR1y/M8fvjhB+Tn58PT0xM5OTl455136C6wCxEEAc3NzRYrBTiOMwYrwzBYvnw5GIbBa6+9Rj8jTo5C14KzZ89iw4YNWLJkCe7cuQOJRDLksRzHGVviSCQSaonjAgwGA+rr682WBRQKBby8vIzBOmfOHKxZswYsy2LKlCn0M+GiKHSf09nZiW3btuHcuXM4cOAA3n777SGPHWiJ8/nnnyM0NBT79++nljhOhuM41NbWmq23qlQqSCQS43rrokWLkJaWBoZhbPqDTVwDhe4zJ06cQEZGBhISElBdXQ0fH58hjevt7cU333yDgoICsCyL77//nlrijHM6nQ5KpdJsWaC2thbBwcHGK9e4uDhs2bIFUqmUHmIhQ+byofvw4UNkZmbi1q1bKC8vR0xMzJDGPX78GAcOHEBRURGioqKoJc441N3dbbG1S1NTE2bOnGm8cl29ejUYhkFERAS8vb1He9pknHPZ0BUEAYcOHUJ2djbef/99fPfdd0P6hdJqtZDL5fjiiy8QExNDLXHGgfb2douVAgOtXQZuaK1fvx4sy2LmzJkmrV0IcSSXDN379+9j06ZNaGlpwalTp7BgwYIXjuns7ERJSQnkcjni4+Nx4cIFsCw7ArMlQyEIAlpbWy1WCuh0OpOdsJYtWwaGYYbc2oUQR3Kp0DUYDNi/fz9ycnKQlZWF7OzsF17RaDQaFBcXo6ysDAkJCdQSZ5QZDAY0NDRYfIBALBabbNjy7rvvgmVZTJ06lW5okjHDZUJXqVRCJpOB53lcuXIFDMMMen5LSwsKCwtx8OBBJCcnU0ucETbQ2uXPwapUKuHr62sM1qioKKxbtw4Mw7zU1i6EOIrThy7HcSgqKkJhYSFycnKQnp4+6L+Uz7fESU1NpZY4L5ler4dKpTJbFlCr1QgKCjLp9pqRkQGpVOqQ1keEjBanDt2bN28iLS0N/v7+uH79+qBXqnV1ddi3bx8qKiogk8mgUCgQGBg4cpN1cj09PSatXQZeGxoaMH36dGO4JiQkYMeOHYiMjKTtLYlTcsrQ1el0yM3Nxddff42CggKsW7fO6pqeUqnE3r17cfLkSWzevBkqlYpa4gxDZ2enWbDeu3cPGo3GpLVLSkoKWJZFeHg47bBGXIrThW5lZSXS0tIwe/Zs3L59G0FBQRbPG2iJc/78eXz00UdQq9XUEmeIBEHAo0ePzIJVoVCgp6fHpFIgNjYWDMM4ZWsXQuzhNKHb3d2NnTt34vjx4ygtLUVSUpLF827cuIG8vDxcvXoVWVlZ1BJnEIIgoLGx0WKlgEgkMqkUWLVqlbG1C1UKEGKdU4Tu6dOnsXHjRsTGxuLOnTvw8/MzO+fatWvIy8vDrVu3kJ2djcOHD9Oa4TM8z6Ours5sWaCmpgaTJ082Buv8+fOxdu1asCyLgIAACldC7DCuQ7ejowNZWVm4ePEiysrKEB8fb3bO5cuXkZubC5VK5fItcfr6+vDrr7+aVQqoVCoEBgYan8yKiYnBpk2bwDAMLbkQ4mDjNnSPHz+OzMxMJCUlobq62mSJQBAEnDt3Drm5uWhubsbOnTuRkpLiMjdsnjx5YrFSoL6+HqGhocZlgZUrVyI7OxtSqRSTJk0a7WkT4hLGXei2tLQgIyMDd+/exbFjx0x29BIEASdPnkReXh66urqcviVOV1eXxfXW1tZWzJo1y6S1C8uymDVrFjw9PUd72oS4tHGTRoIg4Ntvv8Unn3yCDz/8EEeOHDEuEzzfEofneezatQuJiYlOc7dco9GYBatCoUBXV5extQvDMMZur9TahZCxa1z8ZtbX12PDhg1oa2vDmTNnjLt68TyPY8eOIT8/H97e3vjss8+wcuXKcdnuRBAEPHjwwOKGLTzPm1QKrFixAgzDICQkZFx+VkJc2ZgOXZ7nIZfLsWfPHmzbtg0ff/wxxGIxOI7DkSNHsHfvXgQEBKCwsBDx8fHj4m46z/MmrV2ef504caIxWOfOnYvk5GSwLIvAwMBx8dkIIS82ZkNXoVBAJpPBzc0NlZWViIyMhF6vx1dffYV9+/YhLCwMZWVliI2NHZOBxHEc1Gq1WbAqlUr4+/sbKwWio6Mhk8nAMIzFUjdCiHMZc6HLcRwKCgpQXFyM3bt3Y/PmzdDr9SgtLUVBQQHmzJmDQ4cOYfHixaM9VQBP2/UolUqzK9e6ujqEhISYdHvdunUrtXYhxMWNqdCtqqpCWloagoKCUFVVBYlEguLiYhQVFeGNN97Ajz/+iKioqFGZm1arRU1NjdkNrebmZrPWLizLIiIiwmXrgQkh1jk0dNt69KioakJNqxZaXT98vNwhneKDNQuCIXnFeqlSb28vdu/ejYMHD6KwsBCrVq2CXC5HSUkJli5dip9//hnz5s1z5FStam9vt1gp0NHRYWztwjAMPvjgA7AsixkzZlBrF0KchL0ZZguHhO7txt8hv6jGJZUGAKDvNxiPebm3ovicCrGRAUhfGo55IaZPOF2+fBkymQyvv/46Ll26hKNHjyI8PBzLly9/aS1xBEFAS0uLxUoBvV5vUikQFxdnbO1ClQKEOKfhZJithh26h6/VI/9UDXT9PATB/Lju2eTP3HuIy6o2fLpCipQ3w6DVarFjxw789NNPyM/Ph1KpxOLFi5GQkIBffvkF4eHhw50aDAYD7t+/b7FSwMPDwyRck5KSwLIsgoKCxuSNOULIy2FvhtlLJFj6Ls8sXLhQuH79+gsmq0AvZ7B6zp95i93wj1ADyvekIzo6Gn5+figvL8d7772H7du329USp7+/H7W1tWZbDSqVSvj5+ZlsNTjwSnvmEkLszbBPVzCDBq9IJKoSBGGhpWN2X+nebvwd+adqzCbL93aj/VQJdPU34ebtg78uXYdJs2ONx3s5A8pr9Ih4cxlOnz6B1NRUVFdXY9q0aS/8njqdDiqVyuzR19raWkydOtWk22tmZiYYhoGPj4+9H5EQ4sQsZZi26r94XH0efZp6TGKWwn/lVrNxvZwB+adqMDfYF3ODbV9qsDt05RfV0PXzZl/vOLMfogliBGceRt/DOjyq2A3xq9PhERD6x0luYjyZvgQKxV6LLXF6enqgUCjMlgUaGxsxY8YM4xVrYmIiGIZBZGQkvL297f0ohBAXZCnD3F+R4C/Ryej97QYErs/qWF0/jy8vqnEgxeLF7KDsCt22Hj0uqTRm6x+GPh2eKK9iqkwONw9veIXMxsTwv+Px3QvwiF1vPE/k5oY290D0cIC6stJsvXWgtcvAAwSpqanG1i5UKUAIGS5rGTYxMhoAoG9Vg+farI4XBOCCUoP2Hr3NVQ12hW5FVZPFr/d3PIDIbQLEfn8sFYhfnQ59Q7XZuTpdLxb9cwum6+tMOr4yDIOwsDCn2ayGEDL2WMswW4gAVNxowsaYmTaNsyt0a1q1JiUVAwxcL0Sepv/mu3lOhKGv1+xckbsn1v5rO4qT/2bPFAghxG7WMswWun4Dalq6bR5nV+GpVtdv+c3E3hD0pgEr6J/AzcPyequ19yGEkJfJUdmj1XE2j7ErdH28LF8gu/tNg2DgwXU8MH6t79FvED9/E83kfWh9lhAy8qxlmO3vY3uG2RW60ik+8HQ3H+rm4YWJkYvw+5UjMPTpoGu6hyfq/2HS7LfMzvVyd4M0iDZ+IYSMPGsZJhh4CP19gIEHBAOE/j4IBvMqLcD+DLMrdFcvCLZ6zC8uHUJ/H5pK16LtP/+GJC7dtFzsGQHA6vnW34cQQl4WaxnWVXkUDYWJ0F6rwOO7F9BQmIiuyqMWz7U3w+y6xvZ/xRNLIwJwVvHQrORigvdkvJq0a9DxIhHwVmSAwzaQIIQQW1jLMN8la+G7ZO0Lxw8nw+zeweVfseHwcrevrMvLfQLSY4e/twIhhNhrtDLM7tCdF+KLT1dI4S227S2ePrcstevxOUIIcZTRyrBh3cIb2PBhsB16BohET/86DHeHHkIIcZTRyLBh102kvBmGucG++PKiGheUGojwx1ZowNM7fAKern+kx4bTFS4hZEwZ6Qwb1taOf9beo0fFjSbUtHRDq+Pg4yWGNGgyVs933K7rhBDysjgqwwbb2nHQ0BWJRBoA922eOSGEuLZQQRACLB0YNHQJIYQ4FjX9IoSQEUShSwghI4hClxBCRhCFLiGEjCAKXUIIGUH/B/01tFwwTi09AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAClHklEQVR4nOzdd1iTZ/s38G8S9lAUREQFRYYoy733rnXgHkhwt2q1Ci7cWxTUVq2rKgEBRevee+/BHoqooAiC7E2S8/2jP3nLgyJq4E7C9TkOjz4PuccZgznP+5o8IiIwDMMwDFNl8bkOgGEYhmEYbrFigGEYhmGqOFYMMAzDMEwVx4oBhmEYhqniWDHAMAzDMFUcKwYYhmEYpopjxQDDMAzDVHEq5TlIKpUiISEBurq64PF4FR0TwzAMwzAyQETIysqCsbEx+PwvP/+XqxhISEhA/fr1ZRYcwzAMwzCVJz4+HvXq1fvi6+UqBnR1dYsvVq1aNdlExjAMwzBMhcrMzET9+vWL8/iXlKsY+NQ1UK1aNVYMMAzDMIyC+VoXPxtAyDAMwzBVHCsGGIZhGKaKY8UAwzAMw1RxrBhgGIZhmCqOFQMMwzAMU8WxYoBhGIZhqjhWDDAMwzBMFceKAYZhGIap4lgxwDAMwzBVHCsGGIZhGKaKY8UAwzAMw1RxrBhgGIZhmCqOFQMMwzAMU8WxYoBhGIZhqjhWDDAMwzBMFceKAYZhGIap4lS4DkCWcgrEeP0xB4ViKdRU+Gigrw1tdaV6iwzDMAyHlDXPKPw7eJGUBb8HcbgW/QFxqbmg/7zGA2BSUwvdrAwxto0JLGrrchUmwzAMo6CqQp7hERF97aDMzExUr14dGRkZqFatWmXE9VXxqblwPxaKWzEpEPB5kEi//DY+vd7J3ABrHW1Rv6ZWJUbKMAzDKCJlyDPlzd8KWQwcfBSHZSfDIZZSmR/O/xLweVDh87BiYFOMamVSgREyDMMwikxZ8kx587fCdRNsu/YCnheff9e5kv/7UBccDUVKdgFmdLOQcXQMwzCMoquKeUahZhMcfBT33R/Q//K8+ByHHsXJ5FoMwzCMcqiqeUZhWgbiU3Ox7GT4F18vSn2H9FsHUPA2AtK8bAiq1YJ2ky6o1sYRfFWNz56z9GQ42jcykJu+HYZhGIY7X8szBYkxSL/hg4J3kQAAdePGqNFtPNRqm33xHEXJMwrTMuB+LBTiL/TbiDOTkSiag4J30dBt/jNq9JwM9bqNkXHbDyknNn7xmmIpwf1YaEWFzDAMwyiQsvJMQWIMkg7Mgzg9EXodRqN6h1EoSktAov8CFH18+8VrKkqeUYiWgRdJWbgVk/LF13PCrkFakIM6ThugVssUAKDr0BcgKXLCrkKSnw2Bhk6p8yRSwq2YFMR8yIK5oWJOB2EYhmF+3NfyTMatA+CpqMHI2RMCzX8H4mk37YaE3VORfsMHtYa4f/Y8RckzCtEy4PcgDgI+74uvSwtzAQACbb0SPxfo1AR4fPD4X655BHweDtxXjD4dhmEYpmJ8Lc/kx4dDo4FDcSEAACo6NaFR3wa5Lx9CWpj3xXMVIc8oRDFwLfpDmVM7NExsAQAfz/6JwqRYiDOTkRN5E1nPzkK3xQDw1T4/ZgD4t2q79vyDzGNmGIZhFMfX8gxJisBTUSv1c56qOiARoyj5zRfPVYQ8I/fdBNkFYsSl5pZ5jKZZC1Tv5ITMe4fxPuZB8c+rtR+JGp3HffUecR9zkVMgVoolJRmGYZhvU548o1qzHgoSokFSCXh8AYB/C4SChGgAgDjrI9TLOF/e84zctwy8+ZiD8iz3oFK9NtTrN0XNvjNQy9Ed2na9kHk3EJlPTn31XALw+mPOD8fKMAzDKJ7y5Bnd5j9BnPru3xbolDgUJr9GyulNkGSnAQBIXFjm+fKeZ+SzRPmPQrH0q8fkRNxA6vltMJ6yCyrVDAAAWlbtASKkX/eGdpMuJfp5vvc+DMMwjPIpz/e/brOfIM5MQeaDo8gJuwIAUDOyQLW2Q5F591CZ3dHfch+uyH0xoKby9caLrKdnoVbbrLgQ+ETLvDVyQi+jMCkWmg0cfvg+DMMwjPJRE5Tv+79GF2dUazMERclvwFfXhpphA6TdEAEAVGrW/fp95DjPyH0x0EBfGzygzCYcSW46+J+ZOkhSyb//49N/v4D3f/dhGIZhlFtRURGio6MRFBSE4OBgBAUFISgsElrCneDxvjyb4BOBhg4E9ZsW///810EQ6BpAVb9emefJe56R+2JAW10FJjW18KaMwR2qNYyR9/oZilLfQfU/1VlOxA2Ax4dqrQZl3sNEX0tuB3UwDMMw3ycjIwMhISH/Jvz/S/5hYWEoKCgAADRo0AD29vaYPnUSTgH4WPBt18+JvInC9y9Qo9sE8HhlP/XLe56R38j+o5uVIXwfvPnitI9qbYYiL/YJEg/Mh26L/hBoVkNuzEPkxz6Bjn1vqOjqf/HaJJVA/CYYV68SunbtCj5ffptxGIZhmNKICHFxcSWSflBQEF69egUAUFNTQ9OmTeHg4ABnZ2fY29vD3t4eenp6//8iJ8PLzDP5cWHIuBMAjYbNwNeshsKEKGSHXIaGWQvothpUZnwCPg/dLA1l9XYrhEJsYfwiKQu9ttws85iChGik3/ZHUVIsJHlZUNGrDR2bHqjWdmjxNJAvUbmwDi+f3YGJiQmcnZ0hFAphbm4uy7fAMAzDyEBBQQEiIiJKJP3g4GCkp6cDAPT19eHg4AAHBwfY29vDwcEBjRs3hqqqapnX/VqeKUp7j9SLf6Ew8SWkhXn/P8e0HgyeoOxrA8Dl2Z05WYGwvPlbIYoBABi39wHuxn78pn2lv4akEiAxGqt61EbDhg3h6+uLQ4cOITMzE+3bt4eLiwtGjBiB6tWry+yeDMMwTPl8/Pjx//fr/9+fyMhIiMViAICFhUVxwv/0x9jYuFx9/59TEXlGwOehvZk+fCe2kdk1v4XSFQPxqbnoufkGCmQ0NYOIwCcJrF8dwbnDB9CiRQt4eXmhdevWOH78OEQiES5dugQ1NTUMHjwYLi4u6NmzJwSCslsZGIZhmG8jlUoRGxtbqpn/7dt/NwDS1NSEra1tiSd+W1tb6OrK9klb1nkGANRV+Lg8uwtnuxYqXTEA/LvP9IKjstv9KePSX6hXEIf58+dj69atePjwIQYPHgwPDw9YWlri3bt3OHDgAEQiESIjI2FsbIxx48ZBKBTC2tpaZnEwDMNUFbm5uQgLCyvxxB8SEoLs7GwAgJGRUalmfgsLi0p7EJN1nvEYYouRrUxkdr1vpZTFAABsu/YCnhef//B15va2QmeDPIwYMQJxcXHYvn071NXVsWDBAiQkJGDatGlYunQp9PX1QUR49OgRRCIRAgICkJaWhlatWsHFxQWjRo1CzZo1ZfDOGIZhlEtiYmKJpB8cHIzo6GhIpVLw+Xw0bty4RDO/vb09ateuzXXYMs0z07txO/5MaYsB4N/KbdnJcIil9E19OwI+Dyp8HlYObFpcqeXk5GD69OkQiURwcXHBxo0b8ffff2Pt2rUQCARYvHgxZsyYAXX1f1edLigowKlTpyASiXDu3DkIBAIMHDgQQqEQffr0+eogFYZhGGUjkUjw/PnzUs38SUlJAABdXV3Y2dmVSPo2NjbQ1NTkOPIvk2We4ZJSFwPAv3077sdCcSsmBQI+r8wP69PrncwNsNbR9rN9NyKRCNOmTYOpqSkCAwNhaGiI5cuXY/fu3TA1NcX69esxbNiwEgNTkpKS4OfnB29vb4SGhsLQ0BBOTk4QCoWws7OrkPfNMAzDpaysLISEhJR44g8NDUV+fj4AoH79+qWa+Rs2bKiQ07ZlnWe4oPTFwCcvkrLg9yAO155/QNzH3BIrFfLw70IP3SwN4dTW5KvTOiIiIjBixAi8fPkS27Ztw4QJExAVFYV58+bh9OnTaN++Pby8vNC2bdsS5xERgoKCIBKJ4Ofnh5SUFDRr1gxCoRBjxoxBrVq1ZP/GGYZhKhAR4e3bt6Wa+WNiYgAAKioqaNq0aalmfmXsNpVlnqlsVaYY+K+cAjFef8xBoVgKNRU+Guhrf/OKT7m5uZg1axb+/vtvjB07Fjt27ICuri6uXLkCV1dXBAcHY+TIkVi/fj0aNGhQ6vzCwkKcO3cOIpEIp0+fBhGhf//+EAqF6N+/P9TUSu+HzTAMw6WioiJERkaWauZPTU0FAOjp6ZWYvmdvbw9ra+vi7tOqRBZ5pjJVyWJAlvz9/TF16lQYGxsjMDAQ9vb2kEgk8PHxwaJFi5CamopZs2bB3d39i+sQpKSkICAgACKRCE+ePIG+vj7GjBkDoVCI5s2bf/dcWIZhmO+VlpaG4ODgEk/8ERERKCz8dwteMzOzEk38Dg4OqF+/Pvu+UlCsGJCB58+fY8SIEYiKisKWLVswdepU8Hg85OTkwNPTExs2bICWlhaWL1+OKVOmlDl4MCwsDCKRCL6+vkhKSoKNjQ2EQiHGjh2LOnXqVOK7YhimKiAivHr1qlQz/5s3bwAA6urqsLW1LZH07ezsqtR3fFXAigEZyc/Px5w5c7Bjxw6MGDECu3fvLm4JSEhIwJIlS7B//35YWlpi48aN+Pnnn8usoMViMS5evAiRSITjx49DLBajb9++EAqFGDhwIDQ0vr4nNsMwzH/l5+cjPDy8RNIPDg5GZmYmAKBWrVqlmvmtrKygoiK/zduMbLBiQMYCAwMxadIkGBoa4tChQ2jRokXxa8HBwXBzc8Ply5fRrVs3eHl5oVmzZl+9ZlpaGg4dOgRvb288ePAAenp6GDVqFIRCIdq0acOa5RiGKSU5Obnk9rtBQYiKioJEIgGPx4OlpWWpZn4jIyP2fVJFsWKgArx8+RIjR45EaGgoPD09MWPGjOJ/YESEc+fOwc3NDVFRUXB2dsaaNWtQt27dr1z1X1FRUfDx8YGPjw/evXsHKysrCIVCjBs3DvXqlb1PNsMwykcikeDly5cl1uUPDg5GQkICAEBLS6t4971PSd/Gxgba2tocR87IE1YMVJCCggLMnTsXW7duhaOjI/bu3YsaNWoUvy4Wi/H3339j6dKlyM7OhpubG+bNmwcdHZ1yXV8ikeDq1avw9vbGsWPHkJ+fj549e0IoFMLR0RFaWvIxd5VhGNnJyclBaGhoiSf+kJAQ5ObmAgDq1q1bagpfo0aN2F4pzFexYqCCHTt2DBMmTICenh4OHjyINm1K7kiVmZmJdevWYfPmzahRowZWrVqF8ePHf9M/3szMTBw+fBgikQi3bt2Crq4uRowYAaFQiI4dO7JmP4ZRMESE9+/fl2rmf/HiBYgIAoEA1tbWJZr57e3t2VolzHdjxUAleP36NUaOHImnT5/Cw8MDs2fPLpWg37x5A3d3d/j7+8PW1haenp7o3bv3N9/r5cuX8PHxgUgkwps3b9CoUSM4OzvD2dn5s+sdMAzDLbFYjKioqFKj+ZOTkwEA1apVK9W336RJEzaImJEpVgxUksLCQri7u8PLyws///wzvL29oa+vX+q4hw8fwtXVFbdv30bfvn3h6emJpk2bfvP9pFIpbt68CZFIhMOHDyMnJwddu3aFUCjEsGHDyt0dwTCM7GRkZCAkJKTEE39YWBgKCgoAAKampqWW6G3QoAFr3WMqHCsGKtmpU6fg4uICbW1tHDx4EO3bty91DBHh2LFjmDdvHl69eoXJkydjxYoV371LV3Z2No4ePQqRSISrV69CW1sbQ4cOhVAoRNeuXRVyLXCGkWdEhLi4uFLN/K9evQIAqKmpoWnTpiWSvp2dXYlxRQxTmVgxwIG4uDiMHj0aDx48wJo1azB37tzPJuTCwkL89ddfWLlyJYqKirBw4ULMnj37h3bwevPmDXx9feHt7Y2XL1/CxMQEzs7OEAqFMDfndgtNhlFEBQUFiIiIKNXMn56eDgDQ19cv1czfuHFjtnMpI1dYMcCRoqIiLF26FOvXr0ffvn3h4+PzxcE/qampWL16NbZt2wYjIyOsXbsWY8aM+aEneiLC3bt3IRKJcOjQIWRmZqJDhw4QCoUYMWLEF5dOZpiq7OPHj8VJ/9N/IyIiIBaLAQDm5ualFu2pW7cua+Zn5B4rBjh2/vx5jBs3DmpqaggICEDnzp2/eGxMTAwWLFiAf/75By1btoSXl1eZx5dXXl4ejh8/Dm9vb1y6dAnq6upwdHSEi4sLevTowaYlMVWOVCpFbGxsqWb+t2/fAgA0NDRgZ2dX4onf1tYWurrytRMdw5QXKwbkwLt37zBmzBjcvn0bK1aswMKFC8tMwLdv34arqysePnyIwYMHY8OGDbCwsJBZLAcOHIC3tzeioqJQt25dODk5QSgUwtraWib3YBh5kpeXh7CwsFJL9GZnZwMAjIyMSjTxOzg4wMLCghXJjFJhxYCcEIvFWLFiBdasWYMePXrgwIEDZQ4YlEqlOHToEBYsWICEhARMmzYNS5cu/ewMhe9BRHj06BG8vb1x8OBBpKWloXXr1hAKhRg1apRS7kXOKL+kpKRS2+9GR0dDKpWCz+fDysqqRBO/vb09jIyMuA6bYSocKwbkzOXLl+Hk5ATg3+2Ru3fvXubxeXl5+OOPP7B27VoIBAIsWbIE06dPl+n+4QUFBTh16hS8vb1x/vx5CAQCDBw4EC4uLujTpw/bxISROxKJBM+fPy/VzJ+UlAQA0NHRKbFYz6clen9kcC7DKDJWDMihxMREjB07FteuXcOSJUuwdOnSrzZJfvjwAcuXL8fu3bthamoKDw8PDB06VOYDlxITE+Hv7w9vb2+Ehoaidu3aGDt2LFxcXGBrayvTezFMeWRlZRUv0fvpT1hYGPLy8gAA9evXL9XM37BhQzallmH+gxUDckoikWDNmjVYsWIFOnfuDD8/PxgbG3/1vMjISMydOxdnzpxBhw4d4OXlVWoJZFkgIgQFBUEkEsHPzw8pKSlo1qwZhEIhxowZw5ZFZWSOiPDu3btSzfwxMTEAABUVFTRp0qRUM7+sus4YRpmxYkDOXb9+HWPGjIFYLIavry/69OlTrvOuXLkCV1dXBAcHY+TIkVi/fn2FLUdcWFiIc+fOwdvbG6dPnwYA9O/fH0KhEP3794eamlqF3JdRXkVFRYiMjCzRxB8UFITU1FQAgJ6eXqmV+qytrWXaPcYwVQkrBhTAhw8fMG7cOFy8eBELFy7EypUry9VPL5FI4OPjg0WLFiE1NRWzZs2Cu7t7ha4hkJKSgoCAAHh7e+Pp06fQ19fHmDFj4OLigmbNmrH51kwp6enppRbsCQ8PR2FhIQDAzMys1E58JiYm7HeJYWSIFQMKQiqVYsOGDVi8eDHatWuHgIAA1KtXr1zn5uTkwNPTExs2bICWlhaWL1+OKVOmVPgKaKGhoRCJRDhw4ACSkpJgY2MDoVAIJycnNkK7CiIivH79ulQz/5s3bwAA6urqsLGxKZH07ezs2AJYDFMJWDGgYG7fvo3Ro0cjLy8PIpEI/fv3L/e5CQkJWLx4Mby9vWFpaYmNGzfi559/rvAnLLFYjIsXL8Lb2xsnTpyARCJBnz594OLiggEDBrDd15RQfn4+wsPDSz3xZ2ZmAgBq1apVqpnfysqKzUxhGI6wYkABpaSkwMXFBWfOnIGbmxvWrl37TU/5QUFBcHNzw5UrV9CtWzd4eXmhWbNmFRjx/5eamopDhw5BJBLhwYMH0NPTw6hRo+Di4oLWrVuzpl8FlJycXCrpR0ZGQiKRgMfjwdLSslQzf506ddhnzTByhBUDCkoqlWLTpk1YuHAhWrZsiYMHD8LU1LTc5xMRzp49i7lz5yIqKgrOzs5Ys2YN6tatW4FRlxQVFQWRSARfX1+8e/cOVlZWcHFxgZOTU7m7QJjKI5VKERMTU2rufkJCAgBAS0ureIneT0nf1tYW2traHEfOMMzXsGJAwd2/fx+jRo1CRkYGvL29MWjQoG86XywWY8+ePVi2bBmys7Ph5uaGefPmQUdHp4IiLk0ikeDq1avw9vbG0aNHUVBQgJ49e8LFxQWDBw+GlpZWpcXC/CsnJwehoaElkn5oaChycnIAAMbGxqV24mvUqBFbopdhFBQrBpRAWloaxo8fjxMnTmDWrFnYsGHDN0/ny8jIwPr167F582bUqFEDq1evhouLS6V/uWdkZODw4cMQiUS4ffs2dHV1MXLkSAiFQnTo0IE1LcsYEeH9+/elmvmfP38OIoJAIIC1tXWpZn62jgTDKBdWDCgJIsKff/6JuXPnwt7eHocOHYKZmdk3X+fNmzdwd3eHv78/7Ozs4OnpiV69elVAxF8XExMDHx8f+Pj44M2bN2jUqBGEQiGcnZ2/qUuE+ZdYLEZ0dHSp0fzJyckAgGrVqpVK+k2bNmUDPBmmCmDFgJJ59OgRRo4ciY8fP2Lv3r0YNmzYd13n4cOHcHV1xe3bt9GvXz9s3LgRTZs2lXG05SOVSnHz5k14e3vjyJEjyMnJQbdu3SAUCjF06NBK7dJQFBkZGQgJCSnxxB8WFoaCggIAgKmpaalm/gYNGrCWF4apolgxoIQyMjIwadIkHDlyBNOmTYOXl9d3Pd0REY4dO4Z58+bh1atXmDx5MlasWFHmbooVLTs7G0ePHoW3tzeuXbsGbW1tDBs2DEKhEF26dKly680TEeLj40us0hccHIzY2FgAgKqqKmxsbEokfTs7O9SoUYPjyBmGkSesGFBSRIQdO3Zg9uzZaNKkCQIDA2FhYfFd1yosLMRff/2FlStXQiwWY8GCBZg9ezbnO7y9fv0avr6+EIlEePnyJUxNTeHs7AxnZ2eYm5tzGltFKCwsRERERKnR/Onp6QCAmjVrlpq737hxY7YcNMMwX8WKASX37NkzjBgxAomJidi9ezdGjx793ddKTU3F6tWrsW3bNhgZGWHt2rUYM2YM50/jRIS7d+/C29sbgYGByMzMRMeOHSEUCjF8+HCFXMHu48ePCA4OLpH0IyMjUVRUBAAwNzcv1cxft25d1szPMMx3YcVAFZCVlYWpU6ciICAAkydPxh9//PFDT/UxMTGYP38+jh49ipYtW8LLywudO3eWYcTfLzc3F8ePH4dIJMKlS5egrq4OR0dHuLi4oEePHnI39U0qleLVq1elmvnj4+MBABoaGrCzsyuR9G1tbaGrq8tx5AzDKBNWDFQRRIS///4bM2fOhIWFBQIDA9G4ceMfuuatW7fg6uqKR48eYfDgwdiwYcN3d0VUhLdv3+LAgQMQiUSIiopC3bp1MW7cOAiFwh9+798jLy8PYWFhJZr5g4ODkZ2dDQCoXbt2qWZ+CwsLtkQvwzAVjhUDVUxoaChGjBiBuLg47NixA87Ozj90PalUioMHD2LhwoVISEjAtGnTsHTpUrnaQ56I8PDhQ4hEIgQEBCA9PR2tW7eGi4sLRo0aVSGD6ZKSkkr17UdHR0MqlYLP58PKyqpE0re3t2ebNzEMwxlWDFRB2dnZmD59Onx8fODi4oJt27b98JKxeXl5+OOPP7B27VoIBAIsWbIE06dPl7v95fPz83Hq1CmIRCKcP38eAoEAgwYNglAoRJ8+fb75KVwikeD58+clnvSDgoKQmJgIANDR0YG9vX2JZv6mTZuyVRUZhpErrBiowry9vTF9+nQ0aNAAgYGBMllH4MOHD1i+fDl2794NU1NTeHh4YOjQoXI5sC0xMRF+fn7w9vZGWFgYateuDScnJwiFQtja2pY6Pjs7GyEhISWSfmhoKPLy8gAA9erVK074n572zczMOB9gyTAM8zWsGKjiIiIiMGLECMTGxmLbtm0YP368TBJ3REQE5s2bhzNnzqBDhw7w8vJCmzZtZBCx7BERnj17BpFIBD8/P3z8+BG2trZo27YtDAwM8OLFCwQFBeHly5cgIqioqKBJkyalmvnlqWuEYRjmW7BigEFubi5mzpyJvXv3YuzYsdi5c6fMVvW7fPkyXF1dERISglGjRmHdunVo0KCBTK4tC0VFRYiKiiru13/27BkeP36MrKys4mP09fXRrl07DBo0CC1btoS1tbXcdX8wDMP8CFYMMMX8/PwwdepU1K1bF4GBgbC3t5fJdSUSCUQiERYvXozU1FTMmjUL7u7ulT7/Pz09vVTffnh4OAoLCwEADRs2LNHEX79+fdy6dQs+Pj54+vQpDAwMMGbMGAiFQjRr1kwuuz4YhmG+BysGmBKio6MxYsQIREdH448//sCUKVNklvSys7Ph6emJjRs3QktLC8uXL8eUKVOgqqoqk+t/QkR4/fp1qdH8b968AQCoq6vDxsamRDO/nZ1dmcVJaGgoRCIRDhw4gKSkJNja2kIoFGLs2LFsFgDDMAqPFQNMKXl5eZgzZw527tyJESNGYM+ePTL9PN+9e4clS5bA29sbVlZW2LhxI/r37/9dRUd+fn7xEr2fkn9wcDAyMjIAAAYGBiUG9Tk4OMDKyuq75+6LxWJcuHABIpEIJ06cgEQiQd++fSEUCjFgwAC2wx/DMAqJFQPMFwUGBmLSpEkwNDREYGAgmjdvLtPrBwUFwc3NDVeuXEH37t3h5eUFBweHLx6fnJxcqpk/MjISEokEPB4PFhYWpRbtqVOnToU156empuLQoUMQiUR48OABatSogVGjRsHFxQWtWrVi3QgMwygMVgwwZYqJicHIkSMRFhYGLy8vTJ8+XaZJjohw9uxZzJ07F1FRURAKhVi5ciXy8vJKNPEHBQUhISEBAKClpfXZJXp/dK2EHxEVFQWRSARfX1+8e/cOjRs3hlAoxLhx41C3bl3O4mIYhikPVgwwX1VQUIC5c+di69atGDJkCPbu3Qs9PT2ZXDs3NxehoaF48uQJDh48iHv37kEsFhe/bmxsXCLp29vbw9zcXO72GPhEIpHgypUrEIlEOHr0KAoKCtCrVy8IhUIMHjyYLTbEMIxcYsUAU25Hjx7FhAkTUKNGDRw6dAitW7cu97lEhMTExBJ9+0FBQXj+/DmICAKBAI0bN0aTJk2QkpKC27dvo2bNmlizZg1cXFzkNvmXJSMjA4cPH4ZIJMLt27dRrVo1jBgxAkKhEB06dGDdCAzDyA1WDDDf5NWrVxg5ciSCgoLg4eGB33//vVRSE4vFiI6OLtXMn5ycDADQ1dUt1bfftGnTEoPv3rx5A3d3d/j7+8POzg6enp7o1atXpb5XWYqJiYGPjw9EIhHi4uJgbm4OZ2dnODs7w9TUlOvwGIap4lgxwHyzwsJCLFy4EJs2bUK/fv0wY8YMxMbGFj/xh4aGoqCgAABgampaqpm/QYMG5V6i9+HDh5gzZw7u3LmDfv36YePGjTJZNpkrUqkUN27cgEgkwpEjR5CTk4Nu3bpBKBRi6NChMlvsiWEY5luwYoApFyJCfHx8iSb+O3fuICkpCQAgEAhga2tbIunb29vLZEdAIsLRo0cxf/58vHr1CpMnT8aKFStQu3btH742l7Kzs/HPP/9AJBLh2rVr0NbWxrBhwyAUCtGlSxe2pwHDMJWGFQNMKYWFhYiIiCjRzB8cHIy0tDQAQM2aNUus0icSiRAWFoa1a9fCzc2twpJYYWEhtm/fjlWrVkEsFmPBggWYPXs2NDU1K+R+len169fw9fWFSCTCy5cvYWpqCmdnZwiFQjRq1Ijr8BiGUXKsGKjiUlNTSyX9iIgIFBUVAQDMzc1LNfPXq1evxDiBoqIiLFmyBB4eHujXrx9EIhFq1apVoTGvWrUK27dvh5GREdauXYsxY8YoxZM0EeHOnTsQiUQ4dOgQsrKy0LFjRwiFQowYMYL9u2IYpkJUyWIgp0CM1x9zUCiWQk2Fjwb62tBW/74V6RSFVCrFq1evSo3mj4+PBwBoaGiUaua3s7ODrq5uue9x7tw5ODs7Q01NDQEBAejcuXNFvR0A/w7Kmz9/Po4ePYqWLVti06ZN6NSpU4XeszLl5ubi+PHjEIlEuHTpEjQ0NODo6AgXFxd0795dIWdYMExVoWh5psoUAy+SsuD3IA7Xoj8gLjUX/30zPAAmNbXQzcoQY9uYwKJ2+ROgPMrLy0NYWFiJJ/6QkJDinfgMDQ3RrFmzEk/8FhYW371E73+9e/cOo0ePxp07d7By5UosXLiwwp/Yb926BVdXVzx69AiOjo7w8PCAhYVFhd6zsr19+xYHDhyAt7c3oqOjUbduXYwbNw5CoRCNGzfmOjyGYaDYeUbpi4H41Fy4HwvFrZgUCPg8SKRffhufXu9kboC1jraoX1P+F4hJSkoq1cwfFRUFqVQKPp8PKyurUs38Fb2xjlgsxooVK7BmzRr07NkTvr6+FT7YTyqVIiAgAAsXLsT79+8xffp0LF26FDVr1qzQ+1Y2IsLDhw8hEokQEBCA9PR0tGnTBi4uLhg5cqRMBmwyDPNtlCHPKHUxcPBRHJadDIdYSmV+OP9LwOdBhc/DioFNMaqVSQVGWH4SiQQvXrwotRNfYmIiAEBHRwd2dnYl5u7b2NhwuuLdpUuX4OTkBD6fDz8/P3Tv3r3C75mXl4ctW7Zg3bp1EAgEWLJkCaZPnw51dfUKv3dly8/Px6lTp+Dt7Y0LFy5ARUUFAwcOhIuLC3r37i2Tlh6GYcqmLHlGaYuBbddewPPi8x++jltvS8zoVrlNztnZ2QgJCSmR9ENDQ5GXlwcAqFevXomk7+DgADMzM7kcQPf+/XuMHTsW169fx9KlS7FkyZJK6ev+8OEDli1bht27d6NBgwbw8PDA0KFDlXbVv8TERPj5+cHb2xthYWEwMjKCk5MThEIhbGxsuA6PYZSSIueZ/6WUxcDBR3FYcDT0i68XJMYg47Y/Ct5GgMRFUNGrDR2HvqjWcuBnj/cYYouRFVC5ERESEhJKrNIXHByMmJgYEBFUVFTQpEmTUs38+vr6Mo+lIkkkEqxZswYrVqxA586d4e/vjzp16lTKvSMiIjB37lycPXsWHTp0gJeXF9q0aVMp9+YCEeHZs2fw9vaGv78/Pn78iObNm0MoFGLMmDEwMDDgOkSGUQpfyjMppzcjJ+zKF8+rO90bKrql/x1WVJ4pL6UrBuJTc9Fz8w0UiKWffT3v1VN8OLISarUbQbtxJ/DUNCBOTwRIihrdJnz2HHUVPi7P7vJDfTtFRUWIiooq1cz/8eNHAED16tVLLdHbpEkTpWrevn79OkaPHg2JRIIDBw6gd+/elXbvy5cvw9XVFSEhIRg9ejTWrVun9MsAFxYW4uzZs/D29saZM2fA4/HQv39/uLi4oF+/flBTU+M6RIZRSGXlmYJ3kShKS/yfnxJSL2yHSvXaMJ7012evKYs88yOUrhgYt/cB7sZ+/GzfjbQgF+92T4F6XWvUclwIHq98zeoCPg/tzfThO7F8T5Tp6ekIDg4ukfTDw8NRWFgIAGjYsGGpZn4TExOlbcL+rw8fPmDcuHG4dOkSFi5ciBUrVlRa37ZEIoFIJMLixYuRmpqK33//HQsXLkT16tUr5f5cSk5ORkBAALy9vfHs2TMYGBhgzJgxcHFxgYODQ5X43WMYWSkrz3xOfnw4kvzmQ6+zM6q3H/HZY741z8iaUhUDL5Ky0GvLzS++nvXsLFIv/AXjSTugalAf0sJ88FTVyl0UXJ7dGeaG/386CBHh9evXxUn/039fv34NAFBXV4eNjU2JpG9nZ1clkk9ZpFIpPDw8sGTJErRv3x7+/v6oV69epd0/Ozsbnp6e2LhxI7S0tLBixQpMmTKlygy4Cw0NhUgkwoEDB5CUlARbW1u4uLhg7NixCr/EM8NUtK/lmc/5eOEvZD87h7q//A0VvbL/jf1vnqksSlUMLD8ZDt8Hb75YrSUfW4u810Go5eiO1Is7IE59B56qBrRtuqFmj8ngqXy52VTA56GPmSZa8l6VSP4ZGRkAAAMDg1LN/FZWVlBVVa2Q96oMbt++jVGjRiE/Px8+Pj746aefKvX+7969w5IlS+Dt7Q0rKyts3LgR/fv3rzJPyWKxGBcuXIBIJMKJEycgkUjQt29fuLi4YMCAAUrVRcUwsvK1PPO/SCLG223OUNWvByOnDWUeK+DzMK6NKZYPrPzN2Mqbv+VvmPpnXIv+UOYHVJSaAEglSP5nFTQbNkctR3fo2PVC9rNzSDmzpcxrS6SEEw9jMGnSJJw/fx5GRkaYN28ezpw5g3fv3uHDhw+4dOkSNm7cCCcnJ9jY2LBC4Cs6duyIoKAgtGnTBv3798e8efOKl0GuDHXr1sW+ffvw9OlT1K1bFwMGDEDPnj0RFBRUaTFwSUVFBf3790dgYCDev3+PrVu3Ijk5GcOHD0edOnUwffp0PHz4EOV4DmCYKuNreeZ/5b16CmleJrSbdP3qsRIp4drzDz8QXcWT+2Igu0CMuNTcMo+honxQUQG0bbqjZq+p0LJqj5q9pkLHoS9yI2+iKPVdmeer1jRGYkoaoqOjcejQIbi7u+Onn36CsbFxlXmalDUDAwOcOnUKGzduxObNm9G5c2e8efOmUmNwcHDApUuXcPr0aSQkJKB58+YYP3483r0r+/dBmdSsWRO//vorHjx4gIiICEydOhXHjx9HmzZt0KRJE3h4eFSpvw+G+Zzy5Jn/lRNxA+CrQMu6Y7mOj/uYi5wC8feEVynkvhh48zEHX6vVPnUDaFt3KfHzTxVbwbuor94nOf97omPKwufz4ebmhps3byIhIQHNmjXDiRMnKjWGTyPtQ0JCsG3bNpw+fRqWlpZYtmwZsrOzKzUWrllbW2PdunWIi4vDhQsX0KxZMyxfvhwmJibo06cPAgICite8YJiqpDx55r+khXnIe3Efmg2bQaBZvq5zAvD6Y853xVcZ5L4YKPzCVML/Euj8Oz9foK1X8ufa/w7ok+Z//Uu/PPdhvk+7du3w7NkzdOrUCYMHD8bs2bOLZ2BUFlVVVUybNg0xMTH47bff4OHhAUtLS+zduxcSiaRSY+GaQCBA79694e/vj8TEROzatQs5OTkYM2YMjIyMMGXKFNy5c4d1IzBVxrd+/+c+v/9va3TTrhV6n8ok98WAmsrXQ1Qz+ndfeHHWxxI/F2elAgAEWl8f5X/x/FmEhIRUat92VVKzZk0cP34cW7Zswfbt29GxY0e8evWq0uOoXr061q9fj6ioKHTt2hWTJk1C8+bNcenSpUqPRR5Ur14dkyZNwu3bt/H8+XPMnDkTFy5cQMeOHWFpaYnVq1dXevcOw1S28uSZ/8qJuA6emiY0Lb5tuuC33qcyyW9k/6eBvja+1muv3fjf7W2zQy6W+Hl2yEWAL4C6iW3ZFyDCwhmTYG9vDx0dHTRr1gzjx4/HH3/8gevXryMtLe0H3gHzCY/Hw6xZs3Dnzh2kpKSgWbNm+OeffziJpUGDBvD398f9+/ehq6uL3r17o3///oiIiOAkHnlgYWGBVatW4dWrV7h69Srat2+PdevWoUGDBujRowd8fHyQkyO/zZwM873Kk2c+keRmIP91ELQs2oKvqlHue/D+7z7ySu6LAW11FZh8ZeUmNaNG0LbrhdyIG0g+7oGsp2eQfHw9ciNuoFqbIVDRLXuZX1MDbaSnJOHWrVvw8vJCixYtEBYWhvnz56Nbt26oWbMmGjRogEGDBmHZsmU4duwYXr16xZpRv1OrVq3w9OlT9OzZE8OGDcOMGTOQn8/NoI02bdrg1q1bOHLkCKKjo2FnZ4dff/0VHz7I98jfisTn89GtWzeIRCIkJiZi//79kEqlEAqFqF27NsaPH4/r169DKpXfJk+G+RblyTOf5ETeBKSSb+4iMNHXgra6/K55ohTrDAD/zvnMuBeI7JDLkGSnQqV6Leg2/xnVWg0q89plzf8Ui8WIjo4utdRwcnIyAKBatWrFaw98+m/Tpk2hoVH+arEqIyL89ddfmDNnDpo2bYrAwECYm5tzFk9BQQH++usvrFy5EhKJBAsXLsTvv/8OTU1NzmKSJ69fv4aPjw9EIhFiY2PRoEEDODs7w9nZGY0aNeI6PIb5IctPhsPn/mt8bXbhex9XiNOTUG+GCDx++TZnU4R1BhSiGPielaG+xZEJ9mhpUb6V8ogIiYmJJTYgCgoKwvPnz0FEEAgEaNy4camFimrVqlVh8Su6Z8+eYcSIEUhKSsLu3bsxatQoTuP5+PEjVq1ahe3bt8PY2Bhr167F6NGj5XL3SC4QEW7fvg2RSITAwEBkZWWhU6dOEAqFGD58OOc7mzLMt0pNTcXc1ZtwRb1dhd2DrUAoI9+6ZnR58EAoiAtB/jlPLF26FNOmTfvuTV5ycnIQFhZWokgIDg5Gbu6/c1eNjY1LLF/s4OCARo0aVcq2v4ogMzMTU6dOxcGDBzFlyhRs2bKF8yfyFy9eYP78+Th27BhatWoFLy8vdOrUidOY5E1ubi6OHz8Ob29vXL58GRoaGhgyZAiEQiG6d+/Ofr8ZuVZYWIjt27dj1apVEIvFsJ25G4mkC4kMe8DY3gQy9rVdC7+HugofB8c1xa5Na7Fnzx6YmZnBw8MDjo6OMllsSCKR4OXLl6W6GRISEgAAWlpasLOzK9GCYGtrC21t+R1kUpGICH///TdmzpwJCwsLBAYGonHjxlyHhZs3b8LV1RWPHz+Go6MjPDw8YGHB7R7l8ujt27fw9fWFSCRCdHQ06tWrh3HjxkEoFMLKyorr8BimGBHh6NGjmD9/Pl69eoUpU6Zg+fLlKFTVrZA8w3YtlLEv7TP9vf67z3R4eDjmzp2Lc+fOoWPHjti0aRNatWols3v9V3JycqlNkCIjIyGRSMDj8WBhYVGqm6FOnTpVZjXEkJAQjBgxAm/fvsWOHTswbtw4rkOCVCpFQEAAFi5ciMTEREyfPh1LlixBzZo1uQ5N7hARHj58CG9vbxw8eBDp6elo27YthEIhRo4ciRo1anAdIlOFPXz4EK6urrh9+zb69euHjRs3omnT/9+XX5F5hgtKWQwAwLZrL+B58fkPX2dubytM71Z6sNqlS5fg6uqK0NBQjBkzBmvXroWpqekP3+9r8vPzERERUWosQmZmJgCgVq1apbZHtrKyUtod+bKzszFt2jT4+vpi/Pjx2Lp1q1y0mOTl5WHLli1Yt24dVFRUsGTJEkyfPv27u5eUXX5+Pk6ePAmRSITz589DVVUVgwYNglAoRO/evZX295eRP2/evMHChQsREBAAW1tbeHl5oVevXp89tqLzTGVS2mIA+LdyW3YyHGIpfdMYAgGfBxU+DysHNi2zUpNIJPD29sbixYuRlpaG2bNnY+HChZX+3j9tpfy/3QyfFoH5tJXyf4sEZdpKmYjg7e2N6dOno2HDhggMDCxRwXPpw4cPWLZsGXbv3o2GDRvCw8MDQ4YMqTKtN9/j/fv38PPzg0gkQlhYGIyMjODk5AShUAgbGxuuw2OUVEZGBtatW4ctW7agRo0aWL16NVxcXL46nqWi80xlUepiAPh3DIH7sVDcikmBgM8r88P69HoncwOsdbQtd99NdnY2NmzYAE9PT+jo6GDFihWYPHky508zaWlpCAkJKVEkhIeHFy/x27Bhw1LdDCYmJgqbqCIiIjB8+HC8evUK27dvh4uLi9y8l4iICMydOxdnz55Fx44d4eXlhdatW3MdllwjIjx79gze3t7w9/fHx48f0aJFCwiFQowePRoGBgZch8goAbFYjD179hTvQzJ37lzMnTsXOjo65b5GZeSZiqb0xcAnL5Ky4PcgDteef0Dcx9wSm03w8O9CD90sDeHU1uS7p3W8ffsWixcvho+PDxo3boyNGzfip59+kpuEBABFRUWIiooqbj349Cc19d8lmfX09Ep1MzRp0kRhmrdzc3Px22+/Yd++fXBycsKOHTu+6R91Rbt8+TJcXV0REhKC0aNHY926dZXSvaToCgsLcebMGYhEIpw5cwY8Hg8///wzhEIhfvrpJ7ZdOPPNiAhnz57F3LlzERUVBaFQiNWrV6Nu3brffc3KyDMVpdz5m8ohIyODAFBGRkZ5DudMdn4Rhb1Lp6dvUinsXTpl5xfJ9PpPnz6lbt26EQDq0aMHBQUFyfT6siaVSik+Pp5OnTpFq1evpmHDhpG5uTnh3w20SEVFhezs7MjZ2Zm8vLzoypUrlJKSwnXYZfL19SVtbW2ysrKi4OBgrsMpQSwW0969e6lOnTqkrq5O8+fPp/T0dK7DUhgfPnygLVu2ULNmzQgA1apVi2bNmkXPnj3jOjRGQQQFBVGPHj0IAHXv3p2ePn0q83tUdJ6RtfLmb6UqBiqDVCqlkydPkpWVFfF4PJowYQK9e/eO67C+SWZmJt25c4e2b99OU6ZModatW5OGhkZxkVC/fn36+eefafHixXTkyBF68eIFSSQSrsMuFhkZSXZ2dqSurk67du0iqVTKdUglZGVl0dKlS0lTU5MMDAxo+/btVFQk318Y8iY4OJjmzJlDhoaGBIDs7OzIy8uLEhMTuQ6NkUPv3r2j8ePHE4/HIysrKzp58qTcfS9whRUDFaywsJC2bdtGBgYGpKWlRcuXL6fs7Gyuw/puYrGYIiMjKSAggObPn099+vQhIyOj4gJBR0eHOnToQNOmTaPdu3fTw4cPKTc3l7N4c3NzaerUqQSARo0aJZe/m2/fviUXFxfi8XjUuHFjOnXqFPuC+kaFhYV06tQpGjZsGKmpqZFAIKCff/6ZDh8+TPn5+VyHx3AsOzubli1bRlpaWmRgYEDbtm2jwsJCrsOSK6wYqCTp6ek0b948UlNTI2NjY9q3bx+JxWKuw5KZ9+/f0/nz58nDw4NGjx5N1tbWxOfzCQDx+Xyytram0aNH0/r16+n8+fOV/uR28OBB0tXVJXNz8wppEpSFZ8+eUffu3YubLlmz9/f5+PEjbd++nVq3bk0AqEaNGjRt2jR6+PAhK7KqmP92yampqdG8efNYl9wXsGKgksXGxtLIkSMJANnb29Ply5e5DqnC5OTk0MOHD2n37t00bdo06tChA+no6BS3IhgZGVGfPn1o/vz5FBAQQBERERVaIL148YKaN29OampqtG3bNrlMDFKplE6dOkWNGzcmHo9HLi4u9PbtW67DUlgRERE0f/58MjY2JgBkbW1N69evZ3+nVcClS5fI3t6+uFXw1atXXIck11gxwJF79+5Ru3btCAD179+fIiIiuA6pUkgkEnrx4gUdOXKEFi9eTD///DPVr1+/uEDQ1NSk1q1b0+TJk2n79u10584dyszMlNn98/PzacaMGQSAhg4dSmlpaTK7tiwVFhbS9u3bi7uXli1bptDdS1wTi8V0/vx5Gj16NGloaBCfz6c+ffqQv78/p91YjOxFRERQ//79CQC1b9+e7t+/z3VICoEVAxySSqUUGBhIDRs2JIFAQL/++islJSVxHRYnUlJS6MqVK7Rp0yZydnYmOzs7UlFRKS4SzM3NadiwYbRq1So6deoUxcfH/9CT/ZEjR6h69erUsGFDevjwoQzfiWylp6fT/PnzSV1dnerUqUN79+5Vqu4lLqSnp9Pu3bupQ4cOBICqVatGkydPptu3b8tlaxFTPklJSfTrr7+SQCAgMzMzOnz4MPs8vwErBuRAfn4+eXp6kp6eHunq6tL69espLy+P67A4l5+fT8+ePaP9+/fT77//Tl27diU9Pb3iAqFmzZrUvXt3mjNnDvn4+FBwcPA3DQqKjY2lVq1akaqqKm3evFmuvzhevXpFo0aNKh4xf+nSJa5DUgrPnz+nxYsXk4mJCQEgCwsLWrVqFb1584br0JhyysvLo3Xr1pGuri7p6emRl5cXGzT6HVgxIEdSUlJo5syZpKKiQiYmJuTn5ydXU/XkgVQqpdevX9OJEydoxYoV5OjoSGZmZsUFgpqaGjVr1oxcXFxoy5YtdP369TK7AgoKCmj27NkEgAYOHEgfP36svDfzHe7fv0/t27cnAPTTTz9ReHg41yEpBYlEQleuXCFnZ2fS0tIiHo9H3bt3J5FIxLpn5JREIiE/Pz8yMTEhFRUVmjVrltyvfyLPWDEgh6Kjo2nw4MEEgFq1akW3bt3iOiS5l56eTjdv3qStW7fSxIkTqUWLFqSurl5cJJiamtKgQYNo2bJldPToUYqNjS3REnDixAmqUaMGmZiY0N27dzl8J18nlUrp8OHDZGZmRgKBgH755Zcq271UETIzM2n//v3UtWvX4umyLi4udP36dVacy4lbt25Rq1atCAA5OjrS8+fPuQ5J4bFiQI5dv36dWrRoQQBoyJAh9OLFC65DUihFRUUUFhZGBw4cIDc3N+rVqxfVqlWruECoVq0aderUiX777Tfau3cvnTp1itq0aUMqKiq0YcMGuf/iz8/Pp02bNhV3L61du5YNhpOx2NhYWrFiRXHrU4MGDWjp0qUUExPDdWhV0osXL2jIkCEEgFq0aEE3btzgOiSlwYoBOSeRSMjX15fq1atHqqqqNHv2bLlvypZnUqmU3r17R2fPnqW1a9fSiBEjileJ/LQmgoGBAQGgxo0b05EjR+jDhw9ch12mlJQUmjVrFuteqkBSqZRu3rxJEydOJF1dXQJAnTp1or1797Lvu0rw8eNH+v3330lVVZXq169Pvr6+7HdcxlgxoCByc3NpzZo1pKOjQzVq1KDNmzdTQUEB12EpjezsbLp37x7t3LmTfvnlF7KysipuQQBAxsbG9NNPP5G7uzsdOnSIoqOj5e7L6Pnz5+To6Mi6lypYTk4OHThwgHr16kU8Ho80NTVp7NixdOnSJTbTQ8YKCgpo06ZNVKNGDdLR0aE1a9aw1q8KwooBBZOYmEhTpkwhPp9P5ubm9M8//8j1KHhF9vr1a2rZsiXx+Xzq0qUL9evXr3jxGgCkra1Nbdu2pV9++YV27txJ9+7dk4vBZjdu3KCWLVuy7qVKEBcXR2vXri0uHuvVq0fu7u4UHR3NdWgKTSqV0pEjR6hRo0bE5/Np6tSpbL+JCsaKAQUVGhpKffv2LW6ulOe58oqsqKiIFi1aRDwej3r16kWJiYn04cMHunTpEm3cuJHGjh1LNjY2JBAICEDxBigjRoygtWvX0tmzZykhIaHSCzaJREIHDhyg+vXrk6qqKv3++++se6kCSaVSunfvHv3yyy/F01/btm1LO3fulNuFreTVw4cPqWPHjgSA+vXrR2FhYVyHVCWwYkDBXbhwgWxtbQkAjRkzhs2PriAXL14kQ0NDMjIyoqtXr5Z6PS8vjx4/fkx///03/fbbb9SpUyeqVq1acStCrVq1qFevXjR37lw6cOAAhYWFVcoOhbm5ubR27VrS1dWlGjVq0KZNm1j3UgXLy8ujQ4cO0U8//UR8Pp/U1dVp5MiRdPbsWbYrZRlev35NY8aMIQBka2tLFy9e5DqkKoUVA0pALBbTnj17yMjIiNTV1WnBggXsM6gACQkJ1K1bN+Lz+bR8+fKv9g9LpVKKjY2lo0eP0tKlS2nQoEFkampaXCCoq6tTixYtaOLEibR161a6efNmhW2ikpiYSL/88gvx+Xxq1KgRHTlyhHUvVYKEhATauHEjNW3atHg/jrlz57Kn3f/IyMigBQsWkLq6OhkZGdHff//Nxl5wgBUDSiQrK4uWLFlCmpqaVKtWLdqxYwd7EpExsVhMy5cvJx6PR926daOEhIRvvkZqaipdv36dtmzZQi4uLtSsWTNSVVUtLhLMzMzI0dGRVqxYQSdOnKA3b97ILHGHhYVRv379CAB17NiRHjx4IJPrMmWTSqX0+PFj+u2330hfX794atzWrVur7EI5RUVF9Ndff1GtWrVIU1OTlixZQllZWVyHVWWxYkAJxcfHk1AoJB6PR02aNKEzZ86wp0AZu3r1KhkZGZGhoaFMmjMLCgooODiYRCIRzZkzh7p37041a9YsLhD09PSoa9eu9Pvvv9P+/fvp2bNnP9Tcf/HixeLupdGjR9Pr169/+D0w5VNQUEBHjx6lQYMGkYqKCqmqqpKjoyOdOHHim5bTVlRSqZROnz5N1tbWxOPxSCgUUnx8PNdhVXmsGFBiT548KV5FrWfPnhQUFMR1SEolMTGxeHrZokWLZN4KI5VKKT4+nk6dOkWrVq2iYcOGkbm5eXGBoKqqSnZ2duTs7EybNm2iq1evftMgQbFYTH///Xdx99L8+fPZXu+VLCkpibZs2UIODg7FY0tmzZpFz5494zq0ChEUFEQ9evQgANStWzd6+vQp1yEx/4cVA0pOKpXSiRMnyNLSkng8Hk2YMIHevXvHdVhKQyKR0Jo1a4jP51OnTp0q5QknMzOTbt++Tdu3b6fJkydT69atSUNDo7hIqF+/Pg0YMIAWL15MR44coZiYmDLXRMjKyqKlS5cWdy/99ddfrHuJA8HBwTRnzhwyNDQs3pBq06ZNSjGl7t27dzRhwoTi2TYnT55krZVyhhUDVURhYSFt3bqV9PX1SUtLi5YvXy4Xc+KVxc2bN6lu3bqkr69PZ8+erfT7FxUVUUREBPn7+9P8+fOpT58+VLt27eICQUdHhzp06EDTp0+n3bt308OHD0st3vL27VtycXEhHo9H1tbWdPr0afaFzYHCwkI6deoUDR06lNTU1EggENDPP/9MR44cUbjd+LKzs2n58uWkpaVFBgYGtG3btirRFaKIWDFQxaSlpdHcuXNJTU2NjI2Nad++fWzkrowkJycXD86bN2+eXHzpvX//ns6fP0/r16+n0aNHk7W1NfH5/OKll62trWn06NHk4eFB58+fp8TERHr69Cl1796dAFCPHj1Y9xKHPn78SNu3by/elKdmzZo0ffp0evjwoVwXamKxmPbt20fGxsakpqZG8+bNY11Qco4VA1VUbGwsjRw5kgCQg4MDXb58meuQlIJEIqENGzaQQCCgdu3ayeW6Dzk5OfTw4UPavXs3TZs2jdq3b086OjrFrQhGRkbUp08fGjp0KBkbGxOPxyMXFxfWvcSxiIgImj9/fvEqmNbW1uTh4SF3n8vly5fJ3t6eANCoUaPo1atXXIfElAMrBqq4e/fuUbt27QgA9e/fnyIiIrgOSSncvXuXTExMqEaNGnTixAmuw/kqiURCL168oMOHD9PixYvp559/pnr16pXYn4HP51Pz5s1p06ZNdOfOHTYNjCNisZjOnz9Po0ePJg0NDeLz+dS3b18KCAjgdN3+iIgI6t+/PwGg9u3b0/379zmLhfl2rBhgSCqVUmBgIDVs2JAEAgH9+uuvlJSUxHVYCu/jx480cOBAAkCzZ89WyJX/UlJS6MqVK7R69Wpq2rRp8e6On/5YWFjQsGHDaPXq1XT69GmKj4+X6+ZrZZOenk67d++m9u3bEwCqXr06TZkyhe7cuVNpn0NSUhL9+uuvJBAIyMzMjA4fPsx+BxQQKwaYYvn5+eTp6UnVq1cnXV1dWr9+PeXl5XEdlkKTSqW0efNmUlVVpVatWlFsbCzXIf2QV69e0fDhw4tnLTg6OlKXLl2K1+MHQPr6+tSjRw+aM2cO+fj4UEhIiFyMn1B2z58/p8WLF1P9+vWLC7XVq1dXWFdVXl4erVu3jnR1dUlPT488PT0VboAj8/+xYoApJSUlhWbOnEkqKipkampK/v7+rNL/QQ8fPqQGDRpQ9erV6Z9//uE6nB92//794qfR/v37U1hYGL1+/ZqOHz9OK1asIEdHR2rYsGFxgaCmpkbNmjWj8ePH05YtW+j69etsA58KIpFI6MqVKzRu3DjS0tIiHo9HPXr0IB8fH5nMIJJIJOTn50cmJiakoqJCM2fOrLKrKCoTVgwwXxQdHU2DBw8mANS6dWu6ffs21yEptLS0NBoyZAgBoBkzZij8U5RUKqXDhw+TmZkZCQQC+uWXX0p1L6Wnp9PNmzfpzz//pAkTJlCLFi1IXV29uEho0KABDRo0iJYtW0bHjh2j2NhYVnjKUGZmJu3fv5+6dOlSPMV0/PjxdP369TLXnviSW7duFc9sGDx4MNuqWYmwYoD5quvXr1Pz5s0JAA0dOpRiYmK4DklhSaVS2rZtG6mpqVHz5s3pxYsXXIf0w/Lz88nLy4v09PRIV1eX1q5dW+ZAtsLCQgoNDaUDBw6Qm5sb9ezZkwwMDIoLhOrVq1Pnzp3pt99+o71799KTJ09Yd5UMxMbG0ooVK8jMzIwAUMOGDWnZsmX08uXLr5774sWL4kK2RYsWdP369UqImKlMrBhgykUikZCPjw/Vq1ePVFVVafbs2ZSamsp1WArryZMn1KhRI9LV1aWDBw9yHY5MpKSk0KxZs0hFRYVMTEzIz8+v3E+fUqmU3r17R2fOnKG1a9fSiBEjilfNBEACgYBsbGzIycmJPD096dKlS5ScnFzB70g5SaVSunnzJk2YMIF0dXUJAHXu3Jn27t1LmZmZJY79+PEjzZ49m1RVValevXrk6+v7XS0KjPxjxQDzTXJycmj16tWko6NDNWrUoM2bNyvkKHl5kJGRUbzWw9SpUzmdFiZLz58/J0dHRwJArVq1olu3bn33tbKzs+nevXu0Y8cOmjp1KrVt25a0tLSKWxHq1q1LP/30E7m7u1NgYCBFR0ezZPUNcnJy6MCBA9SzZ0/i8XikqalJTk5OdPbsWfLy8qIaNWqQjo4OrVmzRml+P5nPY8UA813ev39PU6ZMIT6fT+bm5nT06FHW1/sdpFIp7dq1i9TV1cnOzo6ioqK4Dklmbty4QS1atCAANGTIEJl1iYjFYoqKiqJDhw7RwoULqV+/fsUL8QAgbW1tateuHf3yyy+0c+dOun//PuXk5Mjk3sosLi6OVq9eXeLv0sHBge7cucN1aEwlYMUA80NCQ0Opb9++BIA6depEjx494jokhRQcHExWVlakra1Nvr6+XIcjMxKJhHx9fal+/fqkqqpKv//++zftrPgtkpKS6OLFi7Rx40YaO3YsNW3alAQCAQEo3iBn5MiRtG7dOjp79iwlJCSwAvY/Hj58SJ06dSIA1LZtWxo+fDhVr16dAFC7du1o586dbAaIEmPFACMTFy5cIBsbGwJAY8eOlctleOVdVlYWOTk5EQCaMGGCUj3N5ubm0po1a4q7lzZt2lQp3Ut5eXn0+PFj+vvvv2nGjBnUqVOn4n5yAGRoaEi9evWiuXPnkp+fH4WFhVW5HRvfvHlDY8aMIQBka2tLFy5cKH4tLy+PDh06RP369SM+n0/q6uo0cuRIOnv2bJX7e1J2rBhgZEYsFtPu3bupdu3apKGhQQsXLmS/C99IKpXSvn37SFNTk5o2bUrh4eFchyRTiYmJNHXqVOLz+dSoUSM6cuRIpT+dSyQSevnyJR09epSWLl1KAwcOJFNT0+ICQUNDg1q2bEkTJ06krVu30q1bt5Ty9zgjI4MWLFhA6urqZGRkRHv27Clz07KEhATauHEjNW3alABQnTp1aO7cuRQWFlaJUTMVhRUDjMxlZmbS4sWLSVNTkwwNDWnHjh3sKeIbhYWFUZMmTUhTU5P27dundM3ZYWFhxTs8duzYkR4+fMh1SJSamkrXrl2jLVu2kIuLCzk4OJCqqmpxkWBmZkZDhgyhlStX0okTJ+jNmzcK+bkUFRXRjh07qFatWqSpqUlLliz5pn0mpFIpPX78mGbMmEE1a9YkANSyZUvaunUrW3xIgbFigKkw8fHx5OzsTACoSZMmdObMGYX88uRKdnY2jR8/ngDQuHHjlHJjoIsXL5KtrS0BoDFjxtDr16+5DqmEgoICCg4OJpFIRLNnz6bu3bsXJ0AAVKNGDeratSv9/vvv5O3tTc+ePZPb2TVSqZROnz5N1tbWxOPxSCgUUnx8/A9ds6CggI4ePUoDBw4kFRUVUlVVpSFDhtCJEyfYEtQKhhUDTIV78uQJde3alQBQz549KSgoiOuQFIqPjw9pa2tT48aNKTg4mOtwZE4sFtPff/9NRkZGpK6uTgsWLJDr7xCpVEpxcXF06tQpWrVqFQ0dOpQaNWpUXCCoqqqSvb09OTs706ZNm+jq1asVNmiyvIKCgqhHjx4EgLp160ZPnjyR+T2SkpJo8+bN5ODgQACoVq1a9Pvvv7N/7wqCFQNMpZBKpXTixInihWQmTJggd/uwy7PIyEiytbUlDQ0N2rVrl1K2sGRlZdHSpUtJU1OTatWqRX/99ZdCdS9lZmbS7du3adu2bTR58mRq1aoVaWhoFBcJ9evXpwEDBtCSJUvoyJEjFBMTU+FrIrx7944mTJhQPJvi5MmTlfK7ExQURLNnzyZDQ0MCQPb29rRp0ya2G6ocY8UAU6kKCwtp69atpK+vT1paWrR8+XKZbJ5SFeTm5tLUqVMJAI0aNUpp/529ffuWXFxciMfjkbW1NZ0+fVphi5+ioiKKiIggf39/mjdvHvXp06c4QQIgXV1d6tChA02fPp327NlDDx8+lMniPtnZ2bR8+XLS0tIiAwMD2rZtGyfN9oWFhXTy5EkaOnQoqampkYqKCg0YMID++ecfhd+bQ9mwYoDhRFpaGs2dO5fU1NTI2NiY9u3bV+ZIZub/CwgIIF1dXTI3N6enT59yHU6Fefr0KXXv3p0AUI8ePZSqufn9+/d0/vx5Wr9+PY0aNYqsra2Jz+cTAOLz+dSkSRMaPXo0eXh40IULFygxMbFc1xWLxbRv3z4yNjYmNTU1mjdvHqWnp1fwuymflJQU2rZtW/FGRzVr1qTp06fTo0ePFLbYUyasGGA4FRsbW7wkr4ODA125coXrkBTC8+fPqVmzZqSmpkbbt29X2i9TqVRKJ0+eJCsrK+LxeDR+/Hil7V7KycmhBw8e0K5du2jatGnUvn170tbWLm5FMDIyor59+9KCBQsoICCAIiMjSxTQly9fJnt7ewJAI0eOpNjYWA7fTdnCw8Np3rx5VKdOneIBxh4eHkr72SoCVgwwcuHevXvUrl07AkA///wzRUZGch2S3MvLy6Pp06cTABo2bJjcPAFWhMLCQtq2bRsZGBiQlpYWLVu2rEp0L0kkEnrx4gUdPnyYFi1aRD///DPVq1evuEDQ1NQkW1tbMjExIQBkY2OjUAV1UVERnTt3jkaNGkUaGhrE5/Opb9++FBAQwPZCqGSsGGDkhlQqpcDAQGrYsCEJBAKaNm0affjwgeuw5N6RI0eoevXq1LBhQ7mYr1+R0tPTad68eaSmpkZ16tShvXv3VsnupeTkZDp8+DC1b9+eeDweqamplVh62cLCgoYPH06rV6+m06dP09u3b+W+9SgtLY127dpF7du3L97KesqUKXT37l25j10ZsGKAkTv5+fm0ceNGql69OlWrVo3Wr1/P9rP/ipcvX1KrVq1IVVWVtmzZovRfnq9evaJRo0YVj1S/dOkS1yFVmry8PFq/fj3p6upS9erVydPTk/Lz8yk/P5+ePn1K+/bto1mzZlGXLl2K9xYAQPr6+tSjRw9ydXUlHx8fCgkJkdu1AKKjo2nRokVUv359AkAWFha0evVqtsx5BWLFACO3kpOT6bfffiMVFRUyNTUlf39/pU9yP6KgoIB+//13AkCDBg3ifG57Zbh//37xk2T//v0pIiKC65AqjFQqJX9/fzI1NSUVFRWaOXPmV1f8k0ql9Pr1azp+/DgtX76cHB0dqWHDhsUFgpqaGjVr1ozGjx9Pf/zxB12/fl2uNiOSSCR0+fJlGjduHGlpaRGPx6MePXqQr69vlegmqkysGGDkXnR0NA0aNIgAUOvWren27dtchyTXjh8/Tnp6emRiYkL37t3jOpwKJ5VK6fDhw2RmZkYCgYB+/fVXpZvPfvv2bWrdujUBoMGDB1N0dPQPXS8tLY1u3LhBf/75J02YMIGaN29OampqxUVCgwYNaPDgwbRs2TI6duwYvXr1ivNCPDMzk/bt20ddunQhAKSjo0Pjx4+nGzduVPh6DVUBKwYYhXHt2jVq3rx58YC5mJgYrkOSW69fv6a2bduSiooKbdiwoUp8Webn55Onpyfp6emRrq4urVu3TuG7l2JiYmjo0KEEgJo3b07Xr1+vsHsVFhZSaGgo+fr6kpubG/Xs2ZMMDAyKC4Tq1atT586daebMmbR371568uQJZ2sFxMbG0vLly4tbORo2bEjLly+X6xkU8o4VA4xCkUgk5OPjQ/Xq1SNVVVWaM2cOpaamch2WXCosLKS5c+cWN6EnJydzHVKlSElJoZkzZ5KKigqZmJiQn5+fwhVDqampNHv2bFJVVaV69eqRj48PJ+9BKpXSu3fv6MyZM7RmzRoaMWJE8SqiAEhFRYVsbW3JycmJPD096fLly5X6eyaRSOjGjRs0YcIE0tHRIQDUuXNn2rdvH2VmZlZaHMqgShYD2flFFPYunZ6+SaWwd+mUna84S54y/8rJyaHVq1eTtrY21axZk7Zs2SK3G8Rw7fTp06Svr09169alW7ducR1OpYmOjqbBgwcTAGrVqpVCvPeCggLavHkz1ahRg3R0dGj16tWUk5PDdVilZGVl0b1792jHjh00depUatOmDWlpaRW3ItStW5f69+9P7u7uFBgYSM+fP6/wYiY7O5t8fX2pZ8+exOPxSEtLi5ycnOjy5cucFFKKlmfKm795RET4iszMTFSvXh0ZGRmoVq3a1w6vVC+SsuD3IA7Xoj8gLjUX/30zPAAmNbXQzcoQY9uYwKK2LldhMt8oMTERS5cuxd69e2FmZoYNGzZg8ODB4PF4XIcmV96+fYvRo0fj3r17WLVqFebPnw8+n891WJXixo0bcHV1xZMnTzBkyBB4eHjA3Nyc67BKICIcP34c8+bNQ2xsLCZNmoQVK1bAyMiI69DKTSKRICYmBkFBQQgODkZQUBCCgoLw/v17AIC2tjbs7Ozg4OAAe3t7ODg4wNbWFlpaWjKPJT4+Hr6+vhCJRHj+/Dnq168PZ2dnCIVCWFhYyPx+nyhynilv/lbYYiA+NRfux0JxKyYFAj4PEumX38an1zuZG2Ctoy3q15T9LylTMcLCwuDm5oYLFy6gc+fO8PLyQsuWLbkOS66IxWIsW7YM69atQ69eveDr6wtDQ0Ouw6oUUqkU/v7+cHd3R2JiImbMmIHFixejZs2aXIeGR48ewdXVFbdu3ULfvn2xceNG2NjYcB2WzHz48KFEcRAcHIyoqChIJBLw+XxYWloWFwefCgUjIyOZFPREhPv370MkEuHgwYPIyMhAu3bt4OLighEjRkBPT+/H3yCUI88odTFw8FEclp0Mh1hKZX44/0vA50GFz8OKgU0xqpVJBUbIyNqFCxfg5uaGsLAwjB07FmvXroWJCfsM/+vixYtwcnKCiooK/P390bVrV65DqjR5eXnYvHkz1q1bB1VVVSxduhTTpk2DmppapccSFxeHhQsXwt/fHzY2NvDy8kLv3r0rPQ4u5OXlITw8vFSRkJWVBQAwNDQs0YLg4OAAS0tLqKio/NA9T548CZFIhAsXLkBVVRWOjo4QCoXo1asXBALBd11XWfKM0hYD2669gOfF5z98HbfelpjRreKalRjZE4vF2L9/P5YsWYKMjAzMnj0bCxYs4Px3Up68f/8eY8aMwc2bN7Fs2TIsWrTou78MFVFSUhKWLVuGPXv2wMzMDB4eHnB0dKyU7qXMzEysW7cOmzdvhp6eHlatWoUJEyZUqb//z5FKpXj9+nWpboa4uDgAgIaGBmxsbEq0INjZ2X3Xv+uEhAT4+flBJBIhPDwcderUwbhx4yAUCtGkSZNyX0eZ8oxSFgMHH8VhwdFQmV3PY4gtRspB5cZ8m6ysLGzYsAFeXl7Q1dXFihUrMGnSpB96ulAmEokEq1atwsqVK9GtWzf4+fkpVB+1LISHh2Pu3Lk4d+4cOnXqBC8vL7Rq1apC7iUWi/H3339j6dKlyM7OhpubG+bOnQtdXfnqO5Y3qampCAkJKdGCEB4ejqKiIgBAo0aNSnUz1K9fv1yFHRHhyZMnEIlE8Pf3R2pqKlq2bAkXFxeMGjUK+vr6XzxX2fKM0hUD8am56Ln5BgrE0nIdn3H3ENJv+kLVwATGk/767DHqKnxcnt1Fbvp2mG/z9u1bLFq0CD4+PmjSpAk2btyIfv36sUGG/+fq1asYO3YspFIp/Pz80LNnT65DqnSXLl2Cq6srQkNDMWbMGKxduxampqYyuTYR4dy5c5g7dy4iIyPh7OyM1atXo169ejK5flVUWFiIyMjIEi0IQUFBSEtLAwDUqFGjVDeDtbV1md1BBQUFOHPmDEQiEc6ePQsej4cBAwbAxcUFffv2haqqavGxZeWZ/DchSApw/+w9jMZ5Qr1u48++xnWeUbpiYNzeB7gb+7FcfTfizBQk7JkKgAeV6oZfLAYEfB7am+nDd2IbGUfLVKanT5/C1dUV169fR8+ePeHl5QU7Ozuuw5ILSUlJcHJywpUrV+Du7o7ly5dXuRYUiUQCb29vLF68GGlpaZg9ezYWLlz4Q99lwcHBcHNzw+XLl9G1a1d4eXmhefPmMoya+YSI8Pbt21LdDC9fvgQAqKqqokmTJiVaEOzt7T87iPTDhw/w9/eHSCRCUFAQDA0NMXbsWAiFQtjb25eZZz4VA7otBkCtjmWJ1zTNmkOgVf2z8XOdZ5SqGHiRlIVeW26W+/jkEx6Q5maApFJI8zK/WAx8cnl2Z5gbsiY9RUZEOHXqFObOnYsXL15gwoQJWLVqFerUqcN1aJyTSqVYt24dli5dio4dO8Lf3x9169blOqxKl52djQ0bNsDT0xM6OjpYsWIFJk+e/E3FUUJCApYsWYL9+/fDwsICGzduxIABA1hrFAcyMzMRGhpaopshNDQU+fn5AAATE5NS3QwNGzYsnnobHBwMkUiEAwcOIDk5GTYdeiKr0+9fvN+nYsBg8AJoN+74zfFylWfKm78VYkKy34M4CPjl+8eWHxeG3Kg7qNFjSrmOF/B5OHA/7kfCY+QAj8fDwIEDERYWhj///BPHjx+HhYUFVq5ciZycHK7D4xSfz8eiRYtw7do1xMTEwMHBAefPn+c6rEqno6ODlStX4vnz5/jpp58wffp02NnZ4cyZM/jaM1FOTg5WrFgBCwsLnDhxAn/++SfCwsIwcOBAVghwpFq1aujQoQOmT5+OPXv24OHDh8jKykJ4eDj8/f0xatQoFBQUYNeuXRg6dCjMzc2hp6eHTp06YcaMGXj06BHGjBmDmJgYnDx5Epq2vUFSSbnuLS3ILfexgGLkGYVoGeiy8RrepOZ+9TiSSvB+/yyo120M/b4zkOi3oFwtA6b6Wrjh1k1W4TJyID09HWvWrMGff/4JAwMDrFmzBs7OzlVmQZ4vSU5OhlAoxLlz5zB//nysWrWqRJ9pVfLs2TO4urri2rVr6NGjB7y8vGBvb1/iGIlEAh8fHyxevBgpKSmYNWsW3N3dZTaPnakciYmJpboZnj9/DqlUCj6fj8aNG0PSbwnyVb/85P6pZYCnpgkqzAN4fKjXb4oa3SZAvc7XZwxwlWeUpmUgu0CMuHIUAgCQ/ewcxJnJ0Os87pvuEfcxFzkF4u8Jj5FTenp62LhxI6KiotCxY0eMHz8eLVq0wNWrV7kOjVO1atXC6dOn4eHhAU9PT3Tt2rV4ildV06xZM1y5cgUnT57E27dv0axZM0ycOBEJCQkA/h2A2bJlS0yYMAGdOnVCVFQUNmzYwAoBBWRkZIS+ffti/vz5CAgIQGRkJLKysvDgwQPs2LEDHbp0R76KTtkXEahCy6o9avaYjFpDl0Cv8zgUJb9Bkt98FCa+/GoM8p5n5L5lIDwhA/233v7qcZK8TCTsmorq7YajWpshAFDulgEA8OplgIZ6VfMJqSoICQnBpk2bEBoaik6dOmHWrFlo2LAh12FxKjg4GAsXLkR+fj6WL1+Ozp07cx0SZ4qKinDs2DHs2rULeXl5qF27NuLi4mBrawtXV1fY2tpyHSJTgV6lF8H1Uso3n1eUloD3e3+Dev2mqD1y5VePP/NbRzQ1/vxAw4pS3vwt98OKC8s5lTD9pi/4mjrQbTngu+4zxskZhe9/fJEJRv7dunULt27d4joMuTJ79myuQ5Arn1pLQkND4eLiwm0wTIVTq2OJOsJN33yeag1jaFq0Qe7zuyCpBDx+2QtMlTefcUHuiwE1la/3ZBSlvkN20AXU6DEZkqzU4p+TpAgklUCcngSeuhYEml/uD/I/4MNaBqqIwsJCHDx4EHv37gURYeLEiRg1ahTU1dW5Do0TRAR/f3/8+eefsLKywrp166rUbIOCggIEBARg37594PF4mDhxIjp37oxdu3bh4sWLsLS0xOzZs9G6dWuuQ2UqyPe2DACASjUDQCIGFRWAp172WgLlyWdckftugpwCMWyWX0BZQZa1GMQnui0HombPz88w4AEIW94H2upyXxsxMpSSkoKVK1dix44dqFu3LtavX4+RI0dW2dHhDx8+xMiRI5GWlob9+/fD0dGR65AqFBHh4MGDWLhwId69e4dff/0VS5cuhYGBQfEx9+/fx5w5c3Dv3j30798fGzduhLW1NYdRMxWhPHnmS5KPrUXey8eo73oEPN6Xkz1XeUZpBhBqq6vA5CsrN6nWMkWtIYtK/VE1MIGgWi3UGrIIOnZf3ijERF+LFQJVkIGBQfEUMXt7e4wePRrt2rXDnTt3uA6NE61bt8azZ8/Qo0cPDBkyBDNnzkRBQQHXYVWIO3fuoG3bthgzZgwcHBwQHh5ePPPkv9q2bYs7d+4gMDAQERERsLW1xbRp0/DhwweOImcqQnnyjCQ3o9TPCpNikfviITQaNCuzEADkP8/IfTEAAN2sDMtcZ0CgVR1alu1K/eFrVgNfTRNalu2gZtjg8+fyeehmWTW2e2U+z8rKCidOnMC1a9dQVFSEjh07Yvjw4cUrnFUlenp6OHLkCLZu3Ypdu3ahffv2iImJ4TosmXn58iWGDRuGjh07QiwW49q1azh+/DgsLS2/eA6Px8Pw4cMRGRkJDw8PBAQEwNzcHB4eHsUL3DCK72t5Jvm4Bz4cXo6Mu4eQFXQeqZf3IPHAXPBU1VGjq0uZ11aEPKMQxcDYNibftIXkt5BICU5t2WZFDNC1a1c8evQIIpEI9+7dg7W1NVxdXYvXRa8qeDweZsyYgbt37yIjIwPNmzdHYGAg12H9kLS0NMyZMwfW1tZ48OABfHx88OjRo2/a5lldXR2urq6IiYnB+PHjsXjxYjRu3BgBAQFfXbSIkX9fyzNalm0hyc1E5sPjSL24A7lRt6Bl2R51XDZD1aB+mddWhDwj92MGPvmWvQnKi+s1oxn5lZubi02bNmH9+vVQV1fH0qVL8euvv5a5IYoyyszMxJQpU3Do0CH88ssv2LRpEzQ1NbkOq9wKCwvx119/YeXKlSgsLMTChQsxe/ZsaGn9+KYxz58/x/z583H8+HG0bt0amzZtQocOHWQQNcMVZcwzSjNm4JO1jrZQKeeSxOWlwudhrSObP8yUpqWlhcWLFyMmJgZDhw7FnDlz0LRpUxw7dqxKPQVWq1YNAQEB2LlzJ/bv34+2bdsiOjqa67C+iohw7NgxNG3aFK6urhg2bBhiYmKwaNEimRQCAGBpaYljx47h+vXrkEgk6NixI4YNG1Ylu5eURVXOMwpTDNSvqYUVA5vK9JorBzZl2xczZTIyMsLu3bsRFBSERo0aYciQIejatSseP37MdWiVhsfjYerUqXjw4AHy8/PRokUL+Pn5cR3WFz1+/BhdunTBkCFDYG5ujuDgYOzevRtGRkYVcr8uXbrg4cOH8PX1xYMHD2BtbY05c+YgNTX16yczcqUq5xmFKQYAYFQrE7j1/vJAn28xt7cVRraS7z4cRn7Y2tri/PnzOH/+PFJTU9GqVSs4OTlVqaV87e3t8eTJEzg6OsLJyQmTJk1Cbm75lgqvDHFxcXByckKrVq2QlpaGCxcu4Ny5c7Cxsanwe/P5fDg5OeH58+dYvnw59uzZA3Nzc2zZsgWFhYUVfn9GdqpqnlGoYgAAZnSzwPohtlBX4Zd7J8NPBHwe1FX48Bhii+ndzCsoQkaZ9enTB8+ePcPu3btx+fJlWFlZYdGiRcjKyuI6tEqho6MDHx8f7N27F/7+/mjdujUiIiI4jSkzMxPu7u6wsrLC5cuXi1tyevf+8nTiiqKpqQl3d3fExMRg+PDhcHV1RdOmTXH06NEq1b2k6KpinlG4YgD4t3K7PLsL2pvpA8BXP6xPr7c308fl2V0UplJj5JOKigomT56MFy9ewM3NDZs3b4a5uTl27doFsVh+NyKRFR6PhwkTJuDRo0eQSqVo1aoVvL29Kz0OsViMnTt3wsLCAlu2bIGbmxtevHiByZMnQyAoe1nYila7dm3s2rULwcHBMDc3x9ChQ9GlSxc8evSI07iY8qtqeUZhZhN8yYukLPg9iMO15x8Q9zG3xApSPPy70EM3S0M4tTWBueGXlyNmmO/19u1bLFq0CD4+PmjSpAk8PT3Rt2/fKrGSYU5ODn777Tfs378fzs7O2L59O3R0vrL72w8iIpw7dw5z585FREQEnJ2dsWbNGtSrV69C7/sjLl68CDc3N4SGhmLMmDFYt24dTEwUK1lUZYqcZ8qdv6kcMjIyCABlZGSU53DOZOcXUdi7dHr6JpXC3qVTdn4R1yExVcjjx4+pS5cuBIB69epFwcHBXIdUaXx8fEhLS4saN25MISEhFXaf4OBg6tmzJwGgrl270pMnTyrsXrImFotpz549ZGRkROrq6rRgwQK5/05lSlO0PFPe/K1UxQDDcE0qldLx48fJ0tKS+Hw+TZw4kRISErgOq1JERkaSra0taWho0J49e0gqlcrs2gkJCTRx4kTi8XhkaWlJJ06ckOn1K1NWVhYtWbKENDU1qVatWrRjxw4qKpLvhMIoLlYMMAyHCgsL6c8//yR9fX3S1tamFStWUHZ2NtdhVbjc3FyaPHkyAaDRo0dTZmbmD10vOzubVqxYQdra2qSvr09bt26lwsJCGUXLrfj4eBIKhcTj8ahJkyZ05swZhS1wGPnFigGGkQNpaWnk5uZGampqZGxsTN7e3iSRSLgOq8L5+/uTjo4OmZub09OnT7/5fIlEQvv37ydjY2NSU1MjNzc3SktLk32gcuDJkyfUtWtXAkA9e/akoKAgrkNilEh587dCziZgGEWhp6eHjRs3IjIyEh07doSLiwtatGiBq1evch1ahRo9ejSePn0KHR0dtGvXDn/99Ve5p9ZdvXoVLVq0wPjx49GxY0dERUVh48aN0NPTq9igOdK8eXNcvXoVJ06cQFxcHJo1a4aJEyciISGB69CYKoQVAwxTCczMzHDo0CHcuXMHGhoa6NGjBwYMGICoqCiuQ6swFhYWuHfvHiZNmoTp06djxIgRyMgovQ3sJ1FRURgwYAB69OgBDQ0N3L17F4cOHULDhg0rMWpu8Hg8DBw4EGFhYfjzzz9x4sQJWFhYYMWKFcjJyeE6PKYqkGUzA8MwXyeVSungwYPUoEEDEggENG3aNPrw4QPXYVWow4cPU7Vq1cjMzIwePXpU4rUPHz7QtGnTSCAQUMOGDenQoUNVvu88PT2d5s2bV9y9tG/fPhKLxVyHxSggNmaAYeRcXl4ebdiwgapXr07VqlUjDw8PysvL4zqsCvPy5Utq2bIlqaqq0pYtWyg3N5fWr19P1apVo+rVq9PGjRspPz+f6zDlSmxsLI0cOZIAkIODA125coXrkBgFw4oBhlEQycnJNGPGDBIIBGRqakoBAQFK+2Scn59Ps2bNIgCkqalJAoGAfvvtN0pOTuY6NLl27949ateuHQGgn3/+mSIjI7kOiVEQbAAhwygIAwMDbN26FeHh4bC3t8fo0aPRrl073L17l+vQZO7x48e4d+8egH+XE65duzbGjh0LAwMDjiOTb23btsWdO3cQGBiI8PBw2NjYYPr06UhOTuY6NEZJsGKAYeSElZUVTpw4gatXr6KwsBAdOnTA8OHD8fLlS65D+2EvX77E8OHD0bFjR4jFYly7dg0vXryAiYkJOnbsCC8vL0ilUq7DlGs8Hg/Dhw9HZGQkPDw84Ofnh0aNGsHDwwP5+flch8coOlk2MzAMIxsSiYREIhHVrVuXVFVVac6cOZSamsp1WN8sNTWV5syZQ6qqqlS3bl0SiUQl1lkoLCwkNzc3AkD9+/enlJQUDqNVLCkpKTRz5kxSUVEhU1NT8vf3V9ruJeb7sTEDDKMEcnJyaNWqVaStrU01a9akLVu2UEFBAddhfVVBQQFt2bKFatasSdra2rR69WrKycn54vGnT58mfX19qlevHt2+fbsSI1V80dHRNHjwYAJArVu3Zn9/TAmsGGAYJfL+/XuaPHky8fl8srCwoGPHjsnlU6BUKqWjR4+Subk58fl8mjx5Mr1//75c58bHx1PHjh1JIBDQ2rVrq8RKjbJ0/fp1at68OQGgoUOHUkxMDNchMXKAFQMMo4RCQkKoT58+BIA6d+5cas4+lx49ekSdO3cmANSnTx8KDQ395msUFRXRwoULi6+RlJRUAZEqL4lEQj4+PlSvXj1SVVWl2bNnK2T3EiM7bDYBwyghW1tbnD9/HufOncPHjx/RqlUrjBs3DvHx8ZzFFBcXBycnJ7Rq1Qqpqak4f/48zp8/Dxsbm2++loqKCtauXYvz58/j6dOncHBwwI0bNyogauXE5/Mxbtw4REdHY9myZdizZw8aNWqELVu2oLCwkOvwGHkmy8qCYZjKU1RURLt27SJDQ0PS0NAgd3f3H94l8FtkZmaSu7s7aWhoUO3atWn37t0y3Yr33bt31LVrV+Lz+bRixQq2At93eP/+PU2ZMoX4fD6Zm5vT0aNH5bJ7iak4rJuAYaqIzMxMWrRoEWloaJChoSHt3LlTpkn5fxUVFdHOnTvJ0NCQNDU1afHixRVWhIjFYlq6dCnxeDzq0aNHuccfMCWFhoZS3759CQB16tRJrrqXmIrFigGGqWLi4uJo3LhxBICaNm1K586dk+n1pVIpnT17lpo0aUIAyNnZmeLj42V6jy+5cuUK1a5dm2rXrk2XL1+ulHsqowsXLpCNjQ0BoLFjx9KbN2+4DompYGzMAMNUMfXr14ePjw8eP34MAwMD9OvXD3369EFISMgPXzskJAR9+vTBTz/9hFq1auHx48cQiUSoV6+eDCL/uu7duyM4OBi2trbo1asXli5dCrFYXCn3Via9e/dGUFAQ9uzZgytXrsDKygru7u7IzMzkOjSGa7KsLBiGkQ9SqZSOHz9OFhYWxOfzaeLEiZSQkPDN10lISKCJEycSj8cjS0tLOn78OKd9zmKxmFatWkV8Pp86d+5M79694ywWRZeVlUVLliwhTU1NMjQ0pB07dlRo9xLDDdZNwDAMFRQU0B9//FG8+M+KFSsoOzv7q+dlZ2fTihUrSFtbm/T19enPP/+kwsLCSoi4fK5fv07GxsZkYGAg8+6QqiY+Pp6EQiHxeDxq0qQJnTlzhg0yVCKsGGAYplhqaiq5urqSmpoaGRsbk7e392cX9ZFIJLR//34yNjYmNTU1cnNzo7S0tMoPuBw+fPhQPChuwYIFclWsKKInT55Q165dCQD17NmTgoODuQ6JkQFWDDAMU8rLly9p+PDhBICaNWtGV69eLX7typUr5ODgQABoxIgR9PLlSw4jLR+JRELr168ngUBA7du3p7i4OK5DUmhSqZROnDhBlpaWxOPxvrt7iZEfbAAhwzClmJmZITAwEHfu3IG6ujq6d++O7t27o1u3bujRowc0NDRw584dHDp0CGZmZlyH+1V8Ph/z58/HzZs3ER8fDwcHB5w+fZrrsBQWj8fDwIEDERYWhj///BPHjx+HhYUFVq5ciZycHK7DYyqSLCsLhmEUR1JSEvXq1YsAEADq3bu3Qi//m5KSQgMGDCAANGfOHIXY0EnepaWl0dy5c4u7l/bt28cWf1IwrGWAYZjPys/Px4YNG2BhYYGHDx9izZo1WLNmDe7fvw8LCwts2LAB+fn5XIf5zfT19XHixAl4eXnhzz//ROfOnfH69Wuuw1Joenp62LBhA6KiotCpUydMmDABLVu2xNWrV7kOjZE1WVYWDMPIL6lUSgEBAWRqakoCgYBmzJhBycnJxa9/+PCBpk+fTgKBgBo0aEABAQEKO6r8/v37ZGpqSnp6enTs2DGuw1Ea9+7do3bt2hEA+vnnnykyMpLrkJivYC0DDMMUu3v3Ltq1a4fRo0fD3t4e4eHh2Lp1KwwMDIqPqVWrFrZt24bw8HDY2dlh9OjRaN++Pe7evcth5N+nTZs2ePbsGbp16wZHR0fMmjULBQUFXIel8Nq2bYs7d+4gMDAQ4eHhsLGxwfTp05GcnMx1aMwPYsUAwyixly9fYvjw4ejQoQOKiopw7do1nDhxAlZWVl88x8rKCidOnMDVq1dRUFCADh06YMSIEYiNja3EyH9cjRo18M8//+DPP//Ezp070aFDB7x8+ZLrsBQej8fD8OHDERkZifXr18PPzw/m5ubw8PBQyO4l5v/IspmBYRj5kJqaSnPmzCFVVVWqW7cuiUSiz64r8DUSiYREIhHVrVuX1NTUyNXVlVJTUysg4or1+PFjMjMzo2rVqlFgYCDX4SiV5ORk+u2330hFRYVMTU3J399fYbuXlBFbZ4BhqqCCggLasmVL8YqDq1atopycnB++bk5ODq1cuZK0tbWpZs2a9McffyjcIj/p6ek0YsQIAkC//vor5eXlcR2SUomOjqZBgwYRAGrdujXdvn2b65AYYsUAw1QpUqmUjh07VrwXweTJkytku9+EhASaNGkS8fl8srCwoGPHjinUU6BUKqUdO3aQuro62dvbU3R0NNchKZ1r165R8+bNCQANGzaMYmJiuA6pSmMDCBmminj8+DG6du0KR0dHmJmZISgoCLt374aRkZHM71WnTh3s2bMHQUFBaNiwIRwdHdGtWzc8fvxY5veqCDweD7/88gsePHiAvLw8tGjRAv7+/lyHpVS6du2KR48ewcfHB/fv34e1tTVcXV2RlpbGdWhMGVgxwDAKKi4uDk5OTmjVqhU+fvyIc+fO4fz587C1ta3we9va2uLChQs4d+4cUlJS0KpVK4wbNw7x8fEVfm9ZsLe3x+PHjzFo0CCMHTsWkydPRm5uLtdhKQ0+n49x48YhOjoay5Ytw+7du2Fubo4//vgDhYWFXIfHfI4smxkYhql4mZmZ5O7uThoaGmRoaEi7du3idOvZoqIi2rVrFxkaGpKGhga5u7tTZmYmZ/F8C6lUSn///TdpamqSjY0NRUREcB2SUnr//j1NmTKF+Hw+mZub09GjRxWqe0mRsTEDDKNkioqKaOfOncVJd9GiRXKVdDMzM2nRokXFRcrOnTs5LVK+RWhoKFlbW5OWlhZ5e3tzHY7SCg0NLd5psnPnzvTo0SOuQ1J6rBhgGCUhlUrp7Nmz1KRJEwJA48aNk+vd+eLi4sjJyYkAUNOmTencuXNch1Qu2dnZ5OLiQgBIKBRSdnY21yEprQsXLpCNjQ0BoLFjx9KbN2+4DklpsQGEDKMEQkJC0KdPH/z000+oVasWHj9+DB8fH9SvX5/r0L6ofv368PX1xaNHj6Cvr49+/fqhT58+CA0N5Tq0Mmlra2P//v0QiUQ4fPgwWrZsibCwMK7DUkq9e/cuHuh6+fJlWFlZwd3dHZmZmVyHVmWxYoBh5ND79+8xadIkNGvWDK9fv8bx48dx7do1tGjRguvQyq1ly5a4fv06jh07hlevXsHBwQGTJ09GYmIi16GVydnZGY8fP4aKigpatWqFv//+G0TEdVhKRyAQYPLkyXjx4gXc3NywZcsWWFhYYOfOnRCLxVyHV/XIspmBYZgfk52dTStWrCixuI8ybMVbUFBAf/zxR/FiSCtXrpTJYkgVKTc3lyZPnkwAaMyYMXI1PkMZxcfHk7OzMwGgJk2a0JkzZ9ggQxlgYwYYRoFIJBLy9vYmY2NjhV7292tSU1PJ1dW1eJlkb2/v71omuTL5+fmRjo4OWVpa0rNnz7gOR+k9efKEunbtSgCoZ8+eFBwczHVICo2NGWAYBXHt2jW0bNkSLi4u6NChAyIjI+Hp6YkaNWpwHZrM1ahRA56enoiKikL79u3h4uKCli1b4tq1a1yH9kVjxozBkydPoKWlhbZt22LHjh2s26ACNW/eHFevXsWJEycQFxcHBwcHTJo0Ce/fv+c6NKXGigGG4UhUVBQGDhyI7t27Q11dvXhrWDMzM65Dq3BmZmYIDAzE7du3oaamhu7du2PgwIGIjo7mOrTPsrS0xL179zBx4kRMmzYNo0aNQkZGBtdhKS0ej4eBAwciLCwMf/75J44fPw4LCwusXLkSOTk5XIennGTZzMAwzNd9+PCBpk+fTgKBgBo0aEAHDx6s0n2jUqmUDh48SA0aNCAVFRWaMWMGJScncx3WFwUGBlK1atXIzMyMzZOvJGlpaeTm5kZqampkbGxM+/fvl/vuJXnBxgwwjJzJy8sjDw8PqlatGlWvXp02bNjAds77j7y8PNqwYYNC/P3ExMRQixYtSFVVlf74448qXcxVptjY2OKdJx0cHOjKlStchyT3WDHAMHJCKpVSQEAANWjQgAQCgdw/+XJNUVpO8vPzadasWQSAHB0dlXLAp7y6e/cutW3blgDQzz//TJGRkVyHJLdYMcAwcuDOnTvFX1oDBw6kqKgorkNSGJGRkTRgwAACQG3btqW7d+9yHdJnHTt2jPT09MjU1JTu37/PdThVhlQqpUOHDlHDhg1JIBDQtGnT6MOHD1yHJXfYbAKG4dDLly8xYsQIdOjQAQUFBcWjo62srLgOTWE0btwYJ0+exNWrV1FQUID27dtjxIgRiI2N5Tq0EgYPHoxnz57ByMgIHTt2hJeXF5ttUAl4PB5GjBiByMhIrF+/Hn5+fjA3N8eGDRuQn5/PdXiKR5aVBcNUdampqTRnzpziefQikYgNdJKBT+sw1K1bV27XYSgoKCBXV9fipuuUlBSuQ6pSkpOT6bfffiMVFRUyNTWlgIAAuexeqmysm4BhKlFBQQFt2bJFoVbYU0Q5OTm0cuXKEis0FhYWch1WCadOnaKaNWtS/fr16fbt21yHU+VER0fToEGDCAC1adOG7ty5w3VInKqSxUB2fhGFvUunp29SKexdOmXnK8b2qYzikkqldOzYMbKwsCA+n0+TJk2ihIQErsNSegkJCTRp0iTi8/lkYWFBx44dk6unwLi4OOrQoQMJBAJat24dax3iwLVr16h58+YEgIYNG0YxMTEyua6i5Zny5m8e0dc7tzIzM1G9enVkZGSgWrVqFdhp8e1eJGXB70EcrkV/QFxqLv77ZngATGpqoZuVIca2MYFFbV2uwmSU0OPHj+Hq6oqbN2+id+/e8PT0hK2tLddhVSkhISFwc3PDpUuX0KVLF3h5ecnNZk5isRhLly7FunXr0LdvX/j4+KBWrVpch1WlSKVS+Pn5wd3dHUlJSfjtt9+wePHib17dU5HzTHnzt8IWA/GpuXA/FopbMSkQ8HmQSL/8Nj693sncAGsdbVG/plYlRsoom/j4eLi7u+PAgQNo2rQpPD090bdvX67DqrKICOfPn4ebmxsiIiIwbtw4rFmzRm62eb5w4QLGjRsHVVVVBAQEoHPnzlyHVOXk5uZi8+bNWLduHdTV1bF06VL8+uuvUFNTK/M8Zcgz5c3fCjmb4OCjOPTcfAN3Yz8CQJkf0H9fvxv7ET0338DBR3EVHiOjfLKysrBo0SJYWlri4sWL2LVrF4KCglghwDEej4d+/fohODgYO3fuxIULF2BpaYnFixcjKyuL6/DQp08fBAUFwcLCAt26dcPq1ashkUi4DqtK0dLSwqJFixATE4OhQ4dizpw5aNq0KY4dO/bFmR9VLc8oXDGw7doLLDgaigKx9Ksfzv+SSAkFYikWHA3FtmsvKihCRtmIxWLs2rUL5ubm2LRpE1xdXRETE4MpU6ZARUWF6/CY/6OiooKpU6fixYsXmDNnDry8vGBhYYHdu3dDLBZzGpuxsTEuX76MxYsXY+nSpejTpw8SExM5jakqMjIywu7duxEcHIxGjRphyJAh6Nq1Kx4/flziuKqYZxSqm+DgozgsOBpa6ucF758jJ/QK8uNCIc5IAl+zGtSNraDXeRxUa9b94vU8hthiZCuTigyZUXCfmp/Dw8Ph5OSEtWvXyk3zM1O2uLg4LFq0SO66c65cuYKxY8cCAPz8/NCjRw+OI6q6Lly4ADc3N4SFhWHs2LFYu3Yt7ibhs3mmMPkNMm77ozAxBpKcdPBU1aGqXx/V2gyBlkWbL96D6zyjdN0E8am5WHYy/LOvZd4/gtzou9AwtUeNnlOgY98H+fFheL9/FgqTX3/xmktPhiM+NbeCImYUWWhoKPr06YN+/fpBX18fjx49gq+vLysEFIiJiQl8fX3x6NEj6Ovro1+/fujTpw9CQ0t/0VemHj16ICgoCDY2NujVqxeWLVvGug040qdPHzx79gy7d+/G5cuXYd2qExYdDfrssZLMD5AW5kHbtgdq9JyM6u1HAgCS/1mFrKDzX7yHouQZhWkZGLf3Ae7Gfvxsk03+20io1zEHT6Ba/LOi1HdI2DsD2o07wGCA22evKeDz0N5MH74Tv1zVMVVLYmIilixZgn379qFRo0bYsGEDBg0aBB6Px3VozA8gIpw4cQJz585FbGwsJkyYgFWrVsHIyIizmCQSCdauXYvly5ejU6dO8Pf3h7GxMWfxVHVZWVnovfYkEqS64PEF5TqHpBK89/4dJC5C3Sk7P3sM13lGqVoGXiRl4VZMyhf7bjTqWZcoBABAtWZdqBmYoCgl/ovXlUgJt2JSEPOB+0FGDLdyc3OxatUqmJub4+jRo9i8eTPCwsIwePBgVggoAR6Ph8GDByM8PBybNm3C0aNHYW5ujtWrVyM3l5unNoFAgCVLluDq1at48eIFHBwccOHCBU5iYYDEXOA99MpdCAAAjy+Aiq4BpAXZXzxGUfKMQhQDfg/iIOB/2xcyEUGSmw6+VtktGQI+DwfuK9aoT0Z2pFIpRCIRLC0tsXr1avzyyy+IiYnBzJkzvzrtiFE8ampqmDVrFmJiYvDLL79g5cqVsLS0hI+PD6RSKScxdenSBUFBQWjevDn69u2LhQsXcj7gsSoqb56RFuZDkpuBorT3yHx4HHmxT6Bhal/mOYqQZxSiGLgW/eGbR3TmhF+HJOsjtBt3KvM4iZRw7fmHHwmPUVDXrl1Dy5Yt4eLigvbt2yMyMhKenp7fvCAJo3hq1KgBT09PREVFoX379hAKhWjVqhWuX7/OSTy1atXC2bNnsW7dOmzcuBFdu3ZFfPyXWzUZ2Stvnkm7+jfe/jkWCbsmI+3aPmhZtkPN3r+WeY4i5Bm5LwayC8SI+8bBF0Uf45F6aQfU6zaGtu3XR+rGfcxFTgGrxKuKqKgoDBw4EN27d4e6ujru3LmDwMBAmJmZcR0aU8nMzMwQGBiI27dvQ1VVFd26dcOgQYMQHR1d6bHw+XwsWLAAN27cwJs3b+Dg4IAzZ85UehxV0bfkmWqtBsFw1Gro958NTbMWIJICkqKvnifveUbuBxCGJ2Sg/9bb5T5ekp2GxANzQVIJjMZ5QkVXv1znefUyQEM91a8fyCistLQ07N69G0eOHEHt2rUxc+ZM9OrVi40JYAD827V48eJFbN26FR8+fMCwYcMwefJkTlqK0tPTsXz5cty6dQvjxo3D9OnToarKvp8qyqv0IrheSvmuc5MOLoG0IBtGzpu++l1y5reOaGpc/bvu872UZjniZ3FpcNxxt1zHSvNzkOi/EJLMZNR28oCaQfnndr4XzUHh++ffGybDMAyjoNTqWKKOcNN3nZsVdB6p57fBePJOqOrXK/PYY7+2RzOTyi0uy5u/5X75NDWV8vVkkLgQH46shDjtHWqPWv1NhQAAdGjXBvYmP8HKygoWFhas31gJ/PdJLykpCcOGDcOUKVPYZ8uUy6eWpH/++Qe1a9fGb7/9xklLUmhoKBYuXIjs7GwsW7YM3bp1q9T7VwU/0jJARQUAAGlBzlePLW8+44LcFwMN9LXBA1BW8wVJJUg+7oGChCgYDl0M9brW33YTIuQkvcbu8/8UTzOqW7cuHBwcYG9vDwcHBzg4OKBRo0bg8+X3w2T+v7t378LV1RX379/HgAEDsGHDBjRu3JjrsBgF06NHD0RFRWHevHlYuHAhTpw4gU2bNqFdu3aVFkPz5s0xcOBATJgwAW5ubpg1axY8PDygrq5eaTEoO6sCMdwuXSgzz0hy0iHQ1ivxM5KIkRN2FTwVdah+5QGUh3/zmbyS+2JAW10FJjW18KaMwR1pV/ciL+YBNM1bQ5KXjeywayVe17Epu5I2NdDGjds3IZFI8PLlSwQFBSE4OBhBQUHw9vZGQkLCv7Foa8POzq5EkWBrawstLfnYnYoBYmNjsWDBAhw+fBjNmjXD1atX2ZMU80MaN26MkydP4urVq3B1dUX79u0xfPhwrF+/vtIGndaoUQNHjx7F1q1b4ebmhtu3b7NBrzJUnjzz8fw2UGEu1OvbQKCrD0l2GnIirkP88S1qdJ8Ivppmmfcw0deCtrr8ply5HzMAAMtPhsP3wZsvTvtI9FuAgviwL55vuuD0F18T8HkY18YUywc2/eIxycnJxcXBp0IhMjISEokEfD4flpaWJVoQ7O3tYWRkxAamVaK0tDSsWbMGW7duRa1atbBmzRqMGzeOteQwMiWRSODr64tFixYhJSUFv/32GxYvXgw9Pb1Ki+Hx48cYOXIkUlJSsHfvXgwbNqzS7q3MvpZnciJuIDvkEgqTX0OalwW+mibUjMyh22JAmXsTAOXLMxVFaQYQAv+uQNhry80Ku/7l2Z1hbqj7Tefk5+cjPDy8VJGQmZkJADA0NCzVzWBpacl2uZOxoqIi7NixAytWrEBBQQHmz58PV1dX1lrDVKicnBx4eXlhw4YN0NDQwLJly/DLL79U2oj/jIwMTJ48GYcPH8a0adPg5eUFDQ2NSrm3spLHPCMLSlUMAGXvTfC9ZL1mNBHh9evXJboZgoKC8ObNGwCAhoYGbGxsSrQg2NnZcboTpKL6tNb8vHnz8PLlS0yYMAErV65EnTp1uA6NqULev39fvJeFhYUFNmzYgIEDB1ZKqyARYefOnZg9ezasra0RGBgICwuLCr+vMlOEPPOtlK4YiE/NRc/NN1Aglt2SoeoqfFye3QX1a1bsU2RaWhpCQkJKtCCEhYWhqOjfhSoaNWpUqpuhfv36rJvhC548eQJXV1fcuHEDvXr1gqenJ+zs7LgOi6nCQkJC4ObmhkuXLqFLly7w8vJCixYtKuXeQUFBGDFiBN6/f4/du3dj9OjRlXJfZaTIeeZLlK4YAICDj+I+u8/09+Jyn+nCwkJERUWVaEEICgpCamoqgH8HDP1vN4O1tXWVXi8/Pj4eixYtgq+vL5o0aVK8Pz0rmhh5QEQ4f/483NzcEBERgXHjxmHNmjWVsu11VlYWfvnlF/j7+2Py5Mn4448/oKlZ9oA25vOUKc8ASloMAMC2ay/gefHHFwea29sK07uZyyAi2SEivHv3rkQLQlBQEGJiYgAAqqqqaNKkSYkWBHt7e9SsWZPjyCtWVlYWPDw84OXlhWrVqmHlypWYOHEiG3/ByCWxWIy9e/di6dKlyMzMhKurK+bPnw9d3YrtLyYi7Nu3DzNmzIC5uTkOHz7MptN+J2XKM0pbDAD/Vm7LToZDLKVv6tsR8HlQ4fOwcmBTTiu1b5WVlYXQ0NASRUJISAjy8/MBACYmJqW6GRo2bKjwI+nFYjH27duHpUuXIiMjA3PmzMH8+fPl4neQYb4mMzMT69evx+bNm1G9enWsXLkSEyZMqPAiNiwsDMOHD0dcXBx27NgBZ2fnCr2fslKWPKPUxQDwb9+O+7FQ3IpJgYDPK/PD+vR6J3MDrHW05azvRpbEYjFevHhRajZDYmIiAEBXV7e4QPj036ZNmypM0+Gn5tbw8HA4OTlhzZo1MDHh/h8Ww3yruLg4uLu7w8/PDzY2NvD09ESfPn0q9J45OTmYPn06RCIRXFxcsG3bNmhry++CN/JKGfKM0hcDn7xIyoLfgzhce/4BcR9zS6wgxcO/Cz10szSEU1sTTqZ1VLbExMTiAuHTf6OjoyGVSiEQCGBlZVWiBcHBwQGGhoZch10sNDQUbm5uuHjxIjp37gwvLy+0bNmS67AY5oc9evQIrq6uuHXrFvr06QNPT0/Y2NhU6D1FIhGmTZsGU1NTBAYGVvj9lJUi55kqUwz8V06BGK8/5qBQLIWaCh8N9LXlesWnypKbm4vw8PASLQjBwcHIzs4GANSpU6dUN4OFhQUEAkGlxZiYmFg8RatRo0bYsGEDBg0axAYHMkqFiHD8+HHMmzcPsbGxmDhxIlauXAkjI6MKu2dERARGjhyJly9fYuvWrZgwYQL7d/UDFC3PVMligCk/qVSK2NjYUrMZ3r59CwDQ1NT87NLLOjo6Mo0jNzcXXl5exWutf1q8pSrPmmCUX2FhIXbs2IGVK1eioKAACxYswJw5cypssazc3FzMmjULf//9N8aOHYsdO3ZU+IBGRj6wYoD5Lh8/fizVzRAREQGxWAwejwdzc/NS3QzGxsbf/KQhlUqLl3X98OEDZs6ciUWLFrEdBZkqJS0tDatXr8bWrVthaGiItWvXwsnJqcIG//r7+2Pq1KkwNjZGYGAg7O3tK+Q+jPxgxQAjMwUFBYiMjPx/7d15XJNX2v/xTwDBBZUqSt1wBZTVsdvDdGrtajtTdaYd0Vb5dYptrY+jHU0EBEXAhkIm0Vb7Gu2iti5ToYsdbV9dxo72qR1rFyubsogLKChFZZclyf37ow88ZiKICiSQ6/2Pr5Jw50Qs55tznfs6Vrc8lpeXA+Dp6WlRZpg4cSJ+fn4ttmbdt28farWan376qdMPfBHCHhUUFBAdHc3777/PpEmTMBgMTJkypUNeKy8vj7CwMHJycnjllVeYP3++lA26MQkDokMpikJhYaFVmeHkyZMAuLq6NrdebgoKvXv3JjExkT179nDXXXdhMBi4++67bfxOhLAf33zzDWq1mkOHDjF9+nR0Oh1+fn7t/jp1dXUsXbqUDRs2EBYWxptvvim/27spCQPCJioqKppbLzcFhaysLOrr6wFwdnbmV7/6Fb/73e+aVxFGjhwpn0yE+F+KopCamkp0dDRnz57lhRdeYNWqVXh6erb7a6WlpfHcc88xaNAgUlNTO62Fsug8EgaEzdXV1bF+/XpeeuklTCYT06ZN49ZbbyUrK4sjR45QVlYGQP/+/a3KDP7+/ri5udn4HQhhO3V1daxbtw6tVotKpSI2NpbFixe3+/8XBQUFzJo1i8zMTPR6PX/+858lnHcjEgaEzSiKQlpaGtHR0RQVFTV/shk0aJDFc0pKSqxOeMzPz0dRFFxcXJgwYYJFmSEkJKRDPh0JYc9+/vln4uPjef311xkxYgQpKSnMnDmzXSfs+vp6IiMjWbduHY8//jibNm3Cw8Oj3a4vbEfCgLCJgwcPsnTpUr799lumTZuGTqe7rv7oNTU1za2Xm0JCRkYGtbW1AAwbNsxiBSEkJISxY8d2+dbLQlzLsWPHiIyM5OOPPyY0NBSDwUBoaGi7vsauXbuIiIjAw8OD1NRU7rzzzna9vuh8EgZEpzpx4gTR0dG89957TJw4EYPBwP33398u1zaZTBQUFFjdzVBcXAxAnz59mg9tagoJgYGBHXbPthC29K9//Qu1Wt18dHFycjKjR49ut+ufOnWKWbNmcfjwYVJSUliyZImUDbowCQOiU5SXlzffJ+3p6YlWqyU8PLxTuheWlpY2d1NsCgo5OTmYTCacnJzw9fW1Oga6Izu9CdFZTCZTc5+OsrKy5j4d7bW039DQQExMDAaDgWnTpvH22293+9NRuysJA6JDNTY2snHjRhISEqirqyMyMhK1Wm3zw1Dq6uqaWy9f2TypsrISgMGDB1s1TfL19ZXjkEWXVFNT09zBs1evXs0dPFvq8XG99uzZw5/+9Cf69OnDzp07+fWvf90u1xWdR8KA6BCKorB7924iIyPJz88nIiKC1atXM2TIEFsPrUWKonDq1CmrMsPp06cB6NmzJ0FBQRYrCMHBwdKuVXQZJSUlzWd7+Pj4oNPpmD59erss7xcVFTF79mwOHTqEVqtl2bJlskenC5EwINrdjz/+iFqt5quvvuKhhx5Cr9cTHBxs62HdsEuXLlmVGbKzs2lsbARg7NixVmWG4cOHS/1U2K309HQ0Gg179+5lypQpGAwGJk2adNPXbWxsJC4ujuTkZB599FHeeecdi7uDhP2SMCDaTVFREbGxsWzbtg1/f3/0ej2PPPJIt5wUGxoayMnJsbrl8eLFiwAMGDDA4lbHiRMnMmHCBDlYSdgNRVH49NNP0Wg0HDt2jPDwcLRaLSNGjLjpa3/22WeEh4fj6urKu+++y+TJk9thxKIjSRgQN62qqoqUlBQMBgP9+vUjMTGRefPmOVx9XVEUzpw5YxEO0tPTOX78OAA9evQgICDA6hhoOXRJ2JLRaOStt94iLi6Oqqoq1Go1UVFRN13+Onv2LE899RQHDhwgISGB5cuXd+px5+L6SBgQN8xoNLJ582bi4uKoqKhg6dKlREVFyc/+P1RVVZGRkWEREjIzM6mrqwPA29vbqswwatQoqbeKTlVZWUlycjJr166lf//+JCYmEhERcVOh3mg0kpiYyEsvvcQDDzzA9u3b8fLyasdRi/YiYUDckM8++wyNRkN2djZz585Fq9Xi7e1t62F1GUajkfz8fKsyw/nz5wHo168fwcHBFisIgYGB9OzZ08YjF91dYWEhMTEx7Nixg8DAQPR6PVOnTr2pa+7du5e5c+eiUqnYsWNHu/UWEe1HwoC4LpmZmWg0Gr744gsmT56MwWDg9ttvt/Wwuo1z585ZlRlyc3Mxm804Ozszfvx4qzLD4MGDbT1s0Q19//33qNVqvv76a6ZOnYperycwMPCGr3fu3DnmzJnDvn37WLlyJXFxcVI2sCMSBkSbnDt3rvmWpDFjxvDXv/6VGTNmdMvNgfamtraWrKwsi5CQkZFBdXU1AEOGDLEqM4wbN05+0YqbpigKH330EZGRkZw4cYJ58+aRmJh4w025TCYTSUlJxMfHM3nyZHbs2MHQoUPbedTiRkgYEK2qra1lzZo1JCcn4+bmRlxcHAsWLJBd8TZmNps5ceKEVU+EM2fOANC7d2+CgoIsVhCCgoJwd3e38chFV9TQ0MCGDRtISEigsbGRqKgoli5desOtvPfv389TTz2F0Whk+/btPPzww+08YnG9JAyIqzKbzWzfvp2YmBhKS0tZtGgRK1askJ3vdu7ChQtWZYajR49iNBpRqVT4+PhYlRmGDh0qKzyiTS5dutTcVtzLywutVsvcuXNvaLNraWkp4eHhfPHFFyxfvpzExESHuwPJnkgYEFb279+PWq3m8OHD/PGPfyQ5OZmxY8faeljiBtXX13P06FGrkFBeXg6Ap6enVetlPz+/dmtVK7qfgoICoqKi+OCDD5g0aRIGg4EpU6Zc93XMZjM6nY4VK1YQGhrKu+++y/Dhw9t/wOKaJAyIZrm5uURGRrJ7927uuusuDAYDd999t62HJTqAoigUFhZalRlOnjwJgJubGwEBARYhISQkhP79+9t45MKeHDhwALVazXfffceMGTPQ6XT4+vre0HWefPJJLl++zNatW/ntb3/bAaMVrZEwICgrKyMhIYGNGzcybNgwkpOTmTVrliwdO6CKigoyMjIsQkJWVhb19fUAjB492qrMMHLkSPm34sDMZjOpqaksX76cs2fPsmDBAuLi4vD09Lyu61y4cIGnn36aTz75hGXLlqHVamV1qhNJGHBg9fX1rFu3Dq1Wi6IoxMbGsnjxYrmXXVhobGwkNzfXqidCWVkZAB4eHlatl/39/XFzc7PxyEVnqqur49VXXyUpKQmVSsWKFStYtGjRdf07MJvNrF27lujoaG6//XZ27tzJyJEjO3DUoomEAQekKArvvfceUVFRFBUVMX/+fOLj4+VAEdFmiqJQUlJiVWbIz89HURRcXFyYMGGC1V6EgQMH2nroooP9/PPPxMfH8/rrr+Pt7U1ycjIzZ868rtWjb7/9ltmzZ1NZWcmWLVuYMWNGB45YgIQBh3Pw4EHUajUHDx7kscceQ6fTMWHCBFsPS3QTNTU1ZGZmWoSEjIwMamtrARg+fLhFmWHixImMGTNGWi93Q8eOHSMyMpKPP/6Y0NBQDAYDoaGhbf7+S5cuERERwUcffcSLL76ITqeTW5o7kIQBB3Hy5Emio6NJS0tj4sSJGAwGaQkqOoXJZOL48eMWJYYjR45QUlICgLu7e3Pr5aagEBgYeMP3sAv78uWXX6JWq0lPTycsLIzk5GRGjx7dpu9VFIX169ej0WgICQkhNTWVMWPGdPCIHZOEgW6uvLwcrVbLunXr8PT0RKvVEh4eLt3phM2VlpY2B4SmP3NycjCZTDg5OeHr62tVZrjRznfCtkwmE1u3biU2NpYLFy6wePFiYmNj8fDwaNP3//DDD8yaNYuysjI2b97ME0880bEDdkASBrqpxsZGNm7cSEJCApcvXyYqKgq1Wk2fPn1sPTQhWlRXV0d2drbFCkJ6ejpVVVUAeHl5WZUZfHx8pFlNF1FTU4Ner0en09GrVy9WrVrFCy+80Ka7BioqKnj22Wd5//33WbhwIXq9XjY7tyMJA92Moijs3r2byMhI8vPziYiIYPXq1QwZMsTWQxPihpjNZk6dOmV1N0NhYSEAPXv2bG693BQUgoOD6du3r41HLlpSXFzMypUr2bJlCz4+Puh0OqZPn37NTYaKorBx40aWLFmCv78/qamp+Pj4dNKouzcJA93Ijz/+iFqt5quvvuKhhx5Cr9cTHBxs62EJ0SEuXbpkVWbIzs6msbERgLFjx1qsIISEhDB8+HDpiWBH0tPT0Wg07N27lylTpmAwGJg0adI1v+/IkSOEhYVRUlLCm2++yezZszthtN2bhIFuoKioiNjYWLZt24a/vz96vZ5HHnlEfukJh9PQ0EBOTo5VmeHixYsADBgwwOqEx/Hjx8sudRtSFIVPP/0UjUZDTk4O4eHhaLXaa7YlrqqqYv78+bz77rs8//zzvPLKK/Tq1auTRt39SBjowqqqqkhJScFgMNCvXz8SExOZN2+e1E+FuIKiKJw5c8aqzFBQUABAjx49mlsvX9k8SQ7l6lxGo5G33nqLuLg4qqurUavVREZGtlruURSFTZs2sWjRInx8fEhLS2P8+PGdOOruQ8JAF2Q0Gtm8eTNxcXFUVFSwZMkSoqOj5e9ciOtQWVnZ3BOhKSRkZmZSV1cHgLe3t9XdDKNHj5YVtw5WWVlJcnIya9aswcPDg9WrVxMREdHqHVCZmZmEhYVRVFTEhg0bCA8P78QRdw8SBrqYzz//HI1GQ1ZWFnPmzCEpKQlvb29bD0uIbsFoNJKXl2fVE6G0tBSAfv36NR/a1BQUAgICZFd7BygsLCQmJoYdO3YQGBiIXq9n6tSpLT6/urqahQsXsnXrVp555hnWr18vd09dBwkDXURWVhYajYbPP/+ce+65B4PBwB133GHrYQnhEM6dO2dVZsjLy8NsNuPs7Mz48eOt9iJIe+/28f3336NWq/n666+ZOnUqer2ewMDAFp//9ttvs3DhQkaNGkVaWhoBAQGdONquS8KAnTt37hxxcXFs2rSJMWPGoNPp+P3vfy9LlULYWG1tLVlZWRYhIT09nZqaGgCGDh1qdcLjuHHjpOHXDVAUhV27dhEVFcWJEyeYN28eiYmJLTahOnr0KGFhYZw4cYLXXnuNZ555Rn5nXoOEATtVW1vLmjVrSElJoUePHqxatYoFCxbIrmch7JjZbKagoMBiBSE9PZ0zZ84A0Lt3b4KDgy1CQlBQkCxnt1FDQwN/+9vfSExMpLGxkejoaJYsWXLV1tW1tbUsXryYTZs2MXfuXDZs2IC7u7sNRt01SBiwM2azme3btxMbG8v58+dZtGgRK1askJ3NQnRhZWVlpKenW4SEY8eOYTQaUalU+Pj4WJUZhgwZIp9mW3Dx4kVeeuklXnvtNby8vEhKSmLOnDlXPfBqx44dzJ8/n2HDhpGWlkZISIgNRmz/JAzYkf3796NWqzl8+DBPPPEEKSkpjB071tbDEkJ0gPr6eo4ePWq1F6GiogKAQYMGWZUZ/Pz82tS611EcP36c6OhoPvjgA2677TYMBgP33nuv1fPy8vIICwsjJyeHV199leeff16C1n+QMGAH8vLyiIyM5B//+Ad33nknBoOB3/zmN7YelhCikymKwunTp63KDCdPngTAzc2NwMBAi5AQHBxM//79bTxy2zpw4ABqtZrvvvuOGTNmoNPp8PX1tXhOXV0dS5YsYePGjcyaNYs33nhD5qkrSBiwobKyMhITE9mwYQPDhg3j5ZdfZtasWXK2uxDCQnl5ORkZGRYhISsri4aGBgBGjx5tVWbw9vZ2qE+/ZrOZ1NRUoqOjKS4uZsGCBcTFxeHp6WnxvLS0NJ599lkGDx5MWlpam9ofOwIJAzZQX1/PunXr0Gq1KIpCTEwML774otyrLIRos8bGRnJzcy1WEI4cOUJZWRkAHh4eVmUGf39/3NzcbDzyjnX58mVeffVVkpKScHJyYsWKFSxatMjifRcUFBAWFkZWVhYGg4GFCxc6VHC6GgkDnUhRFN577z2ioqIoKipi/vz5xMfHy/3IQoh2oSgKxcXFVmWG/Px8FEXBxcUFf39/q5AwcOBAWw+93ZWWlhIfH88bb7yBt7c3ycnJzJw5s3nSr6+vZ9myZaxfv57HH3+cTZs24eHhYdtB25CEgU5y8OBB1Go1Bw8e5LHHHkOn0zFhwgRbD0sI4QCqq6vJzMy0CAmZmZnU1tYCMHz4cKvWy2PGjOkWJctjx46xbNkyPvnkE0JDQzEYDISGhjY//uGHHxIREcEtt9xCamoqd955pw1HazsSBjrYyZMniY6Obr6lxWAw8MADD9h6WEIIB2cymTh+/LhVmaGkpAQAd3d3goODLUJCYGDgVe/p7wq+/PJL1Go16enphIWFkZyczOjRo4Fffk/Pnj2bn376iZSUFP7yl784XNlAwkAHKS8vR6vVsm7dOjw9PdFqtYSHh0v3MSGEXSstLbUqM+Tk5GAymXBycsLPz8+qzNBSJ0B7YzKZ2Lp1K7GxsVy4cIEXX3yRmJgYPDw8aGhoYPny5axZs4bp06ezZcsWBgwYYOshdxoJA+2ssbGRjRs3kpCQwOXLl4mKikKtVkuHMSFEl3X58mWys7OtWi9XVVUB4OXlZVVm8PX1tdsPPzU1Nej1enQ6Hb169SI+Pp758+fTo0cP9uzZw9NPP427uzupqakWJYXuzCHDQE29kVMXamgwmnF1cWLUwD70cXO5qWsqisLu3buJjIwkPz+fiIgIVq9ezZAhQ9pp1EIIYT/MZjOnTp2yKjMUFhYC0KtXLwIDAy1CQnBwMH379rXxyP9PcXExK1euZMuWLfj6+qLT6Zg2bRpFRUU8+eSTHDp0iKSkJDQazXXvn+iIeaYjOUwYyD9fxY5DhezLLaXwYi1XvhkV4D2gN/f5DWbOXd74eF3fP9bDhw+jVqvZv38/Dz74IHq9XlpeCiEc0sWLF8nIyLAICdnZ2TQ2NgIwbtw4izLDxIkTGTZsmE1r9Onp6Wg0Gvbu3cuUKVMwGAwEBQWxcuVKUlJSePTRR3nnnXeueedXR84zHa3bh4Gii7XE7Mrk6+NlODupMJlbfhtNj98zzpOkPwQxYkDrG2XOnDlDbGws27ZtY/z48ej1eh599FGH23gihBCtaWho4NixYxZ7EY4cOcKlS5cAGDBggFWZYcKECZ3aellRFD799FM0Gg05OTmEh4ej1WrJysoiPDwcV1dXdu7cyT333GP1vR05z3SWbh0Gdn5fyKrd2RjNSqs/nP/k7KTCxUlFwvQAZt/hbfV4VVUVOp0Og8GAu7s7iYmJPPvss7i42O8SkBBC2BNFUThz5oxVmaGgoAAAV1dX/P39LUJCSEhIhx/aZjQaeeutt4iLi6O6uhq1Wk14eDjPPfccBw4cIDExkeXLlzeXDTpqnuls3TYMvLYvH/0XeTd9Hc3Dvvz5Ph/gl52omzdvZuXKlZSXl7N06VKio6Nt/l6FEKK7qKysJDMz02IFISsri7q6OgBGjhxpVWYYNWpUu6/IVlZW8vLLL7N27Vo8PDxISEigsLCQl19+mQcffJBt27bx3tHKdp9nbKVbhoGd3xcS/WFmu10v5fEgPC4eQ6PRkJWVxZw5c0hKSsLb2/ZpTgghujuj0UheXp7VCY+lpaUA9OvXrzkgNP0ZEBDQLi3eT58+TUxMDH//+98JCgriqaeeYu3atbj43UuPu5++6es3SXk8iFk2XCHodmGg6GItD679inqj+aqPK8ZGyr/eTk32Psx11fQYNAqPyeH0Gv2rFq+pMhs58/p8QoN9MRgM3HHHHR01fCGEEG107tw5qzJDbm4uiqLg7OzM+PHjLVYQQkJCbrj9+3fffYdarebAgQPcPXUGZ4L/hOLkctUVCXPDZSoPfUh9cS4NJXmY66oZ+Nu/4B78YIvXd3NxYu+Se222h6DbhYHwTYf494kLLdZufv6Hjtrcb+h3+wxcBgylJnMv9SX5eD2ZRM8RAVe/qNmEr4eKz6Mfk82BQghhx2pra8nKyrIoM2RkZFBTUwPA0KFDrU54HDt2bJt6IiiKwq5du1i65yTKoHGonK++T8xYfp6zG+fh3G8QLh63Ul+Yec0w4Oyk4tdjBrJt3l039sZvUrcKA/nnq3jolf9p8fH64lzObVXjcV8E/e96HADF2EDxWwtx7tOfW8P1rV5/75LJjBtsX7eDCCGEaJ3ZbKagoMCqzHD27FkAevfu3dx6uSkkBAUFXbVZ3LXmGfhlBdpcV42z+y3Ul+Rz7p0l1wwDTWw1z7R1/u4S2+R3HCps9baO2txvQOVE34mPNH9N5eKKe8hDlH+1FWPlz7j0u/oSkrOTiu3fFhI/vYXVAyGEEHbJyckJHx8ffHx8mDlzZvPXy8rKLDoqfvPNN7z55puYTCZUKhU+Pj5Wtzxu/+HiNW8fVLn0wNn9+u966ArzTJcIA/tyS1v9ATWcP0GPAcNwcrOsybgO8W1+vKUwYDIr7MsrJR77/SEJIYRoO09PTx544AGLw+Pq6uo4evSoxQpCSkoKFRUVAIz470049fPqkPF0hXnG7sNAdb2Rwou1rT7HVH3xqmnN2X1A8+OtKbxQS0290a5bSgohhLhxPXv2ZNKkSUyaNKn5a4qicPr0ab798QjRP3Ts7397n2fsc1RXOH2hhmttalCMDeBs3dFK5eL6f4+39v3AZ9/8yGiPzuuKJYQQwj70uGUIUNahr6EApy7UEDC0f4e+zo2y+zDQ0MKthFdSubiCqdHq600hoCkUtOapuf+PhpKbbzIhhBCia3Ed4suQp9d0+Ou0ZT6zFbsPA64u1z5Rytl9AKaqC1ZfbyoPNJULWvP37VtlZUAIIRzQyfJG1P/s2JUBaNt8Zit2HwZGDeyDClotFbgOHkPl6QzM9bUWmwgbin/5pO/qNabV11ABj9x9m93WcoQQQnQcv3ojmn9+fs2S9M1Q8ct8Zq/sN6b8rz5uLnhfo3NT7/F3g2Km6shnzV9TjI1UZ/4T16F+Ld5J0MR7YG8JAkII4aDaMs/cLHufZ+x3ZFe4z28w2w6dbvH2QrehfvQe/xvKv3oHc205LrcMpSbzS4wVpXg9+mKr13Z2UnGf7+COGLYQQogu4lrzTJPKH/dgrqtpLkNfPv4dxqpfSgz9bpuGU0/rT/9dYZ7pEmFgzl3evH3wVKvP8XxsKeX/s52arH2Y6qpxHTyKwX+Mo6d3YKvfZzIrzP0vOZhICCEcWVvmGYDKQ7swVZY2/3dt3r8h798AuAfcd9Uw0BXmmS4RBny8+nLPOM9WzyZQubhyy/0R3HJ/RJuv29QzWloRCyGEY2vLPAMw/L83X9d1u8o8Y/d7Bpok/SEIF6f2PUzIxUlF0h+C2vWaQgghuiZHnme6TBgYMaA3Ce3c1zlxeoDNjpUUQghhXxx5nukyYQBg9h3eaB72bZdrLXvYj1l32HcNRwghROdy1HmmS+wZuNKf7/PB092NVbuzMZqVa+78vJKzkwoXJxWJ0wO6zA9ICCFE53LEeUalKMo132Vbz0PuTEUXa4nZlcnXx8uueexk0+P3jPMk6Q9BXWLJRgghhG11h3mmrfN3lw0DTfLPV7HjUCH78kopvFBr0UFKxS+NHu7zHczc//K2+92cQggh7E9XnmccJgxcqabeyKkLNTQYzbi6ODFqYB+77vgkhBCia+lq80xb52/7fQc3oI+bi90eDymEEKLr667zTJe6m0AIIYQQ7U/CgBBCCOHgJAwIIYQQDk7CgBBCCOHgJAwIIYQQDk7CgBBCCOHgJAwIIYQQDk7CgBBCCOHgJAwIIYQQDk7CgBBCCOHgJAwIIYQQDk7CgBBCCOHgJAwIIYQQDk7CgBBCCOHgJAwIIYQQDk7CgBBCCOHgXNryJEVRAKisrOzQwQghhBCi/TTN203zeEvaFAaqqqoAGDFixE0OSwghhBCdraqqiv79+7f4uEq5VlwAzGYzxcXF9O3bF5VK1a4DFEIIIUTHUBSFqqoqhg4dipNTyzsD2hQGhBBCCNF9yQZCIYQQwsFJGBBCCCEcnIQBIYQQwsFJGBBCCCEcnIQBIYQQwsFJGBBCCCEcnIQBIYQQwsH9fyytIBobAtfdAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -846,9 +787,9 @@ ], "metadata": { "kernelspec": { - "display_name": "ml-book-1", + "display_name": "chap1", "language": "python", - "name": "ml-book-1" + "name": "chap1" }, "language_info": { "codemirror_mode": { @@ -860,9 +801,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.6" + "version": "3.9.18" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/Chapter01/poetry.lock b/Chapter01/poetry.lock new file mode 100644 index 0000000..5535ea4 --- /dev/null +++ b/Chapter01/poetry.lock @@ -0,0 +1,1542 @@ +# This file is automatically @generated by Poetry 1.5.1 and should not be changed by hand. + +[[package]] +name = "appnope" +version = "0.1.3" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = "*" +files = [ + {file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"}, + {file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"}, +] + +[[package]] +name = "asttokens" +version = "2.4.1" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = "*" +files = [ + {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, + {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, +] + +[package.dependencies] +six = ">=1.12.0" + +[package.extras] +astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] +test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] + +[[package]] +name = "certifi" +version = "2023.11.17" +description = "Python package for providing Mozilla's CA Bundle." +optional = false +python-versions = ">=3.6" +files = [ + {file = "certifi-2023.11.17-py3-none-any.whl", hash = "sha256:e036ab49d5b79556f99cfc2d9320b34cfbe5be05c5871b51de9329f0603b0474"}, + {file = "certifi-2023.11.17.tar.gz", hash = "sha256:9b469f3a900bf28dc19b8cfbf8019bf47f7fdd1a65a1d4ffb98fc14166beb4d1"}, +] + +[[package]] +name = "cffi" +version = "1.16.0" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088"}, + {file = "cffi-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614"}, + {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743"}, + {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d"}, + {file = "cffi-1.16.0-cp310-cp310-win32.whl", hash = "sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a"}, + {file = "cffi-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1"}, + {file = "cffi-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404"}, + {file = "cffi-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e"}, + {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc"}, + {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb"}, + {file = "cffi-1.16.0-cp311-cp311-win32.whl", hash = "sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab"}, + {file = "cffi-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba"}, + {file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"}, + {file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"}, + {file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"}, + {file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"}, + {file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"}, + {file = "cffi-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324"}, + {file = "cffi-1.16.0-cp38-cp38-win32.whl", hash = "sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a"}, + {file = "cffi-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36"}, + {file = "cffi-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed"}, + {file = "cffi-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098"}, + {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000"}, + {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe"}, + {file = "cffi-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4"}, + {file = "cffi-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8"}, + {file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"}, +] + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "charset-normalizer" +version = "3.3.2" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, + {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, +] + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "comm" +version = "0.2.0" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +files = [ + {file = "comm-0.2.0-py3-none-any.whl", hash = "sha256:2da8d9ebb8dd7bfc247adaff99f24dce705638a8042b85cb995066793e391001"}, + {file = "comm-0.2.0.tar.gz", hash = "sha256:a517ea2ca28931c7007a7a99c562a0fa5883cfb48963140cf642c41c948498be"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "contourpy" +version = "1.2.0" +description = "Python library for calculating contours of 2D quadrilateral grids" +optional = false +python-versions = ">=3.9" +files = [ + {file = "contourpy-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0274c1cb63625972c0c007ab14dd9ba9e199c36ae1a231ce45d725cbcbfd10a8"}, + {file = "contourpy-1.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ab459a1cbbf18e8698399c595a01f6dcc5c138220ca3ea9e7e6126232d102bb4"}, + {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6fdd887f17c2f4572ce548461e4f96396681212d858cae7bd52ba3310bc6f00f"}, + {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5d16edfc3fc09968e09ddffada434b3bf989bf4911535e04eada58469873e28e"}, + {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c203f617abc0dde5792beb586f827021069fb6d403d7f4d5c2b543d87edceb9"}, + {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b69303ceb2e4d4f146bf82fda78891ef7bcd80c41bf16bfca3d0d7eb545448aa"}, + {file = "contourpy-1.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:884c3f9d42d7218304bc74a8a7693d172685c84bd7ab2bab1ee567b769696df9"}, + {file = "contourpy-1.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4a1b1208102be6e851f20066bf0e7a96b7d48a07c9b0cfe6d0d4545c2f6cadab"}, + {file = "contourpy-1.2.0-cp310-cp310-win32.whl", hash = "sha256:34b9071c040d6fe45d9826cbbe3727d20d83f1b6110d219b83eb0e2a01d79488"}, + {file = "contourpy-1.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:bd2f1ae63998da104f16a8b788f685e55d65760cd1929518fd94cd682bf03e41"}, + {file = "contourpy-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:dd10c26b4eadae44783c45ad6655220426f971c61d9b239e6f7b16d5cdaaa727"}, + {file = "contourpy-1.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5c6b28956b7b232ae801406e529ad7b350d3f09a4fde958dfdf3c0520cdde0dd"}, + {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ebeac59e9e1eb4b84940d076d9f9a6cec0064e241818bcb6e32124cc5c3e377a"}, + {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:139d8d2e1c1dd52d78682f505e980f592ba53c9f73bd6be102233e358b401063"}, + {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1e9dc350fb4c58adc64df3e0703ab076f60aac06e67d48b3848c23647ae4310e"}, + {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18fc2b4ed8e4a8fe849d18dce4bd3c7ea637758c6343a1f2bae1e9bd4c9f4686"}, + {file = "contourpy-1.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:16a7380e943a6d52472096cb7ad5264ecee36ed60888e2a3d3814991a0107286"}, + {file = "contourpy-1.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8d8faf05be5ec8e02a4d86f616fc2a0322ff4a4ce26c0f09d9f7fb5330a35c95"}, + {file = "contourpy-1.2.0-cp311-cp311-win32.whl", hash = "sha256:67b7f17679fa62ec82b7e3e611c43a016b887bd64fb933b3ae8638583006c6d6"}, + {file = "contourpy-1.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:99ad97258985328b4f207a5e777c1b44a83bfe7cf1f87b99f9c11d4ee477c4de"}, + {file = "contourpy-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:575bcaf957a25d1194903a10bc9f316c136c19f24e0985a2b9b5608bdf5dbfe0"}, + {file = "contourpy-1.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9e6c93b5b2dbcedad20a2f18ec22cae47da0d705d454308063421a3b290d9ea4"}, + {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:464b423bc2a009088f19bdf1f232299e8b6917963e2b7e1d277da5041f33a779"}, + {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:68ce4788b7d93e47f84edd3f1f95acdcd142ae60bc0e5493bfd120683d2d4316"}, + {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d7d1f8871998cdff5d2ff6a087e5e1780139abe2838e85b0b46b7ae6cc25399"}, + {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e739530c662a8d6d42c37c2ed52a6f0932c2d4a3e8c1f90692ad0ce1274abe0"}, + {file = "contourpy-1.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:247b9d16535acaa766d03037d8e8fb20866d054d3c7fbf6fd1f993f11fc60ca0"}, + {file = "contourpy-1.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:461e3ae84cd90b30f8d533f07d87c00379644205b1d33a5ea03381edc4b69431"}, + {file = "contourpy-1.2.0-cp312-cp312-win32.whl", hash = "sha256:1c2559d6cffc94890b0529ea7eeecc20d6fadc1539273aa27faf503eb4656d8f"}, + {file = "contourpy-1.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:491b1917afdd8638a05b611a56d46587d5a632cabead889a5440f7c638bc6ed9"}, + {file = "contourpy-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5fd1810973a375ca0e097dee059c407913ba35723b111df75671a1976efa04bc"}, + {file = "contourpy-1.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:999c71939aad2780f003979b25ac5b8f2df651dac7b38fb8ce6c46ba5abe6ae9"}, + {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7caf9b241464c404613512d5594a6e2ff0cc9cb5615c9475cc1d9b514218ae8"}, + {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:266270c6f6608340f6c9836a0fb9b367be61dde0c9a9a18d5ece97774105ff3e"}, + {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbd50d0a0539ae2e96e537553aff6d02c10ed165ef40c65b0e27e744a0f10af8"}, + {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11f8d2554e52f459918f7b8e6aa20ec2a3bce35ce95c1f0ef4ba36fbda306df5"}, + {file = "contourpy-1.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ce96dd400486e80ac7d195b2d800b03e3e6a787e2a522bfb83755938465a819e"}, + {file = "contourpy-1.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6d3364b999c62f539cd403f8123ae426da946e142312a514162adb2addd8d808"}, + {file = "contourpy-1.2.0-cp39-cp39-win32.whl", hash = "sha256:1c88dfb9e0c77612febebb6ac69d44a8d81e3dc60f993215425b62c1161353f4"}, + {file = "contourpy-1.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:78e6ad33cf2e2e80c5dfaaa0beec3d61face0fb650557100ee36db808bfa6843"}, + {file = "contourpy-1.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:be16975d94c320432657ad2402f6760990cb640c161ae6da1363051805fa8108"}, + {file = "contourpy-1.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b95a225d4948b26a28c08307a60ac00fb8671b14f2047fc5476613252a129776"}, + {file = "contourpy-1.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0d7e03c0f9a4f90dc18d4e77e9ef4ec7b7bbb437f7f675be8e530d65ae6ef956"}, + {file = "contourpy-1.2.0.tar.gz", hash = "sha256:171f311cb758de7da13fc53af221ae47a5877be5a0843a9fe150818c51ed276a"}, +] + +[package.dependencies] +numpy = ">=1.20,<2.0" + +[package.extras] +bokeh = ["bokeh", "selenium"] +docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"] +mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.6.1)", "types-Pillow"] +test = ["Pillow", "contourpy[test-no-images]", "matplotlib"] +test-no-images = ["pytest", "pytest-cov", "pytest-xdist", "wurlitzer"] + +[[package]] +name = "cycler" +version = "0.12.1" +description = "Composable style cycles" +optional = false +python-versions = ">=3.8" +files = [ + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, +] + +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "debugpy" +version = "1.8.0" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "debugpy-1.8.0-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:7fb95ca78f7ac43393cd0e0f2b6deda438ec7c5e47fa5d38553340897d2fbdfb"}, + {file = "debugpy-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef9ab7df0b9a42ed9c878afd3eaaff471fce3fa73df96022e1f5c9f8f8c87ada"}, + {file = "debugpy-1.8.0-cp310-cp310-win32.whl", hash = "sha256:a8b7a2fd27cd9f3553ac112f356ad4ca93338feadd8910277aff71ab24d8775f"}, + {file = "debugpy-1.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:5d9de202f5d42e62f932507ee8b21e30d49aae7e46d5b1dd5c908db1d7068637"}, + {file = "debugpy-1.8.0-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:ef54404365fae8d45cf450d0544ee40cefbcb9cb85ea7afe89a963c27028261e"}, + {file = "debugpy-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60009b132c91951354f54363f8ebdf7457aeb150e84abba5ae251b8e9f29a8a6"}, + {file = "debugpy-1.8.0-cp311-cp311-win32.whl", hash = "sha256:8cd0197141eb9e8a4566794550cfdcdb8b3db0818bdf8c49a8e8f8053e56e38b"}, + {file = "debugpy-1.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:a64093656c4c64dc6a438e11d59369875d200bd5abb8f9b26c1f5f723622e153"}, + {file = "debugpy-1.8.0-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:b05a6b503ed520ad58c8dc682749113d2fd9f41ffd45daec16e558ca884008cd"}, + {file = "debugpy-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c6fb41c98ec51dd010d7ed650accfd07a87fe5e93eca9d5f584d0578f28f35f"}, + {file = "debugpy-1.8.0-cp38-cp38-win32.whl", hash = "sha256:46ab6780159eeabb43c1495d9c84cf85d62975e48b6ec21ee10c95767c0590aa"}, + {file = "debugpy-1.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:bdc5ef99d14b9c0fcb35351b4fbfc06ac0ee576aeab6b2511702e5a648a2e595"}, + {file = "debugpy-1.8.0-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:61eab4a4c8b6125d41a34bad4e5fe3d2cc145caecd63c3fe953be4cc53e65bf8"}, + {file = "debugpy-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:125b9a637e013f9faac0a3d6a82bd17c8b5d2c875fb6b7e2772c5aba6d082332"}, + {file = "debugpy-1.8.0-cp39-cp39-win32.whl", hash = "sha256:57161629133113c97b387382045649a2b985a348f0c9366e22217c87b68b73c6"}, + {file = "debugpy-1.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:e3412f9faa9ade82aa64a50b602544efcba848c91384e9f93497a458767e6926"}, + {file = "debugpy-1.8.0-py2.py3-none-any.whl", hash = "sha256:9c9b0ac1ce2a42888199df1a1906e45e6f3c9555497643a85e0bf2406e3ffbc4"}, + {file = "debugpy-1.8.0.zip", hash = "sha256:12af2c55b419521e33d5fb21bd022df0b5eb267c3e178f1d374a63a2a6bdccd0"}, +] + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +optional = false +python-versions = ">=3.5" +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] + +[[package]] +name = "exceptiongroup" +version = "1.2.0" +description = "Backport of PEP 654 (exception groups)" +optional = false +python-versions = ">=3.7" +files = [ + {file = "exceptiongroup-1.2.0-py3-none-any.whl", hash = "sha256:4bfd3996ac73b41e9b9628b04e079f193850720ea5945fc96a08633c66912f14"}, + {file = "exceptiongroup-1.2.0.tar.gz", hash = "sha256:91f5c769735f051a4290d52edd0858999b57e5876e9f85937691bd4c9fa3ed68"}, +] + +[package.extras] +test = ["pytest (>=6)"] + +[[package]] +name = "executing" +version = "2.0.1" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.5" +files = [ + {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, + {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + +[[package]] +name = "fonttools" +version = "4.47.0" +description = "Tools to manipulate font files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "fonttools-4.47.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2d2404107626f97a221dc1a65b05396d2bb2ce38e435f64f26ed2369f68675d9"}, + {file = "fonttools-4.47.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c01f409be619a9a0f5590389e37ccb58b47264939f0e8d58bfa1f3ba07d22671"}, + {file = "fonttools-4.47.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d986b66ff722ef675b7ee22fbe5947a41f60a61a4da15579d5e276d897fbc7fa"}, + {file = "fonttools-4.47.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8acf6dd0434b211b3bd30d572d9e019831aae17a54016629fa8224783b22df8"}, + {file = "fonttools-4.47.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:495369c660e0c27233e3c572269cbe520f7f4978be675f990f4005937337d391"}, + {file = "fonttools-4.47.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c59227d7ba5b232281c26ae04fac2c73a79ad0e236bca5c44aae904a18f14faf"}, + {file = "fonttools-4.47.0-cp310-cp310-win32.whl", hash = "sha256:59a6c8b71a245800e923cb684a2dc0eac19c56493e2f896218fcf2571ed28984"}, + {file = "fonttools-4.47.0-cp310-cp310-win_amd64.whl", hash = "sha256:52c82df66201f3a90db438d9d7b337c7c98139de598d0728fb99dab9fd0495ca"}, + {file = "fonttools-4.47.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:854421e328d47d70aa5abceacbe8eef231961b162c71cbe7ff3f47e235e2e5c5"}, + {file = "fonttools-4.47.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:511482df31cfea9f697930f61520f6541185fa5eeba2fa760fe72e8eee5af88b"}, + {file = "fonttools-4.47.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0e2c88c8c985b7b9a7efcd06511fb0a1fe3ddd9a6cd2895ef1dbf9059719d7"}, + {file = "fonttools-4.47.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7a0a8848726956e9d9fb18c977a279013daadf0cbb6725d2015a6dd57527992"}, + {file = "fonttools-4.47.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e869da810ae35afb3019baa0d0306cdbab4760a54909c89ad8904fa629991812"}, + {file = "fonttools-4.47.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:dd23848f877c3754f53a4903fb7a593ed100924f9b4bff7d5a4e2e8a7001ae11"}, + {file = "fonttools-4.47.0-cp311-cp311-win32.whl", hash = "sha256:bf1810635c00f7c45d93085611c995fc130009cec5abdc35b327156aa191f982"}, + {file = "fonttools-4.47.0-cp311-cp311-win_amd64.whl", hash = "sha256:61df4dee5d38ab65b26da8efd62d859a1eef7a34dcbc331299a28e24d04c59a7"}, + {file = "fonttools-4.47.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:e3f4d61f3a8195eac784f1d0c16c0a3105382c1b9a74d99ac4ba421da39a8826"}, + {file = "fonttools-4.47.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:174995f7b057e799355b393e97f4f93ef1f2197cbfa945e988d49b2a09ecbce8"}, + {file = "fonttools-4.47.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea592e6a09b71cb7a7661dd93ac0b877a6228e2d677ebacbad0a4d118494c86d"}, + {file = "fonttools-4.47.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40bdbe90b33897d9cc4a39f8e415b0fcdeae4c40a99374b8a4982f127ff5c767"}, + {file = "fonttools-4.47.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:843509ae9b93db5aaf1a6302085e30bddc1111d31e11d724584818f5b698f500"}, + {file = "fonttools-4.47.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9acfa1cdc479e0dde528b61423855913d949a7f7fe09e276228298fef4589540"}, + {file = "fonttools-4.47.0-cp312-cp312-win32.whl", hash = "sha256:66c92ec7f95fd9732550ebedefcd190a8d81beaa97e89d523a0d17198a8bda4d"}, + {file = "fonttools-4.47.0-cp312-cp312-win_amd64.whl", hash = "sha256:e8fa20748de55d0021f83754b371432dca0439e02847962fc4c42a0e444c2d78"}, + {file = "fonttools-4.47.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c75e19971209fbbce891ebfd1b10c37320a5a28e8d438861c21d35305aedb81c"}, + {file = "fonttools-4.47.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e79f1a3970d25f692bbb8c8c2637e621a66c0d60c109ab48d4a160f50856deff"}, + {file = "fonttools-4.47.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:562681188c62c024fe2c611b32e08b8de2afa00c0c4e72bed47c47c318e16d5c"}, + {file = "fonttools-4.47.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a77a60315c33393b2bd29d538d1ef026060a63d3a49a9233b779261bad9c3f71"}, + {file = "fonttools-4.47.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b4fabb8cc9422efae1a925160083fdcbab8fdc96a8483441eb7457235df625bd"}, + {file = "fonttools-4.47.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2a78dba8c2a1e9d53a0fb5382979f024200dc86adc46a56cbb668a2249862fda"}, + {file = "fonttools-4.47.0-cp38-cp38-win32.whl", hash = "sha256:e6b968543fde4119231c12c2a953dcf83349590ca631ba8216a8edf9cd4d36a9"}, + {file = "fonttools-4.47.0-cp38-cp38-win_amd64.whl", hash = "sha256:4a9a51745c0439516d947480d4d884fa18bd1458e05b829e482b9269afa655bc"}, + {file = "fonttools-4.47.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:62d8ddb058b8e87018e5dc26f3258e2c30daad4c87262dfeb0e2617dd84750e6"}, + {file = "fonttools-4.47.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5dde0eab40faaa5476133123f6a622a1cc3ac9b7af45d65690870620323308b4"}, + {file = "fonttools-4.47.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4da089f6dfdb822293bde576916492cd708c37c2501c3651adde39804630538"}, + {file = "fonttools-4.47.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:253bb46bab970e8aae254cebf2ae3db98a4ef6bd034707aa68a239027d2b198d"}, + {file = "fonttools-4.47.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1193fb090061efa2f9e2d8d743ae9850c77b66746a3b32792324cdce65784154"}, + {file = "fonttools-4.47.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:084511482dd265bce6dca24c509894062f0117e4e6869384d853f46c0e6d43be"}, + {file = "fonttools-4.47.0-cp39-cp39-win32.whl", hash = "sha256:97620c4af36e4c849e52661492e31dc36916df12571cb900d16960ab8e92a980"}, + {file = "fonttools-4.47.0-cp39-cp39-win_amd64.whl", hash = "sha256:e77bdf52185bdaf63d39f3e1ac3212e6cfa3ab07d509b94557a8902ce9c13c82"}, + {file = "fonttools-4.47.0-py3-none-any.whl", hash = "sha256:d6477ba902dd2d7adda7f0fd3bfaeb92885d45993c9e1928c9f28fc3961415f7"}, + {file = "fonttools-4.47.0.tar.gz", hash = "sha256:ec13a10715eef0e031858c1c23bfaee6cba02b97558e4a7bfa089dba4a8c2ebf"}, +] + +[package.extras] +all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0,<5)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "pycairo", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.1.0)", "xattr", "zopfli (>=0.1.4)"] +graphite = ["lz4 (>=1.7.4.2)"] +interpolatable = ["munkres", "pycairo", "scipy"] +lxml = ["lxml (>=4.0,<5)"] +pathops = ["skia-pathops (>=0.5.0)"] +plot = ["matplotlib"] +repacker = ["uharfbuzz (>=0.23.0)"] +symfont = ["sympy"] +type1 = ["xattr"] +ufo = ["fs (>=2.2.0,<3)"] +unicode = ["unicodedata2 (>=15.1.0)"] +woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] + +[[package]] +name = "idna" +version = "3.6" +description = "Internationalized Domain Names in Applications (IDNA)" +optional = false +python-versions = ">=3.5" +files = [ + {file = "idna-3.6-py3-none-any.whl", hash = "sha256:c05567e9c24a6b9faaa835c4821bad0590fbb9d5779e7caa6e1cc4978e7eb24f"}, + {file = "idna-3.6.tar.gz", hash = "sha256:9ecdbbd083b06798ae1e86adcbfe8ab1479cf864e4ee30fe4e46a003d12491ca"}, +] + +[[package]] +name = "importlib-metadata" +version = "7.0.0" +description = "Read metadata from Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "importlib_metadata-7.0.0-py3-none-any.whl", hash = "sha256:d97503976bb81f40a193d41ee6570868479c69d5068651eb039c40d850c59d67"}, + {file = "importlib_metadata-7.0.0.tar.gz", hash = "sha256:7fc841f8b8332803464e5dc1c63a2e59121f46ca186c0e2e182e80bf8c1319f7"}, +] + +[package.dependencies] +zipp = ">=0.5" + +[package.extras] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] +perf = ["ipython"] +testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)", "pytest-ruff"] + +[[package]] +name = "importlib-resources" +version = "6.1.1" +description = "Read resources from Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "importlib_resources-6.1.1-py3-none-any.whl", hash = "sha256:e8bf90d8213b486f428c9c39714b920041cb02c184686a3dee24905aaa8105d6"}, + {file = "importlib_resources-6.1.1.tar.gz", hash = "sha256:3893a00122eafde6894c59914446a512f728a0c1a45f9bb9b63721b6bacf0b4a"}, +] + +[package.dependencies] +zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} + +[package.extras] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] +testing = ["pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-ruff", "zipp (>=3.17)"] + +[[package]] +name = "ipykernel" +version = "6.27.1" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipykernel-6.27.1-py3-none-any.whl", hash = "sha256:dab88b47f112f9f7df62236511023c9bdeef67abc73af7c652e4ce4441601686"}, + {file = "ipykernel-6.27.1.tar.gz", hash = "sha256:7d5d594b6690654b4d299edba5e872dc17bb7396a8d0609c97cb7b8a1c605de6"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=20" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.18.1" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.9" +files = [ + {file = "ipython-8.18.1-py3-none-any.whl", hash = "sha256:e8267419d72d81955ec1177f8a29aaa90ac80ad647499201119e2f05e99aa397"}, + {file = "ipython-8.18.1.tar.gz", hash = "sha256:ca6f079bb33457c66e233e4580ebfc4128855b4cf6370dddd73842a9563e8a27"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} +prompt-toolkit = ">=3.0.41,<3.1.0" +pygments = ">=2.4.0" +stack-data = "*" +traitlets = ">=5" +typing-extensions = {version = "*", markers = "python_version < \"3.10\""} + +[package.extras] +all = ["black", "curio", "docrepr", "exceptiongroup", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +black = ["black"] +doc = ["docrepr", "exceptiongroup", "ipykernel", "matplotlib", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +kernel = ["ipykernel"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath", "trio"] + +[[package]] +name = "jedi" +version = "0.19.1" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +files = [ + {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, + {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, +] + +[package.dependencies] +parso = ">=0.8.3,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] + +[[package]] +name = "jupyter-client" +version = "8.6.0" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_client-8.6.0-py3-none-any.whl", hash = "sha256:909c474dbe62582ae62b758bca86d6518c85234bdee2d908c778db6d72f39d99"}, + {file = "jupyter_client-8.6.0.tar.gz", hash = "sha256:0642244bb83b4764ae60d07e010e15f0e2d275ec4e918a8f7b80fbbef3ca60c7"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-core" +version = "5.5.1" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_core-5.5.1-py3-none-any.whl", hash = "sha256:220dfb00c45f0d780ce132bb7976b58263f81a3ada6e90a9b6823785a424f739"}, + {file = "jupyter_core-5.5.1.tar.gz", hash = "sha256:1553311a97ccd12936037f36b9ab4d6ae8ceea6ad2d5c90d94a909e752178e40"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "kiwisolver" +version = "1.4.5" +description = "A fast implementation of the Cassowary constraint solver" +optional = false +python-versions = ">=3.7" +files = [ + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, + {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, +] + +[[package]] +name = "matplotlib" +version = "3.8.2" +description = "Python plotting package" +optional = false +python-versions = ">=3.9" +files = [ + {file = "matplotlib-3.8.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:09796f89fb71a0c0e1e2f4bdaf63fb2cefc84446bb963ecdeb40dfee7dfa98c7"}, + {file = "matplotlib-3.8.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6f9c6976748a25e8b9be51ea028df49b8e561eed7809146da7a47dbecebab367"}, + {file = "matplotlib-3.8.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b78e4f2cedf303869b782071b55fdde5987fda3038e9d09e58c91cc261b5ad18"}, + {file = "matplotlib-3.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4e208f46cf6576a7624195aa047cb344a7f802e113bb1a06cfd4bee431de5e31"}, + {file = "matplotlib-3.8.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:46a569130ff53798ea5f50afce7406e91fdc471ca1e0e26ba976a8c734c9427a"}, + {file = "matplotlib-3.8.2-cp310-cp310-win_amd64.whl", hash = "sha256:830f00640c965c5b7f6bc32f0d4ce0c36dfe0379f7dd65b07a00c801713ec40a"}, + {file = "matplotlib-3.8.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d86593ccf546223eb75a39b44c32788e6f6440d13cfc4750c1c15d0fcb850b63"}, + {file = "matplotlib-3.8.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9a5430836811b7652991939012f43d2808a2db9b64ee240387e8c43e2e5578c8"}, + {file = "matplotlib-3.8.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9576723858a78751d5aacd2497b8aef29ffea6d1c95981505877f7ac28215c6"}, + {file = "matplotlib-3.8.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ba9cbd8ac6cf422f3102622b20f8552d601bf8837e49a3afed188d560152788"}, + {file = "matplotlib-3.8.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:03f9d160a29e0b65c0790bb07f4f45d6a181b1ac33eb1bb0dd225986450148f0"}, + {file = "matplotlib-3.8.2-cp311-cp311-win_amd64.whl", hash = "sha256:3773002da767f0a9323ba1a9b9b5d00d6257dbd2a93107233167cfb581f64717"}, + {file = "matplotlib-3.8.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:4c318c1e95e2f5926fba326f68177dee364aa791d6df022ceb91b8221bd0a627"}, + {file = "matplotlib-3.8.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:091275d18d942cf1ee9609c830a1bc36610607d8223b1b981c37d5c9fc3e46a4"}, + {file = "matplotlib-3.8.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b0f3b8ea0e99e233a4bcc44590f01604840d833c280ebb8fe5554fd3e6cfe8d"}, + {file = "matplotlib-3.8.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7b1704a530395aaf73912be741c04d181f82ca78084fbd80bc737be04848331"}, + {file = "matplotlib-3.8.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:533b0e3b0c6768eef8cbe4b583731ce25a91ab54a22f830db2b031e83cca9213"}, + {file = "matplotlib-3.8.2-cp312-cp312-win_amd64.whl", hash = "sha256:0f4fc5d72b75e2c18e55eb32292659cf731d9d5b312a6eb036506304f4675630"}, + {file = "matplotlib-3.8.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:deaed9ad4da0b1aea77fe0aa0cebb9ef611c70b3177be936a95e5d01fa05094f"}, + {file = "matplotlib-3.8.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:172f4d0fbac3383d39164c6caafd3255ce6fa58f08fc392513a0b1d3b89c4f89"}, + {file = "matplotlib-3.8.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c7d36c2209d9136cd8e02fab1c0ddc185ce79bc914c45054a9f514e44c787917"}, + {file = "matplotlib-3.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5864bdd7da445e4e5e011b199bb67168cdad10b501750367c496420f2ad00843"}, + {file = "matplotlib-3.8.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ef8345b48e95cee45ff25192ed1f4857273117917a4dcd48e3905619bcd9c9b8"}, + {file = "matplotlib-3.8.2-cp39-cp39-win_amd64.whl", hash = "sha256:7c48d9e221b637c017232e3760ed30b4e8d5dfd081daf327e829bf2a72c731b4"}, + {file = "matplotlib-3.8.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:aa11b3c6928a1e496c1a79917d51d4cd5d04f8a2e75f21df4949eeefdf697f4b"}, + {file = "matplotlib-3.8.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1095fecf99eeb7384dabad4bf44b965f929a5f6079654b681193edf7169ec20"}, + {file = "matplotlib-3.8.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:bddfb1db89bfaa855912261c805bd0e10218923cc262b9159a49c29a7a1c1afa"}, + {file = "matplotlib-3.8.2.tar.gz", hash = "sha256:01a978b871b881ee76017152f1f1a0cbf6bd5f7b8ff8c96df0df1bd57d8755a1"}, +] + +[package.dependencies] +contourpy = ">=1.0.1" +cycler = ">=0.10" +fonttools = ">=4.22.0" +importlib-resources = {version = ">=3.2.0", markers = "python_version < \"3.10\""} +kiwisolver = ">=1.3.1" +numpy = ">=1.21,<2" +packaging = ">=20.0" +pillow = ">=8" +pyparsing = ">=2.3.1" +python-dateutil = ">=2.7" + +[[package]] +name = "matplotlib-inline" +version = "0.1.6" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.5" +files = [ + {file = "matplotlib-inline-0.1.6.tar.gz", hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"}, + {file = "matplotlib_inline-0.1.6-py3-none-any.whl", hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "nest-asyncio" +version = "1.5.8" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +files = [ + {file = "nest_asyncio-1.5.8-py3-none-any.whl", hash = "sha256:accda7a339a70599cb08f9dd09a67e0c2ef8d8d6f4c07f96ab203f2ae254e48d"}, + {file = "nest_asyncio-1.5.8.tar.gz", hash = "sha256:25aa2ca0d2a5b5531956b9e273b45cf664cae2b145101d73b86b199978d48fdb"}, +] + +[[package]] +name = "networkx" +version = "3.2.1" +description = "Python package for creating and manipulating graphs and networks" +optional = false +python-versions = ">=3.9" +files = [ + {file = "networkx-3.2.1-py3-none-any.whl", hash = "sha256:f18c69adc97877c42332c170849c96cefa91881c99a7cb3e95b7c659ebdc1ec2"}, + {file = "networkx-3.2.1.tar.gz", hash = "sha256:9f1bb5cf3409bf324e0a722c20bdb4c20ee39bf1c30ce8ae499c8502b0b5e0c6"}, +] + +[package.extras] +default = ["matplotlib (>=3.5)", "numpy (>=1.22)", "pandas (>=1.4)", "scipy (>=1.9,!=1.11.0,!=1.11.1)"] +developer = ["changelist (==0.4)", "mypy (>=1.1)", "pre-commit (>=3.2)", "rtoml"] +doc = ["nb2plots (>=0.7)", "nbconvert (<7.9)", "numpydoc (>=1.6)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.14)", "sphinx (>=7)", "sphinx-gallery (>=0.14)", "texext (>=0.6.7)"] +extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.11)", "sympy (>=1.10)"] +test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"] + +[[package]] +name = "numpy" +version = "1.26.2" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3703fc9258a4a122d17043e57b35e5ef1c5a5837c3db8be396c82e04c1cf9b0f"}, + {file = "numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:cc392fdcbd21d4be6ae1bb4475a03ce3b025cd49a9be5345d76d7585aea69440"}, + {file = "numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36340109af8da8805d8851ef1d74761b3b88e81a9bd80b290bbfed61bd2b4f75"}, + {file = "numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bcc008217145b3d77abd3e4d5ef586e3bdfba8fe17940769f8aa09b99e856c00"}, + {file = "numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3ced40d4e9e18242f70dd02d739e44698df3dcb010d31f495ff00a31ef6014fe"}, + {file = "numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b272d4cecc32c9e19911891446b72e986157e6a1809b7b56518b4f3755267523"}, + {file = "numpy-1.26.2-cp310-cp310-win32.whl", hash = "sha256:22f8fc02fdbc829e7a8c578dd8d2e15a9074b630d4da29cda483337e300e3ee9"}, + {file = "numpy-1.26.2-cp310-cp310-win_amd64.whl", hash = "sha256:26c9d33f8e8b846d5a65dd068c14e04018d05533b348d9eaeef6c1bd787f9919"}, + {file = "numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b96e7b9c624ef3ae2ae0e04fa9b460f6b9f17ad8b4bec6d7756510f1f6c0c841"}, + {file = "numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:aa18428111fb9a591d7a9cc1b48150097ba6a7e8299fb56bdf574df650e7d1f1"}, + {file = "numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:06fa1ed84aa60ea6ef9f91ba57b5ed963c3729534e6e54055fc151fad0423f0a"}, + {file = "numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96ca5482c3dbdd051bcd1fce8034603d6ebfc125a7bd59f55b40d8f5d246832b"}, + {file = "numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:854ab91a2906ef29dc3925a064fcd365c7b4da743f84b123002f6139bcb3f8a7"}, + {file = "numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f43740ab089277d403aa07567be138fc2a89d4d9892d113b76153e0e412409f8"}, + {file = "numpy-1.26.2-cp311-cp311-win32.whl", hash = "sha256:a2bbc29fcb1771cd7b7425f98b05307776a6baf43035d3b80c4b0f29e9545186"}, + {file = "numpy-1.26.2-cp311-cp311-win_amd64.whl", hash = "sha256:2b3fca8a5b00184828d12b073af4d0fc5fdd94b1632c2477526f6bd7842d700d"}, + {file = "numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a4cd6ed4a339c21f1d1b0fdf13426cb3b284555c27ac2f156dfdaaa7e16bfab0"}, + {file = "numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5d5244aabd6ed7f312268b9247be47343a654ebea52a60f002dc70c769048e75"}, + {file = "numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a3cdb4d9c70e6b8c0814239ead47da00934666f668426fc6e94cce869e13fd7"}, + {file = "numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa317b2325f7aa0a9471663e6093c210cb2ae9c0ad824732b307d2c51983d5b6"}, + {file = "numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:174a8880739c16c925799c018f3f55b8130c1f7c8e75ab0a6fa9d41cab092fd6"}, + {file = "numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f79b231bf5c16b1f39c7f4875e1ded36abee1591e98742b05d8a0fb55d8a3eec"}, + {file = "numpy-1.26.2-cp312-cp312-win32.whl", hash = "sha256:4a06263321dfd3598cacb252f51e521a8cb4b6df471bb12a7ee5cbab20ea9167"}, + {file = "numpy-1.26.2-cp312-cp312-win_amd64.whl", hash = "sha256:b04f5dc6b3efdaab541f7857351aac359e6ae3c126e2edb376929bd3b7f92d7e"}, + {file = "numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4eb8df4bf8d3d90d091e0146f6c28492b0be84da3e409ebef54349f71ed271ef"}, + {file = "numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1a13860fdcd95de7cf58bd6f8bc5a5ef81c0b0625eb2c9a783948847abbef2c2"}, + {file = "numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64308ebc366a8ed63fd0bf426b6a9468060962f1a4339ab1074c228fa6ade8e3"}, + {file = "numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baf8aab04a2c0e859da118f0b38617e5ee65d75b83795055fb66c0d5e9e9b818"}, + {file = "numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d73a3abcac238250091b11caef9ad12413dab01669511779bc9b29261dd50210"}, + {file = "numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b361d369fc7e5e1714cf827b731ca32bff8d411212fccd29ad98ad622449cc36"}, + {file = "numpy-1.26.2-cp39-cp39-win32.whl", hash = "sha256:bd3f0091e845164a20bd5a326860c840fe2af79fa12e0469a12768a3ec578d80"}, + {file = "numpy-1.26.2-cp39-cp39-win_amd64.whl", hash = "sha256:2beef57fb031dcc0dc8fa4fe297a742027b954949cabb52a2a376c144e5e6060"}, + {file = "numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:1cc3d5029a30fb5f06704ad6b23b35e11309491c999838c31f124fee32107c79"}, + {file = "numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94cc3c222bb9fb5a12e334d0479b97bb2df446fbe622b470928f5284ffca3f8d"}, + {file = "numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:fe6b44fb8fcdf7eda4ef4461b97b3f63c466b27ab151bec2366db8b197387841"}, + {file = "numpy-1.26.2.tar.gz", hash = "sha256:f65738447676ab5777f11e6bbbdb8ce11b785e105f690bc45966574816b6d3ea"}, +] + +[[package]] +name = "packaging" +version = "23.2" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.7" +files = [ + {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, + {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, +] + +[[package]] +name = "pandas" +version = "2.1.4" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.9" +files = [ + {file = "pandas-2.1.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bdec823dc6ec53f7a6339a0e34c68b144a7a1fd28d80c260534c39c62c5bf8c9"}, + {file = "pandas-2.1.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:294d96cfaf28d688f30c918a765ea2ae2e0e71d3536754f4b6de0ea4a496d034"}, + {file = "pandas-2.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b728fb8deba8905b319f96447a27033969f3ea1fea09d07d296c9030ab2ed1d"}, + {file = "pandas-2.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:00028e6737c594feac3c2df15636d73ace46b8314d236100b57ed7e4b9ebe8d9"}, + {file = "pandas-2.1.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:426dc0f1b187523c4db06f96fb5c8d1a845e259c99bda74f7de97bd8a3bb3139"}, + {file = "pandas-2.1.4-cp310-cp310-win_amd64.whl", hash = "sha256:f237e6ca6421265643608813ce9793610ad09b40154a3344a088159590469e46"}, + {file = "pandas-2.1.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b7d852d16c270e4331f6f59b3e9aa23f935f5c4b0ed2d0bc77637a8890a5d092"}, + {file = "pandas-2.1.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bd7d5f2f54f78164b3d7a40f33bf79a74cdee72c31affec86bfcabe7e0789821"}, + {file = "pandas-2.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0aa6e92e639da0d6e2017d9ccff563222f4eb31e4b2c3cf32a2a392fc3103c0d"}, + {file = "pandas-2.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d797591b6846b9db79e65dc2d0d48e61f7db8d10b2a9480b4e3faaddc421a171"}, + {file = "pandas-2.1.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d2d3e7b00f703aea3945995ee63375c61b2e6aa5aa7871c5d622870e5e137623"}, + {file = "pandas-2.1.4-cp311-cp311-win_amd64.whl", hash = "sha256:dc9bf7ade01143cddc0074aa6995edd05323974e6e40d9dbde081021ded8510e"}, + {file = "pandas-2.1.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:482d5076e1791777e1571f2e2d789e940dedd927325cc3cb6d0800c6304082f6"}, + {file = "pandas-2.1.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8a706cfe7955c4ca59af8c7a0517370eafbd98593155b48f10f9811da440248b"}, + {file = "pandas-2.1.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b0513a132a15977b4a5b89aabd304647919bc2169eac4c8536afb29c07c23540"}, + {file = "pandas-2.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9f17f2b6fc076b2a0078862547595d66244db0f41bf79fc5f64a5c4d635bead"}, + {file = "pandas-2.1.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:45d63d2a9b1b37fa6c84a68ba2422dc9ed018bdaa668c7f47566a01188ceeec1"}, + {file = "pandas-2.1.4-cp312-cp312-win_amd64.whl", hash = "sha256:f69b0c9bb174a2342818d3e2778584e18c740d56857fc5cdb944ec8bbe4082cf"}, + {file = "pandas-2.1.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3f06bda01a143020bad20f7a85dd5f4a1600112145f126bc9e3e42077c24ef34"}, + {file = "pandas-2.1.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab5796839eb1fd62a39eec2916d3e979ec3130509930fea17fe6f81e18108f6a"}, + {file = "pandas-2.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edbaf9e8d3a63a9276d707b4d25930a262341bca9874fcb22eff5e3da5394732"}, + {file = "pandas-2.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ebfd771110b50055712b3b711b51bee5d50135429364d0498e1213a7adc2be8"}, + {file = "pandas-2.1.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8ea107e0be2aba1da619cc6ba3f999b2bfc9669a83554b1904ce3dd9507f0860"}, + {file = "pandas-2.1.4-cp39-cp39-win_amd64.whl", hash = "sha256:d65148b14788b3758daf57bf42725caa536575da2b64df9964c563b015230984"}, + {file = "pandas-2.1.4.tar.gz", hash = "sha256:fcb68203c833cc735321512e13861358079a96c174a61f5116a1de89c58c0ef7"}, +] + +[package.dependencies] +numpy = {version = ">=1.22.4,<2", markers = "python_version < \"3.11\""} +python-dateutil = ">=2.8.2" +pytz = ">=2020.1" +tzdata = ">=2022.1" + +[package.extras] +all = ["PyQt5 (>=5.15.6)", "SQLAlchemy (>=1.4.36)", "beautifulsoup4 (>=4.11.1)", "bottleneck (>=1.3.4)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=0.8.1)", "fsspec (>=2022.05.0)", "gcsfs (>=2022.05.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.8.0)", "matplotlib (>=3.6.1)", "numba (>=0.55.2)", "numexpr (>=2.8.0)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.10)", "pandas-gbq (>=0.17.5)", "psycopg2 (>=2.9.3)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.5)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "pyxlsb (>=1.0.9)", "qtpy (>=2.2.0)", "s3fs (>=2022.05.0)", "scipy (>=1.8.1)", "tables (>=3.7.0)", "tabulate (>=0.8.10)", "xarray (>=2022.03.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.3)", "zstandard (>=0.17.0)"] +aws = ["s3fs (>=2022.05.0)"] +clipboard = ["PyQt5 (>=5.15.6)", "qtpy (>=2.2.0)"] +compression = ["zstandard (>=0.17.0)"] +computation = ["scipy (>=1.8.1)", "xarray (>=2022.03.0)"] +consortium-standard = ["dataframe-api-compat (>=0.1.7)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.10)", "pyxlsb (>=1.0.9)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.3)"] +feather = ["pyarrow (>=7.0.0)"] +fss = ["fsspec (>=2022.05.0)"] +gcp = ["gcsfs (>=2022.05.0)", "pandas-gbq (>=0.17.5)"] +hdf5 = ["tables (>=3.7.0)"] +html = ["beautifulsoup4 (>=4.11.1)", "html5lib (>=1.1)", "lxml (>=4.8.0)"] +mysql = ["SQLAlchemy (>=1.4.36)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.8.10)"] +parquet = ["pyarrow (>=7.0.0)"] +performance = ["bottleneck (>=1.3.4)", "numba (>=0.55.2)", "numexpr (>=2.8.0)"] +plot = ["matplotlib (>=3.6.1)"] +postgresql = ["SQLAlchemy (>=1.4.36)", "psycopg2 (>=2.9.3)"] +spss = ["pyreadstat (>=1.1.5)"] +sql-other = ["SQLAlchemy (>=1.4.36)"] +test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.8.0)"] + +[[package]] +name = "parso" +version = "0.8.3" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +files = [ + {file = "parso-0.8.3-py2.py3-none-any.whl", hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"}, + {file = "parso-0.8.3.tar.gz", hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0"}, +] + +[package.extras] +qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] +testing = ["docopt", "pytest (<6.0.0)"] + +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pillow" +version = "10.1.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "Pillow-10.1.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:1ab05f3db77e98f93964697c8efc49c7954b08dd61cff526b7f2531a22410106"}, + {file = "Pillow-10.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6932a7652464746fcb484f7fc3618e6503d2066d853f68a4bd97193a3996e273"}, + {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5f63b5a68daedc54c7c3464508d8c12075e56dcfbd42f8c1bf40169061ae666"}, + {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0949b55eb607898e28eaccb525ab104b2d86542a85c74baf3a6dc24002edec2"}, + {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:ae88931f93214777c7a3aa0a8f92a683f83ecde27f65a45f95f22d289a69e593"}, + {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:b0eb01ca85b2361b09480784a7931fc648ed8b7836f01fb9241141b968feb1db"}, + {file = "Pillow-10.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d27b5997bdd2eb9fb199982bb7eb6164db0426904020dc38c10203187ae2ff2f"}, + {file = "Pillow-10.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7df5608bc38bd37ef585ae9c38c9cd46d7c81498f086915b0f97255ea60c2818"}, + {file = "Pillow-10.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:41f67248d92a5e0a2076d3517d8d4b1e41a97e2df10eb8f93106c89107f38b57"}, + {file = "Pillow-10.1.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:1fb29c07478e6c06a46b867e43b0bcdb241b44cc52be9bc25ce5944eed4648e7"}, + {file = "Pillow-10.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2cdc65a46e74514ce742c2013cd4a2d12e8553e3a2563c64879f7c7e4d28bce7"}, + {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50d08cd0a2ecd2a8657bd3d82c71efd5a58edb04d9308185d66c3a5a5bed9610"}, + {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:062a1610e3bc258bff2328ec43f34244fcec972ee0717200cb1425214fe5b839"}, + {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:61f1a9d247317fa08a308daaa8ee7b3f760ab1809ca2da14ecc88ae4257d6172"}, + {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:a646e48de237d860c36e0db37ecaecaa3619e6f3e9d5319e527ccbc8151df061"}, + {file = "Pillow-10.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:47e5bf85b80abc03be7455c95b6d6e4896a62f6541c1f2ce77a7d2bb832af262"}, + {file = "Pillow-10.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a92386125e9ee90381c3369f57a2a50fa9e6aa8b1cf1d9c4b200d41a7dd8e992"}, + {file = "Pillow-10.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:0f7c276c05a9767e877a0b4c5050c8bee6a6d960d7f0c11ebda6b99746068c2a"}, + {file = "Pillow-10.1.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:a89b8312d51715b510a4fe9fc13686283f376cfd5abca8cd1c65e4c76e21081b"}, + {file = "Pillow-10.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:00f438bb841382b15d7deb9a05cc946ee0f2c352653c7aa659e75e592f6fa17d"}, + {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d929a19f5469b3f4df33a3df2983db070ebb2088a1e145e18facbc28cae5b27"}, + {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a92109192b360634a4489c0c756364c0c3a2992906752165ecb50544c251312"}, + {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:0248f86b3ea061e67817c47ecbe82c23f9dd5d5226200eb9090b3873d3ca32de"}, + {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:9882a7451c680c12f232a422730f986a1fcd808da0fd428f08b671237237d651"}, + {file = "Pillow-10.1.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1c3ac5423c8c1da5928aa12c6e258921956757d976405e9467c5f39d1d577a4b"}, + {file = "Pillow-10.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:806abdd8249ba3953c33742506fe414880bad78ac25cc9a9b1c6ae97bedd573f"}, + {file = "Pillow-10.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:eaed6977fa73408b7b8a24e8b14e59e1668cfc0f4c40193ea7ced8e210adf996"}, + {file = "Pillow-10.1.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:fe1e26e1ffc38be097f0ba1d0d07fcade2bcfd1d023cda5b29935ae8052bd793"}, + {file = "Pillow-10.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7a7e3daa202beb61821c06d2517428e8e7c1aab08943e92ec9e5755c2fc9ba5e"}, + {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:24fadc71218ad2b8ffe437b54876c9382b4a29e030a05a9879f615091f42ffc2"}, + {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa1d323703cfdac2036af05191b969b910d8f115cf53093125e4058f62012c9a"}, + {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:912e3812a1dbbc834da2b32299b124b5ddcb664ed354916fd1ed6f193f0e2d01"}, + {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:7dbaa3c7de82ef37e7708521be41db5565004258ca76945ad74a8e998c30af8d"}, + {file = "Pillow-10.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9d7bc666bd8c5a4225e7ac71f2f9d12466ec555e89092728ea0f5c0c2422ea80"}, + {file = "Pillow-10.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:baada14941c83079bf84c037e2d8b7506ce201e92e3d2fa0d1303507a8538212"}, + {file = "Pillow-10.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:2ef6721c97894a7aa77723740a09547197533146fba8355e86d6d9a4a1056b14"}, + {file = "Pillow-10.1.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0a026c188be3b443916179f5d04548092e253beb0c3e2ee0a4e2cdad72f66099"}, + {file = "Pillow-10.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:04f6f6149f266a100374ca3cc368b67fb27c4af9f1cc8cb6306d849dcdf12616"}, + {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb40c011447712d2e19cc261c82655f75f32cb724788df315ed992a4d65696bb"}, + {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a8413794b4ad9719346cd9306118450b7b00d9a15846451549314a58ac42219"}, + {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c9aeea7b63edb7884b031a35305629a7593272b54f429a9869a4f63a1bf04c34"}, + {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b4005fee46ed9be0b8fb42be0c20e79411533d1fd58edabebc0dd24626882cfd"}, + {file = "Pillow-10.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4d0152565c6aa6ebbfb1e5d8624140a440f2b99bf7afaafbdbf6430426497f28"}, + {file = "Pillow-10.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d921bc90b1defa55c9917ca6b6b71430e4286fc9e44c55ead78ca1a9f9eba5f2"}, + {file = "Pillow-10.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:cfe96560c6ce2f4c07d6647af2d0f3c54cc33289894ebd88cfbb3bcd5391e256"}, + {file = "Pillow-10.1.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:937bdc5a7f5343d1c97dc98149a0be7eb9704e937fe3dc7140e229ae4fc572a7"}, + {file = "Pillow-10.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1c25762197144e211efb5f4e8ad656f36c8d214d390585d1d21281f46d556ba"}, + {file = "Pillow-10.1.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:afc8eef765d948543a4775f00b7b8c079b3321d6b675dde0d02afa2ee23000b4"}, + {file = "Pillow-10.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:883f216eac8712b83a63f41b76ddfb7b2afab1b74abbb413c5df6680f071a6b9"}, + {file = "Pillow-10.1.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:b920e4d028f6442bea9a75b7491c063f0b9a3972520731ed26c83e254302eb1e"}, + {file = "Pillow-10.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c41d960babf951e01a49c9746f92c5a7e0d939d1652d7ba30f6b3090f27e412"}, + {file = "Pillow-10.1.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1fafabe50a6977ac70dfe829b2d5735fd54e190ab55259ec8aea4aaea412fa0b"}, + {file = "Pillow-10.1.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3b834f4b16173e5b92ab6566f0473bfb09f939ba14b23b8da1f54fa63e4b623f"}, + {file = "Pillow-10.1.0.tar.gz", hash = "sha256:e6bf8de6c36ed96c86ea3b6e1d5273c53f46ef518a062464cd7ef5dd2cf92e38"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "platformdirs" +version = "4.1.0" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." +optional = false +python-versions = ">=3.8" +files = [ + {file = "platformdirs-4.1.0-py3-none-any.whl", hash = "sha256:11c8f37bcca40db96d8144522d925583bdb7a31f7b0e37e3ed4318400a8e2380"}, + {file = "platformdirs-4.1.0.tar.gz", hash = "sha256:906d548203468492d432bcb294d4bc2fff751bf84971fbb2c10918cc206ee420"}, +] + +[package.extras] +docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.1)", "sphinx-autodoc-typehints (>=1.24)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.43" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "prompt_toolkit-3.0.43-py3-none-any.whl", hash = "sha256:a11a29cb3bf0a28a387fe5122cdb649816a957cd9261dcedf8c9f1fef33eacf6"}, + {file = "prompt_toolkit-3.0.43.tar.gz", hash = "sha256:3527b7af26106cbc65a040bcc84839a3566ec1b051bb0bfe953631e704b0ff7d"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "psutil" +version = "5.9.7" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" +files = [ + {file = "psutil-5.9.7-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:0bd41bf2d1463dfa535942b2a8f0e958acf6607ac0be52265ab31f7923bcd5e6"}, + {file = "psutil-5.9.7-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:5794944462509e49d4d458f4dbfb92c47539e7d8d15c796f141f474010084056"}, + {file = "psutil-5.9.7-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:fe361f743cb3389b8efda21980d93eb55c1f1e3898269bc9a2a1d0bb7b1f6508"}, + {file = "psutil-5.9.7-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:e469990e28f1ad738f65a42dcfc17adaed9d0f325d55047593cb9033a0ab63df"}, + {file = "psutil-5.9.7-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:3c4747a3e2ead1589e647e64aad601981f01b68f9398ddf94d01e3dc0d1e57c7"}, + {file = "psutil-5.9.7-cp27-none-win32.whl", hash = "sha256:1d4bc4a0148fdd7fd8f38e0498639ae128e64538faa507df25a20f8f7fb2341c"}, + {file = "psutil-5.9.7-cp27-none-win_amd64.whl", hash = "sha256:4c03362e280d06bbbfcd52f29acd79c733e0af33d707c54255d21029b8b32ba6"}, + {file = "psutil-5.9.7-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ea36cc62e69a13ec52b2f625c27527f6e4479bca2b340b7a452af55b34fcbe2e"}, + {file = "psutil-5.9.7-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1132704b876e58d277168cd729d64750633d5ff0183acf5b3c986b8466cd0284"}, + {file = "psutil-5.9.7-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe8b7f07948f1304497ce4f4684881250cd859b16d06a1dc4d7941eeb6233bfe"}, + {file = "psutil-5.9.7-cp36-cp36m-win32.whl", hash = "sha256:b27f8fdb190c8c03914f908a4555159327d7481dac2f01008d483137ef3311a9"}, + {file = "psutil-5.9.7-cp36-cp36m-win_amd64.whl", hash = "sha256:44969859757f4d8f2a9bd5b76eba8c3099a2c8cf3992ff62144061e39ba8568e"}, + {file = "psutil-5.9.7-cp37-abi3-win32.whl", hash = "sha256:c727ca5a9b2dd5193b8644b9f0c883d54f1248310023b5ad3e92036c5e2ada68"}, + {file = "psutil-5.9.7-cp37-abi3-win_amd64.whl", hash = "sha256:f37f87e4d73b79e6c5e749440c3113b81d1ee7d26f21c19c47371ddea834f414"}, + {file = "psutil-5.9.7-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:032f4f2c909818c86cea4fe2cc407f1c0f0cde8e6c6d702b28b8ce0c0d143340"}, + {file = "psutil-5.9.7.tar.gz", hash = "sha256:3f02134e82cfb5d089fddf20bb2e03fd5cd52395321d1c8458a9e58500ff417c"}, +] + +[package.extras] +test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.2" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +files = [ + {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, + {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "pycparser" +version = "2.21" +description = "C parser in Python" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, + {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, +] + +[[package]] +name = "pygments" +version = "2.17.2" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.7" +files = [ + {file = "pygments-2.17.2-py3-none-any.whl", hash = "sha256:b27c2826c47d0f3219f29554824c30c5e8945175d888647acd804ddd04af846c"}, + {file = "pygments-2.17.2.tar.gz", hash = "sha256:da46cec9fd2de5be3a8a784f434e4c4ab670b4ff54d605c4c2717e9d49c4c367"}, +] + +[package.extras] +plugins = ["importlib-metadata"] +windows-terminal = ["colorama (>=0.4.6)"] + +[[package]] +name = "pyparsing" +version = "3.1.1" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.6.8" +files = [ + {file = "pyparsing-3.1.1-py3-none-any.whl", hash = "sha256:32c7c0b711493c72ff18a981d24f28aaf9c1fb7ed5e9667c9e84e3db623bdbfb"}, + {file = "pyparsing-3.1.1.tar.gz", hash = "sha256:ede28a1a32462f5a9705e07aea48001a08f7cf81a021585011deba701581a0db"}, +] + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + +[[package]] +name = "python-dateutil" +version = "2.8.2" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, + {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "pytz" +version = "2023.3.post1" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ + {file = "pytz-2023.3.post1-py2.py3-none-any.whl", hash = "sha256:ce42d816b81b68506614c11e8937d3aa9e41007ceb50bfdcb0749b921bf646c7"}, + {file = "pytz-2023.3.post1.tar.gz", hash = "sha256:7b4fddbeb94a1eba4b557da24f19fdf9db575192544270a9101d8509f9f43d7b"}, +] + +[[package]] +name = "pywin32" +version = "306" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ + {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, + {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, + {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, + {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, + {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, + {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, + {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, + {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, + {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, + {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, + {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, + {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, + {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, + {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, +] + +[[package]] +name = "pyzmq" +version = "25.1.2" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.6" +files = [ + {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:e624c789359f1a16f83f35e2c705d07663ff2b4d4479bad35621178d8f0f6ea4"}, + {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:49151b0efece79f6a79d41a461d78535356136ee70084a1c22532fc6383f4ad0"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9a5f194cf730f2b24d6af1f833c14c10f41023da46a7f736f48b6d35061e76e"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:faf79a302f834d9e8304fafdc11d0d042266667ac45209afa57e5efc998e3872"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f51a7b4ead28d3fca8dda53216314a553b0f7a91ee8fc46a72b402a78c3e43d"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:0ddd6d71d4ef17ba5a87becf7ddf01b371eaba553c603477679ae817a8d84d75"}, + {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:246747b88917e4867e2367b005fc8eefbb4a54b7db363d6c92f89d69abfff4b6"}, + {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:00c48ae2fd81e2a50c3485de1b9d5c7c57cd85dc8ec55683eac16846e57ac979"}, + {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:5a68d491fc20762b630e5db2191dd07ff89834086740f70e978bb2ef2668be08"}, + {file = "pyzmq-25.1.2-cp310-cp310-win32.whl", hash = "sha256:09dfe949e83087da88c4a76767df04b22304a682d6154de2c572625c62ad6886"}, + {file = "pyzmq-25.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:fa99973d2ed20417744fca0073390ad65ce225b546febb0580358e36aa90dba6"}, + {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:82544e0e2d0c1811482d37eef297020a040c32e0687c1f6fc23a75b75db8062c"}, + {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:01171fc48542348cd1a360a4b6c3e7d8f46cdcf53a8d40f84db6707a6768acc1"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc69c96735ab501419c432110016329bf0dea8898ce16fab97c6d9106dc0b348"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3e124e6b1dd3dfbeb695435dff0e383256655bb18082e094a8dd1f6293114642"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7598d2ba821caa37a0f9d54c25164a4fa351ce019d64d0b44b45540950458840"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:d1299d7e964c13607efd148ca1f07dcbf27c3ab9e125d1d0ae1d580a1682399d"}, + {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4e6f689880d5ad87918430957297c975203a082d9a036cc426648fcbedae769b"}, + {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:cc69949484171cc961e6ecd4a8911b9ce7a0d1f738fcae717177c231bf77437b"}, + {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9880078f683466b7f567b8624bfc16cad65077be046b6e8abb53bed4eeb82dd3"}, + {file = "pyzmq-25.1.2-cp311-cp311-win32.whl", hash = "sha256:4e5837af3e5aaa99a091302df5ee001149baff06ad22b722d34e30df5f0d9097"}, + {file = "pyzmq-25.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:25c2dbb97d38b5ac9fd15586e048ec5eb1e38f3d47fe7d92167b0c77bb3584e9"}, + {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:11e70516688190e9c2db14fcf93c04192b02d457b582a1f6190b154691b4c93a"}, + {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:313c3794d650d1fccaaab2df942af9f2c01d6217c846177cfcbc693c7410839e"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b3cbba2f47062b85fe0ef9de5b987612140a9ba3a9c6d2543c6dec9f7c2ab27"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fc31baa0c32a2ca660784d5af3b9487e13b61b3032cb01a115fce6588e1bed30"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:02c9087b109070c5ab0b383079fa1b5f797f8d43e9a66c07a4b8b8bdecfd88ee"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:f8429b17cbb746c3e043cb986328da023657e79d5ed258b711c06a70c2ea7537"}, + {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:5074adeacede5f810b7ef39607ee59d94e948b4fd954495bdb072f8c54558181"}, + {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:7ae8f354b895cbd85212da245f1a5ad8159e7840e37d78b476bb4f4c3f32a9fe"}, + {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b264bf2cc96b5bc43ce0e852be995e400376bd87ceb363822e2cb1964fcdc737"}, + {file = "pyzmq-25.1.2-cp312-cp312-win32.whl", hash = "sha256:02bbc1a87b76e04fd780b45e7f695471ae6de747769e540da909173d50ff8e2d"}, + {file = "pyzmq-25.1.2-cp312-cp312-win_amd64.whl", hash = "sha256:ced111c2e81506abd1dc142e6cd7b68dd53747b3b7ae5edbea4578c5eeff96b7"}, + {file = "pyzmq-25.1.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:7b6d09a8962a91151f0976008eb7b29b433a560fde056ec7a3db9ec8f1075438"}, + {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:967668420f36878a3c9ecb5ab33c9d0ff8d054f9c0233d995a6d25b0e95e1b6b"}, + {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5edac3f57c7ddaacdb4d40f6ef2f9e299471fc38d112f4bc6d60ab9365445fb0"}, + {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:0dabfb10ef897f3b7e101cacba1437bd3a5032ee667b7ead32bbcdd1a8422fe7"}, + {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:2c6441e0398c2baacfe5ba30c937d274cfc2dc5b55e82e3749e333aabffde561"}, + {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:16b726c1f6c2e7625706549f9dbe9b06004dfbec30dbed4bf50cbdfc73e5b32a"}, + {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:a86c2dd76ef71a773e70551a07318b8e52379f58dafa7ae1e0a4be78efd1ff16"}, + {file = "pyzmq-25.1.2-cp36-cp36m-win32.whl", hash = "sha256:359f7f74b5d3c65dae137f33eb2bcfa7ad9ebefd1cab85c935f063f1dbb245cc"}, + {file = "pyzmq-25.1.2-cp36-cp36m-win_amd64.whl", hash = "sha256:55875492f820d0eb3417b51d96fea549cde77893ae3790fd25491c5754ea2f68"}, + {file = "pyzmq-25.1.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b8c8a419dfb02e91b453615c69568442e897aaf77561ee0064d789705ff37a92"}, + {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8807c87fa893527ae8a524c15fc505d9950d5e856f03dae5921b5e9aa3b8783b"}, + {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5e319ed7d6b8f5fad9b76daa0a68497bc6f129858ad956331a5835785761e003"}, + {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:3c53687dde4d9d473c587ae80cc328e5b102b517447456184b485587ebd18b62"}, + {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:9add2e5b33d2cd765ad96d5eb734a5e795a0755f7fc49aa04f76d7ddda73fd70"}, + {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e690145a8c0c273c28d3b89d6fb32c45e0d9605b2293c10e650265bf5c11cfec"}, + {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:00a06faa7165634f0cac1abb27e54d7a0b3b44eb9994530b8ec73cf52e15353b"}, + {file = "pyzmq-25.1.2-cp37-cp37m-win32.whl", hash = "sha256:0f97bc2f1f13cb16905a5f3e1fbdf100e712d841482b2237484360f8bc4cb3d7"}, + {file = "pyzmq-25.1.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6cc0020b74b2e410287e5942e1e10886ff81ac77789eb20bec13f7ae681f0fdd"}, + {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:bef02cfcbded83473bdd86dd8d3729cd82b2e569b75844fb4ea08fee3c26ae41"}, + {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e10a4b5a4b1192d74853cc71a5e9fd022594573926c2a3a4802020360aa719d8"}, + {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8c5f80e578427d4695adac6fdf4370c14a2feafdc8cb35549c219b90652536ae"}, + {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5dde6751e857910c1339890f3524de74007958557593b9e7e8c5f01cd919f8a7"}, + {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea1608dd169da230a0ad602d5b1ebd39807ac96cae1845c3ceed39af08a5c6df"}, + {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0f513130c4c361201da9bc69df25a086487250e16b5571ead521b31ff6b02220"}, + {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:019744b99da30330798bb37df33549d59d380c78e516e3bab9c9b84f87a9592f"}, + {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2e2713ef44be5d52dd8b8e2023d706bf66cb22072e97fc71b168e01d25192755"}, + {file = "pyzmq-25.1.2-cp38-cp38-win32.whl", hash = "sha256:07cd61a20a535524906595e09344505a9bd46f1da7a07e504b315d41cd42eb07"}, + {file = "pyzmq-25.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb7e49a17fb8c77d3119d41a4523e432eb0c6932187c37deb6fbb00cc3028088"}, + {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:94504ff66f278ab4b7e03e4cba7e7e400cb73bfa9d3d71f58d8972a8dc67e7a6"}, + {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6dd0d50bbf9dca1d0bdea219ae6b40f713a3fb477c06ca3714f208fd69e16fd8"}, + {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:004ff469d21e86f0ef0369717351073e0e577428e514c47c8480770d5e24a565"}, + {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c0b5ca88a8928147b7b1e2dfa09f3b6c256bc1135a1338536cbc9ea13d3b7add"}, + {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c9a79f1d2495b167119d02be7448bfba57fad2a4207c4f68abc0bab4b92925b"}, + {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:518efd91c3d8ac9f9b4f7dd0e2b7b8bf1a4fe82a308009016b07eaa48681af82"}, + {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1ec23bd7b3a893ae676d0e54ad47d18064e6c5ae1fadc2f195143fb27373f7f6"}, + {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db36c27baed588a5a8346b971477b718fdc66cf5b80cbfbd914b4d6d355e44e2"}, + {file = "pyzmq-25.1.2-cp39-cp39-win32.whl", hash = "sha256:39b1067f13aba39d794a24761e385e2eddc26295826530a8c7b6c6c341584289"}, + {file = "pyzmq-25.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:8e9f3fabc445d0ce320ea2c59a75fe3ea591fdbdeebec5db6de530dd4b09412e"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a8c1d566344aee826b74e472e16edae0a02e2a044f14f7c24e123002dcff1c05"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:759cfd391a0996345ba94b6a5110fca9c557ad4166d86a6e81ea526c376a01e8"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c61e346ac34b74028ede1c6b4bcecf649d69b707b3ff9dc0fab453821b04d1e"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cb8fc1f8d69b411b8ec0b5f1ffbcaf14c1db95b6bccea21d83610987435f1a4"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:3c00c9b7d1ca8165c610437ca0c92e7b5607b2f9076f4eb4b095c85d6e680a1d"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:df0c7a16ebb94452d2909b9a7b3337940e9a87a824c4fc1c7c36bb4404cb0cde"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:45999e7f7ed5c390f2e87ece7f6c56bf979fb213550229e711e45ecc7d42ccb8"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ac170e9e048b40c605358667aca3d94e98f604a18c44bdb4c102e67070f3ac9b"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1b604734bec94f05f81b360a272fc824334267426ae9905ff32dc2be433ab96"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:a793ac733e3d895d96f865f1806f160696422554e46d30105807fdc9841b9f7d"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0806175f2ae5ad4b835ecd87f5f85583316b69f17e97786f7443baaf54b9bb98"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:ef12e259e7bc317c7597d4f6ef59b97b913e162d83b421dd0db3d6410f17a244"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ea253b368eb41116011add00f8d5726762320b1bda892f744c91997b65754d73"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b9b1f2ad6498445a941d9a4fee096d387fee436e45cc660e72e768d3d8ee611"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:8b14c75979ce932c53b79976a395cb2a8cd3aaf14aef75e8c2cb55a330b9b49d"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:889370d5174a741a62566c003ee8ddba4b04c3f09a97b8000092b7ca83ec9c49"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a18fff090441a40ffda8a7f4f18f03dc56ae73f148f1832e109f9bffa85df15"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99a6b36f95c98839ad98f8c553d8507644c880cf1e0a57fe5e3a3f3969040882"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4345c9a27f4310afbb9c01750e9461ff33d6fb74cd2456b107525bbeebcb5be3"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:3516e0b6224cf6e43e341d56da15fd33bdc37fa0c06af4f029f7d7dfceceabbc"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:146b9b1f29ead41255387fb07be56dc29639262c0f7344f570eecdcd8d683314"}, + {file = "pyzmq-25.1.2.tar.gz", hash = "sha256:93f1aa311e8bb912e34f004cf186407a4e90eec4f0ecc0efd26056bf7eda0226"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "requests" +version = "2.31.0" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.7" +files = [ + {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"}, + {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + +[[package]] +name = "scipy" +version = "1.11.4" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "scipy-1.11.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bc9a714581f561af0848e6b69947fda0614915f072dfd14142ed1bfe1b806710"}, + {file = "scipy-1.11.4-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:cf00bd2b1b0211888d4dc75656c0412213a8b25e80d73898083f402b50f47e41"}, + {file = "scipy-1.11.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9999c008ccf00e8fbcce1236f85ade5c569d13144f77a1946bef8863e8f6eb4"}, + {file = "scipy-1.11.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:933baf588daa8dc9a92c20a0be32f56d43faf3d1a60ab11b3f08c356430f6e56"}, + {file = "scipy-1.11.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8fce70f39076a5aa62e92e69a7f62349f9574d8405c0a5de6ed3ef72de07f446"}, + {file = "scipy-1.11.4-cp310-cp310-win_amd64.whl", hash = "sha256:6550466fbeec7453d7465e74d4f4b19f905642c89a7525571ee91dd7adabb5a3"}, + {file = "scipy-1.11.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f313b39a7e94f296025e3cffc2c567618174c0b1dde173960cf23808f9fae4be"}, + {file = "scipy-1.11.4-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:1b7c3dca977f30a739e0409fb001056484661cb2541a01aba0bb0029f7b68db8"}, + {file = "scipy-1.11.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00150c5eae7b610c32589dda259eacc7c4f1665aedf25d921907f4d08a951b1c"}, + {file = "scipy-1.11.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:530f9ad26440e85766509dbf78edcfe13ffd0ab7fec2560ee5c36ff74d6269ff"}, + {file = "scipy-1.11.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5e347b14fe01003d3b78e196e84bd3f48ffe4c8a7b8a1afbcb8f5505cb710993"}, + {file = "scipy-1.11.4-cp311-cp311-win_amd64.whl", hash = "sha256:acf8ed278cc03f5aff035e69cb511741e0418681d25fbbb86ca65429c4f4d9cd"}, + {file = "scipy-1.11.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:028eccd22e654b3ea01ee63705681ee79933652b2d8f873e7949898dda6d11b6"}, + {file = "scipy-1.11.4-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:2c6ff6ef9cc27f9b3db93a6f8b38f97387e6e0591600369a297a50a8e96e835d"}, + {file = "scipy-1.11.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b030c6674b9230d37c5c60ab456e2cf12f6784596d15ce8da9365e70896effc4"}, + {file = "scipy-1.11.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad669df80528aeca5f557712102538f4f37e503f0c5b9541655016dd0932ca79"}, + {file = "scipy-1.11.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ce7fff2e23ab2cc81ff452a9444c215c28e6305f396b2ba88343a567feec9660"}, + {file = "scipy-1.11.4-cp312-cp312-win_amd64.whl", hash = "sha256:36750b7733d960d7994888f0d148d31ea3017ac15eef664194b4ef68d36a4a97"}, + {file = "scipy-1.11.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6e619aba2df228a9b34718efb023966da781e89dd3d21637b27f2e54db0410d7"}, + {file = "scipy-1.11.4-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:f3cd9e7b3c2c1ec26364856f9fbe78695fe631150f94cd1c22228456404cf1ec"}, + {file = "scipy-1.11.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d10e45a6c50211fe256da61a11c34927c68f277e03138777bdebedd933712fea"}, + {file = "scipy-1.11.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:91af76a68eeae0064887a48e25c4e616fa519fa0d38602eda7e0f97d65d57937"}, + {file = "scipy-1.11.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6df1468153a31cf55ed5ed39647279beb9cfb5d3f84369453b49e4b8502394fd"}, + {file = "scipy-1.11.4-cp39-cp39-win_amd64.whl", hash = "sha256:ee410e6de8f88fd5cf6eadd73c135020bfbbbdfcd0f6162c36a7638a1ea8cc65"}, + {file = "scipy-1.11.4.tar.gz", hash = "sha256:90a2b78e7f5733b9de748f589f09225013685f9b218275257f8a8168ededaeaa"}, +] + +[package.dependencies] +numpy = ">=1.21.6,<1.28.0" + +[package.extras] +dev = ["click", "cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"] +doc = ["jupytext", "matplotlib (>2)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] +test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "six" +version = "1.16.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, + {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, +] + +[[package]] +name = "snap-stanford" +version = "6.0.0" +description = "SNAP (Stanford Network Analysis Platform) Python" +optional = false +python-versions = "*" +files = [ + {file = "snap_stanford-6.0.0-cp27-cp27m-macosx_10_14_x86_64.whl", hash = "sha256:dc7a37770cdf64ba18831363d00387cd51657db1c9942f6668a9f5b1ceb21821"}, + {file = "snap_stanford-6.0.0-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:9769c9e7383802e5418a29d035e76019728861f3827f3f6904be6534000fd299"}, + {file = "snap_stanford-6.0.0-cp27-cp27m-win_amd64.whl", hash = "sha256:57d191878b98a7b6801232ea5d9796add9dd7a4b41747c8752604135944685e7"}, + {file = "snap_stanford-6.0.0-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:dbeb88fbc890e4088ac7f317fa3c3e3c799432c48e25f94d286d93c61a45e235"}, + {file = "snap_stanford-6.0.0-cp35-cp35m-macosx_10_14_x86_64.whl", hash = "sha256:ea5e24f6ad2eedf8604a80476ca25cff61e072e9996d4355ac71d5304495d7c8"}, + {file = "snap_stanford-6.0.0-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:93f054a2ebe783c2c11d01e21eccd0d780a199a211f5f8aec9dda3d35554f0e9"}, + {file = "snap_stanford-6.0.0-cp35-cp35m-win_amd64.whl", hash = "sha256:cda954a4526f9f66aa2b5265bf8f2e2a0a05ec0f81fb37ef9c31450ec10d3f32"}, + {file = "snap_stanford-6.0.0-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:34a5e05fb70f750f89e26fec06c69a84705c0644748860f6c992dde65a302e9a"}, + {file = "snap_stanford-6.0.0-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:41df7bf97ada5f5642e7576bfb32ed4242f09d2c2f1b7fcb65462447bd588295"}, + {file = "snap_stanford-6.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:faf9c32522415ceab334fc27a7556163fde6cfc05fc4a277e3f4aeec34b890d1"}, + {file = "snap_stanford-6.0.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:8fe655b49e44c8bb8605a1f4409e48a04a6907945edcd1ff78db9507636cc049"}, + {file = "snap_stanford-6.0.0-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:80ca315bbaa746af9490cfbb41e83d143d1a2d2ae48ef7a4e1d77d2b03dc7057"}, + {file = "snap_stanford-6.0.0-cp37-cp37m-win_amd64.whl", hash = "sha256:6e25c728b13725ee46fa0a9dd38eec4a8f600eba933834f41e0085cedc17bc11"}, + {file = "snap_stanford-6.0.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:d2a3aa1c2bf71be987f90e045aac1e1a7bf41cf9a59de665e68aa5b4b3c8a0e6"}, + {file = "snap_stanford-6.0.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:2d3b5ea377ac68abb8f1889a5b70c57af83a6659a6b0cfc9d064b83e74f10ead"}, + {file = "snap_stanford-6.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:5b2f5b213ef9c9c9bd070fb8cad28f38a23402f71abd21b61261088f69633a37"}, + {file = "snap_stanford-6.0.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:52420cf8f7ddc6afddba2fd7c51f94e89a2eb810d62418acef84eda725496683"}, + {file = "snap_stanford-6.0.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:963d62bd5bf7ccc40e14ef422bf718a03c36602b8ca698b7d3ea04d9228a455d"}, + {file = "snap_stanford-6.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:750f9e35a73074add78fd1f7b86cb75b938b3cac48e10c46844cdd839bc9141a"}, +] + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "tornado" +version = "6.4" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">= 3.8" +files = [ + {file = "tornado-6.4-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:02ccefc7d8211e5a7f9e8bc3f9e5b0ad6262ba2fbb683a6443ecc804e5224ce0"}, + {file = "tornado-6.4-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:27787de946a9cffd63ce5814c33f734c627a87072ec7eed71f7fc4417bb16263"}, + {file = "tornado-6.4-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f7894c581ecdcf91666a0912f18ce5e757213999e183ebfc2c3fdbf4d5bd764e"}, + {file = "tornado-6.4-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e43bc2e5370a6a8e413e1e1cd0c91bedc5bd62a74a532371042a18ef19e10579"}, + {file = "tornado-6.4-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0251554cdd50b4b44362f73ad5ba7126fc5b2c2895cc62b14a1c2d7ea32f212"}, + {file = "tornado-6.4-cp38-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:fd03192e287fbd0899dd8f81c6fb9cbbc69194d2074b38f384cb6fa72b80e9c2"}, + {file = "tornado-6.4-cp38-abi3-musllinux_1_1_i686.whl", hash = "sha256:88b84956273fbd73420e6d4b8d5ccbe913c65d31351b4c004ae362eba06e1f78"}, + {file = "tornado-6.4-cp38-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:71ddfc23a0e03ef2df1c1397d859868d158c8276a0603b96cf86892bff58149f"}, + {file = "tornado-6.4-cp38-abi3-win32.whl", hash = "sha256:6f8a6c77900f5ae93d8b4ae1196472d0ccc2775cc1dfdc9e7727889145c45052"}, + {file = "tornado-6.4-cp38-abi3-win_amd64.whl", hash = "sha256:10aeaa8006333433da48dec9fe417877f8bcc21f48dda8d661ae79da357b2a63"}, + {file = "tornado-6.4.tar.gz", hash = "sha256:72291fa6e6bc84e626589f1c29d90a5a6d593ef5ae68052ee2ef000dfd273dee"}, +] + +[[package]] +name = "traitlets" +version = "5.14.0" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +files = [ + {file = "traitlets-5.14.0-py3-none-any.whl", hash = "sha256:f14949d23829023013c47df20b4a76ccd1a85effb786dc060f34de7948361b33"}, + {file = "traitlets-5.14.0.tar.gz", hash = "sha256:fcdaa8ac49c04dfa0ed3ee3384ef6dfdb5d6f3741502be247279407679296772"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<7.5)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "typing-extensions" +version = "4.9.0" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typing_extensions-4.9.0-py3-none-any.whl", hash = "sha256:af72aea155e91adfc61c3ae9e0e342dbc0cba726d6cba4b6c72c1f34e47291cd"}, + {file = "typing_extensions-4.9.0.tar.gz", hash = "sha256:23478f88c37f27d76ac8aee6c905017a143b0b1b886c3c9f66bc2fd94f9f5783"}, +] + +[[package]] +name = "tzdata" +version = "2023.3" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2023.3-py2.py3-none-any.whl", hash = "sha256:7e65763eef3120314099b6939b5546db7adce1e7d6f2e179e3df563c70511eda"}, + {file = "tzdata-2023.3.tar.gz", hash = "sha256:11ef1e08e54acb0d4f95bdb1be05da659673de4acbd21bf9c69e94cc5e907a3a"}, +] + +[[package]] +name = "urllib3" +version = "2.1.0" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=3.8" +files = [ + {file = "urllib3-2.1.0-py3-none-any.whl", hash = "sha256:55901e917a5896a349ff771be919f8bd99aff50b79fe58fec595eb37bbc56bb3"}, + {file = "urllib3-2.1.0.tar.gz", hash = "sha256:df7aa8afb0148fa78488e7899b2c59b5f4ffcfa82e6c54ccb9dd37c1d7b52d54"}, +] + +[package.extras] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "wcwidth" +version = "0.2.12" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +files = [ + {file = "wcwidth-0.2.12-py2.py3-none-any.whl", hash = "sha256:f26ec43d96c8cbfed76a5075dac87680124fa84e0855195a6184da9c187f133c"}, + {file = "wcwidth-0.2.12.tar.gz", hash = "sha256:f01c104efdf57971bcb756f054dd58ddec5204dd15fa31d6503ea57947d97c02"}, +] + +[[package]] +name = "zipp" +version = "3.17.0" +description = "Backport of pathlib-compatible object wrapper for zip files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "zipp-3.17.0-py3-none-any.whl", hash = "sha256:0e923e726174922dce09c53c59ad483ff7bbb8e572e00c7f7c46b88556409f31"}, + {file = "zipp-3.17.0.tar.gz", hash = "sha256:84e64a1c28cf7e91ed2078bb8cc8c259cb19b76942096c8d7b84947690cabaf0"}, +] + +[package.extras] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] +testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy (>=0.9.1)", "pytest-ruff"] + +[metadata] +lock-version = "2.0" +python-versions = "~3.9" +content-hash = "f418d51a288985638f7d59d7a6385e4f31cc71f37c0a52ce661626b24e4ef55b" diff --git a/Chapter01/pyproject.toml b/Chapter01/pyproject.toml new file mode 100644 index 0000000..02eb203 --- /dev/null +++ b/Chapter01/pyproject.toml @@ -0,0 +1,20 @@ +[tool.poetry] +name = "Graph Machine Learning - Chapter 1" +version = "1.0.0" +description = "" +authors = ["Enrico Deusebio "] +packages = [] + +[tool.poetry.dependencies] +python = "~3.9" +ipykernel = ">=6.0.0" +networkx = ">=3.2.0" +snap-stanford = ">=6.0.0" +matplotlib = ">=3.6.0" +pandas = ">=2.1.0" +scipy = ">=1.11.0" +requests = "^2.31.0" + +[build-system] +requires = ["poetry-core"] +build-backend = "poetry.core.masonry.api" \ No newline at end of file diff --git a/Chapter01/requirements.txt b/Chapter01/requirements.txt new file mode 100644 index 0000000..709d589 --- /dev/null +++ b/Chapter01/requirements.txt @@ -0,0 +1,57 @@ +appnope==0.1.3 ; python_version >= "3.9" and python_version < "3.10" and platform_system == "Darwin" +asttokens==2.4.1 ; python_version >= "3.9" and python_version < "3.10" +certifi==2023.11.17 ; python_version >= "3.9" and python_version < "3.10" +cffi==1.16.0 ; python_version >= "3.9" and python_version < "3.10" and implementation_name == "pypy" +charset-normalizer==3.3.2 ; python_version >= "3.9" and python_version < "3.10" +colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.10" and sys_platform == "win32" +comm==0.2.0 ; python_version >= "3.9" and python_version < "3.10" +contourpy==1.2.0 ; python_version >= "3.9" and python_version < "3.10" +cycler==0.12.1 ; python_version >= "3.9" and python_version < "3.10" +debugpy==1.8.0 ; python_version >= "3.9" and python_version < "3.10" +decorator==5.1.1 ; python_version >= "3.9" and python_version < "3.10" +exceptiongroup==1.2.0 ; python_version >= "3.9" and python_version < "3.10" +executing==2.0.1 ; python_version >= "3.9" and python_version < "3.10" +fonttools==4.47.0 ; python_version >= "3.9" and python_version < "3.10" +idna==3.6 ; python_version >= "3.9" and python_version < "3.10" +importlib-metadata==7.0.0 ; python_version >= "3.9" and python_version < "3.10" +importlib-resources==6.1.1 ; python_version >= "3.9" and python_version < "3.10" +ipykernel==6.27.1 ; python_version >= "3.9" and python_version < "3.10" +ipython==8.18.1 ; python_version >= "3.9" and python_version < "3.10" +jedi==0.19.1 ; python_version >= "3.9" and python_version < "3.10" +jupyter-client==8.6.0 ; python_version >= "3.9" and python_version < "3.10" +jupyter-core==5.5.1 ; python_version >= "3.9" and python_version < "3.10" +kiwisolver==1.4.5 ; python_version >= "3.9" and python_version < "3.10" +matplotlib-inline==0.1.6 ; python_version >= "3.9" and python_version < "3.10" +matplotlib==3.8.2 ; python_version >= "3.9" and python_version < "3.10" +nest-asyncio==1.5.8 ; python_version >= "3.9" and python_version < "3.10" +networkx==3.2.1 ; python_version >= "3.9" and python_version < "3.10" +numpy==1.26.2 ; python_version >= "3.9" and python_version < "3.10" +packaging==23.2 ; python_version >= "3.9" and python_version < "3.10" +pandas==2.1.4 ; python_version >= "3.9" and python_version < "3.10" +parso==0.8.3 ; python_version >= "3.9" and python_version < "3.10" +pexpect==4.9.0 ; python_version >= "3.9" and python_version < "3.10" and sys_platform != "win32" +pillow==10.1.0 ; python_version >= "3.9" and python_version < "3.10" +platformdirs==4.1.0 ; python_version >= "3.9" and python_version < "3.10" +prompt-toolkit==3.0.43 ; python_version >= "3.9" and python_version < "3.10" +psutil==5.9.7 ; python_version >= "3.9" and python_version < "3.10" +ptyprocess==0.7.0 ; python_version >= "3.9" and python_version < "3.10" and sys_platform != "win32" +pure-eval==0.2.2 ; python_version >= "3.9" and python_version < "3.10" +pycparser==2.21 ; python_version >= "3.9" and python_version < "3.10" and implementation_name == "pypy" +pygments==2.17.2 ; python_version >= "3.9" and python_version < "3.10" +pyparsing==3.1.1 ; python_version >= "3.9" and python_version < "3.10" +python-dateutil==2.8.2 ; python_version >= "3.9" and python_version < "3.10" +pytz==2023.3.post1 ; python_version >= "3.9" and python_version < "3.10" +pywin32==306 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.9" and python_version < "3.10" +pyzmq==25.1.2 ; python_version >= "3.9" and python_version < "3.10" +requests==2.31.0 ; python_version >= "3.9" and python_version < "3.10" +scipy==1.11.4 ; python_version >= "3.9" and python_version < "3.10" +six==1.16.0 ; python_version >= "3.9" and python_version < "3.10" +snap-stanford==6.0.0 ; python_version >= "3.9" and python_version < "3.10" +stack-data==0.6.3 ; python_version >= "3.9" and python_version < "3.10" +tornado==6.4 ; python_version >= "3.9" and python_version < "3.10" +traitlets==5.14.0 ; python_version >= "3.9" and python_version < "3.10" +typing-extensions==4.9.0 ; python_version >= "3.9" and python_version < "3.10" +tzdata==2023.3 ; python_version >= "3.9" and python_version < "3.10" +urllib3==2.1.0 ; python_version >= "3.9" and python_version < "3.10" +wcwidth==0.2.12 ; python_version >= "3.9" and python_version < "3.10" +zipp==3.17.0 ; python_version >= "3.9" and python_version < "3.10" diff --git a/Chapter01/utils.py b/Chapter01/utils.py new file mode 100644 index 0000000..07078bd --- /dev/null +++ b/Chapter01/utils.py @@ -0,0 +1,59 @@ +import networkx as nx +import pathlib +import matplotlib.pyplot as plt + +DATA_DIR = pathlib.Path("/") / "data" / "Chapter01" + +FIGURES_DIR = DATA_DIR / "figures" + +default_edge_color = 'gray' +default_node_color = '#407cc9' +enhanced_node_color = '#f5b042' +enhanced_edge_color = '#cc2f04' + +if not FIGURES_DIR.exists(): + FIGURES_DIR.mkdir(parents=True) + +# draw a simple graph +def draw_graph(G, node_names={}, filename=None, node_size=50, layout = None): + pos_nodes = nx.spring_layout(G) if layout is None else layout(G) + nx.draw(G, pos_nodes, with_labels=False, node_size=node_size, edge_color='gray') + + pos_attrs = {} + for node, coords in pos_nodes.items(): + pos_attrs[node] = (coords[0], coords[1] + 0.08) + + nx.draw_networkx_labels(G, pos_attrs, labels=node_names, font_family='serif') + + plt.axis('off') + axis = plt.gca() + axis.set_xlim([1.2*x for x in axis.get_xlim()]) + axis.set_ylim([1.2*y for y in axis.get_ylim()]) + + if filename: + plt.savefig(FIGURES_DIR / filename, format="png") + + +# draw enhanced path on the graph +def draw_enhanced_path(G, path_to_enhance, node_names={}, filename=None, layout = None): + path_edges = list(zip(path_to_enhance,path_to_enhance[1:])) + pos_nodes = nx.spring_layout(G) if layout is None else layout(G) + + plt.figure(figsize=(5,5),dpi=300) + pos_nodes = nx.spring_layout(G) + nx.draw(G, pos_nodes, with_labels=False, node_size=50, edge_color='gray') + + pos_attrs = {} + for node, coords in pos_nodes.items(): + pos_attrs[node] = (coords[0], coords[1] + 0.08) + + nx.draw_networkx_labels(G, pos_attrs, labels=node_names, font_family='serif') + nx.draw_networkx_edges(G,pos_nodes,edgelist=path_edges, edge_color='#cc2f04', style='dashed', width=2.0) + + plt.axis('off') + axis = plt.gca() + axis.set_xlim([1.2*x for x in axis.get_xlim()]) + axis.set_ylim([1.2*y for y in axis.get_ylim()]) + + if filename: + plt.savefig(FIGURES_DIR / filename, format="png") \ No newline at end of file From 53597df6dd4326c78dbd8d901c94f78d46c79ce8 Mon Sep 17 00:00:00 2001 From: Enrico Deusebio Date: Tue, 19 Dec 2023 14:03:58 +0100 Subject: [PATCH 02/31] [2nd Edition][Chapter 2] Introduce poetry and update dependencies --- Chapter02/01_embedding_examples.ipynb | 4 +- Chapter02/poetry.lock | 1790 +++++++++++++++++++++++++ Chapter02/pyproject.toml | 19 + Chapter02/requirements.txt | 63 + 4 files changed, 1874 insertions(+), 2 deletions(-) create mode 100644 Chapter02/poetry.lock create mode 100644 Chapter02/pyproject.toml create mode 100644 Chapter02/requirements.txt diff --git a/Chapter02/01_embedding_examples.ipynb b/Chapter02/01_embedding_examples.ipynb index c2f734e..141811b 100644 --- a/Chapter02/01_embedding_examples.ipynb +++ b/Chapter02/01_embedding_examples.ipynb @@ -193,9 +193,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "chap2", "language": "python", - "name": "python3" + "name": "chap2" } }, "nbformat": 4, diff --git a/Chapter02/poetry.lock b/Chapter02/poetry.lock new file mode 100644 index 0000000..e817f46 --- /dev/null +++ b/Chapter02/poetry.lock @@ -0,0 +1,1790 @@ +# This file is automatically @generated by Poetry 1.5.1 and should not be changed by hand. + +[[package]] +name = "appnope" +version = "0.1.3" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = "*" +files = [ + {file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"}, + {file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"}, +] + +[[package]] +name = "asttokens" +version = "2.4.1" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = "*" +files = [ + {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, + {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, +] + +[package.dependencies] +six = ">=1.12.0" + +[package.extras] +astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] +test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] + +[[package]] +name = "cffi" +version = "1.16.0" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088"}, + {file = "cffi-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614"}, + {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743"}, + {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d"}, + {file = "cffi-1.16.0-cp310-cp310-win32.whl", hash = "sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a"}, + {file = "cffi-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1"}, + {file = "cffi-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404"}, + {file = "cffi-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e"}, + {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc"}, + {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb"}, + {file = "cffi-1.16.0-cp311-cp311-win32.whl", hash = "sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab"}, + {file = "cffi-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba"}, + {file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"}, + {file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"}, + {file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"}, + {file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"}, + {file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"}, + {file = "cffi-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324"}, + {file = "cffi-1.16.0-cp38-cp38-win32.whl", hash = "sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a"}, + {file = "cffi-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36"}, + {file = "cffi-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed"}, + {file = "cffi-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098"}, + {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000"}, + {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe"}, + {file = "cffi-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4"}, + {file = "cffi-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8"}, + {file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"}, +] + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "comm" +version = "0.2.0" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +files = [ + {file = "comm-0.2.0-py3-none-any.whl", hash = "sha256:2da8d9ebb8dd7bfc247adaff99f24dce705638a8042b85cb995066793e391001"}, + {file = "comm-0.2.0.tar.gz", hash = "sha256:a517ea2ca28931c7007a7a99c562a0fa5883cfb48963140cf642c41c948498be"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "contourpy" +version = "1.2.0" +description = "Python library for calculating contours of 2D quadrilateral grids" +optional = false +python-versions = ">=3.9" +files = [ + {file = "contourpy-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0274c1cb63625972c0c007ab14dd9ba9e199c36ae1a231ce45d725cbcbfd10a8"}, + {file = "contourpy-1.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ab459a1cbbf18e8698399c595a01f6dcc5c138220ca3ea9e7e6126232d102bb4"}, + {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6fdd887f17c2f4572ce548461e4f96396681212d858cae7bd52ba3310bc6f00f"}, + {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5d16edfc3fc09968e09ddffada434b3bf989bf4911535e04eada58469873e28e"}, + {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c203f617abc0dde5792beb586f827021069fb6d403d7f4d5c2b543d87edceb9"}, + {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b69303ceb2e4d4f146bf82fda78891ef7bcd80c41bf16bfca3d0d7eb545448aa"}, + {file = "contourpy-1.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:884c3f9d42d7218304bc74a8a7693d172685c84bd7ab2bab1ee567b769696df9"}, + {file = "contourpy-1.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4a1b1208102be6e851f20066bf0e7a96b7d48a07c9b0cfe6d0d4545c2f6cadab"}, + {file = "contourpy-1.2.0-cp310-cp310-win32.whl", hash = "sha256:34b9071c040d6fe45d9826cbbe3727d20d83f1b6110d219b83eb0e2a01d79488"}, + {file = "contourpy-1.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:bd2f1ae63998da104f16a8b788f685e55d65760cd1929518fd94cd682bf03e41"}, + {file = "contourpy-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:dd10c26b4eadae44783c45ad6655220426f971c61d9b239e6f7b16d5cdaaa727"}, + {file = "contourpy-1.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5c6b28956b7b232ae801406e529ad7b350d3f09a4fde958dfdf3c0520cdde0dd"}, + {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ebeac59e9e1eb4b84940d076d9f9a6cec0064e241818bcb6e32124cc5c3e377a"}, + {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:139d8d2e1c1dd52d78682f505e980f592ba53c9f73bd6be102233e358b401063"}, + {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1e9dc350fb4c58adc64df3e0703ab076f60aac06e67d48b3848c23647ae4310e"}, + {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18fc2b4ed8e4a8fe849d18dce4bd3c7ea637758c6343a1f2bae1e9bd4c9f4686"}, + {file = "contourpy-1.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:16a7380e943a6d52472096cb7ad5264ecee36ed60888e2a3d3814991a0107286"}, + {file = "contourpy-1.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8d8faf05be5ec8e02a4d86f616fc2a0322ff4a4ce26c0f09d9f7fb5330a35c95"}, + {file = "contourpy-1.2.0-cp311-cp311-win32.whl", hash = "sha256:67b7f17679fa62ec82b7e3e611c43a016b887bd64fb933b3ae8638583006c6d6"}, + {file = "contourpy-1.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:99ad97258985328b4f207a5e777c1b44a83bfe7cf1f87b99f9c11d4ee477c4de"}, + {file = "contourpy-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:575bcaf957a25d1194903a10bc9f316c136c19f24e0985a2b9b5608bdf5dbfe0"}, + {file = "contourpy-1.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9e6c93b5b2dbcedad20a2f18ec22cae47da0d705d454308063421a3b290d9ea4"}, + {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:464b423bc2a009088f19bdf1f232299e8b6917963e2b7e1d277da5041f33a779"}, + {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:68ce4788b7d93e47f84edd3f1f95acdcd142ae60bc0e5493bfd120683d2d4316"}, + {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d7d1f8871998cdff5d2ff6a087e5e1780139abe2838e85b0b46b7ae6cc25399"}, + {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e739530c662a8d6d42c37c2ed52a6f0932c2d4a3e8c1f90692ad0ce1274abe0"}, + {file = "contourpy-1.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:247b9d16535acaa766d03037d8e8fb20866d054d3c7fbf6fd1f993f11fc60ca0"}, + {file = "contourpy-1.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:461e3ae84cd90b30f8d533f07d87c00379644205b1d33a5ea03381edc4b69431"}, + {file = "contourpy-1.2.0-cp312-cp312-win32.whl", hash = "sha256:1c2559d6cffc94890b0529ea7eeecc20d6fadc1539273aa27faf503eb4656d8f"}, + {file = "contourpy-1.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:491b1917afdd8638a05b611a56d46587d5a632cabead889a5440f7c638bc6ed9"}, + {file = "contourpy-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5fd1810973a375ca0e097dee059c407913ba35723b111df75671a1976efa04bc"}, + {file = "contourpy-1.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:999c71939aad2780f003979b25ac5b8f2df651dac7b38fb8ce6c46ba5abe6ae9"}, + {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7caf9b241464c404613512d5594a6e2ff0cc9cb5615c9475cc1d9b514218ae8"}, + {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:266270c6f6608340f6c9836a0fb9b367be61dde0c9a9a18d5ece97774105ff3e"}, + {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbd50d0a0539ae2e96e537553aff6d02c10ed165ef40c65b0e27e744a0f10af8"}, + {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11f8d2554e52f459918f7b8e6aa20ec2a3bce35ce95c1f0ef4ba36fbda306df5"}, + {file = "contourpy-1.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ce96dd400486e80ac7d195b2d800b03e3e6a787e2a522bfb83755938465a819e"}, + {file = "contourpy-1.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6d3364b999c62f539cd403f8123ae426da946e142312a514162adb2addd8d808"}, + {file = "contourpy-1.2.0-cp39-cp39-win32.whl", hash = "sha256:1c88dfb9e0c77612febebb6ac69d44a8d81e3dc60f993215425b62c1161353f4"}, + {file = "contourpy-1.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:78e6ad33cf2e2e80c5dfaaa0beec3d61face0fb650557100ee36db808bfa6843"}, + {file = "contourpy-1.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:be16975d94c320432657ad2402f6760990cb640c161ae6da1363051805fa8108"}, + {file = "contourpy-1.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b95a225d4948b26a28c08307a60ac00fb8671b14f2047fc5476613252a129776"}, + {file = "contourpy-1.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0d7e03c0f9a4f90dc18d4e77e9ef4ec7b7bbb437f7f675be8e530d65ae6ef956"}, + {file = "contourpy-1.2.0.tar.gz", hash = "sha256:171f311cb758de7da13fc53af221ae47a5877be5a0843a9fe150818c51ed276a"}, +] + +[package.dependencies] +numpy = ">=1.20,<2.0" + +[package.extras] +bokeh = ["bokeh", "selenium"] +docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"] +mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.6.1)", "types-Pillow"] +test = ["Pillow", "contourpy[test-no-images]", "matplotlib"] +test-no-images = ["pytest", "pytest-cov", "pytest-xdist", "wurlitzer"] + +[[package]] +name = "cycler" +version = "0.12.1" +description = "Composable style cycles" +optional = false +python-versions = ">=3.8" +files = [ + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, +] + +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "debugpy" +version = "1.8.0" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "debugpy-1.8.0-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:7fb95ca78f7ac43393cd0e0f2b6deda438ec7c5e47fa5d38553340897d2fbdfb"}, + {file = "debugpy-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef9ab7df0b9a42ed9c878afd3eaaff471fce3fa73df96022e1f5c9f8f8c87ada"}, + {file = "debugpy-1.8.0-cp310-cp310-win32.whl", hash = "sha256:a8b7a2fd27cd9f3553ac112f356ad4ca93338feadd8910277aff71ab24d8775f"}, + {file = "debugpy-1.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:5d9de202f5d42e62f932507ee8b21e30d49aae7e46d5b1dd5c908db1d7068637"}, + {file = "debugpy-1.8.0-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:ef54404365fae8d45cf450d0544ee40cefbcb9cb85ea7afe89a963c27028261e"}, + {file = "debugpy-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60009b132c91951354f54363f8ebdf7457aeb150e84abba5ae251b8e9f29a8a6"}, + {file = "debugpy-1.8.0-cp311-cp311-win32.whl", hash = "sha256:8cd0197141eb9e8a4566794550cfdcdb8b3db0818bdf8c49a8e8f8053e56e38b"}, + {file = "debugpy-1.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:a64093656c4c64dc6a438e11d59369875d200bd5abb8f9b26c1f5f723622e153"}, + {file = "debugpy-1.8.0-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:b05a6b503ed520ad58c8dc682749113d2fd9f41ffd45daec16e558ca884008cd"}, + {file = "debugpy-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c6fb41c98ec51dd010d7ed650accfd07a87fe5e93eca9d5f584d0578f28f35f"}, + {file = "debugpy-1.8.0-cp38-cp38-win32.whl", hash = "sha256:46ab6780159eeabb43c1495d9c84cf85d62975e48b6ec21ee10c95767c0590aa"}, + {file = "debugpy-1.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:bdc5ef99d14b9c0fcb35351b4fbfc06ac0ee576aeab6b2511702e5a648a2e595"}, + {file = "debugpy-1.8.0-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:61eab4a4c8b6125d41a34bad4e5fe3d2cc145caecd63c3fe953be4cc53e65bf8"}, + {file = "debugpy-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:125b9a637e013f9faac0a3d6a82bd17c8b5d2c875fb6b7e2772c5aba6d082332"}, + {file = "debugpy-1.8.0-cp39-cp39-win32.whl", hash = "sha256:57161629133113c97b387382045649a2b985a348f0c9366e22217c87b68b73c6"}, + {file = "debugpy-1.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:e3412f9faa9ade82aa64a50b602544efcba848c91384e9f93497a458767e6926"}, + {file = "debugpy-1.8.0-py2.py3-none-any.whl", hash = "sha256:9c9b0ac1ce2a42888199df1a1906e45e6f3c9555497643a85e0bf2406e3ffbc4"}, + {file = "debugpy-1.8.0.zip", hash = "sha256:12af2c55b419521e33d5fb21bd022df0b5eb267c3e178f1d374a63a2a6bdccd0"}, +] + +[[package]] +name = "decorator" +version = "4.4.2" +description = "Decorators for Humans" +optional = false +python-versions = ">=2.6, !=3.0.*, !=3.1.*" +files = [ + {file = "decorator-4.4.2-py2.py3-none-any.whl", hash = "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760"}, + {file = "decorator-4.4.2.tar.gz", hash = "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7"}, +] + +[[package]] +name = "exceptiongroup" +version = "1.2.0" +description = "Backport of PEP 654 (exception groups)" +optional = false +python-versions = ">=3.7" +files = [ + {file = "exceptiongroup-1.2.0-py3-none-any.whl", hash = "sha256:4bfd3996ac73b41e9b9628b04e079f193850720ea5945fc96a08633c66912f14"}, + {file = "exceptiongroup-1.2.0.tar.gz", hash = "sha256:91f5c769735f051a4290d52edd0858999b57e5876e9f85937691bd4c9fa3ed68"}, +] + +[package.extras] +test = ["pytest (>=6)"] + +[[package]] +name = "executing" +version = "2.0.1" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.5" +files = [ + {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, + {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + +[[package]] +name = "fonttools" +version = "4.47.0" +description = "Tools to manipulate font files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "fonttools-4.47.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2d2404107626f97a221dc1a65b05396d2bb2ce38e435f64f26ed2369f68675d9"}, + {file = "fonttools-4.47.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c01f409be619a9a0f5590389e37ccb58b47264939f0e8d58bfa1f3ba07d22671"}, + {file = "fonttools-4.47.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d986b66ff722ef675b7ee22fbe5947a41f60a61a4da15579d5e276d897fbc7fa"}, + {file = "fonttools-4.47.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8acf6dd0434b211b3bd30d572d9e019831aae17a54016629fa8224783b22df8"}, + {file = "fonttools-4.47.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:495369c660e0c27233e3c572269cbe520f7f4978be675f990f4005937337d391"}, + {file = "fonttools-4.47.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c59227d7ba5b232281c26ae04fac2c73a79ad0e236bca5c44aae904a18f14faf"}, + {file = "fonttools-4.47.0-cp310-cp310-win32.whl", hash = "sha256:59a6c8b71a245800e923cb684a2dc0eac19c56493e2f896218fcf2571ed28984"}, + {file = "fonttools-4.47.0-cp310-cp310-win_amd64.whl", hash = "sha256:52c82df66201f3a90db438d9d7b337c7c98139de598d0728fb99dab9fd0495ca"}, + {file = "fonttools-4.47.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:854421e328d47d70aa5abceacbe8eef231961b162c71cbe7ff3f47e235e2e5c5"}, + {file = "fonttools-4.47.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:511482df31cfea9f697930f61520f6541185fa5eeba2fa760fe72e8eee5af88b"}, + {file = "fonttools-4.47.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0e2c88c8c985b7b9a7efcd06511fb0a1fe3ddd9a6cd2895ef1dbf9059719d7"}, + {file = "fonttools-4.47.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7a0a8848726956e9d9fb18c977a279013daadf0cbb6725d2015a6dd57527992"}, + {file = "fonttools-4.47.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e869da810ae35afb3019baa0d0306cdbab4760a54909c89ad8904fa629991812"}, + {file = "fonttools-4.47.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:dd23848f877c3754f53a4903fb7a593ed100924f9b4bff7d5a4e2e8a7001ae11"}, + {file = "fonttools-4.47.0-cp311-cp311-win32.whl", hash = "sha256:bf1810635c00f7c45d93085611c995fc130009cec5abdc35b327156aa191f982"}, + {file = "fonttools-4.47.0-cp311-cp311-win_amd64.whl", hash = "sha256:61df4dee5d38ab65b26da8efd62d859a1eef7a34dcbc331299a28e24d04c59a7"}, + {file = "fonttools-4.47.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:e3f4d61f3a8195eac784f1d0c16c0a3105382c1b9a74d99ac4ba421da39a8826"}, + {file = "fonttools-4.47.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:174995f7b057e799355b393e97f4f93ef1f2197cbfa945e988d49b2a09ecbce8"}, + {file = "fonttools-4.47.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea592e6a09b71cb7a7661dd93ac0b877a6228e2d677ebacbad0a4d118494c86d"}, + {file = "fonttools-4.47.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40bdbe90b33897d9cc4a39f8e415b0fcdeae4c40a99374b8a4982f127ff5c767"}, + {file = "fonttools-4.47.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:843509ae9b93db5aaf1a6302085e30bddc1111d31e11d724584818f5b698f500"}, + {file = "fonttools-4.47.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9acfa1cdc479e0dde528b61423855913d949a7f7fe09e276228298fef4589540"}, + {file = "fonttools-4.47.0-cp312-cp312-win32.whl", hash = "sha256:66c92ec7f95fd9732550ebedefcd190a8d81beaa97e89d523a0d17198a8bda4d"}, + {file = "fonttools-4.47.0-cp312-cp312-win_amd64.whl", hash = "sha256:e8fa20748de55d0021f83754b371432dca0439e02847962fc4c42a0e444c2d78"}, + {file = "fonttools-4.47.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c75e19971209fbbce891ebfd1b10c37320a5a28e8d438861c21d35305aedb81c"}, + {file = "fonttools-4.47.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e79f1a3970d25f692bbb8c8c2637e621a66c0d60c109ab48d4a160f50856deff"}, + {file = "fonttools-4.47.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:562681188c62c024fe2c611b32e08b8de2afa00c0c4e72bed47c47c318e16d5c"}, + {file = "fonttools-4.47.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a77a60315c33393b2bd29d538d1ef026060a63d3a49a9233b779261bad9c3f71"}, + {file = "fonttools-4.47.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b4fabb8cc9422efae1a925160083fdcbab8fdc96a8483441eb7457235df625bd"}, + {file = "fonttools-4.47.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2a78dba8c2a1e9d53a0fb5382979f024200dc86adc46a56cbb668a2249862fda"}, + {file = "fonttools-4.47.0-cp38-cp38-win32.whl", hash = "sha256:e6b968543fde4119231c12c2a953dcf83349590ca631ba8216a8edf9cd4d36a9"}, + {file = "fonttools-4.47.0-cp38-cp38-win_amd64.whl", hash = "sha256:4a9a51745c0439516d947480d4d884fa18bd1458e05b829e482b9269afa655bc"}, + {file = "fonttools-4.47.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:62d8ddb058b8e87018e5dc26f3258e2c30daad4c87262dfeb0e2617dd84750e6"}, + {file = "fonttools-4.47.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5dde0eab40faaa5476133123f6a622a1cc3ac9b7af45d65690870620323308b4"}, + {file = "fonttools-4.47.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4da089f6dfdb822293bde576916492cd708c37c2501c3651adde39804630538"}, + {file = "fonttools-4.47.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:253bb46bab970e8aae254cebf2ae3db98a4ef6bd034707aa68a239027d2b198d"}, + {file = "fonttools-4.47.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1193fb090061efa2f9e2d8d743ae9850c77b66746a3b32792324cdce65784154"}, + {file = "fonttools-4.47.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:084511482dd265bce6dca24c509894062f0117e4e6869384d853f46c0e6d43be"}, + {file = "fonttools-4.47.0-cp39-cp39-win32.whl", hash = "sha256:97620c4af36e4c849e52661492e31dc36916df12571cb900d16960ab8e92a980"}, + {file = "fonttools-4.47.0-cp39-cp39-win_amd64.whl", hash = "sha256:e77bdf52185bdaf63d39f3e1ac3212e6cfa3ab07d509b94557a8902ce9c13c82"}, + {file = "fonttools-4.47.0-py3-none-any.whl", hash = "sha256:d6477ba902dd2d7adda7f0fd3bfaeb92885d45993c9e1928c9f28fc3961415f7"}, + {file = "fonttools-4.47.0.tar.gz", hash = "sha256:ec13a10715eef0e031858c1c23bfaee6cba02b97558e4a7bfa089dba4a8c2ebf"}, +] + +[package.extras] +all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0,<5)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "pycairo", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.1.0)", "xattr", "zopfli (>=0.1.4)"] +graphite = ["lz4 (>=1.7.4.2)"] +interpolatable = ["munkres", "pycairo", "scipy"] +lxml = ["lxml (>=4.0,<5)"] +pathops = ["skia-pathops (>=0.5.0)"] +plot = ["matplotlib"] +repacker = ["uharfbuzz (>=0.23.0)"] +symfont = ["sympy"] +type1 = ["xattr"] +ufo = ["fs (>=2.2.0,<3)"] +unicode = ["unicodedata2 (>=15.1.0)"] +woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] + +[[package]] +name = "gensim" +version = "4.3.2" +description = "Python framework for fast Vector Space Modelling" +optional = false +python-versions = ">=3.8" +files = [ + {file = "gensim-4.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:31b3cb313939b6940ee21660177f6405e71b920da462dbf065b2458a24ab33e1"}, + {file = "gensim-4.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:67c41b15e19e4950f57124f633c45839b5c84268ffa58079c5b0c0f04d2a9cb9"}, + {file = "gensim-4.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a9bf1a8ee2e8214499c517008a0fd175ce5c649954a88569358cfae6bfca42dc"}, + {file = "gensim-4.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e34ee6f8a318fbf0b65e6d39a985ecf9e9051febfd1221ae6255fff1972c547"}, + {file = "gensim-4.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:c46b7395dc57c83329932f3febed9660891fdcc75327d56f55000e3e08898983"}, + {file = "gensim-4.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a919493339cfad39d5e76768c1bc546cd507f715c5fca93165cc174a97657457"}, + {file = "gensim-4.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8dcd1419266bd563c371d25530f4dce3505fe78059b2c0c08724e4f9e5479b38"}, + {file = "gensim-4.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e3e8035ac3f54dca3a8ca56bec526ddfe5b23006e0134b7375ca5f5dbfaef70a"}, + {file = "gensim-4.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c3b537c1fd4699c8e6d59c3ffa2fdd9918cd4e5555bf5ee7c1fbedd89b2d643"}, + {file = "gensim-4.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:5a52001226f9e89f7833503f99c9b4fd028fdf837002f24cdc1bc3cf901a4003"}, + {file = "gensim-4.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e8d62604efb8281a25254e5a6c14227034c267ed56635e590c9cae2635196dca"}, + {file = "gensim-4.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bf7a9dc37c2ca465c7834863a7b264369c1373bb474135df225cee654b8adfab"}, + {file = "gensim-4.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a33ff0d4cf3e50e7ddd7353fb38ed2d4af2e48a6ef58d622809862c30c8b8a2"}, + {file = "gensim-4.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99876be00b73c7cef01f427d241b07eb1c1b298fb411580cc1067d22c43a13be"}, + {file = "gensim-4.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:f785b3caf376a1f2989e0f3c890642e5b1566393fd3831dab03fc6670d672814"}, + {file = "gensim-4.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c86915cf0e0b86658a40a070bd7e04db0814065963657e92910303070275865d"}, + {file = "gensim-4.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:548c7bf983e619d6b8d78b6a5321dcbcba5b39f68779a0d36e38a5a971416276"}, + {file = "gensim-4.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:226690ea081b92a2289661a25e8a89069ae09b1ed4137b67a0d6ec211e0371d3"}, + {file = "gensim-4.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4715eafcd309c2f7e030829eddba72fe47bbe9bb466811fce3158127d29c8979"}, + {file = "gensim-4.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b3f26299ac241ff54329a54c37c22eac1bf4c4a337068adf2637259ee0d8484a"}, + {file = "gensim-4.3.2.tar.gz", hash = "sha256:99ac6af6ffd40682e70155ed9f92ecbf4384d59fb50af120d343ea5ee1b308ab"}, +] + +[package.dependencies] +numpy = ">=1.18.5" +scipy = ">=1.7.0" +smart-open = ">=1.8.1" + +[package.extras] +distributed = ["Pyro4 (>=4.27)"] +docs = ["POT", "Pyro4", "Pyro4 (>=4.27)", "annoy", "matplotlib", "memory-profiler", "mock", "nltk", "pandas", "pytest", "pytest-cov", "scikit-learn", "sphinx (==5.1.1)", "sphinx-gallery (==0.11.1)", "sphinxcontrib-napoleon (==0.7)", "sphinxcontrib.programoutput (==0.17)", "statsmodels", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test = ["POT", "mock", "pytest", "pytest-cov", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test-win = ["POT", "mock", "pytest", "pytest-cov", "testfixtures"] + +[[package]] +name = "importlib-metadata" +version = "7.0.0" +description = "Read metadata from Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "importlib_metadata-7.0.0-py3-none-any.whl", hash = "sha256:d97503976bb81f40a193d41ee6570868479c69d5068651eb039c40d850c59d67"}, + {file = "importlib_metadata-7.0.0.tar.gz", hash = "sha256:7fc841f8b8332803464e5dc1c63a2e59121f46ca186c0e2e182e80bf8c1319f7"}, +] + +[package.dependencies] +zipp = ">=0.5" + +[package.extras] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] +perf = ["ipython"] +testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)", "pytest-ruff"] + +[[package]] +name = "importlib-resources" +version = "6.1.1" +description = "Read resources from Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "importlib_resources-6.1.1-py3-none-any.whl", hash = "sha256:e8bf90d8213b486f428c9c39714b920041cb02c184686a3dee24905aaa8105d6"}, + {file = "importlib_resources-6.1.1.tar.gz", hash = "sha256:3893a00122eafde6894c59914446a512f728a0c1a45f9bb9b63721b6bacf0b4a"}, +] + +[package.dependencies] +zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} + +[package.extras] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] +testing = ["pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-ruff", "zipp (>=3.17)"] + +[[package]] +name = "ipykernel" +version = "6.27.1" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipykernel-6.27.1-py3-none-any.whl", hash = "sha256:dab88b47f112f9f7df62236511023c9bdeef67abc73af7c652e4ce4441601686"}, + {file = "ipykernel-6.27.1.tar.gz", hash = "sha256:7d5d594b6690654b4d299edba5e872dc17bb7396a8d0609c97cb7b8a1c605de6"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=20" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.18.1" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.9" +files = [ + {file = "ipython-8.18.1-py3-none-any.whl", hash = "sha256:e8267419d72d81955ec1177f8a29aaa90ac80ad647499201119e2f05e99aa397"}, + {file = "ipython-8.18.1.tar.gz", hash = "sha256:ca6f079bb33457c66e233e4580ebfc4128855b4cf6370dddd73842a9563e8a27"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} +prompt-toolkit = ">=3.0.41,<3.1.0" +pygments = ">=2.4.0" +stack-data = "*" +traitlets = ">=5" +typing-extensions = {version = "*", markers = "python_version < \"3.10\""} + +[package.extras] +all = ["black", "curio", "docrepr", "exceptiongroup", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +black = ["black"] +doc = ["docrepr", "exceptiongroup", "ipykernel", "matplotlib", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +kernel = ["ipykernel"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath", "trio"] + +[[package]] +name = "jedi" +version = "0.19.1" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +files = [ + {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, + {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, +] + +[package.dependencies] +parso = ">=0.8.3,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] + +[[package]] +name = "joblib" +version = "1.3.2" +description = "Lightweight pipelining with Python functions" +optional = false +python-versions = ">=3.7" +files = [ + {file = "joblib-1.3.2-py3-none-any.whl", hash = "sha256:ef4331c65f239985f3f2220ecc87db222f08fd22097a3dd5698f693875f8cbb9"}, + {file = "joblib-1.3.2.tar.gz", hash = "sha256:92f865e621e17784e7955080b6d042489e3b8e294949cc44c6eac304f59772b1"}, +] + +[[package]] +name = "jupyter-client" +version = "8.6.0" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_client-8.6.0-py3-none-any.whl", hash = "sha256:909c474dbe62582ae62b758bca86d6518c85234bdee2d908c778db6d72f39d99"}, + {file = "jupyter_client-8.6.0.tar.gz", hash = "sha256:0642244bb83b4764ae60d07e010e15f0e2d275ec4e918a8f7b80fbbef3ca60c7"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-core" +version = "5.5.1" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_core-5.5.1-py3-none-any.whl", hash = "sha256:220dfb00c45f0d780ce132bb7976b58263f81a3ada6e90a9b6823785a424f739"}, + {file = "jupyter_core-5.5.1.tar.gz", hash = "sha256:1553311a97ccd12936037f36b9ab4d6ae8ceea6ad2d5c90d94a909e752178e40"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "karateclub" +version = "1.2.3" +description = "A general purpose library for community detection, network embedding, and graph mining research." +optional = false +python-versions = "*" +files = [ + {file = "karateclub-1.2.3.tar.gz", hash = "sha256:304b63744840933f8135651f48975e66780aec5370fb9e1e1023dd3007f6be1c"}, +] + +[package.dependencies] +decorator = "4.4.2" +gensim = ">=4.0.0" +networkx = "*" +numpy = "*" +pandas = "<=1.3.5" +pygsp = "*" +python-Levenshtein = "*" +python-louvain = "*" +scikit-learn = "*" +scipy = "*" +six = "*" +tqdm = "*" + +[[package]] +name = "kiwisolver" +version = "1.4.5" +description = "A fast implementation of the Cassowary constraint solver" +optional = false +python-versions = ">=3.7" +files = [ + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, + {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, +] + +[[package]] +name = "levenshtein" +version = "0.23.0" +description = "Python extension for computing string edit distances and similarities." +optional = false +python-versions = ">=3.7" +files = [ + {file = "Levenshtein-0.23.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2d3f2b8e67915268c49f0faa29a29a8c26811a4b46bd96dd043bc8557428065d"}, + {file = "Levenshtein-0.23.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:10b980dcc865f8fe04723e448fac4e9a32cbd21fb41ab548725a2d30d9a22429"}, + {file = "Levenshtein-0.23.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2f8c8c48217b2733ae5bd8ef14e0ad730a30d113c84dc2cfc441435ef900732b"}, + {file = "Levenshtein-0.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:854a0962d6f5852b891b6b5789467d1e72b69722df1bc0dd85cbf70efeddc83f"}, + {file = "Levenshtein-0.23.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5abc4ee22340625ec401d6f11136afa387d377b7aa5dad475618ffce1f0d2e2f"}, + {file = "Levenshtein-0.23.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:20f79946481052bbbee5284c755aa0a5feb10a344d530e014a50cb9544745dd3"}, + {file = "Levenshtein-0.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a6084fc909a218843bb55723fde64a8a58bac7e9086854c37134269b3f946aeb"}, + {file = "Levenshtein-0.23.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0acaae1c20c8ed37915b0cde14b5c77d5a3ba08e05f9ce4f55e16843de9c7bb8"}, + {file = "Levenshtein-0.23.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:54a51036b02222912a029a6efa2ce1ee2be49c88e0bb32995e0999feba183913"}, + {file = "Levenshtein-0.23.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:68ec2ef442621027f290cb5cef80962889d86fff3e405e5d21c7f9634d096bbf"}, + {file = "Levenshtein-0.23.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:d8ba18720bafa4a65f07baba8c3228e98a6f8da7455de4ec58ae06de4ecdaea0"}, + {file = "Levenshtein-0.23.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:af1b70cac87c5627cd2227823318fa39c64fbfed686c8c3c2f713f72bc25813b"}, + {file = "Levenshtein-0.23.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fe2810c42cc5bca15eeb4a2eb192b1f74ceef6005876b1a166ecbde1defbd22d"}, + {file = "Levenshtein-0.23.0-cp310-cp310-win32.whl", hash = "sha256:89a0829637221ff0fd6ce63dfbe59e22b25eeba914d50e191519b9d9b8ccf3e9"}, + {file = "Levenshtein-0.23.0-cp310-cp310-win_amd64.whl", hash = "sha256:b8bc81d59205558326ac75c97e236fd72b8bcdf63fcdbfb7387bd63da242b209"}, + {file = "Levenshtein-0.23.0-cp310-cp310-win_arm64.whl", hash = "sha256:151046d1c70bdf01ede01f46467c11151ceb9c86fefaf400978b990110d0a55e"}, + {file = "Levenshtein-0.23.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7e992de09832ee11b35910c05c1581e8a9ab8ea9737c2f582c7eb540e2cdde69"}, + {file = "Levenshtein-0.23.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1a5e3461d29b3188518464bd3121fc64635ff884ae544147b5d326ce13c50d36"}, + {file = "Levenshtein-0.23.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1772c4491f6ef6504e591c0dd60e1e418b2015074c3d56ee93af6b1a019906ee"}, + {file = "Levenshtein-0.23.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e125c92cd0ac3b53c4c80fcf2890d89a1d19ff4979dc804031773bc90223859f"}, + {file = "Levenshtein-0.23.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0d2f608c5ce7b9a0a0af3c910f43ea7eb060296655aa127b10e4af7be5559303"}, + {file = "Levenshtein-0.23.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe5c3b7d96a838d9d86bb4ec57495749965e598a3ea2c5b877a61aa09478bab7"}, + {file = "Levenshtein-0.23.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:249eaa351b5355b3e3ca7e3a8e2a0bca7bff4491c89a0b0fa3b9d0614cf3efeb"}, + {file = "Levenshtein-0.23.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0033a243510e829ead1ae62720389c9f17d422a98c0525da593d239a9ff434e5"}, + {file = "Levenshtein-0.23.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f956ad16cab9267c0e7d382a37b4baca6bf3bf1637a76fa95fdbf9dd3ea774d7"}, + {file = "Levenshtein-0.23.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:3789e4aeaeb830d944e1f502f9aa9024e9cd36b68d6eba6892df7972b884abd7"}, + {file = "Levenshtein-0.23.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:f91335f056b9a548070cb87b3e6cf017a18b27d34a83f222bdf46a5360615f11"}, + {file = "Levenshtein-0.23.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:3497eda857e70863a090673a82442877914c57b5f04673c782642e69caf25c0c"}, + {file = "Levenshtein-0.23.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5e17ea59115179c269c6daea52415faaf54c6340d4ad91d9012750845a445a13"}, + {file = "Levenshtein-0.23.0-cp311-cp311-win32.whl", hash = "sha256:da2063cee1fbecc09e1692e7c4de7624fd4c47a54ee7588b7ea20540f8f8d779"}, + {file = "Levenshtein-0.23.0-cp311-cp311-win_amd64.whl", hash = "sha256:4d3b9c9e2852eca20de6bd8ca7f47d817a056993fd4927a4d50728b62315376b"}, + {file = "Levenshtein-0.23.0-cp311-cp311-win_arm64.whl", hash = "sha256:ef2e3e93ae612ac87c3a28f08e8544b707d67e99f9624e420762a7c275bb13c5"}, + {file = "Levenshtein-0.23.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:85220b27a47df4a5106ef13d43b6181d73da77d3f78646ec7251a0c5eb08ac40"}, + {file = "Levenshtein-0.23.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6bb77b3ade7f256ca5882450aaf129be79b11e074505b56c5997af5058a8f834"}, + {file = "Levenshtein-0.23.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:99b487f08c32530ee608e8aab0c4075048262a7f5a6e113bac495b05154ae427"}, + {file = "Levenshtein-0.23.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f91d0a5d3696e373cae08c80ec99a4ff041e562e55648ebe582725cba555190"}, + {file = "Levenshtein-0.23.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fddda71ae372cd835ffd64990f0d0b160409e881bf8722b6c5dc15dc4239d7db"}, + {file = "Levenshtein-0.23.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7664bcf9a12e62c672a926c4579f74689507beaa24378ad7664f0603b0dafd20"}, + {file = "Levenshtein-0.23.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d6d07539502610ee8d6437a77840feedefa47044ab0f35cd3bc37adfc63753bd"}, + {file = "Levenshtein-0.23.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:830a74b6a045a13e1b1d28af62af9878aeae8e7386f14888c84084d577b92771"}, + {file = "Levenshtein-0.23.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:f29cbd0c172a8fc1d51eaacd163bdc11596aded5a90db617e6b778c2258c7006"}, + {file = "Levenshtein-0.23.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:df0704fd6a30a7c27c03655ae6dc77345c1655634fe59654e74bb06a3c7c1357"}, + {file = "Levenshtein-0.23.0-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:0ab52358f54ee48ad7656a773a0c72ef89bb9ba5acc6b380cfffd619fb223a23"}, + {file = "Levenshtein-0.23.0-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:f0a86394c9440e23a29f48f2bbc460de7b19950f46ec2bea3be8c2090839bb29"}, + {file = "Levenshtein-0.23.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a689e6e0514f48a434e7ee44cc1eb29c34b21c51c57accb304eac97fba87bf48"}, + {file = "Levenshtein-0.23.0-cp312-cp312-win32.whl", hash = "sha256:2d3229c1336498c2b72842dd4c850dff1040588a5468abe5104444a372c1a573"}, + {file = "Levenshtein-0.23.0-cp312-cp312-win_amd64.whl", hash = "sha256:5b9b6a8509415bc214d33f5828d7c700c80292ea25f9d9e8cba95ad5a74b3cdf"}, + {file = "Levenshtein-0.23.0-cp312-cp312-win_arm64.whl", hash = "sha256:5a61606bad3afb9fcec0a2a21871319c3f7da933658d2e0e6e55ab4a34814f48"}, + {file = "Levenshtein-0.23.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:078bb87ea32a28825900f5d29ba2946dc9cf73094dfed4ba5d70f042f2435609"}, + {file = "Levenshtein-0.23.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:26b468455f29fb255b62c22522026985cb3181a02e570c8b37659fedb1bc0170"}, + {file = "Levenshtein-0.23.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3dc62b2f74e4050f0a1261a34e11fd9e7c6d80a45679c0e02ac452b16fda7b34"}, + {file = "Levenshtein-0.23.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8b65b0b4e8b88e8326cdbfd3ec119953a0b10b514947f4bd03a4ed0fc58f6471"}, + {file = "Levenshtein-0.23.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bccaf7f16b9da5edb608705edc3c38401e83ea0ff04c6375f25c6fc15e88f9b3"}, + {file = "Levenshtein-0.23.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b35f752d04c0828fb1877d9bee5d1786b2574ec3b1cba0533008aa1ff203712"}, + {file = "Levenshtein-0.23.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:2c32f86bb54b9744c95c27b5398f108158cc6a87c5dbb3ad5a344634bf9b07d3"}, + {file = "Levenshtein-0.23.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:fa8b65f483cdd3114d41736e0e9c3841e7ee6ac5861bae3d26e21e19faa229ff"}, + {file = "Levenshtein-0.23.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:9fdf67c10a5403b1668d1b6ade7744d20790367b10866d27394e64716992c3e4"}, + {file = "Levenshtein-0.23.0-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:eb6dfba3264b38a3e95cac8e64f318ad4c27e2232f6c566a69b3b113115c06ef"}, + {file = "Levenshtein-0.23.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8541f1b7516290f6ccc3faac9aea681183c5d0b1f8078b957ae41dfbd5b93b58"}, + {file = "Levenshtein-0.23.0-cp37-cp37m-win32.whl", hash = "sha256:f35b138bb698b29467627318af9258ec677e021e0816ae0da9b84f9164ed7518"}, + {file = "Levenshtein-0.23.0-cp37-cp37m-win_amd64.whl", hash = "sha256:936320113eadd3d71d9ce371d9027b1c56299001b48ed197a0db4140e1d13bbd"}, + {file = "Levenshtein-0.23.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:da64e19e1ec0c1e8a1cd77c4802a0d656f8a6e0ab7a1479d435a9d2575e473f8"}, + {file = "Levenshtein-0.23.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e729781b6134a6e3b380a2d8eae0843a230fc3716bdc8bba4cde2b0ce260982b"}, + {file = "Levenshtein-0.23.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:97d0841a2682a3c302f70537e8316077e56795062c6f629714f5d0771f7a5838"}, + {file = "Levenshtein-0.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:727a679d19b18a0b4532abf87f9788070bcd94b78ff07135abe41c716bccbb7d"}, + {file = "Levenshtein-0.23.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:48c8388a321e55c1feeef543b49fc969be6a5cf6bcf4dcb5dced82f5fea6793c"}, + {file = "Levenshtein-0.23.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:58f8b8f5d4348e470e8c0d4e9f7c23a8f7cfc3cbd8024cc5a1fc68cc81f7d6cb"}, + {file = "Levenshtein-0.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:549170257f052289df93a13526877cb397d351b0c8a3e4c9ae3936aeafd8ad17"}, + {file = "Levenshtein-0.23.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5d32f3b28065e430d54781e1f3b31198b6bfc21e6d565f0c06218e7618884551"}, + {file = "Levenshtein-0.23.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:ecc8c12e710212c4d959fda3a52377ae6a30fa204822f2e63fd430e018be3d6f"}, + {file = "Levenshtein-0.23.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:88b47fbabbd9cee8be5d6c26ac4d599dd66146628b9ca23d9f4f209c4e3e143e"}, + {file = "Levenshtein-0.23.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:5106bce4e94bc1ae137b50d1e5f49b726997be879baf66eafc6ee365adec3db5"}, + {file = "Levenshtein-0.23.0-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:d36634491e06234672492715bc6ff7be61aeaf44822cb366dbbe9d924f2614cc"}, + {file = "Levenshtein-0.23.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:a591c94f7047d105c29630e7606a2b007f96cf98651fb93e9f820272b0361e02"}, + {file = "Levenshtein-0.23.0-cp38-cp38-win32.whl", hash = "sha256:9fce199af18d459c8f19747501d1e852d86550162e7ccdc2c193b44e55d9bbfb"}, + {file = "Levenshtein-0.23.0-cp38-cp38-win_amd64.whl", hash = "sha256:b4303024ffea56fd164a68f80f23df9e9158620593b7515c73c885285ec6a558"}, + {file = "Levenshtein-0.23.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:73aed4856e672ab12769472cf7aece04b4a6813eb917390d22e58002576136e0"}, + {file = "Levenshtein-0.23.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4e93dbfdf08360b4261a2385340d26ac491a1bf9bd17bf22a59636705d2d6479"}, + {file = "Levenshtein-0.23.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b847f716fc314cf83d128fedc2c16ffdff5431a439db412465c4b0ac1762478e"}, + {file = "Levenshtein-0.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0d567beb47cd403394bf241df8cfc14499279d0f3a6675f89b667249841aab1"}, + {file = "Levenshtein-0.23.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e13857d870048ff58ce95c8eb32e10285918ee74e1c9bf1825af08dd49b0bc6"}, + {file = "Levenshtein-0.23.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c4250f507bb1b7501f7187af8345e200cbc1a58ceb3730bf4e3fdc371fe732c0"}, + {file = "Levenshtein-0.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fb90de8a279ce83797bcafbbfe6d641362c3c96148c17d8c8612dddb02744c5"}, + {file = "Levenshtein-0.23.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:039dc7323fd28de44d6c13a334a34ab1ddee598762cb2dae3223ca1f083577f9"}, + {file = "Levenshtein-0.23.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d5739f513cb02039f970054eabeccc62696ed2a1afff6e17f75d5492a3ed8d74"}, + {file = "Levenshtein-0.23.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:2a3801a0463791440b4350b734e4ec0dbc140b675a3ce9ef936feed06b23c58d"}, + {file = "Levenshtein-0.23.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:606ba30bbdf06fc51b0a763760e113dea9085011a2399cf4b1f72316836e4d03"}, + {file = "Levenshtein-0.23.0-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:14c5f90859e512004cc25b50b79c7ae6f068ebe69a7213a9018c83bd88c1305b"}, + {file = "Levenshtein-0.23.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c8a75233798e334fd53305656ffcf0601f60e9ff461af759677006c07c060939"}, + {file = "Levenshtein-0.23.0-cp39-cp39-win32.whl", hash = "sha256:9a271d50643cf927bfc002d397b4f715abdbc6ca46a5a93d1d66a033eabaa5f3"}, + {file = "Levenshtein-0.23.0-cp39-cp39-win_amd64.whl", hash = "sha256:684118d9e070e00df91bc4bd276e0559df7bb2319659699dafda16b5a0229553"}, + {file = "Levenshtein-0.23.0-cp39-cp39-win_arm64.whl", hash = "sha256:98412a7bdc49c7fbb493be3c3e7fd2f874eff29ed636b8c0eca325a1e3e74264"}, + {file = "Levenshtein-0.23.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:760c964ff0be8dea5f7eda20314cf66238fdd0fec63f1ce9c474736bb2904924"}, + {file = "Levenshtein-0.23.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:de42400ea86e3e8be3dc7f9b3b9ed51da7fd06dc2f3a426d7effd7fbf35de848"}, + {file = "Levenshtein-0.23.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2080ee52aeac03854a0c6e73d4214d5be2120bdd5f16def4394f9fbc5666e04"}, + {file = "Levenshtein-0.23.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb00ecae116e62801613788d8dc3938df26f582efce5a3d3320e9692575e7c4d"}, + {file = "Levenshtein-0.23.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:f351694f65d4df48ee2578d977d37a0560bd3e8535e85dfe59df6abeed12bd6e"}, + {file = "Levenshtein-0.23.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:34859c5ff7261f25daea810b5439ad80624cbb9021381df2c390c20eb75b79c6"}, + {file = "Levenshtein-0.23.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ece1d077d9006cff329bb95eb9704f407933ff4484e5d008a384d268b993439"}, + {file = "Levenshtein-0.23.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:35ce82403730dd2a3b397abb2535786af06835fcf3dc40dc8ea67ed589bbd010"}, + {file = "Levenshtein-0.23.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a88aa3b5f49aeca08080b6c3fa7e1095d939eafb13f42dbe8f1b27ff405fd43"}, + {file = "Levenshtein-0.23.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:748fbba6d9c04fc39b956b44ccde8eb14f34e21ab68a0f9965aae3fa5c8fdb5e"}, + {file = "Levenshtein-0.23.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:60440d583986e344119a15cea9e12099f3a07bdddc1c98ec2dda69e96429fb25"}, + {file = "Levenshtein-0.23.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b048a83b07fc869648460f2af1255e265326d75965157a165dde2d9ba64fa73"}, + {file = "Levenshtein-0.23.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4be0e5e742f6a299acf7aa8d2e5cfca946bcff224383fd451d894e79499f0a46"}, + {file = "Levenshtein-0.23.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e7a626637c1d967e3e504ced353f89c2a9f6c8b4b4dbf348fdd3e1daa947a23c"}, + {file = "Levenshtein-0.23.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:88d8a13cf310cfc893e3734f8e7e42ef20c52780506e9bdb96e76a8b75e3ba20"}, + {file = "Levenshtein-0.23.0.tar.gz", hash = "sha256:de7ccc31a471ea5bfafabe804c12a63e18b4511afc1014f23c3cc7be8c70d3bd"}, +] + +[package.dependencies] +rapidfuzz = ">=3.1.0,<4.0.0" + +[[package]] +name = "matplotlib" +version = "3.8.2" +description = "Python plotting package" +optional = false +python-versions = ">=3.9" +files = [ + {file = "matplotlib-3.8.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:09796f89fb71a0c0e1e2f4bdaf63fb2cefc84446bb963ecdeb40dfee7dfa98c7"}, + {file = "matplotlib-3.8.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6f9c6976748a25e8b9be51ea028df49b8e561eed7809146da7a47dbecebab367"}, + {file = "matplotlib-3.8.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b78e4f2cedf303869b782071b55fdde5987fda3038e9d09e58c91cc261b5ad18"}, + {file = "matplotlib-3.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4e208f46cf6576a7624195aa047cb344a7f802e113bb1a06cfd4bee431de5e31"}, + {file = "matplotlib-3.8.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:46a569130ff53798ea5f50afce7406e91fdc471ca1e0e26ba976a8c734c9427a"}, + {file = "matplotlib-3.8.2-cp310-cp310-win_amd64.whl", hash = "sha256:830f00640c965c5b7f6bc32f0d4ce0c36dfe0379f7dd65b07a00c801713ec40a"}, + {file = "matplotlib-3.8.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d86593ccf546223eb75a39b44c32788e6f6440d13cfc4750c1c15d0fcb850b63"}, + {file = "matplotlib-3.8.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9a5430836811b7652991939012f43d2808a2db9b64ee240387e8c43e2e5578c8"}, + {file = "matplotlib-3.8.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9576723858a78751d5aacd2497b8aef29ffea6d1c95981505877f7ac28215c6"}, + {file = "matplotlib-3.8.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ba9cbd8ac6cf422f3102622b20f8552d601bf8837e49a3afed188d560152788"}, + {file = "matplotlib-3.8.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:03f9d160a29e0b65c0790bb07f4f45d6a181b1ac33eb1bb0dd225986450148f0"}, + {file = "matplotlib-3.8.2-cp311-cp311-win_amd64.whl", hash = "sha256:3773002da767f0a9323ba1a9b9b5d00d6257dbd2a93107233167cfb581f64717"}, + {file = "matplotlib-3.8.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:4c318c1e95e2f5926fba326f68177dee364aa791d6df022ceb91b8221bd0a627"}, + {file = "matplotlib-3.8.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:091275d18d942cf1ee9609c830a1bc36610607d8223b1b981c37d5c9fc3e46a4"}, + {file = "matplotlib-3.8.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b0f3b8ea0e99e233a4bcc44590f01604840d833c280ebb8fe5554fd3e6cfe8d"}, + {file = "matplotlib-3.8.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7b1704a530395aaf73912be741c04d181f82ca78084fbd80bc737be04848331"}, + {file = "matplotlib-3.8.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:533b0e3b0c6768eef8cbe4b583731ce25a91ab54a22f830db2b031e83cca9213"}, + {file = "matplotlib-3.8.2-cp312-cp312-win_amd64.whl", hash = "sha256:0f4fc5d72b75e2c18e55eb32292659cf731d9d5b312a6eb036506304f4675630"}, + {file = "matplotlib-3.8.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:deaed9ad4da0b1aea77fe0aa0cebb9ef611c70b3177be936a95e5d01fa05094f"}, + {file = "matplotlib-3.8.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:172f4d0fbac3383d39164c6caafd3255ce6fa58f08fc392513a0b1d3b89c4f89"}, + {file = "matplotlib-3.8.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c7d36c2209d9136cd8e02fab1c0ddc185ce79bc914c45054a9f514e44c787917"}, + {file = "matplotlib-3.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5864bdd7da445e4e5e011b199bb67168cdad10b501750367c496420f2ad00843"}, + {file = "matplotlib-3.8.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ef8345b48e95cee45ff25192ed1f4857273117917a4dcd48e3905619bcd9c9b8"}, + {file = "matplotlib-3.8.2-cp39-cp39-win_amd64.whl", hash = "sha256:7c48d9e221b637c017232e3760ed30b4e8d5dfd081daf327e829bf2a72c731b4"}, + {file = "matplotlib-3.8.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:aa11b3c6928a1e496c1a79917d51d4cd5d04f8a2e75f21df4949eeefdf697f4b"}, + {file = "matplotlib-3.8.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1095fecf99eeb7384dabad4bf44b965f929a5f6079654b681193edf7169ec20"}, + {file = "matplotlib-3.8.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:bddfb1db89bfaa855912261c805bd0e10218923cc262b9159a49c29a7a1c1afa"}, + {file = "matplotlib-3.8.2.tar.gz", hash = "sha256:01a978b871b881ee76017152f1f1a0cbf6bd5f7b8ff8c96df0df1bd57d8755a1"}, +] + +[package.dependencies] +contourpy = ">=1.0.1" +cycler = ">=0.10" +fonttools = ">=4.22.0" +importlib-resources = {version = ">=3.2.0", markers = "python_version < \"3.10\""} +kiwisolver = ">=1.3.1" +numpy = ">=1.21,<2" +packaging = ">=20.0" +pillow = ">=8" +pyparsing = ">=2.3.1" +python-dateutil = ">=2.7" + +[[package]] +name = "matplotlib-inline" +version = "0.1.6" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.5" +files = [ + {file = "matplotlib-inline-0.1.6.tar.gz", hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"}, + {file = "matplotlib_inline-0.1.6-py3-none-any.whl", hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "nest-asyncio" +version = "1.5.8" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +files = [ + {file = "nest_asyncio-1.5.8-py3-none-any.whl", hash = "sha256:accda7a339a70599cb08f9dd09a67e0c2ef8d8d6f4c07f96ab203f2ae254e48d"}, + {file = "nest_asyncio-1.5.8.tar.gz", hash = "sha256:25aa2ca0d2a5b5531956b9e273b45cf664cae2b145101d73b86b199978d48fdb"}, +] + +[[package]] +name = "networkx" +version = "3.2.1" +description = "Python package for creating and manipulating graphs and networks" +optional = false +python-versions = ">=3.9" +files = [ + {file = "networkx-3.2.1-py3-none-any.whl", hash = "sha256:f18c69adc97877c42332c170849c96cefa91881c99a7cb3e95b7c659ebdc1ec2"}, + {file = "networkx-3.2.1.tar.gz", hash = "sha256:9f1bb5cf3409bf324e0a722c20bdb4c20ee39bf1c30ce8ae499c8502b0b5e0c6"}, +] + +[package.extras] +default = ["matplotlib (>=3.5)", "numpy (>=1.22)", "pandas (>=1.4)", "scipy (>=1.9,!=1.11.0,!=1.11.1)"] +developer = ["changelist (==0.4)", "mypy (>=1.1)", "pre-commit (>=3.2)", "rtoml"] +doc = ["nb2plots (>=0.7)", "nbconvert (<7.9)", "numpydoc (>=1.6)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.14)", "sphinx (>=7)", "sphinx-gallery (>=0.14)", "texext (>=0.6.7)"] +extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.11)", "sympy (>=1.10)"] +test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"] + +[[package]] +name = "node2vec" +version = "0.4.3" +description = "Implementation of the node2vec algorithm." +optional = false +python-versions = "*" +files = [ + {file = "node2vec-0.4.3.tar.gz", hash = "sha256:7107757177b0c7730215c4b40524ca63420cf2c23e0af290a45c6e3bc0dc24e2"}, +] + +[package.dependencies] +gensim = "*" +joblib = ">=0.13.2" +networkx = "*" +numpy = "*" +tqdm = "*" + +[[package]] +name = "numpy" +version = "1.26.2" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3703fc9258a4a122d17043e57b35e5ef1c5a5837c3db8be396c82e04c1cf9b0f"}, + {file = "numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:cc392fdcbd21d4be6ae1bb4475a03ce3b025cd49a9be5345d76d7585aea69440"}, + {file = "numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36340109af8da8805d8851ef1d74761b3b88e81a9bd80b290bbfed61bd2b4f75"}, + {file = "numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bcc008217145b3d77abd3e4d5ef586e3bdfba8fe17940769f8aa09b99e856c00"}, + {file = "numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3ced40d4e9e18242f70dd02d739e44698df3dcb010d31f495ff00a31ef6014fe"}, + {file = "numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b272d4cecc32c9e19911891446b72e986157e6a1809b7b56518b4f3755267523"}, + {file = "numpy-1.26.2-cp310-cp310-win32.whl", hash = "sha256:22f8fc02fdbc829e7a8c578dd8d2e15a9074b630d4da29cda483337e300e3ee9"}, + {file = "numpy-1.26.2-cp310-cp310-win_amd64.whl", hash = "sha256:26c9d33f8e8b846d5a65dd068c14e04018d05533b348d9eaeef6c1bd787f9919"}, + {file = "numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b96e7b9c624ef3ae2ae0e04fa9b460f6b9f17ad8b4bec6d7756510f1f6c0c841"}, + {file = "numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:aa18428111fb9a591d7a9cc1b48150097ba6a7e8299fb56bdf574df650e7d1f1"}, + {file = "numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:06fa1ed84aa60ea6ef9f91ba57b5ed963c3729534e6e54055fc151fad0423f0a"}, + {file = "numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96ca5482c3dbdd051bcd1fce8034603d6ebfc125a7bd59f55b40d8f5d246832b"}, + {file = "numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:854ab91a2906ef29dc3925a064fcd365c7b4da743f84b123002f6139bcb3f8a7"}, + {file = "numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f43740ab089277d403aa07567be138fc2a89d4d9892d113b76153e0e412409f8"}, + {file = "numpy-1.26.2-cp311-cp311-win32.whl", hash = "sha256:a2bbc29fcb1771cd7b7425f98b05307776a6baf43035d3b80c4b0f29e9545186"}, + {file = "numpy-1.26.2-cp311-cp311-win_amd64.whl", hash = "sha256:2b3fca8a5b00184828d12b073af4d0fc5fdd94b1632c2477526f6bd7842d700d"}, + {file = "numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a4cd6ed4a339c21f1d1b0fdf13426cb3b284555c27ac2f156dfdaaa7e16bfab0"}, + {file = "numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5d5244aabd6ed7f312268b9247be47343a654ebea52a60f002dc70c769048e75"}, + {file = "numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a3cdb4d9c70e6b8c0814239ead47da00934666f668426fc6e94cce869e13fd7"}, + {file = "numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa317b2325f7aa0a9471663e6093c210cb2ae9c0ad824732b307d2c51983d5b6"}, + {file = "numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:174a8880739c16c925799c018f3f55b8130c1f7c8e75ab0a6fa9d41cab092fd6"}, + {file = "numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f79b231bf5c16b1f39c7f4875e1ded36abee1591e98742b05d8a0fb55d8a3eec"}, + {file = "numpy-1.26.2-cp312-cp312-win32.whl", hash = "sha256:4a06263321dfd3598cacb252f51e521a8cb4b6df471bb12a7ee5cbab20ea9167"}, + {file = "numpy-1.26.2-cp312-cp312-win_amd64.whl", hash = "sha256:b04f5dc6b3efdaab541f7857351aac359e6ae3c126e2edb376929bd3b7f92d7e"}, + {file = "numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4eb8df4bf8d3d90d091e0146f6c28492b0be84da3e409ebef54349f71ed271ef"}, + {file = "numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1a13860fdcd95de7cf58bd6f8bc5a5ef81c0b0625eb2c9a783948847abbef2c2"}, + {file = "numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64308ebc366a8ed63fd0bf426b6a9468060962f1a4339ab1074c228fa6ade8e3"}, + {file = "numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baf8aab04a2c0e859da118f0b38617e5ee65d75b83795055fb66c0d5e9e9b818"}, + {file = "numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d73a3abcac238250091b11caef9ad12413dab01669511779bc9b29261dd50210"}, + {file = "numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b361d369fc7e5e1714cf827b731ca32bff8d411212fccd29ad98ad622449cc36"}, + {file = "numpy-1.26.2-cp39-cp39-win32.whl", hash = "sha256:bd3f0091e845164a20bd5a326860c840fe2af79fa12e0469a12768a3ec578d80"}, + {file = "numpy-1.26.2-cp39-cp39-win_amd64.whl", hash = "sha256:2beef57fb031dcc0dc8fa4fe297a742027b954949cabb52a2a376c144e5e6060"}, + {file = "numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:1cc3d5029a30fb5f06704ad6b23b35e11309491c999838c31f124fee32107c79"}, + {file = "numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94cc3c222bb9fb5a12e334d0479b97bb2df446fbe622b470928f5284ffca3f8d"}, + {file = "numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:fe6b44fb8fcdf7eda4ef4461b97b3f63c466b27ab151bec2366db8b197387841"}, + {file = "numpy-1.26.2.tar.gz", hash = "sha256:f65738447676ab5777f11e6bbbdb8ce11b785e105f690bc45966574816b6d3ea"}, +] + +[[package]] +name = "packaging" +version = "23.2" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.7" +files = [ + {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, + {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, +] + +[[package]] +name = "pandas" +version = "1.3.5" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.7.1" +files = [ + {file = "pandas-1.3.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:62d5b5ce965bae78f12c1c0df0d387899dd4211ec0bdc52822373f13a3a022b9"}, + {file = "pandas-1.3.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:adfeb11be2d54f275142c8ba9bf67acee771b7186a5745249c7d5a06c670136b"}, + {file = "pandas-1.3.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:60a8c055d58873ad81cae290d974d13dd479b82cbb975c3e1fa2cf1920715296"}, + {file = "pandas-1.3.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd541ab09e1f80a2a1760032d665f6e032d8e44055d602d65eeea6e6e85498cb"}, + {file = "pandas-1.3.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2651d75b9a167cc8cc572cf787ab512d16e316ae00ba81874b560586fa1325e0"}, + {file = "pandas-1.3.5-cp310-cp310-win_amd64.whl", hash = "sha256:aaf183a615ad790801fa3cf2fa450e5b6d23a54684fe386f7e3208f8b9bfbef6"}, + {file = "pandas-1.3.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:344295811e67f8200de2390093aeb3c8309f5648951b684d8db7eee7d1c81fb7"}, + {file = "pandas-1.3.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:552020bf83b7f9033b57cbae65589c01e7ef1544416122da0c79140c93288f56"}, + {file = "pandas-1.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5cce0c6bbeb266b0e39e35176ee615ce3585233092f685b6a82362523e59e5b4"}, + {file = "pandas-1.3.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d28a3c65463fd0d0ba8bbb7696b23073efee0510783340a44b08f5e96ffce0c"}, + {file = "pandas-1.3.5-cp37-cp37m-win32.whl", hash = "sha256:a62949c626dd0ef7de11de34b44c6475db76995c2064e2d99c6498c3dba7fe58"}, + {file = "pandas-1.3.5-cp37-cp37m-win_amd64.whl", hash = "sha256:8025750767e138320b15ca16d70d5cdc1886e8f9cc56652d89735c016cd8aea6"}, + {file = "pandas-1.3.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:fe95bae4e2d579812865db2212bb733144e34d0c6785c0685329e5b60fcb85dd"}, + {file = "pandas-1.3.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f261553a1e9c65b7a310302b9dbac31cf0049a51695c14ebe04e4bfd4a96f02"}, + {file = "pandas-1.3.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b6dbec5f3e6d5dc80dcfee250e0a2a652b3f28663492f7dab9a24416a48ac39"}, + {file = "pandas-1.3.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d3bc49af96cd6285030a64779de5b3688633a07eb75c124b0747134a63f4c05f"}, + {file = "pandas-1.3.5-cp38-cp38-win32.whl", hash = "sha256:b6b87b2fb39e6383ca28e2829cddef1d9fc9e27e55ad91ca9c435572cdba51bf"}, + {file = "pandas-1.3.5-cp38-cp38-win_amd64.whl", hash = "sha256:a395692046fd8ce1edb4c6295c35184ae0c2bbe787ecbe384251da609e27edcb"}, + {file = "pandas-1.3.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bd971a3f08b745a75a86c00b97f3007c2ea175951286cdda6abe543e687e5f2f"}, + {file = "pandas-1.3.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37f06b59e5bc05711a518aa10beaec10942188dccb48918bb5ae602ccbc9f1a0"}, + {file = "pandas-1.3.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c21778a688d3712d35710501f8001cdbf96eb70a7c587a3d5613573299fdca6"}, + {file = "pandas-1.3.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3345343206546545bc26a05b4602b6a24385b5ec7c75cb6059599e3d56831da2"}, + {file = "pandas-1.3.5-cp39-cp39-win32.whl", hash = "sha256:c69406a2808ba6cf580c2255bcf260b3f214d2664a3a4197d0e640f573b46fd3"}, + {file = "pandas-1.3.5-cp39-cp39-win_amd64.whl", hash = "sha256:32e1a26d5ade11b547721a72f9bfc4bd113396947606e00d5b4a5b79b3dcb006"}, + {file = "pandas-1.3.5.tar.gz", hash = "sha256:1e4285f5de1012de20ca46b188ccf33521bff61ba5c5ebd78b4fb28e5416a9f1"}, +] + +[package.dependencies] +numpy = [ + {version = ">=1.17.3", markers = "(platform_machine != \"aarch64\" and platform_machine != \"arm64\") and python_version < \"3.10\""}, + {version = ">=1.19.2", markers = "platform_machine == \"aarch64\" and python_version < \"3.10\""}, + {version = ">=1.20.0", markers = "platform_machine == \"arm64\" and python_version < \"3.10\""}, + {version = ">=1.21.0", markers = "python_version >= \"3.10\""}, +] +python-dateutil = ">=2.7.3" +pytz = ">=2017.3" + +[package.extras] +test = ["hypothesis (>=3.58)", "pytest (>=6.0)", "pytest-xdist"] + +[[package]] +name = "parso" +version = "0.8.3" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +files = [ + {file = "parso-0.8.3-py2.py3-none-any.whl", hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"}, + {file = "parso-0.8.3.tar.gz", hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0"}, +] + +[package.extras] +qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] +testing = ["docopt", "pytest (<6.0.0)"] + +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pillow" +version = "10.1.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "Pillow-10.1.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:1ab05f3db77e98f93964697c8efc49c7954b08dd61cff526b7f2531a22410106"}, + {file = "Pillow-10.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6932a7652464746fcb484f7fc3618e6503d2066d853f68a4bd97193a3996e273"}, + {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5f63b5a68daedc54c7c3464508d8c12075e56dcfbd42f8c1bf40169061ae666"}, + {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0949b55eb607898e28eaccb525ab104b2d86542a85c74baf3a6dc24002edec2"}, + {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:ae88931f93214777c7a3aa0a8f92a683f83ecde27f65a45f95f22d289a69e593"}, + {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:b0eb01ca85b2361b09480784a7931fc648ed8b7836f01fb9241141b968feb1db"}, + {file = "Pillow-10.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d27b5997bdd2eb9fb199982bb7eb6164db0426904020dc38c10203187ae2ff2f"}, + {file = "Pillow-10.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7df5608bc38bd37ef585ae9c38c9cd46d7c81498f086915b0f97255ea60c2818"}, + {file = "Pillow-10.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:41f67248d92a5e0a2076d3517d8d4b1e41a97e2df10eb8f93106c89107f38b57"}, + {file = "Pillow-10.1.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:1fb29c07478e6c06a46b867e43b0bcdb241b44cc52be9bc25ce5944eed4648e7"}, + {file = "Pillow-10.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2cdc65a46e74514ce742c2013cd4a2d12e8553e3a2563c64879f7c7e4d28bce7"}, + {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50d08cd0a2ecd2a8657bd3d82c71efd5a58edb04d9308185d66c3a5a5bed9610"}, + {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:062a1610e3bc258bff2328ec43f34244fcec972ee0717200cb1425214fe5b839"}, + {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:61f1a9d247317fa08a308daaa8ee7b3f760ab1809ca2da14ecc88ae4257d6172"}, + {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:a646e48de237d860c36e0db37ecaecaa3619e6f3e9d5319e527ccbc8151df061"}, + {file = "Pillow-10.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:47e5bf85b80abc03be7455c95b6d6e4896a62f6541c1f2ce77a7d2bb832af262"}, + {file = "Pillow-10.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a92386125e9ee90381c3369f57a2a50fa9e6aa8b1cf1d9c4b200d41a7dd8e992"}, + {file = "Pillow-10.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:0f7c276c05a9767e877a0b4c5050c8bee6a6d960d7f0c11ebda6b99746068c2a"}, + {file = "Pillow-10.1.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:a89b8312d51715b510a4fe9fc13686283f376cfd5abca8cd1c65e4c76e21081b"}, + {file = "Pillow-10.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:00f438bb841382b15d7deb9a05cc946ee0f2c352653c7aa659e75e592f6fa17d"}, + {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d929a19f5469b3f4df33a3df2983db070ebb2088a1e145e18facbc28cae5b27"}, + {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a92109192b360634a4489c0c756364c0c3a2992906752165ecb50544c251312"}, + {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:0248f86b3ea061e67817c47ecbe82c23f9dd5d5226200eb9090b3873d3ca32de"}, + {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:9882a7451c680c12f232a422730f986a1fcd808da0fd428f08b671237237d651"}, + {file = "Pillow-10.1.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1c3ac5423c8c1da5928aa12c6e258921956757d976405e9467c5f39d1d577a4b"}, + {file = "Pillow-10.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:806abdd8249ba3953c33742506fe414880bad78ac25cc9a9b1c6ae97bedd573f"}, + {file = "Pillow-10.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:eaed6977fa73408b7b8a24e8b14e59e1668cfc0f4c40193ea7ced8e210adf996"}, + {file = "Pillow-10.1.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:fe1e26e1ffc38be097f0ba1d0d07fcade2bcfd1d023cda5b29935ae8052bd793"}, + {file = "Pillow-10.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7a7e3daa202beb61821c06d2517428e8e7c1aab08943e92ec9e5755c2fc9ba5e"}, + {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:24fadc71218ad2b8ffe437b54876c9382b4a29e030a05a9879f615091f42ffc2"}, + {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa1d323703cfdac2036af05191b969b910d8f115cf53093125e4058f62012c9a"}, + {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:912e3812a1dbbc834da2b32299b124b5ddcb664ed354916fd1ed6f193f0e2d01"}, + {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:7dbaa3c7de82ef37e7708521be41db5565004258ca76945ad74a8e998c30af8d"}, + {file = "Pillow-10.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9d7bc666bd8c5a4225e7ac71f2f9d12466ec555e89092728ea0f5c0c2422ea80"}, + {file = "Pillow-10.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:baada14941c83079bf84c037e2d8b7506ce201e92e3d2fa0d1303507a8538212"}, + {file = "Pillow-10.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:2ef6721c97894a7aa77723740a09547197533146fba8355e86d6d9a4a1056b14"}, + {file = "Pillow-10.1.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0a026c188be3b443916179f5d04548092e253beb0c3e2ee0a4e2cdad72f66099"}, + {file = "Pillow-10.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:04f6f6149f266a100374ca3cc368b67fb27c4af9f1cc8cb6306d849dcdf12616"}, + {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb40c011447712d2e19cc261c82655f75f32cb724788df315ed992a4d65696bb"}, + {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a8413794b4ad9719346cd9306118450b7b00d9a15846451549314a58ac42219"}, + {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c9aeea7b63edb7884b031a35305629a7593272b54f429a9869a4f63a1bf04c34"}, + {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b4005fee46ed9be0b8fb42be0c20e79411533d1fd58edabebc0dd24626882cfd"}, + {file = "Pillow-10.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4d0152565c6aa6ebbfb1e5d8624140a440f2b99bf7afaafbdbf6430426497f28"}, + {file = "Pillow-10.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d921bc90b1defa55c9917ca6b6b71430e4286fc9e44c55ead78ca1a9f9eba5f2"}, + {file = "Pillow-10.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:cfe96560c6ce2f4c07d6647af2d0f3c54cc33289894ebd88cfbb3bcd5391e256"}, + {file = "Pillow-10.1.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:937bdc5a7f5343d1c97dc98149a0be7eb9704e937fe3dc7140e229ae4fc572a7"}, + {file = "Pillow-10.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1c25762197144e211efb5f4e8ad656f36c8d214d390585d1d21281f46d556ba"}, + {file = "Pillow-10.1.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:afc8eef765d948543a4775f00b7b8c079b3321d6b675dde0d02afa2ee23000b4"}, + {file = "Pillow-10.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:883f216eac8712b83a63f41b76ddfb7b2afab1b74abbb413c5df6680f071a6b9"}, + {file = "Pillow-10.1.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:b920e4d028f6442bea9a75b7491c063f0b9a3972520731ed26c83e254302eb1e"}, + {file = "Pillow-10.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c41d960babf951e01a49c9746f92c5a7e0d939d1652d7ba30f6b3090f27e412"}, + {file = "Pillow-10.1.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1fafabe50a6977ac70dfe829b2d5735fd54e190ab55259ec8aea4aaea412fa0b"}, + {file = "Pillow-10.1.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3b834f4b16173e5b92ab6566f0473bfb09f939ba14b23b8da1f54fa63e4b623f"}, + {file = "Pillow-10.1.0.tar.gz", hash = "sha256:e6bf8de6c36ed96c86ea3b6e1d5273c53f46ef518a062464cd7ef5dd2cf92e38"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "platformdirs" +version = "4.1.0" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." +optional = false +python-versions = ">=3.8" +files = [ + {file = "platformdirs-4.1.0-py3-none-any.whl", hash = "sha256:11c8f37bcca40db96d8144522d925583bdb7a31f7b0e37e3ed4318400a8e2380"}, + {file = "platformdirs-4.1.0.tar.gz", hash = "sha256:906d548203468492d432bcb294d4bc2fff751bf84971fbb2c10918cc206ee420"}, +] + +[package.extras] +docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.1)", "sphinx-autodoc-typehints (>=1.24)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.43" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "prompt_toolkit-3.0.43-py3-none-any.whl", hash = "sha256:a11a29cb3bf0a28a387fe5122cdb649816a957cd9261dcedf8c9f1fef33eacf6"}, + {file = "prompt_toolkit-3.0.43.tar.gz", hash = "sha256:3527b7af26106cbc65a040bcc84839a3566ec1b051bb0bfe953631e704b0ff7d"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "psutil" +version = "5.9.7" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" +files = [ + {file = "psutil-5.9.7-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:0bd41bf2d1463dfa535942b2a8f0e958acf6607ac0be52265ab31f7923bcd5e6"}, + {file = "psutil-5.9.7-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:5794944462509e49d4d458f4dbfb92c47539e7d8d15c796f141f474010084056"}, + {file = "psutil-5.9.7-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:fe361f743cb3389b8efda21980d93eb55c1f1e3898269bc9a2a1d0bb7b1f6508"}, + {file = "psutil-5.9.7-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:e469990e28f1ad738f65a42dcfc17adaed9d0f325d55047593cb9033a0ab63df"}, + {file = "psutil-5.9.7-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:3c4747a3e2ead1589e647e64aad601981f01b68f9398ddf94d01e3dc0d1e57c7"}, + {file = "psutil-5.9.7-cp27-none-win32.whl", hash = "sha256:1d4bc4a0148fdd7fd8f38e0498639ae128e64538faa507df25a20f8f7fb2341c"}, + {file = "psutil-5.9.7-cp27-none-win_amd64.whl", hash = "sha256:4c03362e280d06bbbfcd52f29acd79c733e0af33d707c54255d21029b8b32ba6"}, + {file = "psutil-5.9.7-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ea36cc62e69a13ec52b2f625c27527f6e4479bca2b340b7a452af55b34fcbe2e"}, + {file = "psutil-5.9.7-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1132704b876e58d277168cd729d64750633d5ff0183acf5b3c986b8466cd0284"}, + {file = "psutil-5.9.7-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe8b7f07948f1304497ce4f4684881250cd859b16d06a1dc4d7941eeb6233bfe"}, + {file = "psutil-5.9.7-cp36-cp36m-win32.whl", hash = "sha256:b27f8fdb190c8c03914f908a4555159327d7481dac2f01008d483137ef3311a9"}, + {file = "psutil-5.9.7-cp36-cp36m-win_amd64.whl", hash = "sha256:44969859757f4d8f2a9bd5b76eba8c3099a2c8cf3992ff62144061e39ba8568e"}, + {file = "psutil-5.9.7-cp37-abi3-win32.whl", hash = "sha256:c727ca5a9b2dd5193b8644b9f0c883d54f1248310023b5ad3e92036c5e2ada68"}, + {file = "psutil-5.9.7-cp37-abi3-win_amd64.whl", hash = "sha256:f37f87e4d73b79e6c5e749440c3113b81d1ee7d26f21c19c47371ddea834f414"}, + {file = "psutil-5.9.7-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:032f4f2c909818c86cea4fe2cc407f1c0f0cde8e6c6d702b28b8ce0c0d143340"}, + {file = "psutil-5.9.7.tar.gz", hash = "sha256:3f02134e82cfb5d089fddf20bb2e03fd5cd52395321d1c8458a9e58500ff417c"}, +] + +[package.extras] +test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.2" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +files = [ + {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, + {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "pycparser" +version = "2.21" +description = "C parser in Python" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, + {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, +] + +[[package]] +name = "pygments" +version = "2.17.2" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.7" +files = [ + {file = "pygments-2.17.2-py3-none-any.whl", hash = "sha256:b27c2826c47d0f3219f29554824c30c5e8945175d888647acd804ddd04af846c"}, + {file = "pygments-2.17.2.tar.gz", hash = "sha256:da46cec9fd2de5be3a8a784f434e4c4ab670b4ff54d605c4c2717e9d49c4c367"}, +] + +[package.extras] +plugins = ["importlib-metadata"] +windows-terminal = ["colorama (>=0.4.6)"] + +[[package]] +name = "pygsp" +version = "0.5.1" +description = "Graph Signal Processing in Python" +optional = false +python-versions = "*" +files = [ + {file = "PyGSP-0.5.1-py2.py3-none-any.whl", hash = "sha256:884765260256f143a92053c420797053fda0f4eba1573471526fb4e62a4c4cde"}, + {file = "PyGSP-0.5.1.tar.gz", hash = "sha256:4874ad88793d622d4f578b40c6617a99b1f02bc6c6c4077f0e48cd71c7275800"}, +] + +[package.dependencies] +numpy = "*" +scipy = "*" + +[package.extras] +alldeps = ["PyOpenGL", "PyQt5", "PySide", "matplotlib", "pyflann", "pyflann3", "pyqtgraph", "pyunlocbox", "scikit-image"] +doc = ["numpydoc", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-bibtex"] +pkg = ["twine", "wheel"] +test = ["coverage", "coveralls", "flake8"] + +[[package]] +name = "pyparsing" +version = "3.1.1" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.6.8" +files = [ + {file = "pyparsing-3.1.1-py3-none-any.whl", hash = "sha256:32c7c0b711493c72ff18a981d24f28aaf9c1fb7ed5e9667c9e84e3db623bdbfb"}, + {file = "pyparsing-3.1.1.tar.gz", hash = "sha256:ede28a1a32462f5a9705e07aea48001a08f7cf81a021585011deba701581a0db"}, +] + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + +[[package]] +name = "python-dateutil" +version = "2.8.2" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, + {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "python-levenshtein" +version = "0.23.0" +description = "Python extension for computing string edit distances and similarities." +optional = false +python-versions = ">=3.7" +files = [ + {file = "python-Levenshtein-0.23.0.tar.gz", hash = "sha256:156a0198cdcc659c90c8d3863d0ed3f4f0cf020608da71da52ac0f0746ef901a"}, + {file = "python_Levenshtein-0.23.0-py3-none-any.whl", hash = "sha256:486a47b189e3955463107aa36b57fb1e2b3b40243b9cc2994cde9810c78195c0"}, +] + +[package.dependencies] +Levenshtein = "0.23.0" + +[[package]] +name = "python-louvain" +version = "0.16" +description = "Louvain algorithm for community detection" +optional = false +python-versions = "*" +files = [ + {file = "python-louvain-0.16.tar.gz", hash = "sha256:b7ba2df5002fd28d3ee789a49532baad11fe648e4f2117cf0798e7520a1da56b"}, +] + +[package.dependencies] +networkx = "*" +numpy = "*" + +[[package]] +name = "pytz" +version = "2023.3.post1" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ + {file = "pytz-2023.3.post1-py2.py3-none-any.whl", hash = "sha256:ce42d816b81b68506614c11e8937d3aa9e41007ceb50bfdcb0749b921bf646c7"}, + {file = "pytz-2023.3.post1.tar.gz", hash = "sha256:7b4fddbeb94a1eba4b557da24f19fdf9db575192544270a9101d8509f9f43d7b"}, +] + +[[package]] +name = "pywin32" +version = "306" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ + {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, + {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, + {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, + {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, + {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, + {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, + {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, + {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, + {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, + {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, + {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, + {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, + {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, + {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, +] + +[[package]] +name = "pyzmq" +version = "25.1.2" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.6" +files = [ + {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:e624c789359f1a16f83f35e2c705d07663ff2b4d4479bad35621178d8f0f6ea4"}, + {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:49151b0efece79f6a79d41a461d78535356136ee70084a1c22532fc6383f4ad0"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9a5f194cf730f2b24d6af1f833c14c10f41023da46a7f736f48b6d35061e76e"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:faf79a302f834d9e8304fafdc11d0d042266667ac45209afa57e5efc998e3872"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f51a7b4ead28d3fca8dda53216314a553b0f7a91ee8fc46a72b402a78c3e43d"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:0ddd6d71d4ef17ba5a87becf7ddf01b371eaba553c603477679ae817a8d84d75"}, + {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:246747b88917e4867e2367b005fc8eefbb4a54b7db363d6c92f89d69abfff4b6"}, + {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:00c48ae2fd81e2a50c3485de1b9d5c7c57cd85dc8ec55683eac16846e57ac979"}, + {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:5a68d491fc20762b630e5db2191dd07ff89834086740f70e978bb2ef2668be08"}, + {file = "pyzmq-25.1.2-cp310-cp310-win32.whl", hash = "sha256:09dfe949e83087da88c4a76767df04b22304a682d6154de2c572625c62ad6886"}, + {file = "pyzmq-25.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:fa99973d2ed20417744fca0073390ad65ce225b546febb0580358e36aa90dba6"}, + {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:82544e0e2d0c1811482d37eef297020a040c32e0687c1f6fc23a75b75db8062c"}, + {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:01171fc48542348cd1a360a4b6c3e7d8f46cdcf53a8d40f84db6707a6768acc1"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc69c96735ab501419c432110016329bf0dea8898ce16fab97c6d9106dc0b348"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3e124e6b1dd3dfbeb695435dff0e383256655bb18082e094a8dd1f6293114642"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7598d2ba821caa37a0f9d54c25164a4fa351ce019d64d0b44b45540950458840"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:d1299d7e964c13607efd148ca1f07dcbf27c3ab9e125d1d0ae1d580a1682399d"}, + {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4e6f689880d5ad87918430957297c975203a082d9a036cc426648fcbedae769b"}, + {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:cc69949484171cc961e6ecd4a8911b9ce7a0d1f738fcae717177c231bf77437b"}, + {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9880078f683466b7f567b8624bfc16cad65077be046b6e8abb53bed4eeb82dd3"}, + {file = "pyzmq-25.1.2-cp311-cp311-win32.whl", hash = "sha256:4e5837af3e5aaa99a091302df5ee001149baff06ad22b722d34e30df5f0d9097"}, + {file = "pyzmq-25.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:25c2dbb97d38b5ac9fd15586e048ec5eb1e38f3d47fe7d92167b0c77bb3584e9"}, + {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:11e70516688190e9c2db14fcf93c04192b02d457b582a1f6190b154691b4c93a"}, + {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:313c3794d650d1fccaaab2df942af9f2c01d6217c846177cfcbc693c7410839e"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b3cbba2f47062b85fe0ef9de5b987612140a9ba3a9c6d2543c6dec9f7c2ab27"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fc31baa0c32a2ca660784d5af3b9487e13b61b3032cb01a115fce6588e1bed30"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:02c9087b109070c5ab0b383079fa1b5f797f8d43e9a66c07a4b8b8bdecfd88ee"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:f8429b17cbb746c3e043cb986328da023657e79d5ed258b711c06a70c2ea7537"}, + {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:5074adeacede5f810b7ef39607ee59d94e948b4fd954495bdb072f8c54558181"}, + {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:7ae8f354b895cbd85212da245f1a5ad8159e7840e37d78b476bb4f4c3f32a9fe"}, + {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b264bf2cc96b5bc43ce0e852be995e400376bd87ceb363822e2cb1964fcdc737"}, + {file = "pyzmq-25.1.2-cp312-cp312-win32.whl", hash = "sha256:02bbc1a87b76e04fd780b45e7f695471ae6de747769e540da909173d50ff8e2d"}, + {file = "pyzmq-25.1.2-cp312-cp312-win_amd64.whl", hash = "sha256:ced111c2e81506abd1dc142e6cd7b68dd53747b3b7ae5edbea4578c5eeff96b7"}, + {file = "pyzmq-25.1.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:7b6d09a8962a91151f0976008eb7b29b433a560fde056ec7a3db9ec8f1075438"}, + {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:967668420f36878a3c9ecb5ab33c9d0ff8d054f9c0233d995a6d25b0e95e1b6b"}, + {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5edac3f57c7ddaacdb4d40f6ef2f9e299471fc38d112f4bc6d60ab9365445fb0"}, + {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:0dabfb10ef897f3b7e101cacba1437bd3a5032ee667b7ead32bbcdd1a8422fe7"}, + {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:2c6441e0398c2baacfe5ba30c937d274cfc2dc5b55e82e3749e333aabffde561"}, + {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:16b726c1f6c2e7625706549f9dbe9b06004dfbec30dbed4bf50cbdfc73e5b32a"}, + {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:a86c2dd76ef71a773e70551a07318b8e52379f58dafa7ae1e0a4be78efd1ff16"}, + {file = "pyzmq-25.1.2-cp36-cp36m-win32.whl", hash = "sha256:359f7f74b5d3c65dae137f33eb2bcfa7ad9ebefd1cab85c935f063f1dbb245cc"}, + {file = "pyzmq-25.1.2-cp36-cp36m-win_amd64.whl", hash = "sha256:55875492f820d0eb3417b51d96fea549cde77893ae3790fd25491c5754ea2f68"}, + {file = "pyzmq-25.1.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b8c8a419dfb02e91b453615c69568442e897aaf77561ee0064d789705ff37a92"}, + {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8807c87fa893527ae8a524c15fc505d9950d5e856f03dae5921b5e9aa3b8783b"}, + {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5e319ed7d6b8f5fad9b76daa0a68497bc6f129858ad956331a5835785761e003"}, + {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:3c53687dde4d9d473c587ae80cc328e5b102b517447456184b485587ebd18b62"}, + {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:9add2e5b33d2cd765ad96d5eb734a5e795a0755f7fc49aa04f76d7ddda73fd70"}, + {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e690145a8c0c273c28d3b89d6fb32c45e0d9605b2293c10e650265bf5c11cfec"}, + {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:00a06faa7165634f0cac1abb27e54d7a0b3b44eb9994530b8ec73cf52e15353b"}, + {file = "pyzmq-25.1.2-cp37-cp37m-win32.whl", hash = "sha256:0f97bc2f1f13cb16905a5f3e1fbdf100e712d841482b2237484360f8bc4cb3d7"}, + {file = "pyzmq-25.1.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6cc0020b74b2e410287e5942e1e10886ff81ac77789eb20bec13f7ae681f0fdd"}, + {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:bef02cfcbded83473bdd86dd8d3729cd82b2e569b75844fb4ea08fee3c26ae41"}, + {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e10a4b5a4b1192d74853cc71a5e9fd022594573926c2a3a4802020360aa719d8"}, + {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8c5f80e578427d4695adac6fdf4370c14a2feafdc8cb35549c219b90652536ae"}, + {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5dde6751e857910c1339890f3524de74007958557593b9e7e8c5f01cd919f8a7"}, + {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea1608dd169da230a0ad602d5b1ebd39807ac96cae1845c3ceed39af08a5c6df"}, + {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0f513130c4c361201da9bc69df25a086487250e16b5571ead521b31ff6b02220"}, + {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:019744b99da30330798bb37df33549d59d380c78e516e3bab9c9b84f87a9592f"}, + {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2e2713ef44be5d52dd8b8e2023d706bf66cb22072e97fc71b168e01d25192755"}, + {file = "pyzmq-25.1.2-cp38-cp38-win32.whl", hash = "sha256:07cd61a20a535524906595e09344505a9bd46f1da7a07e504b315d41cd42eb07"}, + {file = "pyzmq-25.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb7e49a17fb8c77d3119d41a4523e432eb0c6932187c37deb6fbb00cc3028088"}, + {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:94504ff66f278ab4b7e03e4cba7e7e400cb73bfa9d3d71f58d8972a8dc67e7a6"}, + {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6dd0d50bbf9dca1d0bdea219ae6b40f713a3fb477c06ca3714f208fd69e16fd8"}, + {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:004ff469d21e86f0ef0369717351073e0e577428e514c47c8480770d5e24a565"}, + {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c0b5ca88a8928147b7b1e2dfa09f3b6c256bc1135a1338536cbc9ea13d3b7add"}, + {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c9a79f1d2495b167119d02be7448bfba57fad2a4207c4f68abc0bab4b92925b"}, + {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:518efd91c3d8ac9f9b4f7dd0e2b7b8bf1a4fe82a308009016b07eaa48681af82"}, + {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1ec23bd7b3a893ae676d0e54ad47d18064e6c5ae1fadc2f195143fb27373f7f6"}, + {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db36c27baed588a5a8346b971477b718fdc66cf5b80cbfbd914b4d6d355e44e2"}, + {file = "pyzmq-25.1.2-cp39-cp39-win32.whl", hash = "sha256:39b1067f13aba39d794a24761e385e2eddc26295826530a8c7b6c6c341584289"}, + {file = "pyzmq-25.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:8e9f3fabc445d0ce320ea2c59a75fe3ea591fdbdeebec5db6de530dd4b09412e"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a8c1d566344aee826b74e472e16edae0a02e2a044f14f7c24e123002dcff1c05"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:759cfd391a0996345ba94b6a5110fca9c557ad4166d86a6e81ea526c376a01e8"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c61e346ac34b74028ede1c6b4bcecf649d69b707b3ff9dc0fab453821b04d1e"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cb8fc1f8d69b411b8ec0b5f1ffbcaf14c1db95b6bccea21d83610987435f1a4"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:3c00c9b7d1ca8165c610437ca0c92e7b5607b2f9076f4eb4b095c85d6e680a1d"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:df0c7a16ebb94452d2909b9a7b3337940e9a87a824c4fc1c7c36bb4404cb0cde"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:45999e7f7ed5c390f2e87ece7f6c56bf979fb213550229e711e45ecc7d42ccb8"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ac170e9e048b40c605358667aca3d94e98f604a18c44bdb4c102e67070f3ac9b"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1b604734bec94f05f81b360a272fc824334267426ae9905ff32dc2be433ab96"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:a793ac733e3d895d96f865f1806f160696422554e46d30105807fdc9841b9f7d"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0806175f2ae5ad4b835ecd87f5f85583316b69f17e97786f7443baaf54b9bb98"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:ef12e259e7bc317c7597d4f6ef59b97b913e162d83b421dd0db3d6410f17a244"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ea253b368eb41116011add00f8d5726762320b1bda892f744c91997b65754d73"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b9b1f2ad6498445a941d9a4fee096d387fee436e45cc660e72e768d3d8ee611"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:8b14c75979ce932c53b79976a395cb2a8cd3aaf14aef75e8c2cb55a330b9b49d"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:889370d5174a741a62566c003ee8ddba4b04c3f09a97b8000092b7ca83ec9c49"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a18fff090441a40ffda8a7f4f18f03dc56ae73f148f1832e109f9bffa85df15"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99a6b36f95c98839ad98f8c553d8507644c880cf1e0a57fe5e3a3f3969040882"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4345c9a27f4310afbb9c01750e9461ff33d6fb74cd2456b107525bbeebcb5be3"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:3516e0b6224cf6e43e341d56da15fd33bdc37fa0c06af4f029f7d7dfceceabbc"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:146b9b1f29ead41255387fb07be56dc29639262c0f7344f570eecdcd8d683314"}, + {file = "pyzmq-25.1.2.tar.gz", hash = "sha256:93f1aa311e8bb912e34f004cf186407a4e90eec4f0ecc0efd26056bf7eda0226"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "rapidfuzz" +version = "3.5.2" +description = "rapid fuzzy string matching" +optional = false +python-versions = ">=3.8" +files = [ + {file = "rapidfuzz-3.5.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1a047d6e58833919d742bbc0dfa66d1de4f79e8562ee195007d3eae96635df39"}, + {file = "rapidfuzz-3.5.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:22877c027c492b7dc7e3387a576a33ed5aad891104aa90da2e0844c83c5493ef"}, + {file = "rapidfuzz-3.5.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e0f448b0eacbcc416feb634e1232a48d1cbde5e60f269c84e4fb0912f7bbb001"}, + {file = "rapidfuzz-3.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d05146497672f869baf41147d5ec1222788c70e5b8b0cfcd6e95597c75b5b96b"}, + {file = "rapidfuzz-3.5.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8f2df3968738a38d2a0058b5e721753f5d3d602346a1027b0dde31b0476418f3"}, + {file = "rapidfuzz-3.5.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5afc1fcf1830f9bb87d3b490ba03691081b9948a794ea851befd2643069a30c1"}, + {file = "rapidfuzz-3.5.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:84be69ea65f64fa01e5c4976be9826a5aa949f037508887add42da07420d65d6"}, + {file = "rapidfuzz-3.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8658c1045766e87e0038323aa38b4a9f49b7f366563271f973c8890a98aa24b5"}, + {file = "rapidfuzz-3.5.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:852b3f93c15fce58b8dc668bd54123713bfdbbb0796ba905ea5df99cfd083132"}, + {file = "rapidfuzz-3.5.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:12424a06ad9bd0cbf5f7cea1015e78d924a0034a0e75a5a7b39c0703dcd94095"}, + {file = "rapidfuzz-3.5.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:b4e9ded8e80530bd7205a7a2b01802f934a4695ca9e9fbe1ce9644f5e0697864"}, + {file = "rapidfuzz-3.5.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:affb8fe36157c2dc8a7bc45b6a1875eb03e2c49167a1d52789144bdcb7ab3b8c"}, + {file = "rapidfuzz-3.5.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c1d33a622572d384f4c90b5f7a139328246ab5600141e90032b521c2127bd605"}, + {file = "rapidfuzz-3.5.2-cp310-cp310-win32.whl", hash = "sha256:2cf9f2ed4a97b388cffd48d534452a564c2491f68f4fd5bc140306f774ceb63a"}, + {file = "rapidfuzz-3.5.2-cp310-cp310-win_amd64.whl", hash = "sha256:6541ffb70097885f7302cd73e2efd77be99841103023c2f9408551f27f45f7a5"}, + {file = "rapidfuzz-3.5.2-cp310-cp310-win_arm64.whl", hash = "sha256:1dd2542e5103fb8ca46500a979ae14d1609dcba11d2f9fe01e99eec03420e193"}, + {file = "rapidfuzz-3.5.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:bff7d3127ebc5cd908f3a72f6517f31f5247b84666137556a8fcc5177c560939"}, + {file = "rapidfuzz-3.5.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:fdfdb3685b631d8efbb6d6d3d86eb631be2b408d9adafcadc11e63e3f9c96dec"}, + {file = "rapidfuzz-3.5.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:97b043fe8185ec53bb3ff0e59deb89425c0fc6ece6e118939963aab473505801"}, + {file = "rapidfuzz-3.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a4a7832737f87583f3863dc62e6f56dd4a9fefc5f04a7bdcb4c433a0f36bb1b"}, + {file = "rapidfuzz-3.5.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2d876dba9a11fcf60dcf1562c5a84ef559db14c2ceb41e1ad2d93cd1dc085889"}, + {file = "rapidfuzz-3.5.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fa4c0612893716bbb6595066ca9ecb517c982355abe39ba9d1f4ab834ace91ad"}, + {file = "rapidfuzz-3.5.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:120316824333e376b88b284724cfd394c6ccfcb9818519eab5d58a502e5533f0"}, + {file = "rapidfuzz-3.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9cdbe8e80cc186d55f748a34393533a052d855357d5398a1ccb71a5021b58e8d"}, + {file = "rapidfuzz-3.5.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:1062425c8358a547ae5ebad148f2e0f02417716a571b803b0c68e4d552e99d32"}, + {file = "rapidfuzz-3.5.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:66be181965aff13301dd5f9b94b646ce39d99c7fe2fd5de1656f4ca7fafcb38c"}, + {file = "rapidfuzz-3.5.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:53df7aea3cf301633cfa2b4b2c2d2441a87dfc878ef810e5b4eddcd3e68723ad"}, + {file = "rapidfuzz-3.5.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:76639dca5eb0afc6424ac5f42d43d3bd342ac710e06f38a8c877d5b96de09589"}, + {file = "rapidfuzz-3.5.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:27689361c747b5f7b8a26056bc60979875323f1c3dcaaa9e2fec88f03b20a365"}, + {file = "rapidfuzz-3.5.2-cp311-cp311-win32.whl", hash = "sha256:99c9fc5265566fb94731dc6826f43c5109e797078264e6389a36d47814473692"}, + {file = "rapidfuzz-3.5.2-cp311-cp311-win_amd64.whl", hash = "sha256:666928ee735562a909d81bd2f63207b3214afd4ca41f790ab3025d066975c814"}, + {file = "rapidfuzz-3.5.2-cp311-cp311-win_arm64.whl", hash = "sha256:d55de67c48f06b7772541e8d4c062a2679205799ce904236e2836cb04c106442"}, + {file = "rapidfuzz-3.5.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:04e1e02b182283c43c866e215317735e91d22f5d34e65400121c04d5ed7ed859"}, + {file = "rapidfuzz-3.5.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:365e544aba3ac13acf1a62cb2e5909ad2ba078d0bfc7d69b1f801dfd673b9782"}, + {file = "rapidfuzz-3.5.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b61f77d834f94b0099fa9ed35c189b7829759d4e9c2743697a130dd7ba62259f"}, + {file = "rapidfuzz-3.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:43fb368998b9703fa8c63db292a8ab9e988bf6da0c8a635754be8e69da1e7c1d"}, + {file = "rapidfuzz-3.5.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:25510b5d142c47786dbd27cfd9da7cae5bdea28d458379377a3644d8460a3404"}, + {file = "rapidfuzz-3.5.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bf3093443751e5a419834162af358d1e31dec75f84747a91dbbc47b2c04fc085"}, + {file = "rapidfuzz-3.5.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2fbaf546f15a924613f89d609ff66b85b4f4c2307ac14d93b80fe1025b713138"}, + {file = "rapidfuzz-3.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:32d580df0e130ed85400ff77e1c32d965e9bc7be29ac4072ab637f57e26d29fb"}, + {file = "rapidfuzz-3.5.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:358a0fbc49343de20fee8ebdb33c7fa8f55a9ff93ff42d1ffe097d2caa248f1b"}, + {file = "rapidfuzz-3.5.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:fb379ac0ddfc86c5542a225d194f76ed468b071b6f79ff57c4b72e635605ad7d"}, + {file = "rapidfuzz-3.5.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7fb21e182dc6d83617e88dea002963d5cf99cf5eabbdbf04094f503d8fe8d723"}, + {file = "rapidfuzz-3.5.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:c04f9f1310ce414ab00bdcbf26d0906755094bfc59402cb66a7722c6f06d70b2"}, + {file = "rapidfuzz-3.5.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f6da61cc38c1a95efc5edcedf258759e6dbab73191651a28c5719587f32a56ad"}, + {file = "rapidfuzz-3.5.2-cp312-cp312-win32.whl", hash = "sha256:f823fd1977071486739f484e27092765d693da6beedaceece54edce1dfeec9b2"}, + {file = "rapidfuzz-3.5.2-cp312-cp312-win_amd64.whl", hash = "sha256:a8162d81486de85ab1606e48e076431b66d44cf431b2b678e9cae458832e7147"}, + {file = "rapidfuzz-3.5.2-cp312-cp312-win_arm64.whl", hash = "sha256:dfc63fabb7d8da8483ca836bae7e55766fe39c63253571e103c034ba8ea80950"}, + {file = "rapidfuzz-3.5.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:df8fae2515a1e4936affccac3e7d506dd904de5ff82bc0b1433b4574a51b9bfb"}, + {file = "rapidfuzz-3.5.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:dd6384780c2a16097d47588844cd677316a90e0f41ef96ff485b62d58de79dcf"}, + {file = "rapidfuzz-3.5.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:467a4d730ae3bade87dba6bd769e837ab97e176968ce20591fe8f7bf819115b1"}, + {file = "rapidfuzz-3.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54576669c1502b751b534bd76a4aeaaf838ed88b30af5d5c1b7d0a3ca5d4f7b5"}, + {file = "rapidfuzz-3.5.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abafeb82f85a651a9d6d642a33dc021606bc459c33e250925b25d6b9e7105a2e"}, + {file = "rapidfuzz-3.5.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:73e14617a520c0f1bc15eb78c215383477e5ca70922ecaff1d29c63c060e04ca"}, + {file = "rapidfuzz-3.5.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7cdf92116e9dfe40da17f921cdbfa0039dde9eb158914fa5f01b1e67a20b19cb"}, + {file = "rapidfuzz-3.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1962d5ccf8602589dbf8e85246a0ee2b4050d82fade1568fb76f8a4419257704"}, + {file = "rapidfuzz-3.5.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:db45028eae2fda7a24759c69ebeb2a7fbcc1a326606556448ed43ee480237a3c"}, + {file = "rapidfuzz-3.5.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:b685abb8b6d97989f6c69556d7934e0e533aa8822f50b9517ff2da06a1d29f23"}, + {file = "rapidfuzz-3.5.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:40139552961018216b8cd88f6df4ecbbe984f907a62a5c823ccd907132c29a14"}, + {file = "rapidfuzz-3.5.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:0fef4705459842ef8f79746d6f6a0b5d2b6a61a145d7d8bbe10b2e756ea337c8"}, + {file = "rapidfuzz-3.5.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:6b2ad5516f7068c7d9cbcda8ac5906c589e99bc427df2e1050282ee2d8bc2d58"}, + {file = "rapidfuzz-3.5.2-cp38-cp38-win32.whl", hash = "sha256:2da3a24c2f7dfca7f26ba04966b848e3bbeb93e54d899908ff88dfe3e1def9dc"}, + {file = "rapidfuzz-3.5.2-cp38-cp38-win_amd64.whl", hash = "sha256:e3f2be79d4114d01f383096dbee51b57df141cb8b209c19d0cf65f23a24e75ba"}, + {file = "rapidfuzz-3.5.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:089a7e96e5032821af5964d8457fcb38877cc321cdd06ad7c5d6e3d852264cb9"}, + {file = "rapidfuzz-3.5.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:75d8a52bf8d1aa2ac968ae4b21b83b94fc7e5ea3dfbab34811fc60f32df505b2"}, + {file = "rapidfuzz-3.5.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2bacce6bbc0362f0789253424269cc742b1f45e982430387db3abe1d0496e371"}, + {file = "rapidfuzz-3.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5fd627e604ddc02db2ddb9ddc4a91dd92b7a6d6378fcf30bb37b49229072b89"}, + {file = "rapidfuzz-3.5.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b2e8b369f23f00678f6e673572209a5d3b0832f4991888e3df97af7b8b9decf3"}, + {file = "rapidfuzz-3.5.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c29958265e4c2b937269e804b8a160c027ee1c2627d6152655008a8b8083630e"}, + {file = "rapidfuzz-3.5.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:00be97f9219355945c46f37ac9fa447046e6f7930f7c901e5d881120d1695458"}, + {file = "rapidfuzz-3.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ada0d8d57e0f556ef38c24fee71bfe8d0db29c678bff2acd1819fc1b74f331c2"}, + {file = "rapidfuzz-3.5.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:de89585268ed8ee44e80126814cae63ff6b00d08416481f31b784570ef07ec59"}, + {file = "rapidfuzz-3.5.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:908ff2de9c442b379143d1da3c886c63119d4eba22986806e2533cee603fe64b"}, + {file = "rapidfuzz-3.5.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:54f0061028723c026020f5bb20649c22bc8a0d9f5363c283bdc5901d4d3bff01"}, + {file = "rapidfuzz-3.5.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:b581107ec0c610cdea48b25f52030770be390db4a9a73ca58b8d70fa8a5ec32e"}, + {file = "rapidfuzz-3.5.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:1d5a686ea258931aaa38019204bdc670bbe14b389a230b1363d84d6cf4b9dc38"}, + {file = "rapidfuzz-3.5.2-cp39-cp39-win32.whl", hash = "sha256:97f811ca7709c6ee8c0b55830f63b3d87086f4abbcbb189b4067e1cd7014db7b"}, + {file = "rapidfuzz-3.5.2-cp39-cp39-win_amd64.whl", hash = "sha256:58ee34350f8c292dd24a050186c0e18301d80da904ef572cf5fda7be6a954929"}, + {file = "rapidfuzz-3.5.2-cp39-cp39-win_arm64.whl", hash = "sha256:c5075ce7b9286624cafcf36720ef1cfb2946d75430b87cb4d1f006e82cd71244"}, + {file = "rapidfuzz-3.5.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:af5221e4f7800db3e84c46b79dba4112e3b3cc2678f808bdff4fcd2487073846"}, + {file = "rapidfuzz-3.5.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8501d7875b176930e6ed9dbc1bc35adb37ef312f6106bd6bb5c204adb90160ac"}, + {file = "rapidfuzz-3.5.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e414e1ca40386deda4291aa2d45062fea0fbaa14f95015738f8bb75c4d27f862"}, + {file = "rapidfuzz-3.5.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2059cd73b7ea779a9307d7a78ed743f0e3d33b88ccdcd84569abd2953cd859f"}, + {file = "rapidfuzz-3.5.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:58e3e21f6f13a7cca265cce492bc797425bd4cb2025fdd161a9e86a824ad65ce"}, + {file = "rapidfuzz-3.5.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:b847a49377e64e92e11ef3d0a793de75451526c83af015bdafdd5d04de8a058a"}, + {file = "rapidfuzz-3.5.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a42c7a8c62b29c4810e39da22b42524295fcb793f41c395c2cb07c126b729e83"}, + {file = "rapidfuzz-3.5.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:51b5166be86e09e011e92d9862b1fe64c4c7b9385f443fb535024e646d890460"}, + {file = "rapidfuzz-3.5.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f808dcb0088a7a496cc9895e66a7b8de55ffea0eb9b547c75dfb216dd5f76ed"}, + {file = "rapidfuzz-3.5.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:d4b05a8f4ab7e7344459394094587b033fe259eea3a8720035e8ba30e79ab39b"}, + {file = "rapidfuzz-3.5.2.tar.gz", hash = "sha256:9e9b395743e12c36a3167a3a9fd1b4e11d92fb0aa21ec98017ee6df639ed385e"}, +] + +[package.extras] +full = ["numpy"] + +[[package]] +name = "scikit-learn" +version = "1.3.2" +description = "A set of python modules for machine learning and data mining" +optional = false +python-versions = ">=3.8" +files = [ + {file = "scikit-learn-1.3.2.tar.gz", hash = "sha256:a2f54c76accc15a34bfb9066e6c7a56c1e7235dda5762b990792330b52ccfb05"}, + {file = "scikit_learn-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e326c0eb5cf4d6ba40f93776a20e9a7a69524c4db0757e7ce24ba222471ee8a1"}, + {file = "scikit_learn-1.3.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:535805c2a01ccb40ca4ab7d081d771aea67e535153e35a1fd99418fcedd1648a"}, + {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1215e5e58e9880b554b01187b8c9390bf4dc4692eedeaf542d3273f4785e342c"}, + {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ee107923a623b9f517754ea2f69ea3b62fc898a3641766cb7deb2f2ce450161"}, + {file = "scikit_learn-1.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:35a22e8015048c628ad099da9df5ab3004cdbf81edc75b396fd0cff8699ac58c"}, + {file = "scikit_learn-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6fb6bc98f234fda43163ddbe36df8bcde1d13ee176c6dc9b92bb7d3fc842eb66"}, + {file = "scikit_learn-1.3.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:18424efee518a1cde7b0b53a422cde2f6625197de6af36da0b57ec502f126157"}, + {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3271552a5eb16f208a6f7f617b8cc6d1f137b52c8a1ef8edf547db0259b2c9fb"}, + {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc4144a5004a676d5022b798d9e573b05139e77f271253a4703eed295bde0433"}, + {file = "scikit_learn-1.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:67f37d708f042a9b8d59551cf94d30431e01374e00dc2645fa186059c6c5d78b"}, + {file = "scikit_learn-1.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:8db94cd8a2e038b37a80a04df8783e09caac77cbe052146432e67800e430c028"}, + {file = "scikit_learn-1.3.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:61a6efd384258789aa89415a410dcdb39a50e19d3d8410bd29be365bcdd512d5"}, + {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb06f8dce3f5ddc5dee1715a9b9f19f20d295bed8e3cd4fa51e1d050347de525"}, + {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b2de18d86f630d68fe1f87af690d451388bb186480afc719e5f770590c2ef6c"}, + {file = "scikit_learn-1.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:0402638c9a7c219ee52c94cbebc8fcb5eb9fe9c773717965c1f4185588ad3107"}, + {file = "scikit_learn-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a19f90f95ba93c1a7f7924906d0576a84da7f3b2282ac3bfb7a08a32801add93"}, + {file = "scikit_learn-1.3.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:b8692e395a03a60cd927125eef3a8e3424d86dde9b2370d544f0ea35f78a8073"}, + {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15e1e94cc23d04d39da797ee34236ce2375ddea158b10bee3c343647d615581d"}, + {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:785a2213086b7b1abf037aeadbbd6d67159feb3e30263434139c98425e3dcfcf"}, + {file = "scikit_learn-1.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:64381066f8aa63c2710e6b56edc9f0894cc7bf59bd71b8ce5613a4559b6145e0"}, + {file = "scikit_learn-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c43290337f7a4b969d207e620658372ba3c1ffb611f8bc2b6f031dc5c6d1d03"}, + {file = "scikit_learn-1.3.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:dc9002fc200bed597d5d34e90c752b74df516d592db162f756cc52836b38fe0e"}, + {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d08ada33e955c54355d909b9c06a4789a729977f165b8bae6f225ff0a60ec4a"}, + {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:763f0ae4b79b0ff9cca0bf3716bcc9915bdacff3cebea15ec79652d1cc4fa5c9"}, + {file = "scikit_learn-1.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:ed932ea780517b00dae7431e031faae6b49b20eb6950918eb83bd043237950e0"}, +] + +[package.dependencies] +joblib = ">=1.1.1" +numpy = ">=1.17.3,<2.0" +scipy = ">=1.5.0" +threadpoolctl = ">=2.0.0" + +[package.extras] +benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.10.1)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] +examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"] +tests = ["black (>=23.3.0)", "matplotlib (>=3.1.3)", "mypy (>=1.3)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.0.272)", "scikit-image (>=0.16.2)"] + +[[package]] +name = "scipy" +version = "1.11.4" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "scipy-1.11.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bc9a714581f561af0848e6b69947fda0614915f072dfd14142ed1bfe1b806710"}, + {file = "scipy-1.11.4-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:cf00bd2b1b0211888d4dc75656c0412213a8b25e80d73898083f402b50f47e41"}, + {file = "scipy-1.11.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9999c008ccf00e8fbcce1236f85ade5c569d13144f77a1946bef8863e8f6eb4"}, + {file = "scipy-1.11.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:933baf588daa8dc9a92c20a0be32f56d43faf3d1a60ab11b3f08c356430f6e56"}, + {file = "scipy-1.11.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8fce70f39076a5aa62e92e69a7f62349f9574d8405c0a5de6ed3ef72de07f446"}, + {file = "scipy-1.11.4-cp310-cp310-win_amd64.whl", hash = "sha256:6550466fbeec7453d7465e74d4f4b19f905642c89a7525571ee91dd7adabb5a3"}, + {file = "scipy-1.11.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f313b39a7e94f296025e3cffc2c567618174c0b1dde173960cf23808f9fae4be"}, + {file = "scipy-1.11.4-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:1b7c3dca977f30a739e0409fb001056484661cb2541a01aba0bb0029f7b68db8"}, + {file = "scipy-1.11.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00150c5eae7b610c32589dda259eacc7c4f1665aedf25d921907f4d08a951b1c"}, + {file = "scipy-1.11.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:530f9ad26440e85766509dbf78edcfe13ffd0ab7fec2560ee5c36ff74d6269ff"}, + {file = "scipy-1.11.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5e347b14fe01003d3b78e196e84bd3f48ffe4c8a7b8a1afbcb8f5505cb710993"}, + {file = "scipy-1.11.4-cp311-cp311-win_amd64.whl", hash = "sha256:acf8ed278cc03f5aff035e69cb511741e0418681d25fbbb86ca65429c4f4d9cd"}, + {file = "scipy-1.11.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:028eccd22e654b3ea01ee63705681ee79933652b2d8f873e7949898dda6d11b6"}, + {file = "scipy-1.11.4-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:2c6ff6ef9cc27f9b3db93a6f8b38f97387e6e0591600369a297a50a8e96e835d"}, + {file = "scipy-1.11.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b030c6674b9230d37c5c60ab456e2cf12f6784596d15ce8da9365e70896effc4"}, + {file = "scipy-1.11.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad669df80528aeca5f557712102538f4f37e503f0c5b9541655016dd0932ca79"}, + {file = "scipy-1.11.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ce7fff2e23ab2cc81ff452a9444c215c28e6305f396b2ba88343a567feec9660"}, + {file = "scipy-1.11.4-cp312-cp312-win_amd64.whl", hash = "sha256:36750b7733d960d7994888f0d148d31ea3017ac15eef664194b4ef68d36a4a97"}, + {file = "scipy-1.11.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6e619aba2df228a9b34718efb023966da781e89dd3d21637b27f2e54db0410d7"}, + {file = "scipy-1.11.4-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:f3cd9e7b3c2c1ec26364856f9fbe78695fe631150f94cd1c22228456404cf1ec"}, + {file = "scipy-1.11.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d10e45a6c50211fe256da61a11c34927c68f277e03138777bdebedd933712fea"}, + {file = "scipy-1.11.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:91af76a68eeae0064887a48e25c4e616fa519fa0d38602eda7e0f97d65d57937"}, + {file = "scipy-1.11.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6df1468153a31cf55ed5ed39647279beb9cfb5d3f84369453b49e4b8502394fd"}, + {file = "scipy-1.11.4-cp39-cp39-win_amd64.whl", hash = "sha256:ee410e6de8f88fd5cf6eadd73c135020bfbbbdfcd0f6162c36a7638a1ea8cc65"}, + {file = "scipy-1.11.4.tar.gz", hash = "sha256:90a2b78e7f5733b9de748f589f09225013685f9b218275257f8a8168ededaeaa"}, +] + +[package.dependencies] +numpy = ">=1.21.6,<1.28.0" + +[package.extras] +dev = ["click", "cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"] +doc = ["jupytext", "matplotlib (>2)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] +test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "six" +version = "1.16.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, + {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, +] + +[[package]] +name = "smart-open" +version = "5.1.0" +description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)" +optional = false +python-versions = ">=3.6.*" +files = [ + {file = "smart_open-5.1.0-py3-none-any.whl", hash = "sha256:2059b07f530c8c9e2158e4e1575309aacb74bd813da2325c1f348015d04f3bd6"}, + {file = "smart_open-5.1.0.tar.gz", hash = "sha256:e4dc1350b240ef0759e343e4e2f361bfd4e5477bb2619866e97f80240652e92e"}, +] + +[package.extras] +all = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage", "requests"] +azure = ["azure-common", "azure-core", "azure-storage-blob"] +gcs = ["google-cloud-storage"] +http = ["requests"] +s3 = ["boto3"] +test = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage", "moto[server] (==1.3.14)", "parameterizedtestcase", "paramiko", "pathlib2", "pytest", "pytest-rerunfailures", "requests", "responses"] +webhdfs = ["requests"] + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "threadpoolctl" +version = "3.2.0" +description = "threadpoolctl" +optional = false +python-versions = ">=3.8" +files = [ + {file = "threadpoolctl-3.2.0-py3-none-any.whl", hash = "sha256:2b7818516e423bdaebb97c723f86a7c6b0a83d3f3b0970328d66f4d9104dc032"}, + {file = "threadpoolctl-3.2.0.tar.gz", hash = "sha256:c96a0ba3bdddeaca37dc4cc7344aafad41cdb8c313f74fdfe387a867bba93355"}, +] + +[[package]] +name = "tornado" +version = "6.4" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">= 3.8" +files = [ + {file = "tornado-6.4-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:02ccefc7d8211e5a7f9e8bc3f9e5b0ad6262ba2fbb683a6443ecc804e5224ce0"}, + {file = "tornado-6.4-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:27787de946a9cffd63ce5814c33f734c627a87072ec7eed71f7fc4417bb16263"}, + {file = "tornado-6.4-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f7894c581ecdcf91666a0912f18ce5e757213999e183ebfc2c3fdbf4d5bd764e"}, + {file = "tornado-6.4-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e43bc2e5370a6a8e413e1e1cd0c91bedc5bd62a74a532371042a18ef19e10579"}, + {file = "tornado-6.4-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0251554cdd50b4b44362f73ad5ba7126fc5b2c2895cc62b14a1c2d7ea32f212"}, + {file = "tornado-6.4-cp38-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:fd03192e287fbd0899dd8f81c6fb9cbbc69194d2074b38f384cb6fa72b80e9c2"}, + {file = "tornado-6.4-cp38-abi3-musllinux_1_1_i686.whl", hash = "sha256:88b84956273fbd73420e6d4b8d5ccbe913c65d31351b4c004ae362eba06e1f78"}, + {file = "tornado-6.4-cp38-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:71ddfc23a0e03ef2df1c1397d859868d158c8276a0603b96cf86892bff58149f"}, + {file = "tornado-6.4-cp38-abi3-win32.whl", hash = "sha256:6f8a6c77900f5ae93d8b4ae1196472d0ccc2775cc1dfdc9e7727889145c45052"}, + {file = "tornado-6.4-cp38-abi3-win_amd64.whl", hash = "sha256:10aeaa8006333433da48dec9fe417877f8bcc21f48dda8d661ae79da357b2a63"}, + {file = "tornado-6.4.tar.gz", hash = "sha256:72291fa6e6bc84e626589f1c29d90a5a6d593ef5ae68052ee2ef000dfd273dee"}, +] + +[[package]] +name = "tqdm" +version = "4.66.1" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tqdm-4.66.1-py3-none-any.whl", hash = "sha256:d302b3c5b53d47bce91fea46679d9c3c6508cf6332229aa1e7d8653723793386"}, + {file = "tqdm-4.66.1.tar.gz", hash = "sha256:d88e651f9db8d8551a62556d3cff9e3034274ca5d66e93197cf2490e2dcb69c7"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + +[[package]] +name = "traitlets" +version = "5.14.0" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +files = [ + {file = "traitlets-5.14.0-py3-none-any.whl", hash = "sha256:f14949d23829023013c47df20b4a76ccd1a85effb786dc060f34de7948361b33"}, + {file = "traitlets-5.14.0.tar.gz", hash = "sha256:fcdaa8ac49c04dfa0ed3ee3384ef6dfdb5d6f3741502be247279407679296772"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<7.5)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "typing-extensions" +version = "4.9.0" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typing_extensions-4.9.0-py3-none-any.whl", hash = "sha256:af72aea155e91adfc61c3ae9e0e342dbc0cba726d6cba4b6c72c1f34e47291cd"}, + {file = "typing_extensions-4.9.0.tar.gz", hash = "sha256:23478f88c37f27d76ac8aee6c905017a143b0b1b886c3c9f66bc2fd94f9f5783"}, +] + +[[package]] +name = "wcwidth" +version = "0.2.12" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +files = [ + {file = "wcwidth-0.2.12-py2.py3-none-any.whl", hash = "sha256:f26ec43d96c8cbfed76a5075dac87680124fa84e0855195a6184da9c187f133c"}, + {file = "wcwidth-0.2.12.tar.gz", hash = "sha256:f01c104efdf57971bcb756f054dd58ddec5204dd15fa31d6503ea57947d97c02"}, +] + +[[package]] +name = "zipp" +version = "3.17.0" +description = "Backport of pathlib-compatible object wrapper for zip files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "zipp-3.17.0-py3-none-any.whl", hash = "sha256:0e923e726174922dce09c53c59ad483ff7bbb8e572e00c7f7c46b88556409f31"}, + {file = "zipp-3.17.0.tar.gz", hash = "sha256:84e64a1c28cf7e91ed2078bb8cc8c259cb19b76942096c8d7b84947690cabaf0"}, +] + +[package.extras] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] +testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy (>=0.9.1)", "pytest-ruff"] + +[metadata] +lock-version = "2.0" +python-versions = ">=3.9" +content-hash = "de577abe2e740d6cf63b3e9345b9489ba0bc37c598aa745bc13684ee65aaf7c3" diff --git a/Chapter02/pyproject.toml b/Chapter02/pyproject.toml new file mode 100644 index 0000000..957e591 --- /dev/null +++ b/Chapter02/pyproject.toml @@ -0,0 +1,19 @@ +[tool.poetry] +name = "Graph Machine Learning - Chapter 2" +version = "1.0.0" +description = "" +authors = ["Enrico Deusebio "] +packages = [] + +[tool.poetry.dependencies] +python = ">=3.9" +ipykernel = ">=6.0.0" +scipy = ">=1.11.0" +networkx = ">=3.2.0" +matplotlib = ">=3.6.0" +node2vec = ">=0.3.3" +karateclub = ">=1.0.19" + +[build-system] +requires = ["poetry-core"] +build-backend = "poetry.core.masonry.api" \ No newline at end of file diff --git a/Chapter02/requirements.txt b/Chapter02/requirements.txt new file mode 100644 index 0000000..a36db7e --- /dev/null +++ b/Chapter02/requirements.txt @@ -0,0 +1,63 @@ +appnope==0.1.3 ; platform_system == "Darwin" and python_version >= "3.9" +asttokens==2.4.1 ; python_version >= "3.9" +cffi==1.16.0 ; implementation_name == "pypy" and python_version >= "3.9" +colorama==0.4.6 ; python_version >= "3.9" and (sys_platform == "win32" or platform_system == "Windows") +comm==0.2.0 ; python_version >= "3.9" +contourpy==1.2.0 ; python_version >= "3.9" +cycler==0.12.1 ; python_version >= "3.9" +debugpy==1.8.0 ; python_version >= "3.9" +decorator==4.4.2 ; python_version >= "3.9" +exceptiongroup==1.2.0 ; python_version < "3.11" and python_version >= "3.9" +executing==2.0.1 ; python_version >= "3.9" +fonttools==4.47.0 ; python_version >= "3.9" +gensim==4.3.2 ; python_version >= "3.9" +importlib-metadata==7.0.0 ; python_version < "3.10" and python_version >= "3.9" +importlib-resources==6.1.1 ; python_version < "3.10" and python_version >= "3.9" +ipykernel==6.27.1 ; python_version >= "3.9" +ipython==8.18.1 ; python_version >= "3.9" +jedi==0.19.1 ; python_version >= "3.9" +joblib==1.3.2 ; python_version >= "3.9" +jupyter-client==8.6.0 ; python_version >= "3.9" +jupyter-core==5.5.1 ; python_version >= "3.9" +karateclub==1.2.3 ; python_version >= "3.9" +kiwisolver==1.4.5 ; python_version >= "3.9" +levenshtein==0.23.0 ; python_version >= "3.9" +matplotlib-inline==0.1.6 ; python_version >= "3.9" +matplotlib==3.8.2 ; python_version >= "3.9" +nest-asyncio==1.5.8 ; python_version >= "3.9" +networkx==3.2.1 ; python_version >= "3.9" +node2vec==0.4.3 ; python_version >= "3.9" +numpy==1.26.2 ; python_version >= "3.9" +packaging==23.2 ; python_version >= "3.9" +pandas==1.3.5 ; python_version >= "3.9" +parso==0.8.3 ; python_version >= "3.9" +pexpect==4.9.0 ; sys_platform != "win32" and python_version >= "3.9" +pillow==10.1.0 ; python_version >= "3.9" +platformdirs==4.1.0 ; python_version >= "3.9" +prompt-toolkit==3.0.43 ; python_version >= "3.9" +psutil==5.9.7 ; python_version >= "3.9" +ptyprocess==0.7.0 ; sys_platform != "win32" and python_version >= "3.9" +pure-eval==0.2.2 ; python_version >= "3.9" +pycparser==2.21 ; python_version >= "3.9" and implementation_name == "pypy" +pygments==2.17.2 ; python_version >= "3.9" +pygsp==0.5.1 ; python_version >= "3.9" +pyparsing==3.1.1 ; python_version >= "3.9" +python-dateutil==2.8.2 ; python_version >= "3.9" +python-levenshtein==0.23.0 ; python_version >= "3.9" +python-louvain==0.16 ; python_version >= "3.9" +pytz==2023.3.post1 ; python_version >= "3.9" +pywin32==306 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.9" +pyzmq==25.1.2 ; python_version >= "3.9" +rapidfuzz==3.5.2 ; python_version >= "3.9" +scikit-learn==1.3.2 ; python_version >= "3.9" +scipy==1.11.4 ; python_version >= "3.9" +six==1.16.0 ; python_version >= "3.9" +smart-open==5.1.0 ; python_version >= "3.9" +stack-data==0.6.3 ; python_version >= "3.9" +threadpoolctl==3.2.0 ; python_version >= "3.9" +tornado==6.4 ; python_version >= "3.9" +tqdm==4.66.1 ; python_version >= "3.9" +traitlets==5.14.0 ; python_version >= "3.9" +typing-extensions==4.9.0 ; python_version < "3.10" and python_version >= "3.9" +wcwidth==0.2.12 ; python_version >= "3.9" +zipp==3.17.0 ; python_version < "3.10" and python_version >= "3.9" From 8cfdee7bb7498c73f597e376ed07b2522710e464 Mon Sep 17 00:00:00 2001 From: Enrico Deusebio Date: Tue, 19 Dec 2023 14:47:59 +0100 Subject: [PATCH 03/31] [2nd Edition][Chapter 3] Introduce poetry --- Chapter03/01_Shallow_Embeddings.ipynb | 6 +- Chapter03/02_Autoencoders.ipynb | 6 +- ...03_Structural_deep_neural_embeddings.ipynb | 6 +- Chapter03/04_Graph_Neural_Network.ipynb | 6 +- Chapter03/poetry.lock | 2243 +++++++++++++++++ Chapter03/pyproject.toml | 27 + Chapter03/requirements.txt | 96 + 7 files changed, 2378 insertions(+), 12 deletions(-) create mode 100644 Chapter03/poetry.lock create mode 100644 Chapter03/pyproject.toml create mode 100644 Chapter03/requirements.txt diff --git a/Chapter03/01_Shallow_Embeddings.ipynb b/Chapter03/01_Shallow_Embeddings.ipynb index c48db2c..cd25afc 100644 --- a/Chapter03/01_Shallow_Embeddings.ipynb +++ b/Chapter03/01_Shallow_Embeddings.ipynb @@ -336,9 +336,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "chap3", "language": "python", - "name": "python3" + "name": "chap3" }, "language_info": { "codemirror_mode": { @@ -350,7 +350,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.8.16" } }, "nbformat": 4, diff --git a/Chapter03/02_Autoencoders.ipynb b/Chapter03/02_Autoencoders.ipynb index 067817f..8d2e26d 100644 --- a/Chapter03/02_Autoencoders.ipynb +++ b/Chapter03/02_Autoencoders.ipynb @@ -605,9 +605,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "chap3", "language": "python", - "name": "python3" + "name": "chap3" }, "language_info": { "codemirror_mode": { @@ -619,7 +619,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.8.16" } }, "nbformat": 4, diff --git a/Chapter03/03_Structural_deep_neural_embeddings.ipynb b/Chapter03/03_Structural_deep_neural_embeddings.ipynb index 5a2c321..a6663e8 100644 --- a/Chapter03/03_Structural_deep_neural_embeddings.ipynb +++ b/Chapter03/03_Structural_deep_neural_embeddings.ipynb @@ -111,9 +111,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "chap3", "language": "python", - "name": "python3" + "name": "chap3" }, "language_info": { "codemirror_mode": { @@ -125,7 +125,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.8.16" } }, "nbformat": 4, diff --git a/Chapter03/04_Graph_Neural_Network.ipynb b/Chapter03/04_Graph_Neural_Network.ipynb index b3b7d37..1efa39f 100644 --- a/Chapter03/04_Graph_Neural_Network.ipynb +++ b/Chapter03/04_Graph_Neural_Network.ipynb @@ -555,9 +555,9 @@ "toc_visible": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "chap3", "language": "python", - "name": "python3" + "name": "chap3" }, "language_info": { "codemirror_mode": { @@ -569,7 +569,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.8.16" } }, "nbformat": 4, diff --git a/Chapter03/poetry.lock b/Chapter03/poetry.lock new file mode 100644 index 0000000..38ed5db --- /dev/null +++ b/Chapter03/poetry.lock @@ -0,0 +1,2243 @@ +# This file is automatically @generated by Poetry 1.5.1 and should not be changed by hand. + +[[package]] +name = "absl-py" +version = "0.15.0" +description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py." +optional = false +python-versions = "*" +files = [ + {file = "absl-py-0.15.0.tar.gz", hash = "sha256:72d782fbeafba66ba3e525d46bccac949b9a174dbf66233e50ece09ee688dc81"}, + {file = "absl_py-0.15.0-py3-none-any.whl", hash = "sha256:ea907384af023a7e681368bedb896159ab100c7db593efbbd5cde22af11270cd"}, +] + +[package.dependencies] +six = "*" + +[[package]] +name = "appnope" +version = "0.1.3" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = "*" +files = [ + {file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"}, + {file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"}, +] + +[[package]] +name = "asttokens" +version = "2.4.1" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = "*" +files = [ + {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, + {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, +] + +[package.dependencies] +six = ">=1.12.0" + +[package.extras] +astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] +test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] + +[[package]] +name = "astunparse" +version = "1.6.3" +description = "An AST unparser for Python" +optional = false +python-versions = "*" +files = [ + {file = "astunparse-1.6.3-py2.py3-none-any.whl", hash = "sha256:c2652417f2c8b5bb325c885ae329bdf3f86424075c4fd1a128674bc6fba4b8e8"}, + {file = "astunparse-1.6.3.tar.gz", hash = "sha256:5ad93a8456f0d084c3456d059fd9a92cce667963232cbf763eac3bc5b7940872"}, +] + +[package.dependencies] +six = ">=1.6.1,<2.0" +wheel = ">=0.23.0,<1.0" + +[[package]] +name = "backcall" +version = "0.2.0" +description = "Specifications for callback functions passed in to an API" +optional = false +python-versions = "*" +files = [ + {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, + {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, +] + +[[package]] +name = "cachetools" +version = "5.3.2" +description = "Extensible memoizing collections and decorators" +optional = false +python-versions = ">=3.7" +files = [ + {file = "cachetools-5.3.2-py3-none-any.whl", hash = "sha256:861f35a13a451f94e301ce2bec7cac63e881232ccce7ed67fab9b5df4d3beaa1"}, + {file = "cachetools-5.3.2.tar.gz", hash = "sha256:086ee420196f7b2ab9ca2db2520aca326318b68fe5ba8bc4d49cca91add450f2"}, +] + +[[package]] +name = "certifi" +version = "2023.11.17" +description = "Python package for providing Mozilla's CA Bundle." +optional = false +python-versions = ">=3.6" +files = [ + {file = "certifi-2023.11.17-py3-none-any.whl", hash = "sha256:e036ab49d5b79556f99cfc2d9320b34cfbe5be05c5871b51de9329f0603b0474"}, + {file = "certifi-2023.11.17.tar.gz", hash = "sha256:9b469f3a900bf28dc19b8cfbf8019bf47f7fdd1a65a1d4ffb98fc14166beb4d1"}, +] + +[[package]] +name = "cffi" +version = "1.16.0" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088"}, + {file = "cffi-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614"}, + {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743"}, + {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d"}, + {file = "cffi-1.16.0-cp310-cp310-win32.whl", hash = "sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a"}, + {file = "cffi-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1"}, + {file = "cffi-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404"}, + {file = "cffi-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e"}, + {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc"}, + {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb"}, + {file = "cffi-1.16.0-cp311-cp311-win32.whl", hash = "sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab"}, + {file = "cffi-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba"}, + {file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"}, + {file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"}, + {file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"}, + {file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"}, + {file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"}, + {file = "cffi-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324"}, + {file = "cffi-1.16.0-cp38-cp38-win32.whl", hash = "sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a"}, + {file = "cffi-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36"}, + {file = "cffi-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed"}, + {file = "cffi-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098"}, + {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000"}, + {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe"}, + {file = "cffi-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4"}, + {file = "cffi-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8"}, + {file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"}, +] + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "charset-normalizer" +version = "3.3.2" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, + {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, +] + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "comm" +version = "0.2.0" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +files = [ + {file = "comm-0.2.0-py3-none-any.whl", hash = "sha256:2da8d9ebb8dd7bfc247adaff99f24dce705638a8042b85cb995066793e391001"}, + {file = "comm-0.2.0.tar.gz", hash = "sha256:a517ea2ca28931c7007a7a99c562a0fa5883cfb48963140cf642c41c948498be"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "cycler" +version = "0.12.1" +description = "Composable style cycles" +optional = false +python-versions = ">=3.8" +files = [ + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, +] + +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "cython" +version = "0.29.14" +description = "The Cython compiler for writing C extensions for the Python language." +optional = false +python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "Cython-0.29.14-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:47e5e1502d52ef03387cf9d3b3241007961a84a466e58a3b74028e1dd4957f8c"}, + {file = "Cython-0.29.14-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:1dcdaa319558eb924294a554dcf6c12383ec947acc7e779e8d3622409a7f7d28"}, + {file = "Cython-0.29.14-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:7bc18fc5a170f2c1cef5387a3d997c28942918bbee0f700e73fd2178ee8d474d"}, + {file = "Cython-0.29.14-cp27-cp27m-win32.whl", hash = "sha256:89458b49976b1dee5d89ab4ac943da3717b4292bf624367e862e4ee172fcce99"}, + {file = "Cython-0.29.14-cp27-cp27m-win_amd64.whl", hash = "sha256:c0b24bfe3431b3cb7ced323bca813dbd13aca973a1475b512d3331fd0de8ec60"}, + {file = "Cython-0.29.14-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7f89eff20e4a7a64b55210dac17aea711ed8a3f2e78f2ff784c0e984302583dd"}, + {file = "Cython-0.29.14-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:6c53338c1811f8c6d7f8cb7abd874810b15045e719e8207f957035c9177b4213"}, + {file = "Cython-0.29.14-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:521340844cf388d109ceb61397f3fd5250ccb622a1a8e93559e8de76c80940a9"}, + {file = "Cython-0.29.14-cp34-cp34m-manylinux1_i686.whl", hash = "sha256:75c2dda47dcc3c77449712b1417bb6b89ec3b7b02e18c64262494dceffdf455e"}, + {file = "Cython-0.29.14-cp34-cp34m-manylinux1_x86_64.whl", hash = "sha256:05eb79efc8029d487251c8a2702a909a8ba33c332e06d2f3980866541bd81253"}, + {file = "Cython-0.29.14-cp34-cp34m-win32.whl", hash = "sha256:1fc5bdda28f25fec44e4721677458aa509d743cd350862270309d61aa148d6ff"}, + {file = "Cython-0.29.14-cp34-cp34m-win_amd64.whl", hash = "sha256:0c70e842e52e2f50cc43bad43b5e5bc515f30821a374e544abb0e0746f2350ff"}, + {file = "Cython-0.29.14-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:094d28a34c3fa992ae02aea1edbe6ff89b3cc5870b6ee38b5baeb805dc57b013"}, + {file = "Cython-0.29.14-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:280573a01d9348d44a42d6a9c651d9f7eb1fe9217df72555b2a118f902996a10"}, + {file = "Cython-0.29.14-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:773c5a98e463b52f7e8197254b39b703a5ea1972aef3a94b3b921515d77dd041"}, + {file = "Cython-0.29.14-cp35-cp35m-win32.whl", hash = "sha256:986f871c0fa649b293061236b93782d25c293a8dd8117c7ba05f8a61bdc261ae"}, + {file = "Cython-0.29.14-cp35-cp35m-win_amd64.whl", hash = "sha256:78c3068dcba300d473fef57cdf523e34b37de522f5a494ef9ee1ac9b4b8bbe3f"}, + {file = "Cython-0.29.14-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:f3818e578e687cdb21dc4aa4a3bc6278c656c9c393e9eda14dd04943f478863d"}, + {file = "Cython-0.29.14-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:bb487881608ebd293592553c618f0c83316f4f13a64cb18605b1d2fb9fd3da3e"}, + {file = "Cython-0.29.14-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:03f6bbb380ad0acb744fb06e42996ea217e9d00016ca0ff6f2e7d60f580d0360"}, + {file = "Cython-0.29.14-cp36-cp36m-win32.whl", hash = "sha256:b8ab3ab38afc47d8f4fe629b836243544351cef681b6bdb1dc869028d6fdcbfb"}, + {file = "Cython-0.29.14-cp36-cp36m-win_amd64.whl", hash = "sha256:298ceca7b0f0da4205fcb0b7c9ac9e120e2dafffd5019ba1618e84ef89434b5a"}, + {file = "Cython-0.29.14-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:fe666645493d72712c46e4fbe8bec094b06aec3c337400479e9704439c9d9586"}, + {file = "Cython-0.29.14-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:4074a8bff0040035673cc6dd365a762476d6bff4d03d8ce6904e3e53f9a25dc8"}, + {file = "Cython-0.29.14-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:a14aa436586c41633339415de82a41164691d02d3e661038da533be5d40794a5"}, + {file = "Cython-0.29.14-cp37-cp37m-win32.whl", hash = "sha256:41e7068e95fbf9ec94b41437f989caf9674135e770a39cdb9c00de459bafd1bc"}, + {file = "Cython-0.29.14-cp37-cp37m-win_amd64.whl", hash = "sha256:05e8cfd3a3a6087aec49a1ae08a89171db991956209406d1e5576f9db70ece52"}, + {file = "Cython-0.29.14-cp38-cp38-manylinux1_i686.whl", hash = "sha256:e8fab9911fd2fa8e5af407057cb8bdf87762f983cba483fa3234be20a9a0af77"}, + {file = "Cython-0.29.14-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:d4039bb7f234ad32267c55e72fd49fb56078ea102f9d9d8559f6ec34d4887630"}, + {file = "Cython-0.29.14-cp38-cp38-win32.whl", hash = "sha256:c7894c06205166d360ab2915ae306d1f7403e9ce3d3aaeff4095eaf98e42ce66"}, + {file = "Cython-0.29.14-cp38-cp38-win_amd64.whl", hash = "sha256:a0f495a4fe5278aab278feee35e6102efecde5176a8a74dd28c28e3fc5c8d7c7"}, + {file = "Cython-0.29.14.tar.gz", hash = "sha256:e4d6bb8703d0319eb04b7319b12ea41580df44fd84d83ccda13ea463c6801414"}, +] + +[[package]] +name = "debugpy" +version = "1.8.0" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "debugpy-1.8.0-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:7fb95ca78f7ac43393cd0e0f2b6deda438ec7c5e47fa5d38553340897d2fbdfb"}, + {file = "debugpy-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef9ab7df0b9a42ed9c878afd3eaaff471fce3fa73df96022e1f5c9f8f8c87ada"}, + {file = "debugpy-1.8.0-cp310-cp310-win32.whl", hash = "sha256:a8b7a2fd27cd9f3553ac112f356ad4ca93338feadd8910277aff71ab24d8775f"}, + {file = "debugpy-1.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:5d9de202f5d42e62f932507ee8b21e30d49aae7e46d5b1dd5c908db1d7068637"}, + {file = "debugpy-1.8.0-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:ef54404365fae8d45cf450d0544ee40cefbcb9cb85ea7afe89a963c27028261e"}, + {file = "debugpy-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60009b132c91951354f54363f8ebdf7457aeb150e84abba5ae251b8e9f29a8a6"}, + {file = "debugpy-1.8.0-cp311-cp311-win32.whl", hash = "sha256:8cd0197141eb9e8a4566794550cfdcdb8b3db0818bdf8c49a8e8f8053e56e38b"}, + {file = "debugpy-1.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:a64093656c4c64dc6a438e11d59369875d200bd5abb8f9b26c1f5f723622e153"}, + {file = "debugpy-1.8.0-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:b05a6b503ed520ad58c8dc682749113d2fd9f41ffd45daec16e558ca884008cd"}, + {file = "debugpy-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c6fb41c98ec51dd010d7ed650accfd07a87fe5e93eca9d5f584d0578f28f35f"}, + {file = "debugpy-1.8.0-cp38-cp38-win32.whl", hash = "sha256:46ab6780159eeabb43c1495d9c84cf85d62975e48b6ec21ee10c95767c0590aa"}, + {file = "debugpy-1.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:bdc5ef99d14b9c0fcb35351b4fbfc06ac0ee576aeab6b2511702e5a648a2e595"}, + {file = "debugpy-1.8.0-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:61eab4a4c8b6125d41a34bad4e5fe3d2cc145caecd63c3fe953be4cc53e65bf8"}, + {file = "debugpy-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:125b9a637e013f9faac0a3d6a82bd17c8b5d2c875fb6b7e2772c5aba6d082332"}, + {file = "debugpy-1.8.0-cp39-cp39-win32.whl", hash = "sha256:57161629133113c97b387382045649a2b985a348f0c9366e22217c87b68b73c6"}, + {file = "debugpy-1.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:e3412f9faa9ade82aa64a50b602544efcba848c91384e9f93497a458767e6926"}, + {file = "debugpy-1.8.0-py2.py3-none-any.whl", hash = "sha256:9c9b0ac1ce2a42888199df1a1906e45e6f3c9555497643a85e0bf2406e3ffbc4"}, + {file = "debugpy-1.8.0.zip", hash = "sha256:12af2c55b419521e33d5fb21bd022df0b5eb267c3e178f1d374a63a2a6bdccd0"}, +] + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +optional = false +python-versions = ">=3.5" +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] + +[[package]] +name = "executing" +version = "2.0.1" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.5" +files = [ + {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, + {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + +[[package]] +name = "flatbuffers" +version = "1.12" +description = "The FlatBuffers serialization format for Python" +optional = false +python-versions = "*" +files = [ + {file = "flatbuffers-1.12-py2.py3-none-any.whl", hash = "sha256:9e9ef47fa92625c4721036e7c4124182668dc6021d9e7c73704edd395648deb9"}, + {file = "flatbuffers-1.12.tar.gz", hash = "sha256:63bb9a722d5e373701913e226135b28a6f6ac200d5cc7b4d919fa38d73b44610"}, +] + +[[package]] +name = "gast" +version = "0.3.3" +description = "Python AST that abstracts the underlying Python version" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "gast-0.3.3-py2.py3-none-any.whl", hash = "sha256:8f46f5be57ae6889a4e16e2ca113b1703ef17f2b0abceb83793eaba9e1351a45"}, + {file = "gast-0.3.3.tar.gz", hash = "sha256:b881ef288a49aa81440d2c5eb8aeefd4c2bb8993d5f50edae7413a85bfdb3b57"}, +] + +[[package]] +name = "gensim" +version = "3.8.3" +description = "Python framework for fast Vector Space Modelling" +optional = false +python-versions = "*" +files = [ + {file = "gensim-3.8.3-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:61eed1d6b5fbe6dda0586ea447ebc2dc7890a7f70c2ed953d5abc3fe3cfb94bb"}, + {file = "gensim-3.8.3-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:3af62709369331c85552fd26caa21504baa64accc426dc094172f5c688750013"}, + {file = "gensim-3.8.3-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:8ff471921b3b10ffb3ae6cbb598dd9c07d9dc030dee5aa167e7682b549c42f87"}, + {file = "gensim-3.8.3-cp27-cp27m-win32.whl", hash = "sha256:440700e29b494bc2e1d52e14b69a821f46ab09ecf85cf36c8988f18e1d6c7a8b"}, + {file = "gensim-3.8.3-cp27-cp27m-win_amd64.whl", hash = "sha256:f8ea67bf8c47ee55cb1b32c97fa1474b7d6d22959dd8097c019a5d9c9df34f5f"}, + {file = "gensim-3.8.3-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7a90549dfc8ee3822fcad6da957de07d927e4e90ef42b3699543dee35ab2da13"}, + {file = "gensim-3.8.3-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:7629b33cf35f672efdd5269381f7e301958ee2638f27dfc63b80c5bfeaa827d3"}, + {file = "gensim-3.8.3-cp35-cp35m-macosx_10_9_intel.whl", hash = "sha256:6711b6d3a0007530ee7de7adc30a4c48a1d26ec6312ac50e1d1e0a1d54f9de5b"}, + {file = "gensim-3.8.3-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:ef2ddeceff482aee17c1e185f63bf027c8de8f595fdd9fd2d2503de96008f3b7"}, + {file = "gensim-3.8.3-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:41dcf6ecdc9acc657157967c791b8cbaba90ee6391f64efd28339b72f5e0c327"}, + {file = "gensim-3.8.3-cp35-cp35m-win32.whl", hash = "sha256:685a7657278161628821c8f873c5d7d2ffc0c28866648e39f76b450e4c7d5390"}, + {file = "gensim-3.8.3-cp35-cp35m-win_amd64.whl", hash = "sha256:b61a7c841a752c84b685674aa0d610289faad38795b325176481abe19b487e98"}, + {file = "gensim-3.8.3-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a61179df454a0d4b06a111c4ede0536f61c8121b4c0d0d02d23560a2fd4b3aff"}, + {file = "gensim-3.8.3-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:cc387d0d8bddbf3609ab95b3453296e4c9ff92c35e9799a17d86b1571d77a5fc"}, + {file = "gensim-3.8.3-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:b36e6330471061cfd78aad751e24c6b4f56d575697af0fbab42655128927d296"}, + {file = "gensim-3.8.3-cp36-cp36m-win32.whl", hash = "sha256:1e3d66c2eec494376fc599701d9c2868549aed6e93e47177e39217f0188e2d88"}, + {file = "gensim-3.8.3-cp36-cp36m-win_amd64.whl", hash = "sha256:91fa62d61b21f1878f140b10520f9de4a26a52672fbe407edfc7e09ca2eff235"}, + {file = "gensim-3.8.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:637fc5969f3cef4b7c8fd3e78e31ef09565c5566d5ceabf076b4170eb6444a80"}, + {file = "gensim-3.8.3-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:22f45fd239cacd0e3715ac447a2c8a5eea02e730ec1f701c55b359e9298e63a8"}, + {file = "gensim-3.8.3-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:d79370f78e9013b9d1e867c85ecc678d46a7ae0f01a8ca29e8f4291e5373b170"}, + {file = "gensim-3.8.3-cp37-cp37m-win32.whl", hash = "sha256:9c214b341f5304b906c79844e2787c13b46505df9dc70afca79a9a7dc0894478"}, + {file = "gensim-3.8.3-cp37-cp37m-win_amd64.whl", hash = "sha256:fe98277a7b3b4987b40c928056bbaae1d0715022cf27bba89d05cd0d4fe51a84"}, + {file = "gensim-3.8.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a47903d104469a7a8b6f22ad5ef74681b19c4f4b71ff2c2893271b53161a43e4"}, + {file = "gensim-3.8.3-cp38-cp38-manylinux1_i686.whl", hash = "sha256:05bfc02e102a34c9c795095b688b1b4aaa2529c624821368c9c3ea6a16536f77"}, + {file = "gensim-3.8.3-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:a8807ebf324dd11e1298a91a92d6e57c7bdabb91d0d5240bf1efa0c0eacd86f0"}, + {file = "gensim-3.8.3-cp38-cp38-win32.whl", hash = "sha256:90115d12ee545c21cc75521ef1bb3dd66aae8a378e9c2eb029c9f22df173c125"}, + {file = "gensim-3.8.3-cp38-cp38-win_amd64.whl", hash = "sha256:4e34cf2e50f3eab3e303da46089ea4972567bf216e28f7535ada155770784ac8"}, + {file = "gensim-3.8.3.tar.gz", hash = "sha256:786adb0571f75114e9c5f7a31dd2e6eb39a9791f22c8757621545e2ded3ea367"}, +] + +[package.dependencies] +Cython = "0.29.14" +numpy = ">=1.11.3" +scipy = ">=0.18.1" +six = ">=1.5.0" +smart-open = ">=1.8.1" + +[package.extras] +distributed = ["Pyro4 (>=4.27)"] +docs = ["Morfessor (==2.0.2a4)", "Pyro4", "Pyro4 (>=4.27)", "annoy", "cython", "matplotlib", "memory-profiler", "mock", "nltk", "nmslib", "pandas", "plotly", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "sphinx (<=2.4.4)", "sphinx-gallery", "sphinxcontrib-napoleon", "sphinxcontrib.programoutput", "statsmodels", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test-win = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] + +[[package]] +name = "google-auth" +version = "2.25.2" +description = "Google Authentication Library" +optional = false +python-versions = ">=3.7" +files = [ + {file = "google-auth-2.25.2.tar.gz", hash = "sha256:42f707937feb4f5e5a39e6c4f343a17300a459aaf03141457ba505812841cc40"}, + {file = "google_auth-2.25.2-py2.py3-none-any.whl", hash = "sha256:473a8dfd0135f75bb79d878436e568f2695dce456764bf3a02b6f8c540b1d256"}, +] + +[package.dependencies] +cachetools = ">=2.0.0,<6.0" +pyasn1-modules = ">=0.2.1" +rsa = ">=3.1.4,<5" + +[package.extras] +aiohttp = ["aiohttp (>=3.6.2,<4.0.0.dev0)", "requests (>=2.20.0,<3.0.0.dev0)"] +enterprise-cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"] +pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] +reauth = ["pyu2f (>=0.1.5)"] +requests = ["requests (>=2.20.0,<3.0.0.dev0)"] + +[[package]] +name = "google-auth-oauthlib" +version = "0.4.6" +description = "Google Authentication Library" +optional = false +python-versions = ">=3.6" +files = [ + {file = "google-auth-oauthlib-0.4.6.tar.gz", hash = "sha256:a90a072f6993f2c327067bf65270046384cda5a8ecb20b94ea9a687f1f233a7a"}, + {file = "google_auth_oauthlib-0.4.6-py2.py3-none-any.whl", hash = "sha256:3f2a6e802eebbb6fb736a370fbf3b055edcb6b52878bf2f26330b5e041316c73"}, +] + +[package.dependencies] +google-auth = ">=1.0.0" +requests-oauthlib = ">=0.7.0" + +[package.extras] +tool = ["click (>=6.0.0)"] + +[[package]] +name = "google-pasta" +version = "0.2.0" +description = "pasta is an AST-based Python refactoring library" +optional = false +python-versions = "*" +files = [ + {file = "google-pasta-0.2.0.tar.gz", hash = "sha256:c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e"}, + {file = "google_pasta-0.2.0-py2-none-any.whl", hash = "sha256:4612951da876b1a10fe3960d7226f0c7682cf901e16ac06e473b267a5afa8954"}, + {file = "google_pasta-0.2.0-py3-none-any.whl", hash = "sha256:b32482794a366b5366a32c92a9a9201b107821889935a02b3e51f6b432ea84ed"}, +] + +[package.dependencies] +six = "*" + +[[package]] +name = "grpcio" +version = "1.32.0" +description = "HTTP/2-based RPC framework" +optional = false +python-versions = "*" +files = [ + {file = "grpcio-1.32.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:3afb058b6929eba07dba9ae6c5b555aa1d88cb140187d78cc510bd72d0329f28"}, + {file = "grpcio-1.32.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:a8004b34f600a8a51785e46859cd88f3386ef67cccd1cfc7598e3d317608c643"}, + {file = "grpcio-1.32.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:e6786f6f7be0937614577edcab886ddce91b7c1ea972a07ef9972e9f9ecbbb78"}, + {file = "grpcio-1.32.0-cp27-cp27m-win32.whl", hash = "sha256:e467af6bb8f5843f5a441e124b43474715cfb3981264e7cd227343e826dcc3ce"}, + {file = "grpcio-1.32.0-cp27-cp27m-win_amd64.whl", hash = "sha256:1376a60f9bfce781b39973f100b5f67e657b5be479f2fd8a7d2a408fc61c085c"}, + {file = "grpcio-1.32.0-cp27-cp27mu-linux_armv7l.whl", hash = "sha256:ce617e1c4a39131f8527964ac9e700eb199484937d7a0b3e52655a3ba50d5fb9"}, + {file = "grpcio-1.32.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:99bac0e2c820bf446662365df65841f0c2a55b0e2c419db86eaf5d162ddae73e"}, + {file = "grpcio-1.32.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:6d869a3e8e62562b48214de95e9231c97c53caa7172802236cd5d60140d7cddd"}, + {file = "grpcio-1.32.0-cp35-cp35m-linux_armv7l.whl", hash = "sha256:182c64ade34c341398bf71ec0975613970feb175090760ab4f51d1e9a5424f05"}, + {file = "grpcio-1.32.0-cp35-cp35m-macosx_10_7_intel.whl", hash = "sha256:9c0d8f2346c842088b8cbe3e14985b36e5191a34bf79279ba321a4bf69bd88b7"}, + {file = "grpcio-1.32.0-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:4775bc35af9cd3b5033700388deac2e1d611fa45f4a8dcb93667d94cb25f0444"}, + {file = "grpcio-1.32.0-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:be98e3198ec765d0a1e27f69d760f69374ded8a33b953dcfe790127731f7e690"}, + {file = "grpcio-1.32.0-cp35-cp35m-manylinux2014_i686.whl", hash = "sha256:378fe80ec5d9353548eb2a8a43ea03747a80f2e387c4f177f2b3ff6c7d898753"}, + {file = "grpcio-1.32.0-cp35-cp35m-manylinux2014_x86_64.whl", hash = "sha256:f7d508691301027033215d3662dab7e178f54d5cca2329f26a71ae175d94b83f"}, + {file = "grpcio-1.32.0-cp35-cp35m-win32.whl", hash = "sha256:25959a651420dd4a6fd7d3e8dee53f4f5fd8c56336a64963428e78b276389a59"}, + {file = "grpcio-1.32.0-cp35-cp35m-win_amd64.whl", hash = "sha256:ac7028d363d2395f3d755166d0161556a3f99500a5b44890421ccfaaf2aaeb08"}, + {file = "grpcio-1.32.0-cp36-cp36m-linux_armv7l.whl", hash = "sha256:c31e8a219650ddae1cd02f5a169e1bffe66a429a8255d3ab29e9363c73003b62"}, + {file = "grpcio-1.32.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:e28e4c0d4231beda5dee94808e3a224d85cbaba3cfad05f2192e6f4ec5318053"}, + {file = "grpcio-1.32.0-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:f03dfefa9075dd1c6c5cc27b1285c521434643b09338d8b29e1d6a27b386aa82"}, + {file = "grpcio-1.32.0-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:c4966d746dccb639ef93f13560acbe9630681c07f2b320b7ec03fe2c8f0a1f15"}, + {file = "grpcio-1.32.0-cp36-cp36m-manylinux2014_i686.whl", hash = "sha256:ec10d5f680b8e95a06f1367d73c5ddcc0ed04a3f38d6e4c9346988fb0cea2ffa"}, + {file = "grpcio-1.32.0-cp36-cp36m-manylinux2014_x86_64.whl", hash = "sha256:28677f057e2ef11501860a7bc15de12091d40b95dd0fddab3c37ff1542e6b216"}, + {file = "grpcio-1.32.0-cp36-cp36m-win32.whl", hash = "sha256:0f3f09269ffd3fded430cd89ba2397eabbf7e47be93983b25c187cdfebb302a7"}, + {file = "grpcio-1.32.0-cp36-cp36m-win_amd64.whl", hash = "sha256:4396b1d0f388ae875eaf6dc05cdcb612c950fd9355bc34d38b90aaa0665a0d4b"}, + {file = "grpcio-1.32.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1ada89326a364a299527c7962e5c362dbae58c67b283fe8383c4d952b26565d5"}, + {file = "grpcio-1.32.0-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:1d384a61f96a1fc6d5d3e0b62b0a859abc8d4c3f6d16daba51ebf253a3e7df5d"}, + {file = "grpcio-1.32.0-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:e811ce5c387256609d56559d944a974cc6934a8eea8c76e7c86ec388dc06192d"}, + {file = "grpcio-1.32.0-cp37-cp37m-manylinux2014_i686.whl", hash = "sha256:07b430fa68e5eecd78e2ad529ab80f6a234b55fc1b675fe47335ccbf64c6c6c8"}, + {file = "grpcio-1.32.0-cp37-cp37m-manylinux2014_x86_64.whl", hash = "sha256:0e3edd8cdb71809d2455b9dbff66b4dd3d36c321e64bfa047da5afdfb0db332b"}, + {file = "grpcio-1.32.0-cp37-cp37m-win32.whl", hash = "sha256:6f7947dad606c509d067e5b91a92b250aa0530162ab99e4737090f6b17eb12c4"}, + {file = "grpcio-1.32.0-cp37-cp37m-win_amd64.whl", hash = "sha256:7cda998b7b551503beefc38db9be18c878cfb1596e1418647687575cdefa9273"}, + {file = "grpcio-1.32.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c58825a3d8634cd634d8f869afddd4d5742bdb59d594aea4cea17b8f39269a55"}, + {file = "grpcio-1.32.0-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:ef9bd7fdfc0a063b4ed0efcab7906df5cae9bbcf79d05c583daa2eba56752b00"}, + {file = "grpcio-1.32.0-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:1ce6f5ff4f4a548c502d5237a071fa617115df58ea4b7bd41dac77c1ab126e9c"}, + {file = "grpcio-1.32.0-cp38-cp38-manylinux2014_i686.whl", hash = "sha256:f12900be4c3fd2145ba94ab0d80b7c3d71c9e6414cfee2f31b1c20188b5c281f"}, + {file = "grpcio-1.32.0-cp38-cp38-manylinux2014_x86_64.whl", hash = "sha256:f53f2dfc8ff9a58a993e414a016c8b21af333955ae83960454ad91798d467c7b"}, + {file = "grpcio-1.32.0-cp38-cp38-win32.whl", hash = "sha256:5bddf9d53c8df70061916c3bfd2f468ccf26c348bb0fb6211531d895ed5e4c72"}, + {file = "grpcio-1.32.0-cp38-cp38-win_amd64.whl", hash = "sha256:14c0f017bfebbc18139551111ac58ecbde11f4bc375b73a53af38927d60308b6"}, + {file = "grpcio-1.32.0.tar.gz", hash = "sha256:01d3046fe980be25796d368f8fc5ff34b7cf5e1444f3789a017a7fe794465639"}, +] + +[package.dependencies] +six = ">=1.5.2" + +[package.extras] +protobuf = ["grpcio-tools (>=1.32.0)"] + +[[package]] +name = "h5py" +version = "2.10.0" +description = "Read and write HDF5 files from Python" +optional = false +python-versions = "*" +files = [ + {file = "h5py-2.10.0-cp27-cp27m-macosx_10_6_intel.whl", hash = "sha256:ecf4d0b56ee394a0984de15bceeb97cbe1fe485f1ac205121293fc44dcf3f31f"}, + {file = "h5py-2.10.0-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:86868dc07b9cc8cb7627372a2e6636cdc7a53b7e2854ad020c9e9d8a4d3fd0f5"}, + {file = "h5py-2.10.0-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:aac4b57097ac29089f179bbc2a6e14102dd210618e94d77ee4831c65f82f17c0"}, + {file = "h5py-2.10.0-cp27-cp27m-win32.whl", hash = "sha256:7be5754a159236e95bd196419485343e2b5875e806fe68919e087b6351f40a70"}, + {file = "h5py-2.10.0-cp27-cp27m-win_amd64.whl", hash = "sha256:13c87efa24768a5e24e360a40e0bc4c49bcb7ce1bb13a3a7f9902cec302ccd36"}, + {file = "h5py-2.10.0-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:79b23f47c6524d61f899254f5cd5e486e19868f1823298bc0c29d345c2447172"}, + {file = "h5py-2.10.0-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:cbf28ae4b5af0f05aa6e7551cee304f1d317dbed1eb7ac1d827cee2f1ef97a99"}, + {file = "h5py-2.10.0-cp34-cp34m-manylinux1_i686.whl", hash = "sha256:c0d4b04bbf96c47b6d360cd06939e72def512b20a18a8547fa4af810258355d5"}, + {file = "h5py-2.10.0-cp34-cp34m-manylinux1_x86_64.whl", hash = "sha256:549ad124df27c056b2e255ea1c44d30fb7a17d17676d03096ad5cd85edb32dc1"}, + {file = "h5py-2.10.0-cp35-cp35m-macosx_10_6_intel.whl", hash = "sha256:a5f82cd4938ff8761d9760af3274acf55afc3c91c649c50ab18fcff5510a14a5"}, + {file = "h5py-2.10.0-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:3dad1730b6470fad853ef56d755d06bb916ee68a3d8272b3bab0c1ddf83bb99e"}, + {file = "h5py-2.10.0-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:063947eaed5f271679ed4ffa36bb96f57bc14f44dd4336a827d9a02702e6ce6b"}, + {file = "h5py-2.10.0-cp35-cp35m-win32.whl", hash = "sha256:c54a2c0dd4957776ace7f95879d81582298c5daf89e77fb8bee7378f132951de"}, + {file = "h5py-2.10.0-cp35-cp35m-win_amd64.whl", hash = "sha256:6998be619c695910cb0effe5eb15d3a511d3d1a5d217d4bd0bebad1151ec2262"}, + {file = "h5py-2.10.0-cp36-cp36m-macosx_10_6_intel.whl", hash = "sha256:ff7d241f866b718e4584fa95f520cb19405220c501bd3a53ee11871ba5166ea2"}, + {file = "h5py-2.10.0-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:54817b696e87eb9e403e42643305f142cd8b940fe9b3b490bbf98c3b8a894cf4"}, + {file = "h5py-2.10.0-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:d3c59549f90a891691991c17f8e58c8544060fdf3ccdea267100fa5f561ff62f"}, + {file = "h5py-2.10.0-cp36-cp36m-win32.whl", hash = "sha256:d7ae7a0576b06cb8e8a1c265a8bc4b73d05fdee6429bffc9a26a6eb531e79d72"}, + {file = "h5py-2.10.0-cp36-cp36m-win_amd64.whl", hash = "sha256:bffbc48331b4a801d2f4b7dac8a72609f0b10e6e516e5c480a3e3241e091c878"}, + {file = "h5py-2.10.0-cp37-cp37m-macosx_10_6_intel.whl", hash = "sha256:51ae56894c6c93159086ffa2c94b5b3388c0400548ab26555c143e7cfa05b8e5"}, + {file = "h5py-2.10.0-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:16ead3c57141101e3296ebeed79c9c143c32bdd0e82a61a2fc67e8e6d493e9d1"}, + {file = "h5py-2.10.0-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:f0e25bb91e7a02efccb50aba6591d3fe2c725479e34769802fcdd4076abfa917"}, + {file = "h5py-2.10.0-cp37-cp37m-win32.whl", hash = "sha256:f23951a53d18398ef1344c186fb04b26163ca6ce449ebd23404b153fd111ded9"}, + {file = "h5py-2.10.0-cp37-cp37m-win_amd64.whl", hash = "sha256:8bb1d2de101f39743f91512a9750fb6c351c032e5cd3204b4487383e34da7f75"}, + {file = "h5py-2.10.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:64f74da4a1dd0d2042e7d04cf8294e04ddad686f8eba9bb79e517ae582f6668d"}, + {file = "h5py-2.10.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:d35f7a3a6cefec82bfdad2785e78359a0e6a5fbb3f605dd5623ce88082ccd681"}, + {file = "h5py-2.10.0-cp38-cp38-win32.whl", hash = "sha256:6ef7ab1089e3ef53ca099038f3c0a94d03e3560e6aff0e9d6c64c55fb13fc681"}, + {file = "h5py-2.10.0-cp38-cp38-win_amd64.whl", hash = "sha256:769e141512b54dee14ec76ed354fcacfc7d97fea5a7646b709f7400cf1838630"}, + {file = "h5py-2.10.0.tar.gz", hash = "sha256:84412798925dc870ffd7107f045d7659e60f5d46d1c70c700375248bf6bf512d"}, +] + +[package.dependencies] +numpy = ">=1.7" +six = "*" + +[[package]] +name = "idna" +version = "3.6" +description = "Internationalized Domain Names in Applications (IDNA)" +optional = false +python-versions = ">=3.5" +files = [ + {file = "idna-3.6-py3-none-any.whl", hash = "sha256:c05567e9c24a6b9faaa835c4821bad0590fbb9d5779e7caa6e1cc4978e7eb24f"}, + {file = "idna-3.6.tar.gz", hash = "sha256:9ecdbbd083b06798ae1e86adcbfe8ab1479cf864e4ee30fe4e46a003d12491ca"}, +] + +[[package]] +name = "importlib-metadata" +version = "7.0.0" +description = "Read metadata from Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "importlib_metadata-7.0.0-py3-none-any.whl", hash = "sha256:d97503976bb81f40a193d41ee6570868479c69d5068651eb039c40d850c59d67"}, + {file = "importlib_metadata-7.0.0.tar.gz", hash = "sha256:7fc841f8b8332803464e5dc1c63a2e59121f46ca186c0e2e182e80bf8c1319f7"}, +] + +[package.dependencies] +zipp = ">=0.5" + +[package.extras] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] +perf = ["ipython"] +testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)", "pytest-ruff"] + +[[package]] +name = "ipykernel" +version = "6.27.1" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipykernel-6.27.1-py3-none-any.whl", hash = "sha256:dab88b47f112f9f7df62236511023c9bdeef67abc73af7c652e4ce4441601686"}, + {file = "ipykernel-6.27.1.tar.gz", hash = "sha256:7d5d594b6690654b4d299edba5e872dc17bb7396a8d0609c97cb7b8a1c605de6"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=20" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.12.3" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, + {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "sys_platform == \"darwin\""} +backcall = "*" +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} +pickleshare = "*" +prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" +pygments = ">=2.4.0" +stack-data = "*" +traitlets = ">=5" +typing-extensions = {version = "*", markers = "python_version < \"3.10\""} + +[package.extras] +all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +black = ["black"] +doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +kernel = ["ipykernel"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] + +[[package]] +name = "jedi" +version = "0.19.1" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +files = [ + {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, + {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, +] + +[package.dependencies] +parso = ">=0.8.3,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] + +[[package]] +name = "joblib" +version = "1.3.2" +description = "Lightweight pipelining with Python functions" +optional = false +python-versions = ">=3.7" +files = [ + {file = "joblib-1.3.2-py3-none-any.whl", hash = "sha256:ef4331c65f239985f3f2220ecc87db222f08fd22097a3dd5698f693875f8cbb9"}, + {file = "joblib-1.3.2.tar.gz", hash = "sha256:92f865e621e17784e7955080b6d042489e3b8e294949cc44c6eac304f59772b1"}, +] + +[[package]] +name = "jupyter-client" +version = "8.6.0" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_client-8.6.0-py3-none-any.whl", hash = "sha256:909c474dbe62582ae62b758bca86d6518c85234bdee2d908c778db6d72f39d99"}, + {file = "jupyter_client-8.6.0.tar.gz", hash = "sha256:0642244bb83b4764ae60d07e010e15f0e2d275ec4e918a8f7b80fbbef3ca60c7"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-core" +version = "5.5.1" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_core-5.5.1-py3-none-any.whl", hash = "sha256:220dfb00c45f0d780ce132bb7976b58263f81a3ada6e90a9b6823785a424f739"}, + {file = "jupyter_core-5.5.1.tar.gz", hash = "sha256:1553311a97ccd12936037f36b9ab4d6ae8ceea6ad2d5c90d94a909e752178e40"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "karateclub" +version = "1.0.19" +description = "A general purpose library for community detection, network embedding, and graph mining research." +optional = false +python-versions = "*" +files = [ + {file = "karateclub-1.0.19.tar.gz", hash = "sha256:0e43f9072f028f471f935a47746c71d24df0472eb5fafd77be9f5619a1e0f804"}, +] + +[package.dependencies] +gensim = "*" +networkx = "*" +numpy = "*" +pandas = "*" +pygsp = "*" +python-louvain = "*" +scikit-learn = "*" +scipy = "*" +six = "*" +tqdm = "*" + +[[package]] +name = "keras-preprocessing" +version = "1.1.2" +description = "Easy data preprocessing and data augmentation for deep learning models" +optional = false +python-versions = "*" +files = [ + {file = "Keras_Preprocessing-1.1.2-py2.py3-none-any.whl", hash = "sha256:7b82029b130ff61cc99b55f3bd27427df4838576838c5b2f65940e4fcec99a7b"}, + {file = "Keras_Preprocessing-1.1.2.tar.gz", hash = "sha256:add82567c50c8bc648c14195bf544a5ce7c1f76761536956c3d2978970179ef3"}, +] + +[package.dependencies] +numpy = ">=1.9.1" +six = ">=1.9.0" + +[package.extras] +image = ["Pillow (>=5.2.0)", "scipy (>=0.14)"] +pep8 = ["flake8"] +tests = ["Pillow", "keras", "pandas", "pytest", "pytest-cov", "pytest-xdist", "tensorflow"] + +[[package]] +name = "kiwisolver" +version = "1.4.5" +description = "A fast implementation of the Cassowary constraint solver" +optional = false +python-versions = ">=3.7" +files = [ + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, + {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, +] + +[[package]] +name = "markdown" +version = "3.5.1" +description = "Python implementation of John Gruber's Markdown." +optional = false +python-versions = ">=3.8" +files = [ + {file = "Markdown-3.5.1-py3-none-any.whl", hash = "sha256:5874b47d4ee3f0b14d764324d2c94c03ea66bee56f2d929da9f2508d65e722dc"}, + {file = "Markdown-3.5.1.tar.gz", hash = "sha256:b65d7beb248dc22f2e8a31fb706d93798093c308dc1aba295aedeb9d41a813bd"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.4", markers = "python_version < \"3.10\""} + +[package.extras] +docs = ["mdx-gh-links (>=0.2)", "mkdocs (>=1.5)", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-nature (>=0.6)", "mkdocs-section-index", "mkdocstrings[python]"] +testing = ["coverage", "pyyaml"] + +[[package]] +name = "markupsafe" +version = "2.1.3" +description = "Safely add untrusted strings to HTML/XML markup." +optional = false +python-versions = ">=3.7" +files = [ + {file = "MarkupSafe-2.1.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:cd0f502fe016460680cd20aaa5a76d241d6f35a1c3350c474bac1273803893fa"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e09031c87a1e51556fdcb46e5bd4f59dfb743061cf93c4d6831bf894f125eb57"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68e78619a61ecf91e76aa3e6e8e33fc4894a2bebe93410754bd28fce0a8a4f9f"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65c1a9bcdadc6c28eecee2c119465aebff8f7a584dd719facdd9e825ec61ab52"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:525808b8019e36eb524b8c68acdd63a37e75714eac50e988180b169d64480a00"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:962f82a3086483f5e5f64dbad880d31038b698494799b097bc59c2edf392fce6"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:aa7bd130efab1c280bed0f45501b7c8795f9fdbeb02e965371bbef3523627779"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c9c804664ebe8f83a211cace637506669e7890fec1b4195b505c214e50dd4eb7"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-win32.whl", hash = "sha256:10bbfe99883db80bdbaff2dcf681dfc6533a614f700da1287707e8a5d78a8431"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-win_amd64.whl", hash = "sha256:1577735524cdad32f9f694208aa75e422adba74f1baee7551620e43a3141f559"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ad9e82fb8f09ade1c3e1b996a6337afac2b8b9e365f926f5a61aacc71adc5b3c"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3c0fae6c3be832a0a0473ac912810b2877c8cb9d76ca48de1ed31e1c68386575"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b076b6226fb84157e3f7c971a47ff3a679d837cf338547532ab866c57930dbee"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfce63a9e7834b12b87c64d6b155fdd9b3b96191b6bd334bf37db7ff1fe457f2"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:338ae27d6b8745585f87218a3f23f1512dbf52c26c28e322dbe54bcede54ccb9"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e4dd52d80b8c83fdce44e12478ad2e85c64ea965e75d66dbeafb0a3e77308fcc"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:df0be2b576a7abbf737b1575f048c23fb1d769f267ec4358296f31c2479db8f9"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5bbe06f8eeafd38e5d0a4894ffec89378b6c6a625ff57e3028921f8ff59318ac"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-win32.whl", hash = "sha256:dd15ff04ffd7e05ffcb7fe79f1b98041b8ea30ae9234aed2a9168b5797c3effb"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:134da1eca9ec0ae528110ccc9e48041e0828d79f24121a1a146161103c76e686"}, + {file = "MarkupSafe-2.1.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8e254ae696c88d98da6555f5ace2279cf7cd5b3f52be2b5cf97feafe883b58d2"}, + {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0932dc158471523c9637e807d9bfb93e06a95cbf010f1a38b98623b929ef2b"}, + {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9402b03f1a1b4dc4c19845e5c749e3ab82d5078d16a2a4c2cd2df62d57bb0707"}, + {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca379055a47383d02a5400cb0d110cef0a776fc644cda797db0c5696cfd7e18e"}, + {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b7ff0f54cb4ff66dd38bebd335a38e2c22c41a8ee45aa608efc890ac3e3931bc"}, + {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c011a4149cfbcf9f03994ec2edffcb8b1dc2d2aede7ca243746df97a5d41ce48"}, + {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:56d9f2ecac662ca1611d183feb03a3fa4406469dafe241673d521dd5ae92a155"}, + {file = "MarkupSafe-2.1.3-cp37-cp37m-win32.whl", hash = "sha256:8758846a7e80910096950b67071243da3e5a20ed2546e6392603c096778d48e0"}, + {file = "MarkupSafe-2.1.3-cp37-cp37m-win_amd64.whl", hash = "sha256:787003c0ddb00500e49a10f2844fac87aa6ce977b90b0feaaf9de23c22508b24"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:2ef12179d3a291be237280175b542c07a36e7f60718296278d8593d21ca937d4"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2c1b19b3aaacc6e57b7e25710ff571c24d6c3613a45e905b1fde04d691b98ee0"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8afafd99945ead6e075b973fefa56379c5b5c53fd8937dad92c662da5d8fd5ee"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c41976a29d078bb235fea9b2ecd3da465df42a562910f9022f1a03107bd02be"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d080e0a5eb2529460b30190fcfcc4199bd7f827663f858a226a81bc27beaa97e"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:69c0f17e9f5a7afdf2cc9fb2d1ce6aabdb3bafb7f38017c0b77862bcec2bbad8"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:504b320cd4b7eff6f968eddf81127112db685e81f7e36e75f9f84f0df46041c3"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:42de32b22b6b804f42c5d98be4f7e5e977ecdd9ee9b660fda1a3edf03b11792d"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-win32.whl", hash = "sha256:ceb01949af7121f9fc39f7d27f91be8546f3fb112c608bc4029aef0bab86a2a5"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-win_amd64.whl", hash = "sha256:1b40069d487e7edb2676d3fbdb2b0829ffa2cd63a2ec26c4938b2d34391b4ecc"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:8023faf4e01efadfa183e863fefde0046de576c6f14659e8782065bcece22198"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6b2b56950d93e41f33b4223ead100ea0fe11f8e6ee5f641eb753ce4b77a7042b"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9dcdfd0eaf283af041973bff14a2e143b8bd64e069f4c383416ecd79a81aab58"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05fb21170423db021895e1ea1e1f3ab3adb85d1c2333cbc2310f2a26bc77272e"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:282c2cb35b5b673bbcadb33a585408104df04f14b2d9b01d4c345a3b92861c2c"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ab4a0df41e7c16a1392727727e7998a467472d0ad65f3ad5e6e765015df08636"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7ef3cb2ebbf91e330e3bb937efada0edd9003683db6b57bb108c4001f37a02ea"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0a4e4a1aff6c7ac4cd55792abf96c915634c2b97e3cc1c7129578aa68ebd754e"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-win32.whl", hash = "sha256:fec21693218efe39aa7f8599346e90c705afa52c5b31ae019b2e57e8f6542bb2"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-win_amd64.whl", hash = "sha256:3fd4abcb888d15a94f32b75d8fd18ee162ca0c064f35b11134be77050296d6ba"}, + {file = "MarkupSafe-2.1.3.tar.gz", hash = "sha256:af598ed32d6ae86f1b747b82783958b1a4ab8f617b06fe68795c7f026abbdcad"}, +] + +[[package]] +name = "matplotlib" +version = "3.2.2" +description = "Python plotting package" +optional = false +python-versions = ">=3.6" +files = [ + {file = "matplotlib-3.2.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a47abc48c7b81fe6e636dde8a58e49b13d87d140e0f448213a4879f4a3f73345"}, + {file = "matplotlib-3.2.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:20bcd11efe194cd302bd0653cb025b8d16bcd80442359bfca8d49dc805f35ec8"}, + {file = "matplotlib-3.2.2-cp36-cp36m-win32.whl", hash = "sha256:2a6d64336b547e25730b6221e7aadfb01a391a065d43b5f51f0b9d7f673d2dd2"}, + {file = "matplotlib-3.2.2-cp36-cp36m-win_amd64.whl", hash = "sha256:4416825ebc9c1f135027a30e8d8aea0edcf45078ce767c7f7386737413cfb98f"}, + {file = "matplotlib-3.2.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:465c752278d27895e23f1379d6fcfa3a2990643b803c25e3bc16a10641d2346a"}, + {file = "matplotlib-3.2.2-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:81de040403a33bf3c68e9d4a40e26c8d24da00f7e3fadd845003b7e106785da7"}, + {file = "matplotlib-3.2.2-cp37-cp37m-win32.whl", hash = "sha256:006413f08ba5db1f5b1e0d6fbdc2ac9058b062ccf552f57182563a78579c34b4"}, + {file = "matplotlib-3.2.2-cp37-cp37m-win_amd64.whl", hash = "sha256:da06fa530591a141ffbe1712bbeec784734c3436b40c942d21652f305199b5d9"}, + {file = "matplotlib-3.2.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:894dd47c0a6ce38dc19bc87d1f7e2b0608310b2a18d1572291157450b05ce874"}, + {file = "matplotlib-3.2.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:1ab264770e7cf2cf4feb99f22c737066aef21ddf1ec402dc255450ac15eacb7b"}, + {file = "matplotlib-3.2.2-cp38-cp38-win32.whl", hash = "sha256:91c153f4318e3c67c035fd1185f5ea2613f15008b73b66985033033f6fe54bbd"}, + {file = "matplotlib-3.2.2-cp38-cp38-win_amd64.whl", hash = "sha256:a68e42e22f7fd190a532e4215e142276970c2d54040a0c46842fcb3db8b6ec5b"}, + {file = "matplotlib-3.2.2-cp39-cp39-win32.whl", hash = "sha256:647cf232ccf6265d2ba1ac4103e8c8b6ac7b03a40da3421234ffb03dda217f59"}, + {file = "matplotlib-3.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:31d32c83bb2b617377c6156f75e88b9ec2ded289e47ad4ff0f263dc1019d88b1"}, + {file = "matplotlib-3.2.2-pp36-pypy36_pp73-win32.whl", hash = "sha256:67065d938df34478451af62fbd0670d2b51c4d859fb66673064eb5de8660dd7c"}, + {file = "matplotlib-3.2.2.tar.gz", hash = "sha256:3d77a6630d093d74cbbfebaa0571d00790966be1ed204e4a8239f5cbd6835c5d"}, +] + +[package.dependencies] +cycler = ">=0.10" +kiwisolver = ">=1.0.1" +numpy = ">=1.11" +pyparsing = ">=2.0.1,<2.0.4 || >2.0.4,<2.1.2 || >2.1.2,<2.1.6 || >2.1.6" +python-dateutil = ">=2.1" + +[[package]] +name = "matplotlib-inline" +version = "0.1.6" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.5" +files = [ + {file = "matplotlib-inline-0.1.6.tar.gz", hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"}, + {file = "matplotlib_inline-0.1.6-py3-none-any.whl", hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "nest-asyncio" +version = "1.5.8" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +files = [ + {file = "nest_asyncio-1.5.8-py3-none-any.whl", hash = "sha256:accda7a339a70599cb08f9dd09a67e0c2ef8d8d6f4c07f96ab203f2ae254e48d"}, + {file = "nest_asyncio-1.5.8.tar.gz", hash = "sha256:25aa2ca0d2a5b5531956b9e273b45cf664cae2b145101d73b86b199978d48fdb"}, +] + +[[package]] +name = "networkx" +version = "2.5" +description = "Python package for creating and manipulating graphs and networks" +optional = false +python-versions = ">=3.6" +files = [ + {file = "networkx-2.5-py3-none-any.whl", hash = "sha256:8c5812e9f798d37c50570d15c4a69d5710a18d77bafc903ee9c5fba7454c616c"}, + {file = "networkx-2.5.tar.gz", hash = "sha256:7978955423fbc9639c10498878be59caf99b44dc304c2286162fd24b458c1602"}, +] + +[package.dependencies] +decorator = ">=4.3.0" + +[package.extras] +all = ["lxml", "matplotlib", "numpy", "pandas", "pydot", "pygraphviz", "pytest", "pyyaml", "scipy"] +gdal = ["gdal"] +lxml = ["lxml"] +matplotlib = ["matplotlib"] +numpy = ["numpy"] +pandas = ["pandas"] +pydot = ["pydot"] +pygraphviz = ["pygraphviz"] +pytest = ["pytest"] +pyyaml = ["pyyaml"] +scipy = ["scipy"] + +[[package]] +name = "node2vec" +version = "0.3.3" +description = "Implementation of the node2vec algorithm." +optional = false +python-versions = "*" +files = [ + {file = "node2vec-0.3.3.tar.gz", hash = "sha256:a122796952137bc91df5e9a51525180d510e1f4e4208eb4a21329137c38354d8"}, +] + +[package.dependencies] +gensim = "*" +joblib = ">=0.13.2" +networkx = "*" +numpy = "*" +tqdm = "*" + +[[package]] +name = "numpy" +version = "1.19.5" +description = "NumPy is the fundamental package for array computing with Python." +optional = false +python-versions = ">=3.6" +files = [ + {file = "numpy-1.19.5-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:cc6bd4fd593cb261332568485e20a0712883cf631f6f5e8e86a52caa8b2b50ff"}, + {file = "numpy-1.19.5-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:aeb9ed923be74e659984e321f609b9ba54a48354bfd168d21a2b072ed1e833ea"}, + {file = "numpy-1.19.5-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:8b5e972b43c8fc27d56550b4120fe6257fdc15f9301914380b27f74856299fea"}, + {file = "numpy-1.19.5-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:43d4c81d5ffdff6bae58d66a3cd7f54a7acd9a0e7b18d97abb255defc09e3140"}, + {file = "numpy-1.19.5-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:a4646724fba402aa7504cd48b4b50e783296b5e10a524c7a6da62e4a8ac9698d"}, + {file = "numpy-1.19.5-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:2e55195bc1c6b705bfd8ad6f288b38b11b1af32f3c8289d6c50d47f950c12e76"}, + {file = "numpy-1.19.5-cp36-cp36m-win32.whl", hash = "sha256:39b70c19ec771805081578cc936bbe95336798b7edf4732ed102e7a43ec5c07a"}, + {file = "numpy-1.19.5-cp36-cp36m-win_amd64.whl", hash = "sha256:dbd18bcf4889b720ba13a27ec2f2aac1981bd41203b3a3b27ba7a33f88ae4827"}, + {file = "numpy-1.19.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:603aa0706be710eea8884af807b1b3bc9fb2e49b9f4da439e76000f3b3c6ff0f"}, + {file = "numpy-1.19.5-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:cae865b1cae1ec2663d8ea56ef6ff185bad091a5e33ebbadd98de2cfa3fa668f"}, + {file = "numpy-1.19.5-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:36674959eed6957e61f11c912f71e78857a8d0604171dfd9ce9ad5cbf41c511c"}, + {file = "numpy-1.19.5-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:06fab248a088e439402141ea04f0fffb203723148f6ee791e9c75b3e9e82f080"}, + {file = "numpy-1.19.5-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:6149a185cece5ee78d1d196938b2a8f9d09f5a5ebfbba66969302a778d5ddd1d"}, + {file = "numpy-1.19.5-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:50a4a0ad0111cc1b71fa32dedd05fa239f7fb5a43a40663269bb5dc7877cfd28"}, + {file = "numpy-1.19.5-cp37-cp37m-win32.whl", hash = "sha256:d051ec1c64b85ecc69531e1137bb9751c6830772ee5c1c426dbcfe98ef5788d7"}, + {file = "numpy-1.19.5-cp37-cp37m-win_amd64.whl", hash = "sha256:a12ff4c8ddfee61f90a1633a4c4afd3f7bcb32b11c52026c92a12e1325922d0d"}, + {file = "numpy-1.19.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cf2402002d3d9f91c8b01e66fbb436a4ed01c6498fffed0e4c7566da1d40ee1e"}, + {file = "numpy-1.19.5-cp38-cp38-manylinux1_i686.whl", hash = "sha256:1ded4fce9cfaaf24e7a0ab51b7a87be9038ea1ace7f34b841fe3b6894c721d1c"}, + {file = "numpy-1.19.5-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:012426a41bc9ab63bb158635aecccc7610e3eff5d31d1eb43bc099debc979d94"}, + {file = "numpy-1.19.5-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:759e4095edc3c1b3ac031f34d9459fa781777a93ccc633a472a5468587a190ff"}, + {file = "numpy-1.19.5-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:a9d17f2be3b427fbb2bce61e596cf555d6f8a56c222bd2ca148baeeb5e5c783c"}, + {file = "numpy-1.19.5-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:99abf4f353c3d1a0c7a5f27699482c987cf663b1eac20db59b8c7b061eabd7fc"}, + {file = "numpy-1.19.5-cp38-cp38-win32.whl", hash = "sha256:384ec0463d1c2671170901994aeb6dce126de0a95ccc3976c43b0038a37329c2"}, + {file = "numpy-1.19.5-cp38-cp38-win_amd64.whl", hash = "sha256:811daee36a58dc79cf3d8bdd4a490e4277d0e4b7d103a001a4e73ddb48e7e6aa"}, + {file = "numpy-1.19.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c843b3f50d1ab7361ca4f0b3639bf691569493a56808a0b0c54a051d260b7dbd"}, + {file = "numpy-1.19.5-cp39-cp39-manylinux1_i686.whl", hash = "sha256:d6631f2e867676b13026e2846180e2c13c1e11289d67da08d71cacb2cd93d4aa"}, + {file = "numpy-1.19.5-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:7fb43004bce0ca31d8f13a6eb5e943fa73371381e53f7074ed21a4cb786c32f8"}, + {file = "numpy-1.19.5-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:2ea52bd92ab9f768cc64a4c3ef8f4b2580a17af0a5436f6126b08efbd1838371"}, + {file = "numpy-1.19.5-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:400580cbd3cff6ffa6293df2278c75aef2d58d8d93d3c5614cd67981dae68ceb"}, + {file = "numpy-1.19.5-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:df609c82f18c5b9f6cb97271f03315ff0dbe481a2a02e56aeb1b1a985ce38e60"}, + {file = "numpy-1.19.5-cp39-cp39-win32.whl", hash = "sha256:ab83f24d5c52d60dbc8cd0528759532736b56db58adaa7b5f1f76ad551416a1e"}, + {file = "numpy-1.19.5-cp39-cp39-win_amd64.whl", hash = "sha256:0eef32ca3132a48e43f6a0f5a82cb508f22ce5a3d6f67a8329c81c8e226d3f6e"}, + {file = "numpy-1.19.5-pp36-pypy36_pp73-manylinux2010_x86_64.whl", hash = "sha256:a0d53e51a6cb6f0d9082decb7a4cb6dfb33055308c4c44f53103c073f649af73"}, + {file = "numpy-1.19.5.zip", hash = "sha256:a76f502430dd98d7546e1ea2250a7360c065a5fdea52b2dffe8ae7180909b6f4"}, +] + +[[package]] +name = "nxt-gem" +version = "2.0.1" +description = "nxt_gem: A Python module for Graph Embedding Methods" +optional = false +python-versions = "*" +files = [] +develop = false + +[package.dependencies] +matplotlib = ">=2.0.0" +networkx = ">=2.4" +numpy = ">=1.12.0" +scikit-learn = ">=0.21.2" +scipy = ">=0.19.0" +theano = ">=0.9.0" + +[package.source] +type = "git" +url = "https://github.com/palash1992/GEM.git" +reference = "master" +resolved_reference = "ae8e92d34213f5785757b4a0943bd7d8d337adb3" + +[[package]] +name = "oauthlib" +version = "3.2.2" +description = "A generic, spec-compliant, thorough implementation of the OAuth request-signing logic" +optional = false +python-versions = ">=3.6" +files = [ + {file = "oauthlib-3.2.2-py3-none-any.whl", hash = "sha256:8139f29aac13e25d502680e9e19963e83f16838d48a0d71c287fe40e7067fbca"}, + {file = "oauthlib-3.2.2.tar.gz", hash = "sha256:9859c40929662bec5d64f34d01c99e093149682a3f38915dc0655d5a633dd918"}, +] + +[package.extras] +rsa = ["cryptography (>=3.0.0)"] +signals = ["blinker (>=1.4.0)"] +signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] + +[[package]] +name = "opt-einsum" +version = "3.3.0" +description = "Optimizing numpys einsum function" +optional = false +python-versions = ">=3.5" +files = [ + {file = "opt_einsum-3.3.0-py3-none-any.whl", hash = "sha256:2455e59e3947d3c275477df7f5205b30635e266fe6dc300e3d9f9646bfcea147"}, + {file = "opt_einsum-3.3.0.tar.gz", hash = "sha256:59f6475f77bbc37dcf7cd748519c0ec60722e91e63ca114e68821c0c54a46549"}, +] + +[package.dependencies] +numpy = ">=1.7" + +[package.extras] +docs = ["numpydoc", "sphinx (==1.2.3)", "sphinx-rtd-theme", "sphinxcontrib-napoleon"] +tests = ["pytest", "pytest-cov", "pytest-pep8"] + +[[package]] +name = "packaging" +version = "23.2" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.7" +files = [ + {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, + {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, +] + +[[package]] +name = "pandas" +version = "1.3.3" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.7.1" +files = [ + {file = "pandas-1.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68408a39a54ebadb9014ee5a4fae27b2fe524317bc80adf56c9ac59e8f8ea431"}, + {file = "pandas-1.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86b16b1b920c4cb27fdd65a2c20258bcd9c794be491290660722bb0ea765054d"}, + {file = "pandas-1.3.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:37d63e78e87eb3791da7be4100a65da0383670c2b59e493d9e73098d7a879226"}, + {file = "pandas-1.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:53e2fb11f86f6253bb1df26e3aeab3bf2e000aaa32a953ec394571bec5dc6fd6"}, + {file = "pandas-1.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7326b37de08d42dd3fff5b7ef7691d0fd0bf2428f4ba5a2bdc3b3247e9a52e4c"}, + {file = "pandas-1.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2f29b4da6f6ae7c68f4b3708d9d9e59fa89b2f9e87c2b64ce055cbd39f729e"}, + {file = "pandas-1.3.3-cp37-cp37m-win32.whl", hash = "sha256:3f5020613c1d8e304840c34aeb171377dc755521bf5e69804991030c2a48aec3"}, + {file = "pandas-1.3.3-cp37-cp37m-win_amd64.whl", hash = "sha256:c399200631db9bd9335d013ec7fce4edb98651035c249d532945c78ad453f23a"}, + {file = "pandas-1.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a800df4e101b721e94d04c355e611863cc31887f24c0b019572e26518cbbcab6"}, + {file = "pandas-1.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3334a5a9eeaca953b9db1b2b165dcdc5180b5011f3bec3a57a3580c9c22eae68"}, + {file = "pandas-1.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49fd2889d8116d7acef0709e4c82b8560a8b22b0f77471391d12c27596e90267"}, + {file = "pandas-1.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7557b39c8e86eb0543a17a002ac1ea0f38911c3c17095bc9350d0a65b32d801c"}, + {file = "pandas-1.3.3-cp38-cp38-win32.whl", hash = "sha256:629138b7cf81a2e55aa29ce7b04c1cece20485271d1f6c469c6a0c03857db6a4"}, + {file = "pandas-1.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:45649503e167d45360aa7c52f18d1591a6d5c70d2f3a26bc90a3297a30ce9a66"}, + {file = "pandas-1.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ebbed7312547a924df0cbe133ff1250eeb94cdff3c09a794dc991c5621c8c735"}, + {file = "pandas-1.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a9f1b54d7efc9df05320b14a48fb18686f781aa66cc7b47bb62fabfc67a0985c"}, + {file = "pandas-1.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9bc59855598cb57f68fdabd4897d3ed2bc3a3b3bef7b868a0153c4cd03f3207"}, + {file = "pandas-1.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4def2ef2fb7fcd62f2aa51bacb817ee9029e5c8efe42fe527ba21f6a3ddf1a9f"}, + {file = "pandas-1.3.3-cp39-cp39-win32.whl", hash = "sha256:f7d84f321674c2f0f31887ee6d5755c54ca1ea5e144d6d54b3bbf566dd9ea0cc"}, + {file = "pandas-1.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:e574c2637c9d27f322e911650b36e858c885702c5996eda8a5a60e35e6648cf2"}, + {file = "pandas-1.3.3.tar.gz", hash = "sha256:272c8cb14aa9793eada6b1ebe81994616e647b5892a370c7135efb2924b701df"}, +] + +[package.dependencies] +numpy = ">=1.17.3" +python-dateutil = ">=2.7.3" +pytz = ">=2017.3" + +[package.extras] +test = ["hypothesis (>=3.58)", "pytest (>=6.0)", "pytest-xdist"] + +[[package]] +name = "pandas" +version = "1.4.4" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pandas-1.4.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:799e6a25932df7e6b1f8dabf63de064e2205dc309abb75956126a0453fd88e97"}, + {file = "pandas-1.4.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7cd1d69a387f7d5e1a5a06a87574d9ef2433847c0e78113ab51c84d3a8bcaeaa"}, + {file = "pandas-1.4.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:94f2ed1fd51e545ebf71da1e942fe1822ee01e10d3dd2a7276d01351333b7c6b"}, + {file = "pandas-1.4.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4591cadd06fbbbd16fafc2de6e840c1aaefeae3d5864b688004777ef1bbdede3"}, + {file = "pandas-1.4.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0022fe6a313df1c4869b5edc012d734c6519a6fffa3cf70930f32e6a1078e49"}, + {file = "pandas-1.4.4-cp310-cp310-win_amd64.whl", hash = "sha256:785e878a6e6d8ddcdb8c181e600855402750052497d7fc6d6b508894f6b8830b"}, + {file = "pandas-1.4.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c4bb8b0ab9f94207d07e401d24baebfc63057246b1a5e0cd9ee50df85a656871"}, + {file = "pandas-1.4.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:51c424ca134fdaeac9a4acd719d1ab48046afc60943a489028f0413fdbe9ef1c"}, + {file = "pandas-1.4.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ce35f947202b0b99c660221d82beb91d2e6d553d55a40b30128204e3e2c63848"}, + {file = "pandas-1.4.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee6f1848148ed3204235967613b0a32be2d77f214e9623f554511047705c1e04"}, + {file = "pandas-1.4.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7cc960959be28d064faefc0cb2aef854d46b827c004ebea7e79b5497ed83e7d"}, + {file = "pandas-1.4.4-cp38-cp38-win32.whl", hash = "sha256:9d805bce209714b1c1fa29bfb1e42ad87e4c0a825e4b390c56a3e71593b7e8d8"}, + {file = "pandas-1.4.4-cp38-cp38-win_amd64.whl", hash = "sha256:afbddad78a98ec4d2ce08b384b81730de1ccc975b99eb663e6dac43703f36d98"}, + {file = "pandas-1.4.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a08ceb59db499864c58a9bf85ab6219d527d91f14c0240cc25fa2c261032b2a7"}, + {file = "pandas-1.4.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0959c41004e3d2d16f39c828d6da66ebee329836a7ecee49fb777ac9ad8a7501"}, + {file = "pandas-1.4.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87b4194f344dcd14c0f885cecb22005329b38bda10f1aaf7b9596a00ec8a4768"}, + {file = "pandas-1.4.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d2a7a3c1fea668d56bd91edbd5f2732e0af8feb9d2bf8d9bfacb2dea5fa9536"}, + {file = "pandas-1.4.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a981cfabf51c318a562deb4ae7deec594c07aee7cf18b4594a92c23718ec8275"}, + {file = "pandas-1.4.4-cp39-cp39-win32.whl", hash = "sha256:050aada67a5ec6699a7879e769825b510018a95fb9ac462bb1867483d0974a97"}, + {file = "pandas-1.4.4-cp39-cp39-win_amd64.whl", hash = "sha256:8d4d2fe2863ecddb0ba1979bdda26c8bc2ea138f5a979abe3ba80c0fa4015c91"}, + {file = "pandas-1.4.4.tar.gz", hash = "sha256:ab6c0d738617b675183e5f28db32b5148b694ad9bba0a40c3ea26d96b431db67"}, +] + +[package.dependencies] +numpy = [ + {version = ">=1.18.5", markers = "(platform_machine != \"aarch64\" and platform_machine != \"arm64\") and python_version < \"3.10\""}, + {version = ">=1.19.2", markers = "platform_machine == \"aarch64\" and python_version < \"3.10\""}, +] +python-dateutil = ">=2.8.1" +pytz = ">=2020.1" + +[package.extras] +test = ["hypothesis (>=5.5.3)", "pytest (>=6.0)", "pytest-xdist (>=1.31)"] + +[[package]] +name = "parso" +version = "0.8.3" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +files = [ + {file = "parso-0.8.3-py2.py3-none-any.whl", hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"}, + {file = "parso-0.8.3.tar.gz", hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0"}, +] + +[package.extras] +qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] +testing = ["docopt", "pytest (<6.0.0)"] + +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pickleshare" +version = "0.7.5" +description = "Tiny 'shelve'-like database with concurrency support" +optional = false +python-versions = "*" +files = [ + {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, + {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, +] + +[[package]] +name = "platformdirs" +version = "4.1.0" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." +optional = false +python-versions = ">=3.8" +files = [ + {file = "platformdirs-4.1.0-py3-none-any.whl", hash = "sha256:11c8f37bcca40db96d8144522d925583bdb7a31f7b0e37e3ed4318400a8e2380"}, + {file = "platformdirs-4.1.0.tar.gz", hash = "sha256:906d548203468492d432bcb294d4bc2fff751bf84971fbb2c10918cc206ee420"}, +] + +[package.extras] +docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.1)", "sphinx-autodoc-typehints (>=1.24)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.43" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "prompt_toolkit-3.0.43-py3-none-any.whl", hash = "sha256:a11a29cb3bf0a28a387fe5122cdb649816a957cd9261dcedf8c9f1fef33eacf6"}, + {file = "prompt_toolkit-3.0.43.tar.gz", hash = "sha256:3527b7af26106cbc65a040bcc84839a3566ec1b051bb0bfe953631e704b0ff7d"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "protobuf" +version = "3.20.3" +description = "Protocol Buffers" +optional = false +python-versions = ">=3.7" +files = [ + {file = "protobuf-3.20.3-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:f4bd856d702e5b0d96a00ec6b307b0f51c1982c2bf9c0052cf9019e9a544ba99"}, + {file = "protobuf-3.20.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9aae4406ea63d825636cc11ffb34ad3379335803216ee3a856787bcf5ccc751e"}, + {file = "protobuf-3.20.3-cp310-cp310-win32.whl", hash = "sha256:28545383d61f55b57cf4df63eebd9827754fd2dc25f80c5253f9184235db242c"}, + {file = "protobuf-3.20.3-cp310-cp310-win_amd64.whl", hash = "sha256:67a3598f0a2dcbc58d02dd1928544e7d88f764b47d4a286202913f0b2801c2e7"}, + {file = "protobuf-3.20.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:899dc660cd599d7352d6f10d83c95df430a38b410c1b66b407a6b29265d66469"}, + {file = "protobuf-3.20.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e64857f395505ebf3d2569935506ae0dfc4a15cb80dc25261176c784662cdcc4"}, + {file = "protobuf-3.20.3-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:d9e4432ff660d67d775c66ac42a67cf2453c27cb4d738fc22cb53b5d84c135d4"}, + {file = "protobuf-3.20.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:74480f79a023f90dc6e18febbf7b8bac7508420f2006fabd512013c0c238f454"}, + {file = "protobuf-3.20.3-cp37-cp37m-win32.whl", hash = "sha256:b6cc7ba72a8850621bfec987cb72623e703b7fe2b9127a161ce61e61558ad905"}, + {file = "protobuf-3.20.3-cp37-cp37m-win_amd64.whl", hash = "sha256:8c0c984a1b8fef4086329ff8dd19ac77576b384079247c770f29cc8ce3afa06c"}, + {file = "protobuf-3.20.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:de78575669dddf6099a8a0f46a27e82a1783c557ccc38ee620ed8cc96d3be7d7"}, + {file = "protobuf-3.20.3-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:f4c42102bc82a51108e449cbb32b19b180022941c727bac0cfd50170341f16ee"}, + {file = "protobuf-3.20.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:44246bab5dd4b7fbd3c0c80b6f16686808fab0e4aca819ade6e8d294a29c7050"}, + {file = "protobuf-3.20.3-cp38-cp38-win32.whl", hash = "sha256:c02ce36ec760252242a33967d51c289fd0e1c0e6e5cc9397e2279177716add86"}, + {file = "protobuf-3.20.3-cp38-cp38-win_amd64.whl", hash = "sha256:447d43819997825d4e71bf5769d869b968ce96848b6479397e29fc24c4a5dfe9"}, + {file = "protobuf-3.20.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:398a9e0c3eaceb34ec1aee71894ca3299605fa8e761544934378bbc6c97de23b"}, + {file = "protobuf-3.20.3-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:bf01b5720be110540be4286e791db73f84a2b721072a3711efff6c324cdf074b"}, + {file = "protobuf-3.20.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:daa564862dd0d39c00f8086f88700fdbe8bc717e993a21e90711acfed02f2402"}, + {file = "protobuf-3.20.3-cp39-cp39-win32.whl", hash = "sha256:819559cafa1a373b7096a482b504ae8a857c89593cf3a25af743ac9ecbd23480"}, + {file = "protobuf-3.20.3-cp39-cp39-win_amd64.whl", hash = "sha256:03038ac1cfbc41aa21f6afcbcd357281d7521b4157926f30ebecc8d4ea59dcb7"}, + {file = "protobuf-3.20.3-py2.py3-none-any.whl", hash = "sha256:a7ca6d488aa8ff7f329d4c545b2dbad8ac31464f1d8b1c87ad1346717731e4db"}, + {file = "protobuf-3.20.3.tar.gz", hash = "sha256:2e3427429c9cffebf259491be0af70189607f365c2f41c7c3764af6f337105f2"}, +] + +[[package]] +name = "psutil" +version = "5.9.7" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" +files = [ + {file = "psutil-5.9.7-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:0bd41bf2d1463dfa535942b2a8f0e958acf6607ac0be52265ab31f7923bcd5e6"}, + {file = "psutil-5.9.7-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:5794944462509e49d4d458f4dbfb92c47539e7d8d15c796f141f474010084056"}, + {file = "psutil-5.9.7-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:fe361f743cb3389b8efda21980d93eb55c1f1e3898269bc9a2a1d0bb7b1f6508"}, + {file = "psutil-5.9.7-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:e469990e28f1ad738f65a42dcfc17adaed9d0f325d55047593cb9033a0ab63df"}, + {file = "psutil-5.9.7-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:3c4747a3e2ead1589e647e64aad601981f01b68f9398ddf94d01e3dc0d1e57c7"}, + {file = "psutil-5.9.7-cp27-none-win32.whl", hash = "sha256:1d4bc4a0148fdd7fd8f38e0498639ae128e64538faa507df25a20f8f7fb2341c"}, + {file = "psutil-5.9.7-cp27-none-win_amd64.whl", hash = "sha256:4c03362e280d06bbbfcd52f29acd79c733e0af33d707c54255d21029b8b32ba6"}, + {file = "psutil-5.9.7-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ea36cc62e69a13ec52b2f625c27527f6e4479bca2b340b7a452af55b34fcbe2e"}, + {file = "psutil-5.9.7-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1132704b876e58d277168cd729d64750633d5ff0183acf5b3c986b8466cd0284"}, + {file = "psutil-5.9.7-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe8b7f07948f1304497ce4f4684881250cd859b16d06a1dc4d7941eeb6233bfe"}, + {file = "psutil-5.9.7-cp36-cp36m-win32.whl", hash = "sha256:b27f8fdb190c8c03914f908a4555159327d7481dac2f01008d483137ef3311a9"}, + {file = "psutil-5.9.7-cp36-cp36m-win_amd64.whl", hash = "sha256:44969859757f4d8f2a9bd5b76eba8c3099a2c8cf3992ff62144061e39ba8568e"}, + {file = "psutil-5.9.7-cp37-abi3-win32.whl", hash = "sha256:c727ca5a9b2dd5193b8644b9f0c883d54f1248310023b5ad3e92036c5e2ada68"}, + {file = "psutil-5.9.7-cp37-abi3-win_amd64.whl", hash = "sha256:f37f87e4d73b79e6c5e749440c3113b81d1ee7d26f21c19c47371ddea834f414"}, + {file = "psutil-5.9.7-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:032f4f2c909818c86cea4fe2cc407f1c0f0cde8e6c6d702b28b8ce0c0d143340"}, + {file = "psutil-5.9.7.tar.gz", hash = "sha256:3f02134e82cfb5d089fddf20bb2e03fd5cd52395321d1c8458a9e58500ff417c"}, +] + +[package.extras] +test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.2" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +files = [ + {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, + {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "pyasn1" +version = "0.5.1" +description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "pyasn1-0.5.1-py2.py3-none-any.whl", hash = "sha256:4439847c58d40b1d0a573d07e3856e95333f1976294494c325775aeca506eb58"}, + {file = "pyasn1-0.5.1.tar.gz", hash = "sha256:6d391a96e59b23130a5cfa74d6fd7f388dbbe26cc8f1edf39fdddf08d9d6676c"}, +] + +[[package]] +name = "pyasn1-modules" +version = "0.3.0" +description = "A collection of ASN.1-based protocols modules" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "pyasn1_modules-0.3.0-py2.py3-none-any.whl", hash = "sha256:d3ccd6ed470d9ffbc716be08bd90efbd44d0734bc9303818f7336070984a162d"}, + {file = "pyasn1_modules-0.3.0.tar.gz", hash = "sha256:5bd01446b736eb9d31512a30d46c1ac3395d676c6f3cafa4c03eb54b9925631c"}, +] + +[package.dependencies] +pyasn1 = ">=0.4.6,<0.6.0" + +[[package]] +name = "pycparser" +version = "2.21" +description = "C parser in Python" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, + {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, +] + +[[package]] +name = "pygments" +version = "2.17.2" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.7" +files = [ + {file = "pygments-2.17.2-py3-none-any.whl", hash = "sha256:b27c2826c47d0f3219f29554824c30c5e8945175d888647acd804ddd04af846c"}, + {file = "pygments-2.17.2.tar.gz", hash = "sha256:da46cec9fd2de5be3a8a784f434e4c4ab670b4ff54d605c4c2717e9d49c4c367"}, +] + +[package.extras] +plugins = ["importlib-metadata"] +windows-terminal = ["colorama (>=0.4.6)"] + +[[package]] +name = "pygsp" +version = "0.5.1" +description = "Graph Signal Processing in Python" +optional = false +python-versions = "*" +files = [ + {file = "PyGSP-0.5.1-py2.py3-none-any.whl", hash = "sha256:884765260256f143a92053c420797053fda0f4eba1573471526fb4e62a4c4cde"}, + {file = "PyGSP-0.5.1.tar.gz", hash = "sha256:4874ad88793d622d4f578b40c6617a99b1f02bc6c6c4077f0e48cd71c7275800"}, +] + +[package.dependencies] +numpy = "*" +scipy = "*" + +[package.extras] +alldeps = ["PyOpenGL", "PyQt5", "PySide", "matplotlib", "pyflann", "pyflann3", "pyqtgraph", "pyunlocbox", "scikit-image"] +doc = ["numpydoc", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-bibtex"] +pkg = ["twine", "wheel"] +test = ["coverage", "coveralls", "flake8"] + +[[package]] +name = "pyparsing" +version = "3.1.1" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.6.8" +files = [ + {file = "pyparsing-3.1.1-py3-none-any.whl", hash = "sha256:32c7c0b711493c72ff18a981d24f28aaf9c1fb7ed5e9667c9e84e3db623bdbfb"}, + {file = "pyparsing-3.1.1.tar.gz", hash = "sha256:ede28a1a32462f5a9705e07aea48001a08f7cf81a021585011deba701581a0db"}, +] + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + +[[package]] +name = "python-dateutil" +version = "2.8.2" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, + {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "python-louvain" +version = "0.16" +description = "Louvain algorithm for community detection" +optional = false +python-versions = "*" +files = [ + {file = "python-louvain-0.16.tar.gz", hash = "sha256:b7ba2df5002fd28d3ee789a49532baad11fe648e4f2117cf0798e7520a1da56b"}, +] + +[package.dependencies] +networkx = "*" +numpy = "*" + +[[package]] +name = "pytz" +version = "2023.3.post1" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ + {file = "pytz-2023.3.post1-py2.py3-none-any.whl", hash = "sha256:ce42d816b81b68506614c11e8937d3aa9e41007ceb50bfdcb0749b921bf646c7"}, + {file = "pytz-2023.3.post1.tar.gz", hash = "sha256:7b4fddbeb94a1eba4b557da24f19fdf9db575192544270a9101d8509f9f43d7b"}, +] + +[[package]] +name = "pywin32" +version = "306" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ + {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, + {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, + {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, + {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, + {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, + {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, + {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, + {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, + {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, + {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, + {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, + {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, + {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, + {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, +] + +[[package]] +name = "pyzmq" +version = "25.1.2" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.6" +files = [ + {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:e624c789359f1a16f83f35e2c705d07663ff2b4d4479bad35621178d8f0f6ea4"}, + {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:49151b0efece79f6a79d41a461d78535356136ee70084a1c22532fc6383f4ad0"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9a5f194cf730f2b24d6af1f833c14c10f41023da46a7f736f48b6d35061e76e"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:faf79a302f834d9e8304fafdc11d0d042266667ac45209afa57e5efc998e3872"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f51a7b4ead28d3fca8dda53216314a553b0f7a91ee8fc46a72b402a78c3e43d"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:0ddd6d71d4ef17ba5a87becf7ddf01b371eaba553c603477679ae817a8d84d75"}, + {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:246747b88917e4867e2367b005fc8eefbb4a54b7db363d6c92f89d69abfff4b6"}, + {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:00c48ae2fd81e2a50c3485de1b9d5c7c57cd85dc8ec55683eac16846e57ac979"}, + {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:5a68d491fc20762b630e5db2191dd07ff89834086740f70e978bb2ef2668be08"}, + {file = "pyzmq-25.1.2-cp310-cp310-win32.whl", hash = "sha256:09dfe949e83087da88c4a76767df04b22304a682d6154de2c572625c62ad6886"}, + {file = "pyzmq-25.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:fa99973d2ed20417744fca0073390ad65ce225b546febb0580358e36aa90dba6"}, + {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:82544e0e2d0c1811482d37eef297020a040c32e0687c1f6fc23a75b75db8062c"}, + {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:01171fc48542348cd1a360a4b6c3e7d8f46cdcf53a8d40f84db6707a6768acc1"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc69c96735ab501419c432110016329bf0dea8898ce16fab97c6d9106dc0b348"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3e124e6b1dd3dfbeb695435dff0e383256655bb18082e094a8dd1f6293114642"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7598d2ba821caa37a0f9d54c25164a4fa351ce019d64d0b44b45540950458840"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:d1299d7e964c13607efd148ca1f07dcbf27c3ab9e125d1d0ae1d580a1682399d"}, + {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4e6f689880d5ad87918430957297c975203a082d9a036cc426648fcbedae769b"}, + {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:cc69949484171cc961e6ecd4a8911b9ce7a0d1f738fcae717177c231bf77437b"}, + {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9880078f683466b7f567b8624bfc16cad65077be046b6e8abb53bed4eeb82dd3"}, + {file = "pyzmq-25.1.2-cp311-cp311-win32.whl", hash = "sha256:4e5837af3e5aaa99a091302df5ee001149baff06ad22b722d34e30df5f0d9097"}, + {file = "pyzmq-25.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:25c2dbb97d38b5ac9fd15586e048ec5eb1e38f3d47fe7d92167b0c77bb3584e9"}, + {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:11e70516688190e9c2db14fcf93c04192b02d457b582a1f6190b154691b4c93a"}, + {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:313c3794d650d1fccaaab2df942af9f2c01d6217c846177cfcbc693c7410839e"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b3cbba2f47062b85fe0ef9de5b987612140a9ba3a9c6d2543c6dec9f7c2ab27"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fc31baa0c32a2ca660784d5af3b9487e13b61b3032cb01a115fce6588e1bed30"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:02c9087b109070c5ab0b383079fa1b5f797f8d43e9a66c07a4b8b8bdecfd88ee"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:f8429b17cbb746c3e043cb986328da023657e79d5ed258b711c06a70c2ea7537"}, + {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:5074adeacede5f810b7ef39607ee59d94e948b4fd954495bdb072f8c54558181"}, + {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:7ae8f354b895cbd85212da245f1a5ad8159e7840e37d78b476bb4f4c3f32a9fe"}, + {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b264bf2cc96b5bc43ce0e852be995e400376bd87ceb363822e2cb1964fcdc737"}, + {file = "pyzmq-25.1.2-cp312-cp312-win32.whl", hash = "sha256:02bbc1a87b76e04fd780b45e7f695471ae6de747769e540da909173d50ff8e2d"}, + {file = "pyzmq-25.1.2-cp312-cp312-win_amd64.whl", hash = "sha256:ced111c2e81506abd1dc142e6cd7b68dd53747b3b7ae5edbea4578c5eeff96b7"}, + {file = "pyzmq-25.1.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:7b6d09a8962a91151f0976008eb7b29b433a560fde056ec7a3db9ec8f1075438"}, + {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:967668420f36878a3c9ecb5ab33c9d0ff8d054f9c0233d995a6d25b0e95e1b6b"}, + {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5edac3f57c7ddaacdb4d40f6ef2f9e299471fc38d112f4bc6d60ab9365445fb0"}, + {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:0dabfb10ef897f3b7e101cacba1437bd3a5032ee667b7ead32bbcdd1a8422fe7"}, + {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:2c6441e0398c2baacfe5ba30c937d274cfc2dc5b55e82e3749e333aabffde561"}, + {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:16b726c1f6c2e7625706549f9dbe9b06004dfbec30dbed4bf50cbdfc73e5b32a"}, + {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:a86c2dd76ef71a773e70551a07318b8e52379f58dafa7ae1e0a4be78efd1ff16"}, + {file = "pyzmq-25.1.2-cp36-cp36m-win32.whl", hash = "sha256:359f7f74b5d3c65dae137f33eb2bcfa7ad9ebefd1cab85c935f063f1dbb245cc"}, + {file = "pyzmq-25.1.2-cp36-cp36m-win_amd64.whl", hash = "sha256:55875492f820d0eb3417b51d96fea549cde77893ae3790fd25491c5754ea2f68"}, + {file = "pyzmq-25.1.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b8c8a419dfb02e91b453615c69568442e897aaf77561ee0064d789705ff37a92"}, + {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8807c87fa893527ae8a524c15fc505d9950d5e856f03dae5921b5e9aa3b8783b"}, + {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5e319ed7d6b8f5fad9b76daa0a68497bc6f129858ad956331a5835785761e003"}, + {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:3c53687dde4d9d473c587ae80cc328e5b102b517447456184b485587ebd18b62"}, + {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:9add2e5b33d2cd765ad96d5eb734a5e795a0755f7fc49aa04f76d7ddda73fd70"}, + {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e690145a8c0c273c28d3b89d6fb32c45e0d9605b2293c10e650265bf5c11cfec"}, + {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:00a06faa7165634f0cac1abb27e54d7a0b3b44eb9994530b8ec73cf52e15353b"}, + {file = "pyzmq-25.1.2-cp37-cp37m-win32.whl", hash = "sha256:0f97bc2f1f13cb16905a5f3e1fbdf100e712d841482b2237484360f8bc4cb3d7"}, + {file = "pyzmq-25.1.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6cc0020b74b2e410287e5942e1e10886ff81ac77789eb20bec13f7ae681f0fdd"}, + {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:bef02cfcbded83473bdd86dd8d3729cd82b2e569b75844fb4ea08fee3c26ae41"}, + {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e10a4b5a4b1192d74853cc71a5e9fd022594573926c2a3a4802020360aa719d8"}, + {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8c5f80e578427d4695adac6fdf4370c14a2feafdc8cb35549c219b90652536ae"}, + {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5dde6751e857910c1339890f3524de74007958557593b9e7e8c5f01cd919f8a7"}, + {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea1608dd169da230a0ad602d5b1ebd39807ac96cae1845c3ceed39af08a5c6df"}, + {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0f513130c4c361201da9bc69df25a086487250e16b5571ead521b31ff6b02220"}, + {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:019744b99da30330798bb37df33549d59d380c78e516e3bab9c9b84f87a9592f"}, + {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2e2713ef44be5d52dd8b8e2023d706bf66cb22072e97fc71b168e01d25192755"}, + {file = "pyzmq-25.1.2-cp38-cp38-win32.whl", hash = "sha256:07cd61a20a535524906595e09344505a9bd46f1da7a07e504b315d41cd42eb07"}, + {file = "pyzmq-25.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb7e49a17fb8c77d3119d41a4523e432eb0c6932187c37deb6fbb00cc3028088"}, + {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:94504ff66f278ab4b7e03e4cba7e7e400cb73bfa9d3d71f58d8972a8dc67e7a6"}, + {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6dd0d50bbf9dca1d0bdea219ae6b40f713a3fb477c06ca3714f208fd69e16fd8"}, + {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:004ff469d21e86f0ef0369717351073e0e577428e514c47c8480770d5e24a565"}, + {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c0b5ca88a8928147b7b1e2dfa09f3b6c256bc1135a1338536cbc9ea13d3b7add"}, + {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c9a79f1d2495b167119d02be7448bfba57fad2a4207c4f68abc0bab4b92925b"}, + {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:518efd91c3d8ac9f9b4f7dd0e2b7b8bf1a4fe82a308009016b07eaa48681af82"}, + {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1ec23bd7b3a893ae676d0e54ad47d18064e6c5ae1fadc2f195143fb27373f7f6"}, + {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db36c27baed588a5a8346b971477b718fdc66cf5b80cbfbd914b4d6d355e44e2"}, + {file = "pyzmq-25.1.2-cp39-cp39-win32.whl", hash = "sha256:39b1067f13aba39d794a24761e385e2eddc26295826530a8c7b6c6c341584289"}, + {file = "pyzmq-25.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:8e9f3fabc445d0ce320ea2c59a75fe3ea591fdbdeebec5db6de530dd4b09412e"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a8c1d566344aee826b74e472e16edae0a02e2a044f14f7c24e123002dcff1c05"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:759cfd391a0996345ba94b6a5110fca9c557ad4166d86a6e81ea526c376a01e8"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c61e346ac34b74028ede1c6b4bcecf649d69b707b3ff9dc0fab453821b04d1e"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cb8fc1f8d69b411b8ec0b5f1ffbcaf14c1db95b6bccea21d83610987435f1a4"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:3c00c9b7d1ca8165c610437ca0c92e7b5607b2f9076f4eb4b095c85d6e680a1d"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:df0c7a16ebb94452d2909b9a7b3337940e9a87a824c4fc1c7c36bb4404cb0cde"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:45999e7f7ed5c390f2e87ece7f6c56bf979fb213550229e711e45ecc7d42ccb8"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ac170e9e048b40c605358667aca3d94e98f604a18c44bdb4c102e67070f3ac9b"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1b604734bec94f05f81b360a272fc824334267426ae9905ff32dc2be433ab96"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:a793ac733e3d895d96f865f1806f160696422554e46d30105807fdc9841b9f7d"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0806175f2ae5ad4b835ecd87f5f85583316b69f17e97786f7443baaf54b9bb98"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:ef12e259e7bc317c7597d4f6ef59b97b913e162d83b421dd0db3d6410f17a244"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ea253b368eb41116011add00f8d5726762320b1bda892f744c91997b65754d73"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b9b1f2ad6498445a941d9a4fee096d387fee436e45cc660e72e768d3d8ee611"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:8b14c75979ce932c53b79976a395cb2a8cd3aaf14aef75e8c2cb55a330b9b49d"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:889370d5174a741a62566c003ee8ddba4b04c3f09a97b8000092b7ca83ec9c49"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a18fff090441a40ffda8a7f4f18f03dc56ae73f148f1832e109f9bffa85df15"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99a6b36f95c98839ad98f8c553d8507644c880cf1e0a57fe5e3a3f3969040882"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4345c9a27f4310afbb9c01750e9461ff33d6fb74cd2456b107525bbeebcb5be3"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:3516e0b6224cf6e43e341d56da15fd33bdc37fa0c06af4f029f7d7dfceceabbc"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:146b9b1f29ead41255387fb07be56dc29639262c0f7344f570eecdcd8d683314"}, + {file = "pyzmq-25.1.2.tar.gz", hash = "sha256:93f1aa311e8bb912e34f004cf186407a4e90eec4f0ecc0efd26056bf7eda0226"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "requests" +version = "2.31.0" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.7" +files = [ + {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"}, + {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + +[[package]] +name = "requests-oauthlib" +version = "1.3.1" +description = "OAuthlib authentication support for Requests." +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "requests-oauthlib-1.3.1.tar.gz", hash = "sha256:75beac4a47881eeb94d5ea5d6ad31ef88856affe2332b9aafb52c6452ccf0d7a"}, + {file = "requests_oauthlib-1.3.1-py2.py3-none-any.whl", hash = "sha256:2577c501a2fb8d05a304c09d090d6e47c306fef15809d102b327cf8364bddab5"}, +] + +[package.dependencies] +oauthlib = ">=3.0.0" +requests = ">=2.0.0" + +[package.extras] +rsa = ["oauthlib[signedtoken] (>=3.0.0)"] + +[[package]] +name = "rsa" +version = "4.9" +description = "Pure-Python RSA implementation" +optional = false +python-versions = ">=3.6,<4" +files = [ + {file = "rsa-4.9-py3-none-any.whl", hash = "sha256:90260d9058e514786967344d0ef75fa8727eed8a7d2e43ce9f4bcf1b536174f7"}, + {file = "rsa-4.9.tar.gz", hash = "sha256:e38464a49c6c85d7f1351b0126661487a7e0a14a50f1675ec50eb34d4f20ef21"}, +] + +[package.dependencies] +pyasn1 = ">=0.1.3" + +[[package]] +name = "scikit-learn" +version = "0.24.0" +description = "A set of python modules for machine learning and data mining" +optional = false +python-versions = ">=3.6" +files = [ + {file = "scikit-learn-0.24.0.tar.gz", hash = "sha256:076369634ee72b5a5941440661e2f306ff4ac30903802dc52031c7e9199ac640"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:890d7d588f65acb0c4f6c083347c9076916bda5e6bd8400f06244b1afc1009af"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:e534f5f3796db6781c87e9835dcd51b7854c8c5a379c9210b93605965c1941fd"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:d7fe05fcb44eadd6d6c874c768f085f5de1239db3a3b7be4d3d23d12e4120589"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:7f654befc5ad413690cc58f3f34a3e906caf825195ce0fda00a8e9565e1403e6"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-win32.whl", hash = "sha256:afeb06dc69847927634e58579b9cdc72e1390b79497336b2324b1b173f33bd47"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-win_amd64.whl", hash = "sha256:26f66b3726b54dfb76ea51c5d9c2431ed17ebc066cb4527662b9e851a3e7ba61"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c08b27cb78ee8d2dc781a7affed09859441f5b624f9f92da59ac0791c8774dfc"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:905d8934d1e27a686698864a5863ff2c0e13a2ae1adb78a8a848aacc8a49927d"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:d819d625832fb2969911a243e009cfa135cb8ef1e150866e417d6e9d75290087"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:18f7131e62265bf2691ed1d0303c640313894ccfe4278427478c6b2f45094b53"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-win32.whl", hash = "sha256:b0d13fd56d26cf3de0314a4fd48037108c638fe126d813f5c1222bb0f08b6a76"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-win_amd64.whl", hash = "sha256:c912247e42114f389858ae05d63f4359d4e667ea72aaabee191aee9ad3f9774a"}, + {file = "scikit_learn-0.24.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:758619e49cd7c17282e6cc60d5cc73c02c072b47c9a10010bb3bb47e0d976e50"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:66f27bf21202a850bcd7b6303916e4907f6e22ec59a14974ede4955aed5c7ed0"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:5e6e3c042cea83f2e20a45e563b8eabc1f8f72446251fe23ebefdf111a173a33"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:2a5348585aa793bc8cc5a72f8e9067c9380834b0aadbd55f924843b071f13282"}, + {file = "scikit_learn-0.24.0-cp38-cp38-win32.whl", hash = "sha256:743b6edd98c98991be46c08e6b21df3861d5ae915f91d59f988384d93f7263e7"}, + {file = "scikit_learn-0.24.0-cp38-cp38-win_amd64.whl", hash = "sha256:2951f87d35e72f007701c6e028aa230f6df6212a3194677c0c950486066a454d"}, + {file = "scikit_learn-0.24.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:44e452ea8491225c5783d49577aad0f36202dfd52aec7f82c0fdfe5fbd5f7400"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:800aaf63f8838c00e85db2267dd226f89858594843fd03932a9eda95746d2c40"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:3eeff086f7329521d27249a082ea3c48c085cedb110db5f65968ab55c3ba2e09"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:4395e91b3548005f4a645018435b5a94f8cce232b5b70753020e606c6a750656"}, + {file = "scikit_learn-0.24.0-cp39-cp39-win32.whl", hash = "sha256:80ca024154b84b6ac4cfc86930ba13fdc348a209753bf2c16129db6f9eb8a80b"}, + {file = "scikit_learn-0.24.0-cp39-cp39-win_amd64.whl", hash = "sha256:490436b44b3a1957cb625e871764b0aa330b34cc416aea4abc6c38ca63d0d682"}, +] + +[package.dependencies] +joblib = ">=0.11" +numpy = ">=1.13.3" +scipy = ">=0.19.1" +threadpoolctl = ">=2.0.0" + +[package.extras] +benchmark = ["matplotlib (>=2.1.1)", "memory-profiler (>=0.57.0)", "pandas (>=0.25.0)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=2.1.1)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.0.0)", "pandas (>=0.25.0)", "scikit-image (>=0.13)", "seaborn (>=0.9.0)", "sphinx (>=3.2.0)", "sphinx-gallery (>=0.7.0)", "sphinx-prompt (>=1.3.0)"] +examples = ["matplotlib (>=2.1.1)", "pandas (>=0.25.0)", "scikit-image (>=0.13)", "seaborn (>=0.9.0)"] +tests = ["flake8 (>=3.8.2)", "matplotlib (>=2.1.1)", "mypy (>=0.770)", "pandas (>=0.25.0)", "pyamg (>=4.0.0)", "pytest (>=5.0.1)", "pytest-cov (>=2.9.0)", "scikit-image (>=0.13)"] + +[[package]] +name = "scipy" +version = "1.10.1" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = "<3.12,>=3.8" +files = [ + {file = "scipy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e7354fd7527a4b0377ce55f286805b34e8c54b91be865bac273f527e1b839019"}, + {file = "scipy-1.10.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4b3f429188c66603a1a5c549fb414e4d3bdc2a24792e061ffbd607d3d75fd84e"}, + {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1553b5dcddd64ba9a0d95355e63fe6c3fc303a8fd77c7bc91e77d61363f7433f"}, + {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c0ff64b06b10e35215abce517252b375e580a6125fd5fdf6421b98efbefb2d2"}, + {file = "scipy-1.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:fae8a7b898c42dffe3f7361c40d5952b6bf32d10c4569098d276b4c547905ee1"}, + {file = "scipy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f1564ea217e82c1bbe75ddf7285ba0709ecd503f048cb1236ae9995f64217bd"}, + {file = "scipy-1.10.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d925fa1c81b772882aa55bcc10bf88324dadb66ff85d548c71515f6689c6dac5"}, + {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaea0a6be54462ec027de54fca511540980d1e9eea68b2d5c1dbfe084797be35"}, + {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15a35c4242ec5f292c3dd364a7c71a61be87a3d4ddcc693372813c0b73c9af1d"}, + {file = "scipy-1.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:43b8e0bcb877faf0abfb613d51026cd5cc78918e9530e375727bf0625c82788f"}, + {file = "scipy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5678f88c68ea866ed9ebe3a989091088553ba12c6090244fdae3e467b1139c35"}, + {file = "scipy-1.10.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:39becb03541f9e58243f4197584286e339029e8908c46f7221abeea4b749fa88"}, + {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bce5869c8d68cf383ce240e44c1d9ae7c06078a9396df68ce88a1230f93a30c1"}, + {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07c3457ce0b3ad5124f98a86533106b643dd811dd61b548e78cf4c8786652f6f"}, + {file = "scipy-1.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:049a8bbf0ad95277ffba9b3b7d23e5369cc39e66406d60422c8cfef40ccc8415"}, + {file = "scipy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cd9f1027ff30d90618914a64ca9b1a77a431159df0e2a195d8a9e8a04c78abf9"}, + {file = "scipy-1.10.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:79c8e5a6c6ffaf3a2262ef1be1e108a035cf4f05c14df56057b64acc5bebffb6"}, + {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51af417a000d2dbe1ec6c372dfe688e041a7084da4fdd350aeb139bd3fb55353"}, + {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b4735d6c28aad3cdcf52117e0e91d6b39acd4272f3f5cd9907c24ee931ad601"}, + {file = "scipy-1.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ff7f37b1bf4417baca958d254e8e2875d0cc23aaadbe65b3d5b3077b0eb23ea"}, + {file = "scipy-1.10.1.tar.gz", hash = "sha256:2cf9dfb80a7b4589ba4c40ce7588986d6d5cebc5457cad2c2880f6bc2d42f3a5"}, +] + +[package.dependencies] +numpy = ">=1.19.5,<1.27.0" + +[package.extras] +dev = ["click", "doit (>=0.36.0)", "flake8", "mypy", "pycodestyle", "pydevtool", "rich-click", "typing_extensions"] +doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] +test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "setuptools" +version = "69.0.2" +description = "Easily download, build, install, upgrade, and uninstall Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "setuptools-69.0.2-py3-none-any.whl", hash = "sha256:1e8fdff6797d3865f37397be788a4e3cba233608e9b509382a2777d25ebde7f2"}, + {file = "setuptools-69.0.2.tar.gz", hash = "sha256:735896e78a4742605974de002ac60562d286fa8051a7e2299445e8e8fbb01aa6"}, +] + +[package.extras] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] +testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-ruff", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] +testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.1)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] + +[[package]] +name = "six" +version = "1.15.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "six-1.15.0-py2.py3-none-any.whl", hash = "sha256:8b74bedcbbbaca38ff6d7491d76f2b06b3592611af620f8426e82dddb04a5ced"}, + {file = "six-1.15.0.tar.gz", hash = "sha256:30639c035cdb23534cd4aa2dd52c3bf48f06e5f4a941509c8bafd8ce11080259"}, +] + +[[package]] +name = "smart-open" +version = "6.4.0" +description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)" +optional = false +python-versions = ">=3.6,<4.0" +files = [ + {file = "smart_open-6.4.0-py3-none-any.whl", hash = "sha256:8d3ef7e6997e8e42dd55c74166ed21e6ac70664caa32dd940b26d54a8f6b4142"}, + {file = "smart_open-6.4.0.tar.gz", hash = "sha256:be3c92c246fbe80ebce8fbacb180494a481a77fcdcb7c1aadb2ea5b9c2bee8b9"}, +] + +[package.extras] +all = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "paramiko", "requests"] +azure = ["azure-common", "azure-core", "azure-storage-blob"] +gcs = ["google-cloud-storage (>=2.6.0)"] +http = ["requests"] +s3 = ["boto3"] +ssh = ["paramiko"] +test = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "paramiko", "pytest", "pytest-rerunfailures", "requests", "responses"] +webhdfs = ["requests"] + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "stellargraph" +version = "1.3.0b0" +description = "Python library for machine learning on graphs" +optional = false +python-versions = ">=3.6.0, <3.9.0" +files = [] +develop = false + +[package.dependencies] +matplotlib = ">=2.2" +networkx = ">=2.2" +numpy = ">=1.14" +pandas = ">=0.24" +scikit_learn = ">=0.20" +scipy = ">=1.1.0" +tensorflow = ">=2.1.0" + +[package.extras] +demos = ["gensim (>=4.0.0)", "jupyter", "mplleaflet (==0.0.5)", "numba", "rdflib", "seaborn"] +igraph = ["python-igraph"] +neo4j = ["py2neo"] +test = ["black (>=19.3b0)", "commonmark (==0.9.1)", "coverage (>=4.4,<5.0)", "nbconvert (>=5.5.0)", "papermill (>=2.0.0)", "pytest (==5.3.1)", "pytest-benchmark (>=3.1)", "pytest-cov (>=2.6.0)", "rdflib", "treon (>=0.1.2)"] + +[package.source] +type = "git" +url = "https://github.com/stellargraph/stellargraph.git" +reference = "develop" +resolved_reference = "3c2c8c18ab4c5c16660f350d8e23d7dc39e738de" + +[[package]] +name = "tensorboard" +version = "2.11.2" +description = "TensorBoard lets you watch Tensors Flow" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tensorboard-2.11.2-py3-none-any.whl", hash = "sha256:cbaa2210c375f3af1509f8571360a19ccc3ded1d9641533414874b5deca47e89"}, +] + +[package.dependencies] +absl-py = ">=0.4" +google-auth = ">=1.6.3,<3" +google-auth-oauthlib = ">=0.4.1,<0.5" +grpcio = ">=1.24.3" +markdown = ">=2.6.8" +numpy = ">=1.12.0" +protobuf = ">=3.9.2,<4" +requests = ">=2.21.0,<3" +setuptools = ">=41.0.0" +tensorboard-data-server = ">=0.6.0,<0.7.0" +tensorboard-plugin-wit = ">=1.6.0" +werkzeug = ">=1.0.1" +wheel = ">=0.26" + +[[package]] +name = "tensorboard-data-server" +version = "0.6.1" +description = "Fast data loading for TensorBoard" +optional = false +python-versions = ">=3.6" +files = [ + {file = "tensorboard_data_server-0.6.1-py3-none-any.whl", hash = "sha256:809fe9887682d35c1f7d1f54f0f40f98bb1f771b14265b453ca051e2ce58fca7"}, + {file = "tensorboard_data_server-0.6.1-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:fa8cef9be4fcae2f2363c88176638baf2da19c5ec90addb49b1cde05c95c88ee"}, + {file = "tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl", hash = "sha256:d8237580755e58eff68d1f3abefb5b1e39ae5c8b127cc40920f9c4fb33f4b98a"}, +] + +[[package]] +name = "tensorboard-plugin-wit" +version = "1.8.1" +description = "What-If Tool TensorBoard plugin." +optional = false +python-versions = "*" +files = [ + {file = "tensorboard_plugin_wit-1.8.1-py3-none-any.whl", hash = "sha256:ff26bdd583d155aa951ee3b152b3d0cffae8005dc697f72b44a8e8c2a77a8cbe"}, +] + +[[package]] +name = "tensorflow" +version = "2.4.0" +description = "TensorFlow is an open source machine learning framework for everyone." +optional = false +python-versions = "*" +files = [ + {file = "tensorflow-2.4.0-cp36-cp36m-macosx_10_11_x86_64.whl", hash = "sha256:576ace48dca1d3c211a3a102ea3a79eda3536a590dcd3d74898122227968b4ac"}, + {file = "tensorflow-2.4.0-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:1069f32e9fb51d5a62e93437e0047c712ff97133a322738814c56f49c762557f"}, + {file = "tensorflow-2.4.0-cp36-cp36m-win_amd64.whl", hash = "sha256:6a41bb0fa5c1d0b5bfdf5e3ec1327bd592904eb2c0c06501c8e7bae4a1122b1a"}, + {file = "tensorflow-2.4.0-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:f9908c04d58d4f216477b98cfbed9d87635d205bd6ddccd597a56fce9ef4eed5"}, + {file = "tensorflow-2.4.0-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:fb694f2e3e5b8f80f9fefb0beaba856001a4160895a10eb50e7fbaa6b9ef1002"}, + {file = "tensorflow-2.4.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d091adf8d6eae8bd47b1a72bf35a8aebb08147687e17d522eb531826a67f6a3b"}, + {file = "tensorflow-2.4.0-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:1754279cd1f91971d14671a776074b877483c04b27a0a2eaefdca0332d80980c"}, + {file = "tensorflow-2.4.0-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:dcd8f2e501a791c937fa19b31ea963470fc20d30cb763c3cc4740dc3c44aefe9"}, + {file = "tensorflow-2.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:7adcf41f57fdb12cd6792df02fb3cd16bddbe449cd7140faaa2bf2b3d5b5c4df"}, +] + +[package.dependencies] +absl-py = ">=0.10,<1.0" +astunparse = ">=1.6.3,<1.7.0" +flatbuffers = ">=1.12.0,<1.13.0" +gast = "0.3.3" +google-pasta = ">=0.2,<1.0" +grpcio = ">=1.32.0,<1.33.0" +h5py = ">=2.10.0,<2.11.0" +keras-preprocessing = ">=1.1.2,<1.2.0" +numpy = ">=1.19.2,<1.20.0" +opt-einsum = ">=3.3.0,<3.4.0" +protobuf = ">=3.9.2" +six = ">=1.15.0,<1.16.0" +tensorboard = ">=2.4,<3.0" +tensorflow-estimator = ">=2.4.0rc0,<2.5.0" +termcolor = ">=1.1.0,<1.2.0" +typing-extensions = ">=3.7.4,<3.8.0" +wheel = ">=0.35,<1.0" +wrapt = ">=1.12.1,<1.13.0" + +[[package]] +name = "tensorflow-estimator" +version = "2.4.0" +description = "TensorFlow Estimator." +optional = false +python-versions = "*" +files = [ + {file = "tensorflow_estimator-2.4.0-py2.py3-none-any.whl", hash = "sha256:5b7b7bf2debe19a8794adacc43e8ba6459daa4efaf54d3302623994a359b17f0"}, +] + +[[package]] +name = "termcolor" +version = "1.1.0" +description = "ANSII Color formatting for output in terminal." +optional = false +python-versions = "*" +files = [ + {file = "termcolor-1.1.0.tar.gz", hash = "sha256:1d6d69ce66211143803fbc56652b41d73b4a400a2891d7bf7a1cdf4c02de613b"}, +] + +[[package]] +name = "theano" +version = "1.0.5" +description = "Optimizing compiler for evaluating mathematical expressions on CPUs and GPUs." +optional = false +python-versions = "*" +files = [ + {file = "Theano-1.0.5.tar.gz", hash = "sha256:6e9439dd53ba995fcae27bf20626074bfc2fff446899dc5c53cb28c1f9202e89"}, +] + +[package.dependencies] +numpy = ">=1.9.1" +scipy = ">=0.14" +six = ">=1.9.0" + +[package.extras] +doc = ["Sphinx (>=0.5.1)", "pygments"] +test = ["flake8", "nose (>=1.3.0)", "parameterized"] + +[[package]] +name = "threadpoolctl" +version = "3.2.0" +description = "threadpoolctl" +optional = false +python-versions = ">=3.8" +files = [ + {file = "threadpoolctl-3.2.0-py3-none-any.whl", hash = "sha256:2b7818516e423bdaebb97c723f86a7c6b0a83d3f3b0970328d66f4d9104dc032"}, + {file = "threadpoolctl-3.2.0.tar.gz", hash = "sha256:c96a0ba3bdddeaca37dc4cc7344aafad41cdb8c313f74fdfe387a867bba93355"}, +] + +[[package]] +name = "tornado" +version = "6.4" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">= 3.8" +files = [ + {file = "tornado-6.4-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:02ccefc7d8211e5a7f9e8bc3f9e5b0ad6262ba2fbb683a6443ecc804e5224ce0"}, + {file = "tornado-6.4-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:27787de946a9cffd63ce5814c33f734c627a87072ec7eed71f7fc4417bb16263"}, + {file = "tornado-6.4-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f7894c581ecdcf91666a0912f18ce5e757213999e183ebfc2c3fdbf4d5bd764e"}, + {file = "tornado-6.4-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e43bc2e5370a6a8e413e1e1cd0c91bedc5bd62a74a532371042a18ef19e10579"}, + {file = "tornado-6.4-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0251554cdd50b4b44362f73ad5ba7126fc5b2c2895cc62b14a1c2d7ea32f212"}, + {file = "tornado-6.4-cp38-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:fd03192e287fbd0899dd8f81c6fb9cbbc69194d2074b38f384cb6fa72b80e9c2"}, + {file = "tornado-6.4-cp38-abi3-musllinux_1_1_i686.whl", hash = "sha256:88b84956273fbd73420e6d4b8d5ccbe913c65d31351b4c004ae362eba06e1f78"}, + {file = "tornado-6.4-cp38-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:71ddfc23a0e03ef2df1c1397d859868d158c8276a0603b96cf86892bff58149f"}, + {file = "tornado-6.4-cp38-abi3-win32.whl", hash = "sha256:6f8a6c77900f5ae93d8b4ae1196472d0ccc2775cc1dfdc9e7727889145c45052"}, + {file = "tornado-6.4-cp38-abi3-win_amd64.whl", hash = "sha256:10aeaa8006333433da48dec9fe417877f8bcc21f48dda8d661ae79da357b2a63"}, + {file = "tornado-6.4.tar.gz", hash = "sha256:72291fa6e6bc84e626589f1c29d90a5a6d593ef5ae68052ee2ef000dfd273dee"}, +] + +[[package]] +name = "tqdm" +version = "4.66.1" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tqdm-4.66.1-py3-none-any.whl", hash = "sha256:d302b3c5b53d47bce91fea46679d9c3c6508cf6332229aa1e7d8653723793386"}, + {file = "tqdm-4.66.1.tar.gz", hash = "sha256:d88e651f9db8d8551a62556d3cff9e3034274ca5d66e93197cf2490e2dcb69c7"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + +[[package]] +name = "traitlets" +version = "5.14.0" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +files = [ + {file = "traitlets-5.14.0-py3-none-any.whl", hash = "sha256:f14949d23829023013c47df20b4a76ccd1a85effb786dc060f34de7948361b33"}, + {file = "traitlets-5.14.0.tar.gz", hash = "sha256:fcdaa8ac49c04dfa0ed3ee3384ef6dfdb5d6f3741502be247279407679296772"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<7.5)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "typing-extensions" +version = "3.7.4.3" +description = "Backported and Experimental Type Hints for Python 3.5+" +optional = false +python-versions = "*" +files = [ + {file = "typing_extensions-3.7.4.3-py2-none-any.whl", hash = "sha256:dafc7639cde7f1b6e1acc0f457842a83e722ccca8eef5270af2d74792619a89f"}, + {file = "typing_extensions-3.7.4.3-py3-none-any.whl", hash = "sha256:7cb407020f00f7bfc3cb3e7881628838e69d8f3fcab2f64742a5e76b2f841918"}, + {file = "typing_extensions-3.7.4.3.tar.gz", hash = "sha256:99d4073b617d30288f569d3f13d2bd7548c3a7e4c8de87db09a9d29bb3a4a60c"}, +] + +[[package]] +name = "urllib3" +version = "2.1.0" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=3.8" +files = [ + {file = "urllib3-2.1.0-py3-none-any.whl", hash = "sha256:55901e917a5896a349ff771be919f8bd99aff50b79fe58fec595eb37bbc56bb3"}, + {file = "urllib3-2.1.0.tar.gz", hash = "sha256:df7aa8afb0148fa78488e7899b2c59b5f4ffcfa82e6c54ccb9dd37c1d7b52d54"}, +] + +[package.extras] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "wcwidth" +version = "0.2.12" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +files = [ + {file = "wcwidth-0.2.12-py2.py3-none-any.whl", hash = "sha256:f26ec43d96c8cbfed76a5075dac87680124fa84e0855195a6184da9c187f133c"}, + {file = "wcwidth-0.2.12.tar.gz", hash = "sha256:f01c104efdf57971bcb756f054dd58ddec5204dd15fa31d6503ea57947d97c02"}, +] + +[[package]] +name = "werkzeug" +version = "3.0.1" +description = "The comprehensive WSGI web application library." +optional = false +python-versions = ">=3.8" +files = [ + {file = "werkzeug-3.0.1-py3-none-any.whl", hash = "sha256:90a285dc0e42ad56b34e696398b8122ee4c681833fb35b8334a095d82c56da10"}, + {file = "werkzeug-3.0.1.tar.gz", hash = "sha256:507e811ecea72b18a404947aded4b3390e1db8f826b494d76550ef45bb3b1dcc"}, +] + +[package.dependencies] +MarkupSafe = ">=2.1.1" + +[package.extras] +watchdog = ["watchdog (>=2.3)"] + +[[package]] +name = "wheel" +version = "0.42.0" +description = "A built-package format for Python" +optional = false +python-versions = ">=3.7" +files = [ + {file = "wheel-0.42.0-py3-none-any.whl", hash = "sha256:177f9c9b0d45c47873b619f5b650346d632cdc35fb5e4d25058e09c9e581433d"}, + {file = "wheel-0.42.0.tar.gz", hash = "sha256:c45be39f7882c9d34243236f2d63cbd58039e360f85d0913425fbd7ceea617a8"}, +] + +[package.extras] +test = ["pytest (>=6.0.0)", "setuptools (>=65)"] + +[[package]] +name = "wrapt" +version = "1.12.1" +description = "Module for decorators, wrappers and monkey patching." +optional = false +python-versions = "*" +files = [ + {file = "wrapt-1.12.1.tar.gz", hash = "sha256:b62ffa81fb85f4332a4f609cab4ac40709470da05643a082ec1eb88e6d9b97d7"}, +] + +[[package]] +name = "zipp" +version = "3.17.0" +description = "Backport of pathlib-compatible object wrapper for zip files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "zipp-3.17.0-py3-none-any.whl", hash = "sha256:0e923e726174922dce09c53c59ad483ff7bbb8e572e00c7f7c46b88556409f31"}, + {file = "zipp-3.17.0.tar.gz", hash = "sha256:84e64a1c28cf7e91ed2078bb8cc8c259cb19b76942096c8d7b84947690cabaf0"}, +] + +[package.extras] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] +testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy (>=0.9.1)", "pytest-ruff"] + +[metadata] +lock-version = "2.0" +python-versions = "~3.8" +content-hash = "771516ece2620e992a3d0c44cf8fda7f65a198370eacae06a23748331976df95" diff --git a/Chapter03/pyproject.toml b/Chapter03/pyproject.toml new file mode 100644 index 0000000..a435b47 --- /dev/null +++ b/Chapter03/pyproject.toml @@ -0,0 +1,27 @@ +[tool.poetry] +name = "Graph Machine Learning - Chapter 3" +version = "1.0.0" +description = "" +authors = ["Enrico Deusebio "] +packages = [] + +[tool.setuptools] +py-modules = [] + +[tool.poetry.dependencies] +python = "~3.8" +ipykernel = ">=6.0.0" +networkx = "==2.5" +matplotlib = "==3.2.2" +node2vec = "==0.3.3" +karateclub = "==1.0.19" +gensim = "==3.8.3" +scikit-learn = "==0.24.0" +tensorflow = "==2.4.0" +nxt-gem = { git="https://github.com/palash1992/GEM.git", branch="master" } +# This is what is holding us back to python 3.8 +stellargraph = { git="https://github.com/stellargraph/stellargraph.git", branch="develop" } + +[build-system] +requires = ["poetry-core"] +build-backend = "poetry.core.masonry.api" diff --git a/Chapter03/requirements.txt b/Chapter03/requirements.txt new file mode 100644 index 0000000..99b00bc --- /dev/null +++ b/Chapter03/requirements.txt @@ -0,0 +1,96 @@ +absl-py==0.15.0 ; python_version >= "3.8" and python_version < "3.9" +appnope==0.1.3 ; python_version >= "3.8" and python_version < "3.9" and (platform_system == "Darwin" or sys_platform == "darwin") +asttokens==2.4.1 ; python_version >= "3.8" and python_version < "3.9" +astunparse==1.6.3 ; python_version >= "3.8" and python_version < "3.9" +backcall==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +cachetools==5.3.2 ; python_version >= "3.8" and python_version < "3.9" +certifi==2023.11.17 ; python_version >= "3.8" and python_version < "3.9" +cffi==1.16.0 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +charset-normalizer==3.3.2 ; python_version >= "3.8" and python_version < "3.9" +colorama==0.4.6 ; python_version >= "3.8" and python_version < "3.9" and (sys_platform == "win32" or platform_system == "Windows") +comm==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +cycler==0.12.1 ; python_version >= "3.8" and python_version < "3.9" +cython==0.29.14 ; python_version >= "3.8" and python_version < "3.9" +debugpy==1.8.0 ; python_version >= "3.8" and python_version < "3.9" +decorator==5.1.1 ; python_version >= "3.8" and python_version < "3.9" +executing==2.0.1 ; python_version >= "3.8" and python_version < "3.9" +flatbuffers==1.12 ; python_version >= "3.8" and python_version < "3.9" +gast==0.3.3 ; python_version >= "3.8" and python_version < "3.9" +gensim==3.8.3 ; python_version >= "3.8" and python_version < "3.9" +google-auth-oauthlib==0.4.6 ; python_version >= "3.8" and python_version < "3.9" +google-auth==2.25.2 ; python_version >= "3.8" and python_version < "3.9" +google-pasta==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +grpcio==1.32.0 ; python_version >= "3.8" and python_version < "3.9" +h5py==2.10.0 ; python_version >= "3.8" and python_version < "3.9" +idna==3.6 ; python_version >= "3.8" and python_version < "3.9" +importlib-metadata==7.0.0 ; python_version >= "3.8" and python_version < "3.9" +ipykernel==6.27.1 ; python_version >= "3.8" and python_version < "3.9" +ipython==8.12.3 ; python_version >= "3.8" and python_version < "3.9" +jedi==0.19.1 ; python_version >= "3.8" and python_version < "3.9" +joblib==1.3.2 ; python_version >= "3.8" and python_version < "3.9" +jupyter-client==8.6.0 ; python_version >= "3.8" and python_version < "3.9" +jupyter-core==5.5.1 ; python_version >= "3.8" and python_version < "3.9" +karateclub==1.0.19 ; python_version >= "3.8" and python_version < "3.9" +keras-preprocessing==1.1.2 ; python_version >= "3.8" and python_version < "3.9" +kiwisolver==1.4.5 ; python_version >= "3.8" and python_version < "3.9" +markdown==3.5.1 ; python_version >= "3.8" and python_version < "3.9" +markupsafe==2.1.3 ; python_version >= "3.8" and python_version < "3.9" +matplotlib-inline==0.1.6 ; python_version >= "3.8" and python_version < "3.9" +matplotlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" +nest-asyncio==1.5.8 ; python_version >= "3.8" and python_version < "3.9" +networkx==2.5 ; python_version >= "3.8" and python_version < "3.9" +node2vec==0.3.3 ; python_version >= "3.8" and python_version < "3.9" +numpy==1.19.5 ; python_version >= "3.8" and python_version < "3.9" +nxt-gem @ git+https://github.com/palash1992/GEM.git@master ; python_version >= "3.8" and python_version < "3.9" +oauthlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" +opt-einsum==3.3.0 ; python_version >= "3.8" and python_version < "3.9" +packaging==23.2 ; python_version >= "3.8" and python_version < "3.9" +pandas==1.4.4 ; python_version >= "3.8" and python_version < "3.9" +parso==0.8.3 ; python_version >= "3.8" and python_version < "3.9" +pexpect==4.9.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" +pickleshare==0.7.5 ; python_version >= "3.8" and python_version < "3.9" +platformdirs==4.1.0 ; python_version >= "3.8" and python_version < "3.9" +prompt-toolkit==3.0.43 ; python_version >= "3.8" and python_version < "3.9" +protobuf==3.20.3 ; python_version >= "3.8" and python_version < "3.9" +psutil==5.9.7 ; python_version >= "3.8" and python_version < "3.9" +ptyprocess==0.7.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" +pure-eval==0.2.2 ; python_version >= "3.8" and python_version < "3.9" +pyasn1-modules==0.3.0 ; python_version >= "3.8" and python_version < "3.9" +pyasn1==0.5.1 ; python_version >= "3.8" and python_version < "3.9" +pycparser==2.21 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +pygments==2.17.2 ; python_version >= "3.8" and python_version < "3.9" +pygsp==0.5.1 ; python_version >= "3.8" and python_version < "3.9" +pyparsing==3.1.1 ; python_version >= "3.8" and python_version < "3.9" +python-dateutil==2.8.2 ; python_version >= "3.8" and python_version < "3.9" +python-louvain==0.16 ; python_version >= "3.8" and python_version < "3.9" +pytz==2023.3.post1 ; python_version >= "3.8" and python_version < "3.9" +pywin32==306 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" +pyzmq==25.1.2 ; python_version >= "3.8" and python_version < "3.9" +requests-oauthlib==1.3.1 ; python_version >= "3.8" and python_version < "3.9" +requests==2.31.0 ; python_version >= "3.8" and python_version < "3.9" +rsa==4.9 ; python_version >= "3.8" and python_version < "3.9" +scikit-learn==0.24.0 ; python_version >= "3.8" and python_version < "3.9" +scipy==1.10.1 ; python_version >= "3.8" and python_version < "3.9" +setuptools==69.0.2 ; python_version >= "3.8" and python_version < "3.9" +six==1.15.0 ; python_version >= "3.8" and python_version < "3.9" +smart-open==6.4.0 ; python_version >= "3.8" and python_version < "3.9" +stack-data==0.6.3 ; python_version >= "3.8" and python_version < "3.9" +stellargraph @ git+https://github.com/stellargraph/stellargraph.git@develop ; python_version >= "3.8" and python_version < "3.9" +tensorboard-data-server==0.6.1 ; python_version >= "3.8" and python_version < "3.9" +tensorboard-plugin-wit==1.8.1 ; python_version >= "3.8" and python_version < "3.9" +tensorboard==2.11.2 ; python_version >= "3.8" and python_version < "3.9" +tensorflow-estimator==2.4.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow==2.4.0 ; python_version >= "3.8" and python_version < "3.9" +termcolor==1.1.0 ; python_version >= "3.8" and python_version < "3.9" +theano==1.0.5 ; python_version >= "3.8" and python_version < "3.9" +threadpoolctl==3.2.0 ; python_version >= "3.8" and python_version < "3.9" +tornado==6.4 ; python_version >= "3.8" and python_version < "3.9" +tqdm==4.66.1 ; python_version >= "3.8" and python_version < "3.9" +traitlets==5.14.0 ; python_version >= "3.8" and python_version < "3.9" +typing-extensions==3.7.4.3 ; python_version >= "3.8" and python_version < "3.9" +urllib3==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +wcwidth==0.2.12 ; python_version >= "3.8" and python_version < "3.9" +werkzeug==3.0.1 ; python_version >= "3.8" and python_version < "3.9" +wheel==0.42.0 ; python_version >= "3.8" and python_version < "3.9" +wrapt==1.12.1 ; python_version >= "3.8" and python_version < "3.9" +zipp==3.17.0 ; python_version >= "3.8" and python_version < "3.9" From 0c6a0e6b48aa25e182a72579ddfd1c1446e57458 Mon Sep 17 00:00:00 2001 From: Enrico Deusebio Date: Sat, 23 Dec 2023 09:42:05 +0100 Subject: [PATCH 04/31] [MISC] Small notebook refactoring --- Chapter01/01_Introduction_Networkx.ipynb | 194 +++++------ Chapter01/utils.py | 17 +- Chapter02/01_embedding_examples.ipynb | 109 +++--- Chapter03/01_Shallow_Embeddings.ipynb | 323 +++++++++++++++--- ...03_Structural_deep_neural_embeddings.ipynb | 248 ++++++++++++-- Chapter03/04_Graph_Neural_Network.ipynb | 129 ++++--- 6 files changed, 721 insertions(+), 299 deletions(-) diff --git a/Chapter01/01_Introduction_Networkx.ipynb b/Chapter01/01_Introduction_Networkx.ipynb index 4d39c52..adf86d8 100644 --- a/Chapter01/01_Introduction_Networkx.ipynb +++ b/Chapter01/01_Introduction_Networkx.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Plot Graphs" + "## Undirected Graph" ] }, { @@ -13,36 +13,13 @@ "metadata": {}, "outputs": [], "source": [ - "def draw_graph(G, pos_nodes, node_names={}, node_size=50, plot_weight=False):\n", - " nx.draw(G, pos_nodes, with_labels=False, node_size=node_size, edge_color='gray', arrowsize=30)\n", - " \n", - " pos_attrs = {}\n", - " for node, coords in pos_nodes.items():\n", - " pos_attrs[node] = (coords[0], coords[1] + 0.08)\n", - " \n", - " nx.draw_networkx_labels(G, pos_attrs, font_family='serif', font_size=20)\n", - " \n", - " \n", - " if plot_weight:\n", - " pos_attrs = {}\n", - " for node, coords in pos_nodes.items():\n", - " pos_attrs[node] = (coords[0], coords[1] + 0.08)\n", - " \n", - " nx.draw_networkx_labels(G, pos_attrs, font_family='serif', font_size=20)\n", - " edge_labels=dict([((a,b,),d[\"weight\"]) for a,b,d in G.edges(data=True)])\n", - " nx.draw_networkx_edge_labels(G, pos_nodes, edge_labels=edge_labels)\n", - " \n", - " plt.axis('off')\n", - " axis = plt.gca()\n", - " axis.set_xlim([1.2*x for x in axis.get_xlim()])\n", - " axis.set_ylim([1.2*y for y in axis.get_ylim()])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Undirected Graph" + "import networkx as nx\n", + "import pandas as pd\n", + "\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from utils import draw_graph" ] }, { @@ -50,25 +27,9 @@ "execution_count": 2, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/euler/.conda/envs/chap1/lib/python3.9/site-packages/networkx/drawing/nx_pylab.py:305: UserWarning: \n", - "\n", - "The arrowsize keyword argument is not applicable when drawing edges\n", - "with LineCollection.\n", - "\n", - "To make this warning go away, either specify `arrows=True` to\n", - "force FancyArrowPatches or use the default value for arrowsize.\n", - "Note that using FancyArrowPatches may be slow for large graphs.\n", - "\n", - " draw_networkx_edges(G, pos, arrows=arrows, **edge_kwds)\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2b0lEQVR4nO3deXRV5cH24ftkTsjAEKaGJIQZmSwoGLSiAqJFURFFBkGtgl+tqy/WERRREGlBoSpVsa+gQIEKWlQsCojSCpIXrIKUoAyBgEwJkJCRDPv7I+aQkAQSnpyzz/C71srqGfbZ+0kq2Xeeew8Oy7IsAQAAABcpwO4BAAAAwLsRKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAF4hClTpsjhcNTqKzo6Wj169NDjjz+ugwcP2j10APB7DsuyLLsHAQDbtm3Ttm3bJEkTJkxQRkaGYmNjNXv27ErLZWdna/PmzVq6dKnOnDmj6Ohovffee7r++uvtGDYAQARKAB6odevW2r9/vxITE5WWllbtMl9//bWuueYaFRYWKjIyUqmpqYqLi3PvQAEAkqi8AXipK664Qvfcc48kKScnR3PnzrV3QADgxwiUALzWNddc43y8YcMG+wYCAH6OQAnAa8XGxjofHzt2zMaRAIB/I1AC8Fq5ubnOx5GRkTUul5GRocmTJ6tXr15q2LChwsLClJiYqNGjR9c4s/n0009XObt8wYIFKigo0PPPP6+OHTsqPDxcSUlJGj9+fKWzzTMyMjRhwgQlJSUpNDRUSUlJevzxx5WTk3PB7+n48eOaNGmSevTooejoaIWHhysxMVHDhw/Xp59+WoefDgC4D4ESgNf6z3/+43x8xRVXVLvMp59+qnbt2mnq1KmKiIjQs88+q1dffVWDBw/WihUr1K9fPz3wwAMqLi6u9Lk77rhDCxcurHSWeX5+vq677jrt3LlTf/jDH/TUU0/J4XBo3rx56tu3rw4ePKgjR45o0KBBCggI0MSJE/Xwww/r6NGjmjlzpm666SaVlpbW+P189tlnat++vaZPn664uDhNnz5dr776qm6++WatWrVKN9xwg+666y4VFhYa/uQAoJ5ZAOBhEhMTLUlWYmJijcucPHnSiouLsyRZYWFhVmpqapVlNm3aZAUHB1uSrEceeaTK+1u3brUiIyMtSdYDDzxQ7Xb27dtnSbIkWXFxcdacOXMqvX/8+HGrWbNmznWMHDnSSklJqbTM559/7lzHe++9V+12Nm/ebIWEhFiSrNmzZ1d5/7///a/VsGFDS5I1fvz4mn4sAGALZigBeKzS0lJlZGRU+kpLS9OyZct05ZVX6tChQ2rWrJn+8Y9/qGPHjpU+a1mW7rvvPhUVFal169aaMWNGlfX37NlTTzzxhCTprbfe0vr16887ntDQUD388MOVXouNjdXtt98uSXrnnXcUEhKiyy+/vNIy1157rTp06CBJWrlyZZX1lo/1zJkz6tOnj/7nf/6nyjKdO3fWU089JUmaN2+eUlNTzztWAHAnAiUAj5Wenq6mTZtW+kpKStJdd92lkJAQvfvuu9qzZ48GDRpU5bNr1qzRzp07JUl33XWXgoODq93G2LFjnY///Oc/q6ikVNsPZelvKQc08YPtemLFNuf7DTv21tItB7X9UJaKSs5W1+Vh9syZMxo8eHC12+ncubMkOcdU0dq1a7Vjxw5J0siRI2v8eZSv27IsLV68uMblAMDdguweAADUpHnz5lq0aJHz+fHjx/XJJ59o0aJF+vbbb/Xhhx/qrrvuqvaza9eudT4+d8awovj4eDVv3lxHjx7V6jXr1Gvqp8ouLAuLQQEOFZzIcC67vyhaEz/YLkmKCQ/WqD4JGtk7QVFRUc5l2rdvX+12oqOjJUmnTp0671jbtGmjjIyMKstIUkREhPPx5s2ba/yeAMDdCJQAPFZYWJgGDBhQ6bURI0aoU6dOevrpp7V8+XLFxcVpzpw5VT67e/du5+Pz3UEnu6BIjgZNJB1VYV6OTmZmKjCykSSpuPScG4kFhzkfZuUX6Y0v9+j1L/fokuxDztcrhsuKAgLKCqFzT/6RpB9//NH5+Oabb65xrBUdOXKkVssBgDsQKAF4nSeeeEKLFy/Wzp07NXfuXD300ENVZgZPnz7tfBweHl7tejb8cFx/eO87nTxz9rXSwlxnoKzCUfkoofK8mZJ2wvlaeXCsi4pjffPNN9WmTZsLfqbibCUA2I1ACcDrBAUF6ZlnntHIkSNVXFysP/3pT3rrrbcqLVNxprCgoKDKOt7ZmKZnP9qhAIdkFZ9NlAGhDeo8HqvCROaKbw7qD61b1+nzFcfarVs3JScn13kMAGAnTsoB4JXuvPNO50zewoULdfjw4Urvt2vXzvm44kXHJendTWVhUiqbZSw+XXbMoiM0QgER0Ubjmr3mB727Ka1On6k4u7p//36j7QOAHQiUALxSYGCgHn30UUlSYWGhXn755UrvDxw40Pl4y5YtzscbfjiuyR/ucD4vzj6u0txTkqSwhO5yBAQaj23yhzu04YfjtV6+4lg3btx43mWnTZumoKAgTZ48+aLHBwD1jUAJwGvde++9at68uaSyYw8rnkE9YMAAXXLJJZKkpUuXqri4WNkFRfrDe98pwHF2Hbnff+58HH3ZkHoZV4BDenT5dzpdUFSr5fv376+uXbtKkpYtW1bjLRoLCws1f/58lZaWasSIEfUyVgCoDwRKAF4rLCxMv//97yWVndgyd+5c53sOh0Pz589XSEiI9u3bp6eeekrTV+1UZm6h82SaM0f3Kuvr5ZKkyB6DFJbYvV7GVWpJGTmFeuGTqtecrE75WENDQ3Xs2DGNGzdORUWVw2hRUZHGjx+vvXv3aty4cc7rWgKAJ+CkHAAeYdu2bdq2rewi4rm5uc7/Lb8OZdu2bas9WeW3v/2tZsyYoezsbL3yyitKTEyUJF166aXq3bu3PvroI915552aNWuWQlv9UxEd+8oREqYzR/cqd9taWcWFiux+vRpf//8qrbfo1BEVHtyp0vxs52uFP6VKAYEKadZaIc2SVHhop4pOHil7/Wd5P36tgPBohSddqmVbpO7ar9K8LO3du7fK93TbbbepQYOyk4Auu+wyrVq1SnfccYeWLFmib7/9ViNHjlTLli114MABLVu2TLt27dKtt95a7WWSAMBODsuyrAsvBgCuNWXKFD333HM1vj927FgtWLCg2veefPJJ/fGPf6z02tSpU/X0009LkjIyMnTX7yfrX+s+U9Gpw7KKixTYoKFCW12iqEtvVFhC1yrrzNm2VpmfzKl2ezFXjlDDX41Sxsezlfv9umqXaT5iuhq07i59/Jz2bv+/apfZt2+fWp9zRviJEyf06quv6qOPPtLu3buVl5enJk2a6PLLL9e9996r2267rdp1AYCdCJQAfF5RSakue2GtsvJrd0xjfYoJD9aWSQMUHMgRRgB8F7/hAPi81COnbQmTUtkddXYdOX3hBQHAixEoAfi87Yey/Hr7AOBqBEoAPu/7Q1kKqnitIDcKCnAQKAH4PAIlAJ937HShikvtOVy8uNTS8ZxCW7YNAO5CoATg884Ul9i6/cIie7cPAK5GoATg80KCzG+naCI02N7tA4CrESgB+LxmUaG2HkPZNDLUlm0DgLsQKAH4vK5xMbYeQ9ktLsaWbQOAuxAoAfg8uwOd3dsHAFcjUALweZ1aRCkmPNiWbceEB6tjiyhbtg0A7kKgBODzggMDNKpPgtx9GGWgQxrdJ4HbLgLwefyWA+AXRvZOkOXmwyhLJY3oneDejQKADQiUAPxCq0YRGn5ZvNtmKQMc0vDL4tWqUYR7NggANiJQAvAbkwZ3VmxkqMtDZYBDio0M1aRfd3bthgDAQxAoAfiNqLBgzRrWQ66+glCpJc0a1kNRYfacCAQA7kagBOBXru7QVM8P6eLSbUwd0kVXd2jq0m0AgCchUALwO2OSWztDZX3V3+XrmTqki+5Obl0/KwUAL+GwLHef9wgAnmHDD8f16PLvlJFTaFSDlx8zOWtYD2YmAfglAiUAv5ZdUKTpq3Zq2dZ0BUgqqcNvxEBH2aWBhveK16TBnTlmEoDfIlACgKSDJ/O0JOWAFm0+oKz8IklSUICj0j3AKz6PCQ/W6D4JGtE7gUsDAfB7BEoAqKCopFS7jpzW9kNZ2n4oSwczsrRn3wG1TUpQq9gYdYsr++rYIoo74ADAzwiUAHAehw8f1rx58zRu3Di1bNnS7uEAgEfiz2sAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAY8ftAOWfOHDkcjhq/AgIC1KhRI7Vr10433nijpk+fru3bt7t8XGlpaVXGcs0119R5PVOmTKmyngULFlS77KpVqxQbG6vk5GRlZWWZfQMAAK9T3T6juq/w8HC1adNGd999t7766iu7hy1JKioq0uDBgxUTE6O3337b7uH4nSC7B2C3G264QbGxsZKkCRMmKCMjQ7GxsZo9e7YkqaSkRBkZGdq7d6/Wrl2r1atXa9KkSRo0aJBmzpypbt26uWRcTZs21cKFCyVJL7zwglJTUy9qPUOHDlW7du2UkZGhCRMmnHfZN954Q5mZmcrMzNS6des0dOjQi9omAMA7le8zpOr3iVLZfvHAgQNasmSJFi1apEWLFumhhx7SK6+8ooAA++aptm3bpk8++URS2WTRfffdZ9tY/JIFp8TEREuSlZiYWOMyn3zyidWxY0dLkhUeHm4tWLDA5ePq16+fJcnq16/fRa9j3759liRLkjV//vxql1m5cqXVuHFj67LLLrNOnDhx0dsCfMlPP/1kTZkyxfrpp5/sHgrgVhfaJxYVFVl33HGHc9/y1FNPuXeA5ygsLLRuuOEGKyoqynrjjTdsHYs/8vvKu65uvPFGbdq0ScnJycrPz9e9996rFStW2D2sejFkyBBlZmbq//7v/9SoUSO7hwMA8GBBQUF66623FBkZKUmaNWuWDhw4YNt4QkJC9M9//lPZ2dkaP368bePwVwTKi9CoUSO99957atSokSzL0pgxY5Senm73sAAAcKuYmBgNHDhQUtkxjB9++KHNI4JdCJQXKS4uTo899pgkKS8vT9OmTbN5RAAAuF/5MZeS9MMPP9g4EtiJQGng/vvvdx6A/M477yg/P1+SanV2dmxs7EWfwb169WoNHjxYLVq0UGhoqJKSkvS73/1OP/3000V9HwsWLKgy5ilTplRa5umnn672bPGCggJNmzZNXbp0UUREhBo1aqTrr79e69evv6ixAAC8S1DQ2fN7i4qKJEn79u3TjBkzNHDgQLVs2VIhISGKjo5W9+7d9cgjj2j//v3Vrmv37t017kM///xz3XLLLWrZsqUCAwOd76elpal169ZVPleTr7/+WqNHj1ZSUpLCwsIUERGhDh06aNSoUVq4cKFycnLq74fjRwiUBpo2bapLLrlEklRYWKh///vfkqSFCxdq4cKF6tSpU42ffeONNy64THVefPFF3X333eratateeOEFTZ48WUFBQZo7d666dOmizZs31/n7uPrqq51jrskdd9yhhQsXVjrTLz8/X/369dOWLVv08MMPa+bMmbr00ku1Zs0aDRw4UKtWrarzWAAA3uXw4cPOx/Hx8dq9e7fatm2rp556Sqmpqbr//vs1d+5cPfroo4qIiNDs2bPVrVs3rV69usq6WrRoUe0+9JVXXtHo0aPVrVs3TZ06VePGjat0RvmcOXO0cOFC3Xbbbecd6+zZs9W3b199+OGHuuGGG/TSSy9p5syZuvrqq7V8+XKNGTNGLVq0qIefih+y+6wgT1Kbs7zPNXr0aOcZbjNmzKj0Xm3Ozq7LMrGxsVZSUpJ16NChSu/n5ORYffr0sSRZTZo0sY4ePVplHbU5y9uyLOcyzz77bLXvV1xPXFycNW3atErvl5SUWFdddZUlyerYsWON2wG8BWd5w1/VZp9YUlJiJSQkOPcLKSkp1s6dOy1JVo8ePaycnJxKy5eWllpPPvmkJcmKioqyDh8+XOO6y/d9LVq0sDp06FBl33bfffdZkqx9+/Y5X3v22WedYznXrl27rMDAQEuS9fXXX1d5f+vWrVZYWFi1n8WFMUNpqEmTJs7Hx48fd+m2MjIy9OKLL+oXv/hFpdcbNGigv/zlL5KkzMxMTZ482aXjKBcYGKgnnnii0msBAQG69957JUm7du3Sjz/+6JaxAADc77XXXnOe2T1o0CBdfvnlzveeffZZNWjQoNLyDodDU6dOVXx8vE6fPq0333zzgts4cuSIZsyYoWbNmlV6fdSoURo7dqzzLPML+fTTT1VSUqImTZqoT58+Vd7v2bPnBWc4UTO/v7C5qYr/IWdnZ7tkG5ZV9r/BIaHaqrZa8+4WnSkuUUhQoJpFhaprXIy6xbVVx06dtCs1VYsWLdKcOXMUFhbmkvGUGzx4cKVjZ8qVHwYgSampqWrfvr1LxwEAcJ3S0lJlZGQ4n5eUlCg9PV0LFy7Uq6++Kqns9375YVPt2rVTenq6WrZsWe36goKC9Mtf/lLp6en64osvNfT+LG0/lKXvD2Xp2OlC5/5tX0auJCksLFyDbvx1lfVcd911uu6662r9fRQXF0uSTpw4oR07dqhLly5Vlnnuuec0ZsyYWq8TZxEoDZ0+fdr5OCYmpl7XffBknv6WckBbD5z8eQMt9P62YyoutZzLBAU49LeUsr8Os4JbSEpVbm6uvvnmG/Xt27dex3Oujh07Vvt6xWtYcgtHAPBu6enpatq0abXvNW3aVA888IAmTpzonI0MCgpSq1atnMtYlqXTp0/rzJkzZz8YFCJJ2vT9j7r5tbLzD4ICHJX2b8dOF0qSSqJbKPlPX2pUnwSN7J2gVo0iLur7uPrqq+VwOGRZlq677jpNmjRJd999d6V9Vvv27ZkEuUgESkMV/2qr6R9cXWUXFGn6qp1atiVdDodUXFIqSQoIbVDpH5ukSs9Lwxs7H8/4+wYt7nm5osKC62VM1YmKiqr29dDQ0LPj+/kvQgCAd2revLkWLVpU6bWwsDA1b95c7dq1q/aM6qysLP35z3/WBx98oB07djjP/j5XcYWQee7+zfq5ngsIiVBWfpHe+HKPXv9yj4b3itekwZ3rvH/r1auXJk6cqBdeeEHHjh3T73//ez366KPq16+fbr75Zg0dOrRSEEbdECgN/ec//3E+7tWrl/H6NvxwXH947ztl5hb+fFRxhTcd5z/k1RF09h/Xxl0H1f/lLzVrWA9d3aF+gu657LxnKwDAPcLCwjRgwIBaL79r1y4NGDBABw8eVExMjB555BH16NFDhwuD9eaXe5VdUKRTm1eoYN9/LrwySfo5sJbnzb9vTdfnu45d1P5t2rRpuuGGGzR79mytWrVKhYWFWrt2rdauXasJEyZo6NChevnllxUfH1+n9YLLBhk5cuSIUlNTJUnh4eG68sor67yOkpIS5+N3NqZpzPwUZeYW6pw/1MpYpeddl1V89i9AR3C4MnIKNWZ+it7dlFbncQEAcDHGjBmjgwcPKiIiQikpKZoxY4bOJCbrlV3hKmrZRaGtL1Vgg8YXXlENSi0Z7d+uuuoqrVixQseOHdPixYs1ZMgQBQUFqbS0VMuXL1efPn104sSJix6fvyJQGpg3b55zSv6ee+6pchJM+QkrNU31S2dP5DmaXaBnP9ohSdWHSUmlhbnnHU9xTubZbTds7lzP5A93aMU3B8/7WQAATO3du1cpKSmSpCFDhqhDhw56d1PaBfdvdVVx/3axkybR0dEaOXKkVq5cqbS0NOcZ3ocPH9ZLL71UPwP1IwTKi3TgwAHnf3ANGjTQxIkTqyxTfpLOqVOnql1HSUmJ9uzZI0nOs9nOp+jET5VmIc915kjZuhzBYQpp3q7Se7PXcDssAIBrHTlyxPk4Pj5eG344rskf7qiynFWUX2/bnPzhDm344cKX7fv888/19NNPVzvJExcXp6VLlzovav7dd9/V2/j8BYHyImRmZur2229Xdna2AgICtHjx4moP5C0/C3rv3r2Vz2772dq1a5WbWxYkz3OXqLNKipS3u/o74RQe2a3iE2WzkA26XlvpeMparx8AAAMVLxX0/X//qz+8950Cztn/WFapcwKkPgQ4pEeXf6fTBTVPuEjShg0b9MILLzgPVTtXSEiI8+Ta6OjoehufvyBQ1tHHH3+sK664Qlu2bFFERITeeecd3XLLLdUue/PNN0uSCgoKtHTp0krv5ebmatKkSWrQsOzC6FZtaoCAQJ1aP18lOScrvVxaVKATn71etkh4tBpeNarKR2u1fgAADCQlJTkvbr76n//UwR2bq9TcWRv/ruKso/W2zfJjKl/4ZGetln/mmWcqnb9QbvPmzfrvf/8rSbrrrrvqbXz+wu/P8k5NTdWWLVskyTlbmJub67xEQklJiTIzM7Vnzx599tln2r17t6SyOwLMmjVLXbt2rXHdycnJGj58uJYtW6bx48dr69at6tGjh44dO6a3335bd425T9/PWyydylRJ3inlfL9ekhTRMVmypLwfNpWNIe+UJCk0rrOCopvqp/99SJE9rldwo1+oJPeUcravUfHJwwoIbaBmwyYrsEFD5xjOHNunM8fSVJp/9qLra7/4l4KCgtS8eXMNHDhQe/fu1caNGyuNfdu2bVq0aJEiIyN16623OpepeJmkTZs2KSgoSN27d1f37t119OhRrVmzptpl2rZtq+Tk5Dr9fwMAcK9t27Zp27ZtkqrfJ0rS6NGjz7uO+fPn6+p+1+hEZoaOLJ2sBl2uUUjL9rKKi1Sw7xsVpO9QYExzlWQdlVVUcHbf1yFZASFhzufl+76K+8fgRi0UGte5yjZzdm3S/36/XpdZZ+/OVj7mvn37qk2bNs5L3a1cuVKdOnXS8OHDlZCQoIKCAn333XdasmSJSkpK9Oijj2rIkCF1/tn5PXvv/Gi/2bNnO+/7Wd2Xw+GwYmJirKSkJGvQoEHWtGnTrO3bt9d6/WfOnLFefPFFq0uXLlZYWJjVsGFDq3///tYnn3xi/XH1TissoWuVbcb9doEV9+D/Vnk9NL6rlfjkx1aTwROs0IRuVkB4tKXAICswupkV2XOwFffQO1bikx9X+oq5ckSN31v5/cPnz59f4zLl93A93zLl9/1ev359jcuMHTu2fv+PA9yEe3nDn1S8F3ZNX7UxafGXVvTlt1hBjX5hKTDYcgSFWEGNWlqRPQZZv7j/datB1/5V930P/q+V+OTH5912g679q+znEp/82AqMblbjZ+bPn+8c19atW62JEydav/rVr6xmzZpZwcHBVmhoqNWmTRtr1KhR1oYNG1z0k/V9DsuiDLVDUUmpLnthrbLyz3/MhyvEhAdry6QBCg7kiAfgQg4fPqx58+Zp3LhxNd5KDsBZ7N/8Ez9xm6QeOW3LPzZJysov0q4jpy+8IAAAdcT+zT8RKG2y/ZC997i2e/sAAN9k9/7F7u37KwKlTb4/lKWgc6+l4CZBAQ7+wQEAXIL9m3/y+7O87XLsdKGK6+uWAXVUXGrpYEaWDh8+bMv2AW9SftWCilcvAFCz9ONZtu7fjucU2rJtf0egtMmZ4qrXwHKnPfsOaN68dbaOAfAm77//vt1DALzC3sL2kmJs235hkb37V39FoLRJSFCgrdtvm5SgcTdda+sYAG+QkZGh999/X0OHDlVsbKzdwwE83u6P9ujQPvtq59Bge/ev/opAaZNmUaEKCnDYUgsEBTjUKjaGS6AAdRAbG8u/GaAW4ptmKGh/tm37t6aRoW7fLjgpxzZd42JsPcakW5x9dQQAwHexf/NPBEqb2P0fvN3bBwD4Jrv3L3Zv318RKG3SqUWUYsKDbdl2THiwOraIsmXbAADfxv7NPxEobRIcGKBRfRLk7kt1BTqk0X0SuC0VAMAl2L/5J37qNhrZO0HuvpN6qaQRvRPcu1EAgF9h/+Z/CJQ2atUoQsMvi3fbX3EBDmn4ZfFq1SjCPRsEAPgl9m/+h0Bps0mDOys2MtTl/+gcshQd4tDEGzu5dkMAAL9nWZb6N8lWqHVGDrl2qjLAIcVGhmrSrzu7dDs4PwKlzaLCgjVrWA+5+goLlhzqXbpLq/6xQnl5ea7dGADAb+Xl5WnJkiXa+OU6PXhpA1ly7YxJqSXNGtZDUWH2nAiEMgRKD3B1h6Z6fkgXl25j6pAueuzum5Senq4333xT6enpLt0eAMD/lO9jDh48qJEjR+r3w693y/7t6g5NXboNXBiB0kOMSW7t/EdXX/V3+XqmDumiu5Nbq3379ho/frxiYmK0YMECbdy4UZa7j5oGAPgcy7L01Vdfaf78+YqJidGDDz6o9u3bS3LP/g3249aLHmRMcmu1btJAjy7/Thk5hUY1ePkxJbOG9aj0l1tMTIzGjh2r9evXa82aNdq/f79uueUWRURwIDMAoO7y8vL0j3/8Qz/++KOuvPJKXXvttQoMrHw/bXfs32Avh8UUlcfJLijS9FU7tWxrugIkldTh/6FAR9mlE4b3itekwZ3Pe0zJjz/+qA8++EDBwcEaNmyY4uPjjccO+JrDhw9r3rx5GjduHPfyBs6Rnp6u5cuXq6ioSLfddptzVrIm7tq/wf0IlB7s4Mk8LUk5oEWbDygrv0hS2Y3vK94jteLzmPBgje6ToBG9E2p96YSsrCytWLFChw4dUv/+/ZWcnCyHw81XowU8GIESqMqyLG3cuFHr1q1Tq1atNGzYMEVHR9f68+7Yv8G9CJReoKikVLuOnNb2Q1nafihLx3MKVVhUotDgQDWNDFW3uBh1i4tRxxZRF3WHgJKSEq1fv15fffWVOnToQAUOVECgBCqrTcVdW67ev8F9CJRwogIHqiJQAmfVteKG/yDuw4mzwAEA1TnfWdyAxFneOAdngQMAKqrPihu+ixlKVBEYGKgBAwZo5MiRXAgdAPzYuRcqHzBgAGES1SJQokZU4ADgn6i4UVdU3jgvKnAA8C9U3LgYzFDigqjAAcA/UHHjYhEoUWtU4ADgm6i4YYrKG3VCBQ4AvoWKG/WBGUrUGRU4APgGKm7UFwIlLhoVOAB4Jypu1DcqbxihAgcA70LFDVdghhLGqMABwDtQccNVCJSoN1TgAOCZqLjhalTeqFdU4ADgWai44Q7MUKLeUYEDgGeg4oa7ECjhMlTgAGAPKm64G5U3XIoKHADci4obdmCGEi5HBQ4A7kHFDbsQKOE2VOAA4BpU3LAblTfcigocAOoXFTc8ATOUcDsqcACoH1Tc8BQEStiGChwALg4VNzwNlTdsRQUOAHVDxQ1PxAwlbEcFDgC1Q8UNT0WghMegAgeA6lFxw9NRecOjUIEDQGVU3PAGzFDC41CBA0AZKm54CwIlPBYVOAB/RcUNb0PlDY9GBQ7A31BxwxsxQwmPRwUOwF9QccNbESjhNajAAfgqKm54OypveBUqcAC+hoobvoAZSngdKnAAvoKKG76CQAmvRQUOwFtRccPXUHnDq1GBA/A2VNzwRcxQwutRgQPwFlTc8FUESvgMKnAAnoqKG76Oyhs+hQocgKeh4oY/YIYSPocKHICnoOKGvyBQwmdRgQOwCxU3/A2VN3waFTgAd6Pihj9ihhI+jwocgLtQccNfESjhN6jAAbgKFTf8HZU3/AoVOID6RsUNMEMJP0QFDqC+UHEDZQiU8FtU4AAuFhU3UBmVN/waFTiAuqLiBqpihhJ+jwocQG1RcQPVI1ACP6MCB1ATKm7g/Ki8gQqowAGci4obuDBmKIFzUIEDKEfFDdQOgRKoARU44L+ouIG6ofIGzoMKHPA/VNxA3TFDCVwAFTjgP6i4gYtDoARqiQoc8F1U3IAZKm+gDqjAAd9DxQ2YY4YSqCMqcMB3UHED9YNACVwkKnDAe1FxA/WLyhswQAUOeB8qbqD+MUMJGKICB7wHFTfgGgRKoJ5QgQOei4obcC0qb6AeUYEDnoeKG3A9ZiiBekYFDngOKm7APQiUgItQgQP2oeIG3IvKG3AhKnDA/ai4AfdjhhJwMSpwwH2ouAF7ECgBN6ECB1yHihuwF5U34EZU4ED9o+IG7McMJeBmVOBA/aHiBjwDgRKwCRU4cPGouAHPQuUN2IgKHKg7Km7A8zBDCdiMChyoPSpuwDMRKAEPQQUO1IyKG/BsVN6AB6ECB6qi4gY8HzOUgIehAgfOouIGvAOBEvBQVODwZ1TcgHeh8gY8GBU4/BEVN+B9mKEEPBwVOPwJFTfgnQiUgJegAocvo+IGvBuVN+BFqMDhi6i4Ae/HDCXgZajA4UuouAHfQKAEvBQVOLwZFTfgW6i8AS9GBQ5vRMUN+B5mKAEvRwUOb0LFDfgmAiXgI6jA4cmouAHfRuUN+BAqcHgiKm7A9zFDCfgYKnB4EipuwD8QKAEfRQUOO1FxA/6FyhvwYVTgsAMVN+B/mKEEfBwVONyJihvwTwRKwE9QgcOVqLgB/0blDfgRKnC4AhU3AGYoAT9DBY76RMUNQCJQAn6LChwmqLgBVETlDfgxKnBcDCpuAOdihhLwc1TgqAsqbgDVIVACkEQFjvOj4gZwPlTeAJyowFEdKm4AF8IMJYBKqMBRERU3gNogUAKoFhW4f6PiBlAXVN4AakQF7p+ouAHUFTOUAM6LCty/UHEDuBgESgC1QgXu26i4AZig8gZQa1TgvomKG4ApZigB1AkVuG+h4gZQHwiUAC4KFbh3o+IGUJ+ovAFcNCpw70TFDaC+MUMJwAgVuHeh4gbgCgRKAPWCCtyzUXEDcCUqbwD1hgrcM1FxA3A1ZigB1CsqcM9CxQ3AHQiUAFyCCtxeVNwA3InKG4DLUIHbg4obgLsxQwnApajA3YuKG4AdCJQA3IIK3LWouAHYicobgNtQgbsGFTcAuzFDCcCtqMDrFxU3AE9AoARgCypwM1TcADwJlTcA21CBXxwqbgCehhlKALaiAq8bKm4AnohACcAjUIGfHxU3AE9G5Q3AY1CBV4+KG4Cnc1hMAQDwAPfcc4/eeeedKq8PGDBAb7/9tuLj4+u0vl/+8pf69ttvq7xe8VfelClT9NJLL2nEiBGaN29epeUcDkel561atbKlik9PT9fy5ctVVFSk2267jVlJAB6JQAnAI2zatEl79uyRJE2YMEEZGRmSpIiICE2YMEG//vWvlZycXCXoVWf16tW68cYbnc8nTpyozp07S5JGjx7tfD0qKko5OTmSpMzMTDVu3Nj53qJFiyRJr732mjZv3uz2QGlZljZu3Kh169apVatWGjZsmKKjo922fQCoCwIlAI/TunVr7d+/3/n8N7/5jeLj49WhQ4daVeDXXnutvvjiC+fz9evX65prrqmy3DPPPKPZs2dr2LBhWrBgQbXrGj58uP7+97+7NVBScQPwNpyUA8AjtWvXTsHBwZKkjz/+WLfffnutzgLfvHmzvvjiC11yySUX3MbUqVOVk5NTY5i0A2dxA/BGBEoAHikuLk6jRo2SJB09elQbNmyo1VngM2bMUJs2bTR06FB3D9kIZ3ED8GYESgAe64knnnAeMzlz5kw1aNBAY8eOVXJystasWaOlS5cqLy/PuXxqaqpWrlypRx55xKtm9fLy8rRkyRKtXbtWffv21dixYzleEoBXIVAC8FidOnXSrbfeKklKS0vTkiVLznsh9D/96U9q0qSJ7rvvvvOu95577pHD4aj0VfGYy7r6+uuv9fjjj+uKK65Q48aNFRwcrMaNG+uqq67SrFmznCf+nOuvf/2rHA6HGjRooFGjRmnKlCn697//LYfDoddee009e/ZUZGSkoqOjddVVV2nFihUXPUYAcCUCJQCP9uSTTzof//GPf3TW3OdeCH3lypVavHixfve73yk8PPy86xw/frwWLlyoiRMnGo/v7bffVnJysmbOnCnLsvT4449r7ty5Gj9+vA4cOKDHHntMPXv2VFpaWqXPWZal6OhoDR06VPfff7/z9dLSUg0dOlTLly/Xvffeq5dffln9+/fXV199pWHDhumNN94wHjMA1DsLADxMYmKi1a9fP+fza6+91pJkSbI++OCDSssWFxdba9assZKTk63Q0FDrwIEDlmVZ1rPPPuv8zPr166vdzvr16y+4zJ133mlJslq1alXt+6+//rolybr//vurvJebm2tdd911liSrd+/elV5fvHixNWXKFGvNmjVWcXGxcxxxcXHVrmvkyJGWJCsmJsbKz8+vdiwAYBdmKAF4vIqzlC+++GKl9wIDA9WrVy9t27ZNvXr10vLly40u71NUUqrth7L0t5QDmvjBdm1Jz5Ykncwv1sQPtutvKQe0/VCWikpKK43h3HFJZdfQ/Mtf/iJJSklJ0ZdffnnBs7hPnjypWbNmVVnXb37zG0lSVlaW/vWvf1309wcArsCtFwF4vOuvv149e/bUN998o5SUFK1bt079+/d3vj937lwVFBTo9ddf15YtW7RgwYI6h8rjpwv0p09TtXjzAWXlF0mSggIcOnq67HFBUan+viVdf0s5IEmKCQ/WqD4JuvWm23Xw1lsVGxtb7Xo7duyo6OhoZWdna+HChUpISDjvhcr79eunmJiYKq9XvAxSamqqBg4cWKfvDwBciRlKAF6hplnK/Px8vfLKK7rzzjvVvXt351ng5Xfdqa2Hl/xHb3y5xxkmJam4tPJliSo+z8ov0htf7tGgv6RozlfHdLqg7HPFxcU6efKkMjIynF/lwfHbb7+94FncHTt2rPb1Ro0and12VladvjcAcDUCJQCvcPvttzuvy7hu3TqlpKRIKjsp5vjx43r88cclyXkWeLdu3ZyfPXbsWLXr/C79VKXnpXW8b1ipJVmWtHjN12rb73a1SkxSSEiIGjdurKZNmzq/Dh48KElKSEi44IXKo6Kiqn09NDTU+bi4uLhuAwUAFyNQAvAKAQEBeuyxx5zPX3zxRZWUlOill17SwIEDdemll1ZavkmTJs7Hq1evrnIh9Hc2punFf+40Hlfero06+Nff6XjKRzqaXaA7f/uE3n//fX322WeaPXu2xowZ45yNrM21JQMC+LUMwPvwmwuA1xgzZoxatmwpSVq5cqUmT56sffv2OWcna9KlS5dKF0J/d1Oanv1oh/F4SnJPKWPVbKmkSMFNE/WL+1/X11FXKbNxFx0/flxZWVm6++67K9XVAOCLCJQAvEZoaKgmTJggqew6jtOnT1fPnj01YMCA836uV69ezguhT3xloSZ/aB4mJSl/d4qsM/mSpKieN8kRVHbv8Wmrf9TGfSedZ3EDgK8jUALwKg8++KAaNmzofF6xBj+f9u3ba+TY32htTks5VMeDJWtQknvK+Tgo+uxZ3g5Z2qwOahHfWpJqvFMOAPgKAiUArxIVFaWHHnpIkpSUlKQ77rij1p997d+HlFcaKEuOehlLYOTZKrso86DzsSWHMnPP6IVPdiotLU2ZmZn1sj0A8FQESgBe5/nnn1d+fr527dp13jOmK0o/madlW9LrfCb3+YS3vVyO4DBJUvbm91Wcc8L5XqklLf16r34z7sH62yAAeCgubA7AI2zbtk3btm2TJOXm5uro0aNatGiRJKlv375q06aNc9mAgACFhYVVu57yz5SvS5LWrFmjNz5JUd7ebIW3T1bhoZ0qOnlERZlnL36en/atik9nKrhRC4XGdVbO9+slScWnjkiSrKIC52vhSZcqsEEjBTZoqMY3PKTMVXNUkntSh9/6f4rscb2CGsepJOeE8nZu0EmdUVRUlE6fPq29e/dq0aJFioyM1K233qqjR49qzZo1VX4OixYtUtu2bZWcnKzc3Fx98MEH1S7TvHlzLnAOwCM4rIrX0QAAm0yZMkXPPfdcte/Nnz9f99xzT63W43DUXGcHRjdTq9++rYyPZyv3+3XVLtOga3/F3jRB+2fcVON6mo+YrrDE7s7nhUd2KzvlAxUe2K6SvCw5gkIU3OgXCm97ueJ+dbtylz6q/fv3O5dPTExUWlqavvjiC1177bXVbmPs2LFasGCB0tLSlJSUVO0y/fr10xdffFHjOAHAXQiUAHze9kNZuvm1f9u2/Y9/d5W6xlW9nSIA+AqOoQTg87YfsvdWhXZvHwBcjUAJwOd9fyhLQQH1c2Z3XQUFOAiUAHwegRKAzzt2ulDF9Xl6dx0Ul1o6nlNoy7YBwF0IlAB83pniElu3X1hk7/YBwNUIlAB8XkhQ7a5V6SqhwfZuHwBcjUAJwOc1iwq19RjKppGhtmwbANyFQAnA53WNi7H1GMpuXDIIgI8jUALweXYHOru3DwCuRqAE4PM6tYhSTHiwLduOCQ9WxxZRtmwbANyFQAnA5wUHBmhUnwS5+zDKQIc0uk+CggP5VQvAt/FbDoBfGNk7Qe6+0WyppBG9E9y7UQCwAYESgF9o1ShCwy+Ld9ssZYBDGn5ZvFo1inDPBgHARgRKAH5j0uDOio0MdXmoDHBIsZGhmvTrzq7dEAB4CAIlAL8RFRasWcN6yNVXECq1pFnDeigqzJ4TgQDA3QiUAPzK1R2a6vkhXVy6jalDuujqDk1dug0A8CQESgB+Z0xya2eorK/6u3w9U4d00d3JretnpQDgJRyW5e7zHgHAM2z44bgeXf6dMnIKjWrw8mMmZw3rwcwkAL9EoATg17ILijR91U4t25quAEkldfiNGOgouzTQ8F7xmjS4M8dMAvBbBEoAkHTwZJ6WpBzQos0HlJVfJEkKCnBUugd4xecx4cEa3SdBI3oncGkgAH6PQAkAFRSVlGrXkdPafihL2w9l6XhOoQqLShQaHKimkaHqFhejbnEx6tgiijvgAMDPCJQAAAAwwp/XAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIwQKAEAAGCEQAkAAAAjBEoAAAAYIVACAADACIESAAAARgiUAAAAMEKgBAAAgBECJQAAAIz8fzbyHT3nbrPQAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4e0lEQVR4nO3deXhU9aHG8XeyJ2Rhi4DZCLKIbBYQDFiRTa0oyqLIIuCKt9anRa1WtICiSCuKValCewVkVxCx4lUBES0gubiBlEWBkIAsSYRAEpJMknP/yM2QkIUkZ2bOLN/P8+RxMnPm/M7QJufN7z2LzTAMQwAAAEADBVi9AQAAAPBuBEoAAACYQqAEAACAKQRKAAAAmEKgBAAAgCkESgAAAJhCoAQAAIApBEoAAACYQqAEAACAKQRKAAAAmEKgBAAAgCkESgAAAJhCoAQAAIApBEoAAACYQqAEAACAKQRKAAAAmEKgBAAAgCkESgAAAJhCoAQAAIApBEoAAACYQqAEAACAKQRKAAAAmEKgBAAAgCkESgAAAJhCoAQAAIApBEoAAACYQqAEAACAKQRKAAAAmEKgBAAAgCkESgAAAJhCoAQAAIApBEoAAACYQqAEAACAKQRKAAAAmEKgBAAAgCkESgAAAJhCoAQAAIApBEoAAACYQqAEAACAKQRKAAAAmEKgBAAAgCkESgAAAJhCoAQAAIApBEoAAACYQqAEAACAKQRKAAAAmEKgBAAAgCkESgAAAJhCoAQAAIApBEoAAACYQqAEAACAKQRKAAAAmEKgBAAAgCkESgAAAJhCoAQAAIApBEoAAACYQqAEAACAKQRKAB5r+vTpstlsF/0KDw9XmzZtdNddd2nLli1Wb7YkyW63a8iQIYqJidFbb71l9eYAgEvZDMMwrN4IAKjOzp07tXPnTknS5MmTlZWVpebNm2vOnDmOZUpKSpSenq7ly5drz549kqSHHnpIr776qgICrPub+euvv1bPnj0lSV26dHF8DgDwRQRKAF6hdevWOnz4sJKSkpSWllbl9eLiYo0ZM0bvvvuuJOnJJ5/UzJkz3byV5xUVFenWW2/Vli1b9OKLL2rSpEmWbQsAuBqBEoBXuFiglKScnBzFx8crNzdXwcHB+umnn5SYmOjeDQUAP8QxlAB8RkxMjAYPHiyp7BjGDz74wOItAgD/QKAE4FPatm3reLx//34LtwQA/AeBEoBPCQoKcjy22+2SpEOHDmnWrFkaPHiwWrVqpZCQEEVHR6tr16565JFHdPjw4WrX9dNPP1U5o/y6666TJH322We69dZb1apVKwUGBjpeT0tLU+vWrau8ryZfffWVxo0bp+TkZIWFhSkiIkLt27fX2LFjtXjxYuXm5jrvHwcAXCTo4osAgPc4duyY43FCQoJ++ukntW/fXoZhKD4+Xvfdd58SExN17NgxffTRR5ozZ47++c9/6p133tGNN95YaV0tW7bU4sWLJUnPP/+89u7dK0l69dVXNWvWLN1zzz265ZZb9PXXX2v+/PkqLS2VJL3yyivKzc3Ve++9pzVr1tS4rXPmzNGjjz6qyMhIjR07Vp07d5Ykffvtt1q8eLGWLVumRo0aESoBeDxOygHgFepyUk5paamSk5OVnp4uSUpNTVVUVJQ6duyobt26acuWLWrUqJFjecMwNGXKFM2aNUtRUVHav3+/WrZsWe26r7vuOm3evFktW7ZUdHS0vvzyS11yySWO1++991699dZbOnTokFq3bi2p7DqazzzzjGOsivbv368rrrhCJSUl+uqrr9S7d+9Kr3/zzTfq27evCgoKqrwXADwNlTcAn/H66687wuQNN9ygq666yvHatGnTKoVJSbLZbJoxY4YSEhJ09uxZzZs376JjHD9+XLNmzaoUJiVp7NixmjBhgiIjI+u0rZ988olKSkrUrFmzKmFSkrp3765hw4bVaV0AYDUqbwBepbS0VFlZWY7vS0pKlJGRocWLF+u1116TJF1xxRWOqrpt27bKyMhQq1atql1fUFCQfvWrXykjI0ObN2+WvaRUe4+f1a6jOfrhaI5Oni1UUXGJ9p04K0kKCQ1T0q9+LXtJqYIDz/9NPmDAAA0YMKDOn6O4uFiS9Msvv2j37t3q1KlTlWWeeeYZjR8/vs7rBACrECgBeJWMjAzFxsZW+1psbKzuv/9+TZkyxTEbGRQUpPj4eMcyhmHo7NmzKioqcjwXEREhSfrhxzT1fH6Dcs6VncwTFGBTcWlZ3Xwqr2x5I6aVhs/brpjwYI3tnagxvRIV3ySi3p/j2muvlc1mk2EYGjBggJ566indddddatKkiWOZdu3aqV27dvVeNwC4G4ESgFdp0aKFlixZUum5sLAwtWjRQm3btq32jOqcnBz97W9/05o1a7R7927H2d8XOnU2TxHnzr9WHiYrCggpC4855+x6c/MBvbH5gEb1SNBTQzoqKiy4zp+jR48emjJlip5//nmdPHlSv//97/XYY4+pX79+uuWWWzR8+PBKQRgAPBmBEoBXCQsL06BBg+q8/L59+zRo0CAdOXJEMTExeuSRR9StWzfFxsZq55HTmrf5oDI2r9C5Q9+qTue+VAis5Xnzna8z9Nm+k5o9spuubV/97Gl1nnvuOd14442aM2eO1q1bp8LCQm3YsEEbNmzQ5MmTNXz4cL388stKSEio8zoBwAqclAPAp40fP15HjhxRRESEUlNTNWvWLI0ePVpHI9rq1X3hsrfqpIBGTU2NUWpIWbmFGr8gVW9vS6vXe6+55hqtXr1aJ0+e1NKlSzV06FAFBQWptLRUq1atUu/evfXLL7+Y2j4AcDUCJQCfdfDgQaWmpkqShg4dqvbt20uS3t6Wpmn/2i3p/CyjWeXrmfrB7nqHSkmKjo7WmDFjtHbtWqWlpTnO8D527Jheeukl52wkALgIgRKAzzp+/LjjcXlt/MX+TE39YHel5Qz7OaeOO/WD3fpif2aty3z22Wd6+umnqz2eMy4uTitWrHBcE/P777936vYBgLMRKAH4rIqXCtq7d6/OFNj16LvfK6DCeTuGUaqi4wecOm6ATXps1fcqLC6pcZkvvvii0t13LhQSEuI4mz06Otqp2wcAzkagBOCzkpOTHRc3X7dunR54YaGy8wor1dw5W99Rcc4Jp45bfkzllz9mXXTZP//5zyopqRo8t2/frv/85z+SpDvvvNOp2wcAzsZZ3gA81s6dO7Vz505JUl5enuO/FS8bNG7cuFrXsWDBAl133XXKysrSyhkPqlGn6xTSqp2MYrsKDn2jgozdCoxpoZKcEzLsBcr9YZMkKaJ9igJCwhzfl+Sfdvy3/LngJi0VGtexypj5+7eptKhAJ/afr6rLt7lPnz5q06aNoqKiJElr167V5ZdfrlGjRikxMVEFBQX6/vvvtXz5cpWUlOixxx7T0KFD6/1vBwDuxL28AXisivfCrkldfoUdO3ZMdzz0J331+QYVn8mUzWZTYFQzhSV2VfRVtynnq1XK+2FjpffEPfjfCmrcQodn3Vzjeht1HqjmN0+u8vyRv9+jkjMnq33PggULNHHiREll9+tevXq1vvzyS+3bt0+nTp1SQECA4uLilJKSokmTJunXv/71RT8fAFiNQAnA59lLSivdAcedYsKDteOpQZVu0wgAvobfcAB83t7jZy0Jk1LZHXX2HT9rydgA4C4ESgA+b9fRHL8eHwBcjUAJwOf9cDRHQQFV7/HtDkEBNgIlAJ9HoATg806eLVSxs26JU0/FpYYycwstGRsA3IVACcDnFdVygXF3KLRbOz4AuBqBEoDPCwkKtHT80GBrxwcAVyNQAvB5l0SFWnoMZWxkqCVjA4C7ECgB+LzOcTGWHkPZJS7GkrEBwF0IlAB8ntWBzurxAcDVCJQAfN7lLaMUEx5sydgx4cHq0DLKkrEBwF0IlAB8XnBggMb2TpS7D6MMtEnjeidy20UAPo/fcgD8wpheiTLcfBhlqaTRvRLdOygAWIBACcAvxDeJ0KieCW6bpQywSaN6Jii+SYR7BgQACxEoAfiNp4Z0VPPIUJeHSpsMhcmuOzuEuHYgAPAQBEoAfiMqLFizR3aTq68gZMimUUlFWrtqpTZs2KCSEu6UA8C32QzD3UcVAYC13t6Wpqkf7HbZ+mcM7aRxVydp27Zt2rBhg+Lj4zVixAjFxHD5IAC+iUAJwC+Vh8oAm5wyY1m+nhlDO+mulNaO5zMyMrRq1SrZ7XYNGzZM7dq1Mz8YAHgYAiUAv/XF/kw9tup7ZeUWmgqVATapeWSoZo/spmvbx1Z5PT8/X++//75+/PFH9e3bV/3791dgIPf3BuA7CJQA/NqZArtmrtujlV9nKEBSST1+Iwbayi4NNKpHgp4a0lFRYTVfPN0wDCpwAD6LQAkAko6cytfy1HQt2Z6unHN2SVJQgK3SPcArfh8THqxxvRM1uldivS4NRAUOwBcRKAGgAntJqfYdP6tdR3O062iOjmTl6MChdF2WnKj45jHqElf21aFlVIPvgEMFDsDXECgBoBbHjh3T/Pnz9cADD6hVq1ZOWy8VOABfwnUoAcACNptNffr00d13362cnBzNmzdPP/74o9WbBQANQqAEAAslJCRo0qRJio+P17Jly7gQOgCvRKAEAItFRERo9OjRGjx4sLZu3apFixYpJyfH6s0CgDojUAKAB6ACB+DNCJQA4EGowAF4IwIlAHgYKnAA3oZACQAeiAocgDchUAKAB6MCB+ANCJQA4OGowAF4OgIlAHgBKnAAnoxACQBehAocgCciUAKAl6ECB+BpCJQA4IWowAF4EgIlAHgxKnAAnoBACQBejgocgNUIlADgA6jAAViJQAkAPoQKHIAVCJQA4GOowAG4G4ESAHwQFTgAdyJQAoAPowIH4A4ESgDwcVTgAFyNQAkAfoAKHIArESgBwI9QgQNwBQIlAPgZKnAAzkagBAA/RAUOwJkIlADgx6jAATgDgRIA/BwVOACzCJQAACpwAKYQKAEADlTgABqCQAkAqIQKHEB9ESgBAFVQgQOoDwIlAKBGVOAA6oJACQCoFRU4gIshUAIALooKHEBtCJQAgDqjAgdQHQIlAKBeqMABXIhACQCoNypwABURKAEADUYFDkAiUAIATKICB0CgBACYRgUO+DcCJQDAaajAAf9EoAQAOBUVOOB/CJQAAKejAgf8C4ESAOAyVOCAfyBQAgBcigoc8H0ESgCAy1GBA76NQAkAcBsqcMA3ESgBAG5FBQ74HgIlAMDtqMAB30KgBABYhgoc8A0ESgCApajAAe9HoAQAWI4KHPBuBEoAgMegAge8E4ESAOBRqMAB70OgBAB4HCpwwLsQKAEAHosKHPAOBEoAgEejAgc8H4ESAODxqMABz0agBAB4DSpwwDMRKAEAXoUKHPA8BEoAgNehAgc8C4ESAOC1qMABz0CgBAB4NSpwwHoESgCA16MCB6xFoAQA+AwqcMAaBEoAgE+hAgfcj0AJAPA5VOCAexEoAQA+iwoccA8CJQDAp1GBA65HoAQA+DwqcMC1CJQAAL9BBQ64BoESAOBXqMAB5yNQAgD8DhU44FwESgCA36ICB5yDQAkA8GtU4IB5BEoAgN+jAgfMIVACAPD/qMCBhiFQAgBQARU4UH8ESgAALkAFDtQPgRIAgBpQgQN1Q6AEAKAWVODAxREoAQC4CCpwoHYESgAA6ogKHKgegRIAgHqgAgeqIlACAFBPVOBAZQRKAAAaiAocKEOgBADABCpwgEAJAIBpVODwdwRKAACchAoc/opACQCAE1GBwx8RKAEAcDIqcPgbAiUAAC5CBQ5/QaAEAMCFqMDhDwiUAAC4GBU4fB2BEgAAN6ECh68iUAIA4EZU4PBFBEoAANyMChy+hkAJAIBFqMDhKwiUAABYiAocvoBACQCAxajA4e0IlAAAeAgqcHgrAiUAAB6EChzeiEAJAICHoQKHtyFQAgDgoajA4S0IlAAAeDAqcHgDAiUAAB6OChyejkAJAICXoAKHpyJQAgDgRajA4YkIlAAAeBkqcHgaAiUAAF6KChyegkAJAIAXowKHJyBQAgDg5ajAYTUCJQAAPoIKHFYhUAIA4EOowGEFAiUAAD6GChzuRqAEAMBHUYHDXQiUAAD4MCpwuAOBEgAAH0cFDlcjUAIA4CeowOEqBEoAAPwIFThcgUAJAICfoQKHsxEoazF9+nTZbLY6fUVHR6tbt256/PHHdeTIEas3HQAAvfLKK7Xuu5KSkvTss8/q5Zdf1k033aR77rlH3333ncu3Ky0trcq2XHfddfVeT3X76YULF1a77Lp169S8eXOlpKQwI+sCQVZvgCcbPny42rZtK0maPHmysrKy1Lx5c82ZM6fScmfOnNH27du1YsUK7dy5U/PmzdO7776r66+/3orNBgBAknTjjTeqefPmkqrfj5WUlCgrK0sHDhzQhx9+qAULFmjBggUaOHCg5syZoy5durhku2JjY7V48WJJ0vPPP6+9e/c2aD3l++msrCxNnjy51mXffPNNZWdnKzs7Wxs3btTw4cMbNCZqYKBOkpKSDElGUlJSjcts27bNCA0NNSQZkZGRxpEjR9y3gQBc4ueffzamT59u/Pzzz1ZvCmBKXfZjixYtMi655BJDkhEWFmYsXLjQ5dvVr18/Q5LRr1+/Bq/j0KFDhiRDkrFgwYJql1m7dq3RtGlTo2fPnsYvv/zS4LFQPSpvJ7r66qs1ceJESVJubq7mzp1r7QYBAFAP48eP1zfffKN27dqpoKBAd999t959912rN8sphg4dquzsbP3v//6vmjRpYvXm+BwCpZNVPAbkiy++sG5DAABogLi4OH322WeKioqSYRgaN26cdu/ebfVmwcMRKJ2s/FgVSTp58qSFWwIAQMPEx8frySeflCQVFRXpnnvu4Sxw1IpA6WR5eXmOx5GRkTUul5WVpalTp6pHjx5q3LixwsLClJSUpHHjxtU4s/n0009XezZbQUGBnn32WXXo0EHh4eFKTk7WpEmTKp1tXn7AcnJyskJDQ5WcnKzHH39cubm5F/1MmZmZeuqpp9StWzdFR0crPDxcSUlJGjVqlD755JN6/OsAALzFfffdp4CAspjw7bffatGiRdqwYUOdzs5u3rx5g8/g/vjjjzVkyBC1bNnSsb/63e9+p59//rlBn2PhwoVVtnn69OmVlqlt//rcc8+pU6dOioiIUJMmTXT99ddr06ZNDdoWX0agdLJvv/3W8fjqq6+udplPPvlEbdu21YwZMxQREaFp06bptdde05AhQ7R69Wr169dP999/v4qLiyu97/bbb9fixYsrnWV+7tw5DRgwQHv27NGjjz6qJ598UjabTfPnz1efPn105MgRHT9+XDfccIMCAgI0ZcoUPfzwwzpx4oRefPFF3XzzzSotLa3x83z66adq166dZs6cqbi4OM2cOVOvvfaabrnlFq1bt0433nij7rzzThUWFpr8lwMAeJLY2FhdccUVkiS73a7mzZtr69atuu+++zRv3jxdfvnlNb73zTff1OLFi2tdpjovvPCC7rrrLnXu3FnPP/+8pk6dqqCgIM2dO1edOnXS9u3b6/05rr32Wi1evNhxVnl1atq/9uvXTzt27NDDDz+sF198UVdeeaXWr1+vwYMHa926dfXeFp9m9VlB3qIuZ8edOnXKiIuLc5wdt3fv3irLbNu2zQgODjYkGY888kiV17/++msjMjLSkGTcf//91Y5T8Wy2uLg445VXXqn0emZmpuMsvfvvv98YM2aMkZqaWmmZzz77zLGOd999t9pxtm/fboSEhBiSjDlz5lR5/T//+Y/RuHFjQ5IxadKkmv5ZAK/GWd7wFXXZj11o3Lhxjn3FrFmzjPT0dOPll182/vKXvxi9evW66NnZdTmDu3yZ5s2bG8nJycbRo0crvZ6bm2v07t3bkGQ0a9bMOHHiRJV11OUsb8MwHMtMmzat2tcv3L8+99xzlV4vKSkxrrnmGkOS0aFDhxrH8UfMUNZTaWmpsrKyKn2lpaVp5cqV6tu3r44ePapLLrlE77//vjp06FDpvYZh6J577pHdblfr1q01a9asKuvv3r27nnjiCUnSP/7xj4tOq4eGhurhhx+u9Fzz5s01YsQISdKiRYsUEhKiq666qtIy/fv3V/v27SVJa9eurbLe8m0tKipS79699Yc//KHKMh07dnQcYzN//vwGX0cMAOCZmjVr5nicmZlZ6V7gJ06ckFS2v3CGrKwsvfDCC7r00ksrPd+oUSP9/e9/lyRlZ2dr6tSpThnvYgIDAx3743IBAQG6++67JUn79u3juNIKCJT1lJGRodjY2EpfycnJuvPOOxUSEqK3335bBw4c0A033FDlvevXr9eePXskSXfeeaeCg4OrHWPChAmOx3/7299kLynVrqM5WpaarilrdumJ1Tsdrzfu0EsrdhzRrqM5specr67Lw2xRUZGGDBlS7TgdO3aUJMc2VbRhwwbHWX1jxoyp8d+jfN2GYWjp0qU1LgcA8D4VzwU4c+aMpPP3Am/atKkk6cSJEw2+84y9pFR5hWWHdwUGh+h/zsZr/Fvbdd/bOzRlzS4tS03XrqM56tLtSkd9vmTJEhUUFJj5WHUyZMgQBQVVvf9L+WEAkphIqYA75dRTixYttGTJEsf3mZmZ+uijj7RkyRJ99913+uCDD3TnnXdW+94NGzY4Hl84Y1hRQkKCWrRooRMnTujj9RvVY8YnOlNYFhaDAmwq+CXLsexhe7SmrNklSYoJD9bY3oka0ytRUVFRjmXatWtX7TjR0dGSpNOnT9e6rW3atFFWVlaVZaSyXyzlGnJsCwDAc509e9bxOCYmxvG4/JbDklRcXKx58+Zp2LBhNe5vLnTkVL6WpaZr6fZ07TtaFkYDG7fS5wdOO5YJCrBpWWp62djhwQpreZm0d6/y8vL0zTffqE+fPmY/Xq0ubBnLVbyGJbdwPI9AWU9hYWEaNGhQpedGjx6tyy+/XE8//bRWrVqluLg4vfLKK1Xe+9NPPzkex8XF1TjGmQK7bI2aSTqhwvxcncrOVmBk2f+Bi0svqBaCwxwPc87Z9ebmA3pj8wFdceao4/mK4bKi8rP3Ljz5R1Klafxbbrmlxm2t6Pjx43VaDgDgHSpOJsTGxla7zKWXXqr4+HgtW7ZMffv2Vf/+/RUYGFjtsmcK7Jq5bo9W7siQzSZV3KXZQhtVWrbi/i7nnF2nz4U6vt+z/yeXB8qa9p2hoee3o7r9p78iUDrJE088oaVLl2rPnj2aO3euHnrooSp/qVX8Sy88PLza9XyxP1OPvvu9ThWdf660MM8RKKuwVT5qofznLzXtF8dz5cGxPipu67x589SmTZuLvqfibCUAwPtVvHJJjx49ql0mICBAo0eP1rZt27Rhwwalp6drxIgRlWY0pfP7t+y8wrKzXi489NJ2kX1V4PnDxGa8/43a9fmNrm1ffch1hobsO/0ZgdJJgoKC9Oc//1ljxoxRcXGx/vrXv+of//hHpWUq/rVT3fEfi7amadq/divAJhnF5xNlwAV/tdVFxR/U1d8c0aOtW9fr/RW3tUuXLkpJSan3NgAAvNfx48cdxwiGh4erb9++NS5rs9nUp08fJSQkaNWqVY4KvKSkpGxdZwo0fkGqAi6YlazEqPkSdpJkFNsdj/ONYI1fkKpnh3bS+JTW9fpccA3itxPdcccdjpm8xYsX69ixY5Veb9u2reNxxYuOS9Lb28rCpFT2w1Z8tqxmsIVGKCAi2tR2zVm/X29vS6vXeyrOrh4+fNjU+AAA7zN//nzHGdwTJ05UWFhYpdfLT1ix288HvYpngS9btsxxMfK0rLKbftQYJlXWxtWmODfb8TgwpoUkaeoHu+u9f4NrECidKDAwUI899pgkqbCwUC+//HKl1wcPHux4vGPHDsfjL/ZnauoH5++TWnwmU6V5pyVJYYldZQuo/liU+pj6wW59sT+zzstX3NatW7fWuuxzzz2noKAgt13KAQDgWunp6XrppZcklV22Z8qUKVWWKa+0Lzyxs/ws8AEDBig940iV99XE/svPlWYhL1R0/IAkyRYcppAW5ydopn6wW9sPZtf0NrgJgdLJ7r77brVoUfaX07x58yr9oA0aNMhxuYEVK1aouLhYZwrsevTd7xVgO7+OvB8+czyO7jnUKdsVYJMeW/W9zhbU/MNa0cCBA9W5c2dJ0sqVK2u8RWNhYaEWLFig0tJSjR492inbCgCwTnZ2tkaMGKEzZ84oICBAS5cuVXx8fJXlys+CPnjwoIqKiiq9ZrPZlHn6jIrtRVXeV6MSu/J/qv5qIYXHf1LxL2XhtFHn/rIFnT+eMsAmzfyfqpe/g3sRKJ0sLCxMv//97yWVndgyd+5cx2s2m00LFixQSEiIDh06pCeffFIz1+1Rdl6howYoOnFQOV+tkiRFdrtBYUldnbJdpYaUlVuo5z+q2w9d+baGhobq5MmTeuCBByrVGlJZzTFp0iQdPHhQDzzwgOO6lgAA7/Thhx/q6quv1o4dOxQREaFFixbp1ltvrXbZ8iuAFBQUaMWKFZVey8vL00N/eFyBjRrXffCAQJ3etEAluacqPV1qL9Avn75Rtkh4tBpfM7by64b0S149gitcgpNyarFz507t3Fl2EfG8vDzHf8uvQ3nZZZdVe7LKb3/7W82aNUtnzpzRq6++qqSkJEnSlVdeqV69eulf//qX7rjjDs2ePVuh8f+jiA59ZAsJU9GJg8rbuUFGcaEiu16vptf/V6X12k8fV+GRPSo9d8bxXOHPe6WAQIVc0lohlySr8Oge2U8dL3v+/+X/+JUCwqMVnnylVu6QuuqwSvNzdPDgwSqfadiwYWrUqOwkoJ49e2rdunW6/fbbtXz5cn333XcaM2aMWrVqpfT0dK1cuVL79u3TbbfdVu1lkgAA1tq7d6/jEKvq9mMlJSXKzs7WgQMH9Omnnzoub3fDDTdo9uzZjqaqOikpKRo1apRWrlypSZMm6euvv1a3bt108uRJzf/nf6uwdT8F2berJO+0SvJPK/eHsju/RXRIkQwpf/+2sm3IPy1JCo3rqKDoWP383w8pstv1Cm5yqUryTit313oVnzqmgNBGumTk1EohtejkIRWdTKu0X9y2bZuCgoLUokULDR48WAcPHqxy6NbOnTu1ZMkSRUZG6rbbbnMsU/EySeXr6dq1q7p27aoTJ05o/fr11S5TUx7wK5be+NHDTZs2zXFPz+q+JkyYUON7n3jiiSrLz5gxw/F6ZmamMXDMfxkhLS4zbKERhgKDjcDoWCPiin5GizGzjKQ/fVjlq9lNf6hxW2L6jjaS/vSh0ajzwBqXaTF6ptHmyQ+NNl2uqnGZQ4cOVfks2dnZxvTp040ePXoYMTExRnBwsNGyZUvjlltuMd577z0X/MsDnoN7ecObzZkzp9b9mM1mM2JiYozk5GTjhhtuMJ577jlj165ddV5/UVGR8cILLxidOnUywsLCjMaNGxsDBw407p4xz0h+8kMjNKFzlTHjfrvQiHvwv6s8H5rQuWxfN2SyEZrYxQgIjzYUGGQERl9iRHYfYsQ9tKjKfjGm7+gaP1v5/cMXLFhQ4zLl9zWvbZny+35v2rSpQXnAX9gMw0k34US92EtK1fP5Dco5V7djGp0pJjxYO54apOBAjngALubYsWOaP3++HnjgAbVq1crqzQE8Hvs3/8S/uEX2Hj9ryQ+bVHbHgX3Hz158QQAA6on9m38iUFpk11Fr7/9p9fgAAN9k9f7F6vH9FYHSIj8czVFQxWsFuVFQgI0fOACAS7B/808ESoucPFtY6cb37lRcaigzt9CSsQEAvo39m38iUFqkqLjE0vEL7daODwDwTezf/BOB0iIhQeZvp2hGaLC14wMAfBP7N/9EoLTIJVGhlh5jEhsZasnYAADfxv7NPxEoLdI5LsbSY0y6xMVYMjYAwLexf/NPBEqLWP1/eKvHBwD4Jqv3L1aP768IlBa5vGWUYsKDLRk7JjxYHVpGWTI2AMC3sX/zTwRKiwQHBmhs70S5+zCTQJs0rncit6UCALgE+zf/xL+6hcb0SpS776ReKml0r0T3DgoA8Cvs3/wPgdJC8U0iNKpngtv+iguwSaN6Jii+SYR7BgQA+CX2b/6HQGmxp4Z0VPPIUJf/0NlkKDrEpim/udy1AwEA/J5hGBrY7IxCjSLZ5NqpygCb1DwyVE/d1NGl46B2BEqLRYUFa/bIbnL1FRYM2dSrdJ/Wvb9a+fn5rh0MAOC38vPztXz5cm3dvFEPXtlIhlw7Y1JqSLNHdlNUmDUnAqEMgdIDXNs+Vs8O7eTSMWYM7aQ/3nWzMjIyNG/ePGVkZLh0PACA/ynfxxw5ckRjxozR70dd75b927XtY106Bi6OQOkhxqe0dvzQOav+Ll/PjKGddFdKa7Vr106TJk1STEyMFi5cqK1bt8pw91HTAACfYxiGtmzZogULFigmJkYPPvig2rVrJ8k9+zdYL8jqDcB541Naq3WzRnps1ffKyi00VYOXH1Mye2S3Sn+5xcTEaMKECdq0aZPWr1+vw4cP69Zbb1VEBAcyAwDqLz8/X++//75+/PFH9e3bV/3791dgYOX7abtj/wZr2QymqDzOmQK7Zq7bo5VfZyhAUkk9/hcKtJVdOmFUjwQ9NaRjrceU/Pjjj1qzZo2Cg4M1cuRIJSQkmN52wNccO3ZM8+fP1wMPPKBWrVpZvTmAR8nIyNCqVatkt9s1bNgwx6xkTdy1f4P7ESg92JFT+Vqemq4l29OVc84uqezG9xXvkVrx+5jwYI3rnajRvRLrfOmEnJwcrV69WkePHtXAgQOVkpIim83NV6MFPBiBEqjKMAxt3bpVGzduVHx8vEaOHKno6Og6v98d+ze4F4HSC9hLSrXv+FntOpqjXUdzlJlbqEJ7iUKDAxUbGaoucTHqEhejDi2jGnSHgJKSEm3atElbtmxR+/btqcCBCgiUQGV1qbjrytX7N7gPgRIOVOBAVQRK4Lz6VtzwH8R9OHAWOACgOrWdxQ1InOWNC3AWOACgImdW3PBdzFCiisDAQA0aNEhjxozhQugA4McuvFD5oEGDCJOoFoESNaICBwD/RMWN+qLyRq2owAHAv1BxoyGYocRFUYEDgH+g4kZDEShRZ1TgAOCbqLhhFpU36oUKHAB8CxU3nIEZStQbFTgA+AYqbjgLgRINRgUOAN6JihvORuUNU6jAAcC7UHHDFZihhGlU4ADgHai44SoESjgNFTgAeCYqbrgalTecigocADwLFTfcgRlKOB0VOAB4BipuuAuBEi5DBQ4A1qDihrtRecOlqMABwL2ouGEFZijhclTgAOAeVNywCoESbkMFDgCuQcUNq1F5w62owAHAuai44QmYoYTbUYEDgHNQccNTEChhGSpwAGgYKm54GipvWIoKHADqh4obnogZSliOChwA6oaKG56KQAmPQQUOANWj4oano/KGR6ECB4DKqLjhDZihhMehAgeAMlTc8BYESngsKnAA/oqKG96GyhsejQocgL+h4oY3YoYSHo8KHIC/oOKGtyJQwmtQgQPwVVTc8HZU3vAqVOAAfA0VN3wBM5TwOlTgAHwFFTd8BYESXosKHIC3ouKGr6HyhlejAgfgbai44YuYoYTXowIH4C2ouOGrCJTwGVTgADwVFTd8HZU3fAoVOABPQ8UNf8AMJXwOFTgAT0HFDX9BoITPogIHYBUqbvgbKm/4NCpwAO5GxQ1/xAwlfB4VOAB3oeKGvyJQwm9QgQNwFSpu+Dsqb/gVKnAAzkbFDTBDCT9EBQ7AWai4gTIESvgtKnAADUXFDVRG5Q2/RgUOoL6ouIGqmKGE36MCB1BXVNxA9QiUwP+jAgdQEypuoHZU3kAFVOAALkTFDVwcM5TABajAAZSj4gbqhkAJ1IAKHPBfVNxA/VB5A7WgAgf8DxU3UH/MUAIXQQUO+A8qbqBhCJRAHVGBA76Lihswh8obqAcqcMD3UHED5jFDCdQTFTjgO6i4AecgUAINRAUOeC8qbsC5qLwBE6jAAe9DxQ04HzOUgElU4ID3oOIGXINACTgJFTjguai4Adei8gaciAoc8DxU3IDrMUMJOBkVOOA5qLgB9yBQAi5CBQ5Yh4obcC8qb8CFqMAB96PiBtyPGUrAxajAAfeh4gasQaAE3IQKHHAdKm7AWlTegBtRgQPOR8UNWI8ZSsDNqMAB56HiBjwDgRKwCBU40HBU3IBnofIGLEQFDtQfFTfgeZihBCxGBQ7UHRU34JkIlICHoAIHakbFDXg2Km/Ag1CBA1VRcQOejxlKwMNQgQPnUXED3oFACXgoKnD4MypuwLtQeQMejAoc/oiKG/A+zFACHo4KHP6EihvwTgRKwEtQgcOXUXED3o3KG/AiVODwRVTcgPdjhhLwMlTg8CVU3IBvIFACXooKHN6MihvwLVTegBejAoc3ouIGfA8zlICXowKHN6HiBnwTgRLwEVTg8GRU3IBvo/IGfAgVODwRFTfg+5ihBHwMFTg8CRU34B8IlICPogKHlai4Af9C5Q34MCpwWIGKG/A/zFACPo4KHO5ExQ34JwIl4CeowOFKVNyAf6PyBvwIFThcgYobADOUgJ+hAoczUXEDkAiUgN+iAocZVNwAKqLyBvwYFTgagoobwIWYoQT8HBU46oOKG0B1CJQAJFGBo3ZU3ABqQ+UNwIEKHNWh4gZwMcxQAqiEChwVUXEDqAsCJYBqUYH7NypuAPVB5Q2gRlTg/omKG0B9MUMJoFZU4P6FihtAQxAoAdQJFbhvo+IGYAaVN4A6owL3TVTcAMxihhJAvVCB+xYqbgDOQKAE0CBU4N6NihuAM1F5A2gwKnDvRMUNwNmYoQRgChW4d6HiBuAKBEoATkEF7tmouAG4EpU3AKehAvdMVNwAXI0ZSgBORQXuWai4AbgDgRKAS1CBW4uKG4A7UXkDcBkqcGtQcQNwN2YoAbgUFbh7UXEDsAKBEoBbUIG7FhU3ACtReQNwGypw16DiBmA1ZigBuBUVuHNRcQPwBARKAJagAjeHihuAJ6HyBmAZKvCGoeIG4GmYoQRgKSrw+qHiBuCJCJQAPAIVeO2ouAF4MipvAB6DCrx6VNwAPJ3NYAoAgAeYOHGiFi1aVOX5QYMG6a233lJCQkK91verX/1K3333XZXnK/7Kmz59ul566SWNHj1a8+fPr7SczWar9H18fLwlVXxGRoZWrVolu92uYcOGMSsJwCMRKAF4hG3btunAgQOSpMmTJysrK0uSFBERocmTJ+umm25SSkpKlaBXnY8//li/+c1vHN9PmTJFHTt2lCSNGzfO8XxUVJRyc3MlSdnZ2WratKnjtSVLlkiSXn/9dW3fvt3tgdIwDG3dulUbN25UfHy8Ro4cqejoaLeNDwD1QaAE4HFat26tw4cPO76/9957lZCQoPbt29epAu/fv78+//xzx/ebNm3SddddV2W5P//5z5ozZ45GjhyphQsXVruuUaNG6Z133nFroKTiBuBtOCkHgEdq27atgoODJUkffvihRowYUaezwLdv367PP/9cV1xxxUXHmDFjhnJzc2sMk1bgLG4A3ohACcAjxcXFaezYsZKkEydO6IsvvqjTWeCzZs1SmzZtNHz4cHdvsimcxQ3AmxEoAXisJ554wnHM5IsvvqhGjRppwoQJSklJ0fr167VixQrl5+c7lt+7d6/Wrl2rRx55xKtm9fLz87V8+XJt2LBBffr00YQJEzheEoBXIVAC8FiXX365brvtNklSWlqali9fXuuF0P/617+qWbNmuueee2pd78SJE2Wz2Sp9VTzmsr6++uorPf7447r66qvVtGlTBQcHq2nTprrmmms0e/Zsx4k/F/rnP/8pm82mRo0aaezYsZo+fbr+/e9/y2az6fXXX1f37t0VGRmp6OhoXXPNNVq9enWDtxEAXIlACcCj/elPf3I8/stf/uKouS+8EPratWu1dOlS/e53v1N4eHit65w0aZIWL16sKVOmmN6+t956SykpKXrxxRdlGIYef/xxzZ07V5MmTVJ6err++Mc/qnv37kpLS6v0PsMwFB0dreHDh+u+++5zPF9aWqrhw4dr1apVuvvuu/Xyyy9r4MCB2rJli0aOHKk333zT9DYDgNMZAOBhkpKSjH79+jm+79+/vyHJkGSsWbOm0rLFxcXG+vXrjZSUFCM0NNRIT083DMMwpk2b5njPpk2bqh1n06ZNF13mjjvuMCQZ8fHx1b7+xhtvGJKM++67r8preXl5xoABAwxJRq9evSo9v3TpUmP69OnG+vXrjeLiYsd2xMXFVbuuMWPGGJKMmJgY49y5c9VuCwBYhRlKAB6v4izlCy+8UOm1wMBA9ejRQzt37lSPHj20atUqU5f3sZeUatfRHC1LTdeUNbu0I+OMJOnUuWJNWbNLy1LTtetojuwlpZW24cLtksquofn3v/9dkpSamqrNmzdf9CzuU6dOafbs2VXWde+990qScnJy9OWXXzb48wGAK3DrRQAe7/rrr1f37t31zTffKDU1VRs3btTAgQMdr8+dO1cFBQV64403tGPHDi1cuLDeoTLzbIH++sleLd2erpxzdklSUIBNJ86WPS6wl+qdHRlalpouSYoJD9bY3om67eYROnLbbWrevHm16+3QoYOio6N15swZLV68WImJibVeqLxfv36KiYmp8nzFyyDt3btXgwcPrtfnAwBXYoYSgFeoaZby3LlzevXVV3XHHXeoa9eujrPAy++6U1cPL/9Wb24+4AiTklRcWvmyRBW/zzln15ubD+iGv6fqlS0ndbag7H3FxcU6deqUsrKyHF/lwfG777676FncHTp0qPb5Jk2anB87J6denw0AXI1ACcArjBgxwnFdxo0bNyo1NVVS2UkxmZmZevzxxyXJcRZ4ly5dHO89efJktev8PuN0pe9L63nfsFJDMgxp6fqvdFm/EYpPSlZISIiaNm2q2NhYx9eRI0ckSYmJiRe9UHlUVFS1z4eGhjoeFxcX129DAcDFCJQAvEJAQID++Mc/Or5/4YUXVFJSopdeekmDBw/WlVdeWWn5Zs2aOR5//PHHVS6Evmhrml74nz2mtyt/31Yd+efvlJn6L504U6A7fvuE3nvvPX366aeaM2eOxo8f75iNrMu1JQMC+LUMwPvwmwuA1xg/frxatWolSVq7dq2mTp2qQ4cOOWYna9KpU6dKF0J/e1uapv1rt+ntKck7rax1c6QSu4Jjk3TpfW/oq6hrlN20kzIzM5WTk6O77rqrUl0NAL6IQAnAa4SGhmry5MmSyq7jOHPmTHXv3l2DBg2q9X09evRwXAh9yquLNfUD82FSks79lCqj6JwkKar7zbIFld17/LmPf9TWQ6ccZ3EDgK8jUALwKg8++KAaN27s+L5iDV6bdu3aacyEe7Uht5VsqufBkjUoyTvteBwUff4sb5sMbVd7tUxoLUk13ikHAHwFgRKAV4mKitJDDz0kSUpOTtbtt99e5/e+/u+jyi8NlCGbU7YlMPJ8lW3PPuJ4bMim7LwiPf/RHqWlpSk7O9sp4wGApyJQAvA6zz77rM6dO6d9+/bVesZ0RRmn8rVyR0a9z+SuTfhlV8kWHCZJOrP9PRXn/uJ4rdSQVnx1UPc+8KDzBgQAD8WFzQF4hJ07d2rnzp2SpLy8PJ04cUJLliyRJPXp00dt2rRxLBsQEKCwsLBq11P+nvJ1SdL69ev15kepyj94RuHtUlR4dI/sp47Lnn3+4ufn0r5T8dlsBTdpqdC4jsr9YZMkqfj0cUmSYS9wPBeefKUCGzVRYKPGanrjQ8pe94pK8k7p2D/+S5HdrldQ0ziV5P6i/D1f6JSKFBUVpbNnz+rgwYNasmSJIiMjddttt+nEiRNav359lX+HJUuW6LLLLlNKSory8vK0Zs2aapdp0aIFFzgH4BFsRsXraACARaZPn65nnnmm2tcWLFigiRMn1mk9NlvNdXZg9CWK/+1byvpwjvJ+2FjtMo06D1Tzmyfr8Kyba1xPi9EzFZbU1fF94fGfdCZ1jQrTd6kkP0e2oBAFN7lU4Zddpbhfj1Deisd0+PBhx/JJSUlKS0vT559/rv79+1c7xoQJE7Rw4UKlpaUpOTm52mX69eunzz//vMbtBAB3IVAC8Hm7juboltf/bdn4H/7uGnWOq3o7RQDwFRxDCcDn7Tpq7a0KrR4fAFyNQAnA5/1wNEdBAc45s7u+ggJsBEoAPo9ACcDnnTxbqGJnnt5dD8WlhjJzCy0ZGwDchUAJwOcVFZdYOn6h3drxAcDVCJQAfF5IUN2uVekqocHWjg8ArkagBODzLokKtfQYytjIUEvGBgB3IVAC8Hmd42IsPYayC5cMAuDjCJQAfJ7Vgc7q8QHA1QiUAHze5S2jFBMebMnYMeHB6tAyypKxAcBdCJQAfF5wYIDG9k6Uuw+jDLRJ43onKjiQX7UAfBu/5QD4hTG9EuXuG82WShrdK9G9gwKABQiUAPxCfJMIjeqZ4LZZygCbNKpnguKbRLhnQACwEIESgN94akhHNY8MdXmoDLBJzSND9dRNHV07EAB4CAIlAL8RFRas2SO7ydVXECo1pNkjuykqzJoTgQDA3QiUAPzKte1j9ezQTi4dY8bQTrq2faxLxwAAT0KgBOB3xqe0doRKZ9Xf5euZMbST7kpp7ZyVAoCXsBmGu897BADP8MX+TD226ntl5RaaqsHLj5mcPbIbM5MA/BKBEoBfO1Ng18x1e7Ty6wwFSCqpx2/EQFvZpYFG9UjQU0M6cswkAL9FoAQASUdO5Wt5arqWbE9Xzjm7JCkowFbpHuAVv48JD9a43oka3SuRSwMB8HsESgCowF5Sqn3Hz2rX0RztOpqjzNxCFdpLFBocqNjIUHWJi1GXuBh1aBnFHXAA4P8RKAEAAGAKf14DAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAlP8Df3IaoSgrVZgAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -88,20 +49,40 @@ "E = [('Milan','Dublin'), ('Milan','Paris'), ('Paris','Dublin'), ('Milan','Rome')]\n", "G.add_nodes_from(V)\n", "G.add_edges_from(E)\n", - "draw_graph(G, pos_nodes=nx.shell_layout(G), node_size=500)" + "draw_graph(G, layout=nx.shell_layout, node_size=500)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'Rome': {}, 'Milan': {}, 'Dublin': {}, 'Paris': {}}" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dict(G.nodes)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "V = ['Dublin', 'Milan', 'Paris', 'Rome']\n", - "E = [('Dublin', 'Milan'), ('Dublin', 'Paris'), ('Milan', 'Paris'), ('Milan', 'Rome')]\n" + "V = ['Rome', 'Milan', 'Dublin', 'Paris']\n", + "E = [('Rome', 'Milan'), ('Milan', 'Dublin'), ('Milan', 'Paris'), ('Dublin', 'Paris')]\n" ] } ], @@ -112,16 +93,16 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{2: 'Paris', 3: 'Milan', 1: 'Rome'}" + "{1: 'Rome', 3: 'Milan', 2: 'Paris'}" ] }, - "execution_count": 4, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -132,7 +113,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": { "scrolled": true }, @@ -143,8 +124,8 @@ "text": [ "Graph Order: 4\n", "Graph Size: 4\n", - "Degree for nodes: {'Dublin': 2, 'Milan': 3, 'Paris': 2, 'Rome': 1}\n", - "Neighbors for nodes: {'Dublin': ['Milan', 'Paris'], 'Milan': ['Dublin', 'Paris', 'Rome'], 'Paris': ['Milan', 'Dublin'], 'Rome': ['Milan']}\n" + "Degree for nodes: {'Rome': 1, 'Milan': 3, 'Dublin': 2, 'Paris': 2}\n", + "Neighbors for nodes: {'Rome': ['Milan'], 'Milan': ['Dublin', 'Paris', 'Rome'], 'Dublin': ['Milan', 'Paris'], 'Paris': ['Milan', 'Dublin']}\n" ] } ], @@ -157,15 +138,15 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Nodes: ['Dublin', 'Milan', 'Paris', 'Rome']\n", - "Edges: [('Dublin', 'Milan'), ('Dublin', 'Paris'), ('Milan', 'Paris'), ('Milan', 'Rome')]\n" + "Nodes: ['Rome', 'Milan', 'Dublin', 'Paris']\n", + "Edges: [('Rome', 'Milan'), ('Milan', 'Dublin'), ('Milan', 'Paris'), ('Dublin', 'Paris')]\n" ] } ], @@ -177,15 +158,15 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "V = ['Dublin', 'Milan', 'Paris', 'Rome', 'London', 'Madrid']\n", - "E = [('Dublin', 'Milan'), ('Dublin', 'Paris'), ('Milan', 'Paris'), ('Milan', 'Rome'), ('Paris', 'Madrid'), ('Rome', 'London')]\n" + "V = ['Rome', 'Milan', 'Dublin', 'Paris', 'Madrid', 'London']\n", + "E = [('Rome', 'Milan'), ('Rome', 'London'), ('Milan', 'Dublin'), ('Milan', 'Paris'), ('Dublin', 'Paris'), ('Paris', 'Madrid')]\n" ] } ], @@ -200,15 +181,15 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "V = ['Dublin', 'Milan', 'Paris', 'Rome']\n", - "E = [('Dublin', 'Milan'), ('Dublin', 'Paris'), ('Milan', 'Paris'), ('Milan', 'Rome')]\n" + "V = ['Rome', 'Milan', 'Dublin', 'Paris']\n", + "E = [('Rome', 'Milan'), ('Milan', 'Dublin'), ('Milan', 'Paris'), ('Dublin', 'Paris')]\n" ] } ], @@ -221,15 +202,15 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "V = ['Dublin', 'Milan', 'Paris', 'Rome']\n", - "E = [('Dublin', 'Paris'), ('Milan', 'Rome')]\n" + "V = ['Rome', 'Milan', 'Dublin', 'Paris']\n", + "E = [('Rome', 'Milan'), ('Dublin', 'Paris')]\n" ] } ], @@ -242,14 +223,14 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[('Dublin', 'Paris', {}), ('Milan', 'Rome', {})]\n" + "[('Rome', 'Milan', {}), ('Dublin', 'Paris', {})]\n" ] } ], @@ -259,18 +240,18 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " Dublin Milan Paris Rome\n", - "Dublin 0.0 0.0 1.0 0.0\n", - "Milan 0.0 0.0 0.0 1.0\n", - "Paris 1.0 0.0 0.0 0.0\n", - "Rome 0.0 1.0 0.0 0.0\n" + " Rome Milan Dublin Paris\n", + "Rome 0.0 1.0 0.0 0.0\n", + "Milan 1.0 0.0 0.0 0.0\n", + "Dublin 0.0 0.0 0.0 1.0\n", + "Paris 0.0 0.0 1.0 0.0\n" ] } ], @@ -287,7 +268,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -299,11 +280,11 @@ "1 Milan Rome\n", "2 Paris Milan\n", "3 Paris Dublin\n", - " Dublin Milan Paris Rome\n", - "Dublin 0.0 0.0 0.0 0.0\n", - "Milan 1.0 0.0 0.0 1.0\n", - "Paris 1.0 1.0 0.0 0.0\n", - "Rome 0.0 0.0 0.0 0.0\n" + " Rome Milan Dublin Paris\n", + "Rome 0.0 0.0 0.0 0.0\n", + "Milan 1.0 0.0 1.0 0.0\n", + "Dublin 0.0 0.0 0.0 0.0\n", + "Paris 0.0 1.0 1.0 0.0\n" ] } ], @@ -320,15 +301,15 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Indegree for nodes: {'Dublin': 2, 'Milan': 1, 'Paris': 0, 'Rome': 1}\n", - "Outegree for nodes: {'Dublin': 0, 'Milan': 2, 'Paris': 2, 'Rome': 0}\n" + "Indegree for nodes: {'Rome': 1, 'Milan': 1, 'Dublin': 2, 'Paris': 0}\n", + "Outegree for nodes: {'Rome': 0, 'Milan': 2, 'Dublin': 0, 'Paris': 2}\n" ] } ], @@ -339,12 +320,12 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6fElEQVR4nO3deXRU9eH+8WcmeyAJgUCCYd+RzQKCQSso4FIqIqIsIqC1UKueFnfBAhZRKihUS+tyfoAlCHyFWlCsliCLFYTiAogEZQmElAAJELKTZO7vj5ghQyaQ5M6aeb/O4XSWO/d+kprcJ5/nLhbDMAwBAAAAdWT19gAAAADg3wiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAB8wqxZs2SxWGr0Lzo6Wr169dLTTz+t48ePe3voABDwLIZhGN4eBADs2bNHe/bskSRNnTpVWVlZiouL04IFCxyWO3/+vHbs2KGVK1fqwoULio6O1vvvv69bbrnFG8MGAIhACcAHtWnTRkePHlXr1q2VlpbmdJkvv/xSgwYNUnFxsRo2bKjU1FQlJiZ6dqAAAElU3gD81HXXXadJkyZJkvLy8rRo0SLvDggAAhiBEoDfGjRokP3x1q1bvTcQAAhwBEoAfisuLs7++NSpU14cCQAENgIlAL+Vn59vf9ywYcNql8vKytKMGTPUp08fNWrUSOHh4WrdurXGjx9f7czm888/X+Xs8qVLl6qoqEh//OMf1blzZ0VERKht27aaMmWKw9nmWVlZmjp1qtq2bauwsDC1bdtWTz/9tPLy8q74NZ0+fVrTp09Xr169FB0drYiICLVu3VqjR4/Wp59+WovvDgB4DoESgN/65ptv7I+vu+46p8t8+umn6tChg2bPnq3IyEjNnDlTb7zxhoYNG6Y1a9Zo4MCB+vWvf63S0lKHz91zzz1atmyZw1nmhYWFuvnmm7V//3498cQTeu6552SxWPT2229rwIABOn78uDIzM3XrrbfKarVq2rRpeuyxx3Ty5EnNmzdPv/zlL2Wz2ar9ev7973+rY8eOeumll5SYmKiXXnpJb7zxhu644w6tX79et912m8aMGaPi4mKT3zkAcDEDAHxM69atDUlG69atq13m7NmzRmJioiHJCA8PN1JTU6sss337diMkJMSQZDz++ONV3v/qq6+Mhg0bGpKMX//61063c+TIEUOSIclITEw0Fi5c6PD+6dOnjWbNmtnXMW7cOGPnzp0Oy3z22Wf2dbz//vtOt7Njxw4jNDTUkGQsWLCgyvvff/+90ahRI0OSMWXKlOq+LQDgFcxQAvBZNptNWVlZDv/S0tK0atUqXX/99crIyFCzZs30z3/+U507d3b4rGEYevDBB1VSUqI2bdpo7ty5Vdbfu3dvPfPMM5Kkd955R5s2bbrseMLCwvTYY485vBYXF6e7775bkvTuu+8qNDRU1157rcMyN910kzp16iRJWrt2bZX1Voz1woUL6t+/v37/+99XWaZr16567rnnJElvv/22UlNTLztWAPAkAiUAn5Wenq6mTZs6/Gvbtq3GjBmj0NBQ/f3vf9ehQ4d06623Vvnshg0btH//fknSmDFjFBIS4nQbEydOtD/+85//rJIym/Zm5Oi9ncc07YO9embNHvv7jTr308pdx7U3I0clZRer64owe+HCBQ0bNszpdrp27SpJ9jFVlpKSon379kmSxo0bV+33o2LdhmFo+fLl1S4HAJ4W7O0BAEB14uPjlZycbH9++vRpffzxx0pOTta3336rdevWacyYMU4/m5KSYn986YxhZS1btlR8fLxOnjypTzZsVJ/Zn+p8cXlYDLZaVHQmy77s0ZJoTftgryQpJiJE9/VvpXH9WikqKsq+TMeOHZ1uJzo6WpJ07ty5y461Xbt2ysrKqrKMJEVGRtof79ixo9qvCQA8jUAJwGeFh4dryJAhDq+NHTtWXbp00fPPP6/Vq1crMTFRCxcurPLZgwcP2h9f7g4654tKZGnQRNJJFRfk6Wx2toIaxkqSSm2X3EgsJNz+MKewRG9uOaS/bTmkq89n2F+vHC4rs1rLC6FLT/6RpB9//NH++I477qh2rJVlZmbWaDkA8AQCJQC/88wzz2j58uXav3+/Fi1apEceeaTKzGBubq79cUREhNP1bP3htJ54f7fOXrj4mq043x4oq7A4HiVUkTd3pp2xv1YRHGuj8ljfeusttWvX7oqfqTxbCQDeRqAE4HeCg4P1hz/8QePGjVNpaaleeeUVvfPOOw7LVJ4pLCoqqrKOd7elaeaH+2S1SEbpxURpDWtQ6/EYlSYy13x9XE+0aVOrz1cea48ePZSUlFTrMQCAN3FSDgC/dO+999pn8pYtW6YTJ044vN+hQwf748oXHZekv28vD5NS+SxjaW75MYuWsEhZI6NNjWvBhh/09+1ptfpM5dnVo0ePmto+AHgDgRKAXwoKCtKTTz4pSSouLtZrr73m8P7QoUPtj3ft2mV/vPWH05qxbp/9een507Lln5MkhbfqKYs1yPTYZqzbp60/nK7x8pXHum3btssu++KLLyo4OFgzZsyo8/gAwNUIlAD81gMPPKD4+HhJ5cceVj6DesiQIbr66qslSStXrlRpaanOF5Xoifd3y2q5uI787z6zP47uO9wl47JapCdX71ZuUUmNlh88eLC6d+8uSVq1alW1t2gsLi7WkiVLZLPZNHbsWJeMFQBcgUAJwG+Fh4frd7/7naTyE1sWLVpkf89isWjJkiUKDQ3VkSNH9Nxzz+ml9fuVnV9sP5nmwsnDyvlytSSpYa9bFd66p0vGZTOkrLxizfm46jUnnakYa1hYmE6dOqXJkyerpMQxjJaUlGjKlCk6fPiwJk+ebL+uJQD4Ak7KAeAT9uzZoz17yi8inp+fb//fiutQtm/f3unJKr/97W81d+5cnT9/Xq+//rpat24tSbrmmmvUr18/ffjhh7r33ns1f/58hbX4lyI7D5AlNFwXTh5W/p4UGaXFatjzFjW+5WGH9Zacy1Tx8f2yFZ63v1b8v1TJGqTQZm0U2qytijP2q+RsZvnrPyn48UtZI6IV0fYardol9dRR2QpydPjw4Spf01133aUGDcpPAurbt6/Wr1+ve+65RytWrNC3336rcePGqXnz5jp27JhWrVqlAwcOaMSIEU4vkwQA3mQxDMO48mIA4F6zZs3SCy+8UO37EydO1NKlS52+9+yzz+pPf/qTw2uzZ8/W888/L0nKysrSmN/N0Ocb/62ScydklJYoqEEjhbW4WlHX3K7wVt2rrDNvT4qyP17odHsx149Vo5/fp6yPFij/u41Ol4kf+5IatOkpffSCDu/9r9Nljhw5ojaXnBF+5swZvfHGG/rwww918OBBFRQUqEmTJrr22mv1wAMP6K677nK6LgDwJgIlgHqvpMymvnNSlFNYs2MaXSkmIkS7pg9RSBBHGAGov/gNB6DeS83M9UqYlMrvqHMgM/fKCwKAHyNQAqj39mbkBPT2AcDdCJQA6r3vMnIUXPlaQR4UbLUQKAHUewRKAPXeqdxildq8c7h4qc3Q6bxir2wbADyFQAmg3rtQWubV7ReXeHf7AOBuBEoA9V5osPnbKZoRFuLd7QOAuxEoAdR7zaLCvHoMZdOGYV7ZNgB4CoESQL3XPTHGq8dQ9kiM8cq2AcBTCJQA6j1vBzpvbx8A3I1ACaDe65IQpZiIEK9sOyYiRJ0ToryybQDwFAIlgHovJMiq+/q3kqcPowyySOP7t+K2iwDqPX7LAQgI4/q1kuHhwyhtksb2a+XZjQKAFxAoAQSEFrGRGt23pcdmKa0WaXTflmoRG+mZDQKAFxEoAQSM6cO6Kq5hmNtDpdUixTUM0/RfdHXvhgDARxAoAQSMqPAQzR/VS+6+gpDNkOaP6qWocO+cCAQAnkagBBBQbuzUVH8c3s2t25g9vJtu7NTUrdsAAF9CoAQQcCYktbGHSlfV3xXrmT28m+5PauOalQKAn7AYhqfPewQA37D1h9N6cvVuZeUVm6rBK46ZnD+qFzOTAAISgRJAQDtfVKKX1u/Xqq/SZZVUVovfiEGW8ksDje7TUtOHdeWYSQABi0AJAJKOny3Qip3HlLzjmHIKSyRJwVaLwz3AKz+PiQjR+P6tNLZfKy4NBCDgESgBoJKSMpsOZOZqb0aO9mbk6Ovvf1SJYVG71i3VtGGYeiTGqEdijDonRHEHHAD4CYESAKqRnZ2tv/zlL5Kkxx57TI0bN/byiADAN/HnNQBUY+vWrfbHW7Zs8eJIAMC3ESgBwIns7Gzt2bPH/nzv3r06c+aMF0cEAL6LQAkATmzdulUWi+NFKpmlBADnCJQAcImK2cnKh5gbhsEsJQBUg0AJAJdwNjtZgVlKAKiKQAkAlTibnazALCUAOEegBIBKLjc7WYFZSgBwRKAEgJ9cbnayArOUAFAVgRIAflKT2ckKzFICwEUESgBQzWYnKzBLCQCOCJQAoNrNTlZglhIAyhEoAQS82sxOVmCWEgAuIlACCHh1mZ2swCwlABAoAQS4usxOVmCWEgDKESgBBLStW7ea+rxhGMxSAgh4BEoAAe3gwYM+sQ4A8GcWoy49DwDUEwUFBSooKKj2/fXr10uShg0bVu0ykZGRioyMdPnYAMBfBHt7AADgTVcKg6GhoZKkuLg4Tw0JAPwOlTcAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMCfhAuXDhQlkslmr/Wa1WxcbGqkOHDrr99tv10ksvae/evW4fV1paWpWxDBo0qNbrmTVrVpX1LF261Omy69evV1xcnJKSkpSTk2PuCwAA+B1n+wxn/yIiItSuXTvdf//9+uKLL7w9bElSSUmJhg0bppiYGC1evNjbwwk4wd4egLfddtttiouLkyRNnTpVWVlZiouL04IFCyRJZWVlysrK0uHDh5WSkqJPPvlE06dP16233qp58+apR48ebhlX06ZNtWzZMknSnDlzlJqaWqf1jBw5Uh06dFBWVpamTp162WXffPNNZWdnKzs7Wxs3btTIkSPrtE0AgH+q2GdIzveJUvl+8dixY1qxYoWSk5OVnJysRx55RK+//rqsVu/NU+3Zs0cff/yxpPLJogcffNBrYwlIBuxat25tSDJat25d7TIff/yx0blzZ0OSERERYSxdutTt4xo4cKAhyRg4cGCd13HkyBFDkiHJWLJkidNl1q5dazRu3Njo27evcebMmTpvC6hP3nvvPeO9997z9jAAj7vSPrGkpMS455577PuW5557zrMDvERxcbFx2223GVFRUcabb77p1bEEooCvvGvr9ttv1/bt25WUlKTCwkI98MADWrNmjbeH5RLDhw9Xdna2/vvf/yo2NtbbwwEA+LDg4GC98847atiwoSRp/vz5OnbsmNfGExoaqn/96186f/68pkyZ4rVxBCoCZR3Exsbq/fffV2xsrAzD0IQJE5Senu7tYQEA4FExMTEaOnSopPJjGNetW+flEcFbCJR1lJiYqKeeekqSVFBQoBdffNHLIwIAwPMqjrmUpB9++MGLI4E3EShNeOihh+wHIL/77rsqLCyUpBqdnR0XF1fnM7g/+eQTDRs2TAkJCQoLC1Pbtm316KOP6n//+1+dvo6lS5dWGfOsWbMclnn++eedni1eVFSkF198Ud26dVNkZKRiY2N1yy23aNOmTXUaCwDAvwQHXzy/t6SkRJJ05MgRzZ07V0OHDlXz5s0VGhqq6Oho9ezZU48//riOHj3qdF0HDx6sdh/62Wef6c4771Tz5s0VFBRkfz8tLU1t2rSp8rnqfPnllxo/frzatm2r8PBwRUZGqlOnTrrvvvu0bNky5eXlue6bE0AIlCY0bdpUV199tSSpuLhY//nPfyRJy5Yt07Jly9SlS5dqP/vmm29ecRlnXn75Zd1///3q3r275syZoxkzZig4OFiLFi1St27dtGPHjlp/HTfeeKN9zNW55557tGzZMocz/QoLCzVw4EDt2rVLjz32mObNm6drrrlGGzZs0NChQ7V+/fpajwUA4F9OnDhhf9yyZUsdPHhQ7du313PPPafU1FQ99NBDWrRokZ588klFRkZqwYIF6tGjhz755JMq60pISHC6D3399dc1fvx49ejRQ7Nnz9bkyZMdzihfuHChli1bprvuuuuyY12wYIEGDBigdevW6bbbbtOrr76qefPm6cYbb9Tq1as1YcIEJSQkuOC7EoC8fVaQL6nJWd6XGj9+vP0Mt7lz5zq8V5Ozs2uzTFxcnNG2bVsjIyPD4f28vDyjf//+hiSjSZMmxsmTJ6usoyZneRuGYV9m5syZTt+vvJ7ExETjxRdfdHi/rKzMuOGGGwxJRufOnavdDuAvOMsbgaom+8SysjKjVatW9v3Czp07jf379xuSjF69ehl5eXkOy9tsNuPZZ581JBlRUVHGiRMnql13xb4vISHB6NSpU5V924MPPmhIMo4cOWJ/bebMmfaxXOrAgQNGUFCQIcn48ssvq7z/1VdfGeHh4U4/iytjhtKkJk2a2B+fPn3ardvKysrSyy+/rKuuusrh9QYNGuivf/2rJCk7O1szZsxw6zgqBAUF6ZlnnnF4zWq16oEHHpAkHThwQD/++KNHxgIA8Ly//OUv9jO7b731Vl177bX292bOnKkGDRo4LG+xWDR79my1bNlSubm5euutt664jczMTM2dO1fNmjVzeP2+++7TxIkT7WeZX8mnn36qsrIyNWnSRP3796/yfu/eva84w4nqBfyFzc2q/B/y+fPn3bINwyj/35DQMH2l9trw9126UFqm0OAgNYsKU/fEGPVIbK/OXbroQGqqkpOTtXDhQoWHh7tlPBWGDRvmcOxMhYrDACQpNTVVHTt2dOs4AADuY7PZlJWVZX9eVlam9PR0LVu2TG+88Yak8t/7FYdNdejQQenp6WrevLnT9QUHB+tnP/uZ0tPTtXnzFo18KEd7M3L0XUaOTuUW2/dvR7LyJUnh4RG69fZfVFnPzTffrJtvvrnGX0dpaakk6cyZM9q3b5+6detWZZkXXnhBEyZMqPE6cRGB0qTc3Fz745iYGJeu+/jZAr2385i+Onb2pw0k6B97TqnUZtiXCbZa9N7O8r8Oc0ISJKUqPz9fX3/9tQYMGODS8Vyqc+fOTl+vfA1LbuEIAP4tPT1dTZs2dfpe06ZN9etf/1rTpk2zz0YGBwerRYsW9mUMw1Bubq4uXLhw8YPBoZKk7d/9qDv+Un7+QbDV4rB/O5VbLEkqi05Q0itbdF//VhrXr5VaxEbW6eu48cYbZbFYZBiGbr75Zk2fPl3333+/wz6rY8eOTILUEYHSpMp/tVX3A1db54tK9NL6/Vq1K10Wi1RaZpMkWcMaOPywSXJ4botobH889/+2annvaxUVHuKSMTkTFRXl9PWwsLCL4/vpL0IAgH+Kj49XcnKyw2vh4eGKj49Xhw4dnJ5RnZOToz//+c/64IMPtG/fPvvZ35cqrRQyL92/GT/Vc9bQSOUUlujNLYf0ty2HNLpPS00f1rXW+7c+ffpo2rRpmjNnjk6dOqXf/e53evLJJzVw4EDdcccdGjlypEMQRu0QKE365ptv7I/79Oljen1bfzitJ97frez84p+OKq70puXyh7xagi/+cG07cFyDX9ui+aN66cZOrgm6l/LmPVsBAJ4RHh6uIUOG1Hj5AwcOaMiQITp+/LhiYmL0+OOPq1evXjpRHKK3thzW+aISnduxRkVHvrnyyiTpp8BakTf/76t0fXbgVJ32by+++KJuu+02LViwQOvXr1dxcbFSUlKUkpKiqVOnauTIkXrttdfUsmXLWq0XXDbIlMzMTKWmpkqSIiIidP3119d6HWVlZfbH725L04QlO5WdX6xL/lArZ9guuy6j9OJfgJaQCGXlFWvCkp36+/a0Wo8LAIC6mDBhgo4fP67IyEjt3LlTc+fO1YXWSXr9QIRKmndTWJtrFNSg8ZVXVA2bIVP7txtuuEFr1qzRqVOntHz5cg0fPlzBwcGy2WxavXq1+vfvrzNnztR5fIGKQGnC22+/bZ+SnzRpUpWTYCpOWKluql+6eCLPyfNFmvnhPklyHiYl2YrzLzue0rzsi9tuFG9fz4x1+7Tm6+OX/SwAAGYdPnxYO3fulCQNHz5cnTp10t+3p11x/1ZblfdvdZ00iY6O1rhx47R27VqlpaXZz/A+ceKEXn31VdcMNIAQKOvo2LFj9v/gGjRooGnTplVZpuIknXPnzjldR1lZmQ4dOiRJ9rPZLqfkzP8cZiEvdSGzfF2WkHCFxndweG/BBm6HBQBwr8zMTPvjli1bausPpzVj3b4qyxklhS7b5ox1+7T1hytftu+zzz7T888/73SSJzExUStXrrRf1Hz37t0uG1+gIFDWQXZ2tu6++26dP39eVqtVy5cvd3ogb8VZ0IcPH3Y8u+0nKSkpys8vD5KXuUvURWUlKjjo/E44xZkHVXqmfBayQfebHI6nrPH6a6niml4AAEhyuFTQd99/ryfe3y3rJfsfw7DZJ0BcwWqRnly9W7lF1U+4SNLWrVs1Z84c+6FqlwoNDbWfXBsdHe2y8QUKAmUtffTRR7ruuuu0a9cuRUZG6t1339Wdd97pdNk77rhDklRUVKSVK1c6vJefn6/p06erQaPyC6MbNakBrEE6t2mJyvLOOrxsKynSmX//rXyRiGg1uuG+Kh+t0fqvIDMzUx9++KH9eWFh4WXrfABAYGnbtq394uaf/OtfOr5vR5WaO2fb/6k056TLtllxTOWcj/fXaPk//OEPTidDduzYoe+//16SNGbMGJeNL1AE/Fneqamp2rVrlyTZZwvz8/Ptl0goKytTdna2Dh06pH//+986ePCgpPI7AsyfP1/du3evdt1JSUkaPXq0Vq1apSlTpuirr75Sr169dOrUKS1evFhjJjyo795eLp3LVlnBOeV9t0mSFNk5STKkgh+2l4+h4JwkKSyxq4Kjm+p//+8RNex1i0Jir1JZ/jnl7d2g0rMnZA1roGajZiioQSP7GC6cOqILp9JkK7x40fWUzZ8rODhY8fHxGjp0qA4fPqxt27Y5jH3Pnj1KTk5Ww4YNdd1112nVqlXasmWLCgsv1hTHjx/XihUr1KdPH/Xs2VMnT57Uhg0bHC6ltH37dgUHB6t9+/ZKSkqq1f83AADP2rNnj/bs2SPJ+T5RksaPH3/ZdSxZskQ3DhykM9lZylw5Qw26DVJo844ySktUdORrFaXvU1BMvMpyTsooKbq47+uUJGtouP15xb6v8v4xJDZBYYldq2wz78B2/b/vNqmvcfHubBVjHjBggNq1a2e/1N3atWvVpUsXjR49Wq1atVJRUZF2796tFStWqKysTE8++aSGDx9e6+9doLMYhivmrvzXwoULNXXq1Grft1gsio6OVuPGjdWpUyf9/Oc/15133nnZIFlZSUmJXn31VSUnJ+vQoUMKDw9Xnz599MQTT2ivta1mTr5HRce+c/hM4m+XSrYyZbz5K4fXw1p2V8J9c5W3d6Py9qao5PRR2S4UKKhBY0V0uFYxSfcqOKqJw2fOfb5cOV+scDq2gQMHavPmzVq6dKn9domXiouL06OPPqrdu3frgw8+cLrMzJkzNWvWLG3evFk33XST02UmTpyopUuXOn0P8GUrVpT//IwdO9bLIwHcb9asWXrhhRcuu0xNYsPz723VGwtfU8HB/6r0/GlZLBYFRTVReKueir52hHK+XK387zY6fCbxN/9PwY3idXTuL6tdb4PugxX3y6r77ON/fVBl5085/cySJUs0adIkSdLXX3+tNWvW6PPPP9eBAwd09uxZWa1WJSYmKikpSVOmTNHPf/7zK359qCrgA6W3lJTZ1HdOinIKPV8Zx0SEaNf0IQoJcn7EQ2ZmpjZv3qwDBw7IarXKZqv+ckXPPPOM22/xCHgTgRKoHV/ev8F9Ar7y9pbUzFyv/LBJUk5hiQ5k5qp7ouOtIi8NkpIuGyYBALiUL+7f4H4ESi/Zm+Hde1zvzcix/8ARJAEAruJL+zd4DoHSS77LyFGw1VLl3qWeEGy1aG9Gjm4iSAIAXMwX9m8coOJ5BEovOZVb7JUfNkkqtRn6795UvbXnH/bX6hokV69eraCgIFcNDfA5GRkZki4eSwng8r5Ji1CpLeTKC7pBqc3Q6bxir2w70HHUqpdcKPXuBcFLDTdc6RwAEPC8vX8pLuGGG97ADKWXhAZ7d1avQ7s2mjL0Bm3ZskWpqalXPJu7OqNGjeIsb9RrnOUN1M7Gv+/Sj/tdd+Hy2goLoTXzBgKllzSLCvPqMSZNG4YpISFBo0ePVmZmpulgCQCA5Bv7N3gelbeXdE+M8eoxlD0qnQFXESynTJmiTp06SZL9JB0AAGrDl/Zv8BxmKL3E2//BO9s+M5YAALN8cf8G92Mayku6JEQpJsI7Z8HFRISoc0JUte8zYwkAqCtf3r/BfUgJXhISZNV9/VvJ6uGT4YIs0vj+rWp0WyqCJQCgtvxh/wbX47vuReP6tZKn76RukzS2X6tafcZZsAQAoDr+sn+D6xAovahFbKRG923psb/irBZpdN+WahEbWafPVw6WXbp0UXR0tEJCvFNrAAB8l7/t32AeJ+V42fRhXfXZgVPKyiuWO0+Ks1qkqBDp/u4NVFRUZOrakRXBEgAAZwzD0OAm57XWuKAihcqdk5VWixTXMEzTf9HVjVvBlRAovSwqPETzR/XShCU73bodmyH1N37Q6hW7yrcbFaXmzZsrISFB8fHxio+PV2xsLMdIAgBMKSgo0D//+U/9+OOP+s01SVrwbYlbt2czpPmjeikqnMbMmwiUPuDGTk31x+HdNGPdPrdt44U7rtbpbfuVn1/+PDc3V7m5uTp48KD9skDBwcFq2rSpmjdvbg+Z8fHx3AkHAFAj6enpWr16tUpKSjRu3Dh17NhRsa3S3Lp/mz28m27s1NRt60fNECh9xISkNpKkGev2yWqRS+rvivXMHt5N9ye10beRQ7R27VqHZSpfY7K0tFQnTpzQyZMnHV6vmM2Mj49XQkKCmjdvrtjYWPMDBADUC4ZhaNu2bdq4caNatGihUaNGKTo6WpJn9m/wPgKlD5mQ1EZtmjTQk6t3mz6msuKYkvmjetn/cuvZs6c2b96snJycy3720guZO5vNfPjhh9WsWbO6DxAAUC9Urrivv/563XTTTQoKcryftrv3b/A+DpjzMTd2aqqUxwfq3j4tZbGUX1erNoIsksUi3dunpTY+PtDhh81qtWrQoEF1HpvNZpPFYtFVV12lJk2a1Hk9AID6IT09XW+99ZaOHz+ucePGaciQIVXCZAV37t/gfRbD8PSVolBTx88WaMXOY0recUw5heUHNQdbLQ73SK38PCYiROP7t9LYfq2qvXSCzWbT66+/fsVZyuqEhYXp4YcfVkwMt7ZCYFixYoUkaezYsV4eCeA7Lldx14Q79m/wLgKlHygps+lAZq72ZuRob0aOTucVq7ikTGEhQWraMEw9EmPUIzFGnROianSHgG+//bbKsZQ1NXbsWC5ujoBCoAQc1aTirilX79/gPRxD6QdCgqzqnhij7okxcsUurabHUl4qKSmJMAkAAczZWdxmuHr/Bu8h7geg2h5LabVaddVVV2nw4MHuGxQAwGcZhqEvvvhCS5YsUUxMjH7zm9+YDpOoX5ihDFC1maUMDg7WvffeW+dKAwDgv1xZcaP+YoYyQNVmljIoKEjnz59374AAAD6nNmdxI7ARKANYz549r3i2dp8+fRQXF6elS5dq27Zt4hwuAKj/qLhRW1TeAaxiltLZGd9Wq1UJCQm6/fbbJUmbNm3Shg0bdPToUd15552KjOSyDQBQH1Fxoy6YoQxw1c1ShoSE2I+bDAoK0pAhQzRu3Dh7/ZGenu6F0QIA3ImKG3VFoAxw1R1LOXLkyCpBs2PHjpoyZYpiYmKowAGgHqHihlkESlSZpbzc9SZjYmI0ceJEJSUlacOGDVq5cqUKCgo8NVQAgIsVFBRoxYoVSklJ0YABAzRx4sRa3fUGkAiUkOMsZU2uN0kFDgD1AxU3XIVbL0JS+T2+t2/frh49etTqL9OcnBytWbNGGRkZGjx4sJKSkmSxWNw4UsCzuPUi6iOz9+IGLsVZ3pBUPkt5/fXX1/pzFRU4Z4EDgH/gLG64A5U3TKMCBwD/QMUNdyFQwmU4CxwAfBNnccPdqLzhUlTgAOBbqLjhCcxQwuWowAHAN1Bxw1MIlHAbKnAA8A4qbngalTfcigocADyLihvewAwl3I4KHAA8g4ob3kKghMdQgQOAe1Bxw9uovOFRVOAA4FpU3PAFzFDC46jAAcA1qLjhKwiU8BoqcACoGypu+Boqb3gVFTgA1A4VN3wRM5TwOipwAKgZKm74KgIlfAYVOAA4R8UNX0flDZ9CBQ4Ajqi44Q+YoYTPoQIHgHJU3PAXBEr4LCpwAIGKihv+hsobPo0KHECgoeKGP2KGEj6PChxAoKDihr8iUMJvUIEDqK+ouOHvqLzhVyoq8M8++4wKHEC9QMWN+oAZSvidoKAgDR06lAocgN+j4kZ9QaCE36ICB+CvqLhR31B5w69RgQPwN1TcqI+YoYTfowIH4C+ouFFfEShRb1CBA/BVVNyo76i8Ua9QgQPwNVTcCATMUKLeoQIH4CuouBEoCJSot6jAAXgLFTcCDZU36jUqcACeRsWNQMQMJeo9KnAAnkLFjUBFoETAoAIH4C5U3Ah0VN4IKFTgAFyNihtghhIBiAocgKtQcQPlCJQIWFTgAOqKihtwROWNgEYFDqC2qLiBqpihRMCjAgdQU1TcgHMESuAnVOAAqkPFDVwelTdQCRU4gEtRcQNXxgwlcAkqcAAVqLiBmiFQAtWgAgcCFxU3UDtU3sBlUIEDgYeKG6g9ZiiBK6ACBwIHFTdQNwRKoIaowIH6i4obMIfKG6gFKnCg/qHiBsxjhhKoJSpwoP6g4gZcg0AJ1BEVOOC/qLgB16LyBkygAgf8DxU34HrMUAImUYED/oOKG3APAiXgIlTggO+i4gbci8obcCEqcMD3UHED7scMJeBiVOCA76DiBjyDQAm4CRU44D1U3IBnUXkDbkQFDngeFTfgecxQAm5WUYGPHTuWChxwMypuwDsIlICHdOrUiQoccJNLK+4pU6ZQcQMeROUNeBAVOOB6VNyA9zFDCXgYFTjgOlTcgG8gUAJeQgUO1B0VN+BbqLwBL6ICB2qPihvwPcxQAl5GBQ7UHBU34JsIlICPoAIHqkfFDfg2Km/Ah1CBA1VRcQO+jxlKwMdQgQMXUXED/oFACfgoKnAEMipuwL9QeQM+jAocgYiKG/A/zFACPo4KHIGEihvwTwRKwE9QgaM+o+IG/BuVN+BHqMBRH1FxA/6PGUrAz1CBoz6h4gbqBwIl4KeowOHPqLiB+oXKG/BjVODwR1TcQP3DDCXg56jA4U+ouIH6iUAJ1BNU4PBlVNxA/UblDdQjVODwRVTcQP3HDCVQz1CBw5dQcQOBgUAJ1FNU4PAmKm4gsFB5A/UYFTi8gYobCDzMUAL1HBU4PImKGwhMBEogQFCBw52ouIHARuUNBBAqcLgDFTcAZiiBAEMFDlei4gYgESiBgEUFDjOouAFURuUNBDAqcNQFFTeASzFDCQQ4KnDUBhU3AGcIlAAkUYHj8qi4AVwOlTcAOypwOEPFDeBKmKEE4IAKHJVRcQOoCQIlAKeowAMbFTeA2qDyBlAtKvDARMUNoLaYoQRwWVTggYWKG0BdECgB1MilFfgXX3xBBV6PUHEDMIPKG0CNVa7AU1JSdPToUY0YMYIK3M9RcQMwixlKALVSuQI/fvw4Fbifo+IG4AoESgB1QgXu36i4AbgSlTeAOqMC909U3ABcjRlKAKZQgfsXKm4A7kCgBOASVOC+jYobgDtReQNwGSpw30TFDcDdmKEE4FJU4L6FihuAJxAoAbgFFbh3UXED8CQqbwBuQwXuHVTcADyNGUoAbkUF7llU3AC8gUAJwCOowN2LihuAN1F5A/AYKnD3oOIG4G3MUALwKCpw16LiBuALCJQAvIIK3BwqbgC+hMobgNdQgdcNFTcAX8MMJQCvCtQKPC8vT3l5ebX+HBU3AF9EoATgEwKpArfZbFq6dKneeustFRQU1OgzVNwAfBmBEoDPqKjAr7vuOqWkpGjFihU1Dlz+5Pvvv1d2drby8/P1j3/844rBuaCgQCtWrFBKSooGDBigiRMnKiYmxkOjBYArsxj1dQoAgF+ZNGmS3n333SqvDxkyRIsXL1bLli1rtb6f/exn+vbbb6u8XvlX3qxZs/Tqq69q7Nixevvttx2Ws1gsDs9bt26ttLS0Wo3BGZvNpkWLFunMmTP214YMGaLrr7/e6fLp6elavXq1SkpKdNdddzErCcAnESgB+ITt27fr0KFDkqSpU6cqKytLkhQZGampU6fq9ttv14ABA6oEPWc++eQT3X777fbn06ZNU9euXSVJ48ePt78eFRVlP44xOztbjRs3tr+XnJwsSZozZ45SU1NdFii/++47rVmzxuE1i8WiSZMmqVWrVvbXDMPQtm3btHHjRrVo0UJ33303s5IAfBaBEoDPadOmjY4ePWp//qtf/UotW7ZUx44da3QW+E033aTNmzfbn2/atEmDBg2qstwf/vAHLViwQKNGjdLSpUudrmvgwIHaunWrSwKls9lJqTxQNmjQQA8//LAiIyM5ixuA3+EYSgA+qUOHDgoJCZEkffTRRxo5cmSNzgLfsWOHNm/erKuvvvqK25g9e7by8vKqDZOu9v3331cJk1L5bGTF8ZTHjh3jLG4AfodACcAnJSYm6r777pMknTx5Up9//nmNzgKfO3eu2rVrp5EjR3p6yJdls9m0adOmat83DEOHDh3iLG4AfolACcBnPfPMM/ZjJufNm6cGDRpc9izw1NRUrV27Vo8//rjPzepVNzvpzM0338zxkgD8CoESgM/q0qWLRowYIUlKS0vTihUrLnsh9FdeeUVNmjTRgw8+eNn1Tpo0SRaLxeFf5WMua+vLL7/U008/reuuu06NGzdWSEiIGjdurBtuuEHz58/X+fPnnc5OfvXVV5o1a5bDv82bN+v999/Xa6+9pt69e6thw4aKjo7WDTfcUOVkHgDwFQRKAD7t2WeftT/+05/+ZK+5L70Q+j//+U8tX75cjz76qCIiIi67zilTpmjZsmWaNm2a6fEtXrxYSUlJmjdvngzD0NNPP61FixZpypQpOnbsmJ566in17NnTfgZ7ZW3bttVdd92lu+66y/6azWbT4sWL9c4772jSpEl67bXXNHjwYH3xxRcaNWqU3nzzTdNjBgBXI1AC8Gn9+vXTTTfdJEnat2+f1q5da3+v8oXQX3nlFVkslivOTkpSUlKSxo8fr6FDh5oe34ULFyRJDz30kHbs2KFnn31WkydP1ssvv6zU1FTdfPPNOnr0qFavXl3ls40bN1avXr3Uq1cv+2vffPONIiMjNWbMGPXp00eTJ0/WBx98oHHjxkkqD9hFRUWmxw0ArkSgBODzKs9Svvzyyw7vBQUFqW/fvtq9e7f69Omj1atXm7oXeEmZTXszcvTezmOa9sFeHcorPxYzO/+Cpn2wV+/tPKa9GTkqKbM5jOHScUnl19D8/e9/L0nKyMio0WWHioqKdMstt0iSNm7cqGPHjkkqv3SSJOXk5Ojzzz+v89cHAO4Q7O0BAMCV3HLLLerdu7e+/vpr7dy5Uxs3btTgwYPt7y9atEjFxcX629/+pl27dmnp0qX2IFZTp3OL9MqnqVq+45hyCkskScFWi85dKP+7u/BCmf5vV7re21m+3piIEN3Xv5VG/PJuHR8xQnFxcVXWabPZlJaWprCwMBUXFystLU1t2rS57Dhat26t8PBw+/P3339fDz/8sMNlkFJTU10yuwoArsIMJQC/UN0sZWFhoV5//XXde++96tmzp70CP3z4cK3W/9iKb/TmlkP2MClJpTbHyxJVfp5TWKI3txzSrX/dqYVfnFJuUfnnSktLdfbsWWVlZemLL75Qenq6wsLCJEm5ublXHEflYGoYhvLy8rR161bFxsZe3HZOTq2+NgBwN2YoAfiFu+++Wx07dtSPP/6ojRs3aufOnerXr58WL16s06dP6+mnn5Yk+1ng69at05YtWyRJp06dcrrO3ennHJ7bannfsIrll2/4UotfeV6hmXv1v/SjTq+PKZWHzSsJDQ2VJEVHR6t58+aKj49Xz5497aG0pusBAE8iUALwC1arVU899ZQmT54sqXyWcvXq1Xr11Vc1dOhQXXPNNQ7LN2nSxP74k08+UWJiosO9wN/dlqaX/7Xf9LgKDmzT6XXzpLISBTdK0L2/fUajB/dTVlaW/VjHf/zjH8rPz5ck+2WKbLbyYzCDg4PVrFkz+/p69+6tZ5991iFAAoCvI1AC8BsTJkzQzJkzdeLECa1du1YzZszQkSNH9Pbbb1/2c1dffbVSUlJ09OhRjRgxQqt3n9LMD/eZHk9Z/jllrV8glZUopGlrNZ+4UF8Gh+gXCd2UlbpC7du3l1QeGqXy2cdOnTopISFB8fHxio+PV2xsrCwWiz0ox8TEECYB+B2OoQTgN8LCwjR16lRJ5ccXvvTSS+rdu7eGDBly2c/17dvXfiH0aa8v04x15sOkJBUe3CnjQqEkKar3L2UJLr/3+Ix1+3Quork6dOigX/ziF4qKipJUHmzHjBmjQYMGqWvXrmrcuLF9xhQA/BmBEoBf+c1vfqNGjRrZnz/11FM1+lynTp00buKv9FlhC1ldlOHK8s/ZHwdHXzyZxmqRNhW00PC779W1116rwsJC12wQAHwUgRKAX4mKitIjjzwiqfxOM/fcc0+NP/uX/2Qor6T2J99UJ6jhxTOvS7KP2x/bDCkrr1hzPt6vtLQ0ZWdnu2aDAOCjCJQA/M4f//hHFRYW6sCBAwoKCqrRZ9LPFmjVrnSXhUlJimh/rSwh5deMPL/jHyrNO2N/z2ZIK788rF9N/o3rNggAPoqTcgD4hD179mjPnj2SpPz8fJ08eVLJycmSpAEDBqhdu3b2Za1Wq8PFvyur+EzFuiRpw4YNevPjnSo4fF4RHZNUnLFfJWczVZJ98Y46hWnfqjQ3WyGxCQpL7Kq87zZJkkrPZUqSjJIi+2sRba9RUINYBTVopMa3PaLs9QtVln9WJ955WA173aLgxokqyzujgv1bdVYXFBUVpdzcXB0+fFjJyclq2LChRowYoZMnT2rDhg1Vvg/Jyclq3769kpKSlJ+frw8++MDpMvHx8VzgHIBPsBjVXTANADxo1qxZeuGFF5y+t2TJEk2aNKlG67ncSS5B0c3U4reLlfXRAuV/t9HpMg26D1bcL6fq6NxfVrue+LEvKbx1T/vz4syDOr/zAxUf26uyghxZgkMVEnuVItpfq8Sf3638lU/q6NGj9uVbt26ttLQ0bd682X6f8ktNnDhRS5cuVVpamtq2bet0mYEDB2rz5s3VjhMAPIVACaDe25uRozv+8h+vbf+jR29Q98QYr20fANyNYygB1Ht7M7x7q0Jvbx8A3I1ACaDe+y4jR8GuulZQLQVbLQRKAPUegRJAvXcqt1ilrjy9uxZKbYZO5xV7ZdsA4CkESgD13oXSMq9uv7jEu9sHAHcjUAKo90KDa3atSncJC/Hu9gHA3QiUAOq9ZlFhXj2GsmnDMK9sGwA8hUAJoN7rnhjj1WMoe3DJIAD1HIESQL3n7UDn7e0DgLsRKAHUe10SohQTEeKVbcdEhKhzQpRXtg0AnkKgBFDvhQRZdV//VvL0YZRBFml8/1YKCeJXLYD6jd9yAALCuH6t5Okbzdokje3XyrMbBQAvIFACCAgtYiM1um9Lj81SWi3S6L4t1SI20jMbBAAvIlACCBjTh3VVXMMwt4dKq0WKaxim6b/o6t4NAYCPIFACCBhR4SGaP6qX3H0FIZshzR/VS1Hh3jkRCAA8jUAJIKDc2Kmp/ji8m1u3MXt4N93YqalbtwEAvoRACSDgTEhqYw+Vrqq/K9Yze3g33Z/UxjUrBQA/YTEMT5/3CAC+YesPp/Xk6t3Kyis2VYNXHDM5f1QvZiYBBCQCJYCAdr6oRC+t369VX6XLKqmsFr8RgyzllwYa3aelpg/ryjGTAAIWgRIAJB0/W6AVO48peccx5RSWSJKCrRaHe4BXfh4TEaLx/VtpbL9WXBoIQMAjUAJAJSVlNh3IzNXejBztzcjR6bxiFZeUKSwkSE0bhqlHYox6JMaoc0IUd8ABgJ8QKAEAAGAKf14DAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAlP8P5j9YYnXV9iIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6N0lEQVR4nO3deXhU9aH/8c9kIXvCFpYGEoIQRDYLCAYti4DYUhHBigFksVp6a/21qNWKFlEUsaJYWytQr6As0YqiVHpVEESKQC5uIGUTCAkUAokQspAwSc7vj9wMGbKQ5MzMmeX9eh4eJzNnzvdMHpPzyfdzFpthGIYAAACAJgqyegMAAADg2wiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAC81pw5c2Sz2S77LyIiQp07d9add96prVu3Wr3ZkiS73a7Ro0crLi5Or732mtWbAwBuZTMMw7B6IwCgNrt27dKuXbskSTNnzlRubq5at26thQsXOpYpLy9XVlaW0tPTtXfvXknSvffeq5deeklBQdb9zfzFF1+of//+kqRevXo5PgcA+CMCJQCf0KlTJx09elRJSUnKzMys8XpZWZkmTpyot99+W5L0yCOPaN68eR7eyosuXLigW265RVu3btVzzz2nGTNmWLYtAOBuBEoAPuFygVKS8vPz1aFDBxUWFio0NFTfffedEhMTPbuhABCAOIYSgN+Ii4vTyJEjJVUew7h27VqLtwgAAgOBEoBf6dKli+PxgQMHLNwSAAgcBEoAfiUkJMTx2G63S5KOHDmi+fPna+TIkWrfvr2aNWum2NhY9e7dW/fff7+OHj1a67q+++67GmeUDx06VJK0ceNG3XLLLWrfvr2Cg4Mdr2dmZqpTp0413leX7du3a/LkyUpOTlZ4eLgiIyOVkpKiSZMmafny5SosLHTdNwcA3CTk8osAgO84ceKE43HHjh313XffKSUlRYZhqEOHDrr77ruVmJioEydO6J///KcWLlyoV199VX//+9910003Oa2rXbt2Wr58uSTp6aef1r59+yRJL730kubPn6+77rpLN998s7744gstWbJEFRUVkqQXX3xRhYWFevfdd7VmzZo6t3XhwoV64IEHFB0drUmTJqlnz56SpK+++krLly/XqlWrFBUVRagE4PU4KQeAT2jISTkVFRVKTk5WVlaWJCkjI0MxMTHq3r27+vTpo61btyoqKsqxvGEYmjVrlubPn6+YmBgdOHBA7dq1q3XdQ4cO1ebNm9WuXTvFxsZqy5YtatOmjeP1n//853rttdd05MgRderUSVLldTSfeOIJx1jVHThwQFdddZXKy8u1fft2DRw40On1L7/8Utddd51KSkpqvBcAvA2VNwC/8Ze//MURJkeNGqVrrrnG8drjjz/uFCYlyWazae7cuerYsaMKCgq0ePHiy45x8uRJzZ8/3ylMStKkSZM0depURUdHN2hbP/roI5WXl6tVq1Y1wqQk9e3bV7feemuD1gUAVqPyBuBTKioqlJub6/i6vLxc2dnZWr58uf785z9Lkq666ipHVd2lSxdlZ2erffv2ta4vJCREP/zhD5Wdna3NmzfLXl6hfScLtPt4vr49nq9TBaW6UFau/TkFkqRmYeFK+uGPZC+vUGjwxb/Jb7jhBt1www0N/hxlZWWSpO+//1579uxRjx49aizzxBNPaMqUKQ1eJwBYhUAJwKdkZ2crPj6+1tfi4+N1zz33aNasWY7ZyJCQEHXo0MGxjGEYKigo0IULFxzPRUZGSpK+PZip/k9vUP75ypN5QoJsKquorJvPFFUub8S117jFOxQXEapJAxM1cUCiOrSIbPTnGDx4sGw2mwzD0A033KBHH31Ud955p1q0aOFYpmvXruratWuj1w0AnkagBOBT2rZtqxUrVjg9Fx4errZt26pLly61nlGdn5+vP/3pT1qzZo327NnjOPv7UmcKihR5/uJrVWGyuqBmleEx/7xdizYf0iubD2lCv456dHR3xYSHNvhz9OvXT7NmzdLTTz+tU6dO6Te/+Y0efPBBDRkyRDfffLPGjRvnFIQBwJsRKAH4lPDwcI0YMaLBy+/fv18jRozQsWPHFBcXp/vvv199+vRRfHy8dh07q8WbDyt785s6f+QrNejcl2qBtSpv/v2LbG3cf0oLbuujwSm1z57W5qmnntJNN92khQsXat26dSotLdWGDRu0YcMGzZw5U+PGjdMLL7ygjh07NnidAGAFTsoB4NemTJmiY8eOKTIyUhkZGZo/f77S0tJ0PLKLXtofIXv7HgqKamlqjApDyi0s1ZSlGXpjW2aj3nv99dfrnXfe0alTp7Ry5UqNGTNGISEhqqio0OrVqzVw4EB9//33prYPANyNQAnAbx0+fFgZGRmSpDFjxiglJUWS9Ma2TD3+jz2SLs4ymlW1ntlr9zQ6VEpSbGysJk6cqPfff1+ZmZmOM7xPnDih559/3jUbCQBuQqAE4LdOnjzpeFxVG3924LRmr93jtJxhP+/ScWev3aPPDpyud5mNGzfqscceq/V4zoSEBL355puOa2J+8803Lt0+AHA1AiUAv1X9UkH79u3TuRK7Hnj7GwVVO2/HMCp04eQhl44bZJMeXP2NSsvK61zms88+c7r7zqWaNWvmOJs9NjbWpdsHAK5GoATgt5KTkx0XN1+3bp1+8cwy5RWVOtXc+Z//XWX5OS4dt+qYyi0Hcy+77B/+8AeVl9cMnjt27NC///1vSdIdd9zh0u0DAFfjLG8AXmvXrl3atWuXJKmoqMjx3+qXDZo8eXK961i6dKmGDh2q3NxcvTX3l4rqMVTN2neVUWZXyZEvVZK9R8FxbVWenyPDXqLCbzdJkiJTUhXULNzxdXnxWcd/q54LbdFOYQnda4xZfGCbKi6UKOfAxaq6apsHDRqkzp07KyYmRpL0/vvv68orr9SECROUmJiokpISffPNN0pPT1d5ebkefPBBjRkzptHfOwDwJO7lDcBrVb8Xdl0a8ivsxIkTuv3e32v7pxtUdu60bDabgmNaKTyxt2KvGav87atV9O0nTu9J+OV/K6R5Wx2d/9M61xvVc7ha/3RmjeeP/fUulZ87Vet7li5dqmnTpkmqvF/3O++8oy1btmj//v06c+aMgoKClJCQoNTUVM2YMUM/+tGPLvv5AMBqBEoAfs9eXuF0BxxPiosI1c5HRzjdphEA/A2/4QD4vX0nCywJk1LlHXX2nyywZGwA8BQCJQC/t/t4fkCPDwDuRqAE4Pe+PZ6vkKCa9/j2hJAgG4ESgN8jUALwe6cKSlXmqlviNFJZhaHThaWWjA0AnkKgBOD3LtRzgXFPKLVbOz4AuBuBEoDfaxYSbOn4YaHWjg8A7kagBOD32sSEWXoMZXx0mCVjA4CnECgB+L2eCXGWHkPZKyHOkrEBwFMIlAD8ntWBzurxAcDdCJQA/N6V7WIUFxFqydhxEaHq1i7GkrEBwFMIlAD8XmhwkCYNTJSnD6MMtkmTByZy20UAfo/fcgACwsQBiTI8fBhlhaS0AYmeHRQALECgBBAQOrSI1IT+HT02Sxlkkyb076gOLSI9MyAAWIhACSBgPDq6u1pHh7k9VNpkKFx2TUix5rhNAPA0AiWAgBETHqoFt/WRu68gZMimCUkXtPadv2v9+vUqL+dOOQD8m80wPH1UEQBY641tmZq9do/b1j93TA9NvjZJ27Zt04YNG9ShQweNHz9ecXFcPgiAfyJQAghIVaEyyCaXzFhWrWfumB66M7WT4/ns7GytXr1adrtdY8eOVUpKivnBAMDLECgBBKzPDpzWg6u/UW5hqalQGWSTWkeHacFtfTQ4Jb7G68XFxXrvvfd08OBBDRo0SDfccIOCg7m/NwD/QaAEENDOldg1b91evfVFtoIklTfiN2KwrfLSQBP6ddSjo7srJrzuk3AMw6ACB+C3CJQAIOnYmWKlZ2RpxY4s5Z+3S5JCgmwqq6iQZKv2deWvzLiIUE0emKi0AYmNujQQFTgAf0SgBIBq7OUV2n+yQLuP52v38Xx9ve+Q7BU2dUpMUHx0mHolxKlXQpy6tYtp8h1wqMAB+BsCJQDUIz09XZKUlpbm0vVSgQPwJ1yHEgAsYLPZNGjQIE2fPl35+flavHixDhw4YPVmAUCTECgBwEIdO3bUjBkz1KFDB6Wnp3MhdAA+iUAJABaLjIxUWlqaRo4cqW3btun1119Xfn6+1ZsFAA1GoAQAL0AFDsCXESgBwItQgQPwRQRKAPAyVOAAfA2BEgC8EBU4AF9CoAQAL0YFDsAXECgBwMtRgQPwdgRKAPABVOAAvBmBEgB8CBU4AG9EoAQAH0MFDsDbECgBwAdRgQPwJgRKAPBhVOAAvAGBEgB8HBU4AKsRKAHAD1CBA7ASgRIA/AgVOAArECgBwM9QgQPwNAIlAPghKnAAnkSgBAA/RgUOwBMIlADg56jAAbgbgRIAAgAVOAB3IlACQAChAgfgDgRKAAgwVOAAXI1ACQABiAocgCsRKAEggFGBA3AFAiUABDgqcABmESgBAFTgAEwhUAIAHKjAATQFgRIA4IQKHEBjESgBADVQgQNoDAIlAKBOVOAAGoJACQCoFxU4gMshUAIALosKHEB9CJQAgAajAgdQGwIlAKBRqMABXIpACQBoNCpwANURKAEATUYFDkAiUAIATKICB0CgBACYRgUOBDYCJQDAZajAgcBEoAQAuBQVOBB4CJQAAJejAgcCC4ESAOA2VOBAYCBQAgDcigoc8H8ESgCA21GBA/6NQAkA8BgqcMA/ESgBAB5FBQ74HwIlAMDjqMAB/0KgBABYhgoc8A8ESgCApajAAd9HoAQAWI4KHPBtBEoAgNegAgd8E4ESAOBVqMAB30OgBAB4HSpwwLcQKAEAXosKHPANBEoAgFejAge8H4ESAOD1qMAB70agBAD4DCpwwDsRKAEAPoUKHPA+BEoAgM+hAge8C4ESAOCzqMAB70CgBAD4NCpwwHoESgCAz6utAj948KDVmwUEDAIlAMBvVK/AV61aRQUOeAiBEgDgV6jAAc8jUAIA/A4VOOBZBEoAgN+iAgc8g0AJAPBrVOCA+xEoAQB+jwoccC8CJQAgYFCBA+5BoAQABBQqcMD1CJQAgIBDBQ64FoESABCwqMAB1yBQAgACGhU4YB6BEgAQ8KjAAXMIlAAA/B8qcKBpCJQAAFRDBQ40HoESAIBLUIEDjUOgBACgDlTgQMMQKAEAqAcVOHB5BEoAAC6DChyoH4ESAIAGogIHakegBACgEajAgZoIlAAANBIVOOCMQAkAQBNRgQOVCJQAAJhABQ4QKAEAMI0KHIGOQAkAgItQgSNQESgBAHAhKnAEIgIlAAAuRgWOQEOgBADATajAESgIlAAAuBEVOAIBgRIAADejAoe/I1ACAOAhVODwVwRKAAA8iAoc/ohACQCAh1GBw98QKAEAsAgVOPwFgRIAAAtRgcMfECgBALAYFTh8HYESAAAvcWkFvmHDBipw+AQCJQAAXoQKHL6IQAkAgJepqsCnTZtGBQ6fQKAEAMBLUYHDVxAoAQDwYlTg8AUESgAAvBwVOLwdgRIAAB9BBQ5vRaAEAMCHUIHDGxEoAQDwMVTg8DYESgAAfBQVOLwFgRIAAB9GBQ5vQKAEAMDHUYHDagRKAAD8BBU4rEKgBADAj1CBwwoESgAA/AwVODyNQAkAgJ+iAoenECgBAPBjVODwBAIlAAB+jgoc7kagBAAgQFCBw10IlAAABBAqcLgDgRIAgABDBQ5XI1DWY86cObLZbA36Fxsbqz59+uihhx7SsWPHrN50AAD04osv1rvvSkpK0pNPPqkXXnhBP/nJT3TXXXfp66+/dvt2ZWZm1tiWoUOHNno9te2nly1bVuuy69atU+vWrZWamsqMrBuEWL0B3mzcuHHq0qWLJGnmzJnKzc1V69attXDhQqflzp07px07dujNN9/Url27tHjxYr399tu68cYbrdhsAAAkSTfddJNat24tqfb9WHl5uXJzc3Xo0CF98MEHWrp0qZYuXarhw4dr4cKF6tWrl1u2Kz4+XsuXL5ckPf3009q3b1+T1lO1n87NzdXMmTPrXXbRokXKy8tTXl6ePvnkE40bN65JY6J2NsMwDKs3whd06tRJR48eVVJSkjIzM2tdZvv27Ro6dKhKS0sVHR2tffv2KSEhwbMbCsCl0tPTJUlpaWkWbwlgTkP2Y2+88YZ+97vf6dSpUwoPD9eiRYs0depUt27X0KFDtXnzZg0ZMkSffvppk9aRmZmp5ORkSdLSpUs1bdq0GsusXbtW06dPV+fOnfXxxx+rRYsWJrYal6LydqFrr73W8T9xYWGhXn75ZWs3CACARpgyZYq+/PJLde3aVSUlJZo+fbrefvttqzfLJcaMGaO8vDz97//+L2HSDQiULlb9GJDPPvvMug0BAKAJEhIStHHjRsXExMgwDE2ePFl79uyxerPg5QiULlZ1rIoknTp1ysItAQCgaTp06KBHHnlEknThwgXdddddnAWOehEoXayoqMjxODo6us7lcnNzNXv2bPXr10/NmzdXeHi4kpKSNHny5DpnNh977LFaz2YrKSnRk08+qW7duikiIkLJycmaMWOG09nmVQcsJycnKywsTMnJyXrooYdUWFh42c90+vRpPfroo+rTp49iY2MVERGhpKQkTZgwQR999FEjvjsAAF9x9913KyioMiZ89dVXev3117Vhw4YGnZ3dunXrJp/B/eGHH2r06NFq166dY3/161//Wv/5z3+a9DmWLVtWY5vnzJnjtEx9+9ennnpKPXr0UGRkpFq0aKEbb7xRmzZtatK2+DMCpYt99dVXjsfXXnttrct89NFH6tKli+bOnavIyEg9/vjj+vOf/6zRo0frnXfe0ZAhQ3TPPfeorKzM6X0/+9nPtHz5cqezzM+fP68bbrhBe/fu1QMPPKBHHnlENptNS5Ys0aBBg3Ts2DGdPHlSo0aNUlBQkGbNmqX77rtPOTk5eu655/TTn/5UFRUVdX6ejz/+WF27dtW8efOUkJCgefPm6c9//rNuvvlmrVu3TjfddJPuuOMOlZaWmvzOAQC8SXx8vK666ipJkt1uV+vWrbVt2zbdfffdWrx4sa688so637to0SItX7683mVq88wzz+jOO+9Uz5499fTTT2v27NkKCQnRyy+/rB49emjHjh2N/hyDBw/W8uXLHWeV16au/euQIUO0c+dO3XfffXruued09dVXa/369Ro5cqTWrVvX6G3xawYaJCkpyZBkJCUl1bnMmTNnjISEBEOSER4ebuzbt6/GMtu2bTNCQ0MNScb9999f4/UvvvjCiI6ONiQZ99xzT63jHDlyxJBkSDISEhKMF1980en106dPG23atHGsY+LEiUZGRobTMhs3bnSs4+233651nB07dhjNmjUzJBkLFy6s8fq///1vo3nz5oYkY8aMGXV9WwCftmrVKmPVqlVWbwZgWkP2Y5eaPHmyY18xf/58Iysry3jhhReMZ5991hgwYIAhyRgyZEid7x8yZEiDl2ndurWRnJxsHD9+3On1wsJCY+DAgYYko1WrVkZOTk6NdVTfLy5durTOsaqWefzxx2t9/dL961NPPeX0enl5uXH99dcbkoxu3brVOU4gYoaykSoqKpSbm+v0LzMzU2+99Zauu+46HT9+XG3atNF7772nbt26Ob3XMAzdddddstvt6tSpk+bPn19j/X379tXDDz8sSfrb3/522Wn1sLAw3XfffU7PtW7dWuPHj5ckvf7662rWrJmuueYap2WGDRumlJQUSdL7779fY71V23rhwgUNHDhQv/3tb2ss0717d8cxNkuWLGnydcQAAN6pVatWjsenT592uhd4Tk6OpMr9RZWjR486nm+s3NxcPfPMM/rBD37g9HxUVJT++te/SpLy8vI0e/bsJq2/sYKDgx374ypBQUGaPn26JGn//v0cV1oNgbKRsrOzFR8f7/QvOTlZd9xxh5o1a6Y33nhDhw4d0qhRo2q8d/369dq7d68k6Y477lBoaGitY1S/5tef/vQn2csrtPt4vlZlZGnWmt16+J1djtebdxugN3ce0+7j+bKXX6yuq8LshQsXNHr06FrH6d69uyQ5tqm6DRs2OM7qmzhxYp3fj6p1G4ahlStX1rkcAMD3VD8X4Ny5c5Iu3gu8ZcuWkqScnBzl5+frxIkTeuONN5Senl7voVTV2csrVFRaeXhXcGgz/U9BB015bYfufmOnZq3ZrVUZWdp9PF+9+lztqM9XrFihkpISV37MWo0ePVohITXv/1J1GIAkJlKq4U45jdS2bVutWLHC8fXp06f1z3/+UytWrNDXX3+ttWvX6o477qj1vRs2bHA8vnTGsLqOHTuqbdu2ysnJ0YfrP1G/uR/pXGnlD2dIkE0l3+c6lj1qj9WsNbslSXERoZo0MFETByQqJibGsUzXrl1rHSc2NlaSdPbs2Xq3tXPnzsrNza2xjFT5i6VKU45tAQB4r4KCAsfjuLg4x+OqWw5LUllZmRYtWqTg4GAZhqH8/Hzt3r1bffr0qXO9x84Ua1VGllbuyNL+45W3QQxu3l6fHjrrWCYkyKZVGVmVY0eEKrzdFdK+fSoqKtKXX36pQYMGufKj1nBpy1il+jUsuYXjRQTKRgoPD9eIESOcnktLS9OVV16pxx57TKtXr1ZCQoJefPHFGu/97rvvHI/ru4POuRK7bFGtJOWotLhQZ/LyFBxd+T9wWcUlNzYKDXc8zD9v16LNh/TK5kO66txxx/PVw2V1VWfvXXryjySnafybb765zm2t7uTJkw1aDgDgG6pPJsTHx9e6TPv27RUSEuJ01ZBNmzbVetvGcyV2zVu3V2/tzJbNJlXfpdnCopyWrb6/yz9v19nzYY6v9x74zu2Bsq59Z1jYxe2obf8ZqAiULvLwww9r5cqV2rt3r15++WXde++9NWYGq/+lFxERUet6PjtwWg+8/Y3OXLj4XEVpkSNQ1mBzPmqh6ucvI/N7x3NVwbExqm/r4sWL1blz58u+p/psJQDA91W/ckm/fv1qXaa4uLjGJeiqZimrq9q/5RWVVp71cumNn22X2VcFXzxMbO57X6rroB9rcErtIdcVmrLvDGQEShcJCQnRH/7wB02cOFFlZWX64x//qL/97W9Oy1T/a6e24z9e/zxTj/9jj4JsklF2MVEGXfJXW0NU/0F958tjeqBTp0a9v/q29urVS6mpqY3eBgCA7zp58qTjGMGIiAhdd911tS73/fff1/r8+vXrVV5eXrmucyWasjRDQZfMSjox6j/u0iizOx4XG6GasjRDT47poSmpner/IPAI4rcL3X777Y6ZvOXLl+vEiRNOr3fp0sXxuPpFxyXpjW2VYVKq/GErK6isGWxhkQqKjDW1XQvXH9Ab2zIb9Z7qs6tHjx41NT4AwPcsWbLEcQb3tGnTFB4e7vR61QkrrVq10uDBg5WSkuI0GVFUVOQ4FCozt/KmH3WGSVW2cfUpK8xzPA6OaytJmr12T6P3b3APAqULBQcH68EHH5QklZaW6oUXXnB6feTIkY7HO3fudDz+7MBpzV578T6pZedOq6LorCQpPLG3bEHBprdt9to9+uzA6QYvX31bP//883qXfeqppxQSEuKxSzkAANwrKytLzz//vKTKy/bMmjWrxjJVJ+mcP39ew4YNU1pamu6//349/PDDmjZtmvr3769jxxt+dxv79/9xmoW81IWThyRJttBwNWt7cYJm9to92nE4r663wUMIlC42ffp0tW1b+ZfT4sWLnc6gHjFihONyA2+++abKysp0rsSuB97+RkG2i+so+naj43Fs/zEu2a4gm/Tg6m9UUFL3D2t1w4cPV8+ePSVJb731Vp23aCwtLdXSpUtVUVGhtLQ0l2wrAMA6eXl5Gj9+vM6dO6egoCCtXLlSHTp0qLFc1VnQhw8f1oULFw/TqrqVcGmFVHK+uOEDl9tV/F3tVwspPfmdyr6vbPaieg6TLeTi8ZRBNmne/9S8/B08i0DpYuHh4frNb34jqfLElpdfftnxms1m09KlS9WsWTMdOXJEjzzyiOat26u8olJHDXAh57Dyt6+WJEX3GaXwpN4u2a4KQ8otLNXT/2zYD13VtoaFhenUqVP6xS9+IbvdOYza7XbNmDFDhw8f1i9+8QvHdS0BAL7pgw8+0LXXXqudO3cqMjJSr7/+um655ZZal626AkhJSYnefPNNp9eKiop0728fUnBU84YPHhSss5uWqrzwjNPTFfYSff/xK5WLRMSq+fWTnF83pO+LLgjW4qSceuzatUu7dlVeRLyoqMjx36rrUF5xxRW1nqzyq1/9SvPnz9e5c+f00ksvKSkpSZJ09dVXa8CAAfrHP/6h22+/XQsWLFBYh/9RZLdBsjUL14WcwyratUFGWamie9+oljf+l9N67WdPqvTYXlWcP+d4rvQ/+6SgYDVr00nN2iSr9Phe2c+crHz+/xQf3K6giFhFJF+tt3ZKvXVUFcX5Onz4cI3PdOuttyoqqvIkoP79+2vdunX62c9+pvT0dH399deaOHGi2rdvr6ysLL311lvav3+/xo4dW+tlkgAA1tq3b5/jEKva9mPl5eXKy8vToUOH9PHHHzsubzdq1CgtWLDA0VTVJjU1VRMmTNBbb72lGTNm6IsvvlCfPn106tQpLXn1v1XaaYhC7DtUXnRW5cVnVfht5Z3fIrulSoZUfGBb5TYUn5UkhSV0V0hsvP7z3/cqus+NCm3xA5UXnVXh7vUqO3NCQWFRanPbbKeQeuHUEV04lem0X9y2bZtCQkLUtm1bjRw5UocPH65x6NauXbu0YsUKRUdHa+zYsY5lql8mqWo9vXv3Vu/evZWTk6P169fXukxdeSCgWHnfR2/3+OOPO+7pWdu/qVOn1vnehx9+uMbyc+fOdbx++vRpY/jE/zKatb3CsIVFGgoONYJj443Iq4YYbSfON5J+/0GNf61+8ts6tyXuujQj6fcfGFE9h9e5TNu0eUbnRz4wOve6ps5ljhw5UuOz5OXlGXPmzDH69etnxMXFGaGhoUa7du2Mm2++2Xj33Xfd8J0HvAf38oYvW7hwYb37MZvNZsTFxRnJycnGqFGjjKeeesrYvXt3g9d/4cIF45lnnjF69OhhhIeHG82bNzeGDx9uTJ+72Eh+5AMjrGPPGmMm/GqZkfDL/67xfFjHnpX7utEzjbDEXkZQRKyh4BAjOLaNEd13tJFw7+s19otx16XV+dmq7h++dOnSOpepuq95fctU3fd706ZNTcoDgcJmGDWuBAUPsJdXqP/TG5R/vmHHNLpSXESodj46QqHBHPEAXE56erokcYww0EDs3wIT33GL7DtZYMkPm1R5x4H9JwsuvyAAAI3E/i0wESgtsvu4tff/tHp8AIB/snr/YvX4gYpAaZFvj+crpPq1gjwoJMjGDxwAwC3YvwUmAqVFThWUOt343pPKKgydLiy1ZGwAgH9j/xaYCJQWuVBWbun4pXZrxwcA+Cf2b4GJQGmRZiHmb6doRlioteMDAPwT+7fARKC0SJuYMEuPMYmPDrNkbACAf2P/FpgIlBbpmRBn6TEmvRLiLBkbAODf2L8FJgKlRaz+H97q8QEA/snq/YvV4wcqAqVFrmwXo7iIUEvGjosIVbd2MZaMDQDwb+zfAhOB0iKhwUGaNDBRnj7MJNgmTR6YyG2pAABuwf4tMPFdt9DEAYny9J3UKySlDUj07KAAgIDC/i3wECgt1KFFpCb07+ixv+KCbNKE/h3VoUWkZwYEAAQk9m+Bh0BpsUdHd1fr6DC3/9AF2aSYUOnOnlEqKSlx72AAgIBVUlKizMxMDQw7rpZRoR7Zv7WODtOjP+nu3oFQrxCrNyDQxYSHasFtfTRlaYZbx6kwpIHGAa1O31k5bkyM2rdvr7Zt2yo5OVnJycluHR8A4J+OHDmiI0eOKCcnRydOnFBBQYHjtbv7DNX8HXa3jl9hSAtu66OYcGtOBEIlZii9wOCUeD05podbx3ji5quUEnvxdlQFBQU6cOCAtmzZolWrVsnw9MEuAACfZxiGVq1apS1btujAgQNOYTIqKkq/GPMjt+/f5o7pocEp8W4dA5dHoPQSU1I7OX7oXFUPVK1n7pgemjooWSNGjKh1uVGjRslms+auBgAA32Wz2TRq1KhaXxs5cqSCgoLcvn+7M7WTa1YKUwiUXmRKaie9MX2AS46prDqm5I3pAxw/bL1791ZcnPMFX6Ojo9W9O8edAACapnv37oqOjnZ6Li4uTr169XJ87e79G6xHoPQyg1PiteH+Ibq9X0fZbJXX1WqMYJtks0m39+uoT+4f4lQDBAUFaejQoZIq/6qMiopSWVmZlixZouzsbBd+CgBAIMjOztaSJUtUVlamqKgoR9s1bNgwBQU5Rwx37t9gPZvBwXNe69iZYqVnZGnFjizln688qDkkyOZ0j9TqX8dFhGrywESlDUis89IJFRUVeumll1RQUKB77rlHEREReuedd3T8+HENHz5cqamp1N9ANenp6ZKktLQ0i7cE8B6GYejzzz/Xxo0blZCQoPHjx6u4uFivvvqqYmJi9P/+3/+rESirc8f+DdYiUPoAe3mF9p8s0O7j+dp9PF+nC0tVai9XWGiw4qPD1CshTr0S4tStXUyD7hCQk5OjkpISJSUlSZLKy8u1adMmbd26VSkpKbrlllsUGckPLCARKIFLFRcX67333tPBgwd13XXXadiwYQoODpYkHT16VOHh4Wrbtm2D1uXq/RusQ6CEw8GDB7VmzRqFhobqtttuU8eOHa3eJMByBErgouzsbK1evVp2u1233nqrunbtavUmwUsQ9+HQtWtXzZgxQ3FxcVq2bJk+//xzLicEAJBhGNq6dauWLVumuLg4zZgxgzAJJ1zYHE7i4uI0depUbdq0SevXr9fRo0epwAEggNVXcQNVmKFEDcHBwRoxYoQmTpyo7OxsLV68mLPAASAAVe0Djh07pokTJ2rEiBGESdSKQIk6UYEDQGCi4kZjUXmjXlTgABBYqLjRFMxQ4rKowAEgMFBxo6kIlGgwKnAA8E9U3DCLyhuNQgUOAP6FihuuwAwlGo0KHAD8AxU3XIVAiSajAgcA30TFDVej8oYpVOAA4FuouOEOzFDCNCpwAPANVNxwFwIlXIYKHAC8ExU33I3KGy5FBQ4A3oWKG57ADCVcjgocALwDFTc8hUAJt6ECBwBrUHHD06i84VZU4ADgWVTcsAIzlHA7KnAA8AwqbliFQAmPoQIHAPeg4obVqLzhUVTgAOBaVNzwBsxQwuOowAHANai44S0IlLAMFTgANA0VN7wNlTcsRQUOAI1DxQ1vxAwlLEcFDgANQ8UNb0WghNegAgeA2lFxw9tRecOrUIEDgDMqbvgCZijhdajAAaASFTd8BYESXosKHECgouKGr6HyhlejAgcQaKi44YuYoYTXowIHECiouOGrCJTwGVTgAPxVVcW9dOlSKm74JCpv+JSqCnzjxo1U4AD8AhU3/AEzlPA5wcHBGjlyJBU4AJ9HxQ1/QaCEz6ICB+CrqLjhb6i84dOowAH4Gipu+CNmKOHzqMAB+AoqbvgrAiX8BhU4AG9FxQ1/R+UNv0IFDsDbUHEjEDBDCb9DBQ7AW1BxI1AQKOG3qMABWIWKG4GGyht+jQocgKdRcSMQMUMJv0cFDsBTqLgRqAiUCBhU4ADchYobgY7KGwGFChyAq1FxA8xQIgBRgQNwFSpuoBKBEgGLChxAU1FxA86ovBHQqMABNBYVN1ATM5QIeFTgABqKihuoHYES+D9U4ADqQsUN1I/KG6iGChzApai4gctjhhK4BBU4gCpU3EDDECiBOlCBA4GLihtoHCpvoB5U4EDgoeIGGo8ZSuAyqMCBwEHFDTQNgRJoICpwwH9RcQPmUHkDjUAFDvgfKm7APGYogUaiAgf8BxU34BoESqCJqMAB30XFDbgWlTdgAhU44HuouAHXY4YSMIkKHPAdVNyAexAoARehAge8FxU34F5U3oALUYED3oeKG3A/ZigBF6MCB7wHFTfgGQRKwE2owAHrUHEDnkXlDbgRFTjgeVTcgOcxQwm4WVUFnpaWRgUOuBkVN2ANAiXgISkpKVTggJtQcQPWovIGPIgKHHA9Km7AesxQAh5GBQ64DhU34B0IlIBFqMCBpqPiBrwLlTdgISpwoPGouAHvwwwlYDEqcKDhqLgB70SgBLwEFThQNypuwLtReQNehAocqImKG/B+zFACXoYKHLiIihvwDQRKwEtRgSOQUXEDvoXKG/BiVOAIRFTcgO9hhhLwclTgCCRU3IBvIlACPoIKHP6MihvwbVTegA+hAoc/ouIGfB8zlICPoQKHP6HiBvwDgRLwUVTg8GVU3IB/ofIGfBgVOHwRFTfgf5ihBHwcFTh8CRU34J8IlICfoAKHN6PiBvwblTfgR6jA4Y2ouAH/xwwl4GeowOFNqLiBwECgBPwUFTisRMUNBBYqb8CPUYHDClTcQOBhhhLwc1Tg8CQqbiAwESiBAEEFDnei4gYCG5U3EECowOEOVNwAmKEEAgwVOFyJihuARKAEAhYVOMyg4gZQHZU3EMCowNEUVNwALsUMJRDgqMDRGFTcAGpDoAQgiQoc9aPiBlAfKm8ADlTgqA0VN4DLYYYSgBMqcFRHxQ2gIQiUAGpFBR7YqLgBNAaVN4A6UYEHJipuAI3FDCWAelGBBxYqbgBNQaAE0CCXVuBbt26lAvcjVNwAzKDyBtBg1SvwDRs26OjRoxo7diwVuI+j4gZgFjOUABqlegV+7NgxKnAfR8UNwBUIlACahArct1FxA3AlKm8ATUYF7puouAG4GjOUAEyhAvctVNwA3IFACcAlqMC9GxU3AHei8gbgMlTg3omKG4C7MUMJwKWowL0LFTcATyBQAnALKnBrUXED8CQqbwBuQwVuDSpuAJ7GDCUAt6IC9ywqbgBWIFAC8AgqcPei4gZgJSpvAB5DBe4eVNwArMYMJQCPogJ3LSpuAN6AQAnAElTg5lBxA/AmVN4ALEMF3jRU3AC8DTOUACxFBd44VNwAvBGBEoBXoAKvHxU3AG9G5Q3Aa1CB146KG4C3sxlMAQDwAtOmTdPrr79e4/kRI0botddeU8eOHRu1vh/+8If6+uuvazxf/VfenDlz9PzzzystLU1LlixxWs5mszl9nZSUpMzMzEZtgytkZ2dr9erVstvtuvXWW5mVBOCVCJQAvMK2bdt06NAhSdLMmTOVm5srSYqMjNTMmTP14x//WIMGDaoR9Grz4Ycf6sc//rHj61mzZql79+6SpMmTJzuej4mJUWFhoSQpLy9PLVu2dLy2bNkySdL8+fO1f/9+JSUl6eDBgwoNDTX3QRvIMAx9/vnn+uSTT9ShQweNHz9ecXFxHhkbABqLyhuAV0hNTVVqaqok6bHHHnMEyuLiYp08ebJRFfizzz7r9PXIkSM1dOjQGsv99re/1cKFC3Xbbbc5hcm9e/fq6NGjkqTw8HBJ0tmzZzVv3jxNmDBBV155ZZM/Z0NQcQPwNZyUA8ArdenSxTEb+MEHH2jcuHENOgt8x44d+vTTT3XVVVdddoy5c+eqsLDQMRtZpU2bNnW+Jz4+vmEfoIk4ixuALyJQAvBKCQkJmjRpkiQpJydHW7ZsadBZ4PPnz1fnzp01bty4Jo/dqlUr9e7d26let9ls6t27t1q1atXk9daHs7gB+DICJQCv9fDDDztC3XPPPaeoqChNnTpV1157rTZs2KD09HQVFxc7lt+3b5/ef/993X///aZn9QYPHuwUWA3D0ODBg02tsy7FxcVKT0/Xhg0bNGjQIE2dOpXjJQH4FAIlAK915ZVXauzYsZKkzMxMpaen13sh9D/+8Y9q1aqV7rrrrnrXO23aNNlsNqd/n376qdMyVbOUVZo1a1bn7OT27dv10EMP6dprr1XLli0VGhqqli1b6vrrr9eCBQscJ/5c6tVXX5XNZlNUVJQmTZqkOXPm6F//+pdsNpv+8pe/qG/fvoqOjlZsbKyuv/56vfPOOw38zgGAZxEoAXi13//+947Hzz77rGPW8NILob/33ntauXKlfv3rXysiIqLedc6YMUPLly/XrFmz6l2u+oxk1ck5l3rttdeUmpqq5557ToZh6KGHHtLLL7+sGTNmKCsrS7/73e/Ut2/fGpccMgxDsbGxGjdunO6++27H8xUVFRo3bpxWr16t6dOn64UXXtDw4cO1detW3XbbbVq0aFG92wwAljAAwMskJSUZQ4YMcXw9bNgwQ5IhyVizZo3TsmVlZcbHH39spKamGmFhYUZWVpZhGIbx+OOPO96zadOmWsfZtGnTZZe57rrrDElGUlJSra+/8sorhiTj7rvvrvFaUVGRccMNNxiSjAEDBjg9v3LlSmPOnDnG+vXrjbKyMsd2JCQk1LquiRMnGpKMuLg44/z587VuCwBYhRlKAF6v+izlM8884/RacHCw+vfvr2+++Ub9+vXT6tWrTd0L3F5eod3H87UqI0uz1uzWKVtzSVJe0QXNWrNbqzKytPt4vuzlFU7bcOl2SZXX0PzrX/8qScrIyNDmzZsvexb3mTNntGDBghrr+vnPfy5Jys/P15YtW5r8+QDAHbgOJQCvd+ONN6pv37768ssvlZGRoU8++UTDhw93vP7yyy+rtLRUr7zyinbu3Klly5YpKyurUWOcLijRHz/ap5U7spR/3i5JCgmy6eTZEknS+Qvl+vvObK3KqFxvXESoJg1M1NifjtexsWPVunXrWtfbrVs3xcbG6ty5c1q+fLkSExPrvVD5kCFDan2++mWQ9u3bp5EjRzbq8wGAOzFDCcAn1DVLef78eb300ku6/fbb1bt3b8dZ4IcPH27U+u9L/0qLNh9yhElJKqtwvixR9a/zz9u1aPMhjfprhl7cekoFJZXvKysr05kzZ5Sbm+v4FxsbK0n6+uuvL3sWd7du3Wp9vkWLFhfHzs9v1GcDAHcjUALwCePHj3dcl/GTTz5RRkaGpMqTYk6fPq2HHnpIkhxngffq1cvx3lOnTtW6zm+yzzp9XdHIG9FWGJJhSCvXb9cVQ8arQ1KymjVrppYtWyo+Pt7x79ixY5KkxMTEy16oPCYmptbnw8LCHI/Lysoat6EA4GYESgA+ISgoSL/73e8cXz/zzDMqLy/X888/r5EjR+rqq692Wr76JX4+/PDDGhdCf/3zTD3zP3tNb1fx/s917NVf63TGP5RzrkS3/+phvfvuu/r444+1cOFCTZkyxTFDWfXf+gQF8WsZgO/hNxcAnzFlyhS1b99ekvT+++9r9uzZOnLkiGN2si5XXXWV04XQ39iWqcf/scf09pQXnVXuuoVSuV2h8Un6wd2vaHvM9cpr2UOnT59Wfn6+7rzzTqe6GgD8EYESgM8ICwvTzJkzJVVex3HevHnq27evRowYUe/7+vfv77gQ+qyXlmv2WvNhUpLOf5ch48J5SVJM35/KFlJ57/GnPjyoz4+ccZzFDQD+jkAJwKf88pe/VPPmzR1fV6/B65OSkqKJU3+ujec7KMh2+eUborzorONxSOzFs7xtkrarq9p17CRJdd4pBwD8BYESgE+JiYnRvffeK0lKTk7Wz372swa/9y//Oq5Ce+NPvqlLcPTFKtued8zx2JD0fZFdT/9zrzIzM5WXl+eaAQHASxEoAficJ598UufPn9f+/fvrPWO6uuwzxXprZ7bLwqQkRVxxjWyhlbdkPLfjXZUVfu94rcKQ3tx+WD//xS9dNyAAeCkubA7AK+zatUu7du2SJBUVFSknJ0crVqyQJA0aNEidO3d2LBsUFFTnvbWr3lO1Lklav369Fv0zQ8WHzymia6pKj++V/cxJ2fMu3lHnfObXKivIU2iLdgpL6K7CbzdJksrOnpQkGfYSx3MRyVcrOKqFgqOaq+VN9ypv3YsqLzqjE3/7L0X3uVEhLRNUXvi9ivd+pjO6oJiYGBUUFOjw4cNasWKFoqOjNXbsWOXk5Gj9+vU1vg8rVqzQFVdcodTUVBUVFWnNmjW1LtO2bVsucA7AK9iM6tfRAACLzJkzR0888UStry1dulTTpk1r0HpstroPkAyObaMOv3pNuR8sVNG3n9S6TFTP4Wr905k6Ov+nda6nbdo8hSf1dnxdevI7nctYo9Ks3SovzpctpJlCW/xAEVdco4QfjVfRmw/q6NGjjuWTkpKUmZmpTz/9VMOGDat1jKlTp2rZsmXKzMxUcnJyrcsMGTJEn376aZ3bCQCeQqAE4Pd2H8/XzX/5l2Xjf/Dr69UzofY74wCAP+AYSgB+b/dxa29VaPX4AOBuBEoAfu/b4/kKcdW1ghopJMhGoATg9wiUAPzeqYJSlbny9O5GKKswdLqw1JKxAcBTCJQA/N6FsnJLxy+1Wzs+ALgbgRKA32sW0rBrVbpLWKi14wOAuxEoAfi9NjFhlh5DGR8dZsnYAOApBEoAfq9nQpylx1D24pJBAPwcgRKA37M60Fk9PgC4G4ESgN+7sl2M4iJCLRk7LiJU3drFWDI2AHgKgRKA3wsNDtKkgYny9GGUwTZp8sBEhQbzqxaAf+O3HICAMHFAojx9o9kKSWkDEj07KABYgEAJICB0aBGpCf07emyWMsgmTejfUR1aRHpmQACwEIESQMB4dHR3tY4Oc3uoDLJJraPD9OhPurt3IADwEgRKAAEjJjxUC27rI3dfQajCkBbc1kcx4dacCAQAnkagBBBQBqfE68kxPdw6xtwxPTQ4Jd6tYwCANyFQAgg4U1I7OUKlq+rvqvXMHdNDd6Z2cs1KAcBH2AzD0+c9AoB3+OzAaT24+hvlFpaaqsGrjplccFsfZiYBBCQCJYCAdq7Ernnr9uqtL7IVJKm8Eb8Rg22Vlwaa0K+jHh3dnWMmAQQsAiUASDp2pljpGVlasSNL+eftkqSQIJvTPcCrfx0XEarJAxOVNiCRSwMBCHgESgCoxl5eof0nC7T7eL52H8/X6cJSldrLFRYarPjoMPVKiFOvhDh1axfDHXAA4P8QKAEAAGAKf14DAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAlP8P9r1KwGDzG4EAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -354,7 +335,7 @@ } ], "source": [ - "draw_graph(G, pos_nodes=nx.shell_layout(G), node_size=500)" + "draw_graph(G, layout=nx.shell_layout, node_size=500)" ] }, { @@ -366,7 +347,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -378,16 +359,16 @@ "1 Milan Dublin 19\n", "2 Paris Dublin 11\n", "3 Paris Milan 8\n", - " Dublin Milan Paris Rome\n", - "Dublin 0.0 0.0 0.0 0.0\n", - "Milan 19.0 0.0 0.0 5.0\n", - "Paris 11.0 8.0 0.0 0.0\n", - "Rome 0.0 0.0 0.0 0.0\n" + " Rome Milan Dublin Paris\n", + "Rome 0.0 0.0 0.0 0.0\n", + "Milan 5.0 0.0 19.0 0.0\n", + "Dublin 0.0 0.0 0.0 0.0\n", + "Paris 0.0 8.0 11.0 0.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+XklEQVR4nO3deXwU9f3H8ffsbk4g4SbILbcIyiGXoEHBAxUJYBGwHj9B0EdtvbXaKq1Fq+JRxWIqFmoRakVAEbEPLrkV5DIIAUSBEAg3gSSQa+f3R8yYNRtIMtns9Xo+Hnl0dmd25pvUZN58P9/vfA3TNE0BAAAAleTwdwMAAAAQ3AiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAACQmJiogzDKPdXTEyMevbsqQ0bNvi76QAQ9gzTNE1/NwIA5syZo6VLl0qSkpOTZZqmDMPQ+PHjPY47efKkNmzYoB9++MF674UXXtDvf//7am0vAOBnBEoAAcflcqmwsFBOp1MFBQVej5k2bZrGjRtnvd6wYYN69OhRXU0EAJRAoAQQcMoTKCXpkksu0Y4dOyRJffr00dq1a6uriQCAEhhDCSBoDRw40Nretm2bH1sCAOGNQAkgaDVt2tTaPnfunB9bAgDhjUAJIGidOnXK2na5XGUet3PnTl111VWKjY21Zom7XC61atVKb731ltfP9OvXr9TM8rFjx+rUqVO65pprFBkZKcMwFBERoY4dO3rMNt+5c6e6deumiIgI65iePXsqIyPjgt/Tjh07dOWVVyomJsajrc2bN9ekSZPK/8MBgGrEGEoAAae8YygTExO1YsUKSVKnTp28lr0nTZqkP/zhD5KkuLg4DRgwQHFxcdq0aZO+++47SVL79u21ZcsWRUdHW5/773//q+XLlysjI0Pz58+XJN1+++367LPPVLduXfXv318HDx7UqlWrVFBQIKfTqXXr1ikqKkq9e/fWJZdcoksuuUTbt2/Xxo0bJUnx8fE6duxYmeH3xRdf1NNPPy1JatCgga6++mrFxsZq8+bNSklJkSQ1a9ZM27ZtU1xcXEV+pADgWyYABBin02lKMp1OZ5nH7N2713Q4HKYkU5L5+eeflzrm3XfftfZ379691P6ZM2da+zt06OD1OqtWrbKOcTgcZlJSksf+1NRU0zAM6xwtWrQwZ8yY4XHMq6++ap3jkUce8Xqdf/7zn9YxQ4cOLbV/wYIF1nU6duxY5s8FAPyBHkoAAadkD2VxL2Kxo0eP6qOPPlJycrJyc3NlGIaef/55PfPMMx7Hud1uxcTEKC8vTy6XS5mZmYqNjS11rYEDB1rPv3z11Vf1yCOPeOxfvXq1+vfvb7Xr7NmzpXoYL730Uqudbdq00e7du0tdJzIyUvn5+WrVqpXHMzSL2xobG6vc3FzVqFFDWVlZXn8ugwcP1qJFiyRJCxcu1ODBg70eBwDVjTGUAAJWYWGhOnTo4PHVv39/vfnmm3I4HBo/frwOHjxYKkxK0ksvvaS8vDxJUo8ePbyGSUke4xJfeeUV5Re6lZKeqVnr9+vpeSn666Id1v46F7XSfzcdVEp6pvIL3db77dq1s7aHDBni9Tr16tWTJB0+fLjUvpdfflm5ubmSpOuvv77Mn0fJh7y/+OKLZR4HANWt7FHsAOBnDofDIzilpaVp4cKF+vHHH3X27Fl99tlneu2117x+dt68edZ2cQ+jN7169ZLD4ZDb7VZGRoa6/elznck3JEkuh6GsvSetY7Oj6+vpeUVjGeNjIjSmV3ON7tlc8fHxHufzpjjQFofcstraqVMn7dy50+s56tSpY21v3769zO8JAKobgRJAwDIMQ0888YTHe2+99ZYGDRqkJUuWKD09XVdeeaU2b95c6rMHDhywttu3b1/mNU6fy5fDFSl3XtFjh44f2KvIRq0kSQVuzxFBRuTPvZyZZ/P1zoo9mrpij+L2Z1rvN2zYsMzvRZK8jTJKS0uztp9//nk9//zzZba3WE5OzgWPAYDqQqAEEHQWLFig+Ph45eXlacuWLVq8eLEGDRrkcUxxCVmSRw9iSSt3HdWjH21VoQzrvcKs49JPgbIUh+cooeK8+cOxn8c8nu/xRWUp2dYxY8aoS5cuF/xMWd8TAPgDgRJA0ImOjtZ9992nKVOmSJIefPBBpaamehwTFRVlbZ85c6bUOf61dq+eW/CdHIYk98/jIZ0161W4PSX7HBdtO6R+/Sr2+ZJtveqqq3TfffdVuA0A4E9MygEQlF599VWrN3Dnzp3asmWLx/6Sq+gUr/dd7P11RWFSKuplNAt/HtfoqtfEVrveW/Wj3l+3t0KfadasmbXNEpIAghGBEkBQioyM1IgRI6zX48aN89g/bNgwa3v16tXW9spdR/Xspz8/iuhceqr007hGR406crgibbft2U+/08pdR8t9/PDhw63t4ge1l2XgwIEyDENXXXVVpdsHAFWNQAkgaE2dOlWOn8Y1fvPNN9q3b5+174knnrBKyRs2bNC5c+d0+ly+Hv1oa1GZ+yeZq2Za2/G9fg6hdjgM6bE5W3XmXH65jn/sscestqakpJS5ROPp06etwPnLyUoA4E8ESgBBq3bt2ho4cKD1euzYsda2w+HQ1KlTJUkFBQXq37+/Xli4Q8ezc63JNNnbV+rc3i2SJFfdporrmVQl7XKb0rGsXE36fMeFD/6prf/4xz8kFc0C7927d6lZ3Dk5OerWrZsKCgrUsWNH3XzzzVXSVgCoCqyUAyAgzJkzx1qxJjk5WaZpyjAM62HeXbt29TpZZf/+/WrRooUkeRx/3XXXKSkpyWN9bCMyVtEtusiIilV+xh7lHyvq0XTVaaLG9/xNjsif1/I+uz9FOdtXqjD7pM7u/qrouHpNFd2ss6JbXqYaHfrpzJZFysv4QefSUlRwvOgxRTFte8tZo45qdb9JUQ1b6vaIjTp15JBmzZql06dPe7TxT3/6k8djhl555RU9+eSTMk1TkZGR6t+/v5o2baoff/xRX331lfLy8tS4cWNt375dtWvXrrKfPQDYRaAEEBASExPPO36wdevW+v77773u6927t77++muP96699lotWbJEUtGknRtGjNG+1BSZBT9NwDEcctaqr7ieQxXXo/TqNsc+/5uyv13s9XpRzS5Vwpi/Kv2dcSo4dcjrMXWuGas6vYbq4JujdC679CxzSVq1apX6/WJK+J49ezR27FitX7/e6qV0OBxq0KCB7rrrLr300ktezwUA/kSgBBDy8gvd6jFpiTLPlm9MY1WKj4nQN88MVISTEUYAQhd/4QCEvNSMM34Jk1LRijo7M7z3UAJAqCBQAgh5KemZFz4ohK8PAL5GoAQQ8ralZ8pV8llB1cjlMAiUAEIegRJAyDtyJlcFbv8MFy9wmzqalXvhAwEgiBEoAYS8vIJCv14/N9+/1wcAXyNQAgh5kS6nX68fFeHf6wOArxEoAYS8hrWi/DqGskHNKL9cGwCqC4ESQMi7tEm8X8dQdm4S75drA0B1IVACCHn+DnT+vj4A+BqBEkDI65BQS/ExEX65dnxMhNon1PLLtQGguhAoAYS8CKdDY3o1V3UPo3Qa0h29mrPsIoCQx185AGFhdM/mMqt5GKVb0qiezav3ogDgBwRKAGGhaZ1YjezRrNp6KR2GNLJHMzWtE1s9FwQAPyJQAggbz9zUUfVrRvk8VDoMqX7NKD0zuKNvLwQAAYJACSBs1IqO0OQRl8nXTxBym9LkEZepVrR/JgIBQHUjUAIIK1e1a6A/D+nk02s8P6STrmrXwKfXAIBAQqAEEHbu7NPSCpVVVf4uPs/zQzrp131aVs1JASBIGKZZ3fMeASAwrNx1VI/N2apjWbm2yuDFYyYnj7iMnkkAYYlACSCsnT6XrxcW7tCHG9PkkFRYgb+ITqPo0UAjuzfTMzd1ZMwkgLBFoAQASQdO5mj2+v2a+fV+ZZ7NlyS5HIbHGuAlX8fHROiOXs01qmdzHg0EIOwRKAGghPxCt3ZmnFFKeqZS0jO1aftu5ZuGLm7RTA1qRqlzk3h1bhKv9gm1WAEHAH5CoASAMhw/flxTpkyRJD344IOqW7eun1sEAIGJf14DQBlWrlxpba9YscKPLQGAwEagBAAvjh8/rm+//dZ6nZKSohMnTvixRQAQuAiUAODFypUrZRieD6mklxIAvCNQAsAvFPdOlhxibpomvZQAUAYCJQD8grfeyWL0UgJAaQRKACjBW+9kMXopAcA7AiUAlHC+3sli9FICgCcCJQD85Hy9k8XopQSA0giUAPCT8vROFqOXEgB+RqAEAJWvd7IYvZQA4IlACQCqWO9kMXopAaAIgRJA2KtI72QxeikB4GcESgBhrzK9k8XopQQAAiWAMFeZ3sli9FICQBECJYCwtnLlSlufN02TXkoAYY9ACSCsff/99wFxDgAIZoZZmToPAISInJwc5eTklLl/4cKFkqSbbrqpzGNiY2MVGxtb5W0DgGDh8ncDAMCfLhQGIyMjJUn169evriYBQNCh5A0AAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbCJQAAACwhUAJAAAAWwiUAAAAsIVACQAAAFsIlAAAALCFQAkAAABbwj5QJiUlyTCM8345HA5FRESoQYMGuu666/Txxx/7vF2rV68u1Y7atWtX+DyJiYmlzjN27Fivx06cOFEOh0O1atXS/v37bX4HAIBg4+2eUdZXRESELr74Yk2dOtXfzZYk5eTkqGHDhjIMQ/fcc4+/mxN2DNM0TX83wp8+//xzLViwQJKUnJws0zRlGIbGjx8vSSooKFBGRob27t2rnTt3Kj8/X5JUr149JScna/jw4T5p15EjR/Tcc89Jkv75z38qLy9P8fHxOnXqVIXOM2fOHC1dulQZGRmaP3++JOnee+/VtGnTSh3bqFEjHTlyRJL0+OOP6+WXX7b1PQChYPbs2ZKkUaNG+bklgO8V3zMk7/dEqei++MMPP2j16tXKy8uTJHXu3FmbNm2Sy+XyS7slaebMmfr1r38tSYqOjtbZs2f91pZwFPaBsiSXy6XCwkI5nU4VFBR4PebPf/6zJk2aZP0SjR07Vu+++65P21W7dm1lZmZWKlAWW716tfr37y+p7ED5zDPP6MUXX1RMTIy2bdumVq1a2Wk2EBIIlAhXF7onnjt3Tm3bttWBAwckSX369NHatWuru5mWrKwstWrVSseOHdPo0aP1wQcf+K0t4SjsS94V9eyzzyo1NVU1a9aUJE2bNk2PP/64n1tVNSZNmiS3263s7GzCJADgvKKjo7VmzRrr9bp167Ru3Tq/tadmzZo6evSoTNMkTPoBgbISWrVqpeXLl8swDEnS5MmT9fXXX/u5VQAAVK/mzZurcePG1uvXXnvNj62BPxEoK6lHjx4aNGiQ9fruu+/2X2MAAPCTpk2bWtu7du3yY0vgTwRKG9544w1rOzU1VSdOnJCkcs3OdjgclZ7B/Ze//EUNGzaU0+m0Ztp16dJFmzZtqtT3MXbs2FJtTkxM9DimX79+XmeLnzp1SgMHDlR0dLQ1I75evXr8KxUAwkTJiTjFYy1XrlypG264QfXq1bPuVYZhKCYmRt27d/colZe0dOnSMu+hr776qho3buxxPsMwtHr1arlcrlKfK8u0adPUqlUrRUREWMdGRkaqZcuWmjBhgjIyMqruhxNG/DcdKwR07NhRUVFRys3NlST94x//0FNPPaUJEyZI+nl2tjcPP/ywcnJyznuMN9dff70WL16sK664QoMHD1Z6erpWrFihlJQU9ejRQ++++67uvffeCn0fd9xxhyIiIiRJ77zzjtdjfvvb36pz584es8Wzs7PVtGlT1apVS8OGDVNBQYEWL16sEydO6NFHH9Xp06c1ceLECrUFABBcjh49am03adJES5cu1cCBAyVJTqdTffv2VatWrXTgwAGtX79emzZtUr9+/fT888/rD3/4g8e5OnXq5PUeOnz4cM2fP199+vTRddddp2+++Ubbt2+3Pvf444/r1KlT+uSTT3To0KEy2zp06FB98sknkqRLLrlEnTp1kiRt3bpVu3btUnJysjW7HRVkwuJ0Ok1JptPpLPdnWrVqZUoyJZk33HCDx774+HhTkhkfH1/m5ytyjGEYpsvlMjdu3Oix//Dhw2aNGjWsY7Zt21bqHKtWrbLaee+995Z5reJjrr76aq/7S57H4XCYAwcO9Nifn59vxsXFmZLMyMjIMq8DBItZs2aZs2bN8nczgGpXnntifn6+dZwkc8aMGebChQtNSWZ0dLR5+PBhj+MLCwvN3r17W8dv3bq1zHMX3/scDocZERFR6t7Wtm1bU5K5atUq672rr77aOvcvffHFF9a+adOmldo/c+bMMj+LC6PkbVN8fLy1XfJfab5gmqYeeOABdevWzeP9hg0bKjk52Trmtttu82k7ihmGYT3Ds5jL5dKwYcMkSXl5eVq8eHG1tAUAUP1GjhypwsJCSUXPZ77rrrusfb/97W/VsGFDj+MdDoeWL18up9MpSfrd7353wWu43W49/PDDVm9isfHjx6t169Zq0KBBudpa/Ig/wzC8VvLGjBmjFi1alOtcKI2St001atSwtrOzs31+PWePX2ns+98or6BQkS6nGtaK0qVN4tUl8WZFRkYqLy9PO3bs0KlTpyq1sk5FdOjQQdHR0aXev/LKKzVjxgxJReNoSk5eAgAEn507d1rb+fn52rRpk1577TVt3bpVkhQVFaVVq1ZJkq655hqtX79el112mddzRUdHq0GDBsrIyNCWLVuUkp6plPRMbUvP1JEzudb97Vx+ofWZp//wx1LnefTRR/Xoo4+W+3soHt9pmqY++eQT3XrrraWOeffdd3lqSyURKG3KysqytoufTVlVDpzM0az1+3Xm3E8PlHVG6NPUTBW4fx7b4XIYmrW+aJlEM6a2lFe00s2HH37osbKBL7Rr187r+02aNLG2jx075tM2AAB8q7CwUB06dPC6zzAM9enTR/PmzbN6I6Ojo3XFFVdYx7jdbh08eNCj08XpKhq3n3kmS7dMWS2p6H5W8v6WV/jTtitSV72+VmN6Ndfons3VtE5spb6PESNGWOMnk5KSlJSUpMmTJ3s8d3nQoEF0glQSgdKmkivXlLfb/UJOn8vXCwt36MNv0mQYkqmiXyrD6fL4ZZPk8dqIiZcyiwJl8rzlGn3X/6lWdESVtMmbkuX+kmrVqmVtFy9VCQAITg6HQy+++KLHezVr1lTbtm117bXXyuEoPXpu//79uvvuu/XVV1+ddwlE0+22tn95f1Pxvc/hUubZfL2zYo+mrtijkd2b6ZmbOlb4/nbHHXfonXfe0Zo1a2SapubOnau5c+eqbt26SkxM1FNPPeURhFExBEqbSs4mGzBggO3zrdx1VI9+tFXHs3N/GhlcYud5HoMgSYbr51+uXWkZuva1FZo84jJd1a5qgu4vFY+BAQCELsMw9MQTT5T7+EWLFumWW26xxlb26tVLV1xxhfKj6+izbw8pJ69AmV9/LPfZM+VsQNH/FOfN/25M07KdRyp1f1u9erX+/ve/a9KkSTp48KAk6cSJE1a4bNKkiT7++GP16tWrQucFz6G05dtvv/V45M+4ceMqfA6zRGL819q9unP6eh3PzlWpf6gVHXz+cxX83BtoRNXUsaxc3Tl9vd5ft7fC7QJQZMiQIRoyZIi/mwEEjdtuu80Kk1988YW++uor9Rj1qL5w9VJk96GK6z1CjqjKDxFzm7J1f3vggQeUnp6utLQ0PfDAA0pISLD2paenq2/fvtqzZ0+l2xeuCJQ2PPTQQ9Z2p06dSk2CKS4DuEt06f9ScSDNK3TruQXfFR1fRm40CwvO257CnExrO7JRS+s8z376nRZtK/u5XADKVqNGDY/JdwDK9uWXX1pjJZs3b67rr79e76/be8H7W0WVvL9VttOkadOmevvtt3Xo0CFt2LDBWkLS7XbrzjvvrJqGhhECZSWtW7dOy5cvt15Pnz691DExMTGSVOaDy/Py8nTu3DlJ8pjNVqbCfLnP5ZS9O+uEtV2jw9Ue+95b9eOFzw8AgA0lZ4M3atRIK3cd1bOfflfqOLMgt8qu+eyn32nlrgs/tu/VV19Vv379lJNT+j7ao0cP7dq1y+oI+v7776usfeGCQFkJu3fvtlYBkKTf//73XgfyFj/PKjc312M2eLFXXnmlwtc+tWaW1/ezvlsuuYt6MF31m8kR7TkL7gLDLyslJSXFKmsAANCxY0dre9++fXr0o61y/OL+43YXqDA7U1XFYUiPzdmqM+fOPwl0wYIFWrNmjRYtWuR1f82aNRUZGSnp5w4hlB+BsoKeffZZderUyfoXzoQJE/TCCy94Pfbuu++2th955BGPfUeOHNELL7xw3vVGvTnzzQLlHfbsbSzIydSJL97+6ZWhBrc+VepzVbGKVEZGhpYsWWK9zs/PZxY3AMBy1VVXWUNEjhw5oj1LZ5Uqcx/58DnJrLrOiOIxlZM+31Gu43/zm994rRy+9957VtVwzJgxVda+cGGYZngvWPn5559bq70Ur99pGIb1DMeCggIdOXJEP/zwg3bu3GkFqHr16undd99VUlLSec/fvHlzpaWlSZIuu+wyde3aVYcOHdKyZcuUeO0gLVn+pczcHMnpUs3ORc++ir/qDsk0lbnqA0lSVspiqbBARlSsHNG1VJh5RJEXtVNE3aYqzDqhc/u/ldxFv5x1b3hQtS6/3rp+dupqndu7VYXZJ3V291eSpDbt2mvgNQPUokULPfXUU/ryyy/14YcfSvp5Le/GjRvr1ltvVe3atfW73/1Ob7/9thYtWqTs7GylpqZKkurXr6+kpCRdd911GjFihLZt26a3337bY73vDh06KDExUV27dtV9991n4/8pAICvzZkzR0uXLpXk/Z4oSVOnTj3vOT755BMlJSVZk05dtRMU0ai1zII85aXvkPtclmQ4JNMtyVDNy2+QJMX3HyNXjdo6/lMHSfG9r+T9MTLhYtW6/MZS1zz55Qy5c7NV49BmHc7IkCRrTfCRI0cqMTFRt9xyiz777DNJUkREhHr27KmWLVvq7NmzSklJ0e7duyUVlb83bNhQqZ9fWPPXmo+BYujQodbanef7crlcZr169cyBAweac+fOLff5s7Ozzeuvv96Mioqy1tquU6eO+ac//cl86YsdphEVW+paCXe+ZjYa/VKp942oWLPFU5+ZNS+73jSiapiSUbTPcJgR9VuYCXe/YbZ46jOPr6hml5b5PRWvH37vvfeWeYzD4TAnTpxoduvWrcxjitf9fv3118s8pnXr1j74fw8AUJVKroVd1ld5/HbKXDOy0cWmHD+v8y2H03TVbWo2GP6s6arduNR5G41+yWzx1GfnvxfXblzqPtfiqc9MGY4yP3Pvvfda7Zo5c6bZt29fMy4uzjQMw+Me37JlS/Ott97y1Y825IV9D6W/5Be61WPSEmWerf6ScXxMhL55ZqAinN5HPGRkZOjLL7/Uzp075XA4zjtL/cknn/S6/CIQbFatWqVXXnlFGzdu1KFDhzR//nyPxwXNmzdP77zzjjZu3KgTJ05oy5Yt6tKlix9bDASmQL6/wXf4iftJasYZv/yySVLm2XztzCj9QNmMjAz95z//UXJystX1f74wCYSS7OxsXX755fr73//udWxzdna2+vfvr5dffrnCY5+BcBKI9zf4Hivl+ElKetXNcKvs9S9tUrR04i97JCWCJMLPDTfcoBtuKBrL5a1wc8cdd0gqmrlKYQcoWyDd31B9CJR+si09Uy6H4WXtUt9zOQylpGdqAEESAFDFAuH+NqrarwwCpZ8cOZPrl182SSpwm9qQkqrkb+da71U2SM6ZM4c1vRE0rrnmGjVq1KharnX48GEtW7asWq4FBJLNe2NU4I7wy7UL3KaOZlXdQ9NRfoyh9JO8Av8+ELzAZAwYAKDq+fv+klueledQ5eih9JNIl3979dpc3FLjB/XTihUrlJqaesHZ3GUZMWIEs7wBLxo1aqRRoyi8Ifwsff8b7d5x2G/Xj4qgauYPBEo/aVgryq9jTBrUjFJCQoJGjhypjIwM28ESCCfM8gbKFgj3N1Q/St5+cmmTeL+OoexcYgZccbAcP3682rVrJ0nWJB0gXGRnZ2vr1q3asmWLJOmHH37Q1q1brZWuTp48qa1bt+q7776TaZpKTU3V1q1bdfiw/3pigEAUSPc3VB9Sg5/4+z94b9cnWCKcffPNN+ratau6d+8uwzD06KOPqlu3bnruueckSZ9++qm6du2qW265RYZhaNSoUerWrZuSk5P93HIgsATi/Q2+x0o5fhIMKwmUpxTOSjkAgJKC4f6GqsdP3E8inA6N6dVcjmoeiuU0pDt6NS/XLxs9lgCAigqG+xuqHj91Pxrds7mqu3/YLWlUz+YV+oy3YAkAQFmC5f6GqkOg9KOmdWI1skezavtXnMOQRvZopqZ1Yiv1+ZLBskOHDoqLi1NEhH8eXgsACFzBdn+DfYyh9LMz5/J17WsrdCwrV76cFOcwpFoR0qwxHdS6eRPGPQIAfMY0TS1ZsUa//d9RnVOkfBk0HIZUv2aUlj5ytWpF08nhLwTKALBy11HdOX29z69zXcQuNXGeliTVqlVLjRs3VkJCgho1aqRGjRqpTp06jJEEANiSk5Oj+fPna/fu3ardoY9e3+L7yTnv39NTV7Vr4PProGwEygDx/rq9evbT73x2/j/dcomOrv1Y2dnZHu+XnL3tcrnUoEEDNW7c2AqZjRo1ojcTYa34d6ZGjRp+bgkQ+NLS0jRnzhzl5+crKSlJbdu29fn97fkhnfTrPi19dn6UD4EygBT/0jkMVUn5u/g8xb9sW7Zs0SeffHLhz/3iEUHFvZmNGjVSQkKCGjdurDp16thvIBAEZs+eLUksowich2maWrt2rZYuXaqmTZtqxIgRiouLs/b7+v4G/2PpxQByZ5+Walmvhh6bs9X2mMriMSWTR1xmlQG6dOmiL7/8UpmZmef97C+fN3nmzBmdOXNG33//vbXv/vvvV8OGDSvfQABASChZ4r7yyis1YMAAOZ2e62n7+v4G/2PAXIC5ql0DLXnkav2qezMZRtFztSrCaUiGIf2qezMtfeRqj182h8OhxMTESrfN7XbLMAxddNFFqlevXqXPAwAIDWlpaUpOTtaBAwc0evRoDRw4sFSYLObL+xv8j5J3ADtwMkez1+/XzK/3WysOuByGxxqpJV/Hx0Tojl7NNapn8zIfneB2u/Xmm29esJeyLFFRUbr//vsVH8/SVggPlLyB0i5U4r4QX9zf4F8EyiCQX+jWzowzSknPVEp6po5m5So3v1BREU41qBmlzk3i1blJvNon1CrXCgHlHUvpzahRo3i4OcIKgRLwVJ4Sd3lV9f0N/sMYyiAQ4XTo0ibxurRJvKrillbesZS/1KdPH8IkAISxkrO4R48erbZt29o6X1Xf3+A/xP0wVNGxlA6HQxdddJGuvfZa3zUKABCwTNPUmjVrNH36dMXHx2vChAm2wyRCCz2UYaoivZQul0u/+tWvKl3SAAAEr6oscSN00UMZpirSS+l0OnX69GnfNggAEHAqMosb4Y1AGca6dOlywdna3bt3V/369TVjxgytXbtWzOECgNBHiRsVRck7jBX3Unqb8e1wOJSQkKAbb7xRkrR8+XItXrxY+/bt06233qrYWB7bAAChiBI3KoMeyjBXVi9lRESENW7S6XRq4MCBGj16tFX+SEtL80NrAQC+RIkblUWgDHNljaUcNmxYqaDZtm1bjR8/XvHx8ZTAASCEUOKGXQRKlOqlPN/zJuPj43XXXXepT58+Wrx4sf7zn/8oJyenupoKAKhiOTk5mj17tpYsWaK+ffvqrrvuqtCqN4BEoIQ8eynL87xJSuAAEBoocaOqsPQiJBWt8b1u3Tp17ty5Qv8yzczM1Mcff6z09HRde+216tOnjwzD8GFLgerF0osIRXbX4gZ+iVnekFTUS3nllVdW+HPFJXBmgQNAcGAWN3yBkjdsowQOAMGBEjd8hUCJKsMscAAITMzihq9R8kaVogQOAIGFEjeqAz2UqHKUwAEgMFDiRnUhUMJnKIEDgH9Q4kZ1o+QNn6IEDgDVixI3/IEeSvgcJXAAqB6UuOEvBEpUG0rgAOAblLjhb5S8Ua0ogQNA1aLEjUBADyWqHSVwAKgalLgRKAiU8BtK4ABQOZS4EWgoecOvKIEDQMVQ4kYgoocSfkcJHADKhxI3AhWBEgGDEjgAeEeJG4GOkjcCCiVwAPBEiRvBgB5KBBxK4ABQhBI3ggWBEgGLEjiAcEWJG8GGkjcCGiVwAOGGEjeCET2UCHiUwAGEC0rcCFYESgQNSuAAQhUlbgQ7St4IKsUl8GXLllECBxASKHEjFNBDiaDjdDo1aNAgSuAAgh4lboQKAiWCFiVwAMGKEjdCDSVvBDVK4ACCDSVuhCJ6KBH0KIEDCBaUuBGqCJQIGZTAAQQqStwIdZS8EVIogQMINJS4EQ7ooUTIoQQOIFBQ4ka4IFAiZFECB+AvlLgRbih5I6RRAgdQ3ShxIxzRQ4mQRwkcQHWhxI1wRaBE2KAEDsBXKHEj3FHyRlihBA6gqlHiBuihRBiiBA6gqlDiBooQKBG2KIEDqCxK3IAnSt4Ia5TAAVQUJW6gNHooEfYogQMoL0rcgHcESuAnlMABlIUSN3B+lLyBEiiBA/glStzAhdFDCfwCJXAAxShxA+VDoATKQAkcCF+UuIGKoeQNnAclcCD8UOIGKo4eSuACKIED4YMSN1A5BEqgnCiBA6GLEjdgDyVvoAK8lcBHjBihiIgIfzcNQCVR4gbsI1ACFVRcAm/ZsqU2bdokl+vCv0ZnzpxRYWGhateu7fsGAii3tLQ0zZkzR/n5+Ro9ejS9kkAlESiBSmrbtq1at24t0zRlGEaZx+Xl5WnmzJlatGiRRowYoTvvvLMaWwnAG9M0tXbtWi1dulRNmzbViBEjFBcX5+9mAUGLQAnY4HBceBhyZGSkmjVrpr59++ruu+/Wt99+q8mTJ1dD6wB4Y5qmFi9erHXr1lHiBqoIgRKoBjfffLPq1asnwzBUs2ZNZWdnq0aNGv5uFhCWTNNU37591bp1a7Vu3drfzQFCArO8AR8qLCy0tm+//XYlJSVpwoQJVphkljhQ/RwOh2rUqEGYBKoQPZSAj5imaZXRkpKSFBkZqWeffVYJCQnWMXl5eTJNU9HR0f5qJhAyvv32W7322msqKChQ7969NXLkSDVo0MDrsecb9wyg4uihBHykuPfxjTfe0Oeff65XX31VnTp1svYvW7ZMiYmJuvnmm3XjjTdqy5YtfmopEPySk5PVu3dvxcTEKDMzU9OnT9e///1vfzcLCBsESqCKnThxQidPnpTD4dDmzZv1yCOP6I9//KPHihspKSkaMmSI2rZtq+HDh6t79+7q16+f5s6d6+fWA8Fny5Ytmjp1qmbOnKmpU6dqwYIFqlevno4cOeLvpgFhg5I3UIVM09Sbb76p//73v5o1a5aGDx+uoUOHauzYsR7rf7/88svq0KGD3n//feu9/Px8LV68WMOGDfNH04GgdfjwYR08eFCXXHKJ9d5FF12kOnXqaOnSpWrVqpUuvvhiP7YQCH30UAJVyDAMTZw4US1atFC3bt10/PhxTZw40WPcpFS04k6bNm0kSdnZ2ZKkdu3aadGiRdZrAOWTkJCg5s2b6+9//7t2796tW2+9VbNmzdKyZcs0YcIE3XzzzUpNTfV3M4GQRqAEfGDRokWaMWOGsrKy9PrrrysrK8tj/yWXXKJFixbpu+++s2Z8z549W3379lWNGjWY/Q1UwGWXXaZ77rlHqampGjdunHbt2qXNmzfriy++0Lx589SyZUv99a9/9XczgZBGoAR85M4779TGjRu1efNmzZkzR5J06NAhSdIDDzyg3/zmN+ratav+7//+T127dtXXX3+t/v37S2IGKlBRDzzwgP73v/+pfv36GjVqlDp16iTDMHTppZcqJiZGp0+flsSjugBfIVACPnT55Zdry5YtGjlypDZu3KgPPvjA6q2cNGmSfvjhB0VFRencuXPq16+fhg8fLombHlBRhmHINE0VFBSoYcOG1vt5eXnKz89X586dreMAVD0m5QDVICYmRoWFhXrzzTeVnp6uiRMnWje/zZs3KyEhQY8++qgaNmwot9tdriUdgXBmmqaysrIUGxtrPT3B4XBo8ODBeu2113T48GFdccUVevnll3Xs2DFNmTLFzy0GQpth0hUCVJutW7dq2LBhqlOnjo4fP64TJ05owIAB+s1vfqOBAwf6u3nwYvbs2ZKkUaNG+bklKJaTk6P58+fr8OHDevDBB+V0Oj16Hh977DEtWrRI0dHR6ty5s2bMmOG/xgJhgkAJ+MFHH32kqKgoxcbGeg2SpmlSmgsQBMrAkpaWpjlz5ig/P19JSUlq27ZtqWPcbrfOnj2rY8eOqUWLFn5oJRB+KHkDfnDbbbd5vC4ZIE3TVH5+vrZt26auXbsSLAEV/V6sXbtWS5cuVdOmTTV8+HDFx8d7PbZ4re7iJygA8D0CJRAASoZGwzCUmpqqBQsWaOfOnbr11ls9HooOhJviEvfu3bt15ZVXasCAAda4SQCBgUAJBKAuXbooOjpa8+fPV3JyskaMGKFmzZr5u1lAtStZ4h49erTXEjcA/2MqKRCg2rVrp/Hjxys+Pl4zZszQ2rVreZwQwoZpmlqzZo2mT5+u+Ph4jR8/njAJBDB6KIEAFh8fr7vuukvLli3T4sWLtW/fPkrgCHmUuIHgQw8lEOCcTqcGDRqkUaNGKS0tTcnJyUpLS/N3swCfKP5v/MCBAxo9erQGDhxImASCAIESCBKUwBHKKHEDwY2SNxBEKIEjFFHiBoIfPZRAkKEEjlBCiRsIDQRKIEhRAkcwo8QNhBZK3kAQowSOYESJGwg99FACQY4SOIIJJW4gNBEogRBBCRyBjBI3ENooeQMhhBI4AhElbiD00UMJhBhK4AgklLiB8ECgBEIUJXD4EyVuILxQ8gZCGCVw+AMlbiD80EMJhDhK4KhOlLiB8ESgBMIEJXD4EiVuILxR8gbCCCVw+AIlbgD0UAJhhhI4qhIlbgASgRIIW5TAYQclbgAlUfIGwhglcFQGJW4Av0QPJRDmKIGjIihxA/CGQAlAEiVwnB8lbgDnQ8kbgIUSOLyhxA3gQuihBOCBEjhKosQNoDwIlAC8ogQe3ihxA6gISt4AykQJPDxR4gZQUfRQAjgvSuDhhRI3gMogUAIol1+WwNesWUMJPIRQ4gZgByVvAOVWsgS+ZMkS7du3T0OHDqUEHuQocQOwix5KABVSsgR+4MABSuBBjhI3gKpAoARQKZTAgxslbgBViZI3gEqjBB6cKHEDqGr0UAKwhRJ4cKHEDcAXCJQAqgQl8MBGiRuAL1HyBlBlKIEHJkrcAHyNHkoAVYoSeGChxA2gOhAoAfgEJXD/osQNoDpR8gbgM5TA/YMSN4DqRg8lAJ+iBF69KHED8AcCJYBqQQnctyhxA/AnSt4Aqg0lcN+gxA3A3+ihBFCtKIFXLUrcAAIBgRKAX1ACt4cSN4BAQskbgN9QAq8cStwAAg09lAD8KlxL4FlZWcrKyqrw5yhxAwhEBEoAASGcSuBut1szZsxQcnKycnJyyvUZStwAAhmBEkDAKC6B9+7dW0uWLNHs2bPLHbiCyfbt23X8+HFlZ2dr7ty5FwzOOTk5mj17tpYsWaK+ffvqrrvuUnx8fDW1FgAuzDBDtQsAQFBp06aN9uzZU+r9li1bauXKlWrWrFmFzhcbG6uzZ8+Wer/kn7zExEStWLFCHTp00I4dOzyOMwzD47XT6VRBQUGF2uCN2+3W22+/rRMnTljvDRw4UFdeeaXX49PS0jRnzhzl5+crKSmJXkkAAYlJOQACwhNPPKHNmzdLkpKTk63gt3fvXr355psaOnSo+vbtWyroefOXv/zFI0z27dtXXbp0KXXcihUrJEmpqanas2ePWrdube2bMGGCJOlf//qX12BaWdu3b/cIk5K0dOlSNWvWTM2bN7feM01Ta9eu1dKlS9W0aVMNHz6cXkkAAYseSgABx+VyqbCw0Hrdo0cP3XzzzWrbtm25ZoHXqVNHp06dsl6//vrreuihh0od179/f61evVqtW7fW999/7/VcCQkJOnz4cJX0UHrrnZSKekNr1Kih+++/X7GxscziBhB0GEMJICBFRERY25s2bdJNN91Urlng7733nk6dOqWoqKgLXmPVqlUyTbPMMFnVvPVOSkW9kcXjKffv388sbgBBh0AJICDFxsaqTZs2kop69iZPnlyuWeB//OMf5XK5dMUVV1R3k8/L7XZr+fLlZe43TVN79uxhFjeAoESgBBCw/va3v1nbH3/8saKios47C/zzzz/XoUOHlJSUFHC9emX1TnpzzTXXMF4SQFAhUAIIWIMHD1bjxo0lSQUFBXrooYfO+yD0hx56SIZh6J133jnvedu0aSPDMDy+3njjjUq3c9q0aerZs6dq1qwph8MhwzDkcDgUFxenm2++WQcPHvTaOzl37lxNnDjR42v69On68MMPNWzYMMXGxlrti4uL0+OPP17pNgKALxEoAQS0SZMmWdszZsyQ2+2WVPpB6O+99552796tq6++WnXr1j3vOZ944glNmDBBffv2td2+e+65R+PGjdOGDRskSdddd53GjBmjXr16KScnRwsXLlSLFi2sGewlXX755erevbu6d+9uvWeapv7yl7/oiy++0ODBgzVmzBg1btxYZ86c0eTJkzV69GjbbQaAqkagBBDQ7rnnHtWuXVuSlJubq2eeecbaV/JB6H/84x8leZbJy3Lfffdp6tSpuu2222y3Lzc3V5LUvn17ZWVl6YsvvtDMmTO1bt06ZWRkqE6dOiooKNDMmTNLffbiiy/WLbfcoltuucV6Ly0tTVFRUXryySf18MMPa+bMmTp48KBatGghSZo9e7bHDHYACAQESgAB74knnrC233rrLY99TqdTbdq00aFDh5SQkKClS5faWgs8v9CtlPRMzVq/X0/PS9GZ/KLnXrpN6el5KZq1fr9S0jOVX+j2+Nwnn3xS6lz169e3eljz8/P11VdfXfD6pmnq17/+taSi51Pu379fkvTggw9ax1yopA8A1Y1ACSDg/f73v1dMTIwkKTs7W6+88orH/nHjxkmS/vnPf1ol8MzMzApd41ROnl7+X6p6TFqiW6as1tPzUvTfb9KU5y4KlKZp6r/fpOnpeSm6Zcpq9Zi0RC//L1VPTHxBW7duVfv27Uud0+12ezy7MjU19YLtiI2NtXpkJemjjz5STk6OBg0aZL33zTffVOh7AwBfI1ACCArFK9dI0osvvmhtnzhxQsuWLVOLFi104403WiXwkydPVuj8by7drXdW7FHm2XzrvQK352OJSr7OPJuvd1bsUdKM7zRrt3TmXNHnzp07px9//FE7d+7UwoULtXPnTmt1n6ysrAu2Iy4uzto2TVNZWVlauXKlWrZsab1PyRtAoGHpRQBB4eWXX9aUKVOUn5+vkydPavr06brnnns0YcIEmaapl156SZKsWeANGzbUvn37JKnMcPn9Ec+A567gumHFx8+Y84n+9sAQ5Z9IV+F5VtMpufpPWSIjIyUVBcvGjRurUaNG6tKli0fQrIo1xQGgKhEoAQQFl8ul22+/Xf/+978lSc8884zGjBmjefPmqW7duho5cqTH8SWXZ1y/fr3WrFnjsRb4v9bu1ayv99lu18ll/9Tp9XOLXjicuqzPAF3f/wrl5eVp27ZtkorGQhY/hL34MUDFs9VdLpcaNmxona9x48Z66qmnyrXSDwAECgIlgKAxZcoUffDBB3K73Tp06JAGDBiggoICPfnkk+f9XMuWLbVkyRLt27dPQ4cO1ZytR/Tcgu9styfv6L6fw6QzQs0e/ECnomPVaUgnpX85W/369ZNUFCglyeFwqF27dkpISFCjRo3UqFEj1alTR4Zh6L777pMkRUdHEyYBBB3GUAIIGnFxcbrhhhus12vXrlVMTIzHLHBv2rdvbz0I/ek3/61nP7UfJiXp9Ndzre3Y9n3liC7qFX320+90Kqax2rRpo8GDB8vhKPpTW7t2bd1+++1KTExUx44dVbduXavHFACCGYESQFB59913PULY2LFjy/W5du3aafRd92rZ2aZyVFGGK8z6eSnFiLpNrG2HIS3Paaohw3+lK664wipvA0CoIlACCCoXXXSRtcKNy+XS5MmTy/3ZKavTlZVf8ck3ZXHWqmdt52V8b227TelYVq4mfb5Dq1evtsZPAkCoIlACCDpffvmlTp48qczMTGtW9IWknczRh9+kVVmYlKS4nknW9tk9G5R7+AfrtduUZq/eqaFJSd4+CgAhhUk5AALCnDlzrMkrbrdbZ8+e1f333y9JGjlypBITE61jXS6Xx8O/Syr+zK5du6z3PvroI/1n8Vc6eaJQtRPv1pkti5SX8YPyju61jsneuUb5J9IVmXCxal1+o45/8bYkqTDnpwekm6b1Xq3uNymyQUtFNmihml0HK2vz55JpKmP6bxWZ0Eauek1VeOa4ctN3yChR7j569Kjuv/9+1a5dWy+++KK2bdumt99+26P9u3bt0v3336+uXbvqvvvu05EjR/Tcc895PaZFixZ66qmnyvkTBgDfMUxqMQACQGJiolasWOF137333qtp06aV6zznneRiONTiyU+V/s44FZw65PUQV+3GajLhXe37681lnqbONWMV13Oo9Tpr23KdWvlvFZ45KhU/HsgVqciEtmox7FHteXucxzMonU6nCgoK9MYbb+jhhx/2eo3WrVvr+++/1+rVq9W/f3+vx8THx/OQcwABgUAJIOSlpGfqlimr/Xb9z37TT5c2iffb9QHA1xhDCSDkpaRXbF3vULs+APgagRJAyNuWnilXVT0rqIJcDoNACSDkESgBhLwjZ3JVUJXTuyugwG3qaFauX64NANWFQAkg5OUVFF74IB/Kzffv9QHA1wiUAEJepMvp1+tHRfj3+gDgawRKACGvYa0ov46hbFAzyi/XBoDqQqAEEPIubRLv1zGUnXlkEIAQR6AEEPL8Hej8fX0A8DUCJYCQ1yGhluJjIvxy7fiYCLVPqOWXawNAdSFQAgh5EU6HxvRqruoeRuk0pDt6NVeEkz+1AEIbf+UAhIXRPZuruheadUsa1bN59V4UAPyAQAkgLDStE6uRPZpVWy+lw5BG9mimpnViq+eCAOBHBEoAYeOZmzqqfs0on4dKhyHVrxmlZwZ39O2FACBAECgBhI1a0RGaPOIy+foJQm5TmjziMtWK9s9EIACobgRKAGHlqnYN9OchnXx6jeeHdNJV7Rr49BoAEEgIlADCzp19WlqhsqrK38XneX5IJ/26T8uqOSkABAnDNKt73iMABIaVu47qsTlbdSwr11YZvHjM5OQRl9EzCSAsESgBhLXT5/L1wsId+nBjmhySCivwF9FpFD0aaGT3Znrmpo6MmQQQtgiUACDpwMkczV6/XzO/3q/Ms/mSJJfD8FgDvOTr+JgI3dGruUb1bM6jgQCEPQIlAJSQX+jWzowzSknPVEp6po5m5So3v1BREU41qBmlzk3i1blJvNon1GIFHAD4CYESAAAAtvDPawAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANhCoAQAAIAtBEoAAADYQqAEAACALQRKAAAA2EKgBAAAgC0ESgAAANjy/zUCiePvUmSXAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCg0lEQVR4nO3deXhU5cH+8Xsme0gI+xZICLLIroCsVkBAVAQRUAggi1Xx1fZXQSsVFakoUkWDWBXQ14AgAYGiVqgCgkgBoShbKTskBMoWhJCFJJOZ8/sjb4aELCRMMuv3c11cneXMOU9Sk3Pnuc9iMgzDEAAAAHCTzK4eAAAAADwbgRIAAAAOIVACAADAIQRKAAAAOIRACQAAAIcQKAEAAOAQAiUAAAAcQqAEAACAQwiUAAAAcAiBEgAAAA4hUAIAAMAhBEoAAAA4hEAJAAAAhxAoAQAA4BACJQAAABxCoAQAAIBDCJQAAABwCIESAAAADiFQAgAAwCEESgAAADiEQAkAAACHECgBAADgEAIlAAAAHEKgBAAAgEMIlAAAAHAIgRIAAAAOIVACAADAIQRKAAAAOIRACQAAAIcQKAEAAOAQAiUAAAAcQqAEAACAQwiUAAAAcAiBEgAAAA4hUAIAAMAhBEoAAAA4hEAJAAAAhxAoAQAA4BACJQAAABxCoAQAAIBDCJQAAABwCIESAAAADiFQAgAAwCEESgAAADiEQAkAAACHECgBAADgEAIlAAAAHEKgBAAAgEMIlAAAAHAIgRIAAAAOIVACAADAIQRKAAAAOIRACQAAAIcQKAEAAOAQAiUAAAAcQqAEAACAQwiUAAAAcAiBEoDbmjZtmkwm0w3/hYSEqEmTJnr00Ue1ZcsWVw9bkmSxWDRgwABFRETo008/dfVwAKBSmQzDMFw9CAAozt69e7V3715J0sSJE5WSkqJatWopLi7OvozVatXJkyeVkJCgAwcOSJKeeeYZzZkzR2az6/5m/vnnn9WpUydJUtu2be1fBwB4IwIlAI/QuHFjJSUlKTo6WomJiUXez83N1ciRI7V8+XJJ0osvvqgZM2Y4eZTX5OTk6MEHH9SWLVv09ttva8KECS4bCwBUNgIlAI9wo0ApSampqWrYsKHS09MVEBCgo0ePKioqyrkDBQAfxDGUALxGRESE+vXrJynvGMavv/7axSMCAN9AoATgVZo2bWp/fPjwYReOBAB8B4ESgFfx9/e3P7ZYLJKkEydOaObMmerXr5/q16+vwMBAVa1aVe3atdOkSZOUlJRU7LqOHj1a5IzyXr16SZI2bNigBx98UPXr15efn5/9/cTERDVu3LjI50ry008/afTo0YqJiVFwcLBCQ0PVvHlzjRo1SosWLVJ6enrFfXMAoJL433gRAPAcZ86csT9u1KiRjh49qubNm8swDDVs2FCPP/64oqKidObMGa1Zs0ZxcXH65JNP9MUXX+jee+8ttK569epp0aJFkqQ33nhDBw8elCTNmTNHM2fO1GOPPaaBAwfq559/1vz582Wz2SRJs2fPVnp6uv72t79p1apVJY41Li5Ozz33nMLCwjRq1Ci1adNGkrRr1y4tWrRIS5YsUZUqVQiVANweJ+UA8AhlOSnHZrMpJiZGJ0+elCTt2LFD4eHhatmypdq3b68tW7aoSpUq9uUNw9CUKVM0c+ZMhYeH6/Dhw6pXr16x6+7Vq5c2bdqkevXqqWrVqtq8ebPq1Kljf/+3v/2tPv30U504cUKNGzeWlHcdzT//+c/2bRV0+PBhtWrVSlarVT/99JO6dOlS6P1ffvlFPXr0UFZWVpHPAoC7ofIG4DX++te/2sNk//79dccdd9jfe/XVVwuFSUkymUyaPn26GjVqpLS0NM2bN++G2zh79qxmzpxZKExK0qhRozR27FiFhYWVaazfffedrFaratasWSRMSlKHDh300EMPlWldAOBqVN4APIrNZlNKSor9udVqVXJyshYtWqT3339fktSqVSt7Vd20aVMlJyerfv36xa7P399ft99+u5KTk7Vp0yZZrDYdPJumfadT9e/TqTqflq2cXKsOnUuTJAUGBSv69t/IYrUpwO/a3+R333237r777jJ/Hbm5uZKkX3/9Vfv371fr1q2LLPPnP/9ZY8aMKfM6AcBVCJQAPEpycrJq165d7Hu1a9fWE088oSlTpthnI/39/dWwYUP7MoZhKC0tTTk5OfbXQkNDJUn/PpKoTm+sV+rVvJN5/M0m5dry6uZLGXnLGxH1NWTedkWEBGhUlyiN7BylhtVDy/113HXXXTKZTDIMQ3fffbdeeuklPfroo6pevbp9mWbNmqlZs2blXjcAOBuBEoBHqVu3rhYvXlzoteDgYNWtW1dNmzYt9ozq1NRUvffee1q1apX2799vP/v7epfSMhR69dp7+WGyIHNgXnhMvWrR3E3H9NGmYxresZFeGtBS4cEBZf46OnbsqClTpuiNN97Q+fPn9Yc//EHPP/+8evbsqYEDB2rIkCGFgjAAuDMCJQCPEhwcrL59+5Z5+UOHDqlv3746deqUIiIiNGnSJLVv3161a9fW3lOXNW/TcSVvWqqrJ3apTOe+FAis+Xnzi5+TteHQec0a1l53NS9+9rQ4r7/+uu69917FxcVp9erVys7O1vr167V+/XpNnDhRQ4YM0bvvvqtGjRqVeZ0A4AqclAPAq40ZM0anTp1SaGioduzYoZkzZyo2NlanQ5tqzqEQWeq3lrlKDYe2YTOklPRsjYnfoc+2JZbrs3feeadWrlyp8+fP6/PPP9egQYPk7+8vm82mFStWqEuXLvr1118dGh8AVDYCJQCvdfz4ce3YsUOSNGjQIDVv3lyS9Nm2RL369/2Srs0yOip/PVO/3l/uUClJVatW1ciRI/XVV18pMTHRfob3mTNn9M4771TMIAGgkhAoAXits2fP2h/n18Y/Hr6gqV/vL7ScYblaodud+vV+/Xj4QqnLbNiwQS+//HKxx3NGRkZq6dKl9mti7tmzp0LHBwAVjUAJwGsVvFTQwYMHdSXLoueW75G5wHk7hmFTztljFbpds0l6fsUeZedaS1zmxx9/LHT3nesFBgbaz2avWrVqhY4PACoagRKA14qJibFf3Hz16tV68s0FupiRXajmTt36hXJTz1XodvOPqdx8JOWGy77yyiuyWosGz+3bt+s///mPJGnEiBEVOj4AqGic5Q3Abe3du1d79+6VJGVkZNj/t+Blg0aPHl3qOuLj49WrVy+lpKRo2fSnVKV1LwXWbyYj16KsE78oK3m//CLqypp6ToYlS+n/3ihJCm3eTebAYPtza+Zl+//mvxZQvZ6CIlsW2Wbm4W2y5WTp3OFrVXX+mLt3764mTZooPDxckvTVV1/p1ltv1fDhwxUVFaWsrCzt2bNHCQkJslqtev755zVo0KByf+8AwJm4lzcAt1XwXtglKcuvsDNnzuiRZ/6kn35Yr9wrF2QymeQXXlPBUe1U9Y7BSv1phTL+/X2hz0Q+9b/yr1ZXSTMfKHG9Vdr0Ua0HJhZ5/dSHj8l65Xyxn4mPj9e4ceMk5d2ve+XKldq8ebMOHTqkS5cuyWw2KzIyUt26ddOECRP0m9/85oZfHwC4GoESgNezWG2F7oDjTBEhAdr5Ut9Ct2kEAG/DbzgAXu/g2TSXhEkp7446h86muWTbAOAsBEoAXm/f6VSf3j4AVDYCJQCv9+/TqfI3F73HtzP4m00ESgBej0AJwOudT8tWbkXdEqeccm2GLqRnu2TbAOAsBEoAXi+nlAuMO0O2xbXbB4DKRqAE4PUC/f1cuv2gANduHwAqG4ESgNerEx7k0mMoa4cFuWTbAOAsBEoAXq9NZIRLj6FsGxnhkm0DgLMQKAF4PVcHOldvHwAqG4ESgNe7tV64IkICXLLtiJAAtagX7pJtA4CzECgBeL0AP7NGdYmSsw+j9DNJo7tEcdtFAF6P33IAfMLIzlEynHwYpU1SbOco524UAFyAQAnAJzSsHqrhnRo5bZbSbJKGd2qkhtVDnbNBAHAhAiUAn/HSgJaqFRZU6aHSJEPBsmh4c9cctwkAzkagBOAzwoMDNGtYe1X2FYQMmTQ8Okdfr/xC69atk9XKnXIAeDeTYTj7qCIAcK3PtiVq6tf7K2390we11uiu0dq2bZvWr1+vhg0baujQoYqI4PJBALwTgRKAT8oPlWaTKmTGMn890we11qPdGttfT05O1ooVK2SxWDR48GA1b97c8Y0BgJshUALwWT8evqDnV+xRSnq2Q6HSbJJqhQVp1rD2uqt57SLvZ2Zm6ssvv9SRI0fUvXt33X333fLz4/7eALwHgRKAT7uSZdGM1Qe07OdkmSVZy/Eb0c+Ud2mg4R0b6aUBLRUeXPJJOIZhUIED8FoESgCQdOpSphJ2nNTi7SeVetUiSfI3m5Rrs0kyFXie9yszIiRAo7tEKbZzVLkuDUQFDsAbESgBoACL1aZDZ9O073Sq9p1O1e6Dx2SxmdQ4KlK1w4LUNjJCbSMj1KJe+E3fAYcKHIC3IVACQCkSEhIkSbGxsRW6XipwAN6E61ACgAuYTCZ1795d48ePV2pqqubNm6fDhw+7elgAcFMIlADgQo0aNdKECRPUsGFDJSQkcCF0AB6JQAkALhYaGqrY2Fj169dP27Zt08KFC5WamurqYQFAmREoAcANUIED8GQESgBwI1TgADwRgRIA3AwVOABPQ6AEADdEBQ7AkxAoAcCNUYED8AQESgBwc1TgANwdgRIAPAAVOAB3RqAEAA9CBQ7AHREoAcDDUIEDcDcESgDwQFTgANwJgRIAPBgVOAB3QKAEAA9HBQ7A1QiUAOAFqMABuBKBEgC8CBU4AFcgUAKAl6ECB+BsBEoA8EJU4ACciUAJAF6MChyAMxAoAcDLUYEDqGwESgDwAVTgACoTgRIAfAgVOIDKQKAEAB9DBQ6gohEoAcAHUYEDqEgESgDwYVTgACoCgRIAfBwVOABHESgBAFTgABxCoAQA2FGBA7gZBEoAQCFU4ADKi0AJACiCChxAeRAoAQAlogIHUBYESgBAqajAAdwIgRIAcENU4ABKQ6AEAJQZFTiA4hAoAQDlQgUO4HoESgBAuVGBAyiIQAkAuGlU4AAkAiUAwEFU4AAIlAAAh1GBA76NQAkAqDBU4IBvIlACACoUFTjgewiUAIAKRwUO+BYCJQCg0lCBA76BQAkAqFRU4ID3I1ACACodFTjg3QiUAACnoQIHvBOBEgDgVFTggPchUAIAnI4KHPAuBEoAgMtQgQPegUAJAHApKnDA8xEoAQAuRwUOeDYCJQDAbVCBA56JQAkAcCtU4IDnIVACANwOFTjgWQiUAAC3dX0Fvnfv3ht+Ji0tTZcvX678wQGwI1ACANxafgU+cOBAtWzZUoZhlLhsTk6OFi9erDFjxuizzz5z4igB30agBAC4PZPJpA4dOsjf318mk6nE5QIDA9WoUSN1795d48aN0/PPP+/EUQK+y9/VAwAAoKxKC5P5HnjgAdWsWVMmk0lhYWHKyMhQlSpVnDA6wHcxQwkA8AoFLy80YsQIPfTQQ3rqqacIk4ATECgBAB7PMAz5+flJkh566CEFBgZq6tSpqlevnn2Z06dP65///Kerhgh4NSpvAIDHMwxDJpNJs2fP1po1a7R8+XK1adPG/p7VatXGjRu1dOlSZWRk6L333lO7du1cPGrAezBDCQDwWL/++qsuXboks9msXbt2adKkSXrllVfUt29fmc15uziTySR/f3/df//9evbZZ5WRkaHbb79dSUlJLh494D0IlAAAj2QYhubMmaMePXpo9+7dGjp0qAYPHqzHH39coaGhhZa12WyqUaOGmjVrppMnT+qZZ55R/fr1XTRywPuYjNIu6AUAPi4hIUGSFBsb6+KRoCT33XefvvvuO4WHh2vz5s0lVtkWi0V9+/ZVVlaWvv32W1WvXt3JIwW8FzOUAACP9o9//EMLFixQenq64uLilJGRUexyr7zyivbu3auPP/6YMAlUMAIlAMDjjRkzRj///LN27dqlZcuWFXl/1apVeuutt/T+++9zMg5QCTjLGwDgFW677Tbt3r1bmZmZSk5O1tGjR9W7d28lJibqySef1NNPP62RI0e6epiAVyJQAgC8SmhoqPbs2aM+ffpo3LhxOnr0qJo1a6bXX3/dfuY3gIpFoAQAeJ1u3bpp586dGjVqlA4dOqSlS5eqWrVqrh4W4LX4Uw0A4JU6dOigAwcOaPjw4YqNjdWqVatcPSTAaxEoAQBeLSEhQR988IH27dunrKysIu/bbDbZbDYXjAzwHlTeAACv99RTTyknJ0eBgYFF3jOZTPriiy/UoUMHNWvWzAWjAzwfM5QAAJ9QXJiUpNzcXFmtVi1ZskTr1q2T1Wp18sgAz0egBAD4tICAAMXGxqpfv37atm2bFi5cqNTUVFcPC/AoBEoAgM8zmUzq3r27xo8fr9TUVM2bN09Hjhxx9bAAj0GgBADg/zRq1EgTJkxQw4YNqcCBciBQAgBQQGhoKBU4UE4ESgAArkMFDpQPgRIAgBJQgQNlQ6AEAKAUVODAjREoAQC4ASpwoHQESgAAyogKHCgegRIAgHKgAgeKIlACAFBOVOBAYQRKAABuEhU4kIdACQCAA6jAAQIlAAAOowKHryNQAgBQQajA4asIlAAAVCAqcPgiAiUAABWMChy+hkAJAEAloQKHryBQAgBQiajA4QsIlAAAVDIqcHg7AiUAAE5CBQ5vRaAEAMCJqMDhjQiUAAA4GRU4vA2BEgAAF6ECh7cgUAIA4EJU4PAGBEoAAFyMChyejkAJAICbuL4CX79+PRU4PAKBEgAAN0IFDk9EoAQAwM3kV+Djxo2jAodHIFACAOCmqMDhKQiUAAC4MSpweAICJQAAbo4KHO6OQAkAgIegAoe7IlACAOBBqMDhjgiUAAB4GCpwuBsCJQAAHooKHO6CQAkAgAejAoc7IFACAODhqMDhagRKAAC8BBU4XIVACQCAF6EChysQKAEA8DJU4HA2AiUAAF6KChzOQqAEAMCLUYHDGQiUAAB4OSpwVDYCJQAAPoIKHJWFQAkAgA+hAkdlIFACAOBjqMBR0QiUpZg2bZpMJlOZ/lWtWlXt27fXCy+8oFOnTrl66AAAaPbs2aXuu6Kjo/Xaa6/p3Xff1f3336/HHntMu3fvrvRxJSYmFhlLr169yr2e4vbTCxYsKHbZ1atXq1atWurWrRszspXA39UDcGdDhgxR06ZNJUkTJ05USkqKatWqpbi4uELLXblyRdu3b9fSpUu1d+9ezZs3T8uXL9c999zjimEDACBJuvfee1WrVi1Jxe/HrFarUlJSdOzYMX3zzTeKj49XfHy8+vTpo7i4OLVt27ZSxlW7dm0tWrRIkvTGG2/o4MGDN7We/P10SkqKJk6cWOqyc+fO1cWLF3Xx4kV9//33GjJkyE1tE8UzGYZhuHoQnqBx48ZKSkpSdHS0EhMTi13mp59+Uq9evZSdna2wsDAdPHhQkZGRzh0ogAqVkJAgSYqNjXXxSADHlGU/9tlnn+mPf/yjzp8/r+DgYM2dO1djx46t1HH16tVLmzZtUs+ePfXDDz/c1DoSExMVExMjSYqPj9e4ceOKLPP1119r/PjxatKkidauXavq1as7MGpcj8q7AnXt2tX+H3F6ero++OAD1w4IAIByGDNmjH755Rc1a9ZMWVlZGj9+vJYvX+7qYVWIQYMG6eLFi/rXv/5FmKwEBMoKVvAYkB9//NF1AwEA4CZERkZqw4YNCg8Pl2EYGj16tPbv3+/qYcHNESgrWP6xKpJ0/vx5F44EAICb07BhQ7344ouSpJycHD322GOcBY5SESgrWEZGhv1xWFhYiculpKRo6tSp6tixo6pVq6bg4GBFR0dr9OjRJc5svvzyy8WezZaVlaXXXntNLVq0UEhIiGJiYjRhwoRCZ5vnH7AcExOjoKAgxcTE6IUXXlB6evoNv6YLFy7opZdeUvv27VW1alWFhIQoOjpaw4cP13fffVeO7w4AwFM8/vjjMpvzYsKuXbu0cOFCrV+/vkxnZ9eqVeumz+D+9ttvNWDAANWrV8++v/rd736n//73vzf1dSxYsKDImKdNm1ZomdL2r6+//rpat26t0NBQVa9eXffcc482btx4U2PxZgTKCrZr1y77465duxa7zHfffaemTZtq+vTpCg0N1auvvqr3339fAwYM0MqVK9WzZ0898cQTys3NLfS5hx9+WIsWLSp0lvnVq1d1991368CBA3ruuef04osvymQyaf78+erevbtOnTqls2fPqn///jKbzZoyZYp+//vf69y5c3r77bf1wAMPyGazlfj1rF27Vs2aNdOMGTMUGRmpGTNm6P3339fAgQO1evVq3XvvvRoxYoSys7Md/M4BANxJ7dq11apVK0mSxWJRrVq1tG3bNj3++OOaN2+ebr311hI/O3fuXC1atKjUZYrz5ptv6tFHH1WbNm30xhtvaOrUqfL399cHH3yg1q1ba/v27eX+Ou666y4tWrTIflZ5cUrav/bs2VM7d+7U73//e7399tu67bbbtG7dOvXr10+rV68u91i8moEyiY6ONiQZ0dHRJS5z6dIlIzIy0pBkBAcHGwcPHiyyzLZt24yAgABDkjFp0qQi7//8889GWFiYIcl44oknit3OiRMnDEmGJCMyMtKYPXt2ofcvXLhg1KlTx76OkSNHGjt27Ci0zIYNG+zrWL58ebHb2b59uxEYGGhIMuLi4oq8/5///MeoVq2aIcmYMGFCSd8WwKMtWbLEWLJkiauHATisLPux640ePdq+r5g5c6Zx8uRJ49133zX+8pe/GJ07dzYkGT179izx8z179izzMrVq1TJiYmKM06dPF3o/PT3d6NKliyHJqFmzpnHu3Lki6yi4X4yPjy9xW/nLvPrqq8W+f/3+9fXXXy/0vtVqNe68805DktGiRYsSt+OLmKEsJ5vNppSUlEL/EhMTtWzZMvXo0UOnT59WnTp19OWXX6pFixaFPmsYhh577DFZLBY1btxYM2fOLLL+Dh06aPLkyZKkjz/++IbT6kFBQfr9739f6LVatWpp6NChkqSFCxcqMDBQd9xxR6FlevfurebNm0uSvvrqqyLrzR9rTk6OunTpomeffbbIMi1btrQfYzN//vybvo4YAMA91axZ0/74woULhe4Ffu7cOUl5+4t8SUlJ9tfLKyUlRW+++aYaNGhQ6PUqVaroww8/lCRdvHhRU6dOvan1l5efn599f5zPbDZr/PjxkqRDhw5xXGkBBMpySk5OVu3atQv9i4mJ0YgRIxQYGKjPPvtMx44dU//+/Yt8dt26dTpw4IAkacSIEQoICCh2GwWv+fXee+/JYrVp3+lULdlxUlNW7dPklXvt71dr0VlLd57SvtOpslivVdf5YTYnJ0cDBgwodjstW7aUJPuYClq/fr39rL6RI0eW+P3IX7dhGPr8889LXA4A4HkKngtw5coVSdfuBV6jRg1J0rlz55SamqozZ87os88+U0JCQqmHUhVksdqUkZ13eJdfQKD+kdZQYz7drsc/26kpq/ZpyY6T2nc6VW3b32avzxcvXqysrKyK/DKLNWDAAPn7F73/S/5hAJKYSCmAO+WUU926dbV48WL78wsXLmjNmjVavHixdu/era+//lojRowo9rPr16+3P75+xrCgRo0aqW7dujp37py+Xfe9Ok7/Tley8344/c0mZf2aYl82yVJVU1btkyRFhARoVJcojewcpfDwcPsyzZo1K3Y7VatWlSRdvny51LE2adJEKSkpRZaR8n6x5LuZY1sAAO4rLS3N/jgiIsL+OP+Ww5KUm5uruXPnys/PT4ZhKDU1Vfv27VP79u1LXO+pS5lasuOkPt9+UodO590G0a9aff1w7LJ9GX+zSUt2nMzbdkiAguvdIh08qIyMDP3yyy/q3r17RX6pRVzfMuYreA1LbuF4DYGynIKDg9W3b99Cr8XGxurWW2/Vyy+/rBUrVigyMlKzZ88u8tmjR4/aH5d2B50rWRaZqtSUdE7Zmem6dPGi/MLy/gPOtV13Y6OAYPvD1KsWzd10TB9tOqZWV07bXy8YLgvKP3vv+pN/JBWaxh84cGCJYy3o7NmzZVoOAOAZCk4m1K5du9hl6tevL39//0JXDdm4cWOxt228kmXRjNUHtGxnskwmqeAuzRRUpdCyBfd3qVctunw1yP78wOGjlR4oS9p3BgVdG0dx+09fRaCsIJMnT9bnn3+uAwcO6IMPPtAzzzxTZGaw4F96ISEhxa7nx8MX9NzyPbqUc+01W3aGPVAWYSp81EL+z9+OxF/tr+UHx/IoONZ58+apSZMmN/xMwdlKAIDnK3jlko4dOxa7TGZmZpFL0OXPUhaUv3+7mJGdd9bL9Td+Nt1gX+V37TCx6V/+ombd79NdzYsPuRXhZvadvoxAWUH8/f31yiuvaOTIkcrNzdVbb72ljz/+uNAyBf/aKe74j4VbE/Xq3/fLbJKM3GuJ0nzdX21lUfAHdeUvp/Rc48bl+nzBsbZt21bdunUr9xgAAJ7r7Nmz9mMEQ0JC1KNHj2KX+/XXX4t9fd26dbJarXnrupKlMfE7ZL5uVrIQo/TjLo1ci/1xphGgMfE79Nqg1hrTrXHpXwicgvhdgR555BH7TN6iRYt05syZQu83bdrU/rjgRccl6bNteWFSyvthy03LqxlMQaEyh1Z1aFxx6w7rs22J5fpMwdnVpKQkh7YPAPA88+fPt5/BPW7cOAUHBxd6P/+ElZo1a+quu+5S8+bNC01GZGRk2A+FSkzJu+lHiWFSeW1caXLTL9of+0XUlSRN/Xp/ufdvqBwEygrk5+en559/XpKUnZ2td999t9D7/fr1sz/euXOn/fGPhy9o6tfX7pOae+WCbBmXJUnBUe1kMvs5PLapX+/Xj4cvlHn5gmPdunVrqcu+/vrr8vf3d9qlHABnatCgQZHLmADe7uTJk3rnnXck5V22Z8qUKUWWyT9J5+rVq+rdu7diY2M1adIkTZ48WePGjVOnTp106nTZ725j+fW/hWYhr5dz9pgkyRQQrMC61yZopn69X9uPXyzpY3ASAmUFGz9+vOrWzfvLad68eYXOoO7bt6/9cgNLly5Vbm6urmRZ9NzyPTKbrq0j498b7I+rdhpUIeMym6TnV+xRWlbJP6wF9enTR23atJEkLVu2rMRbNGZnZys+Pl42m02xsbEVMlbAnfTs2VM9e/Z09TAAp7l48aKGDh2qK1euyGw26/PPP1fDhg2LLJd/FvTx48eVk3PtMK38Wwln26Ssq5ll37DVosyjxV8tJPvsUeX+mtfsVWnTWyb/a8dTmk3SjH8UvfwdnItAWcGCg4P1hz/8QVLeiS0ffPCB/T2TyaT4+HgFBgbqxIkTevHFFzVj9QFdzMi21wA5544r9acVkqSw9v0VHN2uQsZlM6SU9Gy9saZsP3T5Yw0KCtL58+f15JNPymIpHEYtFosmTJig48eP68knn7Rf1xIA4Jm++eYbde3aVTt37lRoaKgWLlyoBx98sNhl868AkpWVpaVLlxZ6LyMjQ888+4L8qlQr+8bNfrq8MV7W9EuFXrZZsvTr2o/yFgmpqmp3jir8viH9mpEjuBYn5ZRi79692rs37yLiGRkZ9v/Nvw7lLbfcUuzJKk8//bRmzpypK1euaM6cOYqOjpYk3XbbbercubP+/ve/65FHHtGsWbMU1PAfCm3RXabAYOWcO66Mvetl5GYrrN09qnHP/xRar+XyWWWfOiDb1Sv217L/e1Ay+ymwTmMF1olR9ukDslw6m/f6/8k88pPMIVUVEnOblu2U2ilJtsxUHT9+vMjX9NBDD6lKlbyTgDp16qTVq1fr4YcfVkJCgnbv3q2RI0eqfv36OnnypJYtW6ZDhw5p8ODBxV4mCQDgWgcPHrQfYlXcfsxqterixYs6duyY1q5da7+8Xf/+/TVr1ix7U1Wcbt26afjw4Vq2bJkmTJign3/+We3bt9f58+c1/5P/VXbjnvK3bJc147KsmZeV/u+8O7+FtugmGVLm4W15Y8i8LEkKimwp/6q19d//fUZh7e9RQPUGsmZcVvq+dcq9dEbmoCqqM2xqoZCac/6Ecs4nFtovbtu2Tf7+/qpbt6769eun48ePFzl0a+/evVq8eLHCwsI0ePBg+zIFL5OUv5527dqpXbt2OnfunNatW1fsMiXlAZ/iyvs+urtXX33Vfk/P4v6NHTu2xM9Onjy5yPLTp0+3v3/hwgWjz8j/MQLr3mKYgkIN+QUYflVrG6Gtehp1R840ov/0TZF/Ne9/tsSxRPSINaL/9I1RpU2fEpepGzvDaPLiN0aTtneUuMyJEyeKfC0XL140pk2bZnTs2NGIiIgwAgICjHr16hkDBw40/va3v1XCdx4AUBHi4uJK3Y+ZTCYjIiLCiImJMfr372+8/vrrxr59+8q8/pycHOPNN980WrdubQQHBxvVqlUz+vTpY4yfPs+IefEbI6hRmyLbjHx6gRH51P8WeT2oUZu8fd2AiUZQVFvDHFLVkJ+/4Ve1jhHWYYAR+czCIvvFiB6xJX5t+fcPj4+PL3GZ/Pual7ZM/n2/N27ceFN5wFeYDKPIlaDgBBarTZ3eWK/Uq2U7prEiRYQEaOdLfRXgxxEPAICKxf7NN/Edd5GDZ9Nc8sMm5d1x4NDZtBsvCABAObF/800EShfZd9q19/909fYBAN7J1fsXV2/fVxEoXeTfp1PlX/BaQU7kbzbxAweUQUZGhsaPH69atWopKipKS5culWEYevPNNzVw4EDNmDFDNlvpd/cAfA37N9/EWd4ucj4tu9CN750p12boQnq2S7YNeJJXXnlF33//vd544w0ZhqHJkydrz549WrZsmfr06aPZs2fr6tWrmj59uquHCrgN9m++iUDpIjm5VpduP9vi2u0DnmDVqlWaO3eu7r//fkl5t5gbMWKEDh48qGbNmmno0KF6+umnCZRAAezffBOVt4sE+jt+O0VHBAW4dvuAJzh//rxat25tf96qVSv5+fnZ73XfqlUr+72KAeRh/+abCJQuUic8yKXHmNQOC3LJtgFP0qBBA/3yyy/257t375bNZtOePXskSTt37uQ+38B12L/5JipvF2kTGaElO066ZNu5NkNtIyNcsm3Ak4wcOVITJkzQwYMHZbPZFBcXpzfeeEP33nuvevToobVr1+qFF15w9TABt8L+zTcRKF3E1f/Bu3r7gCd45ZVXZLFYtHDhQpnNZsXFxenRRx9VdHS01qxZoxkzZuh3v/udq4cJuBVX719cvX1fxZ1yXIQ7CQAAvBH7N9/Ed9xFAvzMGtUlSs4+zMTPJI3uEsUPGwCgUrB/8018111oZOcoOXt+2CYptnOUczcKAPAp7N98D4HShRpWD9XwTo2c9lec2SQN79RIDauHOmeDAACfxP7N9xAoXeylAS1VKyyo0n/ozCYpPEB6tE0VZWVlVe7GAC+yadMmbdq0ydXDADxGVlaWEhMT1SXotGpUCXDK/q1WWJBeur9l5W4IpeIsbxcLDw7QrGHtNSZ+R6Vux2ZIXYzDWpGwM2+74eGqX7++6tatq5iYGMXExFTq9gFP9d///tfVQwDc2okTJ3TixAmdO3dOZ86cUVpamv29x9v30sztlXtyjs2QZg1rr/DggErdDkrHDKUbuKt5bb02qPWNF3TAnwe2UvOq125HlZaWpsOHD2vz5s1asmSJONkfAFBehmFoyZIl2rx5sw4fPlwoTFapUkVPDvpNpe/fpg9qrbua167UbeDGCJRuYky3xvYfuoqqB/LXM31Qa43tHqO+ffsWu1z//v1lMrnmrgYAAM9lMpnUv3//Yt/r16+fzGZzpe/fHu3WuGJWCocQKN3ImG6N9dn4zhVyTGX+MSWfje9s/2Fr166dIiIKX/A1LCxMLVty3AkA4Oa0bNlSYWFhhV6LiIhQ27Zt7c8re/8G1yNQupm7mtfW+kk99UjHRjKZ8q6rVR5+Jslkkh7p2EjfT+pZqAYwm83q1auXpLy/KqtUqaLc3FzNnz9fycnJFfhVAAB8QXJysubPn6/c3FxVqVLF3nb17t1bZnPhiFGZ+ze4HnfKcWOnLmUqYcdJLd5+0n7HAX+zSbm2a/+XFXweERKg0V2iFNs5qsRLJ9hsNs2ZM0dpaWl64oknFBISopUrV+r06dPq06ePunXrRv0NFJCQkCBJio2NdfFIAPdhGIa2bt2qDRs2KDIyUkOHDlVmZqY++eQThYeH6//9v/9XJFAWVBn7N7gWgdIDWKw2HTqbpn2nU7XvdKoupGcr22JVUICfaocFqW1khNpGRqhFvfAy3SHg3LlzysrKUnR0tCTJarVq48aN2rJli5o3b64HH3xQoaH8wAISgRK4XmZmpr788ksdOXJEPXr0UO/eveXn5ydJSkpKUnBwsOrWrVumdVX0/g2uQ6CE3ZEjR7Rq1SoFBARo2LBhatSokauHBLgcgRK4Jjk5WStWrJDFYtFDDz2kZs2auXpIcBPEfdg1a9ZMEyZMUEREhBYsWKCtW7dyOSEAgAzD0JYtW7RgwQJFRERowoQJhEkUwoXNUUhERITGjh2rjRs3at26dUpKSqICBwAfVlrFDeRjhhJF+Pn5qW/fvho5cqSSk5M1b948zgIHAB+Uvw84deqURo4cqb59+xImUSwCJUpEBQ4AvomKG+VF5Y1SUYEDgG+h4sbNYIYSN0QFDgC+gYobN4tAiTKjAgcA70TFDUdReaNcqMABwLtQcaMiMEOJcqMCBwDvQMWNikKgxE2jAgcAz0TFjYpG5Q2HUIEDgGeh4kZlYIYSDqMCBwDPQMWNykKgRIWhAgcA90TFjcpG5Y0KRQUOAO6FihvOwAwlKhwVOAC4BypuOAuBEpWGChwAXIOKG85G5Y1KRQUOAM5FxQ1XYIYSlY4KHACcg4obrkKghNNQgQNA5aDihqtRecOpqMABoGJRccMdMEMJp6MCB4CKQcUNd0GghMtQgQPAzaHihruh8oZLUYEDQPlQccMdMUMJl6MCB4CyoeKGuyJQwm1QgQNA8ai44e6ovOFWqMABoDAqbngCZijhdqjAASAPFTc8BYESbosKHICvouKGp6HyhlujAgfga6i44YmYoYTbowIH4CuouOGpCJTwGFTgALxVfsUdHx9PxQ2PROUNj5JfgW/YsIEKHIBXoOKGN2CGEh7Hz89P/fr1owIH4PGouOEtCJTwWFTgADwVFTe8DZU3PBoVOABPQ8UNb8QMJTweFTgAT0HFDW9FoITXoAIH4K6ouOHtqLzhVajAAbgbKm74AmYo4XWowAG4Cypu+AoCJbwWFTgAV6Hihq+h8oZXowIH4GxU3PBFzFDC61GBA3AWKm74KgIlfAYVOIDKQsUNX0flDZ9CBQ6golFxA8xQwgdRgQOoKFTcQB4CJXwWFTiAm0XFDRRG5Q2fRgUOoLyouIGimKGEz6MCB1BWVNxA8QiUwP+hAgdQEipuoHRU3kABVOAArkfFDdwYM5TAdajAAeSj4gbKhkAJlIAKHPBdVNxA+VB5A6WgAgd8DxU3UH7MUAI3QAUO+A4qbuDmECiBMqICB7wXFTfgGCpvoByowAHvY7FYtHz5cipuwAHMUALlRAUOeBd/f3/5+flRcQMOIFACN4kKHPAcpf1sGoahhx9+mIobcACBEnBAfgXetWtXrVu3Tv/4xz9uGCqPHz+upKQkJ40Q8F07duzQ0aNHlZKSIpPJJKn4YGk2m2U2szsEHMFPEOCg/Ap81KhR6tq1a6mB8sqVK3rhhRcUExOjd955x4mjBHzL4MGD9cgjj2jIkCHq0KGDPv30U12+fFkmk4kmAagEBEqggjRt2lTVq1cvcabDarXq/fff1/HjxzVp0iS99dZbeuCBB5w8SsB7GYahzMxMjRgxQpmZmVq3bp2+/fZbDR06VFOmTNHbb78tSfbZSgAVh0AJVKDSdlRr165VfHy82rdvr1mzZmnfvn26fPmyGjRooDNnzjBrAjjIZDIpPT1dhw8f1rPPPqtmzZqpQYMGiouLU0BAgD755BO99957rh4m4JUIlIATWK1WhYSEqGfPnlq7dq0WLlyoOnXq6J///Kfefvtt1a9fn1kToAIcO3ZMhw8fVpMmTeyvZWZmqmXLlrrjjjv0zTff6NChQy4cIeCdCJSAE/j5+alXr1768MMPFRcXpxkzZmjNmjWSpFGjRkmSbDabK4cIeKSzZ8/q7Nmz9ufdunVTy5Yt9eyzz2rv3r26fPmyHn74Yfn7+2vMmDHatWuXTp06Jan0M78BlA+BEqhEVqu10PPAwED1799ftWrV0tatWwu9x1mmQPnMnz9fDRo00Lx585SRkWF/PT4+XgcPHtSgQYMUHR2tK1euaNGiRXrkkUfUoEEDbd++XRLHUgIViTvlAJXo9ddfV8eOHfXAAw/IZrPJbDYrIiJCgYGBOnbsmKuHB3isTz/9VHPmzNE999yjd955R7fffrsGDBggPz8/tWnTRv/617906tQppaamqlevXpLy7tOdlpZWqA4HUDGYEgEqydWrV7Vr1y7NmjVLSUlJ9hnIr776SidPnlT//v1dPELAM+Xm5spisWjIkCH69ttv1a9fPz333HPav3+/fZnatWvr9ttvt4dJSdq8ebMiIiLUpk0bF4wa8G7MUAKVJCQkRF9++aWGDh2q3/zmN3rkkUd08eJFff3117r33nvVtWtXVw8R8Ej+/v4aNmyY/fnKlSsVFRWladOm6aOPPlLdunXt72VnZ2vr1q1avny5fVaTQAlUPAIlUMlWrlypxYsXa82aNUpNTdUf/vAHjRo1SrfccourhwZ4rJo1a0qScnJyFBgYqK+++kodO3ZUhw4dNGnSJIWGhkqSgoKCdO7cOV2+fFnbt29X+/btXTlswGuZDE5zA5zCYrEoICCg2PdsNptSU1NVrVo1ThRwMwkJCZKk2NhYF48EJbFarfLz89Ps2bM1efJkLV++XPfdd59Wr16tgIAADRgwwNVDBLwex1ACTlJSmDQMQxaLRR9//LGWLl2qzMxMJ48M8Gz5xyc/++yzGjhwoJ5//nkNGzZMQ4cOVVZWlotHB/gGAiXgYiaTSUFBQRo8eLCSk5M1b948JScnu3pYgFsqrlQzmUz267i+/PLLOnr0qI4cOaKdO3dq6NChzh4i4JMIlICbaN68uSZMmKCIiAgtWLBAW7du5cLLwP8xDEM///yzcnNzi/25MJvNWrNmjTp06KBhw4bpP//5j26//XYXjBTwTQRKwI1ERERo7Nix6tq1q9atW0cFDijv1okJCQn65ptvdPDgwRKPMw4PD9cnn3yiL774wskjBMBJOYCbOnz4sL788ksFBARo2LBhatSokauH5JM4Kce1kpOTtWLFClksFj300ENq1qyZq4cEoBjMUAJuigocvswwDG3ZskXx8fGKiIjQhAkTCJOAG+M6lIAby6/AN2zYoHXr1ikpKUkPPvig/Rp7gDfKzMzUl19+qSNHjqhHjx7q3bu3/Pz8XD0sAKVghhJwc35+furXr59iY2M5CxxeL/+/8VOnTmnkyJHq27cvYRLwAARKwENQgcObUXEDno3KG/AgVODwRlTcgOdjhhLwMFTg8CZU3IB3IFACHooKHJ6MihvwLlTegAejAocnouIGvA8zlICHowKHJ6HiBrwTgRLwElTgcGdU3IB3o/IGvAgVONwRFTfg/ZihBLwMFTjcCRU34BsIlICXogKHK1FxA76FyhvwYlTgcAUqbsD3MEMJeDkqcDgTFTfgmwiUgI+gAkdlouIGfBuVN+BDqMBRGai4ATBDCfgYKnBUJCpuABKBEvBZVOBwBBU3gIKovAEfRgWOm0HFDeB6zFACPo4KHOVBxQ2gOARKAJKowFE6Km4ApaHyBmBHBY7iUHEDuBFmKAEUQgWOgqi4AZQFgRJAsajAfRsVN4DyoPIGUCIqcN9ExQ2gvJihBFAqKnDfQsUN4GYQKAGUyfUV+JYtW6jAvQgVNwBHUHkDKLOCFfj69euVlJSkwYMHU4F7OCpuAI5ihhJAuRSswE+dOkUF7uGouAFUBAIlgJtCBe7ZqLgBVCQqbwA3jQrcM1FxA6hozFACcAgVuGeh4gZQGQiUACoEFbh7o+IGUJmovAFUGCpw90TFDaCyMUMJoEJRgbsXKm4AzkCgBFApqMBdi4obgDNReQOoNFTgrkHFDcDZmKEEUKmowJ2LihuAKxAoATgFFXjlouIG4EpU3gCchgq8clBxA3A1ZigBOBUVeMWi4gbgDgiUAFyCCtwxVNwA3AmVNwCXoQK/OVTcANwNM5QAXIoKvHyouAG4IwIlALdABV46Km4A7ozKG4DboAIvHhU3AHdnMpgCAOAGxo0bp4ULFxZ5vW/fvvr000/VqFGjcq3v9ttv1+7du4u8XvBX3rRp0/TOO+8oNjZW8+fPL7ScyWQq9Dw6OlqJiYnlGkNFSE5O1ooVK2SxWPTQQw8xKwnALREoAbiFbdu26dixY5KkiRMnKiUlRZIUGhqqiRMn6r777lP37t2LBL3ifPvtt7rvvvvsz6dMmaKWLVtKkkaPHm1/PTw8XOnp6ZKkixcvqkaNGvb3FixYIEmaOXOmDh06pOjoaB05ckQBAQGOfaFlZBiGtm7dqu+//14NGzbU0KFDFRER4ZRtA0B5UXkDcAvdunVTt27dJEkvv/yyPVBmZmbq7Nmz5arA//KXvxR63q9fP/Xq1avIcs8++6zi4uI0bNiwQmHywIEDSkpKkiQFBwdLki5fvqwZM2Zo+PDhuvXWW2/66ywLKm4AnoaTcgC4paZNm9pnA7/55hsNGTKkTGeBb9++XT/88INatWp1w21Mnz5d6enp9tnIfHXq1CnxM7Vr1y7bF3CTOIsbgCciUAJwS5GRkRo1apQk6dy5c9q8eXOZzgKfOXOmmjRpoiFDhtz0tmvWrKl27doVqtdNJpPatWunmjVr3vR6S8NZ3AA8GYESgNuaPHmyPdS9/fbbqlKlisaOHauuXbtq/fr1SkhIUGZmpn35gwcP6quvvtKkSZMcntW76667CgVWwzB01113ObTOkmRmZiohIUHr169X9+7dNXbsWI6XBOBRCJQA3Natt96qwYMHS5ISExOVkJBQ6oXQ33rrLdWsWVOPPfZYqesdN26cTCZToX8//PBDoWXyZynzBQYGljg7+dNPP+mFF15Q165dVaNGDQUEBKhGjRq68847NWvWLPuJP9f75JNPZDKZVKVKFY0aNUrTpk3TP//5T5lMJv31r39Vhw4dFBYWpqpVq+rOO+/UypUry/idAwDnIlACcGt/+tOf7I//8pe/2GcNr78Q+pdffqnPP/9cv/vd7xQSElLqOidMmKBFixZpypQppS5XcEYy/+Sc63366afq1q2b3n77bRmGoRdeeEEffPCBJkyYoJMnT+qPf/yjOnToUOSSQ4ZhqGrVqhoyZIgef/xx++s2m01DhgzRihUrNH78eL377rvq06ePtmzZomHDhmnu3LmljhkAXMIAADcTHR1t9OzZ0/68d+/ehiRDkrFq1apCy+bm5hpr1641unXrZgQFBRknT540DMMwXn31VftnNm7cWOx2Nm7ceMNlevToYUgyoqOji33/o48+MiQZjz/+eJH3MjIyjLvvvtuQZHTu3LnQ659//rkxbdo0Y926dUZubq59HJGRkcWua+TIkYYkIyIiwrh69WqxYwEAV2GGEoDbKzhL+eabbxZ6z8/PT506ddKePXvUsWNHrVixwqF7gVusNu07naolO05qyqp9Om+qJkm6mJGjKav2acmOk9p3OlUWq63QGK4fl5R3Dc0PP/xQkrRjxw5t2rTphmdxX7p0SbNmzSqyrt/+9reSpNTUVG3evPmmvz4AqAxchxKA27vnnnvUoUMH/fLLL9qxY4e+//579enTx/7+Bx98oOzsbH300UfauXOnFixYoJMnT5ZrGxfSsvTWdwf1+faTSr1qkST5m006ezlLknQ1x6ovdiZryY689UaEBGhUlygNfmCoTg0erFq1ahW73hYtWqhq1aq6cuWKFi1apKioqFIvVN6zZ89iXy94GaSDBw+qX79+5fr6AKAyMUMJwCOUNEt59epVzZkzR4888ojatWtnPwv8+PHj5Vr/7xN2ae6mY/YwKUm5tsKXJSr4PPWqRXM3HVP/D3do9pbzSsvK+1xubq4uXbqklJQU+7+qVatKknbv3n3Ds7hbtGhR7OvVq1e/tu3U1HJ9bQBQ2QiUADzC0KFD7ddl/P7777Vjxw5JeSfFXLhwQS+88IIk2c8Cb9u2rf2z58+fL3ade5IvF3puK+eNaG2GZBjS5+t+0i09h6phdIwCAwNVo0YN1a5d2/7v1KlTkqSoqKgbXqg8PDy82NeDgoLsj3Nzc8s3UACoZARKAB7BbDbrj3/8o/35m2++KavVqnfeeUf9+vXTbbfdVmj5gpf4+fbbb4tcCH3h1kS9+Y8DDo8r89BWnfrkd7qw4+86dyVLjzw9WX/729+0du1axcXFacyYMfYZyvz/LY3ZzK9lAJ6H31wAPMaYMWNUv359SdJXX32lqVOn6sSJE/bZyZK0atWq0IXQP9uWqFf/vt/h8VgzLitldZxktSigdrQaPP6Rfgq/UxdrtNaFCxeUmpqqRx99tFBdDQDeiEAJwGMEBQVp4sSJkvKu4zhjxgx16NBBffv2LfVznTp1sl8IfcqcRZr6teNhUpKuHt0hI+eqJCm8wwMy+efde/z1b49o64lL9rO4AcDbESgBeJSnnnpK1apVsz8vWIOXpnnz5ho59rfacLWhzKYbL18W1ozL9sf+Va+d5W2S9JOaqV6jxpJU4p1yAMBbECgBeJTw8HA988wzkqSYmBg9/PDDZf7sX/95WumW8p98UxK/sGtVtuXiKftjQ9KvGRa9seaAEhMTdfHixYrZIAC4KQIlAI/z2muv6erVqzp06FCpZ0wXlHwpU8t2JldYmJSkkFvukCkg75aMV7b/Tbnpv9rfsxnS0p+O67dPPlVxGwQAN8WFzQG4hb1792rv3r2SpIyMDJ07d06LFy+WJHXv3l1NmjSxL2s2m0u8t3b+Z/LXJUnr1q3T3DU7lHn8ikKadVP26QOyXDory8Vrd9S5mrhbuWkXFVC9noIiWyr93xslSbmXz0qSDEuW/bWQmNvkV6W6/KpUU417n9HF1bNlzbikMx//j8La3yP/GpGypv+qzAM/6pJyFB4errS0NB0/flyLFy9WWFiYBg8erHPnzmndunVFvg+LFy/WLbfcom7duikjI0OrVq0qdpm6detygXMAbsFkFLyOBgC4yLRp0/TnP/+52Pfi4+M1bty4Mq3HZCr5AEm/qnXU8OlPlfJNnDL+/X2xy1Rp00e1HpiopJkPlLieurEzFBzdzv48++xRXdmxStkn98mamSqTf6ACqjdQyC13KPI3Q5Wx9HklJSXZl4+OjlZiYqJ++OEH9e7du9htjB07VgsWLFBiYqJiYmKKXaZnz5764YcfShwnADgLgRKA19t3OlUD//pPl23/m9/dqTaRxd8ZBwC8AcdQAvB6+0679laFrt4+AFQ2AiUAr/fv06nyr6hrBZWTv9lEoATg9QiUALze+bRs5Vbk6d3lkGszdCE92yXbBgBnIVAC8Ho5uVaXbj/b4trtA0BlI1AC8HqB/mW7VmVlCQpw7fYBoLIRKAF4vTrhQS49hrJ2WJBLtg0AzkKgBOD12kRGuPQYyrZcMgiAlyNQAvB6rg50rt4+AFQ2AiUAr3drvXBFhAS4ZNsRIQFqUS/cJdsGAGchUALwegF+Zo3qEiVnH0bpZ5JGd4lSgB+/agF4N37LAfAJIztHydk3mrVJiu0c5dyNAoALECgB+ISG1UM1vFMjp81Smk3S8E6N1LB6qHM2CAAuRKAE4DNeGtBStcKCKj1Umk1SrbAgvXR/y8rdEAC4CQIlAJ8RHhygWcPaq7KvIGQzpFnD2is82DUnAgGAsxEoAfiUu5rX1muDWlfqNqYPaq27mteu1G0AgDshUALwOWO6NbaHyoqqv/PXM31Qaz3arXHFrBQAPITJMJx93iMAuIcfD1/Q8yv2KCU926EaPP+YyVnD2jMzCcAnESgB+LQrWRbNWH1Ay35OllmStRy/Ef1MeZcGGt6xkV4a0JJjJgH4LAIlAEg6dSlTCTtOavH2k0q9apEk+ZtNhe4BXvB5REiARneJUmznKC4NBMDnESgBoACL1aZDZ9O073Sq9p1O1YX0bGVbrAoK8FPtsCC1jYxQ28gItagXzh1wAOD/ECgBAADgEP68BgAAgEMIlAAAAHAIgRIAAAAOIVACAADAIQRKAAAAOIRACQAAAIcQKAEAAOAQAiUAAAAcQqAEAACAQwiUAAAAcAiBEgAAAA4hUAIAAMAhBEoAAAA4hEAJAAAAhxAoAQAA4BACJQAAABxCoAQAAIBDCJQAAABwCIESAAAADiFQAgAAwCEESgAAADiEQAkAAACHECgBAADgEAIlAAAAHEKgBAAAgEMIlAAAAHAIgRIAAAAOIVACAADAIQRKAAAAOIRACQAAAIcQKAEAAOAQAiUAAAAcQqAEAACAQwiUAAAAcAiBEgAAAA4hUAIAAMAhBEoAAAA4hEAJAAAAhxAoAQAA4BACJQAAABxCoAQAAIBDCJQAAABwCIESAAAADiFQAgAAwCEESgAAADiEQAkAAACHECgBAADgEAIlAAAAHEKgBAAAgEMIlAAAAHAIgRIAAAAOIVACAADAIQRKAAAAOIRACQAAAIcQKAEAAOAQAiUAAAAcQqAEAACAQwiUAAAAcAiBEgAAAA4hUAIAAMAhBEoAAAA4hEAJAAAAhxAoAQAA4BACJQAAABxCoAQAAIBDCJQAAABwCIESAAAADvn/QTiqojpOI9QAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -404,7 +385,7 @@ " ('Milan','Rome', 5),('Milan','Dublin', 19)]\n", "G.add_nodes_from(V)\n", "G.add_weighted_edges_from(E)\n", - "draw_graph(G, pos_nodes=nx.shell_layout(G), node_size=500, plot_weight=True)\n", + "draw_graph(G, layout=nx.shell_layout, node_size=500, plot_weight=True)\n", "print(nx.to_pandas_edgelist(G))\n", "print(nx.to_pandas_adjacency(G))" ] @@ -418,7 +399,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -439,12 +420,12 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACge0lEQVR4nOzdeVzN+fcH8NddKm2ishXZ0iIthAwKI8ZYxtaU7PtuTEIyJMuUVJax72shxoxtxjqWGHsLiZZBUSqV9vXee35/+Lq/aSLFrc+9t/fz8fAw0733/TlXdc/5vFceEREYhmEYhqm1+FwHwDAMwzAMt1gxwDAMwzC1HCsGGIZhGKaWY8UAwzAMw9RyrBhgGIZhmFqOFQMMwzAMU8uxYoBhGIZhajlhZZ4kkUiQnJwMbW1t8Hi86o6JYRiGYRgZICLk5ubCwMAAfP7H7/8rVQwkJyejWbNmMguOYRiGYZia8/LlSzRt2vSjj1eqGNDW1pY2VrduXdlExjAMwzBMtcrJyUGzZs2kefxjKlUMvB8aqFu3LisGGIZhGEbBfGqIn00gZBiGYZhajhUDDMMwDFPLsWKAYRiGYWo5VgwwDMMwTC3HigGGYRiGqeVYMcAwDMMwtRwrBhiGYRimlmPFAMMwDMPUcqwYYBiGYZhajhUDDMMwDFPLsWKAYRiGYWo5VgwwDMMwTC3HigGGYRiGqeVYMcAwDMMwtRwrBhiGYRimlmPFAMMwDMPUckKuA5Cl/GIRXmTko0QkgaqQjxZ6mtBUU6q3yDAMw3BIWfOMwr+DuNRcBN1JxJWYNCRmFoD+9RgPgJGuBnqZNsQoOyO0aaTNVZgMwzCMgqoNeYZHRPSpJ+Xk5EBHRwfZ2dmoW7duTcT1SS8zC7D4t0cIjU+HgM+DWPLxt/H+cXtjffgMtUQzXY0ajJRhGIZRRMqQZyqbvxWyGDhyLxHLTj2GSEIVfnP+S8DnQcjnYfl3FhjRyagaI2QYhmEUmbLkmcrmb4UbJth0JQ4BF2I/67Xi/31TF514hPS8Yszu1UbG0TEMwzCKrjbmGYVaTXDkXuJnf4P+K+BCLI7eS5RJWwzDMIxyqK15RmF6Bl5mFmDZqccffbw0MwlZoYdQ/CoaksI8COo2gGbbHqhrNxR8lToffI3Xqcfo2lpfbsZ2GIZhGO58Ks8Up8Qj69oBFCc9AQCoGZihfq8JUG3U6qOvUZQ8ozA9A4t/ewTRR8ZtRDlvkLJ/HoqTYqDdYSDqO06BmqEZsm8EIf2k/0fbFEkIi397VF0hMwzDMAqkojxTnBKP1EMLIcpKQb1urtDpNgKlb5ORErwIpRmvPtqmouQZhegZiEvNRWh8+kcfz4+6AklxPpqMXgPVBs0BANo2/QCSID/qL4iL8iCoo1XudWIJITQ+HfFpuTBuqJjLQRiGYZgv96k8kx16CDyhKhqPDYBA/d1EPE2LXkjeMQ1Z1w6gwbDFH3ydouQZhegZCLqTCAGf99HHJSUFAACBZr0yXxdo6QI8Pnj8j9c8Aj4Ph24rxpgOwzAMUz0+lWeKXj5GnRY20kIAAIRauqjTrB0K/rkLSUnhR1+rCHlGIYqBKzFpFS7tqGNkCQDI+OMXlKQ+gyjnDfKfXEdu+B/Qth0EvuqH5wwA76q2K7FpMo+ZYRiGURyfyjMkLgVPqFru6zwVNUAsQumbhI++VhHyjNwPE+QVi5CYWVDhc9Rb2ULHfjRybh3D6/g70q/X7eqC+g5jPnmNxIwC5BeLlGJLSYZhGKZqKpNnVHSbojg5BiQRg8cXAHhXIBQnxwAARLkZUKvg9fKeZ+S+ZyAhIx+V2e5BqNMIas0soNtvNhoMXQxNqz7I+TsEOQ9Of/K1BOBFRv4Xx8owDMMonsrkGe0O/SHKTHrXA52eiJI3L5B+Zi3EeW8BACQqqfD18p5n5LNE+ZcSkeSTz8mPvobMc5tgMHU7hHX1AQAapl0BImRd3QfNtj3KjPN87nUYhmEY5VOZz3/t9v0hyklHzp0TyI+6DABQbdwGdbsMR87fRyscjq7Kdbgi98WAqvDTnRe5YX9AtVEraSHwnoZxZ+Q/uoSS1GdQb2HzxddhGIZhlI+qoHKf//V7jEVdu2EofZMAvpomVBu2wNtr+wEAQl3DT19HjvOM3BcDLfQ0wQMq7MIRF2SB/4GlgyQRv/uP939/BO9/12EYhmGUW2lpKWJiYhAREYHIyEhEREQgIuoJNMZtA4/38dUE7wnqaEHQzEL6/0UvIiDQ1oeKXtMKXyfveUbuiwFNNSGMdDWQUMHkDpX6Bih8EY7SzCSo/Ks6y4++BvD4UGnQosJrGOlpyO2kDoZhGObzZGdn4+HDh+8S/v+Sf1RUFIqLiwEALVq0gLW1NWZNm4zTADKKq9Z+/pPrKHkdh/q9JoLHq/iuX97zjPxG9i+9TBvi4J2Ejy77qGs3HIXPHiDlkAe0bQdAoF4XBfF3UfTsAbSs+0KorffRtgV8HnqZNKyu0BmGYZhqRkRITEwsk/QjIiLw/PlzAICqqiosLCxgY2ODsWPHwtraGtbW1qhXr97/N3LqcYV5pigxCtk3D6NOy/bgq9dFSfJT5D28hDqtbKHdaXCF8SlCnlGIYmCUnRH23Xrx0cfrGLVD4zH+yLoRjLywPyAuzIWwXiPUcxiLul2GV9i2WEIY3YX7YyYZhmGYTysuLkZ0dHSZpB8ZGYmsrCwAgJ6eHmxsbDBs2DBYW1vDxsYGZmZmUFFRqbDdYdYNK8wzAm09gM9Hzp0TkJQU/i/HjEHdzkOkSw0/RhHyDI+IPrlyr7LnIVenMbvv4O9nGVU6V/pTSCIGUmKwyrExRo0aBT5ffid3MAzD1DYZGRn/P67/vz9PnjyBSCQCALRp00aa8N//MTAwqNTY/3sSiQRBQUFYvHgxSrtPQ53m1sAnuvyrQsDnoWsrPRycZCezNquisvlbYYqBl5kFcFx3DcUyWppBROCTGObPj+PPY4dga2uLwMBA9OjRQybtMwzDMJUjkUjw7Nmzct38r169OwBIXV0dlpaW0oRvbW0NS0tLaGt/2V7/165dg7u7Ox48eIAhQ4ZAoqGL8CYDwBeqAlUoKCqiJuTjklsPzk4trGz+VohhAgBopquB5d9ZYNEJ2Zz+xOPxkHVpB14WJ+LgwYPYuHEjevbsiSFDhsDPzw8mJiYyuQ7DMAzz/woKChAVFVXmjv/hw4fIy8sDADRu3Bg2NjYYPXq09K6/TZs2EAgq7oqvitjYWCxcuBAnT55E586dcfDgQfj5+SE+Ph6Tfu6NM28q2kuwalZ8ZyH3xxcDCtQz8N6mK3EIuBD7xe0s6GsKB/1CODs7IzExEZs3b4aamhoWLVqE5ORkzJw5E15eXtDT+/jkQ4ZhGObjUlJSyiT9yMhIxMTEQCKRgM/nw8zMrEw3v7W1NRo1alRt8WRkZGD58uXYunUrDA0N4evri6KiIsyePRvNmzdHSEgI2rVrJ9M8M6uXsQwi/3xKN0zwb0fuJWLZqccQSahKcwgEfB6EfB5WfGcBl07vJnPk5+dj1qxZ2L9/P8aPHw9/f3/s2rULPj4+EAgEWLJkCWbPng01NdlVigzDMMpELBYjNja2XDd/amoqAEBbWxtWVlZlkn67du2grq5eI/EVFxdj48aNWLVqFYgIixcvxuTJk+Hu7o79+/dj3Lhx2Lx5MzQ1/38fAFnmGS4pdTEAvJtDsPi3RwiNT4eAz6vwm/X+cXtjffgMtfxgl83+/fsxc+ZMaXXYsGFDeHt7Y8eOHWjevDlWr14NJyenKk1MYRiGUTa5ubl4+PBhmTv+R48eoaioCADQrFmzMknfxsYGLVu25GSCNhHh+PHj8PDwQGJiIqZNmwZvb2+kpKRIe4W3bNmCcePGffD1ss4zXFD6YuC9uNRcBN1JxJXYNCRmFJTZqZCHdxs99DJpiNFdjGDcsOLJJtHR0XB2dsY///yDTZs2YeLEiXj69CkWLlyIM2fOoGvXrggMDESXLl2q9T0xDMNwjYjw6tWrct388fHxAAChUAgLC4ty3fy6urocR/7O7du34e7ujr///hsDBw7EmjVrYGZmht27d2POnDkwNjZGSEgIzM3NP9mWLPNMTat0/qZKyM7OJgCUnZ1dmadzJq+olKKSsigsIZOikrIor6i0ym3k5+fT5MmTCQCNGjWKcnJyiIjo0qVLZG1tTQDIxcWFnj9/LuPoGYZhuFFSUkKRkZG0f/9+cnNzo6+//pp0dXUJ73aCp3r16lHPnj3pxx9/pH379lF4eDgVFRVxHfYHPXv2jFxcXAgA2djY0OXLl4mIKCcnh0aOHEkAaPLkyZSfn/9Z7csiz9SkyuZvhe8ZqC7BwcGYNm0aDAwMEBISAmtra4jFYhw4cAA//fQTMjMzMXfuXCxevBg6Ojpch8swDFMpb9++RWRkZJk7/ujoaJSUvDuCt1WrVmW6+G1sbNCsWTO5HyLNysqCj48PNmzYAH19ffz8888YM2YMBAIBIiIi4OzsjNevX2P79u0YOXIk1+HWmFozTFCdYmNj4ezsjKdPn2L9+vWYNm0aeDwe8vPzERAQgDVr1kBDQwPe3t6YOnXqJ3e4YhiGqSlEhOfPn5fr5k9ISAAAqKmpwdLSskzSt7KyUrjP+NLSUmzfvh3e3t4oLCyEh4cH3N3doampCSLCtm3b4ObmBjMzM4SEhNS6ZeO1cpigOhQWFtKMGTMIADk7O1NWVpb0saSkJJo4cSLxeDwyNTWlU6dOkUQi4TBahmFqo8LCQrp//z7t2rWLZs+eTfb29lS3bl1pN3+DBg2oT58+tGDBAgoKCqKoqCgqLZXv7u1PkUgkdPLkSTI1NSUej0eTJk2i5ORk6eNZWVn0/fffEwCaOXMmFRYWchgtd9gwgYyFhIRg8uTJaNiwIY4ePQpbW1vpY5GRkZg/fz4uXbqEXr16ITAwEO3bt+cwWoZhlNWbN2/KHr8bEYGnT59CLBaDx+PBxMSkXDd/48aN5b6bvyrCwsLg7u6Oq1evwtHREQEBAbC2tpY+fv/+fbi4uCA9PR27du3C999/z2G03GI9A9UgPj6ebG1tSVVVlX755ZcyvQASiYTOnj1L5ubmxOPxaNy4cfTq1SsOo2UYRpGJRCKKiYmho0ePkqenJ3377bdkYGAgvdvX0NCgr776iqZPn07btm2j27dvU15eHtdhV6uXL1/S2LFjicfjkbm5OZ09e7bc5/CGDRtIRUWFbG1tKT4+nsNo5UNl8zcrBqqoqKiI5syZQwBo6NChlJmZWebx0tJS2rp1KzVo0IDU1dVp6dKllJuby1G0DMMogry8PLp16xZt3bqVpk+fTl26dCENDQ1p4jc0NKT+/fvT4sWLKSQkhGJiYkgkEnEddo3Jzc2lJUuWkLq6OjVo0IC2bt1abpgjMzOThg4dSgDohx9+kNvVDjWNDRNUs99++w0TJ05EvXr1cOTIEdjZlT2RKicnB76+vli3bh3q16+PlStXYsKECTLdX5thGMVCRHj9+nW5bv64uDgQEQQCAczNzct081tbW6NBgwZch84JsViMvXv3YsmSJcjKysK8efOwaNGicnnozp07cHFxQXZ2Nvbu3YshQ4ZwE7AcYsMENeD58+fUuXNnEgqFFBgY+MHJgy9evJCubbW0tKTz589zECnDMDWttLSUHj16RIcOHaL58+eTo6MjNWjQQHq3X7duXXJwcKA5c+bQ7t276cGDB7V2ktuHnD9/niwtLaV7viQkJJR7jkQioYCAABIKhWRnZ8f2f/kANkxQQ4qLi8nd3Z0A0MCBAyk9Pf2Dz7tz5w51796dAFC/fv0oKiqqhiNlGKa6ZGVl0fXr1+mXX36hSZMmka2tLampqUkTf/PmzWnw4MG0bNkyOnHiBD179oytPPqIqKgo6tevHwEge3t7unv37gefl56eTgMHDiQA5O7uTsXFxTUcqWJgwwQ17PTp0xg/fjw0NTVx5MgRdO3atdxziAi//fYbFi5ciOfPn2PKlClYvnx5tZ7SxTCM7BAREhMTy3XzP3/+HACgqqoKCwuLMt38VlZWqF+/PseRy7/U1FR4eXlh165daNWqFfz8/DB06NAProK4efMmRowYgYKCAuzfvx8DBw7kIGLFwIYJOJCQkEBdu3YlgUBAq1evJrFY/MHnFRcX07p166h+/fqkpaVFP//8MxUUFNRwtAzDVKSoqIjCwsJo7969NHfuXOrRowfVq1dPerevp6dHvXv3pnnz5tGBAwfo4cOHVFJSwnXYCqegoIBWrVpFWlpaVL9+fVq3bt1H7/LFYjH5+vqSQCCgbt26UWJiYg1Hq3jYMAFHSkpKaNGiRdLhgLS0tI8+NyMjg9zc3EhFRYWaNWtGBw8e/GgBwTBM9UlPT6fLly9TYGAgjR07lqysrEgoFEoTv7GxMTk5OdGqVavozJkz9PLlS9bN/4XEYjEdOHCAmjZtSioqKuTm5kYZGRkffX5aWpp0+MDT05MVXpXEhgk4du7cOYwZMwaqqqo4fPgwHBwcPvrc+Ph4LFq0CL/++is6duyIwMDACp/PMMznkUgkePbsWblu/levXgEA6tSpAysrqzLd/JaWltDWlq+T6BTdtWvX4O7ujgcPHmD48OFYvXo1jI2NK3z+yJEjUVJSgkOHDuGbb76pwWgVGxsmkAOvXr0iBwcH4vP5tHLlyk+uCw4NDaXOnTsTABoyZAjFxsbWUKQMo3wKCgro7t27tGPHDpo5cyZ169aNtLS0pHf7jRs3pm+++YY8PDzo8OHD9OTJk1q1dp8LMTExNGTIEAJAnTt3ptDQ0AqfLxKJaMWKFcTn86lHjx6UlJRUQ5EqDzZMICdKS0tpyZIlxOPxyNHRkVJSUip8vlgspuDgYDIyMiKhUEg//PDDR1coMAzzTkpKCp07d45Wr15Nrq6uZG5uTnw+nwAQn88nc3NzcnV1JT8/Pzp37hy9fv2a65BrlfT0dPrhhx9IKBRS8+bNKTg4+JNDoq9fv6bevXsTj8ejpUuXKvxZClxhwwRy5tKlSxg9ejSAd8cjf/311xU+v7CwEBs2bICPjw8EAgGWLl2KWbNmQU1NrSbCZRi5JBaLERsbW66bPzU1FQCgpaVVZrMeGxsbtGvXDurq6hxHXjsVFxdj06ZNWLVqFSQSCRYvXoy5c+eiTp06Fb7u8uXLGDVqFADg0KFDcHR0rIlwlRIbJpBDr1+/pq+//pp4PB55eXlVqksyNTWVZsyYQQKBgFq1akXHjh1jE5eYWiEnJ4du3rxJmzdvpilTplCnTp1IXV1d2s3frFkzGjhwIC1ZsoSOHz9O8fHxbAKunJBIJBQSEkKtWrUigUBAM2fOrHAy9XsikYi8vLyIx+NR7969WQ+ODLBhAjklEolo+fLlxOfzqWfPnpUeA4uOjqYBAwYQAOrWrRvdvn27miNlmJohkUjo5cuXdPr0aVq5ciU5OTmRsbGxNOkLhUKysrKisWPH0tq1a+ny5cts6EyO3bp1i7p27SrdiC06OrpSr0tKSqIePXoQn8+nFStWsPkbMsKGCeTc1atXMXLkSIhEIhw8eLDSs2MvX74Md3d3REZGwsXFBatXr0aLFi2qN1iGkZHS0lI8efKkTBd/REQEMjMzAQD16tWTHrv7vpvf3NycDY8pgOfPn8PT0xNHjx6FtbU1AgMD0bt370q99vz58xg9ejRUVFRw+PBh9OjRo5qjrT3YMIECSE1Npb59+0rXzVZ2goxIJKI9e/ZQkyZNSE1NjRYuXEhZWVnVHC3DVM3bt2/p6tWrtH79eho/fjy1b9+eVFVVpXf8rVq1oqFDh9Ly5cvp5MmT9OLFCzYEpoDevn1LCxYsIFVVVWrSpAnt2bOn0nf1paWl0n1ZvvnmG0pNTa3maGsfNkygIP69o1b37t3p5cuXlX5tXl4eeXt7k4aGBunr69OmTZvYRhxMjZNIJPTs2TM6ceIEeXl50eDBg6l58+bSpK+mpka2trY0adIk2rhxI12/fp0Vr0qgpKSENm7cSHp6eqShoUHe3t6Ul5dX6dcnJiZSt27dSCAQkK+vL5vvUU3YMIGCuXHjBlxdXVFYWIj9+/djwIABlX5tcnIylixZgn379sHExAT+/v4YOHDgB/f0ZpgvUVRUhMePH5fp5o+MjEROTg4AoEGDBuW6+U1NTSEUCjmOnJEVIsLp06excOFCxMbGYsKECVi5ciUMDAwq3cbZs2cxduxYaGho4MiRI+jWrVs1Rly7sWECBfTmzRvpJMH58+dX+S4/PDycevfuTQCoV69eFBYWVk2RMrVBWloaXbx4kfz9/WnUqFHUrl07EggEBIB4PB6ZmpqSs7Mz+fj40B9//EFJSUmsm1/JhYWFUa9evQgAOTo6UkRERJVeX1JSUqlTXhnZYcMECkosFpO/vz8JhULq0qULvXjxokqvl0gkdObMGTI3Nycej0fjxo2jV69eVVO0jDIQi8UUExNDR48epcWLF1P//v3JwMBA2s2voaFBXbp0oenTp9O2bdvo1q1bVeoOZhTfq1evaNy4ccTj8cjc3JzOnj1b5cLv+fPnZGdnR0KhkAICAljhWEPYMIGCu337NkaMGIHs7Gzs27cPgwcPrtLrRSIRdu7ciWXLliEvLw/z58/HwoULoaWlVU0RM4ogPz8fjx49KtPN/+jRI+Tn5wMADAwMynTx29jYoHXr1hAIBBxHznAhLy8Pa9asQUBAALS0tLBixQpMnjy5ysM+v//+OyZMmAAdHR0cOXIEXbp0qaaImf9iwwRKIDMzkwYPHkwAaO7cuR891rMiWVlZtGjRIlJTU6PGjRvTrl272PrdWkAikVBSUhL98ccf5OPjQ87OzmRqako8Ho8AkEAgoHbt2tGoUaPI39+fLl68WKlNYZjaQSQS0c6dO6lx48akpqZGixYt+qzP/6KiIpo7d670vJXMzMxqiJapCBsmUBISiYTWr19PKioq1LFjR/rnn38+q50XL17QyJEjCQBZWVnRhQsXZBwpw5XS0lKKioqiQ4cO0fz586lPnz7UoEEDaTd/3bp1yd7enubMmUO7d++m+/fvU2FhIddhM3Lq/PnzZGlpSQBo5MiRVR6qfO+ff/4hW1tbUlFRoQ0bNrBhAY6wYQIlc+/ePbi4uCAjIwO7d++Gk5PTZ7Vz9+5duLu748aNG/j222/h7+8PCwsLGUfLVJfs7Gw8fPiwTDd/VFQUiouLAQDNmzcv183fokULtrKE+aTHjx9j/vz5OHfuHLp3747AwEB07tz5s9o6fvw4Jk2aBH19fRw9ehQdO3aUcbRMZbFhAiWUlZVFTk5OBIBmzpz52Xd3EomEfv31V2rdujXx+XyaNm3aJ09TZGqWRCKhhIQEOnnyJC1fvpyGDh1KrVq1kt7tq6ioUPv27Wn8+PG0fv16unr1KuuCZT5LSkoKTZs2jfh8PhkbG9Ovv/762XfxhYWFNGPGDAJATk5ObD8JOcB6BpQUEWHr1q1wc3ND27ZtERISgjZt2nxWWyUlJdiyZQtWrFgBkUiERYsWwc3NjZ3wVsNKSkoQHR1d7iS+rKwsAICurm65tftmZmZQVVXlNnBGoRUWFmLdunXw9fWFiooKvLy8MHPmzM/+uYqLi4OzszOePHmCdevWYfr06axHSg5UNn+zYkBBhYeHw9nZGSkpKdixYwdcXV0/u63MzEysWrUKmzZtQuPGjeHj44ORI0eCz+fLMGIGADIyMhAZGVkm6T958gSlpaUAAGNj43Ld/IaGhuxDlZEZiUSC4OBgLF68GCkpKZg9ezaWLFkCXV3dz27z8OHDmDp1Kpo0aYKQkBDY2NjILmDmi7BhglogJyeHXF1dCQBNmTKFCgoKvqi9uLg4GjZsGAGgjh070rVr12QUae0jFospPj6ejh8/TkuWLKGBAwdSs2bNpN38derUoc6dO9OUKVNo8+bNdPPmTcrJyeE6bEbJXbt2jTp27EgAaPjw4RQXF/dF7RUUFNDkyZOlkw3Zz7D8YasJagmJREI7duygOnXqkKWlJT158uSL27x+/Tp16tRJuhwoNjZWBpEqr4KCArp79y7t2LGDZs2aRd26dSMtLS1p4m/UqBF988035OHhQcHBwRQdHV3pQ6kYRhZiYmJoyJAhBIA6d+5MoaGhX9xmdHQ0tWvXjurUqUM7d+5kqwXkFCsGapmHDx+SmZkZaWho0P79+7+4PbFYTEFBQWRkZERCoZB++OEHtnUovZtsde7cOfLz8yNXV1cyNzcnPp9PAIjP55O5uTm5urrS6tWr6dy5c/T69WuuQ2ZqsfT0dPrhhx9IKBSSkZERBQcHy+RAoP3795OGhgaZmZnRw4cPZRApU11YMVAL5ebm0tixYwkAjR8/XiZbxhYUFJCvry9pa2tTvXr1KDAwkIqKimQQrXwTiUQUHR1Nhw8fJg8PD+rXrx81btxYerevpaVF3bp1o5kzZ9KOHTvo7t27lJ+fz3XYDENE7zb7CQgIoHr16pG2tjb5+vp+8TAi0buTUsePH08AaNy4cWxbagXAioFabO/evaShoUFt27alqKgombSZmppKM2bMIIFAQK1ataJjx44pTbdgbm4u3bx5kzZv3kxTp06lzp07k7q6ujTxN23alAYOHEhLliyh48ePU1xcHDtulZFLEomEQkJCqFWrViQQCGjGjBmUmpoqk7YfPXpE5ubmpKGhQfv27ZNJm0z1Y8VALff48WOysLAgdXV12r17t8wS9+PHj6UnK3br1o1u374tk3ZrgkQioZcvX9Lp06dp1apV5OTkRMbGxtIteoVCIVlZWdHYsWMpMDCQLl++zIZGGIVx69Yt6tq1KwGgAQMGUHR0tEzalUgktGvXLlJXVycLCwt6/PixTNplagYrBhjKz8+nSZMmEQAaNWoU5ebmyqztixcvkpWVFQGgESNG0PPnz2XWtiyUlJTQw4cP6cCBAzRv3jzq3bs36enpSe/269WrRz169KC5c+fS3r17KTw8vFYMfzDK5/nz5+Ti4kIAyNrami5duiSztnNycmjUqFEEgCZPnsyGwhQQ23SIkQoKCsK0adNgaGiIkJAQWFtby6RdsViM/fv3Y8mSJcjMzMTcuXOxePFi6OjoyKT9ysrKypKu23//9+PHj1FSUgIAaNmyZblNe4yMjNjafUahZWdnw8fHBxs2bICuri5+/vlnjB07VmYnTEZGRsLZ2RnJycnYvn07Ro4cKZN2mZrFNh1iyoiJiYGzszNiYmKwYcMGTJ06VWbJMC8vDwEBAfD394eGhga8vb0xdepUqKioyKT994gIL168KLdTX0JCAgBATU0N7dq1K5P0raysarw4YZjqVFpaih07dsDb2xsFBQVYuHAh5s+fD01NTZm0T0TYvn07fvzxR5iZmSEkJAQmJiYyaZupeWzTIaacgoICmj59OgEgZ2dnmX8/X716RRMmTCAej0dmZmZ0+vTpL9rj/MGDB7R7926aM2cOOTg4kI6OjrSbX19fnxwdHWn+/Pl06NAhioqKYmv3GaUmkUjo1KlT0qOoJ0yYQElJSTK9RlZWFjk7OxMAmjFjBjvdUgmwYQLmo0JCQjB58mQ0bNgQISEh6NChg0zbj4iIwPz583H58mV8/fXXCAwMrHB70jdv3pTr5n/y5AnEYjF4PB7atGlTrpu/SZMmrJufqTXCw8Ph7u6OK1euoHfv3ggICJD5lr8PHjyAi4sL0tLSsGvXLjg7O8u0fYYbrGeAqVBcXBx16NCBVFVVaePGjTJfJiiRSOjMmTNkbm5OPB6Pxo8fT4mJiRQTE0MhISG0ePFi6t+/PxkYGEjv9jU0NKhLly40bdo02rp1K926dYutY2ZqtVevXtG4ceOIx+ORubk5nT17tlp+V3/55RdSVVUlW1tbio+Pl2n7DLdYzwDzScXFxViwYAE2btyIYcOGYffu3ahXr55M2i4oKMCjR4/w4MEDHDlyBLdu3YJIJJI+bmBgUOYwHmtraxgbG8ts8hPDKLK8vDysWbMGAQEB0NLSwooVKzB58mQIhUKZXuft27eYNGkSfvvtN8yZMwf+/v5QU1OT6TUYbrEJhEylnThxAhMnTkT9+vVx9OhRdO7cudKvJSKkpKRIJ/O97+aPjY0FEUEgEMDMzAxt27ZFeno6bty4IZ35PH78eJb8GeZfxGIx9u3bhyVLluDt27dwc3ODp6dntXzu3r17Fy4uLsjKysKePXswdOhQmV+D4R4bJmCq5NmzZ9SpUydSUVGhtWvXfrArsrS0lKKioigoKIgWLFhAffr0oQYNGki7+bW1tcne3p7mzJlDu3btovv375ebgPTixQsaOXIkASArKyu6cOFCTb1FhpFrFy5ckO7dMXLkSHrx4kW1XEcikVBgYCAJhULq3Lmz3O0RwsgW23SIqbLi4mKaN28eAaBvv/2Wzp49Sxs3bqRJkyZRx44dSU1NTZr4mzdvTt999x15eXnRiRMn6J9//qnSFr137tyhbt26Sa8lq22TGUbRREVF0bfffksAqHv37nTnzp1qu1ZGRgYNGjSIAJC7uzsVFxdX27UY+cDmDDCVQkR4+fJlmS7+mzdvIjU1FQAgEAhgaWlZZmzf2toa9evXl8m1T5w4AQ8PDzx//hxTpkzB8uXL0ahRoy9um2HkXWpqKpYtW4adO3eiZcuWWLNmDYYOHVptq2T+/vtvjBgxAvn5+di3bx8GDRpULddh5AubM8CUU1JSgujo6DIb9kRGRuLt27cAAF1dXWnCb9asGfbv34+oqCj4+Phg/vz54PP51RbX5s2bsXLlSohEIixatAhubm5QV1evlusxDJcKCwuxbt06+Pr6QkVFBV5eXpg5cyZUVVWr5XoSiQT+/v746aefYGdnh8OHD8PIyKharsXIHzZnoJbLyMigv/76i9auXUtjx44la2trUlFRkXbzGxsb0/Dhw2nlypV0+vRpSkxMLDdPoKSkhDw8PKRd+WlpadUe848//kgqKirUrFkzOnjwIDsdkFEaYrGYDh48SM2aNSMVFRVyc3OjjIyMar1mWloa9evXjwDQokWLqKSkpFqvx8ifWjlMkF8swouMfJSIJFAV8tFCTxOaarJdiiNvJBIJnj9/Xm42/8uXLwEAderUKdfNb2VlBW1t7Upf488//8TYsWOhqqqKw4cPw8HBobreDgAgPj4eHh4eOHHiBDp27Ii1a9fC3t6+Wq/JMNXp+vXrcHd3x/379zFs2DD4+fnB2Ni42q/p6uqKkpISHDx4EP369avW69UWipZnas0wQVxqLoLuJOJKTBoSMwvw7zfDA2Ckq4Fepg0xys4IbRpVPgHKo8LCQkRFRZXp5n/48CFyc3MBAA0bNkT79u3LrN9v06aNTNYmJyUlwdXVFTdv3sSKFSvg6elZbcMG74WGhsLd3R337t3D0KFD4efnhzZt2lTrNRlGluLi4rBw4UL8/vvv6NSpEwIDA6u9sBWLxfD19cWyZcvQvXt3BAcHw9DQsFqvqewUOc8ofTHwMrMAi397hND4dAj4PIglH38b7x+3N9aHz1BLNNPVqMFIP09qamq5sf2nT59CIpGAz+fD1NS03KY9jRs3rtaYRCIRli9fjp9//hmOjo44ePBgtU/2k0gkOHz4MDw9PfH69WvMmjULXl5e0NXVrdbrMsyXyMjIwIoVK7BlyxYYGBjA19cXI0aMqPYCOjU1FaNHj8bly5fx008/YdmyZTLfqKg2UYY8o9TFwJF7iVh26jFEEqrwm/NfAj4PQj4Py7+zwIhO8jGBRiwWIy4urtxJfCkpKQAALS0tWFlZldmXv127dtDQ4O4H7eLFixg9ejT4fD6CgoLw9ddfV/s1CwsLsX79evj6+kIgEGDp0qWYNWsW2y2NkSvFxcXSybBisRiLFy/G3Llza2Qy7F9//SU9ZvjQoUNwdHSs9msqM2XJM0pbDGy6EoeAC7Ff3M78viaY3atmu5zz8vLw8OHDMkn/0aNHKCwsBAA0bdq0TNK3sbFBq1atqv1u4nO8fv0ao0aNwtWrV+Hl5YWlS5fWyG6CaWlpWLZsGXbs2IEWLVrAz88Pw4cPZ4cWMZwiIvz666/w8PBAQkICpk6dCm9vbzRs2LDary0Wi7FixQqsXLkSvXr1QlBQULX3Eio7Rc4z/6WUxcCRe4lYdOLRRx8vTolH9o1gFL+KBolKIazXCFo2/VC343cffL7fMEu4VEPlRkRITk6WJvz3d/3x8fEgIgiFQrRt27ZcN7+enp7MY6lOYrEYP//8M5YvXw4HBwcEBwejSZMmNXLt6OhoLFiwAH/88Qe6deuGwMBA2NnZ1ci1Gebf7ty5A3d3d9y8eRMDBgzAmjVr0LZt2xq5dnJyMkaNGoXr169j2bJl+Omnn9gW31/oY3km/cw65Edd/ujrDGftg1Bbv9zXqyvPVJbSFQMvMwvguO4aikWSDz5e+DwMacdXQLVRa2ia2YOnWgeirBSAJKjfa+IHX6Mm5OOSW48vGtspLS3F06dPy3XzZ2RkAAB0dHTKHb/btm1bperevnr1KlxdXSEWi3Ho0CH07du3xq596dIluLu74+HDh3B1dYWvry+aN29eY9dnaq8XL17A09MTR44cgbW1NQICAmq0a/7ChQsYPXo0hEIhgoOD0bNnzxq7trKqKM8UJz1B6duU/3yVkHl+M4Q6jWAwecsH25RFnvkSSlcMjNl9B38/y/jg2I2kuABJO6ZCzdAcDYZ6gserXLe6gM9D11Z6ODipcneUWVlZiIyMLJP0Hz9+jJKSEgBAy5Yty3XzGxkZ1You7LS0NIwZMwYXL16Ep6cnli9fXmMTl8RiMfbv348lS5YgMzMTP/74Izw9PaGjo1Mj12dql+zsbPj4+GDDhg3SQ7fGjh1bY3fkIpEIXl5e8PX1Rd++fXHw4MEaGY6oDSrKMx9S9PIxUoM8UM9hLHS6On/wOVXNM7JW2fytENNM41JzERqf/tHH86OvQpKfhfoOY8Hj8SEpKQJPRfWTRYFYQgiNT0d8Wi6MG/7/chAiwosXL6RJ//3fL168AACoqamhXbt2aN++PSZMmAAbGxtYWVnV6uTTsGFD/Pnnn/Dz88PSpUsRGhqK4OBgNG3atNqvLRAIMHHiRDg7OyMgIAD+/v7YvXs3li9fjqlTp7LZ1IxMlJaWYseOHfD29kZBQQE8PT0xf/58aGpq1lgMr169gqurK27dugVfX18sXLhQLucUKaJP5ZkPyY++BoAHzbY9Pvqcj+UZeaMQPQPepx7j4J2Ej1Zrb37zQeGLCDQYuhiZF7ZClJkEnkodaLbrBd3eU8ATfnybTwGfh29aqaMj73mZ5J+dnQ0A0NfXL9fNb2pqChUVlWp5r8rgxo0bGDFiBIqKinDgwAH079+/Rq+flJSEpUuXYt++fTA1NYW/vz8GDBhQK3poGNkjIpw9exYLFixATEwMxo8fj1WrVsHAwKBG4zh79izGjRsHdXV1HD58GN27d6/R6yu7T+WZ/yKxCK82jYWKXlM0Hr2mwucK+DyMsWsO7+8sZBFqlVQ2fytESXklJq3Cb1BpZjIgEePNryuh3rIDGgxdDC2rPsgL/xPpZ9dX2LZYQjh5Nx6TJ0/GuXPn0LhxYyxcuBBnz55FUlIS0tLScPHiRfj7+2P06NFo164dKwQ+oXv37oiIiICdnR0GDBiAhQsXorS0tMaub2hoiD179iAsLAyGhoYYNGgQHB0dERERUWMxMMohPDwcjo6OGDRoEAwNDREWFoY9e/bUaCFQWlqKBQsWYODAgejSpQvCw8NZIVANPpVn/qvweRgkhTnQbNvzk88VSwhXYtO+ILrqJ/f9p3nFIiRmFlT4HCotApUWQ6v9t9DtMw0AoGHaFSQuRV7EOZTaj4KK7sd34FLRNUBK+ls01K293fyypq+vj9OnT2Pt2rXw9PREaGgojhw5UqOT+2xsbHDx4kX88ccfmD9/Pjp06IBx48Zh1apVbEc2pkJJSUn46aefcODAAZiZmeHMmTPo379/jfcuJSQkYMSIEbh//z78/f0xb948NixQDSqTZ/4rP/oawBdCw7xyhVliRgHyi0Vyu3WxfEb1LwkZ+fhUrfZ+GEDTvOy4jWbbnsiLOIfipKcVFgMAEBrxFC3rsTt+Wfv666+xc+dOeHp6wsrKCsuWLavxWc9NmjTBvn378Ntvv2H79u04cuQIxowZg7Fjx3K6eRMjfwoKCrB//34cPHgQ6urq8PDwwNChQyEUChEeHl6jsVy9ehXLli2DlpYWdu3aBUtLS9a7VU2eZ5V+Ms/8m6SkEIVxt6Hesj0E6pUbOicALzLyYWEgnzedcl8MlHxkKeG/CbT0UJqeCIFmvbJf13z3jy4pyvtkGyNHj0XJ6y/fZIKpmLu7O9chAAB27tyJnTt3ch0GI8eKi4uxevVqrF69mtM48vLyMH78eE5jUHaqTUzQZNzaSj+/IPY2qLQYmhY9q3SdyuQzrsh9MaAq/HSXmGrj1ih6EQ5RbgZU9P5/9rooNxMAIND4dCUWfOgA6xmoZkSEw4cPY8OGDTA1NYWvry9n3fXJycnYtGkTzp8/jzZt2uDHH39Ely5dOImF4dbt27exbt06xMfHo1+/fpg9e3aNbZ71X69evcKiRYsQFxeHuXPnwtXVlU18rQHPs0rhfrHyKwnyo6+Cp6oO9TZVWy5YmXzGFbkvBlroaYIHVNiFo2lmj5zbx5H38ALUW1hLv5738ALAF0DNyLLCa/AA9OtmK7djOcrE1tYWLi4ucHFxwZgxY7B7924MHz68xuPo0KEDBg4cKN09btasWejfvz/8/f1rbPc4hluPHz/GggUL8Oeff6Jbt24ICgpC586dOYvn+PHjmDRpEvT09PD333+jU6dOnMVS25gWizD/4vlKDRWIC7JR9CICmuYO4KvUqfQ1eHiXz+SV/JYp/6OpJoTRJ3ZuUm3cGppWfVAQfQ1vfvdDbthZvPl9NQqir6Gu3TAItSve5tdIT4MVAjWoU6dOCAsLg6OjI5ycnDB79mwUFRVxEoudnR1CQ0Nx/PhxxMTEwMrKCjNmzEBamnzP/GU+X2pqKqZPnw4rKyvExsbi+PHjCA0N5awQKCoqwqxZs/D999+jb9++CA8PZ4VADatMnnkv/8l1QCKu8hCBvOcZuS8GAKCXaUMI+BV3lel9Mws63UeiODkGmZd2oiT1H9TvPQX1e4yr8HUCPg+9TNjuXTWtXr16OHbsGDZt2oSdO3eia9euiI+P5yQWHo+H4cOH4/Hjx/D398eRI0dgbGwMX19f6SFSjOIrLCyEj48P2rRpg5CQEAQEBCA6OprTg67i4uLQtWtX7Nq1C5s3b0ZISEit3ryMS5XJMwCQ//gq+Br1UKeFTaXbVoQ8oxCbDsWl5qLP+uvV1v4lNwe53hlK2YWHh8PZ2RmpqanYsWMHRowYwWk8GRkZWLlyJTZv3gwDAwP4+PjA1dWVLelSUBKJBMHBwVi8eDFSUlIwa9YsLF26FLq6upzGdeTIEUyZMgWNGzdGSEgI2rdvz2k8tZ2y5hml2nSoTSNt2BvrV6pqqwoBnwd7Y31WCHCsffv2ePDgAQYMGABXV1dMmzaN0ztyPT09rF+/HtHR0bC1tcXo0aPRpUsXhIaGchYT83lCQ0NhZ2eHMWPGoFOnToiOjsa6des4LQQKCwsxbdo0uLq6YtCgQQgLC2OFgByo7XlGIYoBAPAZagmhjL9JQj4PPkMrnlzI1Iy6desiODgYO3bswIEDB2BnZ4enT59yGlObNm1w4sQJXLt2DUQEBwcHDBs2DHFxcZzGxXxaXFwchg0bBgcHB/B4PFy/fh2//vorjI2NOY3r6dOnsLOzw4EDB7Bjxw4EBQVBW1u+k0RtUpvzjMIUA810NbBcxvs6r/jOgrNjJZnyeDwepkyZgjt37qCkpAQdO3bEwYMHuQ4LDg4OuHPnDg4dOoT79+/DwsICbm5uyMzM5Do05j/en1rZtm1bPHjwAEFBQbh9+zbs7e25Dg0HDhyAra0tSktLcffuXUyZMoUtG5QztTnPKEwxAAAjOhlhfl8TmbS1oK8pXDoZyaQtRrasrKxw//59DBs2DGPHjsXEiRORn5/PaUx8Ph+jRo1CTEwMli9fjt27d8PY2Bjr1q2THmHNcKe4uBhr165F69atsWfPHqxcuRJPnz7FyJEjOZ/rkZ+fjwkTJmDcuHFwcnLCvXv3YGkp/3eKtVVtzTMKMYHwv47cS8SyU48hklCVDpYQ8HkQ8nlY8Z2FwnyDajMiwr59+zBr1iy0bNkSISEhsLCo+VO/PiQtLQ3Lli3Djh070LJlS/j5+WHYsGHsTq+GERF+/fVXeHh4ICEhAVOnToW3tzcaNpSPmduPHz+Gs7MzXrx4gc2bN7OdBBWIsuQZpZpA+F8jOhnhklsPdG31bv+AT034eP9411Z6uOTWQy6+Qcyn8Xg8TJgwAffv3wfwbn+CvXv3ohL1a7Vr2LAhtm7dikePHsHU1BROTk5wcHDA3bt3uQ6t1rhz5w7s7e3x/fffw9zcHA8fPsSWLVvkohAgIuzZswedOnUCj8fDvXv3WCGgYGpbnlHInoF/i0vNRdCdRFyJTUNiRkGZHaR4eLfRQy+ThhjdxUjuZ3MyH1dQUIA5c+Zgz549GD16NLZu3QotLS2uw5K6dOkS3N3d8fDhQ7i6usLX17dGT2isTV68eAFPT08cOXIEVlZWCAwMhKOjI9dhSeXl5WH69OkICgrCpEmT8Msvv7ADsRScIueZSudvqoTs7GwCQNnZ2ZV5OmfyikopKimLwhIyKSopi/KKSrkOiZGxgwcPkqamJpmamlJkZCTX4ZQhEolo9+7d1KRJE1JTUyMPDw/KysriOiylkZWVRQsXLiQ1NTVq0qQJ7d69m0QiEddhlREREUEmJiakqalJhw4d4jocphooWp6pbP5WqmKAqR2ePHlCVlZWpKamRtu3byeJRMJ1SGXk5uaSl5cXqaurk76+Pm3evJlKS+X7A0OelZSU0KZNm0hfX580NDRo2bJllJuby3VYZUgkEtq2bRupqamRlZUVPX36lOuQGIaIWDHAKLmCggKaNm0aAaARI0bI5c/mq1evaPz48cTj8cjMzIxOnz4td4WLPJNIJHT69GkyMzMjHo9HEyZMoFevXnEdVjnZ2dnk4uJCAGj69OlUUFDAdUgMI1XZ/K2QEwgZRl1dHdu2bcORI0dw9uxZ2NraIjw8nOuwyjA0NMTevXsRFhYGAwMDDBo0CI6OjoiIiOA6NLkXEREBR0dHDBo0CIaGhggLC8OePXs4O/L6Y8LCwtChQwf88ccfOHr0KLZu3Qp1dXWuw2KYKmPFAKPQXFxcEBYWhrp166JLly7YvHmzXKw2+DcbGxtcunQJp0+fRnJyMjp06IAJEyYgKSmJ69DkTlJSEiZMmIAOHTogOTkZZ86cwcWLF2FjY8N1aGUQETZt2oSvvvoKOjo6CAsLg7OzM9dhMcznk2U3A8NwpaioiGbPnk0AaPjw4fT27VuuQ/qgkpIS2rx5c5nx77y8PK7D4tz7eRYaGhrSeRYlJSVch/VBb9++pWHDhhEAmjNnDhUVFXEdEsN8FJszwNRKx48fJx0dHWrZsiXdvXuX63A+Kisrizw8POR6ZnxNEIlEtGvXLoVZgXHnzh1q0aIF6ejo0K+//sp1OAzzSWzOAFMrDR8+HOHh4dDX10e3bt2wfv16uRs2AAAdHR2sXr0aT58+RY8ePTBp0iR06NABly5d4jq0GnPx4kV06NABkydPRs+ePfH06VOsXr0aOjo6XIdWDhFh3bp16N69Oxo0aIDw8HAMGzaM67AYRmZYMcAonZYtW+LGjRuYPXs23NzcMGTIELk9VKhFixY4fPgwbt++DS0tLfTp0wcDBgxAdHQ016FVm+joaAwYMAB9+/aFtrY2bt++jeDgYLRo0YLr0D4oMzMTgwcPxrx58zBnzhzcuHEDLVu25DoshpEpVgwwSklVVRVr167FyZMnERoaivbt2+PWrVtch/VRdnZ2uHHjBo4dO4anT5/CysoKM2bMQFpaGtehyUxaWhpmzJgBKysrxMTE4Pjx4wgNDYWdnR3XoX3U33//DRsbG9y4cQOnTp1CYGAgVFVVuQ6LYWSOFQOMUvvuu+8QHh4OQ0NDODg4wN/fHxKJhOuwPojH48HJyQnR0dHw9/fHkSNHYGxsDF9fXxQWFnId3mcrLCyEr68vjI2NcfToUfj7+yM6OhrDhw+X24OdJBIJ1qxZAwcHBzRt2hQREREYNGgQ12ExTPWR5QQEhpFXJSUltHDhQgJA/fv3pzdv3nAd0ielp6fT3LlzSSgUkpGREQUFBZFYLOY6rEoTi8V06NAhMjIyIhUVFfrxxx8pIyOD67A+KS0tjb799lsCQB4eHnK7qoFhKoOtJmCYDzh79izp6emRoaEhXb9+netwKiU2NpaGDh1KAKhTp04UGhrKdUifdP36derUqRMBoGHDhlFcXBzXIVXK9evXycDAgPT19emPP/7gOhyG+WJsNQHDfED//v0RERGBVq1aoVevXvDx8ZHbYYP32rRpgxMnTuDatWsgItjb22P48OGIj4/nOrRy4uLiMGzYMDg4OAAArl+/jl9//RXGxsYcR1YxiUSCn3/+GT179kTr1q0RERGBb7/9luuwGKbmyLKyYBhFUVpaSj/99BPxeDzq06cPpaSkcB1Spbzvem/WrJlcdb1nZGRIhzSaNWtGhw4dUpghjZSUFOrTpw/xeDxasmQJO1SKUSpsmIBhKuHChQvUsGFDaty4Mf31119ch1NpBQUF5OPjQ9ra2lS/fn1au3YtFRcX13gcRUVFFBgYSPXq1SNtbW3y8fFRqIN6Ll++TI0bN6aGDRvShQsXuA6HYWSOFQMMU0nJycnUq1cv4vP55O3trVA7AaakpND06dOJz+dT69at6fjx4zVyMqJEIqFjx45Rq1atiM/n0/Tp0yk1NbXarysrIpGIli1bRjwej3r16kXJyclch8Qw1YIVAwxTBSKRiLy9vRU2OURFRUlnwHfv3p3u3LlTbde6ffs2devWTboy4/Hjx9V2reqQnJxMPXv2JD6fT8uXL1eo4o9hqopNIGSYKhAIBFi2bBkuX76MJ0+ewMbGBhcvXuQ6rEqzsLDAH3/8gQsXLiA7Oxt2dnYYOXIkEhISZHaNhIQEjBw5El26dEFubi4uXryIs2fPom3btjK7RnW7cOECrK2t8fTpU1y+fBleXl4QCARch8UwnGPFAMP8S69evRAREQFra2t88803WLJkCUQiEddhVVqfPn0QHh6OXbt24cqVKzA1NcWiRYuQnZ392W1mZ2dj0aJFMDU1xdWrV7F7926EhYXB0dFRhpFXL5FIhJ9++gn9+vVD+/btERkZiZ49e3IdFsPID1l2MzCMshCLxfTzzz8Tn88ne3t7evnyJdchVdn7Y4HV1dWpQYMGtGXLlirNlC8tLZUet6yurk5eXl6Um5tbjRFXj5cvX5K9vT3x+Xz6+eefFWaVA8PIApszwDAycP36dTI0NCQ9PT2F3YTm1atXNH78eOLxeGRubk5nzpypcJKhRCKh06dPk5mZGfF4PBo/fjy9evWqBiOWHUXcZIphZInNGWAYGbC3t0dERAQ6d+6M/v37w8PDA6WlpVyHVSWGhobYu3cvHjx4gCZNmmDgwIHo06cPIiMjyz03IiICjo6OGDRoEAwMDBAWFoa9e/fC0NCQg8g/X2lpKRYuXIgBAwbAzs4OERERsLe35zoshpFbrBhgmE/Q19fHmTNnsGbNGgQGBqJHjx5ITEzkOqwqa9++PS5duoTTp08jKSkJ7du3x8SJE5GcnIykpCRMmDABHTp0QHJyMk6fPo1Lly7BxsaG67CrLDExET169MC6devg7++P06dPQ19fn+uwGEau8YiIPvWknJwc6OjoIDs7G3Xr1q2JuBhGLt26dQsjRoxAbm4u9u3bh++++47rkD5LaWkpdu7cCS8vL+Tk5ICIoKOjgxUrVmDKlClQUVHhOsTPcurUKYwfPx7a2to4cuQIvvrqK65DYhhOVTZ/s54BhqmCr776CuHh4bC3t8fgwYMxb948lJSUcB1WlfH5fNSpUwdCoRASiQREBBUVFdSpUwd8vuJ9LJSUlMDNzQ2DBw+Gvb09wsPDWSHAMFWgeL/1DMMxXV1d/P7771i3bh02bdqE7t274/nz51yHVWmXLl1Chw4dMGnSJHz99deIj49HfHw8evbsiUmTJsHW1haXLl3iOsxKe/78Obp3747Nmzdj/fr1+P3336Grq8t1WAyjUFgxwDCfgcfj4ccff8TNmzfx5s0btG/fHidOnOA6rApFR0djwIAB6NOnD7S1tXH79m0EBwejRYsWaNGiBQ4fPozbt29DU1MTffr0wcCBAxEdHc112BX69ddf0b59e6Snp+PmzZuYO3cueDwe12ExjMJhxQDDfIFOnTohPDwcvXv3xvDhwzFnzhwUFxdzHVYZaWlpmDFjBqysrBATE4Pjx48jNDQUdnZ25Z5rZ2eHGzdu4NixY3jy5AmsrKwwY8YMpKWlcRD5xxUVFWH27NlwcnKCo6MjwsLC0KlTJ67DYhjFJct1igxTW0kkEtq0aROpqqpShw4dKC4ujuuQypxsWK9ePVq7di0VFRVV+vXyeiJhXFwctW/fnlRVVWnTpk01cjATwygqtukQw3DgwYMH1Lp1a9LW1qYjR45wEoNYLKZDhw6RkZERCYVCmjt3LqWnp392e+np6TR37lwSCoVkZGREQUFBnO3id/jwYdLW1iZjY2MKCwvjJAaGUSRs0yGG4UCHDh0QFhaG/v37Y8SIEZg+fToKCwtr7PqhoaHo0qULRo8eDVtbW0RHR2P9+vXQ09P77Db19PSwfv16REdHw9bWFqNGjUKXLl1w48YNGUZescLCQkybNg2urq4YMGAAHjx4gPbt29fY9RlG2bFigGFkrG7dujh8+DC2b9+Offv2oUuXLoiJianWa8bFxWHYsGFwcHAAEeHatWs4ceIE2rRpI7NrtGnTBidOnMC1a9cgkUhgb2+P4cOHIz4+XmbX+JCYmBh06dIFBw4cwI4dOxAcHMz2O2EYGWPFAMNUAx6Ph6lTp+Lu3bsoLi6Gra0tDh06JPPrZGZmws3NDRYWFrh//z4OHTqEO3fuwMHBQebXes/BwQF3797FwYMHce/ePbRt2xZubm7IzMyU+bUOHToEW1tbFBcX486dO5gyZQpbLcAw1UGWYw4Mw5SXm5tLo0ePJgA0ceJEys/P/+I2i4uLae3atVS/fn1OJ/cVFBTQzz//TFpaWlS/fn1au3YtFRcXf3G7+fn5NGHCBAJAY8aMUcjTEhlGHrAJhAwjRyQSCe3Zs4fU1dXJwsKCHj9+/NntHD9+nFq3bk18Pp+mT59OKSkpMo626lJSUmjatGnE5/OpdevWdPz48c+e5R8VFUVt27YldXV12rNnD1stwDBfgE0gZBg5wuPxMGHCBNy7dw9EhI4dO2Lv3r2gTx8NInX37l04ODjAyckJJiYmePjwIbZu3YpGjRpVY+SV06hRI2zbtg0PHz6EiYkJnJyc4ODggHv37lW6DSLC3r17pfsF3L9/HxMmTGDDAgxTA1gxwDA1yMLCAnfv3sWIESMwceJEjBs3Dnl5eRW+JiEhASNHjoSdnR1ycnJw4cIF/PHHH7CwsKihqCvPwsICf/zxBy5cuIDs7Gx07twZo0aNQkJCQoWvy8vLw9ixYzFx4kS4urpK5yIwDFNDZNnNwDBM5R04cIA0NTXJzMyMIiMjyz2elZVFHh4epKamRk2aNKHdu3eTSCTiINLPIxKJaNeuXdS4cWNSU1OjRYsWffAzJDIykkxNTUlTU5MOHjzIQaQMo7zYMAHDyLkxY8bg/v37UFFRgZ2dHXbs2AEigkgkwtatW9GmTRv88ssv8PDwQGxsLCZOnAiBQMB12JUmEAgwadIkxMXFwcPDAxs2bICxsTG2bt0KkUgEIsKOHTvQuXNnqKmp4f79+xg9ejTXYTNMrcQj+vSgZWXPQ2YYpuoKCwvh5uaG7du3w8HBASkpKYiLi8O4ceOwatUqGBoach2iTCQlJWHJkiXYv38/TExM0KhRI1y/fh3Tpk3DunXroK6uznWIDKN0Kpu/WTHAMHIgMjISo0aNwuPHj6Guro49e/ZgxIgRXIdVLQ4fPoxJkyahsLAQ7dq1w6FDh2Btbc11WAyjlCqbv9kwAcNwKDk5GRMnTkT79u0hFouxfft2mJmZYdy4cdiyZUuVVhvIOyLC5s2bMX78eJiZmWHbtm0oLS1F+/btMXHiRCQnJ3MdIsPUXrKcgMAwTOXk5eXRsmXLSENDg/T19Wnz5s1UUlJCRESFhYU0a9YsAkBOTk6UlZXFcbRf7u3btzR8+HACQLNnz5aenlhSUkKbNm0ifX190tDQoGXLllFeXh7H0TKM8mCbDjGMHBKJRLR7925q0qQJqampkYeHx0eT/fHjx0lHR4datmxJd+/ereFIZefu3bvUsmVL0tHRoePHj3/wOVlZWbRw4UJSVVVVyJUTDCOv2GoChpEzly5dQocOHTBp0iT06NEDT58+xerVq6Gjo/PB5w8fPhxhYWHQ19dHt27dsGHDBoUaNiAirF+/Ht26dYO+vj7Cw8MxfPjwDz5XR0cHfn5+iImJQY8ePTBp0iTY2tri0qVLNRw1w9ROrBhgmGoWHR2NAQMGoE+fPtDS0sLt27dx+PBhtGjR4pOvbdWqFW7cuIFZs2bhxx9/xNChQ6vlQCBZy8zMxJAhQ+Dm5obZs2fjxo0baNmy5Sdf16JFCxw+fBi3b9+GpqYm+vTpg4EDB+LJkyc1EDXD1F6sGGCYapKWloYZM2bAysoKT58+xbFjx3Djxg3Y2dlVqR1VVVWsW7cOv//+O65du4b27dvj9u3b1RT1l7t16xbat2+P0NBQnDx5EmvXroWqqmqV2rCzs8ONGzdw7NgxPHnyBJaWlpg5cybS0tKqKWqGqd1YMcAwMlZYWAhfX18YGxvjyJEjWLNmDaKjo+Hk5PRF++wPHjwYERERMDAwgL29Pfz9/SGRSGQY+ZeRSCTw9/eHg4MDDA0NER4eju++++6z2+PxeHByckJ0dDT8/Pxw+PBhGBsbY/Xq1SgqKpJh5AzDsAmEDCMjYrGYgoKCyMjIiIRCIc2dO5fS09Nlfp2SkhJasGABAaABAwbQmzdvZH6Nqnrz5g3179+fANDChQulKyNkKT09nX744QcSCoVkZGREQUFBJBaLZX4dhlEmtXI1QV5RKUUlZVFYQiZFJWVRXlEp1yExtURoaCh16tSJANDQoUMpNja22q955swZ0tPTI0NDQwoNDa32633M9evXydDQkPT09Ojs2bPVfr2YmBgaMmQIAaBOnTpx+t6Z2kfR8kxl87fC70AYl5qLoDuJuBKThsTMAvz7zfAAGOlqoJdpQ4yyM0KbRtpchckoqfj4eHh4eODEiROwtbXF2rVr4eDgUGPXf/XqFVxdXXHr1i2sXLkSHh4e4PNrZvRPIpFg9erV8PLyQteuXREcHIymTZvWyLUB4Nq1a3B3d8eDBw8wbNgw+Pn5wdjYuMauz9QeipxnlH474peZBVj82yOExqdDwOdBLPn423j/uL2xPnyGWqKZrkYNRsooo8zMTKxcuRKbN29G48aN4evrC1dX1xpLxP8mEomwbNky+Pr6ok+fPjh48CAaNmxYrddMS0vD6NGjcenSJSxevBje3t4QCoXVes0PkUgkCA4OxuLFi5GSkoLZs2djyZIl0NXVrfFYGOWjDHlGqYuBI/cSsezUY4gkVOE3578EfB6EfB6Wf2eBEZ2MqjFCRlmVlJRg8+bNWLlyJUQiETw9PfHjjz/KxSE7Fy5cwOjRoyEUChEcHIyePXtWy3WuXLmCkSNHQiKR4NChQ+jTp0+1XKcqCgsLsW7dOvj6+kJFRQVeXl6YOXNmlVcxMMx7ypJnlPZsgk1X4rDoxCMUiyRV+gYBgFhCKBZJsOjEI2y6EldNETLKiIjw66+/om3btpg/fz5cXFwQFxcHT09PuSgEAKBv376IjIyEqakpevfujRUrVkAsFsusfbFYjOXLl8PR0RHm5uaIiIiQi0IAANTV1bF48WLEx8fD2dkZ7u7usLCwwIkTJxRqoyZGPtTGPKNQxcCRe4kIuBArk7YCLsTi6L1EmbTFKLd79+7BwcEBTk5OMDExwcOHD7F161Y0atSI69DKadKkCS5duoSlS5fC29sbffv2RUpKyhe3+/r1a/Tt2xfLly+Hl5cXLl68iCZNmsggYtlq1KgRtm3bhocPH6JNmzYYPnw4evTogXv37nEdGqMgamueUZhhgpeZBXBcdw3Fosqtq87++yiyrh+Eir4RDCZv+eBz1IR8XHLrITdjO4x8SUhIwOLFixEcHAxLS0sEBgbKzZ1wZfz1118YNWoUJBIJgoKC4Ojo+FntXLx4EaNHjwafz0dwcDB69eol40irz8WLF+Hu7o5Hjx5h5MiR8PHxQfPmzbkOi5FTFeWZooSHSD28+IOvazwmAGqGZh98jOs8o3TDBIt/ewRRJbtrRDnpyL4VAp5KnYqfJyEs/u2RLMJjlEh2djYWLVoEU1NT/PXXX9i1axfCw8MVqhAAgK+//hoRERGwsrJC3759sWTJEohEokq/XiQSYcmSJfjmm29gbW2NiIgIhSoEAKBPnz4IDw/Hrl278Ndff8HU1BSenp7IycnhOjRGDlUmz2jbDoLeQPcyf4T1P95Lpih5RiGKgbjUXITGp1d67Obtld1QMzCFauOKlxmJJYTQ+HTEp+XKIkxGwYlEImzduhVt2rTBL7/8Ag8PD8TFxWHSpEkQCARch/dZGjVqhPPnz2PlypXw9fVF7969kZSU9MnXvXr1Cl9//TV8fX2xatUqnDt3Ti6HRSpDIBBg0qRJiIuLw8KFC7FhwwYYGxtj69atVSqOGOVW2Tyj1swCWu16lfkj0PjwYWOA4uQZhSgGgu4kQsCv3DauRYlRKHh6E/V7T63U8wV8Hg7dVowxHaZ6EBHOnj0LKysrzJo1CwMGDEBcXByWL18OLS0trsP7Ynw+Hz/99BOuXLmC+Ph42NjY4Ny5cx99/p9//gkbGxs8e/YMV69exeLFizlZMilrWlpaWLFiBWJjY9G/f3/MmjULVlZWOHv2LJtkyFQpz0iKC0CSyk/OVYQ8oxC/4Vdi0irVK0ASMTIvboOWdV+oNmxRqbbFEsKVWHb4SW0VGRkpPRmvSZMmePDgAfbu3QtDQ0OuQ5M5BwcHREREoFOnTvj222+xaNEilJaWSh8vLS2Fh4cH+vfvj86dOyMiIgL29vYcRlw9mjZtin379uHBgwdo3LgxBg4ciD59+iAyMpLr0BgOVTbPZPyxAS/XOSPRfyhSgj1R/PrTKwYUIc/IfTGQVyxCYmZB5Z4b/idEOW9Qz2FMla6RmFGA/GLWXVibJCcnY+LEiWjfvj1evXqFU6dO4dKlS2jfvj3XoVWrBg0a4MyZM/Dz80NAQAB69uyJxMREJCYmokePHggMDMSaNWtw5swZ6Ovrcx1utWrfvj0uX76MU6dO4dWrV2jfvj0mTZqE5ORkrkNjalil8oxABRqmXaHbewoaDF+Keg5jUPomAalBHihJ+eeT15D3PFPzW4ZVUUJGPirTgScuzEFWaBDqdXWpcPzmQwjAuZsP0LKeymfFyCiOwsJCHDhwAAcOHECdOnWwcOFCDBs2DEKhEOHh4VyHV2McHR3RoEEDeHp6wtzcHEQEHR0d7Nq1C1ZWVoiIiOA6xBpjaGiI/fv347fffsP27dsRHByMcePGYcyYMXKzhwRTvZ5nlX4yz9Rpao46Tc3//wtt7KBh1g2vd8/B22v70chlRYWvJwAvMvJhYVC1/FRT5L4YKKnkUsKs6wfBV9eCdsdBn3WdkaPHouS1bNaWMoqhqKgIfn5+8PPz4zoUuVBYWIgJEyZwHYZc2L59O7Zv3851GEwNUW1igibj1lb5dSr1DaDexg4FsX+DJGLw+BVPNK5sPuOC3BcDqsJPj2SUZiYhL+I86veeAnFupvTrJC4FScQQZaWCp6YBgfrHD5A4sHcP2jRgdwHK6M6dO1i3bh3i4uLQt29fzJkzBwYGBlyHxamkpCR4enoiJiYGc+bMAQBs3LgRpqam8PX1Vco5E1WRlJSETZs24cKFCzAxMYGbmxs6d+7MdVhMNXmeVQr3i+mf9VphXX1ALAKVFoOnVvFeApXJZ1yR+2KghZ4meECFXTji3AyAJHh7aTveXipfzSdtmwTtjt9B1/HDKwyICGOG9oN5m1awsbGBtbW19G89PT3ZvBGmxj158gQLFizA2bNn0bVrVxw8eBB2dnZch8W5EydOYOLEiahfvz7+/vtvdOrUCQAwYsQIuLi4YMyYMdi7dy+GDh3KcaTc6dChAwYNGoTbt29j3rx5mDFjBgYMGAB/f3+Ym5t/ugFGoZgWizD/4vlKDUn/lygrBTyhKniqFe9rw8O7fCav5L4Y0FQTwkhXAwkVTO5QadAcDYb9VO7rWdcPQlJSCF3HqRDW+/imEI01BfAI8ENkZCQiIiIQEhKCoqIiAO9mHtvY2JQpElq1aqUUS62UVVpaGry9vbFjxw40b94cx44dw/Dhw8HjVW7ZkLIqLi7G/PnzsWnTJgwbNgy7d+9GvXr1pI937twZ4eHhmDRpEoYNG4Y5c+bA398fampq3AXNsS5duuDmzZs4fvw4PDw8YGlpialTp8Lb27vaT4Zkak5l8oy4ILvcfLSS1GcoiLsL9Va24PEqzglGehrQVJPflKsQ2xF7n3qMg3cSqnxgRErQIkgKcz66HTHwbv3nGLvm8P7OQvo1sViMuLg4RERESP9ERkZK93jX0tKCtbW1tDiwsbFBu3bt2GQjjhUVFWH9+vXw8fGBQCDA0qVLMWvWrFqdzN6Lj4+Hi4sLoqKisHbtWsycOfOjxRERYfPmzXB3d0e7du1w9OhRGBtXvIFXbVBcXIxNmzZh1apVEIvF+OmnnzB37lzUqVPxHSGjGD6VZ1KCF4Ovogo1Q3PwNXRQmv4SeZHnAL4QTcYEQEW/2Ufb/lCeqSlKdYRxXGou+qy/XuXXVaYYAIBLbg4wbvjx+QTS9lJSEBkZKe1BiIiIQExMDCQSCfh8PkxNTcv0INjY2Cjsrm2KRCKR4MiRI/D09ERycjJmzZqFpUuXsiGe/zl69CimTJmChg0bIiQkBB06dKjU6x48eAAXFxekpaVh165dcHZ2ruZIFUNGRgZWrFiBLVu2wNDQEL6+vhgxYkSt73lSdJ/KMzn3TyH/8VWI3r6GpKQAAg0d1GluDZ3urlCp/+k5SJXNM7KmVMUAAIzZfQd/P8uocu9ARQR8Hrq20sPBSZ8/jlxYWIioqChp78H7v/Py8gAAjRs3LlMcWFtbw8TERGG3t5U3N27cwLx583Dv3j0MHToUfn5+aNOmDddhyYXCwkK4ublh+/btcHFxwY4dO6r8+5uTk4OpU6fi6NGjmD59OtauXct6wP4nNjYWHh4e+P3339G5c2esXbsW3bp14zos5gvIa575EkpXDFT11MLKqK7TpCQSCZ4/f15umOHly5cA3p29bmlpWaZIsLS0hLZ2zVeNiio+Ph4eHh44ceIEbG1tsXbtWjg4OHAdltyIiYmBs7MzYmJi8Msvv2DKlCmffedKRNixYwfmzp0LU1NThISEwNTUVMYRK65r167B3d0dDx48wPDhw+Hn54fWrVtzHRbzGRQpz1SW0hUDwLtzphedkN3pT37DLOHSyUhm7X1KRkZGuWGG6Oho6WEpxsbG5SYrGhoasu7Hf8nMzMTKlSuxefNmNG7cGD4+Phg5ciSb0Pkvhw4dwvTp09G0aVOEhITAyspKJu1GRkbC2dkZSUlJ2L59O0aNGiWTdpWBRCJBcHAwPD09kZqaitmzZ2PJkiXQ1dXlOjSmihQ9z/yXUhYDALDpShwCLnz55kAL+ppiVi/uJ0UVFxfjyZMnZYYZIiIikJWVBQDQ09MrN8xgbm4OFZXatVtiSUkJNm/ejJUrV6K0tBSenp5wc3NjXdb/UlBQgDlz5mDPnj0YPXo0tm7dKvODlvLy8jBjxgwcOnQIkyZNwi+//AINDW7ueORRYWEh1q1bB19fX6ioqMDLywszZ86Eqqoq16ExVaBMeUZpiwHgXeW27NRjiCRUpbEdAZ8HIZ+HFd9ZcFqpfQoRITExsUxxEBkZiWfPngEAVFVVYWFhUa5I+PcyMWVBRDhx4gQ8PDzw/PlzTJkyBcuXL2cTM/8jOjoazs7OePbsGTZv3ozx48dXW48SEWHv3r2YPXs2WrVqhZCQELRt27ZarqWoUlNT4eXlhV27dqFVq1bw8/PD0KFDWS+fAlGWPKPUxQDwbmxn8W+PEBqfDgGfV+E36/3j9sb68BlqydnYzZfKzs7Gw4cPyxQJUVFRKC4uBgA0b9683DBDixYtFPYD6N69e5g3bx5u3LiBb7/9Fv7+/rCwqPmlOfJu3759mDlzJlq2bImQkJAa+zd6/Pgxvv/+eyQkJEgLEKasqKgoLFiwAOfOnYO9vT0CAwOlmzwx8k8Z8ozSFwPvxaXmIuhOIq7EpiExo6DMDlI8vNvooZdJQ4zuYsTJso7qJhKJEBMTU26Y4c2bNwCAunXrlutBsLCwkOu10QkJCVi8eDGCg4NhaWmJwMBA9OnTh+uw5E5eXh5mzZqFAwcOYMKECdi4cSM0NWt2h7P8/HzMmTMHe/fuxdixY7F582aZD00ogwsXLmD+/Pl49OgRRo4cCV9fXxgZcX/XyFSOIueZWlMM/Ft+sQgvMvJRIpJAVchHCz1Nud7xqboQEV6/fl1umCE2NhZEBIFAAHNz83JbLzdo0IDTuHNycuDr64t169ahfv36WLVqFcaPH8+WYX7Ao0eP4OzsjJcvX2Lr1q0YM6Zqx3bL2sGDBzF9+nQYGRkhJCQElpaWnMYjj8RiMfbu3YulS5fi7du3cHNzg6enp1x/pjLlKVqeqXT+pkrIzs4mAJSdnV2ZpzNyKi8vj27dukXbtm2j6dOnU5cuXUhDQ4Pw7ugHMjAwoP79+9PixYvp6NGjFBMTQ2KxuNrjKi0tpS1btlCDBg1IXV2dli5dSrm5udV+XUUkkUhox44dVKdOHbK0tKQnT55wHZLUkydPyNLSkurUqUM7d+4kiUTCdUhyKTc3l5YuXUrq6urUoEED2rp1K5WWlnIdFqOkKpu/WTFQy4lEIoqJiaGjR4+Sp6cn9e/fnwwMDKQFgqamJnXp0oWmT59O27Zto9u3b1NeXp5Mri2RSOjMmTNkbm5OPB6Pxo0bRy9fvpRJ28ooOzubRowYQQBo6tSpVFBQwHVI5RQUFNCUKVMIALm6ulJOTg7XIcmtly9f0rhx44jH41Hbtm3p7NmzrIBiZI4VA8wXSUtLo4sXL5K/vz+NGjWK2rVrRwKBgAAQj8cjU1NTcnFxIR8fH/rjjz8oOTm5Sh9kERER1Lt3bwJAvXr1orCwsGp8N4ovLCyMjI2NSUtLiw4fPsx1OJ8UHBxMWlpaZGxszL63n/DgwQPq2bMnASBHR0eKiIjgOiRGibBigJG5wsJCun//Pu3evZvmzJlD9vb2VLduXWkvQoMGDahPnz60YMECOnToEEVFRZXr/kxKSqKJEydKC4pTp06xu6EKSCQS2rx5M6mqqlL79u0pNjaW65AqLTY2lmxsbEhNTY02b97Mvs8VkEgkdPLkSTIxMSEej0cTJ06kpKQkrsNilAArBpgaIZFI6NmzZ3TixAny8vKiwYMHU/PmzaUFgpqaGtna2tK4cePo22+/JTU1NdLV1aVNmzZRSUkJ1+HLtaysLHJyciIANGvWLCosLOQ6pCorLCykWbNmEQBycnKirKwsrkOSayUlJbRx40bS09MjDQ0N8vb2ltmwHFM7VTZ/K9VqAkZ+vH37Fg8fPkRYWBh+/fVX3L17F6WlpdLHW7VqVe6Ex2bNminsngiydu/ePbi4uCAzMxO7d+/G8OHDuQ7pixw/fhyTJk2Cvr4+jh49io4dO3IdklzLzs6Gj48P1q9fD319faxatQpjx45lK2uYKqts/mYbujPVon79+hCJRNi/fz9u3ryJ4cOHIyYmBpGRkdi/fz+GDBmCrKwsbNiwAYMHD0bz5s2hp6eHXr16wc3NDfv370dERARKSkq4fis1ioiwYcMGdOvWDfr6+ggLC1P4QgAAnJycEB4eDl1dXXTt2hUbNmxAJe5Dai0dHR34+fnh6dOnsLe3x8SJE9GxY0f89ddfXIfGKCtZdjMwDBFRdHQ0DRgwgABQ165d6fbt2x99rkQioZcvX9Lp06dp5cqV5OTkRMbGxtJhBhUVFbK2tqaxY8fS2rVr6a+//qKMjIwafDc1JyMjgwYPHkwA6Mcff6Ti4mKuQ5K5oqIi+vHHHwkADRkyhDIzM7kOSSHcunWLvvrqKwJAAwcOlKslpYx8Y8METI1LS0uDt7c3duzYgebNm8PPzw/Dhw//rK7/3NxcPHr0qMymSQ8fPkRRUREAoFmzZuWGGVq2bKmwpxfevn0bLi4uyMnJwb59+zB48GCuQ6pWJ0+exPjx46Gjo4OjR4/Czo6bs94VCRHh+PHj8PDwQGJiIqZNmwZvb2/ONwtj5BvbdIipMYWFheTr60va2tpUr149CggIoKKiIplfp7S0lKKjoyk4OJg8PDzom2++oUaNGkl7EbS1talbt240a9Ys2rlzJ929e1cu1+L/m1gsJn9/fxIKhdSlSxd68eIF1yHVmBcvXlCXLl1IKBRSQEBAjWxwpQyKioooICCAdHR0SFtbm1avXq2Qk0uZmsFWEzDVTiwWU1BQEBkZGZFQKKQffviB0tPTazyO169f07lz52j16tXk6upK5ubmxOfzCQDx+Xxq27Ytubq6kp+fH50/f55SUlJqPMYPefPmjXQ4ZcGCBbVydUVJSQnNnz+fANCAAQM4+flRVOnp6fTDDz+QUCik5s2bU3BwMFu+yZTDhgmYanXjxg3MmzcP9+7dw5AhQ+Dn5wcTExOuw5IqKCjA48ePywwzREZGIi8vDwDQuHHjcsMMbdq0qbHZ2jdu3ICrqysKCwuxf/9+DBgwoEauK6/Onj2LcePGQV1dHUeOHEG3bt24DklhxMbGwsPDA7///js6d+6MtWvXsn8/RooNEzDVIi4ujoYNG0YAyNbWlq5evcp1SJUmFospLi6Ojh8/TkuWLKGBAwdS06ZNpcMM6urq1LlzZ5o6dSpt2bKFbt68KfMzEsRiMfn4+JBAIKDu3buz7Zf/5eXLl9S9e3cSCATk4+PDhg2q6OrVq9ShQwcCQMOHD6f4+HiuQ2LkABsmYGQqIyOD3NzcSEVFhZo2bUoHDx5Umg/r9PR0unz5MgUGBtLYsWPJysqKhEKhdOvlNm3akJOTE61atYrOnDlDr169+qzu2NTUVOrbty/xeDxavHgxO5zmA0pLS8nT05MA0DfffEOpqalch6RQxGIxHThwgJo2bUoqKirk5ubGVmzUcmyYgJGJkpISbNmyBStWrEBpaSk8PT3h5uYGdXV1rkOrVsXFxXjy5Il0mOH9UENWVhYAQE9PTzq88H6owczMDCoqKh9s7+rVqxg5ciREIhEOHTqEvn371uC7UTznz5/HmDFjIBQKcfjwYfTo0YPrkBRKQUEB1q1bh9WrV0NFRQVeXl6YOXMmVFVVuQ6NqWFsmID5IhKJhH799VcyNjYmPp9PU6dOlZuJd1yRSCT04sUL+v3332n58uU0dOhQatmypXSY4f35ARMmTKANGzbQ1atXKT09nZYvX058Pp969uxJycnJXL8NhZGUlEQ9e/YkPp9Py5cvJ5FIxHVICuf169c0depU4vP5ZGxsTCdOnGCTDGsZ1jPAfLZ79+7B3d0doaGh6NevH/z9/dGuXTuuw5Jb2dnZePjwobT3ICIiAlFRUSguLpY+x8zMDN9//z06dOgAGxsbNG/enG29XAlisRgrVqzAypUr8fXXX+PQoUNo3Lgx12EpnKioKCxYsADnzp2Dvb091q5dy7aEriUqm79ZMcBIJSYmwtPTE8HBwbC0tERAQADrzv5M58+fx8iRIyEWi/HNN98gMzMTERERSE9PB/Buu9n3wwvv/7awsICamhrHkcunv/76CyNHjgQABAUFoXfv3hxHpJguXLgAd3d3REVFYdSoUfDx8YGRkRHXYTHViA0TMJWWnZ1NixYtIjU1NWrcuDHt3LmTdcl+ptLSUlqyZAnxeDxydHQsM7QikUgoKSmJzp49Sz4+PuTs7Cw9shYACYVCsrS0pNGjR1NAQABdvHiR3rx5w+G7kS8pKSnk6OhIPB6Pli5dyiZgfiaRSEQ7d+6kxo0bU506dcjT05N9tisxtpqA+aTS0lLaunUrNWjQgNTV1Wnp0qUyX0pXm7x69YocHByIz+fTqlWrKr3aIi8vj27dukVbt26ladOmUZcuXUhDQ0M6F8HQ0JAGDBhAixcvppCQEIqNjVWalRxVJRKJaOXKlcTn88nBwYGSkpK4Dklh5ebm0tKlS0ldXZ0aNmxIW7duZQWWEmJzBpiPIiL8+eefWLBgAZ48eYKxY8di1apVaNq0KdehKaxz585hzJgxUFVVxeHDh+Hg4PBF7YnFYsTHx0vnILyfj5CcnAwA0NTUhJWVVZlhBktLS2hoaMji7ci9a9euYeTIkSgpKcHBgwfRr18/rkNSWK9evcKSJUtw4MABmJubw9/fH99++y2b06Ik2DAB80ERERHk6OhIAKhXr14UFhbGdUgKraSkhDw8PAgAffvtt5SWllat10tNTaULFy6Qv78/jRo1iiwsLEggEEi3XjYzMyMXFxfy9fWlP//8k5KTk5V29nhaWhr169ePANCiRYtq5XbOsvTgwQPq2bMnASBHR0eKjIzkOiRGBtgwAVNGUlISTZw4kXg8HpmamtKpU6eUNknUlISEBOratSsJBALy8/PjrOu+sLCQ7t+/T7t27aI5c+aQvb09aWtrS4cZGjZsSH379qUFCxZQUFAQPX78WGm6g8ViMa1evZoEAgF17dqVEhMTuQ5JoUkkEjp58qR0LsukSZPYclgFx4YJGABAfn4+AgICsGbNGmhoaMDb2xtTp0796OY4TOWcPn0a48ePh6amJo4cOYKuXbtyHVIZEokEL168KDfMkJCQAACoU6cO2rVrV2bjJCsrK4X9/f77778xYsQI5OfnY//+/Rg4cCDXISm00tJSbN++Hd7e3igqKsLChQvh7u4OTU1NrkNjqogNE9RyIpGI9uzZQwYGBqSqqkoLFy6krKwsrsNSeMXFxTRv3jwCQIMGDaKMjAyuQ6qSzMxMunLlCq1fv57Gjx9PNjY2pKKiIu1FaN26NQ0bNoxWrFhBp06dooSEBIXpQUpPT6dBgwYRAJo3bx4VFxdzHZLCe/v2LS1YsIBUVVXJwMCA9uzZw1YaKRg2TFCLXbp0iaytrQkAubi40LNnz7gOSSk8e/aMOnfuTCoqKrR27VqFSZKfUlxcTJGRkbR//35yc3Ojr7/+mnR1daUFQv369alXr170448/0r59+ygiIkJuE61EIqHAwEASCoVkZ2dHz58/5zokpfDs2TNycXEhAGRjY0OXL1/mOiSmktgwQS305MkTLFiwAGfPnsVXX32FtWvXokuXLlyHpRR+++03TJgwAfXr18fRo0fRuXNnrkOqVkSEV69elRtmiI+PBwCoqKigbdu2ZYYZrK2toaury3Hk79y5cwcuLi7Izs7G3r17MWTIEK5DUgq3b9/GvHnzcOvWLQwcOBD+/v4wMzPjOiymAmyYoBZJTU2lGTNmkEAgoJYtW1JISIjS3LVyraioiObMmUMAaNiwYfT27VuuQ+JUTk4O3bhxgzZv3kxTpkyhTp06UZ06daS9CEZGRjRo0CBaunQp/frrrxQfH8/ZxMrMzEwaOnQoAaAffviBioqKOIlD2UgkEgoJCaGWLVuSQCCgmTNnVvsqGubzsWGCWqCwsJBWr15N2trapKOjQwEBAewDT4bi4+PJ1taWVFVVaePGjazA+ojS0lKKjo6m4OBgWrhwIX3zzTfUsGFDaYGgra1N3bt3p9mzZ9POnTvp3r17VFBQUCOxSSQS+uWXX0hVVZVsbW0pPj6+Rq5bGxQVFZG/vz/p6OhQ3bp1afXq1VRYWMh1WMx/sGJAiUkkEgoODqbmzZuTUCikH374gdLT07kOS6kcPXqUtLW1qXXr1nT//n2uw1FIr1+/pnPnztHq1atpxIgRZG5uTnw+nwCQQCCgtm3b0siRI2nNmjV0/vx5Sk1NrbZY7t+/T61ataK6detSSEhItV2nNnrz5g3NmTOHhEIhNW/enIKDg1nhLEdYMaCkbty4QZ07dyYANGTIEIqJieE6JKVSWFhI06dPJwDk7OzMfuZlLD8/n+7cuUPbt2+nmTNnUteuXUlLS0vai9CkSRP69ttvadGiRXTkyBF6+vSpzGavZ2VlkbOzMwGgGTNmsLtYGYuJiaHBgwcTAOrcuTPduHGD65AYYsWA0omPj6fhw4cTAOrQoQNdvXqV65CUTkxMDFlbW5Oamhpt27aN3d3UELFYTHFxcXTs2DH66aefaODAgdS0aVNpgaChoUF2dnY0bdo02rJlC/3999+ffYaGRCKhrVu3kpqaGllbW7NiuhpcuXKFOnToQADIycmJDc1wjBUDSiIzM5Pc3NxIRUWFmjZtSgcOHKi1h9RUp0OHDpGmpiaZmJhQREQE1+Ew9G7fgMuXL1NgYCCNGTOGrKysSCgUEgDi8XjUpk0b+v777+nnn3+mM2fO0KtXrypdwEVERJCJiQlpaWlRUFBQNb+T2kcsFtOBAweoadOmpKKiQvPmzaPMzEyuw6qVWDGg4IqLi2ndunVUv3590tLSolWrVlF+fj7XYSmd/Px8mjRpEgGg0aNHs1Mb5VxRURGFhYXRnj17aO7cudSjRw/S0dGR9iLo6+tT7969yd3dnQ4ePEiPHj366JkFOTk5NGrUKAJAkydPZr9f1SA/P59WrVpFWlpapKurS+vXr5fbPSqUFSsGFJREIqETJ06QsbEx8fl8mjp1KqWkpHAdllJ6/PgxWVhYkLq6Ou3evZsNCygoiURCL168oN9//528vb1p6NCh1LJlS2mBoKqqSh06dKCJEyfShg0b6Nq1a9LdOCUSCe3atYvU1dWpXbt2FB0dzfG7UU6vX7+mqVOnEp/PJ2NjYzpx4gT7fashbNMhBXT//n3MmzcPoaGh6NevH/z9/dGuXTuuw1JK+/btw6xZs9C8eXMcO3YMFhYWXIfEyFh2djYePnxYZtOkqKgoFBcXAwBatGgh3TSpfv362LhxI5KTk7FlyxaMGzeO4+iVU1RUFBYsWIBz587BwcEBgYGB6NixI9dhKTW26ZACSUhIkHZXWlpa0vnz57kOSWnl5ubS2LFjCQBNmDCB8vLyuA6JqUElJSX06NEjOnjwIM2fP58cHR1JX19f2ovw/pwGc3Nz2rp1K4WFhbG9O6rB+fPnqV27dgSARo0aRQkJCVyHpLRYz4ACyMnJwerVq7Fu3TrUq1cPK1euxIQJEyAQCLgOTSk9evQIzs7OSExMxLZt2zBmzBiuQ2LkABHh9evX0h6EkydP4t69e3j/0SgUCmFubl5u62V9fX2OI1dsYrEYe/bswdKlS5GdnQ03NzcsWrSI5RgZq2z+ZsUAB0QiEXbt2gUvLy/k5eVh/vz5WLhwIbS0tLgOTSkREXbv3o05c+agTZs2CAkJYfupMxV68uQJnJycEB8fj++//x6ampqIjIzEo0ePUFBQAABo2rQprK2tyxQJrVu3Bp/P5zh6xZKbm4s1a9YgMDAQ2traWL58OSZPngyhUMh1aEqBDRPIIYlEQmfPnqW2bdsSj8ejcePG0cuXL7kOS6nl5OSQq6srAaApU6bU2Da4jOIrKCigKVOmEAAaOXIk5eTkkEgkoqdPn9KRI0fI09OTvv32W2rSpIl0mEFLS4u6du1KM2bMoO3bt9OdO3fYKoVKevnypXQIr23btnT27Fk2yVAG2GoCORMREUGOjo4EgHr27EkPHjzgOiSlFx4eTm3atCEtLS0KDg7mOhxGQQUFBZGWlhaZmJhQeHj4B5+TmppKFy5coDVr1tCoUaPIwsKCBAIBASA+n09mZmY0YsQI8vX1pT///JNev35ds29CgTx48IB69uxJAMjR0ZEiIyO5DkmhsWJATiQlJdHEiROJx+ORiYkJnTx5klW71UwikdCWLVtITU2NbGxsKDY2luuQGAUXExNDNjY2pKamRlu2bKnU73BhYSHdv3+fdu3aRbNnz6bu3buTtra2tBehUaNG1LdvX1q4cCEFBwfT48ePqbS0tAbejfyTSCR08uRJMjExIR6PR5MmTaLk5GSuw1JIrBjgWF5eHnl7e5OGhgbp6enRxo0bP7r5CSM7WVlZ9P333xMAmjVrFtt/npGZwsJCmjlzpvTcivd7FVSFWCymf/75h3799Vfy8vKi7777joyMjKQFQp06dahTp040efJk2rRpE924cYNycnKq4d0ohpKSEtq4cSPp6emRpqYmLV++nK0AqiK2moAjYrEYBw4cwJIlS5Ceno65c+di8eLFqFevHtehKb379+/DxcUF6enp2L17N5ycnLgOiVFCx44dw+TJk6Gvr4+jR4/KZJ18ZmZmuT0RHj9+jNLSUgBA69aty0xUtLGxQdOmTcHj8b742oogKysLP//8M3755Rfo6+vj559/xtixY9lkzUpgEwg5cPnyZbKxsSEA5OLiQs+ePeM6pFpBIpHQ+vXrSUVFhTp27Ej//PMP1yExSi4+Pp5sbW1JRUWFNmzYUC1Df8XFxRQREUH79+8nNzc36tWrF+nq6kp7EXR1dalXr17k5uZG+/fvp8jISKXf6vfZs2fSkydtbGzo8uXLXIck99gwQQ168uQJDRw4kADQV199Rbdu3eI6pFojMzOThgwZQgDoxx9/ZBvEMDWmqKiI5s6dSwBo6NChNXIQj0QiocTERDp16hStXLmShg8fTq1bty6zaZKNjQ2NHz+e1q1bR1euXFHKA4L+/vtv6tKlCwGggQMH0pMnT7gOSW6xYYIa8ObNG3h7e2P79u0wMjKCn58fnJycak3XHdfu3LkDFxcXZGdnY9++fRg8eDDXITG10O+//44JEyZAR0cHR48ehZ2dXY3HkJOTg0ePHkmHGCIiIvDo0SMUFRUBAIyMjMoNM7Rs2VKhP6uICMeOHcOiRYuQmJiIadOmwdvbGw0aNOA6NLnChgmqUWFhIa1evZrq1q1LOjo6FBAQwO5Ia5BYLKaAgAASCoXUpUsXevHiBdchMbXc8+fPyc7OjoRCIQUEBMjFiqHS0lJ6/PgxBQcH08KFC6lv377UsGFDaS9C3bp1yd7enmbPnk27du2i+/fvK+SE26KiIvL39ycdHR2qW7cu+fn5KeT7qC5smKAaSCQSCg4OpubNm5NQKKQffviB0tPTuQ6rVklPT6cBAwYQAJo/fz5bocHIjeLiYnJ3d5d2XcvrZ8Pr16/pzz//pNWrV9OIESPIzMyM+Hw+ASCBQEAWFhY0atQoWrNmDV24cIFSU1O5DrlS3rx5Q3PmzCGhUEjNmzenw4cPy0VRxjU2TCBjN2/exLx583D37l0MGTIEfn5+MDEx4TqsWuXmzZsYMWIECgsLsX//fgwYMIDrkBimnDNnzmDcuHHQ1NTE4cOH0a1bN65D+qSCggJERUWVWc0QGRmJ/Px8AECTJk3KDTMYGxvL5TkqsbGxWLhwIU6ePAk7OzusXbsWXbt25TosztTKYYK8olKKSsqisIRMikrKoryiL9/AIz4+npycnAgAdejQga5evSqDSJmqEIvF5OvrSwKBgLp37862cGbkXmJiInXr1o0EAgH5+vqSWCzmOqQqE4vFFBsbS8eOHaOffvqJBgwYQE2bNpUOM2hoaFCXLl1o2rRptHXrVrp165Zc7QFw5coV6tChAwEgJycnio+Pl0m71ZFnqlOt6RmIS81F0J1EXIlJQ2JmAf79ZngAjHQ10Mu0IUbZGaFNI+1Kt/v27VusWrUKGzduRKNGjeDj44NRo0axda01LC0tDWPHjsX58+fh6emJFStWsANMGIUgEong5eUFX19f9OvXDwcOHFCKyW3p6enSnoP3PQlPnjyBSCQCj8dDmzZtyvQg2NjYoEmTJpxMVpRIJAgKCsLixYuRmpqKOXPmYMmSJahfv36V2qmuPFMTlP7UwpeZBVj82yOExqdDwOdBLPn423j/uL2xPnyGWqKZrsZHn1tSUoKtW7dixYoVKCkpwaJFi+Dm5gYNjY+/hqke165dg6urK0QiEQ4ePIhvvvmG65AYpsrOnz+PMWPGQEVFBYcPH4aDgwPXIclccXExoqOjywwzREREIDs7GwDQoEGDcic8mpqaQkVFpUbiKygowLp16+Dr6ws1NTV4eXlhxowZUFVVrfB11ZVnapJSFwNH7iVi2anHEEmowm/Ofwn4PAj5PCz/zgIjOhmVeYyI8Pvvv2PhwoV49uwZJk+ejOXLl6Nx48ayDp/5BLFYDB8fH3h7e8PBwQFBQUEwMDDgOiyG+WzJyckYOXIkQkNDsXz5cnh6esrleLssERESEhLK9CBERkbi+fPnAAA1NTW0a9euTJFgZWUFHR2daospJSUFXl5e2L17N1q1aoU1a9ZgyJAhH+y1qI48wwWlLQY2XYlDwIXYL25nfl8TzO7VBsC7bWznzZuH0NBQ9OvXD/7+/mjXrt0XX4OpupSUFIwePRp//fUXli5dCi8vL6X/0GRqB5FIhJUrV2LlypX4+uuvcejQoVp5s5GVlSXdevl9oRAVFYWSkhIAQMuWLcsNMxgZGcl0mCEqKgrz58/H+fPn4eDggMDAwDLbSldHnuGKUhYDR+4lYtGJR+W+Xvw6FvmPLqMo8RFE2angq9eFmoEp6jmMgYqu4UfbW9jTEH8fDEBQUBDatWuHwMBA9O3btzrfAlOBy5cvY9SoUQCA4OBgfP311xxHxDCy9++f86CgIPTu3ZvjiLhXWlqKmJiYcsMM6enpAIB69eqVG2Zo27Yt1NTUvui658+fx/z58xEVFYVRo0bBx8cHf6fig3mm5E0Csm8EoyQlHuL8LPBU1KCi1wx17YZBo83HN5ryG2YJFw57CJSuGHiZWQDHdddQLJKUe+zNbz4ofvUEGmbdodKwBcR5b5EbdgZUUoTGYwOg2qDFB1okkKgEJb95YYXHXEycOJHdgXJEJBJhxYoVWLVqFXr37o1Dhw6hUaNGXIfFMNWG9YB9GhEhOTm53DBDXFwciAhCoRBt27YtVyTo6elV6ToikQh79+7F0qVLkUtqaDxxI8Qo/70o/Ocecu6fhpqhGQRauqDSYhTE/I3iV4+h2282tG36fbB9NSEfl9x6cDaHQOmKgTG77+DvZxkfHLspevUEak2MwRP8/2SU0swkJO+eDU2zbtAfNP+DbfJA6NKyPg5Plf91wMoqOTkZrq6uuHHjRq0ZS2UYoOzcGHt7ewQHB7O5MZWQl5dXbuvlhw8forCwEADQtGnTcnsitGrV6pMrwXJzc9HX5xSSJdrg8Sv3GUQSMV7v+xEkKoXh1G0ffI6Az0PXVno4OKnmt6kGKp+/FWKNVlxqLkLj0z/6eJ2m5uW+pqJrCFV9I5Smv/zo6wg83Hqehfi0XBg3lK/lILXBuXPnMGbMGKiqquKvv/5Cjx49uA6JYWqMQCDA0qVL4eDggJEjR8LGxoatmqkELS0tfPXVV/jqq6+kXxOLxYiPjy/Tg7B79268fv1a+horK6syRUK7du3KrBJLKQBeox54VVg9zuMLINTWR3FK3EefI5YQQuPT5T7PKEQxEHQn8ZPLOv6LiCAuyIKKfsVjNQI+D4duJ8L7O4svDZOpJJFIhKVLl2L16tVKtf6aYT5Hjx49EBERgTFjxqBfv35YtGgRVq5cyfbTqAKBQABTU1OYmprCxcVF+vW0tLQywwzXrl3D9u3bIRaLwefzYWpqKi0OnmpaQsADxJ9IM5KSIpCoGJLiAhTG3UHhswfQMLevOD4FyDMK8dN2JSatSoUAAOQ/vgpxbgbqdR9V4fPEEsKV2DR4Q36/Scrk5cuXcHV1xe3bt7F69WosWLCAbeTE1HoNGjTAH3/8gTVr1mDJkiUIDQ3F4cOH0axZM65DU2gNGzZEnz590KdPH+nXCgsL8fjx4zLDDGfOnIH2yECo1P/0MM3bv3YhL+Lcu//h8aFh8hV0+86o8DWKkGfkvhjIKxYhMbOgSq8pzXiJzItboWZoBk3LT8/UTcwoQH6xCJpqcv/PodD+vWf79evXa/V+4QzzX3w+H4sWLYK9vT1GjBgBGxsbHDhwgJ3BIWPq6uro2LFjmaWEOYUlsFpxsVKvr9tpMDTMukOcm4GCpzdAJAHEpZ98nbznGbm/JUvIyEdV+gTEeW+Rdmw5+Gqa0B/iWamJIATgRUb+Z8fIVKykpATz58/HoEGD0K1bN4SHh7NCgGE+olu3boiIiEDXrl0xcOBALFiwAKWln042zOd7+baw0s9V0WsG9RY20LLsjYbfLwOVFCHt+Ap8ai6+vOcZuS8GSj6wlPBjJEX5SA1ZBklRPho6L4dQu/JLTKpyHabyXrx4AQcHB2zYsAGBgYE4efJklZf+MExto6enh1OnTiEwMBDr16+Hvb09EhISuA5LaX3J57+GWTeUvI6DKDOpWq9T3eSzv+JfVIWVq1dIVIK04ysgepuERiNWQfUTEwf/a4W3F7pbtJBOJtHX1/+ccJl/+f333zFhwgTo6Ojgxo0bsLPjZmkNwygiHo+HefPmoVu3bnBxcYGNjQ327t2LIUOGcB2awktPTy8zZ+DBs1TAYe5ntUWlxQAASfGn7/orm8+4IPfFQAs9TfCACocKSCLGm9/9UJz8FA2HL4GaYfmlhhUiQnJsJLyO7kFBwbv5CYaGhuW2xGzdujWb7FYJxcXFWLhwIX755RcMHToUu3fvrvIpYQzDvGNnZ4fw8HBMnDgRQ4cOxdy5c+Hn5/fFu+/VBhKJBP/880+5nQ2Tkt7dxWtoaMDa2hrdrDvgIgjvziD8MHF+FgSa9cp8jcQi5Ef9BZ5Q7ZMr13h4l8/kldwXA5pqQhjpaiChgkmEb//ajcL4O1A37gxxYR7yoq6UeVyrXa8Kr9FcXxPXblyHWCyW/uC8/6HZt28fkpOT38WiqSldq/q+SLC0tGQnGv7LP//8AxcXFzx69Ai//PILZs+ezcnRpQyjTOrXr48TJ05g48aNmD9/Pm7cuIGQkBC0atWK69DkRkFBwQc3I8rPf3fHbmBgABsbG4wbN076+d26dWvpJmc9/K9UmGcyzm0ClRRArVk7CLT1IM57i/zoqxBlvEL9ryeBr6peYXxGehpyO3kQUIBiAAB6mTbEwTsJH11eWJL6DABQGH8XhfF3yz1eUTEg4PPQy6Thu/8WCGBiYgITExM4OztLn/PmzZsya1VDQ0OxY8cO6VpVExOTcltiNm7cuNYlwWPHjmHy5MnQ19fH33//DVtbW65DYhilwePx8MMPP6Br165wcXFB+/btsXv3bjg5OXEdWo0iIqSkpJRJ+hEREYiLi4NEIoFAIIC5uTlsbGwwbNgw6Wfyp/Yy+VSe0TS3R97Di8gN/wOSwlzwVdWh2tgY9XtOqPBsAqBsnpFXCrEdcVxqLvqsv15t7V9yc6jyzlBFRUV4/PhxuX2zc3JyALxb3/rfYQYTExOl3EikqKgI8+bNw9atW+Hs7IwdO3ZU6zGkDFPbZWdnY8qUKTh27BhmzpyJwMBA1KlTh+uwZE4kEiE2NrZcN39aWhoAoG7duuU+Z9u2bftZ/xbymGdkoVadTfC5ZL1nNBHhxYsX5SrW97OA69Spg3bt2pXpQbCysuL8WOgvERsbC2dnZzx9+hTr16/HtGnTal2PCMNwgYiwbds2uLm5wdzcHCEhIWjThtvjcr9ETk7OB482LioqAgA0b9683JkDLVq0kOnnjSLkmapSumKgolMLP1dNnSb19u1b6Q/5+x/0qKgo6drh1q1blxtmaNasmdwn1eDgYEybNg0GBgYICQmBtbU11yExTK0TEREBZ2dnvH79Gjt27ICrqyvXIVWIiPDy5csyN0wRERF49uzdcK+qqiosLCzKJH0rK6samYSsyHnmY5SuGACAI/cSP3jO9Ofi8pzpkpISPH36tNwvRGZmJoB3E4b+2/1lbm4OVVVVTuL9t4KCAsydOxe7du3CqFGjsHXrVmhry+8BHAyj7HJzczF9+nQEBwdjypQp2LBhA9TVK57QVhNKSkrw5MmTct38b9++BQDo6upKP9/e/zEzM4OKisonWq4+ypRnACUtBgBg05U4BFyI/eJ2FvQ1xaxexjKISHaICElJSeV+ceLj4wEAKioqaNu2bZkeBGtra+jq6tZYjE+ePIGzszP++ecfbNy4ERMnTpT7HgyGqQ2ICHv27MHs2bNhbGyMY8eOwczMrMaun5mZKf3Mev93dHS0tAfU2Ni4XDe/oaGhXH5+KFOeUdpiAHhXuS079RgiCVVpbEfA50HI52HFdxacVmpVlZubK10y8/4X7eHDh9KxNCMjo3LDDC1btpT5ngj79+/HzJkz0bx5c4SEhKBdu3YybZ9hmC8XFRWF77//HomJidi6dSvGjh0r0/YlEgmeP39erlfz5ct3x8XXqVPng0uwFa33UFnyjFIXA8C7sZ3Fvz1CaHz6J483fv+4vbE+fIZacjZ2I0sikQhxcXHlVjOkpKQAALS1taW/iO//trCw+Kyuw/z8fMyaNQv79+/H+PHjsWnTJmhqyu/mGQxT28nqd/bfJ/y9/4yJjIxEbm4uAKBx48ZlbkRsbGzQpk0b6dp9RacMeUbpi4H34lJzEXQnEVdi05CYUVBmp0Ie3m300MukIUZ3MeJkWUdNS0lJKddVFxMTI11/+/787n8XCQ0bfnz9a3XfZTAMU32q0puXlpZWbiXU06dPIZFIwOfzy312vN9PpTZQ5DxTa4qBf8svFuFFRj5KRBKoCvlooacp1zs+1ZSCgoIPVvd5eXkAgCZNmpQbZjA2Nsa+ffswZ84cGBsbIyQkBObmVdzmmWEYzkVHR8PFxUU6z2fcuHGIj48v16v4+vVrAICWlpY02b//TLCwsGA7rf6PouWZWlkMMJUnkUjw7NmzcuN+r169AvBuN0axWAwzMzNMnz4dnTt3hqWlJbS0tDiOnGGYysrLy8OjR49w9+5dbNu2DU+fPpX+bgNAs2bNyt0ItGrVip3BokRYMcB8lqtXr2LMmDFIS0uDnZ0dsrOzER0dDZFIBB6P98EZwQYGBnI5I5hhagsiQnJy8gdXIhERhEIh2rZti7p16+LevXto0KABDh06hB49enAdOlPNKpu/5bdvg6lR/93N7PLlyzAxMQHw7hTC/64V9vf3R1ZWFgBAX1+/3CQiU1NTTtcKM4yyKi0tLbdHSWRkJNLT0wEA9erVg42NDQYMGCD9vTQ3N5eecvh+19BvvvmG7RrKSLGeAQbZ2dmYOnUqQkJCKr3POREhMTGx3DDD8+fPAbzbRez91sv/XtXAzixgmMrLzs4ul/SjoqJQUlICAGjVqlW5bn4jI6NPJvf/nieyc+dO9tmupNgwAVMpDx48gLOzM9LT07Fr1y58//33X9Rednb2B/cXLy4uBgC0aNGi3DBD8+bN2Z0JU6sRERISEsrN5n/x4gUAQE1N7YPnmnxpcR0SEoIpU6agQYMGOHr0KDtpVAmxYoCpEBFh06ZNmD9/PiwtLXH06FG0bt26Wq4lEokQExNTpgchIiJC2q2po6NTbpihbdu20m5NhlEmxcXFHzzxNDs7G8C7Ybf27duX+Z0wNTWtthNP//nnH7i4uODRo0cICAjA7NmzWXGuRFgxwHzU27dvMWnSJPz222+YO3cu/Pz8ajzxEhFev35d7k4oLi5OOuHp/Znk/x5m0NfXr9E4GeZLpKenl0v6T548kU7INTExKdfN36RJkxpPxsXFxVi4cCF++eUXDBs2DLt370a9evVqNAamerBigPmgO3fuYMSIEcjKysLevXsxZMgQrkMqIz8/X7r18vsP0YcPH6KgoAAAYGhoWKYHwdraGq1bt2ZLoRhOSSQS/PPPP+WK26SkJACAhoaGdIve9z+3lpaWcreT52+//YaJEyeiXr16OHr0KDp37sx1SMwXYsUAUwYRYe3atVi0aBFsbW1x5MgRtGjRguuwKkUsFks/aP/9YZucnAwA0NTULLdJSrt27dgmKUy1KCgowKNHj8ok/YcPHyI/Px8AYGBgUKZHy8bGBq1bt1aYLXpfvHgBFxcXhIWFwc/PD25ubmzYQIGxYoCRysjIwPjx43HmzBm4u7vDx8dHLo5C/lJpaWnS3RT/vX2qWCwGn8+HiYlJuQ/l2rJ9KiMbKSkpZea5REZGIjY2Vrq9t7m5eblu/gYNGnAd9hcrKSnB4sWLERgYiEGDBmHfvn01ejoqIzusGGAAADdv3oSrqyvy8/Oxf/9+DBw4kOuQqlVRUZF06+V/n9GQk5MDAGjYsGG51QwmJibVNjmLUQwikQixsbHluvnT0tIAAHXr1v3gwV+fWoKr6E6fPo3x48dDU1MTR44cQdeuXbkOiakiVgzUchKJBGvWrMGSJUvQpUsXHD58GM2aNeM6LE4QEV68eFFumCEhIQHAuyNXLS3/r707j4ryvPcA/h1WFRRZhAqIKLKv4aa1aaK5aprtZKlpZJVQlyaxxiQ2moqnuNBoYo6J8WoTE667qJAcm9ucnNpcranVXE3jieyyiaIiIgwwwyDM9t4/7ExneFEwLO/MvN/POTmeMDDzg1me3/t7nuf3xFtd4SUkJNjdkas0MCqVCiUlJVaDfllZmflI8MmTJ4sqSqGhobItlV+5cgVpaWk4e/YsNmzYgJUrV3KNjh1hMiBjN2/exAsvvICjR48iJycH69evZzfAPrS1tYmmGcrLy6HT6QAAYWFhokEhODhYtoOCvREEAVevXhUlgXV1dQAAV1dXxMXFiZJAb29viSO3PTqdDmvWrME777yDJ554Anv37nWI6RA5YDIgUydPnkR6ejp0Oh3279+Pxx57TOqQ7IpWq8WFCxdE5WKlUgkA8PHxEZWLo6OjHWINhj3TarXmltmWz1tbWxuA289b7+mhqKgoPm/36OjRo8jKyoKbmxsOHTqEmTNnSh0S9YPJgMwYDAa8/fbbWLt2LWbMmIGDBw8iMDBQ6rAcgukKs/d+8draWgC3rzBjY2NFC8l4hTk8lEqlqKJTUVFhruiYDtOyfD6CgoJY0Rki165dQ0ZGBk6dOoX169cjJyfHbnZKyBGTARm5ceMGMjMz8be//Q25ubnIzc3lgrgRoFarRXPPpaWl5rnnkJCQPueeOd86MEajsc+1Hg0NDQBur/VISEiwqtRwrcfI0Ov1yMvLw1tvvYU5c+bgwIEDCAgIkDos6gOTAZk4fvw4MjMzAQAFBQWYM2eOxBHJm16vR01NjahcfePGDQC3V6X3bj4TFxfn8KvS+3Pr1q0+d4Go1WoAQEBAgKjMHx4ezqRXYseOHcP8+fOhUChQUFCA2bNnSx0S9cJkwMEZDAbk5eXhD3/4A2bPno0DBw5wD70Na2pqEk0zVFVVmferR0VFiaYZ/P39pQ57WJj6Q1j+LSz7Q0RGRoraUPO1bbuampqQmZmJEydOIDc3F2vWrOG0gQ1hMuDAGhsbkZmZiZMnT2LdunVYvXo133x2qKurC2VlZaJOdp2dnQCAiRMniqYZpk2bZjfPtcFgQG1trajMf/36dQCAp6enVZXEtHefnSPtj8FgwMaNG7Fu3TrMnDkTBQUFXLNkI5gMOKi//vWvyMrKgqurKw4ePIiHH35Y6pBoCBmNRly8eFE0gF69ehXA7R738fHxoh73np6eksbd2dkpOlOitLTUfKZEcHCwqMw/depUrp9wMF9//TUyMjKg1+tx4MABPProo1KHJHtMBhyMXq9Hbm4u3nnnHTz22GPYv38/9/nKSGtrq6i0XlFRYT79Ljw8XDTNEBgYOOQr6AVBQGNjo1Us58+fR21trfm0yZiYGFGZ39fXd0jjINvV3NyMrKwsfPXVV8jJyUFeXh7XdkiIyYADuXLlCtLT03HmzBm89dZbePPNN3lFRejp6UFFRYUoSWhvbwcA+Pn5ia7GIyMjB9yASqfToaqqSlSlaGlpAQCMHz/eKgEx9VwY6eOwyfZYdkB94IEHcOjQIQQHB0sdliwxGXAQX375JV544QWMGTMGhw8fxoMPPih1SGTDBEFAQ0ODaACvr68HALi7uyM2NtYqSUhMTAQA0d79srIyaLVaAMCUKVNEiUVISAj37tNdnTp1Cunp6bh16xb27duHJ598UuqQZIfJgJ3T6XRYvXo1Nm/ejKeeegp79uxhqZV+sI6ODpSUlOD777/H6dOnce7cOVy6dAkGg8Hq+5ydnREaGork5GQ89NBDuO+++5CQkAAvLy+JIid719raiuzsbHz55ZdYuXIlNmzYwPboI4jJgB27fPkyUlNTce7cOZ4nTj+YaRqhd5Wgo6MDAODr64vw8HDz0bRKpRK1tbV9TgOY/o2JieE0AN0zo9GILVu2YNWqVbj//vtx+PBhTJ48WeqwZIHJgJ36/PPPsWDBAnh5eaGwsBDTp0+XOiSyAy0tLaIyf2VlpdUCw95l/okTJ4qSTEEQcP36dVECUVNTY14gGB0dLbovVq1oIM6cOYO0tDSoVCrs3r0bzz77rNQhOTwmA3ZGq9XizTffxNatW/GLX/wCu3btYm97EjEajairqxMtGrTcemjZojcpKQnx8fHw8PAY1ONqNBrz1kHTY5aUlFhtHey9mJBbB6kvbW1tWLhwIT7//HO89tprePfdd3lg1DBiMmBHLl68iNTUVBQXF2Pz5s1YtmwZpwXI3JSo9wBsakoUGBgo2k44kk2JTE2Fem8z7KupkCnOuLg4NhUiCIKAbdu2YcWKFUhMTERhYSGmTp0qdVgOicmAnfjss8+waNEi+Pn5obCwEPfff7/UIZEEmpqaROcZVFdXW7Ur7r0DwFbbFVu2Gzb9a9luOCIiQjTNwHbD8vTdd98hNTUVLS0t2LVrF375y19KHZLDYTJg47q7u/HGG2/gww8/xLx585Cfn88V2zKg1+tRXV0tKvObDjIaO3asqAVxbGys3R9k1N3dbT6IyPL3tjyIqPc0Aw8ikoeOjg4sXrwYn332GZYuXYrNmzfb/evdljAZsGE1NTVISUlBZWUltmzZgpdffpnTAg7IdMSx5eBnecTx5MmTRWV+OR1xbHlEsWVyZHlEsan1sunvxCOKHZMgCNixYweWL1+OmJgYFBYWIjw8XOqwHAKTARt16NAhvPjii5g4cSKKioqQlJQkdUg0SIIg4OrVq6JBra6uDgDg6uraZ6MfLhDtW1tbm2iaoby8HDqdDgAQFhZmVUFITExEcHAwE2oHcP78eaSkpOD69evIz89HWlqa1CHZPSYDNubWrVt47bXXkJ+fj4yMDOzYsYNXOHZIq9WisrJSVOZXKpUAAB8fH1GZPyoqiqulB0mr1eLChQuiaQb+3R2PWq3GSy+9ZL5w+uCDDzB69Gipw7JbTAZsyIULFzBv3jzU1tZi+/btWLhwIa9i7IDlFapp8OEVqu24l4qMZfMkVmRsnyAI2LlzJ5YtW4bw8HAUFRUhKipK6rDsEpMBG7Fv3z4sWbIEISEh+PTTTxEXFyd1SNSLIAior6/n3LWDUKlUfR6nbFqrERISItrNMGXKFCZxNqi0tBQpKSm4cuUKPvroI2RlZUkdkt1hMiAxjUaDV155BXv27EF2djb++Mc/DrrxCw1ed3c3ysrKrAb9kpISqFQqAIC/vz/uu+8+q3IzV7Xbv752cZw/fx7Nzc0AgHHjxpnXcjjSLg5H0NnZiaVLl2Lfvn1YsGABtm3bxs/Se8BkQELl5eVISUnBpUuX8OGHHyI7O1vqkGSpv/3ukZGRotX83O8uLwPt72D5OpkwYYLUYcvSnj17sHTpUoSGhqKoqAixsbFSh2QXmAxIQBAE7Nq1C8uWLUNYWBgKCwsRExMjdVgOz9QJr/eHuqkTnoeHh+jAHXbCozux7PxomUxqNBoA0nd+lLOKigqkpKTg4sWL2L59OxYsWMDpnX4wGRhharUaS5YsQUFBARYvXoytW7dysBkGnZ2dKC0ttRr0S0tLrXrk976SY498GiypzoQgsa6uLrz66qvYuXMn5s+fj48++gienp5Sh2WzmAyMoOLiYqSkpKCxsREff/wxMjIypA7J7g3k9LyYmBirK/7ExET4+flJHTrJyEBPi7RMEvo6LZLuXUFBAV566SUEBQWhqKgIiYmJUodkk5gMjABBEPDxxx/j9ddfR1RUFIqKihARESF1WHZHp9OhqqpKVOZvaWkBAHh5eYlWf8fExMDd3V3iyInEenp6UFFRIXo9d3R0AAAmTJggmmaIjIyEq6urxJHbn+rqaqSkpODChQvYunUrXnzxRSZavTAZGGYqlQq//vWvUVRUhCVLluD999/nyuMB6OjoELXoLSsrQ09PDwBgypQpoiupkJAQvsHJrgmCgMuXL4umGerr6wEA7u7uiIuLs3rdJyQk8LySAeju7sby5cuxY8cOpKam4pNPPuE4ZYHJwDA6d+4cUlNTcfPmTeTn5yMlJUXqkGyOIAhoaGgQlflNH35ubm6Ii4uzujpKSEjA+PHjpQ2caAS1t7ejpKTEKkkoKyuDVqsFwOT4XhQVFWHx4sXw9/dHUVERkpOTpQ7JJjAZGAaCIGD79u1YsWIF4uPjUVhYiLCwMKnDklxfZdHi4mK0t7cDAPz8/ERlfpZFifpmOW1m+Z4yTZuNHz9eNM3AabPb6urqkJKSgrKyMrz33ntYunSp7BMnJgNDrL29HYsWLcKRI0fw6quv4t1335Xlm6+1tVXUuIULpoiGlyAIaGxsFE0z3GlBrek96OvrK3XoI66npwcrV67Etm3b8Nxzz2Hnzp2yrjgyGRhC3377LVJTU9He3o5du3Zh7ty5Uoc07IxGIy5evCi6OrHcSmVq0Wv6Ly4ujlt8iEbQQLfaWiboctlqe+TIESxcuBDe3t4oLCzET37yE6lDkgSTgSEgCAK2bNmC3/3ud0hOTkZhYSFCQ0OlDmvImZqs9G7R29nZCQCYOHGi6AOFTVaIbJNlEy7LRN7UhMvT0xMJCQlW72lHbcJVX1+PtLQ0fP/999i0aRNef/112VUpmQwMklKpxK9+9St88cUXeOONN7Bx40aHOA61qalJVGqsqqqyar/au9To7+8vddhENEiW7blN7305tOfWarXIycnB+++/j2eeeQa7d++Gj4+P1GGNGCYDg/DNN98gLS0NGo0Ge/bswdNPPy11SPfMYDCgurpadHVw48YNAMDYsWNFb/zY2FieG04kI7du3UJ5eblo8a9arQYABAQEiKqCERERdlkV/OKLL5CdnQ1PT08UFhbigQcekDqkESHLZEDTo8elVg20eiPcXJwQ6usBD/eBnzZnNBqxefNmrF69GtOnT8fhw4cxadKkYYx4aKjVatH2pP6ObA0NDZXFvCER3Ruj0YhLly6JLiRMR3qPHj26z23B9nCkd0NDA9LT03H27Fls3LgRK1asuOfPwcGOMyNNNslAzQ01Cs424ERVMxqUXbD8ZRQAQnzGYFakPzKnhyA84M4v1ps3byI7Oxt/+ctfsGrVKuTl5dnc1jdBEHD16lVRqa+2thYA4OrqitjYWFHjEjmVxIhoeCiVSlHDsPLycuh0OgDAtGnTrD57kpKSEBQUZHNz9DqdDrm5udi0aROeeOIJ7N27t9+TKIdqnJGCwycDV5RdWP2nUvyjtgXOTgoYjHf+NUy3z5jmh41z4zHJx3qhzMmTJ5Geng6tVov9+/fj8ccfH+7w+6XT6VBZWSnKzpVKJQDA29vb6k2XmJiI6Ohoh1jXQET2QavVorKyUrTduK2tDQDg4+MjqkpGR0fbxIXW0aNHkZWVBTc3Nxw+fBgzZswQfc9QjjNScehk4PA/G7D2z+XQG4W7Pjm9OTsp4OKkwPpnYpH24xAYDAa8/fbbWLt2LR566CEcPHgQQUFBwxh539ra2kSHnVRUVJi7kIWFhYneUMHBwTaXcRMRmSqYvS9k6urqANzuPhoTE2P1mZaYmAhvb+8Rj/XatWvIyMjAqVOnkJeXh5ycHPO0wVCNM1Jz2GRg+4kabP6qetD38/LPAnH8v97E8ePH8fvf/x5r1qyBi8vwzvsIgoD6+npRmf/y5csAgFGjRiE+Pl50DKrUf3MiosFSqVQoLS21qiCUlZWZ1zZNnjxZNM0QGho67Bc9er0e69evx4YNG/DII49g//79+LRCNSTjzIpHI/DKrPAhiPKHc8hk4PA/G7DqSOmQ3Z/u1G7sXfsyHnnkkSG7T5Pu7m7zKl3ToF9cXAyVSgUA8Pf3F5X5IyIihj0hISKyFXq93rzryfIiqbm5GQAwbtw4q2PKk5KSEBsbOyyHwh07dgyZmZlwiXwYrg9mD9n9bnouHqkSVggcLhm4ouzCI1v+jh69sc/bBb0O7f84AE35CRi7O+E6IRTjZ2Zh9JT7+r5DQYC7ixOO/fY/Bz23c/PmTdGL2XL/bkREhKjM7wj7d4mIhkNTU5NomqGqqgqCIJj7ofS+mOpvEeBAnLtwCc/vPg+jwqXPioRRewuqs0fQ01gF7fVqGLs74fvk6/BMuPMFpbuLE44tf1iyNQQOlwxk7TyLby623nHu5ub/vIuuqtMYd/+zcPEJhKb0GHqu1yAgfSNGTYrt82ecnRT42VRf7F80fUAxGAwG1NXVWZW5iouL0djYCADw8PAwz39Ztuh1xM5eREQjydQp1fLzt6SkBBqNBgAQGBgoOhclLCzsnnoi9DfO6Ntv4NqORXAeNwEu43+EnobSfpOBex1nhppDJQM1N9T4+Qcn73h7T2MVmva9gfGzFsJr+nMAAEGvReN/L4Wzhxd+lLX5rvd/bPlMTPO33g6i0WjM81umzLSkpMTc8zsoKEiUmYaFhXHvPhHRCDEajeYLNMvK7LVr1wDcPkPF1HrZlCTEx8fDw8NDdF/9jTPA7Qq0sbsTzp7e6Lleg6a9y/tNBkz6GmdGwkDHb7uYoC4423DXbR1dVacBhRPGJv17S6DCxQ2eiT9H+9/3Qa+6CZdxfZeQnJ0U2HG8ErO9WqxeTJangUVHRyMpKQnPP/+8+UXl5+c3LL8rERENjJOTE8LDwxEeHo558+aZv97S0mLVUfH06dPIz8+HwWCwOl3VMkk48J2y3+2DChdXOHve+64HZycFDpxpwLpn+q5S2wK7SAZOVDXf9QnS3rgIV58gOLlbl+PdJkaYb79TMmAwCjj0dTHe++RFeHl5ISkpCY8//jhWrVqFpKQknhNORGRn/Pz8MGfOHMyZM8f8te7ublRUVFhd9G3atAkdHR0AgEm/2QmncQHDEo/BKOBEdTPWgcnAD9bZo0eDsuuu32PoVPaZrTl7+phvvxtXn4kor65F9LSp3LtPROSARo0aheTkZCQnJ5u/JggCLl++jDPnzmPVd8M7HDa0dkHTo7fZ1sU2P8F9uVWD/hY1CHot4CzuaKVwcfv37XelgODhx0SAiEhGFAoFQkNDEf/ALNxuLDx8BACXWjXD+hiDYfPJgPYOWwktKVzcAINO9HVTEmBKCgb7OERE5HhG6vPflscZm08G3Fz6D9HZ0weGzjbR103TA6bpgsE+DhEROZ6R+vy35XHGdiP7l1Bfj36LN27+U6FTXoOxx3ptgbbxdjtJt4Cpd/15xb8eh4iI5Gcg48xg2fo4Y/PJgIe7C0L66dw0JupBQDBCff6o+WuCXofO0v+FW2DkHXcSmIT4jrHZRR1ERDS8BjLODJatjzO2G5mFWZH+2H/28h23F7oHRmJM1ENo//teGLva4eIdCE3pceg7mhHwxGt3vW9nJwVmRfgPR9hERGQn+htnTFTnvoCxW2Oehr5V+y306hYAwLj/eBpOo8RX//YwzthFMpA5PQR7/u/SXb/H76nfov3kAWjKTsDQ3Qk3/1D4P78Go0Li7vpzBqOA+T+V/phJIiKSzkDGGQBQnf0TDKpm8/93VX8DVH8DAPCMndVnMmAP44xdJAPhAWMxY5rfXXtGK1zc4D17IbxnLxzw/Zp6RkvRIpKIiGzHQMYZAAj+za57ul97GWdsfs2Ayca58XBxGtolHi5OCmycGz+k90lERPZJzuOM3SQDk3zGYP0Q93XOeyZWsmMliYjItsh5nLGbZAAA0n4cghWPRgzJfa18NBKpP7btORwiIhpZch1n7GLNgKVXZoXDz9Mda/9cDr1R6HflpyVnJwVcnBTIeybWbp4gIiIaWXIcZxSCIPT7Ww70POSRdEXZhdV/KsU/alv6PXbSdPuMaX7YODfeLko2REQkLUcYZwY6ftttMmBSc0ONgrMNOFHdjIbWLqtDjRS43ehhVoQ/5v80xOZXcxIRke2x53FGNsmAJU2PHpdaNdDqjXBzcUKor4dNd3wiIiL7Ym/jzEDHb9v9DX4AD3cXxAZ6SR0GERE5KEcdZ+xqNwERERENPSYDREREMsdkgIiISOaYDBAREckckwEiIiKZYzJAREQkc0wGiIiIZI7JABERkcwxGSAiIpI5JgNEREQyx2SAiIhI5pgMEBERyRyTASIiIpljMkBERCRzTAaIiIhkjskAERGRzLkM5JsEQQAAqFSqYQ2GiIiIho5p3DaN43cyoGRArVYDACZNmjTIsIiIiGikqdVqeHl53fF2hdBfugDAaDSisbERY8eOhUKhGNIAiYiIaHgIggC1Wo3AwEA4Od15ZcCAkgEiIiJyXFxASEREJHNMBoiIiGSOyQAREZHMMRkgIiKSOSYDREREMsdkgIiISOaYDBAREcnc/wPcJ2zGj0mGaQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACysUlEQVR4nOzdd1iTd9cH8G8SNgKKuBARFVREBPeqe+/NlsRZt3XPOqt111mrrTU3S9x74MK9BwKKCCqiIntvkpz3jz7kLVUQFMjg97mu9+r7SJL7hJFz7vNbPCIiMAzDMAxTYfEVHQDDMAzDMIrFigGGYRiGqeBYMcAwDMMwFRwrBhiGYRimgmPFAMMwDMNUcKwYYBiGYZgKjhUDDMMwDFPBaRTnQTKZDFFRUTAwMACPxyvrmBiGYRiGKQVEhLS0NJiamoLPL/z+v1jFQFRUFOrUqVNqwTEMwzAMU37ev38PMzOzQr9erGLAwMBA/mKGhoalExnDMAzDMGUqNTUVderUkefxwhSrGMgfGjA0NGTFAMMwDMOomK8N8bMJhAzDMAxTwbFigGEYhmEqOFYMMAzDMEwFx4oBhmEYhqngWDHAMAzDMBUcKwYYhmEYpoJjxQDDMAzDVHCsGGAYhmGYCo4VAwzDMAxTwbFigGEYhmEqOFYMMAzDMEwFx4oBhmEYhqngWDHAMAzDMBUcKwYYhmEYpoJjxQDDMAzDVHCsGGAYhmGYCk5D0QGUpowcCSISMpArkUFLgw+LqvrQ11art8gwDMMokLrmGZV/B2ExafC+Hwn/0FhEJmaC/vU1HgBzYz10a1Qdrm3NYVXDQFFhMgzDMCqqIuQZHhHR1x6UmpoKIyMjpKSkwNDQsDzi+qr3iZlYfDwIN8PjIeDzIJUV/jbyv97J0gRrh9mijrFeOUbKMAzDqCJ1yDPFzd8qWQz4PozE8lPPIZFRkT+c/xLwedDg87BysA2cWpuXYYQMwzCMKlOXPFPc/K1ywwQ7/cOw6eKrb3qu9H8/1IXHghCfnoNp3axKOTqGYRhG1VXEPKNSqwl8H0Z+8w/ovzZdfIWDDyNL5bUYhmEY9VBR84zKdAbeJ2Zi+annhX49L/Ejkm96IefDC8iy0iEwrAb9Jl1g2HYY+Jo6X3zOslPP0aGBidKM7TAMwzCK87U8kxMdjuTrHsj5GAIA0DZtjCrdxkCrRv1Cn6MqeUZlOgOLjwdBUsi4jSQ1DtHcbOR8DIVBi4Go0nMCtGs3Rsotb8Sf3Fjoa0pkhMXHg8oqZIZhGEaFFJVncqLDEeM1H5LkaFTu6Ayjjk7IS4pCtM9C5CV8KPQ1VSXPqERnICwmDTfD4wv9ekawP2Q5GajltgFa1eoCAAzs+wIkQ0bwVUiz0yHQqfTZ86Qyws3weITHpsGyumouB2EYhmG+39fyTMpNL/A0tFDTfRMEuv9MxNO36YaovT8i+boHqg1f/MXnqUqeUYnOgPf9SAj4vEK/LsvNBAAI9CsX+HdBJWOAxwePX3jNI+Dz4HVPNcZ0GIZhmLLxtTyT/f45dCzs5YUAAGhUMoZOnabIfP0AstysQp+rCnlGJYoB/9DYIpd26JjbAgASzm1HbswbSFLjkBFyA2lPz8Gg5SDwtb48ZwD4p2rzfxVb6jEzDMMwquNreYakeeBpaH327zxNbUAqQV7cu0Kfqwp5RumHCdJzJIhMzCzyMbr1W8KokxtS7x7Gp/D78n837OCIKp1Hf/UakQmZyMiRqMWWkgzDMEzJFCfPaBqbIScqFCSTgscXAPinQMiJCgUASNISoF3E85U9zyhnVP/yLiEDxdnuQcOoBrTr2ECvUQcIdA2R+fohUu8cgkC/MgxbDiryuQTgwu3HqFdZs1RiZhiGYVTH2+S8r+YZgxb9kej3OxLObYdhuxEAyZBy5yCk6UkAAJLkFvl8AhCRkAEbU6PSCbqUKX0xkCuRffUxGS+uI/HCTphO3AMNQxMAgF6jDgARkq+Jod+kS4Fxni9xcXNH7qfSWVvKMAzDqA6tWg1RS7ilyMcYNO8PSWo8Uu8fQ0bwlX+eV9MKhu1GIPXOwSKHo/MVJ58pitIXA1oaX5/WkPbkHLRq1JcXAvn0LNsgI+gycmPeQNfCvsjX8PHyYJ0BhmGYCuhtch7mXCp8JUG+Kl3cYdh2OPLi3oGvrQ+t6hZIus4BADSMa3/1+cXJZ4qi9MWARVV98IAiWzjSzGTwv7B0kGTSf/6f/P8Wggegb8eWSjuWwzAMw5SdRjkSzL3kV6whaYFOJQjq2Mj/d3ZEAAQGJtCsalbk83j4J58pK+UtU/5HX1sD5l/ZuUmziilyY14jL/FjgX/PeHEd4PGhWc2iyOebV9VjhQDDMEwFpa+tAbPKX2/z/1dGyA3kfgqDYavB4PGKTqfKnmeUN7J/6daoOjzvvyt02Ydh2xHIevMY0V4LYNBywD8TCMMfIPvNY1Sy6w0Ng6qFvraAz0O3htXLKnSGYRhGSclkMly7dg1isRihcYbQbdZbvlLgv7Ijg5Fy+wB06jUHX9cQuVEvkR54GTr1W8Kg9ZAir6MKeUYligHXtuYQ340o9Os65k1Rc/RGJN/yQfqTc5BmpUGjcg1U7uz+z6zPIkhlBLd2ij9mkmEYhikfYWFh4DgOnp6eiIyMhKWlJUaP/hFHs75cCACAwKAqwOcj9f4xyHKz/pdjRsOwzdBCC4h8qpBnVKIYsKphgE6WJrjzJqHQ7oC2aSPUcFhZotcV8HnoUL+qUm8RyTAMw3y/5ORkHDp0CBzH4c6dOzA0NISjoyNEIhHat28PHo+H2H33cTs8DjJ8vhOhZpVaqOG4usTXVZU8o/RzBvKtHWYLjSK2ivwWGnwe1g6zLdXXZBiGYZSDVCrFhQsX4OzsjFq1amHy5MkwMDDAgQMHEB0djb1796JDhw7g8XjIzMwEPfCBJC8XoOJMJSweVckzKlMM1DHWw8rBNl9/YAmsGmyj9MdKMgzDMCXz4sULLFiwAObm5ujXrx+ePXuGFStWIDIyEhcuXICTkxN0dXXljw8JCUHbtm1x1GMvBptmA7zSu/FUlTyjEsME+ZxamyM+PQebLn7/5kDzejeCY2vlHsNhGIZhiicxMREHDhwAx3F4+PAhqlSpAmdnZ4hEIrRq1Qq8QhI8x3GYMmUK6tati4cPH6Jp06Zo7B9W4fKMShUDADCtmxVMKmlj+annkMioyIMl/kvA50GDz8OqwTYq8wNiGIZhviwvLw9+fn4Qi8U4ffo0pFIp+vXrh8OHD2PQoEHQ1i78tICMjAxMnToVHMdBKBRi165d0Nf/Zx+AiphneERfHxxJTU2FkZERUlJSYGhY9La+5eV9YiYWHw/CzfB4CPi8In9Y+V/vZGmCtcNsVaJlwzAMw3xZYGAgxGIxvL29ERsbi2bNmkEkEsHFxQU1atT46vODgoLg4OCAyMhI/P777xAKhV98nDrkmeLmb5UtBvKFxaTB+34k/F/FIjIhs8AOUjz8s9FDt4bV4dbOXOlnczIMwzBfFhcXBx8fH4jFYgQEBMDExASurq4QiUSwt7cv1msQEfbt24fp06fD0tIShw4dgrW19Vefp8p5psIUA/+WkSNBREIGciUyaGnwYVFVX6l3fGIYhmEKl5ubi7Nnz0IsFuPcuXPg8XgYOHAgRCIR+vXrB03N4p8nk5aWhkmTJsHHxwfjx4/Htm3boKdX8rt3Vcszxc3fyvsOvoG+tobSHg/JMAzDfB0R4cmTJxCLxThw4AASEhLQsmVLbNmyBc7OzjAxMfn6i/xHQEAAHBwc8OnTJ3h7e8PFxeWb41PXPKNWxQDDMAyjmvITtVgsxvPnz1GzZk2MGTMGQqEQTZs2/abXJCL88ccfmDVrFho3bozHjx+jYcOGpRy5emDFAMMwDKMQ2dnZOHXqFMRiMfz8/KCpqYkhQ4Zgw4YN6N27NzQ0vj1FpaSkYMKECTh8+DCmTJmCzZs3Q0en5IcRVRSsGGAYhmHKDRHh/v374DgOvr6+SE5ORrt27bBr1y44OjqiSpUq332NR48ewdHREfHx8Th06BBGjRpVCpGrN1YMMAzDMGXuw4cP8PT0BMdxCA0NhZmZGSZPngyhUIhGjRqVyjWICDt27MDcuXPRrFkzXLx4EQ0aNCiV11Z3rBhgGIZhykRmZiaOHz8OsViMK1euQEdHB8OHD8eOHTvQvXt3CARFn/ZXEklJSRg3bhyOHz+OGTNmYMOGDUVuOsQUxIoBhmEYptQQEW7dugWxWIzDhw8jLS0NnTp1wp9//olRo0aVyfL0+/fvw9HRESkpKTh+/DiGDh1a6tdQd6wYYBiGYb5bREQEPDw8wHEc3rx5AwsLC8yaNQvu7u5l1qonImzZsgULFy5Ey5Ytce3aNVhYWJTJtdQdKwYYhmGYb5Keno4jR45ALBbj+vXr0NfXx6hRo7Bv3z507twZfH7ZHYybkJAAkUiEM2fOYM6cOVi7di20tLTK7HrqjhUDDMMwTLHJZDJcu3YNHMfhyJEjyMzMRPfu3cFxHIYPH45KlSqVeQy3b9+Gk5MTMjMzcfr0aQwcOLDMr6nuWDHAMAzDfFV4eDg4joOHhwciIyNhaWmJRYsWYfTo0ahbt265xCCTybBhwwYsXboU7dq1w4EDB1CnTp1yuba6Y8UAwzAM80UpKSk4dOgQOI7D7du3YWhoCEdHRwiFQnTo0AE8Hq/cYomLi4O7uzsuXLiARYsWYeXKlSU6m4ApGisGGIZhGDmpVIrLly+D4zgcP34cubm56NWrF3x8fDB06FDo6uqWe0zXr1+Hi4sLcnNzceHCBfTp06fcY1B3rBhgGIZhEBISAo7j4OnpiaioKFhbW2PFihVwc3ND7dq1FRKTVCrF2rVrsWLFCnTq1Ak+Pj4wNTVVSCzqjhUDDMMwFVRiYiJ8fX3BcRwePHiAKlWqwNnZGUKhEK1bty7XYYD/io6OhpubG65evYqlS5di2bJl33VWAVM09p1lGIapQCQSCS5cuACO43Dq1ClIpVL069cPhw8fxqBBg5Ri174rV67A1dUVAHDx4kX07NlTwRGpP1YMMAzDVACBgYHgOA7e3t6IiYmBra0tfv31V7i4uKBmzZqKDg/AP8MCq1atwurVq9G9e3d4eXkpTWzqjhUDDMMwaiouLg4+Pj7gOA5Pnz6FiYkJXF1dIRQKYW9vr9BhgP+KioqCi4sLbt68iZUrV2Lx4sWlenYBUzRWDDAMw6iR3NxcnD17FhzH4ezZs+DxeBg4cCCWL1+Ofv36KeUufX5+fnBzc4OmpiauXr2KLl26KDqkCqfs9opkGIZhygUR4fHjx5gxYwZMTU0xfPhwfPjwAVu2bEFUVBSOHTuGIUOGKF0hIJFIsGjRIvTt2xctW7ZEQEAAKwQUhHUGGIZhVNSnT5/g7e0NjuMQHByMGjVqYMyYMRAKhWjatKmiwyvS+/fv4ezsjHv37uHXX3/F/Pnzy/QsA6ZorBhgGIZRIdnZ2Th16hQ4jsOFCxegoaGBoUOHYv369ejdu7dKLL87e/Ys3N3doaenh+vXr6Njx46KDqnCY2UYwzCMkiMi3Lt3D5MnT0atWrXg6OiIhIQE7Nq1C9HR0Th48CD69++v9IVAXl4e5s6di4EDB6JDhw4ICAhghYCSUO7fHIZhmArsw4cP8PT0BMdxCA0NRe3atTF58mS4u7ujcePGig6vRCIiIuDk5ITHjx9j06ZNmD17tlKtZqjoWDHAMAyjRDIzM3H8+HFwHIfLly9DR0cHw4YNw44dO9C9e3eVXG534sQJjBkzBkZGRrh58ybatWun6JCY/2DDBAzDMApGRLh16xbGjx+PmjVrws3NDVlZWfjzzz8RHR0Nb29v9OrVS+UKgZycHPz0008YNmwYunbtiqdPn7JCQEmxzgDDMIyCREREwMPDAx4eHnj9+jXq1q2LWbNmwd3dHQ0aNFB0eN/lzZs3cHBwQGBgILZt24bp06ezYQElxooBhmGYcpSeno6jR49CLBbj2rVr0NfXx6hRo/DXX3+hc+fOarG87siRIxg3bhxMTExw584dtGrVStEhMV/BigGGYZgyJpPJcP36dYjFYhw9ehQZGRno3r07OI7D8OHDUalSJUWHWCqys7Mxe/Zs7N69GyNHjsRff/0FIyMjRYfFFAMrBhiGYcpIeHi4fBjg3bt3aNCgARYuXIjRo0ejbt26ig6vVIWFhcHBwQEhISH4/fffMWnSJDYsoEJYMcAwDFOKUlJScOjQIXAch9u3b8PQ0BCOjo4QCoXo0KGDWibIAwcOYOLEiahVqxbu3bsHe3t7RYfElBArBhiGYb6TVCrFlStXIBaLcfz4ceTk5KBXr17w8fHB0KFDoaurq+gQy0RWVhZmzJiBv/76Cy4uLvjjjz9gYGCg6LCYb8CKAYZhmG8UEhICjuPg5eWFjx8/onHjxlixYgXc3NxQu3ZtRYdXpkJCQuDg4IDw8HD8+eefGDdunFp2PSoKVgwwDMOUQGJiInx9fcFxHB48eIAqVarAyckJIpEIrVu3rhAJ0cPDA5MnT4a5uTkePHgAW1tbRYfEfCdWDDAMw3yFRCKBn58fxGIxTp06BalUir59++Lw4cMYNGgQtLW1FR1iucjIyMC0adMgFoshFAqxa9cu6OvrKzosphSwYoBhGKYQQUFBEIvF8Pb2RkxMDGxtbbF27Vq4urqiZs2aig6vXAUHB8PBwQHv3r2TFwOM+mDFAMMwzL/ExcXhwIEDEIvFePr0KUxMTODi4gKRSAR7e/sKMQzwb0SEv//+G9OnT0f9+vXx8OFDNGnSRNFhMaWMFQMMw1R4ubm5OHfuHMRiMc6ePQsAGDhwIJYtW4b+/ftDS0tLwREqRlpaGiZPngxvb2+MHz8e27Ztg56enqLDYsoAKwYYhqmQiAhPnz4Fx3Hw8fFBfHw8WrRogS1btsDZ2RkmJiaKDlGhnj17BgcHB0RFRcHb2xsuLi6KDokpQ6wYYBimQsk/BVAsFiM4OBg1atSAUCiEUChks+LxT5G0Z88e/PTTT2jcuDEeP36Mhg0bKjospoyxYoBhGLWXnZ2N06dPg+M4XLhwAQKBAEOGDMH69evRu3dvaGiwj0Lgn90TJ06ciEOHDmHy5MnYsmULdHR0FB0WUw7YXwDDMGqJiPDgwQNwHIcDBw4gOTkZbdu2xY4dO+Do6AhjY2NFh6hUHj9+DEdHR8TGxuLgwYNwcHBQdEhMOWLFAMMwauXDhw/w8vICx3F4+fIlateujUmTJkEoFKJx48aKDk/pEBF27tyJuXPnwtbWFn5+fmjQoIGiw2LKGSsGGIZReZmZmThx4gTEYjEuX74MbW1tDB8+HNu3b0f37t0hEAgUHaJSSkpKwrhx43D8+HFMnz4dGzdurDAbKDEFsWKAYRiVRES4ffs2OI7DwYMHkZaWhh9++AF79+7FqFGjYGRkpOgQldqDBw/g6OiI5ORkHDt2DMOGDVN0SIwCsWKAYRiV8u7dO3h4eIDjOLx+/Rp169bFTz/9BHd3d1haWio6PKVHRPjtt9+wYMECtGjRAv7+/rCwsFB0WIyCsWKAYRill56ejqNHj4LjOPj7+0NfXx8jR47En3/+iS5duoDP5ys6RJWQmJgIkUiE06dPY86cOVi7dm2F3VCJKYgVAwzDKCWZTIbr16+D4zgcOXIEGRkZ6NatG8RiMUaMGIFKlSopOkSVcufOHTg5OSEjIwOnTp3CoEGDFB0So0RYMcAwjFIJDw+Hh4cHPDw88O7dOzRo0AALFizA6NGjWTv7G8hkMmzcuBFLlixB27ZtceDAAZibmys6LEbJsGKAYRiFS0lJweHDh8FxHG7dugVDQ0M4ODhAJBKhQ4cOFe5woNISFxcHd3d3XLhwAQsXLsSqVaugqamp6LAYJaRWxUBGjgQRCRnIlcigpcGHRVV96Gur1VtkGLUhlUpx5coVcByHY8eOIScnB7169YK3tzeGDh3KDsT5Tjdu3ICzszNyc3Nx/vx59O3bV9EhqQV1zTMq/w7CYtLgfT8S/qGxiEzMBP3razwA5sZ66NaoOlzbmsOqhoGiwmQY5n9evnwJjuPg6emJjx8/onHjxli+fDnc3NxgZmam6PBUnlQqxa+//orly5fjhx9+gI+PD2rXrq3osFRaRcgzPCKirz0oNTUVRkZGSElJgaGhYXnE9VXvEzOx+HgQbobHQ8DnQSor/G3kf72TpQnWDrNFHWN2x8Ew5SkpKQm+vr7gOA73799H5cqV4ezsDKFQiDZt2rBhgFISExMDNzc3XLlyBUuWLMHy5cvZuQvfQR3yTHHzt0oWA74PI7H81HNIZFTkD+e/BHweNPg8rBxsA6fWbAINw5QliUQCPz8/cByHkydPQiqVom/fvhAKhRg0aBA7AKeUXb16VX7MsJeXF3r27KngiFSbuuSZ4uZvlSsZd/qHYdPFV9/0XOn/fqgLjwUhPj0H07pZlXJ0DMMEBQWB4zh4e3sjOjoaTZs2xdq1a+Hq6oqaNWsqOjy1I5VKsWrVKqxevRrdunWDt7c3+z5/p4qYZ1SqGPB9GFnkDygnOhwpt3yQ8+EFSJIHjco1UMm+LwxbDf7ssZsuvkK1StpwVILKjWFUXXx8PHx8fMBxHJ48eYKqVavC1dUVQqEQzZs3Z8MAZSQqKgqurq64ceMGVqxYgSVLlrBzGL5TYXkm/sxvyAi+Uujzak8VQ8PApMC/qVKeUZli4H1iJpafel7o17PePkHskVXQqtEARh2cwNPSgSQ5GtK0+EKfs+zUc3RoYKI0YzsMo0pyc3Nx7tw5cByHM2fOAAAGDhyIn3/+Gf3792c725Wxixcvws3NDRoaGrhy5Qq6du2q6JBUXlF5xqB5X+hY2P/nXwmJfrugYVTjs0Ign6rkGZUpBhYfD4KkkHEbWU4m4s9sgW6D1qg2bBF4vOJtTSqRERYfD4LnuLalGSrDqC0iwtOnT8FxHHx8fBAfH48WLVpg8+bNcHZ2RrVq1RQdotqTSCRYtmwZfv31V/Tu3Ruenp6oXr26osNSC0XlGe3a1tCubV3g37LfPwfl5UC/SddCX1NV8oxKFANhMWm4GV74HX7Gi2uQZSSjSmd38Hh8yHKzwdPU+mpRIJURbobHIzw2DZbVVXM5CMOUh+joaHh7e4PjOAQFBaFGjRoQCoUQCoWwtbVVdHgVxocPH+Ds7Iy7d+/i119/xfz589m5DKXka3nmSzJeXAfAg36TLoU+RlXyjEoUA973I4tc1pEdEQCeth4k6QmIPfYLJIkfwdPUgX7TbjDuMQE8jcLblQI+D173IrFisE1Zhc8wKik7OxunT58Gx3G4cOECBAIBhgwZgl9//RV9+vRhS9bK2dmzZyEUCqGrq4tr167hhx9+UHRIauVreea/SCpB5stb0DazhkblGkU+VhXyjEqUlP6hsUX+gPISowCZFHFHV0O3XgtUG7YYlZr1QvrT84g/u7XI15bKCP6vYks5YoZRTUSEBw8eYMqUKTA1NYWDgwPi4+OxY8cOfPr0CYcOHcKAAQNYIVCO8vLyMG/ePAwcOBDt2rXD06dPWSFQBr6WZ/4r6+0TyLJSixwiyKcKeUbp/6LTcySITMws8jGUlw3Ky0Gl5v1g3OtHAIBeow4gaR7SAy4gr5MrNI0L34ErMiETGTkStdhSkmG+xcePH+Hp6QmO4/Dy5UvUrl0bP/74I4RCIRo3bqzo8Cqsd+/ewcnJCY8ePcLGjRsxe/ZsNixQBoqTZ/4r48V1gK8BPeviFWbKnmeUM6p/eZeQga/VavnDAPrWBcdt9Jt0RXrABeR8fFlkMUAAIhIyYGNq9J3RMozqyMrKwokTJyAWi3H58mVoaWlh+PDh2LZtG3r06MGWqCnYyZMnIRKJYGRkhJs3b6Jdu3aKDkltFSfP/JssNwtZYfegW685BLrF24hP2fOM0peYuRLZVx8jqFT1n//qVy747/r/fNNl2emlch2GUXVEhNu3b2PChAmoWbMmXFxckJmZiT179sgnCfbu3ZsVAgqUm5uLn376CUOHDkWXLl3w9OlTVgiUsZJ+/me+uvfPKgKbrmV6nfKk9J0BLY2v1ytaNRsgO+IpJGkJ0Kz6/wedSNISAQACva9XYsW5DsOoqnfv3sHDwwMeHh4IDw+Hubk5Zs6cCXd3d1haWio6POZ/3rx5A0dHRzx79gxbt27FjBkz2IZNZSQ3NxcvX75EQEAArj0LB7SKv/Qv48U18LR0oWtVsuWCypxnlL4YsKiqDx5QZAtHv3EnpN47gvTAi9C1sJP/e3rgRYAvgLZ50UufeP+7DsOok/T0dBw7dgxisRj+/v7Q19fHyJEjsXfvXnTp0oWNPSuZI0eOYNy4cahatSpu376N1q1bKzoktZGUlIRnz54hICBA/t/nz58jLy8PAFCvYWNgWBugGIWXNDMF2REB0LfuDL5m8c/XUPY8o/TFgL62BsyN9fCuiMkdWjUbQL9ZL2QEXkKcTAYd86bIjgxC5stbMGw/ChoGVYu8RjVdQFeTfTAyqk8mk+HGjRsQi8U4cuQIMjIy0LVrV4jFYowYMQKVKlVSdIjMf2RnZ2POnDn4/fffMXLkSPz1118wMlLOcWVlR0R4+/atPOHnJ/93794BALS1tWFra4uWLVti3LhxsLe3h42NDR4/foxpfvHI1vj6PgAZITcAmbTEQwTmVfWUdvIgoALFAAB0a1QdnvffFbnso2qfqdAwrIb0wMvIfHUXGkbVUKXHBBi2HlL0i8ukCL95FhYWkzF69GgIhUI0bNiwlN8Bw5St169fy4cBIiIiUL9+fSxYsACjR4+GhYWFosNjChEWFgZHR0c8f/4cu3btwuTJk9mwQDFlZ2fj+fPnBZL+s2fPkJqaCgCoVq0a7O3t4eDgAHt7e9jZ2aFRo0byZbGvXr0Cx3FwcXHB+/fvUX/kAvAsfwCh6O9/xvNr4OtV/sLWxIUT8Hno1lC5d4lUiSOMw2LS0GvrjTJ7/RWtBbh38QR8fX2RkpKC9u3bQygUwtHREZUrVy6z6zLM90hNTcXhw4chFotx69YtGBgYwNHREUKhEB07dmRJRcn5+vrKJ3IeOnQIzZs3V3RISisuLq5Aiz8gIAAvX76EVCoFj8dDw4YNYW9vL0/69vb2qFmz5md/A8nJyTh48CA4jsPdu3dRuXJlODk5QSgUwtiiCXpvu1lm7+HyrM4K2YFQrY4wtqphgE6WJrjzJqFEm0J8DQ+EnMhAzN6zCcuWLUNkZCQuXLgAsViMKVOmYObMmRg6dChEIhF69erFZlgzCieVSnH16lWIxWIcP34c2dnZ6NWrF7y9vTF06FDo6Sn3YSjMP0s6f/rpJ+zduxfOzs7Ys2cPDAyUd5va8iSVShEeHv5Zmz8qKgoAoKenBzs7O3Tq1AnTp0+Hvb09mjZtCn39wsfiJRIJLl26BI7jcOLECeTl5aFv3744ePAgBg8eDB2d/x/3L4s8I+Dz0KF+VaXeihhQkc4A8M9pUj1/u46cUlyaoa3Bh+9oG+zZshZ//vkn6tevj/Xr12PYsGHyZVZisRjPnz9HrVq14ObmBqFQCBsb5d1SklFPL1++BMdx8PT0xMePH9GoUSOIRCK4ubnBzMzs6y/AKIWXL1/CwcEBYWFh2L59O8aPH19hOzgZGRkICgoqkPQDAwORmfnP/LDatWvL7/Lz7/gbNGhQ7Juy58+fg+M4eHl54dOnT7CxsYFIJIKrqytq1ar1xeeUVZ65PKuLwk4tLG7+VpliAPjnnOmFx4JK7fXWD7eVnzP9/PlzzJs3D+fPn8cPP/yALVu2oHXr1iAiPHnyBGKxGD4+PkhMTESrVq0gFArh7OyMqlWLnpzIMN8qKSkJBw8ehFgsxv3791G5cmU4OztDKBSiTZs2FTaJqCoPDw9MnjwZ5ubmOHToUIU54ImI8OnTp8/a/GFhYSAiCAQCWFtbF2jx29nZfdMJmAkJCThw4ADEYjEeP36MqlWrwsXFBUKhEC1atCjW30xZ5hlFUMtiAAB2+odh08VX3/0683o3wtRun6+vvnTpEubMmYOgoCC4uLhg7dq1qFu3LoB/1qWePXsWYrEY586dA4/Hw6BBgyAUCtGvXz9oamp+d1xMxSaRSHDx4kWIxWKcOnUKEokEffr0gUgkwqBBgwq0NBnVkJGRgWnTpkEsFsPd3R27du1S21UdEokEL1++/KzNHxcXBwAwNDQskPTt7e3RpEmT7/q9zsvLw/nz58FxHE6fPg0iwoABAyAUCjFgwABoaRV+UF1hyjrPlCe1LQaAfyq35aeeQyKjEo3tCPg8aPB5WDXYpshKTSqVQiwWY+nSpUhKSsKsWbOwaNGiAu89NjYWPj4+4DgOAQEBqFatGlxdXSESiWBnZ1foazPMlwQHB8tbmtHR0WjatKm8pVmzZk1Fh8d8o+fPn8PBwQERERHYtWsXRCKRokMqNSkpKQgMDCyQ9IODg5GTkwMAsLCw+KzNb2FhUWodrYCAAHAcB29vb8TFxcHe3h4ikQjOzs6oXv37Z+6XdZ4pL2pdDAD/jO0sPh6Em+HxXz12Mv/rnSxNsHaYbbHHbtLT07FhwwZs2rQJlSpVwsqVKzFhwoTPTmx79uyZ/JcyNjYWdnZ2EAqFcHV1LZVfSkY9xcfHy1uaT548kbc0RSIRmjdvzoYBVBgRYf/+/Zg2bRrq16+PQ4cOoUmTJooO65sQESIjIz9r8799+xYAoKWlBRsbmwJ3/M2aNUOVKlVKPZbY2Fh4e3uD4zg8e/YM1atXl8/latasWalfrzzyTFlT+2IgX1hMGrzvR8L/VSwiEzIL7FTIwz8bPXRrWB1u7cy/eTbnhw8fsHTpUnh4eKBx48bYuHEj+vfv/9mHdV5eHi5cuCBvV8lkMvTr1w8ikQgDBgyAtrb2t79RRi3k5eXh3Llz4DgOZ86ckbc0RSIR+vfv/00tTUa5pKenY9KkSfD29sa4ceOwfft2lVnlkZOTgxcvXnzW5k9OTgYAVK1a9bM2f+PGjct0iDQnJwdnzpwBx3E4d+4cBAIBBg0aBJFIhD59+pTL8Gx55JmyUmGKgX/LyJEgIiEDuRIZtDT4sKiqX6o7Pj19+hRz5syBv78/evTogc2bNxc6JJCQkABfX19wHIeHDx/C2NgYzs7OEIlEaNmyJbvrq0CIqEBLMz4+Hs2bN5e3NL9lohSjnJ49ewYHBwd8/PgRe/bsgaurq6JDKlRCQsJnW/S+ePECEokEAGBpaSlP+PkFQO3atcvls4uI8OjRI3AchwMHDiAxMRGtW7eGSCSCk5MTjI2NyzyGwpR1niltxc7fVAwpKSkEgFJSUorzcLUmk8no1KlT1KhRI+LxeDR27Fj6+PFjkc95/vw5zZ8/n2rVqkUAqEmTJrRhwwaKiooqp6gZRYiOjqbNmzdTs2bNCADVqFGDZs+eTc+ePVN0aEwpk8lk9Mcff5C2tjY1a9aMXr58qeiQ5KRSKYWFhdHhw4dp6dKlNHDgQDIzMyP8c+QL6erqUps2bWjixIm0a9cuun37NqWmpiok1o8fP9L69eupSZMmBIBMTU1p/vz59Pz5c4XEow6Km79ZMfCNcnNzaefOnWRiYkJ6enq0YsUKSk9PL/I5eXl5dP78eXJyciIdHR3i8/nUt29f8vX1paysrHKKnClL2dnZdPjwYRo4cCAJBALS0tKikSNH0pkzZygvL0/R4TFlICUlhRwdHQkATZo0iTIzMxUWS0ZGBt2/f5/27t1LU6ZMoQ4dOlClSpXkib9mzZrUt29fWrBgAR04cIBCQkJIIpEoLF4ioszMTDpw4AD17duX+Hw+6ejokJOTE124cEHhsakDVgyUk+TkZJo/fz5paWmRqakp/f3338X6BU5KSqI9e/ZQhw4dCAAZGRnRjz/+SHfu3CGZTFYOkTOlRSaT0f3792nKlClUpUoVAkBt2rSh33//nRISEhQdHlOGHj9+TA0aNCADAwM6ePBguV47OjqaLly4QOvWrSNnZ2eytrYmPp9PAIjP55O1tTU5OzvT+vXryc/Pj6Kjo8s1vqLIZDK6c+cOTZw4kYyMjAgAdejQgfbu3UvJycmKDk+tsGKgnL1580Z+d2BnZ0eXL18u9nNDQ0NpyZIlVKdOHQJADRs2pF9++YXevXtXhhEz3+vDhw+0bt06sra2lrc0Fy5cSC9evFB0aEwZk8lktGPHDtLS0qIWLVpQWFhYmV1LIpHQixcvyMfHhxYsWEB9+vShGjVqyO/2K1WqRB07dqSpU6fS3r176cGDBwrtThTl3bt39Msvv5CVlRUBoDp16tDSpUvp1atXig5NbbFiQEHu3r1L7du3JwA0YMCAEiUGqVRKly9fptGjR5Oenh7xeDzq0aMHeXp6fnUIgikfmZmZ5OPjQ71795a3NJ2dncnPz4+1NCuIpKQkGj58OAGg6dOnU3Z2dqm9dmpqKt2+fZt27dpFEyZMoNatW5Ourq488depU4cGDRpES5cupSNHjlB4eDhJpdJSu35ZSE9PJw8PD+rRowfxeDzS09Oj0aNH05UrV5Q+dnXAigEFkslkdOjQIapXrx4JBAKaPHkyxcTElOg1UlNT6e+//6YuXbrIq/8xY8bQ9evX2R9QOZPJZHTr1i2aMGECGRoaEgDq2LEj/fnnn6ylWcHcv3+fLCwsyMjIiI4ePfrNryOTyej9+/d0+vRpWr16NY0cOZIsLS3lSV9DQ4OaNWtG7u7utGXLFrp69SrFx8eX4jspW1KplK5du0ZjxoyRz1no0qUL7d+/X2GTEyuq4uZvtVpaqGxycnKwc+dO/PLLL5BKpViyZAlmzpxZ4q033759Cw8PD3Ach7dv36JevXoQCoVwd3dHvXr1yih65t27d/D09ATHcQgPD4e5uTnc3d3h7u4OKysrRYfHlCMiwtatW7FgwQLY29vj4MGDxf7by8vLQ0hIyGeb9iQmJgIAKleu/Nnxu9bW1iq5L8mbN2/g4eEBDw8PvH37FvXr14dQKMTo0aPZZ5WCsKWFSiQ+Pp5mzJhBGhoaZG5uTt7e3t90dy+VSun69es0duxYebXduXNn+vvvv1m1XUrS09OJ4zjq3r07ASA9PT1yd3enq1evso5MBZWQkECDBg0iADR79mzKyckp9LFJSUl07do12rp1K4lEIrK3tyctLS35HX/9+vVp+PDhtHLlSjp58iS9e/dO5ScMp6am0r59+6hz584EgAwMDGjs2LF048YNlX9v6oANEyih0NBQGjp0KAGg1q1b082bN7/5tdLT08nT05N69uwpH4dzc3Ojy5cvs6RVQlKplPz9/UkkEpG+vj4BoK5du7KWJkO3b9+mOnXqUJUqVejUqVPyf5fJZPTmzRs6duwYLVu2jIYMGUJ169aVJ31tbW1q2bIljRs3jnbs2EE3btxQqyElqVRKly5dIjc3N/n8pp49e5KXlxdlZGQoOjzmX9gwgRK7fv065syZg8ePH2P48OFYv349LC2//WSr9+/fy9vZr169Qp06deDu7g6hUMja2UV4/fq1vKUZEREhb2m6u7vDwsJC0eExCiSTybBp0yYsXrwYrVq1ws8//4yYmJgCW/SmpqYCAKpVq/ZZm79Ro0afnWGiDl69egWO4+Dp6Yn379+jYcOG8mGAOnXqKDo85gvYMIGSk0ql5OnpSWZmZqSpqUmzZs367jXp+Wt3f/zxR/na3fbt29OePXsoKSmpdAJXcSkpKfTXX39Rp06d5C3NcePGsZYmQ0REsbGxdPjwYWrUqBEBIBMTExIIBASAeDweNWrUiBwdHWnt2rV07tw5ioqKUvvfm6SkJPrjjz/kq6Ty90S5e/eu2r93dcA6AyoiKysLv/32G3799Vdoampi2bJlmDJlyncfWJOVlYVTp06B4zj4+flBU1MTw4YNg1AoRK9evSAQCErpHSg/qVSKq1evguM4HDt2DNnZ2ejZsyeEQiGGDRumMofIMKVHKpXi9evXBe70AwICEBUVJX9M48aN0bVrV/kdv62tLfT19RUYdfmRSqW4dOkSxGIxTpw4gby8PPTp0wdCoRBDhgwp8SRoRnFYZ0DFREdH08SJE4nP55OlpSUdPXq01Krujx8/0oYNG8jGxoYAUK1atSrEft8vX76kRYsWyfdhb9SoEa1du5bev3+v6NCYcpSenk53796lP/74gyZNmkTt2rUjPT09+fi+qakp9evXj7p06UI8Ho9atmxZYTf8Cg4Opnnz5snPUbGxsaGNGzeyc1RUGJtAqKKCgoKob9++BIA6depEDx48KLXXlslk9PDhQ5o2bRoZGxvLJzLu3LlTpdYwFyUxMZF2795N7dq1IwBUuXJlmjRpEt27d4+1NNWcTCajjx8/0rlz52jt2rXk4OAgP1AMAAkEAmratCm5urrSxo0b6dKlSxQbG0vR0dHUq1cv4vF4tHTp0gp3hkR8fDzt3LmTWrVqRQDI2NiYpk2bRo8ePWJ/M2qAFQMqzs/Pj2xtbQkAubi4lPqdSnZ2Nh09epQGDx5MGhoapKmpSSNGjKBTp05Rbm5uqV6rrOXl5dG5c+fIwcGBtLW1ic/nU//+/engwYPsACg1lZeXR8HBweTl5UVz586lXr16UbVq1eR3+4aGhtSpUyeaPn067du3jx49evTF34UrV65QzZo1qXr16nTx4kUFvBPFyM3NpZMnT9Lw4cNJU1OTNDQ0aPDgwXTs2LEil04yqocVA2pAIpHQn3/+STVr1iRtbW1auHBhmfwMYmJi6LfffiN7e3sCQNWrV6dZs2ZRQEBAqV+rNAUFBdHcuXOpZs2aBICaNm3KWppqKDk5mW7cuEE7duygcePGUcuWLUlbW1ue+OvWrUtDhgyh5cuX07Fjx+jNmzdfvaOVSCS0fPly4vF41K1btwrzOxMQEEA//fSTvHCyt7en3377rcQ7pDKqgxUDaiQtLY1+/vln0tXVpWrVqtHu3bvLrJUZEBBAs2bNkn9Y2NnZKdWHRVxcHG3fvp1atmxJAKhq1ao0ffp0evz4MWtpqjiZTEYRERF08uRJWrlyJQ0bNozq168vT/qamprUvHlzEolEtHXrVrp27RolJiaW+DpRUVHUtWtX4vP5tHLlSrU/UyImJoa2bNlCdnZ2KlXsM6WDFQNq6P379yQUConH41GTJk3o7NmzZZYAc3Nz6dSpUzRixIgCbcSjR4+WexsxNzeXTpw4QcOGDZPHMmTIENbSVGE5OTn09OlT2r9/P82cOZO6du1KlStXlid+Y2Nj6t69O82ePZs8PDzo2bNnpfKz9vPzo2rVqlHNmjXJ39//+9+IksofBhw0aBBpaGiQlpaWyg4DMt+HFQNq7PHjx9S1a1cCQD179izzCr+wCUYPHz4s07vxp0+f0syZM+VdiubNm9PWrVspNja2zK7JlL74+Hi6cuUKbdmyhdzd3alZs2akqakpT/yWlpY0cuRIWr16NZ0+fZrev39f6r9XeXl5tHjxYuLxeNS7d2+l6XSVpvwJwlOnTlXbCcJMybFiQM3JZDI6efIkNWzYkHg8Ho0dO5Y+fvxY5td9/vw5zZ8/v8DSow0bNpTamGt0dDRt3ryZmjVrJm9pzp49m549e1Yqr8+UHalUSuHh4XTkyBFaunQpDRw4kOrUqSNP+jo6OtSmTRuaMGEC7dq1i27fvl0u2z2/f/+eOnXqRHw+n9asWaN223VHRUXRhg0bqEmTJhVq6TBTPKwYqCByc3Npx44dVLVqVdLT06MVK1ZQenp6mV83Ly+Pzp8/T05OTvIZ/P369SNfX98Sz+DPzs6mw4cP08CBA0kgEJCWlhaNHDmSTp8+zVqaSiozM5MePHhAe/fupalTp1LHjh3lh2cBoJo1a1KfPn1owYIFdODAAXrx4oVCluydPXuWqlatSrVr16YbN26U+/XLSlZWFvn6+lLfvn2Jz+eTtrY2OTk50fnz5yvc0kimaKwYqGCSkpJo3rx5pKWlRaampvT333+X28SopKQk2rNnD3Xo0EG+tv/HH3+kO3fuFNrulclk9ODBA5oyZQpVqVKFAFCbNm1o165d370tM1O6oqOj6cKFC7R+/XpydnYma2tr4vP5BID4fD5ZW1uTs7MzrVu3ji5cuECfPn1SdMiUm5tL8+bNIwDUv39/iouLU3RI3+1L24136NCBbTfOFIkVAxXUmzdvyNHRUb5s6PLly+V6/dDQUFqyZIm8PdywYUNas2YNRUZGEhHRhw8faN26dWRtbS3f/W3BggX04sWLco2T+ZxEIqEXL17QgQMHaMGCBdSnTx/5sk0AVKlSJerYsSNNmTKF9u7dSw8ePFDKE+revXtH7du3Jw0NDdq4caPKDwtERkbSmjVrqGHDhgSA6tSpQ0uWLKHQ0FBFh8aoAHY2QQV37949zJ49G3fv3sWAAQOwceNGWFtbl9v1ZTIZ/P39wXEcjh49iqysLBgbGyMxMRFaWloYPnw4hEIhevbsWaHOSVAW6enpCAwMLLAvf1BQELKysgAAZmZm8pP48vfmr1+/Pvh8voIjL9qpU6cgEolgYGAAX19ftG/fXtEhfZOMjAwcP34cHMfhypUr0NXVxYgRIyAUCtGtWzel/zkwyqO4+Vv9zthkAADt2rXD7du3ceTIESxYsAC2traYOHEiVqxYgerVq5f59Xk8HnR1daGjowMNDQ0QEfLy8kBE0NLSgq6uLnR1ddmHWhkjInz8+LFA0g8ICMDr169BRNDQ0ECTJk1gb28PR0dHeeKvWrWqokMvkdzcXCxYsABbt27F4MGDsX//fhgbGys6rBKRyWS4desWxGIxDh8+jPT0dHTp0gX79u3DyJEjYWBgoOgQGTXGOgMVQE5ODnbu3InVq1dDJpNhyZIlmDlzZpmcPBYZGQlPT09wHIewsDCYm5vD3d0d7u7usLKywps3b+Rff/v2LerVqwehUAh3d3fUq1ev1OOpSPLy8hASElIg6T979gwJCQkAgMqVK8uTff4dv7W1NbS1tRUc+fd5+/YtHB0dERAQgI0bN2LGjBng8XiKDqvY3r59Cw8PD/Y3wZQJdmoh85n4+HiaMWMGaWhoUN26dcnHx6dU1nOnp6eTh4cHde/enXg8Hunp6ZG7uztduXKl0PFaqVRK169fp7Fjx8pnoXfp0oX+/vvvcllupuqSkpLo2rVrtHXrVhozZgw1b96ctLS05OP79erVo2HDhtHKlSvp5MmTFBERoZY7NB45coSMjIyoXr16pXqoV1lLTU2lv//+mzp37iyfjzF27Fi6fv26ys9xYJQLm0DIFCo0NJSGDh0qn8F/69atEr+GVCqla9eu0ZgxY+TJvGvXrrR///4SJ/P09HTy9PSkHj16yIuJ0aNH0+XLlyv8B6NMJqM3b97QsWPHaPny5TRkyBCqW7euPOlra2tTy5Ytady4cbR9+3a6ceMGJScnKzrsMpeVlUVTp04lADRixAiVmE0vlUrp8uXL5ObmRnp6esTj8ahnz57k6elZLsuBmYqJFQPMV127do1atGgh/0ANDw//6nNev35Ny5cvJwsLCwJA9evXp5UrV9KbN29KJaZ3797RmjVryMrKigCQubk5LVmyhF69elUqr6/MsrKy6PHjx7Rv3z6aPn06de7cWb6EDACZmJhQz549ae7cueTl5UXBwcEVck15WFiYvBOyc+dOpe94vHr1qsgVNgxTllgxwBSLVColDw8PMjMzI01NTZo1a9Znh7+kpKTQvn37qFOnTgSADAwMaNy4cXTjxo0y+yDOX1M9ceJEtVxTHRsbS5cuXaKNGzeSm5sbNW3alAQCAQEgHo9HDRs2JAcHB1q7di2dPXuWPn78qPRJrzwcOHCADAwMyNLSkp48eaLocAqVv/dG+/btCQAZGRl9de8NhikLbGkhUyKZmZn47bffsG7dOmhqamLp0qWwtraGt7c3jh07huzsbPTs2RNCoRDDhg2Dnp5eucWWlZWFU6dOQSwW4+LFi9DS0sLQoUMhFArRq1cvpV6aKJPJEB4e/tls/qioKACAnp4emjVrVmBin62tLfT19RUcuXLJysrCTz/9hL1798LJyQl79uxRus8iqVSKS5cugeM4HD9+HHl5eejTpw+EQiEGDx4MXV1dRYfIVEDFzd+sGGAKuH37NqZNm4aAgAAAQK1atTBt2jSMHj0aderUUWxwAKKiouDl5QWO4/DixQuYmprCzc0NQqEQTZo0UWhsGRkZCA4Olif8/LX7GRkZAABTU9PPZvM3aNBAqYsZZRAaGgoHBwe8evUK27dvx/jx45VqtcCLFy/AcRw8PT3x6dMnNGnSBCKRCK6urjA1NVV0eEwFx4oBptiSk5Nx8OBBiMVi3Lt3D5UrV0bv3r0RGRmJe/fuoVOnTtiyZQtatWql6FDliAiPHz+GWCzGgQMHkJiYiNatW0MoFMLZ2blM15gTEaKjowss3wsICMCrV69ARBAIBGjcuHGBDXvs7OzKZX8HdePl5YVJkybBzMwMhw4dQrNmzRQdEgAgISEBvr6+4DgODx8+hLGxMVxcXCAUCtGyZUulKlaYio0tLWSKlJeXR+fOnSNHR0f5QUP9+/engwcPFjhoyM/Pj5o2bUoAyNXVld69e6fAqL/s32e35x90NGLEiFI56CgvL4+Cg4PJ29ub5s2bR7169ZIfqQyADA0NqVOnTjR9+nT666+/6NGjRyU+qIn5XEZGBo0ZM4YA0OjRoyktLU3RIVFubi6dOnWKRowYQZqamqShoUGDBw+mo0ePUnZ2tqLDY5gvYhMImS8KDg6mefPmyfect7GxoY0bNxZ5BLFEIqG9e/dSjRo1SEdHhxYtWqS0vwsxMTH022+/kZ2dnfwI5FmzZlFAQMBXn5uSkkI3b96kHTt20Lhx46hVq1akra0tT/x169alIUOG0LJly+jYsWP05s0bNhmsDAQHB1OTJk1IV1eX/v77b4V/jwMCAmjWrFlUvXp1+Zkfv/32G8XExCg0LoYpDlYMMHLx8fG0Y8cOatmyJQGgqlWr0vTp0+nRo0cl+qBNTU2lpUuXkq6uLlWvXp12796t1Evbnj59Sj/99JP8Tj7/Qzw6OprevXtHJ0+epJUrV9Lw4cOpfv368qSvqalJ9vb2JBKJaOvWreTv7//ZCgum9MlkMvr7779JV1eXmjRpQs+fP1dYLP8tKqtVq1bsopJhlAkrBiq43NxcOnnyJA0fPlze0hwyZAgdO3aMcnJyvuu1379/T+7u7gSAmjRpQmfPnlX43VthcnJy6MGDBzRz5kyytLQkHo8nT/oAqEqVKtS9e3eaPXs2cRxHz549++7vD1NyaWlp5ObmRgBo7NixCjkNMScnh44ePUqDBw8mDQ0N0tTUpBEjRtCpU6e+e7iJYRSFFQMV1Jfuhrdu3VomLc3Hjx9T165dCQD17NlT4XdNCQkJdPXqVdqyZQu5u7uTnZ0daWpqyhO/paUlDRw4kAYOHEiWlpbyLsm0adNK3CVhSs+zZ8+oUaNGpK+vT56enuV6bZlMRg8fPqRp06aRsbExAaBWrVrRzp07KT4+vlxjYZiywIqBCiQmJoa2bNlSYJx89uzZ9OzZszK/tkwmo5MnT1LDhg2Jx+PR2LFj6ePHj2V6TalUSuHh4XTkyBFaunQpDRo0SL67GwDS0dGh1q1b04QJE2jXrl1069atL26RnD9/olatWvL5Exs2bChy/gRTemQyGe3Zs4e0tbWpWbNmFBISUm7XjoqKog0bNpCNjQ0BoFq1atH8+fMVOjTBMGWBFQNqLjs7m44cOVImM+i/RW5uLu3YsYOqVq1Kenp6tGLFilLZbz0zM5MePHhAf/75J02dOpU6duxIBgYG8sRfo0YN6tOnDy1YsIB8fHzoxYsXJZ7HkJeXR+fPny+wsqJfv37k6+vLVgaUkZSUFHJyciIA9OOPP1JmZmaZXzMrK4t8fX2pX79+xOfzSVtbm5ycnOj8+fNKPfeFYb4HKwbUkEwmowcPHtDUqVPlLc3WrVvTrl27KCEhQdHhEdE/27DOmzePtLS0yNTUlP7++2+SSCTFem50dDT5+fnR+vXrydnZmZo0aUJ8Pp8AEJ/PJ2tra3JycqJ169bRhQsX6NOnT2US/x9//CHfRrZy5cr0448/0t27d9kwQil58uQJWVpakoGBAfn6+pbptfK3tf7xxx+pcuXKBIDat2+vNttaM8zXsGJAjXz8+JHWr19PTZo0IQBkamqq9C3NN2/ekKOjo3zewpUrV+Rfk0gkFBISQgcOHKAFCxZQ37595Usd8b/jXDt06EBTpkyhvXv30v379xUyoezly5e0ePFiMjMzYwfMlAKZTEY7d+4kLS0tatGiBYWFhZXZtSIjI2nNmjXUsGFDAkB16tShJUuWUGhoaJldk2GUESsGVFxmZiYdOHCA+vbtS3w+n3R0dMjJyYkuXLhQ7DttZXDlyhX5pkXm5uZka2tLurq68sRvZmZGAwcOpCVLltDhw4cpLCxM6Y4tlkgkdOnSJXJzcyNdXV350bNeXl4KKVJUUVJSEo0YMYIA0LRp08pkk56MjAzy9PSknj17sqOwGeZ/WDGggmQyGd2+ffuzk/r27t2r9GfUy2Qy+vDhA505c4Z++eUXGjlyJFlZWcmX8vH5fNLS0iIej0cdOnSgo0ePquRs7dTUVPr777+pc+fO8hMcx44dW6YnOKq6Bw8eUL169cjIyIiOHDlSqq8tk8no+vXrNHbsWPlcki5dutDff//9xUmjDFPRsFMLVUhkZCQ8PT3BcRzCwsJQp04dCIVCuLu7w8rKStHhfSYvLw8vX7787CS+hIQEAEDlypULHMZjZ2cnP0Rox44d+OWXX0BEWLx4MWbOnAkdHR1Fvp1v9ubNG3h4eMDDwwNv375F/fr14e7uDnd3d9SrV0/R4SkcEWHbtm2YP38+7O3tcfDgwVL7vrx9+1b+vX/z5g3q1asHoVCI0aNHo379+qVyDYZRB+xsAiWXnp5OHh4e1KNHjwItzStXrihVSzMpKYmuXbtG27ZtozFjxlDz5s1JS0tL3uavV68eDRs2jFasWEEnTpygiIiIr94hx8XF0fTp00lDQ4Pq1q1LPj4+Kn1XLZVK6fr16zRmzBiqVKkSuzulf/Z8GDx4MAGgWbNmlcpGTvldmS5dusjnlowdO5auX7+uVH8zDKNM2DCBEpJKpXTt2rXPksb+/fsVnjRkMhm9efOGjh8/TsuXL6chQ4aQhYWFPOlra2tTy5YtaezYsbR9+3a6cePGdw9dhIaG0pAhQwgAtWnThm7dulVK70ZxVKXIK0t37twhc3NzqlKlCp08efK7XksqldLly5dp9OjRpKenRzwej3r06EGenp6lsnSVYdQdKwaUyOvXr2n58uVUr149AkD169enlStX0ps3bxQST3Z2Nj1+/Jj27dtHM2bMoM6dO8vnKAAgExMT6tmzJ82dO5c8PT0pKCioTPcu8Pf3pxYtWhAAGjlyJIWHh5fZtcrTu3fv6JdffiErKyv5BMolS5bQq1evFB1amZBKpbRhwwbS0NCg9u3bU0RExDe/1qtXr2jJkiVkbm5OAMjKyorWrFmjlKdmMowyY8WAgqWmptK+ffsUPtEsLi6OLl26RJs2bSI3Nzdq2rQpaWhoEADi8XjUsGFDcnBwoDVr1tDZs2fp48ePCmnZS6VS8vDwIDMzM9LU1KTZs2erzeFAqjwxtLji4uKof//+BIDmz5//TcVjUlIS7dmzhzp06EAAyMjIiCZOnEh37txR6WEkhlGkCjmBMCNHgoiEDORKZNDS4MOiqj70tTXK7foymQxXr14Fx3E4duwYsrKy0KNHD4hEIgwbNgx6enpleu3w8PACE/qePXuGjx8/AgD09PTQrFmzAhP7bG1toa+vX2YxfYvMzEz89ttv+PXXX6GtrY1ly5Zh8uTJ0NLSUnRopSIrKwsnT54Ex3G4ePEitLS0MHToUIhEIvTs2RMCgUDRIZbYzZs34ezsjOzsbHh4eKB///7Ffq5UKsWlS5fAcRxOnDiB3Nxc9O7dGyKRCIMHD4aurm4ZRs4wJafoPFNSxc3fKl8MhMWkwft+JPxDYxGZmIl/vxkeAHNjPXRrVB2ubc1hVcOgTGJ49eoVOI6Dp6cn3r9/j4YNG8pnNtepU6fUr5eZmYmgoKACs/kDAwORkZEBAKhVq5Y84efP5re0tFSpRBMdHY1ly5Zh3759qF+/PjZs2IChQ4eCx+MpOrRSExUVBS8vL3AchxcvXsDU1BSjR4+GUCiEtbW1osP7KplMhnXr1mHZsmXo0KEDfHx8YGZmVqznvnjxAhzHwcvLC1FRUWjSpAmEQiHc3NxgampaxpEzTMkoQ575VmpfDLxPzMTi40G4GR4PAZ8Hqazwt5H/9U6WJlg7zBZ1jL//Dj05ORkHDx4Ex3G4e/cujIyM4OTkBJFIhLZt25ZK0iIiREdHf7aELywsDDKZDAKBAI0bN5Yn/Pz/Vq9e/buvrSyCg4Mxd+5c+Pn5oXPnzti8eTNatWql6LBKFRHh0aNH4DgOPj4+SEpKQuvWrSESieDk5ARjY2NFh/iZ2NhYuLm54fLly1i8eDFWrFgBDY2i744SExNx4MABcByHhw8fwtjYGM7OzhCJRGjZsqVaFXqMelB0nikNal0M+D6MxPJTzyGRUZE/nP8S8HnQ4POwcrANnFqbl/i6+S1NsViMEydOIC8vD3369IFQKMSQIUO+a728RCLBq1evCrT4AwICEBsbCwAwMDAo0OK3t7eHjY2Nyq7RLyk/Pz/MnTsXwcHBcHV1xdq1a2FuXvKfobLLycnBmTNnwHEczp07B4FAgMGDB0MoFKJPnz7Q1NRUdIjw9/eHi4sLZDIZvLy80KtXr0Ifm5eXBz8/P4jFYpw+fRpSqRT9+/eHSCTCgAEDoK2tXY6RM0zxKSrPlDa1LQZ2+odh08VX3/06c3s3xLRuxdvQ5/nz5/KW5qdPn2BjYwORSARXV1fUqlWrxNdOTU1FYGBggaQfHByM7OxsAIC5uXmBFr+9vT0sLCzA5/NLfC11IpFIsH//fvz8889ISUnBrFmzsHDhQoX/TpaVmJgY+Pj4gOM4PHv2DNWrV4ebmxuEQiGaNWtW7vFIpVL88ssvWLVqFbp06QJvb+9Cf/8DAwMhFovh7e2N2NhY2NnZQSQSwcXFRa06V4x6UkSeKStqWQz4PozEwmNBpfZ664fbwrGQyi0hIUHe0nz06BGMjY3h4uICkUiEFi1aFKulSUR4//79Z23+N2/eAAA0NTVhY2PzWZu/SpUqpfYe1VFaWho2bNiAzZs3w8DAACtXrsT48eO/2qZWZQEBAeA4Dt7e3oiLi0Pz5s0hFArh4uKCatWqlfn1P336BDc3N/j7+2P58uVYunTpZ3NQ4uLi4OPjA7FYjICAAFSrVg2urq4QCoWwt7cv8xgZpjSUZ54pD2pXDLxPzETP364jRyIr1uNT7hxE8g1PaJqYw3T87198jLYGH5dndZGP7eTl5eH8+fPgOA6nT58GERVoaRY1oz03NxchISHyhJ9fACQlJQEAjI2NP2vzN27cWG1mySvChw8fsGTJEnh4eKBJkybYuHEj+vXrp9Zjz1/6HR0wYACEQuFXf0e/1aVLl+Dm5gY+nw8fHx9069ZN/rXc3NwCwxo8Hg+DBg2CSCRC3759lWJYg2GKq6g8k/0uEDEHFn/xeTVHb4J27cZf/Np/80x5U7tiYPS++7jzJqFYYzeS1HhE/fkjAB40jKoXWgwI+Dx0qF8Vc1vpyFuacXFxsLe3l991famlmZiYKL/Tz//vixcvkJeXBwBo0KDBZ21+MzMztU5SivTkyRPMmTMH165dQ8+ePbF582aFtNHL23+7V1WrVpVPyCtu96ooEokEK1aswNq1a9GzZ094enqiRo0aICI8efIEYrEYBw4cQEJCAlq1aiWf8Fi1atVSeocMU76KyjP5xYBBy0HQqtWwwNd067eAQM/oi6+Zn2c8x7Utk5i/Rq2KgbCYNPTaeqPYj487uR6yzBSQTAZZVmqhxUC+j39OgrEgV97StLOzA/DP0qm3b98WaPEHBATg/fv3AAAdHR3Y2toWSPq2trZqO4atzIgIp0+fxrx58xAWFoaxY8di9erV3zSnQxWV9ryWDx8+wMXFBbdv38bq1auxcOFCxMTEyJdCPn/+HLVq1ZLPYbCxsSmDd8Uw5edreSa/GDAZuhD6jX8o8etfntUZltXLf9mhWhUDK049h+f9d8XqCmRHBiPmwGLUGrMdiZf++HoxQDJ0qcXDjjGdP5vN/+zZM6SlpQEAqlevjubNmxdo9VtZWan1OLUqysvLw549e7BixQpkZ2dj/vz5mDNnjtJtrlRWJBJJgU188le85G/iU5zVJ+fPn8fo0aOho/NPxywhIQEcx8HPzw+ampoFNkliv/+Muvhanvl3MaBbrwV4mtrg8Yu3d4uAz8PotnWxYnD5F83Fzd8q8ZfsHxpbrEKAZFIkXvoDlex6Q6u6RfFenMfHjfB4VKlSBTKZDHw+Hw0bNoS9vT0GDhwoT/41a9b8vjfBlAtNTU1MmzYNbm5uWLNmDdasWYM9e/ZgzZo1cHd3V/sVGRoaGujXrx/69euHpKQkHDp0CBzHwdHREZUrV4aTkxOEQuEX98LIy8vD0qVLsWHDBrRr1w6NGjXCqFGjkJycjPbt2+P333+Xvw7DqJvi5pmEc9tAuVkAjw/tOjao0m0stGsVvWJAKiP4v4rFCihvB03pOwPpORLYrvBDcVZ5pj0+g6Qbnqj9414I9IwQ7b2wWMMEIMJci09o08IOTZs2LdNtg5ny9fbtWyxcuBCHDh2Cvb09Nm/ejO7duys6rHIXGhoKDw8PeHh44MOHD2jUqJF8l0wzMzNERkZi2LBhePr0KapWrYr4+HiYmZnB3d0d7u7uaNSokaLfAsOUmeLkmewPIUh7eBy69VuBr2eEvPhIpD44DsrLRk23jdCq2aDIa/AABK/oU+5bFxc3fyv9bdK7hIxiFQLSrFQk3/RG5Q6OhU7kKBSPh26DHdCmTRtWCKiZevXq4eDBg7hz5w50dHTQo0cPDBo0CC9fvlR0aOWqUaNGWLNmDSIiInDp0iW0bt0aq1evhrm5OerWrYt69erhyZMn0NLSQt++fXHp0iVERERgzZo1rBBg1F5x8oyOmTWqDVuMSna9oWfVFkbtR6Gm+yYAPCRd5756DQIQkZBRGuGWCaUvBnKLuZQw+YYn+LqVYNBqUJleh1FN7du3x507d3Dw4EE8f/4cTZs2xdSpUxEXF6fo0MqVQCBAjx49MHHiRAwbNgx8Ph+RkZGQyWTQ1taGg4MDJk6ciB49eqjUWRYM8z2+9fNfs4opdK3aIjsyECSTltl1yoPSFwNaGl8PMS/xI9ID/GDQcjCkaYmQJMdAkhwDkuaBZFJIkmMgzUr77uswqo3H48HBwQEhISFYt24dvL29YWlpiQ0bNsh3f1RnERERWLVqFSwtLdG5c2ccPXoURIQlS5YgPDwcCxcuxM2bN9G5c2dYWVlh1apViIiIUHTYDFOmcnJy8DY87Jufr2FoAkgloLycrz5WmfOM0s8ZyMiRoOnXxnKK2Awin0GrwTDuOfGLX1PUWA6jWPHx8Vi1ahV2796N2rVrY926dXB0dFSr/SDS09Nx5MgRiMViXL9+HZUqVUKbNm1w//59mJiY4PDhw2jdurX88TKZDDdv3gTHcTh8+DDS09PRtWtXCIVCjBw5EpUqVVLgu2GY75OQkPDZMe8vXryAlKeBOrMPf9Pfftzxtch6/Qh15hwBj1d4slf2OQNKXwwAQJeN/niXmFno16WZKcj58OKzf0++4QlZbhaMe06ERuVaha4wqGush+vzun3xa4z6Cw0Nxfz583Hq1Cm0bdsWmzdvRseOHRUd1jeTyWS4du0axGIxjh49iqysLHTv3h0uLi548OAB9uzZg+HDh2Pfvn1FrgzIyMjAsWPHwHEcrl69Cj09PYwYMQJCoRBdu3ZV+5UZjOqSyWR48+bNZ1vBf/jwAQCgq6sr3yPG3t4eTZs2xU9XUpCQU3gxIM1M+Ww+Wm7MG3ziZkO3fktUH/lzkTHVraqH63PLP8+oVTFQkn0G/q04qwlIJgW9ug7XxloQCoVo3PjLW0oy6u/atWuYM2cOnjx5gpEjR2LdunVo0KDoGcLKJCwsDBzHwdPTE5GRkbCyspKvGMjNzYWjoyOCg4OxZcsWTJkypUR3QZGRkfD09IRYLEZ4eDjMzc3h7u4OoVAIS0vLMnxXDFO0zMxMBAcHF0j6gYGBSE9PBwDUrFmzwMZw+XvECAQChISEyDfryrQeAMMWA4BC9g6I9lkMvqYWtGtb/281wXukP7sA8DVQa/QmaJrUKTRGVdhnQCWKgZLuQJivuEsLO6dfxxnvv5CUlIQ2bdrIt1VlBwZVPPnH8i5evBixsbGYPn06li5dqrS/CykpKTh06BDEYjHu3LkDIyMjODo6QigUon379uDxeDh48CAmTJiA6tWr49ChQ2jRosU3X4+IcPfuXXAcB19fX6SmpqJjx44QCoVwcHCAkVEJV/IwTAnExMR8dsx7aGiofI+Yxo0bF0j6dnZ2qFGjRoHXSExMhK+vLziOw4MHD1ClShU4Ozujx3A3zL6cWOi1Ux+dQsbza5AkfYIsNxMCPSPo1LWD0Q/O0Kxi+tXY2Q6EpaQkZxMU17/3jM7JycHp06fBcRzOnz8PgUCAIUOGyM+RZzutVSyZmZnYsmUL1q1bB21tbSxbtgyTJ09WioOlpFIpLl++DLFYjBMnTiA3Nxe9e/eGUCjEkCFDoKurCwDIysrCrFmzsGfPHjg6OmLv3r2l+veblZWFkydPQiwW49KlS9DS0sKwYcMgFArRs2dPthqB+WZSqVS+I+y/7/hjYmIAAJUqVfos6Tdt2lT+u/9fEokEfn5+EIvFOHXqFKRSKfr16wehUIhBgwZBW1sbQNnnGUVQu2KgpKcWFkdhp0lFR0fLj2INCgpCjRo15Huw29raltr1GeUXHR2NZcuWYd++fahfvz42bNiAoUOHKmSSYX5L09PTE1FRUWjSpAmEQiHc3NxgalrwziQ0NBQODg4IDQ3F9u3bMWHChDKNOSoqCl5eXhCLxQgJCYGpqSlGjx4NoVAIa2vrMrsuo/rS0tIQFBRU4PyX4OBgZGVlAQDq1KnzWZu/Xr16xZqzEhQUJD+ELiYmBra2tvIzO/7bMQDKN8+UF7UrBoDyP2eaiAqcIx8fH48WLVrITzQ0MTEptVgY5RYUFIR58+bBz88PnTt3xubNm9GqVasyv25+S1MsFuPhw4eoUqUKXFxcIBQK0apVqy8meC8vL0yaNAlmZmY4dOhQuZ7gSER49OgROI6Dj4+PfOhNKBTCyckJxsbG5RYLo1yICB8/fvyszR8eHg7gn620mzRpUuCY92bNmpX4FMy4uDgcOHAAYrEYT58+hYmJifwQOnt7+68WxeWdZ8qaWhYDALDTPwybLr767teZ17sRpnYr/sSn3NxcnD9/HmKxGGfOnAEADBw4EEKhEP3791eK9jFT9vz8/DB37lwEBwfD1dUVa9euhbl56f6h5+Xlwc/PDxzHyVua/fv3h1AoxMCBA+Utzf/KzMzE9OnT8ffff8PNzQ27d+9W6FLAnJwcnDlzBmKxWD70NnjwYAiFQvTt25cNvamxvLw8hISEfHbia2LiP2PylStX/uyYd2tr60J/t78mNzcX586dg1gsxtmzZ8Hj8eSfz/369Svx57Oi8kxZUNtiAPinclt+6jkkMirR2I6Az4MGn4dVg22+q1KLj4+XV55PnjyBiYmJ/G6tefPmarVOnfmcRCLB/v378fPPPyMlJQWzZ8/GwoULYWDwfZODAgMD5TObY2Nj0axZM4hEIri4uHyxpflvL168gIODA968eYNdu3ZBJBIp1e9hTEyMfOgtMDAQNWrUkN+tlWfngil9ycnJn63df/78OXJzcwEA9evX/6zNX6dOne/+/SQiPH36VN6Fio+PR8uWLSEUCuHs7PzdnVtF55nSotbFAPDP2M7i40G4GR4PAZ9X5A8r/+udLE2wdphtqY7dBAcHy8dx88ekhEIhXF1d2UmHai4tLQ0bNmzA5s2bYWBggFWrVmHcuHEluuONi4uDj48POI7D06dPUa1atQItzeIQi8WYMmUK6tWrh0OHDsHGRnlPRgOAgIAAiMVi+Pj4IC4uDs2bN5cPvVWrVk3R4TGFICJERER81uZ/9+4dAEBbWxu2trYFkn6zZs1KPWdER0fD29sbYrEYwcHBqFmzpnxOV9OmTUv1WsqSZ76H2hcD+cJi0uB9PxL+r2IRmZBZYKdCHgDzqnro1rA63NqZl+myDolEgosXL8rPkZdKpejbt698tmpxzpFnVNOHDx+wZMkSeHh4oEmTJti0aRP69u1b6J1Pbm4uzp49C47j5C3NQYMGyVuampqaxbpueno6pk6dCg8PD4wZMwY7duyAvr5+ab61MpWXl4fz58+D4zicPn0aRIQBAwZAKBRiwIABbOhNgbKzs/H8+fPP7vhTU1MBANWqVfuszd+oUaMyG/rJzs6Wr/a6cOECNDQ05Ku9evfuXeZDTsqSZ75FsfM3FUNKSgoBoJSUlOI8XGHSs/Mo+GMyPXmXSMEfkyk9O08hcSQmJtLu3bupbdu2BICqVKlCkydPpnv37pFMJlNITEzZe/ToEXXp0oUAUK9evejZs2fyr8lkMnr06BFNnz6dqlatSgCoVatWtGPHDoqPjy/xtQIDA6lx48akr69PHh4epfk2FCIuLo527NhBLVu2JABUtWpVmj59Oj169Ij9zZSx2NhYunTpEm3cuJFcXV2padOmJBAICADxeDxq1KgROTo60tq1a+ncuXMUFRVVLj8TmUxG9+7do8mTJ1PlypUJALVr1452795NiYmJZX79wihLnimu4uZvle8MKLuXL1/Kz5H/+PEjGjduLN8Vrnbt2ooOjyllRIRTp05h/vz5CA8Ph6OjIywtLXHs2DE8f/4ctWrVkrc0v6WdT0T466+/MGPGDFhZWeHQoUNqt2vm8+fP5UNv0dHRaNq0qXzorVatWooOT2XJZDKEh4d/tnY/KioKAKCnp4dmzZoVuOO3tbUt927Thw8f5MtUQ0NDYWZmJl+myo7TLrkK2RlQZhKJhC5evEguLi6kq6tLPB6PevfuTd7e3pSRkaHo8JhSlJWVRd7e3mRtbU345xhzatq0KR07dozy8r79LiIlJYWcnJwIAE2cOJEyMzNLMWrlk5eXR+fOnSMHBwfS1tYmPp9P/fv3p4MHD1JWVpaiw1Nq6enpdPfuXfrjjz9o0qRJ1K5dO9LX15f/PpqamlL//v1p8eLFdPDgQQoNDSWJRKKweDMyMsjb25t69epFPB6PdHV1ydXVlS5evKjQuNRBcfM3KwYUICUlhf766y/64YcfCAAZGhrS+PHj6ebNm6wlqqJkMhndvXuXJk2aJG9ptm/fnrZs2ULTpk0jLS0tMjU1JbFYTFKptMSv/+TJE7K0tKRKlSrRgQMHyuAdKLfExET6448/qF27dgSAKleuTJMmTaK7d+9W6L8ZmUxGUVFRdO7cOVq7di05ODhQo0aNiMfjEQASCATUtGlTcnNzo40bN9KlS5coNjZW0WET0T+x37x5k8aPH08GBgYEgDp16kR//fUXyzWliBUDKiI8PJyWLVtGdevWJQBkaWlJq1atooiICEWHxhTD+/fvae3atdSoUSMCQGZmZrR48WJ6+fJlgce9fv2aHBwcCADZ29vTlStXivX6MpmMdu3aRVpaWtS8eXN69epVWbwNlfLy5UtatGgRmZmZEQBq1KgRrV27lt6/f6/o0MpUXl4eBQcHk5eXF82bN4969epF1apVk9/tGxoaUqdOnWj69Om0b98+evTokVJ2UCIiImjVqlXUoEEDAkB169alZcuWUXh4uKJDU0usGFAxUqmU/P39SSgUytt53bp1I7FYTGlpaYoOj/mXjIwM8vLyKtDSdHNzo0uXLn21pXn79m353e3AgQMpJCSk0McmJyfTyJEjCQBNnTpVKT/YFUkikdClS5fI1dVVPvTWq1cv8vLyUvmht+TkZLpx4wbt2LGDxo0bRy1btiRtbW154q9bty4NGTKEli9fTseOHaM3b94odYckLS2NxGIxdevWjQCQvr4+iUQi8vf3/6ZOGVN8rBhQYWlpacRxXIE/HKFQSFevXmV/OAoik8noxo0bNG7cuAItzX379pX470Imk5Gvry9ZWFiQQCCgKVOmfNa6ffDgAdWrV4+MjIzoyJEjpflW1FL+0FunTp0IABkYGNC4ceOUfuhNJpPRu3fv6OTJk7Ry5UoaNmwY1a9fX570NTU1qXnz5iQSiWjr1q107do1hc6kLwmpVEpXr14tcIPTvXt34jiO3eCUI1YMqIm3b99+1lL7+eefWUutnLx9+5ZWrlwp//5bWFjQ8uXL6fXr19/92llZWbRhwwYyMjIiQ0NDWr9+PWVmZtLWrVtJU1OTWrduXSrXqWjyh94sLCwIADVo0IBWrlxJb9++VWhcOTk59PTpU9q/fz/99NNP1LVrV/n8EgBkbGxM3bt3p9mzZ5OHhwc9e/aMcnJyFBrztwgLC6Off/5ZPvTZoEEDWr16NRv6VBBWDKgZmUxGt27dovHjx5OhoSEBoB9++IH+/PNP9nMpZWlpabR//37q2rUrAaBKlSrRmDFj6Nq1a2XSmYmLi6Np06aRQCAgXV1dAkAzZ85UyUSgTPKH3kQikfzOtGvXruUy9JaQkEBXr16lLVu2kLu7OzVr1ow0NTXlid/S0pJGjhxJv/zyC50+fZrev3+v1B2Mr0lOTqY///yzwKToCRMm0K1bt1T6fakDVgyosczMTPLx8aHevXvLx6xdXFzYMpzvIJVK6cqVK+Tu7k76+vrE4/GoR48e5OHhQenp6WV+/bt371KtWrVIQ0ODAFDbtm3p9u3bZX7diiI9PZ08PDyoe/fuxOPxSF9fn9zd3b976E0qlVJ4eDgdOXKEli5dSoMGDaI6derIk76Ojg61adOGJkyYQLt27aLbt29TampqKb4zxZFIJOTn50cuLi6ko6NDfD6f+vTpQz4+Pmq/7FWVsGKggvjw4QOtW7eOGjduTACodu3atHDhwiInpjH/LywsjJYuXUrm5ubyO7ZffvmF3r17Vy7Xl0qltHHjRtLQ0KB27dpRREQEXb16lZo3b04AaOTIkWxIqJRFRETQ6tWrydLSssDQW1hYWJHPy8zMpAcPHtDevXtp6tSp1LFjR6pUqZI88desWZP69OlDCxYsoAMHDtCLFy++a18JZRUSEkILFy6k2rVrEwCytramdevW0YcPHxQdGvMFrBioYGQyGd2/f58mT55MVapUkd9d/v777yoz4ai8JCcn0969e6ljx47ylubEiRPp9u3b5drSjIuLowEDBhAAmjdvHuXm5sq/JpVKieM4ql27NmlqatLs2bPZz7GUyWQyun37Nk2YMEE+9NaxY0fau3cvvXr1ivz8/Gj9+vXk7OxMTZo0IT6fTwCIz+eTtbU1OTs70/r16+nChQv06dMnRb+dMpWYmEi///57gS3Wp0yZQvfv32fDAEqOFQMVWHZ2Nh0+fJgGDBhAAoGAtLS0aNSoUXTmzBm1vFMpDolEQhcuXCBnZ+cCLc0DBw4opKV58+ZNMjMzo6pVq9KZM2cKfVxGRgatXr2a9PX1ydjYmLZu3crmEpQiiURCISEhxHEcDRo0iExMTOR3+vlt/g4dOtCUKVNo79699ODBA5VftlhceXl5dObMGRo1ahRpaWmRQCCggQMH0uHDhyk7O1vR4THFxIoBhoiIPn36RJs2bSJbW1t5K3POnDkUGBio6NDKxYsXL2jBggVkamoqb2muX7+ePn78qJB4pFIprV27lgQCAf3www/F3ijn06dPNGHCBOLz+WRlZUXHjx9nd2QllJaWRrdv36Zdu3bRxIkTqU2bNvIJmwCoTp06NHDgQJoxYwa5urrKV5DUrl2bFixYQC9evFD0WygXgYGBNGfOHKpRowYBIFtbW9q8ebPadz/UFSsGmAJkMhk9efKEZsyYIb/7adGiBW3bto3i4uIUHV6pSkhIoF27dlGbNm3kLc2pU6fSgwcPFJpAY2Ji5JM+Fy9e/E1dmsDAQOrTpw8BoM6dO9PDhw/LIFLVJpPJ6P3793TmzBn65ZdfaOTIkWRlZSXfoldDQ4OaNWtG7u7utGXLFrpy5coXT46UyWT04MEDmjJlinzorU2bNrRr1y5KSEhQwDsrO3FxcbRt2zZq0aIFASATExOaOXMmPXnyhBWdKo4VA0yhcnJy6Pjx4zR06FDS0NAgTU1NGjp0KJ04cUJlW9B5eXl0+vRpGjlyZIGW5pEjR5Sipenv70+1atWiatWqkZ+f33e/3vnz58nGxoYAkJubG0VGRpZClKonNzeXAgMDycPDg2bPnk09evSQHxGdf4ZB165daebMmbR//356+vTpN/0+5A+9DRw4UD70NnLkSJUeevvv54CGhobKfw4wn2PFAFMssbGxn90RzJgxQ2XuCJ49e0azZ8+WtzSbNWtGW7ZsoejoaEWHRkT/jEmvXLmS+Hw+de3alaKiokrttfPy8mjPnj1UvXp10tHRocWLF6vNsrUvSUpKomvXrtG2bdtozJgx1Lx5c9LS0pIn/vr169OwYcNo5cqVdPLkSYqIiCiT3+Ho6GjavHmzfOitRo0aNHv2bJUYepPJZPT48ePPOoTbt29Xuw4h8w9WDDAlVthYobIk1nyxsbG0detW+fK7/Jbm06dPFR1aAZ8+fZKva1++fHmZ7QGRmppKS5YsIR0dHapevTr98ccfKnu3SvRPwnrz5g0dP36cli9fTkOGDJHvJgiAtLW1qWXLljRu3DjasWMH3bhxg5KTkxUS55MnT2jmzJnyxNq8eXPatm2b0pwMmO+/c4dq1KhRoeYOVWSsGGC+2ZdmEQ8YMEChs4hzcnLo2LFjNGTIEPnQxrBhw+jkyZMFluQpi0uXLlH16tWpZs2axT6h8HtFRkbS6NGjCQDZ2NjQ+fPny+W63yM7O5seP35M+/btoxkzZlDnzp3JyMhInvhNTEyoV69eNHfuXPLy8qLg4GClLHRycnLoxIkTNGzYMNLU1CQNDQ0aMmQIHT9+XGEt96ysLDp06NBnq4rOnj2rlN9DpmywYoApFQkJCQpbX5zf0pw+fbp8HLhly5a0Y8cOpW1p5uXl0dKlS4nH41HPnj0V0lV59OgRdenShQBQ79696dmzZ+Uew5fExcXRpUuXaNOmTeTm5kZNmzaV77jI4/GoYcOG5ODgQGvXrqVz587Rx48fVWKo6r/i4uJo+/bt1LJlywJDb48fPy6Xv5kv7Teye/dutk9FBcWKAabU/XfnscaNG5fJzmOfPn2ijRs3UtOmTeXLIefNm0fBwcGlep3S9uHDB+rcuTPx+Xz65ZdfFHrCpEwmoxMnTpCVlRXx+XwaN25cqc5XKIpUKqXQ0FA6dOgQLV68mPr37y//nQFAenp61K5dO5o0aRLt3r2b7t69Wy5bPitCUFAQzZ07l2rWrEkAqGnTprRp06ZSX6b34cMH+vXXXwvsRLpo0SK2EynDigGm7EgkErp48WKBPcl79+79XXuSZ2Vl0cGDB6l///4kEAhIW1ubHBwc6Ny5cyrR0jx//jyZmJiQqakpXb9+XdHhyOXk5NC2bdvI2NiY9PX1aeXKlaWaeDMyMujevXv0xx9/0OTJk6l9+/byQ4EAkKmpKfXv358WLVpEBw8epNDQ0Ap5fkZeXh6dPXuWHBwcSFtbmwQCAfXv358OHTpEWVlZ3/SaGRkZ5O3tTb179yY+n8/OKGG+iBUDTLn40mll48ePL9ZpZTKZjO7evUuTJk2SH+Xarl07+uOPP1SmpZmbm0sLFiwgANSvXz+lmziWLzExkebMmUNaWlpkampKYrG4RJ0LmUxGUVFRdO7cOfr111/J0dGRGjVqJN+iVyAQUNOmTcnV1ZU2btxIly5dUtrvhaIlJibS7t27qV27dvLlj5MmTaJ79+4V62/m5s2bn51e+tdff7HPZ+aLWDHAlLv/nmNuaWlJq1at+uwc8/fv39PatWupUaNGBIDMzMxo0aJF9PLlSwVF/m3evXtHHTp0IIFAQOvXr1fosEBxvX79mkaNGiWf+X716tXPHpOXl0fPnz8nb29vmjdvHvXu3ZuqV68uv9s3NDSkTp060fTp0+mvv/6iR48effPdbUX38uVLWrRoEZmZmREAatSoEf3666+f7UwZERFBq1atKnC40rJly9ghVsxXFTd/84iI8BWpqakwMjJCSkoKDA0Nv/ZwpoKTyWS4fv06OI7DkSNHkJGRgc6dO8Pa2hqvXr3CtWvXoKOjg+HDh0MkEqFbt24QCASKDrtETp8+DZFIBH19ffj6+qJDhw6KDqlE7ty5gzlz5uDevXvo2LEjunbtipiYGAQEBCA4OBjZ2dkAgLp168Le3h52dnawt7eHvb09LCwswOPxFPwO1ItUKsXVq1fBcRyOHTuG7OxsdOvWDVZWVggJCcGNGzegr6+PkSNHQiQSoXPnzuDz+YoOm1EBxc3frBhgygwR4dKlS1izZg1u374NqVQKPp+Pdu3aYfHixejXr5/KfaDl5uZi0aJF2LJlCwYNGgSxWAxjY2NFh/VVRIT379/j2bNnCAgIQEBAAJ4+fYq3b9/KH2NiYoKePXuiXbt2sLOzg52dHapUqaLAqCsemUyGc+fO4ddff8W9e/cgk8kgEAjwww8/YPHixejVqxcrxJgSKW7+1ijHmJgKIiIiAh4eHvDw8MDr169hYWGBJUuWoHv37rhx4wY4jsPAgQNhYWEBd3d3uLu7o0GDBooO+6vevn0LJycnPH36FFu2bMFPP/2klB/Mubm5CAkJkSf9/AIgKSkJAGBsbAx7e3sMGzYMdnZ2sLa2xuXLl7Fu3TqcO3cOzZs3R7t27aCjo6Pgd1JxvH79GhzHwcPDA+/evUODBg2wYsUKdO7cWd4x6NOnDxo0aAChUAh3d3fUrVtX0WEz6qQ0xxyYiistLY3EYjF17dqVAJC+vj6JRCLy9/f/bCz935OgDAwMVGIS1LFjx8jIyIgsLCzo/v37ig5HLiEhga5evUpbtmwhoVBIdnZ2pKmpKR/ft7S0pJEjR9Lq1avp9OnT9P79+0InqcXGxtLUqVNJIBCQhYUFHThwQCXX+auKlJSUYk++lUql5O/vTyKRSL5ao1u3biQWiyktLU1B74BRBWwCIVPmpFIpXb16ldzd3eUfUN27dyeO44r9AfXv5VE8Ho90dXXJ1dVVaZZHZWdn0/Tp0wkADR8+nJKSkhQSh1QqpfDwcDp69Cj9/PPPNGjQIKpTp4486evo6FDr1q1pwoQJtGvXLrp169Y3n1Pw8uVLGjx4sHx1x+3bt0v53VRc/16Wq6urSzwej3r37k3e3t6UkZFRrNdIS0sjjuOoe/fu8sJbKBTS1atXVWISK1O+WDHAlJkvrRpYvXr1Z6sGSur9+/cFNk5R9CqD8PBwatmyJWlpadGOHTvK7S45MzOTHj58SH/++SdNnTqVfvjhB3kHBf/bV75Pnz60YMEC8vHxoRcvXpTJXgxXr16Vn/8watQoev36dalfo6L40oZdX1o1UFIRERG0evXqAqsMfv75ZwoLCyulyBlVx4oBplTl7yfQsWNHeUtzwoQJdPv27VJPkjKZjO7du0eTJ08usP9AeW6pevDgQTIwMKAGDRrQo0ePyuw6MTEx5OfnRxs2bCAXFxdq0qSJfO0+n88na2trcnJyonXr1tGFCxdKfee6r5FKpcRxHNWuXZu0tLRozpw5KrMHhKLl7yfw7628J0+eXCZbectkMrp16xZNmDChwP4Df/75p0IOcWKUBysGmO8mkUjIz8+PnJ2d5TsN9unThw4cOPDNOw2W1H8PW8nfmbCsDlvJysqiSZMmEQBycHAotd95iURCISEh5OvrSwsXLqS+fftSrVq15Hf7lSpVog4dOtCUKVNo7969dP/+/WK3jctDRkYGrVq1ivT19cnY2Ji2bdumlAdEKdq/D/nK32mwvA/5yszMJB8fH+rTpw/x+XzS0dEhFxcX8vPzU4qhN6Z8sWKA+WYvXrygBQsWyFua1tbWZXIGQUnlH8P67zML5s6dS0FBQaXy+qGhoWRnZ0fa2tr0xx9/fPPdW1paGt25c4d+//13+vHHH6lt27akq6srT/xmZmY0cOBAWrp0KR0+fJjCwsJUZqw3KiqKxo8fT3w+n6ysrOj48eNskiH9//Hf+WcQ2NralskZBCX14cMHWrduHVlbW8vPLFi4cCE7s6ACYcUAUyIJCQm0a9cuatOmTYHTCR88eKB0H/b5pxnOmDFDfpphixYtaPv27d98mqGXlxfp6+tTw4YNKSAgoNhxfPjwgc6cOUNr1qyhUaNGkZWVFfF4PAJAGhoa1KxZMxo9ejRt3ryZrly5QvHx8d8Un7IJDAyk3r17EwDq0qULPXz4UNEhlbu4uDjatm0btWjRosDphE+ePFHKv5n79+/TlClT5KcZtmnThn7//Xc27KPmWDHAfFV+S3PkyJGkpaVFAoGABg4cWK4tze+Vk5NDx48fp6FDh5KGhgZpamrSsGHD6MSJE8VqY2dkZNC4ceMIALm5uRW6CiI3N5cCAwPJ09OT5syZQz169CATExP53X7lypWpS5cuNHPmTNq/fz89efJEZb6H3+P8+fNkY2Mj//5FRkYqOqQylZOTQydOnKChQ4eSpqYmaWho0NChQ+n48eOUk5Oj6PCKJTs7mw4fPkwDBw4kgUBAWlpaNGrUKDpz5oxKHArGlAwrBphCBQYG0uzZs6lGjRrylubmzZspOjpa0aF9l9jY2M/u1GbOnFnondrz58/JxsaGdHV1ad++ffLHJCcn0/Xr12nbtm00ZswYatGiBWlpackTf7169WjYsGG0cuVKOnHiBEVERCjdnWB5ysvLoz179lD16tVJR0eHFi9e/M3LGpWRTCajJ0+e0IwZM+QFYIsWLWjbtm0qfxjTp0+faPPmzWRraytfqTJnzhwKDAxUdGhMKWHFAFNAfqLMXyr2tUSp6vLHcPMLnmbNmhUoePbv30+6urrUoEED2rZtG61YsYKGDh1KFhYW8qSvra1NLVu2pLFjx9L27dvpxo0bbGZ2EVJTU2nJkiWko6ND1atXpz/++EOl7zSjo6MrTKLML3hmzpz5WcHzrUNvjHJgxQAjb6EPGTLksxa6qrQ0v1f+UMiIESNIU1OT+Hy+fIOkf+/UZ2JiQj179qS5c+eSl5cXBQUFsdny3ygyMpLc3NwIANnY2ND58+cVHVKx5bfQ81evVMQW+r+HQjQ0NFRyKIT5f6wYqKD+Pbkuv8Jv2bLld02uUzVxcXF0+fJl2rRpE40ePZpsbW1JQ0NDnvjz/09XV5cGDBhAZ86cUZnZ/Krk4cOH1LlzZwJAvXv3Vto76i9Nrmvbti39/vvvlJCQoOjwFCouLo62b9/+2STJx48fq2VHUR2xYqCCKetld8pIKpXSq1ev6PDhw7RkyRIaMGCAfDkkANLT06N27drRxIkTydXVlbS0tMjGxoZCQkLoxYsXtHDhQjI1NVWq5ZPqRiaT0fHjx8nKyor4fD6NHz9e4cvt8uUvu8vf8ZItuytaUFAQzZ07t8BcI2VYPskUjRUDFUB5b8ijSBkZGXT//n3as2cPTZ48mTp06CBv9wMgU1NT6tevHy1atIgOHjxIL1++JIlEQqmpqeTs7EwAaMKECZ9tlpS/sZKLi0uBjZV8fHzKbWOliiAnJ4e2bdtGxsbGpK+vT6tWrVLIpkr5G/L07t27wIY8ynIWhirIy8ujs2fPkoODg3wV0oABA+jQoUOUlZWl6PCY/2DFgJpShq16y9qnT5/o/Pnz9Ouvv5KTkxM1btxYvkWvQCAgGxsbcnV1pY0bN9LFixcpJibmi6/z9OlTsrKyokqVKpGPj89Xr5u/5fK/T5GbMGHCF0+RY75NYmIizZkzhzQ1Nal27dokFovLfIgmf6ve8ePHs616S1lhWy7fu3eP/c0oCVYMqJn8Q3waNWqkFIf4lIa8vDx6/vw5eXt70/z586l3795UvXp1+d2+gYEBderUiaZNm0Z//fUXPXr0qFh3HjKZjH7//XfS1tYme3t7evXqVYljyz+MydzcvFQPY2L+8fr1axo1ahQBoObNm9PVq1dL/RoRERG0atUqdohPOQkJCaFFixZ9dhgTG3pTLFYMqIH843179eqllMf7lkRqairdunWLdu7cSePHj6fWrVuTjo6OPPGbm5vT4MGDadmyZXTs2DF6/fr1N90xJicny5PM1KlTv7ttmX9Ms1Ao/OyY5vT09O96bYbo1q1b8rvKQYMGfXdxm3+8b7du3djxvgpSGsc0M6WHFQMqSiaT0c2bN2n8+PHyY2s7depEf/31l0p8/2UyGUVGRtKpU6do1apVNGLECGrQoIE86WtqapK9vT2JRCL67bffyN/fv9SGNx4+fEj169cnQ0NDOnz4cKm85r+lpaWRWCymrl27yhONSCQif39/lmi+g0wmI19fX7KwsCANDQ2aNm1aiVa+SKVS8vf3L1CwdevWjcRicaE7SjLlIyUlhf76668CQ2/jx4+nmzdvsmGEcsKKARWT39LMT5x169alZcuWUXh4uKJDK1ROTg4FBAQQx3E0a9Ys6tatGxkbG8sTv7GxMXXv3p1mzZpFHMfRs2fPymSdskwmo61bt5Kmpia1atWKXr9+XerX+K+3b9/SqlWrqH79+gSALCwslP7npeyysrJow4YNZGhoSEZGRrRhw4YiOzvh4eG0bNky+UZRDRo0oFWrVtHbt2/LL2im2PJ/XnXr1pUPva1atYoNvZUxVgyogPw7zX+3NJX1TjMxMZH8/f3pt99+I6FQSPb29gU27WnQoAGNGDGCVq9eTadPn6bIyMhyqfwTExNp6NChBIB++umncj8PIL+TM27cOJXs5Cij2NhYmjp1KgkEArKwsCBfX1/579J/7zQNDAzYnaaKYZ2c8sWKASVV1Bi0MvwhyGQyev36NR09epSWLVtGgwcPlk+iA0A6OjrUunVrmjBhAu3cuZNu3bqlsH3o7927R3Xr1qXKlSvTiRMnFBLDv6nTHA9lEBISQoMGDZLvA9G7d282Bq1m2ByPslfc/M0jIsJXpKamwsjICCkpKTA0NPzaw5kvCA8Ph4eHBzw8PPDu3Ts0aNAAIpEIo0ePRt26dRUSU3Z2NoKDg/Hs2TMEBAQgICAAgYGBSE1NBQBUr14dzZs3h52dHezt7WFvbw8rKytoaGgoJN58MpkMv/32GxYuXIhWrVrB19dXYd/Dwnz48AGenp7gOA6hoaEwMzPD6NGjIRQK0ahRI0WHpxJCQ0PBcRz+/PNPxMfHAwBsbW2xe/dudOzYUcHRMaUtIiJC/jfz+vVr1K1bF+7u7hAKhWjQoIGiw1NZxc7fpVlZMAUp07r1mJgYunjxIm3YsIFcXFzIxsaGBAIBASA+n0+NGzcmJycnWrduHZ0/f15pdxWLj4+nAQMGEACaO3eu0p8fkL8vxKRJk9R2X4jSlL9uvV27dvKjoSdPnkx37tyh/fv3U+3atUlLS4vmzJnDvn9qqqh9IVgOKjk2TKAgit7RTiKR0MuXL8nX15cWLVpE/fr1o1q1asnb/Pr6+tShQweaMmUK7dmzh+7fv68yrdZbt26RmZkZVa1alc6cOaPocEosf8fI/v37F9gx8ty5c2q3Y2RJ/HtHO21t7SJ3tMvIyKBVq1aRvr4+GRsb07Zt25S+IGS+3b93jMwfemM7RpZMhSwG0rPzKPhjMj15l0jBH5MpPbv8PmBDQkJo4cKF8g03ymOv+7S0NLpz5w7t3r2bfvzxR2rbti3p6enJE7+ZmRkNHDiQlixZQocPH6awsDCVHIeTSqX066+/kkAgoB9++IHev3+v6JC+W0U8S+K/8ve6r1mzJgGgpk2bFnuv+6ioKBo/fjzx+XyysrKi48ePswmEak5ZzpJQZJ75FhVmzkBYTBq870fCPzQWkYmZ+Peb4QEwN9ZDt0bV4drWHFY1DEr12klJSfD19QXHcbh//z6qVKkCZ2dnCIVCtG7dGjwer1SuQ0T49OmTfFw/f4w/LCwMRAQNDQ1YW1vLx/Xt7OxgZ2cHExOTUrm+IsXGxsLd3R1+fn5YtGgRVq1apfA5C6WJiPD06VOIxWL4+PggISEBLVu2hFAohLOzs1r8DP8tPj4eBw4cAMdxePz4MapWrQpXV1cIhUI0b968xH8zgYGBmDt3Li5duoQuXbpg8+bNaNmyZRlFzygDIsLDhw8hFovh6+uLpKQktG3bFkKhEE5OTqhSpUqpX1OReeZ7FTd/q2wx8D4xE4uPB+FmeDwEfB6kssLfRv7XO1maYO0wW9Qx1vvm60okEvj5+YHjOJw8eRJSqRT9+vWDUCjEoEGDoK2t/c2vDQB5eXkIDQ0tkPQDAgLkE6iMjIwKJH17e3s0adLku6+rjK5fvw5nZ2dIJBJ4enqiT58+ig6pTOXm5uLcuXMQi8U4e/YseDweBg4cCKFQiP79+0NTU1PRIX6TvLw8nDt3DhzH4cyZMyCiAu9LS0vru16fiHDhwgXMnTsXL168wOjRo7FmzRrUqVOnlN4Bo6xycnJw+vRpiMViXLhwAQKBAEOGDIFQKESfPn2++8ZBUXmmNKl1MeD7MBLLTz2HREZF/nD+S8DnQYPPw8rBNnBqbV6iawYFBYHjOHh5eSEmJga2trYQiURwcXFBzZo1S/oWAAApKSkIDAwscMcfHByMnJwcAEC9evUKzOS3s7ND3bp1S63joKykUinWrl2LFStWoHPnzvD29oapqamiwypXcXFxOHDgAMRiMZ4+fYpq1arBxcUFIpEI9vb2ig7vq4gIAQEB4DgO3t7eiI+PR4sWLeQdj2rVqpX6NSUSCfbt24dly5YhNTUVc+bMwYIFC2BgoFx3akzZiI6Ohre3NziOQ1BQEGrWrCnvOtna2pb49RSRZ8qC2hYDO/3DsOniq+9+nbm9G2JaN6siHxMfHw8fHx9wHIcnT57AxMRE/stlb29f7KRMRIiMjPyszf/27VsAgJaWFpo2bVog6Tdr1gyVK1f+3repcqKjo+Hm5oarV6/i559/xrJlyyAQCBQdlkIFBgbKk2pMTAyaNWsGoVAIV1dX1KhRQ9HhFRATEyP/QA4MDESNGjXg5ub2zR/I3yI1NRXr16/Hli1bYGRkhFWrVmHs2LFqNbzEFC6/EM0fevt3Ieri4lKsobfyzDNlTS2LAd+HkVh4LOizf8/59AoZQVeQHRkESUoM+LqG0DZthMqdR0PTuHahr7d+uC0c/1O55bdq81uaADBw4ECIRCL069fvqy3NnJwcvHjxokDSf/bsGZKTkwEAJiYmn7X5GzVqpLIt4NJ05coVuLq6AgB8fHzQvXt3BUekXPKHqMRiMU6dOlXqQ1TfKr9Vy3Eczp8/X+qt2m8VGRmJJUuWwMvLCzY2Nti0aRP69u2rkFgYxfjv5zmPx8OAAQOK/DwvLM/kxr1Dyi0f5EaHQ5qRDJ6mNjSr1oFh2+HQs2pbaAxfyjPlSe2KgfeJmej523XkSGSffS3u+FrkfAiBXuMfoFndAtL0JKQ9OQPKzUZN903QqmbxxdfU1uDj8qwuMKuii6dPn4LjuAKVpEgkKnISV0JCQoFx/YCAAISEhEAikYDH48HKyqpAm9/e3h61atVS+zZ/SUkkEqxatQq//PILevToAS8vL6W741U2iYmJ8smrDx48kE9eFYlEaNWqVZn/juVP4uI4DgcOHEBSUhLatGkDkUgER0dHGBsbl+n1S+LRo0eYM2cObty4gd69e2PTpk3l1qVglEf+0Nu/O73/Hnrj8XhF5pms1w+R+ug0tGs3hqCSMSgvB5mhd5Dz4TmM+06Dgf2XC838PKOoOQRqVwyM3ncfd94kfHHsJvtDCLRrWYIn+P+767zEj4jaNw36jTvCZNDcL76mgAeYaqQj5cQaBAUFFdrSlMlkePPmzWdt/g8fPgAA9PT0YGtrW+CO39bWFpUqVSrl74L6iYqKgrOzM27duoWVK1di0aJFFX5YoKRCQkLAcRw8PT0RFRUFa2trCIVCuLm5oXbtwjtj3+Ljx4/w8vICx3EICQmBqakp3N3d4e7uDmtr61K9VmkiIpw8eRLz5s3DmzdvMHbsWKxevfqb5/swqq2wOWD3dFvh8Yf0Ys8RIJkUn8Q/gSR5qD3xjy8+RsDnoUP9qvAcV3j3oCypVTEQFpOGXltvlPh5n/bPBADUGrOtyMfZRp7AZNdh6N27N3Jzc7+4RW96evo/r1WrVoEWv729PSwtLVkC+wYXLlzA6NGjoaWlBR8fH3Tp0kXRIak0qVSKy5cvg+M4HD9+HLm5uejVqxdEIhGGDBkCXV3db3rdrKwsnDhxAhzH4dKlS9DS0sKwYcMgEonQo0cPlfrdz83Nxe7du7Fq1Srk5ORg4cKFmD17NvT0lGPmN1O+/r067OzNx6gm2l7i14g9vBI50WGoM92ryMddntUZltXLfzKrWhUDK049h+f9dyWa0UlE+Pi7CJom5qjhuLrQx/FBsNFKRKVX5/Hs2TOEhoZCJpNBIBCgcePGn83mr169emm8pQpNIpHg559/xrp169C3b194eHiUyezyiiwlJQWHDh0Cx3G4ffs2jIyM4ODgAJFIhPbt2391GIGIcOfOHXAch4MHDyI1NRUdO3aESCTCqFGjYGRkVE7vpGwkJSVhzZo12L59O6pXr461a9fCzc0NfD5f0aExCrLw8GMcfPIJhKL/NmS52SBJDmQ5mcgKu48k/7+hZ90J1QbPK/Q5Aj4Po9vWxYrBNqUd9lepVTHQZaM/3iVmlug56cH+SDizGVX7zUAlu95FPlaa/AkWwVyBpG9jY/PNd1JM4d6/fw9nZ2fcu3cPa9aswbx589gHcBkLCwuTH5IVGRkJKysrCIVCjB49GubmBSc2RUZGyh8bFhYGc3NzCIVCuLu7w9LSUkHvoOy8efMGCxcuxOHDh9GiRQts3rwZXbt2VXRYjAIUN88kXNiJ9IAL//wPHh96DdvDuN90CHSKHhauW1UP1+d2K41QS0RtioH0HAlsV/ih+D0BIC/hPT55zIGWiTlquK4Hj190G5MHIHhFH+hrs6VHZenMmTMQCoXQ19eHr68vOnTooOiQKhSZTIbr169DLBbjyJEjyMrKQrdu3eDk5AQA8PX1hb+/P/T09DBy5EgIhUJ06dKlQhRrt2/fxpw5c3D//n0MHjwYGzZsYKdLViAlyTN5Ce8hSUuANC0BmS9vAQINVO0zBQL9onc+VFSeUZti4HlUCgbsuFXsx0vTkxDtNQ8kk6Lm6E3QMKharOdt7mWCepXZ8r6ykJeXh507d8LLywudOnXCihUrKuQeCsokLS0N+/fvx5kzZ5CQkAAAqFq1KgYNGoQxY8ZUyMmvRISLFy9ix44diI2NxciRIzFhwoQy2d6WUS5vk/Mw51L8Nz03xvdnyHLSUdN9y1eH385O/wE2puU7xKY2xcDTyCQM232nWI+VZWcg2mcRpKlxqOG2HlomxV/b+YmbjdxP37/JBMMwDKNatGo1RC3hlm96blrABSRe2AnTCX9As6pZkY89PrkDmpuXb3FZ3Pyt9H1xLY3itShJkovYI6sgSfqIGk6/lKgQAAAfLw/WGShl/v7+WLFiBSpVqoR169axtd0Kkp6ejsuXL+PMmTN4+vQp9PT00KtXLwwaNKjATpr5O7edPn0aly9fRkZGBpo3b45BgwahR48eFa5bkJSUhL179+Lo0aOoUaMGpk+fjl69erF9QtRAUlISXr16hVevXiE0NBShMRmQfuNrUd4/28fLcjK++tji5jNFUPrOQEaOBE2/MpZDMinijq1F1ptHqD5iKXQbtC7RNdicgdKVk5OD+fPnY/v27Rg2bBj27dvHWq3lTCqV4urVq+A4DseOHUN2djZ69uwJkUiEoUOHfnUpXWZmJo4fPw6O43D58mXo6Ohg+PDhEIlE6Natm0otJ/xeL1++xPz583H69Gm0a9cOW7ZsQfv27RUdFlMMMpkMr1+//myPmI8fPwL4Z48YOzs72Ni1wKXKfYEiVhJIM5Ih0K9c4N9IKkG0xxzkJXyA2Qwv8LUKn3TO5gyUgq/N8ky8vBdpj05B17IN9Bp3+uzrlZoWPYNTUbM81dHr16/h6OiIoKAgbNq0CdOmTWN3UuUoNDRUvgHRhw8f0KhRI/nKATOzoluYhXn//r18o6HQ0FCYmZnB3d0dQqEQDRs2LOV3oLyuXr2KOXPmICAgAKNGjcK6detQv359RYfF/E9mZiaCgoIKJP3AwEBkZPxzx25qavrZVvANGjSQF7ZfyzOxR38B5WZCu05TCAyqQpqehIwX1yBJ+IAq3cfBsM2wIuNjqwlKwdf2GYj2Xoic98GFPr/uwjOFfk2R6z/VzeHDhzF+/HiYmJjg0KFD7Fz5cpKUlISDBw+C4zjcu3cPlStXhpOTE0QiEdq0aVNqxRgR4f79++A4Dr6+vkhOTka7du3kWxBXhEmhUqkUnp6eWLJkCeLj4zF9+nQsXbq0Qrx3ZUFEiI6O/uyY97CwMPkeMdbW1gWSvp2d3Vf3Mvlansl4cR3pgZeQGxcBWVYa+Fq60KppCYOWg4o8mwBg+wyUmm/dgbC4FLUzlLrIzs7G7NmzsXv3bjg4OGDv3r0qvymNspNIJLh06RLEYjFOnjyJvLw89O3bF0KhEIMHD4aOjk6ZXj87OxunTp0Cx3G4cOECNDU1MXToUAiFQvTq1UvtTwjMyMjA5s2bsWHDBujo6GD58uWYNGkSO3CslEkkErx69eqzNn9sbCwAwNDQ8LMdYZs0afJNv//qmmfUqhgAij6b4Fspes9odfDq1Ss4ODjg5cuX2Lp1K3788Uc2LFCGgoOD5XuqR0dHo2nTpvLjjGvVqqWQmD59+iQ/tjg4OBg1a9bE6NGjIRQKYWOj3h23T58+4eeff8bff/8NKysrbNiwAYMHD2Z/A98gNTUVgYGBBZJ+cHAwsrOzAQB169b9rM1vYWFRqt9rdcwzalcMFHWa1LdS9GlSqs7Hxwc//vgjTE1NcejQIdjZ2Sk6JLWUkJCA/2vv3sNrOtOHj39zkIpDQxCHknGKU47UjOq0dRgVbYmqJkiw9jAzv5oZ7bTJYChag6orqddbU+Ot0b1CQkLLFKMtaorRKqYSkmhC0oYGiUTOp5291/uHyf41sx2CyD7dn+vq5aokaz1Jtn3f636e5362bt2KXq/n1KlTdOjQwXza2uDBg20m8GiaxjfffGM+R76wsJBHH33UfPpnhw6N6/lhj1JTU4mJiWH//v2MGDGCuLg4mSa7BU3TuHjxosWJr9nZ2QB4eHjg7+/fIOgHBQU1yyJkR4wzDpcMwK3Pmb5X1j5n2l5VVlbyyiuvsHHjRqKioli/fj1t28o0S1MyGAwNzmHXNM18Dvuzzz5703PYbUltbS179+69cQDM3r24uLgwfvx48znyjlhO1zSNTz75hJiYGNLT05kxYwYrVqygR48e1h6a1dTW1pKRkWFR5r9+/ToA3t7eDY54DwkJYcCAAVZ9fThanHHIZABg3aEsYj+7/+ZAfxzbn9+Ncrxe6w9aRkYGERERXLhwgXfffZdZs2bZzJOpIzh9+rT5ybqgoIDBgwebn6zt9TCngoICEhMTUVWVb775hk6dOjU4R97R1NXV8be//Y0lS5ZQWlpKdHQ08+fPd/iEuaioyBzs6/9MT0/HYDAA0LdvX4sy/yOPPGKT7x+OFGccNhmAG5nb0o/TqDNpdzW34+bqgrurC8vC/KUicA9UVeW3v/0tP/nJT0hOTiYgIMDaQ3IIV69eNc+5p6am0rlzZ6KiolAUhaCgIGsPr0mlpqaa1zzk5+cTFBSETqcjMjKSzp07W3t4Taq0tJRVq1axZs0avLy8WLZsGbNmzbL7xZUmk4mcnByLMv/FixcBaNmyJUFBQQ2CfmBgoN0lQ44SZxw6GYAbczsLd57hyPlruLm63PaXVf/xJ/t2ZOWkQFkjcJcqKir43e9+h6qq6HQ61q1bR+vWra09LLtWU1PD7t27UVWVffv24ebmRlhYGDqdjtDQULsPGHdiMBjM58h//PHHGI1GnnnmGXQ6HePHj+ehhx6y9hCbTG5uLgsXLiQhIYGAgABiY2MJDQ219rAapaqqirS0tAZl/pSUFMrKygDo0qVLg5X8ISEh+Pn5OUxTKkeIMw6fDNTLulpGwvFcDmXmk1tY2aBToQvg26EVo/r5MP0xX9k+eA/Onj1LeHg4ubm5rF+/npkzZ1p7SHZL0zROnjyJXq9n69atXL9+nZ/97GcoisLUqVPx9va29hCtoqioiG3btqGqKl9//TXe3t5MmzYNRVEYOnSoTZaR78WJEyeIjo7myJEjhIaGEhsba1PVtfz8fIu9++fOncNkMuHq6kr//v0blPmDg4Pp0qWLtYfdLOw5zjhNMvBjFTV1fFdYQW2dCQ93V3p2aC0thu+Rpmn87W9/Y+7cufTt25fk5GQGDhxo7WHZpR9++MHcwS8jI4Nu3bqZt97Jz7ShjIwMcwfFvLw8Bg4ciE6nY/r06XTr1s3aw7tvmqaxa9cu5s2bR3Z2NrNnz2bZsmXNGlSNRiNZWVkNgn5KSgqXL18GoE2bNuZgXx/8/f3979jC2lnYW5xxymRANI2ysjJeeuklEhMT+fWvf83atWvx9Lx1z21hqaqqir///e/o9Xr279+Ph4cHkyZNQlEUxowZ4zBl1AfFaDRy4MABVFVl586d1NbWMnbsWBRFYeLEiXb/eqytrWX9+vUsW7aMmpoaFixYwGuvvdbkAbe8vNzcorc+6KemplJVVQVAjx49GgT94OBgevfujaur7R6oI+6OJAPinpw+fZopU6aQl5fHhg0biIyMtPaQ7IamaXz55Zfo9XqSk5MpKSnh5z//OYqiEBERIV0Z71FJSQnJycno9XqOHTuGl5cXU6ZMQVEUhg8fbtfTCNevX2f58uW8++67+Pj4sHLlSqZPn37XwVjTNPLy8iy28J0/fx5N03B3d2fQoEEWZX5H7v0gbpBkQNwVTdP461//yquvvsrAgQNJSkpyqkNo7kdubi6bN29GVVWysrLw9fVl5syZzJw5Ez8/P2sPz6FkZWURHx9PfHw8ubm5+Pn5mQ9i8vW1/srte3XhwgUWLFjAjh07GDJkCHFxcYwcOfKmn2swGDh37pxFmf/atWsAtGvXzmIL38CBAx1qUaZoPEkGRKOVlJTwm9/8huTkZH77298SFxf3wHvb27uKigo++ugj9Ho9hw4dwtPTkxdffBGdTseIESOkzPqAmUwm/vnPf6KqKjt27KCqqorRo0ejKAovvPCC3e52+de//kV0dDTHjx8nLCyMxYsXU1lZ2SDonz17ltraWgB69+5tUeb39fW162qJaFqSDIhGOXXqFBEREVy7do2NGzcSHh5u7SHZLJPJxJEjR1BVle3bt1NeXs7IkSNRFIXJkyfb3T5qR1FWVsaHH36Iqqr885//pE2bNoSHh6MoCk8++aRdJGaapvH999+bg/7evXv55ptvMBqNwI0WvYGBgQ2CflBQkEw9iTuSZEDclqZprFu3jpiYGAIDA0lKSqJPnz7WHpZNys7OJj4+HlVV+e677+jduzeKojBz5kx69uxp7eGJH8nJyTFP2WRnZ9OrVy/zlE3v3r2tPTzgRo+JtLQ0izJ/SUkJAB07dmTw4MH4+/tz5coV9uzZg5ubG4sWLeLll1+Wcr+4K5IMiFu6fv06s2fPZufOnbzyyiu8/fbb8gbzX0pLS9mxYwd6vZ4jR47Qtm1bIiIiUBSFJ554QsqwNk7TNI4ePYqqqiQnJ1NWVsZTTz2FoiiEh4c3WxXn2rVrFkE/IyODuro6XFxc6Nevn0WZv2vXrg1eXwUFBbzxxhts2LCBHj168PbbbxMeHi6vQdEokgyImzp+/DhTp06luLiYDz74gOeff97aQ7IZRqORQ4cOodfr+eijj6iurmbMmDEoisKkSZNkn7WdqqysZOfOnaiqyoEDB2jZsiWTJ09GURRGjRrVJNs8TSYTFy5csGja88MPPwDQqlUrc4ve+qAfGBh4V2sbMjIymDdvHnv27GH48OHExcUxfPjw+x67cGySDIgGNE3jnXfeYcGCBTz66KNs27ZNStz/kZmZiaqqxMfHc+nSJfr374+iKEyfPt2pT5xzRBcvXmTLli3o9XoyMzPp0aOHuQFUY3fPVFZWcubMmQZBPzU1lYqKCgC6devWYCV/SEgIffr0abLeEp9//jnR0dGcPn2aiIgIVq1aRa9evZrk2sLxSDIgzAoLC9HpdOzZs4fo6GhWrlxp80fgPmjFxcUkJSWh1+v56quvaNeuHVOnTkVRFIYNGyYlWAenaRrHjx9HVVW2bt1KSUkJw4cPR1EUpkyZQrt27QC4cuVKg8N4UlJSyMzMxGQy4ebmxsCBAy3K/M1xuqTRaGTz5s0sWrSIa9eu8fLLL7No0SLzuIWoJ8mAAG5sVZo2bRoVFRWoqsr48eOtPSSrqaurY//+/aiqyq5duzAYDIwbNw5FUQgLC5PtlE6qurqanTt3sn79eo4ePYqrqyudOnWiqqrKvKjv4YcfNgf9+j/9/f2t/pqpqKggLi6Ot99+G09PT5YuXcpLL71EixYtrDouYTskGXByJpOJ1atX8/rrr/PYY4+xdetWpy15p6WlmfvdX7lyBX9/f3Q6HVFRUXTt2tXawxPNrLS0lNTU1AZl/rNnz1JdXQ3caNpjNBopKyujffv2hIeHM3fuXJs6VOi/Xb58mcWLF7Np0yb8/PxYvXo1YWFhUuESkgw4s4KCAmbOnMknn3zCn/70J958802ne1IoLCxk69at6PV6Tp06RYcOHYiMjERRFIYMGSJvkk5A0zQuXbpk0aL3woULALRo0YKAgIAGZf6goCDat2+Ppmn8+9//RlVVEhMTKSwsZOjQoSiKwrRp02y2jW9KSgoxMTEcOHCAkSNHEhcXx5AhQ6w9LGFFkgw4qcOHDzNt2jQMBgObN2+2m3PTm4LBYGDfvn2oqsru3bvRNI3nnnsORVF47rnnnH6dhCOrra0lIyPDYjX/9evXAfD29rZo0TtgwIBGvSZqa2vZu3cvqqqyd+9eXFxcmDBhAoqi8Mwzz9hcoq1pGvv27SMmJoaMjAxmzJjBihUrnLYy6OwkGXAyRqORt956i6VLl/Lkk0+SmJjoEEe+Nsbp06dRVZWEhAQKCgoYPHgwiqIQGRnZLIu5RPMqKioiJSWlQdBPT0/HYDAA0LdvX4vV/I888kiTVIPy8/PNFafTp0/TqVMnoqKi0Ol0BAcH3/f1m1JdXR0bN25kyZIllJWVER0dzfz586VTppORZMCJXL16laioKD7//HMWL17M4sWLcXe33fO1m8LVq1dJTExEVVVSUlLw8fFh+vTpKIpCUFCQtYcnmoDJZOK7776zKPPn5uYC0LJlS4KCghos7AsKCmq2YJeamoqqqmzZsoX8/HyCg4NRFIWoqCh8fHyaZQyNUVpayqpVq1izZg1eXl4sW7aMWbNmOfx7hLhBkgEncfDgQaKiogBISEjgF7/4hZVH9ODU1NSwZ88e9Ho9+/btw83NjbCwMBRFITQ01ObKtaLxqqqqSEtLaxD0U1JSKCsrA6Bz584WZX4/Pz+bCGgGg4FPP/0UvV7P7t27MRqNPPvssyiKwvjx422mu2dubi4LFy4kISGBgIAAYmNjnWoa0VlJMuDgjEYjy5Yt489//jOjR49my5YtdOnSxdrDanKapnHy5EnzfvCioiJ+9rOfoSgKU6dOxdvb29pDFHcpPz/fokXvuXPnMBqNuLq60r9//wZBPzg42G5e20VFRWzbtg29Xs+JEyfw9vZm2rRpKIrC0KFDbWLh6okTJ4iOjubIkSOEhoYSGxtr0zslxP2RZMCB5eXlERUVxeHDh3njjTdYuHBhk3U3sxV5eXnmTnEZGRl069bN3Clu4MCB1h6eaASj0cj58+ctyvyXL18GoE2bNg1a9Nbv3XeUts/p6enmaYS8vDwGDRpk7mxp7fU8mqaxa9cu5s2bR3Z2NrNnz2bZsmV2k3SJxpNkwEF9+umnzJgxgxYtWpCYmMiIESOsPaQmU1VVxd///ndUVeWzzz7Dw8ODSZMmoSgKY8aMcbiEx5GUl5dz5syZBkH/zJkzVFZWAtC9e3eLMn/v3r3t4njh+2U0Gjlw4AB6vZ5du3ZRW1vL2LFjURSFiRMn4unpabWx1dbWsn79et58800MBgPz58/ntddec5iETEgy4HDq6upYvHgxq1atIjQ0lM2bNzvESnlN0/jyyy9RVZWkpCRKSkp4/PHH0el0REREyHntNkbTNPLy8hqU+U+fPs358+fRNA13d3cGDRpkUea31X35za24uJjk5GRUVeXYsWN4eXkxZcoUdDodjz32mNWmEa5fv87y5ct599136dy5MytWrGD69OlOkaw5OkkGHMjFixeZNm0aX331FcuXL2fevHl2/480NzfXfO58VlYWPXr0QFEUZs6ciZ+fn7WHJ7ixMO7bb7+1KPNfu3YNuNGp78fb90JCQhg4cKDNLJizdZmZmcTHxxMfH8/Fixfx8/NDURRmzJiBr6+vVcZ04cIF5s+fz4cffsiQIUOIi4tj5MiRVhmLaBqSDDiIvXv3MnPmTFq1asW2bdv4+c9/bu0h3bOKigo++ugjVFXl888/x9PTk8mTJ6PT6Rg5cqTdJzj2rKSkxGLv/tmzZ6mtrQWgV69eFmV+X19fm1gQZ+9MJhOHDh1CVVU+/PBDqqqqGD16NDqdjkmTJt3VMcdN5ejRo0RHR/P1118zceJEVq9e3ehTHYVtkWTAzhkMBhYuXEhsbCzjx49Hr9fbZanVZDJx5MgRVFVl+/btlJeXM2LECHQ6HZMnT5YGKM1M0zS+//57i9X8OTk5ADz00EM3bdEr0zXNo6ysjB07dqCqKl988QVt2rQhPDwcnU7HE0880awJs8lkIikpiT/96U/88MMPzJkzhyVLltCxY8dmG4O4f5IM2LHvv/+eKVOmcOrUKd5++21effVVu3sCy87ONpdAc3Jy6N27t7kEKmevN4+amhrS09Mtyvz1J/F17NixQYk/ODiY/v37S78GG5GTk2OeSsvOzqZXr17mqbTm/DdUXV3N2rVrWblyJS4uLrz++uvMnTtXpoPshCQDdmrXrl388pe/xMvLi6SkJIYNG2btITVaWVkZ27dvR1VVDh8+TNu2bYmIiEBRFJ544gm7S2jsybVr1yzK/BkZGdTV1eHi4oKfn59Fmb9r167yO7EDmqZx9OhR9Ho927dvp6ysjKeeegpFUQgPD2+26lpBQQFvvPEGGzZswNfXl1WrVhEeHi6vIRsnyYCdqa2tZd68eaxdu5bnn3+eTZs20b59e2sP646MRmOD+c7q6mrGjBmDoihMmjRJtig1MZPJxIULFyzK/JcuXQKgVatWDVr0hoSEEBgYaJV5Z9H0Kisr2blzJ3q9noMHD+Lp6ckLL7yAoiiMHj26WaYRMjIymDdvHnv27GH48OHExcUxfPjwB35fcW8kGbAj2dnZTJkyhZSUFGJjY5k7d67NZ9uZmZmoqsrmzZu5ePEi/fr1Q6fTMX36dDkdrYlUVlZy9uzZBkE/NTWV8vJyALp169Yg6AcHB9O3b1/px+AkLl68aJ5GyMzMpEePHubGXM2x2O/gwYNER0eTkpJCREQEq1atkilAGyTJgJ3YsWMHs2fPpmPHjiQlJTF06FBrD+mWiouLSUpKQlVVvvzyS7y8vMytVocNG2bzCYwtu3LlisXxu5mZmZhMJtzc3BgwYECDoB8cHGxTh+EI69E0jePHj6PX69m2bRslJSUMHz4cRVGYMmUK7dq1e2D3NhqNxMfHs2jRIgoLC3n55ZdZtGjRA72nuDuSDNi46upqoqOjee+99wgPD+f999+3yRXbdXV17N+/H1VV2bVrFwaDgdDQUHQ6HWFhYbRs2dLaQ7QrdXV1ZGZmWpT5r169CkDbtm0tjt/19/eXn7NolOrqanMXz08//ZQWLVrw/PPPo9PpePrppx9Y1aiiooLY2FhWr16Np6cnS5cu5aWXXpLFqDZAkgEblpWVRUREBBkZGaxZs4aXXnrJ5p6q09LSzH3VL1++jL+/PzqdjqioKLp27Wrt4dmFsrIyUlNTGwT9M2fOUF1dDcBPfvITizJ/z549pd+CaBJ5eXkkJCSgqippaWl07drVfMy3v7//A7vn4sWL+eCDD/Dz82P16tWEhYXZ3PubM5FkwEZt3bqV3/zmN3Tt2pXk5GRCQkKsPSSzwsJCtm7diqqqnDx5Em9vbyIjI9HpdAwZMkT+Qd+CpmlcunTJosx/4cIFAFq0aIG/v79Fmd8eFogK+6dpGqdOnUJVVRITEykqKmLo0KHodDqmTp36QPqXpKSkEBMTw4EDBxg5ciRxcXEMGTKkye8j7kySARtTVVXFK6+8wvvvv09kZCR//etfbaLhjsFgYN++faiqyu7du9E0jWeffRadTsdzzz2Hh4eHtYdoU2pra8nIyLAo8xcVFQHg7e1tUeYfMGCA/ByFTaipqWHv3r2oqso//vEPXFxcmDBhAjqdjnHjxjVpWV/TNPbt20dMTAznzp1jxowZrFixgu7duzfZPcSdSTJgQ86dO0d4eDjnz59n3bp1zJo1y+pP2SkpKej1ehISEigoKCAkJARFUYiMjJSFaf9x/fp1i6CflpaGwWAAoE+fPhZNe7p37271360QjZGfn09iYiKqqnL69Gl8fHyIiopCURSCg4Ob7D51dXVs3LiRJUuWUF5eTnR0NPPmzbOJhyFnIMmAjYiPj2fOnDn4+vqyfft2AgICrDaW/Px88xxiSkoKPj4+5jnEoKAgq43L2jRNIycnx6LMn5ubC0DLli0JDAxs8MQfFBQkb2bCYaSkpKCqKgkJCeTn5xMcHIxOp2vSh4PS0lJWrVrFO++8Q7t27fjzn//MrFmzZCvsAybJgJVVVFTw+9//Hr1ej6Io/OUvf7FK45eamhr27NmDqqrs27cPV1dXc1kwNDTU6Vb7VldXc/bs2QZBPzU1ldLSUgB8fHwYPHhwgzK/n58f7u7uVh65EA+ewWDgk08+MU8bmkwmnnnmGfO0YVO0IM7NzWXhwoUkJCQQEBBAbGwsoaGhTTB6cTOSDFhRWloaERERfPfdd7z33nsoitKs99c0jZMnT6KqKlu3bqWoqIif/vSn5gVD3t7ezToea8nPzzcH/fo/z507h9FoxNXVlf79+1us5u/SpYu1hy2ETSgsLGTbtm2oqsqJEyfw9vZm2rRp6HQ6Hn300fueDjtx4gTR0dEcOXKE0NBQYmNjrVo5dVSSDFiBpmls2rSJuXPn0qdPH5KSkhg0aFCz3T8vL48tW7agqirp6el069bNPA3QnONobkajkfPnz1uU+S9fvgxA69atzUG//s+AgABplSxEI6Wnp5s7jl6+fJlBgwaZO47ez1ZjTdPYuXMn8+fPJzs7m9mzZ7Ns2TJJypuQJAPNrKysjDlz5pCQkMCvfvUr1q5d2yzBpqqqytxk5LPPPsPDw8PcZGTMmDEONx9XXl7OmTNnGgT9M2fOUFlZCUD37t0tVvP37t1b9u4L0QTq6uo4cOAAqqqyc+dODAYDY8eORafTMXHixHtujlVbW8t7773HsmXLMBgMLFiwgFdffVUS9iYgyUAzqu/NnZeXx4YNG4iMjHyg99M0ja+++gq9Xk9SUhIlJSU8/vjjKIpCRESEQ7QC1TSNy5cvWxy/m5WVhaZpuLu7M2jQoAZP/MHBwXLWuhDNpLi4mOTkZFRV5dixY3h5eTF16lQUReGxxx67p2mEoqIili9fzrp16+jcuTMrV64kKipKkvn7IMlAM9A0jQ0bNvCHP/yBAQMGkJyc/EAPCMnNzTUfTJKVlUWPHj2YOXMmM2fObJaDSR4Ug8HAt99+a1Hmv3btGgBeXl4Wx+8OGjRIzlMXwkZkZmYSHx9PfHy8+eAyRVGYMWPGPR1cdv78eRYsWMCHH37Io48+SlxcHCNGjHgAI3d8kgw8YKWlpfz6178mOTmZOXPm8M477zyQ/vEVFRXmI0s///xzPD09mTx5MoqiMGrUKLvLmEtKSixa9J49e5aamhoAevXqZVHm9/X1lb37QtgBk8nU4EjzqqoqfvGLX5iPNL/bHVVHjx4lOjqar7/+mokTJ7J69Wq7fvCxBkkGHqBTp04xZcoUCgoKeP/994mIiGjS65tMJo4ePYper2f79u2Ul5czYsQIFEXhxRdftIv97ZqmkZuba1Hmz8nJAcDDw4OAgIAGT/xBQUEOMcUhhLixjmrHjh2oqsoXX3xBmzZtiIiIQFEUnnzyyUYn+CaTiaSkJBYsWEBeXh5z5sxhyZIlMiXYSJIMPACaprFu3TpiYmIIDAwkKSmJPn36NNn1c3JyiI+PR1VVcnJy6N27t3kawJbPCa+pqSE9Pb1B0E9JSaG4uBiAjh07WpT5+/fv73Q9DoRwVtnZ2eYpzpycHHr16oWiKHf13lZVVcXatWtZuXIlrq6uvP7668ydO1emC++g0fFba4SSkhIN0EpKShrz6Q7p+vXr2gsvvKAB2ssvv6xVV1c3yXVLS0u1TZs2aU899ZQGaG3bttVmzZqlHT58WDOZTE1yj6Z07do17eDBg1pcXJw2Y8YMLTAwUHN3d9cAzcXFRevXr58WERGhrVixQtu7d6/2ww8/2OT3IYRofkajUfviiy+0WbNmaW3atNEAbcSIEdqmTZu00tLSRl3j6tWr2pw5czQ3NzetV69eWlJSkrzH3EZj47dUBhrh66+/ZsqUKRQXF7Np0yYmTZp0X9ern1fT6/V89NFH5nk1nU7HpEmTbGI7jclkIjs726LMf+nSJQBatWplbtFb/19AQABt2rSx8siFEPagfj2UqqocPHjwrtdDZWRk8Mc//pG9e/cyfPhw4uLiGD58eDON3n7INEET0DSNNWvWMH/+fIYMGUJSUhI9e/a85+tlZmaaG3c0xYrbplJZWXnTFr3l5eUAdO3a1aLM37dvX4frYSCEsI6LFy+apxEyMzPx9fVlxowZKIqCn5/fbb/24MGDREdHm7d4r1q1yqanVZubJAP3qaioCJ1Ox+7du4mOjmblypX3dAxtcXExSUlJqKrKl19+ad6Lq9PpGDZsWLOvkr9y5YrFSXzffvstJpMJNzc3BgwYYNGiV04xFEI0B+0/PVRUVWXbtm2UlJQwfPhwdDrdbXuoGI1G4uPjWbRoEYWFhbzyyissXLhQFiQjycB9OXbsGFOnTqWiogK9Xs+ECRPu6uuNRiP79+9Hr9eza9cuDAYDoaGhKIpyX1267nYMmZmZFmX+q1evAtC2bVuLoO/v74+np+cDH5sQQtxJVVUVH3/8Maqq8umnn9KiRQsmTZqEoig8/fTTN61MVlRUEBsby+rVq/H09OSNN97gf/7nf5x6sbJTJgMVNXV8V1hBbZ0JD3dXenZoTeuHGn/anMlkIjY2loULFzJs2DC2bdt2V+X7tLQ0VFVly5YtXL58GX9/fxRFISoqim7dut3Lt9QoZWVlpKamWrTora6uBsDX19eizN+zZ0+761EghHBOeXl5JCQkoNfrSU9Pp2vXruZphJudu5KXl8fixYv54IMP6NevH6tXr2bChAlNUom93zjT3JwmGci6WkbC8VwOfZtPblElP/5mXABf71aM6u9D1DBf/Drfen9+QUEBiqKwb98+FixYwLJlyxqVTdaf7KXX6zl58iTe3t5ERkaiKEqTnOz1Y5qmcenSJYsy//nz5wFo0aIF/v7+DZ74g4KCnOaUQiGEY9M0jVOnTqGqKomJieYTWRVFYerUqXTo0KHB56ekpBATE8OBAwcYOXIkcXFxDBky5K7v21RxxhocPhm4WFTJwp1nOHL+Gm6uLhhNt/426j/+ZN+OrJwUSA/vhqv1Dx8+zLRp06itrWXz5s2MGzfutveuP/Nbr9eze/duNE3j2WefRVGUJjvz22AwkJGRYVHmLyoqAqB9+/YNVvIHBwczcODAe1rXIIQQ9qampoa9e/ei1+v5xz/+gaurK2FhYSiKwrhx48wPc5qmsW/fPmJiYjh37hwzZsxgxYoVdO/e/Y73aMo4Yy0OnQxsO5HL0o/TqDNpt/3l/Dc3VxfcXV14M8yfqT/1xWg08tZbb7F06VKeeOIJEhMTeeSRR2759SkpKaiqSkJCAvn5+YSEhKAoCpGRkfe1yO769eukpKQ0eOJPT0+ntrYWgD59+liU+bt37y4teoUQAsjPzycxMRG9Xk9KSgo+Pj5ERUWhKArBwcHAjRMXN27cyJIlSygvLyc6Opr58+ffcjt0U8UZa3PYZGDdoSxiP8u87+u89Hg3Dv7feRw8eJDXX3+dJUuW4O5uOe/z3y+yTp06MX369AYvssbSNI2cnByLMv/3338PQMuWLQkMDGxQ5g8MDLT6z1wIIezF6dOnzQ9tBQUFFg9tpaWlvPXWW6xZs4Z27dqxfPlyfvnLXzZYkNhUcSZmbD9+P+r2WyMfNIdMBradyGXBR2ea7HqGox+gLn2JMWPGNPj72tpa9uzZg6qq5vLThAkTLMpPt1NdXU1aWlqDoJ+SkkJpaSkAPj4+FmX+fv363TQhEUIIcXduN507fvx4Ll++zMKFC0lMTCQwMJDY2FjGjh3b5HHm7RcCmWLFCoHDJQMXiyoZs+YLaupMN/24Vmeg+MgWKtIOYaoup0WnnrR7agaevQbf/IKaxkPurhx4bSQ9vFvd9cKUHysoKLA4fvfcuXMYjUZcXV3p16+fRZm/S5cuTfFjEUIIcQf/vdC7Q4cOTJs2DZ1OR11dHTExMRw9epTRYeFcDNRRa7x5WDTVVlF6/CNq8r6l9nImpupyOjz7B9oEjbnp5wM34syrI6y2hsDhkoEZfzvOsezCW87dFPx9NZXf/ouHh07E3bsbFWcOUHM5i87TVtKyh/9Nv8bN1YVHH2nDTyuON2rLitFo5MKFC+aAX58A5OXlAdC6dWuCg4MblPkDAgJsor2wEEIISE9PN3eCrd8CPnPmTDp06MCfjxajdeqLi9vNK7R1xVf54a+zcXu4E+7tulCTe+aOyYCbqwuP9+7A5tnDHtS3dFsOlQxkXS3j6f9z+JYfr8n7livx0bQbNQuvYS8AoNXVkrfxd7i19qLLjNjbXr9AfZmwET9DURTGjBmDu7s7FRUVnDlzpsETf2pqKpWVlQA88sgjFmX+Pn36yN59IYSwA3V1dRw4cABVVdm5cyfaw13oOvsvt/0arc6AqboctzbtqbmcxRX11TsmA/UOvPoUfX2af9thY+O3XUxQJxzPve22jspv/wUurrQN+d8tgS7uHrQJfpriL+KpKy3A/eFON/1aFzRmv6VnXKcyvvnmGz744ANOnz5NVlYWmqbh7u7OwIEDCQkJ4cUXXzQHfjlLWwgh7Je7uzvjxo1j3LhxFBcX86v1n3Ky2Aiutz5zxcW9BW5t2t/1vdxcXdjyVS5vhN28Sm0L7CIZOPRt/m23dtRezaaF9yO4PtSwHO/RtZ/547dKBjRc+PDYOd79f7/By8uLkJAQxo0bx4IFCwgJCWHQoEFyXrYQQjiwdu3aUeDuA66VD+T6RpPGocx83kCSgXtWXlNHbtHtf0HG8qKbZmtubbzNH7+dFt5dScs8z8C+vWXvvhBCOJnGxJn7lVtYSUVNnc22Lrb5Ce7vCyu406IGra4W3Cy3+7m4e/zvx2/LBa11R0kEhBDCCTUmztwvDfiusOIB3+Xe2XwyUHuLrYQ/5uLuAUaDxd/XJwH1ScH93kcIIYTjaa73f1uOMzafDHi433mIbm28MZZft/j7+umB+umC+72PEEIIx9Nc7/+2HGdsd2T/0bNDa+5UvPfw6Y2h6AdMNQ3nfGrzbrST9Ojc+7Zf7/Kf+wghhHA+jYkz98vW44zNJwOtH3LH9w6dm1oN+DloJspOf2L+O63OQPmZ/Xh063/LnQT1fDu0stlFHUIIIR6sxsSZ+2XrccZ2R/Yjo/r7sPn497fcXvhQt/60GvAExV+omCqLcW/fjYozB6kryafzM6/c9tpuri6M6nfvJw4KIYSwf3eKM/VKT+3GVF1hnoauOv81dWXXAHj40Qm4trR8+reHOGMXyUDUMF/0X35328/pOP41ig9voeLsIYzV5Xj49MTnxSW09A247dcZTRrTH7P+MZNCCCGspzFxBqD0+E6Mpfnm/6/MPAaZxwBo4z/qpsmAPcQZu0gG/Dq35cm+HW97NoGLuwftR8+i/ehZjb5ufc9oa7SIFEIIYTsaE2cAuv92011d117ijM2vGai3clIg7q5Nu8TD3dWFlZMCm/SaQggh7JMzxxm7SQZ6eLfizSbu67wszN9qx0oKIYSwLc4cZ+wmGQCY+lNfYsb2a5Jr/XFsf6b81LbncIQQQjQvZ40zdrFm4Md+P8qPjm0eYunHadSZtDuu/PwxN1cX3F1dWBbmbze/ICGEEM3LGeOMi6Zpd/wuG3secnO6WFTJwp1nOHL+2m2PNwbMH3+yb0dWTgq0i5KNEEII63KEONPY+G23yUC9rKtlJBzP5VBmPrmFlQ0Om3DhRqOHUf18mP6Yr82v5hRCCGF77DnOOE0y8GMVNXV8V1hBbZ0JD3dXenZobdMdn4QQQtgXe4szjY3ftvsd3IPWD7nj383L2sMQQgjhoBw1ztjVbgIhhBBCND1JBoQQQggnJ8mAEEII4eQkGRBCCCGcnCQDQgghhJOTZEAIIYRwcpIMCCGEEE5OkgEhhBDCyUkyIIQQQjg5SQaEEEIIJyfJgBBCCOHkJBkQQgghnJwkA0IIIYSTk2RACCGEcHKSDAghhBBOTpIBIYQQwsm5N+aTNE0DoLS09IEORgghhBBNpz5u18fxW2lUMlBWVgZAjx497nNYQgghhGhuZWVleHl53fLjLtqd0gXAZDKRl5dH27ZtcXFxadIBCiGEEOLB0DSNsrIyunXrhqvrrVcGNCoZEEIIIYTjkgWEQgghhJOTZEAIIYRwcpIMCCGEEE5OkgEhhBDCyUkyIIQQQjg5SQaEEEIIJyfJgBBCCOHk/j8RJbI4Wk6ShwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -468,12 +449,12 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6fElEQVR4nO3deXRU9eH+8WcmeyAJgUCCYd+RzQKCQSso4FIqIqIsIqC1UKueFnfBAhZRKihUS+tyfoAlCHyFWlCsliCLFYTiAogEZQmElAAJELKTZO7vj5ghQyaQ5M6aeb/O4XSWO/d+kprcJ5/nLhbDMAwBAAAAdWT19gAAAADg3wiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAB8wqxZs2SxWGr0Lzo6Wr169dLTTz+t48ePe3voABDwLIZhGN4eBADs2bNHe/bskSRNnTpVWVlZiouL04IFCxyWO3/+vHbs2KGVK1fqwoULio6O1vvvv69bbrnFG8MGAIhACcAHtWnTRkePHlXr1q2VlpbmdJkvv/xSgwYNUnFxsRo2bKjU1FQlJiZ6dqAAAElU3gD81HXXXadJkyZJkvLy8rRo0SLvDggAAhiBEoDfGjRokP3x1q1bvTcQAAhwBEoAfisuLs7++NSpU14cCQAENgIlAL+Vn59vf9ywYcNql8vKytKMGTPUp08fNWrUSOHh4WrdurXGjx9f7czm888/X+Xs8qVLl6qoqEh//OMf1blzZ0VERKht27aaMmWKw9nmWVlZmjp1qtq2bauwsDC1bdtWTz/9tPLy8q74NZ0+fVrTp09Xr169FB0drYiICLVu3VqjR4/Wp59+WovvDgB4DoESgN/65ptv7I+vu+46p8t8+umn6tChg2bPnq3IyEjNnDlTb7zxhoYNG6Y1a9Zo4MCB+vWvf63S0lKHz91zzz1atmyZw1nmhYWFuvnmm7V//3498cQTeu6552SxWPT2229rwIABOn78uDIzM3XrrbfKarVq2rRpeuyxx3Ty5EnNmzdPv/zlL2Wz2ar9ev7973+rY8eOeumll5SYmKiXXnpJb7zxhu644w6tX79et912m8aMGaPi4mKT3zkAcDEDAHxM69atDUlG69atq13m7NmzRmJioiHJCA8PN1JTU6sss337diMkJMSQZDz++ONV3v/qq6+Mhg0bGpKMX//61063c+TIEUOSIclITEw0Fi5c6PD+6dOnjWbNmtnXMW7cOGPnzp0Oy3z22Wf2dbz//vtOt7Njxw4jNDTUkGQsWLCgyvvff/+90ahRI0OSMWXKlOq+LQDgFcxQAvBZNptNWVlZDv/S0tK0atUqXX/99crIyFCzZs30z3/+U507d3b4rGEYevDBB1VSUqI2bdpo7ty5Vdbfu3dvPfPMM5Kkd955R5s2bbrseMLCwvTYY485vBYXF6e7775bkvTuu+8qNDRU1157rcMyN910kzp16iRJWrt2bZX1Voz1woUL6t+/v37/+99XWaZr16567rnnJElvv/22UlNTLztWAPAkAiUAn5Wenq6mTZs6/Gvbtq3GjBmj0NBQ/f3vf9ehQ4d06623Vvnshg0btH//fknSmDFjFBIS4nQbEydOtD/+85//rJIym/Zm5Oi9ncc07YO9embNHvv7jTr308pdx7U3I0clZRer64owe+HCBQ0bNszpdrp27SpJ9jFVlpKSon379kmSxo0bV+33o2LdhmFo+fLl1S4HAJ4W7O0BAEB14uPjlZycbH9++vRpffzxx0pOTta3336rdevWacyYMU4/m5KSYn986YxhZS1btlR8fLxOnjypTzZsVJ/Zn+p8cXlYDLZaVHQmy77s0ZJoTftgryQpJiJE9/VvpXH9WikqKsq+TMeOHZ1uJzo6WpJ07ty5y461Xbt2ysrKqrKMJEVGRtof79ixo9qvCQA8jUAJwGeFh4dryJAhDq+NHTtWXbp00fPPP6/Vq1crMTFRCxcurPLZgwcP2h9f7g4654tKZGnQRNJJFRfk6Wx2toIaxkqSSm2X3EgsJNz+MKewRG9uOaS/bTmkq89n2F+vHC4rs1rLC6FLT/6RpB9//NH++I477qh2rJVlZmbWaDkA8AQCJQC/88wzz2j58uXav3+/Fi1apEceeaTKzGBubq79cUREhNP1bP3htJ54f7fOXrj4mq043x4oq7A4HiVUkTd3pp2xv1YRHGuj8ljfeusttWvX7oqfqTxbCQDeRqAE4HeCg4P1hz/8QePGjVNpaaleeeUVvfPOOw7LVJ4pLCoqqrKOd7elaeaH+2S1SEbpxURpDWtQ6/EYlSYy13x9XE+0aVOrz1cea48ePZSUlFTrMQCAN3FSDgC/dO+999pn8pYtW6YTJ044vN+hQwf748oXHZekv28vD5NS+SxjaW75MYuWsEhZI6NNjWvBhh/09+1ptfpM5dnVo0ePmto+AHgDgRKAXwoKCtKTTz4pSSouLtZrr73m8P7QoUPtj3ft2mV/vPWH05qxbp/9een507Lln5MkhbfqKYs1yPTYZqzbp60/nK7x8pXHum3btssu++KLLyo4OFgzZsyo8/gAwNUIlAD81gMPPKD4+HhJ5cceVj6DesiQIbr66qslSStXrlRpaanOF5Xoifd3y2q5uI787z6zP47uO9wl47JapCdX71ZuUUmNlh88eLC6d+8uSVq1alW1t2gsLi7WkiVLZLPZNHbsWJeMFQBcgUAJwG+Fh4frd7/7naTyE1sWLVpkf89isWjJkiUKDQ3VkSNH9Nxzz+ml9fuVnV9sP5nmwsnDyvlytSSpYa9bFd66p0vGZTOkrLxizfm46jUnnakYa1hYmE6dOqXJkyerpMQxjJaUlGjKlCk6fPiwJk+ebL+uJQD4Ak7KAeAT9uzZoz17yi8inp+fb//fiutQtm/f3unJKr/97W81d+5cnT9/Xq+//rpat24tSbrmmmvUr18/ffjhh7r33ns1f/58hbX4lyI7D5AlNFwXTh5W/p4UGaXFatjzFjW+5WGH9Zacy1Tx8f2yFZ63v1b8v1TJGqTQZm0U2qytijP2q+RsZvnrPyn48UtZI6IV0fYardol9dRR2QpydPjw4Spf01133aUGDcpPAurbt6/Wr1+ve+65RytWrNC3336rcePGqXnz5jp27JhWrVqlAwcOaMSIEU4vkwQA3mQxDMO48mIA4F6zZs3SCy+8UO37EydO1NKlS52+9+yzz+pPf/qTw2uzZ8/W888/L0nKysrSmN/N0Ocb/62ScydklJYoqEEjhbW4WlHX3K7wVt2rrDNvT4qyP17odHsx149Vo5/fp6yPFij/u41Ol4kf+5IatOkpffSCDu/9r9Nljhw5ojaXnBF+5swZvfHGG/rwww918OBBFRQUqEmTJrr22mv1wAMP6K677nK6LgDwJgIlgHqvpMymvnNSlFNYs2MaXSkmIkS7pg9RSBBHGAGov/gNB6DeS83M9UqYlMrvqHMgM/fKCwKAHyNQAqj39mbkBPT2AcDdCJQA6r3vMnIUXPlaQR4UbLUQKAHUewRKAPXeqdxildq8c7h4qc3Q6bxir2wbADyFQAmg3rtQWubV7ReXeHf7AOBuBEoA9V5osPnbKZoRFuLd7QOAuxEoAdR7zaLCvHoMZdOGYV7ZNgB4CoESQL3XPTHGq8dQ9kiM8cq2AcBTCJQA6j1vBzpvbx8A3I1ACaDe65IQpZiIEK9sOyYiRJ0ToryybQDwFAIlgHovJMiq+/q3kqcPowyySOP7t+K2iwDqPX7LAQgI4/q1kuHhwyhtksb2a+XZjQKAFxAoAQSEFrGRGt23pcdmKa0WaXTflmoRG+mZDQKAFxEoAQSM6cO6Kq5hmNtDpdUixTUM0/RfdHXvhgDARxAoAQSMqPAQzR/VS+6+gpDNkOaP6qWocO+cCAQAnkagBBBQbuzUVH8c3s2t25g9vJtu7NTUrdsAAF9CoAQQcCYktbGHSlfV3xXrmT28m+5PauOalQKAn7AYhqfPewQA37D1h9N6cvVuZeUVm6rBK46ZnD+qFzOTAAISgRJAQDtfVKKX1u/Xqq/SZZVUVovfiEGW8ksDje7TUtOHdeWYSQABi0AJAJKOny3Qip3HlLzjmHIKSyRJwVaLwz3AKz+PiQjR+P6tNLZfKy4NBCDgESgBoJKSMpsOZOZqb0aO9mbk6Ovvf1SJYVG71i3VtGGYeiTGqEdijDonRHEHHAD4CYESAKqRnZ2tv/zlL5Kkxx57TI0bN/byiADAN/HnNQBUY+vWrfbHW7Zs8eJIAMC3ESgBwIns7Gzt2bPH/nzv3r06c+aMF0cEAL6LQAkATmzdulUWi+NFKpmlBADnCJQAcImK2cnKh5gbhsEsJQBUg0AJAJdwNjtZgVlKAKiKQAkAlTibnazALCUAOEegBIBKLjc7WYFZSgBwRKAEgJ9cbnayArOUAFAVgRIAflKT2ckKzFICwEUESgBQzWYnKzBLCQCOCJQAoNrNTlZglhIAyhEoAQS82sxOVmCWEgAuIlACCHh1mZ2swCwlABAoAQS4usxOVmCWEgDKESgBBLStW7ea+rxhGMxSAgh4BEoAAe3gwYM+sQ4A8GcWoy49DwDUEwUFBSooKKj2/fXr10uShg0bVu0ykZGRioyMdPnYAMBfBHt7AADgTVcKg6GhoZKkuLg4Tw0JAPwOlTcAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMCfhAuXDhQlkslmr/Wa1WxcbGqkOHDrr99tv10ksvae/evW4fV1paWpWxDBo0qNbrmTVrVpX1LF261Omy69evV1xcnJKSkpSTk2PuCwAA+B1n+wxn/yIiItSuXTvdf//9+uKLL7w9bElSSUmJhg0bppiYGC1evNjbwwk4wd4egLfddtttiouLkyRNnTpVWVlZiouL04IFCyRJZWVlysrK0uHDh5WSkqJPPvlE06dP16233qp58+apR48ebhlX06ZNtWzZMknSnDlzlJqaWqf1jBw5Uh06dFBWVpamTp162WXffPNNZWdnKzs7Wxs3btTIkSPrtE0AgH+q2GdIzveJUvl+8dixY1qxYoWSk5OVnJysRx55RK+//rqsVu/NU+3Zs0cff/yxpPLJogcffNBrYwlIBuxat25tSDJat25d7TIff/yx0blzZ0OSERERYSxdutTt4xo4cKAhyRg4cGCd13HkyBFDkiHJWLJkidNl1q5dazRu3Njo27evcebMmTpvC6hP3nvvPeO9997z9jAAj7vSPrGkpMS455577PuW5557zrMDvERxcbFx2223GVFRUcabb77p1bEEooCvvGvr9ttv1/bt25WUlKTCwkI98MADWrNmjbeH5RLDhw9Xdna2/vvf/yo2NtbbwwEA+LDg4GC98847atiwoSRp/vz5OnbsmNfGExoaqn/96186f/68pkyZ4rVxBCoCZR3Exsbq/fffV2xsrAzD0IQJE5Senu7tYQEA4FExMTEaOnSopPJjGNetW+flEcFbCJR1lJiYqKeeekqSVFBQoBdffNHLIwIAwPMqjrmUpB9++MGLI4E3EShNeOihh+wHIL/77rsqLCyUpBqdnR0XF1fnM7g/+eQTDRs2TAkJCQoLC1Pbtm316KOP6n//+1+dvo6lS5dWGfOsWbMclnn++eedni1eVFSkF198Ud26dVNkZKRiY2N1yy23aNOmTXUaCwDAvwQHXzy/t6SkRJJ05MgRzZ07V0OHDlXz5s0VGhqq6Oho9ezZU48//riOHj3qdF0HDx6sdh/62Wef6c4771Tz5s0VFBRkfz8tLU1t2rSp8rnqfPnllxo/frzatm2r8PBwRUZGqlOnTrrvvvu0bNky5eXlue6bE0AIlCY0bdpUV199tSSpuLhY//nPfyRJy5Yt07Jly9SlS5dqP/vmm29ecRlnXn75Zd1///3q3r275syZoxkzZig4OFiLFi1St27dtGPHjlp/HTfeeKN9zNW55557tGzZMocz/QoLCzVw4EDt2rVLjz32mObNm6drrrlGGzZs0NChQ7V+/fpajwUA4F9OnDhhf9yyZUsdPHhQ7du313PPPafU1FQ99NBDWrRokZ588klFRkZqwYIF6tGjhz755JMq60pISHC6D3399dc1fvx49ejRQ7Nnz9bkyZMdzihfuHChli1bprvuuuuyY12wYIEGDBigdevW6bbbbtOrr76qefPm6cYbb9Tq1as1YcIEJSQkuOC7EoC8fVaQL6nJWd6XGj9+vP0Mt7lz5zq8V5Ozs2uzTFxcnNG2bVsjIyPD4f28vDyjf//+hiSjSZMmxsmTJ6usoyZneRuGYV9m5syZTt+vvJ7ExETjxRdfdHi/rKzMuOGGGwxJRufOnavdDuAvOMsbgaom+8SysjKjVatW9v3Czp07jf379xuSjF69ehl5eXkOy9tsNuPZZ581JBlRUVHGiRMnql13xb4vISHB6NSpU5V924MPPmhIMo4cOWJ/bebMmfaxXOrAgQNGUFCQIcn48ssvq7z/1VdfGeHh4U4/iytjhtKkJk2a2B+fPn3ardvKysrSyy+/rKuuusrh9QYNGuivf/2rJCk7O1szZsxw6zgqBAUF6ZlnnnF4zWq16oEHHpAkHThwQD/++KNHxgIA8Ly//OUv9jO7b731Vl177bX292bOnKkGDRo4LG+xWDR79my1bNlSubm5euutt664jczMTM2dO1fNmjVzeP2+++7TxIkT7WeZX8mnn36qsrIyNWnSRP3796/yfu/eva84w4nqBfyFzc2q/B/y+fPn3bINwyj/35DQMH2l9trw9126UFqm0OAgNYsKU/fEGPVIbK/OXbroQGqqkpOTtXDhQoWHh7tlPBWGDRvmcOxMhYrDACQpNTVVHTt2dOs4AADuY7PZlJWVZX9eVlam9PR0LVu2TG+88Yak8t/7FYdNdejQQenp6WrevLnT9QUHB+tnP/uZ0tPTtXnzFo18KEd7M3L0XUaOTuUW2/dvR7LyJUnh4RG69fZfVFnPzTffrJtvvrnGX0dpaakk6cyZM9q3b5+6detWZZkXXnhBEyZMqPE6cRGB0qTc3Fz745iYGJeu+/jZAr2385i+Onb2pw0k6B97TqnUZtiXCbZa9N7O8r8Oc0ISJKUqPz9fX3/9tQYMGODS8Vyqc+fOTl+vfA1LbuEIAP4tPT1dTZs2dfpe06ZN9etf/1rTpk2zz0YGBwerRYsW9mUMw1Bubq4uXLhw8YPBoZKk7d/9qDv+Un7+QbDV4rB/O5VbLEkqi05Q0itbdF//VhrXr5VaxEbW6eu48cYbZbFYZBiGbr75Zk2fPl3333+/wz6rY8eOTILUEYHSpMp/tVX3A1db54tK9NL6/Vq1K10Wi1RaZpMkWcMaOPywSXJ4botobH889/+2annvaxUVHuKSMTkTFRXl9PWwsLCL4/vpL0IAgH+Kj49XcnKyw2vh4eGKj49Xhw4dnJ5RnZOToz//+c/64IMPtG/fPvvZ35cqrRQyL92/GT/Vc9bQSOUUlujNLYf0ty2HNLpPS00f1rXW+7c+ffpo2rRpmjNnjk6dOqXf/e53evLJJzVw4EDdcccdGjlypEMQRu0QKE365ptv7I/79Oljen1bfzitJ97frez84p+OKq70puXyh7xagi/+cG07cFyDX9ui+aN66cZOrgm6l/LmPVsBAJ4RHh6uIUOG1Hj5AwcOaMiQITp+/LhiYmL0+OOPq1evXjpRHKK3thzW+aISnduxRkVHvrnyyiTpp8BakTf/76t0fXbgVJ32by+++KJuu+02LViwQOvXr1dxcbFSUlKUkpKiqVOnauTIkXrttdfUsmXLWq0XXDbIlMzMTKWmpkqSIiIidP3119d6HWVlZfbH725L04QlO5WdX6xL/lArZ9guuy6j9OJfgJaQCGXlFWvCkp36+/a0Wo8LAIC6mDBhgo4fP67IyEjt3LlTc+fO1YXWSXr9QIRKmndTWJtrFNSg8ZVXVA2bIVP7txtuuEFr1qzRqVOntHz5cg0fPlzBwcGy2WxavXq1+vfvrzNnztR5fIGKQGnC22+/bZ+SnzRpUpWTYCpOWKluql+6eCLPyfNFmvnhPklyHiYl2YrzLzue0rzsi9tuFG9fz4x1+7Tm6+OX/SwAAGYdPnxYO3fulCQNHz5cnTp10t+3p11x/1ZblfdvdZ00iY6O1rhx47R27VqlpaXZz/A+ceKEXn31VdcMNIAQKOvo2LFj9v/gGjRooGnTplVZpuIknXPnzjldR1lZmQ4dOiRJ9rPZLqfkzP8cZiEvdSGzfF2WkHCFxndweG/BBm6HBQBwr8zMTPvjli1bausPpzVj3b4qyxklhS7b5ox1+7T1hytftu+zzz7T888/73SSJzExUStXrrRf1Hz37t0uG1+gIFDWQXZ2tu6++26dP39eVqtVy5cvd3ogb8VZ0IcPH3Y8u+0nKSkpys8vD5KXuUvURWUlKjjo/E44xZkHVXqmfBayQfebHI6nrPH6a6niml4AAEhyuFTQd99/ryfe3y3rJfsfw7DZJ0BcwWqRnly9W7lF1U+4SNLWrVs1Z84c+6FqlwoNDbWfXBsdHe2y8QUKAmUtffTRR7ruuuu0a9cuRUZG6t1339Wdd97pdNk77rhDklRUVKSVK1c6vJefn6/p06erQaPyC6MbNakBrEE6t2mJyvLOOrxsKynSmX//rXyRiGg1uuG+Kh+t0fqvIDMzUx9++KH9eWFh4WXrfABAYGnbtq394uaf/OtfOr5vR5WaO2fb/6k056TLtllxTOWcj/fXaPk//OEPTidDduzYoe+//16SNGbMGJeNL1AE/Fneqamp2rVrlyTZZwvz8/Ptl0goKytTdna2Dh06pH//+986ePCgpPI7AsyfP1/du3evdt1JSUkaPXq0Vq1apSlTpuirr75Sr169dOrUKS1evFhjJjyo795eLp3LVlnBOeV9t0mSFNk5STKkgh+2l4+h4JwkKSyxq4Kjm+p//+8RNex1i0Jir1JZ/jnl7d2g0rMnZA1roGajZiioQSP7GC6cOqILp9JkK7x40fWUzZ8rODhY8fHxGjp0qA4fPqxt27Y5jH3Pnj1KTk5Ww4YNdd1112nVqlXasmWLCgsv1hTHjx/XihUr1KdPH/Xs2VMnT57Uhg0bHC6ltH37dgUHB6t9+/ZKSkqq1f83AADP2rNnj/bs2SPJ+T5RksaPH3/ZdSxZskQ3DhykM9lZylw5Qw26DVJo844ySktUdORrFaXvU1BMvMpyTsooKbq47+uUJGtouP15xb6v8v4xJDZBYYldq2wz78B2/b/vNqmvcfHubBVjHjBggNq1a2e/1N3atWvVpUsXjR49Wq1atVJRUZF2796tFStWqKysTE8++aSGDx9e6+9doLMYhivmrvzXwoULNXXq1Grft1gsio6OVuPGjdWpUyf9/Oc/15133nnZIFlZSUmJXn31VSUnJ+vQoUMKDw9Xnz599MQTT2ivta1mTr5HRce+c/hM4m+XSrYyZbz5K4fXw1p2V8J9c5W3d6Py9qao5PRR2S4UKKhBY0V0uFYxSfcqOKqJw2fOfb5cOV+scDq2gQMHavPmzVq6dKn9domXiouL06OPPqrdu3frgw8+cLrMzJkzNWvWLG3evFk33XST02UmTpyopUuXOn0P8GUrVpT//IwdO9bLIwHcb9asWXrhhRcuu0xNYsPz723VGwtfU8HB/6r0/GlZLBYFRTVReKueir52hHK+XK387zY6fCbxN/9PwY3idXTuL6tdb4PugxX3y6r77ON/fVBl5085/cySJUs0adIkSdLXX3+tNWvW6PPPP9eBAwd09uxZWa1WJSYmKikpSVOmTNHPf/7zK359qCrgA6W3lJTZ1HdOinIKPV8Zx0SEaNf0IQoJcn7EQ2ZmpjZv3qwDBw7IarXKZqv+ckXPPPOM22/xCHgTgRKoHV/ev8F9Ar7y9pbUzFyv/LBJUk5hiQ5k5qp7ouOtIi8NkpIuGyYBALiUL+7f4H4ESi/Zm+Hde1zvzcix/8ARJAEAruJL+zd4DoHSS77LyFGw1VLl3qWeEGy1aG9Gjm4iSAIAXMwX9m8coOJ5BEovOZVb7JUfNkkqtRn6795UvbXnH/bX6hokV69eraCgIFcNDfA5GRkZki4eSwng8r5Ji1CpLeTKC7pBqc3Q6bxir2w70HHUqpdcKPXuBcFLDTdc6RwAEPC8vX8pLuGGG97ADKWXhAZ7d1avQ7s2mjL0Bm3ZskWpqalXPJu7OqNGjeIsb9RrnOUN1M7Gv+/Sj/tdd+Hy2goLoTXzBgKllzSLCvPqMSZNG4YpISFBo0ePVmZmpulgCQCA5Bv7N3gelbeXdE+M8eoxlD0qnQFXESynTJmiTp06SZL9JB0AAGrDl/Zv8BxmKL3E2//BO9s+M5YAALN8cf8G92Mayku6JEQpJsI7Z8HFRISoc0JUte8zYwkAqCtf3r/BfUgJXhISZNV9/VvJ6uGT4YIs0vj+rWp0WyqCJQCgtvxh/wbX47vuReP6tZKn76RukzS2X6tafcZZsAQAoDr+sn+D6xAovahFbKRG923psb/irBZpdN+WahEbWafPVw6WXbp0UXR0tEJCvFNrAAB8l7/t32AeJ+V42fRhXfXZgVPKyiuWO0+Ks1qkqBDp/u4NVFRUZOrakRXBEgAAZwzD0OAm57XWuKAihcqdk5VWixTXMEzTf9HVjVvBlRAovSwqPETzR/XShCU73bodmyH1N37Q6hW7yrcbFaXmzZsrISFB8fHxio+PV2xsLMdIAgBMKSgo0D//+U/9+OOP+s01SVrwbYlbt2czpPmjeikqnMbMmwiUPuDGTk31x+HdNGPdPrdt44U7rtbpbfuVn1/+PDc3V7m5uTp48KD9skDBwcFq2rSpmjdvbg+Z8fHx3AkHAFAj6enpWr16tUpKSjRu3Dh17NhRsa3S3Lp/mz28m27s1NRt60fNECh9xISkNpKkGev2yWqRS+rvivXMHt5N9ye10beRQ7R27VqHZSpfY7K0tFQnTpzQyZMnHV6vmM2Mj49XQkKCmjdvrtjYWPMDBADUC4ZhaNu2bdq4caNatGihUaNGKTo6WpJn9m/wPgKlD5mQ1EZtmjTQk6t3mz6msuKYkvmjetn/cuvZs6c2b96snJycy3720guZO5vNfPjhh9WsWbO6DxAAUC9Urrivv/563XTTTQoKcryftrv3b/A+DpjzMTd2aqqUxwfq3j4tZbGUX1erNoIsksUi3dunpTY+PtDhh81qtWrQoEF1HpvNZpPFYtFVV12lJk2a1Hk9AID6IT09XW+99ZaOHz+ucePGaciQIVXCZAV37t/gfRbD8PSVolBTx88WaMXOY0recUw5heUHNQdbLQ73SK38PCYiROP7t9LYfq2qvXSCzWbT66+/fsVZyuqEhYXp4YcfVkwMt7ZCYFixYoUkaezYsV4eCeA7Lldx14Q79m/wLgKlHygps+lAZq72ZuRob0aOTucVq7ikTGEhQWraMEw9EmPUIzFGnROianSHgG+//bbKsZQ1NXbsWC5ujoBCoAQc1aTirilX79/gPRxD6QdCgqzqnhij7okxcsUurabHUl4qKSmJMAkAAczZWdxmuHr/Bu8h7geg2h5LabVaddVVV2nw4MHuGxQAwGcZhqEvvvhCS5YsUUxMjH7zm9+YDpOoX5ihDFC1maUMDg7WvffeW+dKAwDgv1xZcaP+YoYyQNVmljIoKEjnz59374AAAD6nNmdxI7ARKANYz549r3i2dp8+fRQXF6elS5dq27Zt4hwuAKj/qLhRW1TeAaxiltLZGd9Wq1UJCQm6/fbbJUmbNm3Shg0bdPToUd15552KjOSyDQBQH1Fxoy6YoQxw1c1ShoSE2I+bDAoK0pAhQzRu3Dh7/ZGenu6F0QIA3ImKG3VFoAxw1R1LOXLkyCpBs2PHjpoyZYpiYmKowAGgHqHihlkESlSZpbzc9SZjYmI0ceJEJSUlacOGDVq5cqUKCgo8NVQAgIsVFBRoxYoVSklJ0YABAzRx4sRa3fUGkAiUkOMsZU2uN0kFDgD1AxU3XIVbL0JS+T2+t2/frh49etTqL9OcnBytWbNGGRkZGjx4sJKSkmSxWNw4UsCzuPUi6iOz9+IGLsVZ3pBUPkt5/fXX1/pzFRU4Z4EDgH/gLG64A5U3TKMCBwD/QMUNdyFQwmU4CxwAfBNnccPdqLzhUlTgAOBbqLjhCcxQwuWowAHAN1Bxw1MIlHAbKnAA8A4qbngalTfcigocADyLihvewAwl3I4KHAA8g4ob3kKghMdQgQOAe1Bxw9uovOFRVOAA4FpU3PAFzFDC46jAAcA1qLjhKwiU8BoqcACoGypu+Boqb3gVFTgA1A4VN3wRM5TwOipwAKgZKm74KgIlfAYVOAA4R8UNX0flDZ9CBQ4Ajqi44Q+YoYTPoQIHgHJU3PAXBEr4LCpwAIGKihv+hsobPo0KHECgoeKGP2KGEj6PChxAoKDihr8iUMJvUIEDqK+ouOHvqLzhVyoq8M8++4wKHEC9QMWN+oAZSvidoKAgDR06lAocgN+j4kZ9QaCE36ICB+CvqLhR31B5w69RgQPwN1TcqI+YoYTfowIH4C+ouFFfEShRb1CBA/BVVNyo76i8Ua9QgQPwNVTcCATMUKLeoQIH4CuouBEoCJSot6jAAXgLFTcCDZU36jUqcACeRsWNQMQMJeo9KnAAnkLFjUBFoETAoAIH4C5U3Ah0VN4IKFTgAFyNihtghhIBiAocgKtQcQPlCJQIWFTgAOqKihtwROWNgEYFDqC2qLiBqpihRMCjAgdQU1TcgHMESuAnVOAAqkPFDVwelTdQCRU4gEtRcQNXxgwlcAkqcAAVqLiBmiFQAtWgAgcCFxU3UDtU3sBlUIEDgYeKG6g9ZiiBK6ACBwIHFTdQNwRKoIaowIH6i4obMIfKG6gFKnCg/qHiBsxjhhKoJSpwoP6g4gZcg0AJ1BEVOOC/qLgB16LyBkygAgf8DxU34HrMUAImUYED/oOKG3APAiXgIlTggO+i4gbci8obcCEqcMD3UHED7scMJeBiVOCA76DiBjyDQAm4CRU44D1U3IBnUXkDbkQFDngeFTfgecxQAm5WUYGPHTuWChxwMypuwDsIlICHdOrUiQoccJNLK+4pU6ZQcQMeROUNeBAVOOB6VNyA9zFDCXgYFTjgOlTcgG8gUAJeQgUO1B0VN+BbqLwBL6ICB2qPihvwPcxQAl5GBQ7UHBU34JsIlICPoAIHqkfFDfg2Km/Ah1CBA1VRcQO+jxlKwMdQgQMXUXED/oFACfgoKnAEMipuwL9QeQM+jAocgYiKG/A/zFACPo4KHIGEihvwTwRKwE9QgaM+o+IG/BuVN+BHqMBRH1FxA/6PGUrAz1CBoz6h4gbqBwIl4KeowOHPqLiB+oXKG/BjVODwR1TcQP3DDCXg56jA4U+ouIH6iUAJ1BNU4PBlVNxA/UblDdQjVODwRVTcQP3HDCVQz1CBw5dQcQOBgUAJ1FNU4PAmKm4gsFB5A/UYFTi8gYobCDzMUAL1HBU4PImKGwhMBEogQFCBw52ouIHARuUNBBAqcLgDFTcAZiiBAEMFDlei4gYgESiBgEUFDjOouAFURuUNBDAqcNQFFTeASzFDCQQ4KnDUBhU3AGcIlAAkUYHj8qi4AVwOlTcAOypwOEPFDeBKmKEE4IAKHJVRcQOoCQIlAKeowAMbFTeA2qDyBlAtKvDARMUNoLaYoQRwWVTggYWKG0BdECgB1MilFfgXX3xBBV6PUHEDMIPKG0CNVa7AU1JSdPToUY0YMYIK3M9RcQMwixlKALVSuQI/fvw4Fbifo+IG4AoESgB1QgXu36i4AbgSlTeAOqMC909U3ABcjRlKAKZQgfsXKm4A7kCgBOASVOC+jYobgDtReQNwGSpw30TFDcDdmKEE4FJU4L6FihuAJxAoAbgFFbh3UXED8CQqbwBuQwXuHVTcADyNGUoAbkUF7llU3AC8gUAJwCOowN2LihuAN1F5A/AYKnD3oOIG4G3MUALwKCpw16LiBuALCJQAvIIK3BwqbgC+hMobgNdQgdcNFTcAX8MMJQCvCtQKPC8vT3l5ebX+HBU3AF9EoATgEwKpArfZbFq6dKneeustFRQU1OgzVNwAfBmBEoDPqKjAr7vuOqWkpGjFihU1Dlz+5Pvvv1d2drby8/P1j3/844rBuaCgQCtWrFBKSooGDBigiRMnKiYmxkOjBYArsxj1dQoAgF+ZNGmS3n333SqvDxkyRIsXL1bLli1rtb6f/exn+vbbb6u8XvlX3qxZs/Tqq69q7Nixevvttx2Ws1gsDs9bt26ttLS0Wo3BGZvNpkWLFunMmTP214YMGaLrr7/e6fLp6elavXq1SkpKdNdddzErCcAnESgB+ITt27fr0KFDkqSpU6cqKytLkhQZGampU6fq9ttv14ABA6oEPWc++eQT3X777fbn06ZNU9euXSVJ48ePt78eFRVlP44xOztbjRs3tr+XnJwsSZozZ45SU1NdFii/++47rVmzxuE1i8WiSZMmqVWrVvbXDMPQtm3btHHjRrVo0UJ33303s5IAfBaBEoDPadOmjY4ePWp//qtf/UotW7ZUx44da3QW+E033aTNmzfbn2/atEmDBg2qstwf/vAHLViwQKNGjdLSpUudrmvgwIHaunWrSwKls9lJqTxQNmjQQA8//LAiIyM5ixuA3+EYSgA+qUOHDgoJCZEkffTRRxo5cmSNzgLfsWOHNm/erKuvvvqK25g9e7by8vKqDZOu9v3331cJk1L5bGTF8ZTHjh3jLG4AfodACcAnJSYm6r777pMknTx5Up9//nmNzgKfO3eu2rVrp5EjR3p6yJdls9m0adOmat83DEOHDh3iLG4AfolACcBnPfPMM/ZjJufNm6cGDRpc9izw1NRUrV27Vo8//rjPzepVNzvpzM0338zxkgD8CoESgM/q0qWLRowYIUlKS0vTihUrLnsh9FdeeUVNmjTRgw8+eNn1Tpo0SRaLxeFf5WMua+vLL7/U008/reuuu06NGzdWSEiIGjdurBtuuEHz58/X+fPnnc5OfvXVV5o1a5bDv82bN+v999/Xa6+9pt69e6thw4aKjo7WDTfcUOVkHgDwFQRKAD7t2WeftT/+05/+ZK+5L70Q+j//+U8tX75cjz76qCIiIi67zilTpmjZsmWaNm2a6fEtXrxYSUlJmjdvngzD0NNPP61FixZpypQpOnbsmJ566in17NnTfgZ7ZW3bttVdd92lu+66y/6azWbT4sWL9c4772jSpEl67bXXNHjwYH3xxRcaNWqU3nzzTdNjBgBXI1AC8Gn9+vXTTTfdJEnat2+f1q5da3+v8oXQX3nlFVkslivOTkpSUlKSxo8fr6FDh5oe34ULFyRJDz30kHbs2KFnn31WkydP1ssvv6zU1FTdfPPNOnr0qFavXl3ls40bN1avXr3Uq1cv+2vffPONIiMjNWbMGPXp00eTJ0/WBx98oHHjxkkqD9hFRUWmxw0ArkSgBODzKs9Svvzyyw7vBQUFqW/fvtq9e7f69Omj1atXm7oXeEmZTXszcvTezmOa9sFeHcorPxYzO/+Cpn2wV+/tPKa9GTkqKbM5jOHScUnl19D8/e9/L0nKyMio0WWHioqKdMstt0iSNm7cqGPHjkkqv3SSJOXk5Ojzzz+v89cHAO4Q7O0BAMCV3HLLLerdu7e+/vpr7dy5Uxs3btTgwYPt7y9atEjFxcX629/+pl27dmnp0qX2IFZTp3OL9MqnqVq+45hyCkskScFWi85dKP+7u/BCmf5vV7re21m+3piIEN3Xv5VG/PJuHR8xQnFxcVXWabPZlJaWprCwMBUXFystLU1t2rS57Dhat26t8PBw+/P3339fDz/8sMNlkFJTU10yuwoArsIMJQC/UN0sZWFhoV5//XXde++96tmzp70CP3z4cK3W/9iKb/TmlkP2MClJpTbHyxJVfp5TWKI3txzSrX/dqYVfnFJuUfnnSktLdfbsWWVlZemLL75Qenq6wsLCJEm5ublXHEflYGoYhvLy8rR161bFxsZe3HZOTq2+NgBwN2YoAfiFu+++Wx07dtSPP/6ojRs3aufOnerXr58WL16s06dP6+mnn5Yk+1ng69at05YtWyRJp06dcrrO3ennHJ7bannfsIrll2/4UotfeV6hmXv1v/SjTq+PKZWHzSsJDQ2VJEVHR6t58+aKj49Xz5497aG0pusBAE8iUALwC1arVU899ZQmT54sqXyWcvXq1Xr11Vc1dOhQXXPNNQ7LN2nSxP74k08+UWJiosO9wN/dlqaX/7Xf9LgKDmzT6XXzpLISBTdK0L2/fUajB/dTVlaW/VjHf/zjH8rPz5ck+2WKbLbyYzCDg4PVrFkz+/p69+6tZ5991iFAAoCvI1AC8BsTJkzQzJkzdeLECa1du1YzZszQkSNH9Pbbb1/2c1dffbVSUlJ09OhRjRgxQqt3n9LMD/eZHk9Z/jllrV8glZUopGlrNZ+4UF8Gh+gXCd2UlbpC7du3l1QeGqXy2cdOnTopISFB8fHxio+PV2xsrCwWiz0ox8TEECYB+B2OoQTgN8LCwjR16lRJ5ccXvvTSS+rdu7eGDBly2c/17dvXfiH0aa8v04x15sOkJBUe3CnjQqEkKar3L2UJLr/3+Ix1+3Quork6dOigX/ziF4qKipJUHmzHjBmjQYMGqWvXrmrcuLF9xhQA/BmBEoBf+c1vfqNGjRrZnz/11FM1+lynTp00buKv9FlhC1ldlOHK8s/ZHwdHXzyZxmqRNhW00PC779W1116rwsJC12wQAHwUgRKAX4mKitIjjzwiqfxOM/fcc0+NP/uX/2Qor6T2J99UJ6jhxTOvS7KP2x/bDCkrr1hzPt6vtLQ0ZWdnu2aDAOCjCJQA/M4f//hHFRYW6sCBAwoKCqrRZ9LPFmjVrnSXhUlJimh/rSwh5deMPL/jHyrNO2N/z2ZIK788rF9N/o3rNggAPoqTcgD4hD179mjPnj2SpPz8fJ08eVLJycmSpAEDBqhdu3b2Za1Wq8PFvyur+EzFuiRpw4YNevPjnSo4fF4RHZNUnLFfJWczVZJ98Y46hWnfqjQ3WyGxCQpL7Kq87zZJkkrPZUqSjJIi+2sRba9RUINYBTVopMa3PaLs9QtVln9WJ955WA173aLgxokqyzujgv1bdVYXFBUVpdzcXB0+fFjJyclq2LChRowYoZMnT2rDhg1Vvg/Jyclq3769kpKSlJ+frw8++MDpMvHx8VzgHIBPsBjVXTANADxo1qxZeuGFF5y+t2TJEk2aNKlG67ncSS5B0c3U4reLlfXRAuV/t9HpMg26D1bcL6fq6NxfVrue+LEvKbx1T/vz4syDOr/zAxUf26uyghxZgkMVEnuVItpfq8Sf3638lU/q6NGj9uVbt26ttLQ0bd682X6f8ktNnDhRS5cuVVpamtq2bet0mYEDB2rz5s3VjhMAPIVACaDe25uRozv+8h+vbf+jR29Q98QYr20fANyNYygB1Ht7M7x7q0Jvbx8A3I1ACaDe+y4jR8GuulZQLQVbLQRKAPUegRJAvXcqt1ilrjy9uxZKbYZO5xV7ZdsA4CkESgD13oXSMq9uv7jEu9sHAHcjUAKo90KDa3atSncJC/Hu9gHA3QiUAOq9ZlFhXj2GsmnDMK9sGwA8hUAJoN7rnhjj1WMoe3DJIAD1HIESQL3n7UDn7e0DgLsRKAHUe10SohQTEeKVbcdEhKhzQpRXtg0AnkKgBFDvhQRZdV//VvL0YZRBFml8/1YKCeJXLYD6jd9yAALCuH6t5Okbzdokje3XyrMbBQAvIFACCAgtYiM1um9Lj81SWi3S6L4t1SI20jMbBAAvIlACCBjTh3VVXMMwt4dKq0WKaxim6b/o6t4NAYCPIFACCBhR4SGaP6qX3H0FIZshzR/VS1Hh3jkRCAA8jUAJIKDc2Kmp/ji8m1u3MXt4N93YqalbtwEAvoRACSDgTEhqYw+Vrqq/K9Yze3g33Z/UxjUrBQA/YTEMT5/3CAC+YesPp/Xk6t3Kyis2VYNXHDM5f1QvZiYBBCQCJYCAdr6oRC+t369VX6XLKqmsFr8RgyzllwYa3aelpg/ryjGTAAIWgRIAJB0/W6AVO48peccx5RSWSJKCrRaHe4BXfh4TEaLx/VtpbL9WXBoIQMAjUAJAJSVlNh3IzNXejBztzcjR6bxiFZeUKSwkSE0bhqlHYox6JMaoc0IUd8ABgJ8QKAEAAGAKf14DAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAlP8P5j9YYnXV9iIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6N0lEQVR4nO3deXhU9aH/8c9kIXvCFpYGEoIQRDYLCAYti4DYUhHBigFksVp6a/21qNWKFlEUsaJYWytQr6As0YqiVHpVEESKQC5uIGUTCAkUAokQspAwSc7vj9wMGbKQ5MzMmeX9eh4eJzNnzvdMHpPzyfdzFpthGIYAAACAJgqyegMAAADg2wiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAC81pw5c2Sz2S77LyIiQp07d9add96prVu3Wr3ZkiS73a7Ro0crLi5Or732mtWbAwBuZTMMw7B6IwCgNrt27dKuXbskSTNnzlRubq5at26thQsXOpYpLy9XVlaW0tPTtXfvXknSvffeq5deeklBQdb9zfzFF1+of//+kqRevXo5PgcA+CMCJQCf0KlTJx09elRJSUnKzMys8XpZWZkmTpyot99+W5L0yCOPaN68eR7eyosuXLigW265RVu3btVzzz2nGTNmWLYtAOBuBEoAPuFygVKS8vPz1aFDBxUWFio0NFTfffedEhMTPbuhABCAOIYSgN+Ii4vTyJEjJVUew7h27VqLtwgAAgOBEoBf6dKli+PxgQMHLNwSAAgcBEoAfiUkJMTx2G63S5KOHDmi+fPna+TIkWrfvr2aNWum2NhY9e7dW/fff7+OHj1a67q+++67GmeUDx06VJK0ceNG3XLLLWrfvr2Cg4Mdr2dmZqpTp0413leX7du3a/LkyUpOTlZ4eLgiIyOVkpKiSZMmafny5SosLHTdNwcA3CTk8osAgO84ceKE43HHjh313XffKSUlRYZhqEOHDrr77ruVmJioEydO6J///KcWLlyoV199VX//+9910003Oa2rXbt2Wr58uSTp6aef1r59+yRJL730kubPn6+77rpLN998s7744gstWbJEFRUVkqQXX3xRhYWFevfdd7VmzZo6t3XhwoV64IEHFB0drUmTJqlnz56SpK+++krLly/XqlWrFBUVRagE4PU4KQeAT2jISTkVFRVKTk5WVlaWJCkjI0MxMTHq3r27+vTpo61btyoqKsqxvGEYmjVrlubPn6+YmBgdOHBA7dq1q3XdQ4cO1ebNm9WuXTvFxsZqy5YtatOmjeP1n//853rttdd05MgRderUSVLldTSfeOIJx1jVHThwQFdddZXKy8u1fft2DRw40On1L7/8Utddd51KSkpqvBcAvA2VNwC/8Ze//MURJkeNGqVrrrnG8drjjz/uFCYlyWazae7cuerYsaMKCgq0ePHiy45x8uRJzZ8/3ylMStKkSZM0depURUdHN2hbP/roI5WXl6tVq1Y1wqQk9e3bV7feemuD1gUAVqPyBuBTKioqlJub6/i6vLxc2dnZWr58uf785z9Lkq666ipHVd2lSxdlZ2erffv2ta4vJCREP/zhD5Wdna3NmzfLXl6hfScLtPt4vr49nq9TBaW6UFau/TkFkqRmYeFK+uGPZC+vUGjwxb/Jb7jhBt1www0N/hxlZWWSpO+//1579uxRjx49aizzxBNPaMqUKQ1eJwBYhUAJwKdkZ2crPj6+1tfi4+N1zz33aNasWY7ZyJCQEHXo0MGxjGEYKigo0IULFxzPRUZGSpK+PZip/k9vUP75ypN5QoJsKquorJvPFFUub8S117jFOxQXEapJAxM1cUCiOrSIbPTnGDx4sGw2mwzD0A033KBHH31Ud955p1q0aOFYpmvXruratWuj1w0AnkagBOBT2rZtqxUrVjg9Fx4errZt26pLly61nlGdn5+vP/3pT1qzZo327NnjOPv7UmcKihR5/uJrVWGyuqBmleEx/7xdizYf0iubD2lCv456dHR3xYSHNvhz9OvXT7NmzdLTTz+tU6dO6Te/+Y0efPBBDRkyRDfffLPGjRvnFIQBwJsRKAH4lPDwcI0YMaLBy+/fv18jRozQsWPHFBcXp/vvv199+vRRfHy8dh07q8WbDyt785s6f+QrNejcl2qBtSpv/v2LbG3cf0oLbuujwSm1z57W5qmnntJNN92khQsXat26dSotLdWGDRu0YcMGzZw5U+PGjdMLL7ygjh07NnidAGAFTsoB4NemTJmiY8eOKTIyUhkZGZo/f77S0tJ0PLKLXtofIXv7HgqKamlqjApDyi0s1ZSlGXpjW2aj3nv99dfrnXfe0alTp7Ry5UqNGTNGISEhqqio0OrVqzVw4EB9//33prYPANyNQAnAbx0+fFgZGRmSpDFjxiglJUWS9Ma2TD3+jz2SLs4ymlW1ntlr9zQ6VEpSbGysJk6cqPfff1+ZmZmOM7xPnDih559/3jUbCQBuQqAE4LdOnjzpeFxVG3924LRmr93jtJxhP+/ScWev3aPPDpyud5mNGzfqscceq/V4zoSEBL355puOa2J+8803Lt0+AHA1AiUAv1X9UkH79u3TuRK7Hnj7GwVVO2/HMCp04eQhl44bZJMeXP2NSsvK61zms88+c7r7zqWaNWvmOJs9NjbWpdsHAK5GoATgt5KTkx0XN1+3bp1+8cwy5RWVOtXc+Z//XWX5OS4dt+qYyi0Hcy+77B/+8AeVl9cMnjt27NC///1vSdIdd9zh0u0DAFfjLG8AXmvXrl3atWuXJKmoqMjx3+qXDZo8eXK961i6dKmGDh2q3NxcvTX3l4rqMVTN2neVUWZXyZEvVZK9R8FxbVWenyPDXqLCbzdJkiJTUhXULNzxdXnxWcd/q54LbdFOYQnda4xZfGCbKi6UKOfAxaq6apsHDRqkzp07KyYmRpL0/vvv68orr9SECROUmJiokpISffPNN0pPT1d5ebkefPBBjRkzptHfOwDwJO7lDcBrVb8Xdl0a8ivsxIkTuv3e32v7pxtUdu60bDabgmNaKTyxt2KvGav87atV9O0nTu9J+OV/K6R5Wx2d/9M61xvVc7ha/3RmjeeP/fUulZ87Vet7li5dqmnTpkmqvF/3O++8oy1btmj//v06c+aMgoKClJCQoNTUVM2YMUM/+tGPLvv5AMBqBEoAfs9eXuF0BxxPiosI1c5HRzjdphEA/A2/4QD4vX0nCywJk1LlHXX2nyywZGwA8BQCJQC/t/t4fkCPDwDuRqAE4Pe+PZ6vkKCa9/j2hJAgG4ESgN8jUALwe6cKSlXmqlviNFJZhaHThaWWjA0AnkKgBOD3LtRzgXFPKLVbOz4AuBuBEoDfaxYSbOn4YaHWjg8A7kagBOD32sSEWXoMZXx0mCVjA4CnECgB+L2eCXGWHkPZKyHOkrEBwFMIlAD8ntWBzurxAcDdCJQA/N6V7WIUFxFqydhxEaHq1i7GkrEBwFMIlAD8XmhwkCYNTJSnD6MMtkmTByZy20UAfo/fcgACwsQBiTI8fBhlhaS0AYmeHRQALECgBBAQOrSI1IT+HT02Sxlkkyb076gOLSI9MyAAWIhACSBgPDq6u1pHh7k9VNpkKFx2TUix5rhNAPA0AiWAgBETHqoFt/WRu68gZMimCUkXtPadv2v9+vUqL+dOOQD8m80wPH1UEQBY641tmZq9do/b1j93TA9NvjZJ27Zt04YNG9ShQweNHz9ecXFcPgiAfyJQAghIVaEyyCaXzFhWrWfumB66M7WT4/ns7GytXr1adrtdY8eOVUpKivnBAMDLECgBBKzPDpzWg6u/UW5hqalQGWSTWkeHacFtfTQ4Jb7G68XFxXrvvfd08OBBDRo0SDfccIOCg7m/NwD/QaAEENDOldg1b91evfVFtoIklTfiN2KwrfLSQBP6ddSjo7srJrzuk3AMw6ACB+C3CJQAIOnYmWKlZ2RpxY4s5Z+3S5JCgmwqq6iQZKv2deWvzLiIUE0emKi0AYmNujQQFTgAf0SgBIBq7OUV2n+yQLuP52v38Xx9ve+Q7BU2dUpMUHx0mHolxKlXQpy6tYtp8h1wqMAB+BsCJQDUIz09XZKUlpbm0vVSgQPwJ1yHEgAsYLPZNGjQIE2fPl35+flavHixDhw4YPVmAUCTECgBwEIdO3bUjBkz1KFDB6Wnp3MhdAA+iUAJABaLjIxUWlqaRo4cqW3btun1119Xfn6+1ZsFAA1GoAQAL0AFDsCXESgBwItQgQPwRQRKAPAyVOAAfA2BEgC8EBU4AF9CoAQAL0YFDsAXECgBwMtRgQPwdgRKAPABVOAAvBmBEgB8CBU4AG9EoAQAH0MFDsDbECgBwAdRgQPwJgRKAPBhVOAAvAGBEgB8HBU4AKsRKAHAD1CBA7ASgRIA/AgVOAArECgBwM9QgQPwNAIlAPghKnAAnkSgBAA/RgUOwBMIlADg56jAAbgbgRIAAgAVOAB3IlACQAChAgfgDgRKAAgwVOAAXI1ACQABiAocgCsRKAEggFGBA3AFAiUABDgqcABmESgBAFTgAEwhUAIAHKjAATQFgRIA4IQKHEBjESgBADVQgQNoDAIlAKBOVOAAGoJACQCoFxU4gMshUAIALosKHEB9CJQAgAajAgdQGwIlAKBRqMABXIpACQBoNCpwANURKAEATUYFDkAiUAIATKICB0CgBACYRgUOBDYCJQDAZajAgcBEoAQAuBQVOBB4CJQAAJejAgcCC4ESAOA2VOBAYCBQAgDcigoc8H8ESgCA21GBA/6NQAkA8BgqcMA/ESgBAB5FBQ74HwIlAMDjqMAB/0KgBABYhgoc8A8ESgCApajAAd9HoAQAWI4KHPBtBEoAgNegAgd8E4ESAOBVqMAB30OgBAB4HSpwwLcQKAEAXosKHPANBEoAgFejAge8H4ESAOD1qMAB70agBAD4DCpwwDsRKAEAPoUKHPA+BEoAgM+hAge8C4ESAOCzqMAB70CgBAD4NCpwwHoESgCAz6utAj948KDVmwUEDAIlAMBvVK/AV61aRQUOeAiBEgDgV6jAAc8jUAIA/A4VOOBZBEoAgN+iAgc8g0AJAPBrVOCA+xEoAQB+jwoccC8CJQAgYFCBA+5BoAQABBQqcMD1CJQAgIBDBQ64FoESABCwqMAB1yBQAgACGhU4YB6BEgAQ8KjAAXMIlAAA/B8qcKBpCJQAAFRDBQ40HoESAIBLUIEDjUOgBACgDlTgQMMQKAEAqAcVOHB5BEoAAC6DChyoH4ESAIAGogIHakegBACgEajAgZoIlAAANBIVOOCMQAkAQBNRgQOVCJQAAJhABQ4QKAEAMI0KHIGOQAkAgItQgSNQESgBAHAhKnAEIgIlAAAuRgWOQEOgBADATajAESgIlAAAuBEVOAIBgRIAADejAoe/I1ACAOAhVODwVwRKAAA8iAoc/ohACQCAh1GBw98QKAEAsAgVOPwFgRIAAAtRgcMfECgBALAYFTh8HYESAAAvcWkFvmHDBipw+AQCJQAAXoQKHL6IQAkAgJepqsCnTZtGBQ6fQKAEAMBLUYHDVxAoAQDwYlTg8AUESgAAvBwVOLwdgRIAAB9BBQ5vRaAEAMCHUIHDGxEoAQDwMVTg8DYESgAAfBQVOLwFgRIAAB9GBQ5vQKAEAMDHUYHDagRKAAD8BBU4rEKgBADAj1CBwwoESgAA/AwVODyNQAkAgJ+iAoenECgBAPBjVODwBAIlAAB+jgoc7kagBAAgQFCBw10IlAAABBAqcLgDgRIAgABDBQ5XI1DWY86cObLZbA36Fxsbqz59+uihhx7SsWPHrN50AAD04osv1rvvSkpK0pNPPqkXXnhBP/nJT3TXXXfp66+/dvt2ZWZm1tiWoUOHNno9te2nly1bVuuy69atU+vWrZWamsqMrBuEWL0B3mzcuHHq0qWLJGnmzJnKzc1V69attXDhQqflzp07px07dujNN9/Url27tHjxYr399tu68cYbrdhsAAAkSTfddJNat24tqfb9WHl5uXJzc3Xo0CF98MEHWrp0qZYuXarhw4dr4cKF6tWrl1u2Kz4+XsuXL5ckPf3009q3b1+T1lO1n87NzdXMmTPrXXbRokXKy8tTXl6ePvnkE40bN65JY6J2NsMwDKs3whd06tRJR48eVVJSkjIzM2tdZvv27Ro6dKhKS0sVHR2tffv2KSEhwbMbCsCl0tPTJUlpaWkWbwlgTkP2Y2+88YZ+97vf6dSpUwoPD9eiRYs0depUt27X0KFDtXnzZg0ZMkSffvppk9aRmZmp5ORkSdLSpUs1bdq0GsusXbtW06dPV+fOnfXxxx+rRYsWJrYal6LydqFrr73W8T9xYWGhXn75ZWs3CACARpgyZYq+/PJLde3aVSUlJZo+fbrefvttqzfLJcaMGaO8vDz97//+L2HSDQiULlb9GJDPPvvMug0BAKAJEhIStHHjRsXExMgwDE2ePFl79uyxerPg5QiULlZ1rIoknTp1ysItAQCgaTp06KBHHnlEknThwgXdddddnAWOehEoXayoqMjxODo6us7lcnNzNXv2bPXr10/NmzdXeHi4kpKSNHny5DpnNh977LFaz2YrKSnRk08+qW7duikiIkLJycmaMWOG09nmVQcsJycnKywsTMnJyXrooYdUWFh42c90+vRpPfroo+rTp49iY2MVERGhpKQkTZgwQR999FEjvjsAAF9x9913KyioMiZ89dVXev3117Vhw4YGnZ3dunXrJp/B/eGHH2r06NFq166dY3/161//Wv/5z3+a9DmWLVtWY5vnzJnjtEx9+9ennnpKPXr0UGRkpFq0aKEbb7xRmzZtatK2+DMCpYt99dVXjsfXXnttrct89NFH6tKli+bOnavIyEg9/vjj+vOf/6zRo0frnXfe0ZAhQ3TPPfeorKzM6X0/+9nPtHz5cqezzM+fP68bbrhBe/fu1QMPPKBHHnlENptNS5Ys0aBBg3Ts2DGdPHlSo0aNUlBQkGbNmqX77rtPOTk5eu655/TTn/5UFRUVdX6ejz/+WF27dtW8efOUkJCgefPm6c9//rNuvvlmrVu3TjfddJPuuOMOlZaWmvzOAQC8SXx8vK666ipJkt1uV+vWrbVt2zbdfffdWrx4sa688so637to0SItX7683mVq88wzz+jOO+9Uz5499fTTT2v27NkKCQnRyy+/rB49emjHjh2N/hyDBw/W8uXLHWeV16au/euQIUO0c+dO3XfffXruued09dVXa/369Ro5cqTWrVvX6G3xawYaJCkpyZBkJCUl1bnMmTNnjISEBEOSER4ebuzbt6/GMtu2bTNCQ0MNScb9999f4/UvvvjCiI6ONiQZ99xzT63jHDlyxJBkSDISEhKMF1980en106dPG23atHGsY+LEiUZGRobTMhs3bnSs4+233651nB07dhjNmjUzJBkLFy6s8fq///1vo3nz5oYkY8aMGXV9WwCftmrVKmPVqlVWbwZgWkP2Y5eaPHmyY18xf/58Iysry3jhhReMZ5991hgwYIAhyRgyZEid7x8yZEiDl2ndurWRnJxsHD9+3On1wsJCY+DAgYYko1WrVkZOTk6NdVTfLy5durTOsaqWefzxx2t9/dL961NPPeX0enl5uXH99dcbkoxu3brVOU4gYoaykSoqKpSbm+v0LzMzU2+99Zauu+46HT9+XG3atNF7772nbt26Ob3XMAzdddddstvt6tSpk+bPn19j/X379tXDDz8sSfrb3/522Wn1sLAw3XfffU7PtW7dWuPHj5ckvf7662rWrJmuueYap2WGDRumlJQUSdL7779fY71V23rhwgUNHDhQv/3tb2ss0717d8cxNkuWLGnydcQAAN6pVatWjsenT592uhd4Tk6OpMr9RZWjR486nm+s3NxcPfPMM/rBD37g9HxUVJT++te/SpLy8vI0e/bsJq2/sYKDgx374ypBQUGaPn26JGn//v0cV1oNgbKRsrOzFR8f7/QvOTlZd9xxh5o1a6Y33nhDhw4d0qhRo2q8d/369dq7d68k6Y477lBoaGitY1S/5tef/vQn2csrtPt4vlZlZGnWmt16+J1djtebdxugN3ce0+7j+bKXX6yuq8LshQsXNHr06FrH6d69uyQ5tqm6DRs2OM7qmzhxYp3fj6p1G4ahlStX1rkcAMD3VD8X4Ny5c5Iu3gu8ZcuWkqScnBzl5+frxIkTeuONN5Senl7voVTV2csrVFRaeXhXcGgz/U9BB015bYfufmOnZq3ZrVUZWdp9PF+9+lztqM9XrFihkpISV37MWo0ePVohITXv/1J1GIAkJlKq4U45jdS2bVutWLHC8fXp06f1z3/+UytWrNDXX3+ttWvX6o477qj1vRs2bHA8vnTGsLqOHTuqbdu2ysnJ0YfrP1G/uR/pXGnlD2dIkE0l3+c6lj1qj9WsNbslSXERoZo0MFETByQqJibGsUzXrl1rHSc2NlaSdPbs2Xq3tXPnzsrNza2xjFT5i6VKU45tAQB4r4KCAsfjuLg4x+OqWw5LUllZmRYtWqTg4GAZhqH8/Hzt3r1bffr0qXO9x84Ua1VGllbuyNL+45W3QQxu3l6fHjrrWCYkyKZVGVmVY0eEKrzdFdK+fSoqKtKXX36pQYMGufKj1nBpy1il+jUsuYXjRQTKRgoPD9eIESOcnktLS9OVV16pxx57TKtXr1ZCQoJefPHFGu/97rvvHI/ru4POuRK7bFGtJOWotLhQZ/LyFBxd+T9wWcUlNzYKDXc8zD9v16LNh/TK5kO66txxx/PVw2V1VWfvXXryjySnafybb765zm2t7uTJkw1aDgDgG6pPJsTHx9e6TPv27RUSEuJ01ZBNmzbVetvGcyV2zVu3V2/tzJbNJlXfpdnCopyWrb6/yz9v19nzYY6v9x74zu2Bsq59Z1jYxe2obf8ZqAiULvLwww9r5cqV2rt3r15++WXde++9NWYGq/+lFxERUet6PjtwWg+8/Y3OXLj4XEVpkSNQ1mBzPmqh6ucvI/N7x3NVwbExqm/r4sWL1blz58u+p/psJQDA91W/ckm/fv1qXaa4uLjGJeiqZimrq9q/5RWVVp71cumNn22X2VcFXzxMbO57X6rroB9rcErtIdcVmrLvDGQEShcJCQnRH/7wB02cOFFlZWX64x//qL/97W9Oy1T/a6e24z9e/zxTj/9jj4JsklF2MVEGXfJXW0NU/0F958tjeqBTp0a9v/q29urVS6mpqY3eBgCA7zp58qTjGMGIiAhdd911tS73/fff1/r8+vXrVV5eXrmucyWasjRDQZfMSjox6j/u0iizOx4XG6GasjRDT47poSmpner/IPAI4rcL3X777Y6ZvOXLl+vEiRNOr3fp0sXxuPpFxyXpjW2VYVKq/GErK6isGWxhkQqKjDW1XQvXH9Ab2zIb9Z7qs6tHjx41NT4AwPcsWbLEcQb3tGnTFB4e7vR61QkrrVq10uDBg5WSkuI0GVFUVOQ4FCozt/KmH3WGSVW2cfUpK8xzPA6OaytJmr12T6P3b3APAqULBQcH68EHH5QklZaW6oUXXnB6feTIkY7HO3fudDz+7MBpzV578T6pZedOq6LorCQpPLG3bEHBprdt9to9+uzA6QYvX31bP//883qXfeqppxQSEuKxSzkAANwrKytLzz//vKTKy/bMmjWrxjJVJ+mcP39ew4YNU1pamu6//349/PDDmjZtmvr3769jxxt+dxv79/9xmoW81IWThyRJttBwNWt7cYJm9to92nE4r663wUMIlC42ffp0tW1b+ZfT4sWLnc6gHjFihONyA2+++abKysp0rsSuB97+RkG2i+so+naj43Fs/zEu2a4gm/Tg6m9UUFL3D2t1w4cPV8+ePSVJb731Vp23aCwtLdXSpUtVUVGhtLQ0l2wrAMA6eXl5Gj9+vM6dO6egoCCtXLlSHTp0qLFc1VnQhw8f1oULFw/TqrqVcGmFVHK+uOEDl9tV/F3tVwspPfmdyr6vbPaieg6TLeTi8ZRBNmne/9S8/B08i0DpYuHh4frNb34jqfLElpdfftnxms1m09KlS9WsWTMdOXJEjzzyiOat26u8olJHDXAh57Dyt6+WJEX3GaXwpN4u2a4KQ8otLNXT/2zYD13VtoaFhenUqVP6xS9+IbvdOYza7XbNmDFDhw8f1i9+8QvHdS0BAL7pgw8+0LXXXqudO3cqMjJSr7/+um655ZZal626AkhJSYnefPNNp9eKiop0728fUnBU84YPHhSss5uWqrzwjNPTFfYSff/xK5WLRMSq+fWTnF83pO+LLgjW4qSceuzatUu7dlVeRLyoqMjx36rrUF5xxRW1nqzyq1/9SvPnz9e5c+f00ksvKSkpSZJ09dVXa8CAAfrHP/6h22+/XQsWLFBYh/9RZLdBsjUL14WcwyratUFGWamie9+oljf+l9N67WdPqvTYXlWcP+d4rvQ/+6SgYDVr00nN2iSr9Phe2c+crHz+/xQf3K6giFhFJF+tt3ZKvXVUFcX5Onz4cI3PdOuttyoqqvIkoP79+2vdunX62c9+pvT0dH399deaOHGi2rdvr6ysLL311lvav3+/xo4dW+tlkgAA1tq3b5/jEKva9mPl5eXKy8vToUOH9PHHHzsubzdq1CgtWLDA0VTVJjU1VRMmTNBbb72lGTNm6IsvvlCfPn106tQpLXn1v1XaaYhC7DtUXnRW5cVnVfht5Z3fIrulSoZUfGBb5TYUn5UkhSV0V0hsvP7z3/cqus+NCm3xA5UXnVXh7vUqO3NCQWFRanPbbKeQeuHUEV04lem0X9y2bZtCQkLUtm1bjRw5UocPH65x6NauXbu0YsUKRUdHa+zYsY5lql8mqWo9vXv3Vu/evZWTk6P169fXukxdeSCgWHnfR2/3+OOPO+7pWdu/qVOn1vnehx9+uMbyc+fOdbx++vRpY/jE/zKatb3CsIVFGgoONYJj443Iq4YYbSfON5J+/0GNf61+8ts6tyXuujQj6fcfGFE9h9e5TNu0eUbnRz4wOve6ps5ljhw5UuOz5OXlGXPmzDH69etnxMXFGaGhoUa7du2Mm2++2Xj33Xfd8J0HvAf38oYvW7hwYb37MZvNZsTFxRnJycnGqFGjjKeeesrYvXt3g9d/4cIF45lnnjF69OhhhIeHG82bNzeGDx9uTJ+72Eh+5AMjrGPPGmMm/GqZkfDL/67xfFjHnpX7utEzjbDEXkZQRKyh4BAjOLaNEd13tJFw7+s19otx16XV+dmq7h++dOnSOpepuq95fctU3fd706ZNTcoDgcJmGDWuBAUPsJdXqP/TG5R/vmHHNLpSXESodj46QqHBHPEAXE56erokcYww0EDs3wIT33GL7DtZYMkPm1R5x4H9JwsuvyAAAI3E/i0wESgtsvu4tff/tHp8AIB/snr/YvX4gYpAaZFvj+crpPq1gjwoJMjGDxwAwC3YvwUmAqVFThWUOt343pPKKgydLiy1ZGwAgH9j/xaYCJQWuVBWbun4pXZrxwcA+Cf2b4GJQGmRZiHmb6doRlioteMDAPwT+7fARKC0SJuYMEuPMYmPDrNkbACAf2P/FpgIlBbpmRBn6TEmvRLiLBkbAODf2L8FJgKlRaz+H97q8QEA/snq/YvV4wcqAqVFrmwXo7iIUEvGjosIVbd2MZaMDQDwb+zfAhOB0iKhwUGaNDBRnj7MJNgmTR6YyG2pAABuwf4tMPFdt9DEAYny9J3UKySlDUj07KAAgIDC/i3wECgt1KFFpCb07+ixv+KCbNKE/h3VoUWkZwYEAAQk9m+Bh0BpsUdHd1fr6DC3/9AF2aSYUOnOnlEqKSlx72AAgIBVUlKizMxMDQw7rpZRoR7Zv7WODtOjP+nu3oFQrxCrNyDQxYSHasFtfTRlaYZbx6kwpIHGAa1O31k5bkyM2rdvr7Zt2yo5OVnJycluHR8A4J+OHDmiI0eOKCcnRydOnFBBQYHjtbv7DNX8HXa3jl9hSAtu66OYcGtOBEIlZii9wOCUeD05podbx3ji5quUEnvxdlQFBQU6cOCAtmzZolWrVsnw9MEuAACfZxiGVq1apS1btujAgQNOYTIqKkq/GPMjt+/f5o7pocEp8W4dA5dHoPQSU1I7OX7oXFUPVK1n7pgemjooWSNGjKh1uVGjRslms+auBgAA32Wz2TRq1KhaXxs5cqSCgoLcvn+7M7WTa1YKUwiUXmRKaie9MX2AS46prDqm5I3pAxw/bL1791ZcnPMFX6Ojo9W9O8edAACapnv37oqOjnZ6Li4uTr169XJ87e79G6xHoPQyg1PiteH+Ibq9X0fZbJXX1WqMYJtks0m39+uoT+4f4lQDBAUFaejQoZIq/6qMiopSWVmZlixZouzsbBd+CgBAIMjOztaSJUtUVlamqKgoR9s1bNgwBQU5Rwx37t9gPZvBwXNe69iZYqVnZGnFjizln688qDkkyOZ0j9TqX8dFhGrywESlDUis89IJFRUVeumll1RQUKB77rlHEREReuedd3T8+HENHz5cqamp1N9ANenp6ZKktLQ0i7cE8B6GYejzzz/Xxo0blZCQoPHjx6u4uFivvvqqYmJi9P/+3/+rESirc8f+DdYiUPoAe3mF9p8s0O7j+dp9PF+nC0tVai9XWGiw4qPD1CshTr0S4tStXUyD7hCQk5OjkpISJSUlSZLKy8u1adMmbd26VSkpKbrlllsUGckPLCARKIFLFRcX67333tPBgwd13XXXadiwYQoODpYkHT16VOHh4Wrbtm2D1uXq/RusQ6CEw8GDB7VmzRqFhobqtttuU8eOHa3eJMByBErgouzsbK1evVp2u1233nqrunbtavUmwUsQ9+HQtWtXzZgxQ3FxcVq2bJk+//xzLicEAJBhGNq6dauWLVumuLg4zZgxgzAJJ1zYHE7i4uI0depUbdq0SevXr9fRo0epwAEggNVXcQNVmKFEDcHBwRoxYoQmTpyo7OxsLV68mLPAASAAVe0Djh07pokTJ2rEiBGESdSKQIk6UYEDQGCi4kZjUXmjXlTgABBYqLjRFMxQ4rKowAEgMFBxo6kIlGgwKnAA8E9U3DCLyhuNQgUOAP6FihuuwAwlGo0KHAD8AxU3XIVAiSajAgcA30TFDVej8oYpVOAA4FuouOEOzFDCNCpwAPANVNxwFwIlXIYKHAC8ExU33I3KGy5FBQ4A3oWKG57ADCVcjgocALwDFTc8hUAJt6ECBwBrUHHD06i84VZU4ADgWVTcsAIzlHA7KnAA8AwqbliFQAmPoQIHAPeg4obVqLzhUVTgAOBaVNzwBsxQwuOowAHANai44S0IlLAMFTgANA0VN7wNlTcsRQUOAI1DxQ1vxAwlLEcFDgANQ8UNb0WghNegAgeA2lFxw9tRecOrUIEDgDMqbvgCZijhdajAAaASFTd8BYESXosKHECgouKGr6HyhlejAgcQaKi44YuYoYTXowIHECiouOGrCJTwGVTgAPxVVcW9dOlSKm74JCpv+JSqCnzjxo1U4AD8AhU3/AEzlPA5wcHBGjlyJBU4AJ9HxQ1/QaCEz6ICB+CrqLjhb6i84dOowAH4Gipu+CNmKOHzqMAB+AoqbvgrAiX8BhU4AG9FxQ1/R+UNv0IFDsDbUHEjEDBDCb9DBQ7AW1BxI1AQKOG3qMABWIWKG4GGyht+jQocgKdRcSMQMUMJv0cFDsBTqLgRqAiUCBhU4ADchYobgY7KGwGFChyAq1FxA8xQIgBRgQNwFSpuoBKBEgGLChxAU1FxA86ovBHQqMABNBYVN1ATM5QIeFTgABqKihuoHYES+D9U4ADqQsUN1I/KG6iGChzApai4gctjhhK4BBU4gCpU3EDDECiBOlCBA4GLihtoHCpvoB5U4EDgoeIGGo8ZSuAyqMCBwEHFDTQNgRJoICpwwH9RcQPmUHkDjUAFDvgfKm7APGYogUaiAgf8BxU34BoESqCJqMAB30XFDbgWlTdgAhU44HuouAHXY4YSMIkKHPAdVNyAexAoARehAge8FxU34F5U3oALUYED3oeKG3A/ZigBF6MCB7wHFTfgGQRKwE2owAHrUHEDnkXlDbgRFTjgeVTcgOcxQwm4WVUFnpaWRgUOuBkVN2ANAiXgISkpKVTggJtQcQPWovIGPIgKHHA9Km7AesxQAh5GBQ64DhU34B0IlIBFqMCBpqPiBrwLlTdgISpwoPGouAHvwwwlYDEqcKDhqLgB70SgBLwEFThQNypuwLtReQNehAocqImKG/B+zFACXoYKHLiIihvwDQRKwEtRgSOQUXEDvoXKG/BiVOAIRFTcgO9hhhLwclTgCCRU3IBvIlACPoIKHP6MihvwbVTegA+hAoc/ouIGfB8zlICPoQKHP6HiBvwDgRLwUVTg8GVU3IB/ofIGfBgVOHwRFTfgf5ihBHwcFTh8CRU34J8IlICfoAKHN6PiBvwblTfgR6jA4Y2ouAH/xwwl4GeowOFNqLiBwECgBPwUFTisRMUNBBYqb8CPUYHDClTcQOBhhhLwc1Tg8CQqbiAwESiBAEEFDnei4gYCG5U3EECowOEOVNwAmKEEAgwVOFyJihuARKAEAhYVOMyg4gZQHZU3EMCowNEUVNwALsUMJRDgqMDRGFTcAGpDoAQgiQoc9aPiBlAfKm8ADlTgqA0VN4DLYYYSgBMqcFRHxQ2gIQiUAGpFBR7YqLgBNAaVN4A6UYEHJipuAI3FDCWAelGBBxYqbgBNQaAE0CCXVuBbt26lAvcjVNwAzKDyBtBg1SvwDRs26OjRoxo7diwVuI+j4gZgFjOUABqlegV+7NgxKnAfR8UNwBUIlACahArct1FxA3AlKm8ATUYF7puouAG4GjOUAEyhAvctVNwA3IFACcAlqMC9GxU3AHei8gbgMlTg3omKG4C7MUMJwKWowL0LFTcATyBQAnALKnBrUXED8CQqbwBuQwVuDSpuAJ7GDCUAt6IC9ywqbgBWIFAC8AgqcPei4gZgJSpvAB5DBe4eVNwArMYMJQCPogJ3LSpuAN6AQAnAElTg5lBxA/AmVN4ALEMF3jRU3AC8DTOUACxFBd44VNwAvBGBEoBXoAKvHxU3AG9G5Q3Aa1CB146KG4C3sxlMAQDwAtOmTdPrr79e4/kRI0botddeU8eOHRu1vh/+8If6+uuvazxf/VfenDlz9PzzzystLU1LlixxWs5mszl9nZSUpMzMzEZtgytkZ2dr9erVstvtuvXWW5mVBOCVCJQAvMK2bdt06NAhSdLMmTOVm5srSYqMjNTMmTP14x//WIMGDaoR9Grz4Ycf6sc//rHj61mzZql79+6SpMmTJzuej4mJUWFhoSQpLy9PLVu2dLy2bNkySdL8+fO1f/9+JSUl6eDBgwoNDTX3QRvIMAx9/vnn+uSTT9ShQweNHz9ecXFxHhkbABqLyhuAV0hNTVVqaqok6bHHHnMEyuLiYp08ebJRFfizzz7r9PXIkSM1dOjQGsv99re/1cKFC3Xbbbc5hcm9e/fq6NGjkqTw8HBJ0tmzZzVv3jxNmDBBV155ZZM/Z0NQcQPwNZyUA8ArdenSxTEb+MEHH2jcuHENOgt8x44d+vTTT3XVVVdddoy5c+eqsLDQMRtZpU2bNnW+Jz4+vmEfoIk4ixuALyJQAvBKCQkJmjRpkiQpJydHW7ZsadBZ4PPnz1fnzp01bty4Jo/dqlUr9e7d26let9ls6t27t1q1atXk9daHs7gB+DICJQCv9fDDDztC3XPPPaeoqChNnTpV1157rTZs2KD09HQVFxc7lt+3b5/ef/993X///aZn9QYPHuwUWA3D0ODBg02tsy7FxcVKT0/Xhg0bNGjQIE2dOpXjJQH4FAIlAK915ZVXauzYsZKkzMxMpaen13sh9D/+8Y9q1aqV7rrrrnrXO23aNNlsNqd/n376qdMyVbOUVZo1a1bn7OT27dv10EMP6dprr1XLli0VGhqqli1b6vrrr9eCBQscJ/5c6tVXX5XNZlNUVJQmTZqkOXPm6F//+pdsNpv+8pe/qG/fvoqOjlZsbKyuv/56vfPOOw38zgGAZxEoAXi13//+947Hzz77rGPW8NILob/33ntauXKlfv3rXysiIqLedc6YMUPLly/XrFmz6l2u+oxk1ck5l3rttdeUmpqq5557ToZh6KGHHtLLL7+sGTNmKCsrS7/73e/Ut2/fGpccMgxDsbGxGjdunO6++27H8xUVFRo3bpxWr16t6dOn64UXXtDw4cO1detW3XbbbVq0aFG92wwAljAAwMskJSUZQ4YMcXw9bNgwQ5IhyVizZo3TsmVlZcbHH39spKamGmFhYUZWVpZhGIbx+OOPO96zadOmWsfZtGnTZZe57rrrDElGUlJSra+/8sorhiTj7rvvrvFaUVGRccMNNxiSjAEDBjg9v3LlSmPOnDnG+vXrjbKyMsd2JCQk1LquiRMnGpKMuLg44/z587VuCwBYhRlKAF6v+izlM8884/RacHCw+vfvr2+++Ub9+vXT6tWrTd0L3F5eod3H87UqI0uz1uzWKVtzSVJe0QXNWrNbqzKytPt4vuzlFU7bcOl2SZXX0PzrX/8qScrIyNDmzZsvexb3mTNntGDBghrr+vnPfy5Jys/P15YtW5r8+QDAHbgOJQCvd+ONN6pv37768ssvlZGRoU8++UTDhw93vP7yyy+rtLRUr7zyinbu3Klly5YpKyurUWOcLijRHz/ap5U7spR/3i5JCgmy6eTZEknS+Qvl+vvObK3KqFxvXESoJg1M1NifjtexsWPVunXrWtfbrVs3xcbG6ty5c1q+fLkSExPrvVD5kCFDan2++mWQ9u3bp5EjRzbq8wGAOzFDCcAn1DVLef78eb300ku6/fbb1bt3b8dZ4IcPH27U+u9L/0qLNh9yhElJKqtwvixR9a/zz9u1aPMhjfprhl7cekoFJZXvKysr05kzZ5Sbm+v4FxsbK0n6+uuvL3sWd7du3Wp9vkWLFhfHzs9v1GcDAHcjUALwCePHj3dcl/GTTz5RRkaGpMqTYk6fPq2HHnpIkhxngffq1cvx3lOnTtW6zm+yzzp9XdHIG9FWGJJhSCvXb9cVQ8arQ1KymjVrppYtWyo+Pt7x79ixY5KkxMTEy16oPCYmptbnw8LCHI/Lysoat6EA4GYESgA+ISgoSL/73e8cXz/zzDMqLy/X888/r5EjR+rqq692Wr76JX4+/PDDGhdCf/3zTD3zP3tNb1fx/s917NVf63TGP5RzrkS3/+phvfvuu/r444+1cOFCTZkyxTFDWfXf+gQF8WsZgO/hNxcAnzFlyhS1b99ekvT+++9r9uzZOnLkiGN2si5XXXWV04XQ39iWqcf/scf09pQXnVXuuoVSuV2h8Un6wd2vaHvM9cpr2UOnT59Wfn6+7rzzTqe6GgD8EYESgM8ICwvTzJkzJVVex3HevHnq27evRowYUe/7+vfv77gQ+qyXlmv2WvNhUpLOf5ch48J5SVJM35/KFlJ57/GnPjyoz4+ccZzFDQD+jkAJwKf88pe/VPPmzR1fV6/B65OSkqKJU3+ujec7KMh2+eUborzorONxSOzFs7xtkrarq9p17CRJdd4pBwD8BYESgE+JiYnRvffeK0lKTk7Wz372swa/9y//Oq5Ce+NPvqlLcPTFKtued8zx2JD0fZFdT/9zrzIzM5WXl+eaAQHASxEoAficJ598UufPn9f+/fvrPWO6uuwzxXprZ7bLwqQkRVxxjWyhlbdkPLfjXZUVfu94rcKQ3tx+WD//xS9dNyAAeCkubA7AK+zatUu7du2SJBUVFSknJ0crVqyQJA0aNEidO3d2LBsUFFTnvbWr3lO1Lklav369Fv0zQ8WHzymia6pKj++V/cxJ2fMu3lHnfObXKivIU2iLdgpL6K7CbzdJksrOnpQkGfYSx3MRyVcrOKqFgqOaq+VN9ypv3YsqLzqjE3/7L0X3uVEhLRNUXvi9ivd+pjO6oJiYGBUUFOjw4cNasWKFoqOjNXbsWOXk5Gj9+vU1vg8rVqzQFVdcodTUVBUVFWnNmjW1LtO2bVsucA7AK9iM6tfRAACLzJkzR0888UStry1dulTTpk1r0HpstroPkAyObaMOv3pNuR8sVNG3n9S6TFTP4Wr905k6Ov+nda6nbdo8hSf1dnxdevI7nctYo9Ks3SovzpctpJlCW/xAEVdco4QfjVfRmw/q6NGjjuWTkpKUmZmpTz/9VMOGDat1jKlTp2rZsmXKzMxUcnJyrcsMGTJEn376aZ3bCQCeQqAE4Pd2H8/XzX/5l2Xjf/Dr69UzofY74wCAP+AYSgB+b/dxa29VaPX4AOBuBEoAfu/b4/kKcdW1ghopJMhGoATg9wiUAPzeqYJSlbny9O5GKKswdLqw1JKxAcBTCJQA/N6FsnJLxy+1Wzs+ALgbgRKA32sW0rBrVbpLWKi14wOAuxEoAfi9NjFhlh5DGR8dZsnYAOApBEoAfq9nQpylx1D24pJBAPwcgRKA37M60Fk9PgC4G4ESgN+7sl2M4iJCLRk7LiJU3drFWDI2AHgKgRKA3wsNDtKkgYny9GGUwTZp8sBEhQbzqxaAf+O3HICAMHFAojx9o9kKSWkDEj07KABYgEAJICB0aBGpCf07emyWMsgmTejfUR1aRHpmQACwEIESQMB4dHR3tY4Oc3uoDLJJraPD9OhPurt3IADwEgRKAAEjJjxUC27rI3dfQajCkBbc1kcx4dacCAQAnkagBBBQBqfE68kxPdw6xtwxPTQ4Jd6tYwCANyFQAgg4U1I7OUKlq+rvqvXMHdNDd6Z2cs1KAcBH2AzD0+c9AoB3+OzAaT24+hvlFpaaqsGrjplccFsfZiYBBCQCJYCAdq7Ernnr9uqtL7IVJKm8Eb8Rg22Vlwaa0K+jHh3dnWMmAQQsAiUASDp2pljpGVlasSNL+eftkqSQIJvTPcCrfx0XEarJAxOVNiCRSwMBCHgESgCoxl5eof0nC7T7eL52H8/X6cJSldrLFRYarPjoMPVKiFOvhDh1axfDHXAA4P8QKAEAAGAKf14DAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAlP8P9r1KwGDzG4EAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -490,8 +471,15 @@ "directed_multi_graph.add_nodes_from(V)\n", "directed_multi_graph.add_edges_from(E)\n", "\n", - "draw_graph(G, pos_nodes=nx.shell_layout(G), node_size=500)" + "draw_graph(G, layout=nx.shell_layout, node_size=500)" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/Chapter01/utils.py b/Chapter01/utils.py index 07078bd..b9a368a 100644 --- a/Chapter01/utils.py +++ b/Chapter01/utils.py @@ -1,8 +1,12 @@ +import os + import networkx as nx import pathlib import matplotlib.pyplot as plt -DATA_DIR = pathlib.Path("/") / "data" / "Chapter01" +_chapter = os.path.basename(os.getcwd()) + +DATA_DIR = pathlib.Path("/") / "data" / _chapter FIGURES_DIR = DATA_DIR / "figures" @@ -15,15 +19,20 @@ FIGURES_DIR.mkdir(parents=True) # draw a simple graph -def draw_graph(G, node_names={}, filename=None, node_size=50, layout = None): +def draw_graph(G, node_names={}, filename=None, node_size=50, layout = None, plot_weight=False): pos_nodes = nx.spring_layout(G) if layout is None else layout(G) + node_names = {k: k for k, v in G.nodes.items()} if not node_names else node_names nx.draw(G, pos_nodes, with_labels=False, node_size=node_size, edge_color='gray') pos_attrs = {} for node, coords in pos_nodes.items(): pos_attrs[node] = (coords[0], coords[1] + 0.08) - - nx.draw_networkx_labels(G, pos_attrs, labels=node_names, font_family='serif') + + nx.draw_networkx_labels(G, pos_attrs, labels=node_names, font_family='serif', font_size=20) + + if plot_weight: + edge_labels=dict([((a,b,),d["weight"]) for a,b,d in G.edges(data=True)]) + nx.draw_networkx_edge_labels(G, pos_nodes, edge_labels=edge_labels) plt.axis('off') axis = plt.gca() diff --git a/Chapter02/01_embedding_examples.ipynb b/Chapter02/01_embedding_examples.ipynb index 141811b..fd79ec8 100644 --- a/Chapter02/01_embedding_examples.ipynb +++ b/Chapter02/01_embedding_examples.ipynb @@ -1,35 +1,24 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter2 - Embeddings " + ] + }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ - "import matplotlib.pyplot as plt\n", - "def draw_graph(G, pos_nodes, node_names={}, node_size=50, plot_weight=False):\n", - " nx.draw(G, pos_nodes, with_labels=False, node_size=node_size, edge_color='gray', arrowsize=30)\n", - " \n", - " pos_attrs = {}\n", - " for node, coords in pos_nodes.items():\n", - " pos_attrs[node] = (coords[0], coords[1] + 0.08)\n", - " \n", - " nx.draw_networkx_labels(G, pos_attrs, font_family='serif', font_size=20)\n", - " \n", - " \n", - " if plot_weight:\n", - " pos_attrs = {}\n", - " for node, coords in pos_nodes.items():\n", - " pos_attrs[node] = (coords[0], coords[1] + 0.08)\n", - " \n", - " nx.draw_networkx_labels(G, pos_attrs, font_family='serif', font_size=20)\n", - " edge_labels=dict([((a,b,),d[\"weight\"]) for a,b,d in G.edges(data=True)])\n", - " nx.draw_networkx_edge_labels(G, pos_nodes, edge_labels=edge_labels)\n", - " \n", - " plt.axis('off')\n", - " axis = plt.gca()\n", - " axis.set_xlim([1.2*x for x in axis.get_xlim()])\n", - " axis.set_ylim([1.2*y for y in axis.get_ylim()])" + "import os\n", + "import sys\n", + "\n", + "sys.path.append(f\"{os.getcwd()}/..\")\n", + "\n", + "from Chapter01.utils import draw_graph" ] }, { @@ -41,22 +30,24 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Computing transition probabilities: 100%|██████████| 18/18 [00:00<00:00, 1941.31it/s]\n", - "Generating walks (CPU: 1): 100%|██████████| 10/10 [00:00<00:00, 13.25it/s]\n" + "/home/euler/.conda/envs/chap2/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n", + "Computing transition probabilities: 100%|██████████| 18/18 [00:00<00:00, 18850.80it/s]\n", + "Generating walks (CPU: 1): 100%|██████████| 10/10 [00:00<00:00, 53.03it/s]\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABDN0lEQVR4nO3deViVdf7/8efhwGFV9kUQRNxFcQNFRVExyzSXLNdGTW2zbNaabzW/pplqysmaqUYdzSFyct/IMDdcUdwVUFQ0FREEZZWdwznn/v1BnokAlwIOcN6P6+K6mvu+z33enNHz8vO5P4tKURQFIYQQwkxYmLoAIYQQojFJ8AkhhDArEnxCCCHMigSfEEIIsyLBJ4QQwqxI8AkhhDArEnxCCCHMigSfEEIIsyLBJ4QQwqxI8AkhhDArEnxCCCHMigSfEEIIsyLBJ4QQwqxI8AkhhDArEnxCCCHMigSfEEIIsyLBJ4QQwqxI8AkhhDArEnxCCCHMigSfEEIIsyLBJ4QQTUhOTg6TJ09GpVIRFRVV53X+/v6oVKpafzp27Nh4BTdDlqYuQAghRJVNmzYxf/58tFrtA10fEBCAlZVVjePt2rWr79JaFAk+IYRoApYuXcq7775LZGQkGzZs4Kuvvrrva/bs2YO/v3/DF9fCSFenEEI0AT179iQ5OZkxY8aYupQWT1p8QgjRBISFhZm6BLMhLT4hhGimli1bRu/evXFwcKBVq1YEBwfTr1+/+w6M+anf/e53qFQqhg0b1mC1NiUSfEII0UwdOXKE5cuXk5uby8cff8yFCxc4ffo0AAaD4YHuceLECT777LOGLLPJkeATQohmKDIykl27dtG/f38iIyN55513WL9+Pb6+vgDExsbe9x46nY558+YREhLS0OU2KRJ8QgjRDI0YMQKNRgNUHxjTuXNnAOLj4+97j7///e+UlJTw9ttvN2itTY0EnxBCNIAHmYheWlrKsmXLGDVqFO7u7lhZWeHp6cnevXsf6r3CwsJwdnYGoFWrVgBkZmbe8zWXLl3ivffeY9myZdja2j7U+zV3EnxCCFHPNm3aRGBgILt3777ndePGjePFF1+ke/fuHD9+nIKCAtavX09hYSEAhw4dapD6FEXh+eefZ8qUKURERDTIezRlEnxCCFGPli5dyoIFC4iMjGT8+PH3vLa8vJzHH3+cf/7zn7Rv3x57e3vCw8MZPnw4AF9//bUxBH9s0aJFzJo1q9Z7FhUVAeDl5VXn+65YsYILFy7w8ccfP+iv1aJI8AkhRD16mInoXbt2rTXAHB0dAaioqODo0aM1zhcXF7Nz505jyP1YSkoKAIMGDar1PTMzM3n99df59NNPcXFxuW+NLZFMYBdCiHr0MBPRV6xYcd9rFEWpcUylUnHr1i0mTpzIhx9+SGBgIHl5eXzyySekp6cD1NmF+corrzB48GCmTp36wHW2NBJ8QgjRBKSmptK+ffsaxx977DHatWtHamqq8djrr79O165dWbt2LePHj+f27dvY2toSGBjIgAEDOHbsGJaWNb/eo6Oj2bVrF8nJyQ35qzR50tUphBBNgL+/P4qioCgKMTExAPzmN79BUZRqoQdga2vLlClT2LJlCxkZGVRWVlJYWMiRI0fo2rVrne8RHR1NcXEx7dq1q7aN0d1nigcOHDAee+eddxrqVzU5CT4hhGhCtFotr7/+Op07d+b999+v13tHRUUZw/XHP/v27QMgPDzceKwlB590dQohRBPyyiuvkJ2dzeHDh7GzszN1OS2SBJ8QQjQRf/nLX9i4cSOxsbF06tTJ1OW0WNLVKYQQTcD777/Pp59+SmxsLH379q1xvrhCx9oTaXy4/QJrT6RRXKEznktNTTU+m7u7ge2zzz6LSqW650a1s2fPrvMZX0smwSeEECb2t7/9jY8//rhG6O3YsYP4+HhOpOYx4INY/hpznn8fvMpfY84z4INYTqTmAdUHxvz058cDY366jFpdz/wURcFgMLB8+XIGDx6Ms7MzdnZ2dOzYkWeeeYbjx4839kdUr6SrUwghTOiDDz7go48+qrWlt3btWrzb+vGNZSElFXrj8VJt1X/PjjrO8TdGYm99/6/yTZs2MX/+fLRa7X2vraioYPz48Vy/fp1PP/2UsLAwysrKWLZsGW+99RY9evSgf//+D/mbNh0SfEIIYSILFy7kzTffJCgoiI8++qjG+WPHjtFv5AQU79pfrygQk3STKSF+93yfpUuX8u677xIZGcmGDRuM3aF1+eMf/0h8fDwXLlzAx8cHADs7O958800SExNxdXV9sF+wiZLgE0KIelTbRPRnn32WZ599tsZE9KVLlwKQlJREUlJSrffrUKo1tvB+qlSrJzW39L413V1GzdnZmQ0bNtzz2oyMDBYvXsy8efOMofdj69atu+/7NXUSfEIIUY/uPm+rS05ODvPnz2fDhg18+eWXzJ49u8Y1s2fPNrbK9qxeAiyp9V4d/u8bsq+d5+zZSjp37oy1tXWt1/UOCSUm6SapOVlcyym5Z/0bNmxAp9MxdOjQe17XnEnwCSFEI3mY52yurq44OjpSVFxCgc4Shf+NtNQXZqNuXbV/35P9fDh79iwxMTG0a9eObt260aVLF+McwBOpecyOOo6iVLUQC9ILALiWU1zr+95dFNvDw4M///nPfP3116Snp+Pi4sKoUaN45513al1arTmR4BNCiEbwMM/Z9Ho9o0aNIjg4mNGjR1Ns68mvVhxBp9ej1WrJWDwLl+DHeczmCu7OHRk0fTrl5eVcvnyZCxcusHPnTry9vfHv2IWXduZT8qOuUp2+qjW64tA1Xl+gqzEw5sqVKwDMmzeP9u3bEx0dTadOndi3bx8zZ85k27ZtxMfHG3d6b44k+IQQohE86HO2y5cvU15eTkBAAC+99JJxd/QXvdJIyFeTV5BGpkHHsRV/Ro2edevWERERQZ8+fejZsyc9e/aksrKS77//ni8PplChtQDUNd6nroExd/f/y8vLIykpybij++jRo/n73//OnDlzePnll++7yW5TJvP4hBCiEYSFheHs7Fzn+dLSUrZs2cJ3333HwoULWbhwoTH08vPzKS++wzBfDamHtxI2eBCF+Tn4+voye/ZsDh48yIEDB9Dr9RQUFJCWlkZxcTF39Bp0tYQegFZnuOfAmNGjRxtD765p06ZhYWHBnj17yM3N/RmfQtMgLT4hhGhExRU64wCTY9dymVReSdqVS+zYsYPAwEBeeuklNBpNtddcuHABd3d3bt26xdmzZ4mKiuLYsWNUVFSQl5eHi4sLcXFxHDhwAAcHB1xdXXFxccHX2R6bzHLKdTUH22gsLfB3rbkW6N1w9vOrOUXCxsYGT09PMjMzuXLlSrOd1iDBJ4QQjeTuQJOMHwaYRCdksPfdnTzpmsX8yZPx9fUFwGAwUFhYSF5eHrm5uRw5cgSDwcCaNWto27Ytubm5FBcX4+rqiqenJ35+fgwfPpy9e/ei0WiYNGkSVlZW9M8tYOXZOGrr3FOpYGxQzQmC3bp149ixY1RWVt7zd2nOy5pJ8AkhRCMortAxO+o4JRV64wCTSp1ChUHFlnxvQpOSOXz4MLm5uRQUFGBra4urqyutWrWivLwcCwsLkpOTWbZsGXPmzGHz5s20bdu22goqM2bMYOvWraxcuZKRI0eyZcsWfh/cg49PlgEqtIoKC1XVe88La1/rii8jR44kKiqKa9eu1ThXUVHBrVu3UKvVzXoRbQk+IYRoBDFJN6lrep/BYOBcoQ1P9u6Fi4sLLi4uWFlZAXDixAkAli9fTuvWrZk+fTpQNVjmu+++Y9GiRdXmBE6YMME4anTUqFGoVCrCtm8g/vQ5irIyKMlKB+Crfy3CVWPgueeeMz5LBJg4cSI+Pj7s3LmTnJwc3NzcjOfWrl2LwWBg4sSJODk5NcCn1DhkcIsQQjSC1JySOldg0RpU3CyqxMnJCQ8PD2PoQdXzPX9/f44ePcqcOXOwsbEBICEhgT/96U/s2rXLeK2iKBw9epT09HRCQ0M5fPgwixcv5ssVy7GsuMOmVVFMnz4NABcXF37961/z6KOPotf/ry47OzuioqIwGAxMmTKFy5cvo9Vq2blzJ6+99hr+/v4sXry4IT6iRiMtPiGEaAT+bvbYadS1hp+NpQoXjYENGzag1+vp0qULXbp0wd3dnZs3b1JWVkZhYSEvvfQS8L85gb///e85duwYO3bswGAw8O2333Lz5k3mzp2Lo6MjpaWlnDhxAnt7e5KTk43bDwGcOXMGgLi4OA4ePFjt3MiRIzl69Ch/+ctfCA0NpaioCF9fX371q1/x5ptvNttBLXdJ8AkhRCMYG+TNu9vO13rOoNfz6oRw3BwfIycnh5SUFPbv309WVha2trYsXbqUXr16ERAQAPxvTmBRURE7duwAID4+npEjRzJnzhw0Gg3l5eV8//33PP/883h6etK2bVtee+0143tGR0fzj3/8g4MHD1JQUFCjpj59+hAdHV3vn0NTIF2dQgjRCBysLYma3R97azWW6qoRkRYYsNeo+W1fa9Z9vZI7d+7g7u5OWFgYc+fOxc/PD1tbW5KSkujRowdRUVEcOXKE7t274+zsjK+vr7Gb0tnZmcmTJxunQsTHx9OxY0dGjBjB9OnT0Wq1HD582LiOaP/+/Tl37hz29vaEhoaa5kMxEWnxCSFEIwnxd+H4GyN5/OR/OJgIvRy1/GmUE+GDQzl2zJHIyEimT5+Ol5cXFRUVpKenk56ejpubG3/4wx+wsbEhJSWFw4cPY2dnh4eHhzH4AgMDsbCoassUFRVx8uRJXnjhBQB0Oh09e/YkKSmJrKwsvL29+dvf/oZWq+VPf/oTbdq0MdlnYgoSfEII0Qhq264ods2/iV3zb+N2RQ4ODvz3v//lqaeeoqSkBE9PTxYuXMjQoUNp06YNHh4edOnSBUVR2L17NydPnkStrlqZ5fTp0wwcOJCAgAAOHDhA7969cXR0BKp2hGjbti0HDx5k/vz5AAQHB7NhwwbOnTuHVqutMWm+JZOuTiGEaAR3tyu6+3Ps2DGio6P517/+xf79+4GqVtvTTz/Nxo0bOXr0KL179yY3N5f+/fvj4uICVE192L59O5cvX+bFF18kMDAQAEtLS44ePcpHH31EQkICrVu3pri4ageG3NxcXF1dWbRoEcXFxXz88cfY2Njw+OOPc+DAAeOUCXMhLT4hhDABT09PkpKSCA4O5uTJk/j7+wNVATl9+nRWrFhBx44dycvLw9HREUtLS8rLy9m4cSMAc+fONU5tgKpAnDVrFmvWrMHKyor09HQOHDiAm5sbt27dAqqmO9jb2/Pb3/6W7t2788YbbxATE4OVtR2pam9u5Jfj72bP2CBvHGqZ3N5StNzfTAghmjAPDw+ys7MJCgpi//79FBcX4+DgAEBxcTFt27YlOTmZzMxMXF1dycvLY82aNQQEBPDoo48an+fdlZmZyfXr18nMzGTBggVYWVmh1+tJSUlh8+bNbNmyBbVaTefOnenSpQuPPPIIycnJJCQk8F38GZJjzlOhBzuNmne3nSdqdn9C/F1M8dE0OAk+IYQwAVtbW2xsbCgvL6dbt26cOXOGIUOGAFWT1nv06EFQUBDLli0DIDIykvDwcEJCQmq9n729Pdu2bWPYsGHGCfBqtZpWrVrh6enJvHnzuHXrFikpKcTGxpKfnw9WVTu2V+ZnUvHD9MK78wxnRx3n+Bsja13WrLmTZ3xCCGEiHh4e3Lp1i5CQEE6dOoXBYECv13Pp0iW6deuGra0tDg4OFBUV0apVK4KCguq8l6OjI4WFhfTu3bva8cmTJ3PkyBFUKhVeXl6Eh4fz3HPP8cILL3AxRweASlNzl4a7+/W1RC0vyoUQopm4G3xdu3bFyq4Vn393iptFOootfcDKhl27dpGVlcW4ceNIT0/nyy+/ZMaMGTX2yYOqkZvu7u7odDrjCM2KigqKioo4deoUR48epaCgoNpP7LYYAGw71mxFlmr199yvrzmT4BNCCBPx9PQkJSWFE6l5/OtGG/Spt9AqKqzVTsS+t4vpPgVYWVjQuXNngoKCiIuLIzIykhkzZuDm5kZlZSXl5eUA6PV67O3t+eqrr1AUhYKCAnQ6HaWlpVy7do23336b2bNn061bN8rKyli9ejU3Eg9j5eKDU9j0GrXZadS17tfXEqgUpa71woUQQjSkW7dusXr9JlbkBlBSUXMNTzsrC2bYJzP1qYnGVtq1a9c4f/48//jHP2q9p4uLC0lJSTg5OWFnZ8fChQvR6/Xs3r2bc+fOGbc86tSpE/4dOpLo+yR665otSHtrtTzjE0II8cvl5OQwefJkVCoV27Zt43SuCoOh9mu1lZUcuZbPiBEjCA4OJicnh/79+zNp0iQ+/PBDLly4wOHDh1m7di2KolBRUcFrr72Gk5MT9vb2KIqCTqfj9ddfZ//+/eTk5KDT6cjPz+eVV16hT1BPFj3ZHXtrNXaaqonwdho19tbqH5ZXa3mhB9LVKYQQjWbTpk3Mnz8frVYLgIWFBRUaR8qKarb2FIOenPj17Dq5BTVVyThgwIBq8/3WrFlDZWUl8+bNA0Cj0dC5c2fOnz9PSEgI+fn5tGrVqto2R6WlpURGRnLnzh1mzZqFn58fo0K6E5N0k9TcUvxd7Rgb5N1iQw+kxSeEEI1i6dKlLFiwgMjISMaPH2883s7FDmt1zetzti6i/OoJHp/7mnHpsR/z8fGhc+fOACQnJxsXn+7Rowdnz54F/rdiy135+fksXbqUwsJC5syZg5+fHwD21pZMCfHjj491ZUqIX4sOPZDgE0KIRnF3K6ExY8ZUO/5IFxdUtVzv0HMEvjMX8trMscZjGzZsICEhAa1Wy507d7h48SKzZ8/m0qVLxMTEYDAY6NChA7m5uRQUFJCTk2MMvoyMDJYtW2ZsIZrbwtQ/1rJjXQghmoiwsLBaj/v7ePGMbwZrMp3R6w2U65Sq52zdQxlte43AzsOMS5P17duX8+fPs3PnTuzt7encuTNeXl7MmjWL9evXs379eiZNmkRA5+58/t0prueW0dGzNV7nLrB96xasrKyYM2dOs99I9peSFp8QQpiQh4cHtsU3Of7GSF4Z5MVglxL+PLY7cb8bgos+v1o3Z4cOHZg+fTpPP/00hYWFpKamsmzZMhISEpg4cSLW1ta8t2wNfzqlYuW5UmJvqohMLGLyqsvkWjgxb948sw89kBafEEKYlKOjI5WVlaj0WsYFumGXmcCUED8yMjJwdXVFparZEXrs2DGGDx9OaGgo165d48yZM+zbtw/fgE6szXShwqBwt12jNQCo2V4WwF/tak5bMEfS4hNCCBNSqVTGFVwsLCyMG8vm5OTg5uZW4/rr168blzlTqVQEBAQwadIkXn31Va4rbhjuMTW7pS5B9rAk+IQQwsQ8PDy4ffs2arUaww+T+moLPkVRiI2NZfjw4VhaVu+ws7Ozw6K1B5VK7V/rLXkJsoclwSeEECbm6en5QC2+K1euUFlZSc+ePWu9j7utCitqnw3fkpcge1gSfEIIYWIP2uI7fPgwERERNfbig6rpClnHtwG1d3WqVDA2yLvea2+OJPiEEMLEPD09uX37NiqVCr1ej16vJz8/v8YITHt7ezp27Fjj9SkpKaxcuRILvZb3R/mY3RJkD0s+BSGEMDEbGxtsbW0pKirCYDCQn59P69atazzHCwsLqzHK8/jx4+zZswcrKyueeeYZvLy8GDNIZ1ZLkD0s+SSEEKIJ8PT0JD8/H4PBUKObs6KiAgAvLy/jMUVR2LlzJ6dPn8bd3Z3p06djb28P/G8JMlE76eoUQohGkJqaikqlQqVS8dVXXwHw7LPPolKp8Pf3x8PDg5ycHPR6PTk5OZw+fdp4fVZWFgDt27dHpVIxc+ZM1qxZw6lTp+jevTtz5swxhp64Pwk+IYRoBP7+/iiKUutPamoqHh4e5ObmYjAYyM3NZfr06SiKwo4dO4iJiTFeW1paysCBA7l69SoRERFMmDABtbqWVa5FnST4hBCiCfD09DS2+LKzs3Fzc6OgoIDExETCw8MByMvLY/HixeTn5zNjxgxCQ0NNXHXzJM/4hBCiCbgbdIqiGJ/x7dy5k5CQEBwcHEhLS+O///0vNjY2vPTSSzg7O5u65GZLWnxCCNEEqNVqXFxcMBgMWFhYUFhYyJUrVxg0aBCJiYl89dVXeHl5sWDBAgm9X0ilKPdY2E0IIUSj2bRpE+fOncPX1xdra2s6depEYWEh8fHx9O7dmyeeeKLWRavFw5GuTiGEaCJau3pwSe/G5bzW2FQWoTV8z41r3/PYY4/Rv39/U5fXYkiLTwghmoATqXnMjDxKZaUOHWosMaBC4eNxHRg3MNDU5bUo8oxPCCFMrLhCx+yo45RVKuiompqgw4JK1Lyx8wYlFToTV9iySPAJIYSJxSTdpK6+N0WRffTqmwSfEEKYWGpOCaVafa3nZB+9+ifBJ4QQJubvZm/cTeGnZB+9+ifBJ4QQJjY2yBvFUPsGsrKPXv2T4BNCCBOz16h50jULWyuV7KPXCOTTFEIIE7t06RJ+tpWcePMRtp3NlH30Gph8okIIYUKKonDw4EGGDBmCg42V7KPXCKSrUwghTOjq1atUVlbSrVs3U5diNiT4hBDCRH7c2pM1OBuPBJ8QQpjI9evXKS4uJjBQliRrTBJ8QghhInFxcYSFhWFhIV/FjUk+bSGEMIH09HRyc3MJCgoydSlmR4JPCCFM4ODBgwwePBi1uvYVW0TDkeATQohGlpmZSVZWFn369DF1KWZJgk8IIRpZXFwcgwYNwtJSplKbggSfEEI0otu3b5OWlka/fv1MXYrZkuATQohGFBcXR2hoKFZWVqYuxWxJ8AkhRCPJzc3l6tWrhISEmLoUsybBJ4QQjeTQoUP0798fa2trU5di1iT4hBCiERQUFJCSkkL//v1NXYrZk+ATQohGcOjQIfr164etra2pSzF7EnxCCNHACgsLSU5OJjQ01NSlCCT4hBCiwR0+fJg+ffpgb29v6lIEEnxCCNGgiouLSUpKYuDAgaYuRfxAgk8IIRrQkSNH6NmzJ61atTJ1KeIHEnxCCNFASktLOXPmDIMHDzZ1KeJHJPiEEKKBHDt2jK5du+Lo6GjqUsSPSPAJIUQDKC8v58SJEwwZMsTUpYifkOATQogGcPz4cTp16oSzs7OpSxE/IcEnhBD1TKvVcuzYMWntNVESfEIIUc9OnjxJ+/btcXNzM3UpohYSfEIIUY8qKys5cuSItPaaMAk+IYSoR6dPn8bHxwdPT09TlyLqIMEnhBD1RKfTER8fz9ChQ01dirgHCT4hhKgniYmJeHh44O3tbepSxD1I8AkhRD3Q6/UcOnRInu01AxJ8QghRD86ePYuTkxN+fn6mLkXchwSfEEL8QgaDgUOHDsmzvWZCgk8IIX6h8+fPY2dnh7+/v6lLEQ9Agk8IIX4BRVGIi4tjyJAhqFQqU5cjHoAEnxBC/AIpKSmo1Wo6duxo6lLEA5LgE0KYpZycHCZPnoxKpSIqKuqe1166dImnn34aNzc37O3tGTBgAOvWrUNRFA4ePMjQoUOltdeMSPAJIczOpk2bCAwMZPfu3fe9NjExkeDgYLKzszl69CiZmZmMGTOGqVOn8vvf/x69Xk+XLl0aoWpRXyT4hBBmZenSpSxYsIDIyEjGjx9/z2sNBgMzZ87EYDCwfv16OnbsSOvWrXn77bcZO3Ys//znP/Hy8pLWXjMjwSeEMCs9e/YkOTmZMWPG3PfavXv3kpSUxNixY/Hw8Kh2bsyYMSiKwrZt2xqqVNFALE1dgBBCNKawsLAHvvZuqA0cOLDGuYqKCgC+++67+ilMNBpp8QkhRB3Onj0LUGN+XlpaGgA2NjZkZmaSm5vb2KWJX0CCTwgh6pCVlQWAs7NzteNxcXGEhYXh6OgIwK1btxq9NvHzSfAJIUQdysrKALCysjIey8jI4Pbt2/Tq1QuNRgNAaWmpSeoTP48EnxBC1MHW1hao2lX9rri4OAYNGoSlpSVarRYAOzs7k9Qnfh4JPiGEqIOXlxcA+fn5QFWXZkZGBn379gXgzp07ALLbejMjwSeEEHXo2bMnANeuXQOqWnsDBw7EysqKrKwsysvLadOmDa6urqYsUzwkCT4hhKjD448/DsDRo0fJzs7m2rVrBAcHA3DkyJFq14jmQ+bxCSFEHSIiIujZsycxMTE8+uijDBgwwDigJTIyEgsLC1599VUTVykelrT4hBCiDhYWFnz11VcAvPfee7i5uVFYWMi7775LTEwM77zzDkFBQSauUjwslaIoiqmLEEKIxpKamkr79u1rPdeuXTtSU1NrHF+yZAnr1q3j3LlzlJWVERgYyO9+9zumTZvWwNWKhiBdnUIIs+Lv78/D/Hv/zp07FBcXs337dpm20EJIV6cQQtzD4cOH6dOnj4ReCyLBJ4QQdSgqKuLs2bO1LlItmi8JPiGEqEN8fDy9evXCwcHB1KWIeiTP+IQQ4keKK3TEJN3kUmYBVxKu8+FLT5m6JFHPZFSnEEL84ERqHrOjjqMoUKrVo7FQsLKyJGp2f0L8XUxdnqgnEnxCCEFVS2/AB7GUVOhrnLO3VnP8jZHYW0snWUsgz/iEEAKISbpJXc0ARak6L1oGCT4hhABSc0oo1dZs7UFVt2dqruy511JI8AkhBODvZo+tVe1fiXYaNf6uMo+vpZDgE0IIYGyQNwZ97S0+larqvGgZJPiEEAK4cjGZJ12zsNeosdOogaqWnr21mqjZ/WVgSwsiozqFEGYvJyeHL7/8kpkzZ+Lg5EpM0k1Sc0vxd7VjbJC3hF4LI8EnhDBrOp2OFStWEBwcbNxkVrRs0tUphDBru3btwtXVlX79+pm6FNFIJPiEEGbrwoULXL58mSeeeAKVSmXqckQjkeATQpilgoICYmJimDRpEjY2NqYuRzQiCT4hhNnR6/Vs3ryZQYMG0bZtW1OXIxqZBJ8Qwuzs378fjUbDoEGDTF2KMAEJPiGEWbl69SqJiYlMnDhRnuuZKQk+IYTZKC4uZsuWLUyYMAF7e3tTlyNMRIJPCGEWFEUhOjqaPn36EBAQYOpyhAlJ8AkhzMLhw4fRarUMGzbM1KUIE5PgE0K0eDdu3ODo0aNMmjQJCwv52jN38idACNGilZWVsXnzZsaOHYujo6OpyxFNgASfEKLFUhSFb7/9ls6dO9O1a1dTlyOaCAk+IUSLdfLkSfLz83nkkUdMXYpoQiT4hBAt0q1bt9i/fz9PPfUUlpayrZD4Hwk+IUSLo9Vq2bhxI6NGjcLV1dXU5YgmRoJPCNHibN++HR8fH3r16mXqUkQTJMEnhGhRkpKSuHHjBo8//ripSxFNlASfEKLFyM3NZefOnTz11FNoNBpTlyOaKAk+IUSLoNPp2LRpE+Hh4Xh5eZm6HNGESfAJIVqE2NhYHB0dCQkJMXUpoomT4BNCNHspKSlcvHiRcePGyVZD4r4k+IQQzdqdO3f49ttvmTRpEra2tqYuRzQDEnxCiGbLYDCwefNmBgwYgK+vr6nLEc2EBJ8QolGtXr2a8PBwHB0dsbW1JTAwkA8//JDKysqHvteBAwewtLQkLCysASoVLZUEnxCi0cydO5cZM2YQFBREYmIiGRkZ/OEPf+Ddd99l7Nix6HS6B77XtWvXOH36NBMnTpTneuKhqBRFUUxdhBCi5du6dSvjx49n0KBBHD58uNq5v/3tb7z11lt89tlnLFiw4L73KikpYdmyZYwfP54OHTo0VMmihZIWnxCiUWzcuBGA8ePH1zj31FNPAfD555/f9z6KohAdHU1QUJCEnvhZJPiEEI0iMzMTAE9PzxrnvL29Abh8+TLXr1+/532OHDlCeXk5w4cPr/8ihVmQ4BNCNAp3d3egarugn8rOzjb+98WLF+u8R0ZGBocPH2bSpEmo1er6L1KYBQk+IUSjuLto9NatW2uc+/bbb43/nZ+fX+vry8vL2bhxI2PGjMHJyalBahTmQYJPCNEopk2bxsiRIzl8+DALFizg+vXrFBQUsHr1at59911ji7C28XaKohATE0PHjh3p3r17Y5cuWhgJPiFEo1Cr1Wzbto3333+fvXv30qVLF9q1a8fKlSvZunUrXbt2BcDR0bHGa0+fPk1OTg6PPvpoY5ctWiCZziCEaBJ69OhBcnIyKSkpdO7c2Xj89u3bfPXVV8yePdvYKhTil5DgE0KYXGVlJY6OjtjZ2XH79m0sLCyMx7/44gsGDhxInz59TFylaCmkq1MI0Wi2bNnCnTt3ahw/fPgwZWVlTJ061Rh6ADt27MDLy4vevXs3YpWipZPgE0I0mmnTphEdHV3tmKIofPDBB7Rq1Yq33nrLePzcuXOkpqYyZswYWZJM1CsJPiFEo3rzzTfZt28fZWVlXL58mVmzZhEXF8fGjRtp06YNUDWlYfv27Tz11FNYW1ubuGLR0kjwCSEazf/93//h7+/PlClTcHJyIiIiAktLS5KSkhg1ahQAer2ejRs3MmTIEGMQClGfZHCLEKJJ2bVrF7m5uUydOlW6OEWDkBbfA1IUhW+//ZapU6fi5+eHRqPBycmJoUOH8t///tfU5QnRIly+fJnk5GTGjx8voScajATfA3r//fcZN24cubm5fPPNNxQUFHDkyBGcnZ2ZOXMmc+bMMXWJQjRrhYWFfPPNNzz55JPY2dmZuhzRgknwPaDy8nI8PT3ZsmULffr0wc7Ojm7durFhwwYCAgL48ssv2bt3r6nLFKJZMhgMbNmyhZCQENq1a2fqckQLJ8H3gHx8fJg1axYODg7Vjms0Gh555BEAYmNjTVGaEM1OcYWOtSfS+HD7BdaeSGPXvoMADBkyxMSVCXNgaeoCmouXXnqpznOtWrUCal9cVwhR3YnUPGZHHUdRoFSrx8ZShV6vY8UzEdUmrwvRUORPWT24dOkSAEOHDjVxJUI0bcUVOmZHHaekQk+pVg9AuU6hUlEzf/05Sip0Jq5QmAMJvl8oLy+PnTt30qdPHx577DFTlyNEkxaTdJO6OkYUpeq8EA1Ngu8Xev3111GpVKxcuVKGXwtxH6k5JcaW3k+VavWk5pY2ckXCHEnwUbX7s0qleujgWrVqFVFRUaxatYoePXo0UHVCtBxeDpZoLGpv8tlp1Pi7yjQG0fDMPvgKCwuZP3/+Q79u9+7dzJs3j+XLl/Pkk082QGVCtBx6vZ74+HgyjmzFoo5/YKpUMDbIu5ErE+bI7Ed1/t///R9t27YlPT39gV8TGxvLxIkTWbx4sUxcF+I+Ll++zM6dO3F2duaFObMYVWxRbVSnnUaNSgVRs/tjb232X0miEZj1Wp2HDx8mIiKCkydP0rNnT+D+UxL27NnD+PHj+fTTT5k7d67xeHJyMufOnWPKlCkNWrMQzUVOTg67du0iLy+PRx99lE6dOhnPlVToiEm6SWpuKf6udowN8pbQE43GbINPq9XSu3dvJk2axLvvvmt8vnevj2Pv3r2MGzeOf/7zn8ybN6/auaioKKKioti/f39Dli1Ek1deXs6BAwdITEwkLCyMAQMGoFarTV2WEEZmG3xvv/0269evJzExEWtr6/sG3759+xgzZgyOjo6Eh4fXOH/t2jVsbW0l+ITZMhgMJCQksG/fPjp16sSIESNqrHQkRFNgln0LycnJ/P3vf2f37t0PvMnlV199RVlZGWVlZaxbt67Wa4YOHcru3bvZunUrhw4d4vr16+h0Onx9fXn88cf57W9/i7e3PLwXDy42NpZPPvmEc+fOkZ2djY+PD6GhofzpT3+ia9eupi7PKC0tjR07dmBpacm0adPkz7lo2hQzo9frlYEDByovvPBCteOA8ks/juzsbAVQOnfurMTGxipFRUXK7du3leXLlysajUbx8PBQbty48YveQ5iPRYsWKYAyfPhw5ezZs0pJSYly7NgxJSgoSNFoNMq+fftMXaJSUFCgbNy4Ufnkk0+UpKQkxWAwmLokIe7L7ILvs88+U7y9vZWCgoJqx+sz+OLj42uce/XVVxVAefvtt3/RewjzUFFRobRq1UpRqVTKrVu3qp07fvy4Aij9+/c3UXWKotVqlf379ysLFy5U9u7dq1RUVJisFiEelll1dd64cYM333yTlStX4ujoWO/3d3R0ZN++fQwYMKDGubsj2goKCur9fUXLk5+fT1FREe7u7nh4eFQ7FxgYCEBSUlKj16UoChcuXGDXrl34+Pjw/PPP4+Tk1Oh1CPFLmFXw7dmzh+Li4ntOOL87yCU8PPyhB6pYWVkxbNiwWs8dPXoUgIiIiIe6pzBPnp6eeHt7k5mZye3bt6uFX3JyMgBeXl6NWlNWVhY7d+6krKyMCRMm4O/v36jvL0R9MdtRnT/1INMZ7iq+OwcppwR/N3vGBnnjUMscpPLycq5fv85//vMf/vGPf/DWW2/xzjvv1HfpooXavXs3U6ZMoXfv3nz22Wd06NCBs2fP8txzz5GUlMSiRYv4/e9/3+B1lJaWsnfvXi5evMiwYcPo27evbB8kmjUJvh88aPD9dC+xH686EeLvYrxux44djB49GgBvb28WLVrElClT5AtDPJSUlBTmz5/P3r17jce6dOnCr3/963vuEVkf9Ho9J0+e5ODBg/To0YNhw4Zha2vboO8pRGOQb+GHUNteYqVaPSUV+h+O/28vscceewy9Xs+VK1f4zW9+w9y5c3nsscfIzc01Vfmimdm4cSPBwcFYWFiQmJhIUVERhw4dom/fvty5cwe9vvZdDurDlStXWLZsGZcuXWLWrFmMHj1aQk+0GGbd4ouKiuLZZ5+t9dy+fftqPK9beyKNv8acr3VbFTuNmj+P7c6UEL9a7/f555/z6quvMmPGDL7++utfXLto2a5du0b37t1xdnbm+++/x87uf7sWpKam0qVLF8aOHcumTZvq9X3z8vLYtWsXt2/fZtSoUXTp0kW22xItjlm3+GbPno1SNaWjxk9tg1R+yV5id9f1XL16NSUlJfVSv2i51q1bR3l5OU888US10APw9/cnNDSUzZs3Ex8fXy/vV1FRQWxsLCtWrKBt27bMnz+frl27SuiJFslsgq+wsJDf/va3+Pn5YWNjQ+fOnXnvvfeorKx8oNcrioKdoRQrlaHW8/fbS8zOzg53d3cUReHKlSsPVXtsbCzjxo3D09MTa2trfH19GTNmDGvWrHmo+4jmIzU1FYA2bdrUev7u8YSEhF/0PoqikJCQwOLFiykuLuall14iLCwMS0uzGvAtzIxZ/OkuLCxk8ODB5Ofns3btWvr168eOHTuYOXMm8fHxfPvtt/dcRDc1NZV9+/ahKyrFUt2eSl3N3mG9Tse5mC9Z90EimzdvrnFeq9WSl5cHQOvWrR+49nfeeYd//vOfLFq0iKioKKytrdm9ezczZ85Er9czbdq0B76XaD5cXV0ByMzMrPX8zZs3gaopND9Xeno6O3bsAGDy5Mm0bdv2Z99LiObELFp8b731FufOnWP58uWEhYVha2vLxIkTeeedd9i+fTvLli2r9XVpaWmsXLmSrVu30rdvX3798ovMbFeMtRosqerytLYAK5WBX/kVcf5cEnFxcbVOUl+9ejV6vZ7u3bs/8Pyn6Oho/vKXv7By5UrmzZuHi4sL9vb2TJgwgT//+c/4+vr+3I+kWYmKikKlUt33pyUtED527FgAYmJiKCsrq3bu+vXrHDt2DAsLC4YPH/7Q9y4qKiI6Opr169cTEhLC3LlzJfSEWWnxg1uKiorw8PDA2dmZjIwM4zOL4godaw4m88KjffBs247Lly8b5+JlZGSwb98+cnJyGDp0KL169UKtVnPo0CFSUlIIDQtnScwxaOWOu41CR00hbdxdWLFiBWvXrmXgwIEsXLiQ3r17U1xcTHR0NH/84x8xGAzs3LmTwYMHP1Dt3bt3N66UYc6ioqKYP38+fn61DxzKycmhoKCA1NTUFvUFPn/+fJYuXcqjjz7KRx99REBAAElJScyfP5+EhATeeust3nvvvQe+n06n4+jRo8THx9O3b1+GDBnywIu0C9GStPiuzr1791JeXs6AAQOMoffjuXhqZx+ybqTS+w9R/Gv2MPIvnSArK4shQ4bQp08fYxdoamoqx44d47nnnuPkyZM82dsLT09Pzp8/z2OPPca///1vPvroIzp27MjWrVuZOnUq2dnZqNVqfH19mTFjBq+99hoBAQEPVHdCQgIXLlzg+eefb7DPpjnp379/nS26ESNG4Ojo2KJCD2DJkiUMHjyYL774giFDhlBcXIyTkxP9+vVj8+bNTJw48YHuoygKKSkp7Nq1Cw8PD2PvgRDmqsUH39mzZwGM3Ys/nosHYOnogS4vnTvpV1mwyYMVY9rz9NNPV3u4X1RUxObNm5kwYQKtW7fm2rVrjBgxAhsbG3Jzc2ndujWDBw/mwIED/PWvf2X8+PEcOHDgF23PcneJMz8/P1auXMmnn37K+fPnsba2ZsCAAbz55pu17gvYErVv354RI0bUeu7ChQvs27ePnTt3NnJVjWPGjBnMmDHjZ7/+9u3b7Ny5k6KiIsaMGUOHDh3qsTohmqcWH3xZWVkAODs7AxCTdJMfd+5a2NgDYCgtwNJSQ5bGu1ro6fV6Nm7cSL9+/ejQoQPl5eXcvn0bX19fDAYDeXl5KIpCaGgoiYmJXLx4keDgYBwcHFi1ahUTJkwwLlD9MO6O/FyxYgUGg4HIyEhCQ0O5evUqc+fOJSIigtWrVzN58uSf+9E0G+Hh4XWG/JIlS+jUqROPPPJII1fVtJWVlbF//37OnTvH0KFDCQ4Oll3QhfhBix/ccndgwN3Rbz+di6eyqAo5Q2UFZZV6jpy7Um1wyp49e9BoNAwdOrTq9T88R7K0tESj0WBra8udO3dQq9WMHj2anTt3otVq6dq1K1OnTuWbb77hzJkzD113YWGh8f1WrlxJREQE9vb29OzZkzVr1qAoCi+++CLFxcU/63NpCYqLi1m5ciUvvviizDf7gcFg4MSJEyxevBiDwcDLL7/MgAEDJPSE+JEW3+K7u8zS3fl6/m722GnUxvBTDFXLjFlYWWOFgdzrF1m8OB4HBwfc3Ny4efMmzz33nPGL9erVq9We07m6upKbm4uTkxPt27fH19eXuLg4IiIi8PX1Zfbs2axatYrCwkKGDh360F/Qnp6eNVo7HTp0IDQ0lPj4eHbv3v3Az3pamq+//prKyso6V98xN6mpqezYsQMbGxueeeaZRt+9QYjmosW3+O7+5c/PzwdgbJA3P84eQ3nVKioWdk5oNFa8//yThISEUFZWxpUrV9BoNCxZsoSoqCji4uK4dOlStekId4PvrlGjRnHq1Cmu37zF2hNprDiRjWPfx0k8n0JMTAwGQ+0T4H/qbtdsXSMZ27VrB8Dly5cf7INogZYsWcLUqVONn5W5KigoYMOGDURHRzN06FBmzZoloSfEPbT4Fl/Pnj2BqrUPARysLYma3Z/ZUcepqNCiu3O76rhnO17uocLP25M27sO5cuUKPj4+FBUVUV5ejkajISMjg8LCQlatWkVAQAAdOnTA3t6+WvC1atUK9+6hPLL4OJaWVv/bwQE/plnkU7xuHZMmTUKj0dyz7m7dugHcd2UZc+3ii4uL4+zZs0RGRpq6lAZX1zZYWq2WQ4cOcfLkSQYMGMCECRN+0YR2IcyFWczjc3d3x8XFpdo8voxbObz+2SpWf/BbnN29uHjxAl9/+R/Gjx/PuXPn0Ov1TJw4EZVKxZ07dzhz5gzHjx9HURQGDx6MRqMhLS2Ny5cvoygKffv2xdnZmQ8W/p1vtmzG9fHf4BA0slot9ho1bweVU5Sfw7Rp07C3t6+z7vT0dPz8/HByciInJ6fGdkaDBw8mPj6erVu38sQTT9T/B9fETZs2jStXrnD8+HFTl9Kg6toG6/8NcSUz6RB+fn6MHDkSR0dHU5cqRLPR4rs6W7Vqxdy5c8nMzGT79u3G4/nZWViknQRFYeLY0Xg4OzJx4kQ2bNjAjRs3GDt2rDEkHR0dGTZsGB06dCAoKIibN2+yb98+rKysGDNmDBqNhhMnTjBq1Ci2b99RZy0KoPj1JSAggMjISOMSZrVp27YtEyZMID8/n++++67auatXr3L06FG8vb3NcjTjrVu32Lx5M/Pnzzd1KQ3qXttgvb0ni9HjJjBp0iQJPSEeUosPPoC//e1vdO/eneeff55Dhw5RVlbGunXr2LRpE+Hh4QQHBwNgY2ODXq/Hzs6uRpeRoihcu3aN0NBQJk+ezMsvv4ybmxsHDhxg//79fPrpp0RGRhI4aGRtJQBVX1rXc0sZMWIEAwcO5MsvvzSuuVibzz//HF9fX15++WUOHjyIVqvl3LlzTJs2DWtra1auXImNjU39fEjNyBdffIGDgwNTp041dSkNKibpJoY6+mPUVlYk5slITSF+DrMIPkdHR+Lj43nqqaeYNm0aTk5OLF++nBdffJFvvvmGgoICysrK2LBhg7Hb8KfbvWRnZ6PRaIwDKRwcHBg8eDCvvPIK7du35/333+fixYsU5t2usw4bSwvjDg7BwcGMGTOGVatW1TlAxcfHh5MnT/L4448zY8YMHBwcGDlyJB06dODEiRNERETUx8fTrOj1epYvX86zzz7b4kK/pKSEq1evEh8fT3R0NNGxhymrYxussvtsgyWEqFuLf8ZXG71ez8KFC/nDH/6ARqMhODiYU6dO1Xn9jRs3SE9PJzs7u9rztMrKSi5evMiOHTuorKyka9eu/GvJUvbtia31GZ+VSs87vbSMfmSEccmoGzdusG7dOiIiIujTp0/D/MItyJYtW5g0aRKXL19utquQ6PV6cnJyuHXrVrUfnU6Hl5cXHh4eeHp6cjzXkk/jblJW+fAbHwsh6tbiR3XW5tatWzg7OxtHVlpYWNC6detqe59ptVpKSkpwcnLCysqKq1ev0qtXLxRFIS0tjYSEBC5evIiPjw8+Pj60bduWoUOHGnfEtvphBwcdajQqBbXagi+eCcFw6zIrVqygR48eDB06tF7m+pmTJUuWMGrUqGYTesXFxTUC7u68T09PTzw9Penfvz9eXl60atWq2v/3nSt0fH649q5wlapqao4Q4uGZZfClp6fj4+MDVE361el0vPLKK7z//vvVrouJiaGiogJXV1dSU1Nxd3cnNjYWKysrevXqxfz582nVqhWnTp0iPT0dg8HA9evXAfjNUF9SlTv4du+LVUUBrfMvcyxmNb169WLGjBmcPXuWJUuW0L9/fwYOHMjcuXON4TdmzJgaozhFld27d5u6hFrp9Xqys7NrhJzBYDAGnL+/PwMGDMDd3f2Bph38eOrNT0d1Rs3uj721Wf71FeIXM8u/ORkZGbRr1864+LSTk1Ot8+XCw8P54osv+Oyzz9Dr9eh0Op5++mnatGlT7V/mrq6uJCUlsXfvXuPxyvJSRnSx4ekxgT9cNZjs7GzOnDnD6tWr8fDwYMiQIdy8eZN//etfDBkyhF/96lds3ryZdQ841080PkVRKCkpISsrq1rA5eXl4ezsbAy50NBQPD09a7TiHlaIvwvH3xhZNY8vtxR/VzvGBnlL6AnxC5jV3567E4E3nS9lpIMVJxI2069fPw4cOEBJSdUKLgaDgatXr5KYmMjly5fx8fHh+vXrBAUFMXr06Frv6+rqyq1btygoKKBdu3YcOnSI4uJi4y7ad7m7uzNq1CgiIiK4ePEiZ86c4ebNm3To0IGzZ89y9OhRhg0bxpUrV1i5cuV95/qJhqXT6cjJyakRcoqiGJ/FBQQEMHDgQNzd3astbl6f7K0t5VmeEPXIbILv7kRgg0GhrNKJpP1pKLjy9fAeWFtbc/LkSXr16sX3339PZWUlPj4+TJo0iRdeeIH//ve/xi7R2r7c9Ho9FRUVPPXUUyQmJgLUGnx3qdVqAgMDCQwMpKCggDNnzpCWloaVlRV79+7FxsYGd3d3IiMjmTFjBhr71rWu3CHqh6IoxmdxWVlZ3L59u9ZW3MCBA/Hy8sLBwUGewwrRjJnFt+dP9+ADqDAAqJgZeZTWaTe4lJLCb37zG2bPno2TkxObN29mwYIFbN68mcmTJ9O7d292795do9Wn1+vZtGkTrVq1Mi6IDVXB5+bmdt/anJycGD58OOHh4Vy5coXTp09z5coV8vPzsbW15a9LV7GroiOoVMZnPO9uO0/U7P6E+JvfZqJ1Ld/1oHQ6Xa3P4gBjwDVGK04IYTpm8bf6p3vw/ZjBoDB8xgIevX2BX//617Ru3RqAWbNmcefOHX73u9+xe/du/t//+3988cUXtG/fni5dugBV62Tu2bMHW1tbHB0dq63Zea8WX20sLCzo1KkTnTp1ori4mDNnznDwyHG2FQdQyf8Wtr67gsfsqOMcf2OkWT3rqW35rrr+EaAoCkVFRTUCLj8/HxcXF2PIdejQAU9PT2nFCWFGzGIe34fbL/Dvg1frPB9kmUU/y3RUKpXxy09RFLRaLe+//z4qlYrXX3+9WouuLtHR0SQkJDB+/Hj69u1b48v0Yf73Ra0L8RXe6Ki5QocVBiKc8+njWIZarX7oHwsLi5/1uvvds6EUV+gY8EFstVb7XfYaNd88G0hRfvW5cSqVyvgszsvLC09PT9zc3KQVJ4SZM4tvgJ/uwfdjNpYqpj0xErvMBNq2bUu/fv2qnf/8888pLCxk0qRJhISEcPDgQa5evcq4ceOIjIxkypQptG3blrNnz5KSksLVq1dJSEjA1dWVt956q9q9fvpvjLr+t16v59KlSyRsS0ZXUfuyVJVY4NExkHEDvdHr9Q/9U1lZSXl5ebVjBoPhZ93r7g/QYKF6MF2HTlf7KiYVWi2LNuzj0Y6t8PDwoFOnTnh6emJvby+tOCFEDWYRfGODvHl32/lazxn0ejKPxuDj6VatqxKqdkH/6f55YWFhXL16laioKAYPHoyvry+pqan06tWr2nWRkZFERkbSrl07UlNTH6jO/Px8Tp8+zcmTJ9HpdDhZ+mBjqaJcV7NRbqdRE+jrXm3SvakZDIZfHJ61/Wi1WtLyK6ilsQeADjXte/Zn4mNdG/cXFkI0S2YRfLVNBLZEj7VGw297WvD+a4t4/fXX+f7773F0dKRv375YWVmRnJxMSUkJFhYWdOzYEah6Fufi4kJ6eroxdPz9/SkrK+OTTz7hjTfeYNeuXca1PO9Hr9eTkpLCqVOnyMjIwMLCAkdHR0aNGoW7ty+hH+6BWlo6TXHlDgsLCywsLBqkKzG7dRpxt87X2mq306iNa6AKIcT9mEXwQc2JwHcyvie0jYrWdjakpqbSvn17KisrSU1NJS4ujgEDBvDFF1+gKApjx441Lk59/vx5rl27xoQJE4iOjuaFF17A1tYWGxsbNBoNRUVF5ObmGndIr0teXh6nT58mISEBe3t7KioqcHJyIiIigo4dOxq76GTljir3arU3xX8ECCGaLvP55qT6ROCiIh+WLl1KYGDVyirz588nLCyMzz77jJycHD755BPWrFmDu7s7ixYtAqrCatu2bUyfPh0fHx/S09PZunUrkydPRqVS4erqSm5uLrm5ubVOZdDr9Vy8eJHTp0+TlZWFv78/9vb2KIrCo48+SteuXWs8k5KVO6rI8l1CiPpiFqM667Jnzx6KiopwcnJi1apVREdHU1RUhEqlws/Pj7Zt2zJv3jzS0tLo0aMHaWlp9O3blwEDBgBVc8L+85//0LdvX0JCQti6dSteXl7s2rWLN954A7W6amBKXl4ep06dIjExEXd3d/z8/EhNTaWkpITw8HACAwNlbc4HVHJ3Hp8Z/yNACPHLmHXwlZeX8/nnnzNr1iw8PDyIiopi6NChBAQEcPToUeM2REVFRaxevZrbt2/Ts2dPwsLCjC263NxcIiMjmTlzJt9//z3Z2dncuHGDl156ydi6u337Nr169cLb25vTp0+Tl5dHeHg4QUFBEnhCCNHIzPpb18bGhsGDB7N3714AXFxcyMvLA+DatWsEBAQAcP36dSoqKliwYAHOzs58+eWXbNiwgczMTFxdXXnkkUfYuHEjVnat2H6pkAMFTjz3wZccOXGafv36MXXqVHJycti1axfdunXjlVdeoXfv3hJ6QghhAmbfR9S/f3+OHz9OWloaLi4u5ObmotfruX79OuPHjyc3N5ft27fzzDPP4OTkRHh4OAMHDuTUqVOsWbPGuIZjNq2ZsT4VBSd0qLG1suDYNchTLmCZf52wsDCefvppmTwthBAmZtZdnXclJCRw5swZBgwYQGJiIoMHD2b79u3MmTOH//znPwQHBxMcHFzjdVlZWezevZtLV6+ztjyIylpWWLGxhKN/HIGTw/1XfRFCCNHwpK8NCAoKoqyszDgV4erVqwQEBLBjxw7c3d2rreai0+lISkoiKiqKr7/+mjZt2uA3ZCIW6tpXWLGwULPzQnZj/SpCCCHuQ/rdqJp4HRERwXe79nAqR038sVt09HLE6U4aL78wD5VKRXZ2NqdOneLs2bN4eXnRqVMnOnfuTHp6Ot9dyKBCX/tODKVaPam5pY38GwkhhKiLBN8P7mjcWJrpi0FR0GnVHC/QorEKoE1cIqXXz5Kbm4uHhwdubm5kZGRQWFiIn58fXbt25QlPDSl7U2VVESGEaAbkGR/3XvnfCj3T7c7R1suddu3a4efnh5+fH3Z2dg/0entrtdltHySEEE2ZfBtz7/361JaWdB45jRkD29f5ellVRAghmg/5RgZSc0pq7aYEKNcppN+puO89ZGkxIYRoHuRbmXvv1/cwz+h+vBaoEEKIpkmmM1C1sn9d+5XKyv9CCNGySPDxv2d09tZq7DRV8/HsNGrsrdXyjE4IIVoYGdX5I7LyvxBCtHwSfEIIIcyKdHUKIYQwKxJ8QgghzIoEnxBCCLMiwSeEEMKsSPAJIYQwKxJ8QgghzIoEnxBCCLMiwSeEEMKsSPAJIYQwKxJ8QgghzIoEnxBCCLMiwSeEEMKsSPAJIYQwKxJ8QgghzIoEnxBCCLMiwSeEEMKsSPAJIYQwKxJ8QgghzIoEnxBCCLMiwSeEEMKsSPAJIYQwKxJ8QgghzIoEnxBCCLMiwSeEEMKsSPAJIYQwKxJ8QgghzIoEnxBCCLMiwSeEEMKsSPAJIYQwKxJ8QgghzIoEnxBCCLMiwSeEEMKsSPAJIYQwK/8fWnvd9YDeyJIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvHUlEQVR4nO3dd3xUVf7/8dfMpEw6PaQASShCEnoIVYqIWABRUZGigKBbXN11V1fXdRHd1XV3/e26ulZQEUSKBRQF6U2KFKmhp9DSIAES0mfu7498cyWmQkjl/Xw8eDCZOffeMxM075xzz+dYDMMwEBERERG5Stba7oCIiIiI1G8KlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUIiIiIlIlCpQiIiIiUiUKlCIiIiJSJQqUAoBhGLzxxht4e3tjsVhYt25dpY6zWCyV+jNixIjqfQMiIiJSa1xquwNS+2JjY5kyZQrr16+v7a6IiIhIPaRAeR0zDIM333yTZ599FpvNRp8+fdi6desVn+fll1/mrrvuKreNt7f31XZTRERE6jgFyuvYjBkzmDFjBsOHD+f9999n1qxZVxUoAwIC6NixYzX0UEREROoDBcrr3MyZM3n44YdruxsiIiJSjylQXsemT5+OxWKp7W6IiIhIPadV3nXI1a60jo+P580332TMmDF06NABb29v3Nzc8Pf356abbuK///0vWVlZJY6rjjCZlZVFZmbmNT+viIiI1F0aoawjrnal9b/+9S+eeuopADw9PZk4cSIRERE4nU727NnD3LlzWbt2Lf/+979ZtmxZtdzreOzYMX75y1/y+eefk5qaCoDdbqdXr16MHTuWhx9+GHd392t+XREREakbFChrWVVXWp89exYoXBizdetWWrduXez1xx9/nH79+hEfH8+oUaPYv38/bm5u1/Q9/O1vfyMkJIQnnniCyMhInE4n27Zt45133mHjxo289dZbLFmyhLZt217T64qIiEjdoCnvWjZjxgwef/xxBgwYwP79+xk+fPhVnefVV18tESYBunXrxm9+8xsAjh49ynfffVel/pbm9ttvZ//+/Tz33HPceeed3HXXXfz9739n9+7dBAcHc+DAAYYPH056ejpw9VP7MTExvPDCCwwePJgWLVrg6upKo0aN6N69O08++SRHjhy55u9NREREKqZAWQfMnDmT5cuX06pVqys+Njg4mJ49e3LLLbeU2SYqKsp8HBMTc1V9LEtcXBxffvklXl5eJV4LCQnhP//5DwDHjx/n5ZdfJjY2liFDhvD4449z6dKlSl0jKSmJW265hYiICGbMmEFOTg6//OUveeedd3jqqacoKCjg3//+N5GRkfzrX/+6lm9PREREKkFT3rWsqiutH3vsMR577LFy21we9jw8PK76WqUJCQkp9/XRo0fTtGlTzp07x1tvvcVbb72Fi4vLFU3tx8fHs3LlSgD++te/8qc//anYZ/bMM8/w0EMP8cknn/DUU0/h6+vLI488ctXvSURERK6MRihrWU2U7dm5c6f5eMiQIdV+vcvZbDa6desGFK4A7969+1VP7ffu3btEmCy6xrvvvkvTpk0B+OMf/0hOTk6V+y4iIiKVo0DZwJ08eZI33ngDgIcffpjOnTvXeB9atGhhPp4xY8ZVTe0DjBw5sswA7uXlxa233grA+fPn2bhx41VdQ0RERK6cprwbmMzMTDIyMjh9+jSrV6/mtdde48KFC7z00kv86U9/qpU+OZ1O87HNZrvi4zt27MjXX39Nz549y213+aKkEydOXPF1RERE5OooUDYwjz32GLNnzza/7tu3L//5z3+Ijo6+5td688038fX15cEHHyy3XVJSkvk4ICDgiq/TqFEjRowYUWG7CxcumI9LWyQkIiIi1UNT3g3M008/zYoVK1i0aBHPPPMMsbGx9O7dm2HDhnHs2LFreq1//etfvPzyy+W2yc3N5ccffwSgefPmdOjQ4Zr24XJxcXFA4X2p/fv3r7briIiISHEKlA1MeHg4w4YNY8yYMbzyyiscOnSIAQMGsGrVKnr37s3hw4ev6fWOHDlCbGxsma/PmzePixcvAjBt2rRqW4R04cIF1q5dC8CIESOu+j5NERERuXIKlA1co0aNmDdvHq6urqSlpTFlypRren7DMJg8eTIZGRklXtu9ezd/+MMfgML7IP/4xz9e02tfbs6cOeTk5ODq6sorr7xSbdcRERGRknQP5XWgVatWDB48mJUrV7J582aOHDliTj3PnTvXbLd3717z8cqVKzl16hQA/v7+DBs2rMR5u3btSkJCAhs2bOCGG25g/PjxdOzYkfz8fLZu3cqnn35KXl4evXr14vPPP8fX17da3l9qaiovvvgiAC+99BIRERHVch0REREpnQLldeKGG24wi4Pv37/fDJQTJ04stf3l90YOGjSo1EC5ZMkSDhw4wBdffMH69euZN28eZ8+exWq10rx5c0aMGMHYsWO5++67r2p1d2U4nU4eeughUlNTuffee3n66aer5ToiIiJSNgXKeiwrK4tvv/2W8PBwwsPDy23r4vLTt7qgoMB8bBjGFV0zJ99BRk4BPnYX7K42IiIiiIiI4Pnnn7+yzl8jTz75JMuWLWPw4MF8/PHHNVIoXkRERIpToKzHUlJSuPfee/n1r3/Nm2++WW7bo0ePmo8vr9dYWdvj05i5KZaVMck4DbBaYFi4P9MGhBEV0uSKz3ctzJgxg9dff50BAwbw9ddfY7fba6UfIiIi1zstymkAvvvuOxwOR5mvnzp1ilWrVgGFu9b06tXris4/Z2sC9727hVUHU3D+34Cm04BVB1O4990tzN2WcNV9v1ovv/wyL7zwAn379uXbb7/F29u7xvsgIiIihRQoG4Bjx47x29/+ttT9q8+dO8e9995Lbm4uAP/4xz+u6H7G7fFp/GXJfgzA4Sw+Pe5wGhjA84v3syM+rSpv4Yr861//4rnnnqN3794sX74cHx+fGru2iIiIlKQp7zrgaldae3t7ExYWRmxsLG+++SaLFy/m3nvvJSwsDHd3d/bt28cnn3xCWloaHh4evPrqqzz00ENX1LeZm2KxWi0lwuTlrFYLMzfF1cjU9+uvv85TTz1FVFQU3333Xakrx6Oiohg5ciTTp0+v9v6IiIiIAmWdcLUrrZs1a8axY8dYs2YNS5cuZdu2bcydO9fcgrBx48Z07tyZoUOHMmnSpCsu9p2Vm2/eM1keh9NgRUwSOfkO7K7Vs5ob4K233uK3v/0t3bt3Z8WKFfj5+ZXabufOnURGRlZbP0RERKQ4Bco64EpXWkPx1dZDhw5l6NChVepDQUEBKSkpJCYmkpiYSFJSEnGJ53AalQtmTgMuZudXW6B87733eOyxx2jUqBF//vOf2bNnT7VcR0RERK6cAmUtMQyDN998k2effZZLly6xdu1aBg8eXOFxpa22vrljc7b+59fs+3EHQIXnysvLIzk5uVh4TElJwel0YrFYaNasGQEBAXToFMGn36RVOEIJYMHgk9mz6NElks6dO9OkScnp76ud2l+zZg2/+MUvMAyD8+fPc88991TcIREREakxCpS1IDY2lilTprB+/forOm7O1gT+smQ/Vqul2GrrL+bM4tz/hcmfy8nJISkpyQyOiYmJnD17FsMwsFqt+Pv7ExAQQI8ePQgICMDf3x9XV1cA8vPzifx+OfvSwShn/ZbNaqFfa29C/YPYvHkz69atIygoiM6dOxMZGYmXlxdw9VP7J06cuKpRXBEREakZFkM/qWvM5aOSNpuN8PBwtm7dClQ8qrg9Po373t3Cz79ZBRdSODPr1xh52eZz//3vf2nZsiVJSUmkpRWuvnZxcaFly5a0bNmSgIAAWrZsyaJFi3juuedKHSE9f/48CxcuZF9SFl9nty+1T9lxP3LpwFpyTx3EJfcC7m6utGzZksDAQIKDg2nWrBmNGjWibdu2dO7cmY4dO+Lm5lbpz+vnRdRFRESkbtIIZQ2aMWMGM2bMYPjw4bz//vvMmjXLDJQVKWu19bnv/oeRn4tH215kH98OFE4n+/j40L59ewICAggICKBZs2ZYrYWjjLGxsYwbN67MEdJjx47xxRdf4O7uzp+m3U/vE3k8v3g/Vgs4DHDmZHL229fJPrIFt4AOdOoWxT2De+Lm5saiRYtYu3YtAI8//ji33347+/bt48svv8TV1ZUbbriByMhIli9fXmaYLW1aP/X9aWSeTbyiz/vf//43v/3tb6/oGBEREblyCpQ1bObMmTz88MNXdExOvqPU1daZB9aSE7sTn16jsbp5mIGyaQt//Pz8cDqdpKWlkZWVxenTp3F3d2fhwoX885//xGazER0dzQ8//GCezzAMNm7cyNq1a2nXrh133303Hh4eTAiAjv4+vLpkOz+czCDlsxfJPRVD/wef5t8znubUjxs4cOAADzzwAM8++yzjx49n3rx5uLq6EhUVRVRUFOfPn2ffvn2sXbuW3//+9yQkJBS7bpGypvVz8ssu3F4Wf3//Kz5GRERErpwCZQ2aPn36Ve01nZFTUCJMOrIvkr56JjY/fxrdOIGL2z43XyswrJw/f56cnBzzT15eHmvXrmX9+vW0bduWUaNGsWvXLvOYRYsWsXXrVnJzc2natCleXl5s2LABDw8P7HY7drudEY2SOLXgPU6cimHylId5952/4uLiQo9Wo8jIyGDBggVMmTKFF154ge+++868dxLAz8+P3bt3849//AOr1UqnTp04ePAgAF988QWGYeBsEspflsSUWkTdMMAtoD3NRjzJ6/d3IzKoUamfVVJSEjfddBN+fn6MHj36ij9rERERuXIKlDXoasIkgI/dBauFYqEyfdX7OLMu0OK+J7G6Fd/DumtEJyaMG1vsek6nk7y8PO6++27GjBlDdnY2r732mjntnZ+fT0FBAW3atMHV1ZWzZ88WC6QOh4O0tDR+2FY4Rd+4kR8vv/wyNpsNu92Om5sbBQUFvPfee4SFhfHRRx9ht9vZtGkTHh4ezJo1i7fffptBgwbx3//+lwULFpiBsmXLlvzwww8syziDhUYYlP45WVzcsTdvzapEV8YM7Vhqm6JwOnHiRDw8PK7q8xYREZEro0BZD9hdbQwL92fVwRQcToPs2J1cOrAWz/BBeIT1LNF+9crvyL6UQe/evYmIiMDFxQWr1cpf//rXYiGzRYsW5mNvb29+9atflVruxzAMCgoKGDFiBE6nk86dO/Poo48WC5w5OTlcvHiRw4cPEx8fT6NGjcjLyzNfi4mJYdSoUfTo0YMvv/yS77//3jz/mTNn6NApkhMXyg6T7gHtsXk1LreIumEYzJw5E4BHHnnkyj5kERERuWoKlPXE1AFhrDiQjDMvh3PL/4fVw5cmN5cemorK7ixevJiVK1fSq1cvoqKiik1BOxwOjh49an59++23lxomoXBk1dXVld27dwOFWxt26NDBfD0vL4/8/Hy8vLxISkriww8/xM/Pj7Fjx2K1WjEMg6effprc3FwzYKamppqjo+3ataNlqzYYp8suOND8rmfNx06j8DaAnwfKlStXEhcXR79+/bRTjoiISA0qu7ig1Cm9Qprw0uhIzm/4GMfFFBrf9DA2z8KtB60/Kybk7e3N+PHj+fWvf02nTp34/vvv+fe//82SJUtISkoiIyOD2bNnc+bMGfMYF5fyf7c4f/48qampALRu3ZoLFy7w3HPP0bZtW+x2O97e3vj5+fGLX/yC0NBQjh8/zjfffINhGFgsFjw8PGjUqBEtW7YkJCSEZs2amed2Op0knzqBpURRpNJZLYW3Afzce++9B8Cjjz5aqfOIiIjItaERynqkgyWZzF1LaRwaiW+XoWZJnVaWdHp3bMz8/5tFXrZsGdHR0QQEBHDHHXdw0003sWvXLn744Qd2796NzWbDzc2Nbt26sW7dukpde+vWreZq7BMnTtC5c2cuXbpk7q198eJF5s+fz5IlS1iyZAnTpk3D6XTSqFEjbrzxRvM82dnZHDt2jJiYGPO5o0ePMnz4cCIyHRw4b62wiPqwTv4lRieTk5P56quvaNy4Mffee28lP1ERERG5FhQo64n8/HymTp2Kq4sLz/9mCr987FYycgrwdrcx+4OZrDj4U41GHx8fPvroI8aNG0ebNm3w8PCgX79+WK1WVq5ciYuLC9nZ2eaimMq4vMzPhx9+SNOmTdm+fTthYWHm8+PGjeOZZ57h1Vdf5f333+fpp59mzZo15n2bR48e5eTJkxiGQXb2T4XYhw0bRkpKCq2zMtlP6YttijidBlMHhJZ4/sMPPyQ/P1+LcURERGqBprzriVdffZV9+/YxZMgQoqOjsbvaaO7jjoebC/379zd3xAG45ZZbCAoKYu7cuRw5coS8vDy++OILVqxYQZ8+fXj66aeZOnUqfn5+5jHbtm3j3LlzZV4/OTm52NfPPPNMsTBZ5MUXXyQ4OBgonIK2WCysXr2adevW4eHhwYgRI3jyySfp2fOnxUTffPMNTqeT538xjrFtAQxsP1ubY7NasAAvjY4kKqT4vZ5ajCMiIlK7NEJZDxw5coS//vWvhIWFERkZia+vL2fPnjVf9/f3x2b7aQo4KyuLW265ha+//ppZs2bRsmVLsrOzGTNmDBEREQAEBQXRqVMn85i4uDjefPNNOnToQO/evQkNDS22Ijw9Pb1Yn8aMGVPs6wsXLnD06FGOHj1Kq1atOHXqFOfPn8fpdBIQEEB6ejo33XSTubI8MzPTPDYyMpJHHnmEhIQEPE7v4MWBN7P5nJ3vDiRhUDitP6yTP1MHhJYIkwCrV6/m+PHj9O/f33x/IiIiUnMUKOuBzZs3k5ubS2xsLK+99hqvvfZaue1/XtD7hRde4MYbbyw3bI0ZM4amTZuydetW5syZQ4sWLejduzedO3fG1dWV/Px8s62XlxetW7fm5MmTHDlyhKNHj5KcnIzFYqF169YMGTKELVu2AIWjh5MmTeLDDz/kk08+YfLkyezZs4edO3ea5+vRowf5+fksWbKE0NBQJt7ajwctFlatXc/3P+zkj08+Ue5e3kWLcTQ6KSIiUjsUKOuB4cOHs3LlSlatWoXFYmHo0KEl2nz00Ud88sknAPzzn//E6XSyf/9+WrduTc+ePdm4cSMuLi7ceOONpRZYd3FxoXv37nTr1o34+Hi2bdvG119/zapVq4iKiiq2PaK7uzv/+te/yM7OxsPDg/bt2zNgwADatWuH3W7nq6++MtumpKTg7u7OuHHjeO+99/jf//5HQUEBrVu3Lnb97777jpycHO68806zf3ZXGx6WkuWBLpeSksLixYtp3Lgx991335V9sCIiInJNKFDWAwEBAbRo0YIffviBgQMHMmDAgBJtNm3aZD4+e/Ysnp6ePPLII/Tv3x8AX19f1q5dS05ODsOGDStz1x6LxUJoaCihoaGcO3eODRs28P333+Pj42O2KSgooGfPnnTo0IGgoCCs1uK34l4ePm02Gw6Hg927d5OVlQVAcHAwDsdPe3OfPHmS2NhYRo0aVey+TovFgtPpLPezKVqM8+CDD2K328ttKyIiItVDgbKeSExMJD8/n5CQkArbnj17lj/96U/FFs0MHDgQu93OsmXLyM7OZuTIkaUeW1BQQHx8vDmVff78eaxWKx4eHjRp0oS0tDQuXbpE06ZNCQwMLBEmAbNeJRQG2VmzZpGUlET//v1p3bo18+fP58iRI2abzZs3c+ONN9KtW7di5ykqil4WLcYRERGpGxQo64n4+Hjc3NwICAgo9fXExJ/KBlmtVnOl9eWio6Ox2+0sXryY3NzcYqN/hw8fJikpidjYWPLz8/Hz86N9+/Z06NABwzD49NNP6dmzJytXrsThcPD222/TsWNHevXqRc+ePYuV6tm1a5f5OCUlheDgYKZOnUpgYCAAo0aNYvXq1WYbh8PByJEjS4yaVjRCuWbNGo4dO8aAAQMIDw8vs52IiIhULwXKGjZ37lzz8d69e83HK1eu5NSpU0Dhqu2i7ROLJCQk0Lp162KruVeuXMmZM2fYs2cPGzZsMJ8/fPgwf/vb32jfvj1dunShS5cu5mtdunTBzc2Nzz77jB9++MF8fuvWrQwcOJCBAwfSoUMHmjdvbga8HTt2ADBixAg2btxITk4OTqeTsLAw1q1bx/r16+natSu9e/fGy8uLzz77zHwfY8eOZfDgwcV24unatSuhoaHm1ot9+vQpNqVepKIRSi3GERERqRsUKGvYxIkTS33+5ZdfNh8PGjSoWKB0OBycOHGi2I4zADNmzOD7778vca4NGzaYAXP69Ol06dKFnJwcjh8/bpb2cTgc5OTkmMeMHTuW4cOHl9q39PR0bDYbbdu2Zfr06Tz77LN8/PHHTJgwgd/97nfs2LHD/LNq1SpSU1Ox2Wy8++673HzzzaWes2XLluZjd3f3UttYLJYyA2Vqaqq5GEc744iIiNQuBcoaVt6IW2ly8h0ciTtBVm7x+yeLFrGMGTOG+++/v9hUeEpKCm+//TY33XQTLi4uzJ49mxMnTuB0OomLi6Nly5a0bNmy2DR1URCEkiOk6enpGIaBj48PzzzzDGlpafzrX/9i2LBhTJo0iejoaDIzM/noo49ISEjA3d2dSZMmERgYSF5eHm5ubiU+g6NHj5pfr1u3jptvvhl/f/9i7axWa5lT3h999BF5eXn88pe/1GIcERGRWmYxrjThSI3YHp/GzE2xrIxJxmmABYNh4f5MuzGM3FMHWbNmDWFhYdx99914enoChQtqEhISOHr0KLt27SI/Px8XFxdCQ0Np37497du3p3HjxhVee9CgQcX2+H777bdJSUlh1KhRdO/eHShcSPP222+zYcMGEhMTsVqttGjRgrvvvpuHHnqIY8eOcfDgQdzd3enRowe9evVi6dKlQOFe4HPmzOHQoUMA3HrrrTRp0oTBgwcTEhJihtldu3bx9ddf85e//KXE/ZUdOnTg6NGjHDhwQPdPioiI1DKNUNZBc7Ym8Jcl+7FaLTj/L+4bWFh9KJUVMcn0dTnBIzfdyKBBg8jKyuLHH3/kyJEjxMbGkpeXh6+vL2FhYRw+fJjRo0cXK2he2u8P58+fZ86cOeTl5TFx4kRzNxuA7LwCTp/LwGJY8PX1NZ/v168f7du3Z/HixSQmJtK3b1+GDBli3ivZvXt3zp8/z/bt29m1axdbtmxh+vTppb7f5cuXAzBv3jxuvPFGM1AWrSA3DKNYoFy7di1Hjx7VYhwREZE6QiOUdcz2+DTue3cLFX1Tnou2w9lYzpw5A0CrVq3MVdktWrTAYrHwwQcfADBlypQKr5uZmcncuXO5ePEi48aNI7HAs8QI6aC2jXns5k70aN2IzZs3s27dOho3bsydd95Z6qryInl5eezZs8fcL9xqtXLbbbfRvXt3c5FRSkoKH3zwAUFBQYwbNw6bzcYPO3fzxdff8Oc//gFvj9LvsxQREZHap0BZxzw6dwerDqbgcJb9bbHgJNQlg191daNDhw60a9fOnPa+3OHDh5k/fz6TJ08usTNNaXJycpg3bx5rTuSzKTcYm9VSrB9FX9/W7AIBl47Rt29fBg8ejKura6Xe244dO/jmm28ICAggMTERb29voqKiiIqKwsvLi/j4eObMmYNXSBcOE8SKmOSf9vIO92fagLBS9/IWERGR2qVAWYfk5DsIn76ccrKkyYLBUyGJeHu4Y7fb8fDwwNPTE09PT7y8vPDw8MDV1ZUlS5bQqFEj7rrrLtzc3HBzcyu1GHmRLcdSeGDWD0DpO+kUMnjr7vbc3uuGSr+38+fP8/bbbxMREcGoUaNITU1l27Zt7NmzB8Mw6Ny5M71792b25lje3p6G1WIp9jnYrBacToOXRkcyoXebSl9XREREqp8CZR2SmpFLr5dXVbr9A/Y92Mm/4utYrVZcXFxwcXExQ6a7uzseHh7MO+HFgfNWnOUESpsFbmzbiP93VyfzeFdX1zK3czQMg48//pj09HR++ctfFisTlJ2dzc6dO9m+fTtHzzv5Nu8GyguzFmDRo301UikiIlKHKFDWIVcyQmm1QMyMW3GzWcjJySE7O5vs7GwuXbpEZmYmGRkZXLp0iUuXLnHkyBHc3Nzw8PAgNzeXvLw88vNLBtECw8Lc3B4Y5Y5OFrJgMMF9Fy6Wnzp7eVB1cXHB1dUVFxcXcnJyuHDhAsHBwTRq1AhXV1fc3d3NIOvu7o6LiwsvrD7N7lRnude3WS0M6+TPOxN6VvwhiYiISI3QKu86xO5qY1i4f4X3UBaFKrtr4YKWoqnusmzdupWVK1fy6KOP4ufnBxSOGl4eRLOzszmTlsmcL09Xqq8GFlw9fXA38nA6neaf/Px88vLySj3m1KlT5m5AP1dgWNhdiTDrcBqsiEkiJ99hvn8RERGpXQqUdczUAWGsOJBcbhuH08mD0UGVPmePHj1Yv349W7ZsYfjw4bz55ps8++yzXLp0ibVr1zJ48GAAgvMdWBefrnCE1JmXzfm1H/DC7uUYhlGiFJFhGDgcDgoKCpgzZw5ZWVmMHz8em82Gw+HA6XSar+fn55Obm0vyhSzmLEmq1PtxGpCRU6BAKSIiUkcoUNYxvUKa8NLoSJ5fXFiHsrRV1gM9znBw4zf0bDOhzG0LL+fm5kZ0dDTffPMNL7/8Mhs3biy1XWVGSLPjd5O27L8UXEgp83oWiwUXFxe2bdvGmTNnmDx5Ms2aNSu3j6H5DqxfVX6638euf7oiIiJ1RdnLfaXWTOjdhkWP9mVYJ3+s/zcDbLXAsE7+fPZoX/4+dQRnz55l7ty55ObmVng+wzDYuXMnb7zxBrt27aJPnz5ltp06IAxnKanOmZfNue/+R8r858HqQmCr8ldap6SksHbtWvr161epkkV2VxsDQv2wVFCB02a1cEt4S41OioiI1CEa5qmjokKaEBXShJx8Bxk5BfjYXYqFqAkTJjBnzhw++eQTxo8fX+5I5YwZM5gxYwY9evRg+PDh2Gw2tm7dWmrbskZIUxbNIPdUDL69RvHvf77Kx9Mf5czJhFLP4XA4WLx4MU2aNGHIkCGVer979uzB98x2DNqX287pNJg6ILRS5xQREZGaoRHKOs7uaqO5j3uJEbmgoCAmTpxISkoK8+bNK3MhTJGZM2eyevVq7HY7iYmJ5bYtGiG96YZm5oihi3dj7vzz+6xe+AFTBpVff3LTpk0kJSUxevRocyvGsjidTlasWMHixYsZ1i2MF0dGYKFwJPJyNqsFC/DS6EiVDBIREaljNEJZjwUFBZUYqXRzcyvRbvr06WaNyMjISDZv3lzhuaNCmhDm245/xy4nHxt/2v4dvl4eFR6XmJjIhg0buPHGGwkMDCy3bU5ODp9//jnHjx/n1ltvJTo6GovFQnigHzM3xbEiJgmn8dN0/9QBoQqTIiIidZACZT0XHBzMhAkTmDt3LvPmzWPcuHElQuXlBcf79evHf//730qdOycnBxeLgaebtVJhsqCggMWLF9OiRQsGDhxYbtuzZ88yf/58Ll26xPjx42nbtq35WkXT/SIiIlK3aMq7AWjVqhUTJkwgMTGRTz/9tNSi5UVatmxJkyaVG+XLzs4GwNvbu1Lt161bx9mzZxk9ejQ2W9kB8NixY8ycOROLxcLUqVOLhcnLlTXdLyIiInWLAmUD0apVK8aPH8/p06crDJWVWXUNhSOUAL6+vhW2PXXqFJs3b2bw4MH4+/uX2sYwDDZv3sy8efNo3bo1U6dOpWnTppXqi4iIiNRdCpQNSOvWrRk/fjynTp0qN1QW7ZZTkaIRyora5+fns3jxYgIDA+nfv3+pbQoKCliyZAkrV66kX79+jB07tlI1NEVERKTuU6BsYNq0aWOGyvnz55caKi+/pzI1NbXMc2VnZ2OxWPDx8Sn3mqtXr+bChQuMHj0aq7XkP6mMjAw++ugjDhw4wN13383NN99cajsRERGpn/RTvQFq06YN48aN4+TJkyxYsICCgoIy2+7bt6/M17KzszEMo8Ip723btnHTTTeVuhvO6dOnef/997l48SKTJ0+mc+fOlX8jIiIiUi8oUDZQISEhPPDAAyQkJJQbKk+cOMHZs2dLfS0zMxOgwhHKNm3alLr7zt69e/nwww/x8/Nj2rRpFZYREhERkfpJgbIBCw0NZdy4ccTHx5cZKj09Pfn+++9LPb6ygfLOO+8sNo3udDpZuXIlX375JZGRkTz00EMVnkNERETqLwXKBi40NJQHHniA+Ph4Fi5cWCJUhoeHs3fvXi5evFji2KysLKD0QFm0YAegcePG5uOcnBzmz5/Pli1buOWWW7jzzjsr3C1HRERE6jcFyutAWFgYY8eOJTY2lkWLFuF0Os3XOnTogKura6l7e5dVhzInJ4dz586VaH/u3DlmzZrFiRMnGDduHH379i02cikiIiINkwLldaJt27aMHTuW48ePExMTYz7v5uZGr1692LlzZ7FRR4Dc3FxcXV1LrMhevnx5sVAKcPz4cWbOnIlhGEybNo127dpV35sRERGROkWB8jrSrl07xo4dS1paWrHne/fujcPhYMeOHcWez8/Px263F3vu8OHD7Nmzp9huO1u3buWTTz4hODhYxcpFRESuQwqU15l27doRERFhfu1wOPD29qZbt25s27bNrFvpdDpxOp14enqabbOysvj666/p0KFDsWnw7777jr59+/LAAw+UCKAiIiLS8Gm1xHVi7ty55uPTp0+bj//3v/9x+vRpsrKy2LdvH7t376ZXr17mtoteXl4AJCcn87e//Y2UlBQaNWpEYmKieQ5XV1eSk5OZN28eXbp0oUuXLjX0rkRERKQusBiGYdR2J6T6VWZxTHh4OI8++iiPPfYY6enpvPnmm3Tt2pXRo0fz4YcfMmXKlArPMX36dF544YVr0GMRERGpLzRCeZ0o6/eGw4cPs3DhQjp16kTfvn2ZOXMmMTExuHt6k2244OnjR2ZmJqmpqWa7JUuW0KJFC8aOHav6kiIiIqIRSoFDhw6xaNEiwsPDiUnNZWOqK0ezPDEACxDul88NzlMM79merVu30qVLF0aMGIGrq2ttd11ERETqAAVKAeDgwYO8+OlatuS3xoKBcdl6LQtODCz0dTnBY7d2pV+/fqovKSIiIiat8hYAMj382ZLfBrAUC5PA/31tYUtBG9yDOilMioiISDEKlALAzE2x2KzlB0Wb1cLMTXE11CMRERGpLxQohZx8BytjknE4y7/7weE0WBGTRE6+o4Z6JiIiIvWBAqWQkVNABVnS5DQK24uIiIgUUaAUfOwuVDDbbbJaCtuLiIiIFFGgFOyuNoaF+1fqHspbwltid7XVUM9ERESkPlCgFACmDgjDWcG8t9NpMHVAaA31SEREROoLBUoBoFdIE14aHYkFSoxU2qwWLMBLoyOJCmlSK/0TERGRukuFzaWYHfFpzNwUx4qYJJxG4T2Tt4S3ZOqAUIVJERERKZUCpZQqMeUsr7/1Lg+Nu59OHdrVdndERESkDtOUt5Sqsa83HpYCnPm5td0VERERqeMUKKVU7u7uWCwWsrOza7srIiIiUscpUEqpLBYLdrtdgVJEREQqpEApZfLw8FCgFBERkQopUEqZPDw8yMnJqe1uiIiISB2nQCll0giliIiIVIYCpZTJbrdrhFJEREQqpEApZdIIpYiIiFSGAqWUSau8RUREpDIUKKVMGqEUERGRylCglDJ5eHiQn5+Pw+Go7a6IiIhIHaZAKWXy8PAA0CiliIiIlEuBUsqkQCkiIiKVoUApZbLb7QAqHSQiIiLlUqCUMmmEUkRERCpDgVLKpEApIiIilaFAKWVycXHBxcVFgVJERETKpUAp5VItShEREamIAqWUy8PDQ4tyREREpFwKlFIujVCKiIhIRRQopVx2u10jlCIiIlIuBUopl0YoRUREpCIKlFIuu92uQCkiIiLlUqCUcmmEUkRERCqiQCnlKgqUhmHUdldERESkjlKglHJ5eHhgGAZ5eXm13RURERGpoxQopVzaflFEREQqokAp5bLb7QAqHSQiIiJlUqCUcmmEUkRERCqiQCnlUqAUERGRiihQSrnc3d0BBUoREREpmwKllMtqtaq4uYiIiJRLgVIq5OHhoUU5IiIiUiYFSqmQdssRERGR8ihQSoXsdrtGKEVERKRMCpRSIY1QioiISHkUKKVCWpQjIiIi5VGglApphFJERETKo0ApFVKgFBERkfIoUEqFPDw8yMvLw+Fw1HZXREREpA5SoJQKFW2/qJXeIiIiUhoFSqmQ3W4HFChFRESkdAqUUqGiEUrdRykiIiKlUaCUCilQioiISHkUKKVCCpQiIiJSHgVKqZCLiws2m02BUkREREqlQCkVslgseHh4aFGOiIiIlEqBUipFxc1FRESkLAqUUil2u10jlCIiIlIqBUqpFI1QioiISFkUKAUAwzB444038Pb2xmKxsG7dumKvVxQo9+3bx9SpUwkLC8NutxMYGMjIkSNZunRpNfdcREREaptLbXdAal9sbCxTpkxh/fr1Zbax2+1lBsr333+fxx57DMMwePDBB4mOjiY+Pp733nuPpUuX8vDDD/Pee+9hter3FxERkYZIgfI6ZhgGb775Js8++yw2m40+ffqwdevWUtuWNUK5dOlSfvGLX2AYBosXL2bUqFHmaw8//DB9+/Zl1qxZNG3alFdffbXa3ouIiIjUHg0ZXcdmzJjB448/zoABA9i/fz/Dhw8vs21R2SDDMMzncnNz+dWvfoXT6eS+++4rFiYB2rZty4svvgjAv/71Lw4cOFA9b0RERERqlQLldW7mzJksX76cVq1aldvOw8MDh8NBfn6++dzHH3/MyZMnAZg2bVqpx02YMAEPDw+cTid///vfr13HRUREpM7QlPd1bPr06Vgslkq1tdvtAOTk5ODm5gbAokWLAHBzc+PGG28s9Thvb2969+7NunXr+Oqrr8jLyzOPFxERkYZBI5TXscqGSSi5n7fD4WDDhg0AhIeHlxsSe/ToAcDFixfZsWPH1XZXRERE6igFSqmUnwfKY8eOkZubC1DhdPnlr+s+ShERkYZHgVIq5eeBMj4+3nzN39+/3GMvf/3y40RERKRhUKCUSim6h7IoUGZkZJR4rSxFYfTnx4mIiEjDoEAplWK1WnF3dzf38768JmVFi2wufz0rK6t6OigiIiK1RoFSKu3y4uaXjzrm5eWVe9zlr3t6elZP50RERKTWKFBKpV2+/aKPj4/5fNGoZVkuH828/DgRERFpGBQopdKKdssBCAkJMZ9PTk4u97jLX2/Tpk219E1ERERqjwKlVNrlU97t2rXD3d0dwNwtpyynTp0yH0dERFRfB0VERKRWKFBKpV0+5W2z2czdcQ4ePFjufZS7du0CCqe7o6Kiqr+jIiIiUqMUKKXSLh+hBLj33nsByM3NZdOmTaUek5mZybZt2wAYOXKkOaopIiIiDYcCpVTa5fdQAjz44IMEBwcDMHPmzFKPmTdvHllZWVitVp555pka6aeIiIjULAVKqbSiQOl0OoHCKfD//e9/WCwW5s+fz9KlS4u1j42N5fnnnwfgd7/7HZ07d67xPouIiEj1c6ntDkjtmjt3rvl479695uOVK1eai2n8/f0ZNmyYuSNObm6uWYdy1KhRvPXWWzzxxBPcfffdTJo0iV69epGQkMA777zDuXPnmDRpEv/4xz9q8F2JiIhITbIYhmHUdiek9lgslgrbDBo0iHXr1hEXF8fHH3/Mb37zG5o0aVKszd69e/nPf/7DmjVrSEpKolGjRkRFRfHoo48ycuTI6uq+iIiI1AEaobzOXcnvEx4eHhQYFk6fu4injx92V5v5WpcuXfjggw+qo4siIiJSx2mEUiple3wab689zNoj5zCwYLXAsHB/pg0IIyqkScUnEBERkQZLgVIqNGdrAn9Zsh+r1YLD+dM/F5vVgtNp8NLoSCb01g44IiIi1ysFSinX9vg07nt3C+X9I7EAix7tq5FKERGR65TKBkm5Zm6KxWotf+GO1Wph5qa4GuqRiIiI1DUKlFKmnHwHK2OSi01zl8bhNFgRk0ROvqOGeiYiIiJ1iQKllCkjp4AKsqTJaRS2FxERkeuPAqWUycfuQgWz3SarpbC9iIiIXH8UKKVMdlcbw8L9sVWQKm1WC7eEtyxWl1JERESuHwqUUq6pA8JwVjDv7XQaTB0QWkM9EhERkbpGgVLK1SukCS+NjsQCJUYqrRhYgJdGR6pkkIiIyHVMdSilUnbEpzFzUxwrYpJwGoW1J1tb0/jL/TcytEtIbXdPREREapECpVyRnHwHGTkFeLjA22/+l8jISG677bba7paIiIjUIk15yxWxu9po7uOOt4c7PXv2ZPfu3eTm5tZ2t0RERKQWKVDKVYuKiqKgoIDdu3fXdldERESkFilQylXz9fUlPDycH374Ad05ISIicv1SoJQqiY6OJi0tjWPHjtV2V0RERKSWKFBKlQQHBxMYGMi2bdtquysiIiJSSxQopUosFgvR0dEcP36cs2fP1nZ3REREpBYoUEqVRURE4OXlxQ8//FDbXREREZFaoEApVebi4kLPnj3Zs2cPOTk5td0dERERqWEKlHJNqISQiIjI9UuBUq4JHx8flRASERG5TilQyjXTu3dv0tPTOXr0aG13RURERGqQAqVcM0FBQQQGBmpxjoiIyHVGgVKuGYvFQu/evTl+/Dipqam13R0RERGpIQqUck2Fh4erhJCIiMh1RoFSrikXFxeioqJUQkhEROQ6okAp11zPnj1xOBwqISQiInKdUKCUa87Hx4eIiAh++OEHnE5nbXdHREREqpkCpVSL6Oho0tPTOXbsWG13RURERKqZAqVUi+DgYIKCgti2bVttd0VERESqmQKlVJvo6GhiY2NVQkhERKSBU6CUahMREYG3t7dKCImIiDRwCpRSbWw2Gz179lQJIRERkQZOgVKqVVRUFA6Hgx9//LG2uyIiIiLVRIFSqpW3tzeRkZEqISQiItKAKVBKtYuOjub8+fMcPXq0trsiIiIi1UCBUqpdUFAQwcHBWpwjIiLSQClQSo1QCSEREZGGS4FSakR4eDje3t4qdC4iItIAKVBKjbDZbERFRbF3716ys7NruzsiIiJyDSlQSo3p2bOnSgiJiIg0QAqUUmOKSght375dJYREREQaEAVKqVFFJYSOHDlS210RERGRa0SBUmqUSgiJiIg0PAqUUuN69+5NXFwcKSkptd0VERERuQYUKKXGderUCR8fH41SioiINBAKlFLjikoI7dmzRyWEREREGgAFSqkVPXv2xDAMlRASERFpABQopVZ4eXkRGRnJDz/8oBJCIiIi9ZwCpdSa6OhoLly4oBJCIiIi9ZwCpdSawMBAWrVqpf29RURE6jkFSqlV0dHRxMfHk5ycXGab/Px8PvjgA26//XZatmyJm5sbLVq0YNCgQbzzzjsUFBTUYI9FRETk5yyGYRi13Qm5fjkcDl5//XXat2/PyJEjS7x+/Phx7rrrLvbt20dgYCBTpkwhNDSU06dPM3v2bI4fP0737t1ZtmwZ/v7+tfAORERERIFSat2GDRvYuHEjTz75JB4eHubzaWlpREVFERcXR2RkJBs2bKBx48bm61lZWdxyyy18//33dO/ena1bt+Lm5lYbb0FEROS6pilvqXVFJYR27dpV7PmXXnqJuLg4AN54441iYRLA09OTmTNnAvDjjz/y5ptv1kyHRUREpBiNUEqdsGTJEuLi4nj88cexWq04nU6aNWtGeno6/v7+JCUllXlsz5492bVrF8HBwZw4cQKLxVKDPRcRERGNUEqdUFRC6PDhwwAcPXqU9PR0ACIiIso9tmvXrgCcOnWKrVu3Vm9HRUREpAQFSqkTAgICaN26tbm/97lz58zXfH19yz22SZMm5mPtDy4iIlLzFCilzri8hJCnp6f5fE5OTrnH5efnm49jYmKqrX8iIiJSOgVKqTM6duyIj48P27ZtIywsDJvNBhSWDipPfHy8+fjs2bPV2UUREREphQKl1Bk2m41evXqxb98+XFxc6N+/P1B4P2VsbGypx+Tm5rJhwwbz64yMjBrpq4iIiPxEgVLqlB49epglhP785z+bzz/zzDOltv/73//O+fPnza+LRjVFRESk5ihQSp3i5eVF586d2bFjB0OHDuWvf/0rAIsWLeKee+5h8+bNJCYmsmvXLn7zm9/wwgsvMGLECPP4ihbwiIiIyLXnUtsdEPm56Ohodu/ezeHDh3nuuefo1q0bM2bM4IsvvuCLL74w23Xo0IGPP/6Ybt26sXTpUgCaN29eW90WERG5bilQSp1TVEJo27ZtdOrUiTvuuIM77riD1NRUYmNjKSgoICgoiJCQEIBi91B27ty5lnotIiJy/VKglDqpd+/eLFq0iKSkJFq2bAkUjj6WNgJ5+YKdnj171lgfRUREpJDuoZQ6qWPHjvj6+laqUHlRm5CQEAVKERGRWqBAKXWS1WolIiKCBQsWlFus3OFw8M033wAwefJk7eMtIiJSCzTlLXVW48aNmTdvHpcuXWLx4sWltpk7dy4nTpygVatW/OEPf6jZDoqIiAigEUqpwzw8PABYtmwZ+/fvL/H6xo0beeyxx/D09OTTTz8ttl2jiIiI1ByNUEqdl5eXR3R0NFOnTiUyMpLs7GzWr1/PV199RVBQEB9//LG5q46IiIjUPIthGEZtd0KkNDk5OXz55Ze8/fbbxMXFkZuby/nz52natCk33HAD99xzD5MnT8bb27u2uyoiInJdU6CUOi8mJoZFixbx6KOP0qhpczJyCvCxu2B31TaLIiIidYGmvKXO69ixIxn2Fjzy8Xb2n7fiNMBqgWHh/kwbEEZUSJPa7qKIiMh1TSOUUufN2ZrA80v2Y8HA4KeyQDarBafT4KXRkUzo3aYWeygiInJ9U6CUOm17fBr3vbuF8v6RWoBFj/bVSKWIiEgtUdkgqdNmborFai2/WLnVamHmprga6pGIiIj8nAKl1Fk5+Q5WxiTjcJY/iO5wGqyISSIn31FDPRMREZHLKVBKnZWRU0AFWdLkNArbi4iISM1ToJQ6y8fuQgWz3SarpbC9iIiI1DwFSqmz7K42hoX7Y6voHkoL3BLeUnUpRUREaokCpdRpUweE4axg3ttpGHSynMHh0D2UIiIitUGBUuq0XiFNeGl0JBYoMVJps1qwAI/28CMjbg+zZ88mMzOzVvopIiJyPVMdSqkXdsSnMXNTHCtiksydcm4Jb8nUAaFEhTTh5MmTLFy4EIvFwv33309QUFBtd1lEROS6oUAp9UpOvqPMvbwzMjJYsGABSUlJjBgxgm7dutVOJ0VERK4zCpTSoBQUFPDNN9+we/duoqOjueWWW7DZtFhHRESkOilQSoNjGAY7duxg+fLltG7dmjFjxuDl5VXb3RIREWmwFCilwUpISGDhwoW4urpy//33ExAQUNtdEhERaZAUKKVBu3DhAgsWLCA1NZVRo0bRuXPn2u6SiIhIg6NAKQ1efn4+S5cuZe/evfTr14+hQ4ditapiloiIyLWiQCnXBcMw2Lp1KytXriQsLIx77rkHDw+P2u6WiIhIg6BAKdeV2NhYPvvsM+x2O/fffz/+/v613SUREZF6T4FSrjvp6eksWLCAtLQ0Ro8eTXh4eG13SUREpF5ToJTrUl5eHl999RUHDhzgxhtvZMiQIVgslooPFBERkRIUKOW6ZRgG33//PatXr6Z9+/bcfffd2O322u6WiIhIvaNAKde9o0eP8vnnn+Pt7c3YsWNp1qxZbXdJRESkXlGgFAHOnTvH/PnzuXjxInfffTc33HBDbXdJRESk3lCgFPk/ubm5fPnllxw+fJjBgwczcOBA3VcpIiJSCQqUIpcxDIP169ezfv16OnXqxJ133om7u3ttd0tERKROU6AUKcWhQ4f48ssv8fPzY+zYsTRp0qS2uyQiIlJnKVCKlCE1NZX58+eTlZXFPffcQ7t27Wq7SyIiInWSAqVIOXJycvj88885fvw4Q4cOpV+/frqvUkRE5GcUKEUq4HQ6Wbt2LZs2bSIyMpJRo0bh6upa290SERGpMxQoRSrpwIEDLFmyhKZNm3L//ffTqFGj2u6SiIhInaBAKXIFkpOTmT9/Prm5udx7772EhobWdpdERERqnQKlyBXKysris88+Iz4+nltuuYXevXvrvkoREbmuWWu7AyL1jaenJxMmTKBPnz589913LFmyhPz8/BrtQ0FBAR9++CG33XYbAQEBuLm54e3tTceOHXnkkUf48ccfa7Q/IiJyfdMIpUgV7N27l6+//poWLVpw//334+vrW+3XTEpK4o477mDXrl24ubnx0EMP0a1bNy5cuMDy5cvZsGEDVquVF154geeff77a+yMiIqJAKVJFZ86cYcGCBTgcDu677z5at25dbdcyDIMBAwawefNm3N3d2bJlC927dy/W5o9//CP/+Mc/AJgzZw4TJkyotv6IiIiAAqXINXHp0iUWLVrEyZMnue2224iKiqqW62zcuJGBAwcC8Nvf/pZ///vfJdrk5ubSpk0bkpOTCQ8P58CBA9XSFxERkSK6h1LkGvDy8mLixIn07NmTb775hq+//pqCgoJrfp3t27ebj3v37l1qG3d3d7p27QpATEwMFy9evOb9EBERuZwCpcg1YrPZuP322xk1ahR79uzh448/JiMj45peIy8vz3zs6elZZjsvLy/z8aVLl65pH0RERH5OgVLkGuvevTuTJk0iPT2d999/n1OnTl2zc3fp0sV8fOjQoTLbHTx4EABfX19atGhxza4vIiJSGgVKkWoQHBzMI488gp+fHx999NE1K+MzfPhwM1S+8cYbpY4+LlmyxAybU6ZMwWazXZNri4iIlEWLckSqUUFBAd9++y0//vgjvXr1Yvjw4VUOeImJiUycOJHVq1cTERHBSy+9RNeuXbl48SLLly/nxRdfJDs7mzFjxvDxxx/j4eFxjd6NiIhI6RQoRaqZYRjs3LmTZcuW0apVK+69995i9zhe7Tk/++wznn32WY4fP17stZEjRzJ16lRGjRpVpWuIiIhUlkttd0CkobNYLERFRdG8eXMWLVrE+++/z/33309AQMBVnS8pKYnHHnuML774guDgYP7+978TERFBdnY2K1asYM6cOWRkZODr68vgwYOv7ZsREREphUYoRWrQhQsXWLhwISkpKYwcObLYIpvKSEtLo1evXsTGxhIZGcmGDRto3LhxsTbLly/njjvuwDAM3nnnHR555JFr+RZEpAExDIM333yTZ599lkuXLrF27Vr9IipXRYtyRGqQn58fkyZNIiIigi+//JIVK1bgdDorffyf//xnYmNjAXj99ddLhEmAW2+9lYkTJ2IYBo899hjHjh27Zv0XkYYjNjaWIUOG8Pjjj6u8mFSZAqVIDXN1deXOO+9k+PDhbN26lU8++YSsrKwKj3M6ncyfPx8oLAc0ZMiQMtuOHj0agPz8fD788MNr0m8RaRgMw+CNN96gS5cu/Pjjj/Tp06e2uyQNgAKlSC2wWCz06dOHCRMmkJiYyPvvv09ycnK5x6SmppKeng5AmzZtsFgsZbYNDQ01H+/du/fadFpEGoQZM2bw+OOPM2DAAPbv38/w4cNru0vSAChQitSisLAwpk2bhru7O7NmzSImJqbMtlbrT/+5VnTr8+XT6A6Ho+odFZEGZebMmSxfvpxWrVrVdlekgVCgFKlljRs3ZsqUKXTo0IFFixaxevXqUu+rbNq0KT4+PgDEx8eXGxSL7rMEaN269bXvtIjUW9OnT+fhhx+u7W5IA6NAKVIHuLm5cc8993DzzTezadMm5s+fT05OTrE2VquV22+/HYDMzEy+++67Ms+3cOFC83HRMSIiQLm3y4hcLQVKkTrCYrHQv39/xo8fz8mTJ5k5cyapqanF2kyfPh1PT08AHn/8cc6cOVPiPPPnzzcDZb9+/Rg5cmT1d15ERK5rCpQidUy7du2YNm0aVquVmTNncvjwYfO1Tp06sWTJEpo3b87x48eJjIzkySefZNasWbz55pvceeedPPDAAwAMGDCAJUuWaDRCRESqnXbKEamDmjRpwsMPP8zixYuZP38+gwcPZuDAgVgsFm6++WYOHTrErFmz+Pbbb5k7dy7nz5/HxcUFf39/xowZw9ixY7nrrruKLeQRERGpLvppI1JHubu7c9999zF48GDWrVvHwoULyc3NBQoD51NPPcXatWs5cTqR0+cySLuQQVxcHIsWLeKee+5RmBSROuvpp5/GYrFgsVh44YUXars7cg1ohFKkDrNYLAwaNIiWLVvyxRdfMGvWLMaOHUuTJk3YHp/GzE2xrIxJxmmA1QLDwv2ZNiCMqJAmtd11EZFS7dq1i//3//5fbXdDrjENYYjUAzfccAPTpk3D6XTy/vvv8/++3s59725h1cEUnP9XktJpwKqDKdz77hbmbkuo3Q6LiJSioKCAqVOnqj5uA6RAKVJPNGvWrPB/xE1C+O/mZAzA4Sxe4NzhNDCA5xfvZ0d8Wq30U0SkLK+99ho//vgjd955Z213Ra4xBUqResRut5Ngb4u1gpXbVquFmZviaqhXIiIVO3bsGDNmzKBXr148/vjjtd0ducYUKEXqkZx8BysPJuMsf+dFHE6DFTFJ5ORrWklE6oZHH32U/Px83n//fS0abID0HRWpRzJyCioMk0WcRmF7EWk4Bg8ebK6OLu+Pt7d3bXe1mFmzZrFmzRp+//vf07Vr19rujlQDBUqResTH7oK1knXKLRgs/XIRmzdvJjk5GcOoZBKVKzJp0qRK/YC//M/o0aNru9siNSYpKYmnnnqKtm3bMn369NrujlQTlQ0SqUfsrjaGhfuz6mBKiQU5l7NZoIe/G65WWLt2LStXrsTLy4uwsDDCwsJo27YtPj4+NdhzuZy/v39td0HqsdGjR/PKK6+U26YuTSk/9thjpKens2jRIjw8PGq7O1JNFChF6pmpA8JYcSC53DZOA/54ZxRRIU0oKCjgxIkTxMbGEhsby759+wBo3ry5GTBDQkJwc3Orie43WAcPHqywza233kpCQgKTJk2q/g5Jg+Xn50fHjh2rdI65c+eaj/fu3Ws+XrlyJadOnQIKf/EZNmxYla6zZMkSPv/8cyZNmsTQoUOrdC6p2xQoReqZXiFNeGl0JM8v3o/Vaik2UmmzWnA6DV4aHWkWN3dxcTGDI0BWVpYZLg8dOsS2bduwWq20atXKbBcYGFinRjjqg4p+wG/evJmEhAQ6d+5M3759a6hXIqWbOHFiqc+//PLL5uNBgwZVKVBevHiRX/3qV7Ro0YLXXnvtqs8j9YMCpUg9NKF3Gzr6+zBzUxwrYpJ+2imnkz9TB4SWu1OOp6cnkZGRREZGYhgGaWlpHD9+nNjYWDZv3szatWux2+2Ehoaa0+ONGzeuwXdXv3To0IH+/ftX2O69994D4JFHHqnuLolU6PJ7qnPyHWTkFOBjd8Huartm13j66ac5c+YM8+bNo0kT7d7V0FkM3akvUq9dyx8GDoeD06dPmyOYp06dwjAMGjdubI5ehoaG6j6oK3ThwgUCAgKwWCycOXMGPz+/2u6S1FODBw8mJCSEjz76CIC8vDyys7Px9fXFUkF92p+rzu1bN27cyKBBg7j11lv59ttvS7y+bt06hgwZAsD06dO1n3cDoBFKkXrO7mq7ZqMKNpuN1q1b07p1awYPHkxOTg7x8fFmwNy5cycWi4XAwEAzYLZq1Qqb7dqNajREc+bMITs7m8mTJytMSpWdP3+ev/3tb3z00UccP34cwzCw2WyEh4czcuRInnjiCVq0aFHuOeZsTeAvSwpvm/n59q0rDiTz0uhIJvRuc1X9y8vLY9q0abi5ufHiiy9y9uzZEm0uXLhgPs7KyirWxs/PD1dX16u6ttQejVCKSKVduHDBnB6PjY0lOzsbV1dXQkJCzIDZvHnzKx4paei6du3K3r172bJlC3369Knt7kg9NnjwYNavX4+3tzdTp06lX79+eHh4cOjQId577z2OHj1Ko0aNmDdvHrfddlup59gen8Z9726hvB/+FmDRo32vaqQyPj6e0NDQKz6uyNq1axk8ePBVHy+1Q4FSRK6KYRgkJSWZAfPEiRM4HA58fHzMcBkWFlbnCizXtK1bt9K3b1+6dOnCnj17ars7Us8NHjyYhIQE1qxZUyK05eTkMHLkSFatWoW7uzsbNmwgOjq6xDkenbuj4tJjVgvDOvnzzoSeV9zHnJwcNm3aVG6bPXv28Ic//AEoXCD04IMPmq/17NlT923XQ5ryFpGrYrFYCAgIICAggAEDBpCfn09CQoI5elkUnvz9/c1w2aZNm+tuKkuLcRqemJgYPvjgA7777jtOnTpFbm4uLVu2JCQkhIEDB3LbbbfRu3fvarn2/Pnz8fT0xNfXt8Rrdrud2bNnExYWRm5uLo899hg//PBDsTY5+Q7znsnyXL5965XeUmO327n55pvLbePi8lP8CAsLq7C91H0KlCJyTbi6utKuXTvatWsHQGZmphku9+/fz5YtW8x7NIsCZtFClYbq4sWLLFiwAE9PTyZMmFDb3ZEqMgyD6dOn88orrxAUFMR9991H+/btyczMZN26dXz99desXbuWpUuXsmPHjmrpQ8uWLct9PTAwkFtvvZUlS5awfft29uzZU2yrw6vZvvVarvyWhkuBUkSqhbe3N126dKFLly4YhsHZs2fN6fENGzawevVqPDw8ik2PN2rUqLa7fU3NnTuXrKwsLcZpIJ588kn+85//MHHiRN577z3sdrv52u9+9zvee+89Hn300VrsYaGoqCiWLFkCwPfff28GSsMwOBl7BAsGBhX/ImfB4OsvFhLVvSsdO3bU5gdSLgVKEal2FouF5s2b07x5c/r06YPD4eDkyZPmCObSpUsxDIMmTZqYtS9DQkKK/cCuj4qmu+tCyJCqWbp0Kf/5z3/o0qULH3zwQbEp2yLTpk3j9ddfr/VfjC5f4Z2YmIhhGMTExLB+/XpSU1Pp6N2ZQ5lu5YZKmwV6BXpgNc7y5Zdf4ubmRnh4OF27dqVNmzZXNbOwd+9ec1eey3eW2rt3r7lzz7XYnUdqhxbliEity87OJi4uzgyY6enpWCwWgoODzdHLoKCgelWeaNu2bfTp04euXbuye/fu2u6OVIFhGHTo0IFjx44xb948HnjggdruUrneeecdfvnLXwLwq1/9isjISFJSUmjbti1RUVHM/nYTn6a2hHJHKQ1mjo3g5q6hpKens3fvXvbs2UN6ejp+fn506dKFrl270rRp00r364UXXmDGjBnlttF/L/WXRihFpNZ5eHgQHh5OeHg4AOnp6eb0+LZt21i/fj1ubm7m7j1hYWE0bdq0Tt9/qcU4Dcf69es5duwYVquVO+64o9b68fXXX7Nnzx6ee+65cv/tJyYmmo9PnDhB3759GTFiBN7e3nz88cf4Ww3+NCyMl1fGYcGJwU/brFotYBhwc+M0dq/8nC4BD9KiRQsGDRrEwIEDOXnyJHv27OGHH35g48aNBAcH07VrVyIiIsrd8GB7fBoLNuwFmws4CrD5NidiwHDu6N8dfy8by5Yt47vvvmPPnj088MADfPTRR7i7u1+bD05qhEYoRaROczqdJCYmmgHz5MmTOJ1OfH19zenx0NBQvLy8arurposXLxIYGAjAmTNnSl2RK/XHY489xv/+9z9CQ0OJjY01n3c6nVy6dAkfH58a6cekSZOYPXs2iYmJpS7OMQyDgwcPcu+99xITEwPAypUrufnmmzl37hwff/wxLi4uTJw4kUaNGvH+4jXM25lIgqMRTqPwnslw33xmPDCITs3dmTNnDhkZGUycOLHE9fLz8zl8+DB79uzh+PHjWK1WbrjhBrp27Urbtm2LzSYUFVFP+OddGI58PNpF0+zOp3F198DpNMwi6pePrD7wwAPMmzevGj9NudY0QikidZrVaiUoKIigoCAGDhxIXl4eCQkJZsAsmh5r2bKlGTBbt25d6j1uNeWTTz7h0qVLTJkyRWGyAShasd26dWscDgezZs1i5syZ7Nq1C4fDgZubG7179+bhhx9m4sSJWK3WCs5YNcuWLWPy5Mnm14ZhcOjQIdavX09MTAyHDh0CoF+/ftx8880kJyczZ84cPD09mThxohmAnclH+XXXpoy481Yycgo4tO9H1q1eSWTL27Db7Tz44IPMnTuX2bNnM3HiRPOXJCis6hAZGUlkZCSZmZnmlPinn36Kl5cXnTt3pmvXrpzMceMvS/ZjAAZgcbXT9PYnsLrazTqYzy/eT0d/H37xi1+wZMkSli9fzqeffsoTTzxRbeWX5NpToBSResXNzY327dvTvn17oHA08PLal5s3b8bFxYU2bdqY0+P+/v41Oj3+/vvvA1qM01Ds378fKByRHDZsGBs3bmTq1Kk888wzWK1WVq9ezbvvvsvGjRtZsGABn332GZ6entXWn2effZb+/fvTvn17M0gmJyfTokUL1q1bh9PpxNPTk//973+cOXOGuXPn4ufnx4QJE8yR/PPnz5OUlET//v3N7VvdIjqxZuV3HDlyhC5duuDp6WmGyo8//pgJEyYQHBxcoj/e3t7069ePvn37kpyczO7du9m7dy9bt27le0s4FosnRXOh7kEdsXkWr3hgtVqYuSmOqJAm3HPPPSxfvhyAr776SoGyHtGUt4g0GIZhkJKSYo5eJiQkUFBQgJeXV7HyRNU5arh9+3aio6O1uKCByMrKKnE7xeLFi7nzzjuLPbds2TLuuOMODMPgwQcfZPbs2de8L//4xz/485//TH5+Pna7ne7du9OkSRP8/f2x2WwsXryY1NRU/P39WbBgAaGhocybN4/mzZszfvz4YlUTtm7dyqpVq3jqqaeK3as4c+ZMfHx8uP/++83ncnNzmTdvHklJSYwfP57WrVtX2FeHw0HM4aOMmnPMXE2efXwHNt9muDUPKdHeaoGYGbeyYe1qhg8fDsCECROYM2fO1X5cUsM0QikiDYbFYsHf3x9/f3/69etHQUEBJ0+eNAPmvn37AGjWrJk5Pd6mTZtrevO/SgU1LBkZGcW+vuOOO0qESYDbbruNe++9l4ULF/Lxxx/zu9/9jm7dul3Tvjz11FP06dOHt99+m927d3P8+HF2795NQUEBjRs3pkuXLowYMYKHH36Y1NRU5s6dS1BQEGPHji3xb/zQoUOEhYWVeL5Tp06sW7eOvLw8s+6ku7s748eP59NPP2Xu3LmMGzeOkJCQEv1zOp1cvHiRc+fOkZSUxMG40xj8FMY92kaV+d6KiqhfuHDBfK4u3RctFVOgFJEGy8XFhdDQUHPP46ysLHN6/PDhw/zwww9YrVazPFHbtm0JDAy86nvgMjIymD9/Pl5eXowfP/5avhWpJQUFBcW+HjNmTJltx44dy8KFC4HC+2ivVaA0DIPDhw+zfv16kpKSuO222/j73/9OmzZtyMl3kJFTgI/dxdzR5siRIyxcuJDQ0FDuu+++EtudXrp0iRMnTjBixIgS1+rUqROrVq3i2LFjZtUFKLzVZNy4cWaoHDJkCHa7nXPnznH27FlSU1O5cOECl096FhgWLPSoVBF1qwV87C7ExcWZz914441X/FlJ7VGgFJHrhqenp7mQwDAM0tLSzNHLLVu2sG7dOtzd3c3yRG3btqVJkyaVPr+Pj485opWT7yA1I7fYD3qpf7y9vYt9HRkZWWbbywPkz/fQvho/D5IhISE89NBDhISEsD0+jZfn7jD35bZaYFi4PzcHWTi06Vs6dOjAPffcU+ritMOHDwNwww03lHitSZMmtGjRgn379uHj48O5c+c4d+4caWlp5mOHw8GqVauAwkVzTqfTfNy0aVOCgoIICQkhODiYuM8O8H1CRvlF1K0WhnXyx+5aOG0PhQXO77777qp+hFKDFChF5LpksVho2rQpTZs2JTo6GqfTyenTp82AuWzZMgzDoFGjRsXKE5VXaw8K6+3N3BRb4gf9tAFhRIVUPpxK3eDj44Obmxt5eXkA5e6Cc3mR75SUlKu+ZnlBEn4qw2O1Wsx9uZ0GrIxJ5rsDBmPadObee0eVOdJ++PBhWrVqhc1m4/Tp02ZYvPzvlJQUc7W43W7H1dUVh8OBw+Eodq6QkBAiIiIIDAykRYsW5jUNw2DLli34Ju7AoGRwvZzTaTB1QCj79+9ny5YtALz00ksV/rcmdYsW5YiIlCI3N5f4+HgzYJ47dw6AwMBAM2AW/VAucvkP+qKSKFA4AnN5vT2pX7p27Vpsy8COHTuW2u7ChQtm4IyIiDBXh1eWYRgcOXKEdevWmUFy0KBBxe5X3B6fxn3vbqG8H9wWYNGjfYkKaUJeXh5paWlmWExNTWXfvn24urqSn59vHuPp6Ymfnx9ubm7k5uaSlJSEzWYzA2SzZs0ICgoiMDCQwMBAmjdvzldffcWhQ4e4++67iYiIMM+Vn5/PV199xf79+xkwYABnPNvy/FcHShRRv/y/i/HRrRk6dChr167ltttu45tvvqnTGxdISRqhFBEphbu7OzfccIM5LXjhwgUzXO7cuZNNmzbh6upqlifKsLfgL0sOYUCxMMllXxfV29NIZf0SHR1tBsrk5OQyA2Vqaqr5+PKajRX5eZBs06ZNsRHJy83cFGv+wuLMySTr+HZy4veQlxxLwYVkjLxsrG4eDJ3Tkl4dQ+jSpQt+foVleux2uznqFxERgd1uJycnxywhVLTDTqNGjXBzc6NZs2YMGzaMgICAUheu3XPPPSxevJjPP/8cp9NJ586dOX/+PAsWLODcuXOMGTPGDJpnj+9hWWwex3I8/6+IOgzr5M/UAaFEhTThlVdeYe3atXTo0IG5c+cqTNZDCpQiIpXg5+dHjx496NGjB4ZhkJSUZAbM1atXszI7BGhEefsjX15vT+qPe+65h5kzZwKFRc4HDRpUartdu3aZjwcOHFjheYuC5Pr160lMTCw3SELhfblFt1LknDpI8qd/Akc+YMGjQx+8wgdidfckP+0MmfvXsHr1cTZv3sw//vEPhgwZwtmzZ9m5cydWq9UsaeXt7U1gYCB9+vQxRyA9PT1ZvXo1O3fuLDEKfzmr1cro0aOx2Wx88cUXJCUlsXv3btzc3Hj44Yfx9/c336eRcpw/9Ilk4JCh/L833qZzx3aMvL0nAJ9//jl//vOfCQwMZNmyZVd037LUHQqUIiJXyGKxEBAQQEBAAAMGDCAjK4cP/rq63GlIKByp/O5AEt+tWkMjHy88PDzw8PDA09PT/Nvd3V2jM3XMsGHDiIyMZP/+/cydO5cnn3yy1O9RUc1Ed3f3YjvZ/JxhGBw9epR169aRmJhI69atefDBBwkJCSnze5+RkcHOA0fMeyaNvKzCMGmx0uLe6XiE9SzW3q/f/Tg++wOJp0/z29/+ll/84he0atWK3NxcWrVqRd++fQkMDCyzJmunTp3YtGkTCQkJhIWFlflerFYrI0eO5OzZs2zevJlmzZoxefLkYoXdU1JSyMjIoF27dthdbdzQJoCUxNMArFixgvHjx9OiRQtWr15d7rWkblOgFBGpohzHT4sjKmIA23fvw5KbWaIkDRSG1ctDZmUee3p61upWkw2dzWbjrbfeYujQoezevZu///3vPPvss8XazJs3j6VLlwLw17/+laCgoBLnuZIg6XA4OHnyJMeOHePYsWMkJyeXWobHq/PQEmESwMXDmwGDhjB/3lwcDgfnz5/n17/+NQsXLuT22283Rw/LEhAQgJ+fHwcPHiw35BUUFLB06VJOnTqFv78/ycnJ7N+/n+joaLPN8ePHcXFxMQuiBwcHc/DgQVasWMHo0aPx8/NjzZo1Zd5KIPWD/g8kIlJFPnYXrBYqFSqtFvjDE49hd7WRn59PdnY2WVlZpf5d9Ofs2bPm8zk5OZS2ltLV1bVE4Px56Pz5c3a7vdr3nW4obrzxRj755BOmTJnCn/70JzZs2MCIESOw2WysXbuWRYsWYbVaeeGFF/jDH/5Q7NiiILl+/XrOnDlTZpA8f/48x44dM2+lyMvLw8vLi7Zt29K3b198fX05svQ428/kYHX3xK1lO7xu6FeirzYLDO3oz9S7fsP8eXMB2LZtG4sWLcLFxYWEhATc3d3LXbFusVjo1KkT+/fv5/bbby915PTixYssWLCAlJQU7rrrLjp37syKFStYtmwZDoeDvn37AoWBMiQkxPylJzg4mOPHj/Pyyy/j5eXF6tWr6dSp0xV/T6Ru0SpvEZFr4NG5O1h1MKXEgpzLFdXbe2dCyRGlyjIMg5ycnEoF0cufv3xF7+VKG/msKIi6urpet9PyCQkJvP766yxbtoyTJ0/idDoJDg5myJAh/OY3vylWp/LnQbJVq1YMHjyY0NBQLBYL+fn5JCQkmCHy7NmzWCwWWrVqRUBAAJ6enmRmZpKYmEhSUhIFBQUkO735Nu8GyrtXFwxmPRBJ33YtzN1mbr/9dgYMGIDdbiczMxOn00nz5s1p37497du3L/VeyRMnTvDhhx8yefLkEtstnjhxgoULF2Kz2Rg7diwBAQHme16zZg2bNm3ipptuok+fPrz66qvcfPPN9OnTB4ANGzYwbNgwPDw82LBhA126dCnxDh599FESExP56quvruK7JLVBI5QiItfA1AFhrDiQXG6bonp7VVE0Je7h4XFFixcKCgpKhM7Sguj58+c5c+aM+XxpYw42m63UwFlREG0Io6Ft2rTh5Vf/ybMzXimzaL1hGBw7dox169aZQXLixImEhISQlpbGtm3bOH78OPHx8RQUFODt7U3z5s1p2rQp2dnZJCcnc+LECaCw0HhgYCDh4eEEBQXRsmVL+v2YyPOLyy5PdXOjNHav/JzsEz/Vf+zduzd5eXnm/YqxsbEcPXqUPXv2sHnzZux2O23btjUDpqenJ61atcLb25uDBw+agdIwDHbu3MmyZcto1aoV9957b7EtEi0WCzfddBM2m401a9aQmpqKw+Ggbdu2QOEe4iNGjMDFxYXnnnuu1DAJhbUy4+Pjq/z9kpqjQCkicg30CmnCS6Mjy/1B/9LoyFpb4e3i4oKPjw8+Pj6VPsYwDHJzcysdRIse5+bmlno+d3f3Kw6ibm5udWY0tKKi9UVBcv369Zw+fZpWrVoxduxYDMMgJiaGr7/+mvPnz2O1WvH19cXPz49Lly6RmZlJZmYmvr6+BAYG0r9/f4KCgggICCi1uPeE3m3o6O/DzE1xrIhJ+r8yPAbDOrVk6oBQOjZzY9asWTzxxBMAdO7cme7du3P48GGCg4OxWq2Eh4cTHh6OYRicOXOGo0ePcvToUXOnmuDgYNq3b0/r1q2JiYnhlltuweFwsGzZMnbt2kV0dDTdu3fnlVdeYfHixcTHx5ultiZMmMC0adPMUOnm5kbTpk3ZsWMHt956K5mZmUydOpWEhATWrVtX6md9/vz5avouSnXRlLeIyDW0Iz6t2A96qwVuCW9p1tu7HjgcjnLDZ1nhtGgLv8tZrdYSgdNut5cIoD8PomWVurlaFRWt/02/Fvgm7+H06dO0aNGCoKAgzp49y6lTpzAMAzc3NwBzxx1PT0+zSHhRuZ6fb/NYGTn5DtZu2sKWDWv51aPTSEtLY+vWrfz73/9m//79dO3alS+++IKlS5cSGhrKyJEjyz1fZmamGS6PHz9u9rddu3akp6dz/vx57rjjDvLy8rjrrrtITExk+PDhjBw5kqysLD788EMOHjxIdHQ0S5cuZfbs2Vy6dImIiAgeeeQR0tPTK/3e2rRpo1HKekSBUkSkGuTkO8jIKdBe3pVkGAb5+flXdF9odnY2OTk5pZ7Pzc2tzMBZ2vPllWyqzO40YHCnVyz+1swS96u6uroW22UmKCgIPz+/azbyevjwYf74xz+yZMkS87nWrVvzwgsvcOnSJfOzGjduHO3bt6/0eR0OB3FxcXz66afF9uv28fHhxRdfJD09nSeffJLXXnvNPCY7O5thw4bx/fff06dPH4YNG0ZUVBRr1qzh9ddfv6L3pUBZv2jKW0SkGthdbQqSV8BiseDm5oabm1u5q49/zul0kpOTU2YQLVoZn5mZSWpqqvl8eSWbfh40PzrmisUC5Q2/WDDYnd2Yoe7nadasGSEhIQQHBxMUFETTpk2rddq+SZMmtGvXjjlz5uDj48ORI0eYO3cuU6ZMoV27dgwePJjg4GBzx5zKstlsXLx4EcMwcHFxYeLEiZw5c4YnnniC9PR0/Pz8CA4O5rvvvqNDhw60bt0aDw8P3nvvPSIjI9m6dStNmzbl2WefJSgoiMaNG9OjRw9GjBgBwP/7f/+P8M5diep7o37xagAUKEVEpN6yWq14enoWK6RdGZePhpY3NZ+YcpbdZ/2L1X4sjYGVE87GeHifw2q1kpSURHp6OocPH8bd3d0My0WPK/r7ShYwNW7cGF9fX8LDw+nRowcAv//97/nd737Hf//7X44fP859993HnDlzmDRpEk2bNq3wnA6Hg+XLl7Njxw7atWvHsWPHsNvtNGnShO3btwPwwAMP0LZtW/bv38/WrVtxd3c3F/b06dOHLVu2sGXLFux2Oz179sRqtfLVV1/hdDpp2bk/a/Lb8ebaHIy1q0rcjyr1j6a8RUREypCakUuvl1dVuv1fezpo6uVKXl4eubm5Zf5d2v2il3N1dS03cP78uTVr1tCmTRuio6PN511dXenduzeHDh3Cy8uLv/zlL9hstgpD5aVLl1i4cCGnTp3itttuo1u3bvzzn/+kX79+fP/99zz33HMArF27lsGDB5tbkR45coSjR49y+vRp1q1bZy64+eqrrxgxYgQWi4W9e/fyymeb2JLfGqul+IYAly9em9C7TaU/c6kbNEIpIiJShispWm/B4PD+3TTy8aJbt2707duXFi1alNq2oKCgwtB5+d9FjzMzM0t9HeDgwYMcPHiw2HUCAwM5dOgQly5dYvv27XTt2pW33nqLwMBAvLy8SgTU7Oxsdu/ejWEYDB06lBYtWnDu3DlCQkI4cOAAa9asMc/dvXv3wvd92VakgwYN4tKlS9hsNjNQ/uc//+HIkSO0a9eOPL/WbMkvDIs//0yLFjs9v3g/Hf19NFJZzyhQioiIlMHuamNYuH+litb3DvIg2OZPUlISmzZtYtOmTTRp0oTOnTsTERFB8+bNzfYuLi64uLhc8VR9aQzDYOnSpSQkJPDAAw8UC5snT5402zkcDrp168b+/ftJSkoiKCiI7Oxss+2lS5fMcAqwcuXKEtfatm0bUFgC6sMPPyxzBNXhcBQ7LigoiNjYWBafzcCCHwZlT+lbrRZmbopToKxnFChFRETKUdmi9U/e3o2okJs4d+4c27dv58cffyQtLY0NGzawfv16mjdvTmRkJBEREZW6j7E8y5Ytw9PTk0GDBmGxWGjevDl79+6lSZMm5gKgohXeRVq2bMmIESMYPHgws2fP5ty5c0yaNInGjRuzcuVKtm7dSrdu3bjttttwOp3FgumlS5eYN28emZmZADRv3pzOnTsXGz3Ny8sjIyODvLy8Ytc9evQohw8fpsCwcMLZvsL7UR1OgxUxSeTkO7RQpx5RoBQRESnHlRatb9q0KbfeeitDhw4lJiaG7du3c/r0adLT01m/fj1r167F39+fiIgIIiIirmjHoyK//OUv8fb2Zv/+/UDhSu+CggIuXrxoruY+fPgw586dM48p2u3G29ubhx56iNmzZ/Phhx/SuHFjzpw5w2233UavXr3MQGq324tdMzg42HzcqFEjhg4dWmrfsrOzefHFF82vfX19ufPOO9l7JA7jx8qtdncakJFToEBZjyhQioiIVKC03WmsFhjWyb/MovWurq507dqVrl27kpSUxI4dO9i3b5+5wnz9+vWsWbOGgIAAwsPDiYiIoHHjxpXu08GDB4mPjyckJMQMpWlpaWagjImJISYmxmx/xx13mI+9vb257bbb+OSTT7h06RJ33XVXmdsgFmnT5qeFMkWF2ktz9OjRYqvUExMTWbJkCd6NmmAhtMIRSij8bH3siij1ib5bIiIilRAV0oSokCZXVbS+aLp52LBh7Nu3jx07dpCRkYGXlxcOh4N169axevVqAgMDzZHLiupGOp1OJk6cyKJFi2jevDkWi4W0tDRCQ0PJysriv//9L6dOnQJg8uTJdO7c2Tx2//79LFmyhGbNmpGfn8/KlSvNmpllCQ8PNx9ffq+l0+nk9OnTxMXFERcXR0JCQrF7KJs0acITTzxBo0aNODJ3B6tiknGUs8jJZrUwrJO/RifrGZUNEhERqWGGYXDq1Cl27NjBgQMHgMIV2RaLhVOnTuF0OgkODjZHLn19fYsdf+edd/LVV18Bhds4PvDAA6SmptKuXTu8vLyYM2eOucvM5MmTeffdd3F1dcXpdLJ69Wo2b95M586dGTlyJLm5ucyePZucnJxySwrl5uaa0+ChoaHMmzePuLg44uPjycvLw93dnTZt2pCQkEDz5s2ZOnUqgFluCGDNvgSmzNsH5YxSWoBFj/bVopx6RoFSRESkFmVlZbF792527txJWloazZs3JzAwkEuXLhEXF4fD4aBVq1ZEREQQHh6Oj48PUDjK+OWXX7JhwwYOHz5McnIyDocDX19fGjduTOvWrfnnP/9JVFQUUHhv4+eff05sbCzDhg2jT58+5v2SmZmZ5YbK9PR04uLiGDJkCBcvXsTNzY3nn3+eVq1aERoaSlhYGIGBgZw7d4633nqLbt26MXr0aKCwAPq8efPIzc1l1qxZ7LroyeoLzcu9H1V1KOsfBUoREZE6wDAM4uLi2LFjB4cOHcLFxYXw8HAaN27M6dOnOX78OE6nkzZt2hAeHk54eDje3t7m8d9++y1HYxMYO/Eh3n/rDQb07c3gwYMBSElJYf78+eTk5DBmzBjCwsJKXP/yUHnfffdx4cIFYmNjiYuL4/z581gsFj799FMOHToEQGpqKs2aNSt2jq1bt7Jq1SoiIyO56667APjrX//Kn/70JxYsWEBcXBxTp04l4ZKtxP2ot4S3LPN+VKn7FChFRETqmIyMDHbt2sXOnTvJyMggKCiILl26YLVaOXz4MLGxsRiGQZs2bYiIiCDLK4A3VsawIzEXAwsWDAa1bcxjN3fCKzuZL7/8ksaNGzN27NhSF/7k5uaSkJDA4cOH2bNnj3kPZLNmzcwRyJCQEF577TX+/Oc/A7Bu3ToGDRpU7DyffPIJTqeTuLg4pk+fDsDmzZvJyspi06ZNjBs3jvbt25vtr+Z+VKmbFChFRETqKKfTyZEjR9i5c6e5n3bXrl2JiIggNTWVAwcO8O3RjMKtDAHnZfcm2v5vSrmvSwL3dG3BqFGjzNXZBQUFnDp1yhyBPH36NIZh4OvrS6tWrUhISMDpdDJlypRi09+HDx+mY8eOADzzzDO88sor5msFBQW8+uqrDBkyhGeeeYaNGzcSHBzMN998w5dffsnNN99M//79a+aDkxqnQCkiIlIPpKens2PHDnbv3k1WVhYhISF4tI7kjyuSqOgH+YJpvWllzzMD5IkTJygoKMDDw4PQ0FDzT1Fh9PLuqSxaEBQYGEhcXJwZUo8fP87cuXMZOnQoAwcOxDAM/va3v2EYBuHh4YwePdq8Z1MaHgVKERGReqSgoICDBw+yY8cOPjrmyglno3JrO1owCLFdYLDrMVxdXWnTpo0ZIFu2bFlmyCsrVMbHx9O5c2cyMzN56qmn+Mc//gHAihUr+PHHH/nmm2/YuHEj0dHRjBkzhsaNGzNp0iRcXFSpsCFToBQREamHcvIdhE9fTjlbjJssGDzosZsb2oURGRnJDTfcgLu7e4XHlRUq33vvPX7/+9+TmZnJrbfeysiRI1m1ahU7duzg5MmT9OzZk/Hjx+N0OnnkkUfMlenScClQioiI1EOpGbn0enlVpdu/M7wxZ2IPcfLkSWw2G+3btyc8PJwOHTqUGy5LC5Xp6em8/PLLnD9/nu+//96857JDhw5MnTqVgIAADh06xOTJkwkKCroWb1fqOAVKERGReuhKRyh/0fQIbUNa06JFC3NV9+nTp3FxcaF9+/ZERETQvn37UrdVLC1UvvvuuzRt2pQRd97F1p27Wb38G559+g/s2bOHFStWVGo7R2k4FChFRETqqUfn7mDVwZRiBcJ/zma10LeVF5Pa5ZOQkMCZM2dwOp14eHgQEBCAzWYjPT2ds2fP4uLiQocOHcxw6erqap7n56Hyi417+GRnIiccjXAahaG1fxsf/BJ3cNeNXbn55ptr4iOQOkKBUkREpJ7aHp/Gfe9uKXeV98+3MszLy+P06dMkJCSQkJDAqVOnKCgowNXVFR8fH/Ly8sjMzMTV1ZUbbriBiIgI2rVrh4uLixkqt6fbWXepJRacGFgvu5aBAbw0KpKJfUOq861LHaNAKSIiUo/N3ZbA84v3X/VWhg6HgzNnzpgB88SJE+Tl5WGxWHBxcSE/Px9XV1c6dOhA586dOZPvweRP9qL9uOVyCpQiIiL13I74tGu2laHT6SQ5OdkMmPHx8eTk5Jivr81vWzjNXU6gtFktDOvkzzsTel71e5L6RYFSRESkgaiOrQwNw+Ds2bMkJCRw4NARXjjgW27dyyJWC8TMuFVbKl4nVGVURESkgbC72q55gLNYLDRv3pzmzZvT5obOTD9QuVJFTgMycgoUKK8T1oqbiIiIiICP3QVrJXdPtFoK28v1QYFSREREKsXuamNYuD+2ClKlzWrhlvCWGp28jihQioiISKVNHRCGs4Jq6k6nwdQBoTXUI6kLFChFRESk0nqFNOGl0ZFYoMRIpc1qwQK8NDpSJYOuM1rlLSIiIlfsWpYqkvpPgVJERESuWnWUKpL6R4FSRERERKpE91CKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlShQioiIiEiVKFCKiIiISJUoUIqIiIhIlfx/suCjvF1JTd4AAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -68,7 +59,7 @@ "from node2vec import Node2Vec\n", "\n", "G = nx.barbell_graph(m1=7, m2=4)\n", - "draw_graph(G, nx.spring_layout(G))\n", + "draw_graph(G, layout=nx.spring_layout)\n", "\n", "node2vec = Node2Vec(G, dimensions=2)\n", "model = node2vec.fit(window=10)" @@ -76,19 +67,17 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAI/CAYAAAC8tTf3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABQDUlEQVR4nO3deXxc1X3///e5s0gjWyN5lSzJMsbYxiu2kc1m9gBmSxsghPyyENICaZs0JG3TlKQJTbN9kyZNG5Im5JuNhG/IAiRhMxDCWhbvGNt4wdiyJdnyqsXWaGbuvef3h2xjY613Fm2v5+PhR62ZO+ccXabx+3HOuZ9jrLUCAABA3zn9PQAAAIDBiiAFAAAQEEEKAAAgIIIUAABAQAQpAACAgAhSAAAAAYX7o9OxY8faU045pT+6BgAA6JOVK1fus9aO6+y9fglSp5xyilasWNEfXQMAAPSJMaa2q/dY2gMAAAiIIAUAABAQQQoAACAgghQAAEBABCkAAICACFIAAAABEaQAAAAC6pc6UsOd19KixJo1Sry+Tm3Ll8lt3CPrujLhsMJl41W0cJFic2YrNm+eQvF4fw8XAAB0gSCVR4nX1+nAT3+q1qeflolE5Le3S657wjWpbdvUtmKlnMJC2XRaxZdeqtG33KLYnNn9NGoAANAVglQepHfvVv0/fUbt616XTaYk35dNJrv+gOvKP3RIktSydKlan/mzYrPnqOKb31CkvDxPowYAAD1hj1QOWWt18IEHtPXKq5RYvVo20S75ft8a8X3ZRLvaVq/W1iuv0sEHHpC1NjcDBgAAfcKMVI5Ya9X41a+p6Xe/k00kMm/QdWVdV41f/oqSGzep7M5/kTEm83YBAEBgzEjlQNZD1PFtJxJq+t3v1Pi1r2e1XQAA0HfMSGVTokmqW66m3/xaTfe/JJvOzRKcTSTU9NvfqmD6NI26/vqc9AEAAHpGkMqG+lXSS3dLmx5Vur1Ajb+PybrBJvs+09CgV9oOK2GtxoZC+qvRY3RDaelJ19lEQo1f+apGLl6sSFlZhr8AAAAIgiCVieZ66cFbpYbVktsuWV/1z42Q9YI3eeuYMfpyebmijqO3kkndvHOHZhQWalZh4UnX2lRKDf/4T5r0i3sz+CUAAEBQ7JEKwlpp1S+lu2ukna9K6TbJ+krsj6j9QESywW/r1IICRZ2OzxsjGUk7UqnOL3ZdJda9rsTr6wL3BwAAgmNGqq+slZZ+Vlp1b0eAOs7+TSNk/cyfpPtS4279vrlZ7dZqRkGBLhg58th7acfRwRGFao5FdWBkTO2RsPS1f1VBWZlGjBqtiTPnqHzKVE2YdroKR4zsphcAAJApglRfdBOivJTRobqYZDMPUl8oK9fnxpdpTSKh5Yk2RY1RU6xA28aVqLFkhBxr5RlH1jnSl5fW4YY6HWioU93G9YpEC+S5rk5beLZqrnmPyqdMzXhMAADgZASpvlh9X6chSpIS+6Iyjs3KjJQkhYzRmUVF+v2hVn097GvRaRXyZCTHqLuSntbzlEp0jG/zyy9q68pXVT5lqq76+D+qeMzYrIwNAAB0YI9UbzXXS4//U6chSpISByLyvc5D1H0HD+q927frjM2bdOeuhl51ZyXtHFWsupIRqkul5DmO5PQtpFnry00m1bDpDf30Ux/Tumeeoio6AABZRJDqrQdvlbwuNn1LattT0OWy3vhwWLePGaPr4iXddrHfdfVYS4sO+b7WTRitB0NWq3bu0mll4zIauu95Sifb9fRPf6Bnf/4jwhQAAFnC0l5v1K/sKHHgu11e4ia6zqSXFRdLkta3t6vR7Xphzki6v+mgvrC3Ud62rRo1okh/MW+mZlVmp06Um0xq7Z+fkIx08c23ZaVNAACGM4JUb7x0d0edqG5kujcqHY7Jjp6sO2acr91F+yVlUIyqG24yqbVPP6Fx1ZM1++LLctIHAADDBUGqJ4kmadNjku1ui7dknGDLZS3F1dpRdan2jZ0r6zUrcfhXChKivv/My9qxv0nOkX1UJbFC/fOVF3V6rZtM6s8/+6EmnTFfxaPZgA4AQFAEqZ7ULZdC0R5npMIxX6nW3jfbXlCqDaffrJb4JPkmLDkhJduekbp9Jq9771kwS2edWt2ra710Wo999z/0vi9y+DEAAEERpHpSv0pKdf6k3vGKxifVtjfaYx0pK6mh/GxtnnqjrAnJOh3/CXx3t6y7W5kEqb7wPU+7t27R7q1bqDMFAEBAPLXXk9oXJdv1JvOjYqPTckKdL++51irp+/Jk1TSyWusn/6XSJnwsREmS275Cme6Leuz1TfrC75/U3U+/pDf37O/xei+V1spHH8qoTwAAhjNmpHrSuqtXl8XGprrccP6D/fv0/f1Hg80BPfezv9SVZ35YV9fcLEmyfrv89FZ1zFcFc/Xc01UWL1bYMVq9c5d++uJyfery8zV25IguP2Otry3LXlH74UMcJwMAQAAEqZ546V5dFopajaxKqHXnycfEfHzsOF03+1ptnnqj/FDBSZ/1vV2SQspkRmrSmFHH/r7wlCqt2dGgjbv2aPHUyd2POxzWri2bNHnemYH7BgBguGJpryehSK8vHXP64U6f3msvKO0yREkd+6Ok7gPb3tbD+uzvHtf/e2V1r8fTm7qb6VRSu7du7nWbAADgbQSpnhRP6PWlsdFpxUanJXPihvENp98sa0Jdfs5369TTst5Dq9Zp4ujOK6MnUmlt2r1Xac+T5/taVVuvt/Ye0OkTeq6Ibj1POzes6/E6AABwMpb2ejJpsVT7UrdVzY9Xcc5BbX1s/LH96S3F1WqJTzphY/lJ/EPdtrl6R4MKIxFNGjNK+w8dPul9z/f1+OubtLf1kIwxGl88Urecd6bGFfdu39Phgz1vTAcAACcjSPWkcoEUKZKSLb26PFLkq2xBsxpXlsh6jnZUXdpRJ6obtpuSB+3ptJ5Yt1kfu+gsvfrWzk6vGVlYoDsuW9yr8XXGS/cuJAIAgBOxtNeTqoXdHlbcmdLJCZVOaZMbLdC+sXMlp+tlPUky3fxnWLpusxZNnqjSolifxtAXoQh5GgCAIAhSPYmVStOvkkzvb5UxUtn8FnnTK2V6UYNKTudLcPUHm7WlcZ8umNb9k3eZGjFqTE7bBwBgqGIqojfO/YS0eamU7rnC+VHGSKnqCfIPRXu81glXyetkw/nWvQd04HBCX3n0z5KkpOvKt1aNT76gT11+fp9+hS7HGQpp4szZWWkLAIDhhiDVG5ULpIoF0s5Xer3pXJIaUrNle9gfJUlOuFyeIpJOXEI8+9RqzZv49lODz216SwfaErp+QfaCTyRaoPIp07LWHgAAwwlLe7113T0dhxf3wWF/dK+uc0IT1Fkxzmg4pHis8NifaDisiONoZGHn9aiC8FxXE6ZOz1p7AAAMJwSp3iqplK78ZscTfL3k93LCzziFciJTJHV/4PEVs6fp/zt7fq/777Ff42jqorM5HgYAgIAIUn0x/wPSgg/3Okw56v0yYLiwRh3HxORPKBpRzTXX5bVPAACGEoJUXxgjLfl6r8PUCOdAr5t2wuUy4XLl6z+JEwqpfMpUlZ16Wl76AwBgKCJI9dXRMHXlN6XoCKmbiuWV0XUyfZiVio64UvmalQpFIrrqE/+Yl74AABiqCFJBGCMt+KD0d8uliWd3zE51UmdqfHSrIibZ+2adYoVjFyvXD1OGCwp0yUduV/HosTntBwCAoY4glYmSSumWR6WPPCrNuk4KF0oF8WOzVOWRjfJspE9NhgpmKVQwR7kKU+GCAs299ArNvviynLQPAMBwQh2pbKhcIN3wYynRJNWtkBpWSdtfVEHrLk1OrNPW1jNke7lkZ4xROHaRJMlLvi71YWmwJ0dD1EUfvjVrbQIAMJwZa23PV2VZTU2NXbFiRd777Q97alv00LdWyU11fTBxZ6y18pLr5SaeUUeNqb59/nhOKKRQJKJLPnI7M1EAAPSRMWaltbams/eYkcqx8ZPiGj8prt1bm+X7vQ+txhiFC2crFJ2k1OHHZd3d6ghUfWnDUSgaUfmUqbrqE//InigAALKMIJUHl310pu774ivyU32f/TNOsQqKb5Tv7pbbvlJ++k11PNmXVuehylG0sFCe52rqorN15tXvUfmUqRn+BgAAoDMEqTwYOapQF7xvmp7/9eY+L/Ed5YTLFR15tazfLt/bJd9tlO/ulPzDsvJkFJIJjdSUM+dpzsVnasLU6VQsBwAgxwhSeXL6uRO0r/6QNrzYEDhMSR3HyYScyQpFJks6+9jr4aijmYsrdP6NHEAMAEC+UP4gT4wxWvzeqZq5uELhaHZv+9EQtfi9LOEBAJBPzEjl0dEwNbZypF74zRZ5ab9PG9DfyXGMQhFH5984VTPOq8jiSAEAQG8QpPLMGKMZ51Vo4szReuonG7SntkVe2ldfqlAYI4UijsZPiuuyj87SyFEFuRswAADoEkGqn4wcVaj3/MMC7alt0Zqnduit1/YpFDJKpzzZTrZQGUeKREPyPKtTzxireZdVa/ykeP4HDgAAjiFI9bPxk+K6/K9nK9mW1u5tLdqzvUX1m5vU1pyU5/oKhR0VlRSoclqpxp8SV/nkuAqK+nbsDAAAyA2C1ABRUBTRpFljNGnWGC28ur9HAwAAeoOn9gAAAAIiSAEAAAQ0JJb2/ISr5I4WpXa2KrWtWV5LStazMiGjUDyq6OQSRScWq6A6Lic2JH5lAAAwAAzqVJGqa1Xr8/VKbNgvEzKyaU96xxNv7t6EktuaZSIhWc8qNnOMii+oVLSquH8GDQAAhoxBGaTc5qQO3L9R6bpDsq4vWcm63XzAl2zSkyQlXt+r9jf2K1JVrNE3TVe4hBpMAAAgmEG1R8paq0PLd6vxWyuUqm2VTXeEqL41Itm0r1Rtixq/tUKHlu+W7Us1TAAAgCMGzYyUtVZNj7yltmW7OwJUpnwrm7Jq/uNWpXcfVuk1p8oYo5ZUi17b85rW71uv5Y3Ltbdtr9J+WhEnonFF47SwbKFmjZ2lM8afoXiUgpgAAAxngyJIZT1EHd922lfbst060L5fPxj/Wz2z8xlFnIja3Xa571gv3NayTasaV6kwXKi0n9bFEy/WR2Z9RLPGzsrqmAAAwOAwKILU4RWNOQlRR9m0L7uqRX55i5KlSSW9ZJfXutbVofQhSdKTtU/q2Z3PavbY2fra+V9T+YjynIwPAAAMTAN+j5TbnFTzw1szClF/2PC0Lv7RBzXt25frvB/epFd3vnbSNYW2QB/bfYPGpEt63a5vfbV77VqzZ43e/ft366EtD7HfCgCAYWTAz0gduH+jrBs8nDy/bbm+9twP9P1336V5FTPUeGh/l9eGbVifabhF/zzpO33qw7WuXNfVV5d9VZsObtI/L/xnGWMCjxkAAAwOA3pGKrWzVem6Q5IfPEh9+8Wf6I5zb9aCyllyjKMJxeM0oXhcp9dGFNa0xCRNTVQH6qvdbdeDWx7UN5Z/I/B4AQDA4DGgg1TrC/UddaIC8nxPa3dv0v5Ekxb/8P1a+L3r9fmn/lOJdNd7oCI2rPccuDRwnwk3od9t+Z0e2vJQ4DYAAMDgkHGQMsYUGmOWGWNeM8asN8b8WzYG5idcJTbs73udqOPsPXxQad/Vo5ue0wMf+K6euOXHWt+4Rf/98r1dfiakkM5tPUMjvNiJ40n7qvtxnTb9wyZt+NgGvfmvb6p1bWunbbS77fr6sq+r8XBj8MEDAIABLxszUklJl1hrz5A0T9ISY8zZGTe6o0UmlNk+o8JIR9XyWxZcp7KRYzW6qFS3LrxRz2x9pdvPpY2r0xOTT3zRlyKjI5r82cma8f0ZGn/9eO38/k6l9qY6bSPlpfTZFz6b0fgBAMDAlnGQsh0OHfkxcuRPxo+upXa2dpydl4HSwmJNKB53wsZvo57DWaEf1bR37JNyChyVvadM0XFRGccoPi+uyNiIEtsTnbbhWlfr9q3T+n3rM/odAADAwJWVPVLGmJAxZo2kPZKesta+mmmbqW3NJx1AHMSNc67ST1c+qH2HD6qpvVU/WvFbXTrlnG4/E1ZYc9qmdXuN2+wqtTulwsrCLq9J+Sn9fMPPA40bAAAMfFkpf2Ct9STNM8aUSnrIGDPbWrvu+GuMMbdJuk2Sqqt7firOa+l8yayvPnnuzTqQaNaFP/qACsJRXXP6xfrEuR/q8XNj3K7rSVnXaucPd6p0cakKKro+9Ni3vv68489qSbVwnAwAAENQVutIWWubjDHPSFoiad073rtH0j2SVFNT0+PSn/WyU9gyEgrrq5d/Wl+9/NN9+5zt/NZY36runjqZsFHFByt6bseJaO3etVpcubhP/QMAgIEvG0/tjTsyEyVjTEzSZZI2ZtxuhhvNM5U27kmvWWtV/5N6uS2uqj9eLRPueYztbrvW7VvX43UAAGDwycYeqQmSnjHGrJW0XB17pB7JtNFQPJrxwDKxP9x80msNP29QsiGp6juq5UR7d+tc62rF7hXZHh4AABgAMl7as9aulTQ/C2M5QXRyiZJZ2nDeV65cvV60+YTXUvtSOvjsQclIb3zsDUmSCRtVfrRSpeeWdtvensSeXA0VAAD0owF71l50YrFMJCSbzKwEQhDtTkqbYztOHM/YqErOKpG1VpUfrVT7jnbV/metCid1/dTeUWkvnauhAgCAfjRgj4gpqI5nbcN5X0VsWBtj2054zU/6alnRorLryhQqDGnEtBEqnlespv9t6rm9UCRHIwUAAP1pwAYpJxZWbOYY9aJ+ZlZ58vRS8Ws6HDqx0GZyd1IKSQXlb5c7iFXHlKzv+ty+o8bHxmd9nAAAoP8N2CAlScUXVMqE8zvEtHH14Og/nfS63+4rVBg64TUn5shr737p0VpHc8YsyOoYAQDAwDCgg1S0qliRqmLJyc+0VFquNsdq9WZs50nvOYUnhyY/cXK4eifjRxXxei5ACgAABp8BHaQkafRN03tVrykbXOPqGxU/7fS9gvICyTuyxHdE+852FVR2XdlckqxxdbilKqvjBAAAA8OAD1LhkgKVXDtFJpLboSZMUv9T9lvtj5xcP0rqOLQ4fmZcex7aIz/p6/CWw2pZ3aLS80q7bNNaI7d1llZvb8/RqAEAQH8a8EFKkkbUlKloUXnOwlTCJLW09EU9Nerlbq+b8OEJ8lO+3vjEG6r7nzpVfLii20OLZcNKHThfjS0EKQAAhqIBW0fqeMYYlV5zqiSpbdlu2XT2qnQeDVH3lD3Q47XhkWFN+uSkXrVrfUdeokp+e5XSRf1TxgEAAOTWoAhS0tthKlI+Qs0Pb5V1reQHDyhpuXKNq/8p+22PM1GB2LDaG26SJEX6+dxAAACQG4MmSEkdYWrkwnIVThulA/dvUrquVdb1pT7kKU++0iatzbFafaPip13uicqE9SNqb7xW1i2RJJXFe65+DgAABp9BFaSOCpcUaPztc5Wqa1XrC/VKrN8vEzayKa/Ts/l8SW2yikh6Xq4eHPVnbRu3VMbJ/tEt1o8odXCR3OaFHWN1jM4+dUzW+wEAAP1vUAapo6JVxRrz/tPlJ1yldrQoVXdIybea5LWkZD0rEzIKxaOqj4f1nXX1WpFO6ZAkHThXBZEDipQuy2qYOhqiUnuuOfZaLBrS3KqSrPUBAAAGjkEdpI5yYmEVTh+twumjpUtPLn4ZTaT18uu1ersClFGy8Rp57eUqLH9YkivjBN/Abn2nY09U47XHZqKOSrm+5lePCtw2AAAYuAZF+YNMlcQiunxm2TsKpBu5zQt1eOs/yEtMkvUjsrZvm8KtNbJ+RF5ikg6/9Q8nhSjHSJfPKlNJjEOLAQAYiobEjFRv3HrBqfrTG3uUSJ94zIt1S5TYcbucwjpFR7+gcPF6yYYlJyVjTp6lstaR/KhkXLmts5Q6cL789s4rlxeEQ7rt/Ck5+X0AAED/GzZBam5VqeZWlWhl7UG5nZRN8Nur1N7wfslJKBTboVBhnUJFb8lEWmSMJ2tDsum4vLZT5bVXyUtUS36sy/7CjtHcqhLNYX8UAABD1rAJUpL0nZvm6dJvPSc35XV9kR+Td3i6vMPTpf2XBu4rGnb0XzfND/x5AAAw8A2LPVJHTSiJ6a5rZykWCeW0n1gkpLuunaXyEupHAQAwlA2rICVJ762p0k2LJuYsTMUiIb1/0UTduHBiTtoHAAADx7ALUsYYfeGamTkJU0dD1L9eMzOr7QIAgIFpWO2ROupomJpRHtddD69XyvU73YDeW2HHKBp2dNe1s5iJAgBgGBmWQUrqCFM3Lpyo86eN1R33r9HaumYlXa9P5yA7pqPEwdyqEv3XTfPZEwUAwDAzbIPUURNKYvr17edobV2TfvTCW3pyfaOiYUeJlNfpLFXYMYpFQ0q5vi6fVaZbzz9Vc6tK8z9wAADQ74Z9kDpqblWpvvv+BWpOpLV6x0GtrWvWK2/tV2NLu9KeVSRkVBYv1NmnjtHcqhLNrx5FxXIAAIY5Y23wvUFB1dTU2BUrVuS9XwAAgL4yxqy01tZ09t6we2oPAAAgWwhSAAAAARGkAAAAAiJIAQAABESQAgAACIggBQAAEBBBCgAAICCCFAAAQEAEKQAAgIAIUgAAAAERpAAAAAIiSAEAAAREkAIAAAiIIAUAABAQQQoAACAgghQAAEBABCkAAICACFIAAAABEaQAAAACIkgBAAAERJACAAAIiCAFAAAQEEEKAAAgIIIUAABAQAQpAACAgAhSAAAAARGkAAAAAiJIAQAABESQAgAACIggBQAAEBBBCgAAICCCFAAAQEAEKQAAgIAIUgAAAAERpAAAAAIiSAEAAAREkAIAAAiIIAUAABAQQQoAACAgghQAAEBABCkAAICACFIAAAABEaQAAAACIkgBAAAERJACAAAIiCAFAAAQEEEKAAAgIIIUAABAQAQpAACAgAhSAAAAARGkAAAAAiJIAQAABESQAgAACIggBQAAEBBBCgAAICCCFAAAQEAEKQAAgIAIUgAAAAERpAAAAAIiSAEAAAREkAIAAAiIIAUAABAQQQoAACAgghQAAEBABCkAAICACFIAAAABEaQAAAACIkgBAAAERJACAAAIiCAFAAAQEEEKAAAgIIIUAABAQAQpAACAgAhSAAAAAWUcpIwxE40xzxhjNhhj1htjPpmNgQEAAAx04Sy04Ur6B2vtKmNMsaSVxpinrLUbstA2AADAgJXxjJS1dpe1dtWRv7dKekNSZabtAgAADHRZ3SNljDlF0nxJr2azXQAAgIEoa0HKGDNS0gOS7rDWtnTy/m3GmBXGmBV79+7NVrcAAAD9JitByhgTUUeIus9a+2Bn11hr77HW1lhra8aNG5eNbgEAAPpVNp7aM5J+LOkNa+23Mx8SAADA4JCNGanzJH1I0iXGmDVH/lyVhXYBAAAGtIzLH1hrX5RksjAWAACAQYXK5gAAAAERpAAAAAIiSAEAAAREkAIAAAiIIAUAABAQQQoAACAgghQAAEBABCkAAICACFIAAAABEaQAAAACIkgBAAAERJACAAAIiCAFAAAQEEEKAAAgIIIUAABAQAQpAACAgAhSAAAAARGkAAAAAiJIAQAABESQAgAACIggBQAAEBBBCgAAICCCFAAAQEAEKQAAgIAIUgAAAAERpAAAAAIiSAEAAAREkAIAAAiIIAUAABAQQQoAACAgghQAAEBABCkAAICACFIAAAABEaQAAAACIkgBAAAERJACAAAIiCAFAAAQEEEKAAAgIIIUAABAQAQpAACAgAhSAAAAARGkAAAAAgr39wAGokQiobq6OtXX16u2tlatra3yPE+hUEjFxcWaNGmSKisrVVVVpVgs1t/DBQAA/YQgdZz6+nq99NJL2rRpk0KhkNLptHzfP+Gaffv2qba2VpFIRJ7nafr06Tr33HNVWVnZT6MGAAD9hSAlqbm5WQ8++KAaGhrkuq6stXJdt8vrfd9XMpmUJG3YsEGbN29WRUWFrrvuOpWUlORr2AAAoJ8N6z1S1lqtWrVKd999t3bu3Kl0Oi1rbZ/bSKfT2rlzp+6++26tWrWqz20AAIDBadjOSFlrtXTpUq1atUrpdDrj9nzfl+/7evzxx9XY2KglS5bIGJOFkQIAgIFqWM5IZTtEHS+dTmvVqlV64oknstouAAAYeIZlkFq9enVOQtRR6XRaK1eu1KpVq3LSPgAAGBiG3dJec3OzHn/88UAh6qtf/eoJP7uuq5qaGl111VUnXZtOp7V06VKddtppisfjgccLAAAGrmEXpB588EF5nhfos3feeeexv6dSKf3Hf/yHZs2a1eX1ruvqgQce0C233BKoPwAAMLANq6W9+vp6NTQ0nFQbKogNGzZoxIgRqq6u7vIa3/fV0NCg+vr6jPsDAAADz7AKUi+99FK39aH64rXXXtMZZ5zR45N5ruvq5ZdfzkqfAABgYBk2QSqRSGjTpk1ZqfHU1NSk2tpanXHGGT1ea63Vxo0blUgkMu4XAAAMLMMmSNXV1SkUCmWlrbVr16q6ulqjRo3q1fWhUEh1dXVZ6RsAAAwcwyZI1dfXK5VKZaWto8t6vZVOp9XQ0JCVvgEAwMAxbIJUbW1tVpb1du7cqdbWVs2cObPXn/F9X9u3b8+4bwAAMLAMmyDV2tqalXbWrFmjGTNmqKCgoF/6BwAAA8ewqSMVtHbUO1177bX92j8AABg4hs2MVLY2mg/W/gEAQPYNmyBVXFw8rPsHAADZN2yC1KRJk+Q4/fPrOo6jU045pV/6BgAAuTNsglRlZaUikUi/9B2JRFRRUdEvfQMAgNwZNkGqqqqq3zZ8e56nqqqqfukbAADkzrAJUrFYTNOnT+/xbLxsM8bo9NNPVywWy2u/AAAg94ZNkJKkc889V+Fwfis+hMNhnXvuuXntEwAA5MewClKVlZWqqKjI26Zzx3FUUVHB/igAAIaoYRWkJOm6667LW02ncDis66+/Pi99AQCA/Bt2QaqkpERXXnllzp/gi0QiWrJkieLxeE77AQAA/WfYBSlJmj9/vhYsWJCzMBWJRHTmmWdqwYIFOWkfAAAMDMMySBljtGTJkpyEqaMh6oorrshquwAAYOAZNocWv9PRMFVWVqalS5fKdV35vh+4PcdxFA6HjwU0AAAw9A3bICV1hKkFCxZoypQpevDBB9XQ0CDXdWWt7VMb4XBYFRUVuv7669kTBQDAMDKsg9RRJSUluuWWW1RfX6+XX35ZGzduVCgUUjqd7nSWynEcRSIReZ6n008/Xeecc44qKyv7YeQAAKA/EaSOU1lZqRtuuEGJREJ1dXVqaGjQ9u3b1draKs/zFAqFVFxcrFNOOUUVFRWqqqqiYjkAAMOY6csyVrbU1NTYFStW5L1fAACAvjLGrLTW1nT23rB8ag8AACAbCFIAAAABEaQAAAACIkgBAAAERJACAAAIiCAFAAAQEEEKAAAgIIIUAABAQAQpAACAgAhSAAAAARGkAAAAAiJIAQAABESQAgAACCjc3wPAwJFOt6i5ZZVaWl5XU9OrSiYb5ftpOU5EBQVlKi09S/H4HJXEFygSiff3cAEA6HcEKailZa1qd/xY+/Y9JWMi8rx2Se4J17S1vaWDB5crFCqUtWmNHXuZJlX/leLxuf0zaAAABgCC1DDW3r5L6zd8Wi0tr8v3k5J8ScluPuHK8w5JkvbseUz79j2teHyOZs38tgoLJ+RjyAAADCjskRqGrLVqaPitXnnlMjU3r5LvJ9QRovrCl+8n1Ny8Sq+8crkaGn4ra20uhgsAwIDFjNQwY63V5i1fVkPDr48EqEzbc+VZV5s2/5taD23UtKmflzEmCyMFAGDgY0ZqGMl2iDqe7yfU0PBrbdny5ay2CwDAQEaQGkZ27fpdTkLUUb6fUH3Dr9XQ8NuctA8AwEDD0t4w0d6+S5s3fylwiNq9O63//q992rAhqUjE6IILRuhv/26MQqETl/F8P6HNW76k0WPOV2FBeTaGDgDAgMWM1DCxfsOn5dtU4M//93/tU2lpSL/5bbV+eE+lXlub0B//0NLptb6f0vr1nwrcFwAAgwVBahhoaVmrlpbXZa3b88Vd2L3b1YUXjVQ06mj06LAWLizS9u2dBzNrXbW0vK6WlrWB+wMAYDAgSA0DtTv+75E6UcFdd12JnnnmkNrbfe3b62r5sjYtXFTU5fW+n9SOHT/JqE8AAAa6rAQpY8xPjDF7jDHrstEesiedbtG+fX9S3+tEnWjO3ELVbk/p3ddu10037dC0aQU677yug5Tka+++J5VOd778BwDAUJCtGamfSVqSpbaQRc0tq2RMJKM2fN/qXz67W4vPH6FHHp2sBx6cpNZDvn50z4FuP2dMVC0tqzPqGwCAgSwrQcpa+7yk7v9VRb9oaXldnpdZuYPWVl979rj6i78oUTRqVFIS0pIrirVsWVu3n/O8hFpaXs+obwAABjL2SA1xTU2vSvIyaqOkJKTyCWE9/HCLPM/q0CFPTz7ZqsmnRnv4pKuDTa9k1DcAAANZ3oKUMeY2Y8wKY8yKvXv35qvbYS+ZbMxKO3fdVably9t0/XW1+vCHdioUNvrbvxnTi/73ZKV/AAAGorwV5LTW3iPpHkmqqanhdNs88f10Vto57bQCffvbFQH6D167CgCAgY6lvSHOcTLbaJ55/z0t/wEAMHhlq/zBryS9LGm6MabOGPNX2WgXmSsoKOvn/sf3a/8AAORSVpb2rLXvz0Y7yL7S0rN08OByScGrmgcX1qjSs/uhXwAA8oOlvSEuHp+jUKiwX/oOhWKKx+f0S98AAOQDQWqIK4kvkLXZ2XDeV9amFI/P75e+AQDIB4LUEBeJxDV27LuU///UjsaNvVyRSDzP/QIAkD8EqWFgUvVfy3EK8tqn4xSouppnDgAAQxtBahiIx+cqHp8jY/JTNsyYsOLxOeyPAgAMeQSpYWLWzG/LMfmp6eQ4Uc2a9Z956QsAgP5EkBomCgsnaNq0L8hxYjntx3Fimjb1CyosKM9pPwAADAQEqWFkwoQbVFHxvpyFKceJqbLifaqoeG9O2gcAYKAhSA0jxhhNm/r5nISpoyFq6tTPZ7VdAAAGsrwdWoyB4WiYKh55ujZv+ZJ8PyVrg1c9NyYsx4lq2tQvMBMFABh2mJEahowxqqh4r84+60mVlCw4MjvV16+CI8eJqaRkgc4++ylCFABgWGJGahgrLJygMxf8Si0ta7Vjx0+0d9+TMiYqz0uo87P5wgqFYrI2pXFjL1d19UcVj8/N97ABABgwCFJQPD5Xs2d/R+l0i1paVqul5XUdbHpFyeQe+X5KjhNVQcF4jSo9+0h9qPlULAcAQAQpHCcSiWvMmAs1ZsyFmqyP9/dwAAAY8NgjBQAAEBBBCgAAICCCFAAAQEAEKQAAgIAIUgAAAAERpAAAAAIiSAEAAAREkAIAAAiIIAUAABAQQQoAACAgghQAAEBABCkAAICACFIAAAABEaQAAAACIkgBAAAERJACAAAIiCAFAAAQEEEKAAAgIIIUAABAQAQpAACAgAhSAAAAARGkAAAAAiJIAQAABESQAgAACIggBQAAEBBBCgAAICCCFAAAQEAEKQAAgIAIUgAAAAERpAAAAAIK9/cAhovmtKsVLW1a09Kml5sOaXcqrbRvFXGMyqMRnVM6UvPiRaqJF6kkwn8WAAAGA/7FzrE1LW36wc49enxfs6LGKOH5ct9xzZttSb3SdEixkKOUtbpybIk+NnG85sWL+mXMAACgdwhSOdLQntLfvVGrNS1tSvpWvqSkbJfXu5JaPV+S9Mc9TXpiX7PmxYv0vRmTVFEYzc+gAQBAn7BHKsustfpVw34tfnWjljcfVuJIiOoLX1LCt1refFiLX92oXzXsl7VdhzAAANA/mJHKImutvvBmvX7ZsF8JP/Pg41rJtb7u3FKnDYcT+tJplTLGZGGkAAAgG5iRypKjIeq+hgNZCVHHS/hW9zUc0BffrM9quwAAIDMEqSy5f9cB/bJhv9r8vi7k9U6b7+sXDfv1q4b9OWkfAAD0HUEqCxraU/rclvpAM1Fu7Vs68OnbtOfa87Xvg+9W+wt/7vLahG/1+TfrtSuZymS4AAAgSwhSWfB3b9QqZfs+E2U9V03/+ikVnHO+xv3+WcU//Xk1f+1zcnfWdvmZpO/rbzd0/T4AAMgfglSGVh8psukG2Bbl7dguf99eFd3wQZlQSNEFixSdNU/tTz3S5Wdc21Gbak1LWwajBgAA2UCQytAPdu5RMquby63cbVu7vSLpW/1w554s9gkAAIIgSGWgOe1q6b7mPteJOio0cZKcUaPV9uufy7ppJZe/rNRrK2WT7d1+zpf02L5mNaffWSMdAADkE0EqAyta2hTNoK6TCUdU8qVvK/nKC9p7w2Vq++0vVHjR5XLGje/xs1FjtJLlPQAA+hUFOTOwpqVNCS+zcgeRKdM0+js/PvbzgY/frMIrru3xcwnP15rWNl0yJp5R/wAAIDhmpDLwctOhkw4g7qv01s2yqaRse0KHf32vvAP7FLvi3T1+zpX0UtOhDHsHAACZYEYqA7tT6YzbaH/qUSUee0hyXUXmzteob/6PTLR3hxQ3JjPvHwAABEeQykA6C0/rFX/sUyr+2KcCfTaV5aNoAABA37C0l4GI078HCEf7uX8AAIY7glQGyqORfu2/rKB/+wcAYLgjSGXgnNKR/bY2GpZ0bunIfuodAABIBKmMzIsXKRbqn1sYCzmaV1zUL30DAIAOBKkM1MSLlLL9s+E7Za3OjBOkAADoTwSpDJREwloytiTvN9GRdNXYEpVEeOgSAID+RJDK0N9MHK+CPD89V+AYfay652NkAABAbhGkMjQvXqR58SKF85SlwqajzzPYHwUAQL8jSGXB92ZMUtTk51YWOI6+P3NSXvoCAADdI0hlQUVhVF+ZWqlYjpf4Yo7Rl0+r1ISC3h0hAwAAcosglSU3TRitD1aMUZGTm1ta5Dj6UMUYvb9iTE7aBwAAfUeQyhJjjL50WqU+UDE66zNTMcfogxWj9W+nVWa1XQAAkBmen8+io2Fq5oiYPv9mvZK+LzeDMlNh07En6sunVTITBQDAAMSMVJYZY/T+ijF6YdHpWlgyQjHH9PkmO+qYhVpYMkIvnnU6IQoAgAGKGakcqSiM6qH5U7WmpU0/3LlHj+1rVtQYJTxfbifXh9Vx7EvKWl01tkS3TxyveVQuBwBgQCNI5di8eJH+Z9Ypak67WtnSpjWtbXqp6ZAak2mlfKuoY1RWENG5pSM1r7hIZ8aLqFgOAMAgwb/YeVISCeuSMXFdMiauT/f3YAAAQFawRwoAACAgghQAAEBABCkAAICACFIAAAABEaQAAAACIkgBAAAERJACAAAIiCAFAAAQEEEKAAAgIIIUAABAQBwRg2GlOZHWqh0HtXZns17dtl+NLe1Ke1aRkFFZvFBnTR6juRNLtKB6lEpikf4eLgBggCNIYVhYW9ekHz3/lp7c0KhoyFEi7cn17QnXbN17WMu2HVAsElLK83X5zDLdesGpmltV2j+DBgAMeAQpDGm7mhO64/41WlvXrKTrybdS0vW7vN71rVqTriTp0dd36U9v7NHcqhJ956Z5mlASy9ewAQCDBHukMCRZa/Wb5Tt16bee08rag0qkO0JUX/hWSqQ9raw9qEu/9Zx+s3ynrO1jIwCAIY0ZKQw51lp96ZENun/ZTiXSXsbtub6Vm/L0xT+u1xu7W/SFa2bKGJOFkQIABjtmpDCkZDtEHS+R9nT/sp3690c2ZLVdAMDgRZDCkPLbFXU5CVFHJdKefrVsp36zfGdO2gcADC4s7WHI2NWc0F0Prw8UolpWPqzD655Wau92jZhxocZe/alj7yW2r9GBp34gr2WvohXTNPaqT+muh6ULpo1TeUlhNn8FAMAgw4wUhow77l+jVDdP5HUnPHKMSs55n0bOueyE1722Zu196KsqPf+DmvjJX6mgfKr2/uH/KOX6+uT9q7MxbADAIEaQwpDw2s4mra1rPqk2VG8VTT9XRdPOkROLn/B62+aXFR1brRGnL5YJR1Vy3v+n9N5tSuzdobV1zVpb15SF0QMABiuCFIaE//vCW0q62d8Xld5Xq8j4ycd+dqKFCpeWK7Vvh5Kupx+98FbW+wQADB5ZCVLGmCXGmE3GmDeNMZ/NRptAbzUn0npyQ2Of60T1hp9ql1Mw4oTXnIIRsqmEfCs9ub5RzYl09jsGAAwKGQcpY0xI0vckXSlppqT3G2NmZtou0FurdhxUNJSbyVUnWig/1XbCa36yTSbaUeU8Gna0esfBnPQNABj4svGvzyJJb1pr37LWpiTdL+kvstAu0CtrdzarLe3mpO3I2ElK79l27Gc/1S63abeiY6slSYmUp7V1zTnpGwAw8GUjSFVKOr6oTt2R14C8eHXbfnnBHtY7xvqerJuSrCdZX9ZNyfqeiqado9TeWh3e9L+ybkrNL/1KkXGnKDJmoqSOquevvLU/C78FAGAwylsdKWPMbZJuk6Tq6up8dYthoLGlPeM2ml+6X83/+6tjPx9e/4xKznu/Shd/QOPec6cOPPUD7X/kW4pOmKZxf/GZrPcPABicshGk6iVNPO7nqiOvncBae4+keySppqaGk1+RNWkv869T6eIPqHTxBzp9L3bKPFXe+oOc9g8AGJyysbS3XNJUY8xkY0xU0k2S/piFdoFeiYT69wDh/u4fANB/Mg5S1lpX0sclPSHpDUm/sdauz7RdoLfK4v17TEt/9w8A6D9Z2SNlrX1M0mPZaAvoq7Mmj9GybQcCVzXPRNgxOvvUMXnvFwAwMFDZHIPe3IklikVC/dJ3LBrS3KqSfukbAND/CFIY9BZUj1Iq0/oHAaVcX/OrR/VL3wCA/keQwqBXEovo8pllcvK859sx0uWzylQSi+S3YwDAgEGQwpBw6wWnqiCc3+W9gnBIt50/Ja99AgAGFoIUhoS5VaWaW1WicJ6mpcKO0dyqEs1hfxQADGsEKQwZ37lpnqLh/Hylo2FH/3XT/Lz0BQAYuAhSGDImlMR017Wzcv4EXywS0l3XzlJ5CfWjAGC4I0hhSHlvTZVuWjQxZ2EqFgnp/Ysm6saFE3u+GAAw5BGkMKQYY/SFa2bmJEwdDVH/es3MrLYLABi8slLZHBhIjoapGeVx3fXweqVcP6Oq52HHKBp2dNe1s5iJAgCcgCCFIckYoxsXTtT508bqjvvXaG1ds5Kup77kKcd0lDiYW1Wi/7ppPnuiAAAnIUhhSJtQEtOvbz9Ha+ua9KMX3tKT6xsVDTtKpLxOZ6nCjlEsGlLK9XX5rDLdev6pmltVmv+BAwAGBYIUhoW5VaX67vsXqDmR1uodB7W2rlmvvLVfjS3tSntWkZBRWbxQZ586RnOrSjS/ehQVywEAPTLWBt87ElRNTY1dsWJF3vsFAADoK2PMSmttTWfv8dQeAABAQAQpAACAgAhSAAAAARGkAAAAAiJIAQAABESQAgAACIggBQAAEBBBCgAAICCCFAAAQEAEKQAAgIAIUgAAAAERpAAAAAIiSAEAAAREkAIAAAiIIAUAABAQQQoAACAgghQAAEBABCkAAICACFIAAAABEaQAAAACIkgBAAAERJACAAAIiCAFAAAQEEEKAAAgIIIUAABAQAQpAACAgAhSAAAAARGkAAAAAiJIAQAABESQAgAACIggBQAAEBBBCgAAICCCFAAAQEAEKQAAgIAIUgAAAAERpAAAAAIiSAEAAAREkAIAAAiIIAUAABAQQQoAACAgghQAAEBABCkAAICACFIAAAABEaQAAAACCvf3AAAAyKtEk1S3XKpfJdW+KLXukry0FIpIxROkSYulygVS1UIpVtrfo8UAR5ACAAwP9aukl+6WNj0qhaJSuk3y3ROv2bdFqn1JihRJXkqafrV07sc7ghXQCYIUAGBoa66XHrxValgtue2S9Tv+b1d8V0q2dPx9w0PS5seligXSdfdIJZX5GTMGDfZIAQCGJmulVb+U7q6Rdr7aMQNl/T624Xd8bucrHe2s+mVHu8ARBCkAwNBjrbT0s9Lj/9T5El5f+W5HO4//U0e7hCkcQZACAAwtR0PUqns7wk82pds62n3iX7LbLgYtghQAYGhZfV9uQtRR6TZp5c87lvkw7BGkAABDR3P928t5fXT3spRq7jmkgi+36CO/Txx7PeVZ3fCbNp3ynVaZf2vRs9uPLPMt/YzU0pDN0WMQIkgBAIaOB2/tKFsQQEWx0ecvKNBH50VOem9xdUi/vC6m8pHm7RfdpPTArUFHiiGC8gcAgKGhfmVHiYOAG8uvm9ERoFY0eKpreXszeTRkdMfZBZKk0HE5Sr4rNazqqE9FnalhixkpAMDQ8NLd3deHygW3XXr5e/ntEwMKM1IAgMEv0SRteqzvdaIyZX1p4yMd/Wd4nIyfcJXc0aLUzlaltjXLa0nJelYmZBSKRxWdXKLoxGIVVMflxPjne6DgvwQAYPCrW95x7Eu+Z6Skjn7rVkhT3xXo46m6VrU+X6/Ehv0yISOb9qR35EF3b0LJbc0ykZCsZxWbOUbFF1QqWlWchV8AmSBIAQAGv/pVUipH5Q56km7r2CvVxyDlNid14P6NStcdknV9yUq2u+1dvmSTniQp8fpetb+xX5GqYo2+abrCJQUZ/ALIBHukAACDX+2LPaSQnrm+Vbtr5fmSZ6V218r1OzadJ92O9yQp5XW8Z49WN/ddafuLve7HWqtDy3er8VsrlKptlU13hKg+sZJN+0rVtqjxWyt0aPnut8eDvGJGCgAw+LXuyriJLz+f1L8993bphF+uTeuLF0Z110WFmn73IdU2dwSVK37ZMfO17ZMjdUqp6VP/1lo1PfKW2pbt7ghQmfKtbMqq+Y9bld59WKXXnCpjTM+fQ9YQpAAAg5+XzriJuy4q1F0XFXb63vY7etiL1IvaVVkPUce3nfbVtmy3jKTSa6dktW10j6U9AMDgFzq5iGZ++4/2eMnhFY05CVFH2bSvw8t269Dy3TlpH51jRgoAMPgVT5D2benf/rvhNifV/PDWwCHqZysf0G/WLdWmvW/p3TMu1X9efeex9xLpdv37M9/XIxufkeu5mnnvafrfta8qxAb0vCBIAQAGv0mLpdqXAlc1z4gTlk5Z3O0lB+7fKOsG3wxeNnKs/v6cD+u5bcvU7iZPeO+fl35Tru/pmb/+hUoLi7V+71btv3+Txt8+N3B/6D2CFABg8KtcIEWKpGRL/vuOFEkVXR8Rk9rZqnTdIckPHqSunH6hJGnt7o3a1br32Otv7q/VU2/+r5b97QMqLhghSZpbNk3pulal6lqpM5UH7JECAAx+VQsDH1acMS8lVdV0+XbrC/UddaJyYM2uN1QZL9O3XvyJ5v73tXrXj2/WY5uelXV9tb5Qn5M+cSKCFABg8IuVStOvkkye/1kzjnT6NV0eD+MnXCU27O97nahe2tW6V5v2bVO8YIRW/N2D+vfLPqVPPfo1bdm7XYn1++Un+mGpc5ghSAEAhoZzPyGFOy9fkDPhQuncj3f5dnJHi0wod3WdCsMFijhh/f25H1Y0FNE51fN0bvV8Pb99uUzYKLWjH5Y6hxn2SAEAhobKBR17lXa+kp9N5064o7+K+V1ektrZ2nF2Xo7MGNdJzagjuc2mPKXqDqlw+uic9d+ZZFtau99q0Z7aFtVvbtLhpqR8z5cTcjSitECV00o1flJc5afGVVDUz2UrsoAgBQAYOq67R7q7Jj9BKlwgXf+jbi9JbWs+6QDiIFzflet78q0v3/pqd5MKOyGdNfEMVcTLdPfL9+nj53xAqxve0Ms7VutzF/2N5EvJt5qkS6szH0Av7Klt0eqndmjba/sUChmlU57sO373psY2NWw5qEg0JM+zmnzGWM2/rFrjJ8XzMsZcIEgBAIaOkkrpym9Kj/9Tx2HCuRIpkpZ8Q4pXdHuZ15KdDfD//dK9+s///dmxnx9c/6Q+dd5H9OnFH9WPr/uqPrP0G/r+q/epKl6m/7z6czptzKSs9t+dQwfb9dRPNmhPbYu8tC9ruy80b30p1d4xS7d15R5tX7tP4yfFddlHZ2rkqDwvzWaB6Y9DDmtqauyKFSvy3i8AYBiwVlr6WWnVvbkJU5Ei6cybpSVf7/HSXd9YLu9Ae/bH0Euh0YWa8JmFOWnbWquNL+3S87/eLN+18jMo7+A4Rk7Y6IL3TdPp507o8rzA9sOHtGvzRu3eukU7N7yuwwcPyHNdhcJhjRg1WhNnzlH5lKmaMO10FY4YGXg872SMWWmt7fTRTGakAABDizFvh5xsh6mjIeqKr/VuKDncaN6f/Vtr9eJvt2jDiw1yU5mvXfq+lZ+yev7Xm7Wv/pAWv3fqCWFq99YtWvHIQ3pz+SsKhcNKp5Ky3ol7zw401Klu43pFogXyXFenLTxbNde8R+VTpmY8vu4QpAAAQ8/RMFU2R1r6GclNZrZvygl37Ila8g1pwQd7/bFQPCp3byJ4vxkKxXs+A7Cvsh2ijuemfG14sUGSdP6N09S6f58e++5/aPdbW+Sl0rLWl5fuernSep5SiY7gvPnlF7V15asqnzJVV338H1U8ZmxWx3oUQQoAMDQZ0xF6plwsPXib1LBKctt10g7obttwOkocVCzo2Fjew56od4pOLlEySxvO+8yRCk4tzXqzG1/alZMQdZSb8rX+hXolmtdo4wu/keem5Xt9f/LRWl9uMqmGTW/op5/6mC655XbNuuhdXS4bBkWQAgAMbSWV0i2PSvWrpJe/J218RApFO5b8OpulcsIdS3heqqPY5jl/11FaIYDoxGKZSEg2mbsSCF0xEUde03bt/d4jalu+TG7jHlnXlQmHFS4br6KFixSbM1uxefMUivfuqblDB9v1/K83Bw5Rz637vV7Z9IR2HdimM0+7WB+6+J9PuuaxFffqsZU/120XnqNpZZmXbvA9T77n6emf/kB7a7fpoptvzWqYIkgBAIaHygXSDT+WEk1S3YqOGartL0qtuzpCUygqFU/oOIC4YkHHsS9dVCzvrYLquKyX/4e6JMlva9eeb94l/1CT5J4YGFPbtqltxUo5hYWy6bSKL71Uo2+5RbE5s7tt86mfbJCfweHLJUVjtGTBB/RG3Qql33H4siTtaa7X6q2PKV5YoGxP47nJpNb++QnJSBfffFvW2iVIAQCGl1ipNPVdHX8u/ExOu3JiYcVmjlHi9b05OyamM9b35Daslt+0r+uLXFf+oUOSpJalS9X6zJ8Vmz1HFd/8hiLl5Sdd3ri9o8hmJk/nzTv1fEnSjr2b1eTuPen93zz/VV01Z4oeXPla4D664yaTWvv0ExpXPVmzL74sK20SpAAAyKHiCyrV/sZ+2XQeN0r5rlJvPtWH633ZRLvaVq/W1iuvUtnnP6fS6647YQlszZ92yMvh77DqzaUKqUkzJnRSrb0HL27ZrhXb67SruVXzqyt006IzJEkHDrfpq48+o2g4dOzai6dPkTE/1KQz5qt4dOYb0AlSAADkULSqWJGqYqVqW6QMZnN6y3quvIPb5Tfv6PuHXVfWddX45a8ouXGTyu78FxljlGxLa9uavcpV6cn2VJv++OoPdduFwWpelcQK9K6Zp2nT7r1KeyeHvX//y8sVct4+XthLp/XYd/9D7/tiz7XAesKhxQAA5Njom6bLhPNUU8q6al/548yaSCTU9LvfqfFrX9f6fev1lT98Wwmbu0rxjy7/vhZMqtDoEcEqm8+pmqDZleUqivau3IPvedq9dYt2b90SqL/jMSMFAECOhUsKVHLtFDX/cWtOl/ism1T72vtl25sybyuRUOP9v9TPD9yvg6Mu01gv+zWpjtpUv0JNh5v08tZtkqRDyaR+8fIqXTx9ii6Z0felvnf6yqN/lpHR1LKxuvaMGRpREJWXSmvlow/p6r/PbJ8cQQoAgDwYUVOm9O7Dalu2OydhyrpJpbY/L3fHSz1ee9/Bg/p9c7M2p5K6urhYX53QUR/rzWRS/7Jrl3YeKXo5s7BQ//CHMq199xSFFOquyV7xfE/+cYcvp92UrEnor5ZcpHQ0Iq9opPxQWD/6+S90xaUXa1r1RCXTSYXaDyuUOCzj962MxIhoVJ9813mqKI2rLZXWg6vW6b5XVuu2C8+Stb62LHtF7YcPZXScDEEKAIA8MMao9JpTJSnrYepoiEqt+22vrh8fDuv2MWP0v4cPK3lcgdLx4bC+U1mhinBEvqT/13RQd+5s0KcPligbE1JLV/1Sj6+899jPy7f8SRdecKEuuuB8FTimowCqJOM4KiwuUXjUWKWsL/m+ZByFWw8qeqBRofbeLTMWRMKaOLpUklRcWKD3zJ+lLz38tNrTrgojYYXCYe3askmT550Z+HciSAEAkCdHw1SkfISaH94q69qMNqBbz+3YE7X2/l7NRB11WXGxJGl9e7sa3beDVDwUUjzUMfNkrVVIRjtTKYX9kLJRUvTqmpu1ZNFNainZKDfSKhlf6mTr2B133PH2D8aRQh0By42PkltcqlDisAobtslx033q/+hTiPbIrvl0KqndWzcTpAAAGCyMMRq5sFyF00bpwP2blK5rlXX9PtWZsr4n+R1P57Wv/HFW9kQd76wtm9Xm+/IlfWLsWDkBjmh5Jyur9lijDhW/KRnb8aevjCMZyYuN1OEps1Wwe4cizfvl+758a2WtlW+t0p4nxxjVHWxWLBLR2OIRSqTS+v3q9ZoybrRi0UjHmDxPOzes0znXB/+9MgpSxpj3SrpL0gxJi6y1KzJpDwCA4SJcUqDxt89Vqq5VrS/UK7F+v0zYyKa8zot6Ox3Hvvht7XIbViu19U/ym2pzMrZXp05Tm+/rD83NqohEVJhqUmLEyUU6pa6PfdnWuEGPLP+pdu7bIsc4OqV6ii6/6hIVOyMyH+CRUgbJ8mr5hUV67umn9dSGt5/AW1Vbr8tmTtX4+Ag99vomHWpPqTAS1rSysfrA2fNPaOrwwf0ZDSXTGal1kq6T9MMM2wEAYFiKVhVrzPtPl59wldrRolTdISXfapLXkpL1rEzIKBSPquDUUnlN2zuOfemuYnmWFDmO3ldaqvPe3KLvN74mlZzWcQ7hO3R17EtbslXnzbhGp088U4n4Dj307E/0h4cf0gc/+MHsDdIJKV06VhdecomumD2t00vmV1d224SX7uS8xT7IKEhZa9+QlPWTlAEAGG6cWFiF00ercPpo6dLqTq/Z+71H5LcezNuYfEnt1qr94JsK+Wl5nQSpro59mVV9liQpEdstv/iAFp21UD/72c+yP0gnpPSocXKSCUWb+z67FIpkNqfEHikAAAaJtuXLpCzsV3KtlWetPFl5kpK+r5AxWtbWptJQSNMLCpTwff3Xvn2KOyHNSe/XCtP38geek+zYE+X4qq2t1bhx43r92WXLlmnNmjXas2ePZs+erb/8y7+UJK1du1aPPPLIseustXJdV7f+1V9pajjS5w3oI0aN6dP179RjkDLG/ElSZwujn7PW/qG3HRljbpN0myRVV3eetAEAQNfcxj1ZaecH+/fp+/vfnr15uKVFfztmjE4rKNBX9jRqdzqtQsfRnMJC3VNVpZF+UmP3rdWecfMlp/eBqqVko2SsGhsb9dxzz+mmm27q9WeLi4t1wQUX6M0335Trvr38NnfuXM2dO/fYz2vWrNHzzz+vCRMmqL09rqIdm3vdhwmFNHHm7F5f35keg5S19l0Z9fB2O/dIukeSampq8ngGNgAAQ4N1M9vPc9THx47Tx8d2Pju0pDje6evVdU9r79g5sr0szJkOt8qNtOrAwf267777tGTJEk2aNKnXY5wxY4YkqaGhQS0tLV1e99prr2nu3LkyoZC82Ah5hUW9rjMViRaofErne6t6i7P2AAAYJEy4/3bkxFt3qDBRK8/0Lsy1jahTU/MB3Xvvvbrgggt0xhlnZH1MTU1Nqq2tfbttY5QaXdbrz3uuqwlTp2c0hoyClDHmPcaYOknnSHrUGPNERqMBAABdCpeN79f+Ywd+Lt+cuEfL8z2l3dQJx76kbVL7Utt07y/u1aJFi1RTU5OT8bz22muqrq7WqFGjOl4wjtziUbK9WH40xtHURWdndDyMlPlTew9JeiijEQAAgF4pWrhIbStWSlla4usL15E2VjZr/SkPaPH26xXxCyR1fuzL5Yveq1ThPh08eFDPPvusnn322WPv33nnnVkb09q1a7V48eITX7S+vNgIhQ93vRwoSaFoRDXXXJfxGHhqDwCAQSI2Z7acwkL5hw7lve9kRNo6wWjT+Fc1pq1CM/aco4hfoKtrbtbVNTefcO3hEbVqG1mrCy++IGfj2bFjh1pbWzVz5swT33AceYXdByknFFL5lKkqO/W0jMfBHikAAAaJ2Lx5sum+Pd6fLRFP2lJpJCO9dMpDemP8y0o7yU6vTUebOz1Dry9835fruvJ9/1iJA99/u+T7a6+9phkzZqigoODEDxpHXlFxt22HIhFd9Yl/zGyARzAjBQDAIBGKxzXy0kvUuvQJye/sHJnc8Iy0bJpRW+GRdHQkTO0vatDi7dfLsSGF7NuRwg91HrD64vnnn9dzzz137Oe1a9fqwgsv1EUXXSTXdbV+/XrdeOONnX7Wj0S6bDdcUKBLPnK7ikePzXiMkmSOnoCcTzU1NXbFCo7lAwCgrxKvr1Pthz8km2jPW5/tEemLHwhp24STp5lGJEt0yZsf0vhD1Qr5YTkKaf/YZfLD+RvfO5lUu0ZuXXfS6+GCAs299ApdfPNtfWvPmJXW2k53zLO0BwDAIBKbM1ux2XOkPJVCcB1p6wR1GqIk6XBBsx6edbf+OOu72jpmjVzTP0uPJ+hkkuhoiLrow7dmtSuW9gAAGGQqvvkNbb3yqqwV6OxOOiT997t7Liewd+ROPT3tXkXdmC7YdYFK3MzKCmTCOW4fmRMKKRSJ6JKP3K7ZF1+W/b6y3iIAAMipSHm5yj7/OZlYLKf9tEekn15mdLC49zvHU+GE6kbWylf+9nCdwPoKtbXKGEfhggJVTJ+hW/7zBzkJURIzUgAADEql112n5MZNavrd72QTiay33x6R/nSG0bNn9P2w4oMFB+UZT47N/3yN8a0iblLTz12sM69+j8qnTM1pfwQpAAAGIWOMyu78F0nKepg6GqLufVewIHSg4ICcflr0ciIR3fq1b6t0THaeyuuxv7z0AgAAsu5omCr7/Odkiooy3oDuOlIiIv3kMqN7LwtJJlgxqHQorYaihrwv7xljNGPmzLyFKIkgBQDAoGaM0ajrr9eUxx5V0fz5MrFCyenjP++OI78goi1Vju64PRRoOe+dNpdslm/yG6TC4bDOPffcvPZJkAIAYAiIlJdr0i/u1aR7f6H4lUtkCgrkjBzZ9SxVOCxn5EiZggLFr1yiyb+8T5u//CG1jyrKyniaCpo69krJ6/niLHAcRxUVFaqoqMhLf0exRwoAgCEkNme2Kr/1LXktLUq89poSr7+utmXL5e7ZI5tOy0QiCo8fr6JFCxWbM0exM85QKB6XJP2znS1JemDLA2p3My+ouXzccl1ed7mUh9rf4XBY119/fe47egcqmwMAgGOstfr9m7/X15d9XSkvJdcGr1UVNmFNPjRZZ+w/Q9bLXd6IRCK68sortWDBgpy0T2VzAADQK8YYvWfqe/SHv/yD5o2fp8JQoRzTt7jgGEeFoULNGz9P3//w97WoZpEi3Zx/l4lIJKIzzzwzZyGqJyztAQCAk5SPKNdPl/xU6/et1883/Fx/3vFnRZyI2t32TmepwiaswnCh0n5al1Rfoptn3qxZY2dJkpYsWSJJWrVqldLp7B0hczREXXHFFVlrs69Y2gMAAD1qSbVo7d61WrdvnVbsXqE9iT1Ke2lFQhGNj41XTXmNZo+drbnj5ioejZ/0eWutVq9eraVLl8p1Xfl+8Cf6HMdROBzWkiVL8jIT1d3SHkEKAADkTXNzsx588EE1NDTIdV31JYcYYxQOh1VRUaHrr79e8fjJgS0XugtSLO0BAIC8KSkp0S233KL6+nq9/PLL2rhxo0KhkNLpdKezVI7jKBKJyPM8nX766TrnnHNUWVnZDyPvHEEKAADkXWVlpW644QYlEgnV1dWpoaFB27dvV2trqzzPUygUUnFxsU455RRVVFSoqqpKsRwf0hwES3sAAADdoPwBAABADhCkAAAAAiJIAQAABESQAgAACIggBQAAEBBBCgAAICCCFAAAQED9UkfKGLNXUm3eOx4+xkra19+DGAa4z/nBfc4P7nPucY/zIxf3eZK1dlxnb/RLkEJuGWNWdFU4DNnDfc4P7nN+cJ9zj3ucH/m+zyztAQAABESQAgAACIggNTTd098DGCa4z/nBfc4P7nPucY/zI6/3mT1SAAAAATEjBQAAEBBBapAyxvzEGLPHGLOui/eNMea/jTFvGmPWGmMW5HuMQ0Ev7vNFxphmY8yaI3++kO8xDnbGmInGmGeMMRuMMeuNMZ/s5Bq+zxnq5X3m+5whY0yhMWaZMea1I/f53zq5psAY8+sj3+dXjTGn9MNQB7Ve3uePGGP2Hvd9/utcjCWci0aRFz+TdLeke7t4/0pJU4/8OUvS/xz5v+ibn6n7+yxJL1hrr8nPcIYkV9I/WGtXGWOKJa00xjxlrd1w3DV8nzPXm/ss8X3OVFLSJdbaQ8aYiKQXjTGPW2tfOe6av5J00Fp7mjHmJkn/R9L7+mOwg1hv7rMk/dpa+/FcDoQZqUHKWvu8pAPdXPIXku61HV6RVGqMmZCf0Q0dvbjPyJC1dpe1dtWRv7dKekNS5Tsu4/ucoV7eZ2ToyHf00JEfI0f+vHMz8l9I+vmRv/9O0qXGGJOnIQ4JvbzPeUGQGroqJe087uc68T+auXLOkenlx40xs/p7MIPZkSWO+ZJefcdbfJ+zqJv7LPF9zpgxJmSMWSNpj6SnrLVdfp+tta6kZklj8jrIIaAX91mSrj+yHeB3xpiJuRgHQQrIzCp1HB1whqTvSvp9/w5n8DLGjJT0gKQ7rLUt/T2eoaqH+8z3OQustZ61dp6kKkmLjDGz+3lIQ1Iv7vPDkk6x1s6V9JTengXMKoLU0FUv6fj0XXXkNWSRtbbl6PSytfYxSRFjzNh+Htagc2SPwwOS7rPWPtjJJXyfs6Cn+8z3ObustU2SnpG05B1vHfs+G2PCkkok7c/r4IaQru6ztXa/tTZ55Mf/K+nMXPRPkBq6/ijpw0eedjpbUrO1dld/D2qoMcaUH93bYIxZpI7/n+J/EPvgyP37saQ3rLXf7uIyvs8Z6s195vucOWPMOGNM6ZG/xyRdJmnjOy77o6Sbj/z9Bkl/thR17JPe3Od37KN8tzr2BWYdT+0NUsaYX0m6SNJYY0ydpC+qY7OdrLU/kPSYpKskvSmpTdIt/TPSwa0X9/kGSX9jjHElJSTdxP8g9tl5kj4k6fUj+x0k6U5J1RLf5yzqzX3m+5y5CZJ+bowJqSOI/sZa+4gx5kuSVlhr/6iOQPsLY8yb6niY5ab+G+6g1Zv7/PfGmHer44nVA5I+kouBUNkcAAAgIJb2AAAAAiJIAQAABESQAgAACIggBQAAEBBBCgAAICCCFAAAQEAEKQAAgIAIUgAAAAH9/1eanBrPHZqpAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA08AAAMxCAYAAAAzFoirAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACAnUlEQVR4nOzdeXxU9b3/8feZNetkXwj7IoQdREVQqwIionUptbWl9ae12Fptr0qtem9rq9Zqq7W9enuvrbetttXq7WLFXQQtLgiIhp2whpAdyDLZZzu/P0IiaSCckJnMJHk9H495yJz5nu/3M+AD8/Z7zucYpmmaAgAAAAB0yxbtAgAAAACgPyA8AQAAAIAFhCcAAAAAsIDwBAAAAAAWEJ4AAAAAwALCEwAAAABYQHgCAAAAAAsITwAAAABgAeEJAAAAACwgPAEAAACABRENT9XV1Vq6dKk8Ho9SU1N1ww03qKGhodvx3/72tzVhwgTFx8drxIgR+s53vqO6urpO4wzD6PJ67rnnIvlVAAAAAAxyjkhOvnTpUpWXl2vlypXy+/26/vrrdeONN+rZZ5897viysjKVlZXpkUce0aRJk3TgwAF985vfVFlZmf761792Gvv73/9eixYt6nifmppqua5QKKSysjIlJyfLMIxT+m4AAAAA+j/TNFVfX6+8vDzZbCfZWzIjZPv27aYkc8OGDR3HXnvtNdMwDLO0tNTyPP/3f/9nulwu0+/3dxyTZL7wwgunXNvBgwdNSbx48eLFixcvXrx48eJlSjIPHjx40hwRsZ2ntWvXKjU1VWeccUbHsQULFshms2ndunW66qqrLM1TV1cnj8cjh6NzqTfffLO+/vWva8yYMfrmN7+p66+//oS7SK2trWptbe1435a/pIMHD8rj8fT0qwEAAAAYILxer4YPH67k5OSTjo1YeKqoqFB2dnbnxRwOpaenq6KiwtIchw8f1v33368bb7yx0/H77rtP8+bNU0JCgt58801961vfUkNDg77zne8cd54HH3xQ9957b5fjHo+H8AQAAADA0u08PW4Ycddddx23YcOxr507d55Swcfyer269NJLNWnSJP3oRz/q9NkPfvADnXPOOZo5c6buvPNOfe9739PDDz98wrnuvvtu1dXVdbwOHjzY6/oAAAAADC493nlavny5rrvuum7HjBkzRrm5uaqqqup0PBAIqLq6Wrm5ud2eX19fr0WLFik5OVkvvPCCnE5nt+Nnz56t+++/X62trXK73V0+d7vdxz0OAAAAAFb1ODxlZWUpKyvrpOPmzJmj2tpabdy4UbNmzZIkrV69WqFQSLNnzz7heV6vVxdffLHcbrdWrFihuLi4k65VUFCgtLQ0AhIAAACAiInYPU8TJ07UokWLtGzZMj3xxBPy+/265ZZbdM011ygvL0+SVFpaqvnz5+sPf/iDzjrrLHm9Xi1cuFBNTU3605/+JK/XK6/XK6kttNntdr300kuqrKzU2Wefrbi4OK1cuVI/+clP9N3vfjdSXwUAAAAAIvucp2eeeUa33HKL5s+fL5vNpiVLluixxx7r+Nzv96uwsFBNTU2SpI8//ljr1q2TJI0bN67TXPv379eoUaPkdDr1q1/9SrfddptM09S4ceP06KOPatmyZZH8KgAAAAAGOcNs79s9iHi9XqWkpHS0QQcAAAAwOPUkG/S42x4AAAAADEaEJwAAAACwgPAEAAAAABZEtGEEAAAAgM5M01RzvV8BX1ChoCmb3ZDDZVd8slOGYUS7PHSD8AQAAABEUHODTyU7a3SouF6VRV4dOlAvf2uwyzin266skcnKGeVR1ohkDctPU3ySKwoV40QITwAAAECYmaapyv1ebXmnRHs+qlIoZMpmMxQKnbjRtb81qLJdtarYU9cxftwZ2Zp6wTDljPb0y10p0zQVrK5WqLlFpt8nw+mSLT5O9vT0fvl9CE8AAABAGO0rOKR1K/apuqxRhs2QeTQwdRecjhU6Zvzuj6q0a32lMoYmavblYzR6elaPajFNU9Ut1WoJtsgf9MtpdyrOHqf0uMiEl0BNjZo+/FAt27apefMWtWzbqlBjU5dxtsQExU2eovhpUxU3ebISzj5bjrS0sNcTbjzniec8AQAAIAxaGvxa8/wu7d5QKRmSwvlT9tH5TjszR5/54njFJTmPO6ympUbrKtZp+5Ht2nJoi7Yf2a6mQNfwkuBI0KSMSZqaNVWTMiZpdu5spcWdWngxTVPNBQWqefbP8r72mhQISA5H2z9Ppn2cwyHP4sVK//KXFDd9ep/uSvUkGxCeCE8AAADopX0Fh/T2H3eqtdkvMxS5dQyb5I536sKv5mvMjLZdKNM0tenQJj1X+Jze2P+GAmZADsOhgHny8NI+zmE4tGj0Il2Tf42mZU6zHF7qV63SoV/+p1p375bsdinY9V4uy46e7x4/Xlm3/puS58079bl6gPB0EoQnAAAAhINpmtr4+gGte3Ff+HebTuToOmdfkqPacVv1q8I/aHd9seyGXUHTQngxpTifTY6gIVvIUMhmKmA35XcbCiqo01JP07dnflsXjrjwhFMEampU+eMH5H3lFckwpHBGiqPzeS69VDnf/4+IX85HeDoJwhMAAAB6yzRNffiPffr4jQNRq+HjoSu1YdhLMm0n3ily+2waciROGXUuZda6lVnnkjPY9XGvfntIh1N8Opzq05GUVk2acY7uvuAepcaldhpX/9ZbKv/+DxSsr+/dTtPJ2Gyyezwa8uP7lbxgQcSWITydBOEJAAAAvfXRa0VtO05Rtm7ES/pk6FudD5pSVq1L+QeSNbo8UTbTUMgwZZiSoRMHLVOmTEMd40uG+TX/imv12XOXSpKO/Po3OvTLX4Z/t+lE9RiGDNNU1m23KePGZRG5F4rwdBKEJwAAAPTGvoJDeu2JLdEuo8PrE55UUfpWSdLwynidXpiqtAaXQoYpm3nqgaP9fFu2R+eljFTiX/8Rpop7LuPGG5V1261hD1A9yQZd9+sAAAAAnFBLg19v/3GnutnA6VMhhXT+3i8puTFRn/kkU/M3Ziuloa0bX2+C07HnB6vq9M/dW/TJiGz57NGJEEd+8xuV/NcTUVm7HeEJAAAA6IE1z+9Sa7M/Ys0hXv/4Gd3y6/l64P9usDTeJpucTWW68t1cjapIOHosvMmu/VK/8tQk/TN/hCo8CWGd36qGXz2mNb//a1TWlghPAAAAgGX7Cg5p94bKiLUjr2k4pDc/eVYuR5yl8aZpKtC8ToHGl2UPBXq903RShiG/3aaPRw/RnuzUPmkueKyQDLl+8aB+/dLHisbdR44+XxEAAADoh0zT1LoVkW1J/sKHT2hU9kSFzJAaW+pOWk+g5T0FWzZYnr+4ulYfFZVob9URVTc2K9Ht1Ij0NF0ydbyykpOsTXL0nqNdQzIUtNk0vqLa8j7X7tZW/erwYW1vbdHhQEBxNpvGulz6Wnq6LkxKPun5NplK8jcr+J+P6GHnPbrj4gl9+kBddp4AAAAACyr3e1Vd1hix4LSnbLMK9q3RkrnfsjQ+2LK+R8FJkt7euVdbSip0Wnamrpw5SWePGaH9h6v1i5Xvqbyuvsc1781J097sVMvjy/x+NYVCusKToruzc3RTRoYk6ebSUv1fba2lOeymqQtLPtHGP6/Qf7+zt8c19wY7TwAAAIAFW94pkWEzZIbCn55CoaD+8v7jmpO/WEMzxpx0fNC3R4GW93u8zvnjR2vp7JlyHNP0YfrwPP38jTV6e8ceffnsmT2ec9eQDCW3+JTjbTr5+klJOj+p8w7Xl1PT9PkDRXq6plpfSE21tGZIhv7fjtf1rdcn6bTsJC2cnNvjuk8F4QkAAAA4ieYGn/Z8VBWR4CRJ725/SdUNlbrlsodPOtYMNcvf9OYprTMqM73LsbrmFgVCIX1cXKaPi8s6ffbt+XM1MiPtJAWZ2jw8W+fvLJYr2PObwYKmqaZQSCV+v2buKtR4t1v/lpmluYmJJzzHJlOjveXKry3WnX9z6cxR6UpLdPV47Z4iPAEAAAAnUbKzRqEIBaeGljq98tFTWnT6V5Qcn3rS8f6m1ZLZ2uV4qz+gdwr3qbi6VsXVtWr2+fXFM6fpzNHDu5/waOOF1Pg4XTJtQqePMpNOHGA6HG0isX1opmYUV518vKSmUEitoZDqQyHdVlaqg36/xrhcujYtXf+oq9M3Sw7q98NHaFbCibv6BQybLtv7vn6RPlI/emmb/vOanu+a9RT3PAEAAAAncai4XjZbZBoTvLzh90p0e3T+lKtOOjbo26OQv1DHu/Gq0efTyu27VeltUF7KyZsvtNtVdViSNHFItmaNHNbplei2uJtjGCpLS1alxRbmP6uq0jl792jR/n3a0dqq8S6XnhkxUl9ITdXvhw/XEKdTPz90qNs5HGZI55cWKLGlUS8WlGnl9kprtfYC4QkAAAA4icoib0R2nqrqSvT+jld0/tSrVNd0REfqK3SkvkKBoE/BUEBH6ivU2OKV1N6W/IMTzuWJc+uez87X9y+bp8umT7S2vrdB7+7aL0kam52hFn9AwdAp9mE3Te3KTbfUT+PatDT977DhOi+hbWcrz+mU/+gOmNtm05KUVBW0NKvc7+92HocZ0rTDe2QY0s/fLIx4+3Iu2wMAAAC6YZqmDh3oeSc6K2obD8s0Q/rr+/+lv77/X10+/+GzS3XBlM/p8+fcLDNYLjN0+IRzOex2eeLtltf2Nrfot+9ukMthlz8Y0l8+2qzWQFA2w9DozDRdNn2ihqenWv8yhqH6eLdqE9xKa+p6WeGxxrjdGuN267fVRzTG5ZLPNHVzaYmeGzFShmFoalzbc652trZoiNN5wnkChk2n1ZbovaHTtbOiXp8crNXpI05yj1YvEJ4AAACAbjTX++VvDUZk7ry00Vq28N4ux1/e8Hu1+Jv0+bk3K9OTJ0kKtBQoXA+Zavb59b/vblCz368rZkzS1rJKTczNVqLbpUpvvd4p3Kdfvb1W3543V0PTUizPa5imDmSkKK3J2r1PhwIBZTkcWpjs0Y8qK1Tk92m0y60sR1tMqQoEuj3fboY0oaa47dc2Q39ce4DwBAAAAERLwBeZ4CRJSfEpmj763C7H397yd0nq+MwMNSvk36VwBCd/MKjfvfeRDtU36hvnz9aozDTNGjWs4/PJQ3M0bdgQ/fzNNXp1S6GWfeYsy3ObhqHytCRNKjtsqfNeq2nKZRhqNdvG1h89x330wbetJ7lU0pA0rrZEMk0FQ9JLm8r0g8smKT1Cnfe45wkAAADoRigY2ftoLNUQKJZ0ivciHTtPyNSf1n6iA0dqdO3c0zUq8/i7NJnJiZqcl6s9VUd6fK+XaRg6khR/3M+O/MtOktsw1BIK6cW6OsUZhsa63ZLaQpUkuS006UgMtCrF1yBJCoRMrd17pEf19gQ7TwAAAEA3bPbIdNnrzq2XP9rpfShQqbZ9j94FqJc2bde2skpNystWk8+njQdKOn0+a+SnO1CpCXEKhkLyBQOKs534vqN/ZZim6hLcGlLX2OWzH1VWqCEU0hnxCcpxONRqmipobpZf0veyspVoa9vbOXQ0ZGU7rMUVd7CtsYTDZmhLaZ0unTbEcr09QXgCAAAAuuFwWW/C4DIku/FpzAmaki8MG1ehYIXCsfNUWtvWuW97WZW2l3W9L+nY8HSksUkOu00uiwGmnSmpNt593M8uSfbob3W1eq62RnXBtuYUfkmPDBmixZ5P763a3NIsScp3x1la0xlqu7QyEDK16WBtj+rtCcITAAAA0I34ZKecbnuXphEuQ8p0GEq1H305DDmNrrtUftNUbcBUbbDtdThg9ihQmaYpMxCeZxh968I5XY41tLQqKa5z2Cmr9Wp7WaXyc7NlO8536pZhqC4hTqba7kk61mKPR4s9no73m5qb9aXiA6o45nI+XyikF+rqNC0urttOe8fy2z4NuFtK62Sapoye1m0B4QkAAADohmEYyhqZrLJdtZKkNLuh0W6bhjoN2QxDIdOUcXTc8TgNQ5kOKcPx6fhSv6n9rSHVWLmfymyW1P3zjnrjjx9+IqfdplEZaUpyu1XpbdCH+4rltNu1eNqEU5ozaLfJ57DLHei+2cb0+HhdnJysXx46pOpAUCNcLr1YV6cyv18/zrV+6V2r/dOQ1dAa0JFGnzKTjr/71RuEJwAAAOAkckZ5ZBZ5le+2yWNvC0DtOzJWdmYMw+jYhbEZhoY6peEuh+qCpnY2B1UROHGIMk3rwem93UVq8ftV19wiqe3yvPZfnzNulOJdXXdypuTl6OPiMq3ZtV8t/oCS3C5NHZarhZNOU2ZyouW1/1XI4s7PQ7lD9JjDqRXeOnlDIU1wu/Xfw4bpjIQES+c3OtyqcyV1Otbij0yHRMITAAAA0I1go1955Q0akWCXebQLXI8vZfsX7ed7bNLsJIcO+kLa0hyU/7gZyvq9Tv8s3KeapuaO91tKK7SltEKSdPrIoccNT+eNH63zxo/uUf1WBC3+HrltNt2Rna07srN7vIYpaU/qMOlf1vIFen9/2PEQngAAAIATaN52WDV/2y1Hc9s9OeG+j6Z9vqFOQ9kOhwqag6rokqCsP13oPy6bF8bqesduRr7Fe9CwqTBtRJfjLkdknsjEc54AAACAf2GaprxvF+vIH3co1BwIx7Npu2UzDLkMaXaiQ6e5O/+IbhjW24THElsfhCeHGdLu1GFdjsc5rXdI7NF6EZkVAAAA6KdM05T3jSLVv3P0GUh99Izc9l2oSfF2OQxpR8vRS8+MeElORbJpRLjZgyG5TtIsIhwChk2bM8d1Opbkdigj0RWR9dh5AgAAAI5R/87BT4NTlIyPs3fsQBmGIcORE9V6esQ0ldLU0qVNebgFDJv+OXSGvO7OTS2mDk2JSJtyifAEAAAAdGjedljeNw5EuwxJbTtQuY6jHf3sueovP7obklKbWyO+jsMM6eUx53Q+ZjM0fXhqxNbsH38CAAAAQIQFG/2q+dvuaJfRwTRNzUiwy2lINkeOetJ1L5pMw1BKU2TDU0iG9nmGaOe/NIsIhExNHZoSsXW55wkAAACQVLtib1tziDDbUlGoR9//vTaUbFFrwKcRqXlaOv2z+toZn+/2PMMw5JSpqfF2bQyOUNu+R+wHKMM0ldHQfPKBvWCTqT9MXNSlRbnDZmjO2IyIrUt4AgAAwKDXvO2ImjcdCvu8/9y/Xl/7292anH2a/m3u/1OiM14HaktVXm9tLZthaLjLUJkrQcXO8Qr5C9VnHSxOgWGaGlLTIFcwciEvaBhaM3SG1g2Z3Om43Wbos9PzlB6hZhES4QkAAACDnGmaqnuzqO1mnTDmkvrWRt32yk80b+zZ+vWV98tmnNodM6ZpKj/errKWGfL5d4avwAgwDUMjj9RFbP6QDDU44/U/067s8lkwZOqrc0ZGbG2Je54AAAAwyPmK6xWobAr7hs4/tr+lQ43V+t55y2QzbGryNStk9nxHxjAMpdgNpbvyZNgyw1tkOJmmkptblRrB+51sMvXLmV9Qvatzhz3DkPJzkzUzgs0i2tYHAAAABrGGtWUR+an4vaKPlOxKVEXDYZ3/5FJN+MXFmviLS3T3Gz9XS6BnASNkmhoTZ5cj/pyTD44Ww9D4iuqItij//aRL9OGQKV2Om6a0fOGEiLUob0d4AgAAwKAVbPSrefPhiPRh2F9TooAZ1A1//3edP/os/ebK+/XFaYv1p4IXtfzVh3o0l80wNNRpyO0eJdM9NvbuejJN5dXUK8fbFLElnhs/T/932rwux+2GdMWMPF00KfLPwuKeJwAAAAxarXtrpVBkokijv1nN/hZ9ZcYVum/Bv0mSLplwvvxBv/5UsELfPfdrGp0+3PJ8NsNQMO2A/j51nS79IE1uv01GxB9Fa4FpyhkMaVLp4bBPHZIhm0z9btJi/WV81+BkGJIn3qkffXbycc4OP3aeAAAAMGj5ShskW2QCSJzDLUm6YtL8TsevmLRAkrSxbFuP5jMV1JS4QtUnNuqDqUdiIzhJkmFo2sGqsHfYCxqG6l3xunf2dccNTlLb5Xo/XTJNaRHssHcswhMAAAAGLV9xfcR2nnKS2p43lJWQ3ul4ZkKaJKmupb5H8xmyaWLzSP1n5SF5sxr08fia8BTaS6eVV4f1cr3Q0VC4ZugMfX3BXce9x6ndHRdP0MLJuWFb+2QITwAAABiUTNOUv7QhYvNPy50gSapo6PxMp8qGtsvb0hNSezijIZ95mi5sbNZLJeUamlOuzWMj1xbcijL7cNlb4iRJgVNsxd6u/fwDnlz9aPb1+tkZS9XgSjjh+G9dMFbfumBsr9bsKe55AgAAwKAUavTL9AUjNv9l+RfqVx8+o+c2v6JzRs7qOP7nTa/IYbNrzvCZPZ7TVIJCSlFqqE4/O3xEq1Ka9I+xozRqb6ZMmX1zKZ9hSKapc790rT5KOV03v75T+bXFumzv+zq/tEAOM6SAYZPdDHVbjSkpaNjkMEPyG3b9c9gMvTx6rgrTRrStceKl9b1FE/StC8ZF5Ot1h/AEAACAQcn0RaDF3jGm5IzXF6cu1vNbXlUgFNTZw2fow+ICvVz4tm4++yvKTT61ZzaZ+vT+nvnNzZrn2qG3Rueo4OAYmQG7bBEMUIbNJndiki7+xnc07syzNVvSadlJuvNvLv0ifaR+M/UKTTu8R+NrD2p8zUGdVluihOO0ZW9yuLU7dZgK00Zod+owbc4cJ687seuCx7AfbQ7x0yXT+vRSvWMZpmnGXKfDSPN6vUpJSVFdXZ08Hk+0ywEAAEAU+A81qfLnGyO7RjCg/1r7R/3fltdU2XBYQ1Ny9P9mXqWvn/mFU54zx3WjnLayLsebAw69XjlO+7xZatvXCV+IMgxDpmkq/5zzNe9r31R8UnKnz2saffrhim1asamsY3dIkmSaSvE1yB30yxkKym+zq9XuVJ0r6YS7S13Xbpvvihl5uvfyyUpNCG9ziJ5kA8IT4QkAAGBQClS3qOJnG6JdRo/luq+Xwzh0ws/31Kfr/UMjdbg1SYZCMnvR5sCw2WWGgsocMUrnfPGrGnfG7G7Hv7mtQo+u3KWdFfWy2wwFe9GMo/38/NxkLV84IWLPcepJNuCyPQAAAAxKhqt/9k4z5Ov283HJ1Rrr8aq8KV4FNUNV6M1SyJRsdrtCwZPf49U+zma3K3/uZzTj4suUO268DAs7RQsn5+qiSTn65GCt/rj2gF7aVKZAyJTDZihgIUi1j3PYDF0+PU9fnTNSM4anWlq7LxCeAAAAMCjZEp0yXPaINo0IN8MekG3UNKn8E8l3nE6BriQpb6aMobOUlzdDeaM+owuCDh3ctkWV+3arYu8uVezdI39Lc5dTnXHxyh07TrnjJihn9DgNnzxVCZ6UntdoGDp9RJpOH5GmH1w2SWv3HtHm0lptPlinzaW1amzt+vud6LZr2tBUTR+eqqlDUzRnbIbS++jZTT3BZXtctgcAADBoVf16s3z7o9vuuyfcY1KUdeO0tpuAGg9LgWYp4JMcLskRLyVmnvReItM01eytU8DnU8Dvl8PplMPlUrwnJeI7PKZp6kijTy3+oHyBkFwOm+KcdmUkuqK2u8RlewAAAIAFrhHJ8h3wRuxBuWFlM+QafrRRg2FISVmnNI1hGEpISQ1fXT1cOzPJHZW1w6F/XugJAAAAhIFraFL/CE6SFDLlHJoU7SoGNcITAAAABi332FTJFhvNCE7KZrTVi6ghPAEAAGDQsic6FT8tM/Z/KrYZip+eKXuiM9qVDGqx/q8JAAAAEFFJc/KkULSrOImQ2VYnoorwBAAAgEHNNSJZjtwEKVav3jMkR27ip80iEDWEJwAAAAxqhmEoZeEoKVb7RphSysKRMfOg2MGM8AQAAIBBL35ShuKnZ8Xe7pMhxc/IUvykjGhXAhGeAAAAAElS6uVjZYt3xE6AMiRbvEOpnx0b7UpwFOEJAAAAUFvnvbQlp8XO5XumlLZkPB32YgjhCQAAADgqfnKmPBePjHYZkiTPxaMUP5nL9WIJ4QkAAAA4RvIFw5V8wfAYqGFYVGtAV45oFwAAAADEEsMw5Ll4pAy3Xd43itrugeqLS/mOruNZNEqeKIc3HB/hCQAAAPgXhmHIc+FwObMTVPO3XQo1ByIboI42h0hbMp5L9WIY4QkAAAA4gfjJGXKNOkO1K/aqedOh8O9CHZ0vfnqW0i4fK1sCzSFiGeEJAAAA6IY90amML+WreVqW6lYWKVDRJNkMKdSLFHX0fEdOglIWjuI5Tv0E4QkAAACwIH5yhuImpct3sF4Na8vUvOlwW4CyGqTax9kMxU/PUtKcIXINT5ZhxMqDpXAyhCcAAADAIsMw5B7hkXuER8HL/GrdWytfaYP8B+vlK22Q2Rrseo7bLtfQJLmGJ8s5NEnusak8u6mfIjwBAAAAp8Ce6FTCtCwlTMuSJJmmqVCjX6Y/JDMQkuGwyXDaZEt0srs0QBCeAAAAgDAwDEP2JFe0y0AEEZ4AAECPmKapxsZG+f1+BYNB2e12OZ1OJSYm8n/XAQxohCcAANCtxsZG7d+/X+Xl5SotLVVZWZl8Pl+XcS6XS3l5eRo6dKiGDBmi0aNHKzExMQoVA0BkEJ4AAEAXpmmqpKRE69ev17Zt2xQKhWSz2RQKhU54js/nU1FRkYqLizvGT5kyRWeeeaaGDRvGrhSAfo/wBAAAOtm5c6dWr16tqqqqToGpu+B0rGPHb926VZs3b1Z2drbmzZun/Pz8iNUNAJFGeAIAAJKkpqYmvfrqq9q6dWvHLpHVwHQi7ecfOnRIzz33nKZMmaLFixcrISGh1/UCQF8jPAEAAO3YsUMrVqxQS0uLpLbL9sKpfb5t27Zp7969uvzyyzVx4sSwrgEAkWaLdgEAACB6TNPUmjVr9Pzzz6u5uTnsoel46zU3N+v555/Xu+++G/H1ACCcCE8AAAxSpmlq1apVWr16dVTWX7VqlVatWkWAAtBvEJ4AABik3n33Xb333ntRreG9996Leg0AYBXhCQCAQWjHjh1R23H6V6tWrdLOnTujXQYAnBThCQCAQaapqUkrVqyIdhmdvPjii2pqaop2GQDQLbrtAQAwyLz66qsdXfXC5R//+Ic2bdp0ws9vu+02eTyeE37e0tKi1157TUuWLAlrXQAQToQnAAAGkZ07d2rr1q1hn3fWrFkaM2ZMp2OmaeqVV15Rampqt8GpfeyWLVs0efJkHqQLIGYRngAAGCRM09Tq1atlGEbYO9wNHz5cw4cP73SsuLhYfr9fU6dOtTSHYRhavXq1JkyY0PGQXgCIJdzzBADAIFFSUqKqqqo+aw2+ZcsWSbIcnkzTVFVVlUpKSiJZFgCcMsITAACDxPr162Wz9c1/+oPBoLZt26bhw4crNTXV8nk2m00bNmyIXGEA0AuEJwAABoHGxkZt27ZNoVCoT9bbu3evmpubLe86tQuFQtq6dasaGxsjVBkAnDrCEwAAg8D+/fv7LDhJbZfs2Ww2TZ48ucfnhkIhFRUVhb8oAOglwhMAAINAeXl5n12y5/P5VFhYqHHjxikhIaHH59tsNpWVlUWgMgDonYj+LVpdXa2lS5fK4/EoNTVVN9xwgxoaGro954ILLpBhGJ1e3/zmNzuNKS4u1qWXXqqEhARlZ2frjjvuUCAQiORXAQCgXyspKemznaedO3f2qMvevwqFQiotLQ1zVQDQexFtVb506VKVl5dr5cqV8vv9uv7663XjjTfq2Wef7fa8ZcuW6b777ut4f+z/tQoGg7r00kuVm5urDz74QOXl5br22mvldDr1k5/8JGLfBQCA/so0TZWXl/fZelu2bJHL5dKECRNOeY6ysjKZpknLcgAxJWLhaceOHXr99de1YcMGnXHGGZKkxx9/XIsXL9YjjzyivLy8E56bkJCg3Nzc43725ptvavv27XrrrbeUk5OjGTNm6P7779edd96pH/3oR3K5XF3OaW1tVWtra8d7r9fby28HAED/0djYKJ/P12dr7du3T1OmTJHT6TzleXw+nxobG5WUlBTG6gCgdyJ22d7atWuVmpraEZwkacGCBbLZbFq3bl235z7zzDPKzMzUlClTdPfdd6upqanTvFOnTlVOTk7HsYsvvlher1fbtm077nwPPvigUlJSOl7/+hA/AAAGMr/f32drtXf0O9VL9o7FJfkAYk3Edp4qKiqUnZ3deTGHQ+np6aqoqDjheV/+8pc1cuRI5eXlafPmzbrzzjtVWFiov//97x3zHhucJHW8P9G8d999t26//faO916vlwAFABg0gsFgn621ZcsWJSYmasyYMb2ei/AEINb0ODzddddd+ulPf9rtmB07dpxyQTfeeGPHr6dOnaohQ4Zo/vz52rt3r8aOHXtKc7rdbrnd7lOuCQCA/sxut/fZWjfccEPY5nI4InprNgD0WI//Vlq+fLmuu+66bseMGTNGubm5qqqq6nQ8EAiourr6hPczHc/s2bMlSXv27NHYsWOVm5ur9evXdxpTWVkpST2aFwCAwaI39x5FE+EJQKzp8d9KWVlZysrKOum4OXPmqLa2Vhs3btSsWbMkSatXr1YoFOoIRFYUFBRIkoYMGdIx7wMPPKCqqqqOywJXrlwpj8ejSZMm9fDbAAAw8CUmJsrlcvVZ04hwcLlcSkxMjHYZANBJxBpGTJw4UYsWLdKyZcu0fv16vf/++7rlllt0zTXXdHTaKy0tVX5+fsdO0t69e3X//fdr48aNKioq0ooVK3TttdfqM5/5jKZNmyZJWrhwoSZNmqSvfvWr2rRpk9544w19//vf180338yleQAAHIdhGB3/E7K/yMvLo005gJgT0YfkPvPMM8rPz9f8+fO1ePFinXvuufrNb37T8bnf71dhYWFHNz2Xy6W33npLCxcuVH5+vpYvX64lS5bopZde6jjHbrfr5Zdflt1u15w5c/SVr3xF1157bafnQgEAgM6GDRsmmy2i/9kPG5vNpqFDh0a7DADowjBN04x2EX3N6/UqJSVFdXV18ng80S4HAICI27p1q/76179GuwzLrr76ak2ePDnaZQAYBHqSDfrH/4ICAAC9Mnr06H618zRq1KholwEAXfSPv0UBAECvJCYmavLkyTEfoGw2m6ZMmUKzCAAxKbb/BgUAAGFz1llnKRQKRbuMboVCIZ155pnRLgMAjovwBADAIDFs2DBlZ2fHbBc7wzCUk5OjYcOGRbsUADguwhMAAIOEYRiaN2+eYrVXlGmauvDCC2M23AEA4QkAgEEkPz9fU6ZMibmAYhiGpk6dqvz8/GiXAgAnRHgCAGCQWbx4seLi4qJdRidxcXG65JJLol0GAHSL8AQAwCCTkJCgyy+/PNpldHLFFVcoISEh2mUAQLcITwAADEITJ07UvHnzol2GJGn+/PlcrgegXyA8AQAwSJ133nk699xzo1rDueeeG/UaAMAqR7QLAAAA0WEYhubPny+3261Vq1b1+frz58/Xeeed1+frAsCpIjwBADCIGYah8847T1lZWXrxxRfV0tIS0VbmhmEoLi5OV1xxBZfqAeh3CE8AAED5+fkaMWKEXn31VW3dulWGYYQ1RLXPN2XKFF1yySU0hwDQLxGeAACApLYufJ///Oc1ZcoUrV69WlVVVbLZbAqFQqc8Z/v5WVlZmjdvHrtNAPo1whMAAOgkPz9fEyZMUElJiTZs2KCtW7cqFApZDlLt42w2m6ZMmaKzzjpLQ4cOjbkH8wJATxlmJC9sjlFer1cpKSmqq6uTx+OJdjkAAMS0xsZGFRUVqaysTKWlpSorK5PP5+syzuVyKS8vT0OHDlVeXp5GjRqlxMTEKFQMANb1JBuw8wQAALqVmJioyZMna/LkyZIk0zTV2NioQCCgQCAgh8Mhh8OhxMREdpcADGiEJwAA0COGYSgpKSnaZQBAn+MhuQAAAABgAeEJAAAAACwgPAEAAACABYQnAAAAALCA8AQAAAAAFhCeAAAAAMACwhMAAAAAWEB4AgAAAAALeEguACDmmKYpv/+IgsEWmaZfhuGU3R4npzNDhmFEuzwAwCBFeAIARJ3PV62amrWqr9+qOu8m1ddvVTDY2GWc3Z6o5OQpSvFMV3LyFKWlzZHLlR6FigEAgxHhCQAQFaZpyuv9RAdL/qSqqldkmgEZhkOmGTjhOcFgo2pr16mubmPH+JzsyzRs2Ffk8cxgVwoAEFGEJwBAnzt0aKX27ntUjY27ZBh2mWZQkroNTsdqH2eaAVVWvaSKyn8oMXGCxo65XVlZCyJWNwBgcKNhBACgz/j9Ndq67VZt3vJNNTbulqSO4HSq2s9vbNylzVu+oa3bbpXfX9PrWgEA+FeEJwBAnzh06E2t/fAiVVa+evSIGeYV2uarrHxVaz+8SIcOvRnm+QEAgx3hCQAQUaZpqqjov7V5y03y+2sl9W6n6eSC8vtrtXnLTSoq+h+ZZrhDGgBgsCI8AQAixjRN7d33iPbu+3n7kb5aWZI61iZAAQDCgfAEAIiYAwf+RwcOPDHoawAADAyEJwBARBw69OYxO07RtXffIzp0aGW0ywAA9HO0KgcAhJ3fX6MdO/9dkqFwXapXUuLXU7+v1tatLaqvDyk726F585J09RdSFBd3sv8XaGjHzruVmnqGnM60sNQDABh82HkCAIRd4a575fd7Fa7gVFUV0C03l2rHjlZdcWWKbvpWhiZNcuvpp2v0wANVFmYw5fd7VbjrvrDUAwAYnNh5AgCE1aFDK1VZ+VJY53xrZb0aGkL65X/madQolyTpsss8CoWklSsbVF8fVHKy/SSzBFVZuUI52ZfyIF0AwClh5wkAEDZt3fUeVdvleuHT2BSSJKWldQ5I6Rl22WySw2F1PUN79z1K9z0AwCkhPAEAwsbr/USNjbsU7pbk06fHS5IeeeSQ9uxpVVVVQG+/3aCXXvLqyqs8io+3+p8zU42NhfJ6C8JaHwBgcOCyPQBA2Bws+ZMMwy7TDO+DcM86K0HXXZ+mPz9bq7UfNHUc//LSVH3ta+k9mssw7Cop+ZNSUmaGtUYAwMBHeAIAhIXPV62qqlfCHpza5eY4NHVanM47L1Eej13rPmzSn5+tVXq6XVdemWJ5HtMMqrLqZZ122n/I5epZ8AIADG6EJwBAWNTUrJVpBiIy99urG/SLXxzWU08PV1ZW23+6zjsvUaZp6n+frNaFFyYpJeVkDSM+ZZoB1dR+qJzsxRGpFwAwMHHPEwAgLOrrt8owIvP/5Fas8GrcOFdHcGo3Z26iWlpM7dnT2qP5DMOheu/WcJYIABgECE8AgLCo826K2M5TTU1QwVDX44FAW2OKYA+vFDTNgOq8m8JQGQBgMCE8AQB6zTRN1ddHbidn2DCn9u5pVclBX6fjb69ukM0mjRnj6vGc9fVbaVkOAOgR7nkCAPSa339EwWBjxOb/whdTtH59k269tVxXXulRssemdR82af36Zl2yOFmZmT3/z1kw2CC//4hcrswIVAwAGIgITwCAXgsGWyI6/7Rp8Xrs8Tz94ekarVjhldcbVG6uU1/7Wpq+eE3qKc8bDPbsXikAwOBGeAIA9Jpp+iO+Rn5+nH7y4JCwzmmavpMPAgDgKO55AgD0mmE4o13CKTGMnt8rBQAYvAhPAIBes9vjol3CKbHb3dEuAQDQjxCeAAC95nRmyG5PjHYZPWK3J8npzIh2GQCAfoTwBADoNcMwlJw8Jdpl9Ehy8hQZhhHtMgAA/QjhCQAQFime6TKM/tGHyDAcSvFMj3YZAIB+hvAEAAiL5OQpMs1AtMuwxDQDSvb0r50yAED0EZ4AAGGRljanX+08paWeHe0yAAD9DOEJABAWLle6srMvlWHYo11KtwzDrpzsy+RypUe7FABAP0N4AgCEzfBhX5FpBqNdRrdMM6hhw74S7TIAAP0Q4QkAEDYez0wlJk6QFKtd7AwlJebL45kR7UIAAP0Q4QkAEDaGYWjsmNslmdEu5QRMjRlzGy3KAQCnhPAEAAirrKwFysn5rKRYu/fJrpycy5WVtSDahQAA+inCEwAg7CaM/6GcTo9i5/I9Q06nRxPG3xPtQgAA/RjhCQAQdk5nmibm/0Sxc/meqYn5D8rpTIt2IQCAfozwBACIiKyshRo7Znm0y5AkjR3zXWVlXRTtMgAA/RzhCQAQMSNH3qSRI2+KgRq+GdUaAAADQ/94FDwAoF9q6763XA57ovbue0Rt90D1xaV8beuMHXOHRo0iOAEAwoOdJwBARBmGoVGjbtK0qU/I6UxV5Lvw2eV0pmra1CcITgCAsCI8AQD6RFbWRZpz9krl5Cw+eiTcnfja5svJuVRzzn6Le5wAAGHHZXsAgD7jdKZpyuRfKif7Uu3d9ws1NhbKMOwyzeApz9l+fmLieI0dczvPcQIARAzhCQDQ57KyLlJm5gJ5vQUqKfmTKqtelmkGZBgOmWbgpOe3jzMMh3JyPqthQ78ij2e6DCNWnisFABiICE8AgKgwDEMpKTOVkjJTp532H6qp/VD13i2q825Wff0WBYONXc6x2xOVnDxVKZ7pSvZMUVrq2XK50qNQPQBgMCI8AQCizuVKV072YuVkt90PZZqm/P4jCgZbZZo+GYZLdrtbTmcGu0sAgKghPAEAYo5hGHK5MqNdBgAAndBtDwAAAAAsIDwBAAAAgAWEJwAAAACwgPAEAAAAABYQngAAAADAAsITAAAAAFhAeAIAAAAACwhPAAAAAGAB4QkAAAAALCA8AQAAAIAFhCcAAAAAsIDwBAAAAAAWEJ4AAAAAwALCEwAAAABYQHgCAAAAAAsITwAAAABgAeEJAAAAACwgPAEAAACABYQnAAAAALCA8AQAAAAAFkQ0PFVXV2vp0qXyeDxKTU3VDTfcoIaGhhOOLyoqkmEYx3395S9/6Rh3vM+fe+65SH4VAAAAAIOcI5KTL126VOXl5Vq5cqX8fr+uv/563XjjjXr22WePO3748OEqLy/vdOw3v/mNHn74YV1yySWdjv/+97/XokWLOt6npqaGvX4AAAAAaBex8LRjxw69/vrr2rBhg8444wxJ0uOPP67FixfrkUceUV5eXpdz7Ha7cnNzOx174YUX9IUvfEFJSUmdjqempnYZCwAAAACRErHL9tauXavU1NSO4CRJCxYskM1m07p16yzNsXHjRhUUFOiGG27o8tnNN9+szMxMnXXWWfrd734n0zRPOE9ra6u8Xm+nFwAAAAD0RMR2nioqKpSdnd15MYdD6enpqqiosDTHb3/7W02cOFFz587tdPy+++7TvHnzlJCQoDfffFPf+ta31NDQoO985zvHnefBBx/Uvffee2pfBAAAAAB0CjtPd9111wmbOrS/du7c2evCmpub9eyzzx531+kHP/iBzjnnHM2cOVN33nmnvve97+nhhx8+4Vx333236urqOl4HDx7sdX0AAAAABpce7zwtX75c1113XbdjxowZo9zcXFVVVXU6HggEVF1dbelepb/+9a9qamrStddee9Kxs2fP1v3336/W1la53e4un7vd7uMeBwAAAACrehyesrKylJWVddJxc+bMUW1trTZu3KhZs2ZJklavXq1QKKTZs2ef9Pzf/va3uvzyyy2tVVBQoLS0NAISAAAAgIiJ2D1PEydO1KJFi7Rs2TI98cQT8vv9uuWWW3TNNdd0dNorLS3V/Pnz9Yc//EFnnXVWx7l79uzRmjVr9Oqrr3aZ96WXXlJlZaXOPvtsxcXFaeXKlfrJT36i7373u5H6KgAAAAAQ2ec8PfPMM7rllls0f/582Ww2LVmyRI899ljH536/X4WFhWpqaup03u9+9zsNGzZMCxcu7DKn0+nUr371K912220yTVPjxo3To48+qmXLlkXyqwAAAAAY5Ayzux7fA5TX61VKSorq6urk8XiiXQ4AAACAKOlJNojYc54AAAAAYCAhPAEAAACABYQnAAAAALCA8AQAAAAAFhCeAAAAAMACwhMAAAAAWEB4AgAAAAALCE8AAAAAYAHhCQAAAAAsIDwBAAAAgAWEJwAAAACwgPAEAAAAABYQngAAAADAAsITAAAAAFhAeAIAAAAACwhPAAAAAGAB4QkAAAAALCA8AQAAAIAFhCcAAAAAsIDwBAAAAAAWEJ4AAAAAwALCEwAAAABYQHgCAAAAAAsITwAAAABgAeEJAAAAACwgPAEAAACABYQnAAAAALCA8AQAAAAAFhCeAAAAAMACwhMAAAAAWEB4AgAAAAALCE8AAAAAYAHhCQAAAAAsIDwBAAAAgAWEJwAAAACwgPAEAAAAABY4ol0AAPwr0zR12B9QczAkv2nKaRiKt9uU6XTIMIxolwcAAAYpwhOAqDviC+i92nptrm/WJ94mbapvUmMw1GVcot2m6ckJmulJ0LTkeJ2bmqwMF3+NAQCAvsFPHQCiwjRNbfQ26felh/ViVY0CpuQwpIB54nMagyF9UNug9XUNHeOvzE7T9UMzdbongV0pAAAQUYQnAH3u9UN1emh/uXY2tshuSMGjgam74HSswDHjX6iq0V8razQxMU53jRmiizNTIlM0AAAY9GgYAaDPVPsDumlbka7bul+7GlskfRqcTlX7+YWNLfp/W/brpm1FqvYHelkpAABAV4QnAH3itUO1OmfdDq2oqpUkdb2jqXfa51tRVatz1+3Qa4dqw7wCAAAY7AhPACLKNE39Z1Glrt9apDp/UMEIrxeUVOsP6vqtRXrsQKVMs5dbWwAAAEcRngBEjGma+sm+cj24v1xS+HebTqR9nZ/sK9eD+8oJUAAAICwITwAi5rEDVXq8uCq6NRRHvwYAADAwEJ4ARMRrh2o7dpyi7Sf7yvX6obpolwEAAPo5whOAsKv2B3R74UHFylOXbJJuKyymCx8AAOgVwhOAsPuPXSXy+oMK551G/l3bVXPnzaq67FxVXXqOau64Sf49hZbODUny+oP6/q6SMFYEAAAGG8ITgLB6/VCdXqiqDWtXPf+uHar+ztcULC9R4rU3KvGrNypQWqya276uQHGRpTmCkv5eVas3DnP5HgAAODWEJwBhY5qmHtpfHva/WBp+/98y3G6lP/60Er9wrRKv+X9Kf/wpKRRSw28ftzyPTdJDdN8DAACniPAEIGw2epu0s7El7C3J/Vs+kev02bKlpHYcs2dkyTl9llo/fFeh5iZL84Qk7Whs0cdea+MBAACORXgCEDa/Lz0sewS6RJh+nwy3u8txwx0n+f0K7N9jeS670VYnAABATxGeAITFEV9AL1bVKBiBK+Icw0fJv32LzOCnd1KZfr/8O7ZIkkKHrT/HKWhK/6iq0REfnfcAAEDPEJ4AhMV7tfUKROhWovjLr1aw5IC8j9yrQNFeBfbvUd1D31eoum0HyWxt7dF8AVN6v7YhEqUCAIABzBHtAgAMDJvrm+UwFJEAlXD51QodqlTj80+r5Y2XJEmOCZOU+MXr1PjM/8qIT+jRfA5D2lzfpMuzU8NfLAAAGLAITwDC4mNvU8R2niQp6YZblPCFaxUo2isjMUnOMaep/n/bOu05ho3o0VwBU/qEphEAAKCHCE8Aes00TW2uj3wYsSV75Jo6s+O9b+M62bJyZB8xusdzbapvkmmaMowIdLgAAAADEvc8Aei1w/6AGoPhblDevZa331CgcJsSlnxZhq3nf5U1BEM67KdpBAAAsI6dJwC91hzh4OTbtFGNf/yNXGfMkc2TIv/2LWp+fYVcZ81VwpIvn/K8LSEelgsAAKwjPAHoNb8Z2RBiy8yWbHY1Pv+0zKYm2YcMVdLXvqWEq78qw37qf435Qn27WwYAAPo3whOAXnNG+L4hx9DhSvvZf4d9XtcpXO4HAAAGL35yANBr8fb++VdJnI1mEQAAwLr++RMPgJiS6XQosZ8FqCS7TZlONt8BAIB1/eunHQAxyTAMTUvu2YNqo216cgJtygEAQI8QngCExemeBDn6SRZxGNJMT/8KewAAIPoITwDCYlpyvAL9pPN3wFS/2ykDAADRR3gCEBbnpib3q52nc1KTol0GAADoZwhPAMIiw+XQFdlpssd4gLIb0pXZacpw0SwCAAD0DOEJQNhcPzRTwRi/dC9ottUJAADQU4QnAGEzy5OgiYlxMfsXi03SpMQ4nU6zCAAAcApi9WccAP2QYRi6a8wQhaJdyAmEJN05ZggtygEAwCkhPAEIq4szU3RVdqrs0S7kX9glfS47VRdnpkS7FAAA0E8RngCE3QPjh8njtMfMXzA2SSlOu348fli0SwEAAP1YrPxsA2AASXc69OiE4TFz+V5I0qMTRijdSYc9AABw6ghPACLikqxU3T16SLTLkCT9+5ghWpTF5XoAAKB3CE8AIuY7I7P1nRHZ0a1hRLa+HeUaAADAwEB4AhAxhmHo7jFD9O9j2nag+uovnPZ1/mPMEP372Dy66wEAgLAgPAGIKMMw9J2ROXpqymilOO0R78Jnl5TqtOupKaP17ZE5EV4NAAAMJoQnAH1iUVaK3p89UZdnp0oK/18+7fNdkZ2q92dP5B4nAAAQdoQnAH0m3enQ/0wepaemjNaExDhJkr2XV9S1nz8hMU5PTx2t/548Sml01QMAABHATxgA+tyirBRdnOnRx94m/b70sP5RVaOAKTkMKWCe/Pz2cU7D0JXZqbp+aKZmehK4twkAAEQU4QlAVBiGoVkpiZqVkqh7xw3V+7UN2lTfpAJvkwrqm9QY7PqUqES7TTOSEzTTk6BpyQk6JzVJGS7+GgMAAH2DnzoARF2Gy6HLs1M77ocyTVOH/QG1hEz5QiG5bDbF2QxlOh3sLgEAgKghPAGIOYZhKMvljHYZAAAAndAwAgAAAAAsIDwBAAAAgAWEJwAAAACwgPAEAAAAABYQngAAAADAAsITAAAAAFhAeAIAAAAACwhPAAAAAGAB4QkAAAAALCA8AQAAAIAFhCcAAAAAsCBi4emBBx7Q3LlzlZCQoNTUVEvnmKape+65R0OGDFF8fLwWLFig3bt3dxpTXV2tpUuXyuPxKDU1VTfccIMaGhoi8A0AAAAA4FMRC08+n09XX321brrpJsvn/OxnP9Njjz2mJ554QuvWrVNiYqIuvvhitbS0dIxZunSptm3bppUrV+rll1/WmjVrdOONN0biKwAAAABAB8M0TTOSCzz11FO69dZbVVtb2+040zSVl5en5cuX67vf/a4kqa6uTjk5OXrqqad0zTXXaMeOHZo0aZI2bNigM844Q5L0+uuva/HixSopKVFeXt5x525tbVVra2vHe6/Xq+HDh6uurk4ejyc8XxToJ0zT1JFGn5p9QfmDITntNsW77MpIdMkwjGiXBwAA0Ke8Xq9SUlIsZQNHH9V0Uvv371dFRYUWLFjQcSwlJUWzZ8/W2rVrdc0112jt2rVKTU3tCE6StGDBAtlsNq1bt05XXXXVced+8MEHde+990b8OwCxqLrRpw/2HtaW0jptOlirLSV1avQFu4xLdNk1dViKpg9P1dShKZo7NlPpia4oVAwAABCbYiY8VVRUSJJycnI6Hc/Jyen4rKKiQtnZ2Z0+dzgcSk9P7xhzPHfffbduv/32jvftO0/AQGWapj4urtUf1xbp5c3lCoRMOWyGAqETbzQ3+oL6cF+1Piqq6Rj/2el5+uqckZo5PJVdKQAAMOj1KDzddddd+ulPf9rtmB07dig/P79XRYWb2+2W2+2OdhlAn3hzW4V+/uYuFVbWy24zFDwamLoLTscKHDN+xaYyvfBJqfJzk7V84QRdNCnnJGcDAAAMXD0KT8uXL9d1113X7ZgxY8acUiG5ubmSpMrKSg0ZMqTjeGVlpWbMmNExpqqqqtN5gUBA1dXVHecDg1VNo08/XLFNKzaVqX2TKGgxMJ1I+/mFlfVa9oePdPn0PN17+WSlcTkfAAAYhHoUnrKyspSVlRWRQkaPHq3c3FytWrWqIyx5vV6tW7euo2PfnDlzVFtbq40bN2rWrFmSpNWrVysUCmn27NkRqQvoD97YVqG7/rZZ3uaAJCncbWDa53tlc5ne3X1IDy2Zposn8z8sAADA4BKxVuXFxcUqKChQcXGxgsGgCgoKVFBQ0OmZTPn5+XrhhRckSYZh6NZbb9WPf/xjrVixQlu2bNG1116rvLw8XXnllZKkiRMnatGiRVq2bJnWr1+v999/X7fccouuueaaE3baAwYy0zT1q7f36Bt/3KjaZr+CkW2eqaAp1Tb79Y0/btSv3t6jCDfrBAAAiCkRaxhxzz336Omnn+54P3PmTEnS22+/rQsuuECSVFhYqLq6uo4x3/ve99TY2Kgbb7xRtbW1Ovfcc/X6668rLi6uY8wzzzyjW265RfPnz5fNZtOSJUv02GOPReprADHLNE397I1C/c87e4++76t12/758BuFamwN6I6LJ9BMAgAADAoRf85TLOpJL3cgVv3q7T16+I3CaJehOy6eoJsvHBftMgAAAE5JT7JBxC7bAxA5b2yriIngJLXtQL257cSPCgAAABgoCE9AP1PT6NNdf9usWLlQzjCkO/+2WTWNvmiXAgAAEFEx85BcANb8cMU2eZsDCuf1tiFfs7zr/q7W8kL5yncp1NKgjMW3Kmnqgi5j/YcPqnr1k2ot2S7D7lD82DNlzv+6fvTSNv3nNTPDWBUAAEBsITwB/cib2yq0YlNZ2OcNNXtV98GfZfdkyZk9Wq3FW447LuA9rIpn75TNnajUz1wr098i7/q/q+xQkf7helSXTcvjQboAAGDAIjwB/YRpmvr5m7tkGOHvrGdPTNewm/8oe1KaWst3q+IPtx13XN2H/yfT36qc634phydbkuQaMl5Vz39fjVtX6edvpmvBxGy67wEAgAGJe56AfuLj4loVVtZHpCW54XDKnpR20nFNhR8ofuyZHcFJkuJHzZAjfagad7yrnRX1+uRgbfgLBAAAiAGEJ6Cf+OPaItlt0dvRCdQfVqipVq4hXduSu4eMl69yn+w2Q39ceyAK1QEAAEQe4QnoB6obfXp5c7mCoeg9li3YUCOp7RK/f2VPTFOopV4Bn08vbSpTNZ33AADAAER4AvqBD/YeViCKwUmSzECrJMmwO7t8ZjhcHWMCIVNr9x7p09oAAAD6AuEJ6Ae2lNbJEcVL9iTJcLglSWbQ3+UzM+DrGOOwGdpSWtentQEAAPQFwhPQD2wqro36zlN7Q4lgY3WXz4KNNbLFJctwOBUImdpE0wgAADAAEZ6AGGeaZkzs5DiSM2VLSJGvfE+Xz1rLd8mVM7rj/ZbSOpmRaAsIAAAQRYQnIMYdafSp0ReMdhmSpITxc9W8d4MC3kMdx5qLChSoLlXChHM7jjW0BnSEphEAAGCA4SG5QIxr7qPg5N34kkKtjQo2tF2W17xnvQL1hyVJnlmflc2dqJQ5X1BT4fuq/PO/K/mMy2X6muVd/3c5s0YpaepFneZr8cdG4AMAAAgXwhMQ4/zBUJ+s413/goLeqo73Tbs+kHZ9IElKmnyhbO5EOTxZyvnSg6pZ/b+q/edTMmwOxY89U2nzbpDh6NyFzxfom7oBAAD6CuEJiHFOe99cXTvspt9ZGufKGqmcL95/8nEOrgoGAAADCz/dADEu3mWPdgmnJM7ZP+sGAAA4EcITEOMyEl1K7GcBKsntUEaiK9plAAAAhBXhCYhxhmFo6tCUaJfRI1OHpsgwovtQXwAAgHAjPAH9wPQRqXLY+kcYcdgMTR+eGu0yAAAAwo7wBPQDU4emKBDqHw+dDYTMfrdTBgAAYAXhCegH5o7N7Fc7T3PGZkS7DAAAgLAjPAH9QHqiS5dNGyJ7jAcou83QZ6fnKZ1mEQAAYAAiPAH9xFfnjFIwxi/dC4ZMfXXOyGiXAQAAEBGEJ6CfOH1EqvJzkxWrTewMQ8rPTdZMmkUAAIABivAE9BOGYWj5wgkyY3TzyTSl5Qsn0KIcAAAMWIQnoB+5aFKOLp+eJ3uMBRS7IV0xI08XTcqJdikAAAARQ3gC+pl7L58sT7wjZi7fMwzJE+/Ujz47OdqlAAAARBThCehn0hJdemjJtJi5fM80pZ8umaY0OuwBAIABjvAE9EMXT87VHRdPiHYZkqQ7Lp6ghZNzo10GAABAxBGegH7qWxeM1bcuGDvoawAAAOgrjmgXAODUGIahOy6eoES3Qw+/USjDUJ9cyte+zvcWTdC3LhgX+QUBAABiBDtPQD9mGIZuvnCcfvPVWUqNd8oe4SYSdkNKjXfqN1+dRXACAACDDuEJGAAWTs7V6uUX6NJpeZIU9k587fNdNj1Pb3/3Au5xAgAAgxKX7QEDRFqiS499aaYumzZEj67cpZ0V9bLbDAVDp34tX/v5E3KStXzhBJ7jBAAABjXCEzDALJycq4sm5eiTg7X649oDemlTmQIhUw6boYCFINU+zmEzdPn0PH11zkjNGJ4qI1YeLAUAABAlhmnGytNi+o7X61VKSorq6urk8XiiXQ4QUdWNPq3de0SbS2u1+WCdNpfWqrE12GVcotuuaUNTNX14qqYOTdGcsRlK59lNAABggOtJNmDnCRjg0hNdunTaEF06bYgkyTRNHWn0qcUflC8QksthU5zTroxEF7tLAAAA3SA8AYOMYRjKTHJHuwwAAIB+h257AAAAAGAB4QkAAAAALCA8AQAAAIAFhCcAAAAAsIDwBAAAAAAWEJ4AAAAAwALCEwAAAABYQHgCAAAAAAsITwAAAABgAeEJAAAAACwgPAEAAACABYQnAAAAALCA8AQAAAAAFhCeAAAAAMACwhMAAAAAWEB4AgAAAAALCE8AAAAAYAHhCQAAAAAsIDwBAAAAgAWEJwAAAACwgPAEAAAAABYQngAAAADAAsITAAAAAFhAeAIAAAAACwhPAAAAAGAB4QkAAAAALCA8AQAAAIAFhCcAAAAAsIDwBAAAAAAWEJ4AAAAAwALCEwAAAABYQHgCAAAAAAsITwAAAABgAeEJAAAAACwgPAEAAACABYQnAAAAALCA8AQAAAAAFhCeAAAAAMACwhMAAAAAWEB4AgAAAAALCE8AAAAAYAHhCQAAAAAsIDwBAAAAgAWEJwAAAACwgPAEAAAAABYQngAAAADAAsITAAAAAFhAeAIAAAAACwhPAAAAAGAB4QkAAAAALCA8AQAAAIAFhCcAAAAAsIDwBAAAAAAWEJ4AAAAAwALCEwAAAABYELHw9MADD2ju3LlKSEhQamrqScf7/X7deeedmjp1qhITE5WXl6drr71WZWVlncaNGjVKhmF0ej300EMR+hYAAAAA0CZi4cnn8+nqq6/WTTfdZGl8U1OTPv74Y/3gBz/Qxx9/rL///e8qLCzU5Zdf3mXsfffdp/Ly8o7Xt7/97XCXDwAAAACdOCI18b333itJeuqppyyNT0lJ0cqVKzsd+6//+i+dddZZKi4u1ogRIzqOJycnKzc3N2y1AgAAAMDJxPQ9T3V1dTIMo8tlfw899JAyMjI0c+ZMPfzwwwoEAt3O09raKq/X2+kFAAAAAD0RsZ2n3mppadGdd96pL33pS/J4PB3Hv/Od7+j0009Xenq6PvjgA919990qLy/Xo48+esK5HnzwwY6dMAAAAAA4FYZpmqbVwXfddZd++tOfdjtmx44dys/P73j/1FNP6dZbb1Vtba3lovx+v5YsWaKSkhK98847ncLTv/rd736nb3zjG2poaJDb7T7umNbWVrW2tna893q9Gj58uOrq6rqdGwAAAMDA5vV6lZKSYikb9Gjnafny5bruuuu6HTNmzJieTNmF3+/XF77wBR04cECrV68+6ReYPXu2AoGAioqKNGHChOOOcbvdJwxWAAAAAGBFj8JTVlaWsrKyIlVLR3DavXu33n77bWVkZJz0nIKCAtlsNmVnZ0esLgAAAACI2D1PxcXFqq6uVnFxsYLBoAoKCiRJ48aNU1JSkiQpPz9fDz74oK666ir5/X59/vOf18cff6yXX35ZwWBQFRUVkqT09HS5XC6tXbtW69at04UXXqjk5GStXbtWt912m77yla8oLS0tUl8FAAAAACIXnu655x49/fTTHe9nzpwpSXr77bd1wQUXSJIKCwtVV1cnSSotLdWKFSskSTNmzOg0V/s5brdbzz33nH70ox+ptbVVo0eP1m233abbb789Ul8DAAAAACT1sGHEQNGTm8IAAAAADFw9yQYx/ZwnAAAAAIgVhCcAAAAAsIDwBAAAAAAWEJ4AAAAAwALCEwAAAABYQHgCAAAAAAsITwAAAABgAeEJAAAAACwgPAEAAACABYQnAAAAALCA8AQAAAAAFhCeAAAAAMACwhMAAAAAWEB4AgAAAAALCE8AAAAAYAHhCQAAAAAsIDwBAAAAgAWEJwAAAACwgPAEAAAAABYQngAAAADAAsITAAAAAFhAeAIAAAAACwhPAAAAAGAB4QkAAAAALCA8AQAAAIAFhCcAAAAAsIDwBAAAAAAWEJ4AAAAAwALCEwAAAABYQHgCAAAAAAsITwAAAABgAeEJAAAAACwgPAEAAACABYQnAAAAALCA8AQAAAAAFhCeAAAAAMACwhMAAAAAWEB4AgAAAAALCE8AAAAAYAHhCQAAAAAsIDwBAAAAgAWEJwAAAACwgPAEAAAAABYQngAAAADAAsITAAAAAFhAeAIAAAAACwhPAAAAAGAB4QkAAAAALCA8AQAAAIAFhCcAAAAAsIDwBAAAAAAWEJ4AAAAAwALCEwAAAABYQHgCAAAAAAsITwAAAABgAeEJAAAAACwgPAEAAACABYQnAAAAALCA8AQAAAAAFhCeAAAAAMACwhMAAAAAWEB4AgAAAAALCE8AAAAAYAHhCQAAAAAsIDwBAAAAgAWEJwAAAACwgPAEAAAAABYQngAAAADAAsITAAAAAFhAeAIAAAAACwhPAAAAAGAB4QkAAAAALCA8AQAAAIAFhCcAAAAAsIDwBAAAAAAWEJ4AAAAAwALCEwAAAABYQHgCAAAAAAsITwAAAABgAeEJAAAAACwgPAEAAACABYQnAAAAALCA8AQAAAAAFhCeAAAAAMACwhMAAAAAWEB4AgAAAAALCE8AAAAAYAHhCQAAAAAsIDwBAAAAgAWEJwAAAACwgPAEAAAAABYQngAAAADAAsITAAAAAFhAeAIAAAAACwhPAAAAAGBBxMLTAw88oLlz5yohIUGpqamWzrnuuutkGEan16JFizqNqa6u1tKlS+XxeJSamqobbrhBDQ0NEfgGAAAAAPCpiIUnn8+nq6++WjfddFOPzlu0aJHKy8s7Xn/+8587fb506VJt27ZNK1eu1Msvv6w1a9boxhtvDGfpAAAAANCFI1IT33vvvZKkp556qkfnud1u5ebmHvezHTt26PXXX9eGDRt0xhlnSJIef/xxLV68WI888ojy8vKOe15ra6taW1s73nu93h7VBAAAAAAxd8/TO++8o+zsbE2YMEE33XSTjhw50vHZ2rVrlZqa2hGcJGnBggWy2Wxat27dCed88MEHlZKS0vEaPnx4RL8DAAAAgIEnpsLTokWL9Ic//EGrVq3ST3/6U/3zn//UJZdcomAwKEmqqKhQdnZ2p3McDofS09NVUVFxwnnvvvtu1dXVdbwOHjwY0e8BAAAAYODp0WV7d911l3760592O2bHjh3Kz88/pWKuueaajl9PnTpV06ZN09ixY/XOO+9o/vz5pzSn1HYpoNvtPuXzAQAAAKBH4Wn58uW67rrruh0zZsyY3tTTZa7MzEzt2bNH8+fPV25urqqqqjqNCQQCqq6uPuF9UgAAAAAQDj0KT1lZWcrKyopULV2UlJToyJEjGjJkiCRpzpw5qq2t1caNGzVr1ixJ0urVqxUKhTR79uw+qwsAAADA4BOxe56Ki4tVUFCg4uJiBYNBFRQUqKCgoNMzmfLz8/XCCy9IkhoaGnTHHXfoww8/VFFRkVatWqUrrrhC48aN08UXXyxJmjhxohYtWqRly5Zp/fr1ev/993XLLbfommuuOWGnPQAAAAAIh4i1Kr/nnnv09NNPd7yfOXOmJOntt9/WBRdcIEkqLCxUXV2dJMlut2vz5s16+umnVVtbq7y8PC1cuFD3339/p/uVnnnmGd1yyy2aP3++bDablixZosceeyxSXwMAAAAAJEmGaZpmtIvoa16vVykpKaqrq5PH44l2OQAAAACipCfZIKZalQMAAABArCI8AQAAAIAFhCcAAAAAsIDwBAAAAAAWEJ4AAAAAwALCEwAAAABYQHgCAAAAAAsITwAAAABgAeEJAAAAACwgPAEAAACABYQnAAAAALCA8AQAAAAAFhCeAAAAAMACwhMAAAAAWEB4AgAAAAALCE8AAAAAYAHhCQAAAAAsIDwBAAAAgAWEJwAAAACwgPAEAAAAABYQngAAAADAAsITAAAAAFhAeAIAAAAACwhPAAAAAGAB4QkAAAAALCA8AQAAAIAFhCcAAAAAsIDwBAAAAAAWEJ4AAAAAwALCEwAAAABYQHgCAAAAAAsITwAAAABgAeEJAAAAACwgPAEAAACABYQnAAAAALCA8AQAAAAAFhCeAAAAAMACwhMAAAAAWEB4AgAAAAALCE8AAAAAYAHhCQAAAAAsIDwBAAAAgAWOaBeAGGGaUuNhyd8kBf2S3Sk5E6TETMkwol0dAAAAEHWEp8Gq8Yi0/59SeYFUulEqK5B8DV3HuZKkvBnS0FnSkBnS6POlxIy+rRUAAACIAYSnwcQ0pZIN0vonpW1/l0IByeZo++eJ+Bqkovek4g8/HT9liXTmMmnYGexKAQAAYNAgPA0WO1+RVv9Yqtou2exSKNh2vLvgdKz2caGAtPVv0ubnpezJ0rzvS/mLI1MzAAAAEENoGDHQNVVLf71Beu7L0qGdbcfag9Opag9Sh3ZIz32pbf6m6t7NCQAAAMQ4wtNAtuNl6fFZ0rYX2t6bofDO3z7fthfa1tnxcnjnBwAAAGII4WkgMk1pzSPS80ul5lrJ7OVO00nXC7at8/xS6d2ft60PAAAADDCEp4HGNKVV90qr7z96IMy7TSd0dJ1V97W9CFAAAAAYYAhPA827P5fe+0V0a3jv0bYXAAAAMIAQngaSHS8fs+MUZavua+vwBwAAAAwQtCofKJqqpRXflmRICs8lcw0+Uw+/36p1pUGtLw2qpkX6/RVxum6Gq9O49aVBPVXg07rSoDZXhhQISeYPU6UXb5FGzJES0sNSDwAAABBN7DwNFK/eIbXUKVzBSZION5m6b41POw6HND3XfuKld/v1vx/7ZUgak9b+r1SorZ7Xvhe2egAAAIBoIjwNBDtfkbb+Nexd9YYkGSpfnqQDtybr4YviTjjupjNcqrsrWR/dmKSLxhwTssygtOUv0s5Xw1oXAAAAEA2Ep/7ONKXVP5aM8P9Ruh2GcpNOPm9Okk3xTuP4Hxq2tvrovgcAAIB+jvDU35VskKq2h/8BuOFihqSqbVLJR9GuBAAAAOgVwlN/t/5JyXbi+5Figs0hbXgy2lUAAAAAvUJ46s8aj0jb/i6FwnuvU9iFAtLWv7XVCwAAAPRThKf+bP8/24JJfxAKSEVrol0FAAAAcMoIT/1ZeUHbJXH9gc0hlRVEuwoAAADglBGe+rOSjf1r56l0Y7SrAAAAAE4Z4am/Ms22naf+pKyAluUAAADot/rJNV/oovGw5GuI+DL/td6n2hZTZfVtrdBf2hVQibctAH37LJdS4gwdqA3pj5v9kqSPytrG/XhNqyRpZIqhr053tU3mq2+rOykr4nUDAAAA4UZ46q/8TX2yzCMftOpA3ae7RX/fEdDfd7RdKviVaU6lxBnaXxvSD95u7XRe+/vzR9o/DU+SFGiOfNEAAABABBCe+qugv0+WKbo1+aRjLhjlkPlDj7UJA75eVgQAAABEB/c89Vd2Z7QrODUO18nHAAAAADGI8NRfOROiXcGpccRHuwIAAADglBCe+qvETMmVFO0qesaV3FY3AAAA0A8Rnvorw5CGzIh2FT2TN6OtbgAAAKAfIjz1Z8NmSbZ+0vPD5pCGzop2FQAAAMApIzz1Z0NmSKFAtKuwJhRo23kCAAAA+inCU382+vz+tfM06jPRrgIAAAA4ZYSn/iwxQ5r8Oclmj3Yl3bM5pClL2uoFAAAA+inCU3931jIpFIx2Fd0LBaQzl0W7CgAAAKBXCE/93bAzpezJkhGjf5SGTcqZIg07I9qVAAAAAL0Soz9xwzLDkOZ9XzJD0a7k+MyQdOF/0KIcAAAA/R7haSDIXyxN+bxkxNi9T4Zdmnp1W30AAABAP0d4GigWPyzFpSh2/khtbfVc8rNoFwIAAACERaz8pI3eSkiXLn9cUqxcvheSrvivtroAAACAAYDwNJBMvEya94NoV9Fm/j1S/qXRrgIAAAAIG8LTQHPecunc26Nbw7m3R78GAAAAIMwITwONYbTt+sy/5+iBvvojPrrO/B9KC35Idz0AAAAMOISngcgw2nagrnlWik+NfBc+w962zjXPSuex4wQAAICBifA0kOVfKn17ozT5qrb34X6Qbvt8Uz7Xtg73OAEAAGAAIzwNdAnp0ud/27YrlDWx7ZjN0bs528/Pmihd82dpyf/SVQ8AAAADXi9/ika/kX+pNGGxVPKRtOFJaevfpFCgLQiFAic/v32czSlNWSKdtUwaOot7mwAAADBoEJ4GE8OQhp/Z9rr4QalojVT2iVT6cds/fQ1dz3ElSXkz24JS3gxp1GekxIw+Lx0AAACINsLTYJWY0XYvVPv9UKYpNR6WAs1SwCc5XJIjXkrMZHcJAAAAEOEJ7QxDSsqKdhUAAABAzKJhBAAAAABYQHgCAAAAAAsITwAAAABgAeEJAAAAACyIWHh64IEHNHfuXCUkJCg1NdXSOYZhHPf18MMPd4wZNWpUl88feuihCH0LAAAAAGgTsW57Pp9PV199tebMmaPf/va3ls4pLy/v9P61117TDTfcoCVLlnQ6ft9992nZsmUd75OTk3tfMAAAAAB0I2Lh6d5775UkPfXUU5bPyc3N7fT+xRdf1IUXXqgxY8Z0Op6cnNxlLAAAAABEUsze81RZWalXXnlFN9xwQ5fPHnroIWVkZGjmzJl6+OGHFQgEup2rtbVVXq+30wsAAAAAeiJmH5L79NNPKzk5WZ/73Oc6Hf/Od76j008/Xenp6frggw909913q7y8XI8++ugJ53rwwQc7dsIAAAAA4FT0aOfprrvuOmFTh/bXzp07w1LY7373Oy1dulRxcXGdjt9+++264IILNG3aNH3zm9/Uz3/+cz3++ONqbW094Vx333236urqOl4HDx4MS40AAAAABo8e7TwtX75c1113Xbdj/vX+pFPx7rvvqrCwUM8///xJx86ePVuBQEBFRUWaMGHCcce43W653e5e1wUAAABg8OpReMrKylJWVlakaunw29/+VrNmzdL06dNPOragoEA2m03Z2dkRrwsAAADA4BWxhhHFxcUqKChQcXGxgsGgCgoKVFBQoIaGho4x+fn5euGFFzqd5/V69Ze//EVf//rXu8y5du1a/fKXv9SmTZu0b98+PfPMM7rtttv0la98RWlpaZH6KgAAAAAQuYYR99xzj55++umO9zNnzpQkvf3227rgggskSYWFhaqrq+t03nPPPSfTNPWlL32py5xut1vPPfecfvSjH6m1tVWjR4/Wbbfdpttvvz1SXwMAAAAAJEmGaZpmtIvoa16vVykpKaqrq5PH44l2OQAAAACipCfZIGaf8wQAAAAAsSRmn/OEnjNNU42NjfL7/QoGg7Lb7XI6nUpMTJRhGNEuDwAAAOjXCE/9WGNjo/bv36/y8nKVlpaqrKxMPp+vyziXy6W8vDwNHTpUQ4YM0ejRo5WYmBiFigEAAID+i/DUz5imqZKSEq1fv17btm1TKBSSzWZTKBQ64Tk+n09FRUUqLi7uGD9lyhSdeeaZGjZsGLtSAAAAgAWEp35k586dWr16taqqqjoFpu6C07GOHb9161Zt3rxZ2dnZmjdvnvLz8yNWNwAAADAQEJ76gaamJr366qvaunVrxy6R1cB0Iu3nHzp0SM8995ymTJmixYsXKyEhodf1AgAAAAMR4SnG7dixQytWrFBLS4uktsv2wql9vm3btmnv3r26/PLLNXHixLCuAQAAAAwEtCqPUaZpas2aNXr++efV3Nwc9tB0vPWam5v1/PPP69133434egAAAEB/Q3iKQaZpatWqVVq9enVU1l+1apVWrVpFgAIAAACOQXiKQe+++67ee++9qNbw3nvvRb0GAAAAIJYQnmLMjh07orbj9K9WrVqlnTt3RrsMAAAAICYQnmJIU1OTVqxYEe0yOnnxxRfV1NQU7TIAAACAqKPbXgx59dVXO7rqhYvP59P777+v0tJSlZaWqqWlRVdccYVmzJjRady99957wjmeffZZbdq0Kax1AQAAAP0N4SlG7Ny5U1u3bg37vE1NTVqzZo1SUlKUm5uroqKi44676qqruhwrKyvTunXrlJ2drZ07d/IgXQAAAAxqhKcYYJqmVq9eLcMwwt7hLikpScuXL1dSUpLKysr05JNPHnfctGnTuhxrD1pTp07V6tWrNWHChI6H9AIAAACDDfc8xYCSkhJVVVVFpDW4w+FQUlJSj88LBALasWOHRo0aJY/Ho6qqKpWUlIS9PgAAAKC/IDzFgPXr18tmi60/it27d6ulpUVTp06VJNlsNm3YsCHKVQEAAADRE1s/sQ9CjY2N2rZtm0KhULRL6WTLli2y2+2aNGmSJCkUCmnr1q1qbGyMcmUAAABAdBCeomz//v0xF5xaW1u1e/dunXbaaYqLi+s4HgqFTthwAgAAABjoCE9RVl5eHnOX7G3fvl2BQKDjkr12hmGorKwsSlUBAAAA0RVbP7UPQiUlJTG387Rlyxa53W6NHz++03EzFNLB4gNRqgoAAACILlqVR5FpmiovL++TtXw+nz766CNJ0iuvvKIXX3zxuA/L/ctf/qL9+/dLkh544IGO4xkZGbrllltUcrBEpmnSshwAAACDDuEpihobG+Xz+fpkraamJn3yySeSpJSUFB05cuS442prayVJ5557rrKysjqOu91uSVJI0rYP3tWUcz4T0XoBAACAWEN4iiK/398n66xfv15NTU2aPn26Nm3apOTkZB05ckSFhYXKz8/v1BSipqZGkjRv3rwT7i59+OJfNXnueew+AQAAYFDhnqcoCgaDfbLOBx98oH/+85/atGmTJHV0zNu5c6daWlo6xh0+fFjNzc2y2WwyTVOtra3Hna+mvFTluwsjXjcAAAAQS9h5iiK73d4n69x6662d3peVlenJJ5/UFVdcodTU1I7jmZmZHbtTDz30kPx+v+Li4jRlyhRddNFFcrlckiRDhgrefEV54/P7pH4AAAAgFhCeosjpdEa7hC6SkpJ0zjnnaMiQITJNU3v27NFHH32kyspKXXfddW27UsGACj9Yowuu/boSPCnRLhkAAADoE4SnKEpMTJTL5eqzphFWLFiwoNP7KVOmKCMjQ6tXr9b27ds1ZeJEGcGAQpIObtuiCXPOjU6hAAAAQB/jnqcoMgxDQ4YMiXYZJ3X22WfLMAzt27dP9pZGGZJsdrsq9++JdmkAAABAnyE8RdmwYcNks8X2H4PT6VR8fLyam5tkb26UJIWCQVXsoWkEAAAABo/Y/ql9EBgyZIhCoVC0y+hWa2urmpqalJCQKFtLU8fxyn17ZJpmFCsDAAAA+g7hKcpGjx4dMztPgUDguO3J16xZI0kaN26s7E31Hcd9zc1q9tb1WX0AAABANNEwIsoSExM1efJkbd26NeK7OOvXr1dLS4vq69sC0K5du+T1eiVJZ511llpaWvTrX/9aU6ZMUWZmpiRp79692r17t8aNHavJuVmyVRzoNGcghppdAAAAAJFEeIoBZ511lrZs2RLxdT744APV1X26U7Rjxw7t2LFDkjRt2jTFxcVp/Pjx2rdvnzZt2qRQKKT09HTNmzdPc+fOVVzxri5zBvz+iNcNAAAAxALCUwwYOnSo0mw21QSDkmFEbJ1/fVju8Vx11VVdD5qmbK3NsrU0dvnIEYPPqgIAAAAiITZuthnETNPU4V/8UuPffTeiwalXDEPuQ6U6XnUOl6vPywEAAACigfAUZUd+/RsdefJJjTxYImftYSnWuteZphx1R+Ro6NoYwhUfr3hPShSKAgAAAPoe4SmK6t96S4d++UtJkiEpZ99uKRiInQBlmlIwoLjK4uN+nDNmnIxY3S0DAAAAwox7nqIkUFOj8u//oO1SvaNhKaO+QUfKitQ84rSwruXz+fT++++rtLRUpaWlamlp0RVXXKEZM2Z0jDFNU5s2bdKOHTtUUVGh5uZmpaamasbwIZo3Ok9Ou73TnDa7XbnjJoS1TgAAACCWEZ6ipPLHDyhYX99pl8nT1CpHY51cVSXyZQ/r8ZwnCkmjRo3SmjVrlJKSotzcXBUVFem9997TW2+9pZaWFiUnJ2v48OHasmWLhg0bplmzZikxMVFlewr11iebte9gib55wdmddplCwaByRo8Ly+8FAAAA0B8QnqKgftUqeV95pcvxptQ5kg7IdaRCstnlyxzSo3mbmpq6hCRJSkpK0vLly5WUlKSysjI9+eSTSkhI0Omnn674+HjV1NTo448/VlxcnL7whS8oOTlZrsPlciWYyrQbenPbLu2uOqLxOZkda9nsdg2fPLU3vw0AAABAv8I9T33MNE0d+uV/dumsdyhzmopHXyWbc7wMGXIdKpWrqqT9JEtzt4ekW2+9VRdddFHHcYfDoaSkpE5jTz/9dM2dO1czZ87UvHnz9OUvf1ktLS3atGmTXFUlHd31pg7NkSRVees7zjVsdk2Y+xkl0CwCAAAAgwjhqY81FxSodffuToHI70jUzvFLJTMkR9wMSaYMSe4jFYo7uMdyE4njhSSrUlPaglCgqlzuIxUdx+tbWiVJie5PW5KboaBmLLz0lNYBAAAA+isu2+tjNc/+WbLbpWCw49iu066W3xkvGTYZ9iEybJkyQ4clSc6GWjn21aslZ4QCKRltIcpChzu/3y9JWrt2rd54442O+5+ys7M7xjQ1NckMhVTn9WrNqpWSpE179+mfW7brsmn5uiB/rN4u3Kc4p0P5uW3nhWQqlBGvIafRLAIAAACDC+GpDwVqauR97bVOwelQxjRV5pzZ8d4wDDniz5G/8cVPjwWDii/bL7+3Rr6sPIXiEk4aolpaWiRJ9fX1ne5/6mCaevTRRxU8WkuCy6kpQ3O0q/Jwx5BV2/dod+Vhfe70KYp3OSVJNhlaM7pUN7bWKi0u7ZR/LwAAAID+hsv2+lDThx9KgUDHe1PSvtGXSWao0zi7a6xszglqe/rTp5wNtUrYv10J+3fIUXfk0/PMUJfL+hISEiRJCxcu/PT+p2PG2JobdMP883TDeWfqs9MnyhPn1s7yQ7pwwlhJUlmtV69vLdRZo4dr7riRktp2nfbmNagou0HrK9b39rcDAAAA6FcIT32oZds2yfHpZp/XM1qNSUMlo+sfgzNhnmS4uxw3JNlbGhVfXqTE3ZsVV7JXriOVsjfVd9rRsh/7XKajxx0NdXJVtjWhcNUe1vjURE0ckq3zJ4xRlidJgVBIoaMB65OD5cofkq0ls6ZIkkyZ8jlDWj+pRg7Doe1Htvf69wMAAADoT7hsrw81b97caeepJO8zMkJBmTZ7l7GGLV7OhIXyN6444Xy2YEC2+hqpvkZS206WaXdIhk1xNbWSJHdFseIb2y7Fc9TXyGELdJmn+EittpZWKNeTpE+KSyVJqfFxunbO6bLb2oKdIUPvTzuiVldIMkPacnjLKf0eAAAAAP0VO099xDTNtp2no3zORFVlzzpucGpnd42TI+4cy2sYOhqoAj7Z/L62Y6GgumsvYZqmXvhkm2YMz1PINHW4oUmSdObo4XI6Pq1t07hGHcxp7ni//ch2mRZbqAMAAAADATtPfSRYXa1QY1PH+5rUCd0Gp3b2uLNkyq9gS+/vMdpWVqkDR9p2qbaXVamuuUUlNXWqqPPq/NNG6ZPiso6xVfX12nig7RI/m3OsDmT7O83V6G9UdUu1MuIzel0XAAAA0B8QnvpIqLml0/v65OEyQgGZtu7/CAzDkCPuHBlyKdDy3knXeW93kVr8ftUdXW97WZWKq2slSVtLKzvGbSmt0JbStuc5DUlJ1vMfbe40T0FxuQqKy4++26TTGqbKfUbntVqDrSetBwAAABgoCE99xDx6GV07b/IomcbJd56k9vblZ8mwp8vf9KZktqrtDqeu/lm4TzVNn15e1x6QJOmyafk697TRemXzDu2pOqKq+gYFQ6YaW32aNCRH55w2UoYM/erttZo/cYLOmXyt0lNnyW53qMyzWy/pV53W8gU7fycAAABgICM89RHD6er4tSmpPnmEpYfdHsvuGiebY6j8TasV8hced8x/XDavy7GD1bX6z7feV6LbJYfdpitmTpYkPbd+kz4qKpG3pVWbSsq1qaS845xVOwq1asd/6K4lv9awzHHKahzRVvgxJbvsLgEAAACDBeGpj9ji4zp+7XcmKeiI62b0iRm2eLmSLlXQN0GB5g9khg6rLdH0vHnDuaeN0pShOZ+eb3jUHBqq5z/4k2aPv1jTRs1VRnKuJMkVjFNcIEktzoaO8932rq3UAQAAgIGK8NRH7OnpsiUmKNTYpGAYdmzsrnGyOcfKDJYr0LLp6E5USG0NFNsennu8+5/af33OuDEalpaiYWlpsjknyBE3Q4Y9V9UNldIHf9KQ9FGaPvrcTms6Qs6OXyc6E5Uel97r7wEAAAD0F4SnPmIYhuImT1bT+g0yjfD8thuGIcORJ1dSnszQBQoFDioUqFAoWCEzUHnc+5/a74E687RL5EnMl80xXIYt3tJ69tCndU/KmCSjh5cdAgAAAP0Z4akPxU+bpqaPP5Fhdn1QbW8ZtnjZXeNld42X1Pb8pvuW3iCZAZkKypBdMhySEd9t6MlIztV/fWPVcT8LHn3ArsNwaGrm1LB/BwAAACCWEZ76UNzkyVIgILsR+S51hmFIRkLbr8M0Z8DW9qyngBnQpIxJYZoVAAAA6B9s0S5gMEk4+2zJ4ZDT3yB7oOXkJ8QQn71FLY62ZhEOw6Gzcs+KckUAAABA3yI89SFHWpo8l1wiw25Xcn2xZPa8Q140mDJ1KLFYMiS7Ydei0YuUFpcW7bIAAACAPkV46mNpX/6SFAzKU18kwwxGuxxLQkZIVUnFkqSgGdQ1+ddEuSIAAACg7xGe+lj8jBlyjx+v5IaDMm3945Yzu2nXoaSDMmRofNp4TcucFu2SAAAAgD5HeOpjhmEo69Z/U1pNoYxQ/9h5ChpBlXl2y5SpW2bcQotyAAAADEqEpyhInjdPmQsvUPahj2M+QIUU1J6Mj+VzNWvx6MW6cMSF0S4JAAAAiArCU5TkfP8/NKJuo0ybPdqldMsmu7bnviePy6O7z7o72uUAAAAAUUN4ihJHWpry775RiQ2lkhmKdjnHFVJIhxNKVZlUpHvn3qvUuNRolwQAAABEDeEpijwXLdDMqYZkxOYfg002bRj+qv5t1r9p3oh50S4HAAAAiKrY/Kl9EJn2vaUanlwjxVjb8pCC2p35kS46/2zdMOWGaJcDAAAARB3hKcoMw9BF93xWLodi5vK9kEJqdTRr8hWZ+rfT/43uegAAAIAITzEhPtml+ctmxMzlezbZdNqVSVp25teiXQoAAAAQM2Ljp/VByDRNBRt8ClS3yH+oSSNGJGvOJSOjXZYkacZlebpiAfc4AQAAAMdyRLuAwSLY6Ffr3lr5ShvkP1gvX0mDTF/n+5yyJX023aUjrUHVBk3VBk0dDpjymX1X5+mLRursS8f03YIAAABAP0F4iiDTNOUrrlfD2jI1bz4shUzJZrT98wRsIVOZTpsyHKZshqGQaarUb2p/a0g1wQilKEOSKZ195RjNWjQqMmsAAAAA/RzhKUKatx1R3ZtFClQ2tV0c2d4Lopvg1M6QOpo02AxDQ53ScJdDdUFTO5uDqgiEL0QZNskd79SFX83XmBlZYZsXAAAAGGgIT2EWbPSrdsVeNW861JaCpE+D0ymyHQ1SHps0O8mhg76QtjQH5e9Nhjq62zRuVo4+c814xSU6e1ckAAAAMMARnsKoedth1fxtt0LNgbYDYb7Krn03aqjTULbDoYLmoCp6mKAMmyEzZCojL1GzLx+j0dPZbQIAAACsIDyFgWmaqn/noLxvHOjY0Ykkm2HIJVOzEx3a3hzU7tbut7ZsNkOhkCmb3dBpZ+RoygVDlTPKw/ObAAAAgB4gPPWSaZryvlGk+ndKjh7om3Xbg8+keLtcDpu2NQa6jHG67coemayc0R5ljfBo6IRUxSe5+qZAAAAAYIAhPPVS/TsHPw1OUTLOaWjqlaPlPDNXoYApm8OQw2lXfLKT3SUAAAAgTAhPvdC87XDbpXoxoPmdEiUM9yh+cka0SwEAAAAGJFu0C+ivgo1+1fxtd7TL+JQh1fxtl4KN/mhXAgAAAAxI7DydotoVez/tqhcmjb4mPbHuOX1Svl0F5TtU11Kvny++W1+YekmXsSEzpD8VrNAzBSu0t7pY8Y44Tcoeq5+479H5d14Z1roAAAAAEJ5OSfO2I23PcQqz6uY6/fKDpzTUk6NJ2eO0tviTE45d/upD+sf2lVoy+WJdd/rn1ORv1tbK3Sr9eJ+atx9R/CQu3wMAAADCifDUQ6Zpqu7Nooi0JM9OzNDGm19QdlKGNpXv1GV/uPG4417asVp/3fq6fnPVj3XJ+M90/tCQ6t4sUtzEdJpFAAAAAGHEPU895CuuV6CyKSItyd0Ol7KTTr5j9OSG/9OMIRN1yfjPKGSG1ORr/vRDUwpUNMl3sD78BQIAAACDGOGphxrWlkX1d62+tVEF5Ts0fUi+HvrnbzTpl5dowi8u1jlPfFEv7VjdNshmtNUJAAAAIGy4bK8Hgo1+NW8+LIWiV8OB2lKZMrVix2o5bHb9+wU3KdmdqN999FfdvOJeJbkTdeGY2WredFjBy/yyJzqjVywAAAAwgBCeeqB1b60UisD1ej3QePQSvZrmOq346hOamTdJkrRw3Dma+8QX9fgHf9CFY2ZLIVOte2uVMC0rmuUCAAAAAwaX7fWAr7RBskW3CUOcwy1JGpEypCM4SVKiK0ELxp2jgvIdCoQCks2Qv7QhWmUCAAAAAw7hqQd8xfVR33nKScqUJGUmpnf5LDMhVf5QQE3+Filk0jQCAAAACCPCk0WmacbETk5ucqayE9NVUd/1OVOVDUfkdriU5EqQ1LZTZprRDXsAAADAQEF4sijU6JfpC0a7DEnSZ/Pnqay+Smv2b+g4Vt1Uqzd3v6dzRpwum9H2x2q2BhVq9EerTAAAAGBAoWGERaavb1rsPbXxb6prbVBlwxFJ0lt73ld5fZUk6fpZS+RxJ+nmOV/RS4Vv6xv/+IGWnfkFJbuT9KeCF+UPBXTn+Z0frGv6o9gaEAAAABhACE8WmcG+CSG/Xv+8SrwVHe9f27VGr+1aI0n63OSF8riTlJWYrr8v/ZV+/Pav9L8b/iJ/KKBZQyfrPy/7viZlj+tcd4DwBAAAAIQD4ckiw943Vziuven/LI0bmZqnJ6964KTjDAdXZgIAAADhELGfrIuKinTDDTdo9OjRio+P19ixY/XDH/5QPp+v2/NaWlp08803KyMjQ0lJSVqyZIkqKys7jSkuLtall16qhIQEZWdn64477lAgEIjUV5EkGa7+GUIMZ/+sGwAAAIg1Edt52rlzp0KhkH79619r3Lhx2rp1q5YtW6bGxkY98sgjJzzvtttu0yuvvKK//OUvSklJ0S233KLPfe5zev/99yVJwWBQl156qXJzc/XBBx+ovLxc1157rZxOp37yk59E6uvIluiU4bLHTNMIKwy3XbZEZ7TLAAAAAAYEw+zDXtYPP/yw/ud//kf79u077ud1dXXKysrSs88+q89//vOS2kLYxIkTtXbtWp199tl67bXXdNlll6msrEw5OTmSpCeeeEJ33nmnDh06JJfL1WXe1tZWtba2drz3er0aPny46urq5PF4LNdf9evN8u2v68lXjir3mBRl3Tgt2mUAAAAAMcvr9SolJcVSNujTa7rq6uqUnt714a7tNm7cKL/frwULFnQcy8/P14gRI7R27VpJ0tq1azV16tSO4CRJF198sbxer7Zt23bceR988EGlpKR0vIYPH35K9btGJEs245TO7XM2Q67hydGuAgAAABgw+iw87dmzR48//ri+8Y1vnHBMRUWFXC6XUlNTOx3PyclRRUVFx5hjg1P75+2fHc/dd9+turq6jtfBgwdP6Tu4hiZJoX7y0NmQKefQpGhXAQAAAAwYPQ5Pd911lwzD6Pa1c+fOTueUlpZq0aJFuvrqq7Vs2bKwFW+V2+2Wx+Pp9Dqlecam9qudJ/fY1GhXAQAAAAwYPW4YsXz5cl133XXdjhkzZkzHr8vKynThhRdq7ty5+s1vftPtebm5ufL5fKqtre20+1RZWanc3NyOMevXr+90Xns3vvYxkWJPdCp+WqaaNx+SYvnxSTZD8dMzZadZBAAAABA2PQ5PWVlZysrKsjS29P+3d/8xVdd7HMdf3wOcAyIHReWXHMT0CkEFhSKHtoDN4C6vxcYf6R/FTP+oYYvxRz+2Njdbc62abmmz1pJZ65aNmXfQMsYPW6VrSbjs7nKHMzMMxSbyQ1LifO8fKbuk6PfoOed7Ouf52M4fnPP5ct5f9t5n3xef74/+flVWVqq4uFi7d++Ww3Hjha7i4mLFxcWpvb1dtbW1kqTe3l799NNP8nq9kiSv16uXX35ZZ8+eVWpqqiSpra1Nbrdb+fn5/u6O32Z7MzXeMxj077ktPlOzvZl2VwEAAABElKBd89Tf36+KigplZ2frtdde0+DgoAYGBqZdl9Tf36+8vLyplaTk5GRt2LBBjY2N6uzs1JEjR7R+/Xp5vV6VlpZKkqqqqpSfn6/HHntMR48e1YEDB/Tiiy+qvr5eLpcrWLszxZmdpNj0WVK4nr1nSLHpidwsAgAAAAiwoD3nqa2tTX19ferr61NWVta0z67eHX1iYkK9vb26ePHi1Gfbtm2Tw+FQbW2tLl26pOrqar355ptTn8fExKilpUVPPfWUvF6vEhMTVVdXpy1btgRrV6YxDEPJVTn6dc+/Q/J9fjOl5KpFMoxwTXcAAADAX1NIn/MULvy5l/tMfv3nf/649imc/nqGlFC4QPPW5tldCQAAAPCXELbPeYokcx5eIkdCbPicvmdIjoRYzVmzxO5KAAAAgIhEeLpFMYlxmlv7t/BZeTKlubXLuMMeAAAAECSEp9uQUDBf7upFdpchSXJX5yihYJ7dZQAAAAARi/B0m5IqPEqq8IRBDVk3HwgAAADglgXtbnvRwjAMuasXyXDFaPjAj39cAxWKU/mufI/77zly2xzeAAAAgGhAeAoAwzDkrvQoLnWWzjf/V77x34MboK7cHGJu7TJO1QMAAABChPAUQAkF8+TMWa6hfx3X+NHBwK9CXfl9CYULNPfhJXLM4uYQAAAAQKgQngIsJjFO89blafyeBbrQ9qN+H7goOQzJdxsp6sr2sWmzlFyVo4R8VpsAAACAUCM8BUlCwTzF56fo8qkRjR46rfGj5/4IUFaD1NVxDkMJhQs025shpydJhhEuD5YCAAAAogvhKYgMw5Ar2y1XtluT/5jQpeNDutw/qolTI7rcPyrz0uS127hi5Fw4W05PkuIWzpZryRye3QQAAACEAcJTiMQkxmnWPQs0654FkiTTNOUbm5A54ZP5u09GrENGnEOOxDhWlwAAAIAwRHiyiWEYipnttLsMAAAAABbxkFwAAAAAsIDwBAAAAAAWEJ4AAAAAwALCEwAAAABYQHgCAAAAAAsITwAAAABgAeEJAAAAACwgPAEAAACABYQnAAAAALAg1u4C7GCapiRpeHjY5koAAAAA2OlqJriaEW4kKsPTyMiIJMnj8dhcCQAAAIBwMDIyouTk5BuOMUwrESvC+Hw+nT59WklJSTIMw+5yos7w8LA8Ho9OnTolt9ttdzkAPYmwQ08iHNGXCDeB6knTNDUyMqLMzEw5HDe+qikqV54cDoeysrLsLiPqud1uJl+EFXoS4YaeRDiiLxFuAtGTN1txuoobRgAAAACABYQnAAAAALCA8ISQc7lc2rx5s1wul92lAJLoSYQfehLhiL5EuLGjJ6PyhhEAAAAA4C9WngAAAADAAsITAAAAAFhAeAIAAAAACwhPAAAAAGAB4QkAAAAALCA8ISh27typnJwcxcfHa+XKlfrmm29uOP7jjz9WXl6e4uPjdffdd+vTTz8NUaWIFv70ZFNTkwzDmPaKj48PYbWIdF988YXWrFmjzMxMGYahTz755KbbdHV16b777pPL5dLSpUvV1NQU9DoRPfztya6urmvmScMwNDAwEJqCEfG2bt2qFStWKCkpSampqaqpqVFvb+9Ntwv2MSXhCQH30UcfqbGxUZs3b1Z3d7cKCwtVXV2ts2fPXnf8119/rXXr1mnDhg367rvvVFNTo5qaGh07dizElSNS+duTkuR2u/XLL79MvU6ePBnCihHpxsbGVFhYqJ07d1oaf+LECa1evVqVlZXq6elRQ0ODNm7cqAMHDgS5UkQLf3vyqt7e3mlzZWpqapAqRLQ5ePCg6uvrdfjwYbW1tWliYkJVVVUaGxubcZtQHFPynCcE3MqVK7VixQrt2LFDkuTz+eTxePT000/r+eefv2b8o48+qrGxMbW0tEy9V1paqqKiIu3atStkdSNy+duTTU1Namho0NDQUIgrRTQyDEP79u1TTU3NjGOee+45tba2TjsAWLt2rYaGhvTZZ5+FoEpEEys92dXVpcrKSp0/f15z5swJWW2IXoODg0pNTdXBgwf1wAMPXHdMKI4pWXlCQF2+fFlHjhzRqlWrpt5zOBxatWqVDh06dN1tDh06NG28JFVXV884HvDHrfSkJI2OjmrRokXyeDx65JFH9MMPP4SiXOC6mCcRroqKipSRkaEHH3xQX331ld3lIIJduHBBkpSSkjLjmFDMlYQnBNS5c+c0OTmptLS0ae+npaXNeB70wMCAX+MBf9xKT+bm5urdd9/V/v379f7778vn86msrEw///xzKEoGrjHTPDk8PKzx8XGbqkI0y8jI0K5du9Tc3Kzm5mZ5PB5VVFSou7vb7tIQgXw+nxoaGnT//ffrrrvumnFcKI4pYwP2mwAgQni9Xnm93qmfy8rKdOedd+qtt97SSy+9ZGNlABAecnNzlZubO/VzWVmZjh8/rm3btum9996zsTJEovr6eh07dkxffvml3aWw8oTAmj9/vmJiYnTmzJlp7585c0bp6enX3SY9Pd2v8YA/bqUn/ywuLk733nuv+vr6glEicFMzzZNut1sJCQk2VQVMV1JSwjyJgNu0aZNaWlrU2dmprKysG44NxTEl4QkB5XQ6VVxcrPb29qn3fD6f2tvbp/0n//95vd5p4yWpra1txvGAP26lJ/9scnJS33//vTIyMoJVJnBDzJP4K+jp6WGeRMCYpqlNmzZp37596ujo0OLFi2+6TSjmSk7bQ8A1Njaqrq5Oy5cvV0lJibZv366xsTGtX79ekvT4449r4cKF2rp1qyTpmWeeUXl5uV5//XWtXr1aH374ob799lu9/fbbdu4GIoi/PbllyxaVlpZq6dKlGhoa0quvvqqTJ09q48aNdu4GIsjo6Oi0/9CfOHFCPT09SklJUXZ2tl544QX19/drz549kqQnn3xSO3bs0LPPPqsnnnhCHR0d2rt3r1pbW+3aBUQYf3ty+/btWrx4sQoKCvTbb7/pnXfeUUdHhz7//HO7dgERpr6+Xh988IH279+vpKSkqeuWkpOTp1bcbTmmNIEgeOONN8zs7GzT6XSaJSUl5uHDh6c+Ky8vN+vq6qaN37t3r7ls2TLT6XSaBQUFZmtra4grRqTzpycbGhqmxqalpZkPPfSQ2d3dbUPViFSdnZ2mpGteV/uwrq7OLC8vv2aboqIi0+l0mnfccYe5e/fukNeNyOVvT77yyivmkiVLzPj4eDMlJcWsqKgwOzo67CkeEel6/Shp2txnxzElz3kCAAAAAAu45gkAAAAALCA8AQAAAIAFhCcAAAAAsIDwBAAAAAAWEJ4AAAAAwALCEwAAAABYQHgCAAAAAAsITwAAAABgAeEJAAAAACwgPAEAAACABYQnAAAAALDgf1Q41AzE4EajAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -113,7 +102,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -123,19 +112,17 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAI/CAYAAAD6A5RdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAACxM0lEQVR4nOzdd5hU1f3H8fedurMd2ErvINVFQFCkqCiKFVFREyUajRpjNL8kamI0xiT2WGI01mDBWCh2iA0LIihSpPe6yza2706/9/fH7A4sLAtbUBg/r+fZx507Z+45d/R59uO593yPYVkWIiIiInL0s/3QAxARERGR1qFgJyIiIhIjFOxEREREYoSCnYiIiEiMULATERERiREKdiIiIiIxwvF9dpaWlmZ17dr1++xSREREpFm+/fbbYsuy0n/ocTTF9xrsunbtyuLFi7/PLkVERESaxTCMbT/0GJpKt2JFREREYoSCnYiIiEiMULATERERiREKdiIiIiIxQsFOREREJEYo2ImIiIjECAU7ERERkRjxvdax+6F5vV527txJbm4u27Zto7KyknA4jN1uJykpiS5dutChQwc6duyIx+P5oYcrIiIi0iQ/imCXm5vLggULWLduHXa7nWAwiGma9doUFxezbds2nE4n4XCYPn36cMIJJ9ChQ4cfaNQiIiIiTRPTwa68vJxZs2aRl5dHKBTCsixCodAB25umid/vB2D16tWsX7+e9u3bM2nSJFJSUr6vYYuIiIg0S0w+Y2dZFkuWLOHxxx9nx44dBINBLMtq8jmCwSA7duzg8ccfZ8mSJU0+h4iIiMj3KeaCnWVZzJ07lzlz5jR4y7Uxc+bM4ZVXXql37MMPP+T5559n1KhR2Gw2/vOf/7RofA8//DDDhg2jXbt2xMXF0bNnT/7v//6P3bt312t33nnncf3117eoLxEREflxOWiwMwzjecMwCg3DWLnXsQcMw1hrGMZ3hmHMNgwj9bCO8hDVhbolS5YQDAab9NmSkhIWL17M2LFj6x3/+uuvCYVC9O7dG4CVK1c28Omm9TNp0iSmTZvG3Llz+eUvf8nzzz/P+PHj64XQO++8k2eeeYb169e3qD8RERH58TiUZ+ymAY8DL+517EPgNsuyQoZh3AfcBtzS+sNrmqVLlzY51LksBxlmCt8smE+fjO7c2G4SNp+BaVhU42fw/z3Jbns1a8o2s3z5crZu3cqSJUsYMmRIs8Z4991313s9duxY4uPjufbaa1m6dCnHHXccADk5OeTk5PDII4/wxBNPNKsvERER+XE56IydZVmfAyX7HPvAsqy6VQgLgY6HYWxNUl5eHr39eijSzCTGBfpzqX8UJ3h7MX/lIi7sN4FUK4Fk4km1EuhgtWWI2YNxwf6cHRgKgCfkZO7cuVRUVLTa2Nu1aweAw1E/Z0+ZMoXp06fj9XpbrS8RERGJXa3xjN2VwJxWOE+LzJo1i3A4fNB28ZabM/1DmBg4jm5mBg7srMrbQIW/iuEdB+3X3o4NN07stV/V4FBXxlcN4N1X32zReEOhEDU1NSxcuJA777yTU045hcGDB9drM3r0aCoqKvjqq69a1JeIiIj8OLQo2BmG8UcgBExvpM01hmEsNgxjcVFRUUu6O6Dc3Fzy8vIaXyhhQa9QNhf6R5BppdRGtcjlL81bhYHBMRk9DtqXHRsZZgojN3dm54drmrVStqqqCqfTSUJCAiNHjqRTp07Mnj17v3aDBw/GZrOxcOHCJvchIiIiPz7NDnaGYUwFzgIusxpJN5ZlPW1Z1lDLsoamp6c3t7tGLViwoNH6dFgwItSLE0J9cOKIzr7VKagqJsmdgMvuPKT+7NhwYic8r5Cydzc3OdzFx8fzzTff8MUXX/DYY4+xbNkyzj777P2uwel0kpKSQl5eXpPOLyIiIj9OzQp2hmFMAH4PnGNZVk3rDqlpvF4v69atO3C4qg11fcLtcWJvsIk/FDhgqLvjo0eZOmPPupASbzlXzryNEU9eSJ8HTqPHxccxauDxvP/++4c8ZpvNxtChQxk1ahS/+tWvyMrK4rPPPsPpdGIYRvTnkUcewePx4PV6sSyLnJwc7r///kPuR0RERH5cDqXcyX+Br4A+hmHsNAzjKiKrZJOADw3DWGYYxr8P8zgPaOfOndjtDQc2gF7hbPqEO+BsZAFwqieFCn/Vfse3luby8tK3uPnEn0WPBUIB2npS+N1JP+fFyffzwBm/x+N3MnHiRGbNmtWsa0hKSgLgmmuu4auvvor+TJkyhZKSEtLS0jAMgzvuuIN77rmHkpKSg5xRREREfowOWu7EsqxLGjj83GEYS7Pk5uYSCAQafC/ecnNCqPcBZ+rq9GzXmUA4yK6KQrKTM6LHn1v8Bsdk9GRwdl+2lO4EICspnRtPuLze50/pMZITnprC808/x6RJk5p8DWVlZUCk9MmIESOix/Pz8/H5fPTp0weAc845h7i4OJ599ll+//vfN7kfERERiW1H/V6x27ZtO+Bt2LGB/tEFEo05vlNkNeqyXWuiwc4fCjB71Qec22887639lKLqyM4Q3+WvJcHpAWBi37EAOGwOqv01vPe/xm/HlpeXM2HCBC677DJ69eqFYRh8/fXXrF27lvj4+P1C4aJFi4DI6lgAu93OhRdeqGAnIiIiDTrqg11lZWWDx9PMJNKt5P0WSjSkU0o2x2Yfw4cbF3BGnzEALMlbTbm/iiV5q3hx6Z4Vqy8smc0LSyKvt/T+hJKacl5Z/g6V/mpS4pII7KzE1TGpwX7i4uI45phjeOyxx8jNzcXhcNC1a1c6duxIYWEhGRkZ1NTUcMwxx/DrX/+ahQsXctxxx9GzZ8/oOUaPHs0///lPNm/eTPfu3Q/5exIREZHYd9QHuwPVrhsY6owd45DP89Oc8/jzR4/xt9NuxuOMi5ZAeeunTza4sOLuT/5FtwdOBiDB5SEpLoFfjriMyi9yaXdJ3wb7cLvdPP/88/sdv+OOO+jUqRO9e/emrKyMF198kZ///OfExcXx+OOP12ubk5MDwMKFCxXsREREpJ6jPtg1tHDCZTnoYqYf0m3YOpP6j+fJhdN5Yclsrj3+koOWQPn50As555hTKKou4cUls5m3ZRGdUrLxrtqN6Q1h8xz6V/uXv/yl3utzzz2XQYMGsXLlSi644IJ679WVjFEJFBEREdlXa+w88YOqW1G6twwzhTCNFCtugMPm4KEzb8PjjANg1qoPqfRXR9/fWZ7PSU9fSs8HT6XTfaMZ/uRkbnz3bmyGwYsXPcCITsfy4BfPYTgMAtsPbbuxP//5z/XKm9T9nHPOORx//PFYlsXq1avJyMigb9/ILKDHE3m+T9uMiYiIyL6O+mDXpUsXbLb6l5FuJh10JWxDhnTozxVDzufLbUso81XUO291wMvO8l20T85kdNfIvrFuu4srZtzCnHWfMSirD1tLc7ECYQI79y+d0phPP/2U7t27R/eMvffeexk/fjwQqXl37733sm7dOt56661oqZO0tLQmX5+IiIjEtqM+2HXo0AGns/7t0iyzTZNuw+7rzx8/htPmJGyG2VVRCECf9G5s+u3HfH7NdP562m8A+Nlxk8lOSue1797nm50r6NKmPZjg31zWpP6++OILPB4Pv/jFLwDo3bs306dPx+PxMHDgQK644gri4uK45ZZb2LJlS2Q8tSVQREREROoc9cGuY8eO+y2g8OBu9vkqfFWsLdrMiL1KoNSxGTb+Mf95Hv3yBQC21ta2W5a/hmW71vCbE68EIFwRqavXtWtXxo4de9A+77zzTiZOnMiOHTsAmDRpEm+//TZ33nknCQkJ2O12Tj75ZNatW8fcuXNxOp316t2JiIiIQAwEO4/HQ58+fTCMPStgbeGmPV+3tzdWzgFgUv/ToiVQ9tY/oxebSrYD8OTXr7CrsoguqR2YednjnNvvFACscKSuXnV1NVlZWYfU7/33389LL70EQEFBAa+88gq33LJnK7O6RRTTp0/nnHPOIT4+vtnXKCIiIrHpqA92ACeccAIOR2QVarlhYIQb3oniUHy6+WsAJvQZzU9zzmPu+s/xBn3R97/e+V10Fs9lc/L0eXfz1k+fZFjHgdE2ht1g/fr1FBcX85vf/OaAfRUUFODxePjvf//LBx98wMiRIwFITEzkkkvqb/gxZkykvt7GjRu57rrrmn19IiIiErtiIth16NCB9u3bY7PZsMpL8Iaatnhhb4XVxQAkuuKZ1H88mYntogWJIVLm5Onz/wpA3/Tu/Oqdu/lon1k9e7KLzz77jPHjxzN8+PAG+ykpKWHmzJn84x//4KKLLmL8+PGcdtppAHzyySd89NFH9drXlTmJj4/nlFNOafb1iYiISOyKiWAHkefSQjY72fnbKPJtx7QaLlx8MLm1iyVgTwmUL7Yu5tLXfsPAR89i+JOT2VISeRbu8iHnk9O+H3+d98SeE9jA3T2Vq6++mg8++OCA/dx+++1kZ2dz+umnk5mZiWEYrF27Nvr+l19+yU033cSZZ54JRHatAGjTpk2zrktERERiX8wEu5SUFDJ79iBss1PizydkBpt8jq2luZT76m9RNqRDf77NW4kvFODUniP3+0xdmZM6hsuOq2PiQftavXo13333Hd27d6ewMBImX3vttej7r7/+Orfccgvz5s1j3rx5lJaWApCZmdnk6xIREZEfh5gJdgC+ygocoSC7/bnYjUOvYxd2VFOV9h2Pr7+PlKRI6ZT3Mq5lywm3seO4+/j8ket48dfXcMNJF9X7nGlZe8qc1LJCFq7OyQft85FHHuGxxx7D7Xbzu9/9DiBauw7gN7/5DdnZ2Zx99tk88MADbNy4EYB+/fod8nWJiIjIj8tRv6XY3srWryLVMglafnbWbKBTQl9sxoGzqy95CyVd5lCVsZSgz8Z7d63j5FMSePutIJ8syqXnsT4CibuoabOOR6eVs3ptZCeKz3Z+AcA/5j9PfmURVx43GQDTMknon05yeirV1dVYlnXAvvv378/IkSMZN24cbdu2BWDnzkj5lNNOO42rrroKgClTpnDhhRfSpUsXAC6++OIWfksiIiISq2Jqxs6oKIn+vq78G0wr1GC7oLuE7UPvYfuwe6jM/AbLHmTVxjKqqkxOPz2ZuDiD+fP3bCeGzaRnXxur10S28VqwaTUAuyoLsbB47ts3AAgTJumkDgSDQdzuxmvp3X///TgcDtatW8ef//xnAHJzI7d0Z82aFW130kknYZomM2fOxO12M2HChKZ9KSIiIvKjETPBrqLiO2zmngUTpYF8Svz5hPc6ZmFR1v5ztpx4G97UjVj2ANgis2prVvsxDOje3cW4cYnk5YUoK9sTDE84IYEn/90RgN/9Lp2PPuzFx/87hhWP/pXtt3xG2AxTHCpia80uAoEAV1999QHHunHjRv76178ye/ZsNm/ezNy5cwGYOXMmlmWRkJAQbZuenk52djZFRUVMnjw5WtZFREREZF8xE+y2bX8Wc589YxcWvYtJJNhZWBT1eYXCvi9jOfxgq79qdvfuEPHxNpxOg1/d2A6HAx54oOjAHdrCWA4/hX1fpqjPK4QJ8Yn3C15//XUcDgf33HPPAT963XXXce6553Lqqace0rVVV1djGAaPP/74IbUXERGRH6eYCHbBYAXFxR8RjHfVO+4NV7Jk94cETT9FfV6hrMPnWI6GixcHAhZOZ2T3CpfLxq9uTCMuLvL1PP54MX/8Q36Dn7McAZ6cP4seD4zn8bdnc/vttxMMBklMbHhl7Ouvv86CBQu44447KCsro6ysjKqqSN298ePHYxhGvZ9f//rXuFwuevfuTWpqKueddx7XX399s74nERERiW0xcV+vvGIJhuHElm0R3mXDbu3ZUmxr1UpSe+3G6DD/gKEOIDnZTnX1nlm8iROTmTgxmby8IO++U8Gjj3Vo8HN5eUFefqWY1FQ7cYkHXixRZ/Xq1dTU1NC/f/8G309ISKhXnDg7O5sPPviAQYMGAZF9ZYcPH85NN91E7969D9qfiIiI/HjERLCrqFhBOOylbUYZfqcTe8Affc+ZECScMw+7o/HQ1amzk2AQiopCpKfv+Vpmziynew83ffq4yc3dvzbeo48Wc8opiezYGSQcLsPnzyfOfeD9YadOncrYsWPrHVu2bBk333wzKSkpvPvuu4wYMSL6XjgcZvv27Vx44YUA5OTkkJOTwyOPPMITTzyBiIiISJ2YCHZlZYuAMN0zN7E+3L3ee11OzsWwHXwmbdCgyM4Oa9f6o8EuELD4+KMqTj4lgc8/q6KkNDKjt369H4/HYMUKHxs3+PnjHzP4858LyN0ZwBOX3WiZk65du9K1a9cG33M6nYwaNaresZUrV1JTU8Po0aOjx6ZMmcJdd93FQw89hMfjOei1iYiIyI9DTAQ7v78AgGR3NSVd00jbXIDNsvCke/Gk+7AdQq3irCwnffu6WfhVNSedFFmVumaNj6oqk9Wr/bz91p4dKd56q4K33qoA4Le/Syc5OdKBaVq0aeOgouI7kpMHNfk6ysrKSEtLo6ysjO7du3PVVVcRCATIysqqN8s3evRoKioq+Oqrrzj55JOb3I+IiIjEppgIduZe24d1G7yDsm3x2EJBMgbtxrAffLauztlnJ/OvJ4r51Y0mcXG2aAmUf/6zQ3RhRZ2HHixix44gp5++Z5FETY3Jz37Whu3bn2fAgEcOud+xY8fy8MMPY7fb6d+/Pz6fj9mzZ3PbbbeRnJzMr371q3plTgYPHozNZmPhwoUKdiIiIhIVE8HOZnNGf++VvpGP00fTrrSQlK5V2Jqw7vfU8Ym89loZb79dwUUXpdYrgbK3Fd95+fDDSp78d0cMI/Ke329hWXDOuUkUFX9AMFiB03nwrcXq3HTTTfVen3nmmRQUFPDOO+9w3nnn1XvP6XSSkpJCXl7eoV+ciIiIxLyYKHfidmfWez3g5NV4snxYYeMAn2iY3W7w29+l43ZHPrd3CZS9PfxwMRPOSCI93U5VVZiqqjAOB/Tu7SYctggGHVRULG3+BdUaPnw4AOvXr9/vPY/Hg9frbXEfIiIiEjtiYsYuNfV4Sku/ASI7RWQmFuMf4sZwmo1/sAH9+sXRr19kIcW+JVDqbN8eZPv2IO++U7nfe+edu43rrk+nV88VtGs3psn97+20007jT3/6U3RWcG8lJSWkpaW16PwiIiISW2Ii2CUnD8RujyMcrooe65SWSwN5qEkOVALlwYey92v75BO7CZsWN9yQRocOTkrLFtKNG1rU//Tp0zEMg2HDhtU7np+fj8/no0+fPi06v4iIiMSWmAh2KclDsKz6NeZaGuqg4RIoAMceu3+JkYREG+GwFX3P7y8EIgsjtm7dytatWw/Yz7Zt2/jpT3/KlClT6NmzJ36/n9mzZzNt2jR+8Ytf0KNHj3rtFy1aBFCvBIqIiIhITAQ7pzOZtLRTKSycAzT99uuBNFQC5VCZZmSXi+rqarKyDlywGCApKYm2bdty3333UVBQgM1mo2/fvjz22GMNbh/27rvvctxxx9GzZ88mjUlERERiW0wEO4AunX9OcfEnmGbrLijYtwTKgfzjH+3rvbbZXFRXV7Ns2TKmT5/eaB9t27blzTffPKTx+Hw+ZsyYwYMPPnhI7UVEROTHIyZWxQIkJw8iOXkghtG6WfXU8YmktXPw9tsVTfqc253BggUL6NmzJ5MnT2618Tz11FNkZGRwxRVXtNo5RUREJDbETLAD6N/vH9gMV6uec98SKIfGQZvUEYwfP541a9Zga0oxvYNwu91MmzatXsFiEREREYihW7EAcXHZ9O59B+vW39Wqt2T3LoFyKOx2D8nJA1ut/71de+21h+W8IiIicvSLqRk7gOzsybRvfzGGcehBrLVZVoDk5JwfrH8RERH5cYq5YGcYBr173U6HDlMA+w8wAhvpaac1aTsxERERkdYQc8EO9oS7rl2u+977ttncdO581ffer4iIiEhMBjuIhLsePW4mOflYoBWqFR9Snw6SkwcetufrRERERBoTs8GuzsABj2O37b9TxOFgs7no3//h76UvERERkX3FfLCrWylrO8zhzmbz0LvXHcS5G99lQkRERORwiflgB3tWyh6ucGezeejQ/mLat7/wsJxfRERE5FD8KIJd3WKKwxHu6kJdr163t+p5RURERJoqpgoUN6Yu3CUl9mX9hr9gmgEsK9SC8zmw2Vz07nWHZupERETkiPCjmLGrYxgG7dtfyIjjPyAlZUjt7F1TvwIbNpuHlJQhjBjxoUKdiIiIHDF+NDN2e4uLy+a4If+louI7tm9/nqLiDzAMF+GwF2hoFs+B3e7BsgKkp51G585Xkpw86PsetoiIiEijfpTBrk5y8iAGDHiEYLCCioqlVFSsoLRsIX5/IaYZwGZz4XZn0CZ1RG19uhztKCEiIiJHrB91sKvjdCbTrt0Y2rUbQzdu+KGHIyIiItIsMRXsvF4vO3fuJDc3l23btlFZWUk4HMZut5OUlESXLl3o0KEDHTt2xOP5fooWi4iIiHxfYiLY5ebmsmDBAtatW4fdbicYDGKaZr02xcXFbNu2DafTSTgcpk+fPpxwwgl06NDhBxq1iIiISOs6qoNdeXk5s2bNIi8vj1AohGVZhEIHLmFimiZ+vx+A1atXs379etq3b8+kSZNISUn5voYtIiIiclgcleVOLMtiyZIlPP744+zYsYNgMIhlWU0+RzAYZMeOHTz++OMsWbKkyecQEREROZIcdTN2lmUxd+5clixZQjAYbPH5TNPENE3mzJlDQUEBEyZMwDCMVhipiIiIyPfrqJqxa2momzNnDq+88kr0dVlZGa+++iqPPPIIf/7zn5k8eTKDBg3i/fffb9E4S0tLuemmm+jcuTNut5uOHTsyderUeteRk5PD/fff36J+RERERPZ2VM3YLV26tNmhrqSkhMWLF3PVVVdFjwUCATweD+PGjSM5ORm/38+yZcuYOHEiM2fOZNKkSU3up7S0lFGjRmEYBn/961/p2rUreXl5fPnll9E2hmFwxx13cOWVV/Lzn/+ctm3bNrkfERERkX0Z3+dzZUOHDrUWL17crM+Wl5fz+OOPN/v26/vvv09ubi5XX311o+1M0+Sxxx5j5MiRzJkzp8n9XHvttcyZM4cVK1aQnHzgYsbhcJiOHTty88038/vf/77J/YiIiMjhZRjGt5ZlDf2hx9EUR82t2FmzZhEOh5v12VAoxIoVKxgwYMBB29psNtxuFwUFBU3up7q6mhdffJGf//znjYY6ALvdzoUXXsizzz7b5H5EREREGnJUBLvc3Fzy8vL2q013qHbu3InP56NLly4Nvm9ZFqZpUlVVxWeffUZx8W6OHTSQ3NzcJvXz7bff4vV6yczMZPLkyXg8HhITEznvvPPYsmXLfu1Hjx7Nhg0b2Lx5c7OuS0RERGRvR0WwW7BgQaP16Q5m586dAGRmZjb4/ocffsjdd9/NQw89xIIFC5g8eTJdunbhq5lPQhNuVefl5QHw29/+Frvdzttvv83TTz/N0qVLGTt2LJWVlfXa5+TkALBw4cLmXJaIiIhIPUf84gmv18u6detaVGOusrISu93Oa6+9xqWXXho9/vTTT1NeXh6dCezfvz+5ubm8/vrr2Gw2khITmTFrNvf85126det20H7qzpOUlMTKlSs5++yzMQwDwzDwer20bduWHj160KZNG5KTk3njjTeAyIxkTk4Ol1xyiZ63ExERkWY74mfsdu7cid1ub/Ln/JadneEUlgWz2VhpJxwOEx55FbP9A5jr78OXhQ527dpFYlISffr0AcDn85GUlETbtm1JTEzk9FPH8M2qzQzNGcSOHTsO2me7du2AyArcK6+8kv/973+MGzeO4cOH4/F4OO2007jssstYunQpH330EYsWLYr2e8cdd3DPPfdQUlLS5GsVERERgaMg2OXm5hIIBA65fbEZz6eB7rzuP5bPgt1ZHm5PVUkRYBDOHkC55SHfSmbRooW4s3qQOPUZ3CMuA6BXr15ceeWV9OnTh8rKSvoPHMzfLzuO0ooqnnn8Hwfte+PGjQBccMEF/N///R9jxozh/fff59NPP8XpdNKpUyf+9Kc/cfPNN2OaJn/5y18ASEtL45xzziEuLk6LKURERKTZjvhgt23btkO6DVttOZnj78OcQF+2mW0IYyOIAzMUJrh7O2ARqigGwAoFqV71KfH9xhHGRq4VWcG6ztaFKtPO9u3badu2LSZ2fKm9SY83yF0w46BjeO2110hKSuK7776rN+avvvqKiooKhg0bBuyZ2Zs/fz4Affr00SpZERERabEjPtjtu+BgX5YFG0LtmO0fSKGVSBg71l6X5c9bixWKzPgFdq2PHjP91QSKd1Dy0VPUbPoWgKK87Tzx0ixyc/MYM2YsABuK/BRWW8xenMvYkQcuZRMMBlm0aBGnnHIKK1euJC4uDrvdTo8ePTj33HPp27cv55xzDh999BH/+Mc/os/62e12RowYAWiVrIiIiLTMER/savwHvg1rWfB1qBOLQl0I7RPo6vjz1gEGrqxe1Gz8ut4xT/chBIq2Uf7lq5G+1s4Hh4v2l91DTd8zCIdNXn3vM9LjDWwGZNkO/Pzb7t27CQQCfPzxx3Tt2pVOnTpht0dm/4qLi1m7di0ZGRmMHz+e8ePH8+KLL+J2u+ncuTPx8fGAVsmKiIhIyxzxq2IrfGaDg6wLdRvC6YQ48OKKcNVuDHc8SUMmUvLR05inXUu4ajcYUPLBE3T61XSCpXnkPX0Npq8S78av8W78mjxgbu057hzj4q7PAvxmYBl4y8CTul8/dStig8Eg8+fPJzMzk4cffpjZs2ezYMGCaDu328306dMpKyvD7/eTkZFBjx49okWUYU/ZFBEREZGmOKJn7Mq9QYr9DQ9xY7jdQUMdRJ6nM+xOEvqPw57Ylsol7xMszQfLos3YK/drb4tPIa77cdHXw0aNIS3eYHx3O8O7JMDOhrdEa9OmDYZh0K9fP9q3b4/X6+Xuu+9m27ZtuFwuUlNTueiii/D7/bRv3563336bhIQEEhISePLJJ9m+fTszZ84EIiVeRERERJrqiA52S7aXsttIJrzP2olqyxm9/XowNk8Spr8Kw2Yn7cybsDnd0WftEgeesl/7xMETcLbtCEB8v7GUn/hrJg/L4oOfJkCwBvKWNNiPx+Ohe/fu9V7/+te/pqKigjFjxpCZmclrr73Gz372M3bt2hVtk5aWxmmnnUabNm3405/+BERWyYqIiIg01REd7L7bUU5+yEN4n2F+HuhOGOOQzuFs1xHCIUIVxbg79CWh3zhMbzlAdJXs3gK71lO5+C0APF2PJYSNXwd+GXnTDMHW+Qfs6/zzz2fVqlXk5uZit9uZNm0a5513HkuXLo2uiB02bFh0F43KyspoDb1zzjknuoVZ3TERERGRpjiin7FbtGU3BeFEbI49U3bFZgLFVkKDCyUaEtdpABAJbI7kNKpWfhh9r+jNv4MZJmHgqdFjvq1Lo7/vfv8Ryr58hVxPCkZ+BdadyVAZmW0bO3YsW7duZevWrdH2v/3tb3nppZc444wzuO6669ixYwevvPIK4XCYl19+mZdffhnDiATSESNGsHDhQkaPHo1lWdHSJzabLbpKVkRERKQpjugZu4IKHwEcbA+nYtZmu5WhTMxDnK0DcKRk4sruHV0R690cuZXqSOtCYNd6AgWbKP3oqQN+PlxeiD9/AwCXzaxhS2EVANXV1WRlZdVrm5mZyeeff06XLl34v//7v8jnw2HsdjsOhwObzRatb1e38nX8+PHcfPPN3HPPPUBkO7JLL72U66+//pCvUURERASO8GAXrH24blU4mzA2/JadHWabQ56tq5OUcyY16xdgBn0EakOaIyEVDBudfjOD9tc8AzYH7c7+bb3P2VMzscUlRn5PaMvCrQZDH9rAunXrWLZsGb/5zW/266t379688847vPfee5HP2e3YbDZSUlKwLCv6GqBDhw5MmjSJm2++OTpLFw6HufPOO3nmmWdYv359k65TREREftyO6GDntEdm5nZbCRSbCZHbsphNPk/ditiyL1/F9FYA4N+1AZsnicol71O5+C1cGd2iiypscUkApJ5wCXHdIitkw95yrj1mFKU1Ye6++2569uzJ5MmTG+wvGAxyyy23ADBw4EBefPFFTNPE5XKRkZFBSkoKAE899RRvv/02fr+ff/wjsmWZ1+slJyeHnJwcHnnkkSZfq4iIiPx4HdHBLjM5Lvr7F8HuFFkJBA9hJey+6lbEBvLWgjNyTitQQ+qYqRh2B9Wr5pHQbwzVaz7HcMfjaJMd/awtLgFsdjDDbErIpK3DjtM0WbNmTXTmbV8PPfQQa9asIS4ujuzsbG677TYyMzM566yzCAaDlJeX065dOyZOnEhOTg4PP/xw9LZuOBxm8+bNTJkyhenTp6v0iYiIiByyIzrYHd+tHQ5bZNauBhfrrQxowvN1e3Nl9iBYuAVXWpfoscT+Y3FldMP0V2MGfJjeKhyp7aPvm0E/3o3fRFbWAl+HbewOhWm/bl2jfT3xxBNcdNFFjB8/ng8++AC/38/atWuZOXMmxcXFmKZJSUkJvXv3JiMjg1deeaXe7F/dooqKigq++uqrZl2viIiI/Pgc0cFuUKcUPM49M3Rel7vZ56rbHzZx0GmRA4ZB0ey/124vBhWLZmDYHYR27yCwK/IcXulHTxGu2o0zswcA61d/QVu7nX8vXx5d3bqv7du3s2PHDjp16sTHH39MOByO1q2Lj4+Pbh82bNgwxowZw3vvvUdFRQXjxo2LniMvL4/Bgwdjs9m0vZiIiIgcsoMGO8MwnjcMo9AwjJV7HWtrGMaHhmFsqP1nm8MxuCGd2xAIR56pM5OdNHe2DvbsD5s48GQwbGBZpJx4aWR7MZsDe3I6VtCHFfIDtUtwLRMsk5qVnwBQXZLLfdntCVkWjgPchq3bDuyhhx6ipqam3ns1NTXRY19//TVXXXUVv/rVrwDYsWMHdnskxHq9XpxOJykpKdpeTERERA7ZoczYTQMm7HPsVuBjy7J6AR/Xvm51KR4np/XLxGZAqGtii+YX6/aMNexODHcCAPaUDGo2LgIzROpJl9W2NLAlpILDheFwRZ6vs0XK/fUcczk5Hg8VpsmEpGTCFRX79VO3Z2xCQgKVlZVYloVlWQwdOhTDMLjmmmuIi4s85/fll1/yk5/8JPrZumf26nae8Hg8esZOREREDtlBo5JlWZ8DJfscPhd4ofb3F4DzWndYe1w9ujvOOAdmhgcrrukLJ+rU7RlrhYJYgUhYKpp5N+HyQsAgkL+JyNdhYfqqsSe0Ie3cW7GnZEd2nDAMuqV3Zm5lBTbgzq5d8S5fvl8/7dq1A+DEE08kMTExetztdhMfH8/MmTNxuVwAdO7cud5ng8EgQPR2bUlJibYXExERkUPW3DmwTMuydtX+ng9kttJ49jOoYyqduqeCaWG2dWM1825s3Z6x/ry1kaAGhMoLat+1qFj4BtSVUgkHCZcXUDTzL4RLd9Y2sfAue59JKams7NOX6zesp9955+3XT/fu3fF4PAB89913nHbaaTzzzDOUlZURCAQoLS2N3o7Nyclh+vTpABx33HHRc3z55Zfk5+fj8/m0vZiIiIgcshYvnrAiWylYB3rfMIxrDMNYbBjG4qKiomb1MWpYe7AbWMkusDcv2dXtGevdsgQwcGb2wPRWEt8vsmjBcMaDM470C+/C5kmGusURxp6vaMnmZbxaWspGvx+vadKu9tbp2LFj6dq1a6Qfp5OJEycyf/58EhMTSUtL4+9//zurVq0iGAximmZ0r9hevXrx2GOPAXD99dfjdrtp27Yt//nPf7j88ssBGD16dLOuV0RERH58mhvsCgzDyAao/WfhgRpalvW0ZVlDLcsamp6e3qzOVnr9YDMwU11E9xZrouiesYVbMNzxeLrmgBki6djTcaZ3wwrW4EjOJL77cTjTOkfCHUQWUNSqCYf4S2EBt+zKY63Px886dgL2317srrvuorq6miuvvJJLLrmE+++/P7owwjCM6O/dunXjnHPOAaBPnz74/X6ys7MJhUJ8+OGH9O/fn549ezbrekVEROTHp7nB7m3gitrfrwDeap3hNCw/EHn2DKeNcIbnwNODjajbMzZUugvD7sTmjjzH5tu5Bnt8JMRZZiDa3p4YeVYuYfDpALhcHvq63bgMA5dh0NnlYkK7dlRXV++3vVi/fv345JNPMAyDiy++mJ/97GeEw2FSU1Np3749zz77LAAffPABGRkZHHfcccyYMYPk5GTS09MxDAPDMGhuEBYREZEfp0Mpd/Jf4Cugj2EYOw3DuAq4FxhvGMYG4NTa14dNcK9ZunDXRLA173ZsUs6ZhCoKMH2VhKtLMZxx2Jxu/Ls2YDjdhMsKMIM+si69l/jeI8HmiNa0u6lTDzb6/YxJSGC138+sLl2xu1wsWLCgwe3Fhg8fzrx58ygrK6Nz58506NABt7t+HT6/38+MGTO49tprycrKol27dmRkZBAXF4fb7ebbb7/VqlgRERE5ZIeyKvYSy7KyLctyWpbV0bKs5yzL2m1Z1imWZfWyLOtUy7L2XTXbqpx7BTkrxYWZ4mzWIoqE/uOwxyWDGSbsrcRwxuHK6IYVqCFp+KRIzbq1XwIQLN6O4YwjWLgZV1Y3evvL6exycVpiEkHLYlswiCMjg/Hjxze6vdgjjzxCaWkp2dnZmKZJQUEBN9xwAwCjRo3Cbrfz05/+lN/+9rcUFBTQp08fXC4XQ4cOpbKyUjtPiIiIyCE7oneeqJPlctZ7HRzUtlmzdobNTtvTrgXACgVqV8lGChenjryI+L4nUfrx01Qu/x++Hauw/FVg2Bj80ys5ISGBd7t1p40jUtPuyh3biR8+rNH+tm3bxvvvv09+fj6LFy+mqKiIUChEdXU1AGVlZezevZtf/vKXrFy5kpqaGkaPHo3f7+f444/XzhMiIiLSJI4fegCHYmRqIgvLqgjVHYizE+qbgmNNOUYTF1PE9z4BV3ZvwtVlEA4RLNkZLVzc7sybKPv8RUo/eTZS687mIO13D3KKP3+/86TaHXgGDmy0r3nz5vHZZ58d8P2XX36Z9957j+eee46kpCSysrLo27cvPp+Pfv36aecJERERaZKjYsbu2OR4PPb6Qw13iCfcMR6rGeVPknLOJFC4GQDf1mW124iBzenGnd0bK+DDcLrBClP80G956bknomVOimpLlZyX2oYzb7k1WuakIVOnTo3uPFH3s2nTJpzOyAxkVlYWN910EwCvv/46ycnJXH311UCkzIl2nhAREZGmOCpm7IYmxxOw9pmZMwxCfVMAsO+sadLMXUL/cZQvnIHpryZcWRzZNqxWpM6dhRWMhD1CIXIrK/hLZQX93W66uyILIMb3GcuHJWvrlTk5FNdffz0ejye6y0Sd8vJy/vvf/zJ27NhomRPtPCEiIiJNcVTM2KU4HUxIS4EDhLvQMSlYduOQF1QYNjtpZ95UW/LEADNMqKIYy4Ck488DIOHyXwBw/EU/4bvefejqdJFmd7DK72N0YiLb249l1dqV9cqcHMwrr7zC0qVLueuuuwDo0qUL06dPxzAMHnvsMYYPH47NZiM9PV07T4iIiEiTHRXBDuC6Thk4aSC5GQbhjgn4R2ViprqwbMYh1blzZfYgXFWKzRPZz9VfsB4z1UWlfxU4HCRMuYL40aeyctarvFlezkBPHJ/XVLMzGOT8vh1ZXlVOVruOTJ48ud7OEwfy3XffMXXqVCZMmMDOnZFtym699Vb++c9/8otf/IIrr7ySp556irZt2/Ltt9/y+eefA9p5QkRERA7dURPsjk2Op6e7kZ0n4uwEh6cTGJ5GOMuDZQPLceBZPN+utViBGlLGXYmtTSbVZcsJDk8nlLsZe1YHHA4nIydfxuSkJB4tLmJORQUWcFt2JptOHc8xHYdy/3X/xWaz7bfzREMeeOABkpOT+fTTT3n00UcBWLNmDY899hj/+te/AHC73dx7771UVlbywgsvcNxxx2nnCRERETlkR02wA/h3/64H3VLMSnERGtwW/9hsgoPaEuqRRLitCzPBgemxYyY4CLd14fVtBcPAef0lJF59Pb5Fn2H5vFgVFdiSknGFgtzx8tPckpHJFz178e/a7cNWn5BAvBW5PRoOmQ3uPLGvL774gtdff53PP/+cbdu28cwzzwDw1ltvccMNN0Rr4F177bX89Kc/xTAMPvnkE6677rqWf2kiIiLyo3FULJ6o0yc1nqFVsDjRBMdBMqnThpkeB+lxhHvs/3ZoUQVGfAJGvJu48WdS/eo0at56AwDDNLnh9RdILy+Ntg/WflNLehqMqOgCgN1hO+DOE3UCgQC/+MUvuPnmm+nXr99Br9HpdEZ3nrjiiisO2l5ERESkzlE1Ywfwt6Hd6LghF3vI17ITBQIYLhcAht1B8u//jBEXhyMhgfiiAs78ak/9OZ8T5nc0AegS7Ic7HNlnNj7Ffcg7T9x4442UlZVRVlZGTU0NAJWVlVRWVu73GZfLxahRo3A4jqrcLSIiIj+woy45DO7UhqnfLGBBeTKfDB8HtrhmncdITsGs2hOqXP0GkdyjNxlLv2ZpSTHedm1xOmwE7fCf8QYfbA5gOAxGBs+OfN4GHXqnHrSf1atXk5+fT4cOHfZ7b8iQIQwePJhly5bVO+73+w9pdk9ERERkb0ddsAM4PZjLyS+8yba0AjZ3n4KFA2xNuxRH564QDBIuKsDVph2uUJAbXn+Brts2MRl4t6aSfv1SeOwcOyXxUPFqBe36ZJDt7w6A02Uno2vyQfu59dZbmTp1ar1jc+fO5b777uPll1/er5yJypyIiIhIcx2Vwc62uxgD+Otzn/Hr61ZSknEVIVd3MBxg2A/6eQDXoOMiv6xYyoCOnbl12uMk1ZTiTIxjaIdk/rq7gPSOBq4dLko+KSFQFOCS0b+Nfj4ctvjpdZPYvn0bW7duPWA/ffv2pW/fvvWO1bU//vjj91v1umjRIkBlTkRERKTpjspgZ9Vu65VV5uPsJd15f/CDeD0d8CZNwO8ZikEIy3BFgt4+DDOEO+An3C6NNp270Oulx7mqTxKfDjDYlG1jQweDGltHkmcWUDizkHBNGE8nD+dOuZI+CUNqB2DSfXAG3oU1Td554mDeffddlTkRERGRZjkqg52x16KCsxdsZUvmMNZkfYMz8CSmEU/I3YOgqxvBuH6Y9lQsHBiEsIXLcPpW4wxsweHfhDU+xKJXdnHXH1KwufcsfrBhkH1JNtmXZOMIuzimYCQnbpu0530rTK8T27HsumVMnz69yeOfOnXqfrdnAXw+HzNmzODBBx9s8jlFREREjspg58jMILBlCwAplTs4c/n5YNhYk7mIkL0Gl28FLt8KqHi70fOknpBK8fvFlHxSQtoZ++/JWhfqTth2fvSYYYZItXazcefKRsucNMdTTz1FRkaGypyIiIhIsxx15U4A4ocNh71m7fqvfZFRm89i1JYLcIRd2MxDuyzDbtDhqg4YrvrbU9hMG46wi1FbLuDEbZMw9trKzGaFOGFA1UHLnDSH2+1m2rRpKnMiIiIizXJUJgjPwAHY4uIwq6oAiPOX0WfDGxhcRMfyvnzc80WKEncQNoJYtsZ3qojvGU98z0hdOsM0sFtO0qs6ccrGy0kMpNZrawv76b39Hdpdfulhua5rr732sJxXREREfhyOzmB37LFYwWC9Y9n5C6lK6ADtT+Tc1TdSmLCd77LnsaXdd9hNB0FbAMtm7ncuw7ThNF2EbSG67R7EoF3jyKjuvF87W9hP+7wvaZ//FZ7B9x22axMRERFprqMy2NmTk0k85WQq5/4PzEhYM4Bem2YCkNf+RDKqO3Pqxivwb6mhIGkbhQnb2ZW8gWpXBaYthM10kBBIJruiFxnVncms7BLdUWJfdaGu15bZJJ0xAXvywevXiYiIiHzfjspgB9DuZ1dSNW8elnfP1mJ14S6xOpcNPS/EtDlwE0/nsmPoXHYM5J7epD4MM4TNDNFr4xu0z1+I4Ymj7c+ubOUrEREREWkdR22w8wwcgGfAQGqWLoXaunYQCXft8xfStnQtq/teQUVyF0zDAbZDK1wMgBnGZoVIrthG/zXTcAfKweHAM2AgngH9W/9iRERERFqBYVmNLy5oTUOHDrUWL17caucL5uez6YwzsbzeA7apSOrM9o4nU5w2GMMKEba5Gt5+zAxhNwNYhoO04uV03vkJyZXbo28b8fH0mPM+zszMVhu/iIiIHLkMw/jWsqyhP/Q4muKonbEDcGZlkXn7Hyn4698OGO6SK7czYM00gg4PFcndqEjsTFlqL/zuFEybA5sZwu0vJ7VsA8lV20mu2IIzVP9chsdD5h//oFAnIiIiR7SjOtgBpE6ahH/tOspmzGh05s4Z8tKuZDXtSlbD9rmHfH7D4yH1wgtpc8EFrTFcERERkcPmqCxQvDfDMMj8w22kTp6M4fG07rlrQ13mbbe26nlFREREDoejfsYO9oQ7d98+FPzt71iBQL0FFU3mcGC4XGT+8Q+aqRMREZGjxlE/Y1fHMAzaXHABPd5/j/icHAxPHDR1uy+bDcMTR3xODj3mvK9QJyIiIkeVo3rGzl8TJH9zBYXbKshdX0Z1mR8zbGLrfj2e3kFSClfi/u4zUn252KvLGp7FcziwxcVhBYMknXoKbaf+DM/AAd/7tYiIiIi01FEZ7Aq3VbD0w+1sWV6M3W4QDISx9tktrAzIt/XBmXMM4aBJ+8RyuhTOJ7FgLVYwiOF04sjIIH74MDwDB+IZPFg7SoiIiMhR7agKdlWlPj58fjWF2yoIB00sC8LBA7e3TAj4IolvZ0UKu5LOJmPAZYy/sh+JbeK+p1GLiIiIfD+OimfsLMtizZd5TL9zIfmbygkFIqGuaeeAUMAkf1M50+9cyJov8/g+izOLiIiIHG5HfLCzLIv5b2zg89fWEwqYmOahh7E3vnycJ+f8Ifp6W9E6Xp73EHe+dDmDx3YnK70Dl112GVu2bGnRGL1eL3/+85/p1asXbrebzMxMzjrrLAKBQLTNeeedx/XXX9+ifkREREQac0Tfiq0Ldavn5xEKmAf/wF6KyvOYv/odfnPeY9Fj326cR37pVsYMOJ/sNl2p9O/mo0//y9ChQ1m2bBmdOnVq8hiDwSBnnHEGW7Zs4bbbbqNfv34UFRXx4YcfEg6Ho+3uvPNOhg8fzk033UTv3r2b3I+IiIjIwRzRwW7tgl3NCnUA81bMpEO7HnRJ7xM9Nv7YKSR5Uuu165E9gNtfvJRnnnmGv/zlL03u56GHHmLJkiWsWrWqXjC8YJ9SKTk5OeTk5PDII4/wxBNPNLkfERERkYM5Ym/FVpX6ordfmyoYDvDNho8Y2vPkesf3DXUAKXEZJMalsnXz9maN84knnuDCCy88pNm+KVOmMH36dLyNbH0mIiIi0lxHbLD78PnVmKHmLW7YWrAGb6CKHtkDD9o2v3Qbld5SjPLUJvezfft2duzYQffu3bn66qtJTk4mLi6OU045hWXLlu3XfvTo0VRUVPDVV181uS8RERGRgzkig13B1kjR4aYslNjb1sLVGBh0aNu90XZhM8yrXzxCYlwqg7NPoXBbRZP6ycvLA+C+++5j8+bNvPrqq/z3v/+lqKiIsWPHsn17/VnAwYMHY7PZWLhwYdMuSEREROQQHJHBbtlH2wkHm34Ltk559W7iXPE47M5G270+/zE2F6ziipNvI86ewLIPm3Y71jQjY4yPj+edd97hzDPP5Pzzz+e9997D6/Xyr3/9q157p9NJSkpKNBCKiIiItKYjLtj5a4JsWV7c5Dp1ewuGAwcNdW8teoYFa97jJ2N+xzGdhmJZsHl5Mf6aRioe76Ndu3YAnHjiicTHx0ePd+rUib59+7J06dL9PuPxePSMnYiIiBwWR1ywy99cgd1utOgcCe5kvP7qA74/d8l0Plz2KpNPvIHhvcdHj9vtBvlbDv12bPfu3fF4PAd832bb/+stKSkhLS3tkPsQEREROVRHXLAr3FZBMBA+eMNGZLbpTMgM8vKnD9QrUAzw8fI3ePeb53E7Pby58CkenH0DG/O+AyAYCFO49dCDndPpZOLEicyfP58//OEP0QLFaWlprFy5kiFDhkTbnnfeeUydOhWfz0efPn0aOauIiIhI8xxxwS53fRlW8x+vA6Bn9iAAvl7/AWcOvSJ6fPHGT5i98N/YDDuj+5/Lecdfg8Pm5J/v/Y5lmz/HMiP9A4wdO5auXbsetK/bb7+d4uJi/vGPfzB+/Hj+8Ic/EB8fj9vt5pprrom2u/POO3nppZeAyOpYERERkdZ2xBUori7zt/gc7ZKySPK0wTTD9QoUL974CQCmFebDZa/W+8wrnz/Msd1HU1Me6b+6upqsrKyD9jVnzhzi4uIYPHgw06ZNw+l0Mm7cOB588MF6wTAnJ4e2bdtiGAY9e/Zs8TWKiIiI7OuIC3ZmuIXTdUQWT/gCNVhYBII+XM44ALqk92HNjm94YOpb0WMA730zjQ+XvUowHCAciqO6upply5Yxffr0g/b1xBNPMGXKFJ577rlG2/l8Pqqrq7EsC6/X2+izeSIiIiLNccTdirXZWz6krQVrCIb9JMe34fPVb0eP7yrdSrukrHqhDiC7bVdCZpDi8jzsDhsLFiygZ8+eTJ48udF+mlKg+KmnniI9PR2fz6cCxSIiInJYHHHBLiHV3eJz1BUovnzcrbgce863JX81ld7Sem2DoQBLN30OwL0zf8Fdz16O2+1mzZo1Da5q3du+BYqff/55zj//fBYuXMiQIUNITk7mhBNO4M0338TtdvPyyy9HCxSfd955XH/99S2+VhEREZE6R1yw69A7FWjZ7di6AsU9swcxuv+5ABSV51FaXURqQnq9ttM/e5BVOxYBcO7xP6d9fJDTTzu1wS3B9rVvgeK+ffsyb948pk6dit1uZ8KECfTu3Zvzzz+fcDjMSSedFC1QfOedd/LMM8+wfv36Fl2riIiISJ0jLtilZjqxrEMvEtyQhgoUz1sxk3h3ImEzFD22c/cmFm/8mOG9IrXs+rYfxJPndqFzkskdf/j9QfvZt0Bxt27d2Lx5M//617/o168fZWVlTJs2jZNPPpn77rsP2FOgOCcnh5ycHB555JEWXauIiIhInSMu2FmhXYC9RefYt0BxMBzgmw0f0SW9L7sr8wkEfQCs2LoAu81BvDsJh81JWmpHbGYBU/o7+d+HH+P3N75Cd98CxQkJCfV2oKi7lTt06NDobdu9CxRPmTKF6dOnaycKERERaRVHXLDbvXMjZnATVguK2dUVKC6tKgIiiym8gSqG9T6VsBliyebPgMhiiraJmSzfOp++HY/DHt7Obp+d/ukGgZDJxi/fbqybegWKq6v3BMnt27ezdu1ahg0bBsDnn39O3759yc/Pr1egePTo0VRUVGgxhYiIiLSKIy7Y7Vi9gpBvMdD83SfqChRvK1wL7FlMMaT7GIb0GMvMBU+wYM17FJXnUu2vYHflLs4cehkh/7fsqEmhrSeypdmpF1xxwD7q3HXXXVRXVzNx4kTeeecd3njjDc4880xSU1O54YYbePrpp1m4cCG33XYbixZFnuWrK1A8ePDg6GIKERERkZY64oJddWkJVrgAM5SPZTUv3LVLyqJLRl9WbIvMhNUtpnDYnfxk7O8Z0ed03vnmP+ws3kgoHOT6M/5Oh9QkrHAh1aE9q2jbOgPgLWu0r379+vHJJ59gGAYXX3wxP//5z+nZsydffvkla9as4cYbb+Tyyy/nsssu49133+W4446LFih2Op3RxRQiIiIiLXXEBbtwKLK4IVg9h5bM2p3U72yWb51PIOirt5jC5XBzwQnXc8/lM8jpPobUhDR6tR9Q2x+ELYO8ysht4CuHJsLOxQfta/jw4cybN4+amhrKy8t58803KS0t5ZxzzuHkk0/m2WefxefzMWPGDK677rp6n61bTCEiIiLSUkdcsLM7ajfDsKoI1XyCZQWadZ5hvcaTEt+Oz1e/vd9iijrZbbuwuzKfmor/gVUV6d+w+HBTJFxef5wBeUua3PeKFSs4/fTTOfbYY5k5cyZOp5OnnnqKjIwMrrii/u3dvRdTiIiIiLTEERfsEtq0jf4eDqwm7F/RrHBnt9n5ydjf4XK491tMUad/56G1iynmRY/F2Xws3mVyVm8HHrsJW+c3qd8NGzYwfvx4unfvzrvvvhtdNet2u5k2bRoOx55d3PZdTCEiIiLSEkfcXrGd+g1k59pVWOHIbdiQN7KC1e4eiGG4mnSubpn96JbZj92V+UBkMUWbxEiBYssK0D7Jy7Gdsnl76SpM06RtQhzv7ljHllKT6ZNqy5hU7gJg7NixbN26la1btx6wv8LCQsaPH08gEOCuu+5i9erV0feOPfZYcnJy6rXfdzGFiIiISEscccEuq0cvnC43AW9N9FjI+xlWuAhH/MmAHcNoWp27vRdTDO52AhAmVPMJ4cBqLh42mDkr1zF35Xq8gSD9MxzM/Uk8Q7Jr+whHZgurq6vJyspqtJ/Vq1ezbds2AM4666z93t+yZQtdu3aNvt53MYWIiIhISxxxwS67d9/oAoq9hQOrCQe340w4A5sji0jAO/Q7yaOOOYuZC55g8ohJGP5Pos/UOR12zjm2H+cc2w+7EebaXouIs++1aMPuorq6mmXLljF9+vRG+xg7diyWZR3SeOoWUzz44IOHfA0iIiIijTninrGLS0ik57DjGw5tVhXBqjcIVL5OOLAOywphmb4DlkWxrHDt+yGGdOlEssfJZ8sejoa6vRmY9EraXT/UASRls2DBAnr27MnkyZNb4xIBDriYQkRERKS5jrgZO4ChZ01i07dfEzrAll5WuIBQzRxC3k+w2bMxHJnYHJ0wbAlEtiMLY5nVmKEdWKECzPAusPxcPKw/O0vLGzyn3bAY2ja3/kGbA7qOYvyY8axZs6ZVr7GhxRQiIiIiLXFEpoqsHr3I6tGLvHVrMMON1LKz/JihrRDaSphFBz1vl3Zt6NKuzX7HbZhkeSrJ9Owzk+eMh/ZDmjj6Q3PttdcelvOKiIjIj9cRdyu2zpk3/Ba7w/m99GU3LM5sv27/N8IB6Dj0exmDiIiISEsdscEuqV0aJ//sFzjc7oM3bgGHEebkzI0kOfeplWfYoO9Z4Ek9rP2LiIiItJYjNtgB9B97KoNOPh2H6/DM3DmMMINS8xnQprCBN+PghBsOS78iIiIih8MRHewMw2DsFVcz6JQzcNgPrYzIoaoLdWMzN+//ps0Rebaufc7+74mIiIgcoY7oYAd7wt0pl12B0xbGhtmi89kwcRphTsncyLiszRhGA40cbrjgmRb1IyIiIvJ9OyJXxe7LMAwGTLyILgllvP/idPJr4glbBlYTcqmBid2wyPJUcmb7dfs/U1fHGQ8T7ofk9q00ehEREZHvx1ER7Ookjbmai72byJ8/g28L27Ghsh12wyJo2hoMeQYmTptJ2DLolbSb49rmkrVvSZO9OePhuCtgyE8O41WIiIiIHB5HVbDDMGDCvWQBE5e8iM+3kV3eZPK9ieyoSaE65CZsGdgNiwSHn07x5WR5qsj2VOy/o8S+6kLd6fd8L5ciIiIi0tqOrmAH0XBH5kDi5v6ebs5KuiWWMpIdzTufzRF5pm7C/ZqpExERkaPaEb94okGGEQlhv/wGOo2IzLY1tLdso+ewRT7XaQTcsFihTkRERI56R9+M3d5SOsDP3oPcJfDVv2Dtu2B3QbAGzND+7W2OSJgLByLFh0f+Ejocni3DRERERL5vR3ewq9NhCEx+DrxlsHMx5C2BrfOhclckxNldkJQNXUdF6tN1HKodJURERCTmtCjYGYZxM/BzwAJWAD+zLMvXGgNrFk8q9Do18jPm9z/YMERERER+CM1+xs4wjA7AjcBQy7IGAHZgSmsNTERERESapqWLJxyAxzAMBxAP5LV8SCIiIiLSHM0OdpZl5QIPAtuBXUC5ZVkftNbARERERKRpWnIrtg1wLtANaA8kGIaxX80QwzCuMQxjsWEYi4uKipo/UhERERFpVEtuxZ4KbLEsq8iyrCAwCzhh30aWZT1tWdZQy7KGpqent6A7EREREWlMS4LddmCEYRjxhmEYwCnAmtYZloiIiIg0VUuesVsEzACWECl1YgOebqVxiYiIiEgTtaiOnWVZdwJ3ttJYRERERKQFjs69YkVERERkPwp2IiIiIjFCwU5EREQkRijYiYiIiMQIBTsRERGRGKFgJyIiIhIjFOxEREREYoSCnYiIiEiMULATERERiREKdiIiIiIxQsFOREREJEYo2ImIiIjECAU7ERERkRihYCciIiISIxTsRERERGKEgp2IiIhIjFCwExEREYkRCnYiIiIiMULBTkRERCRGKNiJiIiIxAgFOxEREZEYoWAnIiIiEiMU7ERERERihIKdiIiISIxQsBMRERGJEQp2IiIiIjFCwU5EREQkRijYiYiIiMQIBTsRERGRGKFgJyIiIhIjFOxEREREYoSCnYiIiEiMULATERERiREKdiIiIiIxQsFOREREJEYo2ImIiIjECAU7ERERkRihYCciIiISIxTsRERERGKEgp2IiIhIjFCwExEREYkRCnYiIiIiMULBTkRERCRGKNiJiIiIxAgFOxEREZEYoWAnIiIiEiMU7ERERERihIKdiIiISIxQsBMRERGJEQp2IiIiIjFCwU5EREQkRijYiYiIiMQIBTsRERGRGKFgJyIiIhIjFOxEREREYoSCnYiIiEiMULATERERiREKdiIiIiIxQsFOREREJEYo2ImIiIjECAU7ERERkRihYCciIiISIxTsRERERGKEgp2IiIhIjFCwExEREYkRCnYiIiIiMULBTkRERCRGKNiJiIiIxAgFOxEREZEYoWAnIiIiEiMU7ERERERihIKdiIiISIxQsBMRERGJEQp2IiIiIjFCwU5EREQkRrQo2BmGkWoYxgzDMNYahrHGMIyRrTUwEREREWkaRws//ygw17KsyYZhuID4VhiTiIiIiDRDs4OdYRgpwGhgKoBlWQEg0DrDEhEREZGmasmt2G5AEfAfwzCWGobxrGEYCa00LhERERFpopYEOwcwBHjSsqwcoBq4dd9GhmFcYxjGYsMwFhcVFbWgOxERERFpTEuC3U5gp2VZi2pfzyAS9OqxLOtpy7KGWpY1ND09vQXdiYiIiEhjmh3sLMvKB3YYhtGn9tApwOpWGZWIiIiINFlLV8X+CpheuyJ2M/Czlg9JRERERJqjRcHOsqxlwNDWGYqIiIiItIR2nhARERGJEQp2IiIiIjFCwU5EREQkRijYiYiIiMQIBTsRERGRGKFgJyIiIhIjFOxEREREYoSCnYiIiEiMULATERERiREKdiIiIiIxQsFOREREJEYo2ImIiIjECAU7ERERkRihYCciIiISIxTsRERERGKEgp2IiIhIjFCwExEREYkRCnYiIiIiMULBTkRERCRGKNiJiIiIxAgFOxEREZEYoWAnIiIiEiMU7ERERERihIKdiIiISIxQsBMRERGJEQp2IiIiIjFCwU5EREQkRijYiYiIiMQIBTsRERGRGKFgJyIiIhIjFOxEREREYoSCnYiIiEiMULATERERiREKdiIiIiIxQsFOREREJEYo2ImIiIjECAU7ERERkRihYCciIiISIxTsRERERGKEgp2IiIhIjFCwExEREYkRCnYiIiIiMULBTkRERCRGKNiJiIiIxAgFOxEREZEYoWAnIiIiEiMU7ERERERihIKdiIiISIxQsBMRERGJEQp2IiIiIjFCwU5EREQkRijYiYiIiMQIxw89gBbzlsHObyB3CWybD5W7IBwEuxOSsqHLKOgwBDoOA0/qDz1aERERkcPm6A12uUtgweOw7j2wuyBYA2aofpviDbBtATjjIRyAPhPhhBsiQU9EREQkxhx9wa48F2ZdDXlLIeQDy4z880DMEPgrIr+vng3r50D7ITDpaUjp8P2MWUREROR7cPQ8Y2dZsORleHwo7FgUmaGzzCaew4x8bsfCyHmWvBw5r4iIiEgMODqCnWXB3Fthzu8avuXaiBvn+DjrlZr6B80Qa/IqufDyn5OWmoDH46FPnz48+uijTR7a1q1bMQzjgD+vvvpqtO15553H9ddf3+Q+RERERA7FkX8rti7ULXkxEuqaYFOJyb8XB1hwVUK944vzwpz8QjVjuzp49iwPKYMmsKHNOKqqqpo8vOzsbL766qv9jt9+++3Mnz+f008/PXrszjvvZPjw4dx000307t27yX2JiIiINObID3ZLpzcr1AE8stDP4CwbQ9vbo8dMy+Ly2V5O6e5g9sXxgAmhTxk3dCIMuabJfbjdbkaMGFHvWE1NDV9//TVnn302bdq0iR7PyckhJyeHRx55hCeeeKLJfYmIiIg05si+FVueu+f2axP5QxYvrwhy6QBnveOfbg2zptjkNyNcew4Ga2Du76Eir6UjBmDWrFlUVlZyxRVX7PfelClTmD59Ol6vt1X6EhEREalzZAe7WVdHypQ0w8KdYcp8cFKX+pOS87eHAfCFYMSz1TjvriDjgUpufLsE73+vbPGQAV544QUyMjKYMGHCfu+NHj2aioqKBm/fioiIiLTEkRvscr+NlDRpwkKJvS3cGcYABmXWv8S8yshK2otn1HBaDzsf/jSe35/o4tlv/Vz66KeR+ngtGXZuLp988gmXXXYZDsf+d7oHDx6MzWZj4cKFLepHREREZF9H7jN2Cx5vvD7dQeRVWiS7wWU36h03a6ub/GSQi7+MiwNgbFcHYRNu/djPmjf+xjE3zWx2vy+99BKmaTJ16tQG33c6naSkpJCX1zq3fUVERETqHJkzdt4yWPd+0+vU7cUXsnA7jP2Ot/NEjo3vbq93/LQekYy79MuPIv0304svvsixxx7LoEGDDtjG4/HoGTsRERFpdUdmsNv5TWSbsBZoF29Q5tu/+HD/jMYv2WZ3wM7Fzerzm2++Yc2aNQ0umthbSUkJaWlpzepDRERE5ECOzGCXuwQCTV8Ju7e+aTYCYdhZUX/W74yeDtx2+N+m+s/uzd0YeT00Mwx5zXvO7oUXXsDhcHDppZcesE1+fj4+n48+ffo0qw8RERGRAzkyg922+WA1b9FEndG1q2G/zg3XO94u3sZto9z8e3GQP3zs46PNIe6d7+cvn/u5YrCTnm0s2DofgLFjx9K1a9dD6i8QCPDqq69yxhlnkJGRccB2ixYtioxv9OhmXJWIiIjIgR2Ziycqd7X4FF1TbQzvYOOd9SEmHVO/lt0dY1wkueGJbwI8uCBAdpLB705w8afR7nr9V1dXk5WVdUj9vffee+zevfugt2HfffddjjvuOHr27Nn0ixIRERFpxJEZ7MLBVjnNdUNd/Hquj3+dGUe8c89CCsMw+M1IN78Z6T5A/wGqq6tZtmwZ06dPP6S+zj//fCxr/2f69ubz+ZgxYwYPPvjgIV+DiIiIyKE6Mm/F2p0Hb3MIfjLISfskG09808Qix3YXCxYsoGfPnkyePLlVxgLw1FNPkZGRcdBZPREREZHmODKDXVJ2q5zGYTP4z7n1Z+sOtf/x48ezZs0abLbW+4rcbjfTpk1rsHCxiIiISEsdmQmjyyjYtqDZu07sbURHByM6NuEDNgd0HdXifhty7bXXHpbzioiIiMCROmPXYQg443+Yvp3x0H7ID9O3iIiISAscmcGu4zAIN/G5uNYSDkDHoT9M3yIiIiIt0OJgZxiG3TCMpYZhvNsaAwLAkwp9zgTje86dhg36nhXpX0REROQo0xrJ6dfAmlY4T30n/Aocca1+2kY54uCEG77fPkVERERaSYuCnWEYHYGJwLOtM5y9dBgSedbN9j2t77A5Iv21z/l++hMRERFpZS2dsXsE+D1gHqRd80x6Guyuw3Lq/TjccMEz309fIiIiIodBs4OdYRhnAYWWZX17kHbXGIax2DCMxUVFRU3rJKUDnPHA4V8h64yHCfdDcvvD24+IiIjIYdSSGbsTgXMMw9gKvAqcbBjGy/s2sizracuyhlqWNTQ9Pb3pveRcBkMuP3zhzhkPx10BQ35yeM4vIiIi8j1pdrCzLOs2y7I6WpbVFZgCfGJZVuunI8OACfcennBXF+pOv6d1zysiIiLyAzgy69jtqy7cnfEAuBJavqDC5oic54wHIuc1mrjlmIiIiMgRqFWCnWVZn1qWdVZrnOuADCNyu/SX30CnEZHZtqbWuTNskc91GgE3LNbtVxEREYkpR+ZesY1J6QA/ew9yl8BX/4K170ZWzgZrGt5b1uaIhLlwIFJ8eOQvI6VURERERGLM0Rfs6nQYApOfA28Z7FwMeUtg63yo3BUJcXYXJGVD11GR+nQdh2pHCREREYlpR2+wq+NJhV6nRn7G/P6HHo2IiIjID+boWDwhIiIiIgelYCciIiISIxTsRERERGKEgp2IiIhIjFCwExEREYkRCnYiIiIiMULBTkRERCRGKNiJiIiIxAgFOxEREZEYoWAnIiIiEiMU7ERERERihIKdiIiISIxQsBMRERGJEQp2IiIiIjFCwU5EREQkRijYiYiIiMQIBTsRERGRGKFgJyIiIhIjFOxEREREYoSCnYiIiEiMULATERERiREKdiIiIiIxQsFOREREJEYo2ImIiIjECAU7ERERkRihYCciIiISIxTsRERERGKEgp2IiIhIjFCwExEREYkRCnYiIiIiMULBTkRERCRGKNiJiIiIxAgFOxEREZEYoWAnIiIiEiMU7ERERERihIKdiIiISIxQsBMRERGJEQp2IiIiIjFCwU5EREQkRijYiYiIiMQIBTsRERGRGKFgJyIiIhIjFOxEREREYoSCnYiIiEiMULATERERiREKdiIiIiIxQsFOREREJEYo2ImIiIjECAU7ERERkRihYCciIiISIxTsRERERGKEgp2IiIhIjFCwExEREYkRCnYiIiIiMULBTkRERCRGKNiJiIiIxAgFOxEREZEYoWAnIiIiEiMU7ERERERihIKdiIiISIxQsBMRERGJEQp2IiIiIjFCwU5EREQkRijYiYiIiMQIBTsRERGRGKFgJyIiIhIjFOxEREREYoSCnYiIiEiMULATERERiREKdiIiIiIxQsFOREREJEY0O9gZhtHJMIx5hmGsNgxjlWEYv27NgYmIiIhI0zha8NkQ8H+WZS0xDCMJ+NYwjA8ty1rdSmMTERERkSZo9oydZVm7LMtaUvt7JbAG6NBaAxMRERGRpmmVZ+wMw+gK5ACLWuN8IiIiItJ0LQ52hmEkAjOBmyzLqmjg/WsMw1hsGMbioqKilnYnIiIiIgfQomBnGIaTSKibblnWrIbaWJb1tGVZQy3LGpqent6S7kRERESkES1ZFWsAzwFrLMv6R+sNSURERESaoyUzdicCPwVONgxjWe3Pma00LhERERFpomaXO7Esaz5gtOJYRERERKQFtPOEiIiISIxQsBMRERGJEQp2IiIiIjFCwU5EREQkRijYiYiIiMSIZq+KjQUVgQqWFy5nVfEqvin4hqKaIoJmEKfNSXp8OsMyh9E/rT+DMwaT7Er+oYcrIiIi0qgfZbBbVbyKaaumMW/HPJw2J76Qj5AVqtdmS8UWlhQsIc4RR9AMMq7TOKb2n0r/tP4/0KhFREREGvejCnb51fnc9sVtrCxeScAMYFom/rD/gO1DVoiqYBUAH2z7gE93fMqAtAHcc9I9ZCVkfU+jFhERETk0P4pn7CzLYvaG2Zzz5jksK1yGL+zDtMwmncO0THxhH8sKl3HOm+cwe8NsLMs6TCMWERERabqYD3aWZXHfN/fx96//jjfk3e+Wa2PyXs5j28Pboq8LZhew7IplfPOTb5jUexI2mw3DMDAMg7i4uGaNLxwO8/DDDzNgwAASEhLIzs7m/PPP57vvvqvX7qabbuLMM7Vjm4iIiBxYTN+KrQt1szbMwhfyNemz/kI/pfNK6X579+ixtmPakjQwKfra7XBzYtqJTLtpGuecc06zxvinP/2J++67j9tuu42TTz6Z4uJi/va3vzFu3DiWL19Ox44dAbjlllvo3r078+bNY9y4cc3qS0RERGJbTAe7Nze+ycwNM5sc6gB2/283cZ3j8HTzRI852zpxtnXWa/fxwo8JhUJcccUVzRrjtGnTuPjii/nrX/8aPTZo0CCOOeYY3nvvPX7xi18AkJ2dzdlnn80DDzygYCciIiINitlbsfnV+dzz9T3NCnVm0KTsqzJSRqQctG3h54U4U5wcO+rYZowSAoEAycn1S6mkpqZGxmHWfw5wypQp/O9//2PHjh3N6ktERERiW8wGu9u+uI1gONisz3o3eTFrTBJ6JzTaLrA7QPWaalJHpnL7V7c3q6/rr7+el19+mbfeeouKigo2b97M9ddfT8eOHbnooovqtT3ppJMwTZMPP/ywWX2JiIhIbIvJW7Eri1eysnhlkxZK7K1mUw0Y4O7kbrRd+VflYEHKiSmsLF7JquJVTa5z95e//AWXy8WkSZOiM3S9e/fm008/pV27dvXapqen07FjRxYuXMiVV17ZtIsSERGRmBeTM3YvrHqBgBlo9udDZSFscTZsjsa/nrIvy4jrEkdcpzgCZoAXVr/Q5L6efPJJ/va3v3H77bczb9483njjDZKSkjjttNPIy8vbr316enqDx0VERERibsauIlDBvB3zmlynbm9m0MRwGo22qdlcg3+Xn6xLI4WKTcvkk+2fUBGoOOTtx0pKSrj55pv53e9+x1133RU9fvLJJ9O1a1ceeOABHn744Xqf8Xg8eL3eJl6RiIhI6zG9IfzbKwjsqCSwpZxwRQArbGHYDezJLlzdUnB1SsLdORmbJ+aixhEt5r7t5YXLcdqcje4ocTD2RDtmTePBsGx+GYbdIHVEavSY0+bku6LvGNVh1CH1s379evx+P8OGDat3vG3btvTo0YM1a9bs95mSkhIGDRp0SOcXERFpTYGdlVR+not39W4Mu4EVDMM+fy5DRV78W8oxnHassIWnXzuSRnfA1TGp4ZNKq4q5YLeqeBXeUMtmtNzZbqyQRbAkuF95EwAzZFK+qJzEQYk4kvd8hb6Qj5XFKw852GVlRWb7vv7663p18EpKSti4cSNDhgyp1z4cDrN9+3YuvPDC5lyWiIgI5d4gS7aX8t2OchZt2U1BhY9g2MJpN8hMjuP4bu0Y1CmFIZ3bkOKJ/A0MlfspeXUtwZ1VWCETLGj0MXYTLH8YAO+KInxrduPsmETbKX1wpDT+/Lq0TMwFu28KviFshVt0jrrVsDWba0hpu3/Jk8pllYSrw6SemFrveMgKsTh/MQyGsWPHsnXrVrZu3XrAfrp27cpZZ53FAw88gM1mY8yYMezevZv7778fv9/PddddV6/9ypUrqampYfTo0S26PhEROTpVBCpYXricVcWr+KbgG4pqigiaQZw2J+nx6QzLHEb/tP4Mzhi832NB3+0s45nPN/PB6gJcdhveYJiQWX9rzE1F1Xy9pQSP004gbHJav0wuS0uh0/x8rJAFZjO20rTACpoEtlVQ8NBiUs7uQcLQTAyj8UeepHliLtgV1RS1+ByudBee7h4ql1WSMnT/YFf2ZRn2BDtJx+4/rVzoLQSguro6OiPXmNdee42HHnqI//73vzz00EMkJyczZMgQ5s+fz9ChQ+u1fffdd8nKymLs2LHNuzARETkqrSpexbRV05i3Yx5OmxNfyLdf5YctFVtYUrCEOEccQTPIuE7jmNp/Km2d3bnp1WV8t7McfyiMaYE/dODHjUKmRaU/cu73vtvFh+yiL3buwENGS9ZcmhZWwKL87U0E86tJPav7IYc7X3UVu9avJX/TBnasXkF1aQnhUAi7w0FCm7Z06jeQrB69yO7dl7iExOaPMQYY3+dG9kOHDrUWL158WPs4Y+YZ7Kza2eLzlH5Ryq5XdtH3kb7Y3If+H3LHxI7MmDCD1NRUpk+fvl8tupbo168fF1xwAXfffXernVNERI5c+dX53PbFbawsXknADDRpYaCBDbN8ODX5Z2HgINz8NYXYASdwM3GciRODxgPZHR89yraSHTw35grCpdsIF6/noU1LWFldwaqaKsrDIe496Ryu+dOvST5+KPbaQv27du3iscce48MPP2Tjxo3YbTY6prVldJf29O6QRTDgxwrvf1fOsNtxutyEQyF6DhvB0LPOJ6tHLyByt+uf//wnixcvZsWKFQSDQRrKPlOnTuWFFw5Y3WKdZVl9AQzDyAG+BPpalrX9EL/C703MBbtzZp/DlootLT6PFbbYePtG2oxuQ9oZaYf8uW4p3fhVwq+48cYbWbVqFTZb61SUeeutt7jyyivZtGlTdGcKERGJTZZl8ebGN7nn63sIhoNNrstqWeAvOItg2TCwmvZMW8lHTxEqyydj8p3RY6WfvUAgfyOB/A2Yvir+fPnpXDzwbDxlPbCH9hTz/81797Bo+7dsryjEbRh0dbm5ICWVS1JTOH7DBvrGuenkdPJWRQV/y2rPOe0yMKwwcaPG0v6Ga/h421ZuvPFGLr34Yqydm1mxahWfr91EudeHAaTGe/jjWSfvN+Yn5n3F5qKSBq9nwIABlJWVMXToUNasWcO6deuorKwkMbH+zN6mTZsoKqp/12/kyJGbge7AA5Zl/b7uuGEYbwFllmU1bz/RwyjmbsWmx6e3SrAz7AYdruqAd1vTFmJkeDIYP358gytaW8Lr9fLyyy8r1ImIxDjLsrjvm/uatde5M+ykja8tlcWn4a3pQ1P/zAdLd1G5dA5ZP3mg3vHKJe/iyuiGp+dwqld+wsemweiBT2LZQiQW5tB22xm4ClKp3rWcjGA1htPJ7ZlZzK+u4p7CfLYH/Hzdqxc2w2BbIMBbFRWAib32+nyffcTmLz+jQ+/evPHAPXz51huEw0H8gQB2m4HbYW/08b5JQwbgD9UPv9tLynlr6SrOGTeGvz76TwzD4I9//CN///vfeeCBB+qVGQPo0aMHPXr02PfUcbX/3Hcq7yngLcMwbrMs64gqLhtzBYqHZQ7DYbROXo3vGU+7U9odvGEth+FgaNbQgzdshilTpnDGGWcclnOLiMiRoS7Uzdowq0mhLtWfyrDCYTiecrDm4V3srulLuDbUlX72AgWv/Ykdj17CtvvOomrFR/t9PlRVQuln08h/+bdgmRS+cScFr/4B346VAHS66TWyLruflBOmALC+tAefFQ7CsgepzPiGotA9VH1yK39vl8x6v5cpqW3IcDioMS2SbDZeLitlwPp1DY59lc/HtTu2c/K61Rz/1kzGXXY5T374OZsLijm1Xy/+MPFk+mZnYFkWZTVe/MH9Zy8XbtrOR6s30qVdm+jP15sjd0kffuppbDYb//nPf6LP9D3++OP4fJHvd+zYsRiGsd/PI488AtAO+NayrFX7dPkBUAFM3XcshmEMMAzjKcMwvjUMI2AYRoOR1DCMaYZhWAf4WbtXuxzDMGoMw+jc4Be4j5ibseuf1p84RxxVwarvve84RxwD0gZ87/2KiEhseHPjm02aqfOEPAwrGkYbfxvKdpfx7eIlZP/kPsLYo232zLYNo3rlJw2eJ5C/kerVn2P6vSQOOh1Pr+FULXmPglduI/2CPxHfc3i99iHLyX/XXsCAtmvo8m418V9aGEFY7q2hwjQ5Lt7DKp+PL6qrSLbbqTZN9n0y7oHCQj6orOTyNm3p5HLi97jxVlVRFQiwNr+ItflFnHpMT07t14ttu0uJdzmp8gd45vOvCZkmxVXV2G02Et0uCioif/PDpondZiMQCrOrvJJ4l5NjsjP4dlsua7/8DGdWRwDKysqYNWsWl156KdXV1aSkRBZKlpeXR8fXvXt3ADe1s3WGYXQF9r0l+DfDMP5W+3vdc3jnA1cDFrAUOO4A//ruBv69z7GuwH+Bt+sOWJa11DCMD2vbH/TWb8zN2A3OGEzQDP4gfQfNIIPSVTxYRESaLr86n3u+vuegoS4h7GFoZT+u23kJj236A9eWn8Wl3pMo+XI7PTJ68PPsgYzAQd0TZPvOtjUkrmM/2p35awgHSBx8GvE9hpF+wZ9wtG1PxaKZDX4mFLZT9FxP4r+0YQtEZsKW1+6M1N3lZmxCArdmZFASCpPj8UQ/tysY+RtdYZr8Mi2NkQkJTO3bi+/Ky6kKBEhwuaJtt+4u5YNV6ymv8ZGZkoTDbmPb7lL6Zqdz+cghXHjcAIoqq/cb28rcfAAuHj6Y8f0iiyh2rFlJ4dbNABxzzDHMnTsXgMrKSqqqqggEArRp0yZ6jvfeew8i4ey/+5z+BeDnwLtAELij9nhdGPsb8A6QS2TNSYMsy9pkWdbCvX+AXnv1sbengEsNw2h/oPPVibkZu2RXMuM6jeODbR+0aFuxprIZNk7ufPIhbycmIiI/Po2V7dhuFdA3KY7CZIuiNn4Czvp38Hp5OzOp5FRGVg7CxMJlObHXzs/4QwHeXzWPX584lSuIw4+FE4MvCPFfw8+6fbeH2IctLpHArg2AgSujKwCGzY4rozuB/A3RduVfvgpA9apPiV/2HiNS43g0v5hVPi/f1tRQt+fT0A3rI+cAft62HV7TZLHXy4Vbt7LaHwmuJvDT7dvp7HYxIK47d513GjbDoKSqhnvnfApAlS/AvLWbOLVfL3ZXVRPndBAIhclISiTJE8dri5Zh7rUI9NYZc0iN95CelECi20XfrHRKqyNhc9fuUj5dEMloq1atYtWqVbz00kvY7XZGjBjBP//5T4YP3zMz+dprrwGUW5ZVvM/XNd+yrOcMw0gAzgLia4+/AGBZlmkYxlNEgl6HRr/4/V3OwW/9/r2xE8RcsAOY2n8qn+74FF+4aQ+dtoTL5uKK/kfc4hgREWll5cEQiytqWFZRw1dlVeQHggRNC6fNIMvlZGRqIscmxzM0OZ4UZ+TPbP6mDSx+dzYbv1mI3eFosGxHIjAgP4mwPQGbabA9s4ZV3SoxEuL5Xe5Uevu64LQc2Pe6zVpnSd5qyv1VDO84CCcGztpyJONwcCIO1hDmjxjkARXfvEXiwFOjn61b8Rp5ns6ievVnJA48FSscxJ+7Nhr0Cmf/He/6BQD4ti0Dp4sZoVReLinhGE8cdU++2YEwcGWbNtgNG/8p2U1nZ2QWbkxCQjTYJRgG1ZbFjmCIDcvX8P6q9fzlvNMo9+75211QUcnwbp04fUBvXlm4FLthw2W388qiZfTMaMvOsor9vouwabKhsJiTenXDfoDKFA6HA8uymD9/Pr/85S9ZunQpY8eOJbTXAoza27K7GzxBRN3qyinsH8Y+AMqBZA7x7qhhGCcCPYEb933PsqyQYRhfARP4MQa7/mn9GZA2gGWFy5q8RLw5HIaDAWkD6N+u/2HvS0REfhjLKmr4945C5hSX4zIMvGGTff/CbKzxs7CsCo/dRsCyODUpjr6fvInru68JB4JYlkk4GDhgH3bLwB6KBLeuuxIYU308Q9uehs2w4WjkT/bSvFUYGByTUX9Vpx0DDzAQO7+rqOQKIL7XiHpt6p7BcySnEyrds8CzbP4rhCuLST77/wAIFm3FltgWs6qEZIeLsYmJ3FNYyKWpqfwxM4stfj8Tt26hbv6sh9vN+SmpOA14cnckHx2fkMATJZHf+7rjWO7zYrfbiLMZ+IIhbpkxp97Y3A4HFwwdGH1d5fMTMiOzjxsLS2gT76GsxotBZAbQ7XBQEwhiWTC0a+R5up2lZQB8um5z9DyeuDiqqqsZMWIEEydO5Nprr6V3797cfvvtzJ8/f+8hVEBkQQRwW+2xZwzDeAaoS6BdgX/UtuvK/s/hUbuAoo1lWWW1rxuqhXc5kVu7+976rbMU+J1hGDbLOvAtyZh7xq7OPSfdg9N+wFvbrcpld3HvSfd+L32JiMj3K88X4PylGzh/6QbeLizDb1pUNhDq6oSAyrCJ37R4v7SaRweN4+XTLqMivmk7IgxpeyrD25yGy3A1GuoACqqKSXIn4DrA3z0nBm+tiDxTNiWpI92CNty10aDuGby4LoOj7atXf0rFwhmknDCFuE4DsEJBzJpyEvqNA2BkvIfbMjI4IymJ2eWRWTNb7YrTfRPHgDhPNOzVPYMHcFZyEsdlphPndJLkjszo3XjqiYzu3TXaZmDHrOh5Q6ZF0DSJc+75LtrEe7DbbNE+0xLjCZkm2SlJtE9NJmyazF2551ZynVAwgNsdqe/3l7/8hauvvpoxY8Zw0kkn7du07qG744CxwFagbnnv1xC9tH2L9N4D/Gev908AKuvetCxrKVC3IALDMOKAi4B3G7j1W6eIyGKOtgd4H4jhYJeVkMVtw28jzhF38MYtEOeI49bht5KZkHlY+xERke+XZVn8N283oxat5ZvyarymdZAn1Ro4h81GyOkiN6szz035NSv6DOFA5dj8DpOd6V6WdS+jzTEj6JI6EIfNdYDW+3w2FIiGujs+epSpM26p9/7f5j3JW6sjZU6e+t8DDFvxGddXxHFWtZOscGSG0JEa2QbTu3UZxe88hOF0U77oDXb+6woKZ92N6a/G5or8Te1WG65S7XYcjWxCscHv55G9iv7+o7goeiN5pT/AdyWlWJZFUVUNAI999CWfr98abf/N1p389d1P2La7lG27S7EB/tCeW9ibi0sImSapnsi43LXjyk6JbPn56drNmA18415/AJ/Px4QJE9i+fc/mEQ1sKlAX7F6yLKuDZVndgBm1x1KI5PgQ8Mt9PrcZWAbRLTo2WNZ+G9nvvSDiHCCV/RdN1Bt27T89jbSJzVuxdc7reR7rStcxa8MsvKGmFRo+FB6Hhwt6XcD5vc5v9XOLiEjrM70h/NsrCOyoJLClnHBFACtsYdgN7MkuXN1ScHVKwtUpiT/nFvBy3m68zdn4ft9+7Q5Mu4OPRp1FUbssxi14P/oXvzjFz8puFezIrCFv+i4S8+O545wRxNXuGHHvZ0/zXf5aVuSvp8xXwUNn3sZFA+vXNXXanZR4yznluStYX7yFZHcCU169iZtOnMqITscybckswnvdvctwGHRz2bAFoGfQzi67yWuZvSgDalZ/iuGKJ/n4SQTy1hMo3opvyxIAwrmR4vuFwRD3FxYwo6ycX7SL1HudWVZWb0z3FxaS5nCwKRAgyWajsvYWal26mVkeae8NhmiXGE8gGGZ49458vGZTvfOU1Xj558eRZ/viXU4CoXC9BRMGkBIfR5nXR1lN5O5oXTmUj9Zs4MyBfXlr2eoG/7189tlnjBw5kqVLl5KRkdFQEw9EFkQ08N6g2u6/BYY18P7ewaOhMLb3gogTgWLg/QYHGlE3U3egGT0gxoOdYRjcMizyfy3NqeDdmDhHHBf0uoDfD/v9wRuLiEir8nq97Ny5k9zcXLZt20ZlZSXhcBi73U5SUhJdunShQ4cOdOzYEY/HQ2BnJZWf5+JdvRvDbmAFw/vdMwwVefFvKQennQe7O3irowtvM+5rVfzzPsK7cmnz98eixyqf/SehdasJblhDbkU5Oy/5CRc4i/h8cDHFKQFMm4Wv2E/RvN24kh0M+ce5mJZFl9T2bCrZzqCsvpzacyQzVv6vwT4dNjumZeK02enephN3nHIDLy6ZzYWv3MiJXYaQ4PTgC/mj7W2GwSCPnaKghc+CDmEbY4q9vFj7vmWGqfjqdSzTxJXdi3BlCZghqmoD3qyKPfXerktL47OqKv5TGtnSy0nkQTGvFbl1el92Npt8fp4u3bPll0HkHuWQzu1Jjfcwb+0m3A4HZwzsS2ZSEq98vazB66wJ7F/OzAK27S4DYHd1ZOYvr6ySmd+uZFDH7HqB9r7JZ7C9pIx/ffIVI4ccy+PPPMfw4cN57LHH+Otf/1r/O3U4CIVCjeUkH1BN5BbpvvfZ76H+LdNMYEe9ce9ZEHE2kWD4L8uyGqvX1g3YYVlWozNVMR3sYE+469OmD/d+fS+BcKBFCyochgOX3cWtw2/VTJ2IyPcsNzeXBQsWsG7dOux2O8FgENOsn9CKi4vZtm0bTqeTcChMV2cmA6o7kBZKAgsa/RNgwtvtDN5s78TXjFAXyt2B950ZtP3ntHrHvbNfxdGzD+4RJ+H74F3y2gWZOSQfizBWbT+7/7ebRHc81wyfQvfUThgGfLbla9YWbWZQVm+mHnfBAYPdhQPP4NnFb7CldCe/PennnNJjJGO6DWPI4+fx9Y7vaONJxsDAqr0t+fD85/E44xjZYwxfVod57bOHWbD2vej5PD2G427fm1DZLhwpWVhBP8HCzcS7PNQE6ueKfuvWEm8YnJWczFsVFVzfrh2P7t7NmIQEzkyOlADbGqyfVyygU1IC447pyUsLlmAY4AuF+O3r79E3Kz3aLinOzYk9u/D1lh387vQx5JaV8/gnX0Xfdzsc+EMhUuPjKKvx0alNCjtKyymprqbC52PiwD68t2LPjheLt+5kybZc7DYDAn7y8/OJi4tj9uzZjBs3jrVroxs+MGzYML766qvofwWGYfwZuBN4sq574FVgMvBm7TE/8BxQCowh8myeDfjCMIxbgS8ty9r7ebylwK1EFhM3dhsW4Hjg84O0if1gB5Fwd36v8xnZfiS3fXEbK4tXEjADTapzZzNsuGwuBqQN4N6T7tUzdSIi36Py8nJmzZpFXl4eoVAIy7LqlabYl2ma+P2RGapNoVy22naR5khmXLA/CRz42eu8BC/392uHz97Ig2ONKLvz/zDccTj77KmSUPnsP3EcM5DQxrUEVywFwOVbiGlL2jPeoEn5F+X0TOnM04teJbeigMkDJvDwxD9QULWb11a8T7lv/x2V9r5NC1AT9DG8Y6RQflFVCcmuRMq8lRRWl9T73M6KAq5/6042/PZjPv72hXqhDsC77gu8676IvnZmRlbb7h3qRsXHs9Lno8w0qbEsLkhJ5a2KCuy1ix0sy+LmvANvo9qtbSo7S8up9PnZ684q6wv23Gl0Oex8sHI9J/Tsyqq8AqYvWlbvHB3bJFNUWR3dZiwtMZ7csnJMC+yGjdlL69+CfWPxiujvX61cw8SJE3G73axfv57TTz8da6+BVFZWApiGYQytDWMTidxJ7lvbxAacQWTu92+117zLMIy/sv/K2DjgESLhbepex4uIZLE1lmUtOdB3ZRhGJ2Aw8KcDtakTs4snGpKVkMV/JvyHaROmcXrX03Hb3SQ6Ew+4t6zDcJDoTMRtd3N619OZNmEa/5nwH4U6EZHviWVZLFmyhMcff5wdO3YQDAbr/fE9pHMYEDJMCmzlvOFeyDp7XnTmqo4veQt5A59g0pKHyL/91/Xeq3z2n5T+7joKzxtLwck5eOe+TUOqpj9LePMGLNOk4OQcyu+LbEjgnf0qBAO4j9+z4tLYZ9rQu8lLOBDGHwpwUtehJLkS8AZ9/OnDR/hq21KqA15mrtp/tm7akpnsrimjjWdPcfyrZv6BX73zF77cvoQdFbtoG59Cp5Tsep9LciUAkRAw9dizOL736diMPfXxEuNSwbDhyu6NPTmd0O7IXcR42542K3w+uuy1S8SWQKSMy8PFkWBmYrCidx+e7NARB9DJ6Yz2aQN2VlZzXJcO3H3+aaQnJUTPs/fzc7urajCB+Ru38vLCpfv9u99UVEKFz493r/1j65r075CBQeS284AOkYUhZw7swwk9OpMU5+aYTu3597//TTAYJBQKEQ6H683+rly5sm64N9QeagOUACNrX4eAecDxlmVFpwUty9oKdCYyMWkRudU6B1hvWdZU6qtLyqfTuEuB7bXnadSPYsZuX/3T+nP/6PupCFTwXdF3rCxeyeL8xRR6CwmGgzjtTjI8GQzNGsqAtAEMSh+kHSVERL5nlmUxd+5clixZQjDYtK0i58yZQ2lpKZdeemn02EeffEReXh5/37ULr9fLQ2feyvlDR7Br4FP4Urbw1a40ct9dSMKlV1J25/8RXLcaszAf7Hac/QZFb6MeSM2MVwBw5QwjuPzb6PG2z8+g5rUXCC3fMwMWqqwf7EIbghgY9Gjbmc+3fENloJq567+oDaAWSa4EKgORrbNyy/Pp9dB4Pr36ZVbfNIe/zXuSBdv3TPaM6HIsK/PXM2fd51gWPHXe3byxYg6vrdgVbTO802A+3rQAm2EwuG0mZVUFJMe3oaw6EsqqfGUAJGT0wD3oVPJfitSyS7DbqTHDpBg2xiQm0s7uYLkv8vz6Xwsi23j1crlYHwjwSXUV1+7cwXKfjzOTkplbGSmLkmSzUW6abC+r4JM1G9lZWk5hZXX0ubsOqcnkllWQHOemwufn2rEjWLurkE/XbcZmwFmDj+HtZZFFHH0y0+mTnc77360lZJrkllXuqT+yNReI/HdUt8XY+yvW0altCpZlUe3z88c//pEOHTqwZMkS0tLSAMjJyaFfv351/w3tsixrqmEY8UA20I/IPrB/tCyrsZpqlwJlRBZHzAGuhwYXRB90QURtKZRfA7c2sLJ2Pz/KYFcn2ZXMqA6jGNVhVGSCU0REvlfl3iBLtpfy3Y5yFm3ZTUGFj2DYwmE3cAarSajZRVsrnnRbFW7joH/TACgpKWHx4sVcddVV9Y5//fXXZGVl0bt3b5YvX87WNovZcuJbWLYQ2MI8P8uGs3tvgquWY5aV4ho6Av9nH+E+cSwpt95NKHf7AYOdFQhgeSPBK/XOByi+7Kzoe+auXPyf/g8b++9pmj8jH+8WL751XiwsKv3VTOwzlmcWv054r7/hNcE9i//+8eV/yE7K4MEvnuXhiX/k+hGX8ZOccxn99KV4nHEM6zCQnOx+/PnjxxjecTDHdxrM4p0r6/W7u7oUgEkv38Cqwg0EwsF6M3YJccn4AjWULp8Dy/dMEhXVFlcut0zerogEtbpAVhe91wf2FGD+siaymKFPnJu3a6u4ldfOioVMk7krI7eQ0xMTKK2pIWRa7K6OfE+JbhcW0DOjHd9u3Umcw8GQLh34esvO6PnXFRSxrmBPOZXCyvq3qw0DLj0+h3X5RSzeupO2CR4KKqoIhMIEysq5YurPuOuuu6KhbseOHSxfvpxLLrmEV155BSIzdFiWVQMkRM7Z+G36vYKYQWQf2Q7AKPY8h7e3Q1kQ0RV4FHip0Y5r/aiDnYiI/DC+21nGM59v5oPVBbjsNrzBMKEGyooYZOIgHRMbnWylDHDkk2arafTcCxcuJCsri/bt6++Xfuutt2IYBiUlu1m+fDmu7BVYjsgtwLJAHFs+XkrCT68h/oJLMWrrmRV9vSCSDvZSM2M6ngnnRF9XPvtPAosXQm2g8X1c/26Zc9AQOv95BFtvnhs9VvB6Af5cPxXfVhDXOY7U1BR2F5dy8aCJTOh9ErNWfUC/zF4MzOzFE4teqRfy4uwuerTtxOxVH2IzbGzcvZ2VBZEivIFQgPbJGfxi9p9w2110axPZqrRtfEq9MS3Lj8x4Jccl4nHEEQgHMffqo9oXCW19Ow1j7Y5v2BPf9jCA/nFxrKydsZuYlExBKEhbu4NvvTXcmZnFjXm5JNpsdHe5aWOzU2qGSbbZqDBNhrZJZnFppJ+iqj2h1xeMjKOkuoZT+vUCoMLnJ2SZLN66k4Eds8gvj9b6pW92BsO6dmRwp2y2FJfwr0++YkT3zizeupO/XzABm2FQWBEJfLecMRa7zYZhtzPygin8b8U62rdvz5YtW+jatSuvvPIKnTt3ZvPmzYwaNYr58+f7AGpn7M6s67L22OTa11vrFkQYhvEQ0I5ICZQ8IvvIfsFez+Ht46ALIizLWgusbazN3n5Uz9iJiMgPa1e5l4uf+oqLn1rIeyt24Q+ZVPpDDYY6AAsbQRyEsbHNbMOcQF/m+PtQfYC7YKFQiBUrVjBgwID93ovMtFh06hR5gN5m7Hmeav6yNlhVlbgG5URD3b7CBZFbme4Tx9Y77p39KmZF2QGv2RncSsW732I49wREo7aq7zFPHEP3P3RnWNc922YluxNx2p1kJrbjtrHX4tmn0L7L4SYzMY04Rxzvrv2UlLhEBmf1iYzRMrl29h2c2GUI/nCAnu26ALAkb9895SOmTb6XP467Lvo63r1nQcdtk5/mmI7H1b6K/Ptpl9iGUxL3VPZ4vUtXUmu/r7EJCSz2evnGW8PUNnsqffgti9/vyqNPXKQu3zHuyPV0crp55IIJPHjRRB68aCKnHNMz+hmP00HQNDmhR2T8lmURCpskxrn4dltuvWtYu6uQl76K3Ipesi2XbmltyExOJGSaeBsojwLgdLnJ6tGb6upq3G43qamp+Hw+Hn30UX7zm9/8f3t3Hh9Vdf9//HXunSWZJJOE7CRkAQIYCIsCsokIoogWWxW3iiL9tahd1LbaKm21i92Q1lZbarUurX5d6oYLWhFxw4UdEiIQQggJJGTPJJnJrOf3x00CQwJkjyTn+XjwgNy5uffkApl3zvI5/Pvf/+aBB4JyWDzw3+ZfVzYfa/n4e8edtxsYi9FDtwy4H2PrsKB5eBC0IOL5dhvZRSrYKYqiKL1OSsmLm4uZt+pDthbV4PL66WzdX4mGH51yGc6r7mzyfTGcuI6ipKSEpqYm0tLS2r1GfEIBsXEH2xzP3QUIgWn4qJPev+l/bwCgJyUHHY9742OsM84HU/thM6T6TWo/rWLI/GNhpyXkCc34fXhkKgC1LkdzxQZJk8/NQxufarcGqxCCc4eNZ1xCJv9evJILhh/b/3VUXDqN3iZibFFcO+EyalwOXmvedeJEa/d+GPTx+WO/DoBJM1PbWMmhCmOoVOjGIons2d/EbjICmgQOez2Mad6aa3uTi3SzmcZAgGujo/m4eUjVKyVzw8OxNy+80ARYgNfLK2g8ycrmczOGYdb11mFPW/MijZtnTubBqy9laJSds1OHctMMI3h+b+50HK4mthwsYUH2aMy6cS+v3+j9u3jcKB68+lL05hDq9/lIyhzNxo0bWbZsGVFRURw8eJDbb7+dKVOmsGrVKmbPnt3aHinlQSmlOMmvpced94SUcoqUMlpKaZZSJkoprz8x1DXr8IKIzlBDsYqiKEqvklLyqzfzeH5TMS5vx+bJnfJ6aPiAL3xpVEsbU03FraOlJSXG/KuEhLbVCyyWRkaO3ExZWXCpK5MvQGFdCMIWhjC3H86kx4N74wftviY0zRiGNZnA5yVQf6x4rwg04s/5mIAzQNjwMKqoavca2UnGkOOhulIe2LCasoZK3tyzgQ2Wz4mxRVPprGk91xfwUlJXRnRoJBuLthGQAaqctYBRmqvKWUt5QwE/n/tdDlQd4h+bnjtpea/vvv5LfnPhHa0fu5tDpAQee/c+/AHj70s2//7BO/8gqTmMCiBC0wlvDmwv1daSFRKCw+/n0apKXq6rJc1spsjrZU3zfDyAz5zHhtI9RyqwpiUbae8400emkVdazqf7DzJnzAgSI8Nby/vWOl2U1jpYMG4U/uafDoQQ1DhdfG1CFiPiYiiqNJ5HmKXtlmxCaGROnUZAaOzcuZPnnnsOgDFjxjBmjFHJZPr06W0+ryd1dkFEZ6hgpyiKovSa7oa66vcexVdbRvxV97Ueq/nwaTxl+/GU7aegqZ7Dl93MFecYPV719fVYrVZ0XWfHjh3s27ePI0eOUFdXx5w5cUyZ2rbCQaTDR0NAR7QTAlp4v9yFdBo9UI3PPIbjL78DdxOx//cWeuJQhD0SmhcW+EuNocJAQz11993B0c0HADj85LEhROmXuMvc5P6/XIbfO5whkcaWpK/nvcf3p9+I3RrGUHsCLk8TRXXBteCc3iY+L97R+nGty8ERx1HjnjJAab2xmOD+9Q934AnDc7uMBSEZCVl8mPsqALqmMy5tGtsKPmhpsPF7wEdpc0ZMMpmw6zr5HqNe4A3RQ3iprhZHIMA79fX8JD6exkCAv1ZW8lp6OqOsIZR6vVx4oIBvD4nhn9VVJNc20pgm8RMc7OwhIVwzdQIlNUZIHpucyDu5+9hbVkFAQpQtlDGJ8byyLReTrpFoj8BqNpEWYzzH6kYnUbYQzCadE+kWM5MvuwKbzUZjY9sFLX0knU4siOgMNRSrKIqi9Jr/binpcqjz1pRSv/1tImdeH3S8ftubSJ+b0JHG9pxlgQjyfcZ+pT6fD5PJ6LPIycmhurqa4cOHExJiwWxuQtPajv9G1HvR7JEEGurbvNbalrxjhW1FSCiW7ElBr5tS06F52M+3fy/S68Xz+ScIt4Ows8JAgL/h2DOQHomrwAU+KHuhjFrd6NGqczfwz83P43A3UlhdQnx4DPFhx4ZwP73lBRLD40i2JxBusQHQ5HOT3TzHDiDWFs2KObdS/JOPePG6v5z0awJ47po/c3GmUV9vfPpMWrZE9fiaKCjN5fxx3+CR5eu567vvknD97wkdPhl7fLrxdUrJdw+XUNRciubH8fH8NsmolzfNZuN35eWMa55P90lzgHrL4SDJZKLa78MqBGcFIL+gmF2HDreuaLVZzOSVlqMJwcyRxr2SIiOYnJ7CO7l7Wf/lfiYMS+Lt3L18UXiIC0aPwGoO7qc6VF3L8NghnEjTdRJHZJIwfGSb1/qSlHKPlPIPsrNFGTtABTtFURSlV5TWubj/jd1dHn6t37IGS3wG1uZhyhbD7niBxG/+kcgZ1wIQQOMLXxqN0ozNZqOpeZXmDTfcwC233MKiRYuw2U5eoiK6zkd48lDwevFXHG33HH9VBYQaQcp21Q1Yz78w6HXL+HNa/+zd9yWyvg4tJpaUH00EIdFCNJJuOFYkWLNp2EbbGPnASJx7nXxQswmACIuNGWlnExVi5+zksXxr8mIyY9KD7uX0NnHYcbR1YcQXxbt4e58xV25sfCbLzrmKgmpj3LLaWcePZi1Da+4RS7YnBPWNTUudQHy4UepjzRePBQ3Z1jkrW3vwwgMCPXwIUkocFYcAKPf7KXS7yW4Ob/+rd5DrMp59YyCARQjGh4bydXskj1RW8mhlJf+qriLTauWVujq+NWQITTLA37fn8u/Pd5BTYtSac3q8/OezbWzcXxT0dV91TjaT04chgI/2HSCnpIxFE7K4eFzwvMiWodqJqcGrogF0s5mF3/9xm+MDiRqKbYff4cC1YweunFycmzfhO1qO9PkQJhOmhHhsU6YSmj2O0IkT0e2qcLGiKEp77nh+Bx5fx7duPJ70eWncvYHImde1eU2Itn0SfgQfeYYzNDYWv9+Pw+HA3vz9Wdc9aJofIdrvHLG6A4wYlUQ+4P0yFz0ueH5eoLoSKsqP1WvbmweB4En/euJQ9JQ0/CVFoOvgcSPskTR8tgfXfhcBV4DSZ44VCA44Azj3OglJDsGaYuWz3cZWY3XuBl7Z/S4Anx3azmeHtjd/zQIpJRsOfIHbZwx9JkXEkldu5gdv/rr1urvL89ldbpQ+uW78pdyy5hdB7TzsCA6udU0NePzG1zI6+WwKynKQUuIP+Lhj0Z8ZmWRsT6YD5uihJCz4FkWrb2PYUDPFR7zNe8AaPXbHbx9W6PFwRWQkdl3n/sREEkwmnq2toT4Q4KDHw0/i41nSvHI2b/QYiqMj2Bgdxq/f/oCbZ00ma2jbOZImXeOqydlcNTm7zWvH21Z0pHWoNujzrVbmLl1OxJDYU37+mU4Fu+O4cnKpfvJJ6tevR5jNBJqa4IQVO57CQpxbtqKFhCC9XiLmzWPIzTcTmt12ab2iKMpgtbO4ll0ldSctY3I67iN7CLgbsaaMPf3JGAsqKmUYo4cZQ5KHDx9uDXZ2uzHnrLrGz0cfNlBdY/Qg7tvnJjRUULbfzYXzSlg/Zizuzz7ClJqOr8iYFyc9brx5OcjGY4VvXWteaP1z5fWXEv2nx7BMnIwWl2AEO5exOMC/fy9H/nqsjbYxNqzxVmo+MhZChGSE0LinkbDRYRzeavRWzUo7h+smXEZcWAwVjVV89/VfGu1oHrFb8e6fADBrJg7VlnHp6Dnoms5Lucdq5LW4/JlbmTZsYtB8vBNNfHgRl425AIDrz/8RT61/AKsplD2HtxIecqz2nR+JVW9i6NHVHDaD0+NnQloIz9rT0DzH+gAfq6ri4coKDno8PJycAoBFCG6Pi+P2uLiTtiOlpp6C8vJ2A1lneP1+PskvZOH4MWjHLcgwWa2Mn3cx4y6Y3+VrnylUsAO8ZWUcvutumnJzkG4PBALI5s2j2+XzEWgw/pM73nmH+g3vEzoum6Er/4g5MbGPWq0oivLV9fjHB3D7ur7Yz31kLyCwNM/n6ogAguLwLJKTk9m3bx9nnXUWAOERlYCkYL+bX/3qWIH/NWscrFljzG1779y9RF+2iIrVD6PFxOL8vyfavUfkL/5AyJyLcL71CvWrjJ4yrbnnKeL2n1K99Aq0pBQCpSWICDtD5sUQmuil5B8lOPc4ce45tiK0qbCJI88ewTbShrfW6PXKryriJ++spMnnJiE8lgtHzuC2c79JuMXGjf+9ixlpZ/Pq7nVkDBnG7vJ8zs+YynemXsPUlPHc/c4fWTHnVh74YDUvXvcXpqca8wBbev0ANhZtY/UXzxIVEolJ07l6/EL2VBmLOnYVbqS4Ip/xGbMwaWZiIpJ4b+eLlNcWk5g2muvnvMHfPzlIeJhGXW2An62Ixrk3gG2j1hrudjW5GB8ayjOp7ZebORlPIMC7RYf55qgMzLLtYoqOqml0MSszg3PSjpWkaQl1c278dpeueaYZ1MFOSkntK69w9DcPIL3eNr1zHRIIIF1NOLdvp+CShST8bAVRV1xx2i1HFEVRBqo6l5d38452uk7d8fwNVQirDaGfajvOYBKNQ4FoJpwzlfX/W8vChQsxm81ERhrDj1Om2Lj7J217gybtqkOv2431wvvQXnweLSKShPe3B53jLztC5fWXgha8ytI84RwCtdU0HSwgUG2UMpFuIzyaz8om5ppkLO48qt6twt/kx3PEgwgVCAShaaH4HD5qNhwrZXK04diWoX++9N7WcPanT56grKGydZh2X2UhAH//4lmsJgsVjdUA7CozyqWV1B0bcm25BsCv3n+E70+/kY1F2/i8eAcPbXyq9bWXP/s7AHtLtpIaPxqzyUJCZAq7Cj8mp/h9XlvXhMkkmDgxhBtvimbMmBAc2UZ4t23U8DRJPnc6uSP25D1zJ3PY62VJdDTL/BqHD1eSlxxLQAPZzrD7qcTbw5lrNwooa7qObjYzd+nyQdFT12LQBjspJUd/+ztqX3oJ6TrVFm0d5PMhfT6O/uYB3Hv2knDvPSrcKYoyKG07VINF13B3cX4dGHPsOhPqWmgESBg3nYhPP2bz5s3MmDEDq/XU3+NrIk1k1DZwSe3nvPzjX+Ap2NfmHD1xKKYx43B/9hEhs+e1Hg/9+rU0PPUPvDu3Hmt7c8DzbNqI1/oLzO49DLlgCIefat6U3iWRSBr3BJfayLgng0dCVrD5k13cv+6vxNqiW1/74axl/HDWMsBYBTvz0Wu55/zl3PnWb/nzxidbz3tjz/sAvJizlsXZC4KuX95QxUUjZ7F86rVsLNrG5ORsHrvmYTY2HutZ9fjc3PvvqzhnhDE8m50+gwkjJzJ0+j8JT2pn9woBjqv8eJMlnz7WiESyqAtzz4dbrQy3WkEESK2vIyu0lI2mNMpcEfilQHZiracQGrrFTOKITBZ+/8cDfk7diQZlsOtuqHvg6FFKvB5WpwxrPXbE6+Xhygq+cDqp2bmD5D//ietuuYV77rmHsLCwLrVz9erV/OUvf6GwsJCEhARuuukmfvGLX2A+roDmHXfcwb59+1i7dm2X7qEoitLTdhXX4fR2YQTkOFpoBAF3w+lPPIEPjWrsXH755ZSWGosVhDh1wKyPMOPXm7i1+AXenfgXXOMmtnuebdFi6v+2Enn7T1uPWUZnEfrnx4POc617C8fvfkbUbx7CZ41CCitRM6IoX1OOt9JLyi0pRE2Laj2/7os6ilcXo0forIx7ivDDZi4Yfi6ZsenttqOkroxvnXMVV469mKvGBYe3KX+7ktWX38/klLYLDOLDY7hz1s0A/Pf6v+KTkvWO4L+nnIOfIpFMzTy26lcGTITGHGi3LQAIcM0I8OgT1dw4MgabyULAH0CjE122QiI0SegQL0On12C2BbiGHMpc4WytTia/PgZdSLwBrd2QJ3Qds8WK3+cjc+o0zrn0GySOyGznRgPfoAx2ta+80uVQd8jj4YXaGv7vuO1qnIEA3yo+hA/4QWwcSWYTuT4/q1auJD8/nxdeeOHkFzyJ3/3ud6xYsYI777yTBQsWsGPHDu677z5KS0t5/PFj30R+8pOfMHz4cDZs2MAFF1zQ6fsoiqL0tC8Kq/B3vbMOAHNMCvh9+ByVmOwd73GRaJQFIpiYkkJKijF5X8pT9/bU2U1oUjKxYS8T6/ew2T4On9a2tzBk/kIan38K55r/Io7bL/VE1qkzwWzBvfkzQqZ9HyF9CF0Qnh1OzYYaQjNCg873VHgQJoEl1kKluZYthwt5/Gvt7RdvGBmT1lrq5ESbv/vyKb/WFj4p2eXy03RC9lq383kunHA1odbmr0/4CU/ejm45xftlAGrrTMy9KJMffe//KH7tAGLdS8RW7DRWI/v9INsZwRISzSSRfkFEioshYxoJHRK8t2tiaAOXJu+lya9T6rJT5gqn2BlJo8+KHw091E7YsLMYljWOxBGjSMocTUjYyf9uBoNBF+y8ZWXGnLouDr/+u6aaMSEhjAs59h9zu8tFkdfLYynDmNncO3cuUOf38+TLL+N0OrHZbB2+R1NTE7/97W+58cYbWbVqFQDz589HCMHdd9/NnXfeydixxkqxpKQkvva1r7Fy5UoV7BRF+Uo46mi7t2lnhQwzKg14Sve1CXZNh3LwO+vwNxpz0zxl+TSajVpqYWNm4cLYQaKiooKKigrqG5y43ZKjR3189KHRCzh+QihRUcZ8ubfea2TOSgfrb7LxN8sDzJr6H3y0DXZCNxEy/1J8xQcRzXuRur/4BC0qGi0qGsuEyQBokVGEXb+Mxv88hggLQxueiG/PNmo/qSVqZhTWBGvQdZ0HnIRmhKJZjACa/lAG5UdrcdW6CZXB5/YEn5QUuQMUe4JTncNZzfi0mcwbf/Wxr1nzETP63XYuApo0Ic0a8YkXM2XqMq680iiNMnJcNu4fLqQ09zDVH20ibPPjWMsK8DsFMiAQmsRkC2CLcxMa4yU0xoNuOXXvXojuJyO8hozwGqZTDGYbnHMTXPw7UNOeggy6YHf4rruNhRJd4AkEeNPh4NaY4G8y3uZl6OFa8E+FEUDA76ezhaVzc3NpaGjgkksuCTq+YMEC7rrrLl577bXWYAdw7bXXsnjxYoqLixk2bNiJl1MURelTXn/3i+mbIhOwJI3CuX8TttEzgl6r/eRZ3MW5rR/Xb3uL+m1vARA25k0Czb1Du3fv5sMPj21yv3NnEzt3GqHzwVVJTJxo/IDe1GR0L8ZHCIZ6Kngg/y/cm3k7Lj24Zw2g8V+PBH1c/5ffAcYiiiHHDcmG3fgdhM2Ga81/OfJiKeZIjdhLYolfFLx4I+AJ0JjXSMJVx9VtE/DPhJcAWFA7s0fDXUuoy21q26Vqtw1h4eQbj2uGn3D9MJGOCgLSgrRo6BYb1pAEhqTOISpuCnb7JMzmtnPqrDYz6VPTSZ+aDnIxbH8W3rkbfO42NQA7RTOByQoL/ghn39D16wxggyrYuXJyaMrN6drqV2BnUxOOQIBzbMH/2afbbKSZzayqKOcXCYkkmc3kuFz8p6qSa2Ji0A4UQifq3OnNPwlaTti30Go1/nPn5uYGHT/vvPMIBAKsW7eOZcuWdeVLUxRF6TFmvWd6UCImLaT6vX8SuOgWtOYeOYDE639/ys/TmgsRz5kzhzlz5hAdfZgxZ32MydT+D/W5u5uYOjWU5OFWAg4f1x59m7zwETybdBnOE8LdiatlT0YIQdjiJYQtXgJA5NEHMLvzEQSXgKnfbmxjFjUj6oQLGOGu0HqYW48uxiRNmLvxlu2XEgnscvnb9NSdjMlq4Yr7lxAe/f+6fF/A6FE7+wYYcQG88h04sg18TSA7MV4vNDCFwNCz4crHwN52VwnFMKi2FKt68kmjTl0X7XS5EMAoa0jQcaum8UxqGgFg0cFCpuTvY1lJMXPCw/lZXDzVTz3Z7vVOJjMzE03T+Pzzz4OOf/bZZwBUV1cHHY+LiyMlJaXN+YqiKP0hwR5y+pM6IGzsBejhQ6jf1rnFYaEEf593OOJOuYAiZ1cT37whmt1jIggIEMCvCh7hm6VvEurvgaoJQH3MrSDaBrOKtRXEXhKLbmu7WT0C1kV/xndG/IovbQdoEm78dK42YEBKfFJS4zMWSnQ41Fk0zrs6k/DoHhwKjkyGm9+CpW/B2CuMoGa1G71w7dFMxuumEOP8pW8Zn69C3SkNmh47v8NBw/r3IdD1Gb3lPh/hmoblhPF8dyDAj44codrn5/eJSQw1m9nV5GJ1VRU6pdz/3nr8DkeHtx8LDw9n2bJlPPLII0yaNIkFCxawfft27r33XnRdR9Pa5vG4uDiOHLedi6IoSn85NyOGTYXVXd51ooXQdGIX3oHnaEHHP4cAiVp90DG/30JVVQqxsYfQtLZtev4FYyGCG9g3MozR+xvRA0a4y2oo4Gcjf4BbM7e7oKLjDbPjiriO8Nr/ENCMcOat9WKfZCd2wakXh1Saa/lJ2kNkulL5RvU8ZtRPQEqBRZrQ2plfFpASvwRNQKlXUuAOUNuJ4XGTRSNr1lDOmtlLASr5bLjqX+CqhZItRg/ewU+gvhT8HtAtEJEE6bOMHrqUyRAa1TttGYAGTbBz7diBMJtPvaPEabilbBPqAF6uq2OTy8k7GcNJbR4+nWyzEaHp3He0jOu8Q0nZuZPw887r8L1WrVpFVVUV119/PVJKQkJC+NWvfsUf//hHkpKS2pwfGhqKqyfq8SmKonTT+GGRhJp16t3dK3kCYE0egzV5TIfPNxEgVmtsc/xwyVhiYkrgND1epQkhhDf4GVrWhCkA1x19m/NrtvDds1awI2IMbmEhoLXTu3YSWsCPVXrIqs3n2o/e4c0hoewb1ojPJDFHmYn/ese3z8oPPcQfk58kzB/KGGcG80oXkOVOxyZ0NCAANAUklT5JrV9S7Zf4OpmtW0LdrMV9UCokNAoyLzR+nX93799vkBg8wS4nl0A3g0+UruNop8dvn9uNXdNaQ12L7BBjOGJ/vYMZOTmdCnZ2u51XXnmFiooKysrKSE9Px+l0cvfddzNr1qw251dXVzN+/PhOfkWKoig97+zUaDzdrXfSRQE04toJdg0NMdTXx2K3l7fba9dKCPJHGNUNksua0AMw1FPBqzvvYEf4aB5NuZq1sedhkV5cmrXdXjxTwEtowI1HmFlY+THLS15kYsNeGmNDaIi9hH26jpDbkKJrwbdRd7E1Io+t4XmMLj+XWQevRJM6uuz6W7qmCXSzMfzaaz11Sp8YNMHOuXkT+Lu+byHAcIsFr5SUeb0kHlckONZkBL4ij4e048LdriZj9VW80HBu2gy3df6ecXFxxDVvnPzAAw8QGxvL4sWLg87x+/0cOnSozXFFUZT+EBlq5qKsBN7KKe3WtmKdJQiQqtVgFe1/r9+7ZyaTp7wOnCZQNYe7hnCdUfsb0SRoEiY27GX1nl9Tp4ez1Z7FjojRfBo1iaOWGDyaGUvAS4Knihm125lYv5dzHHlE+hvwCJ0GLZQVI3/AC0kLQUqsjR8RXvMfo8ZdJ+fNHfcFU5C4larYIq4/cheBcg2/N0BnCjEIAbpZIz7NzvxlY3t2Tp3SLwZNsPMdLe/2NSY3r4bNaWoKCnbfiIzk6ZoabikpZnlMrFGguKmJf1RVMdYawtmhofjKjfsvXbqUp59++rQlUF544QWqq6sZPXo0NTU1vPLKK7z44ou8/PLLREREBJ2bm5uL0+lk9uzZ3f4aFUVResK3Zw/nvS/LcXm79wN1Z2hIxprKTvq6xxPG/v1TGDlyM7p++nBXmhhKdbSFsXvqsdf7EAFjxWGkv4G5NZuYW7OJHx76z0kv4UPDqYWwPWIM3z3rZ5RZ41qv7Q4/H29INhFVqzF7DoD0IjqxU4MmNCyahXGx4/j9eb8nISyB8iIHO9Yd4sDOSnRd4PX42114KjQwW3T8fsnwCbFMnJ9KfFrntwFTvpoGTbCTXSxxcrxks4XskBA2NDQw/7hwlWy28FxqGn+rquSvlRXU+P0kmkwsjoxieUwMmhCttfMaGxtJSEg42S1aCSH4+9//TkFBASaTiWnTpvHBBx8wc+bMNue++eabJCYmMmfOnG5/jYqiKD1hfEoU41Mi2VpU0+1FFB0hCBArGonVnCc/Rwqqy0ahhwrE0K1I0+nnXLutOtsmRBFR7yW1xEVclQe3sGD2+zG309PmRceph2CVXtbGnMejw65mZ0T7cwQDpiHUJazA5D5AeP07WF1bsZksNPma8Mm271kmYSLEFII34GVu6lxuyrqJsbHHaprGp9m56P+Nw+30UlbooPygg8P7anHWufH7AugmDVukleRRUcSn20nMsGO1dWNBiPKVJDpbPLc7Jk+eLLds2dJn9ztewSUL8RQWdvs6r9bV8rvycj4cMZLQ5tWpXlMoDnsGjohUaqMycVuiCGi6MWnWU0tUbT5DwjxMeuYhMkamcccdd3D33T03UTQrK4srr7ySX//61z12TeX0mhobKN23h7KCfIrzcmisqcbv86GbTIRFD2FYVjaJIzJJGjVm0G9xowxOpXUu5q36EKen93vtTPj5hjWHMNG2Vp0QApOuE2+OZnb9GMJMIZSn/4faoR8iTZ0rgWXyBbA7fFTVDyOkzkS8uwaL9OERZo5aY9gYNZGdEWPYas/CYYo4/fWEUTLrNyOTuTTWzK6KXeRW5rKlbAvlrnK8fi9m3Ux8aDyTEyczLnYc4+PGY7eoHra+IITYKqWc3N/t6IxBE+yKli7F+fkX3b6OT0q+frCQKyIjuSptEodS5lEZOx4h/fg1c/v1eAI+TCLAUWclD776PXZuyiMjq2cmp65Zs4Zly5ZRUFBAVFRUj1xTObWygny2vPkq+zd/jm4y4fW4ke3M3zx+U+qRU6Yx+bLBuym1Mni9uLmY+17f3atDsib8nGsqItNU1XpM0zTMZjN+v58xY8Ywffp0kpOTCbh8eA45cJfUU1bxModj/oUUXtA6374qhrCa2ykQI/FiRtKJ1bKAVRNMtNv4e1YaSVbLaT9H6Xsq2J1Gfwa7ir/9ncrVq7u868TxNvl0NkRmc+7ZNxIQJujE0vfgiapZhEd3r5Dn888/T2RkZJvtx5SeV19VydqHH6TsQD5+jxfZiarpQmjoFjOJIzJZ+L0fExFz6rpVijJQSCn51Zt5PL+puFfCnVWHSXYXs8LK8Pv96LpOREQE6enpDB06lJSUFEJD224N1qKpqZTdeT/E4cghEHBjFA3pKA1Ns3LUNp/1oct5t9qNRQhc/kC7yzNMQKiu4ZGShbGRLB8Wz0R7x/cRV/qeCnan0Z/BruGjjzj8wx8RaGjo8jUkUJo4jX2ZVyOFjjxZtewO0DSBZhLMvmYUY2YkIdQmxl9ZUkp2f/Ae7z/5KH6fl0A3Vldruo5uMjP35uWMnXOh+ntXBoXeCnehZp3rpg7j55dldfv/ksOxi0OHnqCi8l2EsOD3u2h/9awJXQ9FSg9xsReRmroMu90oNVXn9bHV4WRHvZNPaxs46vbiCUgsmiDBamZGVDgTI2ycY7cRaR40U9zPaCrYnUZ/Bju/w0H+ebO7XKBYAvkjruTI0JkE9J5bDn58MUj1Jv/VI6Xkg6cfY9f7/8PXyX87r23bTVWjk2+dN6X12NpdeyipqaOkxoHT4+GJJ57g5ptvbvfzH3vsMVatWkVhYSHp6enceeed3HLLLV36OnJzc3n44YfZsmULOTk5eL3edldm19fX88tf/pItW7awbds26uvr2bBhQ5uFOaWlpYwYMYIPPviAqVOndqlNyuAipeS/W0q4/43deHyBbi2oMGkCi0nj/q+N5eopw3qwleD1OnA4tuNw5FBT+zludzmBgAdNs2C1xhMdNQ27PRu7fRJms5rnNtCdicFu0OwVq9vthM+bC+1sx3U63Q11/934CKvfvjfoWKWjlMffvZ87H72MC785gXPGTaM7ofeNN97g+uuvZ9SoUWiadsoVsrt37+aiiy4iPDycmJgYbr755jb7zz700ENkZ2cT6MYWbGe67oS6yoZGPjtQxEVjg+fUbdx/EK/fz1lJRtmDPRs/bPfzH3vsMZYvX86VV17JO++8w+LFi7nttttYvXp1l76WrVu3snbtWlJTU5k8+eTfo6qqqnjiiScwmUzMnz//pOclJSXx7W9/m7vuuqtL7VEGHyEEV08Zxvofnc85adGEmnW0Tv4sqwmjl+6ctGje/9GcHg91AGaznZiY88nI+B5nT3qG6dPeZeaMD5g+7V3OnvQMGRnfIybmfBXqlK+sQRPsAGJuXobowgTV0sRpXQ51FXVH+CTvDRZOvqn1WENTHX9eczulNQe59rw7uXneChrrPJw/ew5ffvllp+8B8Nprr7Fjxw6mTZtGSkrKSc87cuQIc+bMweVy8dJLL/G3v/2N9957j8suuywoxC1fvpyKigqefvrpLrVnINj9wXtdCnUAH+8rJCnSzrAhUUHHf/2Ni/nu3BnMzzICX/GXueRuWBd0js/nY8WKFSxZsoQHHniACy64gN/85jcsXbqUn//853i9bVf9nc6SJUsoLi7m1VdfZe7cuSc9Ly0tjerqat577z1uvfXWU15z+fLlfPTRR2zatKnT7VEGr6TIUF5YPp0Xlk/j0vFJWE0aESEmTCdJeSZNEBFiwmrSuHR8Ei8sn8YLy6eTGNm9+cmKMlANqkH+0OxxhI7Lxrl9e4cXUTRZo9iXeXWXh1835LxMcswI0uJGtx77JO8N6l013LHoIeIijdWxo5Incf9zS1hxz8955bWXOn2fxx57DK25N7K9LcdarFy5Eq/XyxtvvNG6inbo0KGcf/75vPbaa1xxxRWAsffsjTfeyIMPPnjSocKBrL6qkveffLRLoc7n97Ot6HBreDveiRt2B7xe3n/qUdImTCJiiLGg4rPPPqOiooIbbrgh6NwlS5bw5JNP8sknn3DBBRd0qk1aB3uqOzMdICsri+zsbB5//HE1HKt02viUKB6+7mzqXF62H6phV0kdnx+o4qijCa9fYtYFCfYQpg2PYXxKJJNSo4kMVTXXFOV0BlWwAxi68o8UXLKwwwWL88bchBQdX/V6PK/fw+b897jknCVBxwuP5hEXmdIa6gCs5lBGJmXz1to38fl8mEyd+6vp6Bv366+/zqWXXhpUGmX27NmkpqayZs2a1mAHcO2117Jy5Uo+/fRTZsyY0an2nOnWPvwgfl/ne8YAiqpqcXl9ZMQN6dD5fq+XtQ8/yDX3/R4whsoBxo0bF3Te2LFGIdK8vLxOB7veMnv2bN54443+boZyBosMNTNndDxzRsfzg3mqHJCidNegGooFMCcmkvCzFYhTLH9v4YhIxWFP6/Lq14NHv8TlaWBEUnbQcU3omNq5pq6Z8XjdbPpoZ5fudzoul4vCwsI2gQGM0JCXlxd0bOLEiURERPDOO+/0Snu+qsr276PsQH6XV78WVdUigKTIjs3BCfj9lBXkU1aQD9A63zE6OjrovCFDhgS9/lUwadIkDh06xJEjR/q7KYqiKAqDMNgBRF1xBVFXXXXacHcoZZ5Rp66LDpbnIRAkDxkedDwhKoVyx2EamupajwVkgKLyPQBsWte1eXanU1NTg5SyTWAAIzScGBg0TWPChAl8/vnnvdKer6otb72K39O13joAR1MTVrMJk97x/15+j5etb73a5Xv2l7g4YxGICnaKoihfDYMy2AkhSLj3nlOGO68plMrY8Z0qPnyiusYqQiw2THrwvJBZWV9DygD/2fAHKuqOUNdYxUsbH6GqvhSA0v0O3M6uB4ueFBcXN6jetJsaG9i/+YtOFR8+kc8fwNTJ1ddSBsjf9DlNjQ2twbumpibonJbg3dJz91XQUvjV5XL1c0sURVEU6GawE0IsEELsFULsF0L8tKca1Rdawl3Cz1YgbDY4YU6bw56BkN0rpOn1e9qEOoBY+1Bumnsvhyr28cvnl7DimaspPJrHBdlXARAdEUtZoaNb925PVFQUQog2gQGM0NBeYAgNDR1Ub9ql+/agd3J+44lsFjMub+d3ONFNJkrz97bOpWuZa9eiZag8KyurW+3rSS1hMzZW7aShKIryVdDldzAhhA78DZgPlACbhRCvSynzTv2ZXx1CCKKvvJLwmTM5ctfduHJzkG4PBAI4IlLxa93buy/Masflbmz3tUnDZzMhfSbldSXompm4yKE8//FDRIfHYw+Jpfygg7SxMd26/4lsNhvp6eltAgMYoeH8889vc7y6unpQvWmXFeTj7WIR6xbx9nD8gQC1ThdRttPP5Wzh9bgpK9jH9EVXERsby7PPPsuFF17Y+vozzzzDkCFDmDlzZrfa15MKCwuxWCxkZGT0d1MURVEUurcqdiqwX0p5AEAI8TxwOXDGBLsW5sRE0v7zb1w5uVQ/9ST1762nNuasbg3DAiREp+ILeKlpqCA6PK7N65qmkxidBkBtYyXbCj5g3oSrkQE4vK+WKZd26/btWrRoEU8//TR1dXVERkYC8Mknn1BUVMSiRYvanF9YWDioSlkU5+UgA93rqR3evBq2uLq2TbArKK+iwe2hvskIj8U1dViaewgnDEuiOC+X6Vdex69//Wtuu+02kpOTufDCC3n//fd54oknePjhh7FYjv3Acf/99/PLX/6ydXeKk3E6naxduxaAPXuMuZwvvWSU1UlPTw8qWvz222/T2NhITk4OAB9++CGVlZWEhYW12ZP4iy++YMqUKYSEqJpiiqIoXwXdCXbJQPFxH5cA53avOf0rNHscyatW4Xc42PybLdDN0dCRScb+gUXle4KCnd/v47Uv/snIpPGEWMIorTnIu9ufIyk6jXnjFwPgrDPe+OfMmcPBgwc5ePDgKe9VVFTE5s2bAWP3AE3TWt+4p0yZQlqaESDvuusunnnmGRYtWsQ999xDXV0dd999N+eeey7f+MY3gq5ZW1vLvn37+PGPf9y9B3EGaazp/orTIWE2hg2JYveRcrJTkoJe+9/ufRyoOHaPT/cX8en+IgAmDLuUxpoqAG655RaEEKxatYqVK1eSmprKI488wm233Rbc3sZGrFZrUPma9pSXl7N48eKgYy0f33TTTTz11FOtx2+99VaKiopaP77//vsBo3jx8f8OXS4X69ev57e//e0p760oiqL0nV6vYyeE+A7wHYDU1NTevl2P0O12sIQATd26TkxEImnxY8gp+oyJw8879oIQlNeVsGX/elzuRqLCY5k+egEXT7q+dU6e32dM3m9sbCQxMfG099qwYUObQsItb9xPPvkkS5cuBSA5OZkNGzbwwx/+kCuvvBKLxcLll1/OqlWr2tTCe+utt7BYLG0C30Dm72B9w9OZMSKVNTvy8PjGYTEd6/m97YLpp77/cXPzli9fzvLly095/saNG1m2bNlpg116enq7e8O253Q/RLR4/fXXkVKyZMmS05+sKIqi9InuBLvDwPEb9aU0Hwsipfwn8E+AyZMnd33X5z6mdaJUxamcl/U1Xvr071zj/QEWszFcpWs6t15y6l4O3aTR2NjIjh07ePbZZ097n6VLl7aGt9PJzs5m3bp1pz3vmWeeYfHixcTE9Oxcv6+y7i6caHF2WjIb9hTw6f6DzBkzouP3N3f8/k6nk507d/Lcc891pYnd9oc//IG77rqrdUhfURRF6X/dSS+bgUwhRIYQwgJcC7zeM83qf2FRXdtC7ERTMucTaYvho7zOPRpbpJVPP/2UkSNHctVVV/VIWzpjx44dvP/++9x33319fu/+FBbdM6VEdE3jmqkTMJs6N08zLLrjIdpms9HY2Ng6zN6XysrKuPzyywfVML2iKMqZoMvBTkrpA74H/A/4EnhRStl2ueUZKnlUFKIHOu10TeeGOXdhMXU8KArNuP/8+fP58ssvO7xdWE8qKyvjqaeeYuTIkX1+7/40LCsboXdv0UyLtJhoZo5M7/D5QtcZltV2V5CvosTERO677z5sNlt/N0VRFEU5TrfGnaSUa4G1PdSWr5T4NDtmi46nqXsrJAEyErLISOh47TGzRSc+vWPbUfWWBQsW9Ov9+0viiEzMFisel7PP7222WEkcMarP76soiqIMHINy54mOSBxux+/vnymBfr8kMaN/g91glTRqTI8toOgsv89HUubofrm3oiiKMjCoYHcSVpuZjAmxCNG39xUChk+IxWpru2OF0vtCwsIZOeVcRE+Mw3eCEBqZU6cREhbep/dVFEVRBhYV7E5h0vxUdHPfPiLdrDFx/plRFmagmnzZFeiWvg3WusXM5Muu6NN7KoqiKAOPCnanEJ9mJz7Njqb1TbedponWeyr9J3FEJokjMtF6aBHF6Wi6TuKITBKGD66FKoqiKErPU8HuNOYvy0Iz9U2w080a85eN7ZN7Kae28Hs/Rjf1Ta+dbjaz8PuqbIiiKIrSfSrYnUZ4dAizrxmFydK7j8pk0Tjv6kzCo3umfp7SPRExscy9eTkma+/+fZisVuYuXU7EkNhevY+iKIoyOKhg1wFjZiSRNWtor4U7k0Uja9ZQzpo5tFeur3TN2DkXMn7uxb0W7kxWK+PnXcy4C+b3yvUVRVGUwUcFuw4QQjBrcWavhLuWUDdrcWaPXlfpPiEEc276dq+Eu5ZQN+fGb/fodRVFUZTBrWc2xhwEWsJdbHI4H7+Yj98bIBDoep07TRPoZmP4VfXUfXW1hLu4tAzef+pR/F4vAX/Xi1Zruo5uNjN36XLVU6coiqL0OCFl3xXhnTx5styyZUuf3a+3NNQ0se6JPMqLHPi9ATrzCIUwFknEp9mZv2ysmlN3BqmvqmTtIw9SVpCP3+NFykCHP1cIDd1iJnFEJgu//2M1p05RFOUMIITYKqWc3N/t6AwV7LqhvMjBjnWHOLCzEl0XeD1+2nuvF5qxTZjfLxk+IZaJ81NVSZMzWFlBPlvfepX8TZ+jm0x4PW5kO714QtcxW6z4fT4yp07jnEu/QeIINeSuKIpyplDB7jQGWrBr4XZ6KSt0UH7QweF9tTjr3Ph9AXSThi3SSvKoKOLT7SRm2NWOEgNIU2MDpfl7KSvYR3FeLo01Vfi9PnSzibDoGIZljSNxxCiSMkerHSUURVHOQCrYncZADXaKoiiKogw8Z2KwU6tiFUVRFEVRBggV7BRFURRFUQYIFewURVEURVEGCBXsFEVRFEVRBggV7BRFURRFUQYIFewURVEURVEGCBXsFEVRFEVRBog+rWMnhKgAipo/jAUq++zmg5N6xn1DPefep55x71PPuG+o59z7evIZp0kp43roWn2iT4Nd0I2F2HKmFf0706hn3DfUc+596hn3PvWM+4Z6zr1vsD9jNRSrKIqiKIoyQKhgpyiKoiiKMkD0Z7D7Zz/ee7BQz7hvqOfc+9Qz7n3qGfcN9Zx736B+xv02x05RFEVRFEXpWWooVlEURVEUZYDol2AnhFgghNgrhNgvhPhpf7RhIBNCDBNCbBBC5Akhdgshbu/vNg1UQghdCLFdCPFmf7dloBJCRAkhXhJC7BFCfCmEmN7fbRpohBB3Nn+vyBVCPCeECOnvNp3phBBPCCHKhRC5xx0bIoRYJ4TIb/49uj/bOBCc5DmvbP5+sUsI8aoQIqofm9jn+jzYCSF04G/AJUAWcJ0QIquv2zHA+YAfSSmzgGnAd9Uz7jW3A1/2dyMGuL8A70gpxwATUM+7RwkhkoEfAJOllOMAHbi2f1s1IDwFLDjh2E+B9VLKTGB988dK9zxF2+e8DhgnpRwP7APu6etG9af+6LGbCuyXUh6QUnqA54HL+6EdA5aUslRKua35z/UYb4TJ/duqgUcIkQJcCjze320ZqIQQkcBs4F8AUkqPlLK2Xxs1MJmAUCGECbABR/q5PWc8KeVHQPUJhy8Hnm7+89PA1/uyTQNRe89ZSvmulNLX/OHnQEqfN6wf9UewSwaKj/u4BBU6eo0QIh2YBHzRz00ZiB4C7gYC/dyOgSwDqACebB7yflwIEdbfjRpIpJSHgQeBQ0ApUCelfLd/WzVgJUgpS5v/XAYk9GdjBollwNv93Yi+pBZPDGBCiHDgZeAOKaWjv9szkAghLgPKpZRb+7stA5wJOBtYLaWcBDSihq96VPM8r8sxQvRQIEwIcUP/tmrgk0ZJClWWohcJIVZgTE16tr/b0pf6I9gdBoYd93FK8zGlBwkhzBih7lkp5Sv93Z4BaCawSAhxEGM6wVwhxDP926QBqQQokVK29Di/hBH0lJ5zIVAopayQUnqBV4AZ/dymgeqoECIJoPn38n5uz4AlhFgKXAZ8Uw6yum79Eew2A5lCiAwhhAVjku7r/dCOAUsIITDmJH0ppfxTf7dnIJJS3iOlTJFSpmP8G35fSql6OXqYlLIMKBZCjG4+NA/I68cmDUSHgGlCCFvz9455qAUqveV14KbmP98ErOnHtgxYQogFGNNkFkkpnf3dnr7W58GueULj94D/YXzzeFFKubuv2zHAzQSWYPQi7Wj+tbC/G6UoXfR94FkhxC5gIvDb/m3OwNLcG/oSsA3IwXhfGNSV+3uCEOI54DNgtBCiRAjxLeD3wHwhRD5GT+nv+7ONA8FJnvMjQASwrvn97x/92sg+pnaeUBRFURRFGSDU4glFURRFUZQBQgU7RVEURVGUAUIFO0VRFEVRlAFCBTtFURRFUZQBQgU7RVEURVGUAUIFO0VRFEVRlAFCBTtFURRFUZQBQgU7RVEURVGUAeL/A863kvoW98KiAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAMtCAYAAAB6kCstAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADtCklEQVR4nOzdd3hUVf7H8c+dSSeFBEiAEHqTEroUGyDYUEFdf7YVVHDt3VVxdRfXVXDRXdFVLCiggq6KWKIuvXcSQLp0EgihpEx6mbm/P4YMDJNAZpKQaN6v55nHmXvPuffcuH/42XPP9ximaZoCAAAAAHjFUtMDAAAAAIDfIsIUAAAAAPiAMAUAAAAAPiBMAQAAAIAPCFMAAAAA4APCFAAAAAD4gDAFAAAAAD7wq+kBVITD4dDhw4cVFhYmwzBqejgAAAAAaohpmsrOzlbTpk1lsdTs3NBvIkwdPnxYcXFxNT0MAAAAALVEcnKymjVrVqNj+E2EqbCwMEnOP1h4eHgNjwYAAABATbHZbIqLi3NlhJr0mwhTpa/2hYeHE6YAAAAA1IrlPxSgAAAAAAAfEKYAAAAAwAeEKQAAAADwAWEKAAAAAHxAmAIAAAAAHxCmAAAAAMAHhCkAAAAA8AFhCgAAAAB8QJgCAAAAAB/41fQAfi9M01R6QboK7AUqthfL3+qvIGuQooKiasXuzAAAAACqFmHKRxkFGVpzZI22ndimzcc2a9uJbcoryfNoF+IXok4NOqlro67q1KCT+jbuq8igyBoYMQAAAICqRJjygmma2nRsk77Y+YXm7JujErNEfoafSsyScvvkleRpfdp6bTy60dX+qlZX6daOtyq+YTyzVgAAAMBvlGGaplnTgzgXm82miIgIZWVlKTw8vEbGsPDgQv1nw3+0K3OXrIZVdtPu87VK+7er306P9HhEg5oPqsKRAgAAAL9ftSEblCJMnUNmQaZeXfOqft7/swwZMlV1f67S613d8mo93/d51Q+qX2XXBgAAAH6PalOYoprfWSw4uEDXfXud5h6YK0lVGqROv96cA3N03bfXacHBBVV6fQAAAADVhzBVBtM09eEvH+rxRY8rqzCrUq/0VYTDdCirMEuPL3pcUzZP0W9gshAAAACo8whTZzBNU5OSJumtDW85f1fxbFS59z15n9J7E6gAAACA2o0wdYYpm6fooy0fVek18w/ka8vdW3T408Me57I3ZSttdpoO/PuAdjy+Q1vu2qLHez2uifMnenUPu92u/v37yzAMGYah5cuXV9XwJUk7d+7U22+/rbvuuktdu3aVn5+fDMPQP/7xjwr1dzgcmj59uoYMGaJGjRopMDBQTZo00eDBg/Xuu+96tB8yZIjCw8N15MiRKn0OAAAAoKpQGv00Cw4ucM1IVaXUz1JlCbAoeni0x7nk95LlyHd4HP94y8fq3aG3BjcfXKF7vP7661q9erUMw6iWWa3Jkydr0qRJPvXNysrS9ddfr6VLlyo8PFwDBgxQ/fr1dejQIW3YsEE2m00PPvigW58JEyaoT58+Gjt2rKZOnVoVjwAAAABUKWamTsosyNS4leNkqGr3fcpal6W8XXmKGhwlv3DP7BreO1wxf4hRi6daqONbHV3HDRn628q/KbMg85z32Lp1q/72t7/p2muvVfPmzaty+C5dunTR008/rRkzZmj79u268847K9TPNE2NGDFCS5cu1X333adDhw7p559/1ueff66lS5cqLS1N7733nke/3r1769prr9X06dO1adOmqn4cAAAAoNIIUye9uuZVZRdlV/kaqRNzTkiSIi+NLPN8s9HN1OjaRgrrGuYWtkyZshXZNH7t+LNev6SkRKNGjVJwcLDef//9qhv4GcaMGaOJEyfq9ttvV8eOHWWxVOx/OlOnTtXixYt15ZVX6r333lNoaKjb+YCAAPXu3bvMvqNHj3auYfNxRgwAAACoToQpOTfk/Xn/z1VetS//QL7yducpsFmgdo3dpS13ea6byt6UrYPvHdSvz/6qrWO2uo7vfHKnCk8U6qd9P2nRwUVufbKysvTll1+qV69eqlevnhITE5WZmanY2FgdOHBAkjRnzpwqfd1v586deuGFF9S3b19FRkZq+vTpkqQXX3zxrOum3nrL+drkU089palTp6pz584KCAhwre0KDAxUhw4dPNZNDRkyRDfddJMk6fPPP1d6enqVPQsAAABQFep8mDJNU//Z8J8qf71PkmxJNkmSPc8uGZIRYHism0p+L1m21TYVpRXJLPEMP4YMvb3hbbdgNHHiRN1yyy1KSkpSUVGR/Pz81LhxYwUHB7va/OMf/9Dw4cNlt1dNQJw8ebJeeeUVrV27VpmZmRXqk5aWpk2bNslqterFF1/UPffco23btqmkpET16tVTeHi4SkpKtGfPHn388cdufSdMmCCHw7mWrKCgQHPmzKmS5wAAAACqSp0PU5uObdKuzF3VUgI9d3uuJKkkvUQypQaXN/BYNxXeO1xBLYNU/+L6avZAM49rmDK1K3OXfjn+i+tYvXr19OijjyouLk5hYWHas2ePUlNTPXaB/uGHHzRlypQqeZYuXbroiiuu0LBhwzRx4kTFxcWds88vvzjHbLFYtGbNmlPPZJrKzc2VzWZTixYtNHXqVI91U6Vrpkp99dVXVfIcAAAAQFWp82Hqi51fyGpYq+XaBQcK3H6XtW6q2ehmajuurZqNaab6feuXeR1DVn2x4wvX77Fjxyo0NFTJycmaOHGiq+iEv7+/IiPd7zF37txKPoXTmDFjNGfOHCUkJOjpp59WQEDAOfucOOFcL1ZcXCxJiomJ0ebNm5Wdna1Vq1apb9++2rdvn5599lm1atXKo//o0aNd35csWVIlzwEAAABUlTodpjIKMjRn35wqXyslSY5ChxyFp0qeB7cJVmCTQJ+uZcqun/b9rIyCDEnS2rVr9dprr2nw4MH605/+dNa+gYG+3bMqnLlma8aMGerSpYtCQ0PVr18/zZs3TzExMUpNTS1zr6lhw4YpIiJCkpSens66KQAAANQqdTpMrTmyRiVmSbVc257nHtBCO4WW07JiHKZda1PXqqCgQHfddZeCgoI0ZcoUGcbZ13pdf/31lbpvZZSUnPrbGoahJk2a6JlnnlHfvn3VrVs33X777a5KfvPnz/fo7+/vr379+rl+s24KAAAAtUmd3rR324ltshrWapmZsoa4vzoY0jakUtczZdXC1E2KyYrR9u3b1bBhQ919992SpEOHDik7O1umaerYsWOuPo0bN9b+/fsrdd/KKCwsdH0PCgpS165dXUUlpFNrqiSVO85OnTq5QtSCBQt02223Vc9gAQAAAC/V6Zmpzcc2y+6o+iAlSZZA9z9tYNPKvm5n14ojG12/jh8/riVLlmjJkiXavXu30tLSdPToUbdX644cOaIdO3ZU8r6+O726YH5+vhwOh4YOHao1a9ZowYIF6tSpk+v84cOHXWusTtewYUPX96SkpOodMAAAAOCFOhumTNPUthPbVGUV0U0pqDhUYQVRishvpJCsCLfT1tDKFbkwJGXm7FKzCzrLNE2PT1ZWlrp163aqvWGoW7duevXVVyt138o4c2Pf/v37a+7cubrwwgs1ePBgrV69Wn5+zsnRkpKSMtdNnT7TlpaWVr0DBgAAALxQZ8NUekG68kryfO4fVFxPbY53V98D1+m6rQ/rnrWv6a71r+iODX/TbRtf0PXrHnVr3z9tuNoc766g4no+39MwCzT3aIrH8ZycHF199dXatGmTq8re/fffr02bNunRR93HMW7cOBmGoYEDB/o8jooKCwtz+923b1+33++9957buqqy1k1t27bN9T0jI6OKRwgAAAD4rs6umSqwF5y70ZlMKSanpTofuVhtTvSU1bTKbthlMS0em/6GBLgXnOhwsK/q+Q+V3bBrd4MkbW28TEdDD+jo90eVvSm7zNsdePOADD9DwS2D1XRkU0nSZlumW5vc3FwNGzZMK1euVHx8vDIyMpScnKxrrrlGkydP1g8//CC73S6r1TkzVrpmyd/f36tHT0pK0oMPPuj6nZJyKtS9//77SkhIkCTNnj1bTZo0kSS1bt3a7Rpvvvmmli9frpYtW2rLli3asWOHLBaLa0ypqalu7YuLi7V27VrX7zPLvgMAAAA1qc6GqWJ7sVftW6Z3UZ+Dw9Qgv6kcsssiZzixmmW/vhfgH6QAvyAVlThD28Ejv+qCuN6ymla1O95THY730YmQQ/ow5a/K33u0zGsUHHT2NfxPBbUt2TbX97y8PA0bNkxLly5VfHy8FixY4KqOV7peqaioSJmZmWrQoIEkKTExUZL7Hk4VYbPZ3DbePV1KSoorXJ1edKJ9+/YKDQ1VTk6OJKlfv37au3evNm3apAYNGujmm29W/fr19eGHH0qSQkPdA2hCQoIyMzNdv2NiYrwaMwAAAFCd6uxrfn6WiuXIwOIQXf7rnbpq572KzG8sSa4gdS5xDdu5vi/b9r3re2n/yLwmeq7nR3rs+dfU68ML1WVaF7f+Hf7VQV2mdVHrsadmeHbklsg0TeXn5+vaa6/VkiVLXEGqYcOG2r9/v+u8JDVo0EBRUVGSnMFqyZIl6tWrl2655ZYKPUOpgQMHuq3RGjVqlOvcyy+/7DresmVL13E/Pz/dcMMNrt89e/ZUWlqaioqKlJqaqi+//FLbt293nb/wwgvd7vnxxx+7lX7v1auXV2MGAAAAqlOdDVPKP/fMVMv0rrp141/U5kQPSZLFyz9X+6bdXd+3HlwjW577prOl12tzoodu3fgXtUzves5r5ph+SsnOUf/+/bVo0SJ17drVFaRKLVy4UA888IAk6d5773UFkhUrVig3N1eJiYmyWCznZd3U888/7yoy8cEHH7heB5SkiRMnavny5ZIkq9Wqhx56yHVu3bp1SkhIUFxcnOvY4MGDq328AAAAQEUZ5um1tGspm82miIgIZWVlKTw8vEqumZl2RIMSrlSJn8PzpCn1ODRUfZOvlUMOr0NUqeTju/TarPtdvy/tPFz/d7F7QYifEz/Viu0Jyit0vgpX+lqgJBkBhmQ4y6xH9I5Q41GtdaLZB7ru22ma8vZbkqSAgAA1bNhQQUFBKioqks1mk83mfBWwR48eWrVqlQIDT5Vl/+tf/6qXX35ZkjRkyBDNmzevQs+SlJSkUaNGad++fZKcr/OVFo8ICAhwrcHq0KGDEhISXOumJGn69Om6++67XWXbIyMjVVJSouxs51oxi8Wi9957T/fee6+rz5AhQ7R27Vr5+fkpIyNDQUFBOnTokGuWDQAAAHVTdWQDX9XZmSmH3a6I3BB5JElTuvDgteqbfK0k72ejThfXsJ1ax3R2/b6083CPNsdth5WZe1xFJQVuQUqSzCJTZqEpu82ugkMFKgloJRmG0tNPzXAVFRXp8OHD2rt3r1JSUlxBSpLi4+PdgpR0as2U5N26KZvNpi1btig3N1e5ubluVfiKiopcx5OSktzWTUnSqFGjtGbNGg0aNEiBgYHKyMhQdna2goKCdPnll2vVqlVuQUpyVvabPn26q4LfbbfdRpACAABArVJnw5TVz09RtmDpjPVPPQ4NVc/DQ326ZoAhBVukehbnPwMMaVD8Ta7z0xa84tGnZ5uBurrXSHVp3k/hIQ1cx298ZrS6TOvi+rQa204lgW0kSW9O+UgtWrQ461j69u2radOmuR0rKirS4sWLZbFYvF431aZNG9fsUc+ePV0l2EePHu2x59Xp66ZK9enTR4899piuuOIKxcTEyN/fX2FhYcrLy9P//vc/j/ZjxozRTTc5/3aGYXiUeAcAAABqWp2t5ucfGKgGWQEy4uyuYy3Tu7pmpM4lwJAa+hmqbz358TPkb3juADykx+X6Ysnryi3K09HMFBXkpyso+NQMy7QFryi/KNejX49DQ1XUOFf7o7ZIkgzZVRzQUpIUZDl1n5tuusmjCp7kDD9nWrFihfLynHtrTZgwwa24w7nMmjVLTzzxRIXbn66oqEh//OMf9dVXXyk4OFj9+/dXTEyMjhw5oq1bt+qtt97SX//6V7c+I0aM0EcffSTJObPVvXt3n+4NAAAAVJc6G6aCwyPUNiNYq2SRIYcCi0N02Z5bZcoh4ywTdpFWQ60CLYr1N2QxDDlMU4ZUbjCZu3OJcoucAabYXqhfNs/U/QMf075ChzLsprq1ukSNImIV17Cd4hq209hPnLMxDjl02Z7blBr2igr982TKquLATgq1WtTQ/9S/ttdff73MmaCyDBo0SL4ukWvVqpUeeeQR9ezZUz179tSXX36pV17xnGkry7333quvvvpKI0aM0IcffuhWLMPhcLjtJVXqzTfflGEYMk3zvBTKAAAAALxVZ8OUYRhqGddBVoXIri26eN9NCiwJLjdINfYzdEGwVeFWZ4CynAxPlnPM7kxZ/6UkafGYz9SmQXNJksM0FRfgpyy7qcZDntGREs+AY5FFgSXBunj/TZrfboYKQ/rKtISqW1iIVzNKVWX48OEaPvzUmq9vvvmmQv0WLFigTz75RF26dNGXX37psVmwxWJRv379PPrNnz9fGzduVI8ePTR9+nS3UuwAAABAbVBn10xJUpO2HdTY1kqt0jup3YneZe4f5W9IPUOs6hvqp7CTf61zBahSW9J+1fpDW9SzaWdXkDq9f7hF6hvqp54hVvmXcUmLrGp3vLdapndSfthQWSX1CA/x+jlr0ttvvy1Jevzxxz2C1Ll0795d3bp106JFi9z2owIAAABqgzo7MyVJMa3bKm7LDsUVjiizBHpjf0Pdg08FHW9nhOb86txD6eIWZW82W3q9WH9D0X5+2phv92jjkEN9UkZofXxryTAUH+YepqZOnar09HSVlJSoadOmuuyyy3TppZd6Nc7qYrfbtWDBAknSpZdeqiNHjuiLL77Qzp07FRgYqB49epS75qvU0KFDtWnTJn377be64IILztfQAQAAgHOq02EqrnO82n74tcICGnmcaxdoUadgq0zT9Pm1uhUHkyRJvWI7n7WdxTAUIFN963n+67DIooa5jRSb7lBaQ4suqu8ePP7+97979OnTp49mzpyptm3b+jTuqrJ3717l5Dj3z1q9erUefPBB1+9Sf/7zn/XFF1+UuyHvgAEDJDlfFxw7dmz1DhgAAADwQp1+zS8kPEKNG10sxxm7TV0Q5AxSkvezUafbmrZLktS2wdnLmJ/rPnZD6r07XyNiItUgwBm4hg0bppkzZ2r37t3Kz8/Xvn379Mknn6h58+Zat26dBg4cqKNHj/o89qpw4sQJ1/fRo0erV69eWrdunbKzs7Vx40Zdc801OnbsmIYPH65du3aVeY3OnZ1BNCkp6byMGQAAAKioOj0zlZ9TpLzsBm6Jsl2gRe2DPNdOeSuvKF95xfmSpNTsY7rkg9s1sscIvTz0cbd2C/es0sbU7dp85Ff9krbTdTy8OEOSc8bMakqdDxbrwvoRrvPvvPOOJOno0aMaN26cEhIStH//fpmmKT8/Px06dEiPPfaYPv/880o/iyTt3LlTc+fOVWJiohITE7V161ZJ0oYNG8rtc3rlwOLiYi1ZskR9+vTxaJeTk6PRo0dr6dKlrmNDhgzR2rVrtXr1aklSRkaGioqKXPtbAQAAADWtToeplB0ZMh2nfjf2N1wzUpVlKzy1d9SEJR8oyC9Qjw3wrEj3yA8vy1aY43G8daBFhX6Gq9Kf1ZQaHC6Ump5qs2jRIt14443KzMxU27ZtddVVV8nhcGjdunVKSUnRvHnzquRZJGny5MmaNGmSV33CwsJc37t16+axV9TBgwe1aNEiSdKePXvczk2YMEF9+vTRa6+95jqWmZmp6OhoL0cOAAAAVI86HaaOHcyWxWLI4TDlb0jdK7lG6nQRQafWNq0/tFn3X3ibGtaL9Gh3VftL1SqymbrEtFfXxu3V/e3rJUmmTHUPsWpBdomKTUkW6Xhyttr1jpEkbdu2TcOGDZPVatU333yjG264wXXNuXPn6sorr5TNZqv0c5Tq0qWLnn76afXo0UM9e/bULbfcol9++eWsfVq2bOnaK+qpp57SnXfe6Xb+wQcfdIWpY8eOuZ3r3bu3rr32Wn366aeuY5GRnn8/AAAAoKbU6TCVtt8mh8M589P1ZNW+qtrDKdg/SCH+wa5X/W6NH1Zmuzeuea7M44YM+RvOcSXl2SWHlLbvVDi6//77lZ+fr5kzZ7oFKenUWqXw8PCqeBRJ0pgxY9zHV4G/U2hoqDp06KAdO3bo+PHjbucKCgrcXkEsq6Lf6NGjlZCQIMkZpLwtrQ4AAABUpzpbgMI0TR07kC3JuSFvXIClwvtHVVSryGaSpDZRzd32maooi+EcV2M/57iOHsyWaZrauHGjli1bpri4ON16660e/b744gtJ0oUXXliJ0VeNm2++WZJzE97TzZo1S5mZma41UGWNddiwYa5AGB8fX80jBQAAALxTZ8NUfnaxigud+zpdcPL1vqoWGuDcEyoqOOIcLctnmqY6nlzHVVxgV352sf79739Lki655BIZhqE5c+bomWee0T333KP+/fvr+++/lyQ9+eSTHtebNm2aDMNQy5YtfR6TNx599FFFRkbqp59+0vvvv+86/vHHH0uSioqKXO3O5O/vr5gY52uNjRs3Pg+jBQAAACquzr7mV1LkDFKRVkPh1qqdkSqVU5QnSTqRl1lumzdXTNfCPas8jj/983iF+DvDWJfG7XVV/0eVYTdVUmzXmjVrJEnff/+9GjVq5PEKnST16tVLl1xyicdxh8NZccPbV+ZSU1PdXicsLWW+Y8cO9evXz3X83XffVc+ePV2/GzZsqP/+97+6/vrrdf/99+vtt99W8+bNtXDhQlebF198Uddcc02Z9y3dl6qkpMSr8QIAAADVrc6GKYfdORPVKtAih2lW+St+krQvI0WStDcjWbuO71e7hi092hzIPKQNqds8ju88vt/1PdAvQA8EWpSRZ5ejxHS9+pabm6ucnBxZLBYFBgaqWbNmio2N1fr165WYmKhHH33UbTZIkhITEyU51yN5o7Cw0BXiTpeXl+d2vKyiF0OHDtWmTZv06quvav78+dq+fbskKSIiQl9++aWuuOKKMu+5YcMGpaamSnJuAAwAAADUJnX2NT+L1VCAIcX6G9USpE7fZ0qSbpr5iEebfy+fqpSsVDUMifQYw9oHvlbys0uV/OxSfXX7W4r1d47XlpulgwcPSjq1j5PD4VBhYaFyc3N1xRVXaMqUKZKkKVOmaP/+/W7XnTt3rmJjY/XYY49V+Fl+/vlnPf3002rTpo0CAwPdzr388ssyTdP1GThwYJnXaN++vaZNm6aLLrrINTsWGBhYZpCKioqSYRj65z//6TqWlpZW4fECAAAA50OdDVN+AVY19KueICW57zMlSfnFBTqWm+527F8rpmp18iYdz8uQ4xxrtiyGoYZ+ht5+5023YBETE6OmTZvKz89Phw8f1vPPP68JEyaoYcOGcjgcrtLjkrR//37t3r1b48aNU3BwcIWf5fnnn9esWbO0Z88eFRYWVrjfmRYvXqwvv/zS9fv0fahO9+abb0qS/vvf/7oKU2RkZPh8XwAAAKA61NkwFRzmr6gA6zlDjK9O32eqdWRzFdmLNWnldLc2LSOb6dKWffTnS+7VwjGfnnkJNw7TVFSgVfWjwtWhQwfndVu31pEjR3To0CHl5OS49nHauHGjawap9DU5ybnvk2maHmXOzyU+Pl69e/fWgw8+qB9//FGtW7f2qr/kXPM0fPhwt2NWa9kbJI8cOVJBQUEyTVN9+/aVxB5TAAAAqH3q7JopwzDUKMQq42QhiqoW7B/k+v5Qv9v1f/GeBRaW/Wlmha9nSGoUbNVf/vIXtW3bVrfeeqtrPynJWVBi2rRp+umnn3TixAkdPXpUUtn7N3lr+nT3EFhW5b1z+cMf/iCbzSaLxeJ6ze9sHn/8cU2YMEGzZs2SJFdVPwAAAKC2qLNhyjRNhdrNKtuk90zfbju1r9LTP7+mzWm/6uWhj7u1WbhnlTambtfmI7/ql7SdZ72eYRgKtZvKzMxUYWGh/Pz8lJWVpaAgZ2hr2rSpBg4cqMjISJ04cULFxcWSqmavqZ07d2ru3LlKTExUYmKi9uzZU6F+P//8s2bNmqUlS5Zo9+7dkpzruwzDkGmastvLDrJDhgzR6tWrZRiGDh8+LMlZnRAAAACoTepsmHLkFsviqJ5X/CTpsw3fub5bLVY9NmCUR5tHfnhZtsKcCl/T4jD1z1df0/iJE1zHgoODdeGFF2rbtm2aOnWqW/sLL7zQrWy5JI0bN04vvfSSLrvsMi1evLhC9508ebImTZpU4XGWmjFjhmbMmOEKrKGhoa5S55JzDdfWrVvVuXNnt34TJkxQnz59FBISorw8Z3n5wYMHe31/AAAAoDrV2TVTZtG5XzWrjK1Hd7m+RwVHqGE9zzU/V7W/VBe36K02Uc3VNaa927l7vhmr6z+5X9d/cr+en/sv1/F6QSF68skntWXLFl1wwQXKzMzUokWL3EKKJEVHR+uLL77wuKcv+0x16dJFd955p9q0aaP4+HhZLKf+Z/P++++rX79+rs/pa7SefvppDRw40FXlLycnR1arVb1795Yk2e32Mtdv9e7dW9dee60rSBmGoSuvvLLC4wUAAADOhzo7M2XaqzdMlW7YK0lHc0+Uuc/UG9c8pyd+fFXLD6z36L8l7VQYC/QLcH1/5pGn5N/IuZlvu3bttH37dhUXFyszM9Ot/+jRo9WqVSuP6/qyz9SYMWPUtm1bffqpZ5GMlJQUpaSkuH6fXu1v3759Wrx4scLCwtSpUyctXrxYV155pXJzT1U6XL16tWw2m2vvrNPHn5CQIEmyWCyKioqq8HgBAACA88EwzWoqZ1eFbDabIiIilJWV5fEf3b4qSS/QkX+uq5Jrnel4boZ6/MdZuS4uvLGSbUd0b5//018HP3zWfnGvXSpJmnrjBA1pN6DMNo2f7SO/yCC3Y0eOHNGgQYO0Y8cO17E77rhDn332mVu7oqIiRUVFqWPHjlq3bp3P68XCw8OVnZ2t1q1bl7t+qqCgQFFRUcrPz9dPP/2kq6++2nVu4MCBWrJkiSRnUMrJyfEo1V5cXKzg4GDZ7XYZhlGhohUAAAD4/auObOCrOvuaX0760Wq7dmr2Mdf34RcMUZ/Yrpqx8QePfaZ8Yfi7/yvLycnRTTfdpB07dqhHjx6uqndJSUkefVesWKHc3FxNmDCh2gpvlLr66quVn5+vq6++2i1ISXILRkOHDi1zz6uNGze6ClT8BvI+AAAA6qA6G6Z2rVqqIpVUy7Vjw6Nd39s0iNPfhz6mgpJCj32mvGUEWmWpd2qtU25uroYNG6aVK1cqPj5ezz33nGtD3927d3tUyxs0aJBM09SQIUMqNY6KWL16tSRngAsLC1NAQIACAgLk7++vZcuWudqtXLlS9evX9+g/duxY+fk530Kt7uAHAAAA+KLOrpk6fPCATCNMTcxIGara/1iPCqnv+u5vDVCXmPY68MziSl3TlKnA2FBXsMjLy9OwYcO0dOlSxcfHa8aMGW5FGkrXUTVo0KBS960sm8121vPZ2dllHp8/f77uvvtuTZs2rRpGBQAAAFRenZ2ZOpyVpWMWmxyq+lfI8oryXd+3Hd1dJdc0TVMBcWGSpPz8fF177bVasmSJ4uPj9e2332rkyJE6fPiw2rVrJ0lq0KBBjRZtyM/Pl2mabp+SkhLt379f7ds7KxcahqGvvvqq3Nf4StdjnV49EAAAAKgt6uR/pTocDp3w99dxS7as1fAnsBWeqla3NmVTlVzTYljk17SevvnmG1188cVatGiR4uPj9d133+mPf/yjNmzYoLZt27oq5d17770er8cNHDhQhmGU+Vrd+WC1WtWiRQs1adLEdezuu+/WkSNHymy/c+fZNzIGAAAAalKdfM0v+9Ahlfj767CZIYccslRxoIoICnV935pW/szULZ8/ro2p2z2O3//dX2W1WCVJzSIaa8Ho6XLIoaLgPE2cONFVXOLw4cO64IILVFBQIIvFot27nfdq3ry5mjdv7nHd0sIPVqvVq+eZMWOG7rvvPtfv0sC2b98+hYaeetbly5ere/fuFb5uSEiIcnJyNG/ePN15551u5/Ly8nTsmLOQR02/qggAAACUpU7OTBXmOMNAoVGsPZY0OVS1ZbeD/YMU4u+sUJdfUqD5u1eU2e6Q7YjyivNdH9f47EWuY6nZR+WQQ3ssabI7ChQdfaq4xfHjx1VQUCDJvULewYMHtWbNGo/7lZZOv+OOO7x6nmPHjik3N9f1KWWaptvxMzcOPpfSmbOjRz0rK7700kuu1/9iY2O9ui4AAABwPtTJMFVSWOD6vt0vpcpnpiSpS0w71/e7Z43Vi/Pe9Gjz9yGP6YmL7tKQNgMUHXpq9uWHO99X8rNLlfzsUm17/GdZZNE2vxQVFRTou+++U15engYNGiRJio+P15EjR9SvXz9X/2XLlnkUbsjJydGxY8cUEhKiN9/0HMvZXH311Xrrrbc0atQodenSxRWCLr/8crc1URdffLFbv3HjxskwDI9P6R5TpeGrdA1VqTFjxuif//yn63evXr28Gi8AAABwPtTJ1/zyjELX96OGTSeMbEWZ9WRUYaga0Lyn1qb8IkOSKemaDgM92jzyw8uyFZ59NschUxlGjo4ZNuUbRSooKND111/vWjO1YMECffTRR1q9erUMwyi3mMMHH3wgyfn63ODBg7V48eIKP8vkyZM1adKkCreXnLNN69Y5N0Xu1q2b2+t/eXl5Wrt2rQ4cOKBmzZpp6NChbn07d+4syVl4wuFwaPDgwV7dGwAAADgf6mSYcgSdtmbIkDb77dDA4j5Veo8r21+sN1dOc9UKfHH+m5p/zzS3NnERTZSen6UQ/yAF+wVpy9FfJUlP/zxeIf4hkqQujdtr4LDLJcM57ueff17z58+X5FwbNXr0aCUkJKhZs2bKyMhQbm6uXnnlFd10000aM2aM615PPvmkMjMz9fLLL8vf31/eCAsLU5MmTRQSEqJ69epp586dKiws1Lp169xmxGbPnu0qLpGXl6effvpJkvM1wdLqfsnJyUpKSlJRUZGaNm2qhIQEBQUFud3v5ZdfluR8ddHf39+t5DsAAABQW9TJMOUXHSVrcbHsJ0NFvPULBdnzVOC4WJJ3xRnK0yWmveoFhCi3KE+GpP5x3T3a1A8O19ajuzyO7zy+3/Xd4S+1tnaTX3GxrNGROnHihOtcQkKC63tKSorr+//+9z/FxMS4hSlJSkxMlCSNHj3aq2dp166dUlNTPY7bbDa3tVmFhadm/KKjo9W6dWvt3btXhw8f1pdffunR//DhwwoMDPQ4fuONN+rjjz+WaZo1XuIdAAAAKE+dXDMV6B+owLwMyTTVQXsUr52K9H9PFuVIVVSMYkvar8otynP+MAw9NmCU2/mFe1ZpfcovZfZ1rplarEPP/qC/3NVfMk0F5KWrKK9IV1999clLnip7HhAQoEaNGrl+DxgwQB999JHbNYuKirRkyRL16tVLt9xyS4WfY+fOnfr444/LPHfmmqmWLVu6zv3zn//U3r17z3rtESNGKCIiwu3YmDFjNHXqVNfzHTlyRNu3e1Y8BAAAAGpanQxTQdYgFSpdhunQYK2QQ5LVyFak/9uqqj/JnF+Xu75bZZF5xubAj/zwsgrtxWe5gkUR/m/pUmORDNOhQqXrw7c+1G233SZJatasmQzDUHR0tKKjo11lxCVp5cqVmjJlitvVVqxYodzcXE2YMMFj/6mzmTx5sqtghK/Cw8PVpUsXtWvXTp07d9Yll1yi22+/Xe+++67bnlOSs2iFv7+/W3XCb7/9tlL3BwAAAKpDnQxTUUFRyqiXo1hLmmJ0wvVHCLKslvXYF1Vyj4QdC13f7aZDk1ZOdzt/VftL9eylf9KnN7+ujY9879E/3G+66lnXKEbHFWs5qozQXDWIaKAnn3xSW7ZsUWRkpEJDQ7Vu3Trt3btXTzzxhFv/uXPnuv0eNGiQTNPUkCFDvHqOLl266Omnn9aMGTO0fft2j/2gKsJms2nLli3atWuXtm7dqmXLlunHH3/UvHnzPNo2a9bMbZZNkhYsWOD1PQEAAIDqVifDlGEYKuwSpT7mRtl1apbmxLZQZa5YqMKdP1X6HnvSkyU5i0wYhiFD7rNBb1zznDpFt1HS4S16+qcJbufSj/6kMOtXkiS7DPUxN6qoSwM9//zzeuONNzRz5kz98ssvmjhxopo3by6LxaJVq1a5XaOstUi+GDNmjMaMGaMTJ05owoQJ+uGHH1zn9u3b5/N1s7KyNGrUKBmGoU8++cTtXNOmTSVJwcHOvbpKqwICAAAAtUmdLEAhSZ2bt1eX7d/LevL1u+yUIB3bHC5JKtr+rVRSoMDON8o0HTIM7zLn+pTNrtf6iu3FCvIL9FgzJZVfGj1383rlNAtSWLMCWWWqi3aqc9x1kqS1a9fqtdde0+DBg/WnP/1JkvT6669r9erVbte4/vrrvRrz2fhSGv10zZo1U/369VVYWKiAgABFRUVpz549Onz4sCSpf//+bu3feecd9enTR/n5zo2MbTabioqKFBAQ4PtDAAAAAFWszoap/oXFshrOwFNSaCh1bYScO0I5Z5CKdv1PjuxUBfYYKfmHyLBUvMrfjztPrTE6knNc9194mxrWi/Rod1X7S9Uqspm6RLfRnV8/e9oZU6lrIxTcqFB+gaashqn+RSUqKCjQXXfdpaCgIE2ZMkVvv/22FixYoISEBEVGRiojI0OS1Lp1a916661e/03KU/qqX48ePfTVV195vYYpJSXFrdqgJLfy7EeOHFG7dqc2Oe7du7erEmCpzMxMRUdH+/YAAAAAQDWos2GqRZpNdtMiq+FQWmKE7MUW6YxX8UqObFLJ/L8qKP5W+cf1rfAsVdLhbW6/b40fVma7169+RoZhUXHymjPOGLIXW5SWGKHYAZkqkdSxIF87duzQ9u3b1bBhQ919993avHmz0tPTJckVpCSpuLhYAwcO1FVXXaXnnnvunOM9l9NLrJ+5FssXVqtVxcWnim+cGbQk6eabb9Zrr73m+h0Z6RlGAQAAgJpUZ8OU9m2QxXAoOyVItoMh5bcrzlVB4kcqObReARcMlzWimUyH/awzVduP7nZ9bxoWrYFT/qiOjVpr3slNe0v7/2vB21qxe6n25qS79d9fVCSZhmwHQxTeIl+hsYXyO7JVauw8f/z48bNW2EtOTlZycrJbqfLK+Pnnn/XRRx9p48aNbuukSl/TK0ubNm3KPWe3291+T5061VWlUJKioqLcwqEkmaZ7NUQAAACgpnm1GGjy5MmKj49XeHi4wsPD1b9/f/3888/ltp82bZqz+MJpn6CgoEoPurLyswsVWrBdMqVjm8Mknfs/1EuObFLeor8rd8l4laSslelwBgLTUeL2H/p5RfnKLylw/U7LcW6y+59hL7jal6SsVe6S8XozcZbWZR3TiTPCxSmmjv0SLpmSeXiDunfrprFjx7q1CAgIcHtlrtSNN96oadOmnfO5KuL555/XrFmztGfPHreS5Wdz5513qk2bNmV+rFb3IDpo0CC332+++abH9TIzM30dPgAAAFAtvApTzZo104QJE5SYmKj169dr8ODBGj58uLZu3Vpun/DwcKWmpro+Bw4cqPSgKyv1lz0KMAqUf8JfhVn+OvP1vrNxZOxTQdJU5f7vz8pf+76Kds+X/fhOmcUniyUU5rq1t5t2xTdsqZZZu5S/9n3l/u8ZFSRNlSNjn5r7+2tASD091rBhOXczVJjlr4IT/jKKcqTc4woNDdVNN92k9u3bKywsTF27dlVxcbG6d+/utn/Ut99+6zEDNG7cOBmGoYEDB1b4eSUpPj5evXv31oMPPqjLL7+8Qn0OHjyocePGacuWLdq9e7frM3/+fI9AduYM2siRIz3WR/GaHwAAAGobr17zu+6669x+v/LKK5o8ebJWr16tzp07l9nHMAw1btzYq0EVFhaqsLDQ9dtms3nV/1wyko87/7mrnmSYklnxMFXKLMpRyeFE6XCi65gRECZrGWuqHgosVtG22R7Hh4dHaElujhbluFf0+zQzQ//LyZYkdQoK0uu7whXbMFMqydfzzz+vv/zlL5o1a5batm2rxMRExcfHa/78+YqJiXEFKIfDoczMTDVo0MB13dIQU9ZM1tk89thjevDBB5WYmKg9e/a4jhcWFqpfv36u37Nnz3Ztwpuenq4777xTDzzwgHr06KHY2Fjl5+dr2bJlHq/shYWFedzz1ltv1VtvvSVJslgsXo8ZAAAAqG4+r5my2+366quvlJub61Ha+nQ5OTlq0aKFHA6HevbsqVdffbXc4FVq/Pjxeumll3wd2jmlJ2eopNAi28Fgn4JUecyibAVJCpJUcNrxpv5ll/ROLi7SLwUFHsdTS0qUWlIiSQo0DNkOBiump01+JUWu0uj169fX7t27FR8frwULFriFJskZQKKiotyOJSY6g9/o0aO9ei6bzaY1a84skuFcx3T68dMDcFxcnJ599lmtW7dOu3fvVlJSkgoLC8tc+9S7d2+PY/369XOFKT+/uru0DwAAALWX15v2bt68WaGhoQoMDNT999+v2bNnq1OnTmW27dChgz7++GN99913+uyzz+RwODRgwIAyq7edbuzYscrKynJ9kpOTvR1muUzT1LHDBcpLC6jSIHW6dmesC/s6K7PMdq82aaptHTpqW4eObsdfiWnsOj69eQvJNJSXFqD8YrtuuukmmaapzMxMV5BqePI1wdNfhWvbtq3ba39FRUWaN2+eJOfaN28MHDhQpmnKNE2NGnVqv6zIyEjXcdM03V7Xy83NVZcuXfTjjz/qwIEDysnJ0Y8//ujx6uFNN91U5szlp59+6vpecjJYAgAAALWJ1/+Xf4cOHbRx40ZlZWXp66+/1qhRo7RkyZIyA1X//v3dZq0GDBigCy64QO+//75efvnlcu8RGBiowMBAb4dWIfnZxSoyC1WQ7u/zK37n0jckRJtPzjj5SfoyM1Ojoxqo4RkzLJOPH9eSXM9NeyefOK7/ngxgnYKC9NfGMSrI8NcvWza6BdFff/1VcXFxcjgcKikpcVuLFBoaqgkTJrhKo997772ucuTebn6blJSkBx98UJLcXvOz2WxlvuZ38OBBffrpp3rhhRfcXvNbtmyZ23UjIiLKLJKRnJzsVoL99FAIAAAA1BZeh6mAgAC1bdtWktSrVy+tW7dOkyZN0vvvv3/Ovv7+/urRo4d27959zrbVpaTIriJLoPLSAypSxO+cTElFflbZDUMOw5DFNHV5/fqacnL/pxJJDtPUeyeO64WYUzMwk48f12cZ6cooozpeSkmJUk57zU+mlJceoHc++q9bu4IyXhEslZSUpK5du7p+t2jRwvXdm9f8kpKS9Mc//lHbt2/3OGe328t8zS89PV0vvPCC/P39ZbValZiYqBUrVriFPcMwdPDgQYWGhnpc96WXXnKbwapoBUEAAADgfKr0YhSHw+G2VuZs7Ha7Nm/erGuuuaayt/WZw25KRonyMwLkTRW/UkVWi06EBisrJFCZwUHKCgmU3er+tmR2QYG0d6/r942No/VMVEPJfioUJBcXlRmkTtcnONj5mp+kgnR/WeMqNt6wsDDt2LFDTZs2dR1bt26dJKlVq1a65ZZbKnQdyTn7VFaQOtO+fftcr/mduV7qxIkTHu3/7//+T+Hh4WVe66GHHtJHH33k+s0eUwAAAKiNvApTY8eO1dVXX63mzZsrOztbM2fO1OLFizVnzhxJzpLWsbGxGj9+vCTp73//u/r166e2bdsqMzNTEydO1IEDBzRmzJiqf5IKslgN+RcUSsUVD1KmpMyQQB1oEKHUyFCZhiHDYTrfECzjFbSs/FPhMsBq0ffHT6hLn65qn1+sFieyVD+vUK82aapXmzR169dp5w5J0rtNYzXwjAp3ZrFF7732kj77bJbb8ZycHF155ZVauXKlAgICVFRUpOzsbD366KP6+uuvJTnXSy1evFiSM/QMGjTI9ftcStdLnS48PFzZ2dlq3bq122t/pRo0aKAJEya4HevRo4c2btzo+v3Pf/6z3HtOmjRJkhQSEqK8vLwKjRMAAAA437wKU0ePHtXIkSOVmpqqiIgIxcfHa86cORo6dKgk595CFsupWZqMjAzde++9OnLkiCIjI9WrVy+tXLmy3IIV54NfgNWrIJUWHqKdjaOUExwowzRlngxPpqX8a9QPDnZ9L7I7ZEiau323wnp01uGoMIXlF6r9kXR9s/dgmWum/nnsmN5Ld87mdAoK0l9Pvh5oFLu3y83N1bBhw7Ry5UrFx8crIyPDVazjhx9+kN1ul9Vq1YoVK1RQUKA77rhDM2bM8LrM+OlrpkrvK0mHDh0qtzT66TZs2OAWpFq1aqXmzZuXea/k5GR99tlnbsdYMwUAAIDayKswdfqrV2U5c7bj3//+t/797397PajqFBzmLz9HyDnbFVkt2hrbUKmRYdLJmRmzgv9RHxrkXuChW/OmurFnF9cSreygACW2aqKNKYf0ywnPdU/7i4ukk8Ep8LR7+jnqub7n5eVp2LBhWrp0qauq3+klxouKilz7TA0aNEimaWrYsGGSqq40emFhYbml0U/38ccfu/1+9NFHy71XaUn8f/3rX3ryySclSUFnVEcEAAAAagOvS6P/1hmGofqxZa/VKXUkPERLOjbXkfqhpZ28vk/gaZX7woPOqEx48nrDL+6lSTdepYV9erqVR/9v8xbupdFLnZxRys/P17XXXqslS5a4lUffv3+/fvjhB0nOV+1O32eqqKhIS5YsUa9evbxaMyW5l0Y3TVNt2rSRJF1++eXllkY/3dtvv62bbrpJknPPqLOFqSlTpqikpEQLFy50HStvFgsAAACoSXUuTElSUNOIMo+bknZH11dSqyYqtloqPBNVltj6zsAW6GfV6r0HlV1QxqyNYajYalFSqybaHV3/nNdMz3Xom2++0cUXX6xFixZ57DO1cOFCPfDAA5KcpdBPfz1uxYoVys3NVWJiott+VOfLTz/9JEkaNGiQ26ugZVm3bp0SEhIUfPJ1ydLXSAEAAIDapNLV/H6LguNilOcXqJCSUwHHlLSzcZT2xpwMGpVcp9O/TXPtPZ4uu8OU3XRo3rZdurFnF7c27y1arYPpmR59RyYflPXk96b+/vq+VWvl+gUqODBUEydOVFJSkiQpNTVVffv2VVFRkWw2m2w2myTnTM6ZszmDBg3SJZdcomXLlslqtcobM2bM0H333ef6XVoUYvHixW6lzZcvX67u3bt79P/888+Vn58vSR6FKcoyduxYhYWFKTs7W5L0+OOPezVeAAAA4HyokzNT9WPraXdErNs2U3ui658KUlWgR4tY+VstKnE41LFxtEeQ2p56VIcys1Rkt7s+pQpNU3knP2klJc4Zs/rNVFTk0KZNm1ztjh07pr179yolJcUVpCRnIZCy1jjt2OGsFnjHHXdU+DmSk5P13XffKTc31/Upre5nt9vdjufknCqm0bJlSxmGIcMwdPvtt7uO9+rVy3XcMAz9/e9/d7vfmDFjtHjxYv3hD3+QJLVr1871WiEAAABQm9TJmanQ8EDtjGquTun75Wc6dCQ8RL82aVDl9wn291exvVAZZZT3nrF6gwqKSzyOv3DtYF2elqkY26k+JYZFOyObq3+gVdHR0Tpw4IBuuummMje8bdOmjV588UWP4zk5OTp27JhCQkL05ptvVvgZZs2apa+++srj+OjRozVlypRy+/3hD3/Q8ePHyzyXnp7uWts1aNAgt3Pjxo3TjBkzXBX9Xn755QqPFQAAADif6mSYCg7x1676zeRnOlRktWhzXLSzYl8VluDelJwqW0GhrIahI1k5Ss20qUn9U4UvusY2VsOwemoWGaHY+uEa9/185wnT1C9x0bpsx0EFnNzk1890aFf9ZgoKPlXS/PXXXy+34ENZPvjgA0nS3/72t3OuWTpdq1at9Mgjj6hnz57q2bOnvvzyS73yyivn7Pf666+Xe+6f//ynfvjhB7Vv316XXHKJ27lmzZrpoosu0oIFC9SkSROvi2UAAAAA50udDFONGoXo14btVGI4y5+XWC1VGqQkadmv+yRJ13TtoB9+2aEZazbq6SsvdZ2/5cJuZXc8WZRiW2xDdT94VJJzZmpXw7Zq1OjcJd3L8+STT7pKjXtj+PDhGj58uOv3N9984/MYSpWWSr/nnnvKPL927VpJzmAFAAAA1FZ1MkxZLBbFRkRpUcvOKg73fAWvsg5lZGn/iQy1aFBfl3Vso8s6ernmxzB0ODJMTTJz1CC7QEtiu6tZRJRXM0q11YoVK7Rz5075+flp1KhRZbax2Wzq3r271q1bp+3bt+uCCy44z6MEAAAAzq1OhilJim9YTxn1LQq1V+3rfZK05VCaJKlddEPfL2Ka+rVxlC62pein1hepbyP39VFTp05Venq6SkpK1LRpU1122WW69NJLy7lY7VE6K3XNNdeocePG5bYbOnSoNm3apG+//ZYwBQAAgFqpzoapdiFZOuLIqfIgJUm7jzoLL7RoWInqgIah7OBAbWsUq22RzTWmhfu1zqyCJ0l9+vTRzJkz1bZtW9/vW41yc3P15ZdfSnIWsDibAQMGSJIWLFigsWPHVvvYAAAAAG/99t8b81HwiY1yqOqDlCQdynSWKY8O86y25w3DNJXYrLmshqFL+jrXDw0bNkwzZ87U7t27lZ+fr3379umTTz5R8+bNtW7dOg0cOFBHjx6t9DNUhy+//FI5OTlq3LixrrnmmrO27dy5syS59tQCAAAAaps6GabybFk6sGGVLG47TVWNwpISFZU494yqF+ivQxlZ+vNXP2p20haPtttTj2rOll/10bJ1rmP/SFiozDznBremYSjScVxXh1nUqFE9SdI777yj2NhY/fe//9Udd9yhgQMHauTIkTp48KCaNGmiQ4cO6dVXX63SZ9q5c6fefvtt3XXXXXr33XclSR999JH+8Y9/VKi/w+HQ9OnT9cQTT0iSjh49qri4OA0ePNh1vdMNGTJEvXr1kiRlZGSoqKioip4EAAAAqDp18jW/5K2/yHHaJrlV6fS9owL9/DR7w1b5W60a0qmdR9vy9po6nVUOXd3cPUw8+uijbpv3lrr55pv11ltv6YcffvBqL6lzmTx5siZNmuRT36ysLF1//fVaunSp69hVV12l7OxsbdiwQTabTQ8++KBbnwkTJqhPnz6u35mZmYqOjvZt8AAAAEA1qZNhKm3vblms1moJVMH+p/aCWr//kPYfz9DADq0VFhTo0fb0vaY+XLq2zOs5ZFGoJd3t2NChQ3XDDTe49n666KKLdODAAbVo0UKSlJKSUoVPJHXp0kVPP/20evTooZUrV+qdd96pUD/TNDVixAgtXbpU3bt318aNG3XxxRfrxx9/lCQVFRXpl19+8ejXu3dvXXHFFZo7d64kKTKyEmvPAAAAgGpSJ8NU6u6d1TYzFeBnVYCfVUUldi3f5dxr6sJWcWW2LXevqdNY5FDanl/djk2cOLHMtjabc61WWFiYN0M+pzFjxri+//rrr2dp6W7q1KlavHixrrjiCm3evFmSe+GJgIAA9e7du8y+119/vebOnauAgAD5nxZQAQAAgNqizq2ZMk1TaXv3VOs9YutHSHIWomjRoL6iwytXiCJt726Z5rnXdy1YsECSdOGFF1bqflXlrbfekiRdcsklSk1NVVhYmG6++eYK9W3Y0FlWvqSkROnp6edoDQAAAJx/dS5M5duyVFyQX633aBvdwPW9UntNnVSUn698W5a+++47JSYmepx3OBySpOXLl0uSnnzySY8206ZNk2EYatmyZaXHUxFpaWnatGmTrFar1q51vsLYsWNHPfXUU3r66af11VdfnbWwRGkfh8OhOXPmnJcxAwAAAN6oc6/5FRcWVvs9usTGaN62XZLK32tq3tZd2p5adgnzqcvXy2qxKDYyXDf16ipJKikq0qJFizRp0iQ1b95cXbt2Vf369XX48GEdOnRIkmS1WvXGG29oyJAhHtcsDVzevjKXmpqqG264wfX79PVY77//vhISEiRJ7777rnr27Ok6V7oWKjIyUj/99JMkad26dVq37lTlwtatW2v27NmKj4/3uO/8+fNd3xcsWKDbbrvNq3EDAAAA1a3OhSl7ydmr51WF2MgIGZJMSZZyNgU+kZung+mZZZ4r3afKz3pq4rCkuFgjRoxQTk6OkpKStH79eqWnpysgIEBWq1UOh0MfffSRRo0aVeY1S2e0zrVZ7pkKCwu1Zs2aMs+lpKS4wlXpei3X8504IUlKT0+Xw+FQeHi4VqxYoZYtW2rLli16/PHHtWbNGl111VXavHmzGjQ4NZu3YcMG/fLLL+rWrZs2bdrEXlMAAAColepcmLL6Vf8jF5aUuHaw2nY4TR0aN/Joc+uF3XTrGQUonv7SWeXuhWsHq35IsNu5nGJTAwcO1MCBAz2u1bJlSx04cEBt2rQpd0xz585VbGysHnvsMa+epWXLlh7rte666y5Nnz5dL7/8sl544YUy+5X2cTgc6t+/v1auXOk6169fP82bN0/t2rVTamqq3n33Xb344ouu8x9//LEkaeTIkXrqqaeUlpbm1ZgBAACA86HOrZnyD/QsUV7VTt87at2+FGUXVP7Vwg2Hc33uu3//fu3evVvjxo1TcHDwuTtUgdMrCt53331lnv/jH/8oyf2VvuTkZE2ZMkUDBw7UddddJ8m5cS8AAABQ29S5mang8Aj5BwVXaxGK0/eaKrbbNW/bLt3Ys4vP1ysy/LU9w6HhPvYva3apurVu3brM72W1SU1NdR176aWXVFxcrEmTJikrK0sS+0wBAACgdqpzM1OGYSimdRtVZ7Qo3WtKkp67ZlClgpQpKS2wkTalZFXR6M6P9u3bu2anjh8/Xmab0uOhoadKx0+ZMkUlJSWKj493rbuKiYmp5tECAAAA3qtzYUqSGrfpIEc1P3rpXlNptuxKXcchQ0cDY7T5UNZ5n12qDD8/P40YMUKS+2t8p5s3b56k8vfF2rJliySpV69eVT9AAAAAoJLqZJiqF9tCVjmq9R6le00dOJFZqetYZepoYCPlFJboRG75+zJVxLhx42QYRplFLKrD888/L39/f3344YeuEuqlJk6cqOXLl8tqteqhhx4qs39p0YrBgwdX+1gBAAAAb9W5NVOSVL9NJ9llyFqNL/uV7jX1a9pxXd21Q5ltyttrqnSfKUlqGhmhjBvukiQVFNslOV+FmzJliqt96Zqj++67z/VqXZMmTTR79my36/q611RSUpIefPBB1+89e/ZIct9nSpJmz56tJk2auH537NhRH374oe655x5dd9116t27t6s0+o4dO2S1WjV58mR17drV457FxcVaunSpgoKCdOWVV3o1XgAAAOB8qJNhyhIcql312qp97m5ZqilQxUZGqGWDSO0/kaE0W7ZiwsM82pS311TpPlOSVBQQqkCrswJfUYkzDKWkpJS599O2bdtc31u0aOFx3te9pmw2W5n3O32fKcm5J9WZRo0apU6dOum1117TsmXLtGnTJjVo0EA333yznn766XJf8UtISNDx48d19913KyoqyqvxAgAAAOeDYf4GFuLYbDZFREQoKytL4eHhlb5ecnqebv7757o5dfa5G1fCpuRUfboqSZe2b6Xru3fy6RpfNrlBaUGNJUnLnx2kZpEhPl2nqKhIUVFR6tixo9atWyejnM2Ea4vrrrtOP/74o5KSktS9e/eaHg4AAABqiarOBpVRJ9dMBQdYdSQwRsf9o6p15VS3uCZq2TBSq/ce9HqvKYekY/4NlBZ4qpJdkL/V57GsWLFCubm5mjBhQq0PUuvWrVNCQoJGjRpFkAIAAECtVSfDVIN6AaoX6KfVkRdW+x/ghh6dXXtNecMiaU1kH+lk8AkN9FODegE+j2PQoEEyTVNDhgzx+Rrny9ixYxUWFqbx48fX9FAAAACActXJNVOGYahrbIRWF7XSznpt1S53T7WunZp48zCv+jhkaFe9NtpXr5XrWNfYiFo/o1RVyiulDgAAANQmdXJmSpK6Na8vP4uhpQ0uUaElsJoLpVecQ1KhJVBLG1ziOuZnMdQtrn6NjQkAAACApzobprrGRqjEYarAGqSFDQfWmj+ERdKChgNVYA1yHStxmOoaG1FzgwIAAADgobZkiPNuQJuG8rM4X5vbW6+VVkWWXaL7fFsZ2dft9T7JOTPVv02DGhoRAAAAgLLU2TAVVS9A18Y3kfVkoFof0VPrI3rU6JjWR/RQ4hljsFoMXdetqaIqUXwCAAAAQNWrs2FKku7s31J2x8nCE4ahVZF9tTKyrySdtzVUpfdZGdlXq6L6uar3lbI7TN3Z33MDXgAAAAA1q06HqZ7N66tj47BT+cUwlFi/pxKir1KhJUgOVW/1PIcMFVqClBB9lRLr9/Q4bxhSx8Zh6kHxCQAAAKDWqdNhyjAMPXVFB5lnVEXfV6+VPmt2m3bVayOp6mepSq+3q14bfdrsNo81UqVMU3rqig51piQ6AAAA8FtSp8OUJA3tFKPruzWV9YzAUmAN0tzooUqIvkrp/lGSVOmZqtL+6f5RSoi+SnOjh6rwtKp9p7Ma0vDuTTW0U0yl7gkAAACgetTJTXvP9NL1nbVs1zFl5hXJPCMw7avXSvtCWiqmME3xtq1ql7tbVjlkl0WWc8QrU84AZZUpuyz6tV5bbQ7vorTAaI+1UaczDCk82F/jrutcNQ8IAAAAoMrV+ZkpSYqsF6AnLznkEaRcDENpQY01L/pyfdx8pH6OvkIbI+KVEtRURYZ/mV2KDH8l5Qboua9+1Jvbbfq4+UjNj75caUExkmEof886ZS6foaNfv6SUd0bqwGvX6sBr16rEdlymKb12U7wiy6jgt3TpUr366qu66aab1LJlSxmGIcMwtHz58qr8k7js3LlTb7/9tu666y517dpVfn5+MgxD//jHP7y+1rvvvusa75gxY8psM2TIEIWHh+vIkSOVHToAAABQrZiZknTs2Fw1Nf+hG9sO1Te7rztr2wJrsHbXa6PdJ9dTyTQV7MiXn8Muq+yyy6oSi1X5lmAdmfGs5BcoXXafCqzB7vf84XWZhbll3uPBi626onPjMs89+uij2rRpk/cP6aPJkydr0qRJlb7O3r179cwzz8gwDJlnLlI7zYQJE9SnTx+NHTtWU6dOrfR9AQAAgOpS52emiosztH3H85IMXdNqnq5pNde7CxiG8q0hyvYPU6Z/fWX7hynfGqLcnStUeGibwnpcI2u9+h7dQtr3V/1LRyr65pfU7JEZruODmy9V3/AXVFycUebthg4dqnHjxun7779XSkqKWrSo3rLpXbp00dNPP60ZM2Zo+/btuvPOO72+hsPh0F133SXDMDRy5Miztu3du7euvfZaTZ8+/byGRgAAAMBbdT5M7fz1JRUX2ySZMgzpxrYJurHtD5IkoxJ1/LLXfydJsq39Roc/ftjjvF94tPL3Jen4j/9Syn/+6Dre3v6jSkps2vnr38u8bvPmzbVixQrdf//9atGihQ4cOCBJ+uabb3we69nExsZq3759+utf/6ru3bvr008/laSzzho5HA698cYb6tGjh0JDQ2W1WrVs2TLl5ORo5syZkqSCgoIy+0ZFRSkhIUGmaVbJjBgAAABQXep0mDp2bJ7S0n6QZHcdMwxpWOt5erj7h6rnnyfLaecqqihtjwoPbXcVmWh43Z892mStmKnC5C1y5GXJoza77EpL+17Hjs336PfMM89o3rx5Onz4sOx278fmreeff16zZs3Snj17VFhYWKE+e/fu1dNPP62NGzcqLy9PkhQYGKiwsDAVFxdLkj7//HNt3LjRo++bb74pSbJYLPr888+Vnp5eJc8BAAAAVLU6G6ZM09Sevf+Syik60SN6s1656B/q3XiDJO9mqfJ+XV16EwU0bqeARp6v4vlFNlFQyx7qcs1gvf1B2zKuYmjP3n95rC/q0qWLBg4cqBdeeEHr1q2r8Jh8FR8fr969e+vBBx/Ujz/+qNDQ0HP2MQxDffr00aeffqo+ffooJCREW7dulc1m0+233y7JOXt13XWe69NGjhyp6OhoORwOFRQUaM6cOVX+TAAAAEBVqLMFKGy2DcrN/fWsbUID8nRf/Ce6sPEGfbv7GqXkxMpi2OUwrWftV3Dw1Fqf+hff4XautH/fJ8fphrY/qnv0lnKuYio3d6dsto2KiOjhOno+AtTppk+f7va7IhsIt2nTRmvXrtWECRO0du1a/fvf/1abNs6CHe3atXO1S0lJkc1mU3h4uFv/e+65RxMmTJAkLViwQLfddltlHwMAAACocnU2TCWnfCbJKlXgNb4e0ZvVvdFm7c1qqYXJF2vtkV5ymFZZjRLZTavOnN0qTN3l/OIXoOA2vWQ17LKfbH9h4yQNjlumVhEHzrbV1ElWpaR85hamfiu2bNmiv/3tbxowYIAeffTRctv5+3uWln/xxRddYWrVqlXVNkYAAACgMupkmCoqStfRoz+qIkGqlGFIbervV5v6+3Vrh9nakd5O+23NtS+ruQ7YmqvAHiRJchQVSHbnuqCg6BbqELlLrSMOqEV4sjpG7VJYQNnl0MtmV9rRBLVr9xcFBER50a9mlZSUaNSoUbJYLPr4449lsVjczpUKCgpScHCwR/+QkBA1atRIx44dcxXYAAAAAGqbOhmmMjJWyTRLzt2wHGEBuerTeKP6NN4oU1KWGa6MokjlO4KUdaxAL55s94fLj+muPv+p1FhNs0QZmasVE31Npa5zPr3yyitKSkrSa6+9ptzcXN11110yTVPHjh3T4sWLXe3OVmY9Pj5eCxYscBWwAAAAAGqbOhmmsrO3yDQtMgzvS59nK0xb1VX71Fp71E771EYFlmDJOTElMyZf0gBJ0sYLRutz1VMr7VVnbVaYsr2+n2lalG3b8psKU7Nnz5Yk/fDDD/rkk0+0detWjzYWi0Vbt27VwIED3QJWqQ4dOmjBggVn3eAXAAAAqEl1MkylZyRJXlTnMyXtVnvN01VarYtkN/xkNUtkl1VnLnwy8/Nd31NCuyhdXVzt+2mFhupntdWucmoIlsWhjMykCreuTZYvX17uOYfDoZUrV5Z7vl69etUxJAAAAKDK1LkwZZqmcrK3VKD4g9N69dHXuk3JRgtZzBI5DOefzG6U/acrOZbm+u6wZbna2Q0/rTIv0grjMsWZ+3WzPlcvrT/n/Q1DyrZtkWmaFaqkVxuUtX/Uv/71Lz311FOyWq2y2+2yWq0KDg7Wrl27yrxGVlZWNY8SAAAAqJw6t89UcfEJmSo4Z7tsheo/elz/Np5TiuIkyRWkzsYvuvGpeyWudjtX2j9FzfUvY6z+o8eVrXPv22QqX8XFJ87Z7mzGjRsnwzA0cODASl3HF2+//baeeuopBQQE6P/+7/8kSU2bNlVOTo7mzZtXZp+kJOds3G8lQAIAAKDuqXMzU3b7uYPUel2oD/WA8uR81cw0Kp45LfUjXd+LEteU2cY0LMr59AP9uHqZfpZD0To1C/P+++maMSNTktSuXaAee6zhyXEXSpKmTJmiKVOmeFzz888/d70216RJE9e6pVIOh/O1xrJKkZ9NUlKSHnzwQdfv3FxnNcJDhw6pX79+ruOzZ89WkyZNPPq/8847evTRRxUQEKBZs2Zp/XrnbJyfn/N/ekePHvXoU1xcrG3btkmSAgMDvRovAAAAcL7UuTDlcBSVe86U9L1u1JfGHTJMR8VClGmqYXGmgh0F8neUqNjip2MhIXLk5cl+cJ9KDuyVX4vWHt3sh1NUvN25YW/yacdTkotd3wMCTs3KOBzOMJWSkqI1azxD2pEjR3TkyBFJUosWLTzOJyYmSpJGjx597mc6jc1mK/N+hYWFbscLCws92rz33nt6+OGHXUHq2muvdYWptDTn65Dt27f36JeQkOCq4lfWswAAAAC1gWH+Bsql2Ww2RUREKCsrS+Hh4ZW61okTO7Vxk2dlPFPSf3WHfjBuPGv/qOJMXZyRpPicX9XDtl3dcnYq1J7v1uayqTlaetA5EzRoaLzajh6l5ZE9le5fv9zrpg12bsz79jtNdUHHII/z3bv9rAYNPIOHn5+f7Ha73nnnHbcZpNMVFRUpODhYDodD4eHhlVqP1LZtW+3Zs0eXX3655s+fX2abo0eP6oknntDMmTPdgpTknNF64okn9NVXX6lly5bavn27goLcn/e6665TQkKCJOnhhx/W22+/7fN4AQAA8PtSldmgsupcmDpyYIe27hnmcfy7kzNSZTJN9bJt1d2Hv9XwYwvlb9pVbFhlNe1lLjr7fHORbv+mQIacIe2e7v56b0Sovm00WFNjb1BSWCcdv/cW2Q/sk0yH5DhVWdAaYJW/xfk7prGfPvrIuV6rc5uf1LhFB1111VVauHChHA6HHA6Hq3S4v7+/AgICJEnh4eE6fPiw65qLFi3S4MGDJUlRUVE6caLi668mTpyoF154QQ6HQ3a73XU/wzAUEhLiard8+XJ1795dkvTTTz9p2DDPv/GZBg4cqEWLFrkdGz58uL7//nvX7927d6tNmzYVHi8AAAB+32pTmKpzr/mpOEwlJX7y8zu1ae96XVhukLry+HI9t3+KLsjdpxLDKj/TLknyP/nPstzWNUD3JRQo++QbhaZM+Zt2jTi2UDcfnadt9Vqr877dUhk51l5kV+mVjx9zjrGkxF8qcRaqWL58uYqLiz36FRcXu44XFLivCxs0aJAaNWqkY8eO6Y47ygmM5UhISFBRkeerkaZputZPSVJOTo7ru8VSsTVmZe0vdXrQa9euHUEKAAAAtVadq+ZnNSzKyWngyjHZCtWHekCG6b7vVGRxlt7d9ndN3/oXtc/dL0muIFURl7V05tSYetLHw50zOKUBrEPuPt3dzU93XNdJzV75pxp9s8DVr9EXP6nNgiWavSBe333fSqYp5eREye/kv6oHHnhA48aN0/fff6+UlBTXmqJly5bJNE2ZpqmSkpLTh6KcnBwdO3ZMISEhevPNNyv8DJJ055136umnn9aMGTO0fft23XnnnZKkl19+2XU/0zR18cUXu/pcddVV+tvf/iZJ+tvf/ubW7szPmZYvX67g4GBJzlkqAAAAoLaqczNTAYEBys5uqPDwozIMU9M1Rnmq51Zs4qrjy/TGzn8qosQ522KV929Cpuc7+6TlSlvSStQl5tSf2ipTHw8PVokOK8vxtp4q+bOmnzxnGhblqZ4+0Wg9pEkyTUPZtobyD3K+wjdx4kSvx/LBBx9Icgabis4alRozZozbb2/7e2v69OnKP7nxcWnRDAAAAKA2qnMzU/UiQpWf3VAWi6n16qNVxiVyGFbnSdPUowc+1bStL6h+Sbb85Dj7xcqxIdWulcl2tY1yVuO7/Zuyy7H7yaH6JTZN2/qC23GHYdVK41IlqrcsFlP52Y1UL/zc+1GV58knn5RpmnrmmWd8vsb58sQTT0iSOnTooEWLFmn79u01PCIAAACgbHVuZsoaGiC/jPayO5bqa8ttp0qgm6ae3/ehHk2e4Wznw2xUqW93ONcu3drZXy8P9qzM5zaeM+9TWuDBdOgr3abujkT5ZbaTNTTA5/HUpKSkJD333HNKT09XRESEevTooeuuu05hYWFltk9PT5ck/fnPf9bOnTv17bff6oILLjifQwYAAAAqpM6FKcMwFB3UXImZlym5wak9jB49+JkrSFXWwv3OtVHR9QxZ/27Tg7399fY1wW5tftpVrLWH7EpMdSjx8Km1WH/Y9qlmR/9ZpmFRsloqMeMydQ5uLsNwznItXbpUy5cvV2JiohITE3XgwAFJ0i+//OK2bqmq7Ny5U3PnznXdb+vWrZKcxSNeeOGFcvu99NJLkqQffvhBP/zwQ7ntpk+frpEjR7p+DxkyRGvXrnWt7VqwYIHGjh1bBU8CAAAAVK06F6YkqUmTJpqkq2QxS+Qw/HTV8WV6fv+UKrv+hlRnOJq+qVjBftKLlwV6tLl9Vr6yPPe51T2Hv1Xe8f6a0/BiWcwSzTOu0pDGDV3nH330UW3atKnKxnoukydP1qRJk7zud/HFFysvL0+xsbEKDXW+opiZmanNmzcrJSVFkjPYXnbZZW79JkyYoD59+ujHH3+U5JzZAgAAAGqjOhmmItu30vbsCJmGRZHFWXpj5z9ll1GpV/tK5RaZyj1ZuTwx1aE/DwhQdD3PpWk3XuCvdlEW9WxiVc8mFkW/7ix2YZehf+18TRdHdFWGf4R2RLZR/bAoV7+hQ4fqhhtuUM+ePdWzZ0+1aNFCdnvFqwx6q0uXLnr66afVo0cP9ezZU8OGDdPevXvP2W/ZsmXlnouPj9fmzZvl5+enJk2auJ3r3bu3rr32Ws2ePVuSlJGRoaKiItceWgAAAEBtUSfD1JbGoTJzMyVJr+yapIiSnCoJUpKUVeh+ndE9/Mts9/Hw4DKPW2UqoiRH/9j9lh664EU5LBZtbRKqdifP+1LNrzLOrOZX+rqhrwoKCnTw4EFJzr2x1qxZo0suucStzejRo5WQkOD6nZmZqejo6ErdFwAAAKhqda6anyRtKS6S1TR15fHluvHYAp+r9pWlftCpsNGnqUUdGlq9voafHLrp6HxdcXyFrKapLWVsmvtbNWvWLGVlZblCWekrf6cbNmyYGjRo4PodGRl53sYHAAAAVFSdDFNJtjzZJT23f4rsqtxMy5lC/A35n/yr9o31PkiVsss4OT5pgy2vagZXC3z88ceSJKvV+bcpq6qfv7+/evfuLUmqV6+e/P3Lnt0DAAAAalKdC1OmaeqX7Dz1sm3VBbn7quz1vtMFn/xv/wYhvgc1q0x1yt2rntnbtCk7T6ZZ9eM83/bv369FixZJkkpKSmQYhis0nalx48aSpIiIiPM2PgAAAMAbdS5MHS8uUa7dobsPf6sSw/eZo7PJP1mA4nhe5QJQsWHV3YdmK8fu0PHikkpda9y4cTIMQwMHDqzUdSri4MGD+uyzz1RQ4L5Z8dSpU2WapmtW6o477nCFpjNlZ2dX+zgBAACAyqhzBSjy7Q5FFWdq+LGF8jOrvgpebpGp4pNLsFanlB+AXl5SqB93eZ6/+7t8hQY4M27PJhZNunah/tb2YRU4nMFsypQpmjLlVBn30kp+EydO1CeffCLJWfq9tBpeKYfDOShvX5lLSkrSgw8+6PpdusZp3bp16tevn+v47NmzXZX50tPTdeedd+qBBx5Qjx49FBsbq7y8PP3000+uMQ8aNEiTJ08u976//PKLJOcMFgAAAFAb1bkwVWyaujgjSf7VEKQk92p+iammth+z64JGnjNgezIcWnPIcwxbj5mSnMeD/CR/066LMjeoyOEMLikpKVqzZo1Hv/3792v//v2SpBYtWnicT0xMlOSslOcNm81W5v3OPF5YeGrTrLi4OD377LNat26ddu/eraSkJBUUFMhut8tiseiDDz7Q3XffLYul7InRDRs2aPfu3ZKYoQIAAEDtVede8/M3DMXn/KrianrF7/RqfpI0Jam4zHbTRgTL/Fu461Mq+YlQ17HFd9VTsWFVfPavCjgZPMaNGyfTNF2f0uC0bNky17HSUFWqqKhIS5YsUa9evXTLLbd49TwDBw50u9+oUaMkSS+//LLb8ZYtW7r6NGjQQBMmTNCCBQt04MAB5eTk6A9/+IMk6fbbb9fo0aPLDVLSqSIVEpX8AAAAUHvVuTAVbLWoh227rNU0MxXib6jeyTfpejWx6P3EIqXl+F563Wra1cO2XUEW34tZrFixQrm5uZowYUKl94nyRXp6ur799ltJ554ZS05O1pQpUxQfHy9JiomJqe7hAQAAAD6pc2GqoZ9V3XJ2VuuD92zinPUa2c1f+SXSy0sLz9GjfBZJ3XJ2qqGf7zNpgwYNkmmaGjJkiM/XqIwZM2aosLBQbdq00WWXXXbWti+99JKKi4tdY+3Vq9f5GCIAAADgtToXpoy8Ewq151frPQa1dAafo7mm7H8N13+uCa7U9cLseTLyTlTqGuezmt+ZSl/bu+eee845MzZlyhSVlJS4XlUcPHhwdQ8PAAAA8EmdK0Ch4urfAHdER3/9fWmR5u0t0T/KyQLlVfO7/vM8BVidgaNnE4veHXYyiJU4A+CZ1fxSU1MlSffdd59rA9zqrOa3Z88eSdL777+vhIQE1/HTq/mdbsOGDdq4caOsVqvuuuuuCt2zuLhYS5cuVVBQkK688kqvxgsAAACcL3UvTNnLLghRlXo0sWpAnFUrk+1eV/PbcOTU+qqg0//tlBRJKr+a37Zt21zfz0c1v5SUFFeZdMm9mt/pSmelrrzySjVt2rRC90xISNDx48d19913KyoqyqvxAgAAAOeLYZpm5XaWPQ9sNpsiIiKUlZWl8PDwc3c4m4wD0qT4qhnYWXy9rVg3f5WvJ/sF6I0rgyp/wcc3S/Wb+9S1qKhIUVFR6tixo9atW1cjRSi8cd111+nHH39UUlKSunfvXtPDAQAAQC1Spdmgkurcmin5h5yX2/yhk78uirNWupqfi5/v665qupqfN9atW6eEhASNGjWKIAUAAIBare6FqXoNpYDQ83Krt68OqnQ1P0lSQJhz3D6q6Wp+3hg7dqzCwsI0fvz4mh4KAAAAcFZ1b82UYUhNuss8sFzVPUfTo4lV9r9WburRlGQ07e4cdx0wf/78mh4CAAAAUCF1b2ZKkpr1kmH5beRIw+InxbLXEgAAAFDbeBWmJk+erPj4eIWHhys8PFz9+/fXzz//fNY+X331lTp27KigoCB17dpVP/30U6UGXCWadJccnmXJayVHidS0e02PAgAAAMAZvApTzZo104QJE5SYmKj169dr8ODBGj58uLZu3Vpm+5UrV+q2227T6NGjtWHDBo0YMUIjRozQli1bqmTwPmt1mfQbmZmSxU9qeWlNjwIAAADAGSpdGj0qKkoTJ04sc/+iW265Rbm5uW6bu/br10/du3fXe++9V+F7VEv5w1n3SltnSQ7PvZ5qDYuf1OUm6cYPanokAAAAQK3wuyiNbrfb9cUXXyg3N1f9+/cvs82qVas8KshdeeWVWrVq1VmvXVhYKJvN5vapchfeW7uDlOR8xa/PvTU9CgAAAABl8DpMbd68WaGhoQoMDNT999+v2bNnq1OnTmW2PXLkiGJiYtyOxcTE6MiRI2e9x/jx4xUREeH6xMXFeTvMc2vWR4ruLBm1tAaHYZFiukjNetf0SAAAAACUwesk0aFDB23cuFFr1qzRAw88oFGjRmnbtm1VOqixY8cqKyvL9UlOTq7S60tylhof/IJkVsGGutXBdEiD/lJnSqIDAAAAvzVeV2EICAhQ27ZtJUm9evXSunXrNGnSJL3//vsebRs3bqy0tDS3Y2lpaWrcuPFZ7xEYGKjAwEBvh+a9jtdIXf4gbZ0tmbXolT/DKnW50Tk+AAAAALVSpd9xczgcKiwsLPNc//79tWDBArdj8+bNK3eNVY24ZqIUFKHas+WWxTmeq/9Z0wMBAAAAcBZezUyNHTtWV199tZo3b67s7GzNnDlTixcv1pw5cyRJI0eOVGxsrMaPHy9Jeuyxx3TZZZfpjTfe0LBhw/TFF19o/fr1+uCDWlSdLiRKuv5t6b931PRITnJIw//jHBcAAACAWsur6ZijR49q5MiR6tChgy6//HKtW7dOc+bM0dChQyVJBw8eVGpqqqv9gAEDNHPmTH3wwQfq1q2bvv76a3377bfq0qVL1T5FZV1wrTT4xZoehdPlf5U6DqvpUQAAAAA4h0rvM3U+nJda8qYpLfi7tPxf1XP9irj4SWeYougEAAAAUKbfxT5TvzuG4Qwyl//15IHz9ac5eZ/L/yYN+RtBCgAAAPiNIEydzjCkS56Sbp0pBdd3VtWr1vtZnfe5daZ0yZPVey8AAAAAVYowVZaOw6RHEqXONzh/V/XGvqXX63Kj8z6skQIAAAB+cwhT5QmJkv7wkXPWqNEFzmMWr7flclfav9EF0q2fSzdNoWofAAAA8BtVyXRQB3QcJnW4RkpZL637UNoyS3KUOIORo+Tc/UvbWfylLjdJF94rxfZibRQAAADwG0eYqgjDkOL6OD9Xjpf2L5UOb5AOJTn/WZTj2ScgVGrawxmcmnaXWl4q1Wtw3ocOAAAAoHoQprxVr4FzLVXpeirTlHKPSyX5UkmR5Bcg+QVL9Roy+wQAAAD8jhGmKsswpNBGNT0KAAAAAOcZBSgAAAAAwAeEKQAAAADwAWEKAAAAAHxAmAIAAAAAHxCmAAAAAMAHhCkAAAAA8AFhCgAAAAB8QJgCAAAAAB8QpgAAAADAB4QpAAAAAPABYQoAAAAAfECYAgAAAAAfEKYAAAAAwAeEKQAAAADwAWEKAAAAAHxAmAIAAAAAHxCmAAAAAMAHhCkAAAAA8AFhCgAAAAB8QJgCAAAAAB8QpgAAAADAB4QpAAAAAPABYQoAAAAAfECYAgAAAAAfEKYAAAAAwAeEKQAAAADwAWEKAAAAAHxAmAIAAAAAHxCmAAAAAMAHhCkAAAAA8AFhCgAAAAB8QJgCAAAAAB8QpgAAAADAB4QpAAAAAPABYQoAAAAAfECYAgAAAAAfEKYAAAAAwAeEKQAAAADwAWEKAAAAAHxAmAIAAAAAHxCmAAAAAMAHhCkAAAAA8AFhCgAAAAB8QJgCAAAAAB8QpgAAAADAB4QpAAAAAPABYQoAAAAAfECYAgAAAAAfEKYAAAAAwAeEKQAAAADwAWEKAAAAAHxAmAIAAAAAHxCmAAAAAMAHhCkAAAAA8AFhCgAAAAB8QJgCAAAAAB8QpgAAAADAB4QpAAAAAPABYQoAAAAAfECYAgAAAAAfEKYAAAAAwAeEKQAAAADwAWEKAAAAAHxAmAIAAAAAHxCmAAAAAMAHhCkAAAAA8AFhCgAAAAB8QJgCAAAAAB8QpgAAAADAB4QpAAAAAPABYQoAAAAAfECYAgAAAAAfEKYAAAAAwAeEKQAAAADwAWEKAAAAAHxAmAIAAAAAHxCmAAAAAMAHXoWp8ePHq0+fPgoLC1N0dLRGjBihnTt3nrXPtGnTZBiG2ycoKKhSgwYAAACAmuZVmFqyZIkeeughrV69WvPmzVNxcbGuuOIK5ebmnrVfeHi4UlNTXZ8DBw5UatAAAAAAUNP8vGn8v//9z+33tGnTFB0drcTERF166aXl9jMMQ40bN/ZthAAAAABQC1VqzVRWVpYkKSoq6qztcnJy1KJFC8XFxWn48OHaunXrWdsXFhbKZrO5fQAAAACgNvE5TDkcDj3++OO66KKL1KVLl3LbdejQQR9//LG+++47ffbZZ3I4HBowYIBSUlLK7TN+/HhFRES4PnFxcb4OEwAAAACqhWGapulLxwceeEA///yzli9frmbNmlW4X3FxsS644ALddtttevnll8tsU1hYqMLCQtdvm82muLg4ZWVlKTw83JfhAgAAAPgdsNlsioiIqBXZwKs1U6UefvhhJSQkaOnSpV4FKUny9/dXjx49tHv37nLbBAYGKjAw0JehAQAAAMB54dVrfqZp6uGHH9bs2bO1cOFCtWrVyusb2u12bd68WU2aNPG6LwAAAADUFl7NTD300EOaOXOmvvvuO4WFhenIkSOSpIiICAUHB0uSRo4cqdjYWI0fP16S9Pe//139+vVT27ZtlZmZqYkTJ+rAgQMaM2ZMFT8KAAAAAJw/XoWpyZMnS5IGDhzodnzq1Km66667JEkHDx6UxXJqwisjI0P33nuvjhw5osjISPXq1UsrV65Up06dKjdyAAAAAKhBPhegOJ9q0yIzAAAAADWnNmWDSu0zBQAAAAB1FWEKAAAAAHxAmAIAAAAAHxCmAAAAAMAHhCkAAAAA8AFhCgAAAAB8QJgCAAAAAB8QpgAAAADAB4QpAAAAAPABYQoAAAAAfECYAgAAAAAfEKYAAAAAwAeEKQAAAADwAWEKAAAAAHxAmAIAAAAAHxCmAAAAAMAHhCkAAAAA8AFhCgAAAAB8QJgCAAAAAB8QpgAAAADAB4QpAAAAAPABYQoAAAAAfECYAgAAAAAfEKYAAAAAwAeEKQAAAADwAWEKAAAAAHxAmAIAAAAAHxCmAAAAAMAHhCkAAAAA8AFhCgAAAAB8QJgCAAAAAB8QpgAAAADAB4QpAAAAAPABYQoAAAAAfECYAgAAAAAfEKYAAAAAwAeEKQAAAADwAWEKAAAAAHxAmAIAAAAAHxCmAAAAAMAHhCkAAAAA8AFhCgAAAAB8QJgCAAAAAB8QpgAAAADAB4QpAAAAAPABYQoAAAAAfECYAgAAAAAfEKYAAAAAwAeEKQAAAADwAWEKAAAAAHxAmAIAAAAAHxCmAAAAAMAHhCkAAAAA8AFhCgAAAAB8QJgCAAAAAB8QpgAAAADAB4QpAAAAAPABYQoAAAAAfECYAgAAAAAfEKYAAAAAwAeEKQAAAADwAWEKAAAAAHxAmAIAAAAAHxCmAAAAAMAHhCkAAAAA8AFhCgAAAAB8QJgCAAAAAB8QpgAAAADAB4QpAAAAAPABYQoAAAAAfECYAgAAAAAfEKYAAAAAwAeEKQAAAADwAWEKAAAAAHxAmAIAAAAAHxCmAAAAAMAHhCkAAAAA8AFhCgAAAAB8QJgCAAAAAB8QpgAAAADAB4QpAAAAAPABYQoAAAAAfECYAgAAAAAfEKYAAAAAwAdehanx48erT58+CgsLU3R0tEaMGKGdO3ees99XX32ljh07KigoSF27dtVPP/3k84ABAAAAoDbwKkwtWbJEDz30kFavXq158+apuLhYV1xxhXJzc8vts3LlSt12220aPXq0NmzYoBEjRmjEiBHasmVLpQcPAAAAADXFME3T9LXzsWPHFB0drSVLlujSSy8ts80tt9yi3NxcJSQkuI7169dP3bt313vvvVeh+9hsNkVERCgrK0vh4eG+DhcAAADAb1xtygaVWjOVlZUlSYqKiiq3zapVqzRkyBC3Y1deeaVWrVpVbp/CwkLZbDa3DwAAAADUJj6HKYfDoccff1wXXXSRunTpUm67I0eOKCYmxu1YTEyMjhw5Um6f8ePHKyIiwvWJi4vzdZgAAAAAUC18DlMPPfSQtmzZoi+++KIqxyNJGjt2rLKyslyf5OTkKr8HAAAAAFSGny+dHn74YSUkJGjp0qVq1qzZWds2btxYaWlpbsfS0tLUuHHjcvsEBgYqMDDQl6EBAAAAwHnh1cyUaZp6+OGHNXv2bC1cuFCtWrU6Z5/+/ftrwYIFbsfmzZun/v37ezdSAAAAAKhFvJqZeuihhzRz5kx99913CgsLc617ioiIUHBwsCRp5MiRio2N1fjx4yVJjz32mC677DK98cYbGjZsmL744gutX79eH3zwQRU/CgAAAACcP17NTE2ePFlZWVkaOHCgmjRp4vr897//dbU5ePCgUlNTXb8HDBigmTNn6oMPPlC3bt309ddf69tvvz1r0QoAAAAAqO0qtc/U+VKbaskDAAAAqDm1KRtUap8pAAAAAKirCFMAAAAA4APCFAAAAAD4gDAFAAAAAD4gTAEAAACADwhTAAAAAOADwhQAAAAA+IAwBQAAAAA+IEwBAAAAgA8IUwAAAADgA8IUAAAAAPiAMAUAAAAAPiBMAQAAAIAPCFMAAAAA4APCFAAAAAD4gDAFAAAAAD4gTAEAAACAD/xqegC/FaZpKt+WpeLCQtlLSmT185N/YKCCwyNkGEZNDw8AAADAeUaYKkeeLUvJW39R2t7dSt39q9L27lZxQb5HO/+gYMW0bqsmbdsrpnVbxXWOV0h4RA2MGAAAAMD5RJg6jWmaSt21Qxvn/Kidq5bJYbfLYrXKYbeX26e4IF8p2zbr8M5trvYdBlyq7lcMU5N2HZi1AgAAAH6nCFMn7V63Wiv++6mOJx+QYbHKdDgD1NmC1OlK2znsdu1YsVTbly1Sw+YtddEtd6pt777VNm4AAAAANcMwTdOs6UGci81mU0REhLKyshQeHl6l187Ptmnh1Pe0Y8VSGYahqvxzlF6v40WXavDd9ys4rGrHDgAAANQ11ZkNvFWnZ6Z2rVulue+/pcLcXEmq0iB1+vV2rlqu/b9s1BX3PaJ2ffpX6T0AAAAA1Iw6WRrdNE2tmf2lvn/9FRXk5Mh0OKr3fg6HCnKy9f3rr2jN7C+rPLQBAAAAOP/qXJgyTVPLP5+u5V98Unqg0tc8lJGlP3/1o2YnbfE4tz31qOZs+VUfLV2rv38/X/1uvEUWi0XJycnnvG5RUZFee+01devWTfXq1VNkZKQGDhyor7/+utJjPlNycrLef/99/elPf1KvXr0UGBgowzA0ZsyYs/Y7ceKEpk2bpkceeUQDBgxQSEiIDMPQkCFDztpvzJgx8vPz0+bNm6vyMQAAAIDzps695rf226+09ruqDSOzN2yVv9WqIZ3aeZybsXqDCopLPI5v/F+C4u59oNxr5uXlaejQoVq5cqXq16+vq666Sjk5OVq4cKGWLFmip556Sq+//nqVPcOsWbP0xBNPeN1v2bJluvvuu73uN27cOM2YMUOPPvqoFi1a5HV/AAAAoKbVqZmpXetWnZqRqiKbklO1/3iGBrRpobCgQI/zXWMb6+quHXTvpRdq3PWnZmvWfv+1dq9bXe51n3/+ea1cuVJdu3bVrl27NGvWLM2ZM0erV69WaGio3njjDSUkJFTZc7Rq1UqPPPKIpk6dqk2bNukvf/lLhfrFxMTovvvu0/vvv69169bpvffeq1C/Zs2aacyYMVq8eLG+//77ygwdAAAAqBF1JkzlZ9s09/23pCre92nZr/skSRe2iivz/C0XdtPlF7RVh8aNFHp62DIMzXl/kvKzbR59MjIyNHnyZEnS5MmT1bBhQ9e5Xr166dlnn5UkvfLKK1X1GBo+fLjeeust3XXXXYqPj5efX8UmLfv376/33ntPf/rTn9S7d28FBnoGyvKMHj1akvTmm2/6MmQAAACgRtWZMLVw6nvOqn1VWPzhUEaW9p/IUIsG9RUdHupdZ9NUYW6uFk593+PUTz/9pKKiIjVv3lwXXXSRx/nbb79dkrR69WodPnzYp7HXBt27d1e3bt20aNEibd++vaaHAwAAAHilToSp3etWa8eKpVVetW/LoTRJUrvohudoWTbT4dCOFUu0e/0at+MbNmyQJPXu3bvMfq1bt1ZUVJQkaePGjT7du7YYOnSoJOnbb7+t2YEAAAAAXvrdhynTNLXiv5/KqOLX+yRp99HjkqQWDSN9voZhGFrx30/dyqXv2+d8dbB58+bl9mvWrJlb29+qAQMGSJIWLFhQwyMBAAAAvPO7D1Opu3boePKBatnb6VCmc71TdJiXr/idxjRNHT+4X6m7drqOZWdnS5Lq1atXbr/QUOc9bTbPNVe/JZ07d5YkJSUl1fBIAAAAAO/87sPUxjk/yrBYq/y6hSUlKiqxS5LqBfpX6lqGxaqNc3+simH95jRo0ECSs+hGUVFRDY8GAAAAqLjfdZjKs2Vp56plMh32Kr/26XtHBVaw8l15TIddO1cuVZ4tS5IUFhYmScrNzS23T05OjiQpPDy8UveuaaePPzMzs+YGAgAAAHjpdx2mkrf+Ioe96oOUJAX7n5qNKizx3JTXWw67XclbN0uSWrZsKUk6ePBgue1TUlLc2v5WZWVlub5HRvq+9gwAAAA4337XYSpt725ZrFX/ip8kBfhZFeDnvHZuYXGlr2exWpW2b7ckqWfPnpKk9evXl9l27969Sk9PlyT16NGj0veuSSdOnJDkDFL+/pV7XRIAAAA4n37XYSp1985qm5mSpNj6EZKkNFt2pa/lsNt1ZLezCMU111yjgIAAHTx4UCtWrPBoO3PmTElSv3791LRp00rfuyZt2bJFknMzYgAAAOC35HcbpkzTVNrePdV6j7bRzuIJB05kVsn10vbulmmaioyM1AMPPCBJevDBB12zN5Kz6t1rr70mSfrLX/7icY1p06bJMIzfzOt/K1eulCQNHjy4hkcCAAAAeKdylRNqsXxblooL8qv1Hl1iYzRv2y79mnZcV3ftUGabeVt3aXvqUY/jU5evl9XizLKxkeG6qVdXFeXnK9+WpZCI+nr11Ve1du1arVq1Su3atdPgwYOVm5urBQsWqLi4WE8++aSuvfZaj+s6Tm5M7O0rc6mpqbrhhhtcv0vXZH3//ffq16+f6/i7777reg2x1Onnjx07Jklat26d2/EXX3xRw4YN87jv/PnzJUnDhw/3arwAAABATfvdhqniwsJqv0dsZIRaNojU/hMZSrNlKyY8zKPNidw8HUzP9DheukeVJPlZT00QlpwsDx4SEqLFixfrX//6l2bMmKGffvpJAQEB6t+/vx5++GHdfPPNZY4pMTFRkjR69GivnqWwsFBr1qzxOH7s2DFXQJLK3teqrH42m83t+OnXKLVhwwb98ssvGjRokDp16uTVeAEAAICa9rsNU/YqqLBXEZe0b6X9qzK0Zm+yru/uGQhuvbCbbr2wW4WvV1J8qphFQECAnnvuOT333HMV7j937lzFxsbqscceq3AfyVkV0NeNjX3t9/HHH0uSHn/8cZ/6AwAAADXpd7tmylrJvZ8qqltcE7VsGKnVew8qu6Dys2F+lahot3//fu3evVvjxo1TcHBwpcdSnZKTkzVlyhQNHDhQ119/fU0PBwAAAPDa7zZM+QcGnrd73dCjs4rtds3btqvS1/ILCPC5b+ns0pgxYyo9jur20ksvqbi4WJMmTarpoQAAAAA+MUxf39E6j2w2myIiIpSVlaXw8PAK9TFNU2/f9X/VXoSiKgUEB+vhqV/KMIyaHgoAAABQK/mSDarL73ZmyjAMxbRuU9PD8EpM67YEKQAAAOA34ncbpiSpSdsOslitNT2MCrFYrWrctuzy6gAAAABqn991mIpp3VYOu72mh1EhDrtdMa3a1vQwAAAAAFTQ7zpMxXWO/03NTMV17lrTwwAAAABQQb/rMBUSHqEO/S+RYandgcqwWNVhwKUKCY+o6aEAAAAAqKDfdZiSpO5XDpPpqN2v+pkOu7pfMaymhwEAAADAC7/7MNWkXUc1bN6y1lbJMwxDDZu3VJN2FJ8AAAAAfkt+92HKMAxddMudqq3baZmmqYtuubPWhj0AAAAAZfvdhylJatu7rzpedKkMS+16XMNiUceLLlPb3n1reigAAAAAvFS70kU1Gnz3/QqsV0+qLTNAhqHAeqEafPd9NT0SAAAAAD6oM2EqOCxcV9z3qFRbXvczTV1536MKDguv6ZEAAAAA8EGdCVOS1K5Pf11868iaHoYk6eJbR6ptn341PQwAAAAAPqpTYUqSLhxxsy4ccXOdHwMAAACAyvGr6QGcb4Zh6OJbRyogKFjLv/jEuYbqfLz6d/I+F982Sn0JUgAAAMBvXp0LU5IzUPW94f/UoFlzzXl/kgpzc2U6HNV3P4tFgfVCdeV9j/JqHwAAAPA7USfDVKm2ffoptmMnLZz6nnasWCrDMKp0P6rS63Xof4kG33O/gkPDquzaAAAAAGpWnQ5TkrPK37BHn1GH/pdqxZef6fjB/TIsVpkOu8/XLO3fIK6FLrrlTvaRAgAAAH6H6nyYKtW2Tz+16d1Xqbt2auPcH7Vz5VI57HZZrFY57OcOVqXtLFarOg64VN2vvFaN27aXUVv2tQIAAABQpQyzKt9rqyY2m00RERHKyspSePj52Zcpz5al5K2blbZ3l47s+VVH9uxWcUG+Rzv/oGA1btNWjdt2UEyrtorr3FUh4RHnZYwAAABAXVMT2aA8zEyVIyQ8Qh36X6wO/S+WJJmmqXxblkqKilRSXCw/f3/5BQQoODyC2ScAAACgDiJMVZBhGAqJqF/TwwAAAABQS9S5TXsBAAAAoCoQpgAAAADAB4QpAAAAAPABYQoAAAAAfECYAgAAAAAfEKYAAAAAwAeEKQAAAADwAWEKAAAAAHxAmAIAAAAAHxCmAAAAAMAHhCkAAAAA8AFhCgAAAAB8QJgCAAAAAB8QpgAAAADAB4QpAAAAAPABYQoAAAAAfECYAgAAAAAfEKYAAAAAwAeEKQAAAADwAWEKAAAAAHzgdZhaunSprrvuOjVt2lSGYejbb789a/vFixfLMAyPz5EjR3wdMwAAAADUOK/DVG5urrp166Z33nnHq347d+5Uamqq6xMdHe3trQEAAACg1vDztsPVV1+tq6++2usbRUdHq379+l73AwAAAIDa6LytmerevbuaNGmioUOHasWKFWdtW1hYKJvN5vYBAAAAgNqk2sNUkyZN9N5772nWrFmaNWuW4uLiNHDgQCUlJZXbZ/z48YqIiHB94uLiqnuYAAAAAOAVwzRN0+fOhqHZs2drxIgRXvW77LLL1Lx5c3366adlni8sLFRhYaHrt81mU1xcnLKyshQeHu7rcAEAAAD8xtlsNkVERNSKbOD1mqmqcOGFF2r58uXlng8MDFRgYOB5HBEAAAAAeKdG9pnauHGjmjRpUhO3BgAAAIAq4fXMVE5Ojnbv3u36vW/fPm3cuFFRUVFq3ry5xo4dq0OHDumTTz6RJL355ptq1aqVOnfurIKCAk2ZMkULFy7U3Llzq+4pAAAAAOA88zpMrV+/XoMGDXL9fvLJJyVJo0aN0rRp05SamqqDBw+6zhcVFempp57SoUOHFBISovj4eM2fP9/tGgAAAADwW1OpAhTnS21aZAYAAACg5tSmbFAja6YAAAAA4LeOMAUAAAAAPiBMAQAAAIAPCFMAAAAA4APCFAAAAAD4gDAFAAAAAD4gTAEAAACADwhTAAAAAOADwhQAAAAA+IAwBQAAAAA+IEwBAAAAgA8IUwAAAADgA8IUAAAAAPiAMAUAAAAAPiBMAQAAAIAPCFMAAAAA4APCFAAAAAD4gDAFAAAAAD4gTAEAAACADwhTAAAAAOADwhQAAAAA+IAwBQAAAAA+IEwBAAAAgA8IUwAAAADgA8IUAAAAAPiAMAUAAAAAPiBMAQAAAIAPCFMAAAAA4APCFAAAAAD4gDAFAAAAAD4gTAEAAACADwhTAAAAAOADwhQAAAAA+IAwBQAAAAA+IEwBAAAAgA8IUwAAAADgA8IUAAAAAPiAMAUAAAAAPiBMAQAAAIAPCFMAAAAA4APCFAAAAAD4gDAFAAAAAD4gTAEAAACADwhTAAAAAOADwhQAAAAA+IAwBQAAAAA+IEwBAAAAgA8IUwAAAADgA8IUAAAAAPiAMAUAAAAAPiBMAQAAAIAPCFMA8P/t3Xd4HNXVx/HvbNOqd8tNLsK9F1xptikGGwIGEggJLSYhCRBKEmoSIAmYFAIEeAMpxCSE3rGxKaZjg3GXe5ObrN7L9p33j5VkyZJslVWx/fvw7GNp5t6Zs6OV2LP3zrkiIiIibaBkSkREREREpA2UTImIiIiIiLSBkikREREREZE2UDIlIiIiIiLSBkqmRERERERE2kDJlIiIiIiISBsomRIREREREWkDJVMiIiIiIiJtoGRKRERERESkDZRMiYiIiIiItIGSKRERERERkTZQMiUiIiIiItIGSqZERERERETaQMmUiIiIiIhIGyiZEhERERERaQMlUyIiIiIiIm2gZEpERERERKQNlEyJiIiIiIi0gZIpERERERGRNlAyJSIiIiIi0gZKpkRERERERNpAyZSIiIiIiEgb2Lo6AGnMNE1cFT783gDBgInFamBzWImMtWMYRleHJyIiIiIiKJnqFlyVXg5sLaFgXwV5e8op2FuBzxNo1M4eYSW1fyxpA+JI7RdL32GJRMY4uiBiERERERFRMtVFTNMkL6uczE8OsHNVPsGgicViEAyazfbxeQIc3F5K7s6yuvaDTu7B6Bl9SRsYp1ErEREREZFOpGSqC+xeV8DXb++m+GAVhsXArEmgjpRI1Res137Hqny2r8wjuU80U76VwcCxqR0Wt4iIiIiIHKJkqhO5K3189tJ2dnyTBzWDSGYLE6jm1PYvOljFu3/LZPCkNE6/bAjOGHt7wxURERERkSNQMtVJdq8r4OP/bsXj8oU2tC+HaqzmeDtX57F/czEzrxxGxjiNUomIiIiIdBSVRu9gpmmyaskeljyVibvahxns4PMFwV3tY8lTmaxeugfTDHfWJiIiIiIioGSqQ5mmyVdv7ubrt3bXbOisE4f++erN3Xz11m4lVCIiIiIiHUDJVAdavXQva97bG9Zj7i/cwU1/P5uXv3i8yf2b93/D/717F3c8O49b/nEu5195Cpee/30OHDgQ1jgA1qxZw5///Ge++93vMmTIECwWC4Zh8Nxzz7Wo/yuvvMKMGTNITEwkOjqasWPH8sc//hGfz9dk+7POOou4uDhyc3PD+TRERERERNpEyVQH2b2u4NCIVBi98uUT2K0Ozpv4/Ub7Fn3zb/7v3TvZvH8lSTFpjOo/FZvVzuvvPs/IEaNYu3ZtWGP57W9/yy9/+UtefPFFduzY0aoRsFtuuYXvfOc7fPnll0yePJlzzz2Xffv2cccddzBr1ixcLlejPg899BAVFRXcdddd4XwaIiIiIiJt0upk6rPPPuOCCy6gd+/eGIbBm2++edQ+n3zyCRMmTCAiIoJBgwaxcOHCNoR67HBX+vj4v1vrKvaFy9rdn7I7dyOnj/wWsZGJDfZt2vc1S9c8h2FYmH/2b7jjkqe47pz7+PVlC5lz8tWUV5Rx8cWX4PF4whbP1KlTufvuu3n11VfZtWsXZ5xxRov6vfnmmzz22GPExMTw9ddf89577/Haa6+xY8cORo8ezRdffMGvf/3rRv1OPvlkzj//fJ599lnWr18ftuchIiIiItIWrU6mqqqqGDt2LE8++WSL2mdlZTF37lxmzpzJunXruOWWW7juuut47733Wh3sseKzl7aHqvaF+Valjze8BsC0YXMa78t8HYDJg89ifMahpMYwDM6bcCXpKYPZsyerxVPwWuLOO+/kgQce4JJLLiEjI6PF/R588MG6/hMmTKjbnpKSwv/93/8B8MQTT1BWVtao7/z58zFNk8cee6yd0YuIiIiItE+rk6nzzjuP3//+98ybN69F7Z966ikGDhzIww8/zPDhw7nxxhu59NJLeeSRR1od7LFg97oCdnyTF/aqffsLd7A7bxMDegwnLSG90f59BdsAGNpnQqN9hmEwtM94AP777+fDG1grZWdn88033wBwxRVXNNp/6qmnkp6ejsfj4d133220f+7cuaSkpPDCCy9QXFzc4fGKiIiIiDSnw++ZWrFiBWeddVaDbbNnz2bFihXN9vF4PJSXlzd4HAtM0+Trt3eHfXofwIasLwEY1ndik/s9vtA9RtHOuCb3RzvjAVi7bm2XVvervW8rKSmJgQMHNtnm5JNPbtC2PrvdzowZM3C73cf16KaIiIiIdH8dnkzl5uaSlpbWYFtaWhrl5eVNFhkAWLBgAfHx8XWP9PTGIzHdUV5WOcUHqzqkBPr2g6HEYmDaiCb3x0YmAFBYntPk/trt5VUlZG1quk1nyMrKAqBfv37Ntqn9ede2Pdz06dMBWLZsWZijExERERFpuW5Zze+uu+6irKys7rF///6uDqlFMj85gGHpgGEpYH/hTgDSEppOQob0Dk3jW7FtSaORp2pPBWt3f1r3/cr3t3dIjC1RUVEBQHR0dLNtYmJiAJodkRw5ciQQKs0uIiIiItJVOjyZ6tmzJ3l5eQ225eXlERcXR2RkZJN9IiIiiIuLa/Do7lyVXnauyscMhn9YyuNz4fW7gean8Z097nLsVgcHCnfyj/fv5WBxFh6fi925m3h80e110wAB9m4owlXpDXucnSU5ORmg0etKRERERKQz2Tr6BNOmTWtUSOCDDz5g2rRpHX3qTnVgawnBDkikAFzeqrqvnfaoJtv0ShrAdefcx8JlD7Jhz5ds2PNl3b6oiFgunvYTXvnycQwMnPYYsreVMmhijw6J90hiY2OBUFXI5lRWVgI0m0TXbi8pKQlzdCIiIiIiLdfqZKqyspKdO3fWfZ+VlcW6detISkqiX79+3HXXXWRnZ/Of//wHgB//+Mc88cQT3H777fzgBz/go48+4uWXX2bx4sXhexbdQMG+CiwWo0MSqihHTN3Xbl81kY6mp8iN7DeF+6/4H+t2f0p2cRbBYICeif2ZeNJM9hfuAKBHQl8cdgcF+8q7JJkaMGAAwBGnbtbuq217uNqS6YmJiU3uFxERERHpDK1OplatWsXMmTPrvr/tttsAuPrqq1m4cCE5OTns27evbv/AgQNZvHgxt956K4899hh9+/bln//8J7Nnzw5D+N1H3p7yDhuZctidOGxOvH43Ve7yZpMpgKiIGKYPn9to+67cTACG9plIMGiSl9U1FRLHjw/d21VUVERWVlaTFf1WrVoF0GANqvqKiooAGhU2ERERERHpTK1OpmbMmHHE0toLFy5ssk9TZa6PF6ZpUrC3okPPkZ4ymF25meSW7CUlrler+ro8lSzf+i4Ww8JpIy8AIH9fBaZpYhgdUzCjOX379mXSpEl88803PP/889xzzz0N9n/xxRfs37+fiIgI5sxpvDgxwMaNGwGYOLHpMvEiIiIiIp2hW1bzO9a4Knz4PIEOPceQ3uMAyMrb3GybPflbGyW6JZUFPP3erymvLuassZfRK3EAAD53AFeFD4BrrrkGwzC45pprOiL0Ru6++24AHnrooQYV+YqKivjpT38KwI033kh8fHyT/ZcvXw7ArFmzOjhSEREREZHmdXgBihOB39uxiRTAmIGnsGTNf9mavZoL+EGTbZ5cfDsOm5NeSQOJccZTVl1IVu5m/EEfpwyfy/mTG/bz+0JxB4NBILQgbmssXryY3/3ud3Xfb94cSvTuu+8+nnjiibrtX331VYN+F110ET/72c/461//ytSpUznzzDOJjo5m2bJllJaWcsoppzQ4bn0+n4/PPvsMp9N53E0VFREREZFji5KpMAgGOuZeqfrSUwaTkTaS3XmbyC3ZS8/E/o3azBh1MVsOrOJA4Q5c3iqinXGM7DeFU0dcwPD0kxvH7Q/FvXr1agDmz5/fqpgKCgr4+uuvG23ftWsXu3btOmLfxx57jFNOOYUnn3yS5cuX4/P5OOmkk7jzzju59dZbcTgcTfZbtGgRhYWFXHvttSQlJbUqXhERERGRcDLMI90A1U2Ul5cTHx9PWVlZt1xzqrzQxX9/taLDz7N296f864PfMmvMpVw87SftPt6VD0yjwl1M3759mTdvHq+//noYouxYF1xwAYsXL2bNmjWMGzeuq8MRERERkU7WnXID3TMVBjaHtVPOMz7jDDJ6juKLzYsory5u9/Fsdivvv/8+VquVBx98MAwRdqxvvvmGRYsWcfXVVyuREhEREZEup2QqDCJj7dgjOieh+vYpN+ILeFm65rl2HcfutBIZa+faa6/F7/czbNiwMEXYce666y5iY2NZsGBBV4ciIiIiIqJ7psLBMAxS+8dycHtph58rPWUwj//og3Yfp0e/2E4vi95eH374YVeHICIiIiJSRyNTYZI2IA6L5dhITiwWg7SB3e/eMxERERGRY4mSqTBJ7RdLMNjta3kAEAyapPZTMiUiIiIi0h5KpsKk77DEY2pkqs/QhK4OQ0RERETkmKZkKkwiYxwMOrkHRjdPqAyLwaCTexAZ0/Q6TiIiIiIi0jJKpsJo9Iy+mN18qp8ZNBk9o29XhyEiIiIicsxTMhVGaQPjSO4TDd11cMqA5D7RKj4hIiIiIhIGSqbCyDAMpnwrA7rr4JQJU76VccyVRBcRERER6Y6UTIXZwLGpDJ6UhtHNrqxhgcGT0hg4NrWrQxEREREROS50s7f8x4fTLxtCRKS9+0z3MyAi0s7plw3p6khERERERI4bSqY6gDPGzswrh3Wf6X4mzLxyGM4Ye1dHIiIiIiJy3FAy1UEyxqUy5cKMrg4DgKkXZZAxTtP7RERERETCSclUB5p4bn8mnNu/S2OYcG5/Jszu2hhERERERI5Htq4O4HhmGAZTL8zA4bTy1Zu7Q/dQdcbUv5rzTL0og4nnDuiEE4qIiIiInHiUTHUwwzCYeO4AEntG8/F/t+Jx+TCDHXg+S6jYxMwrh2lqn4iIiIhIB1Iy1UkyxqXSe1ACn720nR3f5IV/lKrmeIMmpnH65UNwRqvYhIiIiIhIR1Iy1YmcMXbOmT+SQRN7sPKd3RRlV2FYDMxg27Oq2v7JvaOZ8q0MrSMlIiIiItJJlEx1gYxxqQwcm0JeVjmZnxxg56p8gkETi9UgGDh6YmWxGHXtB5+cxqgZfUgbEIdhdJeFrUREREREjn9KprqIYRj0zIinZ0Y8p35nMNnbSsnfW07+nnLy91bg8wQa9bFHWOnRP5a0gXGk9oujz9AEImMcXRC9iIiIiIgomeoGImMcDJrYg0ETewBgmiauCh9+X4Cg38RiM7DZrUTG2jX6JCIiIiLSTSiZ6oYMwyAqTiNOIiIiIiLdmRbtFRERERERaQMlUyIiIiIiIm2gZEpERERERKQNlEyJiIiIiIi0gZIpERERERGRNlAyJSIiIiIi0gZKpkRERERERNpAyZSIiIiIiEgbKJkSERERERFpAyVTIiIiIiIibaBkSkREREREpA2UTImIiIiIiLSBkikREREREZE2UDIlIiIiIiLSBkqmRERERERE2kDJlIiIiIiISBsomRIREREREWkDJVMiIiIiIiJtoGRKRERERESkDZRMiYiIiIiItIGSKRERERERkTZQMiUiIiIiItIGSqZERERERETaQMmUiIiIiIhIGyiZEhERERERaQNbVwcgxx7TNAkUFxN0uTF9Xgy7A0ukE2tSEoZhdHV4IiIiIiKdQsmUHJW/pITqr77CvWkTrg2ZuDdtJFhV3aidJToK58hRRI4ZjXPkSKKmTsWWmNgFEYuIiIiIdDwlU9Ik0zRxrVtHyfMvUL5kCfj9YLOF/m1GsKqa6pUrqV6zpq593Jw5JF3xXZxjx2rUSkRERESOK0qmpJGKZcsoePQxPDt2gNUKgUBoxxESqQZq2/n9lC9eTPnbbxMxZAipt9xM7KxZHRO0iIiIiEgnUwEKqeMvKSH757/gwA034tm5M7SxNpFqq5r+nh07OPDTG8j++S/wl5S0M1IRERERka6nZEoAqPjwQ3afN4fypUtDG0wzvCeoOV75kiXsPm8OFR9+GN7ji4iIiIh0MiVTJzjTNCl86mkO3HgTgbKy9o9EHU0wSKCsjAM33kTh03/HDHfSJiIiIiLSSZRMncBM06TgL49Q8OijtRvafczNbjejtm3l93m5Te7/tLKSn+7fx2k7d9Drx9cTGxnJxIkT+f3vf09FRUW7z3+4LVu2cM0115Ceno7D4SAtLY2LL76Y5cuXN9m+rKyM5ORkpkyZokRPRERERI5IydQJrOjpv1P0j3+E9ZgP5ucRYRj8JDml0b6HC/L5SfYBPqmqopfdztmxsYy1Wtm6cSO//vWvmThxInl5eWGLZdGiRUycOJFnn30Wu93OBRdcwIABA3jzzTc57bTT+Ne//tWoT3x8PHfddRcrV67kP//5T9hiEREREZHjj2EeAx+/l5eXEx8fT1lZGXFxcV0dznGh4sMPOXDjTWE95nsV5dx68CA/SEziFz16NNi32e3m0r17sAFP9U1nenR03b5iv5+fYJK5axfXX389Tz31VLtjycvLY/DgwVRUVHDrrbfypz/9CavVCsDSpUu56KKLCAQCbNiwgeHDhzfo63a76devHzabjaysLCIiItodj4iIiIiER3fKDTQydQLyl5SQ86tfQ5jXffpPcahK3yUJ8Y32fV1dBcD06OgGiRRAkt3O1YRiWbFiRVhieeaZZ6ioqGDQoEH88Y9/rEukAM4991x++tOf4vf7efDBBxv1dTqdXHHFFeTk5PDSSy+FJR4REREROf4omToB5f3+AQIVFWGt2LfZ7Wat28VYp5OBjsYjORHGEV5qpknQ5QIgJaXx9MC2+OabbwA444wzsNkaL6d21llnAfDWW2/hb2L9rGuuuQaAJ598MizxiIiIiMjxR8nUCaZi2TLKFy8Oe9W+ZZWh4hHTDht1qjUtOgobsLyqiuVVVQ32Ffv9/KuoEICrTjklLPFUVlYCkJyc3OT+2qStoqKC7du3N9o/btw4UlNTWblyJTk5OWGJSURERESOL0qmTiCmaVLw6GNhn94H8HV1NQBjnZFN7h/oiODutDQArjuwn8v27uHnB7P54f79nL17F8X+AL/t2ZPT1q0PSxW9HjX3bO3evbvJ/fW3Z2VlNdlm2rRpACxbtqzd8YiIiIjI8UfJ1AnEtW4dnh07wr8gL7DF7QbgJIej2TaXJyTyt77pJFutZLrdLKmo4MvqKlymycSoSEZGOPFs3457/fp2xzNr1iwAFi9ezMGDBxvtf/rpp+u+Li8vb/IYI0eOBGDNmjXtjkdEREREjj9Kpk4gJc+/APUKMYRLdTCIqyZBSzjC8R8rKOCHB/Yz3Onk5f79WTV4CO8PzOBnKSksq6zke/v28qXLRfHzL7Q7piuuuILBgwfjcrk455xz+OSTT6isrGTr1q1cddVVfPLJJ3X3UlksTf8a1E4RDGe5dhERERE5fiiZOkH4S0ooX7Ik7PdKAVQGDx0zupnE5J3yMp4uLmJoRAT/16cvo5yRRFks9HU4+HFyCjcmp+A2Te7POUjJ4sX4S0raFZPT6eTdd99lxIgRbNq0iZkzZxIbG8vw4cN54YUXePjhh0lISAAgKSmpyWPUltosaWcsIiIiInJ8alzmTI5L1V99BU1UrQuHWMuh0aiqYJCYJkan3iwrA2B2bCy2Ju7ZmhsXxyOFBRzw+djvctHv66+JO/fcdsU1aNAg1q9fzzvvvMPy5cspKyujX79+XHrppfTv35/bb78dgNGjRzfZv6wm5sTExHbFISIiIiLHJyVTJwj3pk1gs3VIQhVpsRBpGLhMk9JAoMlkKscXOm9zI1ex9baX1cTb3mQKwGazMW/ePObNm9dg+7JlywgEAowaNYqePXs22beoqAiAtJrCGSIiIiIi9Wma3wnCtWFDh41MAYxwOgHY5fU2uT/NHsrbN7jcTe5f73bVfd3HYgnF24H+/Oc/A3DTTTc122bjxo0ATJw4sUNjEREREZFjk5KpE4BpmqGRqQ40OSoKgHUuV5P7z4mJBeDdinLePax63n6vlwX5+QBMjYoixWbDvXFTXYn0a665BsMw6hbSban169fjdjdM3qqrq7nppptYunQpp5xyCtddd12z/VesWAEcqgwoIiIiIlKfpvmdAALFxQSrqjv0HGfGxPK3oiKWV1dxM6mN9n87IYHPqyr5pKqKX+Qc5OmiIjIiHJT4A6x3u/CYJj1tNu5PC025C1ZVESguxpacTDAYBMBut7cqpnvvvZePPvqICRMm0KtXLyoqKli+fDklJSVMnjyZt99+u9lKfmvXrqWoqIjJkyfTq1evVl4NERERETkRKJk6AQSbmVoXTiOcTsY7I1nrdrHL4+GkiIgG+22GwZN9+vJ2eTlvl5ex1eMhq8KDw7Aw0OFgZkwMVyUmEV/vfiuzZlRp9erVAMyfP79VMV122WW43W4yMzNZsWIF0dHRjB49mu9973vMnz8f6xHKuC9cuBCAG264oVXnFBEREZETh2GaHbCCa5iVl5cTHx9PWVlZXblqaTlPVha7z5vT4ed5r6KcWw8e5OrERO7o0f6iDRlL3qXQ4aBv377MmzeP119/PQxRHp3b7SY9PR273U5WVhYRhyWGIiIiItJ1ulNuoHumTgCG3dEp55kdG8eEyEheLi2lMAzFLiwOB++//z5Wq5UHH3wwDBG2zOOPP05hYSELFixQIiUiIiIizVIydQKwRDo77Vx390jDY5o8VVTY7mMZTifXXnstfr+fYcOGhSG6oysrK+Ohhx5i8uTJXHXVVZ1yThERERE5NumeqROANSkJS3RUhxehgNC9UxuHtj/xsURHY01KCkNErRMfH1+3vpSIiIiIyJFoZOoEYBgGzpEjuzqMVnGOGolhGF0dhoiIiIhIs5RMnSAix4wB2zEyEGmzheIVEREREenGlEydIJwjR0IYikJ0Cr//mBtJExEREZETj5KpE0TU1KnH1MhU1JQpXR2FiIiIiMgRKZk6QdgSE4k77zw4wkK13YLVStycOdgSE7s6EhERERGRI1IydQJJvOK7EAh0dRhHFgiQdMV3uzoKEREREZGjalMy9eSTTzJgwACcTidTpkxh5cqVzbZduHAhhmE0eDidnbfukRwSOW4cEUOGQHetkmcYRAwdinPs2K6ORERERETkqFqdTL300kvcdttt3HvvvaxZs4axY8cye/Zs8vPzm+0TFxdHTk5O3WPv3r3tClraxjAMUm+5GUyzq0NpmmmSevPPVBJdRERERI4JrU6m/vKXv/DDH/6Qa6+9lhEjRvDUU08RFRXFM88802wfwzDo2bNn3SMtLa1dQUvbxc6aRdzcud3v3imLhbjz5xI7a1ZXRyIiIiIi0iKtSqa8Xi+rV6/mrLPOOnQAi4WzzjqLFStWNNuvsrKS/v37k56ezoUXXsimTZuOeB6Px0N5eXmDh4RP2q/uwRob232m+xkG1rg40u65p6sjERERERFpsVYlU4WFhQQCgUYjS2lpaeTm5jbZZ+jQoTzzzDO89dZbPPfccwSDQaZPn86BAweaPc+CBQuIj4+ve6Snp7cmTDkKW2IivX7/u+4z3c806fXA71XBT0RERESOKR1ezW/atGlcddVVjBs3jjPOOIPXX3+d1NRUnn766Wb73HXXXZSVldU99u/f39FhnnBizzqL1Ftu6eowAEi99VZizzyzq8MQEREREWmVVq3impKSgtVqJS8vr8H2vLw8evbs2aJj2O12xo8fz86dO5ttExERQURERGtCkzZIvv5HBKurKfr737suhh/9iOQf/bDLzi8iIiIi0latGplyOBxMnDiRZcuW1W0LBoMsW7aMadOmtegYgUCAzMxMevXq1bpIJewMwyD11ltIvfXW2g2ddWIAUm+7jR633arqfSIiIiJyTGrVyBTAbbfdxtVXX83JJ5/M5MmTefTRR6mqquLaa68F4KqrrqJPnz4sWLAAgN/+9rdMnTqVQYMGUVpayp/+9Cf27t3LddddF95nIm1iGAYp1/+IiEEnkXPPrwiUl0Mw2HEntFiwxsXR64Hfa2qfiIiIiBzTWp1MXXbZZRQUFPCb3/yG3Nxcxo0bx9KlS+uKUuzbtw+L5dCAV0lJCT/84Q/Jzc0lMTGRiRMnsnz5ckaMGBG+ZyHtFnvmmUROmEDe7x+gfPHi0OhROAtU1Bwvbs559PzVr7AmJITv2CIiIiIiXcAwze5S0q155eXlxMfHU1ZWRlxcXFeHc9yrWLaMgsf+imf79tB6VIFA2w9W0z9iyBBSb7lZ60iJiIiISLt0p9yg1SNTcvyLPfNMYmbNwr1+PcXPv0D5u++C3w82W+jfo6ltZ7MRN3cOSVdcgXPMGN0bJSIiIiLHFY1MyVH5S0qo/vpr3Bs34srMxL1xE8GqqkbtLNHROEeNJHLMGJwjRxI1ZYrWjhIRERGRsOpOuYGSKWk10zQJFBdjut0EvV4sDgeG04k1KUmjTyIiIiLSobpTbqBpftJqhmFgS07u6jBERERERLpUq9aZEhERERERkRCNTIkcx0zTpNhdjDvgxhfwYbfacVqdJDk1JVNERESkvZRMiRxHStwlfJ37NZuLNpNZkMnmos1U+6sbtYuyRTEieQSjU0czInkEU3pOIdGpYiEiIiIiraFkSuQYZ5om6wvW8+K2F3kv6z38ph+bYcNvNl/Gvtpfzaq8VazLX1fX/tyB53L5sMsZk6Iy9iIiIiItoWp+Isewj/Z9xBNrn2BH6Q6shpWA2fYFlmv7D04YzE3jb2Jmv5lhjFREREQkPLpTbqBkSuQYVOou5cGvH2TJniUYGJiE79e49njnDTiPu6fcTYIzIWzHFhEREWmv7pQbqJqfyDFm2b5lXPDmBby/932AsCZS9Y/33t73uODNC1i2b1lYjy8iIiJyvFAyJXKMME2Tf2z4B7d8fAtlnrJ2TelriaAZpMxTxi0f38I/M//JMTCILSIiItKplEyJHANM0+SxNY/x17V/DX0fhtEo114XG6/dyMH/HmywPe+NPDZes5GN12wk85pMNl6zkR+O+SEWiwXDMOoeGRkZ7Y6hvo0bN3LttdeSkZFBREQEUVFRDB06lJ/+9KdkZWU1al9WVkZycjJTpkxRoiciIiJdQsmUyDHgn5n/5F8b/xXWY+Y8l4PFYaHHhT0abI/sF0nCKQlNPqZ9axqJiaES6jNnhq9Axdtvv82ECRNYuHAhFouF888/n7POOouKigr+9re/MXr0aD7//PMGfeLj47nrrrtYuXIl//nPf8IWi4iIiEhLqQCFSDe3bN8ybvn4lrAes+ybMvY/uZ+U81LoeVnPFvfzlfjY8YsdBANBvvzyS6ZPn97uWLxeL3369KGwsJDf/va3/OpXv6orze71ern++utZuHAhw4YNY8uWLQ36ut1u+vXrh81mIysri4iIiHbHIyIiIt1bd8oNNDIl0o2Vuku5b/l9GIR33aei94oASDy9dQv1ln5ZSjAQZMjQIWFJpAAyMzMpLCwkJiaGe+65p8EaVw6HgwceeACArVu3UlJS0qCv0+nkiiuuICcnh5deeiks8YiIiIi0lJIpkW7swa8fpMJbEdaKfa69Lqp3VhN5UiQRvVo3klPyeSiZ6T2rd9jicTqdLWrncDiIjY1ttP2aa64B4MknnwxbTCIiIiItoWRKpJv6aN9HLNmzJOxV+8rXlAMQMyKmVf2qtlXhzfNiWA1yh+fy8b6PwxLP0KFDGThwIJWVlTzwwAMNikl4vV7uueceAObPn4/NZmvUf9y4caSmprJy5UpycnLCEpOIiIhISyiZEumGTNPkibVPhH16H0DVlioAogZFtapf7ahU7LhY7HF2Hl/7eFiq6NlsNv73v/+RmprKb37zGwYPHsyll17KhRdeyIABA3j55Ze5+eabefTRR5s9xrRp0wBYtkxrYomIiEjnUTIl0g2tL1jPjtIdYV+QF8C91w1ARO+WT/ELuAKUfxMa0Uo8LRETkx2lO9hQuCEsMU2bNo0VK1YwceJEdu3axWuvvcbbb79NTk4Oo0ePZsaMGTgcjmb7jxw5EoA1a9aEJR4RERGRllAyJdINvbjtRayGNezHDXqCBD1BAKwxLT9+2coygp4gtgQbMWNC0wOthpUXt74YlrjefPNNxo0bR2VlJYsWLaK4uJjc3Fz+97//sXfvXubNm8fvfve7ZvsnJycDkJeXF5Z4RERERFpCyZRIN1PiLuG9rPfCfq8UQKD60DEtzpb/+tdO8Us4NQHDEpp6GDADLM1aSom75Ehdj2r37t1cfvnlBINBli5dyty5c0lMTCQtLY0rrriC1157DcMw+O1vf8uOHTuaPEZtWdTDq/2JiIiIdCQlUyLdzNe5X+M3/R1ybGvUodGooDvYoj6egx5cO11AaIpffX7Tz8rcle2K6YUXXsDj8TBt2jQGDBjQaP/06dMZMGAAfr+fTz75pMljlJWVheJLbF2pdxEREZH2UDIl0s1sLtqMzWhctS4cLBEWLBGhX/tAZctGvmpHpaKGRhGR1vA+K5thY3PR5nbFtG/fPoAjLroXHx8PQHFxcZP7i4pC62alpaW1KxYRERGR1lAyJdLNZBZkdtjIFICzf2hdJ0+256htzYBJ6ZelQNML/PpNP5mFme2Kp0+fPkCoeITf3/h5l5aWsm3bNgAGDhzY5DE2btwIwMSJE9sVi4iIiEhrKJkS6UZM02z3SM/RRA+PBqB6V/VR21asr8Bf7scSaSF+UnyTbTYXba4rkX7NNddgGEbdQrotcfHFF2OxWNi7dy8///nP8Xq9h85fUcH8+fNxuVwkJSVx7rnnNnmMFStWADBr1qwWn1dERESkvZRMiXQjxe5iqv1HT3LaI25CaDpd5abKo7atKzwxNQGLo+k/F1W+Kordoel3wWDoPiy73d7ieEaNGsUDDzwAwF//+ldOOukkLrroIubOnUtGRgavv/46TqeThQsXNjkVcO3atRQVFTF58mR69erV4vOKiIiItJeSKZFuxB1wd/g5IvtHEjUoCtduF+6DzZ/PX+anYkMFAAmnJRzxmJ5AaMrg6tWrAZg/f36rYrrzzjv59NNP+c53voNhGCxZsoRly5aRkJDAj370I9auXcsFF1zQZN+FCxcCcMMNN7TqnCIiIiLtZZi183O6sfLycuLj4ykrKzviTeoix7o9ZXu44M2mk4ZwKvumjP1P7id5djK9vtv+0Zx3LnoHe6Wdvn37Mm/ePF5//fUwRHl0breb9PR07HY7WVlZRES0fCFiOQGYJlQVgq8aAj6w2sEeBdEpYBhdHZ2IiLRRd8oNOqZkmIi0id3a8ulx7RE/KZ6iwUWUfFJC6pxUbPHt+1PgsDp47/33sFqtPPjgg2GK8ugef/xxCgsLWbhwoRIpgaoiyPoUctZB9mo4uA68TUxndcRA73HQZyL0GgcDz4Do5M6NVUREjgsamRLpRopcRcx4eUannMu118Wu+3aRNCuJ3lf2btexPvnOJyRHdu6b0bKyMjIyMhg0aBBfffUVhkYaTkymCQe+gZX/gE2vQ9APFlvo36OpbWexwahLYNIPoe/JGrUSEenmulNuoJEpkW4kyZlElC2qw4tQQOjeqVH/HtXu40Tbo0lyJoUhotaJj4+vW19KTlBbF8NHv4f8zWCxQrBm7bSWJFL12wX9sPE12PAS9BgJs34Fw+Z0TMwiInJcUQEKkW7EMAxGJI/o6jBaZUTyCI0KSeeqLoZX58OLV0DB1tC2YMsWoW5WbWJVsAVe/G7o+NVNLxItIiJSS8mUSDczOnU0NuPYGDS2GTZGp4zu6jDkRLJlETw+ETa9EfreDIb3+LXH2/RG6DxbFoX3+CIiclxRMiXSzYxIHoHfbOE0pS7mN/3H3EiaHKNMEz77M7z0PXCVgtnOkaijni8QOs9L34PPHw6dX0RE5DBKpkS6mSk9pxxTI1OTe07u6jDkeGeasOx++Oh3NRvCPBrVrJrzLPtt6KGESkREDqNkSqSbSXQmMnvgbKyGtatDOSKrYeXcgeeS6Ezs6lDkePf5w/DFI2E95NqcANbflnPTu65m22SVBLnpXRdDHq8k6rz7iIuJZNiwYVx77bXs3r07LHF88sknGIbRose+ffvq+pWVlZGcnMyUKVM4Boryiogct46Nj79FTjCXD72cxbsXd3UYRxQwA1w+7PKuDkOOd1sW1RuRCp+blriJtMGvz2h6fbIXMn384G0Xbj+M7mHhgqE2XL4Au/wuFi5cyCWXXEJGRka74+jZsydXX311s/tXrlzJli1bOOmkk0hPT6/bHh8fz1133cUvf/lL/vOf/xzxGCIi0nG0zpRIN2SaJpe8fQk7S3di0v1+RQ0MBicO5tULXlUlP+k41cWhIhCuEgjj78Grm318+xUXv5zu4I9nOxvtX7bbzznPVdMj2uDlSyM5rX/t544WiExgz7feICIhjV69eoUtpuaMGDGCLVu28MADD3D33Xc32Od2u+nXrx82m42srCwtXC0iJ4zulBtomp9IN2QYBjeNv6lbJlIAJiY3jrtRiZR0rHd/Ce4ywplIATzylReA+ePtjfYFgibXveMiaMJr36mfSAEEwV3GgM1PdEoitWLFCrZs2YLVauWaa65ptN/pdHLFFVeQk5PDSy+91OHxiIhIY0qmRLqpmf1mct6A87rdvVMWw8KcgXOY2W9mV4cix7Oti2Hjq2Gv2rc2J8Dy/QGm9rUyNKXx79Y72/3sKTU5tZ+V6elNzIQ3A5D5Cmx9N6xxNeWZZ54B4Nxzz6V3795NtqlNsp588skOj0ekOaZpUljpYX9xNbsLKtlfXE1hpafB/XymaVJd7qW80EVpXjXlhS6qyjwUVLiP2K+j4q0uK6UsP4/ig9mU5edRXVaq+w+lTXTPlEg3dveUu1mRs4IyT1m3GKUyMIhzxHHX5Lu6OhQ5npkmfPR7MCxhX0fqza0+AM4a2PSHFO/tDC1LcHo/K/6gyVtb/Xy5P4DLZzIgwcKFw2wMS7WH4ht6HnTQ6Gx1dXXdaNP8+fObbTdu3DhSU1NZuXIlOTk5nTJiJscX0zQp9PlxBYL4TBO7YRBptZBitzU7+6C4ysvyXYVkZpexfn8pmQfKqPI2/OAjMgiDsTMi0kkvvwV7uZ8qf4B9tgB5VpMca5BcWxBfE6eIdlgZ3TeesekJjO4Tz/STUkiKdrT5OVaVlbJz7Wpy9+wmb08WRfv34HdVYwT81D+93RlJWsYgeg0aQlrGINJHjiEqLr7N55UTg5IpkW4swZnAfdPv45aPb+nqUIDQ9L77p99PgjOhq0OR49mBbyB/c4cc+qM9oTd809KbTqY25IeSN5sFJv+jirW5DZO5uz/ycMsUB38+ZyPGgVWQPqlD4nzllVeoqKigR48enH/++UdsO23aNN5++22WLVvG97///Q6JR44fRV4/X5RWsKHCxdryatZXVFMVaPyhRbTVwtjYKMbHRTEmNpJT4mPYm1vJf1fsYdGGHPxBE5vFwB+s90GfCb0DFsZ5rAzzWbFi4C/3kmc1WRfhZ2tUkKABFrNm4YFmPouo8gb4ancxq/aU1J3ngrG9uXJaf8anJxx1inlVVRVZWVns2LSR3Tu2U+H1gaX2d94B6UNCXwYCWN1VWF1VWNzVBKsrOLA5k4PbNhMMBLBYrQydfjrjzplLr8FDNbVdmqRkSqSbO7Pfmfxs/M/469q/dnUo3DzhZmb1m9XVYcjxbuU/Qm98guFfmHdtTuiYw5uY4gdQVB16Y7jgCy9xEQbPzYtk9iArbj+8uNHHPR95+MtXXlKirdw19h8dlkzVTvG76qqrsNsb39tV38iRI3n77bdZs2aNkilpkmmarC6v5t/ZhbyVX4LfBJsB/iNMeKgKBFleWsnKsspQO9PEctCFI7sKM2hiQINEapDPwqkuO6lBCwFMrBjssAX4ItJHodXEMMGsyUWCLcxJao/vD5q8vf4gb6zNZljPWH5+zlDOHpHW6DkeOHCAlStXsnHjxtCUvdppe5ZmpstbrQSiYglExdSNhNvKinGU5ON0l2Pz+ti37EP2LHuf+PT+TL7yBwyeNLVlwdfEVFVVhc/nIxAIYLVaqfCaYIvAHzSxWy1EOqwkRzsaJmqmiVlZQLCsEtPjxcSGEREJccl4TIOAL0gwYGKxGtgcViJj7R2W6JmmSbG7GHfAjS/gw26147Q6SXImKbmsoWRK5Bhw3ejrqPZX88/Mf3ZpDPNHNT/dSCQsqopg0+sdkkhVeU2qQrP8SI5q+k1A7VtDXxCevySSc0469L/JX0yPIGjCHR96WPC5i59NfZXo2QsgOjmsce7cuZPPPvsMgB/84AdHbZ+cHDp/Xl5eWOOQ48PSgjIeyspha5UbqwGBmhf5kRKp+uraGQbBXpG4+0RhVPiw7SjHWuDGGYQzXXZG+GwEa36DvAZ8GOlhqyOIUdPfbOf77kBNYrUtr4If/mcV549O5rcXjicpJoKtW7ey7MNlFBQWYFCvZE1L3uwbBnVDZIYFf1wS/oQUrGVlZGzeTK+DB7CaJo4t+3B/+AWre6TQ47QZxE2bSvS0adgSD621WDsilpOTQ3Z2NtnZB/H5vI1O6TMtFAajKTSjKQpGg83CVfG7mRIMkOy2YXEl4wtmYBJ1WM/d+EyTUr9JaSD0KPSbmA4rqf1jSRsQR2q/WPoOSyQypm3TIkvcJXyd+zWbizaTWZDJ5qLNVPurG7WLskUxInkEo1NHMyJ5BFN6Tjlh151UMiVyDDAMg5+N/xnR9mgeW/MYBkan3ENVe56bJ9zMdaOv6/DziZD1KQT9HXLoMs+h35nYZt5n1G4fkGA0SKRq/eRkB3d86KHCCyv3e5i55zMYOS+scdaOSk2bNo3hw4cftX1tWeCSkpKwxiHHtmKfn3u2H+CN/NK6amOB9v5vwxJKOswYG74JyUQdcHHFKheJvtCBLRjssAd4L9KLuyY/aW8SdbjawaZ3M/P5ZOtbfH/wMnqaOZgkYbP1xO9vvNxBq1hCV6siLo5V06ZhKyvCmbcPm9dHfLWHeJebkvffJfX113AETRwZGXhnzWRTr15s3rmTYDCIYVgImsHmZjESb1Qx1rKFXmY+6ZZIov1T8BScCtjw4wesNDcH0m4YpNgg2WZgMQyCpkm2zyRrVxnrd5YRDJpYLAaDTu7B6Bl9SRsYd9QRJNM0WV+wnhe3vch7We/hN/3YDBt+s/m/xdX+alblrWJd/rq69ucOPJfLh13OmJQxJ9SolZIpkWOEYRhcN/o6MuIzuHf5vZR7ywmG+eb8+iyGhThHHPdPv19T+6Tz5KwDi61DEqoE56H/uVd4Ia6JZZkyEi2szgmSkdh0sdvYCIPUKIOCapOcKgMOrgtrMhUIBPjPf/4DHLnwRH1lZWUAJCaemJ8KS2NLCkq5bdt+yn2hEd6w/5+i5o1yeW8n/z4vgvO/qWJotpevI/x8HukPDQ118HvpIFaqfJE8tflbzDvpHeYO/wDTNCgoGEDOwaFUVKS0L4ia5+iPS6IyOg5nzl4ClhJKop2YFgPDNOlVUkm/3GwS//FP+sTHUzxmNAf79MFsMpEy6UsOk1jPKLbjDU6izH8NfnMAHvwcekt+9LfmhmHUHd9iGPSxQ7rDRlnAZKsrQK7fZMeqfLavzCO5TzRTvpXBwLGpTR7ro30f8cTaJ9hRugOrYSVQU0H1SIlUfbXt/KafJVlLWLR7EYMTBnPT+JtOmKq/SqZEjjGz+s1iQo8JPPj1gyzZsyTso1S1xzt3wLncPeVu4iNUyUg60YHVHTYyFWU3iLZDlS90b1RcROO3OxN7WXlls5/C6qZ/pwJBk1J3aF+MPQjZq8Ma43vvvUd2djYxMTFcdtllLepTVFQEQFpa2lFayvHONE3+ujefBVk5WOiAJOrw81kMXA545ZQYMr4s5mBVze9uJw1KmDVjbm/sugBPMIKLBy0iNXUPaWlZVFYmsHfPOIqL09t3EsMAqw13+iCC+QdwFOWGphIaBjmJMRxMiiXW5WFwbjGnff4Fe/v1Y83ECXjrLaI9lF3M4kvSKMJnxlHquw1XcAaHfkLteztuqUn84iwwJcbGfm+QTFcAH1B0sIp3/5bJ4ElpnH7ZEJwxoXswS92lDd5HAHWJVFvV9t9ZupOfffwzzhtwHndPufu4L1qlZErkGJTgTOCPZ/yRcwee2+QnSm1R239QwqAT6hMl6UZMMzQy1YEm9LLy+b4AmwsCDGxi9OmSEXbuWuZha2GQA+VB+sY1bPPJngC+YOi94sm9raGRKdMMW4n0f/3rXwB85zvfISYmpkV9Nm7cCMDEiRPDEoMcm0zT5MHdOTy+Lx/o+ESqjmFg3V3BwSp3k7u9ebvIefZWYsfPIensHzfY59r1DZ6c7bj3rsdz4FAFzz4/WUjQVUbOs7fg7DcWS1Q83tzt+MsLMQwLpt/T6Dx/q3kAzJgRzT2/gpGjPiE/fwC7dk7G7z+U3Hg8Hr7++mu2bt1KYWEhPp8Ph8NBRkYGGRkZLFmyhDFjxlBaWkpubi4ez6HzGYaBBQjUzDc0gEiHHa8/QP+YaF62WpiTm8vXJ0/k12+/hc1fya4bIoiwG7gCUynx3USQ2t/tpkfAKz3VPLP6VZbu+Jw9xQfwBn04bREYGPgCPvzBAImR8QxLzeD8YTP4/cd/Y0BiH96+8ikCwQBXPns1Lr+HP12xkBIzNHd55+o89m8uZuaVw8hK2sB9y++jwlsBEPbbBmqP997e91iRs4L7pt/Hmf3ODOs5uhMt2ityDJvVbxavfes1npvzHOcNPA+bEfp8pPbfo6lrb7ExZ+Ac/jfnf7z2rdeUSEnXqCoEb2WHnmLmgFBVrxUHmv7gYVCShe+PseMNwA/fcVHmPvQmY29pkJuWhN4wXjrCRu9YC3grQnETWkDXMIy6hXRbq7CwkHfeeQdo+RQ/gBUrVgAwa5am457I/ro3vy6RChffjq3knTWR8r8+1GwbS54L+45ygl4X2U/NZ+8fzmfvH87HXx76vSj+4GkMm4P46Zc36lvwzp8p+/KFBolUreIPngYM3HvXUb31cwxbBFGDphDRd0TDhoaBYY/AGpuCc8B4Jp6ezpixkRgGVFYGuf5Hn/Dcc4+SlLQXgPz8fJ588kk+/vhjqqqqsNlC62klJSWxfft2Pv/8c6xWKzt27GDv3r14PB5stkP/TzVNsy6RclitOGw2qr0+/MEgu8or+EuklRKnjdOXr+CBIRZyyrz84Usvlf5vU+T7FUFiCd0T1bStBbuZ+c8r+dPn/6SwqpgJfUZit9goc1dQ6i4nOSqRcwafSt/4NL4+sJ6Pdn3FDVO/x7qcLby6cSlWi5VfnnYdB8vzWJ35MoMjQm/1zSC4q30seSqTZ59bRJm7rN0jUUcTNIOUecq45eNb+GfmP4/bRZE1MiVyjDMMg7GpYxmbOpbbJ93OytyVbCraxMbCjWwq3NRsFZ6RKSMZnRKqwjO55+QTtgqPdCO+xq/VcLtomJ3ffublg91+ft9M7vH4eU42FQRYujPAoMcrmdrXittv8tWBAJVeGJtm4anzIw918LsACAZDYwFHK2XenP/+97/4fD6GDRvG9OnTW9Rn7dq1FBUVMXnyZC3YewJbUlDKgqycsB+34vE/YDgiiLnyR0038AawbyrFBEo+fgZ/WcNkrmrrF3iyNxM3+WKs0QmNukcNmYbp91G95VNiJsylcs1ioGbEKnsz9rSTiBo8lZgxZ2OLTcFbsIf8l+9teBDDii2pL76CvUQPOxX36Xcw65TfA9XExFj47hUJ/P3pYrKzF5OWNok///lTXC4Xc+fOJTIykldffZXp06dz9tlns27dOt566y3sdjsul4vp06cza9YsvF4vf/rTn+qSgeTkZMrLSvH6A/zw9Ml4/X6eXb4GgDcztzH6glmMyC/llHwYHlfKH78M8K1R59MjBo40jlFQVcx3X7yVUnc5D57zcy4ZOZu5z15Hpbea2065lqvGz6PIVcqQlAGh6+Rzs7t4Pycl9+OplS/w0Gd/51vDz2TusBkMW57B/339PN8b9y1szgS2uIN1ZQ6n7LsAe8DJyvRFHT4ls3aU6rE1j1Hlq+Jn43923BWnMMxjIE0sLy8nPj6esrKyuqpFInJ0tetDeAIevAEvDquDCGuE1oeQ7qlwJzzR8VPVTnmmiuX7A2z+aTTDU5v+hNjtN3lkhZcXN/nYWRxKkoYmW7hspJ2fTXEQaa/3+3PjakgZxMiRI9m8eTMrVqxg6tSWr0VTa8yYMWRmZvLHP/6RX/7yly3qc/PNN/PXv/6VZ599lquuuqrV55RjX7HPzylfb6HUFwjrZC33px9Qdv/tRF12NbHX39JkG/v6Yiy5LtxZa8l/+dfETjifijWLgNBUvcK3/4Anewu9r3sKe3LfJo+R+9wv8WRvIXXe3RS88SAAjp6D8OburOvn2vUNrr3rQ8cOHLqn0rA7MX1uwCBmzDnETroQZ0ofJvVcy4/GhAq5eL1BrvjuPqxWg5GjIvjs00Mf2kRFRVFdXc0NN9yAz+fj73//e92+lJQU3G43lZVHHy0/ZVB/yt0eMg/kHrGdgcHMjCn8aPJlxDtjmfvsj5gxcDKrsjdS5XMRqFkSorZK39E0KAN/FCnRKaT3GMGBol0UlGdjYNBzUDoFRQcJeoLEjIjBc9CDv9xPoDqAYTOwOC0YFgN/WaioSI+Le9DjWz0A8Jf72fbLbZietr3qbDYbvXr1Ytu2bURGhj6cOuuss1i5ciXbt2+nZ8+eR+x/eG7wv//9j/fee4/169eTk5NDSUkJUVFRDB06lHnz5nHTTTc1mjodCAQYOXIkLpeLrVu31sXRWkqmRESkeyjZC4+N6fDTvLrZx7dfcXHbVAcPz25nGWWAWzLJrrLSt29f5s2bx+uvv97+Y7aA2+0mPT0du91OVlYWERFNlCeU495PNu3h7fxSwj1hq/ima/BtWk/ywjew9RvQaL8l34VjbTFBTzUH/3UDhsVCrx88yf5HLgWgx7fvJ/+Ve3H0HkqvKx9u8hzevF3kLLwZR++hGIYVT/ah6X71++179DJMT1Wj/vbUgfgKssBiI3HWfDzZW+vurbJbg/RMszDx5EhcriDvLW06Kerbty/z58/nqaeeatNabRbD4PZzz+DpT7+mpNp1xLbxETGUeUJxpMf1JK+qCG/Ad9jxLEes1FtbJKp+ImW32PC1onCPw+bE6z/sHjcDnH2d2BJtePO8ePMar48VMzYGS4QFzwEPvhIfQdehOI0IA8NhEKxoOnbDZmBENt5/3333ce+9odHGVatWMWnSJK655hr+/e9/H/E5HJ4bnHrqqSxfvpzhw4eTnp5OUlISeXl5rFixApfLxaBBg/j000/p3bt3g+O8+uqrfPvb324QR2vpnikREeke7IcvUNkxLh1h55R0K0+v9pJXGYbb9G2RvP/++1itVh588MH2H6+FHn/8cQoLC1mwYIESqRPU0oIy3uiARMq3Yyu+TeuxjxjdZCKFaWLbUY4JFC/7O4GKQpLO+xkWx6EPJ1y7Q9PeIvuPa/Y81du/AsAak9wgkTq8X2TGRDAsgAG2Q4vE+Yr2h76wWCn58Gmqt3xWc2/VZGIGDKeiIsCbb5Tz8UeHEqno6IZvff1+Py+//HKDRCo+Pp7vfe97fPe732029lr901IwTbNRIhVha3wnTcAMMm/E2QDsL89lbM9hXDZ6Dnef8ZO6NqPTBpMandTkuRKd8XXT5nrGHip13lwiZTGafpvv9btJiE7BZrHXVfLDAv1/3p8Btw0gZU4KKeem0POKnthTDk1brt5WTfnqcgyrgS2u4fMzPSYRqRE4ejsaTB2M6B1Bj0t6YPpNel3Wi/639q/LPgzD4KGHHiI3NzSid/LJJ3P++efz7LPPsn79+iZjb87DDz9MYWEhmzZtYunSpTz//PMsW7aM/fv3c+qpp7Jz505+/vOfN+p36aWXMnr0aP7whz/UxdFaSqZERKR7iE4BR8sq2LXX4+c5cfnhd581rgrWKo5YiE7h2muvxe/3M2zYsPAEeBRlZWU89NBDTJ48WdP7TlCmafJQTQn0cPN8+TEAjglTmtxvlHmxVPpx7fqGqswPiRk7m8j+YxseoyY5iujT/O+Ee1/oDXNdUlRP/X5Rg6eGKihgEjfh/EONapOIuup+JtaYZJLO/jFx8x7i/idOZebMaLz1BlnMw0Z9cnNz2bJlS4NtvXv3JjMzkxdeeKHZ2Gtl5RawcPlqHNaGPwmP34/VsPDEBb/BaoSmE1d6qzml/4S6BCbaEcmf59zJ+zs/r+tX5XM3W6ihxF1W93VORUFdSfTmWJtJpuzWCNzeavxBH31STgptDEDJp6GFv5POSKLn5T1JOSeFHvN61PWLmxzH8CeHM+h3g7DFhpIpa1zouVmiLbh2u7DH2xvMPbREWUiZnYI11kreq3lEj4gm8dTQPdqmaeJ2uxtMr5w/fz6mafLYY48d8bkdbsqUKSQlNU5Ck5OT6z7kev/995vs+4Mf/ACXy9UgjtZQMiUiIt2DYUCvcZ1yqvG9rAR+E8cTc9o2R75O73FhK4veGvHx8RQVFfH111/r/scT1OryarZWuTukBLp37TcA2Ec0Pe3Wtq+KgKeS4qWPY41NJXHmDxofo3BfqG1y8+s8efN2A+Av2o+j99CG56jXz1uwp+5rX3F20zEl9cHijMWdtZq8l34NARfLC2fw81+kYq13a2T1YXVuLr744kbH2rZtG5mZmUf9cCQhIYHk5GTyyivxBhov1Hty39FcOOIsxvceXrdtY96OutGl5fvWsi5nM6uyN5IUGVrTcWfRXgqrS4543kHJ/clISj/qfVX1R6xSow8VmUpP6o/bV41hGJRUHCoaUvRREWag4TEN66Fn5UhxYHVace11Ub2zmsiTIrEnhUauDFvNIscVDUfJApUBLA4LCVMT8Jf6KVtZRvzUhutXPv300/j9oX5z584lJSWFF154geLi4iM+v5aqrcbY3Aj+9773PWw2W4M4WkPJlIiIdB99J4LlGCk0a7FBH63tJF3j39mFWDsoj/bv2AqArX9G453eAJZcF8Xv/41AZTHJ596IJaKJKbo1o0XWyKbvdQ963TXFI0IOnw5Yv5+/6EDd165d3zRoFznkFKwxSfiLs7Elp2NEROMr2EP5mvdZmTuRFatMAkeYB1lWtqNxbMEgJ598Mnv27Gm+Y027sWPqJZyH/TyKqkr48+f/orre88wuPzSd0Bvw8fKGpQD0jj00ApQSdeTqumN7DuP5y/5yaIpeCyTWWzj3giGnA6ERqipPed32QFkAV9ah6Yr+cj+FiwsbHat8TahPzIjQPVS1fWv71A8r6AmS/e9sAq7Q/qIPi4gc2PBDrIMHD/LNNzUJvN3OjBkzcLvdvPfeey1+fs2pqKjgvvvuA+Bb3/pWk21SU1MZN25cgzhaQ8mUiIh0H73GHZq6090F/aGRKZFOVuT181Z+CYEOKCFmulyY7tAbaiMuvtF+S7EH19blVG/+lOjRZ4XuZzoCw9H06G/wsIISh08HrN/PX3YoATEOS9xix5xF6rx7AANv9mYiB4wDwLXra3wuF399JO+Ig8fZB3c1uT0/P7/BYr1NKS8v59PPPiMiInQf1+EDRTuL9/HY8mfZnL+zbltBVcPRli/2rgKgb/yh6nX2o3ygVFBVTJ+4NOKdLZ8Wvb0oq+7r8b0GExeZUFeEwmY9dF/Uwf8cZP/T+8n6QxbbbtuGe78be4+Gyz1UbQn97KIGNU6iA+WBBtP8/CV+Sj4tofSLUgDcWW7K15ZjiWyYgixbtqzu69qlIepva6n333+fa665hquuuorZs2fTp08f3n//fc4991z+8Ic/NNuvPedUMiUiIt3HwDOOrZGpAad3dRRyAvqitAJ/B9ViDlZV1H1tREU32m9mF1D0/v9hjUkiadZ1Rz2e6W26wp3F2fDYh08HrN8vUHVo2pvpbliVz5acTkTvoTh6hu79MX2hG6T8FUWUfvB/VJS6MU2wNPOON2t30+vb7d27t0XrvQUCAYYObXo6YJS9YbVQA4OtBaGpjY6aBGZfaWh9sJFpg+vaOe0R2IzmF/ZdvncNOwr3tKh8ei2rYSU2IpR8lbsrGdNrZIPIarn3uSlbUUbVlirMgEny7GSiBjZMmly7Qz+b4k+K8RX66ro7ejoY9NCgBm0tTgsD7x7IgF8MwBodek7Z/8hulIGsWbOm7uuRI0c22tZSmzdv5tlnn+W///0v77//PhUVFVxxxRUsXLiQ+PjGHw6E45xKpkREpPuIToaRF4Ol+TcS3YLFBqMuCcUr0sk2VLiwddAUP0tMbN3XZnXjcuS+DWsJVpeCYSH/9d+T+/ydDR51aoaDKtYtafo8didGvWTj8OmAAVe96WfVh76O6NfwPq7afraakZ1AdWloRzBA5ebPMGqyqMFDmr5fpnbwyXZY9b2kpCRmzJjRZJ8Gz8NiwWJp+odR7XM3mIpnYuKunf5Y8zcuYIamv53cZ3Rdu8KqEvxm83MT/WaAG9/5LeWeo6+BVSs1JomKmvaegJexPQYciqteUY7ok2IY8Y8RDF4wmNTzUyn+uJjydYeuf9ATxKzJ5CvWVuAr8tWNRDn7Oil6t+jQSa0QdAcpXFJIzKgYEmck1l6IBmXVgQbVFJOTkxtta6lbbrkF0zTxer3s3LmThx9+mCVLljBixAg+++yzZvu155xKpkREpHuZ/EMIhrvYc5gF/TDph10dhZyg1pRXd9jIlOGMxHCGptiZ5WUNd5omRnXodzNQUYhn/8ZGj/pt4VCRiabYU/odOu9h0wFrK/z5yvIbTP1NOf8XDeOt6VebfPnLQgUV/BVFYFgwg0GmTYti6BAHR5KWltrg+3HjxjVKsJqSmprK3r37Dj2neiPrVsNaV2zicIHDbuSa3m88SVEJAFR4Gyexh9ucvxNbKz50Gp6aURfbsp3LSYw8NEoTrPf31qi0YrFbiOgVQdolafS9rm+DhXkD1YfaDv/7cAYvGEzMmJoRrzXllHxWUjdSZXGE0ozKzEpMv4ktpt71PKxySknJodHH2jVl629rLbvdzkknncRtt93GkiVLKCkp4fvf/z4uV9Mjpe055zEyl0JERE4YfSdBj5FQsKWmHHI3Y1igxwjoe3JXRyInINM02VDR9NS0cLENHoYvcy3+vbux9upzaIc3SPSgqUTfsajZvnv/ECpdHjvxQipWv4UtoWezbZ39x+LN2Q40ng7oyd5KRO9h5L/ScCHVsq9eafC96XURDAbw5IQKSQRdZaHf0drFcC02yipg48YjJyg+X8P9H3/8MRs2bDhiH4DIyMi60QwDGiy4GzADnNb/ZL7JzqwbkarlDTZcrLfcU0mMI4ri2pG1FvC34kOnbw5k1lX3W5+7lRkZh8re10/4og5bniLu5DiwAoFQImWNqpfABSCiVwQxw2Oo3FAZSpAsoW2ebE9dhT/Tb+Kv9De6T6q+xMRDRTfKysoabWuPKVOmMGLECDZt2sSqVas47bTTGrVpzzk1MiUiIt2LYcCsX3XPRApCcc28p0tKoosU+vxUBTr2d8MxfhIAvk0Nkwkj2PLhsMiMCQC496xtsL1w8SPs/cP5FC5+hGC9+58aTBEEKla9RfbTP8R/2BpUlWsXN/g++58/IfupH4CvpmiGzdGwumDQz+aN1VRUHPma5eeXN/jeNE0KCxtXsjtc/Yp/KTGJBA77u9U7tgcev5fm1K4FdeviB9lXerDR/sRmqiECrarmV+k9lICXuyupOKwAiM0SuocrwdlwhM6wGBg10xiDniCWCMuhCn6VoWSu7Jt6I5hBsCWExmrMesOnFqel0dQ+6uVlaWlpdV8XFRU12tZe0dGhe/Ty8/Ob3N+ecyqZEhGR7mfYHBh1KRzhJuwuYVhh9LdD8Yl0AVcHJ1IAEafMBMCz+quGO1qRTNlT+hPRZzjenO34CuslRDXJhmGxYtZLMnz5DacDmj43ZlP3BB2WrAQri0KjWoaFyCHTscamEHRXYthD90j1/P6f+f0jo4DGRSjqfx4ycWICvXr1AuCnP/0pZ5xxBrGxsbRGQWXjKWJf7FvdYOTHaWt471ZtGfQPdy0n2h6asnj+0JlYapKsw5Oe+pqbQlhfU+lWRlI6pe6GyWNiTKg0+0mJoxtU43MfcGP6QhtqC0g4+4fudfNke8h9ObeuIIURYTQ4aW3yFNE7AqvTir+yYaVWe/KhKoETJkyo+3rjxtB00YkTw7P0RGFhIevXhxaIHjJkSJNt2nNOJVMiItI9zfkTOOPpPv+rsoTiOe+PXR2InMB8rajg1lb2wcOwjxyLf+tG/HvrJTnNFFpoTuzJFwJQseHQekHe3FAp8pgx55Ay91aihpwCgKPXEPrfsYj+dywi5cLQKFXspIvof8ciIvqGKq2lXnoviWf/uME5jIgYYiecT89rHsVfnI2/5CARfUZg+jxY41LJfe4X/N/DO2nKzTcfKiAzeIiFU08NxfLyyy/z6aefkpHRxDpb9UyePJl7772Xe++9l379+jXZpv66UgDDUhse01rvvqfarxdt+7gusfrnxQ82edzrJ13GzdOurvveqPnvcE29Wq4YdwHbCrIabCsoDy2GvDdnG05/aKrfgX8fYOevDl272nugooeHRnlyX8ml8N1Do3emxwQLuA8eWlcLIOmsJMygScWGigbb6y8IfPKpoWnT9913H7/4Rei+uFmzZjURfWObN2/mf//7H263u9G+7du38+1vfxuPx8PUqVMZPXp0E0eA5cuXt+qc9emeKRER6Z6ikuBbj8NL3+vqSGoE4cInQnGJdBF7J00vjbr0e5RtWo/r3TeI/cnPATBbkEz1r3c/lS3uVCpWjaBy3VLip1yCGQzgK9pH5JBpdetKxU//DtXbv8Sbu4NAVQnW6ESihzXsR80oTdHSxzGshxWSCPpxZ2+lavOnBN0VOPuPI3LoKXgObsXRYyCu8gIK8jzExVkoL284qjVlajSxsSVUVARZ9E4Jd96ZwXvvxdVN79uxo/GCvvWtXbuW7OxsqqurKS0tbbDPYlga3D8FoeIU63K21Ow3CJomBysOTTsr91TWba8tQvGD1+5qdF4Dg+fWv0NVval7JiY2w9qgCmBTMUTaI3hi+XNkVzRdtS6/dD+eP1ZTubcc09swFSt8v5DytYe2e7KbWIfLgEBxw3u5cp/PJffF3AbHS52XSsFbBUBoWuCIcSMA8PlC95JZLBZmz57dZIyNYs7P5/vf/z7XX38948ePp2/fvni9Xvbt28eaNWsIBoMMHz6cl156qcn+BQUFbNiwgd69ezNp0qQWnbO+7vJxn4iISGPDz4dZv+7qKELO/A0Mm9vVUcgJLtLaOW/dnGecjX3UOFzvvEaguKbctcOCaW1dMpd09vWYfi9ly1/EnbUWDAuJp19Vt9+RdhL21IFgmhQv+2eT/Wor9gUriwmU5TY4vulz48vbSdBdARhYImPxHtxK9MiZuPdvAsDnM0lPt3P//WmMHNlwmt3wEaHvKytNCgvz6dnzUMGM6uojF/rw+XxkZ2dTUlKCediI4eFJDIAv6Kd/Qh/6xfciaJp1U/wa9jv6cUzMBolUrcPLqdfvmx7fi3kjzqZnTGqDBG7iwNOIjjh0X1ZJVQGVuxsnUgDByiDuLHfTSVStJmpimH6z7niGw2DA7QOwOq11Ff2SZiYRNELfLF26FIDTTjuNpKSWfXA1cuRIHnjgAU477TQOHDjAO++8w6JFizhw4ABnnnkmf/vb31i7dm2zo4fPPfccfr+f66+/vkUVHA+nkSkREeneTvs5eKvgi790XQyn3hZ6iHSxFLuNaKulw4tQAMTedAfFP/keVf/9B3E33wmGQTDOjqXE2+LSB460k+h/+9t138eMObtRm/jpl1H41kNYYxKb7Zf73C/xZG+h9/y/YU8JLfBbtfWLmn7JBCqLAJPqrZ83GcemTR527vJwySXxbNqUz6WXxpOaaiMv99B9PKtWbWDu3Lls376dYcOGcdlll9Xte+aZZ9i/P3Tv19SpU0lPT+eVV15h6tSp9OvXj5dffpm4iJi6tZ/sFhu+oJ/ecT14/ILfMLnvofWxrnrldvaV5TAybTD7Sg+SVXIACJVSd1jtDErpz+Kr/s7F/7uBVdkb+Wj+fxicMoDFWz/hx2/9BoCeMSnkVh69QEaP6GRW3fA6Rr0RzdGPzqXUU4HVsPKdaT/mjudDo/8j0ifz0zkLeG7CfZRbi9h6w1YcvRycdO9J+Ap9lHxeQvWOarx5XvxlfsxATYJkM+h9TW/ip8Wz695dePO9DPnjEOwJh+6JyvlfDkUfFNH76t5ED4/m4P8OghHqm3hGIg6rA6/XW3dv0yOPPHLU51YrNTWVu+++u8Xt6zNNk3//+99ERkbyox/9qE3H0MiUiIh0b4YRGhU68zc1Gzrrf1015znzXjjrXlXvk27BMAzGxEYdvWEY2AcPI+3D1aFEqoYZ72i6qkE7RA87lYg+oWl9gaqm1/lp6v6r2n5BTxV9b/xv3T1X/e9YRPJ5N4Nh4bJ7r+TDZRl8uCyDq69O4vQzYhg5KoJFi8rZucPN3r0+Tj01ipGjIli5MpPNmzdjGAZnnnlmg/NPnToVgJiYGFavXk2/fv1IT09n9erVlJWWYjEMvjs2VBb+L3PuYsHsX2A1rPzvOw83SKTcfg/rc7Zgt9j4et/6ukSqlsvv5q4zrscwDK47+TsAvLAhNHVy7rAZTOozGothoaimhPpf5tzF/js+Y0DCoRL2t51yLS9d/igAj55/T4NEak9JNqWe0L1LN0z9Hp9vW1qzx+DiaT8BwG/xUb2jmqAnSM9v98QwDBypDtIuTmPgHQMZ+pehjPzXSOwpoWSp52U9STw1kYrVFXgOeEidk9ogkQp6g5R+VYotwUb85HjKvynHm+0FE1LnhtpGWCP417/+RSAQ4JxzzmH8+PFNvg7C7dVXXyUzM5M77rijwahkayiZEhGR7s8wQiNUlz8PkQkdX+XPsIbOc/nzcJpGpKR7mRAXha2LcvtgvB2jA2pg1J/W15TmEq7m+sWMOZv+t7/NuCGNq+HdeGMKXq/JU08VY7HAD+YnceONKfh8foqLi/nNb35DSkpKgz4jRowgPT0dt9uNz+fjs88+47zzzsPv91NcUsw986/mpQ2LGddrOJeOOpfLxsxhz+0fMyi5f4PjLFz9OsWuMm6afiWeQKiaYXp8L3pEJxE0g1w9YR6nDQgVY6hNnv637h0KqooB+O3ZNxM0g/iCflKiErl01LkAPPGt0Hpc0Y5IfjzlCqb3n8D+Oz6rO1atBZ8+BUBcRDQ/nPxdvtn1CYkxPfjL/MX0TOyH1+rGbaskZngMoxaOImZkw3WnagWqAwSqQnP63DluzKBJ3ut52JPtpMxpeO2KPiwiUBEg7dI0DKtB7mu5YAF7UqhttD2aJGcSr732GrGxsTz77LNNnjPcAoEAv/71r+nXrx+33357m49jmIdP8uyGysvLiY+Pp6ysrG6FYhEROUFVF8O7v4SNr4ZuTA/nelS1xxv97VDVPhWbkG7orfwSrt+0t2tO7g0Q8UluhyRURz113i5ynr2V2PHnkXT2T47a3mIE+MsZvyLWceQFewH8fjsrll/GkYbdcnJy+Mc//sHJJ5/MnDkNl0dwHtjFOdGzSXX2azASVF+5p5JTnrqcAYl9ePvKp5ptV9/GvO3MffZHXDn+Qn5/9q1HbX8k9c//1vf/RlEAllcdusnJxORg3A7eGflku85TX6A6wPZfbseR5iDj1xlNPudJPSfxzOxnWnXc7pQbKJkSEZFj09bF8NEDkL8JLDYI+o/epzm1/XuMDC0YrHWkpBsr8voZu3wj/i56B2ffUIwl19UlCVVLWYwAk3uu5oejnztqW9OEsrI0Mjec07aTmUGid2xgXNwpDI2fhKW7rY/XhKBpsssTZLP70IdRASPAhl4f83X/dzotDpth46qRV3HrxNYlit0pN1ABChEROTYNmwtD58CBVfDNP2Dja6GEqKWJVW07ix1GXQKTfwh9JureKOn2kh02LuyRyJv5JQS6IKHx94smIsfV+SduhaBpZVb6Fy1qa5oGFeUpR2/YdGdsZcVYAn5KvHnHRCIFodLspYe9eKymlYKY/c306Bh+08+I5BGdes5wUzIlIiLHLsOA9Emhx+wFsOczOLgWsteE/vVWNu7jiIHe40OJU+9xMOB0iE5u3E6kG7u2Twqv5TVdrKGjmfEOgjE2jEp/uGtRhIVBkD4xOWTE72lRe4vFpLKyjX8DDANHSWi9pDzXXoJm4JhIqIKmSeFhQ5sBI8DBuCOvrRVuNsPG5J6TO/Wc4aZkSkREjg/RyTByXugBobk7VYXgd4HfCzYH2CIhOkWjT3LMmxgXxfBoJ9uq3HR8kfTDGAb+wXE41hZ39plbxMTCvEGLW/xrHgwalJamteFEJhaPC4s7dE+WN+hiX9UW+kUP79YJVdA0yfaZ1F9KKkiAnclrcNuPfn9ZuFgNK+cOPJdEZ+P1to4lquYnIiLHJ8OAmFRI6Acpg0L/xqQqkZLjgmEY3JnRq/MTqRrBHpEEekbS3W6bshBgSs9VjOuxsUXtg0GDgoIB+P3O1p/MMIgoyG4wOrezfG23TqQgNMUvy9PwlWPByqaeTa/R1VECZoDLh13eqefsCEqmRERERI5Bs1Pimdcjga566+4bHg92S7dJqAyCRNldXDHs1Rb3sVhMcg4Obf3JTBNbWRG2yrIGm4s8Byn15BMMZ5XRMDJNk7KASUm9+6WCBCmMyiY/pvMqRBoYDEkcwpiUMUdv3M0pmRIRERE5Rj0wpC9xdmvXvKFzWPGNTOg2902ZWLhm5AvEOKpb1t6EysoEKipaWXzCNCHgx5m3r8ndmaWfYzG651tswzDY6go02GbBwjfp74Z9MeYjMTG5cdyNLSoP3911z5+0iIiIiBxVkt3GX4amd910v7RIfIO7x7I1Fw96h/E9Mlvc3jBg755xtDqLMAycOXsxAoEmdx+s3sneys3dbnQqaJrs9wbJ9dcflQqwI2UVe5NaNi0yHCyGhTkD5zCz38xOO2dHUjIlIiIicgw7LzWBuwb26rLzBwbG4B8Y02XnB5gz8H3mDPygxe1N0yA/bwDFxemtPpcj/wD2ytIjtllT9AG+oBuzmyRUpmniMyGz3qhUkCAem4svBrzWaXEYGMQ54rhr8l2dds6OpmRKRERE5Bj3s/49+Fm/Hl1z8prqfr3jI0Pfd9JNVEbNeNwlg9/mksGLWlxbxjTB73ewa1frS3I7CnNwFOUetZ036OabwqUY3WS6n2EYrKsO4Kv3s7Fg4dOTXsBjb9m0yHAwMbl/+v0kOBM67ZwdrXv8hEVERESkzQzD4K6MXtydERqh6rQ3eGbo3fmsDS6+txcuqnQQaYLRwQmVhQDR9mpuHPcP5gz8sFV9DQO2b5+G3x/Rsg41z9GRf6BR9b4jya7ewYbiT1sVW0fZ7Ao0mN4H8HW/d9jTidP7AG6ecDOz+s3q1HN2NK0zJSIiInIcMAyDn/VPY0iUk1u37aPcF6Dpu3rCxDQxfEGmrq7glH1BgpgM9lvpW+Hkw0gvWx1BDBPMMNYYMAhiYmFSz7VcMfxVYtowqpKVNY7iohZO76stNpGz96hT+5oSUfQ6Mal5VAa+0+q+4bLdHWDHYaXQ1/T5gLW9W5eEttd1o69j/qj5nXrOzqBkSkREROQ4cm5qPJMThnPP9gO8kV+KBcJboMI0wTCw5Liwby1lrc+kItrCKS47PYIGDhMuqI5gmDfAF5E+Cq1mu5MqixEgaFrpE5PDvEGLW7yO1OH27RvFgf2jjt6w5jnayotx5u7DCLY+LR1t5jJr1C5gFxbDRbn/akI/iY4fNzRNE8Mw2Oyql0gZgAlf9XuH9X2WdXgMoVMamJjcPOFmrht9Xaecs7O16af55JNPMmDAAJxOJ1OmTGHlypVHbP/KK68wbNgwnE4no0eP5t13321TsCIiIiJydEl2G38bOYCFowYyNDq0IK21nSNEtetZWSr92NcUEbmpGMMXeqO+0x7k2VgPz8W42WoPEKgZpbqyws4VFQ6G+yxYamaZWQhy9BurTKxGoCZuP1N6ruaeyQ9z37Q/tDqRqpmlR1bWePbuGc8Rq/fVNLZ4XETu30HkwazWJVI1/Sc79nPWiB0YRmhaYZztFZLtv8NCBXTseCFB08RrwteV/rpEyrCAM8rOeT8ezbXfv4D4iPgOL99uMSzER8Tz2MzHjttECsAwTbNVs1pfeuklrrrqKp566immTJnCo48+yiuvvMK2bdvo0aPxjY/Lly/n9NNPZ8GCBZx//vk8//zz/OEPf2DNmjWMGtWCTwaA8vJy4uPjKSsrIy6ue5TfFBERETkWmKbJmvJq/p1dyJv5JfhNsBngb8E7wNp2dsPgoh4JXNsnhf5WG1/tLmZDdimrdmex6aAbd6Dh/UeRQTgpGGCQtZqUgJ/o6iT8ZgT7bUFyrUHyo8rIMax4As5G53Ra3fSP20dG/F76x+1nWNIOYh1VbXzuBn6/g+3bpzU9tc80ATOUbZhBbGXFOEoKsLirWr/skmliNcHdawD9k8q5kPdx4qH+ssYBM5ZS3/W4gjMI9yhV7WjUfm+QTFdNsYma0ajBk9I4/fIhOKPtAJS6S3nw6wdZsmdJ3ehRuNQeb87AOdw95W7iI+LDduxa3Sk3aHUyNWXKFCZNmsQTTzwBQDAYJD09nZtuuok777yzUfvLLruMqqoqFi1aVLdt6tSpjBs3jqeeeqpF5+xOF0xERETkWFXk9fNlaSXrK6pZV17NuopqqgKNJwFGWy2Mi41ifFwUY2KjOCUhhmRH03eHeL3FrNywgOy8j/EH7dgsPhwWH7GOyroKe5V+eDs/ic3VkdiCVvyWAHarh1kJPoY7LXgDNhxWf6N+bRU0DSyGyZ6SoezdPhGLx9q4USCA1V2F1VWFxV2NtboCS8Df+pPVTgm0OSnJGAbW0HWKxMV5fMwYtjVKm1yBKZT5v4/fHAj4ac+dN0HTxGIYlAVMttYUmjAsBmbQJLlPNFO+lcHAsalN9v1o30c8sfYJdpTuwGpYCZhtHzWr7T84YTA3jb+pQ9eR6k65QauSKa/XS1RUFK+++ioXXXRR3farr76a0tJS3nrrrUZ9+vXrx2233cYtt9xSt+3ee+/lzTffZP369U2ex+Px4PF46r4vLy8nPT29W1wwERERkeOFaZoU+vy4gybeYBCHxYLTYpBit2G0MqMpKPiAXbsfoapqG4ZhxWzijXmmy8q7ZXZyfBYsmAQxGOX0MyfeR2+HScBs53TEoAUsQUp86Sy0XcEqy2RsgSA2vxebGSRj3w4mbPiS5JJ8zGAAa+vGFBowTBPTMIjy+LFEJ5J70mBMiwUjGMS0HEqdhrKLWSwnjUICGFhrRoFME7zmUCr9c3EFTyeUUPkJTag80kUwCY1qWQmaJgd8Jns8QcpMCAZNLFaDwSenMWpGH9IGxB3152iaJhsKN/Di1hdZmrUUv+nHZtjwm0dPLGvb2Sw2zhtwHpcPu5zRKaNb/dppre6UTLUqDS4sLCQQCJCWltZge1paGlu3bm2yT25ubpPtc3Obr9G/YMEC7r///taEJiIiIiKtZBgGqQ57WI6Vmno2KSlnUV6+jgMHniMvfxGm6ccwbJg1b8xHRwYY5Qyw12vhi0oba6qtbHTb2Oy2kO4wOTXGz4SoAFYDAmZoNOdo78trj29gI9GcQdL+s7Hu7sWwoMmqJBeb4y1sirOxJd7KhiFj2TB4DL3yDzB+41cM25mJ1QxiGgbG0RIr0wzNmjMMjKBJ79JK+pdWEl9RjWHLxtG3H+VnnEGBzcbBgwfJPngQn9fLNk5iGxn0JZdJrGeUuQ2rESSABbuxjWTHNgLmP/EER+MNDsYXHIzXHIxJVBMheCgP+sj3RVIa8FPoNzEdVnqcFM/AgXGk9oujz9AEImMcLf65GYbB2NSxjE0dy+2Tbmdl7ko2FW1iY+FGNhVuotrfuGJilC2KkSkjGZ0ymhHJI5jcczKJzsQWn/N40i2r+d11113cdtttdd/XjkyJiIiISPdlGAbx8eOJjx/P4MH3UFL6FRXlmZSVb6CiIpNAoArDgAERQQZEeLkoAXb7osg109jntfB6WSlvlroZFBGgnyNIP0eQdEcQZxO3Flmt0cTGjiY+biyxcaNITJiKw5EEhEZbelX5GOYLYvqDGDYL2AxKHAZuE7zB4Tgumg1VFVRv30ze7p3k7tpO7s4d+DzuxucKBImvdpPg8hBf7SE1aBA3YgSR547BOXIkUVOmYEtsmEyYpklVVRV+vx+/34/VaqXCa5Lrr8S270uiCjOJyF+HPW89Vm85UdYvibJ+WdMXgraemMkjMVNHYqQNg6Gz8DiTiPcH6eM3sdgMbHYrkbH2sI0EJToTmT1gNrMHzK57DsXuYjwBD96AF4fVQYQ1giRnUoePPh0rWpVMpaSkYLVaycvLa7A9Ly+Pnj17NtmnZ8+erWoPEBERQURECxdSExEREZFux+FIIq3HHNJ6zAFCb8x9viICAQ+m6cUwHFitEdjtyXVvzJt68+6wOIi1QjDYfL/DGYaBtYnRmUZ3DjmTYdppDJ12Wt35XeVl+L1e/D4fVpsNo7oap82O6fNhcTgwnE6sSUdPJgzDICYmpsG2ULqVBH36Ad+l5qRQVQh+F/i9YHNg2CKxRqc0Gpbr7FEQwzBIjkzu5LMeW1r1M3E4HEycOJFly5bV3TMVDAZZtmwZN954Y5N9pk2bxrJlyxrcM/XBBx8wbdq0NgctIiIiIscWwzBwOFKO2qYr37wbhkFUfEJnnxRimi4QId1fqxPc2267jauvvpqTTz6ZyZMn8+ijj1JVVcW1114LwFVXXUWfPn1YsGABADfffDNnnHEGDz/8MHPnzuXFF19k1apV/P3vfw/vMxEREREREelErU6mLrvsMgoKCvjNb35Dbm4u48aNY+nSpXVFJvbt24elXgWT6dOn8/zzz/OrX/2Ku+++m8GDB/Pmm2+2eI0pERERERGR7qjV60x1he5U/lBERERERLpOd8oNwrfssoiIiIiIyAlEyZSIiIiIiEgbKJkSERERERFpAyVTIiIiIiIibaBkSkREREREpA2UTImIiIiIiLRBq9eZ6gq11dvLy8u7OBIREREREelKtTlBd1jh6ZhIpioqKgBIT0/v4khERERERKQ7qKioID4+vktjOCYW7Q0Ggxw8eJDY2FgMw+jqcBooLy8nPT2d/fv3d/miYScKXfPOp2ve+XTNO5+ueefS9e58uuadT9e8Y5imSUVFBb1798Zi6dq7lo6JkSmLxULfvn27OowjiouL0y9JJ9M173y65p1P17zz6Zp3Ll3vzqdr3vl0zcOvq0ekaqkAhYiIiIiISBsomRIREREREWkDJVPtFBERwb333ktERERXh3LC0DXvfLrmnU/XvPPpmncuXe/Op2ve+XTNj3/HRAEKERERERGR7kYjUyIiIiIiIm2gZEpERERERKQNlEyJiIiIiIi0gZIpERERERGRNlAyJSIiIiIi0gZKplrgySefZMCAATidTqZMmcLKlSuP2P6VV15h2LBhOJ1ORo8ezbvvvttJkR4/WnPNFy5ciGEYDR5Op7MToz22ffbZZ1xwwQX07t0bwzB48803j9rnk08+YcKECURERDBo0CAWLlzY4XEeT1p7zT/55JNGr3HDMMjNze2cgI8DCxYsYNKkScTGxtKjRw8uuugitm3bdtR++nveNm253vpb3j5/+9vfGDNmDHFxccTFxTFt2jSWLFlyxD56fbdPa6+5XuPHJyVTR/HSSy9x2223ce+997JmzRrGjh3L7Nmzyc/Pb7L98uXL+e53v8v8+fNZu3YtF110ERdddBEbN27s5MiPXa295gBxcXHk5OTUPfbu3duJER/bqqqqGDt2LE8++WSL2mdlZTF37lxmzpzJunXruOWWW7juuut47733OjjS40drr3mtbdu2NXid9+jRo4MiPP58+umn3HDDDXz11Vd88MEH+Hw+zjnnHKqqqprto7/nbdeW6w36W94effv25aGHHmL16tWsWrWKWbNmceGFF7Jp06Ym2+v13X6tveag1/hxyZQjmjx5snnDDTfUfR8IBMzevXubCxYsaLL9d77zHXPu3LkNtk2ZMsW8/vrrOzTO40lrr/m///1vMz4+vpOiO74B5htvvHHENrfffrs5cuTIBtsuu+wyc/bs2R0Y2fGrJdf8448/NgGzpKSkU2I6EeTn55uA+emnnzbbRn/Pw6cl11t/y8MvMTHR/Oc//9nkPr2+O8aRrrle48cnjUwdgdfrZfXq1Zx11ll12ywWC2eddRYrVqxoss+KFSsatAeYPXt2s+2lobZcc4DKykr69+9Penr6UT8VkvbRa7zrjBs3jl69enH22Wfz5ZdfdnU4x7SysjIAkpKSmm2j13r4tOR6g/6Wh0sgEODFF1+kqqqKadOmNdlGr+/wask1B73Gj0dKpo6gsLCQQCBAWlpag+1paWnN3quQm5vbqvbSUFuu+dChQ3nmmWd46623eO655wgGg0yfPp0DBw50RsgnnOZe4+Xl5bhcri6K6vjWq1cvnnrqKV577TVee+010tPTmTFjBmvWrOnq0I5JwWCQW265hVNOOYVRo0Y1205/z8Ojpddbf8vbLzMzk5iYGCIiIvjxj3/MG2+8wYgRI5psq9d3eLTmmus1fnyydXUAIu01bdq0Bp8CTZ8+neHDh/P000/zu9/9rgsjEwmPoUOHMnTo0Lrvp0+fzq5du3jkkUf473//24WRHZtuuOEGNm7cyBdffNHVoZwQWnq99be8/YYOHcq6desoKyvj1Vdf5eqrr+bTTz9t9s29tF9rrrle48cnJVNHkJKSgtVqJS8vr8H2vLw8evbs2WSfnj17tqq9NNSWa344u93O+PHj2blzZ0eEeMJr7jUeFxdHZGRkF0V14pk8ebKSgTa48cYbWbRoEZ999hl9+/Y9Ylv9PW+/1lzvw+lvees5HA4GDRoEwMSJE/nmm2947LHHePrppxu11es7PFpzzQ+n1/jxQdP8jsDhcDBx4kSWLVtWty0YDLJs2bJm58NOmzatQXuADz744IjzZ+WQtlzzwwUCATIzM+nVq1dHhXlC02u8e1i3bp1e461gmiY33ngjb7zxBh999BEDBw48ah+91tuuLdf7cPpb3n7BYBCPx9PkPr2+O8aRrvnh9Bo/TnR1BYzu7sUXXzQjIiLMhQsXmps3bzZ/9KMfmQkJCWZubq5pmqZ55ZVXmnfeeWdd+y+//NK02Wzmn//8Z3PLli3mvffea9rtdjMzM7OrnsIxp7XX/P777zffe+89c9euXebq1avNyy+/3HQ6neamTZu66ikcUyoqKsy1a9eaa9euNQHzL3/5i7l27Vpz7969pmma5p133mleeeWVde13795tRkVFmb/85S/NLVu2mE8++aRptVrNpUuXdtVTOOa09po/8sgj5ptvvmnu2LHDzMzMNG+++WbTYrGYH374YVc9hWPOT37yEzM+Pt785JNPzJycnLpHdXV1XRv9PQ+ftlxv/S1vnzvvvNP89NNPzaysLHPDhg3mnXfeaRqGYb7//vumaer13RFae831Gj8+KZlqgccff9zs16+f6XA4zMmTJ5tfffVV3b4zzjjDvPrqqxu0f/nll80hQ4aYDofDHDlypLl48eJOjvjY15prfsstt9S1TUtLM+fMmWOuWbOmC6I+NtWW3T78UXuNr776avOMM85o1GfcuHGmw+EwMzIyzH//+9+dHvexrLXX/A9/+IN50kknmU6n00xKSjJnzJhhfvTRR10T/DGqqesNNHjt6u95+LTleutvefv84Ac/MPv37286HA4zNTXVPPPMM+ve1JumXt8dobXXXK/x45NhmqbZeeNgIiIiIiIixwfdMyUiIiIiItIGSqZERERERETaQMmUiIiIiIhIGyiZEhERERERaQMlUyIiIiIiIm2gZEpERERERKQNlEyJiIiIiIi0gZIpERERERGRNlAyJSIiIiIi0gZKpkRERERERNpAyZSIiIiIiEgb/D9SUFg2R1mmfQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -160,9 +147,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAM0CAYAAAAhmGqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADUV0lEQVR4nOzdd3hUVf7H8c+dSe+VAKGE3ps0UVGagr3uYldU1P25Nuxd13Xdde3i2isWsK2iKEVABUHpLUrvAZIAaaRNMnN/fyCscSaQMpN7J3m/nieP5tx7z/0GQjKfOeeeY5imaQoAAAAAYAsOqwsAAAAAAPwPIQ0AAAAAbISQBgAAAAA2QkgDAAAAABshpAEAAACAjRDSAAAAAMBGCGkAAAAAYCOENAAAAACwEUIaAAAAANgIIQ0AAAAAbISQBgAAAAA2QkgDgpxhGH7/ePjhh63+sgAAAJosQhoAAAAA2AghDQAAAABsJMTqAvzN4/Fo165dio2NlWEYVpcDBKXy8nIVFhZaXQYAAEC9mKapoqIitWzZUg5H8IxPGaZpmlYX4U87d+5U69atrS4DAAAAgE3s2LFDrVq1srqMGmt0I2mxsbGSDv5FxMXFWVwNEHjx8fFebQUFBRZUAgAAfm/nzp16+eWX9cknn2j37t3VnhcbG6tTTz1V119/vfr379+AFTZ+hYWFat269eGMECwa3UhaYWGh4uPjVVBQQEhDk+BrWm8j+2cNAEBQ8Xg8+uc//6m///3vKi0trdW1l112mV544QWfb8Ki9oI1GwTPxEwAAADA5kpLS3XWWWfpvvvuq3VAk6RJkyZp4MCB2rJlSwCqQ7AgpAEAAAB+4Ha7df7552vatGk+j4eGhqpPnz4aOXKkBg0apJiYGJ/nbdiwQSNGjDjiFEk0boQ0AAAAwA8efPBBffPNN17tCQkJeuaZZ5Sbm6sVK1bo22+/1c8//6z9+/frk08+UefOnb2u2bp1qy666CK53e6GKB02wzNpQJDjmTQAAKy3cuVK9e/f3ytUtWvXTt9++63at29f7bXFxcU6//zzNWPGDK9jEydO1A033OD3epuKYM0GjKQBAAAA9XTbbbd5BbTo6Gh9/fXXRwxoh8777LPP1KNHD69jDz74oA4cOODXWmF/hDQAAACgHpYsWaLZs2d7tT/wwAPq2rVrjfqIiorSa6+95tW+f/9+vfrqq/WuEcGF6Y5AkDvSdMfS0lLl5uZq3759CgsLU1JSkpKSkhQeHt7QZSKI7N+/X0uWLNHu3buVn5+vAwcOKCoqSgkJCWrWrJmOOeYYtWjRwuoyAcA2rr32Wq+AlZycrO3btysqKqpWfY0ZM8Zr2mPXrl3166+/1rvOpihYs0Gj28wagPR///d/mj9/vjIzM+XxeLyOt23bVscff7yGDh2qCy64QCkpKRZUCTvZvHmzXn/9dX388cfauHHjUc9PT0/X2WefrfHjx6tv376BLxAAbKqyslKffPKJV/sll1xS64AmSePHj/cKaWvXrtWyZct0zDHH1LlOBBdG0oAg52skrTYiIyN12WWX6Y477lDHjh39VBWCRX5+vm677Ta99dZbdV5w5owzztBLL72kVq1a+bk6ALC/+fPna+jQoV7t33//vU488cRa91dWVqakpCSvPdb+/ve/67777qtznU1VsGYDnkkDbMw0TZUU5KsgJ1v7d2WpICdbJQX5fl29sbS0VK+++qr69OnDnPcmZtWqVerRo4fefPPNen1PffXVV+rRo4fPVckAoLGbO3euV1tUVJSGDBlSp/4iIiJ03HHHebXPmTOnTv0hODHdEbCRksIC7chcpezNG7V743plb96oirJSr/NCIyKV1r6jWnT03lelzvcuKdF1112n+fPn65133qn3CB3sbc2aNRo5cqT27t1b7TnJyclq166d4uPjdeDAAWVlZWnnzp0+zy0sLNQ555yjL7/8UqNGjQpU2QBgO4sXL/Zq69evn0JDQ+vc56BBg7wWIlm2bFmd+0PwIaQBFjNNU7s3rNWKGdO0buE8edxuOZxOeY6weWVFWal2/rJau9b9crgtJMSpgcf016lnnKFevXqpW7duSklJUVxcnMrLy5WXl6dNmzbpxx9/1Keffqrly5f77HvSpElKTk7WM8884/evFfZQWVmpSy65xGdACwkJ0XXXXafrr79ePXv29Dq+c+dOvf3223r66aeVl5dX5VhZWZkuvfRSrVu3TvHx8QGrHwDsZNWqVV5tvn5+1kbv3r292vLz87Vt2za1bdu2Xn0jODDdEbDQxsU/6d07/qoPH7hDaxfMOxzMjhTQfs/jdqttcoL+NKCX/nb2aJ2fkao2hdnq2aqFunTpouTkZIWGhiomJkatW7fWsGHDdN9992nZsmWaO3dutcsCP/vss3r33Xf99nXCXl555RWfLyqSk5M1f/58TZw4sdoXGK1atdL999+vVatW+VwwJDs7Ww8//LCfKwYAe3K5XNqxY4dXe32f8e7QoYPP9s2bN9erXwQPQhpggdKiQk17/gl98eTftW/ndkmS6alZMPujG0cer8Ht2yjMeXB64r4d2/TFvx/VtOefUGlRYbXXDRs2TMuWLdMFF1zg8/i9997r9dAyGoe3337bq80wDP33v//V4MGDa9RHq1atNH36dKWmpnode//9932uKgoAjc2OHTt8/rxLT0+vV7/VXb9169Z69YvgQUgDGtiGxQv15q3Xad3C+ZLk10VAft/fuoXz9eat12vD4oXVnhsZGan3339fw4cP9zqWlZWliRMn+rU2WG/Xrl1asmSJV/s555zjc3WyI0lLS9M999zj1Z6bm6uffvqpzjUCgN2Ypqm9B8q1Y3+JNuce0I79Jdp7oFw5OTk+z09LS6vX/aq7Pjc3t179InjwTBrQQEzT1KLPP9b8ye9KhiEFePcL0+NR2YEiTX3yMZ1w4eUadM6ffC4GEhYWptdee03du3eXy+WqcuzTTz/VHXfcEdA60bCq2wPt/PPPr1N/f/rTnzRhwgSv9k2bNvlcnQwAgsH+YpcWbNqr1VkFWrkjX6t3FqjY5T3jxbNtqc/r6/tcrtPpVHR0tIqLi6u079u3r179IngQ0oAGYJqm5n/4jhZ98cmhhoa6sSRp/uR35Sor1QkXXu4zqHXo0EEXXXSR3nnnnSrtixcv1t69e9nsuhHJzs722d69e/c69deqVSvFxMTowIEDVdp3795dp/4AwCqmaWrZ9nxNWrhVX63arUqPqRCHoUpP9b+zS0tKfLZvK3TrGNOs10rJvkLaHz9H48V0R6ABLPr84/8FNCtr+Pzjao+fccYZXm0ej0dLl/p+lxDBqbrptTExMXXu09fmoE6ns879AUBDm5m5R2OenafzX1qgL38LaJKOGNAkyfRU+my/cfIqnfrcPM36xfcbYzXhawn/P854QeNFSAMCbMPihQenONrA/MnvauNi388K9e/f32d7dSMvCE7VPedQnyk0vq5t3rx5nfsDgIaSV+zSTR8u17WTlmp9TpEkyX2UYFaF6XuRJMPh0LrsIo1/d4lu+nC58oprH658vdlVWek7FKLxIaQBAVRaVKiZrzx/8Bk0OzAMzXjlOZ+rPjZr1sznJdU9FI3g1L9/f5+/+BctWlSn/lasWKHy8nKv9mOPPbZO/QFAQ5mRuUcjnvpO01YdnJ5dlycRDIfvWQOmx324v2mrdmnEU99pRuaeWvXtK5DVZ4NsBBdCGhBAc956WeXFxQ33DNrRmKbKi4s1561XanwJUysal5iYGJ1yyile7e+8806dVhp98803vdr69etX7R4/AGA10zT14tyNum7SUuWXVshdn9/RTt+hyXT/L2C5TSm/tELXTVqqF+durPHPWl+/f8PDw+tWJ4IOIQ0IkI2Lf9LaH3+QabP9okyPR2t//F4bl/xcpb26ETNfzxshuN15551ebcuWLdPzzz9fq35+/PFHvfzyy17t9957b51rA4BAMk1TT8xYp3/PWPfb5/XrzxEW6fs+rqr7jB66z79/u3dNglpRUZFXG7+Tmw5CGhAApmnqxymT6rWqUyAZhqEfp0yq8kuiugVC2rRp01BloYEMGzZM119/vVf7hAkT9MQTT9RoI+ovvvhCZ5xxhioqKqq0jx07ttoN0gHAav/5bpNe+m6T3/pzRPoOTZ6yAz7bD9Xwn6PUUFZW5nMqeXJycu0KRNAipAEBsHvDWu3dsc3vG1X7i2ma2rt9q3ZvWHe47csvv/R5br9+/RqqLPiBaZpyufaqtHSnSkq2qLR0p1yuvV7fiy+88ILOPffcKm0ej0d33XWXevTooaefflpLlizR/v37VVlZqcLCQv3yyy968803ddJJJ+mcc85Rfn5+letPO+00r20cAMAuZmTuOTyC5i/O6ASf7e7i/CNe9+8Z6zTzCM+o7dnj+xiLMjUd7JMGBMCKGdNkOJwyPd4bX9qF4XBqxcxpatm5qzZt2qQPP/zQ65xOnTqpdevWFlSHmnK59isvb6GKitaooHCliorWyO323kfH6YxWbGxPxcf1UWxsTyUmDtEnn3yiJ554Qo888ojKysoOn7t27VrddtttNa4hKipK9913n+6++245HLz3B8B+8opduvvTVTIk+fPtU2dM8sHn0txVZxVUFh550S3DkO76dJUGZiQpMTrM6/j27dt9XteuXbu6F4ugQkgD/KyksEDrFs6zdUCTDq48tW7BDzruwss1fvx4r2lrknTppZdaUBmOxjRNFRYu146d7yknZ5pMs1KGESLTrH5pZre7WPn5P6ugYOnh89OanaG//OVSXXHFFZo4caI++eQTrV+/vsZ19OjRQxdeeKGuu+46paam+uNLA4CAeGhqpgpLK/0a0KSDjw+EJrRQxb6qoaoyb9cRrzNNqbC0Qg9/mannLvSesbJhwwaf13Xs2LHuxSKo8JYn4Gc7MlfJ4w58QPt1d46Ky+u38mJ5uUsX/vnPmjt3rtex2NhY3XDDDfXqH/6XmztLPy86TUuW/kk5OV8dDmZHCmi/9/vzs3O+1JKlF2j58ktlmrsUHx9fq1p27dqltWvX6pdffqndFwEADWhm5h5NXbmrfqs4HkFYWnuvNlfOlqNe5zalL1bs8rnh9fLly73aWrVqpZSUlLoViaDDSBrgZ9mbN8rhdAY8qP20abveXbBMA9u1Uv+26WqTlFCrhUo25ezTZ8vWKLvQ98PN//jHP3hA2UYqKvK0bv0jys7+UtLBv2fTrN/3WHl5pd5+a78+/3yLXK7av3jJy8vT+++/r/fff18nnnii3njjDd7lBWArpmnqqZnrZRiB2w0nrGUXFf/yXZW2ir3b5SkvliM8+ojXGob01Mx1GtWtWZXf4QsXLvQ6d/DgwX6pF8GBkAb42e6N6xpkJE2SKtxuLdi4TQs2blNcZLi6pKWqZUKcWiTEKTEqUhGhIYoIDZHbY6rUVaG9B4q1dW+eVu3crax87w2tD/nzn/+sv/71rw3yNeDocnNn6te196qi4tDfWf1faezdW6l77t6jLVu8R2OjosJ1xhln68QTT1SbNm2UkJCgAwcOKDs7WwsWLNBXX32l3bt3V7nmhx9+UN++ffXxxx/r1FNPrXd9AOAPy7bna12291L2/hTZtq/y/thoelS6dYWiuxx/xGtNU1q7p0jLd+TrmDaJkg5uieNrJG3UqFF+qhjBgJAG+JFpmsre7L+lfWujsLRci7furHc/f/7zn/Xee+/5oSLUl2ma2rbtJW3a/JTkx8fdCwvduuP23dqxw/s5xHPOjddllyXomH7D1Lbt9V6js1deeaVcLpdee+013XnnnSopKTl8rLi4WOeee65mzJihk046yS+1AkB9TFq4VU6HIbcncKsth6a0VkhCC1XmV33zquTXeUcNaZLkdBiatHDb4ZD20Ucfea3IaxiGzjjjDP8VDdvjmTTAj0oLC1RRVnr0E20oLi5Ob7zxhqZMmaLQ0FCry2nyTNPUps1P/hbQJH+uR/bcc3u9ApphSHfelaq//jVZ8fHOw/f2tY1EWFiYbrjhBi1cuFAJCQlVjpWXl+uyyy5TQUGB3+oFgLrYX+zSV6t2BzSgHRLdY5hXW8mGn1RZmHvUa90eU1+u3KX9xS6ZpqkXX3zR65xhw4apVatW/igVQYKQBvhRhY+NJwOlVWK8osO9l+2traiwUN1w3XVas2aNrrrqKj9UBn/Ytu0lbdv2st/7zcws0/ffeS/R/+ex8TrllNha1dC7d2998MEHXu07duzQs88+W+9aAaA+Fmzaq8oGCGiSFNNnjOT8wwQ1T6Xy502q0fWVHlMLN+3TW2+9pbVr13od5xGEpofpjoAfuStrtsKeP5zco5NGde+o3QVF2rYvT1l5hdpdUKh9B0pUXO6qdtwlxOFQi4Q4tUmKV7uUJPVIT9O1Dz6gpJbpDVY7jiw3d+bvRtD86/PPvUe4YmMduuSSRJ/nb9r8pKKjOyo19WSfx0899VSNGjVK3377bZX2l156SQ888AD7pgGwzOqsAoU4jAYJaiGxyYrpdbIOrPimSnvxmjmK7DBI0V1POPL1DkNzfl6hN+6Y4HWsZ8+eOuecc/xZLoIAIQ3wI2dIw/6TMgxDLRPi1DIhrkp7pdujorJylVdWqtLtkWFIkWGhiggNVURoiBx/eM4ohOmNtlFRkadf194rfz6Ddohpmlq6xHs67nHHRSkqqrowZejXtfcoIWGAQkN9B7mLL77YK6RlZ2dr1apV6tu3bz2rBoC6Wbk9v8FG0iQpYeilKlk7X56yqguV7P3qKcnjVnT36p/VLdm9US+9/JhKfUwVf/7553nDqwnibxzwo9DwcKtLkCSFOB1KjI5U8/hYtUqKV3pivJKioxQVFuoV0CQpJKz+0ybhH+vWP/LbKo7+f2GRk1OpwkKPV3vPnhFHuMpURUWh1q3/W7VnDB061Gf7ihUralkhAPiHaZpandWwz8Y6o+KVfOpN3gfcFdr75b+V/fFDKtnwk9zFeTI9bnnKDqhs+2rtm/6Cdr97m0rzcrwuvfXWWzV8+PAGqB52w0ga4EeRcfEKjYgMqsVDwiIjFRlXu02MERi5ubN+2wctMPLzvQOaJCUmOo9ypVvZ2VOV1ux0paZ6LwGdlpbm86q9e/fWtkQA8It9xS4VuxpmO5zfi+o8RAknXq78H971Ola2eanKNi+tcV9nnHGG/vWvf/mzPAQRRtIAPzIMQ2ntO1hdRq2kte9Yq02wERgHV3N8Woc2qg4Et9v36JwzpCb3NLRp89M+V3usbjVQj8d3KASAQCu1IKAdEj/kz0ocMV4y6v4y+9JLL9Unn3zCastNGCEN8LMWHbvI4TzayIQ9OJxONe/YxeoyIKmwcLmKi9crENMcD4mP9/19WZBfkxczpoqL16mwcIXXkdxc30tMp6am1qI6APCfCre1bxLFDTxbzS/9t8Kad6zVdc3SmmvSpEmaNGmSwm3yCAWswXRHwM/S2neUx23dO3i14XG7ldaudr9AEBg7dr4nw3DKNAP3vZOQ4Dukrd9QrlEnx/o89nuG4dTOne8pPr5flfbFixf7PJ+QBsAqoU7rxyHCW3ZRiyueVenWFSrOnKuyrSvkPrDP6zxHeLTCW/dQVJfjteD1B9Shue9FmtC0ENIAP2vdo7ccTmdQBDWH06nWPXpZXUaT53LtV07OtIAGNEmKjnYoPT1EWVlVt4pYuKBE111nyuk88rRH03QrO+crdep0n8LCkg63f/bZZ17nGoahgQMH+qdwAKilyDD7zGiJzOiryIy+kiRP2QFVHtgvs6JMRkiYHJFxCon538/T+Jgoi6qE3Vj/NgPQyETFxavLkKEyHPb5BeGL4XCqy3EnKopFQyyXl7dQptkwe+wNGOj9AmD37krNmnWgRtebZqXy8n86/HlmZqYmT57sdV6fPn2qXVAEAAItOTpM0TYKaoc4ImIUltJG4S06Kyw1o0pAiwkPUXI0qy3jIEIaEAB9R58u02PvkTTT41bfU063ugxIKipaI8NomIkNI0bE+Gx/ceJebdxYftTrDSNERYVrJEn79+/XeeedJ7ePUeOLLrqofoUCQD0YhqFe6cH1JmSv9HgW8sJhhDQgAFp06qqUNhm2/WFrGIZS2mSoRScWDbGDgsKVDTaS1qNHhI491ns0rbTU1IQJuzR37pFH1EyzUgWFK7V48WINGjRI69ev9zqnZcuWuvHGG/1WMwDURZ82CQpx2PP38B+FOAz1aZ1gdRmwEUIaEACGYej4sZf5XK7cDkzT1PFjL7NtiGxKTNNUUdGaBr3n9dcnKTbW+8d/SbGpx/6eo+uu26nPPi3QhvXlKihwy+02deCARzt2uDR9epFu+L8vNWjQIG3atMmrD8Mw9PzzzysyMrIhvhQAqFav9HhVeuz5e/iPKj1m0I38IbBYOAQIkI4DBqvr8Sdq3cL5Mm20X5ThcKjLkKHqOGCw1aVAUkXFPrndxQ16z1atw/S3R5vr7rt2q7zc+wXMpo0u/Wej9wpkNfH000/r/PPPr2+JAFBvx3VIUYjDCIqgFuIwNKRDstVlwEYYSQMCaMS46xUeHS3ZZcTKMBQeHaMR466zuhL8xu0us+S+vXpF6KmnW6hVK/9slBofH6933nlHt9xyi1/6A4D6SooO0xm9W8hp8ymPToehM/u0VBKLhuB3CGlAAEXGxumU626S7DLt0TQ1+rqbFBkbZ3Ul+I1pVlh2765dI/TyK+m6+JIEJSTU7ddBRESELr/8cq1evVqXX365nysEgPq5bEiG3DYfSXN7TF02pK3VZcBmmO4IBFingUN0woWXa/7kd60uRSdceLk6DjzW6jLwO4bhn5GsuoqIcOiqq5J02WWJmj+vWMuWl2rtr+Xats2l6mbpNm8eouOPP1UnnXSyLr74YiUnM0UHgD0d0yZBXZvHal12kW3eL/09w5C6pMWqH4uG4A8IaUADGHTOn+QqK9Wizz+2tIZB5/zJsvvDN6czwuoSJEmhoYaGj4jR8N+W6K+sNFVU6NaBYo9KSkyFhxuKiXYoNs6h8HCHhp7wpsLCUiyuGgCOzDAM3XZKF41/d4nVpfhkmtJtp3RhIS94IaQBDcAwDJ1w4eUKi4g8OKJmGA0zBfK3+5xw0RUaTECzpdDQZDmd0Q2+eMjRhIQYSkwKUWKS9zGnM0ahoYyeAQgOJ3dP01l9Wmraqt1y22g4zWlIZ/RpqZO7p1ldCmyIZ9KABmIYhgaf+2edffv9ioiJkeEI7D8/w+FQREyszr79fgKajRmGodjYnlaXUSuxsT151xdAUHnkrB6Kiwyx0zpeiosM1cNn9rC6FNgUIQ1oYB0HHqurnnlFXYacIEl+f7F7qL8uQ4bqqmdf4Rm0IBAf10eGERwTGwwjRPFxfawuAwBqJTE6TP88v7dtnkszTelf5/dWIis6ohqENMACkbFxOv2mO3X27fcrufXBFZ0Mh7NefR66Prl1W519xwM6/aY7FBkTW+9aEXixsT1lmpVWl1Ejplmp2LjgGvkDAEka3aO57hjdxeoyJEl3jO6iU3o0t7oM2FhwvHULNFIdBx6rDgMGa/eGdVoxc5rWLfhBHrdbDqdTHrf7qNcfOs/hdKrrcSeq7+gz1LxjZ6aiBZnExCEyjJCgCGqGEaLEBEZnAQSn/xvWQcXllfrPd5ssreH/hnWw7P4IDoQ0wGKGYahl565q2bmrhl1+jXZkrlb25g3as2m99mzaqIqyUq9rQiMi1bxDRzXv2EVp7TqqdY9eioqLt6B6+ENYWJKaNTtdOTlfyTSPHs6tYhhOpTU7Q2FhPlYTAYAgYBiG7hjdRdHhIfr3jHUNvY6X7hzTRf83rGPgb4igZ5imXWbn+kdhYaHi4+NVUFCguDg27EVwM01TpYUFqnS5VFlRoZDQUIWEhSkyLp7RskamoGCZliy1/wIvA/p/ovj4flaXAQD1NjNzj+76dJUKSyvkDuCrYedvi4T86/zeTHG0QLBmA0bSABszDENR8QlWl4EGEBfXT9HRXVRcvF6SHd87MxQT3UVxcX2tLgQA/OKUHs01MCNJD03N1NSVu/w+qnaovzP6tNQjZ/VQQhSLhKDmWDgEAGzAMAx1aD9B9gxokmSqfftbGcEF0KgkRofp+Yv66dXL+qtL2sHFtpyO+v2cO3R9l7RYvXb5AD13YT8CGmqNkTQAsInU1FFKSztT2dlfS7LTs2lOpaWdrtTUUVYXAgABcUqP5jq5e5qW78jXpIXb9OXKXar0mApxGKr0HP3Ns0PnhTgMndWnpS4b0lZ9WyfwxhbqjGfSAMBGKirytPCnk1VRkS97jKoZCg1N0JBjZyk0NNHqYgCgQewvdmnhpn1alZWvVTsKtCorX8Xl3m+eRYc71Ts9QX1aJ6hXeryGdEhWEnuf2UqwZgNCGgDYTG7uTK1a/Reryzisd6+XlZp6stVlAIBlTNPUvmKXyircclV6FBbiUESoU8nRYYyW2VywZgOmOwKAzaSmnqIO7W/Tps1PWV2KOrS/nYAGoMkzDEMpMeFWl4EmhIVDAMCG2rb9i9q2tXY07WAN11taAwAATREjaQBgQwdXe7xNIc5obdr8pCRDDfOM2sH7dGh/hzIyCGgAAFiBkTQAsCnDMJSR8Rf17vWyQkMTJDkDfEenQkMT1LvXywQ0AAAsREgDAJtLTT1ZQ46dpbS0035r8fdD6gf7S0s7XUOO/ZZn0AAAsBjTHQEgCISGJqpnj2eV1ux0bdr8jIqL18kwnDLNuu+nduj66OjO6tB+AvugAQBgE4Q0AAgiqaknKyVllAoLV2jnzveUnfOVTLNShhEi06w86vWHzjOMEKWlnalW6ZcqLq4PS0gDAGAjhDQACDKGYSg+vp/i4/upU6f7lJf/k4oKV6ugcJWKilbL7S72usbpjFZsbC/Fx/VRbFxPJSYcq7CwJAuqBwAAR0NIA4AgFhaWpLRmpymt2cHn1UzTVEXFPrnd5TJNlwwjTE5nuEJDkxktAwAgSBDSAKARMQxDYWEpVpcBAADqgdUdAQAAAMBGCGkAAAAAYCOENAAAAACwEUIaAAAAANgIIQ0AAAAAbISQBgAAAAA2QkgDAAAAABshpAEAAACAjRDSAAAAAMBGCGkAAAAAYCOENAAAAACwEUIaAAAAANgIIQ0AAAAAbISQBgAAAAA2QkgDAAAAABshpAEAAACAjRDSAAAAAMBGCGkAAAAAYCOENAAAAACwEUIaAAAAANgIIQ0AAAAAbISQBgAAAAA20iAh7cUXX1RGRoYiIiI0ePBgLVq0qEbXTZ48WYZh6JxzzglsgQAAAABgEwEPaVOmTNGECRP00EMPadmyZerTp49Gjx6tnJycI163detW3X777Ro6dGigSwQAAAAA2wh4SHv66ac1fvx4jRs3Tt27d9fLL7+sqKgovfnmm9Ve43a7dckll+iRRx5R+/btA10iAAAAANhGQEOay+XS0qVLNWrUqP/d0OHQqFGjtHDhwmqv+9vf/qZmzZrp6quvPuo9ysvLVVhYWOUDAAAAAIJVQEPa3r175Xa7lZaWVqU9LS1Ne/bs8XnN/Pnz9cYbb+i1116r0T0ef/xxxcfHH/5o3bp1vesGAAAAAKvYanXHoqIiXXbZZXrttdeUkpJSo2vuueceFRQUHP7YsWNHgKsEAAAAgMAJCWTnKSkpcjqdys7OrtKenZ2t5s2be52/adMmbd26VWeeeebhNo/Hc7DQkBCtW7dOHTp0qHJNeHi4wsPDA1A9AAAAADS8gI6khYWFqX///po9e/bhNo/Ho9mzZ2vIkCFe53ft2lWrV6/WihUrDn+cddZZGj58uFasWMFURgAAAACNXkBH0iRpwoQJuuKKKzRgwAANGjRIzz77rIqLizVu3DhJ0uWXX6709HQ9/vjjioiIUM+ePatcn5CQIEle7QAAAADQGAU8pI0dO1a5ubl68MEHtWfPHvXt21fTp08/vJjI9u3b5XDY6tE4AAAAALCMYZqmaXUR/lRYWKj4+HgVFBQoLi7O6nIAAAAAWCRYswFDWAAAAABgI4Q0AAAAALARQhoAAAAA2AghDQAAAABshJAGAAAAADZCSAMAAAAAGyGkAQAAAICNENIAAAAAwEYIaQAAAABgI4Q0AAAAALARQhoAAAAA2AghDQAAAABshJAGAAAAADZCSAMAAAAAGyGkAQAAAICNENIAAAAAwEYIaQAAAABgI4Q0AAAAALARQhoAAAAA2AghDQAAAABshJAGAAAAADZCSAMAAAAAGyGkAQAAAICNENIAAAAAwEYIaQAAAABgI4Q0AAAAALARQhoAAAAA2AghDQAAAABshJAGAAAAADZCSAMAAAAAGyGkAQAAAICNENIAAAAAwEYIaQAAAABgI4Q0AAAAALCREKsLAIDGoLS0VMuXL9eWLVuUn5+vgoIChYaGKiEhQUlJSerVq5c6deokwzCsLhUAANgcIQ1AUNq8ebOWLl1a5SMvL8/rvLlz52rYsGEBqSE/P1+TJk3SpEmTtHz5clVWVh7x/Pj4eI0cOVLXXHONRo8eLYeDyQwAAMAbIQ2A7W3ZskVLliw5aiBrKG63W88++6wefPBBlZSU1Pi6goICffbZZ/rss8/UrVs3vf766zruuOMCWCkAAAhGhDQAttevXz8VFBRYXYakg6NnZ5xxhn788cd69fPrr79q6NCh+tvf/qb77rvPT9UBAIDGgJAGADVUVFSk0aNHa9GiRdWeExkZqc6dOyspKUkVFRXKycnRxo0b5fF4vM71eDy6//77JYmgBgAADuOBCACoobvuuqvagHbaaadp9uzZKigo0IoVKzRnzhzNmzdP69atU15ent566y116dLF57UPPPCAFixYEMjSAQBAECGkAQhKbdq00bnnnqvHHntM06dP15IlSwJ6v1WrVumVV17xanc4HHr11Vc1bdo0jRgxQqGhoV7nxMXF6corr9SKFSt06aWXeh03TVM33HBDQOoGAADBh+mOAGyvTZs26tixo/r376/+/ftrwIABSklJqXLO1q1bA1rDpEmTfE5ZfOSRRzR+/Pga9REREaG3335bWVlZmjt3bpVjK1as0OrVq9WrVy+/1AsAAIIXIQ2A7a1atcrqEjR16lSvtubNm+uOO+6oVT9Op1NPPfWUjjnmGK9jX375JSENAAAw3REAjsbj8Wjz5s1e7WeccYbCw8Nr3V+/fv3UoUMHr/ZNmzbVqT4AANC4ENIA4Cj27dvnc6Pq7t2717nPbt26ebXt3r27zv0BAIDGg5AGAEdhmqbP9piYmDr3GRcX59XmdDrr3B8AAGg8eCYN+IOsrCytWLFCubm5ys3NldvtVlxcnNq1a6e+ffuqRYsWVpeIBpaUlKSQkBCv0bR9+/bVuc+9e/d6tTVv3rzO/QEAgMaDkAbo4DSzZ555RtOmTdMvv/xyxHP79OmjK6+8UldddZXP0RA0PiEhITrmmGO89kg70qbWR+LxeHxuGXDsscfWqT8AANC4MN0RTVpZWZnuuOMOdejQQf/+97+PGtAkaeXKlbr11lvVuXNnTZ48uQGqhB2cf/75Xm0zZszQnj17at3X559/rv3791dpCw8P15lnnlnn+gAAQONBSEOTlZWVpaFDh+rJJ59UaWlpra/Pzs7WRRddpBtvvLHaZ5bQeIwfP16JiYlV2kpKSnTDDTfU6u8/JydHt99+u1f7Nddco2bNmtW7TgAAEPwIaWiSsrKyNHjwYJ9Tzg5p3769jj/+eB1//PFq3759tedNnDhRf/nLXwJRJmwkMTFR//nPf7zaP/vsM1188cUqLCw8ah+ZmZkaMWKEtmzZUqW9Y8eOevzxx/1WKwAACG6ENDQ5LpdLF1xwgbKysryORUdH69FHH9X27du1adMmzZ8/X/Pnz9emTZu0fft2Pfroo4qOjva67pVXXtFLL73UEOU3OqZpyuXaq9LSnSop2aLS0p1yufbacnTywgsv1L///W+v9smTJ6tDhw66++67NWfOHGVnZ8vlcqmkpETbtm3TZ599pksuuUT9+vVTZmZmlWvbt2+vb7/9VrGxsQ31ZQAAAJszTDu+EqqHwsJCxcfHq6CggEUd4NP999+vxx57zKu9Y8eOmjVrljIyMo54/datW3XyySdr48aNVdqjoqL0yy+/qG3btv4st9FxufYrL2+hiorWqKBwpYqK1sjtLvY6z+mMVmxsT8XH9VFsbE8lJg5RWFhStf1u3bpV7dq182qfO3euhg0b5s8vQdOmTdP48ePrta+ZYRi65JJL9MILLyghIcF/xQEAgMOCNRsQ0tCk7N+/XxkZGSoqKqrSnpKSopUrV6ply5Y16mfXrl3q06eP1zLqf/7znzVlyhS/1dtYmKapwsLl2rHzPeXkTJNpVsowQmSa3htE/9Gh8wwjRGnNzlCrVpcqLq6vDMOocl5DhjTp4KIzb7zxht5//339/PPP8ng8NbquefPmuuCCC3T99derR48efq8LAAD8T7BmA6Y7okmZOHGiV0CTpBdeeKHGAU2SWrZsqeeff96r/ZNPPtG6devqVWNjk5s7Sz8vOk1Llv5JOTlfHQ5mNQlovz/PNCuVnfOlliy9QD8vOl25ud8GrOaaCg8PV3x8vEJCar6byf79+7Vx40YtX77ca981AAAAiZCGJubzzz/3amvfvr3Gjh1b677Gjh3rtaCIx+PRK6+8UtfyGpWKijytybxFq1Zfr+LiDZIk03TXq89D1xcXr9eq1ddpTeYtqqjIq3ettfXWW2+pXbt2Gj9+vKZPny6Xy1Xja10ul6ZPn67LLrtMnTt31syZMwNYKQAACEaENDQZ+/fv18qVK73aL730Uq+pczXhcDh06aWXerV/8MEHNZ761ljl5s7Uwp9OVnb217+1+HtW9cH+srO/1sKfTlZubsMEnYqKCl100UW66qqrvPZHMwxDI0eO1GOPPabPPvtM3333nWbNmqXJkyfrjjvuUK9evbz627Jli8aMGaO//e1vDVI/AAAIDjWfowMEucWLF/sMT8cdd1yd+xwyZIhXW3Z2tpYuXaqBAwfWud9gZZqmtm17SZs2PyXJkP/D2R+5VVGRr1Wr/6LwsHEBvpd0ySWX6OOPP/ZqHzFihCZOnKhu3br5vG7s2LF64oknNGPGDF1//fXaunXr4WOmaeqhhx5SeHi47rrrrkCVDgAAgggjaWgycnJyfLbXZ/GG6q799lvrn5dqaKZpatPmJ38LaFLgA9rhO0uStm1/NaB3eemll3wGtPHjx2vWrFnVBrTfGz16tJYtW6b+/ft7Hbv//vu1ePFiv9QKAACCGyENTcYfV2I8pD7Ln1d37ZE2yW6stm17Sdu2vWx1GQFRXFys++67z6v9+OOP10svvSSHo+Y/ShMTEzV16lSv753Kykrdeeed9S0VAAA0AoQ0NBmlpaU+28PDw+vcZ0REhM/2FStW1LnPYJSbO/N3I2iNz/vvv6+8PO8FSv71r3/J6XTWur+WLVvq9ttv92r/7rvvvDa7BgAATQ8hDU1GdaNeBQUFde4zPz/fZ/u2bduazPLqFRV5+nXtvTr4DFrjNGPGDK+2jIwMHX/88XXu8+KLL/bZPmvWrDr3CQAAGgdCGpqM5ORkn+1/XKWvNqq71u12a8eOHXXuN5isW/+IKioK1XDPoDW8ZcuWebWdcMIJ9eqzXbt2Sk9P92pvaqOwAADAGyENjY5pmsp1VWh7abk2lZRpe2m5cl0Vat26tc/z67NYw5GurW6hksYkN3eWsrO/lFS//c/sLjc316stLS2t3v366qO6ZycBAEDTwRL8CHr7XJWan1+kVUWlWl5YopVFJSp2ey+1H+UJlzMiQu6ysirtM2fO1LhxdVu+/UgbEe/bt69OfQaLg6s5Pq2GWWq/7kyz/rX5mroaGhpa73599dHU99gDAACENAQp0zS1tLBEb2Xt1Rc5eao0pRBDqjzC6/ESh1OOrr3kXlF19OvTzz5TdnZ2rUdGsrOz9d///rfa48XFxbXqL9gUFi5XcfF6q8s4quLijZKG16uPlJQUZWVlVWnzNbpWW776SE1NrXe/AAAguDHdEUFnem6Bhi9epzOWbdDnvwU06cgB7ZDIk0/zaqtwudT7ims0Y2/tFhC59dZb5XK5qj1+pGONwY6d78kwar+yYUPLza3/QhzNmjXzalu6dGm9+ty7d2+VTa0PIaQBAABCGoLG/opK/SVzq65cs0Xriw9OWXTXciZbxKjT5UjxfsGdM+Mr/emRx/SXzK3aX3H0VRmfe+45ffjhh0c8pzFPW3O59isnZ5pM0/7PouXlL5TLtb9effjafHrlypXasmVLnfv8/PPPfX6PDBo0qM59AgCAxoGQhqDwTW6+jv/5V03NyZck1TX+GKGhihn3fz6PFU38tyY9dL+GzFmsb3LzfZ5TWFioW265RbfccstR71XdHmqNQV7eQplmcGwxYJpu5eX/VK8+xowZ46NfUw8//HCd+isrK9Njjz3m1e5wODRq1Kg69QkAABoPnkmDrZmmqee35ejxLbvlUN3D2e9Fnnq2XCsWq2zWNK9jxZ++r43fTtP5J4zQBSeP1OU9OsswDO3Zs0fff/+9/vvf/3qtvjdw4ECfqzxGRUX5oVp7KipaI8MICYqgZhhOFRWuUVoz76muNXXKKacoKSlJ+/dXHZF79913deKJJ+rqq6+ucV8ej0dXXHGFz6mOo0ePVlJSUp3rBAAAjQMhDbZlmqb+sXm3Xth+cCl7f04ejLv1Pnn275Vr6c9exzwF+Sqd9pkmTftMk47Sz6mnnqorr7xSY8eO9Trm6zmmxqKgcGVQBDTp4EhaQeHKevURGxure++9V7fffrvXsWuvvVZbtmzRgw8+qLCwsCP2s2fPHl155ZU+N8c2DEP/+Mc/6lUnAABoHAzTH+tT20hhYaHi4+NVUFCguLg4q8tBPTy3NVuPb9kdsP5Nd6WKnv+nSr/8tE7XX3TRRXrzzTc1ZcoUXXnllV7Hd+zYoVatWtWzSvsxTVPf/9BHbnfDrV65Z0+FLr0kcJuDb9myRRkZGUc8p7y8XMcdd5zPja0lqUWLFrrmmms0YsQIde3aVUlJSaqoqNDevXu1dOlSffPNN3rvvfdU9octIA656aab9Nxzz9X3SwEAAL8TrNmAkTTY0je5+QENaJJkOEMUd+v9ihhxqg68+aIqVi+v0XWtW7fWP//5T1188cWSpIIC71Uho6OjlZ6e7td67aKiYl+DBjS7CA8P1zfffKPjjz9eGzdu9Dq+e/duPfroo3r00Udr3fd5552nZ555xh9lAgCARoCQBtvZX1GpCet2NNgWyWF9+ivpuTdVsWm9XIsXyrVikdx7dsuTnyez+ICMsDCFNm+h8044Tn865xydddZZCgn53z+dtWvXevXZvXt3GYbRANU3PLfb90hQU9CsWTP98MMPuuqqqzR9+vR69+dwODRhwgQ99thjcjhYxwkAABxESIPt3Ld+pwor3A0S0H4vtENnhXborOgLr/A65pSU2CxB5/XI8Dq2atUqr7bjjjsuABXag2lWWF2CpVq0aKFvvvlGb731lp588kn98ssvte7DMAyNGDFCDz/8sE444YQAVAkAAIIZIQ22Mj23QP/9bZl9O3FL+iwnX2enFWh0Svz/2t1urV692uv84cOHN2B1DcswQhv8nklJIXr+hZb16qN3r5cUHu57MZcWLVrUur9x48Zp3Lhx+u677zR16lQtWrRIy5cvV0lJic/zU1JSNHDgQB177LG68MIL1blz51rfEwAANA2ENNiGaZr6px+X2vc3h6R/bt6tU5LjDk9lnDVrlgoLC6ucFxMTo1NOOcWCChuG09nw+7+FhRnq3r1+9x0y5DiFhaX4qaL/GTZsmIYNGybp4PL6eXl5ys/PV0FBgZxOpxISEpSQkKD4+PgjdwQAAPAbQhpsY2lhidYW2/d5J4+kX4vLtKywRP3joyVJkyZ5L9J/3nnnKTIysoGrazihoclyOqODavEQpzNGoaHJAb+Pw+FQcnKykpMDfy8AANB48aQ6bOOtrL1y2nytDadxsE7p4LLtn332mdc5t9xySwNX1bAMw1BsbE+ry6iV2NiejXYhFwAA0PgQ0mAL+1yV+iInT26b79rnNqXPc/K0z1Wp//u///Pa8+q0005Tv379LKqu4cTH9ZFhBMdAvGGEKD6uj9VlAAAA1BghDbYwP79IlTYPaIdUmtKER//utQR7aGionnrqKYuqalixsT1lmpVWl1Ejplmp2LjgGvkDAABNW3C8FY5Gb1VRqUIMNVhQ85SWyBEZVevrTNNU6Xuv6d23XvI69sgjj6hr167+KK9BmaaprKwsbd++XTt27NDevXtVUlKi8vJyxcbGKj4+Xqmpqerbt+/hDboTE4fIMEKCIqgZRogSE461ugwAAIAaI6TBFpYVljToSNr+ay9UaI8+ijzlTIX2OUaG8+j/FFxrVqjoxSdVuS7T69hpp52mu+66KxCl+t3GjRv1448/auHChVq1apXWrFmjoqKiGl2blpam0aNH66qrrlJq6mnKzZ0m03QHuOK6Mwyn0pqdobCwJKtLAQAAqDHDNM0gmWRWM4WFhYqPj1dBQYHi4uKsLgc1YJqmOs5brWJ3wy28n/vn0fLszZEkGdExCus7QCEdOsvZOkOOuHgZEZHyFBbIk79flVs2yrVwnty7d/rs69hjj9W3336r6OjoBqu/rh544AH9/e9/90tfPXp00nXXFat7j4Zfkr82BvT/RPHxjf85QQAA4C1YswEjabDc3orKBg1of2QWH1D5j9+p/Mfvan3taaedpo8++igoApokVVRU+K2vzMwNuvlmaeyFCbrmGjuOVBmKie6iuLi+VhcCAABQK4Q0WK7UwoBWZ2Hhuu/hh/W3u+6Uw9E41t9xOp1q3bq1kpKSFB8fL4/Ho8LCQm3evFkFBQU+rzFNafKH+Sou9ujmm/2/UXT9mGrf/laW3gcAAEGHkAbLVVgw4zb8hOEq/36WPHn7a3WdERmliFGnKfrSazTujJOCOqB17txZQ4cO1dChQzVw4EB17NhRYWFhPs/dsGGDPvroI7344ovavXu31/Evpxaqa5dwjR4TG+iya8iptLTTlZo6yupCAAAAao1n0mC57aXlGvTTrw1+X9M0VblxnSp+WaWKdb/InbVd7j27ZB4oklleJoWGyREdI2eLdIW076SwfoMUNvj4w6tCLh7SXa0jfIcau3rnnXeUnZ2tc845R507d6719YWFhbruuus0efJkr2OxsQ69O6m1YmOd/ii1HgyFhiZoyLGzFBqaaHEtAADASsGaDRhJg+UindaMRhmGodBOXRXaqW7L5kc4gm8a3RVXXFGv6+Pi4vT+++/rwIED+uqrr6ocKyryaN4PxTrtdKt/AJrq1vVxAhoAAAhawTtXC41GSmiIoi0KanUV43QoJbRpvsfhcDj0n//8R06n94jZ/PnFFlRUVYf2tys19WSrywAAAKiz4HpljEbJMAz1jq39xtJW6hMb1aQXpGjdurVOOOEEr/Y9e6z9e2zb9i9q2/Z6S2sAAACoL0IabOGYuCiFBEnmCTGkfnHBFSoDoUePHl5te/eWqkP723/7rKH+Qg/ep0P7O9Sxw+1NOjwDAIDGgZAGW+gdG6nKIFnCptJU0I38BUJ8fLxXm8PhUEbGX9S718sKDU2QFOhFRJwKDU1Q714vKyODETQAANA4ENJgCyckxAbVSNrxCTFWl2G5nJwcr7YWLVpIklJTT9aQY2cpLe203474+y/3YH9paadryLHf8gwaAKDJefjhh2UYRsA/Hn74Yau/1CaJkAZbSA4L0dnNEuW0eVBzGtI5zRKVHNY0Fw35vXnz5nm1HX/88Yf/PzQ0UT17PKvevV5WdPTB5f4No34ja4euj47urN69XlHPHs/8NmIHAADQePBKE7YxLj1Fn2bnWV3GEbnNg3U2dTNmzND69eu92i+99FKvttTUk5WSMkqFhSu0c+d7ys75SqZZKcMIkWlWHvVeh84zjBClpZ2pVumXKi6uD8+eAQDQADp16mR1CU0SIQ220T8uSt2iI7SuuEweq4vxwSGpa3SEjmnii4Zs2bJF48eP92ofNmyYRo4c6fMawzAUH99P8fH91KnTfcrL/0lFhatVULhKRUWr5XZ7L93vdEYrNraX4uP6KDaupxITjlVYWJLfvx4AAOBbfHy8zjvvPKvLaJIIabANwzB0d/sWumL1FqtL8ckj6a72LZrsCI7H49HkyZM1YcIEZWdnVznWvHlzvf322zXqJywsSWnNTlNas4PPq5mmqYqKfXK7y2WaLhlGmJzOcIWGJjfZP2sAAI7mmmuu0ZgxY/zS1+rVq3Xttdd6tV988cWKjIz0yz1QO4Q02MrolHid2yxBU3Py5ba6mN9xSjq7WYJGp3ivaGgnpmnKvX+/PKVlMitcMkLD5IiMkDMp6YiB55dfflFhYWGVtsrKShUVFWnHjh1avny5pk6dql27dnld26lTJ3355Zdq27ZtnWo2DENhYUwhBQCgNlq1aqVWrVr5pa8PPvjAZ/tVV13ll/5Re4ZpmkGy8HnNFBYWKj4+XgUFBYqLi7O6HNTB/opKHf/zryqocNti2qNDUkKoU/MHd1NSqL3e16jMy1PJTz+pLDNTpatWqyxzjTzFJV7nOaKjFNGjpyJ791JEjx6KOvZYhSQmHj4+bNgwff/997W6d0xMjG644QY98MADio6OrvfXAgAAGl55eblatmyp/fv3V2nv3bu3Vq5caVFV/hOs2cBerzgBSUmhIXq6S2uNW7PV6lIkHZzm+HSXNrYJaKZpqnTFCuV98KEKv/lGqqyUQkIO/rcanuISlSxapJJlyw6fH3faaUq6+CJF9OlTq/tHR0frgQce0HXXXaeEhIR6fjUAAMBKn3/+uVdAkxhFsxojabCt57Zm6/Etu60uQ/e2b6Gb2qZZXYYkqWj2bOU++5zKN2yQnE7JXY9Job9dH965s67Yvk3za/FumWEYGjx4sG699VZdcMEFcjjYzQMAgGA0evRozZw5s0pbWFiYdu3apeTkZIuq8p9gzQa8soJt3dS2mW5q08zaGto0040W1yAdnNaYddvt2nnDX1W+cePBxvoEtN9dX75hg8p9LKd/JKZp6qefftLYsWM1dOhQbdq0qX61AACABrdjxw59++23Xu3nnHNOowhowYyQBtsyDEP3tG+he9u3kNRw36yH7nNf+xa6t0NLy1cYLPr2W20+9TQVTp9+sMHfg9+mqXfatNUv3bpr3eBjVThrlkzTVElJiXbt2qUFCxboueee04knnujz8gULFmjIkCFavXq1f+sCAAAB9fbbb8vj8V4BgKmO1mO6I4LC9NwC3bpuuwor3AFd9dEpKT7Uqae7tNGYVGtXcjRNU/teeVW5zz4rGYb/w5kvv90n9dZblXzteK+AunLlSo0fP16LFy/2urRly5Zas2aNEn+3IAkAALAn0zTVoUMHbdlSdeuj1q1ba+vWrY3mUYZgzQaN408fjd6Y1Hj9OLibzmqWIMn/37iH+ju7WYJ+HNzNFgEt9+lnDga0gw0NdWNJUu4zzyj3mWf1x/dw+vTpowULFuiCCy7wunTXrl2aMGFCg5QJAADqZ+7cuV4BTZLGjRvXaAJaMONvAEEjKTREL/XI0Ns926lLdIQkyVnPmYiHru8SHaF3erXTf3pkKNEGqzjue+VV7XvtNWtrePVV7XvVu4aQkBB98MEH6tWrl9ex9957Tzt37myI8gAAQD28+eabXm2GYWjcuHEWVIM/IqQh6IxJjdecgV007ZhOOrdZokJ+C1ohNQxsh84LNQyd1yxRXx/TSXMGdrHNRtVF3377vxE0i+U+84yKZs/2ag8NDdUTTzzh1V5ZWalPPvmkIUoDAAB1VFBQoM8++8yrfcSIEcrIyGj4guDF+iEDoA4Mw1D/+Gj1j4/WIx3T9WP+Aa0sKtGKwhKtKCpRsdv7Idhop0N9Y6PULy5KvWOjdHxCjJLD7PVPoDIvT7vvf6DhnkE7GsPQ7vvuV+Qxx1TZ/FqSTj75ZCUnJ2vfvn1V2ufPn69bbrmlAYsEAAC18eGHH6q0tNSr/eqrr7agGvhir1eoQB0kh4XorGYJh59XM01TeysqVeYx5fJ4FOZwKMJhKCU0xPKVGo8m+++PyV1UZI+AJkmmKXdhobIfe0zpTz5Z5ZDT6VTfvn01+w8jbdu3b2/ICgEAaLRM01RxcbEqKirkdrvldDoVGhqq6Ojoer2meeONN7zaEhMTde6559anXPgRIQ2NjmEYSg0LtbqMWiuaPVuF06ZZXYY3j0eFX01T3GmnKXbEiCqHUlNTvU7Py8trqMoAAGhUiouLtWXLFu3evVtZWVnatWuXXC6X13lhYWFq2bKl0tPT1aJFC7Vr107R0dE1useaNWu0ZMkSr/aLL75YERER9f4a4B+ENMAGTNNU7rPP2Wea4x8ZhnKffU4xw4dXeeeuuLjY69SwsLCGrAwAgKBmmqZ27typRYsWKTMzUx6PRw6Hw+f+ZYe4XC5t3bpV27dvP3x+z549NXDgQLVq1eqIo2y+RtEk9kazG0IaYAOlK1aofMMGq8uonmmqfP16la1cqci+fQ83+1rJMS0trQELAwAgeK1du1Zz5sxRTk5OlWB2pID2e78/f82aNVq1apWaNWumESNGqGvXrl7nu1wuvffee17tffv21THHHFOPrwT+xuqOgA3kffCh5HRaXcaROZ3a/8GHhz/Nzs7WypUrvU7r3r17Q1YFAEDQKSkp0SeffKLJkycrNzdXUs2DWXUOXZ+bm6vJkyfrk08+UUlJSZVzpk6dqr1793pdy4Ih9kNIAyxWmZenwm++kdxuq0s5MrdbhV9/rcrfnjl77bXXfP5CGTZsWAMXBgBA8Pj111/1wgsvKDMzU9LB6Y7+dKi/zMxMvfDCC/r1118PH/O1N1p4eLguueQSv9aA+mO6I2Cxkp9+kiorrS6jZiorVfLzz8pq21b/+Mc/vA7Hx8fr9NNPt6AwAADszTRNzZs3T3PmzGmw+5WWlmrKlCkaOXKk2rVrp5kzZ3qdd+655yrxD9vswHqENMBiZZmZUkhIwIPa4znZGhgZpZExMXVftjckREtmztQl1eyvcssttygyMrKelQIA0LiYpqnZs2dr/vz5ltx/9uzZ2r59u9w+Zu0w1dGeCGmAxUpXrWqQkbS1ZWWalJenTmHhOiMuTqfExqptLVZizKpw6b2cbL3/7LOq9DE1o3Pnzrrzzjv9WTIAAI3CvHnzLAtoh3zxxRdebW3bttXIkSMtqAZHQ0gDLGSa5sGRtAa0wVWuZ/bm6pm9uWoTGqpuERHqGh6ulqGhinU4FeNwyCNTxR6P9le6ta68XKvKSrW6rEzVzZpPSkrS559/rqioqAb9WgAAsLtff/21waY4Vmfr1q3av3+/V/u4cePqtSk2AoeQBljIvX+/PMUlRz8xQLZXVGh7RYVmFBXVuY927drpyy+/VLdu3fxYGQAAwa+kpERTp061ugytWLHCq83hcGjcuHENXwxqhNUdAQt5SsusLqHOQkJCdNttt2n16tXq0aOH1eUAAGA7X3/9tcrKrP1dX15erl9++cWrfeTIkWrTpo0FFaEmGEkDLGRWuBrsXnc1S9OsoiLNKz6gX8vLq526eDQpTqcuHTdO1912m8+NMgEAwMGNqtesWWN1GVqzZo0qKiq82seMGWNBNagpQhpgISO05gt31Ff3iAh1j4jQzampKnK7tbqsTKvLSrXZ5VJWRYX2VFTogMejEo9HhmEo2uFQjMOheIdTHcLD1C08Qj0iItQvMlJdHn5YoenpDVY7AADBxDRNzZkzR4Zh+H0ftNpavny5V1tkZKScTqdM0+SZNJsipAEWckRGWHLfWKdTx0VH67jo6Dpdb0RYUzcAAMFg586dysnJsboM5ebmKisry6u9V69eysvL086dO9W6dWsLKsPR8EwaYCFnUpIc0cG1IqIjOlrOpCSrywAAwLYWLVokh8P6l9m+RtEkqV+/fnI4HFq8eHEDV4Sasv67B2jCDMNQRJAtuhHRswdTIwAAqEZxcbEyMzPl8XgsrcPj8WjVqlVe7S1atFDz5s3l8Xi0Zs0aFRcXW1AdjoaQBlgssndvKSRIZh6HhBysFwAA+LRlyxbLA5okrV+/3mcA69ev3+H/93g82rp1awNWhZoipAEWi+jRQ6qstLqMmqmsDLqRPwAAGtLu3bttO9UxJCREvXr1Ovy5w+HQrl27GrIs1JD130FAExd17LFBNZIWNXiw1VUAAGBbO3futHwk7cCBA9q4caNXe7du3RTxu8W/PB6Pz4VFYD1CGmCxkMRExZ16quR0Wl3KkTmdijvtNIUkJlpdCQAAtmSapnbv3m11GVqxYoXPoPj7qY6H7Nq1y/JtAuCNkAbYQOLFF0lut9VlHJnbraSLL7K6CgAAbKu4uFgul8vqMrRixQqvtoSEBGVkZHi1u1wuFg+xIUIaYAORffsqvHNnya6rJhqGwrt0UUSfPlZXAgCAbVVUVFhdgrZv3659+/Z5tfft27fa1Zkrg+XZ+CaEkAbYgGEYSr3lZsmu0w1MU6k338TS+wAAHIHbBrNifC0YYhiG+vbtW+01hDT7CZLVCoDGL3bECMWdfroKp0+319RHh0Nxp52q2BEjrK4EAABbc9rg+fLBgwerf//+VdpCQkIUHx9f7TUhwbKAWRPC3whgI2n336fiH3+Uu6DAHqNqhiFnXJzS7rvP6koAALC90NBQq0tQ8+bNa30NIc1+mO4I2EhIYqJa/P1RewQ0STJNtXjs76zoCABADURHRyssLMzqMmolLCxM0dHRVpeBPyCkATYTO2qUUm+5xeoyJEmpt96q2JEjrS4DAICgYBiGWrRoYXUZtdKyZUueObchQhpgQ8nXXavka6+1toZrr1XyteMtrQEAgGDTqlUrORzB8RLb4XAoPT3d6jLgAxNQARsyDEOpt94iR3S0cp955uDS/A0xBfK3+6ROmKAUAhoAALXWokULnxtJ25HH41HLli2tLgM+BEfMB5ogwzCUct21avXiRDnj46VAvyvncMgZH69WL04koAEAUEft2rULqpE0Xxtcw3oN8h304osvKiMjQxERERo8eLAWLVpU7bmvvfaahg4dqsTERCUmJmrUqFFHPB9o7GJHjlT7b75W3KmnHmzw97zx3/qLO+1UdZj+Dc+gAQBQD9HR0erRo4ftg5rD4VDPnj1ZNMSmAv7dM2XKFE2YMEEPPfSQli1bpj59+mj06NHKycnxef53332niy66SHPnztXChQvVunVrnXLKKcrKygp0qYBthSQmKv2pJ9XqxYkK79TpYGN992L57frwTp3U6j8vKv3JJ+VMSKhfnwAAQIMGDbL9lEePx6OBAwdaXQaqYZhmYB90GTx4sAYOHKiJEydKOvgN0bp1a9144426++67j3q92+1WYmKiJk6cqMsvv/yo5xcWFio+Pl4FBQWKi4urd/2A3ZimqbKVK7X/gw9V+PXXUmWlFBJy8L9Hc+i8kBDFnX6aki6+WBG9e7OqEwAAfmSapl566SXl5uYqwC+168QwDDVr1kzXX399o38NEKzZIKALh7hcLi1dulT33HPP4TaHw6FRo0Zp4cKFNeqjpKREFRUVSkpK8nm8vLxc5eXlhz8vLCysX9GAzRmGoci+fZXet6/S7rlbJT//rLI1a1S6erXK1mTKU1zsdY0jOloRPXsosndvRfTooajBg9n7DACAADEMQyNGjNDkyZOtLsUn0zQ1fPjwRh/QgllAQ9revXvldruVlpZWpT0tLU1r166tUR933XWXWrZsqVGjRvk8/vjjj+uRRx6pd61AMApJTFTcmDGKGzNG0sEfuu79+2WWlcnjcskRFiYjIkLOpCR+EAMA0IC6du2qnj17KjMz01ajaYZhqGfPnuratavVpeAIbP1E4z//+U9NnjxZ//3vfxUREeHznHvuuUcFBQWHP3bs2NHAVQL2YRiGQpKTFZqervB27RSanq6Q5GQCGgAAFjjttNOqfQ1rlYiICJ16aDEy2FZAQ1pKSoqcTqeys7OrtGdnZ6t58+ZHvPbJJ5/UP//5T82cOVO9e/eu9rzw8HDFxcVV+QAAAACsFhUVpbPOOsvqMqo4++yzFRUVZXUZOIqAhrSwsDD1799fs2fPPtzm8Xg0e/ZsDRkypNrrnnjiCT366KOaPn26BgwYEMgSAQAAgIDp1q2bRowYYXUZkqSRI0cyzTFIBPSZNEmaMGGCrrjiCg0YMECDBg3Ss88+q+LiYo0bN06SdPnllys9PV2PP/64JOlf//qXHnzwQX3wwQfKyMjQnj17JEkxMTGKiYkJdLkAAACAXw0dOlQul0vz58+3rIYTTjhBJ5xwgmX3R+0EPKSNHTtWubm5evDBB7Vnzx717dtX06dPP7yYyPbt26ts9vfSSy/J5XLpggsuqNLPQw89pIcffjjQ5QIAAAB+ZRiGRo4cqfDw8CozzBrKyJEjNXTo0Aa/L+ou4PukNbRg3QsBAAAAjd/atWv1xRdfqKysLKCrPhqGoYiICJ199tlNeopjsGaDgI+kAQAAADioa9euatOmjb7++mutWbNGhmH4Nawd6q9nz5469dRTWSQkSBHSAAAAgAYUFRWlCy64QD179tScOXOUk5Mjh8Mhj8dT5z4PXZ+amqoRI0Y06dGzxoCQBgAAAFiga9eu6tKli3bu3KnFixdrzZo18ng8NQ5sh85zOBzq2bOnBg0apPT0dPZHbQR4Jg0AAACwgeLiYm3dulW7du1SVlaWdu3aJZfL5XVeWFiYWrZsqfT0dLVs2VIZGRmKjo62oGL7C9ZswEgaAAAAYAPR0dHq0aOHevToIUkyTVPFxcWqrKxUZWWlQkJCFBISoujoaEbLGjlCGgAAAGBDhmGwT3AT5Tj6KQAAAACAhkJIAwAAAAAbIaQBAAAAgI0Q0gAAAADARghpAAAAAGAjhDQAAAAAsBFCGgAAAADYCCENAAAAAGyEkAYAAAAANkJIAwAAAAAbIaQBAAAAgI0Q0gAAAADARghpAAAAAGAjhDQAAAAAsBFCGgAAAADYCCENAAAAAGyEkAYAAAAANkJIAwAAAAAbIaQBAAAAgI0Q0gAAAADARghpAAAAAGAjhDQAAAAAsBFCGgAAAADYCCENAAAAAGyEkAYAAAAANkJIAwAAAAAbIaQBAAAAgI0Q0gAAAADARghpAAAAAGAjhDQAAAAAsBFCGgAAAADYCCENAAAAAGyEkAYAAAAANkJIAwAAAAAbIaQBAAAAgI0Q0gAAAADARghpAAAAAGAjhDQAAAAAsBFCGgAAAADYCCENAAAAAGyEkAYAAAAANhJidQEAAqusrEyrVq3S+vXrlZubq+LiYoWFhSk2Nlbp6enq0KGDOnfurNDQUKtLBQAAgAhpQKNUWlqqjz/+WJMmTdL8+fNVVlZ2xPMjIiLUr18/DRs2TKeffrqOPfZYOZ3OBqoWAAAAv2eYpmlaXYQ/FRYWKj4+XgUFBYqLi7O6HKBBmaapN954Qw899JB27dpV537mzp2rYcOG+a8wAAAACwRrNmAkDWgksrOzddlll2nWrFlWlwIAAIB6IKQBjcDGjRs1evRobd68udpzEhMT1bx5czVr1kyVlZUqKCjQli1bVFxc3ICVAgAA4GgIaUCQy8rK0siRI7V9+3avY23bttW1116rs846Sz179vQ67vF4tH79es2bN09ffvmlZs2addTn1wAAABBYhDQgiLlcLp199tleAS0kJET33HOP7rnnHkVGRlZ7vcPhUNeuXdW1a1eNHz9e+/fv15tvvqnk5ORAlw4AAIBqENKAIHb//fdr6dKlVdpCQkL04Ycf6oILLqh1f0lJSbr99tv9VR4AAADqgM2sgSD1yy+/6JlnnvFqf/XVV+sU0AAAAGAPhDQgSN1zzz2qrKys0jZy5EiNGzfOoooAAADgD4Q0IAitXbtWX375pVf7Cy+8YEE1AAAA8CdCGhCEXnvtNf1xH/rjjjtO3bp1s6giAAAA+AshDQgypmlqypQpXu2XXHKJBdUAAADA3whpQJBZvXq1srKyvNpPOeUUC6oBAACAv7EEPxBkvvvuO6+26OhodejQwef5lZWV2rZtmwoKChQVFaWUlBQlJSXJ4eA9GgAAADviVRpsZ/Pmzfr4449199136+STT1ZSUpIMw/D68BVWGtIDDzzgsy7DMDRs2LCA3XfZsmVebb169ZJhGIc/P3DggCZOnKiTTjpJ0dHR6tixo/r3769u3bopNTVVEREROvHEE/W3v/1Na9euDVitAAAAqD1G0mCpLVu2aMmSJVq6dOnhj7y8PKvLOqrVq1frX//6lyX3zszM9GrLyMg4/P9vvPGG7rrrLu3bt6/aPioqKjRv3jzNmzdPjzzyiC6++GI98sgjat++fSBKBgAAQC0Q0mCpfv36qaCgwOoyasXtduvqq69WRUVFwO5hmqY8xRUyXR6Zbo8Mp0NGmEOO6FBt377d6/zY2FhVVFRo3Lhxev/992t1L4/Ho/fee09Tp07V5MmTdeqpp/rrywAAAEAdENKAWnr22We1ePFiv/bpLq5Q+aZ8ubIOqGJHkVw7D8h0ub3PCzG1N3evV3tMTIwuvfRSffTRR3WuobCwUGeeeaZef/11XXnllXXuBwAAAPVDSANqYfPmzXrwwQertDkcDnk8nlr3ZZqmXNuLdGDhLpWu2it5TMlhHPxvNQqLCuUxve/10YdTlLVnV5W2Vq1a6brrrtOYMWOUkZGhuLg45ebmavXq1frvf/+rt99+Wy6Xq8o1brdb119/vXr27KkBAwbU+msCAABA/RHSYDtt2rRR//79NWDAAPXv318pKSm2CQzjx49XSUnJ4c979+6t2NhY/fjjj7XqpzRznwpmblVldsnB5XsO5a4jBDRJKq/0PcXyjwHtr3/9q/71r38pKiqqSnt6errS09M1ZswY3XHHHRo7dqzXQiTl5eX605/+pLVr1yo8PLxWXxcAAADqj5AGS7Vp0+bwyoOHgllKSkqVc7Zu3WpNcX/wxhtvaM6cOYc/dzgcevXVV3XXXXfVuA93cYXyp25S6cpc6dBijLUYhHOb3lMg/+jms8brqX8+LWdU6BHP69ixo+bOnavhw4d7BbWtW7fqnXfe0bXXXlvz4gAAAOAXhDRYatWqVVaXUCO7d+/W7bffXqXt//7v/zR48OAa91GauVd5n26Qp7TyYMORB818CnE4j3j8mJY9dGvXi5X91BIlnt9JkT1Sjnh+XFycPvjgA/Xr10+lpaVVjj3xxBMaP358laX9AQAAEHjskwbUwF//+lfl5+cf/jw9PV2PPfZYja41TVOFc7dr36RfDwa0OoSzQ8KcRx4du2PoNXIaTnlKK7Vv0q8qnLtDpnnkG3bp0sXnQiGbNm3S6tWr614sAAAA6oSQBhzFp59+qs8++6xK2wsvvKC4uLijXmuapgpnbFXhjG2/NdSvltjwaBnyPbLVJqGlTsjoX+U+h+59tKBW3bTG77//vs61AgAAoG4IacAR5Ofn669//WuVtnPOOUfnnntuja4v+m6Hir7b6bd6QhwhiguP9nlsUKveda6hT58+io+P92r/6aefal8kAAAA6oWQBhzBhAkTtGfPnsOfx8bG6oUXXqjRtaWZe/83guZHabGpPtt7NOtY7TWFM7aqNHNftccNw1Dv3t4hLycnp/YFAgAAoF4IaUA1Zs+erbfeeqtK22OPPaZWrVod9VrTbSrv0w0BqatNQguf7QmRR5h+aUh5n66Xu9j3Ev6SlJyc7NW2b1/1wQ4AAACBQUgDfCgpKfF6TmvgwIG64YYbanR95b7S/63i6Gedktv6bI8Miaj+IlPylFYq/8tN1Z4SHe09jfLAgQO1rg8AAAD1Q0gDfLj//vu1efPmw5+HhITotddek8NRs38yngMV9V4kpDq9m3f12V7kKj7yhaZUuiJXpb/4Hh0rKCjwaktKSqp1fQAAAKgfQhrwB4sWLdJzzz1XpW3ChAnq06ePRRVVNSC9l8/2fSV5R7/YkApmbvW52qOv58/+uLE4AAAAAo+QhoAxTVMlhS4V7i1VfnaJCveWqqTQddTl4K1UUVGha665Rh6P53Bbu3bt9NBDD1lYVVXNY1PUJaWdV/uq3euOfrEpVe4pkWtHUZVml8ullStXep2ekZFR1zIBAABQRyFWF4DGo/SASzvX5il3e5GytxYqd1uRKsrdXueFhjuV2jZWaRlxSm0Tq1ZdExUZE2ZBxd4ef/xxrw2cX3rpJUVFRVlUkW+ndxmmdXu3VGn7accKudwVR93wWg5DBxbuUnib/y008sMPP6i8vNzr1OHDh/ulXgAAANQcIQ31YpqmsrcUavV3O7VxSY48HlMOhyGPp/rRsopyt3atz9eejQWHz+84oJl6DWultHZxMgzfmzUH2i+//KLHHnusSttFF12k0aNHW1LPkVzQa4yeXfCOPOb/Rvz2lxboq7VzdV6PU458scdU6cq9cp9RIWf0wUD34osvep3mcDgIaQAAABYgpKHONq/I1c9TN2v/rmIZDkPmb8HsSAHt9zy/O3/DkhytX5St5PRoDT6rvdr18b0XWKB4PB5dc801crlch9sSExP1zDPPNGgdNdU6voVO63ySvlo3t0r7Ez+8ppM7Hq/Yaja8PsxjqnxTvqJ6p2rWrFn64osvvE4577zzWDgEAADAAjyThlorO1ChmW9k6puXV2v/7oMrCpo1DGbVOXT9vl3F+vql1Zr5RqbKDlS/p5e/TZw4UQsXLqzS9sQTTygtLa3BaqitCSeMU6ij6vssWYXZuunLR1Ve6armqt84DFVkHdDatWt1xRVXeD0naBiGrZ7DAwAAaEoIaaiVzSty9f5DP2nj0uyDDf5eA+S3/jYuzdb7D/2kzSty/XwDb9u2bdN9991Xpe3EE0/U1VdfHfB710enlAxdP/gir/ZvNy3QRVMmaMPerdVf7DH16eefaejQodq9e7fX4euvv149e/b0Y7UAAACoKaY7okZM09TS6dv08xebJUMB2wPs8P08UllJhb55ebXaDAnsoiLXXXddlU2bw8LC9Morr1j2bFxtTDhhnBbvXK2fdqyo0r545yqd8tY4DWs3WCe1H6Q28S0UHRal/aUFWpe7WdPXz1NmzgaffR533HF69tlnA188AAAAfCKk4ahM09RPn2/WshnbfmtoqBsf/M/ymdsDdot3331XM2bMqNJ2zz33qGtX3xtG202II0Svn/eYLp5ym1btWVvlWKXHrW83LdC3mxbUuL8BAwbos88+U1iYPVbbBAAAaIqY7oijWjp92/8CWiOSk5OjW2+9tUpbly5ddM8991hUUd3ER8Tqo4ue1VndRtarn0suuUTz5s2z9XN4AAAATQEhDUe0eUXuwSmOjdBNN92k/fv3H/7cMAy98sorCg8Pt7CquokOi9KLZz2kN89/XN1SO9Tq2hNPPFFz587Ve++9p4iIiABVCAAAgJpiuiOqVXagQnMnrW2QZ9CsMGXKlCqfn3jiiQoPD9dPP/1Uq34KCwu92g64irUsK9OrvUVsqlrENatdobVwcsfjdXLH47U0a42+3bRQy3dlavP+HcorLVSlp1IJEXFKioxXm4SWOq7tMTrv0XHqc9wxAasHAAAAtUdIQ7V+mLJe5aUVjTKg+fL9999ryJAhfulrTfYGnf3eX7zabz3+Sk044Sq/3ONI+qf3VP/0o6/O2KI3KzgCAADYDSENPm1ekasNi7OtLgMBZIQ75YgOtboMAAAA/AHPpMGLaZr6eepvS+3b2B83YEbthKXHBMU2AwAAAE0NI2nwkr2lUPt3FVtdxlHl7bZ/jbblMBTWOtbqKgAAAOADIQ1eVn+3U4bDkOmx90jV5hW50sV1v95fI3HDhg3T999/X6Xt2NZ99fHFz/ul/4DwmApNj7G6CgAAAPjAdEdUUXrApY1Lcmwf0CQpa12+Sg+4rC4jODkMhXdIsLoKAAAA+EBIQxU71+bJEwQBTZI8pqmsdflWlxF8HIYi+6TIyaIhAAAAtkRIQxW524vkcATHYhIOw1Dudu89ynAUHlMxQ1paXQUAAACqwTNpqCJ7a2FQjaRlbyGk1YohhaRFs2gIAACAjRHScJhpmsrdVtSg99xXtEcPfXBJna59/svb9PyXkm6r/pwtW7YoIyOjTv03SqYUf0pblt4HAACwMaY74rDSogpVlLutLqNRcMSE2m+fOUOK7JuqyO7JVlcCAACAIyCk4bBKFwHNX0KSI+WIDLFPUDMkR2SIEs7sYHUlAAAAOApCGg7zuIPjWbRgYDgNJZ7fSbLLH6kpJZ7fmRUdAQAAggDPpOEwh7Phh33iopJ02zkv1KuPU6/vpej4cJ/HWrRoUa++a+LKK6/UsGHDqrRlZGQoskeK4ka3VeGMbQGv4WjiRmcosgfTHAEAAIIBIQ2HhYQ5G/yeoc4wtUvrXq8+hgwZoqi4MD9VVHtXXnlltcdih7WWWe5R0Xc7Gq4gHzXEDmtl2f0BAABQO0x3xGGRsaEKDW/4oFYfoRFORcbadwqfYRiKG91WcaMzfmtoqBsf/E/cmAzFj8lgNUcAAIAgQkjDYYZhKLVtcO2f1axNrO0DiGEYihveWsmXdW+YxUR+WyQk+bLuihvWOsA3AwAAgL8x3RFVpGXEac/GgqDY0NrhMJTWLs7qMmosskeywjIGKH/qJpWuzD0Y1vz5x/xbf5F9UpV4Vgc5ouw7wggAAIDqEdJQRWqb2KAIaJLk8ZhKbRM8IU2SnNGhSr6oq0p7p6pg1lZV7imRHIZUnz/z364PSYtS/CkZ7IMGAAAQ5AhpqKJV10Q5HEZQBDWHw1B6lwSry6iTyB7JiuieJNeOIh1YuEulK/ceDGo1DWyHznMYiuyTqpghLRTW2v5TPwEAAHB0hDRUERkTpo4DmmnDkhyZNg5qhsNQxwHNFBlj3aqO9WUYhsLbxCm8TZzcZ1SofFO+XFkHVLGjSK6sAzLLvTcXN8KdCkuPUVjrWIWmxyi8QwJ7nwEAADQyhDR46TWsldYvyra6jCMyPaZ6NaJl5Z3RoYrqnaqo3qmSJNM05SmukFnhkVnpkRHikBHqkCM6lNEyAACARo6QBi9p7eKUnB6tfbuK/buwhb8YUnLL6KBaNKS2DMOQM4hHCQEAAFB3LMEPL4ZhaPBZ7e0Z0CTJlAaf1Z4RJQAAADRKhDT41K5PqjoNTJNhs+8QwyF1Gpimdn1SrS4FAAAACAibvQSHnZw4trPCI0MDv/lyTRlSeGSoThzb2epKAAAAgIAhpKFaETGhGn5ZV/tMezSl4Zd1VUQMqxkCAACg8SKk4Yja903V4LPbW12GJOnYc9qrfV+mOQIAAKBxI6ThqPqPaatjxrS1tIZjxrTVMaOtrQEAAABoCCzBj6MyDEPHnt1eYRFO/fT55oPPqDXEFMjf7nPsOe3Vf0xGA9wQAAAAsB4hDTViGIb6j8lQYvNozZ20VuWlFTI9Abyf4+AiIcMv68oURwAAADQphDTUSvu+qWrZMUE/TFmvDYuz/T+q9lt/Hfun6cQLOysimkVCAAAA0LQQ0lBrETGhOuXqHurYv5kWfblZ+7KKZTgMmZ66p7VD1ye3jNbgs9qzDxoAAACaLEIa6qx931S165Oi7C2FWv3dTm1ckiOPx5TDacjjPnpgcziMw+d3GpCmnsPSlZYRJ8Owy8ZsAAAAQMMjpKFeDMNQ8/bxat4+Xif8uZOy1uUrZ1uhcrYWKmdbkSrK3V7XhIY71axtrNLaxSm1TZzSuyQoMibMguoBAAAA+yGkwW8iY8LUsX8zdezfTJJkmqZKiypUWeGWp9KUI8RQSKhTkbGhjJYBAAAA1SCkIWAMw1BUHCNkAAAAQG2wmTUAAAAA2AghDQAAAABshJAGAAAAADZCSAMAAAAAGyGkAQAAAICNENIAAAAAwEYIaQAAAABgI4Q0AAAAALARQhoAAAAA2AghDQAAAABshJAGAAAAADZCSAMAAAAAGyGkAQAAAICNENIAAAAAwEYaJKS9+OKLysjIUEREhAYPHqxFixYd8fyPP/5YXbt2VUREhHr16qWvv/66IcoEAAAAAMsFPKRNmTJFEyZM0EMPPaRly5apT58+Gj16tHJycnyev2DBAl100UW6+uqrtXz5cp1zzjk655xztGbNmkCXCgAAAACWM0zTNAN5g8GDB2vgwIGaOHGiJMnj8ah169a68cYbdffdd3udP3bsWBUXF+urr7463Hbssceqb9++evnll496v8LCQsXHx6ugoEBxcXH++0IAAAAABJVgzQYBHUlzuVxaunSpRo0a9b8bOhwaNWqUFi5c6POahQsXVjlfkkaPHl3t+eXl5SosLKzyAQAAAADBKqAhbe/evXK73UpLS6vSnpaWpj179vi8Zs+ePbU6//HHH1d8fPzhj9atW/uneAAAAACwQNCv7njPPfeooKDg8MeOHTusLgkAAAAA6iwkkJ2npKTI6XQqOzu7Snt2draaN2/u85rmzZvX6vzw8HCFh4f7p2AAAAAAsFhAR9LCwsLUv39/zZ49+3Cbx+PR7NmzNWTIEJ/XDBkypMr5kjRr1qxqzwcAAACAxiSgI2mSNGHCBF1xxRUaMGCABg0apGeffVbFxcUaN26cJOnyyy9Xenq6Hn/8cUnSzTffrJNOOklPPfWUTj/9dE2ePFlLlizRq6++GuhSAQAAAMByAQ9pY8eOVW5urh588EHt2bNHffv21fTp0w8vDrJ9+3Y5HP8b0DvuuOP0wQcf6P7779e9996rTp066fPPP1fPnj0DXSoAAAAAWC7g+6Q1tGDdCwEAAACAfwVrNgj61R0BAAAAoDEhpAEAAACAjRDSAAAAAMBGCGkAAAAAYCOENAAAAACwEUIaAAAAANgIIQ0AAAAAbISQBgAAAAA2QkgDAAAAABshpAEAAACAjRDSAAAAAMBGCGkAAAAAYCOENAAAAACwEUIaAAAAANgIIQ0AAAAAbISQBgAAAAA2QkgDAAAAABshpAEAAACAjRDSAAAAAMBGCGkAAAAAYCOENAAAAACwEUIaAAAAANgIIQ0AAAAAbISQBgAAAAA2QkgDAAAAABshpAEAAACAjRDSAAAAAMBGCGkAAAAAYCOENKCJ27x5sz7++GPdfffdOvnkk5WUlCTDMLw+vvvuu3rf67vvvvPZt78/hg0bVu9aAQAArBJidQEAGs6WLVu0ZMkSLV269PBHXl6e1WUBAADgdwhpQBPSr18/FRQUWF1GwHXq1MnqEgAAAOqM6Y4AGp2rrrrK6hIAAADqjJE0AA3mmGOO0cKFC/3SV0VFhUaPHq3S0tIq7d26ddOQIUP8cg8AAAArENKAJq5Nmzbq37+/BgwYoP79+yslJUUDBgwIyL3i4uJ07LHH+qWvzz77zCugSYyiAQCA4EdIA5qQNm3aqGPHjurfv//hYJaSklLlnK1bt1pTXC29+eabXm2hoaG6/PLLLagGAADAfwhpQBOyatUqq0vwi127dmn69Ole7aeffrqaNWtmQUUAAAD+w8IhAILOO++8I7fb7dV+9dVXW1ANAACAfxHSAASdt956y6utZcuWOvXUUy2oBgAAwL8IaQCCyrx587Rhwwav9ssvv1xOp9OCigAAAPyLkAYgqLzxxhs+21nVEQAANBaENABBo6ioSJ988olX+4knnqhOnTpZUBEAAID/EdIABI0pU6aouLjYq51RNAAA0JgQ0gAEDV97o8XFxelPf/qTBdUAAAAEBiENQFBYu3atFi5c6NV+4YUXKioqyoKKAAAAAoPNrIFGwjRNFRcXq6KiQm63W06nU6GhoYqOjpZhGFaXV28sGAIAAJoKQhoQpIqLi7Vlyxbt3r1bWVlZ2rVrl1wul9d5YWFhatmypdLT09WiRQu1a9dO0dHRFlRcd5WVlZo0aZJXe48ePTR48GALKgIAAAgcQhoQREzT1M6dO7Vo0SJlZmbK4/HI4XDI4/FUe43L5dLWrVu1ffv2w+f37NlTAwcOVKtWrYJilG3atGnKzs72amcUDQAANEaENCBIrF27VnPmzFFOTk6VYHakgPZ7vz9/zZo1WrVqlZo1a6YRI0aoa9euAavbH3wtGBIaGqrLLrvMgmoAAAACi5AG2FxJSYm+/vprrVmz5vCoV02DWXUOXZ+bm6vJkyerZ8+eOu2002y5AMeePXv09ddfe7WfddZZSk1NtaAiAACAwCKkATb266+/aurUqSorK5N0cLqjPx3qLzMzU5s2bdJZZ52lyMhIv96jvt59911VVlZ6tTPVEXVRWVmpjRs36tdff1Vubq7y8/Pl8XiUkJCgxMREtWvXTn379lVYWJjVpQIAmjBCGmBDpmlq3rx5mjNnToPdr7S0VFOmTFH37t0b5J419dZbb3m1paena/To0RZUg7ravHmzli5dWuUjLy/P67y5c+dq2LBhfrtvSUmJ5s2bp7lz52ru3LlauXKlysvLj3hNeHi4BgwYoMsuu0yXXnpp0C20AwAIfoQ0wGZM09Ts2bM1f/58S+6/YMECS+7ry4IFC7R27Vqv9iuvvFJOp9OCilATW7Zs0ZIlS44ayAKltLRUX331lT7++GNNmzZNJSUltbq+vLxcP/74o3788Ufdeeeduvfee3X77bfzPQcAaDCENMBm5s2bZ1lAsxtfC4YYhqFx48ZZUA1qql+/fiooKLDs/p9++qnfFpUpLCzU3Xffrf/+97/66KOP1KZNG7/0CwDAkRDSABv59ddfG2yKo90VFxdrypQpXu0nnXSSOnToYEFFaEyioqLUvHlzNWvWTJGRkdq3b582bNig0tJSn+f//PPPGjFihH744Qe1bNmygasFADQ1hDTAJkpKSjR16lSry7CNjz76SAcOHPBqv/rqqy2oBsHO6XTq5JNP1pgxYzR06FD17dtXDoejyjkul0s//vijnn/+eX3++edefWzatEmnnHKKli1bxsIiAICAIqQBNvH1118fXsURvqc6xsfH6/zzz7egGtRXmzZt1L9/fw0YMED9+/dXSkqKBgwYEPD7tmvXTtdee60uv/zyo46AhYWFafjw4Ro+fLi++OILXXHFFV7TNjMzM/XUU0/pnnvuCWTZAIAmjpAG2MDatWu1Zs0aq8uwjfXr1/t8Lu+iiy6y3RYB8NamTRt17NhR/fv3PxzMUlJSqpyzdevWgNaQkZGh++67T1deeaVCQmr/q+7ss8/WF198oVNOOUUul6vKsccee0w33XQTqz4CAAKGkAZYzDRNzZkzR4Zh+H0fNH9qyNp8jaJJTHUMFqtWrbL0/qNHj9bYsWMVGhpar35OOukkTZgwQf/85z+rtBcXF2v69OmM6gIAAsZx9FMABNLOnTuVk5Nj64AmSbm5uQ1yH7fbrXfffdervXfv3g0yPQ7BLzU1td4B7ZDbbrvN69k16eD0ZAAAAoWQBlhs0aJFPl8E2o2v/coC4ZtvvtHu3bu92q+66qoGuT/weykpKTrmmGO82rdt22ZBNQCApsL+rwyBRqy4uFiZmZnyeDxWl3JUW7ZsUXFxccDv42uqY1hYmC699NKA3xvwxdfeaHv27LGgEgBAU0FIAyy0ZcuWoAho0sFn0gK92ENubq6++uorr/azzz5bycnJAb03UB1fUyeDYfQbABC8+C0DWGj37t1B82LPMAzt2rUroPd49913VVFR4dXOgiGwkq83J1q0aNHwhQAAmozgeHUINFI7d+4MqpG0rKysgN7jrbfe8mpr3bq1Tj755IDeF6hOfn6+li1b5tXesWNHC6oBADQVLMEPWMQ0TZ8LZARSfn6+nnvuuTpd+8477+idd97RuHHjqj1ny5YtysjIqFP/P//8szIzM73ar7zyyqAZbUTj8/777/sc3T399NMtqAYA0FTwygewSHFxsdcmuU2ZrwVDDMM4YigEAqmkpET/+te/vNrj4uI0cuRICyoCADQVjKQBFvH17nxTVVJSosmTJ3u1Dx8+XO3atbOgIvhimqb2l+1XmbtMFe4KhTpDFeGMUFJEkgzDsLo8v3v44Ye1Y8cOr/Ybb7xR4eHhFlQEAGgqCGmARdxut9Ul2MYnn3yiwsJCr3YWDLFWXlmeft7zs37Z94tW567WL/t+UUllidd5USFR6p7cXb1Se6l7cncNbj5YiRGJFlTsP3PnztVTTz3l1d6iRQvdddddFlQEAGhKCGmARZxOZ4PfMyYmpt7BZ+zYsYqNjfV5rK4r3g0dOlQLFy70ave1iTACyzRNrcxdqcnrJmvGlhmqNCsVYoSo0qys9pqSyhItyV6iFTkrDp8/pt0YXdj1QvVO6R10o2xZWVm68MILfS7q89JLL1X7/Q8AgL8Q0gCL+Np7KdBCQkLUqlWrevUxZMgQxcTE+Kmig9q1a8e0RhuYs32OJi6fqA35G+Q0nHKbB0d7jxTQfu/QeZVmpb7Z8o2+2vyVOiV00o39btTwNsMDVrc/FRcX68wzz1ROTo7Xseuuu05nn322BVUBAJoaFg4BLBIdHa2wsDCry6iVsLAwRUdHW10G/Cy/LF93fn+nbp57szbmb5SkwwGtrg5dvzF/o26ae5Pu/P5O5Zfl17fUgKqoqNCf/vQnLV++3OvYgAED6rwyKgAAtUVIAyxiGEbQbYjbsmXLoJu6hiObvX22zvz8TM3cNlOSZMr0a/+H+puxbYbO/PxMzd4+26/9+4vH49Fll12mb775xutYx44d9eWXX7JYCACgwRDSAAu1atUqaPYAczgcSk9Pt7oM+Ilpmnpt1Wu6Ze4tKigvqPfI2dF4TI8Kygt0y9xb9Prq12Wa/g2D9WGapq6++mpNmTLF61ibNm307bffqnnz5hZUBgBoqngmDbBQixYtfC5OYEcej0ctW7a0ugz4gWmaem7Zc3pjzRsHP/fz6Fm19/3tPs8te07bk7c3yD1r4i9/+Yvefvttr/aWLVtq9uzZatu2bcMXBQBo0oLjLXygkWrXrl1QjaRlZGRYXQb84PXVrx8OaFaZstZ71MoKN998s1555RWv9mbNmmn27Nnq2LGjBVUBAJq64Hh1CDRS0dHR6tGjh+2DmsPhUM+ePVk0pBGYvX22nl/+vNVl2MJtt92m55/3/rNISUnR7Nmz1bVrVwuqAgCAkAZYbtCgQbaf8ujxeDRw4ECry0A95Zfl6+EFD8sQi7/ceeedevrpp73aExMTNWvWLPXs2dOCqgAAOIiQBlisVatWatasmW1XTTQMQ2lpafXeXw3W+8fP/1CRq6jBnkGzq3vvvVf//ve/vdrj4+M1c+ZM9e3bt+GLAgDgdwhpgMUMw9CIESNstdrd75mmqeHDh9s2RKJm5myfo2+2fhPwVRzt7sEHH9Tjjz/u1R4XF6eZM2dqwIABFlQFAEBVhDTABrp27aqePXvaLggZhqFevXrxbE6QM01TE5dPbPLTHB999FE9+uijXu2xsbGaPn26Bg0aZEFVAAB4I6QBNnHaaacpIiLC6jKqiIiI0Kmnnmp1GainlbkrtSF/Q5Oe5vj444/rwQcf9GqPiYnR119/rSFDhlhQFQAAvhHSAJuIiorSWWedZXUZVZx99tmKioqyugzU0+R1k+U0nFaXYZknn3xS9957r1d7VFSUpk2bphNOOMGCqgAAqB4hDbCRbt26acSIEVaXIUkaOXIk0xwbgbyyPM3YMiNonkUrchX5tb/nnntOd9xxh1d7VFSUvvrqK5144ol+vR8AAP5ASANsZujQoZa/s3/CCSdYXgP84+c9P6vSrLS6jBr7df+vfuvrpZde0i233OLVHhkZqalTp2r48OF+uxcAAP5ESANsxjAMjRw5UiNHjrTk/iNHjtSoUaNst4gJ6uaXfb8oxAixuowa21awzS/9vPnmm7rhhhu82iMiIvTFF19Y9u8LAICaCJ7f3EATYhiGhg4dqtTUVH3xxRcqKysL6BL9hmEoIiJCZ599NlMcG5nVuauDaiRtc8Hmevfx0Ucfafz48T7/zdx9992KjY3VTz/9VO/79OvXT+Hh4fXuBwCAPzJMu27OVEeFhYWKj49XQUGB4uLirC4HqLeSkhJ9/fXXWrNmjQzD8GtYO9Rfr169dOqpp7JISCNjmqaO/eBYlVSWNOh9Xbkurb9jfcD637JlizIyMqo9fuWVV+qdd94J2P1rWgdQVzt37tTKlSu1ZcsWFRYWyul0KiEhQZ07d9Yxxxyj+Ph4q0sEgkawZgNG0gCbi4qK0gUXXKCePXtqzpw5ysnJkcPhkMfjqXOfh65PTU3ViBEjGD1rpPaX7W/wgAYEm82bN2vp0qVVPvLy8rzOmzt3roYNGxawOg4cOKA33nhDr7/+utasWVPteSEhITrppJP0l7/8Reeddx5T04FGipAGBImuXbuqS5cu2rlzpxYvXqw1a9bI4/HUOLAdOs/hcKhnz54aNGiQ0tPT+QXfiJW5y6wuAbCVLVu2aMmSJUcNZA3tiy++0A033KCsrKyjnltZWanZs2dr9uzZGjx4sN566y1169atAaoE0JAIaUAQMQxDrVu3VuvWrTV69Ght3bpVu3btUlZWlnbt2iWXy+V1TVhYmFq2bKn09HS1bNlSGRkZio6OtqB6NLQKd4XVJQC20q9fPxUUFFhdRhV/+9vf9PDDD9dpKvvPP/+swYMHa8qUKTr11FMDUB0Aq/BMGtBImKap4uJiVVZWqrKyUiEhIQoJCVF0dDSjZU1U1oEsjfl0TIPf11PhUdm2uo/iPTv8WaVGpVZ7nAU7UFcJCQl1DmmBmO74j3/8Q/fdd5/PY4ZhqEOHDmrdurUqKiq0YcMGZWdn+zw3PDxc06dPD+h0TCBYBWs2YCQNaCQMw1BMTIzVZcBGIpwRltzXEepQVMe6L0Jz3JDjlByZ7MeKAPuZOXOm7r//fq92h8Ohv/71r5owYYLatm1b5dhPP/2khx56SDNnzqzSXl5errFjx2r58uVq2bJlQOsG0DDYJw0AGqmkiCRFhQTXip3RodFKikiyugw0IW3atNG5556rxx57TNOnT9eSJUsCfs+SkhKf20REREToq6++0nPPPecV0CTp2GOP1YwZM3yGu5ycHN18880BqxlAw2IkDQAaKcMw1D25u5ZkB/5Fp790T+7O9FwETJs2bdSxY0f1799f/fv314ABA5SSklLlnK1btwa8jqefflrbt2/3an/11Vdr9GzZo48+qqysLL311ltV2j/55BMtWLBAxx13nN9qBWANQhoANGK9UntpRc6KoNjQOsQIUa+UXlaXgUZs1apVVpeg0tJSPf/8817tY8aM0WWXXVbjfp555hlNmzZNOTk5Vdr/+c9/aurUqfWuE4C1mO4IAI1Y9+TuQRHQJKnSrFT35O5WlwEE1H//+1/l5uZ6tT/88MO16ic+Pl633nqrV/u0adO0a9euupYHwCYIaQDQiA1uPlghRnBMmggxQjSo+SCrywAC6sMPP/Rq6927twYPHlzrvq666io5nc4qbR6PR5MnT65zfQDsgZAGAI1YYkSiRrcbLafhPPrJFnIaTo1pN0aJEYlWlwIEjMvl0pw5c7zazz///Dr116xZMw0dOtSr/ZtvvqlTfwDsg5AGAI3chV0ulNt0W13GEblNty7seqHVZQAB9fPPP6ukpMSrfeTIkXXu09e18+fPV0UFm9kDwYyQBgCNXJ/UPuqU0EmG7LlqoiFDnRM7q3dKb6tLAQJq8eLFXm0hISHq379/nfscNMh7inBZWZkyMzPr3CcA6xHSAKCRMwxDN/a7UabMo59sAVOm/tr3ryy9j0bP1+qSHTp0UERE3Tee793b95sbK1eurHOfAKxHSAOAJmB4m+E6NeNU2z2b5jAcOq3daRreZrjVpQABt2nTJq+2jh071qvP5s2bKzo62qt98+bN9eoXgLUIaQDQRNw7+F7FhsXaZtqjIUNxYXG6Z9A9VpcCNAhfG2Wnp6fXu9+WLVvW6F4AggchDQCaiISIBD183MO2mfZoytQjxz2ihIgEq0tBI2CapvYeKNeO/SXanHtAO/aXaO+BcpmmPb7fJfncHy0tLa3e/TZv3rxG9wIQPIJj8xwAgF+MbDNSN/W7Sc8vf97qUnTzMTdrRJsRVpeBILW/2KUFm/ZqdVaBVu7I1+qdBSp2ea9iGh3mVK9W8erTOkG90uN1XIcUJUWHNXi9JSUlKi8v92qPj4+vd99xcXFebfv27at3vwCsQ0gDgCbmml7XqKSyRK+vft3SGq7uebVl90dwMk1Ty7bna9LCrfpq1W5VekyFOAxVeqofLSt2ufXT5v1asjXv8Pln9mmpy4a0Vb/WCQ22YM2BAwd8tsfExNS7b1/PpBUXF9e7XwDWIaQBQBNjGIZu6neTokOj9dyy52TIaJApkIfuc/MxN+uaXtcE/H5oXGZm7tFTM9drXXaRnA5D7t+C2ZEC2u9V/u78qSt36b/Ls9S1eaxuO6WLTu5e/ymHR1PdvmUhIfV/KRYaGurV5nK56t0vAOvwTBoANEGGYeiaXtfoueHPKT48Xg4jsL8OHIZD8eHxem74cwQ01EpesUs3fbhc105aqvU5RZJ0OKDV1aHr12UXafy7S3TTh8uVVxzYUON2+95Q3ums/4qrvvqorKysd78ArENIA4AmbESbEfrynC81uu1oSfL7yo+H+huTMUZfnfsVz6ChVmZk7tGIp77TtFW7JUn+XgPkUH/TVu3SiKe+04zMPf69we9UN2LmjzDlqw9fo2sAggfTHQGgiUuISNATJz2hMe3GaOLyidqQv0FOwym36fud/5o4dH3HhI66sd+N7IOGWjFNU//5bpP+PWOdDMP/4eyP3KaUX1qh6yYt1VV9vJ/v8ofw8HCf7f6Yluirj+ruByA4ENIAAJIOjqoNbz1cq/au0uS1kzV9y3RVmpUKMUJUaR793f5D54U4QnRqxqm6sOuF6pXSq8EWZkDjYJqmnpixTi99t+m3zxvqvgf/++oPgdkEOjY21md7UVFRvfv21YevFR8BBA9CGgDgMMMw1Ce1j/qk9tGdA+/Uoj2LlLkvU2v2rlHm3kyVVJZ4XRMVEqUeKT3UK6WXuid316Dmg5QYkWhB9WgM/vPdpsMBrTEJCwtTTEyM1yqP+fn59e7bVx/Jycn17heAdQhpAACfEiMSNTpjtEZnHHxezTRN7S/br3J3uVxul8KcYQp3hispIonRMvjFjMw9+veMdVaXETDNmzfXxo0bq7Tt2VP/5+B89eFrg2sAwYOQBgCoEcMwlBzJu/MIjLxil+7+dJUMqQE2hLBGu3btvELa9u3b69Wn2+3Wrl27fN4LQPBidUcAAGC5h6ZmqrC0stEGNEnq1KmTV9v69evr1efWrVt97sHm614AggchDQAAWGpm5h5NXblL7oZaJcQi/fr182rbuXOn9u/fX+c+ly9f7rO9b9++de4TgPUIaQAAwDKmaeqpmetl98caTT8EyMGDB/tsX7BgQZ37XLhwoVdbSkqK2rdvX+c+AViPkAYAACyzbHu+1mUXNdhS+3W1IefA0U86ip49eyotLc2rfcaMGXXu09e1I0eOZDEfIMgR0gAAgGUmLdwqp8P+gWJmZna9+zAMQ2eccYZX+yeffCK3u/abx69Zs0aZmZle7WeddVad6gNgH4Q0AABgif3FLn21arfcHpsPo0lauGmv9he76t3PpZde6tW2Z88effzxx7Xua+LEiV5tMTExOvvss+tUGwD7IKQBAABLLNi0V5VBENAkyW2aWrhpX737Oemkk9SzZ0+v9gcffFAuV81D4Lp16/Tmm296tY8bN07R0dH1qhGA9QhpAADAEquzChQSBFMdJclpGFqdVVDvfgzD0P333+/VvmHDBk2YMKFGfZSUlOiSSy7xWno/IiJCt99+e71rBGA9QhoAALDEyu35QTWStnJHvl/6Gjt2rE466SSv9hdffFG33XabKisrq7127969Ov3007V06VKvY3fddZfatGnjlxoBWMsw/bGmrI0UFhYqPj5eBQUFiouLs7ocAADgg2ma6vnQDBW7ar9gRl1VFmQr6+WrA9b/li1blJGRUaNzt27dqn79+ik/P9/rWPfu3XXrrbdq5MiRatWqlSoqKrRhwwZ98cUXeu6553zuqzZ48GDNmzdPoaGh9fwqgMYlWLNBiNUFoKrS0lL98ssv2rBhg/bv36+CggKFhoYqMTFRiYmJ6t69u7p06cLSugCAoLav2NWgAc1uMjIy9Omnn+r0009XWVlZlWO//PKLxo8fX+O+2rdvr08//ZSA1sAKCwu1aNEiZWdnKzc3V8XFxYqJiVGrVq3Us2dPdenSxeoSEcQIaRbLycnR3LlzNWfOHH3//ffasGGDPB7PEa9JTEzU0KFDdc011+j000+Xw8GsVQBAcCltwgHtkBEjRuibb77Rn/70J+3du7dOfRxzzDH6/PPPlZ6e7ufq7Gfz5s1aunRplY+8vDyv8+bOnathw4YFpIaysjK98sor+vjjj/Xzzz8fcWpqq1atdOGFF+qGG26o8QgrcAjTHS2QnZ2tTz/9VB9//LF++OGHo4ayI8nIyNDzzz+vM888048VAgAQWJtzD2jEU9836D3tNN3x97KysjRhwgR9/PHHqunLskOLhNx3332KiIio9T3tbsuWLVqyZMlRA5kvgQppr7/+uh566CHt2rWrVteFh4frjjvu0EMPPaSQEMZHGlowZANfCGkWuOaaa/TGG2/4tc8rr7xSL7/8ssLDw/3aLwAAgbBjf4mGPjG3Qe9pVlbIlb2pXn28cll/NYvzHYr69etXr9/Dv/76q9544w1Nnz5dv/76q9ebuOHh4Ro4cKDOOussjRs3TikpKXW+l90lJCSooKBuq2n6O6S5XC5dd911evvtt+vVzwknnKCpU6cqMTHRP4WhRoIhG/hCnLepxMRENWvWTM2aNZMk5ebmav369dWOur399tvat28fc9IBAEEhMszZ4Pc0QkIVnt61Xn0cd9wQpcQE5g3Rbt266cknn9STTz6psrIybd++XUVFRXI6nUpISFDr1q3ldDb8n1tTVllZqdNPP13ffvtttec0b95crVu3VnR0tHJycrRhwwav7REkaf78+Tr55JP1/fffs5cdjoqQZhMxMTE677zzNHz4cJ144olq37691zmFhYWaNm2a/v3vf2v58uVex7/88kvdcMMNevXVVxuiZAAA6iw5OkzRYc6gWjwkJjxEydFhDXKviIgIde7cuUHuherdeeedPgOaYRi64oordPPNN6tv375VjhUUFOjzzz/Xgw8+qO3bt1c5tnTpUl111VWaMmVKIMtGI8CKExYbMmSI3nrrLe3Zs0fvvPOOrrzySp8BTZLi4uJ00UUXacmSJXrkkUd8nvP6669rwYIFgSwZAIB6MwxDvdLjrS6jVnqlx7O6soXatGmjc889V4899pimT5+uJUuWBPR+s2bN0jPPPOPVHhUVpenTp+utt97yCmiSFB8fryuuuEJr1671uWbARx99pI8//jgQJaMRYSTNIscff7wefvhhjRo1qtbXOhwOPfjggwoPD9fdd99d5Zhpmrrvvvs0d27DzvMHAKC2+rRJ0JJteUGxoXWIw1Cf1glWl9FktGnTRh07dlT//v3Vv39/DRgwwOsZvK1btwa0hocfftirzTAMffbZZzrllFOOen1kZKQ+/fTT/2/vvsOjqvL/gb/vzKQnkx4ChBBCIJBQEhLAICChhaKC4gqKrLIB9acUgVVx1/2Cq1h2XQG7oiK6KuoqRUpQKSIYIPSOQBJIAiG9tyn398eQaJxJm3bvJO/X8+Th4cy9575HLjifOeeeg7Fjx2Lv3r2NXluyZAmmTJkCZ2f7jMxS6xQWFiIzMxNZWVnIzc1FZWUlqqur4ebmBm9vb/j6+iI6Ohq9e/e2+erqLNIk8Nxzz1llqdynn34amzZtQmpqaqP2vXv3Ii8vr+F5NiIiIjnq39XbIQo0ANDqRYcb+XNkJ0+elPT6e/fuNTkz6eGHH0ZSUlKr+3FycsLatWsRHR3daD+8rKwsrFu3rk374bVnUmyvkJeXh19++QX79+/H8ePHcerUKdy4caNV53p6emL48OF48MEHcdddd9lk4T4WaRKw5l4mTz75JO6+++5GbXq9Hjt27MCsWbOsdh0iIiJrG9YzACqF4BCFmkohIKGnv9QxyE42btxo1KZQKPD000+3ua/w8HBMnz4d69ata9T+zjvvdMgizZLtFaxl586dZs1mq1dRUYGUlBSkpKQgMDAQ//73v/Hggw9aMSGfSXN448aNMzk//sqVKxKkISIiaj0/D2fcPqAzlAp5P+elVAi4Y2AX+Nlp0RCS3q5du4zahg8fjh49epjVn6kP8MeOHcPZs2fN6s+RxcbG4t5778Urr7yCH3/80e4FGgCTq2+aKz8/Hw899BCSkpJQUVFhtX5ZpDk4T09Pk/tt5ObmSpCGiIiobWYlhEEn85E0nV7ErITuUscgO6murjY53XLYsGFm9zlkyBCT2yds3brV7D7JdoKDgzFw4ECMGDECo0ePRnx8PLp06dLsOd9//z3GjRtn9v5+f8QirR0wtS+arR9mJCIisoZBoT7oE+wFuS6aKAhAn2AvxHLRkA6joKAAomj8xUF0dLTZfXp4eKB7d+NCv7n918g+goKCcM8992D16tU4dOgQysrKcP36dRw/fhx79+7Fzp07kZaWhpycHOTl5WHNmjWIjY012deBAwewcOFCq+TiJ3kHV1lZifz8fKP2zp07S5CGiIiobQRBwJLxkTDxmVgWRBFYMj6SS+93IAUFBSbbfXx8LOrX1Pm23kbAUdh7ewV/f388+eST2L9/P65fv46vv/4aCxYswODBg+Hl5dXkeYGBgZgzZw4OHz6Mf/3rXyb/XVi3bh327NljcUYuHOLgfvrpJ+j1eqP2iIgICdIQERG13bioTrhzYBdsPXkdOhlVa0oBuH1gF4yL6iR1FLKj6upqk+2WruDn6upq1FZUVISsrCx069bNor4diRy2Vxg8eDAGDx5s9vkKhQJPPvkkAMOG53/0wQcfWLwKJYs0B7d27VqjNicnp1bt30FERCQXz90ZjZ8v5qOkWiOLUTVBANRuTlh+h/lT3MgxNTViZumzRiUlJSbbL1261KGKNKm3V7CmxYsXY+3atTh37lyj9s2bN0On05l8DrG1ON3RgZ04cQLffvutUXtiYiK8vbmXCxEROQ5fD2e8PG2ALAo0wDDN8ZVpA+DLFR07HH9/01stWLooW1Pn23rUiGxHqVTi3nvvNWovLy/H9evXLerbZkVaUVERZs6cCbVaDR8fHyQnJze7LGVRURHmz5+PyMhIuLm5ITQ0FAsWLLDaCintjU6nw6OPPmpyqmP98CsREZEjSYoOxpNJkVLHAAA8mRSJ8dHBUscgCQQEBMDNzc2oPS0tzew+09PTUVRUZPK1vLw8s/sl6TW1oIxsi7SZM2fizJkz+OGHH7Blyxbs3bsXDz/8cJPHX7t2DdeuXcOrr76K06dP4+OPP0ZKSgqSk5NtFdFmRFFEYXUhcipykFmaiZyKHBRWF5pcKchcK1aswIEDB4zaJ0+ebNHmfERERFJ6bFRPPDaqZ4fP0J6Jooj8Og2uVtficlUNrlbXIr9OY9XPSZZQKpVISEgwat+5cyd0Op1ZfX7//fdNvlZYWGhWnyQPTc1es3SldZs8k3bu3DmkpKQgLS0N8fHxAIA33ngDkyZNwquvvmpyn4F+/frhm2++afh9z549sWLFCjzwwAPQarVQqUxHra2tRW1tbcPvy8rKrPxuWlZcU4yDuQdxtvAsTuWfwtnCs6jSVhkd565yR5R/FPoH9keUfxSGBg+Fr6vxHmct2bFjB5577jmjdm9vb7z99ttmvQciIiI5EAQBTyZFwsNFhX/vuABBgF2mQNZf56kJkXhsFBffsqbCOi32lZTjZHk1jpVV4UR5FSp1xjOBPJQKDPRyR6zaHQO83DDcxwv+ztIsn3DbbbcZbWidk5OD7777DlOnTm1zf++++26Tr1VWVra5P5KPpkZCLV1p3SZ3fmpqKnx8fBoKNAAYO3YsFAoFDh48iLvuuqtV/ZSWlkKtVjdZoAHASy+9ZLJgsTVRFHEi/wTWX1iPHRk7oBW1UAkqaEVtk+dUaatw+MZhHM873nD8hB4TMKPPDAwIGNCq5X3Pnj2L6dOnm5zm+O677yI0NNSi90VERCQ1QRDweGIEegV54ulvTqKsWgOdDQs15c1FQl6ZNoBTHK1EFEUcKavC2pwCbMorhlYEVAKgbebPsVKnxy8lFThUWtFw/NQgX8zuGoBBane7boNw33334bnnnjP6vPXUU09h/PjxcHd3b3Vf77//Pk6cONHk63V1dWbnJOn9/PPPRm1hYWEtbn7dEptMd8zNzUVQUFCjNpVKBT8/v1Y/dFlQUIDnn3++2SmSAPDMM8+gtLS04ScrK8vs3K216+ouTNs8DbO2z0JKRkpDYdZcgfZ7vz9+e8Z2PLDtAUzbPA27r+5u9rycnBxMmjTJ5HN68+fPx4wZM9r4ToiIiORrfHQwdi0ZhckDDB92rP0Zvb6/2wd2we6/jmKBZiUp+aVITLuA249exMabBRrQfIH2e78/fkNeMSYfvYjRaRewo8B+6xT06tULd999t1H7xYsXMXv2bGi1rfvMt3//fixZsqTZY0x98U6O4caNG/jyyy+N2h944AGL+25TkbZ06VIIgtDsz/nz5y0OVVZWhsmTJyMqKgrLly9v9lgXFxeo1epGP7ZSUlOCp356Cgt3L8SlkksAAJ1o3tzkevXnXyq5hAW7F+Cpn55CSU2J0XH5+fkYP348rly5YvTalClTsHLlSotyEBERyZGvhzNevy8W78+KQ2QnwyazSoVl1Vr9+ZGdvLDmz/FYPSMWPu5cxdFSRRot/t+ZTDx0OgO/VtYAgMUjoPXnX6iswYOnMvD/zmSiSNO6AslSy5cvN7mAyFdffYVJkyYhPT29yXP1ej3ef/99jB8/vtmF8wDT+6eR/NXU1GDWrFlGgycBAQFYsGCBxf23abrjkiVL8NBDDzV7THh4OIKDg43mZ2q1WhQVFSE4uPlvqcrLyzFhwgR4eXlhw4YNcHJyaktEm9l5dSeW/7Ic5XXlAAAR1p13Ud/fjis7kHo9FcuHLceY0DEAgOLiYowfPx5nz541Om/8+PH48ssvLdqHgYiISO7GRwdjXFQnHMsqwaepV/DdiWvQ6kWoFAK0+pb/n1x/nEoh4M6BXTAroTtiuvnYdQpde7Y9vwSLL2ShTGP48tnaY0P1/W3OK8FPxeX4T2Q39LXyNf4oOjoab775pslF7H744QdERUVh0qRJmDBhAkJDQ+Hm5ob8/HwcOXIE3377LX799ddG5wwePNjkCpFtmTpJ8nDgwAE8/vjjOHr0aKN2lUqFjz/+GIGBgRZfo01FWmBgYKsumpCQgJKSEhw5cgRxcXEAgF27dkGv12Po0KFNnldWVoakpCS4uLhg8+bNsvhmQRRFfHDqA7x+7HUIEKxenP2RXtSjtLYUT+x+AgsHLcSfQv+EpKQkHD9+3OjY2267DRs3boSLi4tNMxEREcmBIAgYFOqLQaG++MftUUi9XIiTOSU4mVWKkzklqKw1nt3i4aLEgK4+GNjNB/27eiOhpz/8uPeZ1YiiiNev5OGljOtQwPrF2R/pAJRodJh9OhOPOGlsfDXgL3/5Cy5duoSXXnrJ6LXa2lps2LABGzZsaLGfsLAwfPjhhxgwYIDRa398RIikk52djezs7EZter0eFRUVyMvLw8mTJ/H999+bfMbQy8sLn3zyCSZPnmyVLDZZOKRv376YMGEC5s6di3fffRcajQbz5s3DjBkzGh6iy8nJwZgxY/DJJ59gyJAhKCsrw/jx41FVVYX//ve/KCsra1ipMTAwUJKRIlEUsfroanx4+kPD721coDVc9+Z1XvvlNbw460VknMgwOmbYsGHYsmWLyWF4IiKi9s7PwxmTB3TG5AGGFdREUURhZR1qNDrUafVwVing6qSEv4czR8tsRBRFvJh+HW9cNcyesteTVfXXeTsr3y7Xe/HFF9GzZ0889thjZi3yERMTg40bNzb5uqWrAMqJKIrQFRVBX10DUVMHwckZCjdXKP38HOLv4QcffNDmBQkVCgXuuecevPLKKwgLC7NaFputa/rZZ59h3rx5GDNmDBQKBaZNm4bXX3+94XWNRoMLFy6gqsqwVP3Ro0dx8OBBAEBEROOlbzMyMqz6plvrg1MfNBRo9qav1ePKa1dQ9avxUv5DhgzB9u3b4enpKUEyIiIi+REEAQGenFliT69fyWso0Nq75ORkJCYmYvny5fj8889btV+ap6cnFi9ejGeeeQaurq44efKkyeN69+5t7bh2oy0uRtWBA6g5cwbVJ0+h5sxp6CuNP7sqPNzhGt0PbgP6wzU6Gu633AKVb9u3oZITQRAwe/Zs/OMf/7BJnWKzIs3Pzw+ff/55k6+HhYU12rRw1KhRstnEEDA8g/b6sddbPtAG9LV6XFlpukAbNGgQduzYYdMFUoiIiIiasz2/BC9lXJc6hl2Fh4fjk08+wYsvvoiUlBT88MMPOHfuHPLz81FUVASlUong4GAMHDgQSUlJmDFjBnx8fBrON7W4niAIiI6OtuO7sJwoiqg+fhzFn3+Bsu3bAa0WUKkMvzZBX1mFqkOHUHX0aMPx6kmT4Hf/fXAdONAhRtn+SBRFfPTRR9i9ezcee+wxPPLII/Dy8rJa/9LsEChzJTUlWP7Lcrs8g/ZH+jo9rqy+gsrzxhsbRvePxg8//NDoLzwRERGRPRVptFh8IQsCYOdPSfIQEhKCOXPmYM6cOW06z9RI2oABA+Dh4WGtaDZXvnMn8letRu3Fi4BSCdSPKLZyS4KG47RalG3dirLNm+HSuzcCn1gIr9GjbRPaxjIyMvDkk09i9erVWLt2LcaOHWuVfm2yT5qje/HgiyivK5euQDtrXKC5hrgi8YVE+Pn52TUTERER0e/9/ddslGl0HbJAs8SxY8eM2hITEyVI0nba4mLkLPkrsh+fh9pLhm2o0Iopn826eX7txYvIfuxx5Cz5K7TFxRYmtczy5cshimKjn7q6uoZFQz766CPMmDHD5KJ92dnZmDBhAj777DOrZGGR9ge7ru7C9sztFu9/1lZ6jR5X37yKyjPGBZpLFxeEPRWGPcV7WtzwmoiIiMhWUvJLsSGvBPb9lOT4SkpKsHPnTqN2Uxtmy035jz8ifeIklKWkGBqs/XjSzf7Ktm9H+sRJKP/xR+v2byEnJycEBgaif//+mD17Nr744gtkZWVh5syZRsfqdDo8+OCD+OWXXyy+Lou03xFFEW8eexMC7DsvVq/VI+vNLFScNN7s0DnYGWFPhUGlVkGAgDeOvSGrZ/eIiIioYxBFES/fXGpfzuT4Oenrr79GbW1to7bu3btj+PDhEiVqmSiKKHj3PWTPmw9daanlI2ct0euhKy1F9rz5KPqs6XUt5CAwMBD//e9/sXLlSqPXdDodHnroIWhbOwW0CXL/e2ZXJ/JP4GLJRbtOcxR1IrLezkL5iXKj15yDndFjaQ84+Rg29BYh4mLJRZwsML06EBEREZGtHCmrwvnKGrsttW+uXytrpI7QiEajwerVq43aFy5cKNsFM0RRRP5rK5G/alV9g70uDAAo+kia1dXb6oknnsCjjz5q1H7x4kV88803FvXNIu131l9YD6Vgv/3YRL2IrHeyUH7URIHWyRk9nv6tQKunFJRYf369vSISERERAQDW5hRAKc+aopGUglKpIzTy2muv4cyZM43aOnXqhLlz50qUqGWF772PwjVrpI7hEFasWAF3d3ej9i+++MKiflmk3VRcU4wdGTvs9iyaqBeR/X42yg6XGb3mFOhkKNB8nYxe04k6pGSkoLhG2gcriYiIqOMorNNiU14xdPKbSWhkX0kFCussm2pmLXv27DG5OfKLL74o2/1uy3/88bcRNGqRn58fxo0bZ9S+b98+i/plkXbTwdyD0Ir2+QstiiJyPspB6QHjb3qcAp0MUxz9jAu0elpRi0O5h2wZkYiIiKjBvpJyaB2gQAMAnQjsLzF+zt8cFRXm97N9+3ZMmjQJ1dXVjdqTkpIwe/ZsS6PZhLa4GNef/Qcg02mYchUfH2/UVlhYiKoq4z2PW4v7pN10tvAsVILKLoXa9f9eR8m+EqN2wVlA8D3B0BZroS1uOodSUGKbuA3efbybPMbFxQWxsbHWiEtEREQd3MnyaqgEOEShphSAk+VVuDPIx+K+HnvsMVy7dg1z587FxIkToVarWzznypUreOaZZ0xOd+vevTvWrVsn22fRbrywArrycvs9g9ZOBAYGmmwvLi42ORWyNVik3XQq/5TdRtLKjxs/gwYAYp3hGbXWuIiLeB2vN/l69+7dkZmZaU48IiIiokaOllXZtUDT5V5Dwf2TzTq3YNFc/GMR8I9mjsnIyEBYWFiLfen1euzcuRM7d+6Ek5MTbr31VgwaNAj9+vVDUFAQvL29UVFRgby8PKSnp2Pbtm04fPiwyRUmAwMDkZKSgk6dOpn1vmytfOdOlG3dKnUMh1RZabyFFgA4Ozub3SeLNBimH54tPCt1DCIiIiLZEUURJ8vNn7bVXmg0GuzZswd79uxp87k9e/ZESkoKIiIirB/MCkRRRP6q1YZpjjIeRZPj9gqAYSPrP3JycoKfn5/ZffKZNABFNUWo0vIfHyIiIqI/KtBoUamT+8L78vXggw/i6NGjsi3QAKD6+HHUXrwo6wINAOouX5Y6gkk7duwwauvduzeUSvNXjWeRBqBGJ6/9NIiIiIjkoroDF2iJiYno3bt3m89TKpW4/fbbcfDgQXz88cetepZNSsWffwFYUFDYS9mPO6WOYGTfvn04e9Z4Rt6oUaMs6pfTHQFodBq7Xi/yP5FW6ee7qd8hzDvMKn0RERERmaKRYHRF4RcA3zfXWdTH+9HdEeLqYvK1zp07t6qP5ORkJCcnIyMjA/v378ehQ4dw7tw5ZGRkoKCgAJWVlVAoFPDy8kJoaCiioqIwcuRITJ48GV27drUov71oi4tRtn07oLPPNlSWqDp4ANriYqh8faWOAsCw+udjjz1m8rX777/for5ZpAFwUja93L2cOSvNfxiRiIiIqDWcJFiJUHB2hnPUAIv6GHpLFLq5WuezUo8ePdCjRw888MADVulPTqoOHAC08thXrkU6HaoOHoR6wgSzu3j33XdRU1ODRx55BG5ubmb3U1hYiClTpuDUqVNGr912220YNmyY2X0DnO4IAHBVukodwSwuStPfDhERERFZi5vSMT8uuirkucy93NScOQOoHGTcRqk05LVAbm4uFi1ahB49emDJkiVITU1t04IkJSUleOONN9C7d2/s37/f6HVXV1e89dZbFmUEOJIGAPBz9YO7yt2hFg/xcPKAn6v5K8YQERERtUaAkwoeSoVDLR7iqVQgwIkfc1uj+uRJu46k5WjqMC493axzH8rMBP76V8NPE1q7vcKNGzfw2muv4bXXXkOnTp0waNAgxMTEoHfv3vDx8YGPjw9UKhXKyspQXFyMs2fP4ujRo9i9ezdqa2tN9ikIAtauXYvo6Giz3t/v8e6F4T9olH8UDt84LHWUVovyj5LtRohERETUfgiCgAFe7kgtqZA6SqsN9HLn56RWEEXR4pGp9uDGjRvYvn07tm/fbnYfHh4eWLt2Lf70pz9ZJZNjjl/bQP/A/lAJjlGzqgQV+gf0lzoGERERdRCD1O5QOUjNoxKAWLW71DEcgq6oCPpKx5lJJle33347zpw5Y7UCDeBIWoMo/yhoRcd4aFIrahHlHyV1DCIiIuogBni5QSvvLbQaaEVggBeLtNbQV3e8baiSk5Ph7e2N7du3Y+/evU1OXWyJu7s77rrrLvzlL3/B6NGjrZySRVqDocFDoRJUDlGoqQQVhgQPkToGERERdRDDfbygEuAQhZpKAG718ZQ6hkMQNXV2v2agUoUvQrtb1EeXla/BuUsXk6+1tL1Ct27dsGjRIixatAi1tbU4fvw4Dh48iNOnTyMjIwOZmZkoLi5GZWUlNBoNvLy8oFar4e3tjZ49e2LQoEEYNGgQRo4cCS8vL4veR3NYpN3k6+qLpB5JSMlIgU6U7z4RSkGJCT0mwNdVHvtDEBERUfvn76zClCBfbMwrhk7GhZpSAKYG+cLfmR9xW0Nwsv92Ts4KBQZasPQ9AEQMHQonK+xD5+LigqFDh2Lo0KEW92VtfCbtd2ZEzpB1gQYAOlGHGX1mSB2DiIiIOpjZXQNkXaABgE405KTWUbg55jZUgqtj5m4LFmm/MzBwIHr59IIAeT4ZK0BAb9/eGBBg2eaORERERG0Vp3ZHXw9X2X54VACI8nDFIC4a0mpKPz8oPBzrv5fCwwNKv/a/DZVc/55JQhAEzI+dDxHy/JpIhIh5MfO4pCwRERHZnSAIWBreGXLdLU0P4Onwzvyc1AaCIMDVCnt62ZNrv+gO8WfMIu0PEkMTMTFsIpSCUuoojSgEBSb1mITE0ESpoxAREVEHlRTgjbuCfCCvT0mAEsDdQT5ICvCWOorDcRswAFA5yDN8KpUhbwfAIs2Evw39G7ycvWQz7VGAALWzGs8MeUbqKERERNTBregdArWTUjYfIhUAvJ2UeKF3iNRRHJJrdDSglf/q5gAArdbhRv7MJZe/X7Li4+qD5cOWy2baowgRzw17Dj6uPlJHISIiog7Oz0mF1yK7yWbaox7Aa5Gh8HNykNEgmXG/5RaHGklzl+FKjLbAIq0JY0LHYEHsAqljAAAWDlqI0aHW3ySPiIiIyBwTA33wTI/m96Oyl7+Fd8aEQE5zNJfK1xfqiRMBpdwmsf6BUgn1pElQ+XaMbahYpDVjTv85mNN/juQZkvslS5qBiIiI6I8WdA/CgtAgaTOEBmG+xBnaA9/77wN08t6GCjod/O6/T+oUdsMirRmCIGBB7AIsHLTQ8Hs7PaNWf52FgxZi4aCFHWIFGyIiInIsgiDgmfDO+Fu4YUTNXh8q66/z9/DO+FvPLvycZAVuMTFw6d0bkOt/S0GAS2QkXAcOlDqJ3bBIa4EgCJjTfw5WJ66Gt4s3FIJt/5MpBAW8XbyxOnG15KN4RERERM0RBAELunfCx/16wNtJafNVH5UAfJyU+LhfD8zv3snGV+s4BEFA4BMLAVEe6zEYEUUELlzQoQpyFmmtNDp0NL6b+h2SuicBsP6oWn1/E8ImYMtdW/gMGhERETmMCYHe2D+0L+4M8gFg/Q+Y9f1NCfLB/qF9+QyaDXiNHg315MnyezZNoYD69snwGt2xPhsLoijXktk8ZWVl8Pb2RmlpKdRqtU2usevqLrx57E1cLLkIpaCETjR/Dm/9+b18emF+7Hzug0ZEREQOLSW/FK9kXMe5yhooBUBnwSfN+vP7erhiaXhn7oNmY9riYqRPnARdaak8RtUEAUpvb4Rv32b2giH2qA1sgUWamURRxMmCk1h/fj1SMlKgFbVQCSpoxZb3mag/TqVQYWLYRMzoMwP9A/p3qCFcIiIiar9EUcTRsiqszSnAxrxiaEVAJQDaVnzqrD/OSRAwNcgHs7sGIFbtzs9JdlL+44/Injdf6hgNQt56E15jxph9Pos0mZDiD6K4phiHcg/hTOEZnC44jTMFZ1ClrTI6zl3ljuiAaPQP6I8o/ygMCR4CX9eOsYwoERERdUyFdVrsL6nAifIqHC+rwvHyKlTqjHdZ81AqEOPljli1OwZ4ueNWH0/4OzvI/l3tTMG77yF/1SqpYyBw0SIEPPKwRX2wSJMJOfxBiKKIopoi1OpqUaerg7PSGS5KF/i5+vFbICIiIurQRFFEgUaLGr2IOr0ezgoFXBUCApxU/JwkE6IoIn/lKhS+/75kGfwffhiBi56w+J6QQ21gDn49YQOCIMDfzV/qGERERESyIwgCAp2dpI5BzRAEAYGLnoDCwwP5K1calua3x7jOzesELl6MgIfn2v56MsbVHYmIiIiIqBFBEBDwyMMIeetNKL29AYWNywaFAkpvb4S89WaHL9AAFmlERERERNQErzFjEL59G9QTJxoarD0l9WZ/6kkT0TNlu0WLhLQnnO5I7YZer8e5c+dw/vx55OTkoKKiAoIgwNPTE0FBQejZsyciIyPh5eUldVQiIiIih6Hy9UXX/7wK9aSJyF/9Omp//dWwn5rO/G2o6s936dULgU8s7HD7oLWERRq1SXp6Oo4cOdLop7i42Oi43bt3Y9SoUTbPI4oifvzxR6xduxY7duxAUVFRs8crFAr07dsXw4cPx6RJkzBmzBh4eHjYPCcRERGRo/MaMwaeo0ej5sQJFH3+Bcq2bQO0WkClMvzakvrjVCqoJ0+C3/33w3XAAC4YYwJXd6QmZWRk4PDhwy0WZKbYo0j76aefsGTJEhw5csTsPpYtW4bly5dbLxQRERFRB6EtLkbVwYOoOX0a1adOoeb0GegrK42OU3h4wLVfNNwGDIBrdDTchw41e3PqtnLU2oAjadSk2NhYlJaWSh3DiFarxVNPPYVVq1ahnX3HQEREROQwVL6+UE+YAPWECQAMM5x0RUUQa2qgr6uDwtkZgqsrlH7chqqtWKSRQ6msrMQ999yDlJSUJo/x8PBAcHAwOnXqBGdnZxQXFyMnJwcFBQV2TEpERETUsQiCAJU/t6GyBhZp5DC0Wm2TBZqHhwfmzp2LqVOnYvjw4VAqlUbHZGdn4+DBg9iyZQu2bt2K/Px8e8QmIiIiImoTFmnUJqGhoYiLi0N8fDzi4uIQEBCA+Ph4u1x78eLFJgu0e+65BytXrkRISEiz54eEhCAkJATTpk1DXV0dvvnmGzg5cTNNIiIiIpIXFmnUpNDQUERERCAuLq6hMAsICGh0TGZmpl2ybNu2DW+88YZR+xNPPIGVK1e2uT9nZ2fcd9991ohGRERERGRVLNKoSSdPnpQ6AgCgpqYG8+bNM2r/85//bFaBRkREREQkZwqpAxC15J133kFGRkajtsDAQBZoRERERNQusUgjWdNqtSaLsX/+85/w8/OTIBERERERkW2xSCNZ2759O7Kyshq1ubq64v7775coERERERGRbbFII1lbv369Udsdd9zhUDvGExERERG1BYs0ki1RFLFjxw6j9vHjx0uQhoiIiIjIPri6I8nWqVOnUFhYaNQ+YMCAJs/Jzs5GQUEBFAoFAgMDERAQwL3QiIiIiMihsEgj2Tp69KhRm0KhQL9+/Rp+r9frsWnTJnz66afYuXMnysrKjM7p168fxo4dizvvvBOJiYk2zUxEREREZClOdyTZOnPmjFFbUFAQ3N3dAQD79u3DwIEDcffdd2PDhg0mCzQAOH36NFatWoXRo0dj+PDh+Omnn2yam4iIiIjIEizSSLauXr1q1Obl5QUAeOONNzBq1CicPn26TX3u378fiYmJWLFihVUyEhERERFZG4u0DkoURegq6qAtqoEmvwraohroKuogiqLU0Rpcv37dqM3Lywtvv/02FixYAJ1OZ1a/oiji2WefRXJysqURiYiIiIisjs+kdRC6Sg1qL5egLqcCmqxy1GVXQKwzLnIEZyWcQzzh1M0Lzl094dLTB0oPaRbeKC4uNmrLzs7GwoULG7W5u7sjOTkZU6ZMQd++fREQEIDS0lJcvnwZ27Ztw3vvvYe8vDyjvj766CPExMRg/vz5NnsPRERERERtJYhyGjqxgrKyMnh7e6O0tLTD76UliiLqrpajIvUaqk8WAHoRUAiGX1tSf5xCgNvAAHgmdIFzNy8IgtDosMzMTPTo0cPo9N27d2PUqFEW5e/duzcuXrzY7DEjR47Ef//7X3Tr1q3JY0pLSzF//nx8+umnRq85OTnh6NGjjRYjISIiIqL2wVFrA46ktVPVZwpR+n0mtDeqDJNa9TdfaE2B9vvj9CKqTxSg+lg+VMHu8B4fBrcof1tENqLVapt9PTExEdu2bYOrq2uzx3l7e2PdunVwdXXFmjVrGr2m0Wjw4osv4vPPP7c4LxERERGRNfCZtHZGV6lB4RfnUfjpWWjzqgyN+ubPadHNgk17owqFn5xF4RfnoavUWNhpy5rb38zX1xeffvppiwVaPUEQ8PrrryMqKsrota+++goZGRlm5yQiIiIisiYWae1I9ZkC3PjPYVSfzDc0WHsi683+qk/mG65zpsDKF2jM2dm5ydcef/xxdO3atU39ubq6YtmyZUbtOp0O3333XZvzERERERHZAou0dkAURZTtvorCT89BX621fnFmdEFAX61F4afnUJ56zWaX8fHxafK1OXPmmNXn3XffjYCAAKN27p1GRERERHLBIs3BiaKIsh2ZKNtx5WaDvS5s+KVib7bNLmGqmAKA7t27o3v37mb1qVKpkJCQYNR+4MABs/ojIiIiIrI2FmkOrnxPFsr32K5QklJT0xljYmIs6tfU+fn5+Rb1SURERERkLSzSHFj1mYLfRtDaofDwcJPtfn5+FvXr72+8OqVGo0FZWZlF/RIRERERWQOLNAelq9Sg+Jvm9xBzdH379jXZ7u7ublG/Hh4eJtsrKios6peIiIiIyBpYpDmoks2XDYuEtGPx8fEm2y0d8SotLTXZbukIHRERERGRNbBIc0DVZwpRfSLffouESCQwMBC9evUyas/Ly7OoX1Pne3h4tHrPNSIiIiIiW2KR5mBEUUTp95mAIHWS5omidSrIpKQko7YjR45Y1GdaWppRW1hYmEV9EhERERFZC4s0B1N3tRzaG1WyH0XT5FVZpZ977rnHqK2goABHjx41q7+ysjIcPHjQqD0xMdGs/oiIiIiIrI1FmoOpSL3mEH9q1WcKrdLPyJEj0bNnT6P2t99+26z+1q5di6oq4wJyzJgxZvVHRERERGRtDvBxn+rpKjWoPlkA6KVO0rK6y6XQVWos7kcQBCxevNiofd26dTh8+HCb+srNzcULL7xg1B4SEoKJEyeanZGIiIiIyJpYpDmQ2sslgF7m8xzriaIhrxUkJycbjaZptVpMnz4dV69ebVUf5eXluPfee1FQUGD02tKlS+Hi4mKVrERERERElmKR5kDqcioAhcxXDKknCNDkWGffMRcXF7zzzjsQhMbvPT09Hbfeeiu2b9/e7PlHjx7FqFGj8PPPPxu9FhMTgzlz5lglJxERERGRNQiitZbhk4mysjJ4e3ujtLQUarVa6jhWlffeSdRlmN7jyxaySq9j2LvTbdZ/RkZGm1ZVfPbZZ7FixQqTrw0ZMgRTpkxBVFQU/P39UVpaivT0dGzduhU//vgj9HrjOaIBAQE4fPgwunfvbu5bICIiIiIZc9TaQCV1AGodURStNjLlqJ5//nnk5eVhzZo1Rq8dOnQIhw4danVfQUFB2LRpEws0IiIiIpIdTnd0EPpKDcQ6ndQxJCUIAt577z28/PLLUKnM/34hNjYWaWlpuOWWW6yYjoiIiIjIOlikOQixzgGWdLQDQRDw9NNP49ixY5g8ebLRc2rN6dmzJ9auXYu0tDSEhobaMCURERERkfk43dFBiDr7F2lBHv7Y9MA7FvXhd38fqHxdTb7WuXNns/vt168ftmzZgsuXL2Pjxo346aefcO7cOeTm5qK6uhpqtRoBAQHo2rUrRowYgXHjxiEhIcGiETgiIiIiInvgwiEOQltUg9x/pUkdo82Cnx7cZJFGRERERGRLjlobcLqjgxCcHfOPSnByzNxERERERFLhJ2gHofBwguCslDpGmwguSig8nKSOQURERETkUFikOQhBEODU1VPqGG3i3NWzTQt7EBERERERizSH4hzqBSgcpOhRCHDu5iV1CiIiIiIih8MizYE4d/UE9A6yzotedLiRPyIiIiIiOWCR5kBcevo41EiaS08fqVMQERERETkcFmkOROnhBLcBAfL/U1MIcBsYACUXDSEiIiIiajO5f9ynP/BM6ALYf1/rttGLhpxEREREHVh6ejq+/vprLF26FOPGjYOfnx8EQTD62bNnj9RRSWZUUgegtnEO9YIq2B3aG1WAHB9PEwBVJw8uGkJEREQdSkZGBg4fPowjR440/BQXF0sdixwUizQHIwgCvMeHofCTs1JHMU0EvMd359L7RERE1KHExsaitLRU6hjUTnC6owNyi/KH28BAQG51kAC4xQTCLcpf6iRERERERA6LRZqD8rmzJxRuKvkUagKgcFPB546eUichIiIiInJonO7ooJQeTvCd1guFn56TOoqBCPhO680VHYmIiIhuCg0NRVxcHOLj4xEXF4eAgADEx8dLHYscAIs0B+YWHQB1UneU7bgidRSok8LgFs1pjkRERNQxhYaGIiIiAnFxcQ2FWUBAQKNjMjMzpQlHDodFmoPzGtUNYq0e5XuyJM3gNSpEsusTERERSe3kyZNSR6B2hEWagxMEAeqk7hBclCjbkWl4Rs0eS/PfvI56QhjUo7rZ4YJERERERB0Di7R2QBAEqBO7wSnIHcXf/Ap9tda2hdrNRUJ8p/XmFEciIiIiIitjkdaOuEX7wzksHiWbL6P6RL71R9Vu9uc2MBC+d/aEwp2LhBARERERWRuLtHZG6eEE//v6oHpAIEp/yIQ2twpQCIDegmrt5vmqTu7wHh/GfdCIiIiIiGyIRVo75RbtD9coP9RllaMi9RqqTxQAehFXSq/j1PXzOJV7Aadyf8XJGxdQWlNudP5X97+OhG4xgEKA28BAeCZ0hnM3LwhC2zdmGzVqFH766ScrvKvf3HbbbdizZ49V+yQiIiIikgMWae1YZmYmDh8+jCPHjuDwocM4euQIistKWnWu24AA+E3sA5eePtz7jIiIiIjIjliktWOxsbEoLS0161zPoZ3hPiDQyomIiIiIiKglCqkDEBERERER0W84kkaSeOuttzBo0CCzz1er1VZMQ0RERNQMUQQqCwBNFaDTAEonwMkd8AgAzHhen6glLNI6mNDQUMTFxSE+Ph5xcXEICAhAfHy83XNERUXhlltusft1iYiIiFpUWQhk/ARcPw7kHAGuHQfqKoyPc/YEusQAXeOAzjFAj9sAD66CTZZjkdaOhYaGIiIiAnFxcQ2FWUBAQKNjMjMzpQlHREREJCeiCGSnAYfWAGe+BfRaQKEy/NqUugogcx9w9cBvx/ebBgyeC4TEc5SNzMYirR07efKk1BGIiIiI5O/8VmDXC0DeWUChBPQ6Q3tzBdrv1R+n1wKnvwFOfgkERQOjnwX6TLJNZmrXuHAIEREREXVMVUXA/5KB9fcD+ecNbfUFmrnqC7b8c8D6+wz9VxVZ1id1OBxJIyIiIqKO59wWYPN8oObmdkWi3rr91/d3ZgNweRdw5xuAWz/rXoPaLRZpRERERNRxiCLw83+AXc/DMKnMysWZ0fV0QHUJ8OVMIGqeba9F7QaLNCIiIiLqGEQR2PkcsG/lzQYbF2gNbl7nl9ftdD1ydHwmjYiIiIg6hp//87sCjUi+OJJGktJqtcjPz0dBQQH0ej38/Pzg6+sLT09PqaMRERFRe3Juy80pjkTyxyKNJPH222/jH//4B9LS0lBbW2v0up+fH4YNG4Zbb70VU6dORZ8+fSRISURERO1CVZFhkRAIAESp0xC1iNMdSRJff/019u3bZ7JAA4CioiJs2bIFzzzzDKKiojB58mTs2bPHviGJiIiofdj25M1VHFmgkWNgkeagRFFEVWkJSvNuoOhaDkrzbqCqtASi2P7+8RFFEdu2bUNiYiLmzZuHmpoaqSMRERGRozi/FTj9P8Mqi0QOgtMdHURVWSmyzpzEjfRLuH7pV9xIvwRNTbXRcU6ubugUHoHOEb3RKTwC3aIHwF3tLUFi23jrrbewb98+7Ny5E/7+/lLHISIiIjkTRWDXC4CgsP4+aNbUDr9kJ8uwSJMxURRx/eJ5HN+xFRdSf4Zep4NCqYRe1/Q3QZqaamSfPYVrF842HB85bCRixk9G516REATBju+gMUEQ0L9/f4wfPx6xsbGIjo5GcHAw1Go1FAoFioqKkJOTg9TUVOzYsQPbt2+HXm/8D+qJEydwxx13YOfOnXBzc5PgnRAREZFDyE4D8s5KnaJl+RcAJEqdgmSERZpMXUo7gP1ffoqCrCsQFEqIekNh1lyB9nv1x+l1Opzfvxfnft6NgNAw3Dp9FiLih9ostynh4eEYO3YsHnroIYSEhDR5XOfOndG5c2fEx8dj/vz5uHTpEhYtWoQtW7YYHZuamorHHnsM6enp2Lt3r8n+li1bhuXLl1vrbRAREZGjObQGUCgBvcynOp7fAuBRqVOQjLBIk5nq8jLsWvsuzu/f2zDqJVr4D0v9+YVZV7Dp38+jz60jMXr2o3DzUluctzU++ugjs86LiIjAd999h3//+9946qmnjF5ft25du3wGj4iIiKygshA48638CzQAyNhryOvBRznIgAuHyMjFtFR8tOgRXEjdBwBWL0Dq+7uQug8fLXoUF9NSrdq/rTz55JP4+9//btTOAo2IiIialPEToNdKnaJ1RB2QaXpmEHVMLNJkQBRFHNzwFTa/ugI1FRUQTTyHZdXr6fWoqSjH5ldX4NgO46mEcrR8+XJERkZKHYOIiIgcxfXjgMJBJo0JSuDacalTkIywSJOYKIrY98U67Fv/SX2DvS4MADj83bf2uZ6FVCoVli5davI1KRdDISIiIpnKPuJYI2k5R6ROQTLiIF8vtF+HNn6NQ5v+J3UMhzBp0iQIgmA0zTEmJgbHjh2TKBURERHJjigaRtLsKLNEjx6rK8w6N3FdFbBuKzC76S+eMzIyEBYWZmY6cjQcSZPQxbTU30bQqEVBQUFwd3c3ao+OjpYgDREREclWZQFQZ17BRCQHLNIkUl1ehu/fex3gVL1WS0lJQWVlpVF7cXGxBGmIiIhItjRVUicgsgiLNInsWvsuaisrucN8K1VUVOCRRx4x+VpdXZ2d0xAREZGs6TRSJyCyCJ9Jk8CltAM4v5/LrLbFM888g6tXr5p8Ta22z35vRERE5CCUTna/ZGdPAanJxo9ltMn0zwCvYNP9d+5sWd/kUFik2Zkoitj/5acmF8CQEzll++WXX/D22283+XpoaKgd0xAREZHsOVlYLJnBRSXglhALP1on3Ap4BlonEDk0Tne0s+sXz6Mg64qsiiBTCrOzpI4AAKitrcWcOXOgb2bvuNjYWDsmIiIiItnzCACcPaVO0TbOXobcRGCRZnfHd2yFoFBKHaNFlw6nSh0BAPDCCy/g3LlzTb4uCAISExPtmIiIiIhkTxCAzjFSp2ibLjFcUI4asEizo6qyUlxI/RmiXid1lBZlnT6JqrJSSTOcOnUKr7zySrPHjBo1CiEhIXZKRERERA4jJA5QOMiTPQoV0DVO6hQkIyzS7CjrzEnodfIv0ABAr9cj68wpi/pIS0vDhQsXzDpXp9MhOTkZGk3zqzMtXbrUrP6J6Dfp6en4+uuvsXTpUowbNw5+fn4QBMHoZ8+ePTbNkZ+fj5SUFKxYsQJ33303QkNDTeZYvny5TXMQUTvROQbQa6VO0Tp6rWEkjegmB/l6oX24kX4JCqXSIQo1hUKBGxmXEJkw3Ow+9u/fj8WLF+POO+/EnDlzMHbsWLi6urbq3FWrViEtLa3ZY6ZNm4bx48ebnY+oI8rIyMDhw4dx5MiRhh8p9hosKCholOPw4cPIypLHs7BE1E70uM0wQuUIhZpCBYSNlDoFyQiLNDu6fumCQxRogGEkLfeSeaNgvyeKIjZt2oRNmzbB09MTo24bjZgBg9C/Xz9E9olEcNdAeHt7Q6FQoLi4GDk5Ofjuu+/wz3/+s9l+e/fujQ8++MDifEQdTWxsLEpLpZ3KDABz5szBpk2bpI5BRO2Zhz8QfTdw5htAzo+aKFRAv2mGvEQ3sUizE1EUcSP9sl2vWVRZhRe37jbr3Hf3HMC7ew5g+rKXmzwmIyMDYWFhJl+rrqhD/tXyRm0VFRXYsnUztmzdbFametHR0dixYwd8fHws6oeIiIjauSFzgVNfSZ2ieXotMHiu1ClIZlik2Ul1WSk0NdVSx7ApURRxI6MMp/Zk49LhPFw4nmvV/hUKBRYuXIgXX3yx1dMmiYiIqAMLGQwERQP55wCx6e18JCMogKAoICRe6iQkMzZbOKSoqAgzZ86EWq2Gj48PkpOTUVFR0apzRVHExIkTIQgCNm7caKuIdqWprZU6gk2lH8/H+ucP4Zt/HcHFw3nQ60UEeHdBgLqzxX07Oztj+vTpSE1NxWuvvcYCjcjKQkNDcdddd2HFihVISUnB4cOHJcnh5+eHcePGYenSpfj666+RkZGB7t27S5KFiNoJQQBGPyvPAg0w5Er8O5feJyM2G0mbOXMmrl+/jh9++AEajQazZ8/Gww8/jM8//7zFc1etWgWhnd2sOq0DPLRqhpoKDfZ++Ssupt0Abv6RiXrDRt39uyegf/cEFFfk4dL1U8gquIicwsvIK81GaVUh9C3MDxcgIGnQA5j9wBzcOTcBrp5Otn47RO1eaGgoIiIiEBcXh7i4OMTHxyMgoPHmqZmZmTbP4efnh7FjxzZkiIuLQ48ePWx+XSLqgPpMAvrdA5zZAIgyejZNUAL97jbkI/oDmxRp586dQ0pKCtLS0hAfbxi+feONNzBp0iS8+uqr6NKlS5PnHj9+HP/5z39w+PBhdO5s+SiMXChV9p9ZqnZ1wfwxwyzqY8qSv8PD18/ka9V5Knz2xgHUVt9cJl803YevZxAG9xqDwb3GNLTpRT3Kq4pRXVcJja4W57OPYNPBNY3OSxo0E7cPfggFF7X4bNkBJM7qg/CYQIveD1FHd/LkSakjAAA++ugjqSMQUUcy6d/A5V1AdQkAOYyqKQBXb2Div6QOQjJlk8ohNTUVPj4+DQUaAIwdOxYKhQIHDx7EXXfdZfK8qqoq3H///XjrrbcQHBzcqmvV1tai9ndTCcvKyiwLbyNOLi52v6ZKqUR3f1+L+kgYNgzu3j6N2kRRxJGUK9i16VfD6FkTxVlzFIIC3h7+8PbwR1VtBXaf+qbR60HeIUgaNNNwPT1QU6XB9ndP4Zap4RiU1L3djbQSERGRDbn7AXe+AXw5U+okN+mBKW8achGZYJNn0nJzcxEUFNSoTaVSwc/PD7m5TS8msWjRIgwbNgxTpkxp9bVeeukleHt7N/x069bN7Ny25Kb2hpOrm9Qx2sTZzQ1uau9GbaIo4sDGdBzclH6zwfLrfJv6Dsqqihq1zRjxBJyUzr+7sOGXAxvTcWBTOkTRChcmIiKijqPv7cDof0idwmDM/wF9JkudgmSsTUXa0qVLIQhCsz/nz583K8jmzZuxa9curFq1qk3nPfPMMygtLW34ketmqIIgoFN4T6ljtEmn8AijEasjKVdwdMcVq13jQvZRHLiQ0qhtaO8k9O4a2+Q5R62cgYiIiDqIEUuA4YulzTB8sfQZSPbaNN1xyZIleOihh5o9Jjw8HMHBwcjLy2vUrtVqUVRU1OQ0xl27duHy5ctGe19NmzYNI0aMwJ49e0ye5+LiAhcJphKao3NEJK5dOOcQG1orlEoER0Q2aks/nv/bCJoV1Glq8MXPrzVq83T1wV0Jj7R47oGN6fAN9uAzakRERNR6gmAYxXLxBHb+E4bxCns8o3bzOmOWASNYoFHL2lSkBQYGIjCw5Q/FCQkJKCkpwZEjRxAXFwfAUITp9XoMHTrU5DlLly7FnDlzGrX1798fK1euxB133NGWmLLVKTzCIQo0ANDrdOjUI6Lh9zUVGuz+9LzZz6CZciX/AgrKrjdqG9xrDPJLc5BfmtP8yQLwwSu/ImluP7i4m76Ns7OzceDAAaP2qKgoqNVqs3MTERGRAxMEw4haYB9g0zygptS2qz4KSsMiIVPe5BRHajWbLBzSt29fTJgwAXPnzsW7774LjUaDefPmYcaMGQ0rO+bk5GDMmDH45JNPMGTIEAQHB5scZQsNDW03yzJ3ix4AhVLpEIWaQqlEt+j+Db/f++WvhlUcrfgomGiis92nvjFaRKQ5L61v+rUPP/wQH374ofE1du/GqFGjWn0NIiIiaof6TAZCE4BtTwKn/2fYWNqa+6nV99fvbsMqjlwkhNrAZptZf/bZZ+jTpw/GjBmDSZMmYfjw4Xj//fcbXtdoNLhw4QKqqqpsFUF23NXeiEwYAUGhlDpKswSFEpHDRsL95qIh6cfzcTHthmz3gSQiIiIyi7sfcM+HwIzPgcC+hjaFhWMY9ecH9gVmfAFM+4AFGrWZzTbv8vPza3bj6rCwsBZX6GuPK/jFJE3GuX17pI7RLFGvQ8x4w3C8KIo4uDndqtMciYiIiGSlz2QgchKQfRhIWwOc/gbQaw0Fl17b8vn1xymcgH7TgCFzga5xhqmVRGaw/w7LHVznXn0QEBqGwqwrsixCBUGAf7fu6NzLsGjIjYwyFF2rlDgVEbWKKAKVBYCmCtBpAKUT4OQOeATwgwIRUUsEAeg22PCT9BKQuRe4dgzIOWr4ta7C+BxnT6BLrKEg6xIDhI0EPPztHp3aHxZpdiYIAm6dPgub/v281FFMEkURt06f1bD0/qk92RAUAkS99QvK3l1i8OYjOy3uR1AIePyd0Ubty5Ytw/Llyy3un0i2KguBjJ+A68eBnCPAtePNfIiIMXyI6BwD9LiNHyKIiJrj4Q9E32X4AX77EkxbDWjrAJUzoHLjl2BkMyzSJBARPxR9bh2JC6n7IOrl86CXoFAgMmEEIuINK3BWV9Th0uE8mxRo1iT3fERWJYpAdhpwaA1w5tvWTcepqwAy9wFXD/x2fL9pwOC5QEg8P2AQEbVEEABPbvtD9sMiTSKjZz+KzJPHUFNRYfjQJTVBgIuHJ0bP/m2PsuzzxdCzACKSj/NbgV0vAHlnAYUS0N9cKbY1z0v8/ji91vC8xckvgaBoYPSzQJ9JtslMREREbWaz1R2peW5eaox/ZIE8CjQAEEUkPbIAbl6/7R+Wf7UcCgW/YSeSXFUR8L9kYP39QP55Q5vewq086gu2/HPA+vsM/VcVWdYnERERWQWLNAn1GpyA4TP+LHUMAMDwGX9GxOBbGrXdyCzjSBqR1M5tAd6IA85sMPze2nth1Pd3ZoPhOue2WLd/IiIiajMWaRIbMvVPGDL1T7LLIIoi8q+US5SIiCCKwN5XgS9nAtUlgGjhyFmL19MZrvPlTMPzbkRERCQZPpMmMUEQMHzGn+Hs6oZ96z8xPJhqjymQN68z/L4HMdREkVhdroGm1sYfConINFEEdj4H7Ft5s8FeCwzdvM4vr9vpekRERGQKizQZEAQBQ++6F/4hodjx3mrUVlbadNVHQaGAi4cnkh5ZYDTFsZ62jgUakWR+/s/vCjQiIiLqaFikyUjE4FvQtU8Udq19F+f374UgCFbd8Lq+v8iEERj9l0fh5unV5LF6HZ9FI5LEuS3ALnnuo0hERET2wSJNZty81Ji84ClEJozE/q/+i4KrmRAUSogWrORWf75/t+64dfqshn3QmqNQOtaqjhPjDAuwDBwdAhd3JwDAqFGjJExEZIaqImDzfAACAH5RQkRE1FGxSJOpiMG3oGf8UFy/eAHHv9+KC7/shV6ng0KphF7XcsFWf5xCqUSfYSMRk3Q7giN6Q2jlprUqZ6Wlb8GuJsc/CACY/exwuKudJU5DZKZtTwI1pWCBRkRE1LGxSJMxQRDQpXcfdOndB6P+PAdZZ07hRvpF5F7+FbmXL0FTU210jpOrG4J7RiA4IhKdekSgW3R/uKu923xtNy8nOLkoHWrxECdXJdy8nKSOQWSe81uB0/+TOgURERHJAIs0B+Gu9kZkwnBEJgwHYFgiv7qsFNq6Omg1GqicnKBydoab2rvVo2XNEQQBgd29cO3XEov7spegUC+rvHciuxNFYNcLgKCw/j5o1mSPlWeJiIiIRZqjEgQB7t4+Nr1GpzA1ci+VOsSG1gqFgE491FLHIDJPdhqQd1bqFC3LvwAgUeoURERE7R43s6YmBYZ6OUSBBgB6vYjAUBZp5KAOrQEUDvAc6PktUicgIiLqEFikUZNC+vhCoXCM6YMKhYCukT5SxyBqu8pC4My3gAUruNpNxl5DXiIiIrIpFmnUJDdPZ0TEB0GQeaEmKARExAfBzZOrOpIDyvgJ0GulTtE6og7I3Ct1CiIionaPRRo1q/+oEIgyn/Io6kX0HxUidQwi81w/Digc5PFgQQlcOy51CiIionaPRRo1q1MPNfy7ehj21pUjAfDv6sFFQ8hxZR9xrJG0nCNSpyAiImr3BFFsX2sql5WVwdvbG6WlpVCr+cHdGjJO5GPbO6ekjtGkSf+vP3oMDJQ6BlHbiSLwUghQV2G3S2aW6NFjte2ul5GRgbCwsFYdGxYWhitXrtgkx9q1a/HQQw/ZpG8iInIcjlobcCSNWtRjYCB6De4EQWZ3i6AAeg3uxAKNHFdlgV0LNCIiInIMMvvYTXI1cnpvuLg5yWfaowC4uDlh5PTeUichMp+mSuoEREREJEMs0qhVXD2dkDirDyCXybEikDirD1w9naROQmQ+nUbqBERERCRDDrKkGMlBeEwghk4Jx8FN6VJHwS1TwxEew2mO5OCU9v+SobOngNRkd8s6mf4Z4BVsuv/OnVvdzYYNG1BbW2tZlib07NnTJv0SERHZA4s0apO4Cd2hqdXhaIptHvZvjUETumNQUnfJrk9kNU4WFktmcFEJuCXEwn/6E24FPC3/kiQ2NtbiPoiIiNojTnekNhEEAbdMCcctU8NvNtjrwoZfbpkajoSpPSEIcnk4jsgCHgGAs6fUKdrG2cuQm4iIiGyGRRq1mSAIiJsQhomP9oeru5PNV30UFICruxMmPtofcRPCbHsxInsSBKBzjNQp2qZLjCE3ERER2QynO5LZwmMC0SXCB3u//BUX024YRrusubDIzf4i4jph5IzecPXgIiHUDoXEAVkHHGNDa4UK6BondQoiIqJ2j0UaWcTV0wnjk6MREReEQ9+lozCnEoJCgKg3v1qrP9+/iweG3hnOfdCofesc4xgFGmDI2SVG6hRERETtHos0sorwmED0GBiAGxllOLUnG5cO50GvF6FQCtDrWi7YFAqh4fhe8Z3Qb1RXdApT89kzav963GYYoXKEQk2hAsJGSp2CiIio3WORRlYjCAKCw70RHO6N4ff2Qs6FEuRdKUNeZhnyrpRDU6szOsfJRYmg7l7o1EONwFA1ukb6wM3TWYL0RBLx8Aei7wbOfAPojf+OyIZCBfSbZshLRERENsUijWzCzdMZEXFBiIgLAgCIoojqcg20Gh30WhEKlQCVkxJuXk4cLSMaMhc49ZXUKZqn1wKD50qdgoiIqENgkUZ2IQgC3NUcISMyKWQwEBQN5J8DRL3UaYwJCiAoCgiJlzoJERFRh8Al+ImIpCYIwOhn5VmgAYZciX/n0vtERER2wiKNiEgO+kwC+t0DCEqpkzQmKIH+fzLkIyIiIrtgkUZEJBeT/g24ekM+/zQrDHkm/kvqIERERB2KXD4JEBGRux9w5xsA5DLtUQ9MedOQi4iIiOyGRRoRkZz0vR0Y/Q+pUxiM+T+gz2SpUxAREXU4LNKIiORmxBJg+GJpMwxfLH0GIiKiDopFGhGR3AiCYRRrzP/dbLDXP9U3rzNmGTB2GVdzJCIikgiLNCIiORIEw4jajM8BNx/br/ooKA3XmfE5MIIjaERERFJikUZEJGd9JgPzjwDRdxl+L1j5n+36/vrdbbgOn0EjIiKSHIs0IiK5c/cD7vnQMMoV2NfQplBZ1mf9+YF9gRlfANM+4CqOREREMmHh/+WJiMhu+kwGIicB2YeBtDXA6W8AvdZQcOm1LZ9ff5zCCeg3DRgyF+gax2fPiIiIZIZFGhGRIxEEoNtgw0/SS0DmXuDaMSDnqOHXugrjc5w9gS6xhoKsSwwQNhLw8Ld7dCIiImodFmlERI7Kw9/wrFr982qiCFQWANpqQFsHqJwBlRvgEcDRMiIiIgfCIo2IqL0QBMAzUOoUREREZCEuHEJERERERCQjLNKIiIiIiIhkhEUaERERERGRjLBIIyIiIiIikhEWaURERERERDLCIo2IiIiIiEhGWKQRERERERHJCIs0IiIiIiIiGWGRRkREREREJCMqqQNYmyiKAICysjKJkxARERERkZTqa4L6GsFRtLsirby8HADQrVs3iZMQEREREZEclJeXw9vbW+oYrSaIjlZWtkCv1+PatWvw8vKCIAhSx7GasrIydOvWDVlZWVCr1VLHoXaI9xjZA+8zsjXeY2RrvMcciyiKKC8vR5cuXaBQOM6TXu1uJE2hUCAkJETqGDajVqv5DwLZFO8xsgfeZ2RrvMfI1niPOQ5HGkGr5zjlJBERERERUQfAIo2IiIiIiEhGWKQ5CBcXFyxbtgwuLi5SR6F2ivcY2QPvM7I13mNka7zHyB7a3cIhREREREREjowjaURERERERDLCIo2IiIiIiEhGWKQRERERERHJCIs0IiIiIiIiGWGRRkREREREJCMs0mSsqKgIM2fOhFqtho+PD5KTk1FRUdGqc0VRxMSJEyEIAjZu3GjboOSw2nqPFRUVYf78+YiMjISbmxtCQ0OxYMEClJaW2jE1yd1bb72FsLAwuLq6YujQoTh06FCzx3/99dfo06cPXF1d0b9/f2zbts1OSclRteUeW7NmDUaMGAFfX1/4+vpi7NixLd6TRG39d6ze+vXrIQgCpk6datuA1O6xSJOxmTNn4syZM/jhhx+wZcsW7N27Fw8//HCrzl21ahUEQbBxQnJ0bb3Hrl27hmvXruHVV1/F6dOn8fHHHyMlJQXJycl2TE1y9uWXX2Lx4sVYtmwZjh49ioEDByIpKQl5eXkmj//ll19w3333ITk5GceOHcPUqVMxdepUnD592s7JyVG09R7bs2cP7rvvPuzevRupqano1q0bxo8fj5ycHDsnJ0fR1nusXmZmJv76179ixIgRdkpK7ZpIsnT27FkRgJiWltbQtn37dlEQBDEnJ6fZc48dOyZ27dpVvH79ughA3LBhg43TkiOy5B77va+++kp0dnYWNRqNLWKSgxkyZIj4+OOPN/xep9OJXbp0EV966SWTx997773i5MmTG7UNHTpUfOSRR2yakxxXW++xP9JqtaKXl5e4bt06W0UkB2fOPabVasVhw4aJH3zwgfjggw+KU6ZMsUNSas84kiZTqamp8PHxQXx8fEPb2LFjoVAocPDgwSbPq6qqwv3334+33noLwcHB9ohKDsrce+yPSktLoVaroVKpbBGTHEhdXR2OHDmCsWPHNrQpFAqMHTsWqampJs9JTU1tdDwAJCUlNXk8dWzm3GN/VFVVBY1GAz8/P1vFJAdm7j32z3/+E0FBQZxZQlbDT1UylZubi6CgoEZtKpUKfn5+yM3NbfK8RYsWYdiwYZgyZYqtI5KDM/ce+72CggI8//zzrZ6GS+1bQUEBdDodOnXq1Ki9U6dOOH/+vMlzcnNzTR7f2nuQOhZz7rE/evrpp9GlSxejLweIAPPusX379uHDDz/E8ePH7ZCQOgqOpNnZ0qVLIQhCsz+t/R/NH23evBm7du3CqlWrrBuaHIot77HfKysrw+TJkxEVFYXly5dbHpyIyMZefvllrF+/Hhs2bICrq6vUcagdKC8vx6xZs7BmzRoEBARIHYfaEY6k2dmSJUvw0EMPNXtMeHg4goODjR5Q1Wq1KCoqanIa465du3D58mX4+Pg0ap82bRpGjBiBPXv2WJCcHIUt77F65eXlmDBhAry8vLBhwwY4OTlZGpvagYCAACiVSty4caNR+40bN5q8p4KDg9t0PHVs5txj9V599VW8/PLL+PHHHzFgwABbxiQH1tZ77PLly8jMzMQdd9zR0KbX6wEYZqdcuHABPXv2tG1oapdYpNlZYGAgAgMDWzwuISEBJSUlOHLkCOLi4gAYijC9Xo+hQ4eaPGfp0qWYM2dOo7b+/ftj5cqVjf7xoPbNlvcYYBhBS0pKgouLCzZv3sxvo6mBs7Mz4uLisHPnzoblp/V6PXbu3Il58+aZPCchIQE7d+7EE0880dD2ww8/ICEhwQ6JydGYc48BwL/+9S+sWLECO3bsaPQcLtEftfUe69OnD06dOtWo7dlnn0V5eTlWr16Nbt262SM2tUdSr1xCTZswYYIYGxsrHjx4UNy3b5/Yq1cv8b777mt4PTs7W4yMjBQPHjzYZB/g6o7UjLbeY6WlpeLQoUPF/v37i5cuXRKvX7/e8KPVaqV6GyQj69evF11cXMSPP/5YPHv2rPjwww+LPj4+Ym5uriiKojhr1ixx6dKlDcfv379fVKlU4quvviqeO3dOXLZsmejk5CSeOnVKqrdAMtfWe+zll18WnZ2dxf/973+N/s0qLy+X6i2QzLX1Hvsjru5I1sCRNBn77LPPMG/ePIwZMwYKhQLTpk3D66+/3vC6RqPBhQsXUFVVJWFKcmRtvceOHj3asPJjREREo74yMjIQFhZmt+wkT9OnT0d+fj7+7//+D7m5uYiJiUFKSkrDQ/hXr16FQvHb49DDhg3D559/jmeffRZ/+9vf0KtXL2zcuBH9+vWT6i2QzLX1HnvnnXdQV1eHe+65p1E/y5Yt4/O0ZFJb7zEiWxBEURSlDkFEREREREQG/BqAiIiIiIhIRlikERERERERyQiLNCIiIiIiIhlhkUZERERERCQjLNKIiIiIiIhkhEUaERERERGRjLBIIyIiIiIikhEWaURERERERDLCIo2IiIiIiEhGWKQRERERERHJCIs0IiIiIiIiGfn/ujKxbMEDypUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import random\n", "import matplotlib.pyplot as plt\n", @@ -189,6 +187,13 @@ " ax.scatter(vec[0],vec[1], s=1000)\n", " ax.annotate(str(i), (vec[0],vec[1]), fontsize=40)" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -196,6 +201,18 @@ "display_name": "chap2", "language": "python", "name": "chap2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" } }, "nbformat": 4, diff --git a/Chapter03/01_Shallow_Embeddings.ipynb b/Chapter03/01_Shallow_Embeddings.ipynb index cd25afc..70731fb 100644 --- a/Chapter03/01_Shallow_Embeddings.ipynb +++ b/Chapter03/01_Shallow_Embeddings.ipynb @@ -1,28 +1,24 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3 - Shallow Embeddings" + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ - "import matplotlib.pyplot as plt\n", + "import os\n", + "import sys\n", "\n", - "def draw_graph(G, node_names={}, node_size=500):\n", - " pos_nodes = nx.spring_layout(G)\n", - " nx.draw(G, pos_nodes, with_labels=True, node_size=node_size, edge_color='gray', arrowsize=30)\n", - " \n", - " pos_attrs = {}\n", - " for node, coords in pos_nodes.items():\n", - " pos_attrs[node] = (coords[0], coords[1] + 0.08)\n", - " \n", - " #nx.draw_networkx_labels(G, pos_attrs, font_family='serif', font_size=20)\n", - " \n", - " plt.axis('off')\n", - " axis = plt.gca()\n", - " axis.set_xlim([1.2*x for x in axis.get_xlim()])\n", - " axis.set_ylim([1.2*y for y in axis.get_ylim()])\n", - " plt.show()" + "sys.path.append(f\"{os.getcwd()}/..\")\n", + "\n", + "from Chapter01.utils import draw_graph" ] }, { @@ -34,31 +30,93 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVTU96H//9cMqywuuIAKCCNxXyOuISgqyuIW9eYmvU2aNDbeNG3vac9N2ntO12/a297b054uaX+NsbdNk6Y3N65RFgFRXHFXgrsiuIILCIKsM5/fHzZUo+Iyw3yG4fk4J+cMM5/5zCscAq+835/3+2MxDMMQAAAA8JisZgcAAABAx0ahBAAAgFMolAAAAHAKhRIAAABOoVACAADAKRRKAAAAOIVCCQAAAKdQKAEAAOAUCiUAAACcQqEEAACAUyiUAAAAcAqFEgAAAE6hUAIAAMApFEoAAAA4hUIJAAAAp1AoAQAA4BQKJQAAAJxCoQQAAIBTKJQAAABwCoUSAAAATqFQAgAAwCkUSgAAADiFQgkAAACnUCgBAADgFAolAAAAnEKhBAAApjMMQ7/97W8VEhIii8WizZs3mx0Jj8DX7AAAAKBzKykp0Ze//GUVFBSYHQWPiRFKAABgis9GJUeNGqUDBw5o0qRJZkfCY6JQAgAAU/zoRz/SN77xDSUkJKi4uFizZ882OxIeE1PeAADANMuXL9crr7xidgw4iUIJAABM8YMf/EAWi8XsGHABprwBAIApKJPeg0IJAAAAp1AoAQAA4BQKJQAAAJxCoQQAAIBTKJQAAABwCoUSAAAATqFQAgAAwCkUSgAAADiFQgkAAACnUCgBAADgFAolAAAAnEKhBAAAgFN8zQ4AAAA6rw8++KD1cVFRUevj3NxcnT9/XpIUHh6u5ORkt2fDw7MYhmGYHQIAAHROFovlgcdMnTpVmzdvbv8weGyMUAIAANMwruUduIYSAAAATqFQAgAAwCkUSgAAADiFQgkAAACnUCgBAADgFAolAAAAnEKhBAAAgFMolAAAAHAKhRIAAABOoVACAADAKRRKAAAAOIVCCQAAAKdQKAEAAOAUCiUAAPAIDc12XbnRqIZmu9lR8Ih8zQ4AAAA6tz2llVq+rUS5RyrkMCSrRUoeFq6vJNgUHxNmdjw8BIthGIbZIQAAQOf0fmGZvr+2WFarRXbHPyqJj9Uih8PQWwtG6IsTB5iYEA+DQgkAAEyxp7RSz76zU20VEYukj5dOZqTSw3ENJQAAMMXybSWyWi1tHmO1WrR82xk3JcLjolACAAC3a2i2K/dIxR3T3PdidxjKOVLOQh0PR6EEAABud6OhRQ/okq0cxq3j4bkolAAAwO1CA331gNnuVlbLrePhuSiUAADA7QL9fJQ8LFw+D2iVPlaLZg2LUKCfj5uS4XFQKAEAgCmWJNjkeMC8t8NhaElCrJsS4XFRKAEAgCniB/TQM1FNkgz5fG6g0sdya8ugtxaMYMugDoBCCQAATLF//351u1Kkn8/qq+RhEa3XVFpkaEQPhz5eOplNzTsIrnAFAABud/nyZWVnZ2vcuHGakzRO/6RbWwndaGhR4dZNOnX8qMYNmGN2TDwkRigBAIBbNTc3a8WKFQoLC9Ps2bNbnw/081Hv0AANeWKgampqVFlZaWJKPAoKJQAAcKvs7GxVVVVp0aJF8vPzu+v1AQMGyGq1qqSkxIR0eBwUSgAA4DaHDx/W/v37lZqaqj59+tzzGH9/f0VGRlIoOxAKJQAAcIuqqiqtW7dOw4cP19ixY9s8NjY2VqWlpXI4HG5KB2dQKAEAQLuz2+1auXKlgoKCNGfOHFksbW9obrPZ1NDQoEuXLrkpIZxBoQQAAO0uPz9fly5d0qJFixQYGPjA4/v37y9/f3+mvTsICiUAAGhXp06d0o4dOzRjxgz179//od7j4+OjmJgYnTlzpp3TwRUolAAAoN3cuHFDq1evVlxcnCZPnvxI742NjdXZs2fV3NzcTungKhRKAADQLhwOh1avXi2r1aoFCxY88LrJz7PZbLLb7Tp79mw7JYSrUCgBAEC72LZtm86cOaOFCxcqODj4kd/fu3dvhYSEcB1lB0ChBAAALnf27Flt3rxZTz/9tGJjYx/rHBaLRbGxsVxH2QFQKAEAgEvV19dr5cqVioqK0rRp05w6l81m06VLl3Tz5k3XhEO7oFACAACXMQxDn3zyiZqamrRw4UJZrc5Vjc9GN0tLS12QDu2FQgkAAFxmz549OnbsmObPn69u3bo5fb5u3bqpZ8+eXEfp4SiUAADAJcrLy5WTk6MJEyZoyJAhLjuvzWajUHo4CiUAAHBaU1OTVqxYod69eys5Odml57bZbKqqqlJVVZVLzwvXoVACAACnZWVlqaamRosWLZKvr69Lzx0TEyOLxcJqbw9GoQQAAE4pKirSwYMHlZ6erl69ern8/IGBgerXrx/T3h6MQgkAAB7btWvXtH79eo0ePVqjR49ut8/5bD9KwzDa7TPw+CiUAADgsbS0tGjFihUKDQ1VWlpau36WzWbTzZs3VVFR0a6fg8dDoQQAAI8lLy9PV65c0eLFi+Xv79+unxUVFSVfX1+mvT0UhRIAADyy48ePa9euXUpOTlbfvn3b/fN8fX01YMAAFuZ4KAolAAB4JDU1NVq7dq0GDx6sCRMmuO1zY2NjVVZWppaWFrd9Jh4OhRIAADw0h8OhlStXys/PT/PmzZPFYnHbZ9tsNjU3N+v8+fNu+0w8HAolAAB4aAUFBTp37pwWLlyooKAgt352RESEunTpwnWUHohCCQAAHsqZM2e0ZcsWTZs2TQMGDHD751ssltbtg+BZKJQAAOCB6urqtHr1asXExCghIcG0HDabTRcuXFBDQ4NpGXA3CiUAAGiTYRhau3at7Ha7Fi5cKKvVvPpgs9lkGIbKyspMy4C7USgBAECbCgsLdfLkSS1YsEChoaGmZunRo4e6d+/OdZQehkIJAADu6+LFi8rLy9PkyZP1xBNPmB1H0q1RSgqlZ6FQAgCAe2psbNSKFSsUERGhGTNmmB2nVWxsrK5evaqamhqzo+DvKJQAAOAuhmFo/fr1unnzphYvXiwfHx+zI7WKjY2VJFZ7exAKJQAAuMvBgwdVXFysOXPmqEePHmbHuUNwcLAiIiIolB6EQgkAAO5w5coVZWZmauzYsRoxYoTZce4pNjZWJSUlMgzD7CgQhRIAANymublZK1asUPfu3ZWammp2nPuy2Wy6ceOGrl69anYUiEIJAABuk5OTo8rKSi1evFh+fn5mx7mv6Oho+fj4tLna+8qVK/rud7+rESNGKCQkRD179tSUKVP0+9//Xs3NzW5M6/0olAAAQJJ05MgR7d27V7Nnz1Z4eLjZcdrk7++vqKio+15HuWvXLo0ePVo/+clPFBkZqf/6r//Sd77zHV2/fl2vv/66EhISdOXKFTen9l4USgAATFZRUaG3335b8+bNU1RUlAICAhQSEqInnnhCL774ojZt2tTuGa5fv65PPvlEw4YN07hx49r981zhs/t6OxyOO54vKyvT3LlzdenSJX3rW99Sdna2Xn/9db3xxhvat2+fnnrqKe3evVvPPPMMI5UuQqEEAMBES5cuVXR0tL7+9a/r4MGDeu655/Sb3/xGP/nJTzRw4EC9//77mj59up5//nk1Nja2Swa73a6VK1eqS5cumjt3riwWS7t8jqvZbDY1NTXpwoULdzz/xhtv6MqVK4qOjtZ//ud/3vFaly5dtGzZMlksFm3fvl3Lly93Z2SvZTFYHgUAgGkCAwPV2NiouXPn6n//938VFBR0x+t/+MMf9Nprr0mSnn/+eX344Ycuz5CXl6edO3fq5ZdfVmRkpMvP314cDof++7//W1OmTFFiYqIk6cSJExoyZIgMw9B3v/tdvfXWW/d879NPP61t27YpKipKZWVlHaZEeypGKAEAMFlwcLD++Mc/3lUmJelf//VflZKSIkn629/+pl27drn0s0+fPq3t27dr+vTpHapMSpLValVMTMwdC3NWrFjRupVQW3f3mTlzpiTp3LlzLv+edkYUSgAATDZ58mT17t37vq8vWrSo9fEnn3ziss+tra3V6tWrNXDgQE2ZMsVl53Unm82mc+fOqampSZLuuN507Nix933fk08+2fo4Pz+//QJ2Er5mBwAAoDNbvXq1oqKi2jwmOjq69fHZs2dd8rmGYWj16tWSpAULFnTYKV+bzSaHw6GzZ88qLi5OxcXFkqTQ0FB169btvu+7/Xt++PDhds/p7SiUAACY6GE2D6+urm59HBwc7JLP3b59u0pKSvTCCy8oJCTEJec0Q8+ePRUaGqqSkhJFRUWpvLxckh647dHtr5eWlrZnxE6BKW8AADzc7XstPv30006f79y5c8rPz1dCQoJsNpvT5zOTxWKRzWZTSUmJbty40fp8YGBgm+/r0qVL6+Pb34fHQ6EEAMDDrVmzRtKtUbWFCxc6da6GhgatXLlSkZGRmjZtmgvSmS82NlYVFRW6du1a63P+/v5tvuf212/evNlu2ToLCiUAAB6suLhYO3fulCS99dZbd4ysPSrDMPTJJ5+osbFRCxculI+Pj6timuqzUdbLly+3PvfZIp37uf31e62ux6OhUAIA4KEMw9A3vvENSbeutVyyZIlT59u3b5+OHj2qefPmqXv37q6I6BFCQ0PVu3fvOwplQ0NDm++pr6+/4/1wDoUSAAAP9bOf/UybNm3SoEGD9MEHHzi1EruiokLZ2dmKj4/X0KFDXZjSM8TGxurcuXOKiIiQdOvfty23vz5gwIB2zdYZUCgBAPBAK1eu1He/+13169dPWVlZCgsLe+xzNTU1acWKFerVq5dmz57twpSew2azqbq6WoMGDZJ0a6HN7avjP+/8+fOtj4cPH97u+bwdhRIAAA+Tk5Ojf/mXf1GfPn20ceNGp1diZ2dnq7q6WosXL5avr3fuGBgTEyOLxXJHOTx48OB9j9+/f3/r4+nTp7drts6AQgkAgAfZuHGjFixYoG7duik/P19Dhgxx6nyffvqpDhw4oLS0NPXq1ctFKT1PQECAIiMjNXjw4NbnNm7ceN/j8/LyJEmRkZGaNGlSu+fzdhRKAAA8REFBgebNm6fg4GBt3LjR6WsdKysrtX79eo0cOVKjR492UUrPFRsbq8bGxtZbVb7//vv3XO197Ngxbdu2TZL0ne98p8PeJciTUCgBAPAA27dv15w5c9SlSxdt3LhRI0aMuOuYpUuXat68eQ91PrvdrpUrVyokJETp6emdojTZbDbV19frzTffVM+ePVVaWqrvfve7dxxTX1+vV199VYZhaPLkyXr11VdNSutdvPNCCgAAOpDCwkKlpqbKz89Pubm5GjVq1D2PO378+EPfJjAvL0/l5eV65ZVXFBAQ4MK0nisyMlJ+fn5qbm7WunXr9Mwzz+jnP/+5Pv30U82dO1c3b97Un/70Jx05ckTx8fFas2aN/Pz8zI7tFSiUAACYaO/evUpJSVFtba1+/vOfq7q6Wps3b77nsdevX3+oc544cUKFhYWaPXu2+vXr58K0ns3Hx0cDBgxovUd5UVGRfvWrX2nNmjV644035O/vryFDhui3v/2tli5dSpl0IYthGIbZIQAA6IwqKysVFxenqqqqh37PgAED2hylrKmp0TvvvKPIyEg999xznWKq+3Y7d+5Ufn6+vv3tb3vtinZPxDWUAACYpKam5pHK5IM4HA6tXr1aPj4+mj9/fqcrk9Kt6yhbWlp07tw5s6N0KhRKAABMEhMTI8MwHumftkYnt27dqrKyMi1cuLDT3p+6T58+Cg4OVklJidlROhUKJQAAXqCsrEwFBQVKTExUTEyM2XFMY7FYFBsbS6F0MwolAAAd3M2bN7Vq1SpFR0crMTHR7Dimi42N1aVLl1RfX292lE6DQgkAQAdmGIbWrl2r5uZmLVy4UFYrf9ptNtsDLw+Aa/FTBwBAB7Z7926dOHFCCxYsUNeuXc2O4xG6d++usLAwpr3diEIJAEAHdenSJeXm5mrixIkaNGiQ2XE8SmxsrM6cOWN2jE6DQgkAQAfU2NioFStWqE+fPpo5c6bZcTyOzWbTtWvXVF1dbXaUToFCCQBAB5SZmana2lotXryYDbzvITY2VpKY9nYTCiUAAB3MoUOHVFRUpDlz5igsLMzsOB6pS5cu6tu3L9PebkKhBACgA7l69aoyMjI0ZswYjRw50uw4Hs1ms6mkpETcZbr9USgBAOggWlpatGLFCnXt2lWpqalmx/F4NptNdXV1unLlitlRvB6FEgCADiInJ0dXr17V4sWL5e/vb3YcjxcVFSUfHx+uo3QDCiUAAB3AsWPHtGfPHs2ePVsRERFmx+kQ/Pz8FB0dreOnSnTlRqMamu1mR/JaLAsDAMDDVVdXa+3atRo6dKji4+PNjtNh7Cmt1CeV4dpX0awfHM6T1SIlDwvXVxJsio9hMZMrWQyuVAUAwKM0NNt1o6FFoYG+8vex6M9//rNqamq0dOlSdenSxex4HcL7hWX6/tpiWS2S/bam42O1yOEw9NaCEfrixAHmBfQyFEoAADzEntJKLd9WotwjFXIYktUijellVd/qI/rOkmcVFRVldsQOYU9ppZ59Z6faKjgWSR8vncxIpYtwDSUAAB7g/cIyPfvOTuUdvSzH35uQw5AOXGlRRtMQFVx0mBuwA1m+rURWq6XNY6xWi5ZvY49KV+EaSgAATLantFLfX1ssQ5Ldcee4mvH3sZ/vrSnWkPDQDj+iZhiGHA6H7Ha77Hb7HY/v9fXDHHP71/VNLco53Njm6KR06/ucc6RcDc12Bfr5uOXf3ZtRKAEAMNlnI2qfL5O3+2xE7bNCaRjGY5cuZ4ubM+dyOFw30mq1WuXj4yMfH5/Wxw3yl6HYh3q/w5BuNLRQKF2AaygBADBRQ7Ndw36QrTa6ZCuLDL0UXCSLo8Wld3+5vZB9vqC19dy9Ct3jfv2o77FarbJY7p7WfpTvp9UiHflRCoXSBRihBADARDcaWh6q/EiSIYsmPZ2knsF+LittFovlnsWsowr081HysHDlHb3c5oivj9Wi5KHhlEkXoVACAGCi0EBfWS166BG1qVMmUIIeYEmCTTmHK9o8xuEwtCTh4abG8WCs8gYAwCQNDQ3alJejKEuVLA9YRuJjtWjWsAjK5EMYHxOmtxaMkEW3vm+387FaZJH01oIRHX6BkyfhGkoAANzMMAwVFRUpNzdXTU1Nihj5lN7aUcu+iS62t7RSy7edUc6R8tZ9PWcNi9CShFi+jy5GoQQAwI3Ky8uVmZmpc+fOacSIEUpOTlbXrl31wa4yfW9N8V2rvbmzi/Nuv/MQI7ztg0IJAIAbNDQ0KD8/X3v37lWvXr2Umpqq2Ng7r+FjRA0dFYUSAIB2ZBiGDh06pNzcXLW0tGjq1KmaOHGifHzuP1LGiBo6GgolAADt5NKlS8rMzNT58+c1cuRIJScnKzQ01OxYgMtRKAEAcLH6+nrl5+dr37596tWrl9LS0hQTE2N2LKDdUCgBAHARwzB08OBB5eXlqaWlRdOmTdOECRPanN4GvAEbmwMA4AK3T2+PGjVKM2fOZHobnQYjlAAAOOGz6e29e/eqT58+SktL04ABbO+DzoVCCQDAYzAMQwcOHFBeXp4cDkfr9LbVyk3o0Pkw5Q0AwCO6ePGiMjMzdeHCBY0aNUrJyckKCQkxOxZgGkYoAQB4SDdv3mxdvR0eHq60tDRFR0ebHQswHYUSAIAHMAxD+/fv18aNG+VwOJSUlKTx48czvQ38HVPeAAC04cKFC8rMzNTFixc1evRozZw5k+lt4HMYoQQA4B5u3rypjRs3av/+/YqIiFBqairT28B9UCgBALiNw+HQ/v37lZ+fL4fDoenTpys+Pp7pbaANTHkDAPB358+fV2Zmpi5duqQxY8Zo5syZCg4ONjsW4PEYoQQAdHp1dXXauHGjDhw4oIiICKWlpSkqKsrsWECHQaEEAHRaDodD+/btU35+viRp+vTpGjduHNPbwCNiyhsAvNj169eVkZHROvp25swZ1dbWKiQkRE888YSSk5P12muvdcrROKa3AddhhBIAvNSOHTs0ffp0NTY2ymKxaMGCBZo0aZK6du2qkydP6i9/+YuuXr2q4OBgvffee1q0aJHZkd2irq5OeXl5OnjwoPr27au0tDRFRkaaHQvo0CiUAOClsrOzlZqaKqvVqoyMDKWkpNzxemVlpRITE3X48GH5+/vr0KFDGjJkiElp25/D4dDevXu1adMmSdKMGTP05JNPMr0NuAD/FQGAl3vppZfuKpOSFBYWpp///OeSpKamJr377rvujuY2586d07vvvqusrCwNHTpUX//619kKCHAhrqEEAC/VrVs3jRs3rs2p7Pj4+NbHR44ccUcst7p9ertfv35asmSJ+vfvb3YswOtQKAHAS02ePFl79+5t85jbF6F06dKlvSO5jcPh0J49e7Rp0yZZrVbNmTNHY8eOZUQSaCcUSgDoxPbt29f6OCkpycQkrnP27FllZmaqoqJCTz75pGbMmKGgoCCzYwFejUU5ANBJNTU1KTk5WVu2bNHIkSO1a9euDj1KWVtbq7y8PB06dEj9+vVTWloa09uAm1AoAaCTaGxs1PXr13Xt2jUVFhbq17/+tYqKivTss89q2bJl6tatm9kRH8vnp7dnzpypsWPHymKxmB0N6DSY8gaATuJvf/ubXn755davo6Oj9eGHH+q5557rsOWrrKxMWVlZqqio0Lhx4zR9+nSmtwETMEIJAJ3EpUuXdPjwYdXV1enEiRP64IMPVFRUpEGDBum3v/2tZs2aZXbEh3bjxg3l5eWpqKhI/fv3V1pamvr162d2LKDTolACQCflcDj0zW9+U7/5zW9ktVr117/+Vc8995zZsdrkcDi0e/dubdq0Sb6+vpoxYwbT24AHoFACQCfmcDg0atQoHT58WKGhoSotLVVYWJjZse6prKxMmZmZunz5suLj4zV9+vQOvYgI8CZsyAUAnZjVatUXvvAFSbemkVesWGFyorvduHFDq1at0p///Gf5+/vr1VdfVXp6OmUS8CAsygGATm7w4MGtj4uLi01Mcie73a7du3dr8+bN8vX11bx58zRmzBimtwEPRKEEAC+VlZWloKAgTZ06tc3jfH3/8aegpaWlvWM9lNLSUmVmZurq1auKj49XUlISI5KAB6NQAoCXeu211xQSEvLAUceTJ0+2Po6Ojm7vWG2qqalRbm6uiouLFRUVpVdffVURERGmZgLwYBRKAPBiR48eVWlpqWJiYu75usPh0Pvvv9/6dXp6upuS3clut2vXrl0qKCiQr6+v5s+fr9GjRzO9DXQQFEoA8GIOh0MvvPCCPv7447tG+ux2u772ta+pqKhIkvTyyy9r5MiRbs945swZZWZm6tq1axo/frySkpIUGBjo9hwAHh/bBgGAl5o/f74++eQTSVJQUJCef/55DR48WD179lRpaak++ugjnThxQtKtMvnOO+/Iz8/PbflqamqUk5Ojw4cPKzo6WqmpqUxvAx0UhRIAvFhxcbFWr16tLVu26Pjx47p69aqam5sVGhoqm82mKVOm6MUXX1R8fLzbMtntdhUWFqqgoED+/v5KTk7WqFGjmN4GOjAKJQDAbUpKSpSVlaVr165pwoQJmjZtGtPbgBegUAIA2l11dbVycnJ05MgRRUdHKy0tTeHh4WbHAuAiFEoAQLux2+3auXOntmzZooCAACUnJ2vkyJFMbwNehlXeAIB2cfr0aWVlZamyslITJ07UtGnTFBAQYHYsAO2AEUoAgEtVV1drw4YNOnr0qAYMGKC0tDT16dPH7FgA2hGFEgDgEi0tLdq5c6e2bt2qgIAAzZo1SyNGjGB6G+gEmPIGADjt1KlTysrKUlVVFdPbQCfECCUA4LFdv35dGzZs0LFjxxQTE6PU1FSmt4FOiEIJAHhkLS0t2rFjh7Zu3aouXbpo1qxZGj58ONPbQCfFlDcA4JGcPHlS2dnZun79uiZOnKipU6cyvQ10coxQAgAeyvXr15Wdna3jx48rNjZWqamp6t27t9mxAHgACiUAoE0tLS3avn27tm3bpi5dumj27NkaNmwY09sAWjHlDQC4rxMnTig7O1vV1dWaNGmSpk6dKn9/f7NjAfAwjFACAO5SVVWlDRs26Pjx47LZbEpNTVWvXr3MjgXAQ1EoAaCTaWi260ZDi0IDfRXo53PHa83Nzdq+fbu2b9+uoKAgzZo1i+ltAA/ElDcAdBJ7Siu1fFuJco9UyGFIVouUPCxcX0mwKT4mTCdOnFBWVpZqamo0efJkJSYmMr0N4KEwQgkAncD7hWX6/tpiWa0W2R3/+LXvY7XI4TA0v3+9elw7zPQ2gMdCoQQAL7entFLPvrNTbf+yN/Tz2f20eOpYprcBPDKr2QEAAO1r+bYSWa1tl0Qfq1UbzxuUSQCPhUIJAF6sodmu3CMVd0xz34vdYSjnSLkamu1uSgbAm1AoAcCL3Who0QO6ZCuHcet4AHhUFEoA8GKhgb56wGx3K6vl1vEA8KgolADgpWpqarRuzSpFWapkfcCSHB+rRbOGRdy1LyUAPAwKJQB4Gbvdrh07dujtt9/W2bNn9dr0wTLU9jClw2FoSUKsmxIC8DbMbQCAFykrK1NGRoauXr2q8ePHKykpSYGBgWoJKdP31tx/H8q3FoxQfEyYickBdGTsQwkAXqC2tla5ubkqKipSZGSk0tLS1Ldv3zuO2VtaqeXbzijnSHnrnXJmDYvQkoRYyiQAp1AoAaADczgc2rdvnzZu3Cir1aqZM2dq7Ni2Nydv617eAPA4KJQA0EFduHBBGRkZunTpksaOHauZM2cqKCjI7FgAOiEKJQB0MPX19dq4caP27duniIgIpaWlKSoqyuxYADoxCiUAdBCGYejgwYPKy8uT3W5XUlKSxo8fL6uVDTsAmItV3gDQAVRUVCgjI0Pnzp3TyJEjlZycrNDQULNjAYAkRigBwKM1NjZq8+bN2rVrl3r27Km0tDTFxrJfJADPQqEEAA9kGIaOHDmiDRs2qKGhQYmJiZo8ebJ8fFiVDcDzMOUNAB7m6tWrysrKUklJia2t61cAACAASURBVIYMGaLZs2ere/fuZscCgPtihBIAPERzc7O2bt2q7du3q2vXrkpNTdWgQYPMjgUAD8QIJQB4gOPHjys7O1s3btxQQkKCEhIS5OfnZ3YsAHgojFACgImuX7+u7OxsHT9+XAMHDlRqaqp69uxpdiwAeCQUSgAwQUtLi3bu3KktW7aoS5cuSklJ0dChQ9u8ZSIAeCqmvAHAzUpKSpSZmanKykpNmjRJU6dOVUBAgNmxAOCxMUIJAG5y48YN5eTkqLi4WNHR0UpPT1efPn3MjgUATqNQAkA7czgc2r17tzZt2iRfX1/NmjVLo0aNYnobgNdgyhsA2tHZs2eVmZmpiooKxcfHa/r06erSpYvZsQDApRihBIB2UFdXp7y8PB08eFD9+vVTenq6+vXrZ3YsAGgXVrMDAPA+b775piwWiywWi374wx+aHcetDMPQvn379Pbbb+vYsWNKT0/XK6+8QpkE4NWY8gbgUvv379cvf/lLs2OY4uLFi8rMzNSFCxc0ZswYzZw5U8HBwWbHAoB2R6EE4DItLS1asmSJ7Ha72VHcqqGhQfn5+dq7d6969+6tl19+WdHR0WbHAgC3oVACcJlf/OIXOnDggObPn6+1a9eaHafdGYahTz/9VDk5OWpublZycrImTJggHx8fs6MBgFtRKAG4xKlTp/SjH/1I48eP1ze+8Q2vL5SXL19WZmamysrKNHz4cM2aNUtdu3Y1OxYAmIJCCcAlli5dqubmZr377ruqqqoyO067aWpqUkFBgQoLC9W9e3d98Ytf1MCBA82OBQCmolACcNof//hH5efn69vf/rZGjx6tzZs3mx3J5QzD0NGjR7VhwwbdvHlTU6dO1ZQpU+Try69RAOA3IQCnlJeX64033tDAgQP1gx/8wOw47aKyslJZWVk6deqUBg0apJSUFPXo0cPsWADgMSiUAJzyta99TVVVVfr444+97g4wLS0t2rZtm7Zt26aQkBA999xzGjx4sNmxAMDjUCgBPLa1a9dq5cqVeumllzRjxgyz47jUyZMnlZWVperqak2ZMkWJiYny8/MzOxYAeCQKJYDHUlNTo69+9avq06ePfvGLX5gdx2Wqq6u1YcMGHT16VLGxsfrCF76gXr16mR0LADwahRLAY3nzzTd18eJFffjhhwoLCzM7jtPsdrsKCwtVUFCggIAALVq0SMOHD5fFYjE7GgB4PAolgEe2detWLVu2TKmpqXr++efNjuO00tJSZWZm6urVq5owYYKSkpIUEBBgdiwA6DAolAAeSVNTk77yla/I399f/+///T9dvXr1rmOqq6tbH9+8efOOY7p16+Yx1yLW1tYqNzdXRUVFioyM1KuvvqqIiAizYwFAh2MxDMMwOwSAjqO0tFSxsbGP/f5NmzZp2rRprgv0GBwOh/bu3av8/HxZrVYlJydrzJgxTG8DwGOiUAJ4JA0NDdq2bVubxxw6dEj//u//Lkl64YUX9OKLL7a+Nm7cOFP3cDx//rwyMjJUXl6uJ598UjNmzFBQUJBpeQDAGzDlDeCRBAYGaubMmW0ec/vdY2w22wOPd4ebN29q48aN2r9/vyIiIvTKK68oMjLS7FgA4BUolAC8mmEYOnDggPLy8uRwOJSamqr4+HhZrVazowGA16BQAvBa5eXlysjI0Pnz5zVq1CglJycrJCTE7FgA4HUolABcoqioSEVFRZKko0eP3vH8Bx98IEkKDw9XcnJyu2dpbGzUpk2btHv3bvXq1Utf+tKXFBMT0+6fCwCdFYtyALjED3/4Q/3oRz9q85ipU6dq8+bN7ZbBMAwVFxcrJydHjY2Nmjp1qiZNmiQfH592+0wAAIUSgJe4evWqMjMzdebMGQ0dOlSzZ89Wt27dzI4FAJ0ChRJAh9bc3KwtW7Zox44d6tatm1JTU/XEE0+YHQsAOhWuoQTQYR0/flxZWVmqra3V008/rYSEhDu2LAIAuAcjlAA6nKqqKmVnZ+vEiROKi4tTamqqwsLCzI4FAJ0WhRJAh9HS0qIdO3Zo69atCgoKUkpKioYMGcItEwHAZMwNAegQTp8+rczMTF2/fl2TJk3S1KlT5e/vb3YsAIAYoQTg4WpqapSTk6PDhw9rwIABSktLU58+fcyOBQC4DYUSgEey2+3avXu3Nm/eLD8/P82aNUsjR45kehsAPBBT3gA8ztmzZ5WRkaErV64oPj5e06dPV2BgoNmxAAD3wQglAI9RV1envLw8HTx4UP3791d6err69u1rdiwAwANQKAGYzuFwaP/+/dq4caMkaebMmXryySeZ3gaADoIpbwCmunjxojIyMnTx4kWNGTNGM2fOVHBwsNmxAACPgBFKAKaor69Xfn6+9u7dq/DwcKWlpSk6OtrsWACAx0ChBOBWhmGoqKhIOTk5amlpUVJSkiZMmCCr1Wp2NADAY2LKG4DLNDTbdaOhRaGBvgr087nr9cuXLysjI0Nnz57ViBEjNGvWLIWGhpqQFADgSoxQAnDantJKLd9WotwjFXIYktUiJQ8L11cSbIqPCVNjY6MKCgpUWFiosLAwpaWlyWazmR0bAOAiFEoATnm/sEzfX1ssq9Uiu+Mfv058rBY5HIa+OiFMPmd2qr6+XomJiZo8ebJ8fZkcAQBvQqEE8Nj2lFbq2Xd2qu1fIob+Na5e/7ooWd27d3dTMgCAO3EVPIDHtnxbiazWtveK9LFYVBpgo0wCgBejUAJ4LA3NduUeqbhjmvte7IaUc6RcDc12NyUDALgbhRLAY7nR0KIHdMlWDuPW8QAA70ShBPBYQgN99YDZ7lZWy63jAQDeiUIJ4LFcu1yuuC71ssjR5nE+VotmDYu4576UAADvwJABgEfS0NCg/Px87dmzRxO6R+vEzS5tHu9wGFqSEOumdAAAM1AoATwUwzB0+PBhbdiwQY2NjZo1a5YmTpyoIXvO6Xtr7r8P5VsLRig+JszE5ACA9sY+lAAeqLKyUpmZmTp9+rSGDBmilJQUdevWrfX1vaWVWr7tjHKOlLfeKWfWsAgtSYilTAJAJ0ChBHBfLS0t2rFjh7Zu3arg4GClpqZq8ODB9z3+QffyBgB4JwolgHsqLS1VRkaGrl27psmTJ2vq1Kny9/c3OxYAwANRKAHcoa6uTrm5uTp06JCioqKUnp6u8PBws2MBADwYhRKApFuLbg4cOKC8vDwZhqHk5GSNHTtWFstDbjYJAOi0WOUNQJcvX1ZGRobOnj2rUaNGadasWQoODjY7FgCgg2CEEujEmpubVVBQoJ07d6pHjx5KT09XbCx7RgIAHg0jlEAndeLECWVlZenGjRtKTEzUU089JV9ffiUAAB4dI5RAJ1NTU6Ps7GwdPXpUNptN6enpCgtjr0gAwOOjUAKdhMPh0O7du7Vp0yb5+fkpJSVFw4cPZ9ENAMBpzG8BncCFCxe0fv16lZeXKz4+XjNmzFBgYKDZsQAAXoIRSsCLNTQ0KD8/X3v27FFERITS09MVGRlpdiwAgJehUAJeyDAMHT58WBs2bFBTU5OSkpI0YcIEWa1Ws6MBALwQU96Al6msrFRmZqZOnz6toUOHKiUlRV27djU7FgDAizFCCXiJlpYW7dixQ1u2bFFISIjS0tI0aNAgs2MBADoBRigBL1BaWqqMjAxVVlZq8uTJSkxMlL+/v9mxAACdBCOUQAdWV1en3NxcHTp0SFFRUUpPT1d4eLjZsQAAnQyFEuiADMPQgQMHlJubK0lKTk7W2LFj2VMSAGAKpryBDuby5ctav369zp07p9GjRys5OVnBwcFmxwIAdGKMUMJjTZs2TQUFBQ88Ljg4WLW1tW5IZK6mpiYVFBSosLBQPXr00Jw5cxQTE2N2LAAAGKEEOoITJ04oMzNTtbW1mjp1qqZMmSJfX/7zBQB4Bv4iwaMtWLBAP/3pT9s8xps3666pqVF2draOHj2qgQMH6sUXX1RYWJjZsQAAuAOFEh6tW7duGjJkiNkx3M7hcGj37t3atGmT/P39tWjRIg0fPpxFNwAAj0ShbCdHjhzR//zP/2jDhg06f/68GhsbFRERoZiYGCUmJio1NVUTJ040OyY80IULF7R+/XqVl5dr/Pjxmj59ugIDA82OBQDAfVEoXcwwDP3gBz/QT3/6U/Xv31/PPvusnnjiCdXW1mrz5s1at26dNm3apPXr12vv3r1mx4UHaWho0MaNG7V3715FRERoyZIl6t+/v9mxAAB4IAqli33rW9/Sr371K73wwgtatmzZHSNL3/zmN7Vs2TItXbrUxIQdV1NTk+rr69W1a1evmvo1DEOHDx/Whg0b1NTUpNmzZ2vChAlefW0oAMC7sG2QC61fv15z587VqFGjtG/fvnuuwjUMQyNGjFDfvn2Vl5dnQsqOY9q0aerevbvGjx+vP//5zzp9+rQMw5CPj4+GDRumuXPn6t/+7d/Up08fs6M+tsrKSmVmZur06dMaOnSoUlJS1LVrV7NjAQDwSCiULmIYhgYNGqRTp07pww8/1PPPP292pA7vs30oQ0JCtGTJEk2ZMkVdunTRsWPHtGzZMp08eVLdu3fXhx9+qNTUVLPjPpKWlhZt375dW7duVUhIiNLS0jRo0CCzYwEA8FgolC6yefNmJSUlyWq1qqqqilEmF5g2bZrKysqUn5+v2NjYO15raGjQ3LlzlZeXp4CAAG3ZskUTJkwwKemjOXPmjDIyMlRVVaXJkycrMTFR/v7+ZscCAOCxUShd5Gtf+5p+97vfKTY2ViUlJa3POxwO1dXVKTQ01MR0HVN5ebmCgoLuW84vXrwom82mxsZGjR8/Xrt373ZzwkdTV1en3NxcHTp0SFFRUZozZ06Hnq4HAOAzXPXvIp+t2I6OjpbdbteyZcs0YcIE+fv7q2vXrgoICFBiYqLee+89ORwOk9N2DBEREW2O9Pbr108pKSmSpD179ujQoUPuivZIDMPQ/v379fbbb+vEiROaO3euXn75ZcokAMBrUChdpLi4WNKtEcnk5GS9/vrrGjdunP7v//5Pq1ev1quvvqrCwkK99NJLmjNnjm7evGlyYu8QHx/f+nj79u0mJrm3iooK/elPf9K6des0ePBgvf7663ryySe9apU6AABsG+QCN2/eVF1dnSRp69atkqQ1a9Zo/vz5rccsWLBAaWlpSk9PV1ZWll577TW99957puT1JreP8l26dMnEJHdqampSQUGBCgsLFRYWpi996UuKiYkxOxYAAO2CEUoXuHHjxh1fp6en31EmP5Oamqp/+qd/kiT95S9/0cGDB92Sz5vdfvmAj4+PiUn+4cSJE/r973+v3bt3a+rUqVq6dCllEgDg1SiULtDS0nLH14sXL77vsc8991zr47/+9a/tlqmjW7dunX784x/rQWvGysvLWx/37du3vWO1qaamRh999JH+9re/qVevXnrttdeUmJh4z/1IAQDwJvylc4GQkJA7vh4xYsR9jx0zZkzrY09flWymlStX6r333tOSJUsUERFx3+MKCwtbHyckJLgj2l0cDod27dqlzZs3y9/fX4sXL9awYcO4ThIA0GlQKF0gNDRU/v7+ampqkiR17979vsf27Nmz9fHly5fbPVtHl5WVpZdffvmer508ebL1bkNTpkzR8OHD3RlNknThwgWtX79e5eXlGj9+vKZPn37H7TYBAOgMmPJ2AavVqiFDhrR+/fkp8NvdPoXrKdf8ebL/+I//0IkTJ+56vrKyUs8//7zsdruCgoL0u9/9zq25GhoalJGRoeXLl0uSlixZorS0NMokAKBTYoTSRSZMmKCioiJJt7aKub1g3u7KlSutj/v16+eWbB3RsGHD5Ofnp4qKCo0ZM0bPPfecxo8fL39/fx09elR/+ctfdOXKFYWHh+ujjz6641KC9mQYhg4fPqwNGzaoqalJKSkpGj9+vKxW/t8MANB5UShdZNGiRa2jVXv37tXUqVPvedz+/ftbHycmJrolW0f05ptv6sUXX9SqVauUm5urLVu26KOPPlJzc7N69OihUaNGac6cOXrllVfcdheiyspKZWRkqKSkREOHDlVKSgq32AQAQNx60WXsdrvGjBmj4uJijRkzRvv377/nooy5c+dq/fr1CggI0OnTp9W/f38T0uJRtLS0aPv27dq6datCQ0OVmpqqQYMGmR0LAACPwTydi/j4+Oj3v/+9/Pz8dPDgQf3sZz+765gPP/xQ69evlyT9+Mc/pkx2AGfOnNEf/vAHbdmyRZMmTdJXv/pVyiQAAJ/DCKWLffzxx/ryl7+s2tpapaSkaM6cOfLx8dGmTZv08ccfy2Kx6Ic//KG+973vmR0Vbairq1NOTo6KiooUHR2t9PR07r0NAMB9UCjbQVlZmX79618rKytL586dk8PhUGRkpJKSkvT1r3+9zX0qYS7DMLR//37l5eXJYrEoOTlZY8aMYU9JAADaQKEE/q6iokIZGRk6d+6cxowZo+TkZAUFBZkdCwAAj0ehRKfX1NSkgoIC7dy5Uz179lR6ejr33gYA4BFQKNGpHT9+XFlZWaqrq1NiYqKmTJnChvMAADwiCiU6perqamVnZ+vYsWMaOHCg0tLSFBYWZnYsAAA6JAolOhWHw6Fdu3Zp06ZNCggIUEpKioYNG8aiGwAAnMCdctBpnD9/XuvXr1dFRYUmTJigpKQk7r0NAIALMEIJr9fQ0KCNGzdq79696tu3r+bMmcN91AEAcCEKJbyWYRgqLi7Whg0b1NzcrOnTp2v8+PGyWrlBFAAArsSUN7zStWvXlJmZqZKSEg0bNkyzZ89W165dzY4FAIBXYoQSXqWlpUXbt2/X1q1bFRoaqrS0ND3xxBNmxwIAwKsxQokOo6HZrhsNLQoN9FWg3917RZ45c0YZGRmqqqrSlClTlJiYKD8/PxOSAgDQuTBCCY+3p7RSy7eVKPdIhRyGZLVIycPC9ZUEm+JjwlRXV6ecnBwVFRUpOjpa6enp6tOnj9mxAQDoNCiU8GjvF5bp+2uLZbVaZHf840fVx2qRw2HoK2O7yufMDlksFiUnJ2vMmDHsKQkAgJtRKOGx9pRW6tl3dqrtH1BD/zbcrqULkxUUFOSmZAAA4HbsnwKPtXxbiazWtkcbfSwWHVckZRIAABOxKKcdPWgRCW6x2+1qbGxUY2Ojmpqa1NjYqJq6euUcrnjA6KRkN6ScI+VqaLbzPQYAwCQUynbwoEUk3uCzEvhZAfx8Ifz8120dZ7fb7zp/veErQ2MeKovDkG40tFAoAQAwCddQutiDFpG8tWCEvjhxgCnZ7Hb7QxfAth7frwTezs/PTwEBAQoICJC/v3/r49u/vt/zAQEBMqy+mvSLHXI8xE+n1SId+VEKhRIAAJMwQulCe0or9f21xTKkO8qkbvv6e2uKNSQ89KFHKj9fAp0ZEWxpaWnzs+5XArt3737PEthWUXTF7Q2Th4Ur7+jlu76Xt/OxWpQ8NJwyCQCAiSiULvTZIpK2CpDFIv33J3v1+uiAh5oSftgS+Ply17Vr1weOArZHCXSlJQk2bThc0eYxDoehJQmxbkoEAADuhULpIg3N9tZrJtviMKQ9l5pU2FSsoAA/ryuBrvRkVDel9Lqu7Kvd5GO13vcSAm+5LhUAgI6KQukiNxpaHup6P0kyZNGXl76u3qEB7RuqgysoKFC/utP6/xb9s9Yeq1XOkfJ/LHIaGq4lCbGUSQAAPACF0kVCA31lteihF5GEBvKtb8vZs2e1bds2TZs2TYnxg5UazzZMAAB4Ku+dL3WzQD8fJQ8Ll8+DNuK2WjRrWASFqA0NDQ1atWqVIiMjlZCQ0Pp8oJ+PeocG8L0DAMDDUChdaEmCTY4HDFGyiOTBsrKyVF9fr2eeecarrxEFAMBb8NfahcbHhOmtBSNkke4aqfSxWmSRWETyAMXFxSoqKlJaWpp69OhhdhwAAPAQuJDPxb44cYCGhIdq+bYzrYtILDI0Y3AfvZo4kDLZhurqaq1fv14jRozQqFGjzI4DAAAeEoWyHcTHhCk+JkwNzXaVXbysD/70rl6Y9JwGUSbvy+FwaPXq1QoICFB6eroslravRQUAAJ6DKe92FOjno0HREerVo5tOnTpldhyPtmPHDpWVlemZZ55RYGCg2XEAAMAjoFC2M4vFori4OAplGy5evKhNmzbpqaeeUkxMjNlxAADAI6JQukFcXJyqqqp07do1s6N4nObmZq1atUrh4eFKSkoyOw4AAHgMFEo3iI2NlY+PD6OU97BhwwZVV1dr4cKF8vFhf0kAADoiCqUb+Pv7Kzo6mkL5OcePH9e+ffs0a9Ys9erVy+w4AADgMVEo3SQuLk6lpaVqbm42O4pHqK2t1SeffKJBgwYpPj7e7DgAAMAJFEo3iYuLU0tLi8rKysyOYjrDMPTJJ5/IYrFo3rx5bBEEAEAHR6F0k969e6tr165Me0vas2ePTp48qfnz5ys4ONjsOAAAwEkUSjdh+6Bbrly5otzcXI0fP15PPPGE2XEAAIALUCjdKC4uTteuXVNVVZXZUUzR0tKilStXqnv37kpOTjY7DgAAcBEKpRvZbDZZrdZOO0qZn5+vK1euaNGiRfLz8zM7DgAAcBEKpRsFBAQoKiqqUxbKM2fOaOfOnZo+fboiIiLMjgMAAFyIQulmcXFxOnPmjFpaWsyO4jb19fVavXq1YmJiNGXKFLPjAAAAF6NQullcXJyam5t19uxZs6O4hWEYWr9+vZqbm7VgwQK2CAIAwAtRKN0sPDxcISEhnWba+9ChQzpy5IjmzJmjbt26mR0HAAC0Awqlm3Wm7YOqqqqUlZWl0aNHa/jw4WbHAQAA7YRCaYK4uDhduXJF1dXVZkdpNw6HQ6tWrVJQUJBSU1PNjgMAANoRhdIENptNFovFq0cpt27dqgsXLmjhwoUKCAgwOw4AAGhHFEoTdOnSRZGRkV5bKM+fP6+CggI9/fTTioqKMjsOAABoZxRKk8TFxamkpER2u93sKC7V2NioVatWqV+/fpo6darZcQAAgBtQKE0SFxenpqYmnTt3zuwoLpWdna3a2lotXLhQVis/XgAAdAb8xTdJ3759FRwc7FXT3keOHNHBgweVmpqqsLAws+MAAAA3oVCaxGKxaODAgV5TKGtqarRu3ToNHTpUY8aMMTsOAABwIwqlieLi4lRRUaEbN26YHcUphmFozZo18vPz05w5c7gbDgAAnQyF0kQDBw6UpA4/SllYWKgzZ85o/vz5CgoKMjsOAABwMwqliYKCgtS/f/8OXSjLy8u1ceNGTZo0qbUgAwCAzoVCabLPtg9yOBxmR3lkzc3NWrVqlXr27KkZM2aYHQcAAJiEQmmyuLg4NTQ06Pz582ZHeWR5eXmqrKzUokWL5Ovra3YcAABgEgqlyfr166cuXbp0uGnvU6dOaffu3UpOTlafPn3MjgMAAExEoTSZ1WrtcNsH1dXVac2aNRo4cKAmTJhgdhwAAGAyCqUHiIuL06VLl1RbW2t2lAcyDEPr1q2TYRiaP38+WwQBAAAKpSf4bHX06dOnTU7yYPv379fx48c1d+5chYaGmh0HAAB4AAqlBwgJCVHfvn09ftr72rVr2rBhg5588kkNGTLE7DgAAMBDUCg9RFxcnE6fPn3X9kEvvfSSLBbLI/2zYMECl+ez2+1atWqVQkNDNXv2bJefHwAAdFwUSg8RFxen+vp6Xbx40elzhYeHuyDRnTZv3qzy8nItXLhQ/v7+Lj8/AADouNg80ENERkYqMDBQp06dUmRk5F2vHz169IHnSElJUVlZmV566SWXZisrK9O2bduUlJSk/v37u/TcAACg46NQegir1SqbzaZTp05p2rRpd73+oGsWd+zYobKyMo0cOVKTJ092Wa6GhgatXr1a0dHRSkhIcNl5AQCA92DK24PExcXpwoULunnzZutzgwYN0lNPPfXA9y5btkyS9Oqrr7o0U2ZmphoaGvTMM8/IauXHBQAA3M1iGIZhdgjccuPGDf3yl7/UwoULNXLkyId+X3V1tfr27SuLxaKLFy+qW7duLsnz6aefatWqVXrmmWc0atQol5wTAAB4H4acPEhoaKjCw8Mfefug999/X/X19frnf/5nl5XJ69evKyMjQyNGjKBMAgCANlEoPcxn2wc9ysDxu+++K8l1090Oh0OrV69WYGCg0tPTXXJOAADgvSiUHiYuLk51dXW6dOnSQx1fWFiooqIijRo1SpMmTXJJhu3bt+vs2bNasGCBAgMDXXJOAADgvSiUHiYqKkr+/v4PPe3t6sU4Fy9e1ObNm/XUU08pJibGJecEAADejULpYXx8fFq3D3qQmpoaffTRRwoKCtIXv/hFpz+7qalJq1atUnh4uJKSkpw+HwAA6BwolB4oLi5O58+fV319fZvHffDBB7p586bLFuNs2LBB1dXVWrhwoXx8fJw+HwAA6BwolB4oLi5OhmGopKSkzeM+m+5eunSp05957Ngx7d+/X7Nnz1avXr2cPh8AAOg8KJQeqFu3burdu3eb0967du3SoUOHNHr0aE2cONGpz6utrdW6des0aNAgjRs3zqlzAQCAzodC6aHi4uJ06tSp+24f5KrFOIZhaO3atbJYLJo3b54sFotT5wMAAJ0PhdJDxcXFqba2VhUVFXe99tlinODgYKcX4+zevVunTp3S/PnzFRwc7NS5AAD/f3t38xrVegdw/DfJjIoh2iRqBatO7JGiXjCLGghIFr5cssgiyaIu7FLoH3L/gW5LhRaKIBRjFgHlBl0EIeXmgrrQLBSTGixegyEkGBLHzNyFKH2xvuSJkxzm81lOzjn5wWy+nOfMc6AxCcot6tChQ1EqlT647H3lypV49epVXLhwIXbt2rXu//HixYsYGxuLU6dOxdGjR1PGBQAamKDcoorFYnR2dn4wKN+9GSflxzhv3ryJ4eHhaG9vj/Pnz6/7OgAAgnILy7IsZmdnY3V19f1nk5OTcffu3Th58mR0d3ev+9q3b9+OOGYEgAAABRhJREFUubm5GBoailKptBHjAgANSlBuYVmWRbVa/Y/tgzZiq6AnT57ExMREnD17Nvbv3588JwDQ2ATlFtbW1hYdHR3vl72Xlpbi6tWr0dLSEhcvXlzXNZeXl2NkZCQ6Ozujp6dnI8cFABpUcbMH4OOyLIupqamo1WrR2toaS0tL675WrVaL0dHRqFQqMTAwYIsgAGBDuEO5xWVZFouLizE3N5d8rXv37sXU1FT09/cn/TocAODfCcotrlwuR7FY/Ohbcz7H/Px83Lx5M7q6uuLEiRMbNB0AgKDc8orFYpTL5aSgrFarcf369WhpaYm+vr4NnA4AQFDmQpZl8fTp03j9+vW6zh8fH49nz57F4OBgbN++fYOnAwAanaDMgSzLYm1tLaanp7/43NnZ2RgfH4/e3t44ePDgV5gOAGh0gjIHOjo6oq2t7YuXvVdXV2N4eDgOHDgQvb29X2k6AKDRCcqcyLIsHj9+HLVa7bPPuXHjRiwvL8fg4GA0NfmqAYCvQ2XkRJZlsbCwEC9fvvys4x88eBD379+Pvr6+aG9v/8rTAQCNTFDmRLlcjubm5s9a9l5cXIzR0dE4duxYdHV11WE6AKCRCcqc2LZtWxw+fPiTQVmr1WJkZCRKpVL09/d7Gw4A8NUJyhzJsixmZmaiUqn832MmJiZieno6BgYGYufOnXWcDgBoVIIyR95tHzQzM/PBvz9//jxu3boVPT09ceTIkfoOBwA0LEGZI3v27Indu3d/cNm7UqnEtWvXYu/evXHmzJlNmA4AaFSCMkcKhcL77YP+29jYWCwsLMTQ0FAUi8VNmA4AaFSCMmeyLIv5+fn4109zMbe0GiuVtXj06FFMTk7GuXPnYt++fZs9IgDQYNzKypmXTW1x+/Wv469//CFqEdFUiCgXF+Pcr34T3d3dmz0eANCA3KHMkb/945/x+7/8GLPVX8S79+VUaxHTldb483RrXPnh6abOBwA0pkLtS97lx6aZnJmP3/1pIj72ZRUi4u9/6Inflr0ZBwCoH3coc+LynSfR1PTxTcqbmgpx+c50nSYCAHhLUObASmUtxh7+FGvVj99MXqvW4vuHz2OlslanyQAABGUuLK28iU+05HvV2tvjAQDqRVDmQOuOYnxitfu9psLb4wEA6kVQ5sCOUnOcP/7LaP5EVTY3FeLb4/tjR6m5TpMBAAjK3Lh0+khUP7HuXa3W4tLpzjpNBADwlqDMiVPl9vhu4JsoRPzPncrmpkIUIuK7gW9sGQQA1J19KHPmx5n5uHxnOr5/+DyqtbfPTH57fH9cOt0pJgGATSEoc2qlshZLK2+idUfRM5MAwKYSlAAAJPEMJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEl+Bl3CVYgnalhYAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import networkx as nx\n", "\n", "G = nx.barbell_graph(m1=3, m2=2)\n", - "draw_graph(G)\n" + "draw_graph(G)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "from pathlib import Path\n", - "Path(\"gem/intermediate\").mkdir(parents=True, exist_ok=True)" + "(Path(\"gem\") / \"intermediate\").mkdir(parents=True, exist_ok=True)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "./gf not found. Reverting to Python implementation. Please compile gf, place node2vec in the path and grant executable permission\n" + ] + }, + { + "data": { + "text/plain": [ + "array([[-1.03077980e-03, 2.68426785e-03],\n", + " [-1.03025945e-03, 2.68460448e-03],\n", + " [-1.02760993e-03, 2.68534017e-03],\n", + " [-1.03205430e-03, 2.67494168e-03],\n", + " [-1.03178048e-03, 2.68544277e-03],\n", + " [-1.12239241e-03, 2.83922108e-03],\n", + " [-1.12715323e-03, 2.43305859e-03],\n", + " [-3.63980215e-04, 2.62185261e-03],\n", + " [-2.83050254e-05, 2.27283979e-03],\n", + " [-3.30170855e-03, 7.36306655e-04],\n", + " [-6.26812458e-04, 5.30977808e-04],\n", + " [-1.61917602e-03, 5.30227981e-03],\n", + " [-5.78304899e-03, 8.07947201e-03],\n", + " [-6.23030032e-03, 3.57951159e-03],\n", + " [-3.90898274e-03, -1.12185980e-03],\n", + " [-3.90618929e-03, -1.12356134e-03],\n", + " [-3.91752050e-03, -1.11604704e-03],\n", + " [-3.88566530e-03, -1.13049236e-03],\n", + " [-3.90606086e-03, -1.11985706e-03],\n", + " [-4.01302483e-03, -9.72348151e-04],\n", + " [-4.23035142e-03, -1.44549997e-03],\n", + " [-2.30814232e-03, -1.27055933e-03],\n", + " [-3.09483368e-03, -4.32427499e-04],\n", + " [-7.22826108e-03, -2.55303964e-03]])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3iUZb7/8fczk15JT4YWAgkhYKjSBaQ3FUWKCi4K1t11Lz2756zt6JbjcetZy/7WRXY5oCLKKkgRCL0YQEILSQg9IZCeEFInZWZ+f8TMkkPRNUAKn9d15eIJc8/z3DP553Pd5XsbDofDgYiIiIjI92Rq7g6IiIiISOumQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIrfUvHnzMAzjX/qZNm1ac3dbrkOBUkRERFq8sLCw5u6CXIdLc3dAREREmk9JSQnr1q1jy5YtHDp0iLNnz1JeXo6Pjw/R0dGMGzeOZ555ho4dO97wZx87duxb20ycOJHMzEzmzZt3w58vN47hcDgczd0JERERufUSExMZPXo01dXVzmnlwYMH4+fnx8mTJ1m6dCmFhYV4e3uzZMkSpk+ffkOeO2/ePJYsWcK3RZDExESGDRvGHXfcQXJy8g15ttwcGqEUERG5TZWWllJdXY3JZGLdunVMnDix0esvv/wyI0aMIDU1lYcffpgjR44QGxvb5OfGxMQwbNiwb223cOFCAJ588skmP1NuLq2hFBERuc3NmzfvijAJEBgYyO9+9zsAampqeP/992/I81566SV279593TaXLl3i008/xcvLi7lz596Q58rNo0ApIiJym/L396d///7XncoeMGCA8zotLe1WdAuADz74gKqqKmbNmoW/v/8te658P5ryFhERuU0NGTKEpKSk67bx9vZ2Xnt6et7sLjk1jIZqurt10AiliIiIXNOBAwec13ffffcteebevXtJTk4mPj6ewYMH35JnStMoUIqIiMhV1dTU8MorrwBwxx13sGDBglvyXG3GaX1UNkhEREQAqK6upqSkhKKiIvbu3ctbb71FcnIyM2fOZOHChbdkLWNpaSkREREAZGdna/1kK6ERShEREQHg448/Jjw8nJ49ezJ//nxKSkpYtmwZy5cvv2XB7sMPP6SysvKmbsZxOBy88847+Pj4YBgG27dvvynPuZ0oUIqIiAgAEyZMYNOmTaxatYrf/va3tGvXjocffpjY2FgSEhJuSR8aprufeuqpm3L/M2fOcPfdd/Pcc89RUVFxU55xO9KUt4iIiFyV3W7n+eef5+2338ZkMvHRRx8xe/bsm/a8ffv2MXjwYHr37s3hw4dv6L0dDgfvvvsuL774Imazmbi4OPbu3QvAtm3bGDVq1A193u1GI5QiIiJyVSaTif/5n/+hZ8+e2O12nnzySYqLi2/a827mZpxf/OIXPPfccwwfPpyUlBQmTJhww59xO1OgFBERkWsymUw8/PDDAJSVlfGPf/zjpjyntLSUTz75BG9vb+bMmXNTnrFo0SI2bNhAx44db8r9b2cqbC4iIiLX1b17d+d1SkrKTXnGRx99REVFBY8//jh+fn43/P6vvfYahmHc8PtKPQVKERGRNqygoIC33nqLVatWkZGRgbu7O927d2fOnDl07NgRPz8/Ro4ced17uLj8My7U1dXdlH42nIxzszbjKEzeXAqUIiIibdS+ffu4//77ycnJYcKECTzzzDNUVlayePFifvjDH+Lm5kZUVBTHjh277n1OnjzpvO7UqdMN7+f+/fs5dOgQvXv3ZuDAgTf8/nLzKVCKiIi0QZmZmdxzzz0UFBTwwgsv8Ic//MH52o9+9CPGjRvHV199RXp6OidPniQ6Ovqq97Hb7XzwwQfO36dMmXLD+3qzSwXJzadNOSIiIm3Qz372MwoKCujUqRNvvPFGo9c8PT2dIQ5g0qRJ5ObmXnEPm83GD3/4Q5KTkwF47LHHuOOOO25oP/fv38+SJUswmUy8+OKLeHl5ERUVxejRo3n99dfZt2/fDX2e3BwaoRQREWljTpw44dyN/eijj+Lu7n5Fm7i4OAIDAykuLub06dN07dqVhx56iO7duxMUFERGRgaffPIJJ06cAOrD5F//+tcb1keHw8Frr73Gf//3f9O+fXtmzpxJdHQ05eXlbN++nTVr1rBt2zbWrl1LUlLSDXuu3BwKlCIiIm3MP/7xDxrOLRkzZsw12z333HO8/vrrAPTs2ZOEhASWLVtGbW0tvr6+REVF8eMf/5hHH32UAQMG3NA+vvDCC/zpT39i7ty5LFy4EA8PD6y1NsqsdTzzo+dYuvhvmgJvRRQoRURE2pht27Y5r/v27XvNdv369XNeT5s2jZdeeumm9qvB2rVr+dOf/kR8fDx///vfOXS+lEW7U9iUlofdASYDxvboS5fo7rRr1+6W9EmaRoFSRESkjWmoFenr64u/v/81211e4Ds1NfWm9wvqp7qff/55AH7+85/zcdIF/vOLFEwmA/s3h0HbHbAlvQDH9D8wb1qvW9IvaRptyhEREWlDqqurnRtswsLCrtv28tczMjKc19ZaGwVl1VhrbTe8fzt27ODUqVOYTCbCew3hP79IwQHYGtLkN2x2Bw7g1VUpJGXcvOMe5cbQCKWIiEgbUlZW5rz28PC4bltPT89G79ufUcyi3WcaTT2PiwvjieFRDIgMvCH9a9gs1LlzZ5YfKcRkMurDo8OOo8aKyd2rUXuTyWDR7rM37PlycyhQioiItCFVVVXOazc3t+u2vfz1vOJSZv51zxVTz5uP5ZOQmsevpvVizqDOTeqb3W7n66+/BiA4JISNR7MpS95E+ZGN1OSeBocdzC64R3THp/d4vHvdjc1uIiEtF2utDQ9Xc5OeLzePAqWIiEgbcvmoY01NzXXbXv76xRoDT64+9Qz1U8+xYb5XjBTW1tZSUVHh/CkvL3deV1ZWXvH74cOHAcjJzaNg+atUn0/Fp/d4/AfPAMPAmnGEssMbqD6fSsWxnYTc/yK4elBmrVOgbMEUKEVERNoQX19f57XVar1u28tHM03untdpCYYBv1qRyEMdyxsFyKuFVk9PT7y9vfH29sbHx4fg4GC8vb1xcXHhtddeA+D8uUwAQh54Ba+Ywc73esUMwbPrAPJX/ALrmQMUb/x/hEx9AU8llhZNfx4REZE2xN3dnfDwcHJzc8nLy7tu28tfN/uFXret3QHJxXBvSA1BQUF07tzZGRov//Hy8sJsvnIk0Wq1NipnBBDYrQ/eMYNw/J+2nl0H4BU7nMr0XVSkbKX7oLv5f++k0rdvX/r3709g4PdbT/nhhx86rxtO/wHYtGkT58+fB+o3Ko0bN+573f92pkApIiLSxvTs2ZPc3FzKysq4dOnSNUsHNYQoALfgTt96XwcGJzOyyHc3ERQU5PwxmUx4e3vj4eFxRZjMzs4mKSmJlJQUiosb79Yed/dd7MW46rO8e9xFZfouALrWnaN37+kcPHiQxMREunXrxoABA4iOjsZk+u4Fa+bOnXvV/7/8aMqRI0cqUH4PCpQiIiJtzN13382WLVsAOHz4MCNHjrxqu4MHDzqvPTrHf+t9DeCRmdMpKymmsLCQoqIizp49S0VFhbONn58fQUFBABQXF3Pp0iV8fHwYMmQINpuNP/zhD86282fcg3n3Kb6q6YTJgMuXb7qHRzmv884eZ8KECYwePZrU1FSSkpJYvnw5/v7+9OvXj379+uHj4/Ot/W84PUhuPAVKERGRNubBBx/klVdeAWDLli3XDJSbN28GwDswFM/2sdivc08DO51MJRw+UMykSZMYOnSo87WqqipnuDx27BiZmZnY7f+8W3l5Obt27cJms2E2m7HZ6utbJiYmMjg4kB9PupP/+mwvKSUmHBiYDBjdtyuLv3l/Tk4OAK6urvTp04c+ffo4Rz537drFjh076NGjBwMGDKBz584YxtVHPS/XcMzjf7/+Mv/zx/qQ+9prrzmPopR/jeFQXBcREWk18vLyWLFiBQkJCRw6dIj8/HxcXV2JiIhgyJAhPPbYY9x99908+OCDfPbZZ0RGRnL8+PErSgilp6cTFxeHw+HgRz9/nTX0h2tMPzeY7peBX00hAL1792b06NF4e3tz7NgxDhw4QEZGBl5eXs61jn5+fuzbt4/t27djGAYdOnTg5ZdfJisrC4Af/vCHhISE4OfnR01NDeVV1djMbsyZOR1vDzciIyMBCA8P5/Tp03h5eV3Rp6qqKo4cOUJSUhJFRUWEhIQwYMAA4uPjr1qH8/Jam1U5p8hd8kJ9uSIUKJvC/Lq+ORERkVbhqaee4gc/+AFr166lqqqK2bNn88gjjzBy5EiKior4/PPPWbJkCcePH+dXv/oVH3/8MTk5OVRXVzdaF1hVVcWsWbPIzMxk0KBBDB3QB3NtJeft7TCbDC4fajK+Gbd8fUoP/m3WGACysrLIy8tj79697Nmzh5SUFPz8/BgzZgz33HMP3bp1o66ujpUrV7J//3569uzJ3Llz6d+/P2lpac6p9ilTpjBt2jR8fX25cOECDlsdLg4baSlH2bJli7NmZVhYGGazGU9PT+x2O25ubri41E+yurq60qFDB+688046d+5MSUkJe/fuZd++fZSUlODv7++cDv9gbybPfnSQs0WV2Gw2Cv7xK2zl/1zXGditD7PunXjz/oBtmKa8RUREWoklS5ZQU1PDPffcw/LlyxuN2P3kJz/hvffe45lnnmH58uUYhsGaNWu4//77+d3vfsfRo0e55557qKysZPHixaSlpTFgwADmzp1LUVERIyzePD9xMH//KoONqTnOqef4QBOWsnT88mswmbrQoUMHOnXqRGZmfdmf2tpaXF1diY6OJjY2FrPZTHJyMuvXr8dsNjNr1ixiY2Od/XzggQdYtGgRUF9eqHfv3gCkpaVRV1eHzWbjBz/4AV988YXzPXFxcVy6dIlVq1Y5/8/X15fg4GDnxqDg4GCCg4OZMWMGZWVlHDx40PnToUMHvDrfwX9uKXAe81j69Upq8k7jGT2YqpN7Adiank9SRrFO5fkeNOUtIiLSSnh4eODi4sLZs2cJCQm5aptJkyaxYcMGAPbu3UuXLl3405/+xKpVq8jMzMTNzY3Y2FgeeeQRunfvTmJiIiaTiaeeeorQ0PrSQctXfEZxWSWPz30Yw17HH//4R2pqavD29qaiooKIiAj69++PYRhs2bKF6upq7HY7Xl5e+Pj4kJeXR69evZg0adIV09SJiYncf//95Ofn06dPHw4ePIhhGPz+97/HZrNhtVpZsGABTz/9NGvXrsXd3Z3Tp0+Tl5fHmjVrGDp0KKGhoRQVFVFUVOTcHNSwLtPFxYXAwECCg4MJDAyktraWrKwsPszw5Jy9HQ4Mai9mk/O3H+Ma0ol2I+eRv/xlANoNf5hZT73Ae3P636w/YZulEUoREZFWZMiQIdcMkwDTp093BsrVq1fzX//1X7zxxhuNSuNA/RrKTz75BIBRo0Y5wySAh6sZD2rJOX+OpKQkZ/Hympoa5s2bR+fO/zyCsUePHmzevJmDBw86i537+vrSo0ePRqf2QP2u7+3bt/PCCy/w6quvcvjwYd58801efPFF6urqcHd3x2q1snz5ctauXQvAr3/9a9q3b0/79u3Jz89nz549zJkzxzmyCfVHOl66dMkZLhv+PXfuHOXl5dQ5DM7Z++H4Zo1o8YZ3cdjrCJr4Y+zWcud9HA6Hjnn8nhQoRUREWomVK1fSsWPH67bp1Omf9STPnTvnvG7Y1ezr4UJZSTGff/45bm5uBAUFMWzYMGe7qqoqCgsLycvLY+nSpQQHBzNhwgQOHDhAYWEhx48fbxQobTYblZWVQH1R9ZqaGkwmEytWrMBisTBmzBiioqJwOBysWbMGLy8vnn32WaKionj88cd56aWX2LlzJy4uLvj4+HD06FHS0tIwmUy8/vrr/PSnP3U+a/z48RQUFLBixQoWLFiAj48PlZWVjX4cDgeenp4EBgbi6elJeXk5uSWVOArqw2TZkQSsmcn4DX4Qt7AorJn/LHAO9aWLdMzjv06BUkREpJWYNGnSt7a5dOmS89rb27vRrma7A0wGRLlXEO/qR0DdRe677z4Mw+D8+fMcOHCAlJQU6urq8PDw4JFHHnGW4bFYLCxevJg9e/bQs2dPLBYLqampfPnllxiGwYMPPkhsbCx79+5lx44deHl5YbVa+eCDD4iKisJisZCRkcHcuXNxc3NjxowZDBw4kLfeeov169dz+vRpDMPA19eXcePG8dRTT9G+fXu2bdtGZWUlVVVVzrPBq6ureffdd6/6+d3c3PDy8sLLyws3N7f60dXaKgwc1JWXULLt77i0i8B/2ENXfb/JAF8PxaN/lb4xERGRNuTs2bPOayOiBzP/ugeTyXAWDbc74LTVi1PWSB7tEcP58+dZtWoVubm5+Pv7M2LECC5evMiFCxecZXugfuQzLi6O9PR0Vq5cSUhIiLP00OTJk/H29gZg2LBhxMbG8uWXX3LmzBmCgoLIycnhzJkzeHh4cOTIEQ4dOuQcUezYsSOPPPKIcw1kg4aRyobjHL28vPD29iY4OJjIyEgOHTpEcHAwY8aMwcfHBy8vLzw9PZ31Kc+cOeMcOTUMg0iXUr7e9Bfs1nKCp/0ck6v7Fd+dYRiMjwvX6OT3oEApIiLShjTshA4MDuXLso4YrvW7mi/XsJZw6bEaCk9v565YC6NHj6Zr166YTCYSEhKcAc9utzvDX48ePTh27BhFRUVcvHiR6OhoXFxcWLVqVaNp54Y1lwBFRUXOa6vVSnJyMr6+vkRERNC+fXu8vLyocxhs3ZVIbNdIaqrq12BOnz4dV1fXaxYpj4mJYdmyZZw8eZKgoCCSk5PJzc119tvd3Z2uXbvi6+tbH0yPb6PyeCLed4zFM7LPVe/pcDhYMLzL9/zmb28KlCIiIm1ESkoKe/bsAaDnvQu44O5xRZi8nAkoCOxFx47enD17lrS0NCorK8nJyaGiooLf/OY3WK3Wq77XbrdTUFCAn58fXl5ehIWFOUcSL/85deoUO3bsACAkJITIyEgOHz7MP/7xD9LPnOPs2bNUlV3CMLtg9g0molscU8eO5KGH3K76XIfDQU5OjrNYe0OtSgB/f39iYmK48847KSoqYtOmTZw5c4bY2Fj+8Ic/4O7tS8Do+Rg4nKH6cqNjQ1Uy6HtSoBQREWkDHA4Hzz33HAATJk7keOgQHNcJkwB2DJJya5k791EyMs5ety3Ur0/ctWsXu3btora2Fi8vL37wgx9gMpmu2r60tJS9e/fSp08fBg4cyNq1a9m6dSsrV67kzJkzYHbBp9cYAsOisFdXUHXmIFlfJ/CX/ZvJLyziH3+tPxKxqqqKkydPcuTIEc6dO0ddXR1QP0Xt6emJ1Wrl4Ycfplu3buTl5bF+/XrOnj1LVFQUs2bNYsGCBRQVFfHLX/6S9r3DWfr1BTJt7XAAlw+Axndo9x2+abkaBUoREZE24M0332Tbtm3ExMTw9nt/Z/x7B7/T+xwY2L9jSWqTyYSbmxu9evVi7969ZGdnk5iYyPDhw6+8r8PB2rVrcXV1Zfz48Xh6evL444/Tr1+/b8KkKxFzf49beFfne/yHzOTitsWU7vuMzxb+kcc8XOjXrQPFxf88zcbd3Z3o6Gj69etHly5dcDgcLF26lJUrV9K1a1dSUlIIDAzkoYceIjo6mj//+c+sWbOGwYMH8/LLL/P222/z/J1dCAoN5svN2xj12EAmLPtOH1+uQ4FSRESklfvss8945ZVXsFgsrF+/HoslFJMB3zJACYDxzeRvbGwsDzzwAO3atXOWDjKZTNjtdvz8/HA4HFit1kYn2ABs2bKFnTt34uvri4+Pj3MTTXl5OSdPnmTYsGHk5+fj7e3N4cOHSU6uL9Pj13dSozDZoN1dcyhP2YK9ooRPl31E5I+eICAggLi4OOLj4wkJCWm0rtJmsxEVFUVWVhYpKSmMHj2aIUOGYDab2blzJ6+//jqurq688847fP3112RnZzNmzBjOnz+Pqbqcqop/1qGsrKyksLDQ+bu/vz+urq7/4l/j9qSTckRERFqxhIQE7r33XgICAti2bZvzmMOnPkxi87H8b1lD6WBsj1DSFr5AYGAg8+fPJyMjg5KSEqD+nOyYmBi6du1K586dCQgIwGazUVFRwenTp1mzZo2zTE9sbCyVlZVUVFRQWlpKQUHBFc9LTEwkISEBgOB7f4Z33Mir9ivvk1exnj0EwNnMLCI7dbiijcPh4MSJEyQkJHDx4kV69OjByZMniYmJYfr06ezfv59ly5bx1ltv/Wtf6GW2bdvGqFGjvvf7bycaoRQREWmltmzZwrRp0/D392fr1q2NzsxeMDyKjal5132/HWiXdwibzUZgYCDdu3fn5MmTuLi4YLPZ6NOnD1lZWaSmpgLg4+NDp06d6NSpE507dyYuLo6zZ89SUlJCYGAgEyZMwOFw8Mknn1BZWckzzzyDyWRynqBTXFzsDJSGq8c1+3X5a5+uXM0PZk8nLCzM+X95eXkkJCRw5swZ5zrJ0NBQ0tLSWLFiBXV1dRw/fpwxY8YwZcoUDMOgtLSUVatWMXToULp160ZycjLp6el0797dWTx97ty5PProo87nXH4aj1yfAqWIiEgrtGPHDu699168vb3ZsmULPXr0aPR6/07tmBBYzMbigG92Nf9z40z9dLiD4e4X6OJj59OcHGcQjImJoVOnTmzevJlJkyZhGAZWq5WsrCwyMzM5d+4cmzZtwmaz4ebmRm1tLT4+PiQkJBAVFUV2djbHjx9n5syZeHl5kZ+fT1paGmlpaY2mk2uLsiB60FU/W21RFgCGuxcmRx3vvfce8fHxDBw4kMOHD3PgwAECAgKYPXs2MTExzinwuLg4YmNjSU9Pp2vXrkydOtX5WkJCAj179mT+/Pm4urri4lIfgfr16+d8blRUFGPHjr0Bf53bjwKliIhIK/PVV18xdepUPD092bJlC7169bqizYwZM0hJSWHK7CfJbRfHoQI7dkf9mskurmX84uGRnNpTyIULFzCZTFitVvz9/Rk7diwZGRlYrVbsdjtmsxkPDw+io6OJjo4GoK6ujgsXLpCZmcnhw4e5ePEiAO+++y4mkwlfX192797NqlWrGtWk7NOnD4mJiWRkZFB2YC2+/aZicms8Ull5Yi91RecBsMTfRYCvNzFRkaSmppKcnIzZbGbEiBHcddddmM2NC5CnpqaSnp5Ou3btOHfuHHl5eYSHh1NbW8vhw4fp27evc02kzWa74v3y/V19n7+IiIi0SHv37mXSpEm4urqyadMm4uPjr2jTEKDy8/PpFe7Fp8+NJ+0XE9n/0lh2PTeQEaYTuF06j6+vL3V1dTgcDvz9/Z0jnYMGDeLNN9/E3d2d+Ph4Xn75ZfLz8533d3FxoXPnzowYMYKnnnrKeYoN1NenLCsrIzs7m5qaGtzc3IiMjGTKlCk8++yz7N69m+69+mArKyR36QtUHk+ktiSXmrwzXNqzgsLVvwPAq/swfvtfr1FdXc2hQ4eoqanB398fs9nMnj172LVrF9XV1c4+paen8/nnnxMfH8/TTz9NUFAQy5cvp6KigtTUVKqqqhgwYICzvd1uv2a5I/nXaVOOiIhIK5GUlMTYsWMpLS3ld7/7Hf37979quyNHjvDmm29itVpJTU3FYrE0ev39998nNzcXV1dXxowZw5w5czhx4gTe3t6MHTsWNzc3XFxc6N69Ox999BEnT56kXbt2LFu2jEmTJlFdXc3x48c5cuQI58+fbzQKCThL+lRXVzunyi/f6FNTU8OB7Eo2rPiQupKcRu/1ih6Id/x45o0fyB2eJZw5cwaLxYKnpydnzpzB3d3deZyjh4cHI0aMwN/fnxUrVhAbG8v06dMxmUxcunSJ999/n6CgIGfNzDlz5gCQnJzMhx9+SH5+Pu3bt+eNN94A4P777+eBBx4AICwsjHHjxjX9j3abUKAUERFpBYqLi+nWrZtzevm7CAsLIzc31/m71Wpl48aNHD58GIBp06bRu3dvRowYQVpaGk888QTPP/88qamp7Ny5Ew8PDyZMmMDPfvYzNm/ejKurKz/+8Y/x8/Nz3tPNzQ2LxUJmZiaurq6YTCaioqKYMWNGo75kZ2ezYsUKLly4wMaNG0lOTsbHrx1hd06iLKAb9rparGcPUpW6nYiOnRkzYij9+/dn/PjxznWSJSUl7Nu3j4MHD1JXV4e/v7/z+wgPD2f+/PnOtZEAWVlZ/O///i92u51Zs2Y5Ny29/vrr/OIXv7judzdy5Ei2b9/+nb/r250CpYiISCuQkZFBly7/2jnTnTt3JiMjA4BTp06xevVqqqurmTBhAvv378fLy4u5c+eSm5uLYRisXLmS8vJyRo0axbp16wgJCaGgoICysjL+9Kc/YbPZaN++PS+99BJxcXHccccdBAYG8vnnn3PixAlqamro378/Bw4cYObMmc6NQrm5uXz88cdUVFSwaNEiMjMz6dmzJ4sXL+bixYvsStxLLWZcsXH21AmWLauvNP7rX/+a//iP/7hiraPVauXgwYN89dVXVFZWOutlhoaGMnbsWLp16+bcjLN48WLOnTvH+PHjGTJkiPMea9asITc3lyeeeOL7/knkMtqUIyIi0gpERkbybWNAhYWF/PnPf8YwDBYsWIDFYsFqtZKQkMChQ4eIiori3nvvdRbs/vzzz8nNzSU8PN9AyUUAACAASURBVByHw8GECRP49NNPWbduHYCzlqSvry8xMTEcO3aMCxcuMGzYMGdJnfT0dFJSUpg2bRqnTp3i+PHjREdHs27dOiIjI8nKyuKzzz4jKCiI1NRUMjMzAXj77be58847qaqqYs+ePXi4QF2dgyFDhnD8+HGSkpJ49dVXKSwspHfv3s5SRR06dMDDw4NOnTqxfft2QkJCMJlM5OXlcfHiRZYtW0anTp0YO3YswcHBZGdn07FjRzZt2kRoaChdu9YXU7fW2am0u2CtteHhqs05TaVAKSIi0opZa22UWevw9XBxBsEhQ4ZgsVg4ffo0q1evxmq1MnXqVPr169eoxM6mTZtYs2YNZrOZnJwc5xnZDfr378+oUaOoqanh8OHDHDt2DIBdu3bRu3dvqqqqWLduHdHR0cTHxxMZGcm7775LQEAA586d48MPPyQnJ4eYmBimTZvGz3/+cwD8/Py4++67yc/PZ82aNQB4enpSVlbGiBEjKCoqIikpCbvdTlFRER4eHuzfv5+dO3diGAZBQUFcvHiRgIAAHn74Yfz9/cnIyGDPnj2cPHmS8+fP8/e//52goCBsNhszZsxg9erVrFixggETZ7EipYiEVDMOQnnrtQ2MiwvjieFRDIgMvFV/tjZHgVJERKQV2p9RzKLdZ9iUlofdUV9bsqNh5k6/UIYOHcqaNWs4ePAgXbp04d5776Vdu3Y4HA7Onz/P/v37OXv2LGVlZZSVlQH1IS8qKor+/ftTXl7OJ598wvHjxxk+fLizaPmqVasA2LBhA7Nnz2b37t3U1tY66z36+/szdOhQdu/ejcVi4fz588TGxjJjxgwKCgqc6x07duzI+vXrSUpKwsvLC4Bhw4axe/duCgoKiIqKcn7O4uJiZs2ahcPhoLCwkKNHj5KYmAjUj8i+9dZbBAcH07lzZ3r16sWQIUNISUnh8OHDFBUVAbB+/XrGjRvHS4s38N4nqZhNpm8OnKw/nnLzsXwSUvP41bRezBnU+db8AdsYBUoREZFW5oO9mfznFymYTIbzvG67A845/MksCaD4rU/pRg5TpkyhZ8+eHDp0iJSUFPLz87HZbED9buuOHTuSk5ND//79mThxovP+2dnZABiGwZIlS5g3b16j59vtdv7yl79gt9u55557Gm3SGTBgAF999RXnz58nODiYnJwcamtrG5XoKSwsJDk5mbFjx2Iymdi4cSMBAQGEhIRQVFSEu7u7s21DfxtGVg8cOEBoaCiPPvoo1dXVzmLr586d48CBA0D9Gdzt27cnKysLs9nMsWPH2J6axeaa7oBxxXGUDb+/uiqF2DBfjVR+DwqUIiIircj+jGL+84sUHHBFMGo4DWdrWQjduniyfft25zS4YRi0a9eO6OhoBgwYQEhICAC//OUv+eMf/8ioUaPw8KgvMt4Q/qZMmcKGDRtYsmQJOTn/LO8zfvx4KisrsdvtHDt2jJiYGHx8fCgtLWXZsmXO8Ddy5EhWr17N5s2b6datGx4eHlitVkpLS3n22Wfx8/Nj8+bNAAQEBBAUFORcY9mgU6dOQP1I5dKlS/Hx8WHOnDl4eHjg4eFBfHy8sxZnZWWlM1weOlR/FrjNZsPFxYXUyrBvTgwyrvndmkwGi3afVaD8HhQoRUREWpFFu89gMl05ynY5AwcbM2uZ5FtH165d6dOnD3Fxcc6g6HA4sNvtOBwOjh07xqZNm9i4caPzLO7a2lrnvaZPn84nn3zinO6G+hFKgLvvvpu9e/fy5z//md69e3P06FFMJhNTpkzhq6++Ytu2bcTExJCUlERSUhI9e/bkwIEDVFVVsXz5ckaMGMH58/Wn4ly4cIHa2lqKiorYtm2b81kxMTHs2rWLxMREzGYzPXv25MiRIzgcjkY/DZ/H4XBQV1eH1WqlS5cueHp6UnjxEufOtrtumIT6gJ6QlquNOt+DygaJiIi0EtZaG3GvbeA6WdLJwMHjvimYsV8RuC63cuVKjhw5wn333Uffvn2veq+ioiLeffddHA4HHTt2ZP78+d+r/wUFBSxcuJDa2loCAgJ47LHHGk2XAxw9epTPPvsMqF9r+fjjjztHPM1mMyaTCcMwGv383/+rrq6muroaX1/f+pN7amFJaY8r+nMt+18aS4iv+7c3FCeNUIqIiLQSZda67xQmARwY+ASEYAn0wd/f31kq6P+GsQMHDnDkyBE2b97M1KlTGTp0KJWVlaxbt45Ro0bh5eXF448/jsPhwNXVlSlTphAaGsrkyZMxDIO0tDT27dtHUFAQJSUleHl50aVLF9LT06mtrcXFxYX77ruPlStXMnHiRMaNG8eCBQsoLCxk8eLF9OvXDx8fH0aNGsXGjRvZsGEDUD/V/e6775KRkYHNZuOxxx7D39//qp+1urqa3NxccnNzyc7OJiUlBcMwnBuODJPLt053NzAZ4OuhePSv0jcmIiLSSvh6uGAy+M4jlK7UcfLkSWw2G4ZhEBISgsViISIiAovFQlhYGMOHD2fDhg1UVFTw7LPP8sgjjxAfH8/Bgwc5d+4ca9asoaCggLCwMJ555hmgfso7ODiY7du3k5SUxNChQxk7diyHDh1i/fr1JCcnExERwaRJk1i6dCm5ubmMHDmSbdu2MX/+fI4fP87f/vY3vvzyS/bt20dVVRUJCQmEhYXRq1cvZs+ejaurK+np6ZjN5kZhsqysjNzcXHJycsjLyyMnJ8e5e9xsNuPl5YXdbsfHx4fy8nJcXV2JiYlhSL43+y5UXXepgNlkMK5HmKa7vwdNeYuIiLQiT32YxOZj+d+6hrKT6SJjPTKIj4+nR48elJWVkZ2d7QxidrsdwzAIDQ3Fw8ODr7/+mm3btlFZWUlhYSFWq5WAgAD69OnD1KlTGTNmDJ9//jnDhw8nKSkJh8NBTU0NU6ZMoVOnTiQkJHDq1Ck6d+5McHAwBw8exGKxYLFYOHjwIE8//TSfffYZdrudJ5980nn6ze9//3sAfvrTnwL154z7+/uzfPlyUlJSKCoqorS0FE9PT0JCQujRowf9+vXDy8uLiIgIwsPD8fPzo7S0lHPnzpGdnY1hGPTo0YO4uDiio6Nxc3Njf0YxM/6657rfrQGseGqINuV8DxqhFBERaUUWDI8iITXvW1oZzOwdQvHxDA4fPszhw4fp2bMnw4cPJzw8nLq6OvLz850BMzs7m4iICGbPng1AaGgo+fn59O3blwEDBtCuXTsWLVpE586d6d+/P2lpaRQXFxMYGEhOTg7r1q2jXbt2zJw5k9jYWAzDoE+fPqxcuZJDhw7h6urK1q1bue+++3j//ffZtWsXo0aNwlpro8RqJ8DXk5ycHHJzc8nKyuLVV18lLy8PX19f+vbtS3h4OHa7ncTERNatW0dWVhYrVqygqKiI1NRULly4gIuLCx07dgTqzyhv2PndoLfFhzF+BWwpDcZsMjUK5GaTgd3u4FfTeilMfk8aoRQREWllPtyXyaurUq7Y7X15MJozqDOlpaVs2bKF5ORk53nXUVFRDB8+nMjISOdmF4C6ujp27tzJrl276N69O6npJ5zna7sY9c/o0qUL2dnZuLq60qVLF44ePYphGIwaNYqhQ4fi4tJ4nKqmpoaNGzdy8OBBAGbNmsW5c+dY9dVRcvx7cLjAjgPjmxHVErrWnmXVov/h4sWLRERE8G//9m88/fTTeHt7A5CTk8PEiRNJTk4mPDycp556yjkSGRMTw6ZNmzhx4gQ/+clPrjj/e926dRw5coRBUx9mRXIRCWm5zoLw4+PCWTC8i8JkEyhQioiItEJJGcUs2n32OwWjvLw8Nm/ezKlTp3B1daW2tpaIiAiGDRtGjx49nOWE6urq+Pff/ZVT5s4cvcg3YQ86mS4yOKASr4qcRvd1d3entraWdu3acd9999G+fXtnkHM4HJSXl5Obm8vRo0c5evQoAOl1Ieyp6/TNJpl/Fjs3G1CwaSFlSasBeOONN/D19eXRRx8lLS2NtLQ0srKyKC4u5u233wbgN7/5Df/+7/8OgNVq5Y9//CNDhw5l1KhRjfp56tQpPvroIyZPnsydd95Z3/6yIyu1ZrLpFChFRERasX8lGJ05c4bNmzeTk5ODl5cXlZWVBAQEMGTIEPr06cPyA9m8+kXKFTui63+HUd55dLGdJzw8nK5du1JeXk5mZiYlJSX17QwDb29vTCYTVquVmpoaADw8PPDz8+NobiVffnNazf/lcNg5/9bD2K3leHr78s5b/8OFCxdwOByYTCa6detGz549iYmJYdiwYRw8eJAOHTpw7tw5DMPg66+/ZsOGDTz//PP4+vo671tVVcVf/vIXQkJCmDNnTqNRWblxtIZSRESkFfNwNX/nEbaoqCieeOIJUlJS2LJlizNcffnllyzbtI+VZV0Ariiv0/D79oowJo/rzfBYC7m5udTU1ODr60t5eTl1dXU4HA6qq6sxDMMZJs1mM4GBgbRv355VRZUYNXC1kay64mzs1nIA3IM7Ogue33vvvfTo0cN5ig9A7969OXjwIOfPn2fv3r0MHjyY/fv306NHj0ZhEurP8a6treW+++5TmLyJFChFRERuI4ZhcMcdd9CjRw/279/Pzp07cXV1Jc0W/u1HEwJ/3pLOsV31xzkGBgYSGhrKkCFDcDgcJCYmYrFYmDBhAnV1dRQUFJCfn09hYSGp6Sc4UdHtmve3VZU5r2vc/Ogc1Y3MM6fo2rVrozDZ8NwGX3/9NRERERQWFjJ58uRG7VJTUzl69CgPPPDAFQXU5cZSoBQREbkNubi4OKe6t+7Yxfs7ar618Lcdg3P2dtQ5DFwMB8XFxRQXF5Oenu5sk5mZycKFC694b5XD5fph1fWfJ9PYbbVcqqwf4ayoqLgiDF5+NGRaWhoWi4Xg4GAiIyOd/19WVsa6deuIi4ujV69e1/1c0nQKlCIiIrcxT09PBg4biWPH5u/U3oHBmIlTCPJ2w2QyYTKZnEcimkwmcnJy2LJlC5GRkYwdOxYXFxdMJhM1NgefvvX1NYuyu7QLB8MEDjt1F3OwltUXKy8vL7+ibUZGhvM6NzeX9PR0JkyY4JzSdjgcrFmzBrPZzJQpUzTVfQsoUIqIiNzm/pUTeEwGDO7f55rrNqOioggODubTTz9lz5493H///c5d5OPiwq5ZlN3k7oV7hziqs1Kou5hNdlYmgYGBVFRUNGpXXV3Nzp07nb9nZ2djNpsb1Z08ePAgJ0+e5KGHHsLLy+u7fAXSRKZvbyIiIiJtmYermXFxYZhN1x/JM7ATHwiOuprrtuvevTvTp08nNTWVL774ArvdDtQXZbdfJ7X6D53lvN68eTNubm5XBMo333zTuasc6kcw4+PjnessL168yMaNG+nbty8xMTHX7afcOObXX3/99ebuhIiIiDSvcD8PPk3K+tZ2g4zTpB/cg7e3N2FhYdecTg4JCSEoKIgdO3Zw6dIlunfvTvsAL4J93dmWno/ZaLzb28CBa0AEY3taSDuQ6NzQExoaSmRkJCdPnuSNN97gt7/9LVOnTuXEiRMAhIWF8fOf/xwfHx/sdjuffPIJDoeD2bNnX1FoXW4e1aEUERER4Pon8NjsDu7yuECcWxEBAQHk5eXRsWNHJk+eTHh4+DXvmZyczMqVK+nfv79zPWNDUfaNqTk4MDAZ0NEo5qlR0Tw8bjDr1q3jmWeeISurccCNiYnhlVdeoU+fPs4p7tGjR7NlyxYAEhMT2bRpE/PmzaNz58434RuSa1F0FxEREQDmDOpMbJjvFSfwjOsRxoLhXYgL9WDnzp3s378fT09PSkpKWLhwIQMGDGD06NFXlPcBiI+Px2azsXr1akwmE5MmTWJAZCADIgPJKyzm7b+8z7CB/SgpMlN+NhmHYxBTpkzh17/+NRkZGdjtdsaNG0f79u2du7gvX0M5bNgwAPLz89m6dStDhgxRmGwGCpQiIiLi1BD2rnUCz8SJExk4cCBbt24lNTUVHx8fDh06RFpaGmPHjqV3795XTIP37dsXu93O2rVrMZvNjB8/HsMwCAsOZNxdg9i9ezeTJ09mzZo1XLhwgQ4dOhAcHExOTg7+/v7O0NjgzJkzzuvJkydjs9lYuXIlgYGBjB49+uZ+QXJV2pQjIiIiV/BwNRPi637V3dyBgYE8+OCDzJ8/n8DAQOrq6gD44osvWLx4Mbm5uVe8p3///kyaNIm9e/eyefNmGlbcDRs2DG9vb06ePElAQAD79+8HIDg4mOrq6is25QDs2bMHgPDwcAYNGsSOHTvIz8/n/vvv17rJZqJAKSIiIt9Lhw4dmDdvHrNnz8bT0xOon3peuHAh69evx2q1Nmo/cOBAJkyYQGJiItu2bQPA1dWVsWPHkp6eTnh4OCtWrCA1NZXg4GAcDgcVFRVcvt2jYfoc4LHHHuPChQvs3r2bkSNHEhERcYs+ufxfivEiIiLyvRmGQffu3YmOjubQoUNs27aNmpoakpKSSElJYfz48cTHxzunwQcPHozNZmPz5s2YzWZGjhxJr169+Prrr0lOTubjjz+moqKCDz/8EKgvUl5VVeWsJ/nBBx+Qm5tLUFAQ//Ef/8HSpUuxWCwMHz682b4DUdkgERERuQEMw8BisTBgwADMZjNZWVnU1tZy7Ngxzpw5Q0REBD4+PgB06tQJs9nMtm3bMJvNdO7cmdDQUBISEkhKSuLs2bPMnDmTkydPYrfb6dOnD97e3uzatYtHHnkEgEWLFpGXl0dmZiZz5szB29u7OT/+bU+BUkRERG4Ys9lMZGQk/fr1o6amhuzsbMrLy0lKSqKqqoqOHTvi4uLi3Im9fft23Nzc6NmzJydPnmTjxo3YbDaWLFlCdXU1hYWFZGVl8c477/DSSy/h6+vLY489xv3338+GDRuYMGEC0dHRzfypRXUoRURE5KYpLCxk8+bNHD9+HMMwcHd3Z+LEic46klu3bmX37t1MnDiRLl268OMf/5iMjAxycnK4dOkS5eXlBAYG0rNnT6ZOncqlS5cYO3YsBw4cICQkhDlz5uis7hZAgVJERERuunPnzrF+/XrnDvDw8HCmTZtGaGgomzZtYs+ePUyePJnKykp27NiBw+Fg0KBB7Nu3j4kTJzJoUH15oR07dhATE8Pp06d55pln8Pf3b+ZPJqBd3iIiInILdOrUiSeffJIZM2bg6+tLbm4u7733HmvWrOGuu+5i0KBBfPnll3h6euLj44PZbKa4uBioP5/bbreTlJREhw4dSEtLY9KkSQqTLYhGKEVEROSWstls7N+/n61bt1JbW4urqyvjx48nNzeXAwcO0L9/fw4cOICLiwvWWhsdukQzZEAfVv7jU9zd3YmKimLGjBma6m5BFChFRESkWVRXV7N161b279+Pw+EgICCA0NBQjh8/TrlnGF9f8uGcvR0ODAwcRLqU0s/rIr98bp52dbcwCpQiIiLSrEpLS1m9ejWnT58GIMOlI9vKQzFw4LhsdZ6BHQcmfj2tF3MG6bzulkSBUkRERFqEnJwc3lq2luWFEcC1p7MNYMVTQxgQGXjL+ibXp005IiIi0iJERERwMawv5m9ZG2kyGSzaffYW9Uq+CwVKERERaRGstTY2peVh+5a5U5vdQUJaLtZa263pmHwrBUoRERFpEcqsddi/40I8u6O+vbQMCpQiIiLSIvh6uGD6jpWATEZ9e2kZFChFRESkRfBwNTMuLgzzt6RKs8lgfFw4Hq7mW9Qz+TYKlCIiItJiLBgehf1b5r3tdgcLhne5RT2S70KBUkRERFqMOyMD+dW0XhhwxUil2WRgAL+a1kslg1oY1aEUERGRFicpo5hFu8+SkJaL3QEGDu7q4sdz4xUmWyIFShEREWmxrLU2LlXVsPDdtxg98i6GDRvW3F2Sq9D2KBEREWmxPFzNeLh60tESTk5OTnN3R65BayhFRESkxYuIiCA7O7u5uyHXoEApIiIiLZ7FYuHixYtUVVU1d1fkKhQoRUREpMWzWCwAGqVsoRQoRUREpMULDAzE3d1dgbKFUqAUERGRFs8wDCIiIrQxp4VSoBQREZFWwWKxaISyhVKgFBERkVYhIiKCS5cuUVFR0dxdkf9DgVJERERahYaNOZr2bnkUKEVERKRVCAgIwMPDQ9PeLZACpYiIiLQKhmFgsVg0QtkCKVCKiIhIq6ETc1omBUoRERFpNSwWC6WlpZSXlzd3V+QyCpQiIiLSaujEnJZJgVJERERaDX9/fzw9PbWOsoVRoBQREZFWo2FjjkYoWxYFShEREWlVtDGn5VGgFBERkVbFYrFQXl5OWVlZc3dFvqFAKSIiIq2KNua0PAqUIiIi0qr4+fnh7e2tQNmCKFCKiIhIq2IYBhEREdrp3YIoUIqIiEir07DT2+FwNHdXBAVKERERaYUsFgsVFRWUlpY2d1cEBUoRERFphRo25mjau2VQoBQREZFWx9fXFx8fH23MaSEUKEVERKRV0ok5LYcCpYiIiLRKDSfmaGNO81OgFBERkVbJYrFQVVXFpUuXmrsrtz0FShEREWmVdGJOy6FAKSIiIq2Sj48Pvr6+CpQtgAKliIiItFoWi0Wlg1oABUoRERFptXRiTsugQCkiIiKtlsViwWq1UlJS0txdua0pUIqIiEirFRERAWhjTnNToBQREZFWy9vbG39/fwXKZqZAKSIiIq2aTsxpfgqUIiIi0qpFRESQk5OjjTnNSIFSREREWjWLxUJ1dTXFxcXN3ZXblgKliIiItGramNP8FChFRESkVfPy8qJdu3YKlM1IgVJERERaPZ2Y07wUKEVERKTVawiU2pjTPBQoRUREpNWzWCzU1NRQVFTU3F25LSlQioiISKunjTnNS4FSREREWj0PDw8CAwMVKJuJAqWIiIi0CdqY03wUKEVERKRNaDgxx263N3dXbjsKlCIiItImWCwWamtrKSwsbO6u3HYUKEVERKRN0Mac5qNAKSIiIm2Cu7s7QUFBWkfZDBQoRUREpM2wWCwaoWwGCpQiIiLSZlgsFnJzc7Ux5xZToBQREZE2IyIigrq6OgoKCpq7K7cVBUoRERFpM7Qxp3koUIqIiEib4ebmRkhIiALlLaZAKSIiIm2KTsy59RQoRUREpE2JiIggNzcXm83W3F25bShQioiISJtisViw2Wzk5+c3d1duGwqUIiIi0qaEh4djGIamvW8hBUoRERFpU1xdXbUx5xZToBQREZE2Ryfm3FoKlCIiItLmREREkJeXR11dXXN35bagQCkiIiJtjsViwW63a2POLaJAKSIiIm1OWFgYJpNJ0963iAKliIiItHoOh4N33nkHHx8fDMPgq6++IjQ09DsHyqNHj7JgwQKioqLw8PDAYrFwzz33sHbt2pvc87bBpbk7ICIiItIUZ86c4fHHH2fHjh2N/j8iIuI7lQ56//33+dGPfoTD4eDRRx9l4MCBZGRksHDhQtauXcv8+fNZuHAhJpPG4a5FgVJERERaJYfDwbvvvsuLL76I2Wxm8ODB7N271/m6xWLhyJEj1NXV4eJy9cizdu1ann76aRwOB6tWreLee+91vjZ//nyGDBnC3/72N4KCgvjNb35z0z9Ta6WoLSIiIq3SL37xC5577jmGDx9OSkoKEyZMaPR6w8acvLy8q76/urqaZ599FrvdzsyZMxuFSYCuXbvyy1/+EoDf//73pKam3pwP0gYoUIqIiEirtWjRIjZs2EDHjh2veC00NPS6G3OWLl1KVlYWAE888cRV28yZMwdPT0/sdjtvvvnmjet4G6MpbxEREWmVXnvtNQzDuObrLi4uhIWFXTNQrlixAgA3Nzfuuuuuq7bx8fFh0KBBbN++ndWrV1NTU4Obm1vTO9/GaIRSREREWqXrhckGERERVw2UNpuNnTt3AhAXF3fdkNivXz8ASktLSUpK+p69bdsUKEVERKTNslgsFBQUUFtb2+j/T506RXV1NcBVp8svd/nrWkd5dQqUIiIi0mZZLBYcDge5ubmN/j8jI8N5HRYW9v/Zu/O4KOu9/+OvmWFYZEcFWVRAwdz39VhuuZTimmaaZmpZ3WbWr06nPB4zO7be9zG18nisLE0trQR3cMHcUXNDVAbZZEcQZF9mrt8fHEYRFGVxAD/Px4NHF8x1XfOZMcc33/We97j98duvE7dIoBRCCCFEg+Xs7IxGoynX7Z2VlWU8trS0vOc9rKysKrxO3CKBUgghhBANlkajwcXFpdwC53l5ecbjyibZ3P54bm5uzRbYQEigFEIIIUSD5ubmVq6F8vZWx8LCwntef/vjjRo1qtniGggJlEIIIYRo0Nzc3Lh+/XqZYGhra2s8zs/Pv+f1t7dm3n6duEUCpRBCCCEatIom5nh6ehqP77aTTkWPt2zZssbrawgkUAohhBCiQWvatClmZmZlur1bt26NhYUFgHG3nLuJi4szHrdv3752iqznJFAKIYQQokFTq9U0a9asTKDUaDTG3XEuXbp0z3GUf/75J1DS3d2jR4/aLbaekkAphBBCiAbP1dW13EzviRMnAlBQUMDhw4crvC47O5sTJ04A4OfnZ2zVFGVJoBRCCCFEg1c6Mad0dxyA6dOn4+HhAcCaNWsqvG7Dhg3k5uaiVqv529/+9lBqrY8kUAohhBCiwXNzcwMo00ppaWnJV199hUqlYtOmTWzfvr3MNZGRkSxcuBCAN998k44dOz68gusZM1MXIIQQQghRVevXrzcenz9/3ngcFBRknEzj4uLCkCFD0Gq1JCQklJnhPXr0aL7++mveeOMNxo8fz4wZM+jZsycxMTGsWrWKtLQ0ZsyYwWefffbQXlN9pFIURTF1EUIIIYQQVaFSqSo9Z8CAAQQHB/Pdd99hb2/PhAkTyp1z/vx5li1bxv79+0lKSsLBwYEePXowZ84c/Pz8aqP0BkVaKIUQQghRbz1Iu5ibmxs6na7Cxzp16sR3331XU2U9cmQMpRBCCCEeCW5ubqSnp5ORlUNqVgH5RXpTl9RgSAulEEIIIR4JYjy3OQAAIABJREFUKQZb9he24oePgzEooFbB0HYuvNTfmx6eTqYur16TMZRCCCGEaPDWHY/hH/6hgILCrXGXGrUKg0FhydgOPN9btlWsKgmUQgghhGjQTkanM+nfx7hX4FEBm+f0lZbKKpIxlEIIIYRo0NYcjkStvvdscLVaxZrDUQ+pooZHAqUQQgghGqz8Ij1BYcnoDffukNUbFALDkmSiThVJoBRCCCFEg5WVX0wlWdLIoJScLx6cBEohhBBCNFi2lmZU0tttpFaVnC8enARKIYQQQjRYlloNQ9u5oKkkVWrUKoa1a4alVvOQKmtYJFAKIYQQokGb3d8bQyX93gaDwuz+Xg+pooZHAqUQQgghGrSenk4sGdsBABWGMo9p1CpUwJKxHWTJoGqQgQJCCCGEaPCe792Sa+eP80eKlis5Frd2ymnrwuz+XhImq0kCpRBCCCEavKKiIgwpESwcNIhuPXuTlV+MraWZjJmsIRIohRBCCNHgxcTEUFxcjI+PD5ZajQTJGiZjKIUQQgjR4Ol0Ouzt7WnSpImpS2mQJFAKIYQQokFTFAWdToePjw8q1X0uSikeiARKIYQQQjRoaWlp3LhxAx8fH1OX0mBJoBRCCCFEg6bT6dBoNHh6epq6lAZLAqUQQgghGrSIiAg8PT0xNzc3dSkNlgRKIYQQQjRYhYWFREdHS3d3LZNAKYQQQogGKzIyEoPBIIGylkmgFEIIIUSDpdPpcHJywslJdsKpTRIohRBCCNEgKYpCRESEtE4+BBIohRBCCNEgpaSkcPPmTQmUD4EESiGEEEI0SDqdDq1WS8uWLU1dSoMngVIIIYQQDVJERAReXl6YmZmZupQGTwKlEEIIIRqc/Px8YmNjpbv7IZFAKYQQQogG5+rVqyiKQuvWrU1dyiNBAqUQQgghGpyIiAiaNm2Kg4ODqUt5JEigFEIIIUSDoigKOp1OursfIgmUQgghhGhQEhMTycnJkUD5EEmgFEIIIUSDotPpMDc3p3nz5qYu5ZEhgVIIIYQQDUpERAStWrVCo9GYupRHhgRKIYQQQjQYubm5xMXFSXf3QyaBUgghhBANRkREBIAsF/SQSaAUQgghRIMRERGBq6srtra2pi7lkSKBUgghhBANgsFgICIiQlonTUACpRBCCCEahPj4ePLy8mT8pAlIoBRCCCFEg6DT6bCyssLd3d3UpTxyJFAKIYQQokEo7e5WqyXePGzyjgshhBCi3svKyiIxMVHGT5qIBEohhBBC1HuyXJBpSaAUQgghRL0XERGBh4cHjRo1MnUpjyQJlEIIIYSo1/R6PVevXpXWSROSQCmEEEKIeu3atWsUFBTIckEmJIFSCCGEEPWaTqfD2toaV1dXU5fyyJJAKYQQQoh6TafT4ePjg0qlMnUpjywJlEIIIYSotzIyMkhNTZXxkyYmgVIIIYQQ9VZERAQqlYpWrVqZupRHmgRKIYQQQtRbOp2OFi1aYGlpaepSHmkSKIUQQghRLxUXFxMVFSXd3XWABEohhBBC1EsxMTEUFRXJckF1gARKIYQQQtRLOp0OOzs7nJ2dTV3KI08CpRBCCCHqJZ1OR+vWrWW5oDpAAqUQQggh6p20tDTS09Olu7uOkEAphBBCiHonIiICtVqNt7e3qUsRSKAUQgghRD2k0+nw9PTE3Nzc1KUIJFAKIYQQop4pLCwkOjpalguqQyRQCiGEEKJeiY6ORq/Xy/jJOkQCpRBCCCHqFZ1Oh6OjI40bNzZ1KeK/JFAKIYQQot5QFEWWC6qDJFAKIYQQot64fv06mZmZ0t1dx0igFEIIIUS9odPpMDMzw9PT09SliNtIoBRCCCFEvaHT6fDy8kKr1Zq6FHEbCZRCCCGEqFWKorBixQpsbGxQqVQEBwc/8D2ys7N5+eWXefHFF5k6dWrNFymqxczUBQghhBCi4YqMjGTmzJkcPHiwyvfYt28fs2bNIiYmpgYrEzVJWiiFEEIIUeNKWyU7derEmTNn6NOnzwPfIzs7m1dffZWhQ4dibm6Oi4tLLVQqaoIESiGEEELUuMWLFzNv3jz69+9PaGgow4cPf+B7jBo1itWrVzN//nzOnj2LtbV1LVQqaoJ0eQshhBCiVqxZs4ZZs2ZV+XoXFxcOHTpEv379SEpKQq/X12B1oiZJoBRCCCFEjVu0aFG1Fx7ftGmT8R46nQ61WjpW6yr5kxFCCCFEjauJXWxuv4dOp8PS0rLa9xS1QwKlEEIIIeq03Nxc4uLiaNSokalLEXchgVIIIYQQddrVq1dRFAUrKytTlyLuQgKlEEIIIeq0iIgIXFxc0Gg0pi5F3IUESiGEEELUWQaDgYiICHx8fExdirgHCZRCCCGEqLMSEhLIzc2VQFnHSaAUQgghRJ1VOrvbw8PD1KWIe5BAKYQQQog6KyIiglatWskalHWc/OkIIYQQok7Kzs4mISFBurvrAQmUQgghhKiTIiIiAGjdurWJKxGVkUAphBBCiDopIiICNzc3rK2tTV2KqIQESiGEEELUObJcUP0igVIIIYQQdc61a9coKCiQQFlPmJm6ACGEEEI0TOvXrzcenz9/3ngcFBREXFwcAC4uLgwdOrTctTqdDr1ez/79+1GpVAAkJydXeO9OnTrRqVOnGq9f3D+VoiiKqYsQQgghRMNTGgTvZcCAAQQHB5f7+apVq0hNTeUf//hHpfdYtGgRH3zwQRUqFDVFWiiFEEIIUSuq2mZ18+ZNkpOTmTBhAgsXLqzhqkRtkDGUQgghhKhTdDodKpWKVq1amboUcZ8kUAohhBCizsgv0nPm0lVc3DywsrIydTniPskYSiGEEEKY3MnodNYcjiQoLBmDAipgWHsXXurvTQ9PJ1OXJyohgVIIIYQQJrXueAz/8A9FrVahN9yKJRq1CoNBYcnYDjzfu6UJKxSVkUAphBBCCJM5GZ3OpH8f415hRAVsntNXWirrMBlDKYQQQgiTWXM4ErX63ssLqdUq1hyOekgViaqQQCmEEEIIk8gv0hMUllymm7sieoNCYFgS+UX6h1SZeFASKIUQQghhEln5xVSSJY0MSsn5om6SQCmEEEIIk7A2V1P5Xjol1CqwtZT9WOoq+ZMRQgghxEOXkpLC1q1baaFuxDXF8Z4tlRq1iqFtXbDUah5egeKBSAulEEIIIR4ag8HAoUOHWL16NcXFxbw7tieVrTdjMCjM7u/1cAoUVSItlEIIIYR4KFJTU9m6dSuJiYn069ePgQMHYmZmxhKDJQu33nsdSlkyqG6TdSiFEEIIUasMBgNHjx4lODgYR0dHxowZg4eHR5lzTkWns+ZwFIFhSRiUkjGTw9o1Y3Z/LwmT9YAESiGEEELUmtTUVPz9/UlISKBv374MGjQIM7O7d5DmF+nJyi/G1tJMxkzWIxIohRBCCFHjDAYDx44d48CBAzg4ODB27NhyrZKi4ZAxlEIIIYSoUdevX8ff35+4uDhjq6RWqzV1WaIWSQulEEIIIWqEwWDg+PHj7N+/H3t7e8aOHUvz5s1NXZZ4CKSFUgghhBDVlpaWhr+/P9euXaNPnz4MHjxYWiUfIdJCKYQQQogqMxgMnDhxgv3792NnZ8eYMWNo0aKFqcsSD5m0UAohhBCiSm5vlezduzdDhgyRVslHlLRQCiGEEOKBKIrCiRMn2LdvH7a2towZM4aWLVuauixhQtJCKYQQQoj7lp6ejr+/P7GxsfTq1YshQ4Zgbm5u6rKEiUkLpRBCCCEqpSgKISEh7Nu3D2tra8aMGYOnp6epyxJ1hLRQCiGEEOKebty4gb+/PzExMfTs2ZMnn3xSWiVFGdJCKYQQQogKKYrCyZMn2bt3L9bW1owePRovLy9TlyXqIGmhFEIIIUQ5N27cICAggOjoaHr06MHQoUOlVVLclbRQCiGEEMJIURROnTpFUFAQjRo1YvTo0Xh7e5u6LFHHSQulEEIIIQDIyMggICCAqKgounfvztChQ7GwsDB1WaIekBZKIYQQ4hGnKAqnT58mKCgIS0tLRo8eTatWrUxdlqhHpIVSCCGEeIRlZmYSEBBAZGQk3bp1Y9iwYdIqKR6YtFAKIYQQjyBFUfjzzz8JDAzE0tISPz8/WrdubeqyRD0lLZRCCCHEIyYzM5Nt27Zx9epVunbtyrBhw7C0tDR1WaIekxZKIYQQ4hGhKApnzpwhMDAQc3Nz/Pz88PHxMXVZogGQFkohhBDiEXDz5k22bdtGREQEXbp0Yfjw4dIqKWqMtFAKIYQQDZiiKJw9e5Y9e/ZIq6SoNdJCKYQQQjRQN2/eZPv27eh0Ojp37szw4cOxsrIydVmiAZIWSiGEEKKBURSFc+fOsWfPHszMzPDz88PX19fUZYkGTG3qAoQQQghTUxSFFStWYGNjg0qlIjg4+L6uCwsL44MPPmDgwIE4Ozuj1WpxcHCga9euvPXWW4SHh9du4RXIyspi06ZN+Pv74+vry2uvvSZhUtQ6aaEUQgjxSIuMjGTmzJkcPHjQ+LMDBw4wcODAu16TlJTE9OnTCQoKAqB3794MHz6cFi1akJSUxKZNmwgNDUWr1bJ06VLefvvt2n4ZKIrC+fPn2b17N2ZmZowaNYo2bdrU+vMKAdJC+cir6m/lAGlpaXz00Uf07duXxo0bY2FhgYeHBxMmTGDnzp21V7QQQtSA0s+/Tp06cebMGfr06XPf10ZHRxvD5EcffcSxY8dYvHgxs2bNYsGCBZw9e5apU6dSVFTEO++8w+rVq2vrZQCQnZ3Nzz//zNatW/Hx8eHVV1+VMCkeKgmUdURycjIrV65k9OjRNG/eHAsLC2xsbPDx8WH69OkcOHDgge6XkpLChAkTUKlUeHp6VnhOZGQkgwYNYt68eeTk5DzQ/Xfv3o2vry8LFy6ksLCQv/3tb3z99ddMmjSJvXv3MnLkSKZPn45er3+g+wohxMOyePFi5s2bR//+/QkNDWX48OEPfI/evXvz/vvvo1Kpyvxco9Hw73//m8aNGwPw7rvvkp+fXyN13660VfKrr74iLi6OZ599lvHjx9OoUaMafy4h7kVmedcBc+bMYe3atRQWFtK8eXMmT55M69atyc/PZ9euXaxbt45169YxefJk1q5dW+keqz///DNz587l+vXrFT6uKAorV67kvffeQ6PR0KdPH44fP37f9R4/fpyxY8dSUFDAtGnTWLt2LWr1rd9NXnvtNfr168e6deuws7Nj5cqV931vIYR4mNasWcOsWbOqfL2fn1+5MFnK2tqaESNG8NNPP5GRkcGhQ4cYOnRolZ/rTtnZ2ezYsYPLly/ToUMHnnrqKQmSwnQUYXIWFhYKoPj5+Sk5OTnlHv/mm28UQAGU55577q73SU5OVsaPH68ASs+ePRUnJycFUFq2bFnmvEWLFimAMnz4cCU2Ntb4PaAcOHDgnrUaDAala9euCqDY2dkpmZmZFZ5XWrNKpVJOnjxZ6XsghBAPm8FgKPP9g3wW3rhxQ9m2bZuSkJBwz/Pee+894z3XrFlT3ZIVRSmp+/z588qnn36qfPbZZ0pYWFiN3FeI6pAu7zrC2tqab7/9tsLfLl955RVGjBgBwMaNGzlx4kSF9+jVqxc7duxg6dKlHDt2DFtb27s+35o1a9i9ezfNmzd/oDrPnj3LmTNnABgxYgR2dnYVnvfcc8+hVqtRFIVly5Y90HMIIcTDcLeWxfvh4ODAqFGjcHV1ved5mZmZxmNra+sqP1+pnJwcNm/ezG+//Ya3tzevvfYabdu2rfZ9hagu6fKuI/r27UvTpk3v+viECRPYvXs3AAEBAfTu3bvcOW3atGHnzp20a9funs+1aNGiKn+QhoSEGI87dOhw1/Ps7e1p2bIlUVFRBAQEUFhYiLm5eZWeUwgh6quoqCigJLz+5S9/qda9Ll68aJzwOHHixEo/64V4mCRQ1gG///57pS2FLVq0MB7HxsZWeM7u3bvvKyhW57fytLQ04/HdWidLOTk5ERUVRVZWFpcuXaJz585Vfl4hhKhvMjMzjRMqR40a9cA9QqVycnLYuXMnYWFhtGvXjqeffrpGWjuFqEkSKOuAp556qtJz7qfbpDpB8X7d3iVf2YzFoqIi43FYWJgESiHEI2XdunXk5+ej1Wr5+OOPq3SPsLAwduzYgaIoPPPMM7Rv376GqxSiZkigrCdKu00AHn/8cZPV4ePjYzy+evXqPc+NiYkxHt9txrkQQjREqampfPjhhwAsWbLkgYNgbm4uO3fu5OLFi7Rt25ann34aGxub2ihViBohgbKe2Lp1KwAuLi6MHz/eZHU88cQT2NjYkJ2dTWBgIIqiVNgyGhISUqZVNSsr62GWKYQQJmMwGHjhhRdITU1l4sSJ/PWvf32g6y9dusSOHTswGAxMmDCB9u3bP5QeKCGqQ2Z51wOhoaEcO3YMKPlN18rKymS12Nra8sYbbwAlLZDffPNNuXP0ej0LFiwo8zONRvNQ6hNCCFN766232LVrFwMHDuTHH3+87zCYm5vLr7/+yi+//ELz5s157bXX6NChg4RJUS9IC2UdpygK8+bNA0rGWs6ePdvEFcEHH3zAmTNn2LlzJ2+88QbXrl1j6tSpODk5ceXKFT7++GOCg4MZPnw4e/bsASqfwCOEEA3B4sWL+fLLL+nfvz/btm3D0tLyvq67fPky27dvR6/XM378eAmSot6RFso67pNPPuHAgQP4+vqyfv36OvEBY2ZmRkBAAP/6179wc3Pjk08+oWPHjri7uzNkyBAKCgo4dOgQI0eONF5zryWRhBCiIVi6dCkffPABffv2ZefOnfc15jEvL4/ffvuNn3/+GQ8PD1577TU6duxYJz7rhXgQ0kJZh/3666/8/e9/x83NjV27duHk5GTqkow0Gg3z589n/vz5REVFkZCQgJmZGa1ataJJkyYABAYGGs/v2LGjqUoVQoha98UXX7BgwQJ69+7N7t2777mxRKkrV66wfft2iouLGTdunARJUa9JoKyjAgMDmTp1Ks7Ozuzbtw9vb29Tl3RXXl5eeHl5lft5ZGQkUNLdffvscCGEaEi+/PJL3nnnHXr06MGePXsqHOLTo0cP/Pz8WLRoEXl5eezevZvz58/j6+vLqFGj7iuAClGXSaCsg/bt28fYsWOxt7dn//79PPbYY6YuqYzk5GQ2b95MYGAgZ86cISUlBa1Wi6urK3379uXFF19k0KBBxl11xo0bh1pddnTFyZMn2bx5M4cOHSI8PJybN29ia2uLr68vQ4cO5ZVXXsHd3d0UL08IIe7b119/zfz58+natSuBgYHY29tXeN7p06fp0KED4eHhbNu2jaKiIsaOHUunTp2kVVI0CBIoa4CiKKxcuZL33nuPnJwcDhw4wMCBA+/r2rS0NFatWsXOnTu5dOkSN2/eRK/XY2ZmxpgxY+764WQqc+bMYe3atRQWFuLh4cHkyZNp3bo1+fn57Nq1i3Xr1rFu3TpGjhzJpUuXAJg5c6bx+kuXLjFjxgxj2HzyySeZP38+bm5uxMTEsG7dOj766COWLVvGqlWrmDp1qklepxBCVGb16tXMnTsXBwcH/v73v3Pu3Ll7nh8bG8vGjRvx8fFh1KhRMllRNCyKqJarV68qAwYMUADj14EDB+7r2kOHDinOzs4KoLi4uCjPPfecYmFhoVhZWSkeHh4KoNjb2ys7duwwXvPyyy8rfn5+93X/li1bKoDSsmXLe563aNGi+67dwsLCeO7atWvLPf7NN9+UeS/Gjx9f5vGNGzcaH1u3bl2563NycpTBgwcrgKJWq5WdO3dW+jqFEKKq1q1bZ/waN26c8fPp/fffN/48MDCw3HX79u1TVCpVmc+7yr66deumnDlzRjEYDCZ4pULULgmUVWQwGJTly5cr1tbWip2dndKnT58HCpRJSUmKg4ODAiht27ZVdu/erdja2iqOjo7Kn3/+qeTk5CgDBw5UAMXS0lLR6XSKoijKgAEDKg2IpWorUJqbmyuA0r59eyU7O7vcOY899pjxfncGwtJAOWnSpLs+x7Vr1xStVqsAymOPPXbPeoQQojruJwgOGDCg3HXff//9A4VJQJkyZcrDf4FCPCTS5V1FixcvZvHixQwfPpz//Oc/fPvttxw/fvy+r1+9ejUZGRkAzJo1i2effZbs7Gw+//xzMjMzCQkJYerUqQQHB5Ofn8/bb7/N/PnzjddU1/r1643H58+fNx4HBQURFxcHlOzKM3To0HLXenl5ceXKFeOWYC+++CItWrQgJSUFf39/Ll++bDz38OHDFe5VPnr06LvW5uHhQa9evThy5AiXL19Gp9PJpB4hRK1QFKVK182YMYMZM2bc9fGIiAgCAgIoLCxk2LBhdO3aVcZKigZNAmU1rFmzhlmzZlXp2pMnTxqPP/roI+M2hW+//XaF5/v7++Pv7w9Ay5YtKzwnMjKSo0ePGr/Pyckx/vf2ANmvXz+mTZtW4T2WLl1qPB4wYEC5QPn7779jZWVFWFgY+/bt4+LFiyxfvpy8vDyaNWtG9+7dWbBgAf/85z+BkjFDt3viiSfYtm1bpfuRt2jRgiNHjhjvIYFSCFFX5BfpycovxtbSDEtt2V3A8vPzjRMWW7VqhZ+fX50bCy9EbZBAWUWLFi2q1m+bhYWFxuOaanX8448/ePHFF8v9/Pr162UC5Pfff1/l38pLWxsHDhzIa6+9VuE5mzdvNh5bW1uXeczNzQ03N7dKn+f2fcDvvIcQQpjCyeh01hyOJCgsGYMCahUMbefCS/296eHpxNWrVwkICCA/P59Ro0bRrVs3aZUUjwwJlFVU3Q+JTp06GbclPHHiBL169Sp3TnJyMs2aNQPg6aefZseOHfe8Z2VdMNVxr9/I7xQVFWU8rqwlsrJ72Nra0qVLlyrdQwghasq64zH8wz8UtVqF4b+/jxsU2HsphcCLyUzyNtAo4U+8vb0ZPXq0tEqKR45svWgir776qnFbrk8++aTCc27/+csvv1zmsfwiPalZBeQX6WuvSEp+I5+z/hTtFu2m59K9tFu0mznrT3EqOv2u12zduhUoGYM5fvz4B37O8PBw45JDM2bMuO+9cIUQojacjE7nH/6hKIDeULZ3R29QUICfI1W06j2U559/XsKkeCRJC6WJeHl5ERQUxJQpU/j9998ZM2YMb775Jt7e3ly7do3vv/+eb7/9Fo1Gw5IlSxgzZgxQeZdLTarsN/IlYzvwfO+y4zlDQ0M5duwYAEuWLMHKyuqBn3f16tUAODo68ve//716L0IIIappzeFI1GpVuTB5O41axeHrFjwvXdziESUtlCbUp08fwsLC+Oc//8nBgwcZNGgQLVu2pH///qxfv55XX32VkJAQ3nvvPaAk4E369zH2XkoxBjy9QeHXH9fQy9cdlUpFcHBwpc/r6emJSqWq9Gt6X0+iPxlF5NKR3Dzpb7y+9DfyhVtDy7RUKorCvHnzgJKxlrNnz37g9+Ty5cusXLkSgG+++QZnZ+cHvocQ1aUoCitWrMDGxua+/14BREdHs3LlSp555hl8fX2xsbHB3NwcFxcXBg8ezPLly8nNza3d4kWNyi/SExSWfM8wCaA3QGBYUq33GglRV0kLpQmFhITwyiuvcObMGfr06cOMGTNo0aIFycnJbNq0ibVr15KZmcmSJUtIUzuU63IpykgibccyCq6FGu95JekmA2uhVo21Q7mfqdUq1hyOMraMfvLJJxw4cABfX1/Wr1//wONMc3Nzee655ygoKODtt9/m2WefrZHahXgQkZGRzJw5k4MHDz7QdV988QXvvPMOAI0aNWLatGm0b98eg8HAuXPnWL9+PQcOHOBf//oXu3btqnNbqory9Ho9V2PjqSRLGhkUyMovrnScuRANkQRKEzl27BhDhgwhLy+PadOmsXbt2jL7Xc+YMYMFCxawdOlSdu7cyaA3v0StblLSOqgoZJ3eTsbBH0CtxtytDYUJVwDYcSGROZPv/rwGgwFFUejWrRv/+te/KCwspKCgwPhVWFhIdm4+S88Y0GdnkLxxAWqLRlj59Cl3L71BMf5GviNgK3//+99xc3Nj165dODk9WPe7Xq9n2rRpnD17lilTpvDpp5/e97VKNba+vJPBYOAvf/mLcU3R6txL1C+3/3+k0Wjo06fPA60te/36dQBcXV05fvw4LVq0KPP4vHnz6NevH9HR0YwePZrQ0FDMzc1r9DWIqlMUhRs3bhAfH098fDwJCQkkJiaSX6RHRTcUKv8FWa0CW0v5Z1U8muT/fBNQFIXZs2eTl5eHjY0NK1euLBMmS3344Yds2rSJyMhIti37G24vrUKl1pB5eAOZRzZi6dWNxk+9Tva5QGOgDIlKZ+u2HSjFheTn55f7KiwsJDMzE5VKxYEDB8o8n7m5OZaWlhSbWaFt3ILcK8cBBesOg1FrLSp8LQYFAnbsYvrUqTg7O7Nv3z68vb0f+P14+eWX+e2333jmmWf44YcfKnw/KlLV1qS7WbFixQOFCNFwVHezglKffvppuTAJ0KVLF15//XU+++wzdDode/bswc/PryZKF1WQk5NTJjzGx8eTl5cHlIzfdnd3p23btri7u5McnMy+K6mVjqEc2tZFWifFI0sCpQmcPXuWsLAwAAYNGoSdnV2F52k0Gvz8/Pjyyy8pvpFIfsx5rLy6AuD01DxsOw+r8LqrsfE4NdJiaWmJg4MDlpaWZb6OHj2Ki4sLL730kvFnFhYWxMXFcf78ec6FhoHiTva5kmWNbLoMv+trKYg5y4wv/4m9vT379+9/4G48RVF45ZVX+O677xg3bhwbN27EzKzy/y2r25pUkdjYWJkE9IirzmYFHh4edO/enWHDKv57CdCjRw/jcVhYmATKh6SwsJDExMQy4bF0/d9GjRrh7u5Or169cHd3x93dnUaNGpW5/qUnbAi6lHLP5zAYFGb396q11yBEXSeB0gTCw8ONx56envc818vr1gdUUUoUVl5dse8/5Z7jE9v7tuLxfn3uuiDQEAM9AAAgAElEQVR46fqXUNJNd+zYMS5cuEBmZiYODg707dWDHZuOEJOZjIV7W8ybVlxjQex5UrYswc7aiqCgINq2bXvP11KR119/ndWrVzN69Gh+/vnn+wqTUHOtSbd75ZVXyMvLY+TIkZWu+SkanupuVjB37lzmzp17z3Nu/ztZlRUQROUMBgMpKSnG1sf4+HhSU1NRFAWtVourqytt27bFzc0Nd3d3HBwcKv1z7+npxJKxHVi4NbTcbG+NWoXBoLBkbIcaX2lDiPpEAqUJ3N6dW9mONQaDwXisouT4Xh9+zdTZnDh6mBNHD2NnZ0fbtm3p1atXmTGN2dnZhIaGcv78eRITE7G0tKRdu3Z07tyZJk2a8Pvvv5NyZAsANl1GVPg8+XFhpGxZgpWFOZMnT+bw4cNYWVnRunVrY31z5swhMTGRgICACu/x5ptv8tVXXzFy5Eg2b96MVqst83hiYiJ+fn68/PLL5dbhhOq1Jt3pp59+YteuXbz11lvY2tpKoHwEPYwdTU6fPm08HjRoUK0/X0OnKAoZGRllwmNiYiLFxcWoVCqcnZ3x8PCgd+/euLu707Rp0/seTnOn53u35DEXW9YcjiIwLOnWsm1tXZjd30vCpHjkSaA0gdtbJa9evXrPcyMjI43Hatumld77ucfbMPqJnpw4cYK4uDhOnDjBiRMnsLKywtnZGb1eT1xcHGq1Gl9fXx5//HF8fHwwMzMjOTmZNWvWkJKSwrWIy1hYWdPosb+gUYH+ttxbmHCZlF8WodWoeOP1ucycOZPDhw+zYcMGvL29GTp0KM2aNePKlStER0dXWOdf//pXli1bxogRI/j1118rnJxQUFDA6dOnSUhIKPdYdVuTbpeWlsabb76Jp6cnH374IZ9//nmN3FeI2127do0VK1YAMGvWLDp27GjiiuqfnJwcY5d16VfpuEcHB4cy4x6bNWtW45Oeeng60cPT6YF2DhPiUSGB0gS6d++Om5sbCQkJHDhwgLS0NBo3blzuvKKiIuOuMxqNhqmDu7E1qaSlUimzhOittKc7+Qfqgb2ZMWMGxcXFHD16lJMnT5KdnU1MTIzxXq1ataJ79+54eXmh0Wi4ePEi/v7+ODk5odFoKCoqone3bgxtkUWqkyd7LiaioKIwUUfqz/+AonwWLPiApKQkVqxYwdChQ1Gr1Zw6dYp9+/bRunVr0tMr3k1nwYIFfP7557Ro0YI33njDuBD6nZKSku76HtZka9L8+fNJTU3lxx9/lH3DRY3Jzs4mKyuL+Ph49u3bx//+7/8alwF7//33TV1enfcg4x7d3Nwe6t9dS61GgqQQd5BAaQJqtZqPP/6YF154gfz8fGbOnMmWLVvKdPkqisKrr75KXFwcULKM0KevjEP1v6uJ1Hpx4QbGLhdHTRGZ/73Ozc2NTZs20bJlS9LS0sjOzqZx48Z0794dR0dHLl26xNWrVwkPDyc8PByNRoONjQ2ZmZm0bduWMWPG0K5dO6Ak+L76zLCSe275jdj4JJauWkxxQcnCzIsWLTLWu3z58gpfq4uLCwUFBVhYlMwSX7t2LUuXLgVKJsE89dRTNfrePqg9e/awfv16pkyZwogRFXfvC1EVc+fO5YcffjB+37dvX5YtW0avXr1MWFXddOe4x4SEBFJSUlAUBTMzM9zc3HjssceMk2buZ9yjEOLhkkBZDevXrzcenz9/3ngcFBRkDIIuLi4MHTq03LXTp08nJSWF999/n4CAADp06MDzzz+Ph4cHKSkprFu3josXLwLwwgsvsHr1av744w8aGzJZPOcJsnILWLFqNTOnTWH5zWZ89UfJfW/evImjoyMxMTE0bdqUSZMm4eHhYfzw7dy5MwaDgZiYGE6cOEF4eDiZmSVx9PLlyxw7dozIyEiaN2/O448/jpubGwAWGhXqolwy/9tCcL8KCgpYsWIFgwYNomvXrnftAjeFnJwc5syZQ+PGjVm2bJmpyxENzF//+lemTp1KZmYmp0+f5vvvv6d37948+eSTfPPNN7Ru3drUJZrEneMeExISSEhIKDPu0c3NjZ49e+Lu7o6zs3OVxz0KIR4eCZTVMG3atAp/XtoCBzBgwIAKAyXA22+/zejRo1m9ejXbt29nyZIlFBUVASWtmM7OzixcuJC5c+eSk5PDsWPH6NWrF3Z2duj1N7BSFRMTGUF8fLzxnjY2Njz33HPcvHmTXbt2ERwczMSJE7G0tDSeo1arsbKyIjk5GSsrK/r3709SUhKXL18mMDAQKGmdTE5OJjg42LgUkJOTE4qicPbsWfz9/Zk3bx6Ojo5ASffejz/+SG5uLtOmTcPFxQWAzMxM9u/fz/bt2zlx4gRTp06t0fGP1bFgwQJiYmJYu3YtTZtWPj5ViAfRrl07Y2v/M888w7vvvoufnx979+6ld+/eHD16lDZt2pi4ytp357jHhIQE4/aTpeMeBw0ahLu7O66urrLYuxD1lATKKpozZw7m5uYUFhbSvHlznn32WVq3bk1+fj67du0yLs3j6upapsv3TqX7/YaHh9OoUSOGDRuGSqVCq9USGBjIvHnzSE1NpW/fvqhUKvr27Ut4eLhxtujRo0fL3K+goABfX18AGjduzC+//MK3337LlClTjOHvwoULBAQE0LRpU1544QUcHEq2VYyLi2PhwoVYWlrSoUMHMjIyOHjwIAcPHsTMzAxLS0tCQkI4fPgwmzZt4quvviIzM9O4FEfPnj1xdXVl7dq1TJs2DTc3N+zt7Rk3bhxduvdkR+A+fvxpI9aW5uTm5nLmzBlCQ0NJTk5Gr9fTuHFjunTpwsSJE5k2bdp9LyFUFSEhIaxYsYInn3ySF154odaeR4hSDg4ObNiwgVatWpGens7MmTM5cuSIqcuqUUVFRcZxj6VfpeMerayscHd3N7Y8Puxxj0KI2iWBsop++OEHCgsL8fPzY9OmTWUWwn3jjTdYtWoVr776Kps2bUKlUrFhw4YK7/P111+zePFiLC0tmTt3LnZ2dowZM4b27dsTEhLCgAED+PDDDxk1ahRjxoxh1apV5ObmGifxjBkzBkVRjJN3UlNTiYuLw8PDAy8vL2bNmsWGDRtYs2YNkyZN4vLlyxw/fpxOnToxatSoMuM2lyxZgl6vp1evXrz99tukp6cTGhrKxYsXKSgoYOPGjbz77rvo9XocHR3p2LEjzzzzDAaDgV27drFx40YAevXqRVFREdOnTyfZYMOaw5EEhSVjUJpwI2gLN09vB0paU6dPn06HDh3IyckhJCSELVu2sGvXLpYvX86uXbto1qxZjf/ZFRUVMXv2bCwsLFi1alWN31+Iu2nevDkDBw4kKCiIo0ePEh4ebvwFsL4xGAykpqaWCY+3j3t0dXWVcY9CPEIkUFaDtbU13377bbldFaBkkWx/f392797Nxo0beeONN+jdu3eZ5SZu3kjj3XffBaB37964ubkxefJknJ2dAfDx8WH8+PFs2LCBwMBAunfvTr9+/ejUqRPW1tb83//9X4XP7e/vz//8z/8A0KRJE2bPns3GjRtZu3YtACNGjKBXr15lPtxTU1PZsqVk7cnZs2djb2+Pvb09Xl5ejBw5kk2bNnHu3Dn0ej2+vr5MmjQJMzMzbty4QatWrfjoo48YMWIEb775JiEhIajVai4XN+VwgUfJwr//nYhenFsyXlPbtCUjZ7+Jm3U2bdq04S9/+QsWFhbs3r2bp59+mrNnz/Lss8/W2JaKt/v000+5cOECn3zyCa1atarx+wtxL23atCEoKAiA0NDQehEoS8c93t51nZiYSFFRUYXjHps2bYpGI7OghXiUSKCshr59+95z7N2ECRPYvXs3AKt+/JnvdJr/ttSVzM62D/2V7OxsAPz8/HjppZcAOHXqFBcuXCA2NtY4FrGwsJDi4mLjtm6lY5BuX/gcSiYBXb9+vUzLR0ZGBpmZmWg0GvR6vXHdtlKKovD555+Tnp6Op6cnU6ZMKfO4Wq02bg9pbW3NTz/9RGJiIn/++SeKohAdHU1ERAQAHTp0IDQ0lOPHjxPt+wwWblS4/63TsFc5obRm4GPmHDt2jD///JOBAwcybNgwJk6cyC+//MIff/zBhQsXanS9vvDwcD766CN8fX154YUXuH79erlzSt9bKBkDevs5TZo0qbFaRMORm5vLzp07y4ybvJvbh3IUFxfXdmlVkpubW26f6zvHPbZp00bGPQohjCRQVtHvv/9O8+bN73lOixYtjMebD57FxeFJY0udQYGLR0omwNg3dmbEiBEEBASg0+kwGAy0atWK8ePHExoaipOTE+np6WzZsoWPPvoIuLXbzp2Bsl+/fpw9e5bt27czf/58zp8/z/bt23FxcWHmzJmcP3+eAwcOkJ6ezujRozEzM+PcuXPs3LkTKJlodPsEnlKlrZl9+/Y17kfcpEkT9u7dS7t27dDpdOTl5dG6dWtCQ0MByNOdwMKt7N7eZg6uWLi3xcK9LWq1irN5Tnw6dy779+9nx44dhISElFn4PSwsrEYD5dGjRykoKCA8PBxXV9dKzx87dmyZ7yvb2Ug8mlJSUpg4cSL/8z//w8qVK+95rk6nMx7f/hlhKrePeywNjzdu3ABujXvs0aOHsetaxj0KISoigbKK7mf9xNLleABUWosyLXXFWdcpSi+ZnV3o5M1Xv+ymi7stTz75JB06dMDGxoa4uDjCw8Pp2rUr+/bt48qVKyQkJODm5mYMeHcGSnt7e3x8fNDpdKxbt47o6Gi6dOnCyJEjMTMz4/HHH8fBwYGAgADS09N58skn2bJlC5cvX8bKyoqpU6cSHR2NXq+nuLjY+N/r168zY8YMBg4cyOHDh40tnYqicOPGDR577DEyMzNJTk6+9Rpvlm/9cxww3XisNygEhiWx7NkujBs3jt69exMUFGQMpFDz+x0PHz7c2N14Nz/++CPr1q0D4IsvvqBz5841WoNouPbs2YNer79rd29cXBx79+4FwNnZmZ49ez7M8sqNe0xISCA5ObnMuEdfX19jeHR0dJRxj0KI+yKBshZFRUUZjy2aty/zWFFqjPFYa9eEtCadefxxd/R6PRERERQXF3Ps2DFsbGyMs7ChZGHwTp06GZcXOnbsGBcuXDA+vmPHDlq2bAlAdHQ0FhYWXLlyhbCwMPR6PXq93nhufHw8P/zwAyEhIej1ejp16sSmTZvu+no8PDyIiYkhLi4OMzMzNBoNWq3WuIacmZlZmX98VNqKZ7bfzqBAVn4xlloNbm5uTJ8+nW3btgElO/pkZGRw8+ZNY5d7dbm6ulbaMnn48GHjcffu3Rk4cGCNPLdo+CIiIpg/fz6ff/55uZb+tLQ0Jk6cSEFBAQCfffZZrY4zVBSFzMzMcvtcl457bNq0aZnWRxn3KISoDgmUtei3338HQG3tQCPffmUeK85MMR6rrR0JSchnw8+bMVOV7VI1MzMjJyfH+P3Fixdp3LgxJ0+eJD09naioKK5du2Z8XKfTERMTg16vx9ramsGDB9OqVSs0Go0xBJb+Nz4+nuPHjxuXIFq6dCnt27cvd56ZmRl79+4lKiqK1157rUx9V69eZf369XTo0IHIyMgye5PfGaIrokIh4nIoth3bY2lpyblz59i+vWQW+OzZs0lOTmbFihX07dvXOHFHiNpS1c0KbGxs8Pb2JjIykpUrV7J161YmTpyIt7c3FhYWXLhwgZ9++on09HSsrKz49NNPa3y5qtzc3HL7XJeOe7S3t8fd3Z2BAwfKuEchRK2QQFlLQkNDOXH8OAAOjz+P+o7WOkPhrYkxKo0WBRVFaDDj1iB9tVpN48aNy0z8cXV1ZdiwYbzyyisVPq+/v7/x2NPT0zgj+87Z4MXFxQQHB5OWlkZ6ejotWrTA3t7eOAnoTmq1usz4wcLCQnQ6HSdPngQwdiNfvnwZAAsbB6x9+9zl3fnv68aAe1ESWzYd4Pv/ZJGWlsbu3bvRarWsXLmS2bNnU1BQwOHDh8tM3OnWrZvsnCFqRVU3K2jSpAkRERFlFvFfv369cdhL6TJbQ4YMYcaMGZWOv65MUVERSUlJZcJj6bhHS0vLMi2Pbm5u2NjYVOv5hBCiMhIoa4GiKMybNw8AK+/u2HQeXv6c4oJb32i0qFDQUtIdbW1tTU5ODt7e3tja2pbphvrzzz/58ccf+eCDDwDQarU4OjpSUFBAZmYmbm5udOvWDUdHR06fPk1YWBgHDhxg5MiRZZ7/yJEj3LhxA19fX9asWUOzZs3Yvn07aWlpPPnkk+UCm0qlQq/Xc+bMGc6cOUNcXJwxYJqZmWEwGHj88ceNdfUZ+CTR2nuPf1RQk7RjOf93+daYSR8fH0aPHo2HhweJiYk0a9aMIUOG0KNHDw4cOMCOHTs4ceIEQ4cO5cSJE8Yu9gfd+vJOQUFBxvGfd7tXp06d6NSpU6X3EvVXdSZdqVQqhgwZwpAhQ2qwIhn3KISoH1SKTFutcR9//DHvv/8+vr6+9Hnzaw5fKyi3dE7mid/IOPAdAE6DZzLimed52i6Bq1evlvlHTaPRcPnyZX766SegZA3F2bNnk5mZybp16/D29iYpKYnc3FxsbW0pLi4us+xNKTunJjSyc6SJvS2NLMw4deoUbm5uxMXFMXXqVFq1akVISAh79uzB19eX8ePHY25uTmZmJpcuXeLw4cNlut4tLCxo3749PXv2xMLCgi+//JKAgADOnDlDmzZt2L59O8dSzVgYEIoaMHDrHziNWoXBoLBkbAfaml0nNTWVK1eusHfvXvbu3UtBQQHt2rXjqaeeonnz5nTr1o1OnTphZ2dHYmIigYGBREdHG8PrvQwYMIDg4OBKzxs4cGCla14uWrTovp5TPDpuX1fWUlv98Yd3jnss3ee6dMx06XqPpeHR2dlZxj0KIeoECZQ17Ndff2XSpEk0a9aMQ4cOkaZ2YNK/j3Hnm5x1Zhfpe74CwOGJ53l76tO8+fwYQkND2bVrF56enly7dg29Xs+xY8eMWzmOHz+eyZMn4+Xlxc6dOzE3N8fc3JxJkybh4eEBlHRn37x5k5s3b/JT4HECY4qJNTigoEKFQgt1Bu3NknFRZxvrsbCwwM7ODrVaTUpKClqtFjMzs3LhtHPnznTr1o3mzZuXaQUZN24cW7duxdnZmSNHjtC6dWuuXLnClxu2c71xJ04mFqCgQq2CYe2aMbu/Fz08ncq9fzExMQwePJjIyEgcHR2ZNWuWsbuutBuvbdu2xMTEEBQUxPXr1+ncuTODBw+usYk7QlTmZHT6bTtAlawrO7SdCy/1967w/+u7ycvLK7feY+kvbqXjHksDpKurq4whFkLUWdLlXYMCAwOZOnUqzs7O7Nu3D29vb7yBJWM7sHBrKGq1ythSaWbvbLyuo10R2oxrrFq1Cr1eT4cOHZgwYQIFBQVcuXKF4/8diwnQtGlT4uPjCQsLA0rGMvr4+JCRkYGjoyPW1taYmZnh5OTEjvAs1kTZAgrKf1sIFVTEGuyJKXSgr1ks707oh1qt5tq1a8THx5OamoqiKBQWFlJYWFjuNcbHx5OVlYWdnR12dnbY2try66+/4u/vj62tLb/99hutW7cG4PTp03T1sKNfPzc2bf6VOXPfoIm9zT1bclq2bMmGDRvo06cPN27cIDw8nBkzZnDp0iXjP7zbtm3D29ubYcOGkZGRQXBwMBcvXqx04k5NtyaJR9O64zH8w7/k7/Pt68ruvZRC4MVkloztwPO9W5a77s5xjwkJCaSnpwO3xj12795dxj0KIeolaaGsIfv27cPPzw9bW1uCg4Np27ZtmcdPRafzn0NXCQxLRkGFIes6176aAZTsx/3DDz/w/fffk5mZyeOPP05oaCjvv/8+OTk5PPHEE/zxxx8ALFu2jIyMDON9HRwc0Gg0pKWlASVjBr28vDh6MZr//f4XCuIuoc9JB7UZGhtHtE4eWLboiJVPb7QOLrzZEYoSLpOTk4NarcZgMKBWq/H09CQ9PZ3s7GwGDBhAfHw80dHRdO7c2dj6mZmZydmzZ9m4cSNWVla88MILuLi44OjoiJWVFXFxcfj4+GBpacmFCxd46aWXcHBwwMrKqtIxXr6+vuh0OrRaLTdu3MDS0pLo6GjOnDnDlStXjDuMmJub4+vri1ar5cKFC1hYWJSbuFNTrUlCnIxOr7DH4XYq4OeX++BprS+3z7XBYECj0eDq6mrstpZxj0KIhkACZQ04ePAgTz/9NI0aNeLAgQN06NChwvP0ej0fLPknQ0aMpE/3LrRr40NUVBSurq5ERkayfPly8vPz+e6774iJubVOpaurK4mJibRu3Zp3332XpKQkOnbsyPnz543jLVu0aIGTkxMZGRl88cUXXLhwAXNXXxr59EZt7YghN4Pcy0coTC5Z1seu1zicBr9IS81NBpuX/MzT05OOHTvStm1bLC0tKSoq4vfff+fSpUt4e3uTmprKW2+9BUBOTg6LFy9m2bJl2NjYsGXLFhITE4mNjaVLly5ERkaSlpaGjY0NWVlZZd4HMzMzYwvn3b4mT55sXD7o9OnTdOvWrcz7GBUVxcmTJ7l69apxbc1GjRphbW1NamoqTZo0KZm4k2bOPwIulmkdhrLjOCtqTRKiInPWn2LvpZQKtxMtpUahpSaTgdqS7UhL13uUcY9CiIZMuryr6ciRI4waNQorKyv27dtXYZicM2cOiYmJ+Pv7Y6ZSsDNXYanVMHnyZD7++GMSExPZtGkTf/zxB8HBwahUKpo3b25cXzIxMREoCY1ZWVnMnDkTNzc3wsPD6datG/b29ly8eNG4VElsbCxOQ1/BtvuoMnXY951EasDn5IaVTD5RUBNdbMeZyxfYtX0bBQUFLFmyhPj4eLRaLVqtlmbNmpGXl0dkZCQajYYLFy6Qm5tLnz63lgS6cePGXWe2jhw5kv/3//4fp0+fZujQoezfvx9PT0+sra25efMmN27cICYmhqysrDK7/ty+nmVQUBDp6ellAmezZs2YPHkyBoOBiIgIQkJCiI6ONo75zMjIYNlP29hZ2AZQlQsApd8v3BrKYy620lJZyxRFQVEUDAZDtb9q6j73e6/ScwqKDQSGNzYOH7kbAyqi9Q5MnjENz+buMu5RCPFIkEBZDcePH+epp55Cq9USFBR01yVlrly5QnR0NCqVCrVabWxRmzdvHsuXLycnJ4dFixYRGxvL8OHD+c9//sOKFSv4/PPPjfcwNzdnzJgxzJo1y7iXrlqtRqvV0qNHD3r06MG8efOIjY2l/8DBXLsjTJZy6D+F/KgzqLSWFGUkkbZjGVuv3Vq25+bNm8ZZpaVfpd3Ler2e3377jdjY2Pt+j6KioggJCaGoqIj169fzxRdfMGXKFMaOHYtWq8XZ2Rl3d3c0Gg2KoqDX6ykqKuLbb7813kNRFM6dO0dubm6Z0KnRaLC1tTWGzF69epGXl0dcXBzp6elcLHZBddv40Yqo1SrWHI6qtUD5IEHKVIGrus97v6HsYVGr1TXyVfr3tfTLoFdXGiZLKYCTi4RJIcSjQwJlFZ06dYoRI0aQnZ3N559/TmZm5l2Xp7l9zGPpOEWAZs2a8cknn/D6668TFxfH66+/zvLlywHKLUQ+btw4XnnllTK7W6hUKuO9IiMjWbVqFSqVirFjRrMyueIgpXVyx2PeT2Sd3k7it3NBraZt23ZculQyyefpp5+ucKvBgwcPcujQIaKjo41LGM2cOZPp06dTXFxs/IqOjubSpUsEBASQl5fHokWLSEtLK7Pk0NmzZ43v3Z3BtaioiOjoaGPrrKurKwUFBcbt6m6n1+vJyMggMzMTlUplDG8AxYrKOLP9XvQGhT0XE9nw82Y01HzAM2WQujMQPeiXVqut0v2q+7zVuV9tjkPML9Kz+Nxu7tHbfevPQgW2lvLxKoR4dMgnXhWkp6czbNgw4y4Yb7/9dqXXlO6vrdFoyuynPXXqVLZs2cIff/zB6tWr0Wg0tGvXjh07dhjPGTBgAO3bt+fHH39k4sSJ2NvbA7fCaVJSEgsXLqSoqAhXV1fyc7Jpoc64a6DKPLyBzCMbsfLqRv/n5qI/vt4YKBMTE1EUpcw/zEVFRYSFhREbG8umTZuMs7/Nzc1RFAWNRoNGo8HCwoJmzZpx8uRJ1Go11tbWTJo0ic2bN2NjY2PcHSQsLIz4+HjeeeedcmPJoqOjGTZsmPG9+s9//kO/fv2MoTM/P5+srCyysrLIzs4mNzeX3Nxc8vLyyM/Pp6CggMLCQvKKeIDWJBWZuQXYmZcEFzMzsxoPSbUdslQqlUzqqGWWWg1D27lUOoZSo1YxtK2LrCQghHikSKCsgtKxf1VxewslQHBwMH5+frz88sssXbqUDRs2kJGRUSYcfPDBB/j4+LB582b+/e9/M378eDw8PCgsLOTUqVMcOnSIvXv3AiUteu3bt6ddE2/e2nENRV+EotejNrcsU4fTU/Ow7TyUxywiSHS61d27Z88e0tPT6dGjB507d6awsJBNmzYRGxvL+vXrycu7tWXkqlWrWLVq1V1fa2mILigowMLCAmdnZ+MEo/fee48ffvgBPz8/vL29KS4u5vjx4/z222/k5eVha2vLG2+8QWFhIdu2bSM7O5usrCzy8/PLvZ+2trbY2Pz/9u49KKozT+P49xxuDd0tggoIKygXI4rxgkg0XsJOJE6S2Rm1cHQ1o5khSU1qN1VTs1smWzuZyU5mdzNVu0m2Nru1MZnUVGLiqMFsTIy5eCEqxhEFRZAVDF5QuQURGmiaps/+QTiRGA0zHZ0weT5VFtj9nu6Xhj+eet/z/n4uYmNj8Xg8tLe3E9br/dLtbvs1DLh/9UoFAPlShfNSea+y8bpjAgGLwnkTbtKMRES+HhQo/wjjx4//o7cyrwyUjY2NHDt2jLvvvpucnBxM0+T06dP4fD7Kysp444037OuSkpJ44IEHePXVV9mwYYO9xQv9hcybm5uB/i3rvLw8fv3rX9P18is0nT8HWBgRUTiSb2XE7NX2WTcAABNeSURBVO8RM28llmGwNLmX702ZyVMH37ffJzExkcjISN599107pEZERDBp0qRBYXIo/H4/Xq8Xj8eDy+XC7/fz2muvsWfPHvbv309NTQ3PPfccXq8X0zSJjIwkMTGRtLQ0srOzGTNmDJcuXcLtdjNmzBg7OA58dblcNDQ0UFpaypkzZ+z5maaJKzKC5N5rr9IO0GqS/CFyxsd+YV1ZGFw5QIe8ROSbRoHyJrPMUFq7/Hh7+9i1axcxMTHMnDnTbq3W09NDUlISfX19dqD0eDzs2rWLw4cP26eYB7alk5OTSU9P58knnwT6C49PnTqVzs5OHnnkEcrrGqnrjuDkkRK6az6iu+Yjpv/V/dw+I4uRzR6ysv6GnJwctm/fDvSXAzp37hyhoaH4/X5M06Szs5OwsDCefPJJ1q1bR0hICKZp8swzz5CSksLRo0eJiYkhIiKChoYG4uPj7QLpTz31FNAfnk+dOkVERASjRo1i1apVdih0u91XhcWIiIgv3ML1er2UlZWxc+dOGhsb7XDucDhIS0vDsiw+/vhjwsPDeXBhOv+4+5Pr/j60miR/qNW5KUyKd/PCvjreq2r4rLZpZvw1O0CJiPy5U6C8SQaKa7/XnI5V3I354Q7GGX08/K25tLe3s2nTJlpaWrjllluora0d1PJwy5YtTJjQH3rGjBlDdnY2TqeToqIiLl68iGma9tiXXnqJUaNGcejQITweD2zdyl3x8fTlZVL9f/P5z2f+jfI3X2LRLX+P5XTyzjvvDJrnokWLaG9vp6amZlCovHz5MpZl8atf/coe+/rrr9Pd3U1VVZU939DQUCZOnEh2djYTJkzg2/d+l/d2F3Nr5kTuvmvRoENFQ2FZFo2NjRw6dIiamppBNS1jY2OZNGkSWVlZlJeXc/jwYRwOB4sXLyY7O5vQ0FCs6DNaTZKv3KzxscwaH6vuSyIin1KgvAmubNU2sP0asOCcNZJ17zfy9v4yZkX3UFhYiM/n49SpU5SWltrXR0VFsXDhQqZNm0ZMTIz9+IcffkhXV5ddAHzAo48+yoQJE3j++edJSEigoaGBJUuW8O38O9mycQMNDQ288MILPPLII9TW1nLw4EH72ivDq9/vx+FwEBISQnd3N5ZlYZqmvdW+d+9eEhMTWbduHSNHjqSkpISmpiYOHz5MVVUVUaOTeLFxHKExEzFK4J3Lx4bUnaa3t5fq6mrKysqor6+3V29DQ0NJTk5m+vTpTJ06ld7eXkpKSnjppZcwTZOFCxeSm5s7KLRqNUluJEdYiIKkiAgKlDfcodOtPP6/x7HgqpOhgU/D5YddY5k9MYSXX37ZLq9z5T2ay5cv/8JSPiEhIaSkpAzqqgMwYsQI1q9fT0NDg71tvHXrVqD/oExDQwOXLl3iwoULJCUl2YEN+kPb4sWLmTx5Mk6n0179/Oijj/jggw+YPXs2lZWVAGRkZFBQUIDL5cLpdDJjxgzcbjfRt97Jtt88TVfLeXy/e5yEtU8T4nBdt9dxa2sr5eXlVFVV2W0kAZxOJ5mZmeTk5JCUlIRhGPh8PkpKSigpKSEQCJCbm8vcuXOJjIz8wt+BVpNERERuLAXKG+yFfR9ftd36eQYWm4+1sCjSS0ZGBjk5OYNWKI8fP47P57NPOg987enpoaGhgZaWFnvsQCkfj8dDWFgYvb29LFiwgHHjxuF2u4mPj7dXJBMSEhg9erRduBzgO9/5Drm5uVfNcSBY5ufns2jRInJzc/nkk0+orq62y/gA9I5MpiwymZhvPUDLG/+Cv+0i7SWbiPnLHw7qTpMxxsmoQBtHjhyhrq7OPr1tGAZxcXFMmTKFmTNn4nK57Dn4/X77VHtPTw/Z2dnMnz9/0Jjr0WqSiIjIjaFAeQN5e/t4v6rxSwshW5icDcQQHtlCXV3dVfcKlpeXY1kWTqfTDoUul4uysjJiYmLIzs5m48aNQP/2eEtLC36/n8jISDIyMsjLy7NfKzEx0f6+qamJ+fPnD5rLQI3Lz7vyVLlhGMydOxeAe++9l507d7J//37CwsJ492wfBhZRE2/DjBxBoLsdz7H3GZm3FsPoD6UGFute3EHepz3Ew8LC7JPdGRkZhIYO/rMMBAKUl5dTXFxMR0cH06dPZ+HChdecq4iIiNxcCpQ3UIfXP6SuGtBfXLu1o4tIw3/Vc36/n9bWVlpbW6967tKlS3ah8YGxA4XTu7u7OXv2LM8++6xdCLuiosIeW1FRwdixYwcd6nn33Xc5d+7coOLZhmHQ1tZGIBCgqKho0OOmaXLixAmio6NJzbiF9fv6sDAwTAiPm4D3zFEC3g56P6knfHQy0L/VfyYwkltnzGLO7Gzi4+O/8ES3ZVlUVlaye/duWltbmTJlCnfccQejR48e2ocqIiIiN4UC5Q3kdoRiGgwpVBrAfSsKcIT197RuaWmhuLgY6N+aXrZs2aB2gJZlUVJSQnh4ONOmTeO3v/0t9fX1eL1e+vr67N7YhmGQkZFBWFgYlmVRW1trv6fD4SA5OXlQQAsPD8fhcFz1XgPb4u3t7YMe7+npoauri+joaKpPncYi2X4t0znS/r7P0wqjP3vOwmBe3p2McV/d69iyLE6ePMnu3btpbGxk4sSJFBQUkJCQMOTPXkRERG4eBcobaKit2gwsks1LbHujiMzMTLKysoi9ontNQ0MDMTExJCUlDbqusrKSyMhIcnNzWbVqFU899RR+v5/GxkaSk5MpKCjg7bff5vjx4yxdupT09HRee+01+/qHH36YZcuWDTrUExUVRUFBwVVzPHLkCNu2bWPNmjWDVhO3bduG1+tlzpw5lJYdHdydxvqsI9DAdveAa/U6rqurY9euXdTX15OSksIPf/hDu2WjiIiIfD0pUN5gQ2nVZgErZsRzS2wSlZWVlJeXc+DAAfv52NhY3nnnHX70ox8NCnNXdt358Y9/zLPPPovX6+Xo0aMUFBSQkZHBgw8+yNatW9mwYQPp6els2bIFgMmTJ7N06dKr5lJdXW13trnSwPtalsVzzz2HaZqkpqZy5MgRAHbs2AFAavgI6nrdBCzo83zWnjLE9VlA/qLuNPX19ezatYu6ujoSExNZvXo1qamp6k8tIiIyDJhfPkSCMdCqzaA/SF0pxDQwgL/OCKGp8gD19fX84Ac/4IEHHiA+Pt4e193dzfnz5ykuLh5UTujKQJmSkkJhYSEAhw4dsh+Piopi5cqVjB8/nqeffto+/b1+/fpr3re4bdu2a/48RUVFPP744zz++OP2afHRo0eTn5/PT3/6U/71/nwCFlj+XnxNH/fPMyqa0NjPVlev7E7T2NjIxo0befHFF/F4PHz/+9+nsLCQtLQ0hUkREZFhQiuUN8FQimt//PEt/OxnP2P79u1MmzbNrkcJ/TUam5ubOXr0KJs2bWL58uVMnToVwzDs4GhZFhkZGcydO5cDBw5wzz33sHbtWrKzszlw4AA7d+6kvr6eiIgI7rvvPpKTk79wri6Xi5MnT9LU1MSoUaOorq7m8OHD9rZ4ZWUllmXR2tpKb28vU6ZMYeXKlfb14aeOMif0DO8fO4nV0989xzXtLgzDGNSdJnVEfzitqKggJiaGJUuWkJWVNeiAkIiIiAwPhnXlkpfccNcrrj2UFbmMjAzuv/9+fD4fDocDp9PJfffdR1NTE6+++ipOp5PZs2ezfv16iouLuXjxIiEhIaSlpbFs2TLWrFnDnj17uHDhAvn5+cyePZsnnniCJ554AoCXX36ZU6dOERoaSl9fn70iGhERQU9PD2vXrmXhwoWcOXOGlJQU3njjDaZPnw7AyZMn2bhxIyNGjODnT/wT7W2XCBv1FyT84N8JdUSRPzmBFTPi6Pi4nLKyMlwuFwsWLGDGjBmEhKg+pIiIyHClQPk1Y1kWFRUVbN++HYfDwZIlS0hJ6e8q8+GHH1JcXExhYSFtbW3s2LGDjo4OLMuyi5jfdddd3HbbbZw/f56NGzdimiYrVqxg7Nix9nv09fXx2GOPUVtby7hx46itrWX79u0AzJ8/3z71HRcXx4oVK8jOzubMmTO8/vrrPPbYYxQUFPDmm28CMHbsWFatWkVcXBz79u2jra2Njz76CJ/PR05ODhs2bmLkmLGYfT2UHjzAoUOHCA8PZ/78+cyaNYuwsLCb/AmLiIjIV02B8muqra2NrVu3cvbsWW6//Xby8vLsAzGjRo1i1apV/G5LEc1tHUxKG0/J3mL72ri4OFpaWkhISGDlypVXHbAZ6Mn9ZVJTU6mtrcUwDCorK9myZQuPPvoogUCAdevW0dXVxenTp6msrKS5uRnTNElISCAnJ4cVK1awdOlSu9/2wYMHMQyDOXPmcNtttxERcXW5IBERERmeFCi/xgKBACUlJezevZu4uDiWLl3KJ598wn+89jaXE7IpOevpLyKORbLZxkN3pBNorOXUqf4ONKZpMnHiRLKyskhNTeXEiROUlZVx8eJFu/j5QLDz+/1897vfZerUqQC8+eablJWVsXjxYnJzc6mqqmLz5s2sW7eO8vJy3n//fX7yk5/g9/v5zW9+Q1RUFGvXrsXhcADg8/n4/e9/z/79+/H7/cyePZvbb7+dqKioP8EnKSIiIjeSDuV8jZmmybx580hLS6OoqIjnn3+eQNrtbPfdgvFpmIT+IuFnAyP5h10tzA1r52+/nc/kyZMpLy+ntLSU6urqQa87cuRIMjMzyc3NJTo6Gp/Px1tvvUVRURHnzp0jPz+fu+++m4qKCnbu3MmsWbPs+zsDgQClpaVkZmZiGAavvPIKoaGhrF69GofDgd/v58iRI+zdu5euri5mzpzJggULcLvdN/3zExERkZsj5Be/+MUv/tSTkOtzu93MmDGDYxc7+a9jPvr76nz+AE//Y+cCI0k02zm89wNqamrw+XyYponT6bTvszQMg9jYWEaMGEF0dDShoaFMmjQJp9PJvn37qK2tJSMjA5fLRU1NDd3d3ThHjKSs6iSJY8dSdriUO++8k7feeovOzk7WrFmD2+22T6FXVlaSmZnJ8uXLufXWW7W9LSIi8mdOW97DyEOvlPJBVSN91/mNGQRINtv4tvs8ycnJ5OTkkJ6ejmEYWJZFY2Mjx48f5/jx41y+fBm3282UKVPIysoiMTGRCxcusHnzZnw+H0uWLOG/t7zHYU80ZwMxWPR39UlzdLIwvo/QS2dYs2YNly5dYs+ePbS0tJCZmUleXh5jxoy5aZ+LiIiI/GkpUA4T3t4+Jv98x5D7gh/8u7mMjom+5uEby7Kor6/n+PHjVFZW0tnZSWxsLFOmTCE9PZ29e/fyVvVlDviTP22n+NnrmFgEgPuzIknw1NLQ0EB6ejp5eXkkJiZ+NT+wiIiIDBsKlMNEc0cPOf/8wZDHr4goJ9Lw43Q6cblcuN1uXC6X/W/g/263m6ioKM6fP09FRQUnTpygp6cH34hxbGiK4+qt9StZ3D+ujbX3zLdLG4mIiMg3jw7lDBNuRyimwZBWKE0DVi1fRq+3i46ODjweDx6Ph+bmZurq6vB4PPYp7wERERG4XC4SEhKwLIsNZ52frkxeO1CGGAYXR0xSmBQREfmGU6AcJhxhISyaHM8HJ5rou06qDDENFmXGM3XypGuOsSwLr9drh80rv3Z2dtJ6uYNT3qjrhkmAPgveq2rE29t3VdcfERER+eZQoBxGCuel8l5l43XHBAIWhfMmXHeMYRhERkYSGRlJXFzcVc83d/TwqyFurwcs6PD6FShFRES+wb68XYp8beSMj+WX38vCoH8l8kohpoEB/PJ7WcwaHxvU+wxsrw+FafSPFxERkW8uBcphZnVuCpsfmsOizHg79JkGLMqMZ/NDc1idG/z9jAPb658PrZ8XYhrkT07Q6qSIiMg3nE55D2Pe3j46vH7cjtCvPNQdOt3K8v85wPX+OAxg80Nzgl4RFRERkeFNK5TDmCMshDHuiBuyQnizttdFRERk+NMKpVxX6elWXthXx3tVDQSs/u31/MkJFM6boDApIiIigAKlDNGN3F4XERGR4U2BUkRERESConsoRURERCQoCpQiIiIiEhQFShEREREJigKliIiIiARFgVJEREREgqJAKSIiIiJBUaAUERERkaAoUIqIiIhIUBQoRURERCQoCpQiIiIiEhQFShEREREJigKliIiIiARFgVJEREREgqJAKSIiIiJBUaAUERERkaAoUIqIiIhIUBQoRURERCQoCpQiIiIiEhQFShEREREJigKliIiIiARFgVJEREREgqJAKSIiIiJBUaAUERERkaAoUIqIiIhIUBQoRURERCQoCpQiIiIiEhQFShEREREJigKliIiIiARFgVJEREREgqJAKSIiIiJBUaAUERERkaAoUIqIiIhIUBQoRURERCQoCpQiIiIiEhQFShEREREJigKliIiIiARFgVJEREREgqJAKSIiIiJBUaAUERERkaAoUIqIiIhIUBQoRURERCQoCpQiIiIiEhQFShEREREJigKliIiIiARFgVJEREREgqJAKSIiIiJBUaAUERERkaAoUIqIiIhIUBQoRURERCQoCpQiIiIiEhQFShEREREJigKliIiIiARFgVJEREREgqJAKSIiIiJBUaAUERERkaAoUIqIiIhIUBQoRURERCQo/w9eu4HHEiEivgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "from gem.embedding.gf import GraphFactorization\n", "\n", @@ -71,9 +129,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAMtCAYAAABze4tXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXiU9b3//9c9M0kmCZnsZIEAQRA0LFGWgOIGnIOAHunx9IC2ajmox/OrFETrJWrBtlq+tVo37Be1PdX2fC0ca6uWzSWxFRVBdsImArInBMjGJJNkZu7fH2MiERICuSczmTwf1zVXmns+9+d+D73Sa179bIZpmqYAAAAAAO1iC3UBAAAAABAJCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWMAR6gLCld/v15EjR5SQkCDDMEJdDgAAAIAQMU1T1dXVys7Ols3W8vgU4aoFR44cUU5OTqjLAAAAABAmDh48qJ49e7b4PuGqBQkJCZIC/4AulyvE1QAAAAAIlaqqKuXk5DRlhJYQrlrQOBXQ5XIRrgAAAACcc7kQG1oAAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABRyhLgCAdUzT1EnPSXl8HjX4GhRlj5LT7lSKM+WcJ4oDAACgfQhXQCdW7inXmpI12n5iu7aWbdX2E9tV4605o12cI06Xpl6qwemDdWnqpSrILFCyMzkEFQMAAEQuwhXQyZimqc1lm7V412K9u+9deU2vHIZDXtPb4j013hqtK12nTcc2NbW/Pvd6TRs4TUPShjCqBQAAYAHDNE0z1EWEo6qqKiUmJqqyslIulyvU5QCSpKIDRVq4caF2V+yW3bDLZ/ouuK/G+/sn9dfMy2bqul7XWVgpAABA5GhrNiBctYBwhXBS4anQL9b8Qiu+WiFDhkxZ92fb2N/EPhP1cMHDSnImWdY3AABAJGhrNmC3QCDMFR4o1I1v3aj39r8nSZYGq9P7e3f/u7rxrRtVeKDQ0v4BAAC6CsIVEKZM09QrW17R7A9nq7Kusl1TANvCb/pVWVep2R/O1m+3/lYMagMAAJwfwhUQhkzT1HMbntPzG58P/G7xaFWLz/36OY3PJmABAAC0HeEKCEO/3fpb/a74d12+BgAAgM6EcAWEmcIDhU0jVqH23IbnVHSgKNRlAAAAdAqEKyCMVHgq9Ninj8lQeJw7ZcjQ/E/nq8JTEepSAAAAwh6HCANh5BdrfqHq+mpL11j5PD4dX3FctXtqVbuvVj63Tz1m9FDyVclNbUy/qYpPKlS1vkq1B2rlO+VTdHq0EgsSZU40tWDtAv3y6l9aVhMAAEAkYuQKCBNFB4q04qsVlu8K6Kv2qeztMtUdrZMzx3nWNv56vw7/7rC81V6lXJuirFuzFNs3Vsf+ekz7nt6nZXuX6cMDH1paFwAAQKRh5AoIA6ZpauHGhZYfECxJjiSHBjw7QFFJUardV6s9P91zRhvDYajvI30V1z+u6VrKtSmKTovWsb8eU832Gr2Q/IKuzblWhhEeUxYBAADCDSNXQBjYXLZZuyt2B2XLdVuUTVFJUa23cdiaBatGrssDJ5B7jni0u2K3thzfYnl9AAAAkYJwBYSBxbsWy27YQ13GGbyVXkmSPcEuu2HX4p2LQ1wRAABA+CJcASFW7inXu/vetXytlRXKVpTJFmtTwuAE+UyfVu5bqXJPeajLAgAACEuEKyDE1pSskdf0hrqMMxz72zG5t7mV8d0M2eMDo2pe06u1JWtDXBkAAEB4IlwBIbb9xHY5jPDaW6ZyTaWO/eWYkq9OVurY1KbrDsOh7Se2h7AyAACA8EW4AkJsa9nWsBq5OlV8SodeOaSEIQnKviO72Xte06utx7eGqDIAAIDwRrgCQsg0zbAaCarZU6MDLxxQbJ9Y5fwwR4b9zG3Xt5/YLtO0fldDAACAzo5wBYTQSc9J1XhrQl2GpMB26/uf2a+otCj1vq+3bNFn/58Hd4NbJz0nO7g6AACA8BdeCz2ALsbj83TIc058cEK+Gp+8FYHph9WbqtVQ3iBJSh2fKhnS/qf2y+f2KW1imqo3Vze7P7p7tOL6fXMOVp2vrkPqBgAA6EwIV0AINfgaOuQ5x1ccV8OJb55Vtb5KVeurJElJo5MCtZwMvF/6RukZ9yddmdQsXNX76oNZLgAAQKdEuAJCKMoe1SHPGfD0gHO2GfTqoDb3F22Pbk85AAAAESnoa65efPFF9enTR06nUwUFBVq7tvUzct544w0NHDhQTqdTgwcP1vLly5u9b5qm5s2bp6ysLMXGxmr8+PHavXt3szZffPGFbrrpJqWlpcnlcmnMmDH68MMPLf9sQHs57c5Ql3BBYuwxoS4BAAAg7AQ1XC1ZskRz5szR/PnztWHDBg0dOlQTJkzQsWPHztr+008/1S233KIZM2Zo48aNmjJliqZMmaLi4uKmNk8++aSef/55LVq0SGvWrFF8fLwmTJggj+ebtSs33HCDvF6vioqKtH79eg0dOlQ33HCDSkpKgvlxgfOW4kxRnCPu3A3DSHxUvFKcKaEuAwAAIOwYZhD3VC4oKNCIESO0cOFCSZLf71dOTo5mzpyphx566Iz2U6dOldvt1tKlS5uujRo1Svn5+Vq0aJFM01R2drbuv/9+PfDAA5KkyspKZWRk6NVXX9W0adN0/Phxpaen66OPPtJVV10lSaqurpbL5dL777+v8ePHt6n2qqoqJSYmqrKyUi6Xq73/FECLpq+crnWl60JdRpuNyByh/57w36EuAwAAoMO0NRsEbeSqvr5e69evbxZmbDabxo8fr9WrV5/1ntWrV58RfiZMmNDUft++fSopKWnWJjExUQUFBU1tUlNTNWDAAP3hD3+Q2+2W1+vVSy+9pO7du2vYsGEt1ltXV6eqqqpmL6AjDE4fLIfROZY/OgyHBqcNDnUZAAAAYSlo4er48ePy+XzKyMhodj0jI6PF6XklJSWttm/82VobwzD0wQcfaOPGjUpISJDT6dSvf/1rrVy5UsnJyS3Wu2DBAiUmJja9cnJyzu8DAxfo0tRL5TW9oS6jTbymV5emXhrqMgAAAMJSxB0ibJqmfvjDH6p79+5atWqV1q5dqylTpujGG2/U0aNHW7xv7ty5qqysbHodPHiwA6tGV1aQWdCpRq5GZo4MdRkAAABhKWjhKi0tTXa7XaWlzc/MKS0tVWZm5lnvyczMbLV948/W2hQVFWnp0qVavHixrrzySl1++eX6zW9+o9jYWL322mst1hsTEyOXy9XsBXSEZGeyJuROkN2wh7qUVtkNu67PvV7JzpZHgAEAALqyoIWr6OhoDRs2TIWFhU3X/H6/CgsLNXr06LPeM3r06GbtJen9999vap+bm6vMzMxmbaqqqrRmzZqmNjU1NZIC67tOZ7PZ5Pf72//BgCCYNmCafKYv1GW0ymf6NG3gtFCXAQAAELaCOi1wzpw5euWVV/Taa69px44d+q//+i+53W5Nnz5dknT77bdr7ty5Te1nzZqllStX6umnn9bOnTv12GOPad26dbr33nslBdZTzZ49W48//rjeeecdbd26Vbfffruys7M1ZcoUSYGAlpycrDvuuEObN2/WF198oR//+Mfat2+fJk+eHMyPC1ywoelD1T+pvwwZoS7lrAwZujj5Yg1JGxLqUgAAAMJWUBd6TJ06VWVlZZo3b55KSkqUn5+vlStXNm1IceDAgWYjTFdccYVef/11Pfroo3r44YfVv39/vfXWWxo0aFBTmwcffFBut1t33323KioqNGbMGK1cuVJOZ+Aw1rS0NK1cuVKPPPKIxo4dq4aGBuXl5entt9/W0KFDg/lxgQtmGIZmXjZTP/rwR6Eu5axMmbo3/14ZRniGPwAAgHAQ1HOuOjPOuUIoPPiPB/Xe/vfCaoqgzbDp+j7X65dX/zLUpQAAAIREyM+5AnD+Hi54WAnRCWEzPdCQIVe0S3NHzj13YwAAgC6OcAWEkSRnkh674jGZCo8BZVOmfnrFT5XkTAp1KQAAAGGPcAWEmXG9xulHl4XH2qtZl8/S2F5jQ10GAABAp0C4AsLQnYPv1J2D7wx5DTMGzQhpDQAAAJ0J4QoIQ4Zh6EeX/UizLp8V+L2D1mA1PmfW5bM06/JZ7A4IAABwHghXQJgyDEN3Dr5Tz133nBJjEmUzgvvnajNsSoxJ1HPXPRfyUTMAAIDOiHAFhLmxvcbqb1P+pgm9J0iyfhSrsb/r+1yvpd9ZyhorAACAC8Q5Vy3gnCuEo6IDRVq4caF2V+yW3bC36zysxvv7J/XXzMtm6rpe11lYKQAAQORoazZwdGBNANppbK+xui7nOm05vkWLdy7Wyn0r5TW9chgOeU3vOe9vbOewOTSxz0RNGzhNg9MGs7YKAADAAoxctYCRK3QG5Z5yrS1Zq20ntqn4eLG2Hd+mGm/NGe3iHHHKS8vT4LTBujT1Uo3MHKlkZ3IIKgYAAOh82poNCFctIFyhMzJNUyc9J1Xnq1O9r17R9mjF2GOU4kxhdAoAAOACMS0Q6IIMw1BqbGqoywAAAOiS2C0QAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwQNDD1Ysvvqg+ffrI6XSqoKBAa9eubbX9G2+8oYEDB8rpdGrw4MFavnx5s/dN09S8efOUlZWl2NhYjR8/Xrt37z6jn2XLlqmgoECxsbFKTk7WlClTLP1cAAAAAHC6oIarJUuWaM6cOZo/f742bNigoUOHasKECTp27NhZ23/66ae65ZZbNGPGDG3cuFFTpkzRlClTVFxc3NTmySef1PPPP69FixZpzZo1io+P14QJE+TxeJravPnmm7rttts0ffp0bd68WZ988oluvfXWYH5UAAAAAF2cYZqmGazOCwoKNGLECC1cuFCS5Pf7lZOTo5kzZ+qhhx46o/3UqVPldru1dOnSpmujRo1Sfn6+Fi1aJNM0lZ2drfvvv18PPPCAJKmyslIZGRl69dVXNW3aNHm9XvXp00c//elPNWPGjAuuvaqqSomJiaqsrJTL5brgfgAAAAB0bm3NBkEbuaqvr9f69es1fvz4bx5ms2n8+PFavXr1We9ZvXp1s/aSNGHChKb2+/btU0lJSbM2iYmJKigoaGqzYcMGHT58WDabTZdddpmysrI0ceLEZqNfZ1NXV6eqqqpmLwAAAABoq6CFq+PHj8vn8ykjI6PZ9YyMDJWUlJz1npKSklbbN/5src3evXslSY899pgeffRRLV26VMnJybr22mt18uTJFutdsGCBEhMTm145OTnn8WkBAAAAdHURt1ug3++XJD3yyCO6+eabNWzYMP3+97+XYRh64403Wrxv7ty5qqysbHodPHiwo0oGAAAAEAGCFq7S0tJkt9tVWlra7HppaakyMzPPek9mZmar7Rt/ttYmKytLknTppZc2vR8TE6O+ffvqwIEDLdYbExMjl8vV7AUAAAAAbRW0cBUdHa1hw4apsLCw6Zrf71dhYaFGjx591ntGjx7drL0kvf/++03tc3NzlZmZ2axNVVWV1qxZ09Rm2LBhiomJ0a5du5raNDQ06KuvvlLv3r0t+3wAAAAAcDpHMDufM2eO7rjjDg0fPlwjR47Us88+K7fbrenTp0uSbr/9dvXo0UMLFiyQJM2aNUvXXHONnn76aU2ePFmLFy/WunXr9PLLL0uSDMPQ7Nmz9fjjj6t///7Kzc3VT37yE2VnZzedY+VyuXTPPfdo/vz5ysnJUe/evfWrX/1KkvTd7343mB8XAAAAQBcW1HA1depUlZWVad68eSopKVF+fr5WrlzZtCHFgQMHZLN9M3h2xRVX6PXXX9ejjz6qhx9+WP3799dbb72lQYMGNbV58MEH5Xa7dffdd6uiokJjxozRypUr5XQ6m9r86le/ksPh0G233aba2loVFBSoqKhIycnJwfy4AAAAALqwoJ5z1ZlxzhUAAAAAKQzOuQIAAACAroRwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAUeoCwAAAECYM03JfVxqqJF8DZI9SoqKk+LTJMMIdXVA2CBcAQAAoDn3CWnfP6Sjm6TD66Ujm6T6U2e2i+4mZedLPYZJWflS7jVSfGrH1wuECcIVAAAAAqNThz6X1r4ibfuL5PdKNkfgZ0vqT0lffSwd+Oyb9oNulkbcJfUczqgWuhzCFQAAQFe3c5lU9Lh0bLtks0t+X+B6a8HqdI3t/F6p+E1pyxKpe5409lFp4KTg1AyEITa0AAAA6KpqTkp/niEtvlUq2xm41hisLlRj0CrbIS2+JdB/zcn29Ql0EoQrAACArmjHUumFYdK2vwZ+N/3W9t/Y37a/Bp6zY6m1/QNhiHAFAADQlZim9NFT0pLvSbUVktnOkapzPs8XeM6S70mrng48H4hQhCsAAICuwjSlwp9KRT//+oLFo1Ut+vo5hT8LvAhYiFCEKwAAgK5i1dPSx8+EtoaPfx14ARGIcAUAANAV7Fh62ohViBX+LLBDIRBhCFcAAACRruak9M5MSeFy7pRNevtedhFExOGcKwAAgEi3/MeSp1KSdWudTtWb+tUndVpz2Ke1h30q90i/v8mpH+RHN2u39rBPr26q15rDPm0p9cvrl8z5rkA9Kx6Ubv6tZTUBocbIFQAAQCTbuUwq/rPluwIerzH1s4/qteO4X0Mz7S22W767Qb/d0CBDUt/k0756mj5p6xvSzuWW1gWEEuEKAAAgUpmmVPS4ZFj/lS+rm6Gj93fT/tkJ+tU/OVts91/Do1X5UILW3d1N/9T3WyHMsAXqY/dARAjCFQAAQKQ69Ll0bLv1BwRLinEYyux27q+SGd1sio1qYa2X6ZeObZMOrbO4OiA0CFcAAACRau0rkq3lKXthweaQPn8l1FUAliBcAQAARCL3CWnbXyS/tWutLOf3SsVvBuoFOjnCFQAAQCTa949AcOkM/F7pq49CXQXQboQrAACASHR0U2DKXWdgc0hHNoW6CqDdCFcAAACR6ND6zjVydXh9qKsA2o1wBQAAEGlMMzBy1Zkc2cSW7Oj0CFcAAACRxn1cqj8V6irOT311oG6gE+skE3EBAADQZg01HfKYhWvrVeExdaQ6cI7W377w6lBVYPRp5shoJToN7a/w649bGiRJ644E2j3+UZ0kqXeioduGRn/Tobe2Q+oGgoVwBQAAEGl8DR3ymKc+rdP+ym+m8v1lh1d/2RFY5/X9IVFKdBraV+HXTz6sa3Zf4+/X9LZ/K1zVB79oIIgIVwAAAJHGHtUhj/lqdsI521zbxyFzvqttHTqiz90GCGOsuQIAAIg0UXGhruDCOGJDXQHQLoQrAACASBOfJkV3C3UV5yc6IVA30IkRrgAAACKNYUhZ+aGu4vxk5wfqBjoxwhUAAEAk6jlMsnWS5fU2h9RjWKirANqNcAUAABCJsvIlvzfUVbSN3xsYuQI6OcIVAABAJMq9pnONXPW5OtRVAO1GuAIAAIhE8alS3r9KNnuoK2mdzSENujlQL9DJEa4AAAAi1ci7JL8v1FW0zu+VRtwV6ioASxCuAAAAIlXPEVL3PMkI0698hk3KGCT1HB7qSgBLhOlfGgAAANrNMKSxj0qmP9SVnJ3pl657hC3YETEIVwAAAJFs4CRp0L9JRpitvTLs0uDvBuoDIgThCgAAINJN+pXkTFT4fPWzBeqZ+GSoCwEsFS5/YQAAAAiWuBTpX16QFC7TA/3STQsDdQERhHAFAADQFVxygzT2J6GuImDcPGng5FBXAViOcAUAANBVXHW/NGZOaGsYMyf0NQBBQrgCAADoKgwjMGo0bt7XFzrqq+DXzxk3Xxo/n90BEbEIVwAAAF2JYQRGsKa9LsUmBX8XQcMeeM6016WrGLFCZCNcAQAAdEUDJ0sz10t53wn8bvVBw439DfrXwHNYY4UugHAFAADQVcWlSP/2u8CoUvolgWs2R/v6bLw//RJp2p+km3/LroDoMtr51wMAAIBOb+BkacAk6dA66fNXpOI3Jb83EJT83nPf39jOFiUNulkaeZfUYxhrq9DlEK4AAAAQCEI5IwKvCQukrz6SjmyUDm8I/Kw/deY90d2k7MsCQSo7X+pztRSf2vG1A2GCcAUAAIDm4lMDa7Ea12OZpuQ+LnlrJW+95IiWHLFSfBqjU8BpCFcAAABonWFI3dJDXQUQ9tjQAgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACzQIeHqxRdfVJ8+feR0OlVQUKC1a9e22v6NN97QwIED5XQ6NXjwYC1fvrzZ+6Zpat68ecrKylJsbKzGjx+v3bt3n7Wvuro65efnyzAMbdq0ybLPBAAAAACnC3q4WrJkiebMmaP58+drw4YNGjp0qCZMmKBjx46dtf2nn36qW265RTNmzNDGjRs1ZcoUTZkyRcXFxU1tnnzyST3//PNatGiR1qxZo/j4eE2YMEEej+eM/h588EFlZ2cH7fMBAAAAgCQZpmmawXxAQUGBRowYoYULF0qS/H6/cnJyNHPmTD300ENntJ86darcbreWLl3adG3UqFHKz8/XokWLZJqmsrOzdf/99+uBBx6QJFVWViojI0Ovvvqqpk2b1nTfihUrNGfOHL355pvKy8vTxo0blZ+f36a6q6qqlJiYqMrKSrlcrvb8EwAAAADoxNqaDYI6clVfX6/169dr/Pjx3zzQZtP48eO1evXqs96zevXqZu0lacKECU3t9+3bp5KSkmZtEhMTVVBQ0KzP0tJS3XXXXfrjH/+ouLi4c9ZaV1enqqqqZi8AAAAAaKughqvjx4/L5/MpIyOj2fWMjAyVlJSc9Z6SkpJW2zf+bK2NaZr6wQ9+oHvuuUfDhw9vU60LFixQYmJi0ysnJ6dN9wEAAACAFKG7Bb7wwguqrq7W3Llz23zP3LlzVVlZ2fQ6ePBgECsEAAAAEGmCGq7S0tJkt9tVWlra7HppaakyMzPPek9mZmar7Rt/ttamqKhIq1evVkxMjBwOh/r16ydJGj58uO64446zPjcmJkYul6vZCwAAAADaKqjhKjo6WsOGDVNhYWHTNb/fr8LCQo0ePfqs94wePbpZe0l6//33m9rn5uYqMzOzWZuqqiqtWbOmqc3zzz+vzZs3a9OmTdq0aVPTVu5LlizRE088YelnBAAAAABJcgT7AXPmzNEdd9yh4cOHa+TIkXr22Wfldrs1ffp0SdLtt9+uHj16aMGCBZKkWbNm6ZprrtHTTz+tyZMna/HixVq3bp1efvllSZJhGJo9e7Yef/xx9e/fX7m5ufrJT36i7OxsTZkyRZLUq1evZjV069ZNknTRRbIaL88AACAASURBVBepZ8+ewf7IAAAAALqgoIerqVOnqqysTPPmzVNJSYny8/O1cuXKpg0pDhw4IJvtmwG0K664Qq+//roeffRRPfzww+rfv7/eeustDRo0qKnNgw8+KLfbrbvvvlsVFRUaM2aMVq5cKafTGeyPgy7INE35Tp6Uv9Yjs6FeRlS0bLFO2VNSZBhGqMsDAABAmAj6OVedFedcdV3e8nLVfPaZPNu2qXbLVnm2FcvvrjmjnS0+Ts68QYodMljOvDzFjRolR3JyCCoGAABAMLU1GwR95AroDEzTVO2mTSp//U+qWrFC8nolhyPwswV+d41q1q5VzYYNTe1dkyYp5dZb5Bw6lFEtAACALoZwhS6vurBQZc8+p7rduyW7XfL5Am+0EqyaaWzn9apq2TJVvfOOYi6+WOmzZylh7NjgFA0AAICwE5HnXAFt4S0v1+H7H9ChH96rui+/DFxsDFYX6uv763bv1qH/74c6fP8D8paXt7NSAAAAdAaEK3RJ1R98oL0TJ6lq5crABauXHn7dX9WKFdo7cZKqP/jA2v4BAAAQdghX6FJM09TxRS/p0L0z5ausbP9I1bn4/fJVVurQvTN1/KWXxf4xAAAAkYtwhS7DNE2V/foZlT37bOOFjnqwJKnsmWdU9syzBCwAAIAIRbhCl3HipZd14pVXQlvDyy/rxMuhrQEAAADBQbhCl1D9wQffjFiFWNkzz6i6sDDUZQAAAMBibMWOiOctL9fRR38iGYYlUwHdfr/+++QJba31aIunVlV+v57IzNR3EpOatXujokJ/q6rUvvp6Vfn96u5waERsnH6Ylib7I48q9vLLOXQYAAAggjByhYhX+vgT8lVXW7bGqsLn1f89cUJ76us0MMbZYrsddR71jIrSf6SkaF5Ghm50ubTKfUr/vv8rHT1xQqVPPGFJPQAAAAgPjFwholUXFqpq2TJL+0y3O/SPi/op3eFQsadW/75//1nbzcvIPOPauG4J+u7+r/R2RYXuWrpMrkmTOGgYAAAgQjByhYhlmqbKnn0uMB3QQtE2m9IdF/b/S/SIipIkVft9kmGo7Nnn2D0QAAAgQhCuELFqN21S3e7dHbflegsqfD6d8HpV7KnVI0ePSpJGxcVLpqm6L76QZ/PmkNYHAAAAazAtEBGr/PU/SXZ78A8KPodr93yp+q8DXpLdroe7d9cV8fGBN+12nXz9T+qRnx/CCgEAAGAFRq4Qkbzl5apasSLkwUqSXurZU4t69NSD6d2V5XCo1n/aSJrPp6rly+UtLw9dgQAAALAEI1eISDWffSZ5vaEuQ5JUEBcYpbpa0thu3XTTV/sUZ7Ppe43bsHu9qlmzRq7rrw9dkQAAAGg3Rq4QkTzbtkkXuOlEMPWKjtYlMU4trar85qLDEagXAAAAnVr4ffsELFC7ZUvYjFx9m8f0N63BkiR5vYF6AQAA0KkxcoWIY5pmyEeCvKapyrOs99pSW6vddXUa5Gx++LCneBtbsgMAAHRyjFwh4vhOnpTfXRPUZ/y/8nJV+3069vXo2N9PnVLp1//5e0nJMiWN3fOlJrpc6hcdo1ibod11dfprZaW62Wy6JzWtWX9+t1u+kyflSE0Nat0AAAAIHsIVIo6/1hP0Z/z+5AkdOW3a4funTun9U6ckSTe6XEp3ROnfkpK0tqZG71VXy+P3q7vDoUkul+5JTVWPqOgz+jQ9wa8bAAAAwUO4QsQxG+qD/owPLup3zjZzu2ecV5/++uDXDQAAgOBhzRUijnGWUaHOwBbdOesGAABAAOEKEccW6zx3ozBkODtn3QAAAAggXCHi2FNSZIuPC3UZ58UWHy97SkqoywAAAEA7EK4QcQzDkDMvL9RlnBfnoDwZhhHqMgAAANAOhCtEpNghQyRHJ9mvxeEI1AsAAIBOjXCFiOTMy5NO2yo9rHm9nW6kDQAAAGciXCEixY0a1alGruIKCkJdBQAAANqJcIWI5EhOlmviRMluD3UprbPb5Zo0SY7k5FBXAgAAgHYiXCFiJd96i+TzhbqM1vl8Srn1llBXAQAAAAsQrhCxYvPzFXPxxVK47sJnGIoZMEDOoUNDXQkAAAAsQLhCxDIMQ+mzZ0mmGepSzs40lT7rR2zBDgAAECEIV4hoCWPHyjV5cvitvbLZ5LphshLGjg11JQAAALAI4QoRL+PRR2RPSAif6YGGIbvLpYxHHgl1JQAAALAQ4QoRz5GcrKzHfx4+0wNNU1lPPM4OgQAAABGGcIUuIWH8eKXPnh3qMiRJ6ffdp4Rx40JdBgAAACxGuEKXkfqfdyv17rtDW8Pddyv17rtCWgMAAACCwxHqAoCOYhiG0u+bLVt8vMqeeSawBqsjpgp+/Zz0OXOURrACAACIWIxcoUsxDENp/3m3er64UPbERMkW5D8Bm032xET1fHEhwQoAACDCEa7QJSWMG6e+K5bLNXFi4ILVOwl+3Z9r0kRdtHIFa6wAAAC6AMIVuixHcrJ6PP2Uer64UDH9+wcutvc8rK/vj+nfXz1/86J6PPWU7ElJ7awUAAAAnQFrrtDlJYwbp25jx8qzebNOvv4nVS1fLnm9ksMR+Hkuje0cDrkmT1LKrbfKOWSIjHA5VwsAAAAdwjDNcDn8J7xUVVUpMTFRlZWVcrlcoS4HHchbXq6aNWvkKS5W7dat8hRvk9/tPqOdLT5ezkF5ih0yRM68PMUVFHB2FQAAQARqazYgXLWAcIVGpmnKd/KkTI9H/vp62aKjZTidsqekMDoFAADQBbQ1GzAtEDgHwzDkSE0NdRkAAAAIc4QrAAAARDTTNFVbVamGujr5vF7ZHQ5FxcQo1pXILBRYinAFAACAiFJTVamD27aodO+XOvrlFyrd+6UaPLVntItyxiqjbz9l9btYGX37KSdviOJciSGoGJGCcAUAAIBOzzRNHd29U5veXaZdq1fJ7/PJZrfL7/O1eE+Dp1aHtm/VkV3bm9oPuOJq5f/zZGX1H8CoFs4b4QoAAACd2peff6ZPlvxRxw/ul2Gzy/QHAlVrwep0je38Pp92fvKRdqz6UGm9+ujKqbep3/CCoNWNyMNugS1gt0AAAIDwVltdpaLfL9LOTz6SYRiy8mttY38Dr7xaY6ffo9gEvg92ZewWCAAAgIi1+/PVeu+l51X39VmUVo8XNPa3a/XH+mrLJv3zf85U/xGjLX0GIo8t1AUAAAAAbWWaptb89X/1zlNPyHPqlEy/P7jP8/vlOVWtd556Qmv++r+WhzhEFkauAAAA0CmYpqmP//Sa1r7958YLHfVgSdLHi/+gek+txky7nc0ucFaMXAEAAKBTWPvWG98Eq1DW8NYbIa0B4YtwBQAAgLC3+/PV+njxH0JdhqTACNaXn38W6jIQhghXAAAACGu11VV676XnpXCZimcYevel51RbXRXqShBmWHMFAACAsFb0+0WBXQEtXGP15bETWvT3s48+zRx3hXqnJrd8s2mqzu1W0e9f0uQf/diymtD5Ea4AAAAQtr78/DPt/OSjoPU/pn8f5aQkNruW1i3+nPeZfr92fvIPDRh9lfqNGBWs8tDJEK4AAAAQlkzT1CdL/mj5AcGny01L0dCcrAu615S0+Df/R1c89iON7T3W2sLQKbHmCgAAAGHp6O6dOn5wf9DPlvI0eOW7gPOyDEmxNV6tfL5I9y+9XxWeCuuLQ6fCyBUAAADC0qZ3l8mw2WX6fUF7xv9+vll1Xp9shqHctGTdMPQS5aQknUcPhrJKPfKvuEZ37Z6te26+TeN6jQtavcFmmqbcbrcaGhrk8/lkt9sVFRWl+Ph4zvZqA8IVAAAAwk5NVaV2rV4VtGDlsBka3DNTl2R2V3xMtEqrqvX3XXv14oerNXPsFeqRnHjuTiRJpvwNXyim/hpdu+t2vfY/f9OeSXt119A7O0UYcbvd2rdvn44eParDhw/ryJEjqq+vP6NddHS0srOz1aNHD2VlZSk3N1fx8edem9bVGGawx1k7qaqqKiUmJqqyslIulyvU5QAAAHQpu1av0tJnf9mhzzxe7dbT732kvumpuuvqked1b1T8DbJHXyxJ2pD9ngZPytSsYbPCMmCZpqlDhw5p7dq12rZtm/x+v2w2m/xtmBrZ2M5ms2nQoEEaMWKEevbsGZaf00ptzQaMXAEAACDslO79Uja7XX5f8KYEfltaQrzysjO19XCJ/H5TNltbA4NNfm9pU7i6/Mg/a827f9PvYn6nOwffGbyCL8DOnTtVVFSkY8eONQtUbQlWp7fz+/0qLi7Wli1b1L17d40dO1YDBw4MWt2dBRtaAAAAIOwc/XJXhwarRklxTvn8ftX7vOdxl19+39FmVwoO3qi3PyhU0YEiawu8QDU1Nfrzn/+sxYsXq6ysTFLbA1VLGu8vKyvT4sWL9ec//1k1NTXtrrUzI1wBAAAgrJimqdK9e0Ly7BPuGjnsNkU7zm+Cl+k91nxXQ9OvcV/cosc//EXIdxHcsWOHXnjhBW3bti1QmsWrghr727Ztm1544QXt2LHD0v47E6YFAgAAIKzUVlWqwVMb1Gec8tSpmzOm2bUjFVXafqRUAzO7y2YY2nPshP62ebuOVFTLf1ogcTljNO9fxn+rx3rJrJWMuMCvhk1R/lgN2/HPWrB2gX55dceuH5MCoWfVqlUqKuqY0TPTNFVbW6slS5Zo3LhxGjNmTMSvxfo2whUAAADCSkNdXdCf8cfPNirKblOf1GR1i4lRadUpfbb3gKLsdk0aMkCStGLrLh0qrzrj3ipPndbtO6ThuT2bv2F+ayqhYVefiuFasf4VfdjnQ13X67pgfZwzmKapwsJCffzxxx32zNMVFhaqrq5O48aN61IBi2mBAAAACCs+7/msd7owg7Iz5K5r0Edf7NNfNhRr88EjGtwzU7PHj1GGK0GSlJUU2BXu4ow0dXd1kxTYwl2S/rKh+Iw+TZ1ljZjp1zVfTtILG14I+mHIp1u1alXIglWjjz/+OOQ1dDRGrgAAABBW7Oe53ulCXHVxrq66OLfVNjEOu2yGoasu7qP//nidJCk5Lk5lp9yq9/lUUVOrpLjYpvaG7Gd2YtgU5+uhyoP12nJ8i4amD7X0c5zNjh07Omwq4LkUFhYqPT29y+wkSLgCAABAWImKiTl3ow5wuKJKqd3itHzLLuVlZ6j4cOkZ758ermSc/au14fdp9L4xWrxzcdDDVU1Njd555x3L+nvrrbe0efPmFt+/7777znkm7Ntvv61evXopLi7OsrrCFeEKAAAAYSXWlagoZ2zQN7U4l6paj0xTKq+p1fhL+qn4cKmqPJ5m738jWjJiz+xEkmmzK8s9TH/44jGVjyhXsjM5aDUvX75cHo/n3A3baNiwYerbt2+za6ZpatmyZUpKSjpnsJIkj8ejFStW6Oabb7asrnBFuAIAAEBYMQxDGX0v0qHtZ65rulAxtjjZbQ7ZZJdfPvn8XtX5Wz+Tqd7rU2WtRz2TE/XHzzZKkuq8PhmSTEkNvm/OiTIc3VvfuMGwK/dYrtaWrNWEPhMs+ERn2rlzp4qLrfs3k6ScnBzl5OQ0u3bgwAE1NDRo8ODBberDNE1t3bpVeXl5ET89kHAFAACAsJPVb4CO7NpxQQcJR9tilRHbW8nRGUqNyVJyTKaibGdONWzw16m8rkQn6o6qvL5UpbX7Ve//ZrTM09Agu83Qd4cP1vYjpVpR/IUkyWG3qcHnV5S9cW84m2z2rFZrMvw+DSjJ0fYT24MSrkzTVFFRkQzDCPrGGVu3bpWkNocrKRCYi4qKNGDAgIjePZBwBQAAgLCT0bffeQer1Jhs9XNdpl7xl8hm2OU3fTJka/HLfJQtRunOXkpz9mxqf+DUDn1ZvVE7j+9WbYNX3ZzRMk1pzd6DkqTEWKfcdfWSpGh74wYWftkcGa3WZho2pdT01ubja8/rM7XVoUOHdOzYsaD0fTqfz6dt27YpJydHSUlJbb7PNE0dO3ZMhw4dOmMkLJIQrgAAABB2cvKGyGa3tylgZcf10+Dkq5UUnS6/6ZPNCISexp+tMQyjaZc/m2FXr26XqE/CIJk1RZL+rlOeev36/VVN7StPW2dVfLhUw/r0lGSTzXGOwGAYijJytP34qzJN0/LRm7Vr18pms8nv95+7cTvs2bNHtbW15zVq1chms+nzzz+P6HDFOVcAAAAIO3GuRA0YfZUMW8sBKdrm1Kj0G3VVxs1yRaVKalugak3j/Zdl5euhq+9uuj6iT+DAYJczRo2xaHDPTEmGbFEDZNjOvpnF6UxbrHw10knPyXbV+G1ut1vbtm0LerCSAlMCbTab8vLyzvtev9+v4uJiud3uIFQWHghXAAAACEv5EybL9J995KpHXH9N6nmXcuIDGyTYDGu/1qbFp+hAxZGm3/eWVUqSqj11MiUZkvqmp0gy5XC2fXv1JHeU6nx1lta6b9++DglW9fX12rVrl/r163fB26r7/X599dVX1hYWRghXAAAACEtZ/QcqrVefM6bQXZI4SmMy/lXRNqfloep0K3Z/Mx3whLtaUmCXwMafftOUYUuTcY7NLE7nbHCo3ldvYZXS0aNHZbMF/2v9zp07z2uXwLOx2Ww6cuTIuRt2UoQrAAAAhCXDMHTl1Nua7X43OPlqDUm55uv3g/tV9ufjZ+uq3sOVHp8ih82uRGeCLuvRT9OvHK6n/n2yUuLj5Ii98rzWT9n8XkXboy2t89ChQx02JTA6OloDBgy44D78fr8OHz5sYVXhhQ0tAAAAELb6DS/QwCuv1q7VH2tgwkhdmjS6w55906XjdNOl4864vuXkP7Sjco1sUQNkj77ovPqsi2pQjP3MbeEvlGmaOnr0qGX9tcTtdmvv3r0aNGiQoqKi2tXXkSNHgrKpRzggXAEAACCsjZ1+jzw7KzTEdU2oS5EkDUm5RpUNVToRdX712L218nXzK8WZYlktbrdb9fXWTjM8m8YNM9ozJbBRfX293G63unXrZkFl4YVpgQAAAAhr0bZYjUybKNMM/tS3tjBNv0amT1S0/dw7BJ52k+LdB5TTK8/SEZuGhgbL+mrN1q1bFR8fr759+1rSn9frtaSfcMPIFQAAAMJaxTt7ZDRIsniN1daSXfr1J7/X54e2qs5br15J2fre0Bv1H8P/rdX7DMOmKBkaHGtqQ03bDjo2TL+85n4NTh9iRelNfOd50PKFmjFjhqX9tRSuTNNUQ8MJ+XwemWaDDCNKdrtTUVGpnWIaIeEKAAAAYat22wnVbi6zvN9/7Fur/3hzrvK699esK+5QfFSs9lcc1tHqtj3LZhjKiTZ0pN6vEq95zvamza7jcQc1JPW69pbejN3evnO9QsXhCMSQ+vqTKi9frerqYlVWbVZ1dbF8vjPPwbLb45WQMEiJrqFKSBik5OTRio62bnqlVQhXAAAACEumaaryva8Ch0qdO7+0WXWdW/ct+4XGXjRKL035+QVv526apgbG2lVSfe4pbobfp33pe3Rn5sgLelZL2ru5RGiYqq3dpkOH39SxY8tkml4ZhkOm2fK/o8/nVkXFGlVWrm9qn9H9BvXs+X25XPlhM6pFuAIAAEBYqj9QLW9pjeX9vrX9A5W5T+rBq+6SzbCppr5WzqiY8w5ZhmEo0S4l2w2V+1pOf4bfp/Sydeo+5QolO5PbW34z8fHxio6O7pBNLayQknpQubmbtX3H/8gw7DLNwLTG1oLV6RrbmaZXpcf+ppLStxQfP0AX9Z2j9PTxQau7rdjQAgAAAGHp1OojQfm2+vFX65QQHa+SU8d1zSvf04BnJuiSZyZq7rtPy+OtO6++/Kap3JjWizRtdp2IXqXvjLijPWWflWEYyspq+yHGoeJw1GnAwFXKy/u7YmMrJKkpWF2oxvvd7i+0Zet/qnjbbDU0lLe71vYgXAEAACDs+NwNqt1yXArCBoH7yg/Ja/o04y8P65rckXp5ys81dcgk/c+mt3X/8v9zXn3ZDEM9ogxFtzQrzfQr/tQh7bjC1JA0azezaNSzZ0/ZbOH7tT419YCGj3hb6en7JUmGYeEcT0mNc0ZLS5dr9Wf/pLKy9yzuv+2YFggAAICwU7enQvJb/SU8wN1Qq9oGj76ff5N+Nn6WJGnigGvU4GvQ/2x6Rw+M+Q/lpuS0uT+bYSjNYehIw1nqNWzqdnKppkz5cdDWBWVlZcnvD49t6pszlZNTrD65m2SaUvCXRfnU0FChLVv/Sxf1fUC9e9/T4WuxwjfiAgAAoMuqP3xKsgXni7HTESNJuunScc2u33RpYM3O+iPbzqs/v2kqyX6WWk2fMkrXquT6WF3Xe+yFFdsGubm5YThyZapPn43qk7tJUkcEq2+eK0l79j6lPXuflmkGJ6C3JNz+WwAAAABUf6A6aCNXGd1SJUnpcc238k6LC2w2UempPq/+DOnMcGX65fDWqsrxtr5/93MXXGtbxMfHKy8vL6wCVk5OsXJ6nV9Itdr+/f9X+/cv6tBnhs9/AwAAAIC+Pkj28Kmg9T8kc4AkqeRU8zOtSk8dlySlxCWdV3+GYSjJ8a1wZdjUe9//U+78uUpynl9/F2LkyJFhMzUwNfVA04hVqO3Z+5TKyt7vsOcRrgAAABBW/O4GmfXt20muNTcMDBzku3jLsmbX/7R5mRw2u0bnXHbefUYZzTe16Lv3bdV8P1fXDfqXdtXaVj179lT37t1Dft6Tw1Gn/hd/Jqtn4x061KDHf16qaVP3a/KkfZr+g4P64x/K5fGcK1Aa2rFzboftIsiGFgAAAAgrZn1wR2AGZVysqYMnacnW5fL6fRqVk6/PDmzS0l0f6oejvq/MhLQL6tf+9c/e+99VXUGFvjP9WeuKPgfDMDR27FgtXry4w555Nhf1WyuHo97SNVbHjnl17w8PKz7eppumJCohwaYd2z167bVyfbG7Tj//eWYrd5tqaKjSri9+pkF5z1hXVAsIVwAAAAgrpi/409sWTHhAPVwZ+t+tK/TuF6vUIzFD88feqztH/PsF92kzpL573pJ9WKUm/+zVDh9FGjhwoAYNGqRt27Z1+EYOUuCA4O7dv7K83w/er9apU349+1y2+vSJliTdcINLfr/0/vunVF3tU0KCvZUefCotfUcZ3ScH/aBhwhUAAADCimEP/sqVKLtD942ZrvvGTLesz4t3vi779WkqePB5y/o8X5MmTdKePXtUW1vbwU821ad3cLZcd9cEwnZycvMAlZJql80mOb693u2sDO3Z+2ulpY37/9m78/i4yrr//68zW5bJvrZJ05XSLV2g0NIKQkuxLQhWESkiICL49RYEARW4WfR786PcKCqLwK1wg6AsooKlQIFfiyi0tFC6Bro33bM1yySTZbbr+0ealJguSXsmM0nez8cjj5Az1znnM32EzLznus7nRDX06porEREREYkrlqd3vkUddtM8pv6kezchtltycjIXXdQz13l9XmpqFd6U2qi0XJ84MQmAX/6ykq1bW6ioCPHuuw289pqPeV9NIympK78vBr9/Ez5fdBttaOZKREREROKKw+vG8jij2tTCbpbHwYALL4h1GQCMGTOGmTNnsnTp0h4758CCTUQiFg6H/csRp0xJ5ttXZ/LC87UsX9bYvv2bl2fwne9kHWXPjizLyZ49fyQ9vfsNS7pK4UpERERE4oplWbgLUwjsqIt1KV3mGZQa8059n3fWWWcRCAR4//33o34ul6uZ3NzSqASrNgPyXYyfkMhZZ3lJS3Oy4sNGXni+lqwsJ/PmpXfpGMaEKa9YxMiR/4nH0/VQ1h0KVyIiIiISdzyDUwns9EXtRsK2clh4ilJjXUUHlmVx7rnnkpCQwJIlS6J6royMsqgGq3eXNvDrX1fxzB+KyM1tjS9nneXFGMOTv69mxowU0tOP1tDiEGNC1NR+SH7e+VGptXcuaBURERGRPs1TmNI7ghVAxOAuTIl1FZ1YlsVZZ53F/PnzSUpKitrMWkpqNZFI9GbtFi70cdJJnvZg1WbadC/NzYatW1u6fCzLclHv22B3ie0UrkREREQk7iSMyGjtbd4bOKzWeuPU6NGjueGGGxg3bhyA7SErNbUKy4peEK6pCXO47vyhUOs5w924NM+YEHW+tTZV1pnClYiIiIjEHafXTdKEnPh/t+qwSJqYg9PrjnUlR5WcnMzXv/515s+fT25uLgAOx4n947bub0hNrY5Kl8A2gwa52ba1hT27Ax22v7u0AYcDhg/3dOt49fUbonYfMF1zJSIiIiJxKWVaAU1rKmNdxtFFDCnTCmJdRZeNHj2aUaNGsWfPHj766CM2bNhAJBLB4XAQiRz75s1t4xwOB8XFxZx66ki2bf9jVGv+xqXprFzZyE037WfevDRS0xys+LCRlSubmHt+Kjk53Ys04XADweABPJ4c22tVuBIRERGRuOQZnIprQDKh8kaIx8uvLHDle+OumcWxWJZFUVERRUVFzJ49m9LSUvbt28fevXvZt28fgUCg0z4ej4eCggIKCwspKChg6NCheL1empr2sG17dOudMCGJhx8p4Nk/1LBwoQ+fL8yAAW6+851MLp1/fMsxw+GuX6fVHQpXIiIiIhKXLMsi/UtDOfDsp7Eu5fAMpH9pSFy1YO8ur9fLuHHj2q/HMsbg9/sJhUKEQiFcLhculwuv13vY52lMsEfqHD06kfsWDLTteMZ0DpB2ULgSERERkbiVNDabpIm5NK2rjK/ZKwuSJuaSNDY71pXYyrIsUlK63vnQsuL7WrMjsazuXafVVfF+iaCIiIiI9HMZF43AkeSCeJkgssCR5CLjwhGxriTmnM7EWJdwXJzOhKgcV+FKREREROKa0+sm8+KR8TNzZSDz4pPjvkNgT3C7s3E6vbEuo1uczhTc7ujMOCpciYiIiEjcSxqXQ9rsIbEuA4C02UNJGte3lgMeL8uySE0tjnUZ3ZKaWhy16+QUrkRERESkV0g9p4jUc4rioIZBMa0h3qSnTcSyekcrB8tykZ42MWrH7x3/CiIiIiLSTdYrbQAAIABJREFU71mWRdrsIVgJTnxvlbZeg9UTSwUPnidtzlDSYhzu4lFqajHGhGJdRpcYEyI1LXozbQpXIiIiItJrWJZF2owi3HnJ1Px1M5GmUHQD1sHmFZkXn6ylgEeQmTkNy3L1ioBlWS4yM86I2vG1LFBEREREep2kcdnk33IaSRNyWzfYfQnNweMlTcxlwK2nKVgdhceTRV7eBViWM9alHJVlOcnP+zIeT1bUzqFwJSIiIiK9ktPrJvuy0WRfMRZXfnLrRscJpqyD+7vyk8m+cizZ80fjSFZXwGMpGvQtjAnHuoyjMibMoEHfiuo5tCxQRERERHq1pHHZJI7NIrC7nobl+2haWwUR0xqUIl1YM9g2zmGRNDGXlGkD8RSlRq2jXF+UlnYKXu8o/P7NxE/P/M+zSPGOIi1tUlTPonAlIiIiIr2eZVkkDE4jYXAa4S8HadlWS2BvA8Hd9QT2NmBaOs+qWAlOPIUpeIpScRemkDAiQ/euOk6WZTFi+M2sW/+9WJdyBIbhw38U9cCscCUiIiIifYrT6yZ5Qi7JB6/HMsYQ8QcxwQgmFMFyObDcDhxet2anbJSbO4v8/AspL38DiKclgk7y8y8gN3dW1M+kcCUiIiIifZplWThTPLEuo18YdfI9VFe/TzBYS3wsD7Rwu9MYdfLdPXK2Hmlo8dvf/pahQ4eSmJjI1KlTWbly5VHHv/zyy4wePZrExETGjx/PG2+80eFxYwx33303AwcOJCkpiVmzZrFly5b2x0tLS7nmmmsYNmwYSUlJjBgxgnvuuYdAIBCV5yciIiIiIuB2ZzJm9H3ER7ACMIwZvQC3O7NHzhb1cPXSSy9x8803c8899/DJJ58wceJEZs+eTUVFxWHHL1u2jMsuu4xrrrmG1atXM2/ePObNm8eGDRvaxzzwwAM8/PDDPPHEE6xYsQKv18vs2bNpbm4GYOPGjUQiEf7nf/6HkpISfv3rX/PEE09wxx13RPvpioiIiIj0a7m5X2LE8FtiXQYAI4bfSm7ueT12PssYE9VYOXXqVE4//XQeffRRACKRCEVFRdxwww3cdtttncZfeuml+P1+Fi1a1L7tjDPOYNKkSTzxxBMYYygoKOCWW27h1ltvBaCuro78/HyeeeYZ5s+ff9g6fvGLX/D444+zffv2LtXt8/lIT0+nrq6OtLS07j5tEREREZF+yxjDtu0PsnPn4zGrYciQ7zNi+C22XFfX1WwQ1ZmrQCDAqlWrmDXr0MVjDoeDWbNmsXz58sPus3z58g7jAWbPnt0+fseOHZSVlXUYk56eztSpU494TGgNYFlZR75hWEtLCz6fr8OXiIiIiIh0X2v3wFsYMfzWti09dWYARgz/MSeNuLXHG5ZENVxVVVURDofJz8/vsD0/P5+ysrLD7lNWVnbU8W3fu3PMrVu38sgjj/C97x25NeSCBQtIT09v/yoqKjr6kxMRERERkSOyLIuhQ7/PhPFP4HZnAM4on9GJ253BhPFPMHTo/4nyuQ6vRxpaxNLevXuZM2cOl1xyCddee+0Rx91+++3U1dW1f+3evbsHqxQRERER6Ztyc89j2hnvkJ9//sEtds8mtR4vP/8Cpp3x//foNVb/Lqqt2HNycnA6nZSXl3fYXl5ezoABAw67z4ABA446vu17eXk5AwcO7DBm0qSOd1zet28fM2bMYPr06fzud787aq0JCQkkJCR07YmJiIiIiEiXud2ZFI/7Dfl5F7Bt+6/x+zdhWU6MOf77YbXt7/WezIjhN/fIfayOJaozVx6Ph8mTJ7NkyZL2bZFIhCVLljBt2rTD7jNt2rQO4wHeeeed9vHDhg1jwIABHcb4fD5WrFjR4Zh79+7lnHPOYfLkyTz99NM4HH1+kk5EREREJK7l5p7H1Cmvc9rkv5CfdyGW1TrX0/b9WD4/Pj//Ik6b/FemTnk9LoIV9MBNhG+++WauuuoqTjvtNKZMmcJvfvMb/H4/V199NQBXXnklhYWFLFiwAIAbb7yRs88+mwcffJALLriAF198kY8//rh95smyLG666SbuvfdeRo4cybBhw7jrrrsoKChg3rx5wKFgNWTIEH75y19SWVnZXs+RZsxERERERCT6LMsiPf0U0tNPYeTI/6Sm9kPqfeup862jvn494bC/0z5Op5fU1PGkp00kNa2YzIwz8HiO3KwuVqIeri699FIqKyu5++67KSsrY9KkSSxevLi9IcWuXbs6zCpNnz6d559/njvvvJM77riDkSNH8uqrr1JcXNw+5ic/+Ql+v5/rrruO2tpazjzzTBYvXkxiYiLQOtO1detWtm7dyqBBgzrUE+XO8yIiIiIi0kUeTxb5eeeTn9d6PZYxhmDwAOFwC8YEsCwPTmcCbnd2j3f+Ox5Rv89Vb6X7XImIiIiICMTJfa5ERERERET6C4UrERERERERGyhciYiIiIiI2EDhSkRERERExAYKVyIiIiIiIjZQuBIREREREbGBwpWIiIiIiIgNFK5ERERERERsoHAlIiIiIiJiA4UrERERERERGyhciYiIiIiI2EDhSkRERERExAYKVyIiIiIiIjZQuBIREREREbGBwpWIiIiIiIgNFK5ERERERERsoHAlIiIiIiJiA4UrERERERERGyhciYiIiIiI2EDhSkRERERExAYKVyIiIiIiIjZQuBIREREREbGBwpWIiIiIiIgNFK5ERERERERsoHAlIiIiIiJiA4UrERERERERGyhciYiIiIiI2EDhSkRERERExAYKVyIiIiIiIjZQuBIREREREbGBwpWIiIiIiIgNFK5ERERERERsoHAlIiIiIiJiA4UrERERERERGyhciYiIiIiI2EDhSkRERERExAYKVyIiIiIiIjZQuBIREREREbGBwpWIiIiIiIgNFK5ERERERERsoHAlIiIiIiJiA4UrERERERERGyhciYiIiIiI2EDhSkRERERExAYKVyIiIiIiIjZQuBIREREREbGBwpWIiIiIiIgNFK5ERERERERsoHAlIiIiIiJiA4UrERERERERGyhciYiIiIiI2EDhSkRERERExAYKVyIiIiIiIjZwxboAERER6cgYQ1UwRFM4QtAY3JZFktNBjtuFZVmxLk9ERI5A4UpERCTGDgRCvF9bz7r6Jlb7Gllb34g/HOk0zut0MDE1mVPSkpmQmsSZGalke/RSLiISL/QXWUREJAaMMazyNfL03ir+XlFDyIDLgpA58j7+cIRltQ2srGtoHz8vL5OrC3M4NS1Zs1oiIjGmcCUiItLDFlfWcf+O/Wz0N+O0IHwwUB0tWH1e6HPjX6mo4S/lNYzxJnLb8IHMzkmPTtEiInJMamghIiLSQ6qDIb5fUsq3N+xgs78ZOBSsjlfb/pv8zVy1fgffLymlOhg6wUpFROR4KFyJiIj0gDcra/nCis9YWFELQOcrqk5M2/EWVtRy5orPeLOy1uYziIjIsShciYiIRJExhodKy7l6Qyl1wTDhKJ8vDNQGw1y9oZSHd5ZjzAlOjYmISJcpXImIiESJMYb7tu9nwY79gP2zVUfSdp77tu9nwfb9ClgiIj1E4UpERCRKHt5ZwSO7KmJbw67Y1yAi0l8oXImIiETBm5W17TNWsXbf9v0srqyLdRkiIn2eWrGLiIjYrDoY4uZNu7EAuxbkBTd/SsNTvyVYshaMwT12Ainfuwn3SaOOua8D+NGmXUzJGEOWWy/9IiLRopkrERERm/3n5j34gmEbg9VnVP/wO4T378F75XV4r7iO0N5d1Pzou4R2lR5z/wjgC4a5c/MemyoSEZHDUbgSERGx0eLKOl6pqLW1K2DD049hJSSQ9cgf8H7jSrzzryLrkWcgEqHhqUe6dIww8LeKWt6q0vJAEZFoUbgSERGxiTGG+3fst/3FNbh+NZ5Tp+JIz2jf5szOxT1xMi0f/otIU2OXjuMA7lf3QJFeyRhDVUMLu6sb2V7ZwO7qRqoaWvT/c5zRwmsRERGbrPI1stHfbPtxTTCAlZDQabuVkAjBIKEdW/GMnXDM40SAz/zNfOJrZHK61/Y6RcQ+1f4Ay7ZVsX5vHWt317J+Tx3+QOc5ca/HyfhB6UwsymB8YTrTR+SQ5fXEoGIBhSsRERHbPL23CqcFYZs/SHYVDSX46XpMOIzldAJggkGCn60HIFLV9VbrTqu1ToUrkfhjjOGTXbU8t7yURev2E4oYXA6LUOTIf1T8gTAfbq/m49Ka9vEXTizgimlDOKUoA8uyeu4JiJYFioiI2OFAIMTfK2psD1YASRddQnjPTny//Dmh0m2Edmyl7v47iVRXAWBaWrp8rLCBVytqOBAI2V+oiBy3t0vKmPObf3Hx48t47WCwAo4arD7v8+MXrt3H1x5bxtyH/sU7n5ZHrWbpTDNXIiIiNni/tp5QlC59SL7oEiKV5fhf+gPNb70GgGvUWLyXfhv/n57ESkru1vFCBj6obeCivIxjDxaRqKrxB7hnYQkL1+6jbZIp3MVAdSRt+28qr+faZz/mookF/PyicWRquWDUKVyJiIjYYF19Ey6LqAWslGuuJ/kbVxIq3YblTcE9fCT1T7Z2CnQNGtytY7ksWFffqHAlEmNvlZRx21/X4WtqnUm2uzdF2/FeX7ePf22p5P6LJzB73AB7TyIdaFmgiIiIDT7xNUYtWLVxpKbhGX8K7uEjAQisWoEjNx/n4GHdOk7IwGpf1zoMioj9jDH89t2tfO+5VdQ2BQlHueNf2EBtU5DvPbeK3767VR0Go0jhSkRE5AQZY1hX37NhpfndtwhtKiH54m9iObr/cr62vlFvsERiwBjDA29t4hdvbTr4c0+dt/X7Lw6eW///R4eWBYqIiJygqmAIfzgSteMH1q7C/9zv8Jw2DUdaOsFP19O0eCGeKdNJvvibx3XMhnCEqmCIXI/b5mpF5Gge+8c2Hv/HtpjX4E1w8YMZJ8W0jr5I4UpEROQENUUxWAE4cvLA4cT/0h8wjY04BxaS8p3/IPmSK7Ccx/9S3nyCF82LSPe8VVLWPmMVa794axMj81L4kq7BspXClYiIyAkKRnl5jauwiMwHHrP9uIFIdEOhiBxS4w9w21/XYQHx8LGGZcFP/7qO04dmqYugjRSuRERETpC7l96k03Mc12qJyPG5Z2EJvqaQrcEqEmjCt+JvtOzfRGD/ZiLNDWSffxMp42d1Ghus2k310t/TsudTLKeLpBGnY879Lj97rYSH5p9iY1X9m8KViIjICUpy9s6QkujonaFQpLd5u6SMhWv32X7cSJOPumUv4EzLxZ03jJZd6w87LuSrouz5n+JI8JLxxSsxwWZ8K//GvspSXvX8ii9PKOC8sfm219cfKVyJiIicoBy3C6/TEdWmFnZLcTrIcettgEi0GWN48O3NWJb9nQGd3iwG/eA5nCmZtOzfQtmzPzrsuLoP/4wJtpD/7d/gSssDwDPwZCpeuhP/hiU8+HYWs8bkYfXSWfh40js/ahMREYkjlmUxITU51mV0y8TUZL2REukBn+yqZVN5fVRarlsuN86UzGOOa9y0jKQRp7cHK4CkoZNwZRXi/+xfbCyrZ/XuWvsL7IcUrkRERGxwaloyrl6SVVwWnJLWu8KgSG/13PJSnDFcghuqryLSWItnYOe26wkDTyZQvh2nw+K55TtjUF3fo3AlIiJigwmpSYTioQVYF4QMvW6mTaQ3qvYHWLRuP+EY3vYg3FADtC4h/HdObyaR5npCgQCvrd1HtT/Q0+X1OQpXIiIiNjgzI7VXzVx9ISMl1mWI9HnLtlURivH95EyoBQDL2fmG4ZbL0z4mFDEs33agR2vrixSuREREbJDtcfGVvEyccR6wnBbMy8sk26NmFiLRtn5vHa4Yd+W0XAkAmHCw02MmFGgf43JYrN9b16O19UUKVyIiIja5ujCHcJwvDQyb1jpFJPrW7qqN+cxVW8OLsL+602Nhfw2OxFQsl5tQxLBWTS1OmMKViIiITSanJTPGmxi3L64OYKw3kVPVzEIk6owxcTET5ErNwZGcTmD/1k6PtezfjCd/WPvP6/fWYaLR1rAfide//yIiIr2OZVncNnwg8Xq3qwjw0+ED1YJdpAcc8AfwB8KxLgOA5JOn07TtI0K+yvZtTaVrCFXvJXnUme3bGlpCHFBTixOiBdciIiI2mp2TzlfzMlhYUUt8vK1q5QS+kpfB7Jz0WJci0i809VCw8q16jUiLn3BD67K/pq0rCdVXAZA2+UIcCV7Sp32Dxk0fUP7CHaSedhEm0IRv5d9w5w4lZfx5HY7XHIynv1y9j8KViIiIzf6/kwfxj5p66oLhuJjFcgDpbif3njwo1qWI9BvBcM/83+9b+QphX0X7z42bl8HmZQCkjJuBI8GLKy2X/MsWULP0SWrfewbL4SJpxOlkzrwGy9Wxi2AgFA9/tXovhSsRERGbZbld/GpUEVdvKI11KUDrcsBfjRpMllsv+yI9xe3smatvBn3/f7s0zpM7hPxL/+vY41y6auhE6F9PREQkCubmZnD7sIGxLgOAO4YPZE6ulgOK9KQkjzPWJRyXRHfvrDteKFyJiIhEyQ+H5PHDwXmxrWFwHjfEuAaR/ijb68HbywJWSoKLbK8n1mX0agpXIiIiUWJZFrcPH8gdw1tnsHrqRbftPP85fCB3jChQd0CRGLAsi/GFvWvGeHxhuv5enCCFKxERkSiyLIsfDsnnmeJhpLudRPtzbCeQ4XbyTPEwbhiSH+WzicjRTBycgcvRO8KKy2ExsSgj1mX0egpXIiIiPWBObjofTB3DRXmtb17sfgFuO95X8jL4YOoYXWMlEgfGF6YTivSOm/KGIqbXzbTFI4UrERGRHpLldvH4uKE8UzyMUd5EAJwn+KF22/6jvIn8YfwwHhs3lEx1BRSJC9NH5PSqmatpI7JjXUavp7++IiIiPWxObjqzc9L4xNfI03ureLWihpABlwWhLnzI3TbObVnMy8vg6sIcTklL1rUSInEmy+vhyxMG8tq6/YTjeAbL6bC4cGIBWWpmccIUrkRERGLAsiwmp3uZnO7l5ycV8kFtA2vrG1nja2RNfSP+w9yA1Ot0MCk1mVPSkpmQmswXMlLI9uilXCSeXTFtKK+u2RfrMo4qHDFcMW1IrMvoE/QXWUREJMayPS4uystovx7LGENVMERzxBCIRPA4HCQ6LHLcLs1OifQypw7OYPSAVDaV12PicPLKsmBUfiqnqJmFLXTNlYiISJyxLItcj5uiRA8jkhMpSvSQ63ErWIn0QpZlccuXRsVlsAIwBm750ij9fbGJwpWIiIiISBSdNzafiyYW4IyzAOO04CuTCjhvrG7bYBeFKxERERGRKPv5ReNIS3IRL/nKsiAtyc3PLhwX61L6FIUrEREREZEoy/R6uP/iCXGzPNAY+O+LJ5CpDoG2UrgSEREREekBs8cN4MezR8W6DAB+PHsUXxo3INZl9DkKVyIiIiIiPeQ/zhnBf5wzot/X0FepFbuIiIiISA+xLIsfzx6FN8HFL97ahGXRI0sF287zkzmj+I9zTor+CfspzVyJiIiIiPQgy7L4wYyT+N0Vk8lIcuOMcpMLpwUZSW5+d8VkBasoU7gSEREREYmBL40bwNJbzuGCCQUAtncSbDvelycW8O6t5+gaqx6gZYEiIiIiIjGS6fXw8GWn8OUJA/nVO5vZWFaP02ERjhz/WsG2/Uflp3LLl0bpPlY9SOFKRERERCTGvjRuAOeNzWf17lqeW76T19buIxQxuBwWoS4ErbZxLofFRRMLuGLaECYVZWDFy421+gnLmHjpth9ffD4f6enp1NXVkZaWFutyRERERKQfqfYHWL7tAOv21rJudx3r9tbibwl3GudNcDKhMIOJRRmML0xn2ohssnTvKtt1NRto5kpEREREJM5keT1cMGEgF0wYCIAxhgP+AM3BMIFQBI/LQaLbSbbXo9mpOKJwJSIiIiIS5yzLIiclIdZlyDGoW6CIiIiIiIgNFK5ERERERERsoHAlIiIiIiJiA4UrERERERERGyhciYiIiIiI2EDhSkRERERExAY9Eq5++9vfMnToUBITE5k6dSorV6486viXX36Z0aNHk5iYyPjx43njjTc6PG6M4e6772bgwIEkJSUxa9YstmzZ0mFMdXU1l19+OWlpaWRkZHDNNdfQ0NBg+3MTERERERGBHghXL730EjfffDP33HMPn3zyCRMnTmT27NlUVFQcdvyyZcu47LLLuOaaa1i9ejXz5s1j3rx5bNiwoX3MAw88wMMPP8wTTzzBihUr8Hq9zJ49m+bm5vYxl19+OSUlJbzzzjssWrSIf/7zn1x33XXRfroiIiIiItJPWcYYE80TTJ06ldNPP51HH30UgEgkQlFRETfccAO33XZbp/GXXnopfr+fRYsWtW8744wzmDRpEk888QTGGAoKCrjlllu49dZbAairqyM/P59nnnmG+fPn89lnnzF27Fg++ugjTjvtNAAWL17M+eefz549eygoKDhm3T6fj/T0dOrq6khLS7Pjn0JERERERHqhrmaDqM5cBQIBVq1axaxZsw6d0OFg1qxZLF++/LD7LF++vMN4gNmzZ7eP37FjB2VlZR3GpKenM3Xq1PYxy5cvJyMjoz1YAcyaNQuHw8GKFSsOe96WlhZ8Pl+HLxERERERka6KariqqqoiHA6Tn5/fYXt+fj5lZWWH3aesrOyo49u+H2tMXl5eh8ddLhdZWVlHPO+CBQtIT09v/yoqKurisxQREREREVG3wHa33347dXV17V+7d++OdUkiIiIiItKLRDVc5eTk4HQ6KS8v77C9vLycAQMGHHafAQMGHHV82/djjfn3hhmhUIjq6uojnjchIYG0tLQOXyIiIiIiIl0V1XDl8XiYPHkyS5Ysad8WiURYsmQJ06ZNO+w+06ZN6zAe4J133mkfP2zYMAYMGNBhjM/nY8WKFe1jpk2bRm1tLatWrWofs3TpUiKRCFOnTrXt+YmIiIiIiLRxRfsEN998M1dddRWnnXYaU6ZM4Te/+Q1+v5+rr74agCuvvJLCwkIWLFgAwI033sjZZ5/Ngw8+yAUXXMCLL77Ixx9/zO9+9zsALMvipptu4t5772XkyJEMGzaMu+66i4KCAubNmwfAmDFjmDNnDtdeey1PPPEEwWCQ66+/nvnz53epU6CIiIiIiEh3RT1cXXrppVRWVnL33XdTVlbGpEmTWLx4cXtDil27duFwHJpAmz59Os8//zx33nknd9xxByNHjuTVV1+luLi4fcxPfvIT/H4/1113HbW1tZx55pksXryYxMTE9jF/+tOfuP766zn33HNxOBxcfPHFPPzww9F+uiIiIiIi0k9F/T5XvZXucyUiIn2FMYbq5mqaw80Ew0HcTjeJzkSyErOwLCvW5YmIxL2uZoOoz1yJiIhIz6pprmFF2Qo+PfAp6yvX8+mBT2kMNXYal+xKZmz2WMbnjmds9limDphKZmJmDCoWEekbFK5ERET6AGMMayvX8uKmF3lrx1uETAiX5SJkQkfcpzHUyMflH7OmYk37+DnD5jB/9Hwm5EzQrJaISDdpWeARaFmgiIj0Fkt3LeXR1Y+ypXYLTstJ2ISP+1ht+4/MGMkNp9zAjMEzbKxURKR36mo2ULg6AoUrERGJd7XNtdy34j7eLH0TCwuDfS/pbcebO3Qud0y9g4zEDNuOLSLS23Q1G0T1PlciIiISHUt2LeHCVy/k7Z1vA9garD5/vLd2vsWFr17Ikl1LjrGHiIgoXImIiPQixhh+v+733PTuTdS11J3QEsCuiJgIdS113PTuTTy5/km04EVE5MgUrkRERHoJYwwPffIQD69uvW+j3bNVRzzvwfO0nVsBS0Tk8BSuREREeokn1z/JUxue6vc1iIjEK4UrERGRXmDJriXtM1ax9tAnD7F019JYlyEiEnd0nysREZE4V9tcy8+W/czWjoCN2xup/aAW/2d+AlUBXCkukkYkkX9xPgkDEgAwEUPtB7X4Vvlo2tVEuCGMJ9dDxtQM7rLu4tRvnKougiIin6OZKxERkTh334r7qA/U23qNVdUbVfg+9uEd62Xg5QPJPCeTxk2NbLtnG817mgGIBCLsfWovofoQWedkMfCbA0kankT5K+WsXbCW+1bcZ1s9IiJ9gWauRERE4tjSXUt5s/RN24+bMzuHxP+TiMN16HPW9CnpbL1zK5WvV1L0vSIsl8Xw/xxO8sjk9jFZ52ThyfFQ8UoFL7/+MnOHzdWNhkVEDtLMlYiISJwyxvDo6kexsGw/dvLI5A7BCiBhQAIJhQm07GsBwOFydAhWbdJObb2BZsu+Fh5Z/Yi6B4qIHKRwJSIiEqfWVq5lS+2Wnmu5bgwhXwhX6tEXtoTqQgA4U51sqd3Cuqp1PVGeiEjcU7gSERGJUy9uehGn5eyx89UtryNUEyJ9SvpRx1W+WYkjyUHq+FSclpMXN77YQxWKiMQ3hSsREZE4VNNcw1s73iJswj1yvpZ9Lex7bh9JJyWRceaROwBWvFaBv8RP/iX5OL1OwibM4h2LqWmu6ZE6RUTimcKViIhIHFpRtoKQCfXIuYK1QUp/XYozycngHwzGchz+Gq+6FXVU/K2CzC9mkj0zu317yIRYWbayR2oVEYlnClciIiJx6NMDn+Kyot/UN9wYZuevdhJpjDDkliG4M92HHdewoYE9v99D6oRUCq4q6PCYy3Lx6YFPo16riEi8U7gSERGJQ+sr10d95ioSiLDzNztpKWthyI+GkFiYeNhxjdsa2fXILpKGJlH0gyIsZ8eZrZAJsb5qfVRrFRHpDRSuRERE4owxJuozQSZi2P34bhq3NTL4B4NJPqlzy3WA5n3N7Pz1Ttw5bob8aAgOz+HfOnx64FO1ZBeRfk83ERYREYkz1c3VNIYao3qOshfKqF9dT+qkVML+MLXLajs8njE9g3BTmJ2/3EnYHyZnbg71a+s7jPHkedpDmT/op7q5muyZIgiTAAAgAElEQVSkbERE+iuFKxERkTjTHG6O+jmadjUBUL+mnvo19Z0ez5ieQbghTLA6CED5y+Wdx3who8OMV0u4JUrVioj0DgpXIiIicSYYDkb9HMNvH37MMZ5cD8XPFHf5mIFw4ERKEhHp9XTNlYiISJxxOw/fsS/eeZyeWJcgIhJTClciIiJxJtF5+K598S7BmRDrEkREYkrhSkREJM5kJWaR7Dp897545XV7yUrMinUZIiIxpXAlIiISZyzLYmz22FiX0S1js8diWdaxB4qI9GEKVyIiInFofO54XFbv6DvlslyMzxkf6zJERGJO4UpERCQOjc0eS8iEYl1Gl4RMqNfNtImIRIPClYiISByaOmBqr5q5mjJgSqzLEBGJOYUrERGROJSZmMnsYbNxWs5Yl3JUTsvJnGFzyEzMjHUpIiIxp3AlIiISp+aPmk/YhGNdxlGFTZj5o+fHugwRkbigcCUiIhKnJuZOZGTGSCziswufhcXJmSczIWdCrEsREYkLClciIiJxyrIsbjjlBgwm1qUclsFw/aTr1YJdROQghSsREYkpYwyVgSC7mlrY1tjMrqYWKgNBjInPQNHTZgyewdyhc+Pu2iuH5eD8YeczY/CMWJciIhI3ekcbIhER6TMOBEK8X1vPuvomVvsaWVvfiD8c6TTO63QwMTWZU9KSmZCaxJkZqWR7+ufL1h1T72D5/uXUtdTFxSyWhUWaJ43bp9we61JEROJK/3yVEhGRHmWMYZWvkaf3VvH3ihpCBlwWhI6SE/zhCMtqG1hZ19A+fl5eJlcX5nBqWnK/WoqWkZjBz6b/jJvevSnWpQCtywF/Pv3nZCRmxLoUEZG4omWBIiISVYsr65jx0Sa+/MkWXj0YrODowerzPj/+lYoaLvhkCzM/2sRbVXXRKThOnTv4XH54yg9jXQYAN556IzMHz4x1GSIicUfhSkREoqI6GOL7JaV8e8MONvubAQif4Iq2tv03+Zu5av0Ovl9SSnUwdIKV9h7fHf9dvjv+uzGv4Zria2Jag4hIvFK4EhER271ZWcsXVnzGwopaADpfUXVi2o63sKKWM1d8xpuVtTafIT5ZlsUPT/khN556Y+vPPdSive08N556IzeeemO/WpIpItIdClciImIbYwwPlZZz9YZS6oJhon372zBQGwxz9YZSHt5Z3i86DFqWxXfHf5eHZjxEekI6Diu6L+UOy0F6QjoPzXgo5rNmIiLxTuFKRERsYYzhvu37WbBjP2D/bNWRtJ3nvu37WbB9f78IWAAzB8/ktXmvMXvIbMD+Way2480ZOodFX12ka6xERLpA3QJFRMQWD++s4JFdFbGtYVcFKS4nPxySH9M6ekpGYgYPnP0Ac4bN4dHVj7KldgtOy0nYHP+cYdv+J2WcxA2n3KD7WImIdINl+stHfN3k8/lIT0+nrq6OtLS0WJcjIhLX3qys5eoNpbEuo90zxcOYk5se6zJ6lDGGdVXreHHjiyzesZiQCeGyXITMsRt+tI1zOVzMHTqX+aPnMz5nvK6tEhE5qKvZQOHqCBSuRES6pjoY4gsrPqM2GI6D29u2rndPdzv5YOoYstz9c4FGTXMNK8tWUnKghA1VGyipKqEx1NhpXLIrmXE54xifM56x2WOZMmAKmYmZMahYRCS+KVydIIUrEZGu+X5JKQsram1rXhFpaqTxpT8Q/GwDwY0bMPU+0n7yc5LmXNRpbOMrL9L49z8T3r8HR1oGiTO+RMrVP8CVlMRX8jJ4bNxQm6rq3YwxVDdX0xJuIRAO4HF6SHAmkJWYpdkpEZEu6Go26J8f6YmIiC0WV9bxSoW9bdBNXS3+Z3+HI28ArhEnE1zz8WHH1f/uIRpffIaEL84i+WuXEdq5ncZXXiJUup3MBx7jbxW1XJhbw9w8zcRYlkV2UnasyxAR6fMUrkRE5LgYY7h/x34c2NsZ0JGVQ85f3sGZlUNwUwnV3/9WpzHhA5U0vvxHEs+7gPTb723f7ho0hPpH/puWZe+ROO0s7lz3PubAauZ+4y7N0IiISNSpFbuIiByXVb5GNvqbbW+5bnk8OLNyjjomWLIOwiESZ8zusD1xZuvPze++hbEc7HUWsSt3GX9+YRYfLV9qc6UiIiIdKVyJiMhxeXpvFc4YTQaZYAAAKyGxw/a2n4ObPwPAYUK8w1yy83dywHc9zz51I42NnRs7iIiI2EHhSkREuu1AIMTfK2oIx6glkqtoKACBDWs6bA+sXw1ApKr1flsRy8WHfIEGKwWXq4XCYYt48YUrKSkp6dF6RUSkf1C4EhGRbnu/tp5QDHvNuk8eg3vMeBpffIamN/9OuGwfLSvex/ere8HlwrS0tI8NWy4+pZi2S66GDFvNyo/u4L333kMNc0VExE5qaCEiIt22rr4Jl0VMA1b6z35J3X/9FN8vfta6weEk+ZJvEVi7ivDu0vZxThNiByOYyvL2bYMHb2DL1ocJBoOce+65anYhIiK2ULgSEZFu+8TXGNNgBeDMzSPr4acJ7dlJpPoAzkGDcWblUHnJeTgHDWkfF8bJNk7qtP+wYWsoKXmBhIQEzjrrrJ4sXURE+iiFKxER6RZjDOvqY98U4nA3G/Z+5wdEDlSROPtzNxy2LLaFh7FwkY/XF/nYvTtIQoLFiBEerr3uXd57L4/c3FxGjx4duycj8ccY8FdBsBHCQXC6wZ0M3hzQTKeIHIHClYiIdEtVMIQ/bHcD9u5ru9kwDgdEWuvx/+9vAWh8/n9xDRpC0pzWkLXnqst4eF9V+76BgGHNmmZ+8B87gPu56677mTFjBkuXql17v+U/ADveg/1rYO8q2LcGAg2dx3lSoGASFE6GgZNg2Nng1Q2aRaSVwpWIiHRLUw8Eq8ZXXiTSUE/kQCUALcvfI1xZDkDyV+fjSEnF/9IfcI8/leD6Tzru7EmAwKGGFs3/eJvIvj0A5OU5cTgsystDtPWymDo1iRUrmhg0aFDUn5fEGWNgz0ew8vdQ8jeIhMDhav1+JIEGKH0fdn14aHzxxXD6tTDoNM1qifRz6hYoIiLdEuyBDnv+Pz+L/+nHaFr4MgAt/1qK/+nH8D/9GKahHgD3qHFE6utaw9Tn7nflHDy0w7EaX/4jOBxYFjz8SAE+X5irrspsPYYbduwIYlmQk5PNxo0bo/7cJE5sfB0enw5PnQclfz0UqI4WrD7v8+M3/BWemgWPfwE2vhGdekWkV9DMlYiIdIu7Bz6Zz33h2G9Qk+Zc1L7sL7iphOrvf6vTmIi/geDGDWBZGAOXf3M34TC8/roPAJfLoro6xIQJiRQWBli6dCmjRo1S98C+rLEa3vgxbPgLWAc/Y46ET+yYbUGr8jN48TIo/jqc/wtIzjqx44pIr6OZKxER6ZYkZ+956Qjv29O69OvgbFv44HvoqqrW/2huNoRCMHNmKgMLNlFRUcGePXtiVa5E22eL4JHJUPJK68/G5iWubccreaX1PJ8tsvf4IhL3es8rpIiIxIUctwtvLwlYpulgV0NjcDo/t90c+u52W5x9TjK5uaW43S189NFHPV+oRJcx8M9fwkuXQ1MtmBOcqTrm+cKt53npcvjXg4d+4USkz+sdr44iIhI3LMtiQmpyrMvoEishAQBXWgrGwBe/6OXuu/O49rrM9jGFhS5SUpw4HIb09DI2bNiA3++PVcliN2Ngyc9h6X8d3NBTnS4PnmfJ/239UsAS6RcUrkREpNtOTUvG1QsuS3Jk5wIQ8jUwcKCLu+/J54tnp3D22SntY2pqWmcxIhGLlJQDRCIRSktLY1GuRMO/HoT3fx3bGt7/VeuXiPR5ClciItJtE1KTCPWCD+KdOXlwcPbq3HNTKCsLUlYWpLLy0LKwxsYIwaDBsgypaVU4HA727dsXq5LFTp8t+tyMVYwt+b+tHQpFpE9Tt0AREem2MzNScVn0ioDlyMgkUl7Gs8/W8uyztZ0eDwZh584AJ52UQEpKNZFImL1798agUrFVYzUsvAGwgHj4RXXA36+HwdPURVCkD1O4EhGRLjHGcMAfoCkQJhiOcF6yl7drfITdjpjdOPXfbzYMEKmuaq23pRmHCXHKd85l1YI/YVnwxS8mk5jo4J//9NPU1PqGe+BAFwMGuAFwuYK43c3s27cPY4xasvdmb/wYmuuwM1h9tDfMH9YGeLc0TGlthOwkizMGObl3ZgInZx/qmLJyb5hn1gRYsTfMuvIIoQiYe9Ja63nzJ3Dxk7bVJCLxReFKREQOq9ofYNm2KtbvrWPt7lrW76nDH+jYZc0NuJwWkTQ3Jt1DJN1NJCsBPM7DH9Rm/j8/S6R8f4dtpvoAAPWP/4rgzu2MdX2I09nahv2f/2zEsjr2Frjl1hxSUg6tknc4wrS0BPD7/aSkpCC90MbXW+9jZbP//qCFD3aHuWSsmwn5DsoaDI+uDHDq//j58LteivNaf+/f2BLkyU+CTMh3MDzTweYDB5tbmDCsfxnGfQ1Gn297fSISewpXIiLSzhjDJ7tqeW55KYvW7ScUMbgcFqHIkT/9t8IGR00AagO4DBgLIgOSCA1OwaS7ozqrlfvCG5TPPOXwDwZaaH71JZYA06cnUVLSgs8XIfK5ZnHnn5/CpEkdOx86HK0DQqFQlKqWqDIGlt7beoNgm+9jdfM0D89f7MTjPPQ7fek4F+Mf93P/+wH++LUkAL5/moeffiGBJLfF9W80HQpX0FrX0nth1NyYzfiKSPQoXImICABvl5Tx4Nub2VRej9NhET4YqI4WrNpY0L76yjLgKGsiYX8TkRQXoZFpRPKSolZ3/tLVR3zsZrOAyXzcreNFIq2zWApXvdSej6Di06gcenpR57dNI7OdjMtz8FnVoVnd/JSj9AszEagogT0fQ9Hp0ShTRGJI4UpEpJ+r8Qe4Z2EJC9fua/8gPdyFQHU0VlvQagjhWV1NeEASwTHpPbZc0GHCnMEH3Q5WAJFIa40ul14ie6WVvweHEyJRvlHwQcYYyhsM4/K60YDZ4YKPfq9wJdIHqRW7iEg/9lZJGTMf/Aevr2u9bsnu+5y2LXpylDWR8H4FjvIme09wuHOaCMn4uZKnur1vKOQmGEwEFK56Jf8BKPlbjwUrgD+tD7K33nDpOHfXd4qEYMNfW+sVkT5F4UpEpB8yxvDbd7fyvedWUdsUJGx3qvo3FkAwgmdNNc7t9fanuM8xloNreYxUGrq3n4GGhizAwuPx4PV6o1OgRM+O91qDSw/ZWBXmB280M22Qk6smdiNcQWudpf+MTmEiEjMKVyIi/Ywxhgfe2sQv3tp08OeeOW/bLJZ7iw/XFl/UTvwN80dO46Nu72eMRb0vB4CCggK1Ye+N9q9pXXLXA8oaIlzwfCPpCRZ/+UYSTkc3f18cLti3JjrFiUjMKFyJiPQzj/1jG4//Y1tMa3DtaMC5o3szS11xkfkrF/HKce3rcBgaGrJxOBwUFhbaXJn0iD2remTmqq7ZMPdPjdQ2w+JvJVOQehxvpyIh2LvK/uJEJKYUrkRE+pG3SsraZ6xizb3Fh6PixK/Bsg62277U/JFLeZ7jnW+KRCxqa/OJRCIUFBSccF3Sw4xpnbmKsuaQ4cIXGtl8IMKiy5IYm3sCTVr2rem5qWMR6REKVyIi/USNP8Btf1133OHDbgZwb6iFwPE3H3CYMF4a+JG5/7hnrKA1WFVWDiUUSsThcDB06NDjPpbEiL8KAvbPhn5eOGK49C9NLN8T5uVLkph2mNbs3RKob61bRPoMtUISEekn7llYgq8phJ2fk7fs34x/wxKad64n5CvHkZhGQsEoMr54Be6sjkvrglW7qV76e1r2fIrldJE04nQyZn4X98YEghOyunVey0QwloMz+ICreIqUbjav+HcOh2H/vlE4HA6Ki4vVzKI3CjZG/RS3vN3Cwk0hLjzZRXWT4Y/rAh0e/9YEDwA7ayM8ty4IwMf7WmdW7/1nCwBD0i2umOg5tFMo+h00RaTnKFyJiPQDb5eUsXDtPtuP6/vwL7Ts/Yzk0Wfizh1K2F9D/SeL2P/MjQy44pd4cocCEPJVUfb8T3EkeMn44pWYYDO+lX8jUFnKwCt/hWNAUpduNOwwISKWi0Hs4hLzwnHdx+rfGQN+fwb19TlAhNNP172HeqVwMOqnWFPWOsv62uYQr23ufG1XW7jaURvhrndbOjzW9vPZQ5z/Fq46BjQR6d0UrkRE+jhjDA++vRnLsv/yjtTTv0rORT/Gch5qQ+0dfRb7/vd6fB/+hZwLbwWg7sM/Y4It5H/7N7jS8gDwDDyZipfupGH9ErzpXyaQmwj/3qHPGJyECVsunCbENN7nPLOYEWyxbXmjZcHO0klYloO8vDwGDRpk05GlRzm72Qr9OPzj212b0TxnqAtzT1rXDuryHHuMiPQaClciIn3cJ7tq2VReH5VjJw4a02mbO6sQT85gggd2t29r3LSMpBGntwcrgKShk3BlFdK48V+kTpqDVRfEZBx6o5lomhjOVkawlWFmG2PZQCr2Pg9jLCorhlBdXQQYZsyYoRbsvZU7OdYVHB/XsWdsRaT3ULgSEenjnlteitNhEY70TFcyYwxhfy3unMEAhOqriDTW4hl4UqexCQNPpmnbxzisMGfsWsLF6a/jIoSHFtLwRbX5hjEQCnnYtm0KlmVRXFzM6NGjo3hGiSpvDnhSot7Uwlae1Na6RaTPULdAEZE+rNofYNG6/T0WrAD8n/6DcMMBvGPOAiDcUAOA09u5aYXTm0mkuZ5wMMLasnGkBHzkUkl6lIMVtC4H3Lx5GqFQAomJicydOzfKZ5SosiwYOCnWVXRPwaTOS2FFpFdTuBIR6cOWbasi1IPBKnhgN9VvP05CwWi8xecCYEKtF/Jbh7kmxjp4vYkJtRAxTjZWj+yxWnfsmET1gSIAvvKVr5Cc3EuXlckhgyaDo5csynG4oHByrKsQEZspXImI9GHr99bhcvTMJ+Phhhoq/vJzHAlecubdjuVovbmq5UoAwBymm5s52CnNciXgtMLs9BX1SK27dhWzZ3cxAOeee66WA/YVAydBpHMXv7gUCbXOXIlIn9JLPt4REZHjsXZXbY/MXEVa/JS/fA+RZj/5l/83rtTs9secKZkAhP3VnfYL+2twJKZiudyEjWF73ZCo1WhM6wqsHTtOaQ9WZ555JmeeeWbUzik9bNjZrTNCvSFgOVww9IuxrkJEbKaZKxGRPsoYw/q9ddE/TyhAxV/+L6GaveR9/W48BxtZtHGl5uBITiewf2unfVv2b8aTP+zgTxY7fYNtbxcPrV0BQ6EESkrO6TBjNWvWLHUH7Eu82TDua3Bw1jRuOVxQfHFrvSLSpyhciYj0UQf8AfyBcFTPYSJhKv/+37Ts20juV24jobBza3aA5JOn07TtI0K+yvZtTaVrCFXvJXnUoZmj5nAi9YEU++o7GNQqK4bw8UdfoaZ6MElJScyfP5+zzjrLtvNIHJlyLUSi+3t/wiIhOP3aWFchIlGgZYEiIn1UU5SDFUDN0qdo2rqCpJOmEG5uoKHk3Q6Pp4ybAUD6tG/QuOkDyl+4g9TTLsIEmvCt/Bvu3KGkjD+vwz6BiJtIxMLhOP4prLb9/f4MdpZOoqZmMMYYxo8vZu7cuWpe0ZcNOh3yxkHlZ2Aisa6mM8sBeWNh0GmxrkREokDhSkSkjwqGo//GMlCxHYCmrStp2rqy0+Nt4cqVlkv+ZQuoWfokte89g+VwkTTidDJnXoPl6thFMLL1aupyXyM9bysOhyESsbAsc9SO1ca0Lv1rHe+gsnIo+/edjN+fRyRiyMvLZebMmWpc0R9YFsy8E168LNaVHJ6JwIz/VAt2kT5K4UpEpI9yO6O/8nvAN+/v8lhP7hDyL/2vY44768qrGeC+lg3vvsfGPYtoSdpBSloVKSkHcLk6NyoIhVw0NGRT78uhoSEbX91AAkEPDoeD4uJipkyZQmFhoa6t6k9Gnw/FX4eSV8DE0RJBywnFX2utT0T6JIUrEZE+KskT5xf1H0Gi24krxcOkC89jEufh9/vZsWMHe0t3Ubp9I9W+CiImQCTiIBJxEgwmAhYej4eCggJGjSqkoKCAoUOH4vV6Y/10JFbO/wVsWwpNtUA8LA90QGI6zH0g1oWISBQpXImI9FHZXg9ejzPqTS3slJLgItvr6bDN6/VSXFxMcXExcD7GGPx+P6FQiFAohMvlwuVy4fV6NTslhyRnwUWPwEuXx7qSgyLwlUdb6xKRPkvdAkVE+ijLshhfmB7rMrplfGH6MQOSZVmkpKSQkZFBTk4OGRkZpKSkKFhJZ2O+DDPvinUVrc69G0ZfEOsqRCTKFK5ERPqwiYMzcDl6R+hwOSwmFmXEugzpa866Bc68ObY1nHlz7GsQkR6hcCUi0oeNL0wnFInCXXmjIBQxvW6mTXoBy2qdNTr37oMbeuqtz8HznHsPzLpH3QFF+gmFKxGRPmz6iJxeNXM1bUR2rMuQvsiyWmew5j8PSRmtXfuiej5n63nmPw9nacZKpD9RuBIR6cOyvB6+PGEgzjgPWE6HxYUTC8j6t2YWIrYafQHcsArGfbX1Z8vmt0Ftxyv+Wut5dI2VSL+jcCUi0sddMW0o4ThfGhiOGK6YNiTWZUh/kJwFX3+qdVYpd0zrNscJNk9u2z93DMx/AS5+Ul0BRfoptWIXEenjTh2cwej/1969R0dV3v8e/8wlV2ASAiEXrl4gSORi4UeI7SoIAYRQWotHFyhVK6KCLSp6Cgcr0F+tlXLEttoCtSjtMrCkR6kX0CpaFYggGAUjtxao3BKQXCaQ68w854+Y+RETbrIneyZ5v9aaxXLvZ+/5PvM10Q9772dSO2hPcYVMGGYsh0PKSOmga1jMAi2pb66UMV46vE366E/SZ/9PCvjqg1Kg6ZdVN9EwzhklXT1JGnqX1HUwz1YBbRzhCgBaOYfDodljMnTXX7bZXUqzjJFmj8lgKXW0PIdD6v5f9a+xj0sH35eOFkhHPq7/s/ZU02Oi20vp19QHqfRBUq/vSu14VhBAPcIVALQBo/ulaOLAdL2+45j8YXT5yuWQJgxM1+h+KXaXgrauXaf6Z7EanscyRjr9peSrkny1kjtacsdJ7TpzdQrAWRGuAKCNWDgxUx/sO6GyqrqwuD3Q4ZA8cVFa8L1Mu0sBmnI4pPbJdlcBIMKwoAUAtBEd20Xr15MGhEWwkuovDDwxaYA6skIgAKCVIFwBQBsyNjNVD4/NsLsMSdLDYzM0JjPV7jIAALAM4QoA2pgZI67QjBFXtPkaAACwGs9cAUAb43A49PDYDLWLces3b+6Rw6EWuVWw4X3+9/UZmjHiytC/IQAALYwrVwDQBjkcDs287kotnzpYiXFRcoV48TOXQ0qMi9LyqYMJVgCAVotwBQBt2JjMVL0ze4RyB6RLsn6F6YbzTRiYrncfGsEzVgCAVo3bAgGgjevYLlq/m3yNJgxI05Nv7dXuogq5nA75A9/8XsGG4zNSOmj2mAy+xwoA0CYQrgAAkuqvYo3ul6KCQ2X6a/5/9OqnR+ULGLmdDvkuIGg1jHM7HZo4MF1Ts3tqUPdEOfjCVQBAG+EwJly+8SS8eL1eJSQkqLy8XB6Px+5yAKDFlZyuVf6/T2rHkTLtOFSuHUfKdLrG32RcuxiXBnRN1MDuierfNUHZV3RSEt9dBQBoRS40G3DlCgDQrKR20codkKbcAWmSJGOMTp6uVXWdX7W+gKLdTsVGudSpXTRXpwAAEOEKAHCBHA6HOrePsbsMAADCFqsFAgAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWCFm4Kikp0S233CKPx6PExETdeeedOnXq1DmPqa6u1syZM9WpUye1b99ekyZNUnFxcaMxX3zxhXJzcxUfH68uXbro4Ycfls/nC+5/6aWXNHr0aCUnJ8vj8Sg7O1tvvvlmSOYIAAAAAA1CFq5uueUWFRYW6q233tJrr72m999/X9OnTz/nMQ888IBeffVVrVmzRu+9956OHj2qH/7wh8H9fr9fubm5qq2t1ebNm7Vy5Uo9//zzevTRR4Nj3n//fY0ePVrr1q3T9u3bdd111+l73/ueCgoKQjVVAAAAAJDDGGOsPumuXbvUr18/ffTRRxoyZIgk6Y033tD48eN1+PBhpaenNzmmvLxcycnJysvL04033ihJ2r17t6666irl5+dr2LBhWr9+vSZMmKCjR48qJSVFkrR06VL97Gc/04kTJxQdHd1sPZmZmbr55psbhbDz8Xq9SkhIUHl5uTwez8V+BAAAAABaiQvNBiG5cpWfn6/ExMRgsJKknJwcOZ1Obdmypdljtm/frrq6OuXk5AS39e3bVz169FB+fn7wvP379w8GK0kaO3asvF6vCgsLmz1vIBBQRUWFkpKSzllzTU2NvF5voxcAAAAAXKiQhKuioiJ16dKl0Ta3262kpCQVFRWd9Zjo6GglJiY22p6SkhI8pqioqFGwatjfsK85ixcv1qlTp3TTTTeds+bHH39cCQkJwVf37t3POR4AAAAAznRR4WrOnDlyOBznfO3evTtUtV60vLw8LVy4UC+++GKTsPd1c+fOVXl5efB16NChFqoSAAAAQGvgvpjBs2fP1u23337OMZdffrlSU1N1/PjxRtt9Pp9KSkqUmpra7HGpqamqra1VWVlZo6tXxcXFwWNSU1O1devWRsc1rCb49fOuXr1a06ZN05o1axrdang2MTExiomJOe84AAAAAGjORYWr5ORkJScnn3dcdna2ysrKtH37dg0ePFiS9M477ygQCCgrK6vZYwYPHqyoqCht2LBBkyZNkiTt2bNHX3zxhbKzs4Pnfeyxx3T8+PHglai33npLHo9H/fr1C55r1apV+vGPf6zVq1crNzf3YqYIAAAAAN9ISFYLlKRx48apuLhYS5cuVV1dne644w4NGTJEeXl5kqQjR45o1KhR+ofVKIoAABYVSURBVMtf/qKhQ4dKku69916tW7dOzz//vDwej37yk59IkjZv3iypfin2QYMGKT09XYsWLVJRUZGmTp2qadOm6Ve/+pWk+lsBb7vtNv32t79ttIx7XFycEhISLrh+VgsEAAAAINm8WqAkvfDCC+rbt69GjRql8ePH6zvf+Y6WL18e3F9XV6c9e/aosrIyuG3JkiWaMGGCJk2apO9+97tKTU3VSy+9FNzvcrn02muvyeVyKTs7W7feeqt+9KMf6Re/+EVwzPLly+Xz+TRz5kylpaUFX7NmzQrVVAEAAAAgdFeuIh1XrgAAAABIYXDlCgAAAADaEsIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYwG13ATg7Y4z8JSUKVFXL1NXKERUtZ1ysXElJcjgcdpcHAAAA4AyEqzDiKy1V5YcfqrqwUFU7dqq68DMFTlc2GedsF6/YzKsVN6C/YjMzFT9smNwdO9pQMQAAAIAGhCubGWNU9cknKs1bJe/69ZLPJ7nd9X+eReB0pSq3blXlxx8Hx3vGj1fSlMmKHTiQq1oAAACADQhXNqrYsEEnnvqtavbtk1wuye+v33GOYNVIwzifT97XX5f3lVcU06ePku+fpQ4jR4amaAAAAADNYkELG/hKS3Vk9kM6PPM+1fzrX/UbG4LVN/XV8TX79unwjJk6Mvsh+UpLL7FSAAAAABeKcNXCKt5+W/vHjZf3jTfqNxhj7Rt8dT7v+vXaP268Kt5+29rzAwAAAGgW4aqFGGP05dJlOnzfT+QvL7/0K1XnEwjIX16uw/f9RF8uWy5jdYgDAAAA0AjhqgUYY3TiySU68dRTDRta6o0lSSeWLNGJJU8RsAAAAIAQIly1gJPLluvkn/5kbw3Ll+vkcntrAAAAAFozwlWIVbz99v9csbLZiSVLVLFhg91lAAAAAK0S4SqEfKWlOvbIz6Vw+d4ph0PH5j3CKoIAAABACPA9VyFU/MvH5K+osOwZq51VVfq7t1xbKit1tK5OCS6XBsbFaVbnZPWKjg6OW1NWple95TpQWytvIKAubrf+Ky5eMzt3UlevV8WPPaauixdbUhMAAACAeoSrEKnYsEHe11+39Jx/LinRx1WVGtvBo4yYGH3p9+mF0lJNOnhAq3v2Uu+YGEnSrppqdYuK0nXt28vjculIXZ3WlJXpvdOn9HKvXtJrr8szfjxfNAwAAABYyGFYQq5ZXq9XCQkJKi8vl8fjuahjjTE6MPH79V8QbOHHW1BVqczYOEWfcZvhwdpa/eDgAY1p30GL0tPPemxhdbX+138O6oHOybqrc2fF9O6ty/6+Vo5wuWURAAAACFMXmg145ioEqj75RDX79lm+5Po1cfGNgpUk9YqO1pXR0dpfW3POY7tGRUmSKgJ+yRjV7N2r6k8/tbQ+AAAAoC0jXIVAad4qyeVqkfcyxuik36+OrqZ3eJb5/Trp8+mz6irNO3ZMkjQsvl39TpdLJXmrWqRGAAAAoC3gmSuL+UpL5V2/XvL7W+T9XvV6Vezz6b7OnZvsG/Hvf6n2q6tniS6X/k+XLrq23Vfhyu+Xd906pcydI3fHji1SKwAAANCaEa4sVvnhh5LP1yLvtb+mRr88XqxBsXH6gSehyf5l3bqpJmC0v7ZWr3rLVRX42m2KPp8qt2yR5/rrW6ReAAAAoDUjXFmsurBQcrtDHrBO+Hy698hhtXc69VTXdLmaWZgi66tbAL8raWT79vr+wQOKdzp1S8OVKrdb1YWFhCsAAADAAjxzZbGqHTtCHqwq/H7dffiQvH6/lnfrri7uqPMe0yM6WlfFxOo1b/n/bPT56usFAAAAcMm4cmUhY0z9lasQqgkENOPIYf2ntlZ/7t5DV3713VYXotoEgs9gBbd9VihjDEuyAwAAAJeIK1cW8peUKHC6MnTnN0YPHjuqT6uq9GR6Vw2Ki2syxmeMyptZTGNHVZX21dTo6tjYRtsDp0/LX1ISspoBAACAtoIrVxYKVFWH9PyLThzXu6dO6bp27VXu9+uV8vJG+ycmJKgyENDIf/9L4zweXRkdozinQ/tqavRyebnaO526p1PTVQVNdWjrBgAAANoCwpWFTF1tSM+/+6sQ9O7pU3r39Kkm+ycmJCjW6dSNiYnaWlmpf1RUqDoQUBe3W+M9Ht3TqZO6RkU3OS5QG9q6AQAAgLaAcGUhRzPBxUore/Q875hoh0Nzu6Rc1Hmd0aGtGwAAAGgLeObKQs642PMPCkOO2MisGwAAAAgnhCsLuZKS5GwXb3cZF8XZrp1cSUl2lwEAAABEPMKVhRwOh2IzM+0u46LEXp3JMuwAAACABQhXFosbMEByR8ijbG53fb0AAAAALhnhymKxmZmSz2d3GRfG54u4K20AAABAuCJcWSx+2LCIunIVn5VldxUAAABAq0C4spi7Y0d5xo2TXC67Szk3l0ue8ePl7tjR7koAAACAVoFwFQIdp0yW/H67yzg3v19JUybbXQUAAADQahCuQiBu0CDF9OkjhesqfA6HYjIyFDtwoN2VAAAAAK0G4SoEHA6Hku+fJRljdynNM0bJs37KEuwAAACAhQhXIdJh5Eh5cnPD79krp1OeCbnqMHKk3ZUAAAAArQrhKoRSHpknV4cO4XN7oMMhl8ejlHnz7K4EAAAAaHUIVyHk7thRab/87/C5PdAYpT32S1YIBAAAAEKAcBViHXJylHz//XaXIUlKfuABdRg1yu4yAAAAgFaJcNUCOt09XZ2mT7e3hunT1Wn6XbbWAAAAALRmbrsLaAscDoeSH7hfznbtdGLJkvpnsFriVsGv3if5wQfVmWAFAAAAhBRXrlqIw+FQ57unq9szT8uVkCA5Q/zRO51yJSSo2zNPE6wAAACAFkC4amEdRo3S5evXyTNuXP0Gq1cS/Op8nvHjdMUb63nGCgAAAGghhCsbuDt2VNf/u1jdnnlaMb1712+81O/D+ur4mN691e0Pz6jr4sVyJSZeYqUAAAAALhTPXNmow6hRaj9ypKo//VQleavkXbdO8vkkt7v+z/NpGOd2y5M7XklTpih2wAA5wuV7tQAAAIA2xGFMuHwJU3jxer1KSEhQeXm5PB5Pi7ynr7RUlVu2qPqzz1S1c6eqPytU4PTpJuOc7dop9upMxQ0YoNjMTMVnZfHdVQAAAECIXGg2IFydhR3h6uuMMfKXlMhUVytQWytndLQcsbFyJSVxdQoAAABoIReaDbgtMIw5HA65O3WyuwwAAAAAF4AFLQAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMACbrsLCFfGGEmS1+u1uRIAAAAAdmrIBA0Z4WwIV2dRUVEhSerevbvNlQAAAAAIBxUVFUpISDjrfoc5X/xqowKBgI4ePaoOHTrI4XDYXU5IeL1ede/eXYcOHZLH47G7nDaLPoQH+hAe6EN4oA/hgT7Yjx6Eh3DogzFGFRUVSk9Pl9N59ieruHJ1Fk6nU926dbO7jBbh8Xj4hREG6EN4oA/hgT6EB/oQHuiD/ehBeLC7D+e6YtWABS0AAAAAwAKEKwAAAACwgGvBggUL7C4C9nG5XBoxYoTcbu4QtRN9CA/0ITzQh/BAH8IDfbAfPQgPkdIHFrQAAAAAAAtwWyAAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcNWKlJSU6JZbbpHH41FiYqLuvPNOnTp16pzHVFdXa+bMmerUqZPat2+vSZMmqbi4uNGYL774Qrm5uYqPj1eXLl308MMPy+fzBffffvvtcjgcTV6ZmZkhmWe4s6sPklRTU6N58+apZ8+eiomJUa9evbRixQrL5xgJ7OrDP//5z2Z/HoqKikIyz3Bn589Dg02bNsntdmvQoEGWzSvS2NWHjRs36tvf/rY6deqkuLg49e3bV0uWLAnJHCOBXX146aWXNHr0aCUnJ8vj8Sg7O1tvvvlmSOYY7uzqwbFjxzRlyhT16dNHTqdT999/f0jmF66eeeYZ9erVS7GxscrKytLWrVvPOX7NmjXq27evYmNj1b9/f61bt67RfmOMHn30UaWlpSkuLk45OTnat29fozHfpNeWMGg1rr/+ejNw4EDz4Ycfmg8++MBceeWVZvLkyec85p577jHdu3c3GzZsMNu2bTPDhg0z1157bXC/z+czV199tcnJyTEFBQVm3bp1pnPnzmbu3LnBMWVlZebYsWPB16FDh0xSUpKZP39+qKYa1uzqgzHGTJw40WRlZZm33nrLHDhwwGzevNls3LgxJPMMd3b14d133zWSzJ49exr9XPj9/pDNNZzZ+fNgjDGlpaXm8ssvN2PGjDEDBw60fH6Rwq4+fPzxxyYvL8989tln5sCBA+avf/2riY+PN8uWLQvZXMOZXX2YNWuWeeKJJ8zWrVvN3r17zdy5c01UVJT5+OOPQzbXcGVXDw4cOGB++tOfmpUrV5pBgwaZWbNmhWyO4Wb16tUmOjrarFixwhQWFpq77rrLJCYmmuLi4mbHb9q0ybhcLrNo0SLz+eefm0ceecRERUWZnTt3Bsf8+te/NgkJCWbt2rXm008/NRMnTjSXXXaZqaqqCo75Jr22AuGqlfj888+NJPPRRx8Ft61fv944HA5z5MiRZo8pKyszUVFRZs2aNcFtu3btMpJMfn6+McaYdevWGafTaYqKioJj/vjHPxqPx2NqamqaPe/LL79sHA6HOXjwoBVTiyh29mH9+vUmISHBnDx5MhRTiyh29qEhXJWWloZiahElHH4v3XzzzeaRRx4x8+fPb7PhKhz6cKYbbrjB3HrrrZc6rYgTbn3o16+fWbhw4aVOK6KESw+GDx/epsLV0KFDzcyZM4P/7Pf7TXp6unn88cebHX/TTTeZ3NzcRtuysrLM3XffbYwxJhAImNTUVPOb3/wmuL+srMzExMSYVatWGWO+Wa+twm2BrUR+fr4SExM1ZMiQ4LacnBw5nU5t2bKl2WO2b9+uuro65eTkBLf17dtXPXr0UH5+fvC8/fv3V0pKSnDM2LFj5fV6VVhY2Ox5//znPysnJ0c9e/a0YmoRxc4+vPLKKxoyZIgWLVqkrl27qk+fPnrooYdUVVUViqmGtXD4eRg0aJDS0tI0evRobdq0ycrpRQy7+/Dcc89p//79mj9/vtVTiyh29+FMBQUF2rx5s4YPH27F1CJKOPUhEAiooqJCSUlJVkwtYoRTD9qK2tpabd++vdHn53Q6lZOTE/z8vi4/P7/ReKn+82wYf+DAARUVFTUak5CQoKysrEY9udheW8Ud0rOjxRQVFalLly6NtrndbiUlJZ31WY+ioiJFR0crMTGx0faUlJTgMUVFRY1+WTTsb9j3dUePHtX69euVl5f3jecSyezsw/79+7Vx40bFxsbq5Zdf1pdffqkZM2bo5MmTeu655yyZX6Swsw9paWlaunSphgwZopqaGj377LMaMWKEtmzZom9961uWzC9S2NmHffv2ac6cOfrggw/kdrft/9SFw38funXrphMnTsjn82nBggWaNm3aJc0pEoVDHxosXrxYp06d0k033fSN5hKpwqkHbcWXX34pv9/f7Oeze/fuZo852+d55ufdsO1cYy6211bhylWYmzNnTrMPx5/5Otu/nHZYuXKlEhMT9YMf/MDuUiwVCX0IBAJyOBx64YUXNHToUI0fP15PPvmkVq5c2WquXkVCHzIyMnT33Xdr8ODBuvbaa7VixQpde+21reoh/nDvg9/v15QpU7Rw4UL16dPHtjpCLdz7cKYPPvhA27Zt09KlS/XUU09p1apVdpdkmUjqgyTl5eVp4cKFevHFF5v8z2ekirQeoHVr23+dFwFmz56t22+//ZxjLr/8cqWmpur48eONtvt8PpWUlCg1NbXZ41JTU1VbW6uysrJGfyNTXFwcPCY1NbXJii4NK+R8/bzGGK1YsUJTp05VdHT0Bc0vUkRCH9LS0tS1a1clJCQEx1x11VUyxujw4cPq3bv3hU02jEVCH5ozdOhQbdy48Zx1R5Jw70NFRYW2bdumgoIC3XfffZLq//LBGCO3261//OMfGjly5EXNORyFex/OdNlll0mS+vfvr+LiYi1YsECTJ08+/yQjQCT1YfXq1Zo2bZrWrFnT5LarSBZJPWhrOnfuLJfL1WR1xTM/v69LTU095/iGP4uLi5WWltZoTMOqsN+k15YJ6RNdaDEND+5t27YtuO3NN9+8oIc0//a3vwW37d69u9mHNM9c0WXZsmXG4/GY6urqRudreJD/zNVc2ho7+7Bs2TITFxdnKioqgmPWrl1rnE6nqaystHSe4S4cfh7OlJOTY2644YZLnVbEsasPfr/f7Ny5s9Hr3nvvNRkZGWbnzp3m1KlTIZpxeAq3n4eFCxeanj17XuKsIo/dfcjLyzOxsbFm7dq1Vk8tYtjdgwZtcUGL++67L/jPfr/fdO3a9ZwLWkyYMKHRtuzs7CYLWixevDi4v7y8vNkFLS6m11YhXLUi119/vbnmmmvMli1bzMaNG03v3r0bLTl5+PBhk5GRYbZs2RLcds8995gePXqYd955x2zbts1kZ2eb7Ozs4P6G5UXHjBljPvnkE/PGG2+Y5OTkZpc8vvXWW01WVlZoJxkB7OpDRUWF6datm7nxxhtNYWGhee+990zv3r3NtGnTWmbiYcauPixZssSsXbvW7Nu3z+zcudPMmjXLOJ1O8/bbb7fMxMOM3b+XGrTl1QKNsa8PTz/9tHnllVfM3r17zd69e82zzz5rOnToYObNm9cyEw8zdvXhhRdeMG632zzzzDONviKirKysZSYeRuz8nVRQUGAKCgrM4MGDzZQpU0xBQYEpLCwM/aRttnr1ahMTE2Oef/558/nnn5vp06ebxMTE4OqKU6dONXPmzAmO37Rpk3G73Wbx4sVm165dZv78+c0uxZ6YmGj+/ve/mx07dpjvf//7zS7Ffq5ehwrhqhU5efKkmTx5smnfvr3xeDzmjjvuaHQV48CBA0aSeffdd4PbqqqqzIwZM0zHjh1NfHy8ueGGG8yxY8canffgwYNm3LhxJi4uznTu3NnMnj3b1NXVNRpTVlZm4uLizPLly0M6x0hgZx927dplcnJyTFxcnOnWrZt58MEH29xVqwZ29eGJJ54wV1xxhYmNjTVJSUlmxIgR5p133gn5fMOVnT8PZ2rr4cquPvzud78zmZmZJj4+3ng8HnPNNdeYP/zhD232e9/s6sPw4cONpCav2267LdRTDjt2/k5qrgdt5Sru73//e9OjRw8THR1thg4daj788MPgvuHDhzf5d/HFF180ffr0MdHR0SYzM9O8/vrrjfYHAgHz85//3KSkpJiYmBgzatQos2fPnkZjztfrUHEYY0xobzwEAAAAgNaP1QIBAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALPD/AYA6Ajm4N5YRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -95,9 +164,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVhU96E+8PfMsAz7ooILmyguqLiAIhG3KLjggqBJ82ti4hbjvUmapG2apk3VmGbp0zbJTZqrhNgbNak3ssYNRQWFuIEoqwu7oLKogCD7zPn9YZ0rUQGZgTPL+3mePD04Z868+Fh5Pee7CKIoiiAiIiIi6iGZ1AGIiIiISL+xUBIRERGRRlgoiYiIiEgjLJREREREpBEWSiIiIiLSCAslEREREWmEhZKIiIiINMJCSUREREQaYaEkIiIiIo2wUBIRERGRRlgoiYiIiEgjLJREREREpBEWSiIiIiLSCAslEREREWmEhZKIiIiINMJCSUREREQaYaEkIiIiIo2wUBIRERGRRlgoiYiIiEgjLJREREREpBEWSiIiIiLSCAslEREREWmEhZKIiIiINMJCSUREREQaYaEkIiIiIo2wUBIRERGRRlgoiYiIiEgjLJREREREpBEWSiIiIiLSCAslEREREWmEhZKIiIiINMJCSUSkJaIo4osvvoC1tTUEQUBycvITX6OhoQEbNmyATCaDIAjaD0lE1AtMpA5ARGQIioqKsHr1ahw/frzH1zh69CjWrFmD0tJSLSYjIup9vENJRKSB+3clfXx8cP78eUydOvWJr3H/rmRQUBDMzMwwdOjQXkhKRNR7WCiJiDSwefNmvP766wgMDEROTg7mzZv3xNdYtGgRIiIi8MYbbyAzMxNubm69kJSIqPfwkTcRkYYiIyOxZs2aHr/f2dkZKSkpeOqpp7SYioio77BQEhFpYOPGjRpPntm9ezcn4BCRXuMjbyIiDWijCLJMEpG+Y6EkIiIiIo2wUBIRERGRRlgoiYiIiEgjLJREREREpBEWSiIiIiLSCAslEREREWmEhZKIiIiINMJCSUREREQaYaEkIiIiIo2wUBIRERGRRlgoiYiIiEgjLJREREREpBETqQMQEem7Xbt2qY+zsrLUx4mJiSgvLwcAODs7Iygo6JHvr6ysRGJiYoevH3VtHx8f+Pj4aC03EZG2CKIoilKHICLSZ4IgdHnOzJkzkZyc/MjXkpOTMXv27C6vsXHjRmzatOkJ0xER9T4WSiIiIiLSCMdQEhEREZFGWCiJjJQoivjiiy9gbW0NQRAe+zj25/Ly8rBp0ybMmjULTk5OMDU1hb29PSZOnIi33noLV65c6d3gRESkc/jIm8gIFRUVYfXq1Th+/Lj615KSkjBr1qzHvqeiogIrV65UTx7x9/fHvHnz4ObmhoqKCuzevRs5OTkwNTXFhx9+iN/85je9/W0QEZGOYKEkMiKiKOLLL7/E73//e8jlcnh7e+P06dMAui6Up0+fRkBAAADggw8+wLvvvtthMopSqcSLL76I7777DgCwbds2vPzyy733zRARkc7gI28iI7J582a8/vrrCAwMRE5ODubNm/fE1/D393+oTAKAXC7Htm3b0K9fPwDA7373OzQ3N2slNxER6TYWSiIjExkZiYSEBLi6uvbo/YsXL37sMjlWVlaYP38+AKC2thYpKSk9zklERPqDC5sTGZGNGzd2a83ERxk1ahT27t0LX1/fTs9zc3NTH1+9erVHn0VERPqFhZLIiPS0TAKAvb09Fi1a1OV5dXV16mMrK6sefx4REekPPvImIq0qLi4GcK+8Tps2TeI0RETUF1goiUhr6urqkJSUBABYtGhRj8dpEhGRfmGhJCKt2blzJ5qbm2FqaoqPPvpI6jhERNRHWCiJSCuqq6vx/vvvAwC2bNmCMWPGSJyIiIj6CgslEWlMpVLhxRdfRHV1NVasWIG3335b6khERNSHWCiJSGNvvfUWDh48iFmzZmHHjh0azSYnIiL9w0JJRBrZvHkzPv/8cwQGBmLv3r1QKBRSRyIioj7GQklEPfbhhx9i06ZNCAgIwIEDB2BtbS11JCIikgALJRH1yF//+lf84Q9/gL+/PxISEmBjYyN1JCIikggLJRE9sc8//xy//e1v4efnh0OHDsHW1vahc/z8/LB582YJ0um+5jYlqutb0NymlDoKEZFWcOtFInoiX331Fd544w1MnDgRhw8fhp2d3SPPO3fuHMaOHdvH6XRbWsltRKYWITGvEioRkAlAkLcz1gV6ws/DUep4REQ9xkJJRN0WERGBV199Ffb29vjjH/+IzMxMqSPpjZ2nS/Gn+BzIZAJU4r1fU4nAkYtVOJxbiS2hY/G8v7u0IYmIeoiFksjI7Nq1S32clZWlPk5MTER5eTkAwNnZGUFBQR3ed+zYMbzyyisQRRG1tbUIDw/vm8AGIK3kNv4UnwMRgPJ+m/y3+1+/F5eDUc42vFNJRHqJhZLIyLzwwguP/PUPP/xQfTxz5syHCuXVq1chiuLP30bdEJlaBJlMeKhMPkgmExCZWsxCSUR6SRD5E4KIqNc0tynhvTEBnXRJNZkA5G2eD4WpvPeDERFpEWd5ExH1ElEUcfVGVbfKJHBvTGV9c3vvhiIi6gV85E1EpEUNDQ0oKipCcXExioqKcLuuHgImQUTX21HKBMBGwb+WiUj/8G8uIiINtLS0oKSkRF0gq6urAQBOTk7w9vbG0KFDUXGqFseu3Ox8DCVEPD1iAB93E5FeYqEkInoC7e3tKC8vVxfIa9euQRRF2NnZwdPTE9OnT8fQoUM7bEP5stltHLlU3el1VQBsrp/FpUt2GDVqVC9/F0RE2sVJOUREnRBFEZWVlSgqKkJRURGuXr2KtrY2WFhYYOjQoRg6dCg8PT3h4OAAQXj8Y+1dZ0rxXlzOQ7O95TIBKpWI9xZ4wfJ6Bi5fvoxJkyZh3rx5MDMz64tvkYhIYyyUREQ/U1NTox4HWVxcjMbGRpiYmMDd3V1dIAcOHNhpgXyU9JLbiEwtxuG8CvVOOcHeA7E2cCj8PBwhiiIyMjLU21mGhYVh8ODBvfRdEhFpDwslERm9u3fvqh9hFxcXo7a2FoIgYMiQIeoC6eLiAhMT7YwSam5Tor65HTYKk0eOmbx58yZiYmJQWVmJWbNmYdq0aZDJuCgHEekuFkoiMjqtra0oLS1VF8jKykoAwIABA9QF0t3dHQqFQrKMSqUSycnJSE1Nhbu7O0JDQ2Fvby9ZHiKizrBQEpHBUyqVuHbtmrpAlpeXQ6VSwdbWFp6enuqxkDY2NlJHfUhJSQliY2PR0tKCkJAQjBs3TupIREQPYaEkIoMjiiKqqqrUBbK0tBStra1QKBQdJtI4Ojo+8ThIKTQ3N2P//v3IycmBj48PFixYIOndUyKin2OhJCKDUFtb22Eizd27dyGXyx+aSKOvYxFFUUR2djYOHDgAhUKBsLAwuLm5SR2LiAgACyUR6anGxkZ1eSwqKkJNTQ0EQcCgQYPg6ekJT09PuLq6am0ija6ora1FTEwMysvLERgYiJkzZ0Iu52LoRCQtFkoi0gttbW0oLS1VF8iKigoAQL9+/dTjID08PGBhYSFx0t6nUqmQmpqK5ORkDB48GMuWLUO/fv2kjkVERoyFkoh0kkqlwrVr19QFsry8HEqlEtbW1uoC6enpCVtbW6mjSqa8vBwxMTFoaGjA/PnzMXHiRL0YE0pEhoeFkoh0giiKqK6uVhfI0tJStLS0wNzcHB4eHuoC2b9/f5amB7S2tiIhIQHnz5/H6NGjsWjRIlhaWkodi4iMDAslEUmmrq6uw4LiDQ0NkMvlcHV1VRfIwYMH6+1Emr508eJF7N27FyYmJggNDYWnp6fUkTQmiiK+/PJL/P73v8fdu3eRlJSEWbNmdfv92dnZ+Pzzz3Hs2DFcv34djo6O8PX1xfr167Fo0aLeC05khFgoiajPNDU1oaSkRF0gb926BQAYNGiQukC6ubnB1NRU4qT66c6dO4iPj0dRURGmTp2KOXPm6O2kpKKiIqxevRrHjx9X/9qTFMqvv/4ar776KkRRxMqVKzFlyhSUlJQgIiICt27dwpo1axAREcF/rBBpCQslEXWqq20CO9PW1oaysjJ1gbx+/ToAwNHRUV0gPTw8+IhWi0RRxOnTp3H06FH0798fYWFhcHJykjpWtz14V1Iul8Pb2xunT58G0P1CuW/fPixduhSiKCIuLg5LlixRv1ZYWIiAgABUV1fj7bffxieffNJb3wqRUWGhJKJHSiu5jcjUIiTmVUIlAjIBCPJ2xrpAT/h5OD7yPSqVCjdu3FAXyKtXr0KpVMLKyqrDjjTcQrD3VVRUICYmBjU1NZg7dy6mTJmiF2NPN23ahM2bN2PevHn4+uuv8c0332Dz5s0AulcoW1pa4OXlhbKyMjz77LPYvXv3Q+ds3boVGzZsgEwmQ1ZWFsaMGdMb3wqRUdHPZyFE1Kt2ni7Fn+JzIJMJUP37n5wqEThysQqHcyuxJXQsnvd3hyiKuHXrlrpAlpSUoLm5GWZmZvDw8MDcuXPh6emJAQMG6EWZMSQDBw7EunXrkJiYiISEBBQUFGDp0qWwtraWOlqXIiMjsWbNmh69d8eOHSgrKwMArFu37pHnPP/883jrrbfQ1NSEjz/+GDt37uxxViK6h3coiaiDtJLbeGbbKXT1F8Pr3u1AdSHq6+shk8kemkjDxbZ1R35+PuLj4yGKIpYsWYKRI0dKHemxRFHs8I+P+3csge7doQwODkZiYiLMzMxQX18PMzOzR543e/ZsJCcnw9bWFtXV1Y89j4i6h3coiaiDyNQiyGQClKrHV0oBKhwqbsWvp47F0KFD4e7uzh/IOszLywsbNmzAjz/+iN27d8PX1xfz5s3TyclPmtzJViqVOHHiBADA29u70z+TkyZNQnJyMu7cuYP09HQ89dRTPf5cIgI4vY2I1JrblEjMq+y0TAKACBnymy0xY/YceHl5sUzqASsrK/ziF79ASEgIMjMzsW3bNty4cUPqWFpVUFCAlpYWAICrq2un5z74em5ubq/mIjIGLJREpFbf3I4uuqSaSrx3PukPQRDg5+eH9evXw9TUFJGRkUhNTYVKpZI6mlaUlJSoj52dnTs998HXH3wfEfUMCyURqdkoTCDr5hNHmXDvfNI//fv3x9q1axEQEICjR49ix44dqKurkzqWxurr69XHCoWi03Mf3PP9wfcRUc+wUBKRmsJUjiBvZ8i7KJVymYBg74FPvC4l6Q65XI65c+fixRdfRE1NDbZu3YqcnBypY2mkqalJfdzVMIwHX29sbOy1TETGgoWSiDp40d8Vyi4Wf1CpRKwNHNpHiag3eXh44JVXXsGwYcMQHR2NuLg49ThEffPgXcfW1tZOz33wdS6sT6Q5FkoiUhNFEZU5JxFofg3AvTuRD5LLBAgAtoSOfezi5qR/LCwsEB4ejtDQUFy8eBFbt25Vr+WoT2xsbNTHzc3NnZ774N3MB99HRD3DQklEahcuXEBWVhbeDgtA1PoABI12Vo+plAlA0Ghn7FkfgOf93aUNSlonCALGjx+PV155BdbW1vjnP/+JpKQkvZqw4+HhoT6urKzs9NwHX3d3559nIk1xRD0RAbj3A/bAgQOYOHEifHx8AAB+Ho4a7eVN+sfBwQGrVq3CiRMncOLECRQWFiIsLAyOjrp/R3r48OEwNzdHS0tLl3dYy8vL1cfcepFIc7xDSURobW1FVFQUHB0dsWDBgg6vKUzlGGBjzjJpRGQyGWbNmoXVq1ejsbER27Ztw4ULF6DrG6vJ5XJMnz4dAHDx4sVOx1FmZGQAuPe428/Pr0/yERkyFkoiIyeKIvbv34+6ujqsWLFCJ3dPIWm4uLhg/fr18Pb2Rnx8PKKiojqMPdRFK1asAAC0tLQgNTX1kec0NDTgzJkzAIDFixfD3Ny8z/IRGSoWSiIjd/78eWRlZWHx4sXo37+/1HFIx5ibm2Pp0qVYvnw5ioqK8N///d8oLi6WOtZjrVy5Ei4uLgCAyMjIR57z/fffo7GxETKZDO+8805fxiMyWCyUREassrISBw8exKRJkzBu3Dip45AOGzNmDDZs2ID+/ftjx44dOHz4MNrbdW+nJIVCgX/84x8QBAG7d+/Gvn37OrxeVFSE9957DwDw5ptv8s89kZYIoq4PiiGiXtHS0oKvv/4aJiYmWLNmDR91U7eIoohTp07h6NGjcHJyQlhYGAYMGKDVz9i1a5f6OCYmBrGxsQCAd999F6NHjwZwb+vEoKCgx15j69at+NWvfgVRFPHSSy9h8uTJKC0txdatW3Hr1i289NJL+OabbyCT8b4KkTawUBIZIVEUERsbi8uXL+Pll19Gv379pI5EeubGjRuIiYlBbW0tgoOD4efnB0Ho5r6dXejOdWbOnInk5OROz8nKysJnn32GY8eOoaKiAvb29uq9zBcvXqyVrER0DwslkRE6d+4c9u3bh7CwMD7yox5ra2vD4cOHkZ6eDi8vLyxZsgTW1tZSxyIiCbBQEhmZiooKREZGYsKECVi0aJHUccgAXLlyBfHx8RAEAUuWLMGIESOkjkREfYyFksiItLS0ICIiAqampli7di1MTLi3AWlHQ0MDfvzxR+Tn58PPzw/BwcEcl0tkRFgoiYyEKIqIiYnBlStXOG6SeoUoikhPT8fhw4dhb2+P8PBwDBw4UOpYRNQHWCiJjER6ejr279+P8PBwjB07Vuo4ZMCqq6sRExODqqoqzJkzBwEBAVqbsENEuomFksgI3LhxA9988w0mTpyIkJAQqeOQEWhvb8exY8dw6tQpDB06FKGhobC1tZU6FhH1EhZKIgN3f9ykmZkZ1qxZw3GT1KeKi4sRGxuLtrY2LF68GN7e3lJHIqJewEJJZMBEUUR0dDTy8/Oxfv16ODo6Sh2JjFBTUxP27duHvLw8TJgwAfPnz+f+2UQGhoWSyIClpaXhwIEDWL58OcaMGSN1HDJioigiMzMTBw8ehJWVFcLCwtR7bhOR/mOhJDJQ98dNTpo0CQsXLpQ6DhEA4Pbt24iJicH169cxc+ZMTJ8+ndsfEhkAFkoiA9Tc3IyIiAgoFAqsXr2a4yZJpyiVSpw4cQIpKSlwcXHBsmXL4ODgIHUsItIACyWRgRFFEVFRUSgsLMTLL7/McZOks8rKyhATE4PGxkYsXLgQPj4+XF6ISE+xUBIZmLNnz+LgwYNYsWIFZ9SSzmtpacHBgweRmZmJMWPGICQkBBYWFlLHIqInxEJJZECuX7+O7du3w9fXFwsWLJA6DlG35eTkYP/+/TAzM8OyZcvg4eEhdSQiegIslEQGorm5Gdu2bYOlpSVWrVrFcZOkd+rq6hAbG4vS0lJMmzYNs2fPhlwulzoWEXUDCyWRARBFEXv27EFRURHWr1/PCQ6kt1QqFU6ePImkpCQ4OzsjLCwM/fv3lzoWEXWBhZLIAJw5cwYJCQl45plnMHr0aKnjEGns+vXriImJQV1dHebNmwdfX19O2CHSYSyURHru2rVr2L59OyZPnoz58+dLHYdIa9ra2nDo0CGcO3cOI0aMwJIlS2BlZSV1LCJ6BBZKIj324LjJ1atXc7wZGaTLly/jxx9/hCAIWLp0Kby8vB46p7lNifrmdtgoTKAw5f8PiPoaCyWRnhJFET/88ANKSkrw8ssvc9wkGbSGhgbEx8ejoKAAkydPRlBQEExNTZFWchuRqUVIzKuESgRkAhDk7Yx1gZ7w8+AarER9hYWSSE+dPn0ahw4dwrPPPotRo0ZJHYeo14miiLNnzyIxMRGOjo4Qh0/HX5OuQiYToFT9348yuUyASiViS+hYPO/vLmFiIuPBQkmkh+6Pm5wyZQrmzZsndRyiPlVVVYXPv9+H7yqdADx+oo4AYM/6AN6pJOoDMqkDENGTaWpqwp49ezBo0CDMnTtX6jhEfc7JyQnVjuMg62LWt0wmIDK1uI9SERk3FkoiPSKKIuLj49HS0oLly5dzEg4ZpeY2JY5cqoKqi+drSpWIw3kVaG5T9k0wIiPGQkmkR06fPo3Lly8jNDQU9vb2UschkkR9c3uXZfI+lXjvfCLqXSyURHqivLwcR44cQUBAAEaOHCl1HCLJ2ChMIOvmGucy4d75RNS7WCiJ9EBTUxOioqIwePBgzJkzR+o4RJJSmMoR5O0MeRetUi4TEOw9kOtSEvUBFkoiHSeKIuLi4jhukugBawM9oeriubdKJWJt4NA+SkRk3FgoiXTcqVOncOXKFSxbtgx2dnZSxyHSCZM9HLEldCwE4KE7lQJEACLeXzKGSwYR9REWSiIdVlZWhqNHj+Kpp57CiBEjpI5DpFOe93fHnvUBCBrtrB5TKROA6UPtEGJ2Ge5tV6UNSGREOFKZSEc1NjYiKioKQ4YMwdNPPy11HCKd5OfhCD8Px4f28k5KakdycjI8PT3h4uIidUwig8c7lEQ66P64yba2NoSHh3PcJFEXFKZyDLAxV0/AmTlzJoYMGYLo6Gg0NzdLnI7I8LFQEumgkydPIj8/n+MmiXpIJpMhLCwMTU1NOHDggNRxiAweCyWRjrk/bnLatGnw8vKSOg6R3nJwcEBISAiys7ORmZkpdRwig8ZCSaRD7o+bdHFxwezZs6WOQ6T3xo0bh/Hjx+PAgQO4ffu21HGIDBYLJZGOeHDcJNebJNKeBQsWwMrKCjExMVAqua83UW9goSTSET/99JN63KStra3UcYgMhrm5OcLDw3Hjxg0kJydLHYfIILFQksESRRFffPEFrK2tIQhCt3+QlJSU4Msvv8Ty5csxYsQIWFtbw8zMDM7Oznj66afxX//1X2hsbNRq1qtXr+LYsWMcN0nUS4YMGYLZs2cjNTUVxcXFUschMjiCKIqd711FpIeKioqwevVqHD9+XP1rSUlJmDVrVqfv++tf/4rf/va3AABLS0u88MILGDNmDFQqFTIzM7Fr1y60tbXBw8MDBw8exKhRozTOevfuXWzbtg0ODg548cUXIZPx33lEvUEURezcuRM3b97EK6+8AktLS6kjERkM/uQig3L/rqSPjw/Onz+PqVOnPtH7b968CQAYNGgQLl68iK1bt+K1117Dr371K2zfvh1nz56FhYUFSkpKsGTJErS2tmqcNy4uDkqlEuHh4SyTRL1IEASEhoaivb0de/fuBe+nEGkPf3qRQdm8eTNef/11BAYGIicnB/PmzevRdT755BO4ubk99OsTJkzAa6+9BgDIz8/HoUOHNMqbmpqKgoICjpsk6iO2trZYsmQJLl26hHPnzkkdh8hgsFCSwYmMjERCQgJcXV2f+L0uLi7w9fVFcHDwY8/x8/NTH+fl5fUoIwCUlpYiKSkJgYGBGD58eI+vQ0RPZtSoUfDz88OhQ4dQXV0tdRwig8BCSQZl48aNWLNmTY/f/+qrryI9PR3Ozs6PPcfKykp9bGFh0aPPuXv3LqKjo+Hm5sb1JokkEBwcDAcHB0RFRaG9vV3qOER6j4WSDIogCL3+GQ8+JutJGRRFEbGxsRw3SSQhU1NThIeH49atW0hMTJQ6DpHe408yoidQVlaGL774AgCwZs0ajBs37omvkZKSgsLCQoSFhcHGxkbbEYmom5ydnREcHIyzZ8/iypUrUsch0msslESdaGhowI0bN5Ceno5PPvkEvr6+qKurw5YtWxAREfHE1yspKUFycjKmT5+OYcOG9UJiInoSkydPxogRIxAfH4/6+nqp4xDpLRZKok68+uqrGDx4MCZPnox33nkHw4cPR0pKCv74xz8+8aPqhoYGREdHw93dvcv1MImobwiCgCVLlkAmkyE+Pp5LCRH1EAslUSfefvttHD58GHv27ME777yDoqIi+Pv7IygoCAUFBd2+jkqlQmxsLERRRFhYGMdNEukQKysrhIaGorCwEKdOnZI6DpFe4k81ok54e3sjKCgIy5cvx0cffYRLly4hMDAQR44cgb+/Py5fvtyt66SkpKCoqIjjJol01LBhw/DUU0/h6NGjuHHjhtRxiPQOCyXRE7C3t8f3338PU1NT3L59G6tXr+7yPcXFxTh+/DhmzJgBT0/PPkhJRD3x9NNPw9nZGdHR0RrvgkVkbFgoiZ6Qq6uregzkyZMnO50d2tDQgJiYGLi7u2PmzJl9lJCIekIulyM8PBx37txBQkKC1HGI9AoLJVEPjBw5Un2ck5PzyHNUKhViYmIgiiLXmyTSE/369cOCBQtw/vx55ObmSh2HSG/wJxzRvzU2NiIqKqpb2ymamJiojx+3y8aJEydQXFyM8PBwWFtbay0nEfWuCRMmYMyYMdi7dy9qa2uljkOkF1goif6tqqoKK1aswFdffdXlufn5+epjNze3h16/P25y5syZGDp0qFZzElHvEgQBixYtgkKhQGxsLFQqldSRiHQeCyXRzxw6dAhKpfKxr5eXl+PIkSMAACcnJ0yePLnD6/fXmxw6dChmzJjRq1mJqHcoFAqEhYWhrKwMKSkpUsch0nkslEQ/U1BQgDfeeAPNzc0PvXbr1i2sWLECLS0tAIC//OUvkMvl6tdVKhWio6MhCALXmyTSc25ubpgxYwaOHz+Oq1evSh2HSKeZdH0KkX7ZtWuX+jgrK0t9nJiYiPLycgD39vANCgrq8D5ra2t4enqiqKgIX375JeLi4rBixQp4enrC3Nwc2dnZ+O6773D79m1YWFjgk08+wYsvvtjhGsePH0dpaSleeOEFjpskMgAzZsxAUVERYmJi8Morr0ChUEgdiUgnCSL3mSIDIwhCl+fMnDkTycnJD/26KIo4duwY9u3bhzNnzqCgoAB1dXUAAAcHB4waNQpz5szBSy+9BFdX1w7vLSoqws6dOzFr1iwuEURkQGpra7F161YMHz4c4eHh3fo7hsjYsFASaUF9fT22bdsGZ2dn/PKXv+SjbiIDk5ubi6ioKCxduhQTJkyQOg6RzuFPPSINcdwkkeEbM2YMJkyYgAMHDuDWrVtSxyHSOfzJR6Sh5ORkXL16FeHh4bCyspI6DhH1kgULFsDGxgbR0dGdrgRBZIxYKIk0UFhYiJSUFMyaNQseHh5SxyGiXmRmZobw8HBUVlbi2LFjUsch0ikslEQ9VF9fj5iYGAwbNh7N9HoAACAASURBVAzTp0+XOg4R9YHBgwdjzpw5OHnyJIqKiqSOQ6QzWCiJeuD+uEm5XI5ly5Zx1ieREQkICICnpydiY2Nx9+5dqeMQ6QQWSqIe4LhJIuMlCAJCQ0OhUqnw448/goulELFQEj2xgoICpKSkYPbs2XB3d5c6DhFJwMbGBkuXLsWVK1eQlpYmdRwiybFQEj2BO3fuIDY2FsOHD0dgYKDUcYhIQiNGjMDkyZNx+PBhVFVVSR2HSFIslETd9OC4ydDQUI6bJCIEBwejX79+iIqKQltbm9RxiCTDQknUTUlJSSgrK8Py5cs5bpKIAAAmJiYIDw9HTU0NEhMTpY5DJBkWSqJuyM/PR2pqKp5++mm4ublJHYeIdIiTkxOCg4ORlpaGy5cvSx2HSBIslERduD9u0svLC9OmTZM6DhHpID8/P4wcORLx8fGor6+XOg5Rn2OhJOqEUqlEVFQUTE1NOW6SiB5LEAQsWbIEJiYmiI2N5VJCZHRYKIk6kZSUhPLycoSHh8PS0lLqOESkwywtLREaGori4mKcPHlS6jhEfYqFkugxrly5gp9++glz5szhuEki6hZPT09MmzYNx44dw/Xr16WOQ9RnWCiJHqGurg5xcXHw8vLCU089JXUcItIjs2fPxsCBAxEdHY2Wlhap4xD1CRZKop/huEki0oRcLkd4eDgaGhqQkJAgdRyiPsFCSUavuU2J6voWNLcpAUD9qGr58uUcN0lEPeLo6IiFCxfiwoULyMnJkToOUa8zkToAkVTSSm4jMrUIiXmVUImATAAC3KxgdyMLz8+bA1dXV6kjEpEe8/HxQUFBAfbt2wcXFxfY29tLHYmo1/AOJRmlnadL8cy2UzhysQqqf6/uoRKBk6UNONA6EkWywdIGJCK9JwgCQkJCYGFhgejoaKhUKqkjEfUaFkoyOmklt/Gn+ByIAJSqjmvFiRAACHgvPhfpJbclyUdEhkOhUCAsLAzXrl3D8ePHpY5D1GtYKMnoRKYWQSbrfKKNTCYgMrW4jxIRkSFzdXXFrFmzkJKSgtLSUqnjEPUKFkoyKs1tSiTmVT50Z/LnlCoRh/Mq1BN1iIg0ERgYCFdXV8TExKCpqUnqOERax0JJRqW+uR1ddEk1lXjvfCIiTclkMoSFhaG1tRX79u3j1oxkcFgoyajYKEzQxdNuNZlw73wiIm2ws7PD4sWLkZeXh/Pnz0sdh0irWCjJqChM5Qjydoa8i1YplwkI9h4Iham8j5IRkTHw9vbGxIkTkZCQgJs3b0odh0hrWCjJ6KwN9ISqi+feKpWItYFD+ygRERmT+fPnw9bWFtHR0Whv57AaMgwslGR0Jns4YkvoWACAgI7rwsllAgQAW0LHws/DUYJ0RGTozMzMEB4ejurqahw7dkzqOERawUJJRumXU9zwbL9rGOcgqsdUygQgaLQz9qwPwPP+7tIGJCKDNmjQIMyZMwenTp1CQUGB1HGINMYZB2SUCgoKYHn3Bv6xegEGDByM+uZ22ChMOGaSiPrM1KlTUVhYiLi4OGzYsAFWVlZSRyLqMd6hJKOUlpaGgQMHwsXFBQpTOQbYmLNMElGfEgQBoaGhAID4+Pg+XUqora0N27dvx8KFCzFw4ECYmZnByckJM2fOxNatWzm2k54YCyUZnZqaGuTn52Py5MkQhG6uIURE1Ausra2xdOlS5Ofn4+zZs33ymYWFhfD19cWaNWuQmZmJdevWYevWrXjttddw7do1bNiwAVOmTEFlZWWf5CHDwEfeZHTS09OhUCgwbtw4qaMQEcHLywv+/v5ITEyEh4cHnJ2de+2zbt++jaCgIBQXF2Ps2LE4ceIEHBwc1K//+te/RnBwMH766ScsWLAAp0+fhpmZWa/lIcPBO5RkVNra2nD+/HlMmDABpqamUschIgIAzJ07F/3790dUVBTa2tp67XO2bNmC4uJiAMAXX3zRoUwCgKWlJSIjIwEA58+fx5dfftlrWciwsFCSUcnNzUVTUxP8/PykjkJEpGZiYoLw8HDU1tbi0KFDvfIZKpUK3377LQDA2dkZs2bNeuR5o0aNwqRJkwAAn376KbeJpG5hoSSjkpaWhmHDhqFfv35SRyEi6mDAgAGYP38+zp07h4sXL2r9+vn5+aipqQEAjBkzptNzx48fDwAoLy/H6dOntZ7lvry8PPzmN7/BuHHj4ODgAEtLS3h6euLpp5/Gpk2bcObMmV77bNIujqEko3Ht2jVcv34dv/jFL6SOQkT0SJMmTUJBQQH27t2LIUOGwNbWVmvXvnXrlvq4q+s6Ov7fxg5nz55FQECA1nIAgCiK2LhxIz766CMMGTIEzzzzDLy8vNDQ0IDk5GTs3bsXSUlJ2LdvH9LT07X62dQ7eIeSjEZaWhrs7Ozg5eUldRQiokcSBAGLFy+GiYkJYmNjoVKpun5TN1laWqqPm5ubOz33wXGceXl5Wstw31tvvYUtW7bgueeew6VLl/CXv/wF69atw5tvvon4+Hhs3bpV659JvYuFkoxCY2MjcnJy4OfnB5mMf+yJSHdZWloiLCwMJSUl+Omnn7R2XU9PT8jl99bbLSws7PTckpIS9fHNmze1lgEA9u3bh88++ww+Pj7Yvn07FArFQ+esW7cO3t7esLe31+pnU+/hT1YyChkZGQCgHmhORKTLPDw8EBgYiKSkJJSXl2vlmra2tpg2bRqAe+Mpi4qKHnleS0sLTpw4of66vr5eK58P3HvU/eabbwIA3nnnHZiYPHrknSAIyM3NxZEjR7T22dS7WCjJ4KlUKqSnp2Ps2LEdHvkQEemyWbNmYfDgwYiJiUFLS4tWrvnHP/5RffzOO+888pyPP/4YtbW16q/v39XUhuPHj6OgoAAymQwhISFauy5Jj4WSDF5+fj7q6uowefJkqaMQEXWbXC5HeHg47t69iwMHDmjlmkFBQfjggw8AAHv27EF4eDhOnjyJGzduICMjA6+99ho2bdqERYsWqd+jzYlBUVFRAAB3d/cO11WpVFq9E0p9j4WSDF5aWhoGDx6MIUOGSB2FiOiJODg4ICQkBFlZWcjKytLKNf/whz9g3759mDx5MmJiYjBt2jQMHjwYvr6+OHz4MHbs2IEPP/xQff6AAQO08rkA1DO23dzcoFQqERERgSlTpsDMzAy2trYwNzfHjBkz8O2332p1QhL1Pi4bRAbt1q1bKCwsxNKlS6WOQkTUIz4+PigsLMT+/fvh6ur60O42PRESEoKQkBBUV1ejqKgI7e3tGDJkCDw8PACgwxhKbW5Tm5OTA+DeHcmgoCCkpKRg7dq1eOeddyCTyXD06FFs27YNKSkp+N///V9ERUVxqJKeYKEkg5aeng4LCwuMHTtW6ihERD22cOFClJWVITo6GqtWrdLauMYBAwY88g7kgxN2fH19tfJZjY2NuHv3LgAgJSUFABAXF9fhH/yhoaFYuHAhQkJCcPDgQWzYsEG9uw/pNj7yJoPV1taGCxcuYOLEiY+dSUhEpA/Mzc0RFhaG69ev4/jx473+eWfPngVwb7a5tgrlz8dIhoSEPPLp0YIFC7BixQoAwI4dO3DhwgWtfD71LhZKMljZ2dlobm7mvt1EZBBcXFwwe/ZspKSkdFgn8knU19cjLi4OxcXFjz1HqVRi//79AIBVq1ZBEIQefdbPtbe3d/h6+fLljz33wR3NvvvuO618PvUuFkoySKIoIi0tDSNGjNDKeCMiIl0wbdo0eHh4IDY2Fk1NTU/8/tLSUixbtgyffPLJY8/ZtWsXrl69CldXV/zmN7/RJG4H1tbWHb7ubCjShAkT1Mf375aSbmOhJINUXl6OiooKLhVERAZFJpNh2bJlaGtrw969eyGKYo+us3PnzkduqZiSkoJXX30VlpaW+Ne//qXVCTE2NjYwMzNTf93ZLjj9+vVTH1dVVT3R57z99tsQBAGCIGDTpk1PnJN6hgPLyCClpaXB0dERw4YNkzoKEZFW2draYvHixfjhhx+QkZHRozGOjY2NmDJlClavXo2xY8eiqakJx48fx48//oghQ4Zgx44d6l11tEUmk2HUqFHq5Y9+/gj8QQ8W5SeZgJSRkYG///3vPQ9JPcZCSQanoaEBubm5mDt3rtbG/hAR6ZLRo0fD19cXCQkJcHNz6/ZakcOHD8f333+Po0ePIi0tDbt370ZtbS369euHkSNH4tNPP8WqVaseejytLVOmTFEXysrKSowaNeqR51VXV6uPBw8e3K1rt7e3Y+3atVAqlZoHpSfGR95kcDIyMiCTyTqMwSEiMjTz5s2Dvb09oqOjO73b9yCFQoHnnnsOkZGRyMzMRFVVFVpbW3Hjxg0kJyfjtdde67UyCQDh4eHq4/uLnD9KRkaG+njGjBnduvbf/vY3nD9/nusOS4SFkgyKSqXCuXPnMG7cOFhYWEgdh4io15iamiI8PBw3b97EkSNHpI7TLUFBQerJOLt27XrsGNCdO3cCuLdc0qpVq7q8bkFBATZv3ozJkyfj9ddf115g6jYWSjIoly9fxp07dzgZh4iMwsCBAzF37lycOXMG+fn5Usfpklwux1dffQVTU1NcuHABH3/88UPnfP/999i3bx8A4IMPPujWtrnr169HW1sbvv76a8hkrDZS4O86GZS0tDS4uLhg0KBBUkchIuoT/v7+GD58OOLj49HQ0CB1nC5Nnz4d3333HaytrfHuu+9iwYIF+Mc//oGtW7fi2WefxfPPPw+ZTIb333+/W8sWffPNNzh27Bh+/etfY/z48X3wHdCjsFCSwbh58yaKi4t5d5KIjIogCAgNDQUAxMfH93gpob60YsUK5OTk4M0330RJSQl+97vf4a233sL58+exbt06ZGZm4r333uvyOhUVFfjtb3+LYcOGYePGjX2QnB6Hs7zJYKSlpcHS0hLe3t5SRyEi6lNWVlYIDQ3Fd999h9OnTyMgIEDqSF1yd3fH3//+d42W+Xn11VdRU1ODPXv2cNy8xHiHkgxCa2srMjMzMWnSJO7bTURGafjw4Zg6dSqOHDmCGzduSB2n18XHxyM6OhovvfQS5syZI3Uco8dCSQYhKysLra2t3LebiIzanDlz4OTkhOjoaLS2tkodp9fcuXMH//Ef/wEnJyf87W9/kzoOgYWSDMD9fbtHjhwJOzs7qeMQEUnGxMQE4eHhuHPnDg4dOiR1nF7z9ttv4/r16/jss8/g6OgodRwCCyUZgKtXr6KqqoqTcYiIAPTv3x/z589HRkbGI/fr1ncpKSmIiIjAggUL8Nxzz0kdh/6Ng81I76WlpaFfv34YOnSo1FGIiHTCxIkTUVhYiL1792LIkCEG8/SmtbUV69atg5mZGd5//33cvHnzoXPq6urUx42NjR3OsbOzg6mpaZ9kNTaCqA/rCxA9Rn19PT777DMEBwfD399f6jhERDqjqakJW7duhYODA1auXGkQC36XlJRodPMgKSkJs2bN0l4gUuMdStJr586dg1wu52K2REQ/Y2FhgbCwMHz77bdITU3t9p7YumzgwIFITEzs9JzMzEz1gugvvPACVq5cqX6NPyt6Dwsl6S2lUolz587Bx8cHCoVC6jhERDrH3d0d06dPR3JyMoYOHQpXV1epI2lEoVBg7ty5nZ7z4NJxnp6eXZ5P2qH/97/JaF26dAkNDQ2cjENE1ImZM2diyJAhiImJQXNzs9RxyECxUJLeSktLg5ubG5ydnaWOQkSks2QyGcLCwtDU1IT9+/c/0daM7e3t+Oc//4kFCxZg0KBBMDMzg7W1NUaNGoWXX34Z58+f78XkpE/4yJv0UlVVFUpLSxEeHi51FCIinefg4ICQkBDExMRg+PDh3RpLWFFRgZCQEGRkZMDMzAwvvvgiJkyYgLq6OiQkJODrr7/GN998g02bNnVr3+3elJWVhaysLADAxYsXO/z6rl27AADOzs4ICgqSJJ8x4Cxv0kv79+/HpUuX8MYbb0Aul0sdh4hIL8TFxeHixYtYv359pwuCi6KIwMBAnDx5Eubm5jh16hQmTpzY4Zzf/e53+Mtf/gIA2LlzJ55//vlezd6ZTZs2YfPmzZ2eM3PmTCQnJ/dNICPEQkl6p6WlBX//+98xdepUzJ49W+o4RER6o6WlBREREVAoFFi9ejXkcjma25Sob26HjcIECtN7/0BPSUlRzwp/44038Omnnz7yWu7u7qisrIS3tzdyc3P79Hsh3cJH3qR3MjMz0dbWBl9fX6mjEBHpFXNzc4SFhWH79u2IiD2KC82OSMyrhEoEZAIQ5O2MdYGeSEtLU7/ncWv8mpubY/z48Th8+DDy8vJw584d2Nra9tW3QjqGk3JIr9zft3v06NH8i4uIqAeGDBkCpedT+ORcK478u0wCgEoEjlyswoptp3CmsFJ9vqWl5WOvZWVlpT6+e/dul589a9YsCILQ5X/W1tY9/wZJEiyUpFdKSkpw8+ZNLhVERNRDaSW38W1OMwAByp8NelOqRIgAkqst1L926dKlx17r/gQYW1tbODk59UJa0hd85E16JS0tDQMGDIC7u7vUUYiI9FJkahFkMgFK1eOnUFgN84Wjqxdul+Xjiy++wH/+5392uBsJAPHx8eqyeX88ZneEhobio48+6vQcQ9gm0tiwUJLeuHPnDi5duoQFCxZAEASp4xAR6Z3mNqV6zGRnVJDBKvQ9jM/9HyQdOwZ/f39s2bIF48ePx507d5CQkID3338fALB8+XJ8+OGH3c5gZ2eHUaNGdcj080lBpH9YKElvpKenw9TUFD4+PlJHISLSS/XN7V2WyftkVo74/aY/Y1loGj799FOEhYV1eH3x4sVYu3YtlixZ0qMsaSW3EZla9MhJQX4ej1/SiHQTCyXpBaVSiYyMDIwfPx7m5uZSxyEi0ks2ChPIBHSrVCobbuP19W/j0sU82NraYu7cufDw8ICZmRny8/Nx6NAhVFRUoKWlBQsXLoSlpWW3nx7tPF2KP8XnQCYTHpoUdDi3EltCx+J5fw5t0icslKQX8vLycPfuXU7GISLSgMJUjiBvZxy5WNXpGEqx6Q5u7voNymur4OLigq+++goDBw5EXV0damtrMWHCBLi6uuKf//wnnnnmGSxatAgBAQFwcHCAg4MD7O3t1cf3vzY1NQUA3GxowZ/icyACaG9rhdjWCsH8Xhm9n+m9uByMcrbhnUo9wkJJeiEtLQ0eHh4YMGCA1FGIiPTa2kBPHM6t7PSc2yd2orm2CgCwYsUKZGRkQKFQwNvbG35+fnB3d8e6devQ2tqKXbt2ISEhAStXroSVlRVqampQWFiImpoaKJVK9TWtra1RUVGB2upmtFb/L+qzj6C9pgKACAgymPZ3g8XwKbD1WwIzGwdEphazUOoR7pRDOq+iogLbtm3DihUr4O3tLXUcIiK9t+tMKd6Ly3lotrcAFVSiiIrPn0NrcyNsbW1RW1uLmzdvIjs7G9nZ2aitrYWtrS3GjRuH8vJyrFq1CgDw7rvv4s9//rP6WqIooqGhATU1Ner//vPVV5GXmwvBzALWPsEwdxkNwcQMbbfK0XAhAe011yEzt0L/Jb+F1XA/5G2ez4k6eoJ3KEnnpaWlwcbGpsOsQCIi6rnn/d0xytkGkanFOJxXAZUICBDhLquDR3MBvm1uBHBv4fKbN29iwIABePrppzF79myUlZUhOzsbGRkZKC4uVl/z3LlzHT5DEATY2NjAxsYGbm5uAAB7B0fI7Zzh/NyfYWo/8P9OHj4Ftr6LUBX1PppLLqAq5s8Y+MuPUd8894kK5UsvvYRvv/32iX4vli5diri4uCd6Dz2MCz2RTmtqakJ2djZ8fX25LhkRkRb5eThi6/O+yN00D//PIgvPm2dgtlkhXCza1ecIgoDt27ejtLRU/bWbmxtCQkLw61//GsHBwepzCwsL8e233yIjIwPNzc2P/Mzvvv8XXNZ80bFM3v8sEzP0C3kTkJsCyjbcTtwKG0Xv3/dydnbu9c8wBrxDSTrtwoULUCqV3LebiKiXWJiZoJ+VGRoaWiGXy9G/f3+YmZmhtbUVNTU1cHJyws6dOxEaGoqxY8eq3yeXy6FSqdRfjx8/HjKZDPv27cOBAwcwYsQIjBs3Dl5eXjAxuVc3PFyHYN7EoThysRJK1UNRYGLTDxaevmjKP43WG/m4nJeD8ePHP/H3dH8Hn87Mnz8fpaWleOmll574+vQwFkrSWaIoIj09Hd7e3tzXlYioF1lZWaGpqQlKpRI3b97E+PHjkZaWhqamJjQ2NsLb2xvR0dG4c+cOAgIC1MsD/fDDD+prrFy5EkuWLEF9fT1ycnKQnZ2NH374AQqFAqNHj4aPjw/c3d2x+ikPHMqtAPDoJYbMBg5HU/5pAEBcXFyPCmVXQ6ROnjyJ0tJSjBs3DgEBAU98fXoYCyXprMLCQty+fRtLly6VOgoRkUGzsLCAhYUFGhoaIJfLsXr1aly4cAFtbW3405/+hKSkJNjZ2SExMRG1tbWYP38+fvjhB3WhfOqpp7B48WIAgI2NDQICAhAQEIDq6mr1ZJ7z58/D1tYWjo6OCDC5i1PtbpABUD1QLAWoILeyV3997NgxBAYGYvbs2d0a9jRixAhMmzaty/MiIiIAAC+//PKT/DZRJzjLm3TWv/71L9TV1WH9+vXcapGIqBft2bMHN27cQG1tLRwcHNDe3o6WlhZ88MEHuHv3LiwtLbF27VrY2toiIyMDlZWV6kk4gYGBiI2NRf/+/R97fVEUUVZWhjNnziAvLw8AUKmyxhUMQWGrNUQIECBipFUzZFl7cXDPDgDAqlWr4OHhARcXF4SHh8POzk7j77Wurg6DBg2CIAi4fv26Vq5JvENJOqq2thZXrlzBokWLWCaJiHqZpaUlgHvFr6mpCU1NTXjmmWfQ3t6OnJwcnD17Fv/zP/+DpqYmyOVyWFhYwNfXF2+++Saee+65Lu8eCoKAjIwM7Ny5E/PmzUNLSwtsBQHOdy4jwFyAYGYJsbURv1gWjv888qX6ff7+/li4cCGio6OxdetWhIaGYuTIkRp9rzt37kRTUxNWrVrFMqlFnDZLOik9PR3m5uYYN26c1FGIiAyepaUl2traANxbXcPR0RHZ2dlYtmwZRo8ejYiICLz11ls4ceIEmpqakJOTg1/84he4desWampquvUZX331Ffbu3YsRI0agvr4eixYtAgCYCCJsze79b0xMDCoqKtTvCQwMhKurK9avXw93d3fs3r0bCQkJaG9vf+j6zW1KVNe3oLlN+dBrD/r6668B8HG3trFQks5pb29HRkYGJkyYADMzM6njEBEZPAsLCzQ3N8PGxgaCIMDJyQmXL1+Gu7s7PD09kZeXB39/fyQmJuLq1asYPHgw1qxZA5lMhu3bt6OsrKzT65eWlqKq6t7OO3FxcejXrx8cHf9vF5zRo0dDoVBAoVAgPz8fAODm5obCwkKUlJRAoVDg2Wefxfz585Geno7t27fj9u3bAIC0kttYvysd3hsTMPnDI/DemID1u9KRXnL7oRynT59GVlYWfHx8MHXqVG399hFYKEkH5ebmoqmpift2ExH1EUtLS7S3t2PQoEEwNzdHe3s7BEFAVlYWFixYgLq6Opibm8PFxQVRUVG4e/cuHBwcsGbNGvTv3x87dux47FI9LS0tiIuLU6/WsWPHDjg5OXW4symTyeDo6IivvvoKKpUK5ubmWLx4sXpty88++wxHjhyBh4cH1qxZg5aWFmzbtg1/iTmFZ7adwpGLVbi/4Y9KBI5crMKKbaew60xphyycjNN75Js2bdokdQiiB+3btw8DBgzgvx6JiPpIfX09srOz4eXlhfLyctTX18PLywuFhYWYOXMm2tracPr0aSxbtgw5OTkoLS2Fj48PzMzMMG7cONy8eRPJycmwsLCAi4tLh2vv378f169fh4eHB1JTU9Hc3Iz9+/cjPz8f165dQ2VlJTIzMxEREYGKigo4Oztj9+7duHv3LsaNG4fg4GAolUpkZWXh9OnTKCsrw9ixY1HWbIatOe0ABPx8evH9r5MuVSFweH8MtrfAnTt3sGrVKpiamuLbb7+FQqHom99cI8FJOaRTrl+/jmvXruHZZ5+VOgoRkdG4PynH3t4e7e3taG9vh5ubG/Ly8lBeXo4ZM2YgOzsbP/30E5YvX44dO3YgKSkJc+bMgYmJCcLDw2Fra4uEhATU1tYiODgYgiDg0qVLuHDhApYsWaJeT/LGjRuorKzEmTNncOvWLbS3t8PW1hZjxoyBtbU1vvzySwwfPhyWlpY4fvw4/P39ERISgvnz56OgoADZ2dlITU3F4UZ3CLBEZ0vVyGQCIlOL4efhiF27dqGxsZGTcXoJCyXplLS0NNjZ2WHEiBFSRyEiMhr3C+X9/zUxMUFLSwvs7OyQkZGBpUuXYt68edizZw8mTZqEOXPm4MiRI3BxccHIkSMhCAKCg4NhZ2eHhIQE3LlzB0FBQdi7dy9GjhyJCRMm4PLlywCAjRs3YtCgQdi9ezcaGhpw7do1TJ8+HdOnT8fHH3+sfhQeEBCA9PR0HD16FMuXL4dcLsfIkSMxcuRI1DU0IvLPSZ2WSQBQqkQczqtAc5tS/bh7/fr1vfObaOQ4hpJ0RmNjI3JycrhvNxFRH7tfJAHA2toatra2KC4uxsSJE5Gbm4uWlhaMHj0anp6eSEhIwJQpUzBq1CjExsaqJ8cA95b5eeaZZ3DlyhVERERAFEUsXrwYgiAgLS0NLi4uGDRoEACgpqZGPa5SJpPB1NQUgwYNQnl5OQDA1NQUs2fPRm5uLq5du9Yhb6so77JM3qcSgeSUk8jMzMT48ePh7++vwe8UPQ5/apPOOH/+PERRxKRJk6SOQkRkVExNTSGXy9HU1IRBgwZBJpOhrKwMY8aMQVtbG3JzcyEIgnqCzsmTJ7F06VJYWVnhhx9+UC85BNybsT116lQ0NTXBxMQEra2tuHXrFoqKiuDn5wfg3nqXNTU1sLKyAgD1TQQXF5cOM8bHWTs6gQAAIABJREFUjx8PJycnHD58GA/uw2JtLoesm0sUywRg985/AuBknN7EQkk6QaVSIT09HWPGjFH/BUNERH1DEARYWlqisbERgwYNQkNDA5RKJerq6jBs2DCcP38eANC/f38EBAQgNTVVvfj5rVu3cODAAXXhq6mpwdmzZ+Ht7Q0TExN88803SE5OhqWlJcaMGQMAaGhoQFtb20OF0tXVFTX/n737Do+yShs//n0mM8kkk8Kk9wSSQBICREqoAWGlSRGsSFFQfqusu+r67rvqqgu+brHs+65i32VdmhALIiC9ExJKQgIhBUJI720SUieZmef3x+w8EulSgnI+18XlMHOeZ87MLuTmPufct8FAc3Oz8vz48eMpLi7m9OnTmM1mTpw4wcp//4sgyYDqCnlKO5XE3T2d+fqrL9HpdMydO/emfH+CCCiF20ReXh4NDQ2iVJAgCEI3OT+gbG9vR6fTkZ+fz8CBAyktLaWmpgaA0aNH4+TkxLZt2/Dx8WHq1KkcP36c9PR0LBYL69evx8nJienTp/Pkk0/i5uZGZmYmISEhqNXWoxu2fZK2pfbzA0qgS5YyLCyMkJAQNm3axN///nelBNELU2K79AG/GItFxrsqhZaWFh555BFcXV1v7JcmKERAKdwWUlJS8PPzIyAgoLunIgiCcEeyBZT+/v6ANRtZUFBAnz59cHJyIi0tDQB7e3smTpxIbm4up0+fZsCAAQwaNIgtW7awbds2SkpKmDFjBg4ODuh0OmJjYwE4deoUqampAMq+S1vpHjs7OwBcXV1xc3NTAsra2lo2b95MaWkpra2tuLu786tf/Yo5c+YQYN/OcHURICNh6fJZ7FQSEvDGjBh2fLMGEIdxbjZxylvodvX19eTl5TF9+nTRt1sQBKGbODk50dbWhrOzM+np6fz1r3/FaDQSHBxM//79ycjI4J577sHOzo6oqCjCwsLYtm0bvXr1YtKkSRQXF5OSksLQoUMJCQkBrHsl09PTCQ8PR6/Xs3nzZhobG5EkCWdnZ+Xv/PMPYgYGBnLmzBlqa2s5c+YMOp2O+Ph4qqurKSoqwtXVlTNnzrB582ZitGqGhQbxTXYDxRY9MhISMmMjPHn67gjkmrOkp6czYMAA4uLiuuV7vVOIDKXQ7VJTU3F0dCQmJqa7pyIIgnDHcnR0pKioiHHjxrFhwwaMRiMAlZWV3HXXXbS2tiqlf2wHdM6dO0dSUhJg3QsvSRK1tbXKfsry8nIqKiqIi4tj8uTJjB8/noMHD3Ly5En0ej1ms7XvtkqlwmQycfz4cYqLi6mtraWxsZH77ruP559/njFjxjBhwgTa29vZvn07CQkJSJLE3LlzaS/N5h5tIf+a5MZcXRZzHdL47+E9GBzqLkoF3UIiQyl0q87OTtLT07nrrrvQaDTdPR1BEIQ7kizLbNu2jX/84x9otVqioqKUVooVFRV4e3sTGBhIeno60dHRAHh4eDBixAgOHjzIuXPnaGhoYPLkyWzZsoXExERGjx5NSkoKPXr0ICwsDEmSGDFiBK6urqxbtw6TyUR7ezsAZ86cYd++fTQ3NxMUFERTUxNTpkwhODhYmaObmxsDBgxQlt6nTZuG2Wymvb2diIgIHNQqnNUW1FonysvL8ff3JyEhAZ1Ox5w5c27xN3rnERlKoVtlZmbS3t4uDuMIgiB0o9dff50PPviAkJAQMjMzGTt2rPJaeXk5AHfddRd5eXk0NjYqr8XHx+Pg4EB6ejrjxo1jyJAhjBkzhr1795KdnU1mZiaDBw/usqQdExODg4MDbW1t7N27F7AGlH369OFXv/oV8+fPR6PRdDmYA9DS0qJkSD09PRk4cCDJyckAxMXFYbFYsLOzw9/fn/LyclxcXGhqaqK5uVkcxrkFREApdBtZlklJSSEiIgK9Xt/d0xEEQbijLVmyhDlz5uDr64uLi4vyfFNTEw0NDfTt2xeNRsPx48eV1yyW7w/D2P4eHzNmDOHh4Xz77bfIssxdd92ljJFlmdOnT2M0GjGbzZhMJsBaEH3q1Kl4eXmhUqkICAhQCpwDGI1GVqxYQUtLC+7u7tTW1lJUVER+fj4ajYZevXphsVhQqVRKQCn/sMG3cFOJgFLoNmVlZVRUVIjspCAIQjdbvHixsizc2tqKg4OD8pokSeTn5+Pg4EDfvn2VJhQA27ZtU/p+79ixg87OTiRJYsaMGZjNZhwcHLC3t1f2R3766ackJCQA1vJDw4YNA6yVPs6ePau8Z1BQECUlJciyjNlsZu3atdTW1qLX63nyySdxd3dn06ZNyLJM3759UalUXQLK1tbWLplU4eYTAaXQbVJSUtDr9YSHh3f3VARBEO5otsLmYA0oz6+4YSsfBDBw4EAaGxvJz88nOzubEydOMHnyZKZPn97lgE5FRQUWiwWj0cjy5ct599132bBhA66urowZMwawZiVte+fd3d1Zs2aNkv0MCgqipaWF+vp6vv32W4qKitBoNMybNw8nJyfGjRtHXV0dgFKWyHYoyFb2yLZUL9wa4lCO0C1aWlrIyspi3LhxolSQIAjCbeD8gPJ8vr6+5Ofn09ZhwsHNCzcPL44ePUpJSQmRkZEMGDBAOXBz8OBB+vfvz8GDB3F0dMRoNFJWVkZoaCjz58/H09OTgwcP4uDggKOjY5cl77KyMjZs2EBDQ4NS4mfr1q2cPXsWSZKYNWuWsqxu67AjSZJSDF2WZVQqldKLvKysTDlAJNx8IqAUukVaWhqSJHXZWyMIgiB0n0sFlE12ruytd+TjJduxyCARQnCFgUE6J56ZOlVJCowaNYr09HSWLVtGW1sbDg4OjB49mpqaGnJzc5X9lgaDAb1ejyRJXcoGTZ06lR49erBnzx4aGxtxcnJSlsEnT55Mz549lTnZTnrLsszJkycZMGCAsuQN4O/vT0VFxU38toQfEgGlcMtZLBaOHTtGTEwMjo6O3T0dQRAEAdBoNNjZ2V0QUH5ytBbHkH5K12wZKLa4UdTUg4GZtcwa5MDJkyc5fPgwLS0tgLXzzbPPPouTkxOdnZ0sXbqU//7v/wZg37591NbW8swzz6DVanFzc6O4uJglS5YQHx+Pm5ubcqAHYNCgQV322re1tZGVlQVAaGgoe/bsITo6+oKAMikpCVmWxSrYLSL2UAq3XG5uLo2NjeIwjiAIwm3Eto/yhwElWJsbdv29CpB49dtMXnznUzZu3EiPHj2YPXs2kiRhZ2en7I9MSUnhlVdeYeXKlaxatQo3Nzdmz57NBx98wC9+8QsaGhr47LPPiIqKYt26dTg5OXU5of3DnxUnTpzAYrHQo0cPpkyZQnNzM0eOHLkgoDQajUqLR+HmExlK4ZZLSUkhICBA2TgtCIIg3B4uFVBeioTMWU0Iy/7fI3h6epKRkYEsy5hMJg4ePMjYsWM5d+4cRqMRlUrFo48+SkREBFOnTmXQoEF4e3sTGRnJunXrOHv2LLNnz2bRokX4+Pig0WhoaWlh5cqVPP7443h7eyPLMseOHUOlUtGvXz88PT0ZNGgQBw8eJDIyUslG2n6+lJWV4eHhcVO+K6ErkaEUbqm6ujry8/NFdlIQBOE2ZOvnbTJbrjwYa+Yyo17C2c16WCY1NZWePXsycuRIkpKSumQI58+fz8MPPwxYu6QBmM1m7B11/PKZ5wHo6Ojg2LFjAMybNw+tVoskSXz22WcUFBRQUlJCbW0tFotFaddrOzVeXl6uZCgdHR3R6/XipPctJAJK4ZZKSUnBycmJvn37dvdUBEEQhB+wZSiNpqsLKAEsMjS1m6isrKSkpIQhQ4YQHx+Ps7MzW7duxdXVlUGDBvHAAw8QGRkJQGJiIgdyylh+VsNq40DeL3RX7ldUUcP999+Pj48PwcHBeHl5ERAQwOrVq9m9ezf29vZ4eXnh7e0NWE98jxw5kpqami6F1gMCAkRAeQuJJW/hluno6OD48eMMHjwYtVr8X08QBOF24+joSG1tLQ7qq883Scj848P3cHLQYG9vj4ODA7IsM2nSJL744gsGDRpEamoqAEePHkWSJLKM7ny4Mh0VamQkJM33hdRr7dxJadDSB2s9ysTERH73u9+xceNGMjMzkSRJSUrU1NTw3nvvsX79evLy8lCr1axYsYK5c+cSExPD6dOnu+ytFG4e8VNduGVOnjxJR0cHgwcP7u6pCIIgCBdhy1Cq7a4uAJOQCbFrxGRs45yxDYBVq1YB4OXlhaurKxs3bsTFxQU/Pz8MBgOtOj/21foCYMsndlTmKffUBvfntW8zifRxISgoiI6ODurq6ggMDCQzMxNZlqmtreXQoUM88MADVFRUMHHiRGJjY6mpqaGgoIBnnnmGAQMGMGHCBGpqavDx8blxX5JwUSJkF24JW9/u3r1706NHj+6ejiAIgnARtj2UV9sHW0Yi2q6SuLg4JEkiIiICe3t7ABoaGjAajbS1tbFs2TLefPNNTpw4QUqTK3bnHRqXzZ00HFgNgMYrFOcBE1CpJJYdLMDf3x+VSkVxcTFpaWm4uLjg5uZGUlISkyZNoqKighdeeIFt27YxY8YMxo4dy3/9138xcuRITpw4QUJCAkVFRTf8exIuJDKUwi1RUlJCVVUV48eP7+6pCIIgCJfg5OSEyWTqshcRrJnI80sHWX8Pz43wpSM7k5MnTxIVFcVDDz2E2WymuLiYM2fOcObMGYxGo3LvhqYWzrbYYzYaMLc10VF2inOpG+msKcQpMh6PSb9GpXHAbJHZkV2JmVj8/PzIzc2luroaOzs7xo0bx44dOzh37hzu7u784Q9/AKyJCw8PDyoqKnjxxRe57777KCkpYcWKFUrnHeHmERlK4ZZISUnB3d2dXr16dfdUBEEQhEuwdcuxncIG+OWgHgSrDEj/KW1uXeZuYEFQA8asXfj7+9PW1sagQYMAa1Hznj17MmHCBJ555hkWLVqEVqulo6ODdjM0Zx+g9P15VCz7FXVbl2IxtuA5/b/xvO/3qLQ65X1th30CAwMpKSnB0dERs9mMg4MD27ZtA6y9xVevXq2c/HZ2diYsLIzCwkJGjBgBwNq1a6864yr8eCKgFG665uZmsrOzGTJkiOhYIAiCcJtavXo1W7du5cSJE2RkZCjPnys5jUfOen5Rt4nh5ev4bHIPJruUMSi4h9LlBlAykT/k7e3NfffdR1tbGxrMOPa6C+9Zf8Lr/lfpMXYBKgcdtRvfofyfT9NWkKZcJwHNBuv+x46ODrRaLUFBQWzfvl0JEJ977jk0Gg2fffYZra2tqFQqxo8fT319vdLH22AwkJycfJO+NcFGLHkLN92xY8ews7MjNja2u6ciCIIgXMK8efMu+vx7772nPI6IiKDtkQcZNmwYiYmJPPzww6xduxY7OzvS0tKIioq66D369OlDYGAgpaWl9HJVUew8QFlCd42biWHXP2k6tonqL5fgOe2/cIkeTaj6HCv//S8la2owGBg2bBhr165V7hsfH4+9vT1ffPEFxcXF+Pv74+PjQ2xsLIWFhcq4TZs2MXLkyOv9ioTLEBlK4aay9e3u168fWq22u6cjCIIgXIIsyxiNRpYsWaJ0vDn/uWXLlvGnP/2Juro6hg4dikaj4cCBA6jVamRZJi8vj8bGxoveW5Ik/Pz8ABjgUIfc5TUV+nv+HxrPYJAt1G37gM62JiJVFWi12i6Zz5MnT5Keng6gHNBxdHRk7ty5ODk5UVZWxqFDh7j77rvR6b5fPk9LP05Nk5H2TvON/+IEQASUdxxZlnn//fdxdnZGkiT27dv3o+9lsVgYPnw4kiRd8l6nTp2iqalJdMYRBEH4CdBoNKjV6i7tFw0GAwBNTU14eHhQW1uLVqslLi6OsrIyoqOjmTFjBgDr1q276H1ra2tJS7MuZ3vIDSwc4IwESP8pHCRJKnTRdwMgd7Qx3qGAF594kN69e2M2fx8EVlZWUldXB1gLmp8+fRqz2YxarcbT0xNPT0927NhBcnIyo0ePVq47kFXMkL/sInrxNp5anUpqoejxfaOJgPIOkp+fz9ixY3n22WdpaWm57vu9//77HD58+LJjUlJSCAoKwtfX97rfTxAEQbi5JEm6oJ+3LaBsbGxEr9crvbn1emu7RVmW6devH/7+/pSUlHD06NEu92xqamLVqlXKvkcnJydCTaX8372BBKsalMM+Gnd/5RrntkpCQkJQq9U4Ozsrz7u7f99Rx2KxkJCQwNtvv813332H0WjEz8+Pe++9l5SUFPYUtn0/tsP62CLDrpxqHvr0EKuPiHJCN5IIKO8Atqxk//79SU9PZ9iwYdd9z+LiYl599dXLjqmpqaGwsFBkJwVBEH5CHB0duwSU9fX1F3Q3q6urIyMjA1dXV3JycmhubmbChAkAbN26lTNnzgDQ3t7OSy+9RHZ2NhaLhaCgIKZPn87Zs2fprDjNOPt85jqkcfC/RvHi6O8TDyaTCaPRyMmTJ/H19VUOdN51113KGBcXF5ydnZX+35WVleTk5GAwGOg1dDxbqr9f8pY7v182N1usJY9e+zZTZCpvIBFQ3gFef/11nn32WUaNGkVmZiYTJ0687ns+/fTTtLW1MWXKlEuOSUlJQafTKSftBEEQhNufrbi5jcFgQK/XY2dnpzyfn59PQUEBo0ePxs7OjqSkJIKDg3F3d8fFxYWvv/6a0tJS1q5dy5o1a9iwYQMajYbw8HB69+5NREQEubm5SJKEWpLxd3fBfF7QFxwcTGZmJiaTidbWVsLDw9FoNMpyN1gD3xdeeIGnn36acePGoVarMZlMHDp0iH8eOAtmkzL2/NaONrbi6cKNIQLKO8SyZcvYtm0bQUFB132vzz//nK1bt/Lcc89dso2i0WjkxIkTDBw4EDs7u+t+T0EQBOHWuNiSt7u7Oz4+PtTU1ODi4kJOTg5OTk4MGDCAoUOHkpqaSktLC3fddRetra306NGDFStWUFJSgizL1NXVUV1djV6vR5IkJkyYgNlsRpZlJfv4+eefK+85btw4jh07RmhoKOXl5cTExBAQEKAsv4M1+ylJEj4+PsTHx+Pl5cWAAQOYeO80ii09sJi+r6Wpsne84HPaiqeLgzo3hggo7wCLFy/mySefvCH3qqur47e//S2hoaH8z//8zyXHZWRk0NnZKfp2C4Ig/MRcLKDU6/X4+flRUVGBh4cHlZWVDBw4ELVazbBhw1CpVCQnJxMbG4vFYkGj0WAymZBlGa1Wi8ViYf369ZhM1qyh7b9g3bf5zDPPKLUvBw4cSG1tLRUVFbi5uaFWq+nTpw9BQUFUVlYqe/Krqqq6zNtisWBvb09YZF9kJCwtDcprdm7eF/2stuLpwvUTdSjvADeymPjzzz9PTU0NK1eu7FKS4Xy2vt2RkZG4urresPcWBEEQbr7z91BaLBYaGhqUJe+0tDQCAwOxWCxKZxxHR0eGDh3K4cOHGTlyJB4eHpSVlQHWrjkBAQFUVVVRXFzMqFGjePTRR3FycqK4uBiDwUBWVpaylL1gwQKmTJnC8ePHcXFxoaqqioiICBwcHAgKCiIxMZHevXtTWVlJU1MTjY2NuLm5KXM1GAzs2LwBCSdMTbXKZ7L3DL7oZ1VJ4KIVodCNIL5F4apt376d1atXM3v2bCZNmnTJcUVFRdTU1DB58uRbODtBEAThRrBlKGVZ5ty5c1gsFvR6PTqdTlm+BnB1daWqqoqvvvqKrVu3kpSUxOLFi5EkCRcXF/r168fChQuZMWMG06dP5+DBgwDs2LGDqqoqTCYT9vb26PV65syZw/PPP8/gwYMpKSkhMzOT4OBgzp49y6hRowAIDAwEoF+/fhw4cACAtLQ0goKCyMzMpLa2lpqaGvz8/Bjs24NdSWeVz6QN6X/B57RTSYyP8kGrEduybgQRUApXpaWlhaeeegoPDw/efffdy45NSUnB09OT0NDQWzM5QRAE4YZxcnLCbDbT2dmp7Fl0d3fHzc0NlUqlZC8XLFhAQkICHR0dBAUFMXr0aGRZxmQycfbsWfbv38/+/fuZOHEiQ4YMYfLkybzwwguAtexcaGgoaWlpqNVqnJyc6N/fGvTV1NQAUF1djb29PREREYA1E+rl5YW39/fL13/+85+Jj4/Hw8MDBwcHoqKimD59Ok7bD7Gp4DgAdi6e2PtHXvA5LRaZhaN63qRv8c4j9lAKV+WVV16hqKiI//3f/8XLy+uS486dO0dOTo7o2y0IgvATZWt12NraqgSUtr2M9vb2aDQaACWYnDZtGjt37mTw4MEMHjyY6dOn89FHHynFzrdv386WLVtoamoiOzublpYW6uvrlb2Qrq6utLS0kJiYCFizjr6+vjQ1NREcHIxGo0GWZSorK5EkidraWqXFY2ZmJvPnz+eZZ55Bq9Wi0+lIT0/n8KbPMZZmW+c+7MEuP4/sVBIS8MaMGAaHfl/XUrg+IqAUrujo0aO8//773HPPPTz++OOXHXvs2DE0Gg0DBgy4RbMTBEEQbqTzA8r6+nolmGxpacFoNOLg4IC9vT1g7Vbz5ptvsm7dOmRZxsvLC4PBQFRUFLGxsUr/7LS0NJqbm1m/fj3Hj1szhz4+PgBotVpGjRpFcnIyp0+fpqysTMlWtre3s3//fj766CM+/fRTGhoasFgsfPjhh3h4eFBVVcWHH36IJElYLBaqq6tZt24dmzZtAmRiYgcRPTAOWzipkmB8lA9fPTWcuUNDbt2XegcQS97CZXV2drJw4UIcHBz45JNPLjvWbDZz/Phx+vfvj4PDhTW/BEEQhNvf+QGl7UAOoPTQbm1txcfHB1mWGTJkCN999x2dnZ1ERkYyZcoUli5dyqlTpwgNDSUiIoKkpCQAJbO4b98+dDqdcrBTo9EwcuRITpw4wZYtW9DpdOTm5gJQWlpKVVUVUVFRTJgwATc3Nz7++GOCgoLYtGkTM2fO5J133uHkyZM4ODjQ2trK8ePHqampYfDgwbz33nvs3LmTp341HTutMy5atdgzeZOIDKVwWW+99RYnT55k8eLFhIWFXXZscXExzc3NojOOIAjCT9gPM5R6vR6LxUJqairh4eFYLBZ0Oh2LFi0iLi6OtrY2wsLCePDBB3F2dmbIkCEcPXqU6OjoLuWBGhoamDVrFmBNVtj2YtpKDPXq1Ytz587R0tJCYWEhrq6uqFQqhg8fzsyZM4mIiMDLywtHR0dKSkoYPnw4GRkZvPzyy+Tm5rJlyxYSExNxdnbm3XffJTk5mZaWFlxcXPDxdMfLxUEEkzeRyFAKl5Sbm8uf/vQnevfuzeOPP05tbe0FY86vVZaenk5ERAQqlYra2lo8PT1v5XQFQRCEG0Cj0aBWq5U9lFFRUeTl5dHY2MjMmTPJy8tDkiQ8PDyQZZng4GBmzZqlNLEYMWIEKSkpyvK0jV6vV1avLBYLmzdvBqCiooK//e1vylhbx5v77ruPrKws0tLSlI48kiQRFBREaWkpAN7e3syePRutVossy6jVan79618rpYRKSkoIDg4We/pvARFQCpeUnJyM0WgkNzcXPz+/K45///33AXj22WcBaz1KQRAE4afHycmJc+fO0d7ejl6vJyUlBX9/f0JCQvDy8lI64Hh7ezN37twuvb51Oh1DhgwhNTVVOcADMHbsWCoqKjCZTEqRdLAGlxMmTODEiRNoNBpKSkrQaDSEhobi7OxMWloa2dnZ9OvXD0CpR2mxWMjJyeGbb77B3d2duro6YmNjlWDSZDJRXl5O3759b+E3d+cSAaVwSRMnTmTnzp2XHbNy5UpWrVoFwLRp03jmmWdEq0VBEISfOCcnJxoarJ1m7OzsyMvLY/r06ciyjNFopL29HYDx48d3CRptbFnKw4cPA+Ds7IxWq2XFihWANdgLDQ2lsLAQvV5Pz5492bZtGw8++CBVVVUYjUbq6+vx9vamZ8+eHD16tEtA2dHRweHDh9m1axf+/v6UlZWhUqnw8PBQ5lBeXo7ZbL4hLYeFKxMBpXBJfn5+V8xM2grVgrX36sSJE2/2tARBEISbzMnJiaamJgAKCgrQarXExMSwefNmGhsblXHnP/7h9Y6Ojpw+fRr4Pjtp6+W9aNEiCgoKKCwspLy8nO3bt6PT6XBycsJoNOLi4sLWrVuZO3cuQ4cOJSEhgbKyMgICAvD390eSJHbt2qUEpYMGDeLEiRNdlrZtmU5beSLh5hKHcoQbpnfv3t09BUEQBOEG0GidqD7Xjp29lpMnTxIbG0tSUhLHjh1TDu24urpesLe+urqaPXv2sHTpUpYuXQpAREQEAwcOZP78+XR2dtKrVy/g+37evr6+5Ofn07NnT3JycnB1dWXKlCnk5+eTk5NDREQEPXr04MiRIwCcPXsWWZZxdnamurqaoKAgJk+ejMViQaX6PqwpKSkhMDCwy3PCzSMylMJ1OX+fpO0vGUEQBOGnKaWwnmUH89mRpUUmFAmZYFUD7q1qyg/vx9HRkYULF/L+++/j6OhIbW0tDQ0NZGZmkpmZSVVVFVqtlqysLAoLCwkICGDmzJnY2dmRmppKQ0OD0kKxs7MTAE9PTyorKzl9+jRqtZrY2Fj69OlDnz592L59O+Hh4cTFxbFr1y569erFpk2b0Ov1NDY24uzszEMPPYSdnV2XgFKWZYqLi0XVkVtIBJR3iNWrVyuPMzIylMc7d+5UTsv5+Pgwfvz4K95r586dVFVVASj7Y354r/79+yuFaQVBEITb36rDRfxxQyYqlYQtVSAjUWLpwZ+PthGv9eWjRbNxcXHB3d2d1tZWamtree+991Cr1URGRjJ27FhOnDjBH/7wB/z9/fn666/Zvn07Li4uSh1L255Go9EIWPc6hoSE0NDQQGNjo1KibuLEiXz00UccOHCAUaNGsXv3bjZu3EifPn2UE+jTpk3D2dlZSW7YAsq6ujra2toIDg6+hd/gnU0ElHeIefPmXfT5v/zlL8rjMWPGXFVA+ec//5n9+/df9l6LFy8WAaUgCMJPREphPX/ckIkMmC1dK3Rf+1qDAAAgAElEQVRY/tNnJrE9kE2HszBXnqGurk55ffr06fTt2xd7e3t27NjBY489hre3N7t378bR0RGwlpjr7OzEyckJV1dXADo6OgCor69n3LhxZGdnc+7cOfbs2UNwcDB6vZ5Ro0Zx4MABpRamSqUiICCA3bt3A99nOW0lh2wBZXFxMZIkKdlQ4eYTGwvuELIsX/HXvn37rupe+/btQ5ZlGhoaeP3110lJSbngXkuWLLmpn0cQBEG4cZYdzEelunytRgmZT/edwWKxEB0drVT08PPzw97ent27dzNjxgzc3NzYs2cPkZGR1NfXA9aAT5KkLifCbQGlvb094eHh5OfnExsbS01NDevXr0eWZUaOHImTkxObN28mJCQEs9nM7t27GTFiBG5ubhQXFyv3B5RDOSUlJXh7e4uubbeQCCiFHy01NRV7e3uRiRQEQfgJa+80szO76oLM5A/JSJTI7jwyey5xcXGYzWbA2lJx//79TJ8+HZ1Ox+7du4mKigLAYDDg4uLCwIEDkWWZpqYmpeSQ7b99+vShsLCQ9vZ2hg0bxv33309OTg47d+6kuLiYtrY2ZFmmd+/eqFQqHBwcGDduXJcC5z/MUJaUlIhyQbeYCCiFH8VkMpGWlsaAAQOwt7fv7ukIgiAIP1JTu4krxJIKi2wdbyvFY29vz969e5k6dSqOjo7s3r2bmJgYZbzBYMDd3Z2VK1eyZs0aLBYLmZmZAMpe/P79+5OVlYW3tzfe3t5ERkYyceJEDh06xOeff07Pnj0JCwtj165dSlmh8vJygoKCKC8vx2QyddlD2dLSQl1dndg/eYuJgPI2UlVVxQcffMD06dMJCgrCwcEBZ2dnIiIieOyxx9i7d+8V75GSksLvf/97hg8fjoeHBxqNBnd3d4YNG8Zrr71GWVnZDZlrdnY2ra2t4gSdIAjCT5yLVs0VVrsVEjJffr6CrKws3N3dqays5MUXX0Sj0bBz584LVqxsvcBzc3Oprq5GpVJx7Ngx4PuA0t3dnVOnTnXpaOPr64tKpcJisTBw4EDAmoUMDw/H3d2dI0eOEBQUhMVioby8vEuGsqSkBEBkKG8xcSjnNvHUU0+xfPlyOjo6CAoKYtasWYSHh9Pe3s7WrVtZtWoVq1atYtasWSxfvvyCfSE5OTnMnz+fo0ePAnDPPffw/PPP4+/vT1FREatWreJPf/oT7777Lp988glz5sy5rvmmpKTQs2dP0a9bEAThJ06rsWN8tA+7cqovu+ytkiDMoYXaqgo2bdpEWVkZq1atwmg08tprr9HY2HjBXvzU1FSio6Opr69X9lzaSgQ1NzcDUFRURGdnp5LZLCoqYs2aNYSGhqJSqVi3bh1ms5mYmBgyMjIYMWIESUlJ3HPPPUqrRnd3d+scVSoKCwtxcXFRWjAKt4YIKG8TK1asoKOjg2nTppGQkNClpuNzzz3HJ598wqJFi0hISECSJNasWdPl+hMnTijB5KpVq5g7d26X11966SWmTZvGnj17eOyxx3B3d2fy5Mk/aq4VFRWUlpby8MMP/6jrBUEQhNvLwlG92JFVddkxsgx/fXw8EfpJ7Nq1i7feekvZB/mHP/zhiu/h4+NDbGwsaWlp7N27F4tkh9EikXUqF39/f9zd3SkqKuLzzz8nMDCQWbNmcfr0afLy8rC3t2fs2LGUlZVRUlKCWq3m2LFjBAYGUlJSorRllCSJkpISgoODu3TNEW4+seR9G9HpdPzrX/+6aIHwp59+mkmTJgGwdu1apWPADz388MMXBJNgLTq+YsUKNBoNFouFF1544UfP8+jRo7i6utKnT58ffQ9BEATh9jEk1J03ZsQgAXY/WP+WsC4nvzEjhsGh7ri5uTFo0CDa2tqu6T3s7OwYPXo0VRZn1pY4s7ItlgRjLK9l6NjRGsLmIzmsWbOGgIAAHn30UQwGA5s2bSIiIgIHBwe+/PJL7rnnHoqKiggJCeHYsWP4+/tTUlKiHBCSZZmKigqx3N0NRIbyNjJ8+HC8vLwu+foDDzzAtm3bANi4cSNDhw69YMz06dMveX1gYCBxcXEkJSVx6tQpzpw5Q0RExDXNsa2tjczMTOLj40U7K0EQhJ+RuUNDiPRxYdnBAnZkV2KRrcvcUS5m+jtUMSfuXmVsaGgobW1tvPXWWwDMmjULk8nEsWPHKCgoQJIk5aCMq6sr586d44knnmBjTgNbOvogISP/p76ljERaVScp355lik9P/uvR+zGZTCQkJNCjRw8efPBBDAYDn332Genp6fTp04fS0lLa2towmUy0trbS0NAAWPdsms1mcSCnG4iA8gaSZZkPPviAl19+mZaWFvbu3cvdd999VdeuX7+eoKAgdu7cyerVq0lKSqKiogKNRoOfnx99+vTBz89PGW+rvWUzevRoNm3aRHx8/GXfJzg4mKSkJOUe1xpQpqenI8sygwYNuqbrBEEQhNvf4FB3Boe6095ppqndhItWTU1lOZ999hk5OTlER0crY7VaLXq9noaGBurr6xk+fDh9+/alqamJjIwMkpOTaW1tpampCYC/LvuSLR19sB7t6ZoFNcsAEluqXHi8rInTB7fQ3t7OvHnzsLe3x8fHh4cffpjPP/+cmJgYjEYjer2e/Px8wNptB6wljDQaDT4+Prfi6xLOIwLKGyQ/P58nnnjioh1krsbw4cN54oknWL9+PXFxcSxYsABfX1+qq6v56quv2LBhQ5fxOp2uy+/9/f3x9/e/4vs0NjZe8h5XIsuyssH6Wq8VBEEQfjq0Gju0GushmqCgIHr27EliYiJRUVFd9ib6+fnR3NxMbW2t8pyLiwsjR46krq6OkpIS2traaGtrI6vDBwm4XIUilUrizW+OENtSwNy5c9Hr9cprYWFhTJ06lU2bNhEWFkZ+fj6yLOPm5qYElNXV1QQGBooVtG4gvvHrJMsy77//Pv379yc9PZ1hw4Zd8z1aW1uZOnUq69ev54MPPuDIkSO88sorPPnkk7z88sukpaUxe/bsLtdcKRN5KQUFBYD1D3xsbOw1XZuXl4fBYBClggRBEO4w8fHxVFZWkpeX1+V5Pz8/zGZzl4DSxmAw4OXlRXt7O6PH/oJiWX9BZvKHzBaZ9FoLY++ZQK9evS54feDAgYwcOZKzZ8+i0+mUzjslFVW0yWrKq2rE/sluIgLK6/T666/z7LPPMmrUKDIzM5k4ceI13+OPf/wjSUlJ/OpXv+KZZ5656JglS5agVlsTyj4+Ptx///3X/D65ubnk5OQAMH/+fLRa7TVdn5KSgq+vr+iNKgiCcIcJDQ0lMDCQxMREZW8kWANKi8VCTU3NBdcYDAY0Gg1msxkP3wDkqyyeLiNRUllLQUGBUl/yfL/4xS/o27cvra2tlBodWF/jyfsVoSQYY/nXub78K1dFamH9j/6swo8jAsobYNmyZWzbtu1H/asoPz+fpUuXIknSZcsuGI1GTCYTAG+88QaOjo7X/F7/+Mc/ANDr9bz66qvXdK3BYODMmTMMGTJElGIQBEG4w0iSRHx8PCUlJRQVFSnP2/b225a1bUwmE42NjZhMJtRqNT0D/bjaHx0SMrlZJ1i5ciVvv/023377LWfOnFFOckuSxIwZM6jQhbOlow/FFrcuB3wOFbfw0KeHWH2k6HJvI9xgYg/ldVq8ePF1BVgrV66ks7OTQYMGERAQcNExsizz7LPPAjB58mQWLlx4ze9z6tQpPvjgAwA+/vhjvL29r+n61NRUtFqtUutLEARBuLNERETg4+NDYmIioaGhgLUknbOzs7KP0pZYsZ26bm5uJiAgAJ3WnijnDk41abBcZtnbToLBfg5EeoVRUFCA0WjkxIkTnDhxAjs7O3r16kVsbCyN9p5srXEFuPCAz3+Ks7/2bSaRPi4MDnW/0V+FcBEioLxO15ut+/rrrwEuaFfV0dFBZ2cnOp2ON998k71799K7d29Wr159ze/Z2trKo48+itFo5He/+x2PPPLINV3f2dlJeno6sbGxyn4VQRAE4c5iy1J+/fXXlJaWKtuf/P39yc3N7RJQGgwGAOrq6oiNjcVgMBBqzCebyMu+h0WG/542iMGh7lgsFiorK8nPz+f06dOUl5dz5swZzpw5w56OMCR6XHZPpkolsexggQgobxERUHaj1tZWZU9jcHAwjY2NvP322yQkJFBQUIAsyzg6OtLW1oanpydbt25V2ktdLbPZzLx58zh+/DizZ89WaoZdi6ysLNra2sRhHEEQhDtcVFQUHh4eJCYm8uijjwIQEBDAmTNnuuyjtLVabGlpISgoiLS0NIIdO3lxVAhv7SlEJUmc3+VRJVk78diKp4O1jaKtgsmoUaMwmUyUlpaSnpHF8kPyVR3w2ZFdSXunWTmxLtw8Yg9lN8rKylI2HBcXF9OvXz8++eQT5s+fz8aNG3nxxRcxGo2AtbbW8uXLr+n+sizzy1/+km+++YYHH3yQFStW/KhSCikpKYSHh19zMCsIgiD8vKhUKkaNGkVubi5VVdZWjX5+fsiyTGVlpTLOYDAoXd/8/Pw4fvw4/fv3x6vxFA+4FXNPpDe2hjwSMCHal6+eGs7coSGXfG+1Wk1oaCijxt5zxWDSxiJDU7vpx31Y4ZqIgLIbnf+vuX//+9+0traSkpLCa6+9hqOjI0uXLsXT05Mnn3wSsB7G+fe//31V95ZlmaeffprPPvuMmTNnsnbtWuWU+LUoKyujvLxcZCcFQRAEAPr160ePHj1ITEwEvj+Yc/7PNIPBgEqlQq/XU1ZWRnNzM/7+/mRlZTF34nDenh7B/+uRw+8j6slcPJ5P5g666qVpF60a1VXu/FJJ1vHCzScCym5k6x5g89JLL9GrVy/279/P9OnT0el07N69m48++kjZq/Lyyy8rWcvL+c1vfsM//vEPpk+fzhdffHHNwWR7p5maJiNJR1Lo0aMH4eHh13S9IAiC8PNkZ2fHyJEjycrKora2FmdnZ7RaLc3NzUo1kvr6ekwmk7LcHRAQwLFjx/D19SU6OpovvvgCJwcN82c9gE5rf9XvXVtby/Yt3xEkGZAuWyLd2pN8QrSvWO6+RURA2Y1sf/BsHnzwQZKSkpg6dSqOjo7s3r2bmJgY7O3tlbqTVVVVzJgx47I9u3/729/y4YcfMmXKFL766qsLDtJUVFQwePBgpYzQ+VIK63lqdSrRi7cx5C+7eDFFTSKRpBU33IBPLAiCIPwcxMbG4uzsrLTy9fLyAqyBpCzLGAwGWltb8fDwIC8vD19fX0pLSxk/fjybNm2irq6OWbNmKcviV1JeXs6XX37Jhx9+yNmzZ5k/PBiusOxtscgsHNXzuj6ncPVEHrgbOTs7K491Oh2VlZVMnjwZjUbDzp07u5z8Pr+rje0gz8X8/ve/591332XSpEmsW7cOe/sL/+VnNBo5duyY0qrKZtXhIv64IROV6vvN0jIS6dVmHvr0EG/MiLns/hZBEAThzqBWqxkxYgS7du1izJgxBAUFUVJSQk1NDVqtVqkZ2djYiL29PXl5efTu3Zvy8nKysrJ46KGHrthvW5ZlCgsLOXjwIPn5+bi7uzNt2jT69++PWq1G41XEa99af2aZzzvhY6eSsFjkLgd8hJtPBJTdyNPTU3ns5OTEpEmTaG5u5p133qGxsZF9+/Ypr58f/DU3N3cJRm1eeeUV3nnnHYKDg3nuuec4dOjQBWNkWWbFihWAtcvP3Xffzd13301KYT1/3JCJDF3+YAIUfbAA87lq5r0J867ys/3973/n+eefv8rRgiAIwk/NoEGDOHjwIElJSYSHh5OcnExZWRk6nQ6wBp25ubl4eXlRUVHBqFGj2Lx5M/Hx8URHR1/yvrIsc/r0aQ4ePEhZWRm+vr48+OCDREVFdTlYOndoCJE+Liw7WMCO7EossnXP5PgoHxaO6imCyVtMBJTd6Pw/ULW1tUo7q9/97neXva6uru6CgHL58uX85S9/AawnxidPnnxNc1l2MP+Cf+Vdjyv9y1MQBEH4abO3t2fo0KEcOHCAgQMHAtbkh235W6/XU1NTg9FopG/fvuzatYvevXszduzYi97PbDaTmZlJUlISNTU1hISEMGfOHMLCwi5Zf3lwqDuDQ91p7zTT1G7CRasWeya7iQgou5Feryc8PJy8vLwuvVF/jMLCwh99bXunmZ3ZVVwulrT3i8Bz6gtIEmz+dTwOF/kDW1lZybhx43Bzc2PGjBk/ej6CIAjCT0NcXBzJyclkZGSgVqupq6ujvr4eSZIwm804OTlhMpkoKyvDxcWF+++//4Lg0NY8Izk5mcbGRnr37s20adOuqZ2xVmMnAsluJg7ldLMHHnhAeZyamoosyxf9tWjRImVcYmLiBQHkkiVLLnnt4sWLAZg4cSLFxcXK722a2k2XDSYBJLUDGo8g1O5B+IeGExkZecGv5ORkZFlm3rx5P6rXuCAIgvDTotVqiYuL49ixY7i6utLS0kJlZSWyLFNfX09rayuurq60trYya9YsHBwclGvb29tJTEzk3XffZdu2bQQHB/P000/z6KOPXlMwKdweRIaymy1atIj33nuP9vZ2Vq1axaBBgy4Y09rayjfffANY63+NHDnymt9n2bJlSj3LH7LV9LpUUOngF4GdTg9cuqaXLMssW7YMgF/+8pfXPD9BEAThp2nYsGEcPnwYlUpFpwUKKuswyRJqScbBwYG6ujpmz56Nh4cHYD0HcPjwYVJTUzGZTMTGxjJy5Ej0en03fxLheoiAspuFhISwePFiXn75ZT7++GNmzpzJmDFjlNdlWeaFF16gqqoKjUbDJ598cs29vBcvXnzZawrycgmxa6TQ5IJ8kaS118yXAevJufFRPhddVti5cycFBQWMGDGCmJiYa5qfIAiC8NPl5OSEW9hAvjpZR5E5BNkoISETrGqgr6WKORPiCQ8Pp6GhgaSkJI4fP45KpWLw4MEMGzYMFxeX7v4Iwg0gAsobYPXq1crjjIwM5fHOnTspLS0FrIdUxo8ff9HrX3rpJerr6/nb3/7G+PHjmT9/PnFxcTQ1NfHll19y+PBhXF1dWbNmDSNGjLjm+V0umExKSsJkMjFQ50VBo+tl73O5ml62mpZPPfXUNc9PEARB+OladbiIvx03A65KS0QZiWKLG0UdPejX6kr1+vWcPHkSR0dH4uPjGTJkiNga9TMjydd7GkS4qozhmDFjupQBupjk5GQ+/vhjDhw4QGVlJVqtlvDwcKZMmcJvfvMb5eTc9VqyZAmvv/46AE888QTx8fEUFRVRYBfIvhYfJOQumcrza3pdrA5lVVUVQUFBODs7U1ZWJv6SEARBuEOkFNbz8KeHrtCzRuahHiU8ePdABg4ceEGzDeHnQWQob4AbFZOPGDHiR2Ugr4XFYqGoqEj5fVhYGEVFRWg0Gh65yx/d4WwyTd4UW/TISFdV0+vf//43nZ2d4jCOIAjCHeZqSs6pJIlz/kMYOnTwLZyZcKuJgPIO0tjYyPr16ykoKFCey83NpWfPnjzwwANs3LiRYCcL3u35mGSJTuyYN+sh+kb2vuQ9xWEcQRCEO9PVlJwD64HPnTlVtHeaRWmfnzFRNugOkZWVxSeffILBYOjSxhFgwoQJnDt3jtbWVtrb23FwcEAtyThKJkzGtsved/fu3Zw9e5aRI0fSt2/fm/kRBEEQhNvI1ZScs7HI1vHCz5cIKH/mjEYjGzZs4OuvvyYsLIynn34ao9GovB4eHk5cXByHDh1S6n75+fkB1r2hLS0tl72/7TCOyE4KgiDcWWwl567GpUrOCT8fIqD8GSstLeXTTz8lOzub++67jwceeICioiJycnKUMcOHD+fUqVMYDAZl/2NAQAAAKpXqsgFldXU13377LXq9nocffvjmfhhBEAThtqLV2DE+2ge7K0SVdiqJCdG+Yrn7Z078c+FnyGKxcPDgQfbt24e/vz9z587F3d2ds2fP8tVXX3U5YadSqUhOTiY0NJSSkhIAPD09gStnKG2HcR577DG0Wu3N/VCCIAjCbWfhqF7syKq67JjLlZwTfj5EhvJnpqGhgRUrVrBv3z7i4+NZsGAB7u7uFBcXk5CQgE6nw2w2K+OrqqooLy8nOjqatrY21Go1zs7OwOUzlOIwjiAIgjAk1J03ZsQgwQWZSjuVhAS8MSPmklVChJ8PkaH8GcnMzOS7775Dq9Xy+OOPExJirRlZUVHBmjVrcHFxwWAw0KdPH/bu3QvAyZMnCQoKor29HUmSCAwMpLOzE7h8QLlnzx7y8vIYNWoU0dHRt+YDCoIgCLeduUNDiPRxYdnBAnZkV2KRuaqSc8LPiwgor0JVVRVfffUVO3bsID09nerqajQaDX5+fgwfPpwFCxYwduzYy94jOzubzZs3c+DAATIzM6mqqsJsNuPh4UFsbCwPPfQQ8+bNQ62+9v9JjEYjW7ZsISMjg5iYGKZMmaIsQdfU1LB69Wp0Oh0Gg4ERI0aQlJSkXFtWVsYjjzxCamoqKpWK4OBgOjo6gMsHlOIwjiAIgmAzONSdwaHutHeaaWo34aJViz2TdxgRUF7BU089xfLly+no6CAoKIhZs2YRHh5Oe3s7W7duZdWqVaxatYpZs2axfPlyHBwcLrjHb37zGz744AMA9Ho9jz/+OL1796alpYWjR4/y9ddfs3XrVpYuXcrWrVvx9fW96vmVlJTwzTff0NraysyZM+nfv7/yWkNDA6tWrUKr1dLS0kJ4eDi/+MUvugSUzs7O9OrVi/Xr1wMQFBSEwWBAkiQloJRluUs3oJqaGuUwzkMPPXTN36kgCILw86TV2IlA8g4lAsorWLFiBR0dHUybNo2EhAScnJyU15577jk++eQTFi1aREJCApIksWbNmgvuUVNTA0BMTAwHDhxAr9d3eX3btm3ce++9HD9+nEceeYT9+/dfcV4Wi4XExET2799PQEAAjz32WJf7NjU1sXLlSuzsrH+wnZ2duf/++1Gpum6bjY6OprCwUPl9YGAgVVVVqFQqJEnCbDZjNBq7HLqxBdiLFi0Sh3EEQRAEQRCHcq6GTqfjX//6V5dg0ubpp59m0qRJAKxdu5YjR45c8j4fffTRBcEkwKRJk5RM34EDBzh58uRl52MwGFi+fDn79+9n9OjRLFiwoMt9W1tbWbVqFSaTiR49etDS0oKdnR1ff/01q1evJiMjQxlbXFzMsmXLyMnJob6+Hq1WS0dHhxKIAhcse//zn/8ExHK3IAiCIAhWIkN5FYYPH46Xl9clX3/ggQfYtm0bABs3bmTo0KFdXg8LC2PEiBEMHz78kvcYPHgwX375JWDdb9mvX7+LjsvIyGDLli04OjqyYMECpRi5jdFoZPXq1bS0tBAZGUl6ejqzZ88mIiLiovd76623lMcxMTEASkBpW+ZuaWnBw8MDgL1793LmzBlxGEcQBEEQBIUIKK9g/fr1FwRtPxQcHKw8Li4uvuD1P//5z1d8H51Opzy2FRi3kWWZv//977zyyiu0t7fzP//zP/z2t79FVqmpaTIqm587OztZu3Yt9fX1jBw5kj179hAXF8cXX3zBiBEjyMnJoampCa1Wi5ubG7Nnz+aRRx7hu+++A2DmzJkAl81Qjh07Flm+yl5bgiAIgiDcEURAeQWTJ0++4pjGxkbl8fmB4bU4duwYAA4ODowYMUJ5Pj8/nzlz5nD48GHlOa+IATz71Ul2Zlcp5RnuifImtO0s1JYzefJktmzZgkajYf78+VRXV+Pj48PChQsJDQ3lm2++ITs7m3feeYePPvqI+++/n7CwMCUwtgWUFosFlUpFc3Pzj/pMgiAIgiDcGcQeyhugoKBAeRwfH3/N1x8/fpzPP/8cgFdffRVPT09kWWbp0qX07duX9PR0wsLClPFLNmaxK6cay38ShRYZdmVX8Y8CZ9SRY9m7dy+Ojo688847VFdXExUVRVZWFm+//TZDhw4lPj6eI0eOcPfdd9PS0kJCQgLt7e24ubkB1oDSVr7Iycnpiv28BUEQBEG4s4mA8gb49ttvAfDx8eH++++/4vjGxkbKyspITk7m1VdfZdSoUWg0Gv75z3/y6quvAvDSSy/x3HPPERgYyOrVq5kzZ06Xe5gtXZedLUiAxEcpdZR1aKmvr6ehoQGAv/71r3h4eGCxWEhOTiYqKoqgoCD++te/AtDZ2UlaWpqyZ9KWoZRlGZ1OJwJKQRAEQRAuSyx5X6fMzEwOHToEwBtvvHHB/seLue+++7qUBrr33nv5v//7P/r06YMsy2RkZJCamsqsWbN45513CAwMJDMz86rmIwG1nv0xJG9TnrMdEjp9+jT19fXKXkmtVotarcZkMnUpHXR+QOns7CwCSkEQBEEQLksElNdBlmWeffZZwLrXcuHChVd13V/eepvSimram89xLOUIK1asIDo6mhkzZjB58mTKysr49a9/zb333qsUSjeZLVc3JyQS8xsJNxqV55ycnJBlmaSkJEJCQggMDAQgLy8Pe3t7TCYTJpNJGd/R0YGjoyMWiwWdTqdkOgVBEARBEC5GLHlfhzfffJO9e/fSu3dvVq9e3aWbzMWkFNbz1OpU5m6o4fdHJJZku9E+ZB6fb01UDsu8+OKL3H333cycORMHBwcsFgulpaXkFRRd9bwsMvSOilF+f+rUKYqLiykrK2PkyJHWMRYLx48fp7W1FYA+ffoo4217KGVZFnsoBUEQBEG4IpGh/JHWrVvHq6++ir+/P1u3bsXd3f2y41cdLuKPGzJRqaSuh2lyqtmeJdN7zP9v787Dq6rvfY+/1x4yz/OckDCEEJUZRSgCylAcUGmVq0VUvFaP1l6vbc/paR1q7fUeac9zrVRPq0UUsaiIKFoFmUeZDRAIJDsjkAQyJzvDzt7r/rGbhSkU7AnSop/X8/Rp9tprrb33evjj4+/3+35/t+Byzae+vp4FCxYQERFBSUkJJSUldHR0UFt9/Et/N5sBDz34AIte+T2tra08++yzzJo1i4SEBPr37w9AVbRUBhMAACAASURBVFUVa9assa65//77rb+/GCi1hlJERETORyOU/w2rVq3ijjvuICEhgTVr1pCdnX3O83eW1fP4igOYnFlM0/P6SOIEEpJTAX9Yfeedd2hsbGT06NHcc889jL967F/f9qwMTK7ODCN3YH9Wr15Nv379WL58Ob/4xS9wOp1UVlayZcsWvv/977N9+3ZsNhv33nsvN910k3WPL7YNCgsLo6OjA6/X+3c8IREREfkm0Qjl32nNmjXMnDmTyMhI1q5dS25u7nmveXmzC5vNOCNMfpGBiTcsATiGz+fj29/+tjU9DZx3Or2HCUQc38WWLQ7Gjh1LYWEh8+bNY9myZdx3333WeQ6Hg2uvvZakpCRSUlK48cYb2bt3L7W1tZimSWxsLElJSVZT97a2NiIiIs77+bW1tTzwwAO8++67ZGZm9ir2ERERka8nBcq/w4YNG7jxxhsJDQ1lzZo1DB48+LzXVB6v5r13l+FMHIAjKvFvnmdio90ItF47nc5z3tfAxOR0yLRh4gP+9dp+DCCYTz/9lI0bN/Lmm2+yf/9+hgwZwsMPP0xGRgZlZWX8+te/Zu3atZimiWmapKenc/vtt5ORkcFHH31ETU0Ne/fuZc6cOeTn53PXXXedN1AuXbqUhx56iFOnTp33uYiIiMjXhwLll7Rlyxauv/56goODWbNmjbXv9Rfdf//9nDhxgvfff986tntfAbXLnyVq4j1Ejjl3j0pP/el1kl/czhH8RTQ97hkaxpamBip80ZgYGJgMjbfRv7uCyNoWJs+eTW1tLXfddRcej4ehQ4eydetWq6XRnj17mDNnDk899RSmaeJwOFiyZAnjxo2jsbGR+vp6Ro0axYsvvsjKlSs5cOAADz/8MB988MFZv/cXRyVHjRqFz+ejvr7+/A9VREREvha0hvJL2L59O9OnT8fpdLJ69Wouv/zys55XVFREQUFBr2MhAf49sdtLdp3zMzpPHMVzyr8PeFZWFhUVFTQ3N1vvf3E3nurDe5kU4OKFCQH8j+AC5kUWcmNMLXOv/xZHjhyhqKiIX/7yl3g8HgICApgxYwaVlZXW9UePHiUtLQ2bzYZhGHR3d3P33Xfj9Xrp6uoCICAggJEjRzJ16lQAVq5cyWeffXbW7z569Gg+/PBDfvWrX7Ft2zbCw8PP+VtFRETk60UjlOexa9cupk2bRmtrK8899xxNTU2sX7/+rOeerV9jgMMfKDsrCmja9jYRY27BsNl7ndPdWEPd+88BYLfbuf322/nkk0/485//TFpaGnFxcb0CYWBgIGFhYURHhBFi82Iz/VXbd9xxB9nZ2bzyyisUFhYC0K9fP3Jzc3nzzTe55pprGDt2LC6XizFjxmCaJomJiVRXV1NcXMzatWutafyerRdvvfVWPvnkEwDef/99q0n6Fw0aNIiPPvqIvLy8v+fRioiIyNeEAuU51NfXM2XKFJqamgB47LHHzntNZmZmr9cJCQnEJSRyqraGxg2LaD2whpD+o3FEJQHQdaKYtkMbMD2dhISFs2jhH5k1axbt7e0cOXKEAwcOsG/fvl73tNvtZGdn4/P5sNls1qjiiRMnmDZtWq+p6QEDBnDHHXewceNG1q9fT3FxMV1dXYSFhXH77bcTGxvL888/D0BBQYG1Z3hPoOwpygGoqKg462/++OOPv3TRkIiIiHz9KFCeQ3NzMw0NDX26R15eHserKvnJ/3uNP7zxDl3VxbR+vhpflxvDZscWFEZgWh6jh13BmJx4kpOTAQgODubyyy+noKCA0NBQIiMjrXu2trZSUlJCY2OjFeScTifl5eWMHz+egQMHWucmJiZiGAYTJkwgJSWFpUuXYhgGNTU1DB06FJvt9KqHL0559xQF9YRpgNDQ0LP+RoVJERGRbzYFynPIysrCNP92q58vy+l08pvH7mX2rJn86x9X4fKEW8U0+VFeMtzF5CeFMHDgQD799FPa29uZPHkyW7ZsweVyMXLkSFauXNnrnjk5ORw6dAiPxwP41zwWFRVx9dVXM23aNJ555hkAjh8/XegzYMAAIiIiaG9vZ+/evSQnJ/da85mRkdFrDSWAy+Wy3h8/fnyfn4WIiIh8/ago5yLqF2byLfsR/t84O7cH7uPeiIP8cGQYqYGd1NbWEhwczJQpU9iyZQtLly5l7dq1DBkyhN27d/eaeo6Li+Pmm29mzJgxhISEANDZ2cmxY8d47rnnKC4utgpj1q5dS11dHQANDQ00NDQwbdo0ACorK1m6dCngD5CTJ0+mq6sLwzCw2/3rPHsq1iMiIrjllnNXqYuIiMg3kwLlRVReXo5hGCTFxxJsdJOZlkJtbS1XXXUVhmGwdu1aBg0axPTp0ykqKiIgIICjR4+Sk5PTazeelJQUAEzTJDAwELvdzrBhwwB/gcyxY8eYPHky4A+as2bNorW1laNHj2Kz2YiMjMTn87Fnzx5OnjwJwA9+8APi4+Pp6uoiICAAjw8qaurYvn07AFOnTrXaDomIiIh8kaa8L6Ly8nKSk5Ot6eTU1FR27drFzJkz2bFjBz6fjw8++ICQkBCcTic7duzA4XAQFxfH/v37rfu4XC4WL17M/v37aWtrY8CAATgcDux2O0FBQXR3d/PTn/6UmJgYXn31VdavX09WVhYjRowgPj6eZ599lg8++MCaDr/yyitJSUmhurqaAzXtrG7P4qWlFVR/uAGApMGjiM+7EtM0tV5SREREzqBAeZGYpkl5eTl5eXlWIUxqaiqbNm3C7XYzduxY1q9fb21VmJSUxPLlywF4++23e91rwYIFLFiwAPCvixwxYgRtbW2kpqZy8OBB4uPjGTlyJK+88gpjxozh9ddfp7a2lg0bNtDV1YXT6SQ6Opqbb76Zhx9+mGHDhrF06VL+90vvsaUzDYMwmra9TWdFAY6YVAKnPsqHnWGM2lLC3HH9L95DExERkUuCAuVF0tTURHNzM5mZmVYhTU9Fd2VlJWPGjGHr1q10dHRgGAbV1dUcOXKE4OBglixZQkREBA6Hg/DwcG677TYAPvroIyorKwkPD6e5uZm4uDgqKiqYNGmSNZJ455130tjYSHJyMi6Xizlz5rB06VKCg4Npbm5m48aNuFwu7EkD2VLWBhi0Ht5C48bF2MNiSPjuUxDkX4/55IdF5KfFMDIr5uI/QBEREfmnpTWUF0nPyGNmZqY1QhkQEEB8fDyVlZUYhmH1fjRNk4SEBAYMGEBaWhpz586lra2NY8eOWSEUsPpQhoeH09LSYjVWT01Ntc4JCQlh0qRJuFwuwsLCiIyMpLOzk+nTp/PYY48xc+ZMwsLCWLzzOAYm7aV7OPXBfOwhkSTOfgbnX/plAtgNeHnz6R17RERERECB8qIpLy8nISGB4OBga/TQNE3S0tKoqqpi1apVtLe3A/4QWFtby+HDhwF/c/RvfetbAOzYsYPa2lrA3zeyJ1A2Nzdb2zNWVVX1+uxhw4Zht9vx+XzWjjtpaWkEBwdzxRVXcNMts6jwReEuK+DksmewBYaSOPtXOGPTe93Ha8Kqwmo6PN6v6CmJiIjIpUhT3heYaZq88MIL/Nu//RttbW2sW7eOa665hoqKCmsXmp4RStM0SU9PZ+/evTz44INn3OvJJ58841h+fj4+n4877rgD0zSx2WxERERY+3ZHR0dTUVHB8OHDrWsaGhrwer243W727t1LXFyc1W4IoLndg7t8PyeXPY3hDCRx9i9xxqWf8dkAPhNaOroJctrP+r6IiIh88yhQXkAul4t77rmHDRs29Dre0tJCfX09kyZNAk7vLOPz+YiKivq7PqNnb+9FixaRmpqKzWYjMDAQgCFDhuB0Ojly5Eiva44ePYrdbicvL48DBw6Qn5+PaZqcOHGCgwcP8t4HK6l95w8YjkASZz9DQHzWGZ9b9/ELeFvrSfrO44QH6Z+NiIiInKZkcAF8cVTSbrdz5ZVXWv0bwT/dDaf3+e4JlF6vl3Xr1lnn/eQnP2Hu3LkcOnSINWvWMHz4cPbs2cN1113H6tWrmTFjBpdddhkJCQm89dZbuFwuEhISrPWZ2dnZ2Gw2duzYQXNzMxEREYA/UPbr14/x48ezf/9+Kioq+O1vf0tDQwMnT55k4R//iNPhIP62p3Ek9Dvrb/TUVeFtrmVKXpJGJ0VERKQXraG8AJ566il+8IMfMG7cOA4cOMDUqVN7vV9eXk5sbCxhYWHA6Snvbdu2WWsaAXJzc8nNzeWmm24iNzeXwMBAhg8fzpEjR0hISGDy5MmkpaUREBDA7NmzCQsLo6amht27dwP+gJqRkQFARUUF4G9s3hM4Fy9eDPgrzhMSErjiiitYvHgxHR0d3Pfwo3R3tNFRXnDW//k62zBNmDfu7IFTREREvrk0QnmBvPzyy9x7771nfa+8vNwanYTTI5SfffYZ4J/GBqx9w202G9dccw3Lli3jlltuYfny5URERFgN0QHsdjtJSUl0d3fT3t6Ow+GgubmZsLAwYmNjKSoqor6+nj179mCaJhUVFURHR9PR0UFERAS1tbU8+eSTNDU1AbDg/z513t8YHh131pZBLpeLrVu3Wq/b2tqs/+8JsQBjx47tteOPiIiIfD0oUF4ATzzxxN/cQaa9vZ2TJ08ybtw461hXVxfgD5b9+vVj7NixALS2tlrnDBkyhE2bNrF7924Mw6C5uZnq6mqSkk638TFNE6/XS0xMDPX19Rw4cAAAt9vNgQMHCAgIIDQ0lPDwcH7wgx+wZMkSoqKiGD16NM8//zwNDQ1/1+90Gr6zHt+4cSN33333GcdPnTrF9773Pev1woULFShFRES+hhQoL4BzbUfY0+KnZ4TSNE02b94MQFhYGLNmzbKmwOvq6qzr2tvbGT16NCtXrgQgJiaG999/n3nz5lnnt7S00NXVRU5ODk1NTdTW1rJ+/XqSkpJob2/nwQcf5JVXXmHIkCHYbDaqqqqYMGEC2dnZXH311aSnp5OQkIDL5WLw4MHcdNNNPPvss/Tv35/jNSfJHjSEz3dt58YZ0+ns7LS+91+bO3cuc+fO7dtDFBERkUuW1lB+xWpqaoiKiiIyMhKA7du3W3to33DDDQQHB1tV2oWFhTzwwAMkJCQQGhrKyJEj+eUvf8nChQtpbm6mqqqK7du309LSwmeffWaF1T179hAWFkZISAg+n4/wcP/ONocOHaKlpYUBAwZQU1ODx+MhPd3fDmjKlCm0tbXhcrlITU3lO9/5DgcPHgQgJyeHTncraXERpCTGc+LECUJDQ+no6MDrVQ9KERER6U0jlF+x6upqqyn5iRMnWL16tfVeT8js8fbbb5OVlcUjjzxi9ZtcsGABmzdv5mc/+xmpqak0NTWxevVqbDYbpmkSFxfHvHnz2Lp1K3v37uU73/kO77zzDg6Hg4MHD+J0OsnIyGD37t3Y7XZSUlIAKCgosNZs3nDDDRiGwb59+wCIiIjA6/USFhZGUlIS1dXV5ObmAv51kT3V4yIiIiKgEcqvXH19PZmZmXR1dbFkyRJM02TEiBHA6SKcHgMGDGDnzp38+7//OzfddBNXX30148eP5+GHHyYiIoJjx46xePFiQkJCyM7OxuFwkJaWRmBgIOHh4bS2tpKbm8sdd9yB1+vl2LFjZGZm4nA4qKysJCUlBYfDQUFBAWvXriUwMJCoqChWrVpFXV2dVXHeMwoZGhpKUlISNTU1BAcHA6cLbkRERER6KFB+xbwYZGZm8s4779Da2srAgQMZNmwY4G9s3mPv3r3cdttt1NTUsG/fPt544w1eeuklwD8FPW3aNMAfUN977z2Ki4sJDQ3Fbvf3hAwPD8c0Tdra2sjJyWHkyJGYpklNTQ1tbW1UVlaSnp5OaWkpy5cvx+Fw8MADDzB9+nRcLheffvqpVUXu8XgA/xrP5ORkvF4vnZ2dgAKliIiInElT3hfYzrJ6Pig4br1e3TWQ7y/eTVzdCQbFRDFr1ixOnToFnB6h7OzstHa8WbZsGaZpkpmZSVJSEl6vl+9///sEBwfz4Ycf0tbWxr59+7j22mtxOp1WgU7PNHRzczNut5tPP/2UDz/8kJqaGn784x9js9lITEwkNjaWYcOG8cwzzxAZGUlkZCT9+/enqKiIAQMGcOTIEStQhoaGsn//ft5++21efPFFTp06xUsvvcSECRN46KGHelWui4iIyDeXAuUF9Pr2ch5fcYDGk71H8Xae6MBkEMOu6N8rBBYXF7N582aOHj1Kd3c3QUFBhISEcNdddxEeHs78+fOtPbmvvfZaEhISKC0txe1209TURHBwsHWvnkKcRx99lPfee4+uri4iIyO59tprMU0Tt9tNSUkJn3/+OZ9//jkdHR28+uqrBAYGMmDAAIqLi62p7q6uLux2O88++yxPP/00TqeT6dOnY7PZcDgcrFy5krfeeouf//znPPXU+ftXioiIyNebAuUFsrOsnsdXHMDkzLWR5l9WFvzqkxKijXY6Kv3V1OvWrSMlJYWJEycyZMgQ9u/fz6ZNmwgLC+PEiRO43W5ycnIASE1NJTk5mdLSUsC/q05NTY3VSzI0NBSbzWaFycGDB3PPPfdYFeMHDhzgyiuvpK6ujt/+9rf86U9/wjAMlixZQnFxMWFhYda9Ozo62LdvH8uWLSMoKIgnnniCxMREWltbGTRoEI899hgTJkzgF7/4BUlJSTzwwAMX4xGLiIjIPymtobxAXt7swmb72/0o/Ux+u+qAtTvNrFmzuO+++xg7diyRkZGkp6fT1dVFbW0txcXFBAQEWG1+AGJjY62/Bw0ahNPppLS0lI6ODgzDICwsDNM0CQkJ4frrr2fw4MFUVlZSWFgInF4TOWHCBADefPNN1qxZQ3FxMePHj7fWUFZXV1v9Lx955BHGjRtHdXU1ISEhuN1uRo8ezSOPPALAj3/8Y06ePHlBnqGIiIhcmhQoL4AOj5fVhTV4feY5zzMxqDRjmHnrdwH/qCLACy+8wGuvvUZKSorVgLykpIR+/fpZRTcAVVVV1t8JCQkEBQXh9XqtVkQ96ygHDBpMRHQs+fn5dHd34/P5SExM5KGHHiItLY2oqCjrPgsXLsTpdDJ06FAGDhwIwJ/+9CerCGfevHkkJyfT1dVFQECAVZRz3333Af7dfZ5//vn//sMTERGRS54C5QXQ0tHNebKkxWdC4VEXcLo9z/z58/nVr36F0+kkKSmJsrIyqqqqrOlu8G+neOjQIcAfRHu2aczJyWHPnj28v+0gy0/GET3zp9QOv5tXmofwL2/uo8YXBsDNN99MYGAgs2fPZsiQIdZ9Dx8+TH5+PgEBAURHR2O32609xjMzM+nfv7+13WNPFXnP52ZlZQH+/pkiIiLyzaU1lBdAeJADm8GXCpUGJhvXfILDgCVLlpCQkIDb7aaiooI1a9YQFxfHokWL+Oijj3j88cdZt24d11xzDc899xwdHR0ATJs2jc2bN+Pz+UhLS2NzjY0fvF+K2e6ms7qE9i1/orv+OGWeduwhkSSnpjNy5EhmzJiBw+Hg8ssv7/Wdegp/PB4PHo/H2gKyp71RaGgoERERdHd399pvfPjw4ZSVlVFUVMTx48etpukiIiLyzaJAeQEEOe1cl5fIp4dqzzntbTdgRFIgOREZlJeX4/P5qK2txePxYJomc+bMweFwUFFRYV1TWFhIa2sr//Ef/wH4i3F+/etf89prr2G32yluMvmoNpx2125OvT8fX0cLAYk5RFw1C1tQOJ5T5RwrWM3111/P9773PRYuXEh5ebl1/8zMTI4cOUJKSgpdXV1WkQ9AYmKi9XdSUhL19fW0tbVhmiaGYfRa33nw4EEFShERkW8oBcoLJPXkLpoLijGBrpNl1vH2sn10t/hH/OyhUfzofz5AbuyV/OY3v2Hq1Kl0d3fz7rvvsm/fPmuP77CwMGsk8De/+Q1lZWV4vV7S0tK47777KCwsJC0tjYqKClYWu/GcKKJ22S/B6yF0yERir/9fGMbp1QwRw6dTt+Rfef3114mIiGDPnj3W59x4441s3LiRjo4Ourq6aGxstK5rbm62/k5KSrJCcGdnJ0FBQb0CZ1nZ6d8sIiIi3ywKlBfIE4+evXVO87a3rL/jMwZwsnA4uePHAxAdHc2gQYO46aab2LdvH5mZmYSEhFBSUmJdU11dzeDBgxk6dCizZ8+mra0Nl8tFXV0d3abBnppuTn38O/B6MAJDiJnyQK8wCeCITiNk7P+g45PfsWDBAuv45MmT+e53v8vBgwf58MMPiYyMtIpxAOrq6igrKyMrK4vk5GTrvdbWVoKCgqztGAFaWlr68PRERETkUqZAeYH09J7cVVbPy5tLWVVYjc/0r5nMcjRx65BorhqQyMqVK63Rxy/2q3z55Ze599572bFjBz/+8Y/ZsGEDAD/60Y+sc3bu3ElcXBxZWVlMmDCBxe+soKumlK4afwAN7jcCW2DIWb9f6OAJNKx60frMvLw85syZQ3BwMCNHjiQoKIhly5b1mvKOjY3lz3/+M/fffz/JycnW8ba2NuLi4qw2Q+AvGhIREZFvJgXKC2xkVgwjs2Lo8HhpbOvg9wueJzsznbLiPeRMe4hZs2bx7rvvAqf3zH7iiScwDH8Py5KSkl4jfz6fj/j4eO666y4qKipwuVy4XC527dqFE4OuE0XWuc74jL/5vexBIURGRtHY2IBhGEyfPp0RI0ZY7+fn51shtkf//v2pra1l586djB49muDgYNrb261K766uLuvckJCzB1kRERH5+lPboK9IkNNOUlQo/ftlWtsqrl+/niFDhnDrrbcCWGsXe8Kk1+ultLSU6Oho6z7l5eVcddVVhIeHM2TIEG644QYefvhhHn74YRyGSUTXKetcW8DZQ52BSfCRVTQ2+kcfTdPE4XCQkdE7gNrtduLj409fZxgMHz6cdevW4Xa7rfZBPYGyvb3dOrdn60cRERH55lGg/Irl5ORQVVXF1VdfTUFBAbW1tfTv3x+ApqYmXnvtNSugVVRU4PF4ehW7BAcHc8UVV5xx354m5unB3dYx0+s563dwl+7lyIoXrX2/AU6cOMHnn3/ea81kV1dXr8/esGEDo0aNwjAM1qxZQ3JyMl5sHK9vpcPjpaamxjo3MzPz73ouIiIi8vWhQPkVy8nJwev1EhUVRWRkJOvWrbNGJMePH09zczMLFy6kqamJkpISQkJCrLAIMHjwYByOM1cm9EyXp0UFWce8DSd6nWPgo71sH3XLniYoKLDXfTo7O1mxYgXz58/n3XffpaSkhM7OTmsUEqC+vp4333yTMWPG8PHuo7x00MvrHcN4ZL2bvCc+5v2t+61zv9gsXURERL5ZFCi/YrGxsURGRlJWVsbEiRM5fPgwJ074g19ERAT33HMPXq+XP/7xjxQVFZGTk2MFTvDv2f3XTNPkrbf81ePDhg0jLMy/G05X2W74S9GNgUn08Z00r/gV0VGR3H333b3WPJ48eZKwsDDi4uIoLS1l8eLFuN1uDMOwRimbmpoIDAzkj5uO8lHXIPbWdGPi/24+EyqPHgQgKSOb1NTUC/3oRERE5BKhQPkVMwyDnJwcSkpKyM/PJyEhgXXr1gH+gpuYmBjuvvtunE4np06dIjY21tqSEej1d4/33nvP6vs4ffp0HnnkEQA6m05xY8cadv70Wiad+oDCpf9BaEgwq1atYteuXb3uMXz4cNasWcOCBQt67X7jdrsZMGAA4J+CD8vIY6M7Gf945+mg62msprvRP+XdnjqSXWX1fX9YIiIicklSoLwI+vfvT11dHc3NzUyaNMkKgz0tfCIiIhgzZgwAW7duxeVyWdeePHmy170+/fRTCgoKrFFJp9PJk08+yeTJkwH43Qu/5X89cC+vL1qIYRg8/vjj/OQnP2HXrl299gbPzs7G7XbT3NzMY489xsyZMwF/AB4zZgxOpxOAn/2f35z1H0nr55/4z3cGETX6Jl7eXNrHpyQiIiKXKgXKi6Bfv34YhkFJSQkDBw4kLS0N6D36WFlZSUJCAikpKRw7dsw6Xltba/392WefsWXLFoKDg7nzzjsBsNlsOBwOFixYwNSpUwkKCuKNN97A4/HQ0dHBI488Qk1NDfPnzyc2NrbXfXt2xQkNDSU7OxvwV3pPnz6dRx99FICqHZ/QfqK41+/pPHGUlp0rAIi65i4IjmRVYTUdnjNHU0VEROTrT30oL4KgoCDS0tIoKSlhxIgRTJ48mUWLFllrKU3TpKSkhGHDhvUKfXB6hPLgwYN8/PHHOJ1O7r//fmt0s6dyu7m5mWHDhrFx48YzPr+goIAf/vCHvY49+eSTwOnq7J71ld3d3cTHx/Pss8/i8Rn85rn/S82SfyNs6FScsel4TlXS+vknmN0eIsbeRsSIGwD/msqWjm6CnPYL8chERETkEqJAeZHk5OSwbds2fD4fWVlZABw5cgSfz0dNTQ1ut5ucnBw+/vhjYmJirOtOnjxJSUkJy5Ytw263c9999xEZGUl9vX/NYk+gbGhoIDAwsFdvyL/HXzcpP378OFOmXMeS41E07/4Q9+HNeN1N2EMiCc4ZRfiIGQSl51vX2AwID9I/JxERkW8iJYCLJCcnh/Xr11NVVUVGRgYOh4O2tjb27dtHW1sbAQEBdHV1UVtb26vhuGmaLF68GIC77rrLajzeM13+xUDZv39/PB4PzzzzDHFxcTz44IMsWLCAqKgoSkpKWLRoEaWlpdx8883Wbj09vhhEly9fjtvtJigoiJGXDaYwIx+vyd9ktxlcNzhRo5MiIiLfUAqUF0lKSgrBwcGUlJSQkZGBzWYjKSmJDRs2EBUVRVZWFtu3byclJQWfz3fG9V9cewlY59hsNkpLS1m7di3XXnstdXV1AJw6dYrjx48zfPhwPv30Uzo6Oigt9RfOjB8/HvBXdB89epSioiKOHj1q3Ts3N5fLLruM9PR0JlY08t3fb4MvVHj/NZ/PZN64fn1+RiIiInJpUlHORWKz2cjOzqakpKTX65aWXid5swAAD4BJREFUFiorK4mLi6OsrIyrr766Vx9KgMjISI4cOcKKFSusIPnFQLly5Up+//vfc+jQISorKwF//8t169aRl5eHaZps2bIFgFGjRmGz2Xj11VeZP38+7733Hs3NzVa/S8MwmDFjBllZWdhsNk4WbucqR4X/PXoHXbvNwACenpnPyKwYRERE5JtJgfIiysnJ4fjx47S3t2MYBsHBwWRnZ2OaJtXV1URHR5Obm9ur+jspKQmfz8ctt9zC/v37eeutt+ju7u4VKHvWP77++uscPXqUlJQUJk2aRElJCbt27WLbtm1s2rSJ+Ph4JkyYQGNjIw6HgxkzZvDoo48yb948q6VQSEgINpsN0zSt/pWPzRzDY1cY9HO2YvtL1rUZcN3gRN6+/yruHKNtF0VERL7JNOV9EeXk5GCaJi6XC5vNhs/nIzQ0FPCvWxw6dCiLFy/mgw8+sK5pbGzkyJEjhIWFkZ6eTklJCW+88YY1bW2323G73QAUFxfz4IMPMn36dGpqati+fTt/+MMfOHbsGBkZGTz22GOMGDGC1atXM378+F77b3d1dWEYhvV91q1bx/bt25k+fTr5+fmsWrWKn10zhrHjJ9DS0U14kENrJkVERARQoLyoIiIiiI+Pp7i4GMMwME2TyspKgoODWb58OcuXLz/jmv/6r/8C/IFzwoQJvPbaayxZsoSPPvoI8I9Qjh07lm9/+9u0tbVx4MABli9fzltvvUVERARJSUncfvvtpKamkpmZyZVXXsnGjRspLy8/I1DabDbCwsLYuHEjmzZt4rrrrmP06NHs3LkTj8fDiBEjCHLaFSRFRESkFwXKiywnJ4eDB/17YLvdbhoaGjAMg6efftpqB5Sdnc2dd95praV8/vnnGThwINOmTQNg7ty5LFq0CIBt27Zx9OhRRo8eDcDEiRMZP348l19+Obt27WLnzp0kJiYycOBAtm7dytSpU0lPT6eioqLX9+qZNne73axbt46JEycyduxYTNNk586d5ObmEhkZeVGekYiIiFxatIbyIsvJyaGlpYVu06C8ph4vNux2OwkJCdTX1xMfH98rTAKkp6dTWVmJz+ejoqKCgoIC7Hb/KOHu3bvxer1ER0czYsQIoqKimDRpElFRURQUFJCbm8uJEyeIiIjA4/Fw8OBBMjMzrfv16OrqwufzUV1dzfjx4/nWt74FQFlZGSdPnmTUqFEX90GJiIjIJUMjlBfZSSJY58mhvC4Ks87AYBgDQzvJOVZGkt0gJSWlV5js6urC4XBw/Phx5s+fT3t7O6GhoSQmJuJyuYiOjqapqYmUlBSqq6tJT08H4PDhw7S3t3PNNdfgdrvZsWMH/fv3Z8+ePUyZMoWuri6qq6tJSUkB4MSJE5imSUZGBhMnTrQ+f+fOncTHx1vN2EVERET+mgLlRfT69nIeX3EAgyjMv/R1NDE40hZAEYO457JQCgo2MXToUOrq6igqKsLlcllV3/3792f06NGkpqZa782ePZuXXnoJl8uFz+fjiiuuAGDPnj1kZGQQHx/PxIkTWbhwIf369WP79u04HA7sdjsVFRWkpKTw+eefW+2Ghg4dagXapqYmDh8+zPTp089oZSQiIiLSQ1PeF8nOsnoeX3EAE/D9VZNwExtg8Mf9bmrNcBYtWsSHH35IV1cXkydP5l/+5V9wOp0kJiaSlpaGYRjWdHVAQAA+n4+wsDBM08Q0Terr6yktLWX48OEAZGRk0L9/f44cOUJoaCiff/45aWlplJeXc+DAAVasWEFYWBgA4eHh1vfatWsXAQEBVkgVERERORsFyovk5c0ubLZzj/IZmBTb/FPWd9xxB3PnzuWqq64iLi6O1NRUqqqqrHN7AmVzczMA2dnZ2Gw2PvnkE1atWkVgYCB5eXnW+RMnTqS+vp7k5GQKCgpIS0ujtLSUZcuWcdlllxESEgJgtQ3q7u5mz549XHHFFQQEBFy4ByEiIiJfOwqUF0GHx8vqwhq8vnNsiM1fpr/bg4mKTbB2tunRU5hjmv57/HWgbGxsJCsri/z8fIqKikhKSsLpdFrXp6SkkJubS01NDR0dHTQ0NNDZ2UlOTg433XSTVeXdM1JZWFiI2+1WMY6IiIiclwLlRdDS0c15sqTFZ8Loq8dTWlqKy+WyjqelpdHW1kZjY6P/vL8EyoaGBpxOJ8ePHycjI4Pc3FwAysvL2bRpkxVAwT9K2dLSQnh4OIWFhQAMGjQIm82Gx+MBsEYqd+zYQU5ODnFxcX378SIiIvK1p0B5EYQHOTjPbLfFwGTbpvWEh4fz8ccfW8ExLS0NwCqe6Tne2NhIeHg4nZ2dpKens3fvXpKTk7nmmmtYu3Ytq1evtkJlQkKCtX84QHx8vDWN7vF4rGKdY8eOcezYMY1OioiIyJeiQHkRBDntXJeXiP08qdJuM7g6M5yczHQ6Ojo4efIk//mf/8m6detoaWkhNja2V6A0DIPGxkacTieGYRAeHk5xcTEjRoxgwoQJTJs2jW3btvH+++/j8/moqqqyrrfb7TidTsrLywH/msnAwEDA3yooMjKSAQMGfIVPRURERL4u1DboIpk3LptVB2vOeY7XZ/LDaZcxMiuG66+/npdffpmGhga2b9/Oxo0bCQwM5PDhw4waNQqv14vNZqOhoQG73U5iYiKFhYU4HA7y8/MBGDNmDMHBwbz33ns0NjZy/PhxkpKSiIqK4tChQ9TV1dHZ2UljYyM+n4+goCBr+8aJEydis+m/N0REROT8lBguklFZMTw9Mx8Dzhip7Hl9laMcb81R/zG7nRtuuIHOzk6mTJnC7NmziY+Pp7W1lRdffJFNmzYB/invtrY20tLS2Lt3L/n5+dZII8Dll1/O1KlTKSsrwzAMvvOd7zBp0iS8Xi+dnZ0A1lrN4OBg9u7di2EYDBs27Kt+JCIiIvI1oUB5Ed05JpO377+K6wYnWmsqbQZcNziRt++/krnjcvj444/Zu3cv4K/MzsvLY9OmTWRnZ3PDDTcAMGnSJMLDw/F6vfh8PtxuNzU1NTQ1NVm9J3ucOnWKTZs2ERMTg2maLF26lMDAQEaOHIlhGL2mvYODg9m1axf5+flWcY6IiIjI+WjK+yIbmRXDyKwYOjxeWjq6CQ9yEOT078ttZvq3RPzggw8ICAhgyJAhTJw4kd/97nfs2rWLMWPGEBgYiGma5OXlWa1/AKu4ZsWKFeTn55OXl4fdbmfRokWEhIQwd+5cGhsbeeONN1i4cCE333wzu3fvxuPx4CqvpN100N7VTVNTE6NHj/6HPR8RERG59ChQ/oMEOe1WkOxhGAYzZszA4/Hw7rvv4nQ6GThwIEOHDmXTpk0MGzaMtLQ0qqqqSE1Nta4LDQ2lvb2dYcOG4fF42Lp1K+vXr8dmsxEYGMj1119PSEgIISEh3H333bz++uu89dZbBGfk88GRNipq/FtBGkUmA0NDmdEZSPLFfiAiIiJyybI/+eSTT/6jv4ScZhgGAwcOpLq6mk2bNpGenk5eXh5bt27FZrMRERHBoUOHSE5OtkYlo6KiaG9v58477+Tyyy9nyJAhHDx4EPBXg+/evZvDhw/jdrtJSEhgxIgRvL6tjD8dC6PZDPzL1o8ABo3dDt7aVUVceCCXp0X9Yx6CiIiIXFIM84udr+WfRnd3N2+++SaVlZXMmTOHwsJCdu/ezY033sg777zD8OHD2b9/Px6Ph5CQEHJycrjllltobW3l1Vdfpbu7m7lz5xIaGkpxcTGFhYUUFRXh8XjoikznjZrEc36+Abx9/1WMzIq5OD9YRERELlkqyvkn5XA4uO2220hOTuaNN96wekKWlZUB/i0XvV4vAG63m+HDh+N2u3nttdfo6upizpw5REVF4XQ6GTx4MLfeeis/+tGP+O53v0tBZxwG5/7vCJvN4OXNpV/pbxQREZGvBwXKf2IBAQHMnj2b6Oho3nnnHYYOHcrevXuJiYnhVEMzbV4b3aZBTEwMCQkJvP7667jdbubMmUNMzJkji06nk379B3KwyY7JuZuse30mqwqr6fB4v6qfJyIiIl8TmvK+BLjdbl599VXa29up6gxkvyeBko4QfyENJsMTHOQ7aghtr+Guu+4iMfHM6ezW1lZcLhefF7n4+R7nl/7snT+9lvjwwPOfKCIiIt9YqvK+BISEhPC9732PH76wjDUt/unqnhFGE4O9td3sJpYfTRxmhUmPx0N5eTkulwuXy0VNjX+Xnui4RAzSzzPh7Wcz/PuQi4iIiJyL0sIl4nCdh7XN8QBnTFf7/vL6uXWVBLXX4WisoLKyEq/XS3h4ONnZ2YwdO5bs7GzCwsI4uHgXnx6qxev727HSbjO4bnDiGa2NRERERP6aAuUl4uXNLmw245wh0MDH4l3H+Z95AVx33XVkZ2cTFxeHYfQOoF9mX3Gfz2TeuH4X5LuLiIjI15vWUF4COjxe8p74mHNkSYvNgMKnpp13ZHHxZ+X8/L0DZ4RUu83A5zN5emY+d47J7OtXFxERkW8AjVBeAlo6ur9UmATwmf7zzxco7xyTSW5iOC9vLmVVYTU+8/S+4vPG9VP/SREREfnSFCgvAeFBDmwGX3qE8ssW0pxrX3ERERGRL0t9KC8BQU471+UlYredu3ek3WYwJS/p7w6FQU478eGBCpMiIiLy36JAeYmYNy4b33mGKFVIIyIiIv8ICpSXiFFZMTw9Mx8DzhiptNsMDODpmfla+ygiIiIXnaq8LzG7yurPKKSZkpekQhoRERH5h1GgvESpkEZERET+WShQioiIiEifaA2liIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9Mn/B+iazoN+mwtYAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import networkx as nx\n", "from karateclub.node_embedding.neighbourhood.grarep import GraRep\n", @@ -111,9 +191,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAMtCAYAAABZy3r4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeZifdX3v/9d3ZpLMZJnJnrAESEoACZsgRCxaAjmHxeJytIpaj/a4nWNFkWovaet6bLHFteLRVq1cpz8tHK1aN9AScIcgIMiqAQLIlj0zWWYmmZn798ckgZCVZGa+M/k8Htc1V5zv3N/7foOQi2c+9/351qqqqgIAAFCIhnoPAAAAMJREEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAUpaneA+yvvr6+PP7445kwYUJqtVq9xwEAAOqkqqqsW7cuBx98cBoadr3eM+Ij6PHHH8+sWbPqPQYAADBM/P73v8+hhx66y5+P+AiaMGFCkv6/0NbW1jpPAwAA1EtHR0dmzZq1rRF2ZcRH0NZb4FpbW0UQAACwx8dkbIwAAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFKWp3gMA5ejq7MzPr/9G1q56Ip0b16dl7PhMnHJQzjjrlWluaan3eABAIUQQMGhu+OHVufvar2TCshWZurwzBy2vcsim5JBnHHfP6L/LE9NrWTm9JetmTMu8c/8sC855dV1mBgAOfLWqqqp6D7E/Ojo60tbWlvb29rS2ttZ7HCheV2dnvvKJt2fKr27Jc5b0pKkv6WlIGvuS2m7eVyXpbci24++d25SVp52a/3HJ56wSAQB7ZW/bQAQBA+aK916QY2+8PwetTHprSeN+/O7SU0uaquTxqck9p8/NRZd/Z+AGBQAOSHvbBjZGAPbbz677Rr7+kuNy9nfvz4xV/a/tTwAl/QGUJDNXJQu/uyRff8lx+dl139i/kwIARAQB++mz7/njjHnv+/OcJb1JkoYBXlveer7nLOnNmPe+P599zx8P7AUAgOKIIGCfdHV25stvnJ+F33sg4zr3f+VnTxqrZFxnsvB7D+RLb3x+ujo7B/eCAMABSwQBz1pXZ2eufvMZecFNHUmG7jeSrdf5w5vac9WbzxBCAMA+EUHAs/bV/3VmTrt1Y11nmH/rxvx//2tBXWcAAEYmEQQ8K599zx9vWwGqtz+8qT1XvPeCeo8BAIwwIgjYaz+77huZv+iB9NV7kC36kpx23f12jQMAnpWmeg8AjBxP/uOH8pyugfvTk/c/8US+09Gezc94vSXJrUcfkyTpq6q8/dFH89ONG3Z5nrl/8t/zuzWvHKCpAIADnZUgYK9c8d4Lctzvegd0F7hv7SSAkqQzySeWL+//31W12wBKkqmbavnse18ycIMBAAc0EQTsUVdnZ4698f701Qb2vOdNmJCvHjorH5o+PfccfUzOHjdu28+uXLM6STKqVstpLS3bXn/h2LFJkj962rGre3py7I1L7BYHAOwVEQTs0Vc+8fYctHLgPwj18oMPyXPHjcurJk3e4We9W34dXavlnu7uba8fMmp0kuTVrW3bXuvo68vBK5N/+eSfD+yAAMABSQQBezTlV7ekd4BXgfZk6+WWbd6c9X1PbcVwVfvaJMnbn3h8u+N7asnUm381VOMBACOYCBoAVVWlZ9WqbHr0sXQvXZpNjz6WnlWrUlUD/MfmUAc3/PDqPGdJz4A+C7Q3ZjX179uyordnj8eu6ulJU5U8Z0lPbvjh1YM9GgAwwtkdbh/0rFmTjTfdlK67707nb+5M1913pW/Djh8c2TBubJrnHZeWE45P87x5Gfv856dp0qQ6TAz77u5rv5Kzh2hP7AeedtvbNw4/IknS1bd9fY2t1bLxGX/AsGnLr019yd3XXpkF57x6MMcEAEY4EbSXqqpK5+23Z83X/i0d11yT9PQkTU39v+5C34aN2Xjzzdl4223bjm89//xMfu1r0nziianVhvj+ItgHE5atSE9Df2AMpms72vPQln+fxiUZv2UlqLnhqX9PaskOAbRVT1UljbVMWLZ8cAcFAEY8EbQX1i1alBWf/ky6lyxJGhuT3i2PbO8mgLaz9biennR8//vp+M53MuaoozLt4ndlwllnDc7QMECmLutM4yAH0O0bN+aSJ57Y9n1zw1N36k5rfOq3qSkNDVnd15e+JGOTjG5oyNotzwt19vVlfK0xU5fbIQ4A2D3PBO1Gz5o1eewv3pNH//wd6b7//v4XtwbQvtry/u4lS/Lo2/88j/3Fe9KzZs1+TgqDo6uzMwetqDKYa5aPdnXltb9/JEkys7Fxh5/PGDUqrVuiaGVfXyZuOebctrbtNkwY19CQWpKDlle2ygYAdksE7cK6667Lg+edn45rr+1/YaA3Odhyvo5rrsmD552fddddN7DnhwHw8+u/kZZNez5uX63v6ck5Dz+UJDm1pSXzmpt3OKanqnL8mDHbvm+t9f+21VwlW9diW5I0bLm9tGVT/9wAALsigp6hqqqs/MI/5dF3XJTe9vb9X/nZk76+9La359F3XJSV//TPdpRjWFm76ok9H7QfXvjgA9n6T/yvOjuzaMOGJMmqvr4c+9v78tzf/TbXtrfnF09b2XmoZ3OS5Gsd7dteu3TGjO3nXuO5IABg10TQ01RVlRWf/FRWfPrTW18YqgsnSVZ86lNZ8alPCyGGjc6N6wf1/N17+Ge9u6pyR+eOOy8+3bhaLa+cuP2ui53r23dxNACAjRG2s+qf/jmrvvjF+s7wz/+chnHjMvVtb63rHJAkLWPHD+r57zn6mL067q8POvhZnbdlfNu+jAMAFMJK0BbrrrvuqRWgOlvxqU9l3aJF9R4DMnHKQfUeYZ9MnDS93iMAAMNYrRrh9151dHSkra0t7e3taW1t3adz9KxZkwfPO7//GaAB+tuxoa8v/7J6Ve7s7MpvujrT0deXv505My9vm7jdcV9fuzbf7WjP0k2b0tHXl+lNTTl17NhcNHt2XnT99T5clbrq6uzMPfNPHtTNEQZa5+jk2MW3pbmlpd6jAABDbG/bwEpQkmUf/dv0rls3oM8Are3tyedXrcoDm7pzzJgdd7za6t7urhw6alT+x+TJ+cCMGbmgtTU/W78+r7zzztxx6aUDNg/si+aWljwxrZaR8iclVZInptcEEACwW8U/E7Ru0aJ0fP/7A37eaY1N+ckfHJlpTU25q6szr3r44Z0e94EZM3d47ezxE/InDz+Ur/77N3PUq17lA1Wpq5UzWnLYExvTNMgfmDoQehuSldMFEACwe0WvBFVVlRWf/kxSG/iPghzd0JBpTfvWmIeMGpUkWdfXlxWf/ozd4qirdTOmjYgASpKmvmTdDM8DAQC7V3QEdd5+e7qXLBm6rbB3Y21vb1b19OSurs789RP9n83y/LFj0/2736XrjjvqPB0lm3fun6VnhPxO0dOQzDv3jfUeAwAY5kbIf9oMjjVf+7eksbHeYyRJznzg/rzwgfvzqocfzq+7OvNX06fnBePGJY2NWf21f6v3eBRswTmvzr1zm9I78AumA6qnltw7tykLznl1vUcBAIa5YiOoZ82adFxzTdLbW+9RkiT/dOih+cIhh+Yvp03PQU1N6ezbsjrV25uOH/wgPWvW1HdAirbq1Oelsf4LprvVVCUrTzu13mMAACNAsRG08aabkp6eeo+xzfyx4/Ki8ePzxsmT86mDD8n/WbUyX90aPj092bh4cX0HpGh/9hf/J49PTfqG6WpQXy15fGryPy75XL1HAQBGgGIjqOvuu5N93LhgsB02enSeM6Y53+to73+hqal/XqiT5paW3HP63DQM09Wghiq55/S5tsYGAPZKsRHU+ZvfDKuVoGfqqvqyrm/Lllw9Pf3zQh1ddPl3ctdRjcPu2aDeWnLXUY256PLv1HsUAGCEKDKCqqoaFisrPVWV9p08k/Sbzs4s6e7Occ1Pfchq11132yqbupv5zg9lY3MyXHbM7kuysbl/LgCAvTU87wcbZL2rV6dvw8ZBv85X16zJur7eLN+y4vTj9euzbMv/ft3ESamSnPXA/TmvtTVHjh6TloZalnR351vt7Rnf0JD/OWXqtnP1bdiQ3tWr0zRlyqDPDbvywoWvzGfPvjILv/dAvUdJ0v+nODcvPDLvWPjKeo8CAIwgRUZQX2fXkFznK6tX5fGn3XL3n+vX5z/Xr0+SXNDammlNo/LKiRNz88aN+dG6denq68v0pqac39qa/zllSg4ZNXq781VdQzM37M5FH/9evrxyfl5wU0e9R8kvnt+Wd1z+3XqPAQCMMEVGULV505Bc57o/OHKPx1w6fcZen69v09DMDXvyus//OFe9+YzMv3XwV1R3ZfEpY/Onn7+hbtcHAEauIp8Jqj1jhWWkaBg9MufmwNPc0pILv/Tz/OL5bUmG7hmhrdf5xelteeNXb7UbHACwT4qMoIaW5j0fNAzVmkfm3ByYmlta8uYrb8qiC47MhpYM+q5xvbVkQ0uy6IIj8+av3DS4FwMADmhFRlDj5MlpGDe23mM8Kw3jxqVx8uR6jwE7eMfl30335f87985tTDLwH6i69Xz3zm1M9yc/5hkgAGC/FRlBtVotzfPm1XuMZ6X5uHmp1YbZB7TAFi9c+Mr8yXfuyqILjsyTWzYw7NnPf1y3vv/JKcl1F8zNn3znrrxwwUv376QAACk0gpKk5YQTkqYRsi9EU1P/vDDMvePy7+YP//O23PD603PvUU3p2fI7TE9DsqdPuaq2HLf1+HuObspP//sL8of/eZsPQgUABtQIqYCB1zxvXvK07auHtZ6eEbdyRbmaW1ry9r/+lyTJDT+8Ondfe2UmLFueqcs7c9DyKi072eSwc3TyxPRaVk5vyboZ0zPv3Dfm1ee8eognBwBKUWwEjX3+8/tXgkZCCDU1Zez8+fWeAp61Bee8OgueFjNdnZ35+fXfyNo1y9O5vj0t49sycdL0nHHWK3Oynd4AgCFSbAQ1TZqU1vPOS8cPfpD09tZ7nF1rbEzr+eenadKkek8C+625pSULX/z6eo8BABSu2GeCkmTSa18zvAMoSXp7M/m1r6n3FAAAcMAodiUoSVpOOiljjjoq3UuWJNWeHtuug1otY446Ks0nnljvSbapqiqd6zanZ1Nv+nqrNDTW0jS6MS0TRtm9DgCAEaHoCKrVapl28bvy6Nv/vN6j7FxVZdq73lnXuOhcvymP3rcmKx5Zl2UPdWTFw+uyuXvH1bNRYxoz7fAJmXFEa6YdNiGHHjMpLeNH12FiAADYvaIjKEkmnHVWWl/84nRce+3wujWuoSGt55+XCWedNeSXrqoqy5Z25M4fP5r7b1mevr4qDQ219PXterVsc3dvHv/d2jx5f/u244983vQcf+ahmTG71SoRAADDRq2qhuN9YHuvo6MjbW1taW9vT2tr6z6do2fNmjx43vnpbW8fHrfF1WppbGvLnGt+MOQbIjx4+4os/s6DWf34htQaaql2Ez57svX9Uw4Zl/kvmZPZJ04bwEkBAGB7e9sGRW+MsFXTpEk56KP/e3gEUJJUVQ76248OaQB1rd+cH3357lzzhTuz+okN/WPsRwA9/f2rHt+QH3z+zvzoy3ena/3m/Z4VAAD2hwjaYsLChZl28cX1HiNJMu3d786Es88esus9ePuKfPWDN+X+W5f1vzDQLbjlfPffuixf/eBNefD2FQN8AQAA2Hsi6GmmvO2tmfLWt9Z3hre+NVPe+pYhuVZVVbnlmodyzRfuTNfGzan6Bvl6fUnXxs255gt35tZrH8oIvxMTAIARSgQ9Ta1Wy7R3X5xp73731heG6sJJkmmXXJLpl7x7SDYRqKoqN337wSz+jwe3vDDol9zuOjd9+8Hc9B8PCiEAAIacCHqGWq2WqW97aw793BVpbGtLGgb5b1FDQxrb2nLo567I1CFaAUqSW699OLf98OEhu97O3DYMZgAAoDwiaBcmnH125lzzg7Sed17/CwO9OrPlfK3nn5c/uPaaIX8GaNsKUJ3d9O0HPSMEAMCQEkG70TRpUg75xMdz6OeuyJi5c/tfbGzcv5Nuef+YuXNz6P/5XA75+MfTOHHifk6697rWb84N/3pfMlw+tqeW3PCv99k1DgCAIVP8h6XujQlnn53xZ52VrjvuyOqv/Vs6fvCDpKcnaWrq/3VPth7X1JTWF5+fya99bZpPOKEuHyD606t/l+7OzQP6DFD35s5cd/vVeWj5fXl4xX3Z2L0uf3rme/P8o8/d5Xt6e3ty2TfekifXPpKXn/62zLp6cv7rm+YN3FAAALALImgv1Wq1tJx0Ug456aTMuPR92bh4cbruuiudd96ZrrvuTt+GDTu8p2HcuDQfNy8tJ5yQ5nnzMnb+/CH/8NOne/D2FVnyq2UDft71Xe255rZ/zaTx03PIlDlZ8vgde3zPj+/+VlavX56k/+OZlvxqWeY+b7oPVAUAYNCJoH3QNGlSWs89N63n9q90VFWV3tWrU3V1pW/TpjSMHp1ac3MaJ0+uy2rPzlRVlcXfebD/NrgB3pCtdezk/N3rv57WsZPz8Irf5vJvvn23x6/rXJNrb/3X/JeTLsz3b7my/8Vasvg7D+aIE6YOm79nAAAcmDwTNABqtVqapkzJqEMOyZjZszPqkEPSNGXKsPqP+WVLO7L68Q2DshX2qMbRaR07ea+P/4/FX8r0ibNy6tyFT71YJase25BlSzsGfkAAAHgaEVSIO3/8aGoN9Y+yh5bfl8W/+1Fecfrbd4jEWkMtd/740TpNBgBAKURQATrXb8r9tyxP1VffDyatqipf/8Vnc/IfnJk5M3fcBKHqq3L/LcvTuX5THaYDAKAUIqgAj963Jn11DqAkuem3P8zjq5fmZfN3/aGwfX1VHvvt2iGcCgCA0oigAqx4ZF0a6nwrXOemDfnOzV/KwhNelUnjp+/yuIaGWlY84rkgAAAGj93hCrDsoY66rwQtuuP/pbevJycfeWZWrXsySbJ2/YokycbudVm17sm0jZ2SpoyyOQIAAINKBB3gqqrKiofX1XuMrFm/PBu71+Vv/9+bdvjZj379tfzo11/L+17xTzl06pFZ/si6VFU1rHbXAwDgwCGCDnCd6zZnc3dvvcfImce9PCcc8Yfbvbauc22u+tmnMv+oc3LCES/IlAkzkySbu3rTuW5zxraOrseoAAAc4ETQAa5n09AE0E/u+nY6N61P+4ZVSZI7H74pazesTJL80byXZda0ozJr2lHbvWfrbXEHTT4iJ84+Y7uf9Wyuf7gBAHBgEkEHuL7eoXkWaNEd/y+r1y/b9v0dS3+WO5b+LEly6tyFaRkz/lmdr6+n/rvZAQBwYBJBB7iGxqF5ruYjr/vas37PlAkzc8XbFu30Zw1NngcCAGBw2CL7ANc0urHeI+yTplEjc24AAIY/EXSAa5kwKqPGjKygGNXcmJYJo+o9BgAABygRdICr1WqZdviEeo/xrEw/bILtsQEAGDQiqAAzjmhNQ8PIiIqGhlpmzG6t9xgAABzARFABph02IX19I2O3tb6+KtMOE0EAAAweEVSAQ4+ZNKJWgg45emK9xwAA4AAmggrQMn50jnze9NSGeQjVGmo58nnT0zJ+dL1HAQDgACaCCnH8mYemGua3xFV9VY4/89B6jwEAwAFOBBVixuzWTDlkXDJcF4NqyZRDxtkUAQCAQSeCClGr1TL/JXOS4boYVCXzXzLH1tgAAAw6EVSQ2SdOy9xTZ6Q2zP5frzUkc0+dkdknTqv3KAAAFGCY/ecwg+1Frz4qY1pGDZ/b4mrJmJZRedGrj6r3JAAAFEIEFaZ5/KgseP0xw+e2uCpZ8Ppj0jx+VL0nAQCgECKoQHNOmpb5L51T7zGSJM9/2ZzMOcltcAAADB0RVKhTzj08J597eF1nOPncw3PyOfWdAQCA8jTVewDqo1ar5fkvnZPRzY256dsP9j8jNBS3yG25zvNfNiennHvEEFwQAAC2J4IKVqvVcsq5R2TSzHG54V/vS3fn5lR9g3i9hv5NEBa8/hi3wAEAUDciiMw5aVoOPnJifnr177LkV8sGflVoy/mOPGVGXnThUWkeZxMEAADqRwSRpH/XuP/6pnk58pTpufm7D2bVYxtSa6il6tv3Gtr6/ikHj8v8l8zxOUAAAAwLIojtzDlpWmafODXLlnbkzh8/mvtvWZ6+vioNjbX09e45iBoaatuOn/u8GTnuzEMy44jW1GrD5YOJAAAonQhiB7VaLTPntGXmnLac8aq5eey3a7P84Y4sf6gjyx9el83dvTu8Z9SYxkw/fEJmzG7NtMNac8jRE9MyfnQdpgcAgN0TQexWy/jROfKU6TnylOlJkqqq0rluc3o296avp0pDUy1NoxrTMmGU1R4AAEYEEcSzUqvVMrbVCg8AACOXD0sFAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKIMaQT/96U9zwQUX5OCDD06tVsu3v/3t7X5eVVU+8IEP5KCDDkpLS0sWLlyYJUuWDOZIAABA4QY1gjZs2JATTzwxn/vc53b683/4h3/IP/7jP+YLX/hCFi9enHHjxuWcc85JV1fXYI4FAAAUrGkwT37eeeflvPPO2+nPqqrKpz/96fzN3/xNXvrSlyZJ/u///b+ZMWNGvv3tb+fCCy8czNEAAIBC1e2ZoKVLl+bJJ5/MwoULt73W1taW+fPn58Ybb9zl+7q7u9PR0bHdFwAAwN6qWwQ9+eSTSZIZM2Zs9/qMGTO2/WxnLrvssrS1tW37mjVr1qDOCQAAHFhG3O5wl156adrb27d9/f73v6/3SAAAwAhStwiaOXNmkmTZsmXbvb5s2bJtP9uZMWPGpLW1dbsvAACAvVW3CJo9e3ZmzpyZRYsWbXuto6Mjixcvzumnn16vsQAAgAPcoO4Ot379+tx///3bvl+6dGluv/32TJ48OYcddlguvvjifPSjH83cuXMze/bsvP/978/BBx+cl73sZYM5FgAAULBBjaBbbrklCxYs2Pb9JZdckiR5wxvekCuvvDJ/+Zd/mQ0bNuStb31r1q5dmzPOOCPXXnttmpubB3MsAACgYLWqqqp6D7E/Ojo60tbWlvb2ds8HAQBAwfa2DUbc7nAAAAD7QwQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQlLpH0Ic+9KHUarXtvo455ph6jwUAABygmuo9QJLMmzcv11133bbvm5qGxVgAAMABaFjURlNTU2bOnFnvMQAAgALU/Xa4JFmyZEkOPvjgzJkzJ6973evyyCOP7PLY7u7udHR0bPcFAACwt+oeQfPnz8+VV16Za6+9Np///OezdOnSvPCFL8y6det2evxll12Wtra2bV+zZs0a4okBAICRrFZVVVXvIZ5u7dq1Ofzww/PJT34yb3rTm3b4eXd3d7q7u7d939HRkVmzZqW9vT2tra1DOSoAADCMdHR0pK2tbY9tMCyeCXq6iRMn5qijjsr999+/05+PGTMmY8aMGeKpAACAA0Xdb4d7pvXr1+eBBx7IQQcdVO9RAACAA1DdI+g973lPfvKTn+Shhx7KL3/5y7z85S9PY2NjXvOa19R7NAAA4ABU99vhHn300bzmNa/JqlWrMm3atJxxxhm56aabMm3atHqPBgAAHIDqHkFXXXVVvUcAAAAKUvfb4QAAAIaSCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIrSVO8BAACAEaiqkg0rk80bk97NSWPaOgcAACAASURBVOOoZNTYZNzUpFar93S7JYIAAIA927AqWfqT5Inbk8duTR6/Pdm0fsfjRo9PDj4pOeSU5KCTktl/lIybMvTz7oYIAgAAdq6qkkd/ldz8xeTubyZ9PUlDU/+vu7JpffLQz5NHbnrq+ONekZz6luTQ5w2LVSIRBAAA7Oi+7yfXfzRZfk/S0Jj09fa/vrsAerqtx/X1JHf9e/Kbq5Pp85Kz/iY55vzBmXkv2RgBAAB4ysbVyTfelFz12mTFff2vbQ2gfbU1iFbcm1z1mv7zb1y9f+fcDyIIAADod+/3ks+ektz9rf7vq76BPf/W8939rf7r3Pu9gT3/XhJBAABQuqpKfvrx5OrXJZ1rk2o/V372eL3e/utc/brkZ5/ov/4QEkEAAFCyqkoWfTi5/n9veWGAV392act1Fn2k/2sIQ0gEAQBAyX72ieTnn6rvDD//ZP/XEBFBAABQqnu/97QVoDpb9JH+HemGgAgCAIASbVydfOeiJPX/3J5+Dcl/vGNIdo3zOUEAAFCiH7w36WpPMnDP4qzfVOXyX3Rn8WO9ufmx3qzpSr7y0ua88aTR2x1382O9ufL2TVn8WG9+s6wvPX1J9cHW/nmu+cvkFV8asJl2xkoQAACU5r7vJ3d9Y8B3gVu5scpHfrop967sy4kzG3d53A+WbM6XbtucWpI5k56WJFVvcufXk/t+MKBzPZMIAgCAklRVcv1Hk9rAp8BB42t54i/G5+GLJ+Ty/9K8y+P+1/NGp/19E3LLW8fnv8x5RizVGvrnG8Td4kQQAACU5NFfJcvvGfgPQk0ypqmWmeP3nBgzxjekZdQunkWq+pLldyeP3jLA0z1FBAEAQElu/mLSsOtb1YaFhqbkV18cvNMP2pkBAIDhZcOq5O5vJn0D+yzQgOvrSe769/55B4EIAgCAUiz9SX9gjAR9PclDPx2UU4sgAAAoxRO3999qNhI0NCWP3z44px6UswIAAMPPo7eOrJWgx24dlFOLIAAAKEFV9a8EjSSP3z4oW2WLIAAAKMGGlcmm9fWe4tnZtK5/7gE2Qm4IBAAA9svmjUNymStu3pS1XVUeX9f/OUTf/V1PHu3oX8256LTRaWuu5eG1ffnX32xOktzyeP9xH/1pd5Lk8LZaXn/i6KdO2NM54DOKIAAAKEHv5iG5zMd/2Z2H25+6he2b9/bkm/f2P4f0pyeMSltzLUvX9uX9N3Rv976t3//R4Y3PiKBNAz6jCAIAgBI0jhqSyzx08YQ9HnPmEU2pPti6dydsGr3nY54lzwQBAEAJRo2t9wT7pqllwE8pggAAoATjpiajx9d7imdn9IT+uQeYCAIAgBLUaslBJ9V7imfn4JP65x5gIggAAEpx6ClJwwjZFqChKTnklME59aCcFQAAGH4OOinp66n3FHunr6d/JWgQiCAAACjF7D8aWStBR7xocE49KGcFAACGn3FTknn/LWlorPcku9fQlBz3iv55B+P0g3JWAABgeDrtLUlfb72n2L2+nuTUtwza6UUQAACU5NBTk+nzktowTYFaQzLjuOTQ5w3aJYbpXzkAADAoarXkrL9Jqr56T7JzVV+y4K8HZWvsrUQQAACU5pjzk+NemdSG2bNBtcbk+D/pn28QiSAAACjR+ZcnzW0ZPknQ0D/Pef8wFFcCAACKM3Zy8pLPJhkut8X1JS+9on+uQSaCAACgVM/54+Ss99d7in5nfyA55sVDcikRBAAAJXvhXyRnXFLfGc64ZEhnEEEAAFCyWq1/FebsD2x5YagSYct1zv5gsvCDg7ob3C6uDAAAFKtW618RuvBrScvEwd81rtbYf50Lv5a8cOhXoUQQAADQ75gXJxfdmsx7ef/3A/2BqlvPd9x/67/OED0D9EwiCAAAeMrYyckrv9y/SjPtOf2vNTTt3zm3vn/ac5IL/y15xZeGZBe4XdnPvxoAAOCAdMyLk6PPTx69JfnVF5O7/j3p6+kPmr6ePb9/63ENo5LjXpGc9pbkkFOG9NmfXRFBAADAztVqyaxT+7/OuSx56KfJ479OHrut/9dN63d8z+jxycHP7Q+eg09KjnhRMm7K0M++GyIIAADYs3FT+p8V2vq8UFUlG1YmPZ1Jz6akaXTS1JKMmzosVnt2RwQBAADPXq2WjJ9W7yn2iY0RAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCjDIoI+97nP5Ygjjkhzc3Pmz5+fm2++ud4jAQAAB6i6R9DVV1+dSy65JB/84Adz22235cQTT8w555yT5cuX13s0AADgAFSrqqqq5wDz58/PqaeemiuuuCJJ0tfXl1mzZuWiiy7K+973vh2O7+7uTnd397bvOzo6MmvWrLS3t6e1tXXI5gYAAIaXjo6OtLW17bEN6roStGnTptx6661ZuHDhttcaGhqycOHC3HjjjTt9z2WXXZa2trZtX7NmzRqqcQEAgANAXSNo5cqV6e3tzYwZM7Z7fcaMGXnyySd3+p5LL7007e3t275+//vfD8WoAADAAaKp3gM8W2PGjMmYMWPqPQYAADBC1XUlaOrUqWlsbMyyZcu2e33ZsmWZOXNmnaYCAAAOZHWNoNGjR+eUU07JokWLtr3W19eXRYsW5fTTT6/jZAAAwIGq7rfDXXLJJXnDG96Q5z3veTnttNPy6U9/Ohs2bMif/dmf1Xs0AADgAFT3CHr1q1+dFStW5AMf+ECefPLJnHTSSbn22mt32CwBAABgINT9c4L2197uBQ4AABzYRsTnBAEAAAw1EQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARan7h6UCAAAjT1VVWd21Ol29XdncuzmjGkelubE5k5snp1ar1Xu83RJBAADAHq3pWpPFTy7OPavuyZ0r7sw9q+7Jxp6NOxw3tmlsjp1ybI6fdnyOnXJs5s+cn0nNk+ow8a6JIAAAYKeqqsodK+7IVb+9Kj9c+sP0VD1pqjWlp+rZ5Xs29mzMLctuye3Lb992/Lmzz82Fx1yYE6aeMCxWiWpVVVX1HmJ/dHR0pK2tLe3t7Wltba33OAAAcEC4/pHrc8Wvr8iStUvSWGtMb9W7z+fa+v65E+fmoudelAWHLRjASZ+yt20gggAAgG3Wdq3N3y3+u1zz0DWppZYqA5cLW8933hHn5a/m/1UmNk8csHMne98GdocDAACSJIseWZQLvn1BfvTwj5JkQAPo6ef74cM/zAXfviCLHlk0oOffWyIIAAAKV1VVvvibL+biGy5Oe3f7ft36tjf6qr60d7fn4hsuzpfu/FKG+uY0EQQAAAWrqiqfue0z+cdf/2P/9wO8+rPL6265ztZrD2UIiSAAACjYl+78Ur5815eLmkEEAQBAoRY9smjbClC9fea2z+T6R64fkmuJIAAAKNDarrX50C8/lFrq/7k9Sf/OcR/85QeztmvtoF/Lh6UCAECB/m7x32XdpnUD+gxQb1dvVl6zMp0PdKZzaWd6N/TmkDcdkkkvnLTtmKqvytpfrE3HrR3pfKQzvet7M3ra6LTNb0t1XpXLbr4sf/+ivx+wmXbGShAAABTm+keuzzUPXTPgu8D1ruvNiv9Yke4nutM8q3mnx/Rt6stjX34sPet6MvnMyTnotQelZU5Lln9reZZ+Ymm+/+D3c8MjNwzoXM9kJQgAAApSVVWu+PUVA/5BqEnSNLEpR3/66IyaOCqdSzvzwIcf2OGYWlMtc/56TsbOHbvttclnTs7oqaOz/FvLs/GejfnspM/mzFlnplYbnFv1rAQBAEBB7lhxR5asXTIoW2E3jGrIqImjdn9MU8N2AbRV68mtSZKux7uyZO2S/GblbwZ8vm0zDNqZAQCAYeeq316VxlpjvcfYQU97T5KkcUJjGmuNueq+qwbtWiIIAAAKsaZrTX649IcD/izQQFhxzYo0tDRkwvET0lv15tql12ZN15pBuZYIAgCAQix+cnF6qp56j7GD5d9dng13b8iMP5mRxnH9q1Q9VU9ufvLmQbmeCAIAgELcs+qeNNWG195o7Yvbs/ybyzPpRZMy5awp215vqjXlnlX3DMo1RRAAABTizhV3DquVoPV3rc+jX3w0E06YkIPfcPB2P+upenLnyjsH5boiCAAAClBV1aCtrOyLjQ9szCOffSQtR7Rk1p/PSq1xx+2w71l1T6pqEHaxG/AzAgAAw87qrtXZ2LOx3mMk6d8G++FPPZxRU0fl8HcfnobRO8+SDZs3ZHXX6gG//vC6IRAAABgUXb1dQ3KdVdetSu/G3vSs7b/tbt3t67J5zeYkyZSFU5Ja8vDHH07vht5MPW9q1t2xbrv3j54+OmOPfOpzhLp7uwd8RhEEAAAF2Ny7eUius/Kaldm86qlrddzakY5bO5IkE0+f2D/L6v6fL/v6sh3eP/EPJ24XQZt6Nw34jCIIAAAKMKpx1JBc5+hPHL3HY4678ri9Pt/oxtH7M85OeSYIAAAK0NzYXO8R9smYxjEDfk4RBAAABZjcPDljm8bu+cBhZNyocZncPHnAzyuCAACgALVaLcdOObbeYzwrx045NrXajltn7y8RBAAAhTh+2vFpqo2MbQGaak05furxg3JuEQQAAIU4dsqx6al66j3GXumpegZt5UoEAQBAIebPnD+iVoJOm3naoJxbBAEAQCEmNU/KObPPSWOtsd6j7FZjrTHnzj43k5onDcr5RRAAABTkwqMvTG/VW+8xdqu36s2Fx1w4aOcXQQAAUJATp52YuRPnppaB33VtINRSy1GTjsoJU08YtGuIIAAAKEitVstFz70oVap6j7JTVaq846R3DMrW2FuJIAAAKMyCwxbkvCPOG3bPBjXUGnL+7POz4LAFg3udQT07AAAwLP3V/L/KhNEThs1tcbXU0jq6NZeedumgX0sEAQBAgSY2T8yHXvChYXNbXJUqH37BhzOxeeKgX0sEAQBAoc4+7Oy887nvrPcYSZJ3nfyunHXYWUNyLREEAAAFe/Pxb86bj39z3Wd403FvGrLriSAAAChYrVbLO5/7zrzr5Hf1fz9Ezwhtvc67Tn5X3nXyuwZ1N7hnEkEAAFC4Wq2WNx//5nxmwWfSNqYtDbXBzYSGWkPaxrTlMws+U5dVKBEEAAAkSc467Kx892XfzTmHn5Nk4FeFtp7v3CPOzfde/r0hewZohzmqqhoe20Hso46OjrS1taW9vT2tra31HgcAAA4I1z9yfa749RVZsnZJGmuN6a169/lcW98/d+LcXPTciwbtc4D2tg2aBuXqAADAiHbWYWdlwawF+c3K3+Sq+67KtUuvTU/Vk6ZaU3qqnj2+f+txTQ1NOe+I83LhMRfm+KnHD+mzP7tiJQgAANijNV1rcvOTN+fuVXfnrpV35e6Vd2djz8YdjhvbNDbzps7L8VOPz7FTjs1pM0/LpOZJQzLj3raBCAIAAJ61qqqyumt1unu7s6l3U0Y3js6YxjGZ3Dy5bqs9bocDAAAGTa1Wy5SWKfUeY5/YHQ4AACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCh1jaAjjjgitVptu6+Pfexj9RwJAAA4wDXVe4CPfOQjectb3rLt+wkTJtRxGgAA4EBX9wiaMGFCZs6cWe8xAACAQtT9maCPfexjmTJlSp773Ofm8ssvT09Pz26P7+7uTkdHx3ZfAAAAe6uuK0HvfOc7c/LJJ2fy5Mn55S9/mUsvvTRPPPFEPvnJT+7yPZdddlk+/OEPD+GUAADAgaRWVVU1kCd83/vel7//+7/f7TH33ntvjjnmmB1e/5d/+Ze87W1vy/r16zNmzJidvre7uzvd3d3bvu/o6MisWbPS3t6e1tbW/RseAAAYsTo6OtLW1rbHNhjwCFqxYkVWrVq122PmzJmT0aNH7/D63XffneOOOy733Xdfjj766L263t7+hQIAAAe2vW2DAb8dbtq0aZk2bdo+vff2229PQ0NDpk+fPsBTAQAA9KvbM0E33nhjFi9enAULFmTChAm58cYb8+53vzt/+qd/mkmTJtVrLAAA4ABXtwgaM2ZMrrrqqnzoQx9Kd3d3Zs+enXe/+9255JJL6jUSAABQgLpF0Mknn5ybbrqpXpcHAAAKVffPCQIAABhKIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAPj/27v36KjrO//jr+/M5DK5TRJICAECCDUaCkiUdUGP0tYGLKAiy9rtEcW1pUXQI1pWq/ZXd7sW26K16/Gybq1Y3bZbXKEoW7wCakGpgHIphnK/JYSYy+QyITOZz+8PTBSSkAlk8p3M9/k4J4eTmc98v+/DZ5Izr3y+n/cXcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcJSohaCHHnpIEydOVEpKijIzMzscc/DgQU2dOlUpKSnKzc3VokWLFAqFolUSAAAAAMgTrQM3Nzdr1qxZmjBhgp599tl2z7e0tGjq1KnKy8vT+vXrVVZWpptuukkJCQn6yU9+Eq2yAAAAADicZYwx0TzB0qVLdeedd6qmpuaUx//0pz9p2rRpOnr0qAYMGCBJevrpp3XPPffo+PHjSkxMjOj4fr9fPp9PtbW1ysjI6PH6AQAAAPQNkWYD2/YEbdiwQaNHj24LQJI0efJk+f1+7dixo9PXnThxQn6//5QvAAAAAIiUbSGovLz8lAAkqe378vLyTl+3ePFi+Xy+tq8hQ4ZEtU4AAAAA8aVbIejee++VZVln/Prkk0+iVask6Qc/+IFqa2vbvg4dOhTV8wEAAACIL91qjHD33Xdrzpw5Zxxz3nnnRXSsvLw8bdy48ZTHjh071vZcZ5KSkpSUlBTROQAAAADgdN0KQTk5OcrJyemRE0+YMEEPPfSQKioqlJubK0l64403lJGRoaKioh45BwAAAACcLmotsg8ePKiqqiodPHhQLS0t+uijjyRJI0eOVFpamkpKSlRUVKTZs2frZz/7mcrLy/XAAw9o/vz5rPQAAAAAiJqotcieM2eOnn/++XaPr1mzRpMmTZIkHThwQPPmzdPatWuVmpqqm2++WQ8//LA8nsizGS2yAQAAAEiRZ4Oo3yco2ghBAAAAAKQ+cJ8gAAAAALADIQgAAACAoxCCAAAAADgKIQgAAACAoxCCAAAAADgKIQgAAACAoxCCAAAAADgKIQgAAACAoxCCAAAAADiKx+4C0LcYY1QZDCnQElbQGCVYlrxul/oneGRZlt3lAQAAAF0iBOGMPm0O6b2aOm2tC2iLv1Ef1zWqoSXcblyq26Wx6Skal5GiMeleXZ6Zrn6JvL0AAAAQe/iUinaMMdrkb9RzRyr1x4pqhYzksaSQ6fw1DS1hra+p18ba+rbx1+Vm6ZZB/VWckcIqEQAAAGIGIQinWH28Vg/vK9MnDU1yW1LLZ8HnTAHoi0JfGL+8olovHavWhanJuve8gZrc3xedogEAAIBuoDECJElVwZDm7divOdv3aVdDk6TPA9DZan19aUOTbt62T/N27FdVMHSOlQIAAADnhhAE/el4jS77YKdWVtRIktrv+Dk3rcdbWVGjyz/YqT8dr+nhMwAAAACRIwQ5mDFGv9x/TLds36/aYItaony+Fkk1wRbdsn2//uPAMRlzjktNAAAAwFkgBDmUMUY/2VumxfvKJPX86k9nWs/zk71lWry3jCAEAACAXkcIcqj/OFChxw9W2FvDQftrAAAAgPMQghzoT8dr2laA7PaTvWVafbzW7jIAAADgIIQgh6kKhnRX6SHFyl17XJIWlh6kaxwAAAB6DSHIYe7fdVj+YIt6cidOcNdfVX3PfFVMu1wVUy9T9aJ5Cu4ujei1YUn+YIse2HW4BysCAAAAOkcIcpDVx2u1vKKmR7vABXftVNUd/6yWssNKvWmuUmfPVejIQVUv/LZCB/dHdIwWSS9X1Oi1Si6LAwAAQPQRghzCGKOH95X1+ITXP/ekrKQkZT/+vFL/8SalfvNmZT++VAqHVf/s4xEfxyXpYbrFAQAAoBcQghxik79RnzQ09Xgr7OC2LUosvlQuX2bbY+5+OUoYe7FOvP+uwoHGiI4TlrSzoUmb/ZGNBwAAAM4WIcghnjtSKXcUuiGYYLOspKR2j1tJyVIwqNC+3REfy22drBMAAACIJkKQA3zaHNIfK6rVEoUrzTxDhin4120yLZ/vNDLBoII7t0mSwpWR3weoxUgrKqr1aTOd4gAAABA9hCAHeK+mTqEobbXxXjNLLYcPyL/kXxXav0ehfbtV+/ADCledXNExJ05063ghI/25pj4apQIAAACSJI/dBSD6ttYF5LEUlSCUcs0shY8fU8P/PK+m116RJHkKi5R6wxw1/PevZHlTunU8jyVtrWvUNbmZXQ8GAAAAzgIhyAE2+xujthIkSWm3LlDKP96k0P49slLTlHDel1T3q5Od4TyDC7p1rJCRttAcAQAAAFFECIpzxhhtrYt+qHClZyhx9Li275s3fSBXzgC5C4Z3+1gf1zXKGCPLikInBwAAADgee4LiXGUwpIaWnm6MfWZNa15TqHSHUmZ+S5ar+2+x+pawKoM0RwAAAEB0sBIU5wJRDkDNH29SwwvPKPGSCXJl+BT86zYFVq9U4t9NVMrMb531cZvC3DQVAAAA0UEIinNBE90w4eqfK7ncavif52UaG+UeOEhp/3ybUmbNluU++7dXc7h3V68AAADgHISgOJcQ5X01nkFDlPWzJ3v8uIlncRkdAAAAEAk+acY5r7tvTnGyi6YIAAAAiI6++QkZEeuf4FFqHwtCaW6X+iewSAkAAIDo6FufjtFtlmVpTHr3blhqt7HpKbTHBgAAQNQQghygOCNFnj6SKTyWNC6jb4U2AAAA9C2EIAcYk+5VqI90nA4Z9bmVKwAAAPQthCAHuDwzvU+tBF2WmWZ3GQAAAIhjhCAH6Jfo0bW5WXLHeBByW9J1uVnql0hTBAAAAEQPIcghbhnUXy0xfklcizlZJwAAABBNhCCHuDgjRRemJsfshLskFaUmq5imCAAAAIiyWP1M3KcYY1RZf0KHqhq193i9DlU1qrL+hIyJnaUXy7J073kDFba7kE6EJd1z3kBaYwMAACDq2HxxFqoamrV+T6W2HanVx4dqtO1wrRqaW9qNS010a/Rgn8YOydToQT5NHNFf2amJNlR80uT+Ps3IzdTKihq1r9Y+bknX5mZqcn+f3aUAAADAAQhBETLGaPPBGr2wYb9e3VqmUNjI47IUCne+2tPQ3KL391bpw/3VbeOnj83X7AlDNW5Ipi2rHg+dP1hrq+tUG2yJiVUhlyRfglv/fv5gu0sBAACAQxCCIvD6jnI98voulR6rk9tlqeWz4HOmAPRFoS+MX/nxUS3fckQX5KXr7pJCfb1oQNTq7kh2gkePFg7RLdv39+p5OxOW9GhhgbITeCsCAACgd7An6AyqG5p1x++2aO4Lm7Srok6S2gLQ2Wp9femxOn3nNx/qjt9tUXVD8znX2h1X52TqB8MH9uo5O3PfeQM1JYfL4AAAANB7CEGdeG1Hub76yFqt2lomSerpHgetx1u19ai++shavbajvGdP0IU7hubqjoLcXj1nuxoKcnW7zTUAAADAeQhBpzHGMxDn5QAAF8JJREFU6Ik1u/XdFzapJhBUS5Q7vLUYqSYQ1Hdf2KQn1uzutY5ylmXpB+cN1H3nnVwR6q03Qut57j9voO4bkU83OAAAAPQ6QtAXGGP0s9dK9fPXSj/7vrfOe/Lfn3927t4MQncMHaClXx4uX4Jb7iifzy0pM8GtpV8ertuH9u5eKAAAAKAVIegLnly7R0+t3WN7DU/2cg1Tcnz686UX6prcTEk9/6ZoPd61uZn686UXsgcIAAAAtiIEfea1HeVtK0B2+/lrpXq9l/cIZSd49NSoYVr65eEqTE2WJLnP8Uq11tcXpibr+dHD9eSoYcqiCxwAAABsxidSnewCd+//bpUlqZeugDsjy5Lu+d+tGj8sW1m9fHPVKTk+Te6foc3+Rj13pFIrKqoVMpLHkkIR/Oe0jkuwLF2Xm6lbBvXXuIwU9v4AAAAgZhCCJP1o5Q75A6EeDUDh5oD8H7ysE2Wlai7bpXBTvfp9406ljb6q3dhg5SFVvf1fOnH4r7LcHnlHjJf52rf14Cs79MtvjuvBqiJjWZYu9qXqYl+q/nXkIP25pl4f1zXqI3+jPqprVENL+9usprpduig9ReMyUjQmPUWXZaapXyJvLwAAAMQex39KfX1HuVZ+fLTHjxsO+FW7/ndyZ+QoIXe4Thzc1uG4kL9S5b+9R66kVGVecZNMsEn+jS/r6PH9WpH4qKaNye/1G6p+Ub9Ej67JzWzbL2SMUWUwpKawUXM4rESXS8kuS/0TPKz2AAAAoE9wdAgyxuiR13fJsnq+E5w7NVuD578gd1qWTpT9TeW/WdjhuNr3/yATPKEBcx6TJ+PkPXMSB56viv95QA3b39Ijr2frqgtzYyZgWJalnMQEu8sAAAAAzpqjGyNsPlij0mN1UWmFbXkS5E7L6nJcY+l6eUeMbwtAkuQddpE82YPUsPNdfVJepy2Hanq+QAAAAMChHL0S9MKG/XK7LLWE7WmHEKqrVLixRokDR7Z7Lmng+Qrs+VBul6UXNhxQcUHXgQqIdU2BgDa/uUL1VccVam6QJzFVadk5Kr7qOiV7vXaXBwAAHMKxIaiqoVmvbi2zLQBJUkt9taSTl86dzp2apXBTnULNzXrl46P64bQiZfdypzjgXG1c/bIO7Fgll69aCVkVSk4/LndqSO5Utd2cNyDpnXcfVFNdjoLVuQrXZmnoqKn6uynX21k6AACIY44NQev3VCpkYwCSJBM6IUmy3O332FiexLYxIU+CNuz5VFPHDOzV+oCz0RQIaNWT98s1YIfS8vYoe5xROGzJsow629rm9oSUklkm4yuXy2VUG16n5S8+o3DFKE2d9++sEgEAgB7l2BC07UitPC7L1iBkeZIkSaYl2O45E2puG+NxWdp2pJYQhJi3bMlcec/frMxx1QqHLblcJ3++Wv89E8uSLOvz8Wl5u+XK/5vefOMdBUqLNWvRf0a1dgAA4ByODUEfH6yxfSWotXFCS0NVu+daGqrlSk6X5UlQKGz0Mc0REMM+fH25Dh1/StnFe9oajUQSfM6k9fXJqVXyXvymlv93iYbkzNMlJTPOtVwAAOBwjuwOZ4zRtiO1dpchT3p/uVJ8ai7b3e65E2W7lDhgeNv3247UykSjjR1wjpYtmatKc7/S8/ZKUqeXvJ2t1uOl5+1Vpblfy5bM7dkTAAAAx3FkCPq0oVkNzS12lyFJSjl/ogJ7/qKQ/3jbY4H9HylUdUQphZe3PVZ/IqRPG5rtKBHoUFMgoJeeukHZxW/J4znRdilbtFiWkcdzQtnFb+mlp76ppkAgqucDAADxy5GXwwV6KQD5N72i8IkGtdSfvNwtsHujQnWVkqSMi6fLlZQq34R/VGPpn3Xsd/cp/ZJrZJoD8m98WQk5w5Q2+uunHK8pGBvBDWgKBLTqxRuVVfiRpJ5f/elM63myCv+iVS/eqKk3vkjTBAAA0G2ODEHBlnCvnMe/cbla/BVt3zfuWi/tWi9JShv1FbmSUuXJyNGAf1qs6rd/pZp1S2W5PPKOGK+sr94qy3Nq17jmUO/UDXTl1aVz2gKQXTJHfKRXl96if5j3e1vrAAAAfY8jQ1CCu3euAhw879cRjUvMGaoBN/y463EeR169iBizbMlcZRd/aHcZkk6uCC1bMlezvv+M3aUAAIA+xJGfqr2J7q4HxaDkhL5ZN+LHh68vV/ro9xQrPTqMkdJHv6cPX19udykAAKAPceRKUL/URKUmumOmOUIk0pI86peaaHcZcLhDx59Sel5zj+0BmvudQ9q7t/19slr9/vcF6p/T+a8py5I8nmYdKntal4jW2QAAIDKOXAmyLEujB/nsLqNbRg/yyeqt3edAB5YtmauMgXt6tAtcXV3nf4iwLJ0xAH0+zigjf7eW/fy7PVYXAACIb44MQZI0tiBTHlffCBUel6WxQzLtLgMO1hQIyHv+5h6/DK415Ph8Ll15ZYrOL0xqe86YM4ekLzJG8hZupm02AACIiGND0OhBPoXCMbKxoQuhsOlzK1eIL6uevF/etOoeb4VdXhaSJI0f79U77zRq2rT0U56vro4sBFmW5E2r0qqnHujZAgEAQFxybAiaOKJ/n1oJmjCin91lwMFcA3YoHO75n5dA4GTb9zffbJAx0qOPVJ7y/JHDne8XOl04bMmVu6NH6wMAAPHJsSEoOzVR08YMlDvGg5DbZWn62Hxl0xQBNtm4+mWl5e2Ry9XzK6eh0Jmf//TTyJuXuFxGaXm7tXH1y+dYFQAAiHeODUGSNHvCMLXE+CVxLWGj2ROG2l0GHOzAjlVRCUCS2vYYeb2Wrp+ZoezsU38lHavoIiWdxuUy2r/j/3qqPAAAEKccHYKKCzJ1QV56j+9z6CmWJV2Ql65xNEWAjVy+6qhcCidJ4ZNXw2nhXf113bUZqqoKn/L8kcPN3TyeJU9GdU+VBwAA4pSjQ5BlWbq7pDBmbvx4OmOku0sKaY0NWyVkVfRoW+xWhw8H2372kpIsLVxY1vZc61v+2LHurQRZlpEnq6KnSgQAAHHK0SFIkr5eNEDXjM2XO8aChtuSrr0oX18vGmB3KXCwpkBAyenHo7JaWln5ecD50f+rOGX/T2s48vu7d0Njy5KSMo7TKhsAAJyR40OQJP3rNaOU4fXEzGVxliVleBP04PRRdpcCh9v85gq5Pd1bjYnU8OGJ6tf/819BliV96UunNgCZPTur28f1eILa/OaKc64PAADEL0KQpKzURD08c0zMXBZnjPTTmWOURUc42Ky+6njUju3zuVVb8/keIGOk3bs/3wPkdksVx1tUXx/u6OVn1FBd2fUgAADgWISgz0weladFkwvtLkOStGhyoUpG5dldBqBQc0NUj5+efuqvoC/+IaKlRVr6XLXq67t3SZwkBU/Un2tpAAAgjnnsLiCW3DZphBpOhPTk2j221nDbpBG2nR/4Ik9ialSPv+ylYVE5bkJSWlSOCwAA4gMrQV9gWZYWTS5sWxHqrT1Cref5lymF+pcpF9ANDjEjLTvH7hLOSmpWf7tLAAAAMYwQdBrLsjT/KyP1zOyLlelNkDvKecRtSZneBD0z+2LdNmlkdE8GdFPxVdepJdS3FoxDoQQVX3Wd3WUAAIAYRgjqRMmoPL199yRNHZMvqedXhVqPN21svtZ8fxJ7gBCTkr1eNdXlxEzTkK4YI53w5yjZ67W7FAAAEMMIQWeQlZqo//incXpm9sUqHJAuSXK7zi0Ntb6+cEC6/uumS/TLb45TZgpd4BC7gtW5MqZvXKJpjKVQda7dZQAAgBjXt65zsUnJqDx9vWiAthyq0QsbDuiVj48qFDbyuCyFwl3/ibx1nMdl6Zqx+Zo9YaguGpLJ3h/0CeHaLLlcfWMpyOUyCvm7f28hAADgLISgCFmWpeKCLBUXZOmH04q0Yc+n2nqkRlsP1WrrkRo1nGjfxjc1ya0xgzI1dkimRg/yacKIfsrm3j/oY4aOmqra8Lo+EYTCYUvDRn3D7jIAAECMs4zpK1f7d8zv98vn86m2tlYZGRm21GCM0acNzWoKtqg5FFaix6XkBLf6pSay2oO4sPzFyUrL2xPTQSgctlRfPlIzblxtdykAAMAmkWYDVoJ6gGVZ6p+WZHcZQNSEj42SK3+33WWckctlFK4YZXcZAACgD6AxAoAuTb3tIQXqs2O2S5wxUqA+W1Pn/bvdpQAAgD6AEASgS8lerwKlxb12A+HusiwpUFpMa2wAABARQhCAiMxa9J/yl42IuXbZxljyHx2pWYv+0+5SAABAH0EIAhCxITnzFAolxsxlccZIoVCihuR+z+5SAABAH0IIAhCxS0pmqG7b5TFzWZxlSXXbLtclJTPsLgUAAPQhhCAA3TLr+8+ouvQSu8uQJFWXjtes7z9jdxkAAKCPIQQB6LZpc5aqZs9FttZQs+ciTZvznK01AACAvokQBKDbkr1eTb3xRVWXjpekXtsj1Hqe6k/Ga+Z3/pducAAA4KwQggCclWSvV/8w7/eq2vw1hUJJUe8aZ4ylUChJVZu/pn+47fdRPRcAAIhvhCAA52TW959Rf+sh1ZWfJ6nnV4Vaj1dXNkI5nofZAwQAAM6Zx+4CAPR9l5TM0CWaoWVL5sp7/hZ506oUDltyuc4+EbW+vqkhW4HSYu4DBAAAeoxlTKzc8ePs+P1++Xw+1dbWKiMjw+5yAMdrCgS06qkH5MrdobS83XK5jMJhS5Zlztha25iTl7ydHO9SfflImYpR+sa8H7P3BwAARCTSbEAIAhA1G1e/rP07/k9uX5USMo8rOaNCbk+o3biWkEdN/lyFqnMV8mdp2Khv6O+mXG9DxQAAoC8jBAGIOU2BgDa/uUIN1ZUKnqhXQlKaUrP6q/iq61jtAQAA5yzSbMCeIAC9Jtnr1cTp/2R3GQAAwOHoDgcAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUTx2F3CujDGSJL/fb3MlAAAAAOzUmglaM0Jn+nwIqqurkyQNGTLE5koAAAAAxIK6ujr5fL5On7dMVzEpxoXDYR09elTp6emyLKvL8X6/X0OGDNGhQ4eUkZHRCxUiGpjH+MA8xgfmMT4wj/GBeYwPzOPZM8aorq5O+fn5crk63/nT51eCXC6XBg8e3O3XZWRk8KaKA8xjfGAe4wPzGB+Yx/jAPMYH5vHsnGkFqBWNEQAAAAA4CiEIAAAAgKO4H3zwwQftLqK3ud1uTZo0SR5Pn78a0NGYx/jAPMYH5jE+MI/xgXmMD8xjdPX5xggAAAAA0B1cDgcAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUeIyBL3zzjuaPn268vPzZVmWVqxY0enY733ve7IsS4899lgvVohIRDKPO3fu1DXXXCOfz6fU1FSNHz9eBw8etKFadKareayvr9eCBQs0ePBgeb1eFRUV6emnn7apWnRm8eLFGj9+vNLT05Wbm6vrrrtOpaWlp4xpamrS/Pnz1a9fP6WlpWnmzJk6duyYTRWjI13NY1VVlW6//XYVFhbK6/WqoKBAd9xxh2pra22sGqeL5OexlTFGV199dZefh9D7Ip3HDRs26Ktf/apSU1OVkZGhK664QoFAwIaK40tchqCGhgaNHTtWTzzxxBnHLV++XO+//77y8/N7qTJ0R1fzuGfPHl1++eW64IILtHbtWm3dulU//OEPlZyc3MuV4ky6mse77rpLq1ev1osvvqidO3fqzjvv1IIFC7Ry5cperhRnsm7dOs2fP1/vv/++3njjDQWDQZWUlKihoaFtzMKFC/XKK69o2bJlWrdunY4eParrr7/exqpxuq7m8ejRozp69KiWLFmi7du3a+nSpVq9erVuvfVWmyvHF0Xy89jqsccek2VZNlSJrkQyjxs2bNCUKVNUUlKijRs36i9/+YsWLFgglysuP8L3LhPnJJnly5e3e/zw4cNm0KBBZvv27Wbo0KHmF7/4hQ3VIVIdzeMNN9xgbrzxRpsqwtnoaB5HjRpl/u3f/u2Ux4qLi83999/fm6WhmyoqKowks27dOmOMMTU1NSYhIcEsW7asbczOnTuNJLNhwwa7ykQXTp/HjvzhD38wiYmJJhgM9mJl6I7O5nHLli1m0KBBpqysrNPPQ4gdHc3jpZdeah544AEbq4pfjoyR4XBYs2fP1qJFizRq1Ci7y8FZCIfDWrVqlc4//3xNnjxZubm5uvTSS1nq74MmTpyolStX6siRIzLGaM2aNdq1a5dKSkrsLg1n0Hp5VHZ2tiRp06ZNCgaDuuqqq9rGXHDBBSooKNCGDRtsqRFdO30eOxuTkZHBXetjWEfz2NjYqG9961t64oknlJeXZ1dp6IbT57GiokIffPCBcnNzNXHiRA0YMEBXXnml3nvvPTvLjBuODEE//elP5fF4dMcdd9hdCs5SRUWF6uvr9fDDD2vKlCl6/fXXNWPGDF1//fVat26d3eWhGx5//HEVFRVp8ODBSkxM1JQpU/TEE0/oiiuusLs0dCIcDuvOO+/UZZddpi9/+cuSpPLyciUmJiozM/OUsQMGDFB5ebkdZaILHc3j6SorK/XjH/9Yc+fO7eXqEKnO5nHhwoWaOHGirr32WhurQ6Q6mse9e/dKkh588EF95zvf0erVq1VcXKyvfe1r+tvf/mZnuXHBcX/W2bRpk375y19q8+bNXCPbh4XDYUnStddeq4ULF0qSLrroIq1fv15PP/20rrzySjvLQzc8/vjjev/997Vy5UoNHTpU77zzjubPn6/8/PxTVhUQO+bPn6/t27fz18g+rqt59Pv9mjp1qoqKivTggw/2bnGIWEfzuHLlSr399tvasmWLjZWhOzqax9bPOt/97nd1yy23SJLGjRunt956S7/+9a+1ePFiW2qNF45bCXr33XdVUVGhgoICeTweeTweHThwQHfffbeGDRtmd3mIUP/+/eXxeFRUVHTK4xdeeCHd4fqQQCCg++67T48++qimT5+uMWPGaMGCBbrhhhu0ZMkSu8tDBxYsWKBXX31Va9as0eDBg9sez8vLU3Nzs2pqak4Zf+zYMS7FiUGdzWOruro6TZkyRenp6Vq+fLkSEhJsqBJd6Wwe3377be3Zs0eZmZltn3UkaebMmZo0aZJN1aIznc3jwIEDJYnPOlHiuJWg2bNnt/vr8uTJkzV79uy2lI3Yl5iYqPHjx7drJblr1y4NHTrUpqrQXcFgUMFgsF2XG7fb3fYXMMQGY4xuv/12LV++XGvXrtXw4cNPef7iiy9WQkKC3nrrLc2cOVOSVFpaqoMHD2rChAl2lIwOdDWP0skVoMmTJyspKUkrV66k42YM6moe7733Xn37298+5bHRo0frF7/4haZPn96bpeIMuprHYcOGKT8/v8PPOldffXVvlhqX4jIE1dfXa/fu3W3f79u3Tx999JGys7NVUFCgfv36nTI+ISFBeXl5Kiws7O1ScQZdzeOiRYt0ww036IorrtBXvvIVrV69Wq+88orWrl1rX9Fop6t5vPLKK7Vo0SJ5vV4NHTpU69at029+8xs9+uijNlaN082fP1+//e1v9cc//lHp6elt+3x8Pp+8Xq98Pp9uvfVW3XXXXcrOzlZGRoZuv/12TZgwQX//939vc/Vo1dU8+v1+lZSUqLGxUS+++KL8fr/8fr8kKScnR263287y8Zmu5jEvL6/DFdiCgoIOgy/s0dU8WpalRYsW6Uc/+pHGjh2riy66SM8//7w++eQTvfTSSzZXHwds7U0XJWvWrDGS2n3dfPPNHY6nRXZsimQen332WTNy5EiTnJxsxo4da1asWGFfwehQV/NYVlZm5syZY/Lz801ycrIpLCw0jzzyiAmHw/YWjlN0NIeSzHPPPdc2JhAImNtuu81kZWWZlJQUM2PGDFNWVmZf0Winq3ns7OdVktm3b5+tteNzkfw8dvQaWmTHlkjncfHixWbw4MEmJSXFTJgwwbz77rv2FBxnLGOMiUa4AgAAAIBY5LjGCAAAAACcjRAEAAAAwFEIQQAAAAAchRAEAAAAwFEIQQAAAAAchRAEAAAAwFEIQQAAAAAchRAEAAAAwFEIQQAAAAAchRAEAAAAwFEIQQAAAAAc5f8DesEdG5XTZacAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -137,9 +228,60 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SVD error (low rank): 0.052092\n" + ] + }, + { + "data": { + "text/plain": [ + "array([[-0.07024409, -0.07024348, -0.07024409, -0.07024348],\n", + " [-0.07024409, -0.07024348, -0.07024409, -0.07024348],\n", + " [-0.07024409, -0.07024348, -0.07024409, -0.07024348],\n", + " [-0.07024409, -0.07024348, -0.07024409, -0.07024348],\n", + " [-0.07024409, -0.07024348, -0.07024409, -0.07024348],\n", + " [-0.07024409, -0.07024348, -0.07024409, -0.07024348],\n", + " [-0.07024409, -0.07024348, -0.07024409, -0.07024348],\n", + " [-0.07024409, -0.07024348, -0.07024409, -0.07024348],\n", + " [-0.07024409, -0.07024348, -0.07024409, -0.07024348],\n", + " [-0.07104037, -0.07104201, -0.07104037, -0.07104201],\n", + " [-0.00797181, -0.00799433, -0.00797181, -0.00799433],\n", + " [-0.00079628, -0.00099787, -0.00079628, -0.00099787],\n", + " [ 0.00079628, -0.00099787, 0.00079628, -0.00099787],\n", + " [ 0.00797181, -0.00799433, 0.00797181, -0.00799433],\n", + " [ 0.07104037, -0.07104201, 0.07104037, -0.07104201],\n", + " [ 0.07024409, -0.07024348, 0.07024409, -0.07024348],\n", + " [ 0.07024409, -0.07024348, 0.07024409, -0.07024348],\n", + " [ 0.07024409, -0.07024348, 0.07024409, -0.07024348],\n", + " [ 0.07024409, -0.07024348, 0.07024409, -0.07024348],\n", + " [ 0.07024409, -0.07024348, 0.07024409, -0.07024348],\n", + " [ 0.07024409, -0.07024348, 0.07024409, -0.07024348],\n", + " [ 0.07024409, -0.07024348, 0.07024409, -0.07024348],\n", + " [ 0.07024409, -0.07024348, 0.07024409, -0.07024348],\n", + " [ 0.07024409, -0.07024348, 0.07024409, -0.07024348]])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hUVf7H8fedSTKTSYYUEgIBUkhCiQk1dKRJX+kKCMKisiA23N+6a19Q11130dUFFFSUEkEEQUAEDIRQpUqRkgAhjQSSkF5nUub+/sjmymxCDegu+b6eh4c7ueeeW/76PN97zzmKqqoqQgghhBBC3Cbdr30BQgghhBDif5sESiGEEEIIUScSKIUQQgghRJ1IoBRCCCGEEHUigVIIIYQQQtSJBEohhBBCCFEnEiiFEEIIIUSdSKAUQgghhBB1IoFSCCGEEELUiQRKIYQQQghRJxIohRBCCCFEnUigFEIIIYQQdSKBUgghhBBC1IkESiGEEEIIUScSKIUQQgghRJ1IoBRCCCGEEHUigVIIIYQQQtSJBEohhBBCCFEnEiiFEEIIIUSdSKAUQgghhBB1IoFSCCGEEELUiQRKIYQQQghRJxIohRBCCCFEnUigFEIIIYQQdSKBUgghhBBC1IkESiGEEEIIUScSKIUQQgjxi8nIyGDBggWMGDGC5s2bYzAYcHV1JSQkhClTphATE3NL/WVmZjJ27FgURSEgIODuXLS4IUVVVfXXvgghhBBC3PtmzJjB0qVLKSsro3nz5owfP57g4GAsFgtbtmzh+++/B2DChAksXboUg8Fw3f6++uornnnmGbKysgDw9/cnKSnpbt+GqIUESiGEEELYycjIYM2aNURFRXHs2DEyMzNxdHSkSZMmdO/enccee4x+/fpdt4/Dhw+zZs0a9uzZw7lz5ygoKKCiogKAkJAQNm/eTHBwsN0xixYtYubMmQA88sgjrFy5sta+MzMzmTlzJuvWraNz585cuHCBnJwcCZS/IgmUQgghhNDUtYoYGxvL1KlTOXToEAADBgygd+/e+Pr6MmPGDGw2G6qq4urqyqJFi5g0aZLd8UOHDmXr1q0AHDhwgK5du9a4xoCAANLT05k9ezZ/+tOfCAoKIjk5WQLlr8jh174AIYQQQvz3WLZsGWVlZQwfPpxVq1ZhMpm0fbNmzdKqiKtWrUJRlBpVxBMnTmhhMjIykkcffVTb9/TTT9OjRw8URWHHjh1MmTIFT09Phg4dqrUZO3asFig3btxYa6Bs1aoVmzdvJjQ09I7eu7h9MihHCCGEEHZcXFz47LPP7MJktSeffJIhQ4YA8OWXX3Lw4MFa+xg3bpxdmAT45ptvmDdvHsuWLcPR0RGbzcb//d//2bXx8/PTtlNSUmrte+vWrRIm/8tIoBRCCCGEne7du+Pt7X3N/WPHjtW2N27cWGubESNG1Pjb0KFDCQsLo1mzZnTp0gWAuLg4zp8/r7XJz8/Xtl1cXGrtW1GU69+A+MXJK28hhBBCaL755huaN29+3TbXqyL27t2bb7/9lvvvv/+Gfezbt0/rIyQkBIDExEStzY36EP89JFAKIYQQQnP194zXcr0qoq+vL76+vrfdx/r16wHw8fFhzJgxN+xH/HeQV95CCCGEuCV3oopY3YfZbKZ9+/YAnDp1iv379wPw1ltv4ezsXMcrFb8UCZRCCCGEuCV1rSKeO3eO2NhYAKZOnYrRaERVVZ577jmgqko6bdq0O3fB4q6TQCmEEEKIm3YnqoiffPIJAB4eHrz22msAvPPOO8TExNCyZUu++OILGXjzP0YCpRBCCCFuyp2oIsbFxbFgwQIAFi5cSKNGjVi7di2vvfYavr6+bNmyBU9Pzzt63eLuk0AphBBCiJtS1ypiSUkJjzzyCFarlRdeeIHx48cTFRXFpEmTaNSoEdHR0bRo0eIuXb24myRQCiGEEOKG6lpFrKysZPLkyRw/fpyJEyfy97//nejoaEaNGoWbmxs7duygdevWd+nqxd0mgVIIIYQQ11XXKqKqqkyfPp1169bx0EMPsWzZMvbs2cOIESNwcXEhOjqaNm3a3KWrF78ECZRCCCGEuKa6VhFVVeXJJ5/k888/Z/To0dpyjQ8++CDOzs5ER0cTFhZW47gZM2bUutqO+O8kE5sLIYQQola7du2qcxXx2Wef5ZNPPmHEiBF89dVXHDlyhKFDh+Lo6Mi2bdto27ZtrcedPXuWpKSkOt6B+KVIoBRCCCFEDfv27bupKuLly5evuZ7373//ez788EN+85vfsGbNGk6cOMGQIUMoKipi7ty5JCQkMGHCBB588EGGDx9ud2xeXt5duS9xdyiqqqq/9kUIIYQQ4r/HgQMHGDRoEA4ODkRHR9OhQ4da2/Xt25ekpKRaK4l/+tOfmDt3LkOGDGH9+vUUFxcTHBxMbm7uTV+Hv79/rX0nJCTwww8/oKoq27ZtIzIyEgA3NzdtSiKAHj16XPN7z+zsbBYuXMh3333HuXPnKCoqwtvbm65du/LEE08wbNiwm75OIYFSCCGEqBdUVWXBggW8/PLLFBcXExMTQ9++fWu0O3LkCAMGDKCgoIC5c+fSqVMnu33btm3j1KlTZGdnU15ejk6n4ze/+Q39+vVjxIgRBAYG8uqrr/LXv/4VPz8/Pv74Y4xGI+np6TzyyCO3dM3XCpRLly7lscceu+HxS5YsYerUqTX+vnXrViZNmkROTg4dO3ZkwoQJeHp6cvr0aT777DMKCgqYPHkyS5YsQa/X39I111uqEEIIIe5pFy5cUPv06aMC2r+YmJga7bKzs1UPDw+7djf65+TkpG3/4Q9/UJcsWXJLxwPq7Nmzb/pebDabOm/ePNXFxUVt0KCB2q1bt+ve03/av3+/ajAYVECdPHmyWllZabf//Pnzqre3twqoTz/99E1fV30no7yFEEKIe5SqqsyfP5+2bdty7NgxunXrdt32BQUFt/RKGqBJkyZMnDhR+323B9K88cYbPPfcc/Tq1YtTp04xePDgmz5WVVWeeuoprFYrDRo0YMGCBeh09lEoODiYN998E4CPPvqII0eO3NHrv1dJoBRCCCHuUbcavgICAlBV1e7fH/7wBwCeeuqpGvtUVSUpKYk5c+bQsGFDXFxcmDNnTq3trvdvzpw5t3RfixcvZuvWrTRv3vyWjjt+/DjHjh0DYMiQITRo0KDWdo888gg6nQ5VVfnggw9u6Rz1lYzyFkIIIe5hixcv5oknnritYxMSEpg3bx6KovDKK69cs11ISAhZWVm3e4m3ZPbs2be85GO1Q4cOadu1jVqv5ubmhr+/P4mJiWzcuJGysjKcnJxu65z1hQRKIYQQ4h5Vl/AFsHz5csrLy+nUqRNNmza9g1d2++pyP9nZ2dr2taqT1Tw9PUlMTKSwsJDY2FjatWt32+etD+SVtxBCCHGPqkv4Avj6668Bakw+XlZWRnFxcZ36/jWYTCZt22KxXLdteXm5tn3mzJm7dk33CgmUQgghhKihpKSE2NhYAPz8/MjPz+fVV18lKCgIo9GIq6srbm5ujBo1ij179vzKV3tzQkJCtO0LFy5ct21ycrK2/Uu9zv9fJq+8hRBCCFHD6dOnsdlsAKSkpBAeHk5xcTHPP/88HTp0oKCggFWrVrFhwwY2bNjA66+/ro2O/m/Vu3dvXF1dKSoqIioqClVVa63iHjp0iPz8fO13YWHhL3mZ/5OkQimEEEKIGq5cuaJtL1myhJKSEg4fPszrr7/Ogw8+yMSJE9m4cSMvvvgiAG+99RZLliwBICMjgwULFjBixAiaN2+OwWDA1dWVkJAQpkyZQkxMzA3Pf+bMGebOncvw4cMJDAzEZDJhMBjw9fVl2LBhLFmyhIqKilu6J7PZzKxZs4CqCuTChQtrtKmsrOTVV1+1+5tMbn5jUqEUQgghRA3/WZV76aWXal3G8M0332TFihWkpqby8ssvs2/fPiIjIykrK6N58+ZMmDCB4OBgLBYLW7ZsITIyksjISCZMmMDSpUsxGAw1+nz22We1JRQ9PDz47W9/S8uWLSkuLubQoUN8/fXXbNmyhXnz5vHAAw/c0n3NmTOHY8eOsXnzZmbNmsXFixeZNGkSnp6enD17lr/97W/s3LmTwYMH8/333wM3HsAjJFAKIYQQohb/Wf176KGHam3n5OTEmDFjmDdvHhkZGdrI8OHDh7Nq1Sq7gTCzZs1i0aJFzJw5k1WrVqEoCitXrqzRZ3V1NCwsjN27d+Ph4WG3f+vWrQwbNozjx4/f8kTsDg4ObNy4kfnz5/P+++/zzjvv8M477wBVg5juv/9+9uzZw+HDh7VA6e3tfUvnqI/klbcQQgghanB1ddW2XVxcCAgIuGbb9u3ba9s2mw0XFxc+++wzuzBZ7cknn2TIkCEAfPnllxw8ePCa/X700Uc1wiRUTUr+8MMPA/aDZ26WXq/n+eefJzk5mYSEBPbu3cuBAwfIzMxk165ddOvWzS6ohoeH3/I56hsJlEIIIYSowcvLS9t2d3e/btuGDRva/e7evft1q3pjx47Vtjdu3Fhjf1BQED169KB79+4AWMoruVJoxVJeqbWJiIi4/g3cpMDAQHr27EnXrl3t7jkhIQGoet199ehwUTt55S2EEEKIGkJDQ7XtGw1+UVVV2x46dCh/+9vfrtvez89P205JSamx/+233wbgcFIOi/cmsO1MBjYVdAoMDPXhd71a4OLiclP3cbuqV9UZPXp0jfW+RU0SKIUQQghRg4eHB8HBwcTHx5OTk0NFRQUODrXHhqtHhHfu0vW6yxoCdlPyXCsYRh5I5s8bTqHTKdj+nVdtKmyPzSTqdAZ+p3cBVa+vKysra+2jNomJiZw4cYIHHngAs9lca5v4+HhtDs7HH3/8pvuuzyRyCyGEEKJW1a+my8vLOXHiRK1tDifl8P6qrdrvReecmPHFEY4k5Vyz38TERG37/vvvr7XPP284hQpU2lS7fZU2FWtGArs3fwNUzS15K7777jtGjx7Nd999d8021RXSMWPG3HL/9ZUESiGEEELUaubMmRiNRgAiIyNr7I88kMxDC2I4eyAaAEfvABybhrI9NpOHP97PFwdrHzCzfv16AHx8fBgzZkyN/Yv3JqDT/TzhuM1STEVhFpbUWHJ3R5L+xZ9Q9A70fuK12w58f/nLX2pdPvKDDz5g6dKlhISE8NFHH91W3/WRvPIWQgghRK38/f2ZPXs2L7/8MgsXLmT06NH06dMHqKoivr7+JDnRi6kszgOdA56Dn0ZRFK2q+Pr6U7T2MRMR4Kn1efLkSfbv3w/A//3f/5GSkkJJSQnFxcUUFxeTV1RC1GlHVH4OlJlr38J68ZT227FRIC6hfYnNLMU96+clFLdt20ZqaipQFVYHDhx4zXs7ffo0bdq04bHHHsPPz4/MzEw2bNjAwYMH6dWrFytXrsTHx+cOPMX6QVGv/pJWCCGEEPeUL774Qttet24d33xT9ar4lVdeoU2bNsCNw9ef/vQn3n33XRwcHJg6dSpdunThs5gzHNu1BWtaHIrBhNfwP2IK7mx3nE6BMHcb45sWaIFx/vz5JCYmEhwczKRJk7SlD41GIy4uLqgGV95LsB8hbk2Px1ZagK20EGtaHIU/fnvD++7Tpw87d+6s8ff09HTWrVtHdHQ0p0+fJiMjg9LSUho3bkynTp2YMGECDz30UK1LMoprk0AphBBC3MNuJhhdK3xd7YcffmDhwoXs3r2b9PR0yhUHHN2b4BzUGXPEcPQmt9rPj8pbbYtxczWxYcMGPvvsM/z9/Vm3bh1NmzbFZDJhMpnQ6/WoqsrhoycY/3WqXYXyP1UUZJGx6jUqclIJCAzk4IEDNGrU6Ib3Ke4eCZRCCCGEuCVXCq10/uv2m25/+JUB7I7axLhx42jcuDF79uypsYxjUlISUVFRXL58mUOG9sTm67FdJ1SWXz7LpWV/AGDixImsWLHi9m5G3BEyKEcIIYQQt8RsdEB3k2+EFVQ2fr2KSZMm0ahRI6Kjo+3CZHZ2NqtWrWLZsmUoisLUqVMZ39YL2w36dWrSCr+AIADWrFlT6wAb8cuRQCmEEEKIW2J01DMw1Af9DUKlTgHPywd5cvo0nJyc+PDDDwkODgagpKSELVu28NFHH5Gens6YMWOYNm0aOp2O5B938EiwDlBR/iNaVp1TZWTTUsLvaw1UTWt09uzZO3+j4qbJKG8hhBBC3LIJ7Rvx/el0uM5r6ZLkk1z+5p+YzWZefPFFTp48SUJCAj4+PqSmpqIoCv369aNbt244ODhQVFTE559/TmZmJjNH+5Gf8j2nK3xIsbmjoqCg0rahwtRu/vy0Yz0Hs7O1c91oNR9xd0mgFEIIIcQtqays5MKBKPqb9ewobISCajeIRsFGaWos2V/PwexiYufOnYSHh7N//3527dpFQkICiqKwd+9eYmJi+P7776msrGTNmjWkp6ezaNEiDAYDPm5utPTWYzBZcPXwxtPszOmfjvObroPxd6lk/vz52jmvXs5R/PLklbcQQghRD6iqyvz583F1dUVRlBuO6r5adnY2b7/9Nj179sTT0xODwcCzzz7Lj199QLOjiwjWXUGhaoyvAnhc/pGc1X/GyUHPxIkTqaio4PPPP2fbtm0EBATw+OOP079/fxISEjh48CCRkZGsWbOGixcv0rdvXwC2bq1afcff3x+zyYhBtdKtcydKS0uJjY2loqJCW/KxTZs2NG7c+E4+LnGLJFAKIYQQ97iEhAT69evHc889d8uDV/bu3UtoaCivvfYaFy5cYMyYMQwdOpTx48dTWFjIvqhNHJw/i35XNjDBcJwPeiqcWfUOFeVlDBs2jLKyMubNm8dPP/1Ey5YtadKkCRcuXKCiogJXV1dcXFzIzc3l7NmzmEwmcnNzAYiNjWXPnj20bt0ao9GIxWKhYcOGBAQE8P333zNx4kQAdDodXbp0Yfbs2bcUlgMCAlAU5Zb+ffDBB7f87OsLeeUthBBC3KNUVWXBggW8/PLL6PV6unXrxoEDB276+IyMDIYPH05eXh5t2rThu+++Y/Xq1TzwwANMmDCBPXv28Nvf/pakpCS+WL6MqVOnMnXyu1itVgC+/vpru/7mzZtX4xzNmjWjoKCAoKAgnJyc2L17N2azmcLCQqKjoxkzZgxt2rTB2dmZkpISoqKi2LRpE+Xl5bi7u/Pmm2+ycOFCli1bVreHdRNk5Zxrk0AphBBC3KPeeOMN3njjDQYPHsynn37KZ599dkuB8pNPPiEvLw+At99+mx07dmAwGBg1ahSKopCcnMy0adN47bXXKC8v5+DBg1r7m1VSUoKXlxfjx4/H0dGRQYMG0bJlSw4cOMC5c+fIy8tj27ZtlJSUsG7dOjw9PQkICKBfv34EBARoYTkwMJDExMRbOnfnzp1Zvnz5ddukp6fTv39/3NzcGDVq1C31X59IoBRCCCHuYYsXL+aJJ564rWMPHz6sbZeVlXHp0iUee+wxnJ2dsVgsJCUlMXjwYP7yl79gsVjIzMxkzpw5dOzYkeTkZDw8PEhOTqZjx45ERETw+eef4+XlxeTJk3FwcGDVqlWkpKRoYRKgQYMGlJaW0qpVK3r06IHNZiM3NxedTqdVK6Oionjvvff45JNPtLC8cOFC/va3vwFoFdIbMZlMtG7d+rpt1q1bh6qqTJ48GWdn59t6jvWBfEMphBBC3KNmz55922ESqkJktePHj/PAAw/QrFkzAM6fP4/NZsPd3R29Xg9UzQfZvXt3hg8fTpcuXbhw4QJdu3bl0KFDVFZWMmnSJNLT01mzZg07d+7k3LlzjBkzBg8PD+08ycnJWCwWALp27cozzzxDp06dsNlsfP3118ybNw+dTkd5eTlvvvkmW7dupXnz5jg5OWl9xMTE3HAaoc6dOxMeHn7dNqqqsnjxYgCmT59+C0+u/pFAKYQQQtyjbmYd7+tp27attm0ymejevbv2++TJkzg7O/Ppp59qA328vLy0c7Zr106rOnp6erJ582Z8fX0ZP3488fHx7N69mz59+hASEmJ3zri4OBwcql6gtmrVCp1Op00J9PjjjxMQEMDBgwfp168frq6u5OTk1LjuK1eusH79eq5eXdpSXsmVQiuW8kqganWdq6cdqs22bdtITEykR48ehIWF3dxDq6fklbcQQgghNJbySgotFZiNDkyfPp158+ZhtVo5cuQIiqJgsVjYvXs358+fx8nJiUuXLmnHduvWTQuXBoOBtm3bcvz4cUaMGMHKlSs5efIkzZo1w8HBgfLyciwWC6qqaiFUVVXi4uIAcHR0pEGDBgAYjUYA3N3dGTVqFA888ACbNm3i3LlzzJ8/n1atWtl9u9m7d29Onz5NgwYN8GgZweK9CWw7k4FNrVq9Z2CoD7/r1YKIAM/rPotPPvkEgBkzZtyhp3vvkkAphBBCCA4n5dQIXu0aKjz46AwORX3Dxo0b6dOnD23atMHFxYW8vDxKSkpYtWoVer2ekSNH0r59e7tpiTp37syRI0ewWq2EhoYSFRWFyWTCbDbToUMHoqOjMZvN9OzZE6gaAFNQUABAkyZNtH6qA6XFYsFsNmM2mxk7dizvvfce/v7+5OTkcPz4ca19s2bNaN26NR9s+pH9MeXodQq2fxcrbSpsj80k6nQGb40K49Gu/rU+j4yMDDZu3IiHhwcPP/zwHX3W9yIJlEIIIUQ9F3kgmT9vOIXuP4LX8axKVO9BPP3Ph9i3fC5RUVHs3r1bO85gMDBz5kymTZvG8ePHKSkpoaioSNvfqFEj/P39OXLkCKNHj2bevHmUlpYyffp0fHx8KC8vZ/v27ZhMJjp06EBcXByOjo6Ul5cTFBSk9XN1oKzm5ORE27ZtOXv2LLNmzSIuLo5du3YBVdMVdRz8MPsrqsJipe3nV99X/359/Sla+5hrrVQuWbKE8vJyGYxzkyRQCiGEEPXY4aQc/rzhFCo1g5eKDuuls/x5yYeUZSTQqVMnpk2bxpEjR3Bzc+P06dMsXbqU/Px82rZtS4MGDWpMnB4REcHatWs5fPgwNpvN7rvOvn37UlxczLfffovJZCIuLg5XV1dyc3PtRl8bDAag5ujtjh07cuTIEeLj4/H0/DkU+vn5seLIZRTc7JaE/E86ncLivYk1AqUMxrl1EiiFEEKIemzx3gR0OqVGmASwpsWS8eVrqBVWAjs/wG8nj2Tt2rUcOnQIi8WCo6MjRqORlStXsnbtWv7whz9gNBrtvots06YNRqORffv20alTJxITE3n//feJj4/n4MGDXLlyBVdXV9asWUPnzp1p3bo1iqJQUVFBUlISNptNC5IXLlzAarVis9mw2WxUVlbi5uZGdHQ0qamp2nU7GpxJLnCn5h3Zq7SpRJ1Jx1JeidFRr/09OjqaCxcu0LNnT+677766P+R6QAKlEEIIUU9Zyiu1byb/k6qqZG+Zj1phBZ2exKO7eO5wNO7u7oSHh+Pv709ZWRmnTp0iNzcXq9XKu+++ywsvvMDf//53VFXFZrPZTd/z448/EhMTw65du3B0dKRjx460b9+eK1eucPToUU6dOkWfPn3o168fS5curXFN15uUPSEhQds+cy4e1SPkmm2vZlOh0FJhFyirB+NIdfLmSaAUQggh6qlCS0WtYRKgPCOB8qyUqh+qDWwq7TtFMHrEcDw9PQkMDESn06HT6XjppZc4fvw4ZWVlrFy5ko8//hiz2QxUTY5eUlKC1WolLS1NC5PTp09n5syZGI1GdDodCxcu5P3332fXrl34+/vz7rvvav1X7+/SpQs9evRAp9Oh1+vR6XSUlZXx3nvvaVMLAfg380UpVq/7uruaTgGz8ec4lJmZyfr16/Hw8GDcuHG3/3DrGZmHUgghhKinzEYHdNfIXOW5aVf9UlAcjTw09mFUVaVdu3YMHTqUoUOHMnjwYKZOnaq1TEpKori4mO7du5OXl0d+fj6TJk3C19dXW+bw6aefxtfXl4sXLxIUFIS3tzcuLi4MHjwYgK+++oqioiIaNmyIh4cHbm5uODs7o6oqRqMRJycn9Ho9iqJgMBgIDQ0lLe3n602MP4e/Pg/dDV5663UKg0Ib21UnqwfjTJkyRRsMJG5MAqUQQghRTxkd9QwM9UFfW6pU7COCW7MgDI5Vf9uxYwf/+Mc/WLNmDUePHqWkpMSu7ZYtW/jpp584dOgQQ4YMoXnz5hw/flz7FvLpp5+md+/eHDp0iIyMDM6dO4eiKHTp0gWoGnzzzDPP2A3CMRqNdqO8oaqauHXrVmJjYykvL9f+Hh4ezuQuzbDd4P5tNpVpvQK13zIY5/bJK28hhBCiHpvWqwVRpzNq/N3BrZG27ejTgmeefpaS4gwUReG+++7DbDZz8eJFvv32WzZv3mx3bEJCAt9++y3t2rUjIiICgO3btwPg7e1NcHAwgYGBHD9+nM2bN+Pk5ETjps1JupSBh4cHubm5HD58mFWrVjFp0iQcHBwwGo1YrVbKy8s5c+YMP/74IxcvXsTBwQGbzT46urm5kXpsF8O8W7L5ihkFFfWqGppep2Czqbw1KsxuhPeOHTuIj4+nV69ehIaG1v3h1iNSoRRCCCHqsc4Bnrw1KgwF7CqVTo2D0btWhS1bVjKPjR6IqqqEhIRw/vx5Dh06ROPGjXnsscdITk626zMvLw+9Xk+TJk3Iz88nLS2Nc+fOAdCwYUMKCgrQ6/UMGzaMw0k5fHJG5W/xjVhZEo7Vu2q6oCtXrnDmzBnWrVunBcaLFy/yz3/+k/Xr12t9KIpCjx49CAz8udK4b98+wsPDaWZJZHKTLFo4FaP8+/W3ToGBbXxYM6N7jUnNZTDO7ZMKpRBCCFHPPdrVn9Y+ZhbvTeT705dRUdApCsH9Hubstx9TWVHO6NGjGTVqFCNHjkSn03H48GF++OEH3nzzTTIy7CucAQEBNGzYkO+//56tW7eSmZmp7XN3d+fo0aP07duXfZl6Npe1+ncFsYq+gbfWNsfoS2xsLP/85z8pLi5Gp9PRpEkTMjIyKCkpoXv37nTv3h2TycSOHTvszl/9naWProjnOnpQbCklv8TKY48+YvfNZLXq9b9lZZzbI4FSCCGEuId98cUX2vZPP/2kbW/btk2bu9HHx4eBAwcSEeDJok8/w1KpkJ+VTuR0DXEAACAASURBVLenR/OvihS2bdvGTz/9xOXLl9Hr9TRv3pzMzEy++uorjh07BoCLiwvFxcW4uLjQv39/fve732GxWEhISGDBggXaeV1cXNi7dy9JxXrm7C0AFLvR2HoXd2173aF4xncJwKe4SPuGMjMzk65du9KjRw9MJpPW9urvOMPDwzl69Cg9e/Zk79699OvXj/j4eEoK82sNkwBLly6lrKxMG3kubo0ESiGEEOIeNnny5Fr//te//lXb7tOnDwMHDgTAUQcNXIzkZ5TTsmVLevXqxdixY/n8889JTExk7ty5lJaWYjKZ8PPzY/r06dx///3aefr3709hYSGXL1+mSZMmhIaG0qJFC+1cgYGBVFZWsuSH5H+vZFP19Z2qqhT+uIm8PSt/vsjyUi6ZW+NrOYbFYkGv1zNr1ixcXFyAqrBc2/2NHTvW7vecOXPo0qULv/3tb6/5nD799FNAXnffLgmUQgghxD1MVW+0XkxNzs7OKIpCTk4OXbt2Zf/+/QwaNIiIiAiOHDnCmDFjCA8P1/rv3bs3AK1atWLcuHEkJibyySefEBISwv33309paanWd9u2bTGYXEmJd9cqk+V56WR/9wHWi6fsrqOyzMqJbJXf9elCetpFUlNTSUhI0M59rbBcG51OV2PpxmoxMTGcP39eBuPUgQRKIYQQQtjR6XQ0atSItLQ0Bg4cyA8//ICzszPDhg2jvLyc9evX4+LiQosWLXj77bfZu3cvXl5ePPXUUwQHB5OcnMyIESPYu3cvn3/+ObGxsVrfZWVltO/WETU+9eeq5K5loNPh5NuKsktnf74ORwMqCl169uHi+dOkpqayfv16nJ2dCQ4OJj8/Hzc3N4YPH86cOXNwdnZm+fLlFBYWMnXqVFasWEHHjh3p3LkzsbGxnD17trbbpV+/frcVvMXPZJS3EEIIIWrw9fXl0qVLODk5odPpsFgsFBYWMnz4cAIDA1m9ejWLFy9m9uzZmM1mXnvtNVxdXXF1daWiooLWrVvz1FNP8fDDD6PX//zdYlpaGi0Dm6Ogkr93JbnbP8bQLBTfJz7EObCj3TUoTs7aSjbOzs5A1YCb1atXc/78eSIjIwEYMmQIHTt2RFEUjEYjPj4+ZGZm4u7uzgMPPEDr1q1p3rw5ZWVlEhzvEgmUQgghhKihadOmZGZmkpCQQEVFBU5OTuzZswe9Xs/DDz9Meno6M2fOxGQysWLFCgICAlBVVfu+sbi4GEVRCA0NtXs1vW/fPj7+aAF+ujxAxXPoc/iMfxOHq0Z3V3N086aHnytGRz0GgwGAwYMH06hRI7788kuKi4sBMJlM2Gw2tm/fTlBQEG3atOHUqVM4OzvTpEkTAAwGA6qq2k2ALu4cCZRCCCGEqKFp06aoqsqxY8cwm8306tWLo0ePkpeXx969e/n4448xGAxMnz6dAQMGoCgKqqri6uoKQFFRkdZXWFiYtl1QUIDJZOI+hwzcek3E3G7QNa/BwcufBpePsHXrVhwdHYGqVXQUperbS53u5xhz9OhRsrOzGTBgAB07dqS0tBRfX1+tbXUgLSsru0NPSFxNAqUQQgghavD29kav15OYmEirVq3o0qULzs7OfPjhh4wYMQK9Xs8f//hHGjVqxKpVqwBqVCgBcnNz2bdvH56entrvyspKfHRF9HS6CKgotSySqDd78c6jffjtsF4cOXKEjRs3AvD999+TkZHBuHHjcHCoGgpSUlLCzp07adu2LQ0aNNCm/bk6PDo5OQFcc2COqBsZlCOEEEKIGvR6PV5eXmRkZNC6dWucnJwwm828+uqrODo68uSTT/LCCy+Qk5OjDYRxcnLi+eefZ/fu3QwePJiYmBj27duHyWSid+/erF+/noyMDMxmMxaLhUe7BeB+MJbTFY1IsXlgs/xc1Rz4QF8e7RYABODv78/q1asBuHTpEhMnTiQ4OBhvb29+//vf880335Cfn09iYiJZWVkAODg40LRpUwoKCpg5c6ZWoZRAeXdIhVIIIYQQtaquAAYEBHDgwAH++Mc/otfrmTx5Ms8//zwuLi40b96csWPHkpubS2FhIefOnSMjI0MLk82bN6e8vGpOy+rK4f79+7VX2D66Ivo7JRD9ZDsaF57Xzt23W4T2vaOPjw9+fn5AVRX0+PHjWCwWGjZsCFStE37hwgWee+451q9fzwsvvED//v3JyMjg97//PZ06deLSpUuABMq7RQKlEEIIIWpV/R3k/v37GTJkCEVFRdq8kocPH2bnzp3s3LmT9PR0SktLOX36NOfPn0dVVXQ6HQ4ODqSkpBAWFsYrr7zC3LlzAVi9ejWqqtqt3HMxKYHEhHjtd1xcHP/617/Yt28fUVFRnDhxAr1eT9u2bYmPj+fjjz/m4sWLALRs2ZKnn36a++67jwcffBAvLy9eeukl/vGPf+Dh4cHp06cZN24cpaWl8g3lXSKvvIUQQghRQ15eHvn5+ZSUlPDggw+Sn58PQFRUFADLli275rHu7u5YLBY6derE/fffj5ubGwDPPPMMKSkpzJ07l7/85S+0b98eb29vsrKyeOedd6ioqND66N27N15eXkRHR6OqKkFBQWRkZODh4cGTTz7J2rVrWbJkCbNmzWLUqFF4e3vz9ddfU1lZicViITg4mGbNmrF3715Wr15NQkICe/bsYeLEiXfxqdVfUqEUQgghRA1nz57VRlFXh8mbpaoqDRs25MEHH9TCZLVx48bx+OOPExYWRmxsLJs3byYuLo5WrVrZLY2Yk5NDkyZNUFUVX19fkpOTKS4u5vz58zg6OvLYY4/h6emJh4cHSUlJNG/enGHDhnHmzBnt+8mgoCC6du2K2WwG4NixY3ar9og7RyqUQgghhKjh7NmzBAYGoqoq//jHP1BVlenTp+Pu7o7NZuODDz7AarVSVlaGg4MDFRUVGAwGfve73xEZGUlOTg4ZGRn4+PjY9RsXF0f37t3x8/PDZDJRWlrKE088weLFi8nMzNTaJSYmUlRURNeuXRk8eDDFxcV8/PHHpKen869//YuWLVuSnZ1Nr169OHHiBIsWLWLkyJGYzWYKCws5fvw4HTt2pGPHjjRq1IjCwkJKS0s5d+4cXbt2/aUf5z1PKpRCCCGE0JTbILe0gvjEZFq3bk15eTklJSWMGTMGd3d38vPzWbNmDYWFhdr3iOHh4URERGAymWjYsCEdO1ateLNixQq76qbFYiExMRG9Xo+rqyslJSW4u7vTtGlT/Pz8SEtL09oWFRVx3333MXjwYBRFwdXVlcaNGxMUFES3bt04c+aM1ucjjzyCn58fq1atorCwED8/PzZt2kRsbCwdOnTAZDJp/WZkZPwSj7HekUAphBBCCA4n5TDjiyP8PcGHOSeMRFo6MPdAPkeScwHw8PBgx44dzJs3T1sT22Aw0Lx5c0aMGIGzszM2W9V8km5ubqiqiqIorFixAovFAkB8fDw2m4309HQCAwMBtP8jIiLIy8uzu6YWLVpoE5MDGI1GysvLtVfh7du35/Tp0yxevBij0Ujr1q2BqnkpW7Rowdq1a8nNzdXmxgQosFRgKa+8G4+wXpNAKYQQQtRzkQeSGffxfrbHZqJSFeBUFA6llbK5rBVxFd58/PHH7NmzB5vNRlhYGM8++ywjR47k4sWLJCUlaSvlANpqOSNHjqSwsJBVq1ZRUVFBXFwcbm5udssftmnTBoDQ0FBtmiKAhg0bkpiYaHedBoMBi8VCdHQ0QUFBXLx4ES8vLwYMGMCFCxeIi4vDycmJyspKkpOT8fDwYOXKleQWWbQ+PkvxIHT2VmZ8cYQjSTl354HWQ/INpRBCCFGPHU7K4c8bTqEClTbVbl91uNxf4YeHtZQ+oUEMHDhQW/XGw8ODxo0bExMTo31vCWgVQYPBwCOPPMLy5ctZt24dFy5cwGAwEBISos0LWT2/ZE5OjlbhBGjWrBkXLlzAZrNpg4OMRiMFBQWUlJTw0EMP0a1bN4xGI3FxcURERPDuu+8CVavxuLu7k5WVxdlKb86dPweAzuSGg2dTbCpsj80k6nQGb40K49Gu/nfj0dYrUqEUQggh6rHFexPQ6ZTrtlGABEd/xo8fr4VJAEVR6NevHykpKeTl5WmBsDpQFhUV4efnx9ixY4mNjaWsrIzCwkI6dOhATk4Obm5uODk5kZubS2RkpDbxOVStJV5aWqoFT6iaaL2kpIR27drRuHFjAM6dO0dCQgJZWVmUlZUxbtw4RowYgaIoZNhcifrxHKq1BADXdoO1V+iVNhUVeH39KalU3gFSoRRCCCHqKUt5JdvOZPAfhckaVBTOFhvZsWsPzk4OKIqCTqfT/vfw8ODs2bNUVlZy8uRJ7bj4+HgURcHBwQEvLy+ysrJwcnKioKAAVVXx9vYmPj6eb7/9FkVRaNmyJVu2bAGqqpsGg4FTp07h7u6OTqfTJjLv2bOnNmelqqo89thjvPLKKzg5OREQEIBer6ddu3YMfXUxuTs+B8ChYTPcuj1U4950OoXFexOJCPCssU/cPEWtrk8LIYQQol65Umil81+333T7KeZYnJVyVFXFZrNp/9fFiRMntO3Y2Fji4uIAuP/++/Hy8gKqvskMCgqqceyXX36pDRBydXWlbdu2+Pj4oKoqySkXOXbiBFRW4NQkBO/Rr+DQwLvWa9ApcOaNIRgd9XW6l/pMKpRCCCFEPWU2OqBTuGGFEkBB5TeDHqBrRIca+2w2G/PnzycvL4+XXnoJgMWLF+Pn50e/fv1ITU3lq6++QlEUAgMDSUhIAMDb25tvvvmm1vPt2bNH246IiGDgwIGkpKRQUVHBkCFDMBqNjBgxgvj4eLZt28b27duJjY3l8OHDVdMMmc2YgrpgCu2NqWV3FN21w6JNhUJLhQTKOpBAKYQQQtRTRkc9A0N92B6bWWNAztUUbPjp8vjp2GU6tgvD0dHRbr9OpyMkJITDhw9z4cIFQkNDMZvNWK1WXF1dSUlJQVEUWrVqxdixY3n77beBquUd09LS8PX1tevv4MGDREVFMW3aND755BMGDhzI9u3b6dy5M4cOHaJFixZ4e1dVGzt06EBISAhNmzalbdu2pKWlkZ2dTYWq8IW1ozaw6Hp0SlW4FrdPBuUIIYQQ9di0Xi2w3aBEqaLjPodMLl26xNy5c9m9ezdWq9WujaenJ4qiEBMTg81mw8XFheLiYlRV5dSpU6iqSkREhN1qOI6OjtoUQ1dr164der2ec+fO4ePjw8GDB3Fzc6N9+/ZA1WCfxMREoqOjWbx4MRs2bAAgNTWVgIAAHn74YV558Y8Muq8x+hvkSb1OYVBoY6lO1pF+zpw5c37tixBCCCHEr6OpuzNeZgMxcZnodQpXj6zQ6xRQ4S+jwujl70piYiI2m42kpCQOHjxIeXk5jRs3xtHRkUuXLpGQkEBxcTENGzbEarWSkZFBYGAg+/btw9XVlaFDh7JixQqKi4vp3Lkzubm5xMbGEh4ebjcHpYODA3l5eZw6dQpfX18uXrxI9+7dyczMJCUlhVOnTnH8+HGysrJo0qQJBQUFhIeHM2XKFFq2bIm3tzeOjo7oLAVsis2B61UpVXhnTDi+7s537yHXAxIohRBCiHqubTN3egV7kV9aTkJWESpV30xGNHbiX5O6MCSsCQ4ODhw9epSxY8ditVrJzs4mJSWFgwcPYrVa0el0JCYm0rJlS86cOUPz5s05n5BEaaWOtNSL3N+rJ7GxsZw7VzUn5OTJk2ndujUHDhwgOTmZsLAwbb5JqJqS6Mcff9Tmp0xKSuLy5cvaxOpjxoxh4MCBeHt7c+DAAQYMGGA3pVFGRgZb1q7EyWYl1eZ+zbD81qgwhoQ1+aUe9T1LRnkLIYQQQmMpr6TQUsHmDWuxlVuZOnUqCxYs4OWXX6a4uJiPPvqImTNnkpSUxNatW8nIyNDmdlRVlUmTJvHPyA2kurTkZK6CioKCSnsvhcb5Z9i0ZB6pqakA2oTokZGRhISEEBYWRkJCAomJieTm5mrXpNPpaNeuHcOGDeOvf/0rQ4cOpXPnzgD88MMPxMTE8OKLL2pVztzcXBYvXkxpaSmtWrWiRdcBfLY3iagz6djUqm8mB4U2ZlqvQJku6A6RL1CFEEIIoTE66jE66mkXFsqSJUvo3bs3e/fu1fZnZ2cDEBAQwIwZMzh16hTbt2+noKAAgNeXR7G/vBVKGXbLOB7PspF/+Dy5/w6TAGlpaZSXl2M2m4mLiyMuLg4vLy9CQkIICAhg06ZNlJSU4O/vT1ZWFg4ODhiNRrvvN+Pj4wkMDNTCZGFhIcuXL8dqteLh4cHo0aNxcnKic0BDLSybjQ7yzeQdJoNyhBBCCGFHVVV27NjBokWLOHbsGN26ddP2XblyRdtWFIXw8HCeffZZQkNDybC5sr/cj6oX5vbfLZbnZ5G35wu7v23bto2ffvoJPz8/wsLCgKopgoYOHUpRURElJSU4OzujqiqpqamUlpZiNBqxWKrW5i4rKyM5OVmbo7K0tJTIyEiKiorQ6XRMmDABJycn7XxGRz3eZoOEybtAKpRCCCGEsPPGG2/wxhtv0LZtW6ZMmUJhYSEHDhwAID8/H6vVisFg0No7ODgQEhLCguNWdIpS67yW2d9/iFpuxTkogtILRwAYNWoUI0eO1F6Zm81mtm7ditFoZOfOnbRv3x6z2cyBAwdQVZWEhAS7QFk9SCg4OJiysjK+/PJL8vLyqKioYOzYsdrUQuLukwqlEEIIIWpYvHgxy5Yto6ioqMYUQVevr12trBJSbO61hsmi0zFYEn7EHDECp8Yh2t/d3d21MAkwcOBAwsLC2LBhA1arlb59+9KpUycqKipwdXUlPj4eg8GgXU98fDweHh64u7uzZs0aLl26RGVlJV26dNEqnuKXIYFSCCGEEHZmz57NE088QatWrdDpdGRlZWn7HB0dSUtLq3GMpZJaJxGvLC0gN3oxejcf3O9/1G7ff44LVhSF/v37a7/Lyspwc3OjVatWVFZWcuHCBQwGAxaLBVVViY+PJygoiPXr15OQkIDBYMDX15dBgwbV9RGIWySBUgghhBB2qquGzs7OtGjRwu67yYYNG9ZaoXRx0qFQszyZu/1TbCX5NBz8FDono92+zZs3Ex8fbxcs9+7di8FgwNPTkxUrVlBYWEhERASlpaUUFhYCYLFYyMnJIS8vT5uvsvr19sMPP4xeL99I/tIkUAohhBDimkJDQ8nLy9N+e3l51VqhNDrq8dPlVc3v+G+lCT9SfDoGU2gfnFt0AuCqN9xkZ2ezYsUKFi1aRGxsLJmZmRw7dow+ffrw6KOPoqoqK1asoGnTptpKPCUlJVgsFuLj41EUhfj4eEJCQsjMzGTs2LE0aNDg7j0McU0SKIUQQghxTa1bt7b7ztHLy4uCggKKiors2imKwn0OGdoyjrYyC9lbP0Tn3ADPAdO1dle/5Q4JCUGv15OZmcnq1av59NNPMRqNdOzYkQYNGjBp0iTy8vJYvXo1ERERqKpKfn4+xZYydh08SrkN2rdvz/nz5+nXrx8tWrS4uw9DXJMESiGEEEJck7OzMx4eHtpvLy8vgBpVSp1Oh4+uiNeHtUQB8ncvp7IgE4/+T6A3uaFgA1T6t26kHdO9e3deeOEFBg0ahMlkoqKigtLSUubNm8eRI0do2LAhEyZMICUlhdTUVDJVM+uzvFmYFcJHl/34wtqRD44U49S0Db169folHoe4BgmUQgghhLiuq6ffcXFxwcXFpUagrK5iju/oy5yuThT8uAljQHtcwx9AAfx0ebzZ24O2zdztjjMajXTr1g13d3c8PDxo1qwZxcXFfPfdd8ydO5eUlBRGjBjBup+u8J21JSk2N7sJ05MqGvDJBRdWHEq5uw9BXJfMQymEEEKI66quSkJVcGzatGmNgTnVgdJqtfLen/+Ao4Oef732LKPHDWDzhrUkXUhgdK9RvHdwW43+Y2NjuXTpElOmTCEwMJDs7Gx2797NqVOniImJ4QoN2F8RQm0Tplf/fn39KVr7mGUpxV+JVCiFEEIIcV2Ojo52v319fbl06ZLd6GydripSvP/++5w8eZJ+/frR9r5QvM0GrqRfwmAwYDaba/RdWVlJdHQ0wcHBBAYGAlUjyUePHs2LL75I3759OV3hU+sI8qvpdAqL9ybW9VbFbZJAKYQQQoibVlpaStOmTSktLSU3N1f7u6IoZGVlMXfuXEJCQggPD8dms3H58mUyMzMxmUxkZWVRUlKiHZOfn090dDQXL16kQ4cONc7l5ORE1x69SK50Q71BZKm0qUSdScdSXnnnblbcNHnlLYQQQoiblpycTJ8+fYCqgTmenlWvmBVF4eLFi1itVs6fP897773He++9Z3fsrFmz7H6PGjVK2547d26Nic4BLmfl1rr6Tm1sKhRaKmSt7l+BBEohhBBC3LSkpCRMJhMeHh6kpaURHh4OVL3yDg4OZu3ateTl5bFz507GjRvHgQMHSElJYezYsbi4uLB8+XIiIyMBmDFjBlarlVGjRuHi4lLjXCUlJWxYuxoFv1pX4flPOgXMRok2vwZ56kIIIYS4aRkZGRQXF2vfUVZTFAWz2UyfPn2Ij4/n0qVL/OY3v+HcuXOYTCZGjhwJVK2EU62iooJJkyYxYMCAGuexWq2sWLGC8tJiIpo4ceSy9bqvvfU6hYFtfKQ6+SuRbyiFEEIIcUtiY2Np2rQply9fxmazAT+P8q6efNzNzQ2bzUZhYSGNGjWqtR+9Xl/r/JEVFRV89dVXZGdn07lzZ7yzT96wQmmzqUzrFVjHOxO3SwKlEEIIIW5akyZNOHPmDE2bNqWiooLMzEzg50Bps9m0QJmQkABAcHBwrX21a9cOo9F+fW+bzca6deu0gTq7du1iaERL/jIyDAXslnbk378V4K1RYTJl0K9IXnkLIYQQooYvvvhC2/7pp5+07fT0dM6ePUtpaSkJCQmkpaXRuHFjbdqg6gqlt7c3J0+eBCAnJ0fr7+q+Ll68qP29bdu2hIeHs2nTJuLi4mjXrh0HDhyga9euDB48GEVRaN24AYv3JhJ1Jh2bWvXN5MA2PkzrFShh8lemqLUNqRJCCCFEvXb1+t3XEhISwnvvvcfw4cO5dOkSn376KTNmzGDFihV06tSJEydOUFRUxLZt29i1a9d1+5o9ezY9e/bkhx9+oE2bNsTGxtKrVy/69+9f41os5ZUUWiowGx3km8n/ElKhFEIIIUQN16s3RUZGoqoq7u7u2hKM1aGvvLycoqIiGjRoQH5+Pj4+PuzcuVPr87PPPkNVVaZNm2YXFPft28f27dsJDAwkNjaWfv360bt371rPb3TUS5D8LyPfUAohhBDiloSGhpKUlISXlxeZmZmUl5drr7yLi4uBqlHaqqoSFBSkHXfmzBnS0tIYMGCAXZg8evQo27dvx9fXl8TERAYNGnTNMCn+O0mgFEIIIcQtad26NQAWiwVVVbl8+bIWEAsLCwFITU0FoH379sDPSyyGhIRoSyxCVcjctGkT3t7e2lRD3bt3/yVvR9wBEiiFEEIIcUtcXFwICAggNTUVBwcH0tLSagTK9PR09Ho9Xl5eAPz444/k5eXZzTmZkJDAunXrcHNz48qVK4wcOZKIiIhf/oZEnUmgFEIIIcQtq37t3ahRIy5duqQFyqKiIkwmE3l5edqyjFarlV27dtGuXTttTsrU1FRWrVqF0WgkPz+fhx56SKtmiv89EiiFEEIIccvatGkDgMFgIC0tTfuGsrCwEJPJhM1mo0WLFkDVgJuysjL69esHwJUrV1i5ciV6vZ7S0lLGjx/Pfffd9+vciLgjZJS3EEIIIW5Z9Wvv4uJicnNzsVqtQNWgnMrKSqDq+8mCggL2799Pt27daNCgAXl5eURGRlJRUYHNZmPixIl2A3fE/yapUAohhBDitoSGhnLlyhWgao1vqAqUFosFnU6nTRnk6OhIz549KSoqYvny5ZSWlgIwefJkCZP3CAmUQgghhLgt1a+9HRwc7AKl1WrFw8ODK1eucPz4cfr06QNUzV+Zn5+PTqdjypQp+Pv7/2rXLu4sCZRCCCGEuC0uLi74+/vj+P/s3Wd4lGX69/HvzGRSJp2QAimkkkYzdKRJlaZYAHVFqbqIurq7ulh2bWtbXfVZlT8CojQVUYSll4CUUKRDSIBMGgRCSCEhdZKZuZ8X2dwm0jFhQnJ+jsPDycw9M2eGiL9c5bz0evVMb4vFgtVqJTg4mPj4eDw8POjYsSOLFy8mNzcXe3t7JkyYQEBAgI2rF/VJAqUQQgghblpMTAzl5eVkZ2fXud/b25uTJ09y11138f3335OVlYWjoyOTJk2iVatWNqpWNBQJlEIIIYS4adHR0Wg0GnVdJFQfw3j48GFat27NsWPHSE9Px2AwMHnyZLy9vW1YrWgoEiiFEEIIcdNcXFzw9/cHwKxoKFfssHdyJjs7G0dHR06cOIGzszNTp07Fy8vLxtWKhiJtg4QQQgjxu+hbR7E5zYFTVg8UNGhMCqEOJeQYzxDq6swTTzyBm5ubrcsUDUgCpRBCCCFu2sLdmby2rRBwR6H6tBwFDWkmZ1KJ5B/d2kqYbAZkylsIIYQQN2VvRgH/WJGIAii/iRTVX2t4a20K+zIKbFKfuHUkUAohhBDipszdkYZWq7nqNVqthrk70m9RRcJWJFAKIYQQ4oZVVFnYmJSDxapc9TqLVWFD0jkqqiy3qDJhCxIohRBCCHHDiivMXCNLqqxK9fWi6ZJAKYQQQogb5upoxzVmu1VaTfX1oumSQCmEEEKIG+ao1zE4xhfdNVKlTqthSIwfjnrdLapM2IIESiGEEELclCm9Q7FeY97balWY0jvkFlUkbEUCpRBCCCFuStfgFrw1uh0AGuoGS51WgwZ4a3Q7ugS3sEF14laSBQ1CCCGEuGmPdm9D5uGdJOQ5crzEHqtSvWZycLQvU3qHSJhsJiRQCiGEEOKmVVVVoZxP5e8DB3JHl24UV5hx/3ZjIwAAIABJREFUdbSTNZPNjARKIYQQQty0jIwMLBYL4eHhOOp1EiSbKVlDKYQQQoibZjQacXd3p2XLlrYuRdiQBEohhBBC3DSj0Uh4eDgazXU2pRRNkgRKIYQQQtyUgoICCgoKCA8Pt3UpwsYkUAohhBDiphiNRrRaLSEh0meyuZNAKYQQQoibYjQaCQoKwsHBwdalCBuTQCmEEEKIG2Y2m8nIyJDpbgFIoBRCCCHETcjMzKSqqkoCpQAkUAohhBDiJhiNRlxdXfHx8bF1KaIRkEAphBBCiBsm7YJEbRIohRBCCHFDCgsLycvLk+luoZJAKYQQQogbYjQa0Wg0hIaG2roU0UhIoBRCCCHEDUlNTSUwMBBHR0dblyIaCQmUQgghhLhuFouFtLQ0me4WdUigFEIIIcR1O336NJWVlRIoRR0SKIUQQghx3VJSUnB2dsbPz8/WpYhGRAKlEEIIIa5bamqqtAsSl5BAKYQQQojrcvHiRXJycmS6W1xCAqUQQgghrktqaqq0CxKXJYFSCCGEENfFaDTi7++PwWCwdSmikZFAKYQQQohrslqtpKamEhYWZutSRCMkgVIIIYQQ15SVlYXJZCIiIsLWpYhGSAKlEEIIIa7JaDTi5OREq1atbF2KaIQkUAohhBDimoxGI+Hh4Wi1Eh3EpeSnQgghhBBXVVJSQnZ2tqyfFFckgVIIIYQQV5Wamgog/SfFFUmgFEIIIcRVGY1GWrVqhbOzs61LEY2UBEohhBBCXFFNuyAZnRRXI4FSCCGEEFd09uxZysvLJVCKq5JAKYQQQogrMhqNODo6EhAQYOtSRCMmgVIIIYQQV2Q0GgkNDZV2QeKq5KdDCCGEEJdVVlbGmTNnZLpbXJMESiGEEEJclrQLEtdLAqUQQgghLstoNOLr64urq6utSxGNnARKIYQQQlxCURRpFySumwRKIYQQQlwiOzub0tJSCZTiukigFEIIIcQljEYj9vb2BAYG2roUcRuQQCmEEEKIS9S0C9LpdLYuRdwGJFAKIYQQoo7y8nKysrJkultcNwmUQgghhKgjLS0NRVEkUIrrJoFSCCGEEHUYjUa8vb1xd3e3dSniNiGBUgghhBAqaRckboYESiGEEEKozp8/T3FxsQRKcUMkUAohhBBClZKSgl6vJygoyNaliNuIBEohhBBCqFJTUwkJCcHOzs7WpYjbiARKIYQQQgBgMpk4deqUTHeLGyaBUgghhBAApKenY7VaJVCKGyaBUgghhBBA9fpJLy8vPD09bV2KuM1IoBRCCCGE2i4oLCzM1qWI25AESiGEEEKQl5dHUVERERERti5F3IYkUAohhBACo9GInZ0dbdq0sXUp4jYkgVIIIYQQGI1GgoOD0ev1ti5F3IYkUAohhBDNXGVlJZmZmbJ+Utw0CZRCCCFEM5eRkYHFYpH1k+KmSaAUQgghmjmj0YiHhwctWrSwdSniNiWBUgghhGjGFEXBaDQSHh6ORqOxdTniNiWBUgghhGjGCgoKuHDhgpyOI34XCZRCCCFEM2Y0GtHpdISEhNi6FHEbk0AphBBCNGNGo5GgoCDs7e1tXYq4jUmgFEIIIZqpqqoqMjIyZLpb/G4SKIUQQohmKjMzE7PZLIFS/G4SKIUQQohmymg04ubmhre3t61LEbc5CZRCCCFEMyXtgkR9kUAphBBCNEMXLlwgPz9fprtFvZBAKYQQQjRDRqMRrVZLaGiorUsRTYAESiGEEKIZMhqNBAYG4uDgYOtSRBMggVIIIYRoZsxmM+np6TLdLeqNBEohhBCimTl16hRVVVUSKEW9kUAphBBCNDNGoxEXFxd8fX1tXYpoIiRQCiGEEM2MtAsS9U0CpRBCCNGMFBUVkZubK9Pdol5JoBRCCCGaEaPRiEajkXZBol5JoBRCCCGakdTUVAICAnBycrJ1KaIJkUAphBBCNBMWi4W0tDSZ7hb1TgKlEEII0UxkZWVhMpkkUIp6J4FSCCGEaCZSUlIwGAy0atXK1qWIJkYCpRBCCNFMpKamSrsg0SAkUAohhBDNQHFxMefOnZPpbtEg7GxdgGh4SUlJzJs3j/Xr16vrZ/z8/AgODqZv374MGzaM7t2727pMIYQQDSg1NRWAsLAwG1cimiIJlE2Yoii89tprvPvuu/j7+zN27FgiIiIoKSnh559/ZuXKlWzZsoVVq1axb98+W5crhBCiARmNRvz9/TEYDLYuRTRBEiibsD//+c988sknjB8/ntmzZ+Po6Kg+9vzzzzN79myefPJJG1YohBDiVrBaraSmptKtWzdblyKaKFlD2UStWrWKTz75hA4dOjBv3rw6YbLG1KlTiYmJwcPDwwYVCiGEuFXOnDlDRUUFERERti5FNFEyQtkEKYrC888/D8CMGTOws7v8H7NGo+HYsWO3sjQhhBA2YDQacXJyonXr1rYuRTRRMkLZyOTm5vLqq6/Srl07XFxc8PLyolevXsycOZOqqqrreo2tW7diNBrRarWMGDGigSsWQgjR2BmNRsLCwtBq5X/7omHIT1YjsmfPHjp27Mjbb79NQEAA77//PjNmzKCwsJDp06fTu3dvcnNzr/k6P/zwAwBt2rTBzc1Nvd9qtVJcXNxg9QshhGh8SktLOXv2rOzuFg1KAmUjkZmZyahRo8jOzubPf/4z69atY/r06bzwwgvs37+fO++8k19++YX77rvvmiOVNTu2g4KCsFgszJ49m27dumFvb4+bmxsODg707duX+fPnY7Vab8W3J4QQwkZq2gVJ/0nRkCRQNhIvvPACubm5BAUF8c4779R5zMnJidmzZ6PRaEhISGDu3LlXfa3ExESgekRy8ODBTJ8+nc6dO/P999/z008/8cQTT7B7924mTJjAyJEjKSsra7DvSwghhG0ZjUb8/PxwcXGxdSmiCdMoiqLYuojm7uTJk0RFRaEoCq+++ipvvfXWZa/r06cPO3bsIDAwkMzMzMsenVVWVoazs3Od+5YvX869995b5761a9cyYsQIFEXhscceY/78+fX3DQkhhGgUFEXhww8/JC4ujoEDB9q6HNGEyQhlI/DDDz9Qk+uv9h/8oEGDADh9+jR79uy57DW/XSM5YsSIS8IkwLBhwxgzZgwACxYs4NChQzdVuxBCiPqhKAqffvopLi4uaDQafv755+t6XkZGBp999hkPPvggbdu2xcXFBXt7e3x9fenduzebN2/G39+/YYsXzZ60DWoEtmzZot6+4447rnhdXFycenvz5s306NHjkmvMZnOdrx988MErvt5DDz3E999/D8DixYvp1KnTddcshBCi/qSlpTFp0iS2bt16Q8/78MMPeeGFFwAwGAyMHz+e2NhYrFYrhw8fZuHChZjNZo4fP87atWuJiopqiPKFkEDZGNSseXR1dcXd3f2K1wUGBqq3r9Q/8rdrZNq1a3fF16sdIH/55ZfrqlUIIUT9URSFzz77jJdeegmdTkePHj3YvXv3dT8/Ly8PgFatWrF7926CgoLqPB4YGMh7771HRkYG99xzD4mJidjb29fr9yAEyJS3zZlMJs6dOweAr6/vVa+t/XhGRsZlr3F1da3zl8XVTsHx8vJSb58/f/56yhVCCFGP3njjDZ599ll69+5NYmIiQ4cOvanXef/99y8Jk+Xl5eh0Oh5++GEAUlJSWL9+/e+uWYjLkUBpY7XXPF7ueMTanJycLvu82rRabZ0pjd9OgddWez+WTqe7Zq1CCCHq39y5c1m3bl2dWajrFRAQQOfOnRkyZMglj6WmpqIoCnfddZd6X1JS0u+qVYgrkUBpY+Xl5erta01D1H78aq1+unXrpt7Oycm54nW1m6TLcVxCCHHrvfbaa0yePPmmn//000+zb9++y85wGY1GfHx88Pb2Vu+rPTAhRH2SQGljtf/jrqysvOq1tR83GAxXvO6BBx5Qb9c0Ob+cAwcOqLf79u2r3i4sLGTx4sVMmjSJO+64Aw8PD+zs7PDw8KBr1668/PLLnD59+qq1CiGEuLbLtX+rD4qiYDQaCQ8PZ//+/er9tUcrhahPEihtzNXVVb1dUVFx1Wtrj2bWft5vDR48WN2Ms2jRIq7UanThwoUAODg4MHHiRAB27tyJn58fjz76KF9//TUhISG8/PLLfPbZZ0yePJmMjAzeffddoqOj+fHHH6/vmxRCCHFLnTt3jtLSUgwGA59++ikAkydPpn379jauTDRVEihtzMHBAT8/P+Dq09O/fbxNmzZXvE6n0zFz5kz0ej2HDh3ivffeu+Sab775hlWrVgHwz3/+U+1RdvHiRUwmE1qtljVr1rBs2TJefPFF/vjHP/Lvf/+bEydOEBsbS2lpKY888gjHjx+/4e9ZCCFEwygpKSE7O5tVq1axa9cu7rvvPoqKinjrrbeYPXu2rcsTTZgEykYgNjYWqN5oU1RUdMXrsrKyLnnOlfTp04fFixfj4uLCyy+/zLBhw/j888+ZNWsW48aN49FHH0Wr1fLmm2/y17/+9ZLnT5gwgbvvvvuS+1u0aMEHH3wAVE/Bz5kz57q+RyGEEA3v6aefpnXr1jzxxBOsX7+e8PBwtm/fzquvvopWK//LFw1HfroagdprWq52Yk3tNY8DBgy45uuOGTOGxMREnn/+eTIyMvjb3/7Gn//8Zw4ePMjUqVM5fPgwf//73+s8x93dnc6dO9dZh/lbXbp0UW/LjkEhhGg8XnzxRVatWsXYsWN5/PHHSUtLo3v37gwePBij0Wjr8kQTJo3NG4EHH3yQV199FYD4+Hj69et32es2bdoEVLeJuNwpOZfTpk0bPvroIz766KPrur5nz55X3cgD1DkrXHYMCiFE4xETE6P++09/+hMAo0aNYtOmTXTv3p2dO3cSGRlpyxJFEyUjlI1AZGSkOiK4cOHCy+72Pn78ODt27ABgxowZDbYz8HrIjkEhhGi8jEYjLVu2xMPDAw8PD7755hv0ej0FBQVMmjTJ1uWJJkoCZSPx4Ycf4uXlRUZGhjpaWaO8vJwnnngCRVHo2bMnTzzxhI2qrF43WVNf+/btmTJlis1qEUIIUVftdkE1AgMD6d+/P1DdyePkyZM2qk40ZRIoG4ng4GBWrlyJr68vH3zwAcOGDWPmzJl8+OGHdOnShe3bt9OlSxeWL1+OXq+/ZXWZTCZycnJISkpi3rx5dO3alW3btjF27Fi2b98uU95CCNGI5ObmUlxcXCdQAnWmuRMTE291WaIZkDWUjUjPnj05cuQIn3zyCcuXL+eFF17A3t6eqKgoPv30U5588slbGiYBvv32W7VHJUBQUBDffPMNDz30kE2n3YUQorkrKytjzZo1xMTEqGsnU1JSsLOzu6S1nJ3dr/+7v9qRvELcLBmhbGR8fHx45513SEpKorS0lAsXLrBr1y6efvrpWx4mAYYOHcrGjRtZvnw5//rXv/Dw8OCRRx4hKiqKDRs23PJ6hBBCVDt//jxjxoxh5syZ6n2pqamEhITUCZBQHTRrBAUF3bIaRfMhgbKe9e/fH41Gc81/XFxcbF3qdWnVqhWDBg3i3nvv5YUXXuDgwYM8++yznDx5kmHDhvHdd9/ZukQhhGjW1q9fj8ViwWQykZmZecl0d1ZWltolxMfHh65du9qiTNHESaAUN0Sr1fLxxx8TGxuL1WrliSeeoKCgwNZlCSFEs2U0Gnnuuec4ceIEVqu1TqDMz89nzJgxmEwmAP71r3+h0+lsVapowmQNZQMYPXo077777lWvuZ1PLNBqtTzyyCO88sorFBcX88MPP9h057kQQtzOFi1apN4+cuSIenvjxo3qCWm+vr4MHjy4zvNcXFwIDQ0lLS2Nzz77jO+++4527drh5eWFg4MDR48eZfHixRQUFODk5MT777/P448/fmu+KdHsSKBsAO7u7kRFRdm6jAYlOwaFEKJ+jB8//rL3v/POO+rtfv36XRIoW7ZsidFoZPPmzaxcuZIVK1Zw8OBBdu7cCYCnpyft27dn4MCBTJgwgcDAwIb7JkSzJ4FS1LF27VoMBsMVT+upITsGhRCifiiKctPP1Wg0DBw4kI4dO+Lp6ckjjzxCREREPVYnxPWRQCnqmDZtGi4uLtccdZQdg0II0XgYjUZ0Oh3BwcG2LkU0U7fvQr7bRGVlJUVFRb/rN9D6UFFlIbfYREWV5ZrXJicnk5GRccXHrVYrCxcuVL8eMWJEfZQohBDiJhmNRoKDg23SXk4IkEDZIAoLC3n77beJiIjA0dERDw8P9Ho9HTp04JVXXuH8+fO3rJa9GQU8uWgfMa+to+s7m4h5bR1PLtrHvowr78y2Wq2MHz+ec+fOXfKYxWJh+vTp6sLxiRMn0r59+warXwghxNVVVVWRkZFBWFiYrUsRzZhGsfXQWRPTv39/tm7diouLC1OmTKFXr144OTlx/PhxZs+eTUpKCh4eHnzzzTcMGzasQWtZuDuTf6xIRKvVYLH++ses02qwWhXeGt2OR7vXPU3h3nvv5b///S8ABoOBhx9+mMjISPWc8SVLlqjnwE6cOJEvvvhCfiMWQggbSklJ4ZtvvmH69Om0bNnS1uWIZkoCZT3r378/mZmZbN68mZCQkDqPVVRUMGrUKDZt2oSDgwPbtm2jW7duN/weOTk5LF26lA0bNnDw4EHOnz+PXq+nVatW9OzZk4kTJ+IS0pGxX+zian+4GmDpkz3pEtyizv2JiYn89NNPbNu2jRMnTpCXl0dVVRWurq6EhobSq1cvHnvsMbp06XLDtQshhKhfa9eu5cSJE/zpT3+SI3GFzUigrGfnzp3DYDDg5uZ22cfPnj1LaGgoJpOJrl278ssvv9zQ6z/55JN8/fXXVFZWEhgYyLhx4wgPD6eiooK1a9eyfv16AMJ6DMHa9yms2ivvu9JpNQyO9mXWo51vqAYhhBCNx6effkpISAgjR460dSmiGZNAaQOjR49mxYoVABw6dIiOHTteck1FlYXiCjOujnY46n891cDR0RGTycSoUaP47rvvMBgMdZ43a9Yspk2bBoAhph/e97xw1Vq0Gkh64+467yGEEOL2UFBQwKeffsq4ceOafP9j0bjJphwbqD1VnJCQUOex69lE4+zszJdffnlJmAT4wx/+QLeevQAoS9qK6eyJq9ZiVaC4QvpICiHE7choNKLVai9ZYiXErSZ9KG3Ax8dHvZ2dna3err2JpmYPjVWBTcnn2XAsh7dGtwOgZ8+eeHt7A1BWVkZGRgbp6elkZGSQl5eHd61F2WUpe3Bo/eupNr+l1YCro/wYCCHE7choNBIUFISDg4OtSxHNnCQJG7Bareptna56qnlvRgH/WJGIAnV2ZFPr678vT+Ttz+YR6efG+vXrycjIUFv7tGjRguDgYPr160enTp1YvbJ6p7blYu4V66hZQynT3UIIcfsxm82kp6fTv39/W5cihATK+rRy5UoOHz7MK6+8ctWddrX7O7Zq1QqAuTvSLmnv81saFP6bbmXAmf24ubkREhJC9+7dCQkJwd3dHagOq0uWLPn1Ofor/9ZqsSpM6S3TJEIIcTvKzMzEbDYTHh5u61KEkDWU9enHH3/k73//Ozk5OVe9bvfu3ert3r17U1FlYWNSzlXDJIAVDaesnkz941M899xzjB49mk6dOqlhsqysjEWLFrFnzx71OQ6BsWiw1nkdzf+aCfW0y6T89LHr+t5efPFFNBoNGo2G119//bqeI4QQomFUVFk4kJSCk4tbnWVUQtiKjFA2gLVr1zJx4sTLPpaSksKmTZsA6NWrF7GxseQWm7hGllQpgN7gdskIaHZ2NkuWLKGqqor8/HwAXFxcmPFAL1aeLOSU1RMFDRoUgrSFPNqlFRGeMWzevBmdTkevXr2u+J4HDhzgo48+ur4ChRBCNJi9GQXM3ZHGxqQcrApoiCB18X6m9g69pKewELeSjFA2gJdeekk9Taa2goICHn74YSwWCwaDgc8//xyo3hSjvc5etBoU9u7cxunTp9W1mEeOHGHevHkYDAbuvPNODhw4AFSfsR3j7cgA+zTejTMxvfVpZt7lyGCnDApO7qNHjx707t2bjRs31hnVrM1sNjNlyhQslmufAS6EEKLhLNydydgvdrEp+bw6CKGgYVPyecZ8sYtFezJtW6Bo1mSEsh7FxMSg1+vJycmhU6dOPPTQQ3Tt2hV7e3uSk5NZsGABubm5+Pr6smTJEjp16gSAo17H4BhfNiWfv+q0t04D7TwVjh05xN7dOzEYDBgMBvLy8mjXrh2jRo3i7rvvBiA8PJy33nqLDRs2oNPpaOHuSl5ONp3ax/LLrgQURWHfvn0MGDAAq9XKunXr0Gq1dO3atc57/vvf/+bgwYPce++9au9MIYQQt9b1btyM8nWVkUphExIo69GLL77IY489xrJly9i4cSPbtm1Tp6E9PT3p0KEDI0eOZPLkybi6utZ57pTeoaw/dvW1l1YF/j7mTuKCRpCSksKaNWvIy8sDICkpie+//54tW7bg7e3NSy+9RHh4ON999x1eXl5oNBqsVit+fn54enqi0+nYtWsX3bt3Z9CgQVgsFtasWYNOpyMuLg6obkfxxhtv0LVrV5599lkJlEIIYSPXs3FTq9Uwd0e6BEphExIo65mfnx9PPfUUTz311A09r0sbT0b4XGT1eVc0KCi1ViNoUbACQ1oUEhfkQXZ2NmvWrMFisTBhwgRcXV2ZNWsWS5cuxdXVlYcffhiTycTKlSuxWq2Ehoai1WpRFAWNRkN0dDQHDhzAZDKxf/9+evTowdChQ7FYLKxcuRKtVkunTp148sknqaqqYs6cOVy4cKGePykhhBDXo2bj5rXW2lusChuSzlFRZZF2cOKWk0DZSBw8eBCfiyd5pVtvFu07W2cTTfsWCt3dS6nKTuWLL74gPz8fPz8/xo4di5ubGxs2bODNN9/E29ubsWPH0qdPHwAOHz4MQGJiIm5ublRWVmI2m4mNjWXnzp2Ehoayc+dOunTpgp2dHcOHD8dqtbJixQpWrFjB5s2b+dvf/kbHjh3ZsCnelh+PEEI0W8UV5uveuFlz+pkESnGryaacRqC0tJSNGzfSsWNH/B1MPOB7gb8EneHdbjDB+Qg9Lcf464T7cXJy4vz583h4eDBhwgTc3NyIj49n9OjRuLu788wzzxAVFcV9993Hgw8+iIeHB1qtlnbt2nHhwgXKysr44IMP2L59OwaDAb1eT3FxsRo8NRoNI0eOpE2bNrz//vsEBgYyYsIzPLloH49/9Yta78ojZ+scBSmEEKLh3MjGTTn9TNiKBMpGYMOGDWg0GgYPHkxGRgbBwcE42Glx1lmIDA/FZDIxd+5cTCYTDg4O5Ofnk5CQwNatW7nnnntwdnbm888/x2KxMHz4cHQ6HYqiUFhYSMuWLbn77rvp2bMnjo6O9O7dm5KSEsrKyjhx4gROTk7Ex8eTk5OjTomvXLmS8vJywvqNZvz8Q2xKPo9S67fjtNxS2VEohBC3SM3GTd01UqVOq2FIjJ+MTgqbkEBpY+np6Rw5coRBgwYBkJubS3BwMDqdDqvVSnBwMFDdcmjChAlMmzYNvV7PggULGD58OE5OTqxevZr09HTatWtHSEj1yTenT59mxYoVLFiwAACttvqPuk+fPkyePJlHHnkEADc3N8rLy5k1axafffYZr7/+OsuWLWPEAw+RHjAEuHRHoaIoKFTvKJSRSiGEaHhTeode+/ALOf1M2JAEShsym82sXr2aoKAg7rjjDjIyMgAICQlBp9ORl5fHxo0bgeojFX19fXF3d6ddu3YsXrwYq9XKnDlzyM3NxWw2M2TIEPW1Dx06RF5eHmfOnAFQN+XUCA8Px93dncDAQCIiInBzc8Pb25uPP/4YZ2dnCoPvuuYPR82OQiGEEA2rc5AHQzwLAOWSkUqdVoMGeGt0O9nhLWxGFlo0ELPZzMKFC/n+++85dOgQ+fn52NvbExAQQN++fZk2bRpFRUVcuHCBcePGodFoSE9Px8vLCycnJ/Lz8ykuLqZLly6UlpaSnJxMUlISZrOZxx57jMrKSgYPHqy28unWrRv79+9X33/Dhg3qFDlUB8qaRuiAutv76NGjjBs3jnnz5rFr1y4uXrzIJ//5lE/O+nOtNeCyo1AIIW6NvXv34l+exqwHHmb58WI2JJ3DqlSvmRwc7cuU3iESJoVNSaBsAOfOnWPEiBEcOHAAe3t7Hn/8cTp16kRRURHr1q1jzpw5fPnll/Tv35+XX34Zb29vADIyMmjdujVff/01JSUl+Pn5MWJEdc/J5ORkfv75Z958802KioqA6tBYY/78+ZetpU2bNsClgRKqG7Hv3r0bq9VKVVUVP/zwA/369SM8pgPK2eLr+l5lR6EQQjSskpIStmzZQlxcHHd3acvdXapbCRVXmHF1tJO/f0WjIIGynimKwgMPPMCBAwdwcHBg165d3HHHHerjL730Ei+++CIffPABmzdvZvz48QAUFxeTn59PSUkJDg4OBAYGqqOLoaGh2NnZkZGRcdP9IH8bKK1WK/b29jg6OrJixQrmzJmDVqulbdu2bIvfgLUsGoVfp1WsprJfv0ezCUtZdajVasBRd539LIQQQtyw+Ph4tFotAwcOVO9z1OskSIpGRQJlPduxYwc7d+4EYNq0aXXCZI0xY8Ywc+ZMSktL+eCDD3j88ceJj6/u8+jt7c1DDz3EmjVrqKioAECn0xEVFYXFYmHLli3079+f0tJSPvvsMyIjIykqKiIzMxM3NzemTJnCxo0bOXLkCM8++yyenp4AmEwmFEVh06ZNnD17ljNnzlBZWQlATk4O58+fB2DOnDnX/B4v7lnGxT3L1K/3j66uSQghRP3Kysri0KFDjBgxAoPBYOtyhLgiCZT1bO/evert7t27X/J4WVkZP//8M+Hh4Rw+fJikpCS+/fZbUlJScHJyYsKECeh0OnQ6HRaLRX1ebGwsiYmJHDx4kH79+rFp0yYABg8ejJ2dHXPmzKGgoIAFCxZQUVHJ6KT3AAAgAElEQVSBTqfj+PHjnDlzhqysLHWa/PDhwwQEBNCnTx/8/f2xWq189dVXLF68mKqqKuLj4zEYDJwtVdhjDoT/jVJW5aRxYcs8AJxj78K5/UA0wN9HRNOxY8cG+jSFEKL5slqtrFmzBj8/P/VIXCEaKwmU9axm1A+47G+TmzZtwmKxEBQUpDYUP3LkCF5eXsTGxqLTVU9h/HaKOiwsDJ1Ox8WLF9m3b1+d31gLCgro3LkzmzdvJjc3V33O5s2badWqFTExMZjNZvbu3cuzzz6LXq9Xr1EUhRYtWuDp6UlMTIy603z4HXfQNlvhhwwdGhTKNb/u+dZ7tsIQ3Im3Rrfj0e5t6ueDE0IIUceBAwfIzs5m0qRJaus3IRorCZT1rEOHDurt48ePM2TYCHXhdM7ZLA4ePMjw4cOZO3cuAI6OjkyYMIElS5aoPSeBS0Yo9Xo9kZGRJCcns2nTJlxcXEhOTiY+Pl6dGnd3d1dHIt3d3Zk+fboaHo8ePcrevXvrtA6CX3d7Hz58mF9++QWNRoOiKPj6+uJ6cB3Pt4tjWVIhJ2o9J8DNjq+e7Ck7CoUQooGUlZWxefNmOnbsSGBgoK3LEeKaJFDWs6FDh9KhQweOHDnCm+//m5nnw0DviFYDYY6l9GwRzObNm0lNTQVg8uTJmEwmgDqBUqvVYjab1SnrM2fOcOrUKRRFobKyEo1Gg06no0ePHgQEBNC6dWucnJz46quvOHXqFEVFRaxdu5ZRo0ah0WjU325/GygtFgunT59WWwxNnTqVJUuWEB8fT0BAAF7OFu73KWDfmZMs+t9zop3LJUwKIUQD2rx5M1arVT30QojGTgJlPdPpdEx5ey4vPj2V0szDVM7/Mx59HkXvG8oxUwn7Nh+gOOFbAB544AE++OADNmzYgI+PDyaTibS0NLKysjh+/DglJSXMnTsXnU6Hn58foaGhHDlyBIC7776bTp06XfL+Fy5cUKfLDx48iMFgYNCgQWg01Wsha0+jFxYWMnfuXEpLS9HpdHTq1AkvLy/8/PzIzc3F3d2dpUuX4u7uTmZaqvq8Y8eOMX/+fHQ6Hb6+vgwePLghP1IhhGhWsrOz2b9/P0OHDsXFxcXW5QhxXSRQ1rO9GQV8lHAen4f+SdmJBAp/nk/uT+/UucYpvBuv/fkpxgztw969e0lMTATgP//5DwCenp44OjpitVp5+OGH8fPzw87OjmXLlqkbdg4fPnxJoDSbzRQXFxMQEICvry8HDhwgISEBg8FAixbVI4o1gfLYsWMsW7YMq9VKv379KCsrIzk5mZ49e5KcnIyDgwOLFy9m+fLll3yPSUlJTJgwAYB+/fpJoBRCiHqiKApr1qzBx8eHbt262bocIa6bBMp6NndHGtayC+St/z/KTuxC59YSj/4T0LcMQjFXUpF+gJLELbz73vsk79lCZGQkZrOZmJgYOnbsiL+/P87OzsTHx3P06FECAgKA6qbnR48eJS4ujgMHDpCRkUFhYSEeHh7qe6ekpAAQGRlJr169KCwsJCMjg40bN6o7zq1WK6tXr2bfvn3Y2dkxfvx4goODycjIYO/evSxfvhwHBwf69u2LyWQiLi6O/v37k5CQwIwZM1AUhc8//5zAwEDuvffeW/8BCyFEE3b48GGysrJ4/PHHZSOOuK3IT2s9qqiysG6/kbMLXqDsxE703kG0mvQp7j0exBDeDeeo3ngNexafB16l6PQJFixYQGlpKQAjR46kbdu2ODs7A9VT5zWjiRaLhTVr1hAYGKhOX9eMUtZ29OhRADp27IhWq2XMmDF4eXlhb2/Pnj17AFiwYAH79u3D09OT559/Xl23GRQUhKOjIxkZGQwZMoTOnTtjZ2eHk5MTlZWVODo6Ar9u4jl+/HidTUNCCCF+n4qKCjZt2kS7du3qrKkX4nYggbIeFVeYKdi6EHPhOQA8Bz6BzvHS9S9OoZ1xjr0LRVF4//330el0ODk51blGq9WqgW337t3k5eUxfPhwnJycCAsLw9HRkUOHDtXZZHP69Gns7e1xdXUFwMHBgYcffhi9Xo+dXfVgdF5eHrGxsTzzzDN12hpZrVYURUGn09GuXTsURcFqtVJaWkphYWGd+mJiYqioqFBbDAkhhPj9fv75ZyorK2UZkbgtSaCsR872WsqStwGgcTDg2KbDFa81tK2egjabzezfv/+S3dc1I5QXL15k69atdOvWDT8/P6A60NUEvVOnTgHV/S9LSkrw9fWt8zoeHh60b98es9kMVAfV3r17q5t0auzcuZPKykosFgvZ2dlkZWVhtVoxGAxkZWWpI5QAfn5+eHh4kJycfNXPo6qqinnz5jF8+HD8/Pywt7fHx8eHfv36MWvWLLUmIYRo7nJycvjll1/o168fbm5uti5HiBsmgbIeFRcWYK0oAcDOzeeS0FZDg0Ibr19HLpOSknj77bdZsGABKSkpWK1WtQ/l+vXrcXBwqHO0YWRkJFDdOP3QoUNUVFnYfSgJs1I9HV3DarXy7bffsnv3bnWEsmazTe0zwQsLC9m+fTvdu3fHYDCQlJREamoqBoOBO++8k8LCQrXhOtSd9q69a7y21NRUOnfuzOTJkzl8+DBTp05l1qxZPPPMM5w5c4Zp06bRrVs3cnJybvBTFkKIpkVRFNauXUuLFi3o0aOHrcsR4qbIppx6VHcBtXLF6xQ0dPeBff/72sXFBYPBQHp6Ounp6eh0Ojw9PamqqiIpKYn777+/zgihwWAgJCSEY+crWL2vhOf3rMOqgIY4zh7XoG9VQNsWdnz55ZdcvHiR1q1bM2jQIBYsWEB5eTnOzs4sXLiQSZMm4eLiwrp163BycuKuu+5S39PJyYnQ0FC6dOlCfHy82jC9RnR0NLt27eL06dO0aVP3tJyCggIGDx5Meno67dq1Y9u2beqZ4gB/+ctfGDJkCAkJCQwbNozdu3djb29/05+7EELczo4dO0ZmZiaPPvponV/ehbidyAhlPfLy8lLXL5qLzqOl7uidVgOgMMDtPL1ifg1hNT0gp0+fTrdu3XB0dCQvLw+oHg08evQoaWlpdUYDTzm0YUl+azLNblj/l10VNPxsLODBL3Yx7d+LuXjxIj179mTq1KlqYIuKiqK8vJyKigoWLVpEYmIiJ06cYOjQodjb2xMTE0NhYSHZ2dmEhYVhb2+Po6Mj+fn5FBcXq+8fEBCAq6vrZae933rrLdLT0wH49NNP64RJqA7ENScFHTx4kM8+++wmPm0hhLj9mUwmNmzYQFRUFGFhYbYuR4ibJoGyHmm1WoYPHw6AUllOVFXa/0Jk9TR3mH0JXz3SnihdrtpzEuCee+5h586dLFq0iJCQEP7yl78QEhICVB+5mJKSwsKFC3n33XdZsmQJK3Ym8uWhkv+9at0/Qsv/0mVCZSAdBoxmyJAh1e+v0bBnzx4mTZrEP/7xD1JSUigoKGD58uWEhIQQExMDVJ/WUxM+Q0ND1edqtVp27dqlvo9GoyEqKork5OQ66z+tVivz588HwNfXt85UfW1RUVHExcUB8PHHH1+yhlQIIZqDbdu2UV5eztChQ21dihC/iwTKevbaa6+pu6dPLv+UZQ+34SGHQ8wZ4kpvzXFifBxxcHBQ2/jExcXxyiuv8NRTT+Ht7c2SJUuYP38+mZmZQPX08JQpU4iNjUWj0XD8+HE+Wn2Iq02pA+i0WtZnVm96SUtL48EHH2Tt2rWUlZUBqO2JanaS1wQ6rVaLq6ur+m+o/g06ODiYffv2qc+H6s1BFy9e5OzZs+p9KSkp6vrM2NjYq9bYsWNHALKysti9e/dVrxVCiKYmLy+P3bt307t37zo9hYW4HUmgrGfR0dGsWLECb29vUlNTGdCvL1vXr2Ln9q3s37+f+++/n+eeew6o7v348ccfo9FoaNGiBY888gjjxo3jzJkz6vS2yWTC39+fBx98kBkzZjD24T9wyuqBwuU3/NSwWBXWH8vmo0/+Hx06dCAxMVFtkg7QvXt3qqqqcHJyIiMjg5UrV6IoCoqiUF5ejtVq5dy5c5jNZsxmM23btgWoE/yCgoLUTTw18vPz1dvX2qlYc3oPwC+//HKtj1YIIZqMmo047u7u3HnnnbYuR4jfTTblNIBBgwZx/PhxvvzyS1avXs3evXvZt2+fOur34IMPEhQUhLe3NwkJCcTExPDXv/5VnSqu7fXXX7/i+zhF9MDngVev+PiF7d/wl4RvGTp0KO+//z5/+tOfyMrKAiAxMZEWLVpQXl5O69atOXToEE5OTsTFxVFWVoa9vT1JSUnqCTvu7u506dKFX375hV69euHo6IhWq1WnvWsartfubVlRUXHVz6mqqkq9XTuUCiFEU3f8+HHS0tJ46KGH1C4cQtzOZISygbRo0YIXXniBLVu28OKLL7Jnzx4OHjzIM888w6xZs/Dz8yMuLg53d3e+++67mzp1Rud87SmSCZMm85///IfWrVvXuf/MmTOMHDmS+++/nzNnzhAaGsquXbvYtGmTGhSTkpIoLy8HwNHRkZ49e2I2m+uMJkZHR3PhwgW1/U9oaKi6SzE1NfWqtdVujF6zCUkIIZq6qqoq1q9fT0REhDr7I8TtTgJlA9NoNNjZ2VFVVUV4eDh2dnbs37+fsrIywsPDGTduHCUlJWqD8meffZZdu3axfv16pk+fzu7du1m9ejUzZszg2Wef5auvvsLFq7rBuUv7gVd8Xy0KnfoPJzgokG+//ZZZs2bVeTwwMJDIyEhiYmIYNGgQaWlpREREcOLECTw9PWnfvj0FBQWknzpDuWKHRu+Aq6srcXFx7N69m8rKSgBCQkJwcHBQd3u7ubmp0zcpKSmkpaVdtj6TycS2bdvUr2vvIBdCiKZsx44dlJSUMHTo0Cv2KxbidiOB8hbQ6/VUVlZib29PWFgYycnJ6HQ6AgMD8fLy4v7771f7PI4ePZoePXrQtm1bvL29iYiIYPjw4bz55pvce++9JCQkUJJ/Dr13MA7+0Vd8Tyvw1IAopk6dSlxcHA4ODnUeLy0t5ciRI1gsFnr16kVcXBxGoxGNRkN+fj4HThfxszmCcT9k8Z2pE/0/28+Ti/ZhaNMek8nEvn3VXTR1Oh2RkZF12ge9+uqv0/AzZsy4bH3vvfcehYWF6tfSe00I0RwUFBSQkJBAz5498fLysnU5QtQbCZS3gL29vbpeMCoqisLCQvz8/NDr9QBEREQQEBBAYGCgerxiTZP0mqlwvV6PxWJh7969ALSP60p158nfHNmo1aABHggyk7x9NQcOHGDYsGFMmzatznUFBQX89NNPvP3228yePRtfX198fX1RFIVzLhG8uCGbTLObuvnHqsCm5PNMXHSEYt9O7Nq1Sz06MTo6mtzcXHXaevDgwfzzn/8EYOnSpTzwwAPs3LmT7OxsDhw4wDPPPMPrr7/OyJEj1XrkqDEhRHOwfv16nJ2d6dOnj61LEaJeyUrgW0Cv16uBsma9jJOTk/p4cnIyXbt25d577+W///0vvr6+6oidxWLBbDbz9ddfk5qaSlJSEgaDgVlvvcCSzfvYe9GFU1ZPFDRoULizjSvPDmlH5zaeHDgQyNq1azlz5ozaH7PGuHHjcHZ25siRI5w7d461a9cCkGN1YW2eG6Dht4cq1vS4/D5dywj76qbkXbt2JSwsDL1eT1JSEn379gXglVdeoVOnTrzxxhssW7aMZcuWqa/Ttm1bFixYQKdOnVi1ahUA3t7e9fNhCyFEI3Xy5ElOnjzJmDFj5HQw0eRIoLwFagfKixcvAtVTzgCVlZWsW7eOyMhIRo8ezZw5c1iyZAkjRowAqjerzJ8/n4qKCrKzs6mqquLRRx+la9eulJaW4rp1Kxa0VCpaDHotPYI70yW4uh1P586d8ff3Z+nSpZfsIHdycqJv37707duXqqoqDh48yMaNGzlW5osG5aptiXRaDaedI0hISCAuLg69Xk/btm1JTk5WAyXAiBEjGDFiBLm5uaSlpWE2m/H39yc4OBigzhrK9u3b/85PWQghGi+z2cy6desICQkhOvrKy5WEuF3JlPctUDtQpqeno9FoyMnJoby8nK1bt1JeXs7dd9+No6Mj48aN48KFC2zfvh2AZcuWYTKZGDp0KAcPHgTgiSeeAMBoNALw9LQncXfQopgr2b9/PwUFBep7+/n58fjjj1914bder6d9+/aYzNb/jXZe/cfCYlVILNSRX3iRI0eOANXT3ufOnVObmtfm7e1N9+7dufPOO9UwCdTZsNO5c+ervqcQQtzOdu7cSVFREcOGDZONOKJJkkB5C9QOlBkZGfj7+2O1Wtm3bx+7d++mT58+6ikJPj4+jBo1Sg2LdnZ2TJkyBYAjR47QoUMHevToAUBOTg5ubm74+PjQvXt3tFotlZWVzJw5ky1btqjvuXPnzkv+AqsZKTWbzWRmZrJmzRoqFe01zt/5lVWB4IgoduzYgdVqJSIiAjs7u8ue7X0lNe2HgoODJVAKIZqsoqIitm/fTvfu3WV5j2iyZMr7FqgJlFarlczMTHr27ImiKOzatQtPT0969eqlXltSUkJ8fLz6dZ8+fWjdurW6c7pmdDIvLw+z2ayO+MXGxqqjmmFhYSQkJHD48GF69OjBnj17GDBgABs2bFBfd/ny5Zw6dYrCwkIsFgtarRaD3g6N6VqHOlbTamBAn14s+OpLjh07Rvv27dUd7O3btyc+Pp6OHTuqZ5L/lsViYfXq1QBMnDhRfmMXQjRZGzZswNHRkX79+tm6FCEajIxQ3gI1gfLcuXOYTCZCQkLw8PCgvLycwYMHq6ckpKSk8Mknn1BUVESnTp0ASEhI4PTp0yxZsgSDwcCjjz4KwKFDh4Bfz8P28fGhRYsWGAwG7OzsmDZtGt7e3qxfvx6dTkdubm6dmmraA/n7+zNp0iRcXV3pckdHBrT1umTn+G/ptBqGxPgREhRAeHg427dvR1EUoqOjycrK4tixY9x33328//77V3yNRYsWcerUKQIDA/nrX/96cx+sEEI0cmlpaSQlJTF48OBL2rcJ0ZRIoLwFagJleno6er0eLy8v0tPTgV/bAm3cuJFvvvkGgIceeohBgwYB1f0ZZ8yYQVlZGePGjcPd3R2oDp8ajUYdodRoNERHR2MymTh58iQJCQlkZ2er73H06NE6Nf3hD39gxIgRnDlzhpUrV1JUVFQdSnMPXXOE0mpVmNK7euSxb9++5Obmcvz4cSIjI9FqterayIULF172SMXt27fz9NNPYzAY+Pbbb+sc1yiEEE2FxWJh7dq1BAUFycZD0eTJlPctUBMoMzIyCAwMZNu2bVRVVdGyZUuSkpJISEjg7NmzuLq6MmXKFNzc3NQjD3v16sVHH30E/DrdrSgK+fn5eHp6kp+fT2ZmJqdOnSItLU0NqGlpaZhMJgIDA7nnnns4cuQIW7ZsUWvSaDR06dIFf39/Fi1aBMCmTZto4+LCy11CeWdjGlrAWmu3d/XubxjVupzObTyB6hN3goOD2b59O1FRUYSGhqqBsqysjG7dujFp0iTatWunbkL673//i7+/PwsWLFBP1RFCiKZmz5495Ofn88ADD8iyHtHkyQjlLaBo7bhQbiEt8zReXl7s3buX/v3706ZNG44dO8bZs2eJjIzkueeeUxt81/ShzMjI4Ny5c/j6+qLRaDh79iwbNmzAYrFQVFTEzJkzWbNmDfn5+bRv3x4nJyd0Oh0GgwGdTseYMWNo2bIlAwYMqPMXWnx8PAUFBbRq1YoWLarbDNUE0C4eFQy3P0G/cE+0/3uKVgOh+mIe9j6HV0ESO3bsUF+rT58+ZGdnk5qaqo6Szps3j8mTJxMWFsZ3333H008/zXvvvUdBQQEff/wxx44dk/VEQogmq7i4mK1bt9KlSxf1wAohmjIZoWxAezMKmLsjjQ3HTCiEokFh275Surr6q2d6Q3XLnNqnxsCvgbJm9LB3796sW7cOQA2GHTp0IDY2lsDAwDpNcvfu3Ut2djZDhw7F1dVVvb/m9B2AwsJCZs6cqa57dHd3p1u3bmzevJnExES6hwbw+ON3UlFlobjCjKujHXk52cyfPx9Pb2+2bNmijk6GhIQQEBDAtm3bGDt2LHq9ng4dOjBx4sQG+FSFEKLx27hxI3Z2dtx11122LkWIW0JGKBvIwt2ZjP1iF5uSz6trEhU0GMsd+ea8Lx+v3Ie9vT1ubm4oSvUVJpMJo9FIfHy82sw8Pj4ee3t7hg4diru7O05OTri7u6PT6Rg1ahRhYWF1wmRkZKQ67R0bG1unptojlKNHjyYiIoLExEQA4uLi6NmzJ4MGDcJsNnPmzBmSkpJw1OvwdnXAUa8jICCA++67j9zcXNzc3Pjxxx8pKSlBo9HQp08fTp8+TV5eHm3atLmh9kFCCNGUZGZmcvToUQYNGlTnVDQhmjIZoWwAezMK+MeKRBR+Pa6wRk3T8F3mIJ4Y1YGcxJ0cOXKEs2fPkpOTg6IoODs7ExQUxNGjR6mqqmLixIlMnTqVkpISvvjiCwoLC/Hx8bnsmpya87Sheh1l7c04586dU29/++23FBYW4uzsrL7O6dOnKSkpISAgADc3N5YuXUq3bt3q7ESPiYlh4MCBxMfH4+DgwI8//sj48eOJiIjAz8+P7du3Ex0dzfr16ykvL5e/TIUQzYrVamXt2rX4+/ur3TqEaA4kUDaAuTvS0Go1l4TJ2jTA699uZYB99QYWZ2dnRo4cSVBQEF5eXmg0Gp577jkA/vjHPwLg4uJCnz59WLt2bZ3p6xqlpaXEx8fTsmVLCgoKMBqNjB8//rLvP2/ePPV2dHQ0L730EqtWraK0tJR27doxatQogoODWb9+PadPn2bMmDF4elZvxLnzzjspKCjg0KFDZGZm8vPPPzNgwAD69OmjhlCr1crJkyfVtkZCCNEc7Nu3j5ycHKZMmSIbcUSzIlPe9ayiysLGpJyrhkmonv4+ZW3Bk089jYuLCy1btiQuLo6WLVui0WjUdZDh4eF069ZNfd6ZM2eA6tHGml6UNTZt2gTAgAEDsFqtpKSkYLFYUBQFRVH44IMPmDdvHq+//jrx8fGUlZXxxhtvsHDhQqKiovD19cVgMJCcnMz//d//4erqyqRJk6ioqOCLL75QWwBpNBpGjBhBcHAwOp2O7du3YzQaiY6OpmXLlhw4cIDAwECZ9hZCNCulpaVs3ryZuLg4/P39bV2OELeUBMp6Vlxh5hpZUqUAqzfE4+bmxtGjR7l48aK6nnL27NkA3HPPPXWek5GRgV6v54477mDVqlWcPXsWqJ6uPnToEAMHDiQyMhIHBwdMJpPai9JqtVJZWcmpU6cYPHgwAwYMIDMzE0VRCA0N5dy5c6SlpXH33Xczbdo0WrZsyZIlS/j5558ZM2YMYWFhLF26lLVr12I2m9HpdIwdOxZ3d3fs7OxYtmwZFy9epE+fPpw8eRJ/f3+MRiMmk6l+PlghhGjkNm3ahEajYeDAgbYuRYhbTgJlPXN1tFNb7VyLBgWlspy8vDzKysr4+OOP+fe//82cOXNYvHgx9vb29OrVSw2ZVquVixcv4uPjw/Dhw/H19eX777+nuLiY1atX07p1a+Li4tBqtcTExKDRaNRRyp9++omqqirCw8PVox5TU1Np0aIFnp6eJCQk4OHhQWxsLF5eXjzyyCOMGzeO8+fP8+WXX+Ll5cWQIUPYv38/X331FRcuXMDR0ZE//OEP6PV6KisrWbp0KdHR0Wp/TIvFQkpKSkN91EII0WhkZWVx6NAhBgwYIIc1iGZJ9/rrr79u6yKaEjudlqTsi2Tkl6FcZaRSi0KQ9gIR+kL69+9PZmYmbdu2/f/t3XtUlded//H3OYfDReQiogcULwgaRSQqRMRgxCSIRhKdsUlMk2iqMZo0v07bmbaTzGRSm07bWatrzWTVpGpMl81lakzbJOMNxQtGCuKNKBeNRMQogiBEbnI/z+8PxjMSFdEjHi6f1z8eeZ7z8IW1lA977+/ehIeH09TUxJQpU4iNjaWsrIzMzEy++uorTpw4QWVlJWPHjiU8PJzRo0dz8OBBcnNzuXjxIgsXLmy3j+WxY8e4fPkyp06doqCggH79+hEWFkZYWBgA27dvZ9SoUQwaNIjNmzfz4IMPEhISArRNawcGBhIdHY1hGGRkZHDx4kXi4+M5c+YM+/fvZ+DAgQwbNowRI0bwxRdfUFVVRXNzM2PHjmX//v0EBgZSX19/Tbe5iEhvYrfb+eijj+jfvz/JyclaOyl9kkYou8Dz8aOwd2IN5asL4ggKCmLLli0YhsHZs2d54IEHeOqpp/jxj3+Mn58fERERTJ8+HR8fH86cOQO07TP561//mo8++gibzUZlZSUDBgwgMDDQ8fzQ0FDHGd5FRUU89dRTeHp6OkY7v/nmGyorKwkLCyMjIwMvL6/rdiRarVYefPBBxzR4amoqAQEBhISEsHHjRlJSUggODubv/u7vANi/fz8eHh74+vri5uZGQUEBzc3Nd+pbKyLS7WRnZ1NSUsKcOXOu2zAp0hdohLILDPX3ItDHgz0nyrCYTe1GKi0mMDB4dqw7y+bcx/jx4xk3bhwlJSVcvHiR7OxsPDw8GDx4MNnZ2QQHB/Pggw8SERFBVlYWJpOJRYsWMXjwYKBtTWVLSwsNDQ2kp6eTm5vL2bNnKSsro7i4GLvdzgMPPMCkSZM4dOgQ/v7+hIeHk5+fT0FBAQkJCWzatIn4+HhCQ0Nv+DX169ePCRMmEBQURE5ODmVlZYwaNYq8vDwKCgqIjY3F29ub06dPU1BQwH333Ud+fj6tra0MGTKkXdgVEekt6uvr2bBhA+PHjyc2NtbV5Yi4jAJlF4kK8Sc+PJCq+mYKL9Zi0HZ84ayIIBaG2bn8ZQahoaH4+fnRv39/IiMjyczMxNfXl+zsbI4ePUpLSwsDBgxgzJgxNDc3s3v3boYNG8aMGTMICQnB09OTw4cPM3fuXAzDoKqqitDQUCorK8nNzcVut8JMVOIAACAASURBVANta3uKi4uprKzEYrEwfPhwDh48iJeXFw0NDZSUlLBgwQLHXpM38u1p8JycHPr160dDQwMHDx5k8uTJWCwWSkpKqK6uxmw2Y7FYMAyDcePG3YXvuojI3bVjxw5KS0t56qmn2h0yIdLXmAyjo5V+cidcfXyhp9WC3W5n/fr11NTUsHz5cjw9PQHYuHEjVVVVzJs3j88//5y8vDzc3d1JTEzEbDazadMm5s6dS0xMDK2traxZswYPDw+WLFlCS0sL7777LvX19RiGgdlsZu7cufzpT3/CZDIxcuRIioqKHCETwM/Pj9raWkaNGkViYiIDBw68pemaiooKUlJS+Oqrr/D29qauro4pU6Zw9uxZSkpKsNlslJWVYbVa+cGP/pHLzYbjeyAi0tOVlJSwdu1aZs2aRVxcnKvLEXEpjVDeBW4WM94ebrhZ2sLalYCXmZnJpUuXHKN3drudAwcOEB8fz+TJkzlx4gRms5mcnBxOnTqFYRjMnz8fq9VKZmYmeXl5PPXUU/j4+GCxWPDx8XGcD/7CCy8wZMgQioqK+Oabb3jiiScoLi5mxIgRTJw4kcLCQry8vKivr6eyspKDBw+SmZnJyZMnKSkpoaamBgAvL68bhsyrp8ELCwtpbm7m3Llz9O/fH7vdzqVLl7ho8uNv9cH8Zu951u4r5O20r8gvqSbY15Mh/jpFR0R6JsMw2LhxIx4eHsybN09rJ6XPU6B0ES8vL3x9fdm7dy+BgYEMHjwYPz8/MjMz8fPzIyQkhJycHGw2GwsWLODw4cMYhkFubi7Nzc3s27eP6OhoJk2aBLSdHfvxxx/j7+9PbW0t7u7uhIaG4ubmxvHjx3F3d6empgYfHx/c3d0d+1dOmDCBZ599lrCwMAIDA2ltbaW4uJijR49y+PBh0tPTyc/Pp7i4mEuXLtHS0oKnp6djevzb0+Dnzp2jrq4Ou91OfvNAdjWGUm14YNDW9WgARRWX2XjoLIE+HkSF+Lvk+y8i4oxjx45x4MABvvOd7xAQEODqckRcTkcvulBUVBQFBQVs2bKFYcOG4efnx6hRozhx4gSxsbFYLBZaW1vx9fWltbWVESNG4Ovry549ezCZTPj6+tLS0kJhYSEff/wxw4YN48knn+TAgQPs3r2b4OBgxowZg8lk4vjx4/j6+mK32yksLGTAgAFcuHCBadOm4eXlRWhoaLumnObmZi5cuEBpaSklJSWUlpaSm5tLa2srAAMGDCAoKIigoCCCg4MJCgriwQcf5N5772XLli3sP1VOZvNw2nbbbL+FxpVThF77NJexNh9iRuo/YxHpORoaGkhNTWX8+PEdNjOK9CUKlC505QjD1atX8+mnn7Jo0SLGjh3Lli1bqKurcwTK7OxsAKKjo+nXrx85OTmEhISwa9cu0tPTaWxsZPTo0Tz++OO4ubkRHx9PSUkJn3zyCcuWLcNms1FaWuoIoGfPnsXLy4uIiAgGDhx43dqsVishISGOfSmhbUr+4sWLlJSUOEJmRkaG4zQcb29vgoODGTJkCCXlgZgu2uloga7ZbGJd+mkFShHpUdLS0mhqamLWrFmuLkWk29CUt4tZrVaCgoLYu3cv7u7uREZGkpGRQWBgIBUVFRiGQWlpqaNZZ8OGDdhsNp577jmg7bQbgMbGRqxWKzabDYvFQnh4OHl5eeTl5TFhwgROnz4Nbu7UNUNNdRWtLc3Mnz8fHx+fTtdqMpnw9vYmKCiI8PBwJk6cyP3338+9997L8OHD8fHxoa6ujhMFp9hcEXDNyOS3GQYUXqxl+QNhjvWlIiLdWVlZGZ999hkJCQmMHj3a1eWIdBsKlN3AgAEDHOsiIyMjKS8v55tvvsHNzY2WlhbOnz9Pv379MAyDL7/8koULF5KdnU1aWhqxsbHMnz+f2tpaMjIyyM7Oxmw2M3ToUMLDw9m/fz9fX7aSWuHLjmobmZe8yWkNpsFrEPdFhDvdGHNlu6Ly8nIqKyuprq6mqrGVI5c7N+poAIvjRuLtocFyEeneDMPgL3/5CxaLhfnz56sRR+Qq2jaom7iy7U9LSwsTJ05kz549hIaP4WJVHRdLzjJuTDinT5/mvvvuAyAzM5OEhAQeeOABxzFflZWV7Nu3j6NHj+Lt7c20adPYVwpvH6jABO1GDC0msBvwxvxInokdcdPaiouLOXfuHKWlpVRUVFBTU0N9fb1jTeUVJpMJi7sn66oibjpCCW17c+avnK2thESk28vNzeUvf/kLTz/9NOHh4a4uR6RbUaDsRsrLy1m7di1ewyP57EQNX9v9MTBhwmBMvwYmuJcTf08wR48eZfbs2Tc8leFKsNx+5Cu2Nt0DHQQ7E/Dx8jiihvTn66+/pri4mAsXLlBZWUlNTQ0NDQ3t9q4EMJvNeHh44OPjw4ABAxg8eDBDhw5l+PDheHm1jXgu/+AQO4+XORpwrseMwfQwf/74fPwtf69ERO6mpqYmVq1axdChQ3nyySddXY5It6NA2c38csNe1h2tuWZE0YQdAxPTrF/zswVt6xZvZskfMkkrqMDeYaA0GGG+xEz3U+0+brFY8PT0xMfHh4CAAGw2m6NJpzOnQRwsquSJNZkdNuWAwSPuX5IcO46HHnoIDw+Pmz5XRMQVdu7cSVZWFi+99BIDBgxwdTki3Y4WrnUjB4sqefdoLW0xrz2DtrU6Gc0jaPYbdsNnVFdXc+bMGYrOFrOnoOXmjTGYOGP3Z2xkFMOCbQwbNowhQ4ZgsTg3BX3fyADemB/Ja5/mYjab2o1UWswm7HaDXzwWSTgD2bNnDydOnGD27NmMGzfOMYUvImIYBqtWreKVV16hrq6OPXv2kJCQcNP35efns3HjRtLS0sjPz+ebb77B29ub0NBQZs6cyYoVKxgzZkynarh48SKZmZlMnz5dYVLkBjRC2Y10ZprYYjYxI3wA/2+iJyUlJZSXl1NVVUVdXR1NTU2O++oNNzY0Tuz05z746sMM8rnzI4SHiipZl36aHfml2I3/O8/8+fhQx3ZBVVVVbNu2jS+//JLRo0fzyCOP4O+vDc9F+rrCwkKWLFnC3r17HR+7WaAsLS1l0aJFpKamAhAbG0tSUhLDhw+ntLSUDRs2kJubi9Vq5Ve/+hX/9E//1GENhmHw4YcfUlFRwUsvvYTVar0jX5tIb6NA2U00NLcS8XoKHWRJBxMGz3gcwc3UdrO7uzve3t74+fkRGBjIkCFDsA0JIf7NA5163t1ojPn2eebXc+LECbZt28bly5dJSEhg6tSpTo+UikjPc/WopMViISIigv379wM3D5T79+93nKv9y1/+kldffbXdrEdrayuLFy/mww8/BGDNmjW88MILN3zeiRMn+Oijj1i4cCH33HPPHfjqRHonTXl3EzUNLZ0Kf9A2TZ34yGPce08ofn5+N7wvMcLWqRHPxHG2Lu+y9rRabvo5xo4dS2hoKGlpaezatYtjx46RnJzMsGE3nuIXkd5n5cqVrFy5kqSkJN555x3effddR6DsrNjY2GvCJLStD1+zZg0pKSlUVFTws5/9jEWLFuHp6XnNM5qbm0lJSSE8PLzT0+MifZU20eomfDzdMHdy6aDZBFMmTegwTAI8Hz8K+01Sqt1u8Hx89zk6zMPDg6SkJJYtW4abmxt/+MMf2Lx5M/X19a4uTUTuonXr1pGSknLbv1A++uijN1yP7e3tzezZswG4dOkS+/btu+59f/vb36itrWX27Nla2y1yExqh7CY8rZY7PqLYmcaYN+ZHdsujD4ODg1m6dCmHDh1i165dnDhxgqSkJCIjI/Ufu0gv9/rrr9/2v/OxY8eyadMmoqOjO7xv+PDhjtdff/31Nde/+eYb0tPTiYuLu+ERtSLyfxQou5Hn40exI+9Ch/fc6ojiM7EjGGvzuaYxJnGcrV1jTHdkNpuZMmUKY8eOZfv27fz1r3/liy++YO7cuQQEdN+6RcQ5zvzS6O/vT3Jy8k3vq6qqcrz29va+5vr27dvx9vZm+vTpt12LSF+iQNmNdNWIYszIAGJGBnSqMaY78vX15fHHH+fkyZNs3bqV3//+90yfPp37779fTTsicltOnz4NtIXX+++/v921goICvvzyS77zne90at9dEVGg7Ha6ckSxM40x3dmYMWMYOXIke/fuJS0tjZycHJKTkxkxouOjI0VErlZVVcWePXsArmn8a2lpISUlhdDQUCIiIlxVokiPo0DZDfX0EcWu5O7uTmJiIlFRUWzevJn169czceJEEhMT6devn6vLE5Ee4P3336ehoQGr1cqvf/3rdtcyMzO5dOkSCxcu1HptkVugQNmN9fQRxa5ks9lYsmQJhw8fZufOnZw8eZJZs2YRFRWlHwIickPl5eX84he/AOCNN95g/PjxjmtVVVXs27ePKVOmMGjQIFeVKNIjKVBKj2UymYiJiXE07Xz66aeOpp3AwEBXlyci3Yzdbmfx4sWUl5fz+OOP89Of/rTd9R07duDh4dGpox1FpD3tQyk9Xv/+/VmwYAHPPPMMVVVVrF69mrS0NFpaWlxdmoh0Iz/+8Y/Ztm0bCQkJvPfee+1mMwoLC8nPzycxMREPjzt/DK1Ib6dAKb1GWFgYL774ItOmTWPfvn2sXr3a0ckpIn3bypUrefPNN4mPj2fTpk3tTsZpbW1l27ZtDB8+nAkTJriwSpGeS4FSehWr1cqDDz7IihUr8Pb25r333uOTTz6hrq7O1aWJiIv86le/4uc//zlxcXFs3bqV/v37t7t+4MABKioqmDNnjtZgi9wmBUrplQYNGsRzzz3HY489RkFBAatWreLIkSMYRicPTBeRXuG3v/0t//Iv/0JsbCwpKSn4+Pi0u15TU0NaWhoxMTEEBQW5qEqRnk+BUnotk8nEpEmT+P73v88999zDpk2bWL9+PeXl5a4uTUTugjfffJOf/OQnxMTEsH37dnx9fa+5Z9KkSezZs4eZM2e6oEKR3kOBUno9b29v5s+fz6JFi6irq2P16tXs2rWL5uZmV5cmIl3k7bff5oc//CGTJk1ix44d+Pn5XXPPmTNnOHXqFB4eHnh5ebmgSpHeQ9sGSZ8RGhrKihUrSE9PJz09nby8PB555BHCw8NdXZqI3EFr167l5Zdfxt/fn3/913/l6NGj19xjt9vZvHkzAAMHDrzbJYr0OgqU0qe4ubmRkJBAZGQkW7Zs4cMPPyQyMpKkpKRrFur3NIZhsGrVKl555RXq6urYs2fPLe2nl5OTw5tvvsnu3bs5f/48AQEBREdHs3z5cpKTk7uucJHr+OCDDxyvjx075nidmprKuXPngLYDDhITE9u9b/fu3axYsQLDMLh06RILFiy4OwWL9HEmQ10K0kcZhsGxY8fYsWMHra2tPPzww0RHR/fILs/CwkKWLFnC3r17HR+7lUD5zjvv8PLLL2MYBosWLWLKlCkUFRWxdu1aKioqWLp0KWvXrsVs1ioZuTs68+9wxowZpKWltfvY+vXr+d73vndLn2vx4sWsX7/+lt4jIu0pUEqfd/nyZXbu3El2djYhISEkJydjs9lcXVanXD0qabFYiIiIYP/+/UDnA+XmzZuZN28ehmHw6aef8thjjzmunTp1iri4OMrLy/npT3/Kf/zHf3TVlyJy1/zP//wPx48f5+WXX8bb29vV5Yj0ChpukD6vX79+PPbYYzz33HM0NjayZs0aUlNTaWpqcnVpN7Vy5Up+8IMfEB8fT25uLklJSbf0/sbGRl566SXsdjtPPPFEuzAJbZvFXzn3+Le//S15eXl3rHYRVyguLiY7O5uZM2cqTIrcQQqUIv9rxIgRLF++nJkzZ3LgwAHefvttTp486eqybmrdunWkpKQwbNiwW37ve++9x9mzZwFYtmzZde955pln8PLywm6385vf/MapWkVcyTAMtm7dSlBQEDExMa4uR6RXUaAUuYrFYmH69Om8+OKLBAYG8qc//YmNGzdSXV3t6tKu6/XXX2fp0qW3/f6PP/4YAHd3d6ZPn37de/r3709sbCzQNlXYE0ZuRa4nOzub8+fPM2fOHK0HFrnD9C9K5DoCAgJ4+umnWbBgAV9//TVvvfUWWVlZ2O12V5fWjjMNRK2trXz++ecARERE4O7ufsN7J0+eDEB1dTWHDh267c8p4ir19fXs3LmTqKgohg8f7upyRHodBUqRGzCZTERGRvLyyy8zYcIEUlJSePfddykpKXF1aXfEV199RWNjI8BNp8uvvq51lNIT7dmzx7Gbg4jceQqUIjfh6elJcnIyS5cupbW1lXfeeYeUlBRHGOupioqKHK9v1tV+9fWr3yfSE5SWlnLo0CESEhKuOctbRO4MBUqRTgoJCWHZsmU89NBDHDlyhLfffpsTJ064uqzbVlNT43jt6enZ4b1XH0t39ftEursrjTiBgYFMmTLF1eWI9FoKlCK3wGKxcP/99/PSSy9hs9n46KOP2LBhA1VVVa4u7ZbV19c7Xne0fvLb1y9fvtxlNYncaceOHePs2bPMmTMHi8Xi6nJEei0FSpHb4O/vz1NPPcXjjz/O+fPneeutt8jIyOh2TTsduXrU8Wad21df79evX5fVJHInNTY2kpqayvjx4wkNDXV1OSK9ms7yFrlNJpOJiIgIwsLC2L17N6mpqeTk5JCcnMzQoUNdXd5NXb2WrKGhocN7rx7N1Bo06SnS0tJoamq65rxvEbnzNEIp4iQPDw/mzJnDsmXLMJlMrFu3jq1bt940pLnayJEjHa8vXLjQ4b1XXx8xYkRXlSRyx5SVlZGVlcX06dPx8/NzdTkivZ4CpcgdMmTIEJ5//nmSkpI4evQob731Fnl5eRiG4erSris8PBwPDw8Ax2k5N3Lu3DnH6/Hjx3dpXSK3q6G5lfKaRuqbWti2bRsDBgwgLi7O1WWJ9Ama8ha5g8xmM1OnTiUiIoJt27bx5z//mfDwcB555BEGDBjg6vLauXIq0M6dOzl+/DhNTU03bM45cuQI0DbdrSPrpLs5WFTJuvRCUvMvYDfABAw3W/jRIzNwc9OPOZG7QSOUIl3A19eXJ598koULF1JWVsbbb79Neno6ra2tri6tnccffxxoa15IT0+/7j21tbVkZWUB8OijjzpGNUW6g/f3n+GJNZnsPF6G/X8nAwzgrN2fH20+ywdZZ1xan0hfoUAp0oXuuecevv/97xMTE8Pu3btZu3btTaeX76ZFixYREhICwLp16657z3//939z+fJlzGYz//zP/3w3yxPp0MGiSv7ts1wMoNXefmmJHRMG8NqnuRwqqnRJfSJ9iQKlSBdzd3cnKSmJF154AavVyh/+8Ac2bdrUrnPaVTw9PXnrrbcwmUxs2LCBzZs3t7teWFjIa6+9BsCPfvQjJkyY4IoyRa5rXXohZnPH59mbzSbWpZ++SxWJ9F0mo7t2DIj0Qna7ncOHD7Nr1y7c3NxISkoiMjISk6njH4od+eCDDxyv//rXv/LJJ58A8OqrrzJu3Dig7ejEjrZOWb16Nf/wD/+AYRg899xz3HfffZw5c4bVq1dTUVHBc889x7vvvovZrN9BpXtoaG4l4vUU7J34CWY2Qf7K2XhatbG5SFdRoBRxgZqaGrZv305eXh6jRo1i7ty5BAQE3NazOhNGZ8yYQVpaWof3HDt2jP/6r/9i9+7dlJaW4u/vT0xMDMuXL+fRRx+9rdpEukp5TSP3/Wpnp+8/+OrDDPLR+l+RrqJAKeJCBQUFbN26lZqaGqZPn87999+vrtQeyjAMVq1axSuvvEJdXR179uwhISHhlp5RW1vLT37yE9asWYNhGN12yylXMwyDgsIiktblYXDzX6g0QinS9fSTS8SFRo8ezUsvvcTevXv5/PPPyc3NZe7cue02HZfur7CwkCVLlrB3797bfsauXbtYunQpZ86oK/lG7HY7x48fJzMzk+LiYsK9xnGqwbvDaW+L2UTiOJvCpEgX04IoERezWq08/PDDLF++HC8vL/74xz/y2WefcfnyZVeXJjdhGAa/+93viIqKIjs7m6lTp97yM2pra3nxxRdJTEzE3d1dZ05fR1NTEwcOHOB3v/sdf/7zn7FarXz3u9/l3599iJsN4trtBs/H63sq0tUUKEW6icGDB/O9732P5ORkTpw4wapVq/jiiy807dmNrVy5kh/84AfEx8eTm5tLUlLSLT8jOTmZtWvX8sMf/pCjR48yfPjwLqi0Z6qtrWX37t3853/+JykpKYSEhLBs2TIWL17M6NGjmRI6kDfmR2KibSTyahazCRPwxvxIYkbe3vpkEek8TXmLdCMmk4no6GjuueceduzYwWeffcYXX3xBcnIygYGBri5PrmPdunUsXbr0tt9vs9nYt28f06ZNu4NV9Wzl5eVkZmZy7NgxzGYzkydPZurUqfj7+19z7zOxIxhr82Fd+ml25JdiN9rWTCaOs/F8fKjCpMhdokAp0g3179+fv//7v+fee+9l69at/P73vyc+Pp7p06eraacbef31153a8glgw4YNTj+jNzAMg6+//pqMjAxOnjxJ//79SUhIIDo6Gi8vrw7fGzMygJiRATQ0t1LT0IKPp5vWTIrcZfrJJNKNhYWF8eKLL7Jv3z7S09MdTTujRo1ydWlC57ZsuhvP6MmuNNpkZGRw/vx5Bg0axLx584iMjLzlX548rRYFSREXUaAU6ebc3NyYOXMmkZGRbNmyhffff5+oqChmzZqFt7e3q8sTuS1NTU1kZ2ezf/9+Ll26RGhoKN/97ncJDw/v8yFbpCdSoBTpIQYNGsTixYs5evQoO3bs4OTJkzz88MNMnjxZP4Clx6itrSUrK4tDhw7R2NhIZGQkTzzxBMHBwa4uTUScoEAp0oOYTCYmTpzImDFjSE1NZfPmzRw9epTk5GQGDx7s6vJEbujqRhuLxcLkyZOJjY29bqONiPQ8CpQiPVC/fv2YN28e9957L5s3b2bNmjXExcUxY8YMrFarq8sTAdoabc6cOUNGRgYFBQWORpuYmBg8PT1dXZ6I3EEKlCI92MiRI1mxYgV/+9vf2LdvH3l5ecydO5fw8HBXlyZ9mN1uJz8/n8zMTM6fP8/gwYOZN28eEyZMwGJR04xIb6RAKdLDubm5MWPGDEfTzocffsj48eNJSkrCx8fnuu/R9irSFa7XaPP0008TFhamdb4ivZwCpUgvMXDgQJ599llycnLYsWMHb731Fg899BDR0dGYzW2HYh0sqmRdeiGp+Rf+bwPoCBvL4kdpA2i5bTU1NRw4cECNNiJ9mAKlSC9iMpmIiopi9OjR7Ny5k61btzqadlKLGvm3z3Ixm03Y//c0R7sBO4+XsSPvAm/Mj+SZ2BGu/QKkRykrKyMzM5OcnBxHo83UqVPx8/NzdWkicpcpUIr0Ql5eXjz66KOOpp1f/P5DtjaNBaDV3v5s8Ct/f+3TXMbafDRSKR0yDIOioiIyMzMpKCjAx8eHmTNnEh0drUYbkT5MgVKkFxs+fDjLly/nyd/txHShGYMbr2Mzm02sSz+tQCnXdaXRJiMjg5KSEgYPHsz8+fOJjIxUo42IKFCK9HbNdjhS1tJhmIS2kcod+aU0NLeqUUccGhsbHY02VVVVjBo1imeeeYZRo0ap0UZEHBQoRXq5moYWvjXLfUN2A0orqhgZpFHKvq6mpoasrCwOHz5MU1MTkZGRxMXFERQU5OrSRKQbUqAU6eV8PN0wm+hUqDRh8O7qVQT4+TB06FCGDBni+NPDw6Pri+2BPvjgA8frY8eOOV6npqZy7tw5AGw2G4mJidd9/4ULF0hNTW339+s9OyoqiqioqDtW941cabQ5duwYbm5uREdHExsbq0YbEemQyTCMTo5diEhPtfyDQ+w8XnZNQ87VLGYTCaMD+McpvhQXF3P+/HnOnz9PU1MTAIGBge1Cps1mw81Nv5N2Ztp3xowZpKWlXfdaWloaM2fOvOkzXn/9dX7+85/fYnWdc6XRJiMjg6+++gofHx+mTp3K5MmT1WgjIp2iQCnSBxwsquSJNZl09I/dBHy8PK5dU47dbqeiooLi4mJHyCwtLcVut2OxWLDZbO1CZmBgoNbV9SCtra2ORpvS0lJsNhvTpk1j/PjxarQRkVuiQCnSR3yQdYbXPm3bh/LqkUqL2YTdbnR6H8qWlhYuXLjQLmRevHgRAHd3d0e4vBI0fX19FTK7mcbGRo4cOUJWVhZVVVWEhYURFxenRhsRuW0KlCJ9yKGiStaln2ZHfqnjpJxZEUE8Hx/q1HZBDQ0NjinyK0GzpqYGgP79+1+zHtPLy+tOfUlyC6qrqx2NNs3NzWq0EZE7RoFSpA+6G2d519TUtBvFPH/+PA0NDQAEBAS0C5lBQUFYrdYuqUPaGn2unGhjtVodjTa+vr6uLk1EegkFShG5KwzDoLKysl3ILCkpobW1FZPJhM1mazddPmjQIMcZ5HLrDMPg9OnTZGRkcOrUKXx9fYmNjSU6Olod+yJyxylQiojLtLa2UlZW1i5klpeXYxgGVquV4ODgdiHT399fa/xuorW1lby8PDIzM9VoIyJ3jQKliHQrTU1NlJSUOAJmcXExly5dAtrOKL96qnzo0KF4e3u7uOLu4Uqjzf79+6muriYsLIxp06YRGhqqEC4iXU6BUkS6vbq6Oke4vPLn5cuXAfDz82vXVT5kyBDc3d1dXPHd8+1GmwkTJhAXF4fNZnN1aSLShyhQikiPYxgGly5datdVXlJSQnNzMyaTiUGDBrXrKrfZbL1uuleNNiLSnShQikivYLfbKS8vbzeKWVZW5tiE/dvrMQMCAnrcVPD1Gm2unGijRhsRcSUFShHptZqbmyktLW0XMisrKwHw8PC4Zj2mj4+Piyu+viuNNhkZGVy4cIGgoCCmTZtGRERErxt5FZGeSYFSRPqU+vr6a9Zj1tbWAuDj43PNJuxdcZZ1Z/cBbWxs5PDhw2RlZVFdXU14eDhxcXFqtBGRbkeBUkT6NMMwrrsJe2NjIwADH7JF4QAAA8JJREFUBw68ZhN2Nze32/pcB4sqWZdeSGr+BcdJRYkRNpbFj2p3UlFVVRVZWVkcOXKE5uZmoqKimDp1qhptRKTbUqAUEfkWwzCoqKhoFzJLS0tpbW3FbDZjs9nahczAwMCbbsL+/v4z/NtnHZ+l/vAIDzIzM8nNzcVqtRITE8OUKVPUaCMi3Z4CpYhIJ7S0tFx3E3YAd3d3goOD221f5Ofn55iWPlhUyRNrMun4P1uDR9y/ZMwAC1OnTmXSpElqtBGRHkOBUkTkNjU2NjqmyK8EzerqagC8vb0dI5jvHIfMs3XtRia/zYzB1GH9+GBFgo6cFJEeR4FSROQOqq2tbdfwc+bcedZVRWBw8yYaswnyV87usFFHRKQ7UqAUEelCZdUNTPn1rk7ff/DVhxnko6luEelZNK8iItKFfL2smDu5w4/ZBD6et9dBLiLiSgqUIiJdyNNqITHChuUmqdJiNjErIkjT3SLSIylQioh0sefjR2HvoCEHwG43eD4+9C5VJCJyZylQioh0sftGBvDG/EhMcM1IpcVswgS8MT+y3ebmIiI9iZpyRETukkNFlaxLP82O/FLHSTmzIoJ4Pj5UYVJEejQFShGRu6yzZ3mLiPQUCpQiIiIi4hStoRQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOOX/A+jvzY1uUkxTAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import networkx as nx\n", "from gem.embedding.hope import HOPE\n", @@ -153,9 +295,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA08AAAMtCAYAAABHAkpLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde5xdBX3v/e+emWRynZncyBASFCiShLsJhBR9UJIaLiqWeI5grJdGUi2gAgcLgqKtlFpruaiISI88VKI+qFVBLsVwCrZGCBG5xCRQ1AMkTLgkmSG3ue7nj8BgyExYQzKZGfJ+v177lZl12fu39j/Dh7X22qVyuVwOAAAAO1TR1wMAAAAMBOIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFVPX1AH2ho6Mjq1evzsiRI1Mqlfp6HAAAoI+Uy+W88MILmTBhQioqdnxuaY+Mp9WrV2fSpEl9PQYAANBPPPnkk5k4ceIOt9kj42nkyJFJtr5BNTU1fTwNAADQV5qamjJp0qTORtiRPTKeXrpUr6amRjwBAACFPs7jhhEAAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAVU9fUAANDryuVk43NJ66akvTWpHJQMGpYMH5uUSimXy1m7ZW22tG9Ja3trBlUOypDKIRk9ZHShb5wHYM8gngB4/dn4fPL7u5Onf5OsWpqs/k3SsqFz9bqKitw7dEh+O3R4Hh5Rl99WtGdTuW27pxlWNSxTx0zNoeMOzdQxUzOjfkZGDRm1O48EgH5EPAHw+lAuJ08tSe77VrLsR0lHW1JRtfXfJOUkD1YPzvdqRuaO4cPSViqlqlxOW7Yk5a7PLm1q25T719yf3zzzm7SV21JVqsoJ+52Q0yaflsPGHuasFMAeRjwBMPCt+Fly1xeTZ36bVFQmHe1bl78YTncNG5qvjarNY4MHp7JcTvuL0bPlhfZs+t2mbP7d5mz+/dZH+4at+9YdW5f699Vvt/43G36Tf8g/ZN+375vrr78+x008LitWrMh9992X++67L0uWLMlDDz2UlpaWJMltt92WTZs25c4778z999+f//7v/86GDRtSU1OTN73pTZkzZ04+9rGPpb6+fve/bwD0SKlcLpf7eojdrampKbW1tWlsbExNTU1fjwPAa7VpbXLr+ckjP0hKFUm5Y5vV6ysq8vdjRuW2EcNTKpdTfsWZokc+/Ei3T113bF3W/9f6Ha6feMbETFoxKbf9w23dbjd06NBs3rx5h4dRU1OTa6+9Nu973/t2uB0Au15P2sCZJwAGpuW3JD89O9nSuPX3V4TTomFD8/mxo/NCxdYby74ynF5p0JhBqd67Ohse2dCj9Q8/9/DL2wwalEMPPTStra15+OGty18Kp2OPPTbvfOc7M3369IwZMybPPvtsfvSjH+Vb3/pWmpqaMm/evNTU1OTEE08s/h4AsFuJJwAGlnI5+cVXkrv+Llu/cWPbaConua62JleNruvybNMfG3fKuAzdb2iG7TcsVbVVaXm2JY+e/2jh9UkyeMLg7D1v7wzdb2j+1yn/Kx+b9rF84Qtf6Iynt73tbfn617+eqVOnbvf673jHO3LiiSfmz//8z9Pe3p6zzz47jz32mM9SAfRT4gmAgaNcThZ9IfnPy19csH04XTmqNv9SV7v191eJkPF/Pn6n1ifJsP2HZdj+w5IkVy+7Oi0VLfnjK+IvueSSLsPpJaecckpOPfXU/PCHP8zjjz+eBx54IG9+85tf9XUB2P18SS4AA8cvvvJH4bS962prOsOpr1z38HV54JkHerTP29/+9s6fH3/88V09EgC7iHgCYGBYfsuLl+p1bdGwoblqdN1uHKh7v3r6Vz3avrm5ufPnysrKXT0OALvIbomnr3/963njG9+YIUOGZMaMGbnvvvt2uP1NN92UyZMnZ8iQITn00ENz6623brO+XC7nc5/7XPbee+8MHTo0s2fPzmOPPdabhwBAX9q0duvNIdL1ZXjrKyry+bGjU+onN5AtdTNnd+6+++7On6dMmbKrxwFgF+n1ePr+97+fc889N5dcckl+/etf5/DDD8+cOXPyzDPPdLn9L3/5y5x++umZP39+HnjggbznPe/Je97znjzyyMu3k/3Hf/zHXHXVVbnmmmty7733Zvjw4ZkzZ062bNnS24cDQF+49fwX76rXdRz9/ZhReaGi4lU/47S7lLuZsysPPvhgfvaznyVJDj30UPEE0I/1ejz98z//c84444x85CMfydSpU3PNNddk2LBh+d//+393uf2VV16ZE044Ieeff36mTJmSv/u7v8ub3/zmfO1rX0uy9azTFVdckYsvvjinnHJKDjvssNxwww1ZvXp1fvzjH3f5nM3NzWlqatrmAcAAseJnW7/Hqdze5eq7hg3NbSOGd37xbX/zwJruP//U3Nycj370o2lv33psl1566e4aC4DXoFfjqaWlJUuXLs3s2bNffsGKisyePTuLFy/ucp/Fixdvs32SzJkzp3P73//+92loaNhmm9ra2syYMaPb57zssstSW1vb+Zg0adLOHhoAu0O5nNz1xa1fgNvV6iRfG1Xbby7X68qPHvtRuvs++rPOOiv3339/kuRDH/pQ3vWud+3O0QDooV6Np+eeey7t7e0ZP37bW72OHz8+DQ0NXe7T0NCww+1f+rcnz3nhhRemsbGx8/Hkk0++puMBYDd7aknyzG+3+wLclzxYPTiPDR7cby7X68pTG57KQ889tN3yyy67LNddd12S5KijjsrXv/713T0aAD20R3zPU3V1daqrq/t6DAB66r5vJRWVSUfXl+x9r2ZkKsvlfnvJXpJUlirzvRXfy+HjDu9c9s1vfjOf+cxnkiSTJ0/OrbfemuHDh/fViAAU1KtnnsaOHZvKysqsWbNmm+Vr1qxJfX19l/vU19fvcPuX/u3JcwIwAG18Pln2o27DaV1FRe4YPqxfh1OStJfbc/vvb8+6LeuSJN/97nfz13/910mSN7zhDbnzzjszduzYvhwRgIJ6NZ4GDx6cadOmZdGiRZ3LOjo6smjRosycObPLfWbOnLnN9kly5513dm6/3377pb6+fpttmpqacu+993b7nAAMQL+/O+lo63b1vUOHpK2fh9NL2sptua/hvvz0pz/NBz/4wXR0dGTvvffOokWLMnHixL4eD4CCev2yvXPPPTcf+tCHMn369Bx99NG54oorsnHjxnzkIx9Jknzwgx/MPvvsk8suuyxJ8slPfjLHHXdcvvKVr+Tkk0/O9773vdx///259tprkySlUimf+tSn8sUvfjEHHnhg9ttvv3z2s5/NhAkT8p73vKe3DweA3eXp3yQVVd0G1G8HD05VuTwgAqqqVJUf3/bjfPucb6etrS1jxozJnXfemQMOOKCvRwOgB3o9nt73vvfl2Wefzec+97k0NDTkiCOOyO233955w4cnnngiFRUvnwD70z/90yxcuDAXX3xxPvOZz+TAAw/Mj3/84xxyyCGd23z605/Oxo0bs2DBgqxfvz5vectbcvvtt2fIkCG9fTgA7C5PLd3hmaeHqwen+7X9S9OjTbnuK9elrbkttbW1ueOOO3LwwQf39VgA9FCp3N39U1/HmpqaUltbm8bGxtTU1PT1OAC8UrmcXDYxadnQ9eokx7xhYjZV7Nqrz1uebcmj5z+aJKk7ti4Tz5jYo/UvWfNva/LsT55Nkuz94b2z5v9bk45NHRk+fHjuuOOOHHvssbt0bgBeu560wR5xtz0ABpiNz3UbTkmytqJil4TTxkc3pmVNS+fv7RtevjlFyzMtabipIW1NL5/fGjJhyDbr1/1iXefzJMnwN229Y96WJ7Z0btewsCHllq3/n3LOSXPy+OOPp7a2ttuZ9tprr+y11147c1gA9BJnnpx5Auh/1v3f5MrDul29qqoyJ0zaZ6df5qlvPZX1/7V+p59nV7rkkkvy+c9/vq/HANhj9KQNevVuewDwmrS37nB1a/r/TSIAeP1x2R4A/U/loB2uHpRdc9HExDMmdvu5pd5wx9w7MmHEhN32egDsWs48AdD/DBq2w9VDOgbmFefVldV9PQIAO0E8AdD/DB+bDB7R7erRHR0Z1tGxGwfaecMHDc/oIaP7egwAdoJ4AqD/KZWSvY/ofnWSqc0tW29pPkBMHTM1pQHwhb4AdE88AdA/TZyWVHT/0dxDm1sGzAd3q0pVOXTsoX09BgA7STwB0D/tfUTS0dbt6qktLWkbIGdy2sptmTpmal+PAcBOEk8A9E/7HbfDM08zNm9J1QC5bK+qVJWj64/u6zEA2EniCYD+afiY5OBTk4rKLleP6ujInI2bUtnPA6qyVJkT9jsho4aM6utRANhJ4gmA/uvoM5KO9m5Xn9b0Qtr7+aV77eX2nDb5tL4eA4BdQDwB0H9NPCrZ6+Ck1PWfq8ObW3Jgc0tK/fTsUymlvGnUm3LY2MP6ehQAdgHxBED/VSolx1+clLv+TqdSkrPXN6bcT88+lVPOWUec5RblAK8T4gmA/m3ySckh701KXX/26e2bNufEDRv73WefKkoVOWm/k/L2fd/e16MAsIuIJwD6v5O+nAypTXd/tj7z/LqM7OjoN5fvlVJKzeCaXHj0hX09CgC7kHgCoP8bNjp591eTdH35Xl1HRz7/3Np+c/leOeV84U+/kLohdX09CgC7kHgCYGCY8s7k+M92u3rWps35xNr1u3Gg7n3yzZ/M8fse39djALCLiScABo63npe85dxuV3+0sSkfXd+4GwfqYoZDP5r5h8zv0xkA6B3iCYCBo1RKZn1u6yPJK/+MlZJ8Yl1jPvniGajd9RmoUrZeLvjJN38yn3zzJ91dD+B1SjwBMLCUSlvPQJ22MBlat91d+ErZegbqyjXPprajIxW9HFAVpYrUVtfmyrdfmY8e+tFefS0A+pZ4AmBgmnxycvbS5OA/3/r7K75I9/hNm3PzU09nzsZNW1fv4oh66WzTCW88Ibf8+S0+4wSwByiVy/3kvq67UVNTU2pra9PY2Jiampq+HgeAnbXiZ8ldlybPLEsqqpKOtm1W3zVsaL5WV5vHqgenslxO+05cVldZqkx7uT0H1h2Ys4882/c4AQxwPWkD8SSeAF4fyuXkqfuTJd9KHvnh1oD6o5AqJ3moenC+N3Jkbh8xLG2lUqrK5bQlWy8F3IGqUlXaym2pqqjKiW88MadNPi2Hjj3UZ5sAXgfE06sQTwCvcxufT/5wT7L6gWTVr7f+27Khc/W6iorcN6Q6y4aNyCMj6rKsoj2bym3bPc2wqmE5eOzBOXTsoZk6ZmqOrj86o4aM2p1HAkAvE0+vQjwB7GHK5WTjc0nb5qStJakanFQNTYaPTUqllMvlrN2yNs3tzWlpb8ngysGprqzO6CGjnV0CeJ3rSRtU7aaZAKDvlErJiHE7WF3KmKFjduNAAAxE7rYHAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAqr6egAAXn/K5XKe39iSzS3taW3vyKDKigwdXJkxwwenVCr19Xj9WrlcTvvatenYvCXl1paUBg1OxdAhqRw92nsH0MfEEwA7be3Glvzy8efy8KrGPPjk+jz8VGM2trRvt93wwZU5dGJtDp9Ul0P3qc2fHjA2o4cP7oOJ+4+2deuy6Ve/ypZly7L5oYezZdkj6di4abvtKoYPy5CDD8nQww7NkIMPzrBjjknVqFF9MDHAnqtULpfLfT3E7tbU1JTa2to0Njampqamr8cBGJDK5XJ+/cT6/OviP+SWh55OW0c5VRWltHW8+p+Vl7arqijlXYdPyF/MfEOOnFS3x5xZKZfL2fyb32Tdwu+m6bbbkra2pKpq67+v5qXtqqpSc9JJGf3+0zPk8MP3mPcOYFfrSRuIJ/EE0GP/vqwhX/n3R7NyzQuprCilvUAwJUn7xvVpfvrRtDz9aJqffiwtDY+lY3NTkmTCUSfk+uuvz59NHV94jttuuy3XXnttlixZkmeffTbjxo3LUUcdlQULFuTEE098TcfW215YtCjPXnFlmh97LKmsTNq3P0PXlefb2vLwli15eMvmPLxlSx7ZsiXrX9z31ImTcv3/e31GHn/8Dp9j+fLlWbRoUZYsWZKHH344zzzzTJ577rlUVlZm/PjxOeqoo/L+978/7373u8UYsMcQT69CPAG8Nus2tuSSny7LTx9cnVIp6elfkP/7pXd2u274IbMy9uRz8u7DJ+QL7z44o3ZwOV9HR0cWLFiQf/mXf+l2m49+9KP55je/mYqK/nFvpLZ167Lmi5em6Wc/y2t586auXNHtuvfU1Obv9947NSefnPEXX9Tt5Xwf+MAHcuONN77qax133HH54Q9/mDFjxvRoRoCBqCdt0D/+ogDQ792xrCHHf+U/8rOHnk7S83B6pcqacRnyxiO3W/6zh1bn+K/8R+5Y1tDtvhdddFFnOB155JH57ne/m/vuuy/f/e53c+SRW5/zuuuuy8UXX7xzQ+4iL/z85/ndiSel6fbbty7YyTdv76qqHDts+B8t2fp8Tbfdlt+deFJe+PnPu9yvqqoqM2bMyLnnnptvf/vbue2223L//ffnzjvvzFe/+tUccsghSZK7774773rXu9LR0bFTcwK83jjz5MwTwA6Vy+Vc/R+P58t3rHxNZ5v+2Ppf3JjBex+Y6r0PTOXwUWlrXJNV18xP8vKZp+TlEzPnzzkof/22A7a5hOzRRx/NwQcfnLa2tkyfPj333HNPhg4d2rl+06ZNOe6443L//fenqqoqy5cvz5/8yZ+89qF3QrlczvPfvDbPXnHFazrb9Me++tyzOXTI0BwyZEjGVlVlVWtL/ux3v0uSvKemJn+/94StG774OuPOOSdjFpyxzXvX1taWqqru7xXV3t6e//k//2d+9KMfJUl+8pOf5N3vfvdrnhlgIHDmCYBdolwu5x/vWJkv37Hyxd937vnq3jovw/7k6FQO3/Fd4l56nS+/+Np//P/5rrjiirS9eGOFr371q9uEU5IMGzYsX/3qV5NsjYXLL79854Z+jcrlcp7958u3htPWBTv1fGePHZe3jRiRsTuInz9+nWcvvzzPXn7FNu/djsIpSSorK3P++ed3/v6LX/zitQ8M8DokngDo1tX/8Xi+8R+P9/kMV784Q7lczk9+8pMkyeTJk3PMMcd0uc8xxxyTgw46KMnWsyd9cZHF89+8Ns9/61u7/XW3meHaa/P8tT2bYeTIkZ0/b9myZVePBDCgiScAunTHsobOM0597ct3rMy/L2vI73//+6xevTrJ1psa7MhL61etWpU//OEPvT3iNl74+c9fPuPUx569/PK8sGhR4e2/973vdf48efLk3hgJYMASTwBsZ93Gllzww4fSX25WXSolf/PDh3Lfrx/sXPZq/2H/x+uXL1/ea7O9Utu6dXn64s9uHbo/KJXy9EUXp23dum43ee6557J48eLMnz8/l156aZJk7NixmTdv3u6aEmBAeJULpwHYE13y02Vp2tyW/nJHoXI5adrcmmtvu79z2cSJE3e4z6RJkzp/fvLJJ3tttlda88VL0/7CCzv/AbFdpVxOe1NT1lx6afb5p3/qXPy2t70td999d5e7jB07Nv/2b/+Wurq63TUlwIDgzBMA2/j3ZQ356YOr095f/uP/Re3l5IHfPd35+4gRI3a4/fDhL9/Ke8OGDb021x97YdGird/jVPCLb3ebjo403fKzvHDXXa+66Sc+8YksX748b3nLW3bDYAADizNPAHQql8v5yr8/utO3JO817S2dPw4e3P2X6CZJdXV158+bN2/utZFeUi6X8+wVV+70Lcl7TamUZ6+4MiPe/vaUSqV8+9vfzsaNG1Mul7N+/frcf//9+cY3vpGvfe1r+d3vfpfrrrsu48eP7+upAfoV8QRAp18/sT4r17zQ12N0r/LlYGppadnBhklzc3Pnz6+8nXlv2Pyb36T5scd6/XVes3I5zY8+mi0PPpihRxyR/fbbb5vVb33rW/Pxj388/+N//I/ccsstOeqoo/LLX/7yVS+PBNiTuGwPgE7/uvgPqazoJzc66ELF4Jcj6NUuxdu4cWPnz692id+usG7hd5PKyl5/nZ1SWZm1C7/b7eohQ4bk29/+doYNG5Ynn3wyn/70p3fjcAD9n3gCIEmydmNLbnno6bR39MNLzl5UOXJs58+P/u4PO9z2j28S8cc3j+gNbevWpem22/rfZ51eqb09TbfeusM7740dOzbHHntskq3fkdXa2rq7pgPo98QTAEmSXz7+XNr6cTglyaCx+3b+/IslD+1w2xUrVnT+PGXKlF6bKUk2/epXSVtbr77GLtPWlk333rvDTcaNG5ck2bRpU5577rndMRXAgCCeAEiSPLyqMVX9+JK9JKmqHZ/KEaOTJEvv/a8dbnvPPfckSfbZZ5+88Y1v7NW5tixbllQNkI8RV1VtnXcHVq1a1fnz7rjkEWCgEE8AJEkefGJ9vz/zVCqVMvTAY5Ikzz75u/zqV7/qcrtf/epXnWeeTjnllJR6+QtrNz/00IA687T5oe7P2j311FNZvHhxkuQNb3hDRo4cubsmA+j3xBMAKZfLeXhVY1+PUUjN9FOS0tY/X2efffZ2tyHfvHlzzj777CRJVVVVPvWpT/XqPOVy+VXP5PQHf2hpya9evInGlkeWpdzF7dQbGxvz/ve/v/NOhh/84Ad364wA/d0AucYAgN70/MaWbGzp/ZsdbHlqWdrWvfxFt+2bmjp/blv3dDY8/PNtth9x6OztnmPQ6H1SM+PUNP3qB7n//vtz7LHH5m/+5m9ywAEH5PHHH8+XvvSlPPDAA0mS888/PwceeGAvHc2Lx7B2bTo2burV10iSpZs25YnWl2/Pvu6Pbk7xRGtr/q1x/Tbb/3lt3Ta/P9PWmr986skcVF2dWSNG5M8WLsw+b3pTqqqq0tDQkP/6r//Kv/zLv6ShoSFJcsghh+SCCy7oxSMCGHjEEwDZvBvCKUk2PPjv2fjIoi7XNa/6bZpX/XabZV3FU5LU/T8fTPvGxmx8+M488MADOe2007bbZv78+fniF7+480O/io7NW3r9NZLkh43r8+Ompi7X/Xrz5vz6FWfgXhlPL1nZ3JyVzc25+gMf6Pa1Tj755M5blgPwMvEEQFrbO/p6hB4plSoy9qRP5soL/yo3f/9fs2TJkjz33HMZO3ZsjjrqqPzVX/1VTjzxxN0yS7l1x1/W218cOXRYvjVxUhZv3JhlzVvy/F575Zm1a7Np06bU1NRkv/32yzHHHJPTTz+981blAGyrVO7qoufXuaamptTW1qaxsTE1NTV9PQ5An3ty7aa89R//T1+P0WP/+Tdvz8RRfXt2pOWpVXl8dtdnyPqzP1n08wzaZ5++HgOgz/WkDdwwAoAMHVzZ1yO8JkMG9f3cFUOH9PUIr0lpyMCcG6AviScAMmb44AwfYAE1oroqY4YP7usxUjl6dCqGD6zPBlUMH57K0aP7egyAAUc8AZBSqZRD96nt6zF65NB9anv9+5uKKJVKGXLwwX09Ro8MOeTgfvHeAQw04gmAJMnh+9alqmJg/Ad1VUUph0/q+m5yfWHoYYclVQPkHkxVVVvnBaDHxBMASbaeyWnrGBj3EGrrKPerM2VDDj44aWvr6zGKaWsbcGfKAPoL8QRAkuRPDxg7oM48zTxgTF+P0WnYMccMqDNPw2bM6OspAAYk8QRAkmT08MF552F7p7KfB1RlRSnvOnxCRveDm0W8pGrUqNSceGJS2c9vulFZmZqTTkrVqFF9PQnAgCSeAOj0FzPfmPZ+fulee0c5fzHzDX09xnZGvf/0pL29r8fYsfb2jH7/6X09BcCAJZ4A6PTmfesyuX5k+uuN2EqlZHL9yBzZj24W8ZKhRxyR6je9Kf35zas+6KAMOfzwvp4EYMASTwB0KpVKOe8dB6XcT08+lcvJee84qF/eZrtUKmXcpz6Z/vzmjfvkJ/rlewcwUIgnALbxZ1PH592HT0hlP/uP7MpScsoRE/JnU8f39SjdGnn88ak5+eT+99mniorUvPPkjDz++L6eBGBAE08AbOcL7z44NUOr+s0VaKVSUjN0UD7/rv5/i+3xF1+UypEj+8/le6VSKmtqMv6ii/p6EoABTzwBsJ1RwwfnH+Ye1m+uQCuXky/NPSyj+tEd9rpTNWpU9v7i3/Wfy/fK5ex96RfdYQ9gFxBPAHRpzsH1OX/OQX09RpLk/DkH5R0H1/f1GIWNnD074z71qb4eI0ky7pxzMnLWrL4eA+B1odfiae3atZk3b15qampSV1eX+fPnZ8OGDTvcZ8uWLTnzzDMzZsyYjBgxInPnzs2aNWu22eYTn/hEpk2blurq6hxxxBG9NT4ASf76bQfkr992wB4/w2sx5q8WZMyCBX07w4IFGbPgjD6dAeD1pNfiad68eVm2bFnuvPPO3HLLLbnnnnuy4FX+iJxzzjm5+eabc9NNN+Xuu+/O6tWrc+qpp2633V/+5V/mfe97X2+NDsCLSqVSzp9zUOcZqN31MZ6XXufTJxyUT58weUDeIa5UKmXcOZ/KuHPOeWnB7nrhJMm4c8/NXueeMyDfO4D+qlQu7/qLspcvX56pU6dmyZIlmT59epLk9ttvz0knnZSnnnoqEyZM2G6fxsbGjBs3LgsXLsx73/veJMmKFSsyZcqULF68OMccc8w223/+85/Pj3/84/zmN7/p8XxNTU2pra1NY2NjampqXsMRAux5/n1ZQ/7mhw+laXNr2nvx4zyVL94c4ktzDxtQl+rtyAuLFuXpiy5Oe1NT0tHRey9UUZHKmprsfekXXaoHUFBP2qBXzjwtXrw4dXV1neGUJLNnz05FRUXuvffeLvdZunRpWltbM3v27M5lkydPzr777pvFixfv1DzNzc1pamra5gFAz7zj4Prcdd7bcvJhW/8H2K4+ofHS873z8An5P//rba+bcEqSkbNmZf/bbknR6VgAACAASURBVE3NiSduXdBLb17NSSfmgNtvE04AvaRX4qmhoSF77bXXNsuqqqoyevToNDQ0dLvP4MGDU1e37bfGjx8/vtt9irrssstSW1vb+Zg0adJOPR/AnmrU8MG56vQjc+1fTMtB40cmSSordi4EXtr/oPEj860PTs+Vpx2ZumH9/656PVU1alT2+co/ZeLXv5bqAw/cunBnvw/qxf2rDzwwE6/+evb5p39K5Sv+jgKw61T1ZOMLLrggX/rSl3a4zfLly3dqoN5w4YUX5txzz+38vampSUAB7IR3HFyfP5s6Pg88uT7/uvj/5uYHV6eto5yqilLaOl79mr6XtquqKOXdh0/IX8x8Q46YVLdHfD5n5KxZGXH88dny4INZu/C7abr11qStLamq2vrvq3lpu6qq1Jx8Uka///0Zcthhe8R7B9DXehRP5513Xj784Q/vcJv9998/9fX1eeaZZ7ZZ3tbWlrVr16a+vuvLMOrr69PS0pL169dvc/ZpzZo13e5TVHV1daqrq3fqOQDYVqlUypv3HZU37zsqn33n1Cx+/Pk8tGp9HnqyMQ+tWp+Nze3b7TO8ujKH7VOXwyfV5dB9ajPzgDEZPQC+u2lXK5VKGXrEEdnniCMy/sILsunee7PlkUey+eGHs+WRZenYuHG7fSqGD8+QQw7O0MMOy5CDD86wGTN8dxPAbtajeBo3blzGjRv3qtvNnDkz69evz9KlSzNt2rQkyV133ZWOjo7MmDGjy32mTZuWQYMGZdGiRZk7d26SZOXKlXniiScyc+bMnowJwG42evjgnHzY3jn5sL2TJOVyOc9vbMmW1va0tHVkcFVFhgyqzJjhg50heYWqUaNSc8IJqTnhhCRb37v2tWtT3rIlHS0tqRg8OKUhQ1I5erT3DqCP9SieipoyZUpOOOGEnHHGGbnmmmvS2tqas846K6eddlrnnfZWrVqVWbNm5YYbbsjRRx+d2trazJ8/P+eee25Gjx6dmpqanH322Zk5c+Y2d9r77//+72zYsCENDQ3ZvHlz5932pk6dmsGD97z/ewnQH5VKpYwd4Yz/a1EqlVI1ZkxfjwFAF3olnpLkxhtvzFlnnZVZs2aloqIic+fOzVVXXdW5vrW1NStXrsymTZs6l11++eWd2zY3N2fOnDm5+uqrt3nej370o7n77rs7fz/yyCOTJL///e/zxje+sbcOBwAA2MP1yvc89Xe+5wkAAEj6wfc8AQAAvN6IJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAF9Go8rV27NvPmzUtNTU3q6uoyf/78bNiwYYf7bNmyJWeeeWbGjBmTESNGZO7cuVmzZk3n+gcffDCnn356Jk2alKFDh2bKlCm58sore/MwAAAAejee5s2bl2XLluXOO+/MLbfcknvuuScLFizY4T7nnHNObr755tx00025++67s3r16px66qmd65cuXZq99tor3/nOd7Js2bJcdNFFufDCC/O1r32tNw8FAADYw5XK5XK5N554+fLlmTp1apYsWZLp06cnSW6//facdNJJeeqppzJhwoTt9mlsbMy4ceOycOHCvPe9702SrFixIlOmTMnixYtzzDHHdPlaZ555ZpYvX5677rqr0GxNTU2pra1NY2NjampqXuMRAgAAA11P2qDXzjwtXrw4dXV1neGUJLNnz05FRUXuvffeLvdZunRpWltbM3v27M5lkydPzr777pvFixd3+1qNjY0ZPXp0t+ubm5vT1NS0zQMAAKAnei2eGhoastdee22zrKqqKqNHj05DQ0O3+wwePDh1dXXbLB8/fny3+/zyl7/M97///R1eDnjZZZeltra28zFp0qQeHg0AALCn63E8XXDBBSmVSjt8rFixojdm3c4jjzySU045JZdcckne8Y53dLvdhRdemMbGxs7Hk08+uVvmAwAAXj+qerrDeeedlw9/+MM73Gb//fdPfX19nnnmmW2Wt7W1Ze3atamvr+9yv/r6+rS0tGT9+vXbnH1as2bNdvv89re/zaxZs7JgwYJcfPHFO5ynuro61dXVO9wGAABgR3ocT+PGjcu4ceNedbuZM2dm/fr1Wbp0aaZNm5Ykueuuu9LR0ZEZM2Z0uc+0adMyaNCgLFq0KHPnzk2SrFy5Mk888URmzpzZud2yZcty/PHH50Mf+lAuvfTSnh4CAABAj/Xa3faS5MQTT8yaNWtyzTXXpLW1NR/5yEcyffr0LFy4MEmyatWqzJo1KzfccEOOPvroJMnHP/7x3Hrrrbn++utTU1OTs88+O8nWzzYlWy/VO/744zNnzpx8+ctf7nytysrKQlGXuNseAACwVU/aoMdnnnrixhtvzFlnnZVZs2aloqIic+fOzVVXXdW5vrW1NStXrsymTZs6l11++eWd2zY3N2fOnDm5+uqrO9f/4Ac/yLPPPpvvfOc7+c53vtO5/A1veEP+8Ic/9ObhAAAAe7BePfPUXznzBAAAJP3ke54AAABeT8QTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgAJ6NZ7Wrl2befPmpaamJnV1dZk/f342bNiww322bNmSM888M2PGjMmIESMyd+7crFmzpnP9888/nxNOOCETJkxIdXV1Jk2alLPOOitNTU29eSgAAMAerlfjad68eVm2bFnuvPPO3HLLLbnnnnuyYMGCHe5zzjnn5Oabb85NN92Uu+++O6tXr86pp5768sAVFTnllFPy05/+NI8++miuv/76/PznP8/HPvax3jwUAABgD1cql8vl3nji5cuXZ+rUqVmyZEmmT5+eJLn99ttz0kkn5amnnsqECRO226exsTHjxo3LwoUL8973vjdJsmLFikyZMiWLFy/OMccc0+VrXXXVVfnyl7+cJ598stBsTU1Nqa2tTWNjY2pqal7jEQIAAANdT9qg1848LV68OHV1dZ3hlCSzZ89ORUVF7r333i73Wbp0aVpbWzN79uzOZZMnT86+++6bxYsXd7nP6tWr86Mf/SjHHXdct7M0NzenqalpmwcAAEBP9Fo8NTQ0ZK+99tpmWVVVVUaPHp2GhoZu9xk8eHDq6uq2WT5+/Pjt9jn99NMzbNiw7LPPPqmpqcl1113X7SyXXXZZamtrOx+TJk16jUcFAADsqXocTxdccEFKpdIOHytWrOiNWbdx+eWX59e//nV+8pOf5PHHH8+5557b7bYXXnhhGhsbOx9FL+8DAAB4SVVPdzjvvPPy4Q9/eIfb7L///qmvr88zzzyzzfK2trasXbs29fX1Xe5XX1+flpaWrF+/fpuzT2vWrNlun/r6+tTX12fy5MkZPXp03vrWt+azn/1s9t577+2et7q6OtXV1QWPEAAAYHs9jqdx48Zl3Lhxr7rdzJkzs379+ixdujTTpk1Lktx1113p6OjIjBkzutxn2rRpGTRoUBYtWpS5c+cmSVauXJknnngiM2fO7Pa1Ojo6kmz9bBMAAEBv6LW77SXJiSeemDVr1uSaa65Ja2trPvKRj2T69OlZuHBhkmTVqlWZNWtWbrjhhhx99NFJko9//OO59dZbc/3116empiZnn312kuSXv/xlkuTWW2/NmjVrctRRR2XEiBFZtmxZzj///IwePTr/+Z//WWgud9sDAACSnrVBj8889cSNN96Ys846K7NmzUpFRUXmzp2bq666qnN9a2trVq5cmU2bNnUuu/zyyzu3bW5uzpw5c3L11Vd3rh86dGi+9a1v5Zxzzklzc3MmTZqUU089NRdccEFvHgoAALCH69UzT/2VM08AAEDST77nCQAA4PVEPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAooFfjae3atZk3b15qampSV1eX+fPnZ8OGDTvcZ8uWLTnzzDMzZsyYjBgxInPnzs2aNWu63Pb555/PxIkTUyqVsn79+t44BAAAgCS9HE/z5s3LsmXLcuedd+aWW27JPffckwULFuxwn3POOSc333xzbrrpptx9991ZvXp1Tj311C63nT9/fg477LDeGB0AAGAbpXK5XO6NJ16+fHmmTp2aJUuWZPr06UmS22+/PSeddFKeeuqpTJgwYbt9GhsbM27cuCxcuDDvfe97kyQrVqzIlClTsnjx4hxzzDGd237jG9/I97///Xzuc5/LrFmzsm7dutTV1RWarampKbW1tWlsbExNTc0uOFoAAGAg6kkb9NqZp8WLF6eurq4znJJk9uzZqaioyL333tvlPkuXLk1ra2tmz57duWzy5MnZd999s3jx4s5lv/3tb/O3f/u3ueGGG1JR8eqH0NzcnKampm0eAAAAPdFr8dTQ0JC99tprm2VVVVUZPXp0Ghoaut1n8ODB251BGj9+fOc+zc3NOf300/PlL385++67b6FZLrvsstTW1nY+Jk2a9BqOCAAA2JP1OJ4uuOCClEqlHT5WrFjRG7MmSS688MJMmTIlH/jAB3q0T2NjY+fjySef7LX5AACA16eqnu5w3nnn5cMf/vAOt9l///1TX1+fZ555ZpvlbW1tWbt2berr67vcr76+Pi0tLVm/fv02Z5/WrFnTuc9dd92Vhx9+OD/4wQ+SJC99ZGvs2LG56KKL8oUvfGG7562urk51dXXhYwQAAHilHsfTuHHjMm7cuFfdbubMmVm/fn2WLl2aadOmJdkaPh0dHZkxY0aX+0ybNi2DBg3KokWLMnfu3CTJypUr88QTT2TmzJlJkh/+8IfZvHlz5z5LlizJX/7lX+YXv/hFDjjggJ4eDgAAQCE9jqeipkyZkhNOOCFnnHFGrrnmmrS2tuass87Kaaed1nmnvVWrVmXWrFm54YYbcvTRR6e2tjbz58/Pueeem9GjR6empiZnn312Zs6c2XmnvVcG0nPPPdf5ekXvtgcAANBTvRZPSXLjjTfmrLPOyqxZs1JRUZG5c+fmqquu6lzf2tqalStXZtOmTZ3LLr/88s5tm5ubM2fOnFx99dW9OSYAAMCr6rXveerPfM8TAACQ9JPveQIAAHg9EU8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAA/v/27jy8qurQ+/hvn5xMEE5CIAMBAkQZAnWEElJ9RSUWilQQLErRFi8XRFHfi9QK11Ztb6+0V6tW6/D6FuWhFQd4ndCKIuAABgQcikwyyEwSQshEpjOs9w/kwCEDO8POxPfzPOeRs/dae6+VRXT/XHuvDRsITwAAAABgA+EJAAAAAGxwNDwVFBRo8uTJ8ng8iouL09SpU1VaWlpnnYqKCs2cOVNdunRRTEyMJkyYoNzc3JAylmVV+7zyyitOdgUAAADAOc7R8DR58mRt3rxZy5cv1zvvvKNPPvlE06dPr7POrFmztHTpUi1evFgff/yxDh06pPHjx1cr9+KLL+rw4cPBz7hx45zqBgAAAADIMsYYJw68detWDRw4UOvXr9eQIUMkScuWLdPo0aN14MABpaSkVKtTVFSkhIQELVq0SDfccIMkadu2bUpPT1d2draGDRt2otGWpTfeeKPBgam4uFixsbEqKiqSx+NpYA8BAAAAtHX1yQaOzTxlZ2crLi4uGJwkKSsrSy6XS+vWrauxzsaNG+X1epWVlRXcNmDAAKWmpio7Ozuk7MyZM9W1a1cNHTpUL7zwgurKgJWVlSouLg75AAAAAEB9uJ06cE5OjhITE0NP5nYrPj5eOTk5tdaJiIhQXFxcyPakpKSQOr///e919dVXq0OHDvrggw90xx13qLS0VHfffXeNx503b55+97vfNbJHAAAAAM5l9Z55mjNnTo0LNpz+2bZtmxNtDfrtb3+ryy67TJdcconuu+8+/frXv9YjjzxSa/m5c+eqqKgo+Nm/f7+j7QMAAADQ/tR75mn27NmaMmVKnWXS0tKUnJysvLy8kO0+n08FBQVKTk6usV5ycrKqqqpUWFgYMvuUm5tbax1JysjI0H/913+psrJSkZGR1fZHRkbWuB0AAAAA7Kp3eEpISFBCQsJZy2VmZqqwsFAbN27U4MGDJUkrV65UIBBQRkZGjXUGDx6s8PBwrVixQhMmTJAkbd++Xfv27VNmZmat5/rqq6/UuXNnAhIAAAAAxzj2zFN6erpGjRqladOm6bnnnpPX69Wdd96pm266KbjS3sGDBzVixAgtXLhQQ4cOVWxsrKZOnap77rlH8fHx8ng8uuuuu5SZmRlcaW/p0qXKzc3VsGHDFBUVpeXLl+vhhx/Wr371K6e6AgAAAADOhSdJeumll3TnnXdqxIgRcrlcmjBhgp588sngfq/Xq+3bt6usrCy47fHHHw+Wrays1MiRI/XMM88E94eHh+vpp5/WrFmzZIzR+eefr8cee0zTpk1zsisAAAAAznGOveepNeM9TwAAAACkVvKeJwAAAABoTwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbHAtPBQUFmjx5sjwej+Li4jR16lSVlpbWWaeiokIzZ85Uly5dFBMTowkTJig3N7dauQULFujCCy9UVFSUEhMTNXPmTKe6AQAAAACSHAxPkydP1ubNm7V8+XK98847+uSTTzR9+vQ668yaNUtLly7V4sWL9fHHH+vQoUMaP358SJnHHntM999/v+bMmaPNmzfrww8/1MiRI53qBgAAAABIkixjjGnqg27dulUDBw7U+vXrNWTIEEnSsmXLNHr0aB04cEApKSnV6hQVFSkhIUGLFi3SDTfcIEnatm2b0tPTlZ2drWHDhunYsWPq3r27li5dqhEjRjS4fcXFxYqNjVVRUZE8Hk+DjwMAAACgbatPNnBk5ik7O1txcXHB4CRJWVlZcrlcWrduXY11Nm7cKK/Xq6ysrOC2AQMGKDU1VdnZ2ZKk5cuXKxAI6ODBg0pPT1ePHj00ceJE7d+/v872VFZWqri4OOQDAAAAAPXhSHjKyclRYmJiyDa32634+Hjl5OTUWiciIkJxcXEh25OSkoJ1du/erUAgoIcfflhPPPGElixZooKCAl1zzTWqqqqqtT3z5s1TbGxs8NOzZ89G9hAAAADAuaZe4WnOnDmyLKvOz7Zt25xqqwKBgLxer5588kmNHDlSw4YN08svv6wdO3Zo1apVtdabO3euioqKgp+zzVQBAAAAwJnc9Sk8e/ZsTZkypc4yaWlpSk5OVl5eXsh2n8+ngoICJScn11gvOTlZVVVVKiwsDJl9ys3NDdbp1q2bJGngwIHB/QkJCeratav27dtXa5siIyMVGRlZZ7sBAAAAoC71Ck8JCQlKSEg4a7nMzEwVFhZq48aNGjx4sCRp5cqVCgQCysjIqLHO4MGDFR4erhUrVmjChAmSpO3bt2vfvn3KzMyUJF122WXB7T169JB0Ykn0/Px89erVqz5dAQAAAIB6cWS1PUn6yU9+otzcXD333HPyer269dZbNWTIEC1atEiSdPDgQY0YMUILFy7U0KFDJUm33367/vnPf2rBggXyeDy66667JEmfffZZ8Ljjxo3Tzp079fzzz8vj8Wju3LnavXu3vvrqK4WHh9tqG6vtZaeiJQAAIABJREFUAQAAAJBawWp7kvTSSy9pwIABGjFihEaPHq3LL79czz//fHC/1+vV9u3bVVZWFtz2+OOPa8yYMZowYYKuuOIKJScn6/XXXw857sKFC5WRkaFrr71Ww4cPV3h4uJYtW2Y7OAEAAABAQzg289SaMfMEAAAAQGolM08AAAAA0J4QngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwwd3SDcAJFeXl+uLDN1VacES+quNyR3RUTHyCLs0ap6jo6JZuHgAAAFBvFeXlWr1yiQqPHlZ5WamiO8Qorks3XX71DW3yGtcyxpiWbkRzKy4uVmxsrIqKiuTxeFqkDZ8ve117N78rV+wxhXfOU1SnIwpz+6qV8/vcqihJkPdYogJFndVr0LUaOmp8C7QYAAAAqNuq91/V5mUvqlPuEXXNK1e3PKPoqurlyiOkw4mW8hOjVZKUoEGjbtVVI29s/garftmA8NSM4amivFzvPnO/XEmbFZO8Sy6XUSBgybKMLKv2esZIxljB8qU55yuQN0jX3v6HNpnYAQAA0H5UlJfrxT/foS7rNyh9h0/ugORzSWEBqY5LXBlJfpeC5bf2dSt/6A/1b/c83azXuISns2iJ8LT40emK7veFomOOKRA4EYTO5vjxgMZet6fe51q1apWuvPLK+jcSAAAAqIe/3vtTDczeqW75kt+Swmwmi1/u2aONlRUK1LL/4v7d9OW2Q7XW37Nnj/r06VOvtqampmrv3r3VttcnG/DMk8M2fPCG9h95VvGX7tLJmGonOEnSf/zvgw06Z9++fRtUDwAAALDj0w+XKOfJhzTiW78C308v2Q1OA7dvO2uZr7YfVpjL0pJFz+v6m6ZV279169b6NFeS1L1793rXOROr7Tlo8aPTlW/uV6fk3ZJU5615NSku9tf7nLGxsU3yFwMAAACoyVO/GqPIe3+r9B0nrlVtzgvUW8BIN0yarqd+Nabavuhabuuz6rjg/tGPftToNhGeHFBRXq4lz96o+EtXyO2ulGU17G/UeedFVtt24YWntnXoYCk6OvQvSGlpsUpLShp0PgAAAKA2FeXlmj8lQ1nv7FLHcvszTWc6efXay3LpvxKTtKX/AN0ZH19j2YCkpc99rL9NGaaK8vJT2wPVb/h77bXX9MADDwS/z549O2T/mjVrGtbg0xCemlhFebne/cfN6tx/g6T6zzad7uF53UK+R0db+uWUzsHvAwdGKSMjNHX7/UbP/mlsyF8uAAAAoDEqysv16r9frh+tLZbUuBCxuf8Abek/QO/166cJnTtX229JGhx16hr34+PHddnaIr3y75cHr3ELCgpC6vziF7/Qz372s5BtiYmJId/Xr1/fiFafQHhqYu8smKK48746azkjqUgeHVGCDqubjihBRfKorgB/zY9j9I+/Fwa/x8eH1VhuX/G/9M6CW+vZcgAAAKBmL91+pYZuLGu28z2QlBT8s/f7K+SMjWX6x+1XSaoehP7zP/+z2jE++OCDkO9+v1+NXSuPBSOa0OJHpyv+0g017itRJ23WBfpOadqlvvpO56nCqn6vZpQpVx/t0nnaoT7aLWl3cJ/LJX35ZUXw+/HjAe3aVVntGEfyfOo8br0WPzpdP/vV843vGAAAAM5ZT/1qjLK+n3FqLkd91d9/KkmXrS3SX+/9qXbviQrZHhl54tGW02/nW716dbX6O3fubNTiaoSnJrLhgzfU6YLVMubUrXpG0k7103KN0lpdJr/lVpjxya+wWu/nq7CitdUM0rcaIL/llvSP4L433wh9lmnNmprT/+Ecn4yROl2wWhs+eENDfnx9U3QRAAAA55hPP1yijBW7FFDz3rL2eH5+8M9Rp103ByQN/XCn/uYPvZbOysrS4cOHVVZ26vq4srL6JMPKlSsbFZ64ba+J7D/yrNzuqmAm2qAfaq4e00PWPGV/H5wknfjn2R6Esiz5vH4dX/KPusvV4kieT5Ylud1V2p/3XIOOAQAAAOQ8+ZA6VDgfGo4HTt1OZyRtqjx1t1VS2KlHVVySOlRIZfv3hNTftWtXSHCqzYwZM9S7d+8Gt5Pw1AQWPzpdnm67ZFlGJYrRX/UfetyaowPqKUkKWPWb4PPt26Oj025S6TN/blB7yitOTFdalpEnZacWP3Jbg44DAACAc9df7/2pfvCtv8Gr6tXHi4XHat13cYcOId/DjNSlshGrsjUCt+01UkV5uaL7fSFjpI3WUP1f3a4ydZQkGav+2TRwrEDHfn27Ank5DW5Tacmpez2NkaL7f6GK8nJF1bIePgAAAHC6ivJyDczeqYDl3HucGsO0THZi5qmx3n3mfkXFHNPb1ng9bt2n44pRwKp5FTw7Shc+HwxO0WMnhu60LEX/dMJZj1FVdepvuGVJ0TEFevfZ3zS4TQAAADi3vPjnO9Qtv/mC05DI6u83rUtkY94H1AiEp0aykjbrFTNZr1mTJTVstukk4/er4sN3JUmupG6KvObakP0dJvxcUSNGn/U4lZWhLw0LBCy5Ejc3uF0AAAA4t3RZv0H+ZswnUa7Qa+iBERF1lu9wRvkf/OAHss4IVC5X00cdwlMjfL7sda3qdpHecY1vkuP5D+6TOV4qSYocPEwV770VWiAiSoUP3HPW43i9Unn5qQDlchnFJO/U58teb5J2AgAAoP1a9f6rSt/ha5ZnnSTpnaJCrf7+5bcn/aVHjzrrWKe1rUOHKG3atEl/+9vfQsq0ufBUUFCgyZMny+PxKC4uTlOnTlVpaWmddSoqKjRz5kx16dJFMTExmjBhgnJzc4P7FyxYIMuyavzk5eU52Z1q3j6wVYtdP2+y4wWKi4J/dnXuInM8dGnyskXzZU4rU+txAlJRkT9km8tltGfzP5umoQAAAGi3Ni97Ue7A2cs1hU9KSvTrnNBn/e1MeMWEnYoxfq9Xb7/9tm67LXSRNJ/Pp8mTJzdFM4McDU+TJ0/W5s2btXz5cr3zzjv65JNPNH369DrrzJo1S0uXLtXixYv18ccf69ChQxo//tTMzo033qjDhw+HfEaOHKnhw4crMTHRye6EKPD69HLvq2SZpvubZZ22oEPgeMnZlzSvh0DAkttT+yomAAAAgCR1yj0iXzPcn/ZVWZlmHDrYoLqp4eHBP1d6/Zo4caJ8Z7xYNyYmRldddVWj2ngmx1bb27p1q5YtW6b169dryJAhkqSnnnpKo0eP1qOPPqqUlJRqdYqKijR//nwtWrRIV199tSTpxRdfVHp6utauXathw4YpOjpa0aeFjCNHjmjlypWaP3++U12p0f3fHlC5K7JRzzidyZ2SKrndks8n77++UPzzryhvzcdS1akXfEVkXK6qddXflny6AQMilJwcHrLNsozcnZt3Zg4AAABtT9fccoU5PPO0u6JCP9+/L/g9XJK3HvV7nvFMVGVlpcLDw+X1njrKtGnTNGfOnEa2NJRjmTI7O1txcXHB4CSdePOvy+XSunXraqyzceNGeb1eZWVlBbcNGDBAqampys7OrrHOwoUL1aFDB91www21tqWyslLFxcUhn8ZYdqRIb+QVNmpVvZpY0dGKuGSoJMm3e4eOzZkpq2PHkDL+w2dP5xdff0n1Y1tSpOeIKs64nxQAAAA4qaK8XN2OGFu3zjXUEZ9PP927J/g90rJ0W3x8vY7hVvUgEwiEJr6PPvpI+fn5DWtkLRwLTzk5OdVuo3O73YqPj1dOTs3vMMrJyVFERITi4uJCticlJdVaZ/78+fr5z38eMht1pnnz5ik2Njb46dmzZz17c4oxRn/87rAs48wTdB1/eZsUdmJC0LthrcyxgpD9/n3f1Vnf1a27dmbNUU2tc7u9+uLDN5uqqQAAAGhnVq9cougqZ89x1a6dodeqxujZglPXvEbStbt3B7+/XcPEx6aKCp05Oeb3hz7z/+WXX4Z8rysv2FXv8DRnzpxaF2w4+dm2bVujG2ZHdna2tm7dqqlTp9ZZbu7cuSoqKgp+9u/f3+Bzbiwu07bjFTIOrS0fMfBCee65Pxig6qvLc4u03+qtnepb4/7jx5o2fQMAAKD9KDx62PFznBl6KiX5z9h2en6r6Q7C/d763OR3wpnPRDVEva/QZ8+erSlTptRZJi0tTcnJydVWv/P5fCooKFBycnKN9ZKTk1VVVaXCwsKQ2afc3Nwa6/ztb3/TxRdfrMGDB9fZnsjISEXW88VbtXnxYL7CLMnv4NKN0T8ZJ/d5/VUwo/4r+bk6eeQyPi3XT9RXO6rt91bWvdohAAAAzl3lZW3jWvGS6Gj9s6Tk7AWbWL3DU0JCghISEs5aLjMzU4WFhdq4cWMw3KxcuVKBQEAZGRk11hk8eLDCw8O1YsUKTZgwQZK0fft27du3T5mZmSFlS0tL9dprr2nevHn17UKDHa3y6a28Y44Gp5PC+6UraeWXMn6fAkfzZbxehSUkyoo4EQLLl7+r4nm/kSTFzJiljhN/EawbsNxaay7TLXpRnRT6lyo8Msb5xgMAAKBNiu7g/LXilv4DzlrmoLdK13x/6944j6fa/smd4zW586nnpC7YuUN+v1+ZA0Zpxn2TFRFVPebcddddys/P1/Hjx/XKK69IkhITE0PWaDgbx1bbS09P16hRozRt2jQ999xz8nq9uvPOO3XTTTcFV9o7ePCgRowYoYULF2ro0KGKjY3V1KlTdc899yg+Pl4ej0d33XWXMjMzNWzYsJDjv/rqq/L5fLr55pud6kI1qwtL5Guml4WdZIW5FZZYfdbN9+3W4J/DB/yg2n6/5dYW8wNlKHShjY6duzZ9IwEAANAuxHXp1tJNaJCTzztlb1um7FuX1Vk2Pz9fkyZNkiQNHz5cb7/9tu3zOLqC+0svvaQBAwZoxIgRGj16tC6//HI9//zzwf1er1fbt29XWVlZcNvjjz+uMWPGaMKECbriiiuUnJys119/vdqx58+fr/Hjx1dbXMJJ/yopl9vJpUdsMn6/Kj5dIUlyJSYrfNBF1cqEGZ++03kh23y+cF2aNa5Z2ggAAIC25/Krb1B5xNnLtSbN2V7HZp4kKT4+XosWLap1f+/evWXOWLUuKipKTz/9tJ5++uk6j/3ZZ581SRvr44vismafeapJ+XtvKpB3YvXB6DETZIVVXzLdrzDt0vnB78ZIlcUJimqCVUYAAADQPkVFR+twgqU+B51drrypGEmHEy399bYVwW3d+8Vp3D2XVivbu3dv7d27V7169dKePXuC2+vzGqNmeHdw+2CM0b9Kys5esAn4j9T+MtuqLz5XydOPSpLCevRSx4m31FzQsrRb5wWXgTTGku9YYs1lAQAAgO/lJ0XL30ZSgt8l5SeGTg7k7SupNkHTVBydeWpP8r0+Hfc7/Krl7x2deoMiLhqsiIz/JXfvNFkREfLn5qhy9UpVrHhPCgRkeWIV++CfggtI1KTC6qBi41GsiuVyGfmKOzdL+wEAANB2lSQlyB3Y26zn3FhWpn3eUwuUHzvtnU37vF69UVQYUv762BOP7rgDUmGXrnKftnK5t8Kv8hKvOnia/n4+wpNN5c0UnCRJPp8q13ykyjUf1bg7rPd5ir3/vxV+Xv+zHqpKJ8JVIGCp96DRTdlKAAAAtEODRt0q3/sPyd2Ml7//r6hQb9Zy+9wX5eX6orw8ZNvJ8ORzSd6wESHhSZJ83jPfHNU0CE82eR2a+quJ51cPqHLDWnm3faNAQb5MeZlcsZ3lTuurqOHXKOqa0bLc4baO5ZNbgYCl0pzzdc3N4x1uOQAAANq6q0beqNf6/kEDv/UprBU8718bnyVt7etWdEX1pcYDDi1UQHiyKdxqvkfmoq4epairRzXJsdzyyeUyCuQNapLjAQAAoP07+sMhCtu+ttnO93C3FD3cLaVeddxG2tfvQkXX8K5cVw1LZJ++SERDtZFHwVpedFjb/FGFm0qVl8br2tv/0NJNAQAAQBtx6+xndKirFGilS+4FLOlQV8ldVPM7X93h1VejbgptMxG0gK7hbnVsYwEqypQp1ipW+fZLWaIcAAAAtkVFR2tLZl+5Wultey4jbRqSpnBX9cXTwqPCFN3J3iMu9T6vI0dthyzL0oWdOrR0M+wzRn20WyWHztfP7v0/Ld0aAAAAtDF3PfK2vukXJn8rm33yW9I3/cIUXjG7xv2JqZ1kOfTIDeGpHi71dFANt0+2SmHyq09gt3omzmjppgAAAKCNSr77IZVFSc248F6dApLKoqS9502pcb/LZSmpj8ex8xOe6uHCTtFyaOGOJue33EreE6khP76+pZsCAACANup/Zd2gtVed12pCg0vSZ1ekKbr80hr3BwJGCamEp1bh8rhObWbmyWX8mv2LmqcyAQAAALum/f51rRnmXCCpjzXDPAqvrP0a1+Wy1L1/nGPnJzzVQ5cIt8YmdlZYKw9QLuPX2IQ4dYlgJXoAAAA0TnRMhFKGPa11g1v2+f91gzuoNOKhWvdbLkvnD0lUdEyEY20gPNXTrd27yt/Kb90LWGH699Tklm4GAAAA2olLf9xXhR3/EJyBaq5noE6eZ3WmR8c7PVLj6nonmYDRBVf2cLQ9hKd6GuzpoPSOUa32B+eSNLBjlC71tKGVAQEAANCqJfXxKLlnvCqj5+n9kWk6Hi3HV+HzW9LxaOn9kWmqipxXd2FL6tK9o6OLRUiEp3qzLEtz0rq1mhVHzhSQdF9aN8eWZwQAAMC5x7IsZVyXJhkpvHK2Prlyqrb2PfEi2qZ+ke7J423tG6ZPh/97nc84BRkp47o0x6+BCU8NMLJrrK5PjJMz7y1uuDBJ4xPjNLJrbEs3BQAAAO1Mn4sS1PeHSbJcUnT5pcpLeVLvj0xTTpcT+32NzC0n6+d0kd4flaa8lCcVVXHJWetZLqnvD5PU56KExjXABlYUaKD/7tdDHx0rUZHX3ypmoVySYsPD9Id+zt7nCQAAgHPXFTf20/4tBaoo8wZnoTYNrNSXsf9Q6rf/UvoOn9wByeeSwgJSXXnKSPK7FCy/pZ9bB/peqLCimxVeUfuzTSEsKTI6XFfc2K8pundWhKcGig9367H+PXXrN3tauimSTtyu91j/VMWHM6QAAABwRlRMuK66ZYDee25TcFu4K1LhJVN1pJu0r88GhftXKO5ovrrmlatbnlF0VfXjlEdIhxMt5SdGq7BLV3nDRii6YoiiSlS/e+OMdNUtAxQVE97ovtlhGWNa+dpxTa+4uFixsbEqKiqSx9O4h8r+sidX87473EQta7j/TOumu3sltXQzAAAAcA7Y8N4erXtr91nLeQOV8sV8KRNWLKlMUgdZfo/cpZfUuXKeXcPGpWnwqN6NOkZ9sgHTFI10d69EHff79eS+vJZrQ2qi7kpNbLHzAwAA4NwyeFQveSv9+mLZ3jrLhbsiFV42rPqOJlh54dJRvXTpyF6NP1A9EJ4aybIszU3rphh3mB7efVguNc+69yfPc39aN93FjBMAAACakWVZGjY2TRFRYVr75u4TDzc1x/1s35+nKWacGoLw1AQsy9LdvZLUr0OUZm3fp2KvX34HzxemE4tDPNY/VaMSWFkPAAAAzc+yLA0e1Vudkztq1d+3qbLcK+PgLILlOrE4xFW3DFDaxc6vrFcTwlMTGpUQq6Fx6br/2wN6I6+wyWehTh5vbGKc/rtfD3VmcQgAAAC0sLSLE5Ryfpw+efVb7Vif2/SzUN8f7/zBSbripn6K6tg8i0PU2BQWjHDmLcTLjhTpT98d1tbjFQqzJH8jfson66d3jNKctG68xwkAAACt0u6vjujzpbt19OBxWS5LJtDwi+CT9bt076iM69Ice49TfbIB4cmh8CRJxhh9UVymFw/m6828Y/IZyW1JPhs/8ZPlwi1L4xLjdGv3rrrE08HxtyYDAAAAjWGMUe53xdr00QHt3JCnQMDIFWYpYGM2weWyguX7DknSD67srqTeHkevgQlPZ9Fc4el0R6t8WlNYqq9LyvRVcZm+KinTcX/1m/o6hrl0cacOusTTQRd26qDL4mLUJYLb8wAAAND2lJdW6eD2QuXtLVbenmLl7S2Rt7L66gDhkWFK7NVJSX08Skj1qHv/OEXHRDRLGwlPZ9ES4elMxhjle32qCBhVBQKKcLkU5bLUNdzN7BIAAADaJWOMyku88nn9CviMXG5L7vAwRXcKb7FrYN7z1AZYlqWEiJZ72A0AAABobpZlqYOneWaUnNAEr6cCAAAAgPaP8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwwd3SDWgJxhhJUnFxcQu3BAAAAEBLOpkJTmaEupyT4amkpESS1LNnzxZuCQAAAIDWoKSkRLGxsXWWsYydiNXOBAIBHTp0SJ06dZJlWS3dnHaruLhYPXv21P79++XxeFq6Oec0xqL1YCxaF8aj9WAsWg/GovVgLJqHMUYlJSVKSUmRy1X3U03n5MyTy+VSjx49WroZ5wyPx8MvfCvBWLQejEXrwni0HoxF68FYtB6MhfPONuN0EgtGAAAAAIANhCcAAAAAsCHsoYceeqilG4H2KywsTFdeeaXc7nPyDtFWhbFoPRiL1oXxaD0Yi9aDsWg9GIvW5ZxcMAIAAAAA6ovb9gAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8ocEKCgo0efJkeTwexcXFaerUqSotLa2zTkVFhWbOnKkuXbooJiZGEyZMUG5ubrVyCxYs0IUXXqioqCglJiZq5syZTnWj3XByPCTp6NGj6tGjhyzLUmFhoRNdaDecGIuvv/5akyZNUs+ePRUdHa309HT95S9/cborbc7TTz+t3r17KyoqShkZGfr888/rLL948WINGDBAUVFRuuCCC/TPf/4zZL8xRg888IC6deum6OhoZWVlaceOHU52od1oyrHwer267777dMEFF6hjx45KSUnRL37xCx06dMjpbrQbTf27cboZM2bIsiw98cQTTd3sdsmJsdi6dauuu+46xcbGqmPHjvrhD3+offv2OdWFc5sBGmjUqFHmoosuMmvXrjWffvqpOf/8882kSZPqrDNjxgzTs2dPs2LFCrNhwwYzbNgw86Mf/SikzJ///GeTkpJiXnrpJbNz507z9ddfm7feesvJrrQLTo3HSWPHjjU/+clPjCRz7NgxJ7rQbjgxFvPnzzd33323+eijj8yuXbvM3//+dxMdHW2eeuopp7vTZrzyyismIiLCvPDCC2bz5s1m2rRpJi4uzuTm5tZYfs2aNSYsLMz8z//8j9myZYv5zW9+Y8LDw82mTZuCZf74xz+a2NhY8+abb5qvv/7aXHfddaZPnz6mvLy8ubrVJjX1WBQWFpqsrCzz6quvmm3btpns7GwzdOhQM3jw4ObsVpvlxO/GSa+//rq56KKLTEpKinn88ced7kqb58RY7Ny508THx5t7773XfPHFF2bnzp3mrbfeqvWYaBzCExpky5YtRpJZv359cNt7771nLMsyBw8erLFOYWGhCQ8PN4sXLw5u27p1q5FksrOzjTHGFBQUmOjoaPPhhx8624F2xqnxOOmZZ54xw4cPNytWrCA8nYXTY3G6O+64w1x11VVN1/g2bujQoWbmzJnB736/36SkpJh58+bVWH7ixInm2muvDdmWkZFhbrvtNmOMMYFAwCQnJ5tHHnkkuL+wsNBERkaal19+2YEetB9NPRY1+fzzz40ks3fv3qZpdDvm1HgcOHDAdO/e3XzzzTemV69ehCcbnBiLG2+80dx8883ONBjVcNseGiQ7O1txcXEaMmRIcFtWVpZcLpfWrVtXY52NGzfK6/UqKysruG3AgAFKTU1Vdna2JGn58uUKBAI6ePCg0tPT1aNHD02cOFH79+93tkNtnFPjIUlbtmzR73//ey1cuFAuF//KOBsnx+JMRUVFio+Pb7rGt2FVVVXauHFjyM/Q5XIpKyur1p9hdnZ2SHlJGjlyZLD8d999p5ycnJAysbGxysjIqHNcznVOjEVNioqKZFmW4uLimqbh7ZRT4xEIBHTLLbfo3nvv1aBBg5xpfDvjxFgEAgG9++676tevn0aOHKnExERlZGTozTffdK4j5ziuhNAgOTk5SkxMDNnmdrsVHx+vnJycWutERERU+w9dUlJSsM7u3bsVCAT08MMP64knntCSJUtUUFCga665RlVVVc50ph1wajwqKys1adIkPfLII0pNTXWm8e2MU2Nxps8++0yvvvqqpk+f3jQNb+Py8/Pl9/uVlJQUsr2un2FOTk6d5U/+sz7HhDOLm43WAAAFSElEQVRjcaaKigrdd999mjRpkjweT9M0vJ1yajz+9Kc/ye126+677276RrdTToxFXl6eSktL9cc//lGjRo3SBx98oOuvv17jx4/Xxx9/7ExHznGEJ4SYM2eOLMuq87Nt2zbHzh8IBOT1evXkk09q5MiRGjZsmF5++WXt2LFDq1atcuy8rVVLj8fcuXOVnp6um2++2bFztBUtPRan++abbzR27Fg9+OCD+vGPf9ws5wRaC6/Xq4kTJ8oYo2effbalm3NO2rhxo/7yl79owYIFsiyrpZtzTgsEApKksWPHatasWbr44os1Z84cjRkzRs8991wLt659crd0A9C6zJ49W1OmTKmzTFpampKTk5WXlxey3efzqaCgQMnJyTXWS05OVlVVlQoLC0P+D3tubm6wTrdu3SRJAwcODO5PSEhQ165dz8lVY1p6PFauXKlNmzZpyZIlkk6sPCZJXbt21f3336/f/e53De1am9PSY3HSli1bNGLECE2fPl2/+c1vGtaZdqhr164KCwurtlpkTT/Dk5KTk+ssf/Kfubm5wX83nfx+8cUXN2Xz2xUnxuKkk8Fp7969WrlyJbNONjgxHp9++qny8vJC7kjw+/2aPXu2nnjiCe3Zs6dpO9FOODEWXbt2ldvtDrlukqT09HStXr26CVuPoJZ+6Apt08mH4jds2BDc9v7779t6KH7JkiXBbdu2bQt5KH779u1GUsiCEUePHjUul8u8//77DvWm7XNqPHbu3Gk2bdoU/LzwwgtGkvnss89YxacWTo2FMcZ88803JjEx0dx7773OdaANGzp0qLnzzjuD3/1+v+nevXudD2KPGTMmZFtmZma1BSMeffTR4P6ioiIWjLChqcfCGGOqqqrMuHHjzKBBg0xeXp4zDW+nmno88vPzQ/7bsGnTJpOSkmLuu+8+s23bNuc60g448buRmZlZbcGIcePGnXWVVzQM4QkNNmrUKHPJJZeYdevWmdWrV5u+ffuG/KIeOHDA9O/f36xbty64bcaMGSY1NdWsXLnSbNiwwWRmZprMzMyQ444dO9YMGjTIrFmzxmzatMmMGTPGDBw40FRVVTVb39oip8bjdKtWrWK1PRucGItNmzaZhIQEc/PNN5vDhw8HP1xEnvLKK6+YyMhIs2DBArNlyxYzffp0ExcXZ3Jycowxxtxyyy1mzpw5wfJr1qwxbrfbPProo2br1q3mwQcfrHGp8ri4OPPWW2+Zf/3rX2bs2LEsVW5DU49FVVWVue6660yPHj3MV199FfI7UFlZ2SJ9bEuc+N04E6vt2ePEWLz++usmPDzcPP/882bHjh3mqaeeMmFhYebTTz9t9v6dCwhPaLCjR4+aSZMmmZiYGOPxeMytt95qSkpKgvu/++47I8msWrUquK28vNzccccdpnPnzqZDhw7m+uuvN4cPHw45blFRkfm3f/s3ExcXZ+Lj4831119v9u3b11zdarOcGo/TEZ7scWIsHnzwQSOp2qdXr17N2LPW76mnnjKpqakmIiLCDB061Kxduza4b/jw4eaXv/xlSPnXXnvN9OvXz0RERJhBgwaZd999N2R/IBAwv/3tb01SUpKJjIw0I0aMMNu3b2+OrrR5TTkWJ39navqc/nuE2jX178aZCE/2OTEW8+fPN+eff76JiooyF110kXnzzTed7sY5yzLm+4cYAAAAAAC1YrU9AAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADAhv8PH2gwHmgnJvgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -177,9 +330,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3RUdf7/8eedSZn0TkI6LYZQBURK6NLLoqBIUxBWxVVk97u/76rrLpa17KorK6wNWETq0qSLwUDooUhCCzUJgSSQStokmXp/f2TnSkwIHfcr78c5Oedm5nM/9zP3r9f5VEVVVRUhhBBCCCFuke7nboAQQgghhPi/TQKlEEIIIYS4LRIohRBCCCHEbZFAKYQQQgghbosESiGEEEIIcVskUAohhBBCiNsigVIIIYQQQtwWCZRCCCGEEOK2SKAUQgghhBC3RQKlEEIIIYS4LRIohRBCCCHEbZFAKYQQQgghbosESiGEEEIIcVskUAohhBBCiNsigVIIIYQQQtwWCZRCCCGEEOK2SKAUQgghxF2lqiqzZ8/G09MTRVFISkq66Tq2bt3K008/TfPmzfHw8MDX15eWLVsycuRI/vGPf5CZmXnnGy5umNPP3QAhhBBC/HJlZGTwzDPPsGPHjlu6v6SkhGeeeYZvvvmGzp07M3nyZEJCQsjPz2flypWsW7eOdevWcfHiRT788MM73HpxoyRQCiGEEOKOU1WVOXPm8Oqrr6LX6+nSpQvJyck3VUdlZSXDhg1jz549zJkzh9/85je1vn/11VcZP348S5cuvZNNF7dAhryFEEIIcce9+eabTJ8+nfj4eI4fP87AgQNvuo4///nP7NmzhxdeeKFOmHR44403CAgIwMPD43abLG6D9FAKIYQQ4q6YN28eU6ZMuaV7MzIy+OSTT1AUhddee+2a5Vq0aEFhYeGtNlHcIRIohRBCCHHHzZw5E0VRbvn+r7/+GovFQseOHQkLC7uDLRN3gwx5CyGEEOKOu50wCbBq1SoA2rZtW+tzs9mM0Wi8rbrFnSeBUgghhBD/VSorKzl58iQAkZGRlJaW8sc//pFmzZphMBjw9PTEx8eHkSNHsmvXrp+5tQJkyFsIIYQQ/2VOnDiB3W4H4MKFC7Rp0waj0ciMGTN48MEHKSsrY/ny5dqWQX/605946623fuZW398kUAohhBDiv0pBQYF2vWDBAgICAjh48CBNmzbVPh83bhyvvPIKf/3rX3n77bdp0qQJkydP/jmaK5AhbyGEEEI0IC8vjzlz5jBixAgiIiJwdXXF09OTFi1a8NRTT7F9+/abrnPMmDEYDAYiIyN58skn2b17d63vy8vLa/3/yiuv1AqTDm+99Rbh4eFAzZ6UJpPpptsi7gwJlEIIIYSo13PPPUdkZCQvvfQSqampPPnkk3zyySe88847NGvWjEWLFtG3b1/Gjh173TB39XGLPXr04JNPPuGxxx5j48aN9OzZk5kzZ2rfW63WWveOHj263jpdXFx47LHHgJrg+/3339/iLxW3S4a8hRBCCFGvhQsXYjabGT58OMuXL8fd3V377uWXX+bzzz9n2rRpLF++HEVRrnlizaefflrr6MUXX3yR3r17AzVD17169eKtt94iJCSEadOm4enpqZX18PAgOjr6mm1s3769dn3gwAGGDh16i79W3A7poRRCCCHENXl4eDB//vxaYdLh+eefZ9CgQQAsW7aM/fv31ymTn5/PH/7wh2vW37lzZ15++WUA/vd//5eCggICAwO17319fRtsX0BAQK1niZ+HBEohhBBCXFPXrl0JCgq65vejRo3SrtevX1/n+3/84x9UVFQ0+Ixf//rXAFRUVPDJJ58QFxenfffT4e+fUlVVu9br9Q2WFXePBEohhBBC1Oubb77h448/brBMZGSkdn3hwoU63zs2KPfx8blmHc2aNdOGtVeuXImfnx/NmzcHoLi4uMFQefWK8NDQ0AbbKu4eCZRCCCGEqNfgwYNp3bp1g2VKS0u1aw8Pj1rf5eTkcObMGQAaN27cYD0dOnQA4PTp0+Tm5mo9nxaLhSNHjlzzvsOHD2vXPXv2bPAZ4u6RQCmEEEKIW5aZmald9+jRo9Z3x48f1669vb0brCciIkK7PnHiBNOmTcNgMACwaNGieu+prKxkzZo1ALRp04bu3bvfXOPFHSOBUgghhBC3bO3atQAEBwdrW/g4nD9/Xrv+ae/lTwUHB9e6LyoqSttK6LPPPqu1Shxq5k7+7ne/Iy8vD2dnZz7//PPbPj9c3DrZNkgIIYQQt+T48ePs27cPgLfffhs3N7da31+99+TVcx23bt1KdnY2UBMk+/fvX+tex8bmr7zyCsXFxXz44Yf079+fSZMm0blzZ8rLy1mxYgXJycl4e3uzdOlSunXrdrd+prgBEiiFEEIIcdNUVWX69OlAzVzLqVOn1imzfPly7frq4e93331Xu+7Vqxf9+/fHxcVF+6yyshKo2aw8MjKSbt26kZKSwty5c5k7dy46nQ5fX18mTpzIRx991OAq9Kvl5+czbdo01qxZQ1RUVK0eVHF7ZMhbCCGEEDft/fffZ/v27cTExLB48eJ6h5s/+OAD7frDDz9EVdU6f45eTLPZrJV1d3evdUrPhQsXeOGFF/j888+ZNWsW/fv3p7i4mEWLFjF9+vQbOnLx3//+N61atdLmXIo7S3oohRBCCHFTVq9ezeuvv05oaCjffvst/v7+9Zbz8vLSrqurqxuss6qqqtZ9d+qUnqt7JR966CHsdjvFxcU383PFDZAeSiGEEOI+oaoqs2fPxtPTE0VRas1xvJ6ioiLeeecdWrVqxejRo7Hb7ZSVlTFmzBhef/11cnNz69xz9ZGJeXl5DdZ/9fdRUVHA7Z/SAzUn8WzatIl3332Xffv21Qq54s6RQCmEEELcBzIyMujTpw/Tp0/HaDTe1L27d+8mLi6O119/nbS0NNzd3Zk5cyYvv/wyV65c4Z133iEuLo7NmzfXuq9Vq1ba9cWLFxt8hmORztX33e4pPQAPPPAAhw8f5tVXX5WTdO4iGfIWQgghfsFUVWXOnDlaoOrSpQvJyck3fH9eXh7Dhw+npKQERVHw9/cnKSlJ2/D8tddeY+jQoSQlJTFq1CiOHTumnXITHh5OixYtOHv2LKmpqQ0+x7FBeUxMDGFhYXzzzTe19qasz/VO6QHYsmWLbCd0D0gPpRBCCPEL9uabbzJ9+nTi4+M5fvw4AwcOvKn7v/zyS0pKSgDw9PRk27ZttU7PcXd3Z9asWUDNPMmfHtU4evRooGZvyYyMjHqfkZGRoW2Q7ih/u6f0OEiYvDckUAohhBC/cPPmzWPLli3X7fGrT0JCgna9evVq2rZtW6dM27ZtteDm2JfSYfr06VrYmzdv3jXbBzWh8OWXX77htjV0So+4t2TIWwghhPgFmzlz5i330h06dKjW8LjZbL7mQh6dTofNZqszPzMkJIT333+fl156iVmzZvHYY4/RqVOnWs9w9Gq+//77NGrU6Ibb19ApPeLekkAphBBC/ILdapgsLi5mwIABWK1W7bNhw4Zd9z7H/Mmrvfjii+Tl5fHOO+/Qu3dvnn32WVq2bElaWhpz587FZDLxxz/+kRdffPGG23e9U3rEvSWBUgghhBB1lJWVceXKlZu+79lnn63387fffpuBAwcye/ZsVqxYQUFBAUFBQQwdOpQXX3zxpoasb+SUHnFvSaAUQgghRB3R0dGoqgpAcnIy48aNIzMzkxEjRvDb3/6Wpk2bcvHiRRYsWMD8+fPR6/W8/fbb/OpXv7pmnfHx8cTHx992227klB5xb0mgFEIIIUSDunTpQlpaGn//+9/529/+VmvPR1dXV6ZNm8bUqVPp0KHDXW/LjZ7SI+4tCZRCCCGEaNCBAwd4/vnnSUlJoUuXLkyaNInIyEjy8vJYvnw5X331FaWlpbz99ts0bdr0rrUjISGB8ePH06hRIxITE+/qs8TNkUAphBBCiGvat28f/fr1o6qqiokTJ/LVV1+h0/246+CkSZP44x//yLvvvsvmzZvZunVrrVXcd0piYiIjR47Ex8eHbdu2ERsbe8efIW6d7EMphBBCiHqpqsrUqVOpqqrC09OTOXPm1AqTDm+99RZNmzalpKSEsWPHYrPZ7mg7duzYwYgRI/Dw8CAxMZGWLVve0frF7ZNAKYQQQoh6paamkpaWBkCfPn3w9vaut5xer2f48OEAnDt3jm3btt2xNuzZs4dhw4bh5uZGYmJivafnPPfcc4wYMeKOPVPcPAmUQgghhKjXmTNntOvo6OgGyzZp0kS7Pnr06B15fnJyMoMHD8bZ2ZmtW7fWe0oPwOnTp+/YM8WtkTmUQgghhKjX1cPbji2ErsVut2vXd2LI+9ChQwwaNIiKigo++OADSktLr3lKj+OscfHzkUAphBBCiHpd3SuZnp7eYNmMjAztOjIy8paeV22xUV5txVJZxoABAygtLQXg97///XXvjYqKuma79u7dq/3vOBrSaDSyePFi7fNu3brJqvHbIIFSCCGEEPXq2LEjoaGh5Obmsn37doqKiggICKhTzmKxaOdqu7i40K9fv5t6zsHzxczbncHWtDzsKthK827plJ767Ny5k8mTJ9f5vLCwkIkTJ2r/L1iwQALlbZA5lEIIIYSol06n47333gOgurqaZ555BovFUquMqqrMmDGD7OxsAP7nf/6HoKCgG37GouQsnvhiH9+fzMf+n1F1vU8wTV/bRPQrG1mUfB5VVa/7d/78+XrrnzRp0g3dP2nSpJt+P+JH0kMphBBC/MJdPbR79eKVrVu3akEwODiY/v3717n3qaeeIj8/n9dee43169fTunVrJkyYQHh4OPn5+axYsYLDhw8DMG3aNP7yl7/ccLsOni/mz+uOowI2e+05mo7//7T2OLHBXnSKlhNx/psp6vVm2QohhBDi/7QbOeu6V69e11z0AjUrvr/88kuSkpI4d+4cFRUVuLu7ExkZSffu3ZkyZQqdO3e+qXY9t/gQ35/MrxMmr6bXKfRvGcznEzreVN3i3pJAKYQQQoi7RlVV5syZw6uvvorRaGT79u307t2baouNuJlbuFaWzHp/2A3VP3ToUDZu3HgHWyxuhQx5CyGEEOKuyMjI4JlnnmHHjh11viuvtl4zTIr/eyRQCiGEEOKOurpXUq/X06VLF5KTk2uV8TI4oVNoMFT69noK95iuKApserEHrs76OmU8PT3vdPPFLZBAKYQQQog76s033+TNN99k4MCBzJ07l/nz59cJlAZnPV0jPNh7oQKV+ud46j38MQRF0r9lMO3atLoXTRe3SAKlEEIIIe64efPmMWXKlHq/q6ysZOPGjfhcvojKAw3WY7erTI1v0mAZ8fOTQCmEEEKIO+oPr71OhclGtcWG4SfD1JmZmSQnJ2MymYj2cOP3XcP5cEcOCmo9PZUqj0aY6Rjld+8aL26JBEohhBBC3BE/PfFGp0D/uGDUkiqtzI4dO2jSpAlNmzZl9OjRVFVVcSp5G+nO0ZyqcEFFQaFmYmW/xlZ8Co6ya1cAnTp1wm63y5zJ/1JyUo4QQgghblt9J97YVfj+ZD4rDl2sVbZfv35MmDABNzc3kpKSaOoNo4KLmeB6mPHux5ngWrNRetH5U/zwww8MHjwYDw8PvLy8cHNzo2fPnnz66aeYTCZUVWX27Nl4enqiKEqDe2k6REdHoyjKTf3NmjXrTr+yXxTpoRRCCCHEbbmRE28cBg8eTHx8PACXL1/m2LFjDB06lISEBJwUFXeDjsrKmnsSExMJDQ1l+PDhODs7069fP06dOsXnn3/Orl27mDVrFn5+fhw4cOCu/8bg4OC7/oz/yyRQCiGEEOK2zNudgU6nNHjijcPVwWzbtm34+/sTGRmJxWLB2dkZZ2dn7fsHH3yQCRMm8Jvf/IYFCxZQWlrKn//8Z5577jk6dOjA2bNn0el0dOrUiUOHDt1Umx966CG+/vrrBstcvnyZvn374uPjw8iRI2+q/vuNBEohhBDiPpCXl8fKlStJSEggJSWF/Px8nJ2dady4MV27dmXy5Mn06dOnwToOHjzIypUr2bVrF2fOnKGsrAwvLy8q3RphiG6P54ODcfIKbLAOs9UGQFZWFmfPnmX06NHk5uYC4ObmhouLC25ubixfvpyOHTuyZMkSsrKyePLJJ5k7dy6rVq3i3LlzlJSUAGC322uF0Bvl7u5ObGxsg2XWrFmDqqpMnDgRNze3m37G/UTmUAohhBC/cM899xyRkZG89NJLpKam8uSTT/LJJ5/wzjvv0KxZMxYtWkTfvn0ZO3YsJpOpzv0nT57k4YcfpnPnznzwwQd4enoyY8YMPv/8cyb/+nmsxhJK9/6b3LnTqDixvcG2VJptqKpKYmIijRs3Ji4ujosXL6LX6zEYDOj1egICAnBxcaFZs2aEh4ezd+9efH19efzxx8nKyiI9PZ0vv/ySgIAAAFJSUm7qfTz00EO0adOmwTKqqjJv3jwAnn322Zuq/34kPZRCCCHEL9zChQsxm80MHz6c5cuX4+7urn338ssv8/nnnzNt2jSWL1+OoigsXbq01v1HjhzR5ikuWrSICRMmaN9VW2ystnckb+VbVGcdpWjjx+gNXrg161RvW1J/OICfhysXL15kwoQJKIrCxYsXsdlsuLi4ABAYGEhBQQGKotC1a1dWrlxJTk4O0dHRDBo0CJvNRseOHWnfvj2JiYlUV1ff1PtYuXLldcts3bqVzMxMunXrRuvWrW+q/vuR9FAKIYQQ9wEPDw/mz59fK0w6PP/88wwaNAiAZcuWsX///nrreOKJJ2qFSag58aZLtC+BQ2eAzglUO8Xb5l2zHcUF+SQlJaHT6Thx4gQnT56koKAAAGdnZ5ycnPD396eoqAhVVYmNjcXPz499+/YBNb2LnTp1YtOmTXh4eNzSu7gRX375JVDTuyuuTwKlEEIIcR/o2rUrQUFB1/x+1KhR2vX69evrLTNixIha/6uqyvbt2/HPT0XvHYRraAwA1qJsLMU59dbRtm1bANq0acP58+dZsWKF9p3JZEKn0xEYGEh1dTWVlZXodDq6dOlCWlqaNm9y8ODBhIeHk5WVdQO//Obl5eWxfv16/Pz8ePzxx+/KM35pJFAKIYQQv3DffPMNH3/8cYNlIiMjtesLFy7U+q5nz55s2LCBYcOGaZ9ZrVbWrFnDzp07CdEbGRxYht77x8BqLavpddRRe+V3amoqsbGxjBw5kpdeeokOHTqgKDUn5OTm5pKVlcWHH35Iamoq+fn5ALRv3x6DwaCdB67X63niiSeoqKio8zvMVhsF5SaqLbbrvpdrWbBgARaLRRbj3ASZQymEEEL8wg0ePPi6ZUpLS7Xrnw4lh4aGEhoaqv1fWVnJsmXLyMmp6YXs0qUL/fr1Y/vCDzn9nzI6ZwMKKtHOZfRsG8zCPTWfV1RUaKvJFUWhpKQELy8v3N3d0ev1VFdX880336DT6Vi+fDlt27alVatWdOzYkf3799OrVy/c3NxwcnLSAqeLiwtmsxmApxccwDWxWjul59fxTekU7X/D70oW49wa6aEUQgghBJmZmdp1jx49rlmuqKiIL774gpycHJydnRkzZgwDBgzAbrdTfDkbAFdXV15o48TfOtvopT+Ln+uP97u5ueHnV3M2t91uJycnB0VRCAwMRK/XExYWhre3N8XFxaiqypkzZ1i4cCEpKSlYrVa+//57VFVl6dKllJeXA+AdHKHVr/7klJ7Hv9jH4v03PjSemJhIeno63bt3p1WrVjd83/1OeiiFEEIIwdq1a4GajceHDP8VBeUmvAxOGJz1Wpnz58+zdOlSLBYLjRo14sknn9TC4ffff68trnnooYdwUywMeqQvaUdTa4VVs9nMypUrGTNmDIWFhZhMJhRFISAggOLiYvT6muepqsqiRYvYv38/ZWVlnDhxgh9++IHDhw+TlJTE3LlzAYhu1oLioHZwMb3Ob3JstP6ntceJDfa6oZ5Kx2Ic6Z28ORIohRBCiPvc8ePHtVXUMUOn0PH9HdhVag0b64rPs3HjRlRV5cEHH2TIkCE4Of0YI7744gugZrh86NCh7N+/n5CQEDIyMjhz5oxWztXVlTVr1nDgwAFatGgBQHV1NYGBgZw6dQonJyfatWtHVlYWp06dIjY2lvHjxxMbG4uzszMrVqzgxIkTWK3WmqH4YS9T8sOeBn+fTqcwb3fmdQNlfn4+a9euxc/PjyeeeOKW3uX9SgKlEEIIcR9TVZXp06cD4Na0I9nB3bD/ZNj4uxN5dHXKIs5F4dFHH62zKXhaWhqbNm0CYPz48QQHB7Nq1SpWrVpV53mfffaZdt2iRQteeukliouLCQgIwGq14uTkxLp161i+fLnWC7l06VIKCwvR6XR4eHjQunVrZsyYwQNxrRm75hKq2nCgtNlVEtIuU22x1epx/SnHYpynnnoKg8Fw/ZcnNBIohRBCiPvY+++/z/bt23HyDyNg+O/56XHcjmHjfdZIpoweTJs2TWp9X1lZyeOPP47VauW5556jZcuWuLu788Ybb/D//t//w2KxMGvWLFxcXHj11VdRVRWTyURycjI7duzQFtPk5uZSWVlJTk4OCQkJ2Gw2evbsSXh4OHa7nerqaqqrq6mqqkJVVc6fP8/JzGxU2t/Q77SrUF5tvWaglMU4t0cCpRBCCHGfWr16Na+//jrufkEEjHkTnZvXNcvqdTpWHSumb5soqqurMZlMGI1Gpk6dSlpaGu3bt2fChAls27ZNO/Fm1apV2rxKs9nMe++9pwVIB8fWPxs3bgTg0qVLGI1G7XxunU5Ho0aNMBgMGAwGXF1d2bdvHwaDgb79B7Ji3okb+q06BbwM144927Zt49y5c8THxxMXF3dDdYofSaAUQggh7kMJCQmMHz+eRo0aoR8xE51PSIPlbXaV705cYuZbm3BSVFRVZf369aSkpBAXF8fw4cPZuXMnqqpiNBqBmrmRFRUVhISEcPnyZXx8fHj44YcxGAwUFBSwY8cOPDw8MBqNPP7442zYsIHu3bsTHx+Pqqq89957PPDAA3Tr1q1WW9zd3Vm9ejXurs609Yekn+x1+VN6nUL/lsENDnfLYpzbI9sGCSGEEPeZxMRERo4ciY+PD6s2bMHJP+L6NwEqCn0HDuHxxx/nzJkzpKSk0L9/f0aNGsWECRN4/vnnAXjkkUeAmv0hfXx8mDJlCl5eXhQXF9OhQwdatWqF1WrF09MTd3d3/Pz8+Oabb7BYLNpCH8fK76KiojrtiIuLw8vLiyVLlhBuPAMoDbbbbleZGt/kmt8XFBRoi3HkZJxbI4FSCCGEuI/s2LGDESNG4OHhQWJiIh3btUbXcB7T6BTo2ulBPv30U5YtW8aIESP4wx/+gLu7O82aNdOGr318fADIysqid+/eODk50bFjR2w2G6mpqQBkZ2cTHh5OcXExnTp1IiIiApvNRmVlpfa8wMDAegPlqVOnqKqqoqqqiuFd4gjXldYpAzU9kwrw9sjWDa7w/uqrrzCbzbIY5zZIoBRCCCHuE3v27GHYsGG4ubmRmJhI69atMTjr6R8XjP4/qbJoyxzyV71V514FO5G6EsaNeZx//vOfDB06lJUrV3Lu3DlatGiBXq/HaDRSXl7OY489xqFDh/Dy8tLO7u7evTuKorB3715sNhs5OTkEBgZis9lo1KiR1jN44MABrly5AoC/v3+tQGm1Wtm8eTMrV67k0qVLnDhxgi+//BJ74Y/7XFafT6Hi+HaMx7fT0prJyue6MuHhqAbfi2M1uQx33zqZQymEEELcB5KTkxk8eDDOzs5s3bpVC3oAU+ObknAiDwBLUTbW0vw696solG2fx469ScTExDBjxgxKS0u5fPky3bt3B2oW2Dh6IX18fIiJiUGnq+m7cnJyIiIiggsXLpCZmYnVasXd3R2AgIAAbUNzJycnFi1axDPPPENgYCAVFRXaAqBVq1aRn5/PkCFD6Ny5c72/s3TfSu26orwXnf76mwbfy/bt2zl79qwsxrlNEiiFEEKIX7hDhw4xaNAgKioq+OCDDygtLSUpKalWmXER5czfnYlqMtb6XEFFBYJTvuLA3iR8fHx45JFHWLZsGcuXL8dms3Hx4kUKCwtJTU3VVnUriqKdouPQp08fFi5cSFJSkhYg9Xo9Pj4+mEwmAHr16sXOnTtZsmQJAwcOBODgwYPs3r0bDw8PpkyZQuPGjdm8eTMHDx5EVVV0Oh2vvfYa69evp6SkhMjISFJTU/nd73533XfTp08fVLXhRT3i+iRQCiGEEL9gxcXFDBgwgNLSmnmGv//97697j5NPI6AmTEbqrtC0/BhffbcagNLSUj799NNa5b/66qs6dTg7O2sh0SE6OhqDwcClS5cIDQ3VNjTX6XRYrVagZv7lhAkT+Oqrr0hMTARqFhG1atWK4cOH4+rqyunTpzlw4ADNmzfn3Llz2kKeyspK3NzcCA8PZ/fu3ZSVlWnzOcXdJYFSCCGE+AUrKyvT5iTeqFBfN8a7HyfAxwOsZg5lZt/0c+sLlABt2rRhx44dJCQk8MMPP5CXl8eMGTMICAjA19eX8PBwpkyZwtChQ1m9uibENm/enFGjRqEoCmVlZaxbt44WLVpw/vx5dDodZrOZtLQ0qqqqCAoKIiwsDKhZ+COB8t6QQCmEEEL8gkVHR9/SkO5f//pX7OZq2rdvj8Vi4V//+hcLFy7EbDbzyCOPMHHiRH744Qet/NKlS8nIyMBqtRIYGIiiKPUGytLSUmbPnk1VVRXh4eGMHTuWhx9+mEOHDrFgwQKmTp3KunXr6NKlC56enlRUVFBYWAiA3W5nzZo1ODk5ERQUxNmzZ+nSpQsFBQXs3bsXk8mEu7s7np6e+Pr6kp2dTatWrW795YkbJqu8hRBCCFGHs7MzZrOZ9u3bU11dTUZGBqNHjyYhIYEHH3yQtLQ0mjZtqpXftWsXNpsNb29v3NzcKCgo4MyZM1y4cEErk5yczKRJk6iqqqJt27Y888wzvPDCC0yZMoWZM2fy7LPP4u3tzYYNG9i5cycvvvgi0dHRlJSUsG3bNnbt2sWFCxcYPnw4Bw4cQKfT0atXL7p168bly5epqKjQFvqEhYWRk5Nzz9/b/fsVN8wAACAASURBVEoCpRBCCCHqcHV1xWq1EhAQQFhYGKmpqcyePZuNGzcSHh7Ob37zG3r27KmV1+l0qKqKr68vTz/9NJGRkdhsNhYsWMDSpUu5dOkSL7zwAmazGVdXV4YMGYJOpyMwMBBAm0/Zq1cvoOYkn2PHjmkrxXfv3k1SUhI9evQgOzsbq9VKhw4dMBgMNGnShEaNGmGxWHBzcwMgPDycS5cuYbPZ7v3Luw9JoBRCCCFEHQaDAVVVtV7Kc+fOYTKZmDdvHm+99Raenp5aeAOwWCwAXLhwgcWLF+Pj40NgYCCjRo2iqKiIN998k5SUFAA6dOiAh4cHULNl0PHjx1m7di0Ar7/+uhZOZ82aRUBAAHa7XTvb28vLi71796IoCr179wZqVpR36tSpVjvCwsKwWq3k5eXd/ZclJFAKIYQQoi5HWDQajbRq1QqdTsewYcOYMmUKHh4e6PV6MjIytPKOVdr9+/enqKiIkydPUlFRQevWrXnhhRfw9//xpJpGjRrh6+sLwIYNG1i9ejUeHh7s37+fmTNnoig1m6wvWbKEQYMGsWbNGtLT04mLi2Pz5s1YrVbatWunhVKAyMhI8vPzmTVrFsOHD6dnz5688847REdHExoaypAhQ1iwYIHWTnFnyaIcIYQQQtThCGtGoxF/f39iY2M5evQoXbp04ezZs7Rr167WXpZRUVGoqkrz5s1p37498+fPp7i4mO+++45HHnkET09PrazNZtNOwDl58iRHjhxh48aNWCwWwsPDCQwM1HoWPT09OXr0KEePHqWsrIyWLVui1+uJiYmp1d4//OEPLFy4EABfX18mTZpEfn4+Tk5OVFVVsWrVKr799ls++eQTvv32W0JCQu7m67vvSA+lEEIIIepwBEDH+dzt2rUjPz+fo0ePYjQaad++PQ888IBWPjQ0FKgJou7u7nTq1Am9Xs+BAweYP39+rbqbNGlS639HmIyJiSE1NZXg4GDtu9jYWEaOHAnAqlWr+Oabb3B3d2f9+vXk5/94oo/jOjg4mAULFvDxxx8zYcIEOnXqxIoVK9i8eTOKopCamsqYMWPu1GsS/yGBUgghhBB1/DRQNmvWDE9PTw4cOICHhwdhYWF4eXlp5UtLS1EURVtlbTAYsNlsTJ48GZPJxOnTp7Wye/bsQafTER0dDYCqqri4uPCrX/0KNzc3srKyarXliSeeoE2bNgAcP36c2NhYvL29Wbx4sbZhu2Pxze9//3tOnz6N2WwmLCyM4uJiKisrGTRokHZe+M6dOzl27NidfmX3NQmUQgghhKjDYDAAUF5eDtSs4m7Tpg15eXm0aNECnU7H+fPntfKnT5/G3d1dm//o6uoKQGBgIM8++yy9evXCxcUFgNzcXGw2Gw899JB21nez5s3Rufvwh1df00IiQIsWLQgMDKRFixbaZ8nJyUyYMAG9Xs+iRYuorKwkODiYqKgoLcCmpKQQHh4OoG0f5Fi4A5CWlnZH39f9TgKlEEIIIepwBMqysjLtM8c8SU9PT/Lz87l8+bL2nc1mw2q1apuoOwKlyWTizJkzXL58mYcffhiAy5cvc/DgQRo1aoTSqDmxo2ZQ2vUFllW1Yd76HbXa4eXlhaenp9bzCTUryb28vJgwYQLV1dUsWbKEcePG8bvf/Y6AgABat25NcnIyPj4+uLu7a4Hy6kU8V69QF7dPAqUQQggh6nAEQseQN9TMU1QUhcuXL7Nt2zYtdAL4+/tjMplITk6udf93333HmjVrCAkJoXfv3vTt2xeALVu28OiUl/n0YDElga2wVZaRv+INqi8cw9Ckg1bv0aNHSUtLq3XqztVbDo0fP57CwkLS0tK0kNi1a1dKSko4deoUYWFhZGfXHB3pONnH1dWVbt263dkXdp+TVd5CCCGEqMMRFq8OlKdPnyY4OJj09HRUVa21uEZRFAIDA/n++++JiIigsrISgDNnzjB8+HAuXbpEZWUlCQkJvPDCCyz790p2r18KLHXUgGtEK0LG/xXTpbNUZx4GwGzwJzs7u9Z55D169NCuGzduzJNPPsnXX3+NqqrY7XYaN25MkyZN2Lt3LzExMSQnJ5OSksKSJUuAmr0uHRuqiztDAqUQQggh6nAESkcwLC8vJycnhyFDhrB582Y8PT1p1KiRVr66uppmzZphMBhYunSptt/jgAED6NChA19++SXh4eHo9Xp69epFdvRgjl0swlxejKLT4+Qbgt7dB4CqzBSt3isBrVGUfE6dOgWAj48PXbt2rdXWJk2aEBgYSGFhIVu2bGHw4MG0bt2aJUuWoKoqmzZt4q233sLZ2Zk5c+YwderUu/fi7lMSKIUQQghRh2PIurq6Gqjpnbx6Fbder69VvqqqCg8PD3x9fcnOzsbLywuLxYK7uztms5nLly/TsWNHAC4VFJFW5oPOJwSDT939IK0lNXMzFVd30vWhNL98TBu2Hjx4MIsWLSIuLo4+ffrU6mls0qQJBw8exMPDg5kzZ7Jjx4/zMePj45k3b16trY7EnSNzKIUQQghRhyNQWiwWbDYbp06dIioqit27dxMUFERpaWmt4XCLxcKhQ4c4deoUnTt31laHm0wmcnJyUFWViIgIrFYrhSXlqA0823zpDADuLbqiomNbYiIArVu3ZvHixYwYMYLs7Gw+/fRT1q9fT2lpKZWVlURHR9OnTx+SkpJ45pln+Oc//8moUaPo2bMnKSkpxMXF8cQTT8hxjHeB9FAKIYQQog6dToeTkxNWq5Xi4mIyMzNp06YN58+f5+mnn2bVqlWcOXOmzn1Tp04lODgYJycn9u7dS15eHpWVlbi6ulJSUsLChQuxVRtRUFFR6txvuZKLpegiAJ5t+1OWvJKSMzVzN0eOHInNZuPBBx+kTZs2HDp0iF27dnHkyBHsdjt6vZ5u3bphNBo5cOAAjz32GFVVVbi4uNB/0BAWLvgXK1eu5NChQyQnJ9cashe3R//GG2+88XM3QgghhBD/fQ4cOIDFYsHLy4uMjAyqq6uJjIykR48eVFRUkJCQQGZmJgDt27fnpZde0k7MiY6OZs+ePeTn51NRUYHdbmfu3LnMmTOHxsGNCI7tQEEVdXoqr2ybjyU/A/eYbjj7BlOc8Cn+/v5MnjwZg8HAvn37uHDhAlVVVTRv3lxboHPhwgWysrKw2+3Ex8dTVlbGrl27cAlryTfndSRVR1Lp24SKIwmUlJRw7Ox5Jjz5xL18nb9oMuQthBBCiHrpXAxUqU6cOpuOt7c3paWl9OvXD6jZk9Kx8MbB19cXqDn5Jjc3F2dnZ23+pNlsJioqCoDdu3czY2Br7D9Jk2UH12E89j1OfqG4t4ynYMNH+Pr5s2fPHv7nf/4HgA4darYUSkxM5NNPP+Wzzz6juLgYgObNm7N3715mz55NUFAQ+d4P8Emangt2H1QUXEMfwMmvJvB+t2Et85JO3p0Xdx+SIW8hhBBC1HLwfDHzdmeQcCkaFQXlrEqUkzPDm0ezdetWLly4QGpqKgUFBdo9GRkZLFiwgJycHEpLSwkJCUGn0+Hp6UlFRQUtW7bUjnPMy8tj4uB4Og54lJ25YK+8QuXZA5hzT+MaHodXhyEUbZqFweDGrh1JxMbGauE1JCSEIUOGYLFYyMrK4ty5c9oK8NOnT9O4cWMAln1/gM3mBwCl1tC6s38Y1iu5YLfy54UJtI8OplO0/z16s79cEiiFEEIIoVmUnMWf1x1Hp/sxiKkoZFm9mX1KR9b7j9V7365du9i1axdQs3hmw4YN7Nq1i6qqKioqKjhy5AiDBw9m/PjxpKenc+XKFZJWf01FhRG9hw9OITF4j3wFvZs3BavewNXFmX/N/ZzWrVsD4OTkhK+vL0VFRQA4OzvTvHlzmjdvjp+fHx999BFPPPEEdrudjIwMTljD65+nqftxdbqCnXm7MyVQ3gESKIUQQggB1PRM/nndcVTA9pPxaPU/s+SiXtnAG929ifF34ujRo+Tl5aEoCi4uLowaNYqmTZtqWwodPHiQgoICgoKCcHd3Z9euXbRp04Znn32Wnj17YrVaeffdd/H29ub537zE90k7GT18MK5OeqY8M5nRo0f/+HxVxc/Pj/fee4+PPvqI+fPnYzKZMJlMJCYmsnLlSgICAhg9ejQubh58sbf+RT/WK7natc4ziIS0y1RbbBic9XXKihsngVIIIYQQAMzbnYFOp9QJk1fTAQv2ZdHfLYuYmBicnJwoLCwkLCyMFi1a1Crr7OxMVVUVkZGRdOjQgRUrVmAymaisrCQlJYVz586hqipeXl7M+cfH/OlPf0JRFJ566imCgoL44osvtNBosViAmqH1kpIS5s2bpz3HsTBo69atxMbGYtEbUAmv03bTpbNYCi8A4BLSHL2nH3YVyqutEihvkwRKIYQQQlBtsbE1La/OQpmfsqNwwe5Hq7b+6LFhNBoxmUzk5uby+eefYzabtRBos9kAOHHiBCdOnNDq2L9/f60609LS+OyzzzCZTAwYMIDq6moyMjLQ6/V4eHjg4+ODs7MzBQUFmEwmPD09ef7553FxccHV1ZXPPvsMgPT0dKqqqnhpxjQ+fWtrrd9iLcmjcP0HNf8oOnx7TwZAp4CXQeLQ7ZI3KIQQQgjKq63XDZMOKgpnz1/Az80JFxcX7fOIiAhcXV1xdXXFxcWFY8eOkZOTw4gRIwgKCiI9PZ2kpCQUReGxxx5j9erVGAwG/vGPf1BVVQXAd999d93nR0REEBwcrP3v5uaGj48PpaWlvPrqq8yfPx97cBzlnmGAgvnSOYwnd6BaTOhcPfAf/BJu0e3Q6xT6twyW3sk7QAKlEEIIIfAyOKFTuKFQqVNg+rRntSD2l7/8BZvNxqBBg2odyejY+Lx9+/YoisKpU6fw9vbG39+fDRs2ABATE8OVK1duqq12u73W/0FBQfz973/H39+f+fPnc/jwYYpTEqmurkbR6dEZPHENj8OtSQc8WvfVzgy321Wmxje5qWeL+kmgFEIIIQQGZz3944L5/mT+deZQqvSNCdLCpNVqxWazYbPZOHv2LLGxsVrZsrKyWvcWFRURGBjIyJEj+fjjjwF45JFHSE9PZ9GiRTg7O9OhQwcGDRrEd999R3JyMmPGjNHqVFWV9957jz59+tSqt6qqCmdnZy5dukTnzp357W9/y7lz59ibryfJGIKCXVtUBKDXKdjtKm+PbC0rvO8Q2dhcCCGEEABMjW+K/TpdlHbAI3s/Bw8exG63a+d5+/v7c+TIkR/L2e1az6PZbAagsLCQgIAAysvLUdWa5xw6dIht27bh7e2N1WqlW7duAPTs2ROAnTt3anUqikJAQACFhYXaZzabjfz8fDIyMtDpdEyZMoVLly5RVFTE+1OHMjniCi29LOj+s+Bbp0D/lsGsfK4rEx6Ouo23Ja4mPZRCCCGEQFVVkjcs4dI/XsFUVUnj8e/hEtFG+75mOFxlTFOV+JAmbN68mSNHjtC5c2cAWrZsyb59+zAajbi5udG5c2d++OEHADp16sTgwYMpLi7moYce4uDBg0DNcLcjMBoMBtq3b4+3tzdQMy8yODiYS5cuYTabtbmaAQEB2sk4ly5dYu3atRiNRiIjI5k4cSKbNm0iIyODcePG1Qy/F6Tzt1GjaP5AS8qrrXgZnGTO5F0gPZRCCCHEfS4jI4M+ffowffp0TFWVAHSK8tN69RRU4qO9+Esvf9xzDxMcHMzkyZMxm82sXbsWqAmUAMePH2f27NlamASwWCyUlJRgt9vx9fXVVnwPGzYMFxcXFEWhurqa7t2712qX45xux4bpUBMoCwoK2L59O3PnzkWn06HX62nZsiW7d+8mNTWVESNG0KxZMw4fPoybmxuxsbEYnPUEeblKmLxLJFAKIYQQ9ylVVZk9ezZt27YlJSWFLl26aN/9rv8DpL05iGkhWUxwPcz/dvNnwqBudOnShS1btmAymXjuueeIiYkBYNWqVYSGhrJt2zZef/31Ws+xWCzaCTdlZWVYLBYiIiLIzs7GbDajqioeHh74+fnVui8uLg4nJydSUlK0z/R6PUajkd27d9OzZ0+efvppbDYbeXl57Nixg379+tGuXTusVitHjhyhffv2ODnJgOzdJoFSCCGEuE+9+eabTJ8+nfj4eI4fP87AgQNrfW9w1tPYzxNnHdpcyf79+xMTE8OqVasoKCggNDQUg8GAn58f2dnZ/Otf/6KqqopWrVpp9ZjNZgoLC3FyciItLQ2Adu3akZSURFBQEACVlZXs2LGj1vMVReGBBx7AaDSSk5PD9u3bSUpKAmDkyJH07t0bk8kEQGpqKp06ddJ6OU+ePElVVRUdOnS48y9O1CGBUgghhLiPzZs3jy1bthAREVHv997e3uh0OoxGIwA6nY7HHnsMf39/li1bRnFxMd7e3kycOBFnZ2fOnTvHww8/TGBgoFaHo4fSz8+PzMxMFKVmLD0/Px+z2UxMTAy9e/dm586dpKen13p+3759Afj666/ZvXu3tmjHISsrC4CoqCgGDx6s1X348GGioqJqtUPcPRIohRBCiPvUzJkzmTJlSoNlvLy8ALRACeDi4sLYsWNRVZXTp0/j5uZGcXExs2bNolGjRloIdHAESp3uP+eBR0Wxb98+GjduTGlpKT169KBHjx40a9aMNWvWUF5eDtSs4HasHDebzUydOpVHHnkET09PCgsLKS4uZvPmzQAMGTJEq7+oqIjz58/TsWPHO/CWxI2QQCmEEELcpxy9eQ3x9vbGZrNpQ95Xfz5u3DhMJhNXrlxhxowZFBQU8PHHH+Pk5FRrg/OMjAwKCgq0fSl9fX0pKirCYrEQHR1NeHg4iqLw6KOPotfrWbVqFbm5ucydO5fdu3fTpEnN5uO5ublAzcKcvLw8Fi9ejLOzs9YeB8diHMdCIXH3SaAUQgghxDU5eigdvYZXCwkJwdPTk8OHD7N48WLGjRvHuHHjcHZ2rrUQ5vLlyxiNRqqqqlAUhczMTCIiIigsLNRWcgN4eHjw6KOPcuHCBebOnQvAr3/9a8aNG4eiKOzbtw8APz8/0tPTsVgsdOrUCZ1Oh6urK1Cz0Xpqaipt27aVxTj3kARKIYQQQlyTo+fvpz2UDkajkS1btuDm5sbkyZO1U3Mcm5kDhIeHa9cuLi6UlpZitVoJDQ3Veh+hJnh+9913Ws9pnz59CAkJwcnJicjISIqKiigrKyM7Oxur1crYsWOBmj0rHfecPn2ayspKGe6+xyRQCiGEEOKaHIGysrJSO93GwWq1smnTJgoLC3n++efZu3cvhw8frnPWtsVi0a5NJhM6nY5Lly4RHx+PoijYbDZtX0mAqVOn0qJFC9atW0dpaSmAdtzi119/rW1B5OnpSVVVFe7u7lr9hw8fJjIyUls9Lu4NCZRCCCGEuCYPDw8URcFut9fqdYSaYxEPHDhAt27d+PDDD2nWrBkJCQnodDr8/X88I7ug1IhVVbReRDc3NwCSk5M5efKkNlcyPj6eX//614SGhjJy5EicnZ1ZvXo1NpuNqKgonJycKCoqol+/fkDNUY6VlZVafcXFxWRkZMhWQT8DCZRCCCGEuCZFUbTAdvVKb4vFwosvvoher+fDDz9Ep9MxevRo9Hp9TXB0/3GT8k2loSw2dWCbuSkuYS0xGo1069aNgoICVqxYQUVFBZMmTaJPnz7aYh53d3dGjx5NTk4O27Zt4/Dhw1itVgCCg4PR6XQUFRXV6qE8fPgwBoOBuLi4e/V6xH9IoBRCCCFEg+rbOuivf/0rJ0+epHfv3rRu3RoAV1dXXFxcOGUNIjGzslYdKgpZNh++SHcnUx9Oeno6VVVVREZGUlVVxdq1a8nIyKh1T0REBP369WPv3r1s2LCBdu3aATU9o/7+/hQVFWk9lDabTVuM41j5Le4dWf4khBBCiAb5+PiQl5enLcw5c+YMf/nLX4iKiqJdu3ZUVlZiMpkoLy/n2KUKdphDUK0m7X67qRJbZan2fxLBhHnm8eKzz9K4cWMKCgrYtGkTixYtol27dvTv3x8PDw8AIiMjUZSa4fJevXqRk5NDdnY2zZs3r9VDeebMGYxGowx3/0wkUAohhBCiQY4zth09lHv37sVkMpGVlcVHH33ERx991OD9BWv+Uuv/Jq9upDCgHY0bNwYgKCiIp59+mtTUVBISEjhz5gwDBgwgIiKCZcuW0bhxY4xGI2vWrKFLly5s3LiR6upqysvLqaqqws3NjR9++IHw8HCCg4PvwhsQ1yOBUgghhBAN+umQ98CBA9m6dSsHDhzg8uXLjBgxAoB9+w/yz+M2VBSMxxIxntgOgF+fZ3AObqrVZ1dh68k8qi02DM41cyYVReHBBx8kJiaGhIQE1q1bh5OTE56enowfP57i4mIWLFhAWFgYer2egoICqqurAVBVlfT0dK0d4t6TQCmEEEKIBjm2DnJs4dO4cWMaN25MSUkJYWFhPPLIIwAcP3cBQ3RND6Hp4gntfpeQ5hii2taq065CebVVC5QOHh4eDB06lJycHIqLiykrK+PAgQPEx8fTv39/vvvuO0JDQ8nNzcWqKljQcyHnEq6urrRq1equvQPRMAmUQgghhGiQI1A6jk50MBqNeHp6AjV7Ul7Jz0UhGLVODXUpqHz9ry9pEhFGeHi4NlytKAqrVq2ivLycyZMnc/bsWXbt2sXx48cZOnQosbGx7DlzmSPmZlyw+6Ki8O9Ulbb+bTiaW0GnaP/rP1zccRIohRBCCNGgax2/WFFRoc1ZzM3NRafa6NnMl92ZpXXquJpeBw+HudOqaQuys7M5ceIEdrsdJycnXF1dMRqN9OzZE19fX/r27Uvr1q3ZuHEjX3/9NWXB7Vhf2QwFFZWafS1VFI5fgce/2MfbI1sz4eGou/AWREMkUAohhBD3scWLF2vXR48e1a63bt1KdnY2AIGBgUDtbYOgJlA6eiizs7PJysqiiddRNh9Nx1xwXitXdT4Va3nN6TYujaJxbdSE3w1pr/UmWq1WLl26xI4dO0hPT8fNzY2dO3eyc+dOfHx8CA8Pp2XLlpi8w1nwg5ma/k2lVlts/+kW/dPa48QGe0lP5T0mgVIIIYS4j02cOLHez999913tulevXgwYMACT6cetgGw2G9XV1dr2PhcvXmTv3r0sWLCgTl1l+1Zo1z7dx/K3Z4fXCnxOTk4UFBSQnp5Onz596Nmzp3Zmt+Pv1KlTbK2KRsGnTpi8mk6nMG93pgTKe0wCpRBCCHEf++n53Nfy8ccfU1ZWhs1mQ6/Xa72Vnp6eqKrKxYsX+ec//0m/fv04dOgQ/9qwg5O2EM7bagKgToEBcSFMjW9SJ+ydPXuWjRs30rFjR3r06AHUzNuMi4vTTr0xVpv511tbrzs/02ZXSUi7XGsFubj7JFAKIYQQ4ro8PDwoKyvDaDTi7e2tbXLu4eFBSUkJRqORiIgIAFJTUwl1ruKhaDOZF1J4asqzhAcH1hvwcnJyWLlyJTExMQwZMkQ77/unKi0q9hvLvtdcQS7uHjl6UQghhBDX5ePjA6AFyat7KC9evAhAeHg4hYWF5OTkYLPZKC4u5sG2rWkeHlxvuCsuLmbp0qUEBwczatQodLprxxIvgxO6a49016JTasqLe0cCpRBCCCGuy9fXF/gxSF7dQ3nx4kUCAgJwd3fnyJEjKIqCv78/FRUVdO/evd76jEYjS5YswWAwMHbs2AbP31ZVlVMnjhGpL0G5zqC3XqcwIC5EeifvMQmUQgghhLguf/+aeY+OrYOMRiNubm7o9Xqys7OJiIjAbreTkpKCqqqYzWZiY2Np1KhRnbrMZjPLli3DZDIxYcIE3N3dr/nciooK/v3vf7Nu3TpGxHhCAwtyAOx2lanxTW79h4pbIv3BQgghhLgux3neV65cAWqCnoeHB2azmby8PDp16kRmZiZGoxFnZ2cqKiqIj4+vU4/dbmf16tXk5+czadIkrd76nDx5ko0bNwIwZsyYmoC6P4s/rT2OTqdgu2pSpV6nYLervD2ytazw/hlIoBRCCCHEdTk2N3cESscpOTk5OaiqSkREBDt37gTAxcWFiIgIwsLCatWhqiqbNm3i3LlzjB07ltDQ0HqfVV1dzbfffsvRo0eJjY1l2LBh2vZEEx6OIjbYi3m7M0lIu4xdrZkz2b9lcL0ryMW9IYFSCCGEENflOH7RMeTt6KG8ePEirq6ueHt7c/LkSaAmbNbXO7lz504OHz7Mr371K5o3b17vc9LT01m/fj0mk4mRI0fStm3bOiu/O0X70ynan//P3p2HR1WejR//nplMMtnIAiFkBwKBQEgCYQdFFGQTREFRK62iQqloN/vWtlptba22+rN9sb6KuLCoqCirAmHHsGaSEMhOEhISspN9n8yc3x9pjqTsbTLDcn+ui4uTzDkz9xxyhXue57nvp9lsoa65DXejg6yZtDNJKIUQQghxRUajEUVRtKKchoYGevfuTWFhIYGBgdr2iU5OTvj4+NC3b99O1yclJbFv3z4mT55MdHT0Bc/f2trKrl27iI+Pp1+/ftx7771aZfklYzLoJZG8TkhCKYQQQogrUhQFR0dHmpqagO9HKE+ePMno0aOJj48HoKWlhYkTJ3YaVTx16hRbtmzp1Lj8fAUFBWzcuJHa2lpmzJjBqFGjLtmPUlyfJKEUQgghxFUxGo00NDRgsVi0xLKpqQlPT09KS0vR6XT06tWLsLAw7ZqioiK+/PJLBg4ceEHjcovFwr59+zh48CD+/v488sgj9OzZ0+bvS/z3JKEUQgghxFVxdXWlpqam07Q3tCeN0F7Bff7oZFVVFZ9++im9e/dm/vz5nRqXl5aWsmHDBsrLy5k8eTITJky4bGNzcX2ThFIIIYQQV6Wj0ruiogKAmpoaevfuzcmTJ4H25udDhw4F2pPNtWvX4uTkxCOPPKI1LrdarRw6dIi9e/fSq1cvnnrqKfr06WOHdyO6kiSUQgghhLgqHbvlnDt3DoDy8nJ69uxJWVkZABMnnFqzMAAAIABJREFUTkSn02E2m7XG5U888YTWuLyyspKNGzdSUFDA+PHjmTx5Mg4OkorcDORfUQghhBBXpWO3nPLycqA9QdTr26usXVxciIqKwmq1sn79+k6Ny1VVxWQysXPnTtzc3Hj88ccJDg622/sQXU8SSiGEEEJclV69egHtiaSjoyOtra1acjlx4kT0ej1bt27l1KlTWuPy2tpaNm/eTE5ODjExMdx99904Ojra822IbiAJpRBCCCGuSkcFdl1dHXq9HoPBgNlsxsHBgZiYGL777jsSExOZM2cOAwYM4MSJE2zbtg2DwcAPfvCDSzYzFzc+SSiFEEIIcVU6inIaGxtRVRWr1QrAuHHjSE1NZe/evdxxxx0MGjSI9evXk5aWRkREBDNnzsTZ2dmeoYtuJgmlEEIIIa6KTqfDquiparKgs7Six4qiKPj6+vLVV18xYsQIfH19eeedd7BarcyfP1+r+hY3N0VVVdXeQQghhBDi+hafV8nKuFxiU0tQUVBQCdZVMy3EASpyCQ4Oxt3dnePHjxMWFsbs2bNxc3Ozd9jCRiShFEIIIcRlrTmSz+83paDTKVis36cNClZUFKZ6VjLUqZKmpiamTZvG8OHDZevEW4wklEIIIYS4pPi8Sh587zCXTxZUFgVV88zDs/Dy8rJRZOJ6InscCSGEEOKSVsblotNdfrRRpygU9RgsyeQtTBJKIYQQQlxUs9nCzrTSTtPcF2NVITatlGazxUaRieuNJJRCCCGEuKi65jaukEtqrGr7+eLWJAmlEEIIIS7K3ejAFWa7NTql/Xxxa5KEUgghhBAXZTTomTrEF/0Vskq9TuHuIX0wGvQ2ikxcbyShFEIIIcQlPTmxP9YrraG0qjw5sZ+NIhLXI0kohRBCCHFJo/p688rcCBRA+bfmQXqdggK8MjeCkX297RKfuD7IYgchhBBCXNajY0KwVhbyQdxpClQvrGr7msmp4b48ObGfJJNCEkohhBBCXJ6qqtSfTubpqF7MuW86dc1tuBsdZM2k0MiUtxBCCCEuKz8/n/LyckaOHInRoMfH3UmSSdGJJJRCCCGEuCyTyUTPnj3p108Kb8TFSUIphBBCiEuqr68nPT2dkSNHoihX2ZRS3HIkoRRCCCHEJSUlJaHT6YiKirJ3KOI6JgmlEEIIIS7KarWSkJBAREQEzs7O9g5HXMckoRRCCCHERZ06dYqamhpGjRpl71DEdU4SSiGEEEJclMlkwt/fH39/f3uHIq5zklAKIYQQ4gJVVVVkZ2czcuRIe4cibgCSUN5EVFVl+fLluLm5oSgK+/bts3dIQgghblAmkwmj0UhERIS9QxE3ANkp5yaRm5vLokWL2L9/v71DEUIIcYNra2vj+PHjREVFYTAY7B2OuAHICOUNrmNUMjIykqSkJMaOHWvvkIQQQtzg0tLSaGxslOlucdUkobzB/eEPf+DZZ59l4sSJpKSkMG3aNHuHJIQQ4gZnMpno168fvXr1snco4gYhCeVNYOXKlWzfvp2goCB7hyKEEOIGV1paSkFBgYxOimsiayhvcC+99JJshSWEEKLLxMfH4+bmxqBBg+wdiriByAjlDU6SSSGEEF2lpaWFkydPMmLECPR6vb3DETcQSSiFEEIIAcCJEycwm83ExMTYOxRxg5GEUgghhBCoqorJZGLQoEH06NHD3uGIG4wklEIIIYSgoKCAsrIyKcYR/xFJKIUQQgiByWTC29ub/v372zsUcQOShNIO2tra+Oijj5gxYwZ+fn44Ojri5ubG4MGDWbx4MUlJSfYOUQghxC2koaGB1NRUYmJipNhT/EekbZCNlZSUMGvWLBITE3F0dORHP/oR0dHR1NTUsH37dt5//30++OADXn75ZV588UV7hyuEEOIWkJSUhE6nIzo62t6hiBuUJJQ2pKoq8+bNIzExEScnJw4fPszw4cO1x3/zm9/w61//mr/+9a/8/ve/p1+/fjz66KPdHldpaSlffvklsbGxJCUlUVZWhsFgwM/Pj3HjxvH4448zefLkbo9DCCGE7VmtVhISEhg6dCguLi72DkfcoGTK24bi4uI4dOgQAEuXLu2UTHb44x//iK+vLwB/+ctfuj2mJUuWEBwczDPPPMPx48d56KGH+N///V/+/Oc/Exoaypo1a7jzzjt5+OGHaWlp6fZ4hBBC2FZOTg7V1dVSjCP+KzJCaUPx8fHa8ZgxYy56jpOTE1FRUcTGxpKWlkZtbW23tm9YtWoVra2tzJ49m3Xr1nX6dPrTn/6Ud999l6VLl7Ju3ToUReHTTz/ttliEEELYXnx8PH369CEgIMDeoYgbmIxQ2lBra6t2fLlpBVdXV+24oaGhW2PqeL0PPvjgojH9+Mc/Zvr06QB89tlnHD16tNvjEUIIYRvV1dWcOnWKUaNGSTGO+K9IQmlDkZGR2nFGRsYlz0tPTwegR48e9O7du9vjGjduHD4+Ppd8fN68edrx5s2buz0eIYQQtpGQkICTkxMRERH2DkXc4CShtKFp06ZpSeXy5csvOvq4adMmLdlctGhRt++lumHDBt56663LnhMcHKwdnzlzplvjEUIIYRttbW0kJSURFRWFo6OjvcMRNzhZQ2lDer2e7du3s3DhQnbv3s2YMWN45ZVXiIqKora2lu3bt/PHP/4RgPnz5/Pqq69e1fOuXbtWOz5x4oR2vHPnTgoLCwHw9fVl6tSpF1w7Y8aMKz5/TU2Ndnz+dLwQQogbV3p6Og0NDVKMI7qEJJQ25ufnx86dO1m/fj2/+c1vuP/++zs9Pnv2bJ588knmzJlz1c+5cOHCi37//IR00qRJF00or8bp06e149tuu+0/eg4hhBDXF5PJRN++fS+75EmIqyUJpY2VlJSwbNkyvv76awIDA3nttdcYOnQoTU1NxMbGsmbNGurq6ujRowd33HHHVT2nqqrdGvPGjRuB9lHOf0+AhRBC3HjKyso4c+YM8+fPt3co4iYhCaUNVVZWMmHCBHJzc4mIiODAgQN4eXlpjz/wwAPMmzePWbNmceedd/Luu++yePFiO0YMKSkpHD58GIBXXnkFZ2dnu8YjhBDiv2cymXB1dWXw4MH2DkXcJKQox4ZeeOEFcnNzAfjHP/7RKZnsMH36dBYuXIiqqixbtozs7Gxbh6lRVZVnn30WaF9r+eSTT9otFiGEEF2jtbWV5ORkRowY0e2Fn+LWIQmljVitVtatWwe0twO63FaGc+fOBcBsNvPRRx/ZJL6Lee2119i7dy9hYWGsXbtWepQJIcRN4MSJE5jNZmJiYuwdiriJSEJpI+Xl5VRVVQEQEhJy2eSsX79+2vH5Vdu29NVXX/HCCy/g7+/Ptm3b8Pb2tkscQgghuo6qqphMJsLCwvDw8LB3OOImIgmljeh039/qKxXRWK1W7dhisXRbTJcSGxvLD37wA3r37s3u3bvp37+/zWMQQgjR9QoLCyktLZVWQaLLSUJpIz179sTd3R2AvLy8yyaKHessoXNTcVvYvXs3c+fOxcPDgz179siCbSGEuImYTCa8vLwIDQ21dyjiJiMJpY3odDpmzpwJQH19PTt27LjkuV988YV23HGNLezfv585c+bg6urK7t27CQ8Pt9lrCyGE6F6NjY2kpqYSExMja+JFl5OE0oZeeuklXFxcAHj22WcpKiq64Jx169ZpCeX48eOZPXu2TWI7ePAg99xzD87Ozuzevfui+7ouWbLkmhquCyGEuH4kJSUBMHz4cDtHIm5G0ofShsLDw9m0aROPPPIIOTk5RERE8Nhjj2mNzXfu3MnmzZsBmDhxIhs2bLDJp8gjR44wY8YMDAYDO3fu1PYb/3eZmZnk5eV1ezxCCCG6lqqqJCQkMHToUG1gQ4iuJAmljU2ZMoWMjAw++OADvv32W9auXUt1dTUODg74+voyf/58HnroIe67775OhTzdxWQyMX36dOrr6/nb3/5GTU0N+/btu+i51dXV3R6PEEKIrpeTk0NVVRX33XefvUMRNylF7e59+8R1q7KykgEDBmjtjK5GSEiIjFIKIcQNZt26dVRXV7NkyRJZPym6hayhvIXV1tZeUzIphBDixlNTU0NWVhYjR46UZFJ0G5nyvoX17dv3ij0xhRBC3NgSEhIwGAyXXB8vRFeQEUohhBDiJmWxWEhMTCQyMhJHR0d7hyNuYpJQXueqq6v55JNPWLRoEcOHD8fT0xMHBwc8PT0ZNWoUv/3tbykoKLB3mEIIIa5DGRkZNDQ0MGrUKHuHIm5yUpRzHTt06BB33nknLS0tKIrC3LlzGTt2LD169ODUqVOsXr2aiooKXF1dWbVqFfPmzbN3yEIIIa4jq1atwmq18vjjj9s7FHGTkzWU17Ha2lpaWlrQ6XR88803TJ8+vdPjv/vd77j99ttJTU3lkUceITk5WbZKFEIIAUB5eTl5eXncf//99g5F3AJkyvsG8Nhjj12QTAJ4e3vzt7/9DYDW1lbef/99AJrNFsrrWmg2X3q/cCGEEDc3k8mEi4uLbKMrbEJGKK9jHh4exMTEXHYqe+TIkdrx4YRklqw1sTOtFKsKOgWmDvHlqYn9GdnX2xYhCyGEuA60traSnJzMqFGjcHCQ/+pF95OfsuvYuHHjMJlMlz3H1dVVO04ubqQ0vQzrv1bFWlXYlV5GbGopr8yN4NExId0ZrhBCiOtESkoKLS0txMTE2DsUcYuQKe8bXEJCgnbsFByJxdq5xspiVVGBFzemYMqrvKbnLi8v54UXXiAiIgI3Nzd69uzJ+PHjeeeddzCbzV0RvhBCiC6mqirx8fEMHDgQT09Pe4cjbhGSUHaRxx57DEVRrunP3Llz/6vXbG1t5YUXXgDA0acvblF3X/JcnU5hZdzpq37uo0ePEhUVxZ///GcCAwN5/fXXef7556murubpp59m4sSJlJeX/1fxCyGE6Hpnz56lpKSk05IoIbqbTHnbka+v7zWd39LSQnV1NefOnePIkSP84x//4MSJE7iG34b3tGXoDE6XvNZiVYlNK6HZbMFo0F/2dfLz85k9ezbl5eX84he/4M0339QeW7ZsGVOnTuXgwYPcd9997N27F4PBcE3vQwghRPcxmUx4enoyYMAAe4cibiGSUHax9PT0K54zffp08vPzeeyxx67puT/77LNOvcSCg4N594NVvJrlfVX7s1pVqGtuu2JC+atf/Yry8nKCg4N59dVXOz3m7OzMihUriIiI4ODBg6xcuZKlS5de0/sQQgjRPZqamkhNTWXSpEnodDIJKWxHEsoudqU+kIcOHSI/P59hw4Yxbty4a3ruadOmsXPnThoaGsjKymLt2rX8+Ikf4eAdgPfUJTj3G3HZ63UKuBsv/0+elZXF+vXrAfjhD3+Ik9OFo55DhgxhwoQJxMXF8Ze//IUf//jHV5XQCiGE6F7Hjx/HarUyfPhwe4cibjGSUHaRsLAwJkyYcMXzVqxYAcDixYuv+TX8/Pzw8/MDoKCgAC8vL1auXMnRo0cp++Jles3+Ja5DJl30Wp0Cdw/xveLo5Pr16+nYPOmuu+665HlTpkwhLi6OgoICjh49ytixY6/5/QghhOg6qqpiMpkYMmRIpw4gQtiCjId3kd/+9rfExcVd9pyamhq++OILXFxcWLhw4X/0OhUVFXz++ed8+OGHWCwW1qxZQ/+wwaBaObf9bSxNdRe9zqqq9G/No7W19bLPv3fvXu34cp9wR4z4fjR0z5491/guhBBCdLXc3FwqKytl325hF5JQ2tCaNWtoampiwYIFeHh4XNO1dXV1bN26lXfeeYfi4mLuu+8+Fi9ezMCBA5k1bSoAamsTTZnfdbpOQUUBnhnrg6X0FB9++CHV1dWXfJ2UlBQA3N3dLxtjUFCQdpyamnpN70UIIUTXM5lM9O7du9PvZyFsRaa8bahja8Tzp7ubzRbqmttwNzpcdDq6paWFQ4cOcfjwYfR6PVOnTu2080FdXR2Vld/3l3SqOIWCioqCgkqwrooldwzkkaljKBvXj88++4wVK1bw4IMP0rdv3wteq6SkBLhyBfr5j+fl5V3TfRBCCNG1amtryczMZMaMGbKmXdiFJJQ2cuTIEU6cOEFkZCRjx44lPq+SlXG5l9wm0WKxsHz5cjIyMggKCmLMmDFMnDgRo9GoPaeqqmzZsqVT2x5/qpjulIgZPZMnjuPY4SQq0quw3jWa3r1789RTT7F+/XpWr17N9OnTGTVqlPbLp67u++ny81/nYpydnbXj868TQghhewkJCTg4OBAZGWnvUMQtShJKGzm/GGfNkXx+vykFnU656DaJPxntjbHQxMsvv4yHhwcnTpy46PTz8ePHOXXqFD4+Ptr3evfujYOi4kAb4WEDOHLwO6qqqkhPT2fo0KG4uLjw6KOPEhsby7Zt2ygtLWXmzJno9Xqampq059E5GC7bs9LR0VE7bmxs7IpbJIQQ4j9gsVhITEwkMjLyop05hLAFWUNpA7W1tXz++ee4uLgw5LZZ/H5TCipccpvEfx47R72xN+7u7hQWFlJVVXXBc9bU1LB9+3YiIyPZsWOH9v3zq62NRiP+/v64uLgQFxenVW/rdDqmT5/OnDlzSE5OZtWqVdTX15NR3qxdm362kiEvbWfJWtNFt2w8v7jHxcXlP701Qggh/kuZmZnU19dLMY6wK0kobWDt2rU0NjayYMEC1p2oQKe7/PoWvaKQ7zwAvV6P1Wpl4cKF2tpGaJ/q3rx5M46Ojmzbto0TJ04AEB0dTXh4uDYF3tTUREREBM3NzZSUlJCTk9PpdYYPH86PfvQjKisreeYfX/DkZ98X16htrdqo6QPvHWbt0fxO154/munu7v6f3RghhBD/NZPJRFBQ0DXvviZEV5IpbxvomO5+7IkneeybUv5tYPICFhV2pBbT27cP+fn5xMXF0a9fP2bOnMnAgQMxm82YTCbOnDmjFcRER0cze/ZsnJ2dcXJywmw209jYSEREBLGxsXh4eBAXF3fBVlxBQUGMnLGAt9cmozgo6F29sDRUYWlorwTvGEV9cWMKg33dGdnXG4DS0lLtOUJCQrriNgkhhLhGFRUVnD59mvvuu8/eoYhbnCSU3ezo0aMkJycTFRVFeGQM1q27ruo6FYWHfvQEd06+g8TERHJycti1axebN2/GarXi6OiIl5cXo0ePJjo6Gn9/f6B968eO6egjR44QGBiIl5cXZrOZ/Px8Dh48SFBQEEajEaPRiJOTE58llqLX6bBYVQy9grE0VKG2NmFtbkBnbG+Oq9MprIw7rSWUhYWFWqxDhw7tylsmhBDiKplMpvblVEOG2DsUcYuThLKbnV+M4250QKdwxRFKaK/6/slTi7SiGFVVaW5uZu3atdTV1XHvvffS1tZGc3Mz27ZtQ1EUnJyctGlyi8VCVVUV9fX1NDQ0aEnmrl2dE9o2VSG2ZcS/ulWCMSSS5vxkAFrLcjEGDwPaRypj00q0Qp3ExETtOe68887/7iYJIYS4ZmazmeTkZEaMGKG1khPCXuQnsBt1FOO4urry6KOPYjTomTrEl13pZRcU5JxPQWVSqFenCmtFUTh+/DhFRUU89thj2jRzUVERLS0tGI1GIiMjqaiooLW1laqqKgYPHszUqVNpamrijTfeYPDgwaSlpbFgwQLc3Nxobm6muKqBNV9/P9roMmgC1QfWANCcl6wllNCeCNc1t2E06LXENDAwULZdFEIIO0hJSaG5uZmRI0faOxQhpCinO33yySc0NDSwYMECevToAcCTE/tjvcIQpQq4nY0nOTlZ+155eTm7d+9mzJgxndYsZmZm4uTkRHNzM4GBgbS0tODk5ISzs7PWzsfZ2ZmwsDCqqqrw8PAgNTWVwMBABgwYwKjoCM6vETL0DMRl0HgA6lP3olrM2mM6BdyNDmRkZGjbTD7//PPSRFcIIezAZDIxYMAAvLy87B2KEJJQdqeOnXGWLFmifW9UX29emRuBAujonFgqWAGVx4e5cFdkXzZu3MjWrVtpbW1l48aNeHp6ctddd3W6JjMzk969ewMQEBCgJZQuLi6dKrEjIiIoLi4mKiqK1NRUbXed1qYGBrub//Xa7bwmP4HOuQeWmlJttFKvU7h7SB/UtlYWL16MqqqMGzeu064/QgghbKOoqIiioiIZnRTXDZny7ibx8fEkJSURFRXF6NGjOz326JgQBvR05vmPd5Jv8dC2SexnqGewUoQ+t4lxTz1FUFAQ27ZtIysri/r6ehYtWtRpV5yqqipKS0u1T6iurq40Nzfj5OSExWLptGd3WFgYjo6OqKqq9aUMCAhg586dDLS4kEZ/7VwHT196z3+Rsq//TO3Rr2ktz8dlwGic1D6M/MsPSUtLY+TIkWzcuLFTPEIIIWwjPj4eDw8PBg4caO9QhABkhLLbdBTjnD86eb5e1DLZkM0rkQ38NLiER50S+fkoN3x19RgMBjZu3Eh0dDT33nsvdXV1F+xkA+2jk3q9nsbGRgIDAwEuOuUNYDAYCA8PJy0tjcjISJKSkti6dSteXl54W6qY6VNHe215+6ipU0A4/ovexnP8g1hqyqg/8DGr/+8tevTowfLlyzl06JA2MiqEEMJ2mpqaSElJYcSIEeh08t+4uD7IT2I3qKurY926dbi6uvKDH/zgoufk5OTQo0cPjAY93i4O+Hh7YjAYcHZ2pqWlhbKyMvbt28fBgwfx8fEhJCSETz/9lL1792K1tk9PZ2ZmEhISQmlpKQEBAQBagY6zs/MFCeiQIUM4d+4c8fHxAHh7e1NSUsLo0aPxa8jmf4Y7EKyr1pJKB1cPHvzxrzhkOk5LUyNVVVUcPnyYZcuWycikEELYSXJyMlarlREjRtg7FCE0MuXdDdzd3amrq7vsOTk5OfTv35/m5mYcHBzw8/OjpKSESZMmsX37dgICAoiLi0NRFJ566in69OnDd999x969eyksLGTmzJnk5+czbtw4cnNzCQwMxGq1YjabtfZBTU1NqKqKoiiUl5fz3XffAdCzZ09UVaWsrIw777yTzMxMvL29uSMimPL0o0REjaCipo7C06d4ZtqP6d3b2xa3TQghxBWoqorJZCI8PBw3Nzd7hyOERkYo7aC2tpby8nIGDBiA2WzGYDDg5+dHcXExI0eOxNHRkaKiIqB9P+6ePXuiKAq33367tg3jypUrUVUVR0dH9Ho9vr6+tLS0AGhT3larlaamJr777jvee+89mpqaMJlMLF26lJ/85Cfs27eP/Px8zp49y5w5c8jMzAQgIjyMgUG+OChqpy0fhRBC2FdeXh7nzp2TYhxx3ZGE0g469tTu378/bW1t2ghla2sr1dXVjBs3DqvVirOzM2azmZ07d2rX9u/fn8WLF2uterKysujTpw8ODg6dEkoXFxcAPv74Y/bu3cuYMWMYMWIE3377rfZcvXv3Jicnh5EjRxIUFKTFFRQUhI+PD4CW2AohhLA/k8mkLYMS4noiCaUd5OTkEBAQgLOzc6eEEtoTuObmZgBaW1u56667MJlMZGdna9e7urpisVgICAjQzm9tbdWuMxgMpKamAtDW1sYTTzzBhAkTeOSRR7T1l4C2xrJHjx6cO3eOhoYG3N3dcXFxwdPTE4CzZ892/w0RQghxRXV1daSnpxMTEyP9f8V1RxJKG7NareTm5hIaGgq0b53l4OCgJXFZWVkcPXqUkJAQLBYLzc3NhIaGsmnTJi0BzMvLo7W1lSlTpgBQXV3NypUrKSsrA2Djxo0cP34cgGnTptGzZ09++MMfkp+fz9SpU7VYamtr6d+/P/Hx8WRlZQHQt29fAK1RbkVFRfffFCGEEFeUmJiIg4MDUVFR9g5FiAtIQmljxcXFNDU1aQllxwglgK+vLxkZGQQGBrJgwQJ0Oh2HDh1i5syZtLW18c033wCQkZGBp6enNsX98MMPY7Va2bhxIwCOjo48/vjjQPsn2jfeeIPNmzcTFRXF888/r8Xi5eXF9OnTqaurIykpCfg+oXR1dUWn09Hc3Ex9fX333xghhBCXZLVaSUhIYNiwYRiNRnuHI8QFJKG0sZycHJycnLQ2P21tbVoLnvr6etra2rj33ntxdnZm+PDhmM1m0tPTmTVrFqmpqZw8eZKsrCwGDRrE2bNntcTParWiqu3tfgIDA+nTpw86nY79+/ezatUqVFVl1apVnaZJ9Ho9Pj4+hIWFUV5eDrSvn4T2vcM9PDwAKC0ttdn9EUIIcaGsrCzq6uqkGEdctyShtLGcnBz69euHXq8Hvp/yzs3N1dYrdjSqveOOO1AUhQMHDjB48GAiIiLYunUrdXV1DB48mIKCAhwcHFi9ejVubm7cfvvtKIpCYmIiH374IaqqcujQIbKzs/nlL39JVFQUp0+f1mKprKykpaWFfv36AeDg4ECvXr20x729vVEURRJKIYSws/j4eAICArT19kJcbyShtKHm5mYKCgq06W5oH6EE2Lx5szY6WFxcDICbmxsRERG0trYSHx/PzJkzgfaEs6Wlhby8POrr65kxYwaPP/44BoMBJycn7rvvPkpKSqitrWXHjh2Ehoby0ksv0dDQwNGjR7XXtlqtZGRkUF1djaIoFyzy9vLywsHBQRJKIYSwo3PnzpGbm8uoUaPsHYoQlySNzW3o9OnTqKqK2WzmueeeY8eOHWRnZ2O1WnF1dSUiIgJnZ2e8vLwYOnQoAJMnT+bkyZMcOHCAUaNGYTQaqa2tZd26dQDMmTOHyMhIoH2XHAcHB7Zv3463tzdffvklDQ0NLFu2DKPRyFdffdUpHg8PD1JSUqiqqkJRFMxmM9nZ2dresJ6enlgsFulFKYQQdpSQkICzs7P2/4IQ1yNJKG0oOzubw4cP86c//YmAgADmz59Pv379aG1t1RqQq6pKVlYWzz77LNA+Sjhw4EBOnTrFxo0bqa2tRafToaoqqqoyaNAg7fk7Wv/4+flpyeLo0aOpqalh5cqVFBUVMXr0aG2fcV9f307tiHr16kVcXFynhNJqtVIPGT7DAAAgAElEQVRRUdGpeEgIIYRtmM1mjh8/TnR0tPwOFtc1mfK2EVVVefPNN9mxYwcPP/wwGRkZvPDCC8TExDB37lz27dvHu+++C7T/AukosAEYP348gNZb8tHHFtHm4AJ6g1bQc/r0aTIzM3F0dGTu3Ln8/Oc/x8PDg4ceeoh58+ZRVFSEwWDQ+ksC+Pj4dJrmvv322zlz5gxnzpwB0M7tSCqFEELYVmpqKk1NTcTExNg7FCEuSxJKG/nss8/Yv38/gwYN4sMPP8RoNLJjxw4AxowZo+3ZPWDAABwdHamurkZVVU6ePMkXX3yBTqej1OrGd4Rz1/8dZ3VdOB83RPLAP2L5+sBxPvnkE4xGI0FBQbz44osUFRXxk5/8BJ1OR25uLgaDAS8vr0475RgMBlxcXNDpdPTp04eIiAh8fHyIi4sDvu9FCci0txBC2IHJZCI0NJSePXvaOxQhLkvGz21AVVV+/etfA/C73/0OBwcH0tPTycjIANp3qoH2Vj1JSUm8+eab5ObmkpWVRVZWFkOHDiVb8edbUyUK0DF2qaKQWGYmYVsh9wWGE+lSy+nTp1mxYgUzZszgnnvuYd++fSQlJTFr1iyio6OpqqrS4jKbzTQ3N2O1WrXRyokTJ7JhwwZKSkrw9fXFYDBIYY4QQthBcXExZ8+eZcGCBfYORYgrkhFKG9i/fz+FhYUoisK9995LQ0MDW7du1ZqIn78uxtXVFaPRyLZt2ygqKmLBggWEjLyTd01VgIJK50psFR2gsLHQyKnKNt577z0cHR354x//SENDA9XV1Xh7exMSEkJ1dXWnRd1HjhyhtraWhoYGqqqqMJvNRERE4OnpycGDB1EUBS8vL4xGoySUQohbnqqqLF++HDc3NxRFYd++fVd1XV5eHm+//Tbz588nLCwMNzc3HB0d8fX15c477+R///d/aWxsvOA6k8lEjx49CAsL6+J3IkTXkxFKG/jyyy8B6NOnD+7u7nz55Zeoqsr48ePJzMzU1kFWV1ezZcsWmpubcXd3Z+nSpTg7O7NkrQkdKlYuvXerosCBgmYKCwsBLmgv0VHkc749e/awZ88e7evQ0FDuuOMOxo8fz7Zt25g8eTKenp5UVFRQUlKCqqqyf6wQ4paUm5vLokWL2L9//zVd98Ybb/CrX/0KABcXFxYuXMjQoUOxWq0kJyezdu1a9u7dy1tvvcW2bdsYPHgw0N5m7uTJk0yYMEHrTSzE9UwSShs4dOgQ0L6tYXJyMmvWrCEvL4/f/va3WCwW3nzzTYYMGUJoaCjjx49n2LBh5OTkYDQaaTZb2JlWetlkEsCqQoEhgNffeJMRUZGUlZWxfft2oL21UEeBTXJyMs899xzQnnRGRkbS2toKtFd9A0RHR7N//34OHjyIp6cnJSUlNDU1UVdXp03PCyHErUBVVd5++21+85vfoNfrGTt2LEeOHLnq6zsKGv38/Dhy5AjBwcGdHn/22WcZP348eXl5zJkzh5SUFBwdHUlOTsZisTBixIgufT9CdBf52GMDHWslFUVh3rx5bNu2jYkTJ7J8+XIWLFjA+PHjOXHiBF999RWxsbH079+fxsZGamtrqW0yY1Wv8AL/ojg4ETJgMLfddhtVVVWMGzeO0NBQRo0axZQpU5gyZUqnSkEXFxeGDx/OmDFjCA0NZceOHTQ0NGAwGBg7dizJyck4OztT29BEk+rAmbPF3XF7hBDiuvWHP/yBZ599lokTJ5KSksK0adP+o+d5/fXXL0gmof0D/DPPPAPAqVOn2LFjB6qqYjKZGDx4MO7u7v9V/ELYiiSU3ajZbCG/tIrm5magfaQyNzeXTz/9lH/+85/4+/sTHh7O3Llz+eCDD1AUhR07dvD6668DsGXLFj5a8Q4KV5dRKqikJJl4/fXXqaio0KoCy8vLO7Uh0s5XFKqrqxk+fDhhYWHU1tby7rvvUlBQwKhRoyinB387XM3HDZGsa4lm9upslqw1Ycqr7KI7JIQQ17+VK1eyfft2bTezaxEYGEhMTAx33333Jc85f3/utLQ08vPzqaiokH27xQ1Fpry7QXxeJSvjctmZVoq5vqrTY5MmTWLSpEl88MEHFBUVAfD444/j4uLCF198wbZt21i3bh1LlizBycmJ6Oho+h6qJL/N47IjlXqdQiCVOCgqqgq9e/fWtnD85ptv2Lt3LwEBAZSVlWnXuLq60tbWRlBQEAEBAWRlZeHq6srHH3+MOuA2NjWEoqBqhUAqsCu9jNjUUl6ZG8GCEf6sWbOG9evXk5iYSGVlJZ6enoSHh/Pwww/z5JNPSiNeIcQN7aWXXvqv1o4vW7aMZcuWXfYcV1dX7djZ2RmTyUTPnj21wk0hbgTyv30XW3Mkn99vSkGnU7CqoFotnR73CBvFihUr6NmzJxMnTiQuLk7bgvH89Yl5eXncdtttREREEH74c06rHpd9XYtVZahjGQaDgba2Nh555BE8PDx47bXXMBqNlJWVkZubS2ZmpnbN6dOncXJy4oMPPtCmVgIDA7F49eVvx+u5WFW55V9Z7fMf7eQPP3qL7Mw0/P39eeqpp+jXrx9nz55l1apVLF26lBUrVrBt2zZtbaYQQtxobFGImJCQoB2PGTOG2NhYpk6dKkWQ4oYiCWUXis+r5PebUlD5PvHSGZw7nXOs1Z9x/oF4u1q0Yp2KigrGjx/PlClT+Pzzz4H2/mPFxcVkZGTQ19XCK9OH8uLmlH/1ofz+l0z7CCIsGuaKeqoes7n9E+4333zDww8/jIuLC/Hx8axdu/aCeNPS0khLS+Prr78mJCSERYsWkZSURILzCHSKcskRUUtTHaWfv0BbdSkREREcOHCgUxP0X/7yl9x9990cPHiQGTNmcOTIERwdHf/zGyuEEDepgoICli9fDsATTzxBS0sLOp2O6OhoO0cmxLWRhLILrYzLRadTtGQSQHFyBr0DWNoA0Btd2JbbzMJ+LQwYMICcnByWLl0KQG1trXZdfX09DQ0NpKenExYWxvThfYjfuZGz7oNILLOi0p5MBuuquCtAQZd7HAswePBggoODiY2NZdeuXeh0OqZNm8aLL76I1WrVWlXk5+ejKAr+/v4MGDCAmpoaiouLyc0vIPmcesHI5PlqDq6jrbq9L+Wbb/29UzIJ7cU+K1euJDw8nKSkJN5++21+8YtfdNFdFkKIG1d9fT11dXWcPXuW3bt38+abb1JTU8Mrr7zC888/z/Lly4mIiMBoNNo7VCGuiSSUXURr7/Nvo3qKosPgHYi5PA8A1apyxupFq6WYmqIirFYrb7/9NlarlYaGBu26juPKykoqKytJTk6mJ9Cz9hhDnBTM6DFgaV8zWQ4dE+sZGRlaVXnHCOi5c+fIycm5aNy5ubnk5+ej0+lQFIU2xeGyyaSqWmlI2Q2AztWT4WMmXvS8wYMHM2LECBITE3nrrbf4+c9/LtM3Qohb3rJly1i1apX29bhx4/j73//O6NGjyczMpLa29oI+wkLcCCSh7CJ1zW2XnCJ28g/TEkpLQzVqzyA8evXBoIOWlhbCwsLQ6XRaEQ1AcHAwer0ei8XCtGnTOHLkCEajkQkTJpCfn09CQgJz5sxhy5YtAFoVd3BwMNOnT8disfDll19iNpvx8vLioYceQq/XU19fz//93/8xevRojh07xi9+8YtObSl27d3Puti6SyaVbZVFWJvrAXDsFYy78dI/QlFRUSQmJlJYWMiRI0cYN27cVd9PIYS4Gf3P//wPP/jBD6ipqSEhIYGPPvqIMWPGMGXKFKZPn46/vz/+/v72DlOIayYJZRdxNzqgU7hoUukyaAL1ybEAtBafwiVkGPPmzCRu/16ampq0dhJffPGFds2cOXMwGAwYjUaCg4PZsWMHn376qTY9DvDyyy9fNBZnZ2caGxu5//77+fjjj9HpdFrSmJGRgaIoWK1WPD09L+hxFj1sKMG7tnPG6vGvbR07szTVacd9enljNOgveU+8vb2142PHjklCKYS45Q0ZMoQhQ4YAMH/+fH79618ze/Zsdu3axcGDB/nkk0/sHKEQ/xnpQ9lFjAY9U4f4otddOLJn7BuNwScEgIbUvQxybUZta6Wtra1TW501a9YA4OTkxEMPPURzczNtbW0kJibi7u6Oi4vLVcXS1tZGVlYWISEhBAUF0dDQoO3FnZ2dTUBAAMXFxRf0VKuurmbTpk0MdSi95AilzuCkHfu5XTqZBDCbzdpxWlraVcUuhBC3Ek9PTz799FMcHBxoamrib3/7m71DEuI/IgllF3pyYn+sFxmiVHR6vO9eCjoHWstOU7XnA958802Ki4u1hPLTTz9l69atAPzpT3+ivr59WrmlpYUTJ04wfPhwAObOncuePXt4+umnWb16NU8//TQvv/wyTz/9NL/61a9IS0vjtdde4+uvv+bcuXOEh4cD8PXXX9PS0kJubi79+/enuLiYwMBALcaUlBTeffdd6urqmD12COMczgAq/54fGzx7g9L+Y1NRdOay9yMvL0877th+TAghRGd+fn7069cPgMOHD5OVlWXniIS4dpJQdqFRfb15ZW4EClwwUukcNJRec57D6OLK0T3bWL16NevXr+fbb7/l/vvv59FHH0Wn0/HHP/6R5557jszMTK1/o9ls1vZz9fDwYOjQofj4+FBQUMCUKVNYvHgxPj4+9OjRg/DwcH7yk5/g5ubG559/jrNze9uiiooKtm7dSktLCx4eHlitVoKCgmhpaWHTpk189dVXDBw4kB//+MdYrVYGO5Rzn/tp7h7iqyWVCip9nVsZEtnezuLUqVPk5uZe9F60tLRw4MAB7eu6urqLnieEELe6tLS0Tt0yUlJS7BiNEP8ZSSi72KNjQvhyyTimhndOxCI8LSyI8uHo4UNaxfOuXbv45ptvOHDgAPfccw9JSUm8+OKLmM1mcnJyGDJkCIqi4O3tjYfH943NO3o6drQE8vPzw2g0YrFYOHv2LEajkQULFlBTU0NSUhLQXkmYkpKCk5MTjY2NGAwGLBYLK1asIDU1lXvvvZf777+fsrIyTCYTAAM99bz76EjS/jCdTx8I5lGnRGb2KGLRwke0WJ5//vmL3ofXXnuN6upq7Wu9/vLT40IIcbNpbGxk/fr1V1zyYzKZ8PT01L5ua2vr7tCE6HKSUHaDkX29effRGNL+MJ34307hWf98ngpX6OeukpOTw//7f/+PzMxMPvroI5YvX87PfvYzYmJi2L9/PyUlJZw+fRqz2UyvXr1QVfWCfmSnT58GYMSIEdoIZEcBzM6dOwHw8fFh7ty5nDnTPi09ePBgDAYDqqpy5swZ3Nzc+Oijj3BycmLJkiVER0djNpvZsGEDBoMBT09PysvLqa2txWjQExnWDwdFxd3dnaCgIP70pz8B8OWXXzJv3jwOHTpEcXExiYmJPPPMM7z88svcc889Wszn7wIkhBC3grKyMh544AHeeeedS55TUlJCQUEBLS0t2veCg4NtEZ4QXUoSym5kNOjxcXeif3AgRUVF3H777Zw4cUIrkLFYLPTq1Yuf/vSnBAYGUllZyXvvvcfOnTvx8vIiNzcXg8GgraeE9k+uHUmjp6cnNTU1qKqKTqfDYDCQn59PTU0NAOHh4Vo/s4yMDMxmMxaLhezsbKqqqhg7dixPPPEEPXv2BCA2Npa6ujrMZjMzZ85Er9drUy9ubm54enqi1+spLS3ld7/7HVu3bmXUqFF8/fXXTJgwAX9/f2JiYoiNjWX16tW8+uqrWtw+Pj7df8OFEOI6tGPHDiwWy0UfM5lMtLW1ceTIEQB69+4tfSjFDUkSShsICgqirKyMoUOH4uXlxZ49e4D2tZEODg64u7uzaNEiZs2ahV6vp6Kigrq6OpKTkwkNDaW2tlZrdJ6VlcXu3btZvnw5Y8eOxdPTE4PBwO9//3uOHj1KfX09u3bt0l578uTJANovK0VRUFWVyMhIpk6dqk1FZ2dnk5CQgJOTE2FhYQwcOJCwsLBOa3mCgoJobm6msrKS1tZWZs2axbFjxygrK+PIkSPExcVx+vRpMjMzWbhwIVVVVdq1w4YN696bLIQQ16ns7Gx+9rOf0dzc3On7LS0tHDlyRCuaBPjrX/8qS4TEDUn6UNpAUFAQqqpSUlLCnXfeyVdffcWZM2c6tQ1SFIWRI0fi6urKF198oa2haWxsBKCoqIimpibi4+NxcXEhJiaGu+66i5iYGDIyMvjrX//K5s2bcXZ2pqSkhNmzZ+Po6IjRaNT6TkL71HhZWRnZ2dk0NDTg6upKU1MTmzdvpmfPnlRWVnLXXXcB7UngF198QUVFBb169SIwMFBLMEtLS7W2Qz4+PhcdgTy/YCcmJqab7q4QQnSvtWvXascnTpzQjnfu3ElhYSEAvr6+TJ06tdN1bm5u9O/fn9zcXN5++202btzIAw88QP/+/XFycmLXrl1s2bKFpqYmnJ2def311/nRj35kmzclRBeThNIGevXqhdFopKCggNtvv52DBw+ya9euC/pQApw9exZnZ2cMBgO1tbUUFBQAEB8fT0VFBT4+Phw5coRvv/2WsLAw7r77bu655x4tKTSZTHz22WeMGTOGZcuWUV5eDrTvpKMoCm1tbXh5edHc3MzWrVt58MEH2b59Oy0tLbS1tREVFUXv3r0BGDhwIE5OTpw8eZLJkydribGiKJ0Syks5duwYAH379pWEUghxw1q4cOFFv3/+sp5JkyZdkFD26tWL7Oxs9uzZw9atWzl69Chr167VliUZjUb69u3Lww8/zGOPPXbF36lCXM9kytsGFEUhKCiIgoICFEXhrrvuoqCgQKu2Pl9mZiZBQUHU1tYyY8YM/Pz8gPYWPffddx+7du3SPt12TJGoqorVauWVV17ByckJi8XCa6+9xrFjx3j//fe1PbQnTZpEZWUlzs7O3HPPPWRkZLB9+3ZOnDhBv379aG1t5Y477tBicXBwIDw8nJSUFFRVxdfXF4PBgF6vZ8OGDVpx0MVYLBa++eYbAB5//HHZx1sIccNSVfWKf/bt23fRazt+57/11lscOnSIsrIyWlpayMrK4he/+AVbtmzhxRdflGRS3PAkobSRwMBACgsLUVWV0NBQQkJCaGpq6rRW5ty5c1RUVGC1WnFzcyMmJoYnnnhC60fZo0cPNm3axP79+3F0dKS1tRVA+zswMJDp06cD7SOdH330EdHR0bi5uaHX6xk9ejQAxcXFODs7M2TIEI4dO0ZISAi5ubmMGTOmU3siaJ/2rqyspKioCJ1Oh7+/PzU1Nbz66qu8/vrrl3y/a9eu5cyZMwQFBfHcc8913Y0UQoibgMlkwtvbm/79+9s7FCG6hCSUNhIcHExLSwtlZWUoisKUKVOwWq2ddpDJzMxEr9dTUFBAdHQ0er0ei8WiVXn7+PhgtVrZt28fZ8+e1fo8doxUOjk5ERoaqj1fcXExs2bNorW1FWdnZ4qLiwEICAhg/fr1NDY2oigK586dQ6fTMXHixAvi7tu3L66urpw8eRJAa4YO7VtFXqy/2nfffceyZctwcXHhs88+u+otI4UQ4lbQ0NBAWloaI0eOlNkbcdOQhNJG/P39URRFWxMZGBiIoijk5uZq7SQyMzPp1asXLS0t2s44e/bs0SoDp0yZwh133IFOp6OtrY3CwkK2bNmircc5efJkpy27qqqqOHnyJM3NzTg4OFBQUIDRaOShhx5CVVXy8vIYMWIE9fX1hISEaD0tz6fT6YiIiCA1NRWr1UpgYKC2R3djYyOjR4/m2WefZcWKFfzjH//g/vvvZ/LkyXh7e/Ptt98yYcKE7rupQghxA0pKSkKn0xEdHW3vUIToMpJQ2oijoyN9+vTRKgI71t00NTWRkJBAQ0MDBQUFtLa2EhoaipeXF4WFhRw9epQ77rgDJycnSkpKmDRpEk8++aTW7Dw5OVmrQDx58iSDBg3SXlNRFGJjY7XXKywsJDAwkLa2Ntra2lAUhezsbAwGAzk5OVoBz78bNmwY9fX15OXlERgYiLe3N/PmzWPevHmEhoaybt06li1bxmuvvUZlZSVvvfUWqampTJo0qTtvqRBC3HCsVismk4mhQ4de9EO8EDcqSShtqKMwB77fWis4OJgDBw6Qnp6OqqpUVVURExNDW1sbmzdvpk+fPowfP56SkhL++c9/oqoqfn5+DB8+XCvA6VhD6efn16lqvF+/ftTX1+Pi4kJdYzOZ+cX09gvQ2guNHz+empoawsLC8PLyYsOGDRdtvuvv74+XlxcnT57E1dUVX19fRowYwdNPP01ycjJlZWW0trZSXFzMvn37eOaZZ3Bzc7PBHRVCiBtLdnY2NTU10rxc3HQkobShoKAgKisraWho0BLKYcOG0dzczNGjR3F1dcXV1ZWwsDC+++47zp07x7333otOpyM1NZXPP/9c22XHYDBoz9GRRJ47d46vv/5ae71FixZRanXj29oAPqyLYHVdOIt3NrAyQ6Hf6Lu0FkXp6emMGzeO0tJS9u/ff0HciqIwbNgw0tPTaWtrIygoSGsdJIQQ4uqZTCb8/Pzw9/e3dyhCdClJKG2ooy1EQUGBtg7Rw8ODmJgYKioqaG5uZvjw4VRUVBAXF8fEiRO1Cu+OwpZNmzZRWFjIsWPHsFgszJ07V+t9VlxcTE5ODgChoaHElSp82zqIvDZ3VNoXfqtAgerFz7YWsD27gTlz5hAUFMSePXsYM2YMcXFx2rT8+SIiImhpaeHUqVMEBgbS2tpKSUlJt94vIYS4mVRVVXHq1CkpxhE3JUkobahHjx64u7tTUFDQaXSx45OqxWIhOjqaTZs20bNnT2677Tbt2o61Ns8//zx//etftTWUQ4cO1dZE7tu3D6vVisFgYPysB3kvoRpQUP/tn9mqtv99uC2YOqMP8+fPR6fTcebMGfz8/NiwYYM2jd7Bx8eHPn36kJKSQmBgIAA1NTUXbCUmhBDi4jq2t42IiLB3KEJ0OUkobUhRFIKDgzsllAaDgfz8fHQ6HYqicPz4cUpKSpgzZ06n9ZBDhgxBr9dTXV3NihUr2LdvH/Hx8axYsYK///3v/P3vf+fkyZP4+vryhz/8gXy3IVzp869eUfggLg83NzcWLFhASUkJnp6e1NbWsnPnzgvOHzZsGJmZmXh4eGixybS3EEJcWVtbG0lJSURFReHo6GjvcITocpJQ2lhgYCBFRUXayJ5OpyMjI0MbWTx48CBjxozRRgEB0tPTcXJy4pe//CULFy5kxowZJCYmEhsby89+9jN27txJQEAAb731FqdOneLnz/0PZ6xe2jT3pVhUiE0rodlsISAggFmzZpGWlsbgwYMxmUxkZ2d3Oj8iIgKLxUJmZqbW9kgSSiGEuLL09HQaGxsZOXKkvUMRolvIXt42FhQUhMVioaysDIDKykqampowGo0YjUaqq6uJjIwEwGw2s2PHDhISEhg8eDBDhw7l9OnTPPPMMxQVFfH++++zePFijh07RkVFBY899hhnzpwh/mQG6lXGY1WhrrkNo0HP8OHDOXv2LElJSfj7+7N582aWLl2qTbf36NGDkJAQUlJSCAoKIj8/X9ZRCiHEVTCZTPTt2xcfHx97hyJEt5ARShvr06cPDg4O2q41HUU0/v7+VFdX4+bmxoEDBygpKWHFihUkJycza9YsHnzwQa1KvLm5GScnJwDq6uooLy+nurqaN954g9WrV5N3KgPlKlNKnQLuxu8/V8yYMYOAgABqampobW3l22+/7XT+sGHDyM3NpVevXqiqytmzZ7vitgghxE2rtLSUM2fOyOikuKlJQmljer2egIAAzpaU0aQ6kJZ5Cmiv/B4x4v+3d+dBUZ35+sCf0w1NIzsCDaJsIiJbi0KrEaPGJRrRuE8mccGJiZOpW5nM/CYzc+/cuWpyK3dqKjUz907dVGK8cSO7+xKNaDBRo2lA2UQwIIvKLrtAd0Of3x+EjkQFpIHT3TyfKqta+5zTX1qWh/c97/udgvnz5yM/Px/vv/8+5HI5Xn75ZdOKQD8/PwDA999/b2p5+Omnn+LOnTvo6OiARqPBSy+9hN/95tcItm+GrI+bKGUQMT/cB0r7H/uJy+VyrFmzBoIgwNnZGbm5ucjNzTU9P2nSJAiCgObmZgBdWxUZjcbBfIuIiGxKeno6nJ2dER4eLnUpREOGU97DLK2kDkfqfJBZY4QIXwg6EYF2jYhTNmHmzJk4efIkAMDJyQkvvvgi7O3tIYoiKioqkJ+fDwA4ePAgZLKu3wWioqJQWVkJf39/zJ07FwBQXl6OcKEcN0XXXmsxAhhdm4WqqgDT9kQA4OLigjVr1mDPnj3w9PTEiRMnEBAQAFdXV4waNQqhoaHIz8+Hq6srmpqaUFdXBy8vryF4t4iIrJtOp0N2djamTZsGuVze9wlEVoojlMNo3+VSrH3vErJrxfv2hRRQ2uGK/Q0B+O07B1FeXo4nn3wSzc3NuHTpEo4fP46///3veP/995GWloZRo0Zh3Lhx+N3vfgeZTIaxY8eis7PTtI0Q0DWCGeBowB/nBQEQHxiplMsEACJm2JXB3XAX77//Pq5cuQJR/HGaPCAgAIsXL0ZdXR1EUcTRo0dNz0dHR+P27dumEMr7KImIHi4nJwcGgwFTp06VuhSiIcVAOUzSSurwH0dyIaJrdfX9uveJPHfPFz4R01FVVQVBEJCamoqioiJERkZi48aN+N3vfofIyEi0trbC0dERCoUCOp0OOp3OdE8l0NXaKyQkBOPFcix3LsaTIe6meyplArBgkgqfb5mB36+cAaPRCJlMhmPHjuHgwYPQ6XSm60ydOhWTJ0+GwWBAUVER0tPTAQBhYWGwt7c3jZKWl5cP4TtHRGSdRFFEeno6wsLC4ObmJnU5REOKU97DZOeFm5DJBHQaH71YRoCID74twYYQPaZMmYKMjAzMmzevxya4Y8aMQVpamilE/jRQtrW14c6dO1i8eDHOnTuHRVOj0dBwC9GqaryQ9CLcnZQ/3jMZNDy3Kh0AACAASURBVBohISE4cuQIiouLkZeXhzt37mDNmjXw8/ODIAhYsmQJqqurUVNTg9OnTyMkJASjR49GeHi4qaNOWVnZ0L1xRERW6vbt26iqqsL8+fOlLoVoyHGEchi0GzqRklfVa5gEukYqb4meeGFDEhITEzFhwgSkpqais7PTdEz3wpzKykpToDQYDKZAWVRUBFEUIYoiWltbMWbMGBQUFGDBU3Pg6+7UYwEO0NX6cf369XjmmWcgk8nQ1NSEnTt3Ii0tDaIows7ODmvXrjVtZH7w4EEYjUZER0ejvr4eMpkMtbW1g/huERFZt3ZDJ2qadfhWmw4PDw+MHz9e6pKIhhwD5TBobu9AH1nSxCgCx788g+zsbMTGxqKurg5Xr141Pe/t7Q07OzuUl5fDwcEBbW1tAGC6h7KwsBA+Pj64du0agoKCkJ6eDl9fX0RHRz/yNQVBQHx8PF555RWMGTMGRqMRX3zxBT777DO0t7fDzc0Na9euRUdHB8rLy3HhwgWEhITA0dERSqUSOp3OVAcR0UiVVlKHLcnpiNh6CvFvncEf0+3xjTgRGaX1UpdGNOTk27Zt2yZ1EbZOLhPwzrnCfu0MKUDERH0hsjOv4tq1axAEAYWFhWhsbERzczNEUUR5eblpFNJgMKC+vh5TpkyBu7s7Tpw4gaCgIBQUFGDSpEm4du0ali9fDk9Pzz5f29HREWq1Gg4ODigpKUFtbS0yMzMRGBiIgIAAODo6orCwEKWlpZg4cSI6OztRXl4Oo9GIkJAQeHh4mP9mERFZoX2XS/GrD6+g+G7rfQMIAqpaRXyWfgteLg6IGesuZYlEQ4qBchjYyWXIq2hCyd1WiL2kSrkALIz0w1svr8C0adMQGhoKFxcXlJaWoqWlBXl5ebhy5QpaWlpQW1uLjo4O3Lt3DzqdDjExMdDpdLh8+TLc3NzQ3t6OxsZG+Pr6Ys6cORCEvjp7dxEEAePGjUNERARKS0tRX1+PK1euQKFQYNq0aairq0N1dTVu3ryJmTNnmkZPXV1dERISMhhvFxGRVUkrqcOvPrwCEXjge3z331Pzq5EQ6oUx7o7DXh/RcGCgHCa+rkp8ln6r12NEiPhNgi/C/L1gb28Pd3d3BAcHo7W1FZWVlXj11VcRFRWFjo4OVFZWQi6Xo6WlBQCQnZ2N3NxcGI1G1NfXw8PDAzU1NVi9ejVcXXvfj/JhnJycMHXqVAiCgLKyMhQVFaG0tBSJiYn4/vvvUV9fD3t7e1OgFUURsbGxA3pviIis2RvHr6G4rwEDmYDGNgMSY8YMX2FEw4iBcpj4uzvCy8UBqfnVkMuEHt945DIBEIElqhbcy78IlUrVY6NwPz8/XL58GQCgVqvh4eGBjIwMhIWFoa2tDXq9HkuWLMGdO3cgiiI6OjpMQTMvLw9FRUWoqqrCvXv3IAgCHB0dTVv+9EYQBAQFBWHixImma1y9ehVPP/00bty4gTt37iA0NBQ1NTVo03cgXB0HuUyAnZy35hLRyNBu6MT/+zyrz/vkRRG4WduCLU+O5/dIskkMlMMoZqw7EkK90NhmwM3aFojo2hdyYYQv/rIyGpvmx6K6uhpff/01XFxcTCu6FQoFDAYDLl++jMmTJ8Pd3R0XL16Es7MzGhsb0dHRgaVLl+Lrr7+Gs7MznJyc0N7ejqVLl0KlUkGv16OkpASZmZlIT0/HxYsXkZ+fjzt37qCxsRFGoxGOjo6P7OLg7OyMuLg4tLe3o6ysDHl5eQgLC0NtbS3yaw24rPdHats47DhfjHfOFSKvogl+rkpO7RCRzatvNWDH+Zv9OlYEsHFGEJwcuGMf2R5+Vg+zuCBPxAV5ot3Qieb2Drgo7Xps5bN69WqcPHkSx44dQ0tLC2bNmgVBEPDEE08gPT0d33zzDRITE6FSqdDa2gqDwQCZTIaysjKIoojGxkbY2dkhPj4eU6ZM6fHaOp0OlZWVpj8VFRXIysoy9eIePXo0fH19e/xxdnYGANjZ2eGZZ55BVFQUPvnkE+Tn56NQGIPzbX4Q8GPnH6MInLlejdPXqvDm8iismxY4TO8sEdHwc1HaQSagXzt5yISu44lsET+zJaK0lz+wJyQAyGQyPPPMM3BxcUFqaiqam5uxePFiKJVKzJo1CykpKZgxYwb8/Pxw48YNU9vFoqIiODg4mFZ/P/nkkw9c28HBAYGBgQgM/DHkdXZ2oqamBhUVFaag+f3330Ov1wPoGp308/ODSqWCn58ffH198dprr+Fve4/gfJEjutal91zw073f5p8P5yJc5YK4oL5XmBMRWSOlvRwLIlQ4c726172G5TIBCyapHvp9n8gWMFBaIEEQ8OSTT8LZ2RnHjx/HvXv3sHLlSsTHx+Py5ctITU1FcHAwMjIyAHRNid8fAmfPng0nJ6d+vZZcLjeNRnYTRRH19fU9RjOzsrJw4cIF0+t9bQyDDICxl2vLZAJ2XihmoCQim/bizGB8ea0SwKN30zAaRWxOCB6+ooiGGQOlBZsyZQqcnJywf/9+JCcn47nnnsOcOXNw9OhRTJgwwXScIAimRTiOjo6YMWOGWa8rCAI8PT3h6emJiIgI07+3tLSgsrISZXcqsONU4wMjkz/VaRRxOq8S7YZO/lZORLarpggz7MpwqSMQ8p+02JXLBBiNIt5cHsVfrsmmcamZhZs4cSLWr1+Pqqoq7Nq1CyEhIfDy8kJ2djZkMhk6RAHNBqBD7Ap3c+fOhUKhGLTX1+l0uHXrFjIyMnD+/HlcvHgR5y+n9RkmuxnFrk5BRES2qKqqCqdPn8b6GUHYv2UGFkxSQfbDt0eZACyYpMLnW2bwfnKyeYIo9rZzFlmKmpoaJCcnQxAEzJgxA3u+uIACwR83dc4QIUCAiBBFC97aOB/TQrz6vuBPdHZ2ora2FtXV1aY/VVVVaGxsBPDjqKVKpYKbpxe2nO19z7VuMgHI276II5REZHMMBgN27NgBmUyGl156CXZ2XZN+j1p0SWTLGCitSFNTE5KTk3Gp1v6H1dXoMVIo/2GlYW+rq0VRRENDgykw1tTUoKqqCnfv3jWt9nZ1dYWPj0+PP909xLttSU7v903o766bOjhvABGRBTl27Biys7Px8ssvw9vbW+pyiCTFeyitiKurK2LmrcBfd2ega3V1T50//EP36upJ3g6oqqrqMepYU1NjWryjVCrh4+ODwMBAxMfHQ6VSwdvbG46Ofe8fuTkhBKevVfV6TKfRiJ9N5jdZIrI93a1wExMTGSaJwBFKq9OfkUEZRATbN+NJ+Q0AXSu5vb29TYFRpVLBx8cHLi4u/e7x/TDJ35Xiz4dzIXvETehzXasRrWzAhg0bMHr06AG/DhGRJWloaMB7772HkJAQrF692qzvo0S2goHSirQbOhGx9VS/NtAVABz8eSDGjfGFp6dnv1otDkR6SR12XijG6bxKGMUfO/9sTghGmKcd9u3bh7a2Nqxbt67H1kRERNbIaDRi9+7daGpqwpYtW/o1o0M0EjBQWpGaZh3i3zrT7+PT/m0+vF0chrCiHz3qJvR79+4hOTkZDQ0NeOGFFzB27NhhqYeIaCikpqbi/PnzSEpKQkBAgNTlEFkMbhtkRbpbfPXHcLf4UtrL4e3i8MCKRicnJ2zcuBHe3t7Yu3cviouLh60mIqLBVFpaivPnz2P27NkMk0Q/wUBpRbpbfMn7SJVymYCFEb4Ws12FUqnEunXrMG7cOHz44Ye4ceOG1CURET2WtrY2HDx4EAEBAZg1a5bU5RBZHAZKK7M5IQTGPm6itMQWXwqFAj//+c8xYcIEfPrpp7h27ZrUJRER9Ysoijh69Cj0ej1WrFgxZPekE1kzflVYmfggT7y5PAoC8MBIpVwmQAAstsWXnZ0dVq9ejcjISBw4cABXr16VuiQioj5lZGQgPz8fy5Ytg5ubm9TlEFkk7kNphdZNC0S4yuWB1dULJqmwOSHYIsNkN7lcjhUrVkChUODo0aPQ6XSYPn261GURET1UdXU1vvzyS8TFxWHSpElSl0NksRgorVRckCfigjytssWXIAhYsmQJFAoFvvzyS+j1esyaNYt7uRGRRTEYDNi/fz88PDywcOFCqcshsmgMlFZOaS+3miB5P0EQsGDBAiiVSqSmpkKn02H+/PkMlURkMU6fPo36+nq89NJLsLe3l7ocIovGQEmSEQQBTz75pGmkUqfTYcmSJQyVRCS569evIz09HUuWLIGPj4/U5RBZPAZKktz06dOhUChw7NgxGAwGPPvss1xFSUSSaWxsxNGjRxEeHo6pU6dKXQ6RVWCgJIswZcoUKBQKHDp0CHq9HqtWrYKdHT89iWh4GY1GHDp0CAqFAsuWLeOMCVE/cRiILEZUVBR+9rOf4fvvv8fHH38MvV4vdUlENMKcP38eZWVlWLlyJft0Ez0GBkqyKGFhYXjhhRdw69YtJCcno729XeqSiGiEKCsrw9dff41Zs2YhMDBQ6nKIrAoDJVmc4OBgbNiwATU1Ndi7dy9aW1ulLomIbFx3a8WxY8di9uzZUpdDZHUYKMkijR07Fhs3bkRTUxN2796N5uZmqUsiIhsliiKOHTsGnU6HlStXclEg0QDwq4Yslq+vL5KSkqDT6bBr1y7U19dLXRIR2aArV67g+vXrWLp0Kdzd3aUuh8gqMVCSRfPy8sKmTZsAALt27UJtba3EFRGRLampqcGpU6cwZcoURERESF0OkdVioCSL5+7ujk2bNkGpVGLXrl2oqKiQuiQisgEdHR3Yv38/3N3dsWjRIqnLIbJqDJRkFVxcXJCUlAR3d3fs2bMHt27dkrokIrJyp0+fxt27d7F69Wq2ViQyEwMlWY1Ro0Zhw4YNUKlU2LdvH27evCl1SURkpQoKCpCWloaFCxdCpVJJXQ6R1WOgJKvi4OCAdevWISAgAB999BEKCgqkLomIrExTUxOOHDmCiRMnIj4+XupyiGwCAyVZHXt7ezz33HMICwvDp59+ipycHKlLIiIr0d1a0c7Ojq0ViQYRAyVZJTs7O6xevRoxMTE4ePAgMjIypC6JiKzAxYsXUVJSghUrVmDUqFFSl0NkM+ykLoBooGQyGZ599lkoFAocP34cer0eM2bMkLosIrJQt27dQmpqKmbNmoXg4GCpyyGyKQyUZNUEQcDixYuhUChw+vRp6HQ6zJ49m9NYRNRDe3s7Dhw4AH9/f7ZWJBoCDJRk9QRBwPz58+Hg4ICvvvoKOp0OCxcuZKgkIgBdrRWPHz+O9vZ2JCUlQS6XS10Skc1hoCSbMWvWLDg4OODkyZPQ6/VYsmQJe/ISETIzM3Ht2jWsWrWKrRWJhggDJdkUjUYDhUKBo0ePQq/XY/ny5RyNIBrBamtrcfLkScTGxiIqKkrqcohsFgMl2ZzJkydDoVDgwIEDMBgMWL16Nezs+KlONNJ0dHTgwIEDcHV1ZWtFoiHG+UCySREREXjuuedQVFSEjz76CHq9XuqSiGiYnTlzBjU1NVi9ejUUCoXU5RDZNAZKslkTJkzACy+8gDt37mDfvn1ob2+XuiQiGiY3btzAd999h/nz58PX11fqcohsHgMl2bSgoCBs2LABtbW12LNnD+7duyd1SSaiKOKf//wnnJ2dIQgCzp0791jn5+TkYPPmzQgJCYFSqcSYMWOwdOlSHD9+fGgKJrISzc3NOHLkCCZMmIBp06ZJXQ7RiMBASTbP398fSUlJaG5uxu7du9HU1CR1Sbh58ybmzp2LV199dUAh9/3330dcXBz27t2Lp556Cv/zP/+DpKQkXLp0CUuXLsXmzZthNBqHoHIiyyaKIg4dOmRqfMDtw4iGBwMljQgqlQqbNm2CwWDArl27UF9fL0kd3aOSMTExuHr1KqZPn/7Y1zh+/Dh++ctfwmAwYP/+/di5cydefvllvPXWW/juu+/g7e2N//u//8O//uu/DsFHQGTZLl68iOLiYqxYsQJOTk5Sl0M0YjBQ0ogxevRobNq0CTKZDB988AFqamqGvYbt27fj1VdfRUJCAnJzc/H0008/1vk6nQ6/+tWvYDQasXbtWixbtqzH8+PHj8cbb7wBAHj77bdx7dq1QaudyNLdvn0bqampmDlzJkJCQqQuh2hEYaCkEcXNzQ2bNm3CqFGjsGvXLlRUVAx7DTt37sSpU6cwbty4xz537969uHXrFgDgpZdeeugx69atg6OjI4xGI/7yl7+YVSuRtehurejn54e5c+dKXQ7RiMNASSOOs7MzkpKS4OnpiT179qCsrGzYXnvr1q148cUXB3z+559/DgBQKBSYNWvWQ49xdnY2LUTo3uCdyJaJoogvvvgCra2tWLVqFZsZEEmAgZJGJEdHR6xfvx5+fn7Yt28fioqKhuV1zVkg0NnZiW+++QZA1z6bve2rN2XKFABAU1MT0tPTB/yaRNYgOzsbOTk5SExMhIeHh9TlEI1IDJQ0Yjk4OOD5559HcHAwPv74Y+Tn50tdUq8KCwuh0+kAoM/p8vuf532UNFAD3doqLy8P27Ztw5w5c+Dj4wN7e3u4u7sjNjYWv/3tb3Hjxo1Bq/Hu3bs4ceIE1Go1oqOjB+26RPR4GChpRLO3t8fPfvYzTJw4EZ999hmys7OlLumRSkpKTI9VKlWvx97//P3nEfXXQLa2qqysxMKFCxEZGYnt27ejvb0dr7zyCt599128/vrr6OjowN///ndERUXh7bffNrvGzs5OHDhwAC4uLli8eLHZ1yOigWOgpBFPLpdj1apVUKvVOHTokMVOETc3N5seK5XKXo91dHR86HlEfTFna6uSkhKkpKQAAP7zP/8Tly5dwvbt2/Hiiy/iT3/6EzIzM/HCCy/AYDDg9ddfx44dO8yq9ezZs6iqqsKqVavg4OBg1rWIyDwMlEQAZDIZli1bBo1GgxMnTuDixYtSl/SAtrY20+O++hLf/3xra+uQ1US2x9ytrQBg2rRp+Ld/+7cH7hmWy+V47733MHr0aADAH/7whwG3RC0sLMSlS5cwf/58jBkzZkDXIKLBw0BJ9ANBELBo0SLMmjULZ86cwVdffQVRFKUuy+T+Uce+Vm7f//yoUaOGrCayTeZsbQUAS5cufeQCNCcnJyxatAgA0NDQgPPnzz/29VtaWnD48GGEhoYOqDkAEQ0+O6kLILIkgiDgqaeegoODA86cOQO9Xo+nn37aItq3ubi4mB73Napz/2jm/ecR9WXr1q0D/nwPDw/HsWPHMHXq1F6PCwgIMD1+3G27RFHE4cOHAYCtFYksCAMl0UPMnDkTCoUCX3zxBfR6PRITEyGTSTugHxQUZHpcVVXV67H3Px8YGDhUJZENMiegubu7IzExsc/jGhsbTY8ftz3ipUuXUFRUhHXr1sHZ2fmxaySiocFASfQI8fHxUCgUOHLkCPR6PVasWCHphsmhoaFwcHCATqczdct5lNu3b5seR0ZGDnVpRI+luLgYQFd4nTlzZr/PKy8vx9mzZ/HEE09g/PjxQ1UeEQ0A76Ek6oVarcaaNWtw/fp1fPrppzAYDJLVIpfLTd1xrl+/3ut9lFeuXAHQNd0dFxc3LPUR9UdjYyNSU1MBAImJif2+T1On0+HAgQPw9fXFU089NZQlEtEAMFAS9WHSpEn4+c9/juLiYnz00UemzcWlsGbNGgBdP1wvXLjw0GNaWlrw3XffAehaHMHtVMiS7Nu3D+3t7bC3t8d//dd/9fu8kydPoqWlha0ViSwUAyVRP4SGhmL9+vWoqKjAvn37eix6GU4bNmzA2LFjAXStxH2Yjz76CK2trZDJZPjjH/84nOUR9aqmpgZvvPEGAODNN9/s9+0Y2dnZyMrKwjPPPANPT8+hLJGIBoiBkqifAgICsGHDBtTV1WHPnj1oaWkZ9hqUSiX+93//F4Ig4JNPPsHx48d7PH/z5k38+c9/BgD85je/YSs6shhGoxEbN25ETU0N1qxZg9///vf9Oq+urg4nTpxATEwM1Gr1EFdJRAPFRTlEj2HMmDFISkrCvn37sHv3bqxfvx5ubm6PdY3k5GTT4/tbPaakpJgW06hUKixYsOCh5y9btgzvvPMOfv3rX2PlypVISkpCfHw8SktL8e677+Lu3btISkrCX//61wF8hERD47e//S1OnjyJOXPmYO/evf1aTd7dWtHJyQnPPPPMMFRJRAMliJa0czORlairq8PevXsBdE1DP840XH9+kM6ePRvnzp3r9Zjs7Gz84x//wFdffYXKykq4u7sjLi4OW7ZswdKlS/tdD1Fvtm3bhu3btwMAUlNTMWfOnMe+xvbt27Ft2zYkJCTg5MmT/d7uJyUlBZcvX8YvfvEL+Pv7P/brEtHw4Qgl0QB4enriF7/4Bfbu3Ytdu3Zh/fr18PHx6de5g/U7XExMDD744INBuRbRUHnrrbewbds2zJgxA1988UW/w2RRURG+/fZbzJ8/n2GSyArwHkqiAXJ1dcWmTZvg5OSE3bt3o7y8XOqSiCzK22+/jT/96U+YNm0aTp061e+uTffu3cOhQ4cQEhKCJ554YoirJKLBwEBJZAYnJyds3LgRo0ePxp49e1BaWip1SUQW4b//+7/x+uuvIy4uDl9++SVcXV0fOCYuLs40nd6tu7WiKIpYsWIFWysSWQkGSiIzOTo6Yv369fD390dycjIKCwulLolIUu+88w5ee+01xMbG4vTp049cuJaRkWHqmtPtu+++Q2FhIZYvX87WikRWhPdQEg0ChUKB559/Hp9//jk+/vhjrFq1ChEREVKXRTTsduzYgX/5l3+Bu7s7/v3f/x1ZWVn9PreiogIpKSmYPn06JkyYMIRVEtFgY6AkGiR2dnZYu3YtDh8+jP379+PZZ5/lvnlklQa6tdVXX32FX/7ylxBFEQ0NDVi1alW/X1Ov1+PAgQPw8fHBvHnzzPwIiGi4MVASDSK5XI4VK1bA3t4ehw8fhl6vR3x8vNRlET2W9evXP/Tf33rrLdPj2bNnPxAoy8rKBryLwcmTJ9HU1IQtW7bAzo4/moisDfehJBoCoiji9OnTuHz5MubNm4eEhASpSyKyWDk5OTh48CCeffZZTJ48WepyiGgA+Gsg0RAQBAELFy6Eg4MDzp49C51Oh6eeeoorVol+or6+HidOnEBUVBRvESGyYgyURENEEATMmTMHCoUCKSkp0Ov1WLRoEUMl0Q+6Wys6OjpiyZIl/NogsmIMlERD7IknnoCDgwOOHz8OvV6PpUuXQibjjl1E586dQ0VFBTZt2gSlUil1OURkBgZKomEwdepUKBQKHDp0CHq9HitXroRcLpe6LCLJFBcX48KFC5g3bx7Gjh0rdTlEZCYOkxANk+joaKxduxYFBQX45JNPYDAYpC6JSBKtra04ePAggoODMXPmTKnLIaJBwEBJNIzCw8Px/PPPo7S0FB9++CF0Op3UJRENK1EUceTIEXR2drK1IpENYaAkGmYhISFYv349KisrsXfvXrS1tUldEtGw0Wq1uHHjBpYvXw4XFxepyyGiQcJASSSBcePGYePGjWhoaMDu3bvR0tIidUlEQ66yshIpKSnQaDQICwuTuhwiGkQMlEQS8fPzQ1JSEtra2rBr1y40NDRIXZJNEEUR//znP+Hs7AxBEHDu3LnHvkZLSwteeeUVyGQyTskOku7Wil5eXg902CEi68dASSQhb29vbNq0CUajEbt27cLdu3elLsmq3bx5E3PnzsWrr76Ke/fuDegaZ8+eRVRUFN59990BtxGkB506dQqNjY1YvXo1WysS2SAGSiKJeXh4YNOmTVAoFNi1axeqqqp6PN9u6ERNsw7thk6JKrR83aOSMTExuHr1KqZPn/7Y1+gelVywYAEUCgWCg4OHoNKR6dq1a7h69SoWLVoELy8vqcshoiHAQElkAVxdXZGUlAQXFxfs3r0bd+7cQVpJHbYkpyNi6ynEv3UGEVtPYUtyOtJL6qQu1+Js374dr776KhISEpCbm4unn376sa+RmJiIHTt24LXXXkNWVhYCAgKGoNKRp6GhAceOHUNkZCRiY2OlLoeIhgjnHYgshJOTEzZu3IiPPvoIf9h5HBfax0IuE2D8YdbVKAJnrlfj9LUqvLk8CuumBUpbsIXZuXMnXnzxxQGfr1KpcP78eTzxxBODWNXIZjQacfDgQSiVSiQmJvJ+VCIbxkBJZEGUSiXCZy3BGx+kAQA6jT3v4ev++58P5yJc5YK4IM9hr9ESbd261eyw8sknnzDwDLKvv/4at2/fZmtFohGAU95EFmbPd7cg76PXt0wmYOeF4mGqyPINRhBkmBxcJSUl+OabbzBnzhyMGzdO6nKIaIgxUBJZkHZDJ1Lyqh4YmfypTqOI03mVXKhDFqm7tWJgYCASEhKkLoeIhgEDJZEFaW7vQB9Z0sQodh1PZElEUcTRo0fR0dGBlStXQtbHaDsR2QZ+pRNZEBelHWT9nHmVCYCzg3xoCyLqh/u3tkpPT0dBQQGWLVsGV1dXqUsjomHCRTlEFkRpL8eCCBXOXK/uddpbgIhxQj327f4A8fHxiI6O5mbRNOzSSuqw88JNpORVwSh2/ZITIKvHqsg4hIeHS10eEQ0jjlASWZjNCSEw9jnvLeC1xWo4OTnh6NGj+Nvf/oYzZ86gsbFxWGok2ne5FGvfu4Qz16t7bG1V1umOv2UDyd+VSlsgEQ0rDmkQWZj4IE+8uTwKfz6cC5lM6DFSKZcJMBpFvLk8CiumBQIJMbh79y7S0tKQnp6Ob7/9FuHh4dBoNAgMDOTKZRoSaSV1+I8juRDx4NZWRnR9znFrK6KRhYGSyAKtmxaIcJULdl4oxum8StN04oJJKmxOCO7xQ3r06NFYtGgR5s6di+zsbGi1WuzZswc+Pj7QaDSIjo6GQqGQ8KMhW7Pzws0Hftn5qe6trRgoiUYGBkoiCxUX5Im4IE+0GzrR3N4BF6UdlPaPXoTj4OCA+Ph4xMXFobi4GFqtFsePH8eZM2cQGxuL+Ph4eHh4DONHQDoiOQAACpdJREFUQLaoe2urvu7KuH9rq94+b4nINjBQElk4pb38sX4gC4KAkJAQhISEoL6+Hmlpabh69SouXbqEsLAwaDQahISEcDqcHpvRaEROfuFjb23FQElk+xgoiWyYh4cHFi5ciLlz5yInJwdarRbJycnw8vJCfHw81Go1HBwcpC6TLFxNTQ0yMzORk5OD+qYWCJgCEX3/QiITurbCIiLbx690ohHA3t4eU6ZMQWxsLMrKyqDVanHq1CmcPXsWkydPhkajwejRo6UukyxIa2srcnNzkZWVhfLyciiVSkRFRUGtVqM6tRJn8nvf2kouE7Bgkoqjk0QjBAMl0QgiCAICAwMRGBiIxsZGpKen48qVK9BqtRg/fjw0Gg0mTJjA6fARqrOzE99//z2ysrJw48YNiKKICRMmYM2aNQgLCzPtdbp51iiczqvq9VpGo4jNCcHDUTYRWQAGSqIRys3NDfPmzcPs2bORm5sLrVaLjz/+GB4eHoiPj0dsbCyUSqXUZfZbcnKy6XF2drbpcUpKCm7fvg0AUKlUWLBgwUPPr6qqQkpKSo+/P+zaMTExiImJGbS6pSaKIioqKpCVlYXc3Fy0trbC19cXCxYsQHR0NJycnB44p79bW3GFN9HIIYii2M/bq4nIlomiiNu3b0Or1SIvLw9yuRwxMTGYNm0avL29pS6vT/0ZVZ09ezbOnTv30OfOnTuHuXPn9nmNrVu3Ytu2bY9ZneVpbm5GdnY2srKyUFNTAycnJ8TExECtVkOlUvXrGukldQ9sbbUwwveBra2IyPYxUBLRA5qbm5GRkYGMjAy0tLQgODgYGo0GYWFhkMnYYMtaGQwGFBQUICsrC0VFRZDJZAgPD4darcb48eMH/H/b362tiMh2MVAS0SN1dnYiLy8PWq0Wt2/fhpubm2k6fNSoUVKXR/0giiJu3bqFzMxM5OXlQafTYdy4cYiJiUFkZCQcHR2lLpGIbAADJRH1S3l5ObRaLXJzcyEIAqKjo6HRaODr6yt1afQQDQ0NyMrKQlZWFurr6+Hm5maa0uaKfiIabAyURPRY7t27hytXriA9PR1NTU0ICAiARqNBeHg45HJOd0pJp9MhLy8PWVlZKC0thb29PSIiIqBWqxEUFMTV+0Q0ZBgoiWhAjEYj8vPzodVqUVpaChcXF8TFxWHq1KkPXRlMQ8NoNKK4uBhZWVm4fv06Ojo6EBwcDLVajUmTJrGPOxENCwZKIjJbZWUltFotcnJyIIoiIiMjodFo4O/vL3VpNqu2ttbUvaapqQmjR4+GWq1GTEwM3NzcpC6PiEYYBkoiGjRtbW2m6fCGhgb4+/tDo9EgMjKS0+GDoLt7TXZ2Nu7cuQOlUonIyEhMnjwZ/v7+nNImIskwUBLRoDMajbhx4wbS0tJw8+ZNODk5YerUqYiLi4OLi4vU5VmVzs5OFBYWIisrCwUFBabuNWq1ukf3GiIiKTFQEtGQqqmpgVarRVZWFjo7OxEREQGNRoOxY8dyRO0RRFFEZWUlsrKykJOTg9bWVqhUKqjVakRHR8PZ2VnqEomIemCgJKJh0d7ejszMTKSlpaGurg5+fn7QaDSIioriKNsPmpubkZOTg6ysLFRXV8PJyQnR0dFQq9XcnomILBoDJRENK1EUUVhYCK1Wi8LCQowaNQpTpkxBXFzciFxM0tHRgfz8/B7dayZOnAi1Wo3Q0FB2JiIiq8BASUSSuXv3LtLS0pCZmQm9Xo/w8HBoNBoEBgba9HR4d9/0zMxMXLt2DTqdDmPHjoVarWb3GiKySgyURCQ5nU6H7OxsaLVa1NbWwsfHBxqNBtHR0Ta1j2J395rs7GzU1dXB1dUVarWa3WuIyOoxUBKRxRBFEcXFxdBqtSgoKIBSqURsbCzi4+Ph4eEhdXkDotfrTd1rSkpK2L2GiGwSAyURWaT6+nqkpaXh6tWraG9vR1hYGDQaDUJCQiw+hHUH4+7uNQaDgd1riMimMVASkUUzGAym6fDq6mp4eXkhPj4earUaDg4OUpfXQ21trWlKu6mpCZ6enqYp7ZG44IiIRg4GSiKyCqIooqysDFqtFtevX4e9vT0mT54MjUYj6f2HbW1tyM3NRVZWVo/uNWq1mnttEtGIwUBJRFansbER6enpuHLlClpbWxEaGgqNRoPQ0NBhCXCdnZ0oKioyda8xGo0IDQ2FWq3GxIkTua8mEY04DJREZLU6OjqQm5sLrVaLiooKeHh4ID4+HrGxsVAqlX2e327oRHN7B1yUdlDa991rvLKyEpmZmcjNzcW9e/fYvYaI6AcMlERk9br3ddRqtcjLy4NcLkdMTAymTZsGb2/vB45PK6nDzgs3kZJXBaMIyARgQYQKLyWEIC7Is8exLS0tpu41VVVVGDVqFKKjozF58mR2ryEi+gEDJRHZlObmZmRkZCAjIwMtLS0IDg6GRqNBWFgYZDIZ9l0uxX8cyYVMJqDT+OO3P7lMgNEo4s3lUXhuqj8KCgqQlZWFwsLCHt1rxo8fD7m879FMIqKRhIGSiGxSZ2cn8vLyoNVqcfv2bbi5ucF1fCze/LYFvX/TE7HcuRgeHXXw9/eHWq1GVFQUu9cQEfWCgZKIbF55eTm0Wi3+kd6C0k53iHj0wh0BImK95dixIR5eXl7DWCURkfWSSV0AEdFQGzNmDBYtWYoyo0evYRIARAjIrDXC2c06O/MQEUmBgZKIRoTm9g4Y+zkfYxS7jiciov5hoCSiEcFFaQdZP7eolAldxxMRUf8wUBLRiKC0l2NBhAryPlKlXCZgYYRvv/alJCKiLgyURDRibE4IgbGPeW+jUcTmhOBhqoiIyDYwUBLRiBEf5Ik3l0dBAB4YqZTLBAgA3lwe9cDm5kRE1DtuG0REI056SR12XijG6bxKU6echRG+2JwQzDBJRDQADJRENGI9bi9vIiJ6OAZKIiIiIjIL76EkIiIiIrMwUBIRERGRWRgoiYiIiMgsDJREREREZBYGSiIiIiIyCwMlEREREZmFgZKIiIiIzMJASURERERmYaAkIiIiIrMwUBIRERGRWRgoiYiIiMgsDJREREREZBYGSiIiIiIyCwMlEREREZmFgZKIiIiIzMJASURERERmYaAkIiIiIrMwUBIRERGRWRgoiYiIiMgsDJREREREZBYGSiIiIiIyCwMlEREREZmFgZKIiIiIzMJASURERERmYaAkIiIiIrMwUBIRERGRWRgoiYiIiMgsDJREREREZBYGSiIiIiIyCwMlEREREZmFgZKIiIiIzMJASURERERmYaAkIiIiIrMwUBIRERGRWRgoiYiIiMgsDJREREREZBYGSiIiIiIyCwMlEREREZmFgZKIiIiIzMJASURERERmYaAkIiIiIrMwUBIRERGRWRgoiYiIiMgsDJREREREZBYGSiIiIiIyCwMlEREREZmFgZKIiIiIzMJASURERERmYaAkIiIiIrMwUBIRERGRWRgoiYiIiMgsDJREREREZBYGSiIiIiIyCwMlEREREZmFgZKIiIiIzMJASURERERmYaAkIiIiIrMwUBIRERGRWRgoiYiIiMgsDJREREREZBYGSiIiIiIyCwMlEREREZmFgZKIiIiIzMJASURERERmYaAkIiIiIrP8f9yr7kKtdrcJAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import networkx as nx\n", "from karateclub.node_embedding.neighbourhood.deepwalk import DeepWalk\n", @@ -193,9 +357,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzkAAAMtCAYAAAC8Vb+UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXRkdZ3//+etLVVJVWVPOkkv6X1PL9ANrYDQyC4Niig6guNv/I4LwqjoKOqozAzgwqioI4PoiIIIgsNu02izr83aK713eknS2VOVpSq13Pv7ozppQtKdrSqVVL8e53Ca3Prce9+VVM65r3w2w7IsCxERERERkQxhS3cBIiIiIiIiyaSQIyIiIiIiGUUhR0REREREMopCjoiIiIiIZBSFHBERERERySgKOSIiIiIiklEUckREREREJKM40l3A8ZimSW1tLT6fD8Mw0l2OiIiIiIikiWVZtLe3U15ejs12/L6acR1yamtrmTJlSrrLEBERERGRceLgwYNMnjz5uG3Gdcjx+XxA4o34/f40VyMiIiIiIukSDAaZMmVKb0Y4nnEdcnqGqPn9foUcEREREREZ0jQWLTwgIiIiIiIZRSFHREREREQyikKOiIiIiIhkFIUcERERERHJKAo5IiIiIiKSURRyREREREQkoyjkiIiIiIhIRlHIERERERGRjKKQIyIiIiIiGcWR7gLkxGNZFqFggGh3N/FYDLvDgTMrC48/d0g72IqIiIiIHI9CjqRcVzDAwa2bqN+7m7rdO6nfu5toONSvndPtoXTGLMpmzaF0xiymLKwi25+bhopFREREZCJTyJGUsCyLul3beXvd4+x4+XnMeByb3Y4Zjx/znGg4xKFtm6ndsa23/dz3ncHScy+ibPZc9fKIiIiIyJAo5EjS7X7tFV687y6aDu7HsNmxzESwOV7AebeedmY8zvYXn+Od55+maGol7//4lcw6+ZSU1S0iIiIimcGwLMtKdxHHEgwGyc3NJRAI4Pf7012ODCLUHuSp3/0P2198DsMwSOZHq+d6895/Bqs/83k8Pn0eRERERE4kw8kG6smRpNj12ss8efvP6e7sBEhqwHn39Xa8/ALVm97m3M9dw+wVq5J6DxERERHJDFpCWkbFsixeffDPPHLLjYQ7OrBMM7X3M03CHe08csuNvPrgn5MepkRERERk4lNPjoyYZVm88Kffs+HhB3oOjNWNAXjh3j8QCYc47YqrtCiBiIiIiPRST46M2IaH7j8acNJZw0P3p7UGERERERlfFHJkRHa99jIv3PuHdJcBJHp0dr/2SrrLEBEREZFxQiFHhi3UHuTJ238O42WImGGw7vZbCbUH012JiIiIiIwDmpMjw/bU7/4nsYpaEufgdEdjPLNjLwda2jjQ0kYoEuXjK6pYMX1Kn3b3btjI69WH+p1f7Muhsmo5F1379aTVJCIiIiITk0KODMvu115h+4vPJf26nZEIf9u2i7xsD+W5PvY0thyzrcNm4/IVi/scczudbH/xWea+7wxtGCoiIiJyglPIkSGzLIsX77sr6Rt9AvjdWXz34rPxe9wcbGnj1r+/eMy2NpvBSdMm9ztuGAYv3ncXM09aqdXWRERERE5gmpMjQ1a3aztNB/enZG8ah92O3+MecnvTtAhHo32OWZZF04Fq6nbtSHZ5IiIiIjKBqCdHhuztdY9j2OxYZjytdURjcb794Dqi8Tgel5NlU8q5qGoeWU4Hhs3O208+TvmceWmtUURERETSRyFHhqQrGGDHy8+nPeD43VmcOW8mFfl+LAt2HG7kpT37qQ0E+cKZp2IHdrz0HGde9Vmy/blprVVERERE0kMhR4bk4NZNmPH0BhyAC6v69tAsm1pOsTeHtVt2sOnQYZZNLceMxzm4dTNzV52WpipFREREJJ00J0eGpH7vbmx2e7rLGNAZc6ZjGLCrvgkAm91O/b7daa5KRERERNJFIUeGpG73jnHRkzMQp8NOtstFVyQCgBmPc3i3Fh8QEREROVEp5MigLMuifu+edJdxTOFojK7uCN6srN5j9Xt3p2QVOBEREREZ/xRyZFChYIBoOJTuMojG44SjsX7H/75tFxYwd1Jx77FIKEQoGBjD6kRERERkvNDCAzKoaHf3mNznhV3VhKNRAqEwANtqG3r///2zKglFo/z0yedZOrWcEp8XgB31jWyva2TupGIWVpT2uV7syPA1ERERETmxKOTIoOKx/r0nqfDsjr20dh3tMdpcc5jNNYcBWD6tAo/TyfzyUnbVN/F6dQ2WZVHozeaCxXM5c+4MbIbR53qx92wWKiIiIiInBoUcGZTdMTYfk29/aPWgbT55ytIhX8/hdI6mHBERERGZoBRyZFDOd03oH48swLI7wGYDwwDLAtPErpAjIiIickJSyJFBefy5ON2ecbH4AIBpdxDP9mG6s4l7coi7c2CAPXxu/dVtlJeXU1FRQVlZGdOnTycnJycNFYuIiIjIWFLIkUEZhkHpjJkc2rYlbTVYgOnJIZJfQsyfD4YNLBMwEr03A4hEIlRXV3PgwAFM08Rms7Fo0SJWrFjB5MmTMY5xnoiIiIhMbAo5MiRls+ZSu+OdtGwIGvXmESkux3RnJ4ai9YQTY2groJum2fvvli1b2LRpEyUlJaxevZp58+alqmwRERERSRPtkyNDUjpj1pgHHMtuJ1Q+nfCUWZhZnsTBUfa+9ASexsZG7r33Xh544AG6urpGW6qIiIiIjCPqyZEhmbKwCpvdPmZBJ+rNI1w2DexHPqJJHlpmWRYAW7duZc+ePaxZs4b58+cn9R4iIiIikh7qyZEhyfbnMnfV6Ri2/hP8k8kCugsnEZ4yKxFwUjxvxrIsQqEQ9913H88//3xv+BERERGRiUshR4Zs6XkXYZmp68mxgEhxBZGSyYkDY7wwwPr161m/fr2CjoiIiMgEp5AjQ1Y2ex5FUytTtipZpHASkaKylFx7qF544QVeeOGFtNYgIiIiIqOjkCNDZhgG7//4lSnp6Yh684724KTZ+vXr2b59e7rLEBEREZERUsiRYZl18inMe/8ZGLbkfXQsuz2xyMA4Gib28MMPa9U1ERERkQlKq6vJsK3+zOep3vQW4Y6OpASTcOnUpC8yEIlEePHFF6mpqaGmpoZwOMwll1zC0qVL+7S74YYbjnmNe+65h40bNyatJhEREREZGwo5Mmwen59zP3ctj9xy46ivFfXmEcstTEJVfXV1dfHcc8+Rm5vLpEmTqK6uHrDdhz/84X7HamtrefXVVykpKWH79u3aMFRERERkglHIkRGZvWIVp11xFS/c+4cRXyOxmlp5ojcoyYsZeL1errvuOrxeL7W1tdxxxx0Dtquqqup3rCcQLV68mKeeeoq5c+embLEFEREREUk+zcmREVt56eWsvPTyEZ9venIw3dkpWSra4XDg9XqHfV4sFuOdd96hsrISv99PQ0MDhw4dSnp9IiIiIpI6CjkyYoZhcNoVV3HaFVf1HBjW+ZH8knG12ADArl27CIfDLF68GACbzcZrr72W5qpEREREZDgUcmRUDMPglA9/jEu+9h3cXu+QV10z7Q5i/vwx3/BzMJs3b8Zut7NgwQIATNNky5YtdHZ2prkyERERERkqhRxJilkrTuX/++ntzF11GsCgc1ji2T4wxtfHr7u7m127djF79mzcbnfvcdM0j7lwgYiIiIiMP+PrKVMmNI/Pz0XX/iuXfO07FE6ZBoBhsw/Y1nRng2WOZXmD2rZtG7FYrHeoWg+bzUZtbW2aqhIRERGR4dLqapJ0s1acysyTT6Fu1w7efvJxdrz0HGY8js1ux4zHAYh7coDxN1QtKyuLOXPm9DlumiY1NTVpqkpEREREhkshR1LCMAzK58yjfM48zrzqsxzcupn6vbs4vGcndXt2E3fnjKv5OO3t7VRXV7NkyRIcjv6/FrW1tViWpaWkRURERCYAhRxJuWx/LnNXndY7X6ejo4NbbrkljRVZ5BDCSRQ7JnFsvLFlI5ZlDbhvDkAkEqGzs3NEy1KLiIiIyNhSyJExF41Gx+Q+GzZsIBwOE2pvBaBt50u0B1/CRwf/vNJBrvtor8zdmzso9xl8t/I16jhEHSXsYypdeHrbxGKxMalbREREREZHIUfGXPzIvJzUstjw0vM0Bzp6jzz7TiPPvpP4/3+s8vaGnB1Ncd6oM/nqqS5mGDVUUtfbw7OFubzGEg4xSSFHREREZIJQyJExZ7cPvOJassxlD6t5ke9/2UacXOwcf8PRuUV2rO/5j9aH2fvvIrazhHeopwj3/kVQdHlKaxcRERGR0VPIkTHndDpTcl0PIS7gaarYQc/i1IMFnMH0nF9ME7ZHPwv7noALfwzZBaOsVkRERERSRfvkyJjLycnB5XIl9Zrz2M013MkidgLJ/2D3Xm/rg/CLk+Cdx5J8BxERERFJFoUcGXOGYVBWVpakq1mczgau4FHchLGNsudm8NvFIdQG9/0DPP9fYKX4fiIiIiIybAo5khaTJ0/GZhvtx8/ibF7kbF4ExvLDfGQw3Pp/T/ynoCMiIiIyrijkSFqUlZVhmubgDY/jdF7jdF5LUkUj9MJPEv+JiIiIyLihkCNpMX369FH15Mxjd28PTtqt/3fY/ni6qxARERGRIxRyJC1ycnJYuHDhiIKOhxBr+Buj6wdKJhs8/CXoakl3ISIiIiKClpCWNFq5ciWbN28e9nkX8DRuupOW0F+rifP7jRGero5T3WZS6DE4dbKd/1ydxZzCo3v6bKiJc+fbEV6tibOp3iRmcmR/HRPCAVj7r3DZb4Z1b8uyiLe0YIbCWNEIhtOFzePGXlCAYRhJeociIiIiJxaFHEmbyZMnU1JSQmNjI9YQJ+/PZQ9V7EhqHT98sZsXD8a5fIGTqlIbhzssfrkhwvLbO3nlszksKkkEnb/uivKbN6NUldqYkW9jZ/O7+pKsOGy+HxZ+BOZdeMx7xVpb6XrlFcJbtxLatJnw1i2YnV392tlysnEvXISnajHuhQvJPvVUHPn5SX3fIiIiIpnKsIb6dJkGwWCQ3NxcAoEAfr9/8BNkwtm+fTv33nvvEFtbfIG7KKY5qeMsXzoY4+RyOy770Z6TXc1xFt/WyUcXOLn7Ix4A6jtM/FkGHqfBl/4a4r9fix7pyTnCsEHxfPjCi/CuXhjLsgi9/Tat9/yJ4Nq1EIuBw5H4dzA97RwO/BdeSMEnP4F7yRL18oiIiMgJZzjZQHNyJK3mzZvHokWLhvTQPpk6SpMccADeN8XRJ+AAzC60s7DExjtN8d5jpV4bHudx6rRMaNgKh17vPdS+fj371lzC/k98kuBf/3o02Awl4Ly7XSxG8PHHqb7iE+y75FLan3pqaOeLiIiInIAUciTtLrzwQtxu96DtVrCROGPTg2FZFvUdFkXZw7yfzQGv3UGstZWa677Goau/RPfu3YnX4vHjnzuYI+d379rFoS9eTc11XyPW2jq6a4qIiIhkIIUcSbvs7GzWrFlz/DaEWMRO7IzN6Mo/bo5S027x8YXO4Z1oxmhf+yh7z7+A4BNPJI4le0TokesF165l7wUX0v73vyf3+iIiIiITnEKOjAvz589n9erVx3x9Ogewj9Gi0dub4lz91zCrJtv59JKhhxzLgqatXg49n0c8GBx9z81gTJN4IMChL11D0+2/HvLiDSIiIiKZTiFHxo3TTz+d0047bcDXymggPgYf18MdJhfd00VulsEDH/Ngtw1tuJplQeMmH42b/UcPjIUj92n86U9p/OnPFHREREREUMiRccQwDM4++2zOPvvsfq9VcBhbintyAmGLC/7YRVsYnvhUNuW+of96NG/z0vyOL4XVDaGGX/+a5l/fkdYaRERERMYDhRwZVwzD4PTTT+eKK67A4/EcWXXNopz6lC45EI5ZXPynLnY2mzz2CQ8Liu2Dn3RE+yH30R6cNGv86U9pX78+3WWIiIiIpJVCjoxL8+bN45prrmHhwoXkECKLaMruFTctPv5AiJcPxbn/cg+rpgx9j9xYt0HdhlwYowURBmUY1H37O1p1TURERE5oQ3+aExlj2dnZfPSjH2VPZQE8dnvK7nPdk908siPGxXMctIQs7t4U6fP6p6pcAOxvM7lrUyJsvV6bGDr3rfuhO9BKucPJmtzcUdeyORTi4WCAV7u6qI1GybXbWeLx8C9FxVS6XL3t7m9r49FggH2RCEHTpMThYIUnm6uLCqkIBqm/8UYqbrll1PWIiIiITEQKOTLuzaycmtLrv304sQraoztjPLqz/yadPSFnX5vJvz3d3ee1H+8JALDC40lKyPltSwtvhro4z+dnblYWTfEYf2xt5bLqfdw7rZLZWVkAvNMdZrLTyVleL367nZpolPvb2ni2s4MHKyvhscfxX3ghvuOsWCciIiKSqQxrHC/HFAwGyc3NJRAI4PePjzkPkgat++HWqnRX0Ydlwb4niukOOCCJs4XeCnWx0O3BZRy9ZnUkwqXV+zjX6+NH5eXHPHdrOMzl+6v5SlEx/6+oiKzZs5n+8ENH5jVlBsuyaO6MEIrEicZNnHYbHpedwhxXRr1PERER6W842UA9OZIylmXREm4hHA8TjUdx2p247W4K3AXDeyB1ZqeuyBEKNTvpDgxzo9AhWObp/14rXS5muVzsjXQPcMZRFc5EPe1mHCyL7p07CW/ciGfp0qTXOVZaOiO8tKeJzTUBNh5sY/OhAJ2R/vsP5bjsLJ6cy5IpeSyuyOV9M4soyHENcEURERE5ESjkSNK0hlt59fCrbGvexubGzWxr3kZXrKtfu2xHNgsKF7C4eDELChdwyqRTyHfnH/vCOUXg8kKkI4XVD0/rrhwwLLBS33tgWRbN8TizXFn9XmuLx4lbFnWxKLc1NQNwanZO4kW7nZZ7/kTFBAs5lmXx5oE27nq5msc21REzLRw2g5h57E7nzkicV/a28Hp1a2/7i5eUc+WqaSybkqdeHhERkROMhqvJqFiWxcbGjdy7417W7VtHzIrhMBzErP5zW96rp53DcHD+9PO5Yt4VVBVVDfxA+ruLYP8LKXgHwxfrtrHrodIxCTgAjwQCfPNwHf8xaRKX5eb1eW3pzh1EjvwK59ntfLGwkE/lFxxt4HAw+/nncOQfJ0SOI09uPcx/PbmTHfXt2G0G8eMEm8H0nD9vko/rzp3LOQtKk1ipiIiIjDUNV5Mx8dSBp/jlW79kV9su7IaduJUYRjSUgPPudjErxtp9a3ls72PMzpvNNcuu4aypZ/VtPPkkOPgKmEO7dip11bvGLODs7e7mPxvqWer2cKm//8IGt0+eTLdpsTcS4dFggNB7Q0EsRterr+I///wxqXekWjsjfO+RrTyysZaejDuagPPu83fUt/P//vA6a5aUc8OaheRrGJuIiEjGU8iRYWsLt3HTqzextnotxpFJ9z0BZ6R6zt/dtptrn76WCyov4FunfIs895Gei7Kl4yLgAIRbnGMyVK0xFuMLNYfw2mz8rKIc+wA9XKccGZp2BrDa6+WS6n1k22z8Q0/PjcNBeOvWcR1y1m09zDf/solgKPHzTXbfcs/1Ht9Uy/O7GvnBZVWct3BScm8iIiIi44o2A5VhWX9gPRc/dDFP7n8SACvJm2D2XG/d/nVc/NDFrD+wPvHC9A+AbXxk8lCzK+V7f7bH43zu0EGC8Ti/njyFEsfgixxMdbmYn+XmsWDg6MFYjNCmTSmsdOQsy+K/n97N5+56g7ZQlHiKR87GLWgLRfncXW/w30/vZhyP1BUREZFRUsiRIbEsizs23cGXn/4yge7AqHtuBmNaJoHuAF9++sv8ZvNvsLILYOFHwGZP6X0HY1kQbnWSzGWj36vbNPlizSH2RyLcNnkKs7L6LzhwLGHLpN00+x7bsnXcPdBblsWP1u3gx+t2HPl6rO6b+PfHR+493r4vIiIikhwKOTIoy7K49c1b+flbP098nepujJ77HrlPz72tFZ8FM7XhajDxbhtmLHW/NnHL4qt1tWwMhfhJeQVLPZ5+bWKWRSDe//uwKRRiV3c3i9zuPsfNzk7iLS0pq3kkfvXMHm57Zk/aa/hVmmsQERGR1Bgf439kXPvN5t/w2y2/TXsNOcuy+WzJQmh8Byxz8JNSwIyldh7OjxobeLqjg7NyvATicR4JBPq8viY3ly7TZPWe3Vzg9zPLlYXHZrCru5sHAwG8NhufLyzqd10rHE5p3cOxbuvh3h6cdPvxuh3MLvFyruboiIiIZBSFHDmu9QfW9/bgpNutb/2cGUuvYvWTW9NWQ6qz1fYjYeTpzg6e7uy/L9Ca3FzcNhsfzctjQ1cXT7a3EzZNShwOLvT7+XxhIRXO/quHmZFIagsfotbOCN/8yyYMkjetqbtuJ51b1hPev5lYsB6b209W+VzyzrgSZ0FFn7bRpoO0PHUH3Ye2YdgdeGau4Drr8zz33Uu16pqIiEgGUciRY2oLt/H9l76PgTFmQ9SOx8DgewceYfnCS8jb9hikeF7QgDWkeIDn76dOG7SNyzC4vmR4e77YXOPjAf57j2wlGIol9dMUfOUBumveIXveaTiLK4l3ttL+5mPU3fkvTLryFlzFlQDEgk0cvucb2LJyyDvjKqxomOCG/2PnndX82+JKfvmplUmsSkRERNJJIUeO6aZXb6I90p60gNO1t4u2F9vofKeTSFMEh9eBZ6aH0stKyZqUmFxvmRZtL7YRfCNI6ECIeEccV7GL3FNyKTq/iKAR5OYphfzQnQuhNmBsh63ZHOkPeyNhvGeeTjo8ufUwj2ysTfp1fSs+TNGar2PYj65AlzPvdGr/90sEX3mAoou/BkDglT9jRbsp/cef4fCXAOAqm0PDfd/hT3ffxSXLp2nDUBERkQyhhQdkQE8deIq11WuTuopa01+bCL4eJGdBDmX/UEb+mfl07ehiz/f2ED6UGKZlRkxqfltDrD1GwZkFlH2yDM8MDw0PNrD/J/uJm3H+euDvPH36FxjrgANgzzKxOdIzH2ikbDk52AsK0lqDZVn815M7GWCrn1FzT57fJ+AAOAsqcBVNJdp8sPdY146X8Mxc0RtwADyVS3EUVNC1/Xn+60mttiYiIpIp1JMj/ViWxS/f+mXSh6kVnVeE+/NubI6j2Tp3ZS67v7ObxscbmfK5KRgOgxnfnkH27OzeNgVnFuAqctHwYAOd2zrxLfTxi8ZXOPOs72A8/Z9Jq28oDAPc+VG6Gl2kchnpZHIvWoiRinQxDG8eaGNHffuY3c+yLOKdbTiLpgIQa2/C7GrDVTarX9ussjmE9rzO9sPtvHWwjeVT88esThEREUkN9eRIPxsbN7KrbVfS5+Fkz87uE3AAsiZlkVWRRXdtNwA2h61PwOnhX+4HoLu2GwuLXW272DT/HDjtq0mtcSg8hZGJkm/A4cBTVZXuKrjr5WrstrH7pnVue4Z4RzM5808HIN7RCoA9p3+Plj0nHzPcjs2McdfL+8esRhEREUkdhRzp594d92I3xmbTTcuyiAVjOHzH71SMBWIA2H2JuuyGnXt33AdnfzfxHzBWH+esgihYEyTlxGK4Fy5MawktnREe21RH3ByboWDR5oO0PHkbWeXzyFl0NgBWLBGi3zusDcBwJBZliEXCPLqxlpbO8bESnYiIiIycQo700RpuZd2+dUmdi3M8gZcDxFpj5K7MPW67xrWN2Dw2fIt9AMStOE/se4LW7jY4/Tq44h7w5EGKw5kFuMojWLYJMnfD4SD7lFPSWsJLe5qIjVHAiXe00vDADdiycii69HoMW+LzYDiOLGwRj/Y7x4pFetvETIuX9zSPSa0iIiKSOgo50serh18lZsXG5F7dtd3U3lWLZ5aHvNPyjtmu4dEGOrd2Unp5KfacoyEmZsXYcHhD4ot5F8E1b8DCDye+TvJazz2P6IeLXWw4PY/QSeb4Dzp2O/4LL8SRn945JptrAjjGYKia2d1J/f3fwwx3UvKxG3D4Cntfs3sT34N4Z0u/8+KdrdjcPgyHE4fNYHNNoF8bERERmVgUcqSPbc3bcBipX48i2hal+qfV2D12pl49FeMYD8GBVwM0/F8D+WfkU7i6sM9rDsPBtuZtRw9kF8BHf5vo1SmenzhmG917MY+U1ZFjZ+NCH9vm+4k5bXR+wMQwx/mQtXicgk9+It1VsPFAW8p7cqxYhIYH/p1Yaw0lH/0uriMLDvRw+IqwZecSqdvd79zuup24SqcDEDMtNh5sS2mtIiIiknpaXU362Ny4OeU9OfGuOPt/sh+zy2T6t6bjzO8/TwKgY0sHh+44hK/KR/mny/u9HrNibG7a3P/EeRfB3Avh0Ovw2h2w5S9gxhKBxzz+e0usIGzHMOKYBtQXZ3Go3E3Q5+Dd6x9Hp1tEy00cdQbGEOfndJom/9vSzOZQmE3hEEHT5MZJk/hwbv9erLXBIL9vbWFfJIINmJ2VxT8VFPIBr3dI98IwyJozB/eSJUNrnyKWZaW8Z8Qy4zQ+/EO6a7dT8pHvkFUxf8B22XPeR+eWp4gFG3H4iwEIVb9NrKUG/8mX9LbbXBPAsqy0r0gnIiIiI6eQI70sy+rbM5ICZsRk/8/20324m+n/Oh13xcCbVHbt6eLALw7gqfQw5eopGPaBHzi3NW8b+IHUMGDKisR/590M1c9B7VtQ82bi30hH/9osDxFzFh2eXOpmbqQ1z0nUeYzOTgOCa+IU/s/AAW0gbfEYtzU3U+ZwMC/LzYZQ14Dt7m5t4aaGBj6Qk8OlxcVETIsHgwG+UHOIW8srOMfnG/xmlkXxv1yb9gf15s4InZHUzu9qfeq3hHa/imfWSuLhDjq2Pt3nde/CswDIXfUxuna8SP2fvoXv5DVYkRDBDf+Hs7gS7+Jzett3dMdo7oxQ5M1Kad0iIiKSOgo50qsl3EJXbOAH72SwTIuDtx2ka08X066dRvas/ktFA4Rrw+z/6X6cRU6mfWUaNtexR1V2RjtpCbdQ6Ck8ZhtyChNzdXrm61gWdDZhRbvoeGYfHa82Y+HCJBcLqD7534h43WAcf4hVd5VF18lxPG/ahjR0rdju4NmZsyh2ONgSDvGx/QMvV/zH1lYWu938qmJyb0j5SG4uZ+7Zw0PBwOAhx2bDf+EF+FavHrSmVAulOOAARBr2Ju61ewOh3Rv6vTRRo+oAACAASURBVN4Tchz+Yko/cTOtT/2GtmfvxLA58MxcQf7qf8Jw9A2r4ejYLLwhIiIiqaGQMwjLsmiKxgjFTaKWhdMw8NhtFDkdaf8rebKF4+GUXv/wnw7T/lY7vqU+4p1x2l7qO/ch7315xENx9t+yn3hnnKILimjf2HcDSVeJq1846o53D68QwwBvMe1PHyD4qh0o6X0pnLubiO/QkC8V+FicrHds2LqsQYetuWw2im2DT4PrME0qXa4+ny+v3U62zcA92GfOMLD7/ZR++9tDqj/VonEz5feY9MkfDLmtq3gapR//j0HbRWKpr1tERERSRyHnPZojMV5oa2dTe4i3gl1sbO+ic4AHtRy7jSW+bJb5s6nyeTgtz0eha2J/O6MDLK+bTKEDIQDa326n/e32fq/nvS+PeEecaEuijvr76/u3eX9ev5ATiQ9/X5PQ1iaC6/r3pLROWQ+mDWxDe8i1vBD4hxgFvx76sLXBrMzO5sn2du5ubeEsr5du0+KPba10mCZX5vffzLJvQRZlN/5n2ldU6+G0T8y1TVyOiVm3iIiIJEzsp/IksSyLN4Jd/K6miYcbWolZ4DAgdpzRSp1xk5faOtgQ6Ohtf2lJPp+pKGK5P3tC9vI4B9goMZlmXD9j0DauYheL7lw0rOu67K5htY93Rmn9y65+x2POdtonbRhywOkRXmoRXBPD/0hyfp2+VVJKazzOTQ0N3NTQAEC+3c7/TpnKUo/nuOcWf+Ur+M4+Oyl1JIPHNTabyiab2zkx6xYREZGEEz7kPNEY4Af76tjeGcZuQPxIsDlewHm32LvaP9jQygP1rczPcfPNGWWcV3T8DS7HG7d94EUAxrss+/AmiLc9sgcz1H+Vta6Cd8A2srkYjWfEuOPZFnZs6R505TTTsngymOjJ+t7hw/yooYF5bjffKC5hntuN22ZjusvFJIeDD3i9dJomf2hp5dqaQ9w1dRrTXAOHusJ//mcK//n/jaj+VCnMcZHjsqd88YFk8mY5KMwZXnAWERGR8eWEHZPREo3xha3V/OOWfezsTMxFiY9yK4+e83d0hvn05n18YWs1LdGx2VgzGdq2x3HGJ9aKUjnOHArcgwzhepfQ1mZCGxuP7u75Lt3+ajBH9hf8QDDObze0sNvRzbys44fF7xyu43etiU0pL/b7+WJREWUOBy3xRBD4Sm0NddEoN5WVc57Pz0dy87hz6lSilsWtTY19L3akx7D4q1+l5KtfGXc9iIZhsLhiYoX9xRW54+77KCIiIsNzQoactY1tvP/Vd3ikITHxPdlTjHuu90hDG6e9+g5rG8f/5oLhjijP3L2Doo4pAwaA8WpB4YIhP5BalkXgyWo4RvNQ7h4wRtbjUFDg4M/3T+XuB6fyz59PzIcZaB2CtcEgDwWDfKUosU/LydnZXJlfwE1l5bwvJ4eDkQgvdHZylrfvCmp5djvLs7N5KxQ6+n5sYM/NZfJ//5KicdaD825LpubhOMZmr+ONw2awZEr/3jcRERGZWE6o4WqWZfHz/Q3cvK8OG8kPN+8VB9qicT6zpZpvzSjjmqkl4/YvxM/dt5PuUJTSjmnU+/ZiGqP/7sTDcZrWNhHaEyK0L0S8M07FP1WQf/qxJ8VbMYvd391Nd203kz4+iaILio7Z1mE4WFy0eMj1RA60E6sfeIlsC4uwf/8xA9BgXC6DgoLEr1P37MSx6DQLWsEyjq689vvWFha73azMyYYmiFh9E2Xzkd6c+ABJM2ZZxCyr93rhkw2qbv3ruFlk4FgWV+QSMydGco6Z1oTreRIREZH+TpieHMuyuGlvHTfvqwNSH3B69Nznpr113Ly3Dssafw97e99uZNdr9VgmFHVOwRzmxPtjibfHaXy4ke66btxThjbfp/nvzUSbh7bKW8yKsaBwwZDr6Xi59pif+LirHcuR3CW0u043aflclFhZ4mfebsXYHA6z2O3mntZE794N9fWcu3cPa4NBAKY6ndiAJ4LtfT4rh6NR3gh1Md/tJlZm0fz5KK3/2I2ZM/7nurxvZtGE6slZNfM4ey6JiIjIhHDC9OT8fH8DvzjQkN4aDjTgddi5dlppWut4N8uyePWRvYkeDAsqArMxTBtWEoKOI8/B3J/NxZnnJLQvxJ4b9hy3fSwYo+HhBoouLKLhwcF/Vg7DwcpJK4dUS7wzSmhT0zHTrWUb5l47QxReYhGuiuGsNjj4YARrJ/xfINDbT7PI7aYxFuO6ulrsBpzr8/OR3FweCAT4zKGDfNDnpStucW9bK92WxceuzqXx3Fhvj1N8uHsEpUFBjosPVZXx6KY64uO4R8duM7h4STkFWnRARERkwjshenLWNrb19uCk201763iiMZDuMnrV7wvSUtvZOw/HE/Myq3kZhjn6j4bNacOZN/RlqQ/ff5issizy3jf4nAi7Yef86eeT7x7aUK3uPW1wnAdsa4Srqg2JAdHpFo0fTCxCEbYsuo/00mwJh6mPJY7f0dwMwHdLJ/Gt8hICjjg/a2nk9vYmJs138MMfl7HgPHefIXWWNfw9gtLhylWV4zrgAMRNiytXTUt3GSIiIpIEGd+T0xKN8dUdB3s6KtLOBnxlxwFW5s2nwJn+b//mZw5h2Aysdz2ALjx8OruK3xjTOrr2dtH2Qhszvj34XjoAcSvOFfOuGPL1IzUdYDOOGXSMEa6qNhyurERwnFTm4O67pyYOWmDrgB/9rIG/P99B7fe7sXkMVnu9rDa8g17TMCZGr8PyqXnMm+RjR30743DEJoYBc0t9LNOiAyIiIhkh43tyvr3zEMHoQNO4R84MddFx5220fuNqGi75APWrlxF64pEB23Y9eC9N//gR6s9bSePl5xL41S20BTv4zs5DSaxoZEIdEXa/3tAn4ACUdlRS0Fk28PJgKWBZFnV315F7Si7Zs7IHbW9gMCd/DlVFVUO+R+RA+3F7cgwz9UtnFxYmglR+3rsClQGmD3In2YnFoSPbwvQx5AUQ7MPcIyhdDMPgunPnjsuAA2BZcN25c8ftwiAiIiIyPCkNObfddhtVVVX4/X78fj+rVq1i7dq1qbxlH080BniwoY1kD0SyAm10/uHXxPbvxTFzzjHbtf/6Vtp/8UMclTPxXf11ss44m64H76Ple9fxfw1trGtK77C1Q9tbMQd48DcwWHnwIjDG5om07YU2wofClF4+tLlKFhZfWvqlYS0dHa3pOG4be8SHEUvtZqhFRQ4KCuw0NfffO6m5OY7LZZCdPfSHbLvdi9M5cSbJn7OglDVLyrGPsyBhN+CSpeWcs2D8zJUTERGR0UlpyJk8eTI/+MEPeOONN3j99ddZvXo1l1xyCVu3bk3lbYHEg+0PjiwVnWy2giKKHvgbxfeuxfe5Lw/YJt7cSNf9d+M+5yLyvv9jstdcjv+ab+D74nVEXn+ZyEvP8oM0r7bWeKAd2zFWvapsXcysxuUYVmo7++KhOPX311N0QRGuwsGHXtkMGxdOv5Czpp415HuYnVGsyPGjroGBOzgt5WMazzwzh8aGOG+8fnQp60AgzksvdbJ0mfuYP4+B+HyLJlzPww1rFuL3OBgvZRsG+D1Ovn/xwnSXIiIiIkmU0ifYiy++mAsvvJDZs2czZ84cbrzxRrxeL6+88koqbwvAG8EutneGU7JUtOFyYS849v4tANGtmyAew33WeX2Ou1cnvg49vY53OsO8GRx435axUF8dHLAnp8dp1R8lK+ZJ6bC1prVNWHGL3JW5RBojRBojRFsTS0jHO+NEGiOYscRP0bAM/C4/16+8flj3sCJD+xR4AjPBGvncnIceCnD33a088UQ7AC+/0sndd7dy992tdHQkavjEJ/IoLLRzww31/P73LTzwQBv/cm0t8Rj80z8VDPlehuEg179kxLWmS36Oix9cVjVuhq1ZFvzwsirytaKaiIhIRhmzme/xeJz777+fzs5OVq1aNWCb7u5uuruPLokbPLJ3yEj8rqYJuwHxND1MWdHEqldGVt8hUD1fR3e+g91I1HlSbs7Y12dZNO5vP24bdyyHD+y5gnXzfpuyOqLNUeKdcXZ/e3e/1xofa6TxsUZm3jATzzQPlmFxw6obyHMPb3K4FR9ayMkKVsIoVlm7/88B6uuPDkV74fkuXng+EWI/+EEvXq+N/AIHP/1ZOb++vZm//CVAPAYLFmTxzeuLmTlz6PNrLCuGz79oxLWm03kLJ/H18+by43U70l0KXz9vLucunJTuMkRERCTJUh5yNm/ezKpVqwiHw3i9Xh588EEWLBh4A8ebb76ZG264YdT3bI7EeLihNW0BB8AxpRKAyJa3cS1b0Xs8svktAMymBuIWPNTQyg2zKih0je1Ka6H2KNHuwR/op7dWsfLARWyY+nhK6ig8pxD/cn+fY7H2GLV31pJ3Wh7+ZX5cxYm/sq/c/yFOzT9t2Pcw7EPrsMxumQ+mfcRB54/3TB1Su/JyJ9+/YXQP1obhID/v1FFdI52+eOZMOrtj/OqZ4++dlOoavnjmzLTdX0RERFIn5U/Wc+fO5e233yYQCPDAAw/w6U9/mmeffXbAoHP99dfz1a9+tffrYDDIlClThn3PF9raiaV5OIxzznyc8xfTde+d2ItKcC1bQWz/XoI/uwkcDqwjPVYxC15s62BNydguXRsbZI7Kuy2rOYeorZu3Jv992Pdp/nsz8a44sbZED0f72+29w9EKP1iIp9KDp9LT55xIY6IXzF3hxn9SIgAtO/RBltV+kFh0+AHEcA0t5DiiPnyHV9I+6VVIwmaoqWIYdkpLPoTLNfThbeONYRh8/by55GQ5+PG6HRgGYzKErec+/3r+XL545qzU31BERETSIuUhx+VyMWtW4mHipJNO4rXXXuPWW2/l9ttv79c2KyuLrKzRL4m7qT2EwyDtQSf3+7cQ+I9vEPzx9xMHbHayL/8UkY1vED9YDYDDgE3tXWMecsxhdHMlVlv7EM64mw3THkvM0RniymtNa5uINkd7vw6+EST4RmIYYt6qPOzZx5kDc+QWp+z/EMtqz0nUPYIfqi3HieGyD7r4AED+wbNpL3952PcYS5YVZ/LkT6W7jFEzDIOrz5rF7BIv3/jLJoKhaEp7X+1HFhn44WVVGqImIiKS4cZ8N0rTNPvMu0mFN4NdaQ84APbiEgp+/jtih/ZjtjRjnzwVe0ERjZefg31yYmf1mAVvpWHxAZt9eIsJGBgsrz2H/NAknp35J7odXVhDCDpz/2vusGtzFbtY/LvFZMWy+cD2TzC9dfHRuh3DXwTBMAycFV4i+wZfstsdmImrfTIRb82YLaE9PAbenLn4/UvTXUjSnLtwEisqC/jeI1t5ZGNt0nt1eq73oSXl3LBmIXnZWmRAREQk06U05Fx//fVccMEFTJ06lfb2du655x6eeeYZ1q1bl7J7WpbFpvb0rVg2EMfkadATaqr3YDY34T5vTe/rG9u7sCxrTJcDdrhGtorY9NbFlL09gxcqH2B38ZvD6tUZkiPXm9m0nNOqL8Md67sog8M5srpdU31E9gePuyEoJMJc8e7LqFl264juk3oWM2Z8ZcItHT2Y/BwXP//EMj5UVcZP/raT7YfbsdsM4oP8vI6n5/y5pT6uO3eu9sERERE5gaQ05DQ0NHDVVVdRV1dHbm4uVVVVrFu3jnPOOSdl92yKxugc4mpaY80yTdp/fSu43WRf/NHe4x1xk6ZojGKXc8xq8ficOLPsQ1p84L3csRw+uPvTzGxezmtTHqclpw7DtGGNYh5Lz/kFXZNYefAiKt/Ve9PD6bbj8Y3se+Sq8A4acHp4G5fhqzuV9tIN42xujp3S0osoLv5gugtJmXMXTuKcBaW8dbCNu17ez6Mba4mZFg6bQWwIP7+edg6bwZol5Vy5ahpLp+RlXCgUERGR40tpyPntb1O39PCxhMYo4HQ9eC9mRztmcyMA3S8/S7yxHoDsD1+Bzesj+MsfQSSCY+YciMcIr3+C6PYt+L/x79hLy/pcLzyKv1iPhGEYFE/zUbuzbcTXmN66mMrWRTR497Nl0vPsLnwTy2ZiM22YhgnHe660wLBsR9rbmdW0jIX1p1PSMQ3jGCeWTPWN+GE1a2Ye2IwhB53S7Z+is3ALprNznAxbM3A6/cyd8910F5JyhmGwfGo+y6fm828fWsDLe5rZVNPGpoMBNtW00TlAMM/JslNVkceSKXksrshl1cxCCrT3jYiIyAlrzOfkpFp0jHYZ7PzzHzDr63q/7n7+KbqffwoAzzkXgdeHc9Y8uv7yR8J//yvYbDjnLST/ltv7LCndI2KOfY9BaaWfw7sDx90QdDAGBqUdlZTuruR91R+m1r+LRu9BGrz7afQeJGrvP//KGc+iuGMKJR3TKO6YQnlwNp6Y97j3sdkMSqf7j9vmeOw5TjxVRYQ2NTKUHWLtUS+Ttn6G2mW/GPE9k8ti/rybcTrz013ImCrIcXFRVRkXVSX+KGBZFs2dEcLROJGYicthw+20U5jjUm+NiIiI9Mq4kOMcowed4j/9ddA2nvPX4Dl/zaDtAFy2oS1znEzFU32jCjjv5Yl5mdmyjJktywCwsAg7OojZosRtMeymA4fpxB3zHrO35lhM06J46shDDoB3VTmhtxuH3N7XeBJFuy6jafZfRnXfZJg542sUF6dumOdEYRgGRd7Rr8AoIiIimS3jQo5niBs/jjdu29j/FXryvHxsNiOpQefdDAw8MV9SrmWzGVTMHd0y266pPhyTsonVd/UuTz2Ygn0fwrR30zLjsVHdezSmTfsC06Z9Pm33FxEREZloJmYiOI4ip4OcCRZ0vHYbRc6xz5ser4tZJ5dgpCFgDYdhM5h1cgke7+jmWBiGQe65lUMOOJAIakW7L6No15GFIqyx+l4l7jNzxteZNfNrGoolIiIiMgwTKw0MgWEYVPmy013GsCzxZaftIXbxmZOxxnjRg+GyTIvFZ05OyrU8CwrxLCk+/qII72FgULjvQ5S/dS22aA5Yqf61seN05lG1+H+orFQPjoiIiMhwZVzIAVjuz2YEe0amhcOAZf70hbLS6X4KK3KG9dA/pgworMgZ1aID75W3ZiY2j2PY79nXuJwZL/4A3+GViQNJ79VJXK+09CJWnfp3zcERERERGaGMDDlVPg+x8d050StmkdaeJ8MwOGXNjGEN4RpTFpyyZkZSe7rsOU7yL5s9ovdsj3op3/x5yt+6FldHReKgOcpfoyPn5+TMoWrx7Sxa+FOcztHNPxIRERE5kWXcwgMAp+X5cBhMiKDjMOD9ecdfPjnVpi8pZvaKUna/UY81jva+NGww66RSpi8pTvq1PQuL8J83jeC6/SM639e4HG/jMsK5e2idsp72SRvAFgfTDkZ80D2CsOy97QttZzP9pM/h9y/R3BsRERGRJMjIkFPocnBJST4PNbQSH8dBx27ApSX5FLrS/2M44+NzOLithXBXdHz06hiQ5XFyxsfnpOwWvjOnYHWbtD9zcETnGxh4ArPwBGYR2/FJQgXvEPZXE/LvJZxbjeUI9z8n5sYdqMQTnIE7WEnx/A9SeF6Vwo2IiIhIEqX/6TpFPlNRxF/qW9NdxnHFrUSd44Hb6+SsK+ex9n82p7uUBAvOunIebq8zZbcwDAP/edMwsuwE11Unel9GGPAcUR+++pX46hPzdSws4q52LFsEyxbDMB0Ypgt7xJcINBb4z6/Ef+aUpL0fEREREUnIyDk5ACf5s5mf4x63b9AGLMhxszyNiw6814ylxZxyyYx0lwHAqZfOYMbS5A9Tey/DMPCfNYXCKxeMaDGCY14XA0fEjzNchKtrEs5wEY6IH8MwsHkcFF65QAFHREREJEXGawYYNcMw+OaMMsbRFJM+TOAbM8rG3TClk86fxvLzp6W1huXnT2P5eWNbg2dhIaXXnYyn6kiwSs3CaXiWFDPpayfjWViY5BuIiIiISI+MDTkA5xXl8uGSPOzpLuQ97MBHSvI4ryg33aX0YxgGp14yg1MvPdKjM7Z7X3LqpTNYdenMtIQ/e46Twk/Mo/DKBThKj/SwjXaj1CPnO0qzKbxqAYVXzMOWnboheCIiIiKSwXNyetw4ZzLPtLYTiMbHRa+ODch12vnPOcnZ3DIVDMPgpPMryZ+Uw9N3bac7FE3pqmuGLbHIwFlXzhuTIWqD8SwsxL2ggMjBdjperiW0sQlMKxFYhrJxak87m4FnSTHeVWW4pvjGXa+diIiISKYyLMsaD2tpDSgYDJKbm0sgEMDvH/lmkGsb2/jMlurkFTZKdy6azvnF468XZyDhjijP3beTXa/Vj2pi/oCOXG/2ilLOuGIO7pzx2cMR74zSvaeNSE0H0YPtRGo6sLrj/doZWXZcFV5cU3w4K7xkzczDPk7fk4iIiMhEM5xscEKEHIBbq+u5eV9dkiobuW/NKOPaaaXpLmPY9r7dyIZH99Jc04lhM7CG0qNxDD3nF1bkcMqaGSnZByeVLMvC7IxiRU2smInhsGE4bdhynOqtEREREUmR4WSDjB+u1uPaaSV0xuP8/EBD+mqYWsI1U0vSdv/RmLG0mOlLiqjfF2TzM4fY/XoDpmlhsxuYQ9iMyGYzetvPPrmURWdWUFrpn5ChwDAM7F5XussQERERkWM4YUKOYRhcP6MMr8POTXvrsMGYzNHpuc+3Z5RxzQTswXk3wzCYNCOXSTNyOe1js6nZ0UbD/iAN1UEa9rcTHWAIlzPLTsk0H6XT/RRP9VMxNw+PAoKIiIiIpNAJM1zt3Z5oDPCVHQcIRuP0fyxPHjuJRQZ+MnfqhJmDM1KWZRFqjxKLxjFjFjaHgcNpx+PTEC4RERERGT0NVxvE+cW5rMybz7d3HuLBhrak9+r0XO+SkjxunDOZfGfmf5sNwyDbrx4aEREREUm/jN4n53gKnA5uW1jJnYumMzfHDYB9lB0OPefPzXHz+8XT+dXCyhMi4IiIiIiIjCcn/BP4+cW5nFfk581gF7+raeKhhlZiFjgMiA1hIF9PO6dhcGlJHp+pKGKZP1tDtERERERE0uSEDzlwZPPL3BxOys3hhlkVvNjWwcb2Lt4OdvF2exed8f6D2XLsNpb6slnmz6bKl83787wUuvTtFBERERFJNz2Vv0ehy8GakjzWlOQBiQn1TdEYYdMiYpq4bDbcNoMip0O9NSIiIiIi45BCziAMw6DYpV3rRUREREQmihN24QEREREREclMCjkiIiIiIpJRFHJERERERCSjKOSIiIiIiEhGUcgREREREZGMopAjIiIiIiIZRSFHREREREQyikKOiIiIiIhkFIUcERERERHJKAo5IiIiIiKSURRyREREREQkoyjkiIiIiIhIRlHIERERERGRjKKQIyIiIiIiGUUhR0REREREMopCjoiIiIiIZBSFHBERERERySgKOSIiIiIiklEUckREREREJKMo5IiIiIiISEZRyBERERERkYyikCMiIiIiIhlFIUdERERERDKKQo6IiIiIiGQUhRwREREREckoCjkiIiIiIpJRFHJERERERCSjKOSIiIiIiEhGUcgREREREZGMopAjIiIiIiIZRSFHREREREQyikKOiIiIiIhkFIUcERERERHJKAo5IiIiIiKSURRyREREREQkoyjkiIiIiIhIRlHIERERERGRjKKQIyIiIiIiGUUhR0REREREMopCjoiIiIiIZBSFHBERERERySgKOSIiIiIiklEUckREREREJKMo5IiIiIiISEZRyBERERERkYyikCMiIiIiIhlFIUdERERERDKKQo6IiIiIiGQUhRwREREREckoCjkiIiIiIpJRFHJERERERCSjKOSIiIiIiEhGUcgREREREZGMopAjIiIiIiIZRSFHREREREQyikKOiIiIiIhkFIUcERERERHJKAo5IiIiIiKSURRyREREREQkoyjkiIiIiIhIRlHIERERERGRjKKQIyIiIiIiGUUhR0REREREMopCjoiIiIiIZBSFHBERERERySgKOSIiIiIiklEUckREREREJKMo5IiIiIiISEZRyBERERERkYyikCMiIiIiIhlFIUdERERERDKKQo6IiIiIiGQUhRwREREREckoCjkiIiIiIpJRFHJERERERCSjKOSIiIiIiEhGUcgREREREZGMopAjIiIiIiIZRSFHREREREQyikKOiIiIiIhkFIUcERERERHJKAo5IiIiIiKSURRyREREREQkoyjkiIiIiIhIRlHIERERERGRjKKQIyIiIiIiGUUhR0REREREMopCjoiIiIiIZBSFHBERERERySgKOSIiIiIiklEUckREREREJKMo5IiIiIiISEZRyBERERERkYyikCMiIiIiIhlFIUdERERERDKKQo6IiIiIiGQUhRwREREREckoCjkiIiIiIpJRFHJERERERCSjKOSIiIiIiEhGSWnIufnmm1mxYgU+n4+SkhIuvfRSduzYkcpbioiIiIjICS6lIefZZ5/l6quv5pVXXuFvf/sb0WiUc889l87OzlTeVkRERERETmCGZVnWWN2ssbGRkpISnn32Wc4444xB2weDQXJzcwkEAvj9/jGoUERERERExqPhZAPHGNUEQCAQ+P/Zu/P4KMt7///ve2YyWSZ7CGGVTQUJEHBD7SZgFdDa9vTUWnv6Pe1ptceqFfG031o9tbZafz3urZ7Tqt1Oz9fldFFRRK2gdamCoIEQQJDVsCQh2ySTZNbr98cQFMOShLnnntx5PR8PHnHu3Pd1fdCA855rkySVlpYe9vvhcFjhcPjg62AwmJa6AAAAALhH2jYeSCQSWrRokT72sY9p2rRph73n9ttvV1FR0cFfY8eOTVd5AAAAAFwibdPVrrzySi1btkyvvfaaxowZc9h7DjeSM3bsWKarAQAAAENcxk1Xu/rqq/XMM8/olVdeOWLAkaTs7GxlZ2enoyQAAAAALmVryDHG6JprrtETTzyhl19+WRMmTLCzOwAAAACwN+RcddVVeuSRR/TUU0+poKBA2C+rIAAAIABJREFU+/btkyQVFRUpNzfXzq4BAAAADFG2rsmxLOuw13/729/qa1/72jGfZwtpAEOdMUbx5mYlurplohFZWX55cnPkLS094t+xAAC4UcasyUnjETwA4AqxlhZ1vvmmumtr1bWuRt2165UIdfa6zxPIU07lNOXOmK6cykrlnXWWfCUlDlQMAEDmSes5OQCA3owx6qquVssjjyq4bJkUi0k+X/LrESRCnepctUqdb7998P7ChQtVetmXlVNVxSgPAGBII+QAgIPaly9X4733Kbxli+T1SvF48htHCTiH6LkvFlNw6VIFlyxR9sknq3zRtSqYO9eeogEAyHBpOwwUAPCBWEuLdl//b6q76mqF33svebEn4AzUgefDW7ao7ttXaff1/6ZYS8txVgoAwOBDyAGANGt/8UVtW7BQweeeS15I9frFA+0Fly3TtgUL1f7ii6ltHwCADEfIAYA0McZo/y9/pbqrr1G8re34R26OJZFQvK1NdVdfo/2/epDNYAAAQwYhBwDSwBijxrvvUeO99/ZcSFfHkqTGe+5R4z33EnQAAEMCIQcA0qDpVw+q6aGHnK3hwQfV9KCzNQAAkA6EHACwWfuLL34wguOwxnvuUfvy5U6XAQCArQg5AGCjWEuL9t7071KmnFtjWdp7403sugYAcDXOyQEAG9Xfepvi7e0pXYMTSiT0m+Ym1XR1a113l4KJhG4bMUKfLyo+5L4/trbq6WCbtkciCiYSGu7z6YzcPF0VjSpw220afeedKasJAIBMQsgBAJu0L1+u4NKlKW+3NR7TfzU1aaTPpynZOVrV1XnY+zaGuzUmK0tz8vNV6PVqdzSqP7a26m+hDj3x5JMqXLiQA0MBAK5EyAEAGxhj1Hjvfclpaine0azc69PfJp2ocp9P67u7dMnOnYe974cVI3pdm5dfoC/u3KGngkGNvfc+5c+ZIytTptIBAJAirMkBABt0VVcrvGWLLVtF+z0elfsG9hnV6KwsSVJ7PK7w5s3qXrs2laUBAJARCDkAYIOWRx6VvF6ny5AktcbjaorFtL67Szfu3StJOisvIHm9an7kUYerAwAg9ZiuBgApFmtpUXDZMiked7oUSdK5W99T5MCIUrHXqx8MH65zAgEpHlfw2WdVccP35SspcbhKAABSh5ADACnW+eabUizmdBkH/WrMGIUTRtsiET0dbFNX4kNT6GIxda5cqcL5850rEACAFCPkAECKddfWSj5fxgSd2XkBSdInJc3Nz9dnd2xXnsejr5SUSD6fumtrCTkAAFdhTQ4ApFjXunUZE3A+6gS/X6dk5+iZYFvyQiyWrBcAABdhJAcAUsgYkxzJyWDdJnFwjY4kda+vlTGGraQBAK7BSA4ApFC8uVmJ0OEP50ynmDFqO8zGB+u6urQlHNa0nJyD1xKhkOLNzeksDwAAWzGSAwAplOjqTks//6+lRe2JuBoOTIt7uaND9Qf++SvFJTKS5m59TwsKC3WiP1u5HktbwmE90damfI9H/1o27JD2THd66gYAIB0IOQCQQiYaSUs/v21u0p4Prfv5a0eH/trRIUn6TGGhyn1Z+sfiYq3q7NQL7e3qTiQ03OfTwsJC/WtZmUZn+Q9pLxFJT90AAKQDIQcAUsj6SHiwy4uTTjzmPTcMr+hzex5/euoGACAdWJMDACnkyc059k0ZyMoZnHUDAHA4hBwASCFvaak8gTyny+gXTyAgb2mp02UAAJAyhBwASCHLspRTWel0Gf2SM62S7aMBAK5CyAGAFMudMUPyDZIljz5fsl4AAFyEkAMAKZZTWSl9aOezjBaLDbqRJwAAjoWQAwAplnfWWYNqJCdv9mynqwAAIKUIOQCQYr6SEhUuWCB5vU6XcnRerwoXLpSvpMTpSgAASClCDgDYoOSyL0vxuNNlHF08rtLLvux0FQAApBwhBwBskDtzprJPPlnK1F3LLEvZkycrp6rK6UoAAEg5Qg4A2MCyLJUvulYyxulSDs8YlV/7HbaOBgC4EiEHAGxSMHeuCi+8MPPW5ng8KrzoQhXMnet0JQAA2IKQAwA2qrjpRnkLCjJn2pplyVtYqIobb3S6EgAAbEPIAQAb+UpKNPLWn2TOtDVjNPK2W9lRDQDgaoQcALBZwXnnqXzRIqfLkCSVX3edCubNc7oMAABsRcgBgDQo+9YVKrviCmdruOIKlV1xuaM1AACQDoPkSG4AGNwsy1L5dYvkCQTUeM89yTU66ZjCdqCf8sWLNYyAAwAYIhjJAYA0sSxLw751hcY8cL+8RUWSx+a/gj0eeYuKNOaB+wk4AIAhhZADAGlWMG+eJi57VoULFiQvpHrntQPtFS5coEnPLWMNDgBgyCHkAIADfCUlGn3XnRrzwP3KPumk5MXjPU/nwPPZJ52kMf/5gEbfeae8xcXHWSkAAIMPa3IAwEEF8+Ypf+5cda9dq+ZHHlXw2WelWEzy+ZJfj6XnPp9PhRcuVOlllylnxgxZmXIuDwAADrCMyZTDG3oLBoMqKipSW1ubCgsLnS4HAGwXa2lR58qV6l6/Xl01NepeX6tEKNTrPk8goJxplcqdMUM5lZXKmz2bs28AAK7Wn2xAyAGADGaMUby5Waa7W4lIRB6/X1ZOjrylpYzWAACGlP5kA6arAUAGsyxLvrIyp8sAAGBQYeMBAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKj6nCwAAAKlhjFFzd7O6492KxqPK8mYpx5uj0pxSWZbldHkAkDaEHAAABqmW7hat3LdSG5o2qKaxRhuaNqgz1tnrvjxfnqaWTdX08umaWjZVs0fMVklOiQMVA0B6EHIAABhEjDFa27hWj737mJ7f/rxiJiaf5VPMxI74TGesU6vrV6u6ofrg/fMnzNelUy7VjGEzGOUB4DqWMcY4XcSRBINBFRUVqa2tTYWFhU6XAwCAo1bsWqH737lfW1q3yGt5FTfxAbfV8/xJxSfpmlnXaM4Jc1JYKQCkXn+yASEHAIAM19rdqp+u/KmW7VgmS5aMUve/7p72FoxfoB/M/oGKc4pT1jYApFJ/sgG7qwEAkMGW71quzzz5Gb2w8wVJSmnA+XB7z+98Xp958jNavmt5StsHACcQcgAAyEDGGD207iEtemmR2sJtxzU1rS8SJqG2cJsWvbRID9c8rAye6AEAx0TIAQAgwxhjdN/b9+nn7/w8+TrFozdH7PdAPz19E3QADFaEHAAAMszDNQ/r1+t/PeRrAICBIuQAAJBBlu9afnAEx2n3vX2fVuxa4XQZANBvhBwAADJEa3erfvT3H8lSZpxbY8nSzX+/Wa3drU6XAgD9wmGgAABkiJ+u/KnaI+0pXYMT745r/7L96trapa7tXYqH4hr9jdEq+UTJwXtMwqj19VYF1wTVtatL8Y64/OV+Fc0ukllgdPuq2/WzT/4sZTUBgN0YyQEAIAOs2LVCy3YsS/kuavH2uBqfalR4b1g5Y3MOe08iktDuX+9WrD2m0nNLNfKykcqdmKuGJxq0/a7tWrptqV7a9VJK6wIAOzGSAwCAw4wxuv+d+1N+0Kck+Yp9mnzvZGUVZ6lre5e23rK11z2Wz9LEGycq76S8g9dKzy2Vf5hfDU80qHNDp35R8gudO/ZcWVZmTKUDgKNhJAcAAIetbVyrLa1bbNkq2pPlUVZx1tHv8XkOCTg9Ck9NnijevadbW1q3aN3+dSmvDwDsQMgBAMBhj737mLyW1+kyeom1xSRJ3gKvvJZXj216zOGKAKBvCDkAADiopbtFz29/PuVrcVKhcVmjPLkeFUwvUNzE9dz259TS3eJ0WQBwTIQcAAActHLfSsVMzOkyeml4ukGh2pAqvlghbyA5yhQzMa3at8rhygYpY6SORqllp7T/veTXjsbkdQApx8YDAAA4aEPTBvksX0YFnbaVbWr4S4NKPlmisrllB6/7LJ82NG3QBeMvcLC6QSLUJG3/m7S3Wtq9RtpTLUU6et/nz5dGzZRGnyaNnClN+JQUKOt9H4B+IeQAAOCgmsaajAo4Hes7VPdQnQpmFGjUP4865HsxE1PN/hqHKhsEjJHq3pJWPSTV/kVKxCSPL/n1SCId0o7XpF1vfnD/tC9IZ1wujTldYjc7YEAIOQAAOMQYow1NG5wu46DOrZ3a9Ytdyh2fq7FXjZXl7f0Ge0PTBhlj2Er6ozYtlVbcKjVskDxeKXFgjdXRAs6H9dyXiEnr/yyte1waXinNvUmastCemgEXY00OAAAOae5uVmes0+kyJCW3id55z05lDcvSuOvGyeM//FuEUDSk5u7mNFeXwTqbpT99Q3rsMqlxU/Ja4jg3kegJPI0bpce+nGy/k3/nQH8wkgMAgEO6491p6afpxSbFO+OKtSbfPLdXtyvaEpUklZ1XJlnSzjt3Kh6Ka9iCYWpf237I8/7hfuWd+ME5OuF4OC11Z7yNz0hLrpG625KvTSK17fe0V/uEtHWFdPEvpFMuSm0fgEsRcgAAcEg0Hk1LP/uX7Ve06YO+gmuCCq4JSpKKzy5O1tKc/H79H+t7PV/8seJDQk4kHrGz3MxnjPTqXdKKnyg5KSbF4aZXf3Gpq1V6/CvSvB9KH1/MWh3gGAg5AAA4JMublZZ+Jt81+Zj3TPvdtD635/f6j6ecwc0Yafkt0mv3HLhgc8A56EA/y38shTuSYYegAxwRa3IAAHBIjjfH6RIGJNub7XQJznn1rg8FHIe8dnfyF4AjIuQAAOCQ0pxS5fnyjn1jBglkBVSaU+p0Gc7Y+MyBKWoZYPmPkzu6ATgspqsBAOAQy7I0tWyqVtevdrqUPptaNnVobh/d2ZzcZECWJJOSJjsiRne8HtbK3XGt2h1XS7f028/m6GszD50OuGp3XL+rjmjl7rjW1ScUS0jm5mLpqaulE86W8oZo6ASOgpEcAAAcNL18unzW4PjM0Wf5NH3YdKfLcMaz3z2wi1pqAo4k7e80+vErEW3cn1DVCO+Ru94S1cNvR2VJmljS89Ytkaxn2fdSVg/gJoQcAAAcNLVsqmKmjwdGOixmYppaNtXpMtJv01Jp/Z+Su5yl0Mh8S3uvz9fORQW649NHXp915el+tX2/QKuvyNenJ34oDJm4VPNHadOzKa0LcANCDgAADpo9YvagGsk5c8SZTpeRXsZIK26VrNS/Zcr2WRqRf+x2K/I9ys06whRBy5Osz6RuhAlwA0IOAAAOKskp0QUTLpDXOvJ0pUzgtbyaP2G+SnJKnC4lverekho2pP6gz1QxCamhVqobPOu6gHQg5AAA4LBLJ1+qeIqnQqVa3MR16ZRLnS4j/VY9JHkyO4DK45PeesjpKoCMQsgBAMBhVeVVOqn4JFnKzF3LLFk6ueRkzRg2w+lS0ivUJNX+RUpkdgBVIiat/3OyXgCSCDkAADjOsixdM+samRTu3JVKRkZXz7x66G0dvf1vyQAxGCRi0o5XnK4CyBiEHAAAMsCcE+ZowfgFGbc2x2N5tHDCQs05YY7TpaTf3urkVLDBwOOT9lQ7XQWQMQg5AABkiB/M/oEK/AUZM23NkqVCf6FuOPMGp0txRt2awTWSs3uN01UAGYOQAwBAhijOKdaPzvlRxkxbMzK65ZxbVJxT7HQp6WdMciRnMNlTzVbSwAGDZAwWAIChYd4J8/SdWd/Rz9/5udOl6NpTr9XcE+Y6XYYzQvulSIft3dy/KqLWbqM97cktqp/eHFNdMBlUrjnTr6IcSztbE/rDuqgkafWe5H23vhKWJI0rsvTVKn+ysUh7su78ctvrBjIdIQcAgAzzzenfVGesUw/XPOxoDd+Y9g3H+ndctDMt3dz597B2tn0w+vKXjTH9ZWNyitw/zchSUY6l7a0J/ftL4UOe63n9qXHeD0KOJMW67C8aGARsDTmvvPKK7rjjDq1Zs0Z79+7VE088oc997nN2dgkAwKBnWZa+M+s7CmQFdN/b98mSlZYpbD39XHvqtfrm9G/a3l9Gi0fT0s2ORQXHvOfc8T6Zmwv71mAscpwVAe5g65qcUCikqqoqPfDAA3Z2AwCA61iWpW9O/6bum3OfirKL5LHsXUbrsTwqyi7SfXPuI+BIkjfL6QoGxuc/9j3AEGDrSM6CBQu0YMECO7sAAMDV5p4wV6cOP1U/XflTLduxLOWjOj3tzR8/Xz+Y/QMVZRelrO1BLSvP6QoGxpfrdAVARsioNTnhcFjh8AdzToPBoIPVAACQGYpzivUfn/oPzZ8wX/e/c7+2tG6R1/IqbuIDbrPn+ROLT9Q1s64ZmufgHE1gmOTPT8vmAynjL0jWDSCzQs7tt9+uW265xekyAADISHNPmKs5Y+do3f51emzTY3pu+3OKmZh8lk8xc+zzXHru83l8WjB+gS6dcqmmD5suy8qMc3kyimVJI2dKO19zupK+GzUzWTeAzAo5N9xwgxYvXnzwdTAY1NixYx2sCACAzGJZlqrKq1RVXqXvnfE9rdq3SrVNtVq/f71q99eqM9Z7V7A8X54qh1Vq+rDpmlo2VWeOOFMlOSUOVD/IjDlNev/NwXEgqMcnjT7N6SqAjJFRISc7O1vZ2dlOlwEAwKBQklOiC8ZfoAvGXyBJMsaoubtZ4XhYkXhEfq9f2d5sleaUMlozECNnDo6AIyXrHDXT6SqAjJFRIQcAAAycZVkqyy1zugz3mPCp5AjJYAg6Hp80/pNOVwFkDFv3o+zo6FB1dbWqq6slSdu3b1d1dbV27dplZ7cAAADHL1AmVf6D5PE6XcnReXzStC8k6wUgyeaQs3r1as2aNUuzZs2SJC1evFizZs3SD3/4Qzu7BQAASI0zL5cSA9/FLi0SMemMy52uAsgotk5XO/fcc2WM/Sc0AwAA2GLMGdLwSqlxo2QSTlfTm+WRhk+VxpzudCVARrH3+GQAAIDBzLKkuTdlZsCRknXNuZGto4GPIOQAAAAczZSF0rR/lKwMW5tjeaXpX0zWB+AQhBwAAIBjWXiHlFOkzHnr5EnWs+A/nC4EyEiZ8icVAAAgc+WVShf/QlKmTFtLSJ+9P1kXgF4IOQAAAH1xykXS3H93uoqkeT+UplzodBVAxiLkAAAA9NUnrpc+vtjZGj6+2PkagAxHyAEAAOgry0qOoszrOfMvXW+lDvQz72bpvJvZTQ04BkIOAABAf1hWckTn0kek3GL7d12zvMl+Ln1E+gQjOEBfEHIAAAAGYsqF0jVrpMrPJ19bKX5b1dPetH9I9sMaHKDPCDkAAAADlVcq/eOvk6Ms5ackr3l8x9dmz/Plp0iXPip94WF2UQP66Tj/FAIAAEBTLpQmL5TqVktvPSSt/7OUiCUDSyJ27Od77vNkSdO+IJ15uTT6NNbeAANEyAEAAEgFy5LGnpH8dcHt0o5XpD3vSLvfTn6NdPR+xp8vjZqVDDSjZkrjPykFytJfO+AyhBwAAIBUC5Ql1+r0rNcxRgrtl2JdUiwi+fySL1cKDGO0BrABIQcAAMBuliXllztdBTBksPEAAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFZ/TBQAAAMA5xhg1hSLqisQVjSeU5fUo1+9VWcAvy7KcLg8YEEIOAADAENIciujvW/erZneb1r7fqpq6NoUi8V73BfxeTR9TpKqxxZo+ukjnTBqm0oDfgYqB/iPkAAAAuJwxRm/vatUf3tihZ9btVSxh5PNYiiXMEZ8JReJ6c1uzVu9oOXj/Z6pG6atnj9OsscWM8iCjEXIAAABc7IXafbrrhc16t75dXo+l+IFgc7SA82GxD92/ZO0ePfHObk0ZUaDrz5+sT0+tsK1u4HgQcgAAAFyoJRTRzUtqtWTtHvUMusT7GGyOpOf5d+vbdfl/r9bFVaN0y8WVKmEaGzIMu6sBAAC4zPO1+zT3rpe1dN1eSZI5vmzTS097S9ft0dy7XtbztftS2wFwnAg5AAAALmGM0QMvvadv/WGNWruiiqc63XxE3EitXVF96w9r9MBL78nY3B/QV0xXAwAAcAFjjP7j+Xf1Xy9vPfA6Xf0mv97x/LsKhWP67gWT2ZQAjmMkBwAAwAX+8+WtBwOOkzX8p8M1ABIhBwAAYNB7vnaf7nj+XafLkJQc0XmBNTpwGCEHAABgEGsJRfT9P69TpkwQsyzp//55nVpCEadLwRDGmhwAAIBB7OYltQp2xZTKJTiJSJeCK/+i8N53Fdm7WYnuDpUtXKT86ef1uje6/301r3hI4boNsrw+5U46Q2beN/Wjp2t136WzUlgV0HeEHAAAgEHqhdp9WrJ2T8rbTXQF1fb3R+UtLFfW8AkK76o57H2x4H7te+T/ypMdUPEn/49MtFvBVX/RnsYdetJ/ty6aMYoDQ+EIQg4AAMAgZIzRXS9slmWlfic1b6BUY676g7z5JQrv3aJ9/33dYe9re/N/ZaJhVXztXvkKh0uS/CNPVsPjNym0frnueqFU550ynN3WkHasyQEAABiE3t7Vqnfr223ZKtryZcmbX3LM+zrf/btyJ51xMOBIUu74mfKVjlZo46vatK9d77zfmvoCgWMg5AAAAAxCf3hjh7we50ZIYu37lehslX/kib2+lz3yZEXqt8nrsfSHN3Y6UB2GOkIOAADAINMciuiZdXsVT6TpxM/DiHe0SEpObfsob6BEie52xSIRPb12j5rZaQ1pRsgBAAAYZP6+db9iDgYcSTKxsCTJ8mb1+p7l8x+8J5YwemNrU1prA9ISch544AGNHz9eOTk5mj17tlatWpWObgEAAFypZnebfA5OVZMky5ctSTLxaK/vmVjk4D0+j6Wa3W1prQ2wPeQ8/vjjWrx4sW6++Wa9/fbbqqqq0gUXXKCGhga7uwYAAHCltbtaHR/J6dmYIB5q7vW9eKhFnpwCWb4sxRJGa9l8AGlme8i5++67dfnll+vrX/+6pk6dql/+8pfKy8vTb37zm173hsNhBYPBQ34BAADgA8aYjBgZ8RUMkyevSJG97/X6XnjvZvkrJhx8XbO7TcaObeCAI7A15EQiEa1Zs0bnnffB6bgej0fnnXee3njjjV7333777SoqKjr4a+zYsXaWBwAAMOg0hSIKReJOlyFJyjv5HHVtfUuxYOPBa107qhVr3q28yR8/eK0jHFMTmw8gjWw9DHT//v2Kx+OqqDj0pNuKigpt2rSp1/033HCDFi9efPB1MBgk6AAAAHxIV5oCTnDN00qEQ4p3JKejdb23SrH2/ZKkwtM+I092QEVnX6LOd19X/aM/UMHpF8tEuhRc9RdllY9X/vRPH9JedzQzghmGBltDTn9lZ2crOzvb6TIAAAAyVjSeSEs/wVVPKB78YA115+a/S5v/LknKr5wjT3ZAvsJyVXz5drWseFitf/udLI9PuZPOUMncb8jyHbrrWiSWnroByeaQM2zYMHm9XtXX1x9yvb6+XiNGjLCzawAAAFfK8qbnBJAxV/ZeP304/vJxqvjST459n4+TS5A+tv60+f1+nXbaaVq+fPnBa4lEQsuXL9fZZ59tZ9cAAACulOv3Ol3CgORkDc66MTjZPl1t8eLF+ud//medfvrpOvPMM3XvvfcqFArp61//ut1dAwAAuE5ZwK+A35sxmw/0RX62T2UBv9NlYAixPeR86UtfUmNjo374wx9q3759mjlzpp577rlemxEAAADg2CzL0vTRRXpze+/zaTLV9NFFsixnDy/F0JKWjQeuvvpqXX311enoCgAAwPWqTig5YChjAAAgAElEQVTW6p0tjh8I2hc+j6WqscVOl4EhhhVgAAAAg8z00UWDIuBIUixhNH10kdNlYIgh5AAAAAwy50waJp9ncEz/8nksnT2pzOkyMMQQcgAAAAaZ0oBfF80YKW+GBx2vx9JnqkaplE0HkGaEHAAAgEHoq2ePVzzDp6zFE0ZfPXuc02VgCCLkAAAADEKnnlCsKSMKlKmbllmWNGVEgWax6QAcQMgBAAAYhCzL0vXnT5bJ0MEcY6Trz5/M1tFwBCEHAABgkPr01ApdXDVK3gwLEl5L+uzMUfr0VM5FhDMIOQAAAIPYLRdXqjDXlzHT1ixLKszN0o8+U+l0KRjCCDkAAACDWEnAr//vCzMyZtqaMdLPvjBDJeyoBgcRcgAAAAa5CypH6LsXTHa6DEnSdy+YrPMrRzhdBoY4Qg4AAIALfPvcSfr2uZOGfA2AJPmcLgAAAADHz7IsffeCyQpk+3TH8+/KspSWKWw9/Xxv/mR9+9wT7e8Q6ANGcgAAAFzCsixdNedEPfjV01ScmyWvzZsReC2pODdLD371NAIOMgohBwAAwGXOrxyhFdefqwtnjJKklO+81tPeRVWj9NK/ncsaHGQcpqsBAAC4UEnAr59/eZYumjFSd/91szbta5fXYymeGPgctp7nJ1cU6PrzJ3MODjIWIQcAAMDFzq8coU9PrdA777fqD2/s1NNr9yiWMPJ5LMX6EHh67vN5LF1cNUpfPXucZo4tlpUpB/MAh2EZkym7qvcWDAZVVFSktrY2FRYWOl0OAADAoNcciuiNrU1at7tV695v07rdrQqF473uC2R7NWN0sarGFmv66CKdPalMpZx9Awf1JxswkgMAADCElAb8unDGSF04Y6QkyRijplBE3dG4IrGE/D6PcrK8Kgv4Ga3BoEXIAQAAGMIsy9Kw/GynywBSit3VAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAq/icLgAAAACZyxijUCikaDSqeDwur9errKwsBQIBWZbldHnAYRFyAAAYJIwxijc3K9HVLRONyMryy5ObI29pKW82kTKhUEjbt2/X3r17tXv3bu3Zs0eRSKTXfX6/X6NGjdLo0aM1cuRITZgwQYFAwIGKgd4IOQAAZKhYS4s633xT3bW16lpXo+7a9UqEOnvd5wnkKadymnJnTFdOZaXyzjpLvpISByrGYGWMUV1dnVatWqXa2lolEgl5PB4lEokjPhOJRLRjxw7t2rXr4P3Tpk3TGWecoTFjxhC84SjLGGOcLuJIgsGgioqK1NbWpsLCQqfLAQDAdsYYdVVXq+WRRxVctkyKxSSfL/n1WHru8/lUuHChSi/7snKqqniziaPatGmTVqxYoYaGhmMGm2PpeX748OGaO3eupkyZksJKMdT1JxsQcgAAyBDty5er8d77FN6yRfJ6pXh84I0deD775JNVvuhaFcydm7pC4QqdnZ169tlntX79elmWpVS+Jexpb9q0aVq4cKHy8vJS1jaGLkIOAACDSKylRfW33qbg0qWSZUmp/F/zgfYKL7xQFTfdyDQ2SJI2btyoJUuWqLu7O6Xh5qMsy1JOTo4uvvhinXLKKbb1g6GhP9mALaQBAHBQ+4svatuChQo+91zyQqrfcB5oL7hsmbYtWKj2F19MbfsYVIwxeuWVV/T444+rq6vL1oDT019XV5cef/xxvfrqq7b3B/Qg5AAA4ABjjPb/8lequ/oaxdvajm9qWl8kEoq3tanu6mu0/1cP8mZzCDLGaPny5VqxYoUj/S9fvlzLly/nZw9pQcgBACDNjDFqvPseNd57b8+FdHUsSWq85x413nMvbzaHmFdffVWvvfaaozW89tprjteAoYGQAwBAmjX96kE1PfSQszU8+KCaHnS2BqTPxo0bHRvB+ajly5dr06ZNTpcBl+OcHAAA0qj9xRc/GMFxWOM99yj7xEkqmDfP6VJgo87OTi1ZsiSlbT755JNau3btEb9/3XXXHXVh+FNPPaUTTjiBXddgG0IOAABpEmtp0d6b/j31O6gNlGVp7403KffUU9l1zcWeffZZdXd3p7TN0047TRMnTjzkmjFGS5cuVXFx8TF3vuru7tayZcv0hS98IaV1AT0IOQAApEn9rbcp3t6esoCzJRzWA/v3a0O4W/tjMeV4PJrk9+tfSks1J7/g2A0Yo3gwqPrbbtPoO+9MSU3ILJs2bdL69etT3u7YsWM1duzYQ67t2rVL0WhU06dPP+bzxhjV1NSosrKSA0NhC9bkAACQBu3LlyfPwUnhLmp7olF1JhL6bGGRbhheoSvLyiRJV+3erf9tbe1bI4mEgs8sVXuGrNdA6hhjtGLFClmWlZb+ampqJKlPIUdKnqGzYsUKNsDIUMYYRSL71dVVp87O7erqqlMksn/Q/PdiJAcAAJsZY9R4730pn6b2qfx8fSo//5BrlxWX6B937tDvW5p1SXFx3xqyLDXee5/y58xJ2xti2K+urk4NDQ1p6Ssej6u2tlZjx45VcR9/7owxamhoUF1dXa9RIaRfJNKslpY31N6+Xm3BtWpvX694PNTrPq83oIKCaSoqrFJBwTSVlJwtv7/UgYqPjpADAIDNuqqrFd6yJS19eS1LI30+1fRnDYYxCm/erO61a5U7c6Z9xSGtVq1aJY/Ho0QiYXtfW7duVVdXV59HcXp4PB699dZbhByHGGMUDL6j9+v+Rw0NS2VMTJblkzGxIz4Tj4fU2rpSbW1rDt5fMfwijRnzTyosnJkxH5QQcgAAsFnLI49KXq9tB352JhIKJxJqTyT0UkeHXg2FNL/g6Au/e/F61fzIoxpNyHGFUCik2tratAQcKTlVzePxqLKysl/PJRIJrV+/XhdccIECgYBN1bmDMUZd7VHFInEl4kYeryWf36vcgqwBBYvGxr9q67a7FQptlmV5ZUz8QD9HDjiH1hM7+LW+4Wntq39SgcBkTZq4WOXl5/W7nlQj5AAAYKNYS4uCy5bZFnAk6T8aGvS/bck1OB5J5+UX6KaKiv41Eo8r+Oyzqrjh++y05gLbt29PW8CJRCJ69913deKJJw5oS+hEIqEdO3b0OyC5XVdHRHWbWtS4q131O4Jq3NmuaLj33yNZ2V6VjytQxfhClZ9QoDFTSpSb7z9iu9Foi97dfIvq65+WlAxHPQFnoHqeD4U2a13Nt1RR8RlNPvlmZWU593cJIQcAABt1vvmmFOvbJ6MD9X9KSnR+QYEaYzE91x5UQkbRgaz9icXUuXKlCufPT32RSKu9e/embarapk2b+ryr2uF4PB7t2bOHkKPkaE399qBqXq7Te6sblEgYeTyWEokj/3mOhuPas7lV+95rO3j/iacP1/Rzx6hiQuEhozyNjS9o46YfKBoN9vSY6t+BJKm+/lk1N7+mU6b8VOXl56e4j74h5AAAYKPu2lrJ57M16EzMztbE7GxJ0meLivTN93fpqt11euyEcf2bxuLzqbu2lpDjAnV1dWmdqub3+zV58uQBPZ9IJLR79+4UVzX4bKtu1Mol29S8JyTLY8kcCDZHCzgflvjQ/VtWN2jzqnqVjQ5o9sUTNX7GMO3c+V/auu0uJUdv7N4hLa5otFXraq7UpIn/pnHj/jXta3UIOQAA2Khr3TrbR3I+6vyCQv2ofp92RCOa4M/u+4OxWLJeDGrGGO3duzctfYVCIW3btk3Tpk1TVlbWgNvZs2ePjDEZs2g9nbo7onrl8c3a8lZ9z+yxgwFnoHqeb9oT0rP/tU4nn/+8PMV/7vnucbXdjyokSVu33alYPKRJE69P639fQg4AADYxxiRHctIsbJKf4LfH+/9Jfvf62iH7ZtMtQqGQIpFIWvrq2dxgoFPVekQiEYVCIeV/ZEt0t9tW3aiX/rBJ4a5o8oINs8fKTnlWnuInU9xw/+zc+V/yeQMaP/7KtPXJYaAAANgk3tysRKjTtvabDjNCFDVGT7W1KceyNCm7H6M4ByRCIcWbm1NRHhwSjUbT1ldNTY0CgYAmTpx43G3F0jzi6SRjjFYv26Flv6xRd2dUxqaZhfmj3lH5dGcDTo+t2+5UY+Nf09YfIzkAANgk0dWPs2oG4Ef1+9SRSOj03DxV+HzaH4/pmWBQ2yIRfa98uAKegX2Wafpzxg4yTtzGnfw+6hvf+EbK2hoqIccYozef3Ka3n9954II9/Xj8HRpxxu9ljCXLStcUtaOxtHHTDSouPj0tu64RcgAAsImJ2jtlaEFBof7c1qrHWlvUFo8rz+NRZU6OFpeXa25+wYDbTaRpqhPs4fV6nS5hQHy+ofG2dM1zOz8IODaqmPWovFldKQ04dXVR/e63zVq/vlvt7QkNH+7T3Ln5+uIlRcrJOdaHKkbRaFDvbv6xplXek7KajmRo/DQBAOAAK+vIZ1WkwsLCQi0s7Oehn33g8dtbN+x1PBsAOGkohJxt1Y1a+dQ22/vJH1WtonGrUtpmQ0NMV1+1W4GAR5/9XJEKCjzauKFbv/99izZvCesnPxnRh1biqq9foorhF9p+YKj7f5oAAHCIJzfH6RIGxMoZnHUjKRAIyO/3p23zgVTw+/0KBAJOl2Gr7o6oXvrDJlt3cH7u7f+nZ976jU4Ym6dfnzNSlid1Hb3413Z1dCR0732jNH588oOQiy4qVCIh/fWvHWpvj6ugoC+jiJa2brtbw4bNs3WDEzYeAADAJt7SUnkC/T8B3kmeQEDe0lKny8BxsCxLI0eOdLqMfhk1apTrd/R75fHNyV3UbAo4LR2NeuGdR5SdlS2PN5rSgCNJoc7k7gglJYcGmdIyrzweyefr638/o1DoXQWD1Smt76MIOQAA2MSyLOUMslPcc6ZVuv7N5lAwZswYeQa48US6eTwejR49Or2dGiN1NEotO6X97yW/djQmr9tgW3WjtrxVb9suapL0xJu/1Pjhp+jEiUU6eOBOClVV5UqS7ryzUe+9F1ZDQ0wvvdShp58O6nOfL1Rubt9/3izLq7q6/0l5jR/GdDUAAGyUO2OGOt9+J+0Hgg6Iz6fcGTOcrgIpMHLkSCUSNr6jTqFEIqFRo0bZ20moSdr+N2lvtbR7jbSnWop09L7Pny+NmimNPk0aOVOa8CkpUHZcXRtjtHLJNlunqb23Z52qt72iH1x6t5bUfl8Kp76jM8/M09e+XqJHH2nVG3//YGv8y75SrH/5l/6N/hoTV33DMzrppBvl99szckzIAQDARjmVlYMj4EhSLDboRp5weBMmTJDH4xkUQcfj8Wj8+PGpb9gYqe4tadVDUu1fpERM8viSX48k0iHteE3a9eYH90/7gnTG5dKY06UBjHLWbw+qeU/oOH4jR5dIxPXH13+hs6cs1ElTu6UNtnWlERU+TZ+Ro098IqDCQq9WvtmpRx9pVWmpV5/7XFG/2jImppbWN1UxfKEttRJyAACwUd5ZZ0k+3+AIOj6f8mbPdroKpEAgEFBlZaVqa2szOuh4PB5NmzYt9ZsObFoqrbhVatggebxS4sDZQUcLOB/Wc18iJq3/s7TucWl4pTT3JmlK/96U17xcJ8tjySTsGcZ5dcPTau6o19UX3aGc0hclY89005dWdOiee/brd78fq/LyZIT4xCcCMsbo4YeaNWdOvoqK+r59uWX51B5cb1vIGRyTNQEAGKR8JSUqXLBAyvSzS7xeFS5cKF+J/Yf0IT3OPPPMjA44UnKq2hlnnJG6BjubpT99Q3rsMqlx04FOjvNw1J7A07hReuzLyfY7m/v0aFdHRO+tbrAt4HR0t2np6t9p/qn/pILcYuWUbpddc+KWLAnqxBP9BwNOj7PPCai72+i998L9as+YmNqCa1NZ4iEYyQEAwGYll31ZwaefdrqMo4vHVXrZl52uAik0ZswYlfmL1BRuS/k69L179+rll1/Wrl27FIvFVFJSotNOO02z+zESaFmWhg8frjFjxqSmqI3PSEuukbrbkq9Tvcq/p73aJ6StK6SLfyGdctFRH6nb1KKETQFHkp5567cKZBfqU9M+L8kop2SnHXsOSJJaWuLKL+g9PhKLJX9/8QFkyfb29TLG2LLZCSM5AADYLHfmTGWffPKA5vOnhWUpe/Jk5VRVOV0JUqh7Q7NO7RiX8je9W7du1a9//WuFQiF98pOf1Pz583XyyScrGAz2qx1jjObMmXP8b3CNkV65U3r8K1JXq2SOc+TmmP3Fk/08/hXp1buOuiNb4652eTz2/LlvaKvT6xuX6lPTP6+2zia1hreqsalDkYhRLCbt2xdVMJi6fxdjxmRp63th1b1/6PlLL63okMcjTZzY/0OE4/EORaNNqSrxEIzkAABgM8uyVL7oWtV9+yqnSzk8Y1R+7XfYOtpFjDFqe2GHxplyTYxXaLunPiVLNcLhsJ544gmddNJJuuSSSwb8M2MZaZJ/tCZPnnx8BRkjLb9Feu2eAxfSNT3vQD/LfyyFO6R5Pzzshxj1O4K2jeS0hvbLmIT+9Pr9+tPr9ycv/u6D7//TV97XP/xDob591bCU9HfJl4q0alWnFi3aq899rlAFhR6tfLNTq1Z1acHCAg0bNrBYEY/3b5pbXxFyAABIg4K5c1V44YUKPvfcwOZ12MXjUeHCBSqYO9fpSpBCkV3titUnt/k9JzpZu7ObFTbR4x7VqampUSgU0ty5c2VZliKRiLKysvoXdozkV5bOap+kyPvtyj6hcOAFvXrXhwKOQ167W8rOlz5x/SGXjTFq3NluW7ejSibo8vNvOfjal9OqEac9ot/+tlmdnUZXXVWmkaOyUtbfjBm5+vkvRum/f9+iJUuCCgbjGjEiS//yLyX60qXFA27XmMixbxoAQg4AAGlScdONCr3+uuJtbbYdOtgvliVvYaEqbrzR6UqQYh1v7EkuSkhIOcrSJ6Kn6EX/uuNud9u2bcrOzlZ7e7sef/xxNTU1KSsrSzNmzND8+fPl8/XhraUlfTJyinI8fnW8sWfgIWfjM9KKnwzs2VRb/mOpfIo05cKDl7rao4qG7ftAIz+3SFUTPn7wdVbefk36+FP681/aJMX1sY+neMc6SVOm5Oint49MaZuW1f9pbn1h25qc2267Teecc47y8vJUXDzwdAcAgFv4Sko08tafZEbAkSRjNPK2W9lRzWXioai61u0/ZObW+ES5To9OOu62m5ublUgk9Nhjj2nSpEm65JJLNGvWLK1Zs0ZPPfVUn9o4PTpJ4xLlUsKoa+1+xUPR/hfS2ZzcZCCFC446IkY3v9St+f8TUunPgrJuCep31X0dZfBIT119yK5rsUh6R2wTcXvCgt283mxb2rUt5EQiEX3xi1/UlVdeaVcXAAAMOgXnnafyRYucLkOSVH7ddSqYN8/pMpBi4a2t0mHWgVTFx6kqNu642o5EIopGo5oxY4YWLFigU045RQsWLNBpp52m9evXq6np6IvIq2LjVBX/UA0Jk6y3v5797oFd1FL3gcH+TqMfvxLRxv0JVY3o75bviWQ9y773wZV4ej/MiIcLFI9m6+67R+nhX49Na98D5fXmKyurzJa2bQs5t9xyi6677jpNnz7dri4AABiUyr51hcquuMLZGq64QmVXXO5oDbBHZHeHdJgdvSxZOj026YMRnQG8B++ZjvbR93c9r+vq6no/dKCfM6KTdEbsRFkfHn3xWIru7uhfEZuWSuv/lPJd1EbmW9p7fb52LirQHZ/O6X8DJi7V/FHa9KwkyeNN90YelrpbxmXMQHFfFBRMs23Dk4zaQjocDisYDB7yCwAAt7EsS+XXLVL5ddf1XEhXx5Kk8sWLNXzxdeym5lKRXe2HHcmRkkFnZny8Ph2ZoWxlyernG+KCggJJUiBw6HqPntddXV2H9mekbGXp05EZqoqP791gwijyfj8W5xsjrbhVslL/FjbbZ2lE/nG2a3mS9Rkjnz/9BwB3N0+QTIYfPHyAZflUVGjftvUZFXJuv/12FRUVHfw1duzgGGoDAKC/LMvSsG9doTEP3C9vUZHksfl/yR6PvEVFGvPA/RrGCE7GM8aoqatJuzt2a0fbDu3u2K2mriaZY3xMb4zp08jIuES5vhg+WxMSFQce7FtdI0cmF523tx8aTHpeHww/B9qbmKjQF8NnJ9fgHEFkd8cxf18H1b0lNWxI/UGfqWISUkOtVLdauQVZyspOb+Dobh4ny5NBuzcehTExFRROs639fu2u9v3vf18/+9nPjnrPxo0bNWXKlAEVc8MNN2jx4sUHXweDQYIOAMDVCubNU+6pp6r+1tsUXLo0OdqSyvkmB9orXLhAI266SV42A8pILd0tWrlvpTY0bVBNY402NG1QZ6yz1315vjxNLZuq6eXTNbVsqmaPmK2SnA82jkiEojJ9XPCeoyzNjU7TpHiFVvu2qsUKyTKWzFGGdyorK/X666/rnXfe0YQJEw5ef/vtt+XxeDR+3HhJUokJfLDBwDGYcFyJUFTe/D4snF/1kOTxSokMfiPv8UlvPSRr7BkqH1egPZsHsOZogDobpsgkPLI8GRoCP8SyfCopPsu29vsVcq6//np97WtfO+o9EydOHHAx2dnZys62Z4cFAAAyla+kRKPvulOFCxeo8b6fK7x5s+T1Ht95Ogeezz7pJJUvupZzcDKQMUZrG9fqsXcf0/Pbn1fMxOSzfIqZ2BGf6Yx1anX9alU3VB+8f/6E+bp0yqWaMWyGTKT/b27HJcp1QmSYGq2gNvjqtNVTL2OZZOCROWQDs5EjR2rmzJmqrq5WIpHQuBPGacfOHdqwYYM+8bGPa1bgJE0Nj1G5KTx07c2x/l1E///27jwuqvPeH/jnObMww8AM+4AICqKoKGDclxrMIjYatU3bmN4mNktv02bzps3WJUmXm7Q3t22apU3a9MYkvW2S3jSrSUx+UWNdsyiKRlEURQVFVBgYltme3x/jkCgIM8Oc2fi8Xy9ehplznvMFT/B8eM7zPX7UbT8F7P5ndAccAPC4gF2vAJUPwzrSjOO1rao9EPR8bkcybPVTYc7/OKqDjhAaWLMWQa9PU+0YAYWczMxMZGYOnMiJiIgocMmXXoqkSy5B144dOP23v8P29tuAywVotd4/B+LbTquFeeEVSPvmN2EoLeXamyi0pn4Nntj+BPa37IdGaOA+u4i+v4DzRb7tXNKFd+rewVsH38LolNG4s+A2jAziMYgCAlnSgiynBTMwGg3KGTQrbTgpWtGstMEpPg8WixYtgsViwY6qHdi7Zy8yLem49dJv444p34LBGVwbY+ny44K87kNvgIgFHhdwaD0y82eFLeD4nDkwD5aRW8N6zEBJ6cbw4d9S9RiqPQy0vr4ep0+fRn19PdxuN6qqqgAARUVFSEpKUuuwREREMU0IAWN5OXLLy2G97150bN2Krl270Fldja5du+Gx23vto5hMMEwogbG0FIaSEiROn85n30Splq4WPLT1Ibxz6J2emQ73ILuE+favbanFA1sfxHP45aDGM0CPQo8VhWfX60hIdMEJF9zwCAlFClw3owKGGbqAZmv6I7R+rElrrPLeChYLQUfRAg1VGD5zIRRFhDXodJ0qRFdLLhLMDRBKNLZaE0gyFcNsLlf1KKqFnPvvvx/PPfdcz+eTJk0CAKxduxYVFRVqHZaIiChuaFNTYV6wAOYFCwB4b29ynz4N2dUFj8MBRa+HMBigSUvjbE0M+KD+Azy46UG0ObyL9GUIn/HiG69b8ffhlf4TEDBC7zuIKoTOj5Bz9NPYCDiAt85jn8KYpEfRlCzs/6QJMmxBR6B511IMn/NkmI4XKInCQvW7O6rWymXlypWQUvb6YMAhIiIKjhAC2vR06HJzkVBQAF1uLrTp6Qw4UU5KiT/v/DNWrF2B1u7WQc/c9KdV044OpUu18dUgEjRQTLr+N5LSO5MTSxqqACkxsWJ4GAOOV3tDOVoPT4P0RFUjZQAaWK2LkZl5mepHUm0mh4iIiGiok1Li99t+j7/s+ov3c7WmQnwEUGuox8SO0SG7lUxt+tykgYO6vRlwBPjQ0CA88ZEDLV0SDW3eNUJv7nPhqM37d3bbND0shgC+p442wN4Ma0EG0nNNONVgV20mrC8ntl8DU/ZuaPQdEIE+EEkVAjqdGcVj7g/L0aIt3hERERHFjWeqn+kJOOFSYzwEN6K8A5mPIqDPSx54O2fvdtpq+O9N3fjp2m788RMnAOCfe1z46Vrva2e6gggKrk4IITB9cWFYAw4AeBxJOP7x8igJOAAgMW7sw9DpwrNekDM5RERERCr4oP4DPLb9sbAfd7+hHtpYucTzSOhy/WhI5XaqXwuAQyv8CFyBcHnXSBWUZWL0VCtqPz0R1ueYtjdMwsnqpcic+Fr4DnoBowp/iMzMy8N2PDk8ciwAACAASURBVM7kEBEREYVYS1cLHtz0YERuGduRWANXDM3kJIzy4wG1mgHW7EQr7ecttedePQYJRh3CfUqc2nMFmvd8ObwHPc+IEd/DiBE3h/WYMRLziYiIiGLHQ1sfQpujLWRrcDoOdqBlYwvse+xwNDugTdLCOMoI61VWJGSf+yB1m9aO9eZPMdc2GVpoQnJ8VSgCxrIMaAZqOgAAukT161GD1tjzn4YkHeZdOxbvPFUd5iIEmqu/Ao/TgKzSVyGlCNMtbAKAxKjCuzByZHgDDsCZHCIiIqKQWlO/Bu8ceiekXdSa326G7RMbTONNyPm3HKRWpKKjpgMHHjiArqO9u6m9mfphdAccAPBIJM0c5t+2pgxAH2PPWdQne+v+gsLyTExfUhiBYgRO770CRzfcArcjMQxd1zTQ6VJQOvGpiAQcgCGHiIiIKGSklHhi+xMhv00tozIDY34zBsO+NQxpF6cha3EWCn5UAOmWOLnqZK/t9xrrUJdwFB6EcQFIIASgzTb513QAAIQActR9eGTIDSv31n2eyQtG4KIFIyJQkLe19MF3fgmte+7ZV0J975x3PKt1IWbO+H9hXYNzPoYcIiIiohDZcXIH9rfsD3mr6MTRiVC05162JWQnICE3Ad0N3b13EMBzmW9CidZLPQlY5o8I7BlPwycDSoystFC0QO7kPt8SQmDGkkLMWHp2Ridca3TOHmfaFaWoqPwLSic+BZNpzNmaBjfr59vfZBqD0olPY0LJ76DT+bHWSkUxcqYQERERRb8Xa16ERmhUfeCnj5QSLpsLhlxDn+9vTa7GWvPHmGu7CJpounVNAMayTBjHpwe2X0454HGpU1OoeVzemZwLEEJg8oKRSM02Ye0Le9Hd6VS165pQgASjd01QYXkmACAz83JkZFwGm60KR4/+FSea3oKULgihhZQDf5992wmhhdV6JYbnfgtmc1nUPJyYIYeIiIgoBM50ncHqutVhCTgA0Lq5Fa4zLli+YrngNn+0voyL7OOQ7E6MjlkdAShGLVKuHBX4vgUXe2dIYiHoKFpg5NwBNyssz8SwohSsf2kf9n98wrdWP3TOjlc02Yq5y8bAcF6TByEELJZJsFgmYfToH+NMyxa02arRatuJtrZquN32XkNqNCYkJ0+ExVyGZPMEpKbMgF6fFsKiQ4Mhh4iIiCgEth7fCpcfvwEPhe6GbjS80ABjkREpcy58W1Cb1o7f5/wv7j/63bDUNSAJpF41xr+OauczpQMlXwV2vwJ4orhFtqIFJlzlrdcPhiQd5t9YgqLJWfjozYM4dcwOoQhIT/Bpx7d/+jATpi8uREFZ5oD76PVpsGZdAWvWFQC8M4VO5ym43d2Q0gEh9NBoEqDTpUfNbE1/GHKIiIiIQuCzU59BK7SqBx1nixOHfncIGqMG+bfkQyj9X3BuTt6BlZmv49snl6halz/MlSNhLAnwNrUvmvYdoPrl0BWkBo8LmPqdgHcrLM9EQVkGTtTZUL3uKGo/aYLHI6FoBDzugQOPooie7UdPsWJCRS6sI81BBxIhBPT6jIE3jFIMOUREREQhUH2yWvWA4+5w4/BvD8PT4UHBjwqgS/VvRuSl9NUweBKw7NQCVevrT3JFHpIrhg9ukOFTgawS4OQeqLqIJVhCAbLGA8OnBLe7EMgutCC70II53xiNYzUtaDpsQ9MhG5oOt8HZ3XsGS5egQdaIZFgLzMjMNyO3OAXGJH0fow8tDDlEREREgySlxGenPlP1GB6HB4cfPYzu490ouLvggg0H+iSA5zLfQKfSjetPLoEHnvCs0Tm7JsS8YCTMFXkhGE8Al/wEePGawY+lBukB5v24z9bRgTIm6VE0OQtFk7O8Q0uJzjYnXE43PC4JRSug1WlgTNbFxO1j4caQQ0RERDRIp7tOo8PVodr40iNx5I9H0HGgAyNuH4HEosTABxHAyxmrUZ/QiBWN30KS26hu17WzTQZSrxozuFvUzjf2CmDC14DdrwJhavLgF6EBJnzVW58awwuBRDNnaPwVBW02iIiIiGJbl7tL1fGP//042ra3IXliMtx2N1o2tZzzEYgtyTvxncKfYb15m/cFdZ4HCWNZJrJ/OCW0AcfnikcAgwXRcymreOv58n9FuhA6izM5RERERIPkdDtVHb+zvhMA0FbVhraqtl7vp8wK7MGLbVo7/iv3Wcy9/MtI2NgB1/EOQBHAIDp6+fbXWhNhmT8y8OfgBCIxDVj8OPDSv6l3jIB4gCVPeOuiqMCQQ0RERDRIOk0QLZEDUHhfoSrj6sZZYJ0yFo4jbWjf3IDOHc3eoONv4PFtpwgYyzKRNDMH+rzk8KwRGbcIuOSnwJpfqH+sgVx6PzB2YaSroC9gyCEiIiIaJIMmgCYAUSRBkwAhBBLyzUjIN8O9yInuAy1wHGuH80gbHMfaIfvo6CUSNNDnJkGflwxdbhISRqUE9+ybwfrSDwCHHdjw2/Af22fOnd4PiioMOURERESDlGZIQ6I2UdXmA6Fm0pmQZjj39iqNSYfE0kwklnofHimlhMfuhHR6IF0eCK0CoVOgmKKko5cQ3lmUhCTgg5/Du0YnHK2lzx7n0geALzHgRKNoWa1FREREFLOEEBifPj7SZQRkfPr4AYOKEAKaJD20qQboMhOhTTVAk6SPjoDjI4R3RmfZ3wBjirfLmarH03iPs+xvDDhRjCGHiIiIKAQmZk6EVsTGTTJaocXEjImRLiO0xi4EbvsUKPmK93MR4stc33gTvuo9DtfgRDWGHCIiIqIQGJ8+Hi7pinQZfnFJV8zNPPklMQ342l+8syyZ47yvKYMMnr79M8cBy/4OXPUMu6jFgNj4dQMRERFRlJuePR1aoY2JoKMVWkzLnhbpMtQzdiFQfAVw9BPg4z8Du14BPC5vYPH48ffj207RAROuAqZ9B8id7L01jmICQw4RERFRCKQaUlFZUIl3696FW/buSBYtNEKDBQULkGpIjXQp6hICyJvq/ah8GDi0HmjYDhzb5v3T0d57H30SMGySN9AMKwdGzgVMKj7vh1TDkENEREQUIsuKl2HVwVWRLqNfbunGsrHLIl1GeJnSvWt1fOt1pATszYCrE3A5AK0e0BoBU0bUzdZIKdHsdKHT7YFTSuiEgFGjIEOnja4GEFGGIYeIiIgoRMoyyzA6ZTRqW2oh4cfDNMNMQGB06miUZpRGupTIEgJIyox0FX065XBhQ0sbdrZ1YrutAzvaOmB3926LbdIoKEtOxCRzIkqTjZiTkox0PS/tffidICIiIgoRIQRunXQr7lh7R6RL6ZOExK3lt3IGIMpIKfGprQPPHmvG601n4JKAVgCufnKy3e3BppZ2fNTa3rP90qxUXJ+bgYvMiUP+75ghh4iIiChEpJT4+LNhcLaWQWveCSGiZzZHEQoWjFyAefnzIl0KfcG7J1vxq7pG7LV3QSMA99lTpr+A80WuL2z/atMZ/N+JMxhnMuDewhxUZljUKToGsIU0ERERUYj8Yd0B/HHdAXSdWAzpNkLK6PhtuoCAWW/GfdPui3QpdNZppwvf230I395Vh332LgCfB5xg+favsXdheXUdvrf7EE47o7/bnxoYcoiIiIhCYPXu43hkdY33E7cJ3Y1XRc1MjoTEz2b9DCmGlEiXQgDeOdmC2Vv34I2mFgBA7xU3g+Mb742mFszZugfvnGwJ8RGiH29XIyIiIhqkM3YH7n1lJwTQ027A1V6C7qZKJGStDmpMj9ODpleb0LKpBW67G4Y8A6xftSJpQlLAY91x0R24JP+SoOqg0JFS4rHDTXi4rhEKQh9uzucG0OJ04/pdh/Cjwhzclp81ZNbqcCaHiIiIaJAeeGM3bJ2uXv3UHKcq0N1cEdSYx545hubVzUiZkYKcf8sBFODQ7w7Bvs8e0Dg3TbwJN064MagaKHSklHjoYCMermsEoH7A8fEd56GDjXj4YCOkjI7ZRbUx5BARERENwnu7j+ONHQ1w93nxKOA4WYnupkoA8HuNTsfBDrRubUX217KRvSwbaRVpKLi7APp0PY6/fHzA/X3H6W5agPGGZUPmt/fR7LHDTXi8vimyNdRHvoZwYcghIiIiCpKUEr95b98Az48UcJyah84j1/rdjMD2sQ1QgNSK1J7XFL2C1Lmp6KzthOOUo5+aBKTbiM4j18J5ugK/ea9myPz2Plq9c7KlZwYn0h462Ih3T7ZGugzVMeQQERERBWlbfQtqTrTBnwzhai+B/eAP4LJ5H8TZX9jprO9EQnYCNEbNOa8bC40AgK76rl77+MZz2cpgP/BDuNpLICWw93gbth8ZegvPo8Vppwt31hxBKOfSnPs+w5l7bkHTojloWjgbZ+76Hpy1NX7tqwD4j5r6uO+6xpBDREREFKQXNh+CRgng8tVtQlfDNeg8ci083VYAgJS9L8dcLS5oLb37Q/lec7V8foHq29/TbUXHkevQ1bAM8CT2vK9RBF7YfNj/GimkfrzvKGxOd6/1WsFy7tuD07ffAHfjUZiu+3eYrv13uI7V48x/3ARX/aEB9/cAsDnd+Mm+oyGqKDox5BAREREF4bTdgbd2NsLtCfzy1dVego66O2Cv+z5crWU9QUVKBVICHocHQtc7PCm6s4HGIXu2d7WWwV73fXTU3QF3+/he+7g9Em/uaMBp+4VvcSN1vHuyFa82tcAdwjHbn/0DREIC0h5/DqZvXAfTsuVIe3wl4PGg/S+P+zWGG8A/m1qwujl+b1tjC2kiIiKiIGw60AxXEAHncwKernx0NeZDNC2CJvEAFMMxaIxHoOhqIZ29x3Z3ey/dPI4x6DxaCXfHKEi3acAjuTwSmw+cwsLSnEHU2zcpJTptrXB2d8PtckGj1UKXkACj2TKkGx5IKfErFVpFO6u3Qz91FhTL58880qRnQlc2Gd1b/gVPZwcUY2I/I3gpAH51sBHz081x+ffEkENEREQUhOpjrdAqYpBBx0u6TXC1lQJt3vU6QlcPR9NJtO+/B1BcgEcLSB06DtQC+Akk5nq395NWEag+1hqSkNNha8WR3Ttx4mAtGmv34cTBWji7OnttpzMYYS0sQk7RGFgLi5BXUopEs2XQx48Vn9o6sNfee+3UYEmnAyIhodfrIsEAOJ1w1dVCP37gc8MDYI+9C9tsHZhsGTgoxxqGHCIiIqIg7KhvCUnA6YveWghb/U647QlQEj7vsOZo3Od9P6swoPFcHokdg2g+IKVE4/69qFq9CjWb/wWP2w1Fo4HHfeEbsZxdnTj6WTUaaj7r2b541lyUz1+InNHFcTl78EXPHmuGRgDuEJ8i2ryRcH5WDel2Q2i8jSmk0wnnnmoAgKfZ/xbRGuGtMx5DDtfkEBEREQVISonqY+qtZ0gsng1ID9qq3v38mC4n2qvfhz6nGFpzZsBjVh9rDaqVdO3HW/D8Xbfi7z+9C3s3/asn2PQXcL7oi9vv3bgef//pD/H83beh9pOtAdcSK045XHi96UzIAw4AGBd/He6jh2H775/BdegAXHW1aP3VT+A53QwAkN3dfo/llsBrTWdwyhF/ndY4k0NEREQUoFN2B+yOUC4nP1fCsGIkFs9By/rn4OlogTZ1GOy7PoCrtQnWL98R1Jjt3S6csjuQkdT7Vqe+dLbZsObZp7B34/qeWRfpGdzX7Nv/1JHDeP2RX2Ds7Lm45PqbYUw2D2rcaLOhpQ0ulR5NlLj46/CcPAH7S8+ha/WbAABt8XiYrv427P/7DIQf63G+yCWBjS3tWJyVMvDGMYQhh4iIiChAnSoGHJ+MRXei5V9/hX33Wri72qHPGomsq+6HIW9C0GN2Of2re//Hm/He04+h224HgJA/TNQ3Xs3mDTi0swrzv3sbRk+dGdJjRNLOtk5oBVQLOkk33orEb1wH16EDEKYk6ApHo+0Zb2c17fD8gMbSCmBnWwdDDhEREdFQ53SHsl9W34RWj9R5NyB13g0hG9Ph6r9uKSU+eu0f2PDi84AQ8Ospp4MgPR50tbfhjf/+T8xZdh2mLf16XKzV2WbrUC3g+CjJZugnTur53PHpViiZVmjyCwIaxyWB7baOUJcXcVyTQ0RERBQgnSY2L6H02gvXLaXEhr8/5w043hfCU9TZ42x48XlsePH5kM8ahZuUEjvbwhsautauhqtmNxKv+iaEEvi5uaOtI+a/7+fjTA4RERFRgIx6TaRLCIpBd+G6P3rtH/jo9f8LYzV916A3GDH9K9+IaB2D0ex0wa7iTJ9jx6ewv/An6KfMhGK2wPlZNTrffQP6abOQeNU3gxqz3e1Bs9OFTL0uxNVGDkMOERERUYDSTXqY9BpVmw+EWlKCFukmfZ/v7f948+czOBG24cXnkT48H0VTZ0S6lKB0qnwro5KRBSga2F96DrKjA5qcXCTd8H0kfv1aCE3wl/ZdKrVDjxSGHCIiIqIACSEwMdeCLXWnI12K3ybmWvpc79LZZsN7Tz8WljU4fhECq5/+PXLHjo/JrmtOlb+H2tw8pP7XH0I+rsOj/jqzcGLIISIiIgpCWX4KPjl8RrUHgoaSVhEoy+u7e9aaZ5/ydlEL0cV5bdMpPLVuS5/v3XbpLIxIT+3zvR5Sottux5pnn8bC2+8KSU3hpIvRxgn6INbyRDOGHCIiIqIgTMy1xETAAQCXR2JirqXX67Ufb8HejetVOeac0SORl3buMTOSTH7tKz0e7N34IYpnzUXRlOlqlKcaY4w2pTAosRnOLoQhh4iIiCgIs0ZlQKuImAg6WkVg5qj0c16TUmLjSy9ACKFKZ62CjDSU5eUEvb8QAhtfegGjJk+LqbbSGTotTBpF1eYDoZakUZChi69YEJtRk4iIiCjC0kx6LCrNgSbKfwOuUQSuLBuGtPOaDjTu34vmI4dVbR3c5XTBHeRaDyklmusPoXF/TYirUpcQAqXJiZEuIyBlyYkxFST9EV+RjYiIiCiMrp05Eq9VNUS6jH65PRLXzhzR6/Wq1asgFA2kR50OcS9/vAPdLjcUIVCQkYpFZeOQl9b3uqALEYoGVe+twrAxY1WpUS0XmRPxcWu76g8EDQWtACaZYyuU+YMzOURERERBuig/BWOzkxGtvwQXAhibnYxJ5zUd6LC1ombzv1QJOFpFYOLwbCwpL8H1s6dgwYQxaGxtw5NrN+PYmdaAxpIeN2o2rUeHLbD9Iq002RgTAQcAXBIxN/PkD4YcIiIioiAJIfCD+cVR0Xm5L1ICP5hf3OtWpCO7d8LjVmcGZ2RGGpbPmoxphXkoybXiknFFuP3S2RAA3q4O/NYzj9uNI7urQ1+oiuakJEMbpcH3fFoBzE5JinQZIceQQ0RERDQIl4+3YnHZMGiibDpHI4Al5cNw+Xhrr/dOHKyFotGErZaMZBNKhmWjtukUPAE2alA0Gpyoq1WpMnWk67VYkpUKTXSdEr1oBLA0KxXp+vhbwcKQQ0RERDRIP1tcArNRGzW3rQkBmI06PHhlSZ/vN9bWqDaTcyEpiQa4PR443K6A9vO43TheG1vNBwDg+twMuKN0hs/HLb11xiOGHCIiIqJBSjXp8aurSqPmtjUpgV9fVYrU8zqqed+TOHHwQNhrOmXvgFajQK8NfNbgxMFaVbvAqWGyORHjTIaovdhWAIw3GXBRHDYdABhyiIiIiEKisiQbd1UWR7oMAMBdlcWYX5Ld53udtlY4uzpVO3Z7V3ev1xpabPis4QSKrZlQgpjucnR2ojPGmg8IIXBvYQ6i9Wk5HgD3FObEXeton/i7AY+IiIgoQr5fMQr2bhf+sC78MyVfrOH7FaMu+L6zu3cICaUXtmyHTqNgZHoqkhIScMLWji0H66HTaHBFafAh0OVwhLDK8KjMsOArWSl4o6kF4b05sH8aAEuyUlCZYYl0KaphyCEiIiIKESEE7qoshilBi0dW10AIhOUWNt9x7l5QjO9XFPW7rdsV2JqYQE0YZsW2+gas31eHLqcLSQl6TByejfnjRyMj2RT0uC6nM4RVhs9/jhmOdWfa0Op0R8WsjgLAotPgl2OGR7oUVTHkEBEREYWQEAK3zCvC6Kwk3PPKTtg6naouQNecbTLw66tKL3iL2jnbB7EmJhBfGlOAL40pCPm4Wp0u5GOGQ5pOi98W5+H6XYciXQoA721qvy3OR5ouvmMA1+QQERERqWB+STbW/KACC0uHAUDIO6/5xltUNgxrf1jhV8ABAF1CQmgLCROtvncThVjx5cwU3FeQE+kyAAA/KszBgsz4vU3NhyGHiIiISCWpJj0eu2YS/nTtZBRbkwEAGmVwace3f7E1GX++bgp+v2wSUhL9DwBGswU6g3FQNYSb3miE0RzbF+a3j8jC7flZka0hPwu3RbiGcInveSoiIiKiKDC/JBuXj7di+5EWvLD5MN7c0QCXR0KrCLj8eDimbzutIrC4bBiunTkC5XkpQXXGEkLAWjgKRz/bFcyXEhHWwqKY7wImhMB9hTlI0mrw0MFGKEBY1uj4jvPjwhzcNqL3g2HjFUMOERERURgIIXBRfiouyk/FTxeNx+YDp7DzWAt2HmnFzmMtsHf37r9lStCgNDcFZXkpmJhrwcxR6Ujr49k3gcopKkZDzZ6wPxA0GIpGg+yi6GjNPVhCCNw+wooxiQb8R009bE63ql3XNPA2Gfhtcf6QuEXtixhyiIiIiMIszaTHwtIcLCz1rtOQUuKU3YEupxsOlwd6rQKDToN0k16VGQxrYVFMBBwA8LjdsBb03zEu1izItGBayjj8eN9RvNrUEvJZHd94S7JS8J9jhiM1zpsM9GXofcVEREREUUYIgYyk8DUEyCsphaLRxETQUTQa5JVMjHQZIZem0+KPJSOxJKsVv65rxB57FzQCg+rE59u/2GTAvYU5cf0cnIEw5BARERENMYlmC4pnfgl7N/0L0hO9QUcoGhTPmovEGG860J8FmRZUZpixzdaBZ48147WmM3BJQCsAlx+Bx7edTggszUrB9bkZmGROjPk1TIPFkENEREQ0BJVXLsSeDesiXUa/pMeN8vkLI12G6oQQmGwxYbLFhJ8V5WJjSzt2tHWgytaBqrYO2N29b2YzaRSUJydikjkRpcmJmJ2ShHQ9L+19+J0gIiIiGoJyRo9FRv5InDpyGFKq+LTSIAkhkJ43Ajmj46PpgL/S9VoszkrB4qwUAN71Ws1OF7o8Eg6PB3pFgUERyNBph/xsTX/4nBwiIiKiIUgIgdlXXxuVAQfwXtzPvvraIX8hL4RApl6HPIMeoxINyDPokanXDfnvy0AYcoiIiIiGqKIp0zF29lwIJbouCYWiYOzsi1E0ZXqkS6EYFV1nNBERERGF1SXX34wEkwmIlpkBIZBgSsIl13830pVQDGPIISIiIhrCjMlmzP/u7UC03LYmJSq/ezuMyeZIV0IxjCGHiIiIaIgbPXUm5iy7LtJlAADmLLsORVNnRLoMinEMOURERESEaUu/jmlLvz7ka6D4wBbSRERERAQhBOYsuw56gxEbXnzeu0YnHLewnT3OnGuWYzoDDoUIQw4RERERAfAGnelf+QbSh+dj9dO/R7fdDunp/SDKkB1PUZBgSkLld2/nLWoUUgw5RERERHSOoqkzkDt2PNY8+xT2blwPIURIn6fjG6945pdwyQ03w5iUHLKxiQCGHCIiIiLqgzHZjIW3343imXOx8eW/orn+EISigfS4gx7Tt3963gjMvvpaPgeHVMOQQ0REREQXVDR1BkZNmY7G/TWoem8Vajath8fthqLRwOMeOPD4tlM0GoydNRfllYuQXTQGIlqey0NxSchQzj2GmM1mg8ViQWtrK8xm9konIiIiirQOWyuO7K7GiYP7cfzAPhw/UAtnV2ev7XQGI7JHFSG7qBjWgiLklUxEotkSgYopXgSSDTiTQ0RERER+SzRbUDxzDopnzgEASCnRaWuFy+GAy+mEVqeDVq+H0WzhbA1FDEMOEREREQVNCIFES0qkyyA6Bx8GSkREREREcYUhh4iIiIiI4gpDDhERERERxRWGHCIiIiIiiisMOUREREREFFcYcoiIiIiIKK4w5BARERERUVxhyCEiIiIiorjCkENERERERHFFG+kC+iOlBADYbLYIV0JERERERJHkywS+jNCfqA45bW1tAIC8vLwIV0JERERERNGgra0NFoul322E9CcKRYjH40FDQwOSk5MhhIh0OUGz2WzIy8vDkSNHYDabI10OxRmeX6Qmnl+kNp5jpCaeX/FFSom2tjYMGzYMitL/qpuonslRFAXDhw+PdBkhYzab+T8YqYbnF6mJ5xepjecYqYnnV/wYaAbHh40HiIiIiIgorjDkEBERERFRXNE8+OCDD0a6iKFAo9GgoqICWm1U3yFIMYrnF6mJ5xepjecYqYnn19AU1Y0HiIiIiIiIAsXb1YiIiIiIKK4w5BARERERUVxhyCEiIiIiorjCkENERERERHGFIYeIiIiIiOIKQ06IPPnkkxg5ciQMBgOmT5+Ojz766ILbrly5EkKIcz4MBkMYq6VYsn79elx55ZUYNmwYhBB47bXXBtxn3bp1uOiii5CQkICioiKsXLlS/UIpJgV6fq1bt67Xzy8hBI4fPx6miimWPPzww5g6dSqSk5ORlZWFpUuXoqamZsD9/vGPf2Ds2LEwGAyYOHEi3n777TBUS7EmmPOL12BDB0NOCLz00ku488478cADD2Dbtm0oKytDZWUlmpqaLriP2WxGY2Njz8fhw4fDWDHFErvdjrKyMjz55JN+bV9XV4eFCxdi3rx5qKqqwooVK3DTTTdh9erVKldKsSjQ88unpqbmnJ9hWVlZKlVIsezDDz/ELbfcgi1btuD999+H0+nE/PnzYbfbL7jPpk2bcM011+DGG2/E9u3bsXTpUixduhS7du0KY+UUC4I5vwBegw0VfE5OCEyfPh1Tp07FE088AQDweDzIy8vDbbfdhnvvvbfX9itXrsSKFSvQ0tIS7lIpxgkh8Oqrr2Lp0qUX3OaeCGsUFgAABIpJREFUe+7BqlWrzrkgWLZsGVpaWvDuu++Go0yKUf6cX+vWrcO8efNw5swZpKSkhLE6igcnT55EVlYWPvzwQ8ydO7fPba6++mrY7Xa89dZbPa/NmDED5eXleOqpp8JVKsUgf84vXoMNHZzJGSSHw4FPP/0Ul112Wc9riqLgsssuw+bNmy+4X3t7O0aMGIG8vDwsWbIEu3fvDke5NARs3rz5nPMRACorK/s9H4kCVV5ejpycHFx++eXYuHFjpMuhGNHa2goASEtLu+A2/BlGwfLn/AJ4DTZUMOQMUnNzM9xuN6xW6zmvW63WC96jXlxcjP/5n//B66+/jr/+9a/weDyYNWsWjh49Go6SKc4dP368z/PRZrOhs7MzQlVRvMjJycFTTz2FV155Ba+88gry8vJQUVGBbdu2Rbo0inIejwcrVqzA7NmzMWHChAtud6GfYVz3Rf3x9/ziNdjQoY10AUPRzJkzMXPmzJ7PZ82ahXHjxuHpp5/GL37xiwhWRkTUv+LiYhQXF/d8PmvWLBw4cAC/+93v8MILL0SwMop2t9xyC3bt2oUNGzZEuhSKQ/6eX7wGGzo4kzNIGRkZ0Gg0OHHixDmvnzhxAtnZ2X6NodPpMGnSJNTW1qpRIg0x2dnZfZ6PZrMZRqMxQlVRPJs2bRp/flG/br31Vrz11ltYu3Ythg8f3u+2F/oZ5u+/qTT0BHJ+nY/XYPGLIWeQ9Ho9Jk+ejA8++KDnNY/Hgw8++OCc3xT0x+12o7q6Gjk5OWqVSUPIzJkzzzkfAeD999/3+3wkClRVVRV/flGfpJS49dZb8eqrr2LNmjUoKCgYcB/+DCN/BXN+nY/XYPGLt6uFwJ133only5djypQpmDZtGh599FHY7XZcf/31AIDrrrsOubm5ePjhhwEAP//5zzFjxgwUFRWhpaUFjzzyCA4fPoybbropkl8GRan29vZzfsNUV1eHqqoqpKWlIT8/H/fddx+OHTuG559/HgBw880344knnsDdd9+NG264AWvWrMHLL7+MVatWRepLoCgW6Pn16KOPoqCgACUlJejq6sIzzzyDNWvW4L333ovUl0BR7JZbbsHf/vY3vP7660hOTu5ZV2OxWHpmls//N/KOO+7AxRdfjN/85jdYuHAhXnzxRXzyySf405/+FLGvg6JTMOcXr8GGEEkh8fjjj8v8/Hyp1+vltGnT5JYtW3reu/jii+Xy5ct7Pl+xYkXPtlarVV5xxRVy27ZtEaiaYsHatWslgF4fvnNq+fLl8uKLL+61T3l5udTr9bKwsFA+++yzYa+bYkOg59evf/1rOWrUKGkwGGRaWpqsqKiQa9asiUzxFPX6OrcAnPMz6fx/I6WU8uWXX5ZjxoyRer1elpSUyFWrVoW3cIoJwZxfvAYbOvicHCIiIiIiiitck0NERERERHGFIYeIiIiIiOIKQw4REREREcUVhhwiIiIiIoorDDlERERERBRXGHKIiIiIiCiuMOQQEREREVFcYcghIiIiIqK4wpBDRERERERxhSGHiIiIiIjiCkMOERERERHFlf8Prn8XTtl+A94AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -217,9 +392,28 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Computing transition probabilities: 100%|██████████| 24/24 [00:00<00:00, 3458.86it/s]\n", + "Generating walks (CPU: 1): 100%|██████████| 10/10 [00:00<00:00, 26.41it/s]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hUVf7H8fedSTKTSYYUEgIBUkhCiQk1dKRJX+kKCMKisiA23N+6a19Q11130dUFFFSUEkEEQUAEDIRQpUqRkgAhjQSSkF5nUub+/sjmymxCDegu+b6eh4c7ueeeW/76PN97zzmKqqoqQgghhBBC3Cbdr30BQgghhBDif5sESiGEEEIIUScSKIUQQgghRJ1IoBRCCCGEEHUigVIIIYQQQtSJBEohhBBCCFEnEiiFEEIIIUSdSKAUQgghhBB1IoFSCCGEEELUiQRKIYQQQghRJxIohRBCCCFEnUigFEIIIYQQdSKBUgghhBBC1IkESiGEEEIIUScSKIUQQgghRJ1IoBRCCCGEEHUigVIIIYQQQtSJBEohhBBCCFEnEiiFEEIIIUSdSKAUQgghhBB1IoFSCCGEEELUiQRKIYQQQghRJxIohRBCCCFEnUigFEIIIYQQdSKBUgghhBBC1IkESiGEEEIIUScSKIUQQgjxi8nIyGDBggWMGDGC5s2bYzAYcHV1JSQkhClTphATE3NL/WVmZjJ27FgURSEgIODuXLS4IUVVVfXXvgghhBBC3PtmzJjB0qVLKSsro3nz5owfP57g4GAsFgtbtmzh+++/B2DChAksXboUg8Fw3f6++uornnnmGbKysgDw9/cnKSnpbt+GqIUESiGEEELYycjIYM2aNURFRXHs2DEyMzNxdHSkSZMmdO/enccee4x+/fpdt4/Dhw+zZs0a9uzZw7lz5ygoKKCiogKAkJAQNm/eTHBwsN0xixYtYubMmQA88sgjrFy5sta+MzMzmTlzJuvWraNz585cuHCBnJwcCZS/IgmUQgghhNDUtYoYGxvL1KlTOXToEAADBgygd+/e+Pr6MmPGDGw2G6qq4urqyqJFi5g0aZLd8UOHDmXr1q0AHDhwgK5du9a4xoCAANLT05k9ezZ/+tOfCAoKIjk5WQLlr8jh174AIYQQQvz3WLZsGWVlZQwfPpxVq1ZhMpm0fbNmzdKqiKtWrUJRlBpVxBMnTmhhMjIykkcffVTb9/TTT9OjRw8URWHHjh1MmTIFT09Phg4dqrUZO3asFig3btxYa6Bs1aoVmzdvJjQ09I7eu7h9MihHCCGEEHZcXFz47LPP7MJktSeffJIhQ4YA8OWXX3Lw4MFa+xg3bpxdmAT45ptvmDdvHsuWLcPR0RGbzcb//d//2bXx8/PTtlNSUmrte+vWrRIm/8tIoBRCCCGEne7du+Pt7X3N/WPHjtW2N27cWGubESNG1Pjb0KFDCQsLo1mzZnTp0gWAuLg4zp8/r7XJz8/Xtl1cXGrtW1GU69+A+MXJK28hhBBCaL755huaN29+3TbXqyL27t2bb7/9lvvvv/+Gfezbt0/rIyQkBIDExEStzY36EP89JFAKIYQQQnP194zXcr0qoq+vL76+vrfdx/r16wHw8fFhzJgxN+xH/HeQV95CCCGEuCV3oopY3YfZbKZ9+/YAnDp1iv379wPw1ltv4ezsXMcrFb8UCZRCCCGEuCV1rSKeO3eO2NhYAKZOnYrRaERVVZ577jmgqko6bdq0O3fB4q6TQCmEEEKIm3YnqoiffPIJAB4eHrz22msAvPPOO8TExNCyZUu++OILGXjzP0YCpRBCCCFuyp2oIsbFxbFgwQIAFi5cSKNGjVi7di2vvfYavr6+bNmyBU9Pzzt63eLuk0AphBBCiJtS1ypiSUkJjzzyCFarlRdeeIHx48cTFRXFpEmTaNSoEdHR0bRo0eIuXb24myRQCiGEEOKG6lpFrKysZPLkyRw/fpyJEyfy97//nejoaEaNGoWbmxs7duygdevWd+nqxd0mgVIIIYQQ11XXKqKqqkyfPp1169bx0EMPsWzZMvbs2cOIESNwcXEhOjqaNm3a3KWrF78ECZRCCCGEuKa6VhFVVeXJJ5/k888/Z/To0dpyjQ8++CDOzs5ER0cTFhZW47gZM2bUutqO+O8kE5sLIYQQola7du2qcxXx2Wef5ZNPPmHEiBF89dVXHDlyhKFDh+Lo6Mi2bdto27ZtrcedPXuWpKSkOt6B+KVIoBRCCCFEDfv27bupKuLly5evuZ7373//ez788EN+85vfsGbNGk6cOMGQIUMoKipi7ty5JCQkMGHCBB588EGGDx9ud2xeXt5duS9xdyiqqqq/9kUIIYQQ4r/HgQMHGDRoEA4ODkRHR9OhQ4da2/Xt25ekpKRaK4l/+tOfmDt3LkOGDGH9+vUUFxcTHBxMbm7uTV+Hv79/rX0nJCTwww8/oKoq27ZtIzIyEgA3NzdtSiKAHj16XPN7z+zsbBYuXMh3333HuXPnKCoqwtvbm65du/LEE08wbNiwm75OIYFSCCGEqBdUVWXBggW8/PLLFBcXExMTQ9++fWu0O3LkCAMGDKCgoIC5c+fSqVMnu33btm3j1KlTZGdnU15ejk6n4ze/+Q39+vVjxIgRBAYG8uqrr/LXv/4VPz8/Pv74Y4xGI+np6TzyyCO3dM3XCpRLly7lscceu+HxS5YsYerUqTX+vnXrViZNmkROTg4dO3ZkwoQJeHp6cvr0aT777DMKCgqYPHkyS5YsQa/X39I111uqEEIIIe5pFy5cUPv06aMC2r+YmJga7bKzs1UPDw+7djf65+TkpG3/4Q9/UJcsWXJLxwPq7Nmzb/pebDabOm/ePNXFxUVt0KCB2q1bt+ve03/av3+/ajAYVECdPHmyWllZabf//Pnzqre3twqoTz/99E1fV30no7yFEEKIe5SqqsyfP5+2bdty7NgxunXrdt32BQUFt/RKGqBJkyZMnDhR+323B9K88cYbPPfcc/Tq1YtTp04xePDgmz5WVVWeeuoprFYrDRo0YMGCBeh09lEoODiYN998E4CPPvqII0eO3NHrv1dJoBRCCCHuUbcavgICAlBV1e7fH/7wBwCeeuqpGvtUVSUpKYk5c+bQsGFDXFxcmDNnTq3trvdvzpw5t3RfixcvZuvWrTRv3vyWjjt+/DjHjh0DYMiQITRo0KDWdo888gg6nQ5VVfnggw9u6Rz1lYzyFkIIIe5hixcv5oknnritYxMSEpg3bx6KovDKK69cs11ISAhZWVm3e4m3ZPbs2be85GO1Q4cOadu1jVqv5ubmhr+/P4mJiWzcuJGysjKcnJxu65z1hQRKIYQQ4h5Vl/AFsHz5csrLy+nUqRNNmza9g1d2++pyP9nZ2dr2taqT1Tw9PUlMTKSwsJDY2FjatWt32+etD+SVtxBCCHGPqkv4Avj6668Bakw+XlZWRnFxcZ36/jWYTCZt22KxXLdteXm5tn3mzJm7dk33CgmUQgghhKihpKSE2NhYAPz8/MjPz+fVV18lKCgIo9GIq6srbm5ujBo1ij179vzKV3tzQkJCtO0LFy5ct21ycrK2/Uu9zv9fJq+8hRBCCFHD6dOnsdlsAKSkpBAeHk5xcTHPP/88HTp0oKCggFWrVrFhwwY2bNjA66+/ro2O/m/Vu3dvXF1dKSoqIioqClVVa63iHjp0iPz8fO13YWHhL3mZ/5OkQimEEEKIGq5cuaJtL1myhJKSEg4fPszrr7/Ogw8+yMSJE9m4cSMvvvgiAG+99RZLliwBICMjgwULFjBixAiaN2+OwWDA1dWVkJAQpkyZQkxMzA3Pf+bMGebOncvw4cMJDAzEZDJhMBjw9fVl2LBhLFmyhIqKilu6J7PZzKxZs4CqCuTChQtrtKmsrOTVV1+1+5tMbn5jUqEUQgghRA3/WZV76aWXal3G8M0332TFihWkpqby8ssvs2/fPiIjIykrK6N58+ZMmDCB4OBgLBYLW7ZsITIyksjISCZMmMDSpUsxGAw1+nz22We1JRQ9PDz47W9/S8uWLSkuLubQoUN8/fXXbNmyhXnz5vHAAw/c0n3NmTOHY8eOsXnzZmbNmsXFixeZNGkSnp6enD17lr/97W/s3LmTwYMH8/333wM3HsAjJFAKIYQQohb/Wf176KGHam3n5OTEmDFjmDdvHhkZGdrI8OHDh7Nq1Sq7gTCzZs1i0aJFzJw5k1WrVqEoCitXrqzRZ3V1NCwsjN27d+Ph4WG3f+vWrQwbNozjx4/f8kTsDg4ObNy4kfnz5/P+++/zzjvv8M477wBVg5juv/9+9uzZw+HDh7VA6e3tfUvnqI/klbcQQgghanB1ddW2XVxcCAgIuGbb9u3ba9s2mw0XFxc+++wzuzBZ7cknn2TIkCEAfPnllxw8ePCa/X700Uc1wiRUTUr+8MMPA/aDZ26WXq/n+eefJzk5mYSEBPbu3cuBAwfIzMxk165ddOvWzS6ohoeH3/I56hsJlEIIIYSowcvLS9t2d3e/btuGDRva/e7evft1q3pjx47Vtjdu3Fhjf1BQED169KB79+4AWMoruVJoxVJeqbWJiIi4/g3cpMDAQHr27EnXrl3t7jkhIQGoet199ehwUTt55S2EEEKIGkJDQ7XtGw1+UVVV2x46dCh/+9vfrtvez89P205JSamx/+233wbgcFIOi/cmsO1MBjYVdAoMDPXhd71a4OLiclP3cbuqV9UZPXp0jfW+RU0SKIUQQghRg4eHB8HBwcTHx5OTk0NFRQUODrXHhqtHhHfu0vW6yxoCdlPyXCsYRh5I5s8bTqHTKdj+nVdtKmyPzSTqdAZ+p3cBVa+vKysra+2jNomJiZw4cYIHHngAs9lca5v4+HhtDs7HH3/8pvuuzyRyCyGEEKJW1a+my8vLOXHiRK1tDifl8P6qrdrvReecmPHFEY4k5Vyz38TERG37/vvvr7XPP284hQpU2lS7fZU2FWtGArs3fwNUzS15K7777jtGjx7Nd999d8021RXSMWPG3HL/9ZUESiGEEELUaubMmRiNRgAiIyNr7I88kMxDC2I4eyAaAEfvABybhrI9NpOHP97PFwdrHzCzfv16AHx8fBgzZkyN/Yv3JqDT/TzhuM1STEVhFpbUWHJ3R5L+xZ9Q9A70fuK12w58f/nLX2pdPvKDDz5g6dKlhISE8NFHH91W3/WRvPIWQgghRK38/f2ZPXs2L7/8MgsXLmT06NH06dMHqKoivr7+JDnRi6kszgOdA56Dn0ZRFK2q+Pr6U7T2MRMR4Kn1efLkSfbv3w/A//3f/5GSkkJJSQnFxcUUFxeTV1RC1GlHVH4OlJlr38J68ZT227FRIC6hfYnNLMU96+clFLdt20ZqaipQFVYHDhx4zXs7ffo0bdq04bHHHsPPz4/MzEw2bNjAwYMH6dWrFytXrsTHx+cOPMX6QVGv/pJWCCGEEPeUL774Qttet24d33xT9ar4lVdeoU2bNsCNw9ef/vQn3n33XRwcHJg6dSpdunThs5gzHNu1BWtaHIrBhNfwP2IK7mx3nE6BMHcb45sWaIFx/vz5JCYmEhwczKRJk7SlD41GIy4uLqgGV95LsB8hbk2Px1ZagK20EGtaHIU/fnvD++7Tpw87d+6s8ff09HTWrVtHdHQ0p0+fJiMjg9LSUho3bkynTp2YMGECDz30UK1LMoprk0AphBBC3MNuJhhdK3xd7YcffmDhwoXs3r2b9PR0yhUHHN2b4BzUGXPEcPQmt9rPj8pbbYtxczWxYcMGPvvsM/z9/Vm3bh1NmzbFZDJhMpnQ6/WoqsrhoycY/3WqXYXyP1UUZJGx6jUqclIJCAzk4IEDNGrU6Ib3Ke4eCZRCCCGEuCVXCq10/uv2m25/+JUB7I7axLhx42jcuDF79uypsYxjUlISUVFRXL58mUOG9sTm67FdJ1SWXz7LpWV/AGDixImsWLHi9m5G3BEyKEcIIYQQt8RsdEB3k2+EFVQ2fr2KSZMm0ahRI6Kjo+3CZHZ2NqtWrWLZsmUoisLUqVMZ39YL2w36dWrSCr+AIADWrFlT6wAb8cuRQCmEEEKIW2J01DMw1Af9DUKlTgHPywd5cvo0nJyc+PDDDwkODgagpKSELVu28NFHH5Gens6YMWOYNm0aOp2O5B938EiwDlBR/iNaVp1TZWTTUsLvaw1UTWt09uzZO3+j4qbJKG8hhBBC3LIJ7Rvx/el0uM5r6ZLkk1z+5p+YzWZefPFFTp48SUJCAj4+PqSmpqIoCv369aNbt244ODhQVFTE559/TmZmJjNH+5Gf8j2nK3xIsbmjoqCg0rahwtRu/vy0Yz0Hs7O1c91oNR9xd0mgFEIIIcQtqays5MKBKPqb9ewobISCajeIRsFGaWos2V/PwexiYufOnYSHh7N//3527dpFQkICiqKwd+9eYmJi+P7776msrGTNmjWkp6ezaNEiDAYDPm5utPTWYzBZcPXwxtPszOmfjvObroPxd6lk/vz52jmvXs5R/PLklbcQQghRD6iqyvz583F1dUVRlBuO6r5adnY2b7/9Nj179sTT0xODwcCzzz7Lj199QLOjiwjWXUGhaoyvAnhc/pGc1X/GyUHPxIkTqaio4PPPP2fbtm0EBATw+OOP079/fxISEjh48CCRkZGsWbOGixcv0rdvXwC2bq1afcff3x+zyYhBtdKtcydKS0uJjY2loqJCW/KxTZs2NG7c+E4+LnGLJFAKIYQQ97iEhAT69evHc889d8uDV/bu3UtoaCivvfYaFy5cYMyYMQwdOpTx48dTWFjIvqhNHJw/i35XNjDBcJwPeiqcWfUOFeVlDBs2jLKyMubNm8dPP/1Ey5YtadKkCRcuXKCiogJXV1dcXFzIzc3l7NmzmEwmcnNzAYiNjWXPnj20bt0ao9GIxWKhYcOGBAQE8P333zNx4kQAdDodXbp0Yfbs2bcUlgMCAlAU5Zb+ffDBB7f87OsLeeUthBBC3KNUVWXBggW8/PLL6PV6unXrxoEDB276+IyMDIYPH05eXh5t2rThu+++Y/Xq1TzwwANMmDCBPXv28Nvf/pakpCS+WL6MqVOnMnXyu1itVgC+/vpru/7mzZtX4xzNmjWjoKCAoKAgnJyc2L17N2azmcLCQqKjoxkzZgxt2rTB2dmZkpISoqKi2LRpE+Xl5bi7u/Pmm2+ycOFCli1bVreHdRNk5Zxrk0AphBBC3KPeeOMN3njjDQYPHsynn37KZ599dkuB8pNPPiEvLw+At99+mx07dmAwGBg1ahSKopCcnMy0adN47bXXKC8v5+DBg1r7m1VSUoKXlxfjx4/H0dGRQYMG0bJlSw4cOMC5c+fIy8tj27ZtlJSUsG7dOjw9PQkICKBfv34EBARoYTkwMJDExMRbOnfnzp1Zvnz5ddukp6fTv39/3NzcGDVq1C31X59IoBRCCCHuYYsXL+aJJ564rWMPHz6sbZeVlXHp0iUee+wxnJ2dsVgsJCUlMXjwYP7yl79gsVjIzMxkzpw5dOzYkeTkZDw8PEhOTqZjx45ERETw+eef4+XlxeTJk3FwcGDVqlWkpKRoYRKgQYMGlJaW0qpVK3r06IHNZiM3NxedTqdVK6Oionjvvff45JNPtLC8cOFC/va3vwFoFdIbMZlMtG7d+rpt1q1bh6qqTJ48GWdn59t6jvWBfEMphBBC3KNmz55922ESqkJktePHj/PAAw/QrFkzAM6fP4/NZsPd3R29Xg9UzQfZvXt3hg8fTpcuXbhw4QJdu3bl0KFDVFZWMmnSJNLT01mzZg07d+7k3LlzjBkzBg8PD+08ycnJWCwWALp27cozzzxDp06dsNlsfP3118ybNw+dTkd5eTlvvvkmW7dupXnz5jg5OWl9xMTE3HAaoc6dOxMeHn7dNqqqsnjxYgCmT59+C0+u/pFAKYQQQtyjbmYd7+tp27attm0ymejevbv2++TJkzg7O/Ppp59qA328vLy0c7Zr106rOnp6erJ582Z8fX0ZP3488fHx7N69mz59+hASEmJ3zri4OBwcql6gtmrVCp1Op00J9PjjjxMQEMDBgwfp168frq6u5OTk1LjuK1eusH79eq5eXdpSXsmVQiuW8kqganWdq6cdqs22bdtITEykR48ehIWF3dxDq6fklbcQQgghNJbySgotFZiNDkyfPp158+ZhtVo5cuQIiqJgsVjYvXs358+fx8nJiUuXLmnHduvWTQuXBoOBtm3bcvz4cUaMGMHKlSs5efIkzZo1w8HBgfLyciwWC6qqaiFUVVXi4uIAcHR0pEGDBgAYjUYA3N3dGTVqFA888ACbNm3i3LlzzJ8/n1atWtl9u9m7d29Onz5NgwYN8GgZweK9CWw7k4FNrVq9Z2CoD7/r1YKIAM/rPotPPvkEgBkzZtyhp3vvkkAphBBCCA4n5dQIXu0aKjz46AwORX3Dxo0b6dOnD23atMHFxYW8vDxKSkpYtWoVer2ekSNH0r59e7tpiTp37syRI0ewWq2EhoYSFRWFyWTCbDbToUMHoqOjMZvN9OzZE6gaAFNQUABAkyZNtH6qA6XFYsFsNmM2mxk7dizvvfce/v7+5OTkcPz4ca19s2bNaN26NR9s+pH9MeXodQq2fxcrbSpsj80k6nQGb40K49Gu/rU+j4yMDDZu3IiHhwcPP/zwHX3W9yIJlEIIIUQ9F3kgmT9vOIXuP4LX8axKVO9BPP3Ph9i3fC5RUVHs3r1bO85gMDBz5kymTZvG8ePHKSkpoaioSNvfqFEj/P39OXLkCKNHj2bevHmUlpYyffp0fHx8KC8vZ/v27ZhMJjp06EBcXByOjo6Ul5cTFBSk9XN1oKzm5ORE27ZtOXv2LLNmzSIuLo5du3YBVdMVdRz8MPsrqsJipe3nV99X/359/Sla+5hrrVQuWbKE8vJyGYxzkyRQCiGEEPXY4aQc/rzhFCo1g5eKDuuls/x5yYeUZSTQqVMnpk2bxpEjR3Bzc+P06dMsXbqU/Px82rZtS4MGDWpMnB4REcHatWs5fPgwNpvN7rvOvn37UlxczLfffovJZCIuLg5XV1dyc3PtRl8bDAag5ujtjh07cuTIEeLj4/H0/DkU+vn5seLIZRTc7JaE/E86ncLivYk1AqUMxrl1EiiFEEKIemzx3gR0OqVGmASwpsWS8eVrqBVWAjs/wG8nj2Tt2rUcOnQIi8WCo6MjRqORlStXsnbtWv7whz9gNBrtvots06YNRqORffv20alTJxITE3n//feJj4/n4MGDXLlyBVdXV9asWUPnzp1p3bo1iqJQUVFBUlISNptNC5IXLlzAarVis9mw2WxUVlbi5uZGdHQ0qamp2nU7GpxJLnCn5h3Zq7SpRJ1Jx1JeidFRr/09OjqaCxcu0LNnT+677766P+R6QAKlEEIIUU9Zyiu1byb/k6qqZG+Zj1phBZ2exKO7eO5wNO7u7oSHh+Pv709ZWRmnTp0iNzcXq9XKu+++ywsvvMDf//53VFXFZrPZTd/z448/EhMTw65du3B0dKRjx460b9+eK1eucPToUU6dOkWfPn3o168fS5curXFN15uUPSEhQds+cy4e1SPkmm2vZlOh0FJhFyirB+NIdfLmSaAUQggh6qlCS0WtYRKgPCOB8qyUqh+qDWwq7TtFMHrEcDw9PQkMDESn06HT6XjppZc4fvw4ZWVlrFy5ko8//hiz2QxUTY5eUlKC1WolLS1NC5PTp09n5syZGI1GdDodCxcu5P3332fXrl34+/vz7rvvav1X7+/SpQs9evRAp9Oh1+vR6XSUlZXx3nvvaVMLAfg380UpVq/7uruaTgGz8ec4lJmZyfr16/Hw8GDcuHG3/3DrGZmHUgghhKinzEYHdNfIXOW5aVf9UlAcjTw09mFUVaVdu3YMHTqUoUOHMnjwYKZOnaq1TEpKori4mO7du5OXl0d+fj6TJk3C19dXW+bw6aefxtfXl4sXLxIUFIS3tzcuLi4MHjwYgK+++oqioiIaNmyIh4cHbm5uODs7o6oqRqMRJycn9Ho9iqJgMBgIDQ0lLe3n602MP4e/Pg/dDV5663UKg0Ib21UnqwfjTJkyRRsMJG5MAqUQQghRTxkd9QwM9UFfW6pU7COCW7MgDI5Vf9uxYwf/+Mc/WLNmDUePHqWkpMSu7ZYtW/jpp584dOgQQ4YMoXnz5hw/flz7FvLpp5+md+/eHDp0iIyMDM6dO4eiKHTp0gWoGnzzzDPP2A3CMRqNdqO8oaqauHXrVmJjYykvL9f+Hh4ezuQuzbDd4P5tNpVpvQK13zIY5/bJK28hhBCiHpvWqwVRpzNq/N3BrZG27ejTgmeefpaS4gwUReG+++7DbDZz8eJFvv32WzZv3mx3bEJCAt9++y3t2rUjIiICgO3btwPg7e1NcHAwgYGBHD9+nM2bN+Pk5ETjps1JupSBh4cHubm5HD58mFWrVjFp0iQcHBwwGo1YrVbKy8s5c+YMP/74IxcvXsTBwQGbzT46urm5kXpsF8O8W7L5ihkFFfWqGppep2Czqbw1KsxuhPeOHTuIj4+nV69ehIaG1v3h1iNSoRRCCCHqsc4Bnrw1KgwF7CqVTo2D0btWhS1bVjKPjR6IqqqEhIRw/vx5Dh06ROPGjXnsscdITk626zMvLw+9Xk+TJk3Iz88nLS2Nc+fOAdCwYUMKCgrQ6/UMGzaMw0k5fHJG5W/xjVhZEo7Vu2q6oCtXrnDmzBnWrVunBcaLFy/yz3/+k/Xr12t9KIpCjx49CAz8udK4b98+wsPDaWZJZHKTLFo4FaP8+/W3ToGBbXxYM6N7jUnNZTDO7ZMKpRBCCFHPPdrVn9Y+ZhbvTeT705dRUdApCsH9Hubstx9TWVHO6NGjGTVqFCNHjkSn03H48GF++OEH3nzzTTIy7CucAQEBNGzYkO+//56tW7eSmZmp7XN3d+fo0aP07duXfZl6Npe1+ncFsYq+gbfWNsfoS2xsLP/85z8pLi5Gp9PRpEkTMjIyKCkpoXv37nTv3h2TycSOHTvszl/9naWProjnOnpQbCklv8TKY48+YvfNZLXq9b9lZZzbI4FSCCGEuId98cUX2vZPP/2kbW/btk2bu9HHx4eBAwcSEeDJok8/w1KpkJ+VTuR0DXEAACAASURBVLenR/OvihS2bdvGTz/9xOXLl9Hr9TRv3pzMzEy++uorjh07BoCLiwvFxcW4uLjQv39/fve732GxWEhISGDBggXaeV1cXNi7dy9JxXrm7C0AFLvR2HoXd2173aF4xncJwKe4SPuGMjMzk65du9KjRw9MJpPW9urvOMPDwzl69Cg9e/Zk79699OvXj/j4eEoK82sNkwBLly6lrKxMG3kubo0ESiGEEOIeNnny5Fr//te//lXb7tOnDwMHDgTAUQcNXIzkZ5TTsmVLevXqxdixY/n8889JTExk7ty5lJaWYjKZ8PPzY/r06dx///3aefr3709hYSGXL1+mSZMmhIaG0qJFC+1cgYGBVFZWsuSH5H+vZFP19Z2qqhT+uIm8PSt/vsjyUi6ZW+NrOYbFYkGv1zNr1ixcXFyAqrBc2/2NHTvW7vecOXPo0qULv/3tb6/5nD799FNAXnffLgmUQgghxD1MVW+0XkxNzs7OKIpCTk4OXbt2Zf/+/QwaNIiIiAiOHDnCmDFjCA8P1/rv3bs3AK1atWLcuHEkJibyySefEBISwv33309paanWd9u2bTGYXEmJd9cqk+V56WR/9wHWi6fsrqOyzMqJbJXf9elCetpFUlNTSUhI0M59rbBcG51OV2PpxmoxMTGcP39eBuPUgQRKIYQQQtjR6XQ0atSItLQ0Bg4cyA8//ICzszPDhg2jvLyc9evX4+LiQosWLXj77bfZu3cvXl5ePPXUUwQHB5OcnMyIESPYu3cvn3/+ObGxsVrfZWVltO/WETU+9eeq5K5loNPh5NuKsktnf74ORwMqCl169uHi+dOkpqayfv16nJ2dCQ4OJj8/Hzc3N4YPH86cOXNwdnZm+fLlFBYWMnXqVFasWEHHjh3p3LkzsbGxnD17trbbpV+/frcVvMXPZJS3EEIIIWrw9fXl0qVLODk5odPpsFgsFBYWMnz4cAIDA1m9ejWLFy9m9uzZmM1mXnvtNVxdXXF1daWiooLWrVvz1FNP8fDDD6PX//zdYlpaGi0Dm6Ogkr93JbnbP8bQLBTfJz7EObCj3TUoTs7aSjbOzs5A1YCb1atXc/78eSIjIwEYMmQIHTt2RFEUjEYjPj4+ZGZm4u7uzgMPPEDr1q1p3rw5ZWVlEhzvEgmUQgghhKihadOmZGZmkpCQQEVFBU5OTuzZswe9Xs/DDz9Meno6M2fOxGQysWLFCgICAlBVVfu+sbi4GEVRCA0NtXs1vW/fPj7+aAF+ujxAxXPoc/iMfxOHq0Z3V3N086aHnytGRz0GgwGAwYMH06hRI7788kuKi4sBMJlM2Gw2tm/fTlBQEG3atOHUqVM4OzvTpEkTAAwGA6qq2k2ALu4cCZRCCCGEqKFp06aoqsqxY8cwm8306tWLo0ePkpeXx969e/n4448xGAxMnz6dAQMGoCgKqqri6uoKQFFRkdZXWFiYtl1QUIDJZOI+hwzcek3E3G7QNa/BwcufBpePsHXrVhwdHYGqVXQUperbS53u5xhz9OhRsrOzGTBgAB07dqS0tBRfX1+tbXUgLSsru0NPSFxNAqUQQgghavD29kav15OYmEirVq3o0qULzs7OfPjhh4wYMQK9Xs8f//hHGjVqxKpVqwBqVCgBcnNz2bdvH56entrvyspKfHRF9HS6CKgotSySqDd78c6jffjtsF4cOXKEjRs3AvD999+TkZHBuHHjcHCoGgpSUlLCzp07adu2LQ0aNNCm/bk6PDo5OQFcc2COqBsZlCOEEEKIGvR6PV5eXmRkZNC6dWucnJwwm828+uqrODo68uSTT/LCCy+Qk5OjDYRxcnLi+eefZ/fu3QwePJiYmBj27duHyWSid+/erF+/noyMDMxmMxaLhUe7BeB+MJbTFY1IsXlgs/xc1Rz4QF8e7RYABODv78/q1asBuHTpEhMnTiQ4OBhvb29+//vf880335Cfn09iYiJZWVkAODg40LRpUwoKCpg5c6ZWoZRAeXdIhVIIIYQQtaquAAYEBHDgwAH++Mc/otfrmTx5Ms8//zwuLi40b96csWPHkpubS2FhIefOnSMjI0MLk82bN6e8vGpOy+rK4f79+7VX2D66Ivo7JRD9ZDsaF57Xzt23W4T2vaOPjw9+fn5AVRX0+PHjWCwWGjZsCFStE37hwgWee+451q9fzwsvvED//v3JyMjg97//PZ06deLSpUuABMq7RQKlEEIIIWpV/R3k/v37GTJkCEVFRdq8kocPH2bnzp3s3LmT9PR0SktLOX36NOfPn0dVVXQ6HQ4ODqSkpBAWFsYrr7zC3LlzAVi9ejWqqtqt3HMxKYHEhHjtd1xcHP/617/Yt28fUVFRnDhxAr1eT9u2bYmPj+fjjz/m4sWLALRs2ZKnn36a++67jwcffBAvLy9eeukl/vGPf+Dh4cHp06cZN24cpaWl8g3lXSKvvIUQQghRQ15eHvn5+ZSUlPDggw+Sn58PQFRUFADLli275rHu7u5YLBY6derE/fffj5ubGwDPPPMMKSkpzJ07l7/85S+0b98eb29vsrKyeOedd6ioqND66N27N15eXkRHR6OqKkFBQWRkZODh4cGTTz7J2rVrWbJkCbNmzWLUqFF4e3vz9ddfU1lZicViITg4mGbNmrF3715Wr15NQkICe/bsYeLEiXfxqdVfUqEUQgghRA1nz57VRlFXh8mbpaoqDRs25MEHH9TCZLVx48bx+OOPExYWRmxsLJs3byYuLo5WrVrZLY2Yk5NDkyZNUFUVX19fkpOTKS4u5vz58zg6OvLYY4/h6emJh4cHSUlJNG/enGHDhnHmzBnt+8mgoCC6du2K2WwG4NixY3ar9og7RyqUQgghhKjh7NmzBAYGoqoq//jHP1BVlenTp+Pu7o7NZuODDz7AarVSVlaGg4MDFRUVGAwGfve73xEZGUlOTg4ZGRn4+PjY9RsXF0f37t3x8/PDZDJRWlrKE088weLFi8nMzNTaJSYmUlRURNeuXRk8eDDFxcV8/PHHpKen869//YuWLVuSnZ1Nr169OHHiBIsWLWLkyJGYzWYKCws5fvw4HTt2pGPHjjRq1IjCwkJKS0s5d+4cXbt2/aUf5z1PKpRCCCGE0JTbILe0gvjEZFq3bk15eTklJSWMGTMGd3d38vPzWbNmDYWFhdr3iOHh4URERGAymWjYsCEdO1ateLNixQq76qbFYiExMRG9Xo+rqyslJSW4u7vTtGlT/Pz8SEtL09oWFRVx3333MXjwYBRFwdXVlcaNGxMUFES3bt04c+aM1ucjjzyCn58fq1atorCwED8/PzZt2kRsbCwdOnTAZDJp/WZkZPwSj7HekUAphBBCCA4n5TDjiyP8PcGHOSeMRFo6MPdAPkeScwHw8PBgx44dzJs3T1sT22Aw0Lx5c0aMGIGzszM2W9V8km5ubqiqiqIorFixAovFAkB8fDw2m4309HQCAwMBtP8jIiLIy8uzu6YWLVpoE5MDGI1GysvLtVfh7du35/Tp0yxevBij0Ujr1q2BqnkpW7Rowdq1a8nNzdXmxgQosFRgKa+8G4+wXpNAKYQQQtRzkQeSGffxfrbHZqJSFeBUFA6llbK5rBVxFd58/PHH7NmzB5vNRlhYGM8++ywjR47k4sWLJCUlaSvlANpqOSNHjqSwsJBVq1ZRUVFBXFwcbm5udssftmnTBoDQ0FBtmiKAhg0bkpiYaHedBoMBi8VCdHQ0QUFBXLx4ES8vLwYMGMCFCxeIi4vDycmJyspKkpOT8fDwYOXKleQWWbQ+PkvxIHT2VmZ8cYQjSTl354HWQ/INpRBCCFGPHU7K4c8bTqEClTbVbl91uNxf4YeHtZQ+oUEMHDhQW/XGw8ODxo0bExMTo31vCWgVQYPBwCOPPMLy5ctZt24dFy5cwGAwEBISos0LWT2/ZE5OjlbhBGjWrBkXLlzAZrNpg4OMRiMFBQWUlJTw0EMP0a1bN4xGI3FxcURERPDuu+8CVavxuLu7k5WVxdlKb86dPweAzuSGg2dTbCpsj80k6nQGb40K49Gu/nfj0dYrUqEUQggh6rHFexPQ6ZTrtlGABEd/xo8fr4VJAEVR6NevHykpKeTl5WmBsDpQFhUV4efnx9ixY4mNjaWsrIzCwkI6dOhATk4Obm5uODk5kZubS2RkpDbxOVStJV5aWqoFT6iaaL2kpIR27drRuHFjAM6dO0dCQgJZWVmUlZUxbtw4RowYgaIoZNhcifrxHKq1BADXdoO1V+iVNhUVeH39KalU3gFSoRRCCCHqKUt5JdvOZPAfhckaVBTOFhvZsWsPzk4OKIqCTqfT/vfw8ODs2bNUVlZy8uRJ7bj4+HgURcHBwQEvLy+ysrJwcnKioKAAVVXx9vYmPj6eb7/9FkVRaNmyJVu2bAGqqpsGg4FTp07h7u6OTqfTJjLv2bOnNmelqqo89thjvPLKKzg5OREQEIBer6ddu3YMfXUxuTs+B8ChYTPcuj1U4950OoXFexOJCPCssU/cPEWtrk8LIYQQol65Umil81+333T7KeZYnJVyVFXFZrNp/9fFiRMntO3Y2Fji4uIAuP/++/Hy8gKqvskMCgqqceyXX36pDRBydXWlbdu2+Pj4oKoqySkXOXbiBFRW4NQkBO/Rr+DQwLvWa9ApcOaNIRgd9XW6l/pMKpRCCCFEPWU2OqBTuGGFEkBB5TeDHqBrRIca+2w2G/PnzycvL4+XXnoJgMWLF+Pn50e/fv1ITU3lq6++QlEUAgMDSUhIAMDb25tvvvmm1vPt2bNH246IiGDgwIGkpKRQUVHBkCFDMBqNjBgxgvj4eLZt28b27duJjY3l8OHDVdMMmc2YgrpgCu2NqWV3FN21w6JNhUJLhQTKOpBAKYQQQtRTRkc9A0N92B6bWWNAztUUbPjp8vjp2GU6tgvD0dHRbr9OpyMkJITDhw9z4cIFQkNDMZvNWK1WXF1dSUlJQVEUWrVqxdixY3n77beBquUd09LS8PX1tevv4MGDREVFMW3aND755BMGDhzI9u3b6dy5M4cOHaJFixZ4e1dVGzt06EBISAhNmzalbdu2pKWlkZ2dTYWq8IW1ozaw6Hp0SlW4FrdPBuUIIYQQ9di0Xi2w3aBEqaLjPodMLl26xNy5c9m9ezdWq9WujaenJ4qiEBMTg81mw8XFheLiYlRV5dSpU6iqSkREhN1qOI6OjtoUQ1dr164der2ec+fO4ePjw8GDB3Fzc6N9+/ZA1WCfxMREoqOjWbx4MRs2bAAgNTWVgIAAHn74YV558Y8Muq8x+hvkSb1OYVBoY6lO1pF+zpw5c37tixBCCCHEr6OpuzNeZgMxcZnodQpXj6zQ6xRQ4S+jwujl70piYiI2m42kpCQOHjxIeXk5jRs3xtHRkUuXLpGQkEBxcTENGzbEarWSkZFBYGAg+/btw9XVlaFDh7JixQqKi4vp3Lkzubm5xMbGEh4ebjcHpYODA3l5eZw6dQpfX18uXrxI9+7dyczMJCUlhVOnTnH8+HGysrJo0qQJBQUFhIeHM2XKFFq2bIm3tzeOjo7oLAVsis2B61UpVXhnTDi+7s537yHXAxIohRBCiHqubTN3egV7kV9aTkJWESpV30xGNHbiX5O6MCSsCQ4ODhw9epSxY8ditVrJzs4mJSWFgwcPYrVa0el0JCYm0rJlS86cOUPz5s05n5BEaaWOtNSL3N+rJ7GxsZw7VzUn5OTJk2ndujUHDhwgOTmZsLAwbb5JqJqS6Mcff9Tmp0xKSuLy5cvaxOpjxoxh4MCBeHt7c+DAAQYMGGA3pVFGRgZb1q7EyWYl1eZ+zbD81qgwhoQ1+aUe9T1LRnkLIYQQQmMpr6TQUsHmDWuxlVuZOnUqCxYs4OWXX6a4uJiPPvqImTNnkpSUxNatW8nIyNDmdlRVlUmTJvHPyA2kurTkZK6CioKCSnsvhcb5Z9i0ZB6pqakA2oTokZGRhISEEBYWRkJCAomJieTm5mrXpNPpaNeuHcOGDeOvf/0rQ4cOpXPnzgD88MMPxMTE8OKLL2pVztzcXBYvXkxpaSmtWrWiRdcBfLY3iagz6djUqm8mB4U2ZlqvQJku6A6RL1CFEEIIoTE66jE66mkXFsqSJUvo3bs3e/fu1fZnZ2cDEBAQwIwZMzh16hTbt2+noKAAgNeXR7G/vBVKGXbLOB7PspF/+Dy5/w6TAGlpaZSXl2M2m4mLiyMuLg4vLy9CQkIICAhg06ZNlJSU4O/vT1ZWFg4ODhiNRrvvN+Pj4wkMDNTCZGFhIcuXL8dqteLh4cHo0aNxcnKic0BDLSybjQ7yzeQdJoNyhBBCCGFHVVV27NjBokWLOHbsGN26ddP2XblyRdtWFIXw8HCeffZZQkNDybC5sr/cj6oX5vbfLZbnZ5G35wu7v23bto2ffvoJPz8/wsLCgKopgoYOHUpRURElJSU4OzujqiqpqamUlpZiNBqxWKrW5i4rKyM5OVmbo7K0tJTIyEiKiorQ6XRMmDABJycn7XxGRz3eZoOEybtAKpRCCCGEsPPGG2/wxhtv0LZtW6ZMmUJhYSEHDhwAID8/H6vVisFg0No7ODgQEhLCguNWdIpS67yW2d9/iFpuxTkogtILRwAYNWoUI0eO1F6Zm81mtm7ditFoZOfOnbRv3x6z2cyBAwdQVZWEhAS7QFk9SCg4OJiysjK+/PJL8vLyqKioYOzYsdrUQuLukwqlEEIIIWpYvHgxy5Yto6ioqMYUQVevr12trBJSbO61hsmi0zFYEn7EHDECp8Yh2t/d3d21MAkwcOBAwsLC2LBhA1arlb59+9KpUycqKipwdXUlPj4eg8GgXU98fDweHh64u7uzZs0aLl26RGVlJV26dNEqnuKXIYFSCCGEEHZmz57NE088QatWrdDpdGRlZWn7HB0dSUtLq3GMpZJaJxGvLC0gN3oxejcf3O9/1G7ff44LVhSF/v37a7/Lyspwc3OjVatWVFZWcuHCBQwGAxaLBVVViY+PJygoiPXr15OQkIDBYMDX15dBgwbV9RGIWySBUgghhBB2qquGzs7OtGjRwu67yYYNG9ZaoXRx0qFQszyZu/1TbCX5NBz8FDono92+zZs3Ex8fbxcs9+7di8FgwNPTkxUrVlBYWEhERASlpaUUFhYCYLFYyMnJIS8vT5uvsvr19sMPP4xeL99I/tIkUAohhBDimkJDQ8nLy9N+e3l51VqhNDrq8dPlVc3v+G+lCT9SfDoGU2gfnFt0AuCqN9xkZ2ezYsUKFi1aRGxsLJmZmRw7dow+ffrw6KOPoqoqK1asoGnTptpKPCUlJVgsFuLj41EUhfj4eEJCQsjMzGTs2LE0aNDg7j0McU0SKIUQQghxTa1bt7b7ztHLy4uCggKKiors2imKwn0OGdoyjrYyC9lbP0Tn3ADPAdO1dle/5Q4JCUGv15OZmcnq1av59NNPMRqNdOzYkQYNGjBp0iTy8vJYvXo1ERERqKpKfn4+xZYydh08SrkN2rdvz/nz5+nXrx8tWrS4uw9DXJMESiGEEEJck7OzMx4eHtpvLy8vgBpVSp1Oh4+uiNeHtUQB8ncvp7IgE4/+T6A3uaFgA1T6t26kHdO9e3deeOEFBg0ahMlkoqKigtLSUubNm8eRI0do2LAhEyZMICUlhdTUVDJVM+uzvFmYFcJHl/34wtqRD44U49S0Db169folHoe4BgmUQgghhLiuq6ffcXFxwcXFpUagrK5iju/oy5yuThT8uAljQHtcwx9AAfx0ebzZ24O2zdztjjMajXTr1g13d3c8PDxo1qwZxcXFfPfdd8ydO5eUlBRGjBjBup+u8J21JSk2N7sJ05MqGvDJBRdWHEq5uw9BXJfMQymEEEKI66quSkJVcGzatGmNgTnVgdJqtfLen/+Ao4Oef732LKPHDWDzhrUkXUhgdK9RvHdwW43+Y2NjuXTpElOmTCEwMJDs7Gx2797NqVOniImJ4QoN2F8RQm0Tplf/fn39KVr7mGUpxV+JVCiFEEIIcV2Ojo52v319fbl06ZLd6GydripSvP/++5w8eZJ+/frR9r5QvM0GrqRfwmAwYDaba/RdWVlJdHQ0wcHBBAYGAlUjyUePHs2LL75I3759OV3hU+sI8qvpdAqL9ybW9VbFbZJAKYQQQoibVlpaStOmTSktLSU3N1f7u6IoZGVlMXfuXEJCQggPD8dms3H58mUyMzMxmUxkZWVRUlKiHZOfn090dDQXL16kQ4cONc7l5ORE1x69SK50Q71BZKm0qUSdScdSXnnnblbcNHnlLYQQQoiblpycTJ8+fYCqgTmenlWvmBVF4eLFi1itVs6fP897773He++9Z3fsrFmz7H6PGjVK2547d26Nic4BLmfl1rr6Tm1sKhRaKmSt7l+BBEohhBBC3LSkpCRMJhMeHh6kpaURHh4OVL3yDg4OZu3ateTl5bFz507GjRvHgQMHSElJYezYsbi4uLB8+XIiIyMBmDFjBlarlVGjRuHi4lLjXCUlJWxYuxoFv1pX4flPOgXMRok2vwZ56kIIIYS4aRkZGRQXF2vfUVZTFAWz2UyfPn2Ij4/n0qVL/OY3v+HcuXOYTCZGjhwJVK2EU62iooJJkyYxYMCAGuexWq2sWLGC8tJiIpo4ceSy9bqvvfU6hYFtfKQ6+SuRbyiFEEIIcUtiY2Np2rQply9fxmazAT+P8q6efNzNzQ2bzUZhYSGNGjWqtR+9Xl/r/JEVFRV89dVXZGdn07lzZ7yzT96wQmmzqUzrFVjHOxO3SwKlEEIIIW5akyZNOHPmDE2bNqWiooLMzEzg50Bps9m0QJmQkABAcHBwrX21a9cOo9F+fW+bzca6deu0gTq7du1iaERL/jIyDAXslnbk378V4K1RYTJl0K9IXnkLIYQQooYvvvhC2/7pp5+07fT0dM6ePUtpaSkJCQmkpaXRuHFjbdqg6gqlt7c3J0+eBCAnJ0fr7+q+Ll68qP29bdu2hIeHs2nTJuLi4mjXrh0HDhyga9euDB48GEVRaN24AYv3JhJ1Jh2bWvXN5MA2PkzrFShh8lemqLUNqRJCCCFEvXb1+t3XEhISwnvvvcfw4cO5dOkSn376KTNmzGDFihV06tSJEydOUFRUxLZt29i1a9d1+5o9ezY9e/bkhx9+oE2bNsTGxtKrVy/69+9f41os5ZUUWiowGx3km8n/ElKhFEIIIUQN16s3RUZGoqoq7u7u2hKM1aGvvLycoqIiGjRoQH5+Pj4+PuzcuVPr87PPPkNVVaZNm2YXFPft28f27dsJDAwkNjaWfv360bt371rPb3TUS5D8LyPfUAohhBDiloSGhpKUlISXlxeZmZmUl5drr7yLi4uBqlHaqqoSFBSkHXfmzBnS0tIYMGCAXZg8evQo27dvx9fXl8TERAYNGnTNMCn+O0mgFEIIIcQtad26NQAWiwVVVbl8+bIWEAsLCwFITU0FoH379sDPSyyGhIRoSyxCVcjctGkT3t7e2lRD3bt3/yVvR9wBEiiFEEIIcUtcXFwICAggNTUVBwcH0tLSagTK9PR09Ho9Xl5eAPz444/k5eXZzTmZkJDAunXrcHNz48qVK4wcOZKIiIhf/oZEnUmgFEIIIcQtq37t3ahRIy5duqQFyqKiIkwmE3l5edqyjFarlV27dtGuXTttTsrU1FRWrVqF0WgkPz+fhx56SKtmiv89EiiFEEIIccvatGkDgMFgIC0tTfuGsrCwEJPJhM1mo0WLFkDVgJuysjL69esHwJUrV1i5ciV6vZ7S0lLGjx/Pfffd9+vciLgjZJS3EEIIIW5Z9Wvv4uJicnNzsVqtQNWgnMrKSqDq+8mCggL2799Pt27daNCgAXl5eURGRlJRUYHNZmPixIl2A3fE/yapUAohhBDitoSGhnLlyhWgao1vqAqUFosFnU6nTRnk6OhIz549KSoqYvny5ZSWlgIwefJkCZP3CAmUQgghhLgt1a+9HRwc7AKl1WrFw8ODK1eucPz4cfr06QNUzV+Zn5+PTqdjypQp+Pv7/2rXLu4sCZRCCCGEuC0uLi74+/vj+P/s3Wd4lGX69/HvzGRSJp2QAimkkkYzdKRJlaZYAHVFqbqIurq7ulh2bWtbXfVZlT8CojQVUYSll4CUUKRDSIBMGgRCSCEhdZKZuZ8X2dwm0jFhQnJ+jsPDycw9M2eGiL9c5bz0evVMb4vFgtVqJTg4mPj4eDw8POjYsSOLFy8mNzcXe3t7JkyYQEBAgI2rF/VJAqUQQgghblpMTAzl5eVkZ2fXud/b25uTJ09y11138f3335OVlYWjoyOTJk2iVatWNqpWNBQJlEIIIYS4adHR0Wg0GnVdJFQfw3j48GFat27NsWPHSE9Px2AwMHnyZLy9vW1YrWgoEiiFEEIIcdNcXFzw9/cHwKxoKFfssHdyJjs7G0dHR06cOIGzszNTp07Fy8vLxtWKhiJtg4QQQgjxu+hbR7E5zYFTVg8UNGhMCqEOJeQYzxDq6swTTzyBm5ubrcsUDUgCpRBCCCFu2sLdmby2rRBwR6H6tBwFDWkmZ1KJ5B/d2kqYbAZkylsIIYQQN2VvRgH/WJGIAii/iRTVX2t4a20K+zIKbFKfuHUkUAohhBDipszdkYZWq7nqNVqthrk70m9RRcJWJFAKIYQQ4oZVVFnYmJSDxapc9TqLVWFD0jkqqiy3qDJhCxIohRBCCHHDiivMXCNLqqxK9fWi6ZJAKYQQQogb5upoxzVmu1VaTfX1oumSQCmEEEKIG+ao1zE4xhfdNVKlTqthSIwfjnrdLapM2IIESiGEEELclCm9Q7FeY97balWY0jvkFlUkbEUCpRBCCCFuStfgFrw1uh0AGuoGS51WgwZ4a3Q7ugS3sEF14laSBQ1CCCGEuGmPdm9D5uGdJOQ5crzEHqtSvWZycLQvU3qHSJhsJiRQCiGEEOKmVVVVoZxP5e8DB3JHl24UV5hx/3ZjIwAAIABJREFUdbSTNZPNjARKIYQQQty0jIwMLBYL4eHhOOp1EiSbKVlDKYQQQoibZjQacXd3p2XLlrYuRdiQBEohhBBC3DSj0Uh4eDgazXU2pRRNkgRKIYQQQtyUgoICCgoKCA8Pt3UpwsYkUAohhBDiphiNRrRaLSEh0meyuZNAKYQQQoibYjQaCQoKwsHBwdalCBuTQCmEEEKIG2Y2m8nIyJDpbgFIoBRCCCHETcjMzKSqqkoCpQAkUAohhBDiJhiNRlxdXfHx8bF1KaIRkEAphBBCiBsm7YJEbRIohRBCCHFDCgsLycvLk+luoZJAKYQQQogbYjQa0Wg0hIaG2roU0UhIoBRCCCHEDUlNTSUwMBBHR0dblyIaCQmUQgghhLhuFouFtLQ0me4WdUigFEIIIcR1O336NJWVlRIoRR0SKIUQQghx3VJSUnB2dsbPz8/WpYhGRAKlEEIIIa5bamqqtAsSl5BAKYQQQojrcvHiRXJycmS6W1xCAqUQQgghrktqaqq0CxKXJYFSCCGEENfFaDTi7++PwWCwdSmikZFAKYQQQohrslqtpKamEhYWZutSRCMkgVIIIYQQ15SVlYXJZCIiIsLWpYhGSAKlEEIIIa7JaDTi5OREq1atbF2KaIQkUAohhBDimoxGI+Hh4Wi1Eh3EpeSnQgghhBBXVVJSQnZ2tqyfFFckgVIIIYQQV5Wamgog/SfFFUmgFEIIIcRVGY1GWrVqhbOzs61LEY2UBEohhBBCXFFNuyAZnRRXI4FSCCGEEFd09uxZysvLJVCKq5JAKYQQQogrMhqNODo6EhAQYOtSRCMmgVIIIYQQV2Q0GgkNDZV2QeKq5KdDCCGEEJdVVlbGmTNnZLpbXJMESiGEEEJclrQLEtdLAqUQQgghLstoNOLr64urq6utSxGNnARKIYQQQlxCURRpFySumwRKIYQQQlwiOzub0tJSCZTiukigFEIIIcQljEYj9vb2BAYG2roUcRuQQCmEEEKIS9S0C9LpdLYuRdwGJFAKIYQQoo7y8nKysrJkultcNwmUQgghhKgjLS0NRVEkUIrrJoFSCCGEEHUYjUa8vb1xd3e3dSniNiGBUgghhBAqaRckboYESiGEEEKozp8/T3FxsQRKcUMkUAohhBBClZKSgl6vJygoyNaliNuIBEohhBBCqFJTUwkJCcHOzs7WpYjbiARKIYQQQgBgMpk4deqUTHeLGyaBUgghhBAApKenY7VaJVCKGyaBUgghhBBA9fpJLy8vPD09bV2KuM1IoBRCCCGE2i4oLCzM1qWI25AESiGEEEKQl5dHUVERERERti5F3IYkUAohhBACo9GInZ0dbdq0sXUp4jYkgVIIIYQQGI1GgoOD0ev1ti5F3IYkUAohhBDNXGVlJZmZmbJ+Utw0CZRCCCFEM5eRkYHFYpH1k+KmSaAUQgghmjmj0YiHhwctWrSwdSniNiWBUgghhGjGFEXBaDQSHh6ORqOxdTniNiWBUgghhGjGCgoKuHDhgpyOI34XCZRCCCFEM2Y0GtHpdISEhNi6FHEbk0AphBBCNGNGo5GgoCDs7e1tXYq4jUmgFEIIIZqpqqoqMjIyZLpb/G4SKIUQQohmKjMzE7PZLIFS/G4SKIUQQohmymg04ubmhre3t61LEbc5CZRCCCFEMyXtgkR9kUAphBBCNEMXLlwgPz9fprtFvZBAKYQQQjRDRqMRrVZLaGiorUsRTYAESiGEEKIZMhqNBAYG4uDgYOtSRBMggVIIIYRoZsxmM+np6TLdLeqNBEohhBCimTl16hRVVVUSKEW9kUAphBBCNDNGoxEXFxd8fX1tXYpoIiRQCiGEEM2MtAsS9U0CpRBCCNGMFBUVkZubK9Pdol5JoBRCCCGaEaPRiEajkXZBol5JoBRCCCGakdTUVAICAnBycrJ1KaIJkUAphBBCNBMWi4W0tDSZ7hb1TgKlEEII0UxkZWVhMpkkUIp6J4FSCCGEaCZSUlIwGAy0atXK1qWIJkYCpRBCCNFMpKamSrsg0SAkUAohhBDNQHFxMefOnZPpbtEg7GxdgGh4SUlJzJs3j/Xr16vrZ/z8/AgODqZv374MGzaM7t2727pMIYQQDSg1NRWAsLAwG1cimiIJlE2Yoii89tprvPvuu/j7+zN27FgiIiIoKSnh559/ZuXKlWzZsoVVq1axb98+W5crhBCiARmNRvz9/TEYDLYuRTRBEiibsD//+c988sknjB8/ntmzZ+Po6Kg+9vzzzzN79myefPJJG1YohBDiVrBaraSmptKtWzdblyKaKFlD2UStWrWKTz75hA4dOjBv3rw6YbLG1KlTiYmJwcPDwwYVCiGEuFXOnDlDRUUFERERti5FNFEyQtkEKYrC888/D8CMGTOws7v8H7NGo+HYsWO3sjQhhBA2YDQacXJyonXr1rYuRTRRMkLZyOTm5vLqq6/Srl07XFxc8PLyolevXsycOZOqqqrreo2tW7diNBrRarWMGDGigSsWQgjR2BmNRsLCwtBq5X/7omHIT1YjsmfPHjp27Mjbb79NQEAA77//PjNmzKCwsJDp06fTu3dvcnNzr/k6P/zwAwBt2rTBzc1Nvd9qtVJcXNxg9QshhGh8SktLOXv2rOzuFg1KAmUjkZmZyahRo8jOzubPf/4z69atY/r06bzwwgvs37+fO++8k19++YX77rvvmiOVNTu2g4KCsFgszJ49m27dumFvb4+bmxsODg707duX+fPnY7Vab8W3J4QQwkZq2gVJ/0nRkCRQNhIvvPACubm5BAUF8c4779R5zMnJidmzZ6PRaEhISGDu3LlXfa3ExESgekRy8ODBTJ8+nc6dO/P999/z008/8cQTT7B7924mTJjAyJEjKSsra7DvSwghhG0ZjUb8/PxwcXGxdSmiCdMoiqLYuojm7uTJk0RFRaEoCq+++ipvvfXWZa/r06cPO3bsIDAwkMzMzMsenVVWVoazs3Od+5YvX869995b5761a9cyYsQIFEXhscceY/78+fX3DQkhhGgUFEXhww8/JC4ujoEDB9q6HNGEyQhlI/DDDz9Qk+uv9h/8oEGDADh9+jR79uy57DW/XSM5YsSIS8IkwLBhwxgzZgwACxYs4NChQzdVuxBCiPqhKAqffvopLi4uaDQafv755+t6XkZGBp999hkPPvggbdu2xcXFBXt7e3x9fenduzebN2/G39+/YYsXzZ60DWoEtmzZot6+4447rnhdXFycenvz5s306NHjkmvMZnOdrx988MErvt5DDz3E999/D8DixYvp1KnTddcshBCi/qSlpTFp0iS2bt16Q8/78MMPeeGFFwAwGAyMHz+e2NhYrFYrhw8fZuHChZjNZo4fP87atWuJiopqiPKFkEDZGNSseXR1dcXd3f2K1wUGBqq3r9Q/8rdrZNq1a3fF16sdIH/55ZfrqlUIIUT9URSFzz77jJdeegmdTkePHj3YvXv3dT8/Ly8PgFatWrF7926CgoLqPB4YGMh7771HRkYG99xzD4mJidjb29fr9yAEyJS3zZlMJs6dOweAr6/vVa+t/XhGRsZlr3F1da3zl8XVTsHx8vJSb58/f/56yhVCCFGP3njjDZ599ll69+5NYmIiQ4cOvanXef/99y8Jk+Xl5eh0Oh5++GEAUlJSWL9+/e+uWYjLkUBpY7XXPF7ueMTanJycLvu82rRabZ0pjd9OgddWez+WTqe7Zq1CCCHq39y5c1m3bl2dWajrFRAQQOfOnRkyZMglj6WmpqIoCnfddZd6X1JS0u+qVYgrkUBpY+Xl5erta01D1H78aq1+unXrpt7Oycm54nW1m6TLcVxCCHHrvfbaa0yePPmmn//000+zb9++y85wGY1GfHx88Pb2Vu+rPTAhRH2SQGljtf/jrqysvOq1tR83GAxXvO6BBx5Qb9c0Ob+cAwcOqLf79u2r3i4sLGTx4sVMmjSJO+64Aw8PD+zs7PDw8KBr1668/PLLnD59+qq1CiGEuLbLtX+rD4qiYDQaCQ8PZ//+/er9tUcrhahPEihtzNXVVb1dUVFx1Wtrj2bWft5vDR48WN2Ms2jRIq7UanThwoUAODg4MHHiRAB27tyJn58fjz76KF9//TUhISG8/PLLfPbZZ0yePJmMjAzeffddoqOj+fHHH6/vmxRCCHFLnTt3jtLSUgwGA59++ikAkydPpn379jauTDRVEihtzMHBAT8/P+Dq09O/fbxNmzZXvE6n0zFz5kz0ej2HDh3ivffeu+Sab775hlWrVgHwz3/+U+1RdvHiRUwmE1qtljVr1rBs2TJefPFF/vjHP/Lvf/+bEydOEBsbS2lpKY888gjHjx+/4e9ZCCFEwygpKSE7O5tVq1axa9cu7rvvPoqKinjrrbeYPXu2rcsTTZgEykYgNjYWqN5oU1RUdMXrsrKyLnnOlfTp04fFixfj4uLCyy+/zLBhw/j888+ZNWsW48aN49FHH0Wr1fLmm2/y17/+9ZLnT5gwgbvvvvuS+1u0aMEHH3wAVE/Bz5kz57q+RyGEEA3v6aefpnXr1jzxxBOsX7+e8PBwtm/fzquvvopWK//LFw1HfroagdprWq52Yk3tNY8DBgy45uuOGTOGxMREnn/+eTIyMvjb3/7Gn//8Zw4ePMjUqVM5fPgwf//73+s8x93dnc6dO9dZh/lbXbp0UW/LjkEhhGg8XnzxRVatWsXYsWN5/PHHSUtLo3v37gwePBij0Wjr8kQTJo3NG4EHH3yQV199FYD4+Hj69et32es2bdoEVLeJuNwpOZfTpk0bPvroIz766KPrur5nz55X3cgD1DkrXHYMCiFE4xETE6P++09/+hMAo0aNYtOmTXTv3p2dO3cSGRlpyxJFEyUjlI1AZGSkOiK4cOHCy+72Pn78ODt27ABgxowZDbYz8HrIjkEhhGi8jEYjLVu2xMPDAw8PD7755hv0ej0FBQVMmjTJ1uWJJkoCZSPx4Ycf4uXlRUZGhjpaWaO8vJwnnngCRVHo2bMnTzzxhI2qrF43WVNf+/btmTJlis1qEUIIUVftdkE1AgMD6d+/P1DdyePkyZM2qk40ZRIoG4ng4GBWrlyJr68vH3zwAcOGDWPmzJl8+OGHdOnShe3bt9OlSxeWL1+OXq+/ZXWZTCZycnJISkpi3rx5dO3alW3btjF27Fi2b98uU95CCNGI5ObmUlxcXCdQAnWmuRMTE291WaIZkDWUjUjPnj05cuQIn3zyCcuXL+eFF17A3t6eqKgoPv30U5588slbGiYBvv32W7VHJUBQUBDffPMNDz30kE2n3YUQorkrKytjzZo1xMTEqGsnU1JSsLOzu6S1nJ3dr/+7v9qRvELcLBmhbGR8fHx45513SEpKorS0lAsXLrBr1y6efvrpWx4mAYYOHcrGjRtZvnw5//rXv/Dw8OCRRx4hKiqKDRs23PJ6hBBCVDt//jxjxoxh5syZ6n2pqamEhITUCZBQHTRrBAUF3bIaRfMhgbKe9e/fH41Gc81/XFxcbF3qdWnVqhWDBg3i3nvv5YUXXuDgwYM8++yznDx5kmHDhvHdd9/ZukQhhGjW1q9fj8ViwWQykZmZecl0d1ZWltolxMfHh65du9qiTNHESaAUN0Sr1fLxxx8TGxuL1WrliSeeoKCgwNZlCSFEs2U0Gnnuuec4ceIEVqu1TqDMz89nzJgxmEwmAP71r3+h0+lsVapowmQNZQMYPXo077777lWvuZ1PLNBqtTzyyCO88sorFBcX88MPP9h057kQQtzOFi1apN4+cuSIenvjxo3qCWm+vr4MHjy4zvNcXFwIDQ0lLS2Nzz77jO+++4527drh5eWFg4MDR48eZfHixRQUFODk5MT777/P448/fmu+KdHsSKBsAO7u7kRFRdm6jAYlOwaFEKJ+jB8//rL3v/POO+rtfv36XRIoW7ZsidFoZPPmzaxcuZIVK1Zw8OBBdu7cCYCnpyft27dn4MCBTJgwgcDAwIb7JkSzJ4FS1LF27VoMBsMVT+upITsGhRCifiiKctPP1Wg0DBw4kI4dO+Lp6ckjjzxCREREPVYnxPWRQCnqmDZtGi4uLtccdZQdg0II0XgYjUZ0Oh3BwcG2LkU0U7fvQr7bRGVlJUVFRb/rN9D6UFFlIbfYREWV5ZrXJicnk5GRccXHrVYrCxcuVL8eMWJEfZQohBDiJhmNRoKDg23SXk4IkEDZIAoLC3n77beJiIjA0dERDw8P9Ho9HTp04JVXXuH8+fO3rJa9GQU8uWgfMa+to+s7m4h5bR1PLtrHvowr78y2Wq2MHz+ec+fOXfKYxWJh+vTp6sLxiRMn0r59+warXwghxNVVVVWRkZFBWFiYrUsRzZhGsfXQWRPTv39/tm7diouLC1OmTKFXr144OTlx/PhxZs+eTUpKCh4eHnzzzTcMGzasQWtZuDuTf6xIRKvVYLH++ses02qwWhXeGt2OR7vXPU3h3nvv5b///S8ABoOBhx9+mMjISPWc8SVLlqjnwE6cOJEvvvhCfiMWQggbSklJ4ZtvvmH69Om0bNnS1uWIZkoCZT3r378/mZmZbN68mZCQkDqPVVRUMGrUKDZt2oSDgwPbtm2jW7duN/weOTk5LF26lA0bNnDw4EHOnz+PXq+nVatW9OzZk4kTJ+IS0pGxX+zian+4GmDpkz3pEtyizv2JiYn89NNPbNu2jRMnTpCXl0dVVRWurq6EhobSq1cvHnvsMbp06XLDtQshhKhfa9eu5cSJE/zpT3+SI3GFzUigrGfnzp3DYDDg5uZ22cfPnj1LaGgoJpOJrl278ssvv9zQ6z/55JN8/fXXVFZWEhgYyLhx4wgPD6eiooK1a9eyfv16AMJ6DMHa9yms2ivvu9JpNQyO9mXWo51vqAYhhBCNx6effkpISAgjR460dSmiGZNAaQOjR49mxYoVABw6dIiOHTteck1FlYXiCjOujnY46n891cDR0RGTycSoUaP47rvvMBgMdZ43a9Yspk2bBoAhph/e97xw1Vq0Gkh64+467yGEEOL2UFBQwKeffsq4ceOafP9j0bjJphwbqD1VnJCQUOex69lE4+zszJdffnlJmAT4wx/+QLeevQAoS9qK6eyJq9ZiVaC4QvpICiHE7choNKLVai9ZYiXErSZ9KG3Ax8dHvZ2dna3err2JpmYPjVWBTcnn2XAsh7dGtwOgZ8+eeHt7A1BWVkZGRgbp6elkZGSQl5eHd61F2WUpe3Bo/eupNr+l1YCro/wYCCHE7choNBIUFISDg4OtSxHNnCQJG7Bareptna56qnlvRgH/WJGIAnV2ZFPr678vT+Ttz+YR6efG+vXrycjIUFv7tGjRguDgYPr160enTp1YvbJ6p7blYu4V66hZQynT3UIIcfsxm82kp6fTv39/W5cihATK+rRy5UoOHz7MK6+8ctWddrX7O7Zq1QqAuTvSLmnv81saFP6bbmXAmf24ubkREhJC9+7dCQkJwd3dHagOq0uWLPn1Ofor/9ZqsSpM6S3TJEIIcTvKzMzEbDYTHh5u61KEkDWU9enHH3/k73//Ozk5OVe9bvfu3ert3r17U1FlYWNSzlXDJIAVDaesnkz941M899xzjB49mk6dOqlhsqysjEWLFrFnzx71OQ6BsWiw1nkdzf+aCfW0y6T89LHr+t5efPFFNBoNGo2G119//bqeI4QQomFUVFk4kJSCk4tbnWVUQtiKjFA2gLVr1zJx4sTLPpaSksKmTZsA6NWrF7GxseQWm7hGllQpgN7gdskIaHZ2NkuWLKGqqor8/HwAXFxcmPFAL1aeLOSU1RMFDRoUgrSFPNqlFRGeMWzevBmdTkevXr2u+J4HDhzgo48+ur4ChRBCNJi9GQXM3ZHGxqQcrApoiCB18X6m9g69pKewELeSjFA2gJdeekk9Taa2goICHn74YSwWCwaDgc8//xyo3hSjvc5etBoU9u7cxunTp9W1mEeOHGHevHkYDAbuvPNODhw4AFSfsR3j7cgA+zTejTMxvfVpZt7lyGCnDApO7qNHjx707t2bjRs31hnVrM1sNjNlyhQslmufAS6EEKLhLNydydgvdrEp+bw6CKGgYVPyecZ8sYtFezJtW6Bo1mSEsh7FxMSg1+vJycmhU6dOPPTQQ3Tt2hV7e3uSk5NZsGABubm5+Pr6smTJEjp16gSAo17H4BhfNiWfv+q0t04D7TwVjh05xN7dOzEYDBgMBvLy8mjXrh2jRo3i7rvvBiA8PJy33nqLDRs2oNPpaOHuSl5ONp3ax/LLrgQURWHfvn0MGDAAq9XKunXr0Gq1dO3atc57/vvf/+bgwYPce++9au9MIYQQt9b1btyM8nWVkUphExIo69GLL77IY489xrJly9i4cSPbtm1Tp6E9PT3p0KEDI0eOZPLkybi6utZ57pTeoaw/dvW1l1YF/j7mTuKCRpCSksKaNWvIy8sDICkpie+//54tW7bg7e3NSy+9RHh4ON999x1eXl5oNBqsVit+fn54enqi0+nYtWsX3bt3Z9CgQVgsFtasWYNOpyMuLg6obkfxxhtv0LVrV5599lkJlEIIYSPXs3FTq9Uwd0e6BEphExIo65mfnx9PPfUUTz311A09r0sbT0b4XGT1eVc0KCi1ViNoUbACQ1oUEhfkQXZ2NmvWrMFisTBhwgRcXV2ZNWsWS5cuxdXVlYcffhiTycTKlSuxWq2Ehoai1WpRFAWNRkN0dDQHDhzAZDKxf/9+evTowdChQ7FYLKxcuRKtVkunTp148sknqaqqYs6cOVy4cKGePykhhBDXo2bj5rXW2lusChuSzlFRZZF2cOKWk0DZSBw8eBCfiyd5pVtvFu07W2cTTfsWCt3dS6nKTuWLL74gPz8fPz8/xo4di5ubGxs2bODNN9/E29ubsWPH0qdPHwAOHz4MQGJiIm5ublRWVmI2m4mNjWXnzp2Ehoayc+dOunTpgp2dHcOHD8dqtbJixQpWrFjB5s2b+dvf/kbHjh3ZsCnelh+PEEI0W8UV5uveuFlz+pkESnGryaacRqC0tJSNGzfSsWNH/B1MPOB7gb8EneHdbjDB+Qg9Lcf464T7cXJy4vz583h4eDBhwgTc3NyIj49n9OjRuLu788wzzxAVFcV9993Hgw8+iIeHB1qtlnbt2nHhwgXKysr44IMP2L59OwaDAb1eT3FxsRo8NRoNI0eOpE2bNrz//vsEBgYyYsIzPLloH49/9Yta78ojZ+scBSmEEKLh3MjGTTn9TNiKBMpGYMOGDWg0GgYPHkxGRgbBwcE42Glx1lmIDA/FZDIxd+5cTCYTDg4O5Ofnk5CQwNatW7nnnntwdnbm888/x2KxMHz4cHQ6HYqiUFhYSMuWLbn77rvp2bMnjo6O9O7dm5KSEsrKyjhx4gROTk7Ex8eTk5OjTomvXLmS8vJywvqNZvz8Q2xKPo9S67fjtNxS2VEohBC3SM3GTd01UqVOq2FIjJ+MTgqbkEBpY+np6Rw5coRBgwYBkJubS3BwMDqdDqvVSnBwMFDdcmjChAlMmzYNvV7PggULGD58OE5OTqxevZr09HTatWtHSEj1yTenT59mxYoVLFiwAACttvqPuk+fPkyePJlHHnkEADc3N8rLy5k1axafffYZr7/+OsuWLWPEAw+RHjAEuHRHoaIoKFTvKJSRSiGEaHhTeode+/ALOf1M2JAEShsym82sXr2aoKAg7rjjDjIyMgAICQlBp9ORl5fHxo0bgeojFX19fXF3d6ddu3YsXrwYq9XKnDlzyM3NxWw2M2TIEPW1Dx06RF5eHmfOnAFQN+XUCA8Px93dncDAQCIiInBzc8Pb25uPP/4YZ2dnCoPvuuYPR82OQiGEEA2rc5AHQzwLAOWSkUqdVoMGeGt0O9nhLWxGFlo0ELPZzMKFC/n+++85dOgQ+fn52NvbExAQQN++fZk2bRpFRUVcuHCBcePGodFoSE9Px8vLCycnJ/Lz8ykuLqZLly6UlpaSnJxMUlISZrOZxx57jMrKSgYPHqy28unWrRv79+9X33/Dhg3qFDlUB8qaRuiAutv76NGjjBs3jnnz5rFr1y4uXrzIJ//5lE/O+nOtNeCyo1AIIW6NvXv34l+exqwHHmb58WI2JJ3DqlSvmRwc7cuU3iESJoVNSaBsAOfOnWPEiBEcOHAAe3t7Hn/8cTp16kRRURHr1q1jzpw5fPnll/Tv35+XX34Zb29vADIyMmjdujVff/01JSUl+Pn5MWJEdc/J5ORkfv75Z958802KioqA6tBYY/78+ZetpU2bNsClgRKqG7Hv3r0bq9VKVVUVP/zwA/369SM8pgPK2eLr+l5lR6EQQjSskpIStmzZQlxcHHd3acvdXapbCRVXmHF1tJO/f0WjIIGynimKwgMPPMCBAwdwcHBg165d3HHHHerjL730Ei+++CIffPABmzdvZvz48QAUFxeTn59PSUkJDg4OBAYGqqOLoaGh2NnZkZGRcdP9IH8bKK1WK/b29jg6OrJixQrmzJmDVqulbdu2bIvfgLUsGoVfp1WsprJfv0ezCUtZdajVasBRd539LIQQQtyw+Ph4tFotAwcOVO9z1OskSIpGRQJlPduxYwc7d+4EYNq0aXXCZI0xY8Ywc+ZMSktL+eCDD3j88ceJj6/u8+jt7c1DDz3EmjVrqKioAECn0xEVFYXFYmHLli3079+f0tJSPvvsMyIjIykqKiIzMxM3NzemTJnCxo0bOXLkCM8++yyenp4AmEwmFEVh06ZNnD17ljNnzlBZWQlATk4O58+fB2DOnDnX/B4v7lnGxT3L1K/3j66uSQghRP3Kysri0KFDjBgxAoPBYOtyhLgiCZT1bO/evert7t27X/J4WVkZP//8M+Hh4Rw+fJikpCS+/fZbUlJScHJyYsKECeh0OnQ6HRaLRX1ebGwsiYmJHDx4kH79+rFp0yYABg8ejJ2dHXPmzKGgoIAFCxZQUVHJ6KT3AAAgAElEQVSBTqfj+PHjnDlzhqysLHWa/PDhwwQEBNCnTx/8/f2xWq189dVXLF68mKqqKuLj4zEYDJwtVdhjDoT/jVJW5aRxYcs8AJxj78K5/UA0wN9HRNOxY8cG+jSFEKL5slqtrFmzBj8/P/VIXCEaKwmU9axm1A+47G+TmzZtwmKxEBQUpDYUP3LkCF5eXsTGxqLTVU9h/HaKOiwsDJ1Ox8WLF9m3b1+d31gLCgro3LkzmzdvJjc3V33O5s2badWqFTExMZjNZvbu3cuzzz6LXq9Xr1EUhRYtWuDp6UlMTIy603z4HXfQNlvhhwwdGhTKNb/u+dZ7tsIQ3Im3Rrfj0e5t6ueDE0IIUceBAwfIzs5m0qRJaus3IRorCZT1rEOHDurt48ePM2TYCHXhdM7ZLA4ePMjw4cOZO3cuAI6OjkyYMIElS5aoPSeBS0Yo9Xo9kZGRJCcns2nTJlxcXEhOTiY+Pl6dGnd3d1dHIt3d3Zk+fboaHo8ePcrevXvrtA6CX3d7Hz58mF9++QWNRoOiKPj6+uJ6cB3Pt4tjWVIhJ2o9J8DNjq+e7Ck7CoUQooGUlZWxefNmOnbsSGBgoK3LEeKaJFDWs6FDh9KhQweOHDnCm+//m5nnw0DviFYDYY6l9GwRzObNm0lNTQVg8uTJmEwmgDqBUqvVYjab1SnrM2fOcOrUKRRFobKyEo1Gg06no0ePHgQEBNC6dWucnJz46quvOHXqFEVFRaxdu5ZRo0ah0WjU325/GygtFgunT59WWwxNnTqVJUuWEB8fT0BAAF7OFu73KWDfmZMs+t9zop3LJUwKIUQD2rx5M1arVT30QojGTgJlPdPpdEx5ey4vPj2V0szDVM7/Mx59HkXvG8oxUwn7Nh+gOOFbAB544AE++OADNmzYgI+PDyaTibS0NLKysjh+/DglJSXMnTsXnU6Hn58foaGhHDlyBIC7776bTp06XfL+Fy5cUKfLDx48iMFgYNCgQWg01Wsha0+jFxYWMnfuXEpLS9HpdHTq1AkvLy/8/PzIzc3F3d2dpUuX4u7uTmZaqvq8Y8eOMX/+fHQ6Hb6+vgwePLghP1IhhGhWsrOz2b9/P0OHDsXFxcXW5QhxXSRQ1rO9GQV8lHAen4f+SdmJBAp/nk/uT+/UucYpvBuv/fkpxgztw969e0lMTATgP//5DwCenp44OjpitVp5+OGH8fPzw87OjmXLlqkbdg4fPnxJoDSbzRQXFxMQEICvry8HDhwgISEBg8FAixbVI4o1gfLYsWMsW7YMq9VKv379KCsrIzk5mZ49e5KcnIyDgwOLFy9m+fLll3yPSUlJTJgwAYB+/fpJoBRCiHqiKApr1qzBx8eHbt262bocIa6bBMp6NndHGtayC+St/z/KTuxC59YSj/4T0LcMQjFXUpF+gJLELbz73vsk79lCZGQkZrOZmJgYOnbsiL+/P87OzsTHx3P06FECAgKA6qbnR48eJS4ujgMHDpCRkUFhYSEeHh7qe6ekpAAQGRlJr169KCwsJCMjg40bN6o7zq1WK6tXr2bfvn3Y2dkxfvx4goODycjIYO/evSxfvhwHBwf69u2LyWQiLi6O/v37k5CQwIwZM1AUhc8//5zAwEDuvffeW/8BCyFEE3b48GGysrJ4/PHHZSOOuK3IT2s9qqiysG6/kbMLXqDsxE703kG0mvQp7j0exBDeDeeo3ngNexafB16l6PQJFixYQGlpKQAjR46kbdu2ODs7A9VT5zWjiRaLhTVr1hAYGKhOX9eMUtZ29OhRADp27IhWq2XMmDF4eXlhb2/Pnj17AFiwYAH79u3D09OT559/Xl23GRQUhKOjIxkZGQwZMoTOnTtjZ2eHk5MTlZWVODo6Ar9u4jl+/HidTUNCCCF+n4qKCjZt2kS7du3qrKkX4nYggbIeFVeYKdi6EHPhOQA8Bz6BzvHS9S9OoZ1xjr0LRVF4//330el0ODk51blGq9WqgW337t3k5eUxfPhwnJycCAsLw9HRkUOHDtXZZHP69Gns7e1xdXUFwMHBgYcffhi9Xo+dXfVgdF5eHrGxsTzzzDN12hpZrVYURUGn09GuXTsURcFqtVJaWkphYWGd+mJiYqioqFBbDAkhhPj9fv75ZyorK2UZkbgtSaCsR872WsqStwGgcTDg2KbDFa81tK2egjabzezfv/+S3dc1I5QXL15k69atdOvWDT8/P6A60NUEvVOnTgHV/S9LSkrw9fWt8zoeHh60b98es9kMVAfV3r17q5t0auzcuZPKykosFgvZ2dlkZWVhtVoxGAxkZWWpI5QAfn5+eHh4kJycfNXPo6qqinnz5jF8+HD8/Pywt7fHx8eHfv36MWvWLLUmIYRo7nJycvjll1/o168fbm5uti5HiBsmgbIeFRcWYK0oAcDOzeeS0FZDg0Ibr19HLpOSknj77bdZsGABKSkpWK1WtQ/l+vXrcXBwqHO0YWRkJFDdOP3QoUNUVFnYfSgJs1I9HV3DarXy7bffsnv3bnWEsmazTe0zwQsLC9m+fTvdu3fHYDCQlJREamoqBoOBO++8k8LCQrXhOtSd9q69a7y21NRUOnfuzOTJkzl8+DBTp05l1qxZPPPMM5w5c4Zp06bRrVs3cnJybvBTFkKIpkVRFNauXUuLFi3o0aOHrcsR4qbIppx6VHcBtXLF6xQ0dPeBff/72sXFBYPBQHp6Ounp6eh0Ojw9PamqqiIpKYn777+/zgihwWAgJCSEY+crWL2vhOf3rMOqgIY4zh7XoG9VQNsWdnz55ZdcvHiR1q1bM2jQIBYsWEB5eTnOzs4sXLiQSZMm4eLiwrp163BycuKuu+5S39PJyYnQ0FC6dOlCfHy82jC9RnR0NLt27eL06dO0aVP3tJyCggIGDx5Meno67dq1Y9u2beqZ4gB/+ctfGDJkCAkJCQwbNozdu3djb29/05+7EELczo4dO0ZmZiaPPvponV/ehbidyAhlPfLy8lLXL5qLzqOl7uidVgOgMMDtPL1ifg1hNT0gp0+fTrdu3XB0dCQvLw+oHg08evQoaWlpdUYDTzm0YUl+azLNblj/l10VNPxsLODBL3Yx7d+LuXjxIj179mTq1KlqYIuKiqK8vJyKigoWLVpEYmIiJ06cYOjQodjb2xMTE0NhYSHZ2dmEhYVhb2+Po6Mj+fn5FBcXq+8fEBCAq6vrZae933rrLdLT0wH49NNP64RJqA7ENScFHTx4kM8+++wmPm0hhLj9mUwmNmzYQFRUFGFhYbYuR4ibJoGyHmm1WoYPHw6AUllOVFXa/0Jk9TR3mH0JXz3SnihdrtpzEuCee+5h586dLFq0iJCQEP7yl78QEhICVB+5mJKSwsKFC3n33XdZsmQJK3Ym8uWhkv+9at0/Qsv/0mVCZSAdBoxmyJAh1e+v0bBnzx4mTZrEP/7xD1JSUigoKGD58uWEhIQQExMDVJ/WUxM+Q0ND1edqtVp27dqlvo9GoyEqKork5OQ66z+tVivz588HwNfXt85UfW1RUVHExcUB8PHHH1+yhlQIIZqDbdu2UV5eztChQ21dihC/iwTKevbaa6+pu6dPLv+UZQ+34SGHQ8wZ4kpvzXFifBxxcHBQ2/jExcXxyiuv8NRTT+Ht7c2SJUuYP38+mZmZQPX08JQpU4iNjUWj0XD8+HE+Wn2Iq02pA+i0WtZnVm96SUtL48EHH2Tt2rWUlZUBqO2JanaS1wQ6rVaLq6ur+m+o/g06ODiYffv2qc+H6s1BFy9e5OzZs+p9KSkp6vrM2NjYq9bYsWNHALKysti9e/dVrxVCiKYmLy+P3bt307t37zo9hYW4HUmgrGfR0dGsWLECb29vUlNTGdCvL1vXr2Ln9q3s37+f+++/n+eeew6o7v348ccfo9FoaNGiBY888gjjxo3jzJkz6vS2yWTC39+fBx98kBkzZjD24T9wyuqBwuU3/NSwWBXWH8vmo0/+Hx06dCAxMVFtkg7QvXt3qqqqcHJyIiMjg5UrV6IoCoqiUF5ejtVq5dy5c5jNZsxmM23btgWoE/yCgoLUTTw18vPz1dvX2qlYc3oPwC+//HKtj1YIIZqMmo047u7u3HnnnbYuR4jfTTblNIBBgwZx/PhxvvzyS1avXs3evXvZt2+fOur34IMPEhQUhLe3NwkJCcTExPDXv/5VnSqu7fXXX7/i+zhF9MDngVev+PiF7d/wl4RvGTp0KO+//z5/+tOfyMrKAiAxMZEWLVpQXl5O69atOXToEE5OTsTFxVFWVoa9vT1JSUnqCTvu7u506dKFX375hV69euHo6IhWq1WnvWsartfubVlRUXHVz6mqqkq9XTuUCiFEU3f8+HHS0tJ46KGH1C4cQtzOZISygbRo0YIXXniBLVu28OKLL7Jnzx4OHjzIM888w6xZs/Dz8yMuLg53d3e+++67mzp1Rud87SmSCZMm85///IfWrVvXuf/MmTOMHDmS+++/nzNnzhAaGsquXbvYtGmTGhSTkpIoLy8HwNHRkZ49e2I2m+uMJkZHR3PhwgW1/U9oaKi6SzE1NfWqtdVujF6zCUkIIZq6qqoq1q9fT0REhDr7I8TtTgJlA9NoNNjZ2VFVVUV4eDh2dnbs37+fsrIywsPDGTduHCUlJWqD8meffZZdu3axfv16pk+fzu7du1m9ejUzZszg2Wef5auvvsLFq7rBuUv7gVd8Xy0KnfoPJzgokG+//ZZZs2bVeTwwMJDIyEhiYmIYNGgQaWlpREREcOLECTw9PWnfvj0FBQWknzpDuWKHRu+Aq6srcXFx7N69m8rKSgBCQkJwcHBQd3u7ubmp0zcpKSmkpaVdtj6TycS2bdvUr2vvIBdCiKZsx44dlJSUMHTo0Cv2KxbidiOB8hbQ6/VUVlZib29PWFgYycnJ6HQ6AgMD8fLy4v7771f7PI4ePZoePXrQtm1bvL29iYiIYPjw4bz55pvce++9JCQkUJJ/Dr13MA7+0Vd8Tyvw1IAopk6dSlxcHA4ODnUeLy0t5ciRI1gsFnr16kVcXBxGoxGNRkN+fj4HThfxszmCcT9k8Z2pE/0/28+Ti/ZhaNMek8nEvn3VXTR1Oh2RkZF12ge9+uqv0/AzZsy4bH3vvfcehYWF6tfSe00I0RwUFBSQkJBAz5498fLysnU5QtQbCZS3gL29vbpeMCoqisLCQvz8/NDr9QBEREQQEBBAYGCgerxiTZP0mqlwvV6PxWJh7969ALSP60p158nfHNmo1aABHggyk7x9NQcOHGDYsGFMmzatznUFBQX89NNPvP3228yePRtfX198fX1RFIVzLhG8uCGbTLObuvnHqsCm5PNMXHSEYt9O7Nq1Sz06MTo6mtzcXHXaevDgwfzzn/8EYOnSpTzwwAPs3LmT7OxsDhw4wDPPPMPrr7/OyJEj1XrkqDEhRHOwfv16nJ2d6dOnj61LEaJeyUrgW0Cv16uBsma9jJOTk/p4cnIyXbt25d577+W///0vvr6+6oidxWLBbDbz9ddfk5qaSlJSEgaDgVlvvcCSzfvYe9GFU1ZPFDRoULizjSvPDmlH5zaeHDgQyNq1azlz5ozaH7PGuHHjcHZ25siRI5w7d461a9cCkGN1YW2eG6Dht4cq1vS4/D5dywj76qbkXbt2JSwsDL1eT1JSEn379gXglVdeoVOnTrzxxhssW7aMZcuWqa/Ttm1bFixYQKdOnVi1ahUA3t7e9fNhCyFEI3Xy5ElOnjzJmDFj5HQw0eRIoLwFagfKixcvAtVTzgCVlZWsW7eOyMhIRo8ezZw5c1iyZAkjRowAqjerzJ8/n4qKCrKzs6mqquLRRx+la9eulJaW4rp1Kxa0VCpaDHotPYI70yW4uh1P586d8ff3Z+nSpZfsIHdycqJv37707duXqqoqDh48yMaNGzlW5osG5aptiXRaDaedI0hISCAuLg69Xk/btm1JTk5WAyXAiBEjGDFiBLm5uaSlpWE2m/H39yc4OBigzhrK9u3b/85PWQghGi+z2cy6desICQkhOvrKy5WEuF3JlPctUDtQpqeno9FoyMnJoby8nK1bt1JeXs7dd9+No6Mj48aN48KFC2zfvh2AZcuWYTKZGDp0KAcPHgTgiSeeAMBoNALw9LQncXfQopgr2b9/PwUFBep7+/n58fjjj1914bder6d9+/aYzNb/jXZe/cfCYlVILNSRX3iRI0eOANXT3ufOnVObmtfm7e1N9+7dufPOO9UwCdTZsNO5c+ervqcQQtzOdu7cSVFREcOGDZONOKJJkkB5C9QOlBkZGfj7+2O1Wtm3bx+7d++mT58+6ikJPj4+jBo1Sg2LdnZ2TJkyBYAjR47QoUMHevToAUBOTg5ubm74+PjQvXt3tFotlZWVzJw5ky1btqjvuXPnzkv+AqsZKTWbzWRmZrJmzRoqFe01zt/5lVWB4IgoduzYgdVqJSIiAjs7u8ue7X0lNe2HgoODJVAKIZqsoqIitm/fTvfu3WV5j2iyZMr7FqgJlFarlczMTHr27ImiKOzatQtPT0969eqlXltSUkJ8fLz6dZ8+fWjdurW6c7pmdDIvLw+z2ayO+MXGxqqjmmFhYSQkJHD48GF69OjBnj17GDBgABs2bFBfd/ny5Zw6dYrCwkIsFgtarRaD3g6N6VqHOlbTamBAn14s+OpLjh07Rvv27dUd7O3btyc+Pp6OHTuqZ5L/lsViYfXq1QBMnDhRfmMXQjRZGzZswNHRkX79+tm6FCEajIxQ3gI1gfLcuXOYTCZCQkLw8PCgvLycwYMHq6ckpKSk8Mknn1BUVESnTp0ASEhI4PTp0yxZsgSDwcCjjz4KwKFDh4Bfz8P28fGhRYsWGAwG7OzsmDZtGt7e3qxfvx6dTkdubm6dmmraA/n7+zNp0iRcXV3pckdHBrT1umTn+G/ptBqGxPgREhRAeHg427dvR1EUoqOjycrK4tixY9x33328//77V3yNRYsWcerUKQIDA/nrX/96cx+sEEI0cmlpaSQlJTF48OBL2rcJ0ZRIoLwFagJleno6er0eLy8v0tPTgV/bAm3cuJFvvvkGgIceeohBgwYB1f0ZZ8yYQVlZGePGjcPd3R2oDp8ajUYdodRoNERHR2MymTh58iQJCQlkZ2er73H06NE6Nf3hD39gxIgRnDlzhpUrV1JUVFQdSnMPXXOE0mpVmNK7euSxb9++5Obmcvz4cSIjI9FqterayIULF172SMXt27fz9NNPYzAY+Pbbb+sc1yiEEE2FxWJh7dq1BAUFycZD0eTJlPctUBMoMzIyCAwMZNu2bVRVVdGyZUuSkpJISEjg7NmzuLq6MmXKFNzc3NQjD3v16sVHH30E/DrdrSgK+fn5eHp6kp+fT2ZmJqdOnSItLU0NqGlpaZhMJgIDA7nnnns4cuQIW7ZsUWvSaDR06dIFf39/Fi1aBMCmTZto4+LCy11CeWdjGlrAWmu3d/XubxjVupzObTyB6hN3goOD2b59O1FRUYSGhqqBsqysjG7dujFp0iTatWunbkL673//i7+/PwsWLFBP1RFCiKZmz5495Ofn88ADD8iyHtHkyQjlLaBo7bhQbiEt8zReXl7s3buX/v3706ZNG44dO8bZs2eJjIzkueeeUxt81/ShzMjI4Ny5c/j6+qLRaDh79iwbNmzAYrFQVFTEzJkzWbNmDfn5+bRv3x4nJyd0Oh0GgwGdTseYMWNo2bIlAwYMqPMXWnx8PAUFBbRq1YoWLarbDNUE0C4eFQy3P0G/cE+0/3uKVgOh+mIe9j6HV0ESO3bsUF+rT58+ZGdnk5qaqo6Szps3j8mTJxMWFsZ3333H008/zXvvvUdBQQEff/wxx44dk/VEQogmq7i4mK1bt9KlSxf1wAohmjIZoWxAezMKmLsjjQ3HTCiEokFh275Surr6q2d6Q3XLnNqnxsCvgbJm9LB3796sW7cOQA2GHTp0IDY2lsDAwDpNcvfu3Ut2djZDhw7F1dVVvb/m9B2AwsJCZs6cqa57dHd3p1u3bmzevJnExES6hwbw+ON3UlFlobjCjKujHXk52cyfPx9Pb2+2bNmijk6GhIQQEBDAtm3bGDt2LHq9ng4dOjBx4sQG+FSFEKLx27hxI3Z2dtx11122LkWIW0JGKBvIwt2ZjP1iF5uSz6trEhU0GMsd+ea8Lx+v3Ie9vT1ubm4oSvUVJpMJo9FIfHy82sw8Pj4ee3t7hg4diru7O05OTri7u6PT6Rg1ahRhYWF1wmRkZKQ67R0bG1unptojlKNHjyYiIoLExEQA4uLi6NmzJ4MGDcJsNnPmzBmSkpJw1OvwdnXAUa8jICCA++67j9zcXNzc3Pjxxx8pKSlBo9HQp08fTp8+TV5eHm3atLmh9kFCCNGUZGZmcvToUQYNGlTnVDQhmjIZoWwAezMK+MeKRBR+Pa6wRk3T8F3mIJ4Y1YGcxJ0cOXKEs2fPkpOTg6IoODs7ExQUxNGjR6mqqmLixIlMnTqVkpISvvjiCwoLC/Hx8bnsmpya87Sheh1l7c04586dU29/++23FBYW4uzsrL7O6dOnKSkpISAgADc3N5YuXUq3bt3q7ESPiYlh4MCBxMfH4+DgwI8//sj48eOJiIjAz8+P7du3Ex0dzfr16ykvL5e/TIUQzYrVamXt2rX4+/ur3TqEaA4kUDaAuTvS0Go1l4TJ2jTA699uZYB99QYWZ2dnRo4cSVBQEF5eXmg0Gp577jkA/vjHPwLg4uJCnz59WLt2bZ3p6xqlpaXEx8fTsmVLCgoKMBqNjB8//rLvP2/ePPV2dHQ0L730EqtWraK0tJR27doxatQogoODWb9+PadPn2bMmDF4elZvxLnzzjspKCjg0KFDZGZm8vPPPzNgwAD69OmjhlCr1crJkyfVtkZCCNEc7Nu3j5ycHKZMmSIbcUSzIlPe9ayiysLGpJyrhkmonv4+ZW3Bk089jYuLCy1btiQuLo6WLVui0WjUdZDh4eF069ZNfd6ZM2eA6tHGml6UNTZt2gTAgAEDsFqtpKSkYLFYUBQFRVH44IMPmDdvHq+//jrx8fGUlZXxxhtvsHDhQqKiovD19cVgMJCcnMz//d//4erqyqRJk6ioqOCLL75QWwBpNBpGjBhBcHAwOp2O7du3YzQaiY6OpmXLlhw4cIDAwECZ9hZCNCulpaVs3ryZuLg4/P39bV2OELeUBMp6Vlxh5hpZUqUAqzfE4+bmxtGjR7l48aK6nnL27NkA3HPPPXWek5GRgV6v54477mDVqlWcPXsWqJ6uPnToEAMHDiQyMhIHBwdMJpPai9JqtVJZWcmpU6cYPHgwAwYMIDMzE0VRCA0N5dy5c6SlpXH33Xczbdo0WrZsyZIlS/j5558ZM2YMYWFhLF26lLVr12I2m9HpdIwdOxZ3d3fs7OxYtmwZFy9epE+fPpw8eRJ/f3+MRiMmk6l+PlghhGjkNm3ahEajYeDAgbYuRYhbTgJlPXN1tFNb7VyLBgWlspy8vDzKysr4+OOP+fe//82cOXNYvHgx9vb29OrVSw2ZVquVixcv4uPjw/Dhw/H19eX777+nuLiY1atX07p1a+Li4tBqtcTExKDRaNRRyp9++omqqirCw8PVox5TU1Np0aIFnp6eJCQk4OHhQWxsLF5eXjzyyCOMGzeO8+fP8+WXX+Ll5cWQIUPYv38/X331FRcuXMDR0ZE//OEP6PV6KisrWbp0KdHR0Wp/TIvFQkpKSkN91EII0WhkZWVx6NAhBgwYIIc1iGZJ9/rrr79u6yKaEjudlqTsi2Tkl6FcZaRSi0KQ9gIR+kL69+9PZmYmbdu2/f/t3XtUlded//H3OYfDReQiogcULwgaRSQqRMRgxCSIRhKdsUlMk2iqMZo0v07bmbaTzGRSm07bWatrzWTVpGpMl81lakzbJOMNxQtGCuKNKBeNRMQogiBEbnI/z+8PxjMSFdEjHi6f1z8eeZ7z8IW1lA977+/ehIeH09TUxJQpU4iNjaWsrIzMzEy++uorTpw4QWVlJWPHjiU8PJzRo0dz8OBBcnNzuXjxIgsXLmy3j+WxY8e4fPkyp06doqCggH79+hEWFkZYWBgA27dvZ9SoUQwaNIjNmzfz4IMPEhISArRNawcGBhIdHY1hGGRkZHDx4kXi4+M5c+YM+/fvZ+DAgQwbNowRI0bwxRdfUFVVRXNzM2PHjmX//v0EBgZSX19/Tbe5iEhvYrfb+eijj+jfvz/JyclaOyl9kkYou8Dz8aOwd2IN5asL4ggKCmLLli0YhsHZs2d54IEHeOqpp/jxj3+Mn58fERERTJ8+HR8fH86cOQO07TP561//mo8++gibzUZlZSUDBgwgMDDQ8fzQ0FDHGd5FRUU89dRTeHp6OkY7v/nmGyorKwkLCyMjIwMvL6/rdiRarVYefPBBxzR4amoqAQEBhISEsHHjRlJSUggODubv/u7vANi/fz8eHh74+vri5uZGQUEBzc3Nd+pbKyLS7WRnZ1NSUsKcOXOu2zAp0hdohLILDPX3ItDHgz0nyrCYTe1GKi0mMDB4dqw7y+bcx/jx4xk3bhwlJSVcvHiR7OxsPDw8GDx4MNnZ2QQHB/Pggw8SERFBVlYWJpOJRYsWMXjwYKBtTWVLSwsNDQ2kp6eTm5vL2bNnKSsro7i4GLvdzgMPPMCkSZM4dOgQ/v7+hIeHk5+fT0FBAQkJCWzatIn4+HhCQ0Nv+DX169ePCRMmEBQURE5ODmVlZYwaNYq8vDwKCgqIjY3F29ub06dPU1BQwH333Ud+fj6tra0MGTKkXdgVEekt6uvr2bBhA+PHjyc2NtbV5Yi4jAJlF4kK8Sc+PJCq+mYKL9Zi0HZ84ayIIBaG2bn8ZQahoaH4+fnRv39/IiMjyczMxNfXl+zsbI4ePUpLSwsDBgxgzJgxNDc3s3v3boYNG8aMGTMICQnB09OTw4cPM3fuXAzDoKqqitDQUCorK8nNzcVut8JMVOIAACAASURBVANta3uKi4uprKzEYrEwfPhwDh48iJeXFw0NDZSUlLBgwQLHXpM38u1p8JycHPr160dDQwMHDx5k8uTJWCwWSkpKqK6uxmw2Y7FYMAyDcePG3YXvuojI3bVjxw5KS0t56qmn2h0yIdLXmAyjo5V+cidcfXyhp9WC3W5n/fr11NTUsHz5cjw9PQHYuHEjVVVVzJs3j88//5y8vDzc3d1JTEzEbDazadMm5s6dS0xMDK2traxZswYPDw+WLFlCS0sL7777LvX19RiGgdlsZu7cufzpT3/CZDIxcuRIioqKHCETwM/Pj9raWkaNGkViYiIDBw68pemaiooKUlJS+Oqrr/D29qauro4pU6Zw9uxZSkpKsNlslJWVYbVa+cGP/pHLzYbjeyAi0tOVlJSwdu1aZs2aRVxcnKvLEXEpjVDeBW4WM94ebrhZ2sLalYCXmZnJpUuXHKN3drudAwcOEB8fz+TJkzlx4gRms5mcnBxOnTqFYRjMnz8fq9VKZmYmeXl5PPXUU/j4+GCxWPDx8XGcD/7CCy8wZMgQioqK+Oabb3jiiScoLi5mxIgRTJw4kcLCQry8vKivr6eyspKDBw+SmZnJyZMnKSkpoaamBgAvL68bhsyrp8ELCwtpbm7m3Llz9O/fH7vdzqVLl7ho8uNv9cH8Zu951u4r5O20r8gvqSbY15Mh/jpFR0R6JsMw2LhxIx4eHsybN09rJ6XPU6B0ES8vL3x9fdm7dy+BgYEMHjwYPz8/MjMz8fPzIyQkhJycHGw2GwsWLODw4cMYhkFubi7Nzc3s27eP6OhoJk2aBLSdHfvxxx/j7+9PbW0t7u7uhIaG4ubmxvHjx3F3d6empgYfHx/c3d0d+1dOmDCBZ599lrCwMAIDA2ltbaW4uJijR49y+PBh0tPTyc/Pp7i4mEuXLtHS0oKnp6djevzb0+Dnzp2jrq4Ou91OfvNAdjWGUm14YNDW9WgARRWX2XjoLIE+HkSF+Lvk+y8i4oxjx45x4MABvvOd7xAQEODqckRcTkcvulBUVBQFBQVs2bKFYcOG4efnx6hRozhx4gSxsbFYLBZaW1vx9fWltbWVESNG4Ovry549ezCZTPj6+tLS0kJhYSEff/wxw4YN48knn+TAgQPs3r2b4OBgxowZg8lk4vjx4/j6+mK32yksLGTAgAFcuHCBadOm4eXlRWhoaLumnObmZi5cuEBpaSklJSWUlpaSm5tLa2srAAMGDCAoKIigoCCCg4MJCgriwQcf5N5772XLli3sP1VOZvNw2nbbbL+FxpVThF77NJexNh9iRuo/YxHpORoaGkhNTWX8+PEdNjOK9CUKlC505QjD1atX8+mnn7Jo0SLGjh3Lli1bqKurcwTK7OxsAKKjo+nXrx85OTmEhISwa9cu0tPTaWxsZPTo0Tz++OO4ubkRHx9PSUkJn3zyCcuWLcNms1FaWuoIoGfPnsXLy4uIiAgGDhx43dqsVishISGOfSmhbUr+4sWLlJSUOEJmRkaG4zQcb29vgoODGTJkCCXlgZgu2uloga7ZbGJd+mkFShHpUdLS0mhqamLWrFmuLkWk29CUt4tZrVaCgoLYu3cv7u7uREZGkpGRQWBgIBUVFRiGQWlpqaNZZ8OGDdhsNp577jmg7bQbgMbGRqxWKzabDYvFQnh4OHl5eeTl5TFhwgROnz4Nbu7UNUNNdRWtLc3Mnz8fHx+fTtdqMpnw9vYmKCiI8PBwJk6cyP3338+9997L8OHD8fHxoa6ujhMFp9hcEXDNyOS3GQYUXqxl+QNhjvWlIiLdWVlZGZ999hkJCQmMHj3a1eWIdBsKlN3AgAEDHOsiIyMjKS8v55tvvsHNzY2WlhbOnz9Pv379MAyDL7/8koULF5KdnU1aWhqxsbHMnz+f2tpaMjIyyM7Oxmw2M3ToUMLDw9m/fz9fX7aSWuHLjmobmZe8yWkNpsFrEPdFhDvdGHNlu6Ly8nIqKyuprq6mqrGVI5c7N+poAIvjRuLtocFyEeneDMPgL3/5CxaLhfnz56sRR+Qq2jaom7iy7U9LSwsTJ05kz549hIaP4WJVHRdLzjJuTDinT5/mvvvuAyAzM5OEhAQeeOABxzFflZWV7Nu3j6NHj+Lt7c20adPYVwpvH6jABO1GDC0msBvwxvxInokdcdPaiouLOXfuHKWlpVRUVFBTU0N9fb1jTeUVJpMJi7sn66oibjpCCW17c+avnK2thESk28vNzeUvf/kLTz/9NOHh4a4uR6RbUaDsRsrLy1m7di1ewyP57EQNX9v9MTBhwmBMvwYmuJcTf08wR48eZfbs2Tc8leFKsNx+5Cu2Nt0DHQQ7E/Dx8jiihvTn66+/pri4mAsXLlBZWUlNTQ0NDQ3t9q4EMJvNeHh44OPjw4ABAxg8eDBDhw5l+PDheHm1jXgu/+AQO4+XORpwrseMwfQwf/74fPwtf69ERO6mpqYmVq1axdChQ3nyySddXY5It6NA2c38csNe1h2tuWZE0YQdAxPTrF/zswVt6xZvZskfMkkrqMDeYaA0GGG+xEz3U+0+brFY8PT0xMfHh4CAAGw2m6NJpzOnQRwsquSJNZkdNuWAwSPuX5IcO46HHnoIDw+Pmz5XRMQVdu7cSVZWFi+99BIDBgxwdTki3Y4WrnUjB4sqefdoLW0xrz2DtrU6Gc0jaPYbdsNnVFdXc+bMGYrOFrOnoOXmjTGYOGP3Z2xkFMOCbQwbNowhQ4ZgsTg3BX3fyADemB/Ja5/mYjab2o1UWswm7HaDXzwWSTgD2bNnDydOnGD27NmMGzfOMYUvImIYBqtWreKVV16hrq6OPXv2kJCQcNP35efns3HjRtLS0sjPz+ebb77B29ub0NBQZs6cyYoVKxgzZkynarh48SKZmZlMnz5dYVLkBjRC2Y10ZprYYjYxI3wA/2+iJyUlJZSXl1NVVUVdXR1NTU2O++oNNzY0Tuz05z746sMM8rnzI4SHiipZl36aHfml2I3/O8/8+fhQx3ZBVVVVbNu2jS+//JLRo0fzyCOP4O+vDc9F+rrCwkKWLFnC3r17HR+7WaAsLS1l0aJFpKamAhAbG0tSUhLDhw+ntLSUDRs2kJubi9Vq5Ve/+hX/9E//1GENhmHw4YcfUlFRwUsvvYTVar0jX5tIb6NA2U00NLcS8XoKHWRJBxMGz3gcwc3UdrO7uzve3t74+fkRGBjIkCFDsA0JIf7NA5163t1ojPn2eebXc+LECbZt28bly5dJSEhg6tSpTo+UikjPc/WopMViISIigv379wM3D5T79+93nKv9y1/+kldffbXdrEdrayuLFy/mww8/BGDNmjW88MILN3zeiRMn+Oijj1i4cCH33HPPHfjqRHonTXl3EzUNLZ0Kf9A2TZ34yGPce08ofn5+N7wvMcLWqRHPxHG2Lu+y9rRabvo5xo4dS2hoKGlpaezatYtjx46RnJzMsGE3nuIXkd5n5cqVrFy5kqSkJN555x3effddR6DsrNjY2GvCJLStD1+zZg0pKSlUVFTws5/9jEWLFuHp6XnNM5qbm0lJSSE8PLzT0+MifZU20eomfDzdMHdy6aDZBFMmTegwTAI8Hz8K+01Sqt1u8Hx89zk6zMPDg6SkJJYtW4abmxt/+MMf2Lx5M/X19a4uTUTuonXr1pGSknLbv1A++uijN1yP7e3tzezZswG4dOkS+/btu+59f/vb36itrWX27Nla2y1yExqh7CY8rZY7PqLYmcaYN+ZHdsujD4ODg1m6dCmHDh1i165dnDhxgqSkJCIjI/Ufu0gv9/rrr9/2v/OxY8eyadMmoqOjO7xv+PDhjtdff/31Nde/+eYb0tPTiYuLu+ERtSLyfxQou5Hn40exI+9Ch/fc6ojiM7EjGGvzuaYxJnGcrV1jTHdkNpuZMmUKY8eOZfv27fz1r3/liy++YO7cuQQEdN+6RcQ5zvzS6O/vT3Jy8k3vq6qqcrz29va+5vr27dvx9vZm+vTpt12LSF+iQNmNdNWIYszIAGJGBnSqMaY78vX15fHHH+fkyZNs3bqV3//+90yfPp37779fTTsicltOnz4NtIXX+++/v921goICvvzyS77zne90at9dEVGg7Ha6ckSxM40x3dmYMWMYOXIke/fuJS0tjZycHJKTkxkxouOjI0VErlZVVcWePXsArmn8a2lpISUlhdDQUCIiIlxVokiPo0DZDfX0EcWu5O7uTmJiIlFRUWzevJn169czceJEEhMT6devn6vLE5Ee4P3336ehoQGr1cqvf/3rdtcyMzO5dOkSCxcu1HptkVugQNmN9fQRxa5ks9lYsmQJhw8fZufOnZw8eZJZs2YRFRWlHwIickPl5eX84he/AOCNN95g/PjxjmtVVVXs27ePKVOmMGjQIFeVKNIjKVBKj2UymYiJiXE07Xz66aeOpp3AwEBXlyci3Yzdbmfx4sWUl5fz+OOP89Of/rTd9R07duDh4dGpox1FpD3tQyk9Xv/+/VmwYAHPPPMMVVVVrF69mrS0NFpaWlxdmoh0Iz/+8Y/Ztm0bCQkJvPfee+1mMwoLC8nPzycxMREPjzt/DK1Ib6dAKb1GWFgYL774ItOmTWPfvn2sXr3a0ckpIn3bypUrefPNN4mPj2fTpk3tTsZpbW1l27ZtDB8+nAkTJriwSpGeS4FSehWr1cqDDz7IihUr8Pb25r333uOTTz6hrq7O1aWJiIv86le/4uc//zlxcXFs3bqV/v37t7t+4MABKioqmDNnjtZgi9wmBUrplQYNGsRzzz3HY489RkFBAatWreLIkSMYRicPTBeRXuG3v/0t//Iv/0JsbCwpKSn4+Pi0u15TU0NaWhoxMTEEBQW5qEqRnk+BUnotk8nEpEmT+P73v88999zDpk2bWL9+PeXl5a4uTUTugjfffJOf/OQnxMTEsH37dnx9fa+5Z9KkSezZs4eZM2e6oEKR3kOBUno9b29v5s+fz6JFi6irq2P16tXs2rWL5uZmV5cmIl3k7bff5oc//CGTJk1ix44d+Pn5XXPPmTNnOHXqFB4eHnh5ebmgSpHeQ9sGSZ8RGhrKihUrSE9PJz09nby8PB555BHCw8NdXZqI3EFr167l5Zdfxt/fn3/913/l6NGj19xjt9vZvHkzAAMHDrzbJYr0OgqU0qe4ubmRkJBAZGQkW7Zs4cMPPyQyMpKkpKRrFur3NIZhsGrVKl555RXq6urYs2fPLe2nl5OTw5tvvsnu3bs5f/48AQEBREdHs3z5cpKTk7uucJHr+OCDDxyvjx075nidmprKuXPngLYDDhITE9u9b/fu3axYsQLDMLh06RILFiy4OwWL9HEmQ10K0kcZhsGxY8fYsWMHra2tPPzww0RHR/fILs/CwkKWLFnC3r17HR+7lUD5zjvv8PLLL2MYBosWLWLKlCkUFRWxdu1aKioqWLp0KWvXrsVs1ioZuTs68+9wxowZpKWltfvY+vXr+d73vndLn2vx4sWsX7/+lt4jIu0pUEqfd/nyZXbu3El2djYhISEkJydjs9lcXVanXD0qabFYiIiIYP/+/UDnA+XmzZuZN28ehmHw6aef8thjjzmunTp1iri4OMrLy/npT3/Kf/zHf3TVlyJy1/zP//wPx48f5+WXX8bb29vV5Yj0ChpukD6vX79+PPbYYzz33HM0NjayZs0aUlNTaWpqcnVpN7Vy5Up+8IMfEB8fT25uLklJSbf0/sbGRl566SXsdjtPPPFEuzAJbZvFXzn3+Le//S15eXl3rHYRVyguLiY7O5uZM2cqTIrcQQqUIv9rxIgRLF++nJkzZ3LgwAHefvttTp486eqybmrdunWkpKQwbNiwW37ve++9x9mzZwFYtmzZde955pln8PLywm6385vf/MapWkVcyTAMtm7dSlBQEDExMa4uR6RXUaAUuYrFYmH69Om8+OKLBAYG8qc//YmNGzdSXV3t6tKu6/XXX2fp0qW3/f6PP/4YAHd3d6ZPn37de/r3709sbCzQNlXYE0ZuRa4nOzub8+fPM2fOHK0HFrnD9C9K5DoCAgJ4+umnWbBgAV9//TVvvfUWWVlZ2O12V5fWjjMNRK2trXz++ecARERE4O7ufsN7J0+eDEB1dTWHDh267c8p4ir19fXs3LmTqKgohg8f7upyRHodBUqRGzCZTERGRvLyyy8zYcIEUlJSePfddykpKXF1aXfEV199RWNjI8BNp8uvvq51lNIT7dmzx7Gbg4jceQqUIjfh6elJcnIyS5cupbW1lXfeeYeUlBRHGOupioqKHK9v1tV+9fWr3yfSE5SWlnLo0CESEhKuOctbRO4MBUqRTgoJCWHZsmU89NBDHDlyhLfffpsTJ064uqzbVlNT43jt6enZ4b1XH0t39ftEursrjTiBgYFMmTLF1eWI9FoKlCK3wGKxcP/99/PSSy9hs9n46KOP2LBhA1VVVa4u7ZbV19c7Xne0fvLb1y9fvtxlNYncaceOHePs2bPMmTMHi8Xi6nJEei0FSpHb4O/vz1NPPcXjjz/O+fPneeutt8jIyOh2TTsduXrU8Wad21df79evX5fVJHInNTY2kpqayvjx4wkNDXV1OSK9ms7yFrlNJpOJiIgIwsLC2L17N6mpqeTk5JCcnMzQoUNdXd5NXb2WrKGhocN7rx7N1Bo06SnS0tJoamq65rxvEbnzNEIp4iQPDw/mzJnDsmXLMJlMrFu3jq1bt940pLnayJEjHa8vXLjQ4b1XXx8xYkRXlSRyx5SVlZGVlcX06dPx8/NzdTkivZ4CpcgdMmTIEJ5//nmSkpI4evQob731Fnl5eRiG4erSris8PBwPDw8Ax2k5N3Lu3DnH6/Hjx3dpXSK3q6G5lfKaRuqbWti2bRsDBgwgLi7O1WWJ9Ama8ha5g8xmM1OnTiUiIoJt27bx5z//mfDwcB555BEGDBjg6vLauXIq0M6dOzl+/DhNTU03bM45cuQI0DbdrSPrpLs5WFTJuvRCUvMvYDfABAw3W/jRIzNwc9OPOZG7QSOUIl3A19eXJ598koULF1JWVsbbb79Neno6ra2tri6tnccffxxoa15IT0+/7j21tbVkZWUB8OijjzpGNUW6g/f3n+GJNZnsPF6G/X8nAwzgrN2fH20+ywdZZ1xan0hfoUAp0oXuuecevv/97xMTE8Pu3btZu3btTaeX76ZFixYREhICwLp16657z3//939z+fJlzGYz//zP/3w3yxPp0MGiSv7ts1wMoNXefmmJHRMG8NqnuRwqqnRJfSJ9iQKlSBdzd3cnKSmJF154AavVyh/+8Ac2bdrUrnPaVTw9PXnrrbcwmUxs2LCBzZs3t7teWFjIa6+9BsCPfvQjJkyY4IoyRa5rXXohZnPH59mbzSbWpZ++SxWJ9F0mo7t2DIj0Qna7ncOHD7Nr1y7c3NxISkoiMjISk6njH4od+eCDDxyv//rXv/LJJ58A8OqrrzJu3Dig7ejEjrZOWb16Nf/wD/+AYRg899xz3HfffZw5c4bVq1dTUVHBc889x7vvvovZrN9BpXtoaG4l4vUU7J34CWY2Qf7K2XhatbG5SFdRoBRxgZqaGrZv305eXh6jRo1i7ty5BAQE3NazOhNGZ8yYQVpaWof3HDt2jP/6r/9i9+7dlJaW4u/vT0xMDMuXL+fRRx+9rdpEukp5TSP3/Wpnp+8/+OrDDPLR+l+RrqJAKeJCBQUFbN26lZqaGqZPn87999+vrtQeyjAMVq1axSuvvEJdXR179uwhISHhlp5RW1vLT37yE9asWYNhGN12yylXMwyDgsIiktblYXDzX6g0QinS9fSTS8SFRo8ezUsvvcTevXv5/PPPyc3NZe7cue02HZfur7CwkCVLlrB3797bfsauXbtYunQpZ86oK/lG7HY7x48fJzMzk+LiYsK9xnGqwbvDaW+L2UTiOJvCpEgX04IoERezWq08/PDDLF++HC8vL/74xz/y2WefcfnyZVeXJjdhGAa/+93viIqKIjs7m6lTp97yM2pra3nxxRdJTEzE3d1dZ05fR1NTEwcOHOB3v/sdf/7zn7FarXz3u9/l3599iJsN4trtBs/H63sq0tUUKEW6icGDB/O9732P5ORkTpw4wapVq/jiiy807dmNrVy5kh/84AfEx8eTm5tLUlLSLT8jOTmZtWvX8sMf/pCjR48yfPjwLqi0Z6qtrWX37t3853/+JykpKYSEhLBs2TIWL17M6NGjmRI6kDfmR2KibSTyahazCRPwxvxIYkbe3vpkEek8TXmLdCMmk4no6GjuueceduzYwWeffcYXX3xBcnIygYGBri5PrmPdunUsXbr0tt9vs9nYt28f06ZNu4NV9Wzl5eVkZmZy7NgxzGYzkydPZurUqfj7+19z7zOxIxhr82Fd+ml25JdiN9rWTCaOs/F8fKjCpMhdokAp0g3179+fv//7v+fee+9l69at/P73vyc+Pp7p06eraacbef31153a8glgw4YNTj+jNzAMg6+//pqMjAxOnjxJ//79SUhIIDo6Gi8vrw7fGzMygJiRATQ0t1LT0IKPp5vWTIrcZfrJJNKNhYWF8eKLL7Jv3z7S09MdTTujRo1ydWlC57ZsuhvP6MmuNNpkZGRw/vx5Bg0axLx584iMjLzlX548rRYFSREXUaAU6ebc3NyYOXMmkZGRbNmyhffff5+oqChmzZqFt7e3q8sTuS1NTU1kZ2ezf/9+Ll26RGhoKN/97ncJDw/v8yFbpCdSoBTpIQYNGsTixYs5evQoO3bs4OTJkzz88MNMnjxZP4Clx6itrSUrK4tDhw7R2NhIZGQkTzzxBMHBwa4uTUScoEAp0oOYTCYmTpzImDFjSE1NZfPmzRw9epTk5GQGDx7s6vJEbujqRhuLxcLkyZOJjY29bqONiPQ8CpQiPVC/fv2YN28e9957L5s3b2bNmjXExcUxY8YMrFarq8sTAdoabc6cOUNGRgYFBQWORpuYmBg8PT1dXZ6I3EEKlCI92MiRI1mxYgV/+9vf2LdvH3l5ecydO5fw8HBXlyZ9mN1uJz8/n8zMTM6fP8/gwYOZN28eEyZMwGJR04xIb6RAKdLDubm5MWPGDEfTzocffsj48eNJSkrCx8fnuu/R9irSFa7XaPP0008TFhamdb4ivZwCpUgvMXDgQJ599llycnLYsWMHb731Fg899BDR0dGYzW2HYh0sqmRdeiGp+Rf+bwPoCBvL4kdpA2i5bTU1NRw4cECNNiJ9mAKlSC9iMpmIiopi9OjR7Ny5k61btzqadlKLGvm3z3Ixm03Y//c0R7sBO4+XsSPvAm/Mj+SZ2BGu/QKkRykrKyMzM5OcnBxHo83UqVPx8/NzdWkicpcpUIr0Ql5eXjz66KOOpp1f/P5DtjaNBaDV3v5s8Ct/f+3TXMbafDRSKR0yDIOioiIyMzMpKCjAx8eHmTNnEh0drUYbkT5MgVKkFxs+fDjLly/nyd/txHShGYMbr2Mzm02sSz+tQCnXdaXRJiMjg5KSEgYPHsz8+fOJjIxUo42IKFCK9HbNdjhS1tJhmIS2kcod+aU0NLeqUUccGhsbHY02VVVVjBo1imeeeYZRo0ap0UZEHBQoRXq5moYWvjXLfUN2A0orqhgZpFHKvq6mpoasrCwOHz5MU1MTkZGRxMXFERQU5OrSRKQbUqAU6eV8PN0wm+hUqDRh8O7qVQT4+TB06FCGDBni+NPDw6Pri+2BPvjgA8frY8eOOV6npqZy7tw5AGw2G4mJidd9/4ULF0hNTW339+s9OyoqiqioqDtW941cabQ5duwYbm5uREdHExsbq0YbEemQyTCMTo5diEhPtfyDQ+w8XnZNQ87VLGYTCaMD+McpvhQXF3P+/HnOnz9PU1MTAIGBge1Cps1mw81Nv5N2Ztp3xowZpKWlXfdaWloaM2fOvOkzXn/9dX7+85/fYnWdc6XRJiMjg6+++gofHx+mTp3K5MmT1WgjIp2iQCnSBxwsquSJNZl09I/dBHy8PK5dU47dbqeiooLi4mJHyCwtLcVut2OxWLDZbO1CZmBgoNbV9SCtra2ORpvS0lJsNhvTpk1j/PjxarQRkVuiQCnSR3yQdYbXPm3bh/LqkUqL2YTdbnR6H8qWlhYuXLjQLmRevHgRAHd3d0e4vBI0fX19FTK7mcbGRo4cOUJWVhZVVVWEhYURFxenRhsRuW0KlCJ9yKGiStaln2ZHfqnjpJxZEUE8Hx/q1HZBDQ0NjinyK0GzpqYGgP79+1+zHtPLy+tOfUlyC6qrqx2NNs3NzWq0EZE7RoFSpA+6G2d519TUtBvFPH/+PA0NDQAEBAS0C5lBQUFYrdYuqUPaGn2unGhjtVodjTa+vr6uLk1EegkFShG5KwzDoLKysl3ILCkpobW1FZPJhM1mazddPmjQIMcZ5HLrDMPg9OnTZGRkcOrUKXx9fYmNjSU6Olod+yJyxylQiojLtLa2UlZW1i5klpeXYxgGVquV4ODgdiHT399fa/xuorW1lby8PDIzM9VoIyJ3jQKliHQrTU1NlJSUOAJmcXExly5dAtrOKL96qnzo0KF4e3u7uOLu4Uqjzf79+6muriYsLIxp06YRGhqqEC4iXU6BUkS6vbq6Oke4vPLn5cuXAfDz82vXVT5kyBDc3d1dXPHd8+1GmwkTJhAXF4fNZnN1aSLShyhQikiPYxgGly5datdVXlJSQnNzMyaTiUGDBrXrKrfZbL1uuleNNiLSnShQikivYLfbKS8vbzeKWVZW5tiE/dvrMQMCAnrcVPD1Gm2unGijRhsRcSUFShHptZqbmyktLW0XMisrKwHw8PC4Zj2mj4+Piyu+viuNNhkZGVy4cIGgoCCmTZtGRERErxt5FZGeSYFSRPqU+vr6a9Zj1tbWAuDj43PNJuxdcZZ1Z/cBbWxs5PDhw2RlZVFdXU14eDhxcXFqtBGRbkeBUkT6NMMwrrsJe2NjIwADH7JF4QAAA8JJREFUBw68ZhN2Nze32/pcB4sqWZdeSGr+BcdJRYkRNpbFj2p3UlFVVRVZWVkcOXKE5uZmoqKimDp1qhptRKTbUqAUEfkWwzCoqKhoFzJLS0tpbW3FbDZjs9nahczAwMCbbsL+/v4z/NtnHZ+l/vAIDzIzM8nNzcVqtRITE8OUKVPUaCMi3Z4CpYhIJ7S0tFx3E3YAd3d3goOD221f5Ofn55iWPlhUyRNrMun4P1uDR9y/ZMwAC1OnTmXSpElqtBGRHkOBUkTkNjU2NjqmyK8EzerqagC8vb0dI5jvHIfMs3XtRia/zYzB1GH9+GBFgo6cFJEeR4FSROQOqq2tbdfwc+bcedZVRWBw8yYaswnyV87usFFHRKQ7UqAUEelCZdUNTPn1rk7ff/DVhxnko6luEelZNK8iItKFfL2smDu5w4/ZBD6et9dBLiLiSgqUIiJdyNNqITHChuUmqdJiNjErIkjT3SLSIylQioh0sefjR2HvoCEHwG43eD4+9C5VJCJyZylQioh0sftGBvDG/EhMcM1IpcVswgS8MT+y3ebmIiI9iZpyRETukkNFlaxLP82O/FLHSTmzIoJ4Pj5UYVJEejQFShGRu6yzZ3mLiPQUCpQiIiIi4hStoRQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOOX/A+jvzY1uUkxTAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import networkx as nx\n", "from node2vec import Node2Vec\n", @@ -234,9 +428,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAMtCAYAAABdPqrFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXzU1b3/8fd31kyWGUJIQlYIENkXFzZxF0HrRmtt7a2l9Ha7Vtva2tqfXmurXbhXa2/ttUWrXtdaautarKBFcRcR2VGWQAhbQgjJTDJJJjPz/f7+GAjELGSZLDCv5+ORR8j3e875nsmDP/J+nPP9HMOyLEsAAAAAkGBs/T0BAAAAAOgPhCEAAAAACYkwBAAAACAhEYYAAAAAJCTCEAAAAICERBgCAAAAkJAIQwAAAAASkqO/JxAPpmlq3759SktLk2EY/T0dAAAAAP3EsizV1tYqNzdXNlvHaz8nRRjat2+fCgoK+nsaAAAAAAaI3bt3Kz8/v8M2J0UYSktLkxT7wF6vt59nAwAAAKC/BAIBFRQUNGeEjpwUYejI1jiv10sYAgAAANCp12cooAAAAAAgIRGGAAAAACQkwhAAAACAhEQYAgAAAJCQCEMAAAAAEhJhCAAAAEBCIgwBAAAASEiEIQAAAAAJiTAEAAAAICE5+nsCJxPLsmQGw7KaTFlRU4bdJsNlky3F2akTcAEAAAD0HcJQD0SDYYVKatS0t07h3bVq2lMnqynaqp3hssuVnypnQZpcealyjxwke4qzH2YMAAAA4AjCUBdZlqWmslrVvbdPDesPSqYl2YzY9/b6NEUV2uFXqDTQ3N4zeYhSZ+bKVZDGqhEAAADQDwhDXdCwqUr+V0oVqaiPvW1lHr7RQRBq4Ug701LDuoNqWFMpx9Bk+eYMl2dcRm9MGQAAAEA7CEOdEA2GVfNiiRrWVUpHFnHMDrsc3+FgFKmoV9Xjm+WZnKlBV4xk+xwAAADQRwhDx9Gw6aCqn9kmsyESu9DJRaBOOzxew/pKhbZVK/2qYnnGD4nzQwAAAAB8GqW122FZlgKvl6nqiY9jQSjeIajVAyWzIaKqJz5W4PXdsqzefiAAAACQ2AhDbbAsS4FlpQos23X4Ql89OPbtyLMJRAAAAEDvYZtcG2pX7Fbtij1xHbMpGtaTa17Qkk9e19aqUjWGQ0r3+DQmc4Sunnixrhh7Yas5GG67vOcXxHUeAAAAAGIIQ5/SsOng0RWhONkfOKBrn/6RtlaVarDHp6l5E+VxJml/7QGt3LNOyc6kVmFIiq0QObOS5RlPpTkAAAAg3ghDx4gGw6p+Zltcx2wIh/Rvf/2hth8q0w9nfU03zPyKnHbHMfcbtePQ7rY7G1L1M1vlGn4GVeYAAACAOOOdoWPUvFhytGpcnPzh/Se1/VCZvjz5cv3grK+1CEKS5HEmaXx2cdudDxdVqPlHSVznBAAAAIAw1KxhU1XsHKE41iwIRyN6Ys3zkqRvT/9S9waxpIa1lWrYXBW/iQEAAABgm5wUqx7nf6U0dqBqHMPQxoqtOtTgV3bqEBWl5+vjyhIt3fKmKuoOypeUpmkFk3X+iOmyGcfJpIbkf6VUSWMHyzCMjtsCAAAA6BTCkKSmslpFKurjPu7HB2Lb23LSMrVwxf1atPIvso5JW39c+ZQmZBfroc/9Wnne7PYHsqRIeb2adtfKXeiN+zwBAACARMQ2OUl17+3rld9EdaNfkrSpYpv+uPIpzT9tnt745p+1+caX9dQXf6sRgwu0sWKbvvq3mxWOHuddJZsRmycAAACAuEj4MBQNhtWw/qBkxn/sI2emhs2Irhw7W7+86AcaMbhAae4UnT38DD31xd/K7XBpy8GdevHj5R0PZlpqWHdQ0WA4/hMFAAAAElDCh6FQSY1kxvFFoWOkujzN//7ylCta3c/zZuvCETMlSW/v+vD4A5pWbL4AAAAAeizhw1DT3jrJ1jtFCQoH5Tb/e9ignA7bVNR1olqczVB4b11c5gYAAAAkOsJQWW2vrQxNyD5FhmJB61CDv802R66nHLOK1C7TUtPu2rjNDwAAAEhkCR2GLMvq1ZWWrNQMTc2fKEl6u3R1q/vhaETv714rSZqSM7ZTYzbtrZNl9U54AwAAABJJQochMxiW1RTt1Wf8YNbXJEn3vf+kPtq7qfl6xIzoF6//QWU1+5TqStYXJn6mU+NZoahMiigAAAAAPZbQ5wxZTb1QQu5Tzhp+un509tf1m7ce1lVP3aApOWOVmTJYGyu2are/XEkOt+674mfKTBnc6TGtcO/PGwAAADjZJXYYivZNqPj+mV/VlJyxevjDv2nNvo+1bv8nykwZrKsnXKLvzPg3jcoY1qXxrAhhCAAAAOiphA5Dhr3vdgmeWzRN5xZNi8tYhiOhdzcCAAAAcZHQf1UbrhPz4xvOE3PeAAAAwECS0H9V21KcMlz2/p5Glxhuu2wpzv6eBgAAAHDCS+gwZBiGnHmp/T2NLnHlpcoweueQWAAAACCRJHQYkiRXYZpkO0HChc2QqyCtv2cBAAAAnBQIQ3mpknmCHGJqWifcShYAAAAwUCV8GHKPHHRCrQy5Rw7q71kAAAAAJ4WED0P2FKc8k4YM/N+EzZBn8hDZKZ4AAAAAxMVAjwB9InVmrjTQzzE1rdg8AQAAAMQFYUixIgqOocnSQN0tZ0iOoSkUTwAAAADiiDCkWIlt35zh0kCto2BJvjnDKKkNAAAAxBFh6DDPuAx5JmcOvNUhQ/JMyZRnXEZ/zwQAAAA4qRCGjjHoipGyeRwDJxAZks3j0KDLR/b3TAAAAICTTpfC0KJFizRp0iR5vV55vV7NnDlTL7/8cod9/va3v2nMmDFKSkrSxIkT9c9//rPFfcuydPvttysnJ0cej0ezZ8/Wtm3buv5J4sCe4lT6VcUDZ7ucJaVfdQoV5AAAAIBe0KUwlJ+fr//6r//S6tWr9eGHH+qCCy7QlVdeqU2bNrXZ/t1339WXvvQlff3rX9eaNWs0b948zZs3Txs3bmxuc9ddd+n3v/+97r//fq1cuVIpKSmaO3euGhsbe/bJuskzfoi8c4f1y7M/zTt3uDzj2R4HAAAA9AbDsqwerYMMHjxYd999t77+9a+3uvfFL35RwWBQS5Ysab42Y8YMTZkyRffff78sy1Jubq5uuukm/ehHP5Ik+f1+ZWdn69FHH9U111zTqTkEAgH5fD75/X55vd6efBxJsdWqwLJdql2xu8djdVfaeQXyzqVoAgAAANAVXckG3X5nKBqNavHixQoGg5o5c2abbd577z3Nnj27xbW5c+fqvffekyTt3LlT5eXlLdr4fD5Nnz69uU1bQqGQAoFAi694MgxD3rnD5J07/PCFuA7fwYNj37wXD5fv4uEEIQAAAKAXObraYcOGDZo5c6YaGxuVmpqq5557TuPGjWuzbXl5ubKzs1tcy87OVnl5efP9I9faa9OWhQsX6o477ujq1LvEMAx5zy+QMytZ1c9sldkQ6d13iQ4XS0i/6hS2xgEAAAB9oMsrQ6NHj9batWu1cuVKXXfddfrqV7+qzZs398bc2nXLLbfI7/c3f+3e3Xvb2TzjM5R90xnyTMqMXYj3Ys3h8TyTMzX0R2cQhAAAAIA+0uWVIZfLpVGjRkmSTj/9dK1atUr33nuvHnjggVZthw4dqoqKihbXKioqNHTo0Ob7R67l5OS0aDNlypR25+B2u+V2u7s69W6zpziV8aUxapiUKf+rpYqU10s2QzJ7sFR0uL8jO1m+OcM5RwgAAADoYz0+Z8g0TYVCoTbvzZw5U8uXL29x7dVXX21+x6ioqEhDhw5t0SYQCGjlypXtvofUnzzjM5T9/dOU+Z3J8kweEgs00tHvx3NMe8/kTGV+Z7Kyv38aQQgAAADoB11aGbrlllt0ySWXqLCwULW1tXrqqae0YsUKLVu2TJI0f/585eXlaeHChZKk73//+zr33HN1zz336NJLL9XixYv14Ycf6k9/+pOk2Hs5N954o375y1+quLhYRUVF+ulPf6rc3FzNmzcvzh81PgzDkLvQK3ehV9HLwgqV1Khpb53Cu2vVtLdOVijauo/bLldeqlwFaXLmpco9chBnBwEAAAD9rEth6MCBA5o/f772798vn8+nSZMmadmyZbroooskSWVlZbLZji42nXnmmXrqqad022236dZbb1VxcbGef/55TZgwobnNzTffrGAwqG9961uqqanRWWedpaVLlyopKSlOH7H32FOcSp6UqeTD7xNZliUzGJYVNmVFTBkOmwynTbYUJ5XhAAAAgAGmx+cMDQTxPmcIAAAAwImpT84ZAgAAAIATGWEIAAAAQEIiDAEAAABISIQhAAAAAAmJMAQAAAAgIRGGAAAAACQkwhAAAACAhNSlQ1fR9yzLUlWwSQ1NUYWjppx2mzwuuzJSXBzkCgAAAPQAYWiAORRs0rslB7Vhr1/rdtdowx6/gk3RVu1SXHZNzPdpcsEgTczz6cyRQzQ4xdUPMwYAAABOTIShAcCyLH1UVqMn3ivVkvX7FTEtOWyGIqbVbp9gU1Tv7zikD0urm9tfPjlXX5k5TKcWDGLVCAAAADgOwlA/e2VTue55Zau2VNTKbjMUPRyAOgpCx4oc0/7Fdfv03Jq9GjM0TT+86BSdOSxV4XBY0WhUdrtdTqdTKSkpBCUAAABAhKF+Ux1s0s9e3KQX1+3TkWwS7WQAaotbYeWoVhmOoIYcCuqNp1foXcNs1c7lcik3N1d5eXnKyclRUVGRUlJSuv1cAAAA4ERFGOoHyzaV6/89s16Bhogkyep2BrKUaQQ1xlGhIlu1bIYl0zJkyFJ7iz9NTU0qLS1VWVmZTNOUzWbThAkTNHXqVOXn57NqBAAAgIRBGOpDlmXpjytKdPeyLTKMnoQgqcBWrdMce5Vua5BpSbbDGcZmdG5Q0zSbv2/cuFHr169XVlaWLrjgAo0ZM6b7EwMAAABOEIShPmJZlu5atkWLVpQc/rl747gV0XTnLo2wH9KRXXW2Hi7mHAlGlZWVWrx4sSZMmKDPfOYzSk5O7tnAAAAAwABGGOojf1xR0hyEuqvQVq0znaVyKba97uPNm7Rq1SpVVFQoGo1q8ODBmjhxombMmCG73d7l8a3DCW3Tpk0qKSnRFVdcobFjx/ZozgAAAMBAZVhWTzZrDQyBQEA+n09+v19er7e/p9PKsk3l+vYTq3swgqWJ9v063blXliUZhrR06VKtXLlSNptNRUVFcrlc2rlzpxobG1VYWKhrr71WTqezx3O/8MILddZZZ/EuEQAAAE4IXckGrAz1supgk/7fM+tlSOpe6rR0mmOPJjnKJcWC0CeffKKVK1fK5XJpwYIFysnJkSTV19frscceU1lZmV5//XXNmTOnx/Nfvny5QqGQLrzwQgIRAAAATiqEoV72sxc3KdAQ6WYQkiba9zcHoSPeeustSdKsWbOag5AkJScn69JLL9UjjzyiDz74QOecc46SkpKa79fU1Ojee+/t1HMXLFigYcOGSZLefvttud1unX322d38FAAAAMDAQxjqRa9sKteL6/Z1u3+hrVqnO/e2uBYIBLRvX2zMiRMntu5TWCiv16tAIKBt27a1aONyuTR58uR2n1dZWal9+/bJ5XK1CFlSbIUoMzOTSnMAAAA4aRCGeollWbrnla3dLqHtVkRnOkub3xE6orw8tkrk8XiUnp7eZt/c3FwFAgGVl5e3CEPJycmaN29eu8/885//LEmaMGGCXC5Xq/svvPCCCgsLqTIHAACAk4KtvydwsvqorEZbKmq7XUJ7unOXXIq0Ojy1urpakuTz+drte+RFsZqamk4/LxAIqKQkVu3u1FNPbbNNY2OjXn755U6PCQAAAAxkhKFe8sR7pbJ38wCgAlu1RtgPtXl+UFNTkyR1WCnuyKpOKBTq9DPXrl0ry7KUmZmp/Pz8NttYlqUNGzbok08+6fS4AAAAwEBFGOoFh4JNWrJ+v6Jmd5aFLJ3m2Ktude2BdevWSWp/VegIwzD02muv6SSoyA4AAIAERxjqBe+WHFSkm2km0wgq3dbQ5qqQdHTVJxwOtzvGkdUjt9vdqWeWlpbq0KFDstvtHRZYkGKrQwcOHNCePXs6NTYAAAAwUBGGesGGvX45urlFboyjosNVoUGDBkmS/H5/u20CgYCkjt8rOtbatWslSaNHj+5UcQSbzaZVq1Z1amwAAABgoCIM9YJ1ZTXdWhlyK6wiW3W7q0KSmkteNzQ0NBdT+LQjpbc/XR67LaFQSJs3b5YkTZkypVPzNE1TGzduVDAY7FR7AAAAYCAiDMWZZVnasLf9VZuO5NhqZTM6DlFer1e5ubmSpA0bNrS6X1ZWpkAgILvdruLi4uM+c+PGjQqHw/J6vRo1alSn52qapkpLSzvdHgAAABhoCENxVhVsUrAp2q2+GbagTOv42+vOPvtsSdI777yj/fv3N1+vr6/XSy+9JEmaNm2akpKSjjvWmjVrJEmTJ0+W8ek63h2w2WzNK1AAAADAiYhDV+OsoZtBSJKGGEEZOv72ujFjxmjatGn64IMP9NBDD2nEiBFyOp3auXOnGhsbVVBQoPPPP/+441RWVmrv3r2Sjl9F7tNM02zuCwAAAJyICENxFo6a3expaYgt2OqQ1fZccsklKiws1KpVq7R7925Fo1ENHjxYs2bN0syZM2W32487xkcffSRJKioqUnp6epdnvG/fPlmW1aUVJQAAAGCgIAzFmdPevZ2HSYrIaXQtSI0fP17jx4/v1vOi0WjzO0ddXRU6oqmpScFgUKmpqd3qDwAAAPQnwlCceVxtrMhYlnxNdXJHwnJaUYUNu0IOp/yuVB1ZCnJ0MQj11NatWxUMBpWUlKSxY8d2e5xIJBLHWQEAAAB9hzAUZxkpLg21GlS8b4uKa/bolOrdKq7Zo+RIqFXbeodb2wbla2t6gUoz86TCvpvnkbOFJkyYIIej+/8NCEMAAAA4URGG4sSyLDWsXavqp/6ih156SXbTVMSwyW6Zau+NmuRISJMOlmh81U6F9iVpSeHlfTbfL33pS3EZpydBCgAAAOhP/CUbB7XLl6vyd/cqtG2bZLfLbsa2vDms4299Mw63i0S6X4WuPxGGAAAAcKLiL9keiFRXq+KXv1LgpZea3/1RtHuhxh0KyREOK+J0xnGGvcvlciklJaW/pwEAAAB0C2Gom2r/9S/tv+2nitbWxi5Yxz8fqCOGpPRD1arMylSn62sfIxqNateuXdq+fbt27dqlqqoqhcNheTwe5eXl6fTTT9cpp5zSozl+Wm5uLmW1AQAAcMIiDHWRZVmqeuBPqvzd72KhpYch6FgZh6p0MHOIrG4EjF27dumJJ56QJKWmpqqwsFAul0uVlZXaunWrtm7dqtNOO02XXXZZXAKMzWZTXl5ej8cBAAAA+gthqAssy1Llb/9HVQ8+eORCXMdPP1Qty9a9c4oMw9DYsWM1ffp0DRs2rMW9jRs36tlnn9VHH32kwsJCTZ48ucdzNU1Tubm5PR4HAAAA6C+EoS6oeuBPR4NQD/0j4Nc7waC2hEKqjEQUiEaVtG2rvJs3acyYMZo+fbpcLlenxrIkDT1ltC4eM16mzVDAtOQ0I0oKN8lQrHz2jh07tGbNGq1bty4uYchms2n48OE9HgcAAADoL4ShTqr9179iW+Pi5K81NVrT0KARLpfGuZPks9t1MBrRmooKvbZvn9auXasFCxYoLS2tVd8Gh0t704foYOogHfCmqzJ1kMKO1oUXnJGwMutqlBWoln3UFmnNGgUCgR7P3WazacKECRRPAAAAwAmNMNQJkepq7b/tp3F9R+jHmVka5nJpkN3e4nqJ16vrK8pVVlamV155RVdddZWk2OpPhTddm3JHaHtmniybTTbTlGkY7RZcCDuc2ucbonJvhvzR2Pa7cFaOKtLSlVVb3e75R8djmqamTp3azd4AAADAwEAY6oSKX/4qVjUuju8ITfZ42rw+IhDQFdOm6b6yMpWUlEiSdmYM1arhY3Uo1SfDNJvfKzI7836RYShcXaWGZS9KkqwLLtFzp52rwXV+TSv9WMOr9svpbJTNFpXNZso0bTJNu8LhJKmNuGQYhrKyspSfn9+9Dw4AAAAMEISh46hdvjx2jlAfMSQV79gpSbI7HPrXmNO1PbugOYh1tcCCFY0o8Ov/lBWsk2NEsTxXXC1Jqk5J09IJMzTDfFsLjAeVproW/SIRh+rqMlRbO0R1tYNVUzNUkUiSLMvS+eefT0ltAAAAnPAIQx2wLEuVv7s37iW0OxI0o3r6k09iP5w9WyVZh8tXdzN8BP7nV2r66AMZ3kHy/exuGYcPdbWMWKj6wJipjZqkb2qRztAHzf0cjoh8vgp5vQdks1kyTUMHK4vk8Vyi0aNHd/8DAgAAAAMEYagDDWvXKrRtW68+451gUC8F/DIlVUWiWtvYoKBpyjXtTHm+fWNzaOmOwH13qfGfz8tI8yr97kVyFAxr1cY07Apaqfof4yf6gvWkrtBzzZvjYq8jxUKgzWYpM3OnDNsftPKDf2nkiB8qM3N2t+cGAAAA9DfCUAeqn/qLZLdL0WivPaMkFNLzn6rwlnThJUq97ibZ0rzdHrd20T1qePYvMlLTlH7XH+UsHtNu2yOB62njWjVaHn1BT7VZXMGwxYJRMLhV6zd8W9nZl2v0KT+T05ne7XkCAAAA/cWwrD7a/9WLAoGAfD6f/H6/vN7uB4hjRaqrte3sc6RIJC7jHU/YsnT/zHP1RHKqgk8+JBmGBt1xj1yTT+/yWLUP/E71f31MRkqqvLf8Sk2r3lXTB+8oerBChidFzlPGKvlzX5J7xtlt9v+C9aSu1HOdeJJdTqdXY8f8WpmZc7o8TwAAACDeupINur8H6yRX//77fRaEJGnllKl69qvXKeXqryj9v+6TVRuQf+FtskKNXRqn9k/3NgehtOt/rMBdt6vhhb/KamqUe9osOYYVqWntKtXc+j3VPbqozTGeNq7Vh+pM6eyowuEard9wnUpLF+kkyNUAAABIIGyTa0fjpk2Sw9Engcifkqq7r/2WDMuSZRhyjp0o+7ARipaWKLxls1yTTuvUOHUP/0H1ix+VkZqmQb+6V/5f3Sor4Jf7/Dny3XyHDHeSJCn8ySZV/78bFHz8T3JOOFXuM2a0GMewTP2x4iqN/+u/tGF1QAcORGRZUkaGXRMnJunzV/s0cqT7cOtYACrZ8RtFokGNHHETleYAAABwQmBlqB0N69f32crQ3V+5UbXJqbKOCRFGUuwcIrPmUKfGaHxnhYJ/fkiSZM8rUN3D98k8UC45nJJhU+B3v5b/v29X7aLfyjlmvFLnf1OSFHziT63Gavpkk3Z/42t6+YUqNTaaOv0Mj6ZP90iG9OqrdfrOdXv1xht1rfrt2rVIu3bd3+XPDwAAAPQHVobaYFlWbGWot58j6bkLv6F3Jo9vcd30VytSslWSZM9vXQGuzbFqjxZhiGzZfPRGJKzQa0ubf7Rl5yjtuh/Kddp0SVJ441pFDx2UffCQ5jaBe34hqz4oz2VX6YffNTTN8VFsXqalxx6r1p+frNH//PagZs5MlsvVMk+X7PiNUlJGKTPzok7NGwAAAOgvrAy1IXrokMxgfa+Nvz0U0j8Cfn1c+Bktnn2uDPPouzaR3btUc8fNUrhJznET5RxR3KkxPRdfoezX1jR/2Y/pl/K17zRfz/zLPyVJNt/hCnCWpcjWj5vbmv4aRXbEyomnfe06Pev4so7MzmYzNH9+utxuQ3V1pnbtCrcxE0Mff3KLwuHqzv9CAAAAgH7AylAbzIauFS3oqkPRiH6yf7+cBxdJ5a/LNiRLioQVPVCuyLZPJNOUfViRfD/9726N37RxraI7Oj4fKbJ/T/O/o+X7jt5wuZr/aRmGdhvDtd0qVrFaj+fz2dsY2VI4HNCWrXdqwvj/6erUAQAAgD7DylAbrHBTr44f9BVrfOEM2VJSFf54g0KvL1PordcULSuV69RpSrvxVmU8sFj27Jwuj201Nihw189keAc1X4tWVbZq1/CPvx/tU3/0/R+bJ1nOiadKkur+748ywo16VZdIim2Te/zxaoVClqZN8ygrq70sHVVFxYuqrPxXl+cPAAAA9BVWhtpgOF3Hb9RNYUeKnjFTtKnstVb3kq9ZoNSvfLNH49c+9L+K7inToF//Xv67fy6r+pBC//qnQtNmyTnpNJkBvxpeeFqNryw5Wi3PaJmJvTfdrppbvquGJc8o9P5b+ucpY7XPXqXS7UFVHYxo9kWp+u53h7QzgyMMlez4rYYMuZDqcgAAABiQCENtsHmSem3srcVXa+ihCk0+6xrtPHeSnMVjFPzzw2p89aUej9209kM1PLdYSXMuk3vG2XJNPkOhFa/Iqg+q5rYbW7RNvurLatq4RpEtm2Wk+VrccxQO1+D7HpN/4W1q+vA9NR48oPcP3xs2zKnJk5OUknK8RUVLweAWBQJr5fOd2uPPBgAAAMQbYagN9sGDZUtJjnsRhcqMSarInqozs6X6SR4dGJ0k02ZItp7vVjQb6hW4++eypWco7fofS5IMd+wsoKQ5l8uWMURWwC9b+mC5Z50n5+jxqrw6VvHNMWJUi7GaNq6V/2c3STa7vP/5a3mmnKY5zuUavfFxLVp0SPf85qA2bQzpRz/O7HBOhmHXnj1PEoYAAAAwIBGG2mAYhpKKhqp+Y4mk+GzxsiTtKLpMskzJsGlfhkNmHHeP1d3/W0X375Xvzt/KluZtcc+eV9Bq+11k726ZVQdleAfJWTy2+bpZV6ua238oy1+jwfc9JufYiZJlaY8m6qszU1Q4zKVvfXOPli6t1ezZqZpyqqf9z2xFVXFgiYqL/1Mu1+D4fVgAAAAgDiig0BbLkse9N145SJIU8BYpmJonGTZZkvanO6Q4vUsTWvWeGv7xjNznz1XSWed3qk/9049LkjyXfU6G03l0rPffklVTLXtOfiwISZJhaIdGypKUm+vUmDGxFaePPmo47nMsK6LqmveP2w4AAADoa4ShtuxZpST3fsmKXxrak3uODDMqSap3G2pyxmdss65Wgd/cIWNQurzf+0mre59mRSMK/vlhNSx5JrZi9OVvtOxzYL8kyUhOaXG90UhWQLEVp85cWX0AACAASURBVCPvCwVqo8edn2E4VBvY2PkPBAAAAPQRtsm15YMHlTw0IhlWXAJRkzNFB7JOl2WLncsTtscvZNX+4TcyKyvku/2/jx6kelh09y5JUsNLzyqyc7sUblJ48waZ1VWy5xUo/e77ZXhabnOzDcmSJEV2l8qsq5UtNe3o55BbkYilbdtipcdzhjp1PJYVkT+wrkefEQAAAOgNhKFPC1ZJm56VwxWRt7BBgTJPjwNR9aDRzUFIkqJxXI8Lvf2aZHeo/oWnVf/C0y3umYcOxr4frFTojVclm12OUaOVfPVXlPzZL8pwt66a5542S0aSJ3Ze0T2/kPfmn8vmSZYkNYZtWrSoSgcORORwSGefk9Kqf1tqazfKsixKbAMAAGBAIQx92s43JDMiSUovDiqwK7nHQ9amFcgwI7JssV+33ezxkC1FIwqvW93+/cPb82xDMpWx6MkOh7INGqy0H/ynAnf9XKE3XtXBdR/KOXq8DIdDN235UIcOhmWzSdffMES5ucdfGZKkaLRO4XCVXK7jnU0EAAAA9B3C0KftXyvZHJIZkScjLLcvrJDfoZ5UUwikDZdlHF0ZckatOEw0Jusfb7V7z//ft6tx2T+U8rXvdOkwV89Fl8oxYpTq//6Uwus/UtNHH0iy5B0sXXhhqj77Oa/GjOnaWUzRaKhL7QEAAIDeRhj6tD2rm1eGDEPKnBTQnrcyuj2cJak2rbBF5bjkkCVX2IpbEYXe4Bw5Wr6f3NH8c5JVr4f0lW5HQstqis/EAAAAgDihmtyxLCu2MnSMtLyQvIX1sWIK3RB2pirqaLmKYkjKqY7EnncisCyNUEmPKo0bhitu0wEAAADigTB0rOBBqamu1eXs0/2yO03F1nm6JmpvOwTkVkVkO0GykF1RjdT2no1hd8dpNgAAAEB8sE3uWOH6Ni873JZypvm15+3BXR7SMlr/indXbtW7C/9X1Wmx94gi+3ZLkhqWPKOm94++A+S78x7ZMzK7/Mzm/j+5U76f3Nnt/kdEDYeKrJJu97fbU+V0dn+rIQAAANAbCEPHiobbvZWW36jMiQFVbvB2aUjDirS61hCu14E9m1tdNysrZFZWHL0Qbn8+fcluRTRO3T84NS1tAmW1AQAAMOAQho5l77hUdMa4OpkRQ1Ufp3XYrsWQ0daFA07JnaL7vr1cz01P0eZCl0zbwA0KNiuiGXpHaartVn/DcMjnnRznWQEAAAA9xztDx3J2fKZQrLpcrTInBQ5fOf5LP85wneyRxjbvTd0eGtBBSJJMw6GL9HK3+1tWRGneCXGcEQAAABAfhKFjpQyRXKkdNjEMaci4OuWfdUh2l3ncKnOGpLTasjYrx+VVRZRVE5FhDsxKCoZlqtAq1Sht6/4YhkPpg2bEcVYAAABAfLBN7liGIeVMkXa9fdymafmN8mSGVLHap0BZsmKrRG2v8nhrS+X3jWhVTMGQdM7qdfr7haf3fO46eshqR7KWvi/D1bnKbpZh0+etv3S7pLZh2JWddZlcrq4XngAAAAB6G2Ho0/JPl3a/33zwakccbkt5Z9bIW9ioyg1pCvmdsZUiq2V8SKvdLcvW+lcdbdquom0vakyhQ1tGTpRli89CnXPCFNnzCtq+2cln2KyoZugdna4Puz0Py4oqP//abvcHAAAAehNh6NNypnQqCB0rLb9RqXmNaqxy6tC2FAXKPLFAZFiSJaXXbJFhRmXZ7M19LLNB4fpXJEmz316iXfmj1OD2dDqsdMTzmc/Kc/EV3e5vWKaSFdR8PdyDWRhKTRktr3dKD8YAAAAAeg/vDH1a0blSG6s4x2MYkmdIWHkza1Q8r0J5Zx5Sxug6JWc1KcmqVdaB1TLMaHP7cP1rkhWSJHlCDZr7xvNxCULxYBk2fVN/VJpaH0DbhVE0YsQPKKkNAACAAWtg/PU9kKRkSOM/Jx2zitNVDrcpb2GjsqbUatgFVTrlqnLNGPVc88pQtGm7zPAWHVuNrrj0Y5298tWezj4uvmA9qTO0qgcj2JWdfYUyM2fHbU4AAABAvLFNri3TvilteDpuwxmGlJfyiTIaS3UwXKBIw7tttpu+5g01OV1aedq5PXpe09pViuzcJqu+XobXJ+eYCXJPP0uGy3XcvldYz+gKPdeDpxtyOr0afcrtPRgDAAAA6H2EobbkT5WyxkuVH0uWGZchDUOanvqUlhxcIMs82HYbSWd/8Kpc4ZDemj5HMs1ubZ1rfGVJq2u2jCHy/vjnck+b1fq5linLsOmL1pM9DEKSZGnsmIVyOtN7OA4AAADQu7r0l/bChQs1depUpaWlKSsrS/PmzdOWLVs67HPeeefJMIxWX5deemlzmwULFrS6f/HFF3fvE8WDYUgX3Ba3IHREUdIqecKvqL0S3Dp8Z8aaNzVv6ZPyhBpkmJ2fg2PEKUq74cfKePjvylzytjKfWa5Bdy2Sc/xkmVUHVXPbjWpa27I6nM2KKkV1+oH1X3EIQtLIET9SZuZFPR4HAAAA6G2GZbVxGmg7Lr74Yl1zzTWaOnWqIpGIbr31Vm3cuFGbN29WSkpKm30OHTqkpqam5p+rqqo0efJkPfTQQ1qwYIGkWBiqqKjQI4880tzO7XYrPb1zqwuBQEA+n09+v19er7ezH+f4/v51adNzkhU9fttOqI849MC2GTI7eXJPg9ujf511mT4pnizDNLtdetuyLPlv/6FC76yQY+Qpynjwr82rQWdab+qrelipPSqWEDNs2HUaOeImiiYAAACg33QlG3Rpm9zSpUtb/Pzoo48qKytLq1ev1jnnnNNmn8GDWx64uXjxYiUnJ+vqq69ucd3tdmvo0KGdmkcoFFIoFGr+ORAIdKpfl33mbqnkNamhRlLPV4l21w/qdBCSYlXmLl/+N40p2aC3p87WwYyhrUp0d4ZhGEpZ8B8KvbNCkZKtih4o1/DMRl1t/aVH5wgdHl2SpZEjfqzhw/+jh2MBAAAAfadH1eT8fr+k1oGnIw8//LCuueaaVitJK1asUFZWlkaPHq3rrrtOVVVV7Y6xcOFC+Xy+5q+CgnYOGO2p5MHSFf+reAQhSapoTJWtG2MVl36iBX+7T19+9n6N3bZBtmhspcoWjUrHW9izLNmtiByFI5ov/fuBn2uhbopDELLL6RykSRPvJwgBAADghNOlbXLHMk1TV1xxhWpqavT22293qs8HH3yg6dOna+XKlZo2bVrz9SOrRUVFRSopKdGtt96q1NRUvffee7LbW6+CtLUyVFBQEP9tcke8+RvptV/0eJi/7pqoPfU+dfTOUGfUJyVrd26RyjPztD8rXxWZeWpyuVu1c5sNGmls1whru4Yc2qj//sKzkqQHH8pXUdHxK8u1L7YalJ19hUaf8jM5nYN6MBYAAAAQP722Te5Y119/vTZu3NjpICTFVoUmTpzYIghJ0jXXXNP874kTJ2rSpEkaOXKkVqxYoQsvvLDVOG63W2536z/+e83ZN0lNQent33Z7CMuKrQz1NAhJUnJjvUbv2KTROzbFxpZUn5SiiMOpqN0uezQqRySs5MagfMNqlTO1Ui+9XhHrm2KooMDZrecahl2WFVVKyikaOeKHnCMEAACAE1q3wtANN9ygJUuW6M0331R+fn6n+gSDQS1evFh33nnncduOGDFCQ4YM0fbt29sMQ33OMKQLb5fcqdLyOxXbXdi17W4NUafCZu9UMjck1ezfp5r6Ro3JyZT9mEILNaWpevX1aj2/pkaS9Nl5PjkchsyoZNhiH609liXZDLssRWUYDmVnX678vGvl9U6mSAIAAABOeF3669yyLH33u9/Vc889pxUrVqioqKjTff/2t78pFArp2muvPW7bPXv2qKqqSjk5OV2ZXu8yjNgKUeYY6YUbpEZ/l6rMhc0evZ51XNX1DXr0ndXyuJzKH+RVapJbDeGwyv11qqlvkCSdWpirU43x2vlqo5IzG5Wc2aDkzEbZXa2DXbTJpvrKJBVPuUpDsqcpfdAMuVydfzcMAAAAGOi6FIauv/56PfXUU3rhhReUlpam8vJySZLP55PH45EkzZ8/X3l5eVq4cGGLvg8//LDmzZunjIyMFtfr6up0xx136KqrrtLQoUNVUlKim2++WaNGjdLcuXN78tl6x5hLpcKZ0j9/LG38e2x5pRPnEUWt3g1DOT6vzi4u0p7qGh2oDWpnVbVkSalJbk3KH6qpRQUam5MlNUn+HS75dxzZP2nJkRSV4bBks5syozZZEUORRrskQ+dc+E0Nzsrr1bkDAAAA/aFLYWjRokWSYgepHuuRRx5pPjOorKxMtk+dh7Nlyxa9/fbbeuWVV1qNabfbtX79ej322GOqqalRbm6u5syZo1/84hd9+15QVyQPlj7/sDThc9Jrv5IObJJsDsmMtNvFbsT3ANdPy0hN1pWnjutGT0ORxvb/Gzic3Xu/CAAAABjourxN7nhWrFjR6tro0aPb7evxeLRs2bKuTGPgGHOpNPoz0p4PpVUPShufiQWiNoKR09a7Yai3OFw9qToHAAAADFy980Z/IjEMqWBq7GvuQqn0TWnfGmnvR7HvTXWSJI89LKct0mtFFHqDy+ORx+vr72kAAAAAveLE+cv8RJCSIY3/bOxLipVjCx6UIg0yIk3KvvcP2rN1W//OsQuyR4yiahwAAABOWoSh3mQYUmpm8485YyZpX8kOmdHOV6HrLza7XUNHje7vaQAAAAC9pndLnKGF7BGjToggJElmNKrsolH9PQ0AAACg1xCG+lDB+Emy2e39PY1OsdntKhg/sb+nAQAAAPQawlAfSvb6NHrm2TJsAzsQGTa7Rp95jpIpngAAAICTGGGoj02Ze6ksc2BvlbPMqKbMubS/pwEAAAD0KsJQH8spHqMhhcMHbJU2wzA0pHC4coopngAAAICTG2GojxmGoVlf/EqnDrDtD5ZladYXvzJgwxoAAAAQL4ShfjDqjOkaM+scGbaB9es3bDaNmXWuRp0xvb+nAgAAAPS6gfXXeAK54Gv/IXdKSuwsooHAMOROSdUFX/t2f88EAAAA6BOEoX7iSfNqzre/Jw2U7XKWpbnf/p48ad7+ngkAAADQJwhD/ah46kyddc38/p6GJOmsa+Zr1NQZ/T0NAAAAoM8QhvrZtHlXa9q8qxN+DgAAAEBfc/T3BBKdYRg665r5ciV59Pbix2PvEPXF1rnDzznrS1/VdIIQAAAAEhBhaAAwDEPTP/sFZeQXatkD9yoUDMoyzd57ns0md0qq5n77e2yNAwAAQMIiDA0go6bOUN6YcXrtkfv1yTtvyjCMuJ5HdGS80TPP1gX//h/ypKbFbWwAAADgREMYGmA8aV5d+r2bNXrmOXrn6Sd1sKxUhs0uy4x2e8wj/TMKhmnWF7/COUIAAACACEMD1qipMzTyjOnav22L1r7ykra8+6bMaFQ2u11m9PjB6Eg7m92uMWeeoylzL9PQUafIGCjnGgEAAAD9zLDiuQ+rnwQCAfl8Pvn9fnm9J+c5OfUBv3Zv2qCKHdtUXrJV5SXbFW5saNXOmeTR0JGjNHTUaGUXjVLB+IlK9vr6YcYAAABA3+tKNmBl6ASR7PVp9MyzNHrmWZIky7LUEPAr0tSkSDgsh9Mph8slj9fH6g8AAADQCYShE5RhGEr2DervaQAAAAAnLA5dBQAAAJCQCEMAAAAAEhJhCAAAAEBCIgwBAAAASEiEIQAAAAAJiTAEAAAAICERhgAAAAAkJMIQAAAAgIREGAIAAACQkAhDAAAAABISYQgAAABAQiIMAQAAAEhIhCEAAAAACYkwBAAAACAhEYYAAAAAJCTCEAAAAICERBgCAAAAkJAIQwAAAAASEmEIAAAAQEIiDAEAAABISIQhAAAAAAmJMAQAAAAgIRGGAAAAACQkwhAAAACAhEQYAgAAAJCQCEMAAAAAEhJhCAAAAEBCIgwBAAAASEiEIQAAAAAJiTAEAAAAICERhgAAAAAkJMIQAAAAgIREGAIAAACQkAhDAAAAABISYQgAAABAQiIMAQAAAEhIhCEAAAAACYkwBAAAACAhEYYAAAAAJCTCEAAAAICERBgCAAAAkJAIQwAAAAASEmEIAAAAQEIiDAEAAABISIQhAAAAAAmJMAQAAAAgIRGGAAAAACQkwhAAAACAhEQYAgAAAJCQCEMAAAAAEhJhCAAAAEBCIgwBAAAASEiEIQAAAAAJiTAEAAAAICERhgAAAAAkJMIQAAAAgIREGAIAAACQkAhDAAAAABJSl8LQwoULNXXqVKWlpSkrK0vz5s3Tli1bOuzz6KOPyjCMFl9JSUkt2liWpdtvv105OTnyeDyaPXu2tm3b1vVPAwAAAACd1KUw9MYbb+j666/X+++/r1dffVXhcFhz5sxRMBjssJ/X69X+/fubv3bt2tXi/l133aXf//73uv/++7Vy5UqlpKRo7ty5amxs7PonAgAAAIBOcHSl8dKlS1v8/OijjyorK0urV6/WOeec024/wzA0dOjQNu9ZlqXf/e53uu2223TllVdKkh5//HFlZ2fr+eef1zXXXNOVKQIAAABAp/TonSG/3y9JGjx4cIft6urqNGzYMBUUFOjKK6/Upk2bmu/t3LlT5eXlmj17dvM1n8+n6dOn67333mtzvFAopEAg0OILAAAAALqi22HINE3deOONmjVrliZMmNBuu9GjR+v//u//9MILL+jJJ5+UaZo688wztWfPHklSeXm5JCk7O7tFv+zs7OZ7n7Zw4UL5fL7mr4KCgu5+DAAAAAAJqtth6Prrr9fGjRu1ePHiDtvNnDlT8+fP15QpU3Tuuefq2WefVWZmph544IHuPlq33HKL/H5/89fu3bu7PRYAAACAxNSld4aOuOGGG7RkyRK9+eabys/P71Jfp9OpU089Vdu3b5ek5neJKioqlJOT09yuoqJCU6ZMaXMMt9stt9vdnakDAAAAgKQurgxZlqUbbrhBzz33nF577TUVFRV1+YHRaFQbNmxoDj5FRUUaOnSoli9f3twmEAho5cqVmjlzZpfHBwAAAIDO6NLK0PXXX6+nnnpKL7zwgtLS0prf6fH5fPJ4PJKk+fPnKy8vTwsXLpQk3XnnnZoxY4ZGjRqlmpoa3X333dq1a5e+8Y1vSIpVmrvxxhv1y1/+UsXFxSoqKtJPf/pT5ebmat68efH8rAAAAADQrEthaNGiRZKk8847r8X1Rx55RAsWLJAklZWVyWY7uuBUXV2tb37zmyovL1d6erpOP/10vfvuuxo3blxzm5tvvlnBYFDf+ta3VFNTo7POOktLly5tdTgrAAAAAMSLYVmW1d+T6KlAICCfzye/3y+v19vf0wEAAADQT7qSDXp0zhAAAAAAnKgIQwAAAAASEmEIAAAAQEIiDAEAAABISIQhAAAAAAmJMAQAAAAgIRGGAAAAACQkwhAAAACAhEQYAgAAAJCQCEMAAAAAEhJhCAAAAEBCIgwBAAAASEiEIQAAAAAJiTAEAAAAICERhgAAAAAkJMIQAAAAgIREGAIAAACQkAhDAAAAABISYQgAAABAQiIMAQAAAEhIhCEAAAAACYkwBAAAACAhEYYAAAAAJCTCEAAAAICERBgCAAAAkJAIQwAAAAASEmEIAAAAQEIiDAEAAABISIQhAAAAAAmJMAQAAAAgIRGGAAAAACQkwhAAAACAhEQYAgAAAJCQCEMAAAAAEhJhCAAAAEBCcvT3BAAAAAD0DsuydKjxkBqjjQpHw3LanUqyJ2lw0mAZhtHf0+t3hCEAAADgJFHdWK2V5Su1uWqzNlRu0OaqzaqP1Ldql+xI1riMcZqYOVHjMsZp+tDpSk9K74cZ9y/CEAAAAHACsyxL6yrXafGWxVq2c5kiVkQOw6GIFWm3T32kXh9WfKi1B9Y2t7+46GJdM+YaTRoyKWFWjQzLsqz+nkRPBQIB+Xw++f1+eb3e/p4OAAAA0CdeK3tN9625T9tqtslu2BW1ot0e60j/4kHF+u6p39X5hefHcaZ9pyvZgDAEAAAAnGBqGmv065W/1sulL8uQIUvx+5P+yHiXDL9Et06/VYOSBsVt7L7QlWxANTkAAADgBLK8bLkuf/5yvbLrFUmKaxA6drxlu5bp8ucv1/Ky5XEdfyAhDAEAAAAnAMuy9OD6B3Xj6zfKH/L3aEtcZ5iWKX/Irxtfv1EPbXhIJ8GGslYIQwAAAMAAZ1mW7v3oXv1+ze9jP8d5Najd5x5+zpFnn2yBiHeGAAAAgH5mWZYaasOKNEVlRi3Z7IYcLrs8aU4ZhqEH1z/YHIR6/KyIpeDWoOrW1ym4JahQeUhmkylHikOeER4NPm+w0qaktexjWmooadC4g+NUvbFaH3/8cfPf4KeeeqoWLFigf/u3fxsQVegooAAAAAAMYA11TdrzSbUqy2pVURpQ5a5ahUOtt7053XYdHLVVf/HGJwhJUt2mOpXeXSpJcvgc8gz3yHAbCu0LKbQnJElKPy9duV/NbQ43oYqQtv1kmyQpbVCaZk6bqfT0dO3YsUOrVq2SJH1mziX622OL5U5Nki3F2W/BqCvZgHOGAAAAgD5gWZYqdga0YcUebf/wgEzTks1myDTbX5uojQb0nOdhyZIUr2xhSN4zvMq4KEMpo1Na3PKv9Gv3A7tVvaJaycXJSp+V3twnZWyKMi/JVO7kHP0p4y4l7zXUdEqd3h21Wgv+/hP985WXdfvVP9CNsxbIcNnlyk+VsyBNrrxUuUcOkj3FGacPED+sDAEAAAC9bMfaSq18cYcO7QvKsBmyOghAx/rXqMdUMmStLMPs5Rketff/9qr6zWqljEtR0c1Fre7bLJvOqT1dP9n7teZr9777mH7z1sMaNihPb3/7L8c0NiTTkmyGPJOHKHVmrlwFab26asTKEAAAADAANNaF9eZft2rbqormlZ3OBqGd6Ru0PfOjXpxd25IKkyRJ4UPhNu+bhqkV3lU613+6ZtRNkiRNyD5FkrS/9sCnGlvN3xvWHVTDmko5hibLN2e4POMyeucDdAHV5AAAAIBesGNtpf78s/e1fXVF7EIX9mNZsrSq4CXJ6vv3bpoqmiTF3idqj2EZeizzxeZqczsP7ZYkZaV0EHAOB6NIRb2qHt+sqr98omiw7cDVV1gZAgAAAOLIsiytXrpLK1/YEVsN6sZLKRWppTqUsj/uczuecE1Y1W9XS5J8Z/jabWcZlkqT9umTpFINr83RI6ufkSRdMvqc4z/k8O+jYX2lQtuqlX5VsTzjh/R47t1BGAIAAADixLIsvf/8Dn20bNfhC90bZ9PQt2SYNlm2vntXyIpa2vOnPTIbTLnz3Uo/P73D9nbLpiXpb2jfM/tU5t+v7NQh+u7Mr3ThgZLZEFHVEx/LO3e40s7L7/MKdIQhAAAAIE5WL911NAh1U4OjTtsz1siymQrtD6luY50aShvUsKtBoX0hyZSyPpelrCuyOj1m1fIq7X8ittKUfk668v49r1WbfY/tU3BzUPZUuwpvKJTN0fEbNVHD1NNvvKTyjRVyO1xadOUdSve0v5rUpsNhMbCsVFYoKu/cYX0aiAhDAAAAQBzsWFsZ2xrXQ3t925pXhA69dkhVr1b1aLymA02qeLqiwy17+/+8X9VvVsueYtfwHw+Xe6j7uOMeXHpQ5c9VyOlw6MHP/kpT8yc23yupKtObpau0vnyLNpRv0faqMkWtqH509tf1/TO/2uZ4tSt2y3DblXpunp544gk98cQTWrdunQKBgAYPHqyxY8fq85//vL7zne9059fQJsIQAAAA0EONdWG9/sQn3X5H6FgHU3bLZtpk2mLb1YZcPERJw5LkGeZR5ZJK1bxb0+mxLNPSnof2SMb/Z+/Oo6Oq7/+Pv+5s2Sf7QiAsYVUgoIKAiEVFQa0UtbbwtVCttZvYWrX6xS7qT1u3amur1WqtVK3r1+JC3XABRVEEQRZl3yEJIctMlsms9/fHkIGYAJnsYZ6Pc3Ik934+976H4/HMy88mpZ2WpqqPmvYtfrZY5YvKZUm0qP8N/ZXQL+GYzy1fVK6S50pk2Ax9Z843dWb2uEb3n1r1sh5f+X8trrPBnlfX6cc3fldLVyyT0+nUaaedprS0NO3du1erVq2S2+0mDAEAAADdyQfPb5LX429zEJKk0uSdCh08VyjjGxmNb0Y5g6x8UbnqNtWp1+xe8leFd26r21anrbdtlbfEq1B9KFyzRcqZnqOEAU2DkK/cp5o1B6fq7fCofne9FArXUnB1gcwhFmlX4z5Dswv141NnanjuYI3MHaIHlz2tl9a/ddRaTdPUD//zay3btUo/+sFVuu+B+5WcnHyoDp9Pa9asie4v4BgIQwAAAEAbbFtdFj5HqB2YMnUgeXfUoac53mKvSl8qVeLQRGWclaE9j+4JX9/jlS3VJluyTT6PL/yukFTyXIm8JV7lfz+/0bod9wq3Sp4tafL8pBOT5DzJqc3BXTJlyjis6FmjvtmobUvWAT2/9nUt27VK3xhwqv5wznWNgpAkORwOjRkzJpq/gmPinCEAAACglUzT1KevbmuX8CJJ9bYa+a3eNj/HDJna81g4/PS+snc4jBysMXlUstLPSJevzCdLokWFvy1UwU8LJItUubiyyTQ8R7ZDGVMylDYxLfyMgwnCkemQJHms9XJZa9pcc8P23D85dZY8q8vk+bJta6VagpEhAAAAoJVKt7tVsa+23Z7nt/ra5TkHXj8gzzaP8mblKS4nvBmCIzscXsyAqbLXyiRJcblxqni3InLfVxrebKH2y1pZU6zqNbOXnCc7Zc+0a+utWyVTsiZZFawJqnZjbSRwzav+o+JD4ff86YKbo663rLZCX+7fIqth1Sm9R2ina58evvEFHejtU0pKisaNG6dvfetbcjgcbf67ORxhCAAAAGiltYv3yLAYMkPtsFhIUsgItvkZ9Xvqtf/l/UoclKjMczKb3Df9h2r1bPfIs93T6H7AFVDVR1WyZ9rVa2YvSVKwLhhZDxWsCdfoK/XJ6IzENwAAIABJREFUVxoObwv1fqR/a8LQV/u3SpLSE5x6bs1C3f7eQ/KHAo3aFBYWasGCBSoqKor6+UdCGAIAAABawVPj05YV+9stCEmSxbS2qb8ZPDg9zjg4Pc7SdP5eXF6cCm8ubHK9+N/hXeUShyaqcF7j+8knJGvE/BGSpNIFpSp7pazReUXzN9+u3EDT4NVSlR63JKmq3q3fvfOALhg6WddOukKDTx+u4qF+XXvttfr00081bdo0rV27VpmZrX/X4VgzBAAAALTCng2VCrVjEAoZftUn7WjTM8peK1P9znrlXJSjuF7HPiuogb/Kr8qllZKk1DFRHpwqKc5s2/Q18+CwUyAU1Cn5w/XIjP+nYZkDZN3o0diRp2jRokXKzc1VcXGx/va3v7XpXYdjZAgAAABohbJd1bJYjHYJRN64A6pO3aQ+xk4lhkKqs7RuzMK9MjzCUr26WtVfVDe65z8Q3lq7+otqbbszfDhs4bzC8GjSo3sU8oTPNUo/Mz2qdyYE45UaTD52w6NIdiRG/nzZ6OmHboRMebdWKaUoW9/73vd033336Z133tFvf/vbNr2vAWEIAAAAaIXSHe42ByFTpuqSdqsuZYdkSqcaa/SR16eV8XFSC7ajPpK6TXVHvBdwBRRwHVqPs+9f+8IbJiRb1XduX1lsUQQxUxpc37fRttqt0Tctv9k/y2LIv7dGKspWYWF46l5xcXGb3nU4whAAAAAQJdM0Vbaz+tgNj/YMmapN3iFP8m5JUqLh0QhtUpHXqS/i4xQ4Rv/mDLp90BHvNbfWp/jfxar8oFLWJKv6/6q/4vJaPrVOkqyyaKinfysqbawwo4+SHYmq8dWpwuM6dCNkyrc7/Pd84MABSWpy/lBbEIYAAACAKHmq/fJ727bzW13S7kgQkqQB2iWrQjrR51OgFaNC3mKvatbVyLPDI89Oj7z7vFJIyrk4RznTc5q0L342vGGCJAVrg9p6y9YjPrv3Vb2VPrHp9LmgEdLg+r5R1/p1NotNUwdP0kvr39LSHSt03pAzIvd8e2tkmqYWLVokSTr11FPb/L7Ie9vtSQAAAECMCPjaFoS8cQfCU+MO00v7FZRF4zz1spmmAoYhzw6P9j25L9LGVxbeyrpicYWqVx8amer7876qeK8iEm6OpeT5EpW/VS5ZpeThybKlNI0F/gq/ar+qlQwpaWhSs8+xmhYV1Q1p0TuPZe6E7+nVr97Vs18s1JmF4zVl0GmSJNMb1D2/v0tLly6V1WrV1Vdf3S7vkwhDAAAAQNRCwdavFQoZflWnbgqf23PYAFBvlciikNJD0tTaOr2ZlKigJyjPNk+TZwQqAgpUHJpI593rVcAdUFx+nIL1QQUqA5Fzgb6ubnudvLu9MmyGzICpmjU1R6036cQkObKa7hZnmNI3XGOa3TxhbclG/frtP0V+31m1V5L079Wv6t0tyyLXH7v4DuUmZ0mSBmX2093TfqUb3rhbV7z0vyrKG6aC1DxtLNumLRW7ZLVa9fDDD2vkyJFHrTcahCEAAAAgShZr6zcMqHFukWkE1HjPAVP5Ko1cmumu1n+Tkxqd73M0xf8ulutT11Hb5F6UK4XC229bEi1yjnGq6oMqxRfEK75vfKO2ZsiUe7lbZtBUxhkZzT7PNCRb5XiZMptsoFDjq9Oq4i+b1lldpuLqssjvvqC/0f1LR56nwVn99fAnz2j5njX6av8WpSc4dcn0i3Xjr29q1ylyEmEIAAAAiJrN0brDUb1xB+RNKGtyPUkexelQMBjl9Wmw16ctDrvMFqwfiusTp6xpWYrvF6+EfgkqW1imqo+rGrVxr3Kr7LXwu+Ny4+TZHh5xMmVKpuR3+xWoCChYE1SwPigzaEqGVL6kXKULSmVNDH9mf2W4zrpVbj2y+W49L7vivXVKT3Bqa8Vu1fk96uPM09wJszV3/GVKOmzb7JYY3esE/f2i2xtdy7tprGzp8Ufo0XqEIQAAACBKCSl22eOsUW2i0LB7nEyzybbZdjUeITEkXVPl0s9zs1v07IxvfG30ppn8FKw5VGtDEJIk726vvLu9jfpak6wK+oKyJllV92Xz23R7q4NS9VYdfndcwShlJ2Zo+Z4v9OCyp/TGxiX6z2UPKiMxrUWf40gMe+vOXToWwhAAAAAQJcMwlN0vRfs2VR278UEBe7WC9jo1l1SsCjW5dmadR+fV1OrtpEQF23DmUIP0SelKn3RoR7iGrbazv5WtpKFJqnivQpnnZMqeYdemGzdJkgbcNEDefV7t/vtuKRTeVS7ztDRNq63T3WXlGrPzF1o5/w7JMHTjJXfomoGnS5I8/nr94KV5Wrpzpea9dV+TkZ5oGHFWWZLsbfvwR9AxEQsAAAA4zuX2d8piaXlIqUvYGx4VakbwCF/Lby6vVEooJOMI/dpD/c561ayrkTXJqupV1Sp+tlgypYQBCYoviFfquFSlnx4OUVUfVckZCmleeaUkaceyNyWZSh45RW8OHCXXwVCXYI/XvefdJIth0eublmhL+c5W1+fonSyjHcJgcwhDAAAAQCtk901RKNSykBIy/PIllDWZHtfAr+ZHPtJCId16oKJF64Zaq3p1tQ68fkCVSyp14M0Dqv48vGW3I//QDnINGyz4K/y67UCF0kIh+YKmKretkSQlnThZ1TL1Z9VH+vRJzdOY3uHNH97c9GHrirMYchSktK5vSx7fYU8GAAAAjmN9hqW3eGTIF1fV7DqeBrVKkPcIgejsOo9+XtHy6Xgt5chxKPfbuRp420Cd8NAJOuGhE5Q7Kzdy3/WRK7IJg680fL5R/yTprLrweqNVBxwK+cNrjRx5gxSStEgBLT1s/VNR3jBJ0vrSza0rMmTK3rvp1t3thTAEAAAAtEJCskODxuTIaEEgClgrJbPpuqBDDO1T7pGOBtIPXW79sOroW2dHK31iurK/ma2EfgmyJlllTbKqfmt4ZMeRFx4VKn62WL5ynyqXhqfFXT04HB9CprSkInw+kCUuSZa4xIOfQnpM3vAOdZLynTmSpF2u4tYVaTEUN7Btmy8c9fEd9mQAAADgODdych+ZLZgq57eX66hDQ5L2Kk+hI3w9NyT9vNKlXxwcIeqINUSBmoDcn7slSbnfyZUsUrA6qF1/3aWQJ6SRORb9ZEx49CooqzZ4M8O12A9teW1K2qqQ1iu8c12SPUGSVOOrjb4gi6GEUVmydtDmCRJhCAAAAGi13AFOZfZOOmrOMWUq4PAfcb1Qg2LlNLurXAND4RGiB0rLlBoKydLOgci1zCUzYMqR45DzJKdszvDG0/U76pWZYOj/vpMgx8HDZu1GULvMnGafY5W0QL62FxQylTwhv+3POQrCEAAAANBKhmFo3PRCHXF+myTT4m/Rt+7t6nvEXeUOd1adR6/tKdbU2vAJP+01SlT5YXgqXPqkNMmUQu6AJCnZIS2anaghmYcOmvWbVm2zD5Qkmf76Rs8JSnpHAVUppFq/5+AzkqIrxpBseUkdunmCxDlDAAAAQJsMGJWtwWNztWVlabPLgkJq2cGsdUrQOg3RCG2U9WjpSuFd5u4pK9e02jo9mJaqzXEOebfXac9T4bU5vv2HRmYqFleoenV15Pe+P+8re1rjqWeenR7V76qXLNJJpybLde9mhQ5+lhcvTdBJvQ4FoYBp0WuhCapPHRD+fN5ahbx1kXVDUjgQfa6g9rn3S5IKUvNa9HcQYUqp5/brsC21GzAyBAAAALTRGd8dorgEe/PT5UxPi5/zmUYdMwgd7qw6j17aV6Kn95VoTGWdPNs88mzzKFhzKIAFKgKR655tHpl+U75yn6o+qpTFF27n+iA8KjRpsF3xT+zSsq/CYWraIKumDWocnGxGSE8FzpE9o7cMe5wkyVeypVEbq6SNCmpNyQZJ0ojcIS3+TDKkhNHZSjgxs+V9WomRIQAAAKCN4pPtOnP2ML3xyNom90yzZSNDkrRHvVSqLGXrQItHLQxJwR0ebftvvU7pY1WtYdHuiqBqa0NypNtkTT8UZhpGhcwdddrz2F6VPblPg/NtOiNJCg616YOdflUenPV2Si+LXrw0sdG7gqahjWaBVpmDZFgNJRSOVd3Gpar9crHi+xUdaidppWufVu5dL0maNmRSiz+MJcGmtAsHtvDTt01UI0N33nmnxo4dq5SUFOXk5GjGjBnauHHjUfs89thjmjRpktLT05Wenq4pU6Zo+fLljdpcfvnlMgyj0c+0adOi/zQAAABAFykcna1x3ypsct2IakmPofd0WtTTt9xeU5/uDWrlnqA27PartjY8x81X2XhU6F+7irV45x4trt2vmyY6NDHfIndFQG9t9Ou1jQFV1kt2i3T75DgtvypJyY7GQ11Ww9T9gUvVMATmHP9tSYZq1r4jz7aVkXYhf70+fONPCppBnT/kGxqU2a9lH8SU0i8Z0qE7yB3OMM2Wr7iaNm2aZs6cqbFjxyoQCOjmm2/WunXr9OWXXyopqflFUZdddpkmTpyo0047TfHx8br77ru1YMECrV+/Xr1795YUDkOlpaV64oknIv3i4uKUnp7eorrcbrdSU1PlcrnkdDpb+nEAAACAdmWapj55ZZs+f3Nn5FowWKWKvFWS1XqUno1drNc1QptkiWLKXFu8utGvbz0Xns43Jt+i4dlNaw1Jcif01upvPNjouvuzl1X53j8kGYrrO0LWxDR596xXsKZC/TMK9MplDykjsWVnBTmn9pfzzII2fZZoskFUYejrysrKlJOToyVLluiMM85oUZ9gMKj09HQ9+OCDmjNnjqRwGKqqqtLLL7/comd4vV55vd7I7263WwUFBYQhAAAAdDnTNPX5Wzv1ycvbJEMyg3WqTH1PwcSUY26v3SBBHl2j+YpXfacs8p+/2qcrXqk/Zju7M0v5P53f5Lpnx2q5ly+Qr3iTQv562ZzZShw6Ua+Ov0ID45JbVEPK5AI5p7Z904RowlCb1gy5XOFTcDMyMlrcp66uTn6/v0mfxYsXKycnR+np6TrrrLN0xx13KDOz+UVTd955p2677bbWFw4AAAB0EMMwdMq0/krPS9L7T21QfV2CrJ56BROTdayDVxt4lKBXdY5m6rWOLfagy0c7dPlox1HbXOW7TotCY5q9l9B/tBL6j25y3a6Eo7/YkGRKzmn95ZzcthGh1mj1yFAoFNL06dNVVVWlpUuXtrjfz372M7311ltav3694uPDp9U+99xzSkxM1IABA7R161bdfPPNSk5O1rJly2RtZjiRkSEAAAD0BPU1fn3w/CatWv6YPL1aNlXscJO0XGfrow6oLDr3+L+rvwW/FXW//1Oy8o40tnVws4T0S4YoYXj77RzXKSNDV199tdatWxdVELrrrrv03HPPafHixZEgJEkzZ86M/HnkyJEqKirSwIEDtXjxYp199tlNnhMXF6e4uLjWlg4AAAB0ivhku869crhqqgZqjftAi6fJNfhQY+WQT5P0WQdVeGwPBabrb8Hprerb7Df2g6NBCaOylT59oCyJnbNZQnNaNQVx7ty5Wrhwod5//3316dOnRX3++Mc/6q677tLbb7+toqKio7YtLCxUVlaWtmzZctR2AAAAQE8w/LTRsrkrpKgnZRl6VxP1jjlRUnhr687Q8J67/TN1b2CmWjq973CJktIO72cJ/9mWm6jMOScqc+awLg1CUpQjQ6Zp6pprrtGCBQu0ePFiDRgwoEX97rnnHv3+97/XW2+9pTFjmp9neLg9e/aovLxcvXr1iqY8AAAAoFsqGF6kONffFEhtzXQwQ0uNU/WWf6Tm2Z6W06yTzQi1e40NAqZFbiXqJt+PjrhGqCWGySrDYpFCpmQxlDAqW8kTeslRkNLmTRLaS1Rh6Oqrr9YzzzyjV155RSkpKSopKZEkpaamKiEhvDhqzpw56t27t+68805J0t13363f/e53euaZZ9S/f/9In+TkZCUnJ6umpka33XabLrnkEuXl5Wnr1q268cYbNWjQIE2dOrU9PysAAADQJRKdqTpx9Mlaue+AQnHxUU+Xk6SvNFhne+/Vrfan9C3rxwqahqzRHWJ0VA3PWxgar1v8l8ullu0C1xyrpBGpiUoZ3Vv23smKG5jWaWcHRSOqaXIPP/ywXC6XJk+erF69ekV+nn/++UibXbt2qbi4uFEfn8+nb3/72436/PGPf5QkWa1WrVmzRtOnT9eQIUN05ZVX6pRTTtGHH37IuiAAAAAcN06a9k3Fle1pVRCSpExLrSqVql/45+oq33XaZIaXqwTMtm2+3dB/k9lHP/Rdr2v9c9sUhCQpKGncBYOVet4AJRZld8sgJLXxnKHugkNXAQAA0N2Zpqknb7xGuwOGAs6MqENRvWnT895RMiPjGaZOMrZotm2RLrQsk90Iym9aZVWwYXlOs0KmFJQ10v7V0AQ9FThXq82Bas3aoObYLIaW/3qKMpKOvl13R+i0c4YAAAAAtIxhGJr43dl6+f4/qCbJKVltUQWieCOgAZYKbQ9lypQhydAqc7BW+Qfrdn1PEyxfqsiyXUXGVhVZtinZaHqIao0ZrzWhQn1hDtTa0AAtC52oSrXvYILVYujCUfldEoSiRRgCAAAAOsmgMeN0wviJWrd2rTy9B0bdf5htv7b5sppcr5RTr4fG6/XQ+INXTGXKrXj55DAC8pk21cuhcjnVXqM/RxIMmZo9oV+HvqO9tG2CIQAAAIConHXFT5RsBuQo2xt132yjVulGnaRjrXQxVK5U7VW2tpu9tFfZKleqOjoIGYY0LC9FJxVEf8BsV2BkCAAAAOhECSlOnfvjn+uVP/5eMizyZbX8OBnDkE6y7dF7/iHtUou/fI88O1bJV7JFvpIt8pfvlsyQUid9T2mnzTxiv6DHLffy/8iz5TMFXCUyg0FZE1MV13uY5t58Q7fZOvtYCEMAAABAJxs8doImzZyjD597UgoF5cvpEz6QtQUhYmL/paqpdmtFyUkKydqmOqpXva7qla9G1cdfWazSZ25SsKZClgSn4gtGyrDHyX9gl+o2fqQbvv+RjAP36brrrmtTbZ2BMAQAAAB0gVNnXCpfvUfLX35RFm+96nv1O+amCpmZu9R/wGpd5tukL8uHqdafeNjuctGzZ/eT89SL5cgtlCN3oFzLXlDt+veP2qfyvX8oWFOhhIFjlTX9Jlkc8TIMKS3BrjnpW3Tdz6/WTTfdpO985zvq06dPq2vrDKwZAgAAALqAYRg6feYcnT5zjuw1VUretl42d0X4ZjOn39hsXg0e8olMU0p21On7w59tUxCSpJRRU5V+5g+UdOJk2TMLJOPYz6vftUaSlDpxliyO+Ei5d19SpF9e8zMNHjxYgUBAn332WZtq6wyEIQAAAKCLGIahcRd9R9+64TdKSExQYslOxe/eIovXE25wWCgaOGi5bDZfZODo5Jy1unjQa51fs7XpAaq/mjpU5w7Pa3QtK6vprnfdDWEIAAAA6GKDxo7XD/70dw2dcLrsNVVK2vGVErd/JZurXDJDysjcrZycHTKMxiNG5w9YpPMHvN2ptSYUniJJcn30rEL+ep0/4G1dOny7JOmxxx7T5s2bNXLkSE2YMKFT62oN1gwBAAAA3UBCilMX/PxGDZ1whj564Wkd2LVDiaX1Cu7frQGjtjW7v4JhSBcPWqh4q1f/2XKhDIXaPHXuWNLP/IH85bvl2fqZyh69TJ8Pt2rWiy+opDhDGzZs0AUXXKDHHntMNlv3jxrdv0IAAAAghgwaO14Dx4xT8eaNWv32f7V7y5tKTKs7YnvDkC4oXKT85BLNXz9Ldf6ENu8ydzT2JKcK5/xGiR//Rp8v3aNPP5WkOkklKigo0FlnnaXs7OwOe397IgwBAAAA3YxhGMofMkz5Q4bpi9XbdaBih6TQUfuclLNWg9O26t8bvq3lJWPafZSo4XlDjbf1xVOPabcroJ//IksTJiQqKcmm8gOn6KGHtuv666/Xm2++qTfeeENWa8eFsvbAmiEAAACgm/L5KlReuUjHCkINkh11+nHRk5o7+jH1Ti6WJFmMYJtqaOjfO7lYPxv5iL569lEV7/PpuuuzNH26U9nZNiUmSn37faGFC59XXl6eFi1apCeffLJN7+0MhCEAAACgm6qsXCbTDETd76Sctbp1wt26+dT7dWreykigsRoBSU237f46y8E2ViOgcXkr9etT79OtE+5WXPnn2rnTL7vd0OmnJzXqY5oBydig8847T5L0zjvvRF13Z2OaHAAAANBNVVevk2HYWhWIDEMamLZDA9N2aObQBdpQMVg73H213dVXO919VR+Mb9LHejA0DUrbpouL/qlhGZuV4qiN3N+/P1xHfLwhq7Xxbg6GYVO1e51SU1MlSRUVFVHX3NkIQwAAAEA35XJ/0aog9HUpjlqNzVutsXmrJYWPL6r2JcsXsisQsslmCchh8evhVdu0aK00PGuDxuaVNnlOVlZ4DVB1dUh79vjVp8+hM4dMMyCX+wt9+ml4m+0BAwa0ue6OxjQ5AAAAoBsyTVPV1es65NmGITnjapSVUKm8pDJlJVTKGVcj4xj9TjwxPhKI7r+vTFVVh9YjhUKm/v7Ie1q2bJkkadasWR1Se3tiZAgAAADohvz+cgWDtcdu2AabN3n1wF8ORH4v3ueXJP13oVuffHJoO+/bbstVZqZNNpuhm/43R7/9TYnWrKnXnDm7dMKweCUkGtq21ad9+8KjWDfffLMmTZrUobW3B8IQAAAA0A0Fg/Ud/o7aupA2fOVtcr2sLKiyskOjPn7/oU0XTjopQY8+1kcv/Z9Lq1Z5tG5dvYJBU6mpVp1+eqJuuukf+uY3u/+okEQYAgAAALol0/R3+DtGj07QO+8WRt0vP9+ua36e1ey9CePHt7WsTsOaIQAAAKAbMgz7sRt1Q4bh6OoSWowwBAAAAHRDVmvTra97Aqs1rqtLaDHCEAAAANAN2e2ZslqTjt2wG7Fak2W3Z3Z1GS1GGAIAAAC6IcMwlJIyoqvLiEpKyggZxrE26O4+CEMAAABAN5XqHCXD6Bl7nhmGTanOUV1dRlQIQwAAAEA3lZIyQqYZ6OoyWsQ0A0px9qyRLMIQAAAA0E2lp0/oUSND6Wk9Z1ttiTAEAAAAdFsOR4Zyci6QYVi7upSjMgyrcnO+KYcjo6tLiQphCAAAAOjGCvp8T6YZ7Ooyjso0g+rT53tdXUbUCEMAAABAN+Z0nqSkpKGSuusubYaSk4bJ6Rzd1YVEjTAEAAAAdGOGYWhg4XWSzK4u5QhMFRb+skdtqd2AMAQAAAB0c9nZU5Sbe6Gk7rZ2yKrc3OnKzp7S1YW0CmEIAAAA6AGGDrlFdrtT3We6nCG73amhQ37X1YW0GmEIAAAA6AHs9nSdMOwP6j7T5UydMOxO2e3pXV1IqxGGAAAAgB4iO/tcDSy8vqvLkCQNLLxB2dnndHUZbUIYAgAAAHqQfv1+qn79ftoNavhJl9bQHnrGcbYAAAAAJDXsLne9bNYkbd32R4XXEHXG1LnwewYW/kr9+/f8ICQxMgQAAAD0OIZhqH//n6po5COy29PU8bvMWWW3p6lo5CPHTRCSCEMAAABAj5WdfY4mjF+k3NzzD15p753mws/Lzb1AE8a/0+PXCH0d0+QAAACAKJimqQP+gDzBkPymKbthKMFqUZbd1iUHj9rt6Rox/M/KzblAW7f9SbW1G2UYVplmsNXPbOiflDREAwuv67HnCB0LYQgAAAA4inJfQEurqrWm2qNV7jp9UV2n2mCoSbskq0WjUhJ1kjNRRSkJOj0tRZmOzvu6nZ19jrKypsjtXq09e55W6f6FMs2ADMMm0wwcs39DO8OwKTf3QvXp/T05naO6JOB1FsM0ze6yUXmrud1upaamyuVyyel0dnU5AAAA6OFM09RKd52e2HtAr+yvVMCUbIYUaME354Z2NkOakZOuK3pn6WRnYqeHCp+vQpVVn6javVYu9xpVV69VMFjbpJ3VmqSUlJFKdY5SinOE0tPGy+HI6NRa21M02YAwBAAAABzmzTKX7tperA219bIaUrAN35Yb+p+QFK//LeylqVmp7VdolEzTlN9frmDQK9P0yTAcslrjZLdnHlejP9FkA6bJAQAAAJIq/AH9etMeLdhfFdllrC1B6PD+G2vr9f2123VRTpp+P6SPMuyd/zXcMAw5HFmd/t7ujN3kAAAAEPPeKKvSxE+/0qv7qyRJTVcEtU3D817dX6XTP/1Kb5RVtfMb0BqEIQAAAMQs0zT1wI5SXbFuh1z+oFq//1rLBCVV+YO6Yt0O/WVnqY6DFSs9GtPkAAAAEJNM09QfthXrr7v2S/raaJBpKq3arTi/T/ZAQH6bTV67Q1UpTqmN62sa3vOHbcWqCQQ1r7DXcbVmpychDAEAACAm/WXn/kgQcta4dfLG9Rqya7uGbd+qobu2KdFb36RPXVy8NvYt1IYBA7Wp7wB9PnS43MlOBXbtkG/FMvk3f6XApq8U2LldCgWVdMXPlDz7qiPW8Od1m/X+fXdpz/uLtGPHDsXHx2vkyJG66qqrNHv27A777AgjDAEAACDmvFFWpTu37dOJ2zdrxuK3debKT2QLBRWwWGUNBXWkcZpEb71Gb/5SI7dujLR/b8wE3Vu8T+XvvB5VDYF9e1R5/Y/0TmmxnBkZOvvss+XxePTJJ5/oww8/1LvvvqsnnniCUaMORBgCAABATKnwB/Tsc//R4wueU+G+3QpYLLKFwpPXbKFjrxoyDmtnCwV11oqP5a6o0Kq+/bT7jHO0fcr5qv3346pf9N+jPsd1xzyFSovlGD1GuX/4s56cMk4Zdpu2bNmiadOm6V//+pcmTpyoq6468sgS2oYNFAAAABAzApWV+uCnczXvoXvVv3iPJEWCUGvZQiF9Oy1Ntycm6snPluqWRQtlDx49VPnWf6HAhnWSxaqU63+n2vgk/WZTuJ5Bgwbp/vvvlyTdfvvtbLLQgQhDAAAAiAnV77yjDdPO06CPP5QkWdo5ZDSSmQOaAAAgAElEQVQ878zPP9Gk1Z8dtW1g43pJkjUvX7beBQpK+s/+Kr11wCVJmjJliiRp9+7dWr58ebvWiUMIQwAAADiumaapA4/8XXvmXiPD7Za1jSNBx2INhWQPBCRJozZ/JTUTukyPR5JkOFMj1yyS7tpWLNM0lZiYqISEBEnSypUrO7TeWEYYAgAAwHHLNE2V3f8nlf35z5LafzToSAyF3zNmw1r98JXnmwQiIy1dkhQs2Ru5FpL0VW29PnfXqaSkRJ6DgWn79u2dUnMsYgMFAAAAHLfK//6oyh97rF2e5TdNrair09LaWn3mqdNOn0+eUEipVquK4hP0nbQ0fSM5uUm/gpf+rez339YGb71CB8oUqnZJ1vDXcLOqUnVvvabEqRdKkqyG9MTeA8p64YlIf7fb3S71oynCEAAAAI5L1e+8ExkRag+f1dXph3t2S5KyrFadnJCgBItFW70+vV9bo/dra3Rpappuzc1t1G+h2611e/coKStH/gEDZUlNV8jtkm/1Z1IgoOp7blGovEyJF1ysoM+rp559Qp4nHpbdbpff75fFwmSujkIYAgAAwHEnUFmp4t/8VjKMZtfstIZF0rnJKfpeerrGJCY2uveG260bi/fpRVeVTj641qfBFRkZuiE3V3HOVM255V65k1MkScGKclX8eJZC5WWq/cdfVfuPv0b6TJx+kbItpl5++WVlZGS0S/1oipgJAACA407pHb9XsLq63YKQJI1PStKfe/duEoQk6TynUzNSw5shvOJ2Nbp3Qny8cqxWJXvqdM0L/4pct2ZkKuOhJyO/x597oRJnXq6s+x/VtPsfVGlpqSRp5MiR7fYZ0BgjQwAAADiuVL/7rtz/PfqBpx3hhLh4SS6V+APKszX9mm0NhTTls4/0/inj9fGoMQcvWsP/tFjk/OXNMuLiJUnLi/dr9erVstlsOvPMMzvpE8QeRoYAAABw3DBNU2V/fiA8Pa6T7fT7JEnZNusR24QMQz947QXJNGX6fKr5x4OSJMcp4yNBSJI+enq+PB6PLr30UuV+bQ0S2g8jQwAAADhueFavlnfz5k5/b1kgoJdd4elx56Sk6Mv6+iZtvqyv19OVFTL37ZX/F1eqcudWmdVu2YYOl/OGWySFw1z9m6/I/fhDSs/I0H333depnyPWEIYAAABw3Kh85tnw1LNgsNPeGTBNzd27R9WhkOINQ6+6XNp78NDVF6qqtLimRpLkCga10+8Pd1q36mBvQ6bfr+qH7pVkyr/xS4VKi2VJz9DTC19Xr169Ou1zxCLCEAAAAI4LgcpKud94o1ODkCTdVlqitQdHgupNU+u83si9kkBAJQeDkSQtKixUns2uvaGQZp08XpWvvKDgts0K7t4uw2qTNb+PEmZfpcRLZ2voqFGd+jliEWEIAAAAx4W6Tz6RDgseneEPpaV6yeWS02LRPwv66sT4+GN3ktTXatU5Y0/TezNm6sAPLpFhWJT51CuyZmRF2jg4X6jD8TcMAACA40L9+vVSM7u4dZS795fq6apKOS0W/aOgoMVBSJICFquG7Noua16+HKPHyvTUybfik0Zt4i2dvwlErCEMAQAA4LjgWbOm00aG/rh/v/5VWakUi0WP9SnQiPiEY3c6jDUU1Ak7tkiSjIN9Q1UVkfvJVouy7Ezi6miEIQAAAPR4pmmGR4Y6wf1l+/XPygqlWCz6R58CjUyILghJkiFpyK7tMr1e+deGN1Ow9ekXuT8qJVFGF2wPHmsIQwAAAOjxghUVCtXWdfh7Higr0z8qKsJT41oQhMoDAT1XWamaZjZ1qKl2y3P7/ypUXiZLXr4cY8ZLkmyGdJIzsUPqR2OMvQEAAKDHC3manuvT3t6rqdbfK8olSX0dDj1bValnqyqbtEuz2nRjTo4kqd4M6f/tL9WdZfs1LC5Ove12mZJK/H596fXKv22rLJnZSrv9fhmOOElSwJSKUghDnYEwBAAAgB7P9Ps6/B2uw0Z31tXXa10zB6tKUr7tUBjKsNp0Y3aOVnjqtNnr1TafT95QSClWq0bFx6v44v+Rb+blsiQlR/rbDGliWnKzz0b7IgwBAACgxzPsjg5/x0WpabooNS2qPgkWiy7PyNDlymj2/swZ31XpYUHIakgzctKV6eBremdgzRAAAAB6PEtCy7e17k68XwtxQVO6onfWEVqjvRGGAAAA0ONZMzJkSepZ62xq4xNUleKM/G6RdGJSvE5m84ROQxgCAABAj2cYhuKHD+/qMlrMlLSp7wDpsO2zQ5JuKuzFltqdiDAEAACA40JCUZFk6xlrbYIWq77qPyjyu1XSxTlpmpqV2nVFxSDCEAAAAI4L8cOHS4FAV5fRIrZQMDwypPAX8lS7VXcM6dO1RcUgwhAAAACOC4njx/eYkaGAxapVQ0+UFJ4ed//Qvsqw94zajyeEIQAAABwXbOnpcp53nmS1dnUpRxWwWPTemAlyJ4c3T7i5sJemZTM9risQhgAAAHDcSP+fWdJhh6N2R7ZQSC9/41xJ0s/75uiavjldXFHsIgwBAADguJEwerTihgxptEtbdxIyDG3t3VdfDRikXxf20s0D89k9rgtFFYbuvPNOjR07VikpKcrJydGMGTO0cePGY/Z78cUXNWzYMMXHx2vkyJF6/fXXG903TVO/+93v1KtXLyUkJGjKlCnavHlzdJ8EAAAAMc8wDGVf+wvJNLu6lGZZTFMvXDRT80cW6pp+uV1dTsyLKgwtWbJEV199tT755BMtWrRIfr9f5557rmpra4/Y5+OPP9asWbN05ZVXatWqVZoxY4ZmzJihdevWRdrcc889+stf/qJHHnlEn376qZKSkjR16lTV19e3/pMBAAAgJqWcdZacF1zQ7dYOBS0WbTx9sh748WzWCHUThmm2PjaXlZUpJydHS5Ys0RlnnNFsm+9+97uqra3VwoULI9fGjx+v0aNH65FHHpFpmsrPz9f111+vG264QZLkcrmUm5ur+fPna+bMmcesw+12KzU1VS6XS06n85jtAQAAcHwLVFZq23nnK+hydYtRopBhyHQ6NezNN2RLT+/qco5r0WSDNq0ZcrlckqSMjIwjtlm2bJmmTJnS6NrUqVO1bNkySdL27dtVUlLSqE1qaqrGjRsXafN1Xq9Xbre70Q8AAADQwJaerl533N4tgpAUnh7X7w+/Jwh1M60OQ6FQSNdee60mTpyoESNGHLFdSUmJcnMbz4fMzc1VSUlJ5H7DtSO1+bo777xTqampkZ+CgoLWfgwAAAAcp1KmTFH2tdd2dRmSpOxf/lIpZ5/d1WXga1odhq6++mqtW7dOzz33XHvW0yLz5s2Ty+WK/OzevbvTawAAAED3l/njHynzRz/q2hp+9CNl/uiqLq0BzWvVMbdz587VwoUL9cEHH6hPnz5HbZuXl6fS0tJG10pLS5WXlxe533CtV69ejdqMHj262WfGxcUpLi6uNaUDAAAghhiGoexfXitLUpLK/vSn8JbbnTF17uB7sq+7TlkEoW4rqpEh0zQ1d+5cLViwQO+9954GDBhwzD4TJkzQu+++2+jaokWLNGHCBEnSgAEDlJeX16iN2+3Wp59+GmkDAAAAtJZhGMr68Y/U56EHZU1NlSwdfNSmxSJraqr6PPQgQaibi+rfhKuvvlpPP/20nnnmGaWkpKikpEQlJSXyeDyRNnPmzNG8efMiv//iF7/Qm2++qfvuu08bNmzQrbfeqhUrVmju3LmSwv9yXnvttbrjjjv06quvau3atZozZ47y8/M1Y8aMdvqYAAAAiHUpZ5+twjdel/O888IX2vuw04PPc55/nga++QZrhHqAqLbWPtLpuE888YQuv/xySdLkyZPVv39/zZ8/P3L/xRdf1G9+8xvt2LFDgwcP1j333KPzzz8/ct80Td1yyy169NFHVVVVpdNPP11/+9vfNGTIkBbVxdbaAAAAiEb1u++q7IG/yLtpU/g8omCw9Q872D9uyBBlX/sLpZx1VvsViqhFkw3adM5Qd0EYAgAAQLRM01T9F1+o4pln5X79dSkQkGy28D+PpaGdzSbnBecr43/+R/FFRUccPEDnIQwBAAAAUQhUVqru009Vv26dPGvXqn7deoVqa5u0syQlKX7EcCUUFSl++HAljhvH2UHdDGEIAAAAaAPTNBWsqJBZX6+QzyeLwyEjPl7WjAxGf7q5aLJBq7bWBgAAAI5nhmHIlpnZ1WWgg3XwvoIAAAAA0D0RhgAAAADEJMIQAAAAgJhEGAIAAAAQkwhDAAAAAGISYQgAAABATCIMAQAAAIhJhCEAAAAAMYkwBAAAACAmEYYAAAAAxCTCEAAAAICYRBgCAAAAEJMIQwAAAABiEmEIAAAAQEwiDAEAAACISYQhAAAAADGJMAQAAAAgJhGGAAAAAMQkwhAAAACAmEQYAgAAABCTCEMAAAAAYhJhCAAAAEBMIgwBAAAAiEmEIQAAAAAxiTAEAAAAICYRhgAAAADEJMIQAAAAgJhEGAIAAAAQkwhDAAAAAGISYQgAAABATCIMAQAAAIhJhCEAAAAAMYkwBAAAACAmEYYAAAAAxCTCEAAAAICYRBgCAAAAEJMIQwAAAABiEmEIAAAAQEwiDAEAAACISYQhAAAAADGJMAQAAAAgJhGGAAAAAMQkwhAAAACAmEQYAgAAABCTCEMAAAAAYhJhCAAAAEBMIgwBAAAAiEmEIQAAAAAxiTAEAAAAICYRhgAAAADEJMIQAAAAgJhEGAIAAAAQkwhDAAAAAGISYQgAAABATCIMAQAAAIhJhCEAAAAAMYkwBAAAACAmEYYAAAAAxCTCEAAAAICYRBgCAAAAEJMIQwAAAABiEmEIAAAAQEwiDAEAAACISYQhAAAAADGJMAQAAAAgJhGGAAAAAMQkwhAAAACAmEQYAgAAABCTCEMAAAAAYpKtqwsAAEkyTVPltT55fEH5gyHZrRYlOKzKTHLIMIyuLg8AAByHCEMAukRFrU8fbz2gtXtd+mJ3ldbucanWF2zSLslh1cg+qRpVkKaRvVN12sAsZSQ5uqBiAABwvCEMAeg0pmnq811VemrZDi1cU6xAyJTNYigQMo/Yp9YX1CfbKrRiR2Wk/YWj8jV7Qj+dVJDGqBEAAGg1whCATvH2+hLd9/YmbSytltViKHgwAB0tCB0ucFj7V7/YpwWr9mpYXoquP3eozjkxt8PqBgAAxy/CEIAOVVnr0y2vrterX+xTwyBOsIUB6Ega+m8srdZVT67Q9FH5um36cKUzfQ4AAESB3eQAdJi31pforPsW679riiVJZtsyUBMNz/vvmn06677Femt9Sfu+AAAAHNcIQwDanWmaeuj9LfrxUytV5fEr2N4p6GuCplTl8evHT63UQ+9vkdnB7wMAAMcHpskBaFemaeqetzbq4cVbD/7e+mf5y/fIs2OVfCVb5CvZIn/5bskMKXXS95R22syvvTf8z3vf2qhab0AnWXfrT3/6k5YvX67a2lr169dPl1xyiebNm6fk5OTWFwUAAI4bhCEA7epvi7dGglBbVa96XdUrX42631333qfK9/4hwzA0adIk5ebm6sMPP9Qf/vAHvfTSS1q6dKmysrLapUYAANBzRT1N7oMPPtCFF16o/Px8GYahl19++ajtL7/8chmG0eRn+PDhkTa33nprk/vDhg2L/tMA6FJvrS/RvW9tbLfn2bP7yXnqxcq68Abl//BhJQ0/85h9fKVbVfne45Jh0e1/e0pLlizRCy+8oK1bt+rss8/Wxo0b9ZOf/KTdagQAAD1X1GGotrZWo0aN0kMPPdSi9g888ICKi4sjP7t371ZGRoYuvfTSRu2GDx/eqN3SpUujLQ1AF6qs9el/X1qj9jz1J2XUVKWf+QMlnThZ9swCyTj2f7Jcy16UZCq5aIr+b3+2Kmt9kqTExEQ9/vjjslgseumll7Rhw4Z2rBQAAPREUYeh8847T3fccYcuuuiiFrVPTU1VXl5e5GfFihWqrKzUFVdc0aidzWZr1O5oU1i8Xq/cbnejHwBd65ZX18vtCagrty4wg355tn0mSUo6YbLcHr9ufW195H6/fv00ceJESdKCBQu6pEYAANB9dPpuco8//rimTJmifv36Nbq+efNm5efnq7CwUJdddpl27dp1xGfceeedSk1NjfwUFBR0dNkAjuLt9SV69Yt9Hb5r3LH4K/bK9HslSY68QQqa0iur92nRl6WRNmPGjJEkrVq1qktqBAAA3UenhqF9+/bpjTfe0A9/+MNG18eNG6f58+frzTff1MMPP6zt27dr0qRJqq6ubvY58+bNk8vlivzs3r27M8oH0AzTNHXf25siB6p2pYArHHoscUmyxCVKkgxDuu/tjZHtthv+58n27du7pkgAANBtdOpucv/617+UlpamGTNmNLp+3nnnRf5cVFSkcePGqV+/fnrhhRd05ZVXNnlOXFyc4uLiOrxeAMf2+a4qbSxt/n9cdDbT55EkGfb4Q9dMaUNJtVbtrtLJfdMj22ozvRYAAHTayJBpmvrnP/+p2bNny+FwHLVtWlqahgwZoi1btnRSdQBa66llO2S1dINhoaOwWgw9tWxnV5cBAAC6mU4LQ0uWLNGWLVuaHen5upqaGm3dulW9evXqhMoAtFZFrU8L1xQrGOratUINDEeCJMn01ze6HgyZeu2Lfaqo9ammpkaS5HQ6O70+AADQvUQdhmpqarR69WqtXr1aUnje/erVqyMbHsybN09z5sxp0u/xxx/XuHHjNGLEiCb3brjhBi1ZskQ7duzQxx9/rIsuukhWq1WzZs2KtjwAnejjrQcU6CZBSJJsqbmSpJC3ViFvXaN7gZCpZVvLI2sM+/fv39nlAQCAbibqNUMrVqzQmWceOvjwuuuukyR9//vf1/z581VcXNxkJziXy6WXXnpJDzzwQLPP3LNnj2bNmqXy8nJlZ2fr9NNP1yeffKLs7OxoywPQidbudclmMbpNILJn9JZhj5Pp98pXskXx/Yoi92wWQ2v3urRixQpJ0sknn9xVZQIAgG4i6jA0efLkyK5MzZk/f36Ta6mpqaqrq2va+KDnnnsu2jIAdANf7KrqNkFIkgyrXQmFY1W3calqv1zcKAwFQqY+Xv2VPv74Y0lq8VlpAADg+NXp5wwBOD6Ypqm1e11dXUYTzvHflmSoZu078mxbGbke8tfrvcf+n4LBoC655BINGzas64oEAADdQqdurQ3g+FFe61OtL9ih7/CWbFHF2w9Hfg9UFUuSala/Kc+WzyLXsy/+tWzJGZKkuLxBSj/rSlW+9w/tf/FWxfUdIWtimrx71itYU6FBg4fokUce6dC6AQBAz0AYAtAqng4OQpJk+urkK97Y5Hqw+oCC1QcOu+BvdN85dobs2f3lXr5AvuJN8vrrZXNmyzn+Ur32/F+VlZXV0aUDAIAegDAEoFX8wVCHvyO+b5H63bSwVX0T+o9WQv/RTa47EpLaWhYAADhOsGYIQKvYrT3zPx8OW8+sGwAAtD++FQBolQSHtatLaJV4e8+sGwAAtD/CEIBWyUxyKKmHBaLkOJsykxxdXQYAAOgmCEMAWsUwDI3sndrVZURlZO9UGYbR1WUAAIBugjAEoNVG9U2TzdIzwoXNYmhUQVpXlwEAALoRwhCAVhvZO1WBkNnVZbRIIGT2uJEsAADQsQhDAFrttIFZPWpkaMLAzK4uAwAAdCOEIQCtlpHk0DeLesnazQOR1WLowlH5ymDzBAAAcBjCEIA2mT2hv4LdfKpcMGRq9oR+XV0GAADoZghDANrk5L5pGpaXou66SZthSMPyUnQSmycAAICvIQwBaBPDMHT9uUNldtPBIdOUrj93KFtqAwCAJghDANrsnBNzNX1UvqzdLHBYDelbo/N1zom5XV0KAADohghDANrFbdOHy5lg6zbT5QxDcibYdeuFw7u6FAAA0E0RhgC0i/Qkh+66pKjbTJczTenuS4qUzg5yAADgCAhDANrN1OF5+tXUoV1dhiTpV1OH6tzheV1dBgAA6MYIQwDa1c8mD9TPJg+M+RoAAED3Z+vqAgAcXwzD0K+mDlVSnE33vrVRhqFOmTrX8J4bpw3VzyYP6vgXAgCAHo+RIQDtzjAMXX3mID06+xSlJdhl7eBNFayGlJZg16OzTyEIAQCAFiMMAegw5w7P03vXT9YFRfmS1O47zTU875uj8vX+DZNZIwQAAKLCNDkAHSo9yaG/zDpJ3yzqpfsXbdKGkmpZLYaCodbPnWvoPzQ3RdefO5RzhAAAQKsQhgB0inOH5+mcE3O1aneVnlq2U699sU+BkCmbxVCgBcGooZ3NYmj6qHzNntBPowvSZHSXg40AAECPY5hmdzkVpPXcbrdSU1PlcrnkdDq7uhwALVBR69OyreVas7dKa3a7tGZvlWq9wSbtkuKsKuqdplEFaRrZO1UTBmYqg7ODAADAEUSTDRgZAtAlMpIcuqColy4o6iVJMk1T5bU+1fuD8gVCctgsirdblZnkYPQHAAB0CMIQgG7BMAxlJcd1dRkAACCGsJscAAAAgJhEGAIAAAAQkwhDAAAAAGISYQgAAABATCIMAQAAAIhJhCEAAAAAMYkwBAAAACAmEYYAAAAAxCTCEAAAAICYRBgCAAAAEJMIQwAAAABiEmEIAAAAQEwiDAEAAACISYQhAAAAADGJMAQAAAAgJhGGAAAAAMQkwhAAAACAmEQYAgAAABCTCEMAAAAAYhJhCAAAAEBMIgwBAAAAiEmEIQAAAAAxiTAEAAAAICYRhgAAAADEJMIQAAAAgJhEGAIAAAAQkwhDAAAAAGISYQgAAABATCIMAQAAAIhJhCEAAAAAMYkwBAAAACAm/f/27j06qvpQ+/izZyZ3MhNyg0SuXgAJBBAhBU8rQagGS7WlWrTrXUABe3wBwdieCvWItiquo62gUEFtpfYcRC2KLQooQeTYV0DAKAS1ICi3BAKBTBJym5n9/jEQRK6BmeyZ7O9nrVk4m315WBtJnvx++zeUIQAAAAC2RBkCAAAAYEuUIQAAAAC2RBkCAAAAYEuUIQAAAAC2RBkCAAAAYEsuqwMAABApTNNURV2F6vx1avQ3KsYZo3hnvFLjU2UYhtXxAAAhRhkCANjWkbojWl+2XtsOb9OW8i3adnibjvmOnbZfoitRPdN6qndGb/VM66m89nlqG9/WgsQAgFCiDAEAbMU0TX1S/okWf7FYK3etlM/0yWW45DN9Zz3mmO+YNh7YqOKDxU3739T1Jo3uMVq56bmMGgFAlDJM0zStDnGpvF6vPB6PKisr5Xa7rY4DAIhQq3ev1tyP52r70e1yGk75Tf9Fn+vE8VelXKUp/aYov1N+CJMCAC5Wc7oBZQgA0OodrTuqx9Y/puVfLZchQ6ZC96XvxPkKuhRoRt4MpcSnhOzcAIDma043YDU5AECrVrS7SCOXjtQ7X78jSSEtQt8838qvV2rk0pEq2l0U0vMDAMKHMgQAaJVM09Tznz6vae9NU2V95SVNibsQATOgyvpKTXtvml7Y8oJawcQLAGj1KEMAgFbHNE3N2TxHT3/8dPB9iEeDznrd49c5cW0KEQBENp4ZAgC0Os9/+nxTEbpU9aX1qt5ardqvalX7da3q99dLASnzx5nK/GHmafubAVO1X9aqakuVPHs8qvi6ounrVL9+/TR27FjdeeedrEAHAGHSnG7A0toAgFalaHdRyIqQJFWsrtDhdw9f8P4N5Q3a+ejO4LFJFerXv5+uyLpCO3fu1KpVq7Rq1SotXrxYS5YsUWxsbMhyAgCaj2lyAIBW42jdUT30/x6SodCNusR1iFP6Tenq8IsOuuqxq5Qy+DyrxRlS0tVJ6lzYWVc/c7Xi747X/IXztWHDBq1Zs0ZJSUlatmyZHn/88ZBlBABcHMoQAKDVeGz9Y6pqqArpM0Kp16eq/ej2ShmUorjsOJ2vZ8Vlxqnrr7sqOTdZckjeBq9mbZglSbr++ut1//33S5JeeumlkGUEAFwcyhAAoFVYvXu1ln+1POyrxjVXwAzo7V1v673d70mS+vXrJ0nas2ePlbEAAKIMAQBaAdM0NffjuSGdHhdKhgw98/EzMk1T27dvlyRlZWVZnAoAwAIKAICo90n5J9p+dLvVMc7KlKntR7dr/e71evrp4OIOo0aNsjgVAKDZI0Nr167VyJEjlZ2dLcMwtHTp0nPuv2bNGhmGcdqrrKzslP3mzZunLl26KD4+Xnl5edqwYUNzowEAbGrxF4vlNJxWxzgnp+HUxH+fqF27dik7O1szZsywOhIA2F6zy1BNTY369OmjefPmNeu4L774QqWlpU2vzMyTn83wyiuvqLCwUDNnztTmzZvVp08f3XjjjTp48GBz4wEAbOZI3RGt3LUy4p4V+rbSpaXaumKr4uPj9eqrryotLc3qSABge82eJldQUKCCgoJmXygzM1MpKWdejvQPf/iDJk6cqHHjxkmS5s+fr7feekt//vOfm1bdAQDgTNaXrZfP9Fkd45wOrTikg28clOEy9MD8B3TddddZHQkAoBZcQKFv377KysrS8OHD9c9//rNpe0NDgzZt2qRhw4adDOVwaNiwYfrwww/PeK76+np5vd5TXgAAe9p2eJtcRuQ+Anv43cMqW1wmw2Woy5QuSuyVaHUkAMBxYS9DWVlZmj9/vpYsWaIlS5aoY8eOGjJkiDZv3ixJOnTokPx+v9q1a3fKce3atTvtuaITZs2aJY/H0/Tq2LFjuP8YAIAItaV8S8SODB1edVil/1Mqw2Wo4+SOSuqTpC2HtlgdCwBwXNh/lNa9e3d179696f3gwYP15Zdf6qmnntJf//rXizrn9OnTVVhY2PTe6/VSiADAhkzT1LbD26yOcUYVqytU+t8ni5C7r1tScCTLNE0ZRmQuAw4AdmLJvIKBAwfqgw8+kCSlp6fL6XTqwIEDp+xz4MABtW/f/ozHx8XFKS4uLuw5AQCRraKuQsd8x6yOcZqKNRXa/yPyUuIAABxCSURBVNf9pxUhSapprFFFXYXSElhAAQCsZkkZKi4ubvqwudjYWPXv319FRUW69dZbJUmBQEBFRUWaPHmyFfEAAFGizl8X9mvUflWr/S/tb3rfUN4gKVh4qoqrmrZ3uqeTYlJiVPt1rfb/Zb9kSrEZsfJ+5JX3o1Ofbb37nbuVGJOohQsXhj0/AODsml2GqqurtWPHjqb3u3btUnFxsVJTU9WpUydNnz5d+/bt00svvSRJmj17trp27aqcnBzV1dXphRde0OrVq/XOO+80naOwsFBjxozRtddeq4EDB2r27NmqqalpWl0OAIAzafQ3hv0a/lq/anfWnrbdV+GTr+Lks0pmoxnc/5hfCv6n6kvrVV9af9qxr/3zNUmiDAGAxZpdhjZu3Kj8/Pym9yee3RkzZowWLlyo0tJS7d69u+n3GxoadN9992nfvn1KTExUbm6uVq1adco5fvrTn6q8vFwPPvigysrK1LdvX61YseK0RRUAAPimGGdM2K/R5uo26rWwV0j3XzlqpbLbZF9qNADAJTJM0zStDnGpvF6vPB6PKisr5Xa7z38AAKBVOFx7WENeHWJ1jGZbc/sanhkCgDBpTjdosc8ZAgAg1FLjU5Xoiq7P7UmKSVJqfKrVMQAAogwBAKKYYRjqmdbT6hjN0jOtJ8tqA0CEoAwBAKJa74zechmWLI7abC7Dpd7pva2OAQA4jjIEAIhqPdN6ymf6zr9jBPCZvqgbyQKA1owyBACIannt86JqZGhg+4FWxwAAHEcZAgBEtbbxbXVj1xvlNJxWRzknp+HUTV1vUtv4tlZHAQAcRxkCAES90d1Hy2/6rY5xTn7Tr9E9RlsdAwDwDZQhAEDU65PRR1elXCVDkblKmyFD3dp2U256rtVRAADfQBkCAEQ9wzA0pd8UmYrMzxE3ZWpy38ksqQ0AEYYyBABoFfI75augS0HEPTvkMBwa0XWE8jvlWx0FAPAtlCEAQKsxI2+GkmOTI2a6nCFD7li3pg+cbnUUAMAZUIYAAK1GSnyKHhr8UMRMlzNl6uHBDyslPsXqKACAM6AMAQBalRs63aB7+t1jdQxJ0tRrpmpop6FWxwAAnAVlCADQ6kzoPUETek+wPMP4XuMtzQAAODfKEACg1TEMQ/f0u0dTr5kafN9CzxCduM7Ua6Zq6jVTWT0OACIcZQgA0CoZhqEJvSdoTv4ceeI8chjh/ZLnMBzyxHk0J3+O5aNSAIALQxkCALRqQzsN1T9u/Ydu7HyjpNCPEp04301dbtKyHy3jGSEAiCKGaZqRseTOJfB6vfJ4PKqsrJTb7bY6DgAgQq3evVpzP56r7Ue3y2k45Tf9F32uE8dflXKVpvSbwucIAUCEaE43cLVQJgAALDe001Dld8zXp4c+1eLPF2vFrhXymT65DJd8pu+8x5/Yz+VwqaBLgUb3GK3e6b15NggAohQjQwAA2zpSd0Qbyjao5HCJth7aqpJDJTrmO3bafomuROWk56h3em/1TOupge0Hqm18WwsSAwDOpzndgDIEAMBxpmmqoq5C9f56NfgbFOuMVZwzTqnxqYz+AECUYJocAAAXwTAMpSWkWR0DANBCWE0OAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC01uwytXbtWI0eOVHZ2tgzD0NKlS8+5/+uvv67hw4crIyNDbrdbgwYN0sqVK0/Z56GHHpJhGKe8evTo0dxoAAAAAHDBml2Gampq1KdPH82bN++C9l+7dq2GDx+ut99+W5s2bVJ+fr5Gjhypjz/++JT9cnJyVFpa2vT64IMPmhsNAAAAAC6Yq7kHFBQUqKCg4IL3nz179invH3vsMb355pv6xz/+oX79+p0M4nKpffv2F3TO+vp61dfXN733er0XnAcAAAAAJAueGQoEAqqqqlJqauop27dv367s7Gxdfvnl+tnPfqbdu3ef9RyzZs2Sx+NpenXs2DHcsQEAAAC0Mi1ehp588klVV1fr9ttvb9qWl5enhQsXasWKFXr22We1a9cuffe731VVVdUZzzF9+nRVVlY2vfbs2dNS8QEAAAC0Es2eJncpFi1apIcfflhvvvmmMjMzm7Z/c9pdbm6u8vLy1LlzZ7366qsaP378aeeJi4tTXFxci2QGAAAA0Dq1WBlavHixJkyYoNdee03Dhg07574pKSnq1q2bduzY0ULpAAAAANhNi0yTe/nllzVu3Di9/PLLuvnmm8+7f3V1tb788ktlZWW1QDoAAAAAdtTskaHq6upTRmx27dql4uJipaamqlOnTpo+fbr27dunl156SVJwatyYMWM0Z84c5eXlqaysTJKUkJAgj8cjSfrlL3+pkSNHqnPnztq/f79mzpwpp9OpO+64IxR/RgAAAAA4TbNHhjZu3Kh+/fo1LYtdWFiofv366cEHH5QklZaWnrIS3HPPPSefz6dJkyYpKyur6TV16tSmffbu3as77rhD3bt31+233660tDStW7dOGRkZl/rnAwAAAIAzMkzTNK0Ocam8Xq88Ho8qKyvldrutjgMAAADAIs3pBi2+tDYAAAAARALKEAAAAABbogwBAAAAsCXKEAAAAABbogwBAAAAsCXKEAAAAABbogwBAAAAsCXKEAAAAABbogwBAAAAsCXKEAAAAABbclkdAADQAkxTqjkkNR6T/I2SM0aKSZSS0iXDsDodAACWoAwBQGtUc1ja9b5UWizt2yTtL5Yaqk/fL7aNlN1Xuqy/lNVX6nq9lJTW8nkREUzTlL+iQoHaOpmNDTJiYuVIiJczNVUGpRlAK0QZAoDWwjSlvR9JG56XSl6XAj7J4Qr+ejYN1dJXH0i7153cv9coacBEqcO1jBq1cr4jR3Rs3TrVlZSo9tMtqivZqkDNsdP2cyQlKj6nlxJyeys+J0eJ3/mOXG3bWpAYAELLME3TtDrEpfJ6vfJ4PKqsrJTb7bY6DgC0vM/fklY/Ih3cJjmcUsB/8ec6UaAyc6ShD0g9RoQuJyxnmqZqi4t1ZNHL8i5fLvl8kssV/PV8Tuzncsk9YoRS77xD8X36MGoEIKI0pxtQhgAgmh2rkN7+lbT1b5LhkMxA6M594ny9fiKNeEJKTA3duWGJqqIilc+eo/rt2yWnU/JfQmk+fnxct27KmDZVyUOHhi4oAFwCyhAA2MFny6S/T5HqKiXzEr6pPR/DKcV7pB8+I139g/BdB2HjO3JEBx55VN633gpOfQzll/7j53PffLPaPfAbps8BsFxzugFLawNAtDFNae2T0is/k2qPhrcIScHz1x4NXu9/fx/ab6QRdlWrVmlnwQh5V6wIbgj1/Tt+Pu/y5dpZMEJVq1aF9vwAEEaUIQCIJqYpFT0srf7d8Q0hnBZ3TsevU/Tb4ItCFPFM09Sh+Qu0d/IU+SsrL21K3IUIBOSvrNTeyVN0aMFzagUTTwDYAGUIAKLJ//5e+uCpkJzqi0N+PbO+QWOX1qr3s9Vy/dYr42GvHllbf9Zj9lQGtGD247rrlkHq37+/4uLiZBiGJkyYEJJMCA3TNFX+h6dUPnv2iQ0tdWFJUvlTT6n8qdkUIgARj6W1ASBafLbsGyNCl+7ZjY2as76hWccs+axR966sl7Q+ZDkQeocXPKfDzz8fknPtaqjXP2tqtK2uTiV19drZUC+/pHvS0/XvaelnPGZtdbXe/e3D2jFntg40NKiiokKxsbG64oorNGLECBUWFio9/czHAkBLYmQIAKLBsYrgYgkK3RLGvTId+uWgWP3PjxP02aQk/Z/cmPMe0zXFoSkDY/XiLQn6ZGq2fvMfhSHLg9CoWrXq5IhQCCw+elSPHTyopV6vth8vQuezzOvVkspKHSkt1dXZ2Ro1apQGDx6sr7/+WrNmzVJOTo5KSkpClhEALhYjQwAQDd7+VXDVOIVu2tGEa2JPee+4gJ51S48Y3dLjeGkyavV6yXshy4NL5ztyRKUP/GdIV4y7KjZO49qm6ur4OPWMi9dzFYf1d6/3nMeMS03VrzIzlRETI2dMrC6fN0+utm1VXV2tn//853rttdc0YcIEffjhhyHJCAAXi5EhAIh0n78V/ByhcK8a11ymXzrIT/cjyYFHHpW/qiqkzwj9JCVFv8rM1A/cHl0eF3dB3zhcHR+vDJdLMk35vV4dePRRSVKbNm30+9//XpK0bt06ec9TqgAg3ChDABDJTFNa/UjwA1Aj0vHhJB6Ut1xVUVHwc4TCvWpccwUC8i57S1WrV0uSXK7gpBSHw6GYmPNPzQSAcIrUr64AAEna+5F0cJtkttQS2s11vAQdO2RtDJszTVPls+cEp8dFIsNQ+ew5qqur04wZMyRJw4cPV0JCgsXBANgdzwwBQCTb8LzkcEqBCPtp/7eVf2F1AlurLS5W/fbtVsc4zba6Ov33kQqZkir27NZnWVk6dPSoBgwYoD/96U9WxwMAyhAARKyaw1LJ65FfhCTpyFfBvElpViexpSOLXpaczoibIre/sVFLv/Vc0LBhw7RgwQJddtllFqUCgJOYJgcAkWrX+1LAZ3WKC2MGpK/WWp3ClnxHjsi7fHnEFSFJGpacrG3de2hLt+569/Ir9LvsbH1WUqJevXrpb3/7m9XxAIAyBAARq7RYckTJAL7hkPYXW53Clo6tWyf5Irs0Ow1Dl8XEaFSyW8tnzZJhGBo3bpzKysqsjgbA5ihDABCp9m6KrpGhfZusTmFLdSUlkitKSrPLpXaHDik/P1/V1dV69913rU4EwOYoQwAQiUwzODIUTfYXs8S2BWo//TTiR4aa+Hyq/fRTJSUlSZIOHjxocSAAdhclP0oCAJupOSQ1VFudonkaqoK522RYncQ2TNMMjgxFEe+nW/TBwQOSpG7dulmcBoDdUYYAIBI1Hgv7JTaX+vV/36prev/lkeBnGS3Y1KBl/zo50vDGTxOUlRycSFBaFdCPXqlt+r293uAxf//Cp++8UCO9daPkjNUf//hHXXPNNWH/M9idv6JCgZrw/11pjsM+n96tqtIP3G61cTpP+b0DjY16fP8+7a+qUpcuXTR8+HCLUgJAEGUIACKRvzHsl/DWm1q/7/QVyPZ6Te31ntxe/41d6v064zHlx0yVH/NL+z4OnvtbyykjPAK1deff6RJtq6vTbw+cXOhgT2Pw7+arR49qTfXJ0ctnLuugDJdLdWZAvz14QLPKD6pHXJwui4mRKamssVHb6uvVaJrKbtdOS5cuVXx8fNjzA8C5UIYAIBI5Y8J+iSFdXDJnupt1TJcUx7mPmbZFSul0iclwoczGhrBfozrg16d1p5euMp9PZd94VqnBDI4Spjpd+o+MTG2sPabt9fXa2dCg+kBAyU6n+sTHa0ibNvqPd95RRm5u2LMDwPlQhgAgEsUkWp3g4rgSrE5gK0ZMbNivMTAxSdu697jg/RMcDo1NTdVYpZ51n5Q0PpwXQGRgNTkAiERJ6VJsG6tTNE9scjA3WowjITqnmRlMjwMQIShDABCJDEPK6mt1iubJ7hvMjRbjTE2VIym6RhEdSUlypp591AgAWhJlCAAiVYf+kiNKZjM7XNJl/a1OYTuGYSg+J8fqGM0S3ytHBqUZQISgDAFApMrqKwWi5MM0A77gyBBaXEJuruSKktLscgXzAkCEoAwBQKTqen10jQx1+Z7VKWwpPidH8kVJafb5om4kC0DrRhkCgEiVlCbl/FhyOM+/r5UcLqnXqGBetLjE73wnqkaGEvPyrE4BAE0oQwAQyQZOlAKnf8hpRAn4pAETrU5hW662beUuKJCcEV6anU65R4yQq21bq5MAQBPKEABEsg4DpMwcyYjQf64Nh9Sul9ThWquT2FrbO++Q/BFemv1+pd55h9UpAOAUEfrVFQAgKbhU9dAHJDNgdZIzMwNS/m9YUttiCX37Kq5bt8i9D4ahuO7dFd+nj9VJAOAUlCEAiHQ9Rki9fiIZETYNynBKvW8L5oOlDMNQxrSpkmlaHeXMTFMZU+9hSW0AEYcyBADRYMQTUrxHkfPPtiOYp+C/rA6C45KHDpX75psj79khh0PuH9ys5KFDrU4CAKeJlK+qAIBzSUyVfviMpEiZLheQbpkbzIWI0e6B38iZnBw50+UMQ063W+1+8xurkwDAGVGGACBaXP0Daeh/Wp0i6IYHpR43W50C3+Jq21ZZj/wucqbLmaayHn2EFeQARCzKEABEk+/eJ/1bobUZ/q3Q+gw4q+Rhw5QxbZrVMSRJGffeq+QbbrA6BgCcFWUIAKKJYQRHZW548PiGlvpn/Ph1bpgpDZsZOdOwcEZpv7hLaXfdZW2Gu+5S2l18/hSAyEYZAoBoYxjBEaLRi6SElPCvMmc4g9cZvUj6LiNC0cAwDGXcO00Z9957YkNLXViSlFFYqMzCe1k9DkDEowwBQLTqcbM0ZZOU86Pg+1B/MOuJ8/X6cfA6PCMUVQzDUPov7lKHeXPl9HgkR5i/5Dsccno86jBvrtIZEQIQJShDABDNElOln/wpOGqTcXVwm8N1aec8cXzG1dLol6VRL7BqXBRLvuEGXb78bbkLCoIbQj1ac/x87hEFumLFcp4RAhBVDNOMlCVnLp7X65XH41FlZaXcbrfVcQDAGqYp7d0offS8tHWJFPAFi03Ad/5jT+zniJF6jZIGTpQu68+zQa1MVVGRyuc8rfp//Sv4eUR+/8Wf7Pjxcd26KWPaVD5HCEDEaE43oAwBQGtUc1j6aq20/2Np3+bgrw3Vp+8X20bK7hcsPtl9pS7fk5LSWj4vWoxpmqr75BNVLHpZ3rfflnw+yeUK/no+J/ZzueS+eYRS77xT8bm5PBsEIKJQhgAApzJNqeaQ5KuVfA2SK1ZyJUhJ6Yz+2JjvyBEdW79edVu3qnbLFtVtLVGgpua0/RxJSYrvlaOE3FzF5+QoMS+Pzw4CELEoQwAAoNlM05S/okJmXZ0CDQ1yxMbKiI+XMzWV0R8AUaM53eASn7IFAACthWEYcqUxTRKAfbCaHAAAAABbogwBAAAAsCXKEAAAAABbogwBAAAAsCXKEAAAAABbogwBAAAAsCXKEAAAAABbogwBAAAAsCXKEAAAAABbclkdIBRM05Qkeb1ei5MAAAAAsNKJTnCiI5xLqyhDVVVVkqSOHTtanAQAAABAJKiqqpLH4znnPoZ5IZUpwgUCAe3fv1/JyckyDMPqOK2K1+tVx44dtWfPHrndbqvjoIVw3+2Le29P3Hd74r7bV2u/96ZpqqqqStnZ2XI4zv1UUKsYGXI4HOrQoYPVMVo1t9vdKv9nwblx3+2Le29P3Hd74r7bV2u+9+cbETqBBRQAAAAA2BJlCAAAAIAtOR966KGHrA6ByOZ0OjVkyBC5XK1iViUuEPfdvrj39sR9tyfuu31x74NaxQIKAAAAANBcTJMDAAAAYEuUIQAAAAC2RBkCAAAAYEuUIQAAAAC2RBkCAAAAYEuUIVyQr776SuPHj1fXrl2VkJCgK664QjNnzlRDQ4PV0RBmjz76qAYPHqzExESlpKRYHQdhNG/ePHXp0kXx8fHKy8vThg0brI6EMFu7dq1Gjhyp7OxsGYahpUuXWh0JLWDWrFkaMGCAkpOTlZmZqVtvvVVffPGF1bHQAp599lnl5ubK7XbL7XZr0KBBWr58udWxLEUZwgX5/PPPFQgEtGDBApWUlOipp57S/PnzNWPGDKujIcwaGhp022236e6777Y6CsLolVdeUWFhoWbOnKnNmzerT58+uvHGG3Xw4EGroyGMampq1KdPH82bN8/qKGhB77//viZNmqR169bp3XffVWNjo77//e+rpqbG6mgIsw4dOujxxx/Xpk2btHHjRg0dOlS33HKLSkpKrI5mGT5nCBftiSee0LPPPqudO3daHQUtYOHChZo2bZqOHj1qdRSEQV5engYMGKC5c+dKkgKBgDp27KgpU6bo/vvvtzgdWoJhGHrjjTd06623Wh0FLay8vFyZmZl6//339b3vfc/qOGhhqampeuKJJzR+/Hiro1iCkSFctMrKSqWmplodA8Alamho0KZNmzRs2LCmbQ6HQ8OGDdOHH35oYTIALaGyslKS+JpuM36/X4sXL1ZNTY0GDRpkdRzLuKwOgOi0Y8cOPfPMM3ryySetjgLgEh06dEh+v1/t2rU7ZXu7du30+eefW5QKQEsIBAKaNm2arrvuOvXq1cvqOGgBW7Zs0aBBg1RXV6c2bdrojTfeUM+ePa2OZRlGhmzu/vvvl2EY53x9+5uhffv26aabbtJtt92miRMnWpQcl+Ji7jsAoPWZNGmStm7dqsWLF1sdBS2ke/fuKi4u1vr163X33XdrzJgx2rZtm9WxLMPIkM3dd999Gjt27Dn3ufzyy5v+e//+/crPz9fgwYP13HPPhTkdwqW59x2tW3p6upxOpw4cOHDK9gMHDqh9+/YWpQIQbpMnT9ayZcu0du1adejQweo4aCGxsbG68sorJUn9+/fXRx99pDlz5mjBggUWJ7MGZcjmMjIylJGRcUH77tu3T/n5+erfv79efPFFORwMLEar5tx3tH6xsbHq37+/ioqKmh6eDwQCKioq0uTJky1OByDUTNPUlClT9MYbb2jNmjXq2rWr1ZFgoUAgoPr6eqtjWIYyhAuyb98+DRkyRJ07d9aTTz6p8vLypt/jJ8et2+7du1VRUaHdu3fL7/eruLhYknTllVeqTZs2FqdDqBQWFmrMmDG69tprNXDgQM2ePVs1NTUaN26c1dEQRtXV1dqxY0fT+127dqm4uFipqanq1KmThckQTpMmTdKiRYv05ptvKjk5WWVlZZIkj8ejhIQEi9MhnKZPn66CggJ16tRJVVVVWrRokdasWaOVK1daHc0yLK2NC7Jw4cKzflPEX6HWbezYsfrLX/5y2vb33ntPQ4YMaflACJu5c+fqiSeeUFlZmfr27aunn35aeXl5VsdCGK1Zs0b5+fmnbR8zZowWLlzY8oHQIgzDOOP2F1988bxTqBHdxo8fr6KiIpWWlsrj8Sg3N1e//vWvNXz4cKujWYYyBAAAAMCWeOgDAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC39fxcXdje7a5QIAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -260,7 +465,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -270,9 +475,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2IAAAMtCAYAAAD9ocIrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXhU1fnA8e+dfbKHJATCKvsiYQcBcUFQELXQulCtsmilKmq1glK1YkVxa6uitkWtiBuiVgUpIovIvgdCgAABAiEJ2TOTZPaZ+/vjJhPCTCDBgP2V9/M8PIZ7zj33zLWP0zfvOe9RVFVVEUIIIYQQQghxweh+7gkIIYQQQgghxMVGAjEhhBBCCCGEuMAkEBNCCCGEEEKIC0wCMSGEEEIIIYS4wCQQE0IIIYQQQogLTAIxIYQQQgghhLjAJBATQgghhBBCiAvMcKEfGAgEyMvLIzo6GkVRLvTjhRBCCCGEEP8lVFWloqKClJQUdLqLK0d0wQOxvLw82rRpc6EfK4QQQgghhPgvlZOTQ+vWrX/uaVxQFzwQi46OBrSXHRMTc6EfL4QQQgghhPgvYbfbadOmTTBGuJhc8ECsZjliTEyMBGJCCCGEEEKIi3LL0sW1EFMIIYQQQggh/gtIICaEEEIIIYQQF5gEYkIIIYQQQghxgUkgJoQQQgghhBAXmARiQgghhBBCCHGBSSAmhBBCCCGEEBeYBGJCCCGEEEIIcYFJICaEEEIIIYQQF5gEYkIIIYQQQghxgRl+7gkIIYQQ/61UVcVpt+F1u/H7fOgNBoxmM9aYWBRF+bmnJ4QQ4v8xCcSEEEKIag67jZy96RQcySI/6yAFR7Lwupwh/YwWK8kdOtGyUxeSO3SiTc9UImJif4YZCyGE+P9KAjEhhBAXNVVVyT+Uya7lSzmwaR0Bvx+dXk/A76/3Hq/LyYl9e8g7sC/Yv+vQK+hz7Vhadu4q2TIhhBBn1ehArKKigqeffpqvvvqKwsJC+vbty+uvv87AgQPPx/yEEEKIBlNVlWKvD6c/gFdVMSoKVr2ORKMhbHCUtW0zGz77kOKcYyg6PWpAC77OFISdqqZfwO8nc8Na9q/7gcS27Rl22510GjC46T6YEEKI/zmNDsTuueceMjIy+PDDD0lJSeGjjz5i5MiR7Nu3j1atWp2POQohhBBhlXh8rC+vIL3CSZrdwe4KB1X+QEi/SL2O3tER9I2JIDXaygAD7ProHTI3rA0GaDVB2Lmqub8k5xjfvPIc3YZdwYjJv8MaHfOTxhVCCPG/SVFVVW1oZ6fTSXR0NN988w1jx44NXu/fvz9jxoxh9uzZZx3DbrcTGxuLzWYjJka+nIQQQjSOqqrssDt4P7eYbwrL8KlgUMDXgG+zmn66gJ9uWXvom7GZloUnOB8LCRWdDnNkFNdOfZDOA4echycIIcT/fxdzbNCojJjP58Pv92OxWOpct1qtrF+/Puw9brcbt9sd/Lvdbj+HaQohhBDwXZGNF4/mk1nlQq+Avzr4akgQdmq/gE7P/k692NelD4klJxm+dSWdjmU26VzVQABXZQWLX32eyyfcxaBxt8jeMSGEEEGNOkcsOjqaIUOG8Nxzz5GXl4ff7+ejjz5i06ZN5Ofnh71nzpw5xMbGBv+0adOmSSYuhBDi4lHq9XHf3mwmZRzlYJULqA3CzpWq0wNQEt+cr8b8hiXX3ILTbP2pUz3tIdok1y9cwPqFC2jEIhQhhBD/4xq1NBHg8OHDTJkyhbVr16LX6+nXrx9dunRhx44d7N+/P6R/uIxYmzZtLsr0oxBCiMZbVlTOowdysHv9/LRdXGemBAJY3E6u+/FrOmeHfp+dLrfMxmsr1zO0YzvG97s0pN3l9bF6fxZ7ck9S5nBi0uvpc+mlPPfKq4wYMeJ8fAQ8Hg//+Mc/WLRoEfv27cPhcJCYmEivXr2YNGkSt912W7Cv3++nZ8+eOJ1OMjMzsVqbOAgVQogGuJiXJjYqIwbQsWNHfvzxRyorK8nJyWHr1q14vV46dOgQtr/ZbCYmJqbOHyGEEOJsVFXl9ewCJmdkYzvPQRiAqtPhNFv5evQdbO57BWf7LeVXaXsx6vWM7NE5pK3C5eb1letZnXkYt9dHj5bJtIiNZtPONEaOHMncuXObfP4nTpygb9++PPzwwxw4cIBhw4Yxbtw42rVrx9q1a/n888/r9Nfr9cyePZvjx4/z8ssvN/l8hBBCnFmjM2KnKysr45JLLuHll1/m3nvvPWv/iznqFUII0TCqqvLCkXzmHi/82eYweOePDN+6Imwhj905+Xy4aSdXde3ADb27h7S/v347e/MK6Nw8gcmXD8Rk0JZB7s8v5P3120FRSEtLIzU1tUnm6nQ66devH5mZmcyaNYs//vGPGI3GYLvD4eDgwYP06dMn5N7U1FSysrI4cuQILVq0aJL5CCFEQ13MsUGjM2LLly/nu+++4+jRo6xYsYKrr76abt26MXny5PMxPyGEEBehN44VNnkQ5j2UScHI/tjfeLHePv78XOxvvEjxXb9g8ZNPMPOblby0bA0Lt+6mpNIR7Lfu4FEABl0Suu/5pK2CvXkF6BSFWwamBoMwgO4tm9OlRRKBQIDevXujKMoZ/xw/fjx4r81mIyEhgcGDB4fsNZszZw6ZmZnce++9PPPMM3WCMICIiIiwQRjAlClTcDqdzJs37wxvTwghRFNrdCBms9l44IEH6NatG3fddReXX345y5cvD/mPvhBCCHEulhWVM+do+AJQP0XF3JdQTGai7gy/esO5ahnFk3+F8+vPUExmzEOuQNdvMD6The3ZJyiwVwDa3rDskjLaJcTRPCYqZJyM3JMAtE+Mp1lkREh7amst66TX67nzzjuZOHFinT/du2sZto4dO9YpcBUbG8vMmTPZunUrCxYsCF73er38/e9/B2D69OmNfi933HEHBoOBf/7zn/h8vkbfL4QQ4tw0+kDnW2+9lVtvvfV8zEUIIcRFrtTr49EDOShw1j1ajeH6cQXejF1E3DYRXXyzkHb3zi3Y5zyFLq4ZsX96G1NqP60hEMDqdjL53eeJ8nkAyMgtAKBz88Swz8ot145paR0fG7Y9tXULFm1Lx+/38/jjj9OzZ8867T169AC0TNXp5e6nTZvGyy+/zMyZM5kwYQJms5mdO3dSXFxMSkoKnTp1Ys+ePfz73/8mLy+P+Ph4hg8fzpgxY9Dpwv/uNSkpiT59+rB9+3a2bdvGkCFy5pkQQlwIjc6ICSGEEOfLkwdPYPf6mzQIA3B88TEA1jHjQtpUvx/7q3+GQIDYWa/UBmEAOh0us5Wdo28jxqqdoZlVWAxAu8T4sM8qrdKWMMZHhK9CaDEasRi134Pu2LCuTtumTZvYv38/er2eSZMmhd5rsXD77beTn5/PZ599BkB6ejoArVu35oknnqB3797MmjWLefPm8dJLL3HDDTcwYMCAOsscTzd06FAAVq1aVW8fIYQQTUsCMSGEEP8Vviuy8VVheZNXR/QeysS7dzfGHr0wtG0f0u7etJbAyTyMvfpiujR0H5Wq07G/c2+y2nUDajNezaNDlyUCuL3aJzh1b9jpatoyNq6vc/1f//oXAKNHjyYlJSXsvTUB2ltvvQVASUkJAGlpabz00kvcf//9HDhwAJvNxooVK+jSpQtpaWmMHTsWr9cbdsyarNzOnTvrnbMQQoim1eiliUIIIURTU1WVF4/mowMCTTy2e8MPAJj6DQ7b7tm2UWtP7Yfq9+HesAZvxi5Utxt9ixTMw67C2Lod6waNpM3hDDw+LdCKNP/0vdH5B/fjsNuIiInF4XAEs1x33313vff06dOHpKQktm7dSn5+frBwh9fr5de//jVvvvlmsO/IkSNZsWIFXbt2JSMjg4ULF3LnnXeGjJmQkABAQUHBT/5MQgghGkYyYkIIIX52O+wOMqtcTR6EAXjStgFg7BG+VLzvyCHtB72e0vvuxDZrOo4vPsa55Asq33mDkik3Y//n3yhqlsyxmKTgfWZD+N9lmo1atqsmYAs7p+o2k15Hzt49AHz++edUVFTQvHlzbrjhhjN+ppp9XKtWrSI6Ojp4ferUqSF927Zty9ixYwFYuXJl2PFqSkaXlZWd8blCCCGajgRiQgghfnbv5xajD3dgVxPwHcoEwNCuQ9j2gN0GQNUn/8JfeJKYPz5P0lerSfzsO6KmPgJ6PY7PP8Lx8Xtk9r08eJ+7ngqDzSK0SollDmfYdpfXi8ur3ZsYE0XB0SygdlniXXfdddZKxKcuJezQofZznfrzqWqu5+eHr0Zps2nvID4+/L43IYQQTU8CMSGEED+rEo+PbwrL8Dd1hQ5AdTpRXVpApMSEr2JIzZlcPh+xT76AdeT16GLj0SclE3nbXURNvh+AqoXzOXBJz+D+rip3+P1WreK17NKJMlvY9pxS7brJoCchwsrJrANkZWWxdu1aQKuWeDanLiXs169fsLpicXFx2P4116Oiwu9rq9lnlpycfNZnCyGEaBoSiAkhhPhZrS+vwHcegjCAQFVF8GclIjJsH6U6g6VrkYJ5YGjpdutNtwCgOqrwHNpPsxYtAYLnip3u0lbaOWHZxWWUVYVmxdKO5wHQo2Uyep2OgiNZvPfee4C25LDmHLEzOXUpYYsWLbj8ci1TF27podfr5ccffwRg0KBBYcfLyMgAoH///md9thBCiKYhgZgQQoifVXqFE8N5Wpaoi6rdP6U6qsL20bdsDYCh+p8hY0REosRpS/b8xUW4e18JwLGS8rD9W8RG0zMlmYCqsmh7Ot5T9ortzy9ke/YJFAVG9+xJhCEGg9vEgvkfAJCYmIiiKFx11VVn/FynLyV85plnAJgzZw6bN28O9vP5fPzhD3/gyJEjREdHM3ny5LDjbdyoFSwZMWLEGZ8rhBCi6UjVRCGEED+rnXbHecuIKRYrisWK6nKi2m0QGbo0z9ilO+4fVxCwhS9Uofr9qJVa9kuJiEB35ShY+jHbSjxcpTNjDbhD7rl5QC8KVldyqKCYOf/5gY5JSbi9CvtPnkBF5U8j7ue3vScAsPrwJvJOfkKkyUrrEi3Tpdh8ONKLMHeMQx8Zul/s9KWE11xzDc899xxPP/00w4cPZ9CgQbRo0YKdO3eSnZ2N1Wrl008/Dbv0sKioiPT0dFJSUhg4cGBDXqsQQogmIBkxIYQQPxtVVUmvcJzXZxg6a+d/+Y4dCdtuvuIaUBR8Odn4i0LLt3t2bwefDxQFY9ceGPr0wtSqO/bC47xnHc7hiPYh90RbzPx+1DCu79mbGHMs+/IKyCu3ccUlA/nktr/y24ETgn0Xpi8F4IauV3Pg5GEAbm43ktJPMsl/fgsln2XiPm4PlqmH8EsJn3rqKZYvX86oUaPIzMxkyZIl+P1+Jk2axM6dO4OVE0/30Ucf4fP5mDp1KoZ6KkEKIYRoevJfXCGEED+bYq+PKv/5KFpfy9R3IN49aXj3pmO+bHhIu6FVWywjr8e1Yin2v/yZ2KdeDC5p9J/Mo2LuSwCYrxiJPrE5ADGXjaf4y/2cWPxX/l6SQ/vOqTzQtw01KyxTIjrRK/4KJnZJIqD60SnhD3cudZSzMktbFvirS0cz6YvH6dWiKzd1rV4iGFBx7i7GmVaEoUUEsde2x9ojgU2bNgGhSwmvvfZarr322ga/G1VVef/997Fardx7770Nvk8IIcRPJ4GYEEKIn43zPAdhAOZhV1O1YB7uHZuJuvuBsH2iH3wcX/YRPFs3UnznTRi7p4LXjXffHlSnA0PHLsQ88mSwf8SlwzFv7oE7TyuNX2xtwab4wVxp203/hFG0i+pBQNU+W31BGMCXe7/HG/DRqVlbVDWAw+tk5pVTg1UQAQhomTBfgYOSBfs4FFtESUkJgwYNomXLlj/p3XzxxRfs2bOHWbNm0aJFi580lhBCiMaRpYlCCCF+Nl71PG0OO4WxczeMPXvjy8yod3miLiqaZnPfJ+qeaegTkvDs2opnzy4tCOuRSrM3P0BXXf4+UFZKZfoqFJMFqoOtyr0/sPLzeWw76Aef1k+nnP0rdtGe/wBwW+pYhrbrR87jaxnefkD4zipUuh089uafAEjfnY7VaqVdu3aMHz8+pGKizWYjISGBwYMH11nWWMPv9/P000/Ttm1bZsyYcda5CiGEaFqKGu6/zueR3W4nNjYWm80WLL8rhBDi4nTc6WbQ5v3n/TmuH1dge3YGCb+8hUvumYwx4MOrM+DUWSg2xoESWrax9KHJ+LIOkPjxt+jimwWv2154EtfK/wAKoKKPSuCS5h0pO3mQEkc5EUYr74yfzRWXNG3hi8yiI/zms8coqCpGp+i4psMQIlrFku8qJi0tjYceeohXX321zj2vvvoq06dPZ/78+UycOLFJ5yOEEE3hYo4NJBATQgjxsynyeOm1Ye95GbuZt5zLy3aSWnmQvvb9PPbaJvbkezn8UBTJUbXZqkq9ld1RXUmL6U56VBfWx/cjb+M2bM/OIOK2iURP/X2dce1zX8JUakDRmSlf8z6/v/sd/pDQmSqPgxnfvcLi/auIs8SwbuqnxFmiT5/WWWUUHGTsB/dyV99xPDdKe3ZRVSkj35tEqVMrmd8sIg6vz4vL5yYhrhl9B/fnxhtv5L777qszlsvlom3bthgMBo4ePYrZbG70fAAqKip44403+Oqrrzh06BAej4fmzZvTr18/HnjgAUaOHBnsa7PZ6NChA506dWLz5s11l1kKIcRpLubYQPaICSGE+NkkGg1E6nXhC3aoKngCKAFV2yelU1B1Cph0YTNYNff0t+9lct7X/KJoNUbVj1fRo1f9vD3axIB3vDy31s2b11uDt0T5nQyx7WKQfU+wf68PddgA65hfhDwi5r7pmFflowDTBt3GVCwARJoieHXM46w+vIlyl53Vhzfxy54NL5xR408rXsdiMPPw0NoM1vM//D0YhOkUhXaxKSRHJ6BDR3Z5LsuWLWPZsmVkZGTw1ltvBe+zWCzcfvvtvP7663z22WfcddddjZ5PRkYGo0ePJjc3l9atWzNixAgMBgPHjx9n6dKldOzYsU4gFhsby8yZM5k+fToLFiyQTJwQQtRDMmJCCCF+VuPTsthUXgkeP7pSNzqbF8XmQWf3ovhDv6JUvUIgxogaayIQayTQzAwmPdcVr+eJ7HfpXnUUn6LHoPrDPO3s0vL99JtXxWWt9bz3UC9ebH8P3ycOq364ilLqxry9hOEYmENEyP1jP7iX9JOZPH7FvUwb8ptGPXtp5hp+982f+N2gX/Pk1Vp2q7iqjEFv/wqdomP+zS9xWdveGHR1f4+68dhOJn/zRxxOB9999x3XXXddsG3Xrl307duXQYMGsWXLlkbNp6CggNTUVEpLS5k7dy5Tp9YtJFJeXk5eXh49evSoc19TZeKEEP/7LubYQDJiQgghfjaqqtLKqWJKL0U56URRQdW2XlHfgjbFr6Ir80C5B4MKsUoFz0Z9yDjvevzVd51rEAbwdaYXgJGX6OladZQFe//Iv5Ou4cnOD1Omj0Fn8xKDwuNYCKCiO2WmXr+PE7Z8AJpHJTT62e9uXwTAhNTaM782Ht+JN+BjQKtLubx9f7af2MOqI5spc5STEBHP5e0HMLR9P27qNoKFad/y/fff1wnE+vTpQ1JSElu3biU/P79RlRanT59OYWEhL7zwAr/73e9C2uPi4oiLiwu53hSZOCGE+F8nVROFEEL8LL7fe5LRr63j28UHg0EYgHKGIKyGUt3vWt02fjD9gRs82llcen76Io/V2VoQN6SNPjjeTUU/sH7rnYwuXY/O7uERLESj1AnCQDucudRpw2Iwc3WHwY16bkbBQbbnZtAvpScdE9oGr+8v0io9JkU24+FvZzP+4wd4c9OHfLx7CW9sWsCtnz7E7Z8+is/rAwibfRoyZAgAq1atavB8CgsLWbhwIVarlWnTpjXqswBMmjQJoM5SSSGEELUkIyaEEOKCKqvy8MzivSzenRfc6qU0On5SuV//DTOMi/CrCvrGD1CvtHwtEOueWHv+l4EAcT478/c+xReBX3EZkzg9XNxfdJjn17wNwMNDJ5IU2YzGWH5wPQCXt+tf53q50wbAyqyNBFSVR4dN5uZeo4k2R7HpeBpPrfgb645tR6/oUVC49tIrQsbu2bMnixcvZufOnfzmNw1bLvnDDz/g9XoZOHAg0dHRbNy4kaVLl1JcXEzz5s0ZOXIkV155Zb33/5RMnBBCXAwkEBNCCHHBLN97kie+TMfu1LI357ZLWWWG4TPuNywGaNIgrMqjUqWtTCQhom6gVZMdu1n3JR7TNsq9D+JRuwEK+fZCpnwxkyqPk1GdhvHAZXc0+tkbju8EoH+rnnWu12zl9gZ8PHDZb3jk8sm8uu49cu0FuHxuYs1RFFaW4Ff93D3gZroVJqGqap29XAkJ2jLJgoKCBs8nPT0dgBYtWnDnnXfy0Ucf1WmfPXs2I0eOZNGiRcTHx4cdY8iQISxevJhVq1Y1OAAUQoiLhQRiQgghzjtVVXl7zWFeWX4ARTnXAExzv/6bYBDWVNLy/Qx4p4qJvY3Ba9Gmun2OlgX46yY3yw/7OWHPwKCbSstoMz2ad2NHXiEn7Ce58pJB/P0Xz55Tyfa9BYcA6JTQjkPF2by95RM2HNtBQWVJsE9qi64ArMjawL7CrOD16m11fJu5hmfyH8STU4G5be2m95oN8GVlZQ2eT0mJ9twlS5YQCASYNWsWEydOJDY2ljVr1vDAAw+wcuVKJkyYwPLly8OOcS6ZOCGEuFhIICaEEOK8UlWVl5cf4O9rDlf//dzHula3jRnGRU00s1oPLnNhNcCfrjTx/i4tJVbhgZjq7Vaf7vEyZbETlw96NddxY1cDTi8cKPHy9f7dAAxv14d3f/k8ZoOpvsfUy+Fx4vA6Adidn8mj/5mDy+embWxLuiV1CAZd933zDC9d9xjLJ/9Lm6O7isOlx5n61Z/IqyigoLKYj3cv4bebmtcJxGw2bXljfZmrcIKZOK+XmTNn8swzzwTbxo8fT0pKCkOGDOH7779n3bp1DB8+PGSMc8nECSHExUKKdQghhDiv3l5zOBiE/RRxVPCi8R38qkJavh/9n+08+B9nvf2PlgV48D9OusytJOJ5OzFz7HR7s5LJ3zg5UlZ7btkX+7xsyPFz/0AT7eP0RFYnxUocWiCy6oiP33zlJM6isHZSBOn3RfHZzRG8d5MFY/W3aN8WOtrGHGTke7fR8dVr6PyXUVz5zh388fu/crw8L2RudnclvV6/gRsXTEVVVezuqmDbjO9exuVzc8+AW1l77ye8eN1jwTaDTs/M7//CoeJsAKLNkfRp2Z328SnBPs+tfpPyHXn4a9ZYUpvdSk5ObuDbhujo2sOop06dGtI+ePBg+vXrB8DKlSvDjnEumTghhLhYSCAmhBDivFm+9ySvLD/QJGM9a/yAGBzoFTWYwXr6yvDnU326x0uPtyt5c5sXiwFu7GrgqvYG9DqYv8vLvqLa8vZ/2+wB4O6+WgTWr6VWpGNfkR9/QOWeJU4CKnx5q5Xh7bSFJMWOACMWONhbFCC1uY6MwgAf73FgUMq4rlMbLm/fn0qPgw/TvmbUvyazJWd3nfnFmKN44LI72JW/ny8yviPWEhVsq/Q4aB/fiiev/h16nZ4+LbvTKkYLoIa3H4Av4OfNzbX7tcqcdvacPBj8u8PrYsm+VbgPlwevZWRkANC/f91CIGfSoUMHAAwGA23atDljn/z8/LDt55KJE0KIi4UEYkIIIc6LsioPT3yZftZS9A0xSredX+g3YlACdTJYzSNDv8bqy2At/nUEe++P4ujDUfSvDrbS8v1szPFzWWs9XaurJF7dXvvnphN+lhz0kV2ucnlbPUPbaEFYqVPlmgUOMgoDjLhER16FijcAf77KzKEHo1g8oZgvb+vOpt99xi2XjsHhdfLEd68A8MjSF2jz0hU8svQFJvX/JQkRcby4dh46RUeE0Rr8DJe16RM8tFlRFH4/bBKgLVsE+P7QenwBH06vi5nLX6XCU0XzyNpzyz7Y+RXe3Mrg3zdt2gTAiBEjGvzOa4I2n8+H3W4P26e4uBiAqKiosO3nkokTQoiLhQRiQgghzotnFu/F7vQ1wcleKn8wfI5f1UK60zNYp6ovg3Wq9nE6WkZrX3+nHt5cY1w3bdwVR3wsz9KqO3ZppkP3rJ0xH1Ux6J1K0gu0pY1OLxQ7VQw6yCr1M/kbF3d86aDVK+/R8dWRfJ6xDICs0uOUuyqC+66MOgMWg5lx3UdSWFnCkszVXJrcOTiHeGvt/i7QDnj+deoNFDu0JX6VHgcTFv6evnN/wdIDawAocWgZMAXYlb+fnAzt/LG0tDRKSkrQ6/WMGzcuOIezGTRoEG3baueZrVixIqS9tLSUHTt2BPuGcy6ZOCGEuFhIICaEEKLJfb/3JIt35+H/KZU5qvVTDtFNl4NeUcNmsE4VLoN1Jqce3lyjb0s9Q9vo2ZobYEuu1r7iiA8F+O6wn8NltZ9p0wktIPMFYEG6jw92e/kkw0elp+5zTHojUSYre05qyzQnpI4F4JZeYwAtgzW0bb9g/z0nD9Lu5at4esVrwWtD2vXlxq61Ga0tOelUeUP3yNXMbvXGtaiqyvz58wHw+/1s3bqVBQsWnPW9gJaJqynQMWPGDHbu3Mnzzz/PgAEDiImJISkpCbvdjtVqDe4Fq2Gz2UhISOC7774DGpeJE0KIi4UEYkIIIZqUqqr85fuDnEMF97DuNKzAp9afwTpVTQbrirZ6fAGVL/d5eXS5i/u+dfLSejeZxf46/cMd3gzwyGVa5cPsci3QyrGrmA3w0XgrRdOjyHkkildGmTGdctufrzKz/A5teeG0gXWzdbeljqWoqoyDJdmM7jKcftVnhfVM7kxCRBy78vczsPWlwf4bj+/EpDfx8NCJwWtrj25jyYHV9b4nv+pnYr/x3DPgFgD2nMjEUVLBJ598gtWqzctisTBz5kzcbne945xqypQp3HPPPWRnZ9O/f3+eeuop9u7di8fjIRAIoNfr8Xg8rF5dd16xsbHcdddd+Hw+OnToIIc5CyFEGBKICSGEaFI7j5dzoKDiJ5WprxGPnRt0mzEoWkAULoN1qvRCrZ9BB4PeqeLmz538bbOHf+1R4ocAACAASURBVOzw8sQqNz3fruIPy12oqnrGw5tv7mFkWBs95a7aa3PHmLkj1UhihI7WMToeG2rmuau1YiEK8Kc1bsZ+4iTCCEfLaz/8XX3aMOuaB1l7dBt6Rc/jV9xb51n9UrSgrNhRTr+UHgAEVBWr0cyhkmyqPA6ySo5RVFUa8nkthtpiJfPGPcfsUY/QIjqperxS3nzrTYqLi4PFMm666Sby8/P57LPP6nnjoWbPnh3MeFmtVgKBAK1bt2batGlkZ2dTXFzMlClTQu7zeLS0YElJSYMDPyGEuJhIICaEEKJJfbgpG72uadJhQ3X7MCq1Waz6Mlg1akrOz1nv4bhNDclgGXTw180eXlzvweauDZZOP7wZYO4YS3CZn1kPd/cLrdB43wDtRhWIMYFPBYcXlh7yBfsMb1NEjHEnt6VeT/aMH+iU0K7OGF0SLwG05Yj3DpwQvF7mtHHrpw/T7W+jufrdO9lwbAePDqsNeN4d/wKH/lC7d6tPy+7VnyWy+l2U8/Lrf6FPnz7k5eUxfvx4Zs6cCcBbb70V9v2FM336dOx2Oy+88AIOhwO3201WVhZz586ldevWxMXF0aNHjzr3uFwuFi1aRGRkJDabrVGBnxBCXCwkEBNCCNFkSqs8fJuejz/QBOkwoJfuKF5VC7rOlMGqUfNUbwA++ZW13gzWnPXu4BlgoB3efLq+LfX0SNQ6tYwK/7xosxI89NnugdEd9ZTOiObkH2qrCP52iYs3N756yuzqqinMUewopV31eWAKCq+OeYKpgyZwe+8beWz43ayYMp82cS1q55fSne0n9gT//o+tn7Lp+C7s7srqdxRHweFcHnroIfR6PS+88AJ9+vQhKSmJrVu31lty/lSFhYUsXLgQq9XKtGnTztq/xty5cykuLmbGjBlA4wI/IYS4WEggJoQQoslsPFyMr4mCMIDeShZ6tCzY2TJYp15vH6dwbcfQYh01GawKD2QUBkIObz6dw6ddr2+/26ESP/bqVXfxFvjslgjirQrJUbVfrwrw/LoCTpStrWfOWgbL5qpg+cH1wet7Cg7w1NX389Lo6Tw8dCKdEtqx5uhWAKJMETy/5u+M//iBYP9/7fiSWz99iA92fgVAYkQzFKOOyZMn4/P56NatGwBDhgwBYNWqVeE/1Cl++OEHvF4vffv2JTo6mo0bN/Lkk08ydepUnn76aX788ceQe2w2Gy+++CKDBg3i6aefblTgJ4QQFxMJxIQQQjQJVVXZta+I8IsGz2lEeumOUrPKMc5SGw2Fy2ABdIjX1fnn6aLNCknV2bT8SrXO4c3hFFRqgViuXeWEPRDSPmdd7UTmjrEQYw6N2NrEKPgCsP3EF2GfUZPBirVEs+H4TgDm3/wis0c9EtJ3W046AE6vi2/2reLRYZODbS9dN53mUQmcsJ8EILVVF3SRoSX+e/bU9qTt3Lkz7HxOlZ6uPa9FixbceeedDBs2jBdeeIF58+Yxe/ZsrrrqKkaNGkVZWVnwntjYWEpKStiyZQuKojQq8BNCiIuJBGJCCCF+MufeEgpe28mOXfmED2kaLwE7UUpttYwIo3LWDFbNQc3F9bT7AyrlLq0tylT38ObTVXlUnNVbvTwB+O0SJzZX7bjHygMs2uetnhvckRo+TWevzuRVug+iwxbSXu7SDktOjGjG3oJDALSJrVtl0Ol18fSK18irKNQ+hxrgd4N/zSOX1wZiV3cYzLvjnw/+3ap4UcKk8hIStIOfCwoKws73VDUHMi9ZsoRPP/2UWbNmcfToUUpLS/n3v/9Ny5YtWblyJRMmTKh3jMYEfkIIcTE5+yErQgghRD38VV7KFx/GubsIFZUDTRaGgVUJTXv1a6ln3XE/+4r8XBIm6/WrHkZmrnKTWRzghD1A65i6fdZk+/EGtOWCA1L0tInR8ee1HlYc8TH7tKOuTl0K2a+lju+y/HSaW8llrfW4fCqbcvzBPWtxFvAFVAxhipTUZO86xINZtwdn4PI67QeKjgLQNfESHNXngt344VR6JXeleVQCVR4H23MzsLkqSIpsFqye+Js+N4U8y6iv/VrffWADvrIyDNUVE2vUVEA8NYtVn5rDn71eLzNnzgyeKwYwfvx4UlJSGDJkCN9//z3r1q1j+PDhIWM0JvATQoiLiWTEhBBCnBPn3mIK/rIdZ3oRAOWoOJpwfCO+kGtnymABdGqm4zepRjz+8BmsB5dpGbabexhIidbVObx53EIHyrN2Jn2tBUOnLoVcdkcEL4wwkxKtsPqoj405fpIja9vzKqD9a5Vc8X4lV82v4qr5VcE2v6qV0y+uAqMuK2TOO/L2AnBpcufgtQGtenG07ATfHVzL9twMuiV14MXrHuPBIXcCYNDpSYlpHjLW53uWBX8uLD+JY8uWkD42m5aViz8tQAsnOjo6+PPUqVND2gcPHky/ftpB1CtXrgw7RmMCPyGEuJhIRkwIIUSjqKpKxZoc7MuPaaml6ljHdca7Gs8b5itqXDdjvRmsGnPHWNhb5A/JYG0+4afSA72TdfzjBmuw/yOXmdiY4+RgibYHrKaaYs1SyCovVHlg5nAzM4fXlrD/OtPL+M+cwb/nVqjkVoRfEukLQEGVH5NyoM71jIKDlDlt9GnZnY4JbYPX//6LZ4k2R4aMk5a3r3o8PxXuKmIttYGS2+fh630rMeoNeP0+rL5KXHv3EjN6dJ0xapYbJicnh3+Bp+jQoQMABoOBNm3a1Ntnx44d9RbjaEzgJ4QQFxPJiAkhhGgwVVWxL8/WgjCoU5HdW0959nPlVEP3XJ2awdpfT4GNWIvChimRIRmszs10vHiNmU13R9LMWpvNqjm8ObNYC8Tu7ldb4OJMxTzGdTOiPhOD+kwMP06K4NaeBtrEKJj0YDhlheIPEyNQn4nh2astmHRZnPrSajJYE/uNx2q0EGHUAsQyZ+heMtDOCmsVowVQ67K312lbtGcZpU4b+uqv9l4GHc7qYhunysjIAKB///5hn3Gqmj4+nw+73R62T3FxMQBRUVFh2xsT+AkhxMVEMmJCCCEarGJNDhVrToRtM3Juhzh7Cg6T/8EjRPe9nmajfhe8XkIMlaoF1eNkzno3X+73cdwWwFD9K8Q/rXHz+S0RYce0GJSQDNaZPH2FidEfa9mtIe+FLrC84VMnUJv9+nFSBFe0075C/QGVe5e4cPpUDkyLwmrU3oPyrBa4dGpW+ztPneJEh40AcTy05Dm+2rcCi8HMjd209N6lyZ3ZeiKdQyXHaBuXEjIPRVH4/bBJTF/2Ei+s+TvdkzoG2z5I+4o4SzTlrgpSTBauiYrClbEXVVXrFO3YtGkTACNG1JNSPMWgQYNo27Ytx48fZ8WKFdxyyy112ktLS9mxY0ewbziNCfyEEOJiIhkxIYQQDeLcW1ybCQvDco7jlq74J4rBROzQ0yvvKfxY0ZoB71QxZ72HCrfKjV0MwSzVF/t8PL/WfY5PrSuvQkWvwLiuBib2Ngb/3NBZC7YSIxQGpmhfmdGm2uqMAHqdwuwRZo7bVF7eUE9d/TqfSutzqER7l71bdMNs0LJ/Q9tq+6125GbUe/+E1LH8OvUGcmwnuW7+lOB1o95AuauCOHMUf2uRjFmnI1BVhb9UK+4xadIkFEWhpKSEQYMG0bJly/oeUTtXRQkW6JgxYwYHDtQurXQ4HEydOhW73U7btm0ZN25c2DEaE/gJIcTFRDJiQgghzspf5aXsy0Nn7BOHQgQ0qmBHVeZ63Ln7iBn0S/SRcSHtTy4t5GBJgGsu0bP41xFEVGeb5m5x89B3bp76wc2NXQ2kJv+008sm9zUxuW/48vPD/lXFxhw/3RO1QGzCpUYiTXWzfzf3MNKruZuXNriZOsBIi6j6f8+pKF7srkr2FWqFO2ZeWVsE47oul/Paxvmsy97OjCt+G/b+1zZ8QGbREdrHtaLYUYa7OrCrcFeRGBFPkqLyld1GL6u2zFF1abv3AoHac9AeeOCB0IHrMWXKFDZt2sS7775Lnz59uOyyy4iNjWXLli2cPHmSZs2a8cUXX2CxhIbiaWlpjQr8hBDiYiIZMSGEEGdVvvgwAWdoFcNTKSh0beRxzhXbvwEgKvXakDZP8XF2HzyBXoH3brIGgzCABwebubuvtpdrzvqmyYrV55HLtABt3XFtn1jNc083pa8Rpw/+uV2raV+zf+z0EvqqaqTK4ySgBhjdZTj9W18abLs0uQsDWl3Krvz9HCrODvucY+W5pOXvI7s8l0pPbdjr8XspdpSxv6qcw+7adxLwaIHatm3bAEhMTOS2225rzCvgnXfe4dNPP2Xw4MGkpaWxbNkyIiMjmTZtGrt372bgwIFh75s/fz7QuMBPCCEuFpIRE0IIcUbOvSU4dxc1qG939KTjb9BpYp6Cw7hz92NK6YoxoXXocw9qS9qGtjHQLi7094a39zLyXpqXJQd8eP0qRv257VE7k7R8P7d94STKBJUe6JqgMLi19tVZswfsdLN+dDPrRze39TSw8ObQPWwqJtYe3Yhe0fP4FfeGtN8z4Fa252bwafq3/GnEtJD2l0ZPp1dyF77N/IGDJdm4vG7irTF0TWjHTYFSxkTU7ovzqyqpo0ZR5XKRm5sLwKuvvorZ3LC9c6eaMGHCGQ9uPp3L5eKTTz6hZcuWjQ78hBDiYiCBmBBCiHqpqort++w6ZerPpCv6Bh/p7Di4GQBruz5h2z0FhwGIa9kan1qOQQnUaR+QomXfqrxwqDRAj6SftjwxnAeXubAaIKY6EEuMCA32JvY2ogI2j4UVh104PF6ubG/hynah4wVUKwFiuS31em5LvT7sM8d2u4qB23vx8a4l3Df4dpIimwXb8u2F/GbRYxwsyaaZNZaBrXphNVrIryhka84uzBERjIloFeyvVxT+/OSTTJii7SVLTU3lrrvu+mkvpYHmzp1LcXEx8+fPP6fATwgh/tfJ0kQhhBD18hyvwFfgaFAQBtAffYMXJ7qO7wbA3Kpb2HafrQCA7Kg+IUEYQIxZIab6/98fLQtt/6m+2OdlQ46fG7sYyKsEkx6+nhCa4Zo/zsoH46zcOrAP/dppQVB0dGsm9a3bV1XBE+gEDagu+edRD+PyuXl94wfBa06vm9s/e5SDJdk8Omwy2x/4ivdvfpG3fzGLhX1Hsr5jR6YmJNQZRxcZya2TJtGrVy+sVivLly+vU0HxfLHZbLz44osMGjToggV+Qgjx/40EYkIIIepVuSmvUd8Ucei4BkODgjFPwREADAnhDwoOeLRy8bnG1uwPtMGvhgYQUdVFM+znYZvY3zZre6tqtsbd1NVAYkToywioUOiKJN8VTYsY7YDlY6UVrC7oeFpPPR61a4OefWlyF47NWMPsUY8Er721+SOySo9zR+8beeTyyRj12qIW94H/4Dn0HVadju6nFcywXNoTRVGYMmUKTqeTefPmNej5P1VsbCwlJSVs2bLlggR+Qgjx/5EEYkIIIcLyV3lxphdDI5NNv8R01uWJAY8L1atV89NbY87SW+EvvlvRK017YPSZpOX72ZjjZ2CKjhVHtEhsSp/wRTp0CmwsagcoRJi1PhUuD5n25mRV1C4rVBQ/3kCnc5qP1+/jw7SvAZg6+NeoqvYvxb3333j2fx3+JoMBa2oqAHfccQcGg4F//vOf+HxnLroihBDiwpA9YkIIIcJyHy7X0j0NpqLDRipuOmLiCDrUepbhBdxVwZ8VkzVsH131ddXrYmWgP9/4hzJWt7nOMsVKjza/mCbegvR1plb5MClSwZEHrWMUrusU/ivz8R+MrMvNQyEfX0ALQR1eLwoqG4ra0TGqFEUBVdXjDvQ6p/lkFByk1GkjOSqR9rEt2Z+3l2/Xvc3J8lxi9Tr6WyMYHhmJ7tTsk8+HpWdP7XMkJdGnTx+2b9/Otm3bGDJkyDnNQwghRNORQEwIIURYntxKLd1TTzCmw4ZZl45Jl4VROYhJl4VO0ZYTPuHvx2+9j9U7ts4SGfxZ9ThRzKF7rwyxyXgKDuOzaxUbn/FOZLg5nVi1Cr2iYnerwSWJ7cNUVfwpVmdrAdXhUu2zT+ptrBvknOLltSVASZ1rFU4XdpcHlSjyXdG0tDhwBK4gQOw5zWd/oVa4pGV0Es8v/TPz9v1QZ9veu5TS3WxmbqvWpBirM3cGAxGDBwf7DB06lO3bt7Nq1SoJxIQQ4r+ABGJCCCHC8hyvCBOEqZiUTCINS4nQrUNR/KiqHvBzapwySr+Tm/wbWBq4DH+YHWM6owXFaEH1uvA77ejCBGKm5I44Dm7Ec1I7+LicaJ7w/pZ5pr8BsD1PC5YijdAloWkDsbR8bewDJQEUCHvY8+29DLRt3gGdpRXRFjPlDhfLMw6wKycfp9fHvB+38PDIIewqbUlKq4NU+cae01zUgJ8ylw2AvScPsCt/P7fHxfGb+GYk6vWku1zMLihgv9vNfSdO8EX79hgNBmKuvx5DfHxwnJ7V2bGdO3ee0zyEEEI0LdkjJoQQIoSqqnhzK+tcs+g2k2yaRnPz9GAQBtrep3DJomeNHxCDA6WeTWamZK2YhbckJ2y7tfNlALhP7MNnLwTg+8BAXvbeCsAne7Tlgzd2NTTpGWJVHpUqb+3fr75ET4f40K/L313eg8SEzjSLjMCo15MUHUmkWQvYDDod+bYKNh4+wQF7EjZPBzxqV9SAD1U983JPVVVRA9o+LjXgw3diK+4jawDwqgHGRsfwVHIL2ptMROn1DI2M5N02bTArCoc8bpbZ7eD30+z2X9cZN6G6omJBQcG5vhohhBBNSAIxIYQQIQJVXlSPFmjpsNPM+DKJptkYlOMAwSDsTOKVSl40voNaz1eNpa1WSMKdmxm23ZTUTgvG1AAl/3mDgFdbh/i2/xfcn9mf+bu86BSYeXnoBrFZa1woz9q5an5VSNvZ2Nx1A6W7w2TDthS3YWtJ6CHU2SVlAPRslQzAvrwCAujYl67HuXUenqyV+IsPoHqdYZ+tep34iw/gyVqBc+s/qfpuBq6d7xPhtgX73BoXF3JfitHIlZFRAGxyODB37Yqld+86fWJitKIoZWVl9X52IYQQF44sTRRCCBFC9WhZLItuE/HGN9ChBTRKIysXXqffznT1M17x3RbSFtHlMmwbP8WVnQZX3Bn2/oTrpnGy+DiuY7vIm/dbzK174neU8/fjGQC8PtpMz+YGTj/orGZFpfEczniOs9Rm12LN8MvuhuCYOgXWFbZna0loyf1Kl5v88gpirGY6JjVjd04+NqcLhQAnq8zE5e+AvB3B/oopGvRG0Bkg4AO/F9VTEXZOrY3GsD+H61Pk85L08EMhZeNtNi2Yiz9luaIQQoifjwRiQgghQqg+P9H6RcQaF6CqSqMDsFPdr/+GKtXC2/5f1LluSu6IuVV33Ln78RbnYEwMDW70kXG0nPgats2LcBzYiOPgJgj40MckkTDmYfZ08GFjHjGqA4MSoMKtMme9mze2aGeAbc7xM/YTB38YYmLEJQ37yoswKugV8KtwYxcDFoNCQAWX38D3+V04XJmAPxDgSFEpmSeLOFxYQnFlFW6vDxUwGwwcKymH6p9VVaHcqmXt/KrKTdlHcQUCLL2kAxZdwxam9LBYUNDCzTK/n5ZhgrEyv5aljElJIXrEiJD2khKtoEhycnKDnimEEOL8kqWJQggh6lJV9FvmEGtcADQ+C3Y6RYHphs+Yblio/f2UPWPRA7TgrCJ9eb3368wRxF85iVb3zsPcsguK0ULLu/6GtX0fVgQGMML9F5YGLqOwKsCAd6qYs96DwwvxFujbUseyQz5GLnAwtzo4a4ihbbRU2q09tYDngD2J9w8P4HClts/qcFEp//xxCz8eOILN6aJ9QjxmoxboFVVUseNYLgBtmsWComCLsKACekXhocRE8n0+3istbfB8kgwG+lm1cv6bHKHLLb2qynanA4Dht98edoyMDC2L2L9//wY/VwghxPkjGTEhhBB1rfsLuh1zm3TIXSf9PPTOR9zQ/weOX/MqdiLwo8fS5lIM8SlUbF+M8+AmfJWlKIoOfUwS1kv6EjNwHIZYLYNTlbked+4+Ygb9En1k7T6pcqJ52DsNvjnKsZID9G2hI+1kgEW3RDCyg4H/HPJy06dOfr/cRYQR7lniavC8b1ro5PruMQzp2pE5//mBhKhIHrpmKFkFxXRs3oxYi5WcsnIOFhYTCKg0i7BiNOgpsGuFTuIitODJr9fhMegx+/wcclfvdSsp5ta4OJIMZ/8qXmK3YapeavjXoiJeKyrCqtNxicnE1ZFRFPh85Hi9REdEcPf992vP9Pvp2bMnTqeTzMxMNm7cCMCIMNkyIYQQF54EYkIIIWrt/xZWP9egrqoKfreOgE9BDYCiA51BRW8OhFRRfHCZC6sB3rnKhtH8B57xTmRxYBhlq9/BV5YHQMDjIKLTYFSvC/fJQ1TsWEJl+gqSxj+J9ZK+VGz/BoCo1GtD5uIpPk7+oQOg6Ega/yQrYn7gavMeQOW6TiYm9vHxrzQv/870MrF3+D1WKrAt18/+4gDJUQYKKn0owMDOvbCajIzo1pFv0zPZfiyX3HI7hwu1jJZBpwS3qJU6tCIcNcsIswqKuaZ7J+3zVb8U9ZTnfV5ezv2JiWd915+Vl5PmdNJMr6fU7w/mFPe6XOxxaYGlxWjk00WLgksP9Xo9s2fP5pZbbuGZZ54hPT2dlJQUBg4ceNbnCSGEOP8kEBNCCKFxlMLiB6kNI+ryuXU4Cky4So04S0y4yowEfKEr3HWGAJZ4L9YED5ZmXpaVVbIhx8/0oSaaR+qASt4wvcVY/2YmWY0YLr+D6NSR6KOTgmMEPE5KvpuLY/9aihe/TNL4P+LO3Y8ppSvGhNBqhc6DWrbHmtiGFf+YTVXHthwcOJg2EeUkWyoZ2r6Af6WVsDzLT7vYAMVOFacXEiMU+qcY+GXPWHqmNOfmj48ALlrGN6egMg8VcHg8RFvMDOvcnh8OHGFZeibRVgsAJr0eg16Hy+vDbDAQaTZRWuUIvr1DhSU8tmhpva/8zZJiboyJoY1Jq8xY4fdz7ZHDtDWZWNi2XbDgxvSk5rQzmYjT69lQVcWCslLSnU50aMsdvarKiFGjGDu27lllN998M7169eK1117D5/MxdepUDA3IwAkhhDj/5L/GQghxkVFVlVJXKS6/C6/fi1FvxKK30GzpdBSXjVODMFUFZ4mRskOR2I9bQVVAUau7hD+7K+DT4Sgy4Sg2garw0nE7AHe0j0BVa7NlVr2Oe8cOo0iNJNOncDQQQEWHQgCdyULCmIdwHt5GwFWBvTobZm3XJzgxHQECih6d6seUmw6AseIkfr2OkT064/QbOViRxMGKJHIrmwHr8avgIZJOzS2AQkGFk28PVvLtwWJ6tTKQU+5CpygUV9buw9pyJIeb+vTAqNfTr20K6w5lY3e50SkKj42+gmaRdQ+jXrQtna1HtbPRoswmurVsDkCL8kp0fj9LKyrQKwqe6vPEin2+YCAWrdfz24QEXi0q4hu7nXGxsQD0rt4fBjAsMpJhkZHa5jtVJevGG7np1VfYvHlz2H8fkydP5tFHH8VoNHLvvffW878KIYQQF5oEYkII8T+uzFXGlpNb2Feyjz1Fe9hXsg+HzxHSLyIQoEdyAr3cHnp4PPQ+pOLcHYXbZqwOvqojKLUhhydry/X2uVykOV30tlgw7WjB0SwvSal2TrRqzWouR1GguVJFc9NRBqk5nAxEUxyI1P4YIzE2a43n5CE8BUcAMLfqhgEfya6TJLsLae4uorUrj3+UZQNgd7m5qmsHoi11zxZLjIrEpNfj8fu59tJu9EiprRyYVVjMe+u2syf3JADtEuI4WlxGu4Q4FEVh85HjXN2tI9EWMwPat2bdIe1Z7RPjQ4IwgK4tEoOB2IjuHbmiSwcArtmbzS67ncUVFSTp9Zz0aYc2b3E66BtRO84dcfH8q7SUvxUVcX10NKZwlRV1OvQxMbR8fjblERHw6iuYzaHnqUHt+WEWi4XEBiyDFEIIcWFIICaEEP+DVFVld9FuFh5YyPKjy/GpPgyKAZ/qq/ceh07HdouZLNVE9I8q7fapBGqOY25Q8BVqVaV2LtaQyEgA3DYDJ9YlcKJtM0z9nXjMtZkei+Kjvb6M9nrtwGGfz89f7Vr1Qaq00uvjWlbQwrST6GNpKIHa6otub+0B04MuCS2DbzYasJgMeJx+3L6676BT80RSW7cIVjqMsWjLDjs3T6RX6xa8tnI9K/Yd4pf9LqVVfCx6nQ5/IEBSdGTIc/yBABuqAzWAjklalUW9P4DJ52dwRCSftG3H7cePBReA7nPVLR5i1ukYGxPDh2VlLKuo4BfVWTEgmAWLuX4MLZ56Codez6ybbwbgpptuCp2P388rr7yCyWSioqKCbdu2MWTIkJB+QgghLjwJxIQQ4n/M6uOreTPtTQ6VH0Kv6PGrWpBypiCsxsBDKlP/EyCyOjbQ1bP8sKG2OLTMW29LTcCljZeSk8uYgiK2DxxIbuvQPV8Au3al4ay+3199RlazSBOKTsFviUDvqMTt9bF6fxal1UsJFWDx7n1c2aUDnZMbnv0pqy6yYdTrsDm1n9slxtMqPpZXbqndd1XucFKzdHPrkRz2nDhJ6/hY/o+98w6Pqsr//+tOn8ykdwIJEEIJofeqgCL2AooFy5d11VV3LbtiW3ZdRRHXdXXBuu4qCqwVdS1gAQXpEAKEDgkkAdJ7ppf7++PO3JnJJIhd9ndezzMPM/eec+65N8+TyZvP5/P+jM/rTn6XdN4t3E1pXWPEuks2FeH3eDmjWw4mjYblzUqPsX5GI3tdLuq9IREZ5JK4eF5vbGRZU6MixLRa8PnYEh/PZ/FxaGtqqJ45k40bN9La2sq0adNYsGBB1DparZb9+/dzxx138I9//INVq1YJISYQCAS/EIQQEwgEgv8RmpxNPLb5MVYcXYEUEDxBEfaNyDKXbpS5ao0fPz9ck8l9gWhPbqAGKohGK3whWAAAIABJREFUBoPLzfh169k0NJejeUORpNBVq6ur+fzzz5WxGg3+QPTLEFjHZ7biaGjguS83UNsaqucy6XUcqKzlQGUtFw/JZ3xeD/WcOyB4jO3MKsobmjgaEE/9szLYe6IagLRYa9S4l9duwedXhFiM0UBarIWS2noOVtfRLSmeioZmzAY9GknC5nLj8fk4d2BfXltfyL+ampidkMCKViVKeKbVyl6Xi2Z/9M+on8lEklZLsdNJrSyTe8H5JF19NStXr2bZ3XdHjL366qt56qmniA+PnLWjf//+AGzfvr3TMQKBQCD4aRFCTCAQCP4HWFW+ioc2PESrW/kjX+7A9bBTZEWAXbpRmfN9Rdhep5PLy44G9qGQoFUaJC+qq+W5+vrICQf2A5HOgpIkIQfMLEaMGMHmzZsBcLvdGI1G/KYY3tm2i9pWG3lpyRxvbMHu8ZCbmsyo3GxeWbeND3bspWdqMma9ng937sXpUSKC/163DVCiX1ajUY2GAZzRuwc7yhU7/cc/+ZKsxHjuOGscXr+f1zYUYnd70GokfH6ZZIuZ2yaPpbyhiedWb6SioRmDVsNNE0fyyvpt6poDszLonduTf5+opNtll2I7dJAUk4nc2Diorydeo424d43FgqmgPyN0Wj7ds4cjd9/FxJtvBuCuQYO466678Hg8lJeX88EHHzBv3jxWrlzJe++9x8SJEzv8mSQnKymS1dXVJ/3ZCQQCgeCn44f6T0+BQCAQ/AzIssw/d/2TO7+8k2ZX86lHwMK4dKOsirAfgsdqqpEAY1gzMUvAcCJLr8cSiHwZJYkuOh3J2pAQ0eiVc7IsYwrUag0fPhy9Xun9ZQ+kKlbanOw5UY1Gkrh8xEBcPkVkNTud9MtMY3j3rsgyfLhzHwtWfMWuY1WhawT25fH5abQ71OTL7KR44gK29KCIyGONzWwrO87u41U02Z2Y9TqsRiUq5wzUpe2qqMQbiNilxFrplpQQGX3TaPjVjTficDh4fuVKAG64/XZi7p2jXPfMM+i54hN6rfqCvPXr6L1tKzmLFzM0UPO188CBqGes1+vJzc3l7rvvZsWKFTQ2NjJr1iwcDkfUWAgZdjQ2NnZ4XiAQCAQ/PUKICQQCwWmKLMs8s/0Z/lH0D+Xzt4mCBRhx0M9Va/zfPPAU+bS1he0OB37gioQE9bgtIFRWtbVhk/2MjolhQ688vsjtxde98ng+qysS4Pco4xLSEnA6nXTt2pWUlBQyMzMBqK2tBWDL9iJAsYe3GA1quuCxhmYabQ76ZymuiIeq61SRBNAzJYknLj+PJy4/jwFZGUAoauf0eCNq4tICZhwf79xHWZ1S19U1MR6z3hCYJ/Pxrv18daAUg04Rk5VNLdS2tkVE376oPs7//epGtFotZWVlAFx//fXcf//9AAweNQpjjx7os7LQJServcNONYo1atQo8vPzqaioYNu2bR2OaW5uBiAxMfGkawkEAoHgp0OkJgoEAsFpysvFL/Ov3f/6zvOtdsWYI7wmbK/TyRVlR7kyIYE/pmeoYztMKewAQ1gUbGZCAm83NeGQZZp8Pqq8Xla3taEFHsnIxBxmyz7AZMIgSbhkGTSgG6mDjyAtLY0PPviAmpoaAN58800SExNpalKEUX6XdFX0gCKq5n/yJVInHiOldQ2sO3SE8Xk9uHbMUO595xNViNW02vjqQAkGnRa318eArpms2neYNpebE81KL7QYo0EVdi0OJ1/uL8Gs13HNmCG8vHYrMrDmQGnENRuSfKSmppKamkpVVRUFBQUUFBSo93Hs2LEO9/ptoliWgCtl8Dm1pz7ws0tPT+/wvEAgEAh+eoQQEwgEgtOQVeWr1EjYd2X254o7YnhqxGM11Rglid8kRzoO9jWauCQgDDpidVsbLX6/2qR4kMlED4ORfJOJQoeDErebfS7FuGOI2UxWINUQoNHr5f8qKhQRBmhlsB9QUhCLdhQh+2Xi4uJwOp0YDAZsNpvqoqjR6zGFrZVkiaHBZqej4ODont3YcuSYWjuWERcbNWz38WqyEuI5UtdAWpxFtZgvrW0AoL7Nrka/XN6gk2MMy7ftUdfYVKr0ENNpJLx+mRNSPV6vl9aASUevXr2ora2loqICnU7HsmXLmDdvHhkZIeELHUexDhw4wGeffUZhYSGFhYXs27cPn8+HLmBA0rt376j79vl83HfffQAMHDgw+sEIBAKB4GdBCDGBQCA4zWhyNvHQhoeQkL5TOiLA8IN+xu+NnBtMK5ydmERyO2fBs2JjOSs2tsO1arwePmxpiTgW7Bs2MiaGQoeDHQ4HR9xuAAodDuZVV/HH9AyafD5mH6vgkNulzvXJ4CxVhJgcSDlsaWkhMzOTyspK0tPTcQbcGDccKMHtcqlRrAsH9WXxhmhnwGRLDJcOLcAvw5YjFXywfQ8ldQ1R4+ptduptyrX/s3ln1Pljjc1Rx443tUQdA/AG9u72u3nnw3ew2RR3x/fff5/i4mK8Xi/Tpk1j5cqVvPTSS/zpT3+K3EsgiqXT6Vi6dCnTp0/n+eef55lnnom+ltfL6NGjGTBgQNQ5rVb7jdE3gUAgEPz0iBoxgUAgOM14bPNjtLpbv7MIQ5a5cq0ff7v0vdcalBS46Qmd26B3xPvNLfiINOcI9g2bYlXE2wa7jWMeRYjpwiJuf6qq5IArJMKCK3Tg6M7QoUMBpWZKG2bw4dPpyQrsufi4YsphaWeXX2+z89jHX1LT0gbQoQgDiDHoyc9MUz/rtaGvyfYNnNtfI5xRPUNNpWuW13DVZVdFnC8pKQFgZcC8489//jOlpaGUxubmZv72t78B0LVrV2bNmkVKSgoff/wxffv2ZcSIERQUFKj1ZKmpqbz55psd7iU8+rZ06VKqqqo6HCcQCASCnxYhxAQCgeA0YnX5alYcXfGd3BGD5B2H7Fqll1eQvU4nRU6HmlL4bXgv0KDYJ4cWDPYNyzeZGGIyU+x0UunxADDSHKNG3Jp9kfdxMmmZ0ydHrZsyhImgwWMnkJuRCkBFQzBiFb1Ss8PJ0fqT11udO6APsyeMUAWYJqy3mSxDrCn0bGyBCF97xuRmc+GY/hjTlD1KZglJE120NmjQIPr166d+DhdI8fHxqlOk2Wzm0UcfZcKECXi9XioqKti5cyd1dXVqOuOtt95KdnZ2h/tZsmQJXq+Xs846C6fTyUsvvXTSZyAQCASCnwYhxAQCgeA0QZZlFhUtUps1f1fO2e7H126JVW1K/VIwpfBU2Wa3U+bxoAO8YccTwiJW1yUpNU7NAZOLYWazem5xdg4PB0xB0nQ6UrWRPbXC2Zu4l5iYGEDpJwZgNBrJ7tGDvMFDAGgK9ASzuT3qvPBbjQmrJ2tPz5RERvfM5mhdIx6fsleXN3RXftmP3y8TY9CTlRCql8tKiGN0z5AIGt69K+sH1qNLU64lO2Vkv0yXLl2U/UgS3bp1Y+PGjRHXX716tfq+qKgIu92OTqfjueee4/e//z0rVqzgyJEjtLW14XK5qKysZOrUqQBqjVh7ZFnmlVdewWw289e//hWdTseLL76I1+vtcLxAIBAIfjqEEBMIBILThJ21OznUdOi7pyQCsXaZsftktO2W2BzozxVMKTxVlgcMJdoLOEuYI+I5sXH0NRoJmshbtJFfPcE1Lo6LxyFHbkxnCQmzbW9vU63c/QFRl5SUBEBabh+yM9JVARWOTCiSZfd4os4HGZ2bgyRJbD2imG1o2lkvNtgc2NxushLimVYQMsVItJjZVFoOKKmN1SP9VKQ70Fl1oQ0Aubm5AIwdO5by8nJ27NjBvn370ASe1dtvv83MmTPJz89n7Nix6vqVlZX8+te/xtPB3oOC9MUXX1QbYIfzzjvvUFxczL333ktBQQGDBw/mxIkTbN26tdPnIBAIBIKfBiHEBAKB4DThjQNvoJU6jxidCgVlMroO2obtC5hf5J6k7qk9Nr+PT1sVo4rp8fHtzkVeZIAp1Cj5RJigKHW52OFUoljTrFbaAvMSAuJk9IRQvVbbrjZVbKSkKDVmVdXV7NSa2NQjH82sX6tjjbrQczLpdfzxgslcP3YYZ/TpqaYdXjCob8S4tFgLbq+PHRWVAPg7EDYaSeJQTR2vbypSLfIPVdehC+y357B09vZW6tAkbUjIPf3v/zBo0CAAzj33XAD+/e9/AzB48GAA9u/fz/Lly9HpdPj9fkwmE/379wfg9ddfZ8KECbS1tUXsJ5iieezYMV577bWIcz6fj7lz55Kdnc2cOUrz6KDAW7VqVdS9CQQCgeCnRQgxgUAgOA1odDby6ZFPv1dtGEDPKhlvu9/8dr9fjUQlnCQ1sD0rWlpxyDJpOh1TrLGYwyJITe1qv0rC6qn2BEQfhKJhI8xmTgTS5STg0oCw2/hZpTo2Z06O+r4tsIbs9/PJB++zM7UrjnMvg0CKXtBaPrieVqNhQNcMLhzUTxVY6w4ejRhnNRnZeawSl9eLXquhfVnXsJwsHrxgEoO7dcHt9RHUaS6vD6/fjzXJhP+GODrKHF1ZdIQNGzYAMHnyZOx2u2quccEFFwCQmZlJY2Mj1157LW63mxdeeIEdO3aoUb/Nmzfz6KOPRi+O0kfs/vvvxxVmfKLVatm/fz9lZWWYA+mgQWG3fXu0s6RAIBAIflqEEBMIBILTgM1Vm/HK37+up9cJGW27iFhbmEVheErhNxGeUqiVJPLDol4l7Yws9oWJryKHgxMeD15Z5oMWZY3p8Qk8Uas0Ix5uNjPcrNSChQfWDEmhaJ1x7gKCISl34WZqrruYpkfui5iQlawIGKfHiyNQM+b0ePAFbOU7SlMMpiWO6pmNv11ArM3pYv4nX9Fgt0elLWp0Et4EOPrUUUrnl1I6v5S24lD06osliygqKqJLly6MGDGCt99+m9bWVtLS0lTDjqysLHw+H48//jgjR47kuuuuA2D8+PHqOp999lnUnkHpD1ZZWdmpc2KQ5ORkADXFUyAQCAQ/H0KICQQCwWnA3vq96KTv2fpRlulZFR2widWEomDtUwo7Izyl8LJA9GpkwEgDYIfDob4Pj7hNtFjwAXOrKvmitZV6n49YjYZDLhcVAWH0QFo6BwJ9xcK10KH7DqnvdRlJaDMU8wvDiLFI5hhc679ShZimaw5t0y5R13hz6y5cHm+YqyK4vZFRuwabXW3cXJAV2VwZFBOOPumptDicUWmLfq+Ms9SJ/YBdfXlbQsLZ23gCWZa5+eab0el0alriddddpzZuTk9PJz4+nvr6ejZv3qxa0wejWKCYk3TEkCGKWcmzzz7b4fkgQdfJxsaTu0cKBAKB4MdHNHQWCASC04Di2uLvHRGLs4O5A8d1s0aDWZJwyDJNPh/WU0hPDE8pzAnUKU2xxvJ8oAnxBruNO1As5cMjbvPSM7i2opyNdjuFAYdDoyTxr0ZFAN2VkkIfk4llTU0n30DJ10gWKwCGwcOxLHgW2eGg5nylBsp/vAJ3a6s6fPfxKua+Xx0VyQonWBuWk5xAdlJCxLluifEMyclicE4Wfr+fhz9chc2lPEx9ip4+T/aJWq/ihQqaNynPSZ/YBewN3HTTTRw+fJi1a9cCMHv2bJ577jkAhg0b1uG+wq36L7roog7HZGZmkpqaypYtW6isrCQzM7PDcUHRl5iY2PFDEAgEAsFPhoiICQQCwS8cWZbZW7/3e69j7NwwUE0rbJ9S2BHtUwrD1xgScF0sdjopCdQrhUfcTBoNb+d05+qEBNyBeFddoJ4sUatlnc3G9eVlfG2LNKVoj3P913grygDQZmYB4LeFhBeyH+eazwEwnjkVTXIqfsDbLuJ3wcC+6vttR48BUNXcyoIVX0WM65ORioyENy6Jr5s92FxuNWLlqfNQ8nBJlGuhtzUgQCUNnsYT5E65Gp01kX/9618AjBkzhn79+kXUjgEsW7aMG264gVmzZjFlyhS1LiwrK4u7776702cyZswY4ORGHPUBoZyent7pGIFAIBD8NAghJhAIBL9wGpwN2L32772O7iQ+H8G0wvCUws5Y09amphROjY2NOBfsGQbwTqDR8yPVoUbFwYjbH9Mz2NunL0PNZoLxnkafj60OB1sdDqq+oc9V2xe7wOVEiovHMEKJgmmsob1ounRFDlxfdrnQdgsZfSTdfAeaQIpf8rCR6vFgqqLL60Pbzqnji32H+drmp0xn4bM1SjQr2EwZwFHqoHGtHU/LAFw107CX/RrXicB+NBq0canY+p7PsIc/5cln/wlA5sjzWPpVMbt27VJrxwC2bNnC4sWLWbp0KatXr8YXEKpjxoyJiI6151SMOHbv3g10Hn0TCAQCwU+HEGICgUDwC8fpc37zoFPAe5KMwykBEbPe4cRhSsJuTsNhSsKtt0Z1LVseiIa1+v08GTDYCDLcHENOoGnya42NDDqwn/+2tKjntzhCgvLT1ha2OxzMSkxib5++Ea9rEhIZE1ZzFsScF9nnLPa396KxWPEeOUzLM4+rBh7+moD402hwb92At/QQuvwBIEk4jh/HH4jWLV3fQT8tjZYGR8h9MDkxFa1Wy0crVrJkyRLcbjd9+vTBarWGzdFQ9VYTjrIrcNdPoK24AW+jkupoHXgOXX/zChq9EeeR7Xhb60GjY/kzc7l26ki8Xi+VlVWkZ3bhsssu44orrkCWZZxOJ/v371cjXZ9++ikJCQmMGjWqw55hp2LE0T76JhAIBIKfD1EjJhAIBL9wPL6T5BR+C1z6yM9uvYXGhD60xnbDGdudno5/sLtmH+/1uZGMxFAESet1EttaTlzrUTz1B/n6wH4AjMBvklMi1lxQU0NZwHRDBjL0euq9XuwB4fBQVRUZOj1jLRZea1AMI6YnRPYgA3gwkDq3zW7nugqlWbKklXAecaKN0+JrCYT3/H4afn8TnqKAoDIYwO1Gio1HbqwHvx/JYCTh4adoe3khktGE+eLLcXz0DgDeg/uirm0YPR739i0QMCOpb6wlLSmLmobjtLW1kZuby4wZM3jqqacASEhIoKmpCb+tkapl9yLpjbjKlchT4pSbiBsequtq26WkS2pjk/E1VyN7FJFt6jmUNnsL773/Ph988AEvvfQSv/rVr+jTp49qXx90WdyyZQu9evUiNTWVkpISQGnorA8I4I8//rjDOrHa2tqo6JtAIBAIfj6EEBMIBIJfOHqt/psHnQItMWA3gMfUg2NdJlKTNgxZo0Xye5ElLZMGXU7p5w+zYf8nXDbmN+o8n85EU0IezfE9kbOncn1sf/61ah4zMnqQpIv8GonXark9OYXp8fGk6/VUezxMKi1huNnMNocDL/D7E8d5JiuLIqeDQSYTPQwdOwF+1NLMnMpQH7Hef+2Nt9VLyZ9LQvf0+FwIjw7pFSEmNynmH+j0yE4HTX/6PXJLEzEzr0eX1U0dLsUnqCmMAIaRY0mc97T6uW72DHxHS6hpOK4eKy8vZ/78+fgD9WZNYcYi7sqDEffQuOolmta+Rtc730J2tmI/vEV5ps2hqFXc2CtJnDALAMeRQmrencdNN99C/8HDGT1sEBs3bgTAarVSU6NEIEtLSyktLVXXOHbsmPq+ubk5op9YkCVLluD1elXnRoFAIBD8vIjURIFAIPiFY9KavnnQKdC9cQDbhj1A4dA/qCIMQNboQJIY0vMMemYUsG7vR7TYGyInS5IyDvhy93sA9Dzjz2wZ/gC1yQPUYQ+mp3NrSgrpgejMersNLfBQegaDAoYgzX4/rweiYWMslk73+5cOUuwql1R2MDK0R4ImH7KMrk9/dHmKm6Hcoogl87mXYHv7dZCCX3+RtWDekoM03HYdLU8/BoBh6Eja4/F4omzkJUmCwPM09xmPpWAKloIpmHoOR/Y4afh0EbY9X4Lfi2QM3bMmNoX40ZcD4Pc4kX0+9Mld8fu8jBk5DJ1OT319PUlJSWrE66qrrgJg8eLFyLJMU1MTSUlJagTsrrvuonv37hH7k2WZV155BbPZzE033dT5MxQIBALBT4YQYgKBQPALJ8mURIwuul7qVDF6Yphy8FqmHfg1HoPyx7qs6bhg7PJxt+PxuVm5fUmH5yvqDlFavYfuaf1IT+iGzZJJ8YBb2NPvBjy6aFF1WXwCxX364pRldoU1dd7nUt4PMpnJP7C/w1ewp1n8yHgKXi3AXmLHfsiONjGwd72e+LlPKO81WvQjx0be9+RpJPzlbxHHvJXHsL3yPMjK2nJzZD8tf30dnn3FOP77Ns4NX+FY/kaHz8HRztRElmWkQOQyJm8UKeffRcr5d5F64R8ACVvx57TsVJoxa0yh2rL0GX9Co1dEnW3vGmrffRhPzZHQwlYl9bOhoUHt/dWzZ08g1DMsPj6eO++8k8pA9HDo0KFR+33nnXcoLi7m3nvvjTAZEQgEAsHPhxBiAoFA8AtHkiTyk/O/09zuDQO4cseD5NYPCax18l/73VLyWHjT51wx/ncdnt91ZD0AfbsGXPcC61WnDWXTyD9RmzKww3mP1VRjkiT1S6c24IqYG+YCeElcnPoKJs4NSctjvPUSchoKqP9UsV732xQRZb32Bvy2gBGI34dn83pAAo1yFcfyZbT9K7LBseOj5ZjOuRBdbm8ANGntREnA7EMyx9D28iKIsirpnGC9V/PGtyhbcAF1H/8djcmKPq0HyDLmrv3IufcjpadY8Dn8VxGSzmN78NSWEVMwhdgRl6j35Guuir6OLEf0DAO455571PPtzTp8Ph9z584lOzubOXPmRK23aNEiZs6cSX5+PikpKej1epKSkpg4cSLPPvssHk90jWJzczPJycmdGocIBAKB4Jv5VkIs+Mu8R48emM1mcnNzeeSRR8QvYYFAIPiRGZA6AJ30Lep6ZBhy7GymHbgRozcGDd/cpPlUOHiiCIAe6e2EoaTFo4+huOBmjmZPjZAvQXfEwWYzwS5ewT/tE8KaRz+W2YXHMrsw1mLBC8RIEm9d+TQX9p5FwfozsR+2I+kkZLeMdUgCMVffQsz5l5G48FUI9C/DYFBTBP3VlTi/+gxNcqp6DU/hJuJ+P5e4OX9RHlNryNERo0mtN5O9XnxHQ7Vo7dFp9MSak9o9A01grjvwUdlH/KgZgBLxAtDGhMxJvE3V+ByteBsraS38L85Dm2jd+kGH15QCAnP9+vVRPcP27QuZjsybNy+iRkyr1bJ//37KysowmyNdJwEef/xxli9fjsFgYNSoUcyYMYOCggI2btzI7bffzoQJE2hri+zrFh8fz/3338+WLVt47bXXOn1OAoFAIOicbyXEFixYwPPPP8+iRYvYt28fCxYs4IknnmDhwoU/1v4EAoFAAOQn5+OVT95bS0WGkeUXMKriAgA0P2DyQ0XdYQDSE7KjTwaESGnPiyntcZEqxoLuiEV2JZ3vxsSQgLFoovf2ZsD8ol9cKgaTlYFmPVsPfgGA7JVJ7ZNBxl2TVWFi6D8Iw4DBymS3C7yhCI4UE4O/tVn9LDsd+I6Vo8/riy63N7LDDgExqB8Y1lvLc/LG1l6/h1ZHZB2dLiYOAF+bctw6cKpyj/kTAQnZ48RVXYpkCIohCXwenEe2Y8oeQPzYK9Gn57YvWwvdi1kRcPX19VE9w1599VV1XFNTE2+++eZJ9x/OG2+8QWNjIzt27ODjjz/mP//5D2vXrqWkpIQ+ffqwefNmtal0OLfffjupqancf//9HZqDCAQCgeDkfKtv5w0bNnDxxRdz/vnn0717d2bMmMHUqVPZsmXLj7U/gUAgEACjMkadckRsyPGzGXri7B/0+hV1h/jtS2fj9irpdxZTXMT5PeWbeWHFg9z/2gx+98+pzFi1kItP1PNwVRVFTgd6wInMJKuVWwL9rgC1Diyc/YE/6ifkjkUjSZg9zazb9yEAWcm5PDD+FfKKB9D8+J+ouWA81VOG4t66MXIRrQ7rHfcDErgjRZW3UnFA1HYNiMlAw2S5XnEk1KRlYL70SozjzkTbMw8AXV7fiDV0Wj3xMZHW/V5bwD3R5wGtHr/Lpp7TWBQR1bZjBe6aoNuhIlXb9nyJxhyHJf8MdLHJSlSugxo+OSAwrXHxET3DnE4ny5YtIzMzk4SEBACefvrpqPmdMX78+MieaAGys7N58MEHAfjss8+izptMJq6++moqKyu/lfATCAQCgcK3EmJjx45l1apVHDyo2PPu3LmTdevWce6553Y6x+Vy0dLSEvESCAQCwbcj0ZTIOT3OQSudPMWwe8MANRL2Q/L2+kURNvomfcg85P1NL/H8igfYXb6JRGsag3tMoEd6PuWOVt4IWMN7gPExFv6e2YUYrRZzoBarKSCCAF5taODh6ipVnGWk5FFvb2LmG3fi9iri7IbJD7L/eCFf/P1xnJ99iOxyRdrXB7BcfxOWi68g7u4HQwcDro2uTV8D4G+oj5jjPV4BQMz0a4j77b0kPPJ3Ul5+C/PFV+A9tD9yrM9Ds71O/ZyfN5CEoeeFBvg81Lz7CM7yXQDo4pVaNGd5Me4TB9Cn9UAbp6RMOku3UfH3yznx8m+w7VtL4qRfoTEoz1cbl6YuKbuU9EBnQnfi4hQh3NjYyMKFC6mrq2P+/PlMnDgRgKKiIrV+7PsQtLlv7xIZ5IYbbgBCxiECgUAgOHW+lRC77777uPLKK+nbty96vZ4hQ4Zw5513cs0113Q6Z/78+cTHx6uvbt26dTpWIBAIBJ1zZZ8r8cm+Ts8bPTGcUXIlMtFRpu9DUekaSqt2M65fSOA5PXZAiZR9sfNNtBodt52/gDmXPcfss+Zy+/lPcM+liwjm2SVoNCzMysIQSCfMD4iikrBo1RO1NbwR1pPrvs/+yrgXZnKwLuQiqNVqWbzqMTxeFya9BXyBdM12fbFcG9fit9swDhsdOhhInXR9+Smy2x0lrnA5Qa/HPPV8ALxlpTQv+BPOL6OjQe3Ze2gXraVK/ZwuIQNTr1Hg99Kw6p/Kvs2xAPhsStpiTO5IUi6+T9mW3oR10DnET5hFl9mLsA45D7+zFYCLkq0TAAAgAElEQVSkc26LulaFJoOtB5W+YVarlccff5yRI0dy3XXXqSmLEKof+67U1NSwYMECAC666KIOxwwePDjKOEQgEAgEp8a3EmJvvfUWS5cuZdmyZWzfvp3Fixfz5JNPsnjx4k7n3H///TQ3N6uvioqK771pgUAg+P+RQamDyEvIQ+qkiGj8kekYvWakH9gQ98td7yrr51+IQacIKJtTyW44eFwRH327DqNf1+HqnFZHE//+Yh7B9LsErQ5jWD3YyBgl4rPD4eD82DgWdsmiv9FIeNxFK2mweRyY9aE+akUla3B67JgMFpyeUOofARdGKVaJFHn37abh9uuQTGbVCZGA+5/c1krjfbcjOyMt6AG0mVk0L3iImovPoP7/puP89EPksBqzcDSShtT4rupnX5MiRLxNVRgzeimXrDmCt6UWyaik/skeJbJnzOqLNmBjL3vdOEoLaV7/BlXL7ufEv29X1jfHYc4ZFLY5JSLZ8OmzvPaSEoHq2rUr9fX1bN68GUmS1JRFCNWPnSrLli3jhhtuYNasWUyZMoXs7Gx27tzJ9ddfz913393pvPbGIQKBQCA4Nb7Vt/U999yjRsUGDBjAtddey1133cX8+fM7nWM0GomLi4t4CQQCgeDbI0kSvx3yW+QOLNW7NxSQVz/8B3NHDNK+b1i3FKVmqqqxDIA2pyJSKhuOqnPaHM3846M/UNkYOhZvjsPm9zO1tIT8A/t5vl5JC9xgt/HXLl3wIrPH5WJ6Usjh0Bfo9eXwhPqPrdur1Io53TbSE6IzLII1XQC+o6VUTxsdSl0MM/Hwt+sfps4pP4p709pIN8Xg/A6MRWqblciUJtgWQG9CExNPW9EnoTVb6/A7A66DfiWiqUvuhr1ka2B9P5JGS0yvkWgtiaqgM3UfQl3A3h5An6zcrzl3JK4W5fkNGxZmMAIR37Htbey/iS1btrB48WKWLl3K6tWrcbvd3HXXXTzzzDMYwtoMtKe9cYhAIBAITo1vJcTsdjuadl9EWq0WfwfF1gKBQCD44ZmUPYlzu58bWSsmw4jy8/H/wCmJEN03rHcXxZ3wSPVeAPYdKwSg2V7P/mOF2JwtLPzoD1Q2HKF7WsjgYsyAK3iypobjYT2p+htNFDudlLhcqrPisobak+6n0RY6X90UnWHh3VkY+iBJaKyx0YsYjfiOHI4+rtGiyeoGndRD0e67zi/7o95rdAYs/c7AZwsJveq3/4yzojhirqe2jKY1iu27JiaeLje9RNL5d+F3hgSgfd8a7Ac3hG5Hp0TEzD2GEEz5HDduXMS6zc2h6F2wAfSp8vTTTyPLMk6nk/379/Pggw/ywgsvMGjQIPbu3dvpvHDjEIFAIBCcOt9KiF144YU8+uijfPzxxxw9epT33nuPp556iksvvfTH2p9AIBAI2vHAqAeINcSqKYrpbd1JdnT5QW3qg7TvGzawh/KH//7jhRSVruFY3SH6Zg1FRmbRx3N46D/XcrxBcQUsrz2orrOqdANvNjfRXR8y/JiRoDgJvlhfR5HTQWLA1l2vUeq97hx3AzkJWQAYtUpEJilGsb7vkZaPJHXi864i4W+oA21k/Zg+P9B0WqePHO73oe3SDU1cQsfLxUcfl9pFIHMGnId1wFmh84YY4kdfAWFRPYDGNa+CL9BvTG+idvk8Tjx3A77WeiWVUjVGCd2jp64cgKb1/yGY8vnJ56sj1q2vDxmQJCYmdnwf34DRaKRPnz488sgjLF68mLKyMq6//vpOx4cbhwgEAoHg1PlW39oLFy5kxowZ3HrrrfTr148//OEP3HzzzTzyyCM/1v4EAoFA0I4EUwIPjX1ITVHsXzUeP52beHwf2vcN65aSR8/0/pTV7OfT7csAuHz87/jNtMeINSfgcIca/4ZHjA5V7gDgSFhE7AyLlaFmMytbFWMKKSC2eqd0B+DDfasoa1Ks5uNNSmSrwa6YXRyp2Ycc5pZ4zpBZ0Zs3mzFfMJ3Y390bcdhTpKQEajoQVp7iHfhrIyM71lv/oKQlNjdFjZfbPfe6g1/jqgpF26wDziJueLTRRfBeQUlddB3fhz4lYKcvy4oFfuAK6rXcSk2br6VGPfbMPxZFrFtUVKS+T0tL4/syffp0YmNj2bZtW6c13sEo3HcVfgKBQPD/K99KiMXGxvL0009TVlaGw+GgpKSEefPmnTR3XCAQCAQ/PFOyp/C7Ib/D5LGQWz/0B68NA3B5HB32DZs0cDoAx+oP0z2tH1sOfs6zn9xLt5Q87rnsOf42+yMeumoJF4z4P8IjOr87bwE7CsJrmiQeSEsn2Ka6wdHMtN4TuGXU1QCUNoT+8B+cqaQ56iRtoB4rsk5uze7lUfuXEpPxHiuj9enHOrw/KTY6bVGSiOrhZTrjLMwXXd7hGu1pbTpOw8p/qJ/dVYexHwzrcRaIdGn0ge9NSUPX25fQ7Y43SL9mAZaCycr5mGiRqEvsEnlAb+Lg7kib+m3btqnv7Xb7Ke35ZGg0GsxmJVJZU1PT4ZhgFC49Pf17X08gEAj+f+KHz2MRCAQCwU/CjQNu5Nr4W9DKP7wIA3C4Q66E4X3DhvQ8gwSLYqphNlj5tGgpWUk9uXnao+Sk9sGoN5MSl8m0obPISuoBgFajo1fWEJoSeocuYDBT3m0CJp1Sk6VBw70Tb+KS/LMw6Yyq1NJrdKpxh1f2kWSNjvQE7fTDkU9U4C09hH7YKKQOasVkRzvXRKMR2WFHP3BIxOHG39+CZ9epG1GYe49Ve4S5ju+l/vPn1XNSIO0y2OxZG5uiWtu3Fn6EbbeSaqgxR+/X23gi4rM+SUnbDLoVFhUVUV9fr/b+ev/993EFmmN/V3bv3k1NTQ1arZaePXt2OgaijUMEAoFAcHKEEBMIBILTFEmSGK4dD5poF8UfghiDVX3fXuhYTUp9V3mdUgc2JPcMtO0iSXZXKw0Bcw2f30t983FaYrPV88ZJt/Jx5WGcgWbNZ/YcxTMbFjPtlV+pxwD+b9h0VpVsZHjWAAB0Wj0psV0Ij7Z1TQm5JQYxjBqHoWAwviOHkdtaQycCNWP+urAIj96AZFAEoWHoKLRdQ/v0HTuKt/RQR48IgFhTAiPzpgIwIf8ici68V6n1CiA725RQmykW2RNIL7Q1B/5txBsYG+wdBuCtP1mrF+W+dbGKSUZhoWJQEuzp6fV6SU9Pp6amhjfffPMk68C6dev48MMP8Xq9Uee2b9/OVVddBcDll1/eaerhxo1KxG/y5MknvZZAIBAIIhFCTCAQCE5jqo+2gP+bTCu+Gwa9KapvWJCagG27SW8O/BtDe95atxCHKyQuyusO05ySE/p8xnwGX3RU/VxUvYuP9n/JvtqSyHWKV5BuTSHdqgiPqqYKdDo9ceaQMDhWFy2U3JvW4dqwBn99XcRx4/gzAdCkZoQOetyqZb3c0kTC/IVR63WKJLHjyFrOLLiM6WNvBVsTyJEOi5YBZ2Pumq9+9juakQwx4PNQ89ZcnOW7iBt5GV1ufB59ao+OrxOIpgWFpBR49hUnKnE6nZSWlqpDb7tNaQT97LPPnnTrhw8f5qKLLiI1NZXJkydzzTXXcPHFFzNw4ECGDRvG7t27GTduHM8//3yH84NRuJEjR5KZmXnSawkEAoEgEiHEBAKB4DRFlmVqy1q/eeD3oH3fMIisHQumKB6t2R8xb0fp12w7vEq1vQc4VLmT1rjsiHGTzgpZxb/6n1QeeDAVv+xHFxZda3K2oJEkCo/vJs2iiDG7s5VWZ8g8w2KM7FFpvmQmqR+sIeWdL7CGmXVYbvgNsktxK7TOvpWkF/8Tdc/+xgY0CUmRB7VaJarVQS+xVkcjXZJ6kNdlEDqtHtuRoojzks5I0jm3h8w4AkIqaeqt6JOz8dSVU/2fB6j4++WcePk3eGqPRF1D2VggahUw8pB0Sp3Zio8+JDMzU01DTElJYc6cOaSmprJly5aIGrL2nHnmmcydO5chQ4Zw+PBhli9fzsqVK2lsbOTCCy9k6dKlrF27loSEjp0kX331VSAk/AQCgUBw6gghJhAIBKcpjlYPHteP45YYpH3fMIisHRuaeyYAhYdXs+2wUt/U5mjmzXVPE2tKoL6lCgCzwcKWQ1/Q1BKqy3r+uXouOP+oqm1aWny8u1yxQPcGGh//9errAKhsraWqrY4am5LG1+JoQA6LOtlcoYhdbFwasbfPQRMbhzYpmZhpF4fGvf4Snt2KUDIMGUHrwgVRfcP8rS34mxoijunzByo9xjromzlj7O00tFXzz8/+zIrC10kYeBamnsPV83GjZ6DRaNRaMGOmUifnrj5M5uyFpF76AHEjL0NjUSJ8xq75xOSfGXENU+4IYoddSM69H2HsVgCAHEjf7J3fn6amkCh98sknMRqNjBkzBgjVkHVE9+7defjhh1m9ejXl5eU4HA5cLhcVFRX897//5eqrr47qHxrE6XSybNkyMjMzmTlzZqfXEAgEAkHHCCEmEAgEpyle948rwiCyb1iQ8NqxYb0mU5A9GhmZV1c9yqNv38iLn86l1dFEq7OJ2pbj6DR6EiypuL1OFrx7izp3505FlJnNSmrlxo129uxxkZcXcuIdPPtrNi+5mqN//ISKe9dSOmcNA7uPxaSPoVfmIHWcLswOflD3cRE9xiSTGcmkpPHh8yG3taLrW4Bn9w48u3cQc8mVYAiJMU1sHJqklIjnYDp/Ov5jSh+vtITI6NugHuO58eyHkJBYsf11sho3ha4vSbTtWIHs9ympiIBkMGPMyqdtx0r8jhZieo8lcdJs1XwjYcKsiF5kcaNnkD7jzySddXPEdf1uJSo5fMQounRRHBX79evHddcp4rV///6AUuv1Y7Bw4ULq6uqYP38+xs6aYAsEAoGgU4QQEwgEgtMUv+/HMekIJ7xvWDA9Mbx2zOm2cfO0eVw76V76ZA2l1d7A0Zp9EWt4/R4qG48C0GwPmVg0NyvRpYwMJVVv7RqlB9nQYWZ1jN0u05qxhdJx99GaWkiTV2Zo7iR6pPenNlCnBqFaNYDUmHRiXMqzaV7wJ6onDwFT6DxAzCVXYH9nqTJ38jRwh8xBNIlJ+E5EmmU4/vuWcs5goKapBZM+skl0z4z+JMVm4Pf7yDnxPq4TBwDQp3TH19aAu/IgfpdieKIxWUk6+2Zkr5vmDW9EPXNAPa61JJIw7poOx/haldq3YcOGcc899wBw5ZVXqiIwOVlJ46yuru5w/vehubmZxx9/nJEjR6rCTyAQCATfDt03DxEIBALBLxGN9scx6WjPpIHTKf18Dxv2f8JlY34DKAKtpKqYqsYyUuIyGdV7KqN6Tz2l9W5/cYr6fvz4GK6ZlchvbjlOSYlSuzVwoJkP3m/B6ZRpafFhsWjw622cGLIQyXgZw23TGN5rcsRaWUk9OXBCSTnslTGAPUGRGkgl1CQl4wukG0rWWLRdu+PZsxN9/gA0iZH1YLre+dhefSHimHfvLmU5t7JHpyfkMrh843MUla4lxqikHurqDuF3uDBk9sbYpQ+e2iM4ynYie5QIljYmAUN6Lpk3PI0+qWvU82ne9l9cFYolfMol9yPp9B0+x6Cd/UXnTkWv13PPPffw4osv8sADD6DT6YiLUyJ3jY2NHc7/PsTHx6v9wwQCgUDw3RBCTCAQCE5TdIYfp39Ye4b0PIOeGQWs2/sRZw2aSVxMEr27DKakqpgj1XspyBn9ndbVaGD2r5LIzjbQv7+RPXuUqNSKFYoIAygr85CZqQdJ+SznLydFclBXfCnh9vUl1XvU91/v+xCNayhYtHgOBqJzYWLGeuNvcW9ZByhW9Zp2Pcbsb72ObLdFHEOSQJbRShJT++excvdBtc+Z3amMDdbOlTYoIi126PnIXsVYw11dAj7luCGjFwBN65bhLNuJIT0XrTUJT60ScXQe2hR4QFrqPvwrGkMMksmqRrrcNYqZh+xxojPF8MQTT/D0008zePBgtm3bxtatWxkzZgzNzYpFfme28wKBQCD4eRFCTCAQCE5TzLF69Ebtj27YAXD5uNt5YvmtrNy+hCvG/46BPcaxYvvr7D9eyIXMPuV1NLqQWcfSZdmkpuo4dMjF3r2h1ECdLiSw/vhgVQerPBt4QUHOGE7Ul9LQFkq/23RgJbpbitB074mvrBR0enwHQ2Yjzi3r8WxYAygmHJLJrNSIBdITvYcjHSABkBXZ5ZNlVuw+iFYj4fMrx0qrdwWG+IkzaNly3E+81Yyl70TsJVsA8Nua8DQcB8CUo9S2WfpOQPa68dQexXVif7QRiN+Hr6WWk/10vU47O3bsAGDs2LFs27aNVatWMWbMGDVilZ6efpIVBAKBQPBzIYSYQCAQnKZIkkRqTiwnDjZ98+DvSbeUPBbe9HnE557p/Smt3kNVYxkZiTknmR1ExpRYFnV00aI6DAYJV6Cu6/AhV9SYqVOtUcf2FFnZW74Fv+zDZLDgDESkzAYrjqYG2KaIM01SMsaR49Dm9KDt2SdV0w0AXU5PZUxsHP76WoyTp+HethG5pRlNcgr6vgW4CjeD0xFxbYNWiyNgJ+8J2MkDdE+U2FUt8+CFXVii06MJGHT42hrwO1owZPZGZ1VSIS35Z2DJP0Od27T2dbTxaZi6FaCNTcbvbMNdeYimr1/HU1eOZIgh89q/UffpQtzH9iIZLSxft5tLhncHos05du9W0huHDQu1EBAIBALBLwchxAQCgeA0Jr17HFWHm/H7f3zjjnAq6g6plvbhtWMQWQPWEWeeaeGPc5Uozdo1bezZ7eKy6XEsf1exoD92zMv48TE0NvrUdMU596ZFrNHQ4OP/bqjAH7Cwd4ZZ6jvcbep7KTGJhEefRp/bBwDXmi/w7N4RWufOX5H88pv425R+bO5NXyPbbRgnTSV+zl+Q9AbMLgfnLPoTr6/6Grvbg8Wox+YKiS+Agm4jaGg5zK7qRgZnSMwZ3MoSt4zfpezL26yIwtih53f6XBImXhvxWaM3oYtNwdxzOFXL5uCuPETj2sX4WpVIl7XfBCb266KOb2/OsXHjRgAmT57c6TUFAoFA8PMhXBMFAoHgNCY1O/YnF2EAb69fhF5nJCe1L+v2fkSLvSFqTNDAI/w1aVwOAweFHAzffVepY7rwwjhMJiUlMVg7Nn16fIfXbmryMeeeE9hsfgb0S+eOC5/CpFciTwmWFHJ7j8M4fjLazCzkxgYabpmF8yslmmeZ9euItfy11TQ/fB+4FCMN2W5DssYSd9cfkYwm0Gg4Z8175MWayU5Smhp7fX6sRkPEOs2OajSyIrou7WsgTuMkmRb8zlDDbUlnxNJ34ik+4RCSTk/8GKVPl6O0EF9LLQBjxo4jyRLaR7g5R1FREfX19YwcOZLMzMxvfU2BQCAQ/PiIiJhAIBCcxnTtm4hGI/2kYqyodA2lVbs5a9AVDOs1OaJ2LJxrJ90bOVHy0euiP6AzKiYjhw652LPHRb9+Rrp1M5CXZ6S42MnDj2SQnW1QUxUBGhu8JCbpaG728Yc/nODoUQ9DhpqZN8/MLf/3V5weO0Z9DE22OpoO1pHyyEo0yanYXn0e25KXaXnqEYxjJ+KvrwVJA4FImja7O+7CTWh79cHfUI/cUIcuu7tq4DFh82fkHd3Pc19upLRWEZsurw+XN7Jyq6JOSXeUgBcL3TwwwYDR76Tpq1fVMXEjLunUAfGb0Cd3U974PBi69MF94gAT8lIjxoSbc7z6qnLd22677TtdTyAQCAQ/PkKICQQCwWmM2Wqg1/A0Dm2rQf6JxNiXu94FYEzf80hP6BZRO9Ypko+47C3ojKG0wQ3rlQhSsG/Y4MEmioud7N3rZPToGBYtqlPHPvRQNV276dm4wU5Li5++fY3Mm5eO0wEV1ZUAuDz2yEtqNFiuvwXb20uQ21qpmTYa0zkXkr6qkJrzxiI7HZgmno1tyT/xlRxEk5KGDPhblBTJ3Ldexrb+C1Z6fVQ1t0asHWcy0uJU0iZzkhPonRrPZzMbGfHPNrad8LP1uA9jmh/0JnDZQKsjfsKsb3xMVcvuU63rOyPjynn065bGg3dMAMDn89G/f39qamoASElJYdmyZWRmZjJz5sxvvKZAIBAIfh5EaqJAIBCc5gw4s+tPJsIq6g5RWr2H7mn9SE/oduoTZS2Jvb6KOFRUpKQD5ucrzaHHjrMAsL3QodaOBdmzx8WnK9toaVEiWfv3u7ju2gr+/vcadUxqXKheCnfHXoOSVvn/R11eX0CJiCn7kzFOUGqpfMfLGfn5u6Rs+pIVxQf4Yt9h7O7ImrCgCLMaDfx2yjguHNwXWYaxXZX1Vx3xYbPZ8duCPbwk/LZTN1Ux9RiKpWCK+tIlK/3GNCYrkt7M76f2Ue3stVot8+bNU/uFuVwu6urqmD9/Pkaj8ZSvKRAIBIKfFhEREwgEgtOc9B5xJGdZqD9hgx9Zj+06sh6Avl2/2Ylv1a63qWs+Acikppo4a/A+eieHhMHhw4qYyc5W0vXy8oxqP7FlyxTRMnq0mXPPi6NXLwPz59ewuzgkzurrfaxbF4qC1bacUN/rSlrxZ/qxLX5Bqf8ymcHpwHTeJQAYhozAU1yE6+tVoTldAs2VZZkdLy5iQl53UmMtuL0+Wp0u/HLo4Uooj/qcgt4AuP06HD49/dOUhs9zv3QRs+8ZkP2YegzDeaSQ1p0rSRh3VYfPylm2CySQA9eIHz0DU/ZAZJ+Hlq3vY9u9GoCkSbO5eHAXzs6PtKSfMWMGJpMJp9PJ+vXrGTlyJNddd91JfjoCgUAg+LkRQkwgEAhOcyRJYtRFPfnk+eIf/VoHTxQB0CM9/xvHvrfxhYjPy9fAiBFm5sxJxWTWqE2b4+JCjamnT49nz54aDh9206+fkXmPhowmnn46S31fWenhlpuPY7MpEbKkJC0NDaEoWNPiv+J5rhJfYy3GCVNwfb0K4/jJGPIHAmAcNwnbay/h3rZJnZNcXkJyWgpHa+qoam5l2eYdxJmMpMRasLvd+H0hISYDY3vlMLpntnrMK2tINod6oDmaapB0RhInzaaybAdtO1YQP+YKJE10I253zREaV/8TNMrXcvOGN2ne+Dbu2iNqJC1u5GV0HX0+D13YP2p+bW0tbrciAu+++27+8pe/RI0RCAQCwS8LkZooEAgE/wP0GJRK3oh0pB/5t3pF3WEA0hOyOx0zvNcUbjrnYR6+ehl/v/EjFtx1F7/9bTJxcRq2bnUwZ04VTU1edXxMTEi8TDzDSmqqIlTy8ztPq8vM1DNokJLSmJys5cWXutK3V5563nmkEF/NCbRduiFZLKDRYr3xdvW8Pq8vup55yA47uiTF9t1auJ7rRw+me0oiHp8i6lqcLkprG/D4Ipstp8VaiTHoOVBVq0bKvH4NccbQvcjONuJGTceQmoMhrSe+tgbclQc7vB9TdgHWIeepZh7Oij24ju1FozdjKZhM+jV/JXHSbBZMH0iixRA1f8mSJfj9fjQaDS+//DJerzdqjEAgEAh+WYiImEAgEPyPMHFmb8r31OO0e5CQvnnCt8TlceD2KnVdFlNcp+NumPJA4J0frcFG/tlfMMwYz8hRMdxy83GOHHGzZk0opdBul7FYQvuNi9dSW+vj+HEPndHa6mPnTqXJsiTBr288ho+QcMuc/Sze5moaNryCc+V/MZ17Mbpu3dH4fPi1WjQ+H4nx8dQCCW4HdUCb002sychtk8ZwqLqOwzX12NxuYo1G9lXWcLypRV2/prWNL/YqojQ11sJVowaj6+WntNGv7kkTm0rcqOkAGLP64q46hKNsJ8asflH3Y0jPJXnqrXjqynFV7CZ2yLmAhOx1o7UkILvt/P7sPKb2z4iaK8syr7zyCmazmd69e7Nz5062bt3KmDFjOn1+AoFAIPj5EUJMIBAI/kcwWfX0OtPCnk+af5T1HWFNk4N9u06OhowRi9EalXmZmXrOmWZl+bstFG6zYzJJOJ0yLS0+LJZQKO/4MUWA3XZ7SqcrL1xYj82mRKIaG334/XD3vAH87cHNypWNFsx5I0ntl0fVk7/GueIDsgcPoU9KIhm1x+l24givVJRQCzTYFEFn9yjXlSSJ3hmp9M6ItIcf2DWDFbuViNZtk8Zgc7tZUXyA6pY2XlqzmetzLWyoUCJRWTk90M5cqM7Vp+QA4K4uOYXnBq2FH0YdW7RzKaOXLGHEiBERx9955x2Ki4t56KGHaGhoYOfOnaxatUoIMYFAIPiFI1ITBQKB4H8Ij7kBe+zRH2XtGINVfe9sZxXfEakDlhObtTPiWHa2klZXW+sjL0+JYJWVhSJfDoe/w9qxcL7+2sbqVW3ExipfYT4fZGbqOHN4S8Q4SQaTO56cBKUxdLf3X+eMzZ/Rp3QPMU67GuEKphbG6Dvv8TVtQB+aHE71c6LFTEFWBnedPZ5uSfE4PV4e/sqmpiZ6u0WKJY1Z6Uv2Tc6Jpq79SZr2W7r8+kWyf/8OWbe+yk2PPEf//v05ePAgZ511Fvv27VPH+3w+5s6dS3Z2NnPmzKF/f6V+bPv27Se9jkAgEAh+foQQEwgEgv8hjh07hi2mHLul/Adf26A3YdApdVk2Z8tJxyb3/YSkviuijre0KLVXMTESgwcra+3dGxI4QfMNgI0bbVRUuCPmNzf7+PtTtRgMEq2tfjSBb7GYGA1mXchRsWXre5QtuIDK/zyAZFBs8cMt6F1eL+5AU+aLBiupglaTgarmVpyeyJRIn9/Pqr2H2VQS/Ux1Wi2T+/UCYGWJl3UVAcOQnHZCzKBEEP3ONk5GwsRriR10DqbkLJLiYvn3refw4h9/Q2FhISNGjKClpYX7779fHa/Vatm/fz9lZWWYzWaSk5V6t+rq6pNeRyAQCAQ/PyI1USAQCP5HkGWZyspKkMBmPYpf8mFt64GM/IPVjHVLyaOkqpiqxjJS4jLbnfUDGlIHvEtyv5VRc/1+mTVrlDTFPn1NjB1n4fXXm9he6GD2bGWM1Rr6/8EvV7fx+PxasrL05OToMZk1HFVRrCsAACAASURBVD7kUnuJSRpITNRSX++jpMTNHXccV+fa9q9TrmlvotqlNGNOsoTSKZ2ekJlFfZsS3euaGM/m0nI2lpbTNTGeeLMJr89PeUMTrU4XKdYY6tqiI4Fp8YrQc3lhd40fkzUeQ2bvyHt3KfetMVmj5ocjSSDLcMGgLvzlov4kxCgRRKPRyIMPPsgll1zCypUr8Xg86DuI4MXFKbV7wZ5iAoFAIPjlIoSYQCAQ/I9gs9lUC3MkcFgr8OnsxDb3Bln3g4ix3l0GU1JVzJHqvRTkjA6dkHxo9XYOeOZhsVaRTKSzX2Ojj+eeraPksBudDi65JI6cHIPaN6yszM1XX7Xx+mtNqhgZPTqG2Fgth0tc7Nnj5P+xd+fxUZV3///fZ7ZM9oSEQIAEArKDgEaq4lJRxGpvatXWpbZFsXWpoq3W1t6/23rf9K6t9rZq/dVWa9XWttriUrSyyOJCVUREICA7SSAL2fdZMjPn+8dhJhlmEhKIUwuvZx88zMycc51zhj5q3v1c1+dqawvJ4ejWlTBk7SUmWcd33wA61FZv/TMQkKetWXaboZNHdAXH5G4hZl9dgyTppLxc+QIBNbR7VNHUrAMNzXLYbRqcnqpzxhXprJNG6Z6XYgOmx9sV6gIhKXX6JTEt6kNeKwzaUrPifq92m6FgyNT4Iem688LxMfuESdLEiVblLrxhc37+4UFYam621gdmZ2fHvQ4A4LODIAYAx4nOztgug353vRpc65XWcpLc3rxjro6dXDRLSz/6o7ZXbNB/6HqFq2DpBes1dMZf9Mef7NXDv+mIqmLVHAxozx6fPB5Tbreh7989WCNHWkEtvG/Y0tdb5XZb95WaalNbW0iD85z64bzMI97Tyjda9eCDtQoGu71p2CTDULC5WjJs+tL0ScpJ66qIuRx2uRx2+QNBVTe3KSM5SQWDMmW32TT+sCYdR7Jxv7WRtM0hGXIqa8YXYo7prC2TJCUNOSnynsNmKBAy5bAZmjdtmL5+xkhNL8iSYcT/+6mvr4/8nJ6e3usxQ4bEBjkAwGcLQQwAjhPBqCTSxbQF1Jq1XT5vrVLbRsoRSJOpkIyjWCZckDtWo4dM1t6DW1XdWKaRo+zKnfJKpCnHhXPTlZJii6piJSUZGjbcqVNmJGvelzKUn99VjTrn3DRNntKs115r0cRD+4ZNn+7W2rUd2rbNq9NPP3J3xgvmpKtotEsvvdis5csPrcEyQ7IlZyl51HSln/ofmt75nhTy6PkPNunD0gMqHjVCw7Myta+uQSHT1OmjR8pui/997K6pk2RozOBBUe8HgiG9tWuv/rmrVJIUCkjX3LRQU75wqjbvb9bmiia1+6y/E1+F1WDDPfJkpSbZdfLwLE0ryNLU4Zk6Y0yOBsXZG+xwzz//vCSrMpaWFn+KY0lJiSTp1FNPPeJ4AIB/LYIYABwn7Pb4XQbD/O56+ZPq5ehMV3LHMCV5B8uQTaZCkowjVMpMyQhKpkPnnfxl7X1jq0o67tO5FzrUvYBz1lmpOuus1H7d96235uo7t1Ro8yavxo1z6ZqvZWnt2o6otWNHMmZMkm79XoGWL7cCz/Cbn5Ejo6v9fWD/B1LIWkcnSXbDClb76hpkMwydPrqgx7Erm1q15ONtSnd37VP2p/c3qq6tQ61eazqkPdUum9umn//vHRoxaITmz5+vbc8+qyuvuVb33PcTFf9fmYbk52vjr27WkMyUuFWvNWvWyDAMnXvuuVGf+/1+PfTQQ/rVr6x2+HfeeWeP9/ruu+9KkmbPnn3E7wwA8K9FEAOA40S85g0xDCngalWra4faQnvk9GfJ2ZkuR2e6HJ1pspmx/1qwOTxyZ5fJnbNP7uwynfSlHXq/KknLVu7X175ZoOxBx/avkrFjk/TAA/m6664qLbhhkMaNc0etHQtPY+yNaUqlzYWSPon7eVBWSD3QaK2hmjm6QHtrrbVhae4kZSS74573xtZd2rS/UmlJLvm6NfgorWuU3WZTcpJTjslujVxo7RNmc1lVtVDIaiiSnuLW6tdeUiAQ0C033aShWT2H1E2bNum73/2uhgwZounTpysnJ0e1tbXavHlzpAviXXfdpQULFsQ9P3zssGHDYvYaAwB89hDEAOA4kZqaKpfL1dWw4whMW0B+d5387rpDb0hGyClDNhmmTcMLNyt/2DY5k1t0eAEnXMV67rkm3baw542X+2r6jGStXDU68rr72rGbbs454vlB06Z9LSM18gevxf3crqCaO7w62NKmKcOHqCA7S89/sEl2m00tHq8OtrRqSEbsuqv69g5Vt8S2nDclBUIhBXwhpbR3BWB/0PruN2zYIEm6/vrrdeONNyo5OVnf/va3e32Gc889VzffbLWq37x5sxoaGmSz2TRs2DDNnTtXN954o84888wez3/uuecUCAR04403yuHgX+8A8FnH/1IDwHHCMAzl5+errKzsKAeQTHunzEMvO/xOuVLi7xc2dmySVrwxOu5nA6H72rErr8w8YtXNYQuprKXn6YWOUFAlB2tlMwxdPHWCbDZDP/jC57Vpf5X++N5HWrd3v+ZNnxRz3lUzp+mqmdNi3g/J1L5h7Xpnen3U+y67SxUVFdq2bZu+/OUv68CBA9qyZYvuu+8+DR06tNdnmDFjhn7961/3ekxPTNPU008/3afABwD4bGBDZwA4jowYMUK2HppO9FdT01CFQgOz/9jRuPXWXPn9pp57rumIxwZCNm1vGBv3M2fIr+SQRzOLCvTAVy5WXkZXo4tpBfkalZut9/eWR9Z7HYkpU35nSB9Mit2rK8mepBUrVshut2vRokX6r//6LxUWFuruu+/u09hHa/HixdqyZYt+8IMfHDHwAQA+GwwzvHI5QVpaWpSZmanm5ubIxpMAgIFRUlKixYsXD9h448av1eDBpbLZEvqvin4JhmxaV32Knir5RuyHpqnh3gpdVv1qj+dXNDbr4ZVrdcaYkbrslCl9uuaqU2u0f4gn6r1UZ6reu/q9HtvPf1qCwaAmT54sj8ej7du3Kzk5OaHXB4BjcSJnA6YmAsBxpKioSDabLdIs4lhVVY7XkCH7BmSsT4vdFtKa/WfH/cymkIb4ano9f3h2ph78yiV9vt6GcY0xIUySJuVMSngIk6xumdu3b0/4dQEAx4apiQBwHElNTdXkyZMHbHpia2uu2tqylNi5E30XMg3tbx2mvc2j4n9u2JXnqx2w620e06wtY2LXzTkMh6bmTh2w6wAAjn8EMQA4zsycOXPAKmKSobLS6TFdEz8rbIapl3dfIvWwB5rNDGqEt/KYrmEeal+yYXyjPhrfFPdSATOgSTmxzT4AAOgJQQwAjjMjRoxQXl7egE2Ta2goUE3NKJnmZyuNBU1D71eeqk218StRhhnS2LbdSg55j/oaIZnyOUNadWpN3EpYmMNwaObQmUd9HQDAiYcgBgDHGcMwNHv2bA1kL6Y9u2cqEHB9ZqYohkxDHZ0p+vOOK3o8xjRsOrl169GNf6gKtm9Yu146tzLumrAwu2HXRUUXKdudfVTXAgCcmAhiAHAcmjBhgqZMmTJgVbFAIEm7dp7+mZmiaDNMPbP1arV3psY/wAwpx1enIb6D/Ro3ZFgBrCm9U6tOrdE70+vld/U+zTNoBnXVhKv6dR0AAOiaCADHqYsvvlh79uyRx9NzNac/6usLVbpvukYVfTwg4x2LF3d9UR/XntzzAYZNM5s+kGSqp/VjkrX+yzQkm2koaFibNG8f2aq6TH9vp3VdRobGZo/Vybm93AsAAHEQxADgOJWSkqJ58+bphRdeGLAx9++fIps9oMLCkgEbs7/+sXeOXt83p5cjQsp0bpVn6GZVNyUpt9klZzB2AkinPaS6TL/qsnyqy/SrOscr3xGqX4czZerW6bf+S9rWAwD+vRHEAOA4NnHiRM2ePVurV68eoBGtLorBoENFRR/LNJWQ6Yoh05DNMLV4539oaWnvIUx2j4KjXtYGR4f1lim5/TbZQ4bsQUNBu6mgzZTXFepT1asnNsOmi0ZdpPMKzzv6QQAAJyyCGAAc584++2z5/X6tXbt2gEY0dGD/VHV0ZGncuPfkcPhlGJ9eF4/gocYcz2y9uvfpiJIkm9z5L8oIhzDrduVNGqh2/uEhDWW4MnTPzHsGdFwAwImDIAYAxznDMHT++ecrKSlJq1atGrBxG+oL9OH6PI056QPl5ZUOeHUsXAVbX3WK/rz9CrUHemjM0Y1r8DI507cN3E30wJSp/z7zv5XlzvrUrwUAOD4RxADgBGAYhs4++2wNHjxYf//73+X1egekvX0gkKQd289Wbe0ojRz5sdLSmhQKGbLZjn7sYMgmuy2kirZ8vbz7kh73CTucK2eNXDlvHvV1++P2U27X7MLZCbkWAOD4RBADgBPIhAkTVFhYqNdff10lJSUyDGNAAllDfYEa6kcoPb1O+cN2aPDgMtlsIQVCNtmNUK+VMtOUgqZNDltIgZBdH1SfotX7z9a+5pE68iKukCSbXIOXKin3rWN+jr64YeoNWjBlQUKuBQA4fhHEAOAEk5KSoiuuuEJTpkzR6tWrVVNTI5vNplDo6NdRhc9PTp4sW+7Xdd8HlRqevE2FGeUalVGuUZnlSnb4Ys7zBJJU2lyofS0jVdZSoO0NY9XWmdbHq4Zk2D1Kyn/xU5+OaMiQKVO3n3K7bph6w6d6LQDAiYEgBgAnqAkTJmj8+PE6cOCA1q9fr5KSEoVCoT6HsvBxNptNU6ZM0cyZMzV8+HAZhqG5Z/r14yVFWrypUoYhmaapdFebXLZOOWwBBUIO+UNOtfrT1N/WhdZ40ufGOrQ/6Um1h2oU+vR6hchm2JThytB/n/nfTEcEAAwYwxyIOSn90NLSoszMTDU3NysjIyORlwYA9KK9vV2lpaWqrKxURUWFKisr5ff7Y45zuVwaNmyYhg8frmHDhmnUqFFKTY3fSGPF1mo99MZOba9uld1mKHgMiSl8/oSh6brzwvGaM2mImrxN+um6n2pp6dJI1WqghMe7uOhi/ehzP1JmUuaAjQ0AsJzI2YAgBgCIyzRNtbe3KxAIKBAIyOFwyOFwKDU1tV8bGJumqY37m/TH98r06qZKBUKmHDZDgT6EsvBxDpuhedOG6etnjNT0gqyY668uX63HNj6mXU27ZDfsCprBfj9vWPj8sVljdduM29gnDAA+RSdyNiCIAQASpqHdr/f21GtzRZM272/W5oomtftiQ1Nqkl0nD8/StIIsTR2eqTPG5GhQqqvXsU3T1Oa6zXp++/Natm+ZAmZADsOhgBk44n2Fj3PYHPrCqC/oqglXaWru1H4FTgBA/53I2YAgBgD4lzFNU/Xtfnk7g/IHQnI5bHI77cpJdR1TCGr0NuqD6g+0tX6rSupKtLVuqzoCHTHHpThSNDl3sqbmTtWknEmaOXSmst3Zx/JIAIB+OJGzAUEMAHDcM01TDd4G+YI++YN+uewuJdmTNMg9iKoXAPwLncjZgK6JAIDjnmEYyknO+VffBgAAEbZ/9Q0AAAAAwImGIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKsX0Fs1KhRMgwj5s93vvOdT+v+AAAAAOC44+jPwevXr1cwGIy8Likp0Zw5c/SVr3xlwG8MAAAAAI5X/QpigwcPjnr9s5/9TGPGjNG55547oDcFAAAAAMezfgWx7vx+v5577jl973vfk2EYPR7n8/nk8/kir1taWo72kgAAAABwXDjqZh2vvPKKmpqaNH/+/F6Pu//++5WZmRn5U1BQcLSXBAAAAIDjgmGapnk0J86dO1cul0uvvvpqr8fFq4gVFBSoublZGRkZR3NpAAAAAMeBlpYWZWZmnpDZ4KimJpaVlWnlypV66aWXjnhsUlKSkpKSjuYyAAAAAHBcOqqpiU8//bTy8vJ0ySWXDPT9AAAAAMBxr99BLBQK6emnn9Y3v/lNORxH3esDAAAAAE5Y/Q5iK1euVHl5ua6//vpP434AAAAA4LjX75LWhRdeqKPs7wEAAAAA0DG0rwcAAAAAHB2CGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwfodxCoqKnTttdcqJydHycnJmjp1qj788MNP494AAAAA4Ljk6M/BjY2NmjVrls477zwtXbpUgwcP1q5du5Sdnf1p3R8AAAAAHHf6FcR+/vOfq6CgQE8//XTkvaKiogG/KQAAAAA4nvVrauKSJUtUXFysr3zlK8rLy9OMGTP05JNP9nqOz+dTS0tL1B8AAAAAOJH1K4jt3btXjz/+uMaOHavly5fr5ptv1sKFC/Xss8/2eM7999+vzMzMyJ+CgoJjvmkAAAAA+HdmmKZp9vVgl8ul4uJivfvuu5H3Fi5cqPXr1+u9996Le47P55PP54u8bmlpUUFBgZqbm5WRkXEMtw4AAADg31lLS4syMzNPyGzQr4pYfn6+Jk2aFPXexIkTVV5e3uM5SUlJysjIiPoDAAAAACeyfgWxWbNmaceOHVHv7dy5UyNHjhzQmwIAAACA41m/gth3v/tdvf/++/rpT3+q3bt3689//rOeeOIJfec73/m07g8AAAAAjjv9CmKnnXaaXn75Zf3lL3/RlClTtGjRIj388MP62te+9mndHwAAAAAcd/rVrGMgnMgL8gAAAAB0OZGzQb8qYgAAAACAY0cQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQII5/tU3AAAAgBObaZpqb29XZ2engsGg7Ha7nE6nUlNTZRjGv/r2PtNM01SDt0HeoFedwU457U657W4Ncg/iu/uMI4gBAAAgodrb27Vv3z5VVVWpoqJClZWV8vv9Mce5XC4NGzZMw4cPV35+voqKipSamvovuOPPjkZvo9ZVr9O2+m3aUrtF2+q3qSPQEXNciiNFk3ImaergqZqUM0mfG/o5Zbuz/wV3jJ4YpmmaibxgS0uLMjMz1dzcrIyMjEReGgAAAP8ipmnqwIED+uCDD7R161aFQiHZbDaFQqEjnhs+zmazacqUKTrttNM0YsSIAa/4fFarS6ZpalPtJj2/43kt37dcATMgh+FQwAwc8dzwcQ7DoYuKLtJVE67Sybknf2aqZSdyNiCIAQAA4FO1fft2rV69WjU1NX0OXz0Jn5+Xl6fZs2drwoQJRz3Wv0N1aXX5aj228THtatolu2FX0Awe9Vjh88dmjdVtM27TeYXnDeCdHp0TORsQxAAAAPCp6Ojo0Ouvv66SkhIZhqGB/LUzPN6UKVN08cUXKyUlpU/n/btUl5q8Tfrpup9qaelSGTJkagC/u0PjfWHUF/Sjz/1IWe6sARu7v07kbEAQAwAAwID75JNPtGTJEnm93gENYIczDENut1vz5s3TxIkTez3236W6tKp8le579z61+luP6R6PxGbYlOHK0H1n3qfzC8//1K7TmxM5GxDEAAAAMGBM09Q777yj1atXJ/za559/vs4666yYCtWnW12STElfKDhfPzrzvmOqLpmmqd9t+Z0e3fjogN9nT8LXuf2U27VgyoKErx07kbMBQQwAAAADwjRNrVq1SmvXrh2wMauqqvTkk0+quLhYF198cdRnu3btUkVFhaqqqlRZWam2tjZJUnl5uQoKCiT1rbpkhkzt/d+98uzxSJKKflSk1HH9685oM01lGE7dN/UmnT/j29KhQNPZ2am3335by5Yt05tvvqldu3apvb1dOTk5mjlzpm688UZdcsklMk1Tj3z0iJ4qeSpyT549HrVuaVX7J+3yVfoU9AZlT7bLPdKt7FnZyjwjM25w2vfAPnn2ejT2Z2PlzHL2+RlumHqDFs5YmNAwdiJnA9rXAwAAYEC88847AxrCJGnp0qVyOBw699xzYz578cUX5fP5Yt5ft261cnJm65lP/qzHS547YnWpbmmdFcLC5a2jEDIMNZudumPLY7p9wxNacNb/yJh4id566y3NmTNHkjR06FCdddZZSk1N1bZt2/Tqq6/q1Vdf1be//W2desupkRAmSf5av/b+715Jkj3VruSiZNlT7PLX+tW+tV3tW9vVvK5ZBbcVyOawRd3L0K8M1Z7/3qOKZyrUtqlNg2YP0rCvD4s6pnVTqzr2dshb6pWnzKNAU0B36A75Vvh095y7j/i8NTU1euihh/Taa6+ptLRUpmlq6NChmjlzpu666y6deuqpR/dFdtPXEHu4UCik999/X8uWLdPq1av1ySefRALfjBkzNH/+fF1zzTVxA+cFF1ygDz74QDt37tTQoUOP+Rl6QxADAADAMfvkk08GfDritm3btH//fp155plx9w+bOHGicnMzNG6cS+Mn2HT7whWSpM7AvfrRsvu1qtWqBvUWwrwVXtW8XKP0aenyHvCqs77zqO/XPPSL/SMuv9pX3KyFJRfIljpPl19+uW6//XadffbZUce/8MIL+trXvqYnnnhCw83hyp7VrROjIaVOTFXuF3KVNiVNhq0rNLRvb1fZL8vUuqlVdf+oU96X8qLGTS5KVvq0dLV+3CrDZcR8Lkn7f7NfIU9s98rfl/xexeOLNbtwdo/PuWbNGl122WVqamrSSSedpIsuukihUEilpaX661//qlmzZg1IEOtriP3Nb34TFar27t2rWbNmSZIGDRqk4uJiZWdna+/evVq5cqVWrlyp559/Xi+++KJcLlfUNX/2s5/ptNNO0z333KOnn376mJ+hNwQxAAAAHJOOjg4tWbJkwMd9//33JUkzZsw47BNT6el1uvv72crNK5fNZioU6vpF/J02u95xHnlKnhk0deDJAzJchobNH6a9P9nb47GeMo/23LcnproUaAmodUur2ra0ybPPYwU5m3T3IKeWjP2bnjpjhRYv+o008eyYMfPz8zV12lR9/NHHqnymUhVPVkjqmhpZ9IOiuPeSOiFVuZfkqualGjX9sylu0EoalqTWTa1y5bnkyHDIDJhq39muts1tat/RrpA/JBmSLdmmlNEpaiuxpnUaMvTjd3+sU/JOUZY7K6a6VFJSoubmZknSySefrLvvvjuqulRdXa2ODmsLgGOtLtlstj6F2FmzZukb3/hG5DPDMDR79mx9//vf15w5c2S32yOfvfXWW7rkkkv02muv6Wc/+5nuvffeqHGLi4v1xS9+Uc8++6zuuOMOTZs2rd/33efn+9RGBgAAwAnh9ddfl9frHdAxq6qqtH//fo0YMUK5ubmR9wcNKtcpM5Zo+oxlGpxXJpvNqnaF/ylJq1tdMePFU/tarbylXuVfnS9ndu/Breq5KtlctpjQU/WXKlU8WaHmdc2yuWxKn5Gu1AmpCrYHtfqdNk18uFJv/PRK6Z3/kw5rzbBw4UJ9/NHHkiSzs39zIpMLkyVJnQ3xK3jtO9slSb5qnwJtAbXvaFfpA6WqW1anzoZOpU9JV8ZpGXIOckZCmCSFzJBa/C26/4P7JXVVlxYtWqRPPvkkErhGjx6tzZs369prr9W8efPk9/slWZWr0aNHS7KqS62trbrn2Hjy+AAAIABJREFUnnv69Wxhs2fP1uLFi2NCmCRdeeWVmj9/viTpD3/4Q9RnY8aM0apVq3TRRRdFhTBJOvfcc/XDH/4w7nlhCxYssNbsPfLIUd13XxHEAAAAcNS2b9+ukpKSAW9Rv337dklSUZFVFXI4fJowZpUmT3lLKaktkiSjx99kj3wvnjKPapfUKm1KmrLP7n1z5ub1zerY1aFBswfJkRE9ocyealfel/M0/qHxOmnRSSr8TqFGfW+Uxj04Tpmfy5TXb+qyF/3a++r/Sav+JyqMjf/ceCWPtgKVe7Rbzpy+N9bwHbTWxjkyYye4eco88uzxyJ5qlwKygpYhZRRnqOieIk14ZIJGfnekCm8p1NifjFXBzQWRc1s+bFHIDOn1fa9rTfmaSHVp6dKlWrFihZqamlRQUKDdu3frzTffVGpqaqS6dLju1aVNmzb1+dn6Klwp3b9//4Ced8kllyg3N1d/+ctf1NDQcGw32QuCGAAAAI5KKBTSGyvfsJpcDLDS0lJJUkFBgXKySlV8ykvKza+U1FsAC+v9hkKBkCp+VyHDaWjYdcN6PVaS6pfXS5Kyz4kObJ4yjxpWNSjQEoipqHXs6JAz1ynZpDZPQGMerJIx5z4t/f1P1NraqoaGBjXObJSvygpU2WfED4NmyNSeRXtUMr9EJfNL1L6zXSFfSPUrrXvKKI7tNNjykRVU3aPckqT2be1Km5SmwlsLlTo+eq2dr8qnQEvXZtbVf6lWyfwS1S6p1a82/kqjR4+OVJdWrlwpSTr77LNlGIa8Xq+mT58uSVq0aJGys7OVlJSk/Px8zZ49W7/+9a9jqksXXHCBMjIyVF1dfaSv/Yh27dolyZriOZDnOZ1Off7zn5fX69Xy5cuP7SZ7wRoxAAAA9Emjt1HrqtdpW/02bandosoDlTqj7owBv05VVZXKy8slSdPGV2jSyftlhqwAtm5dh7Zv92rXTr927fKpvt5qSf/jZ0b1efzaV2rl3e+VM9epnXfulGSty4rHU+ZRx+4OJY9JVlJ+UvR99jBd0QyYKv//y2X6Yytzly16SfnLOjRjkkvvLn5XIU9ISSOSlH1etuqW1UmyglTTP5vkKfXIu98rHdZTo/IPleqs7ZQjy6HB/zFYUnTL+vZPrGmJqeNT1b61XZ4yT4/fRcPqBtW/UR/zvilTu5p2aXPdZk0bbK2T2rx5syQpKytLc+bMiQQzSQoEAmpqatLIkSM1YsQIbdy4US0tLXrvvfci1aVf/OIXA9YMo7q6Ws8884wk6fLLL+/zeR0dHXr00UePeN6ZZ56pxYsXa9WqVbr66quP+j57QxADAABAj0zT1KbaTXp+x/Natm+ZgmZQhuwyzaCKG4tlTQMc2JLYP/7xj8jPE2aUSbJFqmA//d8atbfHdvtb3dy3aX0deztU+3qtXHku+Wv8R2xZH64upU1Ki3o/PF0x9wu5MdMV23e0xw1hkuQt+1j7yj7W/kEjFGholz3NocJbC6Na0Ncviw1GRpIh02eqcW2jmv7ZJMNpqOA7BXKkWdfu3rK+Y6fVLMNdYFXEAs1WxStey3pJyv58thrfbJQk2dPsCrZZ4dZu2PX89ucjQayqqkqS9Pjjj8s0TRmGEZmSGt4DrKysTHPnztXq1au1efPmSHVp8eLFWr58ua6++uqoZhjhqadhfWlZP3fuXF177bVqbm7W1KlTdeONN0qyphq+/vrr2rBhgzZs2KCSkhL5/X4tWLBAv/vd7yRJt9xyi/bt26dhw4bpRz/6kaT4TUUmT54sSfroo4/i/j0OBIIYAAAA4lpdvlq/2vgr7W7aLUM2mYdKM6aCcoVcKmwv1ECHsG3btqmioiLyOiUlevyzzk7R8OFOjR2bpLFjk3TF5WWSpJrgkVfctO9u176f7JNskr/eH9WyvmN3h4IdVgApf7Q8EkaSi6w1XCknpUSNFZ6uWLe0TnVL6/r8fNlzblbjG48r0HBAhjNJeV/9b9lSP5K0LXJMenG60qemq255nRUWu2YOquntJsmQnIOcKnuoTCF/SI5Uh5JHJyu5KFltH3c13nBkW7/qB9oD6tjVobJflUWNFeYc1BVindnOyLMHzaAeu+kxPbb/MT3z9DN65513JFnhvLCwUOXl5ZEwduqpp+qmm27SlVdeqd/97ne65557VFxcLCm2urRgwQK99tpreuSRR/Twww9H3UtfWtaPHz9eO3bsUE5OjhYvXhxpQf/iiy/qu9/9bo/f/aJFi/Tss8/K7Xbrr3/9q3JyciTFb1kf/uzgwYM9jnesWCMGAACAKE3eJt391t26fc3t2t24R5IiISyssL1AxqewOCzcsj6soyO6svT97+fpmmuyddppKcrK6uqIZxyhQYenzGOFMMmqgJlSoC0QqRYd/OvByL5a4SAiWfuMSVY7+O5jdezukKIb8vXIObgr6HTWdLXId+YUyjV4krwHviFf3ecj7+demKtAU0D+Sr/Sp6Zbtxzo9nym5K/xK+QJyTAMBX1BtX7cKs++w6YgHvorszlt1ubQ3UNYt3uveakm7r1W/L5CbZ+0qa21TVdeeWWk+uV0OpWVlWXdyqGNnB988EF99atfVW5urkKhkNasWRMZ5/DqUm/NMMIt699++21VVVXptdde0wsvvKAtW7bo+eefl2EY2rFjh1JTU/XGG29o3LhxkXOLiop022236emnn9amTZv0n//5n5HPHnroId17771KSkrSyy+/HNlnTIrfVCRc4WtsbNSnhYoYAAAAIlaVr9KP//ljNftbrTeM+AHn3MaZajY7Zfbw+dEIt6yfMN6t0jKfvF5TLS1BpaYeuXZgHiEU7n+8W4e8Q0HMs6fntVORQw9NMbSndSWX8HRFm8umkCekjOIM2ZK67jHkC6l1S6tM36HgMtipzlqrzXzbpuWS3SkFO9XZcEAVT9yoQEudDMMmM2QFwPZd7ZGOju5Ct1o3tkpd2VBGkiFnllOBloBC3lDcKpfU1do+1GElMsNpKHlMspyZTnU2dkamMHbXfePowfMGq/GfjVJICgaDcjis6BAMBiPrxdxutx555BG98cYbevLJJyPHrF+/XtXV1Vq5cqU2btwoSfr444919tln66qrrtI555yjl156KWYT8D//+c965ZVX9OMf/zjm3j744INIGJw0aVLM/nJf+tKX9KUvfSny+qWXXpIkbd26VU899ZRcLpdefPFFXXTRRTFjd6/S/f73v4/slZad3XtHzWNBEAMAAIBM09TvtvxOj258VDKNHgOYJJ3eerKSO1PUZGsa0HvYvs2anndqsVtOl7Rli1dlZZ3Kz+97W/d4mtc3y19t7XMlm7Xea9RdoyRJO+7coc76TmV/PlstG1oUbA3GHcPm7gpa4WYYhtOQPNLQK4fKNdiaHtfZ1Kl9P9sXCWGSNOL6Edp5l9UUxEhKki0pQ8GWWpl+j4zMIUo56XMyO73y7NsgSar5W02ko2Pls5VR95F3eZ5aN7XKs9sjW4pNGadkqLOhM7YaJkXes6fZNewbw5Q+I102Z9dzlMwv6fV7M4NmVABMT09XY2Nj1FYFeXl5+trXvqZAIDoNPv7445KktLQ0TZ48WevWrZNhGHrvvfe0du1aFRYWSpLefPPNqPPuu+8+/elPf9LChQujqmp33323HnroISUnJ8vj8USCUl+8//77kRB2ySWXxD2me5XuF7/4herrramnQ4YM6fN1+osgBgAAcIIzTVOPfPSInip5ynqjtyqXKX299ot6x7a71+VhVVVVevLJJ1VcXKyLL7446rNdu3apoqJCVVVVqqysVFubta5p5LBMSdKkyW7ZbFYQ27bNq9NPT4kZX5KCwa773PG9HT3eS+2SWuuxnIYMe/yW9VlnZqltS5uCih/Edv3nLvkr/VHvGfboLyDQElDpA6Vdoe+QcAiTJNPnU9Bn3Y977BkaclnX9LmyX3xZCh7aoNlm7enVtvnQmi+HpIDkLffKs9ujpBFJKvpBkRzp1q/zu+/bLW9p9Kba7TuswJh/bb4yZ2ZGfVb1l6q4zxn9gNY6s0CjFbI8Ho/sdruCwa7vqLy8XJMmTdILL7ygzs5OFRcXKxSyKnBZWVnaunWrKisrddppp2no0KFatmyZ5s6dG+mKefj+YiNGjNANN9ygxx57TEuWLNG8efP0wx/+UA8++KAyMzN10UUX6YUXXuhTy/oPP/zQ+iptNr344ov64he/2OOxhzcVqay0AvCpp5565O/pKBHEAAAATnBPbnmyK4QdwQRPkfJ9eep09xx8JOnvf/+7TNNUZ2dnzGd/+9vf4r5fVWdN+SssdGrQILv++McmfbTBo+uvj3+Ne34YP0yUPVIWCUnOHKfVAl6S2Wkq/5p8uXJcvd57PIeHMEkyjK4gFmgJaN/P98lX6ZPhMnrsmhh1vqS6f/xSkmRPzoja7Nn0mar+S7e9tg5ln5b11nfkO+DT9tu2K6M4Q4W3Fsa9nrfcK8NpKG1KmgItAdUtq1Prplb5qn3qIW9GScpLUur4VDW/b1WfvF5v3OPKy8s1aNAgXXXVVQqFQiooKFBtbW1k8+dwMKusrNRtt92mBx54QF//+tclSTU11vq0zMzMmHG7TzOUpObmZr366quSulrPx+t4KElPPvlkpPvm+eef32sIC+veVCS8Nmz27NlHPO9oEcQAAABOYKvKV+lXG3/V5+P/o/FceY3YUNLdtm3bdPDgQdlsNl1wwQUxn3evqHTn94dboduVn+/U5MlJ2rrVp7Iyv0aOjA5PpaV+bdwYPxh4y7re72zuCnxJBUnK/vwArvk5lMPqV9Wr6Z0mBduDcg52yjRMBWoCkiElj0mWZ3f8tWieXe9FfrZnDJZCPSz2knpssd/y4aFgdtAXe4rflJFkaPut2/v2POqadtmwpkGBpkBU4xJJkmFoZGGhysrKIm+1tbVp9OjR8vl8SktL0/79XevxwiEszOl0Rq3tamqyprdec801cjqtKajl5eVau3Zt3LDe0dGhrKwsrV+/XvPnz9fOnTvV2tqqm266Sa+88ookay1auKW9ZG0OPn/+/LjPG96LTOpqKrJhwwYdOHBAbrdbc+fOjXveQCCIAQAAnKCavE360Tv3yjQlow8NEDMCqTqn5VS1G7G/9HcXbsAwbdo0paamxnw++eTpcmTnyznkJAXyJuqjR2+K+jzcsv7yyzO1dWuNlr7eqptuzol8HgyaWvQ/B7sXkKzzxqdo9D2jI689ZR7t+fGeyOvOhk5tvW6rJGn4DcPlr/Ur0GKFn30/tToqjn9ofNQ0R/dIt7xlXmWdnaWmd6LXxHXWW0Gh+75f4aYckjWtb8z/N0ZS7Hqs3Hl3K3XiOZIkMxhQw4rH1bZ5efQDGbJ6nPdSvRp972h1Nnb2eExUt8XwsHZDsituFS3Ybg0UaAzIW+GNWlMmSY7MIbrsB4/ql7dEV6t8Pp9uueUWVVZWRgJRPAsWLNCuXbsir7OyslRdXa3HH39cbrdb1157rdasWRNp+hFPU1OT/vjHP0a99/e//12bNm3StGnT1NTUFLWObdeuXVHX7K57EAu3rC8rK1NjY6Ouu+46DRo0qMf7OFa0rwcAADhB3ffuT9TR2danECZJ0zrGyyG7bL0sDquqqoo0OjjzzDMj75umVBNK1dv+IrXOvU8NM29WzcjzVZ88PGaMcMv6c85N0+QpSXrttRY1NnRVi557rlFlZZ1yJUXfR9rU6E2XK56qiHod6rYRdMVTFar9e63MzugwUvNqTdTrIZdbzRpaP27t8Zl7EmgMqPzX5dr1o+gQYEtOU8rYM9S6abmq/nCnKn9/a2wIk6wq2BGmENa+Vqtd/9lt/MPzS5zz3YVupU9Lj3nfle+Sceg7deW7NPqe0ZH2/pFnaqrWL2/5kmy2rhgR/rm4uFjz58/XbbfdpksvvdQax9VVyTQMQ9ddd52uuuqqyHt5eXmRn7/1rW/pb3/7my699NLIBsznnXdeZIzk5GR99NFHMk0z6k+4C+K8efN02mmn6dJLL5XD4Yj8nwAXXnhhzDnhP2ErV67U9773PUldLettNltk/eLhbrjhBjkcDm3ZsiXu531BEAMAADgBrS5frVX7l0tG6MgHHzLWW6iAAnKYPW+gFW6QkJ6ertzcXElSeTBLf/dP1uv+SdoXypF56FdQUzZlBLt+0XW5rBDQ0tKVHm69NVd+v6nnnrOqUbt3+/SnQz/P/05u1LXtyV331by+Wd7y+FMXD108rnCVK8w9wi13odvqpnhY88bUiamyZ/SymZgptXzQIl9ldAXRDAVV/vBX1bD81/JX7VCg4UDPYxxB60etkfb0kuTKPfL6N88+T2StWXf+Kn/ke/FX+bX73t2R9XWH6z7lMPzznj17Il0VV61aZY3j75rGOmvWLI0aNUo+X9f3MX36dElWm/g//OEPmjJliv7617/qjDPOkCStXbtWfr9fhmFo5cqVMS3rJUXWf5WXl2v//v0666yzdNlllyklxWrysmLFCt14441Rwau7X/7yl5ozZ47efvvtyHvJycl66qmnVFxcrLq62A2777vvPjmdTi1cuDDumH1BEAMAADjBmKap+9/7pUyzfxsyj/eMkl12ueWUs4cwtnv3bklSYWGhvKZdb/lHa3XnWDWZyda1D6umnWPvmjpYUGAlnbKyrjA0dmySVrwxWrctzFVnp6lFiw4qFJKmnpyk8+dm9HivB188GPPexMcnRn7OmJmhIVcMkT09+jnyLs2Lem0GTQU9VjA8vEtiykkpmvjoRE15ZopG3DSix3s5/Dx7aqZSTvqckotmyJbSvUmFdZwt2apWOXNHypGdFWfAHi8lf50VfFz5LrmGdIWy5NHW928kGXINjQ1ruV/I1ZRnpihtSldV0Vvhle0Ie7jZ7fZIi/fq6mpdd911euyxx9TaGl1BnDBhgr71rW9px44dstlskUB17rnnRh13xx13yOl0RqYJhteJffWrX42qsHY3ceLEyFTGu+66K7IJ9C233GI9s2HoiSeeiJnOKEkbN27UnXfeKbvdrkWLFkmyKmElJSU6//zztWPHDt10000x54W7O7755ptasmRJr99RTwhiAAAAJ5hNtZtU7S2V0Z/NmE3pJG+hjEP/yQ2lx60qhX8Bzyqaopd9U1UaCq+xiU0PBbZG5bq7Qte4cVZA2LYtfhXmmWcaVHEgIKdT+uEPh+jAnvjHeco8MS3kJUU1nsi/Kl+DvzhYNlfvvw6X/6ZcnbWdMpxG1N5gktS2taua1/hOY49jmMHDvqiQqUBLreyZeRp+4+8kezgYmUoaOU1p06ypdoGWGqVOit18ON73bks+9ByHHjFlTIqSi5Ijn3tKrYYhps+M+900f9SsPf+zJ9LyPjyWc5AzfvAzbMo87csKBkM6eNAKvRs3blRWVpzgKGsN2fWH2l/+5je/0f79++V2uyNdCe12KxB3dnaqurpaV1xxRdT5d9xxR9xxJauz4VlnnSVJeuGFF2I+Hzt2rCTpD3/4Q8xn999/v0zT1HXXXafkZOv7uv766zV69Gg99dRTkdb327fHNjxZsGCBJOnhhx/u8d56QxADAAA4wfx6wx9kmv37NTAzmKaUkDvyerCZKeOw39D9fn9k+teewWfJJ0dMBayLqdPtFZLZNcXt5GnWL8IfbYjtMrh9u1d/fcFqo56T49CiRQd1/73VUcfULa3Tnv/Zo/2/tbr2ObIdsiV1PaevovcmI/F4D4W9pIKkqADkGuKSZ69H3kqv/PV+tW9r72GEWIGmg/JX7ZBn9zqZnT4p2BWMkkcXq2PHPyVJpt+j1o/jrB2L81cXWet26B9pU9KiOx4eYQZq58FOefZ6otbRSZJvvy9+8HOnK/2Mr8iZVyRJkfVSbrdbc+bMsY7pto5s3759CoVC+u1vf6vc3FzV1dXp6quvjjTDCFe+Hn30URUWFsZs9Dxv3rxIE5h4zjnHanyyY0fstgrh6lr3bo6S9d/XcIv7a665Ru+++66krpb1I0eO1KxZsyRJL7/8csy406dP17Rp07RmzRp98sknPd5bTwhiAAAAJ5BGb6Per1ktox9rwyQpKRQ9nS03lC7zsIpaS0vXdDRHRp56m0M32GhXqt0jp6srHBUUWC3rt2+3WtaH+f0h/WRRjUxTysy0qbo6oO2f+FRXF92JorPOChP+GuvclLEpco/sCo8dezr6/sBhhx4h98JcOfO6Fok5sq2pcPsf36+KJyuiworh6NuUz2BrvSp+syDqvVB7owKNlVGvY8T5qzu8O2Lq+MO6VXa7JVuyLeYejSRDyaOTNWj2IE15ZopSJ1jnu0e5lffVK2NvwdOiyiduVGfNXrmzh2rHjh3y+/2qqqrS+eefL0kxmy7PmjVL1dXVeuihh2QYRtz1VZ988klM2/qsrCzV1tZq7ty5uuyyyzR//nzdddddUcdMmzZNklWRPf3003X66adHGn58/PHHkqxGMqeffro++ugjSdLOnTvV0dEROf/tt9+OaVlfXFwsyar2xRMOnb11iuwJQQwAAOAEsqr0nzL7spvvYZxmdDu+YaFsGYetMdsZil5f1ZsZthrJlGy26Hu5/HJrzdTS161Qt2uXT5dcXKrqaqt7X36+UydPc+vkae6euz0eavSXNiVNqRO7Akn3qYQ7vrdDJfNLYppz7P2fvdFjmZLhMlS/ot5q2HFIx3brF3jffp/at3dVwxzZDtnTutadjfr+qEiHQmeeS678rjb8kmQGoqt0ztxCDbn2Fz08WB/ZpR137pAZ6hbOuv0Y8oRigpvpM60KX4VVAUwZbzW68Ff71fx+dOv98ID21CxlnPFV5X79l2pydO3PtnnzZknWBszdrV27Vvfee6/Wrl2roqIiTZw4UX0R3mssEAjo5Zdf1rPPPqvFixdHHTNiRNcavXXr1mndunWqqLC6Zno8VoW1tbVV69atU0uL1ahk3z5ry4KsrCy99dZbMVU6SSooKIg69nDhdWvh5iT9QRADAAA4gazZ91G/pyVKUqcR3cbcLZdGh/IiYawsmKXtyZMinwdbanscK0mdync0SIZks0WXdw5vWf/YY3XqvqXU9u0+bd7k1eZN3ph9xA6XXJSsjFOshh62JJs8e6OnPGYUZyhrVpbche54p0eYfiukhPxd99pT1SvQGFCgyfquUienylvlVesmK1R21vjlr6qPe541pkvJo0+N+92FK3D90bGj/xXA0feMVtvWtki7/pA3JF+5tfeaY8iYyHFp0+Zq2A2PK/ucb6j5radVXDQ40so9vH1B99bvU6ZMUU1NTSR87d27t8eOg+eff77GjRsnyZr+Z5qmfvUra9PxwsJCmaap0tLSqHO6d3E8ePCgTNNUZ2dnpDo3depU+Xw+maapz3/+85K61jOmpqbq97//fdwqXVqa1bwkHN4OF94EOlxl6w+CGAAAwAlke+NWHXHBUBw+W2yDh0mBApmGKa9p17udo2RzJkV2hvZV7exxrJFGa6RRSCgU++touGX9Aw/UamuJT58/Ly3mmL5w5jiVPDJZKSelKOSLfeahVw7ViG+NkLug9yAmSUkjkqL25Iq3UXLkuoemMIY8IdUsrunxuMPZM/PU+OYzan73+a43bVZ1LWV8Zg9nxRGUFIrTJOQIRv94tKr+UqXSB0vlLYtthBKo6aoKBdqbVPePX6ry6YVq3bRCpgzd8p3bJEleb+y5lZWV+v73v6+ZM2dGOiU+8cQTkWmDRrfy5oYNGyIbMN9+++3WvY22NuquqqqKe+/l5eWRn7OzrercTTfdpFWrViknJ0eLFy+O2tOsO7/fr9dee03f/OY3I+30+yq8/qyxsTGqVX9f9D9aAwAA4N+SaZqq8+/p8wbO3TXb29Rh80Y17MgzM5QdStUrgSHyyyHJkD0tV8HWWnlLNyp92oVxxxqpDsk0JMNUKBTbBj/csv72hdbUsmuuydIPfhA97dHrDemLl5RaLwz1uC+Y1K2aZFfcDY5HfGuEmv7ZFPWePd2upGFJkdcdu/pRXTKt1vYduzsiZY+k4UlKGjZcvoOp8pXH3wQ4UH9AgfroPcVcQ8bIX7VTrkEpypkr1S/vuaKWNj1NbR8fqkLZ1GveHnrNUFX/ObrZSdvWtsj49my7go2HfVndGqt4d6+L+shwJmntO29pyZIlke6D3TU0NOjZZ5+Nef+tt96SZHU23LnTCu/hqYhut1vf/OY3JSmyl1e4QnW4DRs2SLI2kHY6nbr99tv11FNPKTs7W2+88UakwtZdero1ZbSxsVHp6em6//77Y44JV/UyMuJvldD9/aampqgNqo+EIAYAAHCCqPfUK2T0v3OgJMmQdrvLNbVjbKRboiFD6hyrfWZXE4vkolPUtnm5vAe29jjU9ndf0dI9sWHkFw/Wyn2oDXtenkNbt/o0cWKSCgpiKxlut01utyGv1+wxh3XWd8qR4lCg+dC0yn4sjQu2Bvs8tc+eYVew2ybUnfWdGnLZECuIHcouw68frradF6h1058ixxkOl8xAVxUlZcLZsqfnqHW91fghdeoFMn0d8lftVFtJo7zlcUJWt3CZPCpZps9U7hdylTYlTXt+vKfHDZkP39DZlmxTzUtW9S5lbIrsmXa1ftga71TreW5+Ro4Ma0Ptlg9eUuOa30uyWrkXFxdr2bJlGjx4sGprrWmWp5xySiQsSdLMmTO1fv36SGOOSy+9VA888EDUNa644opIpeyNN96InBdPONCNGzdOd955px599FFlZWVpxYoVcTeBlqRRo0ZJstaeVVRURIJZd+FOi+FjD9d9HVy4EtdXBDEAAIATRHVrz79Y98WO5FJN6hgtx6FfIU2Z+ruZJEPBSJv69FMuVtvm5Qq1Naizbr+cuQWHjWJq146PdfBgtQ5XWtrVOKOs1Aoop5waW10JGzs2SVu2xAkah5KZZ59HyQXJkTVbh2tc22i1eO9WOXINcWncz63qScOaBlU+WxncLAcCAAAgAElEQVT33O5Sx6dGB5uQrPO6haTSX5Qp5Hki6rxwCHMMGqFAwwF59qyX2dn1PBkzL1PzP61pipEQJkWlTpvLppDHegDPXo+KflAU+cyeEX/TbSm2wme4DenQErpga8AKkX1gmiE5cgoUbsu4Zs0arVmzRpIiIUyy2sqffvrpkdfhvcfC4eumm27Sb3/726hg8/Of/1yS9Pzzz+tPf7ICbLx1ZZ2dnZEGIenp6XrooYeUmZmpFStWRLoexjN+/HilpKSoo6NDH374oc4777yYYz788ENJVpCMJ7weLjs7W06nM+4xPWGNGAAAwAmi1XeU1bBDdrnLIyFMkrYqqL0KRe0V5hoyRo5BwyVJzesWx4zhNgMaOvT/sXfe8VHU+f9/zmzNJtn0QkvovQsYmhRRBERUzu6dKNzZu57inaec91VOrCe2A1Q47KiggEqR3ntJSEgCCek9m2wvM78/Jtlk2Q01/k7PeT4eebg78/l85jOzKzuveb8/r3fSWY8lNNyl9u7d8vqtgQOVfSZTYK6lNkqZo/WoFckr4a5UBE+7u9sFtKtYUUH1+mqqN1T7t3ltXlxlynXSJ4deU3Q6UWlRwU79Imgjmq6V5Gg5HBc98haABhGmDKRL7obr1BHsmZuDO5zmgNiILbvJvVFySTjym8xJBOOZ81Gb1w+T7D7OVHqgOd7aUiqWzWmYVMv5oTabze9muGvXLgoLlRRMV8N3Mi4ujtdee83fPiwsjIcffpjBgwdzyy23IMsyzz77LJMnTw4ae+XKlX5nxB07dhAVFcXatWsZOnToGeeu1+uZMmUKAJ988knQ/vz8fH9tseuuuy7kGEePKo6Sl1xyyRmPFQo1IqaioqKioqKi8ltBbjlCci4cMmXhxYcWZZyvcYdcdhU9+vdUrpiLLWMjMWNnoAlvStmKQOLqa6/l2muv9W+Lj8+jV+8tAWNcPUUxhkhJaTnKMGJkOP/5Ty0dOuiZ/3Y7JlyuWM+H9wzHstOC/bidog+LQAJBJ1C9tklwiSYxwHBDdjeYh1glsp/JxtjeiKmLib4f9fW3qdtfR/Hi4qZUxwY8lZ4gDRLWKYxOT3Yi6/EsPFUeRKMZyRnsvKdP6oKgay42lYEEjZbqte+1eO6hkB0yJ+eeRGPWYMu0IVmbxJXsDJygaBQRdILfkr/x/AW9wLLH45n2XFlDSwHzsOuo2/MNoW0qBYyp/dHGtsd6YPU5z1WSJIYNG0ZsbCw//PADR44cISqqyZDE5/OxYsUKzGYzkydP5uGHH+bKK0OvOXz99df9rxvTEc8mwhp5+umnWbZsGR9++CHTp0/nqquuAsButzNz5kx8Ph/Tp0+nZ8+eIfufXgT6fFCFmIqKioqKiorKb4QIfctpfudCndbGZvM+Lqu7BCsC6/GGXHYV3nMUlu2d8FScpGbTYuInP+Lfpw9xM19bm4wkCYiiss/hkHA2CAfzGdLrunUz0KePgfT0wALQMSOisOy04K314i5TtsseOcC+XrKfwcnCB858J16Ll7Z/aOvfbDtmCxJhAKWfN6VZihEiklUiZnQMsizQGFkKJcIAwroOQ3IGp4y6i461PL8QJF6fiD3brtjsuyS00Vp8Z1gUJzklaMiCFAwCsqvhehsFXlja9BkZOw3GWZCOoAtDdjelK1Z8/QKIipTQJ3chcsBEvxCLiYmhtLSUIUOG+C3tw8LCGDduHDt37qS6uprU1FQ+++wzduzYwQ8//MB7770XYHRx2WWX+deFnYk9e/awZUuTiO/atStvv/12yLbx8fG88kpgjbbBgwfz6quv8thjjzF58mTGjBlDYmIiW7ZsoaSkhB49evDeey0L4nXr1gEwbdq0s871dFQhpqKioqKioqLyGyE5Ih7Zp0fQnJ/NdnO+i9nE+Lph7MNzRu+L+CmPULL4UcXSPoDglTFer5GKio4kJOQhijK2Zmlyp6cdns706VGkp5f7C0ADGNqHoU/W4y51Y0g20OWvXYL6FS4oDHJKPB19UmBqYuTgSH/KX4C9uwRiuIhkk5BsEsaORqIujUIQZMK6XII5bThVq14jFJZdX2HqeinhfS/HlrEJJC9h3S4lYsBVDSl/50biNcFufUdnhCrEHEyjCAPQeyX2ZjdY7osavDXFeGuDLePdZbn+14JWhy4+xf++pqaG0aNHY7M1pUo6HA6+//57DAYDN954I++++y6xsbF+18Fly5bRpUvT5zRz5sxzmvujjz4a8H7v3r3+dV2nk5qaGiTEGsfo168fr776Krt378Zms5GSksLs2bOZPXt2SBMPgAMHDnD48GHGjRtH7969Q7Y5E6oQU1FRUVFRUVH5jRAfYQB3e2TjiQuysAfIDDvJSUMhma64ltzgASXlLvXP3wZt97RQTLqkuAdJSUo6YkREUxu7XSY8PHCy2dku7r+viKnXmHnwwXj69LWwcmVTxClyQxmiQRmjdmsttVtr6fFaD3SxTWmO7f/YnvZ/bI/kksi4O8O/PeXxFE69egpBKyB7Zb+Y6fRMJyJ6RRDRS7FPP13kxI2Po25/Ha4iF7HjYxEEAVf5RGLGjcOZf7iFqwR43dgzA9MytZHxGNr2RDCEI7tsJN92KbHj6smbl6c4OTZeDhkQlRpcmY9mYupiIu6KOMJ7hAMQPTqa2i2BYjN2YizVa6qJHhGNZbcFfYIOV3GTMK9q7n0i+UKKsEZSn1oZuEFrAK+y5mv37t1B7WVZxul0MmnSJGJjYwH8BhdOp5P09HREUWTQoEHcdNNNLR43KyuLNWvWsG/fPjIymj67F154gb/+9a8t9gPFXOOVV15h5cqVnDhxAo/HQ2JiIsOHD2f27NlcdtllQX0mTJjA7t27OX78OMnJyf7tH3ygOEU+8sgjQX3OBdWsQ0VFRUVFRUXlN4IgCMTrunFRt4ACLE74jkyk83GD92MTNAghaofV18djtUYjy03W9AB1dcFHmT+/Er1e4PbblbVnjQWgG9n7XW3IgsSh8NkDx/fWNKQeiuDIdZyrZwWmriYSr1WiUq4iF67KsbirxgKgjVbMSWKvepAOD3/W0hAARI2+ndgr7kUTFkn8lEcRdEZKP95F7nO5TamVDb4Ygl4gvE84kYMi0YRpqNtbx8mXTlL5g1Jzy5ZhCxrfssOCqBeRfTKyT6b3n9rRtW0zU5EQGZvJd7yB0CyyaeoxMkiEOfMP+0UYKOYWU6dO9RdRHjduHLIsI8syM2bMaPH8JUli7ty5AQWeT+fdd9/loYceYvHixdTU1LTY7nRyc3Pp378/c+fOpaSkhLFjxzJt2jTMZjPLli1jzJgxAYYhjcydO5f6+npmz57t31ZQUMDChQsZO3Ys11xzzTnPoTmqEFNRUVFRUVFR+Q3RM7YXgnCG9VHnwM6II6RzYemNdkFA9ESEMNgTyM8b6I/Udeum3Pjn53sCWm3eZCX9qItrrjETE6Pxt12ztrO/zU03R/HiS8ncPCfQJTEUGlOgKLTsVOzTZY9M5IDIgCjamTC0NWAeEo2pm4nqDXXUbDRQu/UTypfNoXTpkwBU//AW9ftXNZ1xhBIVQtQS3qfJOt1ZeIyKFf+keu27yD7lOruKXMiepoumidCQ8mAKnR7vRMoDKXR7sRttZyjr2Uq/LMWeY8dT1XTtkm9OxphqxFfnwzzETId7OvD46x15/mQ5Q0KUv9K3azKnqFn3b2RPk8jSJ3XBW1dB/cHvqfrhLYoW3kvZZ8/490dFRfH1118TGxuL2+0mOTmZefPmAUp0yWw2U1oaXL4gIiICWZaZMGHCGa913759eeKJJ/j44485duwYv//978/YvpHHHnuM4uJipkyZQn5+PqtWreLLL78kIyOD999/H4CnnnrK7+jYyJAhQ7j66qtZvHgxhw4dAmDOnDl4PB7efPPNczp2KFQhpqKioqKioqLyG2Jc6gjkFtIDzxXZF97gl3gBCOD0RRAq1FRd3YHy8o7IsuC3ps/ICIxsffWVIpQmTQ69bgfg2mujGDbMxKxRTVGcRov9uv11OPKaTDtEg+hPY4SmKJKgF/zCppGaLTUcnXGUrMezgo4phmuRfWHETpiF7PFRufpNLNs+xZG7B5+1ya3RdqzJjl4XmdgwB5Pfr99VnEXZx3/GnrkFWZIRZAltmBh01y55JPJfy6dmS1NEKHZsrLKuzQdFi4v82yP6RRB/VTyyWxHgYXYP/yqr4Kq95UxbbOOzdC+aZh+HaIzAXZTpf+8qyvAbcwCYug/HnrWd6h/fxnroR7xVBQFzGzRoEC+88AKLFy/GaDSybNkyv717qOhSI2Fh52YmM2vWLObNm8ett95Kz549EcVz+z7/9NNPADz33HOEh4cH7PvTn/5Et27d8Hq97NmzJ6jvzJkzkWXZL7wWLlyI1+ulf//+53TsUKhCTEVFRUVFRUXlN8QVPbrgq+t/cWJMOrf6Wi1RLZlACF1zKjdnGF6vnhEjlBvl/fuaRFN2tov0dBe9ehno0EHP0v/U8MADRf6/Rp79a2nQNq9euWG2HrOR+3wuWY9nkf96PgXvF4S8I257e1t0MadFwxqmLGiDRaTkHoQt9wk05itJ/fO3hPcZS/RlfyDxhjkk3zXf385Tme9/7S7LVoaVfDhylZt/54l9gIw57UYkWzWyDINi5CDZmzQ5AWQo+aQEny04fdNV0BTBSr45GXeeHVeJG40INUdsDKiyIwowvZeWzTNM9B42oulcXHbMaTf43wtaPUjKMQzteqOL64A2OonIS6YSNfI2pU3z1EWTib/97W8YDAa++eYbRo4c6d8XKrrUiNVq5efEaGy5Jl1z4uPjg7ZNmTKF+Ph4Pv30U6qrq0P0On9UIaaioqKioqKi8hsiNlxPWvzUi0tPvMh6ZKdkM8ih1wB5vQayj6fRrbtiTZ+Z2WRNv32bEq0afIkSOSku9pB5zOX/ayQnxx20rX3dSCzxDxM+rAsxl8WgidDgOOmgbncdkjvwWkT0jSBmdHC+XmPh5+Ypgo2cfGkXJR89S9WadwCIn/wIuvgURFMUmpbKBjSIG9llQ3I0mI3IErq4FCUK1UCtE3wSdIpuumbRmRZEjVLQ2XFSEavVG6v9dv2NREaKdPy6EN27eQCE68DphT9842B8Jy3LbjSxo+1tVF9yd5OYkiXqdn7pH0P2ugEZNDrir1NSEE3d0oidcDeCVhGrgt7kb7969WpEUeR3v/sdCQkJQad9enSpkZiYEDmSrcikSZMAJa3QbrcH7FuwYAHZ2dn069eP4cOHB/XV6XSMHTsWp9PJjz/+2CrzUV0TVVRUVFRUVFR+Y9w/YgJ/+HEBoqEMoYXI1BkRLsSmo4kTGpGRznjcxoqQZhhVVSnknRzI9OlWvzX9PffGceCAkqbYu7cS2fjzU4n8+alg2/ZGjjg0PHq1EnXqWpBPzpBb8I1/D9OoXOLq12Kw70LAhz3PxYnns5W5yBA3OS5orJotNf6URk+1J2i/pywHwC9MQDGwqN/3LRpzsBhRGovEjJ+Jecg0Kle9ju3oev8urauaRhn593FGbu6rY3uBl5Ef2NFrIPOYy3/p4j8roM4lU1IRLK7r6yXW7WtK76xrGHRTvmJK8rb3Gt7xXYM2UiBu8qNUfvsyyCFEus5A8m3z0IZHB2x2VyhOl7LbEbBdkiQ+/vhjPv74Y2677TYWLVqEwaAIvebRpb/97W/+PklJSaGvUysxb948MjIyWLVqFSkpKaSlpWEymUhPTyczM5MpU6awYMECtNrQEmnEiBEsW7aM9evXc8stt1z0fNSImIqKioqKiorKb4xLUmNI8E67MBEGIF54HTIAhwil7uQzOhIWFPSlY6c0+vQ1sHJlHTXVXnJyFBWRknJ2Aw1ZhtW1Te06Fxfg02pBEPAaulIffy9V7d7CEn0fmqiJaKON/tRD66HgFDlXiSaEwUgghg59Sb51rv+9qXsaEf2vRBNmbmqkbUrhS7xxDuYhpxUC1ujwVJ1C51Cib3oRbuqjxeqWmbNJOf+/XqZnanetfzp7C30cr5CIN3HOdIsV+afnZuZ5b6bxgwjvOSrANKQR0RRN+7sXYkjqHLRPcij122SPIvYEQeCjjz6ivLycDz74ALPZzMcff8xDDz3k79M8utS4bgvwryP7uUhKSmLjxo3cfvvtVFVVBZh1tGvXjvHjx4eM4DXSp08fAPbv398q81GFmIqKioqKiorKbwxBEPjruBvwWAYgt5AieMb+GhuI52YP3xJ7NWFoPOFnEDeKi+L114/E7Zb58KManE6lsdl89tTIPLdIiafp3PrlHkfj8wa0cZ8oouD6Byj4LANvrSJyNBExVP9kpXT5cAoWdcOjeIPgyKkCoN29H2ForxTvTfzdc0SNUCIj5uE3EdFvAvn/vNr/V/bpM1gPrwkoftzc4l0X2yFo3qYeIxAMYdTWK9fXLUHvd2x0eK2ePUU+HrlUx6L9blZnK+fSwSww93I9E7tosJ6mj4e0EZGfM2Od3WRssv4Pytq7LGs4861jqdn0EcWL7ufUa9PJ/+dUJSonaogae6e/T+TgKWjClbTBss/+wqnXb8BnbTAJkQM/wAkTJnDHHXeQkJDAnXfeyYIFCwDF3CIvL8/fbsQIZU3axo0b/dvGjx8fdD1ak8zMTAYNGsR3333HO++8Q0FBARaLhY0bN5KUlMTjjz/O5MmT8flCR3zj4pRIaVlZWavMR01NVPmfRZZlHHUWPC4XPq8XjVaLzmAgzBx1xtoUKioqKioqvwWu6J3EuIN/YovjSWSN47yiY4IAGmMRPntnzrnQ1mkUa2S8thSE6GNnOhKiMJrX3+hIXNxmVq9Soi8m09mPudWqJdredE6Rdivj9u5gw5AR+DSKkKt7+XmQJJxHdyMYjOhi2uGuPAU+D5XfLgpZVMtnrcZddgIAbVwHNBGxWLZ/ijPvAGGdByPojP7o0Nmo+PoFvxuh5FKicNpuXZg4sSM/vL7Y3y6zUplHogne2+fB2aAno40wMEnk6fWhI5TRYcp1sriarsOx8EHAVuwOF65FD+CzVSuOjXJDcTIAyYdl44f+Pu7yk1Sueh0Ar6UM2e2gas18Eq9/FlkKFLd5eXlBdcIMBgMul4sNGzZw552KwGuMLh08eBBQjDQmTpx41mt2oXi9XqZPn05OTg5ffPEFN9zQZEYyZswY1qxZQ+/evVm7di1Llizxz7M5ZrMS2Tyf2mVnQhViKv8z2OssFKQfpuxEDiU5xyk7kYPH6QhqpzOGkdS5K226diepc1c69OmPyRz1X5ixioqKiorKf5cXp6Ux9p0bkRI/Ou++mrACfPaOcBE29ls1ZiY4EnC1sFaskeqqDlRWTANeBcBmk4mIaLmD1QcH7BriTlvKde2mtay7dDQAzk1r8eZmgUYDNitERSPpBPC6ESNikayhnfHqD/3gF1qaMDNidDKGdr1wFR1DYzQjhpnxeZyYuo9AaDDpcBVm4K0tCRqreaRMNClrr6z71vHjilPoRPA06MDRKRoOl/kob+Yv8fClOp4YYeCJNS2LvsxKiSfXurh/aNMt/99rpgBbAUkRYQBaPVpzIt6qUyHHcRzf7n+tiVCiQo7sXRQvug9PZaB1fXZ2NtnZ2SHHKSlRrsG6deuYM2cOAEeOHAGgS5cu/uLPpzNr1iw++ugjDhw4QL9+/Vo83zOxa9cuMjIyMBgMXH/99UH7Y2JimDRpEh9++CHr1q0LKcQsFou/bWugCjGVXzWyLFOSncnBH1eRtWMLks+HqNEgtRBSBvA4HRRmHKE4K8PfvseIyxh45RTadOuhRstUVFRUVH4zxITreXnybTy4ugRD4vk5wYnGIi5YhDWQq5PoZe9IgqEGGe8ZxZgoRqDT6fB4PJSVhRMR4UCSBEQxOJKX7dIgIaD1Be7rfTKbzoWnONm2PdYP3gZAn3YZ7m0bkC21eC21AC2KMABvbVMh4kahFTlkGq6iY9QfbrqGMeNnoo1qMp/I/+fVjb0QdAba3b0QTXg0Msppl2+Zj2P7D0iFihjyNAvGfTI9jPZmkftXu3hnj2LS8fxYI9FGgVv66ii1ymzO9yGjrDtq7Gp1ybyy3cVbB3Wg1YPXja+uIa2uIU1TG9ee5NvmoQlT0her171P/b7vAs653b0foTUrlu6OvIOUf/5XZY41xSR07E5FXmBdtT/96U+89957/nuqzp07c/LkSSIiInj99dd57LHHgq5reno6Q4YMYevWrUH28c8//7x/ndmGDRuC+p4Lp04p19VkMqHRhP7eRkUpD+ZbsqevqlLSU1vLVOS81og9//zzCIIQ8NezZ8+zd1RR+RnI2bOTJU8+wKfPPknm9i1+8XUmEdac5u0zt23m02efYMmfHyRn766fbc4qKioqKiq/NCb2SeahS+7GVTn2vPppTLnAxbknAqwzgr6u2zllOLZp0waAjRv6cfDAVVRUdESSlI6SJPiXKxW4RURkvKfdbwvAXd99gTv3OL4CpZ5X5B8fIumnAwF/bT7bTspfV5Py1Eo05kBXxuiRt/pfNzoFhvcchaFdb6wHf0AOkc4YiEzkoMl+EYZOxD0oFjmyyVjkyo5ayp+IaNYDPKJAVI9L/O+XH1PCfWntNewoVETYe9Mi0TTc3ev0ejrcuwhjx0G47FYEjRJtchWkB8wmvM/lTSLsp4XU7/sO0RAOmhYMUQQBQ0pDEWPJx7rVKzGZTM12C/z73//mP//5DwDHjx8nP1+51lFRUTz++ONoNBreeOONgGHHjBlDVlYW99xzT9Ah27dvz6xZs9i4cSPffvtt6HmdhXbt2gFKWmFLEbtdu5R7wE6dOoXcf/ToUaD1TEXO26yjT58+lJSU+P+2bt3aKhNRUTlXHPV1rPrXy6x45R9UNTw1kqWL+yFo7F9VkM+KeS+w6l8v46ivu+i5qqioqKio/Bq4f1xXZva+D1e5skbnXAw8RK0drfkwFyvGnCKsF82Y6juetW3HjkqbwsIi6usTOJ41il07f8exjMsoKuqNxZKE16vllFtEAlwhtMTIw/uIWfiWcg7xCWhTgo8rJYbhGpWIlBxc/0vQ6hF0in2+z1FH7daPyf/n1UheF7LXjeyyBfXx1pUHvA/vf6VynDZhuEYlISWGIUhN0bte8RoSwptu0wVAK8nc1K+MRsV6z7ZYhlW/wOW5t+P2gTGuHU/XXuePpMkR8dQZkohqEI5yg0mIs0hZk9d4DvasrUgeJzUbPqB+z3IEQzgRgyaDL9iiHyAsdQDJt7yIYDCBLLNm1XIef/xx//5GEbNkyRKqqqqYNWsWkiQxbNgwVq1ahSzL3HnnnUHBnPnz5yOKIl999RWZmZlBx505cyZAkIA7V4YPH+4XY7NmzaKiosK/T5Ik5s6dy44dOwBatKbfvl1J0WwtU5HzTk3UarUkJye3ysFVVM6X7D07WPP+v3DZlH/kZPkCbXdboHG8rB1byTt8kCvvfpBuQ4OL+qmoqKioqPxakWUZm82Gx+PB5/Oh0WjQ6XQ8ObEHEcZ7eH1bIsY2X52TgYc+ZgfeukEXPaccvUScM5nBVh+OiIIW2/Xs2ZPNmzdz4sQJ/82w12uksjKVyspUADZt2sjuU3uQT7NjvL+oEF1Dqlyx+zgAur5nmLteg2dArOIff/qupC64CtPxVBX4XQM1xkja/vlbCt+9C5/HgfXwOiRnPbLkw1Nd6O+rS+qMNrUjNm0JlvdfUzbKMlJx03kvOuxiZ0mgCYYAGE+V0mio4aoqZu/7s9FGK/flzpoynJuW+NuLukAve43JjK++Cm9NMYJWj6nveGwHVuMpy6XgzVsU4SUIyF5XQDFnCDQV0Sd3Ie7K+2jXMYrCLDuff/4527Zt49NPPyUnJ8cf/dq5cyfdu3enurqa1NRUlixZwuDBgwG49dZbgyzgU1JSGDlyJFu2bOGbb75h9uzZAfsHDhzIgAED2LBhA1999RXz5s3z78vNVdbavf/++6xcudK//ZtvvvFHUXU6HUuWLGHq1Kls3ryZrl27cumllxIZGcmhQ4f8YzzzzDOMHj2a0/F4PGzevLlVTUXOW4hlZ2fTtm1bjEYjw4cP56WXXiIlJaXF9i6XC5eryaazrk6NMqicP7Iss3v5l2z9bIli1dTKAizoeJKE01rPt6/8H6Nu/gPDrr1BXTumoqKiovKrxGazcfLkSUpKSigqKqK4uBi3O9hlT6/X07ZtW/7cpTvLs++hyLwBKeYAsiy0KMjEsFOIhhIkVxIXWxVpl8GH3tmO/vUabJF5+BdPNaNNmzZ06NCBgoICKioqQtZ8qqytwn7CHrT9WLP70Ub0Q87+sFXWBE5CFsCY0h9XYTquokw8DYYbEf2vCGhn2f5pyPE0vXrgHpGI71ABnmNHQraxumFXUWCksdwmMfNbxZgjMs6MnDIKZ/5hPFUNIq/RvVCj80ezJLcDy7ZPlD6XTMV6eB3e6kKMnS4hduxdeKuLcOUfaop+ybJ/7VhzmpuKCFodkzutoX6og6VZkJWVhV6v59Zbb+Xvf/87Op0On8+H3W4nJSWFe+65h8cff5zi4mLsduVzGTJkCPPnzw86zpAhQ9iyZQsHDhwIeV2uuOIKDh06xA8//OBPI2xOYWEhhYVNotd12mc+fvx4jhw5wmuvvcb69evZunUrXq+XhIQErrvuOu69916uuOKK04cFYOXKlVRWVnLnnXcSGxsbss35cl5C7NJLL+Wjjz6iR48elJSUMGfOHEaPHs3Ro0eJjIwM2eell17yu6KoqFwIsiyz9dPF7F6xrHHD/68DA7D1syW4nQ5G3fwHVYypqKioqPwqkGWZwsJCdu/eTXp6OpIkIYoi0hnWL7ndbvLy8hBFkWGShFzbhZOWbpyI3Y8lMgcZEUEI7C8IYEhYg6PwjouftABbjD7crjZcWmOiPup4SAOPtLQ0CgoK2L9/f8jIxFXTr4JHmt7ftsHHlN0y2oap2yWJIdlKROym4gknT6YAACAASURBVFN8FzRCIAmfrgagbLwSPXNfEoeu55Ww/VMcBQfwlp1Cn9wVU6/LAAjrMhRj+944S4/jKslEctbjqyz2j+fc/CPee/IQtFrCrrkB8yPPMGv5Z9z24woQZOY6C1iSFygkb/3KwaEyH3UuxbL+tT8bORLbga9z7kNAwpa9m4rlL4Hk8wspT00xRe8qzn/Rl/0B87Dp2I9tAUDUG/HVV+CpDO2S2IgYHkNYx0FoTFHEjr8TGZHp3b5lcqeVfJ+tLMCrr68nLS3NL4AaxU9KSgpms5np06cTGxvLtm3blLlER2M0Gtm8eTMAffv29a+96tBBqat28uTJkPNprD128uTJC86K6ty5c0gReDY++OADBEEIKEx9sZzXo4tJkyZxww030L9/fyZOnMjq1aupra3liy++aLHP7NmzsVgs/r+CgpbDzSoqodi9/MsmEdZKFNVYePLLVXyz/2jI/VmlFSzcvJu/LV/DU8u+Z9qse5l+1ZUBT1lai/379/PKK69wyy230L17d0RRRBAEli5dek79v/zyS8aOHUtMTAzh4eEMGDCAl19+GY8ndG73hAkTMJvNlJaWhtyvoqKiovLrJjMzk3fffZdFixb5RRhwRhHWnMZ2AjKdkZhQNYDxeTeRVDkcWVZuHWVZ9D8X1UYeQ2s+SGsYdyDALqOXTMKIrRiKwdkQ8Wp2z927d286dOjAvn37sFqtwfMn8DxPJAt+EQZQ4W2K+MzatYVbf1h+fnPUiWjSBqLrMwBP4XFkjxPTQ4/iGpOMa1Qi4f94Hs19N+GNkfAUZgWIMGWCEt7sY3iOHcGbf4Jbf1jOrT+uaDhPgbfGRbD8pjCmdm+Kl+wp9tHeLPJomp5D90ZwVYTElM5reWDgAsJ1diK6DcXQpgfNL5bstiM5reiTu2Fo1wt3aTbuslxEUxS2rO2UL5uDZDtzPSzJVoMt/SfsWdsI19l5YOACJndaB0Bks6Lau3btoqioSDluwxcjPz+fXbt2+bPh6uuVGnDh4eH+6BLAP/7xD/84ERGKQUlLGXSNtcdOT2v8udmzZw8rV67kjjvuYODAga027kXZ10dHR9O9e3dycnJabGMwGDAYDBdzGJXfMNl7dijpiK3MNwfS0Wk0TOjdLWjfD0eyWHdM+U63izETG26i1FLPN2vWsb53bzZu2sSgQRefD9/I3//+d1asWHFBfR955BHefPNNtFot48ePJyIigp9++omnnnqK7777jjVr1hAWFrjQeO7cuQwdOpTZs2fz4YcftjCyioqKisqvDbvdzurVqzl69Kg/g+NcxVeLNNxUx+BltDWZk3V3sEfvRDIVIxgL0BiLEDQujEnfYrV1Q/CGIQsXl6II0E6oRCO3w2zphcuZgC0iH5/OpuQFCjKTJk1iwYIFbN68mcmTJwf0FU+LMxxNFfCK+MWY0EzVCcCsFZ9jcjpZeO3NCJKELJ7b/E2/uw1L+iFMN9yOIU2J1DSP0UQ9/XciH3iSit9dAe7AFDlNm3bEf7ySP37zKbeu+LxphyBjSnIzzaBjWk8dwhxFkGQ/GEF7c9O8pAo32V0kBiUeoVt0Ls8v6MDJogwEnQHBFI1kKUMX35HIQZOo2bSYss/+gja2HYI+jPirn6D8i7/5bfijxtxBdNoNAfOTfV4K5t+O7LSii0/lur/cya29/kGErilSFxvbJCPKysp45plnWLRoEXFxcWzfvp3u3bu3eO0ao0v79++nc+fO53S9AeLilBpmNTU1uN3uFuuOtTazZ88mMjKSl156qVXHvSghZrVayc3N5fe//31rzUdFxY+jvo417/+r1deEHSooIa+yhrE9OhNpDHxIcKyknHXHchAEuD1tMAM6KAs8ZVlmbUYOa9KPc/3115GZmdVqDxjS0tLo06cPgwcPZtCgQdx1111s2rTprP2WL1/Om2++SUREBJs2bfIvgK2srGT8+PFs3bqVZ599lldeeSWg35AhQ7j66qtZvHgxjzzyCAMGDGiV81BRUVFROTOyLOOo9+B1+5B8MqJGQKvXEBapu+jU94yMDFYu/x6Xw4NGDkNGAkFCFj3nZAt/rnTW1NNNNEDSNNJtkRzOr8HmrQPBA4L3gkSYDKAXkUUBRAEkmRi7EbmhRpnBFY/eFYdXV4/DVIzLWEGbNm147tnnggw5ADRSoGd9vUlgey+BkRkyGhkStE1WisVeLz20Wm77cQWpJYXM+/3dWMNMSC3UmWqOccwV2PsOxPHdV5humoEmNi6ojXP99+B2ISYmI5U3ZaJIFeW88O4rjDq8r6mxIGNOcaA1nF08izLE1HooTzCQd7yag18rGT49briL3HU/IAGCRkvk4CmIxggqv5uHz1pN+3s/RDRGEHPF3dSsfQ+AiN7jgsbXaAV0se1xF2eitRfxp/7BD8WrKptkxAsvvMCiRYuIiYlh7dq1IUVY4zImi8XCypUrmTFjBgMHDgyIfjVGOM1mc8jzbr69traWxMTEkO1am3Xr1v0s456XEHviiSeYOnUqqampFBcX89xzz6HRaFq0eFRRuRh++vA9xR2xldeEbTmu5B0P69ShxX2XpLb3izBQamJc0bsrGcVl5OXls3TpUr+N6sXy9NNPX1C/F1980d+/UYQBxMfH88477zB69Gjmz5/Ps88+6y9Q2MjMmTNZuXIlb775Jh988MGFT15FRUVFpUUcVjeFmTVUnKqnLK+Oivx6PK7g9D2dQUNCaiRJHc0kpETSvmcMYRFnftLffOzjB09RX+ElXB5E+GntJMGLV2fFq6vHq63HbahFFoPNGM4VWZbxup2QvY37Lr+ckbMmUm334PT4cHsllr71OR+4z+yuLetEpFgDUpQOyaxDjtKDtpmAk2W8X+sDSkULCOg8ZnQWM1JdFzz6WvRGKzp9PZViPR6h6boaJANaSYu32Xn+OFjksnSlTZgo+oseH3U66WFUbNxHHd5Hv+cf4183zuCnYSPPKToW+eBTVN97G7b/LMD8cPDvuWO1kvZonHg19v8s9G83y1KgCAOQBWK7BVvfh0ISINLqpTzBwI8/Kil/kyZF8thdP3Ln9nKUhRSKoIvslUblai2yy4arJJuwToMQmqlzn92C1hyHRpDwyRo0gpdhyftZ68mjCtCIoYXhyTzl2yaKIvPnzyc6Opo1a9a0mDXUWHrAarW2GF1qXMLU2PZ0LBaL/3VMTEwLV+fXw3kJscLCQm655RaqqqpISEhg1KhR7Ny5M6RjjYrKxZCzZyeZ2za3+rhFNRbyqmpIjYsm0RwRtL+gRvkfvFtS8FMtQRDomhhHYY2FJYsWtpoQuxCKiorYs2cPoFjAns6oUaP8rlKrV68OelgyZcoU4uPj+fTTT3nllVdazf1HRUVF5beOLMuUnazjyMZCcvaWI0kyoiggSS0/VPS4fBQfr6U0x+Jv33VIIv3Gtiepk9kfLQs1NoKMLIPYwi2dKGvRuaPQuc0IiMhIuIwVOEzFeHX1FxUtW79+PS6Xi8svv9w/x4fT2mBbsI7Pe1weeF0AOUqPNyVcqc3VEPlCQMl8aYbJJWM4g1YUZR0GVwK4EuhkEJkcJuLEgxcfkiAjygJZjsOkm3L855fdDvIToEOlEk1K0mop8XrZZrcxPTraP3aUzcqzH85n3L4dfDj1Rk60T0Hj8+LThL6+um49SVq3L+Q+T+5xvNnHQBQxTZmO84ulSC7F9bB/g/hrRELm39Zy/vV2DWNSNWyccbqkDkSQwVynXKTycuW/JpOIIIBeozhito8s5o/9PyCvLoVFeh1ehxfJqYg2Y6cmsVS9+lVG3D2Lnu2qSDUX0D36OKu/KaaqQplrhw7B5y4IWg4dVKJXkiQRFRXFmjVrGDJkSItz7tGjByaTCbvdzooVK0KWw9q7dy9AwAPm5lRVVQGKCNPpWig4/SvivITYZ5999nPNQ0XFjyzLbPv8PwiC0Op1wo4WlQHQLTE+5H53wwJeUws5x+EGZfuBg4eQZfm/5qLYaOsaGxvbYvX3IUOGUFBQwIEDB4KEmE6nY+zYsSxbtowff/xRjWqrqKiotAInDlaw69sTVBfbEEQBuUF8nUmENUdq1j57bznHd5cR1y6cS6/pjCwTcmxk4axaSmkhNLwWMTgTMDqT8Gqt2CLycBur/W1LSkpYsGABQ4YMCVp7lZ2dTVFRESUlJRQXF/vTyJYtW8b06dMBCB8+nDv+/BRhXhcf9ZmMIEt4E03YpVPYVn6M58hBpHoLYlQM+kFDCb/1LrQduwQcR+c799/+bJeEVoDuRuX32eP1sqvgEAU7C8jNz8VV5kJyS2jDtfwxychf7NGMiYhgZHg4yywW9tsdyjWXZQ45HWy12dhlt5ObfZz6Lz8GQUCjNyDFNt031L38PGKYUqNL260nvsJ8PJnpxC1ZjufYETTxiRi79KDueyUa1rZrD/654A0e93lpLOt8R0zgA1ARgRyNEg073bY+FAJgtnpBltHrlM929eo60jOcFBUq9zLFhS4W/2MVLpeE16EYeD057mtSu63HK2l5cpWBkiIX7opT7Hr1Oep7GzlqEngr101xcZMSnjYtKuj4Ho+Ho0cVcw6DwcDatWsZOnToGees1+uZMmUKX375JZ988gnjxgWmRJ46dcpfMPm6664LOUaju+Ill1xytkv0q+Ci1oipqPwclGRnUlmQ/7OMnVOuOPSkxocOZ0cYDFgcTqqtwfVHAKoattc7HOQeOkDXgaGf2PzcNNq6nqmG37lYwC5btoz169erQkxFRUXlInDUu9mybA95R4pA40Vn0iL59PhckVxoyKlRaFUV2Vj9bkOtKSFw34UiNJhZaLzhRNX2xWksx2rOQRa9fP/992i1WsaMGRPU76uvvgqqywSwbds2+vTpQ8+ePdHGxBA1aRI3rV5NvLeOebf+EcvBtdS/oVira1I7Yeg3EF/hKZzrVuPctI7oF17DMGykfzzNefqLHHNKeGXoHaZhx6kD3PbF4wBoo7SEdw9HMAi4il0UZlu5Fyu/i47mpqhollkslPu85LpcaAWB204pVu5RokhfYxiHnQ7qJUmJYpU0uSb78nL9/pC+8lKi//E61ffejnXBW+iMRiwrviAi0ozbpghVU14u9+dkUddgnDLCZGJEeFPEyyeAs5OLgn2K+IkynNt3RuuT0XlkOnbSsWMHOBwymceaPh+nM/B9fLyGQX19iKLilPj3OQncf18hbrfSd/9+RZQ2z8acMCGCyycEZxC9+H8V+HzK+SxevPisIqyRp59+mmXLlvHhhx8yffp0rrrqKv++Bx54AJ/Px/Tp0+nZs2fI/o1CrbGY968dVYip/OI4+OMqBFGDLLWCDe5pFNUqC0ITI4P/UQHomhjHvvwidp8sYETX1ICIl93t4VBhif/9zlUr/mtCrLkFbEv8Ui1gVVRUVH7tuN3V1NTsoL7+KGXFe7E7M9CkOumSGtjO5zHgrEnFWd0JZ3Uq9vKe+Nyh666eE61cRrMxlmZwJqB3xbCj5HMKCgoYMWJEyN+XXr16ERsbS5s2bWjTpk2AGdSKFStISUnBZDIRc+strM4vZvF1NxNWkM6pN14ESSLhrvsRb5vpT0V0fL+CunnPY3nhaeKXfosYpTwk9V2A6WK2S6LeJyMhMqn7GG4eNoXXLl+Kr1ndM8suCwXvF7CstpZBxjA66vTkedwsqq7inrh4LjWZuCs2lhGmcDSCwDMlxSxv4Te0kX4eFy9/spDnYmLY9eO3zE5K4nBUFBlOJ+WCgAUo8nhoo9ORptezxmqlvpmTpQTYjdChfw3HflS26zWQtjBwrdg1n9rRNxSWHtxG5J0piiOyRpKZMsXMp59YOBu33haNKDbd13TqpGfqVDNffVVHWJiALIPHIxMZKdK1m4Grropk7Njg+6Ud2x1s3twgMk0mvv/+e77//vugdvHx8UGGYYMHD+bVV1/lscceY/LkyYwZM8a/1mvTpk306NGD9957r8VzaDTNmDZt2lnP99eAKsRUflHY6yxk7djys4gwl9eL26uMG24InVc8rmcXDhWWUFRbx+Lt+5jYtwexpjBKLPUsP5DuT10EOLF3J/Y6CyZzcMj+10CjBWxZWdl/eSYqKioqv3xkWaau7gAFhUspL1+FLHtB1iDjQ2zhbkqjc2FKOI4pPhdB9CFLInWnhlGTMxZndWda1c7wIhAQQNaya+duAAYNDG22cKabX6fTybeLFjHO6SJ7zz4GZ2WyZM4TPFdaSpYkMTQsjMXb1mPfu42slM5kdurC8ZROrEwbjW3nFuxffULEXfcD4NFc2HUp9croYvvz7JRBdNCL7LUcY3PUPr8Yi7o0Cmu6lZrNNXxXZ+HhhHgeLS5mZV0djyUk8mGHwCyTF9u05cU2bQF4r6qSf1VW0kGn48fOgamUlJdya5iJnTU1HHQ4+b82bWiJ2/LzOeB0kOty0cVgQAT2jvNgK3HjlcCggYI6mYK6wPugA6VN4s3Y7PsmSJCcrGPd+s5s22bjh+/rOX7chcXiQ6MRSE7WMmSIid/dEEVCQvAXtaBQSVl87LEExo0P/ZD6dLKyHP7XdrudxYsXh2yXmpoaJMQAHn30Ufr168err77K7t27sdlsDXN4jOeff97vrng6Bw4c4PDhw4wbN47evXuf01x/6ahCTOUXRUH6YSRf64swAKenSUQZtKG/+slRkdwx4hI+2XmAo0Vl/jVlACa9jqkDerP8QDoCYNBoKEg/Qo/ho36W+Z6Jxn+kGv/xCsW5WsDW1Jy5mKOKiorKb52KirXknngNm+04gqBBlht+pwTf2ddnCUo7AEGUMKfsJqrjTpy17ag8ei3WYqU4bEFlNi9/fR+je1/DjaMeDBgj/dQu8sozKag4zqnKbOrsimHBC7d9RkzEuRumSZKP11Y8TF75MQAeveYNurTpB0BhZQ4nytLpmNiLVOMQbHLeeelEWZbZmpXFlrVrKSotJcPp4oTb5U/hG94QYTO5nAzMzqBfbhZayUeXWgsvAtKaVdT7fLi2bcRXWsyTgo62MZ0Y2WsKw7pfEfKYb618kvzyTP5282LMJmXNlUeG/XYfxW6JcVWXsSF6T0AfY4piknFc52VipJmehioyXS5er6g4o4DqZVD6lXpDu4iMiYggRqNhdX0dTyYmEt2C/f0fYmM4UOxgmaWWpxKT+GSMyO8SLERJShhw/mQjswafe20suVn0cOTIcEaOPLPJR3M8HpnDh5x0765n7Lhz7Sdw+LDyxRg+fLg/VfB8mTBhAhMmTACUzJ2oqCiee+65FkUY4Hd5fuSRRy7omL9EVCGm8oui7EQOokbzs4ixsGbuOi6vF2MLbju92iTyzJTxHC4soaS2Hp8skWSOZFBKWwobXBXjI8PR63WUncz5rwixRlvXRpvXUJyrBez/gv2rioqKys+Bx1ND1vE5lJV9R6Mq8YuwC0RosAI3mItpP+ptLPnDKDtwC19um49Oo2fSJbcH9flo/f/hcJ+brXkoGkVex8Se5JUfQ0BARsbuqmfX8TVkFOzhWIEiWE5VHOfVD/5Gl07dGHpZP6KbOQo24nQ6yc3N9b9/6623kGUZrVYbcg0ZQLTYJEwEQNuQ+RLXkCrnKC+BTz9EHx6BZvAwEkptFBRmsGTDXJZsmEu/1BEkRrUnu+QQFZZCXF4nOo0el8fB/30xE41GFyBQiUhALu+AWK2j4HAejgIH3hov3ganwRqnh5liGZ10OjJdLr6rs/BDfR3xWi39jEYKPB5OuN2s7tSZBK2WfLfiRJjQgsDSCQJDw0yssdazzWZjSrOHoCfdLrbZbGQ4naQ7leuzuKaGE+1EEgbH0b/EjRAtIj8X/OC02iEzb5uL5Vle8moljFrol6jhj4N1/H6AHp8YrJaffLKErEwnHy3uEFB0+XTSjzpxOmVmzoo9D/MxmX79LiU9fe0ZUwhbm4KCAhYuXMjYsWO55ppr/r8d9+dGFWIqvyhKcrJ+toiYXqtBr9Xg9vqwuTwtCjGAML2OSzsHG2GcrFCcpbonxSP5fJTmZP0scz0bjTU6qqqqOHnyZEjnxHO1gE1KSvqZZqmioqLy66WiYg3HMp/B42lcI9S6C7QEURnP3GEv+3O2c6L0FBMG3EhkWPDDsQGdRpMQ1Y4O8d3oEN+N2Uumn9exvtw2H62o41TFcfqmpFFcfZJqaxmbji4ns0ixXhcFRWC0j+9KdX0Z2w/8xO7Dm+nVuxculyvAJXHYsGHs3r3bP37Hjh3RaDTk5ytGWyJwY1QUm2w2ShoiSK9UlLPf4eBPcXF0NRj8fQs9Hv/rvkYjC9q0YU+Xbuy/7ve0P1jA3C9m4fW5OZKvRF7Mplg6J/fFoA3jwMlNANhcgeu4nvvkNsKNZlITe2KR66k5VYM+SY8+SY/X6gUf4IMdx5SMkDBAK4pYJYkCj4cCj4c7Y2I54nTyekUFzyYlsbRWaXtFZCR3FZziiNPpF2mNDAoLY421np32QCH2WW0t/wmRfbLXbmeVRdti4PFEjcT4xTbyLTJxYQKXd9Li8MrsLPSxZbmPtXk+/jAqOHA5a1Ys999XxKKF1Tz555YLHg8cFMa69Z1b3B+MhqSkKSxd+jpLl55Ht1Zgzpw5eDwe3nzzzf+/B/6ZUYWYyi8GWZYpO5F79oYXQbvoKE5WVlNWV09chOm8+jrcHnadLEAUBIY3rMguO5HzX7Gxb9++PUOHDmXPnj188skn/OUvfwnYv3XrVgoKCjAYDEH2w438r1nAqqioqLQGsiyTn/8uuSdeRbnFbWWHjNMQRIlvViim5iN6XwGyHFRX6/axT17w+AdObOJE6VEiw2Lw+jzcfNmjvLb8IQCMehMxEYlYHRYEQcDt9XHXhGeJDIvm402vsj93A0eOHAkaU6fTkZaWxs6dOwGYOnUqZrMZn8/HurVr2blrF59ZAs0jXLLMyvo61ljreatdO0aHR+CRZT6tbRIod8XEEqXRMG7/TrqUwtdie7w+JRKl0xi4b/JcurXt72+/dKOR/PJMSmryAo7Vu8NQqqxlHM3fAUD7QZ2Iui+cvNdPgg/0SXrcVW7/x+sAaGagMSXSzM3R0Zx0u1hRZ8Hi81Lo8ZCo1XJ3XDyFHjc35ufzekUFLzZLZ2wUmBlOZ8B8uukN3BkTSw+jgY5RRv6irSb3qIVLehsYZ3fQErd8ZSffIjO2o4avbzQRE6Z8L3KqJa5aauM/Bz3Ef29lypTASFqPHgbS0kysWWPl+ulRdOliCDX8eSKg05np0f1vrTDW+bNw4UIWLlx49oa/Mi7Al0ZF5efBUWfB42z5H6TWoGuiYlCRX1XbYptTVbVB9ctq7Q4+3LaXeqeLsT06kxyl5DC7HQ4cdcqPzYwZMxAEgRkzZvw8kz+NZ555BoC5c+cGOB9WVVVx3333AYoVbFRUaDOR/zULWBUVFZWLRZZlck+80iDC4OcWYQDZ2S4y0p10ad+BxMiOQSLsYtlw+CsA6h01XD/8XqLDm+phtYvrQo21nFG9puD2KuIh3GjGoAvj9jFPoGlIJxwxYgRPPPGEv9+wYcOYOHFi0LE0Gg0DBg70v09sSOMzCgI+IFWnwy3LPF5UxG6bjfsKCylvtuaqTUOmikaSaFN2mA2Hl/n3eXwudJrATJbbxz7J9cPv5fRKajeNfoS/3LCQOy//K6IgUnjgJPkv52PLsKGJ0CCGieCF6NFNaZe9H+/E5B7KPYJBFOig13N9VDQysMFmwyAIvNamLdEaDX2NYYwND2dFnYXMZqKrcV1Y1WmZPdfHRPNkYiIxadG8/rCJqihlvmPsgYKtOTsKvOwuktAIsHBqmF+EAXSNFXllorJmbenSmpA1VydNikSW4euvz+6meG7I9Or5EjqdupyhNVEjYiq/GDwt5JW3Jn3bJbE2I5vjZZVM6tcjZJt/b96FXqsh2RxJuEFPncNJXlUtPkkirXMKV53Wz9uQNy41PE0730rvq1at4oUXXvC/z8jIAOD5559n/vz5/u2NTx4bufbaa3nooYf417/+RVpaGpdffjnh4eGsX7+e2tpaRo4cGTBuczweD5s3b8ZoNIb8MVVRUVH5LZKf/y75+a277iU728X99xUx9RozDz4YH7Bv1y47n3+mRIQKyyp54N+KKUVrmXAUVGZzoiwdgF7thzK851UB/fbnKql9AzqPZsPRrwEw6pRsEb3OSLu4rpyqyMJV72Pbtm3+fm+88QYmU+iskj179gRtCxNF3D4f+Q1piFZZZkZhARpgXEQE6xtSHqM0GjZZrfyjrJQSr5fTy4mdqjxOx6ReAdt6dRhCu7guFFbl+LetOfAJOSWHqaovpTFxz5pdj2gUaXN7GwrfK0QXqyPxukRqN9cqTXqEsSfHCllgUzQOJz1u/5gvtWnD4IZz9sgyfYxGNtps3FVYgE+WcUgSEQ0FuGoahJhXBK0EBfHw2RiRfd1E6g/XY89WapK+udXJvE1O9BroEiMyuZuWx4briTeJ7ClWxugYLdAlVmTCEhu7i3wcfzCC5AiRKzsrt/AV5T4yM1306mUMuC6XppmIihLZ8JONu+/2YTaHXtt2rnTp/AQJCaFNU1QuHFWIqfxi8LXgRNSatIuJomNcDHlVNZTV1ZNkDnbnGd2tE8fLKiiqrcPp8WDS6+nVJoHhXVLpkRz8w+ht+GHZt0/Js585c+Z5zamiooJdu3YFbc/NzQ1YDB2KN998k5EjR/L222+zfft2PB4PXbp04emnn+bRRx9Frw/tvLRy5UoqKyu58847iY2NPa/5qqioqPwvUlGxplkkrPWYP78SvV7g9tubIgk2dzI59iuY8495uO3KQ0iX58IzQtYf/iLAhKORgye2AKARtdxy2aNB/UpqTtIxsRcp8d3925weO2H6cHw+L9X1pQDsOxL4G9WtWzdqa2v9zr1r167l+uuvRxAEiouL/e0cDZEaSZYZEhaGW4YTbpe/sHGEIJDcbI1VB52Om/LzAupsFhwBJQAAIABJREFUNaeqrjTkdoMuLOD9loxvSTC3o3eHoeSUHMbqVKJCvS8ZQkWVso4trGsY5V8pKaG6OB0ln5TgKlU+i93dBW6OquXwygp/cqq74b8CsMdu5+2Gdda1Ph8jTCbMGg3pDie1koRHlvlbWSnjxyez5hINOW3xRzprd9TiLlcEXlK4wLB2GqocMruLfLy01c2iAx5++oMJa4MGjDMp/eZOMDJ0gY3Z6118OC0Mo17AYBBwuWSOHw8WYlqtwIABYWzebGPvXgfjz9GaPhSpqfeSmnrPBfdXaRlViKn8YtC0YCnf2ozu3om8HTXsOlHANQOD61BM7NudiX27h+gZGq1OR1FRERkZGVx33XWkpaWd13xmzJhxUemMN954IzfeeON59fnggw8QBIGHHnrogo+roqKi8r+Cx1PDscxnaO01YZs3WUk/6uLGG6OIjtaQXz+O9b7r2RjVBl+MgGb0AcS1q5AkH09e9w7zvrnvvI9RUp3Hqr2LA0w4yi2FvPHdY+g0ytqgkb2mEBuZRL2jhoyCPX5hAopL4j+/vgdR0CDJPmzOOsL04WzP+h6r04JW1NGj/WBSe7Rh9drlAJSWllLXrNDx0aNH6dq1KwMGDPAbegD0MBjY63BwR2ws98Qp0cC55WUsaTCusMiyPxoGsMFqZUJEJO11Ov5dVcnpeTKb01dQZilgVK+r+X/s3Xd4VFX6wPHvnZaeSS+EkEJIAgk1gCBdQSwgdsRVEXRtay9Y1lV3XQsi7A/FVVdBXdG1IDZQIICAdEIiHRISWgIhPZNpmXZ/f9xkkmEmEIqAcj7Pw2Ny77nnnjvJbuadc973ZCcpf2sN5hoOVRV5tEuNy8busLHz0Cb3kku1SkPF9sMYtyvBY0NBA7Jd+Vnbq+zUrmjJVasvMFBrrEPSSET311Oxto55QSZSO4XSuRxUJrgsOIRap4NNFgvX6sO4JCqUrzVGXikoBWBeXR3rIoMIT/BcyvfnQf4crDfx5U4Hd/TS8dxQ5WdktMlM/s7CVzsd3PWDlTt7K6tr9tUqY+zbQc2YdA0f/2rnoQE6VJ38aGyUm34evj/I7pblx6pVJgryTyUQU/630Dn1SZKTRRD2WxE5YsJ5Q+t3JpJJT6xnYjzJUeGsLzlIg/X0l0NqdDqWLFmCWq3mlVdeOQMj/G1t2rSJBQsWMHHiRHq1WssvCIJwodpT+Pem6ohnNifs66+VgCdtyHiet3zKs6EPKEFYU8nxUcNH4Woq4x4T1vGk+3e6nPz356lo1X7cPPRRHE5lhca36/+DRqXB5lBm2UZ0v4EdBzfw1oIn+eTnqe7gBCA+PAmTtQFXU1n+TUXLKKsu4dv17wHgcNnZcXCDOwgDPIKwZlu2bKGhoQGLRblnTEwMoSHee1PlNjR4fN96X67nyo+QqtNRZrd7BWEAWo2O7QfW8e6iv/K/VTNwOB18vPxVj+cBKCnfzqGqQq/jFfWlmOuVwE+2yyCBNkqLyk9Fx/taXn+X0QUSJD6QSMDFSp71dlsj//iThomPqfngmVBsL3eifpRSJGNaipmJj6mZk648iy5OWY1St0bJR5eaZgYfrqljWpCFAK13HmCwTmL6Zcqs1vpSJ307qJGASrPMt7uVn+udvbXIwFvrbcza0vK6mU2+ZxCTk5VxFBWd7HsdNVptGD26vyuCsN+YCMSE80ZAqB6tf8CJG54B1/bOwu50kruz6MSNj0MXEEBAqJ5JkybhcDjIzMw8QyP87TzzzDOEhITw6quvnuuhCIIgnHOVlblN+4Sd2a1Tiooa2bGjkcj0TGZn3ce+QOXDxuYgLNTYwKQvWmqAN+dmnYxVO77lUFUh1w28jwZLLQaLssWKqdGAVt2yNL20qoj3l7zA4Zp9Xn2MH/IIf79lLvHhyQAszp/Luz89S6PdgkbV/pznuro6PvvsM5xN+VEmk4naAOWZy+12HLLMVovFXc6+tZHBwVwaHIzB5WJ6VSXzDb4LTAzuNtZdgGPNroXMWvgke8ry8WvHa9czZTC9U4d6HJNUEvYqO65GF8ZtRtSt86hk8E/wRxOsrNZx1DeNW5IwBElU6SUa05XAyVBmBUnCvFfJ/Qrs3JRLVmNHJcvoXS5mHq3krnrvALY1TdO7cpUEGZEqbu2hvP6Tv7Mwd6uNAQkqIgIkPtlq58N5BpoXEkltvJtvzgurrW3v77byuxkbexUDBywVOWFngViaKJw3JEkiNrUzpTu3/+b3SgjXM+3Gq067n9jUtLNeuv50LV269FwPQRAE4bygVEmcwW9Rpv7b5SlAGY39BqMB5GP+Vjz4xUfoApMBJf/Kajef9D1Wbp/vLsLxjy/u8DhntrUs+Zuz9CWP3LHW5q2ZRa/UoUwY+hgzvnsIh8tOramSrh37UV57gFpTBb1ShuCnDWBD4ZI2x1JXV+fe1NnlcmEymShoyiFbZDKxaG8RjT6q+4Wr1EyL78DuxkaKGhs52GpfsWN1CE8mJ20Eu8s2s273T+w9spVAvxDS4nuwdf+aNq+TkMgvXkFiVBeP41EhHaisK1PGv9q7mnLpf0pRhyjBjMPgoPR9Zdlh2MVhVC2uchfdsB6yUv5lOaY9JiSthNQ046XRa7jcZObInDIuK7BRcE8Q3WN9F81odMg8u1yZuRqVqiZAK/HOVf402GS+3e3gtm88Z/dycroSFFzDqpVHCQ31/XY+MFCJ0IxG3zNm7tdHUiPLToKC0umc+hjR0SOP2144c8SMmHBeiU/LQNXGrvXnG5VaTVya78qLgiAIwvnPYCjAZCrkTAZhsgxLap5l+S4lCNFk9fBqM2hLHiPz1uLUJ6PTKLMqJuvxZ0t80ah0TBj6KAUlK6moO+Q+HhUS79GurSAMlEqER+sOEq3v4C4DHx4cw92j/+H+oPHagfdy64jj72XWXELd4XC4qwg3MzgcGFwur0AsXq1mfnIy3xkM3HrwAAftdkJVKrr6SFWQgPSE3gBUG440HZP4y1VTKTr86/HH1vT8x+aSNdosHjOHxzIXmWnIb1pK6VKWGtatqWP/tP0YtxndSxBxQdWPVTiNTkK6B1O/QZnRm5yhZmplNa8M06FVw0OLPIOp+bvsTPzWwpWfmun4LyMf/WqnXwcVs69WVgcF6SS+GR/I2smBPD9Ux5/76LgkW/nZ9up1MXabshlzr54DkSQlGGv+L4CpaclicLD32/3W7WNjr6Zvztdc1H+hCMLOMjEjJpxXYlPTcDnP7PKQ34rL6SQ2Je1cD0MQBEE4RYdK57pnA84EWYYf6l7ii8huOIp2A6BJSvVqNPn7L3FJEoaQZBKjulBcvo3y2gO+x1hVxOvz72dIt6u5afCDHud6pQ5l3Z5FHvttAXSM6sKLt8zlsdnK/mAvTphLVKjyBn79nkXMXTHNo/2GwiUes121xgoem30l4cEx7mOt9+rKyclhy5YtOFotM4yJiXH/i4+PJyoqipkzZwIQ7KfD2NhSCr5ZJ52OpcYGXquowAk8FR3DxKZKvn327KZ12CIBz8+9GVmScLqU+8ZHpKAPjMRiM/l87SZd+hwV9YdYmPex1zmdxp9XbvuKWQunsLt0M5IkocSJLcFiwi1xaOL8ODDjAP5J/iRMTqD4xWKQIOmRJDQhGor/XoxGr0F2yjiNTmy7jLgsMt1jVExvisE7hqq4q7eWWZvsfL+nZcavoNxFQXlL0DoyVc17YwJICPUMnAYmahiYqIOAMJZ0fYPl424gLy+PwsJCNBoNt98+h/BwLbV162kwbKPesJWGhm0YDMqMXXh4ywfcanUQISHd0Yf2JCQ0m/CwAeh0onryuSICMeG8kpjVA5Va/bsIxlRqNYlZ3c/1MARBEIRTYLPVUFGx8IwFYQC5tc/yRWQ3ZIsF2aoUrZBC9R5tuu0rIvXwIWSgIaQT6R16UVy+jX1Hd/rsc+6KaciyC5tDWba2v2K3+1x+8QrsTu9CDPpA5Y116yCvORCLDk1o17PIyO6cM0VLIJacnOzesgUgMjKSiRMntrm3mK8gDGCDxcKGpuIevfz93UEYKEFaoa3lOhcoBUVaTapVGQ7z675fvPptrgD5zfr3SE/ohUpS4ZKVgCc0MBJLoxGbw0rxkW0cqdmvPK+PZZMDwrpx8MAWDgABSQFULqgEGcKHhBPSIwTbVmUWM9xPprJC+T2yWmTC/GDeTQHo1C2v2Z19dMzaZOf/1tvopFcCrZdG+PHMYB2lBpmlJQ5eWNFI9r+N/PfaAG7odmx+ngvGzSLSFAfAvn37sFgsTJgwgdjYWABiY64kNuZK9/NsWP8S8AKDB1/LxQOno1b7odVG/u5SKv7IxNJE4bwSGKonY+AQJNX5vTxRUqnJuHgogcf8gRUEQRB+H2pr1yHLZ27/yu31N/NxZA4ALlNLZUAp0LNy4DUrluBQqbBrg3Fq/OmRMgiA3WWbOVZByUrKqouRkCir3svr8+9n5vct+4H5CsIAQpsCsfQOSmXc1kFe53jPDxB1Gs9lgK1nvpqDr/W7FzEn9yX30XXLFrTcKzSUyZMnExgYyJEjR/jggw/c/45Hd0ww8KvVyvgD+3mkrIxHyso4fEyumHTMfwFsDiu5Bf/z6nvCsMcBqDNVsrEw1x2EAUSHduDSnjcC8O6i56g3V+Ov9a7uCBIjnH8laItSGfGfkVbMm5XAK35PPSsOlPLnbUcB0JpdaFu9o761h5b0SM/3Mb3i1PSMVfHzfid11pagT62SSApTcWcfHasnByFJMOk7C+VGF8U1LiqbKyJe+jxkXkVIiLL/qcFgICIigunTfe99J0kSGzduAeCyy8YREJCAThclgrDzjJgRE847vUZfxa7VK871MI5LdjnpddnpF/sQBEEQzo2Ghu1IkuaMBGMmWyz/DrwOSZaRJQlVcIj7nGw2IQUpeziFGg2M2LwejcuFRafkFyVGdSE1NouSozu8+v1h4xwAokI7eOU3Hc/a3YvYVbqZhIgUQAnyxjLZZ9vmmTYAjUqLw2WnuXiJ3BTA/JT/icc1h+tartHr9SxZoixrNBqNlJWVtWuMOQEBmF0utliVBYhaYL/NxjarFRXQUaPF6GgJxuRW/9UiEaEL4KjNTL252qvv/618o837Fpdvw2CuQULC0qqgiTeZz3+ZSf6hKvw0anqGSTiaYqKYAHjqWxNzCpTx9YpT8eNeJ35qaHTCUZPn7Fr+ESf3L7RS0XQ8t0T5nXtvs40FhS2/f9+MD2BEsoaFRQ5yix1UW2SezG2kT3oCnXasR555A2vWKEVJVCoVubm5xMd75gM2s9vtrFq1Cn9/f0aPHn2c5xTOJTEjJpx34rtkEtUp+bz91EaSJKI6JRPfRRTqEARB+L2qN2w5YzNin5v/RoNG5a6MKPkHIDVtxyK3KsXeZ88ONE37hsmtiiqM6HG9V5+HqoqoqFeq9N17xcvMumcZT1//XrvGU91wmL1HtmC1m0mNzeJAxe42c9BaU4IwaA57mnOx4NiZslbjPHSILVu2sGXLFoqLi322UUkSx/5J10oS8dqW5XcO4NZwZfPjiwIDWdS5M+Eq329T7cgctbVdZbL1DJgvlYYykmIy6ZbYHwkVVrvvHLPVO7/H3NhA7w46amIHu4/fk+PHX4fokFFC1h/3OtH7wX19leB6X90xxUoaZTaUOTliVF5Xc9PLXGpQjjf/a3RCUFP9jwoTDErUcP3wXlQ26vjxxx9ZtGgR/v5KcZfs7Gz69OnT5jMuWLCAqqoqJkyYQESEyAE7X4kZMeG8I0kSg8bfxnfTXjpx43NAlmUGjb/tvA0UBUEQhOOTZZmGhjOzVcqO+vEsD/eeldB0ycS+rQDHgRLU8UpeVvrBfThUajQuJ1KrILB36jBS47IpKW8Z0y87fwBAHxhJbFgiAB2j0ph1zzJ3m0a7hcfnjPG69w0D72d4U3BXULKSktwdrN39I9cNvK/N5xiYcQXrCxe7Z8EeuOp1vlozi6N1B4HjV16cMmUKAQEt+4Bu3LiRNStXYjArwZKfRk2nyHCqjSaqjGYkYJXJhL5VoCUDWy3K7Nj1+jAAotRqaltVYAyUVHzUKZF0nR/PHy3nex8bS59IWFAUdaYqhmaNo3N8d1747E8nvGaPQUd1xgRgCVoVjM/249tdje5xB2og97Ygfi1XgmzDMStGhydrkF8IpbDaScYsE+H+UPNUqNd9Gh0yqw8qfaTHh9Lv8Tl8num5+mb69Ok88cQT9O/f/7hjnjNnDpIk8dBDD53w+YRzR8yICeeltL4XkTloKFIbn4adK5JKReagYaT1vehcD0UQBEE4RXZ7NU6n71mQkyHL8Ln2aiQfhR50vfsp99qx1X0sc99e1E0zYmqnZwGLGwc94PH9roObAEiL9y5/36ytaoGNjpZ6g81B3uqdC5i/7l0eeO9Sn9ccrt2HLLvcwV5mxxz+Nv5DZt2zjEt7jHe3a86FCm5V9b2oyHPZZPfsLExNxUoAHh89lD8P7U9SpDLjFR2i5GTVH1Pmfp3ZRKpOx7CgIHZbrZQes/lzuk7LW1VVjCgp9gjCIv73I5ouXX0+F3jO5oUFRQPQYKklMiSOK3Ju83lNeowy86RWq6mtq2ft2rUA6MMjkLKvY8rSlte4a7SKfgknzm13Nf2a1FrB5vT8nSkzuLjtGyuHG2SSY4IZ9a8CyPROgWgexyWXXNLmfTZt2sSCBQuYOHEivXr1OuG4hHNHzIgJ561LJt3L/q0FWI1G8PFH7qyTJPyCgrlk0j3neiSCIAjCaXA6rSdu1A4HjSMoCfX3ec5v0AhM//0PjZvXE3znX0CWyTi4zx0SaO1GFm/6kG2l3kU63lv8HLWmCgAM5hqv880CdcE+jx+bN3XjoAd4ff797D2ypc2+DjRVYzRbDVTWlxGtV2bxtu5fy7KtX7jb2V1KEOZoFUMVrFtBeXk5l112GcgyJVt/xelq+bs9e3UeMSFBmBuVNXkVDd4BpB/QCJTYbPTb6zsf7tfGRmhsmW7qoNGgm/E+lth4ImZ9TO3j92DfXgAaDX76KCSbHWtDtcdsXk1DOQAx+o5oJTPBqqMe94gK8aeqwYpRE0FISAMOhwOLxeJeBuhwuph+oBt7a5Q+AzSw+YiLaz43U9agvCjVZpk7vrUQFSjxxmUtvx+tiigy4AMjXSLVyDIcMsjkH3Fic0KHmEi+XbIM/4gOXs/f3ryvZ555hpCQEF599dU22wjnh/NrukEQWgkICeWyex46P4IwAFlm9D0PERDivZxAEARB+P2QZfuJG7XDMud1qF2+/0Zpu2SizeqJY/d2HAdKCGswENjYEgBKQF3NXvZX7HL/a1Zatdf9tfU4uVA6rb97Q+jWmjc8bpYY1YW37s4lQBfi1fZYNcYKZv7wGA2WWgDMjd7L/4w2sLaarNpfXsvOnU2VGSWJo4cOerQ/Umdg66EjFFdWo2pa1t/6DWiEWs2i1M68Hh9PZ13bGyy3pgGqnE5c+5W8NEmrRf/C6/iNGI06pQs2swGrpd7jGpUEBkstnfQaXun9Hn/ueA95x5S/D45UysO//vrrPPzww1gsFrp168bAgQMBqKur4/3333e3tzS9Dt/tcZB3uCkQs8h8vMXOvJ2ev2d+raY/6hvhpyIH3+x2sNegZUDf3kx7/XV2FZXQs2dPn8/c3ryvpUuXYjAYiIuLa7ONcH4QgZhwXuvSbyCDb779XA8DgME3305avwHnehiCIAjCaZKkY/doOnkmWxwr9PE4VW3nCwfeoOQfWX78Bj+7915aT3Ydxtt/Xsyse5Z5/Hv+5pYNiB8c23YFQFCCrGNVG496HXM47RQeLvDZR0iAsmQwPDgGP40/daYqFud/BsCAjMuZdc8y1K2Ki/SOU3mU7ugTryIi2I8vPv8cldVMbb138JYWG8XrN17Jnwb0BpR9wUB5I/pmhwRitVrGhOr5ISWVWQnee50FSRLjQkMZHRxCv4AAdJKETZY59OZUnDVVOMoO4aquoPHnxTj370WdlIq2h2cxC5cMHeJi+f6HH4j4az5P1NzMvioLqlZpEGVlZahUKqZMmcI///lP0tLS+PLLL+natat7n7R33nkHWZaRZZn58+cDcOnwoQzJ6QbAK9dnIL/cgf2PeAa+lqa4LDxIS/EXf8OQPx+7oYrKegsr1+fzxJNPEhra9oe9Iu/rj0csTRTOe/2vuRGb1cLGb786p2Pof82N5+z+giAIwpmjVvteTngy9ppH4Qw/ftEm/2GjMGf3wvLD13DJFV7nQxoOIat8vRVrfzGo5g2hWyuvPUB57QHiwpPcxz5f9S93IY5jNc9+1Ror3Mc2F/9M//RRdIpOB0Cj1uJsytkqKPfsJ/+IC6hAr2/Er7KMygbvsvD9U5SCIweqaz2OXx0aSp9WG0HvtFr5R3m51/UmWeY7H8U5ZIcd81dzkfz8MM2djSomDpxOHPuLoVWemkqt5vm//Y1HH32U0NBQnn76aWbMmAHA0KFDWbFiBaAs/wM4fPgwffr0Yc6cOWRlZQFw1VVX8dVXX/HZZ58xYsQIAPe5vIItGI3Kc1/7z28hIwNMVeCwgMMGGh3bFy6Ft+8kZ+AwGPV3r2c5nua8rzvuuEPkff2BiBkx4bwnSRKDb769ZWbsbFUrbLrP4AkTGTJhoqiSKAiC8Aeh1UaiVvvaxLf99rky2lyW2FrIg08h2xop+/YLr3PhdXuQmop3tBYWGOn+utbH7FZrzRtC+2kDPI6v3f2j++ufNn/CtoPrTzjWznE9+MuVUwEwWut5ff59/O3TCbz949Pu/cY0rf4UZkercD0fgvxCKI7nw/jb5BvRGOu9+o3Xh9ArMZ4FW3axqnCfx7lknR/brRYcskylw8GUw2VUOL1fk2PlpqYS2jSTZf7uS0z//Q9SYCCu+jpctdXQ6JkH+M2iJbzwwguEhoby3HPPMXXqVMLCwti4cSP79iljiouLQ5IkFi9ezJdffonZbCYnJ4c333wTgKeffhpJkvjwww9ZtGgRAJGRys+qvr4ep9PJ9ddfT2ZmpvIeIjgawjpBVBqEdWJtvrJX3PEKbbRF5H39MYlATPhdkCSJi669iXFPPId/cPBvXk1RUqnwDw5h3BPPcZGYCRMEQfhDkSSJkJDs0+qjSJuAsx2fz2m7ZBK7dDNR9z3mdU5nNxFTsdkrGNNp/d2V/g5U7Dlu/80bQjfaW2Z/EiJSWb1zgbvQR5XhMCard4DUWkRwHI+O+xemppwwP40/AzOvIMg/lNKqvaikpr3FmmLPixPV5N0d5P6QUi25yF+1iDeXrqHK6FmMw+Zw8tIPy1ixpwRQ9hULD1QCx2CVir+VlzOseC8Pl5VSYj9x/t5HiYlEqzWYm6ouShoN/qPHogqLUN4faHVITSXwASS1mqtHKsHP999/z8svvwxAWloaL730EgcOKHuslZeXk5qaymeffcaGDRtYt24dsbGxPProo2zZsoU+ffowffp0nE4nV155JSNGjODee+9136dz5868++67bY576dKlAIwbN+6Ez+jrWpH39ccjliYKvytp/QaQkNmN5R++y+41q5AkCfkMFvNo7i9j4BAumXwvAcEnTmwWBEEQfn/0oT2pr998Sps6yzIUBgaf1AqNupBQzH7+HgU7ADoeXsXROO89ocKCoqk1VbC7dDMXd73yuH2P6HE9Jbk73N8PzLyKr9e9zaL8udw0+CFuG/EUt414yuMam93KY3Oay6NLPDruXwBs3vszAKlx2fxp2BMcqiri9fn3c3P3SL7aXoXDBSE6WHZ7IMv2OdhY5mTzERebDzs5YvS9r1e1ybPgyB2Dcvh0/a8AzKqqxNAUUG1zOlEBISoVGX7+JGq1PBUTQ7DaszT8Ubudp8qP0PyT0w0Ygv6pf7jPm+f/j4ZZrys/H1mmY1Iyb731Fps3b3YHQwB5eXleYy0uLqa4uJikpCTeeOMNrrjiCmbPns3IkSMxGo34+/uTnZ2NSqVi69at7uWIoOyfFhERwciRI9m4cSOFhYXuwKmgoICtW7cyYsQIunXr5vN1Ei48IhATfncCQkK56qEpZAwcypov51J1cD+SSo3sY3lHezVfH5mYxKDxt4l9wgRBEP7gQkKyTykIAzDZOmD2P8mVGZLEnk4p9Cra5ZEBFmrYR5CxDFNQPEgtfXZN7Mfa3Qu98r9a+2nzJ+w4uAFQliY2z4r9uPkjkqIzOFhZyBe/zGT8kIfd12zdv4awoGg6RaejUqlxuZykxXcnQBfMvDVvs+1A0z5VPW4A4Ks1b6FVacgvq3GXrDfZwF8jccvXFuqP2by4tbDAAK7tncWHa1oCnrSYSBZt20NjU76ZQ5aJ02iQkGhwOTG4XGgkiXsiI7iztJTvDfVk+vuToNUiA+V2OzutjdibS9JLEsH3POru3/ztF0oQptUqEbPDQVxkhM8CF0888QQzZsxAkiRKS0u9ZptKSkr46islP91oNHLppZdisVhYv349ZrOZiRMn8vTTT9O1a1fCw8PdlQxfe+01+vXrxzPPPMOHH34IKIU2AB555JG2XzDhgiMCMeF3K63fADr3vYgjRXv4dclC9qxdhcvpRKVW42rH+vLmdiq1msyLh9Jr9Bji0tJFLpggCMIFIDx8IJKkOaVgzCaf2mqJ3SlpdC8uRNPqg0MJSN33A9u63+vRdkjWWNbuXki9udqr8EazLft+obS62Ou4ubHBXQ6/1ljhEYgVlv3Kiu3zCQuKxtU0juqGcp7/7BbMjQ2oVGquHXAPmR1zKChZSUn5DsIDtOypdhGkBZMdZOCo0cV1XbV0iVDRJ15Nn3gVMW8os0OPXzaE/1u6hjqzhe2HPQtv7K3w3OPMKMsYHQ4CJIlVaWk8UnaYNWYTH9QoyyrtwG6rlZ1WKy5ATUvFRYCgux5EExmlPPf3X9Hw5mug1RJ44+2YP5sNwJgxYxg2bBi9e/emT58+vPLKK3zyyScsX74cSZLIz8/3ueRvwoQJGJr/Sie0AAAgAElEQVQKhLz44os89ZQyq7h3714uv/xyPv74Y/z9lcIvOTk57uv69u3LmDFj+Pjjj3nkkUeIiIjggw8+YPjw4Vx99dVe9xEuXCIQE37XJEmiQ3omHdIzGX77XRzasY2jJUWUFxdSXrwXe6uKSc20/gHEdU4jLi2D2JQ0ErO6ExiqPwejFwRBEM4VnS6CmJirqKhYgCyf3IoKp6t9e10dq7BTikcQ1iy6ehuxRzdxNKYPSMoyvMSoLsToO1JRX0rur597LS0ESIjs7DMQ8+hb39Hj+x4pg2h0WDhUVYS5sQGbw0q9qZoYfQJ9Og9nSLerSYhMBWDpr0qBkVqLnUtS1Kzc3zL2l1Y1MmecZ4GQZgE6LRd37sQvRfspqWh7Q+rWLLJMkEpNlr8fa8wm1pvNPBcTy2aLmV3WRmqcDswuF4EqFSk6HQODQ1g8/T+YE5MBMC+YT8PMV0GrJezFNzB/rmwB0LdvX55//nmPezWXq7/22mu54YYbiI+P9xrP4sWL2bhxIwAhISHccccd7nNpaWnMmDGDcePG8emnnwLeBTjuvPNOFixYwMyZM1GpVNjtdmbOnNmu10K4cEjymUywaQeDwYBer6e+vv64eyUIwumSZRmLoR6HzYbDbkej1aLR6QgI1YtZL0EQBIH6+nzyNp98QaYaawYPBrxy0teFGg18/dT9PoMxuyaI9f2fx64NdC9RLChZyezcf6BWqXnpT58TGtj2Jr4noznvq3fKUPJLVpAUk8mT174NwI6DG9hfsZvCsgKPZZEDO6pYV+rCTw03dtOgbrV/2jWZGq7J1CL9XZk9CvH3w9TYiCwrs2calYousVG4ZJmio1W4ZJkgrYZNqWleY/tXZQXv19SgAbZmZPocv0WSmN0xmY8iorFtycNxYF9LqfqAADSdUnHsaalQmJiY6L52/PjxPPzwwxQVFREcHOzO8fL39ycpKYmuXbtSVVXFxo0bsdlsqFQqFi1axNSpUz3yvsxmM0FBLZU3d+zY4ZH7Zbfb6dChA0ajkbKysuNuwHyhu5BjAzEjJvxhSZJEYKuqSYIgCILQWmhob4KCMjCZCoH2fy6tkxpO6X6G4FB+zhnAiM3r0Lg89+LSOkxkFn7Ktux73Md6pw4jIbIzZdXFfL/xA24dPuWU7nusr9bMQqvWcePgB6gzVVJydId7+eNHy17GYjN5XbOuVBlvoxPmbvNczpkcJnG4oeX189dqSImKoNFup7iqBofTxa4jFfhp1CRG6DlcZ8Bkd/BtfT3X6FtWpJhcLn5oWgo4ILDt7QUKjEb+vfQnAFQRUWhS0nDsagoaLRZ3EAawfPlyj2sdDgdFRUUAxMbGkpGRQVlZGRUVFezZs4c9e/YQGhpKbGwshw4domfPnowaNYrw8HCPvK/AwED8/PxobGwkPT3dqwCHVqtl+PDhzJs3j8WLFzNhwoQ2n0e4cIny9YIgCIIgXJAkSaJz6mOcTBAGEKQ7TKDD9+bIJ/Lt8Mu8grBm0VVbSS353uPYrcOfRJJU6DSnvwk10JT3tZ2hWVcTEhDOiB7XAy37jvVMGcLY/neSEu75QeahR4ORXwj1+e++vjoeXdxSDfKeYRdx+8V9+POwi3jx6lGkxyo5XMlRETx46SD+NKA3/ioVz5YfYdy+fTx6uIx7Sw9xafFeKhwOglUqZnbo4HP8LkniSFQMfkMuJfz/ZhM9L5fIt/9L7PICYpcXoP/ba+5qlv/85z+RZdnj3xNPPMFNN90EwB133EFeXh5Hjhyhvr6eG29UZke7devmXs5YWloKeOZ9bdmyhfLychobG93tfbn44osBWLZs2cn8iIQLiAjEBEEQBEG4YEVHjyQ2dixKGYj2kSRINxuVqnwnaWdKF4oTEnG1sUQ+6eBikg4sdn+fGNWFt+7O5abB3lX/TsXPW78GYGCmUhK/d+owUuOy3fuO3Tr8Se7rEEaFsa7dfa4+6MTWRpqdv1bDZVldADhQXQtA9w6xzElKIlGrpcjWyOKGBlaZTBhcLlzAjfowAtS+fx4qWSZ/4r2E/f0NdD36eJ2fMvE2Jk+apDzrzz97ne/VqxcBAd65bcHBwUyfPh2A9evX07dvXyRJorKykm+//RZQ8r5kWWbmzJlMnTrVfW1MTIzPsWZlZQGQn5/v87wgiEBMEARBEIQLWkb6C2i1oUD784e72MtQn0qWvSQxZ+xNqNoI4pQqit+TWvKdckA+tZk3Xw5VFVFydAfJMV2JDWvJm7px0APYnTYW5c8lteRbeus/xnTifZXd/NuZ6BKk0yHJMtu3FXL7vn2EqdV8nNiJjWldWJ7amb/FxBKsUvFxbQ3f1HsHgk6ViqX9BrG2Z1+P481vZv+aGs+znTvQp48SoB06dKj9DwFoNMqDqFQqMjIyuPXWWwGYPHkyc+fOZcCAAURERPDJJ594FN5oLv5xrMjISACOHj16UuMQLhwiEBMEQRAE4YKm1YbTNfMVTmaJYopqD07VqRV+WtuzL0v7XoyzjTfwEpB8cAndt72H1m6Gk6zq2Jat+9YAkNkxx+N4YmQq797xDS+F6ejBd7girb4ub9PARA16P9/nGu0OluxQcrIGdO5ESXUtH+7eS7hawwcdE+kXGEiwWk2cVsuE8HBejI3DBbxWUYGh1VY0LknCGBDIWzdN9OhfDYRp1XyUncKDSbEA7hwwX9UQ29LY2Mizzz4LwKhRowgICOCdd97hmmuuoba2lttuu434+HhqampwOBxcdNFFXHPNNQBtFuJoLjxRW1vb7nEIFxZRrEMQBEEQhAtedPRldE59nOKS6e1qnxaYi9o17pSDsbfG30G/XVsJMZvanB2Lrt5K2MZiCrvcyNHYfsrsmHTqn6EXHi4AICW2Kaepqb/Yis2kF32Jv8pI7JB6bCf5TBEBEh9eE8h1X5gBeG/lBuL1odicDg5UKzNbV2RnMDw9he82bgFgaHAQIT6WH14WEoK2XKLB5WK71crFTZUJVbLMtNvuwRCs7OGmQtlPbFxMGC+ndyRcq7ylLS8v56OPPgLg+uuvP+6458+fT1FREZWVlWzatImqqir69evH7NnK/mNBQUF88803rFu3jkWLFnHkyBGKi4tZvnw5WVlZ7Ny5E4Du3bv77L++vh6A8PDw9ryMwgVIBGKCIAiCIAhAUtJ9OJxmDhx454Rtg3TlDK87wgp9/CkFY4bgEKbdejf/fG/GcdtpHSaydn1ETEU+JSljMAUnILmcyKr257Q1O1S1F4C40ATlGUxHSN33A9HVSsXB+MH1aPxkNEjuzZvb69rMlreUlQ0mKhtaKi+mx0aRHBWOpFJhrVMqTga3MRuokSQCJAm7LFPfakbs/XHjWdOzL2oJnDJkBPnzdGo8o6Naqi46HA5uvfVW6uvr6d69O/fcc4+vW7gVFBRQUFDg/n7kyJG89957JCQkeLQbOHAgAwcOBGDJkiUsX76cvLw8CgsL0Wg0jBgxwmf/1dXK5tWxsbHHHYdw4RJLEwVBEARBEGiuovg4nVOfaD5y3PaXquef8owYwJpe/fjg6vHtahtdvZX+ea+Qkz+NmIo8pKa9yCSX48RFQ2QZW6MRm0NZcpjSUEzO5mn0z3vFHYRF9zAQ0rFlSWKf+JML9N7eZHN/fdvA3vzz2st4bswlXNsni4M1dby7cj2FO4pIbHrrudXie/njPlsjhqaqkglaLQD/u3wcn40eh1aSuC4mnB/7dGF5vwyPIAzg3nvvZdmyZURGRjJv3jx0uuNvvP3SSy/hcDjYv38/H3zwAbt27SI7O5t58+a1eU1z3te+ffuwWCzceOONbQZa27dvByAnJ8fneUEQgZggCIIgCEITSZJITr6PHt3fRasN43jVFDsF/0xnkxXpFKonNvv08nF8Onpc+8YG6A37ydr9Xwate4bsHR+QWLqcsLpC1A7fgY3aYSWsrpDwVpUYc/Z+gb5hvzvMjOzaQGRXo8d1I5LbH4itOuDkgR9b7p8UGY6/VktYYACD0pK5Lqc7sgyf7SpmcNNSwwKrhdk11citXrtqh4O/lZcDkKzTke3vz5Kbb0f34EP8JzuFCcu+ZlZWMo+NuwrpmKqTDz/8MLNnzyY8PJzc3FzS09PbNXa1Wk1SUhJ33nknq1evRpIkJk2aRHl5OcXFxVRWVnq0DwlRlkYaDAYiIiLclRZ9Wbt2LaBsKi0IvoiliYIgCIIgCMeIjh5FWFhf9hT+naNHf0AJgzwDLkmC8fbveEVq36yWT5LEB+PGY/b358/ffYGMhNSOoiE6u4mYygJiKpWldTJg1wbjVOmQVRoklwO1y4bWbkQCLK32LjO5XASrVYBEdA8DUd2MXv1fk6nlH6tsXsdbe2llIwuLHJTUelZ2/HB1HuqmpYcJ4aFc0zuL/6k0GF0O9Go1N+nD+LK+jumVlXxVV0eGnx8ml4utVitGl4tQlYqpXdJJ/L9/8fDIke5+85piL23TTFmzxx9/nDfffJOwsDCWLFlC7969Pc7n5+dz//33u78vLi4G4L333mPBggXu49988w0jRoxg4cKF5ObmUl1dzZNPPkmfPn3o1KkTsiyzZo1S8ESlUpGbm9tmQRC73c6qVavw9/dn9OjRx30dhQuXCMQEQRAEQRB80GrDyc76P2JjrqK45F+YTHuQJDVyqyqGWfovuaR2KCv0cbhOdZmiJPHZ5degt0ZzzfIP0dotSJxc2XoJ0Nm9A6pmASoVAZKERZapcznQB2iI71/vsRyxtd7xai5OVLP2UNsVG4trXWwo8z5fVmdwf61Rq9gQORBJ9wuy1Ui908mLcXEMCQpifn09261WfjYa0UgSCVot1wcF8Zcbb6TP1Kmowzw3ld68eTOg7OfVbMqUKcyYMQO9Xs+SJUvo29eztD0os1cbNmzwOl5aWuresBmUyolBTTN2FRUVDB06lOuvv56NGzeyfft2JEkiOjoagOzsbHeZfF8WLFhAVVUVkyZNarOqoiCIQEwQBEEQBOE4oqNHERU1EoPhV0pL53K0YgGy7ECSNMiyg5sDX2Kz4y0MWhVyGxs1t4cxtDvr+j9PRtFXxFXktXt2rL26+fuz2WLhSKiRSy63ofY7ft+PDtCx9pClzfMfXRPAR9cEcOlnfiwvqiQ5MpwHLr3Yo02evjerHNG4rEqQ2Jz3dWlICJc2LfNDrQanE7/0dKIfeZgQH0v5bDYbK1euJCcnh/HjlRnIp59+mmnTpqHX68nNzaVfv34+xzl8+HCPJZBtaWxsZPXq1QCkp6fTr18/Pv/8c48206dP54knnqB///7H7WvOnDlIksRDD52ZjbiFPyaRIyYIgiAIgnACkiSh1/cmK2s6gwetIzv7LTolTiYsbAChAUbuN88/rSAMWSa+1oFTG8zObpPYmn03piBl2ZvrNErWK4NXgpCLw/0BKAypP2EQBnBDt5YlgJUm7xk6lwy76qNJiUsGYH91LT/vLsbZFPSsDb+I1X6ZVC96C4BOOj+y/ZUx0LR58qyaarrt3ME9wUGkfPetzyAMYM2aNZhMJl577TUkSeK5555j6tSphIWFHTcIa62iooJ33nkHg8Hgda6srIzbbruNw4cPk5yczKhRo3z20Z68r02bNrFgwQImTpxIr169Tjgu4cIlye35iOAMMhgM6PV66uvr3RvdCYIgCIIg/F7JsozdXs30VYeZqT65JYXNAq0uHv+u7tiOCTXsJ+HwSmIrNqOSXUpQJcPxKzrKTSltEkgyoUkWIrqY2NVoJed9E/0TVGy4K9jnlc15X82alx5GBULncKWAR594FbOuDMDq1PBhSV+sTi3z8raxvuQgABHBQahi0jC6VDQe3oNsM6PyC+LT2Ch6R0Xhn51FQI8e+Gdl8fqyZbz8xhuMHDmS3Nzcdr1W33//PePGKQVO+vbtS1ZWls92UVFRvPHGG+7v9+/fT0pKCjqdjl69epGcnIwsyxw6dIj8/HxsNhsdOnTgxx9/pGfPnl792e12OnTogNFopKysrM0lhyNHjmTjxo0UFhYSFxfXrme6kF3IsYFYmigIgiAIgnAaJElCp4viqUsisC7bw3uaxpPuQ+v08bm4JGHQp2DQp7C38w2kmxbSrXEhlhod1hotLof3TJlK48I/wk5ApA3/cDuBsTY0fkpw2IeWvK9dlU66RntXRmwr76vKDFVm5bi/BlQSLDmSjtWpzJpd17c7mfHRLD9YQ1lNHc79O5BUajT6WPxTejNs7J+44S+XoI6I8Kh4WPCWMlvWOu/rRGpqatxf5+XlkZeX57NdUlKSRyAWExPD9OnTWbVqFdu3b2fXrl1YLBbCwsIYMGAAY8eO5e67724zGGhv3tfSpUvb/SzChU3MiAmCIAiC8LvVPBvldFqRZTuSpEWt9kerjfQqcX42uFwu3li5lxmYkWS53csVIxqc/OXH+hO2ywmax4CQT5FlcDaqkJ0SLieo1CCpZdR+Lo53y3k77dz4lYXHBuiYPtq/vY/l5ZeKZDZWJ+JCQoVMlTaC9eH92ReU4tVWo5K4a0gqT1+R6XHcZrMRERFBZmYmmzZtOic/r5MxduxYFi5cSH5+vlhyeAZdyLGBmBETBEEQBOF3w2arobZ2HQ0N26k3bKGhYTtOp8mrnVodREhINvrQnoSEZBMePhCd7revXqdSqZgyIp2M/FKmVFXSoJFxtSPAcLYzDWyz6Xq0kpWc4K/R+J/8MsgbumkZlGjjvc02pgzSERt88vlnG6oS2VjdEVBREpRGfmg2R/1iaCsCdLhkuifovY4fm/d1PmvO+7rjjjtEECacMWJGTBAEQRCE85osyxgMBRwqnUtFxUKPioUn0txOkjTExoyhY8dbCQ3tdVbe+FfWWXhqbRE/BrhOODvmM0esTTJ9guYzMGQuLllCJZ3cW7mCI076vm/ivr5aZl0Z0K5rXLKyHPGXqp5sNlyKShOLSpPIv8PAfIJYTqOS2PjXkUQE6U5qnOcTkff127mQYwMRiAmCIAiCcN6qrMyluGQGJlOh1x5eJ6v5+qCgDDqnPkZ09MgTX3QGfJdfyhvllRQFSKhdMk5f+43JMlPm1+J34tjSLcVvAyP0b+MnmVBJp1YkpD1csopGVyDL6x9gv+0i9/FGZN7UW49bN0Stkri6Zwf+NV7MIgm+XcixgShfLwiCIAjCecdur2X7jkfYuu1eTKYigNMKwlpfbzIVsnXbPWzf8Qh2e+1pj/VExvXpyMrLe/JNQgeubFSjdimfgWtcMjR/Hi5JHAnXnNSuYfsaL+LTylnstSp7d7nkMzvL19zfXusgPq36t0cQJiNzVO06fvFGwOmSuW1g0hkdlyD8UYgcMUEQBEEQziuVlUvYtftZ7Pbm/Z7O9OIdpb+jR3+kpmY1XTNfITr6sjN8D08qlYqB6TEMTI+hss7CyqJKfq0zssVmY4dOxqyROBypIbHKgfokHrdRDiW3/nH2WgfTP/h/RGkP4JLVqKRTD1qbr69xdGKD8Rb2N3pvXuwCjmiOPwsnSZARG0LvxLBTHosg/JGJpYmCIAiCIJwXZFnmwIF3KC6ZTtNGWGfhrsp9Oqc+QVLSvees0mJlvZXi/EoKvio+jZ5kYrWFZAf+RBf/1aglJ05ZjQrncSspyjK4ULvbF1mHsN18BUftXTjelNd3gY0U6o4fjL1/e19GdYs9xecRLgQXcmwgZsQEQRAEQTjnZFmmuOQNDhx4t/nI2bozAMUlb+Bwmuic+vhZD8ZUKhWx4YGEXhTPlq9LcLlO9dkljtozOFqfwRrDZBJ024jRFhOjLSJGuxedyup1hc3lT4U9jaP2LlTaO1Nm645VPvGbYScyh44zI6aWYEzPDiIIE4TjEIGYIAiCIAjn3IED77QKws6MoqJG/nJ/GWOvDuXBB6M8zm3YYGb3bitFhTaKihqprnYCT7J2rY2BA589br8bNmxg2rRprF69mpqaGqKjoxkxYgTPPvss3bp1O+XxBgTrSOsbQ1FeBbJLxul0sPfIVnYe2kTRkS1U1pfS6LAS5BdKUkwmg7uOITtpgM++Nh/Yxex96yitKqbeXIXZ2oBarSY2NJaeST0Y3WMMAQFRWFx6Ws96vbXgSQ5U7Ob5mz8mNNB3uX8nMru1TixtVBqQJAgN0PLi2KxTfi0E4UIginUIgiAIgnBOVVYuaVqOeGbNmlWFTidx663hXudeebmCT/5bx/r15qYgTHHg4HtUVua22ed//vMfBg0axNdff01ERARXX301UVFRfPrpp/Tp04dFixad1pi7D++I3DQjVnRkC28tfJJlW7+kzlRJalw2vZKHEBwQxvYD63h30V/536oZ+MoyyStaxrrdP2G1mYgPT6Zn6hBSYrOpbKjmh/wfeOaLpyipquPYpYdXX3QXVruZ7zZ80OYY1UgUHKe8oyzD1Ot7EP47LlcvCGeDmBETBEEQBOGcsdtr2bX7Wc50TtiqlUZ2bG/kppv0hIervc4PHhJIQoKWLl386NLFjxuuP9B0RmLX7mcIC+uLVusZwG3dupX7778fp9PJjBkzePTRR93nPvzwQyZPnszNN9/M3r17iYrynIFrr9iUUCITgqg+bEKSVPRKGcLw7teRFt/Do93mvT/z8fJXWLNrIalx2VyU7lls5NKeN3HtwHu9ZrUa7RbmrphGQclKPl35Bk9cO8vjfFJ0BtmdBrCxcAkjelxPx8jOHuddyFSpZI4cp6LIk6MzuCxL7LUlCCciZsQEQRAEQThn9hT+vak64pnNCfv663oArrgyxOf5J5+M4ZZbwunXL5CwsNaBmozdbmBP4T+8rnn77bdxOp0MGzbMIwgDmDRpEtdeey319fXMnDnzlMctSRIXXZ0KMmQk9Oauy170CsIActJGcFHGaAA2FnrP4HWMSvO5tNBPG8B1A+8FYH/FLiw2k1ebgZlXICOzYtt8r3MqJFYH2Nus4XH/8M7cP7yz75OCIHgQgZggCIIgCOdEZWUuR4/+AJze/mDHKipqZMeORrp29SMx8VSWxzk5evR7KiuXehzdtGkTACNH+t4Iuvn4vHnzTuGeLVJ6RtOlXyzSCd6ldYxMA6DWWHFS/askJfCUJBVqlffiqOxOAwj217N573JMVoP7uAuZnVoHxVrPIh3NtU2mXJ7BlMszz0nlSUH4PRKBmCAIgiAIZ51SJXEGJ9wR+BSsXaPM8vTJCTiNXiSKSzzzr4xGIwCRkZE+r2hejrhnzx5MJu+ZppMxdHw6fgHa4748lfVlAIQG+h6PL3anje83zgYgMyEHncbPq41araFLh57YnTZ2leYBShBmlWBZgN2zrQRhAVr+c1sO9w9Pa/c4BEEQOWKCIAiCIJwDBkMBJlPhb9J3QYFSpr1bN//T6EXGZNqDwfAren1vAGJiYigqKqKkpMTnFc3HZVlm//79ZGWdetVA/2AtI27L5Kd3t/k8bzDXsKFwMQC9Uoe02c+hykJWbP8GGRmjpZ6DlXswWutJis7gT8Mfb/O6lNgsCkpWsacsn75pl6BCYnFgI9amj/AlSSnKMaZnB/5+dRZhgaIwhyCcLDEjJgiCIAjCWXeodC6S5F1E40zYu7cRgE6dtKfVjySpKS2d6/7+kksuAeDTTz/FbDZ7tLXb7cyZM8f9vcFg4HSl9ormonGpXsedLicfL38Vi81Eh4gUBncd02YfNcYKNhQuYWNhLjsPbcRorScjoQ+TRj5HWFB0m9fFhycDcKiqCIBV/nb2al2oVcoUXUZsCO/f3peZN/cWQZggnCIRiAmCIAiCcFbZbDVUVCxEls9sbhiAxeLCalWWE4aGnl6gJ8tOjlYswGarAeAvf/kLUVFRHDlyhNGjR7Np0yZMJhNbtmxhzJgx7N+/332tSnVm3mLlXJ5En8uTPI59/su/2FOWT5B/KHeOegGNuu2As2fKYGbds4w3/7yEf9zyGbcMe5yjdQd5+au7KChZ2eZ1Qf7Kps4N5lo2+jvY4OdAo5IY17MD39x/MT89PERs1iwIp0ksTRQEQRAE4ayqrV2HLLe9D9XpMJlaCkkEBp5+/pksO6itW09szJXExsaycOFCrrvuOlavXk3//v3d7QICAnjnnXe46667AIiI8L0Z8smSJIkB41LR+atZ/20J89bMYt3unwj0C+GBq14nNiyxXf2oVGoiQmK5OPNKMhL68PKXdzJ3xTQ6x3X3WV1Rp1Py60x2I11Hd+KmBD0DO0cSIfYGE4QzRgRigiAIgiCcVQ0N25EkzW8SjAUHt8xEmc0yQUGnF4xJkoYGw3ZiY64EoH///hQVFfHNN9+wadMmLBYLnTt35uabb8ZisQAQFBREaqr3ksJTH4NEzuXJvPPpVFZs/4YAXTB/uWoqiVFdTqm/yJA4unToyY6DG9hdupn+6aOOuR+4JGV5Z0x0JE9fkXnazyAIgjcRiAmCIAiCcFbVG7b8ZjNi/v4q/P0lrFYZg8FJUNDpLRGUZQf1hi0exwICArjlllu45ZZbPI7Pnq1UIxwxYgRq9ZnNf5syZQqz576LXq/npQfeRVUVc1p7YPtplBmvBktty8Gm/tL6xpIYZYH/QWysWH4oCL8VkSMmCIIgCMJZI8syDQ3bf9N7dOmilGQ/cMB+gpbt09Cw3aOMvS8Oh8O9kfMDDzxwRu7b7Omnn2batGno9Xpyc3N58J83c8W93YnsEASApDq5WT+700ZxuVKNMUbf0X19ZIcgrryvO5fdmUXh3t0A5OTknMEnEQShNRGICYIgCIJw1tjt1Tidp7fH1on06qWUrd+503pG+nM6jdjt1QDk5eXhcHjO5tXU1DBhwgS2bdvGhAkTGD16tFcfL774IpIkMXz48JO693PPPcfUqVMJCwsjNzeXfv36AUpFxfHP9ef6KTl06RuDqimYUqklGiy1/LLjeyw279e5zlTJf5e/Rr25msiQOLol9SO9XyzXP5XD+Of6k9JTqaS4du1aoKVSpCAIZ55YmigIgiAIwlnjdJ6Z4LRGpk0AACAASURBVOh4Lh4UxCef1JG/2cLkyb7bzP2klvUbzF7H//ZcORqtEtR06eLHww8rmzQ7nUrO1F133UVZWRk9evQgNjaWqqoq1q5di8lkYsyYMR4l7FtzuZQiIlpt+0vqf//997z88ssApKWl8fbbb/tsFxUVxUuvv0LZnjoqDhjYnm/ii//O5Ou1/yYhqjORwXHIyNQaKyit2ovDZScqIpY5sz5j5NhBBAR7FuCw2+2sWrUKf39/n0GlIAhnhgjEBEEQBEE4a2T5zCwXPJ4uXfzIyvJjx45GDhywkZTkXenv8GE7u3c1eh3fu9fm/lqna1nyJ8vK8bvuuouvv/6a7du388svv6DX6xk8eDCTJk1i/PjxbY5p8+bNANx5553tfo6amhr313l5eeTl5flsl5SUxBtvvEFaTgxpOTH0urwDDeFvsOLnlezYuYOiis1YrBbC9GFcPHggY8eO5e677yY0NNRnfwsWLKCqqopJkyadseqPgiB4k+QTLXo+wwwGA3q9nvr6+jb/D0AQBEEQhD8mi6WUteuG/eb3WbXSyD/+UcENN+i5977I0+7v4oGrCAhIOKVrbTYbERERZGZmsmnTJiTp9Mvq/5bGjh3LwoULyc/Pp1evXud6OMIf3IUcG4gcMUEQBEEQzhq12v+s3GfosGCysv1YsMBAbc3pV2hUq/1O+do1a9ZgMpl47bXXzvsgbNOmTSxYsICJEyeKIEwQfmMiEBMEQRAE4azRaiNRq4POyr0eeCAKm01m7ty60+pHrQ5Gqz31WbURI0YgyzIjR448rXGcDc888wwhISG8+uqr53oogvCHJ3LEBEEQBEE4ayRJIiQkm7q6Db/5vbp08WNJ7ulvrBwSkn3ez2SdKUuXLj3XQxCEC4aYERMEQRAE4azSh/ZEkn4fnwVLkgZ9aM9zPQxBEP6ARCAmCIIgCMJZFRKSjSyfft7W2SDLDkJCs/+/vTsPj6q8////OjOZrCQhQBLZtyooYRNQwaWIoEUE9Nev/VmXAgVtFbCItopW0VoFa7VgVcSl4rdibSsfEFE/iCAgKBiJLEE2WcOWsCSZZLLMZOZ8/4gJxiSQZXJmJvN8XFcumHPOfZ/34DSd13Xf574DXQaAZoggBgAALJWUNDikRsSSWl4W6DIANEMEMQAAYKnIyFZKSRklw7AHupSzMgy7UlNuUGQke2kB8D+CGAAAsFzHDrfLNL2BLuOsTNOrDh1uD3QZAJopghgAALBcQkJ/xcX1kBSsqxEaahHXUwkJ7KUFoGkQxAAAgOUMw1D3btMlmYEupRamunW7L2yWrQdgPYIYAAAIiOTk4UpNHS0p2J4Vsys1dYySk4N/A2YAoYsgBgAAAqbHBTPlcCQoeKYoGnI4EtTjgscCXQiAZo4gBgAAAsbhSNKFPZ9W8ExRNHVhz1lyOJICXQiAZo4gBgAAAio5+Vp173Z/oMuQJHXv9oCSk0cEugwAYaBRQWz27NkyDEPTpk3zVz0AACAMde58tzp3vjsIavhtQGsAED4avK19enq65s+frz59+vizHgAAEIbKV1G8XxH2OO3d91eVPzNmxXTF8vt07/Z7delCCANgnQaNiBUWFuq2227Ta6+9pqQk5lADAIDGMwxDXbrcrT69X5HD0VJNv5qiXQ5HS/Xp/QohDIDlGhTEJk+erFGjRmn48HMv61paWiqn01nlBwAAoDbJySM0+LIVSk29/vsj/l5Rsby/1NRRGnzZpzwTBiAg6j018d1331VGRobS09PrdP2sWbP0xBNP1LswAAAQvhyOJKX1mqPUlFHau+9vcrl2yTDsMk1vg/usaB8Xd4G6d5vOPmEAAsowTbPOE7CzsrI0cOBArVixovLZsKFDh6pfv36aM2dOjW1KS0tVWlpa+drpdKpjx47Kz89XQkJCI8sHAADNnWmacjo36/Dht5Wds0ymWSbDiJBplp2zbcV1hhGh1NTR6tD+diUk9JVhBMu+ZUB4czqdSkxMDMtsUK8gtmTJEt10002y28/M2fZ6vTIMQzabTaWlpVXO1SSc/7EBAEDjuN2nlZu3QQXObcp3blVBwTZ5va5q19ntcYqP763EhL6KT0hTUsvLFBnZKgAVAzibcM4G9ZqaeM0112jbtm1Vjk2YMEE9e/bUgw8+eM4QBgAA0BiRka2UmnK9UlPKnx8zTVMezyl5vaUyTbcMI1J2e5QcjtaMegEIavUKYvHx8UpLS6tyLC4uTq1bt652HAAAoKkZhqHIyDaBLgMA6q1RGzoDAAAAAOqvwRs6V1i9erUfygAAAACA8MGIGAAAAABYjCAGAAAAABYjiAEAAACAxQhiAAAAAGAxghgAAAAAWIwgBgAAAAAWI4gBAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFiOIAQAAAIDFCGIAAAAAYDGCGAAAAABYjCAGAAAAABYjiAEAAACAxQhiAAAAAGAxghgAAAAAWIwgBgAAAAAWI4gBAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFiOIAQAAAIDFCGIAAAAAYDGCGAAAAABYjCAGAAAAABYjiAEAAACAxQhiAAAAAGAxghgAAAAAWIwgBgAAAAAWI4gBAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFiOIAQAAAIDFCGIAAAAAYDGCGAAAAABYjCAGAAAAABYjiAEAAACAxQhiAAAAAGAxghgAAAAAWIwgBgAAAAAWI4gBAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFiOIAQAAAIDFCGIAAAAAYDGCGAAAAABYjCAGAAAAABYjiAEAAACAxQhiAAAAAGAxghgAAAAAWIwgBgAAAAAWI4gBAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFiOIAQAAAIDFCGIAAAAAYDGCGAAAAABYjCAGAAAAABYjiAEAAACAxQhiAAAAAGAxghgAAAAAWIwgBgAAAAAWI4gBAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFiOIAQAAAIDFCGIAAAAAYDGCGAAAAABYjCAGAAAAABYjiAEAAACAxQhiAAAAAGAxghgAAAAAWIwgBgAAAAAWI4gBAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFiOIAQAAAIDFCGIAAAAAYDGCGAAAAABYjCAGAAAAABYjiAEAAACAxeoVxObNm6c+ffooISFBCQkJGjx4sD7++OOmqg0AAAAAmqV6BbEOHTpo9uzZ2rRpk77++msNGzZMY8eO1fbt25uqPgAAAABodgzTNM3GdNCqVSs9++yzmjhxYp2udzqdSkxMVH5+vhISEhpzawAAAAAhLJyzQURDG3q9Xv33v/+Vy+XS4MGDa72utLRUpaWlla+dTmdDbwkAAAAAzUK9F+vYtm2bWrRooaioKP32t7/V4sWLddFFF9V6/axZs5SYmFj507Fjx0YVDAAAAAChrt5TE91utw4dOqT8/Hy99957ev3117VmzZpaw1hNI2IdO3YMy+FHAAAAAGeE89TERj8jNnz4cHXv3l3z58+v0/Xh/I8NAAAA4IxwzgaN3kfM5/NVGfECAAAAAJxdvRbrmDFjhkaOHKlOnTqpoKBA77zzjlavXq3ly5c3VX0AAAAA0OzUK4jl5OToV7/6lY4dO6bExET16dNHy5cv14gRI5qqPgAAAABoduoVxN54442mqgMAAAAAwkajnxEDAAAAANQPQQwAAAAALEYQAwAAAACLEcQAAAAAwGIEMQAAAACwGEEMAAAAACxGEAMAAAAAixHEAAAAAMBi9drQGQBqY5qmTnrKVOz1yWOachiGYuw2tXFEyDCMQJcHAAAQVAhiABrklLtM6/IKtLWgWN84i7SloEgur6/adXF2m/rGx6p/Qqz6xMfoipbxah3Jrx4AABDe+DYEoM5M09QmZ5HePHJS7+fkqsyUIgypzKy9jcvr0xd5hfoqv7Dy+htTkjShfRtdnBDLaBkAAAhLBDEAdfK/J/I1e/8x7XSVyG5I3u/D19lC2A+V/eD6xTm5ei87VxfGReuhbm11XZvEpikaAAAgSLFYB4CzOu0p093bD2h85n7tdpVIOhPCGqqi/S5XicZt26+7tx/QaU9ZIysFAAAIHQQxALX6+ESeLt+4Q0tz8iRJ1Z8Aa5yK/pbm5OmKjTv08Yk8P98BAAAgOBHEAFRjmqbmHsjWhMwDyvd45W3i+3kl5Xm8mpB5QC8czJZpNnLIDQAAIMgRxABUYZqmnt53TLP2H5Pk/1Gw2lTc5+l9xzRr3zHCGAAAaNYIYgCqeOFgjv5+KMevfXr27FT28AFyvjC72rnSDZ+rcMEryn34dzpx8whlD+uvR37SXk9u3Fxrf6Zp6sknn9RNN92kHj16qFWrVnI4HEpJSdG1116rt99+2+9BbteuXfr73/+u8ePHq3fv3oqIKN8f7c9//nO9+3r55ZdlGIYMw9CkSZNqvGb48OFKSEjQ8ePHG1s6AAAIQqyaCKDSxyfyKkfC/Kng78/IiIxSizvuqnYu/6mHZboKqx3/+6EcXdI9Xz9Lrr6iotfr1WOPPaaoqCj17t1bPXr0UExMjA4ePKhPP/1UK1as0H/+8x8tXrxYdrvdL+9h3rx5mjt3bqP72bdvn/7whz/IMIyzhsXZs2dr0KBBmjFjht58881G3xcAAAQXRsQASCpfHXH6riz5e1evkjUr5MncrJixv5AtqVW181FXXqMWk6ao5TMvKfl/VlYet0m6b9ehGldTtNvt+uyzz5SXl6f09HQtXbpU//73v7VhwwZt2bJFKSkp+uCDD/T666/77X2kpaXpgQce0MKFC7Vjxw7dcccd9e7D5/Np/PjxMgxDv/rVr8567cCBA3XDDTforbfe0pYtWxpaNgAACFIEMQCSpEd2H5bT45W/n8wqem+hJClm5I01nk/8w+OKu3WiogYNka3lmaDmk+T0ePXH3YertTEMQ0OHDlV0dHS1c71799aUKVMkSZ988okf3kG5SZMm6dlnn9Wtt96qnj17ymar/6/PuXPn6vPPP9czzzyjLl26nPP6iRMnli+c4oeROAAAEFwIYgD0vyfytTgnz++rI3r27JRn+xY5LuqtiE5d6t3eK+l/cvK0/GR+vdpFRJTPuo6Kiqr3PZvKrl279Mgjj+inP/2p7r777jq1GTVqlNq0aaN//etfOn36dBNXCAAArEQQA8KcaZqavf9Yk/wyKF3/mSQp8uJLG9yHTdLseqyiuHfvXr388suSpDFjxjT4vv7k9Xo1btw4GYahN954Q4ZRtwmgDodDQ4cOVUlJiZYvX97EVQIAACsRxIAwt8lZpJ2ukiZZpt79TbokyXFRnwb34ZO0w1WiDGdRjedfeOEFjR8/XrfeequuvPJK9ejRQ0ePHtVDDz2kW265pcH39adnn31WGzdu1FNPPaXu3bvXq+2QIUMkSStXrjzHlQAAIJSwaiIQ5t48clJ2Q/I2wbZdZXt2SpIiOndrVD92o7zOAYlx1c6tWrVK77//fuVrh8OhJ554QtOmTWvUPf0lMzNTM2fO1JAhQ3TvvffWu32vXr0kSRkZGf4uDQAABBAjYkAYO+Uu0/s5uU0SwsziYpklxZIkI6H6EvT14TWlJTm5OuWuvoLikiVLZJqmXC6Xtm7dqrvuukt//OMfNXjwYB09erRR922ssrIyjRs3TjabTf/4xz8atMBH69atJUnZ2dn+Lg8AAAQQQQwIY+vyClTWBCFMknyugsq/G7HVR7Lqq8yU1udV32+sQmxsrHr37q0XX3xRs2fP1pYtWxo0AuVPTz31lDIyMvTEE0+oR48eDeojISFBkpSbm+vP0gAAQIAxNREIY1sLihVhqEnCmK1FfOXfzSKXjLgWjeovwpC2FhRpTErLc147YcIE/eEPf9AHH3wgr9frt02d62vx4sWSpA8++EAfffRRlXMHDhyQJH344YcaOnSoJGn16tXV+sjPL18xMikpqcnqBAAA1iOIAWEsw1nUZCNiRnSMjOgYmSXFMp35UiODWJkpfVPLgh0/FhdXPgLndruVl5dXOb0vUNatW1fruePHj+v48eO1nj916pQkKTU11e91AQCAwGFqIhCmTNPU1oK6BZuGiji/pySp7OA+v/S3paCoTsvYV6ww2Lp1a7Vq1eocVzedzZs3yzTNGn9mzpwp6cymzbW9r8zMTEnSgAEDLKsbAAA0PYIYEKZOesrk8jbFovVnRPYfJEnybN/ql/4KvT6d9JRp2bJlWr16dY3hZdWqVZUbJt95553V9ux6/PHHZRhG5XTAYPfFF19IkoYNGxbgSgAAgD8xNREIU8VNHMIkKeryq+X6v6+qdNMGtZg4ucZrCv/5qtwbqk/dy3tkmgyHQ1L5yFrCtIclSSU+U19//bWeeOIJJScnq3///kpOTlZeXp727Nmj3bt3S5JuuukmPf7449X69fnK37fj+77rKiMjQ/fcc0/l671790qS5s+fr2XLllUeX7x4sdq2bVuvvmvj8Xi0du1aRUdH67rrrvNLnwAAIDgQxIAw5anDFL/GcpzfU45efeXZvkVlB/fVuJ+Y9+hheXZsq3a87LudZ15ERlb+1e3z6ec//7mKi4u1bt06bd++XSdPnpRhGGrbtq1+8Ytf6I477tANN9xQY02bNm2SVD4lsD6cTqc2btxY7fjhw4d1+PDhytelpaX16vdsli1bppMnT2rChAkBnWIJAAD8zzDr8sCFHzmdTiUmJio/P79yWWYA1jtUXKpLNuxo8vuUrFmh/Cf+oNibb1f83fc3ur/0wRepY3TkuS+sgdvtVqtWrdSzZ0+lp6dXm7YYbEaPHq0PP/xQGRkZ6tevX6DLAQDA78I5G/CMGBCmYuzW/M8/+qcj5Ejrp+IPFsl7+lTj+7M1PDytX79eLpdLs2fPDvoQlp6ermXLlmncuHGEMAAAmiGCGBCm2jgiFGdRGIuf+qBMd6lc/3ytUf20sNvUxtHwGdVXX321TNPU8OHDG1WHFWbMmKH4+HjNmjUr0KUAAIAmwDNiQJgyDEN94mP1ZV5hk9/LcX5PpX66qdH99I2PDfqRLH/59NNPA10CAABoQoyIAWHs4oRYRYRIrokwpP4JsYEuAwAAwC8IYkAY6xMfozJLl+tpuDJT6hNPEAMAAM0DQQwIY1e0jA+pEbHLW7YIdBkAAAB+QRADwljryAiNTUmSPcjDmN2QbkxJUutIHmsFAADNA0EMCHMT2reRN8inJ3rN8joBAACaC4IYEOYGJMTqwrjooP1lYJN0UVy0LmahDgAA0IwE63cvABYxDEMPdWsrX6ALqYVP0oPd2obNsvUAACA8EMQA6Lo2iboppaXsgS7kR+yS/r+UlrquTWKgSwEAAPArghgASdJTF3RQgsMeNL8UbJISHXb9+YIOgS4FAADA74LlOxeAAGvliNDzPToGzRRFn6Tne3RSKwcrJQIAgOaHIAag0sjklprRtW2gy5AkPdytrX6WzJREAADQPBHEAFRxb+cU3dspJbA1dErR1ADXAAAA0JQIYgCqMAxDM7q11cPdykfGrPolUXGfR7q11cPd27FKIgAAaNYIYgCqMQxD93ZO1YK0rkp02Jt8NUW7pJYOuxakddXUzqlNfDcAAIDAI4gBqNXPkhO1/tILNSalpST//8Ko6G9sSkutv/RCngkDAABhgyAG4KxaOSI0r1cXLUjrqh5x0ZIkeyNnDVa07xEXrbd6d9XLvbooidURAQBAGOGbD4A6+Vlyoq5rk6AMZ5HePHJSS3JyVWZKEYZUZp67fcV1DsPQjSktNaF9G/VPiOVZMAAAEJYIYgDqzDAMDUiM04DEOD3xk/Zan1eoLQVF2uws0uaCIrm81Xchi7Pb1C8+Vv0TYtUnPlaXt2yh1pH86gEAAOGNb0MAGqR1ZITGpLSsfH7MNE2d9JSpxGfK7fMp0mZTtM1QG0cEo14AAAA/QhAD4BeGYSg50hHoMgAAAEICi3UAAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFiOIAQAAAIDFCGIAAAAAYDGCGAAAAABYjCAGAAAAABYjiAEAAACAxQhiAAAAAGAxghgAAAAAWIwgBgAAAAAWI4gBAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFosIdAHBxDRN+VwemW6fTK9Pht0mI9ImW5xDhmEEujwAAAAAzURYBzGvy6PSvXlyHymUJ6tA7sOFMt3eatcZkXZFdmghR8d4RbZvoajuLWWPcwSgYgAAAADNQdgFMdM05T5UoMIvj6p460nJZ0o2o/zP2tq4vSrdl6/SA87K62P6tlGLwe0U2TGe0TIAAAAA9RJWQax4+ynlf3JAZdlF5U/H+b4/cZYQVkXFdT5TxVtOqvibE4o4L1aJ13ZRzEWtm6JkAAAAAM1QWAQxr8ujvKV7VbzlhFQxeOU7a5Nz+z6UlWUX6dT//VYxfZPVckx3piwCAAAAOKdmH8SKt59U7qI98hWXlR+o4+BXnX3fX/HWEyrdk6ukn5+vmF5t/HwTAAAAAM1Js12+3jRNOT87pFP/3FEewvwdwKrdUPIVl+nUP3fI+VmWTLOpbwgAAAAgVDXLIGaappzLD8i5/OD3B6y6cfkfFfcmjAEAAACoSbMMYgWrs1Sw+rBf+8zM3q3OfxmqR1fMqXZu1d4v9fy6f2jCew9pwEs3qeMzV6nlyK7a+d/0c/brdrv1zDPPqG/fvoqLi1NSUpKGDh2q9957z6/1S1JWVpbmz5+vu+66SwMGDFBUVJQMw9CkSZPO2u7UqVNasGCBpk6dqiFDhig2NlaGYWj48OFnbTdp0iRFRERo27Zt/nwbAAAAQMhrds+IFW8/eWYkzI8eWzFX0RFR+t2QcdXOTf3gSTlLC6sdL1ydpeJe3RXTq+YVFYuKijRixAh98cUXatmypX72s5+psLBQq1at0po1a3T//ffrr3/9q9/ew6JFi3TffffVu93nn3+uCRMm1Lvd448/roULF+ree+/VZ599Vu/2AAAAQHPVrEbEvC6Pchft8Xu/H+5crfQj2/Sr/jeqTVxStfM/u+AqPXjVXfrnzX/V5qlLz5wwpNxFu+V1eWrs9+GHH9YXX3yh3r17a8+ePVq0aJGWL1+uDRs2qEWLFnruuee0bNkyv72Prl27aurUqXrzzTe1ZcsWPfLII3Vql5qaqt/85jeaP3++0tPT9corr9SpXYcOHTRp0iStXr1aS5cuPXcDAAAAIEw0qyCWt3TvmdUR/ej1r/8jSbqlz6gazz93/UOaMvh2De12iVrHtjxz4vsFPPI+2FutTW5urubNmydJmjdvntq0ObPS4oABA/Tggw9Kkp566il/vQ2NHTtWL7zwgsaPH68+ffooIqJuA6KDBw/WK6+8orvuuksDBw5UVFRUne85ceJESdKcOdWndAIAAADhqtkEseLtp8r3CfPz+hiZ2bv19ZFMXdyul7q37lT/DkypePMJFX97qsrhjz76SG63W506ddLll19erdmtt94qSdqwYYOOHj3aoNqDQb9+/dS3b1999tln2rFjR6DLAQAAAIJCswhipmkq/5MDZzZr9qPlu9dJkq7oPKDhnRhS/icHqqyi+M0330iSBg4cWGOTbt26qVWrVpKkzZs3N/zeQWDEiBGSpCVLlgS4EgAAACA4NIsg5j5UoLLsoiZZpn79oQxJ0oD2vRreiSmVHS+SO6ug8tD+/fslSZ061T7K1qFDhyrXhqohQ4ZIklauXBngSgAAAIDgUK8gNmvWLA0aNEjx8fFKSUnRjTfeqF27djVVbXVW+OXRJouU27PLF//4SevOjevIZpTX+b2CgvJQFhcXV2uTFi1aSJKcTmfj7h1gvXqVh9iMjIwAVwIAAAAEh3rFlzVr1mjy5MnasGGDVqxYIY/Ho2uvvVYul6up6jsnr8uj4q0nJZ//+y5yF6vIUyxJSopJbFxnPlPFW07WuoJic9a6dfny/bm5uXK73QGuBgAAAAi8eu0j9r//+79VXi9YsEApKSnatGmTrrrqKr8WVlele/MkXxPMSZTkLD0TMFtExja+Q5+p0r15iu2TrPj4eEk6a4gtLCzfmywhIaHx9w6gH9afl5enlJSUAFYDAAAABF6jNnTOz8+XpMpFJWpSWlqq0tLSytf+nmbnPlIo2YwmCWOJ0S0q/17oLlJ8VO3TCOvEZshzpFDqk6wuXbpIkg4dOlTr5YcPH5akymtDVcXnRJKSkqrvwwYAAACEmwY/WeXz+TRt2jRdfvnlSktLq/W6WbNmKTExsfKnY8eODb1ljdyHCppsRCzGEa1YR4wkKbc4/xxX14HPrFyw4+KLL5Ykff311zVeum/fPp0+fVqS1L9//8bfO4BOnSpfuj8pKUkOhyPA1QAAAACB1+AgNnnyZGVmZurdd98963UzZsxQfn5+5U9WVlZDb1mNaZrlI0xNKC31fEnSnlMH/dKf+0ihTNPU9ddfr8jISB06dEjr16+vdt0777wjSbrsssvUrl07v9w7UDIzMyWVb1QNAAAAoIFBbMqUKVq2bJk+++yzyiXWaxMVFaWEhIQqP/7ic3lkur1+668mQzqVj1xtOpLpl/7MUq98Lo+SkpJ09913S5LuueeeylEjqXx1wWeeeUaS9Mgjj1TrY8GCBTIMI2SmLH7xxReSpGHDhgW4EgAAACA41OsZMdM0NXXqVC1evFirV69W165dm6quutXjboKlEn/kuguu0JwvFujzA1/rD1fdWeM1c9a/pVV7v6x2/Nf/M0MOW/lUvLTzLtDT106XJJme8rqffvppffXVV/ryyy91/vnna9iwYXK5XFq5cqU8Ho+mT5+uG264oVq/Pl95+/pO8zt27JhuuummytcVz6AtXbpUl112WeXxl19+uXLqZIUfnj9x4oQkKT09vcrxRx99VKNGjap2308//VSSNHbsQOg+dwAAHNpJREFU2HrVCwAAADRX9QpikydP1jvvvKP3339f8fHxOn78uCQpMTFRMTExTVLg2Zjepg9iaakXaGD7NH19JFN7Th7Q+W26VLvmYN4RfXPs22rHM7/fg0ySoiIiK/9ulpXXHRsbq9WrV+v555/XwoUL9dFHHykyMlKDBw/WlClTdPPNN9dY06ZNmyRJEydOrNd7KS0t1caNG6sdP3HiRGW4kmpeUKWmdk6ns8rxH/ZR4ZtvvtHWrVt19dVX66KLLqpXvQAAAEBzZZimWeeVLgzDqPH4m2++qfHjx9epD6fTqcTEROXn5zd6mmLZ6RId/0t6o/qoiw93rtZv339Mdw76hR4bNqXR/Z334CBFJEU3uP3555+v4uJi7dmzJyABuD6mTp2qF198Ue+//77GjBkT6HIAAAAQRPyZDUJNvacmBhMjssFrjdTLqJ5DNejr3lq4+QPdfemtSo6rfbn+ujAcDa/7wIED+u677/Taa68FfQjLysrS66+/rqFDhxLCAAAAgB+wJsk0EVucQ0akvd7tTJkqllsFRrHyjSIVGMUqllumag+afxrxO5WUlWruF281pmQZUXbZ4ur2bJdpmnK7T6q4+LCKivaruPiw2rVrIZ/Pp0mTJjWqDis88cQT8ng8mjt3bqBLAQAAAIJKvaYm+oO/hx9z5m+Ve//Z9/gqkVtHbbk6aSvQCSNfJ20F8hjVV1t0mHa18cUr2UxUG1+82vmSFK3IGnpsuKhuiUq+q0+N59zu08rN/VIFBZnKd25RQUGmvF5Xtevs9jjFx6cpMaGv4uPTlJQ0WJGRjRulAwAAAKzG1MQQFtkpXu6DzmqbOpsylWM49W1ElvbZcmQapgzTKB/1qvlRN3kMr47Z8nRc+TIjyq/v7kvVRWUdlGwmyKitYV3ZDEV2jK9ap2nK6fxGWYffVk7OhzLNMhlGhEyzrNZuvF6X8vI2Kj9/U+X1qSk3qEOH25WQ0K/WZ/kAAAAABIfQD2LtW1QLYQdtJ/R1xF7l2lzl4csoP1/x51kZqpyiaBqm9tqy9V3UcSX54jSwrLs6+5IbXqzPlKN9i8qXJ06s0N59z8vl2i3DsMs0y0fpzhbCfqjiOtMsU3bOBzqevURxcT3Uvdt0JScPb3idAAAAAJpUyAexqO4tJZsh+UyVyKMvHLu0z56tise96hS+zqKifa7h0orIrermTdUQTw9Fq357eEmSbIaiureUx5OrXbufUHb2B6oYnqsIYQ2u8/v2Ltdubd32G6WmjlaPC2bK4UhqVL8AAAAA/C+kF+uQJHucQzF92uiA/YT+G/Wl9tuyy0/4e3be9/3tt2Xrv1Ff6oCt+p5ZZ2UzFNO3jU4XfaYvN4xQdvZH35/w9yN65f1lZ3+kLzeM0IkTn/i5fwAAAACNFfJBzDRNbY3N0qeOrSqVR2YTPx5lGlKpPPo0cqs22w+cdaXFKu18PuX2+Fhbt90tjydPUuNGwM7NK48nT1u33a0DB+YF3dYDAAAAQDgL6amJpmlq5cqVWpexvvyAVWtUfH+frx175THKNLCs+1kX8jANU6f7vq+Tp5dUHGn6Gn9wn737/qoyr0vdu93PQh4AAABAEAjpIPb5559r3bp1fu3z2LFjeu211zRw4EBdf/31Vc7t2bNHR44c0bFjx3T06FEVFhZKkt6cMkfD4y6utc8Vnnlav2K5du8p1Z7dbmVnly+y8bc57dS7d3SD6tyzp1ST7zmi0WMSNHVqmyrnli3L1/p1Rdq/363cXK+8Xkn6ve68c7lefXVFjf3l5ubqpZde0qJFi7Rr1y4VFxdLkmw2m1JTU3XvvffqwQcfrDHIDR8+XF999ZV2796t8847r87vYdeuXfrkk0+0adMmbdq0STt27JDX69WTTz6pP/7xj7W2+/jjj7Vo0SJt3rxZR44c0enTpxUZGanu3bvr+uuv1/Tp09WmTZtq7RpaJwAAAOBvITs1cceOHVq1apXf+/34448VERGhn/70p9XOLVq0SGvWrNHu3bsrQ5gkbXUc1MFanhkrSNmkp5f8j/7xj1yt+7yoMoQ11osvnlRkpKHbb6++GMdLL55SenqxTp6sCGHl8vLTdeJEzUHskUce0aOPPqrNmzertLRUKSkpat++vex2u44dO6YZM2aof//+crvd1drOnj1bBQUFmjFjRr3ew7x583TvvffqrbfeUmZmprzeuk3XXLhwod544w3l5+crLS1NP//5zzVkyBAdPHhQs2bNUq9evbR9+3a/1QkAAAD4W0gGsaKiIi1dutTv/X777bfKysrSoEGDFBcXV+38hRdeqGHDhum2227TAw88cOaEKa117FCJPFWu90YWKrvXm7p4QIx+NS5JTz6Zqnff7aTU1MYNRK5dU6jtmaUaMyZBSUn2aucvuCBKab2j9P/fkqg5c9v+4IyhHTtnyOPJrdYmNjZWHTt21Ouvvy63263s7GwdPnxYLpdLN998syRpy5Yt+v3vf1+t7cCBA3XDDTforbfe0pYtW+r8PtLS0vTAAw9o4cKF2rFjh+644446tXvggQd07Ngx7dmzRytWrNA777yj5cuXKysrSzfffLNycnI0adIkv9UJAAAA+FtIBrGPPvpIJSUlfu93w4YNkqT+/fvXeH7s2LG68sor9ZOf/KRqUDMktzz60rGryvXZPd6W11Gk3/ymtX71qyQNHhKnNsmNnw26aFG+JGnk9fE1np/7QnvNmdNed97ZWmlpMT84Y8rjcWrX7j9Va/PXv/5Vhw4d0sSJE2W3nwl3DodD7777rlq3bi1Jevvtt2u858SJE2WapubOnVvn9zFp0iQ9++yzuvXWW9WzZ0/ZbHX7OPbr16/GqYUtWrTQc889J6n8v6XT6fRLnQAAAIC/hVwQ27lzpzIzM/2+CuCxY8eUlZWlDh061Ph80bmYhrTXnl05RbEgOUMFbTdI8vm1zj17SrV9e6kuvDBKHTtGNqAHr7Kzl+rEiU/r3MJms6lnz56SpLy8vBqvGTVqlNq0aaN//etfOn36dAPq8o+IiPKga7PZ5HBU3+stWOoEAABAeAupIGaaplatWtUkK//t3LlTktS1a9eGd2JKX0fslU8+ne57ZrNmf/pivUuSdPGAmHNceTaG9u57vl5hdv/+/ZKk+PiaR+EcDoeGDh2qkpISLV++vBG1NVxpaakefvhhSdKIESMUE1P93ygY6gQAAABCKogdPnxYOTk5TbIn1oEDByRJHTt2bHgnhpRrcyn38qMqse1XUyxT/8035VMyL7qoYastljPlcu2S07m5TlcvWbJER48elSSNGTOm1uuGDBkiSVq5cmUjaqu7jIwMjR8/XuPGjdP111+vDh06aMGCBRo0aJDeeOONoKkTAAAA+LGQWr7+q6++ks1mk8/n3+l+UvnUREkNmpb4Q4Zh6KhjkaIMu0zT/5s2f/ddqSSpU6fq0+7qwzDsOnz4bSUm1vw8XIWjR4/q1ltvlVS+oMff/va3Wq/t1auXpPKAZIVDhw7prbfeqnJs+PDhmj9/vtq3b19rO6vrBAAAAH4sZEbEXC6Xtm/f3iQhzO12y+MpX/EwNja2UX3Z7cWKiNjcJCGsuNinkpLyUbaEhOqrJdaHaXqVnbNMbnftz0k5nU4NHDhQxcXFMgxDH3zwQeWiHTWpOJednd2o2urqxhtvlGmaKisr04EDB/T6669rx44dSktL03vvvRc0dQIAAAA/FjJBbP/+/U0SwqTyZ4sqREY2ZAGMM1q2PC6bzf9TEiXJ5Trz/mNjG//8mWmWKTdvQ43nCgsL1bdvXx07dkyGYejf//63hg0bdtb+EhISJJVvDm0lu92uzp07a+LEiVq3bp0Mw9CECRN0/PjxGq8PVJ0AAABAhZAJYseOHavz8ub1FR195nmrmjYsro8W8afl8/l/kQ5JatHizPsvKmp82DOMCBU4M6sdd7lc6tevnw4cOCDDMLRw4cLKvcTOJj+/fFn9pKTqm0xbpUuXLrr66qtVWFioFStq3rw6GOoEAABAeAuZIHb48OEmGxFzOByVS50XFRU1qq/4+JMyjKYZEYuOtik6ujzkOZ2Nn/pommXKd1bd2LioqEj9+vXT3r17ZRiG/vnPf+qXv/xlnfo7deqUJCk1NbXRtTVGxR5vOTk5NZ4PljoBAAAQvkIiiJmmWbmYRlNp27atJOnEiRON6MVUixan1ASr61c6//woSdLBgx6/9FdQcGZPtuLiYvXv31/fffddZQi77bbb6txXZmb56NqAAQP8UltDlJaWat26dZKkCy64oMZrgqFOAAAAhLeQCGIul6vRUwbPpUuXLpLKR94ayuEoUUREmZ8qkt5667SGX7NP06cfrTzWr1/5NMpvvy3xyz283kJ5PKdUUlKiAQMGaPfu3fUOYY8//rgMw9Ds2bMl6ZzPkjVGTk6O5s2bJ6fTWe3ckSNHdMcdd+jo0aPq0qWLRowYUWMfX3zxRZPXCQAAAJxNSCxfX7GiYVPq2bOn1q5dq3379tX6BX3NmjXas2dPteP/+te/ZLfbZbP5tPErl373u6pL4H/0oVMffVxQ+fr06fKwNudvJxQTW56FW7ey64k/nVelnfn9TMwI+5khtiGXx+mf/8xTxqZi/frXNb+XuXNOaMWKwmrHF/9Pvj5YWh5goqMNzX+1g1q3jpDXW6o775ymHTt2SCpfOXLmzJmaOXNmtT5SUlIqg0yFiimj+fn5io6O1nXXXVdzYT+SkZGhe+65p/L13r17JUnz58/XsmXLztS9eHHliGVRUZHuueceTZs2Tf369VOXLl1kmqaysrKUkZEht9utdu3aacmSJVWe/avg8Xi0du3aetUJAAAA+FtIBDGv1/9Lwf9Y27Zt1bFjR2VlZenEiRNKTk6udk1ubq6OHDlS7fgPV+dLalX9y/+Jk2XauaO02vEfTi9MTa3+n2L3nvI2I0fGVx47//wo9eoVpe3bS3XwoFudO1df5fHYsbLKZe5/qKxMKisrP15SYsrjKf+7abp18uTJyutcLldlKPqxmo5v2rRJUnnIuf3229WqVasa2/6Y0+nUxo0bqx0/fPhwlZHJH65qmZKSoueee05r165VZmamduzYoeLiYrVs2VKXXXaZRo8erbvuuqtyZcQfW7ZsmU6ePKkJEybUuU4AAADA3wyz4gEhizidTiUmJio/P7/WL8s/lpubq7lz5zZxZdK3336r//73v7rssssaNFoSFVWoSy5d7JdaPB5TN914QJ06OfTSy+1l/ODBs7VrCvWnP+Xo//yfRP327tr39aqrIYPXKiam9g2Qz8btdqtVq1aKiIhQfn6+vvnmG/Xr16/RNTWV0aNH68MPP1RGRkZQ1wkAABAOGpINmouQeEasYkXDpnbRRRepY8eO2rRpkwoLq0/tOxefr3GbLP/Q9swSlZSYmjipVZUQJklX/bSFeqVFadkyp3JPN/6ZNLs9qsFt169fL5fLpfz8fI0fPz6ow016erqWLVumcePGBXWdAAAAaP5CIojFxcU1eqPluho5cqTKysq0du3aerf1eKJVVuaf2Z79+sfo05XdNGBAbI3np0xpI7fb1Ntv5zXqPnZ7CzkcDR9Vu/rqq3XNNdcoPj5es2bNalQtTW3GjBkhUScAAACav5CYmihJb775pg4ePNiElflH7z6fKDExu0mXsPenli0v04CLFwa6DAAAAIQhpiaGgA4dOshmC/5yCwrayDRDI4UZRoQSE/oGugwAAAAg7AR/svle27ZtK5dJD2aFBa1ks1k6yNhgplmm+IS0QJcBAAAAhJ2QCWJdu3YNiRGxvLzz5POFzohYUsvLAl0GAAAAEHaCP9l8Ly4uTr169Qr6MObzxaqsrJ8Mw38rKDYFw7ArNeUGRUaylxYAAABgteBONT9yySWXBP30RJ/Pp+7dJsk0m34T6sYwTa86dLg90GUAAAAAYSmkgliHDh2UkpJSbV+tYGEYhlJTU/WTn1yruLgekoKzTslQi7ieSkhgLy0AAAAgEEIqiBmGoWHDhsniFffrzDRNXX311bLZbOrebbqk4KxTMtWt231BG2gBAACA5i6kgpgk9ezZU2lpaUEXIgzDUO/evdWzZ09JUnLycKWmjpYUbM+K2ZWaOkbJycMDXQgAAAAQtkIuiEnS9ddfr+jo6ECXUUV0dLRGjhxZ5ViPC2bK4UhQ8ExRNORwJKjHBY8FuhAAAAAgrIVkEIuNjdWYMWMCXUYVY8eOVWxsbJVjDkeSLuz5tIJniqKpC3vOksORFOhCAAAAgLAWkkFMki688EINGzYs0GVIkq655prKKYk/lpx8rbp3u9/iimrWvdsDSk4eEegyAAAAgLAXskFMkq688kpdccUVAa3hiiuuOGcNnTvfrc6d77aoorPV8NuA1gAAAACgXESgC2gMwzB0zTXXKCoqSitXrrT8/tdcc42uvPLKc15nGIa6d7tfEfY47d33V5U/M2bFdMXy+3Tv9nt16UIIAwAAAIJFSAcxqTzkXHnllUpOTtb777+vkpKSJl3e3jAMRUdHa+zYsbVOR6ytXZcudysu7ifasXOGPB6npKbc9NkuhyNBF/acxXREAAAAIMiEfBCr0LNnT3Xq1EkfffSRMjMzZRiGXwNZRX9paWkaOXJktYU56io5eYRathyoXbufUHb2B/L/6Fh5f6mpo75ftbGlH/sGAAAA4A+GafHuyE6nU4mJicrPz1dCQkKT3GPnzp1atWqVcnJyZLPZ5PP5GtxXRfuUlBQNGzasXqNg53LixArt3fc3uVy7ZBh2mWbDR8gq2sfF9VD3btPZJwwAAABBz4psEKyaZRCTJNM0dfjwYaWnpyszM1M+n6/OoaziOpvNprS0NF1yySVq3759k2wibZqmnM7NOnz4bWXnLJNplskwImSaZedsW3GdYUQoNXW0OrS/XQkJfYNus2sAAACgJgQxCwXiH9vlcunAgQM6evSojhw5oqNHj8rtdle7LjIyUu3atVP79u3Vrl07denSRXFxcZbUKElu92nl5m1QgXOb8p1bVVCwTV6vq9p1dnuc4uN7KzGhr+IT0pTU8jJFRrayrE4AAADAHwhiFgqGf2zTNOVyuVRWVqaysjJFREQoIiJCcXFxQTWaZJqmPJ5T8npLZZpuGUak7PYoORytg6pOAAAAoCGCIRsESrNZrKM+DMNQixYtAl3GORmGocjINoEuAwAAAICfhfSGzgAAAAAQighiAAAAAGAxghgAAAAAWIwgBgAAAAAWI4gBAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFiOIAQAAAIDFIqy+oWmakiSn02n1rQEAAAAEkYpMUJERwonlQaygoECS1LFjR6tvDQAAACAIFRQUKDExMdBlWMowLY6fPp9PR48eVXx8vAzDsPLWtXI6nerYsaOysrKUkJAQ6HIQwvgswV/4LMEf+BzBX/gswV9+/FkyTVMFBQVq166dbLbwemrK8hExm82mDh06WH3bOklISOCXC/yCzxL8hc8S/IHPEfyFzxL85YefpXAbCasQXrETAAAAAIIAQQwAAAAALGZ//PHHHw90EcHAbrdr6NChioiwfLYmmhk+S/AXPkvwBz5H8Bc+S/AXPkvlLF+sAwAAAADCHVMTAQAAAMBiBDEAAAAAsBhBDAAAAAAsRhADAAAAAIsRxAAAAADAYgQxSS+99JK6dOmi6OhoXXrppfrqq68CXRJCzKxZszRo0CDFx8crJSVFN954o3bt2hXoshDiZs+eLcMwNG3atECXghB05MgR3X777WrdurViYmLUu3dvff3114EuCyHE6/Xq0UcfVdeuXRUTE6Pu3bvrySefFAtu41zWrl2r0aNHq127djIMQ0uWLKly3jRNPfbYY2rbtq1iYmI0fPhw7dmzJ0DVBk7YB7F///vfmj59umbOnKmMjAz17dtX1113nXJycgJdGkLImjVrNHnyZG3YsEErVqyQx+PRtddeK5fLFejSEKLS09M1f/589enTJ9ClIATl5ubq8ssvl8Ph0Mcff6xvv/1Wzz33nJKSkgJdGkLIM888o3nz5unFF1/Ujh079Mwzz+gvf/mL/v73vwe6NAQ5l8ulvn376qWXXqrx/F/+8he98MILeuWVV7Rx40bFxcXpuuuuU0lJicWVBlbY7yN26aWXatCgQXrxxRclST6fTx07dtTUqVP10EMPBbg6hKoTJ04oJSVFa9as0VVXXRXochBiCgsLdfHFF+vll1/Wn//8Z/Xr109z5swJdFkIIQ899JDWr1+vzz//PNClIITdcMMNSk1N1RtvvFF57Oc//7liYmL09ttvB7AyhBLDMLR48WLdeOONkspHw9q1a6f7779fDzzwgCQpPz9fqampWrBggW655ZZAlmupsB4Rc7vd2rRpk4YPH155zGazafjw4fryyy8DWBlCXX5+viSpVatWAa4EoWjy5MkaNWpUld9NQH0sXbpUAwcO1M0336yUlBT1799fr732WqDLQogZMmSIVq5cqd27d0uStmzZonXr1mnkyJEBrgyhbP/+/Tp+/HiV/49LTEzUpZdeGnbfvyMCXUAgnTx5Ul6vV6mpqVWOp6amaufOnQGqCqHO5/Np2rRpuvzyy5WWlhbochBi3n33XWVkZCg9PT3QpSCE7du3T/PmzdP06dP18MMPKz09Xffee68iIyM1bty4QJeHEPHQQw/J6XSqZ8+estvt8nq9euqpp3TbbbcFujSEsOPHj0tSjd+/K86Fi7AOYkBTmDx5sjIzM7Vu3bpAl4IQk5WVpd/97ndasWKFoqOjA10OQpjP59PAgQP19NNPS5L69++vzMxMvfLKKwQx1Nl//vMfLVy4UO+884569eqlzZs3a9q0aWrXrh2fI8APwnpqYps2bWS325WdnV3leHZ2ts4777wAVYVQNmXKFC1btkyfffaZOnToEOhyEGI2bdqknJwcXXzxxYqIiFBERITWrFmjF154QREREfJ6vYEuESGibdu2uuiii6ocu/DCC3Xo0KEAVYRQ9Pvf/14PPfSQbrnlFvXu3Vt33HGH7rvvPs2aNSvQpSGEVXzH5vt3mAexyMhIDRgwQCtXrqw85vP5tHLlSg0ePDiAlSHUmKapKVOmaPHixVq1apW6du0a6JIQgq655hpt27ZNmzdvrvwZOHCgbrvtNm3evFl2uz3QJSJEXH755dW20Ni9e7c6d+4coIoQioqKimSzVf2qaLfb5fP5AlQRmoOuXbvqvPPOq/L92+l0auPGjWH3/TvspyZOnz5d48aN08CBA3XJJZdozpw5crlcmjBhQqBLQwiZPHmy3nnnHb3//vuKj4+vnOOcmJiomJiYAFeHUBEfH1/tucK4uDi1bt2a5w1RL/fdd5+GDBmip59+Wr/4xS/01Vdf6dVXX9Wrr74a6NIQQkaPHq2nnnpKnTp1Uq9evfTNN9/o+eef169//etAl4YgV1hYqO+++67y9f79+7V582a1atVKnTp10rRp0/TnP/9Z559/vrp27apHH31U7dq1q1xZMVyE/fL1kvTiiy/q2Wef1fHjx9WvXz+98MILuvTSSwNdFkKIYRg1Hn/zzTc1fvx4a4tBszJ06FCWr0eDLFu2TDNmzNCePXvUtWtXTZ8+XXfeeWegy0IIKSgo0KOPPqrFixcrJydH7dq10y9/+Us99thjioyMDHR5CGKrV6/W1VdfXe34uHHjtGDBApmmqZkzZ+rVV19VXl6errjiCr388su64IILAlBt4BDEAAAAAMBiYf2MGAAAAAAEAkEMAAAAACxGEAMAAAAAixHEAAAAAMBiBDEAAAAAsBhBDAAAAAAsRhADAAAAAIsRxAAAAADAYgQxAAAAALAYQQwAAAAALEYQAwAAAACL/T/hIj9tWtw8kwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -296,9 +512,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAM0CAYAAAAhmGqPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXwU9eH/8ffs5r6BhEMCAkZAgxyGQ8EDEUWBKkpbFauI/Xp8W7WKPxVrvb71rIhWxaNa8Khai0e1IKAiVEFQTiP3kaDhykGOzX3szu+PABp3A0l2NzObvJ6PRx4tn5n5zDv4eIS8d2Y+Y5imaQoAAAAAYAsOqwMAAAAAAH5ESQMAAAAAG6GkAQAAAICNUNIAAAAAwEYoaQAAAABgI5Q0AAAAALARShoAAAAA2AglDQAAAABshJIGAAAAADZCSQMAAAAAG6GkAQAAAICNUNIA4CeysrI0b948zZgxQ+edd546duwowzC8vpYtWxawc44ePdrnOfz5Gj16dMDyAQCA1hVmdQAAsEp2drbWrFmjtWvXHvkqKiqyOhYAAGjnKGkA2q0hQ4aopKTE6hgAAAANtLmS5vF4tG/fPsXHx8swDKvjAGijysvL5XK5AjKX2+0OyDw/nzNQ+QAACFWmaaq0tFTHHXecHI7QedLLME3TtDpEIO3Zs0c9evSwOgYAAAAAm8jJyVFqaqrVMZqszV1Ji4+Pl1T/HyIhIcHiNADsrGfPnl63O/bo0UODBg3SkCFDNHjwYHXq1MnnIhzz58/XmWeeGZAcEyZM0PLly4M2PwAA7ZXL5VKPHj2OdIRQ0eZK2uFbHBMSEihpAI6qZ8+eSktLU0ZGhjIyMjR06FAlJyc32Gf37t0+j42NjQ3Yzxin0xnU+QEAaO9C7TGoNlfSAKCpMjMzrY4AAADgJXSengMAAACAdoCSBgAAAAA2QkkDAAAAABuhpAEAAACAjVDSAAAAAMBGWN0RAGysrq5O+fn5KigokMfjUceOHdWhQwfFxcVZHQ0AAAQJJQ0AbOj555/Xvffeq9WrV6u6utpre8eOHTVy5EiNGjVKkyZNUv/+/S1ICQAAgoHbHQHAhubNm6fly5f7LGiSVFhYqPnz5+vuu+/WySefrAkTJmjZsmWtGxIAAAQFJQ1Am2SapipKilWSl6vCfXtVkperipJimaZpdbSAM01TH3/8sc455xzddNNNqqqqsjoSAADwA7c7AmgTKlwlytmUqdysndq/c7tys3aqtqrSa7/wqGh16ZOmbml91aVPmnqkD1RMQqIFiYNj9uzZWr58uZYsWaJOnTpZHQcAALQAJQ1AyDJNU/t3bNWGxQu0beWX8rjdcjid8rjdjR5TW1WpPZu/075tm4/s32/kWRp8/gR1O7GfDMNoxe+gIcMwdMopp+j888/XkCFDlJ6erq5duyohIUEOh0OFhYXau3evVq5cqcWLF2vhwoXyeDxe83z77bf6xS9+oSVLlig6OtqC7wQAAPjDMNvYvT8ul0uJiYkqKSlRQkKC1XEABMnO1au04p03VJDzvQyHU6an8WJ2LIePT+7ZS6Muu0ppQ0cc2bZ792717t3b65ilS5dq9OjRLT7nT1177bXq06ePrrnmGqWmpjb5uJ07d+q2227T/PnzfW6fNm2a5syZE5CMAACEolDtBpQ0ACGlstSlz+e+qK0rvpBhGAF9xuzwfP1HnaUx025UdHxCq5Q0fz3xxBO68847vcYdDofWrl2rwYMHW5AKAADrtaQbuFwuffPNN8rNzVV+fr7Ky8sVFxen1NRUDRgwQP369Qtyam53BBBCdqxeqU9eekbV5eWSFPBFQA7Pt23lcu3O3KDzb7hZ4SndAnqOYLjjjjtUUlKihx9+uMG4x+PRPffcowULFliUDACAY8vKytLatWsbfBUVFXntF8wPSKuqqvTSSy9p3rx5+vrrr1VXV9fovqmpqbr88sv1+9//Xr169QpKHq6kAbA90zT1zb/nafk/X5cMQ2qNH1uHztNnzAW69MabvTbb6UqaVP/S6wEDBmjbtm0NxsPDw3Xw4EHFx8dblAwAgB9lZ2drzZo1xyxkvrTk396mdINXXnlF999/v/bt29esuSMjI3XHHXfo/vvvV1hYYK99cSUNgK2Zpqnlb7+mbz589/BAa51YkrTmP++3zvn8FBYWphkzZmjatGkNxmtra/Xpp5/q0ksvtSgZAAA/GjJkiEpKSqyOIUmqqanRDTfcoFdffbVFx1dXV+uhhx7SsmXL9NFHH6lDhw4By8Z70gDY2jf/nvdjQcNRjR8/3ufqlKtXr7YgDQAA9lVXV6cJEyYctaB17dpVw4YN0+jRo3XyyScrPDzc537Lly/Xeeedp/JDj2MEAiUNgG3tWL2y/hZHNEnnzp3Vo0cPr/Hc3FwL0gAAYF933nmnPvvsM69xwzB0zTXXaP369dq/f7+++eYbLV26VJs2bVJ+fr5effVV9ezZ0+u4tWvX6tprrw1YPkoaAFuqLHXpk5eeqX82DE3WuXNnr7G8vDwLkgAA0DQ9e/bUJZdcoocffliLFi3SmjVrgnq+Tz/9VE899ZTXeExMjBYtWqS5c+f6XBk5MTFRU6dO1datW/WLX/zCa/u//vUvzZs3LyAZeSYNgC19PvfF+lUc29baRpaoqamxOgIAAJLqC1laWpoyMjKUkZGhoUOHKjk5ucE+u3fvDmqGBx54wGvMMAy9//77Ov/88495fHR0tN577z2NHTtWX3zxRYNtt99+uy6++GJFRET4lZGSBsB2dq5epa0rvjj2jvDi66oZK90CAOwiMzPT0vN/8cUX+uqrr7zGr7/+eo0bN67J84SHh2vu3LlKT09XVVXVkfGcnBy99tpruu666/zKye2OAGzFNE2teOcNnwtg2Ikd316Sn5+vnJwcr3Ff984DANAe/fvf//Yaczgcuuuuu5o9V58+fXTZZZd5jb/wwgstytYgk98zAEAA7d+xVQU539uyBP3UwT3eZchq8+fP9/n3NmTIEAvSAABgP59//rnX2BlnnKHevXu3aL6pU6d6ja1fv16bN29u0XyHUdIA2MqGxQtkOJxWxzimnWtWWh2hgbq6Oj322GNe44Zh6JxzzrEgEQAA9lJZWenzdsuRI0e2eM7hw4fL6fT+vWXBggUtnlOipAGwkQpXibat/FKmx211lGPK2ZipCpc9XsYp1T8EvX37dq/x0aNHKzU11YJEAADYS0FBgc87TtLT01s8Z2xsrI4//nivcV/L+zcHJQ2AbeRsypTHbf+CJkkej0c5m77za47Vq1dr27ZtfmeZOXOmHn74YZ/bZsyY4ff8AAC0BQUFBT7Hk5KS/JrX1/H+vkaAkgbANnKzdsrh45YBO3I4HMrN3unXHCtWrNBJJ52kSZMmaf78+Q1Wh2qKXbt26aKLLtIdd9zhc/vkyZObtJQwAADtQWVlpc/xyMhIv+aNioryGissLPS5mFdTsQQ/ANvYv3NbSF1JO7DT/6tgpmnqww8/1Icffqi4uDidd955Gjp0qAYOHKi+ffsqKSlJCQkJcjgcKioq0t69e7Vy5UotXLhQCxculMfj8Tlv37599corr/idDwCAtqKxK2YlJf49vlBcXOxzfOfOnerRo0eL5qSkAbAF0zSVm7WrVc9ZWF6hRxYsbdGxLy5bpReXrdJl93sv1nFYdna2evXq1eQ5y8rK9MEHH+iDDz5oUabD0tPTtXjxYr9v3wAAoC3p1KmTz/EDBw74NW9jx/vzUm5udwRgC5WuEtVW+b4NAU3jcDh02223ac2aNerevbvVcQAA7YxpmsqvqdUPldXaVVGlHyqrlV9Ta5vX6iQnJys6OtprfPXq1S2eMysrS4WFhT635eXltXherqQBsIXa6mqrI7S6tLQ09enTR1lZWX7NExERoUsuuUTTp0/X8OHDA5QOAICjO1hTp+XFpcosrdR6V4W+La1Qudv7NvxYp0OD4mM0JCFGA+OjdUZSvDpFtH4NcTqdOv30073elbZkyRK53W6fS+kfyyeffNLotoMHDzZ7vsMoaQBswV1XZ3WEVjdx4kRNnDhROTk5+vLLL7Vu3Tpt2LBB27dv1/79+1XXyN+JYRjq37+/hg8frtNOO02XXnqpOnfu3MrpAQDtkWmaWuuq0Ny9Bfowr0h1phRmSHVHuVhW7vboq+IyfVNSdmT/SZ07aFr3ZJ2aECPDMFot/9lnn+1V0vbu3av//Oc/mjRpUrPne/HFFxvdVl5e3uz5DqOkAbAFZ1jr/zhKiIrUzee2/AWWknTx7fcotkNHn9u6devWpDl69OihKVOmaMqUKUfGPB6PcnNzVVJSosrKSnk8HiUmJiopKUlJSUkKs+DvCwDQvi3KL9Fj2fu1tbxKTkNyHypmRytoP1X3k/0/yCvSu7lFOik2SjP6dNO45MTghP6ZK664Qg8++KDXwlt33nmnzj//fMXExDR5rr/97W/69ttvG91eU1PT4pz8Kw/AFsL9XP62JcKcTh3fqYNfc5w+cqRiEgO/QIfD4VC3bt2aXPQAAAiWwto63bN9jz7IKz6yoIXbz8fMDh+/rbxKU7/L1iWdk/Rw31R1DA9uPTnxxBN16aWX6t13320wvmPHDk2bNk1vvvlmkz4IXbFihW6//faj7tPYCsxNwcIhAGwhOiFR4VHeD/PaWUR0tKITWueTPwAArLAwv1ijvt6ij/Lql5lvee3w7fB8H+UV64yvt2hhvu/l7APpgQce8LmAyL/+9S+NHz/+qM+Kezwe/e1vf9P555+vsrKyo57H1/vTmooraQBswTAMdelzgvZs3mh1lCbr0ietVe+jBwCgtZimqWe+z9Oj2fvlUODL2c+5JRXXujVt427dEF4b1HOlp6frueee029/+1uvbZ9++qlOPvlkjR8/XhdccIF69uyp6Oho5efna+3atXr//fe1ffv2BscMGzbM5wqRzbl18ucoaQBso1taP+3btiUkXmjtcDrVNa2f1TEAAAg40zT1SNZ+PftD/RLywS5ohx0+z/M5+UE/17XXXqudO3fq0Ucf9dpWXV3d5PeW9urVS3//+981cOBAr23+LOrF7Y4AbKNLn7SQKGiS5HG71aV3mtUxAAAIuGe+zztS0NqyRx55RK+88ooiIiJadPzgwYO1bNkyJSQk+Nzuz3PllDQAttEjfaAcLXhHiRUcTqd6pJ9idQwAAAJqYX6xHs3eb3WMVvPb3/5WW7Zs0VVXXdXk96TFxcXpvvvu08qVK3X88cerpKTE5359+/ZtcS5udwRgGzEJiep3+pna+tWXMj32vaJmOJzqN/IsxbBoCACgDSmsrdP0bTkyJPm5eGNI6dOnj15//XU98sgjWrRokT799FNt2bJF+fn5KiwslNPpVNeuXTVo0CCNGzdOl19+uZKSflzZeevWrV5zGoah9PT0FmeipAGwlcHjJmjL8mVWxzgq0+PW4PMnWB0DAICAumf7Hrlq3e2qoP1Uamqq/ud//kf/8z//06zjMjMzvcYGDhyo2NjYFmfhdkcAttLtxP5K7tnLtqsmGoah5J691O1EFg0BALQdi/JL9EFesex7H4t9rV+/3mvsnHPO8WtOShoAWzEMQ6Muu0qmac/P8UzT1KjLrrJtiQQAoLlM09Rjh5batzM7/m5QXFysJUuWeI1feumlfs1r9/8WANqhtKEj1H/UWTIc9voRZTgc6j/qbKUNHWF1FAAAAmatq0Jby6taban9ltpeXmV1BC/z5s1TdXV1g7Hjjz9eZ5xxhl/z2us3IAA4ZMy0GxUZGyvZ5YqVYSgyNk5jpt1gdRIAAAJq7t4COW3yz+3RLCrwvYqiVWpra/XXv/7Va/wPf/iD33fcUNIA2FJ0fILOv+EWyS63Npimxt1wi6Ljfb8LBQCAUHSwpk4f5hXJbZN/bo9meXGZDtbUWR3jiFmzZmnTpk0Nxrp06aLrrrvO77kpaQBs68Rhp+uMy6+2OoYk6YzLr1basNOsjgEAQEAtLy5VXQgUNElym9KK4jKrY0iSli1bpgcffNBr/JFHHlFcXJzf81PSANja8Em/0vBJv2r3GQAACIbM0kqFhcCtjpLkNKTM0oqAzFVW1vKyt3DhQo0fP16VlZUNxseNG6dp06b5G00SJQ2AzRmGoTMuv/rHK2qt9YzaofOcccVUnXnFVFZzBAC0SetcFSF1JW29KzAl7Xe/+53Gjh2rd955Ry6Xq0nHfP/995oyZYrPgnb88cfrtddeC9jvC7zMGoDtGYahEZf8Wp1Se2rxS39VdXm5TE/w1qAyHA5FxsZp3A23cIsjAKDNMk0zYFemmsp9YJ8Kpkxo0bFF06/T+5KOVoOys7PVq1evY87l8Xi0ZMkSLVmyROHh4Ro1apROPfVUDRgwQJ07d1ZiYqLKysqUl5enrKwsffzxx1qzZo3P1wCkpKRo0aJF6tKlS4u+L18oaQBCRtqw09S9/8n6fO6L2rriCxmGEdB3phyer9/pZ2rMtTcqOi4+YHMDAGA3BbV1KnfbfeH94KutrdWyZcu0bNmyZh97wgknaNGiRUpLSwtoJkoagJASHZ+gCbfcqX6nn6UV//qHCn7YLcPhlOlxt3jOw8d36nG8Rl12Fe9BAwC0C5UUNL9MnTpVzzzzjBISAr/yMyUNQEhKG3aaThg6Qvt3bNOGTxZo21dfyON2y+F0yuM+dmE7vJ/D6VT/kWdp8LiJ6prWl2fPAADtRq1dXnNjgXPOOUerV6/W9u3bm3Wc0+nUhRdeqHvvvVfDhw8PUjrJMAN5r1AjZs+erSeeeEIHDhzQoEGD9Oyzzzb6Tb388st6/fXXtXHjRklSRkaGHnnkkSb/JbhcLiUmJqqkpCQorRaAPVW4SpSz6TvlZu3QgV3bdWDXTtVWVXrtFx4Vra4npKlrWj916Z2mHumnKCYh0YLEAABY64fKag1ftaVVz2nW1Kh251a/5pg7oLe6RIb73DZkyBBFRkYe+fOxukF2drZWrFihb775Rlu2bFF2drYKCgpUXl4uh8Oh+Ph49ezZUyeffLLOOussTZgwQd27d/crf1MEvaS98847uvrqq/Xiiy9qxIgRevrppzVv3jxt27ZNnTt39tr/yiuv1KhRozRy5EhFRUXp8ccf1wcffKBNmzY16S+EkgZAqn8YutJVorqaGtXV1iosPFxhERGKTkjkahkAAJLya2p1yopNx97RZr4bla6UCN8l7edCtRsEvaSNGDFCw4YN03PPPSepfiWVHj166Oabb9aMGTOOebzb7VaHDh303HPP6eqrj/1S21D9DwEAAAC0JtM0lfbldyG1eEic06EdZ57S5A9cQ7UbBPU9aTU1NVq7dq3Gjh374wkdDo0dO1YrV65s0hwVFRWqra1Vx44dfW6vrq6Wy+Vq8AUAAADg6AzD0MD4GKtjNMug+Jh2cUdMUEtaQUGB3G631zsDunTpogMHDjRpjrvuukvHHXdcg6L3U48++qgSExOPfPXo0cPv3AAAAEB7cGpCjMJCpPOEGdKQhNAqlS0V1JLmr8cee0z//Oc/9cEHHygqKsrnPnfffbdKSkqOfOXk5LRySgAAACA0DYyPVl2ILPJYZyrkrvy1VFCX4E9OTpbT6VRubm6D8dzcXHXt2vWox86cOVOPPfaYPvvsMw0cOLDR/SIjIxus4AIAAACgac5IileYoZAoamGGNCopzuoYrSKoV9IiIiKUkZGhJUuWHBnzeDxasmSJTj/99EaP+8tf/qI///nPWrRokYYOHRrMiAAAAEC71SkiTBd37iCnzW95dBrSpM4d1CmifbzmOei3O06fPl0vv/yyXnvtNW3ZskX/+7//q/Lyck2bNk2SdPXVV+vuu+8+sv/jjz+ue++9V3PmzFGvXr104MABHThwQGVlZcGOCgAAALQ707ony23zK2lusz5nexH0KnrZZZcpPz9f9913nw4cOKDBgwdr0aJFRxYT+eGHH+Rw/NgVX3jhBdXU1OiXv/xlg3nuv/9+PfDAA8GOCwAAALQrGQkxOik2StvKq2THxfgdkvrHRunUdrJoiNQK70lrbaH6LgQAAADAKosLSjT1u2yrYzTqtVN6a1xyYrOPC9VuYOvVHQEAAAAE37jkRF3SOUlOq4P8jFPSpZ2TWlTQQhklDQAAAIAe7puqhHCnbQqCQ1JiuFMP9U21Okqrs8t/AwAAAAAW6hgepln9etjmuTSPpFn9eqpjePtY0fGnKGkAAAAAJEkXpiTp7t7drI4hSfpjn266IKV93eZ4GCUNAAAAwBG3HN9Zt/TsbG2Gnp11s8UZrERJAwAAAHCEYRi6u083/bFP/RW11ioMh89zT59u+uMJx8kwbP6G7SCipAEAAABowDAM3XJ8F706oLcSw51BX/XRKSkp3KlXB/TWzcd3CfLZ7I+SBgAAAMCnC1IStWLESbqoc5KkwJeHw/Nd3DlJK0ac1G6fQfs5ShoAAACARnUMD9ML6b306oDe6hcbJUly+nkn4uHj+8VG6bVTeuv59F7q0A5XcWwMfxMAAAAAjumClESNS07QOleF5u4t0L/zilRnSmGGVGce+/jD+4UbhiZ1TtK07skakhDTrp89awwlDQAAAECTGIahjMRYZSTG6sG07lpRXKZvSyu0wVWhDaUVKnd7v2Ut1unQ4PgYDUmI0cD4GI1KilOnCGrI0fC3AwAAAKDZOkWE6aLOSUeeVzNNUwW1darymKrxeBThcCjKYSg5PIyrZc1ESQMAAADgN8MwlBIRbnWMNoGFQwAAAADARihpAAAAAGAjlDQAAAAAsBFKGgAAAADYCCUNAAAAAGyEkgYAAAAANkJJAwAAAAAboaQBAAAAgI1Q0gAAAADARihpAAAAAGAjlDQAAAAAsBFKGgAAAADYCCUNAAAAAGyEkgYAAAAANkJJAwAAAAAboaQBAAAAgI1Q0gAAAADARihpAAAAAGAjlDQAAAAAsBFKGgAAAADYCCUNAAAAAGyEkgYAAAAANkJJAwAAAAAboaQBAAAAgI1Q0gAAAADARihpAAAAAGAjlDQAAAAAsBFKGgAAAADYCCUNAAAAAGyEkgYAAAAANkJJAwAAAAAboaQBAAAAgI1Q0gAAAADARihpAAAAAGAjlDQAAAAAsBFKGgAAAADYCCUNAAAAAGyEkgYAAAAANkJJAwAAAAAboaQBAAAAgI1Q0gAAAADARihpAAAAAGAjlDQAAAAAsBFKGgAAAADYCCUNAAAAAGyEkgYAAAAANkJJAwAAAAAboaQBAAAAgI1Q0gAAAADARihpAAAAAGAjlDQAAAAAsBFKGgAAAADYCCUNAAAAAGyEkgYAAAAANhJmdQAAsLODBw9q9+7dysnJ0YEDB1ReXq7KykpFR0crMTFRHTp0UHp6uvr27SuHg8+9AACA/yhpAGwpKytLa9eubfBVVFTktd/SpUs1evTogJwzLy9PX331lVasWKENGzbou+++U25ubpOOjYuL0xlnnKGpU6fqkksuUWRkZEAyAQCA9oeSBsBy2dnZWrNmzTELWTAtWbJEY8eObfHxZWVlWrRokRYtWqSUlBQ98cQTmjp1agATAgCA9oKSBsByQ4YMUUlJiaUZamtrAzZXfn6+rrnmGr311lt67733FBcXF7C5AQBA20dJA4Am6Nq1q7p06aKEhASFh4fL5XJp37592rdvX6PHfPLJJzrvvPO0aNEiJSYmtmJaAAAQyihpAPAznTt31llnnaUzzzxTp59+uvr376/4+Hif++bn5+vDDz/U888/r/Xr13ttX7Vqlf7whz/o1VdfDXJqAADQVhimaZpWhwgkl8ulxMRElZSUKCEhweo4AJogKSnJ63bHnj17KiMjQ0OHDlVGRoaSk5M1dOhQr2MDtXDI6tWrNW/ePE2aNEmnnXZas1dq9Hg8evLJJ3XXXXfJ14/VQC5wAgAAmiZUuwFX0gBYrmfPnkpLS1NGRsaRYpacnNxgn927dwc1w7BhwzRs2LAWH+9wOHTHHXdIku68806v7a+88golDQAANAklDYDlMjMzrY4QMNOnT9fcuXO1ZcuWBuMfffSR3G63nE6nRckAAECo4M2rABBATqdTv/71r73GS0tLtX//fgsSAQCAUENJA4AAS09P9zlOSQMAAE1BSQOAAGtsuf3mLkYCAADaJ35jAIAAy8vL8znerVu3Vk4CAABCESUNAALsyy+/9Brr1auXjjvuOAvSAACAUENJA4AAys3N1TvvvOM1/pvf/MaCNAAAIBRR0gAgQKqqqnTVVVd5vZg7OTlZt9xyi0WpAABAqKGkAUAArFq1SqNGjdKnn37aYDwsLEyvvvqqUlJSLEoGAABCDS+zBhBUpmnKXVgoT2WVzNoaGeERckRHydmxowzDsDreMe3Zs0d79uxpMObxeFRWVqa8vDxlZmbqk08+0bfffut1bHx8vF5//XVNmDChteICAIA2gJIGIKDqiopUsWqVqjZtUmXmd6ratFGe8gqv/RyxMYpKH6DogacoKj1dMaedprAOHSxIfHSvvPKKHnzwwWYd43A49Mtf/lKPP/64evXqFZxgAACgzaKkAfCbaZqq3LBBRW+9LdfChVJdnRQWVv+/jfCUV6jim29UsW7dkf0Txo9XxylXKGrQoJC4yvZzhmFo2rRpuvfeeylnAACgxXgmDYBfSpcsUfZFF+v7K6bI9fHHPxazoxS0Bn6yv2vBAu2+/AplXzxJpZ9/HpzAQWSapubMmaMxY8Zo5syZKi0ttToSAAAIQZQ0AC1SV1Skvbf/P+35/U2q3rmzftDt9m/SQ8dX79ihPb/7vfbe/v9UV1TkZ9LWl52drTvuuEMnn3yyPvvsM6vjAACAEENJA9BspZ99pqwLx8u1aFH9gGkG9gSH5nMtXKisC8er1MKi88ADD8g0zQZfNTU1RxYNmTNnji6//HJFRkZ6Hbtnzx5dcMEFevPNNy1IDgAAQhUlDUCTmaapghdf0p6bbpa7pMT/K2fH4vHIXVKiPTfdrMI33wruuZohPDxcKSkpOuWUUzRt2jS9/fbbysnJ0ZVXXum1r9vt1tSpU/XVV19ZkBQAAIQiShqAJjFNU/mznlL+008fHmitE0uSCuf8vXXO10IpKSn6xz/+oaeeesprm8w7r2YAACAASURBVNvt1jXXXKO6pj6nBwAA2jVKGoAmOfjS33Tw5ZetjmF7t956q2688Uav8R07dui9996zIBEAAAg1lDQAx1T62Wc/XkHDMT388MOKiYnxGn/77bctSAMAAEINJQ3AUdUVFWn/n+6VQvC9ZVbp2LGjzjvvPK/x5cuXW5AGAACEGkoagKPKfehhuUtLW+8ZtDZi6NChXmMHDx5URUWFBWkAAEAooaQBaFTpkiVyLVgQ/FUc26CUlBSf40Uh+N43AADQuihpAHwyTVP5T//V9rc5mja9wldeXu5zPCIiopWTAACAUENJA+BT5YYNqt6xw/a3Odbs2mV1BJ/27NnjNRYeHq6OHTtakAYAAIQSShoAn4reeltyOq2OcUyuz5ZYHcGnxYsXe4317dtXzhD4OwUAANaipAHwUldUJNfChSHxLFrF16tUZ7PnvJYvX67Nmzd7jY8ePbr1wwAAgJBDSQPgpWLVKqmuzuoYTeN2q+Lrr61OcURZWZl+97vf+dw2ZcqUVk4DAABCESUNgJeqTZuksDCrYzSN01mf1w8vvviinn76aVVWVvo1z8GDB3XBBRfou+++89p29tlna+TIkX7NDwAA2gdKGgAvlZmZIXUlrTIz068pDhw4oNtuu029e/fW7bffrpUrVzZr1cji4mI9++yz6tu3r1asWOG1PSoqSrNnz/YrIwAAaD9C5KNyAK3FNE2/r0w1197aGp2XldWiY6/JyZFef73+qxHZ2dnq1avXMefKzc3VrFmzNGvWLHXp0kWnnnqqBg8erL59+yopKUlJSUkKCwuTy+VSUVGRNm/erHXr1mnp0qWqrq72OadhGJo7d67S09Nb9P0BAID2h5IGoAF3YaE85RVWx7Bcbm6uFi5cqIULF7Z4jtjYWM2dO1e/+tWvApgMAAC0ddzuCKABT2WV1RHahIkTJ2rTpk0UNAAA0GxcSQPQgFlbY3WEVvfb3/5WiYmJWrhwob744otGb108lpiYGF1yySW69tprNWbMmACnBAAA7YVhNufp+BDgcrmUmJiokpISJSQkWB0HCDk1e/Zq19ixrXtOj0dbWliMDkt99hmFde7sc9uQIUMUGRnZpHmqq6u1YcMGff3119q4caOys7O1e/duFRUVqby8XLW1tYqPj1dCQoISExN1wgkn6NRTT9Wpp56qs846S/Hx8X59HwAAIHBCtRtwJQ1AA47oqFY/Z4TDoUHR0X7NceKoUQrr1MnvLJGRkRoxYoRGjBjh91wAAAAtwTNpABpwduwoR2yM1TGaxREbK2fHjlbHAAAACAhKGoAGDMNQVIgtFx81IF2GYVgdAwAAICAoaQC8RA8cKIWFyN3QYWH1eQEAANoIShoAL1Hp6VJdndUxmqauLuSu/AEAABwNJQ2Al5jTTgupK2kxLPIBAADaEEoaAC9hHToo4cILJafT6ihH53QqYfx4hXXoYHUSAACAgKGkAfCpw5QrJLfb6hhH53ar45QrrE4BAAAQUJQ0AD5FDx6syL59JbuummgYiuzXT1GDBlmdBAAAIKAoaQB8MgxDKbf+QTJNq6P4ZppK+cMtLL0PAADaHEoagEbFjxmjhAkT7PdsmsOhhIkTFD9mjNVJAAAAAo6SBuCouvzpHjnj4+1z26NhyJmQoC733GN1EgAAgKCgpAE4qrAOHdTtoT/b57ZH01S3hx9iRUcAANBmUdIAHFP82LFKufVWq2NIklJuu03x555rdQwAAICgoaQBaJJON1yvTtdfb22G669Xp+uvszQDAABAsIVZHQBAaDAMQym33SpHbKzyn3qq/hm11rgF8tB5UqZPVzIFDQAAtANcSQPQZIZhKPmG65U6+zk5ExMlR5B/hDgcciYmKnX2cxQ0AADQblDSADRb/Lnnqs/Cj5Vw4YX1A4Fe+fHQfAnjL9QJixbyDBoAAGhXKGkAWiSsQwd1f3KmUmc/p8gTT6wf9Pd9aoeOjzzxRKU+P1vdZ86UMynJz6QAAAChhWfSAPgl/txzFTdmjKq+/VaFb70t18cfS3V1UlhY/f8ey+H9wsKUMGG8Ok6ZoqiBA2XY5b1sAAAArcwwTbu8/CgwXC6XEhMTVVJSooSEBKvjAO1OXVGRKr7+WlUbN6ryu+9UtXGTPOXlXvs5YmMVNSBd0QMHKio9XTEjRvDuMwAAEFCh2g0oaQCCyjRNuQsLZVZVyVNTI0dEhIyoKDk7duRqGQAACKpQ7Qbc7gggqAzDUFinTlbHAAAACBksHAIAAAAANkJJAwAAAAAboaQBAAAAgI1Q0gAAAADARihpAAAAAGAjlDQAAAAAsBFKGgAAAADYCCUNAAAAAGyEkgYAAAAANkJJAwAAAAAbaZWSNnv2bPXq1UtRUVEaMWKEvvnmm0b33bRpkyZPnqxevXrJMAw9/fTTrRERAAAAAGwh6CXtnXfe0fTp03X//fdr3bp1GjRokMaNG6e8vDyf+1dUVKhPnz567LHH1LVr12DHA9DOZWVlad68eZoxY4bOO+88dezYUYZheH0tW7bM6qgAAKCdCAv2CWbNmqXrrrtO06ZNkyS9+OKLWrBggebMmaMZM2Z47T9s2DANGzZMknxuB4CWys7O1po1a7R27dojX0VFRVbHAgAAaCCoJa2mpkZr167V3XfffWTM4XBo7NixWrlyZUDOUV1drerq6iN/drlcAZkXQNszZMgQlZSUWB0DAADgqIJ6u2NBQYHcbre6dOnSYLxLly46cOBAQM7x6KOPKjEx8chXjx49AjIvAAAAAFgh5Fd3vPvuu1VSUnLkKycnx+pIAAAAANBiQb3dMTk5WU6nU7m5uQ3Gc3NzA7YoSGRkpCIjIwMyF4D2p2fPnsrIyNDQoUOVkZGh5ORkDR061OpYAACgHQtqSYuIiFBGRoaWLFmiSZMmSZI8Ho+WLFmim266KZinBgAvPXv2VFpamjIyMo4Us+Tk5Ab77N6925pwAAAAhwR9dcfp06dr6tSpGjp0qIYPH66nn35a5eXlR1Z7vPrqq9W9e3c9+uijkuoXG9m8efOR/793715t2LBBcXFxSktLC3ZcAG1YZmam1REAAACOKegl7bLLLlN+fr7uu+8+HThwQIMHD9aiRYuOLCbyww8/yOH48dG4ffv2aciQIUf+PHPmTM2cOVNnn3027ykCAAAA0OYZpmmaVocIJJfLpcTERJWUlCghIcHqOABCzO7du9W7d2+v8aVLl2r06NGtHwgAALRYqHaDkF/dEQAAAADaEkoaAAAAANgIJQ0AAAAAbISSBgAAAAA2QkkDAAAAABuhpAEAAACAjQT9PWkA0CpMUyovkGorJHet5AyXwmOk2GTJMKxOBwAA0GSUNAChqfyglP1faf8Gae9aad8GqabMe7+IOOm4wVL3DKnbYKn32VJsp9bPCwAA0ESUNAChwzSlPaulb16WNr0veeokR1j9/zampkzavVz6YdWP+w+YLA27TkodylU2AABgO5Q0AKFh6wLp84ekvM2Swyl53PXjRytoP3V4P0+dtPE9KfMdqXO6NOZPUv/xwckMAADQAiwcAsDeKgqld38r/XOKlL+1fuxwQWupw4Utf4v0zyvq568o9G9OAACAAOFKGgD72jJf+uhmqaqk/s+mJ7DzH55v0wfSrs+li56VogcE9hwAAADNREkDYD+mKX35pPT5n1V/wT/A5czrfG6pslh650rp5JuCey4AAIBjoKQBsBfTlJY8KC1/6tBAkAvaEYfO89UzrXQ+AAAA33gmDYC9fPnkTwoaAABA+0NJA2AfW+YfusURAACg/aKkAbCHisL6RULEe8sAAED7RkkDYA8f33FoFUfT6iQAAACWYuEQANbbukDa+K7VKQAAAGyBK2kArGWa0ucPSYbNfxyZXOEDAACtw+a/FQFo8/aslvI2B/5F1YGWv83qBAAAoJ2gpAGw1jcvSw6n1SmObet8qxMAAIB2gpIGwDrlB6VN70set9VJji37i/q8AAAAQUZJA2Cd7P9KnjqrUzSN6ZZ2f2F1CgAA0A5Q0gBYZ/8GyREii8waTmnfBqtTAACAdoCSBsA6e9aG1pW0vWutTgEAANqBEPkIG0CbY5r1V9Ja0e5ij3r/taxFx57zWoX02gJpmtHoPtnZ2erVq1cL0wEAANTjShoAa5QXSDUtK0wAAABtGSUNgDVqK6xOAAAAYEuUNADWcNdanQAAAMCWeCYNgDWc4a1+ym5xhlb+Nsa/SS57U4rv6nv+bt38mxsAAECUNABWCfezLLVAZJih01L9/LF3+igpLiUwgQAAAHzgdkcA1ohNliLirE7RPBHx9bkBAACCiJIGwBqGIXUbbHWK5jlucH1uAACAIKKkAbBOaobkCJG7rh1hUvcMq1MAAIB2gJIGwDrdBkueOqtTNI2nrv5KGgAAQJBR0gBYp/fZoXUlrddZVqcAAADtACUNgHViO0npl0oOp9VJjs4RJg2YXJ8XAAAgyChpAKw1/DrJ47Y6xdF56qRh11mdAgAAtBOUNADWSh0mdU6XDJv+ODIcUpcBUupQq5MAAIB2wqa/FQFoNwxDGvMnyfRYncQ30yOdcw9L7wMAgFZDSQNgvf7jpQG/lAybPZtmOKVTflWfDwAAoJVQ0gDYw/gnpKhE2efHkqM+z4V/sToIAABoZ+zy2xCA9i6mo3TRs5LsctujR7r4ufpcAAAArYiSBsA+TpoojbnX6hT1zr1P6j/B6hQAAKAdoqQBsJczb5fOmG5thjOmW58BAAC0W5Q0APZiGPVXsc6979BAa/2YOnSec++Xxt7Pao4AAMAylDQA9mMY9VfULn9Lik4K/qqPhrP+PJe/JZ3JFTQAAGAtShoA++o/Qbp5rZR+Sf2fA/3C68PzDbi0/jw8gwYAAGyAkgbA3mI6Sr/8e/1VrpST6sccYf7Nefj4lJOky9+WJr/CKo4AAMA2/PxNBwBaSf8JUr/x0p410uqXpY3vSZ66+sLlqTv28Yf3c4RLAyZLw6+Tumfw7BkAALAdShqA0GEYUo9h9V/jHpV2fyHtWy/tXVf/vzVl3sdExEnHDakvZMcNlnqdJcV2av3sAAAATURJAxCaYjvVP6t2+Hk105TKC6S6SqmuRgqLkMKipdhkrpYBAICQQkkD0DYYhhSXYnUKAAAAv7FwCAAAAADYCCUNAAAAAGyEkgYAAAAANkJJAwAAAAAboaQBAAAAgI1Q0gAAAADARihpAAAAAGAjlDQAAAAAsBFeZg0A7VhhYaHWrFmj/fv3q7i4WGVlZYqJiVFSUpI6d+6sU089Vd26dbM6JgAA7QolDQDamaysLL3yyiuaN2+edu7cecz9u3fvrosvvljXXXedBg8e3AoJAQBo3wzTNE2rQwSSy+VSYmKiSkpKlJCQYHUcALCN4uJi3X777Zo7d65a+qN/4sSJeuGFF5SamhrgdAAABF6odgOeSQOAdiAzM1Pp6emaM2dOiwuaJM2fP1/p6elavHhxANMBAICf4nZHAGjjNm7cqHPPPVcFBQWN7tOpUyf17t1biYmJKisr0969e7Vnzx6f+7pcLk2aNEn/+c9/NHbs2GDFBgCg3aKkAUAbVldXpyuvvNJnQQsLC9MNN9ygG2+8UQMGDPDavmfPHr366quaNWuWioqKGmyrqqrSb37zG23btk2JiYlByw8AQHvE7Y4A0Ia99NJLyszM9Brv1KmTli9frueee85nQZOk1NRU/elPf1JmZqbPBUNyc3P1wAMPBDoyAADtHguHAEAbNmzYMK1Zs6bBmGEY+u9//6szzzyzyfPk5ubqlFNOUX5+foPxlJQUHThwQA4Hn/kBsN7mzZu1ceNG7du3T2VlZYqKilJKSopOOukkDRkyROHh4VZHRCsL1W7A7Y4A0Ebt27fPq6BJ0qRJk5pV0CSpS5cuuvvuuzV9+vQG4/n5+Vq1apVGjhzpV1YAaKmcnBw988wzeuutt7Rv375G94uPj9dFF12kW265RcOHD2/FhEDz8dEnALRRjb0DbfLkyS2a71e/+pXP8V27drVoPgDwh8fj0SOPPKJ+/fpp5syZRy1oklRaWqo333xTI0aM0NVXX62SkpJWSgo0HyUNANqo3Nxcn+Mnn3xyi+ZLTU1VXFyc1/j+/ftbNB8AtFRlZaUuuugi3XPPPaqsrGz28W+88YaGDRum7OzsIKQD/EdJA4A2qrFHjn0VrabydT+/0+ls8XwA0Fxut1uTJ0/WggULfG4PDw/XoEGDdO6552r48OGN/szbsWOHxowZwwdNsCVKGgC0UV26dPE5fvDgwRbP6evYrl27tng+AGiu++67TwsXLvQaT0pK0lNPPaX8/Hxt2LBBn332mb7++msVFhbq3XffVd++fb2O2b17t6644gq53e7WiA40GSUNANqojIwMn1e5vvnmmxbNt2HDBlVXV3uNn3baaS2aDwCa69tvv9Xjjz/uNd67d2+tXbtWt956q9e7G8PDwzV58mStW7dO48aN8zr2v//9r1588cWgZQZagpIGAG1UXFyczj//fK/x1157rdFbIY9mzpw5XmNDhgzRCSec0KJ8ANBct99+u9dVr9jYWH388cfq06fPUY+NjY3V+++/r/T0dK9t9913n8rKygKaFfAHJQ0A2rA777zTa2zdunV65plnmjXPihUrfH7S/Mc//rHF2QCgOdasWaMlS5Z4jd97773q379/k+aIiYnRyy+/7DVeWFiov/3tb35nBAKFkgYAbdjo0aN14403eo1Pnz5df/nLX+TxeI45x4cffqiJEyeqtra2wfhll12mX/7ylwHLCgBH46tEderUSTfffHOz5jn99NN93vboq7wBVqGkAUAb9+yzz+qSSy5pMObxeHTXXXcpPT1ds2bN0po1a1RYWKi6ujq5XC5t3rxZc+bM0dlnn61JkyapuLi4wfHjx4/Xa6+91prfBoB2rK6uTu+++67X+JVXXqmYmJhmz3fdddd5jW3dulXr1q1rUT4g0MKsDgAAaBnTNFVbe1Bud5VMs1aGES6nM0rh4Z1kGMaR/cLCwvTuu+/qL3/5ix588EFVVVUd2bZ161bdfvvtTT5nTEyM7rnnHs2YMUMOB5/zAWgdq1atUlFRkdf45MmTWzTfhAkTFB0d7fWOtYULF+rUU09t0ZxAIFHSACBE1NQUqqhopUpLN6rE9a1KSzfK7S732s/pjFV8/AAlJgxSfPwAdehwuiIiOmrGjBm65ppr9Oyzz+rdd9/V9u3bm3zu9PR0XX755brhhhuUkpISyG8LAI5p6dKlXmMxMTE6/fTTWzRfVFSURo4c6fWM2+eff6577rmnRXMCgURJAwAbM01TLtd65ez5h/LyFsg062QYYTLNukaPcbvLVVz8tUpK1h7Zv0vniUpN/Y2kboqJifFaovpY9u3bp61bt2rz5s06++yz/fyuAKB5Vq9e7TU2ZMgQhYeHt3jO4cOHe5U0bneEXVDSAMCm8vM/1a6sWSov3y7DcMo065edPlpB+6nD+5lmnXL2fKj/+7+/698flqqm+tiLhfxcUVGR3nzzTb355ps666yz9Pe//11paWnNngcAWiIzM9NrbMCAAX7NOXDgQK+x4uJiff/99zr++OP9mhvwFyUNAGymtrZI27Y/qNzc/0iqf7bscEFriYKCOt0944Cys2u8tsXExGjixIk666yz1LNnTyUlJamsrEy5ubn66quvNH/+fO3fv7/BMV988YUGDx6sefPm6cILL2xxLgBoipqaGuXk5HiN+/tBUWPveMzKyqKkwXKUNACwkfz8T7Rl6x9VW+s6NNL8l07/lMvl1h3/b79ycmq9tl06OUUPPzRb/fv/yuex11xzjWpqavTyyy/rzjvvVEVFxZFt5eXluuSSS7R48WJufwQQVDk5OT5fF9K9e3e/5m3s+N27d/s1LxAILM0FADZgmqZ2735emd/9r2priyW1/MrZT/31rwVeBc0wpDvvStHvfpegvftmaPfuF2SavstgRESEfv/732vlypVKSkpqsK26ulpXXXWVSkpKApIVQPtlmqYKyqqVU1ihrPwy5RRWqKCsWqZpKj8/3+cxXbp08eucjR3f2PmA1sSVNACwmGma2pU1U99//+LhkYDMu2lTlf67zHv1x19flqjzz48/cp5dWTNV5y7XCX1ub7B0/08NHDhQb731lsaPH99gPCcnR08//bTuv//+gGQG0D4Ultfoq10F+m5vib7NKdZ3e0pUXuP94VRshFOdijb5nKO5CyD9nNPpVGxsrMrLG/6cPHjwoF/zAoFASQMAi33//Qs/KWiB8+9/e1/hio936MorO/jMEOaMVa9e/9vofBdeeKHGjh2rzz77rMH4Cy+8oHvvvZf3pgE4KtM0te6HYr2xcrfmZ+5XncdUmMNQnafxD6bKa9zK+8H3la3Y2Fi/M/kqaT//M2AF/kUFAAvl53+iXVlPBnxe0zS1dk2l1/jIkTGKifH9o39X1kzl53961HmnTJniNZabm+tz5TUAOOyTTQd0wdNfavILX+k/hwqapKMWtMNMj+8Vba//x3p9ujnXr1y+lvCvqfFeZAlobZQ0ALBIbW2Rtmz9ow6v4BhIeXl1crm8H7QfMCDqKEcZ2rL1btXWFjW6x5lnnulzfMOGDc2NCKAdKCqv0S1vr9f1b6zV9rxSSZK7CcWsAdP3a0OyDlbqutfX6Ja316uovGXFyul0eo3V1TXtNSdAMFHSAMAi27Y/eGgVx8A8g/ZTxcW+f6np0MH7F5IfmaqtdWnb9v9rdI/GHrQvKChoTjwA7cDiTQc05sllWpBZ/xqPRtYnOibD4fvnlumpf4ZtQeY+jXlymRZvOtDsuX0VMn9ekA0ECiUNACyQn//pofegBWYVx59zu33/NuQMO9ZVO7dycz9Sfv5nPrc29suLr+WxAbRPpmlq9tKduuGNtSqurJW7pe3sMKfvnzumu75guU2puLJWN7yxVrOX7mx0tVpffN3aGBkZ2bKcQABR0gCgldWv5jhLwbjN8bDERN+fPJcUN6UUGtqVNcvnLzqNLU2dkpLSnHgA2ijTNPWXxdv0xOJth/7s/5yOiGjf56r58bnbw+d54tC5m1rUSktLvcYSEhKaHxIIMEoaALQyl2u9ysu3Kxi3OR6WlOS7pG3fUd2Eo02Vl2+Ty+X9nNnq1at9HkFJAyBJzy/bpReW7QronI5o36XJU1XWaIbnm5ChqqpK1dXePxM7derUvIBAEFDSAKCV5ez5hwzjaM+G+S821qHu3b3fsrLyq4pGb4X8KcNwas+ef3iNv//++z72NTRs2LCWBQXQZizedODIFbRAcsYm+Rx3lxc3eswTi7fpk2M8o3bggO/tXbt2bXo4IEgoaQDQimpqCpWXt0CmGZxn0X5q6LAYr7H9++v06ae+P33+KdN0KzdvvmpqCo+Mbdq0Sf/85z+99h00aFCjC4oAaB+Kyms0473MoNzE7Yzr5PO5tDpXXqPHGIZ013uZR1318YcffvA53rt37+aHBAKMkgYAraioaKVMs3WWdx4zJs7n+OznCrRz57FvezTNOhUVr5IkFRYW6tJLL5Xb7V0ur7jiCv+CAgh593+0Sa7KuqDcxG0YhsKTunmN1xXta/QY05RclbV64D+bGt1nx44dPsfT0tKaHxIIMEoaALSi0tKNMgzv2xCDIT09Sqed5n01rbLS1PTp+7R06dGvqBlGmEpdG7V69WoNHz5c27dv99rnuOOO08033xywzABCzyebDuijb/f5v4rjUUR06eM1VpOXfdRj3Kb04YZ9jb7wev369V5jqampSk5ObllIIIAoaQDQikpc37balTRJuvHGjoqP9/5RX1Fu6uGH8nTDDXv0/nsl2rG9WiUlbrndpsrKPMrJqdHChUWaes3TGj58uHbt8n4I3zAMPfPMM4qO9r3yGoC2zzRNPfnJdhnBW6xWkhRxXD+vsdqCH+SpLj/qcYYhPfmJ79UeV65c6TU2YsSIlocEAqh1Ps4FAMg0TZWWbmzVc6b2iND//bmrZty1X9XV3r+k7NpZo+d3HmzR3LNmzdLkyZP9jQgghK37oVjbcr2XsQ+06OMHq+jng6ZHlbs3KLbfqEaPM01p64FSrc8p1qk9OxwZz8vL83klbezYsQFKDPiHK2kA0Epqaw/K7T76p77BcMopUXpyVjelpvp+IWxzJSYm6rXXXtOtt94akPkAhK43Vu6W0xG8y2h1rgJV7Fqtyu83yBEV77W9YsuXx5zD6TD0xsrvG4z961//8rq6ZhiGJk6c6F9gIEC4kgYArcTtrrLs3P37R+nFl7rrrbeK9fECl4qLPc2eIyoqSr/+9a/10EMPqUePHkFICcBKWVlZWrt2bYOvoiKv61daunSpRo8ercLyGs3P3C+3J7DPonlqKlWW+YnKvv1EtQXfH3Xfim0rVLp+oeIGXyCjkXsu3R5T//l2n+6deLI6xkbINE3Nnj3ba7/Ro0crNTU1IN8D4C9KGgC0EtOstfT8UVEOXXttR111VQct/7Jc69ZXauuWan3/fY08jXS2rl3DNGrUOJ199jhNmTKFl7wCbUR2drbWrFlzzEJ2NF/tKlBdgAtaxY5VKvzkBbnLmnobtqnCT2ar7LvPlDz+VoUn+/4Aqc5jauWug5owsJvmzp2rrVu3eu1z0003+ZEcCCxKGgC0EsMIzO2G/goPN3TOmDidc2iJ/ro6U6Uut8rKPaqoMBUZaSgu1qH4BIciIx0aefpLio7ubnFqAIE0ZMgQlZSU+DXHd3tLFOYwAlbUile8rZLlb0ktWMi/Zv827X9julIuukvRJwz12h7mMPTd3hKdGFWq6dOne20fMGCAJk2a1JLYQFDwTBoAtBKnM8rqCD6FhRnq0DFMPXpEqF+/SPXqFaHklDBFRtb/E+F0RlqcEIAdfftDccAKWsnKf6lk+ZvyXdAMhXXopsieAxXRrZ/UyCuzzZpK5X3wsKp+yPTaVucxu3614gAAIABJREFUtWzF1zr33HN9ltNnnnlGDge/FsM+uJIGAK0kPLyTnM5YSxYPaSmnM07h4dziCKAh0zT13V7/rsQdVpn9/9m77/Coqvx/4O87LWWSSSEdEpIQCD0JCSUqVQQExLYLuAILKnZZKf4QRdRdEdldvyqggsq6KyurIohtBQsggkEhUiIllCSUkB6SCalT7u+PkCxxJnXKvTe8X8+Th2fOPffcTwzB+cw553N+QdnuDbYXBBV8B02CYfDt0PiFNDZXnUxD0SfL7Q9mMaFwy3KE3bUC2uDuEOuqUVeYjcpju/B1xncQrbZHoMyfPx+jR492yvdC5CxM0oiI3EQQBPj69kdZ2U9Sh9Jmvr79m92MT0SdS1RUFJKTk5GSkoLk5GQEBQUhJcV26SAAlFTWobLO4vAzraYalGxbjd/OoAkaHYJve8ru0kXvXqnwHzELZbvfszumWFuJvH/Oa9PzJ0+ejJUrV7Y7biJXY5JGRORGfoYElJenu/VA644SBA38DAlSh0FELhAVFYW4uDgkJyc3JmZBQUFN+uTk5DR7f7UTEjQAMO7fCouxyKY9cPyjdhO0Bn6pUyFoPHBp53pAbH+1WgCYMWMG3nnnHWi18tgvTHQ1JmlERG7k69tfEQkaAIiiGb6G/lKHQUQucOSI7b6t9jBZOpYYXc1qqkVF+uc27Z4xyfDpP6bV+w2Db4VH194o2b4GpsLsNj83PDwcf/3rXzFjxox2xUvkTtwhSUTkRgEBqRAEZXw+JggaBPgPkzoMIpIhrdrxt5DVp9JgrbLd1+Z/wx/aPIZHRDwi5qyGfuBNLfZTeejhFTcEr7zxFrKzs5mgkewp450CEVEnodMFIiRkEgoLv4AoOme5kCsIghqhIZOh0wVKHQoRyZCXTu3wGJXHvrdp0wZHwyMivt1jBYz4IyozvrNZ+ug75Pb6wiM+9f+WzZg5Fh4erFhL8seZNCIiN4vsNkPWCRoAiKIF3brxk2Yisq+LXge9A4maaDHZLZXvHX99h8ZT6/3hEdnPpt1UkN2YoPl4aNBFr+vQ+ETuxiSNiMjNDIYk6PXNn/UjPQE++t4wGBKlDoSIZEoQBAzo6tfh+2svZkI01dq0e3bveLEie/fW5h6DaKnfBzygqx+r1ZJiMEkjInIzQRDQI3YB7B/aKgciYmPn880MEbUoIcofGlXH/p2oyztl26hSwyMsrsPxeIT3smkTzXUwFZ+DRiUgIdK/w2MTuRuTNCIiCQQHj0Vo6C0AHN/X4VxqhIZOQXDwWKkDISKZG9DVD2Zrxz5sqivKsWnT+IdD0HR8OaIuOMb+swqzYbaKDs38EbkbkzQiIonE93oWWq0B8ln2KECrNSC+1zKpAyEiBbiuR1CHZ9LMZXk2bdqAcIfiUfsEQNB62nlWPjQqAak9ujg0PpE7MUkjIpKIVhuAPr1fhHyWPYro03sFtNoAqQMhIgUI1OsweWA41B1I1MzlhTZtah/Hkyi1j21FWouxELckRCCQRUNIQZikERFJKDh4HHrELpQ6DABAj9hFCA5u+awhIpI/URRRfLkW50urkFV0GedLq1B8uRai6PwPhGamRsPSgSWPFjvno6n1ju8ZU+ttP2QyV5VhZmp3h8cmcieek0ZEJLHu3R+C2VKFs2fflDSG7t0flOz5RNRxpZV1+PFMMTJyy3H4fBkyLpSjss72mA+9To0B3fyQEOmPAV39cF2PIIdnlwZF+aN3mC8yCyrQ1hzQaqoBLCabdpWHt0OxNDeGh7kKSSwaQgrDJI2ISGL11R4XQqPW40zW31G/R80dSyDrn9Mj9glERzNBI1ISURTxy7kybEjLwRdH8mC2itCohBYLeVTWWbAvqxQHci419r8lIQIzU7sjKdK/QxVdBUHAwnHxmPvegbbHXldjfyydV7ufbzOGnT1p/jorq9WS4jBJIyKSAUEQEB39EPT6OBw/sQQmkxGAKw+8VkOrNaBP7xVc4kikMF8fzcfLX59EZkEF1CqhcblhWystmq/q/9nhi/jkYC56h/li4bh43NQ3tN3x3NQ3FFMSIvDlkTxY2jCdJlrN9i8Ijle7FVS2Y+gEq8PjErkb96QREclIcPBNSB32DUJDJ15pcfanv/XjhYZOQuqwb5mgESnIpco6zPvPQdy/IR0nCysAoEP7wa7WcH9mQQXmvncA8/5zEJcq69o9zvNT+sHgpUGbJqxE+0mToHLC21I7Y5jNzSSFRDLGJI2ISGa02gD07/cqBg5YC72+/nBWwcFPmBvu1+t7YeCAdejf7xVotdyjQaQU24/mY8zLu/DlkfrS9c6uAdIw3pdHLmLMy7uw/Wh+u+4P0Ovw0p0D2xZXM/+eiVbHVw/YG0Or1To8LpG7cbkjEZFMBQffhKCgsTAaD+HChX+joPALiKIZgqCBKLb+yXBDP0HQIDT0FnTrOgMGQwL3ZhApiCiKeGPXGfxteyYEwfnJ2W9ZRKCs2oQHNqTjngR9u+4d3y8MT4yPx9+2Z7bYT9A0kzRZnDDjZWcMDw8Px8clcjMmaUREMiYIAvz8kuDnl4SePZ/GpbJ9qDBmoNx4BBUVGbBYKm3uUav18PUdAD9DAnwN/RHgPww6ne3ZQUQkb6Io4q/bM/HmrjNXXrvrufV/vrU7q933PjyqByprzXjjSsz2qJopEGKtq27389oyhsFgcHhcIndjkkZEpBA6XSBCQyYiNKR+v5ooijCZSmCx1EIU6yAIOqjVHtBqu3C2jKgTeGPXmcYETSkEQcAT4+Oh99A0O/snqLUQdF4Qf5NQWWsvO/Dc+ueEeVqQ85trXbo4fkg2kbtxTxoRkUIJggCdLgheXl3h7R0DL6+u0OmCmKARdQLbj+a3umxQrgRBwCOj4/DWzGT4e2mhtvNPkr2Dqy2Xyzr0PLUA+Htp8dbMZIhVtmOEhYV1aFwiKTFJIyIiIpKRS5V1eHLzEafXdnW3cf3CsGPhKEwaGAEATSo/avxsEydLRWG7xm8Yb3JCBHYuGoUbewfj4sWLNv1iYmLaNS6RHDBJIyIiIpKRZz87CmO12S1H2rtagF6HVXcl4a2ZyYgP9QUAqFUCNAERNn1NpbYJlj1qVX12Fh/qi7dnpeC16Unw99YhJycHJpPJpn/Pnj0d+A6IpME9aUREREQy8fXRfHx2uG3JipKM6xeGm/qG4uD5MmxIO4v3D/XAb3egWSqKYamugNrL1+Z+jUqA2SpCoxIwJSECM1O7IzHSv8ny7oMHD9p9dmJiojO/FSK3YJJGREREJAOiKOLlr0+6pdS+I8QOBicIAgZFBWBQVADujP4jhn+1yqZPbe5xeMcNaXyt91BjYFd/JET6Y0BXP6T26IJAvc7u+GlpaTZtQUFBiI2N7VC8RFJikkZEREQkA7+cK0NmQYXUYbTqVOFljHZwjOuHJCE0NBQFBQVN2icFFuKZhSOh06jgqVWji17X5mJI27dvt2m78cYbWUyJFIl70oiIiIhkYENaTuN+Kzn7+mhB651aIQgCJk+ebNO+7fOt6B7ohW4B3gjy8WhzgvXrr7/i6NGjNu1TpkxxOFYiKTBJIyIiIpJYaWUdvjiSB4tVxuscr0g7U4zSyjqHx5kxY4ZNW35+PjZt2tTusdasWWPT5uPjg1tvvbVDsRFJjUkaERERkcR+PFMMswISNACwiCLSzpQ4PM7IkSPRv39/m/Zly5ahrq7tSWBmZib+8Y9/2LTPmTMHer3eoRiJpMIkjYiIiEhiGbnl0ChgqSMAqAUBGbnlDo8jCAKWLl1q037q1CksWLCgTWNUVVXh7rvvtim97+npiUWLFjkcI5FUmKQRERERSezwuTJFzaQdPl/mlLGmTZuGkSNH2rS//vrrWLhwIcxmc7P3FhcXY9KkSUhPT7e5tnjxYkRFRTklRiIpCGJH66jKlNFohJ+fH8rLy2EwGKQOh4iIiKhFoiii/7PbUVlncdszzeUFyF17r8vGz87ORnR0dJv65uTkICkpCWVltolf3759MX/+fNx4443o1q0bTCYTTp06hU8//RSvvfYaSktLbe4ZOnQofvjhB2i1Wke/DeoElJobsAQ/ERERkYRKKuvcmqDJTXR0NDZv3oxJkyahpqamybVjx45h7ty5bR4rNjYWmzdvZoJGisfljkREREQSqr6GE7QGY8aMwVdffYWgoKAOjzFo0CDs2rULXbt2dWJkRNJgkkZEREQkIZPFKnUIsjBq1CgcOnQIU6dObdcB1J6enli6dCn27t2LyMhIF0ZI5D5u2ZP2+uuv429/+xvy8/ORkJCA1atXY8iQIc3237RpE5555hnk5OSgZ8+eWLlyJSZOnNimZyl13SkRERFdm86XVmH4X3e69Zmi2YS6gjMOjbFuZjJCDJ52ryUlJcHDw6PDYx8/fhzr16/Htm3bcPz4cVitTRNZDw8PDB48GFOmTMGcOXMcmoGjzk2puYHLk7QPP/wQs2bNwtq1azF06FC8+uqr2LRpEzIzMxESEmLT/8cff8SIESOwYsUKTJ48GRs3bsTKlSvxyy+/2D1L47eU+oMgIiKia1Px5VqkvPCt1GG024GlYxHk0/FErK1qampw7tw5VFRUQK1Ww9/fH5GRkVCr1S5/NimfUnMDlydpQ4cOxeDBgxtPgrdarYiMjMRjjz2GJ5980qb/tGnTUFlZiS+++KKxbdiwYUhMTMTatWtbfZ5SfxBERER0bZKiuqOjfDw0yHhuXLuWJRJJQam5gUv3pNXV1SE9PR1jx4793wNVKowdOxZpaWl270lLS2vSHwDGjx/fbP/a2loYjcYmX0RERERKIQgCBnT1kzqMdhnQ1Y8JGpELuTRJKy4uhsViQWhoaJP20NBQ5Ofn270nPz+/Xf1XrFgBPz+/xi9uGCUiIiKlSYjyh0aljKRHoxKQEOkvdRhEnZriqzsuWbIE5eXljV/nz5+XOiQiIiKidhnQ1Q9mq8truTmF2SoqbuaPSGlceph1UFAQ1Go1CgoKmrQXFBQgLCzM7j1hYWHt6u/h4eFQ9SAiIiIiqV3XIwgalaCIRE2jEpDao4vUYRB1ai6dSdPpdEhOTsZ3333X2Ga1WvHdd98hNTXV7j2pqalN+gPAN99802x/IiIiIqUL1OsweWA41DJf8qhWCbglIQKBep3UoRB1ai5f7rhgwQK8/fbb+Ne//oXjx4/joYceQmVlJebMmQMAmDVrFpYsWdLY/09/+hO2bduGl19+GSdOnMBzzz2HAwcO4NFHH3V1qERERESSmZkaDYvMZ9IsVhEzU7tLHQZRp+fS5Y5AfUn9oqIiLFu2DPn5+UhMTMS2bdsai4OcO3cOKtX/csXrrrsOGzduxNKlS/HUU0+hZ8+e2Lp1a5vOSCMiIiJSqkFR/ugd5ovMggq49oCkjhEEID7UF0ksGkLkci4/J83dlHoWAhEREdE3xwow970DUofRrLdnpeCmvqGtdySSCaXmBoqv7khERETUWdzUNxRTEiKgltkZZGoBuDUxggkakZswSSMiIiKSkeen9IPBSwO55GmCABi8tHjuln5Sh0J0zWCSRkRERCQjAXodXrpzoGz2pYkisPLOgQhgRUcit2GSRkRERCQz4/uF4Ynx8VKHAQB4Ynw8xvWzf14tEbkGkzQiIiIiGXp4VA88PKrHNR8D0bXI5SX4iYiIiKj9BEHAE+PjoffQ4G/bMyEIcMsSyIbn/L8J8Xh4VJzrH0hENjiTRkRERCRTgiDgkdFxeGtmMvy9tFC7uJiIWgD8vbR4a2YyEzQiCTFJIyIiIpK5cf3CsGPhKEwaGAEATq/82DDe5IQI7Fw0invQiCTG5Y5EREREChCg12HVXUmYPDAc//fNSZzIr4BaJcBi7fgayIb740N9sXBcPM9BI5IJJmlERERECjKuXxhu6huKg+fLsCHtLD4/fBFmqwiNSoC5DQlbQz+NSsCUhAjMTO2OxEh/CHI5mI2IIIiiXE7hcA6j0Qg/Pz+Ul5fDYDBIHQ4RERGRS5VW1iHtTAmO5JbhyPlyHMktQ2Wtxaaf3kONgV39kRDpjwFd/ZDaowsCefYZdXJKzQ04k0ZEnVpWVhbS09ObfF26dMmm386dOzFq1CiXxVFUVNQkhgMHDuD8+fM2/Z599lk899xzLouDiDqfQL0OkwaGY9LAcACAKIooqaxDjcmCOrMVOo0Knlo1uuh1nC0jUggmaUTUaWRnZ+PAgQOtJmSuVlxc3CSO5hIyIiJXEAQBQT4eUodBRA5gkkZEnUZSUhLKy8ulDgP33XcfPv30U6nDICIiIoViCX4iIiIiIiIZYZJGREREREQkI1zuSESdWlRUFJKTk5GSkoLk5GQEBQUhJSXF7XEEBgYiOTm58SslJQWjRo3C2bNn3R4LERERyRuTNCLqNKKiohAXF9ckEQoKCmrSJycnx+VxBAYGYuzYsU2Sw5iYGJc/l4iIiDoHJmlE1GkcOXJE6hAAAP/4xz+kDoGIiIgUjHvSiIiIiIiIZIRJGhERERERkYwwSSMiIiIiIpIRJmlEREREREQywiSNiIiIiIhIRpikERERERERyQiTNCIiIiKFEUURI0eOhCAIdr+ee+45qUMkIgcwSSMiIiJSmHXr1mH37t1Sh0FELsLDrIlIGUQRqCwGTFWAxQSotYDWG9AHAYIgdXRERG5z4cIFLF68WOowiMiFmKQRkTxVlgDZ3wN5h4DcdODiIaDusm0/nQ8QkQh0TQbCE4GYkYC+i/vjJSJyk4ceeghGo1HqMIjIhZikEZF8iCJwYT/w89vA0S2A1QyoNPV/NqfuMpCzBzi373/9+98JDJ4LdEvhLBsRdSoffPABvvjii8bXKpUKVqtVwoiIyBW4J42I5OHEl8Cb1wHrbwKObv5fYtZSgna1q/v/uhlYPxZ483rgxH9dEy8RkZuVlJRg3rx5TdoefPBBiaIhIldikkZE0qoqBT6+F/jgD0DRifo2q8WxMRsStqLjwAd31Y9fVerYmEREEnv88cdRVFTU+DoiIgIrVqyQMCIichUudyQi6Rz/AvjsMaCmvP616OQlOw3jHf0EOLMDmLIa8Orv3GcQEbnBtm3b8O9//7tJ26pVq2AwGCSKiIhciTNpROR+ogjs/jvw4d1AdRkgOjhz1urzLPXP+fDu+v1uREQKcvnyZTzwwANN2m655RbceeedEkWkbFlZWdi0aROefPJJ3HTTTQgMDLR71tyuXbskjfOZZ55p9hy8UaNGSRobuR5n0ojIvUQR+O55YM8rVxrcteH9ynN+XOWm5xEROceSJUtw7ty5xtc+Pj54/fXXJYxIObKzs3HgwAGkp6c3fl26dEnqsFqVkZGBlStXSh0GSYhJGhG51w8vX5WgERFRS3788Ue88cYbTdpeeOEFREZGShSRsiQlJaG8vFzqMNrFYrHg3nvvhclkkjoUkhCXOxKR+xz/AtjxF6mjICJShNraWtx3331NSuynpKTg0UcflTAqcrVXX30V+/fvlzoMkhiTNCJyj6rS+iIh4LllRERt8cILL+D48eONr9VqNd566y2o1WoJoyJXysrKwrJly5q0qVR8u34t4nJHInKP/z5xpYqjKHUkRESyZ29P0uOPP46kpCSJIuo8oqKikJycjJSUFCQnJyMoKAgpKSlShwUAmDt3LqqqqhpfDxw4EL6+vti7d6+EUZEUmKQRkeud+BL49WOpoyAiUgR7e5Kio6Px/PPPSxiVMkVFRSEuLg7JycmNiVlQUFCTPjk5OdIE9xvr16/Hjh07Gl+rVCq89dZbWLx4sYRRkVSYpBGRa4kisOMFQFA5/xw0ZxI5w0dE8mBvT9Ibb7wBvV4vUUTKdeTIEalDaJO8vDwsWrSoSdvDDz+MoUOHShQRSY1JGhG51oX9QOExqaNoXVEmgNFSR0FEnZAoiqiuMMFcZ4HVIkKlFqDRqeHlq4UgNN2na29P0rRp03DzzTe7M2Rys0cffRRlZWWNr7t27Yrly5dLGBFJjUkaEbnWz28DKjVgdfGB1Y468QWAB6WOgog6gerLdbhw4hKKzlWgIMeIorMVMNXa/huo9VAjuLsvQqMNCI7yRbfeATZ7kvz9/fHqq6+6M3xys82bN2PLli1N2lavXg2DwSBRRCQHTNKIyHUqS4CjW+SfoAFA9u76ePVdpI6EiBRIFEUUZBuRsesCTh8ohNUqQqUSYLU2v5TaVGvBxZNlyD9dDqtVRFrmV9ixa0eTPitXrkRYWJirwyeJlJWV2RypcNttt+H222+XKCKSCyZpROQ62d8DVrPUUbSNaAFydgP9+D9GImqfrENF+OmzLJRerISgEiBeScxaStCuZrWKKK8swZYf1zZpT04cgrlz5zo9XpKPBQsWID8/v/G1r68vVq9eLWFEJBc8eIGIXCfvEKBSyGdBghq4eEjqKIhIQWoum/D1+qP4am0GSvMqAaAxQWuvj/auRnXd5cbXGpUWE3o9gG/+cQw1l00t3ElK9d133+Hdd99t0rZ8+XJ069ZNoohIThTy7omIFOlCurJm0nLTpY6CiBQi61ARdm44gdrqKwmUAwViD2btxuHsH5q0jU2chvCAaJxOL8D5Y6UYPbM3YhODHYiY5KSqqgr3339/k7bBgwfjkUcekSgikhsmaUTkGqJYP5PmRjllVsS8drn1jnaM/lcV8K8vgTlCs32ys7MRHR3dpvGio6Nx9uzZdsfx/PPPt3oW0rvvvovZs2e3e2wicpwoikjfdhY/fZoFCHAoOQOAqtrL2LS36fK2EL9uGD/o7vrnWYGaKhO+WpuBYbfFYtD47jYVIUl5li5diqysrMbXGo0Gb7/9NlQqLnKjevybQESuUVkM1HUsYSIikiNRFLFva1Z9ggY4nKABwJa0N2GsKm3SNn3449CqdVc9uP6PfVuzsO/TLIg811HRfv75Z7z22mtN2hYsWICEhASJIiI54kwaEbmGqar1PkRECpK+7Sx+2d7+GfLmZF74BfsytzVpG9prPHp1TWr2nl+2nYXOU43kCdFOi0Op2nP+nFyYTCbcd999sFqtjW0xMTF49tlnJYyK5IhJGhG5hoUb3Ymo88g6VPS/GTQnqDPV4D8//F+TNh9Pf9ye+kCr9+7bmoWAMP01t0fNkfPnvHx0dkZ0vxUrViAjI6NJ25tvvglvb2+JIiK5YpJGRK6h1rr9keE+AtLudfB/dNPeB3ztn0kUHh7e5mE++eQT1NbWOhZLM3r06OGScYnIvprLJuzccMIpe9AanC3KRLExr0nb4J43oqg8F0XluS3fLADvrDyJ8XP7w8Pb/lu5CxcuYN++fTbtffv2VdQhyc44f06lEhCXEoIBo7ohNMYg2SzbsWPHsHz58iZtd911F8aPHy9JPCRvTNKIyDW07v9U0EMjYFg3B/9ZS70e8HH80+mkpOaXKxGRsuz+8GR9FUcnbgUT7Qy2M2MzdmZsbvMYKz5o/tr69euxfv1622fs3IlRo0a1+RlScsb5cw1/njpQiJM/F6BLVz2GTolFTIJ7ZyGtVivuu+8+1NXVNbYFBATglVdecWscpBxM0ojINfRBgM5HWcVDdL71cRMRXZF1qAin9hdIHcY1peayCbs/PFn/3/3KpFdHz59r0HB/ycVK/PfNDPQcHIoR03rB08c9qz7WrFmDtLS0Jm1//etfERoa6pbnk/IwSSMi1xAEIDwROLtH6kjaLiKxPm4iItQvtfvpM+eU2qe2ceb5c3ZdGe/q8+dU/k5+xm+cPXsWTz/9dJO2ESNG4N5773Xtg0nRmKQRket0SwbO71PGgdYqDdA1WeooiEhGCrKNKL1YKXUY1wRnnz/X6vOuOn8uKtW1RUUeeOABXL78v1UlOp0O69atk20FSpIHJmlE5DrhicpI0ID6OCMSpY6CiGQkY9eFJnuhnKlXRCLWPPCdw+MIKgGPvDnGpv3ZZ5/Fc8895/D47tBw/lzj8QbumrW88pyDX59z2SPee+89bN++vUnbkiVL0Lt3b5c9kzoHHmZNRK4TM7J+hkoJVBogeoTUURCRTFRfrsPpA4UuSdCcSe7xtYWzz5+Ti8LCQsyfP79JW3x8PJYsWSJRRKQkTNKIyHX0XYB+dwAqtdSRtEylAfrfWR8vERGACycutbmKIHWcs8+fk5N58+ahtLS08bUgCFi3bh08PDwkjIqUQiEfcRORYg2ZC2R8JHUULbOagcFzpY6CiGSk6FxFq+dxkWNccf6cnHz44YdNXo8YMQIeHh52z69ridFotNtmb5xu3bqhW7du7QuUZIlJGhG5VrfBQEg/oOh4/U5tuRFUQEhfoFuK1JEQkYwU5BiZoLmYK86fk7Pvv/8eqampThnr4MGDdsdS0l5EahmXOxKRawkCMGapPBM0oD6u0U+z9D4RNRJFEUVnK6QOo1NrOH9Orv9rIJIakzQicr3eE4H+vwMEme1NE9TAgN/Xx0dEdEV1hQmmWovUYXRaTc6fkzFRvEam+EiWuNyRiNxj4t+AMzuA6jIAcvjoVAV4+gE3/1XqQIhIZsx19Qnao+tudPrYNyfPwqSUPzp9XCVRyvlzl/LkHyN1XpxJIyL38A4EpqyGPBI0ALACt66pj4uI6CpWC2dQXKnh/Dm5yzpU5ND9oig65WvkyJE2Y48cOdJuX+5H6zw4k0ZE7tNnMjDmGWDHX6SOBLhxGdB7ktRREJEMqdTyTyCudnPyLABAwphu8PDWAgBGjRolYUTNU8r5cwCQm1mG6st18PLRSR0KXYOYpBGRew1fCNRVAnv+T7oYblhQ/0VEZIdGJ7P9s61oWD45Z+kN8DbIO6FQ0vlzVlFEbmYZ4pJDpA6FrkFM0ojIvQShfhbLwwf47s+oX3XtjiWQV55z47PAcCZoRNQ8L18ttB72E7WFt612aGx/fbBD9zdH66mGl6/WJWM7k5LOn1MJAorOGZmkkSSYpBGR+wlC/YxacG/g00eBmnJAdGElNUFdXyTk1jVc4khErRL5DVBiAAAgAElEQVQEAcHdfe1eiwnt6+Zo2iYkyheCAo4SUdL5c1ZRREG27UHSRO7AJI2IpNN7EhCVCvz3CeDXj+sPlnbmoTkN4/W/o76KI4uEEFEbhUYbpA6hzVQqAaEx8o9XivPnSiry8ezGuzt076rPF2LV5wAWNt8nOzsb0dHRHRqfqCWs7khE0vIOBH63Hpi+EQjuU9+mcvDzo4b7g/sA0/8D3PkOEzQiapfgKPszaXJktYoIjpJ/ksbz54jajjNpRCQPvScB8ROBCweA/W8Dv24GrOb6hMtqbv3+hn4qLdD/TmDIXKBrcv3SSiKidurWO0DqENpMpRLQNd5f6jBa1XD+HBG1jkkaEcmHIACRg+u/xq8AcnYDFw8Cub/U/1l32fYenQ8QkVSfkEUkAtEjAH0X98dORJ2KUsquCyoBcSkhioiX588RtR2TNCKSJ30XoN/t9V8AIIpAZTFgrgbMdYBGB2i8AH0QZ8uI6JolWkUMGNVN6jDaRIrz5wzegQ5X5Lz5wQHQ+3nYvRYeHu7Q2G0xe/Zsm3PvuA+u82OSRkTKIAiAj2tKVxMRKZIAdInQK6JoCCDN+XNatc7hipypqamSnj83e/ZsyZ5N0mHhECIiIiIlEoGhU2IVUXofaPn8OblSyvlz1PlwJo2IiIionerMtbhcXYbKWiM0Ki28PXzh7ekLrdo9My6CCohLDkVMgnJWGDScP3fxZJnUobSZUs6fo86HSRoRERFRG334w2s4k5+BvEtnIdo51zHQJxSxYf3RI3wAkmJGwMfLz/lBCICHlxYjpvVy/tguFhptQP7pckUcaK2U8+eoc2KSRkRERNRGPxz7rMXrpZcLUHq6AAdOf4ctaW9iSM+xGJswDcF+XZ0XhAiMntkbnj7KW4YXHOWriAQNUM75c9Q5MUkjIiKia44oiqg2lsNUWwuL2Qy1RgOthwe8DH5OW95mMtdi7/Evsf/Ud7gj9SHc0HeyU8YddlssYhOVs8zxat16B0ClEhSRqCnl/DnqnJikERERUadXZSzH+aNHUJB1GnmnT6Ig6zRMNdU2/bSeXgiNjUN4nPOWEtaZa/DBD68gK/9XzBy92KEkcNCE7hg0vrvTYnM3Lx8d4lJCcOpAIUQZJ2pKOn+OOicmaURERNQpiaKIvFMncGj7l8hM+wFWiwUqtRpWi6XZe0w11bhwLAMXM481tmk0agwelIybJ09G//79YS0x4PQeI7x0epgtJlTVVqDIeBFZ+UdxKHs3LhSftjv2z6e+gd7TgDuve7h934gAQKyfQUueEN2+e2VowKhuOPlzgdRhtEhJ589R58QkjYiIiDqd0/v3Ye+HG1B8/iwElRqitT4xaylBu5rVYkH3Lv4YEhOJpO6R0KkFBBkLMCByHOJuH4qslCLs3HACtdUaeGi9EOATgl4RiZgw6G6cvHgIH/7wGgrKztmMuzNjM7oFxWFor3FtikNQ1RcJGT2zt2KXOP5WaIwBXbrqUXKxEpDjZJrCzp+jzkkQRVGOvx4dZjQa4efnh/LychgM/OUiIiK6llRXGLHj3bU4sXc3BEGAM9/mNIzX+/oRGDPnQQiCF3Z/eBKn9hc0znY1qDPXYsPOl3Awa7fNOP76ICyb/h50Go8WHlY/Xs/BoRgxvRc89corEtKS7MNF+O+bGVKH0ayJDw1Q1PEG1Dyl5gY8zJqIiIg6hVP70/CP+Q8gM20PADg1Qbt6vMy0PfjH/Adx/vgBjLu3H25+cAC6ROgB1O9lAgCdxgN/HPMUekUk2oxTVlmM3b9utfuMhvu7ROgx8aEBGHdvv06XoAFATEIweg4OhSCzd6KCqj4xZoJGUuNMGhERESmaKIr4eesm7PngPUAQAHe8tbnynBumz8KQ234PACjINiJj1wWcPlAIq1WESi2goDQXyz+6B2arqcnt0SF9sOj2NQDQWO1QpRbQMyUU/Ud1RWi0odMfolxz2YT3n92HmiqTPJY9CoCntxZ3Pz9MkccbkH1KzQ24J42IiIgUSxRF7PnPv/Dzpx83NLjrwQCAPR+8h7qaatwwfRbCYv0QFuuHG6b2RG5mGQrPGlGY44fBh8cg7fj2JrefLcpErbUCsb0jERpjQHCUAV3j/a+paoKePvV77b5aK5Nljwo+f446HyZpREREpFg/b930vwRNwhh0nl4YevtUAFfKzCeHIC45BABgirwXaVObJmmiaEXfOzwwYcIgt8crJ7GJwRh6ayx++jRL6lAUff7cb+Xm5uLQoUMoKipCUVERLBYLDAYDYmJikJiYiPDwcKlDpFYwSSMiIiJFOrU/rX6Jowzs+eA9dOkWhbjBw2yupaSk2L2nsLDQ1WEpQvKE7jDVWvDLtrOSxaD08+cAIC8vD6+88gq+/PJLHDt2rMW+CQkJmD17Nu655x5FLQG8lshsuyYRERFR66orjPh63ar6vWFyIAjYvu41VFcYbS6FhITYvYVJWj1BEDDs1lgMuy32SoO7Hlz/x7DbYpF6Ww/F7gGsqanBE088gR49euBvf/tbqwkaABw+fBjz589Hr1698MEHH7ghSmovJmlERESkODveXYvaykr37UFrjSiitrISO95d1+Zb6urqXBiQsgiCgOQJ0bj5wQHw9Na6vOqjoKovEnLzgwMUfUB4bm4uhg8fjr///e+orq5u9/0FBQW466678Nhjjzm9Gio5hssdiYiISFFO79+HE3ttzx+Tmmi14sTe7xF/3QjEpQxtbG9uxozLzGzFJgYjIs6/2fPnHHZlvLhk5Z8/l5ubi6FDhyI3N7fZPrGxsY37z/Ly8pCVZX/v35o1a2AymbB27VqXxErtx5k0IiIiUgxRFLH3ww2yXZomCAL2frihyaxEenq63b5RUVHuCktRPH20zZ4/11Gd7fy5uro6/O53v7OboOn1evzlL3/BuXPncObMGezZswd79uzBmTNncO7cOfzlL3+BXq+3uW/dunV488033RE+tQFn0oiIiEgx8k6dQPF56QpMtEYURRSfy0HeqUxE9OoNAPj888/t9k1KSnJnaIoTmxiMmIQgu+fPWS2tT6915vPn/vznP2Pfvn027XFxcfjmm28QHR1t977IyEgsXboUM2bMwE033YTTp083ub5o0SJMnDgR3bsru4hKZ8DDrImIiEgx/rv67zjx4w8QrRapQ2mWoFKj9/UjMPHRhThz5gz69OkDk6npYdY9e/bEyZMnJYpQmaov1111/pwRhWcrYKq1/Xug9VAjpLtvpz1/rrS0FNHR0aioqGjSHhQUhMOHDyMiIqJN41y8eBEJCQkoLi5u0j516lR8+OGHTotXakrNDTiTRkRERIpQZSxHZpq8EzQAEK0WZP64G9dNn4W5c+faJGgAMGPGDAkiU7bfnj8niiKqK0wwmyywmkWoNAI0WjW8fLWdYrasOWvWrLFJ0ABg9erVbU7QACAiIgKrVq3CH/7whybtH3/8MTIzMxEfH+9wrNRx3JNGREREinD+6BFYLa5P0I7nFaKy1rHKi7W1dZg+dSp27txpc83X1xePPPKIQ+NT/f4/b4MOhi5e8A/1hqGLF7wNuk6doAHA1q1bbdpiY2Mxbdq0do81bdo0xMbGNmmzWq1Yt67tVUrJNZikERERkSIUZJ2GSq12+XP2nTmHF77YgS2//IqzJZfaXZr8TGEJXv12D7bv3GX3+osvvoguXbo4IVK61pSWluLw4cM27TNmzOhQcqpSqezO6m7cuBFWq7VDMZJzcLkjERERKULe6Uy3zKQBgMliwY+nz+LH02dh8PJAfGgwIvwNCPc3IMDbC55aDTy1GlisIqrrTCi+XImc4ks4ciEPuWW2B1o3mDp1Kh599FG3fA/U+ezfv99u8nTdddd1eMzU1FSbtoKCAqSnp2Pw4MEdHpccwySNiIiIZE8URRRknZHk2cbqWuzPueDwOFOnTsW///1vJ0RE16rmztzr169fh8ds7t5vv/2WSZqEuNyRiIiIZK/aWA5TTbXUYXSIwWDA+vXr8eGHH0KrVe7ZXCS931ZibODv79/hMZu798CBAx0ekxzHJI2IiIhkz1Rb67ZndQvwg97D8ZLt3jotHnngAfz666+45557nBAZXeuqq+1/UOHh4dHhMT09Pe22Hzp0qMNjkuO43JGIiIhkz2I2u+1ZN/XribF945BXXoGzJZeQe8mIvHIjSi5XobK2Ds2VEdGoVAj3NyAq0A8xQYHo1zUU9y97BoERXd0WO3Vuzc16lZeXIygoqENjlpWV2W0/e/YszGYzNBqmC1Lgf3UiIiKSPbWb3ygKgoAIfwMi/Jsefmu2WFFRU4tasxlmixWCAHjptPDUauGp1UD1mwp7Gi5vJCdqripofn5+h5O0/Px8u+0WiwXnz59HTExMh8YlxzBJIyIiItnTOrCcy5k0ahUC9F5t769zfNkkUYOoqCi77fv370f//v07NOb+/fubvVZYWMgkTSLck0ZERESy52Xwg9az7cmRHOi8vOBl8JM6DFIYURRRVGfCuepanKmqwbnqWhTVmSCKIpKTk+HlZft78PXXX3f4eS3dW1JS0uFxyTGcSSMiIiLZEwQBobE9cOHYr1KH0mahsXEdOmCYri0ldWbsKavAkYpqHDRW4XBFFSottmeh6dUqJPh6IywhCdn7fmxybcuWLSgsLERISEi7nl1QUIBPPvmk2euVlZXtGo+ch0kaERERKUJ4XDwuZh5324HWjlCp1QiLi5c6DJIpURSRbqzCu7nF+LTwEswioBEAc3NVaQBUWqz4sewyaoffBPwmSaurq8P8+fPx/vvvtyuO+fPno66urtnrLV0j1+JyRyIiIlKE0Ng4RSRoAGC1WBAaEyd1GCRD24rKMXp/Jib/cgpbryRoQMsJ2tV0YydBFWQ7Y7Zx40asWrWqzXG89tpr+M9//tNiH6vVdkaP3INJGhERESlCZL+BUKnVUofRJiq1GpH9BkgdBslIqcmMh47mYPav2ThZWQMAsLQxMbuaoNXCZ87Ddq/96U9/wkN/+hOMRmOz9xuNRjz++ON4/PHHW31Wc2eoketxuSMREREpgrfBD/Gpw3Hixx8gWuU7oyao1Ii/bgS8WTSErviqqAwLMs/DaKr/e+vo/JTXzbei7tB+1Hzzpc21tatWYeP772PaHXdg5MiRCAsLA1Bfav/777/HJ598guLi4ib3DB482G6VR29vbwcjpY5ikkZERESKkTh+Eo7v2SV1GC0SrRYkjpskdRgkA6IoYtXZQqzIzoMKjidnVzPMfxrW0mLUpf9kc81YUoK3334bb7/9dqvj3HzzzZg9ezamTZtmc629hUjIebjckYiIiBQjvGdvBEVFy7ZqoiAICIqKRnhPFg251omiiBez8rAiOw+AcxM0ABA8veD/0hp43XJnh8e46667sGXLFlRXV9u9Hh4e3uGxyTFM0oiIiEgxBEHA9dNmQhQ7sJnHDURRxPXTZso2iST3WXW2EKvPFbr0GYJaA8P8pQh45R1oByS1+b7IyEi8//772LhxIzw9PVFeXm7TR6/Xo2vXrs4Ml9qByx2JiIhIUeJShqL39SOQmbYHooyqzwkqFeJThyMuZajUoZDEvioqa5xBcwddQjICX/sHTGdOom5/GuoO/QxLfh6sZZcgVl6Gl6cnYqO7IyUlBVOmTMGUKVOg0fwvDThx4oTNmH379uWHDRJikkZERESKM2bOg8g5chA1ly8DcphVEwR46H0wZs4DUkdCEis1mbEg8zwEAO7+m6nt0QvaHr2gn/7HxjYVAD+tGruH9kGg1v5b/yNHjti0XXfdda4Kk9qAyx2JiIhIcbx8DRj3wDx5JGgAIIoY/8A8ePkapI6EJPb0yQswmixuT9CaYwVgNFmw9OQFu9ctFgsyMjJs2kePHu3iyKglTNKIiIhIkXoOTsUN02dJHQYA4IbpsxA3eJjUYZDEthWV45PCMsjtgAgLgC2FZdhebLv37JtvvrE5V83Hxwfjxo1zU3RkD5M0IiIiUqwht/0eQ277/TUfA0lPFEW8dKXUvhypALyUlWdTdGfDhg02fe+44w54eXm5KTKyR65/j4iIiIhaJQgCbpg+638zau4qdHDlOTfc9UcMv+uPLLBASDdW4URljdNL7TuLFcDxyhr8YqxqbMvOzsaWLVts+j7++ONujIzsYZJGREREiiYIAobePhW3LloKTx8fCCrXvr0RVCp4+vji1kVLMZQzaHTFu7nFUMs8V1cL9XE2ePjhh1FTU9Okz8SJE5GU1PZy/uQaTNKIiIioU4gbPAz3vLIO8ak3AIDTZ7caxotPHY57Xl3HPWjUqKTOjE8LL8Eil2ohzbCIwNbCSyipM2PlypXYtm1bk+tarRYvv/yyRNHR1ViCn4iIiDoNL18DJs37f4hPHYG9H/0bxedyIKjUEK0dL+XQcH+XyO64ftpMnoNGNvaUVcDs5gTNWl0FlZd3u+8zWUXMW/YsNq580eba888/j969ezsjPHIQkzQiIiLqdOIGD0OPlKHIO5WJQ19/icwfd8NqsUClVsNqaT1ha+inUqvR+7oRSBw/GWFxvbj3jOw6UlENjQC3Jmql90+Htl8CvMbdAm3CIAjq1t/W1/16CJff+Ds2njhqc23ixIlYvHixK0KlDhDE35Z4UTij0Qg/Pz+Ul5fDYOBZJURERARUGctx/mgGCrJOIf/MSeSfOQ1TTbVNP62nF8J6xCEsLh6hMXGI7DcA3gY/CSImJbn94GmklV126zOLpo6HtbgQACDofaBLTIGmRy+oI6OhMvhB8PSC1VgOa1kpzNmnUZf2Ayx59s9KGzZsGL799lvo9Xp3fgtuodTcgDNpRERE1Ol5G/wQn3pD4341URRRbSyHua4OZpMJGq0WGp0OXgY/zpZRu4iiiCMVVa13dGUMlZdRu3cXavfuave9EydOxEcffdQpEzQlY5JGRERE1xxBEODt5y91GNQJFJvMqLTItfB+8zw9PfGXv/wFCxYsgMrFFVGp/fgTISIiIiLqoGqJEjSPG0ZDFRDY7vsEL2943fI7fJ9xFIsWLWKCJlOcSSMiIiIi6iCTROUdDPOehPjYYphPZ8J07AhMmcdgyT0HS/5FiJcrINbWAFodVHofqMO7QhPbE7qkIdANvR4qL290iYiQJG5qGyZpREREREQdpJVwD6MgCND27A1tz/aXzddxBk3WmKQRdUB1dTUOHjyI7OxslJWVoby8HFqtFv7+/ggMDMSAAQPQs2dPbj4nIiLq5LzUykx2PFV8jyJnTNJkqrq6GseOHcOpU6dQWlramAQEBAQgICAAffv2RXx8/DWTBGRlZSE9Pb3J16VLl2z67dy5E6NGjXJJDGVlZdiwYQM2bNiAgwcPwmw2t9jfz88PN954I+677z6MHz+ea76JiIg6oSCtBnq1SlHFQ3zUKgRpmQbIGX86MlFYWIidO3dix44d+P7773Hq1ClYrS3/sgcEBGD48OG47777MGnSpE6TBGRnZ+PAgQOtJmTuYrFY8Oqrr2LZsmWoqmp7id3y8nJs2bIFW7ZsQZ8+ffDOO+/guuuuc2GkRERE5G6CIGCgr7fbz0lzRIKv9zXzQb9SMUmTUEFBATZv3oxNmzZh9+7drSZlv3Xp0iV89tln+OyzzxAdHY1Vq1bhlltucVG07pOUlITy8nKpwwBQP3s2efJk7N2716Fxjh8/juHDh+PPf/4znn76aSdFR0RERHIwyOCN/eWXYZamhki7aAQgyeAtdRjUCiZpEnr66aexfv16p4yVk5ODKVOmYPbs2Vi7di08PDycMu61rKKiAuPHj8fPP//cbB8vLy/06tULgYGBMJlMKCwsxOnTp+0m3FarFUuXLgUAJmpERESdyEBfL0UkaABgFoGBvkzS5I5JmswFBAQgJCQEISEhAICioiKcPHmy2Vm3f/7znygpKcHmzZuh1WrdGWqns3jx4mYTtIkTJ2LhwoUYPny4zX9no9GILVu24KWXXkJmZqbNvc888wxGjx7NpY9ERESdxA3+vtAIUESiphGA6/19pA6DWtE5NjF1Ij4+Ppg1axbeffddnDlzBqWlpThx4gR2796N3bt34/jx47h06RI2btyIpKQku2N8/vnneOSRR9wcuWtFRUXh9ttvx/Lly7Ft2zYcOHDApc87cuQI1q1bZ9OuUqnw1ltv4csvv8SYMWPsJsIGgwGzZ8/GoUOHMGPGDJvroih2up8PERHRtayLToNbQwKglvk2L7UA3BYSgC46ztPIHX9CMpGamor7778fv//976HX61vsazAYcNddd2HatGl44YUX8Oyzz9r0eeeddzB79uwOz9aYzWacPn0ax48fR1FREcrKymC1WuHv74+AgADExMQgMTEROp2uQ+O3JCoqCnFxcUhOTkZycjJSUlIQFBTUpE9OTo7Tn3u1DRs22J2tfP755zF37tw2jeHp6Yl//vOfyM3Nxc6dO5tcO3ToEDIyMjBgwACnxEtERETSmtM1CJsLpCt01hYWsT5Okj8maRK7/vrr8dxzz2Hs2LEA2l9qftmyZfDw8MCTTz7Z5Looinj66adtkoPmVFVV4YcffsDOnTuxc+dOHD58GLW1tS3e4+HhgZSUFMycORMzZsxoNblsqyNHjjhlHEd89tlnNm1hYWF44okn2jWOWq3Gyy+/jEGDBtlc+/zzz5mkERERdRLJBm/00Xsis7IGcizGrwLQW++JQSwaoghM0iR077334sKFC/j222+xcuXKDpeaX7x4MT799FOkpaU1ad+9ezcKCwsb97P9VnV1Nb744gts2rQJX375ZbvKywNAbW0t9u7di7179+L//b//h6eeegqLFi2CWq1u9/cgJ1arFVlZWTbtkydP7lBBlqSkJPTo0QNnzpxp0v7b10RERKRcgiDgydhw/DEjW+pQ7LICWBwbztL7CsEkTUI333yz00rNP/HEE7jjjjuatFmtVmzfvh0zZ860e8/mzZubvdZeRqMRTz75JD755BN89NFHiIqKcsq4UigpKbF7UHXfvn07PGafPn1skrK8vLwOj0dERETyMz7ID7eH+OOzwjJYpA7mKmoAt4b4Y3yQn9ShUBuxcEgncdNNN9n9ZOTs2bMOjevt7Y3Y2FgMGzYMo0ePxsCBA+Hl5dVs/59++gljxozBxYsXHXqulETRfmkmH5+OV0IyGAw2bUqfcSQiIiJby3t1g0Grls2bbBUAP60aL/TqJnUo1A5y+ftDDvLx8UFAQIBNe35+frvGUavVmDBhAl599VWkp6ejoqICZ86cQVpaGnbs2IHDhw+jrKwMO3bswG233WZ3jDNnzmDcuHGoq6vr0PcitcDAQGg0tpPMJSUlHR6zuLjYpi0sLKzD4xEREZE8BWo1+L/4SNnsS7MC+L/4KARquYBOSVyWpJWWluLuu++GwWCAv78/7r33Xly+fLnFe9566y2MGjUKBoMBgiCgrKzMVeHJliOl5u2Vg1ep2vYjjomJwYoVK3Du3Dl89dVX+NOf/oRBgwbZvV+n02H06NH45JNPsHXrVvj52U6dHz16FC+//HKbY5cTjUZjt9BHS4dat8Rqtdr9OQ4bNqxD4xEREZG83RzsjyUx4VKHAQB4KjYcE4K5zFFpXJZS33333cjLy8M333wDk8mEOXPm4P7778fGjRubvaeqqgoTJkzAhAkTsGTJEleFJhvOLDVfWVmJoqIim/bw8Jb/gYiOjsbTTz+N2bNn2509as2tt96KTz/91O7M2fLlyzFv3jynVX10pzvvvNMmKdu+fTvy8/PbPQO2detWlJaWNmnz8PDALbfc4nCcREREJE/zuoeg0mLBqnOF0sUQFYLHouwXkCN5c0mSdvz4cWzbtg379+9HSkoKAGD16tWYOHEi/v73vyMiIsLufY8//jgAYNeuXW1+Vm1tbZNS8UajseOBu5kzS81///33ds/1iouLa/ae8ePHY9q0aXZn4Npj5MiRWLBgAV566aUm7ZWVldi2bRvuvPNOh8aXwty5c/HSSy81qbZZVVWFRx55BB9//HGbKyMVFhZi0aJFNu333Xdfs1U3iYiISPkEQcCS2HD4aNR4MSsPKsAtSyAbnvN0bDge6x7qhieSK7hkuWNaWhr8/f0bEzQAGDt2LFQqFX766SenPmvFihXw8/Nr/IqMjHTq+Erx7rvv2rRptVqMGzeu2XuCg4MdTtAaLFy40O7SyP/+979OGd/dAgIC8MYbb9i0b9myBX/4wx/a9GHA0aNHMWbMGGRnNy3FGxcXhxUrVjgtViIiIpInQRAwr3so/tk/Bn5aNVxdMkwNwF+rxj/7xzBBUziXzKTl5+fbzBJoNBoEBga2u5BFa5YsWYIFCxY0vjYajddconb48GFs2bLFpn306NF294u5QlBQEAYNGmSz9+q31SVFUYTJVAKLpQaiaIIgaKFWe0Kr7SK7czumT5+OCxcu2Bxg/cEHH+Dbb7/Fvffei3HjxqFfv34ICAiA2WxGUVER0tPTsXnzZmzatAkmk6nJvbGxsfj222/h6+vrUGyiKCI3Nxfnzp3D+fPnUVxcjKqqKtTW1sLX1xd+fn4IDg5GYmIiunbt6tCziIiIyDETgv0wxL8Pnj55AZ8Uljl9Vq1hvFtD/LG8VzcEsEiI4rXrJ/jkk09i5cqVLfY5fvy4QwG1l4eHR4cOGHYXURRRWlOKGksNTBYTtGotPNWeCPQMdEpSYrFY8OCDD9pd6vjb5MLVoqKibJK0vLxcFBR8iYqKX1FuPIyKil9hsVTa3KtW6+Hr2x9+hgT4+vZHQEAqdLpAd4XerEWLFqFPnz6YO3duk3PNiouLsXLlylZ/HxoIgoC7774bq1evhr+/f7vjOH36NPbu3Yu0tDQcOXIEv/76KyoqKtp0b2hoKMaPH4977rkHI0aMkF0yTEREdC0I1GrwZr9o3BpSjpXZeTheWQO1AFjsn/zTJg33x+s98WRsOM9B60TalaQtXNKnFTEAACAASURBVLgQs2fPbrFPbGwswsLCUFjYdJOk2WxGaWlppy87fqnmEn7K/wnHSo4hoygDx0qOocpcZdPPW+ONvl36YkDwAPTt0hdDw4YiwNO2hH5rli9fjn379tm0T5o0CWPHju3Q99BR9pZOVtdk4dej8yAIGoii7QHRDSyWSpSV/YTy8nSIohmCoEFoyGR06zYDBkOipInFpEmTkJWVhfXr1+P999/HTz/9ZDcpticsLAy/+93v8OCDD6Jfv34dev4zzzyDF154oUP3AkBBQQHee+89vPfeexg4cCDWrl2L1NTUDo9HREREHTch2A/jgwz4xViFd3OLsbXwEswioBEAcxsStoZ+WkHAbSH+mNM1CEkGb34I28m0K0kLDg5GcHBwq/1SU1NRVlaG9PR0JCcnAwB27NgBq9WKoUOHdixSGRNFEYeLDuODzA+wPXs7zKIZGkEDcwtJSZW5CgcKDuBQ4aHG/hNiJmB67+kYGDSwTb9o27dvx/PPP2/T7ufnZ3c/lavZq0QZGFi/+rqlBO1qDf1E0YyCws+RX7AVen08esQuQHCwe5PO3/Lw8ICfnx80Gk2bz4ArLS3F6dOncfDgQcTHx3eoguZvl0w64siRI7j++uuxePFi7osjIiKSiCAISPbTI9lPj+fjumJv2WUcrqjCIWMVDlVUodJi+2GwXq1Coq83kgzeGOjrjev9fdBFx2WNnZVLfrJ9+vTBhAkTMHfuXKxduxYmkwmPPvoopk+f3ljZMTc3FzfeeCPee+89DBkyBED9Xrb8/HycPn0aAJCRkQFfX19ERUUhMFD6pW/27Di3A2sOrsGpslNQC2pYRAsAtJigXa2hn1k046vsr/BF1hfo6d8TjyU9htFRo5u9LycnB48//rjdGZ21a9ciKiqqA99NxxUV5SA9fb9Ne9eIjhcmEa/8t6ysPIkjGQ8gNPQWxPd6Flpt+2ccHfHuu+/iqaee6tB+yrq6Omzbtg3btm3DsmXLsHbt2haLubSXWq1GZGQkAgMD4efnB6vVCqPRiKysLJSXl9u9RxRFvPTSSygvL5ckmSciIqL/6aLTYEqIP6aE1G+HEEURxSYzaqwi6qxW6FQqeKoEBGk1nC27hrgs/X7//ffx6KOP4sYbb4RKpcKdd96JVatWNV43mUzIzMxEVdX/lgKuXbu2yczQiBEjANS/SW5tmaW7ldWU4cWfXsRXOV9BQP0vTEOC1lEN958uO415O+fh5uibMSNsht2+Tz75pN034Y899himT5/uUBztVVT0NV588T6YzbYJ49Bh3k54Qv3cf0HBf1Faugd9er8IoJcTxm2ZyWTCrFmz8MEHH9hcEwQBY8aMwZgxY9CnTx8EBgbCZDKhpKQE6enp2LZtGzIyMprck52djQkTJuC5557DsmXLOhRTr169MHz4cAwfPhyDBw9GXFwcdDqd3b6nTp3CRx99hNdff73JfroGb775JoYMGSK73y0iIqJrmSAICNY5p/o2KZcgiqID2xXlx2g0ws/PD+Xl5TAYDC55xnfnvsNzPz6HiroKhxOzlqgEFXTlOhyYd6D1zqg/WHrz5s1Qq11d4LWeKIo4e/ZNHD32N8yZcwFFhU1nD731Aj7+OBo6nTM/9REAiPDQzcHw4c/YXN25cydGjRrllCdNnToVmzZtsmkfM2YM1qxZgz59+rR4//bt2/Hggw/aXQb60ksvYfHixW2K41//+hcKCgpw2223oVev9ienRqMRDzzwgN1kMyAgAGfOnEFAgHtnJ4mI/j97dx4eVXX/D/x97yyZySSTPSErgbAkJGyCbIICQQigYIW2IFqhLLZVEEWtWr6VfhW32h+irXxdEHBFxFYRWUQBxYqA7AkgCkGyEEhIyDJZZru/PwJIuJN1lnsnvF/Pw9Ny5t5zPvEZknnnnHsOEZEv+CIbeINXzklrryRJwuuHXsf8bfNRXlfu1YAGAE7Jicq6lu3gN3r0aHzwwQc+DWgnTr6AEyf/gbdWlckCGgDcdluIhwMacGlW7efTr3m434aWLVvmMqDNnj0bW7ZsaTagAfWHhe/bt+/yc5lXWrhwIfbskS8PdeXuu+/GI4880qaABgBmsxnvvvsubrnlFtlrZWVl+Oijj9rULxERERF5B0NaC0mShKX7luKl/fVLNiX4ZgKyJePcdNNN+Pjjj316FMHPPy/Dzz//Hw7sr8HatfJllxERGkyZ0vqt5tXAYrHgL3/5i6z9hhtuwLJly1we2t2YsLAwrFu3Trbtvt1uxyOPPOJ2rS0liiJeeeUVlyHe1Rl7RERERKQchrQWeuPwG1ievVzpMmSGDBmC9evXw2g0+mzM4uLPceLkP1BSbMdTT52Dq93o590ficBA/3x7vfvuuygrK5O1P/fcc22aqYyLi8NDDz0ka9++fTtycnLaVGNbJCYmYujQobL248eP+6wGIiIiImqef36K9rEvT395eQbN15zWxs/jGjBgADZu3IigoCCf1WOzleHoscdRUyNh4cIiXLggX/J5yy3BuOEGk89q8rTNmzfL2pKTk3HDDTe0uc877rjDZfuWLVva3GdbuDqrzdWmIkRERESkHIa0ZlyovYBF3y66vIOjLznrnChYXuDytZQuKdi8ebPPH4D84fjfUFNTjif/twg//SQ/K6xb9wD86d5In9bkafv27ZO1uZqBao1OnTohPj5e1n7gwAG3+m2tkJAQWVtrlm8SERERkffx01kznt71NCqtlT57Bu0Sp9WJn5f+jJqTNS5f7/X7XrLnnLytuHgLzpxZh2efOYPdu+V1xcdr8dRTMV7YLMS3iouLZW0xMTFu9+uqj5KSErf7bY1z587J2mJjY31aAxERERE1jSGtCVtPb8XGUxu9vovj1S4FNMsRS6PX7C/fj22nt/msJkmS8NOJf+AfL5Rg+3Z5XdHRWjz/91iEh3vt6L0W8cSJEna7fKdKnc7980pc9eHqMHJv2rFjh6zNnWWcREREROR5DGmNkCQJ/9z/T5+P67Q5cfqfp2HJaTygAYAAAS/vf9kjoaQlKir24+nF32LzZvmRABERGvz9hVjExCh/8KLF8pPbfURGypdruppday1XfURFRbndb0tt3rzZ5SYhd97p+sB0IiIiIlIGQ1ojDhYfxI8XfvTpmE67E3n/zEPVoapmr5Ug4ccLP+JQySEfVAbce+9MrF8vD2ihofUBLT5e+YAG1C/JdFd0dLSsbe/evW71WVJS4vJQa1+FtNzcXMyePVvWPnz4cGRmZvqkBiIiIiJqGYa0Rqz+YTVEH/7nkRwS8l7JQ+XBlh1eDQAaQYPVx1Z7sap68+ffi3fflW9wERIi4u8vxCIpSe/1Glqq7MJOWK2lbvXh6vDpgwcPIjc3t819fvzxxy6XNg4YMKDNfbaE0+nEe++9h8GDByMvL6/Bax06dMDKlSu9Oj4RERERtZ6yDxCpVFltGTad3AQnfPO8kOSUkLcsD5X75AFNF6mDrcTm8j6H5MCm3E145PpHEGYI80ptjzzyCJYufUXWHhws4rnnY9Gpk3oCGgBIkgNlF75DTPS4NveRlZWFN95446p+JSxatAirVq1qdX+1tbVYvHixrF0URYwaNQqSJMFRWgpnTS0kmxWCTg/RaIAmPByC0PgmLEeOHEFFRUWDNrvdjsrKSuTl5WH//v1Yt24dCgsLZfd27doVn376KTp27Njqr4eIiIiIvIshzYVdRbvggG82C5GcEvJfy0fF9xWy13RROiTek4iTT51s9H67ZMfuot0YkzzG47U9/vjj+Pvf/y5rN5lEPPtcLLp0CfD4mO4SBA0qK7LdCmmjR49GeHg4Sksbzsi99dZbuPHGGzFz5swW9+V0OnH33Xe7XOo4ols3VM5/AMU52XBaqmWvi6ZAGNIzYOzVE4b0dAQOGgRt2C9h/E9/+hO++uqrln9hAIKCgnDvvffif/7nf2Ay+e9ZdkRERETtGZc7urAxd6NPxpEkCQVvFqD8u3LZa7ooHTo92gnakKZztFbQ4sj5Ix6v7a9//SueeeYZWXugScBzz3dA9+7qC2hA/UxaecVBt/oIDg7G448/7vK1OXPmYOHChbBa5WfEXa2oqAjjxo3DmjVrZK8JAP5ktaF6926XAQ0AnJZqVO/ejfMrV6HggQfx47AbUfDIn1Fz4ECrN4wxmUx49tlnkZeXh2effZYBjYiIiEjFBMlX2wP6SEVFBUJCQlBeXt6mg54lScKA9wag1l7rheoaKny7EKVfyp+fEvQCEmYmQBehg+2CDXn/zJNdE3tnLIzJRgBAWkQaFg5a6HKMgIAA9O3bt1V1Pfnkk/jrX/8qaw8MFPDss7HokW5oVX+tVVRkw53T5F+zp+Tm5iI5ObnJa+rq6jBkyBCXB1sD9WeLzZo1CyNHjkRqairCw8Nhs9lQUlKCvXv3YuPGjXjnnXdQW+v6fXRnaBgeb8vZaxoN4HAgoFs33H36Z3xzsOWBVBAEDBw4EA888AAmT57MQ6yJiIio3XM3GyiFIe0qB84dwF0b7/JCZXI/LPgBtvOunzfzlI4dO7pcateYZ555xuUsktEo4OlnYtGzp3cDGqCOkAbUH/x8ww034Kef3N/W/0o3BwVhSVw8xCaeN2uWIODun09hT43rw86bM2TIELz11ltISUlpew1EREREKuevIY2/Sr/KqpzWbwzRXrzwwgsuA5rBIGDx0x18EtDUJDo6Gl9//TWysrI80p8IYEZYOP7ubkADAEnCqqSOOJLWAz8MHISKLVsgSRKqq6tRWFiIb7/9FkuXLsWNN97o8vZvv/0WgwcPxuHDh92rg4iIiIg8jiHtCmW1ZdiWt03pMhSxdOlSPPzww7L2wEAjnnqqA3r1MipQlfJiY2OxceNGvPnmm+jRo0eb+hAADAoMxKrEJDwcHQ29uwHtSk4nHOXlyL9vLkpefQ0GgwGxsbEYPHgw5s2bh6+++goHDhzA9ddfL7u1uLgYWVlZKCsr81w9REREROQ2Lne8wqZTm/DwV/Kg4i1qWe64bNky/OlPf5K1G41GrF37JgIMf/FSda5ZrRJ++qnOrT569VyGgAD5odQA0LdvXwQEtG3jk+3bt2PdunXYvXs39u/fj+pq15t+hGk0yDAY0NtgxDizGcl63xxVEDFnDqIemC/but9ut2Pq1KlYu3at7J7p06djxYoVPqmPiIiIyJf8dbkjQ9oV/t/e/4e3ct6CQ/LN9vstYS224vjDx2XtyX9ORlBa0OW/b560GXFBca3u/80338SsWbNkuwUaDAasW7cON93UFzu+Gdj6whU2bOgu6PWRXh3D6XSirKwMFy5cQHl5OSr+/R/Y338fZlFEsEbj1bGbEvXAA4i8Z46s3WazoV+/frIljlqtFrm5uUhISPBViUREREQ+4a8hjeekXeFw8WFVBbTWCNC0fmZozZo1mD17tsvt3B999FEEBwdj794f8cMxAQ5n2zaoAIAuXQKg13twiV8zNJog6HQRXh9HFEVEREQgIiIClV98gfy1awGdzuvjNqd4yRIEdElBcGZmg3adTofnn38eY8eObdBut9uxdu1azJ8/35dlEhEREVEjOJN2kSRJGPTeIFTbXS9f84bGZsk8pbldDKdPn45Vq7y/Uco77yaiQwffhZfQ0EHod927PhvPXlaGk2PHwVFeDqjhn5MgQBMSgs4bNzQ4/BoAHA4HYmJicP78+QbtkyZNcrkUkoiIiMif+etMGjcOuai0ttSnAY28QxC0CDH39umYZ59aDEdlpToCGgBIEhwVFTi7eLHsJY1Ggz59+sjaT58+7YvKiIiIiKgFGNIuqnV4//Bq8j5JsiPYnOGz8Sq//BIVn30GOFS2TNbpRMX6z1C5davspaioKFkbd3gkIiIiUg+GtItsDu/uski+IQhahIUO8slYkiSh+MWlgCe31PckQUDxi0tlzxxaLBbZpXof7T5JRERERM3jxiEX6TS+3/BBG6pF54Wd3epDhIh/jfoXzAHyNbaxsbFN3rty5UqsXLmyReNk5zyIc+fWQ1LxxiqCoEFM9C3Q68N9Ml7NgQOo+/FHn4zVJpKEuuPHUXvwIIxXLHHMz8+XXRoTE+PLyoiIiIioCQxpFxk0Bp+PKepEBHYJdKuPmzvejNE3jfZQRY1LTLgTZ89+4vVx3CFJDiQk3Omz8creex/QaNS31PFKGg1K33sf8RdD2tmzZ3Hw4EHZZW09qJuIiIiIPI/LHS8KN4QjUOteYFLC73r8zifjmM19YTJ1B6DSpX0QEGRKhdks3xTDG+xlZajYuFHdAQ0AHA5UbNgA+8Vnzl5//XU4nU7ZZcOHD/dxYURERETUGIa0iwRBQI8I/5pNMGqN6B3lm50MBUFASucHAahkB0MZCZ07PwDBR8+HVX/3HWC3+2Qst9ntqN61C0ePHsXTTz8tezkkJATjx49XoDAiIiIicoUh7Qo9o3pCK/jPCtAb4m7wWSgBgKioUYiJuRWAxmdjtowGMTETEBU1ymcj1ubkAFrvv1eeOXcWX1RWujxwvMW0Wnz/+ecYOXIkamrkh5LPnz8fRqPRjSqJiIiIyJP8J5H4QI+IHrBLfjI7AiCrU5bPx+ze7QmUln4Dm+0C1DGrJkCnM6N7t7/6dNSaQ4d8MpN2rLYWb5eVoas+ALeYzRgdHIyOrdiJscBmxTvnzuLdF1+E3UXQ69atGx555BFPlkxEREREbmJIu8LADgOhFbR+EdQ0ggYDOgzw+bg6XRjSUp/GocN/9PnYrklIS30GOl2Y70aUpPqZNB/60VqHJSXFWFJSjCSdDmkGA1IDAhCn0yFY1CBIFOGEBIvTiVK7Az/U1eFQbQ0O19Y2GqXDw8Px8ccfIzDQ/57FJCIiImrPGNKuEGYIw5hOY7ApdxMcKt5qXhREjO00FmEG3wWTK0VFjUZK5wU4cfIfiox/pZTODyEq6mafjukoLYXTUu3TMa902mbDaZsNmysr29xHp06d8OmnnyItLc2DlRERERGRJ/CZtKtM6T5F1QENAJySE1NSpyhaQ8eOf0THjsrOptXX8Aefj+usqfX5mJ6i1WqxYMECHD58GOnp6UqXQ0REREQuMKRdpXdUb3QN7QpBpVvNCxDQLawbekX2UrYOQUBK5wVI6fzQ5cp8NDIAIKXzw+iS8pBPN065RLJZfTbWn6NjcE94BHoEBLj1XzhSo8H8WbNw+PBhvPDCCzCZTB6rkYiIiIg8i8sdryIIAub2nYt52+YpXYpLEiTc1+c+RcLJ1QRBQHLyH2EydcHRY4/BZqsA4M1ZSA10OjPSUp/x+RLHKwm6lm/c4a4eBgN6GAy4PyoKlQ4HDtfW4nBtDU5arSiw2VBks6HK6US10wlBEGASRQSJIkJEDVIC9EgLMCDdYEBfoxHdFy2CLj7eZ7UTERERUdswpLkwImkExiaPxec/f66qpY+iICIrOQsjkkYoXUoDUVE3IzS0P344/jecPfsp6me7PLnzY31/MTHj0b3bE9DpQj3Yd+uJRoMi4wZrNBhiMmFIG2fBBIMydRMRERFR63C5YyMeH/g4gvXBqln2KECAWW/GYwMeU7oUl3S6MGSkv4hePf8PJlM3AIAguHee2qX7TaZu6NXzVWSkL1E8oAGAJjwcosm/dkQUTSZowsOVLoOIiIiIWoAhrRGhhlAsGrIIkirOAqtf5vi3IX9DqEH5kNKUqKibMXDAZ+jfby1iom+FcPFwcKGFh4RfeX1MzAT07/cRBg74zKcHVTdHEAQY/GzTDUNGuiqWyBIRERFR87jcsQmZSZmY13ceXtr/ktKl4P7r7sfIpJFKl9EigiAgJKQvQkL6omvXv6DswneorDiM8opDqKw8DIfDIrtHozEhOLgnQsy9EWzOQFjoIOj16p35Mfbqhep9+31yoLXbtFoYeym70QwRERERtRxDWjNm9ZyFans13jj8hqI1zMyYqdj47tDrwxETPQ4x0eMA1B8EbbOdh8NRB0myQhD00GgCoNNF+NVMjyE93T8CGgDY7X4380dERER0LWNIa4YgCJjXdx5MOhOW7lsKAYJPlkBeGuf+6+7HrJ6zvD6erwiCAL0+Uuky3BY4aBCg1fpHUNNqEThwoNJVEBEREVEL8Zm0FhAEAbN6zsLSEUsREhACUfDufzZREBESEIKlI5a2q4DWnmjDwmAeOxbQuLc5itdpNDCPGwdtWJjSlRARERFRCzGktcLIpJH49LZPMabjGADw+M6Pl/rLSs7C+l+t95tn0K5VYXdMBRzqOaLBJYcD4XdMVboKIiIiImoFhrRWCjWE4vmbnsfSEUvRJbQLAEDj5lbzl+7vEtoFL414Cc/d+BxCAkLcrpW8y9inDwK6dQPU+iydICCge3cYevdWuhIiIiIiagU+k9ZGI5NGYkTiCBwqOYTVx1ZjU+4m2CU7tIIWdqn555QuXacVtRibPBZTUqegZ2RPv9o841onCAKi5t+P/D/dq3QprkkSou6fx/cUERERkZ8RJElSx0FgHlJRUYGQkBCUl5fDbDb7bNyy2jLsLtqNnPM5yC7JRk5JDqrt1bLrArWBSI9MR8/InugR0QMDOgxAmIHPC/mzggUPoWLTJnUtfRRFmMeNRfwLLyhdCREREZFilMoG7mJI8xJJklBaW4o6Rx2sDiv0Gj0CNAEIN4RzZqOdsZeV4eTYcXCUlwNq+OckCNCEhKDzxg3cMISIiIiuaWrJBq3FZ9K8RBAERBgjEBcUh+SQZMQFxSHC6F9ngVHLaMPCEPvUk+oIaAAgSYhd/BQDGhG1OydPnsSHH36IRx99FDfffDPCw+t/8Xn1n+3bt7s91vbt21327ek/w4cPd7tWImp/+EwakQcEjxqFqPnzUfzii0qXgqgHHkBwZqbSZRARuSU3Nxfff/899u7de/lPWVmZ0mUREfkEQxqRh0TcMwfO6mqcf+015WqYMwcRc2YrNj4Rkaf07dsX5eXlSpfhdV27dlW6BCJSIYY0Ig8RBAFRD8yHaDKheMmS+q35fbEE8uI4UQ8+iEgGNCIiv/L73/9e6RKISIUY0og8SBAERN4zBwFdUnDmLwvhqKgAnE7vDSiK0JjNiF38FJc4EhF50HXXXYedO3d6pC+bzYYxY8agpqamQXtaWhoGDx7skTGIPK22thaHDh3C8ePHUVxcDIvFAr1ej+DgYMTHxyMlJQXdunWDTqdTutR2iSGNyAuCMzNhvO46nH1qMSo++8zzs2oX+zOPG4sOCxdCExrqub6JiFQqKSkJ/fr1Q//+/dGvXz9ERkaif//+XhnLbDZj0KBBHunr3//+tyygAZxFI/WpqanBhx9+iLfffhvffPMNamtrm7zeYDCgb9++GD58OMaPH49BgwZBo9H4qNr2jVvwE3lZ5ZdfonjpS6g7fhzQaNw7T+3i/QHduiFq/v0IHjnSc4USEalIr1690KVLF/Tr1+9yMIuMjGxwzalTp9CpUyfZvdu2bVPVrom33HILPvvsswZtOp0O+fn5iI6OVqgqol9IkoTly5fjiSeeQGFhYZv7Udu/PcB/swFn0oi8LDgzE0EjR6L24EGUvvc+KjZsAOx2QKut/9/mXLpOq4V5/DiE33EHDL168TgHImrXDh06pHQJHlFYWIhNmzbJ2sePH8+ARqpw9uxZ3HXXXdiyZYvSpdAVGNKIfEAQBBj79EF8nz6IeexRVO/ahdrsbNQcPoza7Bw4LRbZPaLJBENGOoy9esGQno7AgQN59hkRkZ9ZtWoVHC5WUMycOVOBaoga+umnnzBmzBicPHmy0WvCwsLQoUMHREdHw263o7y8HLm5ubC4+OxCnsOQRuRj2rAwmLOyYM7KAlC/xMBRWgqpthZOqxWiXg/BYIDm4iGtRETkv1asWCFri4uLw9ixYxWohugXBQUFyMzMxOnTp2WvdezYEXPmzMGECROQkZEhe93pdOL48ePYsWMHPv30U2zZsqXZ59eodRjSiBQmCAK0ERFKl0FERB62Y8cO/Pjjj7L23/3ud9xcgRRltVoxceJEWUDTarV47LHH8Nhjj8FoNDZ6vyiKSE1NRWpqKmbPno3S0lK8+eabiODnGY9hSCMiIiLyguXLl7ts566OpLSFCxdi7969Ddq0Wi3ef/99TJ48udX9hYeH46GHHvJUeQRAVLoAIiIiovamsrISa9eulbXfeOON6Nq1qwIVEdU7cuQIlixZImt/7bXX2hTQyDsY0oiIiIg87IMPPnC5sQJn0Uhpjz32GOxX7S6dmZmJGTNmKFQRucKQRkRERORhb775pqzNbDbj17/+tQLVENU7duwYPv30U1n7yy+/rEA11BSGNCIiIiIPOnbsGHbu3ClrnzJlCgIDAxWoiKje66+/DkmSGrQNGTIEaWlpClVEjeHGIURERORTkiTBYrHAZrPB4XBAo9FAp9PBZDK1i6NHuGEIqZEkSfjggw9k7dOmTVOgGmoOQxoRERF5lcViQW5uLs6cOYOCggIUFhbCarXKrtPr9YiLi0N8fDxiY2PRqVMnmEwmBSpuO7vdjrffflvWnp6ejoEDBypQEVG9w4cPo6CgQNY+evRoBaqh5jCkERERkcdJkoT8/Hzs3r0bOTk5cDqdEEURTqez0XusVitOnTqF06dPX74+IyMD119/PRISEvxilu2zzz7D2bNnZe2cRSOlbd++XdZmMpmQkpLi8nq73Y6ff/4Z5eXlCAwMRGRkJMLDwyGKfFrKFxjSiIiIyKOOHTuGrVu34ty5cw2CWVMB7UpXXp+dnY1Dhw4hOjoaI0eORGpqqtfq9gRXG4bodDrcddddClRD9It9+/bJ2nr27Nnglx9VVVVYuXIlPvzwQ3z33XeyGW+dTodBgwZh1KhR+M1vfqP6f4/+jFGYiIiIPKK6uhpr167F6tWrUVxcDKDlwawxl+4vLi7G6tWrsXbtWlRXV7tdqzcUFRVhw4YNsvYJEyYgKipKgYqIfpGTkyNraA1+IQAAIABJREFUS05Ovvz/ly9fjuTkZMydOxdff/21yyXJNpsNO3bswBNPPIH09HTcddddOHnypDfLvmZxJo2IiIjcdvToUaxbtw61tbUAINtBzl2X+svJycGJEycwYcIEGI1Gj47hrrfeekt2/hTApY7kG5IkwWmxQbI6ITmcEDQiBL0I0aSDIAg4ffq07J7g4GDYbDbMmDED7777bqvGczqdeOedd7Bu3TqsXr0aY8eO9dSXQmBIIyIiIjdIkoQdO3Zg69atPhuvpqYGH3zwAXr06OGTMVtqxYoVsrb4+HiMGTNGgWqovXNYbKg7cQHWgirY8iphza+CZHXIrhP0GoixBpSUlMheCwoKwp133ok1a9a0uY6KigrceuuteOONNzB9+vQ290MNMaQRERFRm0iShC+//BLffPONIuN/++23iozryrfffotjx47J2qdPnw6NRqNARdQeSZIE6+lKVO0sRM2hEsApAaJQ/7+N3WN1oORYoculx2vWrJHt+JiQkIB77rkHWVlZSE5OhtlsRnFxMQ4fPoz//Oc/WLlypWwppMPhwB/+8AdkZGSgf//+nvlir3EMaURERD7gdDpx9OhRHDt2DAUFBaiqqoIgCAgKCkJ0dDRSUlLQvXt3BAcHK11qi+3YsUOxgKY2rjYMEQQBM2bMUKAaao9qcs6j/PNTsJ+trt9V4lLmaiKgXVJnt7lsvzqg3XfffXjuuedkh67Hx8cjPj4eWVlZePjhh/Hb3/5WthFJXV0dfv3rX+PYsWMICAho8ddFrjGkERFRu3Hy5Ens3bu3wZ+ysjLZddu2bcPw4cO9Xo8kSfjiiy+wYsUKbN68GaWlpU1eL4oi0tLSMHToUIwbNw6ZmZmqPSfs6NGjPlviqHYWi8XlIcE33XRTo9ubE7WUw2LDhXUnUHOwGLi0EWMr9+NxSPJlkFd7ZMHDeO6F55u9rkuXLti2bRtGjBghC2qnTp3CqlWrMGfOnNYVSDIMaURE5Jdyc3Px/fffNxvIlPLVV19hwYIF2Lt3b4vvcTqdyMnJQU5ODl599VU88cQTWLRokfeKbKPq6mqsW7dO6TJUY82aNaiqqpK1z5w5U4FqqD2pySlB2Uc/wllzcUOaNu7HoxWbXnJ7XVw67guagJqcEhjTI5vtz2w247333kPfvn1RU1PT4LXnn38es2fP9otzDdWMIY2IiPxS3759UV5ernQZMna7HY888ghefPFFj+9wqBYbNmy4vIsjuV7qGBISgkmTJilQDbUHkiShcnseKjb/XD975ua3Er1G1+TrDw+bBaFOwvm3j8I8JhnBw5s/PL579+6YPn06li1b1qD9xIkTOHz4MHr16uVe0dc4npNGRETkIRaLBbfeeiuWLFnSaEAzmUxISUnBkCFDMHz4cPTu3RuRkc3/5lotjh07huzs7HYbQFvr+PHjLp/Lmzp1quqOCCD/IEkSKjafqg9ogNsBDQCCA0wQ4Dp0JYXGYWhyv8vjXBq7Jf/GG1vW+NVXX7W5VqrHmTQiIiIPsNvtmDx5MjZt2iR7zWQyYfbs2bjtttswdOhQl7v95efnY9euXVi/fj0+++yzy4dBq4kkSdi6dSsEQVB1SPNlba5m0QAudaS2q9yeh8rt+R7tUytqYQ4wobxOvix3QIJ8xqtyex6EAA3MIxKb7Ld3794ICQmRrWr47rvvMHfuXPeKvsYxpBERUbuRlJSEfv36oX///ujXrx8iIyN9th30gw8+6DKgTZ48GUuWLEFCQkKT9yckJCAhIQGTJk2C1WrFRx99BJ2u6SVKvpafn49z584pXUazfBVwHQ4H3nrrLVl7r169uA05tUlNTskvM2geFhMc5TKkpUd3cXl9xeZT0EUHwpge0WifgiCgV69e2LFjR4N2f/g+oXYMaURE5JeSkpLQpUsX9OvX73Iwu3rZ4KlTp3xSy4YNG/Dyyy/L2ufPn48lS5a0uj+9Xo+pU6d6ojSP2r17N0RRdHnekpq4Oq/MGzZu3IgzZ87I2n//+9/7ZHxqXxwWG8o++tFr/SeFxuJ4Sa6sPdRodn2DAJR9dBz65P7QmBr/hVFEhDzEnT9/vs11Uj2GNCIi8kuHDh1SugQAQG1tLe677z5Z++9+97s2BTS1slgsyMnJUX1AA+p3/rRYLF4/vsDVUke9Xo8777zTq+NS+3Rh3YlfdnH0gq4RHfHFT/ID4I1ag+sbJMBZY8eFT08gYkpqo/26+nfmardTah1uHEJEROSGZcuWITe34W+no6Ki2lVAA+qDjz8ENKD+mTRvz6IWFxdj/fr1svaJEye6nFkgakpNzvn6c9C8+Dhlrw6ug1al1dL4TRJQc6AYNUcanxlztctueHh4q+ujhhjSiIiI2shut7sMY//7v//b7j6knDlzBqLoHx8bBEFAYWGhV8d46623YLPZZO3cMIRaS5IklH9+Co1svugx/eN7umw/X93M+ZICUP75qUY35HH1/Jk/7VirVv7x3ZaIiEiFNm7ciLy8vAZtBoMBd9xxh0IVeU9+fr5fzaQVFBR4dYwVK1bI2hITE3HzzTd7dVxqf6ynK2E/W+3VWTQA6BAcie6RnWTth8780PSNEmAvqoY1r1L2ktVqxcGDB2XtycnJbS2TLuIzaURERG20evVqWdutt94Ks7mRB/H9lCRJLjfI8KYLFy5g6dKlbbp31apVWLVqFWbMmNHoNbm5uW3+ILlr1y7k5OTI2qdPn+43s42kHlU7C+unTXzwO5Dx3Yfjh6s2D/ku7wCsDlvTB16LAqp2FiIgqeH3tq+//hp1dXWyy0eMGOGReq9l/E5CRETUBpIkYfPmzbL20aNHK1CNd1ksFlitVqXLUA1XG4YIgtBkKCRyxWGxoeZQiU8CGgBM7pkFUWj48b+0phzrj21r+kanhJqDJXBYGi7x/de//iW7VBRFhjQPYEgjIiJqg8OHD7vcZrpXL/nBsJfk5+fjwIEDOHToEM6cOePymSY18pc6faG6utrlDOqIESPQqZN8KRlRU+pOXACcvjt8PTEkFuO63SRrf/7r11FZ18QGIgDglOrrvWjLli345JNPZJfdfvvt7e6ZXCUwpBEREbXBvn37ZG2iKCIjI+Py351OJ/7zn//g9ttvR0hICBITE9G3b1/07t0bcXFx0Ov16NmzJx544AFs29bMb7IV5HA4lC5BNdauXYuKigpZOzcMobawFlQBopd3DLnKg0NnQCc2fOKpoOIs5n36JOrsTcyYiwJsBfVb6x87dgx33323bDMRQRDwxBNPeLzmaxGfSSMiImoDV88kRUdHIzAwEADwzTff4I9//COys7Ob7Cc7OxvZ2dl48cUXccMNN2Dx4sW46Sb5b7qVpNFofD5mUFCQ28Hnt7/9LYKDg12+Fhsb26Y+hw0bhp07d8rar7vuujb1R9c26+lKn86kAUDXyGT8YeBUvLzz7QbtX5z4FlM/eBDPjXkIXSOT5Tc6JVjzKrF27Vr88Y9/RElJieySP/zhDw1+UUVtx5BGRETUBqdPn5a1XQoEL7/8Mh544IFWz0D997//xYgRI/Dkk0/iL3/5i0fq9ASdrokNBbxEq9UiISHBrT4GDx6MoKAgD1VUr1OnTlzWSB4hSdLlmSlfe3DoDOzJP4zv8g40aN+TfwijV8zA8E4DcVPnAUgKiYVJH4jSmnL8UHwSm1btQE7Rjy77HDJkCF588UVflH9NYEgjIiLVkSQJTosNktUJyeGEoBEh6EWIJh0EwbdLgxrjarfD4OBgvPLKK5g3b16b+5UkCQsXLsTJkyexfPlyd0r0GJPJBL1e71ebh+j1ephMJqXLIGpU/fc4ZZYSa0Ut3rh9Me74YAEOFR1r8Jrd6cAXJ77FFye+bXF//fv3x7///W/o9XpPl3rNYkgjIiLFOSw21J24AGtBFWx5lbDmV7n88CLoNdAnBEGXGAx9fBACUkKhMfl+lgcAysrkB8Dm5+fj/vvvb9AWGBiImTNnYuLEiUhLS0NkZCTKy8tx4sQJbNiwAa+++qrLw2DffPNN9OnTB3PnzvXa19BSgiAgNjYWP//8s9KltFhcXJxqAj2RK5JV2XMHQwzBWDP1RTyy6e9Yd/TLNvczbdo0vPHGGzAYDB6sjhjSiIhIEZIkwXq6ElU7Cy9uQS3VP0DfxPMZktWBupPlqDtVcfl6Y+9IBA2Ogz4x2Kcfyl2dDXR12LrxxhvxzjvvIDExsUF7VFQUoqKiMGjQICxYsABz587F2283fD4EABYsWIARI0ao4hmPhIQE5OXl+cWB1qIoIj4+XukyiJokOZT/t2TSB+JfE57AbT1G4e9fv4GjxSdafO+NN96Iv/3tbxg+fLj3CryGMaQREZHP1eScR/nnp2A/W93wENeWPkB/6bqLZ/fU7C+GtkMgQkYnw9gjwhsly9jt9iZfHzFiBDZs2NDsb5dDQkKwatUqGAwGvP766w1es9lsePrpp/Hee++5Xa+7YmNj/SKgAfW7asbFxSldBlGTBI16Nlm/ucsNuLnLDdhbkI0vTuzE/sIcnCzNQ1lNBexOO0INZoQbQ5AUGocxMyZi7G3jkZ6ernTZ7RpDGhER+YzDYsOFdSdQc7AYuDTp5e7n/ouBzX62GuffOgJj7yiETkjx+jLIpjbTCAsLw9tvv93i5T+CIOCll17Cf//7Xxw5cqTBa2vWrMHixYsV36yiU6dOEEXRL4KaKIpITk5WugyiJgl69YS0S/rFZ6BffNMz97H3D4QmiM+eeZv63h1ERNQu1eSU4Ow/vkfNoeL6Bk/vOn2xv5pDxfXj5Mi3h/akph6Qv/fee1u93M5gMLg8X8jhcODTTz9tdX2eZjKZkJ6eDlFU90eHS2fVcdMQUjvRpIOg9/3xFu4QAjQQFXoO+Fqj7u+0RETk9yRJQsW20zj/9lE4a+yeD2eyAQFnjR3n3z6Kyp2FXhsmNDS00ddmzZrVpj5vv/12REZGytq/+uqrNvXnaQMGDFD9TJrT6cT111+vdBlEzRIEAbp4zx4R4W36+CBuyOMjDGlEROQ1kiShYvMpVGy+uCugr85svThO1df5XhvCVZgCgI4dO6Jjx45t6lOr1WLw4MGy9u+++65N/XlaQkICoqOjVfshTRAExMTEuH2+GpGv6JOC6zdM8geiAH2i68PhyfMY0oiIyGsqt+ehcrv3gpKSGlvO2KdPH7f6dXV/cXGxW316iiAIGDlyJCTJV2m7dSRJwogRI1QbIomupo8PavmGSUpzSn438+fPGNKIiMgranJKfplBa4c6d+7ssj08PNytfiMi5LtT2mw2VFRUuNWvp6SmpiIjI0N1QUgQBPTs2ROpqalKl0LUYgEpoX41kxaQ0vgyb/IshjQiIvI4h8WGso9+VLoMr0pLS3PZHhgY6Fa/jW14UVVV5Va/njRu3DjVHVxrMBgwduxYpcsgahWNSQdjr0j1fyK/eCalt3fNpV+o/S1BRER+6MK6E/WbhLRj/fv3d9nu7oxXeXm5y3Z3Z+g8KTAwEBMmTFC6jAYmTpzodkAmUkLQ4Dj3jyLxNqdUXyf5DEMaERF5VE3O+fpz0PzkMYu2ioqKQteuXWXt586dc6tfV/ebTCbVzVylpaVh5MiRSpcBAMjMzOQyR/Jb+qRgaDsE/nJ2pNoIgLaDiZuG+BhDGhEReYwkSSj//JR6P2xc5KmNL8aMGSNr27t3r1t97tmzR9am1oOZhw0bhqFDhypaw9ChQxWvgcgdgiAgZHSyen+xJQEhozuq7jnU9o4hjYiIPMZ6uhL2s9Xq/bBxke1ctUf6mTx5sqytpKQE+/bta1N/FRUV2LVrl6x9xIgRberP2wRBQGZmJjIzMxUZPzMzE6NGjeKHR/J7xh4RMPaOUt8vuATA2CcKxh7yDY3IuxjSiIjIY6p2FvrFT5aanPMe6efGG29ESkqKrP2VV15pU38rVqxAdbU8QCoVglpCEAQMGzYMU6ZMgdFo9HpgEgQBRqMRU6ZMwbBhw7w6FpEvhU5IgWjUqieoCYBo1CL0Vvn3OPI+P/hRSkRE/sBhsaHmUIn6H4AHYD1RDofF5nY/giDgwQcflLWvWrUK33//fav6KioqwlNPPSVrT0hI8ItdC1NTUzF37lykp6cDgMfD2qX+MjIyMHfuXD6DRu2OxqRD2KSu6lmJIAFhk7pxR0eFMKQREZFH1J244D+HskpSfb0eMHPmTNlsmt1ux29/+1ucPn26RX1UVlbiN7/5DUpKSmSvPfroowgICPBIrd4WGBiIyZMnY8qUKYiKigIAiKJ7HzUu3R8VFYUpU6Zg0qRJ3MWR2i1jeiTMYzoqXQYAwDwmGcZ0LnNUilbpAoiIqH2wFlTVH8rqD0FNEGArqAJ6RbndVUBAAJYtW4YxY8Y02JDk5MmTuOGGG/Daa681ORO2b98+zJ492+VzbH369MGsWbPcrtHXUlNT0b17d+Tn52PPnj3Izs6G0+mEKIpwOpufar10nSiKyMjIwIABAxAfH89nz+iaEDw8EVKdE5Xb8xStIXh4gmLjEyBIntriSiUqKioQEhKC8vJymM1mpcshIrpmnHv1EKy5rs/48oa88jMY8n+/9Vr/ubm5rdpVceHChVi8eLHL1wYMGICJEyeiR48eiIiIQHl5OU6ePInPPvsMX3zxhcvgEhkZie+//x4dO6rjt+rusFgsOHXqFAoLC1FQUIDCwkJYrVbZdXq9HnFxcYiPj0dcXBySk5MbPdybqD2TJAmV2/NRsflU/TNqvvi0fnEcc1YyzMMTfTCgb/hrNuBMGhERuU2SpPqZqWvYk08+iXPnzuH111+XvbZ7927s3r27xX1FR0fjk08+aRcBDag/5y09Pf3y82qSJMFiscBut8Nut0Or1UKr1cJkMnG2jAj1z2CaRyRCFx2Iso+Ow1lj925Qu7hJSNikblziqBIMaURE5DanxQbJ6lC6DEUJgoBXX30VKSkpWLhwIex2e5v66du3Lz7++GMkJSV5uEL1EAQBQUFBSpdBpHrG9Ajok/vjwroTqDlY7PlZtYv9GXtHIWxCCsRAbhKiFtw4hIiI3CZZ/WBLRx8QBAF//vOfsX//fowfP75Vs0IpKSlYsWIF9uzZ064DGhG1jsakQ8TUVETc1QPamIub5ohuzjhfvF8bE4iI3/VAxJRUBjSV4TNpRETkNltxNc7+Y69Px6yzW5Fz9ke3+gi/IxXaMIPL1/r27ev2roonTpzAxx9/jK+++gpHjx5FUVERampqYDabERkZifj4eAwbNgw333wzBg8eDK2WC1yIqHGSJMGaV4mqnYWoOVhSv1FTSzdsunSdKMDYOwpBg2OhTwxu90uM/TUbMKQREZHb7KW1KHp+j9JltFqHP1/faEgjIlIzh8WGuhMXYC2ogi2vEtaCKkh18mXnQoAG+vgg6BODoYsPQkBK6DV19pm/ZgP+yo6IiNwm6P1z9byg88+6iYg0Jh0Ce0Uh8OJRIpIk1T8fbHNCsjshaEUIOhGiSdfuZ8vaI4Y0IiJym2jSQdBr/GrzECFAA/Ea+m0yEbVvgiBAE6RXugzyEP4KkYiI3CYIAnTx/rVbnz4+iL9dJiIiVWJIIyIij9AnBbu/45iviAL0icFKV0FEROQSQxoREXmEPj6oZTuMqYFT8ruZPyIiunYwpBERkUcEpIT61UxaQEqo0lUQERG5xJBGREQeoTHpYOwVqf6fLKIAY+/Ia2oLaiIi8i9q/1FKRER+JGhwHOBUuopmOKX6OomIiFSKIY2IiDxGnxQMbYdAQK2rHgVA28HETUOIiEjVGNKIiMhjBEFAyOhkQK37h0hAyOiO3HqfiIhUjSGNiIg8ytgjAsbeUeqbTRMAY58oGHtEKF0JERFRkxjSiIjI40InpEA0atUT1ARANGoRemuK0pUQERE1iyGNiIg8TmPSIWxSV/Use5SAsEnduKMjERH5BYY0IiLyCmN6JMxjOipdBgDAPCYZxnQucyQiIv/AkEZERF4TPDwRwcMTVVBDgqI1EBERtYZW6QKIiKj9EgQB5jEdIQRoULH5VP0zar5YAnlxHHNWMswKh0QiIqLWYkgjIiKvEgQB5hGJ0EUHouyj43DW2L0b1C5uEhI2qRuXOBIRkV9iSCMiIp8wpkdAn9wfF9adQM3BYs/Pql3sz9g7CmETUiAGcpMQIiLyTwxpRETkMxqTDhFTU1HTKwrlW07BXlQNiALgdCOtXbxfGxOIkNHJPAeNiIj8HkMaERH5nDE9AoYe4bDmVaJqZyFqDpbUB7WWBrZL14kCjL2jEDQ4FvrEYAiCWg5mIyIiajuGNCIiUoQgCAhIMiMgyQzHLTbUnbgAa0EVbHmVsBZUQapzyO8J0EAfHwR9YjB08UEISAnl2WdERNTuMKQREZHiNCYdAntFIbBXFABAkiQ4LTZINickuxOCVoSgEyGadJwtIyKido8hjYiIVEcQBGiC9EqXQUREpAgeZk1ERERERKQiDGlEREREREQqwpBGRERERESkIgxpREREREREKsKQRkREREREpCJeDWmlpaWYNm0azGYzQkNDMXPmTFRVVTV5/dy5c9G9e3cYjUYkJSVh3rx5KC8v92aZREREREREquHVkDZt2jTk5ORgy5YtWL9+Pb7++mvMmTOn0esLCwtRWFiIF154AdnZ2Vi5ciU2bdqEmTNnerNMIiIiIiIi1RAkSZK80fHRo0fRo0cP7NmzB/379wcAbNq0CePGjUN+fj7i4uJa1M+HH36IO++8ExaLBVpt88e6VVRUICQkBOXl5TCbzW59DURERERE5L/8NRt4bSZt586dCA0NvRzQAGDUqFEQRRG7du1qcT+X/oM2FtDq6upQUVHR4A8REREREZG/8lpIKyoqQnR0dIM2rVaL8PBwFBUVtaiPkpISPPnkk00ukXzmmWcQEhJy+U9iYqJbdRMRERERESmp1SHt0UcfhSAITf45duyY24VVVFRg/Pjx6NGjBxYtWtTodY899hjKy8sv/8nLy3N7bCIiIiIiIqU0/5DXVRYsWIDp06c3eU3nzp3RoUMHnDt3rkG73W5HaWkpOnTo0OT9lZWVyMrKQnBwMP7zn/9Ap9M1em1AQAACAgJaXD8REREREZGatTqkRUVFISoqqtnrBg8ejAsXLmDv3r3o168fAGDr1q1wOp0YOHBgo/dVVFRgzJgxCAgIwLp162AwGFpbIhERERERkd/y2jNpaWlpyMrKwuzZs7F7927897//xX333YcpU6Zc3tmxoKAAqamp2L17N4D6gDZ69GhYLBYsX74cFRUVKCoqQlFRERwOh7dKJSIiIiIiUo1Wz6S1xrvvvov77rsPmZmZEEURkyZNwksvvXT5dZvNhh9++AHV1dUAgH379l3e+bFLly4N+srNzUVycrI3yyUiIiIiIlKc185JU4q/noVARERERESe5a/ZwGvLHYmIiIiIiKj1GNKIiIiIiIhUhCGNiIiIiIhIRRjSiIiIiIiIVIQhjYiIiIiISEUY0oiIiIiIiFSEIY2IiIiIiEhFGNKIiIiIiIhUhCGNiIiIiIhIRRjSiIiIiIiIVIQhjYiIiIiISEUY0oiIiIiIiFSEIY2IiIiIiEhFGNKIiIiIiIhUhCGNiIiIiIhIRRjSiIiIrrJo0SIIguD1P4sWLVL6SyUiIhViSCMiIiIiIlIRhjQiIiKFdO3aVekSiIhIhRjSiIiIFBASEoLbb79d6TKIiEiFtEoXQEREpDazZs1CVlaWR/o6fPgw5syZI2u/4447YDQaPTIGERG1LwxpREREV0lISEBCQoJH+nrvvfdctv/+97/3SP9ERNT+cLkjERGRl9TV1eHdd9+Vtffq1Qv9+/dXoCIiIvIHDGlERERe8vHHH6O0tFTWzlk0IiJqCkMaERGRl7z55puyNr1ejzvvvFOBaoiIyF8wpBEREXlBXl4evvjiC1n7bbfdhoiICAUqIiIif8GQRkRE5AUrV66E0+mUtXOpIxERNYchjYiIyMMkScKKFStk7YmJibj55psVqIiIiPwJQxoREZGHbdu2Dbm5ubL2GTNmQBT5o5eIiJrGnxREREQe5mrDEEEQMGPGDAWqISIif8OQRkRE5EHl5eX497//LWsfOXIkkpOTfV8QERH5HYY0IiIiD3r//fdRU1Mja585c6YC1RARkT/SKl0AERGREiRJgsVigc1mg8PhgEajgU6ng8lkgiAIbe53+fLlsrawsDD86le/cqdcIiK6hjCkERHRNcFisSA3NxdnzpxBQUEBCgsLYbVaZdfp9XrExcUhPj4esbGx6NSpE0wmU4vGyM7Oxvfffy9rv+OOO2AwGNz+GoiI6NrAkEZERO2WJEnIz8/H7t27kZOTA6fTCVEUXZ5fdonVasWpU6dw+vTpy9dnZGTg+uuvR0JCQpOzbK5m0QCejUZERK0jSJIkKV2EJ1VUVCAkJATl5eUwm81Kl0NERAo5duwYtm7dinPnzjUbzJpz6f7o6GiMHDkSqampsmusVivi4+NRUlLSoL1Pnz7Yv39/m8cmIqK289dswJk0IiJqV6qrq7FhwwZkZ2dfnvVyJ6BdeX9xcTFWr16NjIwMjBs3DoGBgZevWbdunSygAdwwhIiIWo8hjYiI2o2jR49i3bp1qK2tBVC/3NGTLvWXk5ODEydOYMKECUhLSwPg+my0gIAATJs2zaM1EBFR+8eQRkREfk+SJOzYsQNbt2712Xg1NTX44IMPkJmZiU6dOuHzzz+XXferX/0KYWFhPqmJiIjaD4Y0IiLya5Ik4csvv8Q333yjyPhffvklTp8+DYfDIXuNSx2JiKgteJg1ERH5tR07digW0C755JNPZG0dO3ZEZmamAtUQEZG/Y0gjIiK/dfToUZ8tcWzMqVOnUFpaKmufMWOGW4diExHRtYshjYiI/FJ1dTXWrVundBk4cOCArE0URcyYMUOBaoiIqD1gSCMiIr+0YcOGy7s4KqWurg5Hjhzla/gNAAAMrklEQVSRtWdmZiIpKUmBioiIqD3gxiFEROR3jh07huzsbKXLQHZ2Nmw2m6w9KytLgWqIiKi94EwaERH5FUmSsHXrVlU877V//35Zm9FohEaj8fgZbUREdO1gSCMiIr+Sn5+Pc+fOKR6CiouLUVBQIGvv2bMnysrKkJ+fr0BVRETUHjCkERGRX9m9ezdEUfkfX65m0QCgb9++EEURe/bs8XFFRETUXij/U46IiKiFLBYLcnJy4HQ6Fa3D6XTi0KFDsvbY2Fh06NABTqcT2dnZsFgsClRHRET+jiGNiIj8Rm5uruIBDQCOHz/uMoD17dv38v93Op04deqUD6siIqL2giGNiIj8xpkzZ1S71FGr1aJnz56X/y6KIgoLC31ZFhERtRPK/6QjIiJqofz8fMVn0qqqqvDTTz/J2tPS0mAwGC7/3el0utxYhIiIqDkMaURE5BckScKZM2eULgMHDhxwGRSvXOp4SWFhoeK7UBIRkf9hSCMiIr9gsVhgtVqVLgMHDhyQtYWGhiI5OVnWbrVauXkIERG1GkMaERH5BZvNpnQJOH36NM6fPy9r79OnT6OHa9vtdm+XRURE7QxDGhER+QWHw6F0CS43DBEEAX369Gn0HoY0IiJqLa3SBRAREbWERqNRugQMHDgQ/fr1a9Cm1WoREhLS6D1aLX/UEhFR6/AnBxER+QWdTqd0CejQoUOr72FIIyKi1uJyRyIi8gsmkwl6vV7pMlpFr9fDZDIpXQYREfkZhjQiIvILgiAgNjZW6TJaJS4urtENRYiIiBrDkEZERH4jISEBougfP7pEUUR8fLzSZRARkR/yj590REREAGJjY10eJK1GTqcTcXFxSpdBRER+iCGNiIj8RqdOnfxqJs3VAddERETN8Y+fdERERKjfPCQ9PV31QU0URWRkZHDTECIiahN1/5QjIiK6yoABA1S/5NHpdOL6669XugwiIvJTDGlERORXEhISEB0drdpdEwVBQExMDBISEpQuhYiI/BRDGhER+RVBEDBy5EhIkqR0KS5JkoQRI0aoNkQSEZH6MaQREZHfSU1NRUZGhuqCkCAI6NmzJ1JTU5UuhYiI/BhDGhER+aVx48bBYDAoXUYDBoMBY8eOVboMIiLycwxpRETklwIDAzFhwgSly2hg4sSJCAwMVLoMIiLycwxpRETkt9LS0jBy5EilywAAZGZmcpkjERF5BEMaERH5tWHDhmHo0KGK1jB06FDFayAiovZDq3QBRERE7hAEAZmZmQgICMCXX37p8/EzMzMxbNgwn49LRETtF0MaERH5PUEQMGzYMERFReGTTz5BbW2tV7foFwQBBoMBEydO5BJHIiLyOIY0IiJqN1JTU5GUlIQNGzYgOzsbgiB4NKxd6i8jIwNjx47lJiFEROQVDGlERNSuBAYGYvLkycjIyMDWrVtx7tw5iKIIp9PZ5j4v3R8VFYWRI0dy9oyIiLyKIY2IiNql1NRUdO/eHfn5+dizZw+ys7PhdDpbHNguXSeKIjIyMjBgwADEx8er7gBtIiJqfwTJm4v2FVBRUYGQkBCUl5fDbDYrXQ4REamExWLBqVOnUFhYiIKCAhQWFsJqtcqu0+v1iIuLQ3x8POLi4pCcnAyTyaRAxURE5C5/zQacSSMiomuCyWRCeno60tPTAQCSJMFiscBut8Nut0Or1UKr1cJkMnG2jIiIFMWQRkRE1yRBEBAUFKR0GURERDI8zJqIiIiIiEhFGNKIiIiIiIhUhCGNiIiIiIhIRRjSiIiIiIiIVIQhjYiIiIiISEUY0oiIiIiIiFSEIY2IiIiIiEhFGNKIiIiIiIhUhCGNiIiIiIhIRbRKF+BpkiQBACoqKhSuhIiIiIiIlHQpE1zKCP6i3YW0yspKAEBiYqLClRARERERkRpUVlYiJCRE6TJaTJD8LVY2w+l0orCwEMHBwRAEQelyrhkVFRVITExEXl4ezGaz0uVQO8X3GfkK32vkC3yfkS9c6+8zSZJQWVmJuLg4iKL/POnV7mbSRFFEQkKC0mVcs8xm8zX5DYB8i+8z8hW+18gX+D4jX7iW32f+NIN2if/ESSIiIiIiomsAQxoREREREZGKaBYtWrRI6SKofdBoNBg+fDi02na3ipZUhO8z8hW+18gX+D4jX+D7zP+0u41DiIiIiIiI/BmXOxIREREREakIQxoREREREZGKMKQRERERERGpCEMaERERERGRijCkERERERERqQhDGrVJaWkppk2bBrPZjNDQUMycORNVVVVNXj937lx0794dRqMRSUlJmDdvHsrLy31YNfmj1r7XAOC1117D8OHDYTabIQgCLly44KNqyV/861//QnJyMgwGAwYOHIjdu3c3ef2HH36I1NRUGAwG9OzZExs2bPBRpeTvWvNey8nJwaRJk5CcnAxBEPDiiy/6sFLyZ615n73++usYNmwYwsLCEBYWhlGjRjX7PZB8jyGN2mTatGnIycnBli1bsH79enz99deYM2dOo9cXFhaisLAQL7zwArKzs7Fy5Ups2rQJM2fO9GHV5I9a+14DgOrqamRlZeHxxx/3UZXkTz744AM8+OCDeOKJJ7Bv3z707t0bY8aMwblz51xe/+2332Lq1KmYOXMm9u/fj9tuuw233XYbsrOzfVw5+ZvWvteqq6vRuXNnPPvss+jQoYOPqyV/1dr32fbt2zF16lRs27YNO3fuRGJiIkaPHo2CggIfV05Nkoha6ciRIxIAac+ePZfbNm7cKAmCIBUUFLS4nzVr1kh6vV6y2WzeKJPaAXffa9u2bZMASGVlZd4sk/zMgAEDpHvvvffy3x0OhxQXFyc988wzLq//zW9+I40fP75B28CBA6V77rnHq3WS/2vte+1KHTt2lJYsWeLN8qidcOd9JkmSZLfbpeDgYGnVqlXeKpHagDNp1Go7d+5EaGgo+vfvf7lt1KhREEURu3btanE/5eXlMJvN0Gq13iiT2gFPvdeILrFardi7dy9GjRp1uU0URYwaNQo7d+50ec/OnTsbXA8AY8aMafR6IqBt7zWi1vLE+6y6uho2mw3h4eHeKpPagCGNWq2oqAjR0dEN2rRaLcLDw1FUVNSiPkpKSvDkk082u2yNrm2eeK8RXamkpAQOhwMxMTEN2mNiYhp9TxUVFbXqeiKgbe81ov/fzr2DtLKFYRj+3GJiUFOIkWDwgoWFQkCESKp0UUhja+OlsrEQLLRQYyNEsdM2CCm8NQHFQjTaqiAIWlgI2gim8EISLERcp9icnO3RuImeHSec94FpZtaQf8FHyD9Za/L1X+RsbGxMdXV1bx5G4XvRpCFrfHxcJSUlHx7n5+df/pxUKqVQKKTW1lZNT09/vXAUnUJlDQAA5BaJRLS6uqp4PK7y8vLvLge/YJ0ZskZHRzUwMPDhmObmZrnd7jebUZ+fn3V3d/fbjc7pdFrd3d2qqqpSPB5XWVnZV8tGESpE1oD31NTUqLS0VMlk8tX5ZDKZM1Nutzuv8YD0uawB+fpKzubn5xWJRLS7uyuv1/sny8Qn0KQhy+VyyeVy/Xac3+/Xw8ODjo+P1dHRIUna29vTy8uLOjs7c96XSqXU1dUlu92ujY0Nntj8j/3prAG52Gw2dXR0KJFIqKenR5L08vKiRCKh4eHhd+/x+/1KJBIaGRnJntvZ2ZHf7y9IzShOn8kakK/P5mxubk4zMzPa3t5+te8b1lE6zXoz5Mnlcunw8FArKytqb2/X1dWVhoaGFAwGs/+OXF9fy+fzyefzyePxKJVKKRgM6vHxUcvLyzLGKJPJKJPJyOFw6McPVt7irc9kTfq5h+ji4kJnZ2fa3NxUKBTS/f29bDabHA7HN84IVuB0OjU5Oan6+nrZ7XZNTk7q5ORE0WhUlZWV6uvr09HRUXZ/hsfj0cTEhCoqKlRdXa3FxUWtra0pGo2+2TMJ/CrfrD09Pen09FQ3NzeKxWJqampSbW2tMpkML3VATvnmbHZ2VlNTU4rFYvJ6vdnfY9LPpg8W8d2vl0Rxur29Nb29vaaystI4nU4zODho0ul09vrl5aWRZPb3940x/7wK/b3j8vLyeyaBopBv1owxJhwOv5u1paWlwk8AlrSwsGAaGhqMzWYzPp/PHBwcZK8FAgHT39//avz6+rppaWkxNpvNtLW1ma2trQJXjGKVT9b+/j779xEIBApfOIpKPjlrbGx8N2fhcLjwhSOnEmOMKWBPCAAAAAD4AGvMAAAAAMBCaNIAAAAAwEJo0gAAAADAQmjSAAAAAMBCaNIAAAAAwEJo0gAAAADAQmjSAAAAAMBCaNIAAAAAwEJo0gAAAADAQmjSAAAAAMBCaNIAAAAAwEL+Aj+pXNaFB0KbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import random\n", "import matplotlib.pyplot as plt\n", @@ -350,7 +577,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.16" + "version": "3.8.18" } }, "nbformat": 4, diff --git a/Chapter03/03_Structural_deep_neural_embeddings.ipynb b/Chapter03/03_Structural_deep_neural_embeddings.ipynb index a6663e8..7cea7e5 100644 --- a/Chapter03/03_Structural_deep_neural_embeddings.ipynb +++ b/Chapter03/03_Structural_deep_neural_embeddings.ipynb @@ -8,24 +8,40 @@ ] }, { - "cell_type": "raw", + "cell_type": "code", + "execution_count": 1, "metadata": {}, + "outputs": [], "source": [ - "import tensorflow as tf" + "import os\n", + "import sys\n", + "\n", + "sys.path.append(f\"{os.getcwd()}/..\")\n", + "\n", + "from Chapter01.utils import DATA_DIR" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2023-12-23 08:30:36.041513: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n", + "2023-12-23 08:30:36.041534: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n" + ] + } + ], "source": [ "from gem.embedding.sdne import SDNE" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -34,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -43,40 +59,195 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m1 = SDNE(d=2, beta=5, alpha=1e-5, nu1=1e-6, nu2=1e-6, K=3,n_units=[50, 15,], rho=0.3, n_iter=10, \n", - " xeta=0.01,n_batch=50,\n", - " modelfile=['enc_model.json', 'dec_model.json'],\n", - " weightfile=['enc_weights.hdf5', 'dec_weights.hdf5'])" - ] - }, - { - "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "m1 = SDNE(d=2, beta=5, alpha=1e-5, nu1=1e-6, nu2=1e-6, K=3,n_units=[50, 15,], rho=0.3, n_iter=50, \n", " xeta=0.01,n_batch=100,\n", - " modelfile=['enc_model.json', 'dec_model.json'],\n", - " weightfile=['enc_weights.hdf5', 'dec_weights.hdf5'])" + " modelfile=[f'{DATA_DIR}/enc_model.json', f'{DATA_DIR}/dec_model.json'],\n", + " weightfile=[f'{DATA_DIR}/enc_weights.hdf5', f'{DATA_DIR}/dec_weights.hdf5'])" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2023-12-23 08:30:38.747989: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set\n", + "2023-12-23 08:30:38.748149: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory\n", + "2023-12-23 08:30:38.748157: W tensorflow/stream_executor/cuda/cuda_driver.cc:326] failed call to cuInit: UNKNOWN ERROR (303)\n", + "2023-12-23 08:30:38.748173: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (73bfad00a74a): /proc/driver/nvidia/version does not exist\n", + "2023-12-23 08:30:38.748290: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX512F\n", + "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", + "2023-12-23 08:30:38.748654: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set\n", + "/home/euler/.conda/envs/chap3/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1844: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit`, which supports generators.\n", + " warnings.warn('`Model.fit_generator` is deprecated and '\n", + "2023-12-23 08:30:38.834684: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:116] None of the MLIR optimization passes are enabled (registered 2)\n", + "2023-12-23 08:30:38.835029: I tensorflow/core/platform/profile_utils/cpu_utils.cc:112] CPU Frequency: 2803200000 Hz\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/50\n", + "1/1 [==============================] - 1s 579ms/step - loss: 48.8211 - subtract_loss: 24.4040 - subtract_1_loss: 24.4162 - subtract_2_loss: 0.1179\n", + "Epoch 2/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 40.8965 - subtract_loss: 20.4877 - subtract_1_loss: 20.4080 - subtract_2_loss: 0.2633\n", + "Epoch 3/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 25.2150 - subtract_loss: 12.3894 - subtract_1_loss: 12.8247 - subtract_2_loss: 0.8324\n", + "Epoch 4/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 40.5483 - subtract_loss: 20.2503 - subtract_1_loss: 20.2971 - subtract_2_loss: 2.2028\n", + "Epoch 5/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 33.7522 - subtract_loss: 16.9356 - subtract_1_loss: 16.8157 - subtract_2_loss: 0.0167\n", + "Epoch 6/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 28.4778 - subtract_loss: 14.2393 - subtract_1_loss: 14.2377 - subtract_2_loss: 0.0055\n", + "Epoch 7/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 23.3574 - subtract_loss: 11.7623 - subtract_1_loss: 11.5943 - subtract_2_loss: 0.0037\n", + "Epoch 8/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 19.1721 - subtract_loss: 9.4796 - subtract_1_loss: 9.6916 - subtract_2_loss: 0.0029\n", + "Epoch 9/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 17.7146 - subtract_loss: 8.8088 - subtract_1_loss: 8.9050 - subtract_2_loss: 0.0015\n", + "Epoch 10/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 17.9106 - subtract_loss: 8.7734 - subtract_1_loss: 9.1363 - subtract_2_loss: 0.0011\n", + "Epoch 11/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 18.5251 - subtract_loss: 9.2904 - subtract_1_loss: 9.2338 - subtract_2_loss: 0.0020\n", + "Epoch 12/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 17.9172 - subtract_loss: 8.6302 - subtract_1_loss: 9.2861 - subtract_2_loss: 9.6265e-04\n", + "Epoch 13/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 18.3274 - subtract_loss: 8.9781 - subtract_1_loss: 9.3484 - subtract_2_loss: 0.0012\n", + "Epoch 14/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 18.2249 - subtract_loss: 8.9596 - subtract_1_loss: 9.2643 - subtract_2_loss: 0.0014\n", + "Epoch 15/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 17.4546 - subtract_loss: 8.7729 - subtract_1_loss: 8.6807 - subtract_2_loss: 0.0013\n", + "Epoch 16/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 17.3385 - subtract_loss: 8.8069 - subtract_1_loss: 8.5307 - subtract_2_loss: 7.0282e-04\n", + "Epoch 17/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 15.7736 - subtract_loss: 8.0695 - subtract_1_loss: 7.7031 - subtract_2_loss: 7.8459e-04\n", + "Epoch 18/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 14.4701 - subtract_loss: 7.1485 - subtract_1_loss: 7.3205 - subtract_2_loss: 8.7221e-04\n", + "Epoch 19/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 12.8568 - subtract_loss: 6.4012 - subtract_1_loss: 6.4545 - subtract_2_loss: 7.3244e-04\n", + "Epoch 20/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 11.0182 - subtract_loss: 5.3047 - subtract_1_loss: 5.7123 - subtract_2_loss: 0.0013\n", + "Epoch 21/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 23.4081 - subtract_loss: 11.7107 - subtract_1_loss: 11.6962 - subtract_2_loss: 0.0028\n", + "Epoch 22/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 38.3554 - subtract_loss: 18.4974 - subtract_1_loss: 19.8568 - subtract_2_loss: 0.0080\n", + "Epoch 23/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 19.6061 - subtract_loss: 9.6006 - subtract_1_loss: 10.0043 - subtract_2_loss: 0.0141\n", + "Epoch 24/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 15.6101 - subtract_loss: 7.7951 - subtract_1_loss: 7.8137 - subtract_2_loss: 0.0316\n", + "Epoch 25/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 15.0080 - subtract_loss: 7.6025 - subtract_1_loss: 7.4041 - subtract_2_loss: 0.0355\n", + "Epoch 26/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 15.4580 - subtract_loss: 7.4118 - subtract_1_loss: 8.0449 - subtract_2_loss: 0.0433\n", + "Epoch 27/50\n", + "1/1 [==============================] - 0s 1ms/step - loss: 15.4757 - subtract_loss: 7.6396 - subtract_1_loss: 7.8347 - subtract_2_loss: 0.0702\n", + "Epoch 28/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 15.1886 - subtract_loss: 7.6657 - subtract_1_loss: 7.5214 - subtract_2_loss: 0.0882\n", + "Epoch 29/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 14.7275 - subtract_loss: 7.2580 - subtract_1_loss: 7.4681 - subtract_2_loss: 0.0831\n", + "Epoch 30/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 14.6846 - subtract_loss: 7.5587 - subtract_1_loss: 7.1243 - subtract_2_loss: 0.1224\n", + "Epoch 31/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 14.7579 - subtract_loss: 7.3171 - subtract_1_loss: 7.4392 - subtract_2_loss: 0.1591\n", + "Epoch 32/50\n", + "1/1 [==============================] - 0s 1ms/step - loss: 14.7877 - subtract_loss: 7.7915 - subtract_1_loss: 6.9945 - subtract_2_loss: 0.2763\n", + "Epoch 33/50\n", + "1/1 [==============================] - 0s 1ms/step - loss: 14.6301 - subtract_loss: 7.3801 - subtract_1_loss: 7.2483 - subtract_2_loss: 0.2743\n", + "Epoch 34/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 15.2862 - subtract_loss: 7.7466 - subtract_1_loss: 7.5378 - subtract_2_loss: 0.3440\n", + "Epoch 35/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 16.3416 - subtract_loss: 8.0566 - subtract_1_loss: 8.2832 - subtract_2_loss: 0.3130\n", + "Epoch 36/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 19.4905 - subtract_loss: 9.2941 - subtract_1_loss: 10.1945 - subtract_2_loss: 0.3638\n", + "Epoch 37/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 22.2789 - subtract_loss: 10.6966 - subtract_1_loss: 11.5804 - subtract_2_loss: 0.3831\n", + "Epoch 38/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 18.3702 - subtract_loss: 8.8701 - subtract_1_loss: 9.4982 - subtract_2_loss: 0.4219\n", + "Epoch 39/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 18.5939 - subtract_loss: 9.1757 - subtract_1_loss: 9.4162 - subtract_2_loss: 0.4154\n", + "Epoch 40/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 18.9261 - subtract_loss: 9.2116 - subtract_1_loss: 9.7124 - subtract_2_loss: 0.4142\n", + "Epoch 41/50\n", + "1/1 [==============================] - 0s 1ms/step - loss: 18.6240 - subtract_loss: 9.3151 - subtract_1_loss: 9.3068 - subtract_2_loss: 0.4984\n", + "Epoch 42/50\n", + "1/1 [==============================] - 0s 1ms/step - loss: 18.2632 - subtract_loss: 9.0767 - subtract_1_loss: 9.1843 - subtract_2_loss: 0.4449\n", + "Epoch 43/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 18.4274 - subtract_loss: 9.4235 - subtract_1_loss: 9.0017 - subtract_2_loss: 0.3509\n", + "Epoch 44/50\n", + "1/1 [==============================] - 0s 1ms/step - loss: 17.8677 - subtract_loss: 8.9676 - subtract_1_loss: 8.8978 - subtract_2_loss: 0.3856\n", + "Epoch 45/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 17.9254 - subtract_loss: 9.2084 - subtract_1_loss: 8.7146 - subtract_2_loss: 0.3850\n", + "Epoch 46/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 18.2363 - subtract_loss: 8.7543 - subtract_1_loss: 9.4796 - subtract_2_loss: 0.4914\n", + "Epoch 47/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 18.5026 - subtract_loss: 8.5746 - subtract_1_loss: 9.9254 - subtract_2_loss: 0.4860\n", + "Epoch 48/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 17.2200 - subtract_loss: 8.6719 - subtract_1_loss: 8.5456 - subtract_2_loss: 0.4400\n", + "Epoch 49/50\n", + "1/1 [==============================] - 0s 2ms/step - loss: 18.1795 - subtract_loss: 8.6737 - subtract_1_loss: 9.5032 - subtract_2_loss: 0.5469\n", + "Epoch 50/50\n", + "1/1 [==============================] - 0s 1ms/step - loss: 18.0687 - subtract_loss: 8.8354 - subtract_1_loss: 9.2305 - subtract_2_loss: 0.5479\n" + ] + }, + { + "data": { + "text/plain": [ + "array([[0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0.008277 , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0. , 0. ],\n", + " [0.78499395, 0. ],\n", + " [1.6690726 , 0. ]], dtype=float32)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "m1.learn_embedding(graph)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -85,7 +256,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -94,9 +265,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAGdCAYAAAD3zLwdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3ce1SUdeLH8c8AAmYyhBcGDDXb8paXFQPxtEfLKSxPKyfblGNqLuVuR10Ls7SL1Pbbo10tV8utU1lrXrKLlbmUYWqbkxrY5v1Ya14b0EwGNZHg+/ujr+NOXARjuMj7dc4c45nv88zzfM/zDO9mhnEYY4wAAACgkPreAQAAgIaCMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALDC6nsH6kNZWZkOHjyoli1byuFw1PfuAACAajDGqKioSPHx8QoJCc5rO00yjA4ePKiEhIT63g0AAHAO9u3bp4svvjgo226SYdSyZUtJP09sVFRUPe8NAACoDp/Pp4SEBP/v8WBokmF0+u2zqKgowggAgEYmmB+D4cPXAAAAFmEEAABgEUYAAAAWYQQAAGARRgAAABZhBAAAYBFGAAAAFmEEAABgEUYAAAAWYQQAAGARRgAAABZhBAAAYBFGAAAAFmEEAABgEUYAAAAWYQQAAGARRgAAABZhBAAAYBFGAAAAFmEEAABgEUYAAAAWYQQAAGARRgAAABZhBAAAYBFGAAAAFmEEAABgEUYAAAAWYQQAAGARRgAAABZhBAAAYBFGAAAAFmEEAABgEUYAAAAWYQQAAGARRgAAABZhBAAAYBFGAAAAFmEEAABgEUYAAAAWYQQAAGARRgAAABZhBAAAYBFGAAAAVp2E0dy5c9WxY0dFRkYqOTlZGzZsqHL80qVL1aVLF0VGRqpHjx5asWJFpWP//Oc/y+Fw6Jlnnqnt3QYAAE1M0MNoyZIlyszMVFZWlvLy8tSrVy+lpqaqoKCgwvHr1q1Tenq6MjIytGnTJqWlpSktLU1btmwpN/add97R559/rvj4+GAfBgAAaAKCHkZPP/207rjjDo0dO1bdunXTvHnzdMEFF+jll1+ucPyzzz6rwYMHa8qUKerataseffRR9enTR3PmzAkYd+DAAU2cOFGvv/66mjVrFuzDAAAATUBQw+jUqVPKzc2V2+0+84AhIXK73fJ4PBWu4/F4AsZLUmpqasD4srIyjRo1SlOmTFH37t3Puh/FxcXy+XwBNwAAgF8KahgdPnxYpaWlio2NDVgeGxsrr9db4Tper/es4x977DGFhYXpL3/5S7X2Y8aMGXI6nf5bQkJCDY8EAAA0BY3ur9Jyc3P17LPPav78+XI4HNVaZ9q0aSosLPTf9u3bF+S9BAAAjVFQw6h169YKDQ1Vfn5+wPL8/Hy5XK4K13G5XFWO//TTT1VQUKD27dsrLCxMYWFh2rNnjyZPnqyOHTtWuM2IiAhFRUUF3AAAAH4pqGEUHh6uxMRE5eTk+JeVlZUpJydHKSkpFa6TkpISMF6SVq5c6R8/atQoffXVV/ryyy/9t/j4eE2ZMkUffvhh8A4GAACc98KC/QCZmZkaM2aM+vbtq6SkJD3zzDM6fvy4xo4dK0kaPXq02rVrpxkzZkiSJk2apAEDBuipp57SkCFDtHjxYn3xxRd64YUXJEmtWrVSq1atAh6jWbNmcrlc6ty5c7APBwAAnMeCHkbDhw/XoUOHNH36dHm9XvXu3VvZ2dn+D1jv3btXISFnXrjq37+/Fi5cqAcffFD333+/LrvsMi1btkxXXHFFsHcVAAA0cQ5jjKnvnahrPp9PTqdThYWFfN4IAIBGoi5+fze6v0oDAAAIFsIIAADAIowAAAAswggAAMAijAAAACzCCAAAwCKMAAAALMIIAADAIowAAAAswggAAMAijAAAACzCCAAAwCKMAAAALMIIAADAIowAAAAswggAAMAijAAAACzCCAAAwCKMAAAALMIIAADAIowAAAAswggAAMAijAAAACzCCAAAwCKMAAAALMIIAADAIowAAAAswggAAMAijAAAACzCCAAAwCKMAAAALMIIAADAIowAAAAswggAAMAijAAAACzCCAAAwCKMAAAALMIIAADAIowAAAAswggAAMAijAAAACzCCAAAwCKMAAAALMIIAADAIowAAAAswggAAMAijAAAACzCCAAAwCKMAAAALMIIAADAIowAAAAswggAAMAijAAAACzCCAAAwCKMAAAALMIIAADAqpMwmjt3rjp27KjIyEglJydrw4YNVY5funSpunTposjISPXo0UMrVqzw31dSUqL77rtPPXr0UIsWLRQfH6/Ro0fr4MGDwT4MAABwngt6GC1ZskSZmZnKyspSXl6eevXqpdTUVBUUFFQ4ft26dUpPT1dGRoY2bdqktLQ0paWlacuWLZKkEydOKC8vTw899JDy8vL09ttva+fOnfr9738f7EMBAADnOYcxxgTzAZKTk3XllVdqzpw5kqSysjIlJCRo4sSJmjp1arnxw4cP1/Hjx7V8+XL/sn79+ql3796aN29ehY+xceNGJSUlac+ePWrfvv1Z98nn88npdKqwsFBRUVHneGQAAKAu1cXv76C+YnTq1Cnl5ubK7XafecCQELndbnk8ngrX8Xg8AeMlKTU1tdLxklRYWCiHw6Ho6OgK7y8uLpbP5wu4AQAA/FJQw+jw4cMqLS1VbGxswPLY2Fh5vd4K1/F6vTUaf/LkSd13331KT0+vtB5nzJghp9PpvyUkJJzD0QAAgPNdo/6rtJKSEt1yyy0yxuj555+vdNy0adNUWFjov+3bt68O9xIAADQWYcHceOvWrRUaGqr8/PyA5fn5+XK5XBWu43K5qjX+dBTt2bNHq1atqvK9xoiICEVERJzjUQAAgKYiqK8YhYeHKzExUTk5Of5lZWVlysnJUUpKSoXrpKSkBIyXpJUrVwaMPx1Fu3bt0scff6xWrVoF5wAAAECTEtRXjCQpMzNTY8aMUd++fZWUlKRnnnlGx48f19ixYyVJo0ePVrt27TRjxgxJ0qRJkzRgwAA99dRTGjJkiBYvXqwvvvhCL7zwgqSfo+jmm29WXl6eli9frtLSUv/nj2JiYhQeHh7sQwIAAOepoIfR8OHDdejQIU2fPl1er1e9e/dWdna2/wPWe/fuVUjImReu+vfvr4ULF+rBBx/U/fffr8suu0zLli3TFVdcIUk6cOCA3nvvPUlS7969Ax7rk08+0cCBA4N9SAAA4DwV9O8xaoj4HiMAABqfRv89RgAAAI0JYQQAAGARRgAAABZhBAAAYBFGAAAAFmEEAABgEUYAAAAWYQQAAGARRgAAABZhBAAAYBFGAAAAFmEEAABgEUYAAAAWYQQAAGARRgAAABZhBAAAYBFGAAAAFmEEAABgEUYAAAAWYQQAAGARRgAAABZhBAAAYBFGAAAAFmEEAABgEUYAAAAWYQQAAGARRgAAABZhBAAAYBFGAAAAFmEEAABgEUYAAAAWYQQAAGARRgAAABZhBAAAYBFGAAAAFmEEAABgEUYAAAAWYQQAAGARRgAAABZhBAAAYBFGAAAAFmEEAABgEUYAAAAWYQQAAGARRgAAABZhBAAAYBFGAAAAFmEEAABgEUYAAAAWYQQAAGARRgAAABZhBAAAYBFGAAAAFmEEAABgEUYAAABWWH3vwPlkmWeP7np3i//n9D7x+n1ieyVdEqPQEEc97hnQ+JSWGW3YfUQFRSfVtmUk1xHQCJwP122dvGI0d+5cdezYUZGRkUpOTtaGDRuqHL906VJ16dJFkZGR6tGjh1asWBFwvzFG06dPV1xcnJo3by63261du3YF8xDOquPUDwKiSJIW5R1U+ouf66rHVil7y3f1tGdA45O95Ttd9dgqpb/4uSYt/pLrCGgEzpfrNuhhtGTJEmVmZiorK0t5eXnq1auXUlNTVVBQUOH4devWKT09XRkZGdq0aZPS0tKUlpamLVvORMfjjz+u2bNna968eVq/fr1atGih1NRUnTx5MtiHU6GOUz+o8v7vCk/qzgV5je7kAOpD9pbvdOeCPH1XGHg9e7mOgAbrfLpuHcYYE8wHSE5O1pVXXqk5c+ZIksrKypSQkKCJEydq6tSp5cYPHz5cx48f1/Lly/3L+vXrp969e2vevHkyxig+Pl6TJ0/WPffcI0kqLCxUbGys5s+frxEjRpx1n3w+n5xOpwoLCxUVFfWrju+Xb59VJc4ZqX/fd02je1kRqCulZUZXPbaq3JPraQ5JLq4joEGpy+u2Nn9/VyaorxidOnVKubm5crvdZx4wJERut1sej6fCdTweT8B4SUpNTfWP3717t7xeb8AYp9Op5OTkSrdZXFwsn88XcKst1Y0i6edXjjbsPlJrjw2cbzbsPlLpk6skGXEdAQ3N+XbdBjWMDh8+rNLSUsXGxgYsj42NldfrrXAdr9db5fjT/9ZkmzNmzJDT6fTfEhISzul4akNBUf283Qc0BtW9PriOgIbjfLtum8Sf60+bNk2FhYX+2759++ptX9q2jKy3xwYauupeH1xHQMNxvl23QQ2j1q1bKzQ0VPn5+QHL8/Pz5XK5KlzH5XJVOf70vzXZZkREhKKiogJuteWZoVdUe2yc8+c/XQRQsaRLYhTnjFRln0JwiOsIaGjOt+s2qGEUHh6uxMRE5eTk+JeVlZUpJydHKSkpFa6TkpISMF6SVq5c6R9/ySWXyOVyBYzx+Xxav359pdsMprSUDtUa55CUdWM3PjAKVCE0xKGsG7tJUrkn2dM/cx0BDcv5dt0G/a20zMxMvfjii3r11Ve1fft23XnnnTp+/LjGjh0rSRo9erSmTZvmHz9p0iRlZ2frqaee0o4dO/Twww/riy++0IQJEyRJDodDd911l/7v//5P7733njZv3qzRo0crPj5eaWlpwT6cCn07c0iV98c5I/X8rX00+Iq4OtojoPEafEWcnr+1j1zOwJfdXVxHQIN1Pl23Qf/m6+HDh+vQoUOaPn26vF6vevfurezsbP+Hp/fu3auQkDN91r9/fy1cuFAPPvig7r//fl122WVatmyZrrjizFtW9957r44fP65x48bp6NGjuuqqq5Sdna3IyPp7//LbmUP45muglgy+Ik7XdnM1+m/QBZqS8+W6Dfr3GDVEdfE9CAAAoHY1+u8xAgAAaEwIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAACtoYXTkyBGNHDlSUVFRio6OVkZGho4dO1blOidPntT48ePVqlUrXXjhhRo2bJjy8/P99//nP/9Renq6EhIS1Lx5c3Xt2lXPPvtssA4BAAA0MUELo5EjR2rr1q1auXKlli9frrVr12rcuHFVrnP33Xfr/fff19KlS7VmzRodPHhQN910k//+3NxctW3bVgsWLNDWrVv1wAMPaNq0aZozZ06wDgMAADQhDmOMqe2Nbt++Xd26ddPGjRvVt29fSVJ2drZuuOEG7d+/X/Hx8eXWKSwsVJs2bbRw4ULdfPPNkqQdO3aoa9eu8ng86tevX4WPNX78eG3fvl2rVq2q9v75fD45nU4VFhYqKirqHI4QAADUtbr4/R2UV4w8Ho+io6P9USRJbrdbISEhWr9+fYXr5ObmqqSkRG6327+sS5cuat++vTweT6WPVVhYqJiYmNrbeQAA0GSFBWOjXq9Xbdu2DXygsDDFxMTI6/VWuk54eLiio6MDlsfGxla6zrp167RkyRJ98MEHVe5PcXGxiouL/T/7fL7qHAYAAGhiavSK0dSpU+VwOKq87dixI1j7GmDLli0aOnSosrKydN1111U5dsaMGXI6nf5bQkJCnewjAABoXGr0itHkyZN12223VTmmU6dOcrlcKigoCFj+008/6ciRI3K5XBWu53K5dOrUKR09ejTgVaP8/Pxy62zbtk2DBg3SuHHj9OCDD551v6dNm6bMzEz/zz6fjzgCAADl1CiM2rRpozZt2px1XEpKio4eParc3FwlJiZKklatWqWysjIlJydXuE5iYqKaNWumnJwcDRs2TJK0c+dO7d27VykpKf5xW7du1TXXXKMxY8bob3/7W7X2OyIiQhEREdUaCwAAmq6g/FWaJF1//fXKz8/XvHnzVFJSorFjx6pv375auHChJOnAgQMaNGiQXnvtNSUlJUmS7rzzTq1YsULz589XVFSUJk6cKOnnzxJJP799ds011yg1NVVPPPGE/7FCQ0OrFWyn8VdpAAA0PnXx+zsoH76WpNdff10TJkzQoEGDFBISomHDhmn27Nn++0tKSrRz506dOHHCv2zWrFn+scXFxUpNTdVzzz3nv//NN9/UoUOHtGDBAi1YsMC/vEOHDvr222+DdSgAAKCJCNorRg0ZrxgBAND4NNrvMQIAAGiMCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALCCFkZHjhzRyJEjFRUVpejoaGVkZOjYsWNVrnPy5EmNHz9erVq10oUXXqhhw4YpPz+/wrHff/+9Lr74YjkcDh09ejQYhwAAAJqYoIXRyJEjtXXrVq1cuVLLly/X2rVrNW7cuCrXufvuu/X+++9r6dKlWrNmjQ4ePKibbrqpwrEZGRnq2bNnMHYdAAA0UQ5jjKntjW7fvl3dunXTxo0b1bdvX0lSdna2brjhBu3fv1/x8fHl1iksLFSbNm20cOFC3XzzzZKkHTt2qGvXrvJ4POrXr59/7PPPP68lS5Zo+vTpGjRokH744QdFR0dXe/98Pp+cTqcKCwsVFRX1K48WAADUhbr4/R2UV4w8Ho+io6P9USRJbrdbISEhWr9+fYXr5ObmqqSkRG6327+sS5cuat++vTwej3/Ztm3b9Ne//lWvvfaaQkKqt/vFxcXy+XwBNwAAgF8KShh5vV61bds2YFlYWJhiYmLk9XorXSc8PLzcKz+xsbH+dYqLi5Wenq4nnnhC7du3r/b+zJgxQ06n039LSEio4REBAICmoEZhNHXqVDkcjipvO3bsCNa+atq0aeratatuvfXWGq9XWFjov+3bty9IewgAABqzsJoMnjx5sm677bYqx3Tq1Ekul0sFBQUBy3/66ScdOXJELperwvVcLpdOnTqlo0ePBrxqlJ+f719n1apV2rx5s958801J0umPR7Vu3VoPPPCAHnnkkQq3HRERoYiIiGodIwAAaLpqFEZt2rRRmzZtzjouJSVFR48eVW5urhITEyX9HDVlZWVKTk6ucJ3ExEQ1a9ZMOTk5GjZsmCRp586d2rt3r1JSUiRJb731ln788Uf/Ohs3btQf//hHffrpp7r00ktrcigAAADl1CiMqqtr164aPHiw7rjjDs2bN08lJSWaMGGCRowY4f+LtAMHDmjQoEF67bXXlJSUJKfTqYyMDGVmZiomJkZRUVGaOHGiUlJS/H+R9sv4OXz4sP/xavJXaQAAABUJShhJ0uuvv64JEyZo0KBBCgkJ0bBhwzR79mz//SUlJdq5c6dOnDjhXzZr1iz/2OLiYqWmpuq5554L1i4CAAAECMr3GDV0fI8RAACNT6P9HiMAAIDGiDACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsAgjAAAAizACAACwCCMAAACLMAIAALAIIwAAAIswAgAAsMLqewfqgzFGkuTz+ep5TwAAQHWd/r19+vd4MDTJMCoqKpIkJSQk1POeAACAmioqKpLT6QzKth0mmNnVQJWVlengwYNq2bKlHA5HrW7b5/MpISFB+/btU1RUVK1uu7FhLgIxH2cwF4GYjzOYi0DMxxmn52Lbtm3q3LmzQkKC82mgJvmKUUhIiC6++OKgPkZUVFSTP4lPYy4CMR9nMBeBmI8zmItAzMcZ7dq1C1oUSXz4GgAAwI8wAgAAsEIffvjhh+t7J843oaGhGjhwoMLCmuQ7lQGYi0DMxxnMRSDm4wzmIhDzcUZdzEWT/PA1AABARXgrDQAAwCKMAAAALMIIAADAIowAAAAswugs5s6dq44dOyoyMlLJycnasGFDleOXLl2qLl26KDIyUj169NCKFSsC7jfGaPr06YqLi1Pz5s3ldru1a9euYB5CrarJfLz44ov63e9+p4suukgXXXSR3G53ufG33XabHA5HwG3w4MHBPoxaUZO5mD9/frnjjIyMDBjTlM6NgQMHlpsPh8OhIUOG+Mc01nNj7dq1uvHGGxUfHy+Hw6Fly5addZ3Vq1erT58+ioiI0G9+8xvNnz+/3JiaPhc1BDWdi7ffflvXXnut2rRpo6ioKKWkpOjDDz8MGPPwww+XOy+6dOkSzMOoNTWdj9WrV1d4nXi93oBxTeHcqOj5wOFwqHv37v4xtXVuEEZVWLJkiTIzM5WVlaW8vDz16tVLqampKigoqHD8unXrlJ6eroyMDG3atElpaWlKS0vTli1b/GMef/xxzZ49W/PmzdP69evVokULpaam6uTJk3V1WOespvOxevVqpaen65NPPpHH41FCQoKuu+46HThwIGDc4MGD9d133/lvixYtqovD+VVqOhfSz99c+7/HuWfPnoD7m9K58fbbbwfMxZYtWxQaGqo//OEPAeMa47lx/Phx9erVS3Pnzq3W+N27d2vIkCG6+uqr9eWXX+quu+7S7bffHhAE53K+NQQ1nYu1a9fq2muv1YoVK5Sbm6urr75aN954ozZt2hQwrnv37gHnxb///e9g7H6tq+l8nLZz586A423btq3/vqZybjz77LMBc7Bv3z7FxMSUe86olXPDoFJJSUlm/Pjx/p9LS0tNfHy8mTFjRoXjb7nlFjNkyJCAZcnJyeZPf/qTMcaYsrIy43K5zBNPPOG//+jRoyYiIsIsWrQoCEdQu2o6H7/0008/mZYtW5pXX33Vv2zMmDFm6NChtb6vwVbTuXjllVeM0+msdHtN/dyYNWuWadmypTl27Jh/WWM9N/6XJPPOO+9UOebee+813bt3D1g2fPhwk5qa6v/5185vQ1CduahIt27dzCOPPOL/OSsry/Tq1as2d61eVGc+PvnkEyPJ/PDDD5WOaarnxjvvvGMcDof59ttv/ctq69zgFaNKnDp1Srm5uXK73f5lISEhcrvd8ng8Fa7j8XgCxktSamqqf/zu3bvl9XoDxjidTiUnJ1e6zYbiXObjl06cOKGSkhLFxMQELF+9erXatm2rzp07684779T3339fq/te2851Lo4dO6YOHTooISFBQ4cO1datW/33NfVz46WXXtKIESPUokWLgOWN7dw4F2d73qiN+W2sysrKVFRUVO45Y9euXYqPj1enTp00cuRI7d27t572sG707t1bcXFxuvbaa/XZZ5/5lzflc+Oll16S2+1Whw4dApbXxrlBGFXi8OHDKi0tVWxsbMDy2NjYcu/vnub1eqscf/rfmmyzoTiX+fil++67T/Hx8QEX8eDBg/Xaa68pJydHjz32mNasWaPrr79epaWltbr/telc5qJz5856+eWX9e6772rBggUqKytT//79tX//fklN+9zYsGGDtmzZottvvz1geWM8N85FZc8bPp9PP/74Y61ce43Vk08+qWPHjumWW27xL0tOTtb8+fOVnZ2t559/Xrt379bvfvc7FRUV1eOeBkdcXJzmzZunt956S2+99ZYSEhI0cOBA5eXlSaqd5+XG6ODBg/rXv/5V7jmjts4Nvl8cdWLmzJlavHixVq9eHfCh4xEjRvj/u0ePHurZs6cuvfRSrV69WoMGDaqPXQ2KlJQUpaSk+H/u37+/unbtqn/84x969NFH63HP6t9LL72kHj16KCkpKWB5Uzk3ULGFCxfqkUce0bvvvhvwmZrrr7/e/989e/ZUcnKyOnTooDfeeEMZGRn1satB07lzZ3Xu3Nn/c//+/fXNN99o1qxZ+uc//1mPe1a/Xn31VUVHRystLS1geW2dG7xiVInWrVsrNDRU+fn5Acvz8/PlcrkqXMflclU5/vS/NdlmQ3Eu83Hak08+qZkzZ+qjjz5Sz549qxzbqVMntW7dWl9//fWv3udg+TVzcVqzZs3029/+1n+cTfXcOH78uBYvXlytJ63GcG6ci8qeN6KiotS8efNaOd8am8WLF+v222/XG2+8Ue5txl+Kjo7W5Zdfft6dF5VJSkryH2tTPDeMMXr55Zc1atQohYeHVzn2XM8NwqgS4XvMwQgAAAPKSURBVOHhSkxMVE5Ojn9ZWVmZcnJyAv7P/3+lpKQEjJeklStX+sdfcsklcrlcAWN8Pp/Wr19f6TYbinOZD+nnv7R69NFHlZ2drb59+571cfbv36/vv/9ecXFxtbLfwXCuc/G/SktLtXnzZv9xNsVzQ/r56y2Ki4t16623nvVxGsO5cS7O9rxRG+dbY7Jo0SKNHTtWixYtCvj6hsocO3ZM33zzzXl3XlTmyy+/9B9rUzs3JGnNmjX6+uuvq/U/U+d8bvzqj2+fxxYvXmwiIiLM/PnzzbZt28y4ceNMdHS08Xq9xhhjRo0aZaZOneof/9lnn5mwsDDz5JNPmu3bt5usrCzTrFkzs3nzZv+YmTNnmujoaPPuu++ar776ygwdOtRccskl5scff6zz46upms7HzJkzTXh4uHnzzTfNd999578VFRUZY4wpKioy99xzj/F4PGb37t3m448/Nn369DGXXXaZOXnyZL0cY3XVdC4eeeQR8+GHH5pvvvnG5ObmmhEjRpjIyEizdetW/5imdG6cdtVVV5nhw4eXW96Yz42ioiKzadMms2nTJiPJPP3002bTpk1mz549xhhjpk6dakaNGuUf/9///tdccMEFZsqUKWb79u1m7ty5JjQ01GRnZ/vHnG1+G6qazsXrr79uwsLCzNy5cwOeM44ePeofM3nyZLN69Wqze/du89lnnxm3221at25tCgoK6vz4aqqm8zFr1iyzbNkys2vXLrN582YzadIkExISYj7++GP/mKZybpx26623muTk5Aq3WVvnBmF0Fn//+99N+/btTXh4uElKSjKff/65/74BAwaYMWPGBIx/4403zOWXX27Cw8NN9+7dzQcffBBwf1lZmXnooYdMbGysiYiIMIMGDTI7d+6si0OpFTWZjw4dOhhJ5W5ZWVnGGGNOnDhhrrvuOtOmTRvTrFkz06FDB3PHHXc0+Av6tJrMxV133eUfGxsba2644QaTl5cXsL2mdG4YY8yOHTuMJPPRRx+V21ZjPjdO/4n1L2+nj3/MmDFmwIAB5dbp3bu3CQ8PN506dTKvvPJKue1WNb8NVU3nYsCAAVWON+bnrzKIi4sz4eHhpl27dmb48OHm66+/rtsDO0c1nY/HHnvMXHrppSYyMtLExMSYgQMHmlWrVpXbblM4N4z5+StMmjdvbl544YUKt1lb54bDGGNq9hoTAADA+YnPGAEAAFiEEQAAgEUYAQAAWIQRAACARRgBAABYhBEAAIBFGAEAAFiEEQAAgEUYAQAAWIQRAACARRgBAABYhBEAAID1/yCRZYS5SkmqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plt.plot(x, y, 'o',linewidth=None)" ] @@ -125,7 +317,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.16" + "version": "3.8.18" } }, "nbformat": 4, diff --git a/Chapter03/04_Graph_Neural_Network.ipynb b/Chapter03/04_Graph_Neural_Network.ipynb index 1efa39f..a983132 100644 --- a/Chapter03/04_Graph_Neural_Network.ipynb +++ b/Chapter03/04_Graph_Neural_Network.ipynb @@ -23,6 +23,23 @@ { "cell_type": "code", "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import sys\n", + "\n", + "sys.path.append(f\"{os.getcwd()}/..\")\n", + "\n", + "from Chapter01.utils import draw_graph, FIGURES_DIR\n", + "\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, "metadata": { "id": "RyweACZPHYQA" }, @@ -32,7 +49,6 @@ "import numpy as np\n", "import networkx as nx\n", "from scipy.linalg import sqrtm\n", - "import matplotlib.pyplot as plt\n", "\n", "G = nx.barbell_graph(m1=10, m2=4)\n", "\n", @@ -43,7 +59,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": { "id": "JgSsTLzr9a4y" }, @@ -89,7 +105,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -101,9 +117,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABAB0lEQVR4nO3dd3SV55nv/e+zu3rvBTUk0YTozTRLVNPMmBjb2OAW23HmzZvJmnNW1jrnzHvmnLOSM/FkMpnExo4xEDs2tsE0GWwQYJopkhFIIAkJ1HsvW2235/2DoDFB4Ia0Je3rs5b+8ba2ruexpd++7+e+r1tRVVVFCCGEcBEaZxcghBBCDCUJPiGEEC5Fgk8IIYRLkeATQgjhUiT4hBBCuBQJPiGEEC5Fgk8IIYRLkeATQgjhUiT4hBBCuBQJPiGEEC5Fgk8IIYRLkeATQgjhUiT4hBBCuBQJPiGEEC5Fgk8IIYRLkeATQgjhUiT4hBBCuBQJPiGEEC5Fgk8IIYRLkeATQgjhUiT4hBBCuBQJPiGEEC5Fgk8IIYRLkeATQgjhUiT4hBBCuBQJPiGEEC5Fgk8IIYRLkeATQgjhUiT4hBBCuBQJPiGEEC5Fgk8IIYRLkeATQgjhUiT4hBBCuBQJPiGEEC5Fgk8IIYRLkeATQgjhUiT4hBBCuBQJPiGEEC5Fgk8IIYRLkeATQgjhUnTOLkAIV2Pus5GRW0NZUxcxgR6sSgnH0yi/ikIMFUVVVdXZRQjhKrLKWtiy4yKqCt0WO+4GLYoCO7bMZEaMv7PLE8IlSPAJMUTMfTZm/SqTrj77Xa95GLVc/GU6HjLyE2LQyTM+IYZIRm4N9/qYqaq3XhdCDD75eCnEIFNVlcbGRr7Mu0G35e7RHtya9ixr7h7iyoRwTRJ8QgyC1tZWSktL+7/0ej3u7nEYtVr67HcP+wyKir/e5oRKhXA98oxPiAfAbDbfEXRWq5XY2Nj+Lz8/v/s+4zPpFJ7xLmD82HgWL16Mj4+PE65CCNcgwSfE99Db20tZWVl/0HV2djJmzJj+oAsKCkJRlLu+736rOlPCPDh79izZ2dlMnTqVhx56CJPJ5ISrE2J0k+AT4luwWq1UVFT0B11TUxNRUVHExMQQFxdHaGgoGs23WyvWdXsfX3M3MQHurEoJv2M1Z0dHB1988QXXr19n/vz5TJ8+HZ1OnkoI8aBI8AkxALvdTnV1dX/Q1dTUEBYW1h90ERERgx5GDQ0NZGZm0tjYSFpaGhMmTBhwFCmE+G4k+IQAHA4H9fX1lJSUUFZWRkVFBQEBAf1BFx0djcFgcEptpaWlZGZmArBkyRJiYmKcUocQo4UEn3BJqqrS3NzcH3RlZWV4eHj0B92YMWNwd3d3dpn9VFXl2rVrHDt2jKCgINLT0wkODnZ2WUKMSBJ8wmW0t7f3B11paSmKohAXF0dsbCwxMTF4e3s7u8RvZLPZyM7O5vTp0yQlJbFo0aIRUbcQw4kEnxi1urq67thi0NfXd9cWg5H6zKy3t5czZ85w6dIlpk+fzrx58zAajc4uS4gRQYJPjBp9fX13bDFob2+/Y4tBcHDwiA26e2lvb+eLL76guLiYBQsWMG3aNLRarbPLEmJYk+ATI5bVaqWysrI/6BobG4mIiOgPuvDw8G+9xWCkq6+vJzMzk5aWFtLS0hg3btyoC3khHhQJPjFi2O12ampq+oOuurqakJCQ/qCLiopy+f1uJSUlHD16FK1Wy5IlSxgzZoyzSxJi2JHgE0Pu2x7Eqqoq9fX1/UFXUVGBr69vf9CNGTNGnmsNQFVV8vLyOH78OKGhoaSlpREUFOTssoQYNiT4xJC6X8uu6WP8aGlp6Q+6srIyTCbTHQtShtMWg+HOZrNx8eJFzp49S3JyMosWLcLLy8vZZQnhdBJ8Ysjcr0mzUaPynP8N9IqDuLg4YmJiiI2NlWbND0BPTw9nzpwhJyeHGTNmMHfuXBkpC5cmwSeGzK6sCv45I3/AM+mMWvgv6XE8tzBZFmUMkra2Nk6cOEFJSQkLFixg6tSpsgJUuCTXXgkghlRZU9c9D2Lts0NTryKhN4h8fX159NFHqa2tJTMzkwsXLpCWlkZysnzYEK5Fgk8MmRAPLXrFgVW9e4uBu0FLTIA8vxsKYWFhPP3009y8eZOjR49y7tw5lixZQlRUlLNLE2JISPCJIVFXV0dD1iG0mrFYBxj0KQqsSgkf+sJcWHx8PLGxseTl5bF7924iIiJIS0sjICDA2aUJMajkGZ8YdDdu3GDv3r2sWLGCHs/we67qnBHj7+xSXZbVauXixYt8+eWXjB8/noULF+Lp6enssoQYFBJ8YlBlZ2dz8uRJNmzYQHR0NPDNB7EK5+nu7ub06dNcuXKFWbNmMWfOHKcdxyTEYJHgE4NCVVUyMzMpLCzkqaeewt9fRnMjSWtrK8ePH6e8vJyFCxcyZcoUl2n/JkY/CT7xwFmtVvbt24fZbObxxx+XTecjWE1NDUePHsVsNpOenk5iYqKsABUjngSfeKC6urrYtWsXfn5+rFmzxuV7Z44Gqqpy48YNMjMzMZlMLFmyhMjISGeXJcT3JsEnHpimpibef/99Jk6cyOLFi2VkMMo4HA6uXLnCiRMniIqKIi0tTaawxYgkwSceiLKyMnbv3k1aWhpTpkxxdjliEFmtVs6fP8+5c+eYNGkSCxYswMPDw9llCfGtSfCJH+zKlSscOXKEv/u7vyMuLs7Z5Ygh0tXVxalTp8jLy2POnDnMnj0bvV4PfPsTOIRwBgk+8b2pqsrJkye5cuUKTz75pBx946JaWlo4fvw4FRUVLF68GItPFM/9OVv2aophS4JPfC92u52DBw/S2NjIE088IZudBVVVVXx65Bj/esMfywBt6TyMWi7+Ml32bAqnk4054jvr6enhvffeo6+vjy1btkjoCQAiIyPxnrgYzT1OfFBVyMitGeKqhLibfPQS30lrayvvv/8+CQkJLFmyRDY1izuUN3fRaxt4EqnbYqesuXuIKxLibhJ84lurqqriww8/ZP78+cycOdPZ5YhhKCbQA3eDdsDjp+QEDjFcyMd18a3k5+fzwQcfsHr1agk9cU+rUsK51/ZNOYFDDBcSfOK+VFXlyy+/5LPPPmPTpk0kJiY6uyQxjHkadezYMhMPoxZ3w61nfUYtGBQH7zwzXRa2iGFBVnWKe3I4HBw6dIjKykqefPJJfHx8nF2SGCG+fgLHmAB32vOOMyk5kblz5zq7NCEk+MTA+vr62L17NwCPPfYYRqPRyRWJkay1tZW3336bLVu2yH5P4XQy1Snu0tHRwfbt2/Hx8eGJJ56Q0BM/mJ+fH4sWLWLfvn04HA5nlyNcnASfuENdXR3btm1j0qRJPPLII7JdQTww06dPx2QycfbsWWeXIlyc/FUT/YqLi3n33XdZtmwZ8+bNk9MVxAOlKApr1qzh/Pnz1NfXO7sc4cIk+AQAWVlZHDhwgI0bNzJ+/HhnlyNGKR8fH9LT09m3bx92+917/YQYChJ8Lk5VVY4cOcKFCxd47rnniIqKcnZJYpRLTU3Fy8uLU6dOObsU4aIk+FyY1Wrl448/pqamhueffx4/Pz9nlyRcgKIorF69muzsbGpqpHenGHoSfC7KbDazc+dO9Ho9mzZtws3NzdklCRfi5eXFsmXL2LdvHzabzdnlCBcjweeCGhsb2bZtGwkJCaxbtw6dTrppiKE3adIkAgIC+OKLL5xdinAxEnwuprS0lJ07d7Jo0SIWLVokKzeF0yiKwqpVq7h8+TJVVVXOLke4EAk+F3L58mX27NnDY489xuTJk51djhB4eHiwYsUK9u3bh9VqdXY5wkVI8LkAVVU5ceIEJ0+eZPPmzcTExDi7JCH6TZgwgdDQUI4dO+bsUoSLkOAb5Ww2G3v37uXmzZu88MIL0idRDEsrV67k2rVrlJeXO7sU4QIk+Eaxnp4e3nvvPWw2G5s3b8bDw8PZJQkxIHd3d1atWsX+/fuxWCzOLkeMchJ8o1RLSwvbtm0jPDycDRs2oNfrnV2SEPeVlJREdHQ0R48edXYpYpST4BuFKisr2b59O7Nnz2bp0qWyclOMGMuXL6eoqIiSkhJnlyJGMQm+UebatWvs2rWLNWvWMH36dGeXI8R3YjKZWL16NQcOHKC3t9fZ5YhRSg6iHSVUVeXs2bNkZWXxxBNPEBoa6uyShPjeDh48iMPhYO3atc4uRYxCMuIbBex2OxkZGVy7do3nn39eQk+MeEuXLqW0tJSioiJnlyJGIQm+Ea6vr48PPviAzs5OtmzZgre3t7NLEuIHMxqNrF27loyMDHp6epxdjhhlJPhGsPb2dt555x38/PzYuHEjRqPR2SUJ8cDExsaSnJzM4cOHnV2KGGUk+Eao2tpatm3bRmpqKitXrkSjkf+UYvRJT0+nurqagoICZ5ciRhH5azkCFRUV8d5777FixQrmzJkj2xXEqGUwGFi7di2HDh2iq6vL2eWIUUJWdY4wFy9e5PTp02zcuJGIiAhnlyPEkDhy5Ajt7e1s2LDB2aWIUUBGfCOEw+Hgs88+Iysri+eee05CT7iUxYsX09DQwNWrV51dihgFJPhGAIvFwkcffUR9fT3PPfccfn5+zi5JiCGl1+tZt24dn332GWaz2dnliBFOgm+YM5vN7Ny5E5PJxKZNm3Bzc3N2SUI4RUREBFOmTCEjIwN5QiN+CAm+YcLcZ2NXVgW/PlzArqwKzH02GhoaePvtt0lMTGTt2rVotVpnlymEUy1cuJDW1lZyc3OdXYoYwWRxyzCQVdbClh0XUVXotthxN2hBVVlmusmzqxaQkpLi7BKFGDbq6up49913eemll6Rhg/heZMTnZOY+G1t2XKSrz063xQ7cCr9uq4PPe+OJTxrv5AqFGF5CQ0OZOXMmBw4ckClP8b1I8DlZRm4N9/zdVRQycmuGtB4hRoKHHnqI7u5uLl265OxSxAgkweckVquViooKzlwp6h/p/a1ui52y5u4hrkyI4U+r1bJu3TqOHz9OW1ubs8sRI4zO2QW4AlVVaWtro6qqqv+roaEBo9FIh9kTHRHYBvgM4m7QEhPg7oSKhRj+goODmTNnDvv37+eZZ56RDkbiW5Pg+wbmPhsZuTWUNXURE+jBqpRwPI33v20Wi4Xa2loqKyv7g05RFMLCwlAUhd7eXtzc3Jg0aRITNXrOZXYM+D6KAqtSwgfjsoQYFebOncv169fJyspi5syZzi5HjBCyqvM+BlptqSiwY8tMZsT4A7dGc62trVRVVVFZWUl1dTVNTU0EBwcTGRlJWFgYvb29FBcXU11dTXJyMikpKURERHD48GFKS0spbnNwpC8BFbChxagFnU57x88RQgysqamJd955hxdeeAF/f/l9Ed9Mgu8ezH02Zv0qk66+u5+/ues1/PtiD5rqqqmqqkKn0xEZGdn/FRoaSlVVFbm5uRQWFhIREcHkyZNJSkrCYDDQ0tLCRx99hIeHB9XV1VgsFuKTxnO+1kpjt0pyZAD/+HgaHt8wshRC3HL+/Hny8/PZsmWLnFQivpH8Zb2H+622tNpsnC7vZuPMyTzyyCP9e4kaGxvJzc1lz549mEwmUlJSePjhh/Hy8ur/3uvXr3PgwAGmTZvGpUuXUFWVsLAwrD1mlsYH0NbWhru7WUJPiO9g1qxZFBYWcv78eebOnevscsQwJ39d76Gsqeueqy2tqgaP0BjGj0+mq6uLCxcukJubS0dHB5MmTWLjxo2Ehobe8T0Oh4MTJ06Qm5vL6tWr+eyzz/D19aWuro41a9awfft2oqKisNvtNDU1DcUlCjFqKIrC2rVrefvttxk7dixBQUHOLkkMYxJ8A1BVFX1fGzocA6621CsOLC3VfPBBDuXl5SQmJrJ48WLi4uIGnGbp6upiz549ADz99NN89NFHxMbGkpeXR1paGjU1NcTFxWGxWPDz86O4uHjQr1GI0cbPz49Fixaxb98+nn/+eZnyFPck/2f8jY6ODnbt2oWm6jIG/T0+F6gqfUVf0tzczBNPPMH69etJSEgY8BetsrKSt956i8jISB5//HH2799PTEwMhYWF+Pv7M3v2bAoLC0lOTqanpwcfHx8sFgt9fX2DfKVCjD7Tp0/HZDJx9uxZZ5cihjEJvr9SVZWsrCy2bt1KWFgY/88rP+a/zvbCoHGgwwGADjt67Px/i4NZs3IZnZ2d/OUvf+GDDz6gvr7+rve7cOECu3bt4pFHHmHhwoXs2bMHf39/2trasNlsbNiwAavVSllZGWPHjqWnpwd3d3f8/PxkU64Q34OiKKxZs4bz58/f9TspxG0SfNxaDr1jxw5yc3N59tlnmTVrFllZWVR8dYJnvAqZa6xmjk8n89xqOfD8RGqunCYhIYGf/exnjB8/nrKyMrZv387HH39MQ0MDFouFPXv2cPnyZV544QXGjh3LgQMHAIiNjaW8vJzZs2cTFBTEjRs3iIyMxM3NjZ6eHtzc3PDz86O1tdXJd0WIkcnHx4f09HT27duH3T7wc3rh2lzmGd9AG9HddApnz57l/PnzLFiwAG9vb06cOEFJSQk+Pj5ERESwefNmfv3rX7Ng3gTOn6/EXa9l4cKFfPTRRzz//POsW7eO6dOnc/DgQWpra3nnnXdQVZX4+Hiee+45dDodBw59zrGyXgLGJPPZ/gtM8vZg4cKFAP3TnEB/8Pn6+krwCfEDpKamUlBQwKlTp1i8eLGzyxHDjEsE30Ab0f/54DUe9aslzltl7NixnD59msDAQCZPnszSpUv505/+xIYNG3A4bk1zRkVFkZ2dTX5+PsuXL6e6upqDBw/y6KOPEhkZyUsvvcSBAwe4cuUK/v7+lJWVkZGRQa3Nnd/lWNHqfOlpqEVHGNl2PYuqOpga5UNxcTHp6ekAd0x1trS0OPOWCTGiKYrC6tWr2bp1K0lJSYSHSwck8Z9G/VTn/Y79+agxkNbObvz9/XnhhRd49tlnmTp1Kjk5OYwdO5bAwEC6u7txc3MjLCyM7u5uCgoKAFi1ahUNDQ1cvHgRu93OkSNHKC8vZ9OmTURGRqLT6ahuaObfLvVhUTX0WG8FqA0t3VYHW3ZcpKC4hICAALy9vVFVld7eXkwmE76+vvKMT4gfyMvLi2XLlrFv3z5sNpuzyxHDyKgf8d1vI7qChiaPMbS1tXHq1ClUVcVms1FYWMjYsWPZu3cv3d3dWK1WMjIy0Gq19Pb28u677+Lm5oaXlxdHjx7l+PHjGAwGwsLCyM7ORlVVjEYjX1b1ca+2OKoKH5wtYsVfpzl7e3sxGAxoNBp5xifEAzJp0iQKCgr44osv+mdWhBj1I777bUS3qAplTV309PRgMpn6+2pGRUWRlJREXFwcISEheHp6MnbsWEJCQggICECn0zFu3DjCw8NRFAWHw8HChQtJTU0lJSWF8PBwOjo68I1OxIZ2wJ/dbbFTWN181/M9oH9Vp3STE+KHURSFVatWcfnyZaqqqpxdjhgmRn3wxQR64G4YOHx02EkI8SEgIIC6ujqOHTtGSUkJRqORnp4e/Pz8CAoKIigoiJSUFMaPH4+fnx+NjY20trZy6dIlnnjiCebNm0deXh5JSUn4+/tz4cIF5syZg7WlGh0Dh65RC4EmlcDAQODO4DMYDBgMBsxm8+DcFCFciIeHBytXrmTfvn1YrVZnlyOGgVE/1bkqJZz/9Wn+gK9pNRqUyksUdvmwYcMGsrOzsdvtjBkzhurqaq5evUpdXR1Go5EDBw7g7u5OfX09XV1dXL16lRdffBFvb29iY2Opqanh4MGDFBUV4ebmxpUrV4iw96IwcLd4h93OeI8eLBYLBoOhf2HLbbenO7/e51MI8f2MHz+egoICjh07xvLly51djnCyUT/i8zTq2LFlJh5GLW76W5erw4FJB6u9K3nx2WcwmUy8+eab5OTk8NBDD5GamsojjzzCiy++yPz580lMTCQ0NJT6+npaWlqwWq309PTw5ZdfkpeXR2trK5MnT+bKlSvYbDaCg4OxWq2YtLDSowx3g6Z/E7weByYtLDEUo1VtvPXWW9TX198x4gNkE7sQD9iKFSvIz8+nvLzc2aUIJxv1wQcwI8afi79M57+tSGayvo5nJrrxf6arbFg0lQMHDvDUU08RFxeHVqvl9ddf58iRI/3bGPr6+ggODsZgMFBTU4OPjw8rV64Ebk2hXL58mTfeeIPdu3djMBiwWq3U19f3N6l+bvVCTv3DQ8wzVfPygjgWeDbw4RPxxHtDQEAAvb29bN++naKiIoxGY3/NspdPiAfL3d2dRx55hP3792OxWJxdjnAilwg+AA+jjidnxzBdX8Pfr5zGjcJrpKamkpSUxLvvvktdXR2/+MUvSEtLIysri3/5l38hLy+Prq4uioqKOHPmDJs3byYuLq5/0UlVVRV1dXX9051arRZ/f3/a29u5efMmdrud69evc/70SWYE2Pj5w3GsTw0lLyebcePG8cQTT7BmzRoMBgMFBQWUlpb29+g0efpwuKidXx8uYFdWBeY+WY4txA+VlJREdHQ0R48edXYpwolc7iDa3/zmN7zyyiscOnSI2NhYpk+fzu9+9zuMRiMvv/wyGo0Gm83GgQMHyMvLAyAkJIRnn30Wo9HI0S9Os/tiCXVmO9H+bkwLhJ7ONrq6ulizZg2hoaH8/ve/B+D555+nqamJnJwc6uvrsVqtuLm5YTabmT59OikpKYSEhKCqKjt27Oh/njhh0Rr+MaMUq82GVdUMePK7EOL76e3t5Y033mDJilVc7TTe0c3JU87BdAkuF3x/+MMf2LhxIx0dHXz++eesXbuWDz74gICAAIKDg1mxYgWKolBcXMzevXvp6+vD4XAQExOD2RTC7y5bULm1EV2HHQXYGNbCL55Zh4+PDzt27KCmpoaAgADGjRvHwoULOXLkCG5ubsydO5cbN26wa9cuJkyYQFNTEy0tLQQFBfVPqVbVNfJGbRTWAbZBeBi1XPxluhxSK8QPtPdMLv/lUDk6nY4eq0M+XLoYl5nqvM1kMtHb20tsbCx2u51Dhw4xf/58Nm7cSEVFBWfOnOHEiRMcPHiQjRs34uvrS3JyMsWlFfzusgUr2v69eTa0WNHySXMoejdPzp8/T21tLQ8//DBPPfUUX331FcXFxTQ3NxMYGIjD4aCxsREvLy9CQkJYu3YtGzduZOLEiVgsFhoaGsht199303tGbs3Q3SwhRiFzn43/llmD9Wsdlbotdrr67H/t8iSPFUY7lxs6mEwmenp6UBSF+Ph4cnJymDZtGlqtlkcffZS3334bX19fnnvuOa5fv05LSwvBwcHELHwMzbESBtqWZ7XZ+OXW3QS2F2EwGMjNzeWrr77C4XDw/vvvA1BUVIROp8PhcKDT6Th9+jQ5OTmoqorD4aCrq4vu7m6a+0Lvu+m9rLl7MG+PEKPe/bo53f5w+fiM6KEtSgwplws+Nzc3ent7UVWVmpqa/h6Zra2t7N69m4kTJ5Kfn8/bb79NWFgYAMuXL+e/7/mKvnuccGJxKFS39xGq0/Hoo4/i7e2NXq9HURTOnTvHV199xbx582htbe3v9Wm1WvH09CQoKIjAwEC+/PJLpk2bRvn5Mgo7HFjVuwfj7gYtMQHud/1zIcS3d79uTvLh0jW4XPAZjUZ6e3spKSmhp6eHCRMmcPDgQSoqKpgyZQpFRUX9m8f9/f1RFIWtW7fi5peMSaen13b3R0UdDkxWM1NnTqWsrIympiaampro7OzEy8sLjUZDcXExERERREdH8/jjj/PRRx8xe/ZskpKSqKmpITMzk6tXr/LUQ9P44tPGAWtXlFsb8oUQ39/tbk4DhZ98uHQNLhV85j4bWS16mmpaUTuLeHrhPG4UXKW0tJTAwEBu3LhBTEwMDQ0NqKrKpUuXMJlM/MM//ANdFjsHf30cBngCp6ASq22hrEzLpEmTiImJITAwEF9fXwoLC8nNzaWtrY2amhpmz56Nm5sbSUlJ5OXlkZ+fT0lJCQ6HgyeffJKdO3eyJTaMdyu80Gi1/cco3X7wLgtbhPhh7tfNST5cugaXWdV5+0w+m81On/1WBxUUWOVZjr+9FU9PT/r6+oiPjycsLAyTycSlS5eoq6vD19eXjo4OOk3BfNIciqLRYnHQv6pzuVsJf7cglTNnzmAwGFizZk1/8+mTJ09is9mYOHEiW7du5cknnyQ6OprMzEyys7N56KGHmD59Oq+//jqBgYHEx8eTlZXFlhde4ouSDsqau4kJcGdVSriEnhAPyN+e0anDjtFgYMezsqrTFbhE8Jn7bMz6VSZdAzyk02Nni28Rit3Sv/gkMDCwv3l0cXEx3t7ebN68mZycHCpq6iF6KmXN3RRmnybSXo+nSc/LL7+Mu7s7n3zyCYWFhQQHB/OjH/2IL774goSEBIxGI8ePH6ezsxNFUUhMTKS6upo1a9bg4eHB1q1bSU5OJjAwkNbWVtauXTvUt0kIl9LVZyMjt4ay5m4aSq6xfvoY5s2c7uyyxBBwiSHE/VZxoSj0Bo/Hve4KTz31VP9RQwBXrlzBbr8Vlvv376epqYlVq1YxZkw0ubm59Dlq8fbxJiYmhoKCAmbPns3jjz9OU1MTH3/8MX/4wx8wGo1MmzaNU6dO0d3djdFoxN3dndWrV3Py5EkKCwv7u7WsWLGC119/naeffnoobosQLs3DqOtfvVlUpOH06dMSfC7CJfbx3W8Vl1XVcLOhE7vdzs6dO9m5cycZGRlcuHCBqqoqdDoda9asob29nc7OTqKioujs7OTAgQMkJiai1+sJCAjoX60JEBgYyCuvvMKGDRvo6+tj586dlJaWkpaWxt///d/j4eFBZmYmycnJ5ObmUlBQQFhYGAUFBYSGhhIcHDxUt0YIASQkJNDW1kZj48ALy8To4hLBd/8z+RxE+7vx1FNPodPpmDdvHkFBQTQ2NlJcXMy1a9f413/9V9rb27Hb7XzwwQds27YNvV7P+vXrmT17NpWVlTQ0NNxxfl5HRwdXr14F6N8WkZmZSWlpKevXr6ewsJAbN27Q1dXFpEmT8PT05Ny5c8ydO3fwb4gQ4g4ajYbJkyeTk5Pj7FLEEHD5Z3wmLfzrfCPXrlzCYDCwYMECpk6dCsCnn35KUFAQiYmJvPHGG8yYMYPz589jt9vx8PDAYrEQEBBAY2Mjvr6+xMTEMG3aNAoKCsjOziYuLg6z2UxISAhGo5G6ujqKi4sJCwtj1qxZ7N+/n8CwSG5YfGjsBU+1m3/56Ua8TPqhvkVCuLzm5ma2b9/Oz3/+c7TagT8oi9HBJYIP7l7FdXsEuNK9lC2PzCcqKoq9e/dSWVnJ8uXLmTp1Knv37iUpKQmHw8G1a9dIS0tj69at6PV6Nm7cSHh4OE1NTZw6dYqGhga6u7ux2W61OwoICECr1aLVavsXqyQkJNDc3MyHH35IS0sLnaZg9rdHoKoKNjQYtQo6nUb6BQrhJNu3b2f27NmMGzfO2aWIQeQywQd3ruK6vUXA3NbMn//8ZzZs2EBUVBS//e1v8fPzo7e3F61Wy5IlSzhz5gwzZszg8OHDeHl5sXTpUnbv3s3TTz9NaGgoeXl57N27F1VV2bRpE9HR0TQ1NXHkyBGsVisNDQ14e3vT1taGj48PVqsVi0NhW3O8NKMWYhi5fPky+fn5PPnkk84uRQwil/rL+vVVXP3/LCSExx57jN27d/PMM88wffp0urq6SE5O5sMPP+Tzzz/HbDaTn59PX18fr776Km5ubqxcuZL33nuPgIAAzGYzY8aMoauri/b2dvR6PWFhYTgcDvz9/RkzZgxLlizBZrNx9OhRioqKaHaPhhZloP3w0i9QCCcZP348n3/+eX/XJTE6ucTilm8SGxvLsmXL+Mtf/kJiYiLXrl0jKioKd3d3PD09sVqt5Ofns3z5ctzc3Ojs7OTmzZtYrVaam5t59tlnWbZsWX9A3tbU1ERVVRU+Pj6cOXOGnTt3kpWVRXd3NzWdtgH7cYL0CxTCWQwGA+PHj+fy5cvOLkUMIpea6vwmZ8+eJTc3F5OnD/WmSM7l3cBfbydSbSA8yJ+Ojg4CAwNpampi6tSpzJ8/n5MnT1JTU8PTTz/Nn//8Z2pqaliwYAF1dXX9WxyioqLw9fXl+vXrrFu3jsjISP7Hzs/IqDHdsxn1P60aLyM+IZygqqqKvXv38tOf/rR/T68YXWTE9zVz587F6hvNrwq82JbTzhVrCKe7Q9jVOwnv+ClotVq6urpQFAV3d3caGhr625m99tprVFdX43A4KC0tJSAgAA8PD6ZOncqGDRsoLy9n7dq1KIrCW2+9RXqiPwb9wKs3pV+gEM4TERGBVquloqLC2aWIQeJSz/i+SZfFzpuFWixfGwPb0IIK//OLRv5tYSoOSw8VFRUcO3YMjUZDVFQUs2fP5sqVK0RERFBYWIjdbsfPzw9VVUlMTOTDDz9k8uTJ3Lhxg9LSUjZs2EB0dDTBiXevNJVm1EI4l6IopKamkpOTw5gxY5xdjhgEMtX5NbuyKvjnjPwBu7zocfB3sQ7Wp4YRHh5OSEgI1dXVHDlyBI1Gw8KFC8nMzMTo4c2xG22YAqPpa65i+fggVEsPLS0txMTEsHz5coxGY//7DrTSVEJPCOfq6uriP/7jP/j5z39+x++rGB0k+L7m14cL2Hqq5J6vz/Zq57FEA0FBQQQHBxMUFISfnx/5+fkcO3YMs1sIO8s8ULk1Urx1AoTKKs8KXlz3MOPHjx+6ixFC/CAfffQR8fHxTJs2zdmliAdMhhZfc78DKt30WhbPnERisEpDQwOXL1+msbGRzs5OAgICCAiN4PU8N6z858NwKxpQ4UhfAv87PnEoL0UI8QOlpqZy6tQpCb5RSILva+53QKVGA5vmj7trGtJisdDU1MRfzpeh0Drg96rIvjwhRpqEhAQyMjJoaGiQxvGjjKzq/BpPo+6vC0u0/S3N3A1aPIzaey44MRgMhIeHY3fzo88x8PvKvjwhRh5pXD16yYjvb8yI8efiL9O/84KT+02Tuhu0xAS4D1bJQohBMmXKFN555x3S09OlcfUoIsE3gIFam32T+02Tyr48IUYmf39/AgMDuX79uixOG0VkqvMB+T7TpEKI4W/KlCnSwmyUke0MD5jsyxNidLFarfz2t7/llVdewdvb29nliAdAgk8IIb7BwYMH8fX1Zf78+c4uRTwAMtUphBDfYOrUqeTk5CDjhNFBgk8IIb5BeHg4Op2O8vJyZ5ciHgAJPiGE+AaKojBlyhTZ0zdKSPAJIcS3kJKSwvXr1+nt7XV2KeIHkuATQohvwcPDg7i4OK5eversUsQPJMEnhBDfkkx3jg4SfEII8S3Fx8fT2dlJfX29s0sRP4AEnxBCfEsajab/dHYxcknwCSHEd5CamkpeXh42m83ZpYjvSYJPCCG+A39/f4KDgykqKnJ2KeJ7kuATQojvSBa5jGwSfEII8R2NGzeOqqoq2tvbnV2K+B4k+IQQ4jvS6/VMmDCBK1euOLsU8T1I8AkhxPdw+5w+aVw98kjwCSHE9xAeHo5er6esrMzZpYjvSIJPCCG+B2lcPXJJ8AkhxPeUkpJCUVGRNK4eYST4hBDie3J3dyc+Pp68vDxnlyK+Awk+IYT4AW4vchEjhwSfEEL8AHFxcZjNZmlcPYJI8AkhxA9wu3H1pUuXnF2K+JYk+IQQ4gdKTU3l6tWr0rh6hJDgE0KIH8jPz4+QkBCuX7/u7FLEtyDBJ4QQD4Cc0zdySPAJIcQDMG7cOGpqaqRx9QggwSeEEA/A7cbVsrVh+JPgE0KIB0QaV48MEnxCCPGAhIWFYTQaKS0tdXYp4j4k+IQQ4gG53bhapjuHNwk+IYR4gCZNmkRRURE9PT3OLkXcgwSfEEI8QO7u7iQkJHD16lVnlyLuQYJPCCEeMDmnb3iT4BNCiAcsNjaW7u5u6urqnF2KGIAEnxBCPGAajYbJkyfLqG+YkuATQohBMGXKFPLy8qRx9TAkwSeEEIPA19eX0NBQCgsLnV2K+BsSfEIIMUhkkcvwJMEnhBCDJDk5mdraWtra2pxdivgaCT4hhBgker2eiRMnSieXYUaCTwghBpE0rh5+JPiEEGIQhYWF4ebmJo2rhxEJPiGEGGSyyGV4keATQohBNmnSJIqLi6Vx9TAhwSeEEIPMzc2NsWPHkpeX5+xSBBJ8QggxJGS6c/iQ4BNCiCEQGxtLT08PtbW1zi7F5UnwCSHEEFAUhdTUVBn1DQM6ZxcghBCuIjU1lT+8+Tat/uOpbO0hJtCDVSnheBrlT/FQUlTZVSmEEEMiq6yFp/50FkXR0mdXcTdoURTYsWUmM2L8nV2ey5DgE0KIIWDuszHrV5l09dnves3DqOXiL9PxkJHfkJBnfEIIMQQycmu41zBDVW+9LoaGBJ8QQgyBsqYuui13j/YAui12ypq7h7gi1yXBJ4QQQyAm0AN3g3bA10w6DTEB7kNckeuS4BNCiCGwKiUcRRn4NbvNilKZg9lsHtqiXJQsbhFCiCGSVdbC02+fw2a3Y0OLDjtajYZ0fREJPgpWq5V58+Yxa9YsdDpZ6DJYJPiEEGIIvfnODk6Xd9On9ybSx4hvx01+tH4tn3zyCW5ubgQEBNDR0cHSpUtJTExEudcwUXxvMtUphBBDxGKx0FxXw1hNI2tjYO2kIHTYKSkpYfPmzVgsFmpqapg8eTKZmZm89957NDQ0OLvsUUeCTwghhkh5eTmhoaFoNBr8/f2pq6tj8eLFXLp0CT8/P1588UUMBgNnz55lwoQJjB07lp07d3Lo0CE50ugBkuATQoghUlJSQkREBFqtFn9/f6qrq5kzZw4mk4lPPvmEgIAAfvzjH+Pt7U12djbl5eW8+OKLAPzhD3/g4sWLOBwOJ1/FyCfBJ4QQQ6SkpITg4GC0Wi3u7u44HA46Ozt55JFHKC0tpba2Fi8vL55//nkCAgKoq6vjvffeY9asWWzevJnCwkK2bt3KzZs3nX0pI5oEnxBCDIHOzk46Ojrw9PREq9WiKArh4eHU1NQwfvx4/P39+eSTT1BVFZPJxNNPP01YWBgA27Zto62tjaeffpqHH36YTz/9lA8++IDm5mYnX9XIJMEnhBBDoKSkhNjYWHp7e+8IvurqagDWrVtHS0sL+fn5AOh0Oh577DFiY2Nxd3fnwIEDnDx5kqSkJJ55/sfcJITn/+Mg/33HZzS1y/6/70KCTwghhkBJSQlxcXH09PT0B19ERAQ1Nbd6dEZGRhIVFcWnn36K3X6rtZlGo2HlypVMmjQJnU7H9evX+fW2j5n3L1/wfqGFy31BfFhsY87/Pc5fjpyX53/fkgSfEEIMMlVV+4Ovu7sbjUZzx1Tn7e3Ua9asoa+vjzNnzvR/r6IoLFy4kPnz59PS0c2OUne6LPb+vp8Wh4JV1fI/v2jkj2++TXl5uVOucSSR4BNCiEHW2NiITqfDz8+vf8QH4OnpicFgoKWlBQB/f38mTJjAmTNn6O6+s2n1tGnTMCXNw36PUZ1Or8caNom9e/eye/du2traBvWaRjIJPiGEGGQ3b94kLi4ORVHumOoE7pjuBFi2bBmqqvLZZ5/d8R6qqtLYo2Jj4EbX3RY7HaqJV199laCgIN566y1OnDiBxWIZvAsboST4hBBikJWWlhIXFwdAT09P/1QncMcCFwAPDw9mz55Nfn4+DQ0NmM1mzp49yx//+Efqb15Fx8BHGxk0UJH/FX/6059wOBw8+uijtLS08Mc//pHc3Nz+6VRzn41dWRX8+nABu7IqMPfZBvnqhx/pgiqEEIPIbrdTXl7OunXrgP8MvtsiIiI4ceLEHd8zb948Lly4wPbt2wFITEwkLCyMjp5yzmpDsQ2QfVqtwu9/sZm2pnoKCgo4fPgwqqoSFRXF6dOnuXjxIuGT5/OPn5aiqrdGiO4GLf/r03x2bJnJjBj/QbsHw40EnxBCDKLKykoCAwNxd7913l6buYcKJYjCr5qZ2llBemIQdXV1OBwOWltbycnJ4cqVK3h6etLZ2cmiRYvIy8vD39+fF7c8TfO2jznUFYPVZvvrCQ8OtBqF5aZSqstLSEpKIjIykvT0dBoaGigoKKCxsZHqhmb+7yfXsX5tqvT2ApktOy5y8ZfpeBhdIxLkdAYhhBhEx48fR1VV0tLSyCpr4ck3z4CiwaoquBu0KMAy002S/HV0dnaSkpLClClT8PX15bXXXsNisbBmzRpSU1PZs2cP3t7eePoG8OeT17CZ/ND2tDA1UAVrH62trcyYMYOAgAB6e3vv+DpR3sende7YBnjC5W7Q8k+rxvP4jOihv0FO4BrxLoQQTlJSUkJaWhrmPhtbtl+8NeL663Dj9ojroCWKKTG9pKWlYbFYKCws5NKlS2i1WjQaDRcvXiQrK4vGxkb8/Pxoa8sm3GZD7S4FwNzqic1mw+Fw8OWXXxIdHU1wcDBGoxGHw0FHRwflrQ5seA5YY7fFTllz94CvjUYSfEIIMUh6enpobGwkKiqK3Tk1OO4xwaYCx2604bCcpbe3l8bGRiIjIxkzZgxfffVV/3aIpUuXEhUVxf79+wkICCAwMJCmpibi4+NJTU0lMzOT/Px8amtr0Wg01NfX4+XlRVxcHGH1dVztsw+4KtTdoCUmwH2Q78bwIcEnhBCDpLS0lKioKHQ6HWVNXfRYB96DZ0OLGTd0ulurPV966SWCgoIAiI6O5v3338fPz48ZM2bgcDhobm7u3x4RHx9PcXExbm5umM1mzGYzDoeDyspKli1bhp+fH7t37ybYYkfBZ8CfryiwKiV80O7DcCPBJ4QQg+R2txaAmEAPjFroG2BFpl5xYLR0UFbWRkpKCt3d3aiqiqIomM1mtFotzc3N1NfXoygK3t7eqKpKQ0MD1dXVFBcX093dzfjx40lLS6OsrIzPPvuMw4cPo9Fo0Gq1xEaG8f+6G/j9FRsoCn12MGpBp9OyY8tMl1nYAhJ8QggxaEpKSpgxYwYAC8Z44LDbYaAN6KpKvL6N+fPnoygKhw4dore3l4SEBPLz81m9ejWffvopGRkZBAYGYrFYuHDhAr6+vsybN4+2tjbS0tKIiooCbvX9dHNzo7e3F7vdTnJyMg0NDby0KZ2emjfwTUnjRn0bXXVl/PonP3Kp0AMJPiGEGBStra1YLBaCg4Ox2+0cPriPFxN9efuGBlVVsaoadNjRajQ8FtiEH+6cPXuWqVOn8sILL9DS0sKuXbtQVZXPP/8ch8NBVVUVra2txMTE4OXlhbu7O1OnTqW5uZkbN24QFRVFbm4un3/+OYGBgTgcDnp6esjLy2PFihVYrVasPWaeW5SMqqq89tppHJYeMHo5+3YNKQk+IYQYBLenORVFITMzE3d3d8bHhOOnFJNd76CpT4OHo5vXfvYEXiYDb775Jh4eHpjNZv74xz/i6+tLV1cXiqIQGhqK3W6nrKyMrq4uDAYDNputv/tLQkICmZmZtLW1UV1dTWhoKDabjRdffJGdO3fS3t5OZmYm3d3dhIWF9W+gT0xMpLCwsH9U6iqkZZkQQgyC28FXWFhIQUEB69ato6GhgYbqSiZ7dfPeP27g0ckhlBYV4ubmxsMPP0x7ezs3b96ku7ub8vJywsPD+dnPfsamTZvYvHlzf0DV1tZy+fJlvvrqK7Kzs7HZbNTW1mKz2fDy8sJgMLBp0yYuXryIl5cXP/nJT/Dy8uL06dOYTKb+GpOTkykoKHDWLXIaCT4hhHjAHA4HpaWlBAQEcPDgQdavX8+FCxe4evUqXl5ezJkzB5PJRGRkJGfPnuX111/n6NGjqKqKh4cHBoOBBQsW4OPjw9tvv01ZWRkAEydORFEU2tpuLYKJjo4mOzub999/H71eT1lZGT4+PmzYsIH6+nqys7NZu3Yt3t7evPjii+j1eoqLi/vDLiEhgZqamrtOghjtpHOLEEI8IOY+Gxm5NeSV1tNUls9EbwvjEmIpLS3Fzc0NrVZLfX09kZGR1NTU4HA46O7uZs2aNUyYMIHt27cTHBzM1atXiY+PZ/369dy8eZOMjAySkpIIDw/n3Llz9NpUrvd60mLREuKh5cfLpvHp/j3ArfP7YmNjqaysZPny5UycOLG/vtdeew0/Pz9qampYv349EyZM4OOPPyYhIYEpU6Y467YNOQk+IYR4ALLKWtiy42J/A2i94kABHvEsZ9nUBOx2Ozk5OTgcDqZPn87UqVMJCQnh888/x2g0snjxYvbu3UtBQQEvvPACx44dQ1EUHnvsMaxWK0eOHKGgoAB9eDJbCzSo3Nr/Z9JpsNut/OMMDzpLLvPyyy/z4Ycf0trais1mIzk5mYkTJxIQEMBbb73FL37xC/bs2UNhYSFr166l1w67viwiJH4iMYEerEoJx3OUr/KUqU4hhPiBzH02tuy4SFfff56MblU1WFQNGZ3R3CirxNvbG19fXxRFYfny5YSGhqIoCikpKeTl5WG326mqqsLf35/g4GB+9KMfodFo+PDDD9HpdKxduxaTly9bCzRY0fZ3YOm1ObCqWv79ihV0RnJzczGbzfz0pz/llVdeITg4mOPHj/Pmm29iMBioqanhscceY8qUKbz5SSab91ZzsNrI1lMl/HNGPrN+lUlWWYszb+egkxGfEEL8QLuyKvjnjPz+0Ps6HXbmGKpINtwagQGYTCY0Gk3/uXxdXV3o9Xrsdjt2u53w8PD+Pp1NTU04HA5CQ0P5rKiDC7boARtNm3QKK0O6CGgvYuPGjf0rSm/LyMigqamJrq4ubDYb8ckT+MWpXvocyl3v5WHUjurTGkbnVQkhxBAqa+oaMPTg1nSkR2gsK2fPISMjAx8fHyZNmnRrT91fvyoqKmhrayM8PJyamhqsVisWiwWbzYaqqvT29lJSUkKHGjFg6AH02lRu1LXjo7fx/vvv43A40Ol06PV69Ho9PT09eHt74+Pjg6IofJpXi93hw0Ab6lUVMnJrRu1pDRJ8QgjxA8UEeuBu0A4YfkYNaHta+OKLQhwOB1FRUSxevLj/dbvdzltvvYVer+fZZ5/l/fffZ9asWSQmJtLb20tGRgYNDQ3o9Xp8qqzo7AM3mjZoINRTh86uY/ny5f0LZ3p6euju7ubatWu4ubnR3d2N1WqlvttrwPeB0X9agzzjE0KIH2hVSjjK3TOGADgcdp5PT2X16tUoikJ+fj6ffPIJlZWVqKrKmTNn8PLyIjg4mJs3bxIeHk51dTWVlZW8+eabuLm5MX36dBobGxnv2YPmHj9Iddj5H1seITo6Gk9PT2bMmMHChQtZvnw5ixYtwsPDg/nz5zNmzBi0Wi1e9KFXBm6aPdpPa5ARnxBC/ECeRh07tsy8Y1WnUQuoKv++fhwnjh5g1qxZ6PV6li9fTk9PD3v37kWj0dDZ2cmPf/xjSkpKyMvLY9y4cRw7doyvvvqK2bNnk5+fT319PcHBwbf29l0u4Xc5FrR6Pb1WB0YtOOx2NkV1EBkaRHx8PDdu3Ojfo3f7fbu6ujh37hxxcXHMnDmT3nMXOVcz8PWM9tMaZHGLEEI8IF1/3cdX1txNpI+RslN7ePWlF7BarWzfvh2LxcJzzz1HeHg4VquV119/HZPJRHt7O+PGjSMvL4+goCBqa2sZN24clZWVpKenM3HiRH7zm9/w6quvUlhYyOlzFynsdidi3BSsLTWYGq6BtY/169dTXV3NhQsX0Gq1+Pn5ERcXR0tLCyEhIUyfPp3MzExKSkpIT09n98kcPqoPRKO9NU3rbtCiKLBjy0xmxPg7+3YOGhnxCSHEA+Jh1N2xIOTzjklkZWWxZMkSFi1axOHDh7lx4wbh4eGcOnWKkJAQHn/8cdrb2/n888+xWq00NTWhqioGg4FXX30Vo9FIW1sber0eT09PLl26xOoVS5lZX8+XXx5Bb7MxZswYiouL2bNnDykpKeh0Op566ikiIyMBeOedd+ju7uaNN95g8uTJ/OQnP+Hw4cOkhHnwX15cyqd5tZQ1dxMT4M6qlPBRu5rzttF9dUII4UQzZsxg27ZtLFq0CIfDgUaj4fLly7S3t3P9+nVefvllbDYbZ8+epbKyEg8PDywWCwaDgevXr+Pv78/UqVOpqakhLCyM8vJy2tvbKS4u7u/pqdVqiYyMJDQ0lHPnzjF27FgAqquriYyMpKKigqqqKgA2b95McHAwZ86cobGxkWeffRa9Xj9qV2/eiwSfEEIMEn9/fyIiIrh69Sqtra2YTCY2bdrE66+/TkJCAl1dXezYsQOr1YpWqyU9PZ1PP/2UadOmYTabaW5u5ve//z06nQ5FUfjzn/+Mt7c3np6e+Pj4EBcXR0hICCdPnmTTpk0UFhaSkZHB8uXLycnJoa6ujqKiIjw8PHj22WdRFIXCwkIuXrzICy+8gF6vd/YtcgoJPiGEGEQzZszgcOYJyuz+VFkj6Nh/gYTYWwtP3nrrLXQ6HbNmzWL+/PnodDquXbtGRUUFzc3NOBwO/Pz8aG9vB+hvd+bu7k5nZycbN25Er9ej0+l49913eeSRR/j444+5dOkSZWVl/Ss7q6qqUBSF+vp6Dh48yJNPPom3t7eT74zzSPAJIcQgatX58x+VYQBYVTcuddrQKB4sNSpEGvVERUXh5+dHRkYGJSUlANhsNmw2Gz/72c/w8PDgtddeY+7cuRQWFnLz5k1KS0uZNGkSHR0dBAQEMHnyZLRaLQcOHMBgMFBWVkZgYCBJSUkUFBQQHh5OV1cXH3zwAcuXLyciIsKZt8TpZFWnEEIMEnOfjVm/yqSrb6CN7SovhZTT1d6Cp6cnDz30EAkJCfj4+PC73/0ORVHYtGkTRqORt956Cx8fH+bPn8+5c+eIjo5GVVVycnIICwsjJSWF8vJy8vPzcTgcKIqCxuBGp18ixfXtPDQ5CW31ZZLixvDwww874U4MLzLiE0KIQZKRW8O9hhYqYI+YzAsb4snMzKS4uJgpU6ag0WiYOHEixcXFVFdXYzKZ8Pf3p729nfr6ejQaDYsXL0aj0bBw4UIOHTrE/v37+6dMg4KCeHv/CQ61x6A22rDhxaUz1SgE8W7a5CG9/uFKRnxCCDFIfn24gK2nSu75+lxfM3M9GvvbiimKgqenJ3q9ntbWVnx8fDAajZjNZnx8fGhsbCQ9PZ2AgADMZjPnz59Ho9GwcuVKNBoNFy9eJLegiHc7k7E47m7MNdqbT39brn31QggxiO7Xw1OHnXBvPcuXLCc+Ph6Hw8H+/ftpampi6dKlvP/xJ1wxe2LucsPQp5JobSUmMpKSkhLOnj2L2WzGZDJht9vZtm0bRqMRk8lEjTYUdeBOZKO++fS3JSM+IYQYJPd7xudh0LJ1hT/5V3Lo7e1l6tSppKamcvr0ac7daODjhiBsf21IrcOBVqPwT4uCqM09Q1JSEmlpabi5uWG326mtraW8vJzq6mo+ut5Hdve9u668sjCe/7o8eTAve9iT4BNCiEH0tyez/21bMFVVqa2tJTs7m4KCAsKiYvg/1zwGPCfPoDh4/0cx6BUH1dXV1NTU0NDQgL+/P+Hh4URERJDdauR3p6voGWCU6W7Q8k+rxsuIT4JPCCEG19d7eN6vLVhfXx//duAC23Lasap3P6PTYWexdxPLxnoTERFBeHg4YWFhGAyG/n/nvqNMecYHyDM+IYQYdH/bw/NejEYjeAZhVTsHfN2GloQpc3nsPlOVA50U8fVRpquHHkjwCSHEsHK/BTHf9py8GTH+XPxl+rcaZboimeoUQohhRKYqB5+cwC6EEMPI7alKD6MWd4MWuDXS8zBqZaryAZERnxBCDEPfdkGM+O4k+IQQQrgUmeoUQgjhUiT4hBBCuBQJPiGEEC5Fgk8IIYRLkeATQgjhUiT4hBBCuBQJPiGEEC5Fgk8IIYRLkeATQgjhUiT4hBBCuBQJPiGEEC5Fgk8IIYRLkeATQgjhUiT4hBBCuBQJPiGEEC5Fgk8IIYRLkeATQgjhUiT4hBBCuBQJPiGEEC5Fgk8IIYRLkeATQgjhUiT4hBBCuBQJPiGEEC5Fgk8IIYRLkeATQgjhUiT4hBBCuBQJPiGEEC5Fgk8IIYRLkeATQgjhUiT4hBBCuBQJPiGEEC5Fgk8IIYRLkeATQgjhUv5/LkgixGNEb24AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVxVdf7H8de9rAoorrgiIpiSkguKmoYbKqJmP7PUXEhNbaac6tc0U1lu5bT+pl/atFm5ZZZTmSUugLjve+AuIJGCioIiO/f8/vDnHUlcWOSCvp+PR4853PM93/O5d+ry5pzz/X5NhmEYiIiIiIiUkNnWBYiIiIhI5aZAKSIiIiKlokApIiIiIqWiQCkiIiIipaJAKSIiIiKlokApIiIiIqWiQCkiIiIipaJAKSIiIiKlokApIiIiIqWiQCkiIiIipaJAKSIiIiKlokApIiIiIqWiQCkiIiIipaJAKSIiIiKlokApIiIiIqWiQCkiIiIipaJAKSIiIiKlokApIiIiIqWiQCkiIiIipaJAKSIiIiKlokApIiIiIqWiQCkiIiIipaJAKSIiIiKlokApIiIiIqWiQCkiIiIipaJAKSIiIiKlokApIiIiIqWiQCkiIiIipaJAKSIiIiKlokApIiIiIqWiQCkiIiIipaJAKSIiIiKlokApIiIiIqWiQCkiIiIipaJAKSIiIiKlokApIiIiIqWiQCkiIiIipaJAKSIiIiKlokApIiIiIqWiQCki9yTDMJg9ezaurq6YTCbWrVt3W8cdPHiQadOm0b17d+rWrYuDgwPu7u60bduWF154gaNHj97ZwkVEKiCTYRiGrYsQESlPcXFxjB07lvXr11tfi46Opnv37jc8Jjk5mdGjRxMREQFAYGAgffv2xdPTk+TkZJYsWUJMTAwODg7MmjWLF1988U6/DRGRCkOBUkTuGYZhMGfOHF5++WXs7Ozw8/Nj27ZtwK0D5bZt2+jcuTMAb7zxBq+88gomk8m6v6CggDFjxvD1118D8OmnnzJhwoQ792ZERCoQ3fIWkXvG9OnTmTx5Ml27diUmJoa+ffsWu4/AwMDrwiSAnZ0dn376KbVq1QLgb3/7G9nZ2WVSt4hIRadAKSL3lLlz57Jq1SoaN25couMHDhx4XZi8ysXFhX79+gGQlpbGxo0bS1yniEhlYm/rAkREysvUqVNvGAZvpUWLFvz888+0b9/+pu08PT2t24mJiSU6l4hIZaNAKSL3jJKGSQB3d3cGDBhwy3bp6enWbRcXlxKfT0SkMtEtbxGRMhQfHw9cCa8PPvigjasRESkfCpQiImUkPT2d6OhoAAYMGFDi5zRFRCobBUoRkTKycOFCsrOzcXBw4B//+IetyxERKTcKlCIiZeDs2bPMmDEDgJkzZ3L//ffbuCIRkfKjQCkiUkoWi4UxY8Zw9uxZhg4dyksvvWTrkkREypUCpYhIKb3wwgusXLmS7t27s2DBglKNJhcRqYwUKEVESmH69On87//+L127duXnn3/G2dnZ1iWJiJQ7BUoRkRKaNWsW06ZNo3PnzoSHh+Pq6mrrkkREbEKBUkSkBN577z1effVVAgMDWbVqFW5ubrYuSUTEZhQoRUSK6X//93/561//SkBAAKtXr6ZatWrXtQkICGD69Ok2qE5EpPwpUIqIFMO//vUvnnvuOdq2bcuaNWuoXr16ke12795tXTVHRORup7W8RURu02effcYzzzyDu7s7U6ZMYf/+/bYuSUSkQlCgFJF7yqJFi6zbBw4csG5HRESQlJQEgIeHB8HBwYWOW7t2LZMmTcIwDNLS0hgyZEj5FCwiUgkoUIrIPWXUqFFFvj5r1izrdlBQ0HWBMjExEcMw7mhtIiKVlcnQN6SIiIiIlIIG5YiIiIhIqShQioiIiEipKFCKiIiISKkoUIqIiIhIqShQioiIiEipKFCKiNxEdl4BZy/lkJ1XYOtSREQqLAVKERsxDIPZs2fj6uqKyWRi3bp1t3VcQkICc+bM4dFHH6V58+a4urri6OiIh4cHPXv25MMPPyQzM/POFn8P2JlwnomLduE3dRUdZkXiN3UVExftYlfCeVuXJiJS4WgeShEbiIuLY+zYsaxfv976WnR0NN27d7/pce+99x5//etfAahatSqjRo3i/vvvx2KxsH//fhYtWkReXh5eXl6sXLmSFi1a3Mm3cddauO0kr/8Ug9lsosDyn69IO7MJi8Vg5uBWjAxsYsMKRUQqFq2UI1KODMNgzpw5vPzyy9jZ2dGpUye2bdt228efO3cOgPr167Nt2zY8PT0L7Z88eTJdunQhISGBQYMGERMTg6OjY5m+h7vdzoTzvP5TDAYUCpNc8/Nry2Jo4eFGgFdNG1QoIlLx6Ja3SDmaPn06kydPpmvXrsTExNC3b98S9fP2229fFyYB2rRpw7PPPgvAsWPHWL16danqvRfN3RSH2Wy6aRuz2cTcTfHlVJGISMWnQClSzubOncuqVato3LhxsY9t1KgR7du3p0+fPjdsExAQYN0+ePBgiWq8V2XnFRBxMOW6K5N/VGAxWHMwWQN1RET+n255i5SjqVOnYjLd/OrXzTzzzDM888wzN23j4uJi3a5SpUqJz3WvsVgsHD6RwC2y5H/aG3ApOx9nB7s7W5iISCWgQClSjkoTJm/X7t27rds9evS44+erzDIzMzlx4gTHjh3j+PHjXMrMxkQ7DG79/5PZBG7O+goVEQEFSpG7ym+//cbs2bMBGDduHK1bt7ZxRRWLYRikpKRw7Ngxjh07RlJSEoZhUK9ePQICAmjevDlnopOJPHzmpre9TVjwq2YhJzMD5+rVy/EdiIhUTAqUIpVYRkYGly5d4vfffycqKor333+f9PR0Zs6cySuvvGLr8iqE3Nxc4uLirCHy0qVLODo64u3tzYABA/D19cXNzc3afny3qqw5mHLTPg3M3MdvfPTRR3Tv3p3AwEDs7HTrW0TuXQqUIpXYM888w/z5860/d+7cmQ8++ICOHTvasCrbO3/+PEePHuX48eMkJCRQUFBArVq18PPzo3nz5nh6emJvX/TXXwevmswc3IrXlt18HsqhbXoTHR1NZGQk+/fvJzQ0tMiR9yIi9wJNbC5iQ9OmTWP69OnA7U1s/kcHDx7k999/Jz09nd27d/PVV1+RkpJC7969+fjjj/Hx8bkDVVc8BQUFnDx50noVMjU1FTs7O5o0aYKvry/NmzenZs3izRm5K+E8czfFs+ZgMhbjyjOTffzqMb5r00LzT54+fZoVK1bw+++/07ZtW3r37k3VqlXL+i2KiFRoCpQiNlTaQPlHaWlpDBw4kE2bNlGzZk22bNnCfffdVwaVVjyXLl2yBsi4uDhyc3Nxc3PD19cXX19fvL29y2RS9+y8Ai5l5+PmbH/DEd0Wi4U9e/YQGRmJ2WwmODiYNm3alMsgLBGRikC3vEXuIu7u7ixevJhmzZpx/vx5xo4dy+bNm21dVpmwWCycOnWKo0ePcuzYMZKTkzGZTDRq1IiuXbvi6+uLh4dHmYc4Zwe7W04NZDabCQgIoEWLFkRERLB8+XL27dtHaGgodevWLdN6REQqIgVKkbtM48aN6d69OxEREWzZsoWjR4/SvHlzW5dVIllZWYWm9cnMzMTZ2RkfHx86d+6Mj49Phbq97OrqyiOPPEKbNm1YsWIFn376KZ06dSIoKEhLYIrIXU2BUuQudN999xEREQFATExMpQmUhmFw5swZ663s3377DcMw8PDwoF27dvj6+tKoUSPM5oq9yFfTpk2ZNGkSW7ZsYePGjcTGxhISEnLXPn4gIqJAKVJJZGZmEh4ejp+fH35+fjdte+0I5vz8/DtdWqnk5eURHx9vHZWdnp6Og4MD3t7ehIaG4uvrS7Vq1WxdZrHZ29vz0EMP0apVK1auXMmSJUu477776NevH+7u7rYuT0SkTClQilQSZ86cYejQofz5z39mzpw5N2177Ngx63ZFnMrmwoUL1quQ8fHxFBQUUKNGDe677z58fX3x8vK64bQ+lU3NmjUZMWIEhw4dYtWqVfzrX/8iKCiITp06ae5KEblr3B3f2CL3kNWrV1NQUHDDMJKUlERkZCQAdevWpUOHDuVZXpEKCgpITEy0hshz585hNptp0qQJvXr1wtfXl1q1at21o6JNJhN+fn40a9aM6OhooqKiOHDggOauFJG7hgKlSCVz/PhxnnvuOd59912cnZ0L7UtNTWXo0KHk5OQA8M4779jsKlhGRkahaX1ycnJwdXXFx8eHnj174u3tjZOTk01qsxUnJyf69evHAw88wIoVK/jqq69o06YNwcHBFWpwkYhIcWkeSpFytmjRIuv2Dz/8wI8//gjAK6+8QsuWLQHw8PAgODi40HHnzp0jMDCQuLg4ABo1asTQoUOtwezXX3/l66+/5vz581SpUoW3336bZ599tpze1ZUBNadOnbKGyFOnTgHQsGFD6+Ti9erVu2uvQhaXYRjs3r2bqKgoTCYTvXv3pm3btvp8RKRSUqAUKWe3ExiCgoJYt27dda8bhsHatWv55Zdf2L59u3UQC0CNGjVo0aIFvXr1IiwsjMaNG5d16dfJzs4uNK3P5cuXcXZ2plmzZvj6+uLj44OLi8sdr6Myy8jIICIiggMHDtC4cWNCQ0Px8PCwdVkiIsWiQCkit80wDM6dO2edXPy3337DYrFQt25dfHx8aN68OY0bN67w0/pURPHx8YSHh5Oamkrnzp01d6WIVCoKlCJyU3l5eSQkJFin9UlLS8Pe3p6mTZtalznUNDhlo6CggC1btrBhwwaqVq1KSEgILVq0sHVZIiK3pEApItdJS0srNK1Pfn4+7u7u1gDp5eWFg4ODrcu8a124cIGVK1dy7NgxmjdvTkhIiEK7iFRoCpQiQkFBAUlJSdZb2WfPnsVsNuPp6Wm9lV27dm0NGClHhmFw+PBhVq5cSVZWFkFBQXTu3LnCzl1pGAZz5szh5Zdf5vLly0RHR9O9e/di9ZGRkcFf//pXPv30UwzDQL+eRCoPBUqRe9Tly5c5fvy4dUBNTk4OLi4u+Pj44OvrS7Nmza6blkjKX05ODuvWrWP79u3Url2b0NBQmjRpYuuyComLi2Ps2LGsX7/e+lpxA2VUVBTjxo3j5MmT1tf060mk8lCgFLlHGIbB6dOnrbeyf//9dwAaNGhgvZXdoEEDXYWsoJKTk1mxYgVJSUm0adOG3r1723wE/bVXJe3s7PDz82Pbtm3A7QfKa69K+vj4kJ+fT3x8vLV/EakcNLG5SCWQnVfApex83JztcXa4/VueOTk5hab1ycjIwMnJiWbNmhEQEICPjw+urq53sHIpK/Xq1WPs2LHs2bOHyMhIjhw5YvO5K6dPn8706dPp27cvn3/+OV988YU1UN6uAQMGsHHjRp577jnefPNNQkJCrIFSRCoPBUqRCmxnwnnmbooj4mAKFgPMJgj28+Cprt4EeNW8rr1hGKSmplqvQp48eRKLxULt2rVp3bo1vr6+eHp6Vtjn8OTmTCYT7du3p0WLFkRERPDzzz+zb98+m85dOXfuXMaNG1fi4z08PNi4cSNdunQpw6pEpLzplrdIBbVw20le/ykGs9lEgeU//5namU1YLAYzB7diZGAT8vPzSUhIsIbICxcuYGdnV2hanxo1atjwncidkpCQwIoVK0hNTaVTp0507969XOeuNAyj0NXRadOmMX36dOD2b3n/sY/u3btbn8XUryeRykNXKEUqoJ0J53n9pxgMKBQmuebnKcti+O3X7RhnjpOXl0e1atWsSxw2bdpU0/rcA7y8vJg0aZJ17srY2Fj69etHixYtyuU2eFmcQ8/sitwdFChFKqC5m+KuuzL5RyYsbEix49Wgh/D19aVu3br65XwPsrOzo1u3brRq1YqVK1fy3Xffae5KESl3Wh9NpILJzisg4mDKTcMkgIGZI5edCQjsjIeHh8LkPa5GjRoMHz6cxx57jOTkZD766CM2btxIQUGBrUsTkXuArlCKVDCXsvO5RZa0shhX2hdn5LfcvUwmEy1btqRZs2asW7eO6OhoDhw4QGhoKF5eXrYuT0TuYrpCKVLBuDnbY77Ni41m05X2ItdydHSkT58+TJw4EWdnZ+bPn8+yZcu4fPmyrUsTkbuUAqVIBePsYEenxi6YsNy0nZ3ZRB+/ero6KTfk4eHB2LFjGThwIEeOHGHOnDns3r1bo6dFpMzp0oZIBRMbG0uNlD0YNL9pO4vFYHzXpuVUlVRWJpOJdu3acd999xEZGckvv/xinbuyXr16ti5PRO4SukIpUoEcOHCA77//nl7+Xswc1AoTV65EXsvObMIEzBzcqsjJzUWK4uLiwsMPP0xYWBg5OTl89tlnrF69mpycHFuXJiJ3AV2hFKkg9u7dy/Lly2nTpg0DBw7EbDbTsn415m6KZ83B5P+slNPSg/FdmypMSok0adKEiRMnsnXrVtavX8/BgwfLde5KEbk7KVCKVAA7d+4kPDyc9u3bExoaav3FHuBVkwCvmiVey1ukKHZ2dnTt2rXQ3JW+vr6EhIRoVSURKRHd8haxsW3bthEeHk5gYGChMHktZwc76rg5KUxKmXJ3d2fYsGE8/vjjpKSk8K9//UtzV4pIiegKpYgNbdq0iaioKB588EF69eqlW45S7kwmEy1atMDb21tzV4pIiekKpYgNGIbB+vXriYqK4qGHHlKYFJu7du7KKlWqaO5KESkWXaEUKWeGYbB27Vo2bdpEz5496datm61LErHy8PDgySefZO/evURGRnLkyBF69epF+/bti/yjZ9GiRdbtAwcOWLcjIiJISkqy9hkcHFzk+VJSUoiIiCj0c1F9+/v74+/vX/I3JiJ3lMnQDLci5cYwDNasWcO2bdsIDg6mS5cuti5J5IYyMzOJiIhg3759NGrUqMi5K2/nynpQUBDr1q0rct+6devo0aPHLfuYOnUq06ZNu52yRcQGFChFyolhGKxcuZKdO3cSEhJCx44dbV2SyG05efIkK1as4Ny5cwQGBtK9e3ecnJxsXZaIVCAKlCLlwDAMfv75Z/bu3cuAAQNo3769rUsSKZaCggK2bdvG+vXrcXZ2pl+/frRs2VLP/ooIoEApcsdZLBaWL1/OgQMHGDRoEG3atLF1SSIllpaWxqpVqzhy5Ag+Pj70799fc1eKiAKlyJ1UUFDAsmXLiI2N5b/+679o1aqVrUsSKROHDx9m5cqVZGZm0q1bN7p06YK9vcZ5ityrFChF7pCCggL+/e9/c/ToUR599FFatmxp65JEylRubi7r169n27Zt1KhRg9DQUJo2bWrrskTEBhQoRe6A/Px8vvvuO+Li4njsscdo3ry5rUsSuWPOnDnDihUrSExMxN/fn+DgYFxdXYtsq2VERe5OCpQiZSwvL49vv/2WkydPMmzYMJo1a2brkkTuOMMw2LdvHxERERiGcd3clTsTzjN3UxwRB1OwGGA2QbCfB0919SbAq6aNqxeR0lKgFClDubm5fPPNN/z+++8MHz5ct//knnPt3JUNGzYkNDSUyJO5vP5TDGaziQLLf37l2JlNWCwGMwe3YmRgExtWLSKlpUApUkZycnL4+uuvSUlJ4YknnsDT09PWJYnYTGJiIitWrODX5EzCc1vctK0JWDqxs65UilRiWstbpAxkZWWxcOFCzp49y+jRoxUm5Z7n6enJhAkTOFOzFSZuft3CbDYxd1N8OVUmIneC5ngQKaXMzEwWLlxIeno6o0ePpn79+rYuSaRCyLPAnpR8DG4++XmBxWDNwWSy8wo0UEekklKgFCmFjIwMFi5cSEZGBmPGjMHDw8PWJYlUGJey87Hc5kNVFuNKewVKkcpJgVKkhC5dusSCBQvIzs4mLCyMOnXq2LokkQrFzdkes4nbCpVm05X2IlI56RlKkRJIT09n3rx55ObmKkyK3ICzgx3Bfh7YmW9+y9vObKKPXz1dnRSpxBQoRYrpwoULzJs3D4vFQlhYGLVq1bJ1SSIV1viu3lhucYnSYjEY31VTbIlUZgqUIsWQmprKvHnzMJvNhIWFUaNGDVuXJFKhdfCqyczBrTDBdVcqTVgAmDm4laYMEqnk9MCKyG06e/YsCxYswNnZmdGjR+Pm5mbrkkQqhZGBTWjh4cbcTfGsOZhsXSnHxzmLLrVyeKKjptkSqew0sbnIbUhJSWHBggW4uroyevRoXFxcbF2SSKV07Vrep5MSWbBgAQ8//DBt2rSxdWkiUgq65S1yC6dPn2b+/PlUq1aNMWPGKEyKlIKzgx113JxwdrCjadOmtGrVisjISLKzs21dmoiUggKlyE0kJSUxf/58atasyejRo6lataqtSxK5qwQHB5OXl0d0dLStSxGRUlCgFLmBxMREFi5cSN26dRk1ahRVqlSxdUkid51q1aoRFBTEzp07SU5OtnU5IlJCCpQiRYiPj2fRokU0aNCAkSNH4uTkZOuSRO5agYGB1K5dm/DwcPRYv0jlpEAp8gfHjx9n8eLFeHp6MmLECBwdHW1dkshdzc7Ojv79+/Pbb7+xf/9+W5cjIiWgQClyjaNHj7JkyRK8vb0ZNmwYDg4Oti5J5J7g5eVFq1atiIiI0AAdkUpIgVLk/x06dIhvv/2W5s2b89hjj2Fvr2laRcpTnz59yM/PZ+3atbYuRUSKSYFSBIiJiWHp0qX4+fkxZMgQ7Oy0prBIeXNzc6N79+7s2rVLA3REKhkFSrnn7du3jx9++AF/f38eeeQRhUkRG+rYsaMG6IhUQgqUck/bvXs3P/30E23atOHhhx/GbNZ/EiK2pAE6IpWTfnvKPWvHjh388ssvdOjQgYEDB2IymWxdkohwZYBO69atiYiIICsry9bliMhtUKCUe9KWLVtYuXIlnTt3JiQkRGFSpIIJDg4mPz9fK+iIVBIKlHLP2bBhAxEREXTt2pXg4GCFSZEK6NoBOqdPn7Z1OSJyCwqUcs8wDIPo6Giio6Pp3r07vXr1UpgUqcA0QEek8lCglHuCYRhERkayYcMGevfuTVBQkK1LEpFbuDpAJykpiX379tm6HBG5CQVKuesZhsHq1avZsmULffv25cEHH7R1SSJym64O0ImMjNQAHZEKTIFS7mqGYbBixQq2b99OaGgonTp1snVJIlJMVwfoaAUdkYpLgVLuWhaLheXLl7N7924GDRpEQECArUsSkRK4OkBn9+7dGqAjUkEpUMpdyWKxsGzZMvbv388jjzxC27ZtbV2SiJRCx44dqVOnjgboiFRQCpRy1ykoKOD7778nNjaWIUOG4O/vb+uSRKSUNEBHpGJToJS7Sn5+PkuXLuXw4cMMHTqU+++/39YliUgZadKkiQboiFRQCpRyS4ZhMHv2bFxdXTGZTKxbt67EfVksFjp37ozJZCp1X3+Ul5fHt99+y/Hjxxk2bBgtWrQos75FpGLQAB2RikmBUm4qLi6OHj16MHnyZC5fvlzq/mbPns22bdvKoLLCcnNz+eabb0hISGDEiBH4+vqW+TlExPbc3Nzo0aMHu3bt4tSpU7YuR0T+nwKlFOnqVUl/f3/27t1bJtPtJCYmMmXKlDKorrCcnBwWL17M77//zsiRI/H29i7zc4hIxdGxY0fq1q2rAToiFYgCpRRp+vTpTJ48ma5duxITE0Pfvn1L3eekSZPIysoiNDS0DCq8Ijs7m0WLFpGcnMzIkSNp0qRJmfUtIhWT2Wymf//+/P777+zdu9fW5YgICpRyE3PnzmXVqlU0bty41H19/fXXrFy5kr/85S9lNh9kVlYWCxYs4Ny5c4wePbpM6hSRyqFJkyb4+/sTFRWlAToiFYACpRRp6tSpjBs3rkz6Sk1N5fnnn8fLy4sZM2aUSZ+XL19m/vz5pKenM2bMGBo0aFAm/YpI5REcHExBQYEG6IhUAAqUUiSTyVRmfT333HOcPXuWjz/+GBcXl1L3l5GRwfz588nIyGDMmDHUq1evDKoUkcrG1dWV7t27a4COSAWgQCl31OrVq1m0aBEjRoygX79+pe7v4sWLzJs3j+zsbMLCwqhbt24ZVCkilZUG6IhUDAqUcsdcvnyZiRMnUqtWLT744INS95eWlsa8efPIz88nLCyM2rVrl0GVIlKZaYCOSMWgQCl3zKuvvsrJkyd5//33qVOnTqn6On/+PPPmzQMgLCyMmjVrlkGFInI3uDpARyvoiNiOAmUFUZrVaFJTU3nzzTd58MEHqVmzJg4ODri7u9OhQwemTJlik2eLduzYwezZs+nduzdjxowpVV/nzp1j3rx52NvbExYWhru7exlVKSJ3i+DgYCwWC1FRUbYuReSepEBZAZRmNZpNmzbh5+fHlClTOHHiBOPHj2fOnDk888wzXLhwgTfffBM/Pz/Cw8PvUPXXy8vLY/z48Tg5OfHJJ5+Uqq8zZ84wb948nJ2dCQsLo1q1amVUpYjcTVxdXenRowe7d+/WAB0RG1CgtKHSrkaTkpLCwIEDOXPmDC1btiQ2NpZ33nmHiRMn8sYbb3DgwAG6d+9Oeno6Q4YM4fjx43fonRT29ttv8+uvvzJ16lSaNWtW4n6Sk5OZP38+rq6ujBkzBldX1zKsUkTuNh06dMDDw0MDdERsQIHShkq7Gs1nn31GWloaAP/4xz+oVatWof1Vq1a1DobJzs7mn//8Z9kUfhNHjx7ljTfeoHnz5owZM4Zz585d909mZqa1fXp6eqF9V506dYr58+fj7u7OmDFjymS6IRG5u5nNZkJCQjRAR8QG7G1dwL1u7ty5JZ5AfOfOndbtwMDAItv4+/vj7OxMdnY2W7duLdF5imPLli3k5ORw9OhR6tevf8v2gwcPLvSzYRj89ttvfP3119SpU4cnnngCZ2fnO1WuiNxlmjRpwgMPPEBkZCQtWrSgatWqti5J5J6gQGlDU6dOLdUE4rm5udbtG31pmkwmqlSpQnZ2drGfzyyJvn37EhERcdM2CxYsYOHChQC89957PPDAA9Z9J0+e5Ouvv6ZBgwYMHz4cJyenO1qviNx9evfuzeHDh1m7di0DBgywdTki9wQFShsq7Wo0/v7+rF69GoDDhw/TsWPH69qkpKRw4cIFAHx8fEp1vttRv379W16Z3LRpk3W7ffv2dO/eHbgyOJCwFo8AACAASURBVGnRokU0btyYYcOG4ejoeCdLFZG71NUBOqtWraJdu3ZamlWkHOgZykrs6aeftg5Ueeutt4psc+3rEyZMKJe6SuLYsWMsXrwYLy8vhg8frjApIqVydYDOihUrNEBHpBwoUFZiTZs2JSIigqZNm/Ljjz/y8MMPs27dOhITE9m8eTPjx4/ngw8+wM7OjlmzZvHwww/buuQiHT58mCVLluDj48Pjjz+Og4ODrUsSkUru6go6p06dYs+ePbYuR+Sup1velVynTp04ePAg//M//8M777zD8uXLrfucnJx4+umnGT9+PO3atSt234sWLbJuHzhwwLodERFBUlISAB4eHgQHB9+yr4iICFJSUq7ra/HixZw/f5769eszYMAA7O31r6SIlA1PT08eeOABoqKiaNmypQboiNxB+u1dye3YsYNJkyZZ57EMCwvD09OTlJQUlixZwrx580hPT2fmzJl4e3sXq+9Ro0YV+fqsWbOs20FBQbcVKN98803Wr19/3euff/65dbtWrVq0bdu2WDWKiNzM1QE6UVFRDBw40NbliNy1FCgrsa1bt9KrVy+ysrIYNWoU8+bNw2z+z1MMYWFhvPrqq8yaNYvw8HAiIiIICAi47f7L8rmjPy4luXfvXpYvX06bNm0YOHBgobpFRMrKHwfoNGzY0NYlidyV9Fu8kjIMg/Hjx5OVlYWrqytz5swpMpTNmDEDb29v0tLSGD58OAUFBTaotrBdu3axfPly2rdvz6BBgxQmReSOunYFHYvFYutyRO5K+k1eSe3bt4+DBw8C0KNHjxuucW1nZ2e9zXP8+HHWrl1bbjUWZdu2baxYsYLAwEBCQ0NLPXWSiMitXDtARyvoiNwZCpSV1NGjR63bXl5eN21bu3Zt6/bQoUNxcnLC1dUVX19fRo8eTXR09C3Pd/DgQd59910GDhxI06ZNqVq1Kk5OTjRo0ID+/fvz1VdfkZ+ff9M+Nm/ezOrVq3nwwQfp27evwqSIlJtrB+hcu/yriJQNBcoSMAyD2bNn4+rqislkuu75wNsRERHBmDFj8PHxwcXFBXd3d+bMmWPdf/r06Zsef+1t4ps96zhx4kSmTZtm/fmBBx7gww8/5M0336RZs2YsXLiQnj17Mnz4cHJycors49lnn+X+++/npZdeYvPmzQwePJj333+fN998k65du7Jq1SrGjh1Lhw4dSE5Ovu54wzBYv349kZGRPPTQQ/Tq1UthUkTKXe/evbFYLERFRdm6FJG7jgblFFNcXBxjx44tcsTy7UhLS2Ps2LH8+OOPdOzYkSeffJJ69epx5swZPvzwQ2u7ZcuWMXz48Bv2c+1VyRMnTtyw3fz58ws9N/n0008zbNgwAP7yl7/wySef8PTTT7NkyRJMJhOLFy++ro+zZ88C0KpVKzZs2ECNGjUK7V+1ahX9+/dn3759PP7444U+G8MwWLt2LZs2baJnz55069bthrWKiNxJrq6u9OzZk5UrV2qAjkgZ0xXK23T1qqS/v791ip7iyszMZMCAAfz444/MmTOH7du38+qrrzJu3DhefvllJk6ceNt9tW/f3rqcWHR0NKmpqTdse/VqoKOjI7169Sq0b9KkSfTr1w+Ab775hu3bt9+wn3/961/XhUmAfv36MXToUAA2bNjArj37gCufWUREBJs2baJPnz4KkyJicwEBAdSrV08DdETKmALlbZo+fTqTJ0+ma9euxMTE0Ldv32L38frrr7N582b+9Kc/8ec///mmbZ2dnW+632w2849//AOA7Oxsxo4dS15eXqE2hmGQn59vvSX+3//939SpU+e6voYMGWLdvnZi9KuaNWtGly5d6Ny5c5G17Ew4z0lzPevP/Wd8w8SFu5izJJytW7cSEhJyw2NFRMqTVtARuTN0y7sY5s6dy7hx40p0bFxcHB9++CEmk4lXXnnF+vqNVqNp1KiRdd+NVqMZPXo0Z86c4ZVXXmH58uW0atWKkSNH0qhRI86cOcN3331nvd399NNP88YbbxRZm6enp3U7MTHxuv1vvvnmDd/Xwm0nef2nGC5duCbM2jsRcTCZ1cCEtj3p2LHjDY8XESlvjRs3pk2bNqxduxY/Pz+toCNSBhQob9PUqVNLNZBkwYIF5OXl0b59+0LP7ZR2NZoXX3yRQYMG8dlnn7Fu3Tref/99MjIyqFq1Kp6enkyYMIFx48bdNNSlp6dbt11cXG77Pe1MOM/rP8VgANmnj1950c4Bp4YtsHDls/p870X6dDxPgFfN2+5XRORO6927N4cOHdIKOiJlRIHyNpV2VPK///1vAPz9/Qu9npOTQ15eXrGC3B81b96c9957r8THx8fHW7eL85zj3E1xmM0msk6f4HLsOgCqd3kcu6rVrW3MZhNzN8UrUIpIheLi4mIdoNO2bVsaNWpk65JEKjU9Q1kOMjMzOXToEHDl9nJ6ejqvvvoqzZo1w9nZGVdXV6pXr87gwYPZuHFjude3bNky4Mqt9f/6r/+6Zfv09HROJCTy85p1nFu3gORFL2Gys6dmyLO4PzisUNsCi8Gag8lk59l+hR4RkWtpgI5I2dEVynIQGxtr/bJKTEykdevWXL58meeee462bdty8eJFlixZwk8//cRPP/3Ea6+9xowZM8qltpiYGLZu3QrAzJkzqVKlyg3bGobB2bNnCQkJKfQwe5VmAdToOR6HWkX/hW8x4FJ2Ps4OdmVbvIhIKVwdoPPll1+yZ88eAgICbF2SSKWlQFkOrs7jCPDVV19Rq1Ytdu7cibe3t/X1ESNG8Pe//523336bmTNn0rRpU5588sk7WpdhGEyePBmAkJAQxo8ff93+M2fOkJCQwMmTJ0lISCArK4sOHTrQyv8Bws/XJuf3w2TErOXU3D9R9b4u1AyeiJ1L4amFzCZwc9a/aiJS8VwdoBMVFaUBOiKloN/y5eDSpUuFfv773/9eKExeNWPGDL7++muSkpJ4+eWXGTFiBE5OTnesrrfeeovo6GiaN29uHVGenJxsDZAnT54kKysLOzs7PDw8qFmzJmfOnKF+/fr4+PiQcbYWe1IeolrgEFKWTCHz8CZyTx+j3uj3sXNxB8DObCK4pYeuTopIhdW7d28OHz5MZGQkgwYNsnU5IpWSnqEsB39c4/rRRx8tsp2jo6P1GcaUlBQiIyOva5OdV8DZSzmlfibx+++/Z8qUKdSrV49Zs2axZs0a3nnnHT799FMiIyPJysoiICCAoKAgGjVqxKlTpzh//jwdOnTg2WefpVWrVnhciMUA7KvVpvaA56+81/QUzkd9bj2PxWIwvmvTUtUqInInubi40KNHD/bu3UtSUpKtyxGplHSFshy4urpat11cXAotm/hHbdq0sW7v2LGD0NBQ4MoUPXM3xRFxMAWLceU2crCfB0919b7tEdQWi4WUlBS+/fZbXnrpJVxcXBgyZAiHDh2icePGBAYG4uXlRbVq1Thw4AB79uzh0qVLNGrUiEceeQQ/Pz/s7OzYsGED69ato3mN6lxITWRrvifODZpjX6MB+RdOkXl4M6b+k8HeiZmDW2mEt4hUeAEBAezdu5fw8HDGjx+P2azrLSLFoUBZDmrXrm3ddnd3v2nbWrVqWbfPnDkD/GfycLPZhOXKojdYDIg8dIY1sSnMHNyKkYFNruvLYrFcdwv70KFDfPPNN1SpUoXZs2cTFBREw4YNsbOzIz4+nh07dnD48GHs7e3x9/e3joIEKCgoYPny5ezbtw8vLy8SEhJoYQ/etZzYdNaRlJoNyb9wCiz5tKuexcsjuytMikiloAE6IqWjQFkO/Pz8rNt/vP39R1eXSQSws7MrNHl4gcUo1Pbqz68ti6GFhxvtPN05ffq0NUAmJiaSk5ODvb09jRs3pmrVqixdupTq1asTHR1Nq1atyMrKYufOnezatYvz589Tp04dQkJC8Pf3x8nJibNnz/Lvf/+b1q1bs2PHDhISEggMDGT79u3Y2dlhsVjo1qIhbtn7SHHI4Mj/1/a3Pr4KkyJSqVw7QKdly5almh9Y5F6jQFkOatSogY+PD8ePH+f8+fPk5+djb1/0R3/tiPAGDRpYJw//Y5i8lskEU79ZT1cOk5ubi4ODA40bN6ZLly54eXnRsGFDtm3bRr9+/ahatSqRkZHUqFGDZcuWWac08vPzY+vWrezevZs//elP1r5jY2MZOnSo9ZZ3Xl4ezz//PMnJyVy6dAkHBweqVavGfffdR0ryaetx1y7neK2dO3eydOlSNm7cyNGjR7l48SJubm40b96c4OBgJk2aVGglIRGR8nR1gE5UVJQG6IgUgwJlORkyZAhvv/02eXl57N+/n/bt2xfZ7tr5HX9ZsYIdv/6Tgsw0TGZ77Fxr4NSgBa7+wTg3+c+KOxYDDl504IW+D9K8WVMaNGiAnd2VUdWbN29m7NixrF27FsMwcHR0ZPz48bRu3Rp/f38eeugh2rZti6urK7NnzyYhIaFQPampqQBERUWxYsUKcnNzqVGjBn5+ftSpU4dOnTrxxRdfFJqQvWHDhtbb5FcdOnSIsLAwduzYAVz50n7uuedo0KABJ0+eZOHChbzxxht88MEHfPLJJzzxxBMl/7BFREro6go64eHhtGvXTivoiNwmPXVcTp5++mmcnZ0BWLhwYZFtMjMzmTdvnvXnxMREXFo+RM3eE3F/aBT27vW5HBtNyjevcPandzDy86xtDUz4tw+kcePG1jA5bdo0unbtSlRUFIZhXBmZ7eHB/v37+eqrr9izZw8FBQXs2rWLdevWkZaWVqieY8eOsWrVKgAuXrxIbm4uLVq04NVXX6VPnz5MmTKFgQMHEhoaWujZT0dHx+tWndi/f781TC5cuJCIiAhee+01xo0bx4wZM4iNjaVnz55kZGQwevRoVq5cWcJPWkSkdNq3b39bK+gYhsHs2bNxdXXFZDKxbt26Yp3n119/Zfz48Xh7e+Ps7EyDBg0YOHAgv/zySynfgUj5U6AsJ02aNGHq1KkAfPzxx6xfv77QfsMweOGFF8jKygLgwQcf5EDMQWr1Gotb2xCqdXgYj8dnULPvldvRmYc2cC78A+vxf5w8fM6cOUyfPr3QOWJiYjh06BB5eVeC6MKFC+nRo4f1n/3791vb7t69m2+++YbmzZtTv3596+sXL17khx9+IDY2lh07dvDcc8/x8ccfk5qaah0VGR8fT3R0dJGfw2OPPcbIkSOve71q1arMnz8fBwcHLBYLL7zwwi0+URGRO8NsNhMaGsrp06fZvXt3kW3i4uLo0aMHkydP5vLly8U+x+eff05AQAALFiygZ8+efPjhh4SFhbF161YGDhzI+PHjtRykVCq65V0MVyf/Bjhw4IB1OyIiwjp3mYeHB8HBwUUe//e//53z58/z3nvvERwcTFhYGB07duTSpUt89913bNu2DQBnZ2d+/PFHalZ3o7OnC1tOZmBgAsCtbX8yj20nO243mQfXkxMwiCoNmvOQdw2cHexIT08nMjKSF198scTvMzIyks2bN9OhQwf69etHjx49CAwMpGbNmphMJvbu3cuOHTv4+eefcXR0pFWrVvTp04c9e/awZs0aAH788Ud69ep1Xd83eyapUaNGdOzYkc2bN3P48GGOHTuGr69vid+HiEhJNWrUiLZt27J27Vr8/PysA3QMw2DOnDm8/PLL2NnZ0alTJ+t39+365ZdfmDRpEoZhsGzZskLfi+PGjaNz58588cUX1KpVi7fffrtM35fInWIyrh1WLDdlMplu2SYoKOiWtz22bNnCxx9/zIYNG0hOTsbZ2RkfHx9CQ0N555136NatGytXriQiIoKftx0kPPc+4D/nvrR/NedXzgagWufHqBE0iv6OR/B1N3Px4kXWrVtnreHYsWP4+PhcV8OJEyesr0+ZMoWZM2eSn5/PTz/9RExMDH369KFTp06cPn2aL7/8ktzcXKpXr87ly5fx9vZm5MiRnDlzho8//piRI0dy+fJl3n33XWvoHjBgAD///LP1fKdOnWLPnj1069aN6tWr3/CzGTFiBN988w1wJdgWFUpFRMrD5cuXmTNnDi1btrSGvmnTpjF9+nT69u3L559/zhdffGG9GxQdHU337t1v2mdOTg6+vr789ttvPP744yxZsuS6Np988glPP/00ZrOZAwcOcP/995f5exMpa7pCWQxllb27dOlCly5ditzXuXNnXFxcmDt3LufOnWNM/2A6Wzx4bXkMZsCCCftqdaztCy6e4aGqp/GwZHDx4pWphk6cOAFcuc1eVJgEaNasmXUuyaVLl/Lyyy/z7bffcurUKYYOHYqfnx8ZGRksWbKEevXqERQUxOLFizGZTPTr1w+A48ePY29vT5MmTdizZ4/1VjpgfY7zqgYNGtCgQYNbfjbp6enWbU3ZISK2dKMBOnPnzmXcuHEl6nPBggX89ttvADz11FNFthk5cqT1Eai33nrrhs/di1QkeoayAjEMg7p167Jx40YKCgoYP348gYGBdKsP/R2P0LGhMyYMLDmZ1mOaOGfTu4kTjz76KI0aNeLChQvWLysfH5+bhuB27doBcOTIEf75z39y7tw5Ro8ejZ+fH/n5+Xz33XcYhsGQIUMIDw/HZDLRoUMH60TtJ06cwMvLC3t7e7KzswutWX6jIHsr8fHxALi5uRVaNUhExBbat29P/fr1WbFiBRaLhalTp5Y4TAIsXboUuDJ4sVu3bkW2cXV1JTAwEIDly5eTm5tb4vOJlBcFygoiKyuLpUuX8ssvv+Dv789TTz1lnXpn8+bNtK5XlSd9CxjptIdWGXutx3Vt78/Zs2dp2rQpY8eOLTTFxaVLl5g/fz6nT5++7nxwZRLfq06dOsW4ceNo3LgxhmEQHh7OqVOnePzxx9m/fz9paWk4OjoSFBQEQG5uLidPnqRZs2YAZGdnc+jQIQCqV69O69ati/0ZHD161NpHWFiYdVS8iIitXF1BJzk5md27d9/Wo083UlBQwIYNG4ArC144OjresO3VP/gvXrzIrl27SnxOkfKiQFkBnDx5kk8++YT4+HiGDh3KwIEDrV80hw4d4vjx46SmprJt2zbsTQa/n4wDrizjePXZxxUrVgBXRktf5erqytmzZ/nss8/46aefyMjIKHTea78Y/fz8qFnzyso2u3btYu/evYSGhuLs7GydYzIoKMjaf0JCAgUFBdYrkUeOHLFeXRw1apR1tHpxfPbZZ8CVieCnTJlS7ONFRO6EawfolGRE91XHjx8nJycHKPwHfVGu3R8bG1vic4qUFwVKG7JYLKxbt4758+fj7u7OpEmTrLebf/31V7766iu+++47TCYTnTp1ol+/fqSkpHDs2DEAevbsSe3atRkwYAAHDx7kwIEDhW4733fffWRlZeHm5sahQ4eYPXs2mzZtIj8/n23btlmvBgLWL7mEhARWrVpFx44dadOmDeHh4ZjNZmrUqEHHjh2t7U+cOEH16tWpVasWhmHw6aefAhASEsJjjz1W6FnI23H48GHmzJkDXJlWqW7duiX7UEVE7oCrAwQjIyNL3Me1C0d4eHjctO21+/+44IRIRaRAWQq3mtQ2O6+As5dyyM4ruO7YuLg4hgwZwqhRo3j//fetYbJbt25MmDCBH374AYvFgslkIjg4mN69ewNYJxr38fGhdevWJCUlcf/99+Pv7094eDgXLlywnqNly5Y89dRTODs7k5eXh4eHB9HR0bz77rusXr260JQ8mZmZpKWlsXTpUuo38qRdlyB27d1PfHw8+fn5BAcHFxpoc/z4cXx8fDCZTLz11lvExsZSv359Fi1ahLu7O9nZ2daQeiuZmZkMHz6cnJwcXnzxRR5//PHb/v9ARKQ8uLi40KtXL/bt22d9Tr24rv2D/1aP9FSpUqXI40QqKo3yLqG4uDjGjh173QTlADsTzjN3UxwRB1OwGFcmHQ/28+Cprt4EeNXk008/5fnnnycrK4tWrVoxfPhw0tLS+PXXX9m5cyebNm1i6NChBAQEkJqaal2m8YsvviA+Pp7mzZvzyCOP4OjoyLFjx/D09CQkJISTJ0+yb98+ax25ubnUr1+fCRMmEB0dzZYtW3B0dLQ+4H11WUUAJycn3pv/I1svexJ/wZU33orGhIGXvS896lto0aKFte2FCxc4f/48wcHBfP/990yZMgV3d3dmzJhBzZo1rbfWL168SJ06/xmRXpSCggJGjRrFvn37GDFihOZcE5EKq127duzZs4fw8HCeeuop62IOt+vaR4Fu9vzkH/dnZmbepKVIxaArlMV09aqkv78/e/fupVOnToX2L9x2ksc+3UrkoTNY/n+AtcWAyENnGPrpVkb+/V3+/Oc/k5WVRXBwMGPHjsXFxYX27dvz0UcfsWfPHurUqcPSpUuZOXMmHTp0wNHRke+//54vvviC6tWrs3LlSry8vHB1deX48ePAlb92Bw8eXOiLJzs7GwB7e3s6d+5M7dq1yc3Nxc7OjoCAgELPAq3ac4JFyXVIyHW11m1gIiHfjS9/q8HXOxKtbY8fP47ZbOb48eM88cQT1K1blz/96U94eXkBWOeZvNVtb8MwrFdjH330UebPn1/sL2gRkfJy7QCdkgyUufaq461Gbl+7/9pn40UqKv32Lqbp06czefJkunbtSkxMDH379rXuO5x8kdd/isEACiyFp+spsBhYDIOl8z6hoKAAJycnAgMDadq0KePGjWPChAm0a9cOPz8/ZsyYAcCOHTuwt7dnzZo1PPHEE1SvXp0XX3wRb29v6/M1ycnJXLx4EQAvL69C81umpKQAcPbsWb744guys7N58sknadeuHbt27Sr013KM0QAwUfCHWYaM//9X5LVlMexKOA9ceX7y0qVLPPbYY1SvXp21a9dSvXp16y0cNzc3TCbTTQOlYRhMmjSJL7/8kkceeYRvvvkGe3tdMBeRiu3qAJ3o6OhiD9Bxc3Ozbl/9g/9Grv1+vvY4kYpKgbIE5s6dy6pVq64bpbfi19OYzTeeUiIvJY7clCsjtLt27corr7zC4MGDadSoUaER148++igmkwnDMJg+fTqDBw+mevXqTJkyhaZNmwJXHti+dOkSJpPJepUSYPjw4dbtxMREEhIS+PLLL3FwcGD8+PF4enrSv39/Ro0aZQ2cAE61m9z0PZvNJuZuiqegoICoqChmz56Ni4sLUVFRtGjRguzsbGugNJvNuLm53TRQPvvss3z22WcMGjSIb7/9VmFSRCqNq8+0F3eAztW7OECh79+iXLu/SZObfz+LVAT6LV5MU6dOveE8ZLsSzuPk2ajIfQA5p49at+vVb2Cdj+zq5ONX/zclJYXq1auTlpZGVFQU1apV4/XXXyc7O5vU1FSWL1/OxYsXyc/Pp0qVKmzYsIHExERrH/Xq1SM5OZkNGzawYMECqlatSq1atYiIiCh0rqvzU9rXbIjZrfZN33eBxWDNwWS++/f3LFiwwBomW7VqRU5ODoZhWAPlxIkT2b59O1OnTi2yr+eff56PPvqI0NBQli5dioODQ6H9p0+fZuDAgUyYMIEJEybctC4RkfJWtWpVevXqxYoVK4o1o4WPjw9OTk7k5OTccmBPUlKSdVtLL0ploEBZTDeb1PZWKzNasv4zUi8tI5Njx45Z+7u239TU1EJX7B5//HEcHBxIS0vDYrGQkpKCxWLh559/JjMzk2HDhpGamorJZMJkMtG+fXtWrFjBhQsXyMjIwNPT0zri+up5kpOTOXv2LABV73vwtt57VtJhxn3wOnZ2dkRGRuLv7w/859bN1UB55MgRTp06VeQX7UsvvcQHH3xAv379+P7774t8MD0nJ4fdu3dz6tSp26pLRKS8XR2gs3Pnzts+xs7Ojm7duhEZGcmhQ4fIzc294eCcPXv2AFdudwcEBJRJzSJ3kgJlGbrVAgomByfrdtaldPLy8mjSpAmNGzfG09OTunXrEhsbywcffMD58+etbXv06MHw4cP54IMP8Pf3p2fPngC88847ZGRkYBgGPXv2pGnTphQUFGA2m1mzZg15eXns2bOHGTNmFJqiwmKx8MgjjwBX/tJ27zDolu8t5/Qxznw3FSM3i9GjR3Px4kXrNEnnz58nPj6evXv3kpSURFpaGmaz2fps51Wvvvoq7777Lp6envzlL39h69atRZ4rOTn5lvWIiNiS2WwmNDSUxYsXF+u4oUOHEhkZSU5ODps2bbJ+n18rIyOD7du3AzBw4ECcnJyuayNS0ShQlqEAr5ocxHTdgJyr7Gs0sG7XrOHO/fffT2JiIrGxsVgsFpycnEhKSmLx4sVYLBZr261bt1K/fn1iY2Oxt7e3joTOz8/HYrHg6urKsWPHaNCgAUuXLiUxMZEXXniBt99+mw0bNvDhhx/y0ksvWfv75JNPCA8PB+CFF15gi50dcTkW6wCcPyrIusSZb1/DknPlAfT58+czf/7869pd+1r9+vVJT0/HMAxMJhPz5s1j1qxZwJVnO0NCQm7rMxURqagaNmxI/fr1i3XM6NGjmTlzJklJScydO7fIQLl48WIyMzMxm838/e9/L6tyRe4oBcoyFNq6PjH7b3zf27nx/Zgcq2DkZhEZGcmsWbPo06cPubm5/P7772zcuJHp06dfN/pv9uzZzJ49u8g+a9Soga+vL0eOHCEuLo60tDSeeOIJvL29cXBw4M0332TKlCnExMTQrVs3NmzYwLfffktBQQGDBg3C3t4ef4dznMhxvWHdRk4mluyMG+4vislkwmKxkJGRgZubm1Z6EJG7kre3d7HaOzs789FHHzF48GCWLFnCiBEjGDBggHV/XFwcr732GnDlefPWrVuXab0id4rJMG715J/czLRp05g+fToA0dHRJFVpymvLYjCbC1+pNGNgAWrv/pLdET8C0L9/f4YNG8awYcNwcHDgf/7nf/jv//7vYp2/evXqLF++nOjoaNzc3Bg5cmShZQs3btzI3/72N2JjY8nKyqJKlSr4+PjQpk0bWrdujdlsVx7teQAAIABJREFUJj09nUN5tdmS1xg7k4l8i8Gl3b+Qtn4+Rl42HsNnMTGkA3bxW7C3t+eZZ56hWrVq1nPs37+foKCgYi+3+M9//pPnnnuuWMeIiNjaokWLrNs//PADP/545Tv9mWeeITAwELgyE0dwcPAN+/jkk0/4y1/+gmEYhIWF0aFDB06ePMknn3xCamoqYWFhfPHFF5qbVyoNXaEsYyMDm9DCw425m+JZczAZiwEmDBqbL/B0zxYcdvLHnJbEzp07Wb16NRcvXmTnzp0EBQVx4MABOnfuzM6dO+nVqxerV68G4KOPPiIkJIQFCxbg4+PDhQsXCq1yEx0dDVxZavGPK9N069aNqKgoPvroIzIzMzGZTJjNZtq2bcvhw4ett81bOV+gTdO67Ek1s+zD18n5LcbaR0jdDMxxmzGZzZhMJubOncuwYcP+j737Do+qzvv//zwzk95IQhqBFBLSZkjofQFBFBEExS74xQKWVe973V1391rv9d51b9ctru7PRokgbRFBAQWNQWkJEFqAkEIghQQI6b1POb8/sjmapYguIe39uK5cTmbOnHnPhCu+8vmcz+fNgAFtU/jNzc3XXKx0Nd/Xy1YIIbqjhQsXXvH+d955h3feeQeAKVOmXDNQPv3000yYMIG33nqLxMRE1qxZQ79+/Rg3bhxPPfUUc+bM6ZTahegsEig7wagQL0aFeNFstvL3t98nLiaCUycu4qsEEnrHHaiqyi233MJHH31EcnIyycnJvP322yiKwoQJE0hKStICJ4Cvr6+2EnD69On4+/vT0NDArl27SE1NxWAwYLFYOHz4MKdOndIW+QQFBREQEEBlZSWtra2oqoq3tzeTJk3iiy++wNPTE2i7FhNAV5HP56+8AlYrscOGk3biOAAL75pOa2srhw4dwsHBAUdHR1atWsW8efMwGo1aoBw9ejRr1qwB2rYlWr58OWPGjGH48OHaZ1NcXMy0adPw8PBg3rx5N+1nIoQQN8qVJvYuXrxIfHw8d9xxB2PGjLmu88TGxrJy5cobXZ4QXUICZSdytNPj5WwAqxmj0UhaWhovvPACFy9e5PTp0xw+fJjGxkYyMjLYtm0bnp6euLm5YbPZqKqq0s4zdOjQDlvzqKrKoUOHSE1NxcnJiaioKDw9Pdm7dy8jR46kqKiIvXv3YjabtQ3SAXx8fCgvL2fbtm2Eh4cTEhLCzp07gba9H5ctW8bEiRMZM2YMTk5OWqCsqqqif//+2NnZ4ebmRlFRET4+PmzevJny8nJt5NPZ2blDz+/w8HA8PT073Pfpp5+iqioLFy7s0IZMCCF6ssDAQEaMGMGuXbuIiYnB1fXq16UL0RvJxRmdzMHBgdbWVuLi4qipqaGwsJA5c+bg5eXFxo0bCQgIQKfTERERwRNPPIGdnR07d+5kx44dALi7uzNkyJAOfbm3bNlCUlISt956KxEREZSUlBAVFYXVaiUoKIhHHnmEGTNm4ODgoE1FGwwGysrKtHDp4ODArl27MBgMhIeH4+fnR3x8PH/605/w9/fvsNl4UVEROTk5hIeH88QTT3DLLbdQXl6Oi4sLe/bs4cyZM4SGhl528biHh0eH6ypVVSU+Ph5ANiwXQvQ606dPR6fT/eAOOkL0BhIoO5mjoyPNzc0MGjSIfv36kZaWhp2dHQ888ABNTU18/PHHHD9+nDFjxhAZGclLL73E0KFDyctra9E4duxYFEWhqakJRVHYtGkTmZmZ3HvvvUycOBE/Pz9KS0vx8vLCw8OD1NRU4uPj+eKLLwgKCkJVVYYNG0ZYWBiKohAWFgZAZmYmVqsVi8VCaWkpcXFxDBs2jKKiIm0qvN2FCxe4ePEi4eHh6HQ6Jk+ezJIlS3BxcUFRFKqrq7n33nu1bYHaeXh4UF5VQ1ldC81mKzt37iQ/P58JEyZgMpluzg9ACCFukvYOOidPntS6lwnRV0ig7GTtbbYURSE2NpakpCQ2b96MwWBg/vz55OfnY7PZGD16NNC2WW5sbCzl5eVA2zTK3//+d+2XU1lZGY8++qjWisvPzw+LxcKFCxcwGAycPn0aaOuuU1RUxIABAygpKSEvL48HH3yQBQsWEBsbq+1zOXz4cKKjo6moqGDHjh2cPn2akpIS0tO/XZTTPrLZHkYB/P39Wbx4MRMmTADautssW7ZMa+d45FwlH+ba8beCAYx+7WtiXkng6Zf/DLS1ZhRCiN5o+PDhDBgwgC+++KLDfsJC9HYSKDuZg4ODNl0dFxdHRkYG9913Hzt27CAoKAiDwYDNZuvQt/X//u//ALjnnnt48MEHqa+v59SpU6iqymOPPUZQUJB2bP/+bT24P1y7npKaJiyqwuzZs0lKSgKgtraW+vp6HnvsMSIiIjCbzeTn5wNtbcBuu+02Zs6cyeLFi/nVr36Fk5MTAwcOxGq1aq9hs9nQ6/UcO3aMnJwcrY2jwWDg1ltvxcvLC3t7exoaGoiPj+evW1K4f9lBjpdaUWmbcjfXV5F/bB86R1cswWM76+MWQogupdPpmDVrFiUlJT+oLaMQPZ0syulk7SOUAF5eXtp08h//+Ef8/f2xWq0MHjyYTz/9lMWLF7N27Vo+/PBDhgwZwnvvvUdVVRWHDx9GVVVUVWXlypXce++9hIWFkZeXx4qtuzjQGkahrR8qCgoqhz44QIS1jgH2rXh5efHwww9r+0bu27ePuro6dDodOp2Or776irlz5wJoU+vDhw/n3LlzbN26VXsfBoOBY8eOkZSUhKIo+Pn5aSvJLRYLI0eOpLW1lS+OZPPF4XJA6dDbvD7ta7BZcDHewqsJOcQG+zAqxOvm/BCEEOImCgwMZOTIkezevRuj0YjBwYm6ZgtujgYc7fRdXZ4QnUIC5Y/w3U1t09LStNs7d+7URhrbN7V1dHTUAiW0/aIByMjIYNasWbS2tmK1Whk/fjzLli3j3LlzTJo0iX/+85+cO3eOhIQEoqOjUVWV0tJSXnjhhe9txXUOSA4bxeL/+hU/f+zbPrClpaXs379f6/3t4uLCZ599RkREBNHR0drKci+vy4Oeo6Mj//Vf/0VFRQWFhYWcP3+es2fPcvjwYQBOnDhBREQERW5RKBUq391UQ1VV6k8mAuA6bCY6nUJ8cr4ESiFErzVt2jS+STvHw+/tJr1ah00FnQIzYvxYPGmw/P4TvY4Eyh/hapvafndRSvumtu1T3u09rZ955hmOHTvGkSNHqKur047PycnB19dX68H9zTffkJKSwvjx45kxYwbr1q3r0AHn+yl8VuTEwksNjApxQFVVtm/fjk6nw8fHhwkTJqAoCmfOnOHzzz9n4MCBVFZWApcHyvZuOnV1dfTv35/+/fszYsQIAKqrq/nHP/5B//79KbhwiZMVg7Rp7nbNBSexVF/CYWAM9j7BWG0qiZnFNJut8te6EKJX+iStjC11oSjYtD+wbSp8nVVKYkYJr84zsWBscJfWKMSNJIHyR/gh3Srb9400m83Y2dmxfft29u/fD7Tt05iTkwPAxx9/jK+vL5s2bWL58uWUl5drG+SqqkpVVRUNDQ0APP7441wMmMCp0lbgyh1qFDsnbSRwRFA/jh49yvnz5wGYOHEiFy5cwGw2ExkZSX5+PmvXrqVfv37o9Xr279/P2bNntXO1byG0atUqDAYDZrOZ1tZWzGaztin6+fPnaVINqARdVkv9iQQAXONu1+6zqVDXbJFAKYTodY6cq+R329oWNqr/tlShvSXv/2xNJ8rPTUYqRa8hgbKTtU83t7S08Nprr/H73/+e0aNHM2nSJBoaGrRACRAcHIyrqytlZWXccsstjBkzhvLychISEqiqqqJfv34AjJswkT/l+mHnfe3XttpUvsq4xCt/2IFB+TYEf/LJJ5cdW1ZWRnl5OYqicPr06Q77Rzo7O2ubkPv6+tLS0kJzczONjY3U1dVpodJR39Zm8rsjlNaGahrPpKBzdMUl+ifa/ToF3Bzln58QoveJT85Dp1O08HglcumP6G3k/+id7LuBEiA+Ph69Xk9hYSFlZWXacTU1NXzwwQfYbDYCAwNJSUmhtraW48eP4+7ujr29vTbN3NRq5d9/T1kbqmg4nUxz/nFaS/KwNlaj6AzoXT1JiAjBGBXB0KFDmTt3Lk5OTtjb22NnZ6f9NyEhgePHjzN48GAeeOABsrKytHOvXLmSX//611RXV1NdXY1Op8Pb25vAwECcnJw4cuQIDzzwAG5ubhxYeZCzjQ7aX+X1p/61GMc0DcXQ1j5Sr1OYEe0no5NCiF6n2WxlZ2bJZb+j/51c+iN6GwmUnczR0RGA5uZmXnnlFYqKioiPj2fw4MHa1DfAF198QWxsLE8++SS5ubl88cUXHDt2jMmTJzNx4kRef/11retNyv4klEH3ayOBFQnvtAU3qwW9uw8u0ZMxeAagWlppzjvG0UMHOXroIHfddRfPPfecFnLbWzwWFBTg7OyMqqrk5uby8MMPd1jhrSgKkZGRnDp1ivnz5xMdHY1e3/YLMD8/nyNHjpCdnc3JkycZ7T6QM41+QPtinLZ+5K7DZmrns9lUnpwU2lkfuRBCdJm6Zsv3hsl2cumP6E0kUHay745QKorCgQMH8PLyYsqUKXzwwQfacZ6ensyePZutW7dSWFhIaGgoBQUF1NTUkJWVhaqq7Nq1q+1YDzcmBrtx8HwD5pYm6k99A1YLTuFj6D/3JXR2bSFWQWX4xFtwOraeHTt28NlnnzFnzhyeffZZSktLKSsr06arnZycqK+vZ8eOHWRlZeHn50dJSQnQFornzp1LdnY2VVVVWpgEyM3NBSA9PZ3p06cTHBxM/vLPOWAeREvBSSxV/1qM0z8IvU7BZlN5dZ5JpnmEEL2Sm6MBncJ1hUq59Ef0JvIvuZM5ODhgURWKqxtxKikjMzOTO++8k4EDB3bol+3h4cHq1avx9vZm4cKFODk5sXPnTk6ePMnJkycBtG46np6eFCd/yLktW7A1fnuto7WhhoZT3+AaexuKwQ4ViKQIv9Gjyc7OJicnh507dzJy5EjGjRvH0KFD8fPzw9fXl8bGRiIiImhsbGT69OkMGTKEpUuXaufW6/WEhISQl5fHT37yE2pra0lISNCmxp9++mlcXV1ZtmwZkwfY43kpm8+yv7NVkAIzov14clKohEkhRK/laKdnRowfX2eVXvMaSrn0R/Q2Eig70ZFzlcQn5ZHYMoK1mwtRKCDULoIZHoP44osvMJvN2rF5eXksWLAAOzs7EhMTKSkpwdXVVevVraoqsbGxQFsnnZCQEO68byEpdR6UbX0dvZs35soLVCa+T13qDnzmv8xkHzN+unoAhg4dqi0A0ul02mbm7S5evEj//v1Zv349p06dYuPGjZe9n7CwML766iv279/Pvn37sLe3JzY2lszMTLy8vPj0009paGggKiqKgoLdlGak4OnpyfGVv8Onn6v84hRC9AlPThpMYkbJNY+RS39EbyOBspOsTSngd9vS0ekU7VpHFYVzFnceXnmECXaF2nQ4tK2e3rdvHwCRkZFMmzaN8PBwbDYb77//PpWVlaSmpgJgNBqZN28ednZ2DLS5kmz/IhUuwSh2ThSv/xXm8kKaPnmZ4CceI2hwJCEhIdrUNEBBQcFl9VZWVvLYY48xZswYwsPDWb9+/WXHuLu7Y7PZ+Prrrxk5ciS33norBw8exNnZmePHj5Oens78+fPZtWsXRUVFtLa28swzzzDIx+OGfrZCCNGdjQ7x4tV5Jv5na/plq711/9oJQy79Eb2NBMpO0L4HmQqXTXm0fatwwBxEgOXbEbumpiZmzpyJt7e3dt3k3r17KSsr00YyT5w4wV/+8hciIiIIDAykoaGBPXv2sOfdX+Ps5kFds4W/e+Xx+mv/R1V5KUlJSYwaNYpbbrmFwsJC1q5dC8DZs2c5c+YMERER2utXVlaSk5PD+vXrsdls2vWT7bX96le/4uzZs7i5uTF79mxmz54NtC02MhgMfPnll4wYMQInJyeqqqq0XuJLlizphE9YCCG6twVjg4nycyM+OZ/EzGJsatuuwUH6al579FYmRPh3dYlC3FASKDvB9exBpqByyeyofV9fX68tujEYDPj4+ODn54fRaKSuro6UlBRt2vv229s2CP/4448ZMGCA1tnG0U7P00sW8483/05TUxNpaWnk5uaiqmqHgDho0CA2bNhAaGgoDz74IPb29lRWVvLhhx/y4YcfXlZrbW0tf/nLXwAwmUyMGTNGe6x9L0ovLy9mzpzJp59+SlVVFfn5+UyaNImYmJgf/0EKIUQPNirEi1EhXjSbrdQ1W1BbG3n/nf8P50YTIIFS9C667z9E/BDte5BdK0xCW/eEatu3gbJ///7cf//9PPfcc/zmN79hyZIlzJ07lwkTJuDm5oa9vT233347KSkpnDp1ipaWFs6ePYvRaOxw3uPHj+Pv3/aLqr6+nsLCQoqKirRtgPz8/Fi2bBmBgYHk5+fz17/+lZMnT1JZWUliYiKqqrJz507+/Oc/079/f6BtEVB5eTmqqrJx40bKy8u1jc8LCwuxWCzce++9NDc3k52dzcMPP4yqqtoopRBC9GWOdnp83Bzw9fYkODiYjIyMri5JiBtOAuUN9kP2IPuuxsZGoqKi8Pb2Rqfr+GNpbm7GycmJMWPGEBsby2effcbhw4exWCwdAuWFCxc4efIkrq6u2n0tLS0kJiZy8OBBAF599VW8vb158sknufvuuwHYunUr1dXVuLq6oqoqaWlptLS0YLVagbb9KtuvuwwNDUVRFHJzc0lLS6O2tpbAwEB8fHxITU3FYDBoi4eEEEJ0ZDQayc3NpbGxsatLEeKGkkB5g7XvQfZDVVdXs3r1anbv3k1WVhaVlZVaz/Dm5mYcHR1RFIXZs2fj7e1NUlISgYGBeHi0LXix2WxaS8X2EUqAgQMH8uc//xmAO+64gyeffFJ7LDY2lpdeeomBAwcCsHPnTt58803q6uoICgrCzc0NAHt7exISEqisrMTJyYkBAwaQlZXFjh07cHBwwN/fH5vNRmpqKiaTSdvMXQghREftlwFlZmZ2cSVC3FgSKG+w9j3I9N+TKnWohHg7ad8bDAaqq6s5duwYH3/8MW+//Tavv/46K1euJDc3F7PZzKuvvsratWuZO3cuZrOZlpYWLXQmJydTXV3NoEGDaG1t1c6bk5NDdnY24eHhrFu3Tuu2087Ozo4JEyYAbZ1t6urqALjtttu0Y52cnHBxcWHr1q3YbDZCQ0PJzc3F1dUVe3t7nJ2dycnJoba2llGjRv3nH6IQQvRSLi4uhIaGyrS36HVkUU4nuK49yAD7mgva9xEREVgsFl588UUaGxspLi6mpKRE+2ptbeXNN9/EYDBQWVkJQHl5OZs3b2bs2LHs2bMHnU7H7Nmz+dnPfga0jSxu2LABNzc33nrrLW3xznfl5OTw+eefAzB58mROnDhBbW0tK1asoLm5GWhrvXj33Xfz4Ycfsn//fioqKlBVlalTp7J9+3YcHR05evQoAQEBDBgw4EZ8hEII0WsZjUY+//xz6urqtJkgIXo6GaHsBO17kClw2UilDhVQefEngUQF+Wn3e3h40NDQoI38hYeHM3HiRO655x58fX2JjY3Fzc2NyspKqqurcXR0xGAwkJmZyapVq1BVFXd3d/70pz9RW1sLgMViwd3dnV/84hc0NTV1qKO+vp5PPvmE9evXY2dnp7WDNJvNDBs2DCcnJy1Q2mw2goKCmDhxojYlr9frKSmvpKbFRrPZytmzZxk5cmSnfq5CCNEbREdHo9PpZNpb9CoSKDvJgrHBbHpqPDOi/bRrKnUKzIjxY1FgJdbsPdq1iwAHDx7EwcFB27z8u5qbm3F2dkav16OqKuvWrWPcuHH85je/wc+vLZQ6OjrS2trK8uXLtec5OjryyCOP4OnpSXZ2NqdPn6ampoajR4/y7rvvkpeXx7x58/D19cXHx4eioiKampoYPnw4P//5z7WN12tra/n888+Ji4sDoELXjwN6E4sT6/ioZRiPf1nNbks4rR6DOuvjFEKIXsPJyYmwsDCZ9ha9ikx5d6J/34PMzdHA5o0baHJoYdf+w5w9e1Y7Vq/Xc+zYMQ4fPkxpaSnPPfecdg1jU1MTjo6OxMXFUVBQQEFBAQ8++CAPPfQQ586do7W1lbKyMk6cOEFrays6nQ53d3feffddcnNzaW1txWKxdGin6OrqSmRkJDabjbKyMqKiosjNzcXBwYGBAwei0+lwcmq7xlOn05Gamsrx48fJVQawt9EfHXToAFRo7cfDHxzh1XkmFowNvnkfshBC9EAmk4ktW7ZQU1OjLa4UoieTQHkTONrptT7WCxcuvOIxK1eu1G6npqbi6urK7Nmz6d+/v7Zt0LZt23jttddITU3VVoXX1NSg1+txcnIiPDycvLw8XFxc2LVrF7GxsWzbto38/HwMBgMWi4WEhASsViu/+MUvyM/P59ixYwAcOnQIg8GAs7MzBw8exM/PT1vw4+7uzqBBgzhaUMXeVn9AwfZv9bdvlfQ/W9OJ8nOTlmJCCHENkZGRGAwGMjIytIWRQvRkEihvsvaQBpCSksJXX33Fvffeq+0nuWbNGhobG2loaGDp0qWMGzcOq9WKo6MjdXV1mM1mfvvb3+Lr60t8fDxubm7893//Nxs3bmTRokU4ODiwc+dObS9If39/Tpw4AbStLrS3t6egoID7778fgJKSEpYuXcqIESNITU1Fr9ezb98+Wltbtc3L6+rqOH/+POcc41Ba4VrbbOp0CvHJ+RIohRDiGhwcHBgyZAjp6ekSKEWvIIGyC40dO5aLFy+ybds2fHx88PX1JS4ujq1bt/LTn/6U9PR0kpOTgbZe201NTeh0OiIjI1m6dCkADz74IKmpqTzzzDOYzWamTp3K6dOnKS4u5ujRo+Tm5mIwGHB3dyc/P5+qqqoONdTX1wNo12IuWrQINzc3qqqqWL58OTU1NdhsNtDbkVVr0Ka5r8ZqU0nMLKbZbNVGZYUQQlzOaDSyefNmKisrr7gLhxA9iQTKLqQoCnPmzKG0tJSNGzeyePFioqOj2bFjB5mZmUydOpUBAwawYcMG9u7di5OTEyEhIaSkpFBXV0dcXByOjo7cdttt2mhiYmIiiYmJ13zd4OBvr3GsrKxEp9NRVFSEoih89tln2mPt+1mazWbsHJyoO7QHAIeB0dj1u3ofWpva1jFIAqUQQlxdREQEdnZ2pKenM3ny5K4uR4j/iKzy7mL29vY88MADNDQ0sHXrVuzs7IiOjiYtLQ1VVbWuMxMnTqSpqYnCwkKSkpJwcHBg9uzZ1NbWXjbq+ENUVlbi6elJXl4etbW1LFy4UPsqLy8HoKGhgd++9CIV29+gYvsbtBSmX/OcOqWtY5AQQoirs7OzIzIyUlZ7i15B/q/fDXh5eXHPPfewYcMGkpKSiI2NJS0tTdvGB9pWWuv1em1xjaurK2VlZYSEhGA2m0lKSiI5OZl+/foxbtw4EhMTMZlM3HXXXSiKwieffEJeXh5ms5mXXnpJe+32dooVFRWMGzeOlStXcvHiRa2Pt4eHB0OHDiUoKIjXkyvYfaYc2zWmvfU6hRnRfjI6KYQQ18FkMvHRRx9RWlqKr69vV5cjxI8mgbKbiIiIYMqUKezevZuHHnoINzc3Tp48SX+/ATSpBjKzz+Lr68ulS5cYMGAAFouFFStWEBUVRUlJCdXV1UycOJHJkydjMBiws7Nj27ZtBAYGMmrUKEaMGEF6etvIYnp6Oqqqcv78eXJzc7XwWFBQQFBQEJMnT+bQoUP4+Pjw6KOPotPpqKqqIqA2GRs+13wfNpvKk5NCO/3zEkKI3iAsLAwHBwcyMjIkUIoeTQJlNzJlyhSKiorYsmULDgNj+GtKNefMKirDUApVgnTVxDp48OtHH6W1tZUNGzZoXWtuu+02xo4dq51r2LBhXLx4kS+//BJFUWhqasLOzg6z2cy2bdsA8PHxwWaz4erqSv/+/Xn00UcB+Oc//wnA/Pnz0el05OTk8Mknn+Dr5MSvpo3iL7sK0ekUrLZv13vrdQo2m8qr80yywlsIIa6TwWAgOjqa9PR0pk6dqu0/LERPI4GyG2nvmf3cWxv5Jl1BwU3bokdFodDmQUGTJ4GfH0WXtx9VVZk+fToFBQUkJCSQn5/P1KlTqampobCwkOLiYmw2G9u3b8dgMGirt93c3Hj22WdpaWnhrbfeorGxkaioKBRF4cCBA+Tk5PDII4/g6upKUlISu3btIjw8nHvuuQcnJydGDwkkPjmfxMxibOq/OgBF+/HkpFAJk0II8QMZjUZOnDhBcXExAQEBXV2OED+KBMpuJr2kiW9q26aV/32LHvVfa6iWHqvi+aghLLnnVlpaWnB2dsZisXDmzBmys7OBtk44QUFBTJkyhcOHD+Pj48M999zDP/7xD+rq6mhsbNRWhttsNsLDw7lw4QLffPMNEyZMYNCgQXz88cecPn2ayZMnd/jL+UodgOSaSSGE+HFCQ0NxcnIiPT1dAqXosSRQdjPxyXno/206+d/pgN2XFGxLl9LY2Ai07SM5bNgwamtrtW4548ePZ+DAgQwePJjVq1dz8OBBhgwZwpkzZzh79iwGQ9uP38PDAycnJ9auXcuAAQMYOnQoK1asoL6+ngcffJDIyMgr1vHdDkBCCCF+HL1eT0xMDBkZGdx6660y7S16JEX9busW0aWazVZiXkngGllSo6CydLoz4aHBDBw4EAcHB+2xoqIitm/fzqVLlxg1ahTTp08nLS2NL7/8kgkTJnDgwAH8BgzEZ8Ag0o4dZvSIYTQ2NpKfn8+0adP4+uuv8fDw4IEHHsDb27sT37EQQgiA/Px81qxZwxNPPMHAgQO7uhwhfjAJlN1IWV0Lo1/7+rqP/3LJMCKDA9DpLt9O1GazceTIEXbt2oW9vT233XYbZ8+eZdepAtItvhRYPFBRUFCJ9YLA+mymxAyvToc2AAAgAElEQVTk9OnTGI1G7rrrLuzt7W/k2xNCCHEVNpuNN998E6PRyMyZM7u6HCF+MAmU3cgPHaFc4JCKg0GHn58ffn5+BAQE4O/vj5+fnxYGa2trSUhIICsri7J+UWwvdkGh4/WZCioqMMGukOdmDmP8+PEy5SKEEDfZl19+SWZmJj/72c+uOFAgRHcm11B2I452embE+PF1Vuk1r6HU6xSmR/rw5JT/x6VLlygpKaGoqIiTJ0+29d0GvL298ff3x9/fnxEjRmDzDmXV1yW0xceO2sPlAXMwLw6IkjAphBBdwGQycfjwYQoLCwkJCenqcoT4QSRQdjNPThpMYkbJNY+x2VSWTA4nONirQ19ui8VCeXk5ly5dori4mJKSEpKTk2lpaWFXaxgK/S4Lk9+l1ynEJ+fL1j9CCNEFBg4ciIeHB+np6RIoRY8jU97d0LpDBfzP1vRrbh6+YGzwNc7wLVVVKS6rYMJbh7ien7ROgczfz5TV20II0QV27tzJiRMn+PnPfy7T3qJHkX+t3dCCscFsemo8M6L90P1r9rl98/BNT42/7jAJbZulG5zcritMAthUqGu2/IiqhRBC/KeMRqO264YQPYlMeXdTN3LzcDdHAzqF61rso1PajhdCCHHzBQQE4OXlRXp6OmFhYV1djhDXTUYouzlHOz0+bg7/0RR0+2Ifve7ai230OoXbYvxlulsIIbqIoigYjUZOnz6NxSKzRaLnkEDZRzw5aTC27xmitNlUnpwUepMqEkIIcSUmk4nm5mZyc3O7uhQhrpsEyj5idIgXr84zocBlI5V6nYICvDrPJCu8hRCii/n6+uLj40NGRkZXlyLEdZOL5fqQBWODifJzIz45n8TMYmzqt4t9npwUKmFSCCG6CaPRyIEDBzCbzdjZ2XV1OUJ8LwmUfcyNXOwjhBCic5hMJvbs2cPZs2eJiYnp6nKE+F4y5d1H3YjFPkIIITqHt7c3AQEBMu0tegwJlEIIIUQ3ZDQaOXPmDC0tLV1dihDfSwKlEEII0Q0ZjUYsFgvZ2dldXYoQ30sCpRBCCNEN9evXj4EDB8q0t+gRJFAKIYQQ3ZTRaCQnJ4empqauLkWIa5JAKYQQQnRTRqMRm83G6dOnu7oUIa5JAqUQQgjRTbm5uREcHCzT3qLbk0AphBBCdGMmk4m8vDwaGhq6uhQhrkoCpRBCCNGNRUdHA5CVldXFlQhxdRIohRBCiG7MxcWFwYMHk56e3tWlCHFVEiiFEEKIbs5oNFJQUEBdXV1XlyLEFUmgFEIIIbq5qKgodDqdLM4R3ZYESiGEEKKbc3JyIjw8XAKl6LYkUAohhBA9gMlk4sKFC1RXV3d1KUJcRgKlEEII0QNERERgMBhklFJ0SxIohRBCiB7AwcGBiIgIWe0tuiUJlEIIIUQPYTQaKS4upqKioqtLEaIDCZRCCCFEDzFkyBDs7e1llFJ0OxIohRBCiB7Czs6OyMhIuY5SdDsSKIUQQogexGg0UlZWRmlpaVeXIoRGAqUQQgjRg4SFheHo6CjT3qJbkUAphBBC9CAGg4GoqCgyMjJQVbWryxECkEAphBBC9Dgmk4nKykouXbrU1aUIAUigFEIIIXqc0NBQnJ2dZdpbdBsSKIUQQogeRqfTERMTQ2Zmpkx7i25BAqUQQgjRAxmNRmpqarhw4UJXlyKEBEohhBCiJwoKCsLNzU2mvUW3IIFSCCGE6IG+O+1ts9m6uhzRx0mgFEIIIXook8lEfX09BQUFXV2K6OMkUAohhBA9VGBgIB4eHtKKUXQ5CZRCCCFED6UoCkajkczMTKxWa1eXI/owCZRCCCFED2YymWhqaiI/P7+rSxF9mARKIYQQogfz9/fH29tbpr1Fl5JAKYQQQvRg7dPeWVlZWCyWri5H9FESKIUQQogezmQy0dLSQk5OTleXIvooCZRCCCFED+fj44Ovr69Me4suI4FSCCGE6AWMRiPZ2dmYzeauLkX0QRIohRBCiF7AZDJhNps5c+ZMV5ci+iAJlEIIIUQv4OXlRUBAgEx7iy4hgVIIIYToJUwmE2fOnKGlpaWrSxF9jARKIYQQopcwGo1YrVays7O7uhTRx0igFEIIIXoJDw8PBg0aRHp6eleXIvoYCZRCCCFEL2I0GsnNzaWpqamrSxF9iARKIYQQoheJiYnBZrORlZXV1aWIPkQCpRBCCNGLuLm5ERISIqu9xU0lgVIIIYToZUwmE/n5+TQ0NHR1KaKPkEAphBBC9DLR0dEAZGZmdnEloq+QQCmEEEL0Ms7OzoSFhclqb3HTSKAUQggheiGj0UhhYSG1tbVdXYroAyRQCiGEEL1QVFQUer1eFueIm0ICpRBCCNELOTo6Eh4eLoFS3BQSKIUQQoheymg0cvHiRaqqqrq6FNHLSaAUQggheqnIyEgMBoOMUopOJ4FSCCGE6KXs7e2JjIyUQCk6nQRKIYQQohczGo0UFxdTXl7e1aWIXkwCpRBCCNGLhYeHY29vL3tSik4lgVIIIYToxezs7IiKiiIjIwNVVa94jNlsZuXKlcyaNQt/f3/s7e3x9fVlypQpLF26FIvFcpOrFj2NBEohhBCilzMajZSXl1NaWnrZY7m5uYwcOZInnniCkydPsnjxYpYuXcrzzz/PxYsXeeaZZxgzZgwlJSVdULnoKRT1an+uCCGEEKJXsFqt/O1vf2PUqFFMnz5du7+yspJRo0aRn5+PyWRi3759eHp6ao83NjZy2223sX//foYPH05KSgr29vZd8RZENycjlEIIIUQvp9friY6Ovmza+9VXXyU/Px+At99+u0OYhLae4PHx8QAcP36cd9555+YVLXoUCZRCCCFEH2AymaiqqqKoqAgAm83G6tWrAfDz82Pq1KlXfF5UVBQjRowA4M0337zqdZiib5NAKYQQQvQBISEhuLi4aHtSnj17VuugYzQar/ncuLg4AC5cuEBKSkrnFip6JAmUQgghRB+g0+k6THtXVFRoj7m7u1/zuV5eXtrtw4cPd1qNoueSQCmEEEL0ESaTidraWs6fP4+zs7N2f3Nz8zWfZzabtduZmZmdVp/ouSRQCiGEEH1EUFAQbm5upKenM3jwYPR6PdC2ddC1nDt3TrstHXfElUigFEIIIfoIRVEwGo1kZmbi6urKxIkTgbbrKfPy8q74nJaWFvbt26d9X1dXd1NqFT2LBEohhBCiDzGZTDQ0NHDu3Dlefvll7f5f//rXVzz+9ddfp7q6Wvu+fVRTiO+SQCmEEEL0IQMGDKBfv35kZGQwY8YM/vjHPwKwadMm5s+fz4EDB7h06RKpqak8//zz/O///i+zZ8/Wnv99C3hE3ySBUgghhOhD2qe9s7KysFqt/Pa3v2X79u2MHj2aTz/9lIkTJzJgwABGjhxJYmIia9as4bXXXtOe7+Pj04XVi+7K0NUFCCGEEOLmMplM7N+/n7y8PIYMGcKdd97JnXfeSVlZGXl5eVgsFgIDAwkJCQHocA3l0KFDu6hq0Z1JoBRCCCH6GD8/P7y9vcnIyGDIkCHa/T4+Plccgfzugp2RI0felBpFzyJT3kIIIUQfoygKJpOJrKwsLBbL9x7fvpl5SEiIBEpxRRIohRBCiD7IaDRSV1fH0qVLyc/Pv+pxVquVHTt2APDYY4+hKMrNKlH0IBIohRBCiD7Ix8cHvV7P888/z5///OerHrdu3ToKCwsZNGgQv/jFL25ihaInkUAphBBC9FHh4eEArF279ootFZOSknjuuedwdnZmw4YNHdo1CvFdsihHCCGE6KPaA2VjYyNjxozh8ccfx2Qy0dTUxN69e/nss88IDAxkzZo1WlcdIa5EUVVV7eoihBBCCHHzNTc38/zzz5Obm0tFRQWXLl2iuroab29vIiMjmT9/Po899hiurq5dXaro5iRQCiGEEH3YwYMH+eabb/jFL36Bo6NjV5cjeii5hlIIIYTow2JiYrBarWRnZ3d1KaIHk0AphBBC9GEeHh4EBQWRnp7eKedftGgRiqL8oK958+Z1Si2i80igFEIIIfo4o9FIXl4ejY2NXV0K0NbJR/QssspbCCGE6ONiYmJISEggKyur0zrhZGVlfe8xM2fOpKCggEWLFnVKDaLzSKAUQggh+jhXV1dCQkLIyMjotEAZFRV1zccPHDhAQUEBQ4cOZfz48Z1Sg+g8MuUthBBCCEwmE+fOnaO8qoayuhaazdYbct6IiIjr2sNy+fLlACxZsuSGvK64uWTbICGEEEKQnH2J3675hkKbJyqgU2BGjB+LJw1mVIhXp752TU0NAQEBKIpCUVERHh4enfp64saTEUohhBCij1ubUsDCD1M5b+tH+yiTTYWvs0q5b9lB1h0q6NzXX7uWpqYmHnjgAQmTPZSMUAohhBB92JFzldy/7CDXCgMKsOmp8Z02UhkXF0daWhoHDx5k3LhxnfIaonPJCKUQQgjRh8Un56HTKdc8RqdTiE/O75TXT0lJIS0tjdjY2P8oTKqqyttvv42rqyuKorBnz54bV6T4XrLKWwghhOijms1WdmaWYPueuUqrTSUxs5hmsxVHO/0NreFGLMbJy8vj8ccfZ+/evTeqLPEDyQilEEII0UfVNVu+N0y2s6ltx99ItbW1bNy4EWdnZxYsWPCDn98+KhkbG8vx48dlurwLyQilEEII0Ue5ORoo+eevaS78/raLip0jbn+ov6Gvv27dOhobG3nsscd+1GKc3//+9/z+97/n9ttvZ8WKFXzwwQekpKTc0BrF9ZERSiGEEKKPcrTT4+lsf13H6hQwKDd2HW/7dPdTTz31o88RHx9PQkICgwYNulFliR9BRiiFEEKIPizAw4maIePoN/X/XeMolSn2BSxbtow5c+YQFBT0H7/uoUOHOHnyJHFxcYwdO/ZHneOVV15BUa69oEjcHBIohRBCiD7MzdHAiCH+XPAehIKKjW8DmoINFYUJdoVE6p0wm82sWrWKMWPGMH36dOztr29080puxGIcCZPdh0x5CyGEEH1cmI8rHz81jsH29Sj/2pFSQSVYX8tclzxeeWQ6iqJQU1NDaGgoqampvPfee+Tk5Pyo12tfjOPi4vKjFuOI7kcCpRBCCCEY0k/PT3TZLHQ8zqNuWSxwSOXnY93xslZRXV3N/fffj6Io5OfnM2TIELy8vFi/fj1bt26lsbHxB73W+vXraWho4IEHHsDd3b2T3pG4mSRQCiGEEIKCgrb2iqqlFTtrE3pshIWFodfr2b17NxEREdx3330oikJWVhY6nY5Zs2aRnZ3Ne++9R0ZGBtfbfG/FihXAf7YYR3Qvcg2lEEII0cdVV1fzt7/9ja+++oqysjIAdDoda9euZfTo0QwaNIgjR44wduxY5s+fzyeffEJ+fj5NTU0sWrSIvXv3snnzZqKiopg1axZubm5Xfa0jR45w/Phx4uLiGDNmzM16i6KTSaAUQggh+rht27bh4ODArbfeirOzMx4eHtTW1pKUlMTGjRtxdHSkoqKC0aNHYzQaUVWVTz/9lNLSUjZu3MjChQsxmUx88cUXvPvuu9x2220MHz78iotmbsRWQaL7kSlvIYQQoo8LDg7m6aef5pe//CVGo5GhQ4eyaNEifvnLX3LrrbfS3NzMmjVrWL16NQAmk4l58+ZhsVhobGwkPj4eT09PfvrTnxIdHc3nn3/O2rVrqaqq6vA6dXV1fPTRR7i4uPDII490xVsVnUQCpRBCCNGHffTRR2zatAlPT088PT0B0Ov1+Pv7U1tby4oVK3BwcMBqtfK73/0Oq9UKQGxsLHPnzqWlpQWAVatWUVRUxNy5c1mwYAFVVVW89957HDx4EJvNBoCbmxt1dXXU19fLYpxeRgKlEEII0Yf5+/tTUVFBv3790Ov1QNv+jn5+fgAYDAZmzpwJwIULF9iwYYP23GHDhjFnzhwaGxtxcXFh/fr1pKWlERYWxjPPPMPIkSNJTExk5cqVlJaW3vw3J24aCZRCCCFEH1dYWEhQUBBNTU1A24IcX19fFEWhuLiYUaNGacdu2rRJG6UEGDFiBHfeeSfV1dX079+fLVu2sH//fuzs7Jg5cyaPP/44LS0tLFu2jD179nR4rug9JFAKIYQQfVhLSwvFxcUEBQXR3NyMXq9Hp9NhMBjo378/JSUl+Pr6asdXV1dz5MiRDucYNWoUd9xxB2VlZQwcOJCvv/6ar776ClVVGTRoEE899RSTJk0iKSmJZcuWceHChZv9NkUnk0AphBBC9GHnz59HVVWCg4O1QNnO39+f4uJi7RpIaJsO37NnDxaLpcN5xowZw+23386FCxcICwvj0KFDfPLJJ1gsFgwGA7fccgtLlizBzs6ODz74gK+++orW1tab9j5F55JAKYQQQvRRn3/+Oa+99hpOTk54e3trgbJ9ux8/Pz9KSkq4dOmS9pzw8HBaWlouG6UEGDduHDNmzCA3Nxej0cjp06dZv349zc3N2vmeeOIJZsyYwdGjR3n//ffJy8u7OW9WdCoJlEIIIUQf9cknn7Bq1Sr69euHoiiXBUp/f3/MZjPJycnacxYtWgTA3r17MZvNl51zwoQJTJs2jYyMDGJjYykuLmbVqlXU1tYCbddnTpgwgceeXILB1ZNVa9bx2WefaaHzh1q3bp32lZaWpt2/c+dO7f6dO3f+qHOL6ycbmwshhBB9VPtUdmFhIQBNTU0YDN9GAz8/PyoqKti7dy/QFhYnTZpEQUEBOTk5HDlyhAkTJlx23p/85CfYbDb27NnDuHHjyMzMZOXKlTzyyCOca9ATn5zHzswSbKo3Ct4kH6lhb+ZKFs+bRlRU1A96DwsXLrzi/a+99pp2e8qUKcyYMeMHnVf8MDJCKYQQQvRCZWVlvPzyy5hMJlxdXfH29mbChAm899572shi+6ru5cuXc+bMGZqbm9HpdNoIZWtrK1u2bMFqteLs7My7774LwLRp0wDYt2/fVa+DnDJlCpMnTyYlJYVhw4bh4ODAi+9v5b5lB/k6qxTbv9p+q0ChrR+f1ATx+/W72LRpE/X19df9PlVV/d6vPXv2/IhPUPwQMkIphBBC9DKHDh3i7rvv5tKlS9x+++0888wzNDY2smrVKn7605+yevVqtm/fTv/+/dHr9ZSVlTFs2DBiY2MJDQ3FwcGBrKws1qxZQ1lZGR4eHmzbto1hw4YBEBAQQHBwMAUFBRw5coSJEydesY6pU6dis9nYt28fA4dPIamwLSha/5Umq3avpPbQpwB4THyIgz95hICz+eTlvcvtt99OXFzcFds3iu5HUVVV7eoihBBCCHFjFBQUMHr0aMrKynjxxRd54403tMeampqYMWMG+/fvZ+LEiSxevJi6ujp0Oh07d+4kKSmJuro6rFYr3t7eDB06lCFDhhAcHMyvf/3rDq9TWFjIqlWrsLe35+c//zn29vZXrEdVVXbu3Mn/7S3lvOqpjUy2FOdQvPpFUNum3T0mPoT3lAVMi/BmlnuRtkH67Nmz6devX+d8WOKGkSlvIYQQohf55S9/SVlZGUFBQR2uIwRwcnJi+fLlKIrC/v372bJlC7GxsTz77LN8+umnvPDCC7z77rusWLGCkpISvv76a5599llaWlq06fF2QUFBBAYG0trayqFDh65aj6Io/GTqNApt34ZJ1Wal8su3tTDZzmpT+Sa7nDtm38XDDz9MWVkZ7733HocOHeLHjH9ZLBZWrVrFHXfcQUBAAPb29ri6uhIVFcWSJUs4fvz4Dz6nuDIJlEIIIUQvcebMGTZv3gzAo48+ioODw2XHxMTEaFPUu3fvJigoCACz2Yyqquh0HaNBewvGkpKSy841depUAJKTk7We3ldSVd/Ed+Ng7eEttJbk4jRk3GXH2lSoa7YwZMgQnn32WeLi4khISGDVqlWUlZVd/c3/m+LiYsaOHcvjjz/Orl27mDNnDm+99Ra//e1v8fPzY8WKFYwaNYpXX331us8prk4CpRBCCNFLbN68WRvJmz59+lWPu/XWWwGora3Vuta0j0B+d9sgQLvOsri4+LLzhIWF4evrS2trKykpKZc9XlVVxVdffcXKZe+h/CtSmquKqEnegH3AENxGzrnsOQoqX3/5OdnZ2RgMBu68804WLVpEY2Mjy5YtY9++fVdt39hstlJW10JTq4X58+eTmpqKg4MDKSkpLF++nGeffZbf/OY37N27l5deegmbzcbvfvc71q1bd9XPSlwfCZRCCCFEL7F7927t9vDhw6963IgRI7Tb+/btA9D2gfz3QNne1/tKI5SKomijlPv376e5uRlVVTl37hwbN27k7bff5sSJE4QGDSRYX40OlcqEd1BtFrxnPn/Zghu9TmGUvx01leV89NFHvPHGG+zYsQOdTsdTTz3F+PHj2bNnDytWrKCoqEh73pFzlTy17igxryQw+rWvCXviDQ4cOADAM888c8XP4g9/+IM2+vqnP/3pqp+VuD6yylsIIYToJdLT0wFwc3PDw8PjqscNHDhQu52RkQF8Gyh1Ot1lI4DtHXOuJCoqCm9vbyoqKtiyZQs1NTWUlJTg4+PDzJkzKSoq4uTJk8yNGs4f/5lIc0Ea7uPuxd5vMM0FaR3OZbOp/GruaEaF3E5JSQmnTp3i1KlTHD16FE9PT4YOHcp9993Hvn37iI+PZ/z48Vx0DuP327PQ6RTtGs3morPaOVu9B1+xbgcHB+Li4khMTCQzM5Pa2lrc3d2v+pmJa5NAKYQQQvQCLS0t2rR0+8jb1Xx3Rfa5c+eAb6e8v7sPZTt/f39OnTqF1Wrt0OsboL6+nv79+1NRUcGZM2cYPHgwCxYswMvLi02bNlFaWsqcOXNQVZX63R9g6BdAv4kPXLGu272rGBrgor0HPz8/pk+fTkFBAWlpaRw6dIiWlhYCAgIIDw9n24F0tje3AIq2FRGAav22z/jmE2U8dq6SUSFel72ei4uLdruhoUEC5X9AAqUQQgjRC9TV1Wm3HR0dr3lsRUXFZc9rH6G0oqPBqqPZbMXRri08+vv7Y7VaqaiowNfXF4CLFy9y6NAhMjIyMBgM2Nvb09rayoABA1BVlRUrVuDg4MATTzyBn58fo0aNorW5kdfeeI+Ei00U2jrWODXIgWDzeTZt2sRDDz2kBVdFUQgJCSEkJIRZs2Zx5swZTp061fbf1lAU4N/Xf9v7hmi3LZUXiE/Ov2KgzMrKAsDd3V17X+LHkUAphBBC9ALf3dbnantCtvvuApvGxkYATlysY7c5nA9POqPiwl9fSWBGjB+LJw3G5N824llUVERpaSmHDh3iwoULeHp6MmPGDIYNG0Z6ejo7duxg//79JCcnM2TIEO6++26cnJz461//yvHjx7n//vuZNXEYrVu3YlEVdEYH/vCvOmounWPi04+xd+9etm/fzl133XXZSKnBYCAmJoaYmBiqautZ+ae9l4VJAMfQEdj5hGAuO0fN0c9JGHEnzQ8M0wIywLZt2zh9+jQAjz/++GUjr+KHkUAphBBC9AJOTk7a7au1Q2yXl5en3XZ2dmZtSgH/m1yLggcqbSHOpsLXWaUkZpTwP7MicHBw4Msvv6S1tZXQ0FAefPBBhgwZom0zFBkZSUJCAlarlUGDBvHQQw+hKAqXLl3ij3/8Ix4eHrz//vscO3YMV1dX6uvrCfTz1urw9PRk7969xMTEcOLECRobGwkJCaGpqYnm5maampo6fFU0tKISfcX3p+j0+D7wByo+f4PmgpMUrX6Rj0ZYmTxuFLW1tSQkJPCHP7RF2Xvvvfey/TrFDyeBUgghhOgF3NzctNvt09dXUldXR3l5ufa9Yu/E77a1LeZpD5Pt2q9L/MMX2dxpb0eYh8Ljjz9+2TWaRUVFbNy4URtRLCoq0qaTn332WWpra3nppZfYv38/2dnZWCxt1zgePXpUO0dlZSU2m01bWHTmzBlycnJwdXXFyclJ+3J3d8fR0ZHq+kaUI+plNbczuHrh++AfaczeT/We1Tz2SMfrNufMmcOTTz7JXXfdddXPSlw/CZRCCCFEL+Dg4IC/vz/FxcVXXZENba0Z6+vrte8b7D3R6Touavl3OiDfIZTA5tOcOHGiw0hhVVVVh/MBWK1WNm3aREFBAXv37iUiIoLAwECKi4tpbm7Gzc2NlpaWDqvNTSYTjz76KHv27OHixYuEhYVx9uxZZs2aRWRkJKqqcunSJU6ePMnJkydpbGwk3Cma3CZnbFcIldb6Kip3vk9j9kFcvX15+fXXMRqNNDU1kZiYyNq1a6mrq8Pd3V3b+kj8eBIohRBCiF7CaDRSXFxMXV0dNTU1V9w6qLCwsEMbw0o7X9yvESYBbChk1dkz0sHCmTNncHFxwdHRkfr6eurr6wkICCA2NhYXFxdycnI4deoUFouFHTt2YDAYWLt2LYMHD6apqYm3336buLg4kpKSiI7+dsra0dERNzc37rjjDrZs2UJOTg5BQUFs3ryZ2NhYCgsLKS8vx9XVldjYWGJiYnBITOFszuX1WpvqKF73SyzVxdj5BLNt5y6mxX27fdB9993H/PnzufPOO5k2bRpLly5lyZIlP+ITF+0kUAohhBC9xC233MI333wDwIkTJ5gyZcplxxQWFnZYEe4QHHtd51ZRMKPnjjvuwNvbm48//pi6ujrmzp3LsGHDtOPCw8M5ffo0VVVVlJaWAjB27NgO5/rrX/962fnfeOMN3njjDe37F154AVVVUVWV1NRUIiMjmTlzJqGhodTV1bFhwwZaS0uZaO/D/tZB6EAbqazetxZLddvCo5+/8qcOYbLdzJkzWbhwIatXr+a5555j2rRphIeHX9dnIS4ngVIIIYToJe69915efvllAL755pvLAmVTU9P/396dB1dZ3/3/f15nycm+AFnIAmEnhAgkQbYoym4RQRBERVusitrxvuv8qr1vx9r6re09na5W1AoqlaWioICgkUW4jRAIW4BsEAiEEyAbSci+nOX6/ZHx1FTFJVTvgddjJjPknOucawl/vJ6/374AACAASURBVOazvN9UVlb6djfHxcdjjxv6hTul/5WBicNicvDgQc6ePUtAQAA//vGPiYmJ6XJcQEAAI0aMIDs7m3vvvZd58+b56j2eOHGCAwcOMH36dDIzM+nXr59vc8zUqVO56667OH36NOfOnSMgIACHw4Hb7SYwMJDKykqio6MpKyvj7bffpqOjA6vVyvieXvp2VFJi68P+C+14TZOWos7uP0EhIfz20YVfek9z5szhjTfewOVysWLFCn7zm998recsn6dAKSIicpUYMmQI8+bN45133mHVqlU8/fTTXUoIlZWVUV1dzZEjRwD47//6L46FxbCjqOqyaygNTFIivFjbvJw4cYKAgADGjx9Pz549v/D45uZm7HY7gwcPxmq1+nqHt7W1YbFYmDhxIsXFxSQnJ/s+43K5cDqdxMXFccstt5CSkoLD4WDNmjVUVFRgtVp59dVXaWhowOFwYJom6enp5OTk8PDixRw7dowJlnNMnvEDhv+uc01n/8TEz5Ue+qx+/fr5/n3s2LEvPU6+mnp5i4iIXEX+8Ic/0LNnT0pLS32jlZ8qLi4mMzMT0zQZN24cDz30EA9k9L9smITOwuEJzScxTROHw0F0dDTvv/8+f/zjH/nggw+61LU8e/YshYWFJCYmYrFYOHz4MJcuXQKgqqqKqKgoGhoagK69xwEefPBBHn74YcaPH09ISAh+fn7cfffdREVF0d7eTn19PVarlY6ODm6//XaOHDlCamoqffr0obKykoTYaKJC/1k+yev1Xva+Pvv+v7ablG9GI5QiIiJXkcTERDZv3sztt9/O73//e/Ly8pg1axYtLS38+c9/5sKFC6Snp7Nx40bsdjsDwwwmOMrY0x6PxfhnP2wAqwEe02SczUm0tRnT7GzxOH/+fNra2sjNzeXIkSMcOHCA2NhYRowYwcGDB4mLi2P27Nm88MIL2Gw2srKymDJlCuXl5TQ0NPhKA/Xo8c/uNaZp4nK5Pnc/brcbwzDwer0YhoHb7WbAgAG+Dj1TpkzB6/VSWVlJUlISPXv29NW5PHPmzBe2i/zUZ+tx9unT5wr9Ba5N1l/96le/+r4vQkRERK6chIQE7rvvPux2Ozk5Oaxbt47s7GwcDgcPPfQQ//jHPwgNDcU0Td5++23CvQ30dF8kKKIXlS0mYGBgMiSonbGW0wwL7aCjo4OkpCQuXrxIYWEhycnJpKSkMHbsWHr37k1tbS05OTm0tLTQu3dvYmJicLvdVFdXc+HCBfbu3YvX66WlpQW3201+fj4BAQHk5OQAEBwcTHNzM+Xl5VRWVjJgwAAqKipYuXIlTU1NxMTEUF9fj81mo6amhosXLzJr1izi4uKora1l3759vmn4Y8eOUVBQgMvlYsyYMQwaNOgLn9Ozzz5LQUEBAM888wxDhgz5rv5EVx3D/GztABEREbkqlZaW8sYbb/Dwww/7CpOvXbuWv/71r1RXV3Pu3Dm8Xi9BwcEMSx5OcHAwCXGxzJ49m+nTp7N582YKCgrwer2EhITQ2trKLbfcwqhRozAMg8bGRpYuXUqvXr1oaGigqakJwzB8JYp69OhBbW0tra2t/O53v7vstU6cOJGXXnqJjRs30rNnT0JCQigpKWH27NlkZ2f76mzeeuutpKWlUVBQwPr16/nZz35GUFAQRUVFjBo1ivb2dgYMGEBWVhaxsbFdzrF27VruuusuAMaPH8/u3bsvu95SLk9T3iIiIteAs2fP4u/vT1RUFKZp8uSTT/KnP/2JXr16MXfuXM6fP094eDhHjx4le/cnmKZJ7969efrpp7Hb7cyePZvW1lZOnTpFXFwcgYGBbN68mdLSUmbOnMn777+PaZo0NzfT1NREYGAggYGBvq48tbW1WK1Wfvvb3/KTn/yE119/nUceeYSoqCgA9u7dy86dO3nyySfZvXs369atY9iwYRiGQWFhIfPnzycpKYmysjIqKyux2Wxs2bKFkJAQKisrCQ4O9u0mT0pK4pVXXuHRRx+lpKSE4cOH86Mf/chX2Hz79u289957AGRkZLBhwwaFyW5SoBQREbkGOJ1O+vTpg2EY/PSnP+X5558nPT2djz76iKqqKtasWUNkZCSDBg0iKSmJt956C6vVyvHjx+nbty9Wq5X58+fzl7/8heLiYh5++GFiY2PJzMyksLAQj8eDzWajX79+jBgxgr59+2IYBmfOnGHlypVA58aXpUuX0r//5+tCJiYm4na7Wb16NU6nk0mTJnHx4kXy8vKYN28eSUlJlJeXc+jQIW644QZfrct169b5ptg/6+6776a4uJhLly5RWFjI6tWruXTpEjabjejoaO644w4WLlzI7bff7utHLt+eAqWIiMhVzuv1UlZWxsSJE9myZQvPP/880dHRvPnmm4SGhlJaWgpAdXU1ERERrFixgry8POx2O0VFRUybNg3DMPDz8yM1NZU9e/awbNkyPB4Ppmn6RvcmTZrE2LFju4z29evXj8GDB3PyZOcu8aioKF/ZoszMTMaOHcugQYOw2+0YhsH58+dZuHAhhw4d4t1338Xj8bBhwwbOnDlDY2MjDoeD5ORkJk6cSFhYGIZhUFZWRmpqapd7ttvtJCcn43a7efHFF7+bB30NU6AUERG5ypWXl+NyuUhISODee+8F4Ic//CEDBw6kubmZrKzOQuAWi4X09HQCAgIoKCjg9OnTrFq1yvf5Y8eO+eo1er1eAgMDGTlyJNnZ2QwbNoxt27Zx7tw5Zs2ahb+/v+/848ePp7i4GLvdjs1mY+HChaxZs4bm5mbWrl1LQEAALpcLq9VKdHQ07733Hv/93/+Nx+PBMAzmzJnDhAkTKC0tJTY2lg0bNnDw4EGCgoJYsGABffv2paioiEmTJvmmvaGza8/WrVtpb2/H4XB8h0/82qMxXhERkauc0+nEZrNRXFzMmTNnMAyDJ554gnPnzrFs2TIaGhrw8/PD6/USHh7u+1xQUBA2m42VK1fy97//nZKSEt9I4IwZM/B6vWRnZzNq1Cjmz5/P/PnzKSkpYdmyZVy4cMH3PYGBgQD4+flRUFBAU1Nn4fH58+czbtw4Wltb8Xq9uN1uzp8/z9GjR/F4PFgsFj744AP+/ve/ExcXx8MPP8yyZcs4ceIEycnJNDc3s3r1aqqrq2lra2PlypV0dHT4zjto0CC8Xm+X8kDy76FAKSIichVrc3koKCkjOjael19+GYD4+HjOnDnDihUrCA0NZfjw4b7j/fz8yMnJYfny5fztb3/z1X/80Y9+xH/+538yY8YMAgICaGlpIS4uDtM0qampwe12M2zYMJYsWUJAQACvvfYaOTk5mKbp25Xd3NxMUFCQb8p7586d7N27l3HjxvHEE08QFxfX5dqnTJlCWloaH374IXa73ddxp0ePHr5+4C6Xi9zcXIKDg6mqquLNN9/0FSyPiIigZ8+enDp16t/7kEVT3iIiIlejA6W1vLr7NNsLK/GaQRgEUbPvKAChoaFs2bKFuro63nvvPQ4fPozX68VqtfL666+TlpbGHXfcwfz58zFNk/Xr1xMUFORbGxkTE8Pp06dxOp1MmDCBffv2sWHDBubNm0dERASLFy9mx44dfPjhh5SWlhIeHk5QUBDh4eG0tbVRUurEhY3CEyeZO2cO1113HTt27OD8+fPYbDZSU1PZv38/cXFxvPTSSwCkpaV12TyTnp7u+3d9fT33338/r776KqWlpWzYsIG5c+diGAYDBw6ksLCwy1pPufIUKEVERK4yq/ad5ZlN+Vgs/+x8YwJN1ecBqGpsJzMzk9zcXKZMmcKCBQswTZMzZ85w+PBhnE4nbW1tzJkzB7vdjt1u5/jx42RkZAAQGRnJwYMHSUhIYPLkycTHx/P222/zwQcfMHPmTGw2GzNmzCAxMZFNmzbhdruJjo4mYnA6f92aj9ObiImBYUDFMRejTu2gMj+bGTNmcPr0aVwuF8XFxbS2tvLCCy8AcOjQIfLy8khJSSE1NZWwsDDf/YaEhBAeHs6Pf/xjli9fTn5+PiEhIUybNo1BgwaRk5NDVVWVr/6mXHkKlCIiIleRA6W1PLMpHxO69Oj2utowXW0AVDtPUe2EhQsXMm7cOF/x8fHjx/OrX/2KmTNnkpmZySOPPMIbb7zBwIEDuwTK5uZmvF4vI0aM4MUXX2Tbtm3s37+fixcvYrfbiY+PZ9y4cSxevJglS5awdOlSPnJ2sLfkHAZhmHSOFJombC+qZKtpcn/KjYwZMwaPx8OuXbvweDxkZWXhcrl49NFHAThy5Ai5ubkcOnSIxsZG372NHz8e6JzifuCBB3jllVfYu3cvISEhjB49GrvdTsHxYiyB4YT42/C3f3ErRvn21ClHRETkKrJk9UF2FFV1CZMAnuY6zr1wr+/36KR0Dmx9l/j4eJYvX05bWxthYWH88Ic/5M477+Ttt98GIDc3F4vFwoYNG3j88ccBWLp0Ke+++y55eXl0dHSQkJDAnXfeCUB+fj51dXW+lorz588nYlAaW73JwJdPORvAuiXjiPVrY/ny5dx2221s3ryZyZMnM2HCBN9xXq/XV+j8+PHjREVF8T//8z9MnjzZV2ezurqaZcuW4Xa7GZLxA1btP09hgw0TA4sBU4dF82BGf9ITe3zp9cg3o17eIiIiV4k2l4f/b91RvF8wVORtb6bxwEbf7/7XzyfWqCfv2FGqqqpob2/H4/Fw4cIFWltb2b17NwCXLl1i2LBhOJ1O6uvrOXToEK2trbz55pu43W5uuukmVqxYwdixYxk9ejSxsbGEhYUxcuRI9u3bR2FhIc6aZvyGZHC5QGm1GNS3urhzXOcUtdPpJCIigtmzZ+NyuaipqcHpdLJlyxaefPJJCgoKmDJlCjNnzsTPz499+/aRn5+P2+0mISGB4cOHs2Z/GStOWqnpsP5zVBQorWnh7YNl9ApxcF18+Jdek3x9mvIWERG5SjS2ub8wTAJY7AFdfrdHJnKu8iL+uHyvNTQ0kJ+fT2trq++1ffv2kZSUBEBhYWHX77DbGT16NJs3b/7c+cLDwxk4cCCnTp2iunAv1vSTOGKHfOm1e7wmWwvK2fDeBaxWK01NTaSlpVFaWsrmzZt9o6MAffr04R//+Ac9evSgqKiI//iP/6C0tJTDhw+zc+dOPvroI/ziksjuSAD43DP5dPT2FxvzGRodopHKK0CBUkRE5CoR4m/DYnw+QAEYjgCw2sDjBsDmH8Qvn3oMP6vBc889h2maTJo0icGDB1NbW8vzzz8PdBY7nzlzJqdPn6aoqIjg4GCGDBmCYRj07duX4cOH09HRQUdHBy6XC5fLRXt7O263m6SkJF/JnpaTOZcNlAAmBrn5hdg9nYH2448/BqCxsZF7770Xl8tFXV0dx44d4+6776ZXr17MmTOH9957j+DgYOLj4xkwYAAVFRX8IacBAy/mZSokWiwGr+4+o0B5BShQioiIXCX87VamDov+wjWUhmHB3iMeV3UpADFmHe+/t5H09HTfppzevXsTHR3dpctNYGAg6enpNDY2UlRURFpaGjfddBO/+93vKC0tZdGiRV3K+ZimSXZ2Njt27CAqKsr3uqeh+iuv3wDCAv1ob+nA4/EQFRWF1+slNDSUyMhIXC4XHo+HMWPGsHXrVnJycnjttdeoq6sjJSXF9z1u06CkPdU3zf1lPF6TbYUVtLk82qjTTQqUIiIiV5EHMvqzraDyC99zxA72BcqpAwIpKysjPz/f935oaCjQ2dP7U7GxsTQ0NPh2TZeXlwMwZ84cVq1aRW1tLb169QI6i4xv3ryZvLw8MjIyqKio4LXXXgPAsF++9aHVgLEJQbRU1TNv3jy2bNnC8OHDueGGG7ocZ5ombrebRx55hOuuu47q6mq2bt3KU089hb+/P42NjZy7WM+q3a4vOVNXXrNzqYACZfeoU46IiMhVZHRiD349ZzgGnRtdPit4yD93S4d4Gnnssce4+eabfa9t2rSJEydOcOjQId9rN954I9u2bcPPz4/09HRKSkpob28nJiYGgIqKCqBz/eWKFSsoKipi3rx5TJgwgQ8//ND3PY6E5Mtet8c0iakvZNCgQSQnJ9OnTx9KS0s/d5xhGNjtdpqamnyjkk1NTWRlZdHU1MTJkyfJO3wAg69XxMZidC4VkO5RoBQREbnKLBrTl3VLxjE1KZpPM6WByZj0kfQb2LmO8eWXX8blctGnTx+gc4ONzWZj7dq1PPfccwA4HA4mTZpEQUEB06ZNIyUlBY/Hw6lTpwgMDCQkJITKykrKyspYtmwZzc3N3H///fj7+/Pyyy+TlZUFQK9evbgldQCdqyS9Xa618/pMxtmcRLhr+cEPfuBbn1lWVobH4/nCeywvL+9SqPzNN99k69atmKbJlJsnkhzu+dy5/pXVYjBtWIxGJ68ABUoREZGrUHpiD/62KI3CZ2dw4KkpPJ9hJcMo5vXlf8Nut1NWVsaiRYtoamoCOndlL168mIiICN80+NSpU8nOziYhIYGUlBQiIiKIiYnh+PHjQGcLxuLiYt544w169uzJfffdx4EDB1izZg1tbW04nU4AnnvuOf746DxuCzhFH8slX8i1GDBlaCSzg04z1FZNcHAwYWFhZGZmUl5ejsvl4sKFC757am9vp7CwkE2bNvHxxx/z2VLa/fr148knnyQjI4ODBw/Sv6P0shtyALxekwcy+l2xZ34t0xiviIjIVczfbsXfbuX6tFHkHtxP7969WbNmDYsXL+add96hqKiIxMREoqOjufPOO1m3bh0Wi4Wf/exn9O/fn4qKCtxuN1lZWYwePZqhQ4eSnZ1NR0cHTU1NVFVVkZqaypAhQ1i5ciVtbW3MnDmTJ598EoDhw4fz0EMPYRgGw2MC6VVxhsQBNqbPmkNYgB9+VoPnn99DQ0NnT+5Tp07xyCOPEBwczD333ENRUREXLlzg5MmTlJaW4vF4iIyMxM/PD6v1nyOLKSkpfPTRRxw4cIDExESevvsWWl7/gB31vbBaLF02KVktBl6vya/nDNcO7ytEgVJEROQaEBMTQ0xMDEePHmXBggVcf/31PPvss2zevJmTJ09isVjo06cPDz74II899hgJCQm8+OKLjBo1CpvNxu7du9mzZw9JSUl0dHTw+uuvU1VVBXRuxnnzzTfp378/t912Gy+99BK7du0iOjqan//85xiGQUNDA+Xl5YwdO5b9+/ezd+dWZs+ezb59+2hoaCAiIoLm5mZf28WioiLq6urYu3cvFouFxMREpk6dyuDBgwkJCeG5555j//79vvtramoiNzeXGTNmMHr0aDZu3MgAs5y77rqJdcdq2FZYgdfsHBWdmhTNAxn9FCavIAVKERGRa8SIESPYvn07LS0t9O3bl9dff5233nqL48ePEx8fz/33349hdM5Hr1u3DofDwfTp03E4HEycOJGcnBz27dsHQFVVFSNGjODIkSMcP36cW2+9ldTUVN59912efvppYmNjWbhwIf379wegoKAAq9XKxIkTiY2N5d1338VqtXLs2DHS0tIIDg7m448/pry8nMbGRrxeLxs2bGDu3Ln88pe/JDAw0HcfZWVlvP/++5w8eRKAUaNGMXDgQObMmUPPnj3Jzc0lLy+PuXPnkpKSyOTrEmlzeWhsc6uX97+JAqWIiMg1IiUlhe3bt5OXl8eYMWMAfEHt3Llz7Nq1i0mTJlFSUkJhYSFz587F4egs9xMUFERsbCyGYWCz2XC73Rw5cgSA5ORk0tLS2LZtG/fccw9RUVG88847bN261bdxJi8vj8GDB+Pv709KSgoXL14kKysLwzDIzc3F6/XicDh8vcE/nf7+85//jNPpJDU1lZ49e1JaWsrKlSs5e/YsAKmpqfzpT3/ihhtuwGKxUF1dTWZmJiNHjuxSm/LTqX/591CgFBERuUYEBQUxePBgjh496guUjY2NAKSnp/PJJ5/gcDjIzc31dcGBztqPWVlZ/O///i8JCQnU1NTgdrvp378/Z8+e5ciRI2RnZ/PXv/6VsLAwdu7c6TtnVFQUFy9epLy8nKSkJHbs2EFxcbGv1qVpmiQnJzN58mRM02Tp0qXccccd/OY3v+HIkSOsWrWKnTt3smnTJlwuFyEhIYSGhnL99dczefJkfvrTn/oKqLtcLtavX09YWBi33HLLd/lor3kKlCIiIteQESNG8NZbb1FZWUl0dDTNzc0AZGRk4HA42LFjB4ZhsGDBAgzDoKOjg40bN1JUVETv3r0pKyujX79+VFVVERkZSXh4OFu3bmX58uXYbDaWLFmC1+uluroaf39/nE6nr3zQzp07CQwMZMCAATQ2NhIXF0dERASHDh1i2LBhJCUlMX78ePbs2YPT6eQXv/gFAwYMwDRNFi1aRFVVFRs2bKCiooLIyEiWLFnSZWPO1q1bqa2t5cEHH8TPz+97eb7XKgVKERGRa8igQYMIDAzkyJEjTJ8+ndbWzr7ZISEhpKenk52djWma1NTU4Ofnx9q1a6mpqSEwMJCamhrfWsnMzEyOHz9OUFAQy5cvJyQkhJUrV1JRUcH69esxDAPTNFm/fj1btmyhvb2dDz74gLi4OD788EM8Hg+zZs0iJCSE1tZW3nnnHe655x4yMjI4dOgQNTU1FBYWkpiYyMcff0xWVhZZWVn06NEDu91OSkpKlzBZUFDAoUOHuPXWW7u0fJTvhupQioiIXEOsVispKSnk5eXh8Xhoa2vDz88Pi8XCtm3bCA4OZujQoaxfv56XX36Zuro63G43MTExPPLII6SlpWEYBklJSeTn5/P4449jsVh46qmnOHPmDGVlZV16ezscDqqrq6mpqSE+Pp4LFy6wf/9+br75ZsLCwrBYLNx+++0kJib6wuu0adMA2L59O+Hh4bhcLnbt2sWYMWNYsGABLperS1Hzuro6Nm/eTHJyMqmpqd/5MxUFShERkWvOyJEjaW5upuB4MfXtJnb/QE6dOkVRURFTp04lMTERr9dLR0cHXq+XmTNnsmjRIsLDwwFoa2sjJyeHNWvW0NLSwo033sjx48epq6sjMTGR9PR0zpw5Q1hYGBUVFbS1tdHS0sKOHTvYtGkTvXv39q3hhM6Qu2DBAiIjI1mzZg1xcXH06tWL+vp63nnnHQDS0tKYOnUqNTU1AL7Wjx6Ph/Xr1xMYGMitt97q26Uu3y1NeYuIiFxjytr82GMZxt9Xl2AyHKPF5MM1h7gxcgCnTp3i2LFjAL4d3gkJCdTV1XHixAlOnjxJUVERf/nLX2hrawNg27ZtX3nO6Oho9u3bh8fjISkpifr6eiIiInzv+/n5cffdd7NixQpWrVqFv78/0Bk2ExISuHTpEtDZOzwgIICQkBAAPvroIyoqKnwtH+X7oUApIiJyDVm17yzPbMrHMAL5tHeMiUFJWyCnygzGlTtJdliZNm0a4eHhbNq0iVdeeQXTNLFarfTr14+xY8f6wuTX9em0eu/evTl79iwvvPACycnJTJgwwTfaGBAQwMiRI9mxYwfNzc3ExMRQUVGBw+GgpKQEj8dDZWUlMTExGIZBcXExe/fuZdq0acTFxV3hJyXfhAKliIjINeJAaS3PbMrHBD7TBhvA1/d6r7sPIxIj2bVrF21tbQQGBuLn54fNZuP++++nR4/O7jKmaeJyufj9739PfHw8FRUVPPHEExiGwbZt23wtHZ1OJz/5yU9Yu3YtlZWVLFq0CIvFQm5uLtnZ2bzyyisMHDiQUaNGkZuby6lTp0hKSqK0tNR3badPn8blclFadp6S89UMHzKAhoYGNm7cyKBBgxg7dux39ATlyxim+a//pURERORqtGT1QXYUVXXpa/2vDLwMDmzjvzJ6MXjwYGJjY6mvr2fFihU4HA4WL15MQECA7/h169ZRUVFBbW0tjz/+OKGhoaxevRrDMHA6nYwbN46oqCjWrVvHnXfeydChQ32f9Xg85Ofns3PnThoaGrBYLGRkZHDTTTdRXl7OG2+8gb+/PycveSn0RHPWE4EJGMCQ4HaG2yr5f4/9sEsXHfl+aFOOiIjINaDN5WF7YeVlwyR0jlQWtwRQebGWY8eOkZWVRXFxMWPHjqWhoYEVK1Zw8eJFXC4XAEOHDqW2thboXN8InW0ZbTYbHR0dDB48mMzMTIYOHdolTELn5p7jx4/T0NBA37596d27N1lZWbz88stUV1czf/58DlwK4IOOIZz1hH1mih5ONNlZf6kP7+ZVX9HnJN+ORihFRESuAdWN7Yz+7Y6vffwTA2uwdDTT0tJCS0sLXq/3c8fY7Xb8/f1pbGzEMAwiIyOJj4/n8OHDvpJAkZGRnD59mvvuu4+YmBjsdjsARUVFbNmyBYCZM2cybNgwAJxOJ3v27KG4uJhG/yjWX0qgc0zyixnAuiXjSE/s8fUfhlxxCpQiIiLXgDaXh2G//JCvGKAEwMDktRlhjB8zGn9/f0zTpKOjg5aWFkpKSsjMzCQ6OpqUlBRaW1s5evQoTU1NBAQE4OfnR11d3Zd+t81mwzAMXC4XgYGBJCQkEBISQmBgYJef1tZWfr6lhMJ6i2995xexWgymJkXzt0Vp3+axyBWiTTkiIiLXAH+7lanDor9yDaXVgOERJtmffMy+PZ+QmprKmDFjiIiIwOFwkJ6eTkhICG+99RbR0dHcdttthIWFsWXLFix+/gwdmc7uXdux4qVnz55YLBZmz55Na2srZ86c4eDBg3g8Hvr160dAQACtra2UlZX5RkI9Hg8AbtOgsD0V8zKjkwAer8m2wgraXB787dbLHiv/PgqUIiIi14gHMvqzraDyssd4TfjF/AkM7XUz+/fv5+DBg+zfv5+kpCTGjRtHfHw8Q4YMYc6cOWzYsAF/f38C+gxnZ8cAnOXhmOU1GIxigH8zQ6rP8fTDd9OjRw+2bt1Kbm4uAwcOZNasWYSGhn7u3KZpUl9fT0lJCfmnzmIe+XpFyr0mNLa5FSi/R5ryFhERuYaszjnLLzbmY7EYXUYqrRYDr9fkyKxX4QAAA9RJREFU13OGs2hMX9/rLpeLI0eOsG/fPmpra0lISGDcuHEMGTKEgwcP8ufNB9nr7osFE+9nRhMNvJhYeDwjBvPkJ7S2tjJ9+nRGjRrl62ZjmiaXLl3C6XT6fi5evAhAYEgYL1UP/MoRSgCLAYXPzlCg/B4pUIqIiFxjDpbW8uruM2wrrMBrdgayacNieCCj35dubjFNkxMnTrB3716cTic9evQgbEAqz3xy6SvOZvLjPvU8dtdMQkNDqaqq6hIgGxsbAYiMjKRPnz6+n/Dw8K9V5khrKP9vUKAUERG5RrW5PDS2uQnxt32j0b3z58+zd+9eXshtw+kNv+woosWA1Cgrt0fWUFZWRnt7OxaLhdjY2C4B8rO1LT91oLSWBa/s5XJBRbu8/29QoBQREZFv7JvuGv/lsHr6902gb9++xMbG+soHfZVvOkUv3w9tyhEREZFvrLHN/bXCJHT2Cp855w4iQxzf+DyLxvRlaHTI56bopyZFX3aKXr5bCpQiIiLyjYX427AYfK1QaTE6j/+20hN7kJ7Y41tP0cu/n1ovioiIyDf2aV1Lq+Xyu7CtFoNpw2KuSAD0t1uJDHEoTP4fpEApIiIi38oDGf3xfsUQpddr8kBGv+/oiuT7okApIiIi38roxB78es5wDPjcSKXVYmAAv54zXOscrwHa5S0iIiLd8m3qWsrVRYFSRERErghtmrl2KVCKiIiISLdoDaWIiIiIdIsCpYiIiIh0iwKliIiIiHSLAqWIiIiIdIsCpYiIiIh0iwKliIiIiHSLAqWIiIiIdIsCpYiIiIh0iwKliIiIiHSLAqWIiIiIdIsCpYiIiIh0iwKliIiIiHSLAqWIiIiIdIsCpYiIiIh0iwKliIiIiHSLAqWIiIiIdIsCpYiIiIh0iwKliIiIiHSLAqWIiIiIdIsCpYiIiIh0iwKliIiIiHSLAqWIiIiIdIsCpYiIiIh0iwKliIiIiHSLAqWIiIiIdIsCpYiIiIh0iwKliIiIiHSLAqWIiIiIdIsCpYiIiIh0iwKliIiIiHSLAqWIiIiIdIsCpYiIiIh0iwKliIiIiHSLAqWIiIiIdIsCpYiIiIh0iwKliIiIiHSLAqWIiIiIdIsCpYiIiIh0iwKliIiIiHSLAqWIiIiIdIsCpYiIiIh0iwKliIiIiHSLAqWIiIiIdIsCpYiIiIh0iwKliIiIiHSLAqWIiIiIdIsCpYiIiIh0iwKliIiIiHSLAqWIiIiIdIsCpYiIiIh0iwKliIiIiHSLAqWIiIiIdIsCpYiIiIh0iwKliIiIiHSLAqWIiIiIdMv/D4iUyhQrdn2GAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -111,26 +127,13 @@ } ], "source": [ - "def draw_graph(G, filename=None, node_size=50):\n", - " pos_nodes = nx.spring_layout(G)\n", - " nx.draw(G, pos_nodes, with_labels=False, node_size=node_size, edge_color='gray')\n", - " \n", - " pos_attrs = {}\n", - " for node, coords in pos_nodes.items():\n", - " pos_attrs[node] = (coords[0], coords[1] + 0.08)\n", - "\n", - " plt.axis('off')\n", - " axis = plt.gca()\n", - " axis.set_xlim([1.2*x for x in axis.get_xlim()])\n", - " axis.set_ylim([1.2*y for y in axis.get_ylim()])\n", - "\n", "embeddings = np.array(embeddings)\n", "draw_graph(G)" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -142,20 +145,18 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAD4CAYAAAAZ1BptAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAW70lEQVR4nO3df6zd9X3f8eermERelsU2EGNsiNniEhFlhemULJo2oeDg/GiD16AMFLGbDuQmWxVN0VCNUMtGMpXElZJlGks9p5lTpZQfReCQFMs4QUVqm+Q6ECBJPXvJMnwxYH6YUMVLgb73x/leenDO1/Y959wf5/r5kI7O9/v5fL7f875H9n3d7+f7PeebqkKSpH5+Yb4LkCQtXIaEJKmVISFJamVISJJaGRKSpFZL5ruAUTr99NNr7dq1812GJI2VPXv2PF1VZ/TrW1QhsXbtWiYnJ+e7DEkaK0l+3NbndJMkqZUhIUlqZUhIkloZEpKkVoaEJKnVorq6SdLJ464Hp9iycy+PHz7CWcuWcu2G89h44er5LmvRMSQkjZ27Hpziujsf4ciLLwMwdfgI1935CMCsB8W5m79K73dnB/jRTe+b1decT043SRo7W3bufSUgph158WW27Nw7q697dEAAVNO+WBkSksbO44ePzKh9VNruvrOY78pjSEgaO2ctWzqjdg3OkJA0dq7dcB5LTz3lVW1LTz2FazecN08VLV6euJY0dqZPTs/11U2h/9RSZvVV51cW0z2uO51O+QV/kmbTYry6Kcmequr06/NIQpJmYNwDYaYMCR2XH1qSTl6GhI5pPj+0pMXPP0AWPq9u0jHN14eWtPhN/wEydfgIxd/9AXLXg1PzXZp6GBI6pvn60JIWP/8AGQ8jC4kk706yN8n+JJv79L82ya1N/zeTrO3pu65p35tkw4nuU7PPDy1ptvgHyHgYSUgkOQX4b8B7gPOBK5Ocf9Swq4HnqurNwGeATzXbng9cAbwVeDdwc5JTTnCfmmV+aEmzxT9AxsOojiQuAvZX1Q+r6m+APwYuO2rMZcD2ZvkO4JIkadr/uKp+VlU/AvY3+zuRfWqWbbxwNb/7a29j9bKlBFi9bCm/+2tv8+SihuYfIONhVFc3rQYe61k/ALy9bUxVvZTkeeC0pv0vj9p2+jfQ8fZJkk3AJoBzzjln8J9ArTZeuNpQ0MjN16emNTNjfwlsVW0FtkL3E9fzXI6kGfAPkIVvVNNNU8DZPetrmra+Y5IsAd4APHOMbU9kn5KkWTSqkPg2sC7JuUleQ/dE9I6jxuwAJprly4GvV/eLo3YAVzRXP50LrAO+dYL7lCTNopFMNzXnGH4T2AmcAvxBVX0vyY3AZFXtAL4A/GGS/cCzdH/p04y7Dfg+8BLw76rqZYB++xxFvZKkE3PSfwusXwsg6WTnt8C28HuJJOnYTuqv5fBrASTp2E7qkPBrASTp2E7qkPBrASTp2E7qkPBrASTp2E7qE9d+LYAkHdtJHRLg1wJI0rGc1NNNkqRjMyQkSa0MCUlSK0NCktTKkJAktTIkJEmtDAlJUitDQpLUaqiQSLIiya4k+5rn5S3jJpox+5JMNG1/L8lXk/xVku8lualn/IeTHEryUPO4Zpg6JUmDGfZIYjOwu6rWAbub9VdJsgK4AXg7cBFwQ0+Y/F5VvQW4EPhnSd7Ts+mtVXVB89g2ZJ2SpAEMGxKXAdub5e3Axj5jNgC7qurZqnoO2AW8u6p+WlXfAKiqvwG+A6wZsh5J0ggNGxIrq+pgs/wEsLLPmNXAYz3rB5q2VyRZBvwq3aORaR9I8nCSO5KcPWSdkqQBHPcL/pLcB5zZp+v63pWqqiQzvmF2kiXALcDnquqHTfNXgFuq6mdJfoPuUco7W7bfBGwCOOecc2b68pKkYzhuSFTV+ra+JE8mWVVVB5OsAp7qM2wKuLhnfQ1wf8/6VmBfVX225zWf6enfBnz6GPVtbfZBp9OZcUhJktoNO920A5holieAu/uM2QlcmmR5c8L60qaNJJ8E3gD8+94NmsCZ9n7gB0PWKUkawLAhcRPwriT7gPXNOkk6SbYBVNWzwCeAbzePG6vq2SRr6E5ZnQ9856hLXT/WXBb7XeBjwIeHrFOSNIBULZ4Zmk6nU5OTk/NdhiSNlSR7qqrTr89PXEuSWhkSkqRWhoQkqZUhIUlqZUhIkloZEpKkVsf9xLU0Tu56cIotO/fy+OEjnLVsKdduOI+NF64+/oaS+jIktGjc9eAU1935CEdefBmAqcNHuO7ORwAMCmlATjdp0diyc+8rATHtyIsvs2Xn3nmqSBp/hoQWjccPH5lRu6TjMyS0aJy1bOmM2iUdnyGhRePaDeex9NRTXtW29NRTuHbDefNUkTT+PHGtRWP65LRXN0mjY0hoUdl44WpDQRohp5skSa0MCUlSq6FDIsmKJLuS7Guel7eMm2jG7Esy0dN+f5K9zZ3pHkryxqb9tUluTbI/yTeTrB22VknSzIziSGIzsLuq1gG7m/VXSbICuAF4O3ARcMNRYfKhqrqgeTzVtF0NPFdVbwY+A3xqBLVKkmZgFCFxGbC9Wd4ObOwzZgOwq6qerarngF3Au2ew3zuAS5Jk+HIlSSdqFCGxsqoONstPACv7jFkNPNazfqBpm/bFZqrpt3uC4JVtquol4HngtKN3nGRTkskkk4cOHRryR5Ek9TqhS2CT3Aec2afr+t6VqqokNcMaPlRVU0leD/wJcBXwpRPduKq2AlsBOp3OTF9bknQMJxQSVbW+rS/Jk0lWVdXBJKuAp/oMmwIu7llfA9zf7HuqeX4hyR/RPWfxpWabs4EDSZYAbwCeOZF6JUmjMYrpph3A9NVKE8DdfcbsBC5Nsrw5YX0psDPJkiSnAyQ5FfgV4NE++70c+HpVeaQgSXNoFJ+4vgm4LcnVwI+BDwIk6QAfqaprqurZJJ8Avt1sc2PT9jq6YXEqcApwH/A/mjFfAP4wyX7gWeCKEdQqSZqBLKY/zjudTk1OTs53GZI0VpLsqapOvz4/cS1JamVISJJaGRKSpFaGhCSplSEhSWplSEiSWhkSkqRWhoQkqZUhIUlqZUhIkloZEpKkVoaEJKmVISFJamVISJJaGRKSpFZDhUSSFUl2JdnXPC9vGTfRjNmXZKJpe32Sh3oeTyf5bNP34SSHevquGaZOSdJghj2S2Azsrqp1wO5m/VWSrABuAN5O9/7VNyRZXlUvVNUF0w+6d7W7s2fTW3v6tw1ZpyRpAMOGxGXA9mZ5O7Cxz5gNwK6qeraqngN2Ae/uHZDkF4E3Ag8MWY8kaYSGDYmVVXWwWX4CWNlnzGrgsZ71A01bryvoHjn03kv1A0keTnJHkrPbCkiyKclkkslDhw4N8CNIktocNySS3Jfk0T6Py3rHNb/gB71h9hXALT3rXwHWVtU/pnvksb3vVt3X3VpVnarqnHHGGQO+vCSpnyXHG1BV69v6kjyZZFVVHUyyCniqz7Ap4OKe9TXA/T37+CVgSVXt6XnNZ3rGbwM+fbw6JUmjN+x00w5golmeAO7uM2YncGmS5c3VT5c2bdOu5NVHETSBM+39wA+GrFOSNIDjHkkcx03AbUmupnt10gcBknSAj1TVNVX1bJJPAN9utrmxqp7t2ccHgfcetd+PJXk/8BLwLPDhIeuUJA0grz5XPN46nU5NTk7OdxmSNFaS7KmqTr8+P3EtSWplSEiSWhkSkqRWhoQkqZUhIUlqZUhIkloZEpKkVoaEJKmVISFJamVISJJaGRKSpFaGhCSplSEhSWplSEiSWhkSkqRWQ4dEkhVJdiXZ1zwvbxl3b5LDSe45qv3cJN9Msj/JrUle07S/tlnf3/SvHbZWSdLMjOJIYjOwu6rWAbub9X62AFf1af8U8JmqejPwHHB103418FzT/plmnCRpDo0iJC4DtjfL24GN/QZV1W7ghd62JAHeCdzRZ/ve/d4BXNKMlyTNkVGExMqqOtgsPwGsnMG2pwGHq+qlZv0AsLpZXg08BtD0P9+MlyTNkSUnMijJfcCZfbqu712pqkoypzfNTrIJ2ARwzjnnzOVLS9Kid0IhUVXr2/qSPJlkVVUdTLIKeGoGr/8MsCzJkuZoYQ0w1fRNAWcDB5IsAd7QjD+6tq3AVoBOpzOnASVJi90oppt2ABPN8gRw94luWFUFfAO4vM/2vfu9HPh6M16SNEdGERI3Ae9Ksg9Y36yTpJNk2/SgJA8At9M9AX0gyYam67eAjyfZT/ecwxea9i8ApzXtH6f9qilJ0izJYvrjvNPp1OTk5HyXIUljJcmequr06/MT15KkVoaEJKmVISFJamVISJJaGRKSpFaGhCSplSEhSWplSEiSWhkSkqRWhoQkqZUhIUlqZUhIkloZEpKkVoaEJKmVISFJamVISJJaDRUSSVYk2ZVkX/O8vGXcvUkOJ7nnqPYvJ9mb5NEkf5Dk1Kb94iTPJ3moefzOMHVKkgYz7JHEZmB3Va0DdtN+i9EtwFV92r8MvAV4G7AUuKan74GquqB53DhknZKkAQwbEpcB25vl7cDGfoOqajfwQp/2r1UD+BawZsh6JEkjNGxIrKyqg83yE8DKQXbSTDNdBdzb0/yOJN9N8qdJ3nqMbTclmUwyeejQoUFeXpLUYsnxBiS5DzizT9f1vStVVUlqwDpuBv6sqh5o1r8DvKmq/jrJe4G7gHX9NqyqrcBWgE6nM+jrS5L6OG5IVNX6tr4kTyZZVVUHk6wCnpppAUluAM4AfqPnNX/Ss/y1JDcnOb2qnp7p/iVJgxt2umkHMNEsTwB3z2TjJNcAG4Arq+pve9rPTJJm+aKmzmeGrFWSNEPDhsRNwLuS7APWN+sk6STZNj0oyQPA7cAlSQ4k2dB0fZ7ueYy/OOpS18uBR5N8F/gccEVzcluSNIeymH73djqdmpycnO8yJGmsJNlTVZ1+fX7iWpLUypCQJLUyJCRJrQwJSVIrQ0KS1MqQkCS1MiQkSa0MCUlSK0NCktTKkJAktTIkJEmtDAlJUitDQpLUypCQJLUyJCRJrYYKiSQrkuxKsq95Xt4y7t4kh5Pcc1T7/0zyo+aGQw8luaBpT5LPJdmf5OEk/2SYOiVJgxn2SGIzsLuq1gG7m/V+tgBXtfRdW1UXNI+Hmrb3AOuaxybgvw9ZpyRpAMOGxGXA9mZ5O7Cx36Cq2g28MMP9fqm6/hJYlmTVMIVKkmZu2JBYWVUHm+Un6N6veqb+czOl9Jkkr23aVgOP9Yw50LT9nCSbkkwmmTx06NAALy9JanPckEhyX5JH+zwu6x1X3Ztlz/SG2dcBbwF+GVgB/NYMt6eqtlZVp6o6Z5xxxkw3lyQdw5LjDaiq9W19SZ5MsqqqDjbTQU/N5MV7jkJ+luSLwH9o1qeAs3uGrmnaJElzaNjpph3ARLM8Adw9k42nzzMkCd3zGY/27PdfN1c5/VPg+Z5AkSTNkeMeSRzHTcBtSa4Gfgx8ECBJB/hIVV3TrD9Ad1rp7yc5AFxdVTuBLyc5AwjwEPCRZr9fA94L7Ad+Cvz6kHVKkgaQ7qmExaHT6dTk5OR8lyFJYyXJnqrq9OvzE9eSpFaGhCSplSEhSWplSEiSWhkSkqRWhoQkqZUhIUlqZUhIkloZEpKkVoaEJKmVISFJamVISJJaGRKSpFaGhCSplSEhSWo1VEgkWZFkV5J9zfPylnH3Jjmc5J6j2h9I8lDzeDzJXU37xUme7+n7nWHqlCQNZtgjic3A7qpaB+xu1vvZAlx1dGNV/fOquqCqLgD+Arizp/uB6b6qunHIOiVJAxg2JC4DtjfL2+nep/rnVNVu4IW2nST5B8A7gbuGrEeSNELDhsTKqjrYLD8BrBxwPxvpHpH8pKftHUm+m+RPk7y1bcMkm5JMJpk8dOjQgC8vSepnyfEGJLkPOLNP1/W9K1VVSQa9YfaVwLae9e8Ab6qqv07yXrpHGOv6bVhVW4Gt0L3H9YCvL0nq47ghUVXr2/qSPJlkVVUdTLIKeGqmBSQ5HbgI+Jc9r/mTnuWvJbk5yelV9fRM9y9JGtyw0007gIlmeQK4e4B9XA7cU1X/b7ohyZlJ0ixf1NT5zJC1SpJmaNiQuAl4V5J9wPpmnSSdJK9MHyV5ALgduCTJgSQbevZxBXDLUfu9HHg0yXeBzwFXVJVTSZI0x7KYfvd2Op2anJyc7zIkaawk2VNVnX59fuJaktTKkJAktTIkJEmtjnsJrCQtFHc9OMWWnXt5/PARzlq2lGs3nMfGC1fPd1mLmiEhaSzc9eAU1935CEdefBmAqcNHuO7ORwAMilnkdJOksbBl595XAmLakRdfZsvOvfNU0cnBIwlJY+Hxw0dm1H6yOHfzV+n9IEOAH930vpHt3yMJSWPhrGVLZ9R+Mjg6IACqaR8VQ0LSWLh2w3ksPfWUV7UtPfUUrt1w3jxVNP/aPgo9yo9IO90kaSxMn5z26qa5ZUhIGhsbL1xtKMwxp5skaUxlhu2DMCQkaUz96Kb3/VwgjPrqJqebJGmMjTIQ+vFIQpLUypCQJLUyJCRJrQwJSVIrQ0KS1GpR3eM6ySHgx3PwUqcDT8/B64zKuNUL1jwXxq1esObZ8qaqOqNfx6IKibmSZLLtpuEL0bjVC9Y8F8atXrDm+eB0kySplSEhSWplSAxm63wXMEPjVi9Y81wYt3rBmuec5yQkSa08kpAktTIkJEmtDIkWSVYk2ZVkX/O8vGXcvUkOJ7nnqPbfTLI/SSU5fQzqPTfJN5uab03ymgVU80QzZl+SiZ72f5Xk4STfS/Kp2a53RDVfmeSRpu57Z/vfxjD1Jnl9kod6Hk8n+exs1jtszU37a5JsTfK/kvxVkg8s8HrvT7K3531+42zWO2NV5aPPA/g0sLlZ3gx8qmXcJcCvAvcc1X4hsBb4P8DpY1DvbcAVzfLngY8uhJqBFcAPm+flzfJy4DTg/wJnNOO2A5cs8JqXAE9N/3to9vUfF2q9fcbtAf7FQn6Pm77/BHyyWf6F2f7/N4J67wc6s/2+DvzzzXcBC/UB7AVWNcurgL3HGHvx0b90e/rmKiQGrpfufUqeBpY06+8Adi6EmoErgd/vWf/9pu2Xgd097VcBNy/wmk8FDgFvat7zzwObFmq9R435ReAxmotdFnLNTZ2vm+06R1jvgg4Jp5varayqg83yE8DK+SzmBAxT72nA4ap6qVk/AMzFjYRPpObVdP/TT5uubT9wXpK1SZYAG4GzZ7HWaQPXXFUvAh8FHgEeB84HvjCLtcJw73GvK4Bbq/mtNssGrjnJsmb9E0m+k+T2JLP9f3cU7/EXm6mm304yyruPDu2kvjNdkvuAM/t0Xd+7UlWVZN6vFR63emH2aq6q55J8FLgV+Fvgz4F/NEyt02ar5iSn0g2JC+lON/xX4Drgk4NXO2f/Lq6ge7Q2ErNY8xJgDfDnVfXxJB8Hfo8ha5/l9/hDVTWV5PXAn9Ct9UuDVTp6J3VIVNX6tr4kTyZZVVUHk6yiO5c8r2ax3meAZUmWNEcTa4CpIcsFRlLzFN3psWlr6B6eU1VfAb7S7GsT8PICr/mCZv//u9nXbXTnsBdqvdP7+CW6U5F7hq112izW/AzwU+DOpv124OoFXC9VNdU8v5Dkj4CLWEAh4XRTux3A9BUIE8Dd81jLiRi43mYK4RvA5YNsP4QTqXkncGmS5c1VI5c2bUxfBdK0/1tg26xXPFzNU8D5Saa/bfNdwA8WcL3TrgRumdUqX23gmpt/y1/h734hXwJ8f3bLHbzeJEumr3BrjjR/BXh0luudmfk+KbJQH3Tn6XcD+4D7gBVNewfY1jPuAbonI4/QnWfc0LR/rFl/ie7887YFXu8/BL5Fd67/duC1C+g9/jdNXfuBX+9pv4XuL4Dv01yZNQY1f4RuMDxM95fZaQu53qbvh8Bb5uL9HdF7/Cbgz5r3eDdwzkKtF3gd3avGHga+B/wX4JS5eq9P5OHXckiSWjndJElqZUhIkloZEpKkVoaEJKmVISFJamVISJJaGRKSpFb/H16VbiJlFVILAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGdCAYAAAD60sxaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dfXRU1aH+8WeGkAQMM8NgwiQabKgtJHItGpoQpAommpReW2u8t2hYLTSFaoleCV0KWkW0Fpf4Cq3mUl4sC2gpfRXUaCQiV40BI1GBhCurWCFkEq9jZkDIGzm/P/gxZcwLScjJ2/l+1jrLNefsvc/ee7GcJ+dlj80wDEMAAAAWYu/rDgAAAPQ2AhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALCcsL7uQH/V0tKio0ePasSIEbLZbH3dHQAA0AmGYejYsWOKi4uT3d7+dR4CUDuOHj2q+Pj4vu4GAADohsOHD+viiy9u9zgBqB0jRoyQdHoCHQ5HH/cGAAB0RiAQUHx8fPB7vD0EoHacue3lcDgIQAAADDDnenyFh6ABAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlsBAiAMAyTrUY2nXIp9pj9YoZEamUBLeG2Pm9RysiAAEALKFwb7WWbt2van99cF+sM1JLbkhS1oTYPuxZ+6p8J/XtFW/oi4ZTuiBiiF6+8xpd5B7W190aFGyGYRh93Yn+KBAIyOl0yu/381MYADDAFe6t1u0b3tOXv/DOXPt5btaV/S4Eff2+l9R4qvVXdPgQm/73kRl90KOBobPf3zwDBAAY1E61GFq6dX+r8CMpuG/p1v061dJ/rge0F34kqfGUoa/f91Iv92jwIQABAAa1XYd8Ibe9vsyQVO2v165Dvt7rVAeqfCfbDT9nNJ4yVOU72Us9GpwIQACAQa32WPvhpzvlzPbtFW/0aDm0jQAEABjUYkZE9mg5s33RcKpHy6FtBCAAwKCWkuBWrDNS7b3sbtPpt8FSEty92a12XRAxpEfLoW0EIADAoDbEbtOSG5IkqVUIOvN5yQ1J/WY9oJfvvKZHy6FtBCAAwKCXNSFWz826Uh5n6G0ujzOy370Cf5F7mMKHdBzGwofYWA/oPLEOUDtYBwgABp+BtBI06wB1T2e/vwlA7SAAAQD6GitBd11nv7/5KQwAAPqpi9zD9MGDWX3djUGJZ4AAAIDlEIAAAIDlEIAAAIDl8AwQ0I6B9LYIAKBrCEBAGwr3Vmvp1v0hP6AY64zUkhuS+tV6IcBgxR8gMBsBCPiSwr3Vun3De/ry+hBef71u3/Bev1s0DRhs+AMEvYFngICznGoxtHTr/lbhR1Jw39Kt+3WqheWzADOc+QPk7PAj/esPkMK91X3UMww2BCDgLLsO+Vr9j/dshqRqf712HfL1XqcAi+APEPQmAhBwltpj7Yef7pQD0Hn8AYLeRAACzhIzIvLchbpQDkDn8QcIelOvBKDf/OY3+spXvqLIyEilpqZq165dHZbfsmWLxo8fr8jISP3bv/2bXnrppZDjhmHogQceUGxsrIYNG6aMjAx99NFHIWV8Pp9ycnLkcDjkcrmUm5ur48eP9/jYMLikJLgV64xUe++a2HT6YcyUBHdvdguwBP4AQW8yPQBt3rxZ+fn5WrJkid577z194xvfUGZmpmpra9ss//bbb+uWW25Rbm6u9uzZoxtvvFE33nij9u7dGyzz2GOPacWKFSooKFBpaakuuOACZWZmqr7+X38V5OTkaN++fSoqKtK2bdu0c+dOzZs3z+zhYoAbYrdpyQ1JktQqBJ35vOSGJF7HBUzAHyDoTab/Gnxqaqq++c1v6te//rUkqaWlRfHx8brjjju0aNGiVuV/8IMf6IsvvtC2bduC+yZPnqyJEyeqoKBAhmEoLi5OCxcu1M9//nNJkt/v1+jRo/X8889r5syZqqioUFJSknbv3q1JkyZJkgoLCzVjxgwdOXJEcXFx5+w3vwZvbbyGC/SNM2+BSQp5GPpMKGIZCpxLZ7+/Tb0C1NjYqLKyMmVkZPzrhHa7MjIyVFJS0madkpKSkPKSlJmZGSx/6NAheb3ekDJOp1OpqanBMiUlJXK5XMHwI0kZGRmy2+0qLS3tsfFh8MqaEKs377lWv587Wc/MnKjfz52sN++5lv/xAibLmhCr52ZdKY8z9DaXxxlJ+EGPMnUhxP/7v//TqVOnNHr06JD9o0ePVmVlZZt1vF5vm+W9Xm/w+Jl9HZWJiYkJOR4WFia32x0s82UNDQ1qaGgIfg4EAucaHga5IXab0r46qq+7AVhO1oRYXZfkYSVomIqVoP+/ZcuWaenSpX3dDQCA+AME5jP1FtiFF16oIUOGqKamJmR/TU2NPB5Pm3U8Hk+H5c/891xlvvyQdXNzs3w+X7vnXbx4sfx+f3A7fPhwJ0cJAAAGGlMDUHh4uJKTk7V9+/bgvpaWFm3fvl1paWlt1klLSwspL0lFRUXB8gkJCfJ4PCFlAoGASktLg2XS0tJUV1ensrKyYJni4mK1tLQoNTW1zfNGRETI4XCEbAAAYHAy/RZYfn6+fvSjH2nSpElKSUnR008/rS+++EJz5syRJP3whz/URRddpGXLlkmS/uu//kvXXHONnnjiCX3nO9/RH/7wB7377rtatWqVJMlms+muu+7SL3/5S33ta19TQkKC7r//fsXFxenGG2+UJCUmJiorK0tz585VQUGBmpqalJeXp5kzZ3bqDTAAADC4mR6AfvCDH+jTTz/VAw88IK/Xq4kTJ6qwsDD4EPMnn3wiu/1fF6KmTJmiTZs26Re/+IXuvfdefe1rX9Pf/vY3TZgwIVjm7rvv1hdffKF58+aprq5OU6dOVWFhoSIj//XWwMaNG5WXl6f09HTZ7XZlZ2drxYoVZg8XAAAMAKavAzRQsQ4QAAADT79YBwgAAKA/IgABAADLYR2gXnSqxWBhLwAA+gECUC/ht6UAAOg/uAXWC878uN/Z4UeSvP563b7hPRXure6jngEAYE0EIJOdajG0dOt+tfWq3Zl9S7fu16kWXsYDAKC3EIBMtuuQr9WVn7MZkqr99dp1yNd7nQIAwOIIQCarPdZ++OlOOQAAcP4IQCaLGRF57kJdKAcAAM4fAchkKQluxToj1d7L7jadfhssJcHdm90CAMDSCEAmG2K3ackNSZLUKgSd+bzkhiTWAwIAoBcRgHpB1oRYPTfrSnmcobe5PM5IPTfrStYBAgCgl7EQYi/JmhCr65I8rAQNAEA/QADqRUPsNqV9dVRfdwMAAMvjFhgAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcUwOQz+dTTk6OHA6HXC6XcnNzdfz48Q7r1NfXa/78+Ro1apSioqKUnZ2tmpqa4PH3339ft9xyi+Lj4zVs2DAlJibqmWeeCWljx44dstlsrTav12vKOAEAwMASZmbjOTk5qq6uVlFRkZqamjRnzhzNmzdPmzZtarfOggUL9OKLL2rLli1yOp3Ky8vTTTfdpLfeekuSVFZWppiYGG3YsEHx8fF6++23NW/ePA0ZMkR5eXkhbR04cEAOhyP4OSYmxpyBAgCAAcVmGIZhRsMVFRVKSkrS7t27NWnSJElSYWGhZsyYoSNHjiguLq5VHb/fr+joaG3atEk333yzJKmyslKJiYkqKSnR5MmT2zzX/PnzVVFRoeLiYkmnrwBNnz5dn3/+uVwuV7f6HwgE5HQ65ff7Q0IUAADovzr7/W3aLbCSkhK5XK5g+JGkjIwM2e12lZaWtlmnrKxMTU1NysjICO4bP368xowZo5KSknbP5ff75Xa7W+2fOHGiYmNjdd111wWvILWnoaFBgUAgZAMAAIOTaQHI6/W2uuUUFhYmt9vd7rM4Xq9X4eHhra7ajB49ut06b7/9tjZv3qx58+YF98XGxqqgoEB//vOf9ec//1nx8fGaNm2a3nvvvXb7u2zZMjmdzuAWHx/f2aECAIABpssBaNGiRW0+YHz2VllZaUZfW9m7d6++973vacmSJbr++uuD+8eNG6ef/vSnSk5O1pQpU7R27VpNmTJFTz31VLttLV68WH6/P7gdPny4N4YAAAD6QJcfgl64cKFmz57dYZmxY8fK4/GotrY2ZH9zc7N8Pp88Hk+b9TwejxobG1VXVxdyFaimpqZVnf379ys9PV3z5s3TL37xi3P2OyUlRW+++Wa7xyMiIhQREXHOdgAAwMDX5QAUHR2t6Ojoc5ZLS0tTXV2dysrKlJycLEkqLi5WS0uLUlNT26yTnJysoUOHavv27crOzpZ0+k2uTz75RGlpacFy+/bt07XXXqsf/ehHeuSRRzrV7/LycsXGxnaqLAAAGNxMew0+MTFRWVlZmjt3rgoKCtTU1KS8vDzNnDkz+AZYVVWV0tPTtX79eqWkpMjpdCo3N1f5+flyu91yOBy64447lJaWFnwDbO/evbr22muVmZmp/Pz84LNBQ4YMCQazp59+WgkJCbrssstUX1+v1atXq7i4WK+++qpZwwUAAAOIqesAbdy4UXl5eUpPT5fdbld2drZWrFgRPN7U1KQDBw7oxIkTwX1PPfVUsGxDQ4MyMzP17LPPBo//6U9/0qeffqoNGzZow4YNwf2XXHKJPv74Y0lSY2OjFi5cqKqqKg0fPlyXX365XnvtNU2fPt3M4QIAgAHCtHWABjrWAQIAYODp83WAAAAA+isCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBxTfw0ewMB1qsXQrkM+1R6rV8yISKUkuDXEbuvrbgFAjyAAAWilcG+1lm7dr2p/fXBfrDNSS25IUtaE2D7sGQD0DG6BAQhRuLdat294LyT8SJLXX6/bN7ynwr3VfdQzAOg5BCAAQadaDC3dul9GG8fO7Fu6db9OtbRVAgAGDgIQgKBdh3ytrvyczZBU7a/XrkO+3usUAJiAAAQgqPZY++GnO+UAoL8iAAEIihkR2aPlAKC/IgABCEpJcCvWGan2Xna36fTbYCkJ7t7sFgD0OAIQgKAhdpuW3JAkSa1C0JnPS25IYj0gAAMeAQhAiKwJsXpu1pXyOENvc3mckXpu1pWsAwRgUGAhRACtZE2I1XVJHlaCBjBoEYAAtGmI3aa0r47q624AgCm4BQYAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACzH1ADk8/mUk5Mjh8Mhl8ul3NxcHT9+vMM69fX1mj9/vkaNGqWoqChlZ2erpqYmpIzNZmu1/eEPfwgps2PHDl155ZWKiIjQpZdequeff76nhwcAAAYoUwNQTk6O9u3bp6KiIm3btk07d+7UvHnzOqyzYMECbd26VVu2bNEbb7yho0eP6qabbmpVbt26daqurg5uN954Y/DYoUOH9J3vfEfTp09XeXm57rrrLv3kJz/RK6+80uNjBAAAA4/NMAzDjIYrKiqUlJSk3bt3a9KkSZKkwsJCzZgxQ0eOHFFcXFyrOn6/X9HR0dq0aZNuvvlmSVJlZaUSExNVUlKiyZMnn+60zaa//vWvIaHnbPfcc49efPFF7d27N7hv5syZqqurU2FhYaf6HwgE5HQ65ff75XA4ujR2AADQNzr7/W3aFaCSkhK5XK5g+JGkjIwM2e12lZaWtlmnrKxMTU1NysjICO4bP368xowZo5KSkpCy8+fP14UXXqiUlBStXbtWZ+e4kpKSkDYkKTMzs1UbZ2toaFAgEAjZAADA4GTaT2F4vV7FxMSEniwsTG63W16vt9064eHhcrlcIftHjx4dUuehhx7Stddeq+HDh+vVV1/Vz372Mx0/flx33nlnsJ3Ro0e3aiMQCOjkyZMaNmxYq3MvW7ZMS5cu7dZYAQDAwNLlK0CLFi1q8yHks7fKykoz+hp0//3366qrrtIVV1yhe+65R3fffbeWL19+Xm0uXrxYfr8/uB0+fLiHegsAAPqbLl8BWrhwoWbPnt1hmbFjx8rj8ai2tjZkf3Nzs3w+nzweT5v1PB6PGhsbVVdXF3IVqKampt06kpSamqqHH35YDQ0NioiIkMfjafXmWE1NjRwOR5tXfyQpIiJCERERHY4LAAAMDl0OQNHR0YqOjj5nubS0NNXV1amsrEzJycmSpOLiYrW0tCg1NbXNOsnJyRo6dKi2b9+u7OxsSdKBAwf0ySefKC0trd1zlZeXa+TIkcEAk5aWppdeeimkTFFRUYdtAAAA6zDtGaDExERlZWVp7ty5KigoUFNTk/Ly8jRz5szgG2BVVVVKT0/X+vXrlZKSIqfTqdzcXOXn58vtdsvhcOiOO+5QWlpa8A2wrVu3qqamRpMnT1ZkZKSKior0q1/9Sj//+c+D577tttv061//Wnfffbd+/OMfq7i4WH/84x/14osvmjVcAAAwgJgWgCRp48aNysvLU3p6uux2u7Kzs7VixYrg8aamJh04cEAnTpwI7nvqqaeCZRsaGpSZmalnn302eHzo0KH6zW9+owULFsgwDF166aV68sknNXfu3GCZhIQEvfjii1qwYIGeeeYZXXzxxVq9erUyMzPNHC4AABggTFsHaKBjHSAAAAaePl8HCAAAoL8iAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMsxNQD5fD7l5OTI4XDI5XIpNzdXx48f77BOfX295s+fr1GjRikqKkrZ2dmqqakJHn/++edls9na3GprayVJO3bsaPO41+s1c7gAAGCAMDUA5eTkaN++fSoqKtK2bdu0c+dOzZs3r8M6CxYs0NatW7Vlyxa98cYbOnr0qG666abg8R/84Aeqrq4O2TIzM3XNNdcoJiYmpK0DBw6ElPvycQAAYE1hZjVcUVGhwsJC7d69W5MmTZIkrVy5UjNmzNDjjz+uuLi4VnX8fr/WrFmjTZs26dprr5UkrVu3TomJiXrnnXc0efJkDRs2TMOGDQvW+fTTT1VcXKw1a9a0ai8mJkYul8ukEQIAgIHKtCtAJSUlcrlcwfAjSRkZGbLb7SotLW2zTllZmZqampSRkRHcN378eI0ZM0YlJSVt1lm/fr2GDx+um2++udWxiRMnKjY2Vtddd53eeuut8xwRAAAYLEy7AuT1elvdcgoLC5Pb7W73WRyv16vw8PBWV21Gjx7dbp01a9bo1ltvDbkqFBsbq4KCAk2aNEkNDQ1avXq1pk2bptLSUl155ZVtttPQ0KCGhobg50Ag0KlxAgCAgafLV4AWLVrU7kPIZ7bKykoz+tpKSUmJKioqlJubG7J/3Lhx+ulPf6rk5GRNmTJFa9eu1ZQpU/TUU0+129ayZcvkdDqDW3x8vNndBwAAfaTLV4AWLlyo2bNnd1hm7Nix8ng8wbeyzmhubpbP55PH42mznsfjUWNjo+rq6kKuAtXU1LRZZ/Xq1Zo4caKSk5PP2e+UlBS9+eab7R5fvHix8vPzg58DgQAhCACAQarLASg6OlrR0dHnLJeWlqa6ujqVlZUFA0pxcbFaWlqUmpraZp3k5GQNHTpU27dvV3Z2tqTTb3J98sknSktLCyl7/Phx/fGPf9SyZcs61e/y8nLFxsa2ezwiIkIRERGdagsAAAxspj0DlJiYqKysLM2dO1cFBQVqampSXl6eZs6cGXwDrKqqSunp6Vq/fr1SUlLkdDqVm5ur/Px8ud1uORwO3XHHHUpLS9PkyZND2t+8ebOam5s1a9asVud++umnlZCQoMsuu0z19fVavXq1iouL9eqrr5o1XAAAMICYFoAkaePGjcrLy1N6errsdruys7O1YsWK4PGmpiYdOHBAJ06cCO576qmngmUbGhqUmZmpZ599tlXba9as0U033dTma+6NjY1auHChqqqqNHz4cF1++eV67bXXNH36dHMGCgAABhSbYRhGX3eiPwoEAnI6nfL7/XI4HH3dHQAA0Amd/f7mt8AAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlmBaAfD6fcnJy5HA45HK5lJubq+PHj3dYZ9WqVZo2bZocDodsNpvq6uq61e4HH3ygb33rW4qMjFR8fLwee+yxHh0bAAAY2EwLQDk5Odq3b5+Kioq0bds27dy5U/PmzeuwzokTJ5SVlaV777232+0GAgFdf/31uuSSS1RWVqbly5frwQcf1KpVq3psbAAAYGCzGYZh9HSjFRUVSkpK0u7duzVp0iRJUmFhoWbMmKEjR44oLi6uw/o7duzQ9OnT9fnnn8vlcnWp3eeee0733XefvF6vwsPDJUmLFi3S3/72N1VWVnZ6DIFAQE6nU36/Xw6Ho6tTAAAA+kBnv79NuQJUUlIil8sVDCmSlJGRIbvdrtLSUlPbLSkp0dVXXx0MP5KUmZmpAwcO6PPPP2+37YaGBgUCgZANAAAMTqYEIK/Xq5iYmJB9YWFhcrvd8nq9prbr9Xo1evTokDJnPnd07mXLlsnpdAa3+Pj4bvcTAAD0b10KQIsWLZLNZutw68ptpv5k8eLF8vv9we3w4cN93SUAAGCSsK4UXrhwoWbPnt1hmbFjx8rj8ai2tjZkf3Nzs3w+nzweT5c7eUZn2vV4PKqpqQkpc+ZzR+eOiIhQREREt/sGAAAGji4FoOjoaEVHR5+zXFpamurq6lRWVqbk5GRJUnFxsVpaWpSamtq9nnay3bS0NN13331qamrS0KFDJUlFRUUaN26cRo4c2e1zAwCAwcOUZ4ASExOVlZWluXPnateuXXrrrbeUl5enmTNnBt8Aq6qq0vjx47Vr165gPa/Xq/Lych08eFCS9OGHH6q8vFw+n6/T7d56660KDw9Xbm6u9u3bp82bN+uZZ55Rfn6+GUMFAAADkWGSzz77zLjllluMqKgow+FwGHPmzDGOHTsWPH7o0CFDkvH6668H9y1ZssSQ1Gpbt25dp9s1DMN4//33jalTpxoRERHGRRddZDz66KNd7r/f7zckGX6/v8t1AQBA3+js97cp6wANBqwDBADAwNOn6wABAAD0ZwQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOaYFIJ/Pp5ycHDkcDrlcLuXm5ur48eMd1lm1apWmTZsmh8Mhm82murq6kOMff/yxcnNzlZCQoGHDhumrX/2qlixZosbGxpAyNput1fbOO++YMk4AADDwhJnVcE5Ojqqrq1VUVKSmpibNmTNH8+bN06ZNm9qtc+LECWVlZSkrK0uLFy9udbyyslItLS367//+b1166aXau3ev5s6dqy+++EKPP/54SNnXXntNl112WfDzqFGjem5wAABgQLMZhmH0dKMVFRVKSkrS7t27NWnSJElSYWGhZsyYoSNHjiguLq7D+jt27ND06dP1+eefy+VydVh2+fLleu655/SPf/xD0ukrQAkJCdqzZ48mTpzY7TEEAgE5nU75/X45HI5utwMAAHpPZ7+/TbkFVlJSIpfLFQw/kpSRkSG73a7S0tIePZff75fb7W61/7vf/a5iYmI0depUvfDCC+dsp6GhQYFAIGQDAACDkykByOv1KiYmJmRfWFiY3G63vF5vj53n4MGDWrlypX76058G90VFRemJJ57Qli1b9OKLL2rq1Km68cYbzxmCli1bJqfTGdzi4+N7rJ8AAKB/6VIAWrRoUZsPGJ+9VVZWmtXXEFVVVcrKytJ//Md/aO7cucH9F154ofLz85WamqpvfvObevTRRzVr1iwtX768w/YWL14sv98f3A4fPmz2EAAAQB/p0kPQCxcu1OzZszssM3bsWHk8HtXW1obsb25uls/nk8fj6XInv+zo0aOaPn26pkyZolWrVp2zfGpqqoqKijosExERoYiIiPPuGwAA6P+6FICio6MVHR19znJpaWmqq6tTWVmZkpOTJUnFxcVqaWlRampq93r6/1VVVWn69OlKTk7WunXrZLef+yJWeXm5YmNjz+u8AABg8DDlNfjExERlZWVp7ty5KigoUFNTk/Ly8jRz5szgG2BVVVVKT0/X+vXrlZKSIun0s0Ner1cHDx6UJH344YcaMWKExowZI7fbraqqKk2bNk2XXHKJHn/8cX366afBc565svS73/1O4eHhuuKKKyRJf/nLX7R27VqtXr3ajKECAIAByLR1gDZu3Ki8vDylp6fLbrcrOztbK1asCB5vamrSgQMHdOLEieC+goICLV26NPj56quvliStW7dOs2fPVlFRkQ4ePKiDBw/q4osvDjnf2W/zP/zww/rnP/+psLAwjR8/Xps3b9bNN99s1lABAMAAY8o6QIMB6wABADDw9Ok6QAAAAP0ZAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAYFS8j0AABQKSURBVAgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFiOaQHI5/MpJydHDodDLpdLubm5On78eId1Vq1apWnTpsnhcMhms6murq5Vma985Suy2Wwh26OPPhpS5oMPPtC3vvUtRUZGKj4+Xo899liPjg0AAAxspgWgnJwc7du3T0VFRdq2bZt27typefPmdVjnxIkTysrK0r333tthuYceekjV1dXB7Y477ggeCwQCuv7663XJJZeorKxMy5cv14MPPqhVq1b1yLgAAMDAF2ZGoxUVFSosLNTu3bs1adIkSdLKlSs1Y8YMPf7444qLi2uz3l133SVJ2rFjR4ftjxgxQh6Pp81jGzduVGNjo9auXavw8HBddtllKi8v15NPPnnOAAYAAKzBlCtAJSUlcrlcwfAjSRkZGbLb7SotLT3v9h999FGNGjVKV1xxhZYvX67m5uaQc1999dUKDw8P7svMzNSBAwf0+eefn/e5AQDAwGfKFSCv16uYmJjQE4WFye12y+v1nlfbd955p6688kq53W69/fbbWrx4saqrq/Xkk08Gz52QkBBSZ/To0cFjI0eObLPdhoYGNTQ0BD8HAoHz6icAAOi/unQFaNGiRa0eQP7yVllZaVZfJUn5+fmaNm2aLr/8ct1222164okntHLlypDw0h3Lli2T0+kMbvHx8T3UYwAA0N906QrQwoULNXv27A7LjB07Vh6PR7W1tSH7m5ub5fP52n12p7tSU1PV3Nysjz/+WOPGjZPH41FNTU1ImTOfOzr34sWLlZ+fH/wcCAQIQQAADFJdCkDR0dGKjo4+Z7m0tDTV1dWprKxMycnJkqTi4mK1tLQoNTW1ez1tR3l5uex2e/CWW1pamu677z41NTVp6NChkqSioiKNGzeu3dtfkhQREaGIiIge7RsAAOifTHkIOjExUVlZWZo7d6527dqlt956S3l5eZo5c2bwDbCqqiqNHz9eu3btCtbzer0qLy/XwYMHJUkffvihysvL5fP5JJ1+wPnpp5/W+++/r3/84x/auHGjFixYoFmzZgXDza233qrw8HDl5uZq37592rx5s5555pmQqzsAAMDiDJN89tlnxi233GJERUUZDofDmDNnjnHs2LHg8UOHDhmSjNdffz24b8mSJYakVtu6desMwzCMsrIyIzU11XA6nUZkZKSRmJho/OpXvzLq6+tDzv3+++8bU6dONSIiIoyLLrrIePTRR7vcf7/fb0gy/H5/t8YPAAB6X2e/v22GYRh9F7/6r0AgIKfTKb/fL4fD0dfdAQAAndDZ729+CwwAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFiOaQHI5/MpJydHDodDLpdLubm5On78eId1Vq1apWnTpsnhcMhms6muri7k+I4dO2Sz2drcdu/eLUn6+OOP2zz+zjvvmDVUAAAwwJgWgHJycrRv3z4VFRVp27Zt2rlzp+bNm9dhnRMnTigrK0v33ntvm8enTJmi6urqkO0nP/mJEhISNGnSpJCyr732Wki55OTkHhsbAAAY2MLMaLSiokKFhYXavXt3MJisXLlSM2bM0OOPP664uLg26911112STl/paUt4eLg8Hk/wc1NTk/7+97/rjjvukM1mCyk7atSokLIAAABnmHIFqKSkRC6XK+SqTEZGhux2u0pLS3vsPC+88II+++wzzZkzp9Wx7373u4qJidHUqVP1wgsvnLOthoYGBQKBkA0AAAxOpgQgr9ermJiYkH1hYWFyu93yer09dp41a9YoMzNTF198cXBfVFSUnnjiCW3ZskUvvviipk6dqhtvvPGcIWjZsmVyOp3BLT4+vsf6CQAA+pcuBaBFixa1+xDyma2ystKsvoY4cuSIXnnlFeXm5obsv/DCC5Wfn6/U1FR985vf1KOPPqpZs2Zp+fLlHba3ePFi+f3+4Hb48GEzuw8AAPpQl54BWrhwoWbPnt1hmbFjx8rj8ai2tjZkf3Nzs3w+X489l7Nu3TqNGjVK3/3ud89ZNjU1VUVFRR2WiYiIUERERI/0DQAA9G9dCkDR0dGKjo4+Z7m0tDTV1dWprKws+PZVcXGxWlpalJqa2r2ensUwDK1bt04//OEPNXTo0HOWLy8vV2xs7HmfFwAADA6mvAWWmJiorKwszZ07VwUFBWpqalJeXp5mzpwZfAOsqqpK6enpWr9+vVJSUiSdfnbI6/Xq4MGDkqQPP/xQI0aM0JgxY+R2u4PtFxcX69ChQ/rJT37S6ty/+93vFB4eriuuuEKS9Je//EVr167V6tWrzRgqAAAYgEwJQJK0ceNG5eXlKT09XXa7XdnZ2VqxYkXweFNTkw4cOKATJ04E9xUUFGjp0qXBz1dffbWk07e7zr71tmbNGk2ZMkXjx49v89wPP/yw/vnPfyosLEzjx4/X5s2bdfPNN/fwCAEAwEBlMwzD6OtO9EeBQEBOp1N+v18Oh6OvuwMAADqhs9/f/BYYAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHNMWQgQAoC+dajG065BPtcfqFTMiUikJbg2x2/q6W+gnCEAAgEGncG+1lm7dr2p/fXBfrDNSS25IUtYEfhsS3AIDAAwyhXurdfuG90LCjyR5/fW6fcN7Ktxb3Uc9Q39CAAIADBqnWgwt3bpfbf3G05l9S7fu16kWfgXK6ghAAIBBY9chX6srP2czJFX767XrkK/3OoV+iWeAAACDRu2x9sNPd8qh51X5TurbK97QFw2ndEHEEL185zW6yD2s1/tBAAIADBoxIyJ7tBx61tfve0mNp/51+zFQf0pXPVas8CE2/e8jM3q1L9wCAwAMGikJbsU6I9Xey+42nX4bLCXB3ZvdglqHn7M1njL09fte6tX+EIAAAIPGELtNS25IkqRWIejM5yU3JLEeUC+r8p1sN/yc0XjKUJXvZC/1iAAEABhksibE6rlZV8rjDL3N5XFG6rlZV7IOUB/49oo3erRcT+AZIADAoJM1IVbXJXlYCbqf+KLhVI+W6wkEIADAoDTEblPaV0f1dTcg6YKIIQrUnzvcXBAxpBd6cxq3wAAAgKlevvOaHi3XEwhAAADAVBe5hyl8SMe3H8OH2Hp1PSACEAAAMN3/PjKj3RDUF+sA8QwQAADoFf/7yAxWggYAANZzkXuYPngwq6+7wS0wAABgPQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOawE3Q7DMCRJgUCgj3sCAAA668z39pnv8fYQgNpx7NgxSVJ8fHwf9wQAAHTVsWPH5HQ62z1uM84VkSyqpaVFR48e1YgRI2Sztf3rtX0hEAgoPj5ehw8flsPh6Ovu9Bnm4TTm4TTm4TTm4TTm4TSrzoNhGDp27Jji4uJkt7f/pA9XgNpht9t18cUX93U32uVwOCz1D7o9zMNpzMNpzMNpzMNpzMNpVpyHjq78nMFD0AAAwHIIQAAAwHKGPPjggw/2dSfQNUOGDNG0adMUFmbtO5jMw2nMw2nMw2nMw2nMw2nMQ/t4CBoAAFgOt8AAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEID6GZ/Pp5ycHDkcDrlcLuXm5ur48eMd1lm1apWmTZsmh8Mhm82murq6VmUeeeQRTZkyRcOHD5fL5TKr+z3GrHnoTrt9qTv9ra+v1/z58zVq1ChFRUUpOztbNTU1IWW2b9+uKVOmaMSIEfJ4PLrnnnvU3Nxs5lDOi1nzsHv3bqWnp8vlcmnkyJHKzMzU+++/b+ZQzpsZc/H888/LZrO1udXW1po9pG4x69+EdHo+Lr/8ckVGRiomJkbz5883axjnzax5aOvfwh/+8Aczh9L7DPQrWVlZxje+8Q3jnXfeMf7nf/7HuPTSS41bbrmlwzpPPfWUsWzZMmPZsmWGJOPzzz9vVeaBBx4wnnzySSM/P99wOp1mdb/HmDUP3Wm3L3Wnv7fddpsRHx9vbN++3Xj33XeNyZMnG1OmTAkeLy8vN8LDw42lS5caH330kbFjxw5j/PjxxsKFC80eTreZMQ/Hjh0z3G63MXv2bKOystLYu3evkZ2dbYwePdpobGw0e0jdZsZcnDhxwqiurg7ZMjMzjWuuucbk0XSfGfNgGIbxxBNPGHFxccbGjRuNgwcPGu+//77x97//3cyhnBez5kGSsW7dupB/EydPnjRzKL2OANSP7N+/35Bk7N69O7jv5ZdfNmw2m1FVVXXO+q+//nq7X/xnrFu3rt8HILPm4Xzb7W3d6W9dXZ0xdOhQY8uWLcF9FRUVhiSjpKTEMAzDWLx4sTFp0qSQei+88IIRGRlpBAIBE0Zyfsyah927dxuSjE8++SRY5oMPPjAkGR999JFJozk/Zs3Fl9XW1hpDhw411q9f37MD6CFmzYPP5zOGDRtmvPbaa+YOoIeY+e9BkvHXv/7VvM73A9wC60dKSkrkcrk0adKk4L6MjAzZ7XaVlpb2Yc96l1nzMNDmtzv9LSsrU1NTkzIyMoL7xo8frzFjxqikpESS1NDQoMjIyJB6w4YNU319vcrKykwYyfkxax7GjRunUaNGac2aNWpsbNTJkye1Zs0aJSYm6itf+YqpY+ous+biy9avX6/hw4fr5ptv7tkB9BCz5qGoqEgtLS2qqqpSYmKiLr74Yv3nf/6nDh8+bO6Ausnsfw/z58/XhRdeqJSUFK1du1bGIFs2kADUj3i9XsXExITsCwsLk9vtltfr7aNe9T6z5mGgzW93+uv1ehUeHt7qOa/Ro0cH62RmZurtt9/W73//e506dUpVVVV66KGHJEnV1dUmjOT8mDUPI0aM0I4dO7RhwwYNGzZMUVFRKiws1Msvv9xvV801ay6+bM2aNbr11ls1bNiwnul4DzNrHv7xj3+opaVFv/rVr/T000/rT3/6k3w+n6677jo1NjaaM5jzYOa/h4ceekh//OMfVVRUpOzsbP3sZz/TypUre34QfYgA1AsWLVrU7gOGZ7bKysq+7qbpmIfT+noerr/+ei1fvly33XabIiIi9PWvf10zZsyQJNntvfe/hL6eh5MnTyo3N1dXXXWV3nnnHb311luaMGGCvvOd7+jkyZOmnbctfT0XZyspKVFFRYVyc3N75Xxn6+t5aGlpUVNTk1asWKHMzExNnjxZv//97/XRRx/p9ddfN+28X9bX8yBJ999/v6666ipdccUVuueee3T33Xdr+fLlpp6zt/XPP3MGmYULF2r27Nkdlhk7dqw8Hk+rNy6am5vl8/nk8XhM7GHv6Ot56C/za+Y8eDweNTY2qq6uLuQvvJqampA6+fn5WrBggaqrqzVy5Eh9/PHHWrx4scaOHdv9gXVRX8/Dpk2b9PHHH6ukpCQY/DZt2qSRI0fq73//u2bOnHkeo+uavp6Ls61evVoTJ05UcnJy1wdynvp6HmJjYyVJSUlJwePR0dG68MIL9cknn3RnSN3S1/PQltTUVD388MNqaGhQRERE5wfTn/X1Q0j4lzMPtL377rvBfa+88oplH4Lu6Xk433Z7W3f6e+YBxz/96U/BfZWVlR0+8GoYhnH//fcb8fHxRnNzc88NoIeYNQ8rVqwwPB6P0dLSEizT1NRkXHDBBcbGjRtNGs35MfvfxLFjx4yoqChj5cqV5gygh5g1DwcOHDAkhTwE/dlnnxl2u9145ZVXTBpN9/Xm/yN++ctfGiNHjuy5zvcDBKB+Jisry7jiiiuM0tJS48033zS+9rWvhbzSeOTIEWPcuHFGaWlpcF91dbWxZ88e47e//a0hydi5c6exZ88e47PPPguW+ec//2ns2bPHWLp0qREVFWXs2bPH2LNnj3Hs2LFeHV9nmTUP52q3v+nOPNx2223GmDFjjOLiYuPdd9810tLSjLS0tJB2H3vsMeODDz4w9u7dazz00EPG0KFD+/UbH2bMQ0VFhREREWHcfvvtxv79+429e/cas2bNMpxOp3H06NFeHV9XmPVvwjAMY/Xq1UZkZGSHf0T1F2bNw/e+9z3jsssuM9566y3jww8/NP793//dSEpK6rdLI5gxDy+88ILx29/+1vjwww+Njz76yHj22WeN4cOHGw888ECvjs1sBKB+5rPPPjNuueUWIyoqynA4HMacOXNCQsqhQ4cMScbrr78e3LdkyRJDUqtt3bp1wTI/+tGP2ixzdjv9iVnzcK52+5vuzMPJkyeNn/3sZ8bIkSON4cOHG9///veN6urqkHanT59uOJ1OIzIy0khNTTVeeuml3hpSt5g1D6+++qpx1VVXGU6n0xg5cqRx7bXXdvhXcH9g1lwYhmGkpaUZt956a28M47yZNQ9+v9/48Y9/bLhcLsPtdhvf//73Q5ZK6G/MmIeXX37ZmDhxohEVFWVccMEFxje+8Q2joKDAOHXqVG8OzXQ2wxhk77UBAACcA2+BAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAy/l/Ov6+ChW4VkwAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter(embeddings[:, 0], embeddings[:, 1])\n", - "plt.savefig('embedding_gcn.png',dpi=300)" + "plt.savefig(f'{FIGURES_DIR}/embedding_gcn.png',dpi=300)" ] }, { @@ -178,41 +179,28 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "7BtFQ8YoL4xz", - "outputId": "df0e9283-5201-4237-960c-9ef5391bb7b1" + "id": "iafwVXyrL6q6" }, "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "zsh:1: no matches found: stellargraph[demos]==1.2.1\r\n" + "2023-12-23 08:37:14.102512: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n", + "2023-12-23 08:37:14.102531: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n", + "2023-12-23 08:37:14.761469: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set\n", + "2023-12-23 08:37:14.761564: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory\n", + "2023-12-23 08:37:14.761571: W tensorflow/stream_executor/cuda/cuda_driver.cc:326] failed call to cuInit: UNKNOWN ERROR (303)\n", + "2023-12-23 08:37:14.761584: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (73bfad00a74a): /proc/driver/nvidia/version does not exist\n", + "2023-12-23 08:37:14.761747: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX512F\n", + "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", + "2023-12-23 08:37:14.762464: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set\n" ] } ], "source": [ - "# install StellarGraph\n", - "!pip install -q stellargraph[demos]==1.2.1" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "id": "iafwVXyrL6q6" - }, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "import networkx as nx\n", - "import os\n", - "\n", "import stellargraph as sg\n", "from stellargraph.mapper import FullBatchNodeGenerator\n", "from stellargraph.layer import GCN\n", @@ -220,9 +208,7 @@ "import tensorflow as tf\n", "from tensorflow.keras import layers, optimizers, losses, metrics, Model\n", "from sklearn import preprocessing, model_selection\n", - "from IPython.display import display, HTML\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline" + "from IPython.display import display, HTML" ] }, { @@ -463,16 +449,22 @@ "outputId": "fd0867e2-6eae-47d4-80b7-07ad5d9485e3" }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2023-12-23 08:37:19.486366: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:116] None of the MLIR optimization passes are enabled (registered 2)\n", + "2023-12-23 08:37:19.486672: I tensorflow/core/platform/profile_utils/cpu_utils.cc:112] CPU Frequency: 2803200000 Hz\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAEYCAYAAACju6QJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAA99UlEQVR4nO3dd3xV9f3H8dcneyeQwUiAsLcMWSoq4qhba62z7qpttdVqW2utVm21+rOto47Wuq2rtbbuxXCACgTZO0AYISQhZEHI/v7+uCeXhJlAuDcJ7+fjkQfnfM/I5542fu53nO/XnHOIiIhI+xIS7ABERESk5ZTARURE2iElcBERkXZICVxERKQdUgIXERFph8KCHUBrSklJcZmZmcEOQ0REpNXMnTt3i3MuddfyDpXAMzMzycrKCnYYIiIircbM1u2pXE3oIiIi7ZASuIiISDukBC4iItIOKYGLiIi0Q0rgIiIi7ZASuIiISDvUoV4jExGRQ6u+vp4tW7ZQUlJCXV1dsMNp96KiosjIyCA8PLzF1yqBi4hIs23cuBEzIzMzk/DwcMws2CG1W845ioqK2LhxI717927x9WpC34v/+2g5P3hmVrDDEBFpU7Zv3056ejoRERFK3gfJzEhOTqaysvKArlcC34viimpW5pcHOwwRkTYnJESpo7UczJcg/a+wF5FhoVTWqH9HRETaJiXwvYiOCKWypj7YYYiIiOyREvheRIWFUl1XT129C3YoIiLSBr3wwguEhQVvLLgS+F5ER/gejZrRRUQ6jpNOOokrr7yyVe514YUXkpub2yr3OhB6jWwvosJDAV8Cj43UYxIROVxUV1cTERGx3/Oio6OJjo4OQER7phr4XjQk8B2qgYuIdAhXXnklU6dO5cUXX8TMMDNeeOEFzIxXXnmF008/ndjYWO68806cc1x77bX07duX6Oho+vTpw29+8xuqqqr899u1Cb1hf+bMmYwePZqYmBiOPPJI5syZc0g+j6qWe9G4Bi4iInt3z7tLWLqpLOC/d0j3BH531tBmn//oo4+yZs0aunXrxqOPPgpAWZkv7ttuu40HH3yQJ554AvBNspKWlsarr75Kly5dWLhwIddffz3h4eHcc889e/0d9fX13H777Tz66KOkpqby85//nAsuuIBVq1a1en+5EvheRPsTuEaii4h0BImJiURERBAdHU3Xrl0B/JOoXH/99Vx66aVNzr/vvvv825mZmaxevZonn3xynwncOccjjzzC6NGjAbj77ruZMGECq1evZuDAga36eZTA9yJaTegiIs3SklpwWzVu3Ljdyv7xj3/wzDPPkJOTw/bt26mtraW+ft+VOjNjxIgR/v3u3bsDkJ+f3+oJXH3gexEVrlHoIiKHi9jY2Cb7//73v7nhhhu48MIL+eCDD5g3bx533XUXNTU1+7xPSEgIoaGh/v2Gmdb2l/gPhGrge+EfxFatBC4i0lFEREQ0axW1L774glGjRnHLLbf4y3Jycg5hZC2nGvhe+Aex1aoPXESko+jduzdz585l9erVbNmyZa816oEDB7Jo0SLefvttVq9ezaOPPspbb70V4Gj3TQl8L6IjvASuGriISIdx6623kpKSwogRI0hNTWXmzJl7PO/666/nsssu46qrrmLUqFHMmjWLu+++O7DB7oc513GmCh0zZozLyspqlXsVbaviyD9M4d5zhnL5UZmtck8RkfZu2bJlDB48ONhhdCj7e6ZmNtc5N2bX8oDXwM0s1Mzmmdl73n5vM5tlZtlm9oaZRXjlkd5+tnc8M5BxNtTA1QcuIiJtUTCa0G8CljXafxB42DnXDygGrvHKrwGKvfKHvfMCJipMr5GJiEjbFdAEbmYZwBnAM96+AZOBN71TXgTO9bbP8fbxjp9oB7PyeQuFhBgRYSGayEVERNqkQNfAHwF+BTRkxWSgxDlX6+1vBNK97XRgA4B3vNQ7vwkzu87Msswsq7CwsFWDjQoL0XvgIiLSJgUsgZvZmUCBc25ua97XOfe0c26Mc25Mampqa96a6IhQJXARkV10pMHPwXYwzzKQE7kcA5xtZqcDUUAC8CiQZGZhXi07A2hYXDUX6AFsNLMwIBEoCmC8RIWHqg9cRKSR8PBwduzYQUxMTLBD6RBqamoOeJGTgNXAnXO3O+cynHOZwEXANOfcpcB04HzvtCuAt73td7x9vOPTXIC/9iVEhVNcse9p80REDidpaWnk5uZSUVGhmvhBqq+vJz8/n8TExAO6vi1MpXob8LqZ/QGYBzzrlT8LvGxm2cBWfEk/oHqnxDJvQ3Ggf62ISJuVkJAAwKZNm/Y7L7jsX2xsLCkpKQd0bVASuHPuM+Azb3sNsNsyMM65SuD7AQ1sF31SY3l34SYqa+r8U6uKiBzuEhIS/IlcgkdTqe5D39Q4nIO1W7YHOxQREZEmlMD3oU+qb3m5NYVK4CIi0rYoge9Dn5Q4QgxWbC4LdigiIiJNKIHvQ3REKIO7JTAnRwPZRESkbVEC34+xmZ2Zt6GYaq0LLiIibYgS+H6M692Zypp6lmwqDXYoIiIifkrg+9Er2Tfb0ObSyiBHIiIispMS+H4kRocDULpDExaIiEjboQS+H0rgIiLSFimB70dcZBihIaYELiIibYoS+H6YGYnR4UrgIiLSpiiBN4MSuIiItDVK4M2QoAQuIiJtjBJ4MyRFh1OmBC4iIm2IEngzJEaHU6IELiIibYgSeDOoD1xERNoaJfBmSPSa0OvrXbBDERERAZTAmyUxOpx6B9uqa4MdioiICKAE3iwJ0WEAlFcqgYuISNugBN4McZG+6VS3KYGLiEgboQTeDPFRDTVwDWQTEZG2QQm8GeIaEniVauAiItI2KIE3Q0KU+sBFRKRtUQJvBvWBi4hIW6ME3gwNfeDbqtQHLiIibYMSeDPERIQSYmpCFxGRtkMJvBnMjLjIMCVwERFpM5TAmyk+KlwJXERE2gwl8GaKiwxTH7iIiLQZSuDNFB+lJnQREWk7lMCbKS4qjG2ayEVERNoIJfBmUh+4iIi0JQFL4GYWZWazzWyBmS0xs3u88hfMbK2Zzfd+RnrlZmaPmVm2mS00s9GBinVPkqLDKa6oDmYIIiIifmEB/F1VwGTn3DYzCwdmmNmH3rFfOufe3OX804D+3s944Cnv36DoHBtB6Y4aauvqCQtVw4WIiARXwDKR89nm7YZ7P24fl5wDvORd9w2QZGbdDnWce9M5NgLnoGSHRqKLiEjwBbQqaWahZjYfKAA+dc7N8g7d5zWTP2xmkV5ZOrCh0eUbvbJd73mdmWWZWVZhYeEhi71zbAQAW7erGV1ERIIvoAncOVfnnBsJZADjzGwYcDswCBgLdAZua+E9n3bOjXHOjUlNTW3tkP2SlcBFRKQNCUpnrnOuBJgOnOqcy/OayauA54Fx3mm5QI9Gl2V4ZUHRSQlcRETakECOQk81syRvOxo4GVje0K9tZgacCyz2LnkHuNwbjT4BKHXO5QUq3l011MCLlMBFRKQNCOQo9G7Ai2YWiu+Lw7+cc++Z2TQzSwUMmA/8yDv/A+B0IBuoAK4KYKy7aaiBFyuBi4hIGxCwBO6cWwiM2kP55L2c74AbDnVczRUeGkJ8VJia0EVEpE3QC80tkBwboSZ0ERFpE5TAWyAhOpzySr0HLiIiwacE3gJxkWFs03zoIiLSBiiBt4BvTXAlcBERCT4l8BbQkqIiItJWKIG3QLxq4CIi0kYogbdAXJSvD9z3hpuIiEjwKIG3QFxkOLX1jqra+mCHIiIihzkl8BaIi/LNe1OukegiIhJkSuAtEBcZCqB+cBERCTol8BaIiwwH0LvgIiISdErgLRAX6TWhV2k2NhERCS4l8BaI9/rAVQMXEZFgUwJvgYYauPrARUQk2JTAW6BhFLoSuIiIBJsSeAvER4VhBlvKq4IdioiIHOaUwFsgMiyUPimxLM0rD3YoIiJymFMCb6Hh6Yks2VQa7DBEROQwpwTeQsPSE8krrWTLNjWji4hI8CiBt9Dw9EQA5q8vCW4gIiJyWFMCb6ERPZKIDAth5uotwQ5FREQOY0rgLRQVHsq43p2Zma0ELiIiwaMEfgCO6pvMyvxtlFZoSlUREQkOJfAD0CclFoCNJRVBjkRERA5XSuAHoHtSNACbSiqDHImIiByulMAPwM4EviPIkYiIyOFKCfwAJMdGEBEWogQuIiJBowR+AMyM9KRocpXARUQkSJTAD5ASuIiIBJMS+AHqkxrL8rxytmtpURERCYKDSuBmFmdmZ5hZ/9YKqL04a0R3dtTU8dHizcEORUREDkMtSuBm9qqZ/czbDgdmAe8CS8zszEMQX5s1plcnMjpF8+HivGCHIiIih6GW1sAnATO97bOAeKAbcDdw574uNLMoM5ttZgvMbImZ3eOV9zazWWaWbWZvmFmEVx7p7Wd7xzNbGOshZWYc3TeZrHXF1Ne7YIcjIiKHmZYm8M5Avrd9MvCWcy4feBUYvJ9rq4DJzrkRwEjgVDObADwIPOyc6wcUA9d4518DFHvlD3vntSljMjtTUlHD6sJtwQ5FREQOMy1N4IVAb2/7ZGC6tx0D1O/rQufTkOnCvR8HTAbe9MpfBM71ts/x9vGOn2hm1sJ4D6mxmZ0BmJNTHORIRETkcNPSBP5v4BUzmwIkAJ965SOBVfu72MxCzWw+UOBduxoocc41DOXeCKR72+nABgDveCmQvId7XmdmWWaWVVhY2MKPc3Ayk2OIiwxjxeaygP5eERGRlibwXwGPAIuBk51zDat5dAf+sb+LnXN1zrmRQAYwDhjUwt+/p3s+7Zwb45wbk5qaerC3axEzo29qLNlqQhcRkQALa8nJXk34L3so/1ML71NiZtOBo4AkMwvz7p0B5Hqn5QI9gI1mFgYkAkUt+T2B0Dctjq+y21xYIiLSwbX0NbIRZja00f7pZvZvM7vbS7L7ujbVzJK87Wh8fejL8PWjn++ddgXwtrf9jrePd3yac67NDffulxbH5rJKyiu1NriIiAROS5vQ/w4MBzCzDHyDy+KAa4E/7OfabsB0M1sIzAE+dc69B9wG3GJm2fj6uJ/1zn8WSPbKbwF+3cJYA6JfahwAy/LKgxyJiIgcTlrUhA4MBOZ52+cBc5xzp5nZicAz7CPJOucWAqP2UL4GX3/4ruWVwPdbGF/Aje+dTHxkGM98uYaxmZ1oYwPlRUSkg2ppDTwCqPS2JwEfetsrga6tFFO7khgTzrXH9eGTpfn84t8Lgx2OiIgcJlqawFcA55tZT3x92FO88m74JmE5LN1wQj/OHdmd9xZuok6zsomISAC0NIHfA9wPrAVmOOeyvPJT2Nm0ftgJDTGO6ZdCVW0967dW7P8CERGRg9TS18je9mrf3YDG7cVTgbdaM7D2ZkCXeABWbC6nd0pskKMREZGOrsXLiTrn8p1z84EIM4vyyr52zi1t7eDak/5dfKPRV+ZrNLqIiBx6LU7gZnaV92rXNmCbma0ysytbPbJ2JiYijD6psfwrawO5JTuCHY6IiHRwLZ3I5SbgSXyTrHzP+3kPeNLMftr64bUvf/7+CPJKK3l99noA5q4rZo2mWRURkUOgpe+B/xS4yTn3dKOyt81sOfBL4K+tFlk7NKpnJzKTY1ix2deMfuOr3zK0ewLPXDE2yJGJiEhH09Im9B74Bqztaqp37LA3sGs8K/PLKd1RQ15pJUs2aaUyERFpfS1N4BvxTeCyq0nescPewC4JrNtaweLcUgDySispqagOclQiItLRtDSBPwU8ZmZ/9BYyOd3MHgAexdc3ftgb2DUO5+C9hZv8Zfe+t1QTvIiISKtq6XvgfzKzHfgWILnNK94I/MI591RrB9cejc3sTFiI8drsDYSFGLX1jre+zeXckekcNyCw65WLiEjHdSDvgT/hnOuJb33uROdcTyXvnZLjIhnXuzMAxw1I5fFLfOu3aIY2ERFpTfutgZvZJ/s57t92zp3SCjG1e7edOojnZ67l7rOHkhAVTnjofDYW691wERFpPc1pQs895FF0MCN6JPHIRTtXTk1PimZjsWrgIiLSevabwJ1zVwUikI4so1OMauAiItKqWtwHLi2X0SlaCVxERFqVEngA9Ogcw5ZtVZRV1gQ7FBER6SCUwANgTK9OAHyVXRTkSEREpKNQAg+A0b06ERsRyperCoMdioiIdBBK4AEQHhrCUX1TmJm9JdihiIhIB6EEHiBH9upETlGF5kUXEZFWoQQeICN6JAKwYGNpkCMREZGOQAk8QIanJ2IGCzaUBDsUERHpAJTAAyQ+KpxBXRP4ZOlmnNPKZCIicnCUwAPoBxN6sji3jNlrtwY7FBERaeeUwAPovFEZxESE8t7CvGCHIiIi7ZwSeABFR4RydN9kPltZoGZ0ERE5KErgAXb8gFQ2bN3ByvxtwQ5FRETaMSXwADt1WDfiIsO474Nl+zzv/YV5PD9zbYCiEhGR9kYJPMBS4yO54YR+fLGykLVbtu/1vFdnr+PpL9YEMDIREWlPlMCD4NRhXQGYsY+50fPLqsgvq6S2rj5QYYmISDsSsARuZj3MbLqZLTWzJWZ2k1d+t5nlmtl87+f0RtfcbmbZZrbCzL4TqFgPtczkGDI6RfOH95excGPJHs/JL6uk3kF+eVVggxMRkXYhkDXwWuBW59wQYAJwg5kN8Y497Jwb6f18AOAduwgYCpwKPGlmoQGM95AxMy4d34uq2nqufmEOy/LK+FfWBv/I9IrqWsorawHIK9kRzFBFRKSNCgvUL3LO5QF53na5mS0D0vdxyTnA6865KmCtmWUD44CvD3mwAfDjSX05fkAqZz8+g9Me/RKAwvIqbjihH5tLK/3nbWq0LSIi0iAofeBmlgmMAmZ5RTea2UIze87MOnll6cCGRpdtZA8J38yuM7MsM8sqLGxf620P6Z7AT07o599/+os1zFtfzOQ/f+4v26QauIiI7EHAE7iZxQH/AW52zpUBTwF9gZH4auh/bsn9nHNPO+fGOOfGpKamtna4h9zPJvfj9esm8Kfvj6B0Rw0PfbyiyfHGTeg5W7ZTvF3LkYqISIATuJmF40verzjn3gJwzuU75+qcc/XAP/A1kwPkAj0aXZ7hlXUoYaEhTOiTzNF9kwH4anWR/1iflFhmrd3Kb/+3iJKKas576ivufW9psEIVEZE2JJCj0A14FljmnPtLo/JujU77LrDY234HuMjMIs2sN9AfmB2oeAOte1I0g7rGA/CdoV348/dHML5PMss3l/PPb9Zz238WsnV7NbPWFPH5ykJ+8spcTccqInIYC9ggNuAY4DJgkZnN98p+A1xsZiMBB+QA1wM455aY2b+ApfhGsN/gnKsLYLwB99LV43hs2iquOqY3fVPjqKqt5zXv2KdL8wHfoLYrnvN9jykor6JLQlSQohURkWAK5Cj0GYDt4dAH+7jmPuC+QxZUG5OWEMUfzh3u3x/SPcG/Xe9gSLcEluaV+cvWFVUogYuIHKY0E1sbNqRbAqcN60r/tDgAfvGdAdx4Qj/OGO7rdcjZx1SsIiLSsQWyCV1aKCIshKd+cCSfLs3nH1+sYWK/VCYP6kJNXT0fLM7jV/9ZyEdLNvPzkwbwxapCjuqbjHPwm7cW8fIPx5GzpYKUuAj6pMbt8f7OOV6bvYEzhncjMSY8wJ9OREQOhhJ4O3DykC6cPKSLfz88NISG8WvTlhcwbXnBbte8NmsDD09ZCcB7P53IsPTE3c5ZllfOb/67iJId1fxkUr/djouISNulJvR2KjzUN5zg8UtGMTw9kVevHc9dZw7xH29I3gDTlxdQUe2bmnXRxlLG3z+Fx6et8venz80pDmDkIiLSGqwjvYo0ZswYl5WVFewwAmJVfjnbq+sY2SOpSXlFdS2T//Q5m8squWBMBp+vLCS/zLcgyrJ7T+Wv01bx5GerARjfuzOz1m4lKSacb397MmZQXFHDv7I2cM3E3oSH7v373eLcUuqd44iMpL2eIyIiB8/M5jrnxuxarib0dqp/l/g9lsdEhFHjLUF6VN9kcooq/An8oY9X8L/5uQzoEkdu8Q5mrd0KQElFDSvyy7n1Xwv8tfKBXeI5YVAaADV19bsl8zP/OgOAnAfOaP0PJyIi+6Um9A4oNT4SgKP6pNA7OdZf/tzMtWzdXs1Jg7vwi+8MBODY/ikA3P3OkiavqH25agv19Y6fvTaPob/7mA1bK/b4uwrKtdiKiEgwqAbeAT192Ri+WVtE18QooiN8K7DGRIQyqmcSfVLiuHRCL9KTopk8KI3OsREc/9BnzFq7lYFd4nn7xmO49qUspizLZ2xmJ95ZsAmAb9YU0aNzDAC1Xg0fYPbarZx5RPfAf0gRkcOcauAdUM/kGC4Y45tGvm+qrwb+xKWjeeWHE/j9ucNIT4oGoFdyLPFR4Yzu6VsA7seT+hIVHsol43qSV7qDH7/yrf+e8zaU+Lfzy6v821kaACciEhSqgXdwl47vxeBuCYzJ7LzXc84/Mp26+nrOPMI3Qcxpw7vxu+3V/PZ/vmnpj+2fwrz1Jf7zG6+QtmRTKc45zIxFG0vJ6BRNp9iIQ/NhRETETzXwDi4kxPaZvAFOHdaN568aR1ijgWpnec3iQ7olMDazM8vyyhh57yec+dcvmZntWzHtqD7JzMkpZsQ9n/Da7PWc9fgMfvfOkkP3YURExE81cNmjxJhw3vrJ0WQkRVNcUcNfPl1JSUUNJRU1LM71DXY7cXAaX68poqyyltvfWgTAyvzyYIYtInLYUA1c9mp0z06kJUQxoMvOqVifv2os8ZFhDOwSz7jevpp9SlwEVx6dyfEDUtlUskPLnIqIBIAmcpFmWZxbSl29Y0SPpCYJ+r2FeZw4OI2YiDBe+jqHu95ewpG9OnHOyO5cMKYHUeGhQYxaRKT929tELqqBS7MMS09khDfrm5n5f84a0Z2YCF9PzABvcpm564q56+0ljLz3E96Ys36f911TuI3b31rEjuq6JmVTl+Ufmg8iItJBKIFLqxnZI4lLx/fkk58fx6vXjmdo90TufXcp+WW+yV7KK2v42WvzmvST3//BMl6bvZ4Xv87xl03+8+dc82IW9fUdp3VIRKS1aRCbtJqo8FDu++5wwFcbz7gghpMe/pw/vL+Mxy4ayTsLNvHOgk1MX17AUX2TqXeOKcsKiI0I5Ylp2XxnaFf/LHIAeWWV/nfWRUSkKSVwOWR6Jsfw4+P78ujUVczN2cqmUq8mXlXLJ0t9TeQRYSG8cf1RXPbsLC57dhbnH5nhv351wTYWbCjhxMFpRIapL11EpDElcDmkfnZif7onRTEzu4gVm8u5/vg+JEaH88mSfN78diOnD+vKsPREXrx6HFc8N5tHpqwiIiyE6tp6Hvp4BYtySzlnZHfOHZXOCQPTgv1xRETaDI1Cl6CZt76YzORY/8xt/5uXy81vzOeuM4dw73tLdzv/8UtGad51ETnsaBS6tDmjenZqMu3quaPSmXbr8Vx1TCaDuvpGtN94Qj96p8TSJzWWx6dlN/vepRU1bK+qbfWYRUTaCjWhS5vSJ9U3aczzV40lxIwuCVH84jsDeWJ6Ng99vIIt26pIiYukurae0BAjNMT2eJ8R937CwC7xfPzz4wIZvohIwKgGLm1St8RouiRE+fcn9vOtWz7mD1O44G9fc/QD0zjvyZmUV9b4zyksr+Jnr81jTs5WAFbklzNj1RaOeWAa/523MbAfQETkEFMNXNqFYemJjOnViaSYCKZ4k7xs2VbFlc/PISzEePbKsfzh/aW8s2ATCzaW+K+bujyf3JId3PbmIsb06kzXxCjCQ/W9VUTaPw1ik3ZncW4pG4sr+HfWRqYuLwDg/CMzeHPu7rXsgV3iWdFo4pjB3RJ44/oJJESFByxeEZGDoUFs0mEMS0/k1GHd+M6wrv6yN+duJDM5hiMyEgH8C62syC/nu6PS/ectyyvjo0WbAxuwiMghoCZ0abfOHZlOSUU12yprmbaigEcuHEVe6Q7uensJt5w8gIue/gbwTfE6tHsCCdHh/PGDZczJ2coFY3sEOXoRkYOjBC7tVkRYCNcd1xeAW04ZCEC/tDim/2ISFdU7XyGb2D+Fvt7o9k+W5PsHuW3dXs39Hyzj16cNIiVu5xSuZZU1VFTV0TVx5yA6EZG2RglcOqSYiDBeu3YCGZ2i6dE5xl8+oU9npizLZ8GGEl6dtZ43525kyaYyRvdM4ndnDSUiLIRTH/6CTaWV5Dxwxm73Ld1Rw4INJRw3ILVJ+dbt1USGhRAbufufVFllDdW19U2+JIiIHCz1gUuHdVTf5CbJG+CCsT1Ii4/kl28u4INFeYCvX/yVWeu56+3F/GfuRv+c7bklO/h4yWZq6+r91z/08XIuf242c9dtbXLf0b//lPOe/Gq3GFZsLueIuz/hB8/MAsA5R0sGjm7ZVsVnKwqafb6IHD6UwOWwkhAVzu/PHcbK/G3sqKnDvHlgUuIieH3OBm799wL/ucc8MI3rX57LC1/l+Ms2Fu8A4Inpq/1l27wZ3xqPdq+rd9zyxnx+9to8AJZv9h178rPV9L79A6pqd65/vi/XvDCHK5+f06RLQEQElMDlMPSdoV356eR+3HvOMF64ahyDuyXw0c3HcfaI7tx7zlA+vrnp7G1/+3wN1bX1bCrZQc6W7QBMW17AzOwtgK+WvasNWyt4a15uk6ReXlnDQx+vACBnS0WzYm1I/PllVS3/oCLSoQUsgZtZDzObbmZLzWyJmd3klXc2s0/NbJX3byev3MzsMTPLNrOFZjY6ULFKx3frKQO5ZHxPjh+Qyoc3HUtKXCSPXTyKy4/KZGDXeJJiwukUE84/Lh/Dlm1V/PLNBRz9wDRyiir40fF9SU+K5m+f+2rhyzeX+e9busM3M9yG4p0JekIf3yttizaW+suyC7Y1K84Ib9KZvNIdB/eBRaTDCWQNvBa41Tk3BJgA3GBmQ4BfA1Odc/2Bqd4+wGlAf+/nOuCpAMYqh7lpt05ixm2T/VO4vj1/k//Y0O4JnHFEN75ZU0R5ZQ3L8nYm8PH3T+Hb9cWs3+pL4JeO78lPJvUD4BKvHxxakMDDfH+i+WWVB/eBRKTDCVgCd87lOee+9bbLgWVAOnAO8KJ32ovAud72OcBLzucbIMnMugUqXjm8dY6NIDYyjOiIUPql+V5Bm/6LSfz2jMGcPKQLJw5Ko6bO8dyMHL5eXURqvG+EeWVNPec9+RV3/Hcx4aHGvecMIzM51n/f354xmIxO0awubF4CDwv1ddJvLlUTuog0FZQ+cDPLBEYBs4Auzrk879BmoIu3nQ5saHTZRq9s13tdZ2ZZZpZVWFh46IKWw9bL14zj/Z9NpHdKLD88tg9R4aEc2asTE/ul8PCUlawu3M7lE3oBcPaI7gzo4kv4NXWO0BAjLWHn62M/mNCL/mlxzMnZSumOGoq2+RJzXb3j/z5azlqvj31lfjnj75/i7/verCZ0EdlFwBO4mcUB/wFuds6VNT7mfO/XtGhydufc0865Mc65Mampqfu/QKSFuiVGM7R7YpOysNAQXr5mHDERoQB8Z1hXVv7hNB67eBTPXzWuyblR4aFNtn90fF8Ky6uYcP9Uxtw3hc9WFDBrTRFPfraaH708F4CbXp/fZODa5kPchP73z1eTlbN1/yeKSJsR0ARuZuH4kvcrzrm3vOL8hqZx79+Gl15zgcbzXWZ4ZSJtgpnx8c3H8buzhtA/Lc7fX52eFM0l43ty/3eH+8+9/7vD+ec14wEY3yeZl64Zx6nDuuIc3PveUv786UrA9yrasryyJv3qABu27rsG/s2aIq5+YQ5z1xW3+HOsL6rgjx8u5+oX5vjLCsoqyfz1+/535YNtyabSJkvHikhgR6Eb8CywzDn3l0aH3gGu8LavAN5uVH65Nxp9AlDaqKldpE3o0TmGq47pjTW8UO65/7vDuWR8T//+JeN7MrF/in//6L4pPHzhSP55zXgKyqqYu66Yod0TiAoP4bRHvwQgLMR3z0Fd41maV8Zmb4KZ7IJyFufuHNFeWVPHD1/MYtryAn722jxKKqoBX7N8gz99vIJpy/P3+BneXegboBcRtrOlYPEm3/0fm7pqt/Orauuorz/0qxjO31DCRU9/zUeLN3PGYzN4+NPdY2lNm0srefmbdS2aaEckmAJZAz8GuAyYbGbzvZ/TgQeAk81sFXCStw/wAbAGyAb+AfwkgLGKBMTE/ilM/8UkXrp6HK/+cAIPfu8I/7GLx/m+AJw1ojsAr81ez6dL8znpL19w5l9nUOPNEDczewvbqmq55eQBFJZXcd3Lc8kvq2TEPZ/w0eLNlFRU8/j0bK5+IcufeEt31PC9p77i2RlreXxaNoD/frDzPfV1RRWsK9reJOabX5/PEfd8QnbBNv47b+MhS3ivfLOOb9Zs5Uf/9HUrNH4171B4dfZ67vzfYv9kPSJtXcDmQnfOzQBsL4dP3MP5DrjhkAYl0gakxkeSGu8bv3H2iO78K2sDIWbcccZgeqfEcvlRvfh6dRGP7lIbPvL3n/L4JaP53/xNxEeG8aPj+5IUE85dby/hwY+Ws62qlv/O20hoyM4/uynL8jllaFc+WpzH3HXFzF1XTEpcJJcf3Yu/f76G4u3VdIqN8I+S31FTx/EPfcaq+04jPDSEypo6PlzsW471pL98DkBGpxjGZnZu9eeyrsiXsI/ISGRLeRXF26v3e80rs9axYnM5954zrMW/b7X3at/yzeW7TcHbHM456uodYaGaH0sCQ/9PE2lDzIyXrx7PS1ePIyo8lKsn9iYsNITnrxrLIxeO5Lkrx7D03u/QJSGSsspaLn9uNu8u2MQPjupFRFgI545KJyIshLe+9Q0X+WLlFj5fWUCIQUanaP744XLyyyqZumzn/OonDU5jnJeA13q17dWF20iJi/Cfk12wjQ8X5THozo8ASIwO9x+bvbb1B7/V1tWzKLeUq47J5J0bJ3J0v5T91oyXbCrljv8u5qWv1/lnzGuJhi8t05bns7UZXxZ29cT0bPrd8SGVNc2bJlfkYCmBi7QxISG2W596eKgvOU8e1IWYiDA++NmxZP32JH5xygAum9CLW04eAPjmer9wTA/CQoxThnRhR00d//xmPccPSOWB845gw9YKxt8/lU+W7uwPP35Aqn+51d/+dzHXv5zF0k1lnDAwjam3Hg/AotzSJnPCP3T+EfRJ9b3f/tDHK3hv4c6Jbg5Wfb3jptfns6OmjtE9OwG+Lx/55ZVU19bv9brGX0r+lbVhr+ftSV29Y42X9F+bvYFrX8pqcdzPz8wBYOMhbuoXaaDlREXaoWRvadIbJ/ff7djvzx3G78/1NSG/Nns9U5bm89D3R9A5NoKPbj7O3/T90c3H8sacDZwwKI2o8FAm9OnMN2u2sjSvjLjIMC4/KpPeybHERITy989XN3mt7bgBqZwytCv3vb+Uf3y5lhtfnUeflDiGdE/wn/PNmiJ++GIW26truWhsD/543hHsSUF5JWEhIcRHhbEot5SNxTt4f1Ee1x/Xh9OH++ZuyugUg3O+KWV7NZoYp7F1RRV0TYhiVM8knvp8NUf26sSJg7vs8dwGP3llLl+u2sK7N05s8uXgQEbzR3pvIeRsqaBfWnyLrxdpKdXARTqwi8f15Nkrx9I51tcc3i8tjhm3ncDnv5zEoK4J/O6sof731P943hFcMCaD/91wDB/87FiGZyQSEmKM6pnE6sLt1DvHE5eM5rkrx/ivufWUgbz304mkxEVw59uL2bB1Z+3zw0V51NU7RvZI4r0Fef5lWb9cVcj8DSX+80575EtG//5T7nl3Cec9+RX3vruEgV3iue3UQf7++4xO0cC+X6dbV7SdXskxPHzhSDrHRPj76vflg0WbKa+s9XcDPHzhCI713hZomGSnuSK9Z5JT1PLm+wYvfpXDTa/Pa1Z/f3vz4EfLOfL3nwY7jA5FNXCRw0xGpz0P0OqdEsv/nT9it/LHLx7N2qLtDOwST2xk0/9kRIWHMiw9kRtP6Mfd7y7l2P+bzoAucQxPT+KdBbkc1TeFC8ZkcOOr85i2vICleWU8MmUVZr755mMjQinyktU/v1kPwJZt1VwzsQ8hjQbfNTTxL99c1uR1vMZyiio4abCvNeGIjET/q3Y//udcenaO4fbTBzc5v/Ho+Re+yqFrQhTnjkynS0IUX67awqLcUiYNTNvnswTYVLKD2Igwqry+74bBdwfi2RlrWb+1gqiwUB48f88tFu3VU5/5Fv+prq33z5kgB0cJXET2qVNsBJ1iI/Z5ziXje7G1oobHpq5iZf42Vub7BoQd1SeZo/v6Eu513ixz43t3ZlFuKTe9Po9OMb77ZnSKbjJIbdLAprMqpsZH0jUhqsn77wDbq2rZVlVLbGQYW7ZV+ZvXh6cn8vnKQoq3V/Pp0vw9JvC80p2z2y3NK+OyCb0wM4alJ2IG364vaVYCP/qBaaTGR/przQ018MqaOjZsraB/l+Y3p9d7Xypmrt7S7Gvam311g0jLKIGLyEGLCAvhlpMHcOHYHqzcXM6gbvG8+NU6LhiTQefYCB67eBS5xTvILang9tMG889v1vHHD5cD0D0xig9uOpa/fbaa8spaZq0tYlDX3ZPesPREPli8mR/kbGVYeiLz1pfwr6wNzMzewu/OGgpAZrKvdWF4RhL1zlezrvUGqJVX1vDkZ6uZm1PM5Uf34v8+WtHk/icP8fWXJ0SFMyIjic9XFnLLyQOoravnsWnZnD2iO5+tKODzlYXceeYQosND+XCxb26pwvKdze2rvC8vlz87m9k5W5lzx0n+xW72xTlHQVkVUeEhbCzeQW7JDtKTovd47o7qOt6en8v5R2a0u9fWcouVwFuLEriItJr0pGh/0vn1aYP85Wd7k9E0uOLoTGrrHcf0S6FPaiwJUeH86tRB/mbtXUfhg28Z1ynL8jn/b18TYtB4MrgbXv2WId0SON6ruR/dN5luiVFN3p0ffvcn/u3Zu8z7Hh8ZxoQ+yf79SQNTeXTqKoq2VfHS1+t4bOoqvl1XzLz1xWyvruPm1+czoU8yz81c2+Q+x/RLZmZ2Ee8vzPP/jinL8v2T8uzL1u3VVNfVc+GoHryRtYFZa4o4b3QGt7wxn8WbSrnvu8P979s/O2MNf/pkJQ6a3Pvb9cVU19Y3+SwHqqaunvBD8OVgY4kmymktSuAiEnBR4aHccEK/3cr3lLgbXDSuB9V19YQYbCmv5o1dXhX72w+OJCbC95+02Mgw/vT9EVz7Uhap8ZH+funrjuvD90ZnkFtSwYiMJLZV1XLbfxbSOyW2Sb/sd4Z25dGpqzjyD1P8ZTOyfc3aJw1OY8qygj3ODHfZhF7MzC7iiem+2e0So8N5f2GeP8k2fEEprqjh0Skrqaypp2h7FVu3V/tn3DtuQCofLdnM7LVbGdAlnrfm+d7pf2TKSl754QTq652/i+LDxZubJPDznvwKgLV/PH2fz3J/ZmZv4ZoX5zDt1kl030srQEtFhoVQVVtPrma6azVK4CLSLnRLjOa2U3fW6q8/vg9vzNlAj84xJMWE0zO56eC8Y/qlsPB3p+CAqcvyGdEjiW6JvmQ00GuiT46L5JUfTtjtdw3ulsAdpw/mqc9Wc8XRmRzTL4Xv/+0rjuzViUcuGsXkP31GQaNm8wvH9ODcUemMyexEVHgIS/PK6JMay/eP7MGDHy3nZ6/N4zenD+Yvn65gdeF2ju2fwotfr2vyO79dXwJA96QoxmZ2ZtbarZgZkWEhXD2xN099tpolm0q57T8LWZzrW+xmxqpCNpXs4MZXv+WWkwf677V+a8VBNVNn5RRTWVPP16uL+N6RGQd8n2e+XENEWAj9UuOo8l7Ty1UNvNUogYtIu9QnNW63gWm7augfPnVYt72e03iq2cZ+eGwffnhsH//+8t+f5q+lXz2xNw94ffhAkxHjpw/rxlvzcumaEMU1E3szfXkB7yzYxIrN5azILwf2/Z5518QoxvfuzJRl+azdsp1LxvfkR8f15cWvcvjlvxey1Fup7pyR3Xl7/ib+Om0V364v4QfPzvLfY2Z2UYsT+IxVW/hX1gauO64Pa7b4avhZ67YecALfUV3HH95ftlv5Su8ZyMFTAhcRaYbGTexXHp1JbEQoXRKidpt29ZZTBvDWvFwuHNuDiLAQ3rh+Ar96cyH/nruRzrERjMvszEdLNtMvLY6fTOrL8zNzWNRodH1qXCRnjujGczPXUrqjhp9O7kdiTDgXju3hn+3t1WvHM6ZXZ6YuK+C12U27EmIjQrnz7cUUlldx7XG9/d0KzjlmZhfx509XsL2qlq6J0fzp/CNIS4gC4KWvc/hkaT5ZOVtJ9N4OyMpp+YQ2DT5fWbhbWb+0OBblllJSUU1SzL7fbJD9UwIXEWmhqPBQLjsqc4/HMjrFsPr+0/01ezPjR5P6sm5rBXedOYS0+EhW5Jdzx+mDOWFQGueNzmBVfjk/fuVbfnvGYMJCQ+iWGM3nvzyBssoaUrxZ9249ZSCfrSike1KU/9W84wek8r63ZvvxA1IZ3C2BERmJ/PiVb3l4ykr+lbWBqtp6Th3WhfSkGB78aDndEqMY1DWe6SsKuf2tRTxzxRjANwAuNiKUTaWVbCqtJDzUWFWwba/Jdk7OVmav3eofy1BeWUN8VDh19Y7QEOOjxXl0ignnzR8fzYl/9s3+d9YR3Xl4ykq+Wl3kn2VPDpx1pLVvx4wZ47KyWj6HsYhIe+Cco7qunkhv7fZ1Rds5/qHPOHlIF/5x+Rj/OTOzi1i7ZRv/+TaXzaWVbC7zvfM+LrMzL149juiIUJ6bsZZ731vKmF6dGNUziX98uZZ7zxnK49OyKSiv4vThXflg0WYiw0K4eFxPYiJCufmkAf6WiJH3fkJJRQ0vXzOO/LIqfvHvBbx740R+/MpcJg9K461vczljeDcePP8Ixt43hcLyKv77k6O5+oU5HNmrs/+LQ2Pz1hcTFR7K4G4Jux3bVUV1LRXVdf4vOIHknKO23hFqxv0fLOPCsT1a9L5/S5nZXOfcbg9MNXARkXbCN6gt1L/fKzmWKbcc32TlODNjYv8UJvZP4bKjMnHOccwD09hUWsk5o7oTHeG7/sqjM5m+ooBZa7aS5fXJH903mbOO6M4/v1nH98f04INFm6mqrfcvZPPp0nwccNHYHpRU1ABw46vzKN3h2z7r8RkAvOQN0DtteFfA96rbY1NX0TUxisuOyuSxqavILthGv7S4Jp/v52/MJy0+in/96Kj9PovvPfU1y/LKyHngjJY+RgBW5ZdTWF7F0f32PLPfvjwxPZs/fbKSD286lmdmrCWvtJInLh19QHEcjPY1A4CIiDTRLy1un/3JZsazV45l0sBUzhy+8338kBDjpavHsfz3p/Lpz4/j45uPo19aPJ1iI/jpif3pmhhFnDd17n9/cjQAqwq2kV2wzT847S8XjCB5l1n6jh+Qyh2nD+bGE/ox0UuOPz+pP1/9ejLdEqO5/KhehIUYz89cS0H5ztnwyitryCmqYMmmUuq9l/x//M+5TQYLNnDOscwbzFdeWcMnSzYz6M4PueO/i5r93O55dylXvTCHgrLK/Z+8i2dn+N7/n7rMt6rfx0s2N5nMJ1BUAxcR6eAGd0vghavG7VZuZpix1+bfKbf4lpPtmhjF5EFpTFtewGe/mMQrs9YxokcSZx7RndE9O3HTG/O57tg+7Kip4+wR3Xeb69zM/O+Tp8RFcuLgNF6ZtZ53FmzirjOH8MiUVVx1TCYA26vrePDj5Zw7Mt2/IM2EPp154MPlvHbtBDrFRvDlqp1TzWYXbGP6igIqa+p5ZdZ6zhudzpG9Ou/zeVTW1DE7ZyvVtfX8/Ys13HnmkOY9SE90eCjF1PDxEl8Cr613vDl3Iz+e1LdF9zlY6gMXEZH9Kq+sYcu2anqnHPw0qAs2lHD9y3P9ffP7kxofSWF5FTed2J8TB6dx9uMz/cceOv8Inp+ZQ3REKKsLt3Fs/1T+evEo6usdISHG16uL6J0SS9fEKP81M7O3cOkzs+iVHEN+WSVf/mryPqe73bDV1zKwubSSDcU7/DVw8M3iN7h7ArPXbuX35w7jf/NyufbYPpw6rOsBPJk9Ux+4iIgcsPiocOKjwlvlXiN6JPHNb07k3QWbyCvdwZertvDlqi2kxUc2mSBnWHoCi3PLKCyvIj4qjL9/sZrPvNfTHr9kFLe8scC/yt0NJ/Sle1I0HyzKY3XBNpZtLqNx/fSxi0f5p/SduqyAiNAQnrhkNGc/PoOnv1jNHWcM4bGpq8hMieXsEd2prKkjKjyUGau2NHnHflfpnaK56cT+XPrMLO7832IAfjgxMBVjJXAREQmKhuljx2R2Zkd1Hb87ayhdEiIp2l7NCzNzuOPMwfz6PwtJT4rm6om9uer5OSzYUEL/tDjOPKI7f/98jb+ZfVSPTqTERfLugk0szSvj0vE9eW32emIiwuibFsdNr8+joKySSQNTeW/hJiYNTGVYeiLnjkzn5W/WccGYHvzl05UAvLdgE9+sKeKxi0f5B+SlJ0U3mUWu4ctG37Q4jumXwl8vHsVPX5sHwPhWmIu+OdSELiIi7cLG4grOf+prfn5yfy4c25PC8io+X1lIXGQYJw/pwuLcUs55wte8nvPAGWwurfSPuh9//xQqa+r992qokWcXlHPSX76gV3LMXtdyP7Z/Ci9fM543525k+ooC3l+Yx8vXjCMiNISeyTF0S4ymsLyKsfdNYVDXeD66+bhW/dxqQhcRkXYto1MMX98+2b9QS2p8JOc3mup1SPcEBndL4LrjegM06fd+9oqxvPz1Oj5aspmxmZ043euj7pcWz+ieSf656BscPyCVz1cW0jk2gquP8d3v/CMz+N7odH50XF+GZyQ2OT81PpIzhndjVM+k1v7Ye6UauIiIHDZWF24jo1N0k/fpv1q9hSemZ/PbM4Zw6TOzuPWUAXxvdAY1dfWt1u9/MPZWA1cCFxERacP2lsA1kYuIiEg7pAQuIiLSDimBi4iItENK4CIiIu2QEriIiEg7pAQuIiLSDimBi4iItENK4CIiIu2QEriIiEg71KFmYjOzQmBdK94yBdiy37Nkb/T8Do6e38HR8zs4en4HrrWfXS/nXOquhR0qgbc2M8va0/R10jx6fgdHz+/g6PkdHD2/AxeoZ6cmdBERkXZICVxERKQdUgLft6eDHUA7p+d3cPT8Do6e38HR8ztwAXl26gMXERFph1QDFxERaYeUwEVERNohJfC9MLNTzWyFmWWb2a+DHU9bZGbPmVmBmS1uVNbZzD41s1Xev528cjOzx7znudDMRgcv8uAzsx5mNt3MlprZEjO7ySvX82sGM4sys9lmtsB7fvd45b3NbJb3nN4wswivPNLbz/aOZwb1A7QRZhZqZvPM7D1vX8+vmcwsx8wWmdl8M8vyygL696sEvgdmFgo8AZwGDAEuNrMhwY2qTXoBOHWXsl8DU51z/YGp3j74nmV/7+c64KkAxdhW1QK3OueGABOAG7z/j+n5NU8VMNk5NwIYCZxqZhOAB4GHnXP9gGLgGu/8a4Bir/xh7zyBm4Bljfb1/FrmBOfcyEbvfAf071cJfM/GAdnOuTXOuWrgdeCcIMfU5jjnvgC27lJ8DvCit/0icG6j8peczzdAkpl1C0igbZBzLs859623XY7vP6Lp6Pk1i/cctnm74d6PAyYDb3rluz6/huf6JnCimVlgom2bzCwDOAN4xts39PwOVkD/fpXA9ywd2NBof6NXJvvXxTmX521vBrp423qme+E1R44CZqHn12xe8+98oAD4FFgNlDjnar1TGj8j//PzjpcCyQENuO15BPgVUO/tJ6Pn1xIO+MTM5prZdV5ZQP9+ww72BiJ745xzZqb3FPfBzOKA/wA3O+fKGldq9Pz2zTlXB4w0syTgv8Cg4EbUfpjZmUCBc26umU0Kcjjt1UTnXK6ZpQGfmtnyxgcD8ferGvie5QI9Gu1neGWyf/kNTUPevwVeuZ7pLswsHF/yfsU595ZXrOfXQs65EmA6cBS+psmGiknjZ+R/ft7xRKAosJG2KccAZ5tZDr4uwsnAo+j5NZtzLtf7twDfF8hxBPjvVwl8z+YA/b0RmRHARcA7QY6pvXgHuMLbvgJ4u1H55d5ozAlAaaOmpsOO13/4LLDMOfeXRof0/JrBzFK9mjdmFg2cjG8cwXTgfO+0XZ9fw3M9H5jmDuNZrJxztzvnMpxzmfj++zbNOXcpen7NYmaxZhbfsA2cAiwm0H+/zjn97OEHOB1Yia9f7Y5gx9MWf4DXgDygBl+fzjX4+sWmAquAKUBn71zDN7J/NbAIGBPs+IP87Cbi60NbCMz3fk7X82v28zsCmOc9v8XAXV55H2A2kA38G4j0yqO8/WzveJ9gf4a28gNMAt7T82vRM+sDLPB+ljTkiED//WoqVRERkXZITegiIiLtkBK4iIhIO6QELiIi0g4pgYuIiLRDSuAiIiLtkBK4iASEmU0yM+fNwS0iB0kJXEREpB1SAhcREWmHlMBFDhNm9lMzW25mlWa2yszuaJj32sxyzOw+M3vGzMrMbIuZ3W9mIY2ujzezv5tZoZlVmVmWmZ2yy+9IM7PnzSzf+z0rzOzqXUIZbGZfmFmFmS01s9MC8PFFOhytRiZyGDCzu4GrgJvxTds6GPgbviky7/RO+ym+JSbH4luY4W9APr5FLgCe8479AFgP/Ah4z8yOcM4t9+Yk/xzYAVwKrAH6AZ13CedPwG34ppX8DfCGmfVyzhW34kcW6fA0lapIB2dmMcAW4Dzn3EeNyi8HHnPOJXmrUm1wzh3b6Pj9wGXOuR5m1g/f/M5nOOc+aHTOt8B859zVZnYNvvme+znnNu4hjkn4Fsv4nvNWXzOzLvjWTT7VOfdxK390kQ5NNXCRjm8oEA38Z5f1iUOBKDNL9fa/3uW6mcDtZpYADPHKvtjlnC/wLeMJcCSwdE/JexfzGzacc/lmVgd0ac4HEZGdlMBFOr6Gfuzv41thb1dbAxgLQPUeyjQeR6SF9Ecj0vEtASrxLQGZvYefOu+8CbtcdzSQ65wr8+4BcNwu5xyHbzlPgLnAEL3nLRIYSuAiHZxzbhtwP3C/md1gZgPNbKiZXWRmDzY6daSZ3W1mA8zsEuAm4M/ePVbjWw/6STP7jpkNMrNHgWHAQ971rwHrgHfM7CQz621mJ5rZhYH6rCKHEzWhixwGnHO/N7M84EZ8SXkHvub0Fxqd9legF5AF1ACPs3MEOsAP8SXrfwIJwCLgTOfccu93VJjZ8cD/Aa8DcUAO8MCh+lwihzONQhcRvFHozzjn/hDsWESkedSELiIi0g4pgYuIiLRDakIXERFph1QDFxERaYeUwEVERNohJXAREZF2SAlcRESkHVICFxERaYf+H1cSkksfjZabAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAGGCAYAAACHemKmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXiU5dn+8e9ksi8zZCELIYRVMOwgQlgsFQUxaFVsraJgtVot9a3YKqVFX8EFa3/aqnV7rVurVKtirRREQEBWWWSJ7KsJCUkISWayTpaZ3x+TPMmQBAIBZkLOz3HkcObZ5n6IwMmd67luk8vlciEiIiIi0sb4eXsAIiIiIiJnQ0FWRERERNokBVkRERERaZMUZEVERESkTVKQFREREZE2SUFWRERERNokBVkRERERaZMUZEVERESkTfL39gB8ldPpJDs7m4iICEwmk7eHIyIiItIuuFwuiouL6dSpE35+p55zVZBtRnZ2NklJSd4ehoiIiEi7lJmZSefOnU95jIJsMyIiIgD3L6LFYvHyaERERETaB7vdTlJSkpHFTkVBthl15QQWi0VBVkREROQCa0lppx72EhEREZE2SUFWRERERNokBVkRERERaZMUZEVERESkTVKQFREREZE2SUFWRERERNoktd8SERERn1VVVUVNTY23hyGtYDabCQgIOC/XVpAVERERn2O328nPz8fhcHh7KHIOBAUFERMTc8578yvIioiIiE+x2+1kZWURHh5OTEwMAQEBLWqOL77H5XJRVVWFzWYjKysL4JyGWQVZERER8Sn5+fmEh4fTuXNnBdiLQEhICBERERw9epT8/PxzGmT1sJcP+O+OY7y55jDHbOXeHoqIiIhXVVVV4XA4sFqtCrEXEZPJhNVqxeFwUFVVdc6uqxlZH/DSV/vZk1PMJXHhJFhDvD0cERERr6l7sOt8PRwk3lP3Pa2pqTln31/NyPqAsCD3vydKHdVeHomIiIhv0Gzsxed8fE8VZH1AeG2QLa5QkBURERFpKQVZHxCuGVkRERGRM6Yg6wPCgswAlFaq4bOIiIh4x+OPP47JZGLlypXeHkqLKcj6gPAgd8GzSgtERESkzpEjRzCZTNx5553eHorPUpD1AeF1M7IqLRAREREv+dWvfsXu3bu5/PLLvT2UFlP7LR9Q17WgREFWREREvCQmJoaYmBhvD+OMaEbWB4QHK8iKiIhIvccff5xu3boB8O6772IymYyvd955h5UrV2IymXj88cfZuHEjaWlpREVFYTKZOHLkCAArVqzg3nvvJSUlBYvFQkhICP369WPOnDlUVFQ0+ZlN1ciaTCbGjh1Lfn4+9957LwkJCQQFBdG3b1/efvvt8/1LcUqakfUB6logIiIiDY0dO5aioiJeeOEFBg4cyA033GDsGzRoEEVFRQCsX7+eefPmMXr0aO666y7y8/MJDAwE4I9//CN79uxh5MiRpKWlUVFRwdq1a3n88cdZuXIly5Ytw2w2t2g8RUVFjBo1isDAQG6++WYcDgcfffQRd911F35+fkybNu3c/yK0gIKsDwhXaYGIiMhpuVwuyqvaRoefkABzqxYAGDt2LF27duWFF15g0KBBPP744x7762ZNv/zyS1577TV+8YtfNLrGK6+8Qrdu3RqN49FHH+XJJ5/k448/5pZbbmnReLZv387dd9/N66+/boTfBx98kAEDBvDHP/5RQbY9U42siIjI6ZVX1ZDy2BJvD6NFds2dQGjg+Y9ZgwYNajLEAnTv3r3J7TNmzODJJ59kyZIlLQ6yoaGhPP/88x4zuCkpKYwaNYqvv/6akpISwsPDz/wGWkk1sj7AmJFV+y0RERE5A6fqMFBaWsrTTz/NsGHDsFqt+Pn5YTKZiI6OBiArK6vFn9OrVy8sFkuj7UlJSQAUFhae4cjPDc3I+gDVyIqIiJxeSICZXXMneHsYLRIS0LLa09aKj49vcntVVRVXXnklGzdupF+/ftxyyy107NiRgAB37/o5c+bgcDha/DkdOnRocru/vzvD1NR4p+RDQdYH1JUWlFbW4HS68PM7+5oaERGRi5XJZLogP65vS5qrw/3ss8/YuHEjd955Z6POAseOHWPOnDkXYnjnnUoLfEBEcP1vytJKzcqKiIgIRj3q2cx2HjhwAICbbrqp0b5Vq1a1bmA+REHWBwT5+2GunYUtdbSNpzFFRETk/IqMjMRkMpGRkXHG53bt2hWgUU/YQ4cOMXPmzHMwOt+g+XkfYDKZCAs0Y6+oVucCERERASA8PJzhw4ezevVqpkyZwiWXXILZbOb6668/7bnXXXcdPXv25Pnnnyc9PZ3BgweTkZHBwoULSUtLO6tw7IsUZH1ERHCAgqyIiIh4+Mc//sGMGTP44osv+Oc//4nL5aJz587GjGtzwsLC+Oqrr/jd737HypUrWb16Nd27d+fRRx/loYce4sMPP7wwN3CemVwul8vbg/BFdrsdq9WKzWZrst3EuTb+z6vYl1vC+z8fzqiebWudYxERkXOloqKCw4cP061bN4KDg709HDmHWvq9PZMMphpZH1HXuaBYvWRFREREWkRB1kdomVoRERGRM6Mg6yMswe4GxSUVVV4eiYiIiEjboCDrIywh7hlZu0oLRERERFpEQdZH1M3I2ss1IysiIiLSEgqyPqJudS897CUiIiLSMj4dZJ955hlMJhMPPvigsa2iooLp06cTHR1NeHg4kydPJjc31+O8jIwM0tLSCA0NJTY2locffpjqat8OiJaQ2hlZ1ciKiIiItIjPBtlNmzbx+uuvM2DAAI/tM2bM4PPPP+ejjz5i1apVZGdne6wjXFNTQ1paGpWVlaxbt453332Xd955h8cee+xC38IZMUoLFGRFRERQm/uLz/n4nvpkkC0pKWHKlCm88cYbREZGGtttNhtvvvkmzz//PFdeeSVDhw7l7bffZt26dWzYsAGAL7/8kl27dvHee+8xaNAgJk6cyBNPPMHLL79MZWWlt27ptIyHvcp9e+ZYRETkfDKbzQBUVWli52JT9z2t+x6fCz4ZZKdPn05aWhpXXXWVx/YtW7ZQVVXlsb1Pnz506dKF9evXA7B+/Xr69+9PXFycccyECROw2+3s3LnzwtzAWdCMrIiICAQEBBAUFITNZtOs7EXE5XJhs9kICgoiICDgnF3X/5xd6Rz54IMP+Pbbb9m0aVOjfTk5OQQGBtKhQweP7XFxceTk5BjHNAyxdfvr9jXH4XDgcDiM93a7/azv4WwYNbLqWiAiIu1cTEwMWVlZHD16FKvVSkBAACaTydvDkrPgcrmoqqrCZrNRUlJCYmLiOb2+TwXZzMxMfv3rX7N06dILvr7yvHnzmDNnzgX9zIbqZmSLK6pxuVz6DSsiIu2WxWIBID8/n6ysLC+PRs6FoKAgEhMTje/tueJTQXbLli3k5eUxZMgQY1tNTQ1ff/01f/3rX1myZAmVlZUUFRV5zMrm5uYSHx8PQHx8PBs3bvS4bl1Xg7pjmjJr1iweeugh473dbicpKemc3FdL1NXIVjtdlFfVEBroU98aERGRC8pisWCxWKiqqqKmpsbbw5FWMJvN57ScoCGfSkvjxo0jPT3dY9vPfvYz+vTpw8yZM0lKSiIgIIDly5czefJkAPbu3UtGRgapqakApKam8tRTT5GXl0dsbCwAS5cuxWKxkJKS0uxnBwUFERQUdJ7u7PRCAsyY/UzUOF3Yy6sVZEVERHDXzJ6vECRtn0+lpYiICPr16+exLSwsjOjoaGP73XffzUMPPURUVBQWi4UHHniA1NRURowYAcD48eNJSUnhjjvu4NlnnyUnJ4fZs2czffp0rwbV0zGZTFiC/Sksq8JeUUW89cKWVoiIiIi0NT4VZFviz3/+M35+fkyePBmHw8GECRN45ZVXjP1ms5mFCxdy//33k5qaSlhYGNOmTWPu3LleHHXLWEIC3EFWD3yJiIiInJbJpd4WTbLb7VitVmw22zkvTG7OdS+tIT3Lxtt3DuOHfWIvyGeKiIiI+JIzyWA+2Ue2vTIWRVAvWREREZHTUpD1IcaiCCotEBERETktBVkfUhdkbQqyIiIiIqelIOtD4izurgrZtgovj0RERETE9ynI+pDOkaEAZBaUeXkkIiIiIr5PQdaHdI4KASCrsNzLIxERERHxfQqyPiSpdkb2aGE5Tqe6oomIiIicioKsD0mwBmP2M1FZ4ySv2OHt4YiIiIj4NAVZH+Jv9iOhdmnao4WqkxURERE5FQVZH1NXXpCpICsiIiJySgqyPiap9oGvzAI98CUiIiJyKgqyPqauBZc6F4iIiIicmoKsj+kY4V4UIb9ED3uJiIiInIqCrI/pGO4OsscVZEVEREROSUHWx8TUzciq/ZaIiIjIKSnI+piY8EAA8ksqcbm0KIKIiIhIcxRkfUxMbWlBZY0Te3m1l0cjIiIi4rsUZH1McICZiGB/QHWyIiIiIqeiIOuD6h74UucCERERkeYpyPqguvKC43rgS0RERKRZCrI+KCai7oEvBVkRERGR5ijI+iCVFoiIiIicnoKsD6orLcgvrvTySERERER8l4KsD6pbFEFdC0RERESapyDrg2JUWiAiIiJyWgqyPqijlqkVEREROS0FWR+kZWpFRERETk9B1gdpmVoRERGR01OQ9UFaplZERETk9BRkfVRHre4lIiIickoKsj5KnQtERERETk1B1kdpmVoRERGRU1OQ9VFaplZERETk1BRkfVSMamRFRERETklB1kfVLVObX1Lp5ZGIiIiI+CYFWR+lh71ERERETk1B1kd1CA0AwF5e5eWRiIiIiPgmBVkfFRpoBqC0ssbLIxERERHxTQqyPios0L2yV5lDS9SKiIiINEVB1keFBrlnZMuqanC5XF4ejYiIiIjvUZD1UXUzsi4XVFQ5vTwaEREREd+jIOujQgLMxuvSSpUXiIiIiJxMQdZH+fmZjAe+yhx64EtERETkZAqyPiy0trxAM7IiIiIijSnI+rCwuge+FGRFREREGlGQ9WHGjKxKC0REREQaUZD1YUaNrGZkRURERBpRkPVhxupempEVERERaURB1ocZq3tpRlZERESkEZ8Lsq+++ioDBgzAYrFgsVhITU1l8eLFxv6xY8diMpk8vu677z6Pa2RkZJCWlkZoaCixsbE8/PDDVFe3vTBYt7pXaaVmZEVERERO5u/tAZysc+fOPPPMM/Tq1QuXy8W7777Lj370I7Zu3Urfvn0BuOeee5g7d65xTmhoqPG6pqaGtLQ04uPjWbduHceOHWPq1KkEBATw9NNPX/D7aQ1jRtbR9kK4iIiIyPnmc0H2uuuu83j/1FNP8eqrr7JhwwYjyIaGhhIfH9/k+V9++SW7du1i2bJlxMXFMWjQIJ544glmzpzJ448/TmBg4Hm/h3NFM7IiIiIizfO50oKGampq+OCDDygtLSU1NdXY/v777xMTE0O/fv2YNWsWZWVlxr7169fTv39/4uLijG0TJkzAbrezc+fOCzr+1lKNrIiIiEjzfG5GFiA9PZ3U1FQqKioIDw/n008/JSUlBYDbbruN5ORkOnXqxI4dO5g5cyZ79+5lwYIFAOTk5HiEWMB4n5OT0+xnOhwOHA6H8d5ut5/r2zpj6logIiIi0jyfDLK9e/dm27Zt2Gw2Pv74Y6ZNm8aqVatISUnh3nvvNY7r378/CQkJjBs3joMHD9KjR4+z/sx58+YxZ86cczH8cyYsSDOyIiIiIs3xydKCwMBAevbsydChQ5k3bx4DBw7khRdeaPLY4cOHA3DgwAEA4uPjyc3N9Tim7n1zdbUAs2bNwmazGV+ZmZnn4lZaRTOyIiIiIs3zySB7MqfT6fFj/4a2bdsGQEJCAgCpqamkp6eTl5dnHLN06VIsFotRntCUoKAgo+VX3Ze3qUZWREREpHk+V1owa9YsJk6cSJcuXSguLmb+/PmsXLmSJUuWcPDgQebPn8+1115LdHQ0O3bsYMaMGVxxxRUMGDAAgPHjx5OSksIdd9zBs88+S05ODrNnz2b69OkEBQV5+e7OjLoWiIiIiDTP54JsXl4eU6dO5dixY1itVgYMGMCSJUu4+uqryczMZNmyZfzlL3+htLSUpKQkJk+ezOzZs43zzWYzCxcu5P777yc1NZWwsDCmTZvm0Xe2rVAfWREREZHm+VyQffPNN5vdl5SUxKpVq057jeTkZBYtWnQuh+UVYbUzsiUKsiIiIiKNtIka2fbKEhIAQLGjmhqny8ujEREREfEtCrI+rEOIexUylwuKK6q8PBoRERER36Ig68MC/f0Iq23BVVimICsiIiLSkIKsj+sQ6p6VLSyr9PJIRERERHyLgqyPiwxz18naNCMrIiIi4kFB1sfV1clqRlZERETEk4Ksj+sQ6p6RVY2siIiIiCcFWR8XWVsja9OMrIiIiIgHBVkfF6kZWREREZEmKcj6OKu6FoiIiIg0SUHWx9XNyNrKNSMrIiIi0pCCrI+L1IysiIiISJMUZH2ctXZGtkg1siIiIiIeFGR9XN2MrIKsiIiIiCcFWR9XVyNb4qjGUV3j5dGIiIiI+A4FWR9nDQkwwuyeY8VeHo2IiIiI71CQ9XEmk4lBSR0A+Daj0MujEREREfEdCrJtwJAukQB8m1Hk5ZGIiIiI+A4F2TZgcF2Q/V4zsiIiIiJ1FGTbgIFJVkwmyCoq53ixw9vDEREREfEJCrJtQERwAB3DgwDItVd4eTQiIiIivkFBto2whLg7FxRXVHt5JCIiIiK+QUG2jYgI9gfAXqGFEURERERAQbbNiAjWjKyIiIhIQwqybYSldka2WDOyIiIiIoCCbJtRNyNrL9eMrIiIiAgoyLYZmpEVERER8aQg20aoa4GIiIiIJwXZNkJdC0REREQ8Kci2ERFGaYFmZEVERERAQbbNsBjttzQjKyIiIgIKsm2G0bVAM7IiIiIigIJsmxGhrgUiIiIiHhRk24i6rgWakRURERFx8z8fF92zZw+LFy8mNDSUn/70p1it1vPxMe1K3YxsZbWTiqoaggPMXh6RiIiIiHe1akZ27ty5JCQkUFBQYGxbtmwZgwcP5re//S2//OUvGTJkCCdOnGj1QNu78EB/TCb3a3UuEBEREWllkF28eDF9+vQhKirK2DZr1ixMJhNz5szh/vvv5/Dhw7zwwgutHmh75+dnIjxIdbIiIiIidVoVZI8cOcKll15qvM/KymLLli388pe/ZPbs2fz1r3/lyiuv5N///nerByr1LbhUJysiIiLSyiBbWFjoMRu7du1aTCYTkyZNMrYNHTqUjIyM1nyM1Kp74KuwrNLLIxERERHxvlYF2Y4dO5KVlWW8X7FiBQEBAQwfPtzYVllZidPpbM3HSK3EDiEAHC0s9/JIRERERLyvVV0LBg0axH/+8x++++47goOD+fDDDxk9ejQhISHGMUeOHCEhIaHVAxXoHFkbZAvKvDwSEREREe9r1YzsI488gs1mY+DAgfTu3RubzcZvfvMbY39NTQ1r167lsssua/VABZKiQgHILFSQFREREWnVjOyYMWNYuHAhb7zxBiaTiSlTpjBx4kRj/7p160hMTOTGG29s9UAFkmpnZDMLVFogIiIi0uoFEa655hquueaaJveNGTOGrVu3tvYjpJZmZEVERETqnbclagsLCyktLT1fl2+X6oJsUVmVesmKiIhIu9eqILt8+XIeeeQRCgsLjW15eXn84Ac/ICYmhqioKB566KFWD1LcwoP8iQx1t+BSeYGIiIi0d60Ksi+99BILFiwgMjLS2Pbb3/6W1atX06NHD6Kjo3nhhRf417/+1eqBipvKC0RERETcWhVkt2/fzujRo4335eXlfPzxx1x99dXs27ePvXv3kpSUxGuvvdbqgYpbcnQYAIfzVbYhIiIi7VurgmxeXh6dOnUy3n/zzTdUVFRw5513AhAREcGkSZPYu3dvqwYp9S6JDQdgX26xl0ciIiIi4l2tCrJBQUGUl9fXaq5evRqTycQVV1xhbLNYLBQUFLTmY6SBXnHuIHsgr8TLIxERERHxrlYF2W7duvHVV18Z7z/55BN69epFYmKisS0zM5OYmJgWX/PVV19lwIABWCwWLBYLqampLF682NhfUVHB9OnTiY6OJjw8nMmTJ5Obm+txjYyMDNLS0ggNDSU2NpaHH36Y6urqVtyp7+gVFwHA/twSnE6Xl0cjIiIi4j2tCrLTpk0jPT2d4cOHM2bMGNLT07nttts8jtmxYwe9e/du8TU7d+7MM888w5YtW9i8eTNXXnklP/rRj9i5cycAM2bM4PPPP+ejjz5i1apVZGdnc9NNNxnn19TUkJaWRmVlJevWrePdd9/lnXfe4bHHHmvNrfqM5KhQAs1+lFfVkFWkzgUiIiLSjrlaobKy0nXrrbe6/Pz8XCaTyXX99de7KioqjP3p6ekuk8nkeuKJJ1rzMa7IyEjX3/72N1dRUZErICDA9dFHHxn7du/e7QJc69evd7lcLteiRYtcfn5+rpycHOOYV1991WWxWFwOh6PFn2mz2VyAy2aztWrs58OEP69yJc9c6Fq+O+f0B4uIiIi0IWeSwVo1IxsQEMD8+fMpLCzEZrPx2WefERQUZOyPj49n69atPPDAA2d1/ZqaGj744ANKS0tJTU1ly5YtVFVVcdVVVxnH9OnThy5durB+/XoA1q9fT//+/YmLizOOmTBhAna73ZjVbYrD4cBut3t8+aq68oK9OaqTFRERkfbrnKzsZbFYiIiIaLQ9JiaGgQMHYrVaz+h66enphIeHExQUxH333cenn35KSkoKOTk5BAYG0qFDB4/j4+LiyMnJASAnJ8cjxNbtr9vXnHnz5mG1Wo2vpKSkMxrzhZSSYAHguyxbi46vrnGez+GIiIiIeIX/ubhIWVkZCxYsYOvWrRQVFWG1WhkyZAg33ngjYWFhZ3y93r17s23bNmw2Gx9//DHTpk1j1apV52KozZo1a5bHKmR2u91nw+zAzu5/GOzIKjrlcXnFFcz9fBeLv8vhmZv68+PLfPN+RERERM5Gq4PsokWLmDZtGgUFBbhc9U/Rm0wmZsyYwdtvv82kSZPO6JqBgYH07NkTgKFDh7Jp0yZeeOEFbrnlFiorKykqKvKYlc3NzSU+Ph5wlzNs3LjR43p1XQ3qjmlKUFCQR1mEL+ub6A6ymQXlFJRWEhUW2ORxLy7fz8IdxwDYcKhAQVZEREQuKq0qLfj222+56aabKCoqYsqUKbz11lssXryYt956iylTplBUVMTNN9/Mli1bWjVIp9OJw+Fg6NChBAQEsHz5cmPf3r17ycjIIDU1FYDU1FTS09PJy8szjlm6dCkWi4WUlJRWjcNXWEMC6B7jnunecbT5WdlDx+tX/ypxVJ33cYmIiIhcSK2akX3qqacwmUysXr2aESNGeOy78847mT59OmPHjuXpp5/mk08+adE1Z82axcSJE+nSpQvFxcXMnz+flStXsmTJEqxWK3fffTcPPfQQUVFRWCwWHnjgAVJTU43PHz9+PCkpKdxxxx08++yz5OTkMHv2bKZPn95mZlxbon9nK4fyS9meaWNs79gmj8ksLDNeF1dcHH10RUREROq0akZ29erV/PjHP24UYusMHz6cm2++mdWrV7f4mnl5eUydOpXevXszbtw4Nm3axJIlS7j66qsB+POf/8ykSZOYPHkyV1xxBfHx8SxYsMA432w2s3DhQsxmM6mpqdx+++1MnTqVuXPntuZWfc7l3aIA+OTbo00+zFVd4yS7qMJ4X+JQkBUREZGLS6tmZG0222kfiOrSpcsZtbJ68803T7k/ODiYl19+mZdffrnZY5KTk1m0aFGLP7MtunFwIs99uY+MgjJeW3WQn4/pTnCA2dh/zFZBTYOVvzQjKyIiIhebVs3IdurUqdGDVSfbvHkzCQkJrfkYaUJooD93j+4GwP/7ch8P/HOrx/7MgjKP98UVqpEVERGRi0urguy1117LV199xTPPPENNTY3HPqfTyXPPPceyZcu49tprWzVIadovrujOTy7rDMCGgyc8ukZk1AbZnrHhgGZkRURE5OLTqtKCRx99lH//+9/84Q9/4PXXX2fMmDEkJCSQk5PDmjVrOHLkCPHx8cyePftcjVca8Df78eQN/VnwbRbFjmqO2Sro1CEEqH/QKyXBwoG8EhzVTiqrnQT6n5M1MERERES8rlVBNj4+nrVr1/KLX/yCpUuX8v3333vsv/rqq3nttddUWnAeBfr70TUmjAN5JezLLTaC7JET7iB7aYKF/2zPBtzlBdHhF0/nBhEREWnfWr0gQteuXVmyZAlZWVls3boVm82G1Wpl8ODBJCYmnosxymn0jovgQF4J+3NLGNs7FltZFSv2uPvoDkrqQGigmbLKGkoc1QqyIiIictE4J0vUAiQmJiq4ekmvuHBIh725xQDM35hBWWUNfeIjGNE9ivAgf8oqazzqZOd/k8H3J0r53cQ+mEwmbw1dRERE5KydUZC96667zupDTCbTadtqydnrHRcBwP7aIPvp1qMA3DW6GyaTiYhgf/KKHUaQdblczF24k4oqJ7de3oWutauEiYiIiLQlZxRk33nnnbP6EAXZ86t3vDvI7skpptRRbSxNO7pnDAARwQFAfQuuwrIqKqrciyjY1ZZLRERE2qgzCrKHDx8+X+OQVugWE0ZMeCD5JZV8ti2baqeLsEAzCdZgACKC3d/mf2/L4tIEC7by+vBaorZcIiIi0kadUZBNTk4+X+OQVjCZTAzvHs1/dxzjHxvcnSN6xIYbta91QXZReg7ffl/Ekzf0M87V0rUiIiLSVqmp6EViRPdoAHYfcy8HXLcQAkBEUIDxOsdewTF7hfFeQVZERETaKgXZi0Rq9yiP9w2DbHiw58R7jq3ceF2qICsiIiJtlILsRaJHx3AGd+lgvO8VG2G8DgkwexybVVgfZIsVZEVERKSNUpC9SJhMJv78k0EAmP1MpHSyGPsyCso8jt2bW2K81oysiIiItFXnbEEE8b6uMWEsnXEFBaWVJNYuVQtwxSUdjWVqAQ7mNQyyNRd0jCIiIiLnioLsRaZXXESjbTcM6oQl2J9fzd9KZY2Tyhqnsa9Y7bdERESkjVJpQTvgb/ZjfN94ujWxgpdKC59vgJgAACAASURBVERERKStUpBtR6whAY22qf2WiIiItFUKsu2IRUFWRERELiIKsu2IJaS+JDo8yP1aQVZERETaKgXZdqRhaUGP2gUTVCMrIiIibZWCbDvSMMj2qg2yJY5q8uwVvLLygEKtiIiItClqv9WONBVkSx3V3PjKOrKKyikoqWT2pBRvDU9ERETkjGhGth3xCLJx7iDrdEFWkXvJ2jUH8r0yLhEREZGzoSDbjjQMst1iwvEzee4P9Nf/DiIiItJ2KLm0Iw2DbII1mNBAz8qSw8dLcblcF3pYIiIiImdFQbYdibMEA+4QGxxgbtR6q9hRTa7d4Y2hiYiIiJwxBdl2JCkqlJduHczLU4YA0D/RCsD9Y3vQJSoUgBHzlvPS8v1eG6OIiIhIS6lrQTtz3cBOxus//XgAu4/Z+dHARLZmFJJRUAbAc0v38cC4Xt4aooiIiEiLaEa2HesTb+HGwZ3x8zMZZQd1jhaWebzffKSAx/+zk/LKmgs5RBEREZFmKcgKAL8c25PU7tHG+/UHT3jsv/m19byz7gjPLN59oYcmIiIi0iQFWQGgd3wE/7x3BNN/2AOAtc30lFWvWREREfEVCrLi4YpeHQH4b/oxdmbbACgqqzT2nyitbPI8ERERkQtNQVY8XN4tigl946iqcfH7BekAHDxeauwvKqsiu3YlMBERERFvUpAVDyaTiSdv6E+g2Y/tR228teYwL57Ujmvz94VeGp2IiIhIPQVZaaRjRBA/6O0uMZi7cBer9h332L8vp9gbwxIRERHxoCArTbq+Qb/ZOh0jggDItqm0QERERLxPQVaadNWlcXSyBhPkX/+/yMge7vZcqpEVERERX6CVvaRJIYFmlv9mLC5crDtwgi0ZhVzRqyOfbcsmu6jC28MTERERUZCV5oUEmgG4KiWOq1LiyKxdwjbHVoHT6cLPz+TN4YmIiEg7p9ICabF4azAmE1TWOMkvdXh7OCIiItLOKchKiwWY/YiLCAbg8qeW86/NmV4ekYiIiLRnCrJyRhI6BBuvH/l4hxdHIiIiIu2dgqycEf+T6mJ3HC2irLLaS6MRERGR9kxBVs5ITHiQx/vr/7qWMX9cwYo9eV4akYiIiLRXCrJyRn43sQ/X9o9nQt84Y9uJ0kru+ftmvsuyeXFkIiIi0t6YXC6Xy9uD8EV2ux2r1YrNZsNisXh7OD7nQF4J1764mkGdOxAcaObrfcfpFRvOsG5RLEo/xnt3D6dfotXbwxQREZE25kwymIJsMxRkT6+sspqQADOFZVVM+MvXHC+ub8k1qmc07/98hBdHJyIiIm3RmWQwlRbIWQsN9MdkMhEVFsi7P7ucDqEBxr61B06w4dAJDuSV8J/t2RyzaVlbERERObd8LsjOmzePYcOGERERQWxsLDfccAN79+71OGbs2LGYTCaPr/vuu8/jmIyMDNLS0ggNDSU2NpaHH36Y6mo9XX++pHSysOTBK/j4vlSmDO8CwE//bwNXPb+K//nnVm7/2zdUVjt5Z+1hXl5xgNP9IODn727mupfW4KiuAeBwfinT3/+WA3nF5/1eREREpG3wuSVqV61axfTp0xk2bBjV1dX8/ve/Z/z48ezatYuwsDDjuHvuuYe5c+ca70NDQ43XNTU1pKWlER8fz7p16zh27BhTp04lICCAp59++oLeT3sSZwkmzhJM58hQ3v8mw2PfweOlXDJ7sfF+aHIkEcH+9O3UuI42x1bBst25AOzMtjOkSyR3vr2R70+UsSfHzvLfjD2v9yEiIiJtg8/NyH7xxRfceeed9O3bl4EDB/LOO++QkZHBli1bPI4LDQ0lPj7e+GpYQ/Hll1+ya9cu3nvvPQYNGsTEiRN54oknePnll6msrLzQt9TuxFuDuWdMNwDG9Ynl0UkpjY756f9tIO3FNazYW9+2q26WdltmobEts6AMl8vF9yfKAHcgFhEREQEfnJE9mc3mbukUFRXlsf3999/nvffeIz4+nuuuu45HH33UmJVdv349/fv3Jy6uvkXUhAkTuP/++9m5cyeDBw9u9DkOhwOHo/5hJbvdfj5up9145Jo+pPaIZmSPGPxMJrKLyt2LKZjg9VWHjON+vyCdcZfGUuOEpbtyGJocSYeQQGP/3pxiVoUc97h2cUUVEcEBiIiISPvm00HW6XTy4IMPMmrUKPr162dsv+2220hOTqZTp07s2LGDmTNnsnfvXhYsWABATk6OR4gFjPc5OTlNfta8efOYM2fOebqT9ifA7MeVfeq/B3WzstlF5R5B9pitgvc21JchLNmZ63GdV1Ye5JWVBz22pWfZGNkjptFnVtc4yS6qoEt0qMf2f23OJCTAzHUDO539DYmIiIjP8ekgO336dL777jvWrFnjsf3ee+81Xvfv35+EhATGjRvHwYMH6dGjx1l91qxZs3jooYeM93a7naSkpLMbuDSrU4cQLkuOZFtmEdXO+ge+/Ezw46FJrNp3nBx7xSmvseNo00H2uaX7eHXlQf429TKuSnGH6Oyich75eAcAlyZE0DM24pTXvv+9LeSXOJh/zwgCzD5XeSMiIiIN+Ozf1L/61a9YuHAhK1asoHPnzqc8dvjw4QAcOHAAgPj4eHJzPWf26t7Hx8c3eY2goCAsFovHl5wfb04bxrKHfsBrtw8hJcHCJ/encmheGn+8eQB/v/tyIkMblw28MmUIM6/pA8DaA/nk2SsodVTz8ooDPLFwF06ni1drZ26fXrTbOG9/Xkn9NVZ4zuyerMRRzeLvcth0pJB0rVImIiLi83xuRtblcvHAAw/w6aefsnLlSrp163bac7Zt2wZAQkICAKmpqTz11FPk5eURGxsLwNKlS7FYLKSkNH7wSC4sa2gA1tAAusaEcU2/BI99l8RF8PUjP8TpgoFzvgRg0oAEru2fwPcnSvnjF3tYvT+fy59eTqDZj8oaJwB94utnWkODzMbrgw2C7IKtWSRGhvDQ1ZdgMpkajSursL7X7eHjpQzpEnlublhERETOC58LstOnT2f+/Pl89tlnREREGDWtVquVkJAQDh48yPz587n22muJjo5mx44dzJgxgyuuuIIBAwYAMH78eFJSUrjjjjt49tlnycnJYfbs2UyfPp2goCBv3p60QN2DXAFmE1U1Lm4YlAhAcnQYI7pHseFQAYARYgFmLUg3XmeccHc6MJlMHMovoaGXvjpgPIR2sqyiMuP1npyzf9ivstrJvMW7GZocyabDBdgrqnn+JwObDM8iIiJy9nyutODVV1/FZrMxduxYEhISjK8PP/wQgMDAQJYtW8b48ePp06cPv/nNb5g8eTKff/65cQ2z2czChQsxm82kpqZy++23M3XqVI++s+L7Fj4whtfvGGrUuwLcMaJrk8c2rLe1V1QbdbYH89ztup778UB+PNRdovKfbdlNXqPhjOyenLNfeOHv64/w9toj/Gr+Vt5d/z2fbs1iX27Jac8TERGRM+NzM7KnW/EpKSmJVatWnfY6ycnJLFq06FwNS7ygd3wEveM9H866tn88r90+lF5x4fz2o+2EB/mz+5id/JJKggP8qK5xUe10sS2jiOWleaw/dAKAHrHhJHQI5qMtR1n8XQ5zf9SPQH/Pf8cdLaoPsruPnX2QXb47r9G2w/mlje5FREREWsfngqzIqZhMJq7p535g79NfjgJgW2YR2zOLmNgvnif+u5vPt2dz//vfepzXvWMYYYH+xEYEkVfsYOmuXNIGeNbnNpyRzS9x8OXOHMb3jSezoIw5n++iX6KFu0d3O2UPW0d1DTuOFjXavj+32Bi3iIiInBs+V1ogcqYGJXVg2siuxFqCGdcnttH+eEswluAAzH4mfnp5FwBeXL4fp9Nz9j+rwYwswL3/2MLKvXk8s3gPy3bn8pdl+/ndJ/W1uP/72XekvbgaW3mVse2zrdmUVtY0GsO+vBKKK6pYsTev0eeKiIjI2TG5Tvez/HbKbrdjtVqx2WxqxdXGZBWVc+h4CSkJFj7cnEn/RCtjenUEwFZWxehnv6K4opr/ubInReVV/OSyJPolWrn8qWXkFTt4687L+Nemo3yxM4fOkSFkFZVT97skOMCPjX+4ikCzH30e/QKAxA4hHC9x8PSN/Zn973QqqpyNxpQcHYq/n4mDx0v5yy2DuGFw4hnd08q9eXSPCW+02ENLbM8s4l+bM/n9tZcSFqQfwoiIiG87kwymINsMBdmL1ysrD/DsF3uN92GBZqaMSOb/vnavOLZ59lWUOWq44k8rjGOuujSWbZlF5JdUAuDvZ/J4wKyhkT2iSYoM5cPNmU3uv2lIIs//ZFCLx7vuYD63vfENQf5+7H1yIn/8Yg/bMop4+2fDCA4wn/b8rr/7LwD/c2VPHhrfu8WfKyIi4g1nksFUWiDtzi+u6MHwblHG+9LKGiPEdowIIjoskC7RoVx1qbtbQo+OYTw2qS/Du0cb5zQXYgFuG96FpKiQZvfvPcOOCF/WLtvrqHbicrkXflh/6ARLdtYvt1xWWc0TC3fxbUahx7l5xfWrpDUsgRAREbkY6OeM0u6Y/Uy8Me0yvkjPwRLiz68/2EbnyBBuH5HMVZfGGf1e/3zLQNbsz2ds71hCAs0M7xbFf3ccO+W1TSYY1SOG6pr6oDtpQAIVVU7uSE1m2lsb2Zlt58EPtvJtRhF3jerKnaNOvehHYVml8fp4icN4nV1UH1L/smw/b645zJtrDnPkmTRj+8o9x43X/lpyV0RELjIKstIuWYID+MmwJAC2PtaRYH8zfn6eCxZEBAcwsX99Z4OrU+J49ou9lDiqm71u/0QrkWGBJEbWz8g+fn1fYsKDcLlcRIcFcqK0kn/X9rJ9uXZ2taLKyX0/6EFqj+hG18y11wfW7xosnXskv9R4vaG2zdjJvtxVv1Rzw0AsIiJyMVCQlXYvNLBlvw0SrCFs/MM4MgrKuOYvqwGYf89wOoQEsmRnDi8s38+Evu4WW91iwjD7mbAE+xMdFgi4W4dF1gbZOseLHSypLR1Yte84t4/owtzr+3mE6v0NFlPYnlkfZPfk1pcoNAzXdauaHcgrZvme+iBbVKbSAhERubgoyIqcgdBAf3rHRXD9wE4UV1Rxedco/M1+9IwN57KukaTW1tHGhAfx7s8uxxLi77E07T1jujHzk3Qem5TCovRjbP6+vqbVZIL3NmRw1aVx/OCSjmQVlRMcYPYIvg171O7LKcbpdOHnZ6K4oj7IFjuqsQQH8MLyAzR8lFMzsiIicrFRkBU5QyaTiRdvHeyxLdDfz2jxVWd0r5hG594yrAtpAzoRHuRPrr3CCLIf35fKZ9uy+ceG7/nP9my+3pfPW2sPc9MQzzZd6Q1KC8qrasgoKCPeGkx+g9rZPHsF4YH+LN3lfhjsD9deylOLdp9yRjavuILMgnKGJke28FdBRETE+xRkRS6w8Nperj+4pCOv13ZLGNIlEpMJ/rHhexZ8m2Uc2/A1YLT/qnPbGxuorHF6zLzm2BwEB5ipqHISYDYxqqc7UJ9qRjbtxTUcL3bwyf0jFWZFRKTN0GPMIl4ysmcMf71tMF88OAY/PxNDukTSObLptl0mz+fQuG5gJwCybRWNwu3yPbms2OvuVpAcHUZMhLtG11ZeRU0TbcPKK2s4Xuye0V29/3ij/SIiIr5KM7IiXjRpQCfjtclk4oWfDmbJzhySIkN49LOdxr5xfeJYtrv+wa3bh3chItif+d9kNLrm22uPGK+7x4TRIcQdZF0usJdXERlW997F7z9NZ/X+fOP4poJuc6prnGrpJSIiXqW/hUR8yNDkSH5/7aXckdrVY1GFcZfGehzXqUMIT93Qj/THx7NzzgSevXkAt16e1Oh63TuGE+jvR0RtOUPD8oKMgjL+uTGTo4XlxrasBq9P5V+bM0n53yWs2JN3RvdXVFaJo7rmjM4RERFpjoKsiI/q18kKuGdVe8aGG9sTO4SQYA3GZDIRERxAWJA/P7ksiZSExsv49egYBkCHsAAAChs88LU1o6jR8UeLGgfZGqeLu97ZxM/f3cyeHDsLvj3KIx/voLLayc/e2dTi+zmSX8rlTy3n1//c1uJzRERETkWlBSI+amhyJIu/y+GyrpHEW4KN7X+cPKDJH+k31Q+3e0d3AI4MDSSzoJzNRwoY2NmKv9mPrSctZwtNz8iu2pfHV7Uzrw3LG87Ukp05VNY4+WJnDtlF5XTq0PwyviIiIi2hICvio+5ITSYk0MyEvvHEhAcxO+1SosICm2zrBTC2d0diI4KMAAzQszbIdgh118XOW7yHL3fl8sCVPVlau+rX5d2iiI0IYuGOY2QVlfOnJXv4+ejuZBWV89R/d7O+mVXD6sz8eAdTRnRhQOcOpzyuoEE/3IU7srn3ih4t+4UQERFphsnlcrX86Y52xG63Y7VasdlsWCyNf2Qr4qtcLhfrD56gxuUyetv++LV1bDrSeAYWYO3vriTBEkyfx76gstoJuMsXjhc7qKxxtugzL4kL58sZPzjlMT9/dxPLdrtndvsnWvn8gdEtvSUREWlHziSDaUZW5CJjMpkY2dNz1nZs71g2HSmkf6KVOEsQR06UcSCvhEsTLHSqrbetC7EAWbW1sqN6RuN0wv68Eo9FF062L7eEXHsFcQ1KIE526Hip8Xpnto2KqhqCA8xne5siIiIKsiLtwT1jujOmVwz9E63GkrnHbOWEB9UvodsrNpz9eSXGOQFmE6/dPpSI4AAOHS/hyudWNbquv5+J6tqWXct25zJleLKx72+rD/H614f45z3DSY4OI6OgzNjndMHB4yX0rX2gTURE5Gyoa4FIOxDo78eAzh2M0AqQYA0hIjjAeP/cTwby89HdWPjAaK4f2ImP7xtp7O8aHUZMeJDHNYcmR7L7iWt4eEJvAL7c6fkg2JP/3c3xYgf/+5+dfH+ijGqni7BAM8O6ulcO259bgoiISGsoyIoIAAM6d2D2pBT6JVp58dbBDEyqf3jLz8/EOz8bxitThhjbwoL8CTD7MbFfPABrDuSTa68AoNRRbRx3rKiCA7Uzvd07hnNJXAQAe3OLz/s9iYjIxU2lBSLSIv0SrfRLrC8FqK59EKx7x3AuS45k8/eF3PDyWm4cnEhxRX2QPVpUziffHgVgQGcrvePdQfbVlQfZn1vMK1OGEuivf1OLiMiZ098eInJWQho8qPWTYe5VxY7ZKnhl5UH+seF7Y19ltdNo9XX7iGR6xUYY+5btzmPDadp7iYiINEdBVkTOyOy0S4kOC+SRa/oY264b0IkxvWIY1jWSBGvTnQtGdI/i0gSLMSNbZ+Xe42SccD8IVuKoZu7nu9hxtPGqYyIiIidTH9lmqI+sSPNcLpfHg2MNFZVVMmjuUgBmXtOHbZmF+Pv58asre3Jp7TK6n249yqdbs/l633HjvPfuHs76Q/m8vOIgAHufvIYgf++15zqcX0p5ZQ0pnZr+/V9QWklooFktxEREzrEzyWAKss1QkBU5e1szCtmeWcS0kV2bDbwnShwMfXKZ8X5iv3i+y7aRWeDuYTs77VJ+PqY7q/Ydp6DUwY2DOxvH1jjdiz707WQhMizwnI+/usZJzz8sBmDTH66iY4Rnx4Z9ucXc+PJa+ne28sG9qc1ep8RRzZS/fcOQLh343+v6nvNxiohcjLQggoh41eAukQzuEnnKY6LDgxjeLYpvDhcAGMvq1nlt1UFSe0Qz7a2NAPSKjaBfopWKqhoe+OdWlu7KJToskEkDEpjQL56RPeoXgaiqcbLnWDH9Ei1kFJSxL7eEQUkdPALp5iMFLP4uh3vGdMcS4k9oYP0fhzuz7cbrvTnFjYLsrAXplFbWsOFQAfaKKiwN2pg1tHx3Ltszi9ieWcRDV1/i0e5MRERaT0FWRLzm/+64jLziCu5+d7OxYMLY3h3Zm1PMMVsFaS+uMY696dV1JEeFUuKo5pjN3ebrRGkl767/nk+3ZvHBvamUV1UzNDmKJxbu4u/rv2div3gjIHfvGMaC+0cSHOAuB3jyv7vZllnEm2sOAzDvpv7cenkXPt16lC8ahOrD+SWM7lUfknccLWLL9/XL/aYftTHqpJXU6tS1IwP45lABV6XEtfaXTEREGtDDXiLiNdbQAHrFRXDXqK4ADOnSgTnX9+XOkV0bHVtZ7WR/XokRYt/+2TCeurEfAPaKaq59cTWTX13Pf3cc4+/r3V0TGs7yHjpeyqC5S5n00hrKKqvZlun5QNkbXx9ix9EiZny4nSUNFnc42GBpXYD1Bz27LGw/xYNpDRd9WHswv9njRETk7CjIiojXTRvZlX1PTmTBL0eRHB3GrcO7MKRLB0b2iOaf94xodPzMa/rww96xTBmezK2Xd/HYN33+t42Of3RSivH6QF4Jr686BEBEkD8LfjkSgEP5pbxS+6BZQwfyPFcg25FlAyCqtjZ3e+YpgmyDc9fsb32QdVTXtPoaIiIXEwVZEfE6k8nksSiCJTiABb8cxfx7RpDaI5pZE/swplcMm/5wFetnXcn9Y3sYx47ve+of11/eNYq7R3fjX79I5bJkd93uC8v3AzAkOZIhXSK5aUgiAF/szGl0/sHj7jBaFyLTj7qD7B0jkgEazezWcblcHiF4f14JJ0ocpxxrnZ3ZNj7fnu2xbV9uMQMe/5InF+5q0TVERNoDBVkR8Xm/+EEP/nH3cDpGBJFgDfHYN7JHNJfEhdO3k4UVvx3L8z8ZyHt3D2fhA6MZ1jWSR67pDcDl3aIadQ4Y2Nm9UtltJ83qvnb7EL76zQ8A9yIPP393M5c++gWfbj1q1PLeenkX/P1M5NodHC0sY19uMf/anInT6W4Ek2OvoMRRjb+fie4xYQDc+fYm7n5nExVVp55ZTXtxDQ/8cyvfZtTX4j713904qp38rbamV0RE9LCXiLRxQf5mvpzxA5xOF35+JrrVhkaAj+4b6XFsv0QLI3tEs662znVA5w4AXNY1iqiwQApKKwH4YZ9YgvzNxIQHkl9SybLd7prZGR9uB6BrdCjx1mD6JlrZnlnEbz/azoZD7u4LGw8XsGRnDtcN7ARAcnQoI7pHcyi/lPTasoRV+44zoW98o3txuVyUVdaH3N3H7Ayp7f6QY6vwOK65tmYiIu2JZmRF5KLg53f6YGcymXj7Z8P4zdWXcNPgRMZcUt9t4LkfDwRgXG2IBfifcb2ItzReqezyblHu/3Z1h8y6EAvw8ZajFFdUM/+bDMDdiqzu+DrfHCrg7+uPUFntNLaVVVZz5XOrGPzEUmObvbzaeH28QVlCYVnVae9VRKQ90IysiLQrQf5mHhjXq9H2H/aJ5YsHx3iULkxN7crU1K44nS7mLtzFO+uOcGmChZm1y/MO6xrFG6tP/aP+K/vEMiipg8e2t9a6z/n+RJnxINqy3XkczvfskJBZWEZhaSXFFdXGbDFAVmG58bCZiEh7phlZEZFafeItWEMaL1rg52di5jV9ePHWwfzrFyOIDncvkDCsa/1M6zM39SfQ7PlHqr+fidG9YujUIYQfDerU6LpvNqh3/bKJB83mf5PB4CeWcsWfVnhszyoqo6is8rS1tiIiFzsFWRGRFggJNHP9wE4eq3NFhgXy8ITe3DEimZuHdmZIsnvmNSTAXZowNDnSWPXrhZ8ONh4ga+jQ8RKOFztYsSevxWO5771vGTR3KWP/tJJSR/XpT6i19kA+f1qy54zOERHxZSotEBFphek/7Gm8fnhCb95cc5hfj7uE9zZ8z08vT/I4Njk67OTTmbtwF1sziiitbH52dcVvx1JcUcWnW7N4e+0RY3uOvYJlu3P50aDE047zzTWHeaK2dZfZZOKh8b1Pe46IiK/TjKyIyDkyNDmKV6YMpXd8BE/c0I++nawe+80NHkjrEx+ByQQr9x7HVl5F304WPr4vtdE14yxBdIsJY0DnDkYbr4Y+337stONyuVy8urJ+sYeFO47hcrnO5NZERHySgqyIyAU0/57h3DmyK/+ePopH01LwM8GEvnF8cv9ILusaxd+mXsYLPx1kHN8lKtR4HVNbmwvwxtTLAFi1Lw9beRVVNU7y7BXMWpDOd7VtvuocPF5Cfm3XA5PJvYrZzmz7KcfpdLrILChT4BURn6bSAhGRC2hkjxhG9nC3/bprdDcmD+3s8YDZVSnulcrWHsjn4y1H+UNa/fK6qT2iibMEMbxbNFenxHFJXDj7cku47qU15NgqqKxxt/Navf84a2ZeCUBmQRnvbXC3AkvtHk2H0AAWf5fDovRj9Ev0nDFu6O/rj/D457v4080D+PFlSc0eJyLiTZqRFRHxoqa6JAA8cUM/Nswa59G6q0NoIBtmjTNmbCcNcHdCyCgoM0IswNHCcrZnFmErq+K6v67hnXVHAHcQrluIYcXe4zidLo7kl1LeRH3ust15tf/Nbf1NioicJ5qRFRHxQUH+ZmIt5kbbG67oNWlAAs8v3dfk+T96eW2jbaN6RtMtJhyTyb1qWI8/LMLlgtE9Y3jv58ON41wuF99lu8sT0o/aGl3ndPKKKwjyNzcb0kVEzhUFWRGRNqp7x3AGJnVge2YRj01KISTQTK/YcKa+tdFjqdtr+8czons0Q7pEYjKZ6B0XwZ6cYurKX9ccyOdEicPoj3u0sJyi2tXDsm0VHC920DEiqNHnNyWvuIKrnltFpw4hLP71GC2lKyLnlYKsiEgb9sqUIezMsnF1SpwRGrc+djVr9uczff63dIwI4s+3DDKW3QW4bmAn9uTsJSoskJAAM1lF5cz8ZAf9Eq1M6BvPkZNWGHvpq/08eNUlLVpN7D/bsrFXVGPPKSbHXuGxUtqpOJ0uyqtqCAvSX0si0nImlx5JbZLdbsdqtWKz2bBYLN4ejojIGcsvcRBg9mv0I/7yyho+2JTBNf3ieWvNYY9ldgPNfozuFcNXJy3QcHL5Qd11/rHhCN9l2Zlx9SV0iwlj6lsb+XrfccDdWeHq2ofXTqWy2sld72xi05ECljx4BV2baDPm62qcLlwuF/5mPXoi0lpn/5nxywAAIABJREFUksH0O05E5CIVEx7UZJ1qSKCZn43qRoI1hNG9Onrsq6xxGiF2TK8YY/uaA/lkFpR5HPvIJzt4etEe/rM9m9/8axv2iirWH8w39p/cBqyhzIIyiivc5QvzFu9mzYF8HNVOVtWG4IZcLhe/fH8L9/1jC06n7829VFY7Gf/nVdzwylq1KxO5wBRkRUTaseHdohiaHMm4PrF8Nn2UsT3eEswbUy9j2UNXcFlyJAAzP9mBrayK8soadmXbWZRevxjDtxlF3Pp/G6iqqQ9yJwfZfbnFPPbZd3y+PZsrn1vJ/e99y77cYqOrAkD6SefYyqs4eLyURek5fLEzh8xCzzDdnO+ybMz/JuOCBMvN3xdw8Hgp32XZsZdr+V+RC8nnguy8efMYNmwYERERxMbGcsMNN7B3716PYyoqKpg+fTrR0dGEh4czefJkcnM9W8RkZGSQlpZGaGgosbGxPPzww1RX6w8YEZGGggPMfHL/SN68cxgDkzpw3f9v777DojqzP4B/p9Ob9I6IooIooIAaRSU2XGuMm1UTTTExmMSyiZqfRhMTNb26rmmaaBJL7MaGqKAGUBEURJqiKDBUYWAow8y8vz+GucwIWDZSJpzP8/As3PvOnffyLuZwOPe8Ac4wEvHx9b8GwEgkQA97c8wMdQcA/Hm9DE9+HovIr89g/FdnoFIzDPS0xptjNNvdajdZmBboCgBIK6gEYwwqNUPijTKM/jwOP8ffwmu/JaNBxXA2pxSr9l8FY4Cwcdcz3S4JOcXVCF0bg7FfxHHHMqVVD3VfE74+i7f3puLY1bZvH5acV8F9Xiqvb/P3I4Q06XSBbGxsLKKiopCQkIDo6Gg0NDRg9OjRkMubHj5YtGgRDh48iF27diE2NhYFBQWYOnUqd16lUiEyMhIKhQJ//vknfvrpJ2zZsgXvvPNOR9wSIYQYjC9m9MfFFU9ioKcNdyzS3xlzBnvCRCxAcVU9bpQ0/Xv8rxB3vDysOwZ6arK2TpZGeGdCHwj5PBTJ6vHER6fg/fZhzPg2ocX3i79RBh4P+HHOQABAZlEV/nM6B2sOpWPp7iuobVBBqVNO0FIg26BS45uT2TiXoylrUOmMT82vaDb+cUu4UcZ9XlataPP3I4Q06XSPhx49elTv6y1btsDe3h5JSUkYNmwYKisr8cMPP+DXX3/FyJGanWs2b96M3r17IyEhAaGhoTh+/DjS09Nx4sQJODg4oH///lizZg2WLl2K1atXQyx+8JO3hBDSFQn4PJjd0zlALORj9cS+mB3mgcnfnEODWo23xvjC3EiIyf1dwOPx8N2zwfjmZA7G+DnC0kSEqYEu2HnxDu7creWu09/NCiIBDxdu3tW7/oR+zhjW0w7WJiLcrWnAR0f1/wqnK7OoeSD749lcfHI8CwI+DzvmhcLR0og719YltUqVGkm3mu6nrJoysoS0p06Xkb1XZaXmz0w2NprsQFJSEhoaGhAREcGN8fX1hbu7O+Lj4wEA8fHx8Pf3h4ND09OyY8aMgUwmw9WrV1t8n/r6eshkMr0PQgghTbztzHD6zXDEvTkCzw/1wvRgN67ll5WJGCsm9OEyua+N9OFe18/VEnMGe+K7Z4PxyfQA+LtYYkbjtrd8HrAwQjNW++CZrVnrPWsPXSnE7qQ7YIyhrLoeq/anYd2RDACaTOzrvyXjuk7GWFpZh3qlCgcuF6CytuExfjc0MqRVej17S+WUkSWkPXW6jKwutVqNhQsXYsiQIfDz8wMASKVSiMViWFlZ6Y11cHCAVCrlxugGsdrz2nMtWbduHd59993HfQuEEPK30u0+QaYuNxsTfPnP/rheIsfrI3votKWS4OBrQ8EYg5edKRwsJPC2MwMAvDexLyYFaLKzR9IK8cb2lBavvWTXZVibivBrYh63la63nSnK5AoUVNbhZ52Hx/Lv1uL135Jx7GoR5g7xxKp/9P2f770lGfeUOlBGlpD21akD2aioKKSlpeHs2bNt/l7Lly/H4sWLua9lMhnc3Nza/H0JIeTvalJ/l1bP8Xg8vDLcW++YtakYEY19Zyf1d0Ggu6budvTncfC0NUVJVR1KG2tQ3zuYjptlmg4G84Z1x9whnvj+TC5+OJuLGJ0euOdvlnOfb0u4pRfI7riQhz9SpbA1E2PtFH8YiZpvCfwgWUX3BrKUkSWkPXXaQHbBggU4dOgQ4uLi4Orqyh13dHSEQqFARUWFXla2qKgIjo6O3Jjz58/rXU/b1UA75l4SiQQSycNlGgghhLQ9NxsTAMCpf4fDWCTA9dJq/J50B78m5nFB7Gsje2DJaE3XhKeD3fDD2dxWr6dmmk0cjMUCyOoasGJfGtcubJSvJoA+elWKfw50Q6a0CgM9beDvannfOWozsr6Omm1/y+T1aFCpse5wBv5ILcCX/xyA0O7d/to3Apqdz6rqlLA0ad4XWIsxhst3KnGrTI5If6eH3pxBXq8EA7BoRwqCPKyb/YJBDFddgwpxWSUY0sP2b7trXqerkWWMYcGCBdi7dy9OnjwJLy8vvfNBQUEQiUSIiYnhjmVmZiIvLw9hYWEAgLCwMKSmpqK4uOm38ujoaFhYWKBPnz7tcyOEEEIeC0dLI1iaiBDobo01k/zQrXGrXM9uJoga0YMb18vRHGP7tpysADQ1tNo+tacyivV63kb9eglRv17CwcsFmPl9It47lI7FO1subdCVKdU8TzHYW7N5xOFUKYZ9dAo/nstFkaweaw9feyy9bDfF3UDAe8e5XdNasmJfGiZvOIc3tqfgy5jsh7run9dL0XfVMfitOobo9CKsP5IBpUr9l+dLOodtCbcwb2sSNsVe7+iptJlOF8hGRUVh27Zt+PXXX2Fubg6pVAqpVIraWs2Tr5aWlnjhhRewePFinDp1CklJSZg7dy7CwsIQGhoKABg9ejT69OmD2bNn4/Llyzh27BhWrFiBqKgoyroSQogBE/B5mDvEE+ZGQnw4rV+zcoA1k/1gLBJALNT/z9voxpKFpzfFI/KrM1z9rZNOh4N7ZRdXo0hWp3fsrlyBnRdvQ6FUI1NahSKZpiY2tHtTu7LCyqbXXLlTifjrZWjJ7fIa/JJ4CznFVZDX37/P+YdHNQ+0Ld+TCqVKja9isnEpr6lbgqyuAb8n3eG+/uFsLsqq66FQ3j8oPZBS0OxYTkn1fV+ja+3ha5jyn3OoqKGSis7oeuNaPsqaGppOF8hu3LgRlZWVCA8Ph5OTE/exY8cObsznn3+OCRMmYNq0aRg2bBgcHR2xZ88e7rxAIMChQ4cgEAgQFhaGWbNm4dlnn8V7773XEbdECCHkMVow0gdXVo1GSAt/srczl+D0m+H447Wh6G5rCgB4NswD/d2bStG0GzcAwNKxvtznAj4Pl1eNxn9mBsLOXJP0uDcIXbEvDW/9fgWTN5zDmMaNGlysjOHZ+F4AYGMqRsaasZgd6gEA2KUTYGoxxjBvaxL+b28aIj6Lg//qY3qBqK66hqauCHw+sD+lAJ9FZ+Hfuy5zx4+mSVGvVMPbzhT+LpaoUajw+vZkBL8fjZe3Xmw1oNW9ttaV25qs9ZU7FfjmZHarGVq1muHbuBtIzqvAx8dab5nW0b45mY2Iz2JR2gUfxNP+oiWtrHvASMPV6QJZxliLH3PmzOHGGBkZYcOGDSgvL4dcLseePXua1b56eHjg8OHDqKmpQUlJCT755BMIhX/P+hBCCOlqtG2/WuJgYQQfB3N8+2wQ3h7vixWRffB0sBsietsjaoQ3NvwrEIM8bRDp74SJAc7c6+zNJbA0FmG8vxOmDtA8qLZwRwpe+vkibpRUo0Glxh+N2/KmFzYFwy8+4cWVOwBAeE87GIkEGO/vBAA4k10CtVrz37L462VIL5AhLrsU13SuoWaaPwO3RHecvF6FuGxNecGNEjlul9eAMYbfL2qC4CkDXLB8nCY4P5dTBlmdEseuFuHN3y9D3UJTXd0+v4LG3dVS7mg2kVi+JxWfHM/i7vle+RVNrz10pbDFoPhRfHo8E2sOpT/2bYU/OZ6FnOJqfHfmxmO9riEortIEsNqA9u+IIjtCCCF/Sz3szdHD3hyApjft988N5M5F9nPiPp/QzwmHrhRi2bim7GyYdzdsitMEPtHpRYjNLMGTffXbOooFfJxdNgL25kZ6u4lpH+4K8rCGiViA0moFkvLu4rPjWYi/UQZjkQA9HTXzen6IF14Z3h2D1sYg5XYFpJV1ehs6AMDl2027k5XLFdivUw5wOrMY1qZinL9ZDrGAj8kDXOBqbYKJAc44cLkAtmYSVNRoXmNvLsH/Reo/J6INZPdFDUH+3VpE/XoJV+5UQFbXwAXryXkVLXaguK7z5+rK2gYcTi3E1EDXZuMeRm6pHF+fzAGgKd+4XlKNDTMD4Wpt8j9dT0s3eL/bzj1+T2UWI+ZaEQZ722JsX0fw+a3/8tVWtAFskawOajXrkDm0tU6XkSWEEELa0wdT/LF7fphesDakhy2mBbpiRrAbwnvZQaFS448r+pnJqYEusDfXBJ0CPg+zQt0xpEc3TOyvyfKKhXyENQa10/8bj/jGrWxrG1S4fLsCAj4Pzw/1hL2FEYI8NK3GQtfFYM7m89ifkg/GGP68XoodF1suOQCA4+lFWHMoHQAwP9ybC/zWTPLD/HBv/PJiCD6ZHgAA+O5MLlLvVHKvrVeqUNSYsXO1NubKL64VVuHktWJoE6OX77S8zW9OsX7d5cHLzett71VaXY+Dlwv0An8AOJFexH2+Jzkfl+9UttpH+FGU6QSv9a2UV9wsleNGY1BeXa/ExZvlfzkrrFCqsXhHCrYl5OHVXzQPEv7VjPWjUqrUXDmFUs30vhd/J5SRJYQQ0qVZGosQ5GGjd0wk4OPTpzUBIGMMx64W4d2DV1Ekq8NPzw+CvF6J8F72eq95f7J/s2tH9HHQ62s7tq8jjl7VbMwzoZ8TF3iO83Pktro9nVmC05kl+O7MDaTla7KiPB5gbSJGeWMw4m1niuslcpzJLgUAOFoY4dURTW2zLE1EXP1vL0dzxGaVYG9yPl78+QJmhXhAqWaI7OcExgAjER/dTMXg8Xjwd7FEan4l3tmfxl3raoEMCqW62QN02h3Uxvs74nCqFKcyS7A14RamB7nCSCSAtLIOFsZCmIibQo2V+9JwJE2KTGkV/j2mF3c8WieQ1Uq6dRdPfhaLL/7ZH32d798GTVddgwovb02Cu40JngpqyhAX6JRCaCmUakz+zzmo1Azb54Xi5a1JuHO3FptmB2GMTgeMGyXVMJMIYW+hny2vUSjxx5VCRPR2gLVOeUnMtSLcrdHsJCfg83AkTYpgzzy8MFS/E1NbKpMroBuPF8nquNrvvxMKZAkhhJD74PF4GOvniPBediiTK+BiZfzQr50R7IbSqnrsSc7HeH9HvDLcG2dzSiFXKDFvWHdu3LNhnhAJ+DAWCxBzrQjHrhYhLV8GsYCPpwe6YlaoB05llODDoxlwszHGj3MG4r2D6VyQPDvMAxJh6xs6LH6yJw5dKUCRrB6fRmcBaHrozdXahKs5nhbogtT8SsjqmrooaDs0aHvqMsbA4/FwvTEjO7qPI26W1iC9UIaV+9Jw524N8u/W4tCVQvR3s8Ke+YNxo1QOaWUdjqRpgvhvTuVg8ZM9wefzUFpdj4u3mjau0JVdXI0fzuZi/dR+zQLp1hy7KkVsY5sybQkHAK73sK5bZXJUNAacczZfQEmVJoMZf72MC2QLK2sx/qszcLI0xsklw/Xqs7cl3MLawxmYM9gTqyc2bbax8+JtAJosuZlEiI+PZSLxRhlszcQY6GmDL09kw9veFPOGtV3P3ns7bkgr6+Dn8vC/EBgKCmQJIYSQh2AkEjxSEAsAfD4Pr43ywWujfLhj2+eFQlbboJdlFAv5eG6wJwBgWqArPj2eCaWaYe4QTzhZat7Ts5spejuZY5CXDUzEQiwd54vTWSUwEvLxr0Hu952Hm40Jts8Lw97kO9iWkAcAOHFNkwV1s266p4n9XbD2cAYUKjX4PMDLVpP5PZJWCH9XS2QXVeGZ7xIQ4GqF7GLNZhA97M2wfLwvZv+g2YhoU2zTQ1Uptyvw+6U7+OCPa6isbdCbU1x2CcJ72eNASgHUDFw2GAC2zB2IipoGLNyRgj2X8nE4tRB9nCzw6dP94aXTIaIlR9OatqLfl5zPfV5SVY8ahVIvQ3yjVK53Xks7DwCIzSxBXYMauaVyXC+Ro4e9GXdO+8uAbvlFkayOC6SnB7miuPG6x9OLcPyezPOsUA+9+TxOxfc84CWV3b9zQWl1PZbtTsXcIZ4Y0sO2TebUFiiQJYQQQtrRg7JiAj4Pb+m0BdMyEgn0yhl6Ophjz/zBkIj4en/Wbk2QhzWCPKyx+MleGPTBCSgb61R1H6iyMRXjhznByJRWYaiPLXJL5Jj/yyV8d+YGBnra4P0/0lFareAywdYmIvSwN4ORSICUd55E4JpoaMtfzSRCVNcr8dbvV1qcz77kfIT3ssfuS5oa4KeDXfH2+N64VSbH8J52aFAxvL03FTUKFeoa1LiUV4EXtlzAicXDwefzcDi1EKczi7F6Yl/cKJFjyc7LmBXqjpM6pRzacg2tP3PKsP3Cbdwqk2POEE/Ialvu35teIINSpYZQwMc5nRZsF26W6wWy2jrhTGkV9zDVnkv5UDMg2MMa3e3MYG9hBB4PaKnsNjmv4qGCxg2ncpBXVoP3p/hB9JA7tmnrn7mvHxDIfno8CyeuFeHEtSLcXB/5UO/RGVAgSwghhBioADerBw+6h42pGOP9nbiuBtOC9DsNPOFjhyd87AAAvRzMMdLXHiczijF3ywUAmpraugbNg1PrpjZtSmFlIoaZRMiVJRxYMATPfJfQrPVTD3sz5BRXI+ZaMaLTi3C1QAaRgIcJ/ZxhbSpGmLfmATmxkAd3GxNuG2BAk0GNyy5BgKsVXv3lEne9y7crkVlUhZX7r9733lcduMq1DVt94Gqz2lsfezMUVNRCrlDhy5hsvDDUC3/mlHLnz+eWw8vWFD/H30R1vYrLyNYoVLh9twbuNibYlaQpK5gerPm+mkmEsDWT6GV8tRJzyx8YyJZU1XN9ekO62zx0Z4h7M7KFD+glW1XXlDEvra6HrZlh1NNS1wJCCCGki1k71R/fPxuMuLfC0f8+wTCPx8On0wO4ndH8XSxxYMFQ/Ht0T7w/2Q9j/fR7uL88XFPzGeJlg+52Zjj6xjAsHeuLVf9oavv1zCB32JtLUFWvxEs/XwQAzBjo1mJW+fXGkoyXh3XH3CGeAICvT+Zgkc72wceuFiExt6nG1kQswOa5A6Hbatim8dq6vW8bVAwpt/U7MvR0NEffxoz51ydz8OTncXpP+yfeKMPiHSk4nCpttl1whrQKt8trcaNEDpGAh8h+TT2Kha20vTqf2/Kub7pO6WSYtybceuiOCtoMbG8nCwDAyYxi1Cha30FOt5PEmezWt0LubCiQJYQQQroYM4kQEX0cHqo+09pUjG+fDca5ZSOxL2oIejqYY8FIH8xq3LlM17xh3fHxU/3w31lB3Gvnh3tj7hAvbJ47ELNDPTAzxF2vI8AgTxusnNCn2bUAYLy/E84tG4ll43wxK9QDQj4PSbfu4nRmU6CVdOsu12bq9ZE98NtLoRjRyx6LI3rqzUvXkTeegKSFh8d62JkhondT+YY2izozxB1iIR8FlXUoaCWzuWTnZWxL1Gxq0dfZEmaSpu/tB1P8WnxNcl6FXia0JceuNtX8JudVYNKGc/fdpayiRoEbJdXIKtJksl96wgse3UxQLlfg18Q8btzG09fx7I/nuf66uvcVc60YhoJKCwghhBDyQA/zoJtIwMf0YLcWz43oZY8RjTW+88O9USavR6C7NWaF3r/jgvZ9ve3M8MuLIfjhbC6q6pSI7OeE/Sn5uHBTUwc7pq8DFo9uaun12igfuHczQX5FLZ4f4oX1RzK4c72dLDA10AW/nb+t914+DmYY7+eEMX0dIRTwseFUDkK8bDAxwBkNKjV2Nvb0fbKPQ7OWYdX1SnzbuInGAHf9LPdIXwdkvT8OH/yRjp/iNcGuuZEQVXVK7E66gzlDmrflktcr8fpvyVw98pQBLvgjtRBX7lRia/wtLHqyKVBnTLNdsKlEiIOXC3DhZjlXq+zvYolXw72xdHcqvo27gVmhHqhrUOHz6CwoVGp8cSIL707yQ6FOtvpwaiEypDL4Olq0ui6dBWVkCSGEENKunK2M8Z+ZQXjxie5cje3DCOneDd8+G4zf5oViVqgHPpkegJG+9nCwkGDO4ObB4KT+Lng1vAfEQj7+0bgd8avhmvKHf4/uBY9uJhjV+HpAE+Dy+Tx4dDOFi5Ux1k7xx6T+LuDxeHjxiaas7rRAV7g2dnt4so9Ds8B1gLt1s7mIhXz4OGjagZkbCfFWYx/dn+JvQalSc9vJqtUMyXl38fLWJC6IfcLHFp89HYC1UzS9inWztIDmYbB1RzKwYl8aEnObgliJkA8vW1NMGeAKFytjFFfVw3flUfR/LxoKlabOeVtiHjKkMpQ0ZnkHedpAzTQ1xIwx1DWoUFjZvAdvZ8Fjj3tT478JmUwGS0tLVFZWwsKi8/9GQgghhJDW1SiUiE4vwlg/Ry4DrO00kJx3F/kVtZigU9faki9OZOFWWQ0+nNYPd2s0f6p/fqgXLI1FWLkvDVsTNNnWM2+NgJtN8+11M6VVGPtlHMJ72uGbfwUidF0MquqUsDYR4W5NA4b1tENNvRIXdbotbJ47kMtk35UrEPS+pjMEnwd8OK0fKmsb8P4f11qcbz9XTU0zAGyNv9nsYThTsQByhQp+LhZc3+KYJcMR8Vks6pVqvDjUC0fSpCipqscvL4VgoKdNC+/y+D1KDEaBbCsokCWEEELIw7peUo0xn8fBvZsJYhbrb5yg62apHPYWEpiIhXj/UDq+P5vbbIyRiA9rEzGmDHBp1ortmW8TuO2OHyTS3wkbZgYC0GxJ/P6hayitrsfJjGII+Dz88NxAzP4hkWvF5m5jgri3RuCLE1n44kS23rV6OZjj0OtDH7r911/xKDEY1cgSQgghhPxF3nZmOL5oGMwkwlaDWADw1NnQ4bnBnlwga24kxEhfe7jbmOCfg9xbrUlePt4XG07lIOFGOSprG2Ak4uPfo3thWE87jP48Tm+si85mFxKhAGsmax46K6uuR22DCq7WJpgV6oEtf94EADhZarbgfWW4N85mlyKrqApetqa4fEfT3mzzudw23Y3sf0GBLCGEEELIY9DdzuzBg3S42ZjghaFeOJ1ZjJ9fCHmoB+r6uVph0+xgqNQMZ3NK0dvRHPYWRmCMYWgPW+RX1GJhhA+OpkkRNaJHi9foptMj9o1RPthz6Q5kdUo4N76/kUiA3+cP5sbsvHgbx9KkGOfn9Ej31x6otKAVVFpACCGEkK7gt/N5eHtvKj6c1g9Pt9B1Qhsq3i/T/DhRaQEhhBBCCHkozwxyx6T+zq32FW6vAPZ/Qe23CCGEEEK6uIfZHKMzokCWEEIIIYQYJApkCSGEEEKIQaJAlhBCCCGEGCQKZAkhhBBCiEGiQJYQQgghhBgkCmQJIYQQQohBokCWEEIIIYQYJApkCSGEEEKIQaJAlhBCCCGEGCQKZAkhhBBCiEGiQJYQQgghhBgkw9xYtx0wxgAAMpmsg2dCCCGEENJ1aGMvbSx2PxTItqKqqgoA4Obm1sEzIYQQQgjpeqqqqmBpaXnfMTz2MOFuF6RWq1FQUABzc3PweLw2fS+ZTAY3Nzfcvn0bFhYWbfpe5PGitTNctHaGi9bOcNHaGa72XDvGGKqqquDs7Aw+//5VsJSRbQWfz4erq2u7vqeFhQX9YBsoWjvDRWtnuGjtDBetneFqr7V7UCZWix72IoQQQgghBokCWUIIIYQQYpAEq1evXt3RkyCAQCBAeHg4hEKq9jA0tHaGi9bOcNHaGS5aO8PVGdeOHvYihBBCCCEGiUoLCCGEEEKIQaJAlhBCCCGEGCQKZAkhhBBCiEGiQLYT2LBhAzw9PWFkZISQkBCcP3++o6fU5cXFxeEf//gHnJ2dwePxsG/fPr3zjDG88847cHJygrGxMSIiIpCdna03pry8HDNnzoSFhQWsrKzwwgsvoLq6uj1vo8tZt24dBg4cCHNzc9jb22Py5MnIzMzUG1NXV4eoqCh069YNZmZmmDZtGoqKivTG5OXlITIyEiYmJrC3t8ebb74JpVLZnrfS5WzcuBH9+vXjelSGhYXhyJEj3HlaN8Oxfv168Hg8LFy4kDtG69c5rV69GjweT+/D19eXO28I60aBbAfbsWMHFi9ejFWrVuHSpUsICAjAmDFjUFxc3NFT69LkcjkCAgKwYcOGFs9/9NFH+Oqrr/Df//4XiYmJMDU1xZgxY1BXV8eNmTlzJq5evYro6GgcOnQIcXFxmDdvXnvdQpcUGxuLqKgoJCQkIDo6Gg0NDRg9ejTkcjk3ZtGiRTh48CB27dqF2NhYFBQUYOrUqdx5lUqFyMhIKBQK/Pnnn/jpp5+wZcsWvPPOOx1xS12Gq6sr1q9fj6SkJFy8eBEjR47EpEmTcPXqVQC0bobiwoUL2LRpE/r166d3nNav8+rbty8KCwu5j7Nnz3LnDGLdGOlQgwYNYlFRUdzXKpWKOTs7s3Xr1nXgrIguAGzv3r3c12q1mjk6OrKPP/6YO1ZRUcEkEgn77bffGGOMpaenMwDswoUL3JgjR44wHo/H8vPz22/yXVxxcTEDwGJjYxljmnUSiURs165d3Jhr164xACw+Pp4xxtjhw4cZn89nUqmUG7Nx40ZmYWHB6uvr2/cGujhra2v2/fff07oZiKqqKubj48Oio6PZ8OHD2RtvvMEYo5+7zmzVqlUsICCgxXOGsm6Uke1ACoUCSUlJiIiI4I7x+XxEREQgPj6+A2dG7ic3NxdSqVRv3SwtLRESEsKtW3x8PKysrBAcHMyNiYiIAJ89p0GQAAAK9klEQVTPR2JiYrvPuauqrKwEANjY2AAAkpKS0NDQoLd2vr6+cHd311s7f39/ODg4cGPGjBkDmUzGZQdJ21KpVNi+fTvkcjnCwsJo3QxEVFQUIiMj9dYJoJ+7zi47OxvOzs7o3r07Zs6ciby8PACGs26dp6NtF1RaWgqVSqX3fwAAcHBwQEZGRgfNijyIVCoFgBbXTXtOKpXC3t5e77xQKISNjQ03hrQttVqNhQsXYsiQIfDz8wOgWRexWAwrKyu9sfeuXUtrqz1H2k5qairCwsJQV1cHMzMz7N27F3369EFKSgqtWye3fft2XLp0CRcuXGh2jn7uOq+QkBBs2bIFvXr1QmFhId5991088cQTSEtLM5h1o0CWEPK3FBUVhbS0NL16L9K59erVCykpKaisrMTvv/+O5557DrGxsR09LfIAt2/fxhtvvIHo6GgYGRl19HTIIxg3bhz3eb9+/RASEgIPDw/s3LkTxsbGHTizh0elBR3I1tYWAoGg2ROARUVFcHR07KBZkQfRrs391s3R0bHZA3tKpRLl5eW0tu1gwYIFOHToEE6dOgVXV1fuuKOjIxQKBSoqKvTG37t2La2t9hxpO2KxGD169EBQUBDWrVuHgIAAfPnll7RunVxSUhKKi4sRGBgIoVAIoVCI2NhYfPXVVxAKhXBwcKD1MxBWVlbo2bMncnJyDObnjgLZDiQWixEUFISYmBjumFqtRkxMDMLCwjpwZuR+vLy84OjoqLduMpkMiYmJ3LqFhYWhoqICSUlJ3JiTJ09CrVYjJCSk3efcVTDGsGDBAuzduxcnT56El5eX3vmgoCCIRCK9tcvMzEReXp7e2qWmpur9IhIdHQ0LCwv06dOnfW6EAND8e1hfX0/r1smNGjUKqampSElJ4T6Cg4Mxc+ZM7nNaP8NQXV2N69evw8nJyXB+7trlkTLSqu3btzOJRMK2bNnC0tPT2bx585iVlZXeE4Ck/VVVVbHk5GSWnJzMALDPPvuMJScns1u3bjHGGFu/fj2zsrJi+/fvZ1euXGGTJk1iXl5erLa2lrvG2LFj2YABA1hiYiI7e/Ys8/HxYc8880xH3VKXMH/+fGZpaclOnz7NCgsLuY+amhpuzCuvvMLc3d3ZyZMn2cWLF1lYWBgLCwvjziuVSubn58dGjx7NUlJS2NGjR5mdnR1bvnx5R9xSl7Fs2TIWGxvLcnNz2ZUrV9iyZcsYj8djx48fZ4zRuhka3a4FjNH6dVZLlixhp0+fZrm5uezcuXMsIiKC2drasuLiYsaYYawbBbKdwNdff83c3d2ZWCxmgwYNYgkJCR09pS7v1KlTDECzj+eee44xpmnBtXLlSubg4MAkEgkbNWoUy8zM1LtGWVkZe+aZZ5iZmRmzsLBgc+fOZVVVVR1wN11HS2sGgG3evJkbU1tby1599VVmbW3NTExM2JQpU1hhYaHedW7evMnGjRvHjI2Nma2tLVuyZAlraGho57vpWp5//nnm4eHBxGIxs7OzY6NGjeKCWMZo3QzNvYEsrV/nNGPGDObk5MTEYjFzcXFhM2bMYDk5Odx5Q1g3HmOMtU/ulxBCCCGEkMeHamQJIYQQQohBokCWEEIIIYQYJApkCSGEEEKIQaJAlhBCCCGEGCQKZAkhhBBCiEGiQJYQQgghhBgkCmQJIYQQQohBokCWEEIIIYQYJApkCSGE3Fd4eDh4PF5HT4MQQpqhQJYQQgghhBgkCmQJIYQQQohBokCWEEIIIYQYJApkCSGknSQmJuKpp56Co6MjxGIx3Nzc8PLLL6OgoEBvnLYmtb6+HitWrICXlxckEgm8vb3x7rvvQqFQtHj9mJgYjB07FjY2NpBIJOjZsyeWLVuGysrKFseXl5fj//7v/+Dn5wcTExNYWloiICAAy5Ytg1wubzZeqVRi7dq18PHxgUQigZubG5YuXdrqfAghpK3xGGOsoydBCCF/dz/++CPmzZsHiUSCiRMnws3NDdnZ2Thw4AAcHByQkJAAd3d3AJpANjY2FhMnTsSFCxfw1FNPQSQSYf/+/bh+/TomTJiAAwcO6D2AtWnTJsyfPx+mpqaYPn067O3tcfr0aSQmJqJPnz44d+4crKysuPG5ubkYMWIEbt26haCgIAwfPhxqtRpZWVk4ceIEMjMz4enpqTef6dOn48yZMxg3bhwsLCxw+PBhZGdnY86cOdi8eXO7fj8JIQQAwAghhLSpzMxMJhKJmLe3N7tz547euRMnTjA+n88mT57MHRs+fDgDwHx8fFh5eTl3vLa2loWGhjIA7Oeff+aO37x5k4nFYmZubs6uXbumd/358+czAOyll17SOx4WFsYAsLVr1zabb0lJCautrW02n8DAQFZWVsYdr66uZt7e3ozP57PCwsJH/K4QQshfR6UFhBDSxjZu3IiGhgZ8+eWXcHFx0Ts3atQoTJw4EQcPHkRVVZXeuZUrV8La2pr72sjICOvWrQOgyfBqbdu2DQqFAgsWLICvr6/eNT744AOYm5tj69atqK+vBwAkJSUhPj4e/fv3x9KlS5vN19bWFkZGRs2Of/jhh7CxseG+NjU1xcyZM6FWq3Hx4sWH/XYQQshjI+zoCRBCyN9dfHw8ACA2NhYXLlxodr64uBgqlQpZWVkICgrijg8fPrzZ2KFDh0IgECA5OZk7dunSJQDAyJEjm423trbGgAEDEBcXh4yMDAQEBCAhIQEAMGbMGPD5D5/PCA4ObnbMzc0NAHD37t2Hvg4hhDwuFMgSQkgbKysrAwB8/PHH9x1XXV2t97WDg0OzMUKhELa2tiguLuaOaR/mcnJyavG62uMVFRV6/3tvdvhBdGtsdecDACqV6pGuRQghjwOVFhBCSBuztLQEoAk4GWOtftybgS0qKmp2LaVSidLSUlhYWDS7vlQqbfH9CwsL9cZpA9L8/Py/eGeEENKxKJAlhJA2FhoaCgA4c+bMI70uNja22bGzZ89CpVJhwIAB3DHt56dPn242vqKiAikpKTAyMkLv3r315nPs2DGo1epHmhMhhHQmFMgSQkgbW7BgAUQiERYtWoSsrKxm5xUKRYtB7po1a/RqT+vq6rB8+XIAwNy5c7njs2bNgkgkwtdff42cnBy9a6xcuRIymQyzZs2CRCIBAAQFBWHw4MFISUnBhx9+2Ox9y8rKUFdX97/dLCGEtCOqkSWEkDbm6+uLH3/8Ec8//zz69u2LsWPHomfPnmhoaEBeXh7OnDkDOzs7ZGRk6L2ud+/e6Nu3b7M+spGRkZg9ezY3ztPTE1988QWioqIQGBiIp59+GnZ2doiNjUV8fDx8fX2bBazbtm1DeHg43n77bezevRvh4eFgjCE7OxvHjx9HRkYG10eWEEI6KwpkCSGkHcyaNQsBAQH49NNPcerUKRw/fhympqZwdnbGU089hRkzZjR7zc6dO7FmzRr88ssvKCgogIuLC1avXo1ly5bpbYYAAK+++ip69OiBTz75BLt370ZNTQ3c3Nzw5ptv4u233272oJaXlxcuXbqEjz76CPv27cM333wDIyMjeHp6YsmSJbC3t2/T7wchhDwOtLMXIYR0MtqdtOifZ0IIuT+qkSWEEEIIIQaJAllCCCGEEGKQKJAlhBBCCCEGiWpkCSGEEEKIQaKMLCGEEEIIMUgUyBJCCCGEEINEgSwhhBBCCDFIFMgSQgghhBCDRIEsIYQQQggxSBTIEkIIIYQQg0SBLCGEEEIIMUgUyBJCCCGEEINEgSwhhBBCCDFI/w8yYKnc9hARXQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -483,7 +475,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": { "id": "oArvDvO3LOXc" }, @@ -494,7 +486,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": { "id": "jDEfCnALMFm2" }, @@ -508,7 +500,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -520,21 +512,18 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD6CAYAAABEUDf/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd5Qc133g+++tqq7OcXp6ch7kDCIwk4BoUqKCbcmmLHmp9Vlb9trrsM7es377/M6x36736awtHVnR8jpJJinKEkUxCBLBAELIGRgMMDl2z/R0TlXdFd4fDULGkgo0h6RJ1uccHEz3VFfdWz3n19W37v39hG3bOBwOh+PtSXqzG+BwOByO148T5B0Oh+NtzAnyDofD8TbmBHmHw+F4G3OCvMPhcLyNOUHe4XA43sZWLcgLIWQhxBkhxLeuPR4QQhwTQowLIR4WQqirdSyHw+Fw/HjEas2TF0L8DrALCNm2/T4hxCPAP9u2/ZAQ4nPAOdu2P/vD9hGPx+3+/v5VaY/D4XC8U5w6dWrFtu3WV/qdshoHEEJ0A+8F/gz4HSGEAPYDH722yd8BfwL80CDf39/PyZMnV6NJDofD8Y4hhJj5Qb9breGavwT+ALCuPW4B8rZtG9cezwNdP6BxvyyEOCmEOJlOp1epOQ6Hw+GAVQjyQoj3Acu2bZ/617zetu0v2La9y7btXa2tr/htw+FwOBz/SqsxXHMb8AEhxP2ABwgBnwQiQgjl2tV8N7CwCsdyOBwOx6vwmq/kbdv+L7Ztd9u23Q/8HHDQtu2fB54FfubaZv8eeOy1HsvhcDgcr87rOU/+D2nehB2nOUb/pdfxWA6Hw/G6Mut1yqkUWqHwZjflVVmV2TUvsW37OeC5az9PAntWc/8Oh8PxZkieOcPoN75BvVJBkmU6duxg/U/9FIrH82Y37Uda1SDvcDgcbwe2bVOcn6e6soJeLHL6S19Cy2SwAQEUFxYQksSmBx54s5v6IzlB3uF4h7MMg9lzl5kYTSIFo6zdMUx7mx9ZfWcuUjcbDS498gjpS5dACOaOHqUwPU37tm24fD4s06S6vMzVJ55gzXvfi+r3X3+toWk0ajXcwSCS8m8jvP7baIXD4VhV1UyG5JkzVFdWiA4M0LZ1Ky6v92Xb1XI5vv3nn+b0i6PYRgORW+BZJPpu2sKe993O8HvegzcafRN68OZJnjzJ8sWL+Lt6yKzUKCxnsWxBJZ0m0teHJMt4olEKs7MYtRqq349lmkw98wyzhw9jWxYur5fh+++nY/v2N7s7TpB3ON5uli9e5MX/+T/R83l88TjucJj5I0fY+fGP33DVCXDx0a9z9ugk/s5umD6PpQpss87UVJ7EqYuUkkn2/sZvvKOu6hdOnKCuBPnedyZpNExE3kRU6xgsE+7pQUgSWBZCCNRgENuyuPTQQ0w+8wzRoSF88TiGpnHp4YdxB4PEhobe1P44WSgdjreRysoK3/2jP6K0sICkKFSWl8mOj5ObmmLh2LEbtq1XKsycuYTpDeOqV7CqRWRfCMkTQC6lKRGglsmQHR9/k3rz5jAtm9OnF3G5ZFpiPnw9/SiqQjlXopgpUExnWZ5ZJLBlDw29wcnPf54Tn/scxcVFJp59nvHnXkRSFNyhELOHD7/Z3XGu5B2OtwPbtlk6d47Dn/gES+fPE+jqpmK6KdZspIaGZs4Ru3SJgf37b3hdM80U2A39/9wjkiQQsoyWzwNQmJtj/uhRtGyW2Nq1dO3ejRoIvBHde0O5ejdQzx1FdXkZvbKCXgoSq3uQVR+zSR1NtygT5bnL3Rz+6P/H1sgyOirLOUG1YsHUKFNJg513b8WVzb7Z3XGCvMPxVmeZJpPPPMPoY4+xfPEi9UqFxQsjmMKF3DEE3iBT568iWrvpPn6c6OAgvngc1e+nb8dGRkZfRPd4EdhYtoVZq2DFhmhvC2BmS/gSCeaPHePMl76EZZqogQDZiQmSp05x06/8Cu5g8M0+BauqZcsOasHvsHThCrIiE3JJaF3bmCqH8BTKuFsSaPG15HQ39WNHGPdF6DFLSFgk2gK4/B709ALPf1sisXM33/rjg8TjPvbvH2Dr1rY3vD9OkHc43sKSZ88y9q1vMfbUU1TTaRrVKo26gaXryNRg/jJ4/SiNBlMXprjw1X9GVWXWvP/9dO3axZp772Hm1HkuHr6AWShDJoOI97B59zBGZhFPNMqVb36TM3/zN9TLZbyxGP7WVhS3G0PTWDx5koF9+97s07Cq/CEvx6obyBt+eliiw0zhVWu4awbjdj9DfTvRNJNUKkuX30W6ZlLytNBRPk9tygKfCkaDxayH8pZONnaHqFYbfPnLF6jXTXbt6nxD++MEeYfjLSozNsalhx5CDYWwDQNJUWjUali2jeRSQa+BVga9gogmEEIgIm34gzLHP/UpAh0drFy+jNlosGVbF+VKG0ajTmzNWpIrNUaNGOqpy3RGwajV8CcSGNUq9XIZNRAgNz3NysgIPbfcgux2Xx/6eSsrFnW++MXTGKaFsE182XFSwoMnHCHobzCQPEnynIslO0GlUmdBaidszKJWVrACrRi6hlvoVPxdSEJGVRXm5wqMj6Wpahaf/nSZT37y3YTDb9wiKifIOxxvUTMvvIAnGsUdDGLoOkKSkBQFqW7QMHQkSQKhILw+5FAcI5fELGbIpArkpqexbRvbtnEHg2i5LGv276eYK3H0XBGx6wOEs5eppmHs4jwh3cRr27h8PvRCgWBnJ8X5eSYOHqSYTOINhxl697tp27LlzT4tr0ouV+PQoVmuXl0hEvFiGCYvvjiDYdi0VceoS17cwRAej0Ig5GdmtkBbZZQ5pYV63eSC2cNeaw4fBWwRwZTdiM4+8nQh8itop58hm07TIjeI+FsYX1zL5z4X5zd/cy9er+sN6aMzu8bheIuqZTK4vF4kRSE6NEQ1m6VeqYBpIFk2CAn8IYTbR71hE4wGqC/Nk5ucxBMKUcvlUP1+XD4fAPnpaZaKMvV0ElurUkgtI1XzeErz1Apl8jMz6OUyCEE5laKytESkt5dwVxdCUbjw5S+zcuXKm3xWfnyFgsZnP3uSU6cWUVWFTKbKX/3VCbJZjf7+CFG5jCoZuIvzSIUkqbkMwu1Dy2bJZcpUqwZ1XFxiI3q0n6yrk3xoGLt7M4Yl4TeLiMlTeMMB7HAboqGxtnyU/Nw8Fy8uv2H9dIK8w/EWFVuzhtq12RsdO3ciK0pzSEaA4nOD6sayBEbDJBiP0NkZwjJNLMNASBLeSATbatb5kd1u9GKRq1eWSSbLHD+VYmwkSebyRWxfDMvtx+UPUFleRisUKMzN4Q6FyFy5wtUnnyQ/NYU7HGb62WffzFPyqpw4sUit1qCrq3ml7nLJqKpMoaDhkm3aAjpd9Ul8+gpqboZEeZTBmIbpjeALeFFVCRBYgVYKdTfu1jbW7xymNeFn/74eAkaaoqcNS1JpNCwqpkpLWwjfyhXm54tvWD+d4RqH4y2q7447SF+8SHFhAa1QINjVhRoM0qjVaJTLeN1uhMtFYvNWMBtoK8uE2hMYmtYcR1dV5o4cwTIM6uUySryT3OwierSfaGuYyFKJhjtKPlch4A8juzRUnw93OEy9UiE2NIQnEsEyTTJjY837AT09r3u/LcumXjdxu+V/1X0Ay7I5dmyez3zmBMWiTjJZZv36OACxmJdSqY42N4EkSZhCwbDAkry4qKOkrlDo+Dn6WiLU6waLiyVQFRZcm2nTJkl4/Qz2+dHzeQY2D5BaiGCtzBE0i3RG/AR9nRSyaRIJ/49o5epxgrzD8Rbli8fZ/Z/+E3NHjjB18CDBjg42/PRPowaDFOfnWTxxAi2fJ9TRhjsUIjY8TO/tt1NeWmLy299GKxSo5XKsjI4iZJlMpkqobTtz7u2Iok6LXkRvGaSWydDdo9LVG8YTjVJOJqlXq9dXwUqyjC8WIzs2RueuXa9rn8+cSXLgwCTFok4k4uHd7x5iy5ZXNy3xu9+d5ODBKaJRD/W6wfJyhdnZAh0dPmZm8pTLder1MRY0D3V5gFb/Cj6hITwR0kWJZEHQEjZZWakCsH17B4bRRmzdTsYnL9EX7WbnAw+g/tM/UXzqEPlaCV80BGhULp1AWXvzGzqV0gnyDsdbmDcWY+1730vnrl0c++QnUQMBJFkm0teHr7WV7NgY2x58kOjQEP5r5TUTmzahuN0c+rM/I9TdTdu2bXhCIaanC5CD7t4IxZPPY6fn8KET9Abo2bCXnu3rqWWzCFlGUVXSIyPYpons8WDUalimSefOnaveR9u2SaXKnDmT4plnJunpCdPXF6ZSqfPlL1/gF35BYv36H690aLXa4NChWfr6wsTjPlKpCpVKM43DlSsrNBoWlgW6KeNqGJhqCP9QDx6Pi1SqRMSVIlysoleqSBIMDsYQQhDXZ/BPzCHKVS4/n0Gtplm6cAF7fpSgGqBWkTGR8EfDrFvjxSObq36efhAnyDscbwOBtjaG7ruP8W9/G0mSsG0bIQQ7P/7xV0ySZdbrdO7ahdlokL50iUoqRXGhSHZWQ08V8Ws5Ki3r6NSuotTSzB34JtmzR4kODbHlIx9h4fhx+u68k8zYGHqhgLelhejgIK2bNv1Y7c3nNY4cmWN8PEtLi4/bbuuhry/ysu2KRZ2vfOUCc3MFjh9faOaLUWUGBqL4/SotLRbPPjv9Ywf5YlEHbGRZIhRys3dvF488cgnTtKjVGmzb1k4k4iU91iDEAmUJ2toCqMKkeu4stYrGkFzHXrrAFXsNnsGbaLHSrOEysq8DagaVS8c5/r3HcIfDhDo7sS0LbylD+86b6Nq9C61QoLqyQri398dq82vlBHmH422i/667iK9bR3Z8HElRaFm7Fm8s9orbGppGLZcjc/Uq3mgUrW5TquRINKbRZ+eo+xM0qlkK9RpremMowsATiRDq6KC6soIvHqeWydC2dSumrlPNZFhz//3XZ+r8MPm8xmc/e4JazSAa9TA1lePChSUefHAbGzfeGKwffXSEVKpEb2+Y06dThMNuzp5NEQ57iEQ8NBomV66soOsGbvePDmehUHM+v2FYKIqEqsrE417KZR1FkclkaiiKTLhvALnVxHv5KPpyEmNlEsk20Lq2E5BUBvsCtF2dJmUPsSWUBjWGpVdpTJ4lIMr42tvRcjlMXadl3TqCPT0oPh9qMEgtm/2xztNqcYK8w/E2EmhvJ9De/iO3a1m7lmOf+hQunw9JUSgsFZDySRSPB8WyUVvjiGIazAqhgc14XTaKx0PL+vXkJifZ+Uu/RHZ8nKULF/BEowzffz+JH/Mq/ujReWo1g+7uEAB+v4rP5+KJJ66yfn0cSWreTM1ma0xO5uju9KGPnWHN7FNYtQru0CBXLkhUGi6WlirIsuA//IfHuOeeQd7//nXE4z84gPp8Lu66q48DByZobw9QKGhMTORRVZlwWEUIwexsnmjUy8Cum1gK9VF05bCWVkiFBgkFPQwOxvB6FOR6gvTiOItGDV84gJ0cJxLx46lrKC4XiseDbcP8xTFqwS5sO89cTmH3e/bii8d/rHO1Gl5zkBdCeIAXAPe1/T1q2/b/LYQYAB6iWd/1FPCgbdv113o8h8Px2kUHBvAlEpQXFpqzazIpMHTkrgHEygJut43lU9GrJkatQqMBkf5+sCz0YpHi/Dz9d9/N0E/8xKs+9thYBtu2OX06iaYZdHQE6e4OksnUKJfrhEJuABqN5ri1duo7VI88QYtukCvWaclMkZ87y9K6B8mWmjNicjmNL33pDBcuLPGLv7iTTZsSP/D4+/YNEAy6OXRohitXVmhv9xOJeMhkajQaJi6XxPJyBYB737eZd90c5eHfPota99PREcQ0bSYmc1QyFWRLUPYk6PbmiXR78AfCZMdLzTKBikK+ItBLOVxKBrmlk5y7m8O5QXb+mN88VsNqHEUH9tu2XRZCuIAXhRBPAb8D/IVt2w8JIT4H/CLw2VU4nsPheI2EJLHpQx9i4sABEAJTcpErmiCryIkeMBo0GgaSbUC1iNrVhTsUYuzpp6llMihuNzMvvMCWj36U6MDAqzp2sVjn+edniEQ8KIpEKlVmairH0FAUTTPweBRUVSYa9aBnM6QOPokq2XhjrbSELBbmC7gLi7injlFwbb825OJHkgSNhsXXvnaZNWtaUFX5FY8vSYI9e7rYs6cL07S5+Wa4dGkZyTYwpi8RKIzjVQU7Qm5++gO3EogEWL+9l8KJFABzcwXKZR2f0Kl1b2PNPTvJfPcRwh6D0mIGJIlSKoVwudHLdSTbQNg2yh0/hxYaYGyqzKVLy+zc+cbksHnNQd62bRsoX3vouvbPBvYDH732/N8Bf4IT5B2OfzP67ryT9OXL1MtlOoJBcjPzZMpVrJ4tIMkoniRhd4NwTw+tmzYx+8ILmI0Gnbt20bJ2LfVymfN///fc8nu/97JiJD+IrhusrFRxu2XcbuXa/zIXLy5TrTb41KeOoSgSt97aw/x8kUp6GTWzQs4dQ64UCAbdyC4ZORCiT8yRityMadpcurSMqspUKnX6+iLMzhYYHn7l+xE3nIO+MFevZrjttl5yhy5gmEvYG/qRZIkec4YTf/kJgu3tKHqBhDZFcnSZbNrCq5iUAx1s3n8zwUSY0po9FEa+jlhewtA0ME0a9QoYJnJLO5oB84/+PamB96EVi3w+t8h/+fOfpX/gR7fxtVqV7wtCCJnmkMww8FfABJC3bdu4tsk80PUDXvvLwC8D9L5Bd5sdDgd4IhF2/+qvsnjqFLnJSTbcZ1LNlzB9MYSw8clh+m7/RTyRCBMHDiC5XHTfcgvBzuYVqBoIUF1ZITcxQdvWrS/bf35mhuSpUzSqVVo3bSKxeTMrKzX8fhe3397L+fPLZLM1arUGIIhEPPT2hmk0TP7xH89jWRa33tRP5qQX3e2nVjdAQDTiobpcwJSawzqa9v0PDoDZ2QKf+cwJ/vt/f9cPHRKxDIM9mwNcOjvP8lQOdXkSO9JBrWawd2cXmHmmvvtdem69lZbhYVweD/6LExR97UQ3bKV1wwa8fg+WXkOZOo7St5lEZ4i5I0doaBpCkrEDrdgtveSXKsRKI3hUF2V8tM6N8Q+/M87v/f2f4A2+vgujViXI27ZtAtuFEBHg68D6V/HaLwBfANi1a5e9Gu1xOBw/mlmvY2ga3Xv3MrBvH5Zpkh4ZIXX2LLKi0HHTTcTWrEEIgTcaRQChrpdfq1mGccPj2dkCh/7pKVYOf4e2rhY6uiNMHTvDoh5m3L+LM+eW2b27i3e9awDDsHj++WkqlQaGYV4frtF1g0JBR4r04e5dh7w4TrAlQTpTw2VWCQZcTEW2UC7WKZV06nUTWRYYhkkwqHL48Cyf+tQxfvd3b71+I/dfSp4+zdiTT2LoOrtqOnNFNys1g2Cgzsa1HmJeg5nD53B5PJiNBoYpCPX20a+4WJz0ENy4Ga+vmWDMXFlAq2iERIlGuYy/tRWr0UCSZYRlkkumUOoGtmVSbUionZ3EBqPkpqY5/Y3vcNuDP/W6vL8vWdWRf9u280KIZ4FbgIgQQrl2Nd8NLKzmsRwOx7/ewvHjjD/9NLV8nuLsLGowSM9ttzG4fz/bHnzwZduHuruxAbPRQHY1g9tLwT30L1IZHD++wNcfOYvn5FPI4RhLk3XGk1mqNRN3bZSBfRtY6gxx6NAMmta8+Xju3BKmaREMqhw4MMGePV14PArpdLX5/Ps/Tumxz2Ekp3BrdfCHUTbejUvdjnx+hVqtgW1DNOrB51MZGIhQqxmcPp1iejrP4OCNhcjHjl/g2U98HtMbo70nRvugF3l0BI8xiaeaoTouuHwkTX5mBlQvM9NZjNYF5LY++uIw7CtycWoeV7QFt1uhNJcnFnGjlJZxhUK4q1UKs7NIkkQ4FsDM65RLJUw1QEt7hJaBCJIQEIiycv408G88yAshWoHGtQDvBX4C+HPgWeBnaM6w+ffAY6/1WA6H47XLXL3KyKOPovh8ZK5eBUAvFJj/3vfIjo+z7cEHXzYd0huLseY972HsySeRFAWEoKHpGL07eORb8wQCy2zZkuCJJ8ZoDzZo+FxUkZmby5JOV1BVmYS/ztKLZwmuvYWenhCHDs2i6waqKhGNNmeu1OsmJ04sMDAQYXFRIEkCOdRC+CN/QPLSKAOtMlKwhS9+dYFgyKS/P0K5XMcwLNrbA3R1hRBCUKk0CARcLCwUbwjyY2MZ/uFP/xFRtnCFDBaWF4nFvKyLq1RWVnAFg8iShF4qYeh1anUZdaAVb3kBu5Ji4myRRH8Xe3a6KFY7UYbvYui2uyg8NcPS2RT5pST1chnbsqgVCsheL343NLxu3G0d+Pq7EbJEvW425+OH3a/7+70aV/IdwN9dG5eXgEds2/6WEGIEeEgI8afAGeBLq3Ash8PxGl18+GGWLlygsrxMvVQi3NuLt6WFSjpN68aNjD/5JK0bNiCkG5PU9t5+O9HBQdIjIzQaJt89a7Cw4CESqbKwUOLgwSl03aR9g5d8RePE1QVsuzlmXirp1FeKLKRWqExNIMugaSbxuJdYzMfcXBEhoL09SKGg02hY7N8/wOOPX6FabS6auvnmYT78a7v59rfH2bNXUK83p1jaNkxO5shmNbq6wpTLdVRVJhLxEAyq19tvWTZf//ooPqmOOx5CqCqBgMpKpspscoxwTw+xwcFm8W0hsEKtiFIZrVrHrlRRK2nc7f1kvf3sWTeIf26W4e4i/XfuZM71fia+/TSVpSW80SiBtjasRoN6pUJi2zY8lo/kiolWtoEqsiyxqVei75abX/f3ezVm15wHdrzC85PAnte6f4fDsXry09NMP/887msFuNVAgFIyCUIgX1vAU06laNRqrzhjJtjZSbCzkzNnkswXLzEw8P1UBJIkePrpMXbs2MjVZRV3PYkIxqlU6kiGji1Bwd1J2K+yuNgM6j5fmI6OIOGwh5mZPLZtk0j4ueWWbkZGVti9uwvLsqlWG1SrDWo1g8XFMv39Efz+ZgBfty7Oww9fZGGhSDpdJpHw09sbIRBQWbv2+4uOcrkaxaJOW98Q9fGzyGqzOpPP56I4nye2po327dspJ5uLwtIX05RKsxi5Cr7KMhUkdM8gHkvlzJkU6cUKpy4+wq0FF/WTTyPJMrLbTaNWI9zTg3JtPH/TAw+w+Wd/lu99/m+ZvzSGLEtEoyrtmzbTc/vtr+fbDTgrXh2Od5TZw4cJdXVRXVlB8XholMuoPh/FhQXaNm/GsqzmqlfPDy9PNz6eJRi8caghFvPi8bg4e3aJCe924l6TUG0Zv6FRk9yMqDspG27Ua2PogYBKuVy/Pq0yn9dZWCjS3R1mYiJHW5v/eiAHWFwscfjwLD09Ic59bxRP3IMUiuHzufjJn1zH0aMLDA1F8XoVOjtDfPCDG/D5vl99KZfTGB/PsqTG6dAkgpkksi9II1fEdvmYzcpMHJggqHkIVgtohSJVfxd0rEWerFKVwyykLKzFZVKpCpGQQkQUefrPP8PQUAv+RIKWtWubHxJeLz233gq2jScUwh0Kcffv/nqz8EqhgCcaJdzb+4aUTHSCvMPxDlJNp4mvX8/iyZPIqkpN1zEaDax6nejQEKWFBdZ94ANI8isvJHpJJOJB178/q2ZxscTF41fwzF5Eny7gKapMuofxRbZS81bJ1lT0Bljm95ODhUJuenvDjIysoGkNbNtGUZqFO555ZoqPfGTz9f03Gialks5jDx3n5uA4jUsTpN0KvpAfc/1d5KU4f/zHd7JuXQuWZb+shuqFC0s89NBFDMNkLKWxoOym20wy5KqRtP3I62+ls3oZubjESsUmPb+AZEuY/jiF2Xn8DS8120u2WEOSJOJxH1o6zRwyfV1eZjISw0JgGQbBzk5q2SyK2001k6Fl3TqguQDtpYVj1UyGajqNLx5/2bDYanOCvMPxDhJbs4aF48fpv+suCrOzZCcnKS8uIqsqLr+frr17KS8t8ex/+28objc9t91Gz223XZ9R85Lt29t54YXZa7nXTU49f5HE7DOEgm66BtsRJyfpNZKU/bsp18tI+RppO87wlj66u0OcOLGAqsoMDjZXuUqSYGWlis/nIp/XmJ0t8M//fJl3v3sYr9fFiy/OklwssqH8IskQGP44oZiXSqGM5/x3eOD/+gN27mrO3zdNi9Onkxw/vkChoNFomBw6NEtbW4BNmxIcP77AxGSJET3IjnVtdAUy9IfKeNfdBraFL7fMQt9eVpIZYq4ac2aDZNvtRJdO0iLnkFwqxkoNubuDuhQgnU0T80uE1mykdOXC9YLquclJOm66idYNG66ft1oux8hXv0p+ZgYBeKJRNj3wwOuakVI0F6z+27Br1y775MmTb3YzHI63rVoux4nPfAZT1/FEozSqVeqVCpsfeICWtWs58dnPoheLBNrbKWYr5OfmGbj9Znb+u5972b7GxzN8/etXOHp0DmnkID3+Mp1relFkiWJJY+HoESIunZy3l0KuhmlDvvt2qv4O3G4Jj8eFYdgsLBRJJHxYFnR0BHC5ZCYns5TLdaJRL729YWZm8sTkMrvESQKdPdQ0A0mCd71rkOL8PJ2378Pu3YKiSJw+neLMmWbd1qNH58jndarVBgMDESYn88RiHvx+lfrCBH3Fk6huF2vXtWJVCti2jeTx0zBhvuRDL5dR6wVEIMqFYhuFUoOQomG6I3Rv30RAW0K+/Axt64a5/z1rsGolcpOTVNNpbv/DP6R9x47rxVVsy+LYpz+Nns9fTyKnFQo0qlVu+e3fxh0K/avfVyHEKdu2X7Fii3Ml73C8g3ijUXb/2q8xf+QI2fFxYoOD9Nx2G+HeXpKnT1PLZvG2dXHk6ALpdBWB4PznHqfUsoG73rPthn0ND7fwu797C3/xF4JKvkEw0YOQm0MPAaGR8NZpTQTZefceolEv1UKJ5PQSXR/+KVJpjStXMmSzGtlslWq1garKuFwvDRMJXC6Z6ek8k5M5fD4X23b78eSa3yi8HoVMtkatZpBaqvLc3x7HGoJSSefcuRT33TfM9HQej8dFd7ebY8fmsW2bXE6jUKgRDbkYXjpG0RugVpDoND2o2SvY5QLqxr3U9QY9mUPkjCCz8iCeik5X/iSezltJ2UNomkG3LFN0t8bfTFQAACAASURBVCEprdzkr2BVi5j1Ot5YjJ2/9Et07d59/VxVqw2OHTjN6AuXiA8P4rqWoMwTDqPl86yMjtK15/WZp+IEeYfjHcYbjbLm/vtf9nx5aQnF7ebsuRSZTJWWmBcA3VR57OGTtPR0sHnzjdkdJUmwc2c7Bw/4sRsaQm7OyNGyaRSXhHC7mZjIYds5+vsiDPUHaYsZHDmeZ82aFiRJoCiCU6cWyWRqtLUFWF6usrBQpKXFR0uLj46OAEIIZjI63baNbDSw5WbR8mq1zuULi8TvvRVvV5iFhSKyLHHixCKWZeN2y8zMFKjXm+X6dN2gXjdp81RQJZtQIkwqVWZ+dJJ+Tx3ZH0RbSWNWKrQPdhPXdMy6ii8awu4J45m5Qr2jj5qmcOVKlkqlznvu/Un2fbgNfW4cVyBAy8atZMwgmfNLdHeHEAK++MXTFKfGcKUrLK5c4Ypic/Oda4m2tyApCvVS6XV7v50g73A4gGYu+kqxQjLZIBpt3rgsljRSMznGylX+4A++w86dHWzc2Mrmza1s2NCKyyWze3cXJzbvIf+9J/C0dWDYMo2KjlKvsWwOEVQkhBBcHk2TkorUNpVwu5Xr6QZ27uxAliWefnqclZUqhYKGyyVdnzpZLteRZYHLpVDt3YM0d4xixaSrJ8rCxSuIzjV4Oppj2s2kZwqaZuD1KqysVKlUGsTjfup1g1xOA2ySSzW2xhRcLplw2IPPLFA3bCxdxx9VaA8oBCIB9KLNro0tXJkzMFweol6TpAqaDrGYm1tu6SIU9fHN4xa/8is/S7Go84W/PUu12uCliTMej4JpWnT2tZJ/fgwXEnrD4tzXx1l3yxY8oRCRV5nJ89VwgrzD4QCgdcMG1FAESpcR4U5qNY2Fi5M04kMIf4S5uQKlks7VqytcuLDE0FCMj31sG4GAyq/9Px/m4D8Eufr0AcKKSWBDB+NnK0R7u5GU5hBMzGuQzStU5RCmmbl+XFmW2LGjnWy2xtJSGa9XoVptrmIdHo6hKBJCNIuIpKQu4mvuY8CXZff2OLNajOkJrs9QicW8BIMqo6MrRKMerl7N4HLJ13LUyyiKwO12YSge0jU30dQSnlicetWDpdep6haptEJRGISWkiTiHjau7WBgk5vccg55T5xW9zCWBWG5ijl9AXMsRd4M8M2AzqXZZu6c/v7m+gHDsPjKVy7wnncPoJ04gHD7Qavg8bkpVk1Sp06x4UMfaubqf504Qd7heIcxDIuxsQxjYxmCQTdbtrQRj/tQPB5u/Y1f5eTkZ6ktjlOoWORbt6G1rmfkzBKdnQE6O4MUizqKInHs2DzDw1HuvnuAQEDlA7/6U1gffx/1cpmRsRJjn/0W1vJpLNsC20byBrC33EO8NQCXs9RqDbze5hh7JlNj795OJiZyWJbN2bNLtLX58flc2HazNusdd/TxC7+wjUQiQCTS/KYRmyvwvasnMU0L+dr9ANu2r83YkQgE3GSzNWy7uehpeLiFXK6GrptMB28iYJ1HySYJBFXqFZuaHMawJQp2AHdhjjmpmzW2hFQtI9cKqLvu4+pTWQbiJrWRp5EkCdPlY+XqKLMnTjObuBN/RxdbtrTR3x9BUSQCokLum38DmfMIWcEsZrERSP4wrVt3ve7TKJ0g73C8gzQaJl/+8gWuXFnB53PRaFgcPDjFxz62jTVrWvBFI/zcn/wq//t/n+Hq+SXGx7MUk8s0GiaVisGlS8vouoWum4DNX/zFURoNi3vuGUQIgaQoeCIRonEbu2Mtns0byUzPYiET7e/FXtHo74/QFlP4+qMXSEsebASJhJ+PfmQzf/3/PoqUvILPlef4WS8jchcmCu3tAX7+57fcsIIVoKcnzL59fTz33DSSJJHN1lhYKPHRj24hHveRy2m8+OIsY2NZ1q1rweNRuHBhmWhUoqsrxOhimO5wg7W3dHD4ZJZ2ewGxOM5cDlJt9xIRVUZPjrFx9xpGfbuYO2kyPp6lceIYEalM/6Z+ZqfzFAwvkYhMj34F3T/AmTPNerSRiIe1jXPUyjWikoxVzoMsY2h1WsJeUqdPU1laoprJ0L5tG9033/yaZtm8EifIOxzvICMjaUZHV25I2lUu1/na10b4/d+/DVmW6O+P8Fu/dTN/+ZdHGBlJs359nPn5IoFAMx2BphncdFMH1WqDjo4g3/3uFL29Ydat+34A7utrphV49JvjeDwuwKJ8+ip7b2pFP/ssK+fOcqttodseBu9/P52bN/DYJ/6WlYPfYT4LFoLN3gYDap7xwB6Gh2NUKo1X7NO99w6zeXMbk5M5RkfT+HwuOjqCACQSfvbs6WJqKkcyWSIe93PzzV10d4coFutEo256e0JYPgnbrTNrrGVB7sCK2fR3RcjpBhpBwp3rWFpZYng4jKYZVJ9cpqiGmZ8vks9ryLJE20AH5uUJqoaFoghmZgr47RJBUSWxaz2Z71xANAxQffh8YOdT5AsFarkcej7Plccfp2v3bvb8+q+/6mpbP4wT5B2Od5BLl9Ivy3wYCKjMXk0zduQM7T3xZqKumJfBwSgbNsTRdROv10UmU6FWMwiFVDTNoNGwGBiIYJo2p04t3hDkLcum0bDo74+QTeWQGxV6hxMoE0cYt+t0bRhCkmX0UonpbzzME4/voHz4EB0bhlk6v0w6XcGQArSLDPt3eEls6ODgwUl27epEkgSGYWFZ9vUSf52dQTo7g8RiXiYn8zf0r7s7xL59/WiayfBwlEQiQK3WQNct3neTzMi3HkFSTNpmKoxZg3gjA2iaic+nADZ+f7PI+J49zVz6Gza0Mnm2nZXlPHNzBoZhEwyqLM1nCCVaWdANSqU6CwslIhIMDkbZdksXZ6faKc3N0SgtY2gaVSFje7yoiodAVw9mrUJxfp5LDz/Mrb//+z9y1fGPywnyDsc7iN/fHKJ5iW3b6KPHEccPM2F1s+CR8be3s+3BB/H5VLZvb6dWM5idLTAzk6detxBCQtMa7NrVRTTqJZerYRg3LqpcWChS1xvsDM+jL58FN4iFOqXFeUpD+5BkmeWlMhcupEmNT7NYSjEUt5EUGY9Hob8/QqXSoLsnTshXxe11sbxcpVTSefHFWY4fX8AwbNaujXH//WtobW1O3RwejhGLeUmlysRDgGmSysPWre3cdVcfBw5MMDtbwO938RM7ZKzTR2jvipFcaeANQuvYcebqEOpeQ61mEA576O8LcebwKGYliCsSRZYF/fvuJvzcN7myaGGoKh7FgnKeMXX39bbfe+8gd9/Zy9jfTmJoGvVchnoxjxACo25gYYAJumpRGk0zOBDFLJXQi0UqS0vXK3C9Vk6QdzjeBpq5XeoEAuoPLGANsGNHB0ePzlOvm6iqjJmeJ3viEK2D/bSvbw4RlFMpLn/ta+y8+4OcPp2kry/C0FAM27Z59NERFEXife9bi8slX19g9O53D99wHNsGsTBKPXUSJdaJkCTMShEKp9GS82Q7whz+3hx+v4ri8eKtGSwvlbBDVQIB9frNXUOvI7whikWd1lYf3/zmFUZHV+jqCiFJgtnZAl/4q8P8zO0q5ZkpCg03m7s6ufTUcyQnxhFAx9oefvLffZzOdQk2bmxF15t9P/mZv8JIJNgzEGBursDUlId8rspGdZZK5w56e8P0hmrknv0yW02N9GMvEBseQmy8m0agh2n/doLeM7RFTeZSOivxmzCiA5w+neRjH9vGhz60EZdLxvXAAxz9X/+L6vIyQggapkBHRdgWil5DvpYMbnY6y0CPDxuaOftXiRPkHY63uOefPMNzXzmAWcojxbu5/Wf2s/++9a9Y9q63N8wHP7iBb31rDNO04OJJYvEoO3d1Y1kWlUoDJRwjNzXFhg8J7r13iIMHp4DmVf+dd/ai6yaLiyUkScIwTLZubWPTphsXScVDAmXkO+hmDbXRQI61g9uHpfqRsnOMj3fgdst4PQpVoVOKrCNuJslOzdK9aZBCvtbsT0ecgitBOVPlAx9Yy+OPj12fngjQGpZY+OY/88IVwVJeoJXKSIujWC1dDOzezqZNCYxykfFHvkz8t38bNRDA42mGvcryMv72dpaWyszPl7Bt2Lyzj+LcLO139OEyqqw88RCS4uXWe3dx/nyKq8dGyB6aYqHjLjQ9zI7dD9C2rYVAXbCwWKZWM+nqtrj33qHrq3dbhofp2rOHmUOHqBkS2fkMwiWjmDUsW6aSKRGJtqLl8sgbOgl1deFrbV21vw8nyDscb2FHnjzOgT/9JKGwF5fXizF/kmc/cRGP5z9z+751r/iagYEo9903RKGgocS68dYD5HMaZ8+lqNdNbBva3GW2lzX27x/gpps6SCab89d7epo3HkdHVyiX6/T0hOjri9zwgaLl85z74udpNZdYrsjohSLMTmF1b6Zv7w7E7EUKiykU2UVhNkWFICtyByVvJy3184himla3Dm29eG69h7bBBHfe2YdhWEiSwLZtSqU6tm2jLlxAqZe5vBgmFvMR88poaRvJKjE5kaOzI0iiLUphZob0yMgNqQOig4OcPXSJq/MNAgEVWRZUVjLYoQ5KpTr61QuEvRLrdg8RCqkEgyp2sIVYYQl3wkaEWrl0OUPfQIxEwsf6kBfLspmbKxCNem8454GODlz+AMvVAGZrhLrewGNWUHPTyGYNLbmIFE4QW7eBzR/+8KqmIHaCvMPxFmVbFi/+9Vfwx6K4I2EAVF+I4PICz//TgVcM8ocOzfD00+M08xLaqFkX/eUZJjJuAkE3Ab+KUSmyVFb49qE0H/1oB+Gw54bUvT6fi507O35gu2ZeeIF6tUrPTVsJzM1TF17qlTLhljLdGzbguXUzYrrB954dpeAaoB4fwm3IJJNlCr5trL+5g32bQ9x1/3Z84eD1/ebzGuWyzsGDU5RKdQC6F0/gVVWEGwJ+FbNUQrhU0Gu4FYu5+SKJtgCSy4VWLN7QzrZb7mTyr58hGvGhKAqWViHig0z/bt71rgFGypeYnrY4cWIRRZEYG8sCEEBQK1XIldxoWoNz51Lcc88ghmGxsFBi586O6/P4X9J7223I/gB2Ok8wGGVZM7AlmXqkh4UNH8FE4o6f2MT+P3rvqt1wfclq1HjtAf4eaANs4Au2bX9SCBEDHgb6gWngAdu2c6/1eA6Ho0kvlahlMvg7u68/Z1o2ZdPD/OFT/OM/nmfv3i7WrGlhfr7Iiy/O8I1vXGHz5gSJhJ9kssT5JS/HT+n0eRbx9MaQVYFwuWnf/z4uXUpTKGgvy83+L+UmJ5l+/nlKySSR3l6G7r2X9OXL+OJxPOEwleVl5HoNf9RLNTUH2zay5SMfwR7X+JvjB4hEPPh8LkTdJJHwszGY4lZpFnnE5tjIAbpvuYWh++5DkuVrY/V1kskSiUQAWRaU6i7qpSwdQ80PA+EJgGVhSxLIMi8l2TV0ncj/kc5Xd8ewd70ftTqBmVtGSfSgDu9Aa/j56ldH8JVdBO0iiuwhU5FJJksMdLnxWGW8Vpma5LueP+f8+SXCYQ933dXHvn0vn/6oBgLc8z/+nL/52G8hl1JEbIOy6WZx6AFSZgfr18f58K/cs+oBHlbnSt4Afte27dNCiCBwSgjxHeAXgGds2/4fQog/Av4I+MNVOJ7D4QAy+Qa2kJibzdHZFUFxSUxO5igtLeOKdzE7W+DixWU6OgKkUmUWF4tMTuaur3S1LJvWVh/z4Z003BXy5RLb9w4QHlqL5PEhVQucO7fEhQtLLC9X6e8Pc889g/T0NL81pEdGOP3Xf00pmaSWyTChaVz66ldp374dSZZxh0IM7N9PYX6eWjqNPx5n72/+Jp5wmPSRK9x2Ww+Fgk46XcXrdbGto4Z15gyN7TuIdkSwTJOZF17A5fXSv28f09N52tubq24nJrIYhkVixy7EmadYSRUwTZtEqw8pEMIyDPRCgcTaELnJSVo3biQ6NHTD+QsEVExfC54NgzcMj+SvZshPT9FhnMEorqAvjiM1JDrrAv9MiZovQf3Ci/hsQVFfS6WyhoGB2LVyhq4feOO7d/dO7vj033Hgy98lHvMSjPViLlbolAX/9b/eSTzue13+TlajxmsSSF77uSSEuAx0AT8J3H1ts78DnsMJ8g7HqnjuuWkOHJigERogf+YEs3NFZEWmlK8Qd9foufUW4nEfLpfEV796iQ9+cCNjYxkymSqqKjMxkSUa9aKqEoGgh7rLTynYw7m0SodSI5fLks1WWV6uMDQUpb3dTzJZ5gtfOMV//I+76OwMMvbkk+SnpzHrdfytrSAEpYUFkqdOEV+/HsXrRfF4iA4MIEkSQ/feiyfc/IDwel2oqsLAgI90ukoqVUY++wIeIYHcTHUgyTKh7m5mXnyRvrvuQtMMhGjePO7tDZPL1Th82KShbmHYusryeIbctER0417qoQ42xQr0bmilY/t22rZuvX6VbBkGc0eOMHf4MO2Xp5m70k7HrXfiCobJZKoIs0778hHk9ijKptsw82m0qXESy6PMubdQtGO4PQrVUpW1xkWM9o0sLVVYt66FJ54Yo709wJo1La/4vu3fP0Ao9F6ef36GSkHj5pu7ueeeQRKJl9fTXS2rOiYvhOinWdT7GNB27QMAIEVzOOeVXvPLwC8D9L6O1VEcjreLVKrMgQMTdHeHkLvfjdlooJ8+TTVvEPSoZNt2c3ZGIjZkUCzq2LYglSozOZklm61hGM20BIqic/Fimk2b4oTDXi5eXEbTDGy7OZPG5RJEo15mZ4ts3txKa6sfRZF5/vkZfvanh8lPT2NoGt5Y7HrbfIkElZUVElu2kJ+cxLKac/J777iDvjvvvL7d1q1tPPnkVR5//Cq1WgNFkQguZ9H9Ps6dS3HHHb14PC5kVcXQNMxGg66u5pDMS3lqzp1bat7w7VhH1+378AqNA88ukMLHUGuMuZCbgb5eduwYvOHG8NXHH2f+2DGCnZ3s2reZ80dGST71MMbOD9Az2Mb9ezx845SJqXhxSRJKrA1XrUF9dg6314XP5UKSBJZQCIdcuP1VlioBNM0kFHJz7NjCDwzyQgh27+5i9+6u1+NP4xWtWpAXQgSArwH/2bbt4r/8+mPbti2EeMUSVLZtfwH4AjQrQ61WexyOt6vx8QySJJorP02Jq/ImvHvXcPXsHFXLQ8j0o11aJhx2MzAQxbZtRkbSLC/XEEIgRDOI12oGqmqhKDLhsBu/34WuG/T0hAgGVY4fX0QIiXS6yuXLadxuhe7uIKOjadavi6HVTSzDuKFtpq4jyzK2abL+Qx/CG43ijcVQ/d+/UjU0jdqV06hnHqNlJkP1/2fvTaMrO8s7398ezjwPmmeppCrVPNvl8lC2MTbGIQlmMisJEMCZGhZx37tuk07Iull9eyW9uMnNbRICHQK5NJBgTGzj2S5TrnkeVCVVSaXSeDScozNP+5w93g9bFi5sEwhlOw36fZF0dNZ+9z7aevb7Pu/z/P+RNRSlNiqeFqTSFCdOSGQyVdasidLf7iTU2YnschFxwV139fLii9eQZYH5+SIul4O+vgghj8nMyDxKOo3iiuL3O1EUja9+9QwnTsxxxx1dbNnSjKxXmTt9mnB3N4IoIgO77txMZmKK3vsjrLl9J0sjI/T3xxiZtyWPs1mF3FSGmCSg1jXKdVuK2eORiYS8KCtXZnfgVqtvLL/wTnFDgrwgCA7sAP8ty7K+v/xyUhCEFsuyFgRBaAFSN2KsVVb5ZaVa1ajVdMbHsxw/nsDplBBFgVxOYUk3qctBPE4RWZbwegXOnVsgFHIRCrlIpSpYlonP58CyHEiSbZwdDDqpVFQmJnIEgy6iUTctLUEmJ/M4HCKVioppQiRip1BGRpaYni7wt18+Q3OxnejcCdzhMILkILuUpzg1gdPtIHHyFNnxcbwNDWz9+MdhOcgbmsb5b3yDzMQUxYJCZ4OI2xom5zO5Yq4hpC7irGfwy34SlyfRMj5+668/tvIZ3H13Dz09YU6dmuPKlQwbN8SJZIepvHSOpStpIjmFiD9GLfpuzp2rYhgG2WwNRdE5eHCGj9wbQxDF16k+unwejHwagFBnJy2tQaJdAYYv55mYyNO2phXP1DT+rnZGEwZer4OwX8RUVEpyFJ/TQSDgYmYmz969/74yEjeiukYAvgZctizrL1/zqyeBjwF/vvz1iZ93rFVW+WWkXtd55plxzpyZJ5ksMzKyhKYZCIJALlcjmSwjyyJNTX76+iJMTxcoFGr4fE48Hgef/exN/MVfHEbTLMDA5ZLo6gpRKNQwTdA0E4/HwdatzQwPLwFQLNaIRNzMzZXweh2IIhQKNVTVZNu2GJWKSssd97CQmsA5MUI2r6GrKkKtjunpwCxH6GmIMHzkKieG/l/6P/AQ69c34CklyE9P42vrwOUvU1El8AbxJIcR/Hcy03QHvsIU2xuCuCINLDjasQLXK0/29kbw+52cPDnH6edO0Fc+SbSnh/lKFZxeOtwKhbEDSK6bsCyRQqFGZ6ftAHX8fI4m08QyzesCvVGv42+xy0Kdfj/r3v9+Lj/2GG4tS5tfoZisMRe4GddcmoChoy4ZhBoDjHi3ohYtdu4MMz2dp6srzLZtzW/bvfHTcCNm8nuB3wQuCoJwfvm1P8IO7t8VBOGTwDTwoRsw1iqr/NLx9NNjnD69QHt7gMuX08TjXi5dSmFZFh6PA7dbpliso6o6c3NFFEVDksQVqdtt21rYs6eD9vYQR4/O4vU60HUTl0vills62La1kaBZYPzyLC5dZWysQipVWbbPs232NM3EsqC52dZyL5VUHA4J8daHmJsdxZ0axZu6jBRYh9zay/DIEldGMzgdIqW50zw6HKe1q4Gb43NsCMu43TJNTT7KZZVKVUdXTWS1RNoI07XrFsJ32DIJwkxhWUPmR59HOl3l7/7utN2cJS+Sr0nMDS9haSqtcppAuYSQydPqzDIibCSTiXD06PTyfkKeB9fHaLpwhfbBXkSHg3IyiTsUonHDhpUxWrZtI9TZydX/52mGJ67g7u3CEWmgpinUF2dRajof/aNf4UONUapVjWxWQdMMTNPi0KFptm1recuqZX5WbkR1zWHgzdqz7v55j7/KKr/oaIpCMZGwq0k6OhBlmUSiSDJZAeDUqXm6usLLeXQNt9sOvC0tfgBU1aBa1VhYKFMs1untjdLWFqBUstMwqmqwYUMjhmGxe3cri4tlVNXA7XbQFpdYWziCnltidmyRwFgGj9aEJK5DN+0tssZGHz09YS5eTNHeHqBS0WiOCNQvn8AcGSVXkdlw2y7ql2qg6yg1A0XRkSSBasUi5HfS0xMlU1RJOUWE2QXu6Olg+7YWKhWNQqFGqShQr+tsb8lyc7iOOlXHiHbhdsvEYtd3jx45MotpmnR2hon3haiGNaqmi+Tpa/hQyNcdaKYT6lUGhVNcdu3jiSfG6OoK0dkZJt+0jdnLAuLUEmG/QNOWLfTefTcO7/VB2RuLEd64g6X9Gj1hW0rBcnjQYz0oxRobt3fT0RGiUlH5+78/SypVIRBwcfVqlsOHZ/jEJ7YiiiKZTJVg0EV3d3jF2OTtZLXjdZVV3kGSFy9y+XvfwzAMsCwcXh8z0ZsZnrEQBDsPf+lSioYGH36/E7/fSalUR5JEikXbIs/hkOjqCpNIFBFFEbdbshUc24O0tgY4d26RD35wPfG4lyNHZgiFPITDLu68s4dI4jBKokJs3Rp6hTBZY45ONc1NA34SeiOJRJHJyTw+n4No1I1lWVAv05M+i7JUw6xJRFNXKP7zi4jBGGYxQ93XDEYTiioQcVTRo23gcAEKcmsfubkLZBOLRNuauOvOLibOj6H0bqBlKoGg16jP+qlcHUKT/fzq//nIigYM2JIJV3/wBO6FCcp+P4I/jEOvEPHJ1Bw1JF+IaiqPJnmoSSHCQpEWOc2s1MbcXJl9+7qJNwZxeW5iShT43Odu/okSAsGgk66uMNmssrxhbfvIvip0pqoG3/3uMKdPz9PfHyMUchONeshkqvzxH/+Q9qiFXM1gSTItg/18/FM34fc734Y760esBvlVVnmHqGYyDH/3u/gaGpCXlQivDc9y+YVv0fXhTyPKDgzD4tKlFCdPznHXXT2sX9/AoUPT1GoaiqJSqWioqrkyu29s9JLN1tiyJURnZxBZlqjVdFwumfvuW8O7392HZVlIkohWrXLwv44Tarc7ZovFOrG4D48gI5hzrNl3E4qiMTSUZOvWJnK5GleuZGitJVBSRQg20N+qkClYlGoRPAI4WnvRpq7iq2bxRduwnGEq7bsAEARwBQKoW+/HFV6gMDODIIrsefBuarkcuWkPWdWWCfa4ZeKuCqHCVWAAALVc5sxXvoI7P0UGF07DQJ8dBVFGTSUIyDr+gEE+ZVHyd+ETnciGC6FWBpeA2y0TCNifcyDgYnq6gKoauFwylmWRydiBPBr1rAT+vr4o3d0hIpFm8nkFh0MiEvGQTldxuST+5m9OrshEpNMK0aibPXs6yGYV8ueOsrE1jSyLIMDS2BGe9ml8+NN3va332WqQX2WVd4jMlStgWSsBHmAhZ+GVdMxcErGhHUkS2LWrlaefvsrSUoVKRaNSqWNZFqlUBYdDwuu1K19qNY3Z2QLRqI98vsbx43NIksj99/dz5MgMx44l0HWDHTta2bu3E9my7DzrckALh+2NVo9XgOX6dqdToqUlwCc+sX2lLPGF//qX6D1raGiPs3jkAO7eZqbnKlSWMtT9A4hdYbypefSd7+FqxkPM4aVSVvF4ZCRJoLG3g9s+8yBatYooy4iyzA+/8AVCHR2ERXHFtcpQVZJDQwy8970ALF64QK1UYt2udbzyyjR1S8Yda6OeTVHo2Ue3D/q2r2XpRIHCbIVo1INUUsnSTlBzEo36cDjsdImiaAQCDhwOW67g0UdHSCYrCIJtQPLBD66nocFHX1+EwcEGRkaWiETc6LrJ4mKZ97xnDceOJSjkFdqDdSr5Es5gA+lcjfHxLIuj4zRXR5GjIj6zTQAAIABJREFUg8gO++8TqJYY/qd/Qv2t23C6HG/HLQbA258gWmWVVQAwdB3TgkpFRdeMldctLDDtnzXNYHIyj2lazM+XKBZreL1O1qyJ4HLJ+P1OfD4n8biXUMiFoui8WjQiCCCKAs89d5WnnhpD00xqNZ0nnxzlb//2JDjsbtRKyq5ubm8P4nJKlJIpxI61KIrG1FSevXs7VlIMHo+Dvg1dNERkfD4npmEgyxI+j4RhgoaALvuIdbRQ9zVRUQzGxzPU6wYdHSEsCx58cBBBEHD6fMguF4IgILtcr6+5V1Wcr8mTF2ZncS1LBe/c2YLDKZEt1NFUg/s+uId7/vc/QDBNdm+JIhsK9WSCjBEiQwxF0fF47Py+omjMz5e4665eVNXg618/T7WqLefs7U7ab3zjPJpmIEkiDz20kQ99aMNy9VKUT31qO7fe2snQqQkCo8/TmXoF/8QBghf/hWZljOmpHNrcBIGIfyXAA4geP6hVygsLvJ2szuRXWeUdYrro5cihSQxfGUGSGBiI0dbs5vw1CyFk67MnEkXm521/1ba2AB6PA1U1OH9+kWjUQ61mrARg02TF39ThkFYqbw4dmqGvL8KZMwukUpXlyhiRVKrKpz56J9XM98hPTyMIAlu6YaF9Ewm5DV/N4Nd+bR033dR+3Xl33HILixcu4KhUCHd1MX7sHKmlKuGePqLNESYvXGVcbyDeK7JrVxv1us7dd/fS1RVi3bo4Pt/1OWlBFGm/5RYm9+8n3NWFIIqYhkE5mWT9Bz6w8j7dFeb4wasUCAEWTU1+dmzrwsx72XPnOpx+P6H2NhInTvCA5OEfnyszVW/A63fR4nNjWSaXL6dpbw/w4IPr2bWrleHhJSoVla6u12jUN/iYmsozNZWnvz+GwyGxfXvLdcqbpmkhjR3G0LOEOjpRPRXm54rIU2fQW7zs3NSAOpW+7joLhTpNjT47ffM2shrkV1nlHWB4OMUzhws0btyNNXkeUxe4fHyBNWuiDD74IMOLdQShzqVLKYJBN5pmLBti2ykUr1cmn9cIBp2Ew26KxToOh4jfb9v71es6IHP58hLpdJV6XadS0TAMk1jM3hgcHU3z7ccd/Iff+x3MdIJ6sUigpYVQZ+frmoVeS6izk82/8RtcfeopJJeLbEFF9vpJlywKsyOUDDeuLTeRzdbYvbudpaUK2azC+98/+KbH7L7jDuqFAotnz4IogmXRvW8frTt2AFDKl3nqmauYs5MEwmGktn4yiwVOJqb51c98EFfAljyIr1tHfN06qkdn2SReZm/QjSBAJOKhXK4jCAKPPLJnpcqlWlVXlCpfiyAIKMr1KwtdNzl/fpGzZxewahU8SpKiGCYONMR9RCIeFicM9t3u5J7ffh/f+sP/i/RSGUESsSwIugzWbelcqcd/u1gN8qus8g5w8OA08biHQN+tGF396EsJJB3m/K380R++l8XFMslkhba2AMlkhWvXclSrGl6vg3xeQVF0ikUVVbWb6iMRz4p/ayTiJhLxoKo69bpBJqNQq+krDVOCIOB0ShSLKoZhcnksz223bfhXzvh6GjdsoGFwkHqxyDcmNrMwOoGvXiFtyRSccYKLOtGoHSTjcS+TkzkURcPjeeNctORwsP7BB2ncfSvlTI6m7hY8yxr5tUKBHzzyx2gvHcQp6tQXxxDGz+PdfCuFpq041+953fGGh1M0NvoJBn9kWh4Oe5iZKVAqqSt6762tQcCemb+qb2MYJpZlrZSogi0D8d3vDjM0lCQW82BVKxTyNTSfQSZbXXlfb1+Mdf0hGvp7eeCzH+Hik8+jKBpOl0RDc5xtH//Nt0RO+CexGuRXWeUdIJerrQQgKdKEFGnCaVlkZ2zJ3JaWAC0tAeJxL3/7tyfp7Y1w6tQ85XKd8fGcrR7pdwEWS0tVNM2kszO43LRkkc0qzM+X8HjsvH29rqHrIslkmVDIvZzKkXA4RPL52r/tIgSB519Z5MzFHJoWxOOJkasphMMO0unqiqCYadrVPK9NU1QqKiMjS+Rydjdqa2uAZ565yqVL9v5AJJLjwQcH6e4Oc/n73yd1+gSCL4IzaOfotcwCZr2K1bkZpW6+7tR8PgdLS9XrXjNNC7BWNl8B2toC7NrVyokTCYJBu0S0WFTZt69rxRwcYHa2yMWLSXp6wgiCgBV0IXW1kUsX2b59AIcs4vU5MDPzNA6uQy2VWPPue2jdtpViIoHkdBLp68Phub7m/+1gNcivsso7wNq1MS5eTNHa+iPno1yuRldXGEkSSCSK5PM1YjEPDz20iSeeGKWvL8Irr0zh8cjIskhfX5RIxEO1auvQrF/fwOxskYGBGKVSHU0zaWqyA9X8fIl63aBW04lGBdxuCVkWSSYrK9UsP46u2xu1tqzB62vJp6byvPDCNdragmSz1WV5BHnZ1MOH3+/CsiwSiSI33dS+Uu++uFjma187u6w+KXHgwBQLCyWam/0rVoILCyX+8i+P8od/uIepH/4QXyRIJm1i6iqCKCOHG9HnJrDKWZqa/K87t92727lwwRZpe9VwfG6uyObNTSt7AvmpKZKXLtFWrrK20cdEVqSlNcgHP7iB/v7odcdLJsuIorBSWikIAs6OAYRz/8D8S2O0b+ynIkkYqsrpr3yFWqFAoKmJ7Q8/vJJyeqdYDfKrrPIOcMcd3Vy+nCaRKBIMuqhUVAzD4sEHB/n6188zPp615WxNk40bm3jkkZsplVRCIReRiIeXX55c8RH1eh1kswqRiIdKRaNcVnG7ZZxOEcMw8fudrF0bp1yuMzNjd9L6fA503ULXTa5cSTM42HBduuLIkVkOHpymVtMJBFzcd18fTU1+8vka4bCb5mY/ly+n8fkcuFwSa9fGyeUU2whcFvF6nei6wfR0gcHBOO9+948MO5544goATqfM1FSeclnlypUl3v3uXgzD5NSpBRYWypRKdf7kj/dz83wOl1bFU8pQTarIDhHLE0DXLXZsjr2hfMCaNVHe974Bnn/+GpZlYZoWa9fGeeAB2xJxcv9+rr30Eks5nZGRFIKuInRtYdbYyfR0noGB66WCfT7ndbn7yvFnUF75HtQ0aotpRq+N4AoEsEwTVyBAuKeH7MQEz3/uc7z7r/6Ktp07b+j987OwGuRXWeUdIB738gd/sIuTJ+eYmiqwdm2Mm25q59SpOa5dyxKNehgZWWJxscSRI7Nks1V+7/d20d8fY2amgCgKK7rqiqItl09q7NnTjs/nZP/+iZU0zNatLXR3h0gkinz/+1dobPTS2RmiuztCW1uAU6fm2bSpib6+CIcOzfCd71xiaGiR7u4wW7c2I0kCf/InL9PWFiQW82Ka9qrBltt1EI97yOVqxONeGhoEPB6Z3t4on/zkNrq7w9cZYpTLKjMzRSoVlcuX03i9MrWaQbFY58UXJ+nryzMzU8TlktA0E8OEBTVC4Oopol3t1GsmpVINq5iibXCQBx56fT7+Vfbu7WTbthbS6Sper2PlYVBNp5l4+WXcTa1cuThFsLUVWQQjN4o7tIWXX55kw4bG61ZZa9ZEiUTcJJNloi6F6sHvo7vCuH0CbmMJIegjPzGBr6kJy7KoZjJEenoop1Kc+/u/p3X79p+4mf1WshrkV1nlbcCyLM6fX+TgwRlKpTqDg3HuvLOHe+9ds/KeWk3nwIEpYjEPhw7NYFkWkYgHt9vBY49dprc3yl139fCVr5wmHvcyN1fE67VLKvv7o9RqOnv3dtLeHmTfvm6+852LjI5maG8Prhy/tzfMr/3auus0VPx+JxcvJrl2LbucOinS0RFEUXQOHZqhszNEqaRSKqls29ayrE+fYtOmJlTVYMuWZoaGbIvAel3H5ZL4zGd2s3Fj4+s+B1kWUVV79iyKAtmsgiiKVKsaxWKNubkSYEsHvJpSahFdePxx6tksosNB0GkiB2O0bejH6f3JOW6v10FnZ2jlbzA/XyJxZoRaTadW1DBNE8fyXoFlGJjJKWRPHxMT2euCvNMp8du/vY3HHx9l8oXDSDWVQKOfsFBEK8uIoohlmhiqijcWo14oYGgaTo+HSjpNvVjEHQ6/4Tm+1awG+VVWeRt45ZVpnn32Kk1NfiIRNxcvphgdzfAf/sNuAgEnhw7NsH//BMePJ1BVE0GwZ49gB5hg0MWxY7PcfnsXv/u7O3nxxWscPDhDLqfQ2xuhocHHAw8MrAR0v9/JJz6xjZMnExw9mqBU0li/Po4kia8TyTJNO51x9GiC9vYgFy+m8NbTRHJTKGWFsdkGYmsGqFRUwM5Ht7YGGR/P8cADAzz77DgdHSGiUQ8ej4Pf+72dKz6wP47bLROPexkfz+HxOJBlcSXNA6Dr+oo+T60m4XTKTGeS+LbuY+cmF6WZGZyBANGBAdRSCcswEGQ7jJm6Tm5yknqhgCcaJdzdzaXhJV5+2c75J5NlAgEnQTWFODRLvN9hu2CZJvriFOrMZSylBGKY8poPwK1d1517LOblk5/cxsXYHMennyLWGyE3kUMURfscBAHLslby9pZhoNVqBBsbkVwu3ilWg/wqq7yFZLMKqVSFZ5+9SmdnaGXzsbU1wOxsgbNnFwgEnDz99BgdHSEGB21tmlLJDqidnSHKZZWenjD5fI2pqTwbNzbywQ9u4KGHNiFJIvW6vtwgleTMmQW6u0Ns2dKMz+fk5ps7KJc1Dh+eYXa2yJUraSoVlR07WgF7c1VRNLq7w5w5s0CxWCeSH8WbvoDk8YJm0ZgeQxSX8G7fh76UwNI1hEAMTbNTIhs3NjI3V8LhEOnuDl8nKPZGxGJeRNHuyDVNk2KxvvzgsRAEkXJZRZJEfD4nwaCLpaUIqZlFFvo3U3APEPK4cJVV4p2diMsBXi2XOf+P/0hpfh4sy66SkWKcUNbT0BJmaanC9HQBr9fBHbf2ICxEWJhcxHB4qSQmEZPjiJ4ANPYilOtoF14mPbqG+Nq1rzv/te/ax7m/+Wtq+TzuUIhCsYiIrcsjCAL1UglBFKnmC5RLKpX+Ab7z6BidnSEGBmLXrRDeDlaD/CqrvAVomsHjj1/h/PlFqlWNU6fmqVQ0Nm5sXNng9PudjI2lOXFibtmDNUetpq1sno6PZ1laqtDQ4EPT7MqYL33pJPW6TmOjD4dDYuvWZrZta+Z//s8hdN3E53MyMrLEkSMJHn54O0NDSfbvn6CrK7yyIfriixNYlkVjox/LgvvuW4OiaBw9OotfVmlKnCOheYg4vZiYCBE3zuRluiaLVBfsAF4q1Rm47z0AhEJuQiH3m34WP042W2Xbtmby+fpKhY/DIVAoqDidEqpqomkG5bJKuVxHCa2lWDrO0NERGtobyM+WmDINPvwX71855sSLL1JeXCTcZc++TdPk2HcO09BvIKp+1JND9Ae9ZI1GJiY8bN77K9ReeQqUHMbsFVSHF6thHVLdYudNHUR8MH3w4BsGeaffz51/9mf88E//FLVUQlMUjEKB7rvuwtR1UkNDyKEIM1mJfHQnF4d8VM6cwu1xsGVLE+96Vy/339//E9UvbySrQX6VVW4wWrXKD/7+ac6/eJbGnjaE1gFGgy7GxjIEAi56euzcbD5fY2Iix9WrWVpa/BSLda5csdvus1kH5bJKU5OP+fkSfn+MTZuaSCTsZh6fz8nGjRGGhpI89dQoa9fGaWmxZ4jRqN30893vDnP27ALxuHflwRKPe7n33j40zeDBB9fT2hqgWKzz5S+fYseOFiZPDeHxygTwUizWCIc99K+LkDlyjslLddSGfiIRN81NUSLpC+Snb1sJrD8tXq+Tvr4op04tMDGRwzAsTNNElkUsS8DlktB1c0V7x9/USIp7aInn8QSq+Dq6UaL9HLxQY/0eO92ycO4cgdbWlTFU1UC1HMhHv48VaSM+P4pz0SAgyNSWBrC6P4Hrjo/gqafpWR9GaOiiND2JvjRO6fQV1FCIaF/fm15Dx549fOTxx5l+5RVmjhyhMDODVioRGRhg3xe+wEtH08wdPE3l3GkGjEnwhki6N1IuRzh8eIbBwYY3LV290awG+VVWuQEouRyluTkMTWP8+Re4+MxFQuEQ+kQGJoZY27yXC1MwOpqmqytEJlMlm1Xw+Zz090dJp6soip2PLhZV2tuDGIa5LH8r0NkZQpYFlpaqyLLIhQuLDAxEaW72s3//BBs2/GiTU1UNrl7NcPjwNJpmEgy6uHYtx5497SuiZqVSnfXrGwB7v8DjcdDdHcavd1B4+QQepwOXS2bv3g4mLs8RdBn4OzvJmrZfrGGAmlUofv1ZHvyjT+N0/vRdnD09Yb797YtEIm66u8MUi3UymSqiKOByydRqOqIoEonYq4NQyI1huPBv3Yhvec/BAytSwQ5ZYEXsfRmnU0LOTWHoJnJpCdEfRjEEzGoJPZ9h5gePomx/kI/8xk6ks3MsnD2LNj+37FcrUV5YQACUbBZPNPoGVwEOj4fS3ByCINCxZw+CIFBOJhl/7jmuXJRxzJxF0yy8ZhHH/Dh9iRPM5+/G/b5f49Kl1NsW5FdVKFdZ5edk6sABjn7xi1z6p3/i6H/7b1x7/jl0hxc5EEIKNyA43XRUR9iypYlyWWV2tkBra4Cbb24nFvOwbl0DpmlRq2noukm9bmBZdkOPqhroui2s9eSTYySTFYrFOvPzJV55ZRpVNZBlkWKxTiJR4OzZefbvn2B+vkRbW5Cenggej4N8vsaVK2lmZgo8+eQo584t8q1vDbG4WF6RPBAEgfYNfXQOdhKUqpTLKocOzZC4tohmgKehkUxGoVzWmJsrohlwaWiexx4b+Zk+r2vXcqxfb1/zwoI9vmUtB2ZZXJFO1jQDr1dGVW3j7ObmHzU91ev6SlOYIIq07thBaVndUS2XKc3NEdDS1CQ/uqYTivgolesUFAGhVmIhkSVxaQyvV6bn7rvJjo0hSBKmrlPL53EFgwTa25k/c+ZNr6M0N0ducpJQRwemCaWyiivWiJLJII8dwvQE8RcmkJUchjuELrpomD8EV468rSJlN2QmLwjCPwAPACnLsjYuvxYF/hnoBqaAD1mWlbsR462yyr8X8lNTjD//PKFl277M2BiS20swM0XJGyAUciN6AxjZBQI9Fp/97G7uv38AURQ4enSWa9dyNDT4uOuuHi5dSnH8eIJAwMGWLY384AejFAo1NM1kdraAZdmNSoGAk3jch6LoyzX1Xl5+eRK3W8bvdzEysoSuG2za1EhXV5hDh2aoVlWeeeYqYKss7tvXxcREjvHx09x9dw/nzi0Qi3kwTIHjygbKUwkCZgGj5sAdCrJY7UE5P0e2LOB2O6jXNBan8/i79nDpUop0uvpTeZrWajrJZJndu9sYH3cv+9EKzM8XKZc1LMs2KO/qCpHP10gmq9xySyeCIKDrdkpH0wzm5orccksnJ04kkCSRrm23sHT5Mme/9jVKc3NYgoCl64S9KhXFouq08HichGIOBNlFc3MEz+4Wnn76Kr//sTW07NyJUa9TL5UItrcT7ulBr9UoLy6+6bXUi0UAxi7NMTo8hym5wOGizVuhwW+SyOdxCBqa4MVVTWNViricAvqpp2h/+L4bcwP+FNyodM03gC8B/99rXvtPwH7Lsv5cEIT/tPzz/3GDxltllXecYrHO+eePUDdEiiWNxWSeifESaqWEpakUzQy1eghZMCknK+jdGr29kVc9Oti8uYkDB6ZYXCzT2Ohj27YWDMNamUFXKipNTf4VLflXG6AKhRrt7UEsy+Kllybp6AiytFRdETBTVZ329iDz82U2b26mtzfCK6/YFTvr1sXweh1cuJDkttu6WFqqkMvV2Ly5iaGhJFeupDkzVCTQuI+1HTLXFooUdDddrSrixRcIOEGqS7gtA6FjM6NLbtrdFfbvn2DdujgDA7E3FSEDcDhEXC57dp7L1QmHPVQqOrGYD9OsAhaybOvcBAJOfv3XB/F4ZO65p5cDB6bRNANRFGlu9nPs2CySJNpli/UKA4lRLNOkYeNGlEyGwswMZj6NR5JwiAZeXwSny4Hc0YUoyfg6OkmkNMqaA3cwiLexEek1+u/VpSVCnZ1vei2uUIiJk+eZGU/h9joRBRBjrcymRTq7Gmk2l1jwuqmlU+h6DYdDRvCHiIYkFp75Z9buHlxRz3wruSFB3rKsg4IgdP/Yy78K7Fv+/h+BA6wG+VV+ATBNa7lOfRouXyU1PEZdXrB1Xgw3TdoiLpdELqcwt6ThUtIIPVvpCHr45jeHuPnmdn7lV9bi9zt5+OEdPP/8OKdOzSOKAh/+8AY6OkL85//8EoGAk5YWOzevKDr1uobP52HXrlZ03WJ6ukAs5iYadZNI2EFRUXR8PgeZjJ3vz+cVJidzRKMenE6R7m47D5xLF5m/dJlw2MPctJuHf/9murtDXLuWpb09aBuIuGRa/GHmzyxwNmuicTOhyhKypUK4maDSgZIrsZisEAq5GBpK4vM5+e3f3nZdauW1SJLIbbd18fzz4zgctuxCMOgkna7Q2uqnXNaoVlVkWWTt2mYGBmLMzhYYGIizZ08HpZJKuazyla+cpr09uFKuWRq6wrVzYwwMtCI7JEqJBKHOTsrJJJamoak1KM7A2q2AgGvLHQguL5ZVwBv00XP33Vx9+mm8y1aMlaUlnH4/Ldu2vel9kL16lcySXRkkuzxYgD57hUDfNhbiN7HJdQBXGSqihCUEEQRoWNdrSygIAkvDw7TffPONvj1fx1uZGGqyLOtVC5RFoOmN3iQIwsOCIJwWBOH00tLSzz2oXq8ze+wYQ9/6FvOnT9vGw6uscgMZHk7x8suTOBwil1J+ypkCuWzVziE3NZGxomTSFfySilhOI7QPkgmuW05DhDl2LMG1a1nAzkOXSrY1ntcrc/z4HFevZujoCOF0yrw6s+3osAOa3+9kx45W9uxpx7Isbr+9i6Wl6nKwtE2k/X4nsixw7VqWoaEU2WyVlhY/DQ1eDMNELidpn34W5dhTVI48iXT8O2THrxKLeVm7Nk5/fwxNs5UdXzUeMQwLTXCTcXWQDQxQEiOkMwqzs0UGBxsZGIiviIt973sjP/H/7vbbO7nzzu6VB6HTKbF+fRyXS0bTDBoafKxZE+HWWzuWq2wEgkFbaCwa9bCwUEIQhOvq8SUljymIKDUDtVwGQbBNzYNBov39rHv/gxjtG5HW3oxn6x0AzI9cZU1fhGjUQ+dtt7Hxox9FdrupFYu0bN3KjocfxhUMvul1zBw5gtG5GWfXIK/acTm7BpH9AdRIN7sf+d/wx2MIep1wU5TmdWuw1Brhnh5cwSBK7u3JXr8t1TWWZVmCILzhX92yrK8CXwXYuXPnzxWRy8kkP3j4YRbPnsWyj03brl38+je/icv/xjOLVVb5WTl2LEGhUOfChSTTaRed/j48mTF0EyR/FUX0cy76ASLRKJezZTpdLTR63Vy5kqarK4zP52B4eIn+/hiPPjqy4vykKDqyLHD48DSSJNLaGmB+voTLJa34o7a3B0mnq6iqQVdXiPb2IMeO2XlpwzARRYFKRaVWM3j1AWGasHFjI7mcwqVzs/QuHkBBRvcFEcJeegabuPitbzHw8d/HNC02bmzg8OFZ8vkahmFRLNaXc+R1PB4ZTTPJ5xVKJZ1w+EclofBq+WaeXK5GNPrGkgOSJHLvvWu4445uTp+2N4rrdYNksozbLTEwEGfTpkYsC6an89xzT+/KZqyhqqjZlN2Zyo+6aqVoE7h8GDUF0e+0G6JME0PT8DU20rVtA9VKnYnpKcqT17CwiIQ9DA6WMdSNSE4nzVu20Lxly091D1iWha4otHbEmJqWiayz3bMsQ6eSztDeHqB922be++Uv89wjj6DXaohOJ82Dg0R6eijMzPzMpaf/Vt7KIJ8UBKHFsqwFQRBagNRbOBYAB/70T1k4cwZfczOSJGEaBnMnTrD/85/n/v/+39/q4Vf5JSGfr3HtWpZ43EsiIZEMb0GQWqkl53FF2hkXvCykDco5BzXLtZxi0IjFPOi6iWlayLJAJlPl8uUUc3Ml8vn68tEtvF4He/Z0kM1Wcbsl0mkFh8PkP/7HW/jAB9azsFAikSjy6KMjnDmzgMcj094eZHGxTLFYR9MMmpp8dHdH2L69hfn5Et/85gXe9a4eBlt0cmNVclaQ7gEvGzc0srCkoSykCF8ZY+vWZs6dW2Dv3g4mJ3McPToL2CsOQWA5Bw7BoBtZFolG7Wt6FcuysCzhDaWJfxynU8LhkHAqGSqnD7HOUeSBPT3koyEmMwqBgIv3v9+26QOYP32asaefplqqIR2foZBZT3DXnQgOF2qkGzneht+bQivbDUr1UolgWxutO3eSGR1FmxymP95IoH89geYmAgEXuYlrzJ06RefevT/TPSAIAo2bNqGeu8i8UyaTVXC7BNS5axDv5N59tvtTqLOTnb/zO0y+9BLuaBTJ4aAwM0Oos5Nof//PNOa/lbcyyD8JfAz48+WvT7yFY6HkcswcOYI7HEZadl4RJQlPPM7ESy+hKco7Iti/yi8eHR3BZa2VKqWSiqKogBvN0YVHiVBUbLcmWRaIxz3LuWeLXE4BLGqFApGlFCf/73+i+OIkRmANsa51IIgr+uvlcp3Pfc6uXKnXddaujdPdHSaXU3jyyTGqVY2mJnvzMZWqIMsi4bCLYNCFLIu4XBIdHUF++MMpHA4RWZY4dGgGKTPJJsGkry9KMllhcvIqoZCLenKRA6lDvOs37+X++/s5cmSW2dkSGzc2USzWEEWRTEbBNC0GBqIUi3XWrWvg9On569yXkskKjY1ezp1bIJ+v0dcXYd26hjesoz9wYIoXvnec8PjzNPp9VMwIQ+cX2L4uz30f/43r8uG5yUlGHnuMQGsrgRYXW11hzrx8gXxRg8HbkGWJ+//kEVyJ80y+8BwOrxdEkfjatcyfOUM1k8EyTQRTp3DxNLK6lsCGDfiampj/NwR5gL577qEwNcX2vhwLiSqpc6cJe5z09HYx9a2/w/W+99ELj8qUAAAgAElEQVS2eze973oXgdZW5k6cQFcU+t/7Xlp37Lhuk/et5EaVUH4He5M1LghCAvhT7OD+XUEQPglMAx+6EWP9hHPAqNVw/FhaRhRFdF1H/7EgPzyc4ujR2ZV/oN27236m1uxVfnnZs6edL33pBNeu5fD57GoWw7BwuewcusdjNxI1NPgIh92MjWUolep4vQ7GRha4STxDfQL8sRhKtU5D7RSas0a1dTuCICBJtipjY6NdWvla9u+fRFUNOjtDGIbFwkKJbLZKtaoiCLZ6o2mabNrUZOvfWAaxqHs5hy1S8HQRq03RGHMxfMWurKmUFGIOC8UZ43/8j/N8/vO38tBDGymV6nR1hVlaqnLs2CzBoIuFhTJTUwLr1jXg8cjcdVc3lYqGohSwLNtCb26uRDpdxe2WOXVqnu7uMB/72Jblz8emVtN55ZVp/JnLpAsGStHE79eQJCcZ1cPECy/QvGXLijzv3PHjOP1+JIctBTE2lsXyx2F+jPCO2yjX4aknRpAuHqCzKUDn5nawTDyxGEatRtfttzP+7LM4AwGwLLJXr9rpEmG5kQrbWOXixSS1ms7gYANr1kR/4orEE42y+zOfYfHCBepf+QrN776F+MAAktOJoapcefxxQp2d+JubadywgcYNP5vF4o3iRlXXPPQmv7r7Rhz/p8EdDhNfv57F8+cJNDe/el7Ui0Vi69atdK0Vi3X+7M8O8PTTV3G5JGIxL729tpP97/7uzhXvx1VWeTO6uyN0dYWX67ZtC71SqY5lWfT0RLjnnl5OnpxjfDzL+HgGXbfTJ5YFzvw0NTJMGE3MDyXQcJIxZIIzF6m4e6hZLpqb/W/odgQwMrK04vY0NZVjcjJPd3eEet3g3nv7GBpKks0qDK7xc/ibj9NVn8U0TQxnB/noelp7mkhMb8CfGkMslXDXVVyWgLZmL76GBoJUefzxy7S1BVe0VRoavNxzTy/z8yWuXEnT0RHi5pvb2bq1icHBBnK5GouLZdxumX/5/jCmniHgEBG9URoawkxO5rhwIcnu3W0r11Eq1clkKlQvXAXJieTSSSZtU+1Y1ENnqYRer69MzOrlMrLLxbWJHBcvpohGPYSCLlKlNE/+yyXuvn8zkcWT6B6J8bSDQEeQzo4g5560jUG0SSfunBNrZgrJF8RrlvCNXEYUYNNHP8qZM/M89tjl5VWPyLFjCbZvb+EDH1iPKAosLpZ55ZUpJiZyNDX52bevm97eCLLbTTWVophI4PT5sAyD2MAADo8HUZZZGh7GvxyP3il+oWQN7vov/4VHP/QhinNz9tNU03CFQtzxhS8Adrv3I488x0svTeL12hUDi4tlDMPC53Ny/HiC++5b86+MssrPi2kYJIeGWDh9Gss0ad6+nZZt21YUBf9XYNOmJiwLzpxZwDAsnE5b/3x4eAmfz8HQUJJw2L0sGyxgWXDrrZ3E8ud55ZVF2tc6iUY9eL0O5uZKCJKKVSmx+eZOLAtuuqntDcf1+53UavbK4fnnr1Gv281FIFAo1Nm9u43Dh6aYe/p7uDOT5NwRRFGkz5MisZCjEr4XWgcRe7YwnzpCTVCxoh10NfUCIEl2VcqrKgGvGpN4PA56eyOIosCnP73jupb8eNxLPO5l+PkDlL/2Jzj1IgWXGzHWhnf7XYRbt3LpUuq6IO/3Oxkfz9HsjxPQ0hgODw6HRDarUC6UcIW6kF8jzxsfHGTsqacYHdWJRDzIkohZq5Cvy4RaooxfmmIwn8TT3EbYMBkby1IoqCTSFh41T7WqcTXpIa5YxAszKPkkpWSanq0DjO9/mcOlRVrW9K6sNizL4ty5BbZvb8Hvd/LlL59ClkUiEQ+pVIWvfvUMv/VbW3BMnWLs2WdBEJC9XgrT01SSSbr37UMQRUzDeAvuvp+NXyhZg6ZNm/jYyy+z4+GHad21i60f/zgfefxxOpZrUY8dm+XixRQ+n4NAwI3X68TlkkmlKiviUKu89Yw+8QQXv/1tMteuMXPsGPs//3me/PSnSZw4ganr7/Tp/VRs29Zid1p2hQiHXctmGCaqavDkk6OA7YGaTleXyxHtyphMzQWGXSddKqmoqoHTIaCqOrmaPYPs7g6xe3f7G457221dzM8XeeGFcdLpKrWaLTPc0uLj1Kk5KhWNnqjK9jUSgzdtIBD0MLC2gXhvN2GpRGFqijVrYsS7WlEaB5kRuldmmoqio+sGPp+DpiY7VTQ1VWBpqUIyWebkyXnCYfcbdramLl3izF/+BZZWRYq3Irr9GJl5lLP70RYm8fmuzz9blv1wSPv6MVUVsV6ipqh4JA2xnKX3nnuuc1Jq3bEDT2MzWnoeqV6inlkkn8wwJqwjMVfm4sUUM9N5hodTlMsqpVKdqakc4dZGEB1k5lJ4g34K3nYM3cDV0o3SfQuhnfuomU6soZdwvmaOIQi2js74eJaDB+1qp6YmP06nXcbZ2Ojj2ccvMHPkCI0bNuDweLAMA3c4jFatUkwk0Ot1Ym+gYvl287/O1OmnJNDSsjJz/3EuXEji9TpQFB3TNBFFEYdDolJRySzm8DQscuSLh5FdLtr37HlHLbt+UclcvcrIv/wLtXSa4uIi9UIB2eWiXipx4RvfIDs+zqaPfvRtk2H9t7J3bwf/8A/nyGZrlEoqLpeEQzJxqkkCepJgOU7H2gHGpqpIkkgo5KJcVlkwG3E4XVilLHMVB07Joj1QIxXuZ/sta7Esk7a24JsKfu3a1cqjj15iZGQJQRAoFGoEAi4Mw65wGRlZ4rZ+J5GKlzs3d9Dc7Gd8PEu9ruP1ORns8AB2B+3gYJx8vka9rjM1lSOTUQgEnIyNZTh5co777++nszPIU0+NcvDgLLGYm3yuxhf/9Enuf3cX229bT91ysH//JOe+9NeIEyksT5hKRcPvcyJZFlohi3JtmF2ffeC663A6JdasiaK0BZi95MCZOEdUKuLrbKDp9n20bN268l5dNzl/KcuQvJNJZ5l8YoJSTSAf28ZYWiCfz9HVGcLhacRRL3P1qk5fXwRRsECtUVj3HtIvH8Obm8VVS5ORZFp33IwsuMjlFJqbg1iqgpFdRG740cPVMEy83h+tyl6LV1CYO/kyi+YwwXQab1MT+YkJJKcTXVHIXr3Ktk996id2zL5d/MIF+Z9EQ4MXh0MiEnGTTit4vbZtl1ar0ZY6T6wUQmrtwlBVRh59lMriIgMPPPCvH3iVN8WyLArT06RHR1m6dIm506eZPXoUUZbRFQV/SwuCIKBks4guF6lLlyjOzv67+Of4SQQCLj7ykY381V8dQ5YFQn6JlqXjlEvXUCyRQGGOyOwUSXEbFSFAKlXh1Kl5kskK5fpW9hkp8jOjCLKTSU8PaX8/u5t9uFwy09P5Nx13aalCuayxfn0DXreIMnoOf+4q5kWNWrgbzXcLt96zk+nHzlKr66xZE7WDqaKhphzs+PQDFMQo5bJKY6MPRdH44hePcODAFF6vi6YmPwMDMb7//Suk01UeemgjhYLKHXd04RZVlJPPoybneOa0TmZ3O1f0HgrBfvxWFd3jRrNAVe3VmGCBoFTYtjn+OsVFWRa59dYOXnppklvfuxNZ3k2tpjM/X+Kuj2xfeZ9lWTz22GXOnZsn6qjSaUwwMjqD2+2gqZYlqnRSdbZSKqvMNG6lqXwYVy1NwIRyqY7Su5nj02GSkdtp9Bu4l0aRxHkmEnWamx14PQ7CITc+n5NMporHVefatSwLC2UkSeDDH95Ic7OPRKKE2y1jKmXqV05RPvECsm6wmB1l0bJweDyEOjqQ3W588TiDH/gA/e95z1tz8/2M/NIE+aUlOyVTKtVRFB2nU6RUUsnnazSRwmeWyBodxDWRQDCA5HQy8eKLNG3dSqj9jZfOq/zrjD/3HNMHD6JVKsyfOYNRr2PqOq5AALVUopbP44vHsUwTrVzG6fVSSaX+3Qd5gNtu6+Tb375IoVCnTZjFUV5k0RFDcAqURIGYLLHBHOWF3EZ03aSpyUck4kEQmnhuwYcU7CYc8VJXTUIhN6dP24baAwOxNx1zYcG2sBMEgejiKfzSDMVYmMVUBV9+ksY5g7/5ehDXuIqzdBjBH6W1PURPzKRxbT/xNb00vGZ1ms0qFIsa4bAHt1tmdDTN5GSelhY/3/jGeZaWKvYqwOugeux5zMISrqY2ytkqc0UH+Us/pOWBZmqN7RjpBH7RpCLK9HSHQa8h/f/svWmQW+d97vk7Kw72pYFGo9E7u7k0d5EiKVG7ZEtWIku6iZc4duw4tpPJndyJk8pUJalMpWpu3UzNrZqZZCbJdZKKFcdrZCWWLGuxZVGmKFGiRIlNNvfedzTQ2IGDs88HUB3JomzL1q48n9iH6MY5Lw6e877/9/k/j6dy8Fduuuy13HDDILbt8fTT83heW530kY+MrsceQlvxMja2wkB/hOZjDxII+vB39bRLMhWTPv0UbmeKNUNhpSbTd/3HSXtFAkmViSmLY6d0qtU6luWyYAl0RQcJuXkKjRaW5acrE8LSm+zc08txrZP77z+HIAiEggojGY9v/s2j3HLnFZw9ayA3C0hjj6BfOEFLNwg2FjFtE1FRcAwDQVEImCaRbJahm98yzclPxfuC5H/0o1n+8i+PsrxcR9ft9hNbdoiHBaK9QT4wFCdYKbG8VGN5qcauPofG3CStUokj/+2/MfJLv8TwrbciyjKu63HuXIHnj5zHLiyxeXOK4S0ZavNz2KZJ5+goscHBd3y54c2G6zgsHD3KmXvvJT48THFiAscwMBsNWuUytmHgGAZ2q4Vn2wiKui5/VS/Tnex5HqunTzP/5JMYjQbpbdvovfrqn9h2/mYjlQry+7+/nz/8w++zPDWG6gkIgkAwqKIoAg1XQdULdEZh044BhoYSJJMBJieLPP74NPW6SbVm0t8fp6srxMpKnVyuzmc/+9p+KZVKixMnctiVNSoXzlAMpfBwsF2R1HA/Hf4Wz784zqo3zP5MJ9HGNItTOcT0fm7+5CfxaO+ovnR/PvzwRarVFtlshLm5CoGAitrME1u9SEqCi8+2EDuy9HcpWCuzuOEUuB44Ds2mjagFsWbP4Nt6FU5uBnt5FsFw0PMtNNFh40c/SnrHjsteiyyL3HbbMDfcMECjYRKNaq+y4M3nm+1N4EoBV68h+JOoqoHrekRiQRDqDFun6RY0qEbp7+rlxfMhnhivIkkimqZQrxsEgyqm6aClulhtbiFSOMVALMDZo+NYrsjuT3+KvrzG1fsMok4BdeYoLDfRDZfnZw5x20d/iWfuP0K5YqAIAqmYjNkSENQAks+Ha5ro+TyR7m46RkYuew+/XXhPk7zrOMxN5vjm10/QaFgMDSUQPBtpegpx+RxOyaW7L8nydBR1ZRYVg4BV5OyJFn27tuCLRIgODDD35JMomsbgzTfzwAPnefY7jxOYfRZwmfp6jqhTYPSG/YQyGeaPHKH36qvZeMcd71uib1UqnLjnHpaff561yUnmn3mG+spK+yHpONimiW1ZCJ6HB5iejCv6OPb0DEN7tnLdYFvpUVtaYv7oURq5HGa9TnVxkUhPD7auM/bVr3Lm29/mqj/8Q5KbN79tY91q2fT3x7BW/fgsC1GQ0XWLwcEUiiwiVJvs2dzD9it6190ZfT6ZDRsS2LbL6GiSqakypZKOKArceeem9TDuH0etZnDo0AyyLJCIeHR0hVnRRSoVnWi0LTWcnKlRNFbIaWEOGTG6uq4l2eenpvv56jfPMjlZRpIE9u/PcvBgH2fPFti4sYMTJ1YolVpk7SkyjTM4FYVoR4D02jKTyz3Mhq+iMl2iJbTwV+bxe3XkwQRuTcbtyaB09hK85ddpjT9N8/wZsvtH2P2Ru+g7ePCn7mtpmoymvZqKHMdlYaHC+HieUrBBV9MmFJfbOaqGjWdBsjVPrbmKo3YTocCZe75EsetaAuE06XSQtTWdYrHJ9u0pmk2bLVuSdHdvZGJslBm3hBbQkDuzfOdwjdljP2KnegFveQKjXkaKJgkObqNUd2m8cJitaYOOG/Yw9egqpelpRFlGEEVEQcCfTiPKMrKmob6NE4/L4T1L8kvPP8/k97/PhdNLSONF4uFNCMltBJbH8FcnyKtxyhUDa8kgyTiB5jyupGE26jR8HvkzZ+jatQslGKZYdTn2r4/SSI1y7PB5EqvHkdNp8Fzk/BRVN8jqxSmSW7YQ7Oxk/uhRunbteleUHN4oeJ5Hq1ymurDA2Fe+QnNtDTUSQS8UaBQKeK6LUS63G08cB0QRQVZwbAdREFECGqJV5dz4PN/4X/6cK27axcqLL6L4/Ug+HxcfeqhtyyoIrJ0/jyBJVCsVjvzFX7D1Yx9j5Pbb33Kib7VsvvWt01SrBoGeLQTnDiP62kZgqVSArkCLgTtvId+1jdOn8+skn0wGGBvLEY9rbNqUZOPGJK2WRaGgs39/DxcurDE5WSQcVkmnQ9RqJooiUizq2LbLzTcPcexQk5ZuoiohbLs9K3Ycl0qxxlwL3E4Xz2t32V68WMA0XWo1k717u3FdjyNH5lhaqiEIENE8coslaqslwvZJlokgqzKjG3rb5miL8xx9coJeUyJUGEN3RHTFj7rm4GuuUJrvRrUcnFCafP8tbL39E9z1ycvP3n9WuK7Hvfee4YUXlnEch/NL0FpokPKKiKKIYTi4a6t4ZpOS1k8wFkENBfBadQ7EZnlOaCuGOjr8FIt+ZmYqBIMKhUI7Wcv2hcmMDhEMqgA41SL56SOUsp1EbQs5kcEzdfSJU/iH9hDoCLL8wgvr3+u1CxeQfD5sXUdUVVzTJJhOY+k6mT17frEb6w3Ge5Lkc6dOcebeewl1d6N1diNoLaLLz2MFFHz586zofiq1FvW6ieOopMQyhhLDVvxo1VV0XcRKJ6jVbR79/iTNhoncLPD9/+sp3KUJYnoJ22zhma12q7TiR9dt9LU1wtkskiy3E2PeJyRfmprizH33MfvkkzTzecxqFSUUor68jF4s4roueF5bHvmSO6Eg4DptgkdWcFpNvIULhEc7mDozT+PZh/EFg/RcdyOtugOK1l6ZPfkkHSMjiLKMpCiIisL8kSN07dxJKJMhf/YsqydPIsoyXbt3kxgeftPIP5erc/Zsgd7eCEJ8A6VqHmVpnHzOQW7k2fPZG7nqMx+j3BQ4fTrP5GSRZtOmVGriee1YvpccJFstm9tvH+HBBy8wPr6KpslcvFhkZqbM9u2dxON+FhaqxGIahUKTmhtAivQi56eR8OFTwS7lKbV8FEhirtTXyzCyLLG62mR+vsrISAeJhJ/+/hhT4zOkKycZO/QC1ygiOV/7Aayo7fARgbasMhDycU2fn5kz/SiFk2ihAKJg0MhVkXt7SMVE1uaXkSMJPvjBDRw8+Ivf9zMzZcbGVtiwIU53d5hTp3IUnQOYEz9C84mMdEK0voarxRiWcjiVRXxOEFKD+N06kmDgOBqSJNLT5cdnrIGnc93Vo+zc08v9959bJ3gAa/o0qZDLWq5ISHKRBAFX8dNaW2NrVkYJBAgkk9SWlujcvp3ixARrExM4pomkqijhMEalwsZf/uW3rbP1tfCeJPmZJ54gkEqh+P10ZQQC4QD1ShT/0klqVYO6qSDLIsGggihCo1zDUUPMiiliTouUUicgdjD1zCSFjghhxQR/GElwsU7/CF2axxeN47aauLU1iPcjSf+uA3ZdF1l7f3TONlZXOfHlL2PU6zimSbSvj4VnnqFVrba9OQQBxzThEtEjiu1/2zYoWntmb+rgOiAEcRYu4JXLtMIS1XyJ2fkHIJLCa1YJBhT8Rn29aarVaCF1aNgOFKemmD96lKXjx9Gi0Xa48wsvMHjzzWz4wAfe8Os2DJtjxxYpFnV8Polm06bmDBHu6cEo5qEnw1P6VvZYEp2dfm6/fYT//t+fplhsEo1qbNyYJJsNMzKSIBRS2b697RHzvQfO0JeEStOiUGiSTofI5ers3NmF67o8/PAEXV0hkskgQuwGyqdCaPVTWKU15uliIjgAhoxnOIiiQKnUQhTbaqBAQOHs2TwHD/bhWSbiyUcJ9vhxQyl01yXlW0Bo5CCYxeeTmF+ocs01fSyfK6EGAtgOkBlGLs0hWjqeKOMZLYKKxye/sJ340NBlx6paNXjxxWXm5ip0dYXYs6f7NR0qX8LcXAVFkRAEgUBAYf/+HszdGU48m0VrrBCPyOQff5BAfQ5bjmMIComgirt2HiE4xOjeDCdPFwkYeYJTTxILCmzclGTDcpm495/wPA/TtLFtD3HuJPqxh9Eqy/T6AziVNeoWyKEw6a4Q3V1B9GKRnZ/6FGsXL1KemSFzxSULikCAYDIJnkfXFVew97d/G1H62fNu3wq8J0leX1sjmG7b18diGrt3Z3jWcChOT7NSFhCkBvF0nEBAYXq6jGlDzRExFZuG1kXMnkbPLYHeIJE/QTARId9/J9Wx4wQ9h6qpELBlRF8cYS2HtDaLv2cj/o4OzEYDUZJIvgOaIN4KLB0/DpJEq1xul1YUBdnnQ19bQ4pG8WwbUZLacWyO8+8zeVEEz8W1HURZBVFul2/qFUTRw0GgobtomRAYZTwsmnOz2LKA2dRZmMlTLevgDeKdnaMUPEuyNYOSynJ+okg+3yDolyn/68PtRprXCGP+edBsWnz5yy9y6tQqPp/E5GSRWs0kmw1Tt30Yvi4GdwxjOx4nTqxw/fUDPPHELPv2ZV9h5jU9XWLDhgR797ZdFu/5i0cJvvAITU2kslqn0+7A23QNa9V2qaW/P3ZJHWYxP18BBGq1DFIySzCotH3kcw0ku3XJkkXAdT1SqSCCAMGgQrHYNk+zVudAr5EaGCG7uojfr2CbMcSzRbq7XUqESKWCZJMyVmeEU24CW4vhW5jF9YUwtbYkUpagePZU2xDsMigWdf7u747TaJiEQioXLxZ5+ul5Pv/5PXR3v3YqUiik4jivdB5XVQk5GMGLROnZ3ok29RT6TB7HpxAQJDK9MZorLfI1m2Q6yn6fSOH+B/A6Itxw21b6eiNYepOZB+6lWtjFk0/O0SGWySw9QSLdhSAVGdrSh1cPU1tZIdwZxjVdWuUyqdFReq++mv7rr6e+soJZrzNxep4j//J9ynM14tt2MXzjnW+Z6djrwbu+08exLArnzrHw7LOUpqbwXJf40BB6sR3K4DgunZ1BDu6J0bNjC+X0HrqiLn6nSn4hj2YUKfu6MVCRHZ2mJVKWO2mVijiSSkOOovs6CC88S0ftHBViLJGhtJynPnUOo6kj6yUa+VXmn3oKq9Fgx6c+hRaL/ZQzf2+gWSisk7vnthtytFgMJAmjXscDBFFst6i/zAxKkGUEoW1o5QKCFsLxBGzTJhwPY7gykmeDZeFW8nhmCzkcxTQsLj72OLWZaXyyh7Y8RkhqMTa+xvxijcOHZ1lYqCLLErWGzYkTK7x4ePwNvebnnltkcbHGjh1pBgZi9PZGkWWRUqlFJKLS3x+lvz+G39+uAReLOpVK6xUED+0JyPh424G7PDuLfvyHuL4QDTHKQk3DWJjEHH+SWs1gZaXGzEyZVssmHtdwXW+dsMG71JXawO+X0TQFTZNwXbCsdnPVhg0JlpfrBAJtop+/uEQqHaa7u51D63kesqpgxPsprDZZm5qmPDfH4ScmYdetRFMxqk0Px5NwTAPHMomHBRxDJ5LtpvEagT8/+tEsum7R2xslHvevpzk98sjFnzjGmzcn8fkkKpXW+rFcrs7ISIJMJky1VMcXChLbvIOQ4uDzdFRXZ2D3FnZfO0oo5MPXXGXbaIKPf+pK+vujCKKAGgxy/kwOXzNHNhvBX5mlactcXPbIbBlBaNXam6fBIIFkkm2/9mtc8bnPsfNTn0JS29LVcCbD+KFj/Ov//reUFnJEVAt97DBf+69f4fTpN91R/XXjXT2Tb1UqnPjyl2msrq77RHRs3MjADTdw4p57mDs9xenJBka1Rr3SZCJ2NZntXdT1Llg8i17JUwh0s+B04RcqDHkTJMQKEaHBvDhIXWvr44tVCZ/XJNqYo0Yvu28eRVoRcfPzuLIfT4StH7mD6vw8G269lY63yCf6nYDEhg0Uzp0j2t/fztQMBNDicXxrawiAFolgNRo4loVr24iXvigIArKm4TkuTqgD03QQjQbhRBCfAk1LQUh049aKeI6FpMZQNu6hevEcVmEaWZFwK6vg2LjVEkE5yOm1GqG+IWKX3EQVWUQMqTz5zAoHPuz9TB7nPwtOnsyRSgWQZZEDB3p46ql5wmFfW9YX8bFnTzeW5TA7W8Iw2g+aEyfakYAvNx6zLHe93X/+mWdxRYUXT62h61Y7LNuLIE+dYybcnqnPzlaQJJFIxEejYdPXF8W2Xep1k2BQZW6uQiYTand7igLT0yVEUWDPni58PoXDh2dZWqpTKEzQH/HRL3g4jseePRnuu+8Mq7kGQrXOEXMvobDC7s4uRvdtZKroceBAFl+5l5kHegkFBDqEGjYywZHt9O/sxG61LjtWZ8/mSaWCrzjW0eFnaqq8Hsx9OYRCKr/5m7v4l385w9xcBfDo64vxkY+MUq+bfPWrYzQtP7gO8uCV7NoSJdOboFUqkd65ky1372VlTOHMv5xfDxyBdplteaVG7/VhRgYGKAqnsPJNTDmI2hejv1ehnsuhxWJc+yd/QmrLlled2+z4BPf95bcpWBFUU2Sp4tKb7SC0eopHv/MiW7fe+npvqTcV72qSn3jkEfRSidjAwPqxtQsXSGzYwKZP/hb/40/uISAbhEdHmV3twKir1HJ18nmbZnOAlpvFtl00VSSTTbGwFqbq+Njd+BGGrKHXDEDANCUagoxsiER8NRzTRGmWkZPduM0KupbG9UWIb9jA8vHjZK+88m0bk7caXbt2sXjsGM1CgcTwMPnTpzF1nXAmg91qIakqos9HZWYGJRRClGUcw0CUZQLJJEathiiJhIa6UcNhCmfPYjYadG7dx5zRQWDheRA68G3Zj17X8R31N60AACAASURBVLkNzHAKaivI2WHEQASnWcVrFLFXV/D3dQNtkneqRXyxBEUxTrNpoQoWKydOUJqaIpBM0r13L8FU6nVfs9+vsLbWJBgEURRIJgNEIiqrqy/Z67Zr9YVCk6uv7uXAgR5CIZVHHpng1luH6eoKYVkO9brJnj3tUs2xJy8yv6Jf8p6XsCyHpm4T9gSCPo9SycCyXHp6IpRKLVot+xVpULfdtoEHHrhAJOJbXzEMDyewLJfZ2SqDgzH6+6Ns2pQkFFKxLZulR2bgseNkNvQQ8TlEkgZPN7JEe7pRVYlziwLlo0vs3dvNyZM5fv/PfpnvNk+w3NSwbOjpiTA4EEXPLRHt7b3sWEUiPlot+xU2DabpoGntpKufhN7eKF/84gHW1trWEC/V8eNxP3/0R9cwvs/PxLe/TkdXAn+sHacniiL9114LsJ685FjWehnF0A1EBNRUe9xDw1torU0jaVGauk0gmUFUFKK9vZctubqux33/+CPqDYdop/+SWMxjZq7Gpi4ozsyvm7q9U/CuJXnHslg9dYrIj3WjhtJpFp9/Hm//IN6mg4TlItbUScJz56k5KaZLCUa2dFMstlhYqKAZa2w0TxLKWXS2bIq6jKWAIlnotJe9ngd+1aXspBATvcyevEDWKaJGLLSOTrxIL4IoIAoytmm+TSPy9kAJBLji859n8dgxCmfP0rVrF7HBQTpGRmjk8zz/pS+1Y9J27SJ/5gzFyUl6Dhyga9cuaktLNAsFIr29eLaNGgzSe9VVOJZFq9agcjJHzXCRssO0Gg7S9ElCTg230cCzDFy9ihgII4oSTfyEuzK06k1kt4XngRRPI+24EZ+pIlg6z//jP6AXi/giEYoTEywcPcruz372FZOEnwVXXdXDV74yhufBkSNziKJAKhUkEvExNrZCf3+MWEwjlWrrtGdmyhw82MeRI3McOTLH/v1ZBEHgrrs2MTQUZ3a2zIkljZitEwz66egIYBgOmHli0Tj4IlSrLVRVpF63SKeDyLJ0KVlJJBrViMXa4SSSJLC8XMXvV9i0KUUwqPCf//OVXLjQLl+GQm1FiazIdH/wLpZfeAFraYFgPMp8dAv5WltZ81KMoM8nceHCGps3Jwkmk1z1iQ8z+dhjbQtgwUVfXqDv2mvXTc5M07m0R2GQToe45ppevvGNcfx+GUWRcByXxcUat98+8jOpnl4a2x+HLIvsuvlKBkfSzB05QmN1le7du+k9eJBAMgm0y4Yjd9zBhe9+t63V9zwc20EavRpDDOAHlMwgTs8mKmdO0RPtpDw7i6Sq7P7N37ysvn95uUaxYhMJK9QtB1WVLjl3ChSLOtkD0XcUwcO7mOQFQUAQ20k6L79VPM9DFASqDRNp4RTN5ReRghESIYHqiSfZJYWwhY8yNBSjVasxnB+jJUksNfxty2HVIKm1aDRsAmoCxwPbMMGsMi2NspDP0pfs57pwBIwGQbmPnkSQYFChMrvE8G23vW1j8nZBDQYZvPFGBm+88RXHo3193P5Xf8Xq6dOUpqfZdOedaPE4qydP0igUGL7tNvoOHsSfSGAbBq5loYZCeJ5HY3WV1NkVHvzaESpHHiZSXaWrK4BV8OFaBk0hglmrYwsFHKOFalnEAi65hoY5sJdwdzetfI7CI/eyZTTFc3/1BEa1ipDs5cWza5TLOlGfjfGVb3Hrn/2vr0tmOTqa4tZbh/nrvz62HgaSzbaJuNGwWF5u21d3dPjJZMJMTBQZGenglluGOHNmlU9/ehfd3WE0TebRRyf47ncvcHIlSN+agleYJhpX0FybuuPwor4fU3QZHIwSDCqMj+dZXnYYHe2kXm/7r2/f3snY2Aqm6V5S0wjU6xZra3MMDMRotSyKxeYryhbVqsHCQpWFWiejo6OoqsTq8WWSnU1KpRaBQPthoGkKy8t17rprM6IoMHjzzcSGhlg9eRLP8+jcto34hg1Ae5P1y19+kbU1HUFoi6i2bk1y223DPPHEbFtKi8D11/dz8OArZ/6e61JbXsYxDEJdXa+5kfvjiPb1sf0Tn3jN/+89cIDE0BCFCxcA6BgZIbXs8q1vnSYUUtE0mVJ6H7H0RvZeHSaSjJHasuU1O6lN04GOHjq6YlTn6pi0nSnRK9T9Krd9/Jqf6bzfSrxrSV6UZdK7drFy4sS6t8xL5LDpjjuIhX0cvvg8Ul8Wt7iCvzBByKsQqi/SfP6rzPX9MhuTJlrZo2go+P0iruvRMgR0y6IU6iPQXCYgOZiCwFJwlCUzi4BIyVCY7buGntUjVOfnGbpiC+WZGWL9/WT37XubR+adBVnT6N6zh+6XNYhcLixZ9vngkn94rWZy30NL/NvXj9FXHSPlM3Gnx1kQFfyRCCghArIFiopVWyEUjZDZ1AWOTffIJs488h1WbQGpVSGVDKOsZJk7X8GwBWblJr5QEEEQyFUEVh8ZY/gjSwxvubx/++UgCAI33TTIsWMLNJs2sZhGMKjwpS8dp9WykWWRcFimWm0rYXw+iYcfnqDZNMlkwsTjGoGAwqlTOR5/fJqhoRhTUyWU4CbIT9DKF5H9GqYp0zKr1L0kxdUKmXSLbcE8JcuP2YogihLd3SEKhSblssFNNw3w4ottsm+HeEvs2dPN9743wTXX9DIxUSQa1VhZqfPMMws4TjtvdmmpxtJS2xMnGFRoNNrWHz6fdKksJZPJhLjvvrOkUgF27Miw6c7BV43LAw+co9GwGBhoiw48z2N8PM/GjUn++I+vWXfMfPnDBtrRnae+9jVqy8sIooggCGy84443rOwZ7Owk2Nm5/vOuNMRifo4eXaBc1rniig1ceWV2fZXzk5DJhJEDQcIHP8yg9AiFxTytmoUrh/nwn/0eW7Zl3pBzfiPxppO8IAi3AX8JSMA/eJ73f7xRf3v4gx+kkctRnp1tH/A80tu3033llVQXl0h3BsmtFFEWz4EaxFVDuK6Iz2vRU3yWNXMYn9eWmCmKRLncwrZdHNcj7yTIaxsR7Ra2z4dP9eGZJqoqsWlTkmAywMBNv0VrYZL49hTbr9lOYnj4XRV88U5Eudzib//2OX742CR9y0cwnBYzag+p0Bp13SZgyYRHNqNPnSRoNglF/ER6M9SXFlE0jcbTPyBGFds2SO3Ygj8Wo7ayQnVxkVK+ghTKsRreTJVwe9PO0PnWvef40//tZyf5lzAwEGdiokgopFKptF4SDiHLIt3dESYni+RybUVLd3cEEAiHVb70peP8l/+yn2eeWaSjI0Ao5GNDVqX1+LPQu5HlgkGzaSFqDqPWBRaDnfQtP4WxqBMPa8Rsi2h+hcjuawizQF82QlTSWK6560of23ZpNExEUWBursKzz4pcuLDG4mKNlZXapWAQgQMH2uT2wgvLzMw4VCotFKVdblBVkbm5Cn19Ue677yyZTJgTJ2wOHZrmc5+7gmy2Pdudn6/w6KOTfP3rpxgcjOHzSZeM2Nr7FcePL7FvXxZNu7wn0fg3v4leLP57Dd00Ofdv/0a4u5tI9vV/Lj/bZxdbfxi9HmiazF13beLee88g7/tVOloVmrrD7mu2cNuvvLOaoF7Cm8pIgiBIwF8DHwAWgOcEQXjA87wzb8TfV0Mh9v72b1OencWs1fB3dBDu7kYQBLRImM2bO0gsFFipajiKRkR3sUWDZiBOWLGYNzz8ukUy6VKdnyEjmURVlWbLo0qYlgmKEiQUapsb+XwynZ1BEgk/qirR1Ztk1pUZuPkKkoPxn37C/4GfiqeemqNSMYjp8ySq5xFwaVVlCnWPeFDA81yCARUOfojKmTE6ogaSLCOoGroSozpzFq9ZwWnWkVSlbR5lGLimiY2EWS6h6OeJpjYgCFDJbObRx+b43d/TicdfX9D7tdf2cepUjlJJxzQdwmGVWs0kFtOQJIF43MfSUo10WkVVJXbuTF8yAmt3cxqGta4u2Zi2yXUGyBkKgmAyMBAlkwmzcm6SLvU8SCJFK4WhSqghiZQxg/r8DLqWZm5KRqq2CKav4MRsGMtyEYR2t6ooQrlskM2G2bkzzQsvLLO0VGffvixDQ3FCIZUf/nCajo4AHR0BHMfh6NFFAgHlUt6CwLlzhUuBIi67d2col1vcf/95fvd3r2Rmpszf//1xZLmdzVAoNFlernPddf0kEv52OfVlpbD6ygqWrhPs7EQNBmnm81QXFtYJHkBSVSRVJTc29qaR/C+CXbsydHW1u3B13Wbz5uRPzYN9O/FmTzv3AROe500BCILwTeBO4A0heWhrsOODr146+hMJMjt3UJ7+Dl2ZMKWmRFB1kJNB5EQPTrXM4FA/JTtHdPkpBKPdlBPwDIpyB7GQQFzP0x+qI/jDeOlhZvLtWZpt2aR6o+TzDTo6AvT1Rd+oy3nf49y5AqmQTXXlKQSjhhvsAMtEthu4jopPtLHXcsiAN3AFqT1pFh/8Fqt6ELwGYrmE63qIntDONq1WsQyDYEcHkitgrdWQJZALF6ls/hC1xDaCLY/Tp1e55pr+n3p+L0c2G+Hzn9/DQw9d5PjxJZpNmxtvHCAUUimVWkSjPgzD4UMfGlmf9QIEAipLSzV27uzi4YcnCIVUREkkFtPQfFGiUR/hsI9oxIceUWjkV7BSw7SW60iSSEdYQK5UwacR3dhLsagT6hbJnTiC7hzAH49j2+6lGMJVrrmmj0ym3Xh07bX9zM62JYn1usncXIXp6RK6blMut1AUiSuv7ObcuQJ9fe17XFFEWi2b2dkKmUxbWz87W6bRMHn00QkiER/xuJ9stko+30BVJc6ezXPVVb0UCk1uvnkIs17nha98jdNHTrKyUkcQRbbd/UscvH3fZfdDREXB0vVXHX+noKsrRFfXO8dp8ifhzSb5LDD/sp8XgP0vf4EgCF8AvgDQ9wZ7vWy++26MWo0Xv/xlSkWXpbxLyZdFbVUJayLZzUMYZ49RjWzA9Rk0TYc1I4Bgm1xlPUHNU3FbflRrhYAxid/fi6+6iv90i6A1Qih9E7/+GzcjSSKW5bC2puP3y0Sj7w9LgzcD0ajG6umjBKIhagUJ2zZAFDGFIBoegb4hAvtvRukZoVRR6NgmM3bPPSgBEclzMSUJybOwlRB6tY6qSHiWhaiqRFIhLnjDhKJBfHadYmIHDd1jeDhOo2H9XOebTAYQBOjsDDIwEOPkydylkonA1FSJUqnF2ppOOh1an7U3mxbZbIQrrshw+nSemZkyPiGCXXdQxBb792cZG8vhmC3S3VHqAZWcAYoiMjgYI6XWscouXLLSEAS4Ym8v86enGIqZTDVsgkEFTZOxbXe9Bu55HtPTZSoVg2PHFunqCnPmTB5JglBII5uNMDa2QqmkY9fKRMs55EqRkpCgonSiaVEWFqqk00EkqR14/VI5B2DbSJBD8zmWKgKzs2U6U352DwqkrHmO/c2PePZH5ym5YSKpDJ5jc+yfv02+oTCiaZiNBmowuH6eZr3+jvOAebfibS8ge573d8DfAezdu9f7KS9/XZB9PrZ/+jd56mSDpYd+wKploolNLMtgNnk9548ucFWsSax/By+8sIy/Q0arGmR8NfzFRYT+g3R1hdo3tlKgv/wUsatvojObIqaZ+MxjaM4+Tp2qcf/95zEMG9f12Latk7vu2rzuOvgf+Nlx7bV9/NU/TLC66oHQSVRfwvIkREEghI5PFbFzs9TqBsHerXRv24qT3ohfsbHzC0jBKIIk4dWqOIqGazdxXRd/PM6Gqw4yd3iNeqlGw9UQZIV9+zqxLOcVQRWvBw89dJHl5ToDAzHS6RCzs2G++90LhEIKO3a8FPa9RLXa4sCBXlZXG4TDKjt2pNE0md/6rd1cvFhse7Xs+CzO2A8RvSrZYJPFpSbSjptw15ZJL55m523DLCzU2tI+U0fuH6VWNchk2kqdjo4AW27ZgpgevJSyVOWxx6aYmirR3x9DlgUuXlyjtzdCrWZy9myeSqUtNx0aSpDPN9oh4WuLjBov4Jk+UhE/vrULpGMZHPeDCAIsLNTYvz+LzyeTSgWprRYQzh1h/uQ50g2LAGFW49tRzjxGyIIz0zDx+GHKeoDEjr2IigSKhJyOM/30c+z/g//E6g/+Db1YRLo0g0/v3EniDWoqrK+s0FhdRQ2FiPb3v+O8Zd5svNkkvwi8XCvVc+nYW4YLF9aY17ayMqggJXMs5A1MQcNcaZDqj5LsTnHgQBpVEXnhxRVaLRujtowgaPT3RYlGNUTXIVGaoqaoFAo6hWqecFijN27x/X+4n2cqgySTARzHRRAETp3KIQgCH//4trfyUt/1KM/OUnzihxhT4wQadYr+fnTBT1ys0hU08HSduhSBUpNg5Sw7Mg38yi7ckasQVk+gDu3Amj6FJ0rgixDftoMNgxFmn3qKnquvJprtZv9uGH+mgLD/RrTBDLWaye7dGQZ/jj0V03Q4daqdG3zo0AzVatt+oFJpIcsChYKO53n09ERYWKgyPV1m//4sN900uK7kUBSJ0dEUo6MpYBjrjn2UZ2fZ4brUpDgziwaqaCOeSdKYm6aVq1FcrSD4EjRNH6GIzPZtnUiOgRbyo2sporJIudzi9Ok81aqJIIgcOjRzaWPYo1Ix6ewM4Pcr5HJ1CoUmx48vI8siAi4bm6fw/H4qhGg0BbR4hoizxuLMeeTsfrZtS/HBD7Zlkzfd0Mc3vvhP1ApF5osqqi+A5ja4wTsMRR8XZzrZuzeLp4UQak3s5WnUvs0ACJICpoEby3LVF7/I6vg4ZqNBYniYxIYNv3C+sus4nL//fpaef37dTiOUTrPz059Gi75/SqxvNsk/B4wIgjBIm9w/Dry2qPVNwPR0GVkWMNQYHYMJtnpPQukchufSY0/iKt0cf+IUJycdikWTZq2JS4tWLAWOjTl/HmamKJWWUYIBYkEBQ1YYH88xbrXQgkWeF1xCIR/hgIi/OkfEWMI8EeeabZ+hZ9vGt/Jy37UonDvHia98hYnZJi1/kkQrh795lpXQKBUvRbR0itTW7Vx/516g3dRTW1ykefEU/dddx+ILUaLVizjlNI5ex4qkyQ6mkH1w9R/8AWatRnlmhoHBJKN3/D7zRgetls3WrZ2MjPx8m2au69FsWrz44jKSJFKrGczMVNB1C9t2GR5OEIn4KRZ1Nm9O8Tu/s4cNG37yikEJBNZb6TuBoU0eMzNlTjeuxwpv4YYP+PBF4yxNL1M+/D0iIQmrsIwXCPDLf/p7fPuxIuXZMs88s4goCgwPt2foCwvVS/45Kj09UVKpINWqQaHQRJIEXFdAlkUSmk3MspESSVzXwzAcYjEffiHB7Tskbvv9/di2x/Jyjf7+GN3BJprbYGxVwPMcXA9Evx977jhaJEylsMh0YwqvUcVDxSnl8Ho3IggibrMK3fuJRHz4EzH6r7vudX8GPwm5sTEWnn22vWd3ieRry8tcePBBdvz6r7+h7/VOxptK8p7n2YIg/M/Ao7QllP/oed7pN/M9fxyxmIYoimiahDp7DF9zFTuRwWuYmD4/5uoyM3YCQV9gICGSdyzy7hB9rRmqx76PlAhiOhKarePVDZrHHmHRtxEpnEXyWjTkDNWSgdUy2Bw4g1/P00Jj7fwqz3/pfyD8xq+9r2wOfh54nsfFhx5Ci0ZZW5nH38xRJUpQrtNlz1HzZynqcXz+LOHwv5t8abEYpclJPvbJG/iGC3NzAwgDtyDVchzoN9m0pZPU1q2vUG68hF8s0uLS+19KNKrV2k1J+XybMCWpLU+cmCgxOppCVSVyufpPtde9HH7wg0kOHZrB71fwPI9jZ6vcckuKWz56Hc5dB6jMzyMIApGeHiRVpXu0yQ9+MMm5cwV6e6OcO9dOfhIEgUKhydRUibU1nb6+6CW/nbZWPhCQ8flkfD6BhODHDanEE35mZyuoqoRfEBi/UOXs//0MyWQQz/Po6gqxrbOBZdkMDsbQdbttV1BexGo0UGMdoIUJJJO4poFaLtAyJOTyGp5lUFNSZK/Y9Srhgus4FCcmKE1NoQaDdG7b9nO5iC49/zy+cJjc2Nj6OEUHBlhttbB0vd21+z7Am16T9zzvIeChN/t9Xgvbt6f54Q+nGegJUBuboh5MYNUMFNEjFhAwGiq4HsXRu4koLULCkwgrOSqWj25jHtNUCCsCthYGWaRe1RGt8zi+ImU5STXZD3jE9DlozGClB8CFlqWidqS5+L3vkd6+/X3jL//zwNZ1GpekdPLqFKLdQnYtEDxacoSzyQ/S33wQXO8Vkjyz0SDS20sk4uMLX7iCXK5dU+7qCl02Tu7NwJYtSZ59dpHp6TKKIuB54PNJiKKA53nkcm1FzFVX9bxKovlSbu3Sc8/hGAZdO3eS2bMHT5SZmipx+vQqDz54kZ07O6nXLebmKhiGzTe+cZJt21Kk0yESl7pNX0IyGeDmm4cYH89TrxsIgoDjeKiqiKbJbN/eyfHjyywt1S7V8f2EQj5KpSaCINA92IVSGsRanmG+ESGVCrBhMEJlrsKi2420WGf79jSKIrG0VOXh80UCkkAy7md6ptK+/kYOWw3RappEkyq1moGjRenoNGF4HytuChJZ9nxgHx+8beMrVlGubXPqG98gf+YMit+PY1lMPfYYO37jN0hs2MD0dJnx8VVEEbZtS/9ErbttGG2LE9vGdyljoDgx0ba+vuSY+n7A277x+mYjFtP47Gd3c+//+10K5KlXKqiKQE/cJWH7mZpdxR/swo7vR67lCFl5lJ4MRsWPaBkkgiZGpYwRzFKq6MhOHsf1EKwmJ6RtOFNVNljjDLTO4FcMPKtKK9xPV1cHsurDbdZo5POvaeD0HwDJ58Oo1aivrJDZkGU6N4+s+LD0OopepNkw6dh1JSFzEseykFUVo1bDbrXoveoqoN2F+nZI2nbsSLNlS/KS6ZaELEsIQrtrVxQFTNNhy5Y4n/nMrlf97uSjjzJz6BBaIoEoSZx74AEWTozzWGGYs+eKGIbDwkKViYkisiwQCqlIksjyco2///sX+OM/vuayPimdnUF6eyN89atj5PM6qirieRCJqNx99ygAgYDM4GAC8Dh0aJZdu7owDIcLF9a4aGTJlJZJK6uksymsksNSdCea1oth2JRKLTo7g3R1hTk6XSbTuYWO+kXSEYG1YplAvUxVzZCMBqmt5qnnBfBcECQ+8Ln/id++oV3CvNy558+eZfX0aRIvCyAx63XOfPvb1LbdxfcenmRtrXnJeVPhE5/YwZ13br7sZxNKp2nkcsSHhto2KJK0bondKpXW1TzvdbznSR7AmTjODvEUS8MR9FKRVn6ViC9LONVBcKWCbbSITz9OrHwSyTZw84uIog/VyWN7gGngNOexdJk6IWbpRfE8Ysko3ZUxVDOPowaRNRFVdehgHsKdRKI+Gg3vfbMs/HkhShLhTIbVkycJd4gMDMaYny6g+QRagU4+dF0Hwa7tbPBtQF+bxbUs/IkEOz/96VcZ1L3V2Lw5xaZNHZw6tYrfr9DbG2ViYm1dZjg8HOdXf3UrmzYlX/F7eqnE7JNPEh0YWFd7iP4gD9zzOMfMVXzdA1SrBsWijuO4pFLBda17PO5ndrbM5GSJjRs7gLb3i20YyD4fgiiSybQJzLJsVFVdDxEpl3V2785w003tIJNqtUVfX5Tp6SLFoo6u23iehLHlA5zL55lesUkHesivuSQSBuLLNkMFAVKpAEJmH649QLY4RYduUJgL0S0aEEkSEA1k18Rp1pA27OaRxxfZvKP3sqZjAPnTp9F+zDdGDYXIn5ng++eeYyonIMsSluUxN1flv/7Xw2zenHzV+ELbziCUTqMXiwhCe2WlBIPE+vpolctv+73zVuE9T/J6qcTUD39IbGCAQEcHY//8z8g+H/VcDlGW6dvUz8WCQveZZymSwK0bGJ5Cl7iCKzpUqi6ybeOoCiGxjoWG7I8gGjXceplM4wyi5xByaoSMKuhBXEVj455NNHPLdIyMrLvi/QdeGz3791OcmKBVLNIdAy8boerrIix6OJEw6UyEuz9zHQFNxDEMlGDwLQ/uvhxUVeJzn9tDNKrxta+dxO9XuP32ERoNk1jMz+/8zl6GhxPousXkZIlWy6KnJ4pSzSPQNvGamy9hWS7lcouVvE5Pr4Ed9xMO+1hcrKLr9qU8YhfDaDsfZjJhJieL9HZKnP/Od1h45hkkn49ITw8DN9/CiRMVPvrRrTz99AIrK3UiER/NpsXY2Ap//uc3Mj6+imHYOI7H3FyFaFTDMBy6uyOXEpzWcMUQlixi5QxKpRaTk0XS6SBXXdVelRYKTUZGOvjQh0a4994zFLRuPM9jyzUKoYuPMf7cJHJHGM9zkTsyBLZfRSnvMDFRfE2SV/z+dhbwj6FaaTE1U0ONxllaqqHr7deUyy3+9E9/yD333P0q75lwdzfJLVvwhcMY1SqyphFIpagtLr6hSWHvdLznSb6+vIwgCIiShBaLEevvx2q1MCoV4kNDdF95Jcqzz7FUDhNKbaZ04jkiqTDki+hNj5anIJoWjt2k6YWwRJGIUKWU3Ulf8QIBoUUkIqPgw+/vxqkWUXw2lfHn2XzT1Yx+5CNv9xC8K9C1ezezhw+TGh1F8fvZJAgsnJ3Bi3ez/ZPXsWFDYr2Z6K2IWPM8j8rsLPmzZxElidTWra/ZYq9pMp/61E5uvnmI555bolTS2bQpya5dafx+hYWFKv/0TydoNMz1GeWVm1Sq8xUOf2+Vet3A80DXLUJOCwQNiXZ39chIB889t4Sut8skoVA777ReN5FKCzz2R/8nufFxfKEQgixjGwbVlVWsxja0zDauv76flZU6Kyt1oG2wVSg0uXChQH9/u3nL81xWV9udrX19USqVFq7b3lg9f34NTZOIRv2YpoPfr/DYY5NceWWWVCrA3XdvobMzyBe/eIBiUUeW2527Z04Ocar2IErARIx2oGQGERQfUPmJD+eu3buZf+aZ9YBsaCtiAt19VC74UKsGjYaFaTo0mxamaXPyZI6HH77IRz7yyuape9K/EQAAIABJREFU+NAQ0b4+aouLRHp68FyX6sICnVu3Eu7ufkPuE0vXyZ8+TXVhgVA6Tef27aihd1Yn7Hue5GWtHW32EiJ9fVTn5pBVlXB3N6IkYZWLpDf0QiANozuQClNUGzqe7VAP9jBnbSDrr6Hoa3iux2lnI46ZZIf7IsFYENGoEE23A5mtS+qP7L59pLdte9/U/X5RBDo62PWZz3D2vvuor6wAsPHgFWz68IffljGceOQRZg8fRvb52p2ihw6x6Y476L366tf8ne7uMHfe+cqgCdf1+OY3x1FViVQqvn7s+0eXab2oIzQKdCS7QBBYmVpEd2QWikE2pw1ExyAR04jFfGze3MG11/YTi2nU6yaia+GNP0V9dZVIT8/6eVZnZ+navZvowhnK5WFisXYnazbb1urv25fl6NEFfD6ZJ56YYXKyxNpaE1EUKZWa9PZGsay2JXAwqBIKqQwNxQkGFbLZMJs3J6lWW+zYkeZjH9u2vsH9UnjKSxja2IXavwUnrKIF22Rtmg6e5zEy8tqz6GhfH5vvuouL3/te+3vruoSzWbZ9+Ff5/44+vL6ycV0PSWr75SiKxD33nOBXfmX0FZu4oiyz69OfZvbwYZaOH0eUJIZvvfUnfoavB8szKxz+f/4Gp1YmmUkgYzN96BB7vvCFd9Tq/T1P8tG+PvyJBI18nuD/z96bRsl1l/e6z55q75rHrp5ndbdaas2SJVu2ZeMRDAQbDMSAIQeSAxfCAnLJWZesk5uclZyVL3DuWVmXQC6EALExGDyAbcCzLVm25rHVUrfU81Rd8zzs6X4ouW0hyRhssAP9fOuuqr2rau9693+/w+/X0EC4r4/M5CR6qYSkquRmZ9FCIVSPh3hBgEAjNVeYxfECLrFAsWTSYkzizhdwiRXSahsDjDGfzOCPepE9DhyxFKpsYdZqGJUKnuZmfG1tVDKZt/rj/6ci2NPDlX/1V5TTaSSHA9V7eaPn3yX5+Xmmd+/G39GxnC83dZ2xxx6jYe3a1z1Ik0qV2bdvluHhJdata1z+vygKpNIVxuwhNkenkAuzCICnIcKhXCdtxXNoB59BBCwdbt54NRve2cfsbH5ZAO0DtzSy9AsDS9eXv6eXi4vVQoH+VjeHCjVKpbo1YDZbxe9X6e8P8k//tIdCoUYyWcLlqocAr9dBuawzMpKgtdWDZVmUSjX8fpXmZg9QN8Vob/dTKjlpbHztDiZNk7nrriHuueckiURp+XPfcccg4fBra8W3bd9O47p1FBYXkTUNT3MzgiDwmc9s5Ytf/AXlsoGqyohi3XmqqytAsVhjcjJDT8+FQ22Ky8WqW299U3weKtksCwcPkpmcZDolcWDPKCRmEPwRxFiOTetCOObnOfa973HF5z63fCfyVvMHH+RfvpoP/+hHZKenAejYuZNQXx9mpYKnqYmGtWs5/eCD5I6PMZcskIlnKKoRZBT8+QSyWEOxDXJiCAmLYIMXfyXF5nVNNPW0EH8+gaHXECUJZyRCx1VXYVSr+C/Rn73CayOIIq5w+C19D5nJSQRRvGD8XVLqfeq52dnXFeSPHFngJz8ZIZ+vMjqaJBYrsn59lJ6e+iq2WjXA4aLQdTUls0qpWKWGSvTUfqKlMUKre9BN6AgobF61yPYbAogN69B1i0jERW56iiVBQAsG0UulZZMNG9CLRbqv28aVt1zBwYPzLC0V2b69jTVrInzhC78gmSyRSJSw7XrgFYR6AG9qcqPrFopeZFdkAk92gWxZwpgbIuVoo7snjM/nIJUqXRRML8WqVWG+/OWrmJzMYJoWnZ2Bi8zML4fichF8VYcNwPvfv4Znn53gwQfP4PWqaJpES4sPy7JpafGRz1df17Yvh23bzM3lmZvL4XIprFoVWpYmKadSHPzGN9DLZQxR4+DTZ3DGhtFWb0PyuSgvznLkx3vpavewcOgQernMxk984m2hovkHH+QBXJEIWz/zGcrJJJZp4m5ouGhkevOnPkXriROU7nuOB34+x1I0TNvi81jeCC2VMQpKlJot0xySkF0lAuv76et3MX9gH0a5RCGRwNJ1NK+X1OQk3ddd90dl6P2HhKRpYF8oo1Qo1BgbSzL8oxHaN9Zz5fF4EV236O8P09npX8415/NVHnxwBMuq98m/7Ml64IC5vAL2+TRaWuqPp1KVuoGHUaAvc4bOK/rYcVUXqibj8zqYOzfPk99+iM2f+iQ9PXWTbl9bG6rXi7+jg9ixY1imiago1PJ51P5+um+4AW/Uzbve9co5+MMfnmB8PMPQUCMHDsxRKNQoFutyx729Qa6+upP0YpzbGoZxawESlShHDsyQnHqRhrVX0djezcREmnXrGuntfX0yEC6Xcl6y4Y0jigJ/+ZfbmZjIUqvVC6+lkk5Tk4vWVu8F6aLfFMuyefjh0xw4ML/sC+ByKdx99waqVZPjP/ox+kyKzqFeZqaz4I0gZl3os2cRulWYPYVdzJOeSiNLNonTpzny7W9zzVe+8pZ7TPxRBHmo38q+Vp5M1jRat23jQ2s3cpJnWGuWyDx2iKLgxpiZqPdBe1RUpwNRsBha10R27CTNW7Ywu28fNvVWQKNWo5rJoPr9b/nBXeG3I9zXVw+YhQIOj4dcrsLzvziJbdt43VF++cuzfPWrL7JlSzPBoJNnnplg584Odu3q5PDhBZ59dpI9e6axrPpw0sBAmDNnEiwtFdm/3013d4APf3iIM2cSfOMbB9F1q25qbeg0hBzkSybVmoHfr/Lsc5Pk0wVEO84x6ShdXQHuvnsDmiaz/mMf49j3vkewt5fszAzVTIbem29m8yc/uey5+moOHlzA61VRFJG1axsYGUkgSQK6bjE01IjHo9DoS+F22PjbWvEDnV1hDu4Pc/rgEQ4JbVz7jj5uvXXVb+Vj+nIxOzM1hcPtJjww8Bun5Pr7I3zgA4M89NAZ4vEisiwyNZXD59Pw+1/fXcKlGB1Nsm/fHF1dgeW8/tJSgS9/+XG6u4M49h/EkhycW5qgvd0PRhW5oZ3a+HFqLi9mJo5giSAo+NvaKKdSzL70EtmZmUtKof8+WYlCv4LLpbB9ewsnT8RYtaaN4vgwpquCXs3iVL14HUF6d21DLKWRZBlZ01A9HgLnZZL1chlZ01g6fpzSjTe+rQowK7w+VK+XDXffzYkf/IByKsXwySWQJBpv+BMMp8rsbJ5gUCOVKrN2bRTLsnn66XFefLE+Ol8u64yPZ3A6lWVt+A0bmhgdTdHa6uVLX7qSSMRFX1+IEydiFAo6oljXmTf3nyA5F+eJJ0wURcLjcRBRayhda9G6AkxNZXjhhRluuKEbX2srV/3VX5GZmsIyjOXV/eVwUSKUGUbLVXD4mym1BlmIVymVTMBG02S6QjpnxkpY8zO0tPiYn8+xECvR1uZl4KoG4ukK3/3uMT772W2o6ivhY2oqw969syQSRfr6wuzY0UYg8MqUt21ZnHrgARYPHUJUFGzTRHQ42PDxj+NoaGF4OE48XqSl2UN70MChiHiami5aKImiwNatrTz11ASqKiFJIp2dARRF5JFHxi4rChiPF6nVTKLRugvcr3L06CI+n3pB4TaXqzI9nWPbtlbEpjB2pUS+XGFu32nE2Dzlcga7lMHILEG1jOgK4W9qXa4hpMfHyc/PrwT5tyO33dZPLldj8oUKYnIBRBGvw0QxcogFE9mu4evoQ5Rlqtkswq9Il4qShCBJlFOplSD/n5RgTw87//qvyc/Ps+ef9xPpakdyKCRiBQzDwumUWVws1A1KRIF4vF5cvOaazmULPYdDYnY2x+rVDVhW3dg7GnURibioVg0mJtKYJmzc2IQsizz77CShrm24zzyJTyywEDOw0gaR1c04VtUnZqNRN4cOzXHddZ1IkojkcLyutGB6fJyWmccpmmkyGRM5fo5OLUTRtZUrr+zljjsGOXJkgUeeS9FUiWF5Gzh+fIlcrsKmDVHEsoTi8dEa0piaynDmTIJIxM0LL0xz6NACo6MJBgYiRKNu9u6dZv/+OT73uSuW9XqSo6PMHzxIsKuLas1kZCTJzNkFHn/6H1nofieNTV5cdpEXDz2ORyixcVMz7oCXoQ9/+KLc/JEjC6xb13iBFpBl2Zw8GaNUGrjAQzabrXDffcNMT2cRhHpB+I47Bi9KIYkiWIlZynMLCIKI1NzD5GTdpF0QBByrNlF68REcyUVK2RwBtUY2XcLyNiPoRUTdJBBy4W9vq0tJ1GqIioLjLWoeeDUrQf4SuN0OPvyeVh593iRdbUTUK9hWCFPXEQSB6NAQm/7Lf+HkffcxtWcPtmnWX3je7CAyOIhtmqh/RHKmf4gIkozW2Eqgo535hSKmaTM1lWFsLIXDIWHbFgcPzrNxYxPxeIn+/npR1eNx0NHhIxYrUSgYLC0VUVWJvr4Qvb0hEokS//ZvR0gmS0xNZZidzaEoQl0GwdXAXOAaNkWy2PlZ4u4oHZuuR3R5sW2byckso6MJstkqHR1+br11FdlslRdemKFYrDI01MhVV7VfUOC0LYvTDz7IwPpOCkIAKV6gWNRRszFuWWfRfU0nv/jFWQ4enMcttZAbP4yqljAcXpJLOcYOJum/5SYER31lrigSx47FOHMmiaKIDA8voesWJ04sMTAQZno6y8JCgcmRad5/lUx7yCI9Po6sqlg27N07Q6Gg448GmToxymxtGstsY31pNx6PSLoWYqnipk/TOPa973Hll76E+qop2ErFXJ6ZeJmXV+CG8YomjW3b/OAHJ4jFinR21n+L5bLOvfee4POf3040+kprbjR7guN7H0YMeEjES+TTTzFd6qAUHaJS0fG09qKs2kDpzFEqFQtdztOypg85EKGyOI9ZcGAbNXKzs/W7KUEgsno1vjepH/+NsBLkL4NeLFJdmCHUHLlAXCw7M0MxHkdSFAbe+16K8Tjps2fJTE3VR6Y7O7ENg+i6dXgaG19jDyu8nTlyZIHHHx8nk6lw4sQi09M5/P56qqZU0nG7Ffr7Q8zP5zGMum7Ny4FVkkS2bm3lwIF5ajWDK65oQVVlajWTnTs7ePjh01SrBr29Ifx+jRdfnGF0NIkggGHYBINeRqwoS84WahWLjXJ9xXr2bIoXX5xm+/Y2Ojr8pFJlvvSFR/HJNfrWNOMJB3nhhWmGh5f4zGe2La9oK9kspXSaQEcH11zrJ5Goa7847CYkl84LpxMEg048HgeGITPquZLW2iidUo6SbDGlrcXWO7ni/Hej6yZjY0k8HgdOp0KpVK8fZDIVnnhinIGBCO3+KurRn7N3SmVoUzvS0lmquRz+LbvIZqtEwi4s26Zc1Gnu85OdnqZEAk0R0JZmmZw0abhhI7LTSXxkhLbtrxjKrV/fyE9/evqCC1kynidcneb097+FADRv3YrYOsDMTH45wAM4nQqiKHDixBI33FBPo+Tn5zHGj9OzaTVPPTNFpSJSKWk0V85wONbID35wkl27uqgtuaiYbbi9ImZhhrmxAo2eFG6hgqI5EDUVV0MD/vZ2BFGka9eut8Wd/EqQvwyy04lRqSD+ykESZRmjUgFA8/u58gtfoPsd72DiySfJzc/j9Ptp3bGD7uuvfyve9gq/Aaaug21f1M98/HiM++4bprnZgyQJlEoGTqdMOl1GlgW8Xsdy66Ggl1g6fpaPfXSIY1NZymU3TqdCZ6efWKxY74lPVSgW6w5Ov/jFWY4eXSQadTM1lcHtdnDjjT0Eg06efnqczZub8fnqiwpVlTh1KsHCQp5crsq+fXMMDjawenWEctng1NMvUtv/DBVNYOqoQuP6jbS94xam58scPx5jx466NousqgjUV/SSJNLY6KGxEYrxOONpcPsVHA4Jy7JJJsvIgQjT1QDqqhAzrkzdTGQ2z9C6GqlUhXDYRSxWIBiU2LdvlomJFLWaRS5XQZZFWlq8tMwfQPM48be3ML5gcO3WTYw++ihLp08jivXflJVPY7hC6IoH0U5gxCYxFBtbcSHJCqlz57At66Ie982bmxgeXuLcuRROp0KtqqOMPk9/OEtu1oVlmiTPnkXtXovAxflwRREpFF5pt8zOzCCIIgGPQGtYZD4p43Y78GNSUW1isQkmH9iNkyotUp68EMVVq+DUi6TLIjUVmhubsHJp/G1tRAYGaN2+naaNF4vSvRWsBPnL4AwGCff1kZubQ9E0BEnCKJdRfT4iA69MNQqiSPPGjTRv3FiXLxWEt4WmygqXp1YscvaXv2TxyBGwbRrWrKHvXe9CC9Rla596apzGRjcul8L0dJZAQCMY1Dh7NoXHIyNJAoIAm9qqaOdeoKbW8M4UWV+sMj4ySDzSjyAI3HnnGtrafHz720cIh12oqsTw8BKPPTZGR4d/Wa3S51Npb6/L+uq6tWzJZ1k2113XxQ03dNPY6KFSMVizpgHbtjny7FEcY88jaG5qTg3B72Lh6FGcbhX36muYns4uB3nF5aJp40YWjh7F39aGIIqYtRq1QoHQuquYGLeIROoXroWFPKIo4HBIVKoGzc1eOjsDnD6dIJmssG1bC9df38W//MvB8ymiulRDfZoVdN3i3OgSkfIikSuHcCgS+XwVRyBEy5YtTB44ii0YGLaG6Pbj3bGL+ZkqqgVSNYflbqKQLtDgNigmBPRC4SJDb1WV+cQnNjI2lmRyMoNWy5BLpanEF4hNl5af54gtITf6qFQ81Gom1aqBx+OglC/R3eLAtiwEUcTSdRYOHyaVKqPEioTKYDX3I+gCXUqMVnmKEk48PjeOYgJ/ZhQZA8nWwRZB8ZHO6vQM9NO0eTObPvGJ39ep/LpYCfKXQdY0Bt//fkYffRRb1zENg0BPD6Ig0HH11Zd8zRu1K1vhzUUvlSjEYihOJ+7GxrpujGVx/PvfJzc3h7elBUEQSI6NUfjOd7jis59FVBTi8dKyTvnLud5isUYiUcLtduD1Osin8iSff4m2vhZcQY2mgV6ipkHDzBSDH3sn4Y4WNE3m059+lHPnXs7hQzpdQhQF5ufzKEpdd35qKsvkZIZVq0JcfXUHsVgRRZFobfUum4Bv29bKM89MUqkY1GomxtQp3B4PegncDglREqm6wmRPH8fRuolo9EJp6/53vxtT14mfPAnnB70Gb78dsX2Ql/55P8eO1a0vvV4HCwtFFEVgaanI7bcPUq2afPrTW/ngB1/RhtmwoZEHHxxB0xScTgVJEqlUDAQBbAREhwOHbFOuGPh8GrIs4mtvZ31XF0a2nViyRrSvmw4DJpemcFRsMlIE8+wkbitPNqtQcYh4A07O/PSndF5zzQV5eVkWGRxsYHCwgfnDh3ny3BkcLheSp57GKhaqiFOnWfOn1/H9J86RTldQZHAtnWRDYImY1EHuaT9973wnsy+9hFmt4vJ7sTICVAq4YieohHpR8guUPFGcioSsyiTFfnzCJHZ+gZozgFHV8TY2UHI20HHtleTOD1y+nVgJ8q9B7003Yek684cOAfXb3r7bbnvLW6JW+PXMvPQSZx97rH53Zdv4OzoY+tM/pZxOk52ZucAtSvMHOPfSYc5lv0v0iqsJBjXS6TLBoJOODj8vvTTD9HSW5mYPllWXK2gQMiRiWRYKDrZubWFmNks6XWF+ZI592cfovvpqmprcnDgRo7s7sCxMNjGRRlFEkskykYgby7JRFBGPR6VYrNsGDg1FgbrWC9isWhViaanImjUNPPfcJC6XgqiXqFkiqlpPJ5VKecBGKVdotXQ2brywT17WNNad//x6qYQrHF6uNd10Uw9/+7fP4PGodHcH8XhUnE4Fw6jr2Q8NNfLOd666YHsDA2FWr45w/HgMw7BwuxW2bGlhdrZ+51OxBshOT0GgkW0bQszt3096cpKB97yHD3/iSg6PVjh0qG6b+KUvXUk13s3j/7CfoKOCqLsRRIkqKlVVRBBFZvfto/emmy55rM1qFb1YRPaHGDuTxLItFFlCz+s8/fABmja+m+7uIPb4YUL6IjVniJIcxOOQOfiNbyAIAr0338zsS/vwyFWKehVDsKioDdjZJQLNrvocA/W7q6paHwSLEwavEzXiw+V0YFYrl5xPeKtZCfKvgeRwsPp976PnppvQSyW0QOD3ooC4wm+HZRgIkkR2aoozDz+Mt6WFajZb1xw5ehQEgbYrr+TVybTM1DRHf7Gb7GICaWSRsedeJNV2NWU1THd3kHC4Lvmby1UxTRvTrPue5vQaqiYTavQQixU4cGAeSRLQqimmz57FPqpQLNawLJtazVzuKVcUiVyustwnbxj1QShZFolG3czMZM8H9/oA38039/KTn5xiZiaPINS7Q8CmoDYRqJzC5wtQKulUqyZmuUheVGjsarpAlO/VOINBnMELp1WbmjzLHTmyLOL3a+RyVc6dS7FrVycf/ODQRR64TU1eGhs9rF9vMzdXoKHBfV6z3iYcdpFKrqZxTRONxdMk9z6JKElEh4Yop9Oc/Pf/j6v+63/llluuWd7ed76TJtDViXBiDDnUBAio5TwFQ8Hd3klydPSyQd7b3AyiyPTR02A7cAb8UCsjej0kSwpe02btYIjCxDRiRzuVms258TRt7V3Imkb63DkaN2xg1a23EN2S4tSpOEf2T1CoyTQ5JbxeB6tXR1AUiZdemiE+V+Kc1UJYn8On2WQPp8EtMCn1cOs//cNvdtL+HnhDQV4QhDuBvwMGgSts2z74qsf+L+CTgAl83rbtX76Rfb2VONzuFTXJtxF6uczS8DD52Vnc0Siyy8XMnj3kFxbqeXXbRlIU5g8epLi0VFcaLZeZ27ev3g01MYEaDCKKIuMv7CNTFnEF/Di6exFkB67UPhZ63k1Li5d4vMQtt/QyPZ2tF+P8KtPTOcyqTC1+Ep9VJZsVMU0L0a77pVbdjWhi3eu1XK4xMVEXznI4JDwehXi8SFtbPYVRLuskEhU2bqxPz77nPf24XAqjo0kSiRL33HMcRRFZt64JURRobvYwO5vjz//2Qzz2D/8P4uIiQY8PSyxjKRbJ1m3c+4NhJiazbN/exnvfO3BRu+Gv4nY7kGXxAo33QEAjEnGxenUE29A59+yznHrwQfKzs3jaO1ls2EEi7mZkpD7Jm8tVzks1eGlu9vKpT23mlltWceDrXyfbGETxeMhOTZE4dQpRljn1wANs/9znlvdXrRo4ttyCtTCCVcojAEq4mbLahF6u4Oq+tA6UZZpM792LYNuUMxlkDPTcIkr7AGKoBcPqYnExj62HsC0DQZIRJQNDr7dauqNRloaHMXUdSVHwN0bYEQ3T1+4gfOMHmH9pL2Jmnsa+EIIoEnHW2KNUmcysozOdxpM+jZsSUllk6lCBg9/8Ju/4h394W8WLN7qSPwncAXzz1f8UBGEN8GFgLdACPCkIQr9t2+Yb3N8Kf+RUczkOf+tblBIJFLeb/FNPET9xgs5rr617BZRKjD/5JJKqoheLaMEgtWKRYixGMRbjyLe/jagozB04QLC7m3ymiKSbiOEIorueVpFKOTxmml27rqanJ8jJk0s88cQ4hUINVZXRdROHpnFW20ygMILL1qmZVaoli3jLVmRfkGy2SjTqwjBMVFVC1y0Khdp5T1UHyWSJAwfmUBQJp1PmzJkkPT0BhoaiPPbYWY4cmUfTlOWefEEQWb++EUkSKRZ1nnh2jvLgLVi+MbwkqYguJqtRAm2tmNl6B8y+fbNYls3AQN3Iu7HRTblsnL9gKfT3h3G7HbS1+c5Pt+ZpavKcH+4q4vE4GBiIMPyjH3L83nuxdB2Hx8PIs/spVV5k3a130X/HDk6cWOT06bob1urVEa6/vosdO+o1gfz8PA63m5m9exEVBVlVqeZynLr/ftbeeedym/H69U387GdZWna8i+qZg4iBRso1G7+oI5k12nfuvOT5ED91isWjR/FsuobS5BOItolLBauYwbXtJhypDsq5GoJDQ3R6sSol8kWWh6H0UomeG28kNzuL4nIhShKVXI6WzZsYunELzf1dPP2vP2L00UP4fCrO5jaOy1uJunP4q+BXG1BUFVSNUqHG7L59HP72t9nx+c//Xn4Pr4c3FORt2x4BLtVN8ifAfbZtV4EJQRDOAlcAL76R/a2wwvSePZTTaQJdXQAkRsdYjJc5+v3dFAKrGBiIsLpnFWMPPYDm95ObmaGcTiPIMogikqbha28nNTrK4rFjmJKG1boFR3ffBeexbVk4HPVJ5lKpxqpVYUqlGufOpTEMC1kW8Pf0EnP24KommRxPkXL6CHjDvDz/XBf+ChGPlxgYCGLbdZ/WP/mT1Xzta3uZnKxPYTqdMrIsoqoyExMZjh5doKsrwPx8fnmidvfuKZLJEoZhsbRUIBr14HY7OFdpQl2zjsOHFyiVdITEIpomY9t1x6dnn53A7VbPu0BZBAJO1q2L4nBIaJrCn/3ZRtrafHzsY+t55JFRTp2KA9De7uP22wcxMgmm9+wBy8LT2EitZlIUfWjOItWTe/H1beKaa7ro6QlxxRWt3HZb/wXHyxkKMb1nD7KmLStlYttYpsnks88y9KEPAbB5czMnTy4xOd6P2lDGnDyOJMLGnatY95EP4D8vG/KrLBw9zshEmaW8jNW5haWpGRwWNLodeLs20CAbBEM2M7N5lOYtGId+jj/kozWq1I3jNY0tf/7nVDIZFo4cwaxWaVy/nvDAANMzOb717RNkC93EtBBnT8apnZBpa/MSMurnlWWW8Ta4oKRjAarPT2J4eFna/O3A7yon3wq89Kq/Z8//7yIEQfgL4C8AOi5zIFdY4WViJ05c8OM58uJZlpIWLjGJ7AhybE+MWb9Ec7GEaQuIDo1quYJeKoMnRC2Rw9AnsWUNNeKlmk5BPk6t1o3qlKkUi6QTFcQ1keWx+bq3qs3gYAMDAxGmpjIcObKAYdh09TVw/LiAHvLiMm0qFX3ZzEJVZdasiRKNurjqqnY0rS5fe/ZsitZWHzt2tJPJVLBtm0BAY3Y2x5Ej8xiGxe7dMySTJc6dS1Mu6zidyvIkqc/5N2uDAAAgAElEQVTn4JprOgmFXCwsFHjqqQls28ayLIpFA0UR+e53j9HQ4CSVqtDREaj31Z9aQpIk5uby7NrVSS5X5Yc/HOaLX9yBz6dy113rKJV0TNPCe978Jn5qimqhsKwhY5r1XL8oyti1ClY+jej2o2nyJaV+O66+mlP3378su20ZBpVcjubNm0mdO7f8PE2T+bM/28jzz0+xf78T/7aruGFXK31D7RdIPl90PiTKLC0WaOhsIadKJLLNLKZKFGYz1OYK3H77JrZta+XUqTjJZBuR9w6hxUepphOENq6nbft2tECg7hp3fuHwMj/72SiZTIWxsbqRekkX0XWd+fkcmmjRUlzELOUo5JNUFS+KP0Q2axHRNIxfaft8K/m1QV4QhCeBS5WM/8a27Yff6BuwbftfgX8F2Lp166WrRSuscB5F05Y9QOfncyxkRYJSEaWcQclLeG0be3SGrMOBIjvQq2CWRDRZQ6qVqSKTqjhwqjai04EoevHYecrjp1gw3KTSFTJtV9Frynz1q3v5+Mc30t7uY8uWZg4enCcQcOL3a7S3+5FlEa9Xpbc3hMMhEY8XOXx4EcuyWL06Qnd33VHprrvWXzBCL4r1ThtRFAiFnFiWzfx8jiNHFllaKjIyksDnqwubuVwKllVP9WSzVcDGsuqTmx6Pg1WrgoyNJSkUalgWRKMu3G6F8fEMuVyFhgY3qiqzuFjE5XJQrRpkMmWy2SqBgMb0dJZ4vEhjY92y7tW6LwCq34/kqPeUA6haXRTMrJkoioqg1i+EuVz1kmbazVu30rR5M5nJyeXBs5bNm1EDgYt8Vp96aoLnnptCUURKJZvv/egcd9oqGzc2X/Z8yLnacVAlEc8zPVtAUSRafAbxchg1EOTqqztQVXl5ZqDOpl97nlUqBnNz2fP+tyrVqoksCfg0gUo+S6NylmLZRLNMTFvARxanZRLLt9EhOnG9TVbx8DqCvG3bN/4W250DXt2o23b+fyus8IZo27mTU/ffT8DpJB4vUXaEaEyewnAGMSUHSnYewSgiSBaK7KaWr4BDw6gVkSSDquTCsixM3cQV0cDXRgYvQ5s72RdvZGBwNeHWKKIokMtV+Y//OM5f//VObr99kNWrIxw5srjscNTfH0YUBSzLZnIyw/x8HlGsa6vkclWiUTfr1kWXV8Uv09MTRFXr3Tdut4MTJ5Y4fTqOIAg0yFlOn9mD6IZaUy96VUUURdxuBZdLIRRy4nY7yOdrhMMu8vkamibj96vYdl27RdfrBWBdt5bNrV/ORFmWjSAI6Hq9PGbbvKZssLelhbYdOzhx770IkoTD6yXqs5ifraH7OjAtL7nzheW1a6MXvV4Uxbppz/33425oQPV60SsVirEYg7ffjm3X38/sbI7nnpuko8OPJIl1Lf65NN/52mN8/i+voHN9P7J6sZRwpL+fWvtmEgf24FdE5GIewahR8g2Qn5rg5MnVbNnym+vHKIqIZUG1auL1qkj5GL3J53BaBZxGBs1pk27birx4GJedR5FUMHREtx+z9woUp/PX7+T3xO8qXfNT4F5BEL5GvfDaB+z/He1rhT8iWjZvppyo54mVUh6tlkIPtKNrAdT0JKYtUJbDBFQQA1FqpTSi04meiyGYZexSHkFUyRtuiimDkhCgls9xFhm1v4vB8wEe6tZyLwuIdXUFGBpqZGjoYj0iURTo6Qm+LrckqK+WP/rRddxzzwmmp7McPbpIKKSxtTGNY3Qfvd4CmawOyUkazQbmw1fg0BR03SIadVAq6UiSwEsv1a0FU6kyTqdEKOSiocGzbHLtdCpYlo1t24RCTubmckQi9eDj92t1ad8WD+Hw5QOSIAhs/PjH0fx+TtxzD7mZGcJNTay+4w5ybTso6gqrV0cYGoou1zAuOmbbtmFZVl36Y24OxenE39XFyfvuwzIMGjdsYEHrQ5ZFJEkkl6ty+OnDuM4+h14u8c3hx9l8RQc3fekvLlLcXLeukYcahphqcdFbOIBdK1BwNBIQ84Qmn+bYgxZbtvz56zour0aSRHbt6mL37mnCzhqRmedJOGySRR/dQhxndoFabZGE2oY32Iusl3CIOlrftXgGNvzG+/td8kZbKG8H/hloAB4VBOGobdu32LY9LAjCj4BTgAF8dqWzZoU3A0EUWXXrrbRfdRXFRILn5u5jaeQFnIFGpEqGTFnBclSIKimolpCNInIuQ1H0EZNa0YwYtqRR9rWTsfw4UwX8XgelSA/j4xnCYdevyND+biQqentD/Lf/tpOnn56gWjVZs8pN5amnEaNNqNkseimL0+unq7iE6MqTlRtwueqaKrYN4+MZRkcTCEL9olHP7deLvcGgxq5dXcuTtpOTmeUWyUrFoLs7yMJCnlDIyYc+NPRrZThkVWXoQx9i6EMfolooLPsovF4EQaB9xw5at23DqFQYeeABEiMj9YljSSJ2/Dix9DEs55VYls3+vROEJp5D8rjQHV6czUGGzxbwfvM73PR3X8Hh8SxvOxJx8ZGPrOO/7xtGz6QoaG14vCrtnX6K+Sr2+BHKqdRFqaHXw80393Lw4DwH7nsYrVpD9Ufo1tI451NYpolqmzSqOSSzRrlpkEIuy1whyP+x+q0XJXs1b7S75kHgwcs89o/AP76R7a+wwuVQfT5Un4+/+8af8fWPDDO5WEAsG/gDHmRRQ5IciJKMJhlkTQ9jQh+m4gIljNdKUi0JuLQiZSFENrKNrRs6yR9aYGwsSX9/GFkWKRRquFwyra2/uSZ4IlFicbGAy1UXK7tUSkRVZdaujbJ79zRiqW76LkoKra1eRkeT6LqFyxSpLM5SCgVobPRQrZp861vv5Wtfe5HFxTyBgHa+zTPOwkIeXbfYtq0Vl0vmppu20t8f5ujRRTKZCp2dAfr6QkiSiKpKtLf7OX58kXv+4yiVss7Gza3s3NmxnOK55Pf+qgD7aorFGocPLzA2liIcdrFtW8t5Lfb6XUP9s0nU8nkSIyMXFDl9ra0Uc2cRUrPEXE7M+ByqaFKyHSgK+P0q2azN4nya+OnTtG7desG+r7iilTtuDDHxuItAZwOaKlOuGCCKRBs95BcWfqsgL8siX/nKNdyTP8iZfRlEpxvnwlmarhxk+tgZXHqFNALkYmiFNLnWXWhed9056m3EysTrCv+paetp5vPf+GuO3vtDYsdLmIUsRUNiSeiDTAzB10Be7ISyC9EGyR+AqsUxcQempKG5XOzs66CrK0ilYrJv3yxnz6bQNBlVlbn77vWXdBK6HJZl8/Ofj/HCCzPLBdZo1M3dd28gGLw4LdLW5qOjw8f86SRey8LGplisIcv1oqxaKRF2h8mbAoZhcs017TQ3e0mlyjgcEm53PSBv2tRMe7uP8fEMa9c2sHNnO2vXRpEkkU2bLl24/OlPjvLSPQ/hzU8hiAJ7DrQxcnQXn/nCrgtcn16LWs3k8OF5vvnNw+g1nb5mkdOlGv/y9X10dYcIh1309AS4/fZBQiEnlUzmkhpPHr+LdwyF+NneGVyTLyBkhkFwYwfbGD8r4DWSZCZnOPD1KvNbt2L3befwOZtCocratVGuvn4AY+RFFov6cq3jqqvakIuJ3+iuo5xKsXjsGJV0mmBPDw1r1nDjndfQLCbQwhFmnh3DGQoyG25GSEwTshKYsoDldLAqVES2Ty/XGd4urAT5Ff7T07RhA9d1dhI7fpwzjzyCbRh02zIzh5Io3auQxE7az6c4vB4ZclWiWoS5WN14Y9u2emGuo8OP263w3vcOoKoyvb3B5SD6ejl9OsHu3dMXeIUuLhZ44IHTfPKTF3d1iKLARz+6gZ/9VOXU6T0wPUfV9tDe7iefzJAv6UzYPgpGjVgshiyL3HZbP5GIi4mJ9PJ2BKEumbBhQyN33rn2IlNr27I4t/8Yh3/+AhUd2rZsZN+/3k9IKiI1NAICcmKSxMNnObjWy1W3bfu1gapSMfj3fz/K889PkZiYpj17kNmXCtg2tDjcpKVr2bBhC3Nzeb773aP85V9uxxkKYVvWRYHQrNXo7WvgltFf8jOvjJF34nZrKLV5atMJ8uU8rQMNNA4NMXJsijP/8QLOXR8kb7n48Y9P0dbo4Nq1raxxOJDd3rrOfSKOHApdoFN0OSzDIDk2xokf/ACjXMasVjn7y18SXb+e9Xfdha+licLCApZpUsnl8KsWKcWDq6UVahVEX5isq5EOe47s1BSqz0fsxAkq2SzBnh4iAwNvmSTKSpBf4Q8CLRCg89pr6bj6ajJTU+jFIhs//H5OP/gg2QmTqiEQbXCRm52hEuzG7/eTzKZYtSqEadokEiXy+Sp33bWOdet+e7OXepuldoHWS2Ojm/HxFLlc9QKji5fxeBz86V3rSV//3xm+/34e/M6zkK1QKtgcqQ6RrYLHA+GwhmFY/P3fP89HPrKOkZEEyWR5uXOmPsUauWgftm3z9Ne/x3P3/hJUJ5IIJx9+lHI2R3jXLgCMubOYiVmUXI6j/+/XUGevY/1HP3pB/vtXOXJkkenpDKKl05Pfj6xKZOwQmUyFLr+EcPZpKoVBmpo8TE1lzittRuuyx4cP42luRpQkCrEY7qYmSskkDoeEq6mVTLmKXJjBsC1cxWl0Xws09YDDybk5A4fm4PRTu0mGNyEIMDJSwXvTJna6z1FKLFADfG1trL3zzot8Yl+NZZpMP/88k7t3M717N3qphCjLy7IEiTNnCHZ2svlTn2L+wAH0YpH0xASdm1dT3X2I4sIcAgJmYBWdXQE6GuoyC4mREfRyGcXlYu6llwj29LDh7rsv8i74fbAS5Ff4g0IQxQtUQm3bJvXdH3P86DwNXoXAlg0sBjehZw0+8YnrCYddjI0l6ejws3NnO93dr69D5nKYpsWvLoBfXrFa1muPgQSbGwje8AEWn9HIh8qcnTGwcjV8gogkCQSDLpqbvYyOJlhaKrBqVQhdN5d7220bbrut76Iul9T4JHt//ASu1nY0tf5cRTCoTo+RiWfwKTWM+AxICma5gDF/jtGf5TFqtdcczx8eXiIYdJI2ktjVEpa7GbFWw9BNDB0clRRCfBz86wGBUkkHYPXtt+NpamL2xRep6TptO3bQtWsXJ+69F1QXmlagd+tacvFmrNQCWqyEb+N2ys4GSiUdy7JYWNJxOnLLnUEOh8jzRwrc8b/uptFX14l3hcOXP066jqXrTO/dy8STT6IFg5iGQTmRQJBlXOEwisuFbdsc/d736HvXu+i67jo6rrmGMw89xAtf/SpKOUnE40X2+vGH8vSti5BfWGD0pz+lnE5j1AwKJRMr0IpvKo1/YC2911z5mufA74KVIL/CHzTtO3bQvHEj4Z8fY/dLS5gONyEE3v2+Nm6+ufd8QfTXG2G/XjZubOKHPxwmENCWg3siUaK11Ucg8Otzw0eOLLJqfQ8nTy6hTyxgWeBwCFSrBqGQk9HRFJlMmeeemyQUcmMYNm63QkODh2uv7bhkr/rUiVFqhohXfSVdoPn8qA6J2FQMp7+EZVkY8Wkk2yLc2ojkUBj+4Q/pufFGomvWXPK9ulwyS0sWbU1OJg6DZNqogkFjeQzHooVXqVHd+zAiNrbcSVNT/a5AUhQ6r72WzmuvvWB7/o4OMtMzOBz1VspoWxQr6qVSi1ETVBqCGqoqUamYWOUCQvQVg29dt4hEXJwaSdDz7gEuh1mrMf7UU8sa8vOHD+MMhagcOULqzBlEWUaUZWInTuBpbERxuTBrNQqLi3hbWhAliXImQ98tt9SVTW0bh8dDOZUifl7obPH4cSzTJp2uYFkWomOeRLiHhX9+hM+u37RciP59sRLkV/iDR9Y0brh9O1e/yyCbreLxOC6a7HyzWLeukTNnEhw7toQk1QuvHo+D979/8HW9XhBA0yR27eoEbJ57bgpVlXC7FfL5KtlshZYWL6tWhWlsrKdBrrqqgxtv7LnsNp1eD9j1oq5wviVUcHnRwmGcHp1qoYidiOOQbUIdTbiCfhAEZIeDyaefvmyQv+KKNo4dW6KtrZXWZg8zeR0lNopTsRCdXhxOnZq7kfzzj7P5z/8CRynOuSf2IqsqDWvWXOR/2rp9O/MHDtATLTE8nsfrBLmWR199PVZ8hvZIM4pg0uwuM6+LEOwF26ZY1BFFgaYmz2sOdgGMPfoocwcO4GtrQy+VyExMkBg7hx3tpWgokIwhOxxowQDVXI709Cze/nWMjSZoiieZfOoJTj/wAP6ODhoGB0mdO0cplcI2DNJTUwS6uqjl85RxQa2MZJvY5QxKKUulZRW7d0/z7nf3v+Z7fLNZCfIr/NGgqjLR6O/2lJdlkdtvH6StzU8yWXeYGhiIoGn1/cZiBU6fTqDrFv39YTo6Lmy327y5mePHYwSDTm6+uRddtzh+fBFZFonHS7hcCn6/tnyRamz0cPDg3GsG+d7tGwhGfGSXUgSi9RSGnklhtQ7x3s/8CfHnf87oz6YI9/XVx/EFgVqhgKelheLS0mW3u2pViPe+t59f/vIcducGWs68iOav0tbbRqlQouxsR22J0rjKj3/scZ55foHC/Dx6uYwrHGbHF79I13XXLW/PGQyy5dOfJvzMMyjPH2ZiwSDfspFVO7eypdOgMlrveb/p7ls587MK4wsWSrlMKFSfbcjnaxfcyRiVCsWlJWSnE3dDA9VcjvlDh/B3dCCIItVcDr1mkS0aSGISweXHzMaxK1UcukkmU6Fse8mem2Pqe3twje9l67WrkV0uUmfPMn/oEJHVq2lYswZZVfE2NzP+1FM4w2GyY9NIDhlRVrBFCataxFWOcfzQ5EqQX2GF/8ycPh3n/vtPUa2a54eW0jQ3e9E0mYMH53nwwZHzHrECTz01zq5dXdx66yuuSwMDEa6+uoMXX5wFYM2aCC6XwuJijuHhBJpWly1+6qkJ1q+P0tzsRRBee/Xq8Hj44P/8Ej/8238mOTmJCOBr4J1f+SRX3LQO8303UUmnKSwsUMvnsU0TSdMI9vTga2t7zW3v3NnBpk3NLC1tpDCyjVPf+Rdc4TC+tjZckQiCIJA4c4bp3S/g8HjQgkHc0SiVTIZn//7veX9/P96WV2QH3A0NrP3gBxn8wJ3nTUheVeDY9Up//P+9M893vnOEXK56Xn65xi239C5fNOcPHmT0kUfqgT4ex6hWkTWNxOnTNAwO0jA4SLVQoCC4kYU0klHGFgVwejErJSqKh6rkxeV1IoWbERPHKWo+hk+n8eVylFMpZKeT3NwceqmEt7mZtXfeycQzz2DWaohmDbtmYcl1ZzLR6cFUnDhLsdd5Jr15rAT5FVZ4k0ilytxzz4nl3HutZrK0VOT73z/Gpz61mYcfPkM06mFpqcDkZAbLspifP8ngYITOzlc8Zd/zngG2bWtlcbHA/v1zlMsG8XiJ7u4AyWSZclknHPZx/PgS5bLB+963+te+t7a1fXzxR/+LyeFJarpNx2AHLle900NyOLjmb/6Gff/7fwPgikRQXC5qhQLdN9zwa7etaTJGsUChJqBFGvG3tywXPS3TZPHYMfKzszjDYWzTxNXQgBYMUslmOffEE2z8+MeXt5VOl3n88XOcPLmELEtceWUb113XdVExuaXFy5e/vJOJiTS1mklrq29ZNTQ7Pc2pn/wE1esldvw42elpCrEYDo8HSalLDJficbw9A/VZiUADgurErhTAH4GgREJuIui0wCphLE4jGTq+zkFSZ84Q9HnRLItqJlP3hg2FQBBQXC6MSgU9n0dSZHQTJMtEVN1IbX0USgY7BgO/9vt8s1kJ8ius8CYxMhKnVNI5fTpBsVjvJLHtuuzAhg2NWJbN8PAS09PZ5anSqakk3/rWYf7H/7geQRAoxGIkRkawTRN/pJ2pqQzBoBNVlYhGQwhCmvn5PLIsousmfr/Gzp2vT6JblCR61vde8rHomjVc+aUvMf7kkxQWFnAGg6z94AcJ9V76+S+TTJb4t396gNyLvwDbQqgUCL2wn97tG/C2tLA0PEw1mwWx7tVaWFykkssRXrUKyeGgFI8vb6tc1vnWt45QKtVobfVhmhbPPjtJIlHirrvWXbRvh0O6pPLl/OHDSKrK4slTGJUqRqWCp7kZo1RCVBQqqRSK242rmEMAbElGW70Nu1ahMrwX2xXBlVqEZAIdG1HVMBOzWDaQT1KuZsEysUwT2eWi7corsS2LkYceonnTJoxqFevUCNQs9GoNU9KohfroaZTYesPG13Ws3kxWgvwKK7xJVComo6PJZQlhqAf5iYkU4+Np8vkqMzM5QiGNYlFH1y1UVWZ6ui5pK8dGOf3QQwiyjCAIxOYzCIVWxMHtQF00a9WqMC6XQkeHH9u2CYedHDw4z9q1DW+4ayMyMEBk4PKdKb/K4mKev/k/H8F+4X6c4TANzUG8HgeJhSgNmRKdu/ooxmI0bdzI0X//dyzLwuF2UysWKcRiCJJEdF09eBuVCoeePkFmboHONV0AiKJEZ6efkyeXWFoqEo26OXVqiaefnmRpqUhXV4Cbbuq5SEbgzPEZTuyZxpgYQ9JU3BUDv1vAMk0UTwATEVl1YpSLrP7YJzlxYhGHvoTkUJGuej+Vw3vw1pYoixpaKIzo9qHPj1M78DiyqlH2Oestlk4n/vZ25g4coGFwEKtWI9jbizMUQvV4SI6NITpUJJeX/5+9N42S6y7PfX97qHkeu3oe1K15ao2WbXk2toUHDA6TQxjiMAROFgm+uckh5K6Vu3JX7uXk3HMuJ8mKCSEEEgMhEMB4kG3ZliVbsiypNavnsbprnuc93Q8lN5Yt2RgZiKF+X9RdXV2191b1u/d+/+/zPF2b3Qxcd+2btr9+EbSKfIsWbxPhsJ10ukp//09vyTVNx2YzoapNlWcmUyEaLaDrBpqm02joOBwm5ieWaDz7Y1wdHcuCmbrsQnjsGL4N65EkkXpdWx4vTKUqZLM1IhEXyeQ4e/dO8rGPbaav75fTDkilKvz1X79I7NwYAzaJmi4xNZWlp8eDye2lYBSxejzUJAexqIbWsYbS9EmsDhu6olDN5Ri85RY6d+wg+tJLjP/kJ4yPpTBH81SyK7BuuxXRYkMQBERRIJ+vsbhY4NvfPkMwaKejw0UsVuKhh47ymc9sp6Oj6S908mScQ5MSHq2GbJPRTWbysQpquYhSraHEixhWJ0bXeto3Xc9HvvDb+F+Y54UXFtA0HY/Hwhphkfpsg7zuJJ0qIy7OAjKi2YbDbUUpl6mbTEQ2bUK2WsnPzuLp7W22by5EJPbfdBPBNWvIzc5i9XjY8anfIzA09CuxO2gV+RYtfkYSiTLHjy+Ry9UYHPSzfn34Io+X7m43HR0u0ukqJpOIYRhoGqxZE6RSUVEUjfHxDIbRHJP0+22sWRMkna4wf2aCNl2/SBEZCDlxOC1kpqfZvn0dTz89zdxcnnK5gaYZbN4cIRi04/VaKRTq/Nu/neULX9h1kdr2tRi6Ti2XQzKbl9Wsr4SwvJEy9LW8+OI8ut48gYl1AZNJQhRFlpZK9PZ60DWdU6N5jh+NYg4D3pU02q341RhOscrKO+9k+2c+Qz2f59wPfoC7s5Ow4WQ2t4iWilIfeRbbzjuWrZK9Xiv/8R/naWtzLFtNBIN2Eoky+/fP8sEPrkepVnnqxyME16xFMpaoZxYQylkktUa5XAVHM0xdMIuIlUWidR/PPTfLnXeu5IYb+qjVVFwuC8986VHm50V6un04xRoFxYJst6FmFbz9fdgDAdJjY1TSaWSbDd+KFbRt2ICuaUzu3Us9n6cwP4+uaSjlMmv/8A/f0h3S202ryLdo8TMwPp7mn//5JKLYXGg8cSLG4cNRPvGJ4eXxSK/XxrXX9nDyZBzDMHC7LctXnFNTzci/tjbHcnCHydScivH77WRyDV4rYxJFkQ0bwsw7vJyMlanVFBwOczNsXBKYmcnz/e+f47bbVtDZ6WZuLk8qVbkoheoVUqkK08fPkXjuMaxGDTDwDw4iWSykzzdNtdo2bGDw9tuxuN1vejxmZ/N0dLiZ9bWjpAFNQZJM1GoapVyJcJvM/nELPUOrMFJzSN4w+ooVZBYcrLq6h6sffBCzw8HZ730Pk92OZDYTici43RZyBXBGp9AzOWJZg507O3G5LOTzzSjDV+Nympg9M8Xp754leeoUuWem8IQDyOt2IYV7KO/9Fgig6CLWag5dcGHuXYvk9NDm0jhyZJE9e4awWOTlE/bKO+9k+plnUBsNJEPB5jCj1Ss4wiEsDgcYBoamIYoioihSiEaRrVY6t29nbv9+5g8exOLxIFsshNevZ/Hll2kfHsY3cPkx118krSLfosWboOsG//Efo/h81uUFU12Hxx6bYHw8ze23D3LVVV0cf3GC+fEFZmfK1OoqTqcZSRJpa3NQKDTweKx0dbkplepks01h08CAn40b2zCHbZgyo9TyeayeZo9ZqVSwOyx8/MG7+Pq/jgHNkcxyuUGhUMdkkiiX6xw7tnQhvs9AlsXXbftPfjLGi/vOIh/9PobJhjccZMf2CGe/+10Ek4mhO+4AIHHmDMVYjB2///tvelXf3u7kzJkkW3YNcii+Cdf8IXRdx9ChpDk44b+WEyfzLEUG2dJmg+QE6Bq4g7iuv3fZG6ZRKi3fvciyyLXX9DA2nmb+dBqpUeeeezawY0cnoijgclmpVJRljYASmyX/wpPYMxMc3lehbf16fN2dFKfGqZ86gNzej14rgcWJoZsRrCKioaMtTSG0D4BaRxObbbRX5wZ079rFpt/5HU4//DC1fJ5qOo2jrY3V99xDNZNh7JFHmkHvLheaquLu6mLq6aebY5nFIu1btmBoGo5wGGckQjWTYf6Cf82vglaRb/GOplJRKBTqmM0i1WrzdvtSJmBvhKbpiKJw2X5pLlcjk6ksL5LmclVOnoxTLDaYnc2SWUzyzF8fR8gv0eazckcwSLl3F4sFEx0dLnbu7GTv3skLMX1WlpZKy+9Xqymk0xXuuWcVK0K/w8lvfYvc7CwCIFksbLDcXIkAACAASURBVLj/fizu5olBaag41QwhdZHFXBHdFcRc05ByFSZG3axZ37684PsKp0/HOXBgjk4SKC4Lki9ELl/jxKEJfIChqiiVChaXC3dnJ7mZGbJTUwRWvrFg5+qruxkZibO4WKTk7CXb5UXPLKKqBtZN6+lf083s4SiKIXGk0MfNt1+HJBjMj+Up41gu1qF160iNjmLzNT2DLFaZVf0OVvZsYNcXbr/Ilvhd7xrg298+TTjswKoWyD77Hyi6CZ9TwNPWQ2Z6GlM8hbaQwjCZUMV5jEodvZjB5QvQMMxI5qYwSY3NkE4U2Piu4UuqZLd/+tOsuusuFo8eZWrvXkwOB1avl3qxiNnlwt3Vhau9HXdXF45wmOzUFC98+cuM/+Qn6FozH8nm9eIbHCSycSP1XO4tfCLfXlpFvsU7Ek3TeeqpKZ5/fo6JiQwnT8YwmZp97ptvHuALX9iFzfbG1gWxWInHHhtnYiKDzWZi9+4err2253V/9JqmMzISwzCac+wvv7wIQDBow2E3IZ58gtl8gWBvJ21BP3o5j3PsKfq23svcXJ5bbx1AVQ3qdXXZpOsVoU8+XyebrbFmTRCr1cTVDz5IYWEBQ9dxdXYu55oODgYYe+wJAjMjmB02nOoS0sQ8JXMQoxbGax3jjk/9yev28ciRZvi4NlMEuXk83G4L8dk4bgdIUtPPZRlBoF4ovOnxb2938aEPrefBB5/AZBLxdrfhXtdDPF4inocVooDNJmMYUK2qxBJVzp1LkUiUsdlkDh1a4LbbBtm5bRPxEyfITE5idjqplSrkcjW67nw/+ULjIr+f4eF2ZFnk6aenib10DK/DyvDGHnLHl8AwqMTjlOfmCHR0Uc5XaSRmsIY7oG5BpoauqdRLBoKmoDsjWGpZbrjh8jbE7s5O3J2d9N9wA3MHDpA4dQpRkmjfsoXOHTsQBAFNUWiUy6RGR1FrNXTdQLI7MdssKKUSxcVF9EaDnZ///Jse018UVxr/92XgLqABTAIfNwwjd+Fnfwr8LqABf2AYxhNXuK0tWizz4osL7Ht6CjE7T+a5/fQKOllLF3JoFY88MkajofEXf3HjZX8/m63y0ENHkSSBnh4P9brGY4+NUy4r7NlzsWHZqVMJrFaZel1bXgg0mSTy+TrrO3VcpSopHJgKdQBKupXFs+Mk00eI00YgYGNoyMfBg/OUyw36+rzk83X6+72sXemmsLDA2RdOs/n6jYiyfFFq0itsWWnhSGWcScGDR9NwKAXq3hBhScW5oY8bb+hh9pF/p2PVFyjH4yweOUJmMcnRRzNMlHx4NJXeYpLgoLspLDLZ0FQFSbZgcb0q+UrXsb2Be6NhGE1fdVVFyZbY0lGmrc2JHGpjKtogmSwjCALZbJVdu7o5ciRKPF7nwIF5RBH27BnC57OhKBo/+tEokYiTTR/9KKnz5zl/cIQXx5I0/H2MHCzx6LNPsqu7SEjKYvX5kHrXkdO9XHNNN5o9gpqVsLjdFM6YKScSqPU6gsmExWJC9hrIbR4qmQyKJKArCnazgGqoqJKZsrebarHK3/zNEXbu7OLWWwcuGw5jcbsZ2rOHoT17KCcSHPof/wNdVclMTJAeHaUYi5EZH0c12dEMGSgjWmzNcPV0GtlqJbx+/eU/zL9grvRK/kngTw3DUAVB+L+BPwX+d0EQ1gIfBNbRDPJ+ShCEla2c1xZvF/v3zxIqnGVs39M4VLBazfgrxylMpQhsv5VnnpkmkdhxyUVIgGPHYiiKRiTS7H9brTK9vV5eeGGe66/vXZ7gSCTK/NM/HadWUymXG2SzNep1DVXVsVgkRK1Z2E0mEVXVmZ7JMT6exqHWyRhpXEM9mEwS8XiZW24ZIJerEYk46epy46osUDv0GHK2wqh2nOrRTjZ95CM4I5HXba9UTrFrZxfemMzEi8dAFHF7HLjkOpvXu7H7fOTn5ph59lmm9+0DSebI8STW+QTtdRvZ3us4P27GuTCCxeOlu8OOxWlrWuwqCrqqUorHCaxcuRyyYRgGp04leP75WQqFOoMdMoGlF6CYobi0xNKZUYSGl3p7Gw1Rwje4G10XLxwPCbfbwu7dPZw/n0LTYMOGMLIsYmgqsggul5nDhxeo1SIcO2HwyLM2BgY20dfnRa+VKe7by6EXs1x17QAT33mU9NQMtA+hD12NXC/QXRohMtiLt7t7eaFUVxRquRxWrxfvwADlRAKlUsEZDmP1eKiWKqQLGrZqHP/wbyGEnTz//CyqqnP33W8+AeMIh+m78UZOfOMbpMfGUOt1avk8imSHahXJ4UIQZQyLjWxJpas/RPuWLW/oy/+L5kozXve+6ttDwH0Xvr4H+LZhGHVgWhCECWAH8OKVvF+LFtBcTCwnU5hnTpIzPKgmHUWWMUQrrtI85noGwzBfdtIEYGmp+LosU0kSEQQoFOo4HGYSiTJ/+7dHLoxESlSrKgsLRRoNFVEUkCSR0aiBrVpHlm04nRZmZnIYuoEkGhR1J/bMPNLoLMWyRmDFTaxaFWwKmco5SvufRLV6UJ122levwFDKnPzWt7jqD/8QUbr4qlK2WLDZTdx0Ux9rAkXi5wWsXi9U8jhcrwivDCaeeAJXezvpgk5JLeDr6yN+6DRj88fIWtcTIc4auUTZGkS+4/2s7LdQPDeCrusM3XEHnTt3LvfBDx6c58c/HiMUsuN0mDj98LeQtTrX3jhEKXYcX2cbqfNxynovbpcd88TzdARvZnSqhCSJRKMFFEXnrrtWNXNs1RrVEy+iLDQXkfH08PzUak6ciKOqGktLRXK5GrWaQj/TCEoFweHj7OP7KKSyWJ1OhGoC8dzjKLUqC4oC5RyyyYSmqtTzeWS7nUalgiBJVNJpdMPA092N1mjQKJdpiHZEW3PkUwp3IcoiPT0ejhyJcvPN/T9TElj7tm288N/+W9MXJ5UCyYSuNBDRMQoZsNmRrA40qxvVEWrO01ve2jrR28nb2ZP/BPCdC1930iz6r7Bw4bHXIQjCJ4FPAvT0/Gzy7Ba/2YiiQH9IJ3pMwR9wMDubw2KRUTVwWmUa6Rgu1yBtbZcu8NCM+jt3LommGeRyNSyWZj9fEITlnNbvf/8cxWKdvj4fzz03TaPRFCNBU9zUaKiUDRejtU5uGshhWBQckkxyLo0eWsEmZwE5eZzshA+TBOknkvS2beHIywFqoy+jjsWoyDXa210sLhZZORQgPz9HYWEBb28viqIhCAKyLOIfHES2WqkXCni6OslNTiDpdbBYsAUCNEqlphGWJGF2OKjEMiiKxsJCgYZko8uSJWn0Ma20UTMGmcpZOPadJVavDtFpj7Crr0puZgaL243UPsAzz83x0EPHCIXs2O0yDq2CS6xSkDxMnZ7BCpjsdrq6XMSVApm8CWFukj5PmmsHO5DUIoEtu9m8ayXt7S5OnYyReeYHWJQCVdlDPF4iO/ISmuU8HR97AEQzDocZr9fK+fNp2hwzyFYnwumXqSSnkU1WjEINvVFFM9lAraE7wiiKgSBqaI0GwTVrsAcCZKemKMXjVNNpzG437Vu20LFlC6VEgpPH5pENK7KsI4jNE+krazCVivKGRT559iyTe/cy+eSTZCYm8A8NoSsKpXS2aelgsmAYNQxVQU0uILavQm5fwdCePW/nx/8t86ZFXhCEp4DX3z/CFw3D+OGF53wRUIF/easbYBjGQ8BDANu2bXvj6JwWLS5w3c0refgJ8HgsiKJILlfDapWQJIFECd7z26sJBOyX/f0NG8L87d++xMJCAafTgqLoKIrGxz++ma9/fQRF0ZiezhGLFSkWG1SrCroOqqojCE3vck0z8PmsdG++mR23eznyw2cItYnMmYZw+L04p/dRsIVIV5uti8WyndgTjzHSuIrGdJQVJh27u3nCGBmJIUkiIYtINl3i0YOnOHs2iSgKbNvWwa23DrDpox/l1MMPUy8Wsfp8lGMxwhs2UIxG0TWNwNAQE088gSjLOO0e0ulqM0y80aCsuXF6LFSrCqlUBcMwiMc1gpVJ6ovHWXA52TTcQffLJxhZtFLouRZJEqjXNV7aP8pm+Sz2yWOYLE7SLicd3uafqtliYkO/n3wyx+JcDjE0gOYIEtCSeKf2EX73OkRR4F07HPz7j2JkZD8LCykEASR3CFslydGnjrP55q3IcrPlBVAV7FgTExj5BCaHk4YhIcgiWj4N1TKSJ4hhtmEPhynPTeGKROjYsoXokSMo1SquSATJYqF961biIyN4enrw9ffTobo5c+gcrrXrl4t8raZischvGOqSPH+eE9/8Jia7HQwDq9dLZnISdB1BMEA2gyQihTrBAMFio7L5Lq558FPNO65fIW9a5A3DuOWNfi4IwseAO4GbjebAKUAU6H7V07ouPNaixdvC4La17L5tI7OjiwQCPUSjRSrpDA67h3v+9F723PPGC10zMzna2pyYzRJLSyV8Pivt7U4OHpynq8uN02khmaxgGE0f+kymmaWq683+fShkx++309vrweu1suqaTRydNeMO2ekYTRE7fBAjp7BULmC3m0gkypw5k8ArFCjpMRxtPZjzC1jMIrquU6upjJ5ZxLvJw99+c5qFWLN339np4qWXoiSTZT7xiWGuefBBiouLzZaKIFBYWKC4tET0xRfJz80hShLTTz+Nd8UKZNFKpVzFUBrE5S4URUOSBECkUlHRqmVC1rMQ6aBa11mYTpI/H0NLxQjV0tiVtdjNIdpSB0kUc0Qw0aho2KQspXodi9eLrijokpmxI2eoqzJ2wUVhscSMorE2V6L/7Fk6tm4l5IYd2zs5cDhGJzGcTjOaI0BsQcRs1BgbS7N9eweHD0fJ5WokA30EFh/DG/IiNcrUCjq6VrkwDqSiqSoWmxWn20FVkqgVClj9fqw+H85IpGmdHItRSSYxu1wsvvwygiDgRcUe8JN0r8FfalCrqRQKdX7rt9ZeduEVYPqpp7D5/c1pekHA29tL8tw5GqUShqpiFnQaqoRhdiHYXDTsIfqH17Jy9euTun7ZXOl0ze3AHwPXG4ZRedWPfgT8qyAI/53mwusQ8NKVvFeLFq9GlCR2ffp38Xz/++RmZtg65McVWcva++675MLlazl0aIFotEC5rC732202E6dPJ1i5MsD0dIZQyM7CQoF8voaqNj1mKhUVn89KPt9AEAT6+70Eg3aGhgLccccKfvCD5sQI3QFiEw38fh/BoJ3p6Rwmk0i1oGI4TCyWHfgd/YTTM9hddrKZBuaqnQNdmzhwMk4oZGdsLM34eIZdu7qYmsoSjRbp6nLjeVVb09nWxsEvfxlHJILZ4cDR1kb85EkSp06xyt3OrGHjfGMblZoPp12m0dBQFJV8vkZQyJNNV6mVq/iEPOZqnFRDxuf0ImQWWaXmmM53U8tmWKo6qFvbcJdmMAs2zDaN7OQkDVuAkcdOoyQKlNs2YkvW6e31YBgmxqfjDEeX6NgK9kCA/PQk0uIsQbcD1Dr56UW0nMGEuIVKaom1a0MMD0eoVlU+8IF1ZPvniR/aT36+hFOuUzLs6EIDQc0jm2z0D4VBAJPDQb1UwurxYKgquaWl5dl/AF1R8Pb3s/LOO7H6fOwKd3HkaJzR0RThsIOrr+5mYOCNs31L8Tjuzk4wDCSTCVGWCa1bR2ZiArPTiaoohLv6ULw96A4/AbvKnZ+66XXitF8FV9qT/1+ABXjygpDkkGEYnzYM44wgCN8FztJs43y2NVnT4u3G5vez9YEHqOVyGLqO1ef7mQ2gTp6Mkc02++HQnIU/cSKGYRjUaiqpVJVSqdmmyWSqy4ZiZrNEo6HRaDSvioeG/Nx//0aKxTqhkIP3vnc1Y2NpZsc66Orz09bl5txUFVkWcQpl0oINxRZAr2qMs4o5I0CkVqCui8wIvSgnDPx+27Kgq1ZTOXZsidWrgxSL9dftRyWdbipjL4w9SiYTHVu3YnW7ySbSZONONrrAb9jINSwsLhaBprrUandgNkTqGEjZeYxuHyZRQFcriC4/QYsVZXaKqZKOIIOzo5P2QDdCKU02k2DX73ycfceqlFwZBFXG7AtQLNaJRgv09njR6nUUm49isc4PfjjG1KkoxUKdYsOELAloNRWvQ0Y0W9F1ePzxCe66ayWf//xVBAJ2ks73MVIr0HvDDcyfGmP05fNQyKB6u9GtPlILcfw+K7LVypp776WcTFIvFqmkUjhCIXz9/UgWC3WzGQSByObNyNZmS+aWWwbeME3rtbi7uqjlcth8Ptq3bGHh8GHUWg1vby9mh4NaPk9keBhBFDFUlZV334crdPlR1F8mVzpdM/gGP/tL4C+v5PVbtPhZeKs9z2KxjmGAJAlUqwqSJGI2NxOXwmEH5XKzsKdSFRRFw2SScLnMqGoz7ale1+jr83DnnSv57Gd38OSTTVFWs51jsGZNkF03rCYWkeDss5irKbyCShEXs94NzbBoUSedqeHzBYia2wgG7bR1uZiby5PJVJeVq1arTDpdoVxWLrnGIJnNGHpTmv/KCa6azRI9cgRneztX7xzi5JFJ1LPnMfXfzOY9gzz99DT5fJ2GxUex7sZSy2A36RQqGgNddtKJGjWzB4fNhGTEcNkEhla30XHhhGj4vFRVmZPZIJ6VLiquEulYgmB5BrvFSy5dImKrYtg9RNat5V/+5SSxU5M4B1YilRvERico1FQcnb0YSHR5VYZ2r8IwDDZujCzvZ3D1avpuvJHJZ55jYlHD2rsKrWuQ9NQcWr5ILlMk1B5g+N3Xse3TH2d2/34WX34Zs8uFxeOhUalglEq4IhGcbW3Ucrmf6S7vUqx417s49tWvgmFgDwaJDA+TnZxcDiS3uFxkJicRRJHgqlU/9/v8ImgpXlv8xqEoOrIsUS4rTE5mL7hCyvT2erjuuj42bWrj4MFZGg2Ncrkpv9c0nVpNx+Uy4fVaKZUUFheL7N07ybPPztDX512e0jh/vtkGmEhZKFh2M2WcJSjMY66kGZJHqDiHOI8XWRaw2Uz09Hi56aY+ZmdzFIsN0ukKmUwVl8t8YfqnzpYtkUuOg9p8PgJDQ+RmZpZj9OInT2IYBpFNm7D5/dzcGWDj5gWSap05j4cNG8KEw05GRmIslHcQTh7BU5rArOsIvU6G77qJySWdzOISZW8fXnOOkLWCodlB11CS82CyUVucxdLeR0+Ph4mxYaRGEHduDLFRIevYyOrbbqahS8zPF+no8FOaFilbw+T8VqLRAr6ylS5XlU1be+gY9JPJVEmnf9r1FQSBoTvuoOQZQMkdINAd5MhjL+IUYlicTpRqjYYmMHJ0Eevf/wMWmxn/wABarYamqgQ6O3F3d2Pz+ynFYlc0q+7r72frJz/J9L59FBYX8Q8MsPX3fm9ZUwBc1Eb7z0SryLf4jUMQmq6SLpeFRkMjGi2Sz9coFGrcf/8G1q4NsWZN6IIVgYau6xSLCqIooGkGitK8kk+nq/zZn+1jeLid9nYXdnuzyHd2ujl5MsbkZIZ0PEdf6QxCJU9ddtIdMmPVzrB6/SZq3VtYuzaE291sIRgGjI6m6e310tvrZW4uT7HY4NZbB/jwhzdedn/WvO99nPnOd8hNT4MgkJ+dpWf3bmx+//JzAt3t2BIJPvC/XcNf/dUBvF4rQ0N+Hn10nErgNpayvWzWj5GIFWk8u59wyM5AfwdrP/cZvvGv55GKo+hLE2iFFPViCd0SQJw4xMJzj9K2bSerO7s5Oh6hZgrj7DFzw72bee971xCNFhEEMLztzMYa1OpxXC4PDit4qvO4HRJ+KY9ezlMoGAwO+l+3fya3DyPUR65ewxI/hxEeoCaIlMsKnm432sQhYm0G62/cicXlohCNoisKaq2GzeejsLBA99VXX7EgydvXx/AnPnFFr/GroFXkW/xakk5XOH06QanUYHDQz+Cgf/lK+9y5FCtXBti3b5qlpRKyLCLLIrWaxle+8hK9vR6mpnKEw3ZKpQb5fI1KRUW/MC5XrSoUiw0sFhPFYp25uTzpdJXrr+/FbjchSQLHj8ewWCQGXAW8xRp5SxsOUUCw2Ni5exVBc4X8+ghnJ6vLRd7vt9HV5cZikXE4TKxaFaC/38cHPrDuDRfwLC4XWx54oCntr9Uw2e3ItouNypRyGauv6af+nves5tvfPs3iYhFdN5rTQiuHcCyNohdq5IsNOld4Mdtt2NUs737fMI8+6gLnIOLhfydjCmC1WhHzCwiJGRa+d4aCc4B2V5h53062bOnhzjtX4nCYCYcdGAZE4zWi4Wvoyh9DqiQYVMdAEIhV+7GffJnGsSOEbrmPjRvbXrd/PT0eBEGgmko1HxBEdL05yOd0mqkqVRSlueRndjrpufZa4idPkp2cxNvfT//NN9N/ww1X+pF6x9Iq8i1+7RgfT/PNb55c9pg5cGCOtWtDfOhDG5BlkUKhjtUqI0kCXq8FWZawWmU0zcCiV/jmF/+OzY046ZhAutHJUsWNoauYlTJC3UKpZmNuroDXayUcdiBJIo2GyvR0lnXrwiwuFslmawwPR/DGq5gDbhxWF6VSA4fDzJq1bRQWFti91UeuKjEzk0MUmyKs97xnNbfdtoJUqorNJl+wEL48jVKJuQMHWBoZwWS10r1rF3033cToD36A1N2NZDY3lZnJJBvvvx+AHk+Nd4VGefL5l7A2HLRtvBZvOY5ejyD1raWeqxLa1ovTJjD91FNc+yd/wrp1YU48/hyTcQ9qykzAXEVJxjDCIbJLBrpspTcsMjyQoua08MgjY3zkI5twOEx0dbn4x388jqpKqO034o4eJtKl412xkup8DjxeVoYlBrxzlzSVc7stzRPTV2PU6yr1ctNQraOj6cNTFmTcnp+e1Gw+H53btxNev55r/viPX6ce/k2jVeRb/Fqhqjrf+95ZfD7rRerFM2eSnD+fZP36NgYGfPzwhw0aDR2/344kNWfV1XKRocIRGskatqEuVgYN9KMv4/X0oTUWQC/jEE2kdR+T9Q2MjqbYs2clyWSZRKLC5GQGp9NCo6HS2+ttetxYPFi0V0K9jeXUJkPX8UUCfPKTK5mfb7ZlQiH7clF3Ot9cBq/W6xz72teoJJM4wmF0VeXs979PzzXXsPLuu5l++mk0RUG2WFh97720bdxIbmaGow89hNnlYsOOQc4cm8Y1thdNEJGcXjS96a1ud5iRzdLy3YHX62TV6jYmf9wM0NYziwhmK+WsitVqwu4wYw+3IeWihDwCo6NpisU63/3uGWZncwwM+BgZiTE7V+AWZ4XOrkFEi5n2dhdXX92DLIuUl6IolUpTcPQatm3roLf3Hv65eIbZU2M4Iu1YrRLp+Rjta1fjdltRazVkqxWt0aC0tMSa++77jS/w0CryLX7NSCbLl5xEcbstnDmTYv36Nlas8DE8HOGJJyapVhVkWUTTDNY4UpCq4uroxJBMKKJEw+SkP7GPOcsqGtYwDVnEnk8yqB8j234r0WgRh8OEwyHh9dpYvz7E5s0R/uZvXmJqKkfWFMEqmtEKGep1C0MrPORnZwlv2IA9GASgt/fnU0Smzp2jHI9f5Frps9tZOHyYqx98kM4dO1DKZcxO53IIyNRTT2Fxu7H5/fQ4VKZmChTzOay1FA0NSrgYGgowP5OimMjg9lgQzM12km9gANlsxmjUmqowBARNAVFENbuQRBG4oBijuQA9OZllYMBPm62Kdfw8cjmFsrCE4uylbAoiSQL7989iqApiNY/1pSV2Xz9wyVHYUMjBf/nqf+WFb/wbo88dRtcb9N66nmsf+DDFhXkm9+6lnEggmc2svPtuOrZt+7mO668brSLf4teCpaUis7N5KhWFer2ZWaqq+gXJuoSq6thszY+7JIl84hNbiMVKfOMbJ/D5bHR0OLDMH0c32di1q4vp6SwjI3HkaoFGXaGkavgiJsJhJ0uyiKOSIp5JkE7bmJtrEI0W6ehwkUxW+MEPztHf72Nw0E+hUCeuXY8/fZJ+Z5q+EPTs3s3AzTdftP2FQp2XX168oMR1sH1752XN1V6huLS0PPf9CoIoNvvXmQw2nw/pNeOl+bm55Skci1Vm9+5exsYcLJ7IYRYFBoIGc4ePoiVnkTQFNdhL7M++we/9xUexut103X4PB770vzBXC3iL0zgEyBtu7PYkFt2G5A0RzzdtI6amck1lazaB/tKPWBUSiEouyrk0+ZHDyO39qLUydquAZDIjD9/CTx6bwu11sHnzpUcQzQ4HN/z+x7j2Ex9EV9XlxVR3e4T24eHlO4G3klf7607rSLR4R2MYBnv3TvLcczNNnxajubA6M5OlVtObkXQG+HxWPvrRTcu/J8siX/rS9axeHeI73zlNtaribm9nONy0Nzh7Nsn6dSGKkylU1YyJ5tik1VonELCRKejUShUSiRKNhk4waCOTqeL1NtWwhw4tsHt3T1PU1OXG79/Ie+5aQd9A4HUthGy2yt///VHK5QZut4W5uRyHD0d54IEt9PR4Lrvv9mDw4sCPC8fDMIzL5rQ629ub3jcXIgbtdhNrBhxsWHsda++7j7/7+BchOY09FMEU6UN0eEjsf5Jn/62X0Nq17D2uYb/5w5Qe/zp5w42AgcliwlWepjheRnvX5+gIO9izZ4gDB+ZoNFTqs0cQZDN2nw8PZRKpdkQ1gzJ+jLojgiVgRzJbEHIxQkMyzz03e9kiv/z/Z329z4woyz9TPu1vGq0i3+IdzexsnmefnaGnx7M8PZPL1Xj88Ql6ez1YrSYMw0CSBGKx8kWtEUEQeP/71/He966hUKgjVPOMPPR3xKeXSCbKNGp1bMUqss1Hd1uAVKqCJAnkMmUMBPo39JPI6hSLFfL55h1CIlFm/fowmQwUiwp/8ifXLJtfvdKPfy0HD85TrSp0dzcLr8djJZut8sgjY/z+72+/7L6H161jet8+SrFYsyevaRSjUcIbNuAIhYBm6tP8iy8yf/Ag5VQKm9dLKR7H19+Pxe1eVohu+uhHMexeChUd/1W3Icg/XQC1Zj3DpAAAHFZJREFUBwOc+slT1GfNdHS4kKxZyiuD1KyrKMWTDHaZaev0UcqVWXdXL919Aaqz4/SYixyIz1FbmsPiC1CpNnUJbQEJZ81KotJGNbKeecnMmtWd6JkYplyUXL37crvc4uegVeRbvOOoVBROnowzNZVlejqLphmUSg0WF4tUqyqHDy9cEC9pBIMOtm/vwGSSeO65GXbufL3jtSyLFxSmNtZ95OM8+/n/j8z0DE6fi+rgdZgrSYTEPB0+N7paIuzTmAhtp60rxEx0gUql6WIoigLFYp3Z2dwFd8zmtr5infBalEqFRqnE2YMj+BxODMO13Iv2+WzMzuap1VSs1kv/mZrsdrY88ACTTzxB8uxZRJOJ3uuuo/+mm4ALoR8PP8zCoUPkZmaaaU7lMqLJ1LQwtloRRJHuq6/G092NousIWgNDknn16UiXTOiVItlslUKhDjMzeDQBt8uKydROxSbTuaab6WefZf67/8BYJkNxcRF7KMT6YDdjCxNUKgqpug2Hw0R3m4w2pSE73SiyE03TqZQVbCYzuYUoq+/afEWfjxYX0yryLd5RlEoNvvrVo6RSFVwuC+fOJTlzJonHY8XhMDEzk2dxsYjbbSIctlOtKrz88iLXXddLMlm+SP7/WorFOt/84SKPJ9eQ9XUhyjLWrJnBgdVgmsKSn6dvVZjO7dtIjmpMT2cRRRGnVEetVxGtPgIBO6lUBb/fhs0mX9KfvJbLMfbII0w88QTZ6Wn0okTJHcHoG8K2/TZEq51GQ8NikTCZ3tjgyh4IsOHDH0ZX1WY//lXB14X5eZJnz1JcWsLsdC4HV1SSScqJBI5IBIvLRfSll1g6fpz1H/gAXWsHWZiI4u9ozqvrhkEllaJ3104eORzF4TDjqBj4F9L4cWO3yYTDDvJzc+RnZ5E3bCGfyOLq7EYtFfDbBbbduJHY2XN0DmxhMaUiixW0egXPimHSqWb2bbWmopSKSJ1+brqp/+f9eLS4BK0i3+IdxaEXZkmPHCFQnQVdZcjRywvpphBGlgXy+RpgkM3WUBQdn89GJlNhYiLD8HDkDQ3MHnlkjCeemCCVqiJJJipVBUU1GJvIMTCwgr6rtiPaZASfi61bdbILMRy5/ZjUDI2GBrUQidI2DMOO329rTpW8JrhEV1VGvvENMhMTlONxPF1daPEs84tLzQXDk/sxbXkXCwsFbrtt8HWh4pfjUguNlXSaRrGI3mhgeZXaU9d1UmNj2MPhZVm+Uq1y+jvf4Y7Pvp9/+9L/JD07DyYr1Mt0BM3Mj0XZZtWZz1qxdPRiKgVJTEwTHuimp7OdhWeepyD6mD00jthoYGTShEJWhOlpVr773eiNOqLPxvzYGEYkiGXzDRiVIn3dDhKpKl65TGhtN3f++X0EQ2+84NzirdEq8i3eUYw8/F3sC+fBH0KQTDB9jC2SwEvJjcTjZep1BYtFplZTOXUqzqZNEYrFBpWKwq23rrjkaxYKdR5/fJwvfekZRFHAZBKxWCRstqZAyu+3sW5diJ07uwB48cV5XHaJ7vRBonoVMdDOYJ+HbDRBsH6UqfBN7NjRxQc/uP51J5XczEwzd7RcXp4CCXaGUOpRUnWD8vmzGIHN3HDjKq677sq8UC63CKmUy4iShGz+6V2GyWajrKpYZPj0P/5fnH5iP9mFJSjESc/FiB17iVAji7NcJxcNkAluQvX00xtUsFCnJPnIWH24tAUMSQWziXi8guwXMHQdezDINX/8h5hviPHMc/MIhoYwfwp56Sw3bvOx5vqdDNx6KzbfG1v+tnjrtIp8i3cMpVgMMTmF7o4gWpoFSvBF8M2PEjYVsHT0kUiULxiINZCkZo+8o8PFZz+7/ZK98UZD42tfO8b4eBpZbma8VqsqpVIDn8/ajPgrN3A6zVx3XS8Oh4lstsrDX/kJbaksutWDCORydVZs6KMUnWP33WE+9dlLL5g2SiUANEVBeNWUjddjZWhTO42GxjWf34GvPXTFx8vb10dwzRqS584hV6vN+MB8HpPDgWEYONvbL3r+K6cjezDIjvvf2xRO/f3fI8gSYrWIFIrg9OrYKkU6fWmK3bvY/l/ex/BwO/vO/3fcybOI/gjK7DlEswULDXKql3Iyibe3F6vHw623e9g43MnMTA6zeSODg36cTvPPbBHd4q3TKvIt3jFU0mm6u70cn1KwWmVkScRhN9HQBJymCl39zavARKKMJIn09nqp1VTuvnsVGza83hMFYHQ0RSpVAQTKZYVqVVn2jJckAV2Ha6/t5nOf24HLZcEwDPL5OtftakMcDSH6IiQSZaLRAvF4ieGhALfcevkrcEc4DLqOq7OT+MgIpgseMwYgiQLB3k68keDbcrxESWL44x9HNps59fDD6IqCo70db38/9UJh+b0B1FoNQZYvclXMTk8jmkzoqSiiw4Wi6JhNEoIgYEhmpMUzDA19El03UNvXIDdi6Pkkgs2BmoqCqqHUSsztr9B51VXMHTxI965dtLU539SuocXbR6vIt3jHYHG78futDLtdnDmbRNcNDAM2rAuQywWYmsqQTFap15vTLolEmdtvH+T971932SvFRKKCIMDERBq73YTdLlMsNmfPU6kKmzZF+KM/uhqXq7loWa2qJBJlOru7KE8ISLJIV6ebcNiBruv09pnwdV8ysx4AV0cHkeFhokeOYHI6KS4uoikK9kAAyWxmzXvf+7Ze1ZqdTrZ+6lOsv/9+ctPTGLqOp6eH9NgYRx96iGomg9nlwtPTw8o9e5g7eJDs5CT2UAjZakVXVdBUBlYEmJ7JUyo3oKYgqiLr13mWc1EHVnew6Lgdr5JAyyXQCxmyxw7SvWaAtTcOo6sqYz/+MRgGPdde+7btX4s3p1XkW7xjcHd14evvR5iZ4V239FGtaajZFM5AO51tN/D//L/HGBz04fPZaDRUFheL9PR4LpvdqWsabW12kskKsiwRiThIpSoEAjZKpQYej4Wbbupfnl+Hpm+L2SyhO/yY+tejTJ5EtLtoVFXsYo3O7e/B9Zo2yGtZ87734VuxgoVDhyjH41h9Pjq2bqVt06ZlkdLbjcXppG3DBqDZMjrxT/9E4tQp1EYDXVEozM1RSSSaUXa1GpVMZllcZAsEqOVyrF0bIp/MgtRO93A7PTt3LL/+u989xD/8Q5GY0oY10kVt4QmcvYOs272pGZIiy7i7uph+5hm6rrqqpUj9JXKlGa//J3APoAMJ4GOGYSwKzUuR/wnsASoXHj92pRvb4jcbQRDY8OEPM/XUUywePYpeqyHoOpVUitQLX2W3y0Yqa0eMlbG7/ezaspHnnpvFZpNZvTrE+vVhLBaJxSNHmHnmGWqFAo6OLgKyhzOFOl1dLmw2mWi0SG+vl9Wrg1x1VddF2yDLItdc08OTT07SvfZa5FA3lamzVJQat3/2blbddtWb7ocoSXRs3UrH1q2/qEP1hhz/+tdZGhnBt2IF5XiccjxO4vRpUqOjWDweXO3tmGw2lGqVciJBx5YtFKNRqtksNq8X/9AAzoCfvlfZ97a1OfmDP9jJqVMJkskySs5CW2QVllfN+EtmM1q9jlqvY24V+V8aV3qkv2wYxpcABEH4A+DPgU8Dd9AM7x4CdgJ/d+HfFi2uCJPdzsq77mJwzx5Gvv518rOzuDo6aEwphGIHiAggrthMozrF/JNnWPRczWi/l3PnUrz44jy3ra0xt/dRnB0deLxeatksuywzzAUHyRQa2O1mbrttkN5eD0tLJYaGXp/Tef31vSiKxgsvzGMYQSyrbuK9tw+ybVvHL/+A/BxM7d2Lo60NtVKhHI9jcjiQbTaqmQyyxULq/HlsgQCSLGMYBj27dzP8wANkxsdRGw3cHR2E1617nVuky2Xh6qubatVRNrF47Bi4f9p7b5TLWDyei9YCWvziudKM18KrvnXQXD+C5tX9PxuGYQCHBEHwCoLQbhjG0pW8X4vfbGq5HFNPPUXsxAkqySS5+Xl6r7mGRrmMOXqSfCGL5LAj6grRog2o0a+N0dm5G1EUmJ1Oc2jkCVZt7lsWBtn8frRGg/uvE3kh246uN8VSi4tFVqzw8ZWvHGZpqcSGDWHuvXcNPT0eZFnk9tsHueGGPsrlBh6P9Q1DPf6zoes6kslENZNBkCR0VUW9cIVdy+WQzGZkkwlDEGhks8wdOMDKd7+bwOBlI51fR/c11xA7cYLi4iI2vx+lUqGWy7Hxt3/7IsFWi188V3zPJAjCXwK/A+SBGy883AnMv+ppCxceaxX5Fj8Xaq3Gsa99jWo2S2FhgczYGPm5OdLjkxiI1IoFpGqdej6GUipTcgwj25z02YsIhgbI+F0isZEc63Ze7NVudrmwyhU+98kNjJ9eQHS4OTuW41vfOoWu6zgcZkbPLvLi3hH+65/fzMadQ0AzF/ZylgP/mem/6SbOfe97iBYLuqpSzWTQ6nUEmj73SqWCUqshiiL2UIhiNPqW38MeDLLtM59h7sABMuPjOCMR1r3//fgGBt7+HWrxhrzpJ1QQhKeAS1nCfdEwjB8ahvFF4IuCIPwp8Dng/3grGyAIwieBTwL0/CcNwm3xqyd57hzVTKbZJ47FcHV0kFlKkY/GQZSgUQeTGdlsQq8XCdZPkQttYiGm8fKPxwiGnNgsAkMWK0q1isnWdI0cH0+TnZvH5zaRmJrH7jBTSOZ57qhIqtQHsgWWxlipj2Esqvz7Hz2P/qnbWXff+y4ZbvFOYPh3f5f4iRMkTp2iFIth6DoWtxvZYkGpNIO0a7kcwdWrESTpoqzYt4IjFGLNvfe+nZve4ufgTYu8YRi3/Iyv9S/AozSLfBR4tZVc14XHLvX6DwEPAWzbts241HNatHglDCJ55gxWr5e6AsWGhKSrNLuEGtRL6JKMbBOx17MoxRlmfLuZmMgxOpbF67ViW7GSxdFpJKeXIyfSmLUycm6JZMFBoiiywpYgvZDEdXqeYWcf6cAm/KVRUoYLk81J1nCwdOoskklmw4c+9Ks+LD8XNq+Xu7/2NWb372ffn/0Zaq2GPRikuLBAzWRq5sMaBiabDWckQvfVV/+qN7nFFXCl0zVDhmGMX/j2HuD8ha9/BHxOEIRv01xwzbf68S2uBGd7O1q9jqHrIAjk81UETxtCMYlRrwIGgtOLpqjUaypWUaGKSi0dZ9CSJqe76esIEPYHmZRWYUxPYaOGo6cfRWhgDXRSPP0SSZtATXDSMLlx1BMEoj+kKroomXtIVwwCARue7i6Sp09TLxSuyL+8US4zvW8f2elpZLMZk9OJ1eslsmkTnu5frN2uZDIxcPPNZKemyM/NgWHQWLeO5PnzGIqCAUQ2b0ayWC6aomnxzuNKG4p/JQjCKpojlLM0J2ugeUW/B5igOUL58St8nxa/4QRXrcIRDmOy26lls+iKBI0ycls3yvwYgiuA7PSiVOoY9Spmi4xVybMiVOP/b+/uY+uqzwOOf597j++L32M78TuxwXl/I6nzggLLstAsW7KGClSyToxuSNVaoF0VaYT0X/4o27QyxDqJAmorVWKwNSuKoDRAN6mgkMZ5oTUJiROTQGIndmzsa1/7vp1nf5xTz9CExG+5uTfPR4rsc8718fPTkZ+c+9zfeX6ReA/R4Q9xT82moHg5A5+MkGhYScu9O3ATI2S6P4TkCI6bYDhdQiDgUhoYQkeGQYSgm6EyMUJG55BKlfO79h5uq/LWWL36SqyXFzt/nlcfeYRYdzejfX0kBgeJVlbSsmULH739Nou+/GXq16y5+ommqGnDBg4//zxFNTWU3XIL0cpKutraqGhpoeGOO2i8446xZQpNbprq7Jp7r7BfgYencm5jxnPCYVY+9BClDQ0c+dGPKEgNkonOIlBZjvR1g5shFR/GUYHSWbjDl3ALqygcOENx7CwpAkSHPiYz3ASltRR1HWX4wmIK51QjpRW4/T1kMko0EsRJDZNwBxmOljE0lCSqQziaZIEzQEWwiLPvp6hd3zzpWjXA/qefZri3l6LZs0kODlLW2Ej80iV6P/iAls2bObF3L3OWLp3xun/l/Pks/epXOfX66wycPYsTjbJ+1y4a1q61fjJ5IvemBpibVrikhMX33cfCe+6hr6OD/3ntCIePxQkEy6HnQ4LD/dTWl5BxA3R1JAhLmuRokjQO6oQocJLEjx+memM9ZbUVvP9BB7VlVURWbOCTN18mNRKnyg0w/PFpgm6KQmeUcGCATDCMG3QojAD9XQT7enFv2/EHy/hdK3VdPn7nHUrq6ohfvDjWqCxcVkbfyZMEt21DVRnq7r4us1FqVqygetkyUn4Ts8mOy9yYLMmbnBNwHKoWLuS+hQu5s3uI4+8uoevVlygvDxEtjDB04QKaHGFgKENSQgR6LxFOj5JJpgmGEujRX6KNDay8vYYTvf2MuoWUrv8KK1vnc27PT4jOKseJRBmKp4gHCwhGCymsrMZJxnDqWhhNBccWBZ8UEQLBIJrJEHAc73MGvOT/+znk6roEw5MtBk0ipECAUJH1cc9HluRNTqupKaZm+1pG7ppH99GjjPT1MX/rVgpn7eHMr39N87xyPnqnEw0EEQ2Cuoz0XCQ1PERNOEyL8xtu2Xg3LV/chGbmcjjRi5tOc/7AAUodh3OnulBVnEAGp+5W3LoFBC6cp2H25O92RYTmTZs4+dprlNbXM9TdTSadZnRggPovfIEhf4poSV1uPEFrbmyW5E1eiFZU0Lxx49h2aWMjF9rbGThzhoLCQjKpFOnRUdLxOE4kQjIW48J771FQVES4tJThc2epWrCAUGEhkfJy4j09dB85Qig1SCITYJQaKLuVSMZl6ZIqauc1TSneNY8+Sn9nJ73HjhFwHOI9PRRWVVE6dy7F1dUsuf9+q4mbaWFJ3uSl4upqvvjkk+x77DGC4TCJwUH6T5/2yiRAZmSESGkpqdFR+jo6qF62jN7jx0nG45zat4/k8DDBSITCygqCg4PMXbeIkqZagokY1UtXUt7UNKX4ImVl/MUPf0h3WxuD589TUldHaX09wVDIZrOYaWVJ3uStqgUL+KPdu3l9506cSGSs5pwaGcF1XUZjMTKJBMmBATrfegtxHFzXHVv4OjM6iptOM6u5mUysj6raVupaN1OzcuW09F8JBALUrV6NFWXMTLIkb/Ja9fLlFM2ZgxOLETt3jsTgIBIIIIEAyVhsrK95qKSE/tOnSQwMUNfaSibpLRwSKioiGYtR1tDA8gceIFzyh0sIGnMjsyRv8psIVQsXUhCJMNrfT//p02SSSdxEAtTrOKmZDANnzlBcU0NycJDUyAhF40ombiaDZjLWItfkJOv5afKaEw5TtXCh1xf9zjsJFxfjhMM44TDBUIhgKATBIG4qRe2qVYRLS8kkEmONujLJJMlYjLkbNthqRiYnWZI3eW/+1q0URKMEgkGkoACnqIji2lpK6usprquj4tZbKaquJlRUROGcOVQtWoQTiRDv7WWkr4/G9etZdO9lH+425oZntyYm70UrKljzrW9x6cQJ0qOjXGxvJxgKETt/HhGhuLqaRCxGvKeHO3ftYqS3l/OHDlHe3EztqlXctnkzwYKCbA/DmEkRr83MjaG1tVUPHjyY7TBMHrt08iSHnnuOaEUFwYIC4j09XGhvZ87ixaz+5jcp89c0cDMZUL0uJZoTJ3p5441OEok069c3smZNw9V/yJhxRKRNVVsve8ySvLnZfLR/P6d+8QvcdBpVpWbFChZs3z62JOD19PLL7Tz11Lt4MzKFdNpl27Z57N59lz0MZa7Z5yV5K9eYm07junXU3n47I319FBQVESkry0ocvb3DPPPMAWpqiohGvXJQJuOyd+9JNm++jdWr67MSl8kv9sGruSk5kQgldXVZS/AAbW1dpNM6luABgsEAjiO8/fZHn/OTxlw7S/LGZEkoFMRbuvDTVMnJBcLNjcmSvDFZsnZtAyUlIfr64mP74vEUAHffPfN95M3NwZK8MVlSWFjAE09swnWhs7Ofzs5+Ll2K853vrKOlZfKrThkz3rS8JxSRncA/A7NVtVe8aQH/irfOaxz4mqoemo7fZUw+aW2tY8+e+zlw4BzJZIZVq2qprJzZJf/MzWXKSV5EGoHNwNlxu/8MmOf/Wwv8u//VGPMZ0WgBGzY0ZTsMk6emo1zzfeAf+PQnSNuBn6hnP1AuIrXT8LuMMcZMwJSSvIhsB86p6tHPHKoHxs8B+9jfd7lzfF1EDorIwZ6enqmEY4wx5jOuWq4RkTeAmssc+i6wG69UM2mq+izwLHhPvE7lXMYYYz7tqkleVe++3H4RWQY0A0f9x68bgEMisgY4BzSOe3mDv88YY8x1NOlyjar+VlXnqGqTqjbhlWRWqWo38Arw1+JZBwyoatf0hGyMMeZazdRjda/iTZ/swJtC+TfX8kNtbW29InJmhmK6nqqA3mwHMYPyeXw2ttx0s49t7pUO3FBdKPOFiBy8Uke4fJDP47Ox5SYb25XZE6/GGJPHLMkbY0wesyQ/M57NdgAzLJ/HZ2PLTTa2K7CavDHG5DG7kzfGmDxmSd4YY/KYJflpJiKPishxEWkXkX8ct/9xEekQkQ9E5E+zGeNUiMhOEVERqfK3RUSe9sf2noisynaMEyUi/+Rfs/dEZI+IlI87lvPXTUS2+PF3iMiubMczFSLSKCK/EpH3/b+xb/v7K0Rkn4ic9L/OynaskyUiQRE5LCJ7/e1mEXnXv37/ISKhiZzPkvw0EpGNeB04V6jqErwe+4jIYmAHsATYAvxARIJZC3SSrqGt9Nfx2krnmn3AUlVdDpwAHof8uG5+vP+Gd50WA3/pjytXpYGdqroYWAc87I9nF/Cmqs4D3vS3c9W3gWPjtp8Evq+qLUA/8NBETmZJfnp9A/ieqiYAVPWiv3878KKqJlS1E+9J4DVZinEq8rKttKr+UlXT/uZ+vF5LkB/XbQ3QoaqnVTUJvIg3rpykql2/X4BIVWN4ybAeb0w/9l/2Y+Ce7EQ4NSLSAGwFnvO3BfgT4D/9l0x4bJbkp9d84C7/rdX/ishqf/81t16+UU1HW+kc8bfAa/73+TC2fBjDZYlIE7ASeBeoHtcfqxuozlJYU/UU3o2U629XAp+MuwmZ8PWzJeEn6Cqtlx2gAu9t5GrgJRHJmRWZZ7qtdDZ93thU9ef+a76LVw746fWMzUyciBQD/wX8vaoO+p1wAVBVFZGcmxsuItuAi6raJiJ/PF3ntSQ/QVdqvQwgIt8AfqbewwcHRMTFay6UE62X87mt9OddNwAR+RqwDdik///wSE6M7SryYQyfIiIFeAn+p6r6M3/3BRGpVdUuv1x48cpnuGGtB74kIn8ORIBSvLWyy0XE8e/mJ3z9rFwzvf4b2AggIvOBEF73uFeAHSISFpFmvA8pD2QtygnK97bSIrIF7y3yl1Q1Pu5QTl8332+Aef4MjRDeB8mvZDmmSfNr1M8Dx1T1X8YdegV40P/+QeDn1zu2qVLVx1W1wf8b2wG8pap/BfwKuM9/2YTHZnfy0+sF4AUR+R2QBB707wrbReQl4H28csDDqprJYpzTaVJtpW8wzwBhYJ//TmW/qv6dqub8dVPVtIg8ArwOBIEXVLU9y2FNxXrgAeC3InLE37cb+B5eefQh4AzwlSzFNxMeA14UkSeAw3j/yV0za2tgjDF5zMo1xhiTxyzJG2NMHrMkb4wxecySvDHG5DFL8sYYk8csyRtjTB6zJG+MMXns/wCzZi3jwOKNTAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeZBc513v//dZu0/v63TPvmib0WbJli0vsePYDs6PQBJjAuEGbi5LuBS5QJI/SIWCokJRyYVbBSkuPwJJUQF+JDe+CcTZHBvieI03WbJ2aWak2bfunt7Xc/osvz/GTCKSEDtY0sh+XlVTJZ1uPf2cPqPpzzzn+zyP5HmehyAIgiAIwhYkX+0OCIIgCIIg/DAiqAiCIAiCsGWJoCIIgiAIwpYlgoogCIIgCFuWCCqCIAiCIGxZIqgIgiAIgrBliaAiCIIgCMKWJYKKIAiCIAhblnq1O/Cf5bouKysrhMNhJEm62t0RBEEQBOEV8DyPer1OX18fsvzDx02u+aCysrLC4ODg1e6GIAiCIAg/hsXFRQYGBn7o49d8UAmHw8DGiUYikavcG0EQBEEQXolarcbg4ODm5/gPc80HlX+73ROJRERQEQRBEIRrzI8q2xDFtIIgCIIgbFkiqAiCIAiCsGWJoCIIgiAIwpYlgoogCIIgCFuWCCqCIAiCIGxZIqgIgiAIgrBliaAiCIIgCMKWJYKKIAiCIAhb1jW/4JsgCFeGY1nUlpdxu12MRIJAKnW1uyQIwhuACCqC8Aa1ttag0bDw+1X6+sLI8g9eHdLzPFZefJGFp56ivrKC6zj4wmHSe/Ywds89BJLJK9xzQRDeSERQEYQ3mKWlGo8+OsPUVJF220bXFUZH47zlLSPs3Pn9oWPxO9/h/IMPImsa0aEhFF2nU6mw8PTTNPN5rvuv/xV/NHrlT0QQhDcEEVQE4Q1kZaXOP/7jSVZX6wwMRBgY0Gm3bSYn11lZqfELv7CP8fEUnutSmZ8nd/IkZx54AEXX6dm3D9XvB8Afi2F3Olz813+lXSox8uY3kxofJ5TNXuUzFATh9UYEFUF4A3nyyXlWVurs3p3evNUTCumMj6eYnFznW9+aYWQgwIWHvs7q0aNU5uYoTk7ii8Vora+T3r2byNAQuePHqS4s0C6XmX30UZr5PIFkktG772b4jjt+5CZjgiAIr5QIKoKwRXSqVfKnTlE4exbHsogODdGzbx+xkRFqi4u01teRFIXo0BBGPP6q2y+V2pw7V/i+ehTX9ajXTcJhH9PTJZ7//IM0Tz1LbHgYz3Fora8T7u2lU62yduIElfl5mvk8wVQKLRDAc12i23awPL3Mxf/3H+m92GL3W24mobVYP3+O9vo6WjBIcudOEtu2Iavix44gCK/cZf+Jsby8zEc+8hG++c1v0mq12L59O5/97Gc5dOgQsFGo94d/+Id85jOfoVKpcNttt/GpT32KHTt2XO6uCcJV02p1KZfbKIpMT0+Q+vISpz73Oarz8/iiUWRVpTg9zcyjj6L6/UiSRLfVAknCiMfpu/FGtr31rSi6/qpes9OxSSYDm8eWlmpcvFimVGrjui7tYpH+6dMcPDSILxKhXS4D4Lku/miUyvw8ldlZwn19OLaNY5pYaDz1zDLlsolcLnH+//sGTz9yimxnmpFeHSNk4HS7zD/+ONnrr2fivvvQAoEf1k1BEIRLXNagUi6Xue2223jLW97CN7/5TdLpNNPT08S/57fBP/3TP+Uv/uIv+Pu//3tGR0f5gz/4A+69917Onj2L/+X74YJwrXFdj2bTQlFkAgFt83izafH00wscPbpKtdpBkaHXW8Y48SCU1wik04Qdh9jICIF0mguPPEIzl2Psnnvo2bsXz3Vpra8z/dBDlKaniW/bhue6hDIZUhMTP7CotVhsceZMgcnJdWZmKrRaXXbtSrG8XOfYsRU8D6JRP47jQq7CyswqWqKHca1BviSTLzusl5Yw/GCtLdMuruN6Ho1cDrvrUEtM0LItMj1BpNgAdn6B7tIqS3YANZnl8PYBJFnCajZZeu45NL+fifvvv5KXQxCEa9hlDSp/8id/wuDgIJ/97Gc3j42Ojm7+2fM8PvnJT/L7v//7vPOd7wTgH/7hH8hkMjz44IO85z3vuZzdE4TXXLfrcOzYKi++uEI+30JRJMbHk9x00wCZTJAHHjjDSy+tkkwG6M0G6Zx8mrXn/xW5OEfvzhGCskzp4kXqy8sYySROu40/GqVdLMK2bUiyjBYI0FhZYfnIETJ79+KPRnFsm64vRvCGtxAe28ngYJS+vjAnTqzx1a9Oks+38PkUmk2TJ59cZ2WlTqvVRVVl4nEDgFyuTX/GoKfkceH5kyy8pKCGwuhqD9LcS1TaVXRNQZUVVF3HMU3MjkO7kCM9NIaiyDiAW86jpfpJ9vWxvFynWGqRSgXRg0HCfX2snTjB0B13EEynr+7FEgThmnBZg8pXv/pV7r33Xt797nfzxBNP0N/fz2/+5m/y/ve/H4DZ2VnW1ta45557Nv9NNBrl8OHDPPvssyKoCNcU23Z58MFJnn56HsPQiMf92LbLd76zxJkz6+zYkeD48TV27Eji96t0Vy7SXTpJJBGkVfdRWO8QS8cI9/bSKhZZPnqMQLoHXzBIa30dz3XxPI/VY8doVypofj9GIoGWHeKlY6usX5jEeXqWzp7/h2AmS39/mKWlOuAxMZFCVTduMz3zzAIXXpoi1FljfDSIXfdRcBMEDYNRdwZzZRal1kXSdeI9YeRACCfkw1HDWPXaRj8ch3B/P9WSjF6v4JbXUHrHcMsFPNdBSWTQfSrFbptisU0qFQTASCQonD1LfXlZBBVBEF6RyxpUZmZm+NSnPsWHP/xhfu/3fo8jR47w27/92+i6zvve9z7W1tYAyGQyl/y7TCaz+di/Z5ompmlu/r1Wq12+ExCEV+HkyRyPPTaLpsnU6ybNZpdk0mB8PMnsbJkHHjjDzp0J/P6N/3b24hRurYRbLaC0iljNGmt2kXBPiiYBqislCnVQAhGiiSD9bRunVqSRyxHKZGgWCrSbHY6/sEJhvUVqeBS5OIcvWKITG+HBB89TLLYZHo5y7tw6sZifoYEQN8ZXSHovUKmUcGYCGLrEjqBBIujhD+jk9TQoeWx/DMkI4qwv4bWbqNkR0AN0XYWuplH3wlQaNVRHRc+vIEdTeN0OSiyNJCsASNLGbTDYGEF1XQ88D8/zrtZlEgThGnNZg4rruhw6dIiPf/zjABw8eJDTp0/z13/917zvfe/7sdr8xCc+wcc+9rHXspuC8Jr42tcmOXUqj6bJL0/P9ZAkiWw2xJ49adbXmwwNRQCwLIfK6aOwuoCsKsiqDq6KZTmsTM1hyQF0WUG2TVyzw0othvX8MjtidTzHQZJl8DzKdZd8oUVfXwhZknCMMPbKDN3MdSws1KhWO0SjPiIRH4WLc7jPvMhA5xy94TjVYIzwyADZ3ihqaR774ks4owcoG0P4WxYBqwodFw9wm1Wk6jpq/y6m8z5a9RX85UWcjkunY+E2KgSMJPGDh3EredxqEU/fKJiVZYnz5wosLFTpNmoEZIvwmkeq66Bpyve9j92uw+pqA9f1SKUChEKvvGBYEITXn8saVHp7e9m9e/clxyYmJvinf/onALIvLw6Vy+Xo7e3dfE4ul+PAgQM/sM2PfvSjfPjDH978e61WY3Bw8LXuuiC8KgsLVZ58ch7w6O0Nba4jYtsuy8s1JGnjA7tc7jA1tc7s+RX6L86gdE3sUA9hOsjdBm0rhCP7MWjjaQo4FqqhE9w2Si7XwGhUCQOdSgU9HGbF9OP3e8j/tm6JJOPYNidO5HBdF79fQZagpzmFUTqBr3iGjm0TxCFrWmj5NoHhG+g6XSTVh1fJ40nDFI1RYqESbmsZr1nFcx1cq02p6lBvQ9/OvcT9bbSVZcqLy9S1GLP+wxwcPEw0MU/7hYcpLuXxhSLMzJSpVDoEfKBUCxRTO/nSI3kWK+e4//4JdH0jrLiux5EjyzzzzOJmUIlGfdxwQx933jlySVGyIAhvHJd19+TbbruNycnJS45NTU0xPDwMbBTWZrNZHn300c3Ha7Uazz//PLfccssPbNPn8xGJRC75EoSr7cSJNUzTIRLxXbLY2b/VheRyTQIBjfn5CkePrqGUl9D8fjS/jiRJFO0wbdeP02mheyaO2aHbaNA2emhh0G3UUZwOF6ZLLF9cYT1fJzC8nS4aivLd/8Zuu05dS1EstslkQti2h7+2QHDlGJJnI+kGpj9FS4mgRaJozTzlybM4XQtX89Nt1HFbdYJejYBdRfYF0QZ2IoeiuKaFuzxN1l0lHDVQk32Ed+3HGNxGfugtXKxHOXV6nYLaz5qxC7/TQC0t0FhepEcp42/lcJLDKOO3EI36ePbZRY4cWd7s+6OPzvDAA6cpFFokkwaO4/L880t8/ONP8uEPP8Lx42ubt5EEQXjjuKwjKh/60Ie49dZb+fjHP87P/dzP8cILL/DpT3+aT3/60wBIksQHP/hB/viP/5gdO3ZsTk/u6+vjXe961+XsmiC8ps6fX2dkJMrycp1YzL8ZViTbJNAqUM6VCCXjmHKYVsuiazYpWz4Uq4vWXMfVQ7SNNMgWrtfG6ZqYWpLJ3nejtcv4JqfRnXU810EPpak1dIoXXCTZpt3uEo/5carrSLqfVmQYSh7JpMHSYplA+QJd2aHh+Am1LExJpWV2GBmOkQiHWV3KM2cF0es1JEUh0OMSaORw/Bp6NAGAHIjSadtYDZuIlkNvrOF0A7itGj3XHcA3cCvmiSJTU0UaDYve7AFS4ztZPX6SbLhLruax6CUpNXrwXiqj63VUVeLxx+c4fHiAhYUqDz00vVmEfOTICuvrTXRdJRTy8fzzSzSbFu9+925+4q5BNF17VWvICIJw7bqsQeXGG2/ky1/+Mh/96Ef5oz/6I0ZHR/nkJz/Je9/73s3n/O7v/i7NZpNf//Vfp1Kp8KY3vYmHH35YrKEiXDM8z8O2Xfr6IrTbNmtrTVJJH+HKBfz5c3j1Eplqm6QTpzfcy6Q7xmLORGt7tNV+EqwQsptItkfdcqjKKp6cwYxsQ0/3UyqnWCwlUZwWuqHRHvQxWHsJZ34aS/IhKQr1zipGJIxv721I9OHNrtLtuoz26ejzJebbEjYuSlfGdVo4agDXdbE8H5JtEgwnCKAhKzLdIHQrHWqmgVntIFkt2h0fK3YvilTHsIoUzp0nNHED8QN34tu2n3bVwbI26nN2707j86mcmLa5UBmjLxCi7lpEk34yhoIkeXSsjX2HHntslv7+ME89tcDx42tkMiGq1Q6u6zE6Gt9cQddzHbzVC3znfz9F8yGF/oEYqfFx+g4dIjYycnW/AQRBuKwk7xovv6/VakSjUarVqrgNJFxx3VaLZqHA178+xYvnWmQHkpw4sYY1dYxE4RiOrOME4siqxvioweyJKVpKlM7wYYKzT2F1PRx/BKlVpVWp0rU9JH+IhNZiPngdheAOTNOh23WpVjsEAho33JDFa9bw15YId5ZJxnW8aC92cpj0ju00Ghbf/vYs0aiPnYM6ncf+D21Xx1YDhNrLhJpLBNJpXGS6tQoJymjROG6rAboP2QjTbdYx1Qgh3aVStylpfSjpAarVDnEqdCyHhaF3cN2NQwwMRPjWt2ZYWKhx3XUZ3vzmEWCjbufrX5+kWjXZNwS9rKJXl8DzsINpckovR+d1Dl7fSyiks7BQwzBUzp1bJxz2sW1bnEjEB56LN/UcsfI5YnGDRH8PNxzM0i4V8Uej7P7ZnyWzf//V/UYQBOFVe6Wf32LTDUH4MdimycLTT7N85MjGXjYVk9BFE6u9j9uun6CYX8PypSGSotXqks0GSSYMXjieIuMUqK4tkHeH6W2dpNtsUzQDWHYMv9QhKzeo6Rns1Bh23aVQaCLLEoahEQrp+HwaSiBFUQ5ybKYH3ZbZlUhh5hzOLM/R2xviuuuyWJZNo+vg+aJk1Dpm0KBV7wfNISjXscpl5FoFzy/hOiHU3hEk3Y9dWEZxLDxVwo1m8WJRJsYGkWSJs2cLlJc6dNQIM0stLiycwzA0SqU2fr/Kykqdkydz7NyZJJk08Ps1rMVp4nMXCfhtbF8IJBlfeRajeJY+aRuGkqFPztMpnUPTZAYklXq3l5UVlVBIx19fRi2cRYonCAz2UbMctHiScG+W8uwsU1/7GrGREXziFxVBeF0SQUUQXiXXtjn/la+w+NRT+BMJosPDRAZdWuY0MyceY2HqFEanjJQYomPapFIBDh7opVzpIMkyZVNHblykOXAvpaCBUThHzCzhSTYd10crtZNVY4JqU6bdtuh0uoTDfpLJjRVkK5WNRdTqdZNKpYNtu4RCPgYHI4yOxmi3HbZvjxMO63z+86fxa0MYtRexzDK+aJT09oMEGkt0Cs+CJGFHegnvPowcTSEpKnIohjV7Bi8xwjIx0qkAiiJjWjaubYPVZlXdhW27lMsdZLkNSIyMxAiHdc6cyVOrmdx0Uz89EZeEeQZT8jCzYwB4HpQtPy23wC75PMEzeSIplVSjRtf2GGl2cIIpZpy9NBphQuszuI5DLJvGcz1kWdqsAYoODbF+7hyFc+cYOHz4an1LCIJwGYmgIgivUnFqiuXnnyc8NIzp6dRbLsGgzv7b95PsSzHz7FEaOITiBrv7I/T3RwiFdGzHJRjUKFYkfLKNjEsxMMaaEkVRigSCCqW2So/RT29viNZKA5CQJBnle5YbyeWaAHiehCxDIKDS1xemXrfI5Zrccssg09NF7rprlJtvHqCQixCr6Bj5swR8NTTHwSrlkBSNYrCP+Nh1EE0hvTx7SMkMI6/NI63PIwVB10MArC+vo5QWiYxsIxSewJ1t4fOpRKM67baDY9vE3SJJuULlzAWWQ212xRssym1MonSXL6B1G0iSTDAQxw0aRCvT+Bt1ggfvIaS1WVysUjPbJMwSA51j1ItpOvlVYvEYsZifQqHJyEgMn2/jR5esKCBJtEulK/o9IAjClSOCiiC8SrlTp1hdqZFf0qhWTTzPIxjUGRmJ0huWCLtl1EaRRFMh0uhDag9BKE0s5ieRMGjnuuALUm541Jt1mi3wSNBwFWzFZWmpRqdjo2kK4bBOsdii0ejieU1SKQOQ8PtVWq0WiiITDOpomkwmE6RQaG1OTT51Ks++fRleNG223/KTOIX9dJcv4NZLUFylFRtloRSjuWZRrm+sXJtKBTD8KiQH8PweYVXFXpnFNFTq+Q7d9Dbc7beg1hUiRotBrUQ6olC1KkQWVwlULXyqh97u0nz8DD0JlbrSIKjWCcgurqGjyA6qtEqp1kG2W/jDGSRFpa8vhKbJTE055Cox4vYqoeYi6WyMdMCiVjPRNIXh4dilF8TzUDSxxoogvF6JoCIIr9KxZ6aYvFhHSYaIRDbWQWk2u5x8/CVWnFVCUhNFVemUy3RbLaqLi2QPHCA2MkJvj0HxbId27/UoDZVAQCIU0qiV6gSp4Mqw3tbpdPSXRw0kfD4FzwPHcSmVOkQiOtWqTbfrEAr5iMUMDEPD8zwqlQ6nTuUYGIhgWQ733DPK5GSBl47n6HZlyuUhYBBfLY9Xnccf8OM4HpblsLZWp1rt0Nsbwqp0GLzzLvpvvpUnvvoC/kyAVamOlsjg92v450+xo3iEiNIioah41Tkc06RrjCMlR+j6HRy7TWf+DKnuCk5kGDcQwTA2fuSYpo1mT6M6LfzGxjRjWZLI9ASJRn2cPp2HSoPeQA25dzvlqacIDCc4cF0vmUxo81pYjQaq30/sezY7FQTh9UUEFUF4FVZW6kwvmBiaSyQZ2Dyuak209goV0yGQDpEZG8Ss1XBME9s0WX3pJZxulz69zOTAdk40UtTrFpGgTKJxge3WDIbXxHY8WnKQDttpKruo1m0ymRCGoaJpCvPzVQASiY0ND/1+lZ6eIPW6yfJynXy+ieO4rK01ADh1Kk8s5uexx+ZoNrsEAhrFYgt1LcD1qs2eiQS1hs36egvbdqlWTex2iwOjUX7ql95CeHQ7s6s2U1NF2poKtkeoOEt0+TlqtoWUHUCS6+g+jZqr4qsu0ZJ0KkTx+TS0aBS9tURsMEzd9tFsWngeGIZGeCBNe75GvQ2yZePTVRzHpdm0GBiIMDihEe7LELrlzXSerRFwKvRmv7tsQadapTo/T//hw8RFUBGE1y0RVAThVZicXKdu9NHvu0B3bRa3UcHrWritOlK7AVqMZtOlZ+9ePNelfPEitdU1CnPLNKQwPXe+nb6BODyyxPCQRm/lOAl5Ci8bIl8PUCm3iesm8cpxuiGX4M1vZnQsybFjq1y4UMKybKpVj0BAxzA0olE/hqEyM1Om23UIBnX6+yO0211SqQCPPTZHo2HylreM0G7bFIttzp51MZK7cQtl1s+dw41mgY0imIBsotaq9N/wdoYO7EZWVf7Lf9nHww9fIJ9vcvHCOmHzJCG/TMfoR9N11HoJGxkjESOqmwS9Ml4gxYHr+0mWS6w3w3i1dUZ27cKVongeKLJL5eI6XsiPLxHaCEh2G0mSiEZ9XHddkkBjiZ1vv5ntbztM7c39nH/wQcozG4W1eB56MMjQbbex86d/emPvI0EQXpdEUBGEV6FS6SBHUrjzbbrzZ5F9ASQjhFPOQbuFqjfpbttHIJlEkmXqboClYpiapmKb/ZxZTNNsdnEcCHYKJFuz2OEeTE/HCLu4soY/oOG2G+w01ghluhw9laPTsRkZiSJJG/sHWZbz8gaHEgsLFdrt7sv1KirtdhfD0OjrC/Pcc0ssLdVwXY/t25MMD0fJ5ZqEQhoF6TDO2acZVsr0BSQkDSzJx1xrhKeLI9xR7JDJhMhmQ7zvfdexf3+Gf/zUt3GfrZPaPkakI7G4WEOrtfEhE43oKLKOUimxb7vBTTf1s/TEJIFkEi0UwqzVcLtdACRZJvryVhrRrErs+mE6poOqyiSTBq21FaREgp59+wCIDAxw6Dd+g9KFCzQLBWRFITo0RLi//5ItCwRBeP0RQUUQXoVQSEeafwlJUdHH9uNWC3hmG0kCT1NxkfGFQkiyTKnU5ujRVTqmQjwZxr89i7Evw8pKnePH10jYa/h1iZY/SDKgEYv5KRZbFIstfLEoQV+N+RdP0vTtpq8vTK1msmtXiu3bE5w9W2B5uUY2G6RU6tDp2ITDOsGgTioVJBBQOXOmQD7fxPOgUjE5dSqH36/SbtsoisRaXaURuxmj30UKdQEJyxejXfdTqHq8+OIKb3/7TmBju4vrr+/F+JX9PLTwCCXLw3U3Rj9kM4LfzOG4Hoosk4z72LM7ia4rBLNZ1icnGb7hBoxEgk65jOd5+MJhfNEouUgEXySCszZDKBxGcmVK56sY8Ti73vEOIv39m++9rKqkxsdJjY9fpasvCMLVIIKKILwKQ0kPo7ZIN5IikEjg+Ay6+QVc1U+32aLtuWiLM8zP7qOwbtJoWPT1+LELoPZs7PLd1xdmYiJN++ky6dEEoYH0ZvuyDKurDTRNwZU02qUSyb0GjYZFo2Gxb1+G8fEU2WyIEyfWaLW67NvXQyCgMTQQImwX8XLnmT66SI8vTFOPsuIECYV0enqC5PNNGo2NGTSW5aDpKlYghpkKAlAud4hEZEZGYhw/nuOtb922ubsxwOjuIW64ZYx604FgFFVVUM1eZp94CkX3oRsasqMTTkQ3zkdRMJJJXMsikExixOM0cjkaq6ssHTlCz8QEB3/lV6ivrVGcnMRzHAZvu43Mvn1EBgau4JUVBGGrEkFFEF6FuM8kG4P5pkp38gx6Y42O5VJq+9BNBR9Vuqsdnn/4RfJOgr4eDTufR82OoGZHNts5cCDDs0dD5FYWIJbF51exLIdms8vwcBRdVyjP5yh1o5j5FoGAyu7dKcbHkwDEYn4OHuylUmmTTAZYWSgyUD+BNXea/GodX80mbIDWcKGdxafdBUA6HaBeN2k0ujQaFuGwTiCg4boe9bqJadpMTGSJRHx0Ohszi9x2g065jKyqhHp7yR44QOtb3yI1kkXRNDwvgHP9PvKnT9NcWiW5Ywd2p0NteRktGOTQf//vlC5eZOXFF6nMzdEuFvEAfzxOp1Lh3Je/zPg738nYXXddhSsqCMJWJ4KKILwKsqIwOpbAV7BYObJC2dGp1B0URSPYN4rRXYdaEX39HHkzQ7kVInF4P8YNdyNpvs12olE/mb17SK0U6baatNo6iiIzNBRl544kOiYnnqlQsHbRvz9LNhve2Pfme5imja6r3HhjP1998tvU88cJ9A5QLQZwoy6WodI1i4y0ZmmvnceNXo8sSwQC+sbCc8UmkiRRrZrU6ybBoM5112XYvj3BwkKVdNhj7pFvUDh1EqteR3q5LiSzfz+p3btZP3cOIxZDC4XwRSIE02mCPT1EBgbwPI+Bw4fpO3SIxPbttNbX+c7/+l/UlpfpPXSIUDZLKJtFVhQqc3Oc/dKX8MdiYhRFEITvI4KKILwK4f5+Qj1pgvNHGB6OsVrXcOUmibiBpio4dQcvkgTNj6bt5Kw5QHbHrYRDly5SZpo2xsAYhw+rtKdPoIQDhLMZQkGNZqFAe32dW3/2J6jO9+J68veFFM/zyOWa3HHHMNfvjXLGyDHr+mlUXUzTptNxME2bQCxGKq1Sbs1xcXUUT9ZYX28xNhbnttuG8PlU+vsjaJpMOh3AMDTa7S65xQL96mlOns2R2TZIbHQUx7Kozs9TnZ9n2733khofZ/XFF+k2m2iGwXX/7b/Rf+ONaIEASBKq77t9bhWLeLbN9re9Dc0wvnserocdzjD9/DEu/uVXGbzrXiYmUgwMRC4pku1UKrSKRWRFIdzXh6Lrl+kKC4Kw1YigIgivgi8cpu/QIaYfegg9HKbbdYiE/aiKjNtpggf6yASe1Sad3cmRs0FWc22yfd8NKq7rMTtTZiDYoKcnyNJkl/r5E7TnDRqpFNGBAXb81E8xcued1L+zwte+NglAJhNEUWQ6HZv5+QrpdIDDh/tp53MMpWUyI3tYXG7QanVptxv09UVIJgP4lSix9TWS4wFKToR43OD977+e/v4IX/ziWSqVNrFYiG7XZWYmz+nTBWKV80zVjuEkhsjW6+ze42doKEpi+3aqi4ssPfssh4nNPfkAACAASURBVH/ndxi+/XbsTgfV5/sPw0NtaQm7270kpNi2y4kTa8zNVXDKLlL5KM8W+gkEde65Z4y3v30HdrPB7Le/zdrx45i1GpIsE+rtZei22+i/6SYxLVkQ3gBEUBGEV2nkzjs59fnPU56Zwau1ABmnIyNrPtS+bSiJLPbKRXqyUXrLBoVCk6mpIvG4H8tyKBVbZFqTDLXmyDdlwv39+KNRGrkcvnCY8fvuo2fPHlzXo6cnQDCo89xzS5imTSoVJJMJsHNnip/8yR0MDkYpTuWQZIn+wSiDIwn27uvhO99ZpNGw0DUZXBdV3RgxqRdl3va27dx11yiaphAIaDz33CJTUyVyuSZnzxaoVlr0VWeo2zrtssV6Kc/iUpW77x5j27YE4b4+1s+fpzg1Rd8NN7yy5es9j38/iXhycp3p6RLxuJ9OR6VU7bC8XKfV7nLs2CqLMzkO6WcpnjtDKJslsX07rm3TyOU4/X//L1ajwdg991yOSywIwhYigoogvEqaYbDn53+es1/6Eo2ow9pimWA2hhxJIhuhjcXf/AG8aIadOzVuv32IYrFNLtcgENC4rk9GPrlAsj9LIJXabDexYwfFqSku/su/EB0d418eXeDJJ+exbZcDB7KbM3bCYR/33TfO4ODGzJpQNosRj9NaXyeUyRCJ+Dl0qI/jx9fI5ZtIjXU81Y9TVrnuuiz33z+Bpm3M5BkbizM2FqdWM3nggdMcO7ZKNCgRbDmooTA+3U+nY7O+3uaJJ+YYGIjg86lIkkS32XzF71mwpwdJlnG6XRRNo9PpMjdXIRTSqdctirNr1OM7CIZ0whEfq4slHv+rv6fhO8fYno31ViRZJpBMEhseppHLMf/kk2Suu45gOv0jXl0QhGuZCCqC8GPoP3SI/MmTmNIiBTtK0+cjavhxWzWcch512wFm1xV27krwjnfsQtMULMtBUSTOfOH/sOqTLwkpsPFBHB8bo3ThAs9+7Vkee75LNhsiFttYNn5sLI7juJw7t85DD13g/e/fKI71RSL03nADFx5+GD0UQg8GSaeDvPnNIyxdXKM0WyV5+z3s/+lbGBuLo6rff7tEUSReeGEZ07TpH4mhNgyUThUkBUPXkKI+1tYazM6U2bUriee6G7Uor1By506iw8OULlwgtWsXlcrG1O1YzM/S5DKKruMfHkfxq8hmgwnrKIH8M1Q1m0LERyufo3zhAsmX11EJ9vSQP32a4tSUCCqC8Dongoog/BhC2Sx73/Me1K98hVb7DHMXV1hbsNGCYez0Tpr6bsbGEvzMz3x39ELXFVzHoTo3hz8e/4HtKrqO67icfG4SVdu+GVI2H1dkxsbiXLhQZHa2zLZtCQBG77qLTrXK6osv4nkeqt9Pt90mqqrs+cWfZtc73vEf1pB0OjYLCzWCQR2fWUY2m/hzZ3D1IJ6iowdTVKwQ+UKTvohFIJUisWPHK36/VL+f3fffz+kHHqBw5gwNU0GuF2iU2zgdG2/nYbqRPvA8gstH0KoLuJofJ6DTdA2yfQnMep3CmTP4wmEiAwNIsky31XrFfRAE4dokgoog/JjiY2Pc9IEPsO0nppk/t8DsfJ2iG8VIZ5iYSLF7d5pw+NLZOpIkISkK3stLybuOg2vbyKqKrGwEmm7XplQ3SYwb3/eaAIGAhmU55PPNzaCiGQZ7f+7n6D1wgPyZM3SqVQLxOOm9e0ls377Z9g8TDOqAh7+5Snj9OIpVx/HHkK0mkuehlxdImj6cnI6VyTJx3334o9FX9X5Fh4a4/td+jfypU8weOY5/0WGtHSTnTxPPbGwqqLbW0avL1LUEEX8dn2Jhmg6wUcjcbbWozM0R6ut71aM6giBcm0RQEYT/BEXX6dmzh549e7jxFTxfkmXSe/Yw/Y1vYNbrVOfnsU0TRdeJDg0RSKfRDAPJ34Prev9hW7J8aXmqrKqkd+8mvXv3qz4Pv19lYleChX/+OnKohZkYQ4r0o1cXUdtlupZNxF4n7HPZ+/M/T9+Nr+Rsv58RjzN8xx0M33EHlW3n+bu/O06t2OLfxpeUdhnXbGOqUYxsP15+GlX+7vugh0K0y2VqS0sY8TjJnTt/rH4IgnDtEHP7BOEKS2zbRnVpibnHHsNqNpFVFbvTYeXFF7nw8MMkR4fZfmg3+fwPLlYtl9uEQvpmMe1r5d7DQeJSlbwVpNNxcGSdRmSUfGAnpcgulG0HGdq7jZ69e1+TjQDvuWeM228f2pxuXSq1KRXbmKZDOh0gPjSIbSQIuA2seh3PdXFtm06lglmpMPzmN4v6FEF4AxAjKoJwhZUuXMAfiWzUWDQauJaF67qouo4HqIbBTYcHOXuuyMJClYGByOboSaNhsbRU401vGqKvL/ya9mvP9iCnd8Q4ux6i3bYwTQmQUHSDeCbBgYMJdNnBajRek1suoZDOBz5wI5IEDz98EYDU6CC9+jRqyCNfsujdf5DhWIPm6jLNQoFOpUJ8bIx9730vA4cP/6f7IAjC1ieCiiBcQZ1qlbXjx0nv3o0vHKa+toZVryOrKkYigayqVOfn2RWxue++CR56aJozZ/KoqozjuPh8KocPD/BTP/Xa3/IwwkF278nQKye5OFujVjNRFIlsNsS2sThxv4Xb7aL6/T+6sVfI79f4H//jMHv29PDCC8sU11u0Kn0Y6xcZ2z3OvgMbC8B12xNU5+awWi0O/cZv0Hvw4GvWB0EQtjYRVAThCupUKpi1GrGRERRdJz46esnjnuvSzOfplMscOjTO2Fic8+fXKRZb+P0qo6NxRkdjKMprf9c2NjpKdKAPo15n+73baLW6yJJEKKSDBIUzZxi6/XZ8kchr+rq6rnDvvdu55ZZBlpZqtMvbqD77CNbSRZoLFzF1HavVwh+NsvOd7yR74MBr+vqCIGxtIqgIwhWkaBqypuFY1g+cLuzaNrKiIL+82msiYXDrrYNXpG+aYTBy552c/eIXaa4sbeypo2lYzSa1xUWCmQyDt9xy2V4/EvGxe3caSGMfGqY4Ocn6+fPY7TbBTIaevXvFpoWC8AYkgoogXEHBTIbI4CCV2VmSP2AdkvrKCqG+PqKDVyac/Hv9N92EJEnMPfYY5YsXcR0H1ecjuWMH2972tisWFFSfj8z+/WT2778irycIwtYlgoogXEGyojD8pjdRW1igurBAuL8fWdlYCK6xtoZtmgzffvtV2x1YkiT6b7qJzP79VObmsE0TXyRCdGjoR67FIgiCcDmIoCIIV1hm/35s02TmX/+V4uQknueB5xFIp5m4774fe42S15Lq95MaH7/a3RAEQRBBRRCuhv4bbyQ9MUFxeppus4lqGCR37HjNC1UFQRCudSKoCMJVoodCYpqtIAjCjyBWphUEQRAEYcsSQUUQBEEQhC1LBBVBEARBELYsEVQEQRAEQdiyRFARBEEQBGHLEkFFEARBEIQtSwQVQRAEQRC2LBFUBEEQBEHYskRQEQRBEARhyxJBRRAEQRCELUsEFUEQBEEQtiwRVARBEARB2LJEUBEEQRAEYcsSQUUQBEEQhC1LBBVBEARBELYsEVQEQRAEQdiyRFARBEEQBGHLEkFFEARBEIQtSwQVQRAEQRC2LBFUBEEQBEHYskRQEQRBEARhy7piQeV//s//iSRJfPCDH9w81ul0+MAHPkAymSQUCnH//feTy+WuVJcEQRAEQdjirkhQOXLkCH/zN3/D/v37Lzn+oQ99iK997Wt88Ytf5IknnmBlZYWf+ZmfuRJdEgRBEAThGnDZg0qj0eC9730vn/nMZ4jH45vHq9Uqf/u3f8uf/dmfcdddd3HDDTfw2c9+lmeeeYbnnnvucndLEARBEIRrwGUPKh/4wAd4+9vfzj333HPJ8aNHj9Ltdi85Pj4+ztDQEM8+++wPbc80TWq12iVfgiAIgiC8PqmXs/EvfOELHDt2jCNHjnzfY2tra+i6TiwWu+R4JpNhbW3th7b5iU98go997GOveV8FQRAEQdh6LtuIyuLiIr/zO7/D5z73Ofx+/2vW7kc/+lGq1erm1+Li4mvWtiAIgiAIW8tlG1E5evQo+Xye66+/fvOY4zg8+eST/OVf/iWPPPIIlmVRqVQuGVXJ5XJks9kf2q7P58Pn812ubgvXGMey6FQqSLKMkUggyWLGvSAIwuvJZQsqd999N6dOnbrk2C//8i8zPj7ORz7yEQYHB9E0jUcffZT7778fgMnJSRYWFrjlllsuV7eE1wnHslh6/nmWX3iBdrGIJMtEh4YYuPlmMv9udpkgCIJw7bpsQSUcDrN3795LjgWDQZLJ5ObxX/3VX+XDH/4wiUSCSCTCb/3Wb3HLLbdw8803X65uCa8DTrfLuX/+ZxafeQZfJEIglcJ1HIpTU5QuXGD8Xe9i8NZbr3Y3BUEQhNfAZS2m/VH+/M//HFmWuf/++zFNk3vvvZe/+qu/uppdEq4BhTNnWHr+eWKjo+jBIK7j0CoU8DyPZi7Hqc9/nvi2bYQymavdVUEQBOE/SfI8z7vanfjPqNVqRKNRqtUqkUjkandHuAJe+uxnyZ8+TWrXLsxajbWXXqKRz+M5DngenUqFkbvv5k2/+7sEe3qudncFQRCEH+CVfn5f1REVQfhxNPN5fOEwjmWxcvQozVyOQDqNomkAeK5LaWqK0w88wP5f+iXsVgvP8wikUqiiEHtL8zwPs1rFc130cHjzmgqC8MYlgopwzdFDITqVCo21NZq5HMFMBllRvvsEWSY6PMzCU09Rnp1F1XU8zyOYTtN/+DADN98sPgC3EKfbpTQ9zfKRI6yfO4fVbKIaBrgu4f5+kuPjqLqOVa/TyOXQAgHSu3eTnphACwSudvcFQbjMRFARrjm9Bw+yfv48VqOBJMt4jkOzWKRdLmO32yDLVBcXqS4sYHc6jN51F0gSrUKBs1/6Eq1CgV3vfOel4Ua4KuorKxuF0c8+S3FyEte2kXUdxzQ3rq3rImsaEuCPxejZvx9Zlll58UVSu3ax9z3vwUgkrvZpCIJwGYmgIlxzMvv3s3rsGOcffBCr1aJdqWDVauB5OLaN6vOx9tJLKJpGu1xm9dgx9EiESF8fvmiUucceo9vpYFYq2KZJZHCQ7P79JHbsQJKkq316r0ue61JbXqb78mhJZGCAbrPJ6S98geLUFJ1KhWBPD3owyPrkJO1ymVA2iz8SoTg9TWRoaLNoevDWW/Fcl8K5c5z/ylc48L73ifVzBOF1TAQV4Zqjh0Ls/YVfoLKwwJkvfAHP89ADARS/n3AyidvtUpyaol0qISkKejBIbWmJ8oULhPr6KE5PU7pwgcyBAyiaRnV+npUjRxi7+27G3vpWEVZeY+WZGWa+9S3KMzN0221Un49AOo1Vr7Pwne+g6DqNtTUS27ZtjIqZJqFMBqtep9tu45gmtaUl/JEIjVwOPRgks38/8dFR1s+fp7qwQGxk5GqfpiAIl4kIKsI1KZBMMnHffcw9+iiu4yDJMk63S6dcppnPb3wg6jqaYaAaBvbLH3arx46h+P0Eb7iB+OjoZnuNfJ7pb3yDQDpN78GDV/HMXl8qc3Oc/NznaBeLRIeG0IJBKvPzTH7lK9SWltAjERRdp1kogOviOg6KpiErCk63SzufB8ADvHCYbqPB0nPP4do22YMHsTsdGmtrIqgIwuuYCCrCtcvz8EWjVObncS0LNRCg2+3SLpfxHAfNMGgVi9idDh6A62KbJo5lUZ6bo7a0RCCZpDw/T3V+nsbKCvXVVa7/tV+j78YbMeLxq32G1zTP85h74gnaxSKpiQkkSaLbalE8dw4tEEDx+fAcByMWw6rVNoJmpYI/FsMDrGYTt9tF9ftRfT70QAC320UPhSjPzOCPxbBNk+riIkYySbi3Fz0UutqnLQjCa0wEFeGa1SwUMOt1osPDuN0uVr1Ou93eLMI0azWQJOxOh0AqBYqCrCi4joPT6TD3+OMYySSdSgU9EEAPh2kWCpz78pcpnD3L/l/8RYxEgvrKCt1WCy0QINzXJ+ohXqFWoUBpeppwf//m7bT66iqdapVwby9Ws0ltcRF5cBBF15Ffnoll1ut4rotVr4PnYdXrKKqK1W4D4AuHcV2XuccfR/H5cLtdFp95hkAqxcDhwwzfcQeKrl+18xYE4bUlgopwzTJfLqA1YjG0QID6ygrNQgFF01B8Pqx6HVlVkSSJxtoanm1jmyayrmNbFoWzZ1ENg/5Dh9CCQcxaDS0QILFzJ/kzZ3jp7/4OfzRK+eJF7E4H1e8nPjbG6F13kdi+/Wqf/pbXbbexOx1C37PJaGt9HVlVQZIIpFLUl5awTRMjmaSxtoasaZj1Oma1ius4qC+PutimSWNlBSMeRwsGKc/MUFtcpP/wYXpvuAGJjfV1Jr/6VcxajfF3vUsESkF4nRBBRbhmWY0GkYEBmoUCjmVRW1zcKL7sdjee4Hm4to3VaGwc8zyQZVS/H380ilWt4rx86yCxbRvtSgU9GGThiSdo5nLMfOtbpCYmGLr1VmIjI3RbLQrnzlFfXWX/e98rwsqPoAeDqIaB1WxivDzC8b2FyoqmEcxkNqYgyzL+WIza4iJ2p4MEyIqCHg4jKwrdRgPXtul2OpQuXqSxtoYvGiW5axe4LrKuE+7rQwsGWXr+ebIHDhAfG/uB/epUKtidDnooJG4VCcI1QAQV4Zql+HxEBgdpra9vhJRWC0XX8VwXxzTxPG/jwy4Uottq4TgOEmC3WrQKBVzHwYhGMet11i9cwGm3cS2LQDqNbZrY7TbtYpHcqVMMHD6MHgqRnpigcO4cc48/TnxsTPzW/h8IpFKkJiZYfu45/NEokixjJJOUL17EdV3a5TLJXbtIbNtGbWmJZqFAq1QikUySGh+ncP78Rk1KIIDa34+kKDQLBdqVysZ6K6pK7sQJKrOzxEZG8MdidFstKnNzLD3//PcFleriIotPP03h/Hkcy8JzHPRolFAmQzCdJrljB4kdO8RigIKwxYigIlyz0hMTzPzLvyCrKumJCYoXLqDoOoaiUF9bw7FtXNfFarVwLQvP81D8fnDdzU0MVcNAVtWNWxQ9PcTHxjZDii8SIZTJ0MznKZw/T/+hQwBEBgYoXbxIfXWVSH//VX4XtrbRO++ktrhI4exZwn19BFMpFMOgeO4c4YEBUuPjBNNpQtksxclJkCTio6OkJyYI9/ayePQEXdlPV/OjSB6uV8Cq1dCCQRLbtqFHIjRzOaa+8Q30QAB/PE6nUuHsl76EZhhsf9vbUP1+yrOznPr852nmcoT7+uhUKuROnqRdLGIkkyR37mQ+GKRn7152/+zP4hP7hgnCliGCinDN6tmzB0lVMWs14mNj+GOxjdsDzSaOaaLqOo5tY3c6AGg+H75oFFmWaZVK/z97bxYj132faT9nrX2vrq7ed7K5U5RILdZiWTK9KJkgnniE8cAYDzDBfJhgLoLMVW4nQCbA3M1M8AHfIBdBEnig2FocW5Ysy9olkxI3qfeFvXdV176dOvv5LopqmREpy4klkko9AC/YtZxz/tVd//f8lveH4Lq4tk0wncY1TaJDQ/tOt1a7TSCZRA2HEUSR5s4OZrOJGg6jBIPYut5xwe3yiUT6+znx3e9y9ZVXKM7NYbfbJMbG8EUiKIEAeqWCXqngGAaR/n7C/f208nk812PPTbJtxLEK24iOCWYbqbmHLxQkFAyilcs0cjna1SqeZSGIIvF4HM/z8EWjrP7857iWxfS3vsXKiy+iFYv0HDlCK5+ntLiIGgoR6eujubuLIEnERkbYvXgRSVU59u/+XddPp0uX24SuUOlyx+KLRuk9dgxtbw/9WjqgvrUFgoCkKKjhMLau73eRIAi4pollGOB5KOEwdrtNfWuLQDzeKdz0vI41vyDgj8cRRBE5EEArFrHa7U4aqdVCCQS6c2Y+JZH+fo5/5ztoxSLmtbWT/X72ZmaoXr2K53nER0fJHDlCeXmZy3/91ywv7TEzVybUN0l8YBChVcPcmMW2W2hiCLFcwzRsWo0WbrMBih+pZUNgm3hvkvTBgwiiyO6FC0QGB6msrBAbHkYQBKpra7iWRTCVAkCNRmlsbZE+eJD4yAiFmRnqm5vEhodv8cp16dIFukKlyx1O+uBBapubhNJpts6dw6jXEUQRW9cxDRtTM3ARQRSxHPBMG1EQkH2+Tn2KKGK2Wui1GnuzswTTadRwmPShQ1jXIjFWu43dbnfamMNh6ltb9B4/Triv7xZf/Z1FMJ3utIlfY+j++xm6//7rntNz+DDxiSl++be/oGFFKJdVHMfDL4j0NNvIqg9JDdIwFaRKDc8ykBUf4GE1a+SuSuiJMWK6TDIZwGhuUpyfxzYM1FAIxzTRisXrimhlvx+jWsUxDPzxOLWNDRo7O12h0qXLbUJXqHS5o8kcPcrm22+DKCLJMr3Hj+PaNruzi+i1AngCYiACagC3XsJsaUgiyIqMViziXksT+OJxPNel7667iA0PY2kaG2+8Qf7KFYx6HUlV9x1R0wcPMvzgg93UwGeAEgxiHniYucoFgu0cfsXDLwqYnkzZ9BNx2qjpNMVcg3RYwdfYxnMcEEU8z6PphZhdllhvr9LTE6RXqNNz3O043V6rU/I877rPzrUsRFnutE0DCEInAtelS5fbgm7LQpc7msT4OCMPP9zpGtnb6xi6SX6aUgIxmkKKJREVBcnnRxRA9FwcF8RAEH8ySSCZJJBK4QuHO3fb1+YD+WIxJJ8Po17HdRz8iQRqKLTvCZK/cqW7mX0GuK7HGxdqLIbOYJ/8HawDD6NPPox5/Ans/qNYlku10sJ2BHzpXqREL2IghE4AQwwjBEL4/QqKIuI5LlevVlkoBogMDFDf3u4UWycSmM3m/jH1Wo1QNosaDmO2Wsg+33XeL126dLm1dCMqXe5orHabUCZDenqavStX0IpFmo6K5YsRnT6OZ5mYC+ex9RZ4LgTCOIEEYixEIKpgtlpE+/v3HWxFSaK8vIxWKFC5epXM0aMkJycJZTJIqooaiWA2GmyfO0f2rrtITkzc6iX4QrGxUaNQaJHpDVOXFCLxj9JrbiyL449hV8v41QCSGEUMRjArJRzbQwhGEH0BFEVC1236A03kviwfFCIcfmyA1ms/obq2RmRggGYuR/taEa96rYPIsSyqV6/Se/x4d3ZQly63EV2h0uWOxLVt1l97jdWXXsJoNBBEEV88TiuXw45lEIYGkdMxAATVjzfzJo7WQPQHEEURq9Wi7XiIikJjd3ffsj1z5Ajjjz/O/DPPIIgiA2fOfMyO3ReNUtvcpDg31xUqv2UqlTaeB5OTSWZnCwQCMrLcCfw6kV7MSB8lUyOjaIjtOh5gKFFc10LBw5X8iHodv6sjpHuJn/oy+ZpMxT/E0Sef5OovfkF9a6vjZLy7ixwIkBwYQK9WaeZypA4c4ODv/V7XH6dLl9uIrlDpckfhuS7b58+z+A//wNWXX8ZzHCL9/SQnJxl95BHWX32V6vw8XqiNkzmFYxjg2Ch94+A4uO0mnmuC5GLrDsI1x1r3mklc7tIl+u+5h0AqRfTaDJobIakqRqPxOV/9nYnneezuNqlU2iiKxPBwDL//xl89HVEiMDmZpNEw2d6uI8siqiphmwniJAlFPBg4gNjrQ5El1tQmvuIyAm0cJQCmTfDACQKnTyP3DCI1C7RaFn2PnaLnyBGqa2vYuk67XKZdLtPK55H9fjJHj9Jz5AhqKPT5LlCXLl0+ka5Q6XLH4Hkeyz/9KSsvvkj56lVESSLU34/VbLLz7rukDh5k5OGHaWhQmlljtWnjyAHccJrI9FnSsSysz8DuJlhtbFlElGXMVgtJlokODRFMp1n+6U+J9PdjadpNz+XDDpEun0w+3+SnP11mYaFEq2UiigLZbJiHHhrhvvsGEcXrC5JHR+Ok0wFqNYMzZwbY3o6yuVlD0yxisQRC6FGO+BZwS7sUNivE4gHCZo2Kv5fq5APsakF6+yJkHz6ArEp4nodtu8RiPgBkn4/0wYO3Yim6dOnyT6QrVLrcMdQ2Nlh//fWOQHBdAskkss+H7PNhtdtUVlaQ4j1UM8doLLfYVqaQBg5ih9K09hyG9B76622CioDkCkg+H4IgIAcCuKYJnkcwk6GxtUVkYADXhWq+TDARQ1Wl/fNoVyoowSA9hw7dwtW4/SmX2/zt377P2lqFoaEYo6NxLMthd7fJ3//9LJbl8Mgjo9e9JhLx8cADQ/zoR4tIksDISIyxsc7rNjfrKEqcb377mwilDV566k22t6rUlCAzuQBhK8XgWIyTJ7P7n9feXot43M/Bg+kbnGGXLl3uBLpCpcsdQ2F2FrPVIpTJ4Lkugtrx2LAsB1FScR2HhfPzlJxehsZ7kQMptk0Ps9HAk4Js1IMMqj5iwSCeo6KGQriu25n5kk4j+/3UNzdBDTA7u8dmMYH11jnEcISBqUFGhmNIeh2j0WD88ceJjYzc6iW5rXn33R1WVyscOdKDJHVqPj5M/ezsNHj11XVOnMgSj/uve90jj4ziOB5vvrnJ7GwBQegMM+zri/CNb0wyfbwXGOLAlx9gY6PG+nqNX/ziKqurHUEkSQLNpkk+38K2HZ54Yopstjt8sEuXO5WuUOlyx9Aul1H8fhS/H8kfILdZpG75MC0HUQDFbtG0XWK9AkJhjeGMTRY/Bipechw7JaOs9xPvyVJbXkCQJBBkbH+IhhvAqxrUzs3RUNLUfX2E7/8G/mgcc/UDlt6dJ7fg4+6HDnPk219n8L77uj4qn4BlOVy4sEsqFdgXKb9KNhtmdrbA8nKZe+7pv+4xWRY5e3aCu+/uY2Wlgmk6RCIqU1MpgsGPBgYKgsDISJyRkTj33jvAW29tcu7cDjs7DURRZHAwwv33D3HqVNeYr0uXO5muUOlyx+CLRLANA8uB7VaI8s4SQiiG5Yq0WhZuvYph1xDK64QzGeS+cRRJJajVsStzeIjULJfwxDSYbUwpwF5OR9ccFEUAy6NwtUwVh75HIbCvBAAAIABJREFUjpKhgJdKIA5+HVdUWFkpszM0zde/dKYrUn4Npumg6zaBwI0nEYuigCCArts3fY9UKkgq9enGFPh8Mo8+Osb99w9RLrcRRYF0OrjfMfRFQNMslpfLCAJMTCSvE21dunyR6QqVLncMqYMHWX/1VVbnd9jVw0SzQ9Q31jBtkCQFv6Aj221KWpymf4oRyYcsiQiRBEowgjZ/AckwCCZTGPEUaxeWsHwxEvHOZmgaFUTXQJUsKhfeJrR7GZ8qIah+5Owo/WNnWF5rsL3dYHCwO133k/D7ZaJRH+Vym2Qy8LHHbbtjlhcO37ir6p9z3P7+yG/1PW81pmnz1399mR//eIlcronndSJSTzwxxb//9yevq5/q0uWLyBfndqPLF57kxASZu06xfmkOv6uRF/so+0dQAgFUu4GtBNF8PWwoB9ipQLH4UdeOZ7bRNR21tsXuK89Tb3vogp+g0MapFrCL2zitJragEgwqaF6Ahi+L0j+BGI5jbcwjz7+KVq1Tq+m3cBXuDCRJ5J57+qnVdEzTAToRgXK5Tb1usLVVI5uNcOBA6haf6e2N47j8t//2Gv/7f58nn2+SyYTo7Q2xt9fiL//yPH/2Z6/hOF2H5C5fbLoRlS53DKIsM/K138H88TpszePkd1BFyNm9FIJHsVDpsedoWjJe02Rvr0VPOohbK9BYmoFWhWgqhigIVD64jOSoiMkBBM/Fw0MZH8JY2oVIDzgKzZbVOa4/hNA7irGzikpf9w72U3LqVB9zc0XOn9+i0bCo13XabRtNs0ing/zhH576Z6cv8vkmMzN77Ow0URSRqakUhw6lb5pyutN47bV1fvazVXp7w6TTH6XBIhEfxaLGCy+s8Oijozz66NitO8kuXT5jukKlyx1FKBZGOfoQe4FxVpuLtDWLuhJCiSVJttcI2DI+QcSyHHK5JrGAR2BvBr/kkRzto3ewh76776b28mVaszN4jRLq8YfwTZ/Bqu4R3NqjYMmIItfVoQiSRMsQSFo7DA/HbuEK3DlIksDgYITnnmuyulolHFZIJPyk0zGCQYULF3Y5cCDFkSOZf9L7nz+/zY9/vESppBEIKNi2y1tvbTI1leLJJ4/Q03PnG7f9/OdXabctJieTH3ssnQ6SyzX52c9WukKlyxearlDpcttjtlqUl5exNA0lGOTYdISZGYVdO43hOSSSfkCg5e+lTZC030CIpjAMh9GEAS2TeH8vjtYkPjpKIJFg4MQRdsoenrkLooyUyGCXdogngpTrAvW6SV9fp9bBcT1qNR1HkBkfCuLzdf9sfh3Ly2WefnqON97YYHOzTjodQBQFkskg9947QCiksrxc5oUXVpiaSv3GUarV1QrPPruAIAgcPZrZF5WW5bCwUOIHP5jjP/7HU3d8Me3uboNA4Oa/b36/xO5u86aPd+nyRaD7jdvltmb73DlWX3qJZj6PIAh4nocaSjDhz/B6VcfnkwAB1/WomyqiOslBYR7PKBB1dezVPDSrlCp7+BMJ2tUq1fV1zMU5IrUNtFoNr93Aa1URfCF8skc4pCKKIrbtsLPbscmPRnyMjwQ5fKbravrryOeb/N//+wF7ey0cx2N0NE406sMwbPL5Jpcv57nvvkGGhqJcvVpldbXC9PT1hmztcpnaxgae6xJMp4kODV0X4bp4MUejYXwsGqMoEhMTCZaWyqyslH+t0Zvremxs1FhZKdNu2yQSfqan05+62+izJhbzYxg3r0ExTZdE4uPFyl26fJHoCpUuty25S5eY/cEPkBSF9PQ0oiTh2jaNnR2OiHNMxxPMVWIUiy0URcLvl/AdOEmlFSe7+XOi7W0cwUP1+YgNDqKGw+xduYJtGATTaUYOjbK+sEmTMPWSgdjYAktnYCTKiSeO4rkeumGjKBJRn4VV8cieOHGrl+WW0K5UaO3tIQgCkf5+1PDNDdQuXsyRyzUZHY2ztFTerxfx+WTS6SC7uw1KJY2enhCO41Gv66ytVWk2TXySi710nvyF92hXKuB5KMEgqYMHOfDEE4QyGVzXY2GheMNuIoBAQMGyHHZ2GoyPJxBF4YZeLrpu89xz87z33i6tloUsiziOSyoV5Otfn+S++wZ/O4v3z+DLXx7llVfWaLVMQqHrO6RaLRNBgEce6RoPdvli0xUqXW5LPpyODBAbHt7/uSjLxIaHsfQlHh1v4LOmqDVsdN0mGJTxEJDCcRL9vdhCP33jQaztZSIDAwiCQGtvj1ahQHRgAF/YR39vAN/YNHowg7nnR9aK9A77kWvbhDIZhJBIbTdPcafFwAMPEZuYulVLckswWy1Wf/YzcpcuoVerIAgE02kGTp/GP30PticSifiuEw3vv58nkQigKBKm6VAq1RCEjpFbLOZD121KpTbxuJ9arc2PfrSIYTgYuo1/7W3i1TmmTk4wevgQgihi1OvkLl7EbDQ4+b3voYQ7Kbmbedm4rkeppPHTny7z5pubiKLAkSM9nDrVx9DQR/VFL764wuuvbzA8HGNiwr//2t3dBs88M0806uPw4Z7PcHV/PY8/Ps5PfrLEW29tks1+VFBbKLTI55vcf/8QX/1qd4J3ly82XaHS5baksbND/drMnRsRGxygb3eeSdUl/cAEjYaBbXv4/RKJYpHyOZvE1AQT9w2w+UaD4vw8rm3TyudxLIvS0hKhnh7C2SzJbITG7iqaVqBVKOD1xpBTCZqlKptbdXYbClr8EO/NJ7nw/13kgQeGuOuu7KcyfXNdj/X1TnrDMGzi8QDT0+mbRgNuJ2zDYPapp9h57z3C2Szp6Wk812Vzfp1zf/FXVGNvYYzfRzDk5+jRDPfc04csi5TLbVRVYnW1QqmkUShoxGI+XNejUGhhmg7RqI/FxRLFokYo5GNqKolPL1GbXaNGjCsrJo6/iiKLOK5HMDFIcXGR/JUrDD/4IFNTSd58c/Nj1viu63HpUo6FhRKKIhGJ+LAsh5///CoXL+b49rcPc+RIhmJR4733dslmw8RiH1n4i6LAwECUhYUi77yzxaFD6Vtq7hcMKvzZn32F//E/3uTtt7eYnd0DIB73841vTPFf/+sDXeO3Ll94ukKly22JY1m4to2k3tgQTFJVMik/RwaTXNlsEYv5SKd9mKZDbn2PSMDH0aO9SJKAAJjNJo5h4FgWnuPQyueRFIXY8DC5S5dwHQdfJILi9+N5Hlq1xrqRYTFwjNRUL/2pMI7jsrlZ4+/+roqmWTz44PANz+1D2m2LZ59d4OLFXTTNQpJEXNcjne6kFs6cubEIu10ozM6Su3SJ1NQUsr+zmef3NC6v2uhmiGhlmZ7IScquj7/+60v81V9dYGIiyeZmjd3dJpIkks2GEQQBTbNQFJFqVadcbnP+/M5+lCUYVIhGVfqMLSTXID0wwOxckfX1Kj09of3UTUJoIr/8FsMPPshdd/Vx8WKOnZ3GdQZvOzsNzp3bZmgoyr33DuynfPr6IqyslHnuuUWGh2NsbdWpVtscOnTjiEkmE2JtrUqtZnxsFtHnTTod5L//96+ytFRiZqaA53kcPZphaqrrQdPlXwZdodLltsQfj6OGwxi1GoHkx1sz9VqNYCLGt/7taQ5eNTh/fptqVUdRJA6fGie8WyWbDVOYn0crlcjedRdmo0FpaQmz0divs8hfuUJseJhwOo1jWciBAMnJSXYKBltvXWT07Djhgfj+cScmkuzsNHjppVUOH+75xMjI888v8+abG4yMdIpJoXPHv71d5+mnO6mFf1xEejux9/77CJKE7PfjOC7b2w1eemmFcrndSe1oJcSNFVaMMRoNA02zGRy0OXAgxaVLeVzXJR7vZXQ0zvZ2nfX1Gq2WiaJ02sdlWURRJBYXS+zsNHhkMM+o7bG33aDZ7NRfxON+wiEV03Iordu8+/Yq95Q0JiYSPP74GC++uML77+cJh1Usy+X99/eIRn08+GCnbqNeNxAECIVURkfjzM0VmZsrIkmdKIko3jha8qGovJ3M1KamUl1x0uVfJF2h0mUfy3JYXi5TKrWRZZGRkdh+aP3zDn8HUyl6jh5l4/XX8cViiNJH7auubdPY3mbkkUdIDWV5eAjuu2/w2iYoYRdHePf/vUqrUKC2toYSDGLZArYSRk1lcQyDUG8vnmVh1GoIsgyeh1YsIsdTGHKI9d0Gkiwh7q3AxKHrzu3DgXoLC0Xuv3/ohue/t9fi4sVd+vsjRKM+PM+jXG6zt6dhWQ75fJOXXlq9LYVKqaSxtVVneWYD2e4UmF66lOODD/bY3W0SDqs0myZmQ6d+7iq78QQDA1HabZt8vkUqFcDvlyiVTC5dynHwYBJJEhEE6O0N4XkCmmbi88nXums8qlWd1S0Tn9OgqoSIRFTabRvH8QBQFYlUBPJmgKefnkeWRdbXq1iWi88nEQgoHDoUQ9dtwmGVYrHF+fNVGo2PBM/YWBzP69SvHDmSIRBQqNcNolEf9bpBvW4AneeWStrH0kKfhOd5OIaBKMuIcvdrtUuX3ybdv6guAKyvV3nuuQXW1qrYtodQ3SHS3KDfX2P6UA/9J46RPXmS2NCNN+bPgvHHHqOVy1GYmSGQSnUEh6bRLpdJHTjA2Fe+sv9cVZVQ1QCOaVKo1fA8j5UXX6S6k0NX4mhuE1dvIzo6qq8HX6mO7Oi4to1RqVDbq9AwFRpulJlfrLOxUSMhi0RLBf5xo+qHA/WaTfOm5765WaNeNxgcjGLbLleu5Flbq2KaNoIg0m5bPPXUDOPjCb7xjcnbYsihrtu88MIyFy7kqFbbKPM1ApWriCsu9bpOMKgQCCiEwyq27aLqHvNFh7pgMDIioqoSa2sVqlUdw3AIBmWaTYvV1QqKItHbGyYcVikUWoRCCrbtUaloeB4YhkMhnCZaEZCEXaxEFlEU9n1QXF1D9Dyq/kH+5m+ucOpUlnQ6RCoVpFjUaDZNRkbiFItt3npznUpFR/XJ+50ynVqZznEVRWJoKMr0dJp33tnaNwdstzsDEmW5cy1nz078Wh8W17bJXb7M7rvv0sznEWWZzLFj9N99N5H+/k98bZcuXT4dXaHyLwzPdamsrlJaXMRotVBDIaTsKE+9WCafbzI2lkDcnkXfe4N2vcFVS8UxdPS9HLvvvsv0t771ubXoBlMpjn/3u+ycP8/uxYvY1wzfhr/0JQbOnMEfj1/3fKPRYPapp8hfuQKAHE9TvzyPY5eQYynUnj5ITNIQYuS0Mhl3A9fz0AyPPS+NHkoTTyaRZJHt7QaVQh3HF8Xftq8z3fI8D9flE23aO5EAAUEQmJ8vsLhYuubK2pE9mmZSKrV5/vll+vsjnDyZ/e0v4G+A63o8++w8b7yxSTYb4tChHpz4PVRe3mR2dhs5EGR4OIauW2iahajXkV3IiWmsmo6mWZRKGqVSm+npEL29YRoNg2BQJZ0OsLXVoN220HUL1wXX7UxYrlYtAgEZTbOo1aBljzDNHGp7DcIJKjkBNeqB1cbsPczyZgzF17HK/7D+5MOW5599/1XCjTXEty4ymQzi9YxiBMZwgin8fplyuU0u18LnkxEEgccfH+eFF1aYmdkjmQwQDiu02zatlokk+djaqmPb7k3FimvbzD/zDJtvvomoKPjjcRzLYuVnPyN/+TJHnnyS1NQXr0vMbLU6beOh0G0hsLt88ekKlX9B2LrO/DPPsH3+PI3tbbRiEaPRoNGGcuAAE7/3JJJWRHv/DQRZJjJ2ALltkWtZHOwfxannWXjuOaKDgwRTn0+uPJBIMHH2LKNf/jK2riP7/TctsF368Y/ZvXhxv/hzox2nPdAk3NhAUHwovcPIPUMEgGLJT63hkhmFQuQAlhil71cs1wf6guxVbDatDL61yn7RpdtuUlxaJq7ppNweHDN7w/PJZEL4/RKFQou1tSrhsHqdsNE0m/7+CD6fxDvvbHH8eO9N6yU+ayqVNgsLRd5+e4uRkdh+PY2QHUUZOURk/Q20eovclovR1FDtBiHVJR89RKMZQa/qbG7WqFZ1otFOq7IgQL2u70ed2m2bcllDlkUsy8Pnk+jpCSJJnUJb03Tw+yV23EFMT+V4vERGbVLeKSDK/Qzf9yAbzR4a87scHQt/zBclWV9g65cvUfMsfApYbY3IziX85RWaw/fTCPTTbltEIiqa1knxFAotVFXgyJEMpZKG43gMDcUYHu6swaVLee69d/CmgxNzly+z8eabnVb36EfTtMPZLKWlJRZ/9CNO/9EfIft8n8XH9rlTnJ9n+/x5Kqur4HlEBwfpv+ceeo8fRxDvbAfgLrc3XaFyh9LY2aGyuopjmviiUdLT059owgWw+tJLbLz+OkarhVYsIogikWwfuZlN/Pm3qT7XQBw4gNxuog5MAp2oQancplTUmJwcZm9mhsLsLCMPPfR5XOY+kqreVKAANHM59j74gOjgILLfT7ttsbPTIDgwipxv41SL2IUdpFSn0yYqNKi2LLzpu2nNbRAf8uF5QQRBwNVbRIw81ewwJbJYc0UmxuNYK5eoXvolZrXCyGicjWdWqL77GlPf/Cbp6enrzmd4OMaBAylefvkqzaZBNvtRZ4qu21iWy+honFQqyOZmbd8A7fPA8zy2tupcubLHlSs5SqU2m5s11ternDrVz9RUklBIRZBklBNfprakw/Y81s4W2bCPoh7lamCUdmKKuGKys9Nkfb1KOOxjaKizYScSAXy+BrlcE0GASESh3bbwOiUn+0Wq6XSI9fUKgiCgqjLg0BT7KQwcITHsp1FvU1SC9PdPsfXqGppmks+3eOGFZeJxP0NDMdJSFWP2HeRgkKodoHdCoVmp06jXUAs7UHuJ1sTvMjaWJRxWqVQMmk2T//N/LjA/X+pcqwCC0CmgjcV8RCI+NjdrLCwUbyhUPM9j9913EWX5OpECnXquxOgo5eVlSouL9B479pl+np8Hm2+/zcJzz+FcM0sURJHi/DzFuTnGz55l4uzZ/eiK2Wph1GpIqkoglepGXbr8s+kKlTsMxzRZ+slP2D5/HrPRgGtfAuFslqlvfIPsyZPXPb+1t0f+gw8ozM1x9aWXsA2DdqlEqKcHfzyOZTnUvAi2ZcDSEu7qFqQGiAfbJBMBHNfDcbxObYUoIvt8NLa3b8WlfyKN3V2Mep3otRoa23KxbZdIPI4cOIq3NoNTyWFtLSDIPqRIDGP8ftSvPIzZeAHJ28bOrQICguonMH6YiYkz1ObbbGzUWHjpVcKb7xBKJpi4d5pMyMJoNth65x1qm5uc+S//BYHOXXZ5aQkEgaN9YyxGTT74oI0kiYiigGl2ul2mppIMD8f3UyEfFo1+1hSLGv/wD4v88pdbXLqUo922SaUCQCdVNTdXpFTSuPfeQcJhlVA0hHrwDOeKKXxyi7tO9WO3VdoFA02z0HVnP5Xi90sEgwqO41KrGViWS39/lEwmhK53JlErisT2dmcsQbncJhRykGWJvj4/oigSCCioqoQoSWyXPSQpwOZKnfXNi+zsdF6XyYRRFInl5TJXruSZtGcYtEtooX5U2UMtrzHiVNG9Fo7sIBh7jIrnSB/7LgtrbQIBmaefnuODD/YIhdT99mbDcNjaqmOaDg88MISiSDetQ3IMg+beHoFE4oaPS6qK53nolcpv9wO8BbT29lj56U+RVJXE2EfDDwPJJFqpxNWXXyY5MUEok2HjjTfYvWbOJ8oyiYkJhr/0JVIHDtzCK+hyp9MVKncYKz/7GVdffplIfz/xkU4Lpus41DY2mP3BD1DDYZKTnWhI7tIl5p99Fq1YpLa5ye5772E2m+B5GLUaajxBrqlSq+rgqET9Doqr0aqVWFlJkL/W8lmvG512TkEgZupIyq0xmDKbTQpzczR2dhBEkdjwMOmDB5H9/o/dtXWKayUMw8EXSaBOHMcp7+I/+RWkSAI70gt5m1RvAmviXvyDMtQL4HmI4ThiohdBEDjoNRnOqtxlLCIOTuAXTWqr75PTtI6lv+NQuXqVZi5HfHQUS9P2a2dq517jqCHxgZJkZdMBIBRSmJ5Oc+BACkkSKJXapFKBz8UArtk0+f73P2B+vsDeXqewdGwsgaZZrK/XME2bsbE4uVyL5eUyJ092TO3GxhK88ooEwSRWIEk8KBBNhCmXNSoVnZGROJVKm93dJlevVolGfQQCMrGYj97eEKFQp0solQpy5EgPzzwzR7HYRtc7Isl1FQRBIBhUGBmJ02qZTEwkKZU03n9/j1qtTTDYiXIYhk2ppOF5HvW6SbNpUCmvI/gdtGqdyUABr5nHTScIZnoBcEo7CLl56u+8iNL3AIGAwmuvbTA2Fmdzs76/Pj6fRDYbJpdrsrPTwDDsm878EWUZUZJwzJsXVON5X4gOoMLsLFq5TOboUVzHQSsUMOp1BFHEH49jtlrMP/ssrXyeyuoq8dFRIoODuJZF/soVKqurHPk3/+YLEVnqcmu48/+K/gXRLpfZOX+eUCZznbeIKEkkxsYozM6y9ctfkpycpL61xfzTT+NYFv54nNzFi+B5yIEArmGgVerk800ahojgS2NYDi3Xxhfw48dgs9amWNQIh1XCYRW/X+bKxW3SYpmDT37+3Qzl5WXmnn6a+uYmgiTheR4CkJyY4PC3v024rw9fLIZeqRBIJvH5ZQYHo8zOFgiHVbxmDaV/Et/0PQiixNXFEsPDUR56aIT3398jV3cYGrp+4KDreuzttXj4kEB0SUfy+di9MIcSDBL9Fcfc+tYW66++Cq7L2GOP7f/cCSZZf/5deisb1OIP0TOcxbY7fiSOs83RoxnqdYOzZyd+4+nB/xTefz/P4mKJTCbE0lKZRCKIKAqEwyqDgxFmZzsCJhpV2dqqMz2dxu+XiURUstkwpumws9NEFDvFsKoqceJElhMnellYKHHPPf1sbNQYHo4Rj/t59dV1ZFnqRO1qOgcPppmYSHLvvYPXBIh+Le0iEAjIDA/HkWURw7Dp6QmSzzfp7w+TSnUmL2ezYba2Gmxv19nba5FIBEilgkh1BctoMZByUapFTDlMQxcJSS6qKuJJClYwjTY/w+ETJzEMG8tyGB9PsrPTpN229uuHRFFAUUTm54scPtxzUwv9D7t7Vl58kXBf38eEcrtSQY1EiI+OftYf62dOa28P2efbH2VQ39xEr9exdR3oFBUrgQCCJBGIx7FaLfRqld7jx+k5dIjKygorL7xwnXFgly6/CV2hcgdRXV+nXanQc+jQDR8P9fZSXlrqfKFcvky7UiE9Pc3VX/wCQZb3N3JPVtBaOjpBVCxUxUBDpGEo1DQVSVHx2zl0MYUsBxgbSxALipjtMgUvxeVtH9M3PINPprPRNbBtl0TCf8O71VatycJcnkLFQZQl+voiDCY9Zp56Cq1YJH3o0L6nimOalBYXmX3qKU794R+SOXaMjddeQw4EUAIBJiaSFAotdle2icgm0cFDNJo229tlolEfZ89OkEgEePTRMX74wznW16v09UVQVYl63WBzs85wRqSPHbbX1zHqnbtvXyRy3Tk7dqetVa/XsQ0D2dfxTZmZKVAX40xk2wjBFldrBorScWJdWCiiaRbf+c6xz234XSfVY3H5cp2VlQqJhJ94PEAi4ScW6/yr1XRcF8CjWGxh2x6tlskf/MFhFheL1yzpXRRFpKcnRDIZQNMsfD6J7373BO+/n+fcuW121goohWVaa03UoJ/RiQkOH+6hVtOp103K5fb++6RSQVqtTmqoWNQYHIxiGB1xI4oisZiMYTgEAgojIzHqdZ1aTafdthBFAdXXR0ov0Bs2kEyJpuAjFFKxLId2q42gO8jZBMN9Asd6W2yYneNmMiEmJxMsLJRotSzC4U4NVKNhYJoujz46yuBg9Kbr2X/33eSvXKG0uEhibGy/hqpdqdDY2mLkkUe+EC3Kst+P2WxS29igsrKCqWngeQiiiFYqYTYaSKpK36lTRAcGsDSN8soKnusycOYM0eFhysvLlJeXyRw9eqsvp8sdSFeo3EG4to0AN62wF2UZS9NwHYfS4iK+WAytWESvVIhks3i2jV6tYmgmnuMiSS6urCIZdYK+KHakl3ZT5Ip7gIlAjoxTps9nEmrp2LqCOjBOcvQBZhc7xZ83C4v/YzzP4/z5Hd54Y4OdnQaO4xKNdizuH398jEQiQG1zk/d/+ipvPfM65VITR41gZw4gDEwxxBZDjTVGz9x13bVLqkrq4EHKS0sU5+c58M1vYmsauStXOtEjVWUq1iDUp1IIHWHb7UUptzl6NMPDD4/su3zef/8gsizy6qtrrKyUcV0IBiSmQzkG60sUV7aorKzQrlT2CyfD2Y9m/Ri1GkoohK3r6NUq4d5eKhWdvb0WyVQQuern0KBHJjvA5mYdXbcZH0/S2xv63KIpruvx3nu7zM4W8LzO/1sti3rdoFTquLYmEgHS6SCW5VAofORNcvr0AY4dy/B3f/cBH3yQZ2goSiIR2B/+l8s1eeCBYQ4eTHHgQIp+IcflH7xCwFyj3GzT4wsQq23Tem2W5Y024VKR45ZAzT+AKITQzU69Sq3WZmwswdBQlLm5IrWawcREkt7eMHNzBaATxfH7FaJRP5IkEo2qSJEJ1GYBubEOggiCQCIRIBoWqe3kYXCY0PQoQrNIbn2PxJgf03QQBDh2rJdIxM/aWoV6vWMO5/NJfP3rEzz22Pgnrmmkv5+jTz7Jwo9+RHl5Ga+zsKjRKCOPPMKB3/mdz/xz/TxITk2h12pU1taw9E7qVwkEMBoNBEFACYVw2m0a29v443FsTQOgMDdHdGioE3103U7auUuXfwJdoXIHEUylkHw+zGv+J/8YvVIhlMlcd8fvmOZ+rjzS349Wb1KvXEVyLURBxnNdBNHF8UcJ+GXU5BT14iju0XuolbYYGlPwD0QQ4xnkzBA+T2RlpUy1qn9qofL66+s8++wCPp/M8HAMRRGpVHRefXWNQqHJE/cFWfjhU7z72iw1K0CqN45oaHiVcwhSnvz8PJpTQsIh2tdLpK9v/+71w3qZ6vqiqYq/AAAgAElEQVQ62ZMnOfad79B/zz0U5uexmk2Ge3r4ypEjuNEMjUbHDbW393r/B0EQOHNmgOPHe9nYqGGaDs72IvmXZlBCQcLj92LUaugXLiAIQqdGRpIIZzK4tr3feSUIAl4nHIGuW1iWg98nY7suis/H2FiCsbHEtcdttrfraJr1udSnfPDBHjs7DSRJuBaxsDEMh3g8QK2ms7FRIxxWGRqKYBgOX/vaBP/6Xx8mHvfv+4g8+eQRIhGF2dnifmFrPB7g8cfHOXt2AknqdIKYl17m0ESIux74Khcu5tlYK9PYmMXOvYLsxXGigwyHPRKRJXRFY6//DJlMD5IkceZMP7btEgwqjI3FeeCBIWzbZXW1gqZZqKpEpaLRapn4/TL1uklOcxDTJxlWNKTtOUTBxChq2G4IXU1Qpg97oYxY3sIrx0iGtlFViZ2dBgMDUSYmEoyOxmi1rGuRGpvf//1Dn6pdPDk5yen//J8pLS6iVyqIstyp0fgCRFI+5MOUTftap6DvmjWB2WrhWhZqJILhurT29vA8bz/iaTabrP7854x/5St4goD0BWnT7vL50xUqdxDx0VGSExMUZmdJHzp0XXTBbLUwm02mnngCUZZJHTjAygsvEEynQRD2B/xFxibIlSzE6haK5+A6Lp4cwg6mMXoO0k6eQKwUabQ9wpkxUqfH8MU++oIxNWt/RsunoVrVeeWVdSIR33XD49LpILGYj7kPckRnz2OX96hIWfqGIoiCAJE4dn4d4/xPCJsGmi2yPbNAff0qoZ4e+u++G18sBnQiTN619IukqmSOHr1hiDmZ/GRh5ffLHDiQwnUc3n31MoIg7Nei9J061ZkT1GwiqirNnR0EQcAxDOKjo+iVCnIgsC8S5WtdPpZpAh5yz/UDCA3DRlEkfL7PPpoC8N57O/T0BLEsF9N0yGbDrK9XaTZNQiGFcrmN399xku3vj/C1r03um9N9SDzu5zvfOc7uboN8vnVt0nBkX7B6nsfmW29hGwbpg516n9On+4naRTa3G9QJosoQHekn1RvDJ4OdW2Mwso73wFd5550tAgGFyckEhw6lee21DXw+aV9ALS6W0TQT03TwPEgmO51CkYgPMxBjNvQVjnoublMnfWSMUlsmVxFIp8Koro4jhZGOH2N9p3nN58WgXi+QyXQGH5ZKbWzb5bHHxpic/Ph8qZsh+3xf6EJRUZbpOXKE7XPncAwDvVYDOr5MSjBIMJ3GarUwNQ3PcfAlkwh0fh+sZpO1116j/+67SU5M3NoL6XLH0hUqdxCCKHLgd38Xo9lkb2YGfzy+X+TmmCZD99/PwOnTAGRPnmTn3DnMVgt/IkG7UiHU0wN6G7ldBV8YORzBKldoSREaoSHMoTOYjc6GXyi0OHasl1js+rugnZ0Gw8Ox60THJ7G4WKJY1G5YlKgoEjG7wMbCEuGhUWRF74gUwG3VsXPrgAD+EILhYqoxQpkIrXyenQsXOl4u10RYZOC3N4m4lc9T39oi3Ne3/7NwNsvQAw+w9fbbeK6L1Woh0BEw/mSS5eefR/iVu8ZkKkgsLFJfXSI5dRA5O3rdMXZ2Gpw4kf2YGPgsMAybra06k5NJAgGFpaXSvqV9odCiUNDQdQu/P8Hx4xnOnp1kdDR+w/f6sPV4aalEqdS+lsLLMD2dxm5UqVy9Sri3d//5sghBs8TgaApDtVD0GqGog+TrfPVIySy15UVmdtMs7op4Hqyudlp6C4UWum5z7FiGY8d6qVYNfvnLCrbtIYrQalnE4wEGBiIkEgG2tyV8vuNMB1eRVIXclklPMojULOCYbdQDd+MfnmDag9nZIvffP7gfrfE8mJhIcPr0ACdPZm+Z+d7tSmpykkAigeTzISkKnuehhsP7XYSu4yCp6v7Uc/FawbscCGDU6/hisY/5zXTp8mnpCpU7jEh/Pye/9z1yly6xe+ECjmmSmJig/+676T1+fD8lEh0YYPpb32Lh2WcRZRmjXqe5u4teq6H6ZJpyilBAJDDehy6kUIsrbFdE3tfHUJTOhrG8XCYaVRkZieM4nam/ggAPPTT8a2egfEi1qlMuaywsFBFFYb8O4sONwI+OZdrYnnjd5mBX8niWjhRL4ekaguNgN+qIUpxQby9aoUAzl8PSNCL9/fQcPvxbW2PXtvEc52OtpdmTJ/Fcl/LKCnq5TGxsDFGW0QoFDv6rfwWuS3lpqVOr4HkMBHXmE0MUe0/Tj4xCRzRsbNSuTfgd/lzMsERRQBQ7wwVPnOglHvdz9WqVRqMzi2h8vNOZ873v3cU3vzlJtWqws9O45n9is7xcRtOsa90wJS5fzu2nZ3Td5ty5be66K8s3Hkrh2Tbir7SvW+02ZrOJPxrGV2pitVz2Xd8AHR/5rSJGT5FEYoTp6TSDg1HabYtWy6TVMllZqeC6HqbZKagdG4sTCKjUavr+72Gp1EkHlTKHOPv/fJUrP/kFtBeQDBsxkkQdexBl9AiCKCLRaRNvNAz+03+6h2bTxHU9wmG1K1BuQubYMcLZLPXtbSLXIiOSqlJZWUErlRBFETUexxeN4ug6rUYDz7bxYjEifX0YtdpNU9Zduvw6ukLlDiSYSjH+2GOMfeUrN9xQPyR74gSRvj72ZmbYevttll98EceyCA/14JVt6kQI9o2TDgbZ+GCJWHGOifEJHjx7lFbL5uLFXV58cZWxsTgDA1Gy2RCPPTbOiROfbi7N+nqV559fYmamQDzeQBC4Zu4V5q67+jobnekRlAVSycB+3QOAWy8iKH5wHAQ1gBFIk1FLNHZ2kP1+9EqF3KVLDNx7L4e+9a3f6t1aIJlEjUTQKxXC2Sxmq0Vje5v65ia2YSCpKv5EgnAmQ2xoiN6TJ8kcPYogCBQXFmjl8yAI3N3fz4FaiFde22JpqQyAJAkMDcU4e3biN0ovfFqqVZ3FxRKaZhEMKhw4kCIe9zM9nea119bIZsOMjsbx+STW1jrThSWp06Lcapn8r/91jnJZRxQFbNtB02wUpSMGtrc7rcFnzgxw5Ehm/5jttsW77+4QDQr0xOPolcpHG1LH8hUBSEREtksijqTyYcKrXNKwTAdJkkgk/GQyndcFAgrHjvWyvl7l8cfHsW2Xl15apd22OH16gL6+MPW6wdZWnVKpjSQJ9PdHGBiIcOp3HmHdSGN7M4QmE4ihGIJ0/d+IonQ8doD9bp8uNycxPs7hP/gDfvk//yfFxUWi16KNoqLgGAau4+CPxYgODVFbW8NzHCSfD9swqK2v0y4WmX/mGY58+9uf6DDdpcuN+EyFyp//+Z/zwx/+kPn5eQKBAA888AB/8Rd/wcGDH/lV6LrOn/zJn/D9738fwzD42te+xl/+5V/S+yvh4y43RhAEhF9jKBXKZBjLZBi8914cy8JstQjEYow5Ihs7Opvvz1NduIxUqTGpmpxIXiERGEYeG2VqKsnMTAHLcvj935/m9OkBgsFPZ/ZWLrf5/vdnME2H/v4IgiAQj3e6LTY2ange3HNPP3UpyeR4Hz1hm1BIpVzRSSY6XgseHphttPAAob4Rpk4cx63u0SoUMDWNoS99ibv+w38glMn8mrP5zVDDYfpOnWL5+edBFMlfvoxWLHY8IAQBbW9vf87J1BNP7BcPAh8b2JgBTtw1wOpqhXbbJhxWGR9P/NY7fTzP4403NvjFL9YoFjUEoRO4SKeDPPbYGHffneXKlRwrK2XqdWM/SiGKsLen4TguW1t17r13gMHBGBsbVV5/fRPwuP/+QaamUmxs1JCkjsdIJOJjeLhTIxQIKGSzYS7PVPjWXcfZeuknnWnX19rEA4kEzVyOgGcT7cuyVxeJYBAMKlR392h7fuxgihNHeq5bl2BQwbJclpZKNBomxaJGPt/irbc2983jflU0z88XOXgwjSAIZLJRTCWCEE4i3CBKUq8bt3wQ5J2EIAgcefJJJJ+PK3/zNzS2tjrzwPr7CSSTNHd3CaRSGLUaxjVXWklVcUwTS9NwTJOZv/97AqkUU1//+q2+nC53GJ+pUHn11Vf5oz/6I06fPo1t2/zpn/4pZ8+eZXZ2ltC1O64//uM/5sc//jFPPfX/s/dewZEc9p3/p8PknIABBhmLBbA5J+ZlMINkW6LIo+XyWff3+WSX7CqXq+7hXq7uXi4+3MvpQp190t3JCpaOtMJZJCVKpMjdJbmLTQAWYZHT5Jynp7v/D42dJbi7DBaXFCV8q/hADDjTg2lOf/v3+4bv4vF4+LM/+zM+//nPc+bMmbt5aL9xUBUFXVVxBINYvV4sikJg6TrIcaJ2kCQfVq2Amlih8PoPcB1/DEvPCAcOhJmcTCLL4gcmKQBXr8ZZW8uzd287DoeZy5djpFIV3G4LgYCNubkMqqpz3307ORiwsfH6zxnptjK1rLARLWLTrZBcRbEHMXnD7NsfJtTjgZ4waqNBZm6OoSee+MhJyg30PfAAxY0Nrv7N31BNpzE5nUaOiq7jGxigff9+ll59FVckQufhw+/5XDabacsE4m7gwoUNvv/9GZxOM7t2hRBFAU3TiUaLvPDCNM89t4enn97Ff/tv5zl3bg2n04zZLCKKEj09bnK5Opqmk0xW6OvzsrZWxOu1YLXKzM1lcbksVCoKkYiLXK7G3FyGSMTVKgcMBOxMTSURenbTeThO9OJFTHY7ZpcLk91OJZPBEQpx5JF7WE2orK7mycbSCKUMYmQ/h+8boaPjVt1TPF4iFiuxe3eIY8ci1OtNisUGhUKNCxc2OHGii7Y2B9lsFVEUOHjQIB+7doUIhRysrRVahOoGUqkKVqvE/v3bN0MfBoIgMPq5z9H3wAPELl+mFIshWSy4u7pYeeMNsvPzJKanQdex+XzIFgtaswm6jj0UohyPM/PCC/ScOrWtV9nGh8JdJSovvvjiln//+te/TltbG2NjY9x///3k83n++q//mm9+85ucPn0agK997WuMjo7y5ptvcuLEibt5eJ966LpOfnmZ+Pg4xfV1ZJuN0K5dhHbtumUXbHY4sPn9lBMJrF4vxbU1csvLuMLtLCRTlKtlag2NguRFXszhKr5E5++04wz4kCSBQqH+oY5tfDyOy2VBFAUGB32YTCJzc1lyuSraZn/Q4KCX557bg8u+D5vdzPrbbyNW86TSVTJFCdw+2oYG2XnfrpaFV1NVMvPzePv7CQwPv89R/MNhdjoJ79/P5a99jWathlIuI8oyZoeDZrVKs1pFlGU2Llyg4+DBu9oeW4rFSF+/TrNWw+JyERge3tIx02iovPHGCiaTuEXkbLhy3CwsZDlzZoU/+ZMjDAz4KBYVvF4LkiQSDNqZmUlRrap4PBZisTIrKwWy2SoejxWzWWJ9vUAqZWRj6Dp4PFay2Sr5fL31uei6bmRq2OyMPvccwZERNi5coJrN4t+xg+CuXRQ3Nmgko3SaTQQ66jQ7bKzsOM2iZc9tSUq53GBjo8iuXSEiEePCtm9fmLGxjU0rcZ3Ll6P09hrC34ce6m+1XPv9Nj7zmZ08//wU164lW+m2mYxBaB59dJDBwdv39GzjvWHz+/ENDFDLZknNzJCensbscqEqCpmZmZagvF4somsa9lAId3c31XSa1PQ02YWFWzrJtrGN98LHqlHJb9ra/Jvx72NjYyiKwiOPPNL6nZGREXp6ejh37txtiUq9Xqdev3nRLBQKt/zObwJ0XWfxZz9j4eWXKayvgyCgN5ssv/Ya4YMH2f2P/hHpqpnJyZu9LiH/ILXr8zTKZbLLy4iyTKmikstWoZxH9PiQPX4URSW3tkbq52Psf+J+VFXDav1wp4qiaC2ho64bmgC7XaZYFLFYROx2M7t3t+H1GmuenU89Rdfx42QXF9EUpeVUmn/pJWrrc2TzTnRVpVmr4e3rY9fTTyPf5VyGhZ/8hEa5TPv+/chms0FGdJ1aPk/s8mWCo6OUolGUSuV9m6v/IdCaTeZeeom1c+eo5fPG629+8Q888gjdp04BhoNoY6NId7fnts/T0eFkfb3I7GyafL7Ovn1t2Gwm8nkjAr1QqGOxSFitMtmskfqqqjqybAhwGw2VarWJ222hWGzg81lRVZ1mU2u9RjJZIRCw0dnpQrZa6Dpxgsjx46iNBpLJhCCKlBMJklNTLSt3YGiIeN3J175+hUSi3NKngBFId+VKHEkStzjGOjtdWK09rKzkmJ/PkkpVuP/+Xh54oI+9e9u3iGEPHerA67UyNrbBzEwaTdPZu7edI0c62b07tN3q+w9E9NIlpp5/nnqhgM3vRxBFsgsLVDMZEEVMNhu6rmNyOrH7/Vh9PkRJwur1kpmfp5xMftJvYRufMnxsREXTNP7iL/6Ce+65hz2bGRexWAyz2YzXu9UK2d7eTiwWu+3z/Nt/+2/51//6X9/14/1VR3Jykmvf+15L4KmrhjBQlGWyCwtMXJhnPvAgpaYFm81Eo9GEpk5/vQ1lapbi6iqixcr6fBS7VqBqtqP4epEkEYuSx6IlyFx7hflGAveOUQZ6j32o4+vp8bC8nKejQ2N8PN4Sk1osMvV6k2i0xJtvrvPgg32EQg5WVvIUiyoWzwB9fd6WVsHX10d8fJz86iqSLBMcGSG0a9ddHx2XEwnS8/OYHQ5M7+wnEQSsXi+lWIz8ygrW/fvv2jRl+Re/MLpk2ttxd3e3AuWK0SjTf/d3mBwOwvv302waTdE3RK/vhskkoaoaqqqjafpmQ3KVSqWBrhskw2QScLnMgI7NZkKWRZaWclQqCtmskS/i9VrJ5erouo7VKrdWgcVinWSyzJNPDuF23ySPgiBsIZOOtrZbVnVeXefxx3fw0kvzJJMVvF4LzaZRhOnxWBgY8OFwbBVf+v1GiePgoJ9YrMSzz+4hHDaIoqpqrXUUwMCAj4EBH42GiqbpH5pw/ybgxjTsg6CSTjP7wx+iaxptu3e3fu5sb0dVFATAHgzi6uxEEMUtz9vcJK1W7+2t79vYxp3wsf1f+5WvfIWJiQneeOONX+p5/sW/+Bf85V/+ZevfC4UC3d3dv+zhfeqw9NprJCcnEU0m7MEgkslEvViksLZGbj1K+dIMltFV2g/dgyV8ENHho1Zrcn16H472PuyJKNn1BNU6uAeHKVft5EoQKFzHWk0iNYqYLA5KM1fZ6UiSP2dD6fg8JtsHS1Hdv7+dCxc2uHrVICkej6VV/JZMlunv91KtKvzP/3mpZZet15tIkkhXl5sHH+zj0KEOXJ2dn0jKZ351FQGwejwolQom+9a8E4vbTXFtjZ2f+cwtj30UaJRKrJ47h83nM0L7NiGIIu5IhPT166ydO0f73r34/TbcbivZbO22uSzZbBWHw0w2W+XMmVVmZlJ4vVba2534/VZqtSaLizk0DdrbnQSD9s1G5Rwulxm73UQgYETrNxpNlpay9Pf7iEaLNBoqJpPEfff1cPp0/4d+n4Ig8OCDfXR3e7h8Ocbycg5ZFnn44X78fjvf+tY4pVLjts6cUqnRmsi9/voyY2NRymUj6ffw4Q727WtvEZOPo6bg04RGuUz8yhWiFy+2JiMdhw7Rvm/fexYHJq9do5JMEnoHSbkB/+AgZoeDUiyGo61tC0nVVJVSNIqnu/uOXWXb2Mad8LEQlT/7sz/jRz/6Eb/4xS/o6rpZwBYOh2k0GuRyuS1TlXg8Tjh8e0W+xWLB8hsexVwrFFj+xS9olMv4d+xAMpmo5fPkl5dRGwqKZActh6VZoD71Jlo2jmXXCWQg4lZZqLXzO8/9Eyb+9nsoNjvBsJPupoZ1Zg4tE6OKCUH0UPf0YHW7GTnez9qbb2Lz+Rh68slbj6fWZHo6RTRaRBQNm+jQkJ/Tp/v4j//xLLlcDbvdRL1eo1Jp4HCYOXiwA03T+fu/v87QkL8lum00VNbXC3znOxOAMb7/RKDrmF0u3LJM5vp1BFFsfYHrmkY1l0M0m+/arj2/ukolmbyjDsfZ3s7K+HVWvnGO1ayhI0mny5w40Y3Pd5NMKopRBOl0mvnf//sqqVQZi0Wm2dTY2CiSz9eJRFyEQnZWVvJ0dDjJ5aqoqobHY6FQaBAOO7FaZSPQThLo7HTz3HN7MJuN1NiRkSADA74tk4wPA0EQ2LHDz8CAj0zG0DDdiO4/f36diYkEo6OhLWudRsPoI7rvvh6+971rzMwYTiSbTWZpKcv0dJKpqQ6efXZ3iyBvw0Atl2Pi298mee0aJocDk81GdnGR5NQUHdeusfvZZ+9IvkvRKOKNNei7YHY68Q8Pk71+nUoqhSjLyFYrmqKgVCrIViu7nnnmrqxJt/HrjbtKVHRd58///M954YUXePXVV+nv33rHdfjwYUwmE6+88gpPP/00ADMzM6ysrHDy5Mm7eWifSmiqysb58yy//job58+jKYqhsPf7qWYyaKqK7HSilEpIoogASN52aldeoz53GckTQJZkGlU76Z6HMNssmBfOUk3aESQZXzGNZpdQZRGCfXhCYUwmCafPjUKDjbExeu67b0uX0Opqnu997xrLy3k0TUcQ2BTQ+nn00X6GhgJks0bTrSyL9PaG6Onx4PPZePvtdQqFBm1tztZ432yW6O/3sbiY5Wc/W2T37hAWy8c/rreHQshWK66ODjRVpbC2RjWdNnJBAL3ZpOfee2nft++uvL6uqlt6U96NlbUS1y6tk68u4o504nZbmJvL8P3vT3PwYAeRiJtyuUE+b5DEXK4G6LS1OejslFrTkHS6QqlU3xSrGrqUt95ap9FQ6e/3YbFIaJpBDCwWiVOnuimVjJ6d4eEgHo+F3l7vLx2UNjGR4M0311hayqFpOn6/jWPHIpw+3U8mU2NyMkEo5MBmM/p9slmjXLJYbDAzk2JkJNiqdWhvv5ntEom4eOSR7ej2wtoaiYkJCuvrRC9dopxI0HXiBJZN0qCpKoWVFSa+/W1iV6/S/9BDtO3ejbe/f8v6RrJY0DbXzLeDr68Pi8OBruvUCwWa1SoIAo5wmP6HHvq1KWrcxseLu3oF+MpXvsI3v/lNvv/97+NyuVq6E4/Hg81mw+Px8Ed/9Ef85V/+JX6/H7fbzZ//+Z9z8uTJbcfPu6DrOnMvvsjCT3+KyWbD4vFQzWQMq+78vBHkFg6jA6hNEER0BJorU2jVEiIC0sA+BHTE5CJL3/6fuFwWTA4H9UoVk95Ay8YRrE7s/buRB3cSjVXo6/NhsciYgkEyc3OU4/EWUcnna3znO5OsrRUYGvK3LhSNhsr160bomM9nbbXtGtlfxpdepaIQjRZxOOTbXuRuuFWWlnIMDwdvefxuw9PdTXB4mNjly3QcPIh/cJBKMomqqq3I8NHPfe6OROKXhT0YxOJyUc1mtzh8ANKpCpNj80g2N7sO9SOYjUlPT4+Hc+fWWsm3lYqCKApMTCSpVBSsVuNY29ocuFxmCoU6lYqRALt3bxsOhxmv18L6ehFZFhkYMD57VdVQFA1RFFheznHhwgaFQoOuLhdms8zgoI8nnhi6xQb8QfHmm2u88MIUzaZGOOxEkkQymSrf+941Tp7s5otf3MPlyzGuXIlTLBproAcf7KW318PXv36F7m7PLd1TNpsJv9/GhQtR7rmn545TlUZD5dq1JOPjcXK5Gn6/jX372rcQn087Vs6cYe7FF6nlcgiiSHRsDEEQ2Hj7bTqPHEGyWIhevEhhdZVGuUz0wgWalQorb7xB7/33s+Pxx1vnuW9ggKVXX6VZr98iZtdUFV3TOPhHf4TJbic6NmaslXw+OjaTs99rrbSNbdwJd5Wo/Nf/+l8BePDBB7f8/Gtf+xpf+tKXAPhP/+k/IYoiTz/99JbAt21sRX5lhZU33sDZ3r7FHiiIotH3k8+jNRpIZjOyWkeRTKBrqMUcojeEoDRAa1LVTJjtVrTCMoKzndHPPMXl84to5TQWSUY0W1DKZdIbeXwBN/39xkpO1/VWyugNTE4mWV7OsWtXaMvY32yW2LkzwOxsmkDAvukI2TpKVhSNcrmB02m5bXuw2WwIQGu15l36i743bvQqNcplUjMzmB0OzG43jWIRBIGB++6j49Chu/b6znCY4K5drJ07h9npbLVEAywvJFAKOUKnT7ZIChgBaQ880Mv4eHwzR8UQLyuKiiga7qBarYnPZ8NmM7Uu3tFoEatVplZr0t8fRpYl8vlaa5IlSSKSJDI7m+LSpTjNpk5/v5ehoQDlcoPx8QQLC1l+93dH2LUrhMfzwS9GmUyVl1+eR5ZFbDYT0WgJMAoQe3rcvP32OsPDAT772WEOHAizvl5sNSsvL+cpFhtbCFK12iQaLZJKVajVmui6zsJC9rY5NpWKwt/+7SRXrsQQRQG73cTiYo6xsQ2OHu3i858f+USmeR8GWrNJdmGBYjQKuo6zowP/4GArrTo9O8vsj37UKk4sxWKY7XbsbW2U43Fily5hcjrJLS3haGvDHgxSzWTw9vUBsPDTn2IPBuk6fhyA4PAwoZER4hMT+AcHWyuiZq1GZn4eX38/kaNHsbjddJ88udnOfves+9v4zcBdX/28H6xWK1/96lf56le/ejcP5VOP1NQUjXIZ3+b6rH3vXgqrq9SLRZq1GpqiUE6lsHo82F02sqqLeqmMxWoDTQNJoqlLZDJVOoUiTr8HtV6nw6Fw5N4RZqfjlApp9FoNiSLhvjr7jkdaF51yIoE9FML1jqK+mZk0NpvpttoEk0lCkkTcbjO1WpPV1TyRiLs1PVEUw/IaDru2OEVuoFpVjLXTJxhv7giFOPClL5EYHyd+9SpKpUJweJjwgQMEhofv2jTlBnb81m9Ry2RITU9jcblQRZnYcpKpC6sUnL2Ich/hWnOLk0WWRWKxEmtrBR59dBBZFpmby6DrOi6XhStXoiwt5RgZCbamW7oO9bqKySSyb187oZCd55+fprPzZqBbtapw/XoGTdNoa3PQ0eFC0/RNa3SBxcUc09MpDh/u5ODBMKdP99/i1rkdZmZSLXdRKlVB04zvDFEUaGtz4PVaOXt2hfn5DOPjCfL5GoIgtKzQmqa1nJeGS+sAACAASURBVD7pdIWxsSiZTBVZFmk0VEqlBt/4xlX+4A/231KM+corC1y4sMHQkH/LxKVcbnD27AqhkJ1HHhn4pT/Hu4VyMsn088+Tvn4dtdEAQDKZ8A8NMfr5z+NoayN68SLNWq31vfHOmw17KGREGwBWrxdpMw5f2Pwdm89HLZ9n/a236Dx8uJU2u+uZZxBkmdTUVOt1RVkmsGMHo08/vcWRt01StvFR4Ff7dmEbLVQzmS2jVmc4TOTYMeJXr9IoFmlUKqBpWNxuvH4/LmcXqxevUmuqyM0CqreHZrZBV5ebQBZk0YFSLqMpCr39XiJdbpb8NdLjVxE0hb4d7pYos5bPU8tmGb7//i0iO0VRkaQ7axOMi42Te+7p4cc/nuPatWQrMdVqlTl6NEKxWKdaVW4Zza+s5Onv992xxffjgsXlovvUqVZmyccJeyDA/j/8Q+JXrjD+8utcPr9Ermbmuu0QKcIsjCUJLJU4dKgDm81ELFZqdf3ciOkXRYGODiczM2k6Olx0drrZ2CgSi5Voa3NQqSgoikax2ODxxwcZGgrQ0eFifDzB1FSKri43Xq+VWKxMNFrC6TSzY4cfp9PM+HiCa9eSWK3SJmnQaTZVXn55nnS6ynPP7XlfO3AiUWZ+PoMsG+FzN9YtiqISi5XIZKqsreXp7vbQ1eUmEgmhaTqJRHlzBVUjFithtcq88soihUKdjg4nTqeZZLLCzp0BVFXj//7fawSDR1pZLblcjYsXo4TDzlvOPYfDvLk2WufUqe4Plcj8cUGpVpn87ndJT0/jGxxsufGUapXEtWtozSb7//E/Jjs/j81/s1PK5vNhcblaKxmlUkFrNnFvmhzqxaKRXL1JNhyhEKVYjGom07KW2/x+DnzpS8YkZ30dXddxtrfjHxraMvnbxjY+KmwTlU8JzC4X2ubdCxh3Km179mD1esmvrKA2mzTrdVyRCOF9+7AFg4jJJbLROLo3hHN0J5GBDsLtDpZfu049nwdBaBWEybLI4OE9OM06a2+9RWF1tdXVIVss9D34IL3337/lmHp7PYyPJ257vJqmU6+rdHW5OXo0wuCgn+npFJlMlVyuRipVYX29wMxMitnZNDt3Bti1qw0w7tIDATuPP77jH+wk+XWBxeXCvecIE2cE0iMHGNoZpDGdpnQ1RjjsIJGo8Mori1gsEpWKQr2ukkpVsNvNvPWW0Wrc2+tlba1AMlmit9dLvW6s0264fkZHg3zxi3u4//5eZFnE67XyxS/u5cUX55ieTrG+XiAeL2EyiRw61MGOHX6y2Srz8xlcLjNOp5lq1Xhtv99OMOjg0qUoe/e2cfjwe1vLo9EiuVztlvWhySTR3u7g8uU4NpvMY4/taFmMJUmgo8OF1Spz8WKUM2dWyedrRKOlViuyLIv4/TZ27PATibiYmEgwPh7n4YeNCUk8XiKbrTE8HLjtcQWDhgsqmSy3km8/KaiqhqbpWzQzqakp0jMzBIaHt5ADk81GcHiY9OwsyWvXjB++Y7Itmc34BgeJXbpEo1hsTb11TaNeLKKpKr7BwfedFoqSRGBoiMDQ0Ef4Trexjdtjm6h8ShAcHmb5tddolEote58ginh6erAFg5jdbrqOHaOcTFLc2KCazeJp92MSVfofeRjHO7I4PF1dLM/P4+7uxhG6OQ4XJAlPby+6rtN14gSS2YzF7SY0Ooq3r++WMe7eve2cPbvK6mqB7u6tAWzLyzna2oziODBCuk6d6mZ2Ns23vjVOJlOlo8PFAw/0MjGRZHo6RSxWYv/+MEePRrj33p5PfJryq4LJyQRrawV27zYsut3dbpaWsqRSVWw2mfHxBB0dTnp6vKyvFwiFHIRCNpaWsgiCTkeHC1EUWF8vsriYQ9eNtFpJMtPd7eGee7pxuy2bzh7jKyEUcvAHf7CfaLRIJlNlcTHHSy/N09dnOHwSiTLVqtLSF1WrTWw2E2azhCyLmM0Sly/H3peoNBoaVquJel3Fbt96fgmCQKlUx++3tkhKs6mhKCpms4TPZ6NYbFAuK1QqCmAElzWbGvW6SjBox+u1IghGO/TstRijngzRsTFWZlexXE7TkA5j6R1GtG7VUBkONuGXdjPdCR8kZG1trcDFi1EmJhJomk53t5vDhzvZtStEamYGUZJuO8GQTCZEWSYzP49/505Wz5zB+Y64B/+OHaiNBqnpadRaDQSB7OIi9kCA9v378fT2tn63uLGByeGglssZ3U3b1uJtfALYJiqfEvgGB+k8coSVM2eMhM9NglFJpynFYkSOHGHPc88BkFteNnbHus7CK68YOSAYe+hmvU6z0cDi8SDbbGjNJpLZjK7rVNNpitEoA6dPM/qFL7zvF2lnp4vPfGYnP/jBDBMTCbxeK7puuIH8fhu/8zsjW0S0iqLy4x9fp1CobxE3nj7tpFDoYHIyyYkTET7/+V0f/R/wU4zr1zPYbDfdUW63hcOHO7l0KcrsbIZKRaFQqJNOV+judtPZ6SKTqeLz2Rgbi+J0ZrDbZfr6vGxsGBOMRKLC4KCPzk4n8/NZpqZS9PV5efbZ3XR13SSdHR0uOjpcDA0Z4ujl5RxDQwFqtWZrAtJsalSrTUZGAq3aBLvdRDZbe9/3ZrebWkWHqqrhdFoQBEMTk8lUsVplvF4r5XKDpaUcKyt5FEXDYpEIBGytwkIQmJpKtvJXXC4zqVSF1dU8o6MhhGaD6oU3uDqfQzKbcdqsOPUi2df/H57oHLajv4XouPm+k8kK7e0O2ts/ugtzqdTg6tU4Fy9GKRbrBAJ2Dh3qYO/etltEu9euJfnbv50kk6ni99uQZZErV+KMjyd4+OF+wvUG4nusWW7oTbqOHyd26RKF9XUjLVYQEESRwPAwSqVC+/79SBYLqelpOg4ebH2vaM0mGxcvkpqawtvby4X//t+x+f1Ejh6l94EH7mp9ha7r1HI50HUsHs9d14Jt41cf20TlUwJRkhj53d/F7HIRHRsjtdlSavX5GHj4YQYefbS1xnnnONYZDrP485+TmJggOz+PIMuEdu1i9HOfI3P9umFt3iQ1Vq+XgYcfZsfjj3/gSO2jRyO0tTm4ciXO7GwaURQ4cSLCgQPhVpHcDSwsZFlZyd92lO52W+np8TA7m6H2LoHobzpud/cdDju5994e0ukqmqbR0eHinnu6aWtzsL5e5Gc/W+T69TTZbI1IxIXH40MURRwO86ajSsdikRkc9CMIAoqiMjOT4rvfneRP/uTILboNs1niiSd28O1vT3LtWhJF0ajVFHK5GuVyg0jETV/fTRt1uax8oJVJd7ebjg4nXV1ulpZyxGIlQMdslunt9aBpOqIocO7cGolEebP1WaJWa3L+/AaJRJlTp7pxuSysrxdob3e0/lZ2u4mVlTw7dwaozV7CwTzeQ0cw2WzUa03aR0SmJmPIS9cRHW5sR38LYDNbpsGTTw69Z6JttapQLitYLBIu13tfuHO5Gt/85jhTU0mcTjM2m4m5uQznz68zMODjM5/Zyc6dASwWmWKxzve/P0O1qrBnz01C39bmIJOp8vOfL/HkiAOlUrnj6ymVCq5IBP+OHQz/zu8w9/d/T3Jiwrg5URR0XSd86BB7nn0W2Wbj2ve+R/zKFSqpFJLJRGJiglI8TmB4mK6TJxFEkUoyycwPf0g1k2HXF77QchZ9VNB1ncTEBOtvv01+eRld13G0tdF1/Dgdhw9vE5bfYGxfDT5FkK1Wdj71FD333ktxY8OwI4bDW8Ry74Y9GGT3M88w8PDD1HKbd5MdHYiSRN+DD5JbWjJSJDfXPu9cBX1Q9PZ6P9BFqVhsoKp37ltxuSytC982UbmJvj4vFy/GbiEsFouMx2Oh0Why8KBBDAuFOvPzWZpNlXJZQVV10ukqpVKj5dYplRoEg3YSiTKrqwWKxTqrqwUaDZXJySThsJNnntndmo7cwOhoiD/8w/2cPbvK2NgGum7kkOzbF2Zw0Nf6zKpVBUVROXDg9unS78Teve2cObOKIMDgYH8rmdbpNG8Gy5mYnU2Ry9Xo7va0pkp2u4l02uggKhbr7NwZwOezEo+XaW93IgiG7qrZ1FiYieIpLxM5EKGuSkxejrG2VqBeb1Kp6ZQrZhxvX0aSBqib3DidFh59dIDjxyO3PeZcrsabb65x8WKUcrmB2Syxe3cbp051b2mvfidefHGOqalkK5+lUKizvJxjdbXA22+vc+HCBidOdHHffb0IgqHdGR29NT/I7zemSKu1AF0+H6vXFsipDorFOmaTRDjsxKkXsXg8tG12qnUdP463t5fE5CTFjQ1kiwX/0BDBkZGWCHfvF79I55EjJKemyMzNIVmtDD72mLHy3TznXJ2dWNxu1s+fJ3zgAMGRkff9fD8MVs+cYeYHP0BTVRxtbQiiSHF9nfFvfYtiNMrwZz+77SL6DcX21eBTCKvHg9Xz4cK1bH7/LYRGlCT8g4P4Bz+e5M4bd6fvLo67gXq9idks/cpnV3zc2LOnjTfeWGFxMUd/v7d14ZBlYxIiyzddN1evxlsC0FLJ0G50dbmxWuVNS7iC3W7CapXZ2Chy9uwqug4Oh2Ezz2ZrfPvbE8iyxO/+7vAtoWc3Sv6eemqIl16a58yZlc0yQ2O1l05XSSbLHD7c2dInvRc6O108+eQQP/jBDAsLOQIBG6JoCKpdLguf+cwQf/VXJZLJMslkGUEwtKHNpoau6wQCNtJpw9Z8+HAnZ86sMjVltPMagYM2Du80MdRjwerzc+7cKqlUBbfbgsdjwWKWWF5uUkqvoG3E6T0S5qGH+jl1qvu252guV+Mb37jK9HSKYNBOIGCnWlV47bUlZmfT/P7v772FtCcSZSYnE0QibkwmadP+vEo0WsTtttLZ6aLZNETQ3/3uNdrbjXXpnYTkXq+VjaKMM7ifiz/9vyjlMpLbi6rqLF0oEgx7eeIv/jHuyE2i5QyHt+hUbnxeN5qzLRYTbbt307Z7NzM/+AGlaPSmpfkdMDuNFvP4xMRHSlRK8TjzL7+MyeHYEoFg9Xio5fOsvP46weHhj5wcbePTge0rwjY+NgwM+AiF7ESjpS06CDDGvrFYiQcf7P9Es1M+aTSbWmtFpqoaoZCDkZEgn/vcKM8/P8XERBKXy9AUlUoNBgf9VCoKjYZKrdYkHi9vClx1arUmfr+N/n4fggCpVIV4vER7uxNV1UmlKvh8hjPmxqDG67USCNg5c2aF3l4Px47dfqrg89l45pld9PR4OHt2lZWVPLpudPQ8/vgOHnqo/wMTzhMnugiF7Fy6FGN2Ng3A/ff3cehQmEZDpa3NQaPRZGEhR7WqAAIOh4mBAR8+n5VkskK53CCTqdJsqgiCoQepVBT6+7309vkJiA7mZlOkUlU6O12IgkBT1UhnqtTrCmJDo5St40hV+NGPZsnlajz55NAtZOGNN1aYnk4xOnozudbpNBMI2JmeTvHii/P88R8f2iLCTaUqm0m+bhoNlddeW+bKlRgWi0Q+X8dkErFYJI4f725NtcxmiWSyQqFg5MZ4vVZ8PmtLLJxOVzlb0XGPHMVfi6OVc0YatXcnK2o7v1h0YrqeRpZFIhH3lhVWoVDn/Pl1LlyIUqk0sFhkDh40ROzBoJ1aLveeCbKyzWZoSD5CpKamqGazrSnQO2H1eChubBC/enWbqPyGYpuobONjgxF93sfzz0+xupqno8OFLItUKgrz8xkKhToLCxn+z/+5wokTXQwN3d46+uuKbLbKd787yeRkCk3TDOGjAF1dbj73uVG+/OXDjI8bbdSCIDA05Gf37jbGxjZ49dUl1teL5HJVRFGgVlMIBu3YbHKLhDgcJmRZpFRqoCgqzaZGJOJqPa6qGoJgTDkUReXChXWOHOm8o/NFkkROnerm8OEOotESmqYTDNpvG+D3fhgc9DM46N8S+AYwPZ1iZSVPudxgeDiAKAqt1N1crorJJCIIAufPb5BKlbHbzbS1OfB4rAwM+Ojt9XBxusjehpno9Vm8bd2Im284Gi0ZZE2uoobayFj9LV3VK68sEgo5OHHiZolqqdRgbGwDj8fCu7MsRVGgt9fDwkKGlZX8FseaJBmfY72ucvFilPHxOCbTTV1LqaSQz9eZm0tz9GiEqakkMzNp5ueNz1nXwWKR6OhwsXdvO/lYEnv8KnJqGatDR5UkBHcIy9B+mm1DZC9G+cY3xhkbi+LxWOnoMLKMjh0zcov+5m/GN4XHNpxOE9Vqk7//++tMTaX44hf3GqL72p2F0M1aDes7SmQVReX69QzxeAlBMEpJBwZ8t6wO3wvVdBrJbL6jNs7sdFLarGDZxm8etonKNj5WnDzZjSAI/OIXxqhc13Xi8RIzM2kURePKlRi6LuD1Wjh9up9//s/v+ZUM3Pqosbqa5z/8hzNcuLCBz2fD57PS1+clHHayvJzjO9+Z4I//+DCPPDJ4S8neE08MMTjo54UXpllZyePxmNm9O4Qsi1y+HCObrbUcWW63hWZTY329iNNpav1tjRA1o+ogHHZSKjVIJCpUKsr7TrgsFvkjs5K/mxRVqwq1WhOLRQIEstkatVoTWRZxOEzE42WOHo2wvp4nHi8jSVUcDhOjoyF27w7hcJhpNjXmljugNomjkUXX22goKplMFadUw6RWqUeOUNMMm3Q47CSfr/PWW2scPtyBySShKCqvvbbEG2+sIklgNsuEww76+nwEg8aqxuEwU89mWHj1NYqWCqLJhH9ggPbuAdraHExOJlhaymG1mjCZRMRNvYUogsdjYWOjRDJZIR4v02xqNBpaq7m6VmsyN5cmuhjlmGWSZnwFW1sY2e+jWq5SXFqhPDHPnHkPcbkbWRbw+Wx0dbmJx0v87bcuk7w2QW5+nrnzKwyM9mL17EByu/H5jNyYq1fjPP/8FM8+MsLy669TLxS2pMwCNEolBFGkfXPysbFR5IUXpjZ1URpgZOAMDwd4+unRW6oz7gSlXjcEtKqKZLHgbG/H5HBQSSYprK2Rnp3FFYmwcuaMkR/1rtX3jT6qGyGH2/j1wjZR2cbHClEUOHWqmwMHwiwuZrl6Nc5Xv3oeQRAYHg5gs5k2yUuZ55+fQtd1/tW/euiTPuy7irm5DP/5P7/NG2+sEA47W2P/eLzM4KCf/fvbmJpKcflyjMceu1VPJIoCIyNB/tk/O0St1sRsFgmFjARWQTA6mW7koQQCNgYHjdTaWMzQfmia8UUfCNg4fLgDs1mi2dSQJOFD3RX/Q3Cjy+lO4umFhRwdHU6mp1MsLuaQZRFZNnqg1taMLp+NjTzJZIVw2IndbkLXjQuorsPRo520tzu5vBHB0n0Md3UWIbpAtaxgyuSxer1U2vZT9I8g5ZXW+w2F7MRiZdLpKsGgnb/7uxl++tMFyuUGHo8FQRCYn8+ysVHi8GGjrbq6NINt4iViFRPNsBddVVl5/XX8O3ZwaOdxfv7zLIpitFAbmTUGEdN1o4SzWlWYnEyQy1U5fbqfXK7O+nqBTKa62UouYkkvEOrOkuzoR7CaSefqrK+XqdcdiMUkUuUi1aCXpmhpuee622TiE7/grbPzoOt4rGaaV5eozF/CNHqSDamHpaUcyWSZa9eSVMrD7I2Mkl+4jNXnuxmFkEpRTafpvvde/Dt2UCjU+c53JlhayrNjh6+16qtWFcbH46iqzj/5JwfeUxivqSqLr7zC6pkzZOfnKSUSSJKEbLcj22w0ikWa9TpKuYxbEJj89rdZ7+9nz3PP4ersbNUmXL4co15v4nGbOTjqYs+eNjztgS1OIV3TUCoVBFHckrC9jV99bBOVbXwisNtN7N7dxre+NU6hUGfv3rbW2FcQBMJhI7/iZz9b4rnnUoyMfPwNyh8H6vUmP/zhDGtr+ZY+BIw1Wa3WZH4+QzBow+OxMjGRuC1RuYFAwM6RIx28/PI8ZrOEx2Olv99HKORgYiJBW5uDJ5/cwenTA+RyVf79v3+DWk3F5bLQ3u5opb0CJJNl7ruv9664r3Rd59q1JGNjRu+Q4fjxceRIhJ07t677SqUGsmyUIlosMpqmo6rGnbvbbSGXq3L9eoZIxE1bm6OlG1FVjY2NApOTMocPd2K1mQgdOUFqvZ8BT4nyRpqUksXZN4hm95FNlFuTrBbqZaJvneXMuQtcODNPf1cE2gLM5UUCAXsrq+Xq1Th+U5nU6y/htKj0Hz+G2WJMqlRFIT0zg1eH/p5Ors3k0XVDlFuvq9hsMl1d7k03j7qZ9muhv9+HySSRyfjJZKpGTL1NpPqz15CcbvwWJwsLWXK5GoJgaItiVQ9uMUpIzLJUD7G2EGfQGqP+5g8wxVYpEKDhCNHT1Y0sCTRzSVZ++mOmLYdRfV34fDZisSITkwmSwTD3Dp3CVF4it7gIgC0QYOdv/za999+PKMtMTkZZXMwxOhpEkkQ0TSedrpBOV9F1eOONZQ4f7rijzglg9dw5rv/4xzjb2wkfPEhucdFohs/lSE5M4IxEMFmtBIaG6Dx6FFGWSU1PM/XCC3R+9ot857tTLC3l8HmtWLJLxM9c5UffiDPW4eToQ3vpu/ck4f37iV25wvr581QSiVaOTOTYsdsKhrfxq4dtorKNTwzFYp0331wnELDddjfd3m5cYM+eXf21JSrXrxuahrY25y0BaVarEfK2tJRjxw5/a7T+Xnj00UFqNZWxsQ1WVvItPUdfn5fHH9/RumgYupdd/Pzni3R13ex1ajY144vfZ+Po0fdOlf2H4tVXl/jxj+colxtomk6joTIxkeCttzb4vd/bs0UX4vdbWV3N4/NZ8flsRKPFVoGi328jm621SEy5rOD13ojZF/H5bGxsFAmFDBL42GOD/N3fNbmctOJtj1BJJmk0RJqVCpJkTPRuiGeTS+t4V8+wXldYWiwjqU3k1AKR6iyVWph47AD+oBO/33iN2dcm8ZZzDP/WqRZJASN4LbBzJ5n5eY4NdiKaQpjNMhMTCXK5Wqt4sVZrkk4bxzE05G9NJ4JBe2u1pNUqrKCgSV76+rxcuRKjUlEIhTYf1w0tTLNWoTek4rz+U3JrKeTcKoLVjrkQRSglaXg0TF39lEU3hfQK7e3r1AM7aTaNlODBQeNcG0vb+fL/9whWtQi6jqO9HbPD0XpvU1NJrFYZSRKpVhUuXYoRjRZRFOM8zWarfPWr5zeneLdGKDRrNdbOnMHsdLZiFiSzmcLqKuVEgmatRi2bJXDsGOEDB1ohc/7BQTJzc1z4+s9YSdvZvbuNxuwF6rNnsOigdvhZT9VwvT1JYWme6RdeoFGpIFss2Hw+NFVl9exZkpOT7PrCF2jft+8jO7e3cXewTVS28YmhWm1ufjnePsjpRoT5jfXAryNu5IbcuJN/d1aK3W6iWGyQTle3hH/dCVarzBe+MMrx4xHm5jI0Giput4XR0WCLjNzAk08OoWk6Fy9GWV8vtkS1nZ1uPvvZnXel42ZpKcdPfrJAoVAnGi1SLDYQBGMFdO1akjNnlvnsZ4c5cqST/fvDdHe7qdcNPUmjYayj7HYTqqqxuJilXG4QDNpa0wC73bQZaGecV5lMhcXFHA880MPZs6tMTydZWsqhqoYrqtlU2bUrxMGDHS0nWiZdRpk8Q5s/R3DkMJfWl7CGQHZZcNbK7FhfQ6KNhY0OGg3V6BZyrDF6oO+2Wh3JbEbXNHq8DSYSDvr7vQwO+rh+Pc3qaoFstkq9rtLe7uTkyQiZzB2ErLKJJibsskpnp1G8WKkYQlxJElDqCg1Fw+G2069PoZXj1JweXBY7oicIeg2bVqO6NIvV7SaTEWmYXLjqSRrNOvm8htdrbSXhTkwkmFsuc999t5861OsqsmxMUi5dirG8nCMYtLdIligKpFIVvvOdSf7pPz3UKoS8gcL6OqVEojXVkMxmOg4dwtvXR6NcxubzIZpMhEZHtxAk2Woln6uyGlui9+gp9HwCZfo8otWJ5PYjAza1SqIh065WmX/5ZQYeeQTfwM0mbEcoRHZxkdn/9//w9vdjcd0+/2YbvxrYJirb+MTg81kJBm2srRUJBh23PH6jPO9OIVq/DpBlEV03kma9XsNq+84vdFXVNrUGEvv3v3+AGhgEr6fHQ0/Pe2ftGKRmFydPdrG4mENRVLxeK8PDwbsmYJ6YSLC8nCOdNtxJ4bCTQqFOIlGmXG6QSCi8/voyqVSFt9/e4IEHerDbTSwv53C7ra2LYLNplPRJkkCppNDT48ZikZicTFAqNTZXRHpLe/PjH89tClnlltvGbjeRz1dRFI18voaiaFQqCvZGmgFPiZ3HdiObTciSSLWmAiBaHcg2G+7iAqKlDVU18lxMkoAgCiiKhkkWEd4t6NSNrp6DjjAXLmwQCjkYHQ3R1+djZSVPpdLgt397hN27Q/yP/3GRVKrSmqTcQDRexTa4B5c8i95UaQs5sNlMqKpOva5gU7IUKj7aOzzY1sZJ29pAUACo14wep86ODtZnlsgtL1MRu5BNEug6uVyVpiozNNTeWp/JsvieNQg9PR6mppKkUhU2NopbSAoY5+7ISIBotHhbfZWuquiqekvCrcXjwer1oiqKkaKr3TpJrNcMUuZ0mqlNLqLVSpg6d7Qet9tNlEoNSqkMmqZRy+dveQ5PT0+r3LHzyJE7vs9tfPLYJirb+MRgMkk89tgO/st/OU+53MDh2OouWVzM0d3t4eGHf333yH19Xlwu4874wIEwY2PGdMNuN2zFa2sFBgf9PPHEEENDd04g/mUQiRj9QB+0NuGXwepqnkymiqpqBINO6nWV1dU8mgahkBMok8sZSbOxWIlXXlncXPPYEQTDknzDvdTd7WZlJd+aKBg2YOMfSRLQdRVNM9ZrZrPM4KAPu/1mBk25rHDkSIRCoU5fnxefz0YwaKddNZN6xYZ10/HS1e3hypUYXq9R3Liagno+QWivgC/gIZ2usF7ykP3xOBdmFboibnr7vHR3e5BlEVVREEQRX3eEZx7eTTBo5+LFKPPzWURRIBJxc/JkhFOnepAkgdOnD4KkrQAAIABJREFU+3n55XkyGcOFpetGFovFIvHEH/wWlhkzqZlp/HaJQr5JJGRFzedR7Q4mtRHiqwnMhQqKw4dk1qkVS2jVJuGeEMGgDb0eIp4oUVPrCLkMZW83kiRxcE8bDoeJixejpNNV4vESHR1OTp3qvoU0gZEqfO7cGrOz6ZY7TFE0TCaRTKaKy2UhEnGTzVYZH4/fQlRsgQBWj4dqJoP9HaWpoiThbG8nduWKsW56VxFio1QyqgAsIYMolvMI8tbvDlXVkURQigXMDgeNQuGW4xclCQSBajZ723O1Xiyy8JOfsPbmmzTKZbx9fQw++ijhAwc+0Lm+jY8O20RlG58onntuD5cvxzhzZgWHw4zXa6XRaJJMVvH7rfzpnx553x6VTzM6O10cOtTJq68aWpF77+1hdTXP6mqeVKrCyEiQr3zlGPfe2/ORE4lCod4qybsRsX/oUAd79rS9Z8fNLwNV1clma601Sz5fo1ZT8XqNz9hkEqnXVbLZGj09Ht5+e51KpUmtZjh8bhYhGs9jtcpUq02mp9PkcsZ/Y7XKVCrKZgCcRiJRplZTsVqNKZEgCLhcFhRFIxotEYkYxYu/93t7AYheLJMWDJeIIIr09HhYWckTi5VQFJVKqYbHZSGvC8RiRVRVJ2PuxCzOUVxfJ2GWiSfKJJMVDuxvIz9/HU9vL4HhYUw2E089tZP77uslmSwjisIWETPAo48OEA47uXDhps7o0KEOjhzpZGQkSPVIJwuvvELt9fNE59fIrck4OjpZoYd4KUC9niaXrWAqzVPOl/DqFezNHKRrZJoF7B4Pg4M+PJKNxYtVHP4qbv0subdVxqsBctZuNKu7pR36q78a49ln9zAw4HvnR0lPj4fh4QAvvTS3+fcptvRC4bCTQ4c6cDrNFIt1Gg311rVmIEDb3r0svfYaFre71VUG4AiH0S5eRLZat/xcqVbJLi7Sf3Q/1+O9JJMVPGYLurp1PVzIFAjbq5TWV6im06BpePv7cXV2Isoy9VqTckWhVKyDeOu5nlta4mf/8l+SnJgADFKz8vrrzP7wh+z9/d/nyJe//CHP/G38MtgmKtv4ROF2W/h3/+4RvvWtcV58cY5MpookCTz2WD9PP72LEye6P+lDvOt46imjRPLixQ2KxQaiCD09Xu65p4ff/u3huxJ8F4uV+F//6wqLi1n8fhtWq8zMTIqJiQTHjnXy9NO77pgsq+s6hbU1UjMzNAoFzG43weFh3F1d70umBga8rfh7gHK5gSQJgICmaYiigM0mb4bPGZORRKKE1SpRr6soiqFTqVYVCgWDmEQiLpJJY3UkCMbzWK0murvdRKMlvF4L8XiFYrGOx3PT1eNymclmDUFrLndzxeHp6cHq9bbu9J1OM8eORbh0cYMLY1Hs1Rwpcy81zYwo1rFaZUKRQUS3inr9TayFVaxuJ8uXo1jyK4wc382up59u9eqAcd7fKRhPEAT27Wtn7942KhUFQRC2rOJsfj+7n3mG/tOn8b06xU9/vsJLkzWyeQWHQ8HVFqan1sBGlabJia1tBx7yNPJ5ihsbFNfX8Q0N4besUfbK5OsK+WKDVDRLUF3BY19jxXuEvXsHOXiwg/n5DC+8MMWf/unRLcdx5UqMmZk0HR1OCoUGJpOIqmpomo7VKrVEvtlsjePHI7c9NwYefZRqOk1ichKTw4HJZqNRLtOsVtn55JNomkZichLJZEJTVRoKmDoHcR97mMPRJj/5yTyiKYRFENEbNTTZQjaewZKcxepSECUJrdlEbTZZO3cOe1cPRUcPq+tlqrk8Ur3IxpkS9/miHDwYNs4fVeUX/+bfEL98Gf/Q0JbPrbC2xuWvfQ13Vxc7n3rqPc/1bXx02CYq2/jE4XZb+PKXj/ClLx0gkShjt5s+cFDUrwOsVpmnnx7l5MkulpZyNJsaPp+VoaHAR24PbjSMxNmvfvU816+nCYUcNJsq/f0+hoYCVCoKb765TiTiZmQkeGsS7miAwsXXWT17lnqxiGQyoSoKS04n3ffcw47HH3/PVt2jRyN0dLhYWyvQ2+vdTF7VaTY1SqU6drsZn8/aWgPm8zU0zQikuxEfX6/rWCxSqwqgp8fL4KDRqGwyiZjNEm1tDhRFJRYrYbOZ0DSNRkPdciyGI0qnWlU2awcM2INBOg4dYvGVV5DMZixuwz589Ggnyf+fvfcKsuOw03t/HU7Oac7kDMxgkAESTCApBonUkpKpEi2tduWVZNW6vFvlN7/73bdcrrpVu3td9j6sVxaVrLwiKYpiRk7EYIDJ6cyZOTmn7tPhPvTgkCOAmZS01HyPQE33yf31//+F5TWEQBD5+D20g11cvpzqrEXaXXvJN5z09jVx2qrU7Cql/gkO//un8YR3TiPeDwRBuGUd+na4IxEe+vJJjOAy15Pn6O614XLZ6LI78FRtCK02RtBHqW4SHRnAHY1SSyZpVSq4o1HsLhcn7nuAG4s1rlxJkVc8eNwB/PU0U9FFRg7egyyLjI6GWFgoMDeX4+hRq4en1dJ4/vklNM3gs58d2y5aVInF3J06jNXVErGYB7td6vzd78IZCHDw618nffUqWxcvolQqhIaH6Tl+nK6DB9GaTbI3bpBdTXJ1psBqyUU5HUH4zjzRqBVOWK/KFOnGPjuP4YvibqaJuBVCPV00cuDr60N2uZA8PhbPXqPoLOGOxQiYJYSJw2zWnHz3u9M0Gm1Onhxk48wZMlevEhga2kFSAPz9/WSvX2f+F79gz5/92e9lXbqLXaKyiz8iOBwyAwMfrGzx04TeXt8nKhxut3V+8pMbvPDCEisrRWIxK3dkZaXM1laNY8d6GBgIEAg4+PnP53jxxRWKRUtrYJomMzMZXv/uEnva1xicGiE4PNw5drNQYOmFF7D7/Qw/8MA7PoZYzMNf/dUh/v7vz5PLNVAUjVpNBaz+IJtNpLfXRzDoxDBM1tcrOBxW27DLZaOvz4dpWhfKYtFyTPX1+TEME9M0icff0jM0m+3tAEGLlCjKTqJSr7eRJCvh9uDB+I7/G3/8cTRVZeviRUpra4iSRFtp4w+60YfvoPfOIywtFTBNsxMSp+sGqiOEPHkYT58ftdik0tQw7bcKxT9OZDJ1RkdDTExYOg9l/iLNcBxTbSFUCgh1leJWi2jQTmB4mJ5wmGaphH/vXgJdIe6JBUmna/h8dnw+B25bAFurhFRNg7Mfm03CMEyy2UbnnIuLBTY3q+zZE8ZmkzhyxBIJ3ySGpgnnz29y1119PPbYOBMT7zwVtHs8DNxzDwP33NNZt92EzeUiduwEz1+/ypsVL739PibDLnTdWumVSi1OnOhj8JG/JvXai9RnL1O/sYXD4UZvtYjs2YMYilNYmCedSFEtlPF5VZzdAWxTJ3AeuJeQ3UkyWeHFF5fZvz9G9to12s3mOxa/OoJBNi9cYPanP8UbjxMeH8fT9d6OvF18eOwSlV3s4k8E09MZzpxJEgy6cDptHbuy12snn29w7Vqmcwf88surHDjQxcGDXciytcM31BbrP7rKoqDQf3SnwNEVDqPW6yTPnKH/xIl3LbV74om9VKsKL7+8hqJoyLJAo2E1Z/f0WKmimmawsGAVFNrtEpOTUVKpGuWyAlgNypIkIoowMODH67Xz0ksrdHV5One5Lpe1/rl0aYtw2IWmGR3ipeuWPiUe93Dy5NAtQXOy08n+p5+m/8QJCktLaK0WrlAIIWnnuVcyxHUDURR3dP7crCq46dpSVf33ku5brao713RaG8HhwjYwgVHJI2xsIvgdxI+O4O/tpZHLUVpf78Tj35zciKJIeNsm365mMRvVHed5ezR9raZimnQcQvG4l5MnrYTbuTlLXOtwSNxzzwCPPDLyvicPbycpNzE9neHatQyTk9GOdkoUJfr6/LhcNmZmshw7dojWfY+zkNRQtGUkRz9+b5DNhofyVgtN7SVbBZvbS09AwHniMez9ezvn6OnxcePyCmd/9GuM6WnUWg21WrWEvG977M18nvL6OnqrxcKzz2JzOHCGQgzcey+jjz76rtPEXXx47L6qu9jFv0KUyy1WV0u020anF+h3m35/FxcubCLLlt5BEKx1ys2Lj5WMWmNzs8rCQo61tTJut42trRq9vT6Gh4N4tQIhW5O04t2+m955cffG45RWV6lubb1r4qfbbeNrXzvI1FTXtmA0yNxcDptNIhRykEhUME2ToaEgq6tFFheL1OttRNG66LtcMoGAE5/PzvJykWZT46GHRpiezrCwUGBkJNi5gHZ1ebbXSVa6by5XZ3nZ6qUZGQnyzW8e4XOfG7stmRBEkeDw8I7JkbfYZHnLajgOBBw4HBKFgmVxlmWRffti2GwSpmlNID7zmeFPJN337YjFPMzMZN963C6vxeQEESkUR2m6iB6IE5u07vpLa2s4fL4dtt++Xh9Xp9OEQg7YLoZkmzQ0m21sNnFH47nLJQOW/fvm5+5mI/dN0aymGbzxRoJaTeWppyYJBt+ZvL4brlxJ4XDItxV4h8MulpeL/MM/XMAwTCKyD3soQlnwc/VCCVkuMzERJRDzspkK0FBFqLeRdS+xtx1H35jDefV51tMCAamGWquRnpnBG48TGBhAlGVapRLl9XXa9TqhkRF6jx0DQaCRy7H43HNIDgcjD3266z7+UNglKrvYxR8IxWKTer2NyyW/b02Ophm8/PIqp04lyOetUbzNJjE6GuLJJ/e+Y3aKphlks/WOiNPjsVOrqR1BpyVCNZmeTnPtWqbj3iiVWszN5QCBybjKvloTwRugkG/Cnt85iSBgGsZtcy9+Fy6Xjbvv7ueuu/potw00zWB+Ps/GRgXDMOnv9zMyEuTFF5fJ55vbaxzLWmwJjkVM08TjsROPe+jv9/PVr+7nl7+cZ3GxsL0KsvRP3/72UYJBB2fPJolG3QSDTo4f7+H++wc/sBYqFHLxl395kN/+dpVr1zI4HDIbGxX6+nwcPtxNf7/lllldtcLPPql037fjwIEYp08nKJWsiY7cPYzoC6MX07QcEcuF02NNwNRaDVGW6bvrLmrpNK6wZXnvH/CzulYim20QtjcRPX6kSO92GWKBQ4fijI+/ZY8fGwsTj1uEdWAgQL2ucv78JuVyi2jUjWHUOXCgi8FBPxcubKLrBt/4xpEPNV0ql1tWh5NhYJSz1kprO8ROEAS2tqqYpsnjjwxgJlTqlTRCfpGo4aPlCFHIuwgGHbhcNpz1OlUxznxCJTq4TaiyGzQv/RZTVQjsOczoaIja5ibF1VXq6TSCKBIYHKSWSlHP5xFME3csRqtU6nQh6apK4tQp+k6c2BFOt4uPB7tEZRe7+D1ja6vKa6+tMTOTo9ls43TK7NsX5f77h3bctb4d7baOquq8+uoazz+/RDjsYnLS6lhpNNrMz+d55plpvvnNIzt0GjdhZYxAMlmh1bIu1uvrZSTpLcFmpaKQTlsag3DYRbncIpOx7pBVVWdhU8enGGhbCXRTQJJFvB4bPb0+AgEnzXx+R4nd+4EgCNjtEna7pXM4cuStULvTpxM0GiqRiKVJ0DSrHVcQdNbWSgSDTqamop1eqImJKENDQebn8xSLTWw2iXjcw9WrVjx/qdTq5K3IsvihQ+0iETf/9t9O8cgjI2SzdU6fTrC4WKBYbFIutxAEgYEBP08+uff3orkaGwtz//2DHU1RLOZBH72TytkX0FuL7Dk8hltSKa6kaTcaDNx3H92HDnH1//wfiisrBAYGCAScHDvWw5VT8+TWU2gjd6IuN5FlhYMH43z5y1M7SIbXa+fhh0f40Y+us7pa6tjBQyEH2awVVjcyEsLjsbNnT5jr17MsLhY+VBVGJOImM3uFxuIiei6JqakINgdSbABz+AjpdJ3DEx7aF55F21qhjYRWq+CzNfDqBZSVFDVxkFizREZRMUYmyGRblMsKwaCT9uoM9WIZV88Q8W4foiQx9vnPM/+zn1HZ3KS4uEg9naaSTCKIIp54HKVSYfWVV/D399N9+DDe7m7yc3OU19eJ7dv3cb69u2CXqOxiF79XbG5W+ed/vsrGRpneXh+RiItGo83p0xusrJT4+tcP7ZiK5HINzp9PcuVKmlKpyZUrKfr7/YyPhzsjd7fbxuRklJmZDBcubPLEE3tvOe+lS1aB3Pnzm4TDTkCg3dbJ5ZrbBXkauVyDri4vExMRZmdzFApN3G5bR0xZLrfYEnvxFS6zvuzstCzPzefZO+olbBYY//znO9qHjwJNMzh3LtlxBtlsEuVyi3zemkIJglU/sLlZ48qVNCMjIbq6PDidMocOWcJYVdV55plpLlzYpKfHx759sc5r+vzzi1QqCl/5yv4PrSEJh12Ewy4mJqJkMtZK6Wa67yfh2HoniKLA5z+/h1jMw9mzG6TTdXAN0vXIlxiWt/DredRqFW93N30nTtB7xx1INhtTTz/N4q9+RX5+3sqoMU3uOBym/bl7YOxObE47Q0NBxsfDnVXa23HXXX3Issgrr6xy9uwG1apl1R4aCjA1FcPrtQiwy2Wj3bYqDz4MURkP1ZmbeZGWU8MR60GwOTHVJlpykcLSGh5tikElgZZbRu4awvT2Ui2IBNtpbPUsdmUNQ93A6QvhtQepJGdphdy0Wv2ojQb5hQUU3BwYD3cym3zd3Rz4i78gc+0aiddfR1cUnMEg4fFxAgNWZEK72aSwuIggCPTecQemaWJon966jz8kdonKLv7Vo1pV2NiooOsmsZj7thOFPxa8/PIKyWSF/fu7OvoQp1MmFHJy/XqW3/xmmW996wiCILC5WeW7351mba1EJOKmXm+TzzdptTQUReOuu/p39KpEo26uXEnz2c+O7djnX7mS4gc/mMHrtTMyEqRSsfJEajUVTbMi5ptNDbfbzj339BMOu5ieztBsagQCjs7xazWFmXYPh8M1+knhbgp4Aj5qxQw3Tqnc86WHPrYdfanUIpOpMzkZQxRFVlaKHUGmz2ddAJvNNt3dXk6dWmdzs8K/+3eHyGQaZLN1bDaJdlvn0qUtxsfDuFxvTU+6ujx4PDYuXtzi+PGejlvmo6Cry3NLl83vE7Iscvfd/dxxRy+FQhOASMSFJIkolQqGruPw+XaIPbsPHyY8Pk5+bg6lUkGy2wmNjeGNx9/pNDsgCAJ33NHLoUNxcrkGpVKLkZEQgYDjFvGsJAmdssIPAtMwsCev0h2EpBLD2xLxSGCKTiq2LrTMMpO2OaSCjhSMI8g2ZBuovj60UgnB5kEXXDiCIVzHHqBLA+PGAmbuPOsrfZS8MmGbwN6J7g6JUioVKskkjXweQRBwRaO4IxFEux1DVTuPzeZyQShEZWMDh99Pq1hk7dVXyVy7RmhkhNjU1MdC2nexS1Q+9TB0HbVaRRBF7L7fT0z67wvtts7LL69y5sxGp1re57Ozf3+Mxx8fv6WE7w+NbLbOjRs5+vp8OxwUwPa6IMDiYoGtrRrd3V6efXaBRKLcITXW2kazYtwTFXK5JvfdN9AhZg6HTKul0W7rHaJy8zUSBIF9+2J0d3u5ejVDNltH1w0KhSZer41vfvMQly6lARBFsbNuKZcVq5FXs2LnYzEfrgOfJb21TFegjterEegaIKnFSMWOI7s+ntdcEOgEvh0/3oPLJfHSS2sdp4lVPGiSzzepVhXOnUvy3HOLjI6G6O72oesGS0tWKePIyK0ZJh6PHU3TuXEj97EQlT8WyLJ4C2F6t4ul3eOh59ixj3ROu13i+PFeXn99/baC2Zu9S+9G5EzTpJJIkL1xA6Vcxu7zEZ2YQBBFqok1jj90hOiWwtpqiUKhiSBAMOikf+wgiSszlNMKzngfqqpjs0kEpRpGq0Hd1Y1NNLG5BAQEnF4P9p4hjpgFPvNvIkT3H6Twwhbl5UUEUaCcSJB+802UahXZ4UBTFEqrq9Z3YmKC4soKdq8XUZYta7rTSSWZZPH55/F1d1NcXiY3O8vCr36Fr6eHQ1//+m4788eAXaLyKYWhaWxevEjy3DnqmQyiKBIcHaX/rruITk5+YudVa7XO3ZkrEvnEiJFpmjz77CK/+c0ykYiLiYkIoihQKrU4dSpBsdjir/7qcGf8/H7RaLS5cSNLKlVDFC3ysHdv5GOJlK/VVBoNraOp+F14vXY2NirUaiqJRJn5+TxDQ0FEUWBlpcjMjEUwJElAVQ0uXdqiVGpx8uQAe/dGqVSUzvrjJhKJChsblc46KRRycf/9g+RyDer1NpVKk0ymwfR0lpWVEisrRQ4ejGEXNKaCBZzlNbRGnYLiwGaPMj41iMvrYss7hHm4H+92W3C02GQ92ejs/T8qQiEXAwMBFhby7N0bIRRy09XlIRSy8lWWliznjt/vwGYTUdUSm5tVAgEno6MhhoasbJDFxQJXrqS4++7+W8ihwyF3Mlx28dFw+HCc8+eTZLN1YrGdhGR1tUQ87mHfvtsTQkPXWXzuORKvv45SqyE7HOiqyurLL+Pv66PdaBAa9TEV8jM2Fuqs/vx+B+gazbV50lsVLpxPYrNLSJJIoJanbYq0FB1/yIYgmCiqTrFYxeP3MBoxCep59uyJsFW7i6uL85TW10m/+SampuHv68M0DCqbm7gjlrutWSjg7+2ltLZGu9lEa7XQWi0auRy+nh6GHnyQeiZDeX0dtVolOzND6soVjv+H/8DeJ598V8v+Lt4du0TlUwhD17nx058y/8JLmJIdb1cUt1MideUK+dlZJr/0JfpOnPhYz9kqlVh77TVSly+j1utINhvhPXsYvO8+wuPj732AD4hkssqZMxv09vp2pIqGQi68Xjuzszmmp9Pcc8/7j+BfXi7yk5/cYH39raZVURTYsyfC009PfeTRvtMp43BINJvabXf+zaaVPeF0yhSL1orH67VTLre2SYmCaYKqWqJSRdHZ2rKK+9xuy8XzxBN7dtiUVVWn3dZ3kBdRFOjq8qAoGmtrJRYXi3R3exkdDZLJ1Lh8ZpmB8gW87TS+kAdVlpBrGcIk8JUgIx7G5ZJ3vO6iaCXMmm8PFvkIEEWBu+/uY2EhTypVQ1G0jvB3ba1EsdhkbCxMKOQkkbDer5sTtBs3cvT0WJ8Lj8fO1laVfL7ZiXS/iVZLI7SdG2JoGoauIzusVVe1qnDjRo6trSqiKDA0FGRiIvKOtQJ/6hgfD/PZz47x618vkc83CYWcVgdSoUko5OKLX5zYUV/wdiTPnmX517/G29ND8G229la5zNbly7SbTdr1OnavF4dD3vEeVPJVSm0nbbsPu1qjZXrRdQ2h1MApiEQibqR2larmQ1Ql+vosDZZYTNKotzhzZoNLF9sU83GkV17AXt0iNjZMI59HVxTc0SjucBilWkWpVvF0dSFKklVyKAgYmmYJwr1eVl95Bb3dxun34+3pwROPU1pZ4dr3voeuquz/yld2c1Y+JHZftU8RlGqV9JtvcvGZHzP/m5doCB60QD9y2CAeczI8EEJv11h87jnC4+Mda+JHRatU4up3vkNudhZPPI6vtxddUUieO8fW5ctMfvGLDN5/P5Ltw7ksbofFxQLVqsrw9h3922GzSbjdNi5f3nrfRKVQaPKDH8yQydSZmIh2BJaqqjM7m+WHP5zh298+9pEEkt3dXsbGQly7lsHvv9UZs7FRYXw8Ql+fj2pVQRAEdN1gc7NKIlFB0/ROL83NoDSv187mZpUXX1zmr//6OMeP77TD3rQiVyrKLd0yy8tFlpeLdHd7GBsL43ZbEewrv7hEK7nBJhHcdTc+nwPvcBeNYhlxYxqjbmfgxD07jpfLNRgaCrzjxejD4NChOF/4wl5efHGFRKJCsdjqFAnG495OSm25rCCKIrIsEg47yWabZLN1ent9LC0VqdVUikXr4mm9lmXS6TqGYXDvASdv/uAalcVZDF3H19uLFh3jt9dFNrfq2y3MJmBVCDz99NQftQbqDwVBEHjkkRF6e31curTF2loZSYJHHhnh6NGed7TN66pK4vRp7D7fLb9HzkCAwOAgqStXKC4v37JCMU2TxUtzbBpxhh88jDZ7jobdhSa5kFJRjI15HK0UQZ+N8OFhug4OEQpbZHVjrc7c1QYLF6ZxuWy4h++ksXAVs1hHyyoMjUToOjCIv6+PeiZD8uxZ9FaLzLVr2Nxuek+cwDQM0leuYHO7cQaD5OfniezZ81aQniTh8PmQnU42L16k++hRYvv2sbCQJ5ms4vHYOHq05xMPBPw0YJeofErQLBa59swzrJx/kxtnrqFWWjh8dmzZ6+iZG2xct5FzSPQNhHDYBbqPHWPiySc/lnNvnDlDbnaW2NQUoiyjqyqlZJJqMkklmSQzPc34448z9MAD9N15523TJz8oWi2NdzuMyyVTrb7/sf70dPoWkStY+/e9e6MsLBSYn893HCXvBk0zWFwsMDubo1ZTCYddTE3FGBoK8OCDwyQSFWZncwwOBnC7bTSbbRKJCm63jc98ZghJEhkeDhKLuUmlamxtVWm1NIJBJzabhCyLZDL1juXY6ZSx2USeemriFiLV0+Nl794Ily5tMTUV6zy3dltnZaWIrhsMDQU7Vt2Io4k9VKV0cBwpZ+J227DbJRwOmUrFSbkiMBzbZHzyLd1HsWgFnp04cet65aNAEAQefHCYiYkoV66k+Od/vkqjYZUYhkKWUNQ0b2ogdMJh13aKrmWn7unxMTYW4vTpBMlklXS6yvq6pfMRBIGxYI1L//hr1pxtDt+zB7fPxfrFN7l69dfUo1NMfvYx5G1yrao6c3N5fvSj6x+ZsH5aIQgCU1MxpqZiaJqBIPCeIYS1dJp6Oo2vr++2/++Nx3GFwtQbGvOnLhHo7ycSD6I1GxTXEmTqNtx7j+CZHEZBR1q9jpZdRM9voLUKqIqE7ulByySoz5n4jx2jnsmwVZFZMLzsPfLWWrc+PIDitZFp++jq7mJ8j/Vd9w8M0CwWWX35ZXRVJTo5iVIqoTYayC4XDp/PcvuYJmq1ihmPv7XyFgQkux1T17n8/Gn+5f+btMzDAAAgAElEQVRb5fLlFPW6is0mMTIS5Ktf3c9TT+1amt8Nu9+2TwmWnn+e7PXrpLQwSlvAG40gyja0bAGhXsYT6qZmBskXFXx6gdkf/5i+O+7A29393ge/DZrFIs18HkPXSZ47hzsaRZRlDE1j69KljugsODREI5ejsLhIdWsLpVxm7HOfe8fj6rrVoPte2hav194pq7vdxbFatfI3Tp9OsLpaAmBkJMTUVAy/30E2WyeXayBJVuLm9etZvF47jUabWk1FEKxVws2MDzBZWSm+J1FpNtv85Cc3uHhxC00zOgLX115b4/77h3j88XH+4i8O8pvfLLG6WkZRrDXQ0FCARx4Z7VhoPR47J08O8tOfzlIotGi39W2bsEG7bTl1BgYCOJ0ymUwNr9dBq6Xf8ngEQeCznx0lna4zM5MhHvfidttIpWpsbFTp6/PtiI83qkUEtUmsfwRNrnHsaDeSLNFstJmcjJJcdVPPZFmf28ARiVGrqdjtEg8/PMLRo9ZnyTRN0uk6zWYbj8f+kVdm3d1eHn98nFjMzfe+N8Pp0wnqdWtN1mjcFA/LHQEwWNksoigwPBxgZaVEPl9nc9OKzB8eDjLS7ya28jx62ySjx1jJiZwYjZHIQdWo0VWfx0zthQHL6m0R1sgHIqx/ynjfU4LtdeE7fd+z2QYLiRbF6CTtQgrH3AxBn8TgQACX10mrVsC1+AqN3JvYhiaw7z2Glt9C6hpAjA+gpjLIPh+SzUb2+nWqqRTh/YdJ+Q/SPdy/Q3smxYfQ1hbRBDeXL2/h9znoH/AjSRJd+/dTWFjoFHEKkkT3nj3oqkr2xg20VgvZ4aDdall9RZKVTqy327ijUUolhWf/6SzntSP09fno7vagqtYNzX/9r6dQFJ2vfvXAx/HSfyqxS1Q+Bahns2RmZhACMTJLJdxeJ0K7jlGpgNZG9ASg3cLts1FTBYIBP41CgdWXX+bAn//5BzpXq1Ri5cUXSU9Po1QqaKpKfm6O2L59eHt6qG5uUl5bwxOLIdktIasgSbgjEWweD2uvvkr80KEdBEnTDKan01y6tEUqVcfhkDh61Ar/cjpl5ubyFApNbDZr0jA4GGByMtqJff/dIr9Go00u10BVdebnC50fo1OnNohGreyLTKZOpaIiipa1dHW1RCZT37blthEEAZ/PwdhYkPHxCIZh6WIWFwt0dXluWaPcxAsvLHP69Aajo1bYlWGYndXDs88uEom4uOuufsbGQiQSFep1FZfLxuBg4JYf95MnB9E0g42N6nYJn0Wsbgay1esqGxtlSiWFdtvg4sVNHn109BYdRV+fn2984zBnzmxw9WqafL6BzSayZ0+YPXsiOwXHggACGNtaE7fHTl/fW66RsQEnyQWJ1r4YLclLd7ePgwe7GB8PI4oCy8tFXn55lcXFAoqi43LJTE5Geeih4R3H+TA4frx3m/i1OXVqA103cLttHDnSTTpdR1F0FEXD73cQibiZnc1x6lSi41pyOmWCQSeHDsUJtjZolLPYugYJKSabmzUrJyZVwxEIIGhZ2olZbANvZdLY7dbFZ22ttEtUPia4YzFckQiNfB7/70xVstk651+5TrMpETt0FHc4RD2dZmt2kfrym4x2t5BlCd0Ao5yjdSGB0VaRfEFsfXswTJOSLYG3x0A26rgiEWwuF8ETn6F8WmDybRorVdW5nvOgZcBorVIkxCuvrtLfH+DggSjkEkSnpjDabboPHwbBuplSazWqySSlUgld07BBpxG8kcngDAbx9fbyxquvkyyEOXBvrDNlstutkMLFxQL//M9Xeeyx8Y9FiP5pxC5R+RSgkcuhlMuYsWHa7Tz+WA/a8lX0Rg3R7gRBxFRbyBg0FQ0kG9G9e8lev04jn++o2t8Laq3Gte99j8zMDN7ubsJ79qDWamSuXmXz4kUku51GLgei2CEppmFYNlObDXc0SubaNXKzsx2i0m7r/PSnc5w+nUAUBQIBB+Vym5/+dJbnnltElq3kVbC+/DcvTF/84gSPPjrCz342x9WrabxeW8eymk7XyWTq1GoK/f0BPB4bXV0eVFXnl79coNls87nPjTI1FUXXTRKJMqdPb1Aut5iYiOL12nE4JOr1NhcvbrG0VCSdtiYwi4sFgkErxfPhh0d2pJsWCk0uXdqiu9uaWqyvl1leLrxNBKvx3e9Oc+hQHJfLdlt9zdshSSKPPDJKf7+fb3+7SqHQoL8/gN0ukkhUaDTa6LqJzSbi9zt47rklSqUWTz89dQtZ6e728tRTkzz66CitlobbbePHP77BhQubO88Z7EJ0+6lspfEFwkR/J2K+Xcyx98599P+b40xfy3HjRpb19RLj42ECAScvvbRCsdiiv9+Py2W5as6dS7KxYeWcfFSycuBAF//lv3yGv/u7c6yslBgeDtLV5WZ6OsOlS1vousnhw928+qo1YhcEgVjMTanUIhRykk7XuXhxi7u68oimiSDJuN1WmN3Noj1BEBBcPvRSFlPXEKSdQmTD+HgEw38qyOUaXL+eJZutY7dLjI+HOyFyNpeLvjvvZO6nP8UZDHbi503DZHZ6k1Y+R+/Jh3DGrN8oX0830vJZstkU+a79dO/1sLRcxBv3YjYbqBd/g9w3ClhJy56uOKP3DSCjIdntFBYWkEQRSbo5vbXI55UrKZY2DLqH7iWUPk+8nCVsahQWUlxILHL348fZ9/gjzP7kJyiVCs6g9d21e710Hz2KUqtR2djA7vHQyOcxVBVHIEDPsWPUKg02tupI3XdaJMU0kZoFRE3BlOwMDvhZXCrx6qtrfPGLE3+YN+mPHLtE5VMAUZIQJAlJNK07DGfEKiYrpDBtdgRMTEBTmshqC3//EfwDA5TX1lCr1fdNVFJXrpCdmSE6OdkRxjoDAWL797N18SLZ2VkEUew4J8CawNj9ftyxmNWrocP0hRWulLoRRYFKReHMmQ1GRoKdVEiw0ix//vM5fD47Tz012XHJVCoKb7yxjijCww+P8MYbCV59dY1stoEoWtkKpgmpVI1IxE2h0EIQrBju8HY9vM0m0mxaOgVZFlAUnUajTbWqMjub2yYq1iqhVmszO5tjdDTE0aPdeDxW0/Dzzy+Szzf42tcOdiY2m5tVisUm+/bFmJ/PMz2dQRDA53MgigKFgs4bbyT4znem+da33n/vycRElP/0n07wP/7HBRqNNisrNVotHY9Hxum0Hufdd/cTibg5ezbJyEiIe++9vYjY67V3Jij33NPPwkKexcUCg4MB63m4fNR8w7QTpxnf143jbVqMWjqNoeu0u/byv/7xCplMHYdD7iS9ptN1urq8fOELezuvyc0ywJmZDK++usbXvnbwfT3nd0M06uZv//ZOXnxxhZmZDIuLRXw+O489Nk4g4KRcbnH27AaSJBAOuxAEoZO8Gwg4SKVMtswGN+/fbxqVRMEKzctkauDSEGSL5N+ErhvouklPj+/WB7WLW2BoGq/+/Ayv/PoGxaqOFOlFE2y8/PIq+/d38fTTU/j9DgZPnqSRzZI8dw4ARZfYSuRZn83i27Mfxz7LoWi2FVpXX6d17jmcOhQuvcHQ/hE8godMRiDkl61QtmKWcqBGs95iLKKy9foSmqoibWefDHymRVdXhFSqzsCAn0KhycZGhXDYheQaZh0P0VgG/7BAQBBZq7rQjzxC7x0HKS4vs/766yAIOAOWQNjT1UV0YsJa9agqkt1OdGICb08PWqNBbi1N3jWKGO1DrqVxp64iV9OIuoop2XF7YiSbfRSLzT/Ye/XHjl2i8imAv78fbzyOWrOK0FKpGtGBveiFLVBbGGoLweagqegEh8cZufs4uqIg2e3v29tvmiabFy5g3973vh2h0VFqqRTFlRUrwVGSMHQdpVTC0HXie/ci2e2kUjXevLJJcasXM7mGrhtcvZrGbhdvmS6sr5e3e10ECoVmx2nh9zsYGAhw9mySubk8mUydkycHtycvKqdPbzA3lyMaddHXZ11QNM0gl2swP5+z7IqSRDbbYGwsjK4bnD6dQFUtC68oWq2v7bZKNlun1WrjclkR9TcdLfG4F7/fweXLKQ4f3tlPAwLlssLsbA6XS95BvkIhJ6ZpcvFiknvv7Wf//q5bXmdF0Ziby5NO1wBrbTM+HuZLX9qHJAn84AfXSaWqhEJOnE6Zri4PU1Mx+vv9CIKAx2Pj/Pkkd93V955CxrGxMF/96gF+9asFlpYKGIb1PkfGjnN4zEuwuUb62jUkmw1dVXEGg/R+5rP8YtpOtdraTsJNUS4rtNt6Z+pkt4ucPDnYsQuLokBfn6UDyucbH7gI8HaIxTz8+Z8f6CSi2u0Svb0+ZFnkv/23UzQaKm63nWKxBQioqk6r1cYwTAzDZKPmple2YzRrVFUZr9dOKOzE4ZRZWS5QyeaI3P1wR/htmlZ2S3+//x3zQHbxFgqLi5z63z/i7PMXEU2dPp8TsRnBMXEHWnwvly5tYbOJfP3rh5AdDqaefhrP6AQvfOcFEnMJ8vUAM0YvrsY4/VdyHJgMwszLKDOnMFoNbKFuWpUm5dVVbJpEXuwlm/ERaruxl7PY4xWGpBy2QhV923nTbjSop9Okzp3m6J1P8exvUmRpUqhbn49o1E21qqAILnruuhfPiPWb5E2UmZ6r8dgXBCa+8AUwTVJvvkklkbBWpUBweJg7/uZvaBWLbJw9SyObpVUs4o5GmfzyfVTXE3g3rxOqXURsN1D8/WieGIKmYM/Ms690gfrPE5wpHSC2fz/dhw7h6br19+FPFbtE5VMAm9tN/733MvvjHzMUc1MqSuQVL56uUYT8Bjg8NHz92HtHOfDAXmSng+LKMvGDB/G8z7hso91GqVax3aYZ1BkI0H/XXTSLZUwEapmMJSKLRIjs2UNgeJhKpcWF12ZRdBujdx7EHo3SbGosLOSpVBQuXdrqEA5NM0ilagSDTup1lXq9veN8waCT06cTSJLAww+PdiYTzaZ1IfL77Z2L502XTFeXm+XlIh6PfYcmY2urSiZjtQprmkE4bAloq1UVXddRVZHubu8OwgHWxEeSBK5eTXeISne3l2DQwcJCnkajTX/cgdTIYyKgOwPUaiqRiBuHQ+bNN9O3EJVkssL//b/XWV4uddYLsiwyPh7my1/ex5e/PEUm02BtrbTdfyMSCjnx+eyd9uNAwEGh0KLRaN/ymG+HqakYo6Ohbbu3gsMhMzoaIuB/lNLqKvn5edr1Oo5QiNi+fVxb1UilrjEw4OeNNxI0GlaMfbVq2Z8Nw2R9vcylS1vcf/9QZ7Li9VqTqHq9zfsc4L0vRKNuotG3iE+lovDb367QbGp4vQ4CASeCICCKkE7XqVYVwKQUDSP0jVNffJO6EOTgnaM4nTZsoslYsM5SM8xSI4xvvYxhmFSrCj09Pr70pcn39br+KaO0usr0d7/L0sUlFGeE7v4wRruNUc3TvPgbXMdheHgPMzNZEgkrjFBptfn1s/PM38gQdon0h7ykTReKLLC0VETYuM546zpSuBejUkTVBaqKiC7KyGoFv30TPTiB5goRpMRwoEy7XMPX24sgipiGQatYJDo5SXFlBWnrH5hqe1m/VqFUcaA14ySNMTxeJwcPdjE09Jad2maTUFUdwzCxud3s/+pXGbj3XkqrqxiahjMUIjoxgc1tfQ77TpygnskA1rSlWShwr/t5Mhd/jUOqYzh8OLUmmqcLU5Bol7OEjCru6gb1TBeFxUWSZ89y4Ktf/UQyqP41YpeofAIwdJ1KIoFaqyE7nQSGhj7WDJHbYfC++9CaTdZff52JUIVEskpVNTB1GcHbRWjyAPsP9xHyieTm5nD6/Qw98MD7To4VbTYcPp/1BfyddtxSqcXKWotkM4Q5cACXYxPRyDMwdYBAbzeGprF8ZYFGJk3vfQ9ii1gXdlG0fgRCIUvcmkiUsdkk6nWVUqmFz2fHNLnF1aPrJtlsg/Hx8I71SS7XRNdN4nEfs7M5KhXL+WOdS8TlksnnmzgccufitrlZ67hpwIrgj8U8YGgkNiSWlkuoqo7DcWtAm9tt7/SqgHXRPHSom/OnVwnkbxAobSIpNRBEmrKPmn2YkYP3YnfYyWbrO45VqSh8//sz23qPtyyTiqIxO5vjBz+4zsGDXZw7l0RRNAYHA50+oOXlIn6/A4dDptFo09PjpVhsboe9WemtbrdtWyycZnY2h2nC6GiIw4fj9PX52bMnzOxsjrk5a2UVj3vYvz/G+OOP73icm6euI8sim5tVymWF3l7vdtS9uK3fMLZ1PxUSiTJjY1Y2Rr2u4nTKH7qx+P1ia6tKKlXbtlRbpYlWInAbSRKo19s0m20CASerYwcIdamMyFnC7RSZmQyCKLL3zn3ccefDrJRcLC8XEUWBqakRDh6M35K6uotbsX7qFNV0hjwRVENhbi6/fdMgE5GbGDPnCT62h/VGm42NCj0xO7/9f/+RtZ+9SDTgwq65MXI5BosVUsVevJMnUa7NUI9JhOJRNKeLQjKHLrlxu+0I7jBis8xoXKBWcFKTh8ivJvC4bbS2p7pGu407FsPu8ZCbm0NXVcYefZT+0W5mzi1gX7yMO+ii+76HbskCKpdbHDwY7/wOCYJAYHCQwODgbZ+/7HR2/q+RzzP9zDOMe7LUbTpVxYZd1JH1GvZaAVXVMB0h4pMTyKKJw+cjMDhIfmGBGz/5CXf+zd9g9753bo+uquTn58kvLKC1Wnjicbqmpj60q/OPDbtE5V1gaBrFlRVaxSKiLBMcHn7PkLTC0hLLv/41xZUVNEVBkmX8AwMMP/SQpRb/ANAUhfL6Orqi4AgE8Pf3vyOxECWJ8cceo+foUasNtFan1BBo1lrUFmcQKxnM3BqVso3QyAijjz76gdj6zYbQme9/33pcNZ1crkGh0GR5uYhQK+D3+3Hsv5tStU127jzqTIrRYgHZJpMt69gPPoDz4H2d5+BwyMTjHpaWClQqCi+9tIrHY8M0TVKpGqurGv39fsJhF7WatYpptw103UBVrZbadLpGraZ29C6iKHRsxdaa4S1lfyDgZH29jNst09NjffnrdSvnZGuritslEzOz+JbPI9ezyDUNpeZBCk7cNuSr0VDZs2fn5+HRhwc594//xNbmORq+IIbTh97WcTQK7PWX6WnF2GTilrvymZkMq6sl9u2L7ljZOBwyExMRrlxJMT2dIhZz099vkRSv10G5rLC1VWNrq8bYWJBSSUVRNP7zf36B7m4vHo8Nr9eyCK+tlSmXWx3NzNxcjrNnN3j44RHm5/PMzGQRBMvdcuFCm9dfX+fRR0d48MHhznsmSSKGYZLN1nE6pc6/2+1WCWAmYxUCZrN1KpUW99wzwJEj3WxuVrnzzr4d049PAul0HUEQ8PsdlEqtTjeSLEs4ndZnq1ZTiUZdPPmlgxw48Ah+KpTX1jB0HXckQnjPHmSHg/2f6CP9dKJZLJKfm0MKRkkkNqjVVNxuGUmSaLV01hSZaGkNaWoNQQhiGCarL73E0mun0f1duPqstZoEhJ1V1Jk5MgsOUKqUW35cmkBeD2KoGWxOkVwWDAScSp3q/CL+eBSCcWrJDTweB1qrhSsSITw6iuR0kjx3Dtd20qxktyPKXlz9w7SWmzQunKIoxujbv4e+Pj+iKFAutwA4dqznQ70eW5cvU1xawuuAbneDsqGhtExMw0A0FDwiDOzdy/B4jHoqhd62HIfh0VFyc3PkZmfpveOO2x7b0DQE0SqdnPnhD8levw6miWizodQaXBR/ReSuhxi89x6Gh4P/qoPldonKO6C8vs7cL39JaXkZvd0G08QVDtN3112MPvrobSckpdVV3vzf/5tGLkdwZASn34/WalFJJpn5/vcB3hdZMU2TrYsXWX3lFarJJIauY3O7CY+PM/7YY/j7+9/xbz1dXbfsNvX245TX1mg3Gti9XgKDg+8Z5WyaJslkdTtrRGBwMED3kSNsXLrK6V+8RrblpIWLrWQRagVCPhnvgc8S6esiAtQHYizNJth3XxdHj/cx8+MNspk2a4kaum7idltTjaGgSqKUoLJexz8wQNdIsHMxvHEjR6nU5PLlFOVya9v9Y1IotKjX25w7t4HX60DXrSyGVqtNpWIRj64uNw6HjWSygsMhY5pWLHp/v59g0EW5rCBJVpqpomi4nDK9rXm8S0uIAiiyB72t0qtuEW6WcZRHwfsWsbu5Zvpdm2pzfZEjsRLN0TE0YVtw7JQJBnuxqRWyF06TjNq5++5+dN3okJLZ2TxOp3xbXYnNJlEoNGk02txxRx/Npsb161lKJYV0ukowaDUh53LNbXujwMJCnlZL48EHh8hmG/zyl/P4fA6eeGLP25qEA6ytlfjv//0MoZCLY8e6scugZzcwzBKFjMKzP8gQjXo4cMD6TN3UErXbOmCRFF03SCTKHVJgOWcs0vDss4tcuLDJE0/s4YEHht71M3c7NJttymUFm03sCGPfDT6fnVDISaWidF4zh8MiUbpuBcH5fA56evzY7RIDAwEgQGDg/Vct7OKdoSsKhqqykbEsv3a7iMdzc9UqYbhk6ltp5q+n8O+NEPYYbL50EdPpRzJ2kndf0AdjfcjZDHndoFqq429qiLEBSltVgnoeh1G2VntanWqxSkuTCAXqKIqGue3oMXUdRyBAdWsLXVFwBgK0Gw1S6QYzK0Vaik5koJvK4izrb04zm5LZsydMNOrBNE0eeGCI/ftvTZJ+L5iGQeryZVoViwg7PS78XR5UDRRVR81sgqYQEOvoioJot3fckjd/n2vp9I5jGrpOZnqarUuXqG5tIYgijVyOysYG4dFRZLebfENmNiNQSW5inv0njJdSDBzdz2OfG2Ni8oM/jz8G7BKV26CeyTD93e9SS6UIjoxgc7kwDYNGLsfis89iGgZ7n3hix9808nnO/d3fkTh1CoffT2ltjeDQENGJCcJjYxSWllj57W/xdncjCAIOv/8dhazJc+e4/qMfIdlshEZHkex2Kx7/6lUauRxHvvGNDzTSk2y2DzQ9yWbr/Mu/LDA3l6deVxEEgUjExYkTfeQ8R0jIm0ScW9iqWcpaHbmnh5RzhLVcDOe2WNLjseMKh7mecXFyYJhyY4PXX1/D47EjCOBQCgwoc/Q6KgzmcrhbKnJuicbSQSqeQZxOG0eO9LC8XOC119YYGgps37Wb9Pb6WFsrsbRU5MiR7s50pFxWSKXqXL5spbDefXc/+XxzOzNF4dChOP/xP95Bs6lx4cImGxsV7HYJv9/B/VMi4pUEm0U7JcVaOUmSC1t4CJe9TuqV54n+WQzZ4yWXa5DLNThxoo+pqZ1f/PSbbxKKeNh/xMvCQqGzdkmlaqRSbcRskkZzmVdeGSCVqvHkk3sZHAygaTqS9NZFWNMMTNOkWGyRzzdYXy/jcMg0mxr798cwTZNXX12n0dC4KRa96VYyDJOJiSi5XGPbcmtit0uoqsb6enlHW7DP5yCRqBCLuZHrORpvvoqW3QDTwGWaNOvwyt8n2Pv//C12j4fJyShjY2FWVoo0GtZqrVRSyOUaKIqO02nD47F1wt4kyRJDt9sG8fj7X5vU6ypvvJHg0qVNymUFWRYZHbXcTO/WdhyJuBkeDnLjRg6wJkD1ukUqbxIol8uarJw/n+S++wZ3U2Y/Rth9PnTJzubyOj093k6+zc3VqWSoiC4719eaPPmAly6vRqJUItDbxcaN4i3H88ZiONlAcw8QJ8Xe/VEuX05Rc/fijw7QVipIrTKGJ4xk85GvmuRsXYSp4C0pxEcHUCpF1s9eQNEEFMWkncoiYLD8+gXMZotIwIMU7iYwFMYjy8zY7SwsFBgdDfGFL0xw+HD8PYXpt4OhaSiVCvV0GmcwiKnrNAsFXIEALpeNWtNNs6jQLBSQXS78/f0d2zMApokgSTuON//LX7L66qsIgoArFCI/P8/Kiy8i2myUEwkUXSZVAjPST2R4CDM5i772W7aWTvHMz0ROPnknhx+/n+jk5CdWGPtJYPcbehskz5+nkkzStX9/R/UviKI1qRAEkmfP0nfiBJ5trUYtleLi//yfLL/4IhgGrUIBTVXJXLtG6tIlRh59FFGWWXruOQqLizgDAZyBAD133snA3Xd3RFgA7UaD1ZdeQnY4duxAHT4fsX37yMzMsHHmDJNPPfWRnqNpGJbdtN3Gsf14wNrHPvPMtY5ldWQkiK4bZLMNfvjDGSoVlTsefJyAQ2P1xjqbQpbw8AAuUaa4WWVtrdxxdQSDTgoFK+hsfb2M0ynjcslEnS28ixdoF7MsOyKUjBihQYlen4qpT6P3hYkcPILNJvKd79SoVKpsblaRJJFIxIUgWGucdtvYPq4Nt9uy6kajbpLJCu22QatlhX/pukFPj5VuevLkIIIgcPLkIIVCE103eO21NU7/r++glusYjm4iXgldN9A0A4/HhjMaRGpukbwyjd6zj3DYyRNP7OXBB4f43VblRi6Hw+vhyFg3DofM2mpp2+3SxO22Ee/2c+BYCMdoiPn5PM88M823vnWUwcEAV6+mSSarrK+XSKfrpFI1dN3A5ZLJZKwMipdfXuHQoW727YuxuFgkHLbcP5WKQjzu3V5ruJFlEdM0qdfbHVeM3S6zumplntz84S2XLft2q1igef4yeimLHO1FsFl3t+5cnuyFU7z5g27u+MZf4nTKfOUrU1QqLX7xi3nm5qyaAKuuwKS/34emGQSDTgYHreTcXK7O0lKRuTkr0XVzs8rCgkWCvV4HExORHau1RqPN9753jStXUtvTMQ/ttuUQW1oq8vTTU/8/e28aJNd53vf+ztL7vk737JgFg2WwgwDBnSJIihJFyZJLUmQ7tlRx7he56pYqqRt9SuWTU+Uqx1WJq5zkOpXEURxRkajIpChR4k5CAIh1gAFmwWD26el97z6nz3Y/nEGTQ0DcLEtWXfyr8GEG092nu8857/M+z395n9LqXfT3B7n33n7W12tb1vq2O7AoCsiy3UHr6wuwvl7H7Zap14A3JFwAACAASURBVNW7hcqvALqiUFpYoNNoYDh8dIpZkhN2ZMPmZgNF0ZElAVcjQ8OVhHAP993XjyQbCIJAqsfPjZs16g2VgP/dzophmGQ2myw5RnBIDd758WlW6m7AQVuX8EkuBIcXzeFDKRQo6Am0bBNHOEG5tkptahHZ54fWEqrlRGwVkSwd0eFCETwEowHMVh2zXkSyBIbu3cX48V1cu5Zn587YJx75gM3rQxBQymViExNIDgdaq4VSreLwehFdLiygU6shDQ+TeE/xoCuKTTd4zxqQnZpi+Y03CKTTuEMh2uUy5YUF26tKFFGrNYotCaFZx93OYWhFzHoJq9MmOn6UQrXD1E9ex8rcYOTkSUYef/y3pli5e4W+D6auk718GW8sdsdMGm88Tn56mvLCAr5EAsMwOfXf/jdLb1+kUa4hCxaugB+Pz4epaVRXV7n+gx/gjcXo1Osk9uzBm0iglMvMPPcctZUVJr/61W53pXzzJo1sltj4+G2vfatYyl65wsjjj3fNkT4uctPTrLz1FtWlJQxNs02LDh5k6OGHuXylxvx8id273w3mkyRb+ZLJNFhczHLPPb2I3gBCtA/FbYFon0Z+v5NMptFV23Q6Bp2OwblzG4yORunp8TM1laU1ewlPPY/i76NYagMGI+NpggEXejGD2J7H5z/MhanSFvlVYnw8SjBo28Rfv17A6ZQYHY2QzzdRVY1Wq4MoioyORkin/Rw92rtFkrU4dqyfQ4dSTEzEuhem1+voEjuTSR9X/lOZddPVlUR7PE4SCS+xmC33jkS9PPZYiv5P3UMi4dvu5voeuMNh6pkMskNi374eO0Swqtg+LhE3crndJcft2BHmxo0SFy5kmJxM8N//+xTnzmXw+RyUSm3K5TayLG0pZbx4vQ4ajQ4XLmxw/Hg/breM220HMGqaSSjkolZTu9/brQ6CnWwMbreduNzpGHg87/6NZYE3P0OnfhXB4aLTKCP6Ql3zN8MUyE9dprryIOHhYXp6/PyLf3EfY2Mx/s//meHixQxOp4ggSHQ6tlvs0FCo+xk5nTKaZjA7W2BtrcapU6tUqwqSJGIYdlHz0ENDPPbYCKIocOFChkuXNhkfj20rIsJhN4uLZX7yk3ncbolKRQXsPKNb5GJRFHjqqXEuXMhw/nyGUMiF0yl3oxZiMQ/Dw2HW1+tsbjY/0U75LrYjOzXFwksvUVtfxzJN8kvriLkbqOWbRHoG8MWS1NoCWrUEkRiBw58i7u8hlQoQSHvwJRJ0GjUmJuJMT+dotfQukX7l6g1KDYHIQ3vYsecohVMv4708g6ZqKHULd28Spe8wreV5VFVGdgmYpkBiZICoJ8rmlWnay5uEnCq+aARLNDFwUDTD6JZI0OVDEgVMTcXMrWLWS8iyvSFaX69/4s/E6HTQFYXY+Dizuo6paTi8XtvKIZtFrVYxtooRyeWi58ABvHG7U6grCsX5eXomJ4lurQO37CEEUexuKis3b9qCDa8XyzCora+jmy4cXi9mo4JezIDTjeT2omcW8DsDlJsxdMnNzZ//nNBWx/+3AXcLlffB0DRMXe/OCm9Bb7fptFq21A37RFxfr/F//uZt1n/4NkalhqNYR/T48Tsg5JKQ3VJ34erU63iiUYoLCzRyOQLpNIHeXjIXLhCbmGDgxAn7dbayIn4Zh8Th8aBUKuiK8okKlczFi1z73vdo1lq0pCCa4USoNSmu/oTa2hrn67sIBp13JF4FAs4uYTIcdpNIeBFFYcuDw57/e70OWi2NYFAkn28yOBhmZaXKwECIZNJHyGNSLpRoijF8bhde33bljBROoOfXUDIrzM/b1vDxuJdg0N3tCvh8MpWKSrOpkUj4uf/+AURRQJIEQiE3MzMFjhxJ89RT43dUDb0fxWIb2eVix1AAKxjGIYv4/E7krUUsHHJTzrQIRnzs2BH5wOfq2b+fzcuX0VUV2eWi2eggyxK9vX70Rp1qS2BxQaS6cBNRtCXGr766yNBQCFFkK7+mQ7Wq4PHImCZbnR0nPT0+SqU2tZrKxkaddNrPtWt56vUOyaSPnh4/q6t2J0FR9C3TOi8Oh8TcXBFVNbq8nPd+p55OiejSK5g0EHz2gq9X8hj5dZreXlK7xkGrUF5cJDw8DNgk3698ZS8PPTTIn/3ZKV58cR5RtLsV4bB7W6fJ7go5mJrapFbT6OnxddN0LctWcL344jzBoIujR3s5d26DQMB1x05HLOblpZduMDtb7MYY3PK5+fznJ4hE7IiEvXsT/OhHturH4bD9dxIJ2/TPDjO0cDiErWygu/ikKMzMMP3ss5iaRmhoiPy1a1j1Mk5ZQGs0EMxFZGeGRCyF+8FHcO08zFrNRW/UQ39/ENkp0XfvvVz/wQ8YTnkJBPpZXKxQLrdpFUtYSouh+04y9si4fb2c+ALF2nl8ksLKWhPRnUbWg/ir13CZJqZpEQg4icU8qIabgn8niDVcZp7w3oMYN68iVAv4ZJFsyaDZ6hBwWpitGlJyALNVx6gV0TTpjkq/D4NSqbD+zjtkLlxAa7XQFQWHx0NledmOEfF68SWTCKKINx7HFQqhqyrFjSKFTAXB0PC4BKKjI4w//XSXC2moKo3Nza6YQ2+3qW1s4IlGaRWLaK0WCBKW7ETyeDEtHepl0FRMSUZGQKwXoLBJddVBKBZg8+LFu4XKbytklwtPNEptbQ1vPI6uKBRmZ6mtrqIrCqZpYuk60f1HefOMRObqMnFZQ/QY6JEIRrNJtdLGsiAacWMaBkanQ6vTQZAkAppGu1iksbGBOxrFl0yyce4c/cePI4giTr8fUZK6DofvR6fRwOH1fqIiRWu3ufnSS6yvVVmseGg0KgiCHeznc7vI5U5Tj3Vwjx7Z9jjDMMlmbflwtaoyP1+kp8dHuazY+SiZBl6vg07HoNnUePvtVZJJLwMDIcbGoqyt1eh0DEqlNlajRcgvkRpMIrq9NFsaum5SLrfx+52IkgyWSSlXo90WkSTbxOy9C5/PZ/uk5HJNRkaclMvtrS6IjMfjwDQtolGvbYX+ETqbV6/mmC0FSRbnaVZcOLYC7hIJH7Ik4hR12qaIGP3wNnBi7167WLl0iUA6jaabCJaBXimQXdxgWRylHvLj9dl2/8vLVebnS0xP56hWVQYHQ+RyTQShidvtIBh0EQ7bnRJb/aSyuFhjc7PB+HgMVdVxu90cOmTnIk1NiVupyBZ79yYIh914vQ5iMS9zcwVOnOjvuvwahkkxW2ZSvAZKDSsRR/a9a3HfLpcRm4uk7x1FQMLUtvvZNBodVldtR0+XyyYuBoOubd9Vo2HLkp1Oic3NBqlUcJvyRxAEkkkfrZbGqVOr7NoVp1pVbstSsiyLUqnN2bPrrK/XGR+PdX1o6nWV8+c3UFWDxx8f4YUX5jh9eg2nU6TTsdA0A8uytrgpkMs18XgcpNPBrivtXXx8WJbFyttvo7VaxHftIn/tGuX5eTzxOOn9YZavr6C5XPh27IRmFSEQJa/6UBSF++8f7J4ng/ffj1qrsXbqFK5mkz1JmZZXYVWWWYrfy/hjDyFsbTbiiQCeviFqjQ6eHTrhsAdRFMi7ekg5ytRcDnr7grhdMpvZBh1DIhCN0SwqGPEx5HoJ0+vDXSrhNaoouQb+njByvA+5bwyjsI5eLVGvB/n0pz+eh0m7XObKd75DYWYGTyyG0+ez70GiSH19HaVSQRBFXIEAkdFRIqOjbNzcJNuzm3wNWDiHs5UnEHQzLLi58p3v0H/iBAP33YcgSbaRpq4D9oba0nWcgQCWaW4FIYoIloBumNBugmWCw40oOxBcHgzRjSwqNFcX8XrGqCwv/0rPh39I3C1U3gdBFOk9epTi/Dy1jQ3WT5+mnsng9Pu74xuAqRdfZUPIMbpvB61VC6OjIoUSCAjQbNKsGvg8Ep16HaPTQfZ4CA0O4onFbF2/YaAUi+jtNt543P4bt5vIyAjB/n4qy8u4w2Fq6+sopRKiLONPpVBrNXZ/8Ysf2VH2vSjduMHNqRvM5Fw4XBbptB9REDAtk0ZNZTlvIlSnMWK7upyBdlvn4sUMa2s1dN2WBl+7lqdWU1AUk3jcHoPc4lMEArb3hKYZ/MmfHMM04W/+pralQjEQDYWhjTaByiapsUHabY3BwRAOh8TGRh2fCyTVZD2v0WwKpFL+7gjnVmfkVhhhodDE53OgKHq3IDFNe4HeteujuYdeuZLlhRfmWNMThL0Jgp0sDRKsrmo0mxpDaSed7BpiapT4+OiHPp/D42Hvl7+MJxwmOzWFkVlHqhSoGhEWnXsQRw4S99jfXTbbJJttoGm210c67Wdzs0GjoREOu9n1HoZ+Ltfi8uVNvF5bbqwoBg6HyP79PcTjXhYXyywtVVhaqlAqKQSD9ncyPZ2nry9AMOhkcDCMYVhcu5bvFqi9Upn0Xicb7hHqGxksw4UkCuiGgez0Efc1caslcDpxR97tJq2t1fjudy6wdvkaklpjBxWurFmcr6rs2p0gFLKVN6pqkEr5CIVcaJrxSwm1PT2+rsrMJg1rgC0tz+ebzM4WuXrV5vAIgm0CtmNHhGDQRSDgYmIiztTUJjduFOl0DCYnk5RKber1DrWaTfat1zv09QW7nZWdO6NEIndD4D4pmrkc5YUFAr296KpKZWkJh9+P7HIRdYE+mia7uEGhrCNYbqyz7+B9dITPfW6CY8feDSAUZZmdTz9N6sABCrOzqLUarmCQ6jUTeU3YlrUkyyITE3HOndug3dZJJkV27Urw1to4Zi5DXKqQSNj8JcMwETBw1rPUPXGE+ADC+hSOSAoprbMprJFtdIgODeHyezE7Cnqnw82lGsMHB9m37+M5wy698gqFmRkSe/ZsU+3ILheWYXSTlC3TpLa6Sq1psMgIanyEeP0dBL+BHh+hqDpQcjJOf576979Pp15n/DOfITE5yeLLL+Pr6UF2u22RRa1mrwWmiaYoOGULtVZFVlt2cKI7gIWAqSm02yKpVAinu0NtdfW3ppsCdwuVOyJ16BA3fvpTpp99llY+j9PvR63Xqa2v44vFGP30U5w+s05An0by7kcKJ9Ezi4hyACnWi+As0yqVadUa6M0moiR1b/KVpSXUet3Wu8syuqIQGRmxiVeA5HQy+uSTvPVv/y1Lr72G7LJnjlq7TXZqiujYGKGhjy/zBFBqdTIbDXD6iITdmO06WmkTo5LHaVoYmoUqemlVarRaUTwemStX7Ju/0ylRLrcJhVyEw25WVmo0m1qXy5JI2KMHUYROxybfPvfcLOGwi0KhSadjsmNHCFH0o2mjNJbe4YblJRD0sH9/D5GIm3PnNli+ME1dDLFsyASDEvfdN8jNmxUymTo+nz2S6nRMFMU2M3M4JEIhF6ZJd2FUVYNisfWhSaTttsaLL97A7ZYZnBgguykw2LpCqJHHtHTaqzoVM4IW3sHOT3+OVG/oA5/vFlyBALu/9CWGHnmE0eV11v92mtcvNDASbpIeN52OwfJylcXFEu22TiRi59M4nXZqtGE0WF62lUo2L0dnc7NBKORidDS6RQgNcuxYHzMzeWo1laWlKsvLVYJBFzt2RLAsKJcVXn99iR07wjz11BiPPjpCs9lhebkCQG9vANfqBdZf85IePszcK2/QNgVM0YnH4yAcdiF1XBRnZxl94gniu3bZ55Gi8+x/+jm5135CWq4jYJEImaSbba4XVpi+sJeewR7icQ/xuN3iP3w4zenTa9uUTe/FLUm6JIkcOpTi+efnSKVshdXrry+xslKjXldpt3UkSdjqQCk888wEsZgXp1OiUlFYWCjzzDMTyLJIb2+Amzdt8nC7rZPNNhgZCTMxESeTqXPsWF+3u3QXHx9Gp9Mdk3dqNTrNZpdnAZBMBXF0argm4uAJYhQzPPS7Q+w4tOO257qTidp1dQ5lYeG2v7X5SPDGG8s0GhqZTJ22FKA1fB8j8iyuygp6w4Gz1sbbrNMIJFFHHyDQ309nJYlRyCAnB/D3DeBu1mlvrNKo5BDVBkgy/aMbfO6Rh7sREB8FSqVC9soV/Ol0t0hp5nLkr12zOYBHjtAuFPAlk1iA1myyXgF1/1EG/XXaVxeRk0M4HE7c2GnemZaHyZEIq6dOkTp4kN4jR8hevkxpfp7wjh0EBwdZP3sWy7KQPB48iQSm6KSwlsNoS0gOJ5bLi6Vr1GsqgWiYZNKPqCtU19eJ7tz5wW/qHxHuFip3QHlhAbVWw+nzYRkGosNhu2+63YiiSLtcRvdGkPPLGKUMrl3H6Cxdw6gWkJIDyNEUJl5kn45sddAaDbR6ncL161imiTMQwOnzYagqzVyORj6PZRiwJUW7FewX7O+3fQkMA08kQnJyEsuyWHzlFWLj4x/qhfJ+1Nt2mzwwJGPUi2hL17DUFoLTA4KIo11GVwv06TdZuBFAEEWuXs1TKrVptzVkWSKZ9HZjzCXJzrWZnEzSbmvd3XAkYstxT51apVZT2bEjTKPRIZNpEgg4cUXGobiOtbpAenKEWEjm8juLVBaWiaYiJA6cpMeT5tSpFaamstx33yDFYovVVbur4/HIBIMuJifjxOM+ajUVQRAYG4swPBwmn29x5sxa1xX1l2F+vsTGRp3x8Shut8y5usqi5yESyTJOrU65orImhDl6z2EeeXLvx2bIe2MxvLEYTwoJfnrupygtFZdLYnm5SiZTQ1HMLmHX7iY0t/g8QZaXq8zOFti1K0Gl0kbTDPr6glvdI2GL02IHKr766hKiCGNjUcB2Xw0EnJw40b+V2mzwxBNjXQ+U9ypm5otXQBCIDPYzfHiS4twcgqjj9LsxDZVGPo8rHGbn00/jCtjZSZdPzZB95XmizjaOnsHujnc00SS2uESstojeO8KBg71MTEQ5erSPRMLL9esFSqX2Hd1dSyW7CI7Hvfj9vVy9muPatTw3b5ZYWqoiScJWbIBEPO7B7ZZZXa3y6quLfOlLexAEgUbDliHf4uDs29eDqhpsbNSRZRG3W2J93R5VPfjg0LZd/V18fLhDIXsTV6vd8drQ2m1cPg/DYz04fT4qi/UP3Ty8F3v2JHjzzWWqVeU2t9hIxMOhQ2k+/ekx+vuDnDq1wuXLOfz9+3GUVzHKWYK9JtOSQdaI8eCeURxOB4zsp1XYoF3YRNRgdyCP1arSkZ3oqp/YzjFi/gK5nz1Hquf3P9Cz6r1QKhU6jUaXwwVQW13F6HTs0FfLQm82SR8+jK+nh2ymxuXvvY5YzpBdXMJjiTgc9qhfQCAUdLK5sE6vK4CysczCSy+x7/d+j71f+QqzP/oRpfl5DE1DlCT0Vgt3JEJ0dBQsC8vQqKKhCW6sVgPR7SHVFyWRCuGQobqRwx0MfmwD0t8k7hYq74NlWaydPo225WjoSyZt+bAgIDkcdOp1aqsrBNzjlDomVkfBOX4Yz4mnab/+v9EziwguD4IKrnQSvVlENQxMXUd0OHB4POitFoaiILvduIJBtEaDzUuX6Dtmp4Rmzp/HFQzSe889dBoNTF3H4XYjezzoikJ5YYHSjRvdHe5HhW9gGMMTQqjm0ErrWJ0O4ta4yrJMREcD05NigFX2HznCD95SWV21ZcW9vQESCR9erwPDsLZ4KSLJpI++vgDnzm0Qi3m7BEi32w56u9V+P3QoRS7XZGOjThsPjl2PEqjM4nEVmT8/w+Zyg+Tkfry7DiMnb5lvWbz66hIXLmR4/PERdu2KU6koTE1licU8nDw5SiDgotMxEEWhO/MWRYG5uVK3I/HLUKvZqhGHwzb+siyYmSmwXhGxrCgdt4Hf7+ILv7N7qwj4ZDhwIMXx4/1cu5ZnYaHUVRMIgh0HYCch2xLrxcUK9XoH07QoFtucO7dOq9UhEHDTbGrU67YMudXSuHx5k/l5m8js8zkJh+0dYChkO/ZubNR5+OFhrl/Pc/Nm+bbgR4BQfz+CKGLqOj379+OORKguL6NUqwiiiCcWY++Xv0zPvndTj2/+4jxivYBzcnLbAiW5fURGRtiztoZ3QuT//vYD2wixBw708Mori127/1tQFJ18vslTT413052/9rV9/Lf/domXXlrYyi1y4vHISJLQfZ/BoJvFxQqbmw3S6QCKom1TY3m9Du69t5+NjTprazU2NiwGB8N84xuH2LUrflfx8/eEKxgkdfAgCy+9RGRkBKfPR6fRwB0K2dk6lQqhgQFbULCxgSeRwP8Rs8XANhe8774BXnllkVqt090k5fNNSiWFBx4Y4OTJka7HjsdzjYsXM0A/rvgQ7baOZ6RBT1vHMCzbuTq6g1r6KOr1s8SVJXQaeCJh/GH73E3u3QuCQP76dRZ+9jMO/tEffaQNiu1yK2/jFraKRRwe+1w1DaPLM6nVVM6e26SQb9G8uoS3sYpbMghYNXrTfgSjg5SZQc1lyXa8mM0aMz/8IZ16nV1f/CLHvvlNirOztEsltKef5ubPf87qL35Bu1zG4fGQ2j2BPxLCEmWqq6u4fD48cptOSUXD3gjvfOYZwp+wM/+bwN1C5X0ozM5y46c/pV0qUV9bswmC/f3dlqbT76e+uUkyaZA3TBRdxCWKeA9/CkdqiPaZn1BdWcblF4kmQxSLzi4pF8uyyVCCYFslSxKhoSH8qRTr77xD79GjmIZBZWkJTzRqG8MFtkfKy243pq7T2Nz82IVKsj+Od+8xlF88h6OygRTrAwssTcFs1dBdQeSeUbweiX4py75945w+vcru3QlUVadYbLOyFdJmWSblskoiobC6WgPoLkq6biIIQrdYqddVFEXn0KE0k5NJDMM2IMvlRlGaNbK6gn/MQWBke0TAzp1xFEVnZqbI1FS2mxUzPh7F63V0d1nvV4fYeUE2SfeD4HJJ3TRdUbTdd9NpP8WinZNTrSqkUv7b3Gc/LkRR4MSJft55Z51OxyAScSNJIrWaSqdjks028PudDA6GuHx5k7W12lbXyEko5GZjwz7GW3k5+bydUpzJ1LEsexYvy+9+boJg5w4VCi1yuSayLNJsdu54bLGdO4mOjVGcnSU2MUF4aIjQ4CCGqlJZWcHl9zP25JPbHtNanMFy+e54AxddHtA1pHr+tu/l5MkRisU2Vy6t4Wls4K4u06mU0CQvk/cf5YF73+30pNMBTp4c4TvfuUIq5dsiBTtZWqqgKNqWd46DXK7D5mYDURTo6fEhiuI2PpPTKTE8HGZ4OMyVK1k+97mJO6ZW38Unw9BDD1FdWaEwM4PT76d88yampqGrKt5YjMSePXTqdZRymYkHH9zmGfVhEEWBz352J+Gwm9On11lergIQi3n4/OcnePDBwW73zOt18NWvTnLoUJrp6Ry1mkos5mXv3gStlsbZs+vde1d08iiTj++n/dJ/RZREvFsb0vearYUGBijNzdHIZAj09m47rvrGBtkrV6guLyPIMoldu4jv3k14aIjSwgKxrZHKrTBEAKVaxR0OY7j8nD2zTqnUxuGUCAQ9uN0xhOIam5sNTMMgpS3RyWeQvCECvSk6RdnO/1lYYPq73+XQN75B6uDB7vGMnDzJ1P/4H6yfOYMgSXiiUTqNBrX1dQbuOUJsYgK1VsPUdTqNBr5k8jbD0n/suFuovAfV1VWufuc7FObm0RwBGroHvZihXlMIJEr07Bq35WKWRUBS6Bvt44YSorxUIRJxoznT5Hb+LoGxKo881IMwfxpPKEhhZoba2prtu9KxnUIB25HQ7cbX00OrUMDodBBl2U7CNYwPPNY7ebx8GHw+J0c+f5JXrl8hVM9htetYlokgOxEiaepSkpHhJLE+mdraGnV9gEDASbmskM3aZFm324Esg67LKEqT9fU6iYSvuyjZ5nBNkkkfqZSPjQ27LWzb39tFxK30gXpdJRaLUCy2GNzKr3kvRFHgwAHbyffpp3cyMBAiFHKhqjr/8T+ep9XS7hhyVy63icW8BAJ39jq5hdHRKNGoh3y+2SUPOxwSqZQf07SoVBQOH07/SngMDodEu61jWbacVpZF6nUVSWKLc2O7xhqGhccjYVkwOBjm0UeHyeWa/PjH85RKbSYnk/j9TgzDJJdr0GrpNJsde55umYgdO+xQdni3cm1UdN28rXV+C5LTyZ4vfYnp732P0vw8CILdTlZV/D097PrCF267UQe8ApYobYsAeC86HZO+3tvHO4GAi698aZzY+tvcuH4KRbOIh4IkwgqRwmluPKew98tfxhUIcO1anueem6FYbON0SrTbBj5fp5uMXaspWyGIFhsbdfx+J1/60h6uXMmxuFhhdHS7jHxlpUo06v3YBMm7+GC4w2H2/8EfsH7mDOtnz6K127aMNhbDn05T39hAlGWGHnyQoYce+tjPL8siDz88zPHj/WxuNgDb9+hO173DITE5mezGPbwXBw6kKBRamKZFJOKmnVnj7KUE4eHhO6ornYEAtbU11Fpt2/m//s47zD3/PEqphMPv79rkh4eG6DlwgOrKCpWlJQJ9fQT6+shcvIgFWIZBdHycjYy9yRjqdbNacnNT95OMBglUVvA6TeqbWSJWDkUK0BMLQKeN7HYTHBjA6feTv3aN3NWrDD7wwLufkdvNgT/8Q/pPnCB39SpKuUxizx4a2SzNbJZWsWjfWy2LyMgIOz/7WXtM9FuEfxSFyl/+5V/yZ3/2Z2xubnLgwAH+/b//9xzbGoP8umCZJjdefJH8apaCEaJdqiN5goiuJlqrgbKcQROdpIdS6IqCYJk88X99mcP+nbzzzvpWJo7IseP9HDt2LyM7Qrz9b39hzywFgUYmg1qvY1kCWkfH7NiZGEq5zOrbb+ONx22Tn337iE1MsPzmm3e0ye80m8huN4G+TzZff/jhYZZeO8RyaQUpksApg4YDxXKRSvnZuzeBUc4hu91EQz5CIQ+zswUkScDrdW75T0h4PDJ+vwvLshUgsixuLcQW8biPw4fTyLLI7GyRzc3Gbb4srZaGppkcPNjD668vo2kmrjtMaezfy4yPx7rjF8MwGR2NMjOTZ9euxDaflFZLebVrIAAAIABJREFUo17v8OlPj31ogRGNenjggUFeeGFuK3XZhySJNBo24XRoKMTRo70f+BwfBZZlsbBQ4uDBFJcvb7K6WusWdu22gdst02ho3YRfp1PC53Oi6yaLi5WunLfT0btF7q3EYrBwOiT8jRW818/j7pQBC8MTpmb2US0HSfeFP1AF5U+lOPzP/hmFmRnKCwuYuk6wv5/oxC6WcyY/+84Um5sNfD4n+/f30LdnnIWpm2RzTVIpWzkGYGFRzDdwuSR2Hx6542vlzp3GVZjjwc8d37a71lWVzUuX8ITDCHsf5j//5/NsbNTxeh00mxqRiD36UlWBaNRDuayQydS3TN5ETpwY4DOfGWdsLMr3v3+dK1dyhEIuBMGOVgiH3TzzzE7S6cAdj+suPjncoRCjTzzB0MMP2zv5tTXKCwso1SqeSITEnj1ERkcRpU9e8Lvd8h1Hlx8VomjL4G9B21LN6Ipyx0Ll1u/fq66sLC8z+6MfIQDJ94xCTcOgODuLIEnsfOYZlt94g9KNG2iNhr0x1XX6T5wgNDjIOz+/iUc2sYrrxHbtYlHvZ7nRZsg/iK+2hFIuUaNFqC9E0KGiNU0Se/d2Td6cfj/ZK1e2FSpgx6Qk9+61R1dbsCyL6spKt8vlDoeJ79qFKxjktw2/8ULlu9/9Lt/61rf4q7/6K44fP85f/MVf8OSTTzI7O0sy+evb/VRXV8nPzrFY8dB0xgm6G4heGcE3gFEtoJULVBaXEdp1+vbv5eDXv87AvfeyUxQ5dqyPRqODJAndVFzLshCdTvR6ncSuXVSWlihsVmnUVfRaG4wOkiAiqiJBRwePaXL1f/5P9N/5HdJHjrB5+TLlpSU0Twy1s6Vu8QvUFm+SPnSIyI7bmfMfBV6vgy9+41F+unGRXMNB23IQcEpMDoXp7w/idknkb5YJ77+HzqrB2lqVcllBEOzcmVsmZYGAk1TKx/h4DIdDpFhsMzAQJJ0OkEr53/VIGAyTyzVpNrWua+ot19Xjx/t5+OFhbt4ss7RUvSMPxOYf+Onvf/fikiSRp5/eSb2uMj2d2/LxkKlWVVRV49ixPu65591Crlxuc+NGCUXRCQRcjI9Hu0Fpjz46jCQJnDq1yuxsEbBwuWT27k3ymc+M35H4+XGhaSbVqkpfX4B43MOLL95AkgSSSS+1mp1+bBh2mJ9NRvYwMhLB7ZZZWamiqnp3lLOx0SAet3OATNNCEAQOx7KE85cxFZGmN4zTJWOVs0QbS3gSJo987Y+23aTvBIfHQ/rQIdKHDgH2+O7v/m6Wt95axbJsE618vsX0dI7RoIfB4SjkOmQydhEqCNBRdQJagd0ndrP34dsTX7VWi43z5/FEo7eNAGSXi0A6zcbFS/zwRZ2zV2p4vQ7cbjs+YGVFJ5HwoaomS0uVLaddmcHBMH19Ad56awXDMPn853fxz//5ES5f3mRmxs77uffefg4cSG07h+7iVw/Z5UJ2ufDGYv/oiZq+nh4io6Pkrl4lcYeFu76+TnBgYBuZNnv5Mmq1SnJyctvfipJEdHyc0vw8Ox59lON/8ieUbtyg02zSyufJXrlCM5cjd3UabW0dWZCQR3eSPPwp7m07mJsrks3cg8/yEiq9gc+p0xsBfyRIdHQUKd5LNmuPNyXB9tj6KBAEgfDQ0G8VF+WX4TdeqPz5n/85f/zHf8zXv/51AP7qr/6KF154gf/yX/4L/+pf/atf23Go1SqFbI1Sw018ZAdWxsAorGMhIHqDyIJAu1hCGDnME3/+p4TecwLLsngbm10QBHr272fu+efxp9JUxBil0iZOh4TTKYAcwFQ7VPI1dM1Pz2SMejbLzA9/yH3/8l/iP/opXv/Pf0tlfRpDkBAsE3/Axe4HjzLxhS98otHPLSTHRzj45H2snT5NYLAPT8geuxiaRnFujoLq4cxpjV9cuUEmU0fTDLxeGafTJjPaLrQmExNhdu2KIYoix4/b/inRqAen0+Z+lEptBAG+9KXd3fC7W63XRx4Z4r777EC4++8fZHn5CqurVXp7A12pajbboNXS+Oxnx2/jO/T3B/n61w9x/vwGly5t0ukYDA4GOXq0l4MHU91wvldfXeTNN1e6xwKQSgX49KdHOXQojSSJPProDu65p4+lpQqaZhCJeBgcDH2oo+1HhSyLeL0OFhfL1GoqhmGRzTZxOEQcDglZFrrk0oGBELt3v0v0vGWU5vE4GBwMMTISodMxEUUYGgqzPnOT8M1ruIJBogNpSqU21aaGooUYGIhyNFlgf7/+sY/5/PkNXn55kb6+QDe7CewCZua6hSOyl32hBQq5BrWOA0M38Hlb9I2Pcfwbv9+NCXgvWsUiSqn0S5UUnmiUi2+9xZUVB7HBUaJRD729AZxOieXlChsbdUQRdN0imfSxY0eYBx8corc3QKPR4a23VkinAzzwwCCp1BhPPvnxDLvu4v8/EASBoYceorayQnFujuDAgC10UFVqa2sABNJprn73u2jNJr5kkrUzZ3CF7mxRIDnsoMt6JkPq4EF69u/v/t+Oxx6jODtLI5tl0bHIctlJ6tg+BEkm7rM5N/V6ElUdY/PtEP3CFOP3HcJ0+piZK7NxdRlF0ZEkEX97ncnPDm7jYb0Xpq5TmJlh8/Jl2sUi7nCY5L59JPbsQb5Ty/q3BL/RQqXT6XD+/Hm+/e1vd38niiInT57kF7/4xR0fo6oqqqp2f67Var+SYxEdDlptHVM3cDgdWIMTSMEoeimDWS8jOJw4+ndS3/M5Ar0fbeySPnSIjXPnmP7xz8gvZnFJBpQzmJqG4HAgyA6cokCzLrF+dRafV6Zw7RpWtI9TrUmqA4/TO1pCVqoYiBTNCKeVNIM3FY5+chEKgijaoYaiSG5qisbqKogigiBQF0JMmTsQxACyrDA0FO6SZVXV7kh4vbY1eSLhwbIgEnHze7+3j7/7uznm5oosL1exLLsgOXlyhE9/egynU6JQaGEYJpGI531qkBSKovOzn93k+vUCW+NUolEPn/vcTo4fv/PCFo97efLJMU6eHNkaEUnbeC5vv73C88/PEYl42LPHHhHpusnaWo3vfe9a13od7Jyi9862222Ndlvv7ur/PhBFgb6+AM8+O43H42B4OEw87iWbbbC52aTd1kmnA0xMRKnXO9veg9st02rZ3aiJiRjHjvVt44X0KrOszLdpiwksCwIBN6GQm97eAMeP91FbmCN75cpHNneyLIurV3P8h/9wlqWlCqurVeJxL0NDYVIpP7IsMjQcYTXn4P6ThxnIzFNbXUWQJJKTk6QOHSL4S8aSgiiCIHQJhu+H0u6wudlElN4t/AVBYPfuOImEj9nZwpZU1cmxY31dszuwv79AwMXZs+scO9Z3W1jkXdzF+xEbH2fyn/wTFn72M6rLy125rzceR1dVVt58E0GWkV0uctPT5Kam8KdSBPv6fulGsd7ocO7cRjeYc3Q0gtPnI334MACNVIYb//0yzbbJrVpeEASCQRdLS216Dh9hCJNGqcr0eoNstkEk4iEcdqNVyzTqEm/OOYi8tcxDDw1ve21dVZl57jnWz561XdR1Ha3dZvG11xh64AH2fvnLd9xA/DbgN1qoFAoFDMOg532StZ6eHmZmZu74mD/90z/l3/ybf/MrP5bw8DCuaAJxZQUIA1urpa7byphWHcvnQahuoqsqTs+H+wG4IxFcoRCFpVWoVZH9XnRRQpBNuzBw+3D2DNJRRFSHh1RviOLcHJe//3eUx53suv8QgvDurN8PLC1VeO21JfbtS26TeH5cOP1+9n31q1Tvv5/q8jKmYeAMRfj+azXEbAdBgHa7w/BwmHZbR9dNFEXDsqxut6FcVvB4HDz55BiJhI+vf/0gKytV8vlWV0XzXrv0Dxo/HD/ez+7dCebm7FRdj8dW93wU0yVJEm8jdbZaGm+/vUIgYHNvADTNQNctBgZCzM8XOXVqdVtQIdguqGfOrHPp0iaqquPxODh8OM3x432EQu6t7BjxY3mqWJbVDVe0LLP7WUSjHhwOicXFMgMDAR58cIgzZ9bJZBqEw7aEt163ybDRqIdg0HXb+3QaTRKpMDuODuH3O5FEgVjcSyTiRhAE1ECAZjb7kY/19deX+MEPZpibKxKJeBAEgeXlKuvrdQ4c6GF0NEog4GJlpYoeGeLo4ycwdR1BFD+0y+dLJgmk0zSy2TuOLjcX1miLAdxRu3C9RZgUBIFEwothRLl+Pc/4eIyjR3tvk55Hox4KhRaVivKho667uAtF0cloEbQDT+MZzJCOyUSSYVZPn2bjnXeI7dy5rQuhVqtsXr5MeMeObX4pAGpLYWm5ymm1QNl5GUEQkGWB4eEwTz+9s5sRNjmZ5MSJft5+exWv10E06kHXTXK5Jj6fk89+6TBpoY8X//yvKVxfoWcghWjomLkakiiTOP4QpdAwr722zP79qW2d/JW332b5zTcxNY3G5iadZrObTDq1tASCwKGtycVvG37jo5+Pi29/+9t861vf6v5cq9UYGBj4gEd8NDg8HsYee4TZi/8vSn4TUWthZG4CYBk6oi9EWwqSyLzD3A8T7P7d3+0GRv0yZKemKC8s4N73IOZyHqcPBIcTs9PBrOURLAtkJ5Jk0FENtGYTXTOo5XPEemYQhMO3PWdvb4C5uSI//vE8zaZGo2EH0u3bl2R0NPqxxhWCKG6bYa6v19jInSWV8m15fQj4fDYXZXOzSSTiQdNMvF4nmqaTydS5776BrnzXNiILMzT0yUhvt0LpfhVYXq6wudlk587YlnNrpRsD4PHYYX0zMwUKhRaCIHD1ao7z5zc4c2YNXTfZuTNOPO6l0ejw/e9f54UX5kgkbB+HSMTD0aO9HDjQg8fzwecA2Fb5a2s1Hn10B2trVTY2GlSrSjfnxrLsUZplwfHjfczNFclkGtTrLapVlU99apiHHx7m7Nl1Ll3K4HBIiKJgj+TqFoO9Xg4fTiHeoVDQFeUj76KWlyv8+Mc3EAQIhVzdhGm/30m1qjA9nd8KiHRtC3v8qMaDksNB/4kTXP3ud2nm8/gS70YEtMtl1EoZcXA3PaE4y8tVPB55u0+LRNeG/07+OLfa4b+qkd0nQXVlxb7ub95EEEXiu3fjjkQQsK+30OBgN1juLn5zuHIly4sv3uhK/C3LIhbzcu9eC/H6DKGBgdtGJYk9eyjOz7N+7hzB/v7ueW9oGpdeOcdi1Ufo0DB7euyNnKLoLC5W+Nu/vco3vnGoGwfyhS/sZmAgxNmz74owjhzp5fjxPsbHYxhGD/n+R3C1ryBqObBAHpjAMbgbOb2DlAXXruW5fj3P8eP99r2g3Wbj7FlaxSKtXA5nIEAglbKtMFSV6toaV//X/6L3yBG709Jq4fB6iY6P32aBAbaBXWlhAUNV7bHy2Ngnim35VeE3WqjE43EkSSL7vh1fNpsldQfFC4DL5cL1DzRrO/bFx7l4cYOVn/+EYOEaoiQiuLyI/ggNXy/uUIKRI3HWzp4lvmfPhxLGMufOITkcBBNBlrMack8QBIHO7DkQJTANaDfQVQFBzZGvKqitNqbmgSuv0E4mcB98BEF+dzE0DJPp6RylUoueHj8ul8z16wVOn17joYeGeOqpsU9sZGUYFoZhE3dvjTtM06K3N4goihQKLZrNDtmsLRMcGYnyB39w4GO5Tb4fnY6Boujd4LpfFXTdJpzWaipnz65TLrcJBOzAvGZTI5PJEQi4OH8+w+nTaywvV1lZqVIqtboJzIcPpwkEnFQqbWZmikxMRDl0KM3aWo25uSLXr+f5ylcmuzt/TTOoVGzCcSTi6S6YzWYHRdHp7w/S2xugWlVpNm3ydSTiYWamwNtvr7K2VmP37jj33NPHxkaNpaUqDz88xDe/eYxAwEW1qjI7W+z6QcRiHh7YPc5Ay86Men9QpdHpYGjabeS/W2hks1QWFzF1Hcsd4L/+KMcbbyxv5QQ10fU6o6MRQiF7nLS+XmNjo06rpaGqOrlcg6tXc4yNRT/yeKzvnntQq1WW33iD7JUrSLKMrmlIHh87HvsU1+dipAWRatVOiA6F3LhcEqpqkM+3CQbtsdadkM02GBuzJef/0NjcbHQ5RzY/KoQjO8vmmz9HrVZxBYOo9TrXn3sOU9cJDw/jDofxRCL03nMPo48/fke1yV38w2Nursizz07T6ZiMjUW7WWKbmw1e+sE77O5kOPj48G2Pc4fD9B8/TubCBTYvXcIVDGIZBs2myqYaJHzfSRLpdzdpbrfMzp0xpqdznDu3wdNP2/4qTqfEiRMD3HPP7SIM2LonuuO4Dz2GP7LlVivdsn+wWF+vMT2d46//+iJvvLHMgQMphiIqNy/OUppfQ/R4CfgcSIZFq9WhoxpYwSTF+au8+q//9baYAm88zsjJk/Tfe2/XFmPptddYeest2sWinRckCAT7+xl76qltqqJfJ36jhYrT6eTIkSO8/PLLfOELXwDANE1efvllvvnNb/7aj8fhlPna//M1/qbdIvfTPEYgieBworlCBEMeDhxIkewLUmgU2Lx06QMLFUPTaObzuEIhUhEfc/NFmi0NbySJ4A1ArYjlcKK1W0j1OqJLx3I7CA8O0SwJGGoD9fpZkGQ8hx7FbFQwqgWmLmRo5E3GtkiEt1Aut3n55Zskk75PbA1+a7xQKrVJJu0guVueJL29AbxeB+Gwm/37e2g2O/z+7+9nba3Gq68uousmfX0BJid7PlLbvVJReOeddS5cyNBq2QZeR46kueee3o+VsfHLEIl48HgcnDu3QbWq0Nsb7JJpvV6b+JbL1fl3/+4XW90Mi5WVKj6fA4dDJJ9v8sILc6iqQb2uEo16qVRUfD4niYQPRdG5cCFDX1+QRx8d5p137G7MrQ7NwECIEyf62bcv2eW5tFoawaCLUMj+dwuDgyFKpTYej8zsbBHLsp1mH310mM98ZpxIxMPzz89x5swau3bFOXGiH0GARkNjY72CR0nAzDzR4YGuUaBSrVJdWaFncpLEnj3bPhtdVbnx4otsnDuHWq+j6yazcyVuLFkEQgeIREawLDti4Pr1AuPjUWIxLw6HxNWrORoNjWjUzYsvLiAINrH5iSdGP5IxniCKjD7xBMl9+9iYmub6xSUWVhUaRhJ3rhdTsFOxjxxJs7xctZ2M2zqCYMvHT57cgaIY22zVLcteZCzLVvh8ko6Krptdm/4PgqrqvPjiDc6cWWNmpsDmZgNFMYjJdQ5b5xjeEeXAg3uRLJ3i3Bymadqbk0aD9KFDdBoNFn76UwxVZdfv/M7HjmW4i78fLMvi1KlVGo0Ou3e/29ETRYHe3gCraw42FuvsVvU7jtb9qRTpo0fZ8eijqLUaoiyz3vJTkRT2Dt/OpRNFgXjcy+XLWZ54YnTbZuxOIgywlX+3XL3fOzo3DItLlzaZny9SqSjs3CnSaml897vT1NZWGLm5gLNdwQw6Wd0soGkGLpdkb1zbVRzFCvrMEoOPPobL7cQ0DBqZDNe//30kp5PeI0dYfuMN5p5/visrNw0Do9OhvrHB9LPPIv/Tf/ob8WD5jY9+vvWtb/GHf/iHHD16lGPHjvEXf/EXNJvNrgro141o1MPJRwe5WN5JJ9iPYViEQi7SKT/eLUmr0++nlc9/4POIkmSHdTUaRPvijI1FuXYtT9sp4evbhVXOYzTrmJ0cLknHF0rgjcdtkyRljZwRwBNJ0blxGbNRwSxnaVcqGPMlDkUihHNgxY8jOO0TPRKxvSXOnFnjyJH0J+qq+P1ODh9O8+KLN4hE3Ozdm+T8+QzZbAOfz0Gl0iaV8iMINgH24sVNVleryLLNETl7dp033ljhmWcmOHw4/Utfp1Rq853vTDE7WyQW8+D1Omi1NH70o1lmZgp87Wv7tl2gnwS2WsXDz35mp+zeWg8sy9oipyrousnUVJZ9+3q23HYtOh2jWyxomoEkSVsmYwrFYouFhRL79vXgdtvjo1vFyZkza/h8TmIxD6ZpMT9f5MaNIs88M8EDDwwyMBDkrbdW6OsLboU4ersS6UymzmOP7eDLX97bHU/dUrwIgsD6eo1Tp1ZJpwPbugVut4Ng0MXc9CTDgz3o7TXy09MgCDaB7+gxfIce4uZKk2BQ73qIzL/wAkuvvUagt5fgwAALC2U2VZ2YYx2pcg5Lj9PTE0GSRBYWyszNFRkY0NnYqGMYJgcOpHj44SE8HgeaZrC6WuPZZ6dxOqWPnFotheL8IhPnwoaGL+hAFAVuXsuztlZHUTQqFYWxsSjxuIdKRcU0TU6cGOCZZyb4+c8XOXfOdhqVZbH7eX3+8xMfy0VYUXSmprKcO7dBuazg9cocOWKrxn5Z9MJPfnKDl1++SbWqUK3a7qderwxzM1SKpf+PvfcKkuy+73s/J3TOaaYn55mdzbtYRC64ACGCiBRNiqIYzBLLVrlk61b57b7p0X6wH67uVfnB5StblmQxCAxgAkgEAtigzWlyztPTOZ/uE+/DmenFcHeRSEIqX/wetmpndqen+5zz/3//v983MO2Mol3ZZjhSI7+RQg7FEUSBWi7f4uaIDgdbly/T9dBDHzhL5rddSj5PemKC3NwclmkSHhyk/fDhe3o3/e9UuZzC4mL+Lj8dy7Iwi2kiUplsPs/yxeuMPHLsrq5XLZMhPjLCyLPPtjhZhbNrCNcm7ws6XS6ZZtPm+X2QrrEoCpw61cn3vjeJqt6xelhfL7G4mEcUBXp6ghw4EEcQBCYnMyxnRDotNyGnCV4HO+ka9ZoGOGlvc2GUixiyTL4mcuudCQZ6fTZxeNeEdO3sWSKDg6yfO4c7FEKUZVLXr1NJpbBMsxWLsH7u3P8/gcpXvvIVMpkMf/7nf04qleL48eO88sordxFsP87yhgJEwy7aj9z7odUbjfc1XBNEkeTx48z++McEOjs5dCiBz+tgcalAuRRGDHTgQCQUCxIMewh2dCC73fbP9ks0oz2kSxDYmEJKrUHnATYaEWpeN4M9brTpiwjNOu5Tn221BW0lSY1isbFPUvph6syZflKpKjdv7uza1UdYXCywuVkhGvVw6FAbjzzSzcxMlrW1EmNjsZaxmmVZrK+X+cEPponFPPflqrz++jJzczkOHky0jOAiEQ/JpJ+pqQyvvbbEH/3RvccVH7QEQeD48SQvvzxLNlvH53OgKBo7OzWqVQ23W6JQaABQrTbJ5xuUyyqSZJuw2e1YJ7puEQy6W2Od2dkc/f1hAgEXkYh71/LeDjbc29yqVRVZFkmlqvz1X9+kUGiwvFxkcbHA1FRmN5fHRXd3EJfLQSzm4Ykn+gkEXPtOeXs1P5+nUmne0/DK6ZTwBANsh3v47L/6AuXNTbAs1nIi70w32fjbOVTVwOt1MDYW41NHfWxdvUqgsxNPNIppmiwt5jEFCSvSjbAwg5ieR+0+hSyLdHT4SaeruN0STqfEwYNJPvOZgVbXwuGQGByMMDOT5Z13VuntDSHL4vsuyBcurHP16hYjIzE2N8vcvp2mVrMVT6VSs8UlGhqKcuxYmJMnO1oA8UtfGufBBztZWMhTr2uEw24OHIh/KAJtva7x3e9Ocv36divqIZut873v2V97+ukhIhEP8bi3dY+m0zWuXNnC43GwsJDftfW3x34huYQiufFKAouLefKFKcyGgpG3k6pdWhkjskG4rx9PJEJlY4P84uI/CVDJLy4y9b3vUdncxOH10lRNbr12ATwhOj/zLCefO/2B/IO0ep3szAzVdAbDEogN9hMb/s2M3X7XpesmmrYfMFhak8bNt9HWZ7GaCihl0pfOI5R36HzgAQId9qGrlk6DZdH18MP7iOO2saDNGbuXyWSx2LA9qj6EevDkyQ6mpjJMTKRJJv32gWQuR7ncJBJxMz6ewONxsLRUIJ9XGB5NkJvoJZ5folEooWsiwZCLZkO3M4AaNUSXG5dWYvvKJeRUENkh4nC78Xd2oqsqm5cuUc9mcfh8bF25gq4oOPx+RFmmlk6j1evM/+xnjL7wwsfOs/onByoAf/Znf/ZPMuq5X0WHh3H6/SiFAp7IfituQ1XRFYWOd2Ut3K+SJ06Qun6d7MwM4YEBBoei9PSGyK1tU44O4ZCHKC7MIe2GWTVKJbAs2g6MMjx6iNnLs6TmyjRDXYgOPz29Ek6XTKA9jNUMoK7N4OgbR072A+xzLf2gZZoWKytFZmayVKsq4bCbxx/v4+DBBFevblMqNRkcjDAyEmN8PEFnZ4DFxTy//OUSIyPRfQ+mINhKn4mJNDdupO4JVPJ5hYmJNB0dASRJIJ9XyOcVwO7oJJMBJifTZLP137ir0tER4NChBA6HxM2bKTY37RTdgYEQzaZBKlVDVfWW+6vP56BSaWKaNlenWlVxu+0xkaLYpmuqqrO9XSUQcKFpJtmsQmdngGDQhWlazM5mmZ/P70YGWGxuVrh8eZOjR9t59tlhFhfz7OzUyOUUdnZqPPFEP1//+pH3THpWFO09xxkej0yp1MDX1oavrY1r17b54RuTmKZFV1egpR66dm2brYurjKp5+lsE6gozs1maTcNebA03zYnbzO8kESTHLs9HZXY2h9/v5IEHOu76XexuFPzgBzPMz+cJhVwcOJDg1KmOe94DjYbO5ctbRKMe8nmFGzdSOBwSXV228ZbtPKsgSQKHDrXx5S/vH12JotDK7/modfbsGlevbjE8HG0Rok3TYnGxwEsvTfH668scOtRGMunj4Ye7efDBTpaXC5RKTSRJsMc97z4MCCJOh0ChoNBsGpjFMsk2r51CbVkoGZOlpQK++RxjY3EQRYx32Sx8XNWsVJh+6SW7M3DwICsrJaYWs1SrAaTKNtMzf8O5GxVOP3uCp54auG9nNjc/z41vf4/lm/Ps7FTRNROnx8Xgwyf4vf/jj4l13Q24/zlUMOja5Z01WiCzcess6vx1pEg7qr8NQYwRD+Wori6wkE6TPH4c0enEFQgw/OyztP/ayH9kJEZPT5Dl5SKjo7F937P5aRqnTnV+qJFfhV1kAAAgAElEQVSk3+/kq189zFtvrXLjRoqFhXzL/PLo0XZ6emw/l52dKg6HiNMpk46fZMBaxtheImBZiJqEqIOGC1l2gtZEDgWoOoOY/ijBmJdmtUp+bg5XKIRx5gx6s0lxZQXTMPB33OmKO30+lGKRwvIy6YmJjxSH8JvUPwug8s+tgj09dD30ECtvvonRbOJNJBBEkUahQHlzk/bDh+9LUHx3+RIJDn/ta8y+/DLFpSUMXQfLwhsOM/TVL9H9yCOc/0//ia2rVxFEkUBHB6G+PgKdnYiSRNLXwEh46To9SnRwAEM3eePNZep1HZ/Xg2EaaKmVFlDJZOoMDUXel9yq6yaLi3lWV0ucO7fO+rqtsPB4HKiqgc/n5PHHe/nTPz2FZdlz+Y2NMo2GTrHYYHu7iq6b95VHRyI2GfX3f//u7xWLDarVJsFgkIsXN9naqqCqBoJgb0B2Ro+LYrHxGwOV/v4wPT0hcrk6Pp+LAwdchMMeBAGWlwu7nARaDq/BoItyuYkg2MF+qmoQCrnJ5xXcbpn2dh/NpkGhYAOrVKqKyyW3fs+lpQK3b6fx+Ry7rWWL7e0ajYbOzk6Nvr4wjz3WS6nUQFUNcjmFSMT9vrbugYCrNZq6FwitVtWW62qzqfPGG8sA+8BPKOQmEHAx++otAlqVfuwOwbVr2zSbBk6nhN/vpImPrc0yO9tlgtEAbreMwyHS3u6jUtF2QaYfVbVl2vG4l/X1ElNTWSoVe+M1TYu33lrh1q0Uf/AHBzlyZH93dG9skkh4uHlzB9O09t2zeyfPUMjNrVspzpzp+63KjRVF49o1GyjtgRTLspicTDM1lUUU7dm/yyWys1Pj29+eIJOpEQ7vSr6bxl2bjhrsxpVfp1bVMC0L2etHMu3PQ7BM3C4HYjjK/Hye7q4AWNY/iZV5ZmqK8sYG8fFxNreqXN8FiR0dfsTOAOrmPI38Kj//uR+PR+bxx+92Na2mUlz567/j5j/Ok9bCeAIRXE6Jeq3K9Z+9zeZWhW/9X/8nkej+a6aqd8jm0ajnn0Sd5fU6eOCBTn7ykznicS+SUkBfn0WKtIHHTz5Vpasrwtgjh6inD7B5+TKSy8XIc8+ROHiQ0D0Upm63zAsvjPKd70wyeWmWuFBAQqOqytTc7Tx85r1H4ferUMjN5z8/xpkzfaRSVf7bf7uG3+/ct14Yhq10sywLTBMzkMDaWkDWFARTRjRFMBxgaAiyAznejVBRMXWTei6HkstRz+Ww1tbYmZiglslQz+X2EW5bZVlITie5+flPgMo/hxIEgdHnn8fp87Fx8SK52Vms3YWl9/Rphj/3uQ+cAhrq6eHUv/k3FJaWUPJ5RFkm1NfXkmYe+drXMA2DYHf3XTKxyvY2nkiY5HAvstteULu7g8zN5XDIIqLkwGrUAdv/wzBMHnqoC1U1qFZVXC5pH5scIJut89JL08zN2RyKlZUioZCbrq4AJ0+GCYXc5HJ1fvnLRUIhF4Zhcv78Ojs7NUzTIhCwv6Yo2nt+fsA9N9Y9D5ILF9bY3Ky0Rj57ctvtbdvk6Nd/vqYZ7OzUWjLCe4WS/Xr5/U5On+7lL/7iIvl8neHhGIJgK6dqNW03dViiXtfI5xU6OgItKa7t/iq0UonjcS+hkJtUqoog0OLmHDqUQFE0NM1gcTGP03nnM280DBRFo7s7gCDA4mKe7u5giywci3l3DfKK9xz57NXYWIxo1MPOTq3lCbNXimKnRO8thEtLBba2ygwO3t2hEUWBaFcbuasKtUqd+fkczaZOV1eQ5eUCqmogFosYrgiRUBCnS94l/QocPdrG+fPrvPPOGp2dfjweB6bJbufJJht3dATo6gri8ci0t/tZWirwk5/M0dcX3sf5kGURWRaoVlVyOeWue9Q07c5gOOymUGiwsVH+QEBl7//tbYDvvmficW8LlBQKDQqFxj4yei6nMDeXJxh04vM52d6uYll256ZQUDh7do0nnxxAkgQsS7BJsu8qNdKHsTqJq7aN6k9CoB3UVQxVgXoVMRjF35EklW6wPrVId1/iQ6ef/zaqvLFhy2oFe0QFEHkXSBTdfgJ6Fs3v4ty5dU6d6rxLgp+6cYPZq3Ok9Sgdu07SAH5/FD3oZuf2JL/4zlm+8qd26raqGly6tNmS4+5xLB55pJujR9s/dkLxpz7Vw9paidu3dwhXl3CmtzElN418jqDPRffQKEYjSqCzs6WG6X/iifd0dh0ZCvNUf5YbN98mu5lGtwQCLonxsV4e7en80IpG07TIZGpomm0cNzYW55FHenjrrZV9QCUa9bC+Xkap1OgsXMUb0tjpPIlZzuKjTrPeQBZ0NFPAwoVab2KZJnp2m6JSahkwirK8G9uyRi1fwPAncHtkDMOiWlHRNQ2qBdpHB9+Xn/m7qE+Ayn1KcjoZevppuh99lPLGBpZhtFrrH7ZEWW5Ff+9VudxEUTQ8/aN0P/ww6xcu4PT5bN6ArlPd2bH/Hons068fPtzWIjAKmRIERaq3dwgGXZw508/OTpVXXlmgVtNwOEQOHrQNhrq7gzQaOt/97iTT0xl6ekIsLOTo7Q3h9TpIp2tcvrzF6dO9xGJeKhWV//k/b+JyyYTDbkZGYkiSQCZT49atHOl0ldHR2D1TeQsFhWPH+u9agNLpGouLBW7d2uHmzRShkJtyuUk6LZNI+HYzeyQaDY1czu5amKbF5cubXLiw0fI8iETcnDrVyeOP973v3Pf06V5ef32ZVKraCrHTdQNNMzBNkCQBVTXJ5RRU1cDhEBFFAa/XQTzu5eGHuwmH3S0flr1Oj9Mp8eKLY1iWxd/93W3S6RrlcnNfF6jR0Hc9Sdz4fHYKdanUaAEVWRZ3Sbv3dmrdq0TCx5NP9vPjH89Rr2ut8MRcrk4+r/DQQ10tV11F0TFN7rswensGKEzH2JiYI73jxOGQyGRsZU29WMatKqw7x1E1k1pdoV5XicV8XL+eIpWq0WwadHcH6OgIYFkWMzNZtraq5HI20Dt7dpWuriDd3UH6+kJMT2eZmcnuU6JFox4GBiJcubK1C2b3/47lcpNAwEUs5qVYbLQAyP1qba3EjRsppqYymKZFf38YWRbZ3Cy31EDRqJsHH+zi9OleJMkOdNQ0E88uN3lrq4ymGfh83tbrSZL9i0UinpYsu68vxORkBo/HHhPugay64KcafYCweplgY5tgPASmjJndRAxEkdp7EVQFqbCJ1uxg+JlncIc/+ujqo5aAfYCoVFQKhUYLQFrY4zv7D4FYzM3ly1v85V9exu93kEjYXk0jIzGWL14jV5MJRz13jYZkjxevC2b+cYLiV8/g9zv50Y9mOHvWNl+Mx+3Pd2Ehz8JCns9/fuyeXZvfZQUCLr72tSNcuRLl/P/9Bs2tRUS3j7ZogFDIojI/yWpmk85TpxB3x/LW+6TZz/30p2z+5Du0yQIdh6J4InHC3R00clkWfvIybp8Hh8/X8i+JDAzcV54+NZXh7Nk1VlaK6LpJIODkxIkODhyIcfv2DgsL+dY93tkZYGIiTWlxgSExh7/3AI2gxspyiJLepGGpeNwC7ZnL6KqEsbaF22HRaGh4fG5Mw8AVjiI4Xew0A2SKAlamTE6Zo246MRHxOi1kS0f3xSluGIidjd/FZXnP+gSovE+5AgES4+O/tZ+XSlU5d26diYkdGg0Dj0fm8PhBhp9OUJ+/TT2XQxRFOk6eZOTZZ1n85S9plEqt9EyXS+bUA514UFipeSl6O0lGRA61FVn40UU2NioEenoID47StGTeeWeVubksX/3qEcrlJnNzObq7g0xNpZmayuD1OvB4bNlxOl1ja6vC4GAEr9fBr36V5lOf6qG7O0gmU2N1tcjOTg1VNdncrPDKKwt88Yvj+3gq6+tlAgEXJ07caXU2GjqvvGJLOq9c2WJqKkO1qrUcRxXFYHm52BqFDA3ZDqRPPNHPa68t8fOfz+Px2OMUUbR5LS+/PMv6eplDhxKUy00kSaS3N8TAQHjf4ilJdmhkOl0jHvfSaOi7qh5a1vQejwOnU9wdA9nt4VDISTzup6PDz8hIjM7OANevb3PkSBt/+IeHOHbMVobUaioHDsQ5f34dRdERRRt8VKu2ssgGLkIrI8l6156799qRyPv70Jw5Y5Ntz59f31XfWESj7paqaA+Y+HwORKNJo1zGFQjcBRbrqoDz8Gmc5gT61jR51YWpw0C4Sb1SZ5Z+cnIH9aKCrluMjkYZG4uxtFQgFHKRyyk218LnxO93kk7Xdt1zHQQCTup1jZs3U6ysFFvBkHujsr0SBIHHHuthfj6Ppplomu1EvLeBKorO4cNt5PNKK0rhfnXr1g4vvTRNoaC0xgnf+94k6+tlDhyI8+CDnQiCQC5X54c/nCGdrvPCCyM4HCIXLmzQ0WETFQuFJg6H2LougYBz33Xxeh0UCgovvjhGtWp7Ce0R1yVJwDAg1j3Aphigy5knMu5BFMFSqhiVgu2XpNQx4gMMf+kLdD344Pte899Fhfr7sd5+G62p7XKxLFI7VQoFBV0zCSgpHP4xNi/Zz6nNHQowO2t7NZ0+3YNZrNPUTEK+e3c13W6ZXFWlUFBYXy9x4cIGfX1h/P47G3Mw6GJ7u8Jrry0xNhbH45FJpWx/pmTSf1eX7TetytYWubk51FoNh8eDoWlI164RX3uLilgj1Jkg0B7H4fFgWRa1dJrta9cI9fQQHxt7T7OzzUuXuPSXf0mjWMQTiWDlclRWlqltJOh84AGKExO88x//I8Hu7lb3ItDZSfL4cdtYzu0m0NWFKElcu7bNP/zDFM2mrdJzOiWKxQavvLLA4cNtvPDCKG+8sczsrB24aZrQ0xNEqJQRGiLFqoEogiAKZEoGDoeToM8DJR+WJaGHu3CWZ6nVVHB50aQA9ZqD+maFzE6BtsQQoUaeqhxELSuIVgNDlAn19iAluqjtpLm1E+DYTPYDK/x+G/UJUPkYa2urwt/8zS02Nkokk37a2lzUahpvvLXBUn+Yr3/1jwl77BvZFQximaad1fDGG9TzeXyJBLpmcPP8LNsbOdSuE7gcUHrtO7yZTaEaIn29QaSlZcTiPJEHniJ+KMnMTJZXXpknFvNSq9lZFGtrJTTNdkMtlZqUSg2cTonNzTKDgxFyuTqNhk4s5mF9vcS1a9s0Gjp+v7M1UlpZKfHzn88zNhbH4ZCo1VSiUS8vvDDaIjpalsWPfzzL22+v7hrKWQwMhFlbK6EoNnfDHjFZlEoNHn20m1DITaNhy2HffnuVeNy7T4XQ2RlAVXX++3+/Tk9PiETCi2XZXYTDh9v44hfH940aRkdj+P1OolEP1aptvtbR4cftlpmcTNNo2J4JLpeEqhoMDUWQZbE1IpiYSCPLdnjhl740Tnv7nfGLz+dsKZSWlwusrBRwuWR8PkeLmzE1lcGyLDweuTWyMgyT9fXSB071FQSBBx7o5NixJOm0PYaLRj37RmCZqSkqFy6SmDtH6ppKYqgPZ/8h5K5hO3TSsK26n376IY72P8Ibk/8vtfkZohEXhjuJNDCImg7gLWhYooqqGsTjPjTNoF7XCARsdYMg2PeMoug0GjrhsN0x8nhsuXQ47CGdrnLjxjaJhA9ZFtE0o5XHJEkiBw7E+cM/PEip1ODChXXqddVWMHkcJBJeNjdLnDu3RjLp5yc/meWRR3ruIiTm8wo/+tEMqqq3OkqFgkKjYRCJuMnlFGo1jXjcS1dXkHDYzdtvrzA9nWldq42NMl6vvOvVAh6PA0XROXasfR8Ha4/HI0kCn/vcMOPjCX75y0VWVooYhkVnp4/x8TjuT/WysJDDcaitBR4tQ8dSqqysVYh3xHngcw9/wBXjt1+J8XG8Hd2kZucxdZm5uTKqaoBl4a7vsIOH29cMFGGD/v4whw+3tZ6lUqnBm2+ucFQMIzVrNj9C3g+ELcPuVIoB+8R/40YKAJ8LtM0FzGoRBBEp1kF7ezs3b6b5H//jBs2m3iLVR6O28/OTTw78xjlbpmGw+ItfsH7uHI1SCQHILyyg5PMIDgeIAu5wmPLqKlqlQqS/H2cggC+RoLS2hux0cvQb37h/ts/WFjf++q9pFArERkYQdhVPpmFQ29lh+c030RQFvdGg4+RJvLEYlVSK5ddfZ/r73yc6NIR/l5vY8chpXn3VzlUbG7sDApJJP9Goh8nJNOPjcf7szx5idjZLodDA4RAZGIgw890Uc+9UKIkSIHHsWJLp6QyiKGAYFqonht8qkzjQj7xRJZ2pU2h68fudCEqBGl4MV4BURUC0/CiKihgI4VLLaIqCsr2Ga2cZb6KbjCvCpUubnwCV/13rtdeW2Nwsc+hQW2vB9fmcxONeJifTvPXOxj5ZrmFCvesBVnwFMjeuICkbGKZJXvXQdfp5/L0D1M/9EN2tMiG109BNYu4YsYgLPb1O4+preD/9Rfr6wiwtFVEUndVVe2Ht6QntdgBsEqmmGeTzdTIZm/OSzdbxeGQkSeTWrTSmae2bjfb0hIhEmgQCbhIJG0j09IQ4cqRt379bXy9z9eo2vb0hbt3aQZZFHA4nXq+DtjYf2axCOOwhkfBQrWothcqRI23MzeUolRr09v46GbPJ5GQWRdF3eSL2JrUHwgC++c1jrc94aCjCyZNJLlzYoFbT0HVbRuj12rJUj8dBd3cAv9+FomgIgsjwcIwjR9oYHLRVX11dwbtUTnsVjXr4t//WPiG//fYqg4NhEgkfPp+TRkNvgZ3x8XiLD5PL1envD/Pss8Mfaka/1+799Vo7e5bZH/8YU9MYPtDG7dtp0pNT+FcX8B55DKXzGFtbVYaGIjz6aI/dgh/9FHOFbnq6fOTKJqUdDUXRqFabNJs6Pp8LVTVaFuONhk4g4Gwptvx+J5VKc1dW/G7Vmc3p2dysIEkia2sl/vN/voCq6oRC9tju5MkOTpzo4D/8h6f4q7+6xsWLmwiCgKrqLCzksSzo6wty/HiSra0q/+t/3SaTqfHccyOtz2t6OkM6XWtdf7A7ls2mTmdngK2tCpub5dY4zu2WmZ/Ps7iY54UXxujqCjI1laFcblIqNSkWFZxOiaNHk4yM3FFvlEqN3Ta8wc2bO4iiQEeHn69//SiHDyeoVlUsy+YcWZbF3//9BDdvpojFvIRCtjpse1vDHwjy7LMjHyh24XdR6XSN8+fXuZnpR11dZGd6mmrFwOOVsXSNohhi1XuIraKMrtfv4haFQjZnKKd34Q16KG3vEO+50zm1LAsju0lVCtFx+CAdHQHS6RoBPUftrVcxcikMw6SpqJiyC7lzmLViL2trRR5+uLulmMlk6vzsZ/OUSk3+4A8OtuThH6XWz59n8dVX7Zypzk6KKyvoqoo7GqWwtIQnGiU2PExxZQUllyOnaUSHhtCbTbR6nWBvL8ldhaep6xSWluyutyQR6usjdeMGSqGAKxRqgRSwfbR8bW1s37iBOxjEE40iShJKoUDq+nX0ZhNBkmx1TVsbxaUlFq/Pk1HGGH7sgbveh9MpEQrZ47hPfap3X8caQD0+iro8SdvhIQRBYGrKfjY6Ovz2AXGziOQdxGrmUYo5qNaRmyXcOKiJAZRAD6GwB7Wpky2EEPUm8eoGliBgCDJNXcCbiIPDSTh7i6XpdqrV8X1dst9lfQJUPqZKparMzmbp6QliFXdobC5gFNIIDidysp/OROc+Wa6um/zwhzOcP7+OIHQQeuhfUEpnuHBhA18iTrJjGCM1g1nMYER6EdM5nE6BbLZONOpBbutFTy2jby/jHTiMphk0mzrZrMLQUBSXSyIa9bC9XcHhEHdtpO+MQ5pNg7Y2H5lMnUqleReJs9nUaWvzkUzaAOXrXz96z/e9tFSgVlMZHIxQq2m4XPap2eWSaTQM/H4nlmURjXppNCpkMnUSCW/rRCDLdwOD9fUS5XKD9nb/PtKtz+dkaCjC1JR9Yt5TvUiSyBe+MI7b7eAf/mGSfN7O2XG5ZB56qBuHQyCTqaMoOoqiE4m4+drXjnxol9M/+qPDLYmyIAjU63YWUyjk4plnholE3K3uzfPPj3LqVOdvrGwCm3S98OqrOLxeAh0dxAFvLM78XI7s+ja1y+dwPBzjzJljPPFEf+s1h4djXL+e4tpECVEUWtk6mmaiqhZOp0GjYdvl74HC7u4gDofdeapUVNrb/WxslKnV1H2flaoauzkmAleubJFI+HC7ZdLpGt/97iRzczm+8pVDhMNu/v2/f5TZ2Sy/+MUiL788S29viNFRe9y2d6LO5xXeeWeN8fFECzymUlWcTmnf6+6Bb7CByd4pHezMpUqlSVdXsKU0evDBTmo1lVpN48KFDTwemY4Of0sNlsnUePvtVSzLIhRK0N7uxzBMdnZqvPTSFPX6CE8/PUQmU2NhwSanPvXUAL29Ia5c2SKdriPLtqfPo4/23CVf/U2rUSxSWFrC0DTc4TCRwcF7ZpClUlX+9m9vsbJSJJlsR37482xnL1CsrWBUdORYO1q4l3JDxjRrLR+gcrlBMHhn7BGPe8lmEhx9+nPc+sFPKC6U8cWjiKaJoVSoCX7UwUd5/DOjyLKI16qSv/kauqNBgSjpog2CRU3BsXSeenOR7ue+tG99SSb9+P1OLl/e4vjx5Ec+ueuNBhsXLmDqOqXVVTYuXrQjI0yTSH9/S8kZ7u8nOjxMLRSisrmJWqsR7O7GG4/T89hjiLJMeWOD2ZdfprC4aEdOWBauUIjy+jqeaJRmoYCmKDg8d8aUhqqi1esIoohlGKydP08tncZoNIgMDSEASi6HoetER0ZY+/lZHFs7cKQPK5y46wDj9ztbHeFfBwhthw6x9tZbVDY3CXZ3YximraQUBKxaDjEQwv3wczQmzqFNXMWtFgAPmCEsU8dpVcGK4kahbMkYgkS97bDtcq1o6D4fycODYFpoq/NY2/OY5u99pOvyUeoToPIxVbncpF7XaGssUp/+R0ylhuD0gGmgrU0jhjvZchzjnXc6GByMUCg0OHfOdjLdO9VsIeGINNEMuHkzxYPyGoLDhSyJuwoVEUXRae5yXwRJxshsovccRBAE4nHfbtaNistlq21U1Wh5P4iiQKWisrRU4Nlnh1hZKTM/b89C370Z6LqJqhr09YVxu+XdAMN7ly09tv+vxyNTq6m7KiNbaVKp2C3/fF6hUFBIJLx85jOHGBmJsr5eQtf3k9gsy8668PmcqKqBx7Ofv2B3MTRWV0v75Ller4MvfnGcQMDJX/3VdQYGwoTDnpYstlZTqVbt9/7Zzw7y2GMfPugyGvXwzW8e48aNFFevblGraXR0BHjxxTGOH0/uEoV1nE7pnp2Zj1qZqSkaxSLtR460vpZM+mlv81Eqt5OdnmLoESenvrw/p2NwMIKum0Qi7l0ll4FpmiSTfvL5Orpuc2ocDomDBxPkcnW8XgeZTB1Ns5Vle9LutjYf9bpGpaICd8i8gYCLI0faW/dPNOqh0dC5fn2bvr4QTz01iCgKjI8nWFjIc/hw274Oybs/2+3tCpOT6RZQcTgkdH0/EdnlklpkWMMwdzOJarhc9j2mKPaI4fXXl1BVA0myXYKHh6M89dQA2WydZtNgejoL2P45LpfEpz/dRzi8d69J9PeHyWRqvPbaEqurRdbXy5RKNskwFHJz7FiSP/mTkxiGhcMhEo16fmN1S6nUaD0vsYiTlTffZP38eXuMIQgIsky4r4+R55+/yz30zTdXWFsrcviw3c3d2DDIuXrIxmJUKk1EVSSgyEiSQDDoJhJxUyw2WV4ucezYHaBi7abxnvnWFwl2d3P55bfIbK0jSDLN0CHcA+M8/fkHOHHCNsvscWRZLWRIR/vYTtVwOCR8Pge6LpOvqgSULaoba1Srnfs2X7/fiWEYTE5mPjJQqWxtkb59m1omg6FpyG43hqpi6jr5pSUkh4N6Pm/nZPn9hHp6ECSJ5IkTRAYHyc/PE+7vp57LMfHtb1Pa2CAyMNDisTQKBfLz8/g6OvAlk5RWVpCSyZbhnanrqNUqer2Oo7cXXVGopdNYpomwvEyopwdT16ml0/YzvL2CYyVF5WdNXANHcB14ECl6x3RUUeyoEZfr7rXD397OyPPPM/OjH5GZmsLRlKFWQN3KIDpduI8+jlHKYOa2qSePUVfniQQk5GQbUr6Ep7CG6MJWAflCUMrScCeQHRJVo0lbxIsgiCCBYjqJVFc/tm4KfAJUPrZyu2Wc5U3q0z9HUGug2wu6GIiiyEF2rk9RNNP81BvE63exslLE73ftm1XurhHEYl6y2ToVXwOfIOB0SgSDLnZ2qrsbxB5jU8DCYnu7QjLp49ChBP39IcrlJtvbFbxex7s2qTtt/W996zgnTnRw+fIm09OZltOtJAmtDb23N0R3d5Ctrcp7kh33Mm0Mw6SnJ8T2dpVGQ6dWs9vljYZOs6kzPZ0hFvPyzW8e4+mn7fblyIjNLSkUlJZSxrJs74A9U7aenrv5HYIg3Fcp8uijPVy7liKTqe3L2/H5bCJoW5uPU6c+WlYS2CTBT3+6j9One9F1syXHfvfr/LartrOz7yS3V4Io2ECsIwqV3F3ft2XCIj6fg3JZRVFsIp6mGTQaJoZhA95jx9qJRj3cuJHixo0U29tVolEPpmnuEqA9DA2FGR62uwV7ybH5fJ1DhxJ3yYbdbplo1NNqY+91Texx4/3HIh6Pg2y23vr74GCEN98UaL4rl6W93c/MTI50usbaWpFQyEO5vILDIVEuN0inazidEuGwm0jEiaYZbG5WyOUUenqCjI8n+Na3jrO9bRM733hjqcW7+fWKRDy88cYy8/M5Hnqoi65dk7N8XuFXv1qmWm3yta8d+UigdI9YvBfrcPbsGjdv7lCvazidEl2NWSKZG3QMd5M4eBBBFNEbDYorK0x8+9sc/+M/Jrjrnp3J1JiaSu+Gi96Rbm9vV6jVNGR5D9xZyLKEwyG2so/S6SpwZ/SaTtfp7Q3S1ubjuW8+xaMvPsbVq1tcvbrNykoRyengwoV1yqFKyl4AACAASURBVOUmjz7ajb+2RiAR4/pSCbdbxjRN0ukGiqJRq0ECjfzyMrOzwzzwwP7kdLfbQbn80RUmSqFAbnERdzBIoKMDyzSR3e6WbYJWq9meObkcjt1ATwFAEMjNzREdHiY+NsbauXMUV1dpO3SoxVURBAFPNEpkZITMxATDzz5rA5FUCtntRnQ6KW9sYDQaeLu6iI2NYTSbyC4XstuNWq1SWFnBHQqRnpjA1HUiyTi5dBVFFRHXZzGKGbyPPIcUTWIY9rP24os9972fuh56CE8sxva1a0i3pggGSxTdbXQ/+ABiuI3a63+P6A2geEKUfDodoRJWtYhbNFGNGnphk/r451DKJqFmiVpdx+Oxn9u9+7+uaBiik+42J1gm8PG4EH8CVD6m6uoKENu5RGVpGm84YHdTgMbWKsWKTtWK0RUrMdpnogUj3Ly5Q6HQYGkp39oAQiFXK1/FNC0a7jje0gqWZZFIeNnZqaJpBoIoYOoaWj5FWQFtZYcDv3eUdkeY0ZEYdUWnWlVJpapIEhw71r5rjKbw0EOdLbXGo4/2kMvV+Yu/uEQ+ryDLAh6PTRIdGYkiSQKVSpNnnhm+7/veszbf2CjT3R1kba3E9evbNJs6Ho+DaNTmpxgGxOO2U6lhmIii1PJaeP31ZRTFHjWJooDDIbKyUuDo0fa7+BqaZkCzjru+Q37RItDRsc/zxu938oUvjPHd704yMZEmEvEgSQLFok0mfvrpIUZGfnN7aFEU7ikRLhYb1OtaK+DxXlUs2pyW6elMq3N15EjbfSMJZLcbQ7u/r42hqvf0/bEsqyW3LZWatuFb03aiFUUwDJictD0TenvDLdJpIuGjvz/UUmBJ0p2048cf76XR0Dl/fh0QWFkpMjWVRZZt1+KepAtncQ3v0gyVfJkr4XnGPv0wsbGx3dfX7/s+ms39Le/R0RhjY3EmJ9Mth9lYzEMo5OTtt9dwuWRGRnwEAg7yeTvGYE/evfdzZFnE47Hl+ZOTGT7zmQFiMW/LdfbVVxfw3UfdsrNTpVBoMDgY2edSu+fzc/PmDqdOdd6zQ/ReNTWV4dKlzd3fV2VlpYggCBw50mbbDBTyrLx2jpTbSWDIh39385TdbmJjY6QnJti6fLkFVCoVlXpda3HHDMNkY8M2WhRFAb9PxlSqRNwSqihT1UzqdWVfAjjYgEcvFxiWS1z7r1exDAM50cXErMx6WmqpdRRF41e/WmZuNsPhYp3O7jCzKXs8WCo1EUVh1/ZAwlGTUBsa//iPG4yNxfD77xwe7DHsRw8orWezWIbRkgELoog7HKaaSuEOhWiWy7iCQdyhENWtLQxNw1BVmsUi7ceOcejLX0Z2u0nduIE7FLonoTY+NkZmcpLS2pptZbG+TnFtDb3RoFmr4WtvJ5BM2mpAWUaUJPtzc7mobG7SKJVw+nyEuruRJYFI3M+26MNwRvAXt2jOXkU7+BTr6yUGByOttfl+FR0aIjo0xPi/0OmYyvDSD2aZydSJpBYRd9LUPW04HBb+ZDvugRHkZhlZVVACFcrZOmtmN4KVYTDqYUs3yWbtUbyum2xt25yz/qSDwUN9H2tUwidA5WOq6tYm/vQEFaeLmhTC53IgiQKlqoDSLBB15Yl43FiVPI5YD+Gwm1KpycJCnt7ecMs5tLs7yMxMxpa5tg8iKksYuS1EXxuxmG0DX0wXkZYvI2gNnH1+hjpDuLZus/zSPMPOIa40uxgcjHD8uN1W3Mvo8fudPPTQ/uyR554bpVCw2f4dHX6SST8ul4yiaMzMZOnvtzfR+1Uo5Oa550b4/venWVzM3/FtsNjNrfCQSPgZHo7sSoBTnDzZwaFDbQiCwHPPjeD3O7l4cZP5eVtW3NbmQ9NMBgYi+04XZlNh7c03SNbWKP3Sx+W3ZLyJBN0PP0zf44/bRlfYjPo/+ZMHuHEjxe3bO+i6ycMPd3PiRJLR0di+Doium6ysFKnVbAltf3/4Pc2b1GqVndu32bl1C61ex59Mkjx2DDXYxbnz60xOZmk07Bbu4cMJTp/u/TXycYnvfGeS1dUiPp8TWRaZnc1x4cI6zz47wunTdztGxkZHWT17Fr3RuEtGaWgahqbdU2LvcEhYln2NEglfi6cTDrsIhdyUSo1dXxY7tVWWBbq6/DzzzAiBgAtRFEilqty4kSKXqzM9nUUQ7Otjxw7Yfjgej81Hmri8RK1+jV5vCSQHoimRvXmNwsRN9M5xphrD3LyZolpV6e8PY1n2SE6SRLxemz9z8OAdYzynU+LLXz6IJAnMzuZ2ib8WmUydtjbbgE5RtF2XWYlk0kc6DaurpZbL7F7Jskizqd/VHQyH3S3ZbOs+a9TRtxYpnbvMwM4Okc1htK4HkJN9CKJ9b+zJraenMx8KqFy4sM6PfjSLqtocsbW1IouLecJhD6lUlUTCh6TmELw6eSnG5GSaRMLbkuQLgoCvrY2d27cZfuYZZLcbl0vCMGzn3UymRqnUZHOzQjjsxkwt0VPYwm8U8AtOdFeIZS1JWuoEU0dPr7P4TtomU/ocHDLn0G8plIIBREli+pWLbKU0Rp78HJ4Om6fm9zuJxbzMzGTxVhz4lOpuWKd9zdxuB06nhNZUaTZERF+QQsHO0Tp+PLkLfBs4nbah4kctvdHAn0zSLJdxeL2IsownGkUpFGiUSpi6jjsSYeiznyU7O0txZYW2I0c48tWvEhsbs0c8ponRbCLdx+zNG4sRGRzEMgzyCwu4AgHC/f00CwWMRoPY6CjVVIry1hbuYBCHz0d5fR1NUTA1DQvQdChkp223764BOg92USqrFKp+rIkppOBBTp0a4XOfG3rP7vW7S5RlDh/tILLrgXTr9Rw60Nsfpbs7xNpqkdW1EpFIBG84QTzSxJTWWDEM3MlenPV1xl0C/s4BDMNE0wy6ugJ0xJ04axZdD576yNflo9QnQOVjqvTUFE7RoGswSa5i257rukGl3MQVCBKWazjNGmA/zO3tvl01gko2W291Dg4eTJDJ1NjYKFNoupDaH0S7/Rbyzgzj/e0MDflZPX+TZgjaH/scvYdHWm1xJZ8nvj3Fg90Rpgpu1tdLu/bLdsv8+edHGB7e300QRaHllXLr1g7z83kEAWRZYmwszhe+cOB9Tz0nT3YQCDi5dGmTH/5wdjcLJk4i4aWrK0Qs5rkj5bTK+xZ3h0PiqacGeeSRbjY3K5im3T26enWb115bYno6QzjsRm+q1C+9Sqi6zNgjY7SN9rT8EGZ++EOa5TJjn/98a3NKJv0888wwzzwzfF9r+r2AxJWVIvm8QqOhkUj4ePrpIZ57buQus6t6NsvEt79Nbm4Oh8eD5HJRWltj7lfnmVE62QkeIdkZIhp1U6tpvP32KktLRf7lvzxKZ2eAZlPn+9+fZmNjvzIMbDLkT386TzLpv+saxUZHaTt0iNSNG4T7+lrW7Gq1SmF5mfj4OImD+/NyAAYGwq3U4Pb2AI2GTRIMBFxYloUsi61gRp9PZmurisMhcfbsGmNjcYaGIiSTfp580g6ynJzMcOJEks7OILWaRm+vTWzd88Tw5S9hpVfY7uzHF/DS2xvC3x/n8tl5Su/8DPPQk/h8bZw9u8Zbb620bP8VRccwTE6f7rkr3ycW8/Ktb51gacmWGqdSVWo1jeees+/7UqnRGpmeP79BKORmc7PC6mqJYNCFILDLQ5Hp7Q3ddS8fO5bk1q0dGg3dHl1UiyhXfoGeWkVLK3gEk0B5mfq5DZwjJ3AfOd0KCXW5ZKpV9T2fjXdXJlPj1VcXcbnsoEdVNcjnFbq7QzgcIvPzedrb/UR1DQSBaMxLLlcnm63vk8zLLhdarYahqvYYQrQTuBcW8iSTgRZhvstYpU2/gWkYaA4/iuHAVckwwja9gTTdIQ89DgVHxsLtFJC2UwTaY7SdOoMoyzQaGlmxgS+QQZ88ix5NIMdsNYoo2h201GQH/cYKjWIRw3Dc+XwtC7eRp+aNsVAK0DCavPnmCqlUlXDYg9/v4KmnBhkailIoKC2w2NkZuKfJ5L1KcjgIdHTgDoUob24iyjKS04nT76dWryNIEoIokl9YwB2JcPKppxh5/vl9YF8QRfzJJOmpKfz3CMo1DQN/ezvDzzyDIIoUV1YQHQ5CfX0sv/56C7gUlpYob2wgSBJ6s4llWYiyg4aio6m7sR2WSbVUI79aoLMnwqEDQyjbG5z86hgHHjly12t/kOrqCtLVFeTMqRCX/p9ZXAEfnmiQRNyLyy2zsWFzq4RKDmcwxDe+8Sk+/dQYtZkxNl77KVg22BMdDpR8HiWfouPUKdqP3ls88buqT4DKx1RKJoMvkUCt1xkbS1Ktqbsx3CUCASdiXQVdRQrbJ4j+/ghbW1VSqQqqeqcd3mzqtLf7eeyxHtrafFQqScIPjtApZ/E1MzRLRRID3URHRgh27p/5eqJRlHyeA8EsT3z1sywtF9E0k1DI5sLcL9p+zyvk8cd7WV8vYxgmiYSPwcHIB5YOjozEGBmJtUznxsbi91TU2PLkuxd3n8+5TzHx2c8O0tMT5MYN21zMXdyiO5Bn8IlHiLbd2cyCXV04vF42Llwgefw44b79LphqrYap6zh9vlbHBeDq1S3+63+9SrHYoNGwVS/Nps78fJ5Ll7a4fHmLf/fvHmxtEJZpMvvyy+Tm5ogfOLDvZ829PkVl9iIjz3TiitsL+d7Ya2oqwxtvLPONbxxldjbH8nKR4eHoXZ/NXrL0jRupu4BKoawjHDwDaYX85grS2hoIArLbTceJE4z9/u/fc/QzPBwlFvOwtFTA77fN6/Z4BJWK3cmoVlV8PpPR0Si5nB3kZhgW169vI0kCAwMRXC6Zvr4wlYrK0aP2xt7W5iMQcO7KeZuExBquygbNSDs7GZV+n4fe3hDXr6co1EUSyQiSsUHooWOk03U2N0soioEs20TUYNAGLG+8scyLL47tex+yLDI6GmN0NMbMTJaLFzd2QYiA221fn0ZDR5ZtSXVnZ4ChoQjVqoZpmvT2hkgm/ZRKDTye/Uvi4cNtHD3azvXrKZJJH965t9E2V6h7k9RdNZxu8Pe3YSk11NkrSKE4zgHbYkBRNOLxD55RND2dJZertzxhmk0dVTXx+x27oKvJ+nqJWHcABBEZewTcbO4nnDeKRbyJBA6v7QL7s5/N43LJJJN+TNPO6Io4FPrVeSqik7ojiNfrwOl1IEph5GqatvxFhocPc+q5Mzi9XvKLi6z8ap561qKwtERsdJTG7jMRbuvAzKygb8y3gArYnZVVXwfdh88wP/8DaqUqkicOlonUrFCzPKy4DmI0nfg9Ms2mHfiZy9V58skBHn+8lx//eNa+RwoNwI7PeOCBDp56avB9PVYig4M4fD4iw8MEu7spra2hKQrRoSF6Hn2U0toavY8/TsfJk0QGBgj82nq5Vx0nT7IzMdEaFb27Smtr+Ds66Pv0p3H69ysjazs7bF25QmJ8nOTx48QPHGDn9m3qOzs0KxXqpQqGbiI7NASXFznWgeAQ8EtltmaKyFmTroSTkEu/72Hqg1Yg2U770SOsnT2LMxDA5bYzj0ZGouRSRWrrVQ5+8fM8+JVdj5++M8Q6o6yfP09pdRXLNHGHw/R94Qv0PPbYexrg/S7qE6DyMZXkdOJNJDC3t2mWigTCYXxeO1peVzUctRJy7wGkuD2DjMe9jI/HKZebbG7ap0TTtPD7XTz5ZD8vvjh2zwd168oVW6J2n4fOm0hQ2driSBB6zvR/qPewh85/k+ruDjI9nb2v7Nde3N9fsisItlJkfDyBZVnc+tsVUmJ0H0jZK08kQnlz006x3gUqpbU1Ni9eJDM9janreKJROk+dInHsBG+d2+K//JcrrK6WaDZ16nWNRMLbCjnc3LSN6KJRD//6X5+084HW18nOzhLu798HUkqlBpmKQCDsQ1+bwtk/3hoPiKKwO8rLkk7XWkZu9xsthcPu3fGXvWhVqyqvvrrIrVspisUmWINEpDYO9Fg8+FAX/mSSzaqHf/jpBvn8PNGoh2PH2hkfT7SUR08/Pcx3vjNBudykUlGRZQGHwx4z6rptCBiPe5FlqaWc8fttb5A9l2OHQ0JRNBwOiUDA2XKJ7e4OYhgWi4t5CltbuEoV6r4gomgysgu2stmazT3SRKxKnsz6Dl6vzCOPdLO+XqazM8Bjj/UQCLjIZutcurTJ2FisZTjn9ztbhn5gq7vcbpl6XdtHXHa7Zbq6gty6lSIc9nDwYGKf++nycoGOjgADA/vT0t1uma985TCxmJcbb90kPT2N5QkRcDs59P+x915PchxWmu8vXXnvuqurDdqg0Q7eG1qRokhKJCXNUgqZmB3N7qy7sf/Evu3DRtyN2Ii9DxMbVxpplxqREiWREiVxRJAECRCEb+9ddXWX9zYr8z5ko8BWAzQiR6Lm4ntEN6qrsqoyT57zne83amVxMUs0ahjKTYqZ+tIESs8wmawxKvwko4tUqgwIVCp3NsNk2UA8mM1GEZ/P15CDXUi+NuqJKAK+VqIuQKNSoV4ssveppxBlmZWVLLOzKY4cCZPL1ZiaShCN5rEUowi1PLo9QtBppr3dgE6CjqVSxWfX6e71Y9oucBulEmaHA9lqJT0/j7u7G1kxwvtUVcNsdaAm1ne8nnq9iSTLDDz5JFs1Owv/zy+QigXMFoW8b4ybcRephp3+foOxZbHInDnThaIY2Tv/439cJpUq097uYHjYWCpIJEr8+tcL5PN1nn9+5J50ZwDfwAChsTFiV67g7evDs2cPYIyE0gsLdJ46xcHvfvcjUQahsTF6zp5l5e23kRKJFuakFI9jcbsNLtwfFClgmFsTk5PkVldxdXYiKQqb169TzWZBltFd7YjoCFodUTGjVfJQVxCWb2LXJFLrBWxDPUy88AKpmRn2PfPMx2bM3U0DTzxBNZMhMTGBYrcjW600ikUcaoO9X36EkWce3/H7bfv3ExodpZxMtsZkdzPt/yl0v1D5E8k3MIDJ6STo95OcmqK4sYGoKDiEIslMEcXmwHL8iy3DlqbpqKrG1742zNmzXeRyRsR3X5+Xzk7Xvavrj6i6dU37k0PAPqjRUaO1/8FNntvKZAxK8Sc1HwqCQDWT+dAvsaQoVHN5isU6uYVZ5n72IpV0GnsohMlioRSPM/HjHxP/6bu8meolk6kSCtlYX8/j9RqjmuXlLP39PoJBG5lMpcWXOXEiQikeR61Wd52warWmQWH2+tByKfRqGcF2x5PicJjY3CxSKNQ+6q0z2sXbBV693uQnP5nkypUNwmEnw8PGY6ZSDi6sFqkGHWgLeW7cmEeWBWw2E2trhpH56NEOvv71YaxWhTNnOpmcjCOKRuJsPl+nvd1Ik711K47LZcbhUFhczFAuN2g2Dd+FxSKxtVViYMBHd7ebhYU0IyOhbSaUcfESRcNT0tPjJnGriKDZEUNuypUm7WEnhXwNTQNZEtHqOhoC0WgRu92GxaJsZ5borYLD67Xw/vsb/Nf/+s4Og2soZOfxx/s5cSJCZ6eLvj4v09PJXaDHvj4Pt25t0WxqLZRBtaoSjRYQBHj00bsnoRoG7CGG3Smupr1YugZYXc0Rj5daCcqKItHmhlBti/jUOlXBxuOP9+0YVWnNJpqqIplMu76DGxsFrl6NcflylMXFNBaLzJ49HkIhO4uLWRwOBVVtYjJZEGQFy/4HyPz2ZVxaDJsepJrTqOVy1PJ5wkePEj56dPvzUGnlbjgcpm2fTom56i2kqIX2dieqqhEOO+nuFonHstTjObA6WJiMQkee9ja7sba6DWYtbm1RTiZxRiIEHBqbc7OIagrB5qS+NI4c7kO02NjYKBCJONnT66X9PzzNtaiVlaUkalMgm6uTp0h/v4dAwEoyWWFkJNi6SSkWk0xOrvCVrwxis90pONvaHNjtJq5c2eDo0fCH5tKIsszI17+OKEnEJyZQl5dBEBAlCf/gIMNf/erH4i2Jssy+Z5/F1dVF9P33KW9tIUgSXadPEzlxAm9f313/n3/vXoa/9jXmXn2V6OXLJGdnDcCtpiHZHKiNOma7BZom0DR0tY5WTSM6vMhOLxVbEP/RM1j9LlYvXABg9Bvf+KPP3xaPhwPf/S7xW7fYuHqVej6PKxIhfOQIwdHRu0IXBVH8o/h2n7XuFyp/IgWGh/EPDpKamSFy8iSVTIZaNoulrUl9ZpOUqZOapRdXvka1qrK1VSQcdvLcc0O75vIfJlckgtnlopLJYPV6d/28nEgQGBr6syDmAfbs8fDAAz28/voi2Wy1FY2fSBgn/S98oe8TvV5N01lczDC5VCUztYQzIdPR4dxhMFRVjY21DBO1TfI330B4/2f4TRX2nTmEfducZvF4SG2mWfjFuwQGFVYtfqrVBrrOdnaB0XpPpyu0tTmMC6wsMD4e58SJiFFg6vquFq2iiMiyhNqoogjCrkLSCICTWnf8iiK2/BB/qEymyrFjBrtmejrJ9eub7N3r3/G7waAdq1Xh5ZensdkUTpyI7Fj5rVQaXLq0TiBg40tfGmDfvgAPP7yH3/9+mUjERa2WodHQyGSqqKpGb6+dra0Sq6s5QiE7waCNWKy47XMo8frrSxw71tFCF/j9Vvr7vVy/vtkqRO12E9axfkrxAMVqCZfL8CV90L+h5dMIgU7qJSvydrH+h8dyZSXH8nIWl8vM8HBwOx7c4E69+OIkFovMgQNtfOELfWxuFpmcTNDZaYw1SqU60WiBc+e6CQbtpFIVVldzmEwSnZ0uHn54T8tcfi+53FYcDhPzyxmi0QJ+n7XFJNrYKJCIp6kVdUa+6ODsF0Zb71U5mSR29Sqb16+j1mqt7l37oUPIZiOK4Ec/usXychZZFlvr3VevxvD7bTgcChsbBRoNbfs9UomWnDD6OCd6y0jVGPVCAavPR/8TT9Bx7Fjrzvd2YatpRpErSSLhsBPz4S42CrNsFmqAsWmWTJYppvOENQ1V1Ulm62xuZzntCxs3R7fThzVVJbe8jD0xhTm9RalawtKuULn0KwRfmEzHKVSLj5MnOxkfjzMzk8LhMKGYzfhdZkJt+nZmi9FVjkRcraiBTKbC/Hya9fU8Fy+u09HhpLPT3eqa3e72TU8nPzJAz+xyceA73yG3umrAZTUNeyiEb2BgR+fzoyTKMpETJ+g4dox6qYQoSR+ru9Fx9Cj2UIh3/9t/Q5QkrH7j+couH8XNAnqjhqCYECQFrVqCWhXRb0XwtqOZ27H6/FjcNujuZuvGDbrOnsXd9ckznm7LZLfTeeoUnadO/dGP8efQ/ULlTyTFamX0+eeZevFF0nNz6KqKyeHAoiicPXyUYtdJbi6qLebOo4/2cvJk513j0j9MjvZ2QmNjrL79NrLFsqNVV9zaAkGg4/jxe7Ir/rkligJPPjlAIGDj0qV1NjcNA3F7u4OTJzs5frzjnmOhP1Sj0eSXv5zlnXfWaMad2FIVtiobLCxY6OnxcPhwO6Io8P5b06wtlRACfhyFGGpylVXZS+qNWY6d6W+lYmaKUNVkvKUVTIqfXE5tXSgFwViLTqcruFxmTCYJu/3OOq2rsxOz2001k8Hqu+Mh8bgtBAJWElMrhPYfQLDs9Cysr+fZty9AOOykrU1ncDDA+PgW+/YFWiMgTdNZWcni9Vpb0dnj40YX5G4FjSQJxGJF+vo8u3JJrFaDCn3likHKdjhMPPXUXjo6nFy8uE6pVGd6OkWt1qDRaDI7m6JW0wiF7K1EYwNGWMRqVXA4TBw9Gubb3z7Q4g6dPt3F7GyK5eUsXV0uJElEsLspe/qo3HyHfScDLRijJApUU3EkAawD+7EvmEmlyjgcJkqlBkNDhpep0WgyM5NEkgS6uu7kgdyGUc7NpbhwYY2xsRADAz6+850DvPHGMgsLGTY2ClitMkePdvDII3vo7HQRjRYoFGqYzTJdXa6PlXXi6uqi2FDYXNygrTuMsu3PCvhtBkdquUBabuPhL+1vvU/5aJTx//2/ya6stEjo+dVVUrOzpGZnGfra13n11VmSyTJnznRhMklMTxuvUxAEFhbS9PZ6EEURq9XYhjEKFicPP/8oR46EaZTLNBuNXT4roGUQTibLhEJ3Pnuunj7ovEojI6DYjA6apun09AfwpGJouRTm7m50j521tRyK5CQUClHYNqU2KhVSMzNYbTLtnV5SOScFdz+abkJaWMLR0Dn6d/+OGzc2mZ1NtTJ7FEVkY8MwxReLDTweCyMjQQYHA5jNMsvLWW7e3GJtLYuuQzZbY2urxOJilqNHwy1PmMkkkc/XPvI9A6Mr4NmzpzX6+TQSRBGz85Odk4uxGHqzSdfp0+iqSi2fp9moophk1KaIolYR3EHIpxAcLkxDJ8iLXpx2UyvrybKdgpvdDopTazXSc3MUYkbUQ6xoZiFjp1zTaWuzc+BAG0NDgQ8djf0l6X6h8ieUPRjkyL/5N6QXFihsbICu4wiH8Q0MICkKX6gbaZ8Wi7wDNvdJNfjlL6NWq2zdvGm0GU0mGpUKFrebvU899Sd3bP+hJEnk1KlOjh3r2J7LG9sbn5Tp8c47a/z+98t0dblw9R2haklSXxynITpYmK1jlpqYGnnWplfxHj2Ho91M+Z3XILmI1+aiFNe5ll3ngefOYnE6icWKJAsC9eUYWqBGPl+j2dTRdQ1BELcpuRqZTGV7fVZvAQUdbW20HzzI8vnzrc0CQzqd7gYZs5kNIUKkqm6D7xqtlfCHH+5BFAVEUeDrXx+m2TT8H8axMiLtQyE7zzyzr/X3CoXaPc2EhUIdVdUwme7+c7/fxvJylkSihMNhQpJEjh7toKPDaXggZJFmU99OXM2haTo2m4Is3wlsUxSZ48cDdHQ4KRbrOz6vg4N+/uqvRvjVr+aZnr5NedXxdB1mpMNCqBklPj6OIIr4mjHiWZG2Uw+idA7So2bZ3CyyuVnEZlPo7jao4ZlMlfV1w7PywQ0X42cVcrkqr7wyg65rnDrVxfBwgO997zCxWJFKAT/6jQAAIABJREFUxfCrfDCm/cNAkLfXsm02ZYfB3B4MUnB0I5UXkFQvyMYdta7r6LkkNoeFbGh0e2XYjijoRH/+C3JrazvCwmyBAI1Kheh775GpKixOKnT3hxFFAbvdgCKmUmU0TW9t/nz5y4N873uHt0nfEt3d7lYhq9hs3Ots4fNZOX68g9deW0BRxFaXS/B3UHL2EMhNcvhEFytxjWZTJ+iCWlpEMJkRHW5EWcTvs7KxWWHP0RFKW1vomkZqZoZCLIbV68UT8jD42EGqsotqVUUigpiLsfT+LaaTDoaGAsiiDqJEf7+PaDTPykqWUMjOwICfSMTZeh9v3txC0zQcDjOyLBAIGMDRRKLEtasbPHimA6vDQFF8HOr450GJqSkksxmL243J6UTeHjVbhCKFWpNmswaZTQRJRvS2UTX7qJVUxvZ7kT9YQAsCWrNJYWPDuOFdXKRaMpYT0tk6YqAT+cDDrK46eP/9Dc6c6ebZZ/d9KlbS50X3C5U/sURZJrBvH4F9+3b9zGSSPvae/IfJ5HCw/9vfJnLiBKnZWRrlMrZAgODICK7Ozo9+gD+RZFncddG5rWSy3NpCCYXsu+ay1arKpUtR3G5za13RcuQLCA4v4soUzmKStfEMJm8AYeQhHB1hqu/9Gi21iSCbEGwu7EqdUnSZyddUasFBppfKlPIlGnUTq9Ui8bjBJcnna/h8VlTV8Pd4vZaWwfT2hgbA3qeeQq3X2bx2jWathihJNFWVYNDP4//Xd7mW9G9Tqw0oYk+Pm8ce69uRPhwI2Pjbvz28vQGUodFobntQgjs+G4GAncnJxF2P3W1S8r2KXSP2ficWQdd1XnttgVisyMMP70GSRCqVBj/72TQzMylisSKyLOLxWCiV6gSDdkZGguRyVRYWMvzwhzepVBq0tTkYGwtx6JAB9puZSZLPG52L/n4voeAXySwtkZyZZX5qA1EdZGFW4J2rJnzLM7S1OZBlkXy+Sk+PG0ky+FWzs4YB++DB9h1m4/n5NBMTcQqFGtVqk2vXNpmZSbFvn5/nnx/7RB3Jzc0ib7+9yvh4vDV+27+/jXPnulqfU2HgBMJCAq2wRjMVQ5AMjovocCOOnGNt3c3qz2a4eTOOXNjEM3eB3oMD+Jo68c08+Xwd0DFX01SX5ll87zpSswM908eapYepFYvh69jjplIx/E2lUp1Go0k+X9uV3vpx9Pjj/dTrTS5f3mB9Pd+KJAgceIjDZ/YgJ5fIzs1iVwQ0yYl59DR6vUozuYFud2G2OMhkM8Tn83SfPUvHsWNMvvgiJqcTb28vjnAY2WzBJdD6ns5eWGZlc5ae7g7q77xNtZRFMFlQuocIdw5SKBhFXiZjBEkGg3ai0QLZbAWzWSYScVKrNalUGtgUjS5WqY1PkkzKWO1WHK4e+sODn/hY/DnUrNUQZRmL14ujrY3c6ire/n6s+TzCepJiKktN8iCaGzR1B7KqMzoapK/vzgi82WggCAKSycT4Cy+QXV7Gv3cv71+NExck2vea0FNRpI2LRM49R6Eq8Oaby3R0ODh9+o8fFX1edL9Q+RcqSVEIjozcNT/j86xYrMAbb6wwORlvcVb27vXz0EM99PZ6qVYNuu7MTJKbN7d2BIAJihnL6GlMA4cwZ5PMzWfRHT7a2p3Uxl9Br1VRekbQq2Vo1JEsNjSbwOZilGpSoGvvMNrmIrO1DlSzjN9vjHrKZZVyOY/JJHH4cJhAwIYgCDz+eO8OP41iszH2jW/QeeIE6YUF1GoVq89HYGgIezDIaVVjZSXb2kjp7nbf9W7HbDa8FgcO7M5tuK39+0O8++4auVx1V65Es6nhdlvueScVj5doa3Ps6DCsr+eZmUnS3e1utYutVoXDh8Nks7Vt6nMZv9/KwYPt9PS4EQSBixfX0XWDsWMySdy6Feedd9Z45JFeHnus764XVk9vH29PqLwRFREtAofOmtjaKrGykiWfr/GNbxjk3dnZNKlUGUkSOXOmG6fTvMNEu7lZ5Natre0CyijixsZCyLLI1FSSn/50iu997/DHan9vbBT4wQ9usr6eIxx2tgqy3/9+iaWlDN/+9n7CYSfh7gC3us8QaTfC0PRGDdHmQvd3c2W6zMxMjAMH2unsdFFbWiebKfLO5QTv3zCAhbquI6bWUDKr2Cxgs5tBUajH18mv3sJnH0IZPg2CgM3GdrdKxuezcfHiOidPdn7ibqvJJPHcc0McPx5hcTFDrabichlZRm63hejsCu9mf41kkbBHwojeNvRahfrSLRrLU+jlHILWwHvgJEe/8zSuri6S09M0ymVKgovZmynSqQqCKNDR4aS7200pX0Ffu4memaQpyQgWO3oxR/XK6zTWZvD1PUjD5OLo0TBXrxqm9Js3t1BVnT17nIyNhVhZyTI3uYE9cwV7ZRWtJpLMOHHXVbqlCVKvv0S+7VutBN7Pq5yRiNFBFATaDhxArVYpbm0hm8107O0iregIvjZMvaMIxSSBXheOgItCoY7LaQYBsktLuDo70VSV7HY2Ur7QYCNmeKVks4Le1oO6tYq6uYyrewi73ciuOn488hffVblfqNzX50axWIHvf/8m0eidFn+l0uDatRirqzlOnowwPh5nbS1PPl9jcjJBMllmcNDP8HAQSTLu5kSzFSkQQU+YkWWRRnwdU3oT2RdGUExI/g7UzUWaaNRqOuWqhF3YRI0q1E1u4nQiCMYq+G1u0O0uRF+fh3Pnejh6NMzIyG7CqShJ+AYG8A3sxgrIsrgDlPhpNDDg49y5bn7/+yWy2eqOFnm1qvLkkwNEo/ld21WpVJlCoc6TTw60ggCNf69QLjfo7d3p/O/pcdPd7aZYNOjIZ8924fEYULbz51dIJEp86UsD9PXdeV3JZJnXXlsgFLLf1aA6OZngzTdXaG93tDAC4bCTQ4faWVhIs7VV5smzHoasVUqFOja/j+7DI/zjz0y8+66RkSJJIqurWep1oyjb2ioyMhJseXL6+33Mzt7Jpfmgkskyk5MJ4vHidqfHx8WL60SjO4P2bDYFv9/G5GSC3/9+iW996wCjo0EuXFglK7gIjN7pTi4tZZidTdHeblxkLRYZyWFBdZhY28yiF7MM9tkx06BZWaPptJEvN9FqIrY2D+mGSFGvESjPUS720XAax61QqNHX5235cNbX838UgVkQjFX4u428wgPddB4/xuxsCr/PeGzBYsMyfBLzwCFyiQxSocmxv34Yd8RFOl1BDHYx+dKviTZ8NJvGaFBTNSYnE6wuJrCn4kiFBnLfYQTTnUJa1Jqom8tojXeRDn2JJ54Y4IEHelhZyfF//s8tcrkaBw8a3jK324w7NUkpukJODlIQdDrdLo6e62ZPj4vUzAxzr77Kkb/92z+b5+5uUqtVkjMzZObnUet1I1hOkihubuJob6fz9GkK0Si51VVK8TiB/l5O/uf/jGPkCK/+3//AjfNvUW9oiHYXHpdM2KXROdTDvmeeYe3dd5HMZkRJolAoUq83CWzjGwRJNphP8VWU7iH8fivxeKl1fvhL1v1C5b4+Nzp/foX19dyOi4XJJOF2W7h0ab2VoTEw4EMQjE2FdLrCxEQcQWDHWnMiYTAqhoYCXHhxFrlSJ5Gskc3m0ZoO3GIIbStGvVgCTaVS0VnRuphWDtCxr4dy2eAhCYKxufPYY/2Azr59Ab773QN/1hVvMMY2X/7yIKGQnYsX14nHS4BAOOzk1KlODh1q54UXxnnllTlisQKCIOBwKPT0eHjqqb2cOrVzBPhBX0qp1EAQ2MYb2BkbC/Luu+vk83UKBaMFvbxs5HOMjYXw++2srhpeFqfThM9nJZOpcOlSlAMH2naZo69ejRmelbuwjno6LCz+6lVeny3gdwqtC9DmhQjHH3icZNLPxEQCl8vMykoOVdXY2ioSibh2XMBtNoVazQDvfbBQuXw5yiuvzJFKlTGZDPryL385SzSa58SJzl3PVRQFIhEnU1NJEokSe/Z4eOSRXl57bZ5MptK6ALz3XpRmU2ds7M6ITvKHKRaquOMTiGg0Vs2gFqFSRPK1Y5cESgQIhzykF9IUmxYcegElu0rFamwT2WwKvb1eJElA04xu2WepUjxOen6eXiHGXGyDuG0voc47XcpaU2ItJXDq1B7q9SY/+MENZmdTJObKlG9k8HpKhIf6sZiNAtHtlEhPT5MtFtHcndSR+WDpK4gSkq+dysoiQ4/UMZtlI4DOayWdLvPTn07fOfaaSqi5jro3Qs3sJZGo8OCD3a2sG09PD+n5eXKrq5+JUfazUDmZZOLHPyY1O9tahVZrNeqlEtVslko6jdXvx+Rw4Ghvx9vfz9Czz2IfPMA//MNNpvN7aD9qw5FepJGJk8o2yFr66Tv5ZQOV8dZbLcP07U+qpuuIt89HooSuGgb/25tef+ZT1Wei+4XKfX0ulE5XmJxMEIm47rr1o6oasViBs2e7Wh6Fvj4P2WwVWRZZXMzQ2+ttraImEiWefHIvR46Eee9VKwuLWapWBbPNgiDATMZFtSjS5mziECooTisb/kfZXG1AttrqEJTLdTQNBga8FIt1MpkK9XpzRzfi06jRaDI3l2ZjowAY20+Dg/4P5QndliyLnDnTxbFjHaTTFeB2OJvI7GyKlZUcZrNMR4eLRqNJs6khSUbS6+5xiBHMls1WW10JSRJoa3Nw5EiYPXs8iCLbWSuGkbenx1gZPX9+mXLZgCIqioF/6OlxE43mKRRqO0ZTmqazvp6/J5CxMXEBJTaO2jVK234jn0JTVbLLy2z89hd89evfYnY0yKVL0W0fjpG7093t/sik0vn5ND/96TSSJDI2FmoVmysrWS5ejBIIZHC5TKTT1e1wRRNerxHjH4+XKBQMb85jj/URCtm5dClKNJpH1/XtUUpwJ+28VqaazWFWi1RNHlSrB0tDQ2vUaGY2EW1umv52rDYTR4+E+c1vF8nkBLStOEmljG97/TkQsG1vm5k+sztjTVVZ+M1vWHv3XWq5HAAD5Rxr568xFT6Iec8otZqKrsOhQ+0MDQX4/vdvkE5X6Ohwsmr2s+U9jJi/CTdu0d7pRxF1dE3D3dVJcgXMXh+JhBHYJn/g85avSUi6yr6unSOsAwfauXgxyvx8mv5+L1SKaOUiotVFIVenq2tn4KTJ4aCxvExqbg5RUbB6vZ8qEO3TSlNVpl56icTUFIF9+1owRF3Xya+tUU6n8fb1USsUEICus2dpP3yYsjnI//yfl3nzzVUGBrzIHftw7j8ITRWfILC8WuDNayUOP6ji7upi6/p1ADxeK1arcb5zOgzsha7WED3GDdvWVonBQf+nAjt+XnS/ULmvz4VKpTrVqkowuPtEU62qpNMVzGZpR1x4f7+PUqnB/HyGtbU8N25s4vEYbJMzZ7p59NFeNE1HDkZQbT7sapZKI7R90dZxeF00zRLNcpScdwjF6cFuz5LP18lkqrS12clmjY0bs1kmkzFWxw2zZ42ZmSSFQh2TSWJgwLfD8/FxFI+X+MlPJpmfT6Oqxp2yJAn09Xn52teGP3YKsMkktf62rmlszCzx4t9fJlcUOHOmd0f3JxrN88orc0Qirg9s1FR49dV5rFaZSkXG5TK8IKqqsbaWI5WqsH9/iL/5m0NEIi6aTY2pqST/5b+cZ2YmhdttIRx2GMF7VZX19TzZbJWRkcCu52qQc40k2z9UMxOnsTaLag/syPkRZRnfwADx8XFKc+N84bnneOihPYTDdq5d27rrKOQ2iPCDwMfLlzeoVBq7guAcWp5uKcrKhSUScyGqZh8IYqvo6uvzYjIZyby3X8OhQ+0cONBGYTuH5H/9r2vE4+Udx7q+Mo0qWah596KU4kjlDFqzaGRnWB3GZo1iIAtGxzpoqDo3Xk9i6Q2y73RPq+hsNJpEo/lWBsxnoeU33mD+tdewh0K4OjsRBAH/kEpwYoFEYhLB1YW7f5Dh4SD9/V7+/u+vkc/XWl3LYrGOqWcIVe5hZXEGRdbp6vYit3UjuvwkY9+nPWSjipnNzaJhBJWMlF2bRaSvz0Nv/87PRyBg41/9qxFeemmaqakkcqOEKV1Dl/MEu9o4ejS8o4DPrqyQGB9HrVSw+nxY3G7CR4/S88ADf5aCJbO4SGpmBk9fH4VSE61YwWaTsVgU3N3d1AoFTE4nobEx8lGj0H79lXHeX5Z5+9Imug63bjWYm8vQ3+9ldDSEJBkju/n5NPPzaXrGxli9cIH8+jquzk66u91MTSVRFAmllES0e5DDvdvHHE6d2t0l/EvU/ULlvj4XsloVzGZp+wKz82N5m2eiKNKOE5UkiRw82E4k4uLixXU6O10cOhRmdDTIwIAPWRa5ejVGuQZHvv40+Xd+Tb1WJKs5EYCgC+rJTapWH1tiN2azjKJINBoa6XQZu90g4Pb2GobZVKrMl740wPXrm/zqV/PE4yUEATQN3G4zp0518sQT/R8rk6NSafDjH08wO5tiYMDX6gbU603m5lK88MIE//bfHtkR8/5RSk5Ps3L+PJPv3CR7M0Yo7KXa6Me07xiSy78dzy8zPr7Fz1+6yZdP29BLOW6OJ4hOlHn0kWFmZtMsLmaIxarcbi7nclWOHg3vuMCLorEy7PdbW0FcYKwut7XZmZ5OMTISvCs/6uDBNl5+eZZIRN9xEm2mY9QKBRRnpDV3/6BsgQCJiQkDHKconD3bw+ys0Y364HZPo9FkYSHNwYPtrffOMGGndnQktGqJ2s23kKPztG2uo2TKuCouLJFeyl0nKGNibS3PykqOZ58d2lH0GMdAaHWLjh2L8MIL462NLr2pom4sYPIG2EiKOEMh2tsF5GoWdXMJ0duOXsqjlfKtxxjsd5GbdxL1dbfC8Mplg/48OhriiSd2+57AKBqmp5Nks0Yh3dvruWt6taaqJKenWX/vPaZfeslYmfV4jLRqSUKSZXoO7sM+M0OoPcuh50cRBIG5OaM719NzxzguSSLNpgpuL83uQ8xLInsO9aGYJHRdR3O3I9eynHnkGJubRbY2izRUw0/kUcq4nL5d3C0wmGD/8T8eY3Iywfp6gZx5HiWxwMDp7h3f/cziIitvvWVs4fX2otjtVDMZZn/5SwobG4x985v/LHHvuq5T2NgwtilLJUxOJ/7BQZzhMLn1dWIbWZIbJtIZoytntRqwy8G9ftRqlVv/8A8EhoaQbTbWltPMzyWxhnsI2UeQXF6sVoVyucHUxCa20gZdviYIIkJGopAfwTnWzeDTTzPz858Tn5igx+ei4muwubhGQ7LQHDxHbVXF61X48pcHP5Rs/5ek+4XKfX0uFAjY6Olx88YbK/T2enA4THg8FgTBuAOv15tYLPKuNqYoGt6Lffv8fPe7B3fdXSeTRk6LvX8Ek1mhNnsFbX6Jej2P2HBS9/dS8I/RFjHozKII+XyVSsUgJY+OhgiF7NtGSQcul5kXX5xCEGB42AhU0nWdVKrCb39rZFXc64LyQU1NJZmbM9ZoP1jYCAK4XGYuXjTSY597buiesMgPKj4+zvgLL9Aol6mIDvCGkcwC9fkbNLMJavseZXypQTJZohpb5eKlF0n/WCUScZBMlHBWBVRpjdFDj9DT4yEeL6GqGhaL3PJKfFClUgOXy0S53MDpNO/YKiiXVUwmcXs+vvtu7tChMFeuxJiZSdLX520VpsV8hUKhTs+Q665r+qIso6kqerMJisLgoJ+vfGUfv/rVHLduxbHZjJh5VdUYHg7y3HNDrRGXruvbFGXj+ehNlerVf6KxMkXd6qdo7yBfKSMLAu70EqLWoNHzEKIoUCjUCASsH3pnevBgGzdvbjI1lSQSceFxCGiqiiBJaJqG1e3EHvGja50ICKipGNVSBZtfIhx2UM3lKKyucva5B+HgF7kxkSGVKtPV5eLIkTAHDrTtYBfd1s2bW7zyyhybmwVAaGWQHDkS5itfGWwVwGq1yvRPf0r08mXKySSleByTw8HahQu4e3oIHz7cGlU42trILC1RSaex+f0UCnWaTW3HaC0ScXL9+tZ2crNMsdigVjMYRZWKitA1gtc0QTkWpbOzk64uo3tXTqUoxgpEHnvwnunYTqeZkyc7OXkSUgdkbnz/+5TWV5C7uxFlmXqxSPTyZXRVpfPsWaw+H816HVsggNXnY/PaNYIjI3SePHnP9+uPkaaqzL/2GmsXLlArFBAlCa3ZxOJ20/Pgg0xOJZmdSaEHnbjdZkRRpFxuMD4eJxON40pMIUkiwbExmhpsLggo7Q5slRj+bJm46SGsVgWnUMQVf5vSepxyxAGCgDmvEv9NlsrQvyZy4gS2YJDN69dJzc5y8LiD/U88QM7aSdNheKSGhgL3jH74S9T9QuW+/uxqNjXefHOF2e27+fHxOH6/AbUbGPCRy9Xo6XGjqhr1utryUGSzVVZXs1y/voXPZ+XSpTWaTY2hoUDrgmSYEI3Yb6VzL3K4l6R3jo2ra/jCAdJ1GxarzMmTEba2Sqyv51tkYIM2q7O0lKGry80zz+zjzTdXyOdreDwWlpayKIpIKGQnELChqhqXLkU5fboLl8v8ocTT+fk0kiTuKFI2NgqMj8fJZqtkMlV+8IObrKxkeeihHs6d67nnhbJZr7P4u9/RrNUI7NvHxo1NNCpgcyBbnZRX5phdO8+m/QAhex1b9QY2uUzT3c9sBjTRgcXeoLE0DoDzxJO4XHcMqNWqSqOx08RZq6n09/spl41o+tvHul5vYrUqDA8H7ulDCQRsfPObY/z85zMsLWVb7B2naqGj083YsA/hLq+1ksngHxhA+gCT5MyZLnp63ExMJNjYKGA2S+zbF2B4OLAjlddiMRJox8fjBAI2mol1GutzyMFO0tkmul7C57NitcqkG1asm8tUhQiBvjH6+72tgvdecjrNfPOb+/nNbxaYmIgT26hhrlpwKXlOneohk6kS2yxgs5nQPXuoZquY9RIRj0ppaRaTw0Hn6dMMPv00Frebk2d3IwT+UEtLGX7yk0nq9eaOFNJstsqbby4jSQJf+9owACtvvsnqO++0iML5aBRnOEyzXiezuIggCLh7epAUBUGW0W8XhNvHThBodYvACMxbWcmytVXEapWRZQFZFimV6iwuZjjy4DFODR9g8be/ITE5ub09p2Fxu+l7/HF6H330Q49n67h2dNB1+jQr588Tn5hAlGWKMQMZEDlxAlFRWD5/nnqxiCCKONrbEQSBjfff/8hCpdnUWFrKMj2d3KaEm/D5jDFmKOTY0SkEWL1wgcXf/hZ7W9sO824pkWD8Z7/getyDbFLweI1jCODeHqNujd+kWU0y+Mg5REkinSlRzJXwmuuIJgvB+iqbiTV0WzeO5beRGltkRT8NTzv1RhObtQGb80z+4z9y6G/+Bm9vL97e3k9NVf5L0f1C5b7+7Hr99SVefXUOt9vMk08OMDeXZn09x/Xrm6yt5XnqqQG+85393LoV5/LlDex2hXq9ydWrm6TTZQIBG/39Xq5e3eTWrQSPP97HY4/1IQgCXV1uzGaDpmuzKQiSTNvQAPKGRKquUak06B/woSgG88XrteByGc/D5TKjqho+n5W9e/0Ui3UuXFhjbS2HquqAcZfucJgYGgqwZ4+bW7cSvPzyNNlslUKhjt9v5ciRMPv3t+24I02lyqyv59jaKqJpOmaz3ArjCgRsrRRRVdV4+eUZZFnizJk7wU3JZLmVTivnNsitreHZs4etrSIbsSIrK1mSyTIejwW1qEB+gfDxw1gTK1BKYxsawet3kMlWSSRKqGYZbyiCGp2nmdpADhpbQZqmb4fO7bw783isyLLA8eMR9uwps7VlrEo6nSY6OpzE46UP9ez09Hj49//+GHNzaZLJMrIsEmk/TuznBXKrq1gHB3esnNbyefRm08A//MGJ+eNQvQVB4NixjtZKuyO+CrqGYLKgqnlqNZWODif9fV5K5QZqvEpne5XgQ3tIJkuUy2rLjHwv+XxWvvnNMeLxEqlUmdyMhdTrL+Pp9pOrSqyu5kgkymAy07k3QtfAMY5+4zlEWcYZDuP8A+L5R12A3nsvSi5X3QXx9HgsaJrOtWsxzp3rxmOH6OXL2Px+THY7jVIJXdep5fOIskwtl2PlzTdxdnQgmc0IGGyy2x2P3l4P7e0OYrFiy9fkdJo5dizCtWsx5uZSdHQ4WVjIYLEYqIKvfnUIt9tCcHiI1MwMtXwe2WLB29+PMxz+0NcFoNZqrLz5JhuXL1NJpYzAM0nC09uLt68Ps9uN1mgQe/99RFlGsdvRNY3M/Dzadhp3s9FAUu6eOVOrqbz88jTvvbdBtaqSTBrfx0ZDo6PDxZEj7Zw4EeGhh/ZgsRjIgPV338XscmHz7+za2oNBVuY2KcaitHd1oybWkdt6WpR0SRRQCjGqooy7qwtd08ivLCGtXqch1hEFsBdy9NXfYqvcj1DZpO7ppFlqkM5UMZsl9h/ppD1iIzE9TWp2ltDY2Mf6jPxL0f1C5b4+U6mqRq2mYjbLHytkKJksc+HCKoGArcUiCQbt5HJBymWDWHzwYBuHDoUZGgrS3+/j7bdX+c1vFlBVjXPnutmzx9Oa8yeTZX73u0V6ejwMDvrp7/cyMhLk2rUY/f0+bDYFq1VhaCjAG28sI8siLpeZYrFOOl0hn69x6lSERx7p3bV5c/PmFhMT8e04dnsL0pbNVrl4cY2trSJzcykymTK9vca8eWEhw+RkgsOHwzz//Cg2m8LkZILLlzeYnk61vBXLy1lqNZXRUSOwrFpVCQRsRCIu1tZyvPnmCocPt5PL1XjjjWUmJoxAPJNJolPewpsskpVK3Lq1RbWqYrebKBbrVCoNStkqfksDoVGlsT6HxeHCuz1acbvNpNMVmk2NQl3C1qjRTG+2CpXl5Szt7Y5dBtTbI6tLl9a3Ccsm2tocuN1m8vkaug6HD3845E9RJEZGguiaRnFzk2ajhPmRR5j71a9ITExg8fmQFIVKJoOu6/Q88ABtBw9+jE/h3TU6GuLxx/t5/fUWoQOVAAAgAElEQVRF0gtxrMUmzUSJfL7egkJKkojLaabZcCBYDHBeoVCnv9/3sbkpoZCdUMiONvggsxhFgCSKjPR4aLRbqGWyODsGGfvmN+9J3v0olcsNZmZSO/g9H5TXa2Fjo8Dycpa9wTrVTAZnJEJqdpbM0hLlRIL03ByCKCIIAoIsY3a5ECSJ3PIyFr+fxNQU4cNGbP8jj/Tyj/84wfJylo4OJyaThNUq095uBAeeO9dNKGSnu9tNb6+31f2zuN1ETpz4RK9NU1WmX36Ztbfewur34+ntBYzORXZxEXtbG7VCgXIigdXn20H9NTkcZBYWSC8uotZq9yxU/umflnjrrVV6etwsL+dIJEq43YYRP5utsLJi0LETiTLPPz9KcWODUiJx7/fL7kWqxjAPPEx9AdTNZQTZBJKMVi0iizpNbycWf5DM0hLF2QkUoYmqODFLKkIhQ7C5gS21Tl4OkMoYNHWfz8LIcJDu7YBFXddJz8+3CpX/v+h+oXJfn4my2SpXrmxw5UqsxVY5fryDI0fCH2oInZ9Pk05XdtwViqKA12vF67WiaTrXr2/xhS/0Y7HInDgRodFQWVpKMzIS2mW8DQRsxONFrl2LMTjoR5JEvva1YXRdZ2oqSb3ebOUKnDvXjd9vo1JpkEwa66Bf/GI/J09GdhUpmqZz61Yck8kw9N6+kykW66yt5YnFCly5Ettm9ogMDPhbHYVqVeXKlQ3CYQfHj0d46aUp7HZle5yl43AoyLKIrkusreWo15vYbAodAQmtlKctaGFhKc/VqzHefXedlZUskYiL9nYHlYrKwq0yplsJqvPg8TkIRFz4/TZWV3Nks1W0apV0XSMXqzBsgnCbG8v2cRMFAatVJhx2kEpVSKdrmBNFdEeeTKaKz2fl2WeHdoxxGo0mFy6skUoZK+VGMq2M3S4TCBgX6Qcf7NlV3NxN8fFxVt9+m+zyMmqthtnlwrNnD76BATILC2iqSmh0lPCRI4T270eUPtqofC+JosDjj/fR1+flnR9tsPH6AuZtFMDMTNIo8La9OFqtjMkdoFxuUK83OXr0o7sAu/6eJDH4la/g6e0lduUKhVgMs8NBz/ZaqqPt3snDH6Vm02Dz3N5E+kMJgtCiSwuC4ZeJXb1KIRpFtlhw9/RQKxSoJJNIZjOK1Uo1m0VUFNoOHcLm97P4u98RHB5Gtlg4frwDQYA33lhmcTGz3QWUGBtr44kn+j8R8fyjlJ6fZ+PSJTy9vR9gZm2T4Z1OMouLlLa2aNbrNOt1GqUSgiS1flcym5EtFtKzs4SPHNn1+Pl8jcuXNwiF7KiqzsJCBrfb0vJhqapGPl9jeDjAlSsbHDjQRsTSNEzH9wiWM1kM473g8GA79yzqxiJqbNGAz/raKFg6sJZi6Gqd1MwMZpsFT5uJxNwSaGXERg1JMeOoJLCZS8iBDgb293LqVOeOGz5JllFrHw/G+C9J9wuV+/rUSibL/OhHt5ibS+H1WrHZFLLZKj/5ySQTEwm+9a399/QrVKtqC8inN+qoiXX0ehXBZEYOdmKxyFSrKtFonvHxODduGF2NtbUcHo+Vrq7dMfQWi8LUVIJ6vYnJJOHxWPjrvz7E4mKG1dUczaZGIGCEwdlsCplMtRU7f6/8ks3NIhsbBcbGQq2Cp1pVuXFjk0KhhiAIqKqGw6GwvJzlZz+b5umn99Lfb2z0+P22ViGztVVidDSE223h+vVNNjYKVCoNLBaZVKqCV8hxrKeAcjlJSWsiWJ2IhHn3LQvL62XGxu4E4imKhPPkGFevnqeeWKNrzyEArBaZgX4v2WyFaH6VJaGPSF87/dIwwuZs63Wp2xeyvQN+Bgc0Ft5LUHR7UBwmjh+PcPhw+66xyvnzK/zud4uMjATo6/OwtGSMmYrFOltbRb74xX6ee27oIztqsatXufXDH5KPRlGrVcMoq+vEx8fpPnuWo3/3d5idzl1E4E8jQRCMVfJ/9yUuNw1vhrMjiM2qcPVajM2tIg6phqRJ5MQ28osZTp2KfCjO4MMkShLtBw/SfvCgYa4Vxc8kRdVuNxEK2Vhdzd81J6NSaSDLIn6/DUe7HU1VjdXZPXuQTCY0VcXscCBKErVcDrVeN3APw8MtHlh6fp7M4iLBkREEwRjzHTjQtt39a+Jymenudn/m66+JiQk0TdtRpNyW2eVClCQalQqlrS2KsRiiohiFmaIgWSz4+/uxeDxUs9m7Pv7GRoF0usK+fX5mZlLUaip+/51j6HCYW0BSURS4eXOLvU93YXG7qaTT2IO7C3CnXMPi8ZKqKLQH7Zj69mPq2w8YhX0+56DP3yA1NUW9UMAWDGKJL2KhQq3eBLMb0d6OVm0g5BN0CVEOjx7e8R3SNQ21VvtYo7N/abpfqNzXp9Zvf7vA7GyK0dFgqz3u81lpNBxMTRlx6c88sxvCCOB0Goa16so06sx7NLNJ0DUQRCR3gJJrCFPPMD/84U2i0UKLslwo1HnvvSiJRJkjR8LIssjWVpHFxQzz88as/L//90ucOBHhxIkIFovM4KD/rpkbHwcEqaoaqtpkYMBHpaKyvJxhaSm7HZAm02gY/oW2NsOEF4sVOX9+pdUG9/msrK/nmZpKYrXKiKJAd7cRmLawkCaTqaJp0OvIMVQbx1s0ITh9YLJQzaYxpxaJF+K0n35i14VBkBWqHQfQUr+nsLKIqyMCsgmhVsJVi9PY28tkZi+KImHrHaa8NY9WyiPaXUZh5LUQCNrILy1w9OEDHP9P38Rkv/tIoVisc+nSOj6ftXWBbG93UK2qaJrO5maxlS3yYWqUy0z//OdsTUzQrNWQLRbjAlqrUUmlmPnFL/AODDD0zDMf+Vh/jBxtbQw88QTTL79McnqaYDDIkWEHS5Mr5LMVKj1H8PT288WTnXftsP0x+iwLLlE0Coe5uTSFQm1H11LTdGPks9dPX58XWRYRFQWt2URrNpEAbdsoa7LZECUJ2WYjODKywySqaxqN8k4Tsdks7wi1++dQJZNBttybjNyoVqkXCigWC8gy9XKNpqpCuYoNAWdHB5qq3vN4a9qdDbBKpdFCb9yWIICuG2Zmm00hna5g9XppP3SIxd/9DvM2Abn1fCoVKOcYe/ws78QF6qs5I+ROFslmq0Sjefad2M/poQFmfvT/kltfpxiPU4rHsVms2L0+GvYQKgpSMIgg13DpOarJLezeOzcJ+fV17MHgXxy/7bPQ/ULlvj6V4vESk5MJurpcu2b4RmCWg+vXN3nooZ5d8DyAwUE/QRIk33gNl1NBDkQQZAW9qVJLbqIu/RONJuT8va1ofUkSWF8vYLcrLC1l8Pms5HJVLl5cp1g0VinHxkJsbBT4yU8mWVnJ8vzzo58qTdbjMRJKi8U6R4+GsVplJieT29kuMiaTcWIzmWQEwUh/jcdLLC1l6O/3bRsxBWT5zhYSGEWSz2cUUhM3onTFZrCaNZTwdiqrrpPN6ni6PZTX57FkBqFjNy9I7NjL8mqBPmeOZi6B3lQRTRaUnhHa+47gOJ9mc7PItNOL1bYXYfkGWnMNu9/HQFuAzMwUtmCQfc8+e88iBYzAuESizL59dwo+QRBaGza3TZfxeOlDycXp+Xk2Ll9GrVRwdnTcGek4nWiqSmZxkakXX2Tvl77UWpv9rNV15gwWr5foe++RXVrC5xTp/upZnPsO4B0ew+O1fSYFyj+XjhwJs7KS49131xDFIm63mXq9STZbpbvb2FKTZZFmo4HV6yUwPEw5kaCayYAgGEWIKOKKRAxGTLXaeuzmNqPmzxGcZvV6USuVu/5M13VyKyuYnU7qukKmYaFCEU3UEGQT1UYD6cot+k4duaef5DZjKp2uYLXKSOUUlsQ66DpNs5NMw43TaeQDxeMlvF7jvNX32GOUUym2bt5ENpuRrVYapRKaqtJx7BjDX/8rIjfTvP32KktLGVRVw+Uyc/ZsN1/8Yj9yJc2yy4WuaS2DsMlux+ay4dkTQFIUqlmZqkekWasRu3rVMDTrOpVUCpPTyd6nn8YW+OctFD+Pul+o3NenUiZjZF/ca+vC47GwvJwlk9lN+QVw2BWGrFFuqHWSzQDuBkhak1JZpaS6cDsaFFZu0nNof6uTEAjY6ej4/9h70+A47vPO/9PH9Nw3ZjC4T5IgwPsQJVKkLFvUESeKnMiyEzvHpsrZ2nKl6l/Zqq2k8iqVF9lUpbZ2a2s32Ww22RdxYjk+FB+yJce6SYmHeIEACOI+ZjCDue+jp7v/LxocCSIok7KkWGt837BANKaPmel+fs/zPVwsL+cRRYHXXzfD8W51NWw2mVyuzuJijn372rl4McbOnUGOHeu+bf93C4/HyoEDEV58ca7VTbDbZVwuBcOAVKq88a+ptLHZzC5LPm92F+JxUzFx4ECEGzfStylIhocDlOZvoE6u0xweplJVUVWdYrGO329n774wF9NJqnMTuHcfvG18EAjYuWLrhCOncDrrpvupzYnkbaPR0OjoaKCqOleuJqlVw3iaexmwrdMdEAl1+OjYv4+OQ4c2KU/q9SaVijmSulWIvBPQuHW7X5LE1jbvh+LaGtVUCldHx228E1GWsfn95JeWKCUSeHs+upj60O7dtI2MmEqYjXHDz1PA3ftBlkU+97kRduwIcOnSGmtrJbxeC5/6VD8HDkQIbpjmiZKExenE19dHeHSUUjyOWq1icTioJJO4OzspJxKbOhCF1VU8nZ34h4Y+9vMKjY2xfPYsjVLptvFPaW2NeqGAY3gPK2/fRCunsAeDWBSFpqZTyeaI3VggcuLTuO+QqhwI2Nm/v52XXpiiLX2FnrUrWIUGskWiqYEfPx0PP0azqaPrRmvsp7hc7PvSl1jfv5/4lStUs1l8fX1EDhwgNDaGbLVy/LiTQ4c6WF0ttBSD4bCTWi7H5WefRdc02vftIzM7a3YS7Xaq6TQAvv5+GuUyHYcOodXrqBXT6VgQRXoffJCOw4c/MPn6k47tQmUbPxMsFglJEmk29S1Xn6qqIcsiFsvWN//i2ho+8hx+aC9L8QapVAVdN3A4ZIaHI9D0c/3sJEo9B66NsDdJ4NChDgTBnB8vLeWwWCR8PitOp5WeHg9Op2J2EG6k6Onx8PbbMe67r+tnkvM99FAfsViRiYkkzaaGrhskEmVU1eTCuN1Ky/jKlCILWCwisVgRXTd44IEeduwI8NZbUaan0+zcGWzNoBVFwmttIkecuENu6nUNSRIYGw0xMODH7bES6WtnYXadtnoNyb55patppoNuOtsgGGprSaGrVZXx8XWKxQbd3aZ5mMkJ2k+p1GA+WWTnwZ3s/KWdrdfK5WqcO7dquvpuOAUfOBDh2LEuQiEnfr+5Gt0qdyadNknJ7575b4VmvU6z0UC+g3uosGGm9d7Rw4eFdLrSUkf5fLYt+RCfBMiyyIEDEQ4ciKBp+pYme4IoEjl4kBvf+Q6e7u7WirxRKrHy1lvkFheRbTbsgQCNcpliNIqkKAyePr1JUfNxITA8TNd997HyxhvYg0EcoRAYBuVkksLKCs5IhLjqpRYYIuCKoZdyaFUdAXA5rJSMAIt6F7pu3DbWuYXTpwdZ+/G/sDpzBcHuYq0sIugCNotBu1LAOf86s5rM0YdGN5HCZZuNziNH6Dxy5I7Hb7PJtyV2J8bHyS4sEBodxRkOU4zFKMZiSBsjuUo6TTWbJbxnD/7BQbLz8+z4pV9i+IknTP7Nhzg2/CTiF/vst/Ezo7vbQ2eni1isuCXzf22tRH+/946eGlq9jq6qdA4G6R6SKZUaZuqnAIn1CpfGs6yv5Ym9epPurjXCLg2L1YIS7OC++zpZXS2QzVbxeKx0d3vweKytTkUo5CCdrtDe7iSdrqKqWxdTdwuv18aXvrSXS5fWOH8+isUikkqpdHa6WtLGfN70T0mnq7jdCtWqmWT65JO7OHjQNKN6+ulRvvnNSaanUxtdIlOd0dUdoN/bRd/hIZqasVHgvXO83RE76ZSTGzNZuvtE3G5rK1vH5VL4gz84xtRUirk5MzvIMGjJSNva7JtIuGD6v4iiwFvnYtx3rJtg0Ay/+9rXrjE9bdrNezxWqtUmL7wwy9RUkl/7td0MDvp5/vkZZFlsKZS6uz2tdvpTT/VtMlvbCrdsz7ciJxqGQaNYxB2JfOijh+XlPK+/vsSNG6mWOd3eve2cPNl7R6nvJwXvJ5/uOHiQxNWrpKam8Pb1mTwLux1/fz+NQgGb3085mUSyWAgMDdF76hThsbGP8ejfgSjLjDz1FPZAgOj586YhHWDfGE3efOUs6Uvr+DrCKNYIejGLUa9iCAI0VezFAvGlJMvzKQZ2bPaYMQyDYjRK7OJF2gvX8R/uI617WV0tUCjUkWUJyeZHKEZ5YLDOU0+Pfijjv/XxcZQN8rLN58PR1kZ2bg61Wm2NNnVVRVdV8svLKE4n4b177yiv/kXDdqGyjZ8JiiJx8mQfzz57nWi0QEeHuyWLjEaLCAI8+GDfljfRbLbK1HyFeKZJXo3Rs6sbt9tKpdzg/IUYa2tFJLWMLGpoU6+RmqhSc8q0h53ITidCZIhK3s/wcABNM1qW+7cgy+YYIp+v0dXluStfl62wuJhjfDzBykoBRTG9P37jN/YyOZnkpZcWUFUdXdcRRQmnU6FW03A6LQwM+Hj66VGOHu1steEBenu9/Pt/f5ipqRQrK3kMA3p6PPSF9jP59ys0chmc4ffcYHUdqVHk07/xCDfp5ebNNNFosZXt8qlP9TM2FubkyT5mZ00+Cphy7eeeu0GzqW+pzmhrczA5mWRuLksw6OCVVxaZmkqxc2cQu11GEARcLoNKReUHP5jhtdeWANMV1TAEvF5zxT0+nqCtzckXvzjGiRO973s9KxWV1aoHPTxEanocVTXwhAOIsmmsVc1mkSwWIgcPfqgKh4WFLF/72jjr62W6utzYbDLlssrLLy+wtJTjy1/et6lYUVWN1dUCqqrj89k+0YWM3e9n72/+Jje//30yMzPkl5ZMblEwyAN/+IeE9+6lufHQdHd2/puPv2SrlaHTp+k5fpxyIgGAa6NwTawV0F/+ZyyREIIgmjlWlSJqbI5mfAHB6oQbb3Dtb8soTz9B55EjCIJAvVhk+nvfI3n9OqnpaTKzs7giEbra2znySwdAMbluhgHkXXiUJHb7vT8iK6kUycnJVsfEPzREvVRCspgS5uzCAo1SiY5DhyisrNBsNNBVFXswSGF1Fa1e58Qf/RH+Df+YbWwXKtv4EHD0aCeNhsZLLy0wNZVssebDYSdPPrnrNmmnpum8/PIib7yxTCZTRYk7sFwe5+ZKnV0jISaurzN1I4XdJuErL+ESqui6Bc3bQbxhIEle2q0Gmcvn6W504T/4BKvRIuWyepvttaYZlEoqhw5FPpCM8tVXF3nhhTlKpQZut0KzqW+kNJsR648/Psz581HSaTOETBQFPB4rx4+bHYr+ft+mIuUWnE6FI0c6OXJksxtp/v77mf3RjzB0HWc4jCCKqNUquYUFPF1d7HviIR4Ih1lbK1EqNbBaTUfdW4WgLIuMjLQxMmK298vlRiuzZyuYowIzDHF8PMHXv36dTKbK6mqhJT/NZKrMzmYAg6WlHLIsbcjNhRYfx2qVWsXinfYFcP36Oj/4wQxra0VEeT9WdYncYhZPpkTQb0O2WbH7fDjb2xl69NEPreWt6wYvvjhPOl1hbCzUKmjtdgt+v43JSVOd9vTToxiGwaVLa7z22hLRaJFmU8ftVhgdDfHII4O0tTlIJis0GqZE926ymH4e4Gpv5+Dv/R6FlRWqmYzp9NrXd8fMnZ8HKE4nynt4GYMPP4T87beorszhaDPHQo25a+iFNKK3Db13H5JmwagWmPzGN0xH4yNHmPrWt4i9/Tbe3l68vb3UcjmsHg/F1VV0VaXngQda6dQlw4GuqmzIg+76eNcuX+bm975HOZlEtlrRNY35V14lvpwinalR9xURly7jsem0+d0Ed+2ikk5TWF1FcTjwDgwgyfKWgY2/yNguVLbxM0MQBB58sJe9e8PMzmaoVps4nRZ27AjeVjgAvPbaEj/4wU38frvpTNr3Gcpna6Rmpvn+lTkKVQG33cBeKlNraOi6hZqnA8kQaTabLC3lMHq9BLu6OVgvkVCzDAyEmJxMoqqmoZumGZTLDUollVOn+jh48N5X5tPTKZ5/fgaXS9k01tI0nQsXYqys5Hn88WFGR0PMzmY2CgeZ/n4vbreV2dnMPRdHQ6dPI0oSq2+9RXJqCgEQLRaCO3ey47OfbZmEvZ+i5t249SCOx0tbyrBVVUMUBdbXy3zzm5PMzmbo6HC1/s98P1WGhgLIssDycoG+PiddXW7SadP6/tSpPmw2mUSixPXrST7zma2J0/PzWf75nyeoVFQCATs1+15Ei46+dIVUOo4iuujtDOLt6aH/05+m4/Dhe7p274fV1QLz8xl6ery3cTgkSaSjw834+DqPPDLIjRspvvWtSWRZpLfXi6JI5PM1zp5d4fr1ddrbXayvl2k0NFwuhf372zl5sg+7UEOr11Fcrp9bzosgCK0H9ScVPbt62fn0F7n83Z9gN+I0o7PolQJy/xhyqJtEwYzO6B7rprC6ysJLLyFZrSSuXSMwPNwytwOQFAVnezvlRIL1+WUqSptZ3CcW6T96CAOBu/0G55aWuPGd76BrGuGxMQTRHI1ePLfE2nQcqZpDLpZQYwskNJ38aoxQVxuKzUJ4zx76H3oIxeUiOTFxRw+YX1RsFyrb+NDg9do4fLjzfbcpFuucObOC12t7h7fi9uM68cssFF6hELuMZKh4wgHq/l3YMnNoOhhNk61vtUrk83X272tnx84gy29foWbkKNs6iERcXL2aoFCo02zq1GoqXq+V1dU8P/zhLPv3t7N7d+iuR0CXLsWp1zWGhjY/dCRJZO/eMPPzWW7cSHH0aBd7927uGsVixQ0L/LsrKG5BlGWGHn2UrvvuI7e42JKW+gYGPpAr6y2/ja9//TrVqnobd2RpKU8w6GBiYh1V1Whvd2K3W7DZTEVTJlMll6vTaGjU6waaZjrpgvl+rK2ViMdL9Pf7aGtzcPNmmmSysmWhcu5clLW1IrWaxrVriQ0eTQi34yRtjjRySOEzXzjKwJG92AMmGbFYrLfGWJGI631djt8PpVKDWq25ZeEMJl8nlysQjxf5yU/msdks9PS802nw++2Uyw1++MNZuru9HD/ejdUqUyjU+cm33mLmW88yFqlhkcDicBA5cIDeBx/E7vd/oOPdxvvjkScPEi9ILE4uEs4XUII9qM4QqbwZGLp7txlM6u7oID0zw/Lrr6NrGpYN8rarvR2b10sllcIZClGsNFl8ZZyifydSswKlLHMuC6mvX+epp0ZuSw/fCvHLl6nl85u4PbOzGZZWy7SN7EG7+hL62jRCs4qgWKlV6yTnl3D7HAR27EBxuUx/G0HY5qa8B9uFyjY+Viwt5UmlNvtwABQ1GwuWESq7ukisZjAGurE57Vhzy4iigVUyibahkB9ZlujqMvNGPB4bD+3r5vkpmJvLYLEIBIN2CoU6DodMIGBncjJJpdLk0qU1jh3r4nOf2/1TCXLNps78fPaO6hWnU6G93Uk2a4b63WoZg8m9yWSqPPnkLpxOpeUoKcoyksXSSgt+v4LJ5vMROXDgHq7snXHoUAczM2kuXozh9drw+WyoqkY8XsLns7NjR4AzZ1YYHQ2Rz9dJJErYbK7WdZBlgUymisUiYrNJrbm9IJhjo0pFBdhw8hS37CIVi3WuXo0TjRapVpsEgw6sVgnDgHLZylxOYS2r8Lm2HdgDAWq1Ji+/vMDFizEyGdNTIxCwc/RoFw8/3H/Pnjg2m4zFIlGrNbccTVWrKooiEYuVbvOJuXUdbtxItcjNTqeCLIvIhTWsmTdJrsSJScOM7e+hXiwy98IL5BYX2felL7WKrm18eIhEXPzWb+3jlR8KTM3KFJsKclNneNjP8HCw5YQtyjJaU2NlLkE+XqZgzeB1idiptbKP4rNLJKJ5RJtKOJRDlHQsex+kOTjGm2+uoCgSTz/9/iZrhmGQunFjU2HaaGgsLeZwWTTE9BpqpYAc6kWvldFz61hsDlSLHUfERyWVolEuU8/nN+UbbcPEdqGyjY8VqqphGMZt5NpyWaVWa+IP+1hLqeTKEHFLNB1+lPwKisNDtaqSyVTo6HDj8VrNRFVBYPehQWaaGtFogfZ2F3NzWZLJMn19XiwWiUymSqOhEQzaef75WRoNjV/6pR1bckduQRDecai8E26FsOVjCaauXERCR5Nt2Lr6+cxnhnnwgQ5Wz50jdvEi1XSaQkklq3SzorWDK0Bfn49Dhzpaq7+PCjabzDPPjDEw4Of8+Si5XA1ZFrn//m6OHetmbi6DIJhS8+HhAJlMlVSqgt9vQ5ZNuWsqVaG310tPj5dSSSUQMG8d75aAJhJlwmHnlmOpZlMnFiuSzdYYGPC1zlcQzG6GJAksLeWJRovs26fzv//327z44hxgBuxFIm5qtSY/+MFN8vkaTz89etchgcDGsXtYXS3cJh01DINYrMjhw53YbPKWn89UqkImU6OtzYGqaqZnj2hQn3wToVbC3jNELCswKltxtTtwBIMkJydZOXuWnb/8y3f/Zm3jrtHe7uLXf+MQL88PUy1V8fd239b5iEezXLu2TtZqQYrH0aeTKJUUbkUj1GZHkiUKJQ1DrWOPRLBEelH6RpG7dyCIEl1dcPVqnJMne2lvf59xnmFg6PomPksxW6a2dAN7I0MjE8MoF9FtGaRAO4IsIyFQ0u3I/jbqxQzrExNY3W52/cqvYHXfWyf2/3VsFyrb+Fjh99uxWmXK5QZO5ztt+Fv+D/W6RjjspNHQyOdrKIEhlNwy1Ms0GuYKfGgogCAIZBcWcHd1IYZ6WV29ysGDppX+7GyGSMTVWv16PApzc1nKZZV8vsb8fIapqRSHDnXwyCODW+YQSZLIrl1tvPba4pbS6kpFxfB6OdYAACAASURBVGoROOpfpRC7RFyNUSuZXYeurjiHuyLM/Mt3iJ4/j2y1kqlKTFyNUc9dxR6KIOz7NJfSVa5dS/Doo0N85jMDH2mxYrdbOHWqj/vv76ZYrGOxSC0S6PJyHmOjIuvsdHP4cCdTU0mSyQqaZlAs1gmFHBw92omm6bz9dpxSqYEsiyiKRFubKQMvFuucPj2wZcfC7TbzU2DraHpJEtE0U6H1j/84zj/8wzUURcLlspJIlFldLRJus7G7vcHF787Tb89w8NOH7poLIssin/70AP/0T9eZnc3Q3e3ZUP00WF42x1+nTvWRz9dauU3v7njdigjQdWMjmFJES8dopmLIgQg2w1QQ3cqXEmUZZzjM2uXL9D/88Pu6/W7jg0O2Whl88H6mv/c9rO+ZlhQLdS69fJWy4KHzxClq3xtHS8fQbV6yDRuS6qBN0aitr2GxKCi7jmAdO47kb299Rm+lUK+sFN63UBFEkcCOHaycOYO7owND18ncGEfMLGO4vRiihGizIzo8GJUSgkXBkGTEbIFaykCoFdBqNXZ+8Yv0PfTQR3nJPpHYLlS28bGit9fL0FCAycl1du8OtcYEfr8Ni0Vkfj5LOOykXm8yPV1iyaowJPTjSkzhcykc2BHGJ5dJTqzgaGtj15NPokpKyyMll6tRqah0dLxzU0mlqiQSZaxWmc5ON8ViHU3TeeWVRdbXy/zWb+3bkvtw+HAHV66ssbycp7vb0zrWer3J3FyGXfIi5cuTCE0Vn6VGQypiaAaZt8/w0vgFHKEQnYcP0xQUpl9ZQHP4ae/upJlYQo5dov2hXyeVqfOv/zpPf7/vtpU+mCOJ6el0S8bc3e1phSl+ECiKdFsnqb/fh91uBkmqqkal0qCjw0Vbm51du4KcObNCb6+Z1my1ylSrTSYm1kmlKnR3e1hZKeB2K5w+Pcjx41uTNNPpCpIkUCjUyeVqm4pDwzBIp6v4fKZnyw9+cBNRFOjre4fALOVjaJd/TEYuYFcELuTPUx/fRd+pU/SeOHFXctq9e9sxDDbkyHmaTQ2rVWbnzjYefXSQ/n4f5XKD9nYn0Whh0/5vjQqLxTqHDnUgSSJqrQxaE0Gx0SjWTd+bdxU3ittNZX3dzKWx2838mY0AvW18eOg6doz0zZukpqZwbnBPmvU602cnKVYNeh//NKJFpGboGGoDKqvYRJl8VkeTmxjVGkLTQmPqAnp6DUv/KLa9JxFkS2u8+dOclsH0qolfutSSJavJOPZAkHLdwNpsgGxFdJmfKb2Qou7qwhocpO9AkHJ0hbFnnmHwkUc+6sv1icR2obKNjxWiKPDZz+4gl6sxMbFOMOjYSA2uEI+bklu7XcYwTHVNMqVSsg6wf6idXz5lIeJqIEoSg6dP03HoEJ6uLsrlBi6XQqFQb3VmbqkK6/Uma2slFEUkHHaavIKNVNneXjNl+cqVOCdP3i4H7O/38bnP7eb737/JxMQ6VqtMs6khCAKjQ0761mLUkjkzwVVRsHq9IAg0ikUSV6/iaG+n98QJVhfz5PN1OjvdCIKAHOygmY6hJVcJRfpZX69w9WritkIlGi3wzW9OMj+fA4yN8zLo6/Px67++e9OD9IMgk6kSixXRNJ1IxM0PfjCNqpqjHEGAZtPAMAzuv7+LgQE/y8uF1vnv3dve6qisr5dxOi2srOS5ejXO/v2RVjeiUlF5/vkZrl6Nk83WKBbrXL++jtut0NtrKnDKZRWfz4bPZyUWM2Xm7ybjyuUk7uUzIBTJaH6CHg96wINWr3PjuedAEOh78MG7Oud9+9rZvbuNpaV8i1z77gRgp1Ph9OmhTQoos0gxqNVU3G5rSwEmWKwgiGhNlUKhzshIG9Z3dZOatRqGrhO9cIH0zZs0q1Vsfj+dR44Q2b//fYP3tnH3sHm97Pvyl1l6/XXily9TiEYRZZm03IHtvhGUnh2U3/gXtGwCQbaAYSDWSmjFAg2nDUtbF3Vdxq5YEe1uGtNvI0gWbPtOUio1sNnku/LQCQwPs/NXfoWZ558nfvUq1Uwaj81FJZ1DcwSxCGYQpCCKNHQRNbvOzuOP4u2wmLlo+/Z91JfqE4vtQmUbdw292SQzN0d2bo5mrYajrY3Q6Og9h2R1d3v4d//uABcuRLl6NUGt1iSfr9PX5yUUcjAzk0HXjQ3ypkyl2iQpdTL0+Uc5sDeEKEmb/DWcToWDByP86Eez9Pf7cLksFIt1vF4bhUJjw/DNjd1uIZOp4PFYcbutSJLpeXLxYowTJ3q3JIEeOtRBb6+Xqakka2slrFaJwUE/3toql/4qRiWVQnG7N40glA3Xz2oqRX55mULRjiQJiLd4GRYraBp6pQiA12tleXmzHLFUavCNb0ywtJRj585ga4zVbOrMzKT553+e5CtfObSluuanoVpVefHFOS5fjpPNVjEMUzqcTFbw+d4hD5vcEwGPx8aXv7yPclkllTI7I4Zh8NJLi6ytFenq8lAuq7z55ipnz67y2GNDPPPMGIIg8O1vT3Hu3CpdXR6OHzezlhoNjUSixMpKgf5+H3v3hjfeCxuNhkYo5CSRKLWOw5a6iVTL0/D1oBcalMsqTpcdT3eEwuoqy6+9RsfBg3c9XrnFxbkTjhzpRFEk3nhjaaM403G5FJ58coRotEg8XqKry4Ml2IFq81GYW8Lf08fg4DtESsMwyM7NoTUazL34IjavF9lup7CyQnp6mtTUFGPPPPNvEvr3/xrq9SY3FmtMFPrIuVz4wzq7RiM0rUksgoBeLVGfvgBaE7m9HwRori9jaCIWrxNZalBVoZ5JIrp8GI0a9anzCL1jLK422b+/nd5e710dS8/x43h6erj0t39LPZ+nrbsbx+BultZ1SotTiGtr6FYPFkEk3KbQ5dfJLy/Td+oU3m3vlDtiu1DZxl2hUSox+a1vsX7tGpqqmmx6VcURDDL8xBN0Hzt2T68XDjv57Gd3cvr0ENlslb/5m7eRZZGZmTSjoyE0TafZNIsVRZFIpSp84xtT7NjRhtd7+8f25Mk+VlYKTEys43QqLC3lNh6IZaxWaeNhagbzDQ4GWgRQh8NCqdS4Y1YRmO6t7+24xN5epZbNojUatxVqgigiWa00q1UKq6tIvp3oOmgbHAdzSmGAaO5PVbXbVCxTU0kWF3OMjLRtInbKssmdmZhYZ2IiyfHj9xbY12zqfOc7U7z55iqRiIvdu0OkUmWuXInjdlsJhx309nqRJBGn00Io5GBqKs316+s89tgwO3cGaTQ0/uqvLpBKVWhvdzE5mSSVqqBpOo2Gzv/8nxeo1ZqcONHLlStxBgf9OJ0KXq+V4eEAc3MZ+vtNUm5XlxtJMtOXn3hiiJ/8ZIFQyEEqZWbxOKQGSn6Vpt0PG9wRSRLo3BjtuSIR0jdvkltYILxnzz1di/fDvn3tjI2FWFsroaraRsfHxqVLa7z66lIrHdfZNkqoeY7BTg2X3Xyf1EqF7OIi1UwGq9dLaHS0JS13hkKo1SrLZ85QzeUIDA4i2WwEhobwDwz8mzvC/jwjkSgxNZVifb2M3S6zY0eQSMTFc8/d4MqVOJKgYxfqzJYbXLrZoFo3UBQRfzmO0agi2BwIgoDebKBXSiCIKDYFoV7BXsnQKEo00uuIIhiaxnoRhj7/FX7lV3bdkx+St6eHodOnqWUyhDb8VAZLDaILIbJTE+jFDEKlitfpwWiqDD7yCMOPPbY9EnwfbBcq27gr3Pze94hdvIh/cLC1cjV0nWIsxvRzz2Hz+WjbteueX1dRpA332AbFokm23MqYrFSqE40WmJpKcf/9t6cgezxWvvCFMV56ycHbb69Rr6usr1dxuUw32UymisNhYc+eMG1tDgqFestC/dZI6F5gDwTQm80WCfXdECUJ2WqlLopoDZM0nM2aShoApVnE75Fpd4WRddM5d8+ezZb5s7MZZFncUtkiiuaD/ebN9D0XKnNzGd5++53iASCTqSHLAqGQi1SqyshIGz0976wgfT4b164leOyx4daxLS3l8fttXLwYo1RqEAjYURQJXTdYXMzxj/84vpForbX2I0kiBw9G8PvtLC7mKJVyRKNFnn56lGPHuti1q43l5TyJRImBAT8zM2lUqYpHVdGsNkrFBqqqsWNHoCUHF2UZDAOt0bin63A3kCSR7u7Nrq2HD3eyd287y8t5Gg0Nt/s4Yvw+ll59lez8PLquIysKrnAYvdHY0v+mFI+TvnmT5MSEaWonCFhsNiIHDjDy1FPbXZYtcPbsCi+8MEsmU8VqlVFVjVdeWaRW02g2GuzyZCB6A6OQxg80rH5uVsOkvX2ElVUklx9NVdHySfRygWYxhyyINLMqjVIRQ9Nw+YM0BYFmU8NQK7RnLrO3fo5Q272TW9t278be1kYxFsPT3Y3LpbBrby/GWDf55WXyy8vsevJJBj796XvuSP8iYrtQ2cZPRSEaJTE+jrenZ1N7XRBFPN3dJKemiF248IEKFaDFG0mnq1sqRsxUWPOhnc1Wt/z9xYsxzp2LEo+X0HWDY8d6GBjwYRjw7W9PYbGY7qPpdIWXX15A00xVhyAIfPWrR+/ZQdbX14evr4+lN97A09m5SZaoqSqSzYbV66WUzhNX16lWm9SqDQL2JmItx4w0ytzlPMFgg+HhIHv3bi5Ubtnx3wm38pTuBE3TN8Znmx+S09Npmk1tk+JK103+i8UiIYqmWd27CxWLRdwwZzO3y2SqrSynQqG+SY4sigLt7U4ymRoXL67R2Xm7Wd7QkB+fz4qiiASDdk6fHqSjw3yNQ4c6uXIlgdsNTmc7S3NJyk0Zannqooddu9p48EQvwsa1UatVRIvlY7WBN2plbOkZ9GSSmizj7+/nyH/4D2ZuS72O1e2mls9z5f/+X2zezSODUjxO4soVk59is+Ht7cXm9ZpJxm++iaQojD799Md2Lp8ETE0l+e53p7HZZPbsCbc6D8lkmX95boo9tkV06zLIFnN0ozWRknN056+SLY2QdruxVgQUyQ6rczR1A1myYLVJaPUazVoNUZZxhYKIgkCjWkWrGSh2mYUffZ+RJ07TeY8uyY5gkOHHHuPGc8+Rmp7GGQohSBLVdJpmrcbuX/s1dv3qr34gE8dfRGwXKtv4qSisrtIol/H192/5e2coRHZ+nka5/IFkmKGQg4EBP2fPrmxZqBQKdTweK06nBUWRqFZVEokyhmHQ1mYG6b300gI2m0xbmwPDgGTSJOc+9tgQX/3qUf7+769w5swKsizg9drQNIFEooTDoXDjRorjx3vuyfVUEEX2fPGLrF+/TnZxEbvfjyjLNOt1tHrdDBQTBFYzIrn5WUZDNtKpEoW6TNK9m4x/jOxMGo+nky98YQy/f3MXqbfXy1tvRbcsWBqN5oYfiL+lSNJ1k/i6vl7m0qU1xsfX0XWD7m4Phw51tJKTy+XGbSOuW26tum4mNufzphusIJhuw9lslaNHO1sPiFupydFoYcucG00z8HgUmk2NVGpzYVmtNhkfTxCLFYnFinR2uvgf/+MCe/aE+exndzA8HOCpp0Z4/vkZCoU6vYMh6vVR7EvnGd0T5tjxfuSN4sswDPJLS/gHB+/42fywUC8WSU5OsvjSS6xeuAC6jiMUwmK3I1oshEZHGf31X8fmM4m2yclJc8ygaZseRtmFBTRVxer10qxWEUQRwzDQNQ3JamXp1VfpPn7cLH63AcCFCzHq9eYmDhCAqup49TRydJzarh5cwQBadp1mfBG9UkCpVvCnVug8dJCipUq10gB3ALciIDVKNMtFmqqKIIrINhvlRAJBFGnWamZOT6NBdm6OyW9+854LFYDu++/H6vGYCdALCzSrVRAEQnv24B8cRFfV7ULlLrFdqGzjp+P9XM8wH9qGrv/U7e7494LAiRM9reRer9eGLIsYBhQKNep1jYEBHzabhUSixH/7b+dIpSoYBhiGzupqkf3721vjgHK5gd9vo1Co8+qrS/zu7+7H57NhtYpYLBLVahObTeLIEVPNMjub4fz5KCdO9LY8RrbyVnkveo4fZ/9v/zY3nnsOtVpFBqwej+lOKQh4dh/gymonvp1pXLKKW5QpSAFyqp0+wzBvtF7rlgXS6GiIcNjB4mKudYM2DHOscv58lHJZxW6XuXhxDUEwfUoaDY3V1Tw2m8zQUACLRWJ8PMH16+s8/HA/TzyxA7/fTr2ubdpXJOLC5zPzgFKpCooikc3WEAQQRdP7ZmzsnY5Pf7+vxe15r9TZMMwx3shIEFU1HXjj8RKRiAtV1Xj7bTMjyW43lRT339+D1Spx5swylYrKl7+8j/vu66K/38fExDrxeAnp8C+jTDuRUgtouSR13VT8lOJxHKEQw0888aGFF26FQjTKxLPPsn79OqkbN1pW7Lqm0b5vH85wmPiVKwiCwP7f+R1EScLb24sjFCKzHMUSCGOxSCiiRiWVwurxUC8UcHV0oDUarL71FuV4nGa9Ti2fR/6v/5X9v/3bHyrn5pOKUqnRsizYCv5GAl1tUMOGPZdEXZrE0HVEpxfR6YPEGjatiNVSokKKtvtGsVitqJUK+dVVUpOTrWKxXiigOJ3YPB7swSCiJFHP5Zj78Y/puu8+mrVaKw25bWSkZcf/fgiNjhLctYu5F19k6fXXaZRKJMfHSU5M4O7oYPjxx7fVPneBj+Tbvbi4yJ/92Z/x0ksvEY/H6ezs5Mtf/jJ/8id/gqK803K+du0aX/3qV7lw4QKhUIg/+IM/4D/9p//0URzSNn4GOMNhZKuVRrmMZLFQjEYprK7SrNVQ3G50Xafn/vt/ptn67t0hfv/3D/Gf//MZbtxI4fVaW4TOwUF/S6785pur+P12+vpMaesbbywxPW1uf8vs7RYBUpJEVFXD7TY/c7/6q7upVlV03cDhsLS8SJxOha9//TpvvbVKuaxisYjs2BHkgQe6GRq6szpEEEX2fulLuDs7WX3rLSqpFIIoYg8EiBw4gN5/iOL/naRrZE+rK2IDbj3yVVVjYSF3m68IQDDo4HOf2823vz3F+Pg6Xq+VaLTAlSsJnE4LDz/cjygKnDsXJZWqEAzaaTZ1ymWVYNBOJOJi5842wmEn2WyVV15ZpL/fx+hoiNdeWyKVqtDWZr5fiiKxZ0+Yb31rkkSizNBQAIfD5O9UKk3sdoX5+Rz79plGWJGIi2PHunjz7DLV2DIev4QhWajZgqSypuQ3EnGTz9c4cCDCtWvv5C/Nz2ex2WTqdZ2RkSDhsBNRFLBaZV59dZFsttoi3o6NhTlxohdFkagXd7H65pusXbpELZtFlGV6T56k+/778fbcG0/nXtCs15n85jfJLS8jKgqSzYZ/o9tRzWRIXLlC78mT+AcHSU5NkVtYIDA8TL4qsKR1Mf/K91GVGLLbR3ubBaVcQxYqZhheKETswgVq+Tw2n6/FeyrEYoz/0z+x5wtf+IV/iBmGsWE1cPsY1Oez4RQrNHTZjKlILWHoGpLb/M7Wyg2sTju+jhCNgpVyIkE9m6UumBYGVrcbq89Ho1g0JcuShN3vx+r1IkqSuW9BoBSLcfn//B/aRkbQNY3l118nsGMHY888g2ixUE2nEWUZd2cnkqLcdvxLr7/O3IsvYvV4CO3ejShJaKpKYWWFiW98A8lq/cBj818UfCSFyo0bN9B1nf/1v/4Xw8PDXL9+na985SuUy2X+8i//EoBCocCjjz7KI488wl//9V8zPj7O7/3e7+Hz+fj93//9j+KwtvEB4evvJ7hzJ7ELF6ik0+QWFzE0DcFiMaPQBYHQ6Ch6s3nbF/VecOpUP52dbv7u766wsJAFTJJsKOSkvd3JzEwGQRCYn88yPp7AbpfJ5Wr4/Xamp9MtEy+fz47LpaCqpurnhRfm6O/3MjLS1sqpuYVGQ2NuLsPiYq5l1d5oaFy8GGNmJs0zz4xt6ia8F7LVyvDjj9Nz4gTFaBTDMHBFItj9fhYWsq0xyVYjrUZDa/FztsKePWGCQTvXriUYH1/nypU1RkaCHDgQwWKReOWVRRRFYmwszPR0ikZDY8+eMKVSg4mJFIGAg7Y2B36/nUSizOXLcb70pb089FAfL7wwRz5fJxw2lRArKwXA5Ig4nTK6bnZOenu92Gwy586tcuhQpOXdcnJMZsJ/nflLNxAlDUQZiy1Ae98Bdh45Rj5fo6/Pxxe+MMb+/REuXIjy/PMzqKpOb6+Tvj4vfX0+RNFU8kxNpRgfXyeZrDAw4CMaLVIuX2ZoyM9v/dYBDh2KMPToo/SdOmUWzIrysdiMp6enzeJjaIjFl19GeVcxbg8EKMZi5JeXiRw4QLNeJ7+yQtPTwT/8wzXm40HCO+7DFb9BI73E0koTRyFJKORg5yPHqKbTVLPZFsepWa8j2+2ER0ep5fPM/+u/0jYy8jN9pz7pcDoVurrczMykbyPZOxwWXAEvubUFxEYZvZxHtJufiVq9iabpeN0WLDYbnkiEwvIywV27QBCoZjKo5TLOUIh6Pg+A4nK1ihSAai6HVq9j7+hAtFgIDA8jiCKaqpK4do3EtWs429tRy2UEScLd2UnviRN0Hj2K3mySuHqVlbNnufn976OpKuE9e1BcLmxer9mZGRwkdeMGK2fOENy5c1v18z74SAqVxx9/nMcff7z18+DgINPT0/zVX/1Vq1D52te+RqPR4O/+7u9QFIWxsTGuXLnCf/kv/2W7UPk5gyCK7HrySaa//32i584hyjKiJJnzd1HE3d1N+uZNoufP03uXxlt3wvBwkD/7s4dbvh6SJNDb6+Xs2RW++93pFo/CapXJZGqsrBS4FbEhCAIjI0E0zaDR0LDbLfh8VppNneXlAkePareRS5eWciwvFwiFnPT2+lr8jUDAzuxshh/+cJa+bidaPo2h6zjD4S07R1a3G+vIyKb/6+720NXlZm2tyMDA7Sm6sViRgQHfJhfd96Kjw01Hh5vOTjerqwV27gwiyyI3b6YpFht0dro2cnpEMpkKum7g8ZjGadFoodU18flsLC+bN+TTp4cIBh28+eYKa2slDMP0Vtm7N8KpU6afjGGwiRsTjRa4eTNNX5+P3OIiN7/1DY4MGljEXSzFqtgsEDYKWBtXyd1w4t01xuOPD6MoMvv2tbNnT5hKRWVuLsPISGjTa8/PZ5mZSePxKGiazvx8jnq9iSjCW29FiUaLfPazO3nmmTECAfvHapRWXFtD13UkiwVD12+TD1vsdkqJhPmDYRBbzfPdH53l/Pkovb1ePN2H8e3ehysXw1evszIxi6O5gmyzUYjFTLLtBpelmk7j7u7GHgiguN3kFhbILS4S3LnzYzvfnzeY6d+dTE+nyGSqm4oVVdUQQn1E2m/SrJQpFWsIhgPNMBcAHSEbXkXE1d6OPRhE8XjQVBWbz0d2bg5D1/F0dlKKxahmszRFkVouh8XhQGs0aBSLKA6H2bEz58yAKV2uZbOkb96k76GHaNu1i2atRike5/qzz1IvFqmk06y++Sb1YpFGuYzV6yV5/TqFlRU6jx7FGQoB4OroIDs/30px3sbW+Ng4Kvl8nsC7UkTffPNNTp06tWkU9Nhjj/EXf/EXZLNZ/HeIR6/X69Tr9dbPhULhozvobbRQXl+nmkrham9HUhR0Xcdit2P1eFArFYrRKMtnztB1330/8wpQkszRy44d7yTYvvVWdCN1ue22DsT4eIJGQ8PhsDA9nW6phGw2CUGAHTsCTE6meOutVR54oKf195pmsLCQQ9N0+vu9t5FMe7udLLx+lhfWXsAjVTF0HXsgQOfRo/SdOoVsfX/yrcUicepUH1//+nVWVgp0drqQJFNBE40WkCSRBx/su6twvVqtuSlxOZ+vtwIDb+1L19+x+rZaZbLZWuvvVdW8PrcswY8c6eTAgQiZTBXDMPja166RzdZbx/LexZ3FIlEsmhLgpddeo5rJ0LlvD/4dKvPzWZaX8tTqLvR8nCFpiSd+8xkG3/X+iaKwITnObCpSzPFXFrtdJpmsUMjXGArW6RayCFqTdo+VQk3g0qU1bDaZ3/md/R/rylPYGBMIooi9rY384uImhZGxsU2zXmclWuInP1rjjVkLNptMLGaa2kUiLo4c2Y3LpRDu3EP23MuszSxRjsexBQI0azVTxh4KEdm3zyR3Wq3omoZaqXxs5/rziv37I6ytlXj11UXW1kq43QqNhkat1mTHAwfZe7/I8htvkKxY0W0iSAp6vUolmUTo6qEqupCKJdpGRjA0jeXXXsPq8+Foa6NZq+Fsb0drNBBEkWomg6HrWBwOFKcT10Zuj93vR9jotBRWVyknk1i9Xmr5PGuXL1NZX8fAtCa4+Nd/jT0QoG3XLur5PLmFBRyBAIZhUE4kSFy7Rv9DD5lp6opiyqY/Ann9/0v4WAqV2dlZ/vt//++tbgpAPB5n4D1R1u3t7a3f3alQ+fM//3P+9E//9KM72G1sieU33qBeLBLes+e2B4XV7aa4tkZmZobE0hp12YMkiXR0uG7rYHwQlEoN1tYKWK3ypiKlWKxTKjVoNLRWQrLHY8XlUiiXGywtFZEkEateRsmsMf/GArnFJY585gAdnR5yuSorK2bX4b0dD8Mw0KfPYZl5nbKzj+5DZtu3kkox/d3vUk2lGP38538qifPQoQ5UVecnP5lnejrd8l2JRFycPj3Evn3td3UNbjnp3gq9k2VhU/6IxWIShW8Z12majsViXitdN8jlareZ1smy2CIphkJOostZ9JLZnhLsbpNkqDZQo7OIVy5QKNg4MxciOTmJf3AQMMMOx8bC7NgRpF5rYmg9qMkYPrEAbF4hjo2FOHNmmXS60iLhlkoNSqWGeW7lCsPNCTrr6whaAwQBh2GgqDaCHZ/hxg07y8v5nzk64F7g6ugw2/2NBr7eXgorKzRKpZYTcbNaxdvXx8z56yxmrUj9vXiTGYJB+0bQok48XuTq1TgPPNCDx2tntfMQ3SfvJ1bN0yiXsQcCeLq7cXd2tgiazVoNSZaxbIcZIooCTzxhmg1evZpgDojcHQAAIABJREFUba3Y8kQaGwsha/sIdgS49g9fY2VilrJuQxMtiN4wKbWd2BvLdFkyPPibn0WvV8nMzCDJMtV0GklR6LrvPtxdXVSSSerFIq7OTjoOHCAzM2MWMIKAt9fMsDIMg9zSErLNRiWZJDkxgc3rxeJ0IgC1fJ70zZuERkboPHwYTVWRFcVUEtlsONraqKRSlNfXcXd2Us/nW+OgbdwZ91So/NEf/RF/8Rd/8b7bTE1NMfKuFng0GuXxxx/n85//PF/5ylc+2FG+C3/8x3/MH/7hH7Z+LhQK9HyEZLptmMgtLiJbrWy1lhVlmWajyfyNGJf/9gqFpmkZ39Xl5vjxHo4c6fyZVsHpdAWbzYLLpVCtqtjtFtbWSsTjRTTNaHUBmk2dRKKE222j2dSwW3QGjFk6o1HcShO33Up2YZzxf7hG9NjDuCPtRCIuhob8t1nRa+k16rNX0B1BXJ3drXGDu7MTq9dL9MIFwnv3/lRlhiAI3H9/N3v2hJmdzVCpqDidFoaHA5u8TH4aBgf9dHd7WFrKsWOHSUKdmcnQbOqt0LTBQV/LZ6bZ1Ft8m/n5LF1dbg4ciGz52pqq0q0vc/3y98ler6FYLYjBDizdO2iuLVC4MY7dEAl6h8gtLBC/epVStkjkyH14gmZRaiYKS4CV9ZhKs1a7bT/9/T4+9al+Xnxxjmy2RihkGu9lszUURSRSHMdZnSVmbUOwenA4FGxWESEVx7rwJrGywNmz7WiaQW+v955N+j4Igjt3EhgcJDMzQ2DnTkKjo6SmpqgXCq1VsFouk6x6UYePEOn0I9/IbYweTe+fYNBBPF4ik6maEnubQtfRowQtZRZ+8hOz+H/PSCm/vIy3r8+UuW8DQRAYHg7cIfpAYe9v/AZzORe51f+NU6hg7+hFcvsx6lUqqRhLgo+djmHa6uN0HDmCMxQyiwibDcXppJJMsvTGGzRKJfR6HbVcRtM0qpkMvQ8+iKujA4BauU5mPYdaqVFLJAn09+KKvPO9ku120tPTlJJJKuk09kAARzhMYXUVdySCKMsYhoFaqaCpKuX1dYafeOKuU8B/UXFPhcp//I//kd/93d99320GN1ZaALFYjIcffpjjx4/zN3/zN5u2i0QiJG7Ndjdw6+dIZOsbKoDVasX6U1ru2/jwobhcyHY79VLpNhKjphkkommSVheJxRoWxSSPFot1lpfzVCoqDz3U/4H3LUkigYANXfewuJgnlaqwvl7e6NboNBqmgZnPpyCKEpIkYJFlBpknXJ0j3bBjC3XTvT9CpFImNjlDR/UyT/3O/8f0Yo0f/3juNr+SZnyRSr6IMzRA6D3SyFteMYnx8buWkLpcypaFQqOhtSTRW3mStPapSDz++DDPPnudyckk4bCTQMDO4qJJ2O3p8XLgQITJyXUmJlLY7TL5fI1Go0lvr5ennhrZUuKpN5tMP/cclQuv0eXTWElZcCBhXZ6lcOl11IaG2jnG2P5uOneFWZpNkG3YWbswyfRSFefwHgYG/PT3+0zicKmEbLNtSXQVBIHTp4cIhZycOxclFitgGNDZ6SYfjeIoLJOT3BiGgl5RKZdVFEXC4QiSSSSJr77Nd6QQb7+9Rk+Ph4cfHrjrjtQHhWy1svvpp5l49lnS09OIsoynu5tCNIpksdB+4ADdn3qEqy9XaAsEcbsVQiEHq6tF7HZTVWY6qVZbydE9PV56erzUnSfILSywPjGBp6sLxe2mWa2SXV6hWJfRfKOcu7DGwICfSGT7QXYnVDMZli9e4dqPz2Br78JuaYJaQyukESxW3HuPUXcMcnmmwWfCFvRmc9P4Ttc0CrEYeqOB3mxSy+VY3+iU3DLkA4GZmTQ3b6aorVSQUgsI6NRLCmKugsdn8lrKqRRqtYoWi7H48sv0PPAAodFR1HKZQiyGxemkWatRSaVQKxXCe/bQd/Lkv93F+4TgngqVUChE6C4JP9FolIcffpjDhw/z93//94jvWTE88MAD/Mmf/AmqqmKxmF/oH//4x+zateuOY59t/NshvGcP0fPnaRQKiLK8yUMgNh8jl60R7+4nna4jSSqqao4ogkEHL720yN697Vta498NIhEXXV3mjcXrtfH660tUKioOBxvSVpG2NvuG7PX/Z+89gyQ7zPPc56TOuad7enKend3ZvIu0WIBLkAAIUGAWRIPRVtEql3SvrqtcJf2xqlSuct2y5VK5XDZL8tW98jVFmCRIiSJFkCBBkAi72Jwm7OTY09M5h9N9wv1xZhtc7AJEIi/DPL+2dma6z5zu6fOd7/ve99Wp1TQiepxIa54SXlTJRTDkQhQEbG4PwdFx1MQ6Sm6Ve+45xuxsmrm5DP39ftxua6Ezt5VGbQlMjobaMuafRXG5qOdy7+xkYqUKv/rqBhcuJCiVVGRZZGKig3vv7W2n876effsifO5zh3j55XUWF3PEYm6aTQ1RFPB6rQXaUMjFRz+6h/37owSDTsJhJ+PjYWw2iY2NInNzGUqlJj6fjT17OlByq2ycOUNoeIjwXieuqRRXrybJJAU6MtsokkBkj0J/n5+lpRxXrmZBCuKQCsiNPNV8kQvZOoVCncOHYxQ3NohMTODrvT3mAKzX6+jRLg4fjlEoWF4tf/VXF3n2/7qMW26Rl0M4bNbHUqulUyw2aLV0RLudsJBjfNKPO+gnHi/x9NNTGIb5hp2i9wpvVxdHv/QlMrOzZBcWMDQNX28v0f37cUciVKtNOHsavVKgld1mpLGJXixRroVx9AyjOOxtJ9++Ph+nTg1aaq9olAOf+QyrL7xAemaGWiZDoayxnHOSdo+iXWxhXpjC57Nz/Hg3jz8+9oZ5VL+tpGdmmPra10gsblBfrxAMOjDrKoLdjX3fPSj9E4hOD5GGxsZGEWGyH0O7QKVUI5lusLVVprGxiJxdIxANEhgcpOeee5BsNsqbm1SSSYrxOEszGyxtNLDJ4PFI6DkdQ5BobCyzlhAJd/oRNKsTI9tsGKZJYX0d0zQJj4/Tc889FNfXrWJXkvD29jL0/vfTffz4L0W99uvOL2RHJR6Pc+rUKQYGBviLv/gL0ul0+2s3uyVPPfUUf/7nf87v//7v8yd/8idMTU3xn//zf+Yv//IvfxGHtMu7pPPQITr27qWwskKjWKSey1l+AJrG9nKCjL0fYe/9xFyv3fnVai22t8toms78fPaOGT1vle5uLy+8sIrdLqEoEgMDfgIBB42GTr2uEY166OhwUVhZQU9co1edwy+kcdpD+B0hAu7XJMaSTUGXHWxdvMzJU+/jqacO8L3vLbK0lENVNQRBIOzyMDzgZc+e8B2Pp1WrWcZu74BarcXTT1/nypVtAgEngYCVGnzmzAY3bmT49Kf3MzFx5/yP0dEQIyNBstn6TidJIZ2uEY9b3YlYzMPoaOiWsYimGfzTPy1w+vRGu3tj+cusMt64SKdhYvN4qFSa5LJ1ZFlgoMuOzfQgaE0K8S1efMlOva5hs0n4x8dQl+sYyXV8RhGXr5OFa6uQWqV/7yADH/ggDVVHUXjD8YwoCoRCTgqFBvV6i7HRIMZVCVU10A0VURTbaqZmU8d0CAT8NgJ+G9KOod3SUp4f/3iFffsiv/ALuM3tRujZQ6oYIpWq4ijIjCVNxv1WN69b3Gb5+e9hc6q4JIUxuUE2N0++sMim/wh1w8ngYIBPfWrvLV0gT2cn+z/9aWqZDKtzcc58a56yw87QaBSbXbFSmPMNfvzjFSRJ4Ikndv02AGrZLKs/+QmX/vt/Ry0WMb1hMBTEQB+SzY6eidNcvIzcNQxO2ko238g4+a5BTn/7FXIEUWwyytYGLVWjVEwQjgWx37jR9lap5/OodZW4MoYtEiQQcqMXfDSS6wiVPHZPgEbTIL+yiiLoOEIhgqOjlLe22jtG2bk5nMEgvp4eDE0jvGcPgw8+aKWs704H3hK/kELlhz/8IYuLiywuLtL7ujurm8uEfr+f5557jj/8wz/k2LFjdHR08Gd/9me70uRfUYJDQ0x89KPMf/e7lLe20DUNvdGgXlPZdrnJ9p7C77q1Pe1yKTvFSoVSSX2DR35zSiWVb35zhmvXkkiSwNpagdXVArIs0tnppbPTzcREB/V6i4CWos+8QsGeRhTsyJIbJAmvmcKWVjC9BxBsDmq1FkGfC7Np7VH09fn50peOsrZmma8pikTAHGT2K1ma5fJti26tuqWUeafOoefPbXLtpesMdUrYJRuSrQvRZ3mezM9n+d73FhgeDr7hxVcQhLbsGKwu051n9xanT6/zox8tE4t5GBwMYJomyWSVmZkUq2fO0dUhs78VJF+ok0pXrZyfuoSat2E2DVw+icWNIqqqc/hwzOpMDU7SbLVoNTXya5sk0yqJai82qZf/999eJhKZp6fHx5EjMY4f737DbloqVaVUUjl0Yg/56lWkgkK6oGMYYLdLNJu6Zckvq8RGJxAdr42v+vp8LC/nWV0tMD5+54LyveKVV9b5wQ+WyOetPKpWy+Cll9aYnIzy8F1uAlvnkWhRdfUQCDjxd4KnpRJYWsRtzDD0iaf4P/71idtSsm8iO51ceOE6lfMv0RUUaG45MQf2ovTtIRTyYBgm589vce+9vW0H5t9WKskk1//u79g4fZp6Pm8tpdYaOApxqnMlvBOHkTp60LaWaG0tIflCpNNVOjqcRLtD/EDaT862RkTKYRRSaLUMDm+IJk7SyRI22SQy0IUoSdj8ftIrcer6Ot2PfQrJ7qB25rvY9hyjuXAJTFCMOoamIXocSLKMKxrFaLWQXS5a5TL1fJ6NM2cI79mDaRiU1te58j/+B4IkYfd66bn7boYeeugtOd3+tvILKVS++MUv/txdFoCDBw/y0ksv/SIOYZdfAH0nTuDt7iZ57Rr55WVEWaZo62Qjv4Xiu/OFwu1WyGRqaNobB+i9EYZh8Ld/e5kzZzYZGAjwvvcN0mrpvPTSGjMzaRRF5MCBKJGIm1dPr6JdP0tLr2CEB7DXUzRzeXA4cIWCmOUcWjqOERlA0wyiYQFfz2t5KjflszcxjQ7K99zD6k9+QrNSwR2NtlU/1VSKnrvvpuN1vilvhezyKq/8n/8e//IMDbGJqtiQo/3YDzyAfeI4g4MBlpfzLC7m2Lfv3fsqNBoaZ87E8XpthEJOTNPkxo0MMzNpdN0kYnNSzOa4fGWbdLpGX58PURAwHW5EpwetkkOUFRwOhVSqRjJZxeGQcbaqCH2TXJeOkjWqaP0iuboN17ZEq5UnmbSSkzc3i0xNpXjqqQN33LMQxR35b7AL7+Aw4/ElBkZ6KJVbFIsqzaaGA5VYxIl7/OAtS6dWWrNBvd56x+en1dKJx8tomkEw6LgtEgBeC8VzOhUOHHitG9JoaFy5sk3z6iyDthYHHzjE9HSKzXgJRbGUV4K7kzFHjU8+EnrDIqWYzvOjv/xrLj7zEwzZQY4gXkcD/eLzaPElnHc/SjjsY2YmzcpK4be+UFl67jnyq6vY/X7sxSI2txub201IldheXKcRX8U1NIFgd6KnNqn0HiKXa/Cxj+1he7vC8rZJ3+88ia2WprlwmYamofSNISTXaVUrVHATUlWqhQJqsUizXEUQbLRmz6IHOhAAuWsYs15Fz26hyw4M08TT241WLlFaWyM0Okr33XejFgqUEwnUUqndPfH19VHa3CR+/jzF1VUu/83fEBodZfLJJzn42c/+UgM2f13YzfrZ5W0RGBy8JQDu6tVtgj98kUymhq4bt3mCVKtNnE6ZkZG3NyZJp6t85SvX+PrXp5FlkVSqhtdrY3g4yN1396LrJolEhWy2xshIiLtGBRI3ysRVD06ngKcrBo0EiqAiSh403U59cwPVDDHY6yISFokdPvyGzy+IIuNPPGEpfM6etQyiTBNnMMjohz7E0Pvf/7b9YkrxOD/60z9FvXoR2eFCdLkxmirNlSm05Dqm1sR58AEMw3zHHajXk0iUSaer7b2XVKrK7GwGp9NSUSlMIM3/BJfDGrHctNa3KRKiLwTpTVpNnWKhTqnUYHk5j0uo4TarFGLHiCsyPYN9LCxkqFabjI+HURSJVKpKNlvnwQf7mZ/P8eyzC3zxi4cpFlWWl/O0WvqON4tKoVDn7LkqY13HcDfq2LNxojYn4YiElsgi2yS8Bx5C6b917FGvt5BlqR2q+HYwTZOLFxO8/PI68XgJTTPw+ezs3x/lAx8YvqUDdP78Fs2mflucgl0y6JVTbP3wWZxDPnr2OTl5T5R0XqdUbqIolvxbzKxCKXPH40ilqnzl3/4NyVdeZksNIhoKuZSJ06nQ1x3Atb2COnsW5/FHAN5Rwf+bRDmRIHPjBv6+PnILC7d8Ldblp1EKUdyOU1Qi2NQGqlZBj5c4ebKPBx4Y4Ny5OJqm43Lbwd2LINvQkpb1PpUCitdLLZUiU6pbpm+NJi0NBCNLbfoM9u5hpEAEQZJRBiZAEFDXlxBNHb1SQVdV7D6ftXvi8WD3eBAVheS1a+jNJp0HD7J95Qorzz9Pq17H5vGgqyqFtTXOf/nLJK9d4+H/8B92i5XXsVuo7PKu6OryMjwcRNMMtrcr+P0OXC4FwzApFlWy2Qb33tv9ppk5r6dYbPD001OcPr2BKAoMDFjjilJJ5erVbfbti3L0aDevvLLO1FQah0NByaRxOUSOTQ6yZ08HHo+N8rqP+RfPUsym0JGwSwZjoRoRh4anc5BqOs3WxYuEx8fvuNAmKQrDH/gAvffeSyWRsOzxOzvf8YfI1b/9WzKz04ihbkzZjuiQEQGz1UTPb9O48BzK0AFM03zPdi5upirfVIdvbpZptQw6OqyLuxroR3PGiOQ38Nqc1GoimXQVv9JAaGmIe+9ja6OImF2lw9AJ6yUUj4+saz9nEyGC4RaNRotkskZnp7u9kxIKOclma+RyDfr7/czOZnj66essLOTIZusUCg1WV/NW5opdJpWqsLbmYLjnKPv370FML1PPl9Cio9Q7hrAfPIkg3npO1teLDA0F274qpmliGOZbMtA7c2aTv//72bZiSlFECoUGL764RjJZ5XOfO4jf76BabbKykr+ti2FUCtQv/BBxexUjG6cgFBCqBew+Hz2HDzOxt6f9vam82B55/yzNps7X/+dZtq9eJTzQTTHFjnzdRqXSZG2zwmhPGDG+RG0wjSSJBIO/PFfeX0UahQLNchl/fz/OcJjc4mLbMViSBAZGO8nGkxgxO9WkyfDJw9z7e0cZG7McnV/vkiAGIsixIdS5CxiGBpoOpQw1w05NFdBqGronQtFw0ErF8QoyLrf19y/anIiDB6irDjrrS3g6/WiqSufBg7d8RpQ2NjBNE39/P81KhfWXXkJvtfB2dyNgdY5blQqezk42X32V6W98g6O///u/xLP6q89uobLLuyIadXPXXd3k83WCQQeplCUdFkUBWRYZHg7wmc8celueF1eubLOwkKW/308uZ/mCCIKA3+9AkkSWl3MMDAxx4kQfiUSZU6cGELOg2qfpO9SNKcpIosCmEKQaGsPU4sjlFEbLYGsji2J4Uexx5v7xHwErdHH00UfpPn78jsdjc7sJjY6+q/PUKBZZffFFXKEQAcHPdqKM3SEhIiAoNgRvEC21SXpqivDQ4dsi7d8pkYibQMBBLlens9NDLle/Je+o0pSRhx/AF9zEeeEa9eQWyZJM1hOgERqmFjhI3p0j7MrQqlbZttmRO/vB24FU3CaRKLO9XaZe1ygUJObmskQiLkIhF4YBqqoRi3l45ZV14vEye/aE6enxsrZWQJYt52C7XeLgwRhbWyUuTZfYinkZG3sQ/5CDxw52srlZYmY2R3e3F6/XRqOhEY+XCQQcPPLICJlMjStXtrl2LWn5x7gbDHrLdIVlHD4v4fFxfD2vFQ6lksrzzy/jciltNRlYQZB+v4PZ2TSXLiV4//uH2s7pQr2Ils4hyDYET4D6xefRtleRo/0YyTySvYInFqOWzZK4dAnF5cIRCKCpKqIs49kxs2wUi5Y81utlfr7A8swGnW4Tm9dPsNWkWLTCG71eG4VCg0LDSQcFEvObDBzZ/6a7SL8NSIqCtJMx5u3qwhkKUU2l2qNZTAOv10Ew2MR38BDH/uAJXOHXxtI9Pb62dYLXa0cQBBwH7scoZ9G3l9EKRUSjRamgI4rgCIWRQ1HEYo183UM9qxJ2buLwRGg0DKrVJt379jCo+MkvzGFzuXBHrcV9Q9cprq+juFy4RBHZ4SA1NUWjWMTd2dn2pBJ30ptlhwPZbmfpuec4/IUv/EITwX/d2D0Tu7xrPvShMSqVFlevbmO3yztZOxrhsIuHHhri7rt7fv6D7HCzJe/3O7DbJSRJ3FmoNCiVVJpNnUKhwcJCFo/Hxn339fHJT+5jay3K904/z/PfvoDhjZLL1anXW/T0dBDp7UbfuIHp8lPOFFjO2+k8Nky004uh65TjcWa++U1kh+MdL8j+PEqbmzTLZVyRCDbZSbHQoFRS8bhtyJIIdiet9DbV5DYf+mzfbWnK7xSfz87Ro108++wiPp/lbqvr1t19q2V5uBw40Eerc4KVlSDr6TXCPhddEyOooovp6RStFogjY9z7cC/lssrqaoFiqkqhYDkDRyJOvF47IFAqWf9Xr2vIsuWWWyqpJBIVjh/vJhbzMDWVolxu0tXlQRAEtrbKdHf7+OAHR1hbK7C1VeHuu3v4wAeG6enxksnU+OlP17h+PUWhUMJmkzh8OMYDD/RjmvA3f3OJ7e0KoYANcfUSC/OXWWrW6B0I0t/jwRHw03///Yw8+iiiJDE/nyWTqbF37+07QLIsEgg4uHgxYTn5VvOEE2fYujqF7BUQJBkEES2xjBwbpFGpIAY7sYsazZ2Qu3I8TnFjA5vXS25xkfDoKIIkce2rXyU3N4eh69j9fta1GEZLQzMgtZEnVzZpNDQKhQYul4KiiCQTRQSHSvCIhyee2POeOD3/OuPv78fT3U15a4vA4CBdR4+SuHSJyvY2giRRz+dxeL34+vrY96lP3VKkAPT3+9m3L8KFC1uMjoZwOhVETwDH/R+nkKvChe+gSwqKy4M9EERwekEUcIsNlKE+EmmVclPCXF/C1tnH4cMxhgYDaEUHla1NFLudUiJh5T/tdGD3PPEES889R7NSobkT+SJJr72Ohq4jSBKiLGP3+ail0zQrFRyBX54D8686u4XKLu8aj8fGU08d4PjxbmZm0pTLKtGom8nJKENDgbflSqvrJvV6C4dDpqPDUsJMT6fRNB1NMxBFgXK5yZkzGwwNBXnqqQPE42X+7mvzJGq9BLU4YnGbbAqauohdaOEo17EFohitJsFYhGTDyepakWinF1GS8Pf3k5mbY+P0aSL79t3mEvrzaDYt+XUiUcY0oavLw/h4+JblSdluR7Lb0ep13FEvQ4MB4ltlKpWmZYWvt7AjcPf9o5w6Nfi2nv/1bG9XSKetrlZvr2WMlkpV+elP18hma2xtVajXW0iSyOBggNHREOfOxWnYg3jHPTj9DnJ1E8Owjs0wrEXTm3suw8NB5uayJBIlKxhOEGg0NEolFYdDRhQFVlbyTE5GiURcXL2abGcugRVw6HTK7feF12tne7vMgQNRjhzpQlFS9PX56e21uh2RiJtPfWofH/jAEOVyE4dDJhJxoao6//W/niOXq7N/f5TW0lXqW1fwdoWoi32sV5r0dPRiszdZeu457D4f/SdPUq+3EAThFoO/n+WmWq2wlWThmacJlBbZUuzU7T4clQTN+QsYlTxaPkUNF8GeLrr2j1FaW7MUca0WqakpwFLLRfbv5/pXv4q6cydts9loFArkr1xDz/tZLYroxThC0FJH3YyGqNeh211j/L69fOh/f5iegV1/KclmY+CBB5j+xjcobW7i6epi4MEHKW5skJ2fR3G5mHzyScY//OE7XuhFUeBjH5tA0wxmZtJomrGTcG7QcfdHcOQWKW3FsQVDoNgxmzVMtYbg8uEd3IOubCAPH+LkUT+NxAaikaK0lMTu83HsS18iMjlJdXsbvdXCGQzSMTGB3eejkkyy8vzzIMtgmlZG1M4xNatVHD4fNrebej6P4nL9UoM3fx3YLVR2eU+w2ST274+yf3/053/zmyDL1hz+xo0spZJKuaySzdYQBOuCZqlEQJatO5J02mr7b22VmHjoJPpGmOTZV3Crq0ScEuUM5AIj9I9N0rj2ImKwE5+ik0xWaTRaOByWmZu3q4vC6qqVYhp967/D9naFZ56ZYXk5h6ZZnQpJEhgeDvLJT+6ju9vaffF2d9MxPk7i8mWcoRBuj42xsRCVSotWU6ee2MA7MMiH/+Cjb2nH4k4UCg2efXaR6ekU5bK1jBsOu+jv95PPNyzr7pZBrdZic7PEXXd1c+xYN+WyytaW5XezZ08Hx493k8vVUVXLIySbrdFs6u34ArfbtmPoJ++Md3SCQQfFooquGzQaN+XFIrmc5cja0+PF6VTaeyQ/WyTIsmD5p+gGYI2DrH/fSjDoJBh8bcl1bi7DxkbJKoC0Js3la4h2J6IngBtrxLO+XqTnvj5atRobZ87Qffx4e4fqTsvfYO2J+P0O0pfPkV9ZYc/JY7CQZ/6VS6jby0goYEoY9SaerihBqUQj66Dr+HHquRz5lRVsTicH/tk/wz80zPWv/E+0RoPIvn3t57B7vYSrCo2vv0jZM0jUbQOjiOYMYu9wEQw4KKyt0edS6Q20WPvG/0MqGER2OkEQEBWF4OAgHXv3tp2Sf1vovusuDE1j5cc/Jjs3x07UN30nTjDy8MN0HT36pj/v9zv4/OcPsbiYY3ExR7NpEI262Ls3wg/FJa5/7RsIsgItFUQJOTaM1NGNIMnINgUhNsKJ/+1Jqptr1DIZBEkiMDDwmpX+z7zONxl44AHr8+XcOURJolEoYHO5aNXrSHa7FX5omjTyeUYefni3UHkdu4XKLr9y2O0y587FrdZ3srpTmFgjIEURiMU8PProCLIs8vzzK+i6wcBAAEkSkQadLZitAAAgAElEQVQn0bUIido1oiEbJVUi6+qg2w5mo46e2YR8HkMzyC8LRIb7kR0OREXB0HUMTXvLx1mtNvn616dZWsoxNhZuL8DWai1On97kpz9dY3g4SDTq4sSJfvofeZzc4iLFjQ2cwaC1xyBpGJU0DsXkwO/9Lq6OOxu9vRnNps6FC1v81V9dYGkpTyzmZnw8TFeXl42NIn/91xcJhZw89NAQ99/fTypV4aWX1rlxI0OjoeFyKRSLDfbvtzoaDofcLrAkSeDll9epVls0GlrbFj6brVMuN+nocBIKOanVtLaRnCyLtFoGGxtlDh40eeSREa5dS6KqGna71SlbWSlw056mXtdwu23YbDKtlg5wi0/MG5HNWn42iiKhZZLopRxy8DWXWrdbIZ9voOsG7s5OimtrlBMJxsa6iURcJBKVdtfmJq2WNVo8dX8XqfPP445GkRSZ0X4n6vUKZSFAo+ZCN2o47CaxXg/OgJ/y1hbecpnYoUPohoDWe4C/vyBRevr72KYuMXh8Es9OoORNnF4XmmhHalWpjtyFKzmFrRQHQKtUiOoZNDUAkkJ+ZYXZv/97tFoN/47ybv2llwgMDjL5u7/7hk7Av4kIgkDfiRNEDxwgt7iItqOeCY2Oorh+/vsGrDTwvXsjt43/uu6+jys/PIcUtCH6w4iyjCApmLqGllxD9XQTGx7B7rThGB8nPD7+lp7P1dHBoc99jsDgIOWtLdKzs+iqiqe7G28shmmapGdn8fb2MvGJT7ztc/Kbzm6hssuvFLOzaWZnM3R2ukmlqui6QTjsQtcNisUGXq+LD35whP7+ALpu8MorljJoZCTIxkaRRMIae2zW/RimF3fQhlpWaWSymMk1MHRUU8GuCGSuXKS2tU73sWNo9Tp2n+9tzYVnZzMsLuaYmOhoLwu3WlbRMDOTIpWqsriYw+u18fzzK9x/bxcfePKzbD7/LKV4nFomg2EYuMNh9j35JIe/8IW3fb7q9RbPPDPD9763wNxcls5ON6VSk7Nn4/T2+rDZrA5Fs6nRaGh4PDaiUQ8f+cgepqfTVKtNTpzoxeGQOXCg87a4gO5uL11dbhYX86RSVWw2aSf8sYqqakxMxIhEXNTrGq2WvtOpMFlbKxCLuflX/+o44bCT//bfzreN2fr6/KyvFymXLel6vd5icjKCIMDycp7eXh979vz8gk2SLLdRAEyjfWd9E103sdlEyxdGkjANA9OwZMgf/OAw3/rWLEtLeSvlWzTI56okM0327ouwf4+PqZca7R2HWjqNYrYYGOvGMAyyCyq1ZBIMa/Rlc7sprq9j2FzcWK4Sryq4eys46mVK5QbnL6bYTjU4fry7PRLUdRNvyI9WKbNYcaF0vB9XfRutViHanCYUdEPvGKI3QHlhDpvbjTsSoVWpYPd48HR1kZ2fZ/ob3+D4H/zBW75I/6Zg93rpOnLkPX3MI+8/zIs/eIjyzCt4M3FMxQa6jomJGe6jEjjGXff0v6OQVVdHB3s//nH67ruP0//pP7Fx+jTNatXypFIUIhMT3P3Hf0z0Dh2Z33Z2C5VdfmUwTZOzZ+MYhsnDD49w9eo2P/3pGqqq7QQTuvB67UQi1geytWdgFQenT2+0uy+SJFCvt5iaStHT4yXqbMD6dUSHm1a9hiZ56B0M4Q07qCaTxM+eRfKFsB86xZkLabxeG+Pj4Z+bbrywkEVRxFsUTdPTac6di2OaJi6X0s47KhTqfPfZFdxP7uML//4BK4E4kcAZCtF9112ERkbe9m4MwE9/usa5c9Y56+hwtQ3LNM1gZaWAqmp0dnool9Udd07r64oicfBgJzMzaY4c6aJe10kkKrf53ciylf47PBwiELBUXZIkMDYWIperEQo5EQRhp8Cxipx6vUU06mZ01ArpUxSJD394nKefvs70dJpIxBpHTU+nqdWaDA4GkSSR6ekUsZiHj3987x3zlV7PwEAAp9NScLg9AUSXB6NaRPKFMTGpVpsMDERoaQZqLoMjEMC9k1V277292O0yL373AskXT0NyGbtN4MBYHw9OPII/5EF2OGhWq5bXhaaBIFhjF0nC29WFWihQz2bBNNFUlVY6TUoPkPBOMn7PfhRFomn6qPvsmBEX6+tFfD47Bw50ojUaVFbm8WZnsdvAr58jX49SDY0TGuoksr6GGYihmTL1ZIJGsYgnFkNvNtGaTfIrK3h7ewmPj5OZmyM9O0v3sWNv+/2zy634/Q4e/eJjfOsrAdTUGgG5imxTqNqjZOjg2D0DHDr07oIwPbEYj/zH/0h+ZYXNV19Fbzbx9fbSf/LkrqX+G7BbqOzyS0fTDJaWcqys5Gm1DCIRN3v3WnfQKyt5olF3W9mRStWoVpsEgw4URWJ7u0IuV8fjsZHL1ent9XPjRpr19dItGTcul435+SwLCzk6Y9s0PTnUjr0Qv0FArmLT7eSSDVp1g62laeoDd5N3uBDXZnYyc7w89tjomwbetVq37ji0WrrlVNrUiURc1GoakiTg8dhwuxXW14v84Lllfu/T+9n3yU++6/NYqTS5eHELj8fOwkKOVkun1TJQFHFH9iuTSJSJRt1Ikoiq6rf8/E1XWF03ef/7B/lf/2uapaU8vb1e7HaZWq3F+nqRaNTD5z9/iK4uD4VCA0kSWVrKkUhUdoIQnTtFneV1U6226OhwMTDgx+GwPmJGR0P8839+hLNn48zMWAVJOOzayW4Scbls7N8/xOHDsTumPN+J/n4/Bw50cvbsJkNDQZT+vahTpzFtLuKpJqqqsbSUZ2Mlg7OWZN9HHkN0Wo8tCAID3gqHjMuk/XGU/hhurxNBrbL6j8+gZxNE9u1j9YUXcEci7QvITc8Oo9WiY98+QsPDVNNpauk0rtG9bAQforN3sK3OkSO9iC4v1It4vW7W14sM97vJXL2Eur6Ozaxj+EeIdIcJlVII1FDs/TQVgXTNZGjITTO3QKtaJTs3h66q6K0W9VwOb08PweFhBFGkuLq6W6i8R9xzTy8u14OcPr3B2loRXTfw+x185Hg3J0/2t8ef75bg0BDBoaH35LF+09ktVHb5haM3mzQKBQRJoiW7+da3ZpmaSlupuKKAYZh0dnp43/v6dwy7rLaqokiMjAS4ciV5i0rDMExUVSORKHP4cIxEoozTWaNcbuL3Wwu3NptEJOLCMAy8zSTY3IS7OojtP0V+dY31xRVUtUmtKVCveTG0Tvbv7cbpVNA0g42NIs88M4PLpbxhjkxfn4/z5+M7hmoChUKDdLqGx2NDFEXLAXOnMyAIAl1dXhYXc1y9mqS7+907T8bjJS5dStDYSYYtl5ukUlVkWcQ0rYXUfL7O6mqBQMBxW5ei2dSRJEvCPDkZxTThhRdWWF0toGkGdrvM6GiIRx4ZaSt+OjstG3yPx8b73jfAhQtbO2Z/ZUDA67UxMdGBIAjcdVfPLYVcb6+P3l4fjz02SqtlLeq+HX+d13NTwQFw/XqSutaHXe5Bm56nWjewez3YJAEBg7x/gOeXA9T/4QYf+9gEgt5i/jvfoVkpMXzv0Vta+c1KhY3Tpxl77DECg4OkZ2YsWbnHQzWVQhBFBEkidvAg/v5+gqpKdn4e772Pcvq8TPfPSMtFTwBl5BDq1Cs47BqFppPk3BLl1VVkWSY8NMCG3oGQymBrZDBXZ2nMXaYhunCNdDI04CP+/XWqySQ2n89apgW0RoOtCxcwNO0djSF2eXMOHOhkcjJKOl1F1807/v3s8stjt1DZ5T2lXFZpNHaWIyWD+NmzxM+do57LgSgyuyWx2IgxePeR9h++YVg7DT/4wTKSZClF/H7rw35kJESp1GR1tUCrZUmUs1sZatksh44OsHdvB1eubHPPPT0sLORIJiuAVRiEwy6OHevGcWWGw/vcdO3t5+LFBKsVP76xu/ArAtsLOSRhk1ypxeXL29x9dw+yLDI0FGR2Ns2ZMxuMjYXueDGYnIzy4otrbGyU6O/302waGIaBJMlUq03sdvkWPxRFsYydarV3nk1z83wtLub4L//lLFeubBOJuOnq8qCqRbLZOo2Ghs9nb3ehEokKmmbcZjW/tlagt9ffNhGbmOjANE0WFrKYpsDERJj9+6N3VMY4HDIf+9gEzaZOKlVt+36AQK3W5MiRLo4d67rj8f/smOjdclMav7bWx9pakWppDz/5+gv4txeJ+U1Etx9b3zhy9zBVVeD0aUvW3mfPUlxfJzQ6ettra/N4kBSF/NISBz7zGVaef57MjRtWoZJMorhcxPbvxxWJUN7aopbNEjt8GOeBQ4gXZ9B1A/FnXHTtE3eBIFKdu4yUWydT3EZRRAI9PfQODiG8coXMWpyKKQEKYjGDTcrRSxi55qJVqyHabNh2dlB0XccTi2HzeEjPzODt6cH7W7RM+8tCFIV2Yb7L/7/sFiq7vCdsbZU5c2aT6ekUqqrhUGCgegVfcRFfNIyro4NMqkzi6mUiymVwZtHHjyEGIu1AwOnpFN3dXvJ5S9Lq89lRFIljx7ro7HRz/aeXiOkb7MmpdEac9BXWqM+NIRoiY2NR+vsDpNPVdjfg5pJn0RuimlhkU5BZWynT0eHGYZfJFxqoqkaHSybr7WBqKoUoCuzdG8HvtxOLeVhczJHPN+6Y/huNunniiT38wz/cYGoqhd0uIQgCmUyNYNDZluTeJJ+v43Qqbcv3d0K93uLb357jhz9c4sKFBKZp5fn4fHaaTZ1GQ8PhkFFVjUqlidtta499pqaSeL02mk2d7e0KwaCTxx4bxW6XmZ5O8eyzi2xulnYWVE3m5jLk83UefHDwjp4j+/dHcTplzpzZZGEhh6bp+HwOHn10mHvv7XtXLfJSSaVWa+F0yu2i9Y24+f4ZGgoyNZVCi4wycu/dt8UQeBSrS3f+/BYd+6qYpvmGeU2OQIBqOo0zGOTgZz9LJZlELZUorq+TW1qitL5OJZHA5vUy/uEP03/yJLpkp7Nzje3tKn19r3XMBEnGse8e4vTQuWebrtI5PNEIgcFB4ufO4RGqhI6NUa3pGLqJVnDgDbipbC6x2Shi93oxdR21UkHAcmd1hcMobjfpmRkCAwO3SJ932eU3jd1CZZd3zfp6ka9+9RrxeLm9e1Cen2L6zEuER4a4d28MxSmTWp3DLKTAKFFNrdBam0HpHce+/wSSL0w47KLZ1Dl5sp9XX91ka6uMzyWg5tKoG8vc51hgz7CXyNAgkqJQz+cpLvwAfzZINvYBOjoD9PX528dlVIvkXnwef3mJanWFzSsziLobSRrDjPRg6jq20hYJOcQ8boq1CmfPttjertDf72doKICum28aBHf0aBcdHS6uXt3mxo0M4+MhbtzIEo1aNvI3qdVaZDI1Dh6MMTn5zlORv//9JV55ZX0nr8dFLOZmdbVIva7t+H/YMU2rs1UqqRw6FOPo0S6y2Sqrq0XicauouffePu69t4ehoSCLizm+9rVpGg2NsbEQiiJhGCbb2xX+8R/nkCTRcmm9AyMjIUZGQhQKjbb1+xulBP8szUqF9MwM2fl59FYLX18fnfv3UxU8vPzyBtevJ9tF1+RklJMn++jquj2P6fXk83UM442zkgIBh1XMGgKm8drrqjebVLa3qWUymKaJqet4u7vbNuaezk48nZ2Ex8YYeughS7HVauEIBG5R25w40ce3vjVLKlUlEnEhCEL7XBqKk5Mf+yD1H6cAUEslKokEjlAIxWHD7rAWyquajdjhQ2QcdlLXr+MMhZAdDqrpNGB5/miNBmqphM3tJnbkyB2zqnbZ5TeF3UJll3eFYZj8wz/McuNGltFRSxmiKBJCbR1nxEMqr7G4mKPblqcyPwW6htTRg1nOga7RWr+BUSvhuu93EEXr7fg7vzPO+GiAV7/xfTKXL+Ks5bDnlvF4bLhcx7H7fEiKgt3nwx2JEP/hRZavX8Plve+1cVKjSvqF78L6IgP3TxINjnLhuy8ibydpzl1Az8YxBS9ZzcuafRKnz4Mpa3g8Cg6HzNxchkymxl13dePzvfkmfn+/n/5+P088sYcnn5zk3/27F5meTrO+XsRmE9E0A00z6enx8cUvHnrDToOqWueqXG5is0mMjoZuee50usrlywm6uryUSiqKIhIOO3c8S0qoqoYsC/h8DgQB+vt9fOITe5Fly4HW41b42KkAvZ02ghEX/j7r4nb69AblsnqLp4QoCnR3ezEMk5deWufYse43ndG/Hcv/ciLB9Ne+Rn55GclmQ5QkEpcuMfvs80xro2waXcRiHgIBD7VaixdfXGV5Oc9nP3vglmyeO3FzP+fm3tDr0TRrATo8MoTD77dGkoJA4tIlaum09TOCQDWVInb0KPmVFcJjY7c8hiAIbfXQ6zlxoo96XeOll9baHTrTtEIaP/rRCe460cdc+gArP/4xdr8VYuf8GZt3tVhE8Xjw9fTg6eykkc9j9/sJDFiFoqFpNCvWeNMTi9EoFgmNjLzlc7/LLr+O7BYqu7xjSiWVp5++zte/PoMoWpktPp+dkeEA0VIOyeXBJ9jZWEoiCys4/R6oa5iCaPlHixJy5yBaYonm2iw50VLZOOwSjo2L9FevMX40jKZ62Dy3jc3tJnntGs1qla6jRxElCcXlYmRPJ0I2zcp6Ad2wXHK1pSu4t5bZc/9RRg90IYgC4WP3kbs4j4sC6DrV/mMsFx1okhO7IKDrBna7hMul0GrprKwUePLJfW3lylthYCDAn/7pSZ55ZoarV7fbmTfj4yE+8pEJ7rnnzrlHMzNpvv/9RTY2ipalPpar7IMP9rdHLxsbJQqFBpOTEdxupW1f393txWaT2tbw3d1eWi2dAwc628uq9a013DdeJN0UqdpNJEXB399P6NgJFhetTtidiMU8zM9nWV0tsG/fO+8E3URvNpl95hkKKyt0TEzcErz2yrMXyG6uMPGxp1B20opdLoVQyMnMTJof/WiZL3zh8Js+/tBQEJ/PfsdxnWmapNNVHnlkhGB/L11Hj7L43HOUNzdp1uvt4MBaJkNgcBDF4WDmG9/g2L/8l2/ZiE+SRB55ZITDh2MsLGR3zOwU9uzpaB9Pzz33kJ6dJT07i6nr7c6OWiqhNRrEDh9GdjhQSyVLti5JdExM3DamahQKiLJM6HWF1C67/KaxW6js8o6oVps8/fQUP/nJKrpuMjDgR9cteerFS9sc0wwiziZOv0IxuUlDqhDs7yVbyVMuqzg0HaMFggmiy0/xxhTS5AjHjnVRWFtj/ZVXrNa700vq6jRq08DTZbXZC6ur+Hp68HZ3A+DtCDHp0zj18f0sLFv5OVqxQKBrhL4DXe07676RLla2mmgOGVthnVTRJDbQSS5XJ5OpAWCzyWQylmV8IGC/ZXzzVhkdDfFv/s0JVlcLlEoqdrvE0FDwDTsSy8t5vva1aer1FiMjIWw2CV03SG5k+Ke/+jbJ5zRGB30k6y6kiokgRHcURPm2rX0o5CQcdlIuN9t7KDeVRVpmi+xPvoNfaRIbO47D60VrNChtbpJc/jpaZRzb5OQdj+1modNs6nf8+tslOz9PbmWF0NjYLUVKuaySaXrwKjmaC5fQs1sYue2dYraf3mg3c3NZtrcrb1hUgVVYHTvWxQsvrAIQDDoQBIFmU2d1NU9np4djx6z3zdjjj5NfXiZx8SI2t9tS9AgCzlCIzoMHcXV0kJ6eJjU1xeCpU2/r94xG3W8os/Z2dXHgqae48a1vUVhZIbe8jN3txub1EjtypN0hqWxvEzt6FEmWSc3M4OvpwREMYhoGtXSaWibD4KlT+Pv739ax7bLLrxu7hcou74jTpzd59dUNYjEPqVQNXTeRZRGv10YiUeZiwsWksIoYtePQNESbiCSJBIJ20ls5CpUmhVYLIbWNR6oT9Ck8dKqPffsiLHzvPGqlSqLhZW1tmVo8jbRdIlVN0xFx4TIMSltbeLu7LcvzTAnF5WJiX4z9h3oxNI2X111gOm9p/4fCTkZHQ8zOplFKTVpSHbtHIhRyYhgmDoeM0ynjctno7fWSSJRZXs6xuBhgcDDwtqS0siy21TQ//1xuUCw2bu1YVHL4ln6EubLC/KYdX7OPSraIe65CwVUlsv84IyNWOGC9ruH12nA65Z2k4nJ7d0bTDBJnXkZslJl4/304dnYZZIeD0Ogoydk5XMkpit1DdzS4q1Sa2O3Se5bmXE4kMDXt9u5AQ6PZNHAJGo2zzyLFBhBtTjAMWqvTSKEuGsFjlErqmxYqAI8/PoZpwqVLCba2ygiCNcq6OZ67GQ8gOxwER0boOnKkXQDYXC7cnZ3tIkrxeMjcuPGWChW91UJXVSuSQb71o7VUUjEME6/XWm4ODAxwzx//Mc6ODha+9z080SiBkREUhwPTMChtbiJIUrsQWXz2WVLT01QSCRAEnOEwY48/ztBDD+3Kk3f5jWe3UNnlbVEqqbz44hpf/vIFMpkagYCdfL6OqmpEo27W1gpWR6PeQVD047hxA3/AiSrp5LJVEispHNSRevtp2YNWgF29hmugnwdOjSAIArVcgaW1ChvVJF6PjVBvjFY9jqrW2NjUCDtbOItlbsymWVnNo64vYIzdx9r/fYX77uvj4MFOHH4/pc3NdsBgtdrcyaZxcfBglPUL2xgtO5lMjb4+P0ePdtHf78M0IR4vc+NGmrW1IiAwP59jcDDAo4+OMDZ2Z0+Vd0qh0GBhIXvLxdfUNRqXX0DPxPEOjZHK1Gm5owyPjbCVv0Li1R/jCHdw8OAAbrfCykqRZLJKq2Vy/LiVwGu3y8zOppEaRULVbcbu20fvzywa3yQ02E90c4rp1VU6ogduWUI1DJP19QJ790bp77/9Z98JN3dAXo+iSMhahVZiFUmRUbpfkw2bhk59cxlHvoHMwz/3Oex2mU98Yi/33de7I2s3CIWcjI2Fblv0NQ3Dyol5gz0PQbh16fZO1HM5ti5cIHH5cjt3pvv4cbqOHWMlrnLuXJzl5TyGWidkpBnwlOjvcRPo62Xw1CmcoRCbZ86QX1y0zo1pWnbrjz9O54EDAOz/9KepplJtHxdfby9237v34tlll18HdguVXd4yN8c9165tW7LeDicul0KhYKXUbm6WsNslfD4HRRM2HccZCyxgN5MkN3MIGylMV4jg+D7k2CA9koSpNVG3yiSdg1y+kuSBBwbIVgSS8QKRsU7sNhlwQKQHIbGCIgnks2UaqxUK8TXcrSzunj6kvQdZXMyxtJTn4x+foO/4cbLz81SKFeaXymxulnZ2OMBjlOgeiPG53/kw3/lRgtHRUDuVd3W1wOXLCUollYEBPydO9KHrBisreZ5+eorPf/5Q2/zsvaDZtNxk/f7XCgQttYGW3kTu6ENQXsuFEQSBIw9O0vjOy6yfvYB8OIDbbaOnx0s47OD48R6eeuoAoiiwuJiz/FpKKXLPnic8fGfbb8XpJBaxo3X6mJ3L4Pc78HptqKrlj9LX5+fDHx67ozz5neDp6sI0DBqlEnavF73RoJxIUE1ncG5fR82lsE/edUuXQBAlykqUoJHBUU0Ab83CvKvL+3OVQr6eHgxNw9B1ROl2pVCzUiH4Jsuq1XSa63/3d+QWF3GGwyhOJ41ikZlvfpPzz57mcmuSBg4iribm7AtkNlfYNgS2+oMM9jpxvfwyY48/zt1/9EdWwF6jgc3joWNi4rbcKXc0+raSvXfZ5TeF3UJll7fMpUsJpqZS7N0bIZerk883dtxLgzQaLTY2SoRCTspllXq9hR7wUYy9j1ojR60Yoru+QF+4AynUCXoLvZLDqBSxD07giu3l/PktTpzoI9EKYkgKit4ArE6D3D0CggjJdfRykaTuoWfCj31wAseB+ykLfoxShY2NAl/+8gX+9R8dJrh3Py8/8zypsoI3GqYzKKEXs9QaKjON/Zy0eXjkkRFOn94gm63j9dq4eHGLbLZOV5eHo0e7dzoMEnv2dDA9neL06fW3XaiUyyozM2mWlvIYhkl/v5/JyQjhsAufz47PZ6NYbLQN2YxSFnQNQbGhNq1lXJdrRybrsXH0xDjpTINSv5daXWd8PMzhwzEmJjra5mwHD1oX83rezauveGhWKhitFo1iEQGw+/3YPNb/O71uPv57R5hMypw/v0W5rGKzSXzoQ6PcdVf3e2Z6lblxg/i5c+SXl9k6fx5PLEazWsXQNERZxlaM09RVSpubeP1R7KEoLc1y15XtNnpCXqrbCeDNF2rfDpF9+/D19JBfWrLM334mb6m4vo4zGGx3Ne7E0nPPkV9eJjI52S50nKEQgjfE+W++iDxosOfUw9Re/jZaaQtX7zDlms5cuknXvj5c1Jj79rc58i/+Bf0nT75nv9cuu/wmsVuo7PKWMAyTCxe28Hpt2GwSAwMBksk4um7JPQMBB5lMrX0HqygidrtMvaEjuDqIB+9itR7mnkaRwXQOt0tCcLixH/z/2HvPIEnu88zzl64qy/vqau/NeD+YwQxAkIAAAhQ9VxRBhVbLDVEK8hSr2w/6cBEbt/qkkDZCFxuhCGlv9xR7ceSuaABxRYAgQNAAhBuLcW2mu6e9Ke9tZmXmfaiZApozAIYkBhSp+n2Z6M6qrMqs6sk33//7PM8D2EYP4KkKFIsNarUmFVsYeWAPRm4Oq1FF9AQBAdHtR9IbJLReKuE97PrIIYRAN3PXsywsrFCr6YiiSCqV4f/6m0vsnRhh27FFt7qNqOewmiJKpJvgsX0UayG+/vWrfPjDQ0xNhSkUWl2hclnj0KEYo6PB21Qj3d0e5uYyZLO1OxrA3Ym1tQLf+tY0q6sFbDYJURQ4c2aTl1928ZnP7GL37giHD/fw3e9eJxJx7Vx6saybRZOH0NuGeu12mYFBP6f+6OgduwBvxxEIEBgdZfof/gEEgWa93vp8HA68fX2IikLXvn3EJkbonhI5dWqAalXHZpN+LrXTe7H+2mtc/6d/wtA0Yvv3s33pEpvnzmE2m61lDI8Hp9+LI9ZLoQql69NkekBUnQQDDianQkjJKlqp9I7dj6t7GvkAACAASURBVF8Eu9fL1Gc+w8y3vkVyehqb290avi2VcIRCTH7yk+2h7Z+lHI+Tnp3F09t72/tJZRpUBA/R6jr6xgK1zWUSNTf5ZCueoFrVef6FJT7ykSG8jTzbb75JcGzsfTmmDh1+0+gUKh3uCk0zKJW09l1/X5+Xra0S6+utRFjLsgABTWtlj9hsEtGoq+0Z4nbbSfj62Yjso2Kvc/r+Xuw+P4KtNaRZz5aw22VsNolgyMls7xGiA1H0lWmaqQ0ARJcH24GHWNAUBke6kCN9LC/nmJ5O4nLZ3lY8tAy/nv/xFuHwHiZPPYxVLYIo0VA8nH8zydZWilSqlbYci7kJBp03Ld8t9u+/cxChqsrkb7rZ3g2Visa3vz3D+nqRXbve6naYpsXyco6nnpohFDrC/ff3s7qa58qVBH6/ikv00mhYlNbSBCJ+9u6NIrxt6aWayTD4wAN3vFhvX7xIZmEBQRCIHTqEf2iIej5PvVDAMk3c0SiS3U69UGD99dcJjo1x/E/+pN1JkGXxPX1jfl7K8TiL3/9+a3h1ZARoDZ5Wkil0TadRrRPdvx//yAiFlRViU92kltbwDEuExgex6wXyy1dIzc+3DNGSSXqOHaPnyJHbhlZ/EULj4xz58pdJXrtGem4OyzQJjI7StW/fOxYp0JIHN0olvP39t22rVnVQXdCoUN1YIbFZICXacbkUXC4FWRYolzUuXtxmqlfEPT/f7ix16NBhJ52/ig53haKIbVUJtLxKjh7tweOx3TQbM9C0Jk6nDadTptEwdhibiSKEQip2VSZdtZOsORiItIoU07TIZKp87GMT2GwSe/dGefHFJRZsw9gH+3CZRUIhB7ZAmHjOQmeRZtOkVGqwtJRrq41uYZoWgYDK+rpIKlVFw4YajGFZFpff2GB9vdCWjkYiLvbujbKxUeLcuS00zaBS0e6ogCmVGrhcCh7P3V3I5+bSrK7mmZwM78jLEUWBkZEA166luHo1wSOPjPLkk/sYHw9x/vwWRSuCHO5nxIgzfnSiXYCVyw1WLi9QKWuUs37Ma0kmJkLYbBL51VVe+cu/JHH5Mnq5jCUIOHw+AuPjSDYbY48/TnFtjdLWFnqhgCTLdO3bh6yqWM27K7zejdasjYGqyrdlAyWnp6nlcu0lFMMwWbm+SbIo0LCFEasZSvNFhg9MIjsSNHJZ3H4XTrOMUk2xefEilWQSb18fvsFBihsbZBcXKW1tMfmJT7wv3RVnOMzQQw/9XDJkUVGQZBlT129TMSmyiKXr4JBIZ2pUajq+HrU9R2xZrTBIp9PG6lqGnv73b+6pQ4ffNDqFSoe7QpJEjhzp5umn5+ju9iDLIqoqc+BAjImJEPPzWVS1Na+SSFRwuVoXK8uyyGZr+P0qsZib5eU8lYrWLnjKZY3V1TyDg36OHu2hVtO5ejVJIlFhaSmHw6HgdMp4PBq63polkSSBubk0mUyNXK62Y2akXNZQVeVm2nIrg2hjo8jYWJBstsb2dplQyImitLxKHI7WY/v7vZRKrW7J2lqhnQB8i2bTJJGo8Nhjo7eF+70Ta2sFRFG4o6xZEFpJw/PzWR55ZBSXy8ZDDw1x6lQ/1aqOUdrLjX96msz8PKmUQDrb4MZcnAoOrLETzM80eX3uTaamwnzsI1He+D//D5JXr+Lp6yMwPIxlmlRSKZZ+8ANUv5+jf/RHuKNRtEoFQ9OQFKUdapeenf2Fs2ISiTLnzm1x+XICXTcIBFSOHevl8OHu9tJRJZlEVm8VpSaXLsVZWs5jb5o4fQqmqVLP57k8X2Y0PIi7sk51exuj0SC3tITZbBIaH6f7yBEcgQCucJh6ocDaK68Qmpgg+g4eMO8n5bJGOl1FFAViMTc2m4S3rw93dzelrS38Q0M7Hh+OOLFpBTR1kI1KCK9NQTQ1LMnWTrYOBFqDy8m1HDXH8U43pUOHd6Dzl9Hhrjl8uIdr11LMzqbo6/Pi96voukkqVcVul/jqV4+xtlZkZiaFZb3ljeHx2DhwIEZvrwefT+W119bZ2iohiqCqCvv3d/H44+NoWpO/+ZuznD+/SSzmIRx2kk5XyefrXLmSwDRNTp0a4MiRbs6f3+b69QyJRBmbTWJoyE+5rJHN1pBliUuX4uRyVdLpKq++ukq5rOFwyGha666/9bNCLPaWKVc47EIUBXw+lenpFLGYG4dDplTSSCYrTE6GOX365zXXene1TGvJ7C0URWopgHwxvF/6Eum5Oa6/dpn5H8xjjI4ydHAfsr8lka7Xm61MnDPPoly7RmhyEtne6vYIooi7q4tqKkU5kSB9/Tr+wUEs08Tu9ba7ELLdTqNUuuujKRYb7STralXnpz9dY3u7RDjsRFVlEokK//C1i0z/qMHJPSo2m0Rpa4tmrQZAMlllaSmPJxJCbKYRRQEB8Pic6F6VtYLOiUPHEKSLKE4ntXSa7sOH8fT0tIsdANXno7y9TfzSpXtaqLQs/Fc5f26DwuoKUjFBwCOx/75RHvzMgww++CDT3/wmxc1N3LEYoiRhNpvIpRSxHh/ztmFSRScOdwxHKUHFGaNSM3G77fj9KlYhjaXYsQ/tumfH0KHDrzudQqXDXeP3qzz55D5eeGGRmZk0W1slZFkkFnPzsY+Nc999fZTLGpIk8r3vLdwMKHTQ0+Ntzz3EYm5Onuzj8cfHiUSc7ZThF19c4tlnF3jttXVUVaZSaTmuDgz46O31oGlNRFEkHHbi9aocP96L3S7x6qsNlpfzCAL4/Q5EUURGJ+hRUO0emk2LRsPg3LlNolEXzaZJJlNF10327o3uSOYVRQG/38EXvrCXN9/cZmYmTbms4XQqPP74GPff39+WMd8NfX1eDMNsDxz/LKVSg/HxoXd8vqyqxA4e5PVlO/n+KHv37pSmqqrMyEiAxP/zKjFBbBcpOx7j95NfWWH5xz/G19cHloXN7cY/PIx/eBi9Vrsre3jDMHnppVVefXWNTKaGaZrMzKQxTYuHT/jxmwmogccuUU68xuKrNxAvBenp9VLLZCiur+OMRNjcsrAsE0c0hlbYwiikARB9EVxOhXyuytbiJpNHjuAfHmb7woX2XMvPYvN4WgZo9whNM3jqqRnOvnqDcOoi4cIKptagvGzw8oWfsvXKS3z0T77I1Kc+xfKPf0x6dhZBEDCaTURJYt994zhTNbZvbHHDGKDf0nBmNoi47UQ8PoRkHtPhRh+6j8jkxD07jg4dft3pFCodfi7CYSdPPrmfRKJMLldHlkX6+rztNr/Xa+eLX9xHo6GTTFYZGQm0lSyFQp21tQKHD3fj89m5cSMH5HjxxToXLrTmQzweO729LeVQuayxsJBFVSVcLhuqKrO+XmT37ghut41Tpwaw2yV+8pNVYjE3fc4S8ZWLdMl5zIyB0PRwcvcBbP1jXJ/PsrHRcikNhRwcPBhhcHCniVkmU2Xfvi7Gx0OMj4coFOo0GsbNMMR3DuR7J3btijAw4GN+PsPkZLjtRWJZFisr+Zvmc+/uCWIYJrOzaUKhOxdILpeNVL1M03HnOQ2j2cTQNOqZDKHxcQRBoFEus3X+PMWNDbx9fXdc9mmZvRVYXc1jmhaLi1muXEkQCjmZnAyRydSYeXOFUPoKG08lISKjSCZGZgtEGVvXPpK42Ts5jKU3KMfjLL3wAoXQfhRFRVTsyLEhGtfPI0gKlt6gmdrAVsjTCPex6zOfoby9zZbxztb9RqOBErvz4PP7wfR0kgsXthlozEJ2ASnUg6g6cQDFUp2VpQTn/79vcPp/+zIn/t2/I7OwQCWRYP3116nlctST2/TLMh+JxZle0XAdOYk34MZVTyAYGqK/i5QQIRiOMTn5/hoJdujwm0SnUOnwC9HV5X5Hf41o1MXnP7+X73xnjqWlLIZhYVktD5CJiRDxeJk334wjSSKGYXLx4jaq2srDEYTWxblQaJDP18nlapTLOv39HhwOBctq7esWBw7E2NwsIcbnKW6cw9OsU3b4MC3oUlPE8mdw9kuMPnGUc+c2cTgUFEViYMC7w8Ts1vxBS/nT4u3dll8Et9vG5z63m29+c5rp6WR7HqZa1YlEnHz601PvaQffSgLmXQ3XTFeEZnVh55NuSpHruRyizYbkcKBXq9jdbuxuN1VNIz03R/+pU/iHh3fsr1Rq8J3vzHHtWpJarUmj0eTy5QSBgEp3twdJEqkWynSlzhEx42SbbnJylC61jFUtgWzDXtqgKo/QaDRxuRyMPfEEi889h5jbwCyL6A0HgmLDcfRR5EgfZjkPlkndvZveTz5IdM8eFIejFc5XKmH37DRuM5tNtEqF2IEDP/8Hc5e8+WYcpZFHTCwhBKKI6lsSca9HZaMYILWdZfPsWfb/3u8RO3iQS//9v1PP5wm/bRnOPThC7fmLJBbOYJz+JNLUfppNk83tEqIo8PFHR+96QLtDh3+JdAqVDveE4eEAX/3qcebnW74jkiQQDDp45pl5UqlqW66byVRxOGR03WzPPiwv58nn6whCa4i3WtW4cSNHPt/gwIEuJOmti7aiSAzHRAaFDVZyNspSBI/HTiCg4vepCLUi2txZnOEeAgEHDzwwwOZmidnZNA6HjKJIlEoNHA6FRx8dvW155ZdlaMjPH/3REaanUywsZDBNi6GhluQ4ErlzaN3bkWWR4WEf585t3bEwbDSamEOHURaWyK+uYmoazUajNYMiCNRzOVyhEF3HT1JIF8hvpLApEv5YGHc0it3r3TE0bJoWTz89y/nzWwwPB3C7bays5LHbW/M9589vcurUAFJ2FWdlA61rAEkTyOUbhF15BLsT0eGmmdlGcobbn5Xd7SZ28CAuw8XWpg+x240jEkUK9bSl0eWyhrBVYt99rWUQ/9AQ3YcOsfbaa3h6elpGaoKAVi6TX1khND5O9F3M2H5ZstkaTj2HWa8gB27vfEmSgKn6yC4uopXLLV+VuTkCw8M7l+EsiI0Pk1w7w+yPX6dw3aC728ORI908+OAg+/bdndNuhw7/UukUKh3uGbekxrd4/fX1HZ4iLcVPgWy2RiCgUq3qFIsN8vkG0agTw7AolVphbrVak/X1lky5Vmu2l2LS6So+LcFgWEAJTJFIVOh6e2qt249RytJYn8dS9zM0FOCxx8aYnk5x7VqSer3JkSPd7N/fxchI4J4EvPl8Kvff38/999/ut3E3HD7cw+XLCZLJyo5EXsMwuXEjy9CpU4S0N9g+fw7RZsPudmMZBpVUCss0EfunmClGqeo+BLmOhEBQCDIWsaim0zteq+VLk2JkJNCWaBuGiSwLxGIetraKbGwU6a5ukrbbqesCkiS0umaGAYKAoNjRamnCtjqq+jaJuizTN9rDvv3HuXBhixhuQghYpkUqVSGZrHD69AAjIwGgNRA8+alPIdntbL/5ZjuQT1ZVug4cYPITn7it0/J+EgiopOs6LqPZSnOu5FvH4fIj+sIYhoXdYcOyLGqZDPPPPMPGmTM4g0HsPh++gQEkX4TzF7eJxyvYfAHGxDLJXhfcnIeamOgs+XTo8F50CpUOHxg3buSw2yUEoSUvXljIUCw2yOXqZLMtVYhpmDidCtlsjWpVR9MMBEHA6ZTRdYPFxSw/+tESJ070USpp1OtNjg7KeCtOFJef7e0S5YqGrpvouoksi7hkB+mlNbofPsXUVBi328aJE32cONH3Kz4jd8fkZIiPfnSMF15YYno6icdjp9k0qVR0hof9nOrPkFgeRPV6yM7PUy8WEQBXVxelXJlkHhwxge4eL6LgQ9MN0pkqjXga/+DO4ml1tUC93tzhI3Nr/sg0W5/NxkaRfrGGL+hhvWhgmhZutw3J7UPPblEpNZBsMtHgzrkerVwmPDrMv7p/N36/yqVLcWZn0wgCBIMOHn98nI98ZHjH4LHicLDrM59h4PRpihsbmIaBKxrF19+/w+7+XnDgQIyZ52poGzcQBQtBaXVJjNQmuuxEDY3ikUQUR4Dpb32LtVdfxajVsEyT0tYWpc1NMmaAbTNKd7cXKjqIAv1HeqjWTc6c2aCvz8OHPjR0T4+jQ4dfdzqFSocPjGbTRBQFVlfzXL2aRFUl+vq82M0qtaU5XOU1TL2Ov7+PpWaEctOPJIkEgw5GRwM3PU6KzMykSaWqxGJuJiZCOD1OGmmN3gkPXq/KlSstTw9FkbAsC0c9hW9wmN95YuyuPVD+OSEIAh/+8DCDg36uXEmwsVFEUUT27o0yNe5j7v/9v3GGw/iHhnAEg+SWl1vPc3rInJtF1fO4pQai0LrQ2hSJaFglNVsmKXTveK1m8/ak4GjURSDgIJOpYbdLrc8xGCDo2aahulhbKwCQ0ZzIhoIqVgiFHQRjwfY+CmtrOEMhonv34nLZ+NSnpnjwwUHi8TKCAD09nnedCbqbQD7LsqjncpiGgerz3WbC9l7o1SrZGzfaCchDER991iapuoFdNFHcAQTFTr3WpFnIEFZvYGM3jWIRrVKha/9+tHIZ2eHA7vVSzpfJXVskMGRHkvzo1QK2wd0IkozLBT6fnXPntjhxou+2VOcOHTq8Reevo8MHxvCwn7NnN0gmq8hyy69ErmYYK52hbmyQagrolgjxJYasG3hcY1T7jzE0HERRJDTNIJutYRgWzabJxEQIQRB46WqTro0sRXmLSkUjGnWhaS0PFywTFyZGePCOF+H3Ip2ucvVqgrm5NIZhMTISYP/+Lvr6vPfgDL07IyOB9rLILSrJJLVstm2AVt7eptlotIZNNQOzaiDZJJqZOIrDgyAImNUSZj6B2j/GYtFHs2m2TeluueC+XVKtKK0lvPPnt9jYKDIxEUILDlGZvows1Tlxoo/+Pm/L5r/ooTJ7kWa1jGWaFNfXqRUKOPx+Jj7+cTzdbxVGwaDjrjOT3ovk9DQbb7xBfmUFyzBwhEL0Hj9O3333vWfBYlkWm2fPsvyjH1FJJFoFTz5PcXMTYWkZryTSKJao5xNYNieyL0A04sTWvJkArWn4h4aQVRVXJEI5kcDd1YWOjGFJSJUkzYILQVJQBt/ySwkGHSSTVXK5+nsOVXfo8C+ZTqHS4QNjz57oTYlxoeUmaxq41s+i1DOUAgO4PBaVika6ouNWNCbsmzQC4zSVCNByma1UdEZHg4iiQDTqai2D9O3jxj/OEn/hHI7uPkZHopiWhV6tYeW2sO3aS6pvipdfXmXXrjArKwVmZ9OUSg3CYSd79kQYGvLfNp+yuJjlm9+cZnu7jNutIEki16+neeONDZ54YpyBAR+maREMOn4h+fL7gSBJ1DIZElev0ii0OhvOYBBRlinkKwiVBJamYRRSCLIMWIh2J7bhfWg9hzFEG7putAuVqakwvb0elpfzjI291RHp6fGwe3cEy7IIhZwUFT/OsQP0VW8wMAjemNpywxVknFMT+IeGUBwOLMui97776DpwAN8dMnHeDzbPnmX26acxdB1JUSgnEmyePcvc//pfDD7wAMe+8hW8vb3v+PztCxeY+fa3ke12gqOjJKenya+ukrp2Db1exxEIYA84sRCxLAtFrhLpH8QRDCI7HDTyeWyu1uxQ7NAhts6do7y9ja5ZYOoYyQ0kXxT14IPIsaH26xqGhSi+u6KrQ4cOnUKlwwdIOOzkkUdGeeONTeLxMkEzjSu1SV4JYHfKjI75qFZ1ZmZSyDYVu6OElFuiGB6lXGmSyVTx+x3Y7TKmaaIoN91VbTa8xx/h0nKBvVqJ6lqBSkWj1oCmtxtn9D6CsTArK3n+9m/Ps7lZwjQt7HaJWq3JK6+s8cADAzz++Hj7olEqNXjqqVkymSp79kTe5oHi5ezZTf7jf/wxo6NBXC4bgYDKkSM9PPDAwI58ow8CNRCgqWlUUykEScLhfytOQLbbsGwqAjqiJ4B69LcQbQ5EbxDJF2brRo6BmANRbCVXq6qM223jE5+Y5FvfmuHatQTBoBNJEsjl6oiiwFe/epyTJ/swDAunepr0pQtsnDlDNZkEQcA3MMDez3+e2KFD92Qw+Wep5XIsfv/7SIqCZZokLl+mqWkojlanZuHZZ6nn85z40z8lND5+2/MNTWPlpZcQZRnfwADZxcVWqCM3s3xME0lRcASDNEolXNFoK2FZFFF9PkRRxKLVlREEAdXnY+D0aUpbW2RXN0hkmjQVO/5TH0fp3ZmOnEiUGRsLEg47b3tfHTp0eItOodLhA+XkyT7uv7+fbLaKsLGFwy7g7w/h9ztwqDICAr29XvL5OsmSiLORJO7IItodeDw2urtdlEp1xsfD7SFPAMXjZdV3nGCvRD25TcWsY/n91BxdNGdq+LfWKRQapNNVjh3r3dEByWZr/OAHS0QiLo4fb915z86m2dxsKZSaTZNkskKj0WRzs8jmZplisU5/v5/JSS/ZbI3vfvc6iUSZz39+b9vg7oNAL5eR7XYsw0AQxfYF0wIUDBRZRMeJrV5GVOwo/S3pb6WiUSjUAS//+T+foVLRUVWJQ4e6OXash3/7bw9x8eI2164lMU2LAwe6OHKkh927Izs6AAOnT9N7/Di1bBZBFHGEQu9LSODdkrl+nWo6jSsaZev8eQRZxhN6S0kjCALZhQXm/vEfOfaVr2Bz71xiKaytUd7awj88jNlskl9eRrLZqCSTKDcDG5v1OpZpojidNPJ5XJEI9XyeUjzO8MMPs3XuHLVMpu3weyslOjAyQrausFgJozp7ubVoZ5oW8XgZgBMn+jodlQ4d3oNOodLhAyUQcHDyZD8/+ckyo/tj6E0PSqwlMW0aJqVyg+PHexEEOP/SDFgmu/d0Een288ora6TTNSIRFyMjO9NmnU4FBIErqxAMDhPudyEI4KF1t7u4mCWZrHDwYOy2ZZpg0EGhUOfMmQ0OH+5GlkU2N4tIksj2dpnp6SSFQoNGw2Bjo4DNJhEIOCiVWl2Inh4PgYDKhQvb7NkT5fDhnQOqvwj1epOZmRRXriQoFOpEIi727+9iaiq8I+TQsixUvx9HOIxeqdAoFtvbRFkmONBLIlEhn2vQTBWweevk83Wy2ymMYo7Z1xME+vtw+13Uak2eeWaemZkUX/ziPj7+8Uk+9rEJTNO6Y7DiLSSbDfc9dIh9N24db2lri6am7ShSACRVRRBFCuvrpGZn6T12bMd2Q9Mwm00km41GoYBWLqM4HJi6js3joalpGPU6lmW1HlOr0dQ0GoUCwbExBk6dwjJNll58EVGWUW92tEzDoLi+zuhUN4H+B7m03mBjo/WdurVc+MlPTr2nM3GHDh06hUqHXwGPPDJMKlVh9kwWb11CTqbRJSf1epPeXi+TkyFUVUZMr7KlDJFWVTKZKjabhN0uc/x4722ZO7pu4HIppNNVxsZaDre3sKzWXaxhWCjKnS+4kYiL7e0y2WyNaLQVTpjJVLl+vZVnE4k4yWRqKIqEzSYRj5fxeFpDmppmEI+XmZ1N8Z/+06t86lOtC9DEROiOGT/vRanU4JvfnObKlQSKIuFwKKyuFjh/fosTJ3r51Kd2tbs2do8H/9AQNqcTRyCAIEmYuo5hQVmTyeXqGNSoGTLbq3WCcpKexgKujesUkhnCETdyPYxtdD/+4X10dbmYnU3z/PM3+P3fP4AoCh/YHb9erdIolZDt9vYF/72Q7HYsq+UHc2u55+2YzSbqzRDGcjx+23a7z4ficrUKnltfGkFAkCSsZhO7x0PdMNDKZSSbjWatRjmRQLLZGPmt38IRDDL22GOYus72hQsU19dBFMGycEWjjD/xBLFDh7h/o8jiYpZaTcfrVZmaCneWfDp0uEs6hUqHDxyfT+X3fm8/l/dFefW/rlKbu4A31sf+/b309XlRZIH8ygqDk7189MnfJU+grfh54YVFqlUd07TaF9BKpWUcNzTkx26XicfLOJ027HYJXTcolzUCAZV6vUkmU+MdMu52MDDgY2urhGGY9Pa2FD66biCKAk6nctP/pcZrr60xP5+hUtGRZRFNM3j99Q3Ondvi1Kl+Pv7xyXftRtyJ55+/waVLcSYmQjtkq+WyxiuvrNPV5W57bwiiSP/Jk6z8+McU1tbwDw9jmLC8nKeQq2DTS6huB/aBCRqxGL71V+lyZlk2BVwDwyguGbOYpXb+Rcx6DXXPCfr7vczNpdneLtHdfe8M1W7RKBZZf+01ti5cQK9UEBWF0OQkA/ffj39o6F2fGxwdxe7xtNQ+5k5Vl2kYNOt1vHv3olerlBMJUrOzOAKBdgfI09NDaGKC7TffJDw5id3vp57N4ggGKaytIQgCgZERbC4XlVQK0e8nND6Or7+f0d/6LaC11LPrs5+l9777yN24gaHrqD4f4akp7N7Wd6e/30d//85sqQ4dOtwdnUKlw6+EW6GCxw7+KTP/+B1SV6/QrG1RWNhqbY/FmPjt36ZrapzYzzzve99bYHo6iSxLGIaJzSZx7FgPhUKD5eUc0DIu0zQDRRHZt6+LSMTJs88uUCppd3w/qVSFWMzdlsuGw05EUaBeN9pSXVlute0LhQaWBdvbrWBGTTNvxgAYuFw2JidDlMsaL720Sne35+cylkunq1y5kqCnx3Obt4bbbcPns3P27Cb33dfXntHp2r+f/V/8Iuf+9m9JTU9TMRRKeQ23KiCoKrb+URwnPkywUWfr8iKrfUPUJQi6VARZRPQGsQoZtOvnUfrHcWOxvTTHjZd0HCem8A0M3DNztUaxyJWvfY3U7CzOUAhnJILRaLB55gzZhQX2feELhCbeOVnY09tL7/HjpGZmKCeTqH4/gijSrNepZbO4IhH0apXE1atopRLJK1ewe72Ep6YYfewxXJEIo48+SjWdJjUzg+r1UtrcvJkp1cpMcobDyHY7hqbhjsVwx2KMffSjO7o+giDg6++/Z8qmDh3+JdMpVDr8SrG5XBx48gsU1k6RW17G1HVUv5/wrl13tEc/erSHkZEAMzMpMpkqdrvEyEiQ0dEAL720wsJChr17o4yPh9qmb7LcCj8MBlUMw6RW03eoc3K5GvV6k/vu62t3PyRJZHw8hsMrBQAAIABJREFUSDxeJpmsANBoGDQaBtCa2RBFAUEQCIedyLLQdtNdXMwyORkmm61x9uwmR4/23HVXJZmsUCjU6emJ3HF7OOxka6tENlujp6d1fgRRZOITn8A/MsKVb3yL157+MTa3ihKNogztwT5xBLlrgMpLT+ENuEmXWonEeqmAVUpgFlJYhoFZKWDkE+AKombLbHx/htqbfkITE0x+4hO4Ind+T78MG2+8QWpmhvCuXUjKzc/E5cIRDJK+fp3F73+fwMgIonzn/6oEQWD8iSfQazUu/rf/RnpuDrvPh6yq+AYGEBWFjddewxWL0X34cEtOXCiwefYs1XSaA//6X+Pp6eHA7/8+G2fOEL90iUa5TGlri8DoKJZhUNrexjIM3LEY0X37GPrwh+k/efJ9PxcdOnS4M51CpcOvHEEU8Q8NvWeb/xbBoIPTpwdu+/3evV28+uo6S0s5RkYCyHLrwmearWHakyf7CYedzM9ngJY1fLWqo6oyDz88wrFjPe19+Xx2urs97Q5LJlPFNFuFwuXLcaC19GRZFmBRzZfo8Qp4fRbLy3lGRgKEQk6SS+ssvmLhDzjw9PS858VeEFoX39Z+b58NubXk9fYZnHy+zvJyDl0P4nriD6lWjxH1Cbg8DgSXD0EQWiqfRApMGcMw8SoNqtdncEkagupCsNkx43m0YhYtNIJ711GGj01iNmokLl9Gr1Y59G/+zW2qmTu9v5WVPBsbRSzLIhp1MTYWbEvJ306zXmfrwgUcodBbRcrb8A8Okl9dJbe09K5dFclma3dernzta5TjcRSnE1GSSFy9iru3l5GPfATF2ZoJUf1+bB4PqZkZti5cYPSRR3BFo0x+/OOMPPxwuxuTW1mhlsnQrNdbtv2DgwSGh+84C9OhQ4d7R6dQ6fAbQzTq4rOf3c3TT89y7VoSp1PBsqBWa9LX5+Fzn9tNf7+P+fkMMzMpSqUGkYiLPXsiDA8HdgyNulw2jhzp5tlnF5iaCrfnC+LxEmtrBXK5WquoqJeINGeJkcBXt7DiCplkhNyAjpReQlydZ7bqRXUoqD4fsQMHGP3oR9sGYbdoBQzmWFzMks/XuXo1yZ49kdsu8Mlkhe5uD5GIi2bT5Ic/XOL11zfI5VpZSc2mydJSgQMHuvB0+8nlapw7t8n2dpnuzRqeZoayEsbr2kLQa1TtQVw2G5ZWwTJ0DG8X1Ep0q0VkRQLFTXhqivTcHMlr1+g7ceIdz38+X+c735nj3LlNEokKpmnhdCocPhzjd393X7sDdAutXEavVFADgTvuT1ZVLMPYoWR6N3qOHCE8OUl6bo5yPE52aQmtUqH/5Mnb3GlFScIRCBC/cIHhhx5qd2wUpxPF6cQRDBIcG7vTy3To0OEDplOodPiNYvfuCNGoi+npJEtLudbSwHiQPXui+P2tLJm9e6M7Up3fidOnB1hbK3LtWgK/X8XttpFO1zBNi337uugPC+ReOoOvmUL2hTAVB+gNvLl5jB9cpWbZCE3tpu/QHgRRoJbNsvyTn6BVq+z93d9tdxFyuRpPPz3L7GwaTTPI5WpcuhRnY6PIiRN9bXVIKlWh0TA4ebK1RPW97y3w/POLhMNOdu1q+ZvUajo3bmR5+eVVEokKly7FSaVaiinLijFU2UB15dELWVSfH0GRKJYaiPkkggGyO0DUr6A2shiahmSzIcoyssNB8urVdyxUdN3gG9+4xne/e516vRVUKAiQydRYXs6ztVXmP/yHB3fk+ciq2lLS1Ot3XOYzm8324+4Wm9tNz9GjAKz+9Kek5uaplGo00qtUtjdbg65+P77+fmRVRa/XMTTtHZeWOnTo8Kun89fZ4TeOcNjJhz40dFeptPF4mdXVPIZhEQo5GB0NtudJPB47X/ziPs6fD3H+/Balkobfr7JvX5SeHi89pStsOopsaN24ZBVFFqnpEnbVg5lZAV8PI3v6EW9KlJ2hEIrDQfzNN+k5coTI7t3ousG3vz3DlSsJxsaCOBwKU1NhLl7c5vLlOM88M8/BgzEkScTns/PRj45x5EgP6XSVM2c2iEZdRCJvdWccDoVTpwb52tcu8+KLy8iyQFeXC0kSKZX6SZY3GKsvYbM30JoWg70OjGqZalNA9Efp2deDYDTRymWa9Xq7EyHbbGjV6juex4WFLN///iLFokYo5GinL5umRTpd5aWXVjh+vIff+Z297efY3G4iu3ez+vLLOMPh25xsy9vbuKJR/MPDd/W5v52trRKvnk2ycGYF88dXkbQSXp+Kx22jtL1NfmUFRzBI77FjSHb7z73/Dh06fHB0CpUOv7ZYlgWWddeKFMuy2Nwssbqap1LRmZlJkkhUqFRacudisYHDIXPsWC/793exa1cYj8fOQw8Ncfr0ALWajt0u88MfLvHcd65QXZslPNRLIy+TzdYolQxqtSa95DAUB1GPRVDVMU2TdLpGLlfDMi2sVJntq9NEdu9mYSHL7Gya8fFQW8UjyyJHj/YwNNQKcYzFXJw6NcCuXZH28snSUo5crs7u3bfPvHg8Nvx+lWKxAIhUKjpOPUe3laSry4mVU9FrSQQhQ2a9TtdgF579+2hmkyiyhNaoI0oSwtscZhvlMtF9+97x3F6+HGdrq0Qs5mkXKbdwu20kEiWefXaB3364m+S1a2QXFwGwe73YPB4y16/jGxhAcToxdJ1yPI5erTL2+OO3LZO9Fysref7H/7jK9opJuFpALMRpSg7Sa9uUFfD5HUiSSGF1lZFHHvlAnXQ7dOjw89MpVDr82lFYW2P7zTdJz85imSaB0VG6Dx++Y5bLLapVnWeeuc6lSwlKpQaLi1m2t0v09fnYuzfK2lqBzc0ShUKN6ekUu3aFGRsL8elPTzExEUKWRTye1p33hz88TGppjdmLBUxXALfb1u4cOJ0yds3EtOyUijXmZ+KUxSqJRIVm00AQBMRCji3rKv6Tj7KykqfZNHfEAQDt0MW9e7sIBp08/PBO8xdNMxCEOwfapdNVZFkkHHbi9djo05fw52dQ0QAbuqpSK0uYlSZJRzf5Rg+KZuDNxzHkNLKlt0zkbhYItVwOUZbp2r//Hc/v5mYRTTNwu1tFimVBOl0hna5Rr+uUSg2mX77A1//3l+n26KhuFwgCWqWCZLNhc7vb7rKCIODu6mL8iSfou+++u/pO3MIwTL73vQWSyQo+pU6pZiEVK0hGFlQXFUvBVmuimHUQBFLT01imec/k1x06dPjl6RQqHX6tiF++zOzTT1PP5XAEgwiiyPrrrxO/dInxJ55g8IEHbnuOZVl897vXeeWVNfr7fXi9dhYXswwN+SmVNJ57bgG3287AgJe+Pg+bm0XqdZ3XXlvj/PlNPvvZ3dx/fz/9/d5W8Jwq8+l/dQD71X4yRZO60FKBmKaJz6fiKpcx48s0GvDqG5vgqrXcdm/6otSbCVIVmW984xo9PR4k6Z2dX2VZRNeN237v89kRBKEtwX47hmGiaQY+n0pA2yRavIauqNQcUWRZpIRGRtLori0S0LYIhkbJ5XXWa16KVxeI9XiIHQywdWOTxMo2TU2n+/4Hafp6uHYtyepqHtO0iMXc7NoVuenvotLyW2uplba2imxvl5FlEYdDwSgXGChf4folCfPEfg4Pd7cC/SyL3I0biIrCnk9+ElGSkGy2Vvqy8+d3bl1ZybO0lKNS0Vi7vEBPtYFDcWDKKmgaWDVKosrwrmEEofV9KsfjeHp63nvnHTp0+JXQKVQ6/MqxTJNyPE6zXsfmduOKtgZdDU3DMs32MGV6Pc5L/+Xr1MsVfIND+IIu7KqMOxajHI+z+P3v4+vvv03mvLFR5NKlBAMDPnw+lfn5DPW6QSjkRNdNstkaQY+AM7+MUMlgXy8yt+TBOzxKtmjxjW9c4/LlBB/60CCPPjqKKAp4omF2PXCYzbNnIRLmpz9do6fHi8upYDi6qG/PI9tc1Cwnkmag6waqXcYs55GdToaOHWJurYDbbcMwrLap3M9SKNQ5cOD2HJ3x8RB9fV5WVwuMjQV3bBNFgWbTYmTYTe2166RrFcp2F0KhjKrKlEoaphTFF5Zw6kk2z12kZshYiGSsITLNENlLWRr1OA3Fj9m9l/Nzfv7rHz6D12sjEnEhCAKmadHX5+XTn57i8OFu3G6FZLKCy2UjmazicCjYbBL1ehO/nqDLWScwdoCVlQK9vV66uz1t59fU9DR6pcLggw/+Ut+lQqHR9r6JOhRcVDAdPkybG8HQqNV0KoLMRLALxWpQjsfJLS11CpUOHf4Z0ylUOvxKyczPs/LSS+SXlmhqGorDgRoIoDid1DIZLMvCNzBA1t7Pqz+coXp2FiM0BJvreD12pnaFGR5uWaInr10jcfXqbYXKykqeSkVjeLjlJGoYJrc6/dWqjt/KE1p+DY+7Rqms4Ss1CCsSvkqazcAh7HYZj8fGCy8sEgo5OHaslbA8cPo0uRs3mDl3hWbdjiviwmrqWLUqkj9KqWzg0nLoeCgkczhqTSyziX33SUxvlOpSnEuX4pimxaVLcQ4d6t6xlJNMVnA6FQ4evD24TlVlPvaxcb7xX37I/DOv4hMryKpKxdlNQYkxNuZnezVJTMtSsZxYVquAyWbrVKsawaADsXuMXByK3klssQGwO6kQ4OJCAVdC58EHB5na349hclNFVEbTHOzaFaGry92WVH/zm9N86UuHeOihIX7wgxskEhVqNQ1ZVikW65gmDMgFAlEfLqeNQqHB1tZb9vyCKCI7neSWln7pQsVmk0ilKjSbJnLgVkChBQJYsg1JlanVm5SrGi6zgj0QwDRu71h16NDhnw/3fGG20Whw8OBBBEHg0qVLO7ZduXKFBx54AFVV6e/v56/+6q/u9dvp8M+I9NwcV7/+ddIzMzjCYYKjo9Tzea79z//J1a9/nUaphCCKXH3xdX7013+HPncGX8hDT4+XWMxNQzO4eHGbtbUC0BrMLKyt3fY6zaa5wyDNNC3y+TrxeJlGPsdQ9RJqI0fF0UVaiFK096B7urGV4wTjZ7G0OuGwE5tN5vXX18lkqpTLGv7BQfY9+SS6txtbLYu+fYNmehPR48P92O9T3fcJNHsQu1mjWS4ghWI4jn2UQmgvL720yrVrSWZn01SrOteuJXnqqRmWl3PtgMNSqcGjj44yOhq87Zgsy0KNX2O/dpZ+bR4zvUlt5TrOhZ9wn/0qQ1GBTLrlZSLfDGKs15uYZqtzc0uqbSCh9g6hRyfQfX0gKq3lJLeH7ayJaUEiUSGdrjI6GmwbusHb3XsrzMyk+MpXjvHII6MIAui6SaPRRJJEAgE7g0N+/N7WjI/NJlEuaz97QCD88uGHg4M+TNPCNC2arii6M4zUKIKht78LNkVELxQQFQVXJPILLTF16NDhg+Oed1T+7M/+jJ6eHi5fvrzj98VikUcffZRHHnmEv/u7v+Pq1at86Utfwu/38+Uvf/lev60Ov2LMZpOlF1+kUS4T3rULgEapRH51FVc0il6rUc/n8Q0NE9fLmPYG7soqgtoa8BQFgVDQQTJVYXExS2+vB1PXbzP2Am4mLQtUqxpzc5m2YiadrtLVWEaqpCmFB1HMVqigJIHD7UBzuJC3V4nJGQzDvDmQu8DKSgGfz87ERIjjx3vp/u0vsKpcoLtXRVBsSKGe1r/1NIsbLmxmlYmJMM4HJimWdC68un6z02Dh89lvZgyp3LjRmq/Yt6+LAwdijI0F7qjqAUhNT7Pwve8R7gkyeHCKRr3Zmk2pN3jj2ddZ2lrCGbiPphZCKW5h2B0EAiqhkINMpoaum5QzeXwuJ5rjLcO1QqGOYVjEYi5yuRr5fJ1stoZltWID3G4byWSFer2JqsoIgoDXa2NmJsXDD4/w7//9SVRV4vnnbxAMOvB67QwO+unSRLSLL2CZJrpu7ogwsEyTZq1GcHT0l/5eeTx2xsaCXLwYJ1/QUIcfJDD7XcRGmabWRJUkbDIIUgxvXx++/v53HcLu0KHDr557Wqg899xzvPDCCzz11FM899xzO7Z9/etfR9M0/v7v/x6bzcaePXu4dOkSf/3Xf90pVP4FUFhbI7+6im/gLSv88vY2WrmMp6cHyWajtLmJHBsil6vh7+7CWo1jlgpYTR3hpj2+36+Sy9XIZSoY1SqEB5meTqIoEoODPux2mcnJEH19Hn70oxVKpQaBgIPduyOsrhbwbyXQLIV6WUeS6+i6QTjsxOlUKFc07IKAnzxvvrnN3FzmZvCggqJInDmzycxMioMHY1j+HvSQD6dTQdMMrl9NsLiYJZ6sUas1UXwWvsU89XqTRKJMsdhoJy6Xyzo2m0gw6MDns9PV5WJ9vcD162leeGGJqakQp04NMDjYWrqyLIut8+exTLM9z2NXZSzT4uKbcRINDwEjgbPbQuk6hHupSMU00BWJaMSFYVhsb2RxkaEZ3UPTEby531ZCs8tlw+m0US7rNJsmpmlyy86/Nf9yUxp+E1EUaTZbycXhsJMnn9xPsdggHHYRCKiteZbaGMbyZerbKyCE2jJryzTJLCzg6esjuvctj5Vfhk9+copEokyzabFq9FH37MVTXsbus+HyubFkha6pbuxeB4MPPbQjXLBDhw7//LhnhUoikeAP//AP+c53voPzDq3V119/nQcffBDb2+6AH3vsMf7yL/+SXC5H4B1stRuNBo1Go/1z8S7ttTv880KvVjFuzqTcolEsIsqtu3TJbkev1dDrDQzDQpJFDF8UrbZBY2kBuWsAp9fVChzUGmxemaYkBvjpyzWqP7mAIAjY7RLj4yF27w4zPOznu9+dp9k00XWjPaciYOJw2qhbAo1GK/1Y1w3W1wsYhkWXZDF7LcGCfRufz0Z/v++mUqcl/11ezjE725IzX76cIBp1sbSUZWUlj6JIhEJONM2gUKjz8ssrVKtNCoU6oigwOhqgp8fbOvZGk/X1IhcuVIjHyxw+3ENXl5t6vcmZM5ssLuZ48sl9jI0FadZqFNbWcIZCO85pOlMlkSgT6g6ip7ZolDNovbup9R7EFb9GvbhOYa1AxC5QM3NkbD2Ynn14LGjUdXK5OqGQg0bDoFhsYLNJOBwKPp/aThOuVDRCIeeOZOdisc7Ro93tn0dGAhw/3stPf7qOphlEIk4Eu4vq0P0Ut18g5sqgFG1k5uMYmoa3t5ddn/vc+1YwHDnSzfHjfWxsFHHvjiA0ulA3LyNmVihn8vTEvPTtGWPwgdP0HDv2vrxmhw4d7h33pFCxLIs/+IM/4I//+I85evQoKysrtz0mHo8z/DOOk11dXe1t71So/MVf/AV//ud//r6/5w4fLIrTiaQo6LVau1gRZZmbGteWfbui4PI6UNUSiUSZ2maeotWNrsm4k/M47QIulx1JEFh39JGLHaSvN0IIOH9+i5WVPD/4wRKjowEcDhlBgN27w8zOpkmnWy6rYqiHQDmLqKo4HDKSJLK+XsThUIhGVLyaxGrDSSJfol5XOXKkZ4c6Z2DAx9xcmg99aIhQyMnzz9/g0qUEXq8du13m2LEeurs9JBJlbtzIsroaR1UV9u+P7rCTv3Xhz2UrBAWJYE37/9u79yC56jLx/+9zTvfp0/fumemZnkvPPZlkcickcQYUQpDA8l1FUbGkEFbXXTD605WvBa61qFVryWqVlrpe2Noq9A9LlK8FqIAbDJCIJCFXksllcpnpzKXn0tPT93v3Ob8/OrSMCQhLwkySz6tqqujThz7P05f00+d8Ps8HcjLuGj/eXh8nTkT4wx9Oce+9V1fHcrz+rAZUZryUSjo+n4241cRkqohdksn6V1F0NlGeGKKUj2Gqq6FtdRfmgpcDh2dxlyuzgdrbPSxeXMvhw1MMDExz1VWNuFwWVFXB69UYHU1gNsu0tVXWPQqH0xw5EiaVKjA9nebEiQhdXV4UReaDH1yC02lh794Qg4OVRSA9Hj/9X9jC8oYs2YnRyrb2dny9vWhu9wV7b/l8dj7+8eU8+eRxRkZilHWNtH8D9qaV9LZpvH9zNw3d7ee9TCgIwsLztgqVBx98kP/4j/94032OHTvG1q1bSSaTfOUrX3lHwZ3PV77yFb70pS9VbycSCQKBwAU/jnBxuVtbcbe2Eh8Zqa6Ma6+vJ3LiBKVCgdzsLN6uLjw+LzbbLIcPTVBnZJB61iPXLyY9GyI8GSKfKdG5sgOpLsCylc0UCmVefnmU6ekUra1u0ukCxaKOx2MiFssRCqWwWEx0d9fg8WiYslasJ0PoqTiJjJvGRgctLW6KhRLm1DQp1cFkuQ5NM2Myyee0eX+taCkUynz4w0urPVja2z243Vq1AZrf72DlygaGhqLIsjynSIHKIM9CZIrl+b04jpfIJmxgGMhWB6bWHgJd6wkGYwSDMbq7a/B2djKxf/95V2M2chk8Pg+K6mNyMlUZo+OoJ1rnIh7P4VsR4GN3raK+3s5PfrKHU6dm8fsd1NfbyWSKqKqJ9vbKIo3BYAxVVXC5LExNpbFYTOi6wQsvBDl9OoIkSSxeXMvAQJjBwQjr1jVx221LsFhM3HLLIq65ppWJiSSGAQ0N9rPjhS6+9nYPn/3sOk6ciBCJZFAUmdZWd7UXjiAIl463Vajcf//93HPPPW+6T2dnJ88//zw7d+7E8ldraFx99dXceeed/PznP8fv9zM1NTXn/tdu+/3n9o14jcViOedxhUuPbDLReeONHP7lL5kZHMTV0lI99T/28suYrFYUTWN8334Ks3lq9TAZaz1xxY85p1Mw+Uh53JRKOmeyGmvqXExOphgainL6dKWZm6oqmEwaU1MpGhrsZ3uozNDY6KyOkSjbasi0rEM+8TKudIjEmI2exTXk4wkSdjexpvV4Io7qZZDR0UrfktdPI85kShw+PM2rr07x/PNDSJJEIODGap378ZIkCYfDQjpdIJMpYrP9ZUCpnkngm9qFXYpirunB3FhfudySTlA4vhe1XKaorSSZrFz2bLr6aqYHBkiGQtUeIC6XBcUokZ8K4+paxqrOlRwfjDAzk6FY1Ekk8ixd6uOuu1ZVF2X8/Oc38Mor4+zfP0EikUfTTHzkI0vp7fWd7T8zSSZTZOPGDu65ZzX5fIlnnz3FxESS3t56liypqy6amEoVeOmlEVwuC7fcsqgak8s1P59XVVXe0uKTgiAsbG+rUPH5fPjO8wvur/3gBz/g3//936u3Q6EQmzdv5le/+hUbzrbE7uvr46tf/SrFYhHz2VVkn3vuOXp6et7wso9wefH19rLyzjsJvvAC0eFhwseOkZ2drfZRycfjDG3/E4VIlpbGTtJNTejFCMmMjE0usKhdxeKw88edUQqFMuWywfh4gkymeHZshJ2GBgeGUTnzYTJJxON5/H7HnDgSjnbSjWYamSIdHKJscVPbvw5/yyIUdx2eY2EOHpzCYlHIZkuVKa5qpRvsmTMxhoZmKZV0mpudqKqJkZEY2WyJzk4va9b451wqqquzommV6bmJRB673Uy5bCCNDOLWo2RczVhdlfgkSUJyuEFRyAePogSasFhMpCYniY+MUC4UmHz1VRSzGVdLC5LZTI0cZ9rcROuy99LgduKrdzA7myUUSlAo6Hz+8+vnfHnX1Fi5+eZurr++nWy2iNVqrrbz7+jw8t73ts15rvL5EocOTWO3q7S2zr1c43BUmsHt3Rvimmta561AEQTh8nJRxqi0vm4mB4DDUfmHt6uri5aWFgA+8YlP8I1vfINPf/rTPPDAAwwMDPD973+f733vexcjJGGBqluyhNrFizn93HOkw2H8a9bgbGwkF40SHx1lZP9hjOkUpvQ0dbkgNflByoUcJqcHeVwlkTFwB3XS+RUEViwmHs+hKDKGUVl/Jp0uEIvlKRTK5HIlcrkSwWAMu13FajWTzRYplw26li3C6exlf7qDlRuWoJ0tZvRUjGZ7hpC9QHAij6/ecfbxDcLhDDt3jqJpZtata8RkUpCkylgRu93M6dOzeL1WuroqhffsbJb2di+SBJpmJpHIE41mUVWZTleUmNdDSTaf8wUvWx2kzpyhrj2OMzvOvv/6LelwGIvLRe3ixcTPnCE1OUnrtdfy9x/+BM/tL3IqmMQ0OYOqKqTTRTweK5s2dWC3q/zud4PMzGRwOlV6e+tZtKgGTTOds97Q+YTDGcLhdPWM1F/z+WwMDkaYmEi+pUIlkcgTi+Uwm2UaGhznXbtIEIQr27x1pnW73WzdupUtW7awdu1a6urqeOihh8TU5CuQJMskQyGstbW4zxayqsNBZmYGk0kBXxuGnkFCwkhHITqFXmrAtPhqZqZnqNfHUZJ5pLQXq1UjmSzgdmvkciUGB2fweq2VmScSjI8nkSSJibEorX6V+jongS4/gYCb0dFKf5Rcrkg5PkNhcC+lySAU8iwvgpRQketWMzg4g65XZsF4PFb6+loqcQKNjU7a2twMD0cpFnWGhmbx++1EIlmSyQIf+MBiTCaFbduG8Xo12tvdlEs6uYkCvkY3NVYPkUiW2horqqpQLutEYzkMHZZ1WBh65ncUMxkaXreSsbejg9DevQS3b6dcLNLfvphFzQ1MZmyUSjpNTU6WLq1jYGCaRx7ZSzZbwmYzk8+XePnlMdas8XP77b1zLkW9kcrsH95wnMf5tqempogFg+ilEtaaGmq6u0mmy+zYcYaDBydJJvOYTArt7W6uuaZ1zhmf0dE4R46ECYWSaJqJJUvqWLq0bk4fltcrFwpIslwZmC0IwmXhXfk0t7e3nzNDAWDlypX86U9/ejdCEBYwvVwmFQrNmfmRnJggG4lQ29pMtBQlOR5Dnj6DpBso/g6M5CyF2QjTcYOa9m5smQmmTuzF3PQ+wCCZzFWblzU3u7DbVaLRLG2NZupyZ3Cnz9AYVWi0eTBFuihYl5IMZ7l+pZnk8BEmdx3Cpqcwe+vJm5wkw3FW+BJ0BII0XXcVztZ2IpEsTz99cs7AWJNJPrvujcqJExFGRxMMDUVpa/Nw883d9PW1IMsSgYCLAwcmOXMmjsUViNmYAAAgAElEQVRionPDEpzZcRxtHRw5EmZmJnO2o66Ey2mmaVENTZ4y4aPT1C9bVj1ednaW0N69ZCIR0pEo4ZhOrLCbssmOtvJa1n3oRtavb+Ho0TDbtg3T2OioDmg1inlSZ4bY/9RhlKmTfOhTN2CtObcL7uv5fHbq6myEwxkCAdc594fDaWpqrPj9Dkr5PKeefZbQvn3k4/HKpSxFwdLQzOF8F4PTKn6/g9ZWN8WizsmTswSDcT760V7WrPGzY8cZnntuiEQij81W6Zi7e/cYS5b4uOOOZdTUnM1D15k6fJiJfftIjI8jKwr1y5fTuHYtrubmd/LWFARhARA/O4R5J8kysqpSSiar29JTU8iKgqTINDY6yYV0MpEYlvpGTMgUy5Acm0DTWmhucWOVNCzj0+SVNHGHyuRkZb0Xh0NFkiQmJ1NYpALX1Z6mMHKScFEiMq1jL0XRD++lrOsE2jroWdHCSPAIs6FponVL0GVQLQYt3Y0sW7aS4kQQ5/Rhrvrge9h/YBLDqLRrf/0li9cGcXq9GvF4jn/8x7V0d9fMubSybFk9y5bVUy7rYBic+kOM/f+9i2QywmKPh84GL9jcmFUTpnQYq7MTWVEwW61IZxcqKheLTOzfTy4Ww+T1MRvKkJ7KYl20GDU7S+7Qn/ht0syxY70kk0WsVlO1SCmGTpMf+DN6NIw3W2Dw8Z28ML2fnvdvpGPjxjc8I6FpJjZsaOY3vzmG2z13oGwmU2R6Os3mzd243RrHnniC4Asv4GhsrIyhkSTyySQHn9lOaPj/0drTi5oKIAcWY2/qYvHiWoLBGFu3nqaYSvL0bwZw1LjnnGEpFMocPTrNk08q3HPPaiQMTjz9NMEXXwTAWlNDuVBg6I9/ZPLgQZZ97GPULVnyjt+jgiDMH1GoCPNOkiQaVq7kxO9/j7OpCUmWKwvFnf1Ctihl6htdxGNZMrpMPlNA0aGx0Ybm8GIYoDod+LxRGvsayFnrOXJkml27xjAMMJkk2trctJZPYzszgdHbjTZ4nOxUCCMqY87H0QpJLJNpTCsb8brN2Ew1FErTOJtraFjWXe2wWjAFmB0aIjE2RltbHV6vxuxstjrz5fXi8TxXX9385jNP9DInfv97Rv/8Z8qFAsmxMQxAtdtxtbRgqa3F7HKx6O/+jpnjxzHO9pkBSE9Oko1EsNXXM3wmQTZbxNNsRXNr4G5CDZ3Grc1w4MAUiUSe/v7KNP5SeIzc3ucwCnlM9QEcssLkRJJUpszJp59GkmU6N216w5D7+wOEwxl27RpjbCyO1Womn68s7LdhQwubNnWQnJjgzI4dlPJ5YsEgyfFxVKeT6HCQ8PAYajaFHhmjVCpQGjuJub0Xbc0NNKpxRl7czf9snUZJ53G0NVLI9GJuX4ZkqqzG3Nnp5fjxGc6ciaFGTjP45JNYa2txNjdXe/I4GhuZPXWKwd/+Fndrq1jPRxAuYaJQERaExjVrmDxwgMiJE3g6OrDW1pIYGaGQTpOLxajvbsc5O4uuakiKSn6mRGBdNzN6DQcOTmI3FZHNKprDjt1jo6urhqNHw3R0eLnuunYsik5q2x/B5qY8M4KWC6P562j1m0mPFzBZa8jH44T27EFRVdwtLRQzGYzoOA61pzr2QnU4KAWDFNJpfK2trF3bxB//OITJ9LqF/so6o6MJHA6VDRve/NLDyEsvEXzhBVyBAD1dXZWlBYJBMuEw0VOncLe1seruu6ldtIhyscjYrl3o5TKyopBLJDCAfMEgEc+hmSVMrr9cupFtToiMU9e1mpMnZ8nlSjgcKsWhw+jZNObGSsNF4+yCgFqtD01KMfryyzSvW4fFNffSjmEYTE2lyedLXH99GytW1DMwECYSyeB2W1i2rJ6enlrMZoX9v3i6Ms3cZkM2mTB0nfT0NMV8Ht3iR1GtUMij+FqgmKcwdJhyPosxO4kUChNVXdTUedCTs2T2bMUUPIJS04hRzKPYnBTjdgaejpLd8f+IDg1h9XiYOX4cVyBA3ZIlmCwWvB0dzAwOMnP8OI1XXXUB362CILybRKEiLAj2+nqWf/zjHH/qKWLDwxRSKYqZDKV8nvoVK6hfvpzxPXtIjo+jqCp2rxtnUxNO1cpMJEvo0ABqSzdlw0FhKkU4nMbvd+D3O9A0E3oqBrkMhixTjk6Tk6z465wUE5PIioJJVSmpKuVikVI+T7lYRHU6SU1MkJqaoubszLViNotJ06q/3Ddv7qJQKLNv3wRjYwkkiWpzs7/7u0UsWlT7hjkXs1nGd+/G4najqCp6sYinvR1PWxvRcJzhgSH2vBrlwOOjdPaUWNbtx9PeTmRwkNrFiyvFk2GQzxXQE7Oovhpkz+vaBxiAJNHY6MRslhkfT1Jj1ylNnUF5XUGTSRerrfJtVjuRwUFiwSANK1dW9zlxIsKOHWcYGqpMBbfbVVasqOf669vPOZsUOXmS4IsvYhhG5QyZJFHK5UhOTGAUi8j5KGXNBYYOho6haiRzkN/2NElbMxFqsUtmXCYNxemiHBwgu/sZFF8rpho/eqmAdWSU4EkNqZQlr9tIplXUdIbkzCEKqRTN69ejnG17kI1G3+nbUxCEeSQKFWHB8LS3s+6zn2X25EkykQjR/n6mDh1CL5VIT09jcbmYHRykKEkErrkG1W6nkE7T6YzjuaqDqYYNpNJFVFXh5psXYbEoPP/8MKdPR2mqlUExkZuZJhtLY/P5qau1kowXkc7+4gfQPB7ysRiZSKQ6A6lcKFRjTIyO4unowHW2G7LFYuL225fynve0cPr0LIVCGbdbY8mSur85PTcZChE+coRyqcTkgQMgSdhqayk5fBwZ0UnGZGyFGaTJCXZM5dm7V+WGtX24JYmZwUGys7PkYjHKyRyS1YHc0oNs/ssx9WwCS+dyCmWDQMBFsVgmFkliKuTQCzmMfI6iZCKWNrG0tx6HQ8XQdXLxOJOvvoqh67jb2hgKFXnssQFSqSLNzU40zUQikefF509z5sAR3r/Bhctlwd7QQE13NxN791aeG6cTQ9eRFIVSPg+6jtXrJR9JEk/qWF0BdElmbDRBciyOOxUlYelEMkEuV+LEiVmWNWRQZqeQLHYkRcFUHyAbiyLnjhENxSmUJXSzFdlaWQzSrMhksidwNTfjaW/H0HVkRbmg71NBEN5dolARFhTFbMbX2wtA23vfS2JsjMlXXyVy4gTWmhr8q1eTm50lG40yMziISdNoXrOKa2+4AUeg7WwLeKU6fbWhwcH27UFGRxNQqsEaPY7DYSbQ4cFqM5M2myllMpR0HUXTsDidyLKMYrGQDIUoF4vIZjPFTIbE2Bgmq7Uy2PR1X36SJNHS4qKl5dxZMG/EMAxGXnqJ8LFjWNxuVLudUi7H9OAJJsMD5D3tNC3qpBxOYG9w0OyrZ3IyxQv7M9xz58doz08xOzSE2WYjMxsllmsgUTRRd/axy5EQst2DuWUxwVCSa65ppd5nY/djv0UePIpSSKObLSCZ8Df76fA3kovFGN+7l3gwCGdXaFZdHvZPe8g7lrB06esaxVlLWBK7md55jJcO2ejo8CKbzbgCAVLj43i7uynlcmQjEez19dVLZ7LZjKroWMtlooaLUijF9HQar1JCQkIxmWnt9GI2Kxx5dYyZk0PU11uRJQUjl6VYLBEbn0DWDXKKhtVcoFDOkUpbKBZ1SiWd1EwS46UB1nsqjQM97e3v+H0pCML8EYWKsKC5WlpwtbTArbdWtxm6TjIUopjJYLbZqgNwAdzuub+eV6/2s2yZj9HRBLPDPoK/jDP76h7MFAEzVo+HyMxMZVxKayulXA5HYyN1S5cyvns3mUiEXCyGBHg6Oui44QZ8S5e+47yiQ0NMvvoqFrebYipFNhKhlM+Ty5UoxHLYy3lKbhXF6UF2Vi7T+P0OjhyZ5siJBB/60FU0XnUV7e97H0d+/WuyLx3k5MkIs1Ezdg1M7jpMy67lTNSMzSbzvve1oU4MkLcHmepsIR0aw1JXj8uhYiommdj1Z0r5PKmJCWq6u2l5z3sAOHPsDNE922m4ugxUCpV8JkfypWdhaghbQyMzssbqRZ0oRomZ48eJnj5N84YNNKxcSWjvXpKhECZNA1kmE4lgFAsElvWQ9Hfzyp5Jstki7nwKSbUS6Gyg1mdDQqKjUSU3mGQ2rmJV8pQVldJMBqcF8iYZ1e0mGwmTzhnIRDHZ3JhMJvJxieFjI1g9h+i/42bcf9WAUhCES4soVIRLjiTLleLlLTKbKzNFOju9tLd8gRcfeojIiRNYPB4wDCyuvyxUp5dKOBobKabTeLu7WXHnnfhXrcKkabgCgQt2GWH68GH0YhHFbCYyPo7mdqM6HGRLOSS5SDk6gXFax/mBe5G1v4wBcbs1hodj1dv2+nqu+sd/JHDNMdzPvsLAoQmmyw7KNa1IWReNjVY2b+6io0ll16930NDaQMdVywjt3Ut8ZASTDGWTidC+fZRyOew+H4V0mtC+fdQtXozsrKGseWDsGOlAL8NhiemBATxDhynY67EUSthslc6/TqeGb/lyZgYHiZw8ScfGjQT6+4kFg6QmJtBcLtLhMLa6Otr7N6C4ahkbS6LkylgKdai6A5Mxi5GXMcplao1pUnoctVBE1ktYO3vp2NBEfCjH6bHTGAZkcjrF2g5s+QhyIVl5PaUkGd3FcLmFG6+6vlrECoJwaRKFinBFqevp4abvfpc9P/4xkZMnsTgc+F0uokNDZM5epsAwsPl8BPr7aV637qJ80aUmJynlcpQLBVwtLeTicQqpFEahBHoZCRlJL2P2zZ01VC7rmM1z4zFpGo1r1vChNWt4f6rAqVN/meHzWv+WiQMHyEQi1C1ZgqwoNF19Nfb6eqYHBogND1PK5TBbrfh6e5FNJmZPnSIXjWJuXwZWJ7nEJEN/OshQsYnm5ARms0RJVZmZyWA2y8zOZnE6LSgmE+7WVpLj42RmZrDV1VV6mxSLRINBhrZuRS8WmTxwAM3fjJYMYaKMxWmnPJskf+wVZJMZXS8jySZQZFQjj93jwG5Ko0ydQqvxoZss5GdnKMkWcDeQxY+SjyPnkqBEmW1+L4XmPk4MZ+h+5yfABEGYR6JQEa44ruZmrn3gAaYHBpg6fJhiJkOgv78yLdpbGWvhbGxEUdWLFoPZZiMVCiHJMjVdXeQSCXKzsxSNGEYODLMd2VVLYiTITNxBKlXAZJKJxXJcf33bGz6uw6GyevW5q48nQyHiIyPkolFkRcHe0ICzqYn42BjOpiZ0ZMrFEpmijNOm4WpqIhEK4XaH8HhrmDyUZtYWx790MY6ShJw2oaoKZrOCpimcPBmhudmFySTjbGrCbLeTi8dJTU0hm0yMvPQSidFRAFSnk5njx3EkEnibFjEVnMBqUjF1r6boqKV44hXKmSRYHCgWDc2uULt4MWZNIxYM4uxxoXh8FINHMbRGJMPAkMBAQgKmvauQu67G5daYmclcrJdQEIR3iShUhCuSxeUi0N9PoL9/Xo7v6+2lkE6jWCwgSRjlMsV8HrOko5EnH89TMEyM7T7KmdoaJEkiFstis6mcODFLf38Bu/2tFVKhffs4+cwzxIaHsfl8lcc6cwaTppGKxomXbKSieYxyichQHM2aweez4XG7yU5N0N7RwOmdRTKaBVU3KGkezIUC8VgOu91Ma6ub2dkc4XCaxkYnhVSKrve/n/ply5jYv59XfvxjkuPjuAIB3G1tmFSVQipF9PRp9JEQJlcPcVMdXouGyVtL2e1DdzdQiMfwLVlKe5eP+MgIpWyWUiZD/OgBPPVNHEmtpajL1GRmkAyDsmonUreKGa2LdV0+Uqm3/hwJgrBwiUJFEOaBr7cXT0cHkwcPoheLpCYnkSSp0iPGXqQkayRmo8iFQczuNZTMDjo6vCxZUsfx4zP8/vcnuOOO5X/zOPGREY4/+WRlpeVFi8jF49jr6zF0nfCJU0wHJ8h62tEsFkyKhmxXyJUMRkcTlP023JYi9mwYV3MjNl8H0WiOWL6GgGzHZ0nja+/AbjOTTBbI5UqkpqZQ7XYaVq7E29FBanKScjaLf/VqNI+nGpfqcOBsbia5dy8tHYuZMsuEQkmURBQlW0Zx1+BtdeBzy/hXr8YdCJAIhciEw8hmM333bSG2LcPTvztOg6OAxSyTwYqk2enpqaOmxkomU2Tp0rqL+TIKgvAuEIWKIMwDs83Gmk99ihe/9jViIyMYpRKKpqFIEq7GBvIphQwJ/F4L3poI2vIl+P0OLBYT0WiWw4enue66FH6/402PM3nwIPl4nPrlyzFZLIT27iU1MYHF7SYnaRQzaexaGFNzB5KsoEensZpVZMVMeHQKxW1Q09OLZ916VvnaUVUTpZKOGrFiOvlnjPgIxYIbKZMlN5an0OSh+5Zb8HZUut6O7d5NMZudU6RUSRKy2QyRMTbeupnJyRSx4SJp3UZNew0WuUwpl8PQdZzNzTibm0lNTSFJEt39a7n/KgPZZOLll0fRHCpdfgfNzU5kWWJ4OMrVVzexaNGbL7IoCMLCJwoVQZgnLRs20H7DDRz+xS+wNTRgdjgwaxqFfIFcaBJnWwfWOh+SPI2jyYZkrnxcvV4roVCS0dH43yxUIidOVIsEZ1MTgb4+Zk+fJjU1TTKRRzaryFYNtXMFkiRTdk1QngmhFjKkU3HUVe+h7//bQnGgxLZtQyxbVl9ZgNG/ilJDHcWRQWYHj2O3qyzeeA2d/eup7empHr+QTr/hYGRZUZDPNoOz2cx0dnrJ+0wE02PIep5ySUcxmyvFDJX+MJlwmI4bbsCkaXg0+L//t59nnjnJwMA0iUSecDiD261x/fUd3HxzF2azaPYmCJc6UagIwjxRVJW2a68l9MorIEkU02kKmQyyZsNo6Eb2tyIrJYx8BqOYRzLPHW9hGG//mDafD5vPRzaR4lTpFLLqQNFM6JFJFG89iq8FyeGmPBOiaG2j6Y5/pqa7mw32JMePz3D8+AxtbW7sdhXD7WfG5yBjXcZtt/Ww/rquc47n9PsxdL3SofavChb1bOfa11rdQ6Wbrbu9nfCRIxSzWZrXrUMxmykXCkTPjrFpWrfuL4/vtHDHHcu5/voUExMpJAmampz4fPa3/+QIgrAgiUJFEOaRtbYWb2cn7kCAYjYLkoTF6WJ69wQzMxk0cwbMFqTXtcZPpQpomon6+r/9ZVy3ZAmntm49p++M5rRjddpIah60q/vR49OUIxMYpSKSqqG0LiVv6sbXVbmE09jo5BOfWMGzz57i9OlZ8vkSsizR0ODgllsW8Z73nL+vTef738/Ar35FfGTknA6xhWQSze3G09HB7KlTOJuaUCwWnH4/8eFhFFWlnM8TPnIEFAV3IMDi//N/cDWfu9BjQ4ODhoY3P7skCMKlSRQqgjCParq6cDQ2kolE5nyRt7d7mJpIkE1GcK3bVD2bUirpBIMxVq1qoLXV/Tcf3796NaE9e4gFg7jb2qqN7YxyGZ88S9hWD4vWY7NZKM9OQamAZLEynrBQZzWzePFfFlVsbXXzmc9cxchInHg8h9ms0N7uwWYzv9Hh8XZ0sPqTn2TvI48QPnoUm8+HrChkZ2cp5/MsuvVWej/2McZ37yYxNoZeLGK221l51100rFpFIZmkXCyieTzULlp0UaeMC4KwMEmG8b85gbxwJBIJ3G438Xgcl+utr7UiCAvFxP79HH38ccqlUuWsgqqSjUYZ2HmcsayLfM8N2OtqKRRKZLMlFi2q4eMfX/6WL29MHjzI4G9/Szocxmy1opfLlQ68La0Mmlfy6ukiNTVWvF4rpZLOxEQSVVX48IeXsm7duWcv/jdO/eEPHHviCSKDgxjlMvaGBrpvuYWVd96JSdPQS6XK2kqFAprHg61OzNYRhMvdW/3+FoWKICwA0wMDBHfsIDEygl4sojoc+JavoBRYxeBIgYmJJDabyooV9SxfXlnp+O1Ih8OEjx4lMTqKpCjULlpE3dKllCSVl14aYf/+ELFYHkWRaG/30N8fYNmy+r/9wG9TYny8ukyBSZwdEYQrmihUBOESo5fLlb4jhQKa24215t2bWpvJFInHcyiKTF2drTKzRxAE4SJ6q9/fYoyKICwQsqKcd6Dou8FmM7/pWBNBEIT5IpYVFQRBEARhwRKFiiAIgiAIC5YoVARBEARBWLBEoSIIgiAIwoIlChVBEARBEBYsUagIgiAIgrBgiUJFEARBEIQFSxQqgiAIgiAsWKJQEQRBEARhwbrkO9O+tgJAIpGY50gEQRAEQXirXvve/lsr+VzyhUoymQQgEAjMcySCIAiCILxdyWQSt9v9hvdf8osS6rpOKBTC6XQiSQtjIbVEIkEgEGB0dPSKWyjxSs4druz8Re5XZu5wZed/JecO7yx/wzBIJpM0NTUhy288EuWSP6MiyzItLS3zHcZ5uVyuK/KNC1d27nBl5y9yvzJzhys7/ys5d/jf5/9mZ1JeIwbTCoIgCIKwYIlCRRAEQRCEBUv5+te//vX5DuJypCgK119/PSbTJX917W27knOHKzt/kfuVmTtc2flfybnDxc//kh9MKwiCIAjC5Utc+hEEQRAEYcEShYogCIIgCAuWKFQEQRAEQViwRKEiCIIgCMKCJQqVC+wDH/gAra2taJpGY2Mjd911F6FQaM4+hw4d4r3vfS+aphEIBPj2t789T9FeOMFgkE9/+tN0dHRgtVrp6uria1/7GoVCYc5+l2PuAN/85jfp7+/HZrPh8XjOu8/IyAi33norNpuN+vp6vvzlL1Mqld7lSC+eH/3oR7S3t6NpGhs2bOCVV16Z75AuuB07dvD3f//3NDU1IUkSTz755Jz7DcPgoYceorGxEavVyo033sjJkyfnKdoL61vf+hbr1q3D6XRSX1/PbbfdxuDg4Jx9crkcW7Zsoba2FofDwe23387U1NQ8RXxh/eQnP2HlypXVxmZ9fX08++yz1fsv59z/2sMPP4wkSXzxi1+sbruY+YtC5QLbuHEjv/71rxkcHOQ3v/kNp0+f5iMf+Uj1/kQiwU033URbWxv79u3jO9/5Dl//+tf5r//6r3mM+p07fvw4uq7zyCOPcOTIEb73ve/x05/+lH/913+t7nO55g5QKBT46Ec/yn333Xfe+8vlMrfeeiuFQoGXX36Zn//85/zsZz/joYceepcjvTh+9atf8aUvfYmvfe1r7N+/n1WrVrF582amp6fnO7QLKp1Os2rVKn70ox+d9/5vf/vb/OAHP+CnP/0pu3fvxm63s3nzZnK53Lsc6YW3fft2tmzZwq5du3juuecoFovcdNNNpNPp6j7/8i//wu9+9zsef/xxtm/fTigU4sMf/vA8Rn3htLS08PDDD7Nv3z727t3LDTfcwAc/+EGOHDkCXN65v96ePXt45JFHWLly5ZztFzV/Q7ionnrqKUOSJKNQKBiGYRg//vGPDa/Xa+Tz+eo+DzzwgNHT0zNfIV403/72t42Ojo7q7Ssh90cffdRwu93nbH/mmWcMWZaNycnJ6raf/OQnhsvlmvN8XKrWr19vbNmypXq7XC4bTU1Nxre+9a15jOriAownnniielvXdcPv9xvf+c53qttisZhhsViMX/7yl/MR4kU1PT1tAMb27dsNw6jkajabjccff7y6z7FjxwzA2Llz53yFeVF5vV7jv//7v6+Y3JPJpLFo0SLjueeeM6677jrjC1/4gmEYF/+1F2dULqLZ2Vl+8Ytf0N/fj9lsBmDnzp28733vQ1XV6n6bN29mcHCQaDQ6X6FeFPF4nJqamurtKyn3v7Zz505WrFhBQ0NDddvmzZtJJBLVX2SXqkKhwL59+7jxxhur22RZ5sYbb2Tnzp3zGNm7a3h4mMnJyTnPg9vtZsOGDZfl8xCPxwGqn/F9+/ZRLBbn5L9kyRJaW1svu/zL5TKPPfYY6XSavr6+Kyb3LVu2cOutt87JEy7+ay8KlYvggQcewG63U1tby8jICE899VT1vsnJyTlfVkD19uTk5Lsa58V06tQpfvjDH/LP//zP1W1XSu7ncznnPjMzQ7lcPm9+l3pub8druV4Jz4Ou63zxi1/kmmuuYfny5UAlf1VVzxmjdTnlf/jwYRwOBxaLhXvvvZcnnniC3t7eKyL3xx57jP379/Otb33rnPsudv6iUHkLHnzwQSRJetO/48ePV/f/8pe/zIEDB9i6dSuKovDJT34S4xJtAPx2cwcYHx/n5ptv5qMf/Sif+cxn5inyd+5/k7sgXAm2bNnCwMAAjz322HyH8q7q6enh4MGD7N69m/vuu4+7776bo0ePzndYF93o6Chf+MIX+MUvfoGmae/68a/MhQnepvvvv5977rnnTffp7Oys/nddXR11dXUsXryYpUuXEggE2LVrF319ffj9/nNGQr922+/3X/DY36m3m3soFGLjxo309/efM0j2cs/9zfj9/nNmwSzk3N+Ouro6FEU572t7qef2dryW69TUFI2NjdXtU1NTrF69er7CuuA+97nP8fvf/54dO3bQ0tJS3e73+ykUCsRisTm/rC+n94GqqnR3dwOwdu1a9uzZw/e//33uuOOOyzr3ffv2MT09zVVXXVXdVi6X2bFjB//5n//J//zP/1zU/EWh8hb4fD58Pt//6v/VdR2AfD4PQF9fH1/96lcpFovVcSvPPfccPT09eL3eCxPwBfR2ch8fH2fjxo2sXbuWRx99FFmee8Lucs79b+nr6+Ob3/wm09PT1NfXA5XcXS4Xvb29F+QY80VVVdauXcu2bdu47bbbgMr7ftu2bXzuc5+b5+jePR0dHfj9frZt21YtTBKJRPXX96XOMAw+//nP88QTT/Diiy/S0dEx5/61a9diNpvZtm0bt99+OwCDg4OMjIzQ19c3HyFfdLquk8/nL/vcN23axOHDh+ds+4d/+AeWLFnCAw88QCAQuLj5v+PhuELVrl27jB/+8IfGgQMHjGAwaGzbts3o7+83urq6jFwuZxhGZXR0Q0ODcfL+cSUAAAKYSURBVNdddxkDAwPGY489ZthsNuORRx6Z5+jfmbGxMaO7u9vYtGmTMTY2ZkxMTFT/XnO55m4YhnHmzBnjwIEDxje+8Q3D4XAYBw4cMA4cOGAkk0nDMAyjVCoZy5cvN2666Sbj4MGDxh/+8AfD5/MZX/nKV+Y58gvjscceMywWi/Gzn/3MOHr0qPFP//RPhsfjmTPL6XKQTCarry1gfPe73zUOHDhgnDlzxjAMw3j44YcNj8djPPXUU8ahQ4eMD37wg0ZHR4eRzWbnOfJ37r777jPcbrfx4osvzvl8ZzKZ6j733nuv0draajz//PPG3r17jb6+PqOvr28eo75wHnzwQWP79u3G8PCwcejQIePBBx80JEkytm7dahjG5Z37+bx+1o9hXNz8RaFyAR06dMjYuHGjUVNTY1gsFqO9vd249957jbGxsTn7vfrqq8a1115rWCwWo7m52Xj44YfnKeIL59FHHzWA8/693uWYu2EYxt13333e3F944YXqPsFg0LjlllsMq9Vq1NXVGffff79RLBbnL+gL7Ic//KHR2tpqqKpqrF+/3ti1a9d8h3TBvfDCC+d9ne+++27DMCpTlP/t3/7NaGhoMCwWi7Fp0yZjcHBwfoO+QN7o8/3oo49W98lms8ZnP/tZw+v1GjabzfjQhz4058fKpexTn/qU0dbWZqiqavh8PmPTpk3VIsUwLu/cz+evC5WLmb9kGJfoKE9BEARBEC57YtaPIAiCIAgLlihUBEEQBEFYsEShIgiCIAjCgiUKFUEQBEEQFixRqAiCIAiCsGCJQkUQBEEQhAVLFCqCIAiCICxYolARBEEQBGHBEoWKIAiCIAgLlihUBEEQBEFYsEShIgiCIAjCgiUKFUEQBEEQFqz/HyjzTObP9jdVAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light", - "tags": [] - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter(two_d[:, 0], two_d[:, 1], c=graph_labels.cat.codes, cmap=\"jet\", alpha=0.4)\n", - "plt.savefig('embedding_TSNE.png',dpi=300)" + "plt.savefig(f'{FIGURES_DIR}/embedding_TSNE.png',dpi=300)" ] }, { @@ -569,9 +558,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.16" + "version": "3.8.18" } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 4 } From 3e1093298f1f6712bf0156cce0cf2377492dd86b Mon Sep 17 00:00:00 2001 From: Enrico Deusebio Date: Sat, 23 Dec 2023 10:55:47 +0100 Subject: [PATCH 05/31] [MISC] Adding dockerfile and tests --- docker/Dockerfile | 40 +++++++++++++++++++++ docker/README.md | 88 +++++++++++++++++++++++++++++++++++++++++++++++ docker/tests.sh | 53 ++++++++++++++++++++++++++++ 3 files changed, 181 insertions(+) create mode 100644 docker/Dockerfile create mode 100644 docker/README.md create mode 100755 docker/tests.sh diff --git a/docker/Dockerfile b/docker/Dockerfile new file mode 100644 index 0000000..fd6312e --- /dev/null +++ b/docker/Dockerfile @@ -0,0 +1,40 @@ +FROM jupyter/scipy-notebook + +ARG user=euler + +USER root + +RUN apt-get update && apt-get install git-all -y + +RUN useradd -ms /bin/bash ${user} +RUN deluser --remove-home jovyan + +USER ${user} + +ENV HOME /home/${user} +ENV NB_USER=${user} +ENV XDG_CACHE_HOME=/home/${user}/.cache/ + +RUN git clone https://github.com/deusebio/Graph-Machine-Learning.git /home/${user}/Graph-Machine-Learning + +WORKDIR /home/${user}/Graph-Machine-Learning + +RUN ln -s /data data + +RUN git checkout chap1 + +RUN conda create -n chap1 python=3.9 +RUN conda run -n chap1 pip install -r Chapter01/requirements.txt +RUN conda run -n chap1 python -m ipykernel install --name chap1 --user + +RUN conda create -n chap2 python=3.11 +RUN conda run -n chap2 pip install -r Chapter02/requirements.txt +RUN conda run -n chap2 python -m ipykernel install --name chap2 --user + +RUN conda create -n chap3 python=3.8 +RUN conda run -n chap3 pip install -r Chapter03/requirements.txt +RUN conda run -n chap3 python -m ipykernel install --name chap3 --user + +EXPOSE 8888 + +ENTRYPOINT jupyter notebook --no-browser --port 8888 --NotebookApp.token='' --NotebookApp.password='' \ No newline at end of file diff --git a/docker/README.md b/docker/README.md new file mode 100644 index 0000000..d062fc7 --- /dev/null +++ b/docker/README.md @@ -0,0 +1,88 @@ +# Docker image + +In order to ensure reproducibility and an environment ready to be used to test the examples from the different chapters, we provide a Docker image with several Python environments already installed, corresponding to the dependencies set of the different chapters. + +The dependencies sets of the different chapters are handled using [Poetry](https://python-poetry.org/) to both provide an easy way to manage dependencies updates as well as produce pinned `requirements.txt` files representing the entire environment. In fact, in the first version of the book, we realized that transitive dependendencies of some of the packages we used, when not explicitely pinned, could break the installation process. + +## Usage + +### Build the images + +To build the image from this local directory, run the following command + +```bash +$ docker build . -t graph-machine-learning:latest --no-cache +``` + +### Run the image + +We generally recommend to create a local directory where to store data, results and images + +```bash +$ mkdir data +``` + +Then, use the following command + +```bash +$ docker run --rm \ + -p :8888 \ + -v "$(pwd)/data:/data" \ + --name graph-machine-learning-box \ + graph-machine-learning:latest +``` + +to start the image. We suggest to use the default port 8888 for the ``. This will start a Jupyter server which should be locally accessible at `[http://localhost:8888](http://localhost:8888)` (or change the port accordingly). + +## For Developers + +Make sure that in your system, [Poetry]((https://python-poetry.org/) is correctly installed and configured, use the following command to verify this + +```bash +$ poetry --version +``` + +### Update Dependencies + +Dependencies may need to be updated, when: + +* **Adding new packages** +New dependencies can be added directly using Poetry with the following command +```bash +$ poetry add +``` +This should modify the `pyproject.toml` file with the new dependency. + +* **Update dependent packages to new release** +```bash +$ poetry update +``` + +Both these action will create a new `poetry.lock` file. + +Once the `poetry.lock` file is updated, we can then export a new `requirements.txt` file using + +```bash +$ poetry export -f requirements.txt --output requirements.txt --without-hashes +``` + +### Testing + +In order to make sure that the docker image is fully working, we provide a Bash script to run through all the notebooks of the image, and provide a summary of successful/failing notebooks. + +Before running the tests, make sure the image is running with the `graph-machine-learning-box` name attached to it (see section *Usage* above). + +To run the tests, use + +```bash +./tests.sh +``` + +In order to run tests only for particular chapters, provide the name of the chapters as extra arguments, e.g. + +```bash +./tests.sh Chapter01 Chapter02 +``` + +Needless to say, we expect all of the notebooks to properly run. + diff --git a/docker/tests.sh b/docker/tests.sh new file mode 100755 index 0000000..58887ba --- /dev/null +++ b/docker/tests.sh @@ -0,0 +1,53 @@ +#!/bin/bash + +# docker run --rm --name graph-machine-learning-box graph-machine-learning:latest + +LOG_PREFIX="[ImageIntegrationTests]" + +CMD="docker exec graph-machine-learning-box" + +ARGS=$* + +FILES=$(${CMD} find $* -maxdepth 2 -name "*.ipynb" | sort) + +SUCCESS=0 +FAILURE=0 +SKIP=0 + +ERRORS="" + +for _FILE in $FILES; do + case $_FILE in + + ./Chapter0[4,5,6,7,8,9]*) + echo "${LOG_PREFIX} Skipping file ${_FILE}" + let SKIP=SKIP+1 + ;; + *) + echo "${LOG_PREFIX} Testing ${_FILE}" + OUT=$(${CMD} jupyter nbconvert --execute --to notebook $_FILE --output /tmp/tmp.ipynb) + if [[ $? == "0" ]]; then + let SUCCESS=SUCCESS+1 + else + let FAILURE=FAILURE+1 + ERRORS="${ERRORS}\n====== ${_FILE} ======\n ${OUT}\n=================" + fi + ;; + esac +done + +rm -rf /tmp/tmp.ipynb + +let TOTAL=SUCCESS+FAILURE+SKIP + +echo "${LOG_PREFIX} " +echo "${LOG_PREFIX} ************************************* " +echo "${LOG_PREFIX} Summary" +echo "${LOG_PREFIX} ************************************* " +echo "${LOG_PREFIX} " +echo "${LOG_PREFIX} TOTAL: ${TOTAL}" +echo "${LOG_PREFIX} " +echo "${LOG_PREFIX} SUCCESS: ${SUCCESS}" +echo "${LOG_PREFIX} FAILURE: ${FAILURE}" +echo "${LOG_PREFIX} SKIP: ${SKIP}" +echo "${LOG_PREFIX} ************************************* " From e6cf23cfb6a0b8836baf8a713e4248c0f70e692a Mon Sep 17 00:00:00 2001 From: Enrico Deusebio Date: Tue, 2 Jan 2024 10:22:31 +0100 Subject: [PATCH 06/31] [MISC] CI/CD pipeline --- .github/workflows/ci.yaml | 41 +++++++++++++++++++++++++++++++++++++++ docker/tests.sh | 8 ++++++++ 2 files changed, 49 insertions(+) create mode 100644 .github/workflows/ci.yaml diff --git a/.github/workflows/ci.yaml b/.github/workflows/ci.yaml new file mode 100644 index 0000000..0255bd4 --- /dev/null +++ b/.github/workflows/ci.yaml @@ -0,0 +1,41 @@ +name: Build Image + +concurrency: + group: ${{ github.workflow }}-${{ github.ref }} + cancel-in-progress: true + +on: + pull_request: + workflow_call: + +jobs: + build: + runs-on: ubuntu-latest + steps: + - name: Checkout repository + uses: actions/checkout@v3 + + - name: Build Image + id: build + run: | + cd docker + docker build . -t graph-machine-learning:latest --no-cache + + - name: Test Image + id: tests + run: | + + mkdir -p data + chmod -R 777 data + docker run \ + --rm --detach -v "$(pwd)/data:/data" \ + --name graph-machine-learning-box \ + graph-machine-learning:latest + + # Run tests + cd docker + + # Run the tests only for chapters managed by poetry + CHAPTERS=$(find Ch* -name poetry.lock -print0 | sed -e 's/\/poetry.lock//g' | xargs -0) + + ./tests.sh $CHAPTERS \ No newline at end of file diff --git a/docker/tests.sh b/docker/tests.sh index 58887ba..820cd67 100755 --- a/docker/tests.sh +++ b/docker/tests.sh @@ -51,3 +51,11 @@ echo "${LOG_PREFIX} SUCCESS: ${SUCCESS}" echo "${LOG_PREFIX} FAILURE: ${FAILURE}" echo "${LOG_PREFIX} SKIP: ${SKIP}" echo "${LOG_PREFIX} ************************************* " + +# Provide 1 exit code if any failure has happened +if [[ "${FAILURE}" != "0" ]]; +then + exit 1 +else + exit 0 +fi From ceee9120553f766eb82661647ef08e23e1612ea9 Mon Sep 17 00:00:00 2001 From: Enrico Deusebio Date: Tue, 25 Jun 2024 20:36:28 +0200 Subject: [PATCH 07/31] [2nd Edition][Chapter 6] Introduce Poetry --- .github/workflows/ci.yaml | 10 +- Chapter06/01_Social_network_analysis.ipynb | 804 +++++-- Chapter06/poetry.lock | 2316 ++++++++++++++++++++ Chapter06/pyproject.toml | 31 + Chapter06/requirements.txt | 98 + docker/Dockerfile | 6 +- 6 files changed, 3089 insertions(+), 176 deletions(-) create mode 100644 Chapter06/poetry.lock create mode 100644 Chapter06/pyproject.toml create mode 100644 Chapter06/requirements.txt diff --git a/.github/workflows/ci.yaml b/.github/workflows/ci.yaml index 0255bd4..18dd20b 100644 --- a/.github/workflows/ci.yaml +++ b/.github/workflows/ci.yaml @@ -31,11 +31,11 @@ jobs: --rm --detach -v "$(pwd)/data:/data" \ --name graph-machine-learning-box \ graph-machine-learning:latest - - # Run tests - cd docker - + # Run the tests only for chapters managed by poetry CHAPTERS=$(find Ch* -name poetry.lock -print0 | sed -e 's/\/poetry.lock//g' | xargs -0) - + + # Run tests + cd docker + ./tests.sh $CHAPTERS \ No newline at end of file diff --git a/Chapter06/01_Social_network_analysis.ipynb b/Chapter06/01_Social_network_analysis.ipynb index 535a774..9291bc4 100644 --- a/Chapter06/01_Social_network_analysis.ipynb +++ b/Chapter06/01_Social_network_analysis.ipynb @@ -11,7 +11,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "executionInfo": { "elapsed": 2015, @@ -67,7 +67,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -86,11 +86,24 @@ "id": "1F-dlWqNGaF8", "outputId": "c422ddf8-3bad-45ae-e437-67d94bc8d480" }, - "outputs": [], - "source": [ - "!wget http://snap.stanford.edu/data/facebook_combined.txt.gz\n", - "!wget http://snap.stanford.edu/data/facebook.tar.gz\n", - "!gzip -d facebook_combined.txt.gz\n", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 213k 100 213k 0 0 138k 0 0:00:01 0:00:01 --:--:-- 138k\n", + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 714k 100 714k 0 0 287k 0 0:00:02 0:00:02 --:--:-- 287k\n" + ] + } + ], + "source": [ + "!curl -O http://snap.stanford.edu/data/facebook_combined.txt.gz\n", + "!curl -O http://snap.stanford.edu/data/facebook.tar.gz\n", + "!gzip -d -f facebook_combined.txt.gz\n", "!tar -xf facebook.tar.gz" ] }, @@ -117,7 +130,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -136,7 +149,17 @@ "id": "0u_P2c3T-bc5", "outputId": "bb59b58d-ecf4-45ae-f867-102c84bc09b1" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "01_Social_network_analysis.ipynb facebook.tar.gz pyproject.toml~\n", + "facebook\t\t\t poetry.lock\t tmp.txt\n", + "facebook_combined.txt\t\t pyproject.toml Untitled.ipynb\n" + ] + } + ], "source": [ "# check the downloaded content\n", "!ls" @@ -144,7 +167,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -163,7 +186,24 @@ "id": "Uno8xGcQ-jjd", "outputId": "02b5d01a-4e08-4d95-f36c-7251248b3294" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 1\n", + "0 2\n", + "0 3\n", + "0 4\n", + "0 5\n", + "0 6\n", + "0 7\n", + "0 8\n", + "0 9\n", + "0 10\n" + ] + } + ], "source": [ "# take a look at the first lines of the edge list\n", "!head facebook_combined.txt" @@ -180,7 +220,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "executionInfo": { "elapsed": 923, @@ -202,7 +242,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -221,14 +261,26 @@ "id": "ssuI-8mvibIj", "outputId": "44e5daa6-07f3-47ec-8bc7-1d3fba54d0ee" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Name: \n", + "Type: Graph\n", + "Number of nodes: 4039\n", + "Number of edges: 88234\n", + "Average degree: 43.6910\n" + ] + } + ], "source": [ "print(nx.info(G))" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "executionInfo": { "elapsed": 787, @@ -261,7 +313,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "id": "poIVgKmCHFw3" }, @@ -273,7 +325,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -293,7 +345,18 @@ "id": "4AqPky9FsP7Y", "outputId": "062d5b31-6091-4df7-b3e5-5914ef14aaa2" }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxb13ng/d+9AEiQBEhxFReJpERSuyVRu2TL1h7bkpO4SbNMp4kzcZo0qd0mbZb2fTvzvjN5PzPTuM10PJ8mcVIvah05jlo7sWTLiuUlsmXtFq1d3ERS4iLuBAhivef9AwTEnaBEEiD5fD8fWiZwce+hROA895znPEdTSimEEEIIMWPp0W6AEEIIIaJLggEhhBBihpNgQAghhJjhJBgQQgghZjgJBoQQQogZToIBIYQQYoaTYEAIIYSY4SQYEEIIIWY4CQaEEEKIGU6CASGEEGKGk2BACCGEmOEkGBBCCCFmOAkGhBBCiBlOggEhhBBihpNgQAghhJjhJBgQQgghZjgJBoQQQogZToIBIYQQYoaTYEAIIYSY4SQYEEIIIWY4c7QbIISIfUopKhpctDp9pCWZqG1xc6PNQ36GlS1L09A0Lfx8ht1CUXYimqZFu9lCiAhpSikV7UYIIWJLIBDgpaONVDf3EGfSOFPZwa2uwJDHmnRIijPR5b79fE5qPH/5qUJWF6VMVpOFEHdBggEhRD9PvVrFwTMt43Kur++aw+qilGFHFHRdZiqFiAUSDAghwsYzEBiNxaTx1R1z+Px9OZNyPSHE8CQsF0IAwamByQoEAHwBxU/frOOHL5djGMakXVcIMZgEA0IIAF462hiV6x45384n/usZfvV+Q1SuL4SQYEAI0au6uSdq1/b3jhK8dLQ+am0QYiaTYEAIAcC8zIRoN4Fnj9yUKQMhokCCASEEAF/YnB3tJuALKN692BbtZggx40gwIIQAwGQy8ciazGg3g9oWd7SbIMSMI8GAECLsO5+ax/qS5Ki2IT/DGtXrCzETSTAghAg7U9nJqYquqF3fYtLYsjQtatcXYqaSYEAIAQT3H3j6YA3RLEP21R1zpCqhEFEgGxUJIQCoaHBR0xy9+frPbpwt1QiFiBIJwYUQALQ6fVG7dnaKhW8+lB+16wsx00kwIIQAIN1midq196ydLVseCxFFEgwIIQAozkmkINNKNLrk9Qtkq2MhokmCASEEAJqm8eSeQjSNSQ0ICjOtFGUnTuIVhRADSTAghAhbNT+Zv/vyQnJTR8otHr/lBhrwxJ5CmSIQIsokGBBC9LO6KIVvP6BYbXqfedpVrHQPcdTdBwSpSWae+soiVs2PbpEjIYQsLRRCDOHWrVvk2BV2ZxX5qgondrzKSpzmxqfiqDAW48J+R+dOitf5+8cWsiDPJiMCQsQICQaEEIM0NTVhtVpxOp1oGthxgOYIPqnBWu19nMpOJ2l4VDx1qiii82oa/Nf/sICFc+4skBBCTAwJBoQQ/SilaGpqIiFh+C2NO1Q65YNGBxQjpR4WZlp5Yk+hTAsIEYMkGBBC9NPV1YXb7cbr9Q75fLuRTpmxdphXDw4INODbnyxkz5pMmRYQIkZJMCCE6KepqQmAQMDASTJeFU+c5sZGcJqg3Fjce+TAjn1wR1+YlcATuwtkNECIGCfBgBACCE4PVDS4OHqhmXpjLo16MV3+29sJx9NNMh0RJQ4+sTuf5QV2irITZTRAiClAggEhBGcqO3n6YE3vRkUWYBkY/Y/xkEQzSRGdLzfNSnFOZMcKIaJPggEhZrgzlZ1874Wr47p1cYY9evscCCHGToIBIWYwpRRPH6xBqfGpK6hpUJCZIOWFhZhiJBgQYgaraHD1Tg3cvdCeBk/sLpA8ASGmGAkGhJjBWp2+cTtXQaasHBBiqpJgQIgZLN02PnP7f/u5+Wxdli4jAkJMUbJRkRAzWHFOIgWZ1tEPHEFhllUCASGmOAkGhJjBNE3j0/doBNMHB6YQRpZS+MRu2YJYiKlOggEhZiilFMeOHaPs9//OfO0q2oDCAlo4QBg6KEhNMvP3sgWxENOCptR4ri4WQkwFXq+X515+k4vldbiJp9xY1vtM3zv84EdDVkoctzpvJxqm2Sw8tjWXPWuzZERAiGlCEgiFmGF+X1bP379aTpd/NjC799GhdhzU0DRIiDPxzJ+W0Or0k2G3SIlhIaYhCQaEmIZC+wy0On39OvCDH1zlqUMdwMCkwaE7d6WgptmNpmlsWDBrwtsthIgOCQaEmGb67zMQVJBpZcc8F/tOdgM2huv8h9Pi8FGcM77tFELEDgkGhJhGhttnoKa5h39u1iCCHQeHInsNCDG9STAgxDQx8j4DoeWDYyN7DQgxM0gwIMQ0Mfo+A2ObGpC9BoSYOSQYEGKaiHyfgaFWDgwmew0IMXNIMCDENDG2fQb6BwRa7yzCtz9ZSGZKnCwhFGKGkWBAiGkitM9ATXMPQ9/5KxJxUqxfpsJYjKtPMqGMAggxs0kwIMQ0oWkaG2c3U9NsY/BUQDB5sES/RKrexqa4E3zmy39Gh8uQUQAhhAQDQkwXZWVlNF55n0fmlXKkOqnfnX8iznAgYDab+d73vovFIssFhRBBsjeBENPAzZs3ee655ygsLKSyshKlwIkdn5aARfVgw4Gmgclk4vvf/74EAkKIfiQYEGKKczgcPPPMM1itVlpaWsKPm81m/H5/+Htd1/nBD34ggYAQYhDZwliIKczv9/OrX/2KQCDQLxCwWCz9AgFN02REQAgxLMkZEGKKUkpx4MABGhsbCQQC/Z7z+W7XHNA0jR/84AfExcVNdhOFEFOEBANCTFHHjx+nrKysNz8gGa+KJ05zh/MD4PaIgAQCQoiRSDAgxBRUUVHB4cOHaTfSKR9QMyARR3jlwHe/+13i4+Oj2FIhxFQgwYAQU0xraysvv/wy7UY6ZcbaQc+7sFFmrOOHnyskISEhCi0UQkw1kkAoxBTidrt5/vnn8Xp9lBuLex8dWCxIQ0Pj50eakMVCQohISDAgxBRhGAbPPfccTqcTJ8m9UwNDVw1UQE2zm8pG16S2UQgxNUkwIMQU8eKLL3Lr1i0AvCqyPIAWR6Q7GQohZjIJBoSYAl555RWqqqrC38dpnohel2GXugJCiNFJMCBEjDt06BAff/xxv8c2lxaRiIPQBkQDaRoUZiVQlJ04CS0UQkx1EgwIEcPeeustTpw4Ef5e13VycnI4d+4jFpguozFE+qAWfOyJ3QWyE6EQIiKyN4EQMUIpRUWDi1anjwy7hdrLJzl69Pfh53Vdx2w2YzabcbvdFBcXU7T6E/zToRvUNLvDxxVmJfDE7gJWzU+Oxo8hhJiCJBgQIgacqezk6YM1/Tr1vsWDdF3HMAwKCgqoq6ujuLiYP/zDP8RsNqOUorLRRYsjGEQUZSfKiIAQYkwkGBAiys5UdvK9F66i1MAMgOB3K/RTzLY6WL16NSdPngwHAiaTKRrNFUJMQ5IzIEQUKaV4+mDNEIEAhLIBruvL2bVrlwQCQogJI8GAEFFU0eCiptk9zJoAAI1Ov5VfHThKSUmJBAJCiAkhexMIEUWtzsiKAmXkzeezn90tgYAQYkLIyIAQUZRmiywe/9SDWyUQEEJMGBkZEGKSDFw6OH92AheO/45EknFhY+h9BhQFmQksyLNNdnOFEDOIBANCTIKhlg7OivNQ4L9BiQ5lxjqCKYR9AwKFrmk8uadQlgoKISaULC0UYoJFsnQQ4JZ9Aw2dRvjZwkwrT+wplOJBQogJJyMDQkyg0ZcOKsqNxfx/n0nHYrHw/P7DZOcv4JFdD1CSmyQjAkKISSHBgBATKLR0cHgaLuw0OXVOvP1vbFi2lEcffQhdl9xeIcTkkU8cISZQpEsHX3/rfZYtW8ajjz4qgYAQYtLJyIAQEyjdZonouCXFc/n0p3dLICCEiAr55BFiAhXnJJKdHMwNGJoizerj8S8+LIGAECJq5NNHiAlUV1dHTs+p3gWDAwMChQb8zeeXSkEhIURUSTAgxARpbm5m3759LMo2U2o5SyLOfs+nWf386MsLWV08K0otFEKIIKkzIMQEcDgc/PM//zMmk4nu7m68Xi+FhfNIm7uU3713nGULC/hPn3tQRgSEEDFBRgaEGGcej4df/vKX+P1+3G43Xq+X3Nxcli1bypnfv8a20jwe/8LDEggIIWKGBANCjKNAIMCvf/1r2tra0HWdnp4eMjMzWblyJa+99hqlpaV88pOflGJCQoiYIsGAEONEKcVrr71GdXU1iYmJOJ1OZs2axerVqzl48CClpaU88sgjEggIIWKOBANCjJN33nmHsrIyZs2aRUdHBzabjbVr1/LGG2+watUqCQSEEDFLggEhxsGZM2c4evQo6enptLW1kZCQwLp16zh8+DCrV69mz549EggIIWKWBANC3KVr165x8OBB0tPTaW1tJT4+ng0bNnDkyBFWr17N7t27JRAQQsQ0KUcsxF24efMm+/fvZ9asWbS2tmI2m1m3bh3vvPMOa9as4eGHH5ZAQAgR8yQYEOIOtbW18ctf/pKEhATa29vRdZ1169Zx9OhR1q5dy0MPPSSBgBBiSpBpAiHuQHd3Ny+++CKaptHV1YWmaaxdu5Zjx45JICCEmHJkZECIMfL5fOzbt4/u7m48Hg8ApaWlnDhxgnXr1vHggw9KICCEmFIkGBBiDAzDYP/+/TQ1NeH3+wFYvnw5Z8+eZf369XziE5+QQEAIMeVIMCBEhJRSvP7665SXl4cfW7JkCR9//LEEAkKIKU1yBoSI0Pvvv8+ZM2fQNA2lFCUlJVy6dIkNGzZIICCEmNIkGBAiAmVlZbz99tuYTCYMw6CwsJDy8nI2btzIrl27JBAQQkxpEgwIMYrKykp++9vfYjabCQQC5OXlcf36dTZu3MjOnTslEBBCTHmSMyDECBobG3n55ZfRdR2/309WVhY3b95k06ZN7NixQwIBIcS0IMGAEMPo6OjgxRdfxDAM/H4/aWlp3Lp1i3vvvZft27dLICCEmDYkGBBiCD09Pbz44ov09PQQCARISUmhra2N++67j23btkkgIISYViQYEGIAv9/PSy+9RFtbG4ZhkJSURGdn55QLBAzD4J3zbdS1ucnPsLJlaRq6HkwTUkpR0eCi1ekjw26hKDsRYNBjU+VnFULcHU0ppaLdCCFihVKK/fv3c/nyZZRSJCQk0NPTw+bNm9m6deuU6RxfOlrPs0du4gvcfnubdY1dK9NZkJfIvvfqaeryh5/LSrag6RpNHd5+j/2HB3JIijNxo90zKKAQQkwfEgwI0cebb77J8ePHAYiLi8Pr9XL//fezZcuWmA8EQiMBb3zUwpnKrgm5hkmD9QtTWFOUwrJ8O8U5MnogxHQgwYAQvT788EMOHz4MgNlsxu/388ADD7Bly5boNiwCQ40ETIZZSWa+si2XRXNstDn9Mr0gxBQlwYAQwMWLF9m/fz8AJpOJQCAwpQKBnx2+Ee1mhOWkxrN7dSbrF6RIYCDEFCHBgJjxampq2Lt3L4ZhhEsNT5VAwDAMHvyvZyZ9RCBSEhgIMTVIMCBmtObmZn7xi1/g9d5OnNuyZQsPPPBAFFsVuSNlLfxwf1W0mxGRgkwrT+4pZNX85Gg3RQgxgKQFixnL4XDwwgsv9AsEtm7dOmUCAYC6Nne0mxCxmmY3333+CmcqOqPdFCHEABIMiBnJ4/Hwwgsv0N3dHX5s27Zt3H///VFs1djNTbNGuwljYij4wb9c5V/fvUlFQzcyMClEbJBpAjHjBAIBXnjhBerq6sKPbdu2jc2bN0exVWOnlOJavZNvPXOZgBHt1twZmToQIjZIMCBmlFBRoUuXLoUf2759O/fdd18UWzV2Zyo7efpgDTXNfacJFDC1EvQ0QNPg7768kNVFKdFujhAzlkwTiBnld7/7Xb9AYMeOHVMyEPjeC1epbZ46+QLDUb1fTx+skSkDIaJIggExY5w4cYIPP/ww/P3OnTu59957o9iisVNK8aNXqjFUsBPtb2qNCoQoFUwurGx0RbspQsxYEgyIGeHy5cscOnQo/P3OnTvZtGlTFFt0Z/7zvnKaOr2jHzgFtTh80W6CEDOW7Foopr26ujpefvnl8Pe7du1i48aNUWzRnXnpaD3vX+6IdjMmTIbdEu0mCDFjSTAgprWWlhaef/758PdTNRAwDINf/C52Sg6PJ02DgsyE8DbKQojJJ9MEYtrq7u7mmWeewTCC6+6maiAA8M75NmK04vBd04AndhdIqWIhokiCATEteb1e/umf/gmfLzgPPZUDAZhalQbH6hOlGVJnQIgok2BATDuGYfCzn/0MlyuYnb5z584pHQjA1Ks0OBbnqh2yrFCIKJNgQEwrSimef/552tragKm7amCgrfekYb6rd2toRX/saWj3yLJCIaJMggExrezfvz9cZnj79u1TJhBQSlFe383xax1D1uzXdZ3Hd869iytoxHIdAllWKER0yWoCMW0cPnw4XF1w69atU6ay4FClhQfW7FdKsWp+MnMTHdS57GM4u8KMBz+xPc0gywqFiC7Zm0BMC8ePH+fNN98EYPPmzWzbti3KLYpMqLSwGlBRsG/NfqUU//Cb6zR09C02FMk+BMEzLtAvcs1YNr4NH0eFWQk8+2fLZDWBEFEkIwNiyrt06VI4ENi4ceOUCQSUUr01+QfP5oe+/+GvK+no9g/x6tE7ThNelunnmKW1UcN8PCRE9LrJJMsKhYgNEgyIKUUpRUWDi1anjwy7BYu3hV//+tcArF69ml27dkW5hZGraHAN2HWwP6UYJhCITCEVpOptxOrYn9478iHLCoWIPgkGxJQx1Nx6Ig5K9DTuX5HHnj17oti6sWt1TmzSnLc3T8BJMh5ir7rff9icI9sWCxEjJBgQU0LfufW+XNj42FjHH69YFJ2GRWDgaEZRdiKappFum9ikuTgtGDR5VfyEXudOmHT4yva8aDdDCNFLggER80aaWwcNNHj6YA3PPXFPzM09j7RSoHSenYJMK7XN7gmpAKABDmXHgmcCzn53vrZzLrouK5uFiBWymkDEvPL6bv7kJxdHPe7n31xKcU7SJLQoMqcrOvjeC9cGdfRa73++/UgBuanxfG/vtWECnTvVf6WBGS9+TIBp3K5wpywmja/umMPn78uJdlOEEH3IyICIeZHOrbc4fBTHSB9zpqKTv/nX8iE7eNX7n3/4bQ1mExhDHGTWwRpnwukO3HVb/MTd9TnuxryUHqy+Fj67+wG2LEuTEQEhYpAEAyLmRTq3Ho3CNYFAgJeONlLd3MO8LCuri1I4VdHJc0fqI7rT9w/T1/sN7iIQiK2pkiz3eT5x71K2Ls+IdlOEEMOQYEDEvKLsBOwmF47A0OvkNQ0KMhMoyp7cjPmnXq3i4JmWfo/94q36SW1DdI1W+Ehhwoff52XZstgteiSEkL0JRIxTSvHzn/+c+eo8MLjr0bSJL1wzcN8AwzD4219eGxQIzDwjBwKgESCOM8Z9fHdfA2eruiarYUKIMZIEQhGzQjsQ1tbWArD101/j2fda+mXmF2Yl8MTuggkrXDPUagCNWN3/L5b0HzXoW15ZagsIEXskGBAxSSnFvn37KC8vB+Dxxx8nLy8PpRSVjS5aHP3X7E+EUG2DoRL8xNhpGuRnWMNLQPvWX0hLMlPb0sONNg/5GVa2LJVEQyEmkwQDIuYopdi/f394B8LPfe5zLF68eNLb8JWnz49YLljcmZ9/cymdLv+gEZe+ZAmiEJNLggERU5RS/OY3v6GsrAyAXbt2sXHjxkm7vmEYvHO+jXM1Dg6cap60604toY+MOxuRWTe7jVNNqagIXv/1XXP4wubcO7qOECJyEgyImKGU4rXXXuOjjz4CYN26dTz00EPjfo2BpYEhuGnQK8cbOXyulYC8I4alYbC9yM+RSgugDcidiGRbZYjXvHiUJaJjLSaNQ/95tUwZCDHBZGmhiAlKKQ4cOBAOBBYsWDDugcBQyYCzU+JQKG51TuymQdNFHG6aq8+zXNcoNxbjwh5+LgEnBqYRtkoOBgseFXkRJF9A8e7FNrbdIzUKhJhIEgyIqFNK8frrr3P27FkAcnJy+OIXvziu1xhuo6OmTu+4Xme685BAmbGOFfop1prex4kdr7ISr3uw4aA2UECVGm7TqDubVqhtkbwNISaaBAPjaLjd6YZ6Pt1mQSlFW7d/wrPiY5lSijfeeIPTp08DkJyczNe+9rVxv8bwGx2JsQkurCw3FrPW9D52zQGaA4BaYx5VaiHjXQExP8M6rucTQgwmwcA4GWl3ulXzk4d8vq++x84UoUDg1KlTAMTHx/Pkk0+Oe1BU0eCSVQHjSsOFHSd27AQDgbZAem8gML4sJo0tS9PG/bxCiP5mXFbOwGpy45E/GRqCrh3Q4dQ2u/nu81d46Wj9kM8PdeyZys4Jb28sGBgImEwmvv3tb2Myjf/OepFudCTGpsWYjUPZ8fvhklpOb2mhcb3GV3fMkeRBISbBtB4ZGDhs39Ht4/+8Xjvs3Xuk52txeOnxBEiIN5Fhtww7BB36/tkjN0ctXBN6+umDNeGiLGcqO/nfB65T23J7P/r8jHg+uzGbzFnxU3Z6QSnFoUOHwoGApml861vfIj4+fkKuF+lGR5Pj7pblxZIaVUJNoIRIVxGM1X2LZkmdASEmybRdWjjasHxfGvAXjxTwyNqsYTvWsZzvboWKsvzV81dHPTY/I54/f2TelJleCAUCJ0+eDD/21a9+lTlz5kzoNb/y9Hlqm92SMzCFPLk7n0c3ZEe7GULMCNNy/G24YfvhKODHr9XwlafPc7aqa9DQ/JmK4Pkma965ucvLD39dGdGxtS0e/uq5/tMLsTq1MFQg8NnPfnZCAwEIjjw8uadwOtyMx4DJ+11alm8f/SAhxLiYViMDoU7wb/dV0NzpvaOPLQ1IS9Jp7TbCj5n14P7yk2WNvZLTjqIxvSYrxcJLf7mSs1VdIyYyRotSijfffJMTJ06E69Lv2LGDe++9d9Ku/4W/Pyf1BKYIm1Xnt3+zespNgQkxVU2pYCBUKrauzT1oM5PxG8aP/pyuGS9+Ii/MEvKptZm8drp5UP5CaMe4//mlBaQkWoZd+jhR+gYCuq5jGAZr1qxh9+7dE37tkPL6bv7kJxcn7Xri7nz7kQI+uW52tJshxIwxJYIBpRT/5+B1Xj3Z3C8RL7SZSXF2It/bO512l5uYhCyLScPXp9buZIwY9A0E4uLi8Hq9FBcX80d/9EcTds2hHL/WwV//y7VJveZ0kE49iVoPicrBVVZOyjVTk8z82/dLZVRAiEkU88HAmcpO/stL5XS7hx+n1zWmUSAweSZ6j3mlFIcPH+b48eMkJSXR3d3N7Nmz+cY3vjHu1xqNjAzcmXv006TrwdGmU4H7cGFjIkfNNA2eemzRlEmIFWK6iOlg4OS1Nr7/LxXRbsa0V5Bp5W8+M39cqyH2DQRSU1Npb2/HZrPxne98Z9C5lVLhL8Mw+n0/0uMjPWYYBl6vF7fb3fvl4cfvQXP3+K+Fn85+/s2lFOckEQgE+PByM3/7q5reZ8b/77Awy8oTu2dW4S0hYkXMBgNPvVrFwTMt0W7GjJRi8bA+o4HshO4+nauizWulx28mXveQYnIBw3fMbrcbn88XThYEsFiC6/0HHjtZ2o00yox1vd9JQDCawiwrz/7ZPeHgzePx8P/8r3/lgmcRTt/41W54cnc+9xTYp2TNDCGmi5grOuT3+3n8ny5J+dgo6vTFcbihgI25Xcyb5cXtN/FerZ1W9+0OID3Bz86iHualBsKPhTr5mpoaHA5HeGoAYM6cOfj9frxeLz6fj0AggN/vxzCMfsHBRErV21jBKa4ay3CTOEFXmZh8j2h4Yndhv875vffew+Zv5P/atYxn3zjPdWMBPu6uUFRBppVPr58tQYAQURZTIwM/2HuFE+Vd0W6GGGSoFRbBx1bop0jVWye9RXfDMOCkcX9vQDCenVDw7ySenhG28Y0Vw6+aSU0y839/rrjfcH1zczM//elP2bhxIydPnsTn86EUtMeXcNWVi+cOgisNeOorkh8gRCyImWBAAoGpSJGIk7Wm95lqN3bDTxnc+Z19Ig5K9EsAMTYdEXyL51JDot5NCu0EdCuVagmOwO1OPM1m5rGteewZUIlTKcXevXvp7OwkJSWF69evA5CYmIjL5UIpcGKnzcikTuXjJ2HUFg0VcAghoicmggG/38/O//fsHbwy+jUBBCzWPyJLa5yCAUE6lSzDadzuELOSzXR7A3S7I31bGGRzgzxTLbbeHfycJNNmZHBD5eOLoGMcDxZ8FNo66XG208RcfNze9jcUpKTqbf1ek5GRSXWzG2tyFhn2OP788T8ccrj+woUL/Nu//Rtr164N7ycRqhcxkFLgUHa0lHkkZS/hfF037U5/+PnU3oBjpNLfQojJFxM5A//p/1y4i1fLB0q0XTZKqaKbhfoF0vp0OME7xmS8Kp44zY0NR9QCBk3TSE1NZcmSJcybN4+srCxsNhtKKSobXVysuMGNyks4Gq/h9rm5oeVTqZaOet6lnCXT3AwEg4trxmJ6uF1G10IPBmYCjFfCncJm9vPA7BtcrXeBBiWz45gzS6eiohwsUGRU4MSOV1lH/Hs3jAB2zUGcx8PKVRuH7Jw9Hg+HDx+mqKiIM2fO9Hnt0Et9NQ1Wlczm859/BLPZHP77bXFMbqErIcTYRD0Y+NOfXqCu1XuHr5YPlVjhIYmPjXXMV1fIN12n3Uin3FiMq0/HONwd6ngymUyYzWY8Hg8mk4mSkhLWr19PQUFBv04oEAjw0UcfcfbsWRoaGggEgomQZrOZ+Pg4Znk6IDDcVW6zmoKJru1GOmXG2kHP375DH4/EwuBoRYlWRndTMwVxJgKBAGa3nYoKJ0qp3g7Yjx0HaI4Rz+b3B+/YvV4v+fn5Qx7z3nvv4XK56OzsHDYA6Gv58uV86lOfClcG1TSN4pwkimXzQSFiWlSDgV++d5MrN11jeEXwwzABZ7+7LxE7qtQilF+jmoWDnnNho8xYxwrGJ+nQZrMxZ84csrKyaG1tpaqqip6eHnJzc1m5ciVLly7tty2yy+XixIkTXLp0idbW1vDqBZvNhslkoqurK9xBzpmVSKGCFhIAACAASURBVJXDS7vXwtCdeDBfwoYDpeCKsaz38YHHRhYAZFPDLK2N2ckmPvHIZzhX2c6rH9bi7ZOYlxrv49PLdZrLe3A6IT09na6uLhyOYKev63q4/ZHweDyYzWYCgQB5eXmDnm9ububEiRMUFhZSVVUV/Gn6LBUdaNOmTezYsUPu/IWYgqIWDBiGwT8fuTnm183iFh1kTUCLxN0LdgLVlPT7vv/zinJjMWu1sSUdJiQkkJuby6JFi1i8eDG6rnP+/HnOnTvHlStXSEpKorS0lNLSUjIyMsKvu3XrFh9++CEVFRU4nU4g2Gmmp6eTmJhIY2Nj+HGLxcKSJUtwuVxUVlaS7/+IdtYx+K4+2Bkuji9HNzQ6A/Y7yqbvK1NvJl1vhm5w1p5mbVYqTab36NFnYbGlY/R08IMnvkRycjJ+/zrKysr44IMPcLuDIxPz5s3DZrNx/vz5iK/p8/mwWCxkZGT0C5ogmDT4+uuvY7PZwoFA6PGh7Ny5k02bNg06R0WDi+ZOD6cqOrnR6sZi0lk1386KeckU5yRJ4CBEjIhaMPDO+bY7KCGs0YFsXhL7TCM8p+HCjhN7cCh7GCkpKcyfP5/FixdTWFiIxWJBKUVVVRWHDh3i8uXLGIbBggULeOCBByguLsZkMqGU4tq1a5w8eZK6ujq83uAUVFxcHPPmzWPWrFlcv36dlpbbBa3y8/NZvHgx58+fp6ysLPx4UQYk+65ypj2v33RHutXPHO9Z7IE24uLjcXkz4S53tYzTbtfVOHbsGJqmYTLpZNsMuroqefDBB0lODmbem81mVq9eTWlpKZcvX+aNN96gurqa2bNnk5mZSWdnZ/jnDhkqfyNU42Hu3LmD2nPx4kWuX79OQkLCqLkfn/70p1mxYkW/14+0cdiH14LbbWelWPj+HxTJigIhYkDUgoG6NikqNJNpcSkkxRn09PRgGAY2m42ioiLmz5/P/Pnzsdls4WM7Ojo4d+4c586do7Ozk4yMDLZt28by5cux2Wz4/X5Onz5NWVkZTU1N4bltm83GokWLyMnJ4dq1a1RXV4fPmZyczNq1a0lMTOS9997jzTffBIKjBoWFhbjdburr65mTE09OQjmVTS6y5hSzY/M6ShfMprw8k3379uHxePAbkQ/ND3Z7ugGCHf369ev54IMPUErhcDhITk5mzZo1g16p6zpLly6lqKiIf/zHf8ThcOByDZ52GzF/w9eG3d5/yi2UNJiamkpVq065sXrY3I8vfvGLLFiw4PZPoxS/PdHEPx6sHXUL8VudPv7quSv86LGJ2RtDCBG5qC0tPFLWwg/3V41+4JQwfarOTZY15g+Ym2oiLy+PRYsWUVxc3G+o2ufzceXKFT766COqq6uJi4tj6dKlrFq1iry8PBwOB8ePH+fKlSu0t7cDwfnstLQ0lixZQmFhIRcvXuT8+fP4fD4g2NEuXbqU1atXU15ezvHjx8PPxcXFsXz5clpaWrh+/TrZ2dkkJydz7do1MjIyePDBBykqKur3M5w9e5bXXnuNLiOZs8a9EfzUQ083rNBPhpMqNU1j8+bN/P73v8dms4WnMOx2Ow8//DALFy4ccmi9rKyMV199lQcffJC33nornDvQP7Fx+KJRFouFuXPnUlpaSm1tLWfPnqXFN2vE1z52Xwpf2nW7PWcqO/lvL5fT6RrbMEl+RjzPP7lcpgyEiKKoBQOnyzv47t7ptKWsBARBiuCYuc5wiXfxuHgo4wKG4aer63ahqeTkZJKTk/H5fLS2tuL3+5k7dy6rVq1iyZIlNDc38+GHH1JdXR2+AzaZTOTm5lJaWsq8efO4cOECp0+fprOzM3zeOXPmsG7dOubOncuhQ4e4du1aeO47JSWFDRs2UFlZSUVFBVlZWeTn53PhwgUMw2DLli2sW7cOk2noqY/33nuPd955l+OBB0aoOqiw4MGMr1/i60irK8xmc3g1hNvtpqIiuGFXeno6u3fvZt68ef2ONwyDp36yj0ZXPDk5OTSVnyAJB6eNkXYaVNh0F4+vclBefi1cOhqIeJfC3Fkmdhb10NLcwsHa0JKBsb8PvvPJQh5ZK7lAQkRLVIIBpRRfefr8tNp/QMOHGre15FNV8FdpvnaFKrWo97GhO4Z4XGzKuMlX/uB+vF4v586do6qqqreT13Aoe3iOOsXkQikj3IHHxcWRn5/PvffeS25uLlevXuX06dPU1taGz2+z2cLz6k6nk9dee42mpqbw8/n5+WzatImysjIuX75Meno699xzD1euXKGxsZEVK1awY8eOftMVQ/7ESnHgwAGOnL4+QkXD4N3/LK1t2PX/Q83LWyxm/vzP/xybzUZDQwOvvfYaDQ0NAOTl5fHwww+Tm5vLmcpO/u6VKm51+vq1LQ433j7Fh4YT2pmwtbWVF154AYfDgUMlcyYQ6WgHmHHjx8qdBsQayHSBuCOhRNVWp9SyuBtRCQam597yMjIQstr0Pj4Vx2Vjeb9KeP31H6bWdZ2FCxdiTl/ES6dcNHfr4SOtdLPYcpnZ8Q48Hk/vpkbg0lJwG3HhztNk0lmwYAHr1q2joKCAsrIyjhw5Er7j1XWdlStXsmrVKk6ePMnHH39MSkoK69evp6GhgfPnz5OTk8NDDz00ZFLdcAzD4Fe/+hUnrrZSHhh7bYWR5vTzU3w8+uij4ZGAiooKDhw4EB75SMhexqEbc4eZn4/sd/Ie/XRwJUMfrUYm543BeQoTqSDTynNP3CMf5CJiQyWq5qTG85efKhzXwHImBBxRCQaOX+vgr/9lOk0RgAQDtxVylQbm4CFplCMVCThZ17u3wfDz20Ffvj+DfNN1Dp+s4nz3vGE7XZPJFC4iBMElgxs2bGDFihUcO3aMjz76iKSkJO677z58Ph9Hjx7FbDazfft2SktL7+hN7vV62bt3Lw0NjXQGEket/hcy2pz+cu0UaaZWiouLeeSRR7Db7XR0dHD8+HHOnDnLMc8GekYZyh/NatP72AcUKIp8ZGB8hUYphFBKUd7QzYUaJ2hwT76t33LUM5WdfO+Fq8OuSntoVQZ/sGH2sB23Uory+m4u1DnRgGX5dopzBh87VMBRkGnlyT2F02oljIwMiAkwtsBotel9bDhGmaMO/prO42qfgka3j9N6j1neZxfF0Dx/38BA1/XwErzq6mqcTidr1qxh69atJCTc3T4C3d3dPPvss3R0dERUrS+SeXmNAKWWcySrW4Oeu/sOW2HFRbF+mfghpi0iyRkYb//9jxewYcGsSbueiE1nKjv50SvVNHX2XyJr1sAar5OfEY/TbVDb4hn1XAM7bqUUr526xXNHbtDh6l9mdPasOL736PzwsaGAQyn6jb6F3hF/8UgBWbPip8VoQVRzBmqb3aMuPxJTyVBvl9Et004T0MxcNlaOeqxGADVCcmJoF0Vd18LV8kK/4rqu9/u+L13XMZlM4XLGoQQ+TdPCb/C+/9/vqr3nU0oRCARoa4us3PJY5uUXaBfJ0ev6ddY3jXwqItg/IXSOoUYe+j5mxcHC3tEVpaBezaXcWDrouIkkIwPiTGUn3+3tgMeDRnDPjP/5pQXUt3l49q0bdPaMXGv8k2szKMhM5OUP6mnqjGzp8FQfLYjaaoKzVV381fNXxu0fXETb3ewg6Wc8S14MNew9UKSbKI123N1sxjTWefl4XBRolVjpoUL1zzEYze0Ev76GDhDSacKBHe+o0zzj70dfXsCaYhkZmKkmMrncpEPgLouDReI/PpDDV7blhffnmCqiuoXxb0408r8O1I5+oBjGUB/m0Rqmip2ciWL9Inla7bCdcqSbKI123N1uxnTnw/xjCbxU79d4fTBN7L+zJBHObNNlCtls0nh8xxw+f9/U2aEraqHLmcpOXjkxeB5UREoxjyus0t8nnh6i3xnHzod3hbGUE4EHqAnMx6Hs/UafQgl7wbnw20KbKLUb6REdVxuYF9F5hqJUMBDwGPHEhf/txkIj8kBAI4pv8zGraXZT2TiWzcvEdKCUoqOjg5NlV6LdlHHhDyh++mYdLx2tj3ZTIhaVcsR9kzJEJPp39Fa6WaBfIE1vC3Yq3F3i23TkJpFqtZDqwMLw3fosrY1yY3HvEcNvorSG90c9rlotGPH54TZjajfSuWYsnsK7bgZ/vokM/locPtnyOMbd7VI7p9NJfX09N2/epK6ujrq6Onw+P7dUDjB67tBU8Yvf3cDtDZCflcCWpWkxPXUw6cGAUoqnD9YMys4Uw0vAyVztOvGaZ9C8tFfFj/xiEb5bL9EujjLPHtxEqVllj3qcGrEzHHozpv7LCCfDRHXYEzsKlGGf6cW7YttQS+2yki38xy157FmTOSgoCO3zEfq6efNmuPJoKMl3qCm36SCg4IV3g4XC/oepmq/G8NTBpAcDFQ2uaVV5cKJY6GGOVkOa3jJiUlqcNvrSGhG8m61V8yM6+rJaNi5XbQ1kYDcHgwGl4IoROm/sTKnEEk2DgswEirLvbjtoMXGGG9W91eXjH357neffvsG2RVZyrF0oZ7Dzr2n14VXxJJh8ZCT4afPG0W1kBm9slIMONdlBcnT4eqcOlFJ8YXNutJszyKQHA61O3+gHzXD5Wjnz9IqIstJtdJGIY9LXg089Gh4i7WTG5870Ogtx+5PI1WvoNmxjuP7MpAFP7C6Q5MEYFcmobpvTz/7TTkAnjjQ00m7/3hug+QKoPlucJ+LAH/5+Zvy7P3vkJp+7NzvmpgwmPRhIt8kQ4GhMGBEvT9M0KNEv9dbFH3qpWAqtdJIx3s2ckix48BHH5HzwaDQyl0Yj8tLGM1X2LAvffbRoyq7RnkiGYeD3+wkEAv3+HO7/I31+LK/1+QJUeudSYywYvcG9vEPkMqkByawz8SbGF1C89H4D87OTYqpY0aQvLZSCQ5FQ4Zr9g54ZZl376HNu0V5tEBss9PTulyB/F3dmYn6PvnBfNl//RP64n/dOKKUwDGPUTvVuOuCxnPtOP6JDhbT6FtHq++dQ/6/rJtq8VtwBM8kJGnkpOsfr4nirwoSh5D0zEWKlWFFU6gycreriu89fCa6AlohgCAorPRRrl4jXR+7w+65rVwoajLlcU5NbNS76Ill3Hyy9645CIR0xuj1rMvnz3XPvutO9mw6472N3aqgqlqN1wJEcbzKZaHToOLwa6TYL87Lihz3f7Y59bMPQpys6+IffXKeh43YJ4IQ4nR7vJFTqmcFCFRL/7svR3bUzakWHhspIFUNLxEG2dmOYbYF7d/8znWIWrVGpJx9tFtzoGCPMyffua6BdpTr8dyhiySLtI7JNjXf02r4d6sCO0WKx3HEHfCfPT8Rw75mKTv7+t9dpaL+dLJyTGs8X7ssesi5+aNlfi8NLjydAQryJzOS4IYejQ8f++4eNHDo3eCRSTJ78jHief3J51KYMolqBUClFZaOLFoePdJuFH/66groWj0wfDDJazf9gTf5F+secNSZ/p7noMJiT6KQ0vZVUSw8AbZ54briSqHCk4vTfXnJpN7lYYL4C/p6o7MQ3MxlEVuxIoaHYrL/JROZTDbXHxFT4/uPWWZxqyWS04N5m9rF6tgOPoXOpNYku7+DcrDSrj22FDgpSgiMftV1xHKm20eaOSrkZMYTvfLKAR9bOjsq1oxoMDCTTB3enWLs4ho1rJoPCghvfXRdFCv4y/OH6dBKTrORnWEcs4NE3yOx71xQIBPjjH39EQ2eAmTRyEh2RbFoVPGa+doV80/WJbtAgfTvd0Jeu6+G5dl3XsVgs4RGGuLg4zGZz+M/QCIOu6+HXhzbC6rt51WjfD/d4bWc8r13PCrV2HH7i4LkXmC7hNGzUq1COhrwXYoUG/Oix6EwXxFQwADJ9cDeK9UtUGEui3YxewV+rzalX+chZhNNn5u4+dBRJWjffWNfDypUrMJvNvVnOvj4Zz75hHwt9Vbeb+G3VeH7AiuGNPqIVrUAgGoa68+8bfISmG+Li4rBY4nilrgSnP26cWzFVEokVCTjRmHkrDqK1P0fMBQMQjIpfPdHE/z4omxiNxR/Mq+NQ9awI3zwT+6EQj4tF+vneDX3Sepc+MuCaY9/pMJIdCUMfqqH54tCfof9vctt5ryETp0+WuUaHIjWuh822Mnp6uvH5pPbIQHe+idV0EPxcWK6dRNMYt8+OqSQaW3nH5GSRpmksy59eZSknVvCuubX2Ap9dtY29Z4OPTeyOhsE3YyFXSddbUAr8SXlkz84mO8lDy/WPcbm6yc3NZefSpTxszmTv+x3cbL+dqZ1m9bEsoZruzmbqjbk0UDDqVddu2o7WcZWrV68SFxfHmjVrKC0txWq1hjv9SCLqv1SKioZuztc6UYZBZZObN862RPAzT88Pn4m0e14rDlMW7d54SnKT+NNPzMVsNgNbgGDw39PTQ2dnZ/iro6OD1tZW2tvbcTgceDwzq9JmmzGT64IE32NmfGiaxjztGjdU/oDpRo1gXsr0fD8ev9Y56cFATI4MgNQjGCz4t6ChDTH4qliunyRVbyMhIYH67kTq4kppc9++803EQZ5+HSse8jLtNLU6qTavpMN9uxqYrikMdfuso7HgYYl+jsy4LhYvXozH46G8vByz2czy5cspLS1F13UaGxtpamqioaGR8nonTq9OnOYmKzFATk42breba/VOTvtHvxMKRcydnZ289957nDt3Drvdzv3338/KlSsxmUyjnmM4pys6eOrfy2lyDP0bp2NgTKEdAGPFzsxL+Npr0DSNOXPmUFxcTHFxMTk5OREPhQYCARwORzhY6OrqCgcN7e3tdHV1DRph6JtdP5UoBScC98syWAJA3/dzLG3ZPrHSbBb2f2/lpE4VxGwwAJJQeFvwh//ihhTevthFU59R8iTNSYnpMn/yuW2cPHmS69evo2ka3/zmNzl16SZvHPkgXJzIYgneNYc+NDMyMlm4agtJaTlkJsfR6fKH645H9tcdPKrUcoYU1QxAQkICycnJ+P1+2tvbMYzgGuW0tDSys7P7fdlstnB7fvrTn3GkfTldPuuQ1w7VrX/2z5b1e4O0trby7rvvcuHCBdLS0tiyZQvLli0b9CYaaZc1pRQVFRW89dZbNDXdImveCoqXrGJeXhqghV8zf3YCV290cf5qDR9X3uJ8PXSp6K0LjnV9/826urqorKykoqKCyspKvF4vSUlJFBUVUVxcTFFREYmJd1eu2ePxDAoWBn71/bgLzdXD7UJDod/XaJrZUwR9RdLZT9/pgmf+dAklubbRDxwnMR0MwExNKOz/JhhYWMiJHa+y9qtAGMpkhv7/H5KQEBxi6+npGXS1hIQEioqKyM7O4Uy9md9d9vWbT9cI9JYRHToJLEnrZo1+NNwOCH64Wq1W8vPzWbZsGQsXLiQubvhkqLq6Ov7+F6/ysbEONG1A8KfQNY0fPbZo2CpdjY2NvPPOO1y7do2srCy2bdvGggUL0DRtyN+hUNWv2fEO3nrrLa5fv05BQQE7duxgzpw5w7YzpLW1lRde2Msb7WvxM95JXlOfpoUyowf/mwUCAerq6qioqKCiooKmpiY0TSMvLy88apCbmzvud0VKKZxO55DBQuj77u7ufq8JJvNZ0HUdpVS/QkUT9dHZamRy3lgzIeeevqbfKMETu/P5gw3Zk3a9KREM/O8D16ltmVlzhiFWulmgXSDN1EZSUhIpKSnU19djsVgwDINly5Zx+fJlvN5g1TCLxUJmZib19fXhcyQmJlJYWIjf7+fWrVt0dHQAhDPyYejqhvG4yOImdZSM2s7v77KyZnEuaWlpGIZBTU0N5eXlVFRU0NraislkoqCggOLiYkpKSkhPTx/0YX/48GEOHa+g2b6RG223h3wTcfCdTxexfXXhqO24ceMGb7/9NtXV1eTl5ZG96D5+fLhr0GjH7emVUyzMNrF9+3ZKSkoi6oBu3rzJiy++iGEYNLiS+FitY7p9EN2twqwEnthdEFGJ1YGjBh6Ph8TExPCoQXFx8V2PGkTK5/PR1dU1bLDQ2dnZbzpC13USExOJjw9WBFRKEQgE8Pl8eL1evF7vmEcbuozkGVQvZHzE45p2G4E9uTufRyUYCOq7XWbMNnLCharnXSPH2sWiuSlUVVUOe3RcXBxer7dfR5+UlMRnPvMZ5s2bx969e/F6vaxYsYJ3332Xnp4enKZsTrlX9J7hzjJ2//sfL2DDgllDPtfW1hYODKqrqwkEAsyaNYuSkhJKSkooLCzEYrHg8/n42c9+htWawP0PfZ62bj+piSYOvvwLiorm86lPfWrUdoRUVVVx5MjbvFo7b4TVFYrZdo0X/3J1xLkG5eXlvPzyy1gsFtxuNxaLhWu+hVz3jT6aMJ2YdNi6LI28jGDdhweWpFJ9yz2otsNYBQIBbty4ER41aGwMViUcOGoQrR3fQsmOIwULDoej36hBfHw8NpuNhIQE4uLi0HU9HDC43e7wV+j9KsHA2K3W3wcN2oxM6lQ+/ruubRJ9f/FIPp9aJ8FABAmE03euaCRJmpMF5iusLkohNzeX3//+9yxYsIDKykoCgcCQrwlNG6SkpNDZ2UlpaSm5ubmcPHmSW7eaRylhHNnw2//4fA7rl42+O5/P56O6upqKigrKy8vp6OjAbDZTWFhISUkJSUlJ7N+/n507d7Jp0yYAjh07xpEjR/iLv/gL7PbIV5lcq3fy9Z9cGvW4SJfxnDt3jt/85jfYbDZcLld4CPlmpzbtP7zTkswsn2cnOcHMikI7W5YNX/RpPDkcjn6jBm63OzytFQoOkpJiJ9FOKcW1+m5u3OokDjcppu5woNA3YHC7b09ZaZqG3W7HbreTlJREvTuZA1WZUfwpppJg9dW1pvcBqDfmUj5N9mbJSrbw0l9NXhJhzAYD5fXd/MlPLka7GTHo9l4EqVorixcvZvbs2bz77rvh9fUejwdd1/nSl76Ey+Wira2Ny5cvc/PmzUFnu9tkJY1gud9V2u/ZtGkjDzzwwIi5Af1+EqVobW2lvLyc8vJyampqMAwDq9WKx+Nhz549LF++nEAgwI9//GPWrFnDjh07Im7b8Wsd/PW/XBv1uJFGNULt/OCDDzhy5AjJyck4nU6sVismkwmn00lLIGPazfGm2sz8x/tzQYN78m0U5yRFfZtVwzD6jRo0NDQAkJubGw4M8vLyojZqMFJuysDpEo/H0y84aG5u5saNG7S1tVHRnUG5sWyymz9FKbKpxa45qFXzp91UwWQmEcZsMBDpB3lakk5b9/hnAJtxk0wHbUzeME3kgtHwA/az9PS4wo+mp6fT2toaHgnYvXs3a9aswe/3c+zYMd55551BZ3JZ8znpvPMSxroG//OPS3A1nOfo0aMkJSXx0EMPsXDhwjGfy+PxUF1dzdWrV/n4448xDAOz2cz8+fPx+XzU19fzne98J+JgI9KAcuDIQN+VB2lJZo4d+5CzF8pJT7agu5pITAwOQXq9XpRStHkTplX2t64NnfgXa5xOZ79Rg56eHqxWa79RA5ttcj5Ih5vSHGpHOr/fT3l5OVevXuXGjRv9Vt20G+mUGWv7vHoo0y9Z7s5N7xHiyUwijNlgINIP8lX6+9htNrLmFHHPwkJePuXmwo3uUV83NIM0blGoV4Sr3J3lARyBBGLxl23n/G466z4mwejAYrmdI5CcnExiYiKNjY3k5eXR0NAwZBJTUVERK+99mCeerbij62cmm/nBZ4rDnUZbWxtvvPEGFRUVLFy4kIceeoiUlDtbeldTU8Pzzz9PcXExPp+PmpoaIJj/sGLFCoqLi8nPzx9xrj+SqaYknPzpBg/3378Zu90+6uqVRL2HZdZyMi0dKKVwuVwoBResD9PaHZNvpTF7fMcc/uiB3Gg3Y0wMw+DmzZvhUYNQAm1OTk44MJgzZ86EjBpE8nuWYvawzvIBPp93yCOC52FG7joqhjeZSYQxGwyM9gbTNCjIsPKfH7Fz+fJlLl++jNPpxG6302lfyft1tt4COsPT8ZJFA3F4SdKdZNIY3jktNTWV9vZ2GlU+VwKTtfnPnUX8CThY0Lv0cNGiReE77IF0XWf79h3MylvMhfJayk4eJS3ey1nup6EjMOYkzbXmD9m2fiGbNm0iOTkYECiluHTpEocOHcLj8bBlyxbWr19/R8WA3nzzTU6fPs3Xv/51bDYb+/bto7GxEYvFQnd3N3FxceG7wJKSkiHzCUK1KgzV/+9WAxSKtdZzpOptGIZBZslGfnXBFkHCqmKRtYpsf3Dkavny5eQv38ZfPX+V6XDXFo1SqOOtu7s7PGpQUVGBy9WDLy6D1Nn5LJqfx/2ri7Hb7eERoHSbhblpJjweDz09PVy76eRWp5sEk4/0eC8eTzDJz+Px9Ev66+np4Va3mWM9a0dt02iltKW+wECT9V6K3ffsM3+6lJLcyXkvxmwwAMMXHRpqDbNSirq6Oi5dusSlS5fo7HTgiC8kIS2fe0qy+cz9xVxv9nKh1kFDYyOVH72NXQuu0R9KWloabW1t1ATmU63GPuR95+7kFzP4l7M6/iPsgaZhj2o30rluWk6nzxp+LMXiId1fRbVaBAOqG450PZvezWrtKCZTMHpauXIl9913H6mpqUBwyP/tt9/m1KlTZGVlsXv3bubOHT3BsK9gMaKfkpSUxGOPPUZTUxPPPPMMn/nMZ0hPTw+vULhx4wZKKbKzs8OBQd+7wJ/96ggHLuk4jdtvqsKsBL5yfxqXPnyNlpYWioqKefFyFt0qiUgLnSzXTzE/LcATTzzBsWPHeP53VVQaCyN4fWzSgIKswYWdpgKl1KCOOtR5n6/r4dWyAK19KnLG40JDw90n6zwRB9naDRrVnH5LbBNxsMB0mVS9rd/1QiKtC3CPfpp0vXnY5++svkDsdmR3bzr/bKObPSuOfd9ZIQmEIUMN2462hlkpxc2bN/sEBp0kJiayaNEili5dSmFhIU6nk5/85Cf9snqDrwUnySizDWvKbI7dms3U+IVUxNPDBtN74QAnMTERwzBwM1uy+QAAIABJREFUu90jzEUqNGCefpVWvZBOv7XfWYN30P2/B8UK0ynSzR3Ex8fjcrnCeQrLly9n8+bNZGQEa6vX19dz8OBB6uvrWbVqFTt27AgXQIpEbW0tzz33HLt27WLjxo3s3bsXj8fD448/Hn6TuFyuAXeBrn5zx0eOHGHx4iUsKL1/0NI3n8/HgQMH+KDs+pjvykx4+eUTC3j99depqanhvvvuwz63lB/+ugqHO/qV7MYiNLcdrVwBwzDweDxDdugDv3p6eujp6cHlcoU7/NAU2UAj/d4P/9jQj6+ynCWjd3pI0zQMw0ApRWcgKaJS2jIyICKlAU99ZXLfizEfDMDw+9NH+tr6+nouXbrE5cuXaW9vJyEhgUWLFrFo0SKOHz8eHlIfqvDO2KLT8YxkI9kPfrB1lg/Zs3UV9957L7quU1NTw3PPPc/H5u20eyzDnEuRSDcb4j7EYSSxZOV67l27nC6Xn6dfHzoQK8nUOH36NKdPn8blcpGQkEBPT084KFi0aBFbtmxh9uzZGIbB6dOnefvttzGZTOzatYvly5dH/G946NAhzpw5wze+8Q3a2tr45S9/yWOPPUZBweCNjQzDoL6+Prx0MTR3nJGRwZIlSygpKRm0Tl0pxb8cOMVzJyP+aw7LN9VSOusGjz76aLg9pys6+O4Loye/Ro/CrOv4+8yjZSYZfP8PF9/xPuqhzjzSTtzlctHT04PH48Hn8w27LPZuBOfgN+MiktGe8KuGOfb2EraBv7ajz/UP/9qxnWcizOy771j16PosntxTOKnXnBLBwHhRStHY2BgeMWhra8NqtZKens6FOncEWbyjXuEuXjs+irWLzDXXYTabsVqt+Hw+OvyJHHevH/W1fe9cTCYT8+bNY+XKlVhmFdDW7R8yEPP7/Vy6dIkTJ05QX18fLnoUCgqKiorYunUreXl5OBwODh8+zIULFygsLGT37t3hEYSR9J0u+PKXv8zPfvYz0tLS+MIXvjDqa1955RUqKiooLCykqqoKt9tNYmJiOKksVBP/7RNX+G8HukY930AaigN/fU+4Ql7sb7ClwlNsKYlmWhw+6ioucvHkW6xfv45169YN2amHOvDu7m66u7vDd+Rerxe/3z/uNf01TcNkMoWXy4b2EQh96bqOruv9fhdD1f9CJYPbPFaOOleNa7uGu7sfbZvuFb0biY1m+POImWQycwVCZlQw0JdSilu3bnHp0iUuXrzEG02L7igiz+QmiZqLRM1JhmqkUc2limICWEd/ceSt7f1z9LYV6xeZo9f2eyzSucjvfCKVWaqRsrIyWltb+z1ns9mYO3cuixcvpqCgALvdPuiD+ObNm5w4cYKLFy+Gg4HQr9fcuXPZvn07BQUFVFZWcvDgQTo7O7n33nvZvHkzFouFkYRWF+zatQur1cpvf/tbvvWtb40YTAQCAZ566ilWr17Njh07wuvUQ7kGjY2NaJrGrFmzaGtr54y6H6eRyFh/B/72c/PZuiwdp9PJyYs3+OHB4YeC+xo4BQOQabewaVEKna4AZ6u66Oq5fcesa4yaFDua0Px3foov3JGPd519TdPCHbXJZAp/31fodyP0FRpyD/05Hiaixn9o3l/Xdcxmc/jn0zSNVn8qF3rm98tNsZtcrLBdJzOuK/x+6fv3EXqsb2DT5LFzpj2vX27PZN5oWOlmltZGh0rHPc3W7U8FKYlmXvlB6aTn7czYYKCvuylwFLpTsNvtdHd3YxgGgQCcUFvwYmV8pw1GP9eG+BMkGO39PlAjnYtcbXqfZN1JYmIiqamp4Rrtdrs9fBcYEh8fT25uLoWFheTl5ZGbmxvOBXA4HP2mEHRdD985zp49m507dzJ37lw++OADPvjgA5KTk3n44YcpKioadmdBuD1d8LWvfY29e/eyaNEi9uzZM+zPc+3aNfbt28c3vvENZs+ePej5zs5O3nzzTS5fvgzc+V3ZyrQWcv0XcblcY+qACrMS+LOH80lJNNPU4cYep8hJvp0I193dTXlDN01tPeh+Bx1OH79ryA9vZn3b8EPbAPna/8/ee4dHdad3358zRTOjrlEvqEsIdQESGEQxtsHG2MbGBnsxYMe7Xu9udjebPPvsZp8kb55cyZtNNnmfJJtNcPZZm+aCjSE24IJtjBoqoIYkJKHeURnV0WhGU877h5hBQhUVJLA+16Xrgpkzv3POzDnnd//u8r2rcaYPheR2Y6vpmKgEb/Q1tZCPDevkal39y2QyZDIZcrkcuVyOnZ0dCoUClUqFUqlEpVKhUChQKBTY2dmNUoaEv/xo8oS92fDLHUr0mhEFTa1Wi52dHSEhIbbEVWdn51mHNEdjsVj4n3/zLzi4+nKzZ4gbltmo6oko0GOYgTRvtLQIqWjCTtBjtNhxTZyrl3SZ2fJPhyJZEz65CNpCIbvne1yCaLTG6Tcax0gc0JGRVaDBYMBisYzkHYirGJ53bWzrTTn5g1/BEApTN6Jwu0eBSqXCw0HBjU7dFHoJt89FFLG5gq0MDIyc4+iWr9byxdEljGq12mYYhIeHs379eqqqqsjJyaGtrQ1BEGhvb+fEiROo1WoeffRRvv/97/PZZ5/x78c/p1GeSI/htqDQnept27Zt48aNG5w7d47k5GQyMzN5+OGHJ5WjLS0txdPTc0JDQBRFsrOzKS8vx87ODovFgpupm7V2RZTqV97VikitMrE6YjVqtZpekwMln/RO+5l4u1I8+9o4/87drcrjJe3j8lpUaFHTSRc+YxTY7NHaul3eLVO5/UdP1NZrYvSEbZ2srRO2vb29beK+c8IePcHL5XLbSns+CBZFgtIH5iVkY23HvH1jLIIQbws5WpNWP/30U0RRxNPT0xaCCvQMnPW59Pb24iQM4KVQIZF0oEJ3l/lMI2f8yIpuLjU5T5vP4C1px91djU5n4VL/KutZz+rYl5k9T631XBRDAJY9A8BsPAMTxwFnph42VybPgo4X8lDKLJil9sjFIRSmHhwdR2RkO4adydPFT/rZBEkeHvK+kVduuWvniiAIeHt74+fnh729PW1tbdTUjG2y5OTkxIrYh/nPTOOtSXGsFsCd6m3WcMHDDz9MZmYmGzZsYOvWreP2bTQa+c1vfkNqaiqbN28e857JZOLjjz+mtLR0zMPa2gmyT+rHlcGZaEuICFjYJLlg06eYr2SyKfc6SRtr6+tGlCiEYRyFAURx/O8okUhYsWKFbXK2t7fHwcHBNnG3traSmZlJWFgYjz/+OEql0jZpL5bU72yZrDx5IiYK28DU7Zit6PV6amtrbSEorVaLXC4f4zVwdZ3ZQ14URc5ezOer9Lwxv69MJkfi5E+bZhADyim9BSphiEjhGm6SbrQyH67qE2+d36j769Z5/fnTXjiZ22loaKC4povLugdLWvt+4fXH/Hlps/+i7X/ZGGDk5tv/z/m09ZmZSbMeewZsK67bsfF7mQk89ngcBC2hDt3UaN3GrBycpDq2BvbjKe/DYDDQ2GdHYf+KMTHN0ecymtEP/flODrN2KITpJ09BgEAPJW//OM42cX/22WcUFBSwatUqampq+OlPfzpS4tXXR3d3N729vTaJWh8fH1sr2eHhYcxm87SZ6zMv8RIJFSoIlNaPeXUmyWRqac+41bV1hS2Xy20raIVCgVKpxMHBwfZnb2+PUqkct8K+c1V9+vRpSkpKxh21q6srP/3pT6c8s/Lyck6dOkVkZCR79uxBJrt/nYgTlSd7u9qN5A313fYKBnup2JHkzucFXXdVynwnoijS3t5u8xo0NTVhsVjw8PCweQ2CgoIm/E4nOtaJ7lGJRILG5DZB2/EhYl06eCzOBalUQlZWFm5ubgzKfKk0rZz2vLIre/jViaoZned88d3H/Pm/X47vm3In/pJ6vGmmRrqWPqOCB8VzIQjwm4OLExoYcxzLxsCIxvwv/v73FJmsFvH4B3ikUIpCMNgs9dHyv3Cva4RHjsmHZvylDRhFO65NUUu9RlGIh6z3VixWwoDoiEFUoJIYcZYOTrhCtV4Wo5O6FiLZbKbf21pZFk7CwILGqq3MzLATWaNuZ43PoC1ubV1hOzo6Ut8r48Tlfpq7x042dzOpzJXf/va3dHePDxHMxBiAkZyLDz74gJCQEPbu3TttkudSZqLyZGDC+P5cSpknQq/XU1dXZ/MaDAwMIJfLCQ4OtnkN3NzcpmjZbjUir+AmGUnstbYoF0Uwq7zo04l4uij42ev7cHR0RBRF3nzzTSwWC52dnXz3u9/Fz89v2vO6lw3irKGXP/wohj/699Ipwznerna8/cOVVFVV8WVeLecafK2j3JNjXSgma2S1GCwbA8Af/vCHkYYhE+gMTLZyvhM773gutNxLF48IiCRxmQoSGFpAt/RCMl/qbaOTzqTSEVlZe3t71Go1KpUKmUxGVVXVpOI0ViIiIti4cSNdJteRBzMTu5d/cyiStdNY8vM9qdwNJpOJv/u7v5vwvZkaAwC1tbW89957rFixghdffHHGTaKWmRhrFZPVa9DY2IjFYkGtdidtYDXdQ7JJ+xtY72O5fKR5V09PDw4ODiQnJ/Phhx+yfv16duzYAUB1dTXvvPOOrd3znj17ZnR8RqORl35zBc2QlMm9pCJwN+Gi8aHNO0MvU4VzJhLgya3U8I+na+nW3b/T158+HcSutV5LRu3z/vX9zRP5+fk0NzcD4CbRkCxkThiPvRPrCgJGyuZ8wkK40DJ5E5L5RwAECkmddjsdTmhxwomZlbzdS+wEwwy30xMWFsbOnTtRq9XASLggPz8fs9nMvn37bJ0SCwoKOHfuHG+88QZOTk60trZy5MiRMYbA6N8PRvoLbNiwwZZsGMRIrsKdLlsX2RB/dSBpRpa8IAiE+zoQ7jvtpvNOZ+f8ZNGHhoby8ssv8+677/LOO+/wne98B4VCMS9jfxux5tF4e3uzceNGWyJuVlEdmo6pHscj9/Ejz7zMhvhgpFIp7777LhKJhJs3bwIQEBBg2zorKwsnJyd0Oh3btm2b0bF1dHTw0UcfEWgS6RbWAHdOzCISQeD17YEc/qJpyrGef8iLNeGu1FcWk321hHaHdbQP3B4syHOsl2x1qPOE99tk3rR1K9059Us1Z690cCKthc7+qY38pYSXi5xfPBe2JLwBo/lWGwM9PT28fy4dg8VzzMTvKA6gFQSGRSXaW/+/naDlzLCoICLYG31XHYODgxjtPDmTVg6E3hp5aVh6oxkWlTCFFOpi4Ug/9gxMm3DnyAANDUP87ne/Y/PmzWzcuJFHHnmEqqoqdDodly9fthkDVlEjJycnKisrOXny5LjwgiiKSCQSVq8eUWucKLlrTZgLb/84jpqbOjr7h/n0zHtI9Z14ykOBpXUj34l1gpgPgoKCOHDgACdOnOD48ePs37//riSll5kchUJBVFQUvRIfKJtetVLu4D6m6ZcgCLS0jMTbfXxGuts1NzdTX1+PTCYjOTnZ1i9kMkRR5OrVq1y4cAE3Nzd+8f09NPTK+aczN+gcvO0BCPZU8eNbLu1wX3v+9sNqegfH5t9IJfC9x1awL9WXwsJCKgsu8fyj20hNXTutl2z0/TYTb5ogCDyd4s1TyV6cyW3nt+cbJ9xuIfnJzgD+84sWjOaZeSj2rPfiRzuDlow3YDTfWmPganUvf3OimIFR8erJGpXI0KNkCB0OWBhxk5bUgh0eiICxUgWML19bStgJE7fkvZcolUokEgk6nQ4HBwciIyNxdHTEsbaf8w2OjC+VGsl9TnRuQNBhW9lfunSJoqIinn76aZ5++mmOHj1KQ0MjWcV1GFFSUqfhxV2byc3N5fPPPx93HFKplA0bNrB+/XqbcuBk3F7dO6BLXklWVhdpaWm8/PLL8/a9LAQ3b94co+8wVwICAjh06BDHjx/n2LFjHDhwYNrvbpmZ4+44s3wMD6fb21l7JGg0GgRBsE36WVlZKBQKBEEYV0lzJzqdjk8++YTKykrWrl3LY489RkVFBVlff02ccZCQNRsIiojDV20/ZmJeE+bC6V+spqpVyzelPegMZhKCndgaq0YikVBdXc3Zs2dZs2YNqampM/aSzcabJggCcYHjO5ZOhK+bHW09w6P+r6CtZ2beyTtxVErYvd6XYbMwradEJoHv3jKSlirfSmPAlqhzhxaADkdqxahx25tQop1AUXB+RYUWirF6CPcSBwcHfH19USgU1NfXMzg4SGBgIMnJyaxatcq2wtm2DR6u7uNfPqmlued2wp21Tt5ON5KvMboKobe3l2PHjo0kX4Uk80WVgrRTVtf4Rmo+0xNoLMBtVGhTKpWydetWUlJSZhX7TkxMJDMzk5qaGtra2vD1Xbo3dnt7+7xXgfj6+nLo0CGOHTvG0aNHOXDgAI6OjvO6j28r4b72BHkqp27Z7qmyJT7CbWNAq9Xi6OiIRCKhq6uLiooKBEGYtilYbW0tZ86cwWw28+KLL+Lg4MDx48dpbm5m1apVPProo7aQ3EQIgkCkvxOR/mMn4ra2Nj788EMiIiLYuXPnPVkFz/T7+8OPYqhtH7J5HkK9VdMmL07G/34pEkEQ2JfqiyiKvPX1WA+BVIDEUGd2rvFga4x6yZflfuuMAYvFwj98VDWBittE/5+OpW8IAERIrk+a92Db8i7zSOVyua3CwIpKpcLT05OBgQFbQ6ja2lqkUilxcXGkpKRMKAAEsCbchWM/S7S5CN0d5agVehob1dTW1lJXVzdGCMlKXmU3xZawca/3GGT0kEICV/C06+ORRx4hOTl5jIv1bnF3dycgIID29nbS09PZt2/frMdaSERRpK2tbcr3Z4u3tzevvPIKx44d48iRIxw8eBBn56UdMrkfEASBn+wKHkmiEyfykAn8+MmgcfestVTW3d0dgMuXLyOVSnF0dCQlJYWJMJvNXLx4kcuXLxMSEsKjjz5Kbm4u165dw9vbm4MHDxISEjKr8+jt7eXdd9/Fw8ODPXv23LMJcPT3BxO3vP/xk0FIJJJxngfb58ZVcUxMkKeCn+wKGRPzf3GTH3s3+nCprJvGLj2BHsr7wgAYzbeqmuBqdS+//qgWjfb+STaZC0p0xCgqcDK3z3oMiUSCk5OTLUNfp9PZJhM7Ozt8fHxYtWoVCQkJSKVSSkpKyMvLo6OjAwAXFxf27ds3L6vo/v5+6uvruX79Oo2Njeh0Q9MK/Hg7Crz787XzdlNevXqV8+fPA/CDH/wALy+veRl3Punt7eVf//VfJ33fxcWFP/mTP5nTPrq7uzl27BgSiYSDBw/OWFBnmanJu9HN35woYlC87XGxZ4Af7PBnV+pYr+WxY8cAqKurY+PGjaSkpPAv//IviKLIs88+S3x8PHei0Wj46KOPaG9vZ+vWrZjNZi5fvoxcLmfbtm0kJSXN+l4ZGhrirbfewmw289prr02qDLqQzKbl/WSfuxN3Jym/PhB1T6uC7iXfGs/A+xmtvHmhebEP454SLrmOk3l8VvmdmfRWpFIparUaDw8PjEajTcCnr29EmVAmk+Hj40NkZCSrV6+2rQg1Gg1paWkUFRUxPDxMZGQk27dvx87OjjNnznDkyBGeeOIJEhIS5nQTOTs7Ex8fb3vIldRqSHu7ZopPCLRrobZ9iHDf+XkwxcbG8vnnnyOXy8nIyJhxyda9ZD6TBydDrVbbPARvv/02hw4dmtKlvMzM8LPXsVaSgRYn1N7BvPDMDrIunKK2oAzjurAxWg+iKDI0NARAcHAw2dnZwIj3Ji4ubsy4oihSVFTEZ599hpOTE1u3buXq1atotVrWrVvH5s2bUSpn31zNZDLx/vvvMzg4uGiGANx9EuJEn+vsH6Zfa+CjnA40WhNhPir+9qWwB76s9oE0BkRRHNPwpldrvGUILH6L4XuJSmK0iZOMRhRFpFIp7u7urFixAm9vbzQaDY2NjXR2dtrK0iQSCe7u7oSFhbFmzZoxHQItFguVlZXk5eVRW1uLvb09a9euZe3atWNWidbeAx9//DHV1dXs2rVrTg+d0QyaZuby7xowzlt5n1KpJCoqioaGBkpLS9m6davNRbtUaG9vn9fkwclwdXUdYxAcPHgQT0/PBd3ng05zczMymRRnixZ/+wEi/Bxw2/Ukhw8fJiMjY0yZoCiK6HQ6ANzc3Lh69SqiKLJjx44xk59er+fcuXOUlZURGRnJ4OAgFy9eZOXKlTz22GNzvn5FUeTMmTO0trZy6NChRb8fZlvSOzpZGGDHGp8FOLqlywNnDEzk7pHavF7fHkMAoMwUS4TlOu6yXjw9PfH09KSyshKj0UhgYCBms5mSkhLy8/MBbO18g4ODWbNmDf7+40WUBgcHKSws5OrVq/T19eHv78/u3buJiYmZUF5VoVCwe/duwsPDOXfuHIcPH+bZZ58lKChozuc3mwzs+SAhIYGysjJUKhWZmZk888wz8zr+XLl58yZSqXTBjQEY8da88sorHD9+3JZDMFleyDLT09zcjJ+fH83Nzbbfz8PDg9TUVDIyMoiLi7MZXKI40uFSKpVSWlqKyWQiJCRkTLy/sbGR06dPo9frCQwM5MaNG3h5eXHgwAFCQ0MnPIa75cKFC1y/fp19+/aN0TpY5v7igTIGRst5jsa88M/EJckQTpSI6/h/94ahGGqipKTEFg+0dht0cnIiIiKCxMREQkNDJ40XtrS0kJeXR1nZiFRpXFwcycnJ+Pn5zehYYmNjCQgI4MyZMxw9epTU1FS2bNkyp4S+6TKIrZUU9WU5hHhtndO+RhMWFoajoyNqtZri4mK2bNmypGLmC1FJMBWOjo62ssOjR4/y8ssvz/i6WGYszc3NREdH09LSMuY3TE1NpbS0lHPnzvHKK6/YQn1GoxEnJycuX74MwOOPPw6MeO7S0tLIyMjA2dkZs9lMV1cXTz75JKtXr563HJrs7GxycnJ44okniIoaX4m1zP2D9K//+q//erEPYj4QRZFfnbhB36Bpzu1KHyRERC5fa2Tgxpf09vagUChYsWIF/f39iKLIk08+ycMPP4xarR4XVzMajZSUlHD27FnS0tIwGAxs3LiR5557jri4OJycZlbba0WpVJKQkIBEIiE9PZ2amhqCg4NnLWAjCAKBniq+LO6awOkzchVES4robK6ktraW0NDQeQlRWMu5amtrkclkDA0NERkZOedx5wODwcBXX301ZcWAUqlk/fr187pfuVxObGwsVVVVZGdnExQUhIuLy7zu40FnYGCAS5cu8dBDD1FeXo6DgwNr1owoAUokEjw9PUlPT8fFxQVfX18KCgro7+/HwcEBrVZLdHQ0KSkptoz+kpISFAoFOp2OlJQU9u7dS2Dg7Nsq30lZWRlnz55lw4YN0+oZLLP0eWA8A9VtuikzQR88Zpr/MCJjmrRpJ09sSrAlwfT39/Pv//7vnDlzBplMRnR0tO0TPT09XL16lcLCQoaGhggPD+ell14iPDx8zisKiUTC5s2bCQ0N5fTp07z55pvs3LmT+Pj4WT2kppIxDTAUIBsc0Sjo6Ojg8OHDPPXUU8TEzKQ98dQkJCSQnZ1NfHw8RUVFbN68eUmU2LW3T185slAFREqlkgMHDvDuu+9y/PhxvvOd7xAcHLwg+3oQscqiBwQETJjkGxISQnx8PF9++SURERG0D0rRWDzR9RixR+Dxxx+ntLSUTz75xOZVCAoKYvv27fMex29oaODMmTPExsby6KOPzuvYyywOD4xnoKpNx9fXNIt9GPeQu0uGfGZTJEFetzN8FQoFMTExFBQUUFpaio+PD729vXzxxRd8+umndHZ2kpiYyLPPPsu6detwd3ef13IaZ2dnEhMT6e3tJS0tja6uLkJDQ2fVKtdPreSZFC9SV7mxIcqNF1N9eHVbAKnJMeTm5mKxWDCbzTg7O1NQUIBWqyUkJGROYQNHR0cqKyuRSqVotVqMRiPh4eGzHm++qKyspKZmqgqLkd/+oYceWpD9y2QyYmJiaGxsJDMzE39//+UqgxlSVFREX18fW7duJT09HZVKxdq1Y5t4BQYG8ll2FW/lWCjr96FD9KPFsoJ+uyA0TeUU5ly81fhIzZ49e9i8efO8K0V2dnZy/Phx/P39eeGFF+Yt/LbM4vLAGAMFNX3k3Ohb7MO4B4gEShtIEHLwkLRjzwA9TF/r/mKqD2qnsaUxKpWK4OBgiouLKS0tpaSkBLlczsMPP8zu3buJjIxcUA16mUxGVFQUHh4e5OTkUFRUhK+v76zi74IgoHayI8BdidrJDkEQkEqlrFy5kqtXrwLYkqiqq6u5fv06QUFBcyqBMplMXL16leTkZK5evcrq1asXvfwoPz+f3t7eKbszLqQxACMlqtHR0bS2tpKRkYGPj8+iZ5jfD6Snp+Ph4UFMTAwZGRkolUqSk5PHbFPSNMTRfDlDJgmjFwNDJgmVPQ6oZf08s2MTu3fvXpDvfGBggKNHj2Jvb8+BAwcW/XpfZv64f+SRpkAURT7KXvja6sXGDj3xkjxChXICAwMwCwpuEjzlZwRhxGU+WsYURjLOP/nkE44fPz5mxZ+amsrq1avvae/62NhY3njjDVxcXDh69CjffPPNvCXAeXl58dxzz9n+39jYaIvv//73v7eVY80Gay23vb09EonEVue9mLS3ty8JQRS5XM7evXuJiIjg5MmTlJeXL/YhLWnMZjOtra22bPyJwgSiKPLb8w230mEmVk/tct5ASkrKgijfGQwG3nvvPSwWC/v375+3EuFllgYPhDFQ3aajsWt2zSbuB1zlOn62VcIH/yOBP/2jp1EoFJQ0DlFsWsugOJULcORh8mi8OzU3dZhMJkpKSnjrrbd48803qa6uZtOmTfzsZz9j7969AJw6dYpr167dg7Mai6urK4cOHWLr1q1kZGTw9ttv09PTMy9jWysfrFy/fh0/Pz8SEhI4f/48p06dQq+/+3wTBwcHwsPDuX79OikpKVy5csVW970YWCwW2tvbMZlMS0IGVSaT8fzzzxMdHc2HH359iRwEAAAgAElEQVRISUkJMDKpVbUOknOjl+q2wQXLYbifsP5uo42BOw1ia17U5N+WQGOXgZqb838Nms1mTp06hUajYf/+/cvJoQ8gD0SY4EHPF4gml56mUnJzc6mvryckJJRLHUEYRDnT5w0IFNT2c/ZKJ2cyqqm/noe/hz3bt29n165dBAcHY2dnh6enJyqViurqaioqKnBycrrn5WGCIBAUFERYWBjFxcVkZ2fj7OyMt7f3nFe74eHhVFdXMzAw0rCpvb0db29vNm3aRG5uLkVFRfj7+9/1Q04qlZKbm8u2bdsoKSlBEIRZ67rPla6uLvLy8rBYLFPqDNjZ2S1omGA0EolkpEVvby+XLl2i3eDEP33axYm0Nr6+puHslU4ulXYT6KnC101xT45pKVJeXk5tbS1PPPEEEomErKws5HI569ats20z0+fchig3Atznb9UuiiJnz56loqKCl156iRUrVszb2MssHRZ/+TAPzFR85n7FeKtjoiiK9Pb2kl3SwIDZnpkYAqPRWuwpEdcRs/EZVq1aNW71uG7dOlvJ2blz5xbN7R0QEMAbb7xBVFQU//3f/20TTZkLgiBw6NChMclURUVFVFZW8v3vfx9nZ2fefvttMjIy7ipEERkZiVKp5MaNG6xZs4bc3Nw5H+tsscoQL7WVtkQi4ZlnnsEjfD2HM03jqn4aO/X8/EgF+TXfhpyfiWlubsbX19eWQDuRZ2CxRLasUuNPP/30vAkVLbP0eCCMgTAfFdLFD5MuGHaC3rYylkgkSBSzLWETEIHfnm+YdMLYvn07q1atQhAELly4QFpa2qJMLgqFgmeffZbnnnuOqqoqDh8+TGNj45zGlMvlvPbaa2OMoGvXrvH111/zyiuvkJqaysWLFzlx4oTNgzAdMpmM2NhYSkpKWL9+PSaTiby8vDkd52y5efOmzdgxm80ASyJ/wMoVzcT6sOKtv6muywed5ubmMep9E+UMhPva4+UIk/XWmyw/aC4UFhaSlpbGtm3bSEhImLdxl1l6PBDGQHWbDvMD+gxZ4W7H9/c/RXR0tM31K7XMPiYoitDQqZ80rigIAs899xwBAQHI5XIuXbo0rYjNQhIXF2dLLjxy5MickwvVajUvvPACgM0oKC0t5aOPPmLbtm0cPHiQzs5ODh8+TFVV1YzGTExMZGBggK6uLpKSksjJyWF4eHjWxzhb2tvbbUldU/1ei/Fb3tYBmdg4me66fJAZHBykp6dnWmOgoqICX13urW9w7Huj2/TOlwFYXV3N2bNnWbNmDampqfMy5jJLl/veGMiv7uPnb5cu9mEsACPrJXVPBhcuXMBsNhMdHY2fnx+ODGDPADPrvj0xXQPGSd+TyWS8+OKLODs7Y29vz+XLl/n0008XzSCwJhdu2bJlXpILo6Ki2LhxIxaLxTZ5Xr9+nQ8++ICQkBDeeOMN/P39effdd/niiy9sq+zJ8PPzw93dneLiYlJTUzEYDLZyxnvJZN0Kl0IyoUY7+fU2mqmuyweV0WJDVu40Bpqamjh9+jQbY32Il1zBHu2YMYI8Vfzmlagp2/TeDW1tbXzwwQdERESwc+fOJeVhWmZhWPynxAy4M/vYYrFQ1TrI0a+b+PnRCvoND96FqmCIBEkeamkPXV1dVFRUUFJSQmtrK4IAa91aJlwhzBQH2eR16DBSLrd//37gdke0jz/++J5q3o9GIpGwZcsWXn31VbRaLYcPH55T1cMjjzxCcHAwer3epmtQXl7O+++/j729PS+99BLbt28nLy+Pt956i+7u7knHEgSBhIQEysvLbZLLly9fxmi8dxObVqtlcHAQg2GYAdEZjcWTAdEJi0VcEg/yxYp33w80Nzfj6Og4Jnl1dM5AV1cX7733Hv7+/gQEBOAm0fBCWDO//2EMf38gkt//MIa3/jh23gyB3t5e3nnnHTw9PdmzZ8+SMCaXWXiWfDVBfk0fvzpxY0z28XsZbXyc10FRvZYR59jiP+xmxnSqgSIyDCQIOUTa1eCqtIwRj/Hw8CAoKAi1Wo2+txWVsYMB0QUjd5OFLeIgDKIr/xiDQY+vr++kmgJWUaK8vDx8fHyoqamhs7OTqKioRXtAuLi4kJSURE9PD2lpaXR3dxMSEnLXyoWCIBATE0NRURH9/f14eXkxODiIRqOhra2N2NhYVqxYQUREBCUlJWRnZ+Pi4jJpRz43NzcuX76Mm5sb8fHxZGVl4ejoOGHnx4WgsbGR9OJWCgzxNFjC6RD9aBMD6RR9cJDoUIg6tDijFZ1BasfDG9feUyNB7SjnUmk3/bqJjVCBkXj3q9v8l4Txci/JyMhArVYTGxtrey0nJweLxUJ8fDxHjx5FpVLx8ssvc+rUKYxGI4cOHcTf03mMyNZ8MDQ0xNGjR5FIJBw6dGhBRceWWVosaWPA2oWwb3DsA8Ry3+YHTJ/9b0HGKrdefv7T77N161bCwsKorq4GRuLdDQ0NtLe3YzQa8XVToDbc4KFIZ2SWQXr1EkyMntjvND5uN+/xdJJSX19Pbm4uw8PD+Pj4TGgUWEv7cnJyiIiIoKqqitbWVqKiohZNhlQmk7Fq1Src3d1tyoV+fn6zKgtcuXIl+fn5aLVafHx8bAZBS0sLcXFxNtlkq/HR29tLaGjouHNXKBQ0NTXR1tbGhg0b6O7upqSkZMEEYO7kbEY5X7SswIgdo39zI3bctPhxU/SnSQyjQ/SjcdjvnpfzzaSp1P61AjFhd9mE/j7HYrHw2WefER8fT2BgoO313NxcTCYTVVVVDA8Pc+jQIQwGA1lZWdjb2/PII4/M+7GYTCbeeecd+vr6OHTo0LKWwLeMJWsMfJu7ELqJbQx2NRATE4OLiwuJiYnU1dXR2NiIxWIhMDCQsLCwW0IlRnR97cSssOfZdd4kh9kT7DSEyniT7iEJJm7LhTqgZYtPK46mmwwNDdnq0RsbG7ly5QpGo3FCo8DDwwOVSkVubi6rV6+moqKChoYGVq1aNateAvOFt7c3sbGx1NbWkp6ejsViISjo7hKoVCoVvr6+lJSUoNfrbR6C7u5umpqaiI+Ptxkf1tV/aWkpgYGBODo6jhlLEARyc3NJSEggICCAzMxMnJ2dF1yvQRRF/uZUE3rzWInaW0cFgJmxmhT9OhNfFncRG+iIn/reKMn5uimIDXSksmWQvlEegmAvFY8EdNJ47Rs8PDzw8ppeXvtBob29nby8PDZv3jxGhjsnJwedTofRaOTgwYO4u7vzwQcf0NfXx8MPPzzvtf6iKPLRRx/R0NDAgQMH8PHxmdfxl1n6LFljoLpNx4m0tsU+jEXhtR3hFOamI5FIcHNz48svv6SqqgonJydb//LHH3+c1tZWnJ2dSUlJobOzk4KCfJpry7GX6FgX48+hxyJYE6zC2dSMh6GMAEsF4lAXFosFJycn7O3t0ev1tkY+TU1N5ObmYjQa8fPzGzPR+/v7Mzw8TF5eHlu2bOH69etUV9dg5xZMbacB/bAZN0f5PXfxWmP0MOJurampISQk5K7cm1YN97q6OiQSCU5OTuj1erq7u2lsbLR1VPTx8SE6OprKykoyMzNRKBT4+992a7u5uZGXl4dcLicmJobOzk7KyspISUlZ0O+luk3HhzkaJvc8TRJKE6CyZZBnUrzu2e82WVOp5Lgwuru7SU9Px8fHBw8Pj3tyPItNRUUFNTU1PPHEEzZvkyiKXLp0CbPZzP79+wkICGB4eJhz584hCALf+c535v33+uKLLyguLuaFF15Y1hL4lrJkjYEHXVVwIqx1wj97LgaLxUJaWhpXrlyhv7+fHTt28OyzzxIeHk5RURE5OTn09PSwZs0aNmzYQGJiIuvWrcPHxwe9Xk9JSQlXrlyho6WGMH9XtqUmo1QqaG9vx97eHq1Wi8FgsGUsW8sWLRYLjY2NZGdn097eTkBAgC3jPjQ0lM7OTgoLCwlbs4MPy+z5uEC76EpygiAQHBxMaGioTblwqvj+RAQFBdHS0kJbWxtqtRpBEDAajXR3d1NfX09CQgKCIGBvb09iYiJ6vZ60tDTa2toICwtDLpcjlUrp7u6msrLS1ukxKysLtVq9oCutiqZ+LpbOrrqiT2cidZXbuCZWC8lETaUEQWDlypV0dHSQkZGBn5/ft6LbYV5eHoIgkJKSYnvt4sWL1NXVIZVKeeaZZwDIysqivr6e4OBgkpKS5vUYsrOzSU9P54knnljWEvgWs2SNgSGDmbNXOxf7MBaQsfF8gRFj4H+9EEZ3azWXL1/GYDAgkUg4ePAgK1euRBAEnJ2dSUhIoK6ujt7eXhwcHIiMjEQikSCTyfDy8mLVqlVs2LDBllhXW1s7Yhh0dADg4+PDrl27UCqVaDQaTCYTKpUKmUxmS1gURZGuri5bTB5GVr5xcXFklbXzwXVnjOLYCWQxXM+jmUtyoSAIREVFUVpaSkdHB9HR0QwMDGCxWOjp6aG2tpbExEQEQUAikRAeHo6fnx95eXkUFBTYui0qlUpyc3MJCQkhICCAtrY2KioqWLt24RL2mlrbuXh99vX58y1fO1usv0FrayuZmZkEBgbOqoPl/cRXX31FUFAQERERAFy5coWvv/4aBwcHLBYLmzZtQhRF3nvvPcxmMy+++OK48NRcKCsr4+zZs2zcuJFNmzbN27jL3H8sOWPAYrFw8ZqG0iYtLRo9uuHFKWVbSJRyATeVBZ3x9uTgKtfzJzt9qLryGTk5OYSEhLBnzx7q6+spLy+3xa5hREmvv7+f5uZm2tvbqa2tJTQ0dEwXMUEQcHV1JSwsjJSUFFsyXHd3N+3t7ZSUlGA2m4mLiyMyMhKLxUJHRwdSqRRfX1/s7OwYGhoCRrqV1dTUkJ2dzbVrJeRpV41roXp7x/fe9TyaO5MLi4uLZ9xzYHRCYUtLC5s3b6alpQWJREJPTw81NTU2gwBGwgtxcXHU19fbchbi4+O5du0aBoOBlStXolarycrKwsvLa8Fi4Z0ttWRW9I9LHpwpE7W3XiwkEgmrVq2iqamJrKwsgoODH9hENp1Ox1dffcW6devw9vamoqKCjz/+mHXr1jE4OMjQ0BCbN2+mrq6OwsJCVCoVO3bsmLf9NzQ0cPLkSWJjY5e1BJZZWsbA+xmt/NmRSi6V9VBcPzCFITBxlvz9UmJossCTiY6o2r8hJcwRx758AsVKmquvoVQq2bNnD6mpqTg6OhIaGkpOTo6t3A1GYsSfZRTjrPbkpT27KCoqIjc3F09Pz0ljrfb29qxYsYI1a9ZQXFyMu7s77u7ulJSUUFVVhdFoJDIyEh8fH3p6etBoNDg6OuLn58fQ0JBNeKdLb0fNcDBTfdeL4Xq+E29vb2JiYmzJhaIoEhgYOO0DT6VS4efnR0lJCXV1dezatYuqqirkcjnd3d3jDAKFQmHLKUhPT6e+vp6goCCbPLGrqyvNzc1UVVUtmHegsLCI/r4ebg673XplZvuwhqWWWjmf1SCoq6sjOzub0NBQnJycFvuw5p36+npKSkrYvn07XV1dvP/++0RFRfH0009TUFDA4OAgmzdv5tSpUwwMDLBx40aCg4PnZd+dnZ0cP34cf39/XnjhhUWrDFpm6bBkjIH3M1p580LzjMoGBSyM1Uu6n7QGRrjRbiJMLMNJpsc81IsgwM6dO3nqqafGxErt7e3x9vbm0qVL1GgE/u2rfk6ktVGrdaG8x4WCRhPPbN8A+m7S0tIwGAyEhIRMWs4mkUhwcHDgypUr7Nq1i8cff5zg4GCk0pFSw7q6OoaHhwkICMDe3p6bN29iMBhQq9UjMXGDkg5x+uz4peB6VqlUthhoeno6tbW1BAcHT5tcaD3Xuro66uvreeaZZygrK0OpVNLd3U1VVRVJSUm2CdSasxASEkJhYSEtLS0MDw/j6emJt7c3rq6uZGVlLUhiXH5NH//nix7qhzy5u/tAREDgL/eGL0pIZzqkUinR0dFUV1fbylrn0z2+FCguLqarq4v4+HiOHz+Oj48P+/btQyqVUlBQgFarJTExkS+//BKAl19+eV7KVAcGBjh69CgODg68/PLL2NktDa/QMovLkjAGLBYLP3u7gunVbo2EcZ049QCNenemF/GZD0RUwhASjJiRzdv+LCLYC1ok+k7bpBIWFjZhyZC7uzsNfXKOFdjRrxsrjduvM/FNaS8vPrGeED8XMjIyqK6uHhc2GI2XlxeVlZXU19ezevVq3NzcCA8PZ926dcTGxtrCCY2NjZhMJtzc3BAEgb6+PkRBTqtl+rKm1d4DRAQtfnnSncmFOTk5Nu2EqQgMDKStrY329nY6OjrYtWvEA+Po6Eh3dzc3btwgKSlpzMPZWgba0dFBV1cXLS0tJCcn4+bmZjO0Vq9ePW+rcKsOh94s5e6vSwFPZxmp0eol2zpYJpPZqjfy8vJYuXLlmK6T9zuZmZk4OTmRl5eHSqXiwIEDKBQjv0VhYSFarRaz2UxLS4vNqzdXDAYDx48ft2kXPGgG1jKzZ0kYA19f6yKtrHcGW0rpwZtWg9utxkT3xhsQKNSw2neYGq01mWm6EMXMjBQHtLhJulGpVJhMJurq6pDJZAwNDSGVSlEoFDaN8n+50HurNnvyOP2PnltNeHg4xcXF5Obm4uHhMeFKVBAE3NzcyMzMHLdatYYTEhMTSUlJwcvLi+HhYdrb2zGbzTjawU2TF8Y76tZHn7sDWsSGLykpKUEikaBWq6nvHKaqTbdoJYjWibq7u3tGyYXW7Pbr16+j0Wgwm81s2bKFoqIiXFxc0Gg0VFZWjjMIrGWFGo2GpqYmysvLCQkJwdfXl6ysLAICAuYlS360Dsds7wOdwcxXxZpFS/icCVaDoLy8nPz8fFauXPlAqOJZLBY+/fRTW0XPnROzVRnz5s2biKLInj175pw7YTabOXnyJB0dHTbtgmWWsbIkjIH/zu3gRutMs6FFLOIkyWsLRA8eOBtqSI104KZOxdAoyXk7wQQS6R1ejZkZA/7SJhwELRaLBVEUEUWR2tpaSktLyc3NJS0tjYyMDL7ILKG033vKMa1x+mA/dxITE2lvbyctLQ29Xj9h2ECtVtPU1DRlprtcLsfb25vo6GgeeughgoODkcvlGPtaaDR43tpqYoVDV5WFwcFB8iq7eTPDwOkrfYtegmhNLlSr1beSIa9NmVwolUqJiIigsLCQ9vZ2vL29SUhIoLi4GLVabesZcadBIAiCLddDFEWuXLlCQEAAg4ODNDY2jsk5mC3zo8MxcgyLmfA5E+RyOatWraKkpITCwkKioqIm9XrdL9y8eZMrV67YDIHRE7PFYuG/s+qp1zqht8hRK0zs2vXknPYniiJnz56lsrKS73znO2OaIi2zDCwRY+BawwCljdrpNwTufW7ALQU3xyA6DE7c7Lvtplei48+eXsH/81I0QV5KQjyVyLry2RQMZRqHaUd+OFxgsLeNH/3oR+Tl5QHw1FNPERoailqtxsHBAblcTo9RRfOw5zSjQVPxBa7np1NSUoLFYkGhUFBVVUV+fj69vb10dnbS2dlJT08PAwMDqNVqCgoKUCqVY8RzJsIqgBQeHs7DDyUQ6GqhvEk7piLCHi3RkiLcJN2YzWZ6RHeKLcnjstz7dMZFXZFalQtramqmTS4crVBo1RsICAigtLQUT09POjs7KS8vZ/Xq1WMMAplMRmdnJ3q9noiICNLS0nBzc6OpqYng4OA5l8zNpw7HUkj4nA47OzuioqIoKiri2rVrrFq1yuZSv98QRZEPPviA/v5+9u3bR1BQkO09axJ1ndaZPtzpEn2pNwWjkEuJDZx9EmVaWhq5ubns3r2bqKio+TiNZR4wBHGx+tKOorJ5gDfeLF/sw5gFIhJB4NcHIvB3GKKgoID8/Hz0qiByBqKn/fShZAsNhV/w/PPPc/HiRbq7u1mxYgV/9Ed/NGa7qtZBXv/PsmnH+3GqBbVCj15/+6+vr4+Ojg4sFssYHYGJsLOzQ6lUzvhPoVBwc0CCRmtkeKCT3pYKamtrbnk64Io5FR2OTBZOcLUb5m+fUy9anwOLxUJ6ejrp6ekEBATw3HPPTTpJZ2Zm8vXXXyOVSvne975HRUUFly5dwsfHh5s3b+Lh4cHrr7+OTCajuk2HRmtE13uT9E9P8r3vfZeenh7OnTuHyWTC29ub733ve3M69pleEzPl7w9Esj5y6df09/b28vbbb2NnZ8crr7yCg8P0RvdS4+LFi2RkZODs7MzPfvYz2+vWJOrJ+P72AF7cdPfS1gUFBZw9e5Zt27YtawksMylLwhgQRZHnfl1Ar27qvvFLExElQ4RLrqMQ9LjJ9fhGrOF4idu0n/zfu914/5NvcPePJCbMm+JLH1DBGhQu/gR6Kvnbl8Kws7NDFEVe/W0JjZ36Cfs0CMJIP/O3/jh2wtWtXq/nk08+oby8nJSUFDZt2oTRaESv19PZ2cnHH39MZGQkgYGBYwyJif6Gh4cnPR+FQoFSqUQikdChk5M1OH3C0xppJt4OZuLj40lKSloUXfrGxkZOnz6NXq/nySefJC4ubtw21tVcZWUlDg4OvP7665y+kEv+tRsEeDuj66jB7BRMozyJxk697XOOkkF2Rpn4wUuP0dPTw4kTJ+ju7iY5OZknnnhi1q55URR58Z+L6OgbZj68Zb//YQzhvvfHxKrRaDhy5Aj29vYcOnTovkoqvHr1KufPn8fBwYGoqCh27doFjBimj/9NPkbz5I9juVTg879ac1cVBVVVVbz33nusXr2aJ598csmGgpZZfJaEMQBQUNvPn71dsdiHMWe8neDne1by2/MNU07ervYy+odMmMdIKYzPNQjyUHLkp/EU1Pbz8yMViDAmP0EQRj7xm1eipuxnLooieXl5XLhwAR8fH55//nnc3EYMls8//5zCwkJ+8pOfTLvSMpvNGAyGSY2FoaEh9Ho9lR0CZ2unL6P75dPeCD2VFBcXo9Pp8Pf3JykpidjY2HvqBtbr9Xz66aeUlJQQHx/Pzp07x+1/eHiY//qv/6K6C+ol8fQZb4c4lBIjeos1GXF8HsVPnwzER63C1V7Cx+8cRq8fIiwsjN27d88qozu/po//caSSuVbUCIA9A7z9k3g8PacPRS0VOjs7OXLkCC4uLhw8ePC+yCGorKzk5MmTrF69mvz8fJ555hkSExMB+Lq4i789VTvtGH+5N5RtcTMrT21tbeXIkSOEhISwb9++RWs7vsz9wZLIGYCRjmZxQY4U1PSiG56dfSIRmEOHw/kpU9QNw1fFGval+lJQ2z9uSEEY2dWQ0TJJKeXYD/TpTFy81sUPnwiatOPbX+wNn9IQGNmvQEBAABEREbYSO3d3dzw9PW2yugaDwSaLOhkSiQS5XI5KpcLJyQk3Nzc8PT3x9fVlxYoVhIaGEhkZiYe334zkpIdrv8JFJWHv3r0EBQWh0WjIzc0lNzcXjUaDSqXCxcVlwVc0dyYXTqRcKJVK0dn5cbLMCYNlbJmpSbSGOSbuGphb1c/X1zScz+9CqwxBatCAoYf8/Hy8vb3vqsLAVkkwWXXJzEdCIgiscarCONBOdPT0oa2lgoODA2FhYeTk5FBTU0NMTMyidtCcjubmZt577z1WrlxJbGwsJSUlPPbYYzavRnp5N8V1A9OOE+KtIjFk6nsdoKenh2PHjuHu7s5LL720pL+bZZYGS8YzYEUURarbBvm7U7U0jHK33k8IAgR6KPnjnYH8+6eNY84j2FNJk0Z/h0dger74y0RbyKDmpo6uASMeTnLCfOzveqK8M2zw2GOPkZ2dzaVLl/jRj36ERq9Ao539+MC0oQ0QsUdLsjQT6/ByuZzIyEg2btxIVVUVRUVF9PT0oFarSUpKIiEh4Z4o0fX09HD69GlaWlrYsmULmzZtQiKR2M5p7tflyDeSYn8Nd2kPQ0NDuLi44OzsjCiKtuoSa+Oo0X8mk4meYRWXh5LnfJ5KBvjV3lWoDK2cP3+eH/zgB/dd++CWlhaOHTuGr68v+/fvH9d+eymg0Wj4wx/+gKenJwcOHCAzM5O8vDx+/vOf2+6t+fQM6HQ63nrrLSwWC6+99tp9mVexzL1nyXgGrAiCgLuTHbvXedPVb6CqbWYlh57OMnSG+e9j4O1qh4NCctdj9+lMaCs/w998HV87Dd523UTatyI1dNMyfPf1vXnXb7I+zA6VSoW7s2JMx7e7xVq7bW9vT2ZmJjdu3CA1NZWMkjbezoUPczRzLgMUBIFATxVfFneN947cmgwfD+kh2McZjUaDRCLBbDbT2dlJfn4+ra2thIeHs3XrVoaHh7l69SqXL1+mtbUVuVyOm5vbgrk9VSoViYmJiKJoUy4MCQmhuccyT221R76QHqMD6wJF7Ozs6O7uxmg04uXlZcu7gJGwjNFoZGhoiMHBQYxGI70mhxmpQE5HvHAFB0sXjz76KMXFxXR3dxMTEzPnce8lzs7OBAUFkZWVRXNzM9HR0UvKHa7Vajl69ChKpdImKpSVlYWLiwvx8fG27YK9lLyX0TalAqtcKvAXL4RNec+bTCbeeecd+vv7eeWVVx7Yvg7LzD9LzjNwJ2azmV+9U0VeVf+U2/3s6WD+zyf187LPp5I9CfFSERvoRLivPYV1AxPG66fjIecKPGWaMSu7G/pAak1hd31MCgZ5SJY+4Xt2dnY4OTnh6+tLZGQkERERM46htra2curUKZoGFOTrE29N0+O7Kf7joZWsCbv7B0t+TR+/Pd8w1jvipeLxSAMVOedJSEggOTmZjIwMKisrsbe3x2KxoNff3l6pVBIdHY27uztlZWW0trbi4OBAQkICSUlJ8y7xO5rRyYXBqx/nzYzJEyhnw3bPcmKC3Wxqh6NvR7lcjlqtRq1W4+bmZvt3r9GePz3eMOd9+1JPlLyCP//zP6ekpISzZ8/yxhtv3FXr56VCXV0d7777LmFhYUtGa394eJgjR44wMDDAa6+9hqurK6Io8o//+I+sX7+eLVu2jNn+ZGYbh79ovPW/8RP+GztWsF4+FgYAACAASURBVC/Vd9L9iaLIhx9+SFVVFYcOHVrWEljmrljyxoCV9zNa+b9fNY9zr7s5yPiLveEkhTjx4j8X38qunhsTZVZPNKnNZpyZugPvxI0OEmT5d/05K4IgIJVKcXBwwN/fn8TEREJDQ5FKpQwNDbH/n/PpMUysKmgNe7z947hZhwwmCm2UlJRw5swZoqKi2LNnDx0dHaSlpVFZWYlarcbT05OmpiZ0utveIZVKRWRkJFKplPLycoaGhlixYgVJSUnExMQsiM66Xq/n/PnzZJc0km/eOK9jx0muEuU9IhHt7OxMQ0MDra2txMbG8tRTT014PqIosuuvLqHDnrnlDJiJF66yY30YO3bs4He/+x3e3t7s27dvDmMuHtXV1bz33nu262kxPQRms5n333+fxsZGXn31VXx8RqS5u7q6+N3vfseBAwcIDQ0d85mbN2/yv/7jAnViBCK3jRm5VOC1RwOmNARgJBE4Ly+Pffv2sXLlyvk/qWUeaO4bYwBGym8ulXZTVD+Ao0LK1lg1EX4OtgnqbF47/9/Zua2Y1I5STv3PifXjrZNaZ/8wvz3fyM0ew12X+s2khGgirDkD1uMYGBigq6uLtrY2Ghsb6ejoQKvVTqkjMBkDovOMJrmFKD+rqKjg1KlThISEsHfvXuRyOW1tbWOMgg0bNtDZ2UlxcfEYj4G9vT2BgYEMDQ3R0NCAnZ0dMTExJCUlERAQMK9Jh6IoUlxczK9O9zIkzl8p2xppJi7SQVauXMnmzZvx9vamsLCQzz77DFdXV55//nnbSn0kn0bH+ewaPivqZZj5yKAXWW1XwD/9xRsUFxfz8ccf8/rrr+PrO/XEs1SpqKjggw8+IC4ujt27dy9KKZ0oinzyySdcu3aN/fv3j5n0CwsL+eSTT/jlL385rlrl1KlTlJWV4evrT/hDu2ns0hPooWRrjHpawyY7O5sLFy6wc+dOkpPnnk+yzLeP+8oYmI7btdfG6TeehN8cimRt+PTiK3Mp9RtxBzbN+Jis5YWzZXh4mI6ODioqKqiurqavr4/h4WEslhE3i8biSYll7bTj/PIpLx5bGzjvK66amhpOnjyJv78/L774ou0hOdoocHd3Z/PmzQQHB3Pp0iXKysrGaB44ODjg5eWFRqOhv78fT09PEhMTSUhImNcEqrSiZv76o5Zb/5tYTGmmq3Ulg6yTpjN6vlIqlURERBAbG8vFixfp6upix44dSNwi+e2nd+eZmhkjiZx/+aQjKSnJ/O53v8PDw4OXXnppnvdz7ygtLeX06dMkJSWxa9eue24QfPPNN6Snp/Pss8+OyQsAOHv2LM3NzfzgBz8Y8/rQ0BC/+c1vEEWR7373u/j7+894f2VlZZw6dYqNGzfy6KOPzss5LPPtY8klEM4FQRAI83Hgy6KuWX3+qbWe7NkwsxWRr5ti1qV+sYFOKOUC1+oHpm3ZPFdDAEZK4pydnQkNDWXt2rWkpqayZcsWtm7dytatWwlfGT2jMsChmi+4knWR6upqOjo60Ov1yGQylErlnB64arWaoKAgsrOzqa6uZtWqVcjlcpycnIiNjSUyMpLOzk4yMzOpqqoiISGB5557jqSkJLRaLT09PRgMBnp7ezEYDDg4OKBQKCgtLSU7O5v29nbs7Oxs3RfnQrCPM0q5hPyafsZP+iM/ZgSlDOI8RZdLaw+HQuwlQ2PeMZlMdHR0UFpaitFoxNXVlUuFzZwoUiyQKJeAEQXDbYVs25SMSqUiKyuLiIgInJ2nL2Fbinh5eeHi4sKlS5cYGhoiPDz8nhkE+fn5fPnllzzyyCMTrtAvXryIv7//ODd+Tk4OdXV1ODs7s3379hnvr6GhgZMnTxIbG8vOnTuXRYWWmTUPlGfAyt3G92USeO2xAF5MvfsM7bmU+lksFi6VddvcgRsiHPmrk3U0durHKBAuNNMqHAJqlYkUWRZDQzqkUikSiQSjccQDo1Kp8PPzw9fXF39/f/z8/GY1kbS2tnLixAmcnZ05cODAuBV9a2sr6enpYzwFsbGxSCQS2tvb+frrr6mtrcVsvj1pqlQqpFIpWq0WJycnW9LhXDsHXq3u5R8/qqZTezuJJdhLxc6VRq5nn6XHoqbYknLrnfFGQ6hQQaxbNzCScW6xWGwdKsdsOa2s8/wQJFRxaNdaNq8J5/Dhw7i6urJ///4F29+9wKr2t2HDBh599NEFnyhv3LjB+++/z9q1aydUlzQYDPz617/m6aefJikpyfa6xWLhH/7hHxgeHmb37t0kJCTMaH+dnZ289dZbtrLKpZA0ucz9ywNpDMD4STrUW0Vt+xBdA0bUDlKaNQYaNTOPyT3ozCTskRTiRFtbG+Xl5VRUVNDV1YVMJsPNzQ2pVEp/f78t2c/R0dFmGFj/ZiIb29HRwbFjx2z93ScyKqYyCkRRpKmpiW+++YbGxkZbKARGXPAmkwmTyURwcDBJSUk2L8RsEEWR6w29fP7NZdoaKkmJXkFHRzs6nY6hoSF6LO5UWVah47Y2ghw9EXYNBNq1IYoWDAYDrq6u9Pb24unpyfbt26murqasrAytVjvjfI75IshTyVMxIqWZ/82rr76KQeY+Z82JxSQnJ4cvvvjC5glbKJqbmzl69Cjh4eG88MILEz5PamtrOX78OD/84Q/HqD1WVlby/vvvI5fL+dWvfjWj/Q0MDPCHP/wBhULBq6++el8oMC6ztHlgjYFl7p7JygB//GTQhGGPrq4um2HQ2tqKRCJhxYoVeHh4IJFI0Gg0tLa22pL+XF1dxxgIvr6+E0oOazQajh07hkQi4eDBgzbZ5DuZyiiAkRVXTU0NaWlptLa2jivbMxqN2NnZERcXx+rVq/H19Z11tUR2djZffvklgiCwZ88egoKC+Ld/+zeGh420WVbQIIZi4LYx5CTVESqWsDHWh+rqakwmExaLBTc3NwIDA2lra6O7u5v2YbcZ5XPMF9ZS0hjHJpoMXvQO3/59gjyV/GRX8LRql0uNjIwMLl68yCOPPEJqauq8j6/RaHjrrbdwd3fnwIEDkxqX6enpXL58mV/84hdjrrP/+I//oLOzkw0bNvDYY49Nuz+DwcCRI0cYHBzktddeW9YSWGZeWDYGlhnDbMMefX19VFRUUFFRQUNDg60tcNT/3969R0dZ34kffz8zuUwm98mFhEQmCblyEeUmFlSsth4L1G61yiWA1K4/u0fcY7vay+n+tvvb3dat3e052lZdt5aLCMqKrOiyalVuVSSQQlBJIIEkJJmQezLJ5DrP8/sjzMCQueXGTJLP65x4ZOaZZ74TdJ7P8/1+vp9Pfj4pKSl0dnZSW1tLXV0dFovFuevBUQ7Z8ZOSkkJISAhtbW1s376d/v5+NmzY4LWWQF1dHQcPHuTs2bNugwIY3Or15ZdfcuTIERoaGlxer9PpUFWV5ORk5s+fz9y5cz3OYjgy+q++W25paWHbtm0oioLBYKChoYE77riDWbNm8S+/fZ1TqmPt2LVngQLcqC+iIDWUxsZGl+UNgNjYWFrCcjlsGb86Ct65JkOOtuZEIDmS+u655x6WLFkyZuft7OzklVdeQa/Xs2nTJq+zX6+99hqqqlJYWOh8rLGxkd///vcoisJPf/pTn2WD7XY7O3fupKamhk2bNk3ImhAiOEkwIMaczWajrKyM0tJSKioqsNvtpKSkkJ+fT0FBAQkJCTQ1NVFXV+cMEC5duoSqquh0OqZNm8b06dMxmUwcP36c3t5e1q9f79yr7Yk/QQEM7q4oKSnh008/paWlZch5FEUhPz+fBQsWkJWV5QyG3M2cpMeHktZ3ghuie9mwYQNGo5FDhw5x+PBh4uLiea9xltc2zo6SzKGhgxeBq7eGRkfHcKBjPla7wcPrr7/R1pwIFE3T+OCDD/j0009ZuXIlCxb47qjpS19fH1u3bqWjo8NZVMjb+z/77LMsXrzYZbnijTfe4MyZM+Tl5bF69Wqfn8GxZbGwsJDMzMxRfwYhHCQYEOOqt7eX8vJySktLOXv2LH19fZhMJmdgkJaWhqIoDAwMcOnSJWpra7FYLNTW1tLYeGWHg6IozJo1i9zcXNLS0jCZTB4vRv4GBTAYuBQXF1NUVERHx9AqlxERESxcuJCQhHz+8c0aNO3aZliDd/j/tDqDpbMH79L6+vo4evQo+z4+wfEB3+v9C/RHMIX1EBkZSVtbGyEhIQwMDFz3fIHhmEgtjx00TWP//v0UFRUNK1HPHVVV2bVrF1VVVS5FhTxpbm7mt7/9LevWrSM7Oxu4klAI8OSTT/pMuvW2ZVGI0ZJgQFw3AwMDXLhwgTNnzlBWVobNZiM6Opq8vDwKCgowm80uGdF9fX1YLBYqKys5duyYSyXC8PBw59LC1TsYrg4QhhMUAHR0dFBUVERxcbHLe/nK6HfstrjbdJrW1hZn/QN/6zfMCykmnkusX7+e8vJyiouL+c53vsN/vnmYo9bg7CT4y/W5LMn1XY8j2Giaxr59+zh58iT333+/370Yrl4eSogK5cuiDykpOcXatWuZOdN3efFTp06xd+9enn76aSIiIgA4ePAgBw4cYNq0aTz22GNeX19cXMy+ffvGLe9BCOlrKa6bkJAQcnJyyMnJQVVVLl68SGlpKWfOnOH48eMYDAby8vLIz89n5szBbZVmsxmz2cytt97K66+/TnV1NbfffjuaplFbW8fh4gpaD58lTOlhWqRKWpprgLBmzRpnUPDWW29x6NAhj0FBdHQ0MwqWEHnDAvT2LhrOn+L06RKaesJddgRcSwOau0M4f6mb1BgDM2bMICkpifc/+cK/34tmIyQ0hL1791JYWMixY8eoqqoiJSEKfHe1DYjE6ODrDugPRVFYuXIlAwMD7NmzB71eT35+vtfXuFseMhLJw7ev9CsQgMHdBomJic5AQNM0PvnkEwC+8Y1veH3tuXPneOedd1i4cCFLlwbnTJGY+GRmQAScpmnU19c7A4PGxkZCQ0PJzs4mPz+f3Nxc57bA3bt3U15ezpxl3+K/T2suX9CJRjuLTHXQXkF392Axn9jYWNLS0khNTcVgMFBWVkZ5efmQmQJ3X/jmJAObV5i51NDEs//T7PNzPHFXFPcszsBoNPLJJ5/w0UcfUx6zymsb5yiliwW6wyjKYCJjXl4eoaGhnDpVQq16A+XaLCC4tr1mJLsvtT2RqKrKm2++SVlZGatXr3ZO3V/rREU7T28tc7s8pFMUv5MpX3rpJVJSUrjvvvuAwQv8a6+9htFo5KmnnvL4urq6OrZs2UJWVhYPPvjglN8CLcaPBAMi6DQ3NzsDg9raWnQ6HZmZmeTn55Odnc0f3zrM2+eTUZzNkAc5s9035JGVoDqTEx0/jiJJsbGxqKqK1WolNjaW1ILb+I8/24d84TvO97crzfzGj54XC/RHiFasxMfH09/fT2hoKFnzv85v3u9wezEBmKc7hknf6rLtsVVNoFSd47IVMVgowK83eS61PZHY7XbeeOMNzp8/z9q1a4ck5PksxuVnMmVfXx/PPPMMK1ascCYuPv/887S0tHhNZmxtbeUPf/gDcXFxbNy4ccT1MITwhwQDIqh1dHQ4tyxWVlaiqhondXfS3h/OcDosqqpKc3OzS4BgsViw21Xv+QAK3GAKx67aqWsd8HiH79gV4O6a4K74kBEraboqIpQeQukhCiuKMnis+62IweF7d6ez7o7hV+oMVgMDA+zcuZOLFy9SWFjIjBkznM+dq+vi0Rd8L/X4SqasrKxk69atzvbQra2tPPfcc+j1en72s5+5fY3NZuOVV15B0zS++93vjml/DSHckZwBEdRiYmJYvHgxixcvpru7m48+K+Xgh54bUWkaVDX28NKr+0iM6EPTNOddt+PfNU3DaDSSmZlJXQfYLF7yATSobu4lVzmNxpzLjw6tF7DIVEdEn8GlqyIM9oWYlRrGoshLXGiooqGth17NQI2WwTl1jvM4I1aydV9Srha4eY/gcUvuxKov4EtISAirV69mx44dvPbaa2zYsIHp0weDneZO/xqeNVn7yfbS0qSmpoawsDBn1cH9+/cDeJwR6O/vZ9euXXR3d/PII49IICCuCwkGxIQRERFBwvRM4KzPY8+cryUlbHCbXmhoqPMnLCyMsLAw9Ho9ISEh6MIj/HrvcKWXm/THqdDmYLVfec1ghcYM5mfdAgze0e3Zs4fz58+jaRp2ux2LxQIMVmDMW3o7Lx7pR71mjsFGFCXqYoI1CIDBzzozJfiWLkYrNDSUNWvW8Oqrr7J9+3Y2btxISkoKCVH+Tcv7SqasqakhLS0NnU5HX18f586dA3BbbVBVVd566y0sFgsbN24cdQ8NIfwlwYCYUPz9gl626EYi1Fba29tpa2ujra3NpaBPeHg4cXFxGMKT/TpfcpwBrbOWWPsBOvXR9GkGwpQe4jt6OP6nRBpmzCAjI4P09HS6u7uZPXs2d999NydPnuSzzz4b7FXQ2sb7h1tQ3S5JKFybVRBs7rk5YUInDXoTHh7OunXr2LZtG9u3b+fhhx8mOzWRpEiVxi4FT0tI5iTvAZKmadTU1DB//nwAjhw5AkBmZuaQaoOapvHee+9RWlrKQw89RHp6+th9QCF8kGBATCjZqUbMSQavSV3mpAgeuHeRy4VL0zRsNpszMHD8tLa2ERPSTceApyp/GgkRdr56SwGxsYN3/93d3dTX11NTU0NzczcWiwWLxcJnn33mfFVXVxeffvop2dnZbN68ma6uLt7+6AQHT3tekgjmWQGA/y1u4qGlI+vfMBEYDAYKCwvZunUr27Zto7CwkOndRTSyeEio5ggPNq8we/19tLW10dXVRXp6urOHBeDcVXC1o0ePcuzYMVasWDGkxbEQ402CATGhKIrCEyszeGpLKeC+w6K7L2hFUYiMjCQyMpK0tDSX52Y5OjZ6qC44J6KCAwcuOncjAISFhREXF0dmZqZz77jNZuPSpUtYrVba29v57LPPnAFCeHg4PcYMwH3TpYmgqrGHinrbhKs8OBxGo5H169ezZcsWXnzxReJ1cFtMGdWhN7lsO43W2/i/hTf53FVRU1MDQHp6OmVlZQwMDBAfHz+kudDnn3/O+++/z9KlS1m48Po1phLCQYIBMeHMz4rhVxvz3NQF8NxhcSTny0g2Xj7fLWiaRnd395CZhfb2durr62lpaaW1P+Ly8gHEh/ZgNEag0+no7++nt7eXzhYLkDVWv4aA8JUsNxlERUUxb948PvroIwB++L37iImJcTbwUrtbef+tbYTaTID3Kow1NTWYTCaMRqMzcXDVqlUux1RVVbF3717mzp3LXXfdNS6fSQhfJBgQE9KCmbH8cfPcEXVYHMn5FEXBaDRiNBqd2eYO7goWJUdoLE/pII4m2tra6O/vJ4oOjFi9NC6CazsFBpuJWnlwOOx2uzMQCA8PvyqHIOpyIBRH1Ze5HDx40Gt5axgMBtLT02ltbaWjo4Pw8HCXegaNjY3s2rWLGTNmcN99903aJRgR/KSclZiwFEUhOzWSJblxZKdGjvqLdCTnc1Soq2503VLY2KnwX2diyV38Db7//e/z4x//mB/96Gme/GYWitdkweC9GEzW3QTX+t3vfgcMlqd+9NFH6e3tZfv27S79KpYvX05LSwslJSUez9Pf3099fT3p6ens3bsXgDvuuMP5vNVqZceOHcTExPDggw+69OUQ4nqTYECIEdI0jeffrXKTazD4Zw0uP3+lvsFNmdFsWBpNMF/0PfGVLDcZnD59mtbWVgAef/xxTCYTGzZsoLOzk1dffdVZRyI1NZWCggIOHjyI3W53ey6LxYKqqqSmplJdXY1Op+OWWwaTUHt7e9mxYweqqrJu3ToMBsP1+YBCeCDLBEKMULnF5rI0cC1HAaS/f+YFQvuutGNuVpOAiZUk9oNvDj8XYyK4uhthvFHPm2/uQVHgzjvvJCwsDICkpCTWr1/P1q1b2bFjB4WFhYSHh7N8+XJeeOEFTp486baAUE1NDaGhoZw8eRKA2bNno9PpnGWQ29ra2LRpk8/WxUJcDxIMCDFC/laoy8ybx01mgzPnoKErhKd31o7z6MaOOcnAyoX+1WOYSNx3I1zGLEM5t99+u8uxKSkprF+/nm3btrFz507WrVtHcnIys2fP5tChQ8ybN29I3YCamhqmT5/uDAZWrlyJpmm88847VFZWUlhYyLRp08b/gwrhB1kmEGKE/C2AdMetN7FgwQIKCgowm80sLJiOOckwIRYKFOCJlRmTbnngREU7f7elbMjMjo0ointv5kRF+5DXTJ8+nbVr11JXV8euXbsYGBhg+fLlWK1W/vKXv7gc6yg2FBYWht1uJzU1lbCwMA4cOMDJkyf51re+NaQxkhCBJMGAECPkKIDk6TKpKO6T7hRF4bt3JKA5MwuC15PfzJh0ywOapvEPOz2VtFZccj2uNWPGDNasWUN1dTW7d+8mPj6euXPncvjwYZc6FB0dHVitVqqrqwG4//77KS4u5tChQ9x1113MnTt3HD6ZECMnwYAQI+QogOQoduT6nOcCSHa7nbNF+1ka8yWR4cGdQZ4UGxboIYy5J/7zS7p6PQdhjlyPinqb2+czMzN56KGHqKioYM+ePSxbtozOzk5OnDjhPMZRbKi3t5eoqChaWlp45513WLhwIUuXLh3bDyTEGJBgQIhRcBQsSox0vbiYkyJ49uF8t3fVH374IRaLhbUrbqEg0jLKEYzv7EJje9+4nTsQis628nl1l1/HNrb3enwuOzubBx54gNLSUo4cOcKNN97IkSNHnLMDNTU1zvoDS5YsYffu3eTm5nLvvfdOuiUXMTnof/7zn/880IMQYiKbbjIQ1lxMnL2WR779FVYvS2HTV9OYbhq6XezcuXPs37+fjIwMjh49iqLZqe4fTUk/R82C8bnAHC1rY445yu1nmWg0TePxl8/Q06/6dXxPxfu0NV5kYGCA6OhoQkNdc0QSExNJTEzkwIEDmEwm6uvrCQsLpzfExP8cOonV1osxRKW+3kJCQgJr1qwZkmQoRLCQ/zKFGAOtrS3MTIliSa7n8rRWq5U333yTkJAQKisrMZvNXLhQSTg2eolg5Bf0cbzTVAbXz/+4ee6Ev6Mtt9hosw34PhDQ08+0KJWqqipOnz6NoiikpaWRk5NDTk4OKSkpKIrC7NmzGRgYYO/evagxWTzzfi+d6hfATGAmkWoXN0dU8/01DwwJJoQIJhIMCDEGmpubMZvNHp9va2vj5Zdfpre319nbvrKyEkWBfN1pTqmLGfkd/tUVDcf2gn31+vlEb1Dk71ZQgCTqaGlpdv5Z0zTq6uqora3l448/Jjw8nLy8PHJzc8nLyyPvlhW89OehxYe6NCOftBdQWj/Agplj8jGEGBcSDAgxSn19fXR2dmIymZyPOYrZNHX0UldVxpfHPkRV7cybN4+Kigo6Ozudx8brWphHEWfVArrx1uLYm/G9a58MDYr83QoKGjdHV9Pd7fqoql5ZXujt7aWkpISSkhI0DY6rtwGRuEklde5OmAyzK2LykmBAiFHQNI0TZfU0q0l0ajFomkbx+Y5ritnoMXIrt01v4dSpU27PE69rZrFyhE6i6VUNlGsF9GAkWMoWT4YGRY6toN6qRgKsXJjED+/7Iaqq0tnZSXt7O+3t7bS1tdHQ0IDFYqG9vd2ZLNhJDF1alMfzTabZFTF5KZq7zbRCCJ/cVbCbFhtGQ3vf5RoCV1/IB/83m6crIl7XjKaBVY2hkRQGtBBilRaSlXocDfBaVdPlpYPABgMKYE6O4JXH50yKu9ri8x388I+lHp+/NTeWX6zP8/h8b28vDQ0N1NfXU1lZycWLF6lsN3Ba9V1e+pfrc73mlAgRSDIzIMQIOLoVXhtKX2rvw/3a/+C6/jm1gGzOcEadRz/hzmctmplSzU6WdpYZ+kridS3cSBGn1QVoBLAWgTK5GhSdre30+vz9X0kBBpcEWlpauHTpkvOnrq7OZXnHIczP381kmF0Rk5cEA0IMk7duhYM81iTERjQl6iIPz+s4r+WDXWGG/gImXTNzteOUaIt9nHf8PLlq8jQoOlHezkvv13g5QuMXuz7n64lf0NjY4OxGqNfrUVXVbUVCgCg6MGLFRhTu/o4UZbDuxFRo/ywmLik6JMQwOboVjm59zd2FffCx81oOjlw1k76FeboijHi/ox0Pk6lBkaZp/NvblT6OUmjpCaWmze688Ot0Oq+BAIBer2NJcoPjna59Z4+VKIUIJjIzIMQwDWeLmnveLgoKoKdBSyFSs9GrhWMnhEzKUHV6utQoqskZ5fv7GJ0y8RsUXd2aODE6FFXTsLR6rih4tT4MOIowX72DwJ3bbruNmJgY3n33XebpmjmnFmC7akeIkU7WLYmeNLMrYvKSYECIYfJ/i9rIVWiz6LeHuz6oOv8xrsxJEWxeMXGXB9wldsZE+D8Jau9uRVW8/55NJhOPPPIIfX19PPfcc8DgjpBFl3eE9GkGwpQeorBSeTKU/q/dLEWHRFCTYECIYcpONRIfGUJrl6dqdu4KAA2voFA/nhoEjd/KXmKUnl+szyc71ThhZwQciZ3qNbP1Hd3+BVEGuojCiqIoaJrmXCZwUBSFb3/728yZMwdN03jppZdclhAUBaKxgmJ1Ptbf38+f/vQn7r333tF9OCHGkeQMCDFMmqbR0e2trK2C+90Efr/DMI8fG02ddl49WDdhAwFHYue1gcA1R3l5XKMg5AyKAhEREYDrMkFOTg4/+clPmDNnDgB79+6lo6PDr7EVFRVhtVp9HyhEgEgwIMQwfXy6Bfu4ztYH7mJ86MtWfr33fMDefzQciZ3eXV262dVMXRk5yYO/e5vtSvtig8HApk2bWLt2rXOqv6ysjJKSEmfglJCQ4PVdNU1j3759/n0QIQJAlgmEGKaLLb4uOBPbuyeaeHKVGb0+gPUNRsD/xE73wZZNM9LQcMHlsUWLFnHPPfeg0+k4V9dFc2c/kaF2kIjACwAACiJJREFU9r6x27mUAPicTdHr9Zw7d47a2lrS0tL8HKcQ148EA0IM0w2ToJ2vL6//uZ61t0+si9ZoEzst2g0YBmyYQy4QFxfHmjVrSE5O5kR5O//2dqXLbgQDS8nTfUFCSCuxsbG0tLR4PbejZsHbb7/NY489NmGXYsTkJcGAEMN051wT//rWBfrtk7eS9/lL3b4PCjLZqUYSo0Jo6vSvTbGrwYvzBXJ5+M4sbrttKYqisOtwndtCRT1EckpdRGrfBVJCMijva8NAFyaaCFXs2JUQ9NoA4bqeywmJg8sNDQ0NfPHFF868AyGCheQMCDFMOp2OR+5OD/QwxlXWtIhAD2HYFEXhR/dnjfIsOgbi8lEUhePlbT4qFipYyOIvFh1WTDRyA2XczOfaQs6oN/G5tpAT9mUU2ZfRqpqcswH79+93NjkSIlhIMCDECDy0LJVvL5kc1fnceWhpSqCHMCILs+O4rWB0zYBOVlrRNI1//+/KMRmTjShOqYup6zISFxeHzWbjyJFP+PBUE1s+ruGj000+ixsJMd5kmUCIEVqUE8eeow2+D5xgVi1MmnDJg1f7xzU5rPqX43T1jmwZJzJcT7nFhqWtb4xG5GhSNYsCQznV9nj+6aMwNK7s2nhGf4FH7k7noWWpY/SeQgyPzAwIMULXoxLh9TY/K5of3JcZ6GGMiqIo/L+1ntsQ+3L2z//Fewc+HcMRwWCTqiiO1MRyXstDu+art9+u8eJ7F9l1uG6M31cI/0gwIMQIZacaMScZAlgVYGyF6OHZjSO/iAaT+Vkx/PrhPGYkhvs+2EkjlB6idVYqz54el3HVkHH539z/V/PKh7WyZCACQoIBIUZIUZTLzXwGy9BOdN+7+wZ0usnzlbBgZixbnriRl/9mNr9cn8sPvmkmyuBt+UPhnwtnc9NN84jUOlCw47li4Ui5q055Rb9d48AX3rcpCjEeFM1bb04hhE/uGuNMJHod/PXXbpgS69WapvF20SX+8EEN1p4rd+DmpHCeWJnpbM5UVtvJYy9+GZAxbvzqdB6+c3LvVhHBR4IBIcaApmlU1NtosvYTF6Hjg5JmKuq7yUqJ4GtzTXxQ0sr7p5ro6gmOKeCIUIV5WTF87cYEls8xTaoZAX9c/feVGB3KzBTX5kxHz7bxk+1nAzK2v38wi6/OTQzIe4upS4IBIa4TTdMot3RRUtVJY1svVU02jp69vs1rFAWeXGlm5aJkqYLnxbm6Lh594Yvr/r4hOoX3/mHBlAvORODJ1kIhrhNFUciZHkXO9CjnY68fsfDiexfH6f3g6lA/IzmCzSvMzqlw4ZkjObS6scdD1oCGXlGwa2PbYfLrNyVIICACQoIBIQLooWWpaJrGKx/WupQ31imXm+r6OW8Xqlf45uIk0kwGNGDujChmphg5f6nb41S48MyRHPrUllLA9e/B0fdw8K9rbH+ff7Vk2pieTwh/yTKBEEFAVVUOfNFCdVMPMxINLJ9tAnB57I5Z8Vxo6KHJ2o8pMoSa5h6qm68cL3eUY89dcmhGcgQ3pcHev4xt/4aM5AheeXyOBGwiICQYEEIIL9wlG5ZbbGOeU/B/7kln9bLpY3pOIfwltxJCCOGFoihkp0ayJDeO7NTIy38e+4JTrx+p51xdJ3J/JgJBZgaEEGIEis938NSWUtQx/gZNiQvl776VxYKZsWN7YiG8kGBACCFGaOfhOv7Da5vjkZNlA3E9yW4CIYQYAU3T2P1J/bid/6X3arDaBggJUQgL0ZGVHEFSbLjsChHjQoIBIYQYgX1FDbR2Dozre7x2eGiwYU4y8MTKDKkXIcaUJBAKIcQwaZrGqwcD0264qrGHp7aUcqK8PSDvLyYnCQaEEGKY9hU10NjRH7D3VzX4yatnOVEhAYEYG5JAKIQQw3Ciop2ntpb5XR1yvD25yswq6TUhRkmCASGE8JOmaWx6/rSXngWBIXkEYrRkmUAIIfxUbrFRFWSBAEC1I49Alg3ECEkwIIQQfmruDFyegDfa5Z/n362SCoZiRCQYEEIIPyVEhQZ6CB5p2uBOg4p6W6CHIiYgCQaEEMJPjp4EwazJ2o+maZyr6+Lo2TbKLV0yWyB8kgRCIYQYhuLzHfzwj6WBHoZHT64ys+foJZe2y5JgKHyRYEAIIYap6FwrT287F+hhXEMjlB76McA1/RQVQFHgVxvzpAGScEuWCYQQYpgW5cRz/63JgR7GEP1EcG0gAJJgKHyTYEAIIUZgYXZcoIcwLJJgKLyRYEAIIUYg+HYW+FeBsMkanNsjRWBJMCCEECMwEXYWuJMYHWxBjAgGEgwIIcQIKIrCEysz/LwfDzxFgYzkCGamGAM9FBGEJBgQQogRmp8Vw3fvTgv0MPyiAJtXmKWhkXBLggEhhBiFW3KCP5HQnGTg2Yfzpc6A8Cgk0AMQQoiJzJE7EGydDGFwaeDJVWZWLpQWx8I7mRkQQohRcOYOKIMX32Dy6NfTWbVomgQCwicJBoQQYpTmZ8Xwq415zEi8dndBYOcK/re4SYoMCb9IOWIhhBgjmqZRUW+jydpPY3svrx+upbZ1IKBjevlvZpOdGhnQMYjgJ8GAEEKME1VVeeCXx2jtUfC3KNBY++X6XJbkBn+SowgsSSAUQohxUlHfTWtPYFdjpciQ8IfkDAghxDhp7gx86d+2rsCPQQQ/CQaEEGKcBEP/gmf3XpAkQuGTBANCCDFOslONzEgMD+gYGtr7Kbd0BXQMIvhJMCCEEONEURTu/0pqoIfBqUproIcggpwEA0IIMY6SY8MCPQS2H6yj+HxHoIchgpgEA0IIMY6CIW+gw2bnqS2lnKhoD/RQRJCSYEAIIcaRo3dBoAsCa8Dz71ZJMqFwS4IBIYQYR8HSu0DToKqxh4p6W+AGIYKWBANCCDHOPPcuuP6arFJ3QAwl5YiFEOI6ubp3QUJUKP+8u5yLTb0+2xlNiwujuaOPAXX0Y5BeBcIdmRkQQojrRFEUslMjWZIbR870SP52Vebg8oGX1+gUePqvsnhmQ96o8g4UBTKSI5iZYhzFWcRkJcGAEEIEiHP5IMn98kFGcgTPPpzP/KwYFsyM5dmH8zB7ONYbR8CxeYUZJZCJCyJoyTKBEEIEmGP5oLGjj+4+OxFhepJiwpiZYhxy8XZtk9zHb96uBGUwQdCTjOQINq8wMz8rZnw/iJiwJBgQQogJ7ERFO8+/W0VVY4/zMXOSgftvTSEpNozE6FC3QYUQV5NgQAghJrirZwvk4i9GQoIBIYQQYoqTBEIhhBBiipNgQAghhJjiJBgQQgghpjgJBoQQQogpToIBIYQQYoqTYEAIIYSY4iQYEEIIIaY4CQaEEEKIKU6CASGEEGKKk2BACCGEmOIkGBBCCCGmOAkGhBBCiClOggEhhBBiipNgQAghhJjiJBgQQgghpjgJBoQQQogpToIBIYQQYoqTYEAIIYSY4iQYEEIIIaY4CQaEEEKIKe7/AzMKx78W97YPAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plt.axis(\"off\")\n", "nx.draw_networkx(G, pos=spring_pos, node_color=default_node_color, edge_color=default_edge_color, with_labels=False, node_size=35)" @@ -310,7 +373,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "id": "pRnhOeSYsHn4" }, @@ -346,7 +409,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -365,7 +428,18 @@ "id": "gPMC9VDyuF5F", "outputId": "c467e5de-3e8d-4f5c-f954-4f6758bf4ac6" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0.0006669573568730229" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# betweenness centrality\n", "bC = nx.betweenness_centrality(G)\n", @@ -374,7 +448,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -394,14 +468,25 @@ "id": "8uwzyBU8DJPQ", "outputId": "412d94cc-8b6a-4e34-f665-78ce11dd3e24" }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdWXBk153n9+/db27IRGLfC6wiq0hWkSIpUZTUWtgSqaXVlBTuJdrTDoWjJyYmYsIT4Qj7ZZ56JsIv9psn7PGDHbbbs/T0aNStUfdImlZrIyk2SYnFWllVKKCwbwnknnn3e/yQKIhUkRRFkQRQ+H8YiKiqxHIyQeD+7v+c8z+aUkohhBBCiGNLP+gBCCGEEOJgSRgQQgghjjkJA0IIIcQxJ2FACCGEOOYkDAghhBDHnIQBIYQQ4piTMCCEEEIccxIGhBBCiGNOwoAQQghxzEkYEEIIIY45CQNCCCHEMSdhQAghhDjmJAwIIYQQx5yEASGEEOKYkzAghBBCHHMSBoQQQohjTsKAEEIIccxJGBBCCCGOOQkDQgghxDEnYUAIIYQ45iQMCCGEEMechAEhhBDimJMwIIQQQhxzEgaEEO9Ix09Y2fHo+AmVRshLc3UqjfBNHxdCHC3mQQ9ACHE4LW17XF5pcXaqQNYx+NZLW7S9mFLO4spKi+16yMSAy3//zCwA33ppi1onpj9n8pXHRxgq2gf8DIQQ75SEASHEHZa2Pf75v5+j2o4oZS3OzeS4uNignNdZNx2uLjcwNGh0Q77z/DWWdnyuV3R0w8A0egXHP/rkODnXoOMnVNsh5bxNN0i4td1ldjgrYUGIQ0TCgBDiDpdXWlQaPkYasNvKcnO9SVYPqbZtTgzrxHFKiI6Nou35bFdbZMwCG82UsaLOZs1nbddjvOzyH3+6yupuxFDRYXG7y2bdZ6Kc5Z9++YQEAiEOCQkDQog7nJ0qUHBgt6UzUjaYKqVU6xFnxkvcO2Jyec5DGRb9fTn63YhyTqONQZwkRClcuVXhm8Q8NGXy3RfXMEyTm26BZquDlTS5XHP55g/qPHL2PqkSCHEIaEopddCDEEIcPn/7/AX+7qU5vv61z1DbWmKt0uQTH3mIubmb/MWzy7j904z0aRT8eVa8Ms0kg2PprNQ0OmEKms5kPqDu66Rpgm5YWIZGggFRhyiKyPQNc2K0T6oEQhww2U0ghHhTUwMOpwp1xkomJAHDBZ3+vizbG8vcX6rzj798mqfOFTBtl7qXYsc1Wt2QIAxJUlBJTMtPGekDS0WUtQr/5POj/JPfOcXjsybKzDHY57BZD7i13T3opyvEsSbTBEKIN6VpGgBBEBBFEYZhkKYptVqNUqkfw9BZX1uj4GoMFUxaoYsbNBl0LXZ9l0iZRJisVnx0FRHriouv3UIBRpJyYnyCpg+jJYfZ4ezBPlkhjjkJA0KIN2UYBtALA3Eck81m2draotWNaOYm+fc/XsKrJ9xfTvnYPSYL6w0urngEsYtDiqOB7ndoMoKFznKQY/1qjGa4TI2WeOSeIvdP5DgzWZApAiEOmIQBIcSbChONZmTTaPcqA9lsloWFBbzEYGu7xUDeo+5rtGKHpBmwu1ulExfxEwMfF4sQjSwavWVJChNFSpykxImi2oo4MSKLB4U4DCQMCCHu0PETnr8ZcqM1gH2tw4BK6QttFlc2yduKwFTsNCNcM+XajkO91cUmh0FCoBWxVECAhUtChi4aKToJEQ6WZWOZJtODGcp5CQJCHAYSBoQQd6i2QxY3Guhxi416xFLXYT7oUqnYPDiYYzDTZDEMWI2GWW9qOJqOo1mUtCqRUjQokeCgiEgw0EkJMUk1h6ztcnIkw1MfGiTnGgf9VIUQSBgQQryJct6mYEdsJDa6Cqg2OuQcjVZoYmX78b0Gq16Odc8gUYquconRSOlDQ2ERYhHh42KgcPFo42KqBE2DeifGj+QMAyEOC9laKIS4Q841ODccMONscjKzTd7yqbZjcnpIMWNQ68R0gxQ77aABedo4dHEIaVMkxibGxCICoEsGlwjLtnAsnVNjWZkiEOIQkcqAEOIOaZpiEFMwfRKvxn19im7Uwe4LCLoKFTZxlUaiZSloHYa1NXbTQVqqgIain13aFIhw0UkwDIv/+tPjjAwPUcxanBrLyRSBEIeIhAEhxB08z8MwDJRSBEGAY9sE3Rq5vj6azSZJ0GFUaxEaDpYKMLUYWw8oqQw76TAeGTJ4JFiYhsHY2DAP3zfFfRO5g35qQog3IWFACHGH22EgTdP9hkNJkqCUotVqEccxBikZYuj1JsLUYjJ46FqKRq/r4Gx/wuDkSe4ZzTMx4B7ocxJCvDUJA0KIO3ieh+M43D66xPd9NE2j2+3i+z5pmr7px4XYhDjktQ75wXH+0Vc/TCHrUM7bMi0gxCEmYUAIcYdut4uu6yil9qsDmqbR6XTeMggA2IRkdZ/84DQf+9BpZoYLEgKEOAIkDAgh7uB5HknS2/oXRRFxHO//+e3YRsrvPDLCIx99goGCVAOEOCokDAgh3iAMQ6IoIkkSNE0jiiLSNH3bigD0Djb6+Mc/zmc/+9kPaKRCiPeKhAEhxBt4nke328W2bZRS+1WBN5NgEigbm5Df/tTHefLJJz/AkQoh3isSBoQQb+B5Hp7nMTo6+pbVAMMw0KwMK50BfDI8eHKcxz/28Q94pEKI94p0IBRCvEGz2SRJEgYHB9+0KpDP59F1naaXEpDlzD3j9A1NU22HBzBaIcR7QcKAEOINKpUKjuNQKpUIE52uyhKrXhFxcnJyf3eBo4Wcu2+S/uFpRkqOtBcW4giTaQIhxL5WN2J+rcHkSImfv3qZjXQCnwwuHp96oMTSepVG2ySjmfz2pz/OR554nFonkj4CQhxxmrrdVUQIcax1/IS/+PECL5y/RlYPsLxVNpIxHAJSux8/COmQRQceGNP5Z//tZ8ln5H5CiLuBTBMIIQDYafjMr1XJ2wk1T6GUYqhgki2P0wwNGpQIcbDcDIXhU9Q6b99zQAhxdEgYEEIA0G1soQU1qu2EjOZzemaQP376DP3pBrbq4tLFNF0GyoPMDGdkjYAQdxGp8Qkh2N7e5vrVixS8ZSb0lJNTw5y59wRXLvwcrb1KwZhkeGCA+06N81tnynIEsRB3GQkDQhxztVqNn/70p6ysrKAij5nhfqbGh7h8+TJbW1tYusYXHh7kwx+XFsNC3K1kAaEQx9jW1hYvv/wyi4uLRFGE67oMDw+zvr5OvV4H4EMf+hBf/vKX0TTtgEcrhHi/SGVAiGMoTVOWlpaYn59neXmZNE0plUqYpsny8jLtdhtN0zh37pwEASGOAQkDQhwzYRgyPz9PtVplYWGBOI7J5XLYts1mpU6lmeBoBg8/eIZnnnlGgoAQx4CEASGOkVarxcLCAlEUcfPmTXzfJ5PJkCQJYaJzrZbHU4OcGCvy9Bc/J0FAiGNCthYKcUxsbW1x48YNdF1nfn6eSrVFoPfR7IQ4jsPC6ja+yjBazjI6c0b6CAhxjEhlQIi73O31AdVqlWKxyJUrV1jb3GU1GqHR1hnMFfE3F7BUzMnJfgYn72W05EofASGOEQkDQtylOn7CVq1DvbKKlgSMjo5y4cIFVldXUVaerucyUjKoNEIczeDjj9zPp558Us4aEOIYkq2FQtyFOn7Ct/5+jRtLFQbyGl95YpKrl15hcXERwzAIE42KfoLVnTZm0ubzDw/w1d/9gqwREOKYksqAEHehjd02519bZKTkEhklnn/5It3dNSzLIkkSBkoF/M3rjBHz6MP3SRAQ4piTMCDEXSaOY7ZXb5I3QyK9TFrboKXWsXSdOI6xbZutrS0i3+OJh8/xpS9JEBDiuJNpAiHuIkopbt68yerqKolmsdsMae2u45iKMAxJ05ROp0MQBDzwwAPSUEgIAUhlQIi7ytraGs1mE9M0qe9U8JtNMrZJHCeEYYjv+4RhyOnTpyUICCH2SRgQ4i6xu7vL1tYWmUyGa9euEYYhruuiaRq1Wo0gCEiShHvvvZevfOUrEgSEEPuk6ZAQd4FOp8PS0hKZTIa5uTkajQaZTIZMJkOlUsH3feI4ZnZ2lq997WsSBIQQbyBhQIgjLooi5ufnAdjc3GR9fR3HcSgWi2xsbOwHgZmZGX7v935PgoAQ4g4yTSDEEZamKfPz83S7XbrdLsvLywCMjo6yvr5Os9lEKcX09DS///u/L0FACPGmJAwIcYQtLy+zs7OD7/u97YJRRKFQoNVqsbOzQxzHTE9P8wd/8AcYhnQUFEK8OQkDQhxRW1tbrKys0Ol0qFarxHGM4zjYts3i4iJRFDE5Ockf/dEfYZryoy6EeGvyG0KII6jZbHL9+nWazSbNZpMwDCkUCiRJwsrKCkEQMD4+zh//8R9LEBBC/EqygFCII8b3fS5evEitVqPZbOL7Pv39/fT397OyskK322VwcJCvf/3rEgSEEO+IhAEhjpAkSTh//jxbW1t0Oh263S79/f1Mzd7Lz64s0mj7FItF/uRP/kSCgBDiHZMwIMQRoZTi1Vdf3Z8GaLVaDAwMcPqBh/jhlSYXKzl2jFn+wdf/BNu2D3q4QogjRMKAEEfE5cuXmZ+fJwgCms0mQ0NDPP7442zVPFYrHSaHCtx79nG6kfxYCyF+PVJHFOIImJub4+rVq3ieh+d5jIyM8Pjjj7O+vs722jrTI2OY+ZOM9buU81IVEEL8euTUQiEOucXFRV566aX9XQNjY2M89NBDbG5uUq/XmZ2dZerEvdS7MeW8Tc6VfgJCiF+PhAEhDrGVlRVeeuml/QZC4+PjnDx5cj8YTE1NcfLkSXRdpgaEEO+ehAEhDqm1tTVefvllNjY29oPAzMwMSZKQJAnDw8Pcc889EgSEEL8x+S0ixCG0vr7OK6+8wurqKlEUMTw8zNTUFK7rYhiGBAEhxHtKfpMIccisra1x8eJFbt26RRRFDA0NcerUKUZGRgjDkFKpJFMDQoj3lOwmEOIQmVtY5ueX5lhduAlJyPj4OA899BDDw8OsrKxQLBa555575PRBIcR7SsKAEIfEjfklvvn8MnPLLRzKPDFr8IlPPEGxWGRhYUGCgBDifSNhQIhDYHl5mUvXl1ipdMkYIUZmmEc++iDFYkaCgBDifSdhQIgDpJRiaWmJGzduUFlfx1F96MURHrl/hoGCLUFACPGBkK2FQhwQpRSLi4tcvHiRSqWCpmlMTN/D7OmHKDiwubZEqVRidnZWgoAQ4n0llQEhDoBSiuvXr3P+/Hm63S6u63LixAkeeugh0jRlYWFBgoAQ4gMjlQEhPmBKKV555RUuXboEQD6fZ2RkhHPnzqGU4tatWxIEhBAfKKkMCPEBanUjvvuD59jZWKTclyWfz9PX18cDDzyAUoqFhQX6+/slCAghPlASBoT4gLS9mP/3u1e4crPL+MAMU30J+azNmTNn0HWdhYUFyuUyJ06ckCAghPhASQszIT4gr82vst2IuG92jE5s46cWp0+fxjRNCQJCiAMlYUCID8D29jZhe4exssNWzaPPSXj4gZPYti1BQAhx4GSaQIj3Wa1WY2VlhXIxx8luhZIKefTsKQaKOW7duiVBQAhx4GQ3gRDvo3a7zY0bN3Ach2q1SqfT4fTp0/T19bG4uChBQAhxKMg0gRDvE9/3uXnzJqZp0mg0aLfbnDx5cj8IDAwMSBAQQhwKEgaEeB9EUcTc3BwAnU6Her3OPffcQ6lU2g8CMzMzEgSEEIeCrBkQ4j2WJAlzc3NEUUQYhlSrVWZnZymXyywvL0sQEEIcOhIGhHgP3W4c5HkecRyzs7PDzMwMg4ODLC8vMzg4yPT0tAQBIcShImFAiPfQ0tISjUaDJEmoVCpMTk4yPDzMysqKBAEhxKElawaEeI+sr6+zs7NDmqZUKhXGxsYYHR1ldXVVgoAQ4lCTyoAQ74FKpcL6+vp+RWB4eJixsTHW1tYkCAghDj0JA0L8hhqNBsvLy/trBAYGBpiYmGBjY4OhoSGmpqYkCAghDjUJA0L8BjqdDgsLC4RhyO7uLqVSicnJSTY3NxkaGmJ6evqghyiEEL+SrBkQ4l0KgoCbN2/i+z61Wo1CocDU1BTb29sSBIQQR4pUBoR4F+I4Zm5ubr+hkOu6TE9Ps7OzI0FACHHkSBgQ4teUpik3b96k2WxSr9exLIuZmRmq1SrDw8NMTU0d9BCFEOLXItMEQvwabjcVqlarNBoNDMPgxIkT1Ot1CQJCiCNLwoAQv4bl5WUqlQqNRgOAmZkZms2mBAEhxJEmYUCId2hjY4P19XVqtRppmjI1NUWn05EgIIQ48iQMCPEO7O7usry8/IYgEAQBIyMjEgSEEEeehAEhfoVms8nCwgI7OzvEccz4+DhRFDEyMsLk5ORBD08IIX5jEgaEeBvdbpe5uTm2t7eJooixsTHSNJUgIIS4q8jWQiHeQhiG3Lhxg83Nzf1KgKZpjI2NMTExcdDDE0KI94xUBoR4E3Ecc+PGDdbX1wnDkMHBQSzLkiAghLgrSRgQ4pfcbiq0srKC53n09/fjuq4EASHEXUvCgBCvo5RicXGRxcVFOp0OpVKJXC7H+Pi4BAEhxF1LwoAQr7O6urrfarivr49CocDExATj4+MHPTQhhHjfSBgQYs/W1hY3btzYP4Hw9nHERzkIVBohL83VqTTCOx7r+AkrOx4dP3nbfxNC3P1kN4EQQK1W4+rVq1QqFXK5HOVy+a4IAv/rXy+yWQ8YLTn8w6em0HUo523aXsR/eH6dejfhnpEcX/noCADfeaXCVj2gP2fx4VNFJgZcOn7MYsVjdjjLUNE+4GclhHg/SBgQx16r1eLSpUtsbGyQzWYZGhpiamrqSAaBSiPk1naX2eEst7a7LG41yeoR61X4P7/zGpHfpVTMc2uzy+JuQtYxWdpqcWbMpFzMcvHmOoV8jivLTa6tVHHwubLSQrP7GCll+Eefn0bXADQmBlxyrnHQT1kI8R7QlFLqoAchxEHxPI/z58+zuLiI67qMjo4yOzvL2NjYQQ/t11ZphPxP/+4SVQ9mhgv8g0+P87996yrbzYjx4RKt3RWMuMNKMEyYaqRoGEQUzITfnm5gEvDc+gBdlSVO4WRfl8WWQys00EkBnbwZ4lgGfYUCH763xKfPDTMxkAGg2g4p520JCEIcQVIZEMdWFEVcvnyZW7duYds2w8PDRzYIALy2tMvydousmbBZt2l6Mb97FhY2Az7x4UG+//Mut6qDpOseFiEhDhYpxWSDoNEgdAroUZt+y6NBjp0uqDjExCDExSbAiyFKYsK4zg8ueOx0UibLNnEc040MRkoOn36wjB8lEgyEOEIkDIhjKUkSrly5wtzcHIZhMDo6ysmTJ49sEADwqsv02THd1OFEyWF2OMvNnYT7hmCkoPHRGZ1H7p/hX/7lRbwopai3mLWW6KNGtxXRafhYdhl0gwm7RYEqW3EGlRukEQboaUQ3tkg0Gy9JMZIE11BcuFnB0OGR+8ZYrnj8+Y8X0U1HgoEQR4iEAXHsKKW4du0ar732GkopxsbGuPfeexkdHT3oob1rjUaDbm2drz1c4tZWi997+kMMFW1upCm6rhNFETEm33t1Bz/WMEn53AMZPvzA0zz78+vcWlpjJR4nih0KLjw8rhHsdBkqR3SSiOUoR9vswyGlz6wRaS5+mPKTi2uMlbM8et8wlUZI5DfY7YY8MDvOcqXL//3dTSw3z9RQni8+OiSBQIhDSsKAOHbm5+e5ePEiSZIwMTHB6dOnj3QQALh8+TK2bfPwuXtJvJco2CnQq4Douk4Yhqw1dS7M75AojYAs/+Vynb+5PE9MlpjTpOhoxPi+wXNLMGSO8Niwzupqm3pgkrcaeGkR3bAZzWts7/roqkE5dw+/dX+ZrY0VVJyyHoxQaQUEnQadIOW+IZPV3d5CxAenChIIhDiEJAyIY2VlZYWf//znhGHI5OQk999//5EPAru7u2xtbXH27FlyuRzQWxgZkuHGtmK83yQMQ0pZC9KYFB1Q6KQEOGikpGgAKExApxbqBFE/zZsN6skoIS7tMGbY9Xhs0iKjNbFSB488GT1gfmGegSyce/g0HT/m1asLZEct1vx+Nuoxa9tNfhAELG11+cy5QZk6EOKQkTAgjo2trS1efPFFOp0Ok5OTnD17lpGRkYMe1m+k4yf86MUrmHaWU6dOEYa95kJrlRbfvFDn+pJOyY35krdCX95l3NykFuVQaDhagq0CQmwMUiAh2fuVkGISqZh24hDiEGESYVFPHdYDi1MZjz988hQ31+q8stDk7y4nTE6MsRls08cuJ0b6uOeee+gGKd95/gpXdzexAp0LrQE2dlsYlstIyZGpAyEOCQkD4lio1Wo8//zz1Ot1JiYmePjhh++KIPBXL6zw8s2Q+2en8EJFxrYxDIPFis/CegeCJtUkx2uLVcZzHSa1TQYME10lYOVYCwZok8cixManyhAxNikGOVqYxLTpg73KQTtUXFiJsWaneGZmmh+/8AqrFYdQh0ub21gG3Dee5Z+dnSGKIq5fvYxqrjFWzGH3DbO1scbu7i6f/ug5tuoB1XZIzs0c7AsphJAwIO5+nU6HZ599lp2dHcbHx3n00UePfBAAWNv1eW25gaPFdBOHajtkajCDaZoU3QhXC2iRYbzP5tH7JzGSNpubm5hagFIK5RikoUFRNalSBnRcQhQeKTYmCQ4BA1SoMUiERYSJFkfMV1L+7C/+mp2dHbxokgYmCSkkCYtbHn/+gxucKjZRfp2TMxMYVpUba3OMUEWV72O3FTFScijnpaOhEIeBhAFxV/N9nx//+MdsbGwwOjrKRz7ykbsiCCxte/z5s2vMbQYkUZZMbpMbV7a44rW4desWjcvX0L0xclqB6f4sfTmTrfU2AJqVoRtoGH4HlywtCmhoZOkQai55GrQp4uIR4DDANqnSiTGpM0CMzma9w6V6kyoz+LiAQgNiLBphyt+c32HADvnt+wxeXV1naScg1bOMDz/I17/4ELZlypoBIQ4RCQPirhVFEc899xzLy8sMDg7yxBNP3BVBoNII+Rf/+iILtRgAA435tV3yQZec4dFqtWiFFmFq0qfXqbXzNLwcjUaDWBlsJxPUY52M7jGkbVDSqlTVIL5yMVVEjiYeWTxcslqXPq2JR54tNUKvXalOgskWkwS45GnhoZOjQ4SFT44YRSXU+dZlj4QcKQUydAmbLj+8XOePPjkuQUCIQ0ROLRR3pTRNeeGFF5ibm6O/v59PfvKTd0UQAJjfaLFR66CjAIMEne2wxEsbeX62O0ol7qdUyFHOQ6RlyOgB3cY2zWaTQNl0UxdHC+imLqlmUNBbjGjrWFpMhM0S9+KTxSBlSNvE1QPK2g4OATYhGgkpOgkGKTpdsmTwKdDYCwspCgOFToiFS0CKiUcW5ddoezHV9p2nKAohDo5UBsRdRynFyy+/zOXLlymVSnz605++a4IAgJPUcWkT0k+vPK8RYVBXOXa7Dq7xIJbjM2ksUEpDPnbqLJ1mh06ng6tb5LSAZpLFTVrY9C7KqWaQKAODmDZDWAR4ZMmkbfpooqmEHB1CHBIyKBQJvfd38OijTpltOhRIsEjQMfDQ0fFwydEir3cZGZgmnzFxLakKCHGYSBgQd50LFy7wyiuvkM/nefLJJ498H4FftnjjIqf162ym46wyjUInQSPBRiMhSTV2uiZ9hkbe8ClkbUhyKKUwtJhhYxvbdNCSBiE2KLAJcfFo0gekhNjEmNziJE4aYRKiE5MCGgqTEAWYhOTo0iKHQT8GETY+XfIkOCggQ4eSXmcqU2N9Cy4HHqWcJdsKhThEJAyIu8q1a9d44YUXcF2Xz33uc0f6rIE3EwQBN2/exNUDBthhNx3abyKkoRHiopPSbwdYiQ/0uhA2m02UUqSaxXKnSDtxCRnBSUMydBjT1xjT1yikTQLl0qEPUMSYpFikZDEJiXG5vc3QpYWBosIwKTptSoBGggGovQqBhouHl9psdV26SuG2K2zVZ2VboRCHiIQBcddYXFzkRz/6EZZl8fTTTzM+Pn7QQ3rPXb9+nW63C0BG8xikQoccOToMaFt4Wp5S3mK2mKG+G6E0jTRNaTabaJpGpGXopg4GCT4ZMqqLr2UIsclqXWw9IJt0UUCHwt7cvwL0vSDwi2VGARmSvUZFCo0IHZ1or5uhtve+ig5ZdFIyToaMU2BwuE+2FQpxyEgYEHeFzc1Nvve976FpGl/4wheYmJg46CG955RSvPjii/t/N7WYCWMFT2UADVcLGXAbGBikkSLdO6QoTVPa7TZKKSzl4eLRJYuLR4yFpcJeEyKtN12Q0bp0VQ6bgBgLhUbyJmuNFToRwF4lQO1NVRjEr3v/XjDQdItHzs6wuVvnU+eG+ej9MkUgxGEiuwnEkbe7u8u3v/1t0jTl6aefZnJy8qCH9K50/ISVHY+On7zp45ubm2xubt7x71U1yKqaZi2dQrN6ZfdOp7P/eBzH+L6Ppmmo2GdMX2PKWGJWu4GthUTYrKtp/NTB1GLK2g4uXYbZxiYAQCPm9vTAG5mA2nss5XYo6Om1ONbQCPQ8z19v0edqfOT0sAQBIQ4ZqQyII63VavFXf/VXhGHI5z//eWZnZw96SO9Kx0/4zisVVrbbTA7l+NJjd14w/+5Hz9FOXGxCTK3XY8BTWXbVEAl6rzeACskREkXRfmWg2+2SJAlpmpKmKbd/7JVmEiuLCJumKhIqi0m1CJrW2zmgOfSpGg3KKMAnQ+/+oXe336sA2PQu+joaKdrefwYRoKGTADoF00fD5N7xAoWs9QG9qkKId0rCgDiyPM/jG9/4Bt1ul6eeeopTp04d9JDetWo75ML1ZcLWDs3WKA9PO9w3Vd5/fLXS4vvXYoJ0FlsLGdeWcfWAROkEOKi9S3OUKhRq/8JvmibNZnP/77Ey2Ugn8MlgqwCdBI/eNEODIr56gCxdHM1jiE1qDGDunW5oEfXaEaOjk2IToUiI9noKOIRoRFgoIiwK1BnUKtSdU+iZMkU34ZFTgwf3Igsh3pKEAXEkRVHEN77xDVqtFk8++SRnzpw56CH9Rsp5m/4MrHs5BvM6lbUFslqX8fFxvFDxP//Zs+ykQ72mPipFKbjXWSVjGslkYhQAACAASURBVDh+SILWW+oXh2iWhqZpJEmCUmo/DAB7xxFlcAgINIchNomVQZMiFjEBLjnVJtAydAmJ9qoDVQYpUcPDRaFToEmITYkKXQpYe70HmwyRAkUtZNJY5ux903zqqY/x6o0NCnqH2YmBg3yZhRBvQcKAOHIanYB/8xf/iW69wZOf+gTnzp076CH9xnKuwSPjCVP5lC9+9iztxg7r6+vU63WsvjH8RMMipE2ePG0MO8uZhz5Ct77F5o1tuuTI0sGM6qSG2VsfoHoVAs/z9r/O7X4CtysDhp4yplYAjTYFUjSalDBVRICJwsQmIEuHFHpfm4RYs8gojwqTdMjTW06Yomk6BSthxrpGXtcwTZORkstkrku5PICmvdm6AyHEQZMwII6Uthfzv/zZD9mq2ZyeeYwzD37ooIf0nrGNlKG8Rj5jks+MUiqVWFxc5ObV81hRjZzhoitw8Si5iu3VeYp5lxl7nW5sYBNiEBPHYBi99QZxHBPH8f7XMLWYMX0NT2WoMsiGmiTYm/dXKIbYokueABt9r93wAFu4BNQok2omFhGj2hoeLttqFG2vH0GEgaMifC1HaBRJ4hZJktDpdIjjmHK5/BbPXAhx0CQMiCNDKcU3v/1f2KiGzE4MkOkfPzKNazp+QrUdvu1JfUmSoOu/2ODjui6nT5/mtddeY1RbZdDNYGgpmWwfjh7SbtQxKPY6DLZab/g8mtabKojjGKXUG76OqcUYJITKQVcxPkVKVIlx8XGwCAiwCHFJ0dhmvDetgEu/2iHUHAwtoY8mGeXRprDXAxGUbmBoCRlTkYa9dQq1Wg3Hccjlcu/LayuE+M1JGBBHglKK73//+2yvLXBi9AH6h6ePTOOa2zsFtuoBIyXnLdvwpmmKZb1xpX0QBGxubpKxdQwjJooiZkZy1OsRoWHQ6XQwzTf+GCulCGLw0zfuPIiVud+TQFMxmkrxyGISk2CSp46PS4qOSUpCQpbe1kMbjxTwtCx5emcamHrMQ5l5ytMPMTTYz8XFJiu7IUNOyHAuZqfdCwP1ep3h4eH36+UVQrwHJAyIQ08pxbPPPsvVq1c5eWKap7/46V95l31YdPyEKystbm62MJKApTBmbbeAa+sMFHrjv101qHdTDEun4yf7z+vq1avUWh6aXSKb0bAijzAMSZIEy83T9BVG4BErkxAbV49IU0WtW8DtNIkJibMWnlugqoao01vAZxIRYhLi7i3+gxb9BGQxCcjgUaRLgo6PS4sSGTxGWaVodhgoFThz5gwf/ehHKRaLJEnCyYtXOX95jm59C13pvVASBCRJIlMEQhxyEgbEoXb7BMJXX32V0dFRnnnmGQzDOPRTA0mSMLewzP/+zZchM0LFzxBGEa6+w7Ur5ymVh3n83CkenjT40dUGK9WY1Q2DkX6dIFfhi48OkbE1fvbqZRa7A8RBgQEMTuZrlMtl2n7MfCNDqOUgahGmEQEZJnev8/j8XzK9cRld9XYQpGhcG32Cn5z8Q/zyBBqKcO9QowiTGGNvl4C2N/+fQ0MjT5sAhxQTjZQUi3IpzyP33sMjjzzCxMQE3SBlZcejnLf50NkzEPv87Gdb+02Put0u2WwW13UP8tshhPgVJAyIQ0spxcWLF3nxxRcpl8t87Wtf218Yd5gsbXtcXm7x4FQeLWrx2vwKr127zo0Nn92kn7Rdo7u3xM7Dokkf3Y1tvrFR5Qdqiw2mUbpNoCzGSglb9YBqO0R1K6xu1emmI+QMj1ZQpK7FjEURPlmqoUM5E1OJHFLl8uDyD/nShf+DVNP2gwCAjuL01kvcv/kC3zr73/Hi7Few8PHIASa/WFFwu3ugQqHTJUeMudd90MByXD782GN89on7sSyLrZ06//ln23jK3Z/+OHfuHLu7u1y4cAGlFL7vS1VAiCNAwoA4lJRSXL16leeee458Ps9Xv/pVbPvwrQ9Y3OryP/xfr9LwEiwiSuwSY9BilBRFhLvX87vXDMjFo02OrhrFJELfO+gn69okQUorYH8txN8+9wp63MHFQ3eHyZshE0N9VBtdLq/GtJMCrUjRT5XJ7St86cK/QgOMX1owCGCoXovjr17+l3iZPl4bfYL0jh//Xlthk4AYkxAHAB2djKU4WY4Jm5v89V/PU61W2ahHrMaTPHruXhbWuiwMK6aHsjz22GMsLi7S9mLqgYWd7XsfvwNCiPeChAFxKM3NzfGTn/wEx3F45plnyOfzBzqeX94N0PET1nZ9/vV3L1L1evfTHi4RI2ikxNhAjMIg2WvJ65DuldvN3q58zSVwRrGSkIybYdje4hOzRb746BCR32JtbQ1dRUzZmwyUXYLWLjl3jBvrAa0kS5EqgeYyqFX41PV/t1/mfzspGr997V/z6siToN0+U6D3SG9HQIS1V8XI0GW0zyC0Mjw8bjCW9WlUt2k0GiilGCkXMfQ+VjYbFOyIxRsrrN1MieMYzcr0Oh2GGf7t96/zzEcnGB7ow3Gc9/cbJYR4VyQMiENnfn6eH/3oRxiGwZe+9CUGBg62a93i6ib/5m+vUwssxsfG+K17Hf7qR5e4XjHoxBqKDIreLoAYHbi9I+B2JcMEEmw88rRoUSRGJ1Y6HT9lttCir1BgOG4yWSyScw1+9PevUm/7dNIMpYxJ1NwgjWMsN09DyxJqCl9lGFA7jLQWGKivvaPnoqMYaS0xUb/Ocv/tZk0Ki5Ap5inSINZtHOUR5U9g5YfoNwJUY5XlrTaGYVAul5mcnCSfz+NHik5k0J/PoadZms1mb2ujXcAnwiHghfPXKcQbnJ4uk8lkyOVy5PN58vk82WxWGhEJcQhIGBCHyuLiIj/5yU9I05SnnnqK8fHxAxuLUor5+Xn+5gcvcXnFpkGJC2tr/OQVDzP1aVMk3L/w97bv6aSke3/qld11IMUgIU+XEW2DhirT2WvhW8yZxLiMFVJynQhd19nYrvL8hUUWusMEyqYbw5SxxUC5j1z/KCt//xolFeJpWcraLv21NV5/j/+rpGjM1K+y2n+GFAOTCA2NjBZSNFpomra3SHGN1K+Tt1OcjMXU7CwzMzP09/djmiaGYaBpGrVajXq9jhcE5PN5ZmZmaP7s1f1Ohy4eyzeXGcqfZWBggDRN2dnZIU1TwkQnMTKMlnPoVpZG6HDPWJ6h4uGbEhLibiZhQBway8vLPPvss/i+zyc/+UlOnjx5YGPxPI9Lly6xvLxM5LcJGcUnCyS0U5cM8d6GPANQ9OoD3t7KAJ0QixR7/7F+dpjUl3D1gEcyi9z0xkk1iwcnhsiHGzwwnGF5IWJxZYO/fHGb1XqRbupQpko3yREqG9/3+eH3vo3LBJ6WwyHAIqC3VrC38O+dUJqGnvbaB/emMUx0YnT1i6OTb9/hQ4uuZaGrPGtra2xsbKDrvW2DcRzvN0qybXv/7ebNmywsLDCm985CsAlJwpjz589TLpfJZrNks1mU4fDqhkkntgm7c2x1bOzCEKcmyvzTL5+QQCDEB0jCgDgUlpeXeeGFF2i32zz22GOcPXv2QMahlOLq/Bo/eOEyQW2Zth9zuTVKk8LeSnuLBPb68d9esa/tPRISY6FQOMSEe8f8miRMaCu4eu/OeWJmnMpcSD3UcEyNTOSxs7mK53lsNmI26iVcFeLh0iXDmJ0wULCpbK5iaoohbZO1dJoIky3GKTtDv3KtwOsZKqXhlmFvl4BCQyemSYmiamAS44WKEBdHCyGKCIIAwzBI03QvJIBpmmSzWRzH2a8SALTb7d6JiVqKyS9aIUdRRK1WI45jqtUqW82EpWgKx4JG5OKTIZd6bNYDbm13JQwI8QGSMCAO3PLyMj/72c+oVqucOXOGxx9//H39eh0/YbcVUnDB0hLCMKTW8ljZrPPqpSv8ZDlPqGwMpujgkOwd8fv6O+/eGoHexRR6y++65EkxMEiwCdH3lvS5BGQ0D8MwGBkZoeUr/MQmq5qs7xRQWkreVWQyGaqNHVwcPC1HQTUY1Lbo8ztsb0RAr4tgS/URkMGhS1UN8fLQ5/mY9RdkovY7ev6BkeHayMeIyXF7ciFFp8oAg2qbDN7+MccuHkPpJu1Wit2q7ncz1HUdy7KwbRvXdclkMti2TSaTodvtouv6/kmJr9cNUlpRiJF6xKmNR5ZGZOMQktEirNwQoyWH2eHsu/32CiHeBQkD4kAtLy9z6dIltre3OXHiBJ/5zGfe16/X8RP++mebfO+HLzJctPjItI5pGlzYtHhtqUaLEj4uBhEdioD+uo/+5Vn5N/Y8iLF7ZXs0UjRcfPqok6KjGTaOY+B5Hn7UxdXyNJXDVCZlolDA0lPa7TYq9vfv/GNMGqofI0nJaL0gspZMscMQIQ46BXQUtpHw0xNf5cm5f4vOnRfg10vR+fuZZ/DNN2736zUhgiC18TSXlipi4bPLAC1VwCAhq3UZ09cwtZg0TQmCgCAIaL3uXIT910KZhGSxCYmVQYc8jvKoqDFaSR82PjopES4mITnH5B//Vx/GMk1mh7NSFRDiAyZhQByY5eVlrl27xurqKiMjIzz11FPv+8ryajtkYbWKhc9mLWXeDMgVh7i50aZLFo8MCm2vGqC/yWd4/VI97ZceUcRoDLLDCFu0tQIhDlm6WPgoZdJsNrFtm1OFmK1al2knIQljqo3G/kU1wiHUHBzls8sgXZUjr1qUtCodcrB3yY+w0UgJGORv7/1vmN29wInqlbcMBCk6q6XTfPf0P3zT55Wis80onsoR4hJjkqKhAwXqoHqh4fWl/zfjpw7rapoYC0sF1CnhkUUjJsElQQc0LAIMEgLylApF5tZ9fv8TY4e+xbQQdyPjT//0T//0oAdxN+n4vQ5ypq5jm3deTF7/eBSrt33fu9nKygrz8/PcunWLYrHI7/7u734gTYVMXafaBSNbJgka7DQT5jYD2kmGLjnSvTn0X+wE+GW/HFZSINl/TGGSocOovoGjBeS1Nv16FUtP9/fYa5qGaWjEfpPA7+L7Ps1mkziO8VOHjXSSNgW65ACDPE0izSGvtUmUSYc8CQ6QkOCQYpPqFucnPkfRrzDWmu9VJzQNpel749I4P/FZ/r8P/wsi83Yr5xiDGIXCIAV0Yiz0vU6EERYmyV53BIMCTQb0XXTtrasPsTJZSU9QZRAN6JCjSYkEiwSXFGPvddVJsIixSTHodNtEqcn9kzkG+qQqIMQHTVO/fL6peNdun063XvUYL7t88dHhN9zl3H58ebtJKWsQxwndSGdyKP+WJ9ndjVZWVlhaWuL69eu4rstXvvKVD7Sp0O0GQo22z//zny9S21yiroq06CPC5hfrAzTePBC8XrL3vreLbCklahRokGoGLh5T9iYkAZZlvWEe/fZCPF3X6cYWTdVHTQ1SYwCLiHjvrtwkpaxVmNBXAGineTbVKBXGSXjjKYcABX+XD698h5H2EqCo5KZ5eeqLNDNDr3teMTq3F/gpdMDFJ8EkRaGj7UUFEx3FANtM67dw9eBtX42uyrKSzBCSoYuzd7bB2zUa+sV4To0V+R+/cg/3TchRx0J80I7lNME7OVv+3ai2Q9Z2u3RqG1ys2Iw6DU6OF8nn8+RyOartkNWdDptLc1zxTeIoos/0uXWrRCEu8/i5WUql0h2l8vdrvAdhZWWF1dVV5ufnsSyLL3zhCx94d8Gc2zvoqJy3eei+SZ7r+ERNRYLBL68D+NW0vbfenbWGwsLHxyWnOvhahlZkY2gGdhhiar/Yvnf7pME0gpvqAdoUSDBQpPhkMIkZZIMUG1t18VSWjNalZNQx0pRGWsKjeMeIWu4AP7z3j99mvCkmAYrewj2HLhYxmqbh4FGkhqGlaCqmSw6LiILe3l88+Pqx3z4i2U+d/XUBWa0LCrS97Zdvv4qhF7wc0+bMeI6JATnQSIiDcNeHgTdrI/sfn1tkabPJcNHmM/fnKGRtTNN8QyOVt3rrhimNbkLOtfGjdP8YWoBy3ma0ZHNhS2e8bNHn6mxtbbG+vt77eCuDlYbEepYTwya16i7tyMHp7nD+pcvcvPQCAwMDzM7OMj09zdDQEEGs8R9+usFryw3uny7y+x8fAziS4WBlZYX19XUWFhZIkoQvfOELB9ZdsO3FnL8yR2PpAtWmQ4dh0l9ZBXgrvbtbba+jv7+3+yAkQ0ntUmWQUDm9lfnaJqlmoKuEtXSaBiUStF9arNjrXRBjUWGUDB5dTqCn0EeNUW2VBB3zV1xm31y8N+JeKT7EokjIpL5Iqhn7F/fb8nTv/AzK3N9tYKuAHE1Wmdnb4eAxyCY6Cdm9pkNtHO6ssNxuzZQw2p8l5zp87uHBI/X/sxB3k7s6DHT8hG+/tMFmLWB8wOV3PjxKtR1yY7lCt75FZSdDWg+wDUXOSrANhaZp6Lq+HwoMw0DXdXRdJ0p1Xt2wmF9v4KcWrhEzM5Th6YfLzE6Pk8/n+eKjw0zlPdLYp39kiv6cha5C2u027Xabh0fauN0W02P9NPpN8v2j5G1Fo1pgbW2Nzc1N1tfXeemllyiVSkTZCf7ykkmYKC4tVNi5dR4tP04jtDk53sfvfWLySPwCXVlZYXNzk+XlZXzf5zOf+cyBdRfs+An//F99m416SKIMagzuzWX/+nQSDKK9lQYKm5AIkxJVYizyWpM6A1gqpEWRQDkkGHjY1BnirSsRvTv4BIsOBtbe3H7AKA1VIsXc637YO/fgnfUfvH0B7o23tyPBRNFrbWyQghb+ys8SYuOTwVIRuwxSZYAWfWgkeJRoUEZh8Iv1FCm3t2Xqe22ZLCJKrsanHpml6SXMDGU4NSbTA0IclLs6DFTbIddubaGCOpVKjmKySX/BYrTosBoP0qdHNPUStVZIwY755H1Zcq6BYRj4kaLpQ8FR2EbvF9lGPaYVJtgmVDomWtzm8oqivX2DEaeL67rkcjkMO8vlikv8cpX7pof4wydPMjw8zPDwMNPT01h6Srlc5lbk0Z9V6LpOZvT/Z+/NgiTJrjO97/q+xJYRGblWZVZWVW+F7sbSQIMQRYADkiJBjURpTCZxNDLJTE96kWQmPUlPspFMo4d5lPQiGzOZZmxMEoWZoYYamsghQYpgE41GA+hGV9e+5L7Fvvl+rx7cIyqzKqtR3QDZBTB/s7TIqvSIcPfw8HPuOf/5/yVWV1cJgoCjoyOOjo7odrts7abE2QYCRaYENzc7tFRuO3vjocmcaPGV19ZmErFTPE+the3tbQ4PD9nf36ff7/Pmm29+quqCnVGMtGvYbNNmvqgIfBxBX8gDXB5cdRRzHKMXq3kDE4VGWQwpiwETVeKYRUIcUsAkIqHEj+cjTP0ORSEYnM8rDCnPWA0WcZEU/Livch6YTbLZK5kkmIR0maen6hjqETfhZHXgcVjEOATFfggsAhRzxXkUBQNhuv8njzHFJGSD27z2ygv8O7/5VXzHeG6u03Oc468zfu6mCU6y9V1L53AQ0xlnlK2UF5dMlptzXGxYXKhbGCrhRzsByahFe5ggRweoZMxRZ8BbdyN+tB2y3w0p6xNUlmDoglFqEeETJYpeWiZUNrFWoeooNBkTBWNaI8lm3yQLuuwej9i+/S5Hew8Jglx4pt0bIa0qUZIxt7jGpUtroBkMIg3bNqmUPJrNJuVymXDU53Bs5Ta3jGlwTJ85AGQmCfZ+yM79G+zu7qKUwrIsgkTxv/7+B/xf//I9dltjrl1qYpufzo12e3ubo6MjOp0Oe3t7vPrqq7zxxhufyr5MYWgaIR5ubYlmxeC4lxDLaSLwbEmBQKIVLHyLiBSLVbFNXW8zL46oaANqoocmFGPpc8hyIU9sFIS6jzdCmY/hJYXjoUEeZPUiHflxREeFTohVTAlYxFTok9cInEI1MRdLQkBZDDBF8tRX04TEF2M8MQYgwSHBKngIWlEVOBsSg9XlJf6Lf/+XmCuZWIZG1TP/2k3TnOMczxt+5ioDx/2YB0eTM4VJpmz9e7sdLjQrvLpe4fWNOm++2MQVE7qtffYO2ziVBV66usrD0RHSbBHhs2T3qXoTdF3Hr10gOp5g0qMzcTnuh8gkX8GvWgZH0iYYT4go4TOhHbq8F1aoiYxlrUuqQjJZooNLOenTS7Z57/gh7733Hkqz2M9WSMw9QumgskPWVuY53r1PJHWWaha//fUXWFlp4pXrfHDvgDfqB0TCh/E+Kg0ZpceMVAmbiCyJ2GlrHHTu88NbO9Q8A8OtcW/SxJBjfnhjk/8j2uYbv/wllpaWCJO/Or7BNBEYjUZsbW1x5coVfuEXfuHMbadDLT+tR2CmnX/W4wuVlLqIUXOSh1stkrSMREcjRRbeApzB1J8SBRWgk55SGtSFzMlzRZyf9taPafKTfdUy6hwRUGaMM9uH3HJIoCELm+SzPk9ZDPd1GVDDsj1ev1Di8ysO791r8WBkMokTQlGj4nj8+hdf57fe/LeeuDamXgTHx8fcv3+fZrPJgwcP+NGHd+jHYyaWxdEoI0l6HLM44yQ8Omf5STF1QW2uSWcU4zsu5zjHOZ4P/MwkA+Mw44PNPv/oT3bojWMWqwZ/+02fipPf9PujkNsHMT94GDLu7/Od6/P8jmbi2iZfvOzz7/7iChcuXeUf//F93v3D9xBZgKZbiGxMqDwq80PIUlqtCXRH+MYSA6tCw87YWG1S9kyiKEKOQbc05swjgsQlKMamTFICfAI8OqrBgBoKDZ8JQoj8ZqoM+lmJgXTQ0gnHVAGL460YkwXmOeSgB7/zz34fV095GF9kRJWaGXDVOyBTAalKaXBIiEOMxQP1IkYSF+p3CXYYsyB2CUVGSAmdiJ3Nfb75zS0WV9fZiZfoRxqrdZdffMHGMfOb9E8zCCul6HQ69Pt9sixjZ2eHarVKrVbjBz/4wZnPeRqyLENKeSqQJ0ly6ifLstnvaZoSxzFhGM7+9lHvM1EegVxjiRFjPBocMaJKiwViVBF2NSwiEqyiHiAxSDCQlBiCEHiMccVpst20t15iyIA5fnxb4EloxFToMi86tFUeoCeUSckL8raQWLpECUmSRCSF04BCx2aCRcKauM9KTTDOBjQa87zx8jqaErx6waMS1bi/P2R+zuCNDZevvrF4ZpI45dK0Wi2Wl5cRQtBqtXBM+NxrV+kMJrx3/R5Ki7FlQoulQqcgBTJqvs04c2lWLV5c8amXzrUEznGO5wk/E8nAOMz4J9/Z43ff2qIXCGxC+j3FN9s/YMkZEmcaW1GTXmQSKQuBT5CZJJnOKJH8yftHjLbewfErfOewQZbqCHwqSQ8lNHytR9DZ43Ck4TgOuh7QtCIajo9nSA52BXJhgVKphC0mWDLDdHyayREjPMZU6NCgzAgljEIsJi8lB7gkODiGTkuuMkztmfSrKIJNriZn02WehjpmkrkcZGUOWUUiGCVl3H4LT7eQ0mJHXWJAFZ2MGJsyPUJ8UmKGqoJUsCh2iQqS2U5YJ4oOuNveplP0e4+P57lUW+LKSuXUtATwsR8hD+xSSpRSHB0dEYYhjuNw584dyuUy165dIwxD4jgmSZLZ4zSAT3+mgX0a1KeJQJqms9f/aWLa/w6FS4UB81qbmuqBhD41KFbeLhNMcvOgATVAw2PCRfEATeMJFv7J1x5SxmFISJmPlxBILEJqZsxySeeFC5cYSpf93R2k0ImMeVxL50Ip4JVVmzs3r9M52CJULi21iBQ6LmPK2ghSk5qZUTPGOKZgNIqp+BbXygFLtuTCguTqRv0jq0X7+/tkWYbv+7zzzjt0u10WFxcBuHvzA2yVggZXzC027CEZBo7tYNSvoPsNfNviF1+Z4+qyf84POMc5njM898nA5lHAv/juFu/eOkQmSdHxtKjpI2pWRKVSwZm7SDBq0Ah6HA9SGm7KjZ5JNwCl8nDb609o90tMlI5AwyZiXhyjixSUIEoFQaZhBSNMLUPX+xiGQea6dJXB3d0eZRtsA5xJTDUSjJkvbG1lTsxSMUImeIwJ8VAofMYYKiDMXIapiU1AhqDEAJsJXeZJsfAYohMzxmGP10gKpTaDhAyDA5bRMhhSJsFCARkGAkGPOi7BbO47xiQSLpnKRW/GqsREXUahkRQUMmPQ50/e2qF7dYFf+OLnMJ0SnVGCbylMTZIUTnXTwD0N3tMV9/TfJ4N4lmWEYUgURSilCIIgH8ecTPjWt741C+ZSytnvn7bmlSFSLpj7JMLF1RM0JZAyZSO7z0TmI4Im0WzsDmAkyyQYlMXgI0V4DJGyrO1SUy4dNU9fTRhRJS64A09HhobCZQQIxomOPv8Kv/1rr3L95h12sh7VapUXP7uBrhmMO1s4BsiuQ9KVOEmPkhqd0gHIstxYaCp0lCQJjuMwGo1YrvnYBh+p9zAltjabTe7du8fW1hau6zI/P893v/td0jRPhHRdx3VNDCPEdV0+//kXufryq4wizkmC5zjHc4znOhnYPAr4b/732+x3xgil06w6zBkGdTvlc02BkcwRRRH91g7BJCSzqryyUeNzFw3Ee11uHOXGrhddiRdZHI11fEaEOFTo4ogJx2qJsSoR5l5xlMSYZXZRKg9yoyA95eC2ou/iOwYlt4KmbLwsYSB9IMEvZrKX9X3qqg1KYRITKQtbl5SMmGHqkmAypoQjQtbVnaLHmmu+tVkqHPFypFiApE2dvFd9Ws1NkZBhoTFAQxBjoGGjJFgiIsQlwCPCnq1uAQbU+HBcZf+9Dt95/3cZqDmk4VOxUza8NqYmT632pZTEUiPMTExCTJHN/jYtxZ/lUgfMAsWnBSHEKQ2JkxWG6RipYYBtl/A8j2q1imma9Pt9jo+P6fWiUyI7Nb37zO9tiJSyGOKqgCYWUsKOWueIhYJQeHI0MKPpJJQdQZwIDDQ645Q5J2Wc2Xz7L95GizpcXMmrVL7qs7a6Rsdd5MGDBywuLrK1tUW/38cQ6SkPgZOfFeTJQKlUIooiarVaPtHiPr2Hv729jWVZjEYjPvzwQ5RSXLp0iXfffZcoepQQWZaFrut4nscbb7zBnsQh4gAAIABJREFU66+/jmEYzJU/zid2jnOc468az2UycHNnxDv3+kRxRnsQY2spYaYzr3V4dUnwmcuLLDReJEkSWq0WnU4Hs91nEHZRLcX1kc+blxb5yktV0izBkoo0eRF1L2braEJFDlnVtkB3CBOfQHmMKaHQ0JQ6ZcYSYxHgo6mUQPhEykIPJ6QqRWRlInwsQsr0AThQq5S1lA2/zXg0YjddIVA+RpywwC6WcGmpBVwREiiHBJMYnwyNCOtUIpBDkA+vPe1GrQMZER4UvvQBHvusUlJjbEb0KaMQjCkzR6voe+fM7hZNBqpCjEUj7dDJdNxwXFQYHq0sTwrNOAQz97rnAdNgb5omppmfv5PVh8eTFNd18X2f+fl5ms0mjUaDRqOB53m4rkuSJOzu7rKzs0MURbS6o5/42GfBWYer6g5L8oBQ2fhmipZNkGaF1TmDz7/+GVLNods65LgfcrclcMoXWJqzEUlrVnWJ45i7d+9SqVSYm5tjZ2cHTdMolUr0+/0n3n/aZpmeiyRJZsnB9HlPM4nqdDoMh0Pq9Tpvv/024/GYjY0Nrl+/zmTyiCdhWbl4V7lc5s033+TatWvo+nkl4Bzn+FnAc5cM3NwZ8V//o9sMgxTHhLJnMg495l3Jly7pELS4ef2Au8VNZ3FxkYuXXsBrxIwGHd6+O2bvMEF7uMu6+yNKvsdS3ce0LC6UoSYibDlkPLHpjAVKSmJsTJIZ4WlaDgbQVEakLEKqOCpAJ795CpnbvGTkpXiJQYBOiTHDxGYYKjSrTJj5RNKmTxUFrIotJqLERHkoRKFWlzvG5VWAjzvvngf2tBgzk5TJhWBNAlxMJAk2OgkgaHDMkCo96rm1LhKBIsGlTYOa6iAl7PNIYa6utQEIcbHJqw3P4l7308JJIahp0J+u9B/nFMRxPEsOpsHJsiyq1SrLy8usr69TrVZxXXeWOAAMBgO2trY4ODig1+uRprk8b6lUYnn9BR48UNhEJJqPMn1Inwy4zwpDpI+qCwqELtBFjKs3WJyv8sorr5BlGbdv36b+wU1C2SFs3aYrMpYKPYo0TXnw4AFvvfUWly9fzrUxwpB6vc7e3t6Z7ZfpuZo+Jsmj8UHfP1vwZ0oA9TyPO3fucHh4yNzcHPv7+/R6vdl2pmliWRa1Wo2vfOUrvPTSS2ja+bjgOc7xs4LnLhl460aXwSRFqZRxpNEU27zY0PnClQa/+IUv4Hkeu7u77O/vs7+/z48+vMOHbY9eCNWSzyDWGUqDUeLTiktY/RhtLyVCkmIzr+u8XMk4kKu0lGCCjUaKBlTpcEHfOrXqy3vFES4TsiL4SxkRqdyBzRMBqebj6R30LCSUueyslo4plytYkaQnHRyi3BJW6MypYyZcQqIV3eHclFYjK5TwPq6Nr0b6WOUgxSbFwGFEikGGgU5Ci2ZhISsLexiTFBObCBAkOByxSqIMbOK8ciCreIwRKELh4jI+lTD9pDAMI0+wiqA/DfTAKXno6cp2yk1QKleMNE2TcrlMqVSiUqlgmuas7L2wsMDy8jLl8uk69ZTouLe3Nxt/VErhOM4siZBS4nkeS6tVOmrC3e0WlhyjpePZ35/WGnkaHtf0n+7LSfLk9Lg1TeOLn3+NLMu4dUvO9nFnZwff96nVahwfH3N4eIhpmhweHgL5Cv1k6f4kpokA5NWBqbrm0/gC+/v7MzLn7du3sSwLKeXsvaafn23b1Ot1vvrVr3L58uW/dCvqc5zjHD9dPFfJwOZRQG+SoGuQSiPXLXfGlMd73Pqh5M77fz4jLa2vr/P1r3+dBwcj3v7n7yPiHgdtyYgSE0qAJMJBR5FhMA2w46yM0R0RColQkoQK1UI6drGwnT0JixhPTAhx8ZhgEZMqg0wZOISgwMuGrIhthCYYihqaDJBSoZPw2YUJPzzWGCc6JTPF0TUeRssMqOIQYROxyB4gOGSBLk0emd/8pNAJKTFtH4BGh4VCOJci8cgwkUgEOgKHgFjlFYoBPkmhKz+kjMcYX41oagez1sHjge1xTIP1SWnn6e/TID8tVZ8VQE7295VSGIaB53lUKhWazSbLy8uUSiWCIGA0GiGlnLUA5ubmTpWpkySZyT0fHx8TxzG6rlOpVGg0GkRRRBAEWJZFs9nEdV12dna4e+s6jQwWr9SIhjFx4M5W4tPxxZN42nn5ca2W0Wg0C+JpmjIajSiXy/T7fZrNJteuXaNUKnF4eMhkkitelkolBoMBCwsL6LrOcDjENM0zk4Ept2OacCRJgmEYCCHOrAxMSYOmac5IgpVKhQcPHsy20TQN27ZpNBp8/etfZ21t7czr4BznOMfzjecmGfjB/T7/wzfvMyiSgeU5ky9dbfJ3vvZ5smjM5uYm9+/fp9VqzSxwv/3tb2PYPjV7kVbqYyURtoqIcEgxAJ3siaCqM6GEx4RA+DgqmEnHuiIgVQaB8gCFKwIMkTKvt+mrGjWtj6kbbMdLBMrBEhErYgdXBKBgN71Im3kEgro4hv42i06JuZLFpFvMyVsuUrNxstzZzmVElIdZRrNZ9I/bKvgo5MEwn4wHnZhcBU8v3kdDZ4JFhkKny1zhMh9hkZEQkyHIsEhIGaLnanMqYze7yJgyFiEXtE18M8WyrFl52DAMlGYRqTwwmtqjmf+p9sI0wAOzVer0b7quY5omvu9Tr9dZWFhgcXGRubk5hBB0Oh3a7TaHh4cYhkGz2WR+fh7HeeR8N5lM2NvbY39/n3a7jZRyllBOCXGDwQCASqXClStXmEwm3Llzh263i2EYLC8vzxKLMGxy8+ZNoiji1VdfJYoi7t69m2tQSEmqjOK8+PiMWdUfSftOdQee1mqJ45jr16+zuLiI4zgkSTLbN9d1WV9fxzRNFhYWZsddqVSI4xjbtrl27Ro3b96c+WA8jpOaDdP3sywLz/PO7O1vb+eWyXfu3GEwGFCtVk8lAkIIHMdhcXGRX/3VX2V5efnjXpznOMc5nhM8F8nAcT/m73/zFkeD3NBEQ+EFezjHH/Knf1Ribm6OZrPJr/zKr1AulxmNRty/f59bdx+yfdijFD3M9eJsyX62TJx6BEqQkT3BvqcYyjvpHndybGxXXqSjmkigSo8m+2xxhRCX42yei+lDAhxsIiJsTF1hkjGWLmN8KFbdE3xiLLYPe7RFjZIIiJRNFEY4aoQUHj4j6hxzoFYZUilW4VO1tnwl/0mEas5GrkefjyMqpsYxABYJDhEeE4ZU0JGzakhVdZngFxMLua49CALl0maBCDuvNEjYSO+TZcHsdfOVcI1Y86laGRt+B0uXs97/SR7ASS6A67rUajXm5+dpNBqUy2U0TUMpxXA4ZHt7m16vh1KKWq3G8vIy1Wp1Vlnodrvs7e1xcHAwI9NVq1U2NjbwPI/BYECr1SIMQ3zfZ2Njg0ajwc7ODt/97ncZj8eUSiVeeuklyuXyjD+QZRme5/HLv/zL3Lx5k06nw+XLl3Fdl83NTUajEQdDjTbzUPBB6qpFWQyL81xoGhSVgbNaLUopvve97yFlfp4uXryIpmmsrKzMOA6aps0Sn16vR5IkPHjwgKtXr7K8vIxhGLRarSemOKSUTCYTWq3WLBGb+mk8jk6nw2AwoN/vs7m5iW3b7O7uPrqaikRgZWWFX//1X2d+fv4TXZXnOMc5ng88F8nAg6MJ4yjXVMutYDN81WLYGzHoHgH5DdA0zdnol1eeo61v0HUCXHfCFeOQXvsAM96lrNocpAv0qDGZHeIj/fY2ywipsaY9ODUnPlEeE3wkggiLYxYJcAnxsYubeIJ16oZuyBAlcrc6nzEhLoJckW56s3cIiHQfJxtSs1NW/TEHnaOi5aATKpcYh0cBWp7a30+OkxUGwdRcJ5fczf9fRxHhFqp1ghJDNCGJsHNve9EFBF1VJxTuTGkvKAiQsnhmjP3kSne6EpYBY1kCq8TqUhnP82bJgKZpWJY1SwAqlQrlcvkUuS+KItrtNu12mziOcRyH1dVV6vU6pmnOeti7u7scHx8zmeSy0vV6nddee41SqUSv12N/f5/NzU0sy6LRaMwC7Y0bN3j33XdJkoR6vc4rr7yCaZqEYThraWRZRr1e58KFC9i2zfz8PG+99RZbW1ssLS2xuLjI8vIywb0WoitmpsYnKzxT3YEnWghKUevuUR61uZQesfriK/x5JyY0bJIkYX19/cxgK4Rgbm6Or3zlK3zve9+j2+3OdB2mx3zqaigSgMPDQ7Ism/X/Hyf6TUmDcRxz8+ZNIE8OTvIjHMdhbW2Nb3zjG1Sr1Y9zUZ7jHOd4DvFcJAMbCx7X1htc3x6SpJIVL+Bi2cTVfAzDIJYa/UlGGgeEYYeDVo9O0uYwqWNmYyJlE9vHLFYs1teXWVtbY6sj+f0f9hiOd+mwPGsX5Mx5kxYLaFJySdyf3ZQtYjzGjCiRYaGTEuJgEBOREwNdRjgiBDqzNgLkN/pVfZu6agECV0xmf1tQ26Sag6GFZHFKSIonYmSqSFMDRxshNcEEPzeLQRE9UdH4KEyD/lSfPuNR8D8ZkAQGiiZH9KnnhEZ0XEIyDDJ0NCQ11WJAlRiXY7FU9Ld3Tvndu0yoc0ybJgJJidGpla6u6yyUPOJEpzvxmPcEvqXo9/sopfB9n2q1Sr1ep9FoUKvVTpWqpZT0ej1arRbD4RBN06jX68zPz+P7PnEcs7e3N+v/p2neolhYWOAzn/kMlUqFbrfLzs4Ot2/fRilFpVLh1VdfZWFhgU6nw/e///0ZEW55eZkXXnhh1qufchOmvfnLly9TqVRm+1er1fjSl77E97//fTqdDpqmEYYhX/vya7Tf2uVgKM+UKD45/y9kxsXN97h07x0qw+P8k3wXhsBrmk78ua+xc+2X2NY0pJS88sor1Gq1Jz59Xde5evUqDx8+ZHV1lSiKsO2zrx/DMFhcXKTX6xFFEd1ul+985zvUajWWlpZYWVlhOBwyHo+5desWk8nkCV6E4zhsbGzwm7/5m0+dQphiHGYcdse0OiNu7I5ZarhsLNVYbbjnAkTnOMdzBKE+bQm4Asf9mB8+6PPh9ojRJKDuZFwudeh2u9xo+4S4zHnwUj3i+1sp2+2AIDXRZYBJwqq2ScmSj4hohsOhushxUuZwkpe4I5xZWDSIsIi5Km4ypz9aQaXK4DBbZJOrM5b/ZW5iaBJbBXRpPtO8+eMksum/a+NDLm++w8WHP8COH5XUO/4S71/6VfYuXmPPXOOIlaKv/2zVAZ14NvEQFaqIuZlOgiwsdU0SGhygCYFFREkN6VInxiHEpk6HSSFSlBTPWWAfKQxWta3chOexY3ycX3ESQghSpRNjszjn8fnXc0liKSWNRmM20z+FZeV69VMin67rzM3NsbCwwNzcHEEQsLOzw8HBAZ1OZ5ZULC4usrq6SrVapdPpsLOzQ7vdJoqifBqgCHK+73Pv3j0+/PBD+v0+tm2zvr7O1atXGY/H9Pt9HMeZKfNJKVlZWWFhYeGp7Pi9vT1+9KMfEYYhg8EAx3FoLl3kW3/+PWTYf+r1oScRX/rO/0mjtZmfq7M20vJgaf0n/y1bq9dm+/Piiy+eOR1x69YtpJTMzc3x7rvv8u677z7xeWlOhZc2ViCL0DSNq1evUqvV2Nvbo9frEccxk8mEMAxn5ziO49n1W3EEn3n5Kr/xG78x41z0ej16vR79fn/GVxiNRgwnMXcGNdqRzXE2R4qJBlxe9PkbrzX5rS+f7YNwjnOc468ez0UyMA4zOqOYIMr4vXeO2Nt5QCI1vno1bw382Z0EUwUMY8FaOWR3UkKFPcbKQ6mMMMzQNckL/iE1K5fKzbKMKIV+6vMwWSPAQSelTJce86SYgGCBfS7p90/dtIeyzG35CgodQcaL2g1cEdBXVY7lEgYJUhhc0B4+ESDhSdZ4UxzQjyt89Yf/kKv730MJgfbYaZ81CDSD61f+Bv/PS/8xkfCZ4CKLfc0xXennJVuDmAwdnajYShLiIRHYRHiMAA2TvB3SFIc4IpwF71DaDFWVkSoT4TCkQoiDSUyGQYU+NdE9M/F5lmmCkzBNk3q9ztraGnNzc9RqNS5evEiWZRweHnJ0dMRwOEQphW3beJ5HHMezlWocx7ma3dwcFy5cYH19Hd/36fV6HBwccHBwwHg8nr3PhQsXmJ+fJ0kSPvjgA+7du8dkMqFSqfDiiy9y6dIl2u02vV4P27ap1WoMBgOCIKDRaLC6unqqXfE0PHz4kDt37jAej2m32zSbTQaDAQ8ePDhz9FDIjC//+T+m3t564jo4E0Kw+t//Qw5XXmZ7exshBGtra1y+fPnUynw8HnPz5k1WVlbY2dnhz/7szxgOh7PPal+uEuGxVLe5Wu5RKzl86Utf4vLly0CehL3zzjvcuXOH3d3dWTXg5PXsipAXqn00GT8hKy2lnCWAQ1lhrHyGqkwobdqqMdvPZsXiC5er/J2vrXBx/ty58BzneB7wqbcJprbD1+/uoquEduxyMPZwtZAkCrCIaFQqdKMSy9WMmtWnEyUMjRKeSumHBp3MI81MJgOXL1TuM1ewo5VSzEtJI9jmeKRhZEMkBkiNLvO5WJAwnuh1m8RU6BFjU2KEScy+XGWsSgyoAgpXBWgqO3NJ9zhrPAsV//a3/x61yVEeys8IANOX0WXKa3f+EGM44nfe+K/QtFznIMVAJy6aAbms8hLbHHKRAVVM8vTARGIzKQh/uTeCSVK4HNp0aeKqMa7YZZR5bKvLZGi4BDNGgYYkxcJnyAXxEFfkvgcoZlWOQHl0ZINY2M+sypckCYeHhxwfH6Pr+iwAX7x4kUajwfLyMteuXWMymbC7u8vh4SHj8RghBJ7nsbCwMOMb9Pt93n77bYbD4Wxevlqt8tJLL83GDVutFt/+9rfZ2dkhSRLm5+d58803WV5e5ujoiHv37mFZFqurq0wmEw4PD/E8j5deeukjdfofx/r6Omma8vDhQ+I45ujoCNu2Z0H5cVzYep9Ga/PZ50UUHPy9/5TX/+U2Gxsb3Lx5k4cPH7K7u8v6+jqXLl3Ctu2Z2NKNGzdOTWnAyWsypD00KMVjxv32jGA5dXoMw/CJUcmT13OgHI76bXShsEgwRHrK6EoKk+1sjb1kCXQTzwLHAIaPKlyGJmhWTIIoYxxm59WBc5zjOcCnXhnYbgX83989YvfhDXY6CQgDLRmSSsG6tYtr6zyIVhnGOkKz8I2EeklnrRKiqZQ/3WvSjh0MEkwSrmg3aRpdbNvGsqxZeTeROrf7FQLpoKuYTEz75WOa4qBg8udeAsdqiQAfg4QVsYUUOrtyDaEkHeYpMUCisSgOmNM6Z66Yp+Nl1bTDv/fnf5fK8AhNPbtAjULwzto3+N3P/uck2CgkqqgKuARU6LKgHXIsl+hTJcHGY4yGZIKPQNHgiDXtAYbI6KsqbbU4Iz+WVJ89LjKmhIbEJsBjgkInwMVlxAo72CLgiFVSzNm5OlZLjCgTKJc6HRJhntlGePycfFRLYTrbX61W0XUdx3FYWFhgZWWFxcVFdF2fEQk3NzdptVqzVoLv+zMpYSEE3W6Xg4ODWe9/aWmJz372sywsLHB4eEir1cI0TZaWlpBSsr+/j6ZprK6u0mg0PpFgjpSS27dvs7m5yfHxMaPRiEqlws7ODkHwqB2EUnz1j/8XyoOjjz08euHv/gMW/83/kCiK2Nvb49atW7TbbTRNo1arkSqdraMxrXYbW43IovFsouAnkZM++VxLRSAg5uwkcKI87mYvMqKGQBZmXcNCPyOfjvnFdYXrWfjlOS40HL7xheZ5QnCOc3zK+NQrA/WSxWLNRq6/TKPZZ++wzXCiKKV9TCT3xkscZyUMUpJMx8p6HMQaem8LXTcwEhObGikGFhE+ea83CILZTVgIkU8KyCY2IaFwqXGMKyIsEbGXXaBFE4AqXRC5xHCEPSPNOQSFLkFIUIwNxsplIn1Wte0nb6wiX+1/ZutPqQ4OPvaNX6B4c+tf8MH617hb+2yufIg5sz22SPAZMRGjXNIWyTxHtFjAY0iCxbK2O5uWqNJnokoE+ITKoUeNAB9VSCGrQnAoQ8dlhEBxwAqxskmxcZiAgKGqMFRlHEJCPCa4lBl+pCJhqozZyKZC0aB1av4e8pXp7u4uu7u7uXpgaQ7NX8DsDGm32wyHQ/r9/mymfn5+ntXV1ZmuQBRFXL9+nVu3bjEYDGZJwMLCAqZpcuvWLb7//e9j2/Zsjv/hw4copVheXmZlZeXUSvrjYtp/T9OUMAwZj8eEYcjFixe5ffv2bLtq74DK4Ohjv74Sghv/03/HN3dGxHFMFEUzn4LZOc6mOher1MUxq9oYo7jwnjrJ8Aw4+dxMGRyolVnVK1AeeiHhbYh0NlUzpEpaXK9jpvyGDB3YbIVgalzM8mumM4rxnfN2wTk+Oaat5nNnzE+OTz0Z8B2db3yhyW475A/eGTEKYnxL48V56I0bBG0fnbQo5SfEWDhEaCpDz2J8BmiaQtMEl8wdiDMmyntC7tVUUR7Q8QmUTcISJTWiKnq0aRKS914lgoZqExXl7+nrTG+GsbTYUpcKtQLBWJXPHKmLsfHVkNce/PEnPjeZ0Pjyw9+j87mLtFmAQki4Ro9VbQtHi1hWj27wABNZIsSlwiAXQyowPYa+qrKvVhAzHwQdSKnQoSHy1WqobHZZR6ETYuXlYRxcNWZEhQgvJ3TSZl47OnOlD484BZkymOAXvAjBuEimnuZtEGcam90SP/ijBxgkedXByKcFSqXcWbDf77O9f8w4FiSTLsGwS5ZluK5Ls9lkYWEBTdMYDocMBgOklDiOQ5qm3LhxY1ZVmMpbT02Ophr709+nVYKp9PHjhbQpJ+CkAdC05D4ajciyDNM0Z0TJ0rD1ia4FoRR2Z5/j4+OzzxnWmToXJ8/x406GzwpN07BF4c0gEzwZMZE2FtETraLp+/hqSICHQVqkAMWorICS71EuuRwPIi4vudRL1sc/Iec4R4HhJOGfv73HTifCMRR/+5c3aFZ/+tfUz3vC8aknA5AnBK6tcdidYCQD+qHBbtjjIJ6jn/kFQS7DIiTGQSjJISv4coBJhKdGuT5eFHGkLjJUJVw9YUU+0hGYBsOOnGPIBhkmEQ62CmbkPYVCBxriCENMx/OYPR8FmdDx1ZgJZTI0DDKkZCr0BzwSl1k4vkt1cvbN+1mgK8nLO3/B9c/8axhmSlT0fC9oD08d18kb/OOrv8dJflX6RUDPkyxBjIYkpMyBys2SRKEboBOj0EkxMYkxCBkxh8eQDIN57ZiyNjxz30NpsyvXCn+EsGhPeEXZ+KO9DaZOkZEqDJ4yWOcBWfao2nO67C1ZNcZ4di5xvLe3x+7u7myGfhrgu93uTEDIsiyUUnS7eRIxVec7SYgDTrUMzmofTLc9KZkspSRJEqSUTygBavKTmztpMnvq3z5K5+InweMaBDopS2KbSLPIlM4Bq6cUFSFvIdTokxWjqxEOU9KroRmkwqVWcXjxgs1vvXk+UXCOp2McZuy2Q0Cx2nDxbI0gCBiPx0wmEzqdDn/8F+/zgwOPUNnEwsPzXH7rzSXCJPuxgTt//QAQrDacU9tOpbujKOK4O+SfvbWD5ja40PR/Lltbz0UyAHm74LMvrbG/sEDJSKhpF/iDD8aYnQiBQYaGjiTExEVxpJaJuIhAYJBSlT0MEvrMEWHTy3RSYEVtEQk3D/pCJ1FmQZJTaIAjIubVMS00JIIqbQTQkgu5yI4asyj2SLDoqHlibBQKmwkSnQSTI1Zx1INTmgPL2i4vH7+FFNrH4go8Dl2lrHc+wFrJnqnEezI5eFqfeFXfpip77KsVhtTQi4qLQUyAR402Nk5h4DSZTSjskZMNNTJKDGYTCo8jVQZ7ao0O8zjFNivaDvMc8zTOwElYxBgk9KhikRJjPl3QqAhEoTTRwnwk7tT5KzwQ4JHVsW3bs8mE6b+nJkmaps00/KcJwslEATgV+KeJxOPJxNMMjBLzk5fDU/Pp2hMfpXPxka/5YyZCHj8OIQQ6Kb6WIYWJLyMmmYNT+HZALrIVCpe6ahPMKhb5oG6UxewcxVyYt/m1z84TJuckwnOcje4w4H/7g9u8vx0hhODVCyY2Me/vxtTTHbzgXu5Yqgx0NoioUXOhO0r4p9/ZJ8lgsWafGbjHYcZOK+Cf/OkNPtieUKvN8fqazddeyPVloihiMpnMRo43jybc6VW5dtXhsGfMWls/T9WC5yYZ8B2dr32mzoOjCRsLHp59mcA+5P+7fsze0QCVpgT4WMQMqRJhkyIwyNXyZFF+TgoqoQJazNNTVaSygAxNZaQ4M8Z8mR5CpdREm1gZJDhM8NlWa4yoYqk8OCYqD0YRHlU69GiQFitmnyGhsjmSi9RFa7ZiT5WOjBU/DXamk4yeucR78ub+NC38qYWukUXcVdcIsckwGRemRikmDY6oih4t1SyEhRRpoalnkO9Lgo1U+hOBJFAeoXKxiAix8RieSgBGmceARSp0KemTJ/bbECkNdVBoIFjoJE9MbjyLtC/wBDM+SZKZsuA0+E9/dF2f+SFohdDPyWA/dRacBv2z2gZTVr1hGLOk4iRazUtkmo7+Eav8syCFxv7Ky6f+7/FzZoh0Jn38NJx8DsB2ts6QMmWGXNQ3nzBWOsthcfooVMyC2iYQLic/nJroEssRbZr0aXCqbIZGpOCdO31MTVFyLVYa7s/lSuscHw9RFDEYDNjc3GRnZ4eHhyN+2K7Tj3R03eAPWgkBNfKwtc7LdLjo9qiXy6xVdHZlCcMpk4UDPtgecGV9he2WZL89YqEsGI/H7B62+fDeAW/d6tIKLALcvDUat1BpCReDlVJKe5jzchzGaJrBhfUrWCtz9COdNd+gZMPuQYs/fL/LMDFZnvvZJ8I+N8nAOMz44/ePuL/bZWnO4Wuv+Hx5XaFLjz9JIxwZMAgFNdVjZ1JCU5Ih1aJikDIp+qUpRlHshxiXGA+tcOV7pNCXs/LbzDOmjKtJNIXaAAAgAElEQVQmM7b8BA+bgJh8vtwgIcLGJ9fqH1FBIajRZsAcEp0Bc4xUlbZq8gI3METGjlxng58OKUo9I7v9LH2DjwqYmgZuNsYmoE8NHUmGQEOyqO3haBGOnKAk9KiT4aHQyAqy5lmjhaky6MgGITYgmKPNqrZFqnT6qoqQGXe5Rkzec34p/RFS6LTVAlIYs4mFFktk6JjEmCRIcfpLNq2+JMLGVNHHIsRNy/pxphFj/Nhqy6OgmAfcafIw9VIQhkuqOdgiRiYBURSRJMkTiQBAajnsXnyNC1vvf6yKkaYkH65/jVQZs/P8eNUHeOoqP5/mcOmoeULlYJDiMmCfCygEY8pUsh6WFqPpGqaK2MtWC3fNkCXjgJIYYojsiWpBT9UfTRooiqaQR4RbOIaeOhIEGVGquLfX5ysvzXHYi85JhH/NkCTJbOU9GAzY39+fqY1OPTNsLcHOeqSyzliaJKfupwKaX+QXXh3R6XSI45jPuC0ybcJwOORHA4cH33uIIwI6793KW8yZxr5cZagq9GkU93YXUIQJjA8nHHVBZQlSCTTdYN6zEPGIWB2QaiM8R6ezO6F7Y4/eRLIZL1NxDDbdBg03wy/5bCx4fymchb9sfOrJwEnBoc3DIePePtfbFpVMY7nhs3sk6A3HgMVaOeBK2UD0THYGgjQZ4zIiw0IgydBRGDyS4YWcZz91AjQ4tbwszGRSBLIg/QkkXerkGoU6RhGMcofBCRE2GRpDahikBDgk2JhEjCjTk3P42pg+NcZW7bH3+2SILe/ZtnusEiCFzrJ4kkE+DQyxtNHJSNEAQYSLQUKGmAXfnKS4Q6BcUixUYYCcYJJhYqiEQDwiq8VYxMKmrnI1w0VtH4Bb8hohHgJJXIgaxdhsc7nwZrDx1IgUA5sJKQYuISE2lohnicx0RDFTOrpIcQlOHdezsuWfddTurO1soWbGRXEm2B76TKSDg8ay1v6x7/3g6ptc2Hr/mb0ppdC42/w810tfxpHBbNx1ojx0MiZ4BMqjp+aeOJ6TScBY+YT4RVvIRTFPgolWfF/2WSaQProEnyFtGiRYKDR6aY1FsV9MzjxKBoayRE/N4YsRASUUYBYmXlPi7yO5bIkmDCxDo1mx+OLLVYJUsFy3z0mEP8fIsmzW458+RlFEv9+n3+8zmeTVwSRJZiqW04SzknnsUy9IqKcxGfe4fvcAPR1he1Xc+hxq0uHw8ACiBlUyYmUxSmwsDTJlEOKik5JhzKq2Pv3ie5EyjC3SIukQUtDv69ho+IwYAZfMCcMUUsfj4qJO91jwoKeRtrv8/Z0BiwtNVusu/9nfvPQzlxB8qsnAOMz45p9vsnM8Zs438A1J4DWoaBF6NuDu1pj9ts96NaEXGayVQxxTYOgaKg2xMUhwUSg0BAkmJhEZNo9KkydXMU/aGYMsPnyBJMUmgZkvgMaYMhqKFJ0AC7DJDX0jrMIYOMEiwkVDcsgqq/IhGnB76U2+eu93fqJzlOom7ealZ9r2rNL54+2F6Qhai2aRxCR4jPAZMqZMikmMR5C5ZJqBScQRq0Ugz10PPUYkWCRYSDRcFSAlTDQPTWWznnG5aA905BxjKsXzTQRpEYRSMjQEuVvlkCouAX01h0RDJ6bOkBWxhSHSQiRpY7afpoqY55hVPbfafbwqctJL4XH8ODvhj9wue6SnMJQuA1XCVRNC8fTXOYlhZYHvffFv8aV3vlkkV0+HFBodf4V/+oX/khSDsZpHKZjngACfBBuHMZnSnthPFOxmF+lTJcWiQo8hZRI8zKKFk39fTGwCxpRIcRGkgF/cMHNtgBiLsSqdOr5Q2mypKwwpM1IVFrQjlJLEWDNxrPzGmzeXDM3gxWWPX7o2x1derjNfsX5u+q3nyDF1xjwZ/KcS5FJKwjCk3+8zHA4JgoDBYMBkMjmTY2OaJphzyMAoEsxcZh3AY8Q4c7kzqPPKnMH9cY1vvbVbfPd76FSK9mbGltrAkSG2CjBI6NBEIcjN4SDAxyeY3c/yqbU8BuiFT0xOgtXYH8FFr8dk1KPdTiHWsOQKtq7TlnV8W+egF/HgaHKeDHwcdEYxD3a7pEGHXs/myxs2n1ku0ShXcK0FOoMJR/GY45HGqqdYXlnFdWxcmXFFO2J/KIhiiZ20i5W7IsQqStRq9pOb9548VIUo6gHyhCFQfsPsEmKR4jEdvRtS4WTfU2EQI4rgpmMQkQEeQ+K8mEyZHodzlzksr7Mw3CoGvj4epNDYXv8cmfFsF5WpZSzz0bPk0xE0iYZER5IgEVjEhCgsRmTo3OcqhlSU6RUtlJAAryBOaoRUkAg8JkDKttpAZholMWJR7J0KxCZJca41dDJWeUCXhSLoGFCsTaefS4slQGKRsMomjhYRSpu76hWGVGeeETrabEwReKSSh8+uXEMWehFnrfqflXNwcjtDJYykjyYyHC2atURyZ0uPOsfPxOBPlcE7S9/g4Zsv8K//8H/Gj/sz98cpMqGhK8n+wov8xRu/ja2nTLBxiIgxOeDijPSpoUiVjkAxooQvctOo3GZ6HolWVLTqGEgEKRIdgcAkxqdDlRabvFhU0Syutt/i9Yd/xHrrOgLF1twr3Lr0ryKWvFlOPVRVxpTRkUgMQmlikGJpiroR4jom+yMDS4akCOZLDv/B15a50PRmCcB5a+BnCyenZ4ZBwtvf/xAtGyPjPPAHQTDj1ky3nzLykyQhCIKnkmsh/25kmoujJ0iZYKYtHJqFOFqCQVwswSzsaEQnDrg96XOc6o/IxMplQI0IB50kv3+pCbGwqdKmp6qABWhopAigyR4jygyoF/9jQTHDlg+Ry5xInUnCYYc7okSMzWLd44vLy0xUmVsHAcMw40LD5VIzv66P+/GMB/e8JwefajJQL1lcu7LC5mEJX49Zqka4ZoTvuLilGlZ1lf/ois5Rb8L/+/Y9/vC9Qxw9QRc6iXBYa+iYhsEoqeBpIXNyl1vHMaOwRoZAoWERFqNzHszaBZI8nJw+fIGkSocm+9zj5UKVUMAZJarcvldn6oWokRLh4zMkoESKiRQG3934N/ib7/+Pn+j8aEqyufGFZ95eCIFt5PPgOav9yW2mI2g5xyKXGyqJEQ0O0VVWJApGQRjUCHDwRVBIG4/wVY89LqGTAAYhNhKNIU7eC1YeddGmLAaz9yxrI5ayPYZUsJiKNtk4KHRiPIakNMiwZqVmHUWAxwEX8NUdxpSKJCcqxufydObkmOIsaJOQzNoMZ6/Wf5wIz8mWw7K2y1CW2GKDllrAUQEvcAMpdCLhUlIDUmyq9GYr8o9qFeRBeoHdxTXe/bVf4bMH3+LLD3+PxeFDDJkQGCU+XP5X+N76N3DLMaaQ2GqIg0s+/JlXo2wixpSQ6GxyhQgLDbBVPlGRqdyJMi/160h0ahwzwccgo06bSDisGXsoJbHTCEOl/MaNf8BX7v2TU5MwLx+9zbXDv2B37XWuf/lvoRkGXgpamP3/7L3nj2Vnfuf3eU6859wcKneFZieyGWfI4Yw40qw1wdJq5dUqAesFbMCAscC+MeA/wIAMv/ALv7LfLfzK0BqG1/AaktcrWxpZ0Gg40ohDzgw5JDtVd+V4czj35McvTqhb1dXNniCRhPcH3K6uWzfVqXOe5xe+ASl0VCSqYlIzAjxRoKDGBDKmXghxAtBCH9vv8D//Xz2Krau8sFbl999a+vcdgWeIWe+Hy74+7We/6MdmOBg3kHx/K+a9jx5hSI+G0sESDrpylgRcBrB9UgghCGKVY67gxnYyDlP3sdSAG/JjTuM5jllBInDSAs7BpqENqBkek9hNR3VJhR+m166betJ0adKSJ5i4KZYlobvGCFQCCviMUzM3NwVSZ/sEkBaTEg/BKYtIqdHSevQnEfrDdzkJatjFJmoUUx8e86/+p29zOtV4MF2hNr/GYs38zI8OPtVkoFhQ+Y3X5+mOazRKBoYaJ65zR23+6J02+22HlbkiL16xGbmClbkyvUnIht3DdUfEfgJpa5k2zYpBrbTE+pqOf0djt+MTQaqml2zaCS0w4UoH58x/kogRHLGCntZHClHqHAhnc8+z+WeGMUiSDo8iIxbYZyRqaDIgROPh6utsH77MWvsnz2ZKMxP3nv8VxpW5Z3780zLuLDQRsqAcEMR6rluwIA7QRIQeBWiExPi4FJGpjkJTPkJXEzbGobzClEKaMcvUKCk5LlGKOIik8th7Lil7xPEaLoUEbIbPlAIGamqfnOgaqEQEKAQUEp0DRQejRC12KQYerrSpiRFXlG2MeHKOpZBt7oqMOGXxE6t+gEiqTLERcYgnLLTYxxcWY1kmECaKDGmKEzxp4mJTSJORCSWKcownz8YIPdnAj5LEIxOFuixCqRKiJgMCReWHy9/k/eVfJU7r9mQBSkYnKhFCJsdWJaLImCvsMBQNQqmkXZeQEXWyZLfNPHY0TBe15FVsxkRo9GmSyW6HQk8oonJKqNjMaX1uPvorfmnz3wCcAzhm/1/eeR91cY37L/+HFKYKS+EpE4qUlCmWAbFaYdGSvDAvQVHQlJD9kz6bB2PaboWBW0KfDNjtBnzhaoVXr1b4LManvel+EkX1WWLWMyJzc33SV1VVEzDsMzxWURQO+wH+ThvbgFN/Hk+pUNentDhk6kcpPfhyLE8otRz4qyvRGaAXI9nQxRRXFPClSYEgwS2JI8LI5JDlHBfmIVCCEcgBC0zwleQ9QqlSkBMcSiQE8wgPkx4NNPxceh6y4miMofioccSEElHaezyLRHMmeYaKICTCoBNWKYcDRiLCQ0EMjxlhsz/qM5IVJto8E1Fh3f58jA4+dQDh+VahysLCAr5aYfrRAyb9h3zQNRjudhiLFpFRY2Oxyj945Ro/3ov58d0dhDOmFfQIJh06SkL3uo5EUS32owUkOjGwyhYhCscsp2qDFy+y5HsPGydtoaYkKs4yxBhBlLIVEqWhLGMMMDDoUFN6eDLZLEw8QsXg21/65/zW3/x3tLq7nzguyFKNh9fe5N7zX/vE4/fTZN+5IiAaUigU5RgHK52VRfjCpMyYkSyRyB4nQrNtFlnnEb5IqDgmAUEKItSIUypnUqtHqPRkk5Icn6uOY6EmbXs5TcE6HhWmxCj4FNKEQMFigkDBR0WgYIgAXbooBDyv32UclygpYwqKP0NzU4mi6AwfITinzPgkYGAm3ytRCNFAQoiOKkMkCgXpMKVIXybI4zgdS5QYJbLXQk3RIgmwdESRGBMfDSFhOd7JxyWQUC792KBDM1W1iCngoiCJUPBJtmlJAOiAn6Lxs3MtwsXkhCXm5SEmUx5Sw6HG2eIl8DE4Yi1lvXQZ0MyPbyLbHRCgY8o2Kh6b4TUEYMsxX7nzr58KbBRA64ff5tvX/hOM+jJv3q5xvQXC69Butznq9MAf0jlIEiFFUXDjCg/iG2kCrqCJGD+MGTrBudf+WTbUv6sN+meNZ918M/rpsz72WTboi4/9WTw2nhRSylzsZzAY0D06ZdobMI1tYikQoUcn1OmzRIBBkckTsTynMknUbcVliX00JUrOc2lgSh+PAkXhUlADRJysb5pIKOAdOYefrtWJiLrIFWczbxRNhNzgY/pxnW3WmVJBEDOlyCFX0msqOTYqIWUxxBIOdbocsMQZZiwGIjTCZH1IWWiDNPHWCHExGMkiMTojWUZXBW7xOcp2iReWFvn+psNxP2Bj3uLq/LMBwT+t+NSTgcuiUTK4ttpA8gJ6NOGKLul22wymp/i7Pv/PcZndYBnf6XPiVzgQJaqaYNU8QZUBSElDDzmKFghREEiG1PI5qYmDS4E4bx0nf+QU70ySBWZWweHMVzUFVAEXOgYKMXMcJcqFcXJvgQnz4oSSMeIvv/qfc/XDv+aVrW+jxUH+rllkLVnPLHHvhV9h5+rrjx0XVVVz5Tzf9zEMg0qlQq1Wy9G5QRDkMrvjacgkEEhvSBRF58xmEiBNAxAcx0ssir0zE6MUINijkfoV6ESKhRL5ObZAI0IiUIjQU53CEDVt7z/emjdSpYYuc5AaIy2JPU5YYSSrqOk8UEuz7qJwUTWT23NQiksIIbAsK12wa+eqposLfhRFBEGQ3qJLxyWz8r0hakp1dAnRMfDw0HEo5ht1SIEGbVwKzHNEKFWmMtG9CIWOLR36NJhQQsdnLIvsynUQCob0iFHo0UzZKwomDiZT6vTw0YkwsBkxpcwUk5jEgzKX8YXk74DGASt0mUvPY4NZ9kzS+JQE6WfWCSgwYZT/LgZe+poJ7iBhxxTwWOg/oOgOPvH61AIXY/seg8Ii++0JtxcslpbnubLYyo//aDTK7aHvHxSTJCv92wqhMWeFeJ1N3nnn4ROr3ydtZhfvv6gZcdn32X2apv3CN93Z+36RG/CnFVJKPM97jAFw3HPZOnXBOaZzsEkcClpxiTHXaTOX2p4raEhcLBqyjSqic8DWCaX8eycu4KJjCslhvIwvbIy0C1DRPTQhCdJTI5QaQ1lHpN0ygBIjPArsx2uPYYMKikeRCWpMSi1XUVKwbFbpg6RCO+2Mpjoa5xhnSactxEz/H5GkIDoSJSmgsAnTjrOBx3PVACdQcEYDvtf2ac0vcHWhyD/95eVzXYHPoljRZzIZKBZUfvONRbrPN/KDFUURp6enbG5u8nB7n8PDEX2ZWBUX4gmjQGcYS3RFwRFVosBFItOWEPRSSd1pipZWkVQ4ZUgzxQ5kfYDZneNsZnTWus1wBwKFIH1ujIaLBAayioNFjM6AEhoxJUagCP7qxf+Yv7r1T3lt7894dfvbFJ0+ShziqTYn1XXev/pN/KUGlvp4ezlb2FzXTXJVpUwcuLgnJ5ycPG580x04HMYrxHqFkt6kURgg3SrF2MGVFuW4zTRORJr6tFAFXFF3iYVOQUlababUkGoy2/cim1NWCFAo06NOhxE1XGFRkIlEcJ8mT5Ib1kRIQ7SZyCI2UwKhY1kmX6x5bIeCjm+h6yVuzil0ul3GgU6rKLm5UMZQi2xsbGAY51tssxXcxZZqbuAThjiOw3A45OTkhF6vh+M4RO6ZfK9GBHiQzg99TJR02/RTQaYEiJQoV3ZpsiOvApICHms8QlUivLhAjMCliEsi6VyVA8bpXD9KFSslCtPU1W+KDSkQM06prAUUBA4T6pdcHQoKgikmUyzO41m8HKjpUUwATxTyZCYDzWpEM5AoJX1mARE8uxCS5ZzwYXuM097iz7YePRUjoYVlNOppQuCx6G/S7LV55+0oF3pSVTXfrHVdz8WfMpXI2Vt2v2EY+XNn1SCfFJclEZ/0//8/PC4z18punf6YzsgHf8R03KfT6TDwTR7I2/gYWNjcULQURKumOCM1GdEhiYiSrqhMzk1NBkyUKnqcnLUXgbueNJjKQmJ+Jk2E8Ih8h3im65lRlpuyjYlLlS5lMeaUBcyUafA4NkigIrEYp2yvpKsrUv4ZCPoscBiHLLHHhOIl3B4VCJjVp8meG6bJeoSKLgSWAdNYsFAOWa4afNy1ePV6BTcQOF7Avd0plhrhei7/7wcDRqHOxmL1MyNW9JlMBuDi+ADcAAKtymuvf4W33lL41aMO3/3RQ/7mXp/BqEghHBBFEff8GzgklUicVvthSnHy0oWXFNU+SUWDEmyAkp4I2eYfp32AMM0CRTrPBZUYhRATN61lTTyK3OUV6nGbABM/ReCH6EylTTduMqCG1BQ+2PgG/WvX8THYjdYT8yQsmpzynPIAeHzOlnUEQqlyEC0TqEUsxWNZ208qrnQRzOZ/fmwTxmWWGzY9J6bZ1DBEg2m8Qux2MAZ7uGHESVjGEh6qWebK8jVWWwV0XWdn/4Sy6zN2RuxPLHaDq6n40hgFB1ud0lRHhIqFKZKW/STqICWUNBfLMDCMUm4sVCgUMO0KH3WKtMcRpnRYYIxtCt6w+kSGYGFhgTdeusrB/j5H3QmrCzXufPhjLKtMpVJhcXExoRv9jCGlzNuc7XabB4/2eHjYZzQaEbgTJpFBFCscsUKJCdNUD8HGIUKjIvqMqRJLgZ8eCw+TSCho0iMxr1LTcyTEo8Ap8+j4VOilAieQJZMJdyLxghhRQSGknNb0LpdJD2fYDJUzk6nZMNMGagKftVKwVJwOvQRQYIyJC6lSZ0hMhIKOy7RQ5lnDs0o0RTunfT4tqtqIl8J36dGiTpuqNgIJ/s9vnQCcn41fnJNnypKz/8+6A1nSkd2X3T+bdGQ/mzWvyu7Lnjv7nhdHDBcT1sv+/6yPm/oxfSemailYhnjq62VUvswnw/f9HM0/Go0YjUY4TiLfnf0siqJzniK28JgTA6ayzJ5cY0wZnYAJRfbjK5TiIQesEpAl6clKGqNi4NKXTQJMHAoEsYGKiY7/GNsICZZwmcoCtjLFUkNUkRzXzII7Z/UIi5oYsKQcIiWM4kqaWDgoMtHcUGRELFR0PBrilLEsoaaFocmECCWnSseIRFAtVvPE/PHI1pyMoXb2GDXtMghilmyXL60JNhbrGIbOeDPk44cnVIyA//1kF1+a1Itwc0HjdCRYmbM+U4Jbn9lkYDYmbsSfvHfK9977GCMe8/oqKFqBH2zBcXuIIXyqHNOnnqLOdeKcEgKks+wzAKCWzo0SA4w4HwlA9ofV8CniMKZCiJqS3yR6OuM1U/ZpTBGfxEgpMWZJGAx6CobTpUdfVhhQzcGI0zSLVWRSn02wAI0xFdzYoKCcn7N9/cUyN6+t89FHH3Fvt0usVrCFjxfbKIUqFSM4Z74ThiGqG6LYRWK9xpeeq/PrX2xxetrmez/4gP5kl4WFKl+9vsb3d1WEblNSpqyWunjOkJHjc29Q5nQUYqgFIt3GQCMIJL6wWCzGfOG56xiqZDgc4vs+g8EAI5pSrVap1xeo1+vYtk2xWMQ0TabTKb1ej6t2hxXbpFE2kMEKw+GQYrGA6/Y43tznT3c+oNFo4IVwb+qydGWDlcUWx8fHHB8f02q1aLVaKIqSdwMuegI8y/eWZXHr+jori2PG4zHD4ZDhcEinPyEaDBhHJiU5BkG+8TdEm0hqTChh4KWMhSla7POImziUCFExcfBTznKG5leIaLGPRoM+dc5GAAniRKRqi1NMikxSAuDF6b28cLssEvCTyM9HkSezEQIdgYVHk30UEeJLnTYLTCmxVX6Rk/I6rdHOOZrjxVd37TprX/kiz6kwDl5mqaayOl9GaAX6TkTo9BgPOrmgjOu6VBlR5elSyT9rzKLcf964rJq+rKK+LPG4LAHJEoxZuevZ22Xdj1nnzEIhSc5HnuD/+JsTdg47lEyF15c9CobC2BOYwoPIy22tPc9jGkicQIHIJ4jFE7EzkBUeJkGkskei42ExJZIqI1lmQJWAAjFR2jKHfdYQaVV8HmyXbLEhWqLmKpPxQNJXDRnKKlX6GMJDiGT0qciYK+KQQBTQ4ikFXRDHCpY/JZ4MCFUdt1BmSdlH6kWKhiR0k+t4FjR8HC8zokScjvqSxGOfkjLkNF4kIGBKgRIjVGImlNKEXGdIPQWbx2l3OMOFwVlXOHF4TbbNZHysCUBRWC6M2NC26e9P+eGexI8VtqYLjGKboRah6ha/9MVVBo7kxvU5pvqI7ZMJlh7THQWfiXHB5yIZ6I59jvse08ERp55K1DugIxc4iZoUUirXHhuMKeNhMqtCeAYCzH7Vsws7oZeEnJ3MyeIriNDxcVI+vpKeIAXClM42QiVKACsyJkwR8RoJFsCngIGLQNKjSZCK6kYpq0EnII6hwyLT9OTV0vfblxssy918rhZqZezaAkdHR5ycnGCKGAsPadZoaQEbC01uXlvntdde48GDBzx48IBOp0MQDCgr+5i2z2srFSxDYdQ/JRofsTRX56WXXmJnZ4c3l+eoNutsrCwz3/wi0+mU9z7e5f1Bh3p8QqiUKBsK0jEpCoWW6fArz5UIJh3294/wfR/f9xFCUK/XqVQqmGayYPi+z2g0wnVdVFWlVCpxZamFpmkp7kFnPB4zmUwolUqEYUi/32fn4ISHkwaR5nJzrcVbQYCuxIxGI3Z3dxFCUKlUKJfLj7nqwfkZ8pPmyVm1N/sa2Xz0lcGE7iggmvY4OTnhpN9BjRLjnwyYGMfgCYsi42QOGlupkE81nSr6M9LYMQ5lwpSGaRISIXNgUgJRVVJgawLMjPPq/7LIFqXZyEZYWYIh8Skg0yQ2+VlS/YRojClRlz1W1W1s6bEVP4cQBt+5/Z/ye9//b54IIhTAX17/Pdqb2+zKDdRiHbvt8crJFu2ogWq1WGws8WtffYmluXqO88jOk8zaeTYBu6xKzbjql/k7/F3G0yr2nyayZBWejH247GezyUb2NZQqj4I1jsMWMTZiGtPrD3Jl1IS9socmojM2jVxkIkt5QVEU40v1NjIg7YgKo1TMK9NPgSjxH8nn6NlmJVJMC5ydJTL/XkkxRSZe+nqQyLsnVO1t+Rxa5FM3XK7ZiaX32EsosSL2aN3/gKub71DrH+afc1RqsnXtTXbXXsEPz7qDGWh4JMt0aBGl+J/kqNSQUuGK2MIRYyayRISKgqRKjzqnjKhRYEqfBh4mBgGCKGeenR8bJMosiUtL8tOC8EGoXK+OWSzb+L5GEARMJgIn0rAZgtakbGvceXjAXFll68EJ/ZMR2/uSiahx99Dlyzern7qD5+ciGWiUDBZqJvGrX0EJBmiOTXcHCo6HSwGI6dJEMttCzmb7cMYIyO6fjewQnPkQx+jIlIKipBlgYsPrYDNlUezRYw4Xi4oYckVuMSQBwQ1ope0mmKZI/YRwd/bZPAwcijjSTk+pBFFfYJoDF7O5mh2P2XuYVOxCCNZWFpgPfZbX6/zKV15DBlO2trb47ne/i2mavP766/z5n/85pVKJhYV5dF3n0f2P+fG732cwGFCr1fjt3/7tXAN8cXGRXq/H7laPk0OTZrPJ7RurHLoVjvpLNCzBS8twcJIs2r2jPbbudYmiKK9gTNPk6tWrrK2tUalUkDKxBvZ9nzAe8rcAACAASURBVIWFBZrNJpVKBSEEcRwnlct0iuM4aJrG9vZ2/lkWFxfpTlWONwNKeoxHkXJzjivNQu4o2G636Xa7AMzPzzM3N3cOGPbzgriiKGJnZ4etLUG1VODlQoFCoUCv12N/f59er4fneZRw8lPHxGNENQU4+SkYUkmr8mSwFKAhEWmDPki6CvgMaODhQ6qIdp7O6s+co1l3a/a8zSLz3khGXeevhbPOl0x7VsmQy6IedygpYypiQFfO8eH8l7Bf+Rf8+gf/Eill3iGIhYKQMX/y/D/ne+u/y6rcxBM215sleo7F4o1Vgk5As6xx1HN4sH1Mv32EpmlUq1UqlUp+m5+ff+yYh2GYJwxZ0pCh17NbXvWmwjYZSPSic+QsfmTWbfLvMy7Dr1yMbKxwccQw+1VVVaZxgWmopViQAjoeEywUCoTpSHIaF9JzL/kLBxhMsVPzseSMyGbqmaQ3SEaxzQFXiBEEGGkSa86kmuer/rM1NauWxczPgHSgWqHPothjSJ1IKikTp4yFw4AGKj6eb2EHbUYkrf5y2OOf/O3/SKu99djsvjTu8NKP/4T1R+/yN1/9Z/iF0sWjieBMuGuaygsPqRJgsqTsM5BVOnKBAlM8TBbFKcQKHVooSAy8lCptohNSYphihgRTyrlaZ5k+kVbGFB6TyEIj5GgkqBmCSFrYpslaWad7KOhPbSzpYkYT9PEh08GQf3OnRGDOMwwtNNXBtiy2T6ef+rjgc5EMFAsq//CLcyn6cg14mcYPjrm332fYO+Un+8GFxS+Liyfq00I59/9pyoBPwF0TKvTSiyWgoPjnlP5CqeLHFi71lEMfMKZM4pVADmJMLskE0S1lknX6GJQZ4GMkoj5ijCUcLOHkr68rLaxajTfeeIPFxUUePnxIoWBysPOQ69evY9s2h4eHqKrKBx98gO/7fO1rX8O2bba2tmi323Q6HYQQVKtVtre3mUwmrK2tsbKywpUrVxiNRnS7XY6OjojjA25UStycK7Ox3ILIxRuecPLoAb3TQ6SUWJaVb84bGxtcu3YNRVFot9soikKj0aDZbKIoSu477jgO0+k0xzdomkatVkPTNCaTCS+99BK1Wg3Hi4kqp9x5dEzdllxbPZ8xN5tNfN/n8PAwBwUuLy/TbDZ/rkRASkm32+Xg4ADf97l27RpLS0tIKen3+wwGA5aXl8lU1Q4ODtjd3WUwGLAmH7Iln8PFxscmTgGrAjfFpSSiVCDw0NDwqeIyzwEORTyql3yipI90/ty8rGbP7sswL5eNFx5/RoyGKwuoMqIohymWQPLR+te4v/AGL+78JVc776NLn0f1F3l7/XcY2EuUTcFv/do/4m/ujTnqe6y2irz10grvPBhw3Pe4tV7mq19oIcMpg8EgGb90OgAUi8U8ObBtO/97ZS1y276cfpUd89mEwff9c4ml53l5Z8H3/QuskrNuQxiGuSPlRVrhLENldvyQuVTC2Sb+83YsLm7+l0UYhsg4AYaSkn2jVBkvAiaUEEAnLUBMnASwjJLKTfv46FQI0rVKYzdap80cEYkfydnaKdNOVbbJz55L2X1n32tM07FB1jWI0x5pQIExHbmQJiRlEuZR0kWN061XouLKAq6wMKXLN9/5lzQ628kxvnDOZmdzadTmy9/7X3j7H/xnxOrZ9mUJh4ZIBLWKcsCYel69Q0JNrDLAmemWWMKhoYAji2jSp8MCAomOR40uqBolBtQ54ShexpeJf42LjQgjLDHFJKKquvQcjXccDaHqlM2QFaOL6YZUYo3d8Qpb4yq6JljSjplIjZYRJpbkio4bxBRNlYL+6Y4JhPz77MH9AiOjZmweTviv//UdfvF5TZi2uwKuco+xqKeoVZMVZSfntIZSYye+Ske2MPK2WJSCCDVitJR1kFwAILFwaHKKj8GUIhYTimJCQ7TPiegAeeX98ssv89ZbbzGZTHj48CHXrl1jZ2eHdrtNrVbj5s2b7O7u8p3vfIdGo8Hv/M7v4DgOH3/8Me+//z5BEPDcc89h2zbdbhfXdXnppZfY2NigVqvl7xdFEf1+giA+PDzk8PCQfr+P53l5pVKtVpmbm+Pk5IRarYZpmozHYxRFyamOmqad42ybpolt21iWhW3b2LadgwHjOObjjz9GVVVu3bqFEIKJG7F73KNzuMXLt29SqVwuTuO6LoeHh3S7XUzTZHl5mXq9/lMnBYPBgP39fabTKbVajZWVFQqFwmOPy2hz/X4/Txz6/T5jN+TdoxIHXsJpjtCp0MXHwsFOVQAT2F6Yngc6HmWGOGll9HjXKounMf+zrtcs+PUsEh9PP+X46zP3R1QYUKGfdiYMTHyWrBF+qHAc1pBSxVRDWiWF+VaV+6eCOIabK0X+y//oKsA5qdWn0aV832c4HObJQRzHaJpGpVLJkwNN+/mu4SiKHksWLnYbwjDMuxBZJyFLEJ50mx1XzMrsZu85+/3sOX9ZtZ//1S7pAlz8eaLKp3AQrTCWxRSTomPio6Zrip+qdsZpVyChNCfsnsR7ZEqDHleURNZ7FJe5G7+Yj0DPb/gZWFZNR0xnLKv0CKePPxPFmv0+UxpRSKTEVWJK9OnToMwQkJQY5kqCCjHXxD1GVJk7fcjv/fV/+8x/6x+8/tscrb147r4MdJ3hByYUc72DbE11YzMRDGOcS4ofxiv0ZZ0hNazUJO2quE9RmeRYi+x5xHDMEjZTfGGiygApNIQM8y5wgIYpAiJUYqnQS0cQEg2FkJoyZrGqUDKgPQoYUqNeqfDWC/VPVZXzc9EZuCwytsHbH/V48iL6STFLHZyNZKG28Igw0IR8oo594kWgpzK5RXQ81HQsEKVVXYwkEStKFg6DKS4mQSq2oxKxIA4uVaxTFIXpNKmw7ty5k1ekQRDQ6/XodDo5Ovjw8BAhBIVCgT/+4z9GSslgMCCOY55//nkMw8hnswB3797l4cOHNJtNlpaWqFQqeXX/4MEDDg4OcBwnX6hKpRKthSucDly2948pFc5Q1nNzczk/+eTkJK/yWq0Wc3Nz1Go1VPXyk1xRFNbX17l79y7Hx8csLi5SLKg8v97iY+eU4+PjJyYDhUKBq1evsrCwwMHBAY8ePeLo6Ijl5eVzSc6TYjKZsL+/z2g0olQq8fzzz1MsFp/4eFVVqdVqFAoFBoNB3gY3TZcvKgHiyOFoahEgGNBCISJAJ3GH1GY4yxCg0cVCeYpCYhJPSwSmkJqoPB4Z4SsgU4IAkY8oltilSwspNBSlQLlUYnXtOX7tCw2+f3/Mnb0Jqqrw5vUq33qtxUF3ytCJeP5KKedMz3Knn+Y1YBhGDv6UUuaYgcFgkI98ntQ1eNZQVRXLsrCsyz9DBq59WsIwu/lnCcCsYFGWcMyOJ2Y7EbOA1Vnti8vUBLNuw+zPZ39nKSVhVMB1LIpiCjLrLSbjgkT1I6G9irwyj9M2v5LCRlWa4mRmbUkApZKL7X/S4icze4+IIMW8ZKDUjHqdAexk+t4yx1JNsYnQCdAQBISYWExRiLFTYR9P2rgktvCqSPRZvrL1R+fkr58WMYK1zR+yt/rqucJpVnRsRew+JjoWSi0XPHIosST3c1lyO0ok2h2KqZDY5FzBlz3PEB5FOcEXZmK3riSGaHEMj+RNRlRQifBkhIVDlCZbGY4tRkEqKi1xjHQmuP4y4zDAj6b8zV3BW7dq3Fy5OAL5+4nPbTKQxZWWQdHQmPgB58UiPinOWm7nKVohJQZoQIBOgQllMaAuupcq2hn46NJjSJUEL6sQY+Jgk7XOZDorzqq35IQhZx5IlNwy+GJks/CjoyNWVlawbRtN01IUfpFbt26xvb1Nu91GSsn6+jpLS0s8evSI4+NjgiDg9u3bXL9+nTiOOT4+ptPpUCwW0XUd3/fZ3d1lb28PgPF4jOM4hGGIruv5OKBcLqMYNt/b9OlMoGJY/PoXWmysLVOpVPKK3zTNfLHPLEq3trYQQlAqlahWq1Sr1ceq7gTjkGzo2WYLsLCwwKNHj5hOp09c5AFs2+b69ev55r65uUmxWGR5efnSRMJ1XQ4ODuj1eliWxfXr16lWL2vVPx6TyYT79+/T7/cplUozC/0Ja4Mug2mVEokVtp6KrSRnzGWbW3K+/HQxK42dtWkvRpzLCyUukxoFAnwSM6GG0qWh9JmGRQaygUQhEgYrTZsXVuu8sFpnv5OMDVaaFsWC+guTUhVCUC6XKZfLrKys5F2D4XDI8fExBwcHv/CuQfa+GT3wSQlfHMfnRg2X3S7iETJw6mzCcHFEkY0psqRh9rGzo4nsa/baWiQohZJJXKeuTphnn15YZDvcQKYogRptppSBCD+HOetAgEKUCKGlYQmHMj0cbDKiKkCmPxGiUGVIB4Okr5Stj9EMGPuMfg1g4lKnS40OO1zDQ0GiUuGUJWUfHZ9YqDmwMUyVS2MUjuQyBaYsnD54pkQAkqRlvr9FFAmedFpcdGuFMwdSXQaMKFOTFmUxQhMhlupQjfr5lTWLS55Ki5EsU8BjQpkGJ491cR3Fxox9DOnRZj5lKNQoM8RinHf+BBJFRpjxEN22iV2NEBWDCF07AwB/GvG5TAbiOGYwGCRz8GGfL6/D0dhibT5pfb394SmT8GJCEHPRa0CmoBOVKSEGCiE2U+bo0BTHOVo8z6plckIhOecV72Gm0rwePlbaks1CSf+N0ws0Ik4lkjNMgiH8J+rn67rOysoKe3t79Ho96vU6o9Eon8vv7++fo/fVajX6/X4OpltZWWFhYYG5uTnK5TJxHNNoNGi1WhwcHCQiI50O29vbDIdDpJQUCgXW1tZoNpsAeVX/8HCEy4SFWoxmN9Fsk7m5ucdm9Rnav1KpsLq6es67fH9/n729PQzDyBODDNG/vLxMv99na2srHxfU63X29vY4Pj5mY2PjE8+NYrHIzZs3GQ6HHBwccP/+fcrlMsvLywjN4qTv4I87jAcdDMNgY2ODRqPxzFXoYDBgc3OT0WiUUzkVRWE8HjMajWjYkmtmiXuHDiBxKJNpmp8HYP08kbah8ZE8PsrIImHCRIwpp0u9gkLSRi7ZBZqFMnrg4o/HXLtaxbCKvPV8PW9T3lx5cofkFxkXuwaZFsTFrkGWHPwsXYNnDUVRKKSA0SfFJ3UXgiBhFWXJa6b9MQtwne0+ZK5+s0yK7Ot4GiIHkiD08UKfWHExZPK7R2mRMaGCTojNgDZWWqmHqARU6WGJaf7ZNRGyKI4YyWo6DkgMrxIEvgskktUWbmpoFZCJ/2adAYmPRCUxuzplWexTUhLa6CQ+ZSJLGPhcUbbOdTsdbKaySICR6AEQMifbuMJCjZ6uVXFZWOGYWHv2RNog2aw7tBAIurKFJZMNXZFRzgCyxXnNgq5s4VJkQAMJTLBpxaesqtvnXttiQpcmIXp6nAQOBaCUKnqo1Ohgi4hJZHK/Pc8gKgIKlaLJG9cqrDSffN79XcfnJhmYuBH7pwOkN2Q67hNFUbLwX1vnpZcrDKcxjVJSuXz95Tn+h3/7kIO+z1n26kCaSSd5sCAxIk6W6CIDVtjGUqZ5xpejxSGfLV3U2B7KCn1qqTKBSWaMwbmEIJyhimWHPKHvWDiPCbfMCg7FcUy5XEZVVTY3N/M29bVr1yiXy2xvb/Piiy9y586dBO3f6+WL6Pz8PKurqxweHrKzs0OtVsN1Xa5evUocx0wmEz766CP6/T5SSorFIoZdIVaLTH2fk5MT6vVEBa9YLFJQOsyVdcqtNa7MF1md9/KuxPr6+hMrd9M0mZ+fZ35+njhOKILZYn96eppXitVqleXlZR49esTJyQkLCwsIkYgR7e/vs7Ky8syiQ1ky0u/3OTg44Mc/ucM7O5KTYchC1eAff2WZ9ZWFS6mJT4pOp5N3KbIOSDbG6Xa7eJ7Hiy9/kb33++l5Nhti5nZxPPU0TMDFiMnOaXmuo5BIHmXz24RImLixOVhIlFT/wKaoRTSWrvHWm/8B15bK/OWHXY77Hgs181NdjIC8g1QqlVhZWSEIgnyccHJywuHhYd41yG4/jxDVzxI/K9hx9jYrEmYYBsVi8ZwmgRACz/P4yeYx/l6fIhM8zEQBUEyp0KPDHGUcVHwsXGKhUZaJjbogppZiBS7SCQvCoSr7DKijpcToEmMsHExcimKIJgO2ucGUAplORUIoTHAEGiGNVCQtozTGcdKFqoo+BeEQC5VQavn7J+ZFAQOqucy5g0WZEYFuYfqTZ/4bxEIgjZ9u+9JESEPp4MhiYmmcHk8knMpFIqGjyghbjlNDNgsdHykSS3qX+Zz5dcIiVjShpbaTLoQImRNHjGSW/CefLQGdR+kVHyXIsWhIf+wxlgaCCE1RaZRNri58usJDn4tkYOJG/Nt3Dnnn/Qe0Khq/+cYCz19dPZe9V2eKmC/fqvFfFW/y3/+fj+gMXbRownP6Nkd+g15QRFE1lkoRdblP7I2YRgZNO0K6/TyrvxhZi+mixraOTzY/S7zlz4Q5zhb52baauHALzrXxZpMOW3GpiwmmabK+vs6dO3fY2tpidXWVDz/8kHK5zNraGsVikX6/z82bN/F9n83NTdbX1/nGN76RqIqlILv79+8zmUxot9u0222m0ylCCGzbplwuY1hlHjktDntT9GjMjeoQ03QYT0N2To/xxyP+2Te+iFWdz0Fio9GInZ0dPvroIxYWFlheXn7qBqsoSt4RgKRdnyUGe3t7+YjhJz/5CUKIvGLMmAMrKys/zalDrVajWq3ywzu7PDq4m/gj6ItEiv1TJQJHR0fs7e3heV6eCKiqmmM3BoMBGxsbXL31Cs32AfLwI0IMwscQ2UBuRDQrdf2sHQOZtv5HOJTSpENBw2eFbcaUGVFNk1IFL2XFJHVPooUQxfBg54h/h2BtqcG3Xm2hKHwmhE8uhq7rNJtNms3mua7BcDjMuwa2befjhGKx+Kn7A2Qb/EX57Nm4CHZ0HIdOp0O322UwGDAajZLxycSnQI3QqrFoRmyUW4TumKizjYhkXsnWOcUTFiZTpEg27ItgZDibf/upnsA8x/gYLIs9VBGnSqlNkjFqkCISSinqSUMQpl0HiZ7qqhzGCcBxRI3E+2VKWQ4IhZ4XTpni4LLYIZYCD5MKA1rKCZaYsnflJa4+eufZMANC4WjpJlJ5+rl6UcUVkjFJSY4SGfUU/5Wt7YZ06dFigo1DCS2V767JXlq4uTiUiBCEWOxwlUlUTtQPCbGEn4POw1y0SCFMvxqMMdPjEaGiSx+HMqamM544/NkPj9lre/zWlz8dvQH1D/7gD/7g7/1df8o47nu8uzmkZqsMPUFV9wimZ6Y8l110rYrBl2/Wub1W4R9+oUGREWK8R1UdMq93udHweWGjBcGEouqyNN9gfn6ewWBAoVDAMAxKpTMgh4wjXGnhpXoANdHFT+144xQZaxCiEaQXzqwyV2Lok2lan7WLJTohdaWLLpILy6VAT7aSpEMWKGtTnPGIvpsqI6qCubk5RqMRrVYL3/d5++23iaKIlZUVtra2qFarrK2tUS6XaTab2LZNHMfcvXuXbrdLr9dDURQWFha4ffs2L774IhsbG0ylxYf7HviJAchaq4CiwHfvu7y/O8UXRV69Mc/qfJVCmpWbZjIqEELkeATTNJ/aZp0NTdMolUo0m03m5+dzxcKjoyP29/eZTCY5HbHf77Ow8NNV85AszpPJiJNBQKAWUfwBVnCEpiQdjycBGyGp8vb29jg4OMi1FbLPnVEOd3d3qdfr/MZv/AYF0+D+ocPxWEWNxvhxcm6eeV5c7BlkbIBn/Z2ScyjjlGeuhjoeNlOanNBmiYACCirzdkAYaxTkiAIuGzykZQf4osQ0VNnrS7ww5s0btc9cInAxsk22UqkwNzfH3NwclmURhiHdbpfT01NOTk5wHIc4jnPp4M9aZOfN8fExOzs73L9/n/v37+cYFs87c3yMI5+i4rBYUZgzxhC6DIdDROxTEUNKypgSIzosMKJKiEFd6WIpLop4fGPN1heLRKNFEZKyGNFUOkgh6NNElRE9mqmGQXIdZxqWOh4KSmICRIQuAnqyjkcBhyImUzwSj46SmOBiM5ZlhtRxpUVRjNNRQcKKaCgJ5fTYWuX2o796puMnkPz4lX+EW3wyxicTUzqVC7jSoiTGKCJGETFFMaEoxtREH00kAkKutHBEKcXWTBlRTa8thRW2aaltGpymHqVJchSgMqFKh3k6zDGhgpFKgM86I2op1yPTMiiJCR05z5gyPgZRFOP4AkUonI5Cnl+xaVb+/q2OPxedgUbJYKlhcdxXeHnR4LUbBfxp4op2fHyMYRjUajXq9fq5ymCuauSgp7XFb1Cvv8d7772H4zj0O0NE7FEul/Pq9Pr16/nmpqoqvu/zhS98gVKpxKNHj+D9j3OxDk1E1OUpHeaI0TDwaXLIaUqbOS/IkZw6IrX6zQCLKhFVBufwArkGdzqOmI6H/NitECgmDWuBuvMI98MPc32Azc1NpJTMz8/zwx/+ENM0uXXrFgAff/xxDg589OgRrutSLBZZXFykXq/z3HPPcf369RyctXQlYqSdsn00xMRhuTqgNw4JNY3lZsQ01vnBj+/SPTlgZWWF+flE1EgIwdLSEo1Gg52dHTY3N6nVaqyurj61OroY2QikVqsxNzfHBx98gGmaRFGE4zg5/39tbY1qtUqpVHrmKtAd9/n1L7Qo1pfwxm32th5w//59Op0O8/PzLC0tPdZujuOYra2tnCOfWc5m7+m6Lru7u5imybe+9S0KhQJxHPPGSsDhUchpoUHUl0STk1zdzMJhSDXljSfW1+GlGhlPijilrhrYjNEJcChgEOKjM6GSDqM8YgyaVkRBeAyckCJDqkqfulUnUDT2JnCtaTJOKYGfBX30nyYu6xpkI4WtrS0g6RpkWIO/665BhgEYOT7toUelIDA18nHY8fEx/X7qhZFiAi7qF2RAREVR6PQnZ5XtuP/Y+2UgOQcbV551LWcNex7zOOFM478p2zREBytFzUdSQ5MBbVoEFCikNLssFTDwsBmj4SPRKOCixT5D6il1LhEusphSZoSHiUaAh44uk885ESV8YVJKxx5TadGXDZyizXdv/j6/fO9/e+oxlsAPV7/JD+pf50q88xgDK/t9/digzRwSNXEfjQLmlFMKivcYuDBjFEylTVc2GVLOSzYAVaRqsyo0w2N6NFP3DzUVvE+6v2NKac+4h4+RrvUy5XRExBgUdANd0Zn6SVdPIDA0hVAKAilSh9VPp7P1udEZuIzDnLWUe70e/X7S4td1nXq9/lhikD3+/v37fOc736Hb7SKlpFqtIqXEcRwWFxc5PT3Ftm1eeeUV7ty5w/z8PN/85jd59913+cu3v8+DYS2x57ShpAV8OFpCixM/+0V2OeZKih4/y7MUQmr0mWISYiGJMAlocciScvjEEzprYe3HaxSEhyjUWNX2KEV9rvZ3KYYu3doSg9YasZSYpsmXv/xlpJTs7u7y4MEDxuMxkIC0VldX+drXvsbc3BzD4ZDt7W0UReHq1auUy+XHjrOhxmzvH/PvfnDM6TCiZkleXQogdInjmEqlkgMUZzf9Xq/H7u4uURSxvLzM/Pz8z7QI7+7ucnp6yu3bt9F1nQ8//JB2u02z2SQMw1zXIBs7PGl2PJlMuHPnDjdu3MiZBRkQ0HGcc/TIxcVFNE0jiiI2NzcZDofA41r0QRBw9+5dRqMRX//617l16xaO4/Do0SN836cxt0w/KPC/vn3EycCnqAbM2yHjSOXOwxMiFFQR07Ij9icFpqkUcRIRsy5pSTIZpiDUBA2gEFFmiIbHOFU+LAifJbnNfW4ToqMQs2yNcdwQRfqUGLOi7vLFV29TaV3hJ90yUilwpVn4zDin/aIiwxpktzAMUVU1xxlcdr7Mgvoy7YGL9128PwP7ZSyDiRfx9n2PRwc9TBwW2HuiJ8BlUsQX9QWyouAyKeEsLuKZssc+7f7ZBGH2cUJmTpda6ikQUcBhQDMnSVs4ucSxKac85HmyTW+ZHZaVfSARRNJinx2u5Z/hqriXq7cmHdYeR3IZE49pbPL1B/+K1+7830ghUGa2pox2+Lfrv8EfvfRfgKIwxxEb6sMZMHdiCDfFxsNkRIU43bQNXEw81nhISRmfN0q6cCy7cZ1d+RwypWfeUD6inAIk3djkXvwiE0qpEo2a4sEEOhOa9KjRYZerSBKngxgTVIuiAb//ssdKw+SDdpEPDmIOuh6KEJQsleuLRW6uFD81WeLPTTLwSZFVBr1ej16vlycGWcdgtorsdrv86Z/+Kdvb24RhiG3bhGGYV36KovDmm2/iui79fj+f6z08HHJv1MTEQxQqvL5W4Pt7Gj1XYMQOG9zhVC5xygJTCmnjV9LklDXxkFO5RJsWCok/gYGHIZI52mUaA/D4hf7K+B3e/O4fovtTpBAIKRksXefhb/4LNm7dZjQasb+/j+Mk2X4mGWxZFi+88AKNRiPfPFVVZWtri9FoxOLiYoK4v2TTHjkBWwdtAqdH5E3OHM5clyiKKJfLXLlyhcXFxdyXIIoiDg4OODk5wbIs1tbWzo1dniXiOOajjz5C0zRu3brFdDrl448/5urVqznPfzAYMJkkwCPLsvLfbTYR3N3dpdvt8sorr5z7/TzPY3Nzk+l0im3buf5Cs9nkuDOgk1Z3AGNfoWxKSlZCx9zf32d7e5vXXnuNX/7lX84pcZZl5Z8P4HTg8+jYwe0m45s/+VGfH330AENEvLyi8dVfeoO3NyM2D8f0nJhWWSeIoDcOCKMYL4wwlSShnDP6KF6PQ6+BxQCpWJTiNkNq+FiEwmC5HNN3IgzDwlNsXlgp8P5mh1J4hBQKK8oOv/a117lx4wY7+8cU60vcWF/83CcCs1S9i5t4GIY51iDzQYiixD7ZNM38ur+oTnhR4viiXsBFSiDAwNf50VEBf9x5TKDspwlH2uzHa48JnV02B4fL5+NPeg04n4g40mYvWk02ZFlAcN6tJgAAIABJREFUFyGBTPRPVBJUfYKkFzlTocUpUijYcsg2N1IRoYirPKCmdHNevkqELxMxnlhoXFG28iLHUpMEbdudP5ewlKYd1rfeY2n/Y3TfJdQMDpee56/X/jEfld4gTC3GLRzWxSZlMeRULjKmjCOL+KlKzCxYN2MKWKmFso6LQcCKcnl3YT9aZUIRiyl10UUVYSrzbOLHBi4GI6oMqeKnbqQFpiyop8yzx160Rod5YmICLASCgga/ecvhxSuJFsPxWPDegYonLa4v2Xzr1TlWmoV/Lzr088YsCvnKlSs4jpMnBqenp7n0bdY1+N3f/V3+4i/+gh/96EdMJhM0TcP3/bzCzeR6pZS8++67VCoVgkmPAjYuFqVgyOn2XdbRaOllqrrLlbkWnX6f/V6XEzmPh4mFy6LYQ1FgSe7R4gRXFujIeQIMRrJGIHXW2bw0IchaWD4GhWjCl777h2h+smmJdBGqHG1y8/0/436hyGAwQEpJs9lkfX2dRqPBw4cPGY1GtNttwjDk8PAQXdcplUrUarVcx2A4HJ7byLIo2zovX18ClphMJpycnNDtdvMFdDKZ8OGHH7K1tcXa2hpLS0sUCgVWV1dpNptsb29z9+5dWq0WKysrz8wZVxSFjY0N7t69m7MLyuUyx8fHvPDCC9i2zdLSEmEY5u3hdrvN0dHRuSqw3W7TarUeS3RM0+T5559ne3ubbrdLo9EgjmP+9r33+cmJia8UaRR1EILOJKBq67y56mHgsr29zcrKCl/60pe4d+8e4/H40oRqrmpgCpf7owirVEXRXRpWjGrV+f1/8lXmqhYH41N0VaFkaXzr1RZeEDP1Q1xf8t7DAWMvol7U+bVXX6LfPuYPv/2A++0aqqKw/txL7B+fsjfSMaTL6aRAa34RQ1OpWBq6FlPSA2SsUZCTfCS1urqa4jyOGPVViouLz3ah/R1Fpu73SZX4xWo8kySebbtf3MgvbuazGgDZczJL44tWxYqiYBhGjlPJNv6MXph9tuy1PC9Cj2tMtSJl4VLWQJH6uc8w+zs/KS6OCwtKgv24rNIHcivghEkAmogoiICyGjKNi9hygin8HCysKEquJaIXSqjDMqOgzqIesl4cMnE9pJf4l4yjKTtOSCdsIGWMqUSomoUpHcKwiBV7BKgYeAxFHUeWCKSGJdwcZB0LFYszRT+NEEMzME2NdW3IIPCp6i54Ma5d5e7tX+Xu7V/Nj0coNcK4iCUnuCkbzMfkWC4ylDUioWNKlz4JfuG8+VwyjsvqdIfEhXWIjowFG+LhY+JFK+ouU2nTjufYlLcIpIpGgEjBviIFUJZVj0BGVNUJPiYLxpBCrCCnIpVmkngoWCoIRSUWJmEYIsT/x957BUly5/l9n/SZ5X377ulpM253YBbAYnHEmts9icu7W4pxIUUoGMEHiSG+HBU6vuhNcU8i9UBJIb1IokwwxBAlHhWSgrzjcvfu9tZiF1j42TE97W11uS5f6VMPVZmo7ukBBsAMMADmG1ExPdWmqrIq8//7/35f49Hqwk7NIJPyuXs04HeeCp4EFT1sCIJAPB4nHo8zOzsbdQyazSa1Wi0qDF544QVKpRI//OEPGQwGkUOZLMvR+GFnZ4dsNku51sRGjZixuuBgqAqe5xAXh8Q2TdNIOQ6+0yTR34isMavBJKb/3glsCAM6foZWkMFD4oQssj/PgrB1biswPHkmj++g2oN7X28QoP/6z+lc+iYXLizywgsvMDMzgyAIdLtdHMchHo9zfHyM53nIWpxq2+KkXeHw8DC66IUErNXVVaamps49tvF4nMXFRWZnZ6lWq1Sr1egxBoNBVBTMzc1FJkmXL1+mWq1G1r2zs7ORh8EHIZFIUCqVODg4IJ1OMzExEY0/wk6DLMvkcjlyuVw08gm7BqGrIRBZKY/r1MMxSTweZ2NjYxjFHM/R81xUr8vBSYJ2rw+Cym4DQCHW+A2pZJKvfvWr3L59G0mSWF1djUYtZxFaJc8U01yctonHXmQio1FMG2dyN+5l839pIXnqe3OlFH83Pc3/8Vc7zE/E6Q58vvHMDK/cqnNn55i2Bc8vZ6h3HL77bBG710Atb9J0+0j+SFM9WthmZ2cRRZGDgwN832d6evqB3pPzcN5ifl6b/ewiPq7NP/uz4/kB93PxG38fwxFOGA8sy3IUASzLMi4ypqeQjUsY6vAYtHs2m/sVsLs45tBm2vM8bF/E9GRUwUYK3isazusGnF3U00ENY7RL93wXj9MIj//Z53w2EjnmndCzm2RiMhIGlY6P5cfQGC6yjqCRiqkIskHbUTjoGNiCNlYoOBSDbaxg+FwkXLoDga7nYMgemcSQKC2LPpezXaxAIxOXSBpZfN9nMBhuLpROB1XvcinuEDMMJMGn0nYIXJuyW+CCbFMZaHiuSCEZp21L6E4X1zMw/Pdc+sJC1BQSyL6J4DgMbJ9yMIsnp0CGpUwCq99mMBhg28OfD7ujw/AhH3WU9zGURPYZoOEHIi0KvDdqO0vK9UdLuDg8DiO1QJssg5H50DhkwUXCpU+CHgZhcqOEhcDQ5FvFAW8YDHUSJMgIDSzTwgqUYZdG8Agkg5QwNDHK6BYpqUO3C11H5mdbSU4GAj3XZC4fdjI+PXwui4GzGC8MxjsGtVoNSZL49re/zV/91V/R6Qw/EK7rRsz4VCpFLJnll7v7DIKhkuBivEEqZjAYDCgUClHxYJommqYhCML7kntUbBJBkzJT2GijKFKVQWCMIkjOzx5X7d59FemS56IytB/+2c9+RjweJ5FIYFkWkiQxPT2NYRhs7Bzw5m6AJxcopmS+ekHC6rejvILd3V02NzfJ5XJRUE82m72Hwa8oCtPT01HqYaVSodls0u/3o0yEcPc8NzdHqVQim82yt7cXkfLm5+cfSHUwMzNDq9ViZ2eH1dVVdF2nXC6zvLx8z8+OF4LT09NsbGxEcsazOvVxd7twvDEYDLA8k3w8T6vc47mNPyG/+UtMX+Lw4jf4de+bLKR0XvrqNcrlMrlcjvn5+fuy1ptdkzs7dZYvTN534X8/G9/zvjeT1/nSYo7jpsV03uDZ1SLPrk5xUF/m1+tNTnouy1NxlqfibN7dQRMsYmIfH5+zm9FQCrq/v4/jOExOTp67iA93vda5i7hlWdHv3K/Ffl5yYLjojS+A4UIe7tBDTf/ZnzvL4Qjn7eGCHS7e4Y691bV4u6ywc9xGC3pMiQcEQcCRP0Pf19GxmBKr7ztrfxAIgoAq+miCNXpeyj3POzyXzj7/8L4QnmcRF11kwaDfHyD7ARr992KJFZ+BHXA4SNPyEvTRyAUNXCWJqKbR6OL7Plow7GC4gcyRN43lxjBEkzm7jK4MzbMkSRp6gFTee88EQYj4M6LvIPaP6PQk9u1JbDFOXNGJyR4dZxhT7Ik6G20JTfKZTwVk3H38XgWJ4QYrkHT27QkGgYEhmUyJ+ziejBXESMkuXcfADjQMw6Bv+2CkyScVqi0Lqx8bZi4IMMU+Cg7tIIuJHoUH2WioI5lfmNEZo0+X1MhtdpgT46CNyH/BmDPsvVCxEUYmceHPeITcqCAy8UrQwQ407ECiLEwjBt5IjaCjE/DyQodkpsTyhMpEskC7Z7G5ZWIhU0wrtHoe80X90/f4+LxwBj4KBoNBVBh0Oh1++ctf0mq1ovnb4myR2ckCv9k85t1aAg0LR9S5lDpB8zuRU1kikcC2bTRNo1KpRGxhuL9Z0UmQHelyPVwUclRICr2RE9jpC1B4oUs1y3z9R//zPa8jAAbJAr/8/T96T8A2OpnHo4ZVVaUfxLjbLZBPyliBzu98KcmVCwUymQyCIETEwu3tbUzTjEKFstlslDOQTCbPVQmEI4RqtUqn04miZmOxGDMzM5Hcsd1us7u7i23bUWzxB8kFu90ud+7cYXZ2djhnHJktvV8xEQQBb7/9NsVikZmZmXvc7QaDYZclNEIKF6JKpYJfKTP3v/8xUr9JuIIGCLSMIv/fd/87/uA7i1y/PHQvDOE4TpTM2O/3qbd6/PTOgI4tc3mxxO89//BCSM4SasOdeatnRVwHTYZXXnmFGzduYJpmtINdWVnhwoUL0aLuum6UbxEGY4WLargzH8fZHez4v+ExDM1zwq/Pvi/jX4+30N+vzR++V+HvjbfdxzsE488l/LdlK/ymkcTtndD3JC4aFSRJZsucGO60A43L6ROyukfPN7h5kga7jR1oXIxVSMrDEZ4kSei6TjwexzAMNE079Zjji/34sQqf29mF/7z/h79/9+5dYGjJ/eqrrw7jv13wpBjfeOkriL7NbrXPr/cVZMHmsBdjthhnOgVX8z0MVcS27ah71/MN7rSy5BIyLRNmpT0k++TUmCR8TaG82nVdWq0WlmUhiiJHTZd9b4aY7GH6KtPSETYqNb+EqmocmGlULALPZl7aZjZpcXn5Al/5ylfw1Bz//K+2UIIBd3eOmRZ2iCsBu1aJvq+R1jwuZ3vYtsU7xxqikWMiozBntLhZlal3PWS3ywR7UdHW8LMcBPN0IyngMFlhyHdwR0mJCuKoP5OkSZPCqDhQyFPhWrZJJibRaPUQnA4SbvRZrLl5bvPlUbgYDAPnHWREVGFoRe+N1BYiPjmhRjdI0yOOLtrYgUpGbJLPZinmElzK9lmrgpKZ5/Z+l8APyKdU/v7vXmCh9MR06FNDGGoyPT3NYDBgYWGBf/bP/yV3mklMDMyGgDnYY9BqYgjy0NQjGCC4PRzPwTAM6vU6nudx9epVjo6OcBzn1C5ofOYfGVwEBgl6kU2sjIeMjzUqGEwMBkEMCXfk2jUsCtqZScqTq0yU7xJGfIaknuBv/T2ee+b5KAc+JD8OBoPIHMdxHCyvD5bIft/AEKv8+pVj3vnVUJOt6zqpVIp8Ps/y8jKWZdHtdtE0DcuyuHPnDrdu3ULX9cjDIJPJEI/HicVi94wQyuUyJycn9Ho97ty5w+7uLtPT0ywuLnL16lXK5TLlcplGo8H8/Px9w4jg9Ljg8uXLyLLM8fExCwsL9/2ddruN53nRgn3W3c62bTY3N9nY2KDbHe6iJEkacin+7T9B6rciXgYM9c1ps8Zv/fp/IPjePwVgf38/Wvxdd/g+hYE5gZzAV1WWJ2PUOu8v3zu7CI7PtU3TxLKsU7fwe+FifnZnHu6Ow47P+AJ8fHwckSXPLqLhyCcWi0Wt9hBnI33Df8fvP+/r8QX7bAFx3i0k9oWPP94hkOVhOFZ4f/h1+LPjBcj4beAEZN5qcNy2mcwM1RMA/+aNauS+GCoqeqZ37v1h0RSaHjmOEylawk7Th5HSvh+CIOD4+JhSqcT6+npUFOmKxB/8wd9gcXGRH/3oR7j9JhOZGXpeglnqPD8tszKfJ66lIxKx7/vMzs5SabTpqTHalkwpaXNlao5k7CKWZUXEyvCzFF5DxqWZrusST/XQnTy1rkeSAQsj/oHQEjhsu3iuhYuFi0Zbu4A4meblbz1FNmlQbdkkDJXdwzbTOYPfff4bxDWJm3c22TmqE1ht7IFAEJuCRJpLC0UGnsjllQWuuj32jptYHZ9mPcPJyQmuCwMSWCP1Q2juFZYDApChSkBAku4oKlwZ7fjBoI2GxZ1mCutEI6lmmUiLLMYbuGYXy7JQPYeBWeXQzmMjj3gHIioWV+IHxBXY7OdRGHDipnCEFBmhj+DLmL6GKg6DoxqWyuE+NHs6hiazmBt2kK/OxXlhOfPQcj8+Dr7QnYGzCIKA//K/+Z+41cygYaEmC8yIu3jdY3xBwfSHH6RSPhVJ22A4Vrh8+XJkJBKOG87DeKcgCAJM4iRo46CgCMPgJBVrSAYS7u0SiJ7L6q2fML/1Bqpr0s1MUvutf4/u6nNcunTplFzq4OCARCJBPB6PIlxt26bVNWl0HQSni+8MTs1rx3dh4xdtXdcpFAoYhoEgCJE+OtxNGIYROcCFxUHI+C+Xy9RqtUjlYRgGk5OTka/D3t4enTd/jvKXf4J/+3UERSX77b/FxN/5I7SZxej1hOoCRVFIJpOUy2WuX79+X0Li1tYW/X6fa9eu3fO90Exob2/vVHiM4zj4tSMm//Hfu+976AsinX/0Z6QLGVRVjQKaNE2LFifbtmm0+/zFuy2OWzZpzeeZaRfBt+8JsAmPf7iAjy/s48l24fMe/3d8MR//f/gehbu68dM8kUiQSqXOVY6E44BwdxjurscX6vAWkuzGF+pw4R5fqMcX73HL3fvdHhXOkyffL3b5/eKYYXj8wzTRdrsdSXh1XY/GT4lE4iO/HtM0+f73v0+xWOTnP/95NO775je/yfLyMm+88QbHx8ckEgkmZxZY2z7CHTS5dmkJTdOi877VarG3t4frDne7hYkZBp5CNiGjy0NFTWiNHD7uuAvrSXvA3Z0jPLMFrjl8PbKOEsuyNFdiYeECN3eavH7jLr7VoyNmsaUcrqBxaVLAQ+evLctM5RP8YsNmq9xB9C1+//kiX336cnR8LMtifX2dd35zh59tetTcPKlUihdW0vz7L8+RSejR+Rnmqfz8jTv85c0+PTugwhTjAV5D0Z9Dgg4phvLgE/IEiKRpkBaayNjUmEQIfE7Ik6WOqum8vKLw7JXhCPP4+Ji7m3vs1G22e3kabgJBlJBEKEk1ZqQ9qv4kjhgnpYtcyDqoXodyo8dafxpP0mnbOmagoCsSk1mNZy+m8QNOFZqPA77QnYGzeO211zDbNXQ0XDlJWvPQPZeBKKKrEpI1iHY3ocNZsVik2Wxy9+7daL4W7qTHMS79GXpYpxAJ6Ao2Nhox+hE50QskysycayLiSzK3v/Tb3L72LWRRQDWGBD3n+Jjt7W1mZ2cj4qBpmkMVhOMQBEE0h43FYsxMitEiMx7LGi4GYXphuAsNW+twuhU7vkiEC2MymSSbzUbFQSKRIJlMUiqVqNVq1Ot1NjY22N/fZ2pqismtt+j8V38fRxDBH16Yqv/yn1D/1/+MS//LXxK7/HT0uKG6IJlMIggClUrlXOKb7/s0m00mz2HJh2ZCe3t70UIczk1jsRjm0eb7fk7EwKe9c4taqxQx288S4MI2o+2L4CuYosNru6fnzmfDnca/vt9c+YMW0nHyXFgAhhf38KI/PT3NlStXIta8oihomhYt1p1Oh/39fbLZLIuLi6d22p+21e/HwXn8i/vxNd6PxwFENt6hosXzvFORzMfHx1HaZ1gchLyUB0G73cb3fW7cuBHZhl+6dAlN0/jpT3+KIAzDwIIgIHBNYkIfRxlmfGiahmmaUay5pmnEYjGuXLnC5OTkPd4rg8EgCtoK/22325gOrLWSbPdLKF6My7kuhWwyur4dHh3xb97tstvP47PAVCrgP/ubq6hGnDc3u9S7NrkYLM0rHNU6HNT7JFUHV0gyPbNwqlDSNI1r166RmrjIsXbIFWwOGyYltcnGnTaJRIJsNksmk4k6MaWpebSJY16/W6W1eTIydhsWBD4SwiicbhjINBwnCvjY6KiygOYN0IMBAyGOgUUgyEhuh931I9rHm8zOzjI7O8tvf+MlRFHk9Vt7/Ou3etQGAgYmghJjaekyq16fo/oJ2B28loenqqRzRTwvD3IMPIe4NOwYSqLES5ez5JLKY2f//aQYGKHVavHzn/8cWXBZ0CsImonmOgx6zaiF7nleFFCiaRqDwSAKEmo2m5imGVXg44s/EHUD1MDCR6RJngCBRNCkKJRJit33zDOIoQYW1qgzcF6iYSKZxLZtgpHZ0PXr1yMTobm5OTY3N4cnTKl0D7Hr7O4zXGQUZSiBisViZDIZ4L0M+MFgQLPZpNfrnVrswtZ4OI8P/eLhvaJh3OsgLA7i8TiDwYD1t99A+h//AQQBQjDGu/Zc/EGf7f/iP+bK//Xr6AIWjguOj49JJpNUq1UmJycJggDbtqP2ZrVaZX9/H9M0uXv37pAYaFnnvo7x1rfnechmj2+/T7a6Jyms15r4zf65i/X48dRHC6kknd4dhwv22Z11+DPjO+xxyds4se6DdtVbW1v85Cc/wbZtBEGIFDMzMzM8/fTT9z0XstksyWSSra0tDg4OWFxcfKQ79s8DJEmKZMsA/X4/Kg729vaiNNCw5f5BXYOw4xAqYYrFIqqqcuvWrWgk1263o89BKIu2bRtJkiKZbBAE0TXrPIXQeFFTKpUAokLi7bUDDjcrQ8mzUeDr3/kGX14eFj7Hx8e8dWefdwYuiiejaTK+JmEJBk/NpZgvxk91VooFm7d3b1LtiFxZLFFIn8/1ySVUZotxjpsyz17K8s2nsjiDYQBb2MmLx+NRYfA3npvgqcU0P7/d4PZWBV3yQNHpdbusHZnEAhM3kEY2wXpkI1x2csQEPdqAiYEXKR4C1+XkxOTk5IQ7d+5AYpYKM7RtkXg8hS97JFWBrGKB3SaZNFi6cJlEIsHdnWNu7ZxQqw6odX0EyQYEcmkVQ5F48VKa5an4Y1UEhHhSDDDcMf3gBz+g1+sN572aRCwWUK+3og5AuOtKp9NRpb2/v4/v+5imiWEYUbSw7Qkc+VOnXLbCkKMOCWz0ERNAwaSAGehMe/skxC7H/jQ94sOQkMAmReN8ZYGqRjv53/zmN8zNzTEYDKLZvO/7lEolDg8PgfOZyyHJcJxwdZ6MK1yE4vF4dJELNcrhIhw6sIWz7nEDGNu2I3nnWSxs/ho893w+r+8xWHuH//u//Uf08zOn4l3DQsz3fb7//e9Hr2d8YQ9tXcPXP37/+H3jOyVFUVBiRerLX6Gw/jrCmYIgEASCr3+Pr3/n3zm1sx5ftMPb2QX7k95VdzqdqDg9exw+CKGCZGNjg42NDZaWlp4UBB8C4QI7OTkZdQ3a7XakvAm7BmFxcLZr0Gw2OTgYKh7Czk2lUiGRSETKlbAbF94WFha4fv16NCq8efNm1MWcnZ194Oeu6zqWZZHUYHkujytfYL6UYnGmQL1e5+DgANd1WbkwxQtewJ+/08ByA2ZyOoulYZLjeGclCAKOD3d4dsanMHWR6WLqvovhuYqbuEahUIjyScJjs7+/H21cvvdcjm9cTbO3vcFvKmClpjCSDtnEBYpJgYVYi1ffvsVhrc+xmUIfeSD4gjQ0YrrPaXHQT3KrvziSFoKByVevTvLd5yZZndI5qR5Flu8dW+SV4yKWcBE1KaI7Jqoi4fnw3acLPLuUZiZvPJaFADwpBgB455132N3dPbWTDReb8GTSdT3SvdbrdSzLik66UqnE/Pw8P/jBD4Zz+SB+KuEQGugM6AcxbFT6DIM6hlBoEKNLhpx/TI80NiIWCSR8Ksxw0b1NTOhhCQZxuuiiFS3IMJzz3r59e/h1IGH6CrrosLOzc64e+iyx6+z3P0kYgzaBIN6z6I6jcfcmdZNT7epwJBPuksMo23Dn3G63KRaL5PN5DMNAFMXI3lgQhGi+HzLqVVVlYmKCmZkZJicnMf6Tv8vdP/x9em/9AmQZ/AB8j/jz3+LSP/zfEB9zH/+QLxCOBkJexYcpSNLpNMvLy2xsbLC+vs7y8vKTguAj4GzXYJxrEO52NU2LxgnJZJJfv/kubUdFBRKahm3bpNPpKIWzUCjQbDajHf/BwQHT09PRNSl05vR9n2KxSDwef59n+B583+fg4IBKpUI+k+bv/PVZOmaAJtjs76zT6/XIZrPMzMygaRrTUx7PLqVp9z0uzybOJcLt7OzQ6XS4dnn5fUnCIe43opEkKcqiCAusk5MTyuUyvn+IruvMllIEbhUhZpDJTWKoYrQAv/zVpyhXT/hXr5bZrXTw+3VSpoJrStF5EnZ0xcCj7E+wwzLB2DJpEcPQFK7NJYnrEpnEIouLiwwGA/7slXWa2x3mJlWqTZvpvEHf8pjO6nz7qeJjQRJ8P3zhi4FKpcLrr7+O53kRIU4QhIhtHZ5cgiBEM1jP88hkhuSxTqfDxYsXmZiYiC64qmCR0X1a5jDsQ8EmIzQQA4cWObwoslYkNMawkTkhh4uKN4q39RDwiLHOZaTARwxAp8cKt9Dd9zgJ4dx/SE4cdSS8AVPeg+ujPy0MjPT7FgIAV1/+NtryNTKZDPPz89Euam9vj4ODg2ieGo42arUaOzs70S6p1+vxxhtv0Gg0otZ7KAMM/RIWFxeHRYDx3kXo0v/6Izq/+ktav/i3OI7LenwC6eW//tgXAjBs9YbpfWflbh+m6EulUiwvL7O+Pgx2Wl5efiyTAD9LCAm3YdcgVCg0m00qlQq2J/D6vojJPAnZZnlC4fLKIjMzM5F6RxAE1tfXEQSBXq9HEASnTK+Oj49xHAdd1x849nswGESBZqE3iG3bnFQPqDQaGIZxj7lWXJd4avH+6YGHh4fU63UuXLjwQIXAg2K8wPJ9PyoMWq0Wlm3xy9s7JIswX0oykx+er4IgMFXK8be/k6beGQYXW/1r1Go1Dg4O2Dus8G5Vp+NotIMkXTJnHlUkFRf5xrXcPbt7wzD4+lcu8dbRNuWmxWzB4G9/Y5r2wGWxFHvsCwH4ghcDlmXxq1/9im63e4o1H5qowPBNdhyHer1OEATRgnPt2jXq9TrNZhNZlvnlL38ZEX0EzyYfbBEXFXwfDvx5bBRM4liokZvVachYhNX7e9HHMPTS8tDR6NMnQSdIo1O55/WEudznEQ8fB4y3zEOjH/+5bxPc+OG5o4JAELGKs9w1A4xREmLoYBju4lutFsfHx5TL5ei9aTQaJJNJFEWh1WrxyiuvcHR0FO2Ke70eqqoyOzvL6urqPUFLIQRRJPW175D62ncIgoDKr35FpVI55X74uKLf72OaZjTqOUtI/DBIJpOsrq5GUbvjSZdP8PEwntQJwwX5xsYxJgaGaLN45St88+sLLEzcf2ffarUiVQ8MP9/NZjNKM30Q4mK1Wo06FFeuXEHTNA4PDyMi5MLCAvl8/kN9dmq1GkdHR0xPTz+w4+hHgSiK0TEMgoBb2zVerxwxnY9z3LTukfS+13kwgCzz8/OsrKzw69/ssParMm63TcUNB/jTAAAgAElEQVQaP79FZAFWpg1eWM3ypYXzi5piWuU//b0LbFX6n5kCYBxf2DM6CALeffdd9vf3I8lKJpPBcZyo0g6Z2bquc3Jygqqq5HK5iLxTr9dxHIfXXnttpHsdiw0NlGGriXnqFBHxsFFO5VyPPRvCGMz37DTfg4sGCPRJIuHSDtIk/dY9yVtn/czPIx5+VJw1TAklZ+GxDOf34ZhlXPNtGEbEqg7nm6HeX9M02nGfwX//nw/HBSM1QSCKoOrE//AfcjE9weHhIQcHBxwdHbG/v8/i4iJLS0ssLCxErcIwMrnT6bCwsEC5XOanP/0ptVot2g3rus78/DxXr16NEgofBIIgMDs7y9tvv83h4SGrq6sP7dg+CgwGg4ggeR434sMiHo+zurrK2toad+/eZWVl5UlB8AhgGAbThQSllAJ6icmMel+yXfjejptFAZTLZfr9Pul0+lw1zThc12V7e5tWq0WxWGR2djZSR7muy8TEBJOTkx+6GxSalxUKhftamz8KCILAwlSO1QUv8onIJd5/UQ6VGV995iqNoMh+3UQ97HJ7vx/1b//wd+d5din9gQqAYlr9zBUBIb6wZ/Pe3h63b9+OFAAhGSdcOMJFLPRvDz3LQ8nW2toanudFjnNhct64j4AYeKOcbxgQw48W/HF4vBdVO4SEiTcqAIZ4L3RDwKNLjB3/IoIgYNCLfAjOGhydHRGc5xgX3s5avoaL/TiRMByljP8tURQjslyYZBhmBUxOTkbjlFCimEgkKBaLZLPZ9xan/+iP6H7laxz+039M7/WfEEgyPPNNOi/9Hn05gd/pkMvlSCaT0cJfLpdZW1vjy1/+MtPT09y6dSuSwwmCQL1e56c//SnNZhNRFInH41y4cIHr168zMTHxkWbfhUIh8jeYnZ0lFot96L/xSSFM5gsLtHF81KIgFotx6dIl1tbWWFtbY2Vl5b6x0U/w0RG4JpeyHYrTRaYzHVTJZxhpfS9CGXE4OgiVNIIgMD09/b4FW7vdZnt7myAIWFpaQlEU1tbW6PV6ZDIZZmdnP5QcMkS/32djY4N0Os38/PyH/v2Piw/K+3iQ39OVaV653eCd7Q7ffirP1y7nPvgPfMbxhSwGut0u77zzDvV6HdOFvqOiYnF8fBxJcWYXljisdbFcsAdDfb3nedSbXTwpRrlcw+4PtcBD0knsPYfBUat+gI6Eh4hAjD4mMi7CiJASjN3e+7CKWChYI94AY98TCHkGQzVCAj0YsmAHQQxNFtAEi3xcGy3kBp7nYVlWpIgIiXTj8rbwdY1bwY5bxIaFQiiBC2WVoavhMIFLiMKfMplM5F+vjYhPruuSy+UolUqnZvLjSDz1Iqv/9Z+cui90Rmu1WlSrVVqtFslkElmWabfbHBwccHh4GFkkr6+vMzc3x87ODuvr60PHtHicpaUlnn322Xs01h8Wuq5TKpXY39/n6OiIpaWlj/y3HjV6vV6k6hBFMSKMflwCoGEY9xQED8t17wmG6Ha7xDWJ1bksnudFnbCzCGW/pmkyMTEBEJmelUolisXiuX8/CAIODg4iee7MzEyURHoeL+DDIDQP0nWdixcvfmq+FB/kE/Egv/e9r07yva9+ummenyS+cMWA67q8+eab7O7u0rd9ds0SXUchodjM61Vk+ihGks1ujq2myEazR8mw6faSOMis3bRwBR+dNFNiFzdQOPDncZGJCUPjoFA5IOOSooGLPCIDJhAwcdAQAR+J4FTUpoCOjURAgI2HgBuNDUQ0BqRojuw2VUx0jKBHI8gjCClUv0dKapMdGYNomhbJcXq9XuSpPh6/Ot5GDnf54wt/LBbDMIyhgc5IIhiGwKRSKQqFQnThEUWRer0ezdWbzSbFYpHr169/pF10+BoKhQJLS0vYth1FMVcqlYgrEI56BrbPK2/dRfL6GKrI8vIyX//616ML5cNAPp+PQqzC8KfHDaHfQlgAjLd4H8bFWdf1UwXB6urqk4LgIcH3/YjYGo6mtre3yefz5xLwQsOrdDqNbdscHBwgSRJzc3PnFn6mabK1tcVgMIja92tra4iiyPz8/LlR3w8K13VZX19HFMUnypPPIL5wxcCNGze4ffv20JVNSWKaOrrYxxaT9P0urucTI8F+rY/k2VTIU+5KQ/vgUdZVIajSJ8YgMKgGkzQooGLhBjIZ4YSiUOaQefqBTpUrMMoeGC7mA3oksdFx8AmiDoCAiINODwd9NO8f5hV4iBh0mGMLTXBokcUMPOJij1jQoSfm+dKFKXbKJwgqpNMpTNOMvPnDeX6z2cR1XZLJZGQrHM71dV3HMAzS6TSGYUQ+7OPGJ6Gnf6lUOkW6M02To6OjKKchnU7z3HPPIYoi29vb3Llzh/n5+Y9NIlJVNZIWXbp0KfLe393d5bU332V9T8B0DZKKyz/4D15m5eLDb1GG44per0e5XD53x/ZpIxxdwXBxkWU5Kvoe1k5N07SoILhz5w6rq6sfqaX8BKcRFnGqqhIEAfl8nnq9zu7uLlevXr1nge33+wRBEKVytlot5ufnIxnjOGq1Gnt7eyiKwsTERMR5KpVKTE1NfSyViO/7bGxs4LruPbboT/DZwBeqGLh16xbvvPMOlgttR0URHTQGWHIKfJ/1bg6fEsZJH5E2feIEiPhIo118gI9MgyIJ2njB0DhIxaJLChmLml+kIFZxAhmLGBYGKiYmIh4yXdI4oxCNYEQYFEbdAIMBKh4xmhh0qTExctkWUPDokKUjSCi+yYRQphVkaJNFUBJsHp1gBD0GnSqt1tCVMLTs9X2fTCYT+SOk02kmJiZIp9Nks1kMw4hMgWq1WuSzHovFyOVyXL58mYmJiVO74CAIaDabVKvVyAmtWCxGTmkhrly5EsUWt1otFhYWHpo0TZZlSqXSsDi5cI3uj3dYv/kGfV/l9XfvcmFu6qFflEL2t2VZNBoNpqamHiiG+ZPEYDA4FZgly3JkSfwwCwJVVSOVQVgQPG7H4rOGXq8XSZxD0uv8/Dw3b97k6OjolEwwdP2UZRld13n33XdRVZX5+flT77Hneezs7HByckI8Hsf3/Uh9MzMz87HfsyAI2N7eptfrcenSpSefgc8ovhDFgOd5rK2t8c4779D3FF4/VrC8ofNUKqjQRKdNGosYMg4mBovCGjmhRs0vUWNo0ykQIBCQ4gRF8JAEDyPoYY529xJwQo5sUEce5WfL2Dgoo5BLF4fY6G95gI+Mg4KDTh9/lIrlojAggYOKPSISBoBLhpLUxBVj+EEH2x/aFYuSwdNzMYqax9G+HFkUh23/0NDk+vXrbG1t0W63SafTkcNcu92OfieXy7G0tMTk5OS5RiWu61Kr1ahWq9i2HRHzQse6s5AkKdIY7+7ucvPmTRYXFx+6NC+XUFmcyiAKz7F95002br3JX2gOL7300kPVN8NwVNBoNKKL6oULFx7q3/+4CMmD45yP0DArdJl8WDivIHgcRyefFXS7XWKxGKIoRsWcrutMTk5SLpfJ5XKnjm+/30fXdRqNBicnJ6ysrJya93e7Xba2trBtO/LcMAyDlZWVh3Ze7O/vc3JywtLS0gObGz3B44fPfTFgWRZ3795le3sbN5B4t2pQ9XR0LPxAoE+MNtmR/l/AGUVcyoJHUuxgCAMyfp3jYBJXSiNJIrLroQc9DKGP7wfUKRAADjIaHm4gEaeNg4yFjoOKN/IREPHxR5laIhYaFjYKXdK4KHTIYNAZEQ8D3FEXwcABJBwpRV6zmFYVBFOk0TeI2Sc49UP0hRlSqRSyLPP0009HCYKKokSzfFEUI5ONqakppqenI5ldOn1/85Ber0elUokshXO53IdyNsvlciQSCba2trhz5w5TU1NMTU09tF3qe0zgNIOnNP7sXx1x48YNgiDg+vXrTE9PP7THSqVSURu3Xq8zNTX1WLXIx2WFIWlwvAB42KQuRVHuKQgeZ6XF44zQ4Q9Om0NNTk5GI7HV1dXoPRwMBkxOTkakvTDSOwgCjo6OODw8xHGcaFT0cXkBZ3F8fEylUmFubi7ySniCzyY+t8VAz/TYLZ/Qqu5h9dsIgkBr4NPqWugIuFKcuOihqBqBL1EdSIj4iPjk5DbFhIRvqwiOQ1ZokqKLK8ZQRB9bAtkfBmBscYkOSQQCAgR0ehwwPwrFENEZICCg4EQyQ2lUGsi4mMQQ8XBQkPDwERgQJ+xDDPUH4EtxSnKDWa1GKSkxPzPN04kMa1tH+KaJJgscHx+TyU/S6NoMbJ9er0KtVqPRaOB5XtTifumll6LEvsuXL1MoFM49hr7vR17q/X4fVVWZnp6mUCh8JI15uIssl8scHh7SbrdZXFx8aAtpxAQuLOD8zu/wwx/+kLW1tUiL/bAeSxAEcrkc1WoVSZIol8vRRfjTRijvDIOoQk5IiEfF7pZlOSoI1tbWWF5efuyNmR43OI4TddvC8V6I0PhnbW2Ner1OoVAYRqCbJkEQ0Gg0uHr1KoZhYFkWW1tbVKtVgiAgHo8zMTHxsXkBZxGGB01MTEQhR0/w2cXnshjomR7/54/ucuPuAaWUwpX8ADHwqFfLKEIRWQVDabMYO8FJLNINEkiVHvgmetDjry2KTOUvMxgM2Nvbo2d59B0R3R8QuCbyyL+67aew0FFwMdFQsfCQGBBHxqFHDI0BPiIWBiIe7tgoAAQ0BrjIiPh4yAQjNoGGhYuMInhoos9kwuGpgo0hDQ18JicnuXDhAorgUa8PW/G/fusGf3GjRd9XuVN9m+fmoJRLcfHiRUqlEoVCIboYXL58mZ/85Ce88sor/NZv/Ra53Hs6WsuyqFar1Go1PM+LLGlTqdTHXkwEQWBqaopUKsXW1hY3b958KOTCs7h27RrNZpPXXnuNzc1NJEnCNE0WFhbOJVd9WISqglQqFXUHHgdG/WAwiNQe41bEZ8OZHgUkSWJlZeWUdfFHlah9ERF6lYTFwFkkk0lyuRz7+/tkMpnIGr1er2MYBhcuXKDRaLC+vs7JyQmJRIKJiQlmZ2cf+hw/HD/kcrkHtjt+gscbn8tioNG1efPmDk6/zno7hlM9BLvDrjWBFUgYvsmEtwcDl4sTaZQ4LCtVytUGgtuj21C5XR064VmewJ41QdeV0YIB+eCQajBJP4gxwBglZktIo6/aZPERRgFFAi1yGHRQMBkyBRRcBEQEbHRcPBRskrTwERmQGGVwy+R1l2eKbUS3j+q1SRs5stkJms0mt27dYmNjI4obVRSFeGYCtSeTEmxMX+WF33qBxcnzL8aqqvLyyy/z4x//mF/84he89NJLSJIU6fklSaJQKFAsFh9JCzwejz9SciHAiy++SLfb5fbt22xvb6PrOpubmxQKhftKrx4Uob982IY/Pj5mbm7uoT33j4p+v49lDXMrfN//xHMExguC9fV1lpaWHjpn4/OKbrcbhW2NcwbGMTc3R6vVYn9/P/KSsCyLq1evsrOzw+bmJkEQMD09zcLCwiM59qZpsr6+TiKRYGFh4VPzEniCh4vPZTGQNiTyCZEaWVKiRUaVOOiJQ79vwcTxdUzHRxM8Kkd7KEqZbreLP7qIdjwrcuNrmjItd6jx76OhCwlMDCQ8HDTSVOmRZoCOi4aLzDBNQETABQRcVHQsnMhsSBrZBzkEyFhoI8vh4e8pWMzELZ4utpjL62QyMzhOiXK5TKPRIJVKReFEoSzwa1/7GqqRQnu7wd3dKkrzEE14fztiTdN48cUX+fM//3P+9E//lAsXLpDP51lYWCCXyz1ynfCjJhdKksTLL7/MYDBgf3+f9fV1rl+/Tr1ep9vtcvHixY9Fdsvn8xwcHFAoFKhWq0xOTn7qkqowbRNOywrD+x6mmuB+CHXmm5ubUUHwfnyUJxii1+tFn/3Q/fMsZFlmdnaWnZ2dyD+kWCxydHTEyckJ+Xye1dVVisXiI3mfHcfh7t27KIryJNb6c4bP5TvpuA6TRp/LuT4r6TadZg1ddMjFwFNSKOLQLyAIAgaDAZV6i0pfoeXGsT0xMvIwTZPAsxEDj0GgowYWYuChBsNxgIrJgBQ22kgCCEOnQAkIIkOhGH1kbAJExBExUMBHiGSDDj4CEh46PbJxkacnBlyez7OyskKpVCKbzTI9PR1Fdy4tLUXfC4KAvb09DFXgu88W+Q+/tciXJ2yq5f37HqN+v8/Ozg4bGxtMTk6iaRrNZpOpqSkKhcInepLncjmuXr2KqqrcuXOHw8PDh8Z4j8VivPzyy5RKJSzL4saNG1HL9NatW1Sr1Y/1vIHIICb0Y/g0MZ5U6LousizfYyH9SUAURS5evEg6nWZjYyMinj7B+QiCgH6/f4qQe79zIJ/Pk0gk2N47ot4XqDd7dDodvvSlL/Hiiy9SKpUeSSHgeR7r6+sEQcDKysqT9MrPGaQ//uM//uNP+0k8TPRMj//nF7u8cqtKvevjtw/AsxCFAF2waFgati9hBxq638ZxA/a9WQ78BepBATdQiAsdhGAYCXwcTGMLOsJopt8jiYhPSjghTZMeiVHmwPDmEwoBIUmTLHUUHBTcUdEg4SGRpINOHxEfd0Qs9AmQ8El6VVLeEULgRYSiubk5VldXWV5eptvtUqlUIuVArVbDMAz6/T6ZVIKJXJJO64Rqtcry8vKpQKGTkxN2dnYilvHExAQrKyvMzc1xdHTE8fEx6XT6E2eDh1nlgiBwdHREu92OrIc/LkInxXq9jmmaVCoV5ufnSaVSHB0dYZomqVTqQy+UkiTR6/Xo9/sRoTB0Yvw0EBaFnU4H13VptVoYhoGiKNF9IQn0k/CMFwSBbDYbmVKFxlZPcC8GgwHVajXinmxvb6MoCrOzs/f8rCAIIGn8ix9vUXMyJIsL/P63X2BmevKRffaCIGBjY4N+v//ES+Bzis/dmKDRtbmzd0LbFDFJYgrTzItbyLgMbA9fkDAwo4hfYGQuBCDQIx5F/4Y5A2pgUaeIi4TOgB4pBoGBwYAACQcdEY8kDTw0LIZZB0vcIRBkzEAbFREeCg4aJioWSdoY9NhkCQ8VD5UADwEBWRr673e7Xfb391FVlUwmQ6FQYGJiAkVR2NvbI5VKYXsClU5AKieytrbGzMwMs7OzUZZ4KpWKvAFCB8KLFy+SyWSiQiGbzfLMM8/w1ltv8e6773Lt2rX7eps/KoyTCzc3Nx8quXBxcZFWq8Xt27exLItXX32VF198kYsXL7Kzs/ORRxT5fJ7NzU1mZ2epVCpUKhWmp6c/9vP9KAiZ5WF6ZmhFHBIIx2OMPykIgsDi4iKiKLK1tYXv+/dVr3yREcaoh0X4B71Hb9xYxyLG0lwGIzNF35V4dCHBsLOzQ6fTYXl5+UlB9znF564Y0EWHXrOCiYGCjR2owxQ/0ScmeOj2vRG/MXqYxAgIiNOL7g8jgYfSQR8de5hGiEuMAX3ikQOhi4KIQJIGcaFNjB51JmgERTxERAKy1OljoOLgCfLoMRzkIMBFRARimooWmySWUTAYOgGGAULlcpmDg4NTxLDNnUM2uhmkrsuR2eflq1neurPPVD6J7/u8/vrrUds/n89TLBbvezJPTExw9epVbt++ze3bt/F9/6H6+j8o4vE4V69eZXd3l+3tbdrtNvPz8x+7LXn9+nU6nQ6Hh4d4nsevfvUrXnjhBa5evcrm5iZ37txhenr6QwUapdNpJEmKImArlQoTExOfSgs19BcIPQaAKI1yvOX8ME2HHgSCIEREs52dHYIg+MQLzccdvV4vMhsC7pEWjuPg4ICDrdtkDI10aeGBYno/DsJNRcjveYLPJz5XxUC/3+f1V39BNjhEZB4LFQkHMRgqA/AsikKZHgnidKOI3xlxj7TfxEEmKbSj+8NI4Exg0AgKWBjEgx4SLo6goAYmA3TEUbKgiokrKCTEoUSo5yWiRd4DLEHHCEwcVJTAxhIMFLnBgj6gQYqBLZBLG7x8fYJ/9+kMg85J5O5l2zayLEfz6X6/T6/Xo1Pt0/c0YuYJ76yZrG0doOpJDLHMrHJCvdWjtHCNpbkSqfgHXzBmZ2dxHIetrS02Njbwff8TzSMPIUkSi4uLpNPph0YuFEWR559/nh//+Md0u11c1+XVV1/F930uXbrE4eEhh4eHkSfBg5ABRVEkl8vRaDS4fPly1B34NI5Z6FPv+z6O40TugyEZ7ZMgD94PYUEgiiK7u7t0TRfZyHyoiNnPM3q93imS5f0IhJVKhYODAxyzw7euFnjq+clHegxrtVpkg/yw5b9P8Hjhc1MMnJyccOvWLbb3y+x2U7iIyLiIOPiChO9bmL7GYTCPi0KfBFPBQbTwd0hhYmAGMaaCA4BhRwEbQxiQowYIGGI/+p4YeBhSQNPRUZDxkZEDB9vXkEfdAgcdAY8JjimKZSQ8NrwVOqTQgwGTuQSGdgK6hKzquLZJetCgVb9ILpfjK1/5Cv1+P3IQDC/42WyWyclJJmZcejc7dBwF+h16lo8UnNCUDJK+zHFLp/zqMZdrAr/33OQHXjQEQeDChQs4jkO5XGZ3dxfP886dXX4SyOVyxOPxKPDo4zoX6rrOCy+8wM9+9jM0TcM0Td544w0ALl26dMr/4MKFCw/Egs/n81SrVUzTpFAoUKlUKJVKn3h3YDypMFSanOcx8GkywOfm5jBd+H9f2ccWTliayfHdZ4tf6IIglAeOkwfPKwaazebQ96TXQxRFnnvmy0wWHl3LvtVqsbOzQ7FYZHLyixPl+0XFZ74YCG03t7a22N7ept62ML0EAiID9KGtb+BhBhrb/hJt0hiYIHAPN0AJHDokSfrJqDhQsSAAWxjmABhCH1lwh86AokDe20UXE8i+TZUp2mRoB2lStFAwKdJDiWdZ0gbEgoBaV0T1LAz6eEhMzV7g4lSScrmMYQRIUoxWq8Wbb74Z2f1qmoaiKORyOVRVpdFoUKlUcF0Xy7KYFBymkmliBYlDu4AlxElrPtPxNPVtB99s8Zt1n8W0zTOXZz9wxyuKIktLSziOQ6vV4vDwEN/3mZub+1R2lpqmPVTnwmw2y1NPPcUbb7xBOp2m3W7z5ptvEgQBly9f5urVq2xvb7O+vs7ExAQzMzPv+7rj8Ti6rlOv15mZmaFWq1Gr1T7xEUuYSSCKYlQMANG/n2ZnYBx6soAtdFCCAZsHJzRW0x8pe/7zgtBsaLzrdXZM0O122dzcJJPJsLm5STqdfqQLdL/fjx7ncfDPeIJHj890MeB5Htvb2+zu7lIul2m1WuAMiCkZ+r6E6nXRGeAIGlV/gjYZQBjO7QMTMRg6AnqBhBw4NMghIFALinhIGIJJb0QuTNCLSIcyw26C40sc+bN0SaJh4hK24QUcMUZac/FRWZzUEaotLNdCDnxSikXf14n5Pdw+PP/8b3N4eMju7i6ZTIZEIsH+/j5bW1vouo6maQiCgOd5KIpCLBZjdnaWIAjY2toi5vtks8Ni4aKk03chl9TxXJmd1oCjhslM3MHu1rhxo0mxWIxIiPeDLMusrKxEhLtKpYLv+5+ayUhILkwmkw/FuXB+fp52u83du3cplUpUq1XeeustgiDgypUrLC0tRS3ZTqfDxYsX37f4yOfzHB0dRc+pXC5/osoCx3FwXRfHcRDFoTx2vAj4pHkC74dcQmVpJsfGQQM16OKZLeCLXQyEZkMhxt+z0OQnHo9jGAatVovnn3/+kT2fMM9F13UuXrz4WBSQT/Do8ZmVFtq2PRwLbG8PE7vafRo9n8AxidPBDWTEwCUm9NAFk3aQRSDAQWEYPOwyCGKcBHnawTBgQ0AgThsbHQUHV1BGREMn6gxkhCaiMKzYW36KbZYxMRgQI0YXT9CQZZmpuMVKqsmV+Szm8W08q4fnecgivPT0CgyqyGaFjukxPzeDa5tUq1WOjo5IJpOkUqmojQ3DxWZqaopSqUQqlYrkhd1ul1wuRz6fH5rMSJCOKSiSgIjPRFJA81ukaZBNDQlK7Xaber2O53mnSEtnIcsyyWSSZrMZyehM0zylQvikoaoqhUIBy7I4OjrCsqyPJAsEKBQKtFot6vU609PT9Pt9jo6OEASBUqlEIpEgnU7TaDQ4Pj5G07T7ki9VVY1+JiwGFEX5xFLcer0ejUYjaiGfnJygKErUVQpDqmRZZnp6+lPd7amyyELRYHkmxcW8QLNWRlXVL2y4UblcjhJDQ+zv7+N5HjMzM6ytrUXF+WuvvUav1+Nb3/rWIxlDua7L3bt3EQSB1dXVhyLtfYLPBj6TxUCn0+H111+nXC5jWRa1kw4b3SxbLZ2mmyDun5ATGxiiiSFYyIGJjYaDPMoLtFFwOCFPn8TIGshHxaFDFheZGH0mlQo5oUZSaBMXumSEZsQxAOgESRqURnZDIgtalS9NukyobSbUJiuLMzQbdQ6rbUQhQMQnk8nwN7/3uxwd7nOzplFz03QdlZmswszUsK2saRpPP/00y8vL0U7c8zw0TePk5IS9vT0GgwH5fB7DMFhdXSUej0fBJc1mc+io6Psk4jpThTS9TgvHcej3+9i2je/7dLvdKIr3fkWBqqoYhhH5n3e73aGfwadYEIiiSDabRdd1KpUK9XqdeDz+obMBwkW/XC7T6XSYn5+n0+lwdHQEQKlUQlEU8vl8VHzYtk0ymbznWEmSFB2biYkJLMui0Wg8MgOYszg5OaHT6dBqtVBVlXq9jq7rkbVtpVJBlmUkSfrUiwEYFgTpmEI+m8Z1XQ4PD9E07QtXEITeEGGqZ4i9vb2o0+N5HpcuXcL3fV555RVmZmZYWVl56M/F933W19exbZvV1dXHKonzCR49PjPFQM/0OG5aVI7LvPHrV6m3etS7HuXDQ7q2wLGVoetIdEjhBgpJsUPNK3ASZLHRSQUN6kyOdvGJUa6Ago6JjUqcHgla2GikaRPIGnE6+MHQGVATLETBxw1kTHQEAhKagK0WsR2BhGjx/HICxW6QkG0MXUXWEvxiy+PAyuKICTLKgIsX5nnmmWe4cXef3baG7PVJlxZ44UsLzE8XKEHAsyAAACAASURBVBQK1Go1TNMkm82iaRqFQoFOp8Pu7u7/z96bPbtx51l+n1wAJJDYgYu74O4LSVESSbFE7erSdFVPV01Vd030eKI94aeO9oPDD47wP+Dwi9/84nCEX/zS43A7Jhzu6omamq6u6mWqulsqqVpFSSUud98v9j2RiQSQix/AzOIVF5ESJZISTgQYuPcCyAQI4Hd+3+/5nuPHkM7OzqLrOu12G0VRUBSFXC7HzMwMExMTvtFMrVaj2Wz6wrL5+Xkcx6HdbtPpdDAMg1arRafTwXVdwuHwHQudoijIsky9XieVSvn+B8lk8rGK0cLhMKlU6tQCHo1GH2rxlWWZTCbjpzjm83m63S6lUgnXdcnlcj75CIVClMtlGo0G0Wj0rm2WSqXiO8SVSl/ejrdarTIcDmk0GiCFOCx3iKkRggEJQRCo1Wo+GZienv5STIceFPF4nOFwSKFQ8DMfvi7wzIZmZmZOkdnj42MqlQqJRIIzZ86gKArXrl3j5OSE119//ZEHQHktR03TxhHUX1M8FWRAN21+crXKf357g/c/3iXoGmy1VH5z2KM7lEkEeujE0EgQkYbIoktQtGm7CQTXRkelS5wuMVykW4mBrm8hnKSJhEOXJDYBRBECTo+eE6ZFBtMNowo6DiJFJ0/TzSKrE8zELJTeEamwzbkzK9w8amPYQVRBJxFT6QzDbGoZBo5MX1BJBbpcOr8ycvsrnNAyoN61iActvvXiCkF5VMYNh8N+uToUCnF8fEy32yUYDPql54WFBSzLIp1OMzk5iWma1Go1Wq0WlmWRSqVYWVlheXmZSCSCZVkUi0UajQayLPsug4ZhoGmaP63QbDaRJAlVVU8t9Kqq4jiOL4zzCMTjJgTeYg58ZudCRVGIRCIcHBwQDAbJ5XJ0u13K5TKO4/jxrJFIhFQqRbvdplQq+a/T7Y/jleM9570vqzrgiTyLlQYfFgPsNSWGUpxM2CIgCVSrVQQ5TM9VmJ7MsbT45IjCBEEgkUj41ZdwOPy1cbjzPkefFOd+/PHHdLtdXn31Vf+z9/bbbxMKhXj55Zcf+XkcHx9Tr9fHwVJfYzwVZKDc6nN1p4Mw6KLbAS48e4aemMY1W6iZWb77Oxf59stnQAoTCkiokknYaVAaZGiToEuCLuotl7/f5gaICLiIBDExiN8yDZaZcAskxDZtUoTo00dBFbo4gkwvlCcVU2j0JByjwlRC5g++/30K3SBhachJ3SAVHLK2lCeWzbNecpADMo7tMBFo89Zrl0kkErQaNVRBx2wekZbavPnabwVBiqLgui7r6+uUy2Vc1/XtiDOZDPV6nXK5TKvV8k1yMpkMk5OThMNhbNum0WhQrVbpdDqoqsri4iJTU1MMh0NUVUXXdXq93qn0vW63S61W4/DwkGKxiGVZxONxvzcZi8UwTZN6vc7c3BzNZpNWq0UqlXqshEAQBF9n4b02D7sj98KfDg4OSCaTJJNJDMOgVCphWZa/oHvkw7ZtisUihmH4mgVBEOj3+7RaLXK5HIqi+DqCL3Kn5TgOx8fHOI5DoW6wWXERLQ1bjpEKWUQCLsVKg5KbpzpMMBSjXDwzQ1B+cqJJBEEgmUzS6/UolUr+FM1XHV42hkc4YWQqtLe3h6qqPP/888CI7F2/fp3nnnvukU8RlMtlisUic3NzYy+BrzGeCjIgiyLFZp+hEObs4iSvPTtFU7cJqFnW5rM8Nx/lcOcm1f0PGLSOyMhtZmYXsUMZWm2NHhECWDhIiFi4jJIERuHDDjI2QySsW5bAAAkaWATpo6DQIyN3WJqfRU7McKNo07MkpECQ73/zEsl4hO2Czq83KyiCwbdeXOSN116hUS0iK1GUsAraIflIl7d+5w0kSRqJ+GplJLeP1m7y0ksv+YuuJ1hrtVrAyDnP69EHg0EymQyNRsOfPkin034IjVc6n5yc9HvbnU6HarWKYRi+j/6zzz5LKpXy3Q3D4TDJZBJJkuj1etTrdQ4PD9ne3vb70IqikE6n0TSNZrPp56c3m03/vo8Tn1dcmE6n0XWdo6Mj8vk8kUgE0zR9QjA5OemP5yUSCVRVpVqtUqvViEQihEIhJEnycyNUVcUwDN+d8IuqDhiGQa1WYzgcousaxUafnhMkowrMxS1kSeCo2qVupwkKJm4wwXMrORKRx5uw+El4WQaekDMajX7lCcHx8TGxWMz3s6hWq5ycnCAIApIksbKyAsC7775Lr9fjzTfffKTJmF5WydTU1GMxyhrjycFTQQY89fH8hMKFhTjJaICZlEzQatE+/g0fvv8uhUKBiBLkGxef4bnz56hVSuwU2jSHEYYEsJFv1QEcYhgEsVHDQdSgQNytIzsD+kQQsRkQwkFiSjwhJmpMBLsszk2TiKucnBQo9mKIAkjhDDHanBwf8vfXu3QGQaLxFP/uOy/SNzoY3Q5vfmONdLBHY+99ZibTXLx4ERhNQxwdHZHNZikUCv4Xwu7urr+YPPfccwyHQ1qtFplMxl/UvKxzz2Sm0+mc2sEDfoshHo+Ty+VIp9P+dMLBwQH9ft+3KE6n0yiK4gsJJycnSaVSAH4/fnt7m8PDQ78Mb5omuq4zlV9g96RBs1Enm04+dvXx5xEXCoJAJpOhVqtRKpVYWlpCkiTfgGkwGPiEADhFjjzNgudG6DgjsWgoFLrlIfHF9cI7nQ7tdpter4fWbhIYNkiFhszGLGKRII7jUK9VMFHpOSFycdlvSz1p8CoEXpsmFos9tDD0aYFlWZycnPgVvVarxf7+PrlcjuFwSK/XY2VlBU3TeP/995mZmeHs2bOP7PjdbpednR3S6fRj8xAZ48nBUzM3oioSqhJG0zSu3tji5s2bNJtNBEFgYmKC559/HkVR+Oijj/joo48AOD+dx20p1GoVGm6SJC2EcJbVuTnioo5evI6hNQkLPSxRwnUE2qQIY2Ih4wgSUclkenIaVVWp1WqI7oicxOMJQkqQ/GyKw2KDgeAwkwngBmIc1EzUQXVUbo4qWFoJ0R2cCrDxBEBLS0tcvXqVX//61wD+dID395WVFdbX19nb22NlZcX/wGqaRj6fZ3p62g/1WVxcJJlM3vX180SGExMT/m4rFApRrVZ9/4JkMunHOruuy+LiIktLSzSbTer1Opqm+ecSDAbRTYvC+w2C8SlCrg7uOheefTISzTznwr29vYdyLgyFQrzwwgu8++67rK+vc+HCBd/Kd3d3F9d1uXTpkv84wWDwlCGSpmnE43EajQZzc3OoquqnI35RExiGYfjixl6vhxIQSIREbNel0ZOIyC6iO2Q2WIJAjHnVISDawJPp+ieKIqurq2xtbbG9vc3a2tqXNqL5ZcIzG1JV1TcVSqVSfuiV5zOwvb2NbducO3fukR3b8y6IRqOPzTtkjCcLT0VlwAvpeffdd3nnnXfY3d3FcRxWVlZ46623mJmZ4caNG/zq1x9RavWZyKSZzU/TrJcp1XVcUSYaVliYzzOXBKHya8zib5CHTULCAFkCCYsoGpYbQMAhIhikpTarK0t+qIogCFy5fBGLAHIgwGzcYTk1RHT61PoRhqLKVDLEG2sKWqvG/Pw8oVCIv/2HX3HcFnn2mXPMTo8S2yRJYnt7G0EQOD4+xjAM3nrrLRYWFk6VRm8XFMKIRDiOw+HhIdlsllQqRSaTodfrUSwWcRyHWCx2zw+3IAgEAgGazSYLCwvMzc357YRut4uu67iu6+/GhsOhn5joeR9452+6Cts1AXfQQrcCpEIWA6NFIpF4pKXMz4rPKi70/AS8Ec7V1VWGwyGu6/rjrLeHGX1Ss+BNacTjccLhsF8diEQiXwhRKpVKiKLIwcGB7zxoiRGuliMcawG0gQRGGTUkkY6FiEYUksnkA1ktPy54LYNOp+Or6p+E99SjRKPRwDRNMpkMW1tbRCIRVlZWEEWRUqmEruvMz8/z7rvvEgqFeOmllx7Joj0cDtnc3CQQCLC2tvbY23tjPBl4IslAtT3g+pGGNehROjngH//xH7l69SrVahVVVbl06RK/+7u/i6qqfPDBB3zwwQfUW13KzNGRpqh1bdqlLYZml9l0gJe/8TztvszWYYVO7YT48HhkKSzLxONxdNOi5yoEBIuk2CIqjjwF5vOTTE1NIcsyw+GQixcvkk4l6Fa2WcgGeOWZCTLJKLJg8+2XVjk7l+A7L0zQ10aioNnZWartAf/HT48p9DMjQjCnEosE6XQ6XL9+nX6/TzAYpN1uc+HChbsqeRVFQRRFf/TKtm3f+jYQCPhhObIsP9Ci55Uku90u2Wz2jnZCMBhkOBz6hkde+I2nWQgEAliWhSjAUIqiWwEUdCZCBl2tRalUIhaLPRG7uU8u1JVKxfdOuB+8yszh4aGf12CaJoIgUCwWMU3zjnRDT8/R7/c5OTlB13Xy+TyhUAhN09A07ZGn9Xlz6oFAgJ2dHUKhEENH4p8LQY4NlUF/gGW7hOwWiUgARVH8llMmk3miFwKv5dNut6lUKiSTj78N9ShRLBaRJIlqtYokSacW5lKpRLfbJRwOs76+zrPPPvtIevq2bbO1tYVt25w5c+YrR7DG+Ox44shAtT3gf/2PO/z4vRP+y9Uj6vsf4Ay6TE5O8tprr/H6668jiiK/+tWvuHr1KrWmRiA6wfzqs+zWXPqdKi3DJRtxuPLCs3zr936fn6/3+YebbUw3SI8I2ZDOhTNzRKNRTko1TqwZmm4W0w2TChgEXJOJbIrnnnsOTdMYDocsLi5iWRb1eh0Rh9euXCKTTnJ0dMTU1BRzMznyGYWgNNq1T01NEY1GuX6k8U/rLWTXoN2DdnGDneu/Yn19HV3XcRyHiYkJCoUCrVaLbDaLbdu+gMhbbKLRKKZpUi6X0U2LcmvAbH6GYOD0+N/ti57XGvgkPD3B3XarsiwTjUbJZrPkcjnfjMiLxbUsC9d1CQQCyCKE7DYx2WQpIxINj1IVu90uh4eHGIaBLMs+mXmc+CziwlQqRa/X4/j4mHA4TD6f959TqVTCMIw7Wg8eMQPY29vDsix/jLNcLvs5Bo8Kg8Fg5H3QNtg9aZKMR6lrffYaIgICJgoxUSfpVkjERgp9r0dtWdY920pPCjxC0Gq1qFarXxlC4E2ueCPDZ8+ePbUwVyoVWq0WzWYT0zR5/fXXP7d2wnVddnZ26PV6vnfBGGN4eOI+VevHXbZLPbqmg+0qlOLn+fabizyzlKPTrPB3f/d3HB8fY1kW0UQGM7jKkWax/ZsShqEzcILkswr/6lsvElIzvL/d5Mb+KHEQQJJD5GbX2D7ZwezU/JCiEH0GYoyGpZNTZF555RXW19dH1sLT0ziOQzabZXZ2lv39fRRF8bMDbtcC1Go1X4gGsJSLsDidZq8ok1VhcUIhrkyhqirFYtHXPcDIdezdd9/1H0uSJILBIKFQyL8UKw3eOygjRbLU7AK//0KGeCToR9WqquoH7ezs7JDL5Zidnb2jvBiPx4nFYpycnJBIJO5afpRlmXQ6TTqd9kcPW62Wb1jkOA7JWBjFNOl1mxiaSygU8p3UyuUyhmH48/nZbPahTYEeJW6PRfa+iO8XiyyKIufPn6fX6/ne8IuLi+zv7yNJkm8Cdfny5TtIxcrKCo1GA03TuHnzpq8fKBaLj7Q8bxgGvYHD//ePe2jDCE0xit2qoAguuBBBY5qROt1wVQQ7SN0QmF3MUa8WmZqaeuIV+54V78bGBpubm5w9e/apFxX2ej3K5TLpdJq1tbW7Ph9vTHV6evpzRXd7ODg4QNM01tbWvlbGTmM8GJ64ykBLH/BPN1sMLIFQQCKoqGyXuvzkl7scbn1EX6uSSCS4fPkyy+dfZKPs0Cjt09Jt1tID/sWLK3zvrRd4b3fAf/j5Ab+8XmQwMEGQEUSJuNynVm9xYqj03TAxYZRF0HPDmG4Q0w0TnT7Pwd4WEkNWl0ciuuXlUaRwv9+n2WwCIxX36uqq/0F2XZf9/X0SiQSJRIJut0uz1eSg2ELv9VjIBvnuq2e5fOkC8/PzBAIBDMPg29/+Nru7u+i6zg9+8APm5ubIZrPE43GfvQ8GAzRNo9Tsc9gOkFIlSo0eUr9Gt1mhWCxSLpepVqs0Gg1c1/UnFjwtwWAwwDRN+v2+rwUol8vIsoyqqvddpL1qQiKRIJfLMTEx4Z+fJ7DzzrHVatHr9YBRiyObzdLr9Xx1v+M4/hje40A4HCadTtPpdD7VudAzaKpUKlSrVfL5PNFo1Cc5JycnGIZxR8tAFEUGgwGiKJJMJn0TKU9L8KgW4Gazyfp+hY/2DSS3T8GM0u5LBBmSE8tkxSq4NgU7T6mf4MhIUDWk0SSMZOA6T351AEZELplMUq/XaTQaT8Qo6+fBjRs3qNVqXLly5a5ugtVqld3dXQAuX778uf+PCoUClUrlviLjMb7eeOIqA6vTUb59IcN7m20QXATg5rHBwJEpBBb4735H4ZsvPUs4HObjG1tUj7fRhxILUzH+3ffeYGYyw1Gtx2HNxMUlHFbIxkIEZZFirYPWs2jaGQQc+kRIU2NaPKHtJqg6U/QJ8f7hAFWe4Xdm0jz/wjmS0d+W02zb9lP8vFl013UxDINyuUyhUCCbzVKv1wGoGyIDR+aVZ2bo2TKiEvcXjVgshm3bGIbB2toalUqFw8PD+yaS6aZN9P0S5eaAxbjEC8/GCcmj87JtG8uy/OuBQIBAIECxWOT69ev+eOHtaLVGPf6ZmRlkWfYta2+/fPJ33s/xeJxUKsXy8rLvYlgoFCgWi7TbbZrNJoVCgUKhwCtvvEWAEI7Z9pX38XicbDb7WHIOQqEQZ8+epVgsUiwW0TSNxcXFuy7S8XicZ555ho8++ohr167xjW98g5mZGQqFArOzsxwdHeG6Lt/4xjdOVQgymQzNZpNsNkssFuPw8JBGo8He3h4XLlx4JM/DMAxalSMUwUIXEgyHQ2L0GAghJMFCFiw0J4bmxggMB7SGKm7vhK3DFGuXJ6jXS0xNTT0VJWNvcmNzc5Otra2ntuddKBQol8vk8/l7LsyDwYBut0s+n//c1tG1Wo1isUg+nx+bCo1xTzxxZEBVJP6bb+Z567n0qPz5TpGjmkkkBK4YpC3O8ItrNY73NnC6BZ5JR1h85QIXzi0RV0c79HQ0yMJEmFJzQCQCsxmJaqPNdAJq+shvwEXAQQAEZMEiQZu2kKbtJhFwyaRT9IQYmumSvK1C19b7bB41WJkbzQKvr69jGAau6/pCoImJCVRVRVVVLFemI9Uot/pMp0Oko78tB0ajUURRRNM0Ll26xC9/+Utu3rx5XzKgKhLff3GKRndAOhpEVT59d/Tcc8+xv79PqzWKL/baHrZt0+v1uHHjBtFolHQ6fQepGAwG9Ho9/+fbM9Y/CUmSyGQyxONxWq0WxWKRSqXC9t4R/7Dz9yiJaV66sMb3rzzLoNehVquxu7vrtyOy2eyXWr4UBIGZmRni8Th7e3vcvHmT+fn5U+lxHqanp9F1nc3NTW7cuMGFCxewLItKpcLc3JxPCF588UWfEMTjcQKBAPV6nfn5+dH7wbLY2dkhGo2ytLT0uUlQs9mk06yQl00GokbJjvsJm0EGWK5Mw83SJ4KJQBATR5Ax2wVW5s6xt12nWCyytLT0uc7jy0IoFGJtbe0UIXiaNAReMqmqqvd1EjwoNjnWIzybm/9cept2u83BwQETExOP3LlwjK8WnshPkapInMmPVuBQQGS/2qNj2CQjMu9uNtk+aSO4ClcW1vjvv/M82VTsjvv/4KVJXlxJ0O600eoFPjRd1g+7hFwHAQkQSFMlLBgAyILFjHAIgkho4ixhRWFhInxq8dZNm39YN/iwqFB3HJRwm2wy6iv5vdn8bDZ76ny+e3nirot3KDSKO9Y0jYWFBSKRCLVazR8Pu9/royoPvmh6TmaVSoXj42N0XfczCyKRCIuLi9RqNTKZzKd+sbque9cqxCd/l06nWVhYQNd13r9+wN7OEKdZ5O/+qYN26PDyhRXOnTuH67rU63Vf9Kiqqm+E9GWVgaPRKOfPn+fw8JC9vT3a7Tbz8/N3HH9paQnDMDg6OiIcDnPu3Dl/smNpaYm9vT1c1+XKlSu+PXE6nfbtm0OhEJcvX8YwDDY2NrBtm8XFxc+8u7Usi4ODAyzLIhKSoK+RFoeAS1joIQsWPVQGhEhRoydEmBFPiCkCaasO9mgi4ujoiOnp6aeiOgCj1tMnCcHT0DJotVocHh76luL3mrYp1HX+0w2RRn8JcTfChQsDJhIPr5EwDIPd3V0SicRjT6kc48nHE6cZ+CSy8SDfWE4wN6Fwfk7l6p4GogiiTCad4uJy6q62qkPLZXt3l8O9TWqNNq2TdYZalb4rMSRAgjp58YSgOPTvMzWR4n/8b/8rLq9meWktyZW15KnFu9zqc+3YZDGfwRJVXnx2noX8qArgzQwvLi7esdvz4lo/6fgmSRL7+/sIgsDs7KyfVOaJ3B41Pjlt4M3Te7a6tm1/6nE922NZln1xYzgcJhKJEI1GicfjJBIJUqkU6XSaqakpzq6tIoQz9JwQsqOh9IscHexx7do1yuUykUiEs2fPEo1G/RZMpVKh3+/7x/mi8clkwrs5F3r9/06n42stvJHDXq9HNpvl8PCQSr2DoKQIyBJqOOQ/R0VR/FHHTqeDZVk0Gg3fyvhh0W63ee+99zAt6FhhTvpZ2qSwCBATNETBQXBdTDfMQFCIoDMhN5ibTGANTGRZ5syZM9TrdQaDge86+TQgEAgQj8epVCp0Op3Hno/xadB1nZ2dHRKJhG8nns/n70q+3/n4mHe2umSiAXpOiOWpCPnMwxG1fr/P5uYmiqKwurr6RL82YzwZeOLJAEBSDXBmRiUVDXL9sEtds1CCElfWEry4krxjkR2lHFb48796n48KIptVl4KZoEyOJtP0idAhQ9uNIztDQsKAtdUl/uRP/oSoGiYTD5KJB+94XC8jodG1mUqNrJGDski3Z/HBjT0mMmmymYf7Qt3cL7NVMpmfzRMNB/iH35T5+Y5IOpVgLvvoS+beiJ1nUnQ7AfDUzY+67OrZST+zmOaFlRSpeMTPRajX6xwcHHD9+nUajQaJRIKVlRUCgQDtdtuPDP6yRIeRSOSUuFAQhFPiQlmWicViI31EuY5uBZnLzzDs9+j1eoiBCH/16zJv3yhzUjNIhYa0GjW/4tNsNv3sB8uy6Pf77OzsUKvV0HWdWq3m5x1Uq1WfGFUqFUqlEsfHx34F41e/+hWFcp09I0tpmKZLEhWNgaAQFXUCDBEFhxAmsmCRFBooku2PyXY6Hc6fP08gEKBUKpFKpZ6qHnwgECAWi1Eul9E0zc/oeNJgmiZbW1uEw2FWVlb898Ds7Owdt3Vdl431G2yX+tiBOPlMhO+8MPFA7UAPlmWxtbWFIAisra09VW2UMR4fBNfzvHxKUG0PWD/WiEcCrE6rd/2QHNV6/OhXFX5z7Sa7WgQLCW6lFXojhr+FxZXpPv/Tn3yTaPjTPzS6aZ8q+eumzX/6VZF3P9wgqbi8MGOhBH7rESCKIqIo+j9LkuT/rmPC//OeTrVjEZUHTIUaXNWW4Fae4veWGlxeipDJZMjlciSTyUdayvXaBuFwmMXFRba2tohGoywvLz+yY9zruEdHR77z4fHxMdVqFV3XGQ6HBAIBJicnWVlZYWJiwp+3dl2XRCJBNpu95zjko4Lrur64MBqN3iEu3D0s8B/+fouT5oCJZJQXZy1a5QOqXZeNdgq714RQgn9xTiEXE2l1TTJTi6SjASIh0XfWW1hYwDAMGo0GoVDIn0oYDocMh0Msy2IwGPjXAf95X79+nWrXZbc3ScAd0iBNWOgRRWNaPEEWLCxX5sSeQ0dFRWcucMybr72Ebdvs7e3x5ptvcv78ea5du4aqql/4//0XgW636793PQe/JwWerkgURc6ePYssy/5Cvbq6esftm80mP/vZz7DlKCvPvcbylPpQLQLHcdja2sI0Tc6dO/fEj42O8eTgqaOME4kgE4n7K2LT0SCpaABHzWNpHUZE4F5e7DJmIEVTHz4QGfhkv77RHVDv2qzN56i0+ygxgXTE8XvrjuP4Yj3vuuOM/r5dE+j0FQKYdAZBjEECEAEHF5F/3uuhH//6lO2tF6MbCAT8aFyv9JjNZv2QoQfZQedyOaLRKLu7u2xsbBCLxWg2m+i6/oW6B+ZyOd8+N5PJcOXKFUqlkr9j0jSNWq3GyckJgUCAqakplpeXiUajtFotdnZ2fKvhbDb7hfS6P01cGIikGMpJys1DDhtwdNTgYkYnHAoxlVKoBXKIwzZ2z8RKzPHzrR6DzUOeW57i37wxz8zMDMPhEMMwmJiYIBgMcnR0xM2bN/1cBVEUfY+GUCiEoii+30SlUmF9fZ2Q2EOhhymEybg14jSRBdt/Hj03TI0JXCR6REg7dWzbZmFhgYODA7a3t3nmmWeYnp7m4ODAj7V+mhCNRv0sg93d3VMZHo8Ttm2zvb2N67r+Dt11XXRdZ3Jy8q73OTg4wDRNXn75IufOPlyV0XVd9vb2MAyDM2fOjInAGA+Fp44MPAhUReLFlTi7JZ2B2eOkBS4CIhYRNAwiWAQBEVGAdCx4Sij4MEhHg0wmQ5RbcZ5fC/HG5Qcv6b3QHlD88T6lVpLJZIiXViL87z8pYDkikgC/f3mWyWDEX6BN0/R3ib1eD8MwqNfrHB0dnXpcryIhSRKBQMC3343FYqTTaSYnJ5mbmyOVShGJRHjmmWc4ODig0WiMFPO7h2SnFx94WuGzIJvNIooie3t72LbN8vIyvV5vlD4ZifjjVMVikVKpxNHREcFgkOnpaebm5giHw9RqNcrlMtFolEwm88Ak6GFwL3FhOhpkJpfixlGXcL/N0A1gWBLYHYLmb8g4AQKuyeGhwNuHMsVeAkXo8+H6Mf3Sb5hKSD6J8crdFy5coF6vo+s6yWSSpaWle+5yNzY26Pf7WGaXadFkQBDRtam6U5humKDTB9TQsgAAIABJREFUJy3W6TsBBijYSIg4DJwAlUqF1157jUQi4avNFxcX/ZFPLzb3aUIsFmNlZYWdnR329vYeyaTG54Hruuzu7mKa5imTpH6/j23bdyXbhmGwt7dHJBL5TBWa4+NjWq0WKysrT4QV+BhPF76SZAAgnwlzbjZGVJG54DhMJBTMgc3QdlFDEh/uaxTqJhPJAH/yu7OfedFTFeme0wKfholEkP/h+4vsVQyWcpFR1SMZ4efXG7z1bJpXz9054gajLxovO0DTNBqNBuVymWaziaZp9Ho931io3+/T6/V8o6RPwmtbeN4BA0fkeDDJ5LzJM8tTfPdy7gsjBOl0GlEU2d3dZXt7m5WVFVZXVzEMg0KhQLvdZnp6mkuXLqFpGtvb2xSLRQ4ODlAUhenpaX+HdXBwwNHREel0mkwm80gc2zx4zoXxeJzDw0PfufBfvzwq6e8dl+jVj4grAm+8+hayLPPhhx9SLpep6QKdvkUAA0MIE3W7KOIASRrpENrtNtvb25w/f35kaz03R61W86sEy8vLd+zUW62WH6IEo0kYGQuDCKYbJuAOqZPFcFUkLBwEbCRcROpulo7e9WOxT05O2N7eZmlpienpafb3931DpacNiUSC5eVldnZ2/DyJx0UIPLe/1dXVU69lt9sFuOti7flzXLx48aFFs+VymUqlwvz8/NhUaIzPhKdOM/AwuFt/3/vZ6NunFuGvMmzb9sVphUKBWq1Gu93GMAz6/T6DwcAfDezaCsf2HHO5OANB4c3VAM8sTpDJZHxf/Uf9BdvpdNjZ2UFVVVZWVvzd/e2kIBQKMT09TSwW88vblUqF4XBIOBxmamqKTCaDIAhYluU7H6bT6Ucqiuv3++zt7aHrOjMzM8SSEzT1Ic3yEe+98wssy+LVV19lbW2Nn/3sZ5RqLTaaURqGREh2mAucoAh9AL9qY9s2sVjMz4SYmZkhl8v5gUhzc3OnAo7ee+893n77bTRNO3VulitTdPJobow+EVLU6BJFI45NABGLOB2ez/W4tJxmaX6Ga9euIcsyb775JpOTk1y/ft1XoD+t8IydstksCwsLX/rxPeOtxcXFO0x+Dg4O0HWd8+fPn/q9ZVn89Kc/pd1u84d/+IcPRWabzSa7u7tMTU2Rz+cfyXMY4+uHrzQZGOPhoZs2/+8vdql0hij0WI01cYY9HMfxxwdTqRTRaJRIJIKqqo+kN9ntdtne3vYXotsV0HcjBel0msFgwO7uLru7u/5oZCQSOeVqKIqiLzqMx+OPhMh8Uly4tLREMBikUCjw05/+lG63y+zsLNPT05ycnFCpt+kORJKqxMpCnmq1iizLtFotDMPANM1TIlMvtnpqaopkMokoikxMTLCwsIBlWfz5n/855XKZ3sBlQJAgAwC/VTAkSMPNYroKfcIMCDIgSIABMjZhDNbyMX7/UoZK8YjhcMj09DRvvvmmv5CeO3fuqS411+t19vf3yeVyX+qMfbVa5fDwkHw+f1eTnxs3bqCq6h0kpVAo8Dd/8zcsLy/z5ptvPvDxNE1ja2uLVCr1WCshYzz9GJOBMe7A7RWUSEik2+363gTdbtc3RQoEAoTDYT/bwCMHkUjkM3kD6LrO1tYWwWCQtbW1O3b09yIFgiDQ6/XY3d1lZ2eHRqPhE4N0Ok0sFvMFl57o8FERGE/z4IkLq9UqP/zhD9E0jeeee458Ps8vf/lLFEXBsiwWFxcJBoPU63VmZmZwXdev1ASDQTRNQ9d1v7fskQNFUZicnEQKRvjnj9ax+r2RPoAwQfrg4jsPTosnALTdBHV3kqBrohPDBkwihDGJh1x+Z00iFxOxLAvLsvjWt75FPB7nxo0b/v/B0wxvYZ6cnLzrGN+jhtfymZiYuKuFsG3bfPjhhywsLJwyJnNdl5///OccHx/zne9854Fjrnu9HhsbG0QiEdbW1sZEYIzPhafCZ2CMLxe3myR5AUXJZJJ8Pk8ulyMWiyHLMo7jMByOTJssy0LXdRqNBpVKhVqthqZp9Pt9XNf1tQn3PW4wSCKRoFqt0mw27wijCQQCpNNpksmkn/rWaDSQJIlYLEYul+Ps2bN+n7bb7frz+l4Udbfb9YWSwOdqe3ieDaZpUiwWRzkBtyyfbdv29QXxeBzTNP3n4pkz6bpOMBgkEAhgmibz8/O88cYbLC4ukk6nCYfDCIJAv99H0zSOi1XePxKoWSm67qiNo2BioDIgSETo0UdBFbpI2LiIDAkyEMKI2ICLDJgoKE6bpFsmGlH88xoOh74RTrlcJh6PP9XpgKqqIkmSH0Z1t0CgRwVd19ne3iaRSNxzh+699/L5/Cmi2263uXr1KtlslosXLz7Q8YbDIZubmwQCAdbW1p6occoxnk6MycAYD4VgMEg8HieXy5HJZAiHw34iInCqOmBZFq1Wy1f9e0r5wWCA67rIsnzHl1ggEPDT6er1+l3z6+9HCsLhMKFQiMnJSc6ePcvS0hKhUAhd1/3H7HQ6fhxzq9ViOBx+ZqdDz7lQEAQ+/vhjNE3jwoULXLp0yS9Vu67rL/7ZbJZOp0M0GiUUChGPxxFFkV6vR6lU8onTYDDw9RxeZcAkTMmMjeK2CRIQLIYEbuUQDP3KQBSNsjtDizSuK2Ah4yDiEECmT5QuefEQuz9yQZRlmWw2S7VaZXFxkWg06o95Pu3BNl7+R6FQQBTFRyos9fBJU6F7LcyNRgPDMO6IFP/4448plUq8+OKLDyT+s22bzc1NHMd5asOaxnjyMG4TjPFIMBgM/MXVE7ZFo1ESiQThcNgXMRqGgWEYfuCRoiinWgzhcNiP/739C+9+XgL3ax94cF2XRqPB7u4uh4eHdDodXNclGAwSi8VIJpNks1kmJiYe2oXRNE02NzexbRtZlhkMBszMzJBMJvnhD39IpVLxycby8rLf1vAisaPRKMfHxxwfH+O6rq978Dwjstks0WiUv/iPP+bnN/VRa8DtkxBaSILt52t4+oEBQY6dRXBtOqSxEZEZYCGRoMmscERUMvzzD6kJVp+5hG22OX9mmeeff94XpXk20U87PFHf3NwcuVzukT3ucDhkY2MDQRB8U6F74XbPAQ+mafKjH/2IQCDAD37wg0/d4buuy/b2Nrquc/bs2afOE2KMJxdjMjDGI4dXEWi1Wv6iGw6HSaVSvouiaZo+OdB1nV6vh+u6CILgZx0Eg0FKpRKCIHDmzJlPHXd7EFIA+OFCu7u7HB8fo2kajuP4xCCdTvuK/lgsdt82Qq/XY3Nz0/f5l2XZFxfebjL17rvv0u6aZKYXiQbB0BoMh0OCwSDBYJBcLodpmnQ6HcLhsD86mUwmcRyHcrnMO+/9moapYLoheqhYQuCURsATEOpOjAOWMQkhICBjopPEc99U6PIMvyEha/4EghBOs5JPsRbv8K//4DuIosjNmzcZOhLpqfkv1HPiy8Lx8THlcpn5+fkH7svfD94OfTgccvbs2U/VoXz00UdMTEwwMzPj/25jY4O3336bV1555Y4Jg7thf3+fRqPB2traF9r2GOPrh3GbYIxHDs85L51Ok8vl/JaBJ0JsNBq4rkssFvN345OTkySTSX+no+s6zWYTy7IolUocHh76ZMGzdf7kIn2v9oFXZvduL4oiqqoyOzvLmTNnmJ6eRpIker0e7XbbH8EsFos0m00EQUBRlDsMjbxI41Ao5JdrBUFAVVVc1+XatWucnJyM+v62wEYrxmEnhDaQSAYHSILr6yRSqRRzc3O+8NELMfKe12+ub3CjkeDEnaVNGpMIQUysW62Bmpuj4eYoudNUydElio2Eg4CAgM1vWyAWQVokSbp1HEGi6WZRxAG6FUAVDdKxENFolP2jIn/7cYvdukSpNWBhInxHXsfThHg8jmVZFItF373zs8IzFfLc/j5th26aJuVymampKb/KZds277zzDoIg8Prrr3+qYVahUPCDzMZeAmM8aowrA2N8aXAcB03T/KqBZVm+RiCZTN6xC7dtG8Mw/PEpTdNIpVL+wny7PuGTCYNwZ6VgZmbG7+/fDYPBgEqlwu7uLsVi0Z+cCAaDpFIpZmdnR9MA4Tgn1TbN8iGpeMTPT2i1WrTbbTRN80OJvPOUopP8pqrSbRQwLJl/9UKamGxSq9UIh8NMTExw7tw5Op0OtVqNpaUltra22NzcRNd1ThoDNnszdO0wNhIWASQsIuhMc0SJWRwEdGJYgM3tC90Q+GRf2WGCIiviFlV3CkFJEQk4TIY6JFWZpZUzVOtt1psqz59ZoNEd8ocv5b6Q8KwvE67rcnh4SK1WY3l5+TMnNR4cHFCv11ldXSUej3/q7T39yMWLF/1WwsnJCT/96U95/vnnuXLlyn3vX6vVODg4uOfI4hhjfF6MycAYjwWeR3uz2aTVajEYDJAkyScGnrDOg+M4bG9v0+l0mJ6eRhRFv8XgTTR8csRRVVVkWX5oUgCjnVypVGJvb89PxXNdF2SFo/4kVc0iHYaLMxaBW1kAiqKQSCRIJpNEIhHK5TLnz58fKb93Dvj1kYBuB+lUD5hXqjyztkS/36fZbJ6qVNy8eZPJyUl0XefatWvs7OxgDl2OnEWO+hNYSIjYZKje2vm7VJnGQcLFufUMbu9dO7cut//OJYTOIttEMGiQRSdGUBaxXJnVhQkSIchkMpi2zGQyxHcfwmr7SYbruuzv79NsNlleXn7oXfb9TIXuhcPDQzRN49lnn/XP4W/+5m8olUr80R/90X11GZ82sjjGGI8CX1k74jGebHjRwNFolLm5OX8sr9lsUq/XEUWReDzukwNJklhdXWV3d5dyuezb58JIxHW7/qBSqWDbowU6GAyiqqo/ztdqtdjb26NYLDI9PX1PUqAoCouLiywuLqLruk8MNo+alNsDXLNFwYyQEjSeX53i7NmzfsCQN5oXDAZ9NfvlaBQlvEu5oTN/8SwbN/psbW0xNzeHqqpomkahUCAWi5FIJPjggw+AkRWyqqrI/T4JvUaBBBIiFhJDZMKYaCRwEHFxGSVemreGCG/HJxdxlz4Kh6zgINBHAUSCVh9FAkPr4pLi989k/eyOrwIRAHyrYq/U/6C7exjt0IvFIvl8/qEmLT4Z/tVut31B4/2IgGEY7O7ukkgkvlTzpDG+fhhXBsZ44mCapl9213UdQRB8xX8ikeD4+Jhms3nfnVm/3z9FEG6fYBAEAcMwsCyLWCzGwsKCb2V8P7iuS6Xe5i/ePmT3uIHQbzIlFpAFyzc08lwDW60WoVDIF5Z5eRKFQoFyuUwgEODo6IharUY8HsdxHPr9vr9gNBoNUqmUnzMhyzLbpR7b9jm8D+ycsEcYnU33OTokvLNExMHBYUQAREbR3XdbyC1CmD4RGAkMXcJ0kXGYn83z2jMZfvDS5FeGCNwO13XZ2dmh0+k8kCCvWGnw0c1dlvJZzq4uPvBxHMfhgw8+OCVcfOedd9jY2OB73/vePacb+v3+KJnyliZl7CUwxheJMRkY44nG3UYWVVXFMAwGgwHTs0uISvxTd66u62Ka5ily4LUoer0eqqqOsgZSEwzdENPZGNGw7EdR27aNZVnYto1mDKi2+4iWTrtR5ujoiEajQb/f96chYGRy44nUvKkBjxh0Oh0AP2hKURR//DISiTA3N4dpmjQaDYLhGAfFJqbeoezOYKASQWdSKKATpexMY6CioyICEkPcWyTARcBCYUQI7iQ7En1sREaaAhcBh4SgEVAi/MsrS/SHzldCK3AvOI7Dzs4O3W6XtbW1e+7Sr93c4s//doNQfJrn1mYeKsBL0zQ2Nzc5f/484XCYfr/PX/zFXxCLxfiDP/iDu97Hsiw2NjZwXZdz58491KjrGGN8FozfYWM80fDG7nK5HJZl0W63abVaANSaGj/9+GNMIkwlQ7y2GiQWDvgJjB7PvZ3vetdlWSaTyRCLxWi1WtTrdf756sdstmPodoh4yObi1JBkVCEUChEKhZBl+XT1QJJIpVKk02lMcyQGLJVKtFotTNPEskYVg9nZWZLJpG8iJIoisViMbrfrj1EeHR35f/OmIj74zQ3aA4VSK0Sjm0EhwqRQYEgI2xUpuzP0CWMjE6TPgJFKfehPDgi3WgdD7v5Rd27VA4a3/AlHi1skopBMZah1BqxOq5853vtpgCiKrKyssLW1xfb2Nmtra3dkMliWxY9/9guK7RTPZmzKrQGN7gBVeTCCpOs6oij6UwRbW1v0ej1eeeWVu97e08dYljUmAmN8aRi/y8Z4auAt4JlMBsdxCO1X+XX1mIilcVQZsC6YpMO2H1AUCAQIBEbkwLvuXSRJ8pX+kUiEmZkZDqs99q7r5DBo6i6aOUSw274lczgcJpFIkMlkSCaTdw1psiyL9fV11tfXMU2TSqVCuVwmGo2yvLzMuXPniEQi6LqOruuUy2WOj48ZDAYMh0Pfg+G99z9kt5um5Sbo9CWSVOkLEYaEaLmpU8mECBB2NSxC2IgMkRDgVnyxhAu3ZIWeuFC49e9IbigiIgAiQ0SgZwd5fT7Kty9kyGfCX8kWwe0QRZHV1VW2trbY2tq6w9PiJz/5CbbZ5tzSObS+wJTiPBRB8vQCgiDgOA7r6+vEYjEWFxfvuK3ruuzt7dHr9Thz5swjydAYY4wHwZgMjPFUQhRFFmeyPLvqUm71eSYZ4tsXkgQE29+B327pe3tMs5cT4JXtvRL+GTVB0dSpaTbnUgpvPaOC3afb7dJsNul0OtTrdd/rPhgM+gQhlUqRSCR8P/zLly8zOztLrVbj5s2bHB4e8uGHH/Lxxx+TSqU4d+4cU/kFKloRMRBmcXGRwWDgTy5olkLLktEdG5MwLTHHpFgBx8UkTIQeJiodkiiuQYQeKWpoxOgjYxPERiaMzpAgFqOdv4CDgOW/jjIWFkFELARGPemIbHF5ZsiZ/NPvPPigkCSJtbU1Njc3fUIQDoc5OjpiY2OD/GSWf/tvX+XqtU0iAYNI6MH7991u1w8mOjk5odVqceXKlbtqAI6Pj2m1WqysrDzVqZFjPH0YawbGeKpxe8Lip+1gh8PhHSThdrLgOA7m0EXrQzIiEVdDpwiD5wFvWZavOWi32/R6PT+bQZIkOp0Oc3NzzM/P+xUEy7IoFApcv36dYrGIZgy52VBHC7tociahoQR+OxnRtwQO7CX6fYmXD37MhaP/gjpo0w9FuD7/Flfn/yXN4CQDggyRUeiToIlJiBZZRqFEFnNsU2UWjTjgEkWjTxCFIRpRBGxCDBgi4yKTDEM+FeDZtMYbr15hNpf8ylcGbodlWWxubmJZFmfOnOHP/uzP0HWdP/3TPyWZTNLtdtnY2Hhgj4J+v8+1a9dYXV0lkUjwV3/1V9Trdf74j//4Dl8Mr0r0qBwSxxjjYTAmA2OMcQuWZd2VJHjXvWkEGFUmPJLglX/7/T7VapVisUgsFsO2bT//QFVVf0xSURSu7ZT49z/dJIhJnxB58ZCoZPqPNxgMCFbKvP7L/4vgsId4a4Zg9K+AGVT5v1/9nzmOn2OIQgATBRMHAYMYDgIhBsyyR5sEDSaQcEhRQydOjzAh+oDLAIUBAURsJFHm8mKUgVZCDkV58fnVr4y/wIPCSwT88MMPOTk54eWXX+ab3/ym//etrS0GgwHnz5//1AmURqPB3t4eFy9eRNM0/vIv/5IzZ87wxhtv3PV2U1NT5PP5L+R5jTHG/TBuE4wxxi3IsuwbF90Nt5OFT1YX+v0+juP444rT09P+OGGv18MwDBqNBrZtI4oirhTi3FKOm3tlFHqEhFuVCdMcic0cizd++e+Rh6ZPBMDr9ruEhgb/9bv/C//bt/5PLCmAhEOU0bSFRQAHiQADqkyhkbylFrAxiDBExkHARSCMgSIMqLlZXEQsB4oNHYQE31hIUm71H0os91VAIBAgHo9zdHREJBLh1VdfPfX3mZkZ1tfXaTabpNPp+z6Wruu++PTjjz9GEAQuXLhw6jaaprG/v+9nYowxxuPAmAyMMcYD4kHIwkcffYSiKGSz2TuIg2VZDAYDDMOg1+uxFKkjpDr02hUkLD/S2bIscju/JjDs3WUYcATRdYj1m1wu/B3VuTMExSEB+gwJkXLrDAlSdyf8xV+8JRbsMWpNCDgYCITRkYJhVFtECQXRTYt8Lk7bFOlaQVYnQl/paYK7wXVd/vqv/xpZlrl8+bKvIfDaRKqqkkgkKBQKn+pk2e12UVUV0zTZ399nenr6lMFRr9djZ2eHaDTK4uLip1Yaxhjji8KYDIwxxiOC53qYz+fvanHrkYHbScJlXefHP/lbqu0eIWtALCKPKgvHNz71eA4CZwu/pLs4R5ABRSePSRiFHhNCCY0EHTeBQg8HiKDTQwVE3FshRi5gWTaZqENAHGBZsFPssjSd4ruXJ1idVr9WLQKAX/ziFzSbTS5dusSVK1fY2NjwCYE35jczM8PNmzdpNBr3NL5yHIder0c2m+XGjRsMBoNTVYHhcMj29jbBYJCVlZUxERjjsWJsaTXGGI8I5VqbatdFDNyZhudJc7yRR29UMRiJY2UvUWSBojOLOXTp9/sEh+Y9qwIeRFwiQ40gAwYEMW/pAHqo6ETJcUKGKnGaZKmSooZFgN+OFjoYxOnbAo4gc3ZKZC7h8MKiSi4RJB0LfO2IQK1W4+rVq8TjcX7v937Pd/8bDodsbW35hC8SiZBMJikUCtxLdmUYhh/fvbm5eaoNYNs2W1tbuK7L6urqpyYWjjHGF41xZWCMMR4BdNPmP79f5qg65Ki7w6vLMgFxpCHwLndDTReoazbRoIPWD2M6QTA0dDWJ2q0h3kff6wgilqoiCxaWIyFhY7gRhgSouTkigkFePGRIkIabpeNmbrkNjhQEAQa3Rg0FlFCAb7+6xlbRoNzqM5n8erYHfvSjH+E4Dt/73vf8nbqiKKfGDtfW1pAkiZmZGW7cuEG9XvdHB2+HZzZULpfpdru+aNDLRBgMBpw9e/aOqYIxxngcGJOBMcZ4BGh0B5TbA9SARalp0jLCzGYUP7jobhdJktjY3idfsukmztEo7iIOJapmio25V5kqbd33mKLrcLDwApYrU3WnGLoyIzcByycGjjgiCQM3RBCT/7+9Owuy8z7z+/599/fsS5/e0QuARgMkuICLqKE00kiyZjSSJUueOHEqlWScm1TlIqlUkkpVcjO6y4UrZZedpSZjV2xnqbKdcUnyDFUaabRSpiAKFEhhB3pB791n39/9n4sDtEiRFBeABAg8nype4BT6sN/TZL+/9/9//s9jkqBISNAoax1sNcDT0hxJ91mccFiazrzro5oPmp/+9KfUajUeffTRNw0FSqfTnDhx4g2dClOpFKVSid3dXcrl8pv6BvR6PdLpNBcuXCCVSrG8vAyMxh93u93D9xDifiBhQIi7oJg2KbgJsTHO4nSRp06/83G8ZrNJv9Pgb39iHs3J89JLDf7VyxZ90lyfeISjxbMcaV9HV8mbvjbRdLbGTrFTWQY0PFKkNI++ShHg0ieHyxBdxZhajMuQoZYhq7oE2IDC1TwmtS1CbAwv4MpalceWph/YOQS/TbPZ5OWXXyabzfKFL3zhLf9OJpM57FS4srLC8ePHmZmZ4eLFi9Tr9Tf1Bri9MlCtVnnyySfRdZ2dnR3q9TpHjx59x8FIQnyYpGZAiLvA1CKem9f4ysfG39W5fN/3uXnzJqVSiYUjk8yWbSKrRJc8IQ6enuHPPv4/s1J+EoBY00nQSLTR/7Lr40/wV8/9F9haiKMFuAzxcbAJcRlSoj46rqgZuBYs5Vs8NTlg0VgjQ5dxqgTKGG0hJBXOHZT40+9u8c2f79P34g/887qfdAch/8+/+Q7DUPH5z3/+8NTAW8lmsywtLdHtdlldXcVxHMrlMru7u2/oQ3G7vfT6+jqmafLYY4+9YfzxOx1JFOLDJisDQtwFvu/jWhrHpvNY1m8PArf7zxuGwcLCAo1GYzT5sHZATJrk1sCgoZ3jT5//Byy2LvLs9neYCjeIXYeNI2eoFheoUMfURkcSj+i7+MrGIGYrnKFLHleNVgZGNQttwmGXsVSa7qDHULm4DAGNoZ7Fsh2iOGF1r0ejV3po+gr0vZg//cY5LmxbzI0/yuz88Xf8mlwux/Hjx1lZWWFtbY3p6WkajQa1Wu1wHHG/38f3fQ4ODlhYWCAIAm7evMn4+DhTU1Mf9GUJ8Z5JGBDiLrjdLOi3PVXetr29zWAwYGFhgZWVlcMRzfvbq6Q4SkCKEAODBKUZ7JRO8J3SHMv6ZXL6qLFQmsHh+8VxjGsb5G2NQZyiExbpkaNPFjsJmTc20FVIEOsEw4QKuyS6ga5iPJXG0mM0x0EDxlLxQ1U4+O8ubvPSlQY5PSKxirz86hWW50ZzJtLp9Nse9ysUChw7dozV1VU0TTtcHahUKui6Tq/XY39/nyRJOHnyJKurqxSLxTfVIghxv5AwIMRd4Pv+4Yja36bdbrO3t4fjONy8eZM4jmk2m1y7dg3d7zBBhi5ZbEKKNGhRxsMmjYdF8JbvqWna4cTDyKjgk0InAc2iS5G26uAyZCeeJtEtUgyoqF321Qw1NUEUG5xwYj617DI/FrynITwfZVe2evzDb67iqQJ9ijxezFLJ2xwcHLC7u4tpmuTzeQqFAvl8/k2jhIvFIkePHmV1dZVCoUC0s871b/0Z8cWf4wUBVnmeyU9/lXq9TiqV4ujRo9JLQNy3JAwIcRd4nveO42bDMOTy5cv0ej2KxSKO47C9vX1YXW4QMWtsEmBjE2BqEfmkzY6aJ8KiqqaYVtuY2huPKSZJgmEY9Pt9srkuKS1HV+WwDbB0h5Y2Ry808LApmDGJmUIzEtrdPH0yKHRWaoqnZwc0DcWltQMWZyoP9GmCvhfzT79znaGyR6OeE4P9rRu8FgzI5XKk02kcx2E4HFKtVjEM47DzYKFQIJVKoWkapVKJxcVF1v/1P0H9H39CDyAZ1VxMrV2CV/8a7b/9Ryz9nT9+yymFQtwvJAxgo5EYAAAgAElEQVQIcRf4vv9bq8N93+fs2bM0m02OHx/tS1++fJmDgwN83ycMQ2BUiGi+bsRwohnEyhidBiBDWxUo0AYgwMbVQ3Q1+lrLshi293nEajMwxtBMhw5llo4u8ovrHcYd6HoJ6XiffDpB9wuowEJDkaDohwa/3I641Osyt6ce6AFFjV5AMOxjEpNoDjk7ZnlidLOu1WqEYXg4R8I0zcMx15ZlkclkKJVKTExMjIJBpwZ/9ieHIeA2TSmIQqJ/+N/AF74KpTf3IhDifiFhQIg7FMcxYRi+5cqAUoqDgwMuXbpEp9Ph1KlTDAYDLl26RLvdPhxk9HbSZkwq9BioNL6yqakJeuRBgwCHlPKY0rbQkhhN00b/xAHlTEjGhdVul83tAzKWST6V4vFjBXKdHYI4S94L6UQ2UWJgGQlHpsa42XEYL9gP/ICictYmq3eZMEOOzC/w1WfLzJcXD9tFDwYDOp0O3W6XXq+H53n0+32iKDrsQni7RuTo2W8yptRbd4xUCuV71L7xz5j6z/67D/UahXgvJAwIcYd83wd4U81Ar9djY2ODZrNJFEUsLi5Sr9e5fv06nucdTim8fXP5TaNixIRpfYtWUqCmJkhpHj2VQQMy9Bkql9hMYzO6YcWY7KkZ/G6ajKdYmrSIoyY3+orQGqecmyCrZTh27BjBdejd6GGbYCcduv00Y/kc9W74wHcgzLgGC26VdM7jv/wP/pB85s3Xenvq5OuHTfX7fer1OrVa7TAsuOsX0ZI394L49RsldM/9WMKAuK9JGBDiDt0OA7dXBqIoYnt7m1qtdji+1rIsarUam5ubh1sCg8HgbdsUwygMBEGApScUVJuBlsUjRYY+hqEzjB1chlhqiGmZBEGAh0Vs5nG1kF0vh1fVqORMQvqkwjrrOzlmTI2xQcIffeo46ew+Owcddqsp1loWx9Lw+09WmB1zH9gtgttiv08lo79lEIBRYebt7YHDr4ljpqamGAwGtNtt9vf30cx3+DWqaWhSLyDucxIGhLhDnudhGAamaVKv19na2kIpRWXyCCub+zT3a6Rsjb29vcOl/G63i1LqbVcFXNc9rDzXdR0ziZg1d/ASC5sA13HoeAqbAF1FwOiGZeNjqT6+PmqP6yQdusM8U5UijXYXr1vlkq+43h/wlN/kj35nhrWDIj+93GS65FDvhqQc/YEPAjAKcW/X/Eep0cCo4XDIcDik3+/Tbrfpdrv0+30ajQadToder8ex0hxHa1u/dY5E7rnPflCXIcRdIWFAiDvU6g6p9eH8r64QB33K5TKl8Wn+zYsbvHatSt42mTF3ybo2URTRarXQNI0gePujgrZto5RC13UMwyCOYxwTjGiIUgrbsMkaHkGsM1Bp4iDA1DRsXTGZbBCqFhNjx2n2HMp2wHKuT8+G+jBmdVCgaJv8/EabZ5fynJ7LsVH1HqoBRXEcMwgScmaRdt9Hi3994x8OhwwGAzzPw/d9oigiDEP6/T6dTod+v08YhodbCOtHn2bxxlmUit9cN6DrGJkcY3/rj+/FZQrxrkkYEOIO9L2YvzrfYKs+YGES/v1PH2eyUmSzNqQXWWTtmGo3Zn6mRBK3aTQamKZJv98niHX6FPATk7zWwdVH2w3pdPpwi0ApdbhCYBjGG7YVglhnN5llSAaTkHlrG1cLMLUYmzZTuQbGRIHG3ga9tsVqf4yuyuIrC8O0GD3IamRcgy8+Pf5QDSi6sVHlhjfL9p5L5y9f49kj6vBURpIkxHGMUgrP82i323Q6HXzfP2w5HEXRaAvHspg78xz6qWOo/+W/hzgGXrdCYKdY+l//AjNfvAdXKcS7J2FAiDvQ6AXo6TFOZHP4yiFgVDfgaAGtvVXq3YjpkoMetag36pimyXA4xI9gVz/OVjiBQieruixzkbQZvmGSna7r6LqOpmlvOKceBAEBNkMy+MqhTQFCjZPZXfRwdDqhtr/FwoLBzGSZ9f0eyi4wn3cJ6gb5lM6TRwvMjo2KHjOu8cCeHPhNfS/mhfNNmmoCHZODrqI9VEwVnMNVgHq9TrfbZTgcrcTcbkDUarXo9/sATExM8KUvfQnXdXnhhRcY/p3/kdKFn1CsrgM61YmjhM/9AUcmFsne0ysW4p1JGBDiDpSzNtPlFPstnenSaIn94OCAn/zkJ0wbA06dmmXQ2qfdqGLb9mFVuuaU6XpZEnR0FB5p+mSppP3Dm75SCsMwDusMDMNA3dqXjqIIGzAJaVPAxSfWTJSZIW1pDIdDbNum0Wjwmc98BvPaKrXVDj3P5lgx5MysweeeXX4oVgF+U6MXECYGYzmDQWSRdQ3ybsze3h6tVovBYICmaViWRbFYJJ1OU6/X2d/fJ4oiUqkUH/vYx3j++eeJ45jvfOc79Pt93PFp1h/7LHEcH9aCpP2ICxcuMDExIU2HxH1NwoAQd+A3l9gPdjf42c9+RhzHPHLiKJubm3SaVUzTRNM0er0epmlyfHGKjctt2qRR6Dj0yel9MpkCuq4Tx/FhZ8HbZ9sHg8Eb/t2mFjGjbaAURJiktSFa1CddyBBF0eHRuJdeeomvfOUrhMGL7DXWOXlkhl5nlwvXijxx6thDFwjyKZ2pgkFvLEvkdZmIbnLj6uhp33VdKpUKtm3jui6tVouVlZXDItHl5WU+97nPMTY2BsDZs2epVqukUikMY/Q53v75AYcdDDc2NlhcXLwn1yvEuyFhQIg7NPBjVnf7nN27RHv7Crm0xdLSEjdu3KBeH20NOI7D1m4VX2V4fGmRZm2PI1oTCGlQocIOlbyN4zi3pgxGDIOEAIs4SEi0NHYUYGoQKfOwZbGr+yxoa4d/JtLwPINYsxhENgVrFEB+8IMf8Le+/GW+9a1vsbq6yk48y/lGle1B7oHtNNj34sOQZukxrVaLer3O5uYmWq1FJYhJ2zH5lE06PYFt2xiGcdiG+Nq1a3Q6HWC0JfD888/zyCOPHD7hX79+ffRemsb4+DhbW1uHgeD28VGlFEEQcO3aNWZnZ9/VICsh7gUJA0LcgWo74B/82zV+tVpHJSGPTUzytdNjrKxcpdFooOs6uVyOm1t7bIXTGJkKr+4pcsMh7aTEOsuATocy5fAqtFpEUYQXKrbCKYZkGSQ2OiE53SMbN6kygY9DgQ7j+u6t3gM90KAbOQT9mIY+Sz9ysIIhc1mPje0DXnjhBRYWFtisXaHWj3l6sfTAdhrsezHffuWAi2sNwsDjsVITI2weTpdMuy6VUo5MJgOMbtrpdJo4jrl8+TK1Wo04jslmszzyyCM899xzb2g33Ww2uXjx4mhipOsyPT3N9evXsW2bOI4PT4DA6Ahjp9NhZWWFU6dO3ZPPQ4h3ImFAiDuwdjBgu+GRJBFRrHF1N+Sf/eVroMGEoxgv53hlI8Dz88ROEUf53KyblMixr6YBHUgAnbXBOKVcB1PXCTDxSZPPpTlopbAIaSdFNKYIcdFI6JGnmlRQ6Nj42HhEsUM68igUS0wU4Np+in43oGSl0bb2WVhY4D/8oy/zv/35WS5c2+DUiWP84nqLJIGFiQcnEDR6AWv7A65s92n2I67vWPzBMZf5qSKu62Ka5mH9RSaTwTAMLl26xNbW1uEEyNnZWZ555hkWFxffMG0wiiJ+/vOfE0URhmFQLpcZDAbEcUwmk6Hf7+M4zuG2TqfTYWZmhrW1Nebm5g4DiBD3EwkDQtyBoxNpZssuvUFEb+DTVymuxUsArEcDnH6IRwaNBNfrU8UhwKbBMhoBo2NoOqBQMawNxpg1djDiAIch7UEanYQERXyrsdCoC75GiEWEiYtHlwIJZXQUPRURd3uERgXb9imaA7BKJGafX/7qMp8cm+ePv/wMf/7tF/nr83skRpp/+4sqf/J3TzwwgaCctTF0nUFkYBiKdqRzpTPJ8gLYhiKINUItxfRYhvWVq4ctoi3LYnp6muXlZZ588sk3nOy47fz58wwGA0zTRNd1ZmZmuHr1Krqu47ruqED0deHh9pHEOI65fv06Z86c+TA/CiHeFePrX//61+/1NyHER1XGNXhiIU8xY7F7UKfnR0TYaChiTBLMWzdzHY3RGfUYmxgLHY0MXVx6uHTJaANCXEpOgKsHlFMRn3xqmd2dHSJlv+69DHQUJiEuMZHmot0KCKCRYBAlgGaScy2UirG1CMPOcrXhcmmzj5MpY6cL/Go7pJxzaA0i5sZdlmcejKdW29SZKbu8ut6h3osw0FAoFsoa2WyeH69b/OBShx+/ukm/uoajRxSLRY4ePconPvEJTp069Zb7+zdv3uTKlSsUCgX6/T7j4+MsLCxw7ty5UcdHxznsReB5HjDqW5BOpxkbG6PZbFKpVN4yZAhxL8lZFyHu0HjB5g+eGuf0Qg6dBFAodBRg4pFgkGAwxGGIS4gJtwJCli7L+hVszaBFhdhIUypkSKfTTI4VmJ9IY2oxKTNiIptQMrrM2nWO53tUaLA07XJyAuZzA2w9QUehE6LQSJKEVMpmoWKyN7A5u1/k5nCMvXbCj85voaws44UUnWFEOWvx2Nzbj2D+KFqYSPH3PjvDkXKKghNCHDLwIv7ifJfv/arFelNj0yvxK+8kxYl5Pvaxj/H5z3+emZmZNzzZ33ZQb/OjsxdJ50r0ej2y2SzFYpEkSRgMBuRyOTRNOzw58vqZBu12m3Q6ja7r3Lhx4zAwCHG/kG0CIe6SQi6Ny4AIRUgGbu37Z+jQJ0eCxa+f3jV0Qoak0fJzZKIUORUThgEHnZhQFdEKZTYOBsR6itmcjp5JEdT3WOuXqcdZFA7TJJSzOpu9gHFjgKYF7MVjhKRoDDVyPjT0PB4RhqERRQY1T6PuR+z2q8xVXL74dIXnT5UfmC2C13tsocDfeMJjdc9hpmSyPOdybr+GIoJbzYO7kUMzyvHYY48dngb4TftNj3/056/RHqao9F2OpTssT5aYmJhgdXUVgHK5TKvVwjRHQ6NubxnA6Ihhr9ejVCpRrVbZ399nenr6Q/kMhHg3JAwIcRc0egF+YvPpM4v8+KpHa5igEaOw0M00TqwYKg0wGBUMmkToNElxvl3GNnVipcjqBhc7U/TJcL6nc6zahCRgd5BnzIjYHeboqSyWbpHECXtd0B2HJOjTDEto2MSYmHhEuORTGqblADFeNLrROaaBYRrYpk6rH3JsOvNABgEYbeN89eOTNHqlw5kLT+4mrNdCmv0YjQiDmJ31a/zjf3yJT33qUzzzzDNveI++F/On33qNCzsRmqax2Qpoj5WYO2KRzpf56cWz3PRmyHl5oqBLotkM4xCsLJHqY2qjroaNRoPJyUl6vR4rKytUKhU5aijuG1IzIMRdYOo6u02fYWwyV0mx0wxIlE4+bfGZJ6bBsCFJGAa/fiK9XTiYYECS3JpiqAhwCDCJMWj4Ol5i0QldDgY6g8TGAMLkVgf8OMS2LDpxBi+xMDWNoXJIMFGAHyaYtkMpY2BaBsWMSda1SJRGkigWx1N88emJB7LPwG22qVNIW9imjm3qnJjOsDydIYpjxnIWTx5xmHabdNtNrl+/zmuvvUapVDpsLLTf8vnF9Trt3oBeZINKaA0iVjf3+e7PVzhXL3MQlbi4r9hqaex1EjYGRfpk6IUmaXroJFiWxcTEBIVCgWq1iuM4lEqle/zpCDGiKfVb5m4KId611ze52awNeXmlzceOF5irpNiuewyDiB9dqHFupUvHi+l7oyl3jqWjoUjigDj0MQ2dXuwCCQqFhoYBaIaJqUUYJBSchI6n0HRIuylcI6DtQcezSYBcSieMEkppDcO0GMs5hLHCNDTOHM3xyGyGIEo4dSTHeOHBn1L4Vl7/87KNhLW1NX74wx9SrVYBqFQqfO1rXyNbqPDtVw64sFbnys0GXqQwow4GEZ5K0SGHdqtA0SakTI0ueSadLkEQM6PfJK0NKBaLPP744xw5coSdnR06vkZp5iSn5ssP7c9A3D8kDAjxIep7Mdv1IcMgodULqPdCjk6m+evX6vz0Yo0wjpirZBj4EZ1hTHsYoaGjNB3X0nAthaNFTBVMLu/FxImGZeg8OmOy3VH4IQTR6PBhJmWQsg2miy6lnMXvnCgwWbSZHUs90CsBdyJJEq5fv853v/vdw1HTs7Oz/N7vf4VXruyQshQXdhM2dmpYqk+gbK62ssQY6ETk6eIyJMQiY8U4SY9JNjG1iEwmw9LSEouLi/jK5c++v49HmqNTBf6rLy9KIBD3lNQMCPEhyrgGy7NvnmHXG8b8aqNLOZ2i58N//NkFNmpD/uLn+2i6Ioo1PnO6xCBQlN2YG/sejhVgGjpKg8+cmWWj5nFps0+iFAsVlz94qsK5lQ49L+bImMvTxwsSAt6BruucPHmS5eVlLl26xPe+9z3WN3d56Z/8JanSDM89foL/9PcneO2iorHfI5M2GLtyk+1mRJoeWb1HohnoKiZJDJIE2lqBjOrhxjH1ep1cLserGwP22ynSZp29lsvawUDCgLinJAwIcR84dSTL/FiKvZbPVNHhzNE8Z47mWdkdsNP0mCm5/HufmOHlG232Wz5PHM9gWj0OOj4zJZePL5f47OMG23UPUIdP/8sz2cOlcAkC756maZw+fZrTp0/znR+d41//dJNKzmarPiBM4DMfP83Zsz0ajQbHyhHOcJvkVt3HqAvhkGFss6IewVMpXIac9K5gtlpsbm7S2GljqiVCLcdU0eHoRPpeX7J4yMk2gRD3iWo7YO1gwNGJ9OFT4m++9vp97oEfv+nvi7tvNOegyspWHZsBX352khPH5ul2u7z44ovU63XW19cxTRPf9ykWi8RxzM4gwxX/KA4+Hi5z+k2mnA6JmWG7l8bXspw6tcx/8jeOPbCnOcRHh4QBIYR4B7dDWDRs0TjYYWxsjIWFBXZ3d/nhD3/I1RvrJGYGLexhMDqCqKwcV6OTtIPR8cEsHWIsDC3GUw4LhYDlR8/w1ecmmatIGBD3lmwTCCHEO8i4xq3JjikKGYf19XWiKOLYsWMsnTzN968EeNFoO2Ba3x6d+1Q6T5UOWKlGNJMSGoohKUqqjo8LzhhTRfew/4EQ95K0IxZCiPegXC6ztLREt9vl2rVrjM8ewyN1azsgxVCl2U1m2Qhm6BjTjFk9Yky65AGIMZm0m3zhiSxffHpcajnEfUHCgBBCvEf5fJ7l5WV836e+d5Os4ePj4DIEFB4pzGTIbnNIP7ZxtIAydfK0Gdf3WMrUmSsZEgTEfUPCgBBCvA+ZTIaTJ0/iGIr5VI0jxiYzxjYpbYjLEB8HvBZW3EdXET4OKW1AQWtjmgZXN+r0vfheX4YQgIQBIYR431zX5eTJk+RS1qjLYC5F2tGZ1reZ0rbJ0aGqpmlTpkeOQFl0kyyX2mW+dyXmGz/blUAg7gsSBoQQ4g7Yts3Y2BiaptHp+3haFi+xOUim2FZHqDOBj02IzT7T3FTH2Qwm2G3HfO+VLbbrw3t9CULIaQIhhLhTjuMQ4LIRzhIENh4pQhxsPBQaMQYJBgoNH4cIE4OIZrPJj3/yE+zffQrNzlPJO1JHIO4JCQNCCHGHIkxuBrM0qGAREuBgExBgk6FFQIUYG0jwSI96EQB5mly8VOXFi3VCs8Dzz57m7/7uEWkiJT50EgaEEOIO7bVChrjYBPjYWARYBGTpkKVNmzIaIQoThUYCJGh4OGypBbrkUZHGCy/voGkaf+9z87JCID5UEgaEEOIO9L2YC1seIWMkjJ72QSfCwCIgRR8dhULnVjciEiw8TEIMUvhEmIAGccSPXzqPt/5jfu+504zPHme/pzFZcNB1ZMaE+MBIGBBCiDvw6uVVhrFFiRp9MiRYdMnjMsTDZUAaE480EQOy3K7bVmhE2HSxb/1p9HoCbOy2+KffPMc+ewQ4OI7LmeNjPLJQlkZF4gMhYUAIId6nTj/gu9//EbayCTQHS4W0KBNh0qWATsgmx94QAjQiFBqjVQID0G6925AYiyYlWpTRSYiwSdGl4yturK7g2CYXN11Oz+UkEIi7SsKAEEK8D30v5hs/2+J6O4et+Yyzxx5TeKRQ6CgS2pSJsPn1DT8BdAwiYvTXvQ4KF9AYdR0wMW+dRBiSwSKk58HZ81cZ9PtsVKdlhUDcVRIGhBDifWj0ApoDRc5RNL0UISZ9CuhERFhoKGJMRisAt1u6KAwiHIYMyKJQcLhKcLv50Ki2IMbGwkeRoBPh4aKTsLu7Q7vToWJ3Ob54ROoIxF0hI4yFEOJ96Hsx336lyrnLW5xfbxHgkqCjkaAxWgMY3dh1RuOJAsY4IMDFIwNoDHG4ffM3SBgVFxo4dFG3agkSLHRiTHxCXExi0rpPwexSqkxz5tQ8X3t+TgKBuCOyMiCEEO9DxjX44tPjmFrM+fXu4esKDfPW0UKfDLcDQYxFi/FbGwEaafrAKDSMwoNOlg5dCrd6EoxeNQhIsFAY2HjMZEM0K0scmeTshMtrexwvRzx7ehHTlF/p4v2RdsRCCPE+ZVyDTz46zsJE5tYrOjoJCp0Em9Gv2NHtXqERYuEQohNTpIHDgASDEAsAjxQwigARNgYmBjBGjeP6NSb0Kl4QMZZzePLUPImZI2tFVLdXOXfuHLVaDVnsFe+HbBMIIcQdurFZ5X/6P7/PVjgOGEQYmAxJsIhwANBJsPAxiHDxGWebFmMk6HQpUqBOhzLB60KETcxMZshxe51k2KQfGmzEC2Dl+L2Pn+ZTj1ZI60OatV329vaI45jp6WlOnTpFKpW6lx+J+IiRNSUhhLhDU5USKUfHCkM8LHRCDBQxya3JBDE2PovcQNM0eipHVxsjUjbmrcZEISkMIrIE9Mng4FOizgmnzfLxo9Q609zcrdPvljA1i++fu0ku2OLMiXHy+Tyu67K/v8/a2hqbm5scWVxibHKBSsGVegLxjoyvf/3rX7/X34QQQnyU7bd99r0s+rCGr2zCWBHgoLCAGB2NilZjwd0HFdKmjK0CYixKVDFQJJhogMOQPG2OaDeZNPYZeAGX2mU8d4ZU6Qg+LrZto1RCQe2jRz1s2yaOY0zTxLZtqo0O33u1wbm1LoPYYWE8hW3KrrB4e7IyIIQQd6ictTlSydDrTpPzPa5u9uhFNj4OOuAQ8OyiTTYZY2e/jhME1NQYGhp9CiSaSZYuHinGtH0KWhtTi4iUyXYyT6OXgizoOswXoefD5KTLqYlxus0qGxsbnDx5ksnZBaotj9T4CdbiPabKGfZbPo1eQMaVbQPx9qRmQAgh7oK+F7O2XeWvvvs9Xtu36TLGMDIwtZBJq8GZ8S75jEOpVOLly7tc61XI6EP8xEZXATEGLkOm9W0AAmxiZbKdzDEkTYjN4wt5/vO/+Si+72EmA0KvR6vVYnt7m2Z3yFYwSbYyz5GJAiho9kMmi440KBLvSFYGhBDiLsi4BgvTY+x5edBjnj0xjt5ZoXawS9qx6A+GHJkeJ5fLUXI3KQy6eGQouhE5f4MYA5uASBnsqHkiLAwVMiRNgI1CY+3mJv/XX3T4r/+jT1HIVAAIw5CTJ0/yiwvrXHilzrGCQ7MX8vtPVkg5ujQlEu+K1AwIIcRdctAOWG0YTBQc7HSeZ09O8MrVA6pBjsQq8qXPPMPU5DirK9fRhlUKdsC408fWQozER6GzGS/SoIJCo0+eABODBAXk6FLveKxffZVMaZquBxnXopDPMD01SWjkaA4SJosOTx8vUMnbUisg3hVZGRBCiLuknLU5NlPk8qpPKeoyNbmEXZiioEeEmsvK5gGffPoki4uLtFotNG2AY7p0fIN+kiJWBpFmY6mIISn0WxMMfFLoRPhYZNWAa1Wdl//vc4yNVfjcU7N89bnJwyZIjV4gqwHiPZMwIIQQd8nohjzBmYU0B1s3MMImn37uCfZbPsPWLtGgSa1WI51Ok81maXWHZAvzbPd8ekrDSAI8bAIsHAIcBrQpoxGjk2CiyGtNttUcodIZegE3q8PDAsGMa0ihoHhfJAwIIcRdlHENlmYLZI1Ztre3+b1TJ/CSAs19n53NUbGf4zjkihUuNCLW9zOEzgQT6RY7DQ9LxRTMJl40ajw06kZoYhK9rnWxRYhDo+ezf/ManX6ZvqwGiDsgm0lCCPEBmJycJJ1Oc7C7yWzZYayYwbZtarUamqahuwWs3KiVsabpaKkKx2fyZPUejpsm52okmDgMsQiJGY07ipSBjU+ROml67Db7/P1//kP+3x+scm27T9+L3/F7E+I3SQGhEEJ8ADRNI5vNsre3B4DruhwcHDAYDLBtG42E0swSkZGm7Hg8OQufe2qWvZVzZPUBj8ymqXcDBrGLTozCJMJmQJYYkyEZQhxCXOJEcWO7S8u3aPYjaTIk3jP5r0UIIT4gqVSKqakpdnd3UUrRG4b4eo7dapO0Y/CHZ8b4o9+Z5pPHdI5N2GhJwLH5GayozZOPHOXJiSHL1lUm2cYgwWWIhwsk5GgDCltX+FoapemU0uqwyZAQ74WEASGE+ABNT0+TSqVY29zllzsGl5p5Xtl12G6DYZosTGbIpW1s26bf7/PpT3+aXpziGy9t8+iZ55nKJozrVVz6eLjYBGTpMRqWrPATDUtLWJq08COdyaJDOWvf68sWHzESBoQQ4gOkaRqLi4vUOz5OYZr56QpbvRQv3dT461+16Hsxruui66Nfx/WhwYXoDC9Xx/jnZyNml86QtWPmWSFDF4chphZR0apk6eAQECawV23xu48WpdugeF8kDAghxAcsnU5zfH4SR/XZqA6wLIu8FXJ5dY96NyCVShHHMY7jcH61iebkGC9laPZD9OIximOT1Ji6VS9gMVRpYmUAGj4OCmiEKf73f/kj/t0vr0oRoXjPJAwIIcSH4PjCLL+7nOJkocOxCQcjXSIZ1NnbuIZlWXieRy6XYyrtU85a9LyEctbiuVOTnDj9DFY6TyVn4pFmSJptFmhRIsQkxMImoOqn+Rc/2OKbZ/ckEIj3RPoMCCHEh0DXdebn5vj2uSqB7rA4O8lSRpOuV6QAAAMGSURBVGd/ZwMVeQA4jsNYKuZ/+NuLXNsPeGwux8JEinzqFC9ePGCr6TE3lqPW9BgmJorRMUMNgNHYZB+Ll662eHapwPJs9l5esvgIkZUBIYT4kPjKJj8xz+njswSR4ujSSWZmZqjX6+zu7hIEAZqmUXRC/uYzEyxMjLoJlnIpvvTcPK4RYhBRLFVINBelmaRzJU7PmEwZVQB6gUajFzIMknt5qeIjRlYGhBDiQ1LO2syOZdhv+UwWHcYLKSbzj6KU4tLVFc6+tkK5kGW42SSdK7+hEHD6yAInH7EJunWu7w05Nlsib4UEMfzxHz7DcPAof//PL2M5Fvm0QcqWZz3x7kkYEEKID8lbDxNKMTt/jBfOt+h0LHo3ArJulV0vxxefnjgMBJW8w+xYhtUgJkqGaFFCT3dZyHsErR1OLi3x5U8c58LqAeMZH9eI2KwNZWiReFc0pZS619+EEEI8zDZrQ/6/n26TcmxeulxleUInXyzxtY9PMlf59eChvhdzcbPLixcbVAo2Ow2fP3wyT9LZJJ0roafHiZKE1sEmL696aG6ZmbGUHDcU70jWkYQQ4h4rZ23mxrN4YcL8RI5Mrsh0yX1T86CMa3B6Lsf8RJruMGZpOsOJI2Uqk0f49i9rfOvsNpc2B5Qm5gj0DBNFRzoSindFtgmEEOIee/32gWsZeGH8tsv7b7XV0HByxGaembEs+y2fJxayHJ0uHtYmSEdC8U5km0AIIT7i+l7Mt1+pHt78v/j0OMBv1CYI8fYkDAghxAOg78Vy8xfvm4QBIYQQ4iEnBYRCCCHEQ07CgBBCCPGQkzAghBBCPOQkDAghhBAPOQkDQgghxENOwoAQQgjxkJMwIIQQQjzkJAwIIYQQDzkJA0IIIcRDTsKAEEII8ZCTMCCEEEI85CQMCCGEEA85CQNCCCHEQ07CgBBCCPGQkzAghBBCPOQkDAghhBAPOQkDQgghxENOwoAQQgjxkJMwIIQQQjzkJAwIIYQQDzkJA0IIIcRDTsKAEEII8ZCTMCCEEEI85P5/M/9m2NuujfYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "draw_metric(G,bC,spring_pos)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -420,7 +505,15 @@ "id": "wXbYnUjisJjq", "outputId": "2087e3f7-c47a-42dc-d2a4-f8050dd817fd" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.30657814798734856\n" + ] + } + ], "source": [ "# global efficiency\n", "gE = nx.global_efficiency(G)\n", @@ -429,7 +522,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -448,7 +541,15 @@ "id": "-rTdO9YrsbqP", "outputId": "854d3db6-d42e-4f5e-ea77-30840164f6af" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.6055467186200876\n" + ] + } + ], "source": [ "# average clustering\n", "aC = nx.average_clustering(G)\n", @@ -457,7 +558,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -476,7 +577,18 @@ "id": "94viGU4vserg", "outputId": "05b8e669-e338-4943-88ff-5ece3ce55a8c" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0.010819963503439287" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# degree centrality\n", "deg_C = nx.degree_centrality(G)\n", @@ -485,7 +597,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -505,14 +617,25 @@ "id": "L73effhYiPYp", "outputId": "48bfad8c-3581-48dc-cd22-4c4caa088790" }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzda4yk133n9+9zf+rWVV19v09zhpwhOUOKpERRlCWKlkiRskRaWNkL7xoQFg6MDRbYIECCAPvKGyBvEiQvEuSKBMka640ta2U5stfSWpYpXkTzIpJz5cz0dE/fb9Vd96rn/py86J4mKQ5JiSLZ3dP/DzHAzFRP13mq2V2/53/O+R9NKaUQQgghxJGl7/cAhBBCCLG/JAwIIYQQR5yEASGEEOKIkzAghBBCHHESBoQQQogjTsKAEEIIccRJGBBCCCGOOAkDQgghxBEnYUAIIYQ44iQMCCGEEEechAEhhBDiiJMwIIQQQhxxEgaEEEKII07CgBBCCHHESRgQQgghjjgJA0IIIcQRJ2FACCGEOOIkDAghhBBHnIQBIYQQ4oiTMCCEEEIccRIGhBBCiCNOwoAQQghxxEkYEEIIIY44CQNCiF9Kx09Y2vLo+AmVRsjLM3UqjfCmjwshDhdzvwcghDiYFjY9Liy1OD1RIOsY/OXLG7S9mFLO4uJSi816yFify3/+1DQAf/nyBrVOTG/O5OkHhxgo2vt8BUKIX5aEASHEuyxsevzrP5uh2o4oZS3OTOU4N9+gnNdZNR0uLTYwNGh0Q/7mhcssbPlcqejohoFp7BQcf+8Lo+Rcg46fUG2HlPM23SDh+maX6cGshAUhDhAJA0KId7mw1KLS8DHSgO1WlmurTbJ6SLVtc2xQJ45TQnRsFG3PZ7PaImMWWGumjBR11ms+K9seo2WXf/+zZZa3IwaKDvObXdbrPmPlLP/y68ckEAhxQEgYEEK8y+mJAgUHtls6Q2WDiVJKtR5xarTE7UMmF2Y8lGHR25Oj140o5zTaGMRJQpTCxesVvkfMPRMmP3xpBcM0ueYWaLY6WEmTCzWX7/2kzn2n75AqgRAHgKaUUvs9CCHEwfO3L5zl716e4dvf/BK1jQVWKk0+/5l7mJm5xneeW8TtnWSoR6Pgz7LklWkmGRxLZ6mm0QlT0HTG8wF1XydNE3TDwjI0EgyIOkRRRKZnkGPDPVIlEGKfyW4CIcRNTfQ5nCjUGSmZkAQMFnR6e7Jsri1yZ6nOP//6SR47U8C0Xepeih3XaHVDgjAkSUElMS0/ZagHLBVR1ir8i68O8y9+6wQPTpsoM0d/j8N6PeD6Zne/L1eII02mCYQQN6VpGgBBEBBFEYZhkKYptVqNUqkXw9BZXVmh4GoMFExaoYsbNOl3LbZ9l0iZRJgsV3x0FRHrinNvXkcBRpJybHSMpg/DJYfpwez+XqwQR5yEASHETRmGAeyEgTiOyWazbGxs0OpGNHPj/NlPF/DqCXeWUz53m8ncaoNzSx5B7OKQ4mig+x2aDGGhsxjkWL0UoxkuE8Ml7rutyJ1jOU6NF2SKQIh9JmFACHFTYaLRjGwa7Z3KQDabZW5uDi8x2Nhs0Zf3qPsardghaQZsb1fpxEX8xMDHxSJEI4vGzrIkhYkiJU5S4kRRbUUcG5LFg0IcBBIGhBDv0vETXrgWcrXVh325Q59K6Qlt5pfWyduKwFRsNSNcM+XylkO91cUmh0FCoBWxVECAhUtChi4aKToJEQ6WZWOZJpP9Gcp5CQJCHAQSBoQQ71Jth8yvNdDjFmv1iIWuw2zQpVKxubs/R3+myXwYsBwNstrUcDQdR7MoaVUipWhQIsFBEZFgoJMSYpJqDlnb5fhQhsc+1U/ONfb7UoUQSBgQQtxEOW9TsCPWEhtdBVQbHXKORis0sbK9+F6DZS/HqmeQKEVXucRopPSgobAIsYjwcTFQuHi0cTFVgqZBvRPjR3KGgRAHhWwtFEK8S841ODMYMOWsczyzSd7yqbZjcnpIMWNQ68R0gxQ77aABedo4dHEIaVMkxibGxCICoEsGlwjLtnAsnRMjWZkiEOIAkcqAEOJd0jTFIKZg+iRejTt6FN2og90TEHQVKmziKo1Ey1LQOgxqK2yn/bRUAQ1FL9u0KRDhopNgGBb/5JFRhgYHKGYtTozkZIpAiANEwoAQ4l08z8MwDJRSBEGAY9sE3Rq5nh6azSZJ0GFYaxEaDpYKMLUYWw8oqQxb6SAeGTJ4JFiYhsHIyCD33jHBHWO5/b40IcRNSBgQQrzLjTCQpulew6EkSVBK0Wq1iOMYg5QMMez0JsLUYjJ46FqKxk7XwenehP7x49w2nGesz93XaxJCvDcJA0KId/E8D8dxuHF0ie/7aJpGt9vF933SNL3pvwuxCXHIax3y/aP84W9/mkLWoZy3ZVpAiANMwoAQ4l263S66rqOU2qsOaJpGp9N5zyAAYBOS1X3y/ZN87lMnmRosSAgQ4hCQMCCEeBfP80iSna1/URQRx/He79+PbaT81n1D3PfZh+grSDVAiMNCwoAQ4h3CMCSKIpIkQdM0oigiTdP3rQjAzsFGDz/8MF/+8pc/oZEKIT4qEgaEEO/geR7dbhfbtlFK7VUFbibBJFA2NiG/+cWHefTRRz/BkQohPioSBoQQ7+B5Hp7nMTw8/J7VAMMw0KwMS50+fDLcfXyUBz/38Cc8UiHER0U6EAoh3qHZbJIkCf39/TetCuTzeXRdp+mlBGQ5ddsoPQOTVNvhPoxWCPFRkDAghHiHSqWC4ziUSiXCRKerssRqp4g4Pj6+t7vA0ULO3DFO7+AkQyVH2gsLcYjJNIEQYk+rGzG70mB8qMTP37jAWjqGTwYXjy/eVWJhtUqjbZLRTH7zkYf5zEMPUutE0kdAiENOUze6igghjrSOn/Cdn87x4uuXyeoBlrfMWjKCQ0Bq9+IHIR2y6MBdIzr/6p99mXxG7ieEuBXINIEQAoCths/sSpW8nVDzFEopBgom2fIozdCgQYkQB8vNUBg8Qa3z/j0HhBCHh4QBIQQA3cYGWlCj2k7IaD4np/r5/cdP0ZuuYasuLl1M06Wv3M/UYEbWCAhxC5EanxCCzc1Nrlw6R8FbZExPOT4xyKnbj3Hx7M/R2ssUjHEG+/q448Qov3GqLEcQC3GLkTAgxBFXq9X42c9+xtLSEirymBrsZWJ0gAsXLrCxsYGlazxxbz+fflhaDAtxq5IFhEIcYRsbG7zyyivMz88TRRGu6zI4OMjq6ir1eh2AT33qU3z9619H07R9Hq0Q4uMilQEhjqA0TVlYWGB2dpbFxUXSNKVUKmGaJouLi7TbbTRN48yZMxIEhDgCJAwIccSEYcjs7CzVapW5uTniOCaXy2HbNuuVOpVmgqMZ3Hv3KZ566ikJAkIcARIGhDhCWq0Wc3NzRFHEtWvX8H2fTCZDkiSEic7lWh5P9XNspMjjT35FgoAQR4RsLRTiiNjY2ODq1avous7s7CyVaotA76HZCXEch7nlTXyVYbicZXjqlPQREOIIkcqAELe4G+sDqtUqxWKRixcvsrK+zXI0RKOt058r4q/PYamY4+O99I/fznDJlT4CQhwhEgaEuEV1/ISNWod6ZRktCRgeHubs2bMsLy+jrDxdz2WoZFBphDiawcP33ckXH31UzhoQ4giSrYVC3II6fsJf/sMKVxcq9OU1nn5onEvnX2N+fh7DMAgTjYp+jOWtNmbS5qv39vHb33hC1ggIcURJZUCIW9DadpvX35xnqOQSGSVeeOUc3e0VLMsiSRL6SgX89SuMEHP/vXdIEBDiiJMwIMQtJo5jNpevkTdDIr1MWlujpVaxdJ04jrFtm42NDSLf46F7z/C1r0kQEOKok2kCIW4hSimuXbvG8vIyiWax3Qxpba/imIowDEnTlE6nQxAE3HXXXdJQSAgBSGVAiFvKysoKzWYT0zSpb1Xwm00ytkkcJ4RhiO/7hGHIyZMnJQgIIfZIGBDiFrG9vc3GxgaZTIbLly8ThiGu66JpGrVajSAISJKE22+/naefflqCgBBijzQdEuIW0Ol0WFhYIJPJMDMzQ6PRIJPJkMlkqFQq+L5PHMdMT0/zzW9+U4KAEOIdJAwIcchFUcTs7CwA6+vrrK6u4jgOxWKRtbW1vSAwNTXFt771LQkCQoh3kWkCIQ6xNE2ZnZ2l2+3S7XZZXFwEYHh4mNXVVZrNJkopJicn+Z3f+R0JAkKIm5IwIMQhtri4yNbWFr7v72wXjCIKhQKtVoutrS3iOGZycpLf/d3fxTCko6AQ4uYkDAhxSG1sbLC0tESn06FarRLHMY7jYNs28/PzRFHE+Pg4v/d7v4dpyre6EOK9yU8IIQ6hZrPJlStXaDabNJtNwjCkUCiQJAlLS0sEQcDo6Ci///u/L0FACPGBZAGhEIeM7/ucO3eOWq1Gs9nE9316e3vp7e1laWmJbrdLf38/3/72tyUICCF+KRIGhDhEkiTh9ddfZ2Njg06nQ7fbpbe3l4np23n14jyNtk+xWOQP/uAPJAgIIX5pEgaEOCSUUrzxxht70wCtVou+vj5O3nUPf3+xyblKji1jmn/67T/Atu39Hq4Q4hCRMCDEIXHhwgVmZ2cJgoBms8nAwAAPPvggGzWP5UqH8YECt59+kG4k39ZCiF+N1BGFOARmZma4dOkSnufheR5DQ0M8+OCDrK6usrmyyuTQCGb+OCO9LuW8VAWEEL8aObVQiANufn6el19+eW/XwMjICPfccw/r6+vU63Wmp6eZOHY79W5MOW+Tc6WfgBDiVyNhQIgDbGlpiZdffnmvgdDo6CjHjx/fCwYTExMcP34cXZepASHEhydhQIgDamVlhVdeeYW1tbW9IDA1NUWSJCRJwuDgILfddpsEASHEr01+ighxAK2urvLaa6+xvLxMFEUMDg4yMTGB67oYhiFBQAjxkZKfJEIcMCsrK5w7d47r168TRREDAwOcOHGCoaEhwjCkVCrJ1IAQ4iMluwmEOEBm5hb5+fkZlueuQRIyOjrKPffcw+DgIEtLSxSLRW677TY5fVAI8ZGSMCDEAXF1doHvvbDIzGILhzIPTRt8/vMPUSwWmZubkyAghPjYSBgQ4gBYXFzk/JUFlipdMkaIkRnkvs/eTbGYkSAghPjYSRgQYh8ppVhYWODq1atUVldxVA96cYj77pyir2BLEBBCfCJka6EQ+0Qpxfz8POfOnaNSqaBpGmOTtzF98h4KDqyvLFAqlZienpYgIIT4WEllQIh9oJTiypUrvP7663S7XVzX5dixY9xzzz2kacrc3JwEASHEJ0YqA0J8wpRSvPbaa5w/fx6AfD7P0NAQZ86cQSnF9evXJQgIIT5RUhkQ4hPU6kb88CfPs7U2T7knSz6fp6enh7vuugulFHNzc/T29koQEEJ8oiQMCPEJaXsx/+aHF7l4rcto3xQTPQn5rM2pU6fQdZ25uTnK5TLHjh2TICCE+ERJCzMhPiFvzi6z2Yi4Y3qETmzjpxYnT57ENE0JAkKIfSVhQIhPwObmJmF7i5Gyw0bNo8dJuPeu49i2LUFACLHvZJpAiI9ZrVZjaWmJcjHH8W6Fkgq5//QJ+oo5rl+/LkFACLHvZDeBEB+jdrvN1atXcRyHarVKp9Ph5MmT9PT0MD8/L0FACHEgyDSBEB8T3/e5du0apmnSaDRot9scP358Lwj09fVJEBBCHAgSBoT4GERRxMzMDACdTod6vc5tt91GqVTaCwJTU1MSBIQQB4KsGRDiI5YkCTMzM0RRRBiGVKtVpqenKZfLLC4uShAQQhw4EgaE+AjdaBzkeR5xHLO1tcXU1BT9/f0sLi7S39/P5OSkBAEhxIEiYUCIj9DCwgKNRoMkSahUKoyPjzM4OMjS0pIEASHEgSVrBoT4iKyurrK1tUWaplQqFUZGRhgeHmZ5eVmCgBDiQJPKgBAfgUqlwurq6l5FYHBwkJGREVZWViQICCEOPAkDQvyaGo0Gi4uLe2sE+vr6GBsbY21tjYGBASYmJiQICCEONAkDQvwaOp0Oc3NzhGHI9vY2pVKJ8fFx1tfXGRgYYHJycr+HKIQQH0jWDAjxIQVBwLVr1/B9n1qtRqFQYGJigs3NTQkCQohDRSoDQnwIcRwzMzOz11DIdV0mJyfZ2tqSICCEOHQkDAjxK0rTlGvXrtFsNqnX61iWxdTUFNVqlcHBQSYmJvZ7iEII8SuRaQIhfgU3mgpVq1UajQaGYXDs2DHq9boEASHEoSVhQIhfweLiIpVKhUajAcDU1BTNZlOCgBDiUJMwIMQvaW1tjdXVVWq1GmmaMjExQafTkSAghDj0JAwI8UvY3t5mcXHxHUEgCAKGhoYkCAghDj0JA0J8gGazydzcHFtbW8RxzOjoKFEUMTQ0xPj4+H4PTwghfm0SBoR4H91ul5mZGTY3N4miiJGREdI0lSAghLilyNZCId5DGIZcvXqV9fX1vUqApmmMjIwwNja238MTQoiPjFQGhLiJOI65evUqq6urhGFIf38/lmVJEBBC3JIkDAjxC240FVpaWsLzPHp7e3FdV4KAEOKWJWFAiLdRSjE/P8/8/DydTodSqUQul2N0dFSCgBDiliVhQIi3WV5e3ms13NPTQ6FQYGxsjNHR0f0emhBCfGwkDAixa2Njg6tXr+6dQHjjOOLDHAQqjZCXZ+pUGuG7Huv4CUtbHh0/ed+/E0Lc+mQ3gRBArVbj0qVLVCoVcrkc5XL5lggC/+NfzbNeDxguOfwnj02g61DO27S9iD9/YZV6N+G2oRxPf3YIgL95rcJGPaA3Z/HpE0XG+lw6fsx8xWN6MMtA0d7nqxJCfBwkDIgjr9Vqcf78edbW1shmswwMDDAxMXEog0ClEXJ9s8v0YJbrm13mN5pk9YjVKvyff/Mmkd+lVMxzfb3L/HZC1jFZ2GhxasSkXMxy7toqhXyOi4tNLi9VcfC5uNRCs3sYKmX4w69OomsAGmN9LjnX2O9LFkJ8BDSllNrvQQixXzzP4/XXX2d+fh7XdRkeHmZ6epqRkZH9HtqvrNII+W/+3/NUPZgaLPBPHxnlf/7LS2w2I0YHS7S2lzDiDkvBIGGqkaJhEFEwE35zsoFJwPOrfXRVljiF4z1d5lsOrdBAJwV08maIYxn0FAp8+vYSj5wZZKwvA0C1HVLO2xIQhDiEpDIgjqwoirhw4QLXr1/Htm0GBwcPbRAAeHNhm8XNFlkzYb1u0/RivnEa5tYDPv/pfn788y7Xq/2kqx4WISEOFinFZI2g0SB0CuhRm17Lo0GOrS6oOMTEIMTFJsCLIUpiwrjOT856bHVSxss2cRzTjQyGSg6P3F3GjxIJBkIcIhIGxJGUJAkXL15kZmYGwzAYHh7m+PHjhzYIAHjVRXrsmG7qcKzkMD2Y5dpWwh0DMFTQ+OyUzn13TvE//cU5vCilqLeYthbooUa3FdFp+Fh2GXSDMbtFgSobcQaV66cRBuhpRDe2SDQbL0kxkgTXUJy9VsHQ4b47RlisePzpT+fRTUeCgRCHiIQBceQopbh8+TJvvvkmSilGRka4/fbbGR4e3u+hfWiNRoNubZVv3lvi+kaLbz3+KQaKNlfTFF3XiaKIGJMfvbGFH2uYpHzlrgyfvutxnvv5Fa4vrLAUjxLFDgUX7h3VCLa6DJQjOknEYpSjbfbgkNJj1og0Fz9MefbcCiPlLPffMUilERL5Dba7IXdNj7JY6fJ//3Ady80zMZDnyfsHJBAIcUBJGBBHzuzsLOfOnSNJEsbGxjh58uShDgIAFy5cwLZt7j1zO4n3MgU7BXYqILquE4YhK02ds7NbJEojIMt/vFDnry/MEpMl5iQpOhoxvm/w/AIMmEM8MKizvNymHpjkrQZeWkQ3bIbzGpvbPrpqUM7dxm/cWWZjbQkVp6wGQ1RaAUGnQSdIuWPAZHl7ZyHi3RMFCQRCHEASBsSRsrS0xM9//nPCMGR8fJw777zz0AeB7e1tNjY2OH36NLlcDthZGBmS4eqmYrTXJAxDSlkL0pgUHVDopAQ4aKSkaAAoTECnFuoEUS/Naw3qyTAhLu0wZtD1eGDcIqM1sVIHjzwZPWB2bpa+LJy59yQdP+aNS3Nkhy1W/F7W6jErm01+EgQsbHT50pl+mToQ4oCRMCCOjI2NDV566SU6nQ7j4+OcPn2aoaGh/R7Wr6XjJzzz0kVMO8uJEycIw53mQiuVFt87W+fKgk7Jjfmat0RP3mXUXKcW5VBoOFqCrQJCbAxSICHZ/ZGQYhKpmHbiEOIQYRJhUU8dVgOLExmPf/zoCa6t1HltrsnfXUgYHxthPdikh22ODfVw22230Q1S/uaFi1zaXscKdM62+ljbbmFYLkMlR6YOhDggJAyII6FWq/HCCy9Qr9cZGxvj3nvvvSWCwPdfXOKVayF3Tk/ghYqMbWMYBvMVn7nVDgRNqkmON+erjOY6jGvr9BkmukrAyrES9NEmj0WIjU+VAWJsUgxytDCJadMDu5WDdqg4uxRjTU/w1NQkP33xNZYrDqEO59c3sQy4YzTLvzo9RRRFXLl0AdVcYaSYw+4ZZGNthe3tbR757Bk26gHVdkjOzezvCymEkDAgbn2dTofnnnuOra0tRkdHuf/++w99EABY2fZ5c7GBo8V0E4dqO2SiP4NpmhTdCFcLaJFhtMfm/jvHMZI26+vrmFqAUgrlGKShQVE1qVIGdFxCFB4pNiYJDgF9VKjRT4RFhIkWR8xWUv74O3/F1tYWXjROA5OEFJKE+Q2PP/3JVU4Umyi/zvGpMQyrytWVGYaoosp3sN2KGCo5lPPS0VCIg0DCgLil+b7PT3/6U9bW1hgeHuYzn/nMLREEFjY9/vS5FWbWA5IoSya3ztWLG1z0Wly/fp3Ghcvo3gg5rcBkb5aenMnGahsAzcrQDTQMv4NLlhYFNDSydAg1lzwN2hRx8Qhw6GOTVOnEmNTpI0Znvd7hfL1JlSl8XEChATEWjTDlr1/fos8O+c07DN5YXmVhKyDVs4wO3s23n7wH2zJlzYAQB4iEAXHLiqKI559/nsXFRfr7+3nooYduiSBQaYT81//2HHO1GAADjdmVbfJBl5zh0Wq1aIUWYWrSo9eptfM0vByNRoNYGWwmY9RjnYzuMaCtUdKqVFU/vnIxVUSOJh5ZPFyyWpcerYlHng01xE67Up0Ekw3GCXDJ08JDJ0eHCAufHDGKSqjzlxc8EnKkFMjQJWy6/P2FOr/3hVEJAkIcIHJqobglpWnKiy++yMzMDL29vXzhC1+4JYIAwOxai7VaBx0FGCTobIYlXl7L8+r2MJW4l1IhRzkPkZYhowd0G5s0m00CZdNNXRwtoJu6pJpBQW8xpK1iaTERNgvcjk8Wg5QBbR1XDyhrWzgE2IRoJKToJBik6HTJksGnQGM3LKQoDBQ6IRYuASkmHlmUX6PtxVTb7z5FUQixf6QyIG45SileeeUVLly4QKlU4pFHHrllggCAk9RxaRPSy055XiPCoK5ybHcdXONuLMdn3JijlIZ87sRpOs0OnU4HV7fIaQHNJIubtLDZeVNONYNEGRjEtBnAIsAjSyZt00MTTSXk6BDikJBBoUjY+XgHjx7qlNmkQ4EEiwQdAw8dHQ+XHC3yepehvknyGRPXkqqAEAeJhAFxyzl79iyvvfYa+XyeRx999ND3EfhF81fPcVK/wno6yjKTKHQSNBJsNBKSVGOra9JjaOQNn0LWhiSHUgpDixk0NrFNBy1pEGKDApsQF48mPUBKiE2MyXWO46QRJiE6MSmgoTAJUYBJSI4uLXIY9GIQYePTJU+CgwIydCjpdSYyNVY34ELgUcpZsq1QiANEwoC4pVy+fJkXX3wR13X5yle+cqjPGriZIAi4du0arh7Qxxbb6cBeEyENjRAXnZReO8BKfGCnC2Gz2UQpRapZLHaKtBOXkCGcNCRDhxF9hRF9hULaJFAuHXoARYxJikVKFpOQGJcb2wxdWhgoKgySotOmBGgkGIDarRBouHh4qc1G16WrFG67wkZ9WrYVCnGASBgQt4z5+XmeeeYZLMvi8ccfZ3R0dL+H9JG7cuUK3W4XgIzm0U+FDjlydOjTNvC0PKW8xXQxQ307QmkaaZrSbDbRNI1Iy9BNHQwSfDJkVBdfyxBik9W62HpANumigA6F3bl/Bei7QeCtZUYBGZLdRkUKjQgdnWi3m6G2+7GKDll0UjJOhoxToH+wR7YVCnHASBgQt4T19XV+9KMfoWkaTzzxBGNjY/s9pI+cUoqXXnpp78+mFjNmLOGpDKDhaiF9bgMDgzRSpLuHFKVpSrvdRimFpTxcPLpkcfGIsbBUuNOESNuZLshoXboqh01AjIVCI7nJWmOFTgSwWwlQu1MVBvHbPn4nGGi6xX2np1jfrvPFM4N89k6ZIhDiIJHdBOLQ297e5gc/+AFpmvL4448zPj6+30P6UDp+wtKWR8dPbvr4+vo66+vr7/r7qupnWU2ykk6gWTtl906ns/d4HMf4vo+maajYZ0RfYcJYYFq7iq2FRNisqkn81MHUYsraFi5dBtnEJgBAI+bG9MA7mYDafSzlRijYsdPiWEMj0PO8cKVFj6vxmZODEgSEOGCkMiAOtVarxfe//33CMOSrX/0q09PT+z2kD6XjJ/zNaxWWNtuMD+T42gPvfsP8u2eep5242ISY2k6PAU9l2VYDJOg7vQFUSI6QKIr2KgPdbpckSUjTlDRNufFtrzSTWFlE2DRVkVBZjKt50LSdnQOaQ4+q0aCMAnwy7Nw/7Nzt71QAbHbe9HU0UrTd/wwiQEMnAXQKpo+Gye2jBQpZ6xN6VYUQvywJA+LQ8jyP7373u3S7XR577DFOnDix30P60KrtkLNXFglbWzRbw9w76XDHRHnv8eVKix9fjgnSaWwtZFRbxNUDEqUT4KB235qjVKFQe2/8pmnSbDb3/hwrk7V0DJ8MtgrQSfDYmWZoUMRXd5Gli6N5DLBOjT7M3dMNLaKddsTo6KTYRCgSot2eAg4hGhEWigiLAnX6tQp15wR6pkzRTbjvRP/+vchCiPckYUAcSlEU8d3vfpdWq8Wjjz7KqVOn9ntIv5Zy3qY3A6tejv68TmVljqzWZXR0FC9U/Ld//Bxb6cBOUx+VohTc7ozk4jAAACAASURBVCyTMQ0cPyRB21nqF4doloamaSRJglJqLwwAu8cRZXAICDSHAdaJlUGTIhYxAS451SbQMnQJiXarA1X6KVHDw0WhU6BJiE2JCl0KWLu9B5sMkAJFLWTcWOT0HZN88bHP8cbVNQp6h+mxvv18mYUQ70HCgDh0Gp2AP/nO/0e33uDRL36eM2fO7PeQfm051+C+0YSJfMqTXz5Nu7HF6uoq9Xodq2cEP9GwCGmTJ08bw85y6p7P0K1vsH51ky45snQwozqpYe6sD1A7FQLP8/ae50Y/gRuVAUNPGVFLgEabAikaTUqYKiLARGFiE5ClQwo7z01CrFlklEeFcTrk2VlOmKJpOgUrYcq6TF7XME2ToZLLeK5LudyHpt1s3YEQYr9JGBCHStuL+e/++O/ZqNmcnHqAU3d/ar+H9JGxjZSBvEY+Y5LPDFMqlZifn+fapdexoho5w0VX4OJRchWby7MU8y5T9ird2MAmxCAmjsEwdtYbxHFMHMd7z2FqMSP6Cp7KUKWfNTVOsDvvr1AMsEGXPAE2+m674T42cAmoUSbVTCwihrUVPFw21TDabj+CCANHRfhajtAoksQtkiSh0+kQxzHlcvk9rlwIsd8kDIhDQynF937wH1mrhkyP9ZHpHT00jWs6fkK1Hb7vSX1JkqDrb23wcV2XkydP8uabbzKsLdPvZjC0lEy2B0cPaTfqGBR3Ogy2Wu/4PJq2M1UQxzFKqXc8j6nFGCSEykFXMT5FSlSJcfFxsAgIsAhxSdHYZHRnWgGXXrVFqDkYWkIPTTLKo01htwciKN3A0BIypiINd9Yp1Go1HMchl8t9LK+tEOLXJ2FAHApKKX784x+zuTLHseG76B2cPDSNa27sFNioBwyVnPdsw5umKZb1zpX2QRCwvr5OxtYxjJgoipgaylGvR4SGQafTwTTf+W2slCKIwU/fufMgVuZeTwJNxWgqxSOLSUyCSZ46Pi4pOiYpCQlZdrYe2nikgKdlybNzpoGpx9yTmaU8eQ8D/b2cm2+ytB0y4IQM5mK22jthoF6vMzg4+HG9vEKIj4CEAXHgKaV47rnnuHTpEsePTfL4k4984F32QdHxEy4utbi23sJIAhbCmJXtAq6t01fYGf+NqkG9m2JYOh0/2buuS5cuUWt5aHaJbEbDijzCMCRJEiw3T9NXGIFHrExCbFw9Ik0Va8nozroAAorUUEBVDVBnZwGfSUSISYi7u/gPWvQSkMUkIINHkS4JOj4uLUpk8BhmmaLZoa9U4NSpU3z2s5+lWCySJAnHz13i9QszdOsb6ErfCSVBQJIkMkUgxAEnYUAcaDdOIHzjjTcYHh7mqaeewjCMAz81kCQJM3OL/C/fewUyQ1T8DGEU4epbXL74OqXyIA+eOcG94wbPXGqwVI1ZXjMY6tUJchWevH+AjK3x6hsXmO/2EQcF+jA4nq9RLpdp+zGzjQyhloOoRZhGBGSwVMywN8uZpb9lqHGdEIf1wjSvTj5B3d05uVFDEe4eahRhEmPs7hLQduf/c2ho5GkT4JBiopGSYlEu5bnv9tu47777GBsboxukLG15lPM2nzp9CmKfV1/d2Gt61O12yWazuK67n18OIcQHkDAgDiylFOfOneOll16iXC7zzW9+c29h3EGysOlxYbHF3RN5tKjFm7NLvHn5ClfXfLaTXtJ2je7uEjsPiyY9dNc2+e5alZ+oDdaYROk2gbIYKSVs1AOq7RDVrbC8UaebDpEzPFpBkboWMxJF+GSphg7lTEwlckiVS6I0Pn35+/zG7HfhbesE7uRnPHr1T3h2+lv86K4/QGkGFj4eOcDkrY+80T1QodDpkiPG3O0+aGA5Lp9+4AG+/NCdWJbFxlad//DqJp5y96Y/zpw5w/b2NmfPnkUphe/7UhUQ4hCQMCAOJKUUly5d4vnnnyefz/Pbv/3b2PbBWx8wv9Hlv/i/3qDhJVhElNgmxqDFMCmKCHe35/dOMyAXjzY5umoYkwh996CfrGuTBCmtgL21EH/7/GvocQcXD90dJG+GjA30UG10ubAc004KtCJFL1USDB689D0+N/f9mzQNVqDgkbnv4CQeP7rnD0mB9F3f/jtthU0CYkxCHAB0dDKW4ng5Jmyu81d/NUu1WmWtHrEcj3P/mduZW+kyN6iYHMjywAMPMD8/T9uLqQcWdrbn4/0iCCF+bRIGxIE0MzPDs88+i+M4PPXUU+Tz+X0dzy/uBuj4CSvbPv/2h+eoejv30x4uEUNopMTYQIzCINltyeuQ7pbbzZ1d+ZpL4AxjJSEZN8OgvcHnp4s8ef8Akd9iZWUFXUVM2Ov0lV2C1jY5d4SrqwGtJEuRKoHm0q9V6Gsu8PDc99/3GjTgcws/4MLkl7hW+hRvnSkAkO7uCIiwdqsYGboM9xiEVoZ7Rw1Gsj6N6iaNRgOlFEPlIobew9J6g4IdMX91iZVrKXEco1mZnU6HYYZ/9+MrPPXZMQb7enAc5+P8MgkhPiQJA+LAmZ2d5ZlnnsEwDL72ta/R17e/Xevml9f5k7+9Qi2wGB0Z4Tdud/j+M+e5UjHoxBqKDIqdXQAxOnBjR8CNSoYJJNh45GnRokiMTqx0On7KdKFFT6HAYNxkvFgk5xo88w9vUG/7dNIMpYxJ1FwjjWMsN09DyxJqCl9l6FNbZPQux6+/QqLpGCp932tJNIP7rv+QK/fdz1tBQGERMsEsRRrEuo2jPKL8Maz8AL1GgGoss7jRxjAMyuUy4+Pj5PN5/EjRiQx68zn0NEuz2dzZ2mgX8IlwCHjx9SsU4jVOTpbJZDLkcjny+Tz5fJ5sNiuNiIQ4ACQMiANlfn6eZ599ljRNeeyxxxgdHd23sSilmJ2d5a9/8jIXlmwalDi7ssKzr3mYqU+bIuHeG//O9j2dlHT3dzt33jqQYpCQp8uQtkZDlenstvAt5kxiXEYKKblOhK7rrG1WeeHsPHPdQQJl041hwtigr9xDrneYpX94k5IK8bQsZW0bgL7N+Q8MAgCGSjix9QYGCYqUFAOTCA2NjBZSNFpomra7SHGF1K+Tt1OcjMXE9DRTU1P09vZimiaGYaBpGrVajXq9jhcE5PN5pqamaL76xl6nQxePxWuLDORP09fXR5qmbG1tkaYpYaKTGBmGyzl0K0sjdLhtJM9A8eBNCQlxK5MwIA6MxcVFnnvuOXzf5wtf+ALHjx/ft7F4nsf58+dZXFwk8tuEDOOTBRLaqUuGeHdDngEoduoD3u7KAJ0QixR777FethjXF3D1gPsy81zzRkk1i7vHBsiHa9w1mGFxLmJ+aY2/eGmT5XqRbupQpko3yREqG9/3+fsf/QCXMTwth0OARUCIjZ7e/NjjmzHSiAQLk3B3GsNEJ0ZXb32OG3f40KJrWegqz8rKCmtra+j6zrbBOI73GiXZtr3369q1a8zNzTGi75yFYBOShDGvv/465XKZbDZLNptFGQ5vrJl0YpuwO8NGx8YuDHBirMy//PoxCQRCfIIkDIgDYXFxkRdffJF2u80DDzzA6dOn92UcSikuza7wkxcvENQWafsxF1rDNCnsrrS3SGC3H/+NO3Ft95GQGAuFwiEm3D3m1yRhTFvC1XfunMemRqnMhNRDDcfUyEQeW+vLeJ7HeiNmrV7CVSEeLl0yjNgJfQWbyvoypqYY0NZZSSeJMNlglHzapJobIe/X0Hn/6kCKRjU7ikYCu7sEFBo6MU1KFFUDkxgvVIS4OFoIUUQQBBiGQZqmuyEBTNMkm83iOM5elQCg3W7vnJiopZi81Qo5iiJqtRpxHFOtVtloJixEEzgWNCIXnwy51GO9HnB9sythQIhPkIQBse8WFxd59dVXqVarnDp1igcffPBjfb6On7DdCim4YGkJYRhSa3ksrdd54/xFnl3MEyobgwk6OCS7R/zyjk14FjfeTGFn+V2XPCkGBgk2Ifruzn2XgIzmYRgGQ0NDtHyFn9hkVZPVrQJKS8m7ikwmQ7WxhYuDp+UoqAb92gY9fofNtQjY6SLYUj0EZHDoUlUDNOjlxalvcGz7wgdeu47ixWNPo+/2E7ixbiBFp0of/WqTDN7eMccuHgPpOu1Wit2q7nUz1HUdy7KwbRvXdclkMti2TSaTodvtouv63kmJb9cNUlpRiJF6xKmNR5ZGZOMQktEirNwAwyWH6cHsr/MlFkL8iiQMiH21uLjI+fPn2dzc5NixY3zpS1/6WJ+v4yf81avr/OjvX2KwaPGZSR3TNDi7bvHmQo0WJXxcDCI6FAH9bf/6Fxe6vbPnQYyNRYBCI0XDxaeHOik6mmHjOAae5+FHXVwtT1M5TGRSxgoFLD2l3W6jYn/vzj/GpKF6MZKUjLYTRFaSCbYYIMRBp4COwqbNuZFHeSz7b+j1NjDUzacMEk2n6Q7wxuiXSXjnXfdOEyIIUhtPc2mpIhY+2/TRUgUMErJalxF9BVOLSdOUIAgIgoDW285F2HstlElIFpuQWBl0yOMoj4oaoZX0YOOjkxLhYhKSc0z++T/6NJZpMj2YlaqAEJ8wCQNi3ywuLnL58mWWl5cZGhriscce+9hXllfbIXPLVSx81msps2ZArjjAtbU2XbJ4ZFBou9UA/Saf4e3b8bRfeEQRo9HPFkNs0NYKhDhk6WLho5RJs9nEtm1OFGI2al0mnYQkjKk2GntvqhEOoebgKJ9t+umqHHnVoqRV6ZCD3cmACBuNlIB+Yt3i/3jov+c//dl/RtGvoO1OatwYsUKnbffyvz/0PxAbN9vep0jR2WQYT+UIcYkxSdHQgQJ1UDuh4e2l/5vxU4dVNUmMhaUC6pTwyKIRk+CSoAMaFgEGCQF5SoUiM6s+v/P5kQPfYlqIW5HxR3/0R3+034O4lXT8nQ5ypq5jm+9+M3n741Gs3vdjb2VLS0vMzs5y/fp1isUi3/jGNz6RpkKmrlPtgpEtkwQNtpoJM+sB7SRDlxzp7hz6WzsBftEvhpUUSPYeU5hk6DCsr+FoAXmtTa9exdLTvT32mqZhGhqx3yTwu/i+T7PZJI5j/NRhLR2nTYEuOcAgT5NIc8hrbRJl0iFPggMkJDi7CxV1PLuHVyeeJLByDLUWcJMuAG2nl2dO/BO+c+9/RSM7/LaxxxjEKBQGKaATY6HvdiKMsDBJdrsjGBRo0qdvo2vvvS4hViZL6TGq9KMBHXI0KZFgkeCSYuy+rjoJFjE2KQadbpsoNblzPEdfj1QFhPikaeoXzzcVH9qN0+lWqx6jZZcn7x98x13OjccXN5uUsgZxnNCNdMYH8u95kt2taGlpiYWFBa5cuYLrujz99NOfaFOhGw2EGm2f/+c/nKO2vkBdFWnRQ4TNW+sDNG4eCN4u2f3YG0W2lBI1CjRINQMXjwl7HZIAy7LeMY9+YyGerut0Y4um6qGm+qnRh0VEvrvBia1zKN1ga+gY/W4NgHaaZ10NU2GUhHeecrhHKTJRCw2FZxVQ2o3ruHFdMTo3FvgpdMDFJ8EkRaGj7UYFEx1FH5tM6tdx9eB9X42uyrKUTBGSoYuze7bB+zUaems8J0aK/JdP38YdY3LUsRCftCM5TfDLnC3/YVTbISvbXTq1Nc5VbIadBsdHi+TzeXK5HNV2yPJWh/WFGS76JnEU0WP6XL9eohCXefDMNKVS6V2l8o9rvPthaWmJ5eVlZmdnsSyLJ5544hPvLphzdw46Kudt7rljnOc7PlFTkWDwi+sAPpi2+2vnzlpDYeHj45JTHXwtQyuyMTQDOwwxtbfm82+cNJhGcE3dRZvCzhhUzJPn/zceXnirtXCq6dR7Rmj0jrAyeRqjN6WRlvAovsewNDz7Zm2Ad8ZqEqDYWbjn0MUiRtM0HDyK1DC0FE3FdMlhEVHQ23uLB98+9htHJPups7cuIKt1QYG2u/3y/fc37AQvx7Q5NZpjrE8ONBJiP9zyYeBmbWT//fPzLKw3GSzafOnOHIWsjWma72ik8l6/umFKo5uQc238KN07hhagnLcZLtmc3dAZLVv0uDobGxusrq7u/Hsrg5WGxHqWY4Mmteo27cjB6W7x+ssXuHb+Rfr6+pienmZycpKBgQGCWOPPf7bGm4sN7pws8jsPjwAcynCwtLTE6uoqc3NzJEnCE088sW/dBdtezOsXZ2gsnKXadOgwSPqBVYD3snN3q+129Pd3dx+EZCipbar0EypnZ2W+tk6qGegqYSWdpEGJBO0dixUfmfvzdwQBAF2llBsrFBurTM+/yrk7HuPqyVMfYqzx7oh3SvEhFkVCxvV5Us3Ye3O/IU/33Z9BmXu7DWwVkKPJMlO7Oxw8+llHJyG723SojcO7Kyw3WjMlDPdmybkOX7m3/1D9/yzEreSWDgMdP+EHL6+xXgsY7XP5rU8PU22HXF2s0K1vUNnKkNYDbEORsxJsQ6FpGrqu74UCwzDQdR1d14lSnTfWLGZXG/iphWvETA1kePzeMtOTo+TzeZ68f5CJvEca+/QOTdCbs9BVSLvdpt1uc+9QG7fbYnKkl0avSb53mLytaFQLrKyssL6+zurqKi+//DKlUokoO8ZfnDcJE8X5uQpb119Hy4/SCG2Oj/bwrc+PH4ofoEtLS6yvr7O4uIjv+3zpS1/at+6CHT/hX/+vP2CtHpIogxr9u3PZvzqdBINod6WBwiYkwqRElRiLvNakTh+WCmlRJFAOCQYeNnUGuFkl4gtzf/aez2fsbm+85+rf8uzQ07RKPbC7IO+D3XgD3hnvzo4EE8VOa2ODFLTwAz9LiI1PBktFbNNPlT5a9KCR4FGiQRmFwVvrKVJubMvUd9syWUSUXI0v3jdN00uYGshwYkSmB4TYL7d0GKi2Qy5f30AFdSqVHMVknd6CxXDRYTnup0ePaOolaq2Qgh3zhTuy5FwDwzDwI0XTh4KjsI2dH2Rr9ZhWmGCbUOmYaHGbC0uK9uZVhpwuruuSy+Uw7CwXKi7xK1XumBzgHz/6/7P3ZkGSZNeZ3nd99/DYIyPXqszaurq7utGNtQEMjAAEUkMCkpFjMmpGFCUbk8xkJj1INpKZXvQg06NkNg/zJMn0NBrNjIkagcMhJXFEgABBkC2gN6DRXd21Z+W+xb75fq8e3CMqsyqrukCC7AKYv1laLuER4e7h6efcc/7z/5eZn59nfn6e1dVVTE1Sr9dZj31qBYWmabiLi6ysrOD7PoeHhxweHtLtdtncSYjSiwgUqRLc2OjQUpnt7If3TWqixRc/sTqTiJ3iWWotbG1tcXBwwN7eHv1+n9dee+1jVRfsjCKkXcVmizZzeUXg+JTA00AyDa46ihpH6CgSTAxMFBolMaQkBkxUkSMWCHBIAJOQmCKn8RE0mVANWh/57qnQeXX7O+xWr+aSyB/1r5wFZpMUgZgFZJOALnP0VB1DSeriiBVt60R14GFYRDj4DCkhEFj4KGr5eRQ5AwGmRMEHSDAJuMgtPvHic/zmN76M5xjPzHV6hjP8TcYv3DTBcba+a+kcDCI645SSlXB10WSpWeN8w+Jc3cJQMe9t+8SjFu1hjBzto+Ixh50Br98JeW8rYK8bUNInqDTG0AWjxCLEI4wVvaREoGwirUzFUWgyIvTHtEaSjb5J6nfZORqxdettDnfv4/uZ8Ey7N0JaFcI4pbawyoULq6AZDEIN2zYpFws0m01KpRLBqM/B2MpsbhnT4Ig+NQBkKvF3f8z2vQ/Z2dlBKYVlWfix4h//4fv8n99+l53WmGsXmtjmx3Oj3dra4vDwkE6nw+7uLi+//DKf+cxnPpZ9mcLQNAIKuNVFmmWDo15MJI8P4n10UiCQaDkL3yIkwWJFbFHX28yJQ8ragKrooQnFWHocsJSz/o2cUHf6eyih8fmN38dO/SfuhULQ9s7xk6Uv89FER4VOgJVPCVhElOmT1QicXDUxE0tCQEkMMEX82FfThMQTYwpiDECMQ4yV8xC0vCpwOiQGK0uL/Ff//i9RK5pYhkalYP6Nm6Y5wxmeNfzcVQaO+hHrh5NThUmmbP27Ox3ONcu8vFbmlYt1XrvaxBUTuq09dg/aOOV5nr+ywv3RIdJsEeKxaPepFCbouo5XPUd4NMGkR2fictQPkHG2gl+xDA6ljT+eEFLEY0I7cHk3KFMVKUtal0QFpLJIB5dS3KcXb/Hu0X3effddlGaxly4Tm7sE0kGlB6wuz3G0c49Q6ixWLf69rz3H8nKTQqnO+3f3+Ux9n1B4MN5DJQGj5IiRKmITksYh222N/c49fnxzm2rBwHCr3J00MeSYH3+4we+EW3z9q59jcXGRIP7r4xtME4HRaMTm5iaXL1/mC1/4wqnbTodaflbfgZl2/mnfnysn1EWEqknub7aIkxISHY0EmXsLcCpTPyMKKkAnOaE0qAuZkefyKD7trR/R5Kf5V/v+pb/Lv/Xh//TEbTQkG7VrCAQaMrdJPu3zlPlwX5cBVSy7wCvninxq2eHduy3WRyaTKCYQVcpOgV/97Cv8xmt/55FrY+pFcHR0xL1792g2m6yvr/PeB7fpR2MmlsXhKCWOexyxMOMkPDhn2UkxdUG11qQzivAc96nPyRnOcIa/WvzcJAPjIOX9jT7/9E+26Y0jFioGv/WaR9nJbvr9UcCt/Ygf3Q8Y9/f4wfU5/oVm4tomn73k8Xe/tMy5C1f459+5x9vfeheR+mi6hUjHBKpAeW4IaUKrNYHuCM9YZGCVadgpF1ealAomYRgix6BbGjXzED928fOxKZMEHw+fAh3VYEAVhYbHBCFEdjNVBv20yEA6aMmEIyqAxdFmhMk8cxyw34N/8Xt/iKsn3I/OM6JC1fS5UtgnVT6JSmhwQIBDhMW6uooRR7n6XYwdRMyLHQKRElBEJ2R7Y49vfnOThZU1tqNF+qHGSt3lS8/ZOGZ2k/5ZBmGlFJ1Oh36/T5qmbG9vU6lUqFar/OhHPzr1OY9DmqZIKU8E8jiOT3ylaTr7OUkSoigiCILZY096n4kq4MtVFhkxpkCDQ0ZUaDFPhMpDv4ZFSIyV1wMkBjEGkiJDEIICY1xxkmw37a0XGTKgxkePKWb43uW/R2O8wxc3f//UOkUqMgGhd879CraQWLpECUkch8S504BCx2aCRcyquMdyVTBOBzQac3zmhTU0JXj5XIFyWOXe3pC5msFnLrp8+TMLpyaJUy5Nq9ViaWkJIQStVgvHhE9+4gqdwYR3r99FaRG2jGmxmOsUJEBK1bMZpy7NisXVZY968UxL4AxneJbwc5EMjIOU3/3BLv/q9U16vsAmoN9TfLP9IxadIVGqsRk26YUmobIQePipSZzqjGLJn/zkkNHmmzhemR8cNEgTHYFHOe6hhIan9fA7uxyMNBzHQdd9mlZIw/EoGJL9HYGcn6dYLGKLCZZMMR2PZnzIiAJjynRoUGKEEkYuFpOVkn1cYhwcQ6clVxgm9kz6VeTBJlOTs+kyR0MdMUld9tMSB6wgEYziEm6/RUG3kNJiW11gQAWdlAibEj0CPBIihqqMVLAgdggxiDDZDuqE4T532lt08n7v0dEcF6qLXF4un5iWAH7q75AFdiklSikODw8JggDHcbh9+zalUolr164RBAFRFBHH8ez7NIBPv6aBfRrUp4lAkiSz1/9ZYtr/DoRLmQFzWpuq6oGEPlXIV94uE0wy86ABVUCjwITzYh1N4xEW/vHXHlLCYUhAiadJCJTQ+ear/zV/cuXvce3oz3m59UPWDt/DSDNy3+H8S/zp3/ovWaot4Fo654o+L67Y3L5xnc7+JoFyaakFpNBxGVPSRpCYVM2UqjHGMQWjUUTZs7hW8lm0JefmJVcu1p9YLdrb2yNNUzzP480336Tb7bKwsADAnRvvY6sENLhsbnLRHpJi4NgORv0yutfAsy2+9GKNK0veGT/gDGd4xvDMJwMbhz7/zxubvH3zABnHecfToqqPqFoh5XIZp3Yef9Sg4fc4GiQ03IQPeyZdH5TKwm2vP6HdLzJROgINm5A5cYQuElCCMBH4qYbljzC1FF3vYxgGqevSVQZ3dnqUbLANcCYRlVAwZi63tZUZMUtFCBlTYExAAYXCY4yhfILUZZiY2PikCIoMsJnQZY4EiwJDdCLGOOzyCeJcqc0gJsVgnyW0FIaUiLFQQIqBQNCjjos/m/uOMAmFS6oy0ZuxKjJRl1BoxDmFzBj0+ZPXt+lemecLn/0kplOkM4rxLIWpSeLcqW4auKfBe7rinv5+PIinaUoQBIRhiFIK3/ezcczJhO9+97uzYC6lnP38cWteGSLhnLlHLFxcPUZTAikTLqb3mMhsRNAknI3dAYxkiRiDkhg8UYTHEAlL2g5V5dJRc/TVhBEVopw78HikaCgCr8w73je4ceErfPZCid96tcadwx6dbpsvVSpcffUiumYw7mziGCC7DnFX4sQ9imp0QgcgTTNjoanQURzHOI7DaDRiqephGzxR72FKbG02m9y9e5fNzU1c12Vubo433niDJMkSIV3XcV0TwwhwXZdPfeoqV154mVHIGUnwDGd4hvFMJwMbhz7/3f9+i73OGKF0mhWHmmFQtxM+2RQYcY0wDOm3tvEnAalV4cWLVT553kC82+XDQ4ECzruSQmhxONbxGBHgUKaLIyYcqUXGqkiQecVRFGOW2EGpLMiN/OSEg9uyvoPnGBTdMpqyKaQxA+kBMV4+k72k71FXbVAKk4hQWdi6pGhEDBOXGJMxRRwRsKZu5z3WTPOtzWLuiJchwQIkbeqAhhNFrA5vMLDrtIqrKGJqowPOT26wX7xIt7CIho2SYImQABefAiH2bHULMKDKB+MKe+92+MFP/hUDVUMaHmU74WKhjanJE6t9KSWR1AhSE5MAU6Szx6al+NNc6oBZoPi4IIQ4oSFxvMIwHSM1DLDtIoVCgUqlgmma9Pt9jo6O6PXCEyI7Vb371O9tiISSGOIqnyYWUsK2WuOQ+ZxQmPJgNDCl6cSUHEEUCww0OuOEmpMw1Cq8cThGC4ecX86qVJ7qs7qyr6d1BAAAIABJREFUSsddYH19nYWFBTY3N+n3+xgiOeEhcPyzgiwZKBaLhGFItVrNJlrcx/fwt7a2sCyL0WjEBx98gFKKCxcu8PbbbxOGDxIiy7LQdZ1CocBnPvMZXnnlFQzDoFb6aT6xM5zhDH/deCaTgRvbI9682yeMUtqDCFtLCFKdOa3Dy4uCly4tMN+4ShzHtFotOp0OZrvPIOiiWorrI4/XLizwxecrJGmMJRVJfBV1N2LzcEJZDlnRNkF3CGIPXxUYU0ShoSl1wowlwsLHQ1MJvvAIlYUeTEhUgkhLhHhYBJToA7CvVihpCRe9NuPRiJ1kGV95GFHMPDtYwqWl5nFFgK8cYkwiPFI0QqwTiUAGAeigbH7txv/CV+7+DobK9m29eo1Et3iu/WMg48H/+NzX+L1X/wF72gpFNcZmRJ8SCsGYEjVaed87Y3a3aDJQZSIsGkmHTqrjBuO8wvBgZXlcaMbBn7nXPQuYBnvTNDHN7Pwdrz48nKS4rovneczNzdFsNmk0GjQaDQqFAq7rEscxOzs7bG9vE4Yhre7oL33ss+CswxV1m0W5T6BsPDNBSydIs8xKzeBTr7xEojl0Wwcc9QPutARO6RyLNRsRt2ZVlyiKuHPnDuVymVqtxvb2NpqmUSwW6ff7j7z/tM0yPRdxHM+Sg+nzHmcS1el0GA6H1Ot1fvjDHzIej7l48SLXr19nMnnAk7CsTLyrVCrx2muvce3aNXT9rBJwhjP8POCZSwZubI/4b/7pLYZ+gmNCqWAyDgrMuZLPXdDBb3Hj+j538pvOwsIC5y88R6ERMRp0+OGdMbsHMdr9Hdbc9yh6BRbrHqZlca4EVRFiyyHjiU1nLFBSEmFjEs8IT9NyMICmUkJlEVDBUT462c1TyMzmJSUrxUsMfHSKjBnGNsNAoVklgtQjlDZ9KihgRWwyEUUmqoBC5Gp1mWNcVgU4fbTty/d+h6/d+WcnHlnrfXDidwG8uv1d2s4K337x7+PjYiKJsdGJAUGDI4ZU6FHPrHWRCBQxLm0aVFUHKWGPBwpzda0NQICLTVZteBr3up8VjgtBTYP+dKX/MKcgiqJZcjANTpZlUalUWFpaYm1tjUqlguu6s8QBYDAYsLm5yf7+Pr1ejyTJ5HmLxSJLa8+xvq6wCYk1D2V6kDwacJ8WhkgeVBcUCF2giwhXb7AwV+HFF18kTVNu3bpF/f0bBLJD0LpFV6Qs5noUSZKwvr7O66+/zqVLlzJtjCCgXq+zu7t7avtleq6m3+P4wfig550u+DMlgBYKBW7fvs3BwQG1Wo29vT16vd5sO9M0sSyLarXKF7/4RZ5//nk07Wxc8Axn+HnBM5cMvP5hl8EkQamEcajRFFtcbeh8+nKDL3360xQKBXZ2dtjb22Nvb4/3PrjNB+0CvQAqRY9BpDOUBqPYoxUVsfoR2m5CiCTBZk7XeaGcsi9XaCnBBBuNBA2o0OGcvnli1Zf1ikNcJqR58JcyJFSZA1tB+CSaR0HvoKcBgcxkZ7VkTKlUxgolPengEGaWsEKnpo6YcAGJlneHs1ExjTRXwnsoGVCKr93+3x5JEU671WoovnT/d/nXL/wnJMLAYUSCQYqBTkyLZm4hK3N7GJMEE5sQEMQ4HLJCrAxsoqxyICsUGCNQBMLFZXwiYfrLwjCMLMHKg/400AMn5KGnK9spN0GpTDHSNE1KpRLFYpFyuYxpmrOy9/z8PEtLS5RKJ+vUU6Lj7u7ubPxRKYXjOLMkQkpJoVBgcaVCR024s9XCkmO0ZDx7/HGtkcfhYU3/6b4cJ09Oj1vTND77qU+Qpik3b8rZPm5vb+N5HtVqlaOjIw4ODjBNk4ODAyBboR8v3R/HNBGArDowVdd8HF9gb29vRua8desWlmUhpZy91/Tzs22ber3Ol7/8ZS5duvRXbkV9hjOc4WeLZyoZ2Dj06U1idA0SaWS65c6Y0niXmz+W3P7Jn89IS2tra3zta19jfX/ED//gJ4iox35bMqLIhCIgCXHQUaQYTAPsOC1hdEcEQiKUJKZMJZeOXchtZ4/DIqIgJgS4FJhgEZEog1QZOASgoJAOWRZbCE0wFFU06SOlQifm1fkJPz7SGMc6RTPB0TXuh0sMqOAQYhOywC4gOGCeLk0emN9kWO7fxouHT30e3WSMplKkMAgokjHiE0Cjw3wunEueeKSYSCQCHYGDT6SyCsUAjzjXlR9SosAYT41oavuz1sHDge1hTIP1cWnn6c/TID8tVZ8WQI7395VSGIZBoVCgXC7TbDZZWlqiWCzi+z6j0Qgp5awFUKvVTpSp4zieyT0fHR0RRRG6rlMul2k0GoRhiO/7WJZFs9nEdV22t7e5c/M6jRQWLlcJhxGR785W4tPxxeN43Hn5qFbLaDSaBfEkSRiNRpRKJfr9Ps1mk2vXrlEsFjk4OGAyyRQvi8Uig8GA+fl5dF1nOBximuapycCU2zFNOOI4xjAMhBCnVgampEHTNGckwXK5zPr6+mwbTdOwbZtGo8HXvvY1VldXT70OznCGMzzbeGaSgR/d6/Pff/MegzwZWKqZfO5Kk9/+yqdIwzEbGxvcu3ePVqs1s8D9sz/7Mwzbo2ov0Eo8rDjEViEhDgkGoJM+sp7WmVCkwARfeDjKn0nHusInUQa+KgAKV/gYImFOb9NXVapaH1M32IoW8ZWDJUKWxTau8EHBTnKeNnMIBHVxBP0tFpwitaLFpJvPyVsuUrNx0szZzmVEmIVZRrNZ9JOtgi/d/+ZTi+VKBHvly0ht+tHq+d8NYkAnIlPB0/P30dCZYJGi0OlSy13mQyxSYiJSBCkWMQlD9ExtTqXspOcZU8Ii4Jy2gWcmWJY1Kw8bhoHSLEKVBUZTezDzP9VemAZ4YLZKnT6m6zqmaeJ5HvV6nfn5eRYWFqjVaggh6HQ6tNttDg4OMAyDZrPJ3NwcjvPA+W4ymbC7u8ve3h7tdhsp5SyhnBLiBoMBAOVymcuXLzOZTLh9+zbdbhfDMFhaWpolFkHQ5MaNG4RhyMsvv0wYhty5cyfToJCSRBn5efHwGLOiP5D2neoOPK7VEkUR169fZ2FhAcdxiON4tm+u67K2toZpmszPz8+Ou1wuE0URtm1z7do1bty4MfPBeBjHNRum72dZFoVC4dTe/tbWFgC3b99mMBhQqVROJAJCCBzHYWFhgV/5lV9haWnpKa7QM5zhDM8inolk4Kgf8Q+/eZPDQWZooqEo+Ls4Rx/wvT8uUqvVaDab/PIv/zKlUonRaMS9e/e4eec+Wwc9iuH9TC/OluylS0RJAV8JUlLUI17q2VDecfe442NjO/I8HdVEAhV6NNljk8sEuBylc5xP7uPjYBMSYmPqCpOUsXQZ40G+6p7gEWGxddCjLaoUhU+obMIgxFEjpCjgMaLOEftqhSHlfBU+VWvLVvKgca5/+9REYJogSLRchU5DAP/3i//pKVtnevTZOKJiahwDYBHjEFJgwpAyOnJWDamoLhM8Uiy0XNceBL5yaTNPiJ1VGiRcTO6Rpv7sdbOVcJVI86hYKRe9DpYuZ73/4zyA41wA13WpVqvMzc3RaDQolUpomoZSiuFwyNbWFr1eD6UU1WqVpaUlKpXKrLLQ7XbZ3d1lf39/RqarVCpcvHiRQqHAYDCg1WoRBAGe53Hx4kUajQbb29u88cYbjMdjisUizz//PKVSacYfSNOUQqHAV7/6VW7cuEGn0+HSpUu4rsvGxgaj0Yj9oUabOcj5IHXVoiSG+XnONQ3yysBprRalFG+99RZSZufp/PnzaJrG8vLyjOOgados8en1esRxzPr6OleuXGFpaQnDMGi1Wo9McUgpmUwmtFqtWSI29dN4GJ1Oh8FgQL/fZ2NjA9u22dnZeXA15YnA8vIyv/qrv8rc3Nwp19wZznCGnxc8E8nA+uGEcZgwLY8LUjzVYtgbMegeAtkN0DTN2ehXoVSjrV+k6/i47oTLxgG99j5mtENJtdlP5ulRZTI7xAf67W2WEFJjVVs/MSc+UQUmeEgEIRZHLODjEuBh5zfxGOvEDd2QAUpkbnUeYwJcBJki3fRm7+AT6h5OOqRqJ6x4Y/Y7h3nLQSdQLhEODwK0PLG/R945Fof30NXJcjTA66u/zuJwneZ4m53Kc3znuf+Qe41P5o8erycIpuY6meRu9ncdRYibq9YJigzRhCTEzrztRRcQdFWdQLgzpT0/J0DK/JkR9qMr3elKWPqMZRGsIiuLJQqFwiwZ0DQNy7JmCUC5XKZUKp0g94VhSLvdpt1uE0URjuOwsrJCvV7HNM1ZD3tnZ4ejoyMmk0xWul6v84lPfIJisUiv12Nvb4+NjQ0sy6LRaMwC7Ycffsjbb79NHMfU63VefPFFTNMkCIJZSyNNU+r1OufOncO2bebm5nj99dfZ3NxkcXGRhYUFlpaW8O+2EF0xMzU+Xs+Z6g48rrWilGJhYYGXXnqJb33rWzNRprW1tVODrRCCWq3GF7/4Rd566y263e5M12F6zA+/vlKKg4MD0jSd9f8fJvpNSYNRFHHjxg0gSw6O8yMcx2F1dZWvf/3rVCqVR/btDGc4w88Xnolk4OJ8gWtrDa5vDYkTyXLB53zJxNU8DMMgkhr9SUoS+QRBh/1Wj07c5iCuY6ZjQmUT2UcslC3W1pZYXV1lsyP5wx/3GI536LA0axdkzHmTFvNoUnJB3JvdlC0iCowZUSTFQichwMEgIiQjBrqMcEQAdGZtBMhu9Cv6FnXVAgSumMwem1dbJJqDoQWkUUJAQkFk3IMxRSwCPAQTvMwsBkV4rKLxZ5d+k1f3vnsitKdCY2JW+IOX/nNiY2p8M9WnT3kQ/I8HJIGBoskhfeoZoREdl4AUgxQdDUlVtRhQIcLlSCzm/e3tE373LhPqHNGmiUBSZHRipavrOvPFAlGs050UmCsIPEvR7/dRSuF5HpVKhXq9TqPRoFqtnihVSynp9Xq0Wi2GwyGaplGv15mbm8PzPKIoYnd3d9b/T5KsRTE/P89LL71EuVym2+2yvb3NrVu3UEpRLpd5+eWXmZ+fp9Pp8M4778yIcEtLSzz33HOzXv2UmzDtzV+6dIlyuTzbv2q1yuc+9zneeecdOp0OmqYRBAFf+fwnaL++w/5QnipR/PD8/3EopRiPx2iaRrVapVKpsLe3x9bWFlJKXnzxRarV6iPP03WdK1eucP/+fVZWVgjDENt+uCKWv79hsLCwQK/XIwxDut0uP/jBD6hWqywuLrK8vMxwOGQ8HnPz5k0mk8kjvAjHcbh48SLf+MY3HjuFMMU4SDnojml1Rny4M2ax4XJxscpKwz0TIDrDGZ4hCPVxS8DlOOpH/Hi9zwdbI0YTn7qTcqnYodvt8mHbI8ClVoDn6yHvbCZstX38xESXPiYxK9oGRUs+IKIZDgfqPEdxiYNJVuIOcWZh0SDEIuKKuEFNf7CCSpTBQbrABldmLP9L3MDQJLby6dJ8qnnzh0lkp/2+J1fwybQLTGIMYqq0adHkkOW8r5+t2j65823+zvv/iGKUlb13ylf455/+bzkoXQQyLsB04iHMVREzM50YmVvqmsQ02EcTAouQohrSpU6EQ4BNnQ6TXKQozp8zzx5SGKxom5kJz0PH+DC/4jiEECRKJ8JmoVbgU69kksRSShqNxmymfwrLyvTqp0Q+Xdep1WrMz89Tq9XwfZ/t7W329/fpdDqzpGJhYYGVlRUqlQqdToft7W3a7TZhGGbTAHmQ8zyPu3fv8sEHH9Dv97Ftm7W1Na5cucJ4PKbf7+M4zkyZT0rJ8vIy8/Pzj2XH7+7u8t577xEEAYPBAMdxaC6e57t//hYy6D+VHoEZ+ZzfeJe5o3VMJdGbS8gvfJ3al/425XKZOI65d+/ebH+uXr166nTEzZs3kVJSq9V4++23efvttx/5vDSnzPMXlyEN0TSNK1euUK1W2d3dpdfrEUURk8mEIAhm5ziKotn1W3YEL71whV/7tV+bcS56vR69Xo9+vz/jK4xGI4aTiNuDKu3Q5iitkWCiAZcWPP6NTzT5jc+f7oNwhjOc4a8fz0QyMA5SOqMIP0z5v948ZHd7nVhqfPlK1hr4/u0YU/kMI8FqKWBnUkQFPcaqgFIpQZCia5LnvAOqViaVm6YpYQL9xON+vIqPg05CiS495kgwAcE8e1zQ7524aQ9liVvyRRQ6gpSr2oe4wqevKhzJRQxipDA4p91/JEDCo6zxptjnSC2eSCIiLHbk6oxM1hAHVEQW6PtplV2W8oFGF5nvqyYTlgb3iIwCR94KCIFBRIqOTphvJQkoIBHYhBQYARomWTukKQ5wRDAL3oG0GaoKI1UixGFImQAHk4gUgzJ9qqJ7auLzNNMEx2GaJvV6ndXVVWq1GtVqlfPnz5OmKQcHBxweHjIcDlFKYds2hUKBKIpmK9UoijI1u1qNc+fOsba2hud59Ho99vf32d/fZzwez97n3LlzzM3NEccx77//Pnfv3mUymVAul7l69SoXLlyg3W7T6/WwbZtqtcpgMMD3fRqNBisrKyfaFY/D/fv3uX37NuPxmHa7TbPZZDAYsL6+/pGjh2v33uKl976FkBlfRgBSaGhKki6u8dL//Id4F56bkRq3trYQQrC6usqlS5dOrMzH4zE3btxgeXmZ7e1tvv/97zMcDk9ckyEFFus2V0o9qkWHz33uc1y6dAnIkrA333yT27dvs7OzM6sGHL+eXRHwXKWPJqNHZKWllLMEcCjLjJXHUJUIpE1bNWb72SxbfPpShd/+yjLn586cC89whmcBH3syMLUdvn5nB13FtCOX/c4EVwv421dCPFvjeqdMNzSp2ClNq8+9o5RhKNBUQj/QOQwsEkwq2phPl+9RK2R93ukNqucrjkYaRjpEYrAnl+gyl5X9RfBIUA+kzZZcI8KmyIgFbXcmWzygAihcfJ7TPjxVm36iCrNAH2JTF0d0VHP2+wvjt7i6/jq1wy2MNCI0Cxyeu8rG2qdYN16kzRwqVx4IcTGISTDQifJmQCarvMgWB5xnQAWLCEnmnpii5W2OlAaHmMS5y6GNLSJcxixpOwTSYktdIkXDxSfEYkiVBCN3XBxyQdzBFf6JFsG0ItCRDSJh/9SqfFPi4DQAnz9/ftYqqNVqTCYTdnZ2ODg4YDweI4SgUChQKj3gGwRBgO/7DIfD2bx8pVJhbW1tNm7YarV477332N7eJo5j5ubmeOmll1haWuLw8JBOpzMbI5xMJnS7XQqFAufPn3+iTv/DUEpx9+5d7t+/PyPe2bZNFEVsb28/9nlr997iE+/+68e/rtCgXOfSP/5T6hefAzJxpBs3bsy0BdbW1rhw4QK2bRMEAbdv36bdbqOU4vr163S73UeuSWUWWbP3KRnB7DinTo9BEDwyKvnw9bwodtBFOrsejhtdKc1iI1llN14E3aRggWPAzvBBUrVUNfnlVxr80rX6WbvgDGd4RvCxJwNbLZ/ff+OQnfsfst2JQRho8ZBECtasHVxbZz1cYRjpCM3CM2LqRZ3VcoCmEr6326QdORjEmMRc1m7QNLrYto1lWbPybix1bvXL+NJBVxGpmPbLxzTFfs7kz7wEjtQiPh4GMctiEyl0duQqQkk6zFFkgERjQexT0zqnrpiPj5dNk4kk0fjGj/5HLu+9jRQCbTo/D4BACcGfX/1Nvvvcb5MKnRQDhSDGRiHzdaPAxadMl3ntgCO5SJ8KMTYFxmhIJngIFA0OWdXWMURKX1Voq4UZ+bGo+uxynjFFNCQ2PgUmKHR8XFxGLLONLXwOWSHBnJ2rI7XIiBK+cqnTIRbmqW2Eh8/Jk1oK06BcqVTQdR3HcZifn2d5eZmFhQV0XZ8RCTc2Nmi1WrNWgud5MylhIQTdbpf9/f1Z739xcZFXX32V+fl5Dg4OaLVamKbJ4uIiUkr29vbQNI2VlRUajcZfSDBHSsmtW7fY2Njg6OiI0WhEuVxme3sb3/dPbCuEwAgn/Mof/iN0+Sgp9DiUpjH53K/S/Af/A5cvX54JCu3u7nLz5k3a7faMY5Aonc3DMa12G1uNSMPxbKLgLyMnffy5lgpBQMTpSeBEFbiTXmVEFYHMzbqGuX5GNh3zpTWFW7DwSjXONRy+/unmWUJwhjN8zPjYCYT1osVC1UauvUCj2Wf3oM1woigmfUwkd8eLHKVFDBLiVMdKe+xHGnpvE103MGITO1/NWoR4ZL1e3/dnN2EhRDYpIJvYBATCpcoRrgixRMhueo4WTQAqdEFkEsMh9mxF7ODnugQBfj42GCmXifRY0bYevbGKB7Q9Q6SsyA0+/8N/RrN9H2CWCOSbAgqhFL908/9ASxO+/eJ/hEGIRsIYlSkfYs5sjy1iPEZMxCiTtEUyxyEt5ikwJMZiSduZVS4q9JmoIj4egXLoUcXHQ+VSyCoXHErRcRkhUOyzTKRsEmwcJiBgqMoMVQmHgIACE1xKDJ+oSJgoYzayqVA0aJ2Yv4dsZbqzs8POzk6mHlisoXnzmJ0h7Xab4XBIv9+fzdTPzc2xsrIy0xUIw5Dr169z8+ZNBoPBLAmYn5/HNE1u3rzJO++8g23bszn++/fvo5RiaWmJ5eXlmd7BXwTT/nuSJARBwHg8JggCzp8/z61bt05sq5Ti0v4NtI9IBACElBTe+Q4//N53+d73vjeTXA7DcOZTMDvH6VTnYoW6OGJFG2PkF+FHTTI8CcefmyqDfbU8a2/5qoCeS3gbIplN1QypkOTX65gpvyFFBzZaAZga53NL5s4ownPO2gVn+Itj2mo+c8b8i+NjTwY8R+frn26y0w74ozdHjPwIz9K4Oge9cQO/7aGT5GNrMREWDiGaStHTCI8BmqbQNMEFcxuilIkqPCL3aqowC+h4+MomZpGiGlERPdo0Cch6rxJBQ7UJ8/L39HWmN8NIWmyqC7lagWCsSqeO1EXYeIwJ85G7l+/8KfPt+/mM/5PxpTu/y+78i2w0XsYgxiakzTzkQsJVeqxomzhayJJ6cIMHmMgiAS5lBpkYUo7pMfRVhT21jJj5IOhAQpkODXGIAAJls8MaCp0AC5sQHwdXjRlRJqSQETppM6cdnrrShwecglQZTPBmFZBxnkw9jlUfpRob3SI/+uN1DOKs6mBk0wLFYuYs2O/32do7YhwJ4kkXf9glTVNc16XZbDI/P4+maQyHQwaDAVJKHMchSRI+/PDDWVVhKm89NTmaauxPf55WCabSxw8X0qacgOMGQNOS+2g0Ik1TTNM8QZQEKO2cTBCeBBGHjN5/k3bzwmO3ibBO1bk4fo6fNMnwJGiahi1ybwYZU5AhE2ljET7SKpq+j6eG+BQwSPIUIB+VFVD0CpSKLkeDkEuLLvWi9VPv0xnOMMVwEvMHP9xluxPiGIrf+upFmpWf/TX1i55wfOzJAGQJgWtrHHQnGPGAfmCwE/TYj2r0Uy8nyKVYBEQ4CCU5YBlPDjAJKahRpo8Xhhyq8wxVEVePWZYPdASmwbAjawy5SIpJiIOt/Fl4Vih0oCEOMcR0PI/Z81GQCh1PjZlQIkXDIEVKpkJ/wKPiMrb0uXjvDXiKRACyscFX1r/N0dylrEfLHoZKCHGxyTgOx4/r+A3+4dXfwyS/Cv08oGdJliBCQxJQYl9lZkki1w3QiVDoJJiYRBgEjKhRYEiKwZx2REk7XSY5kDY7cpWETLY5Ox+FvGz8ZG+DqVNkqHKDpxTWWCdNH1R7Tpa9JSvGmIKdSRzv7u6ys7Mzm6GfBvhutzsTELIsC6UU3W6WREzV+Y4T4oATLYPT2gfTbY9LJkspieMYKeWpSoAAeho/laLkFB9VRXiSzsVfBg9rEOgkLIotQs0iVTr7rJxQVISshVClT5qProY4TEddDc0gES7VssPVcza/8drZRMEZHo9xkLLTDgDFSsOlYGv4vs94PGYymdDpdPjO//cTfrRfIFA2kShQKLj8xmuLBHH6kYE7e30fEKw0nBPbTqW7wzDkqDvk917fRnMbnGt6v5CtrWciGYCsXfDq86vszc9TNGKq2jn+6P0xZidEYJCioSMJMHFRHKolQs4jEBgkVGQPg5g+NUJseqlOAiyrTULhZkFf6MTKzBX7FBrgiJA5dUQLDYmgQhsBtOR8JrKjxiyIXWIsOmqOCBuFwmaCRCfG5JAVHLV+QnNgSdvBVy4gaB6u44anB4XToCvJc/tv8sfxf4xjSorakCLDpyrxHk8OHtcnXtG3qMgee2qZIVX0vOJiEOFToEobGyc3cJrMJhR2yciGGilFBrMJhYeRKINdtUqHOZx8m2VtmzmOeBxn4DgsIgxielSwSIgwHy9olAeiQJpoQTYSd+Jc5h4I8MDqeErumyof2rY9M0nSNG2m4T9NEI4nCsCJwD9NJB5OJj5qisB3K7OpgadB4Jae+PiTdC6ehI+aCHn4OIQQ6CR4WooUJp4MmaQOTu7bAZnIViBc6qqNP6tYZIO6YRqxfRhxbs7m33x1jiBOGQfpL9yN9Qx/eXSHPv/kj27xk60QIQQvnzOxifjJTkQ92abg380cS5WBzkVCqlRd6I5i/uUP9ohTWKjapwbucZCy3fL53e99yPtbE6rVGq+s2nzluUxfJgxDJpPJbOR443DC7V6Fa1ccDnrGrLX1i1QteGaSAc/R+cpLddYPJ1ycL1CwL+HbB/zp9SN2DweoJMHHwyJiSIUQmwSBQaaWJ/Pyc5xTCRXQYo6eqiCVBaRoKiXBmcn3lughVEJVtImUQYzDBI8ttcqICpbKgmOssmAUUqBChx4NknzF7DEkUDaHcoG6aM1W7InSM9IgJsvjd5/aW2AKTUkuhR8Q2LUHScZTlHiP39wfp4U/tdA10pA76hoBNikm49zUKMGkwSEV0aOlmrmwkCLJNfUMsoQjxkYq/ZFA4qsCgXKxCAmwKTA8kQCM0gIDFijTpahPHtlvQyQ01H6ugWChE6Op9MQJfBppX+ARZnwcxzNlwWnwn37puj7zQ9A0bZaGK+H1AAAgAElEQVQITL+mzoLToH9a22DKqjcMY5ZUnIbttVdY3Xz3Iz9PiaBfWaRbWn7k83/4nBkimUkfPw7HnwOwla4xpESJIef1jUeMlU5zWJx+FypiXm3hiyzpnaIqukRyRJsmfRqcKJuhESp483YfU1MUXYvlhvsLudI6w0+HMAwZDAZsbGywvb3N/YMRP27X6Yc6um7wR60YnypZ2FrjBTqcd3vUSyVWyzo7sojhlEiDAe9vDbi8tsxWS7LXHjFfEozHY3YO2nxwd5/Xb3Zp+RY+btYajVqopIiLwXIxoT3MeDkOYzTN4NzaZazlGv1QZ9UzKNqws9/iWz/pMoxNlmo//0TYZyYZGAcp3/nJIfd2uizWHL7yosfn1xS6LPAnSYgjfQaBoKp6bE+KaEoypJJXDBImeb80G4vLPpAIl4gCWu7K90ChL2Plt5ljTAlXTWZs+QkFbHwislEog5gQG49Mq39EGYWgSpsBNSQ6A2qMVIW2avIcH2KIlG25Rptm5gKI85ijfjIcEZL8FESv0/QNnhQwNQ3cdIyNT58qOpIUgYZkQdvF0UIcOUFJ6FEnpYBCI83JmqeNFibKoCMbBGSqiDXarGibJEqnryoImXKHa0RkPefnk/eQQqet5pHCmE0stFgkRcckwiRGipP/ZNPqSyxsTBX+VIS4aVk/SjUijI+stjwIilnAnSYPUy8FYbgkmoMtImTsE4YhcRw/NhEA6DRW6VcWKQ0OTpBJH4aG4vUr/w476XnqWnu24j+t6gM8dpWfTXO4dNQcgXIwSHAZsMc5FIIxJcppD0uL0HQNU4Xspiu5u2bAorFPUQwxRPpItaCn6g8mDRR5U6hAiJs7hp48IkFKmCju7vb54vM1DnrhGYnwbxjiOJ6tvAeDAXt7ezO10alnhq3F2GmPRNYZS5OY49eHgOZn+cLLIzqdDlEU8ZLbItUmDIdD3hs4rL91H0f4dN69mbWYU409ucJQlenTyO/tLqAIYhgfTDjsgkpjpBJousFcwUJEIyK1T6KNKDg6nZ0J3Q936U0kG9ESZcdgw23QcFO8osfF+cJfCWfhrxofezJwXHBo42DIuLfH9bZFOdVYanjsHAp6wzFgsVryuVwyED2T7YEgice4jEixEEhSdBQGD2R4IePZT50ADU6uzzMzmQSBzEl/AkmXOplGoY6RB6PMYXBCiE2KxpAqBgk+DjE2JiEjSvRkDU8b06eKRGNMmZa3/FNVBQCkpuN/RGn4YTxcCZBCZ0k8yiCfBoZI2uikJGiAmGkapIhZ8M1Iitv4yiXBQuUGyDEmKSaGivHFA7JahEUkbOoqUzNc0PYAuCmvEVBAIIlyUaMImy0u5d4MNgU1IsHAZkKCgUtAgI0lolkiMx1RTJWOLhJc/BPH9bRs+acdtTttO1uomXFRlAq2hh4T6eCgsaS1ny4xEYI3v/Dv8rf+9J/gBINHEoKp58MbV36d9eXP0qHOWJZwhD8bd52oAjopEwr4qkBP1R45nuNJwFh5BHh5W8hFMUeMiZb/v+yxhC89dAkeQ9o0iLFQaPSSKgtiL5+ceZAMDGWRnqrhiRE+RRRg5noEU+LvCUstYWAZGs2yxWdfqOAngqW6fUYi/AVGmqazHv/0exiG9Pt9+v0+k0lWHYzjeKZiOU04y2mBPeo5CfUkJuMe1+/soycj7EIFt15DTTocHOxD2KBCSqQsRrGNpUGqDAJcdJJ8bDuDRz//v0gYRhZJnnQIKej3dWw0PEaMgAvmhGECiVPg/IJO90iw3tNI2l3+4faAhfkmK3WX/+LfvvBzlxB8rMnAOEj55p9vsH00puYZeIbELzQoayF6OuDO5pi9tsdaJaYXGqyWAhxTYOgaKgmwMYhxUSg0BDEmJiEpNg9Kk8dXMY/aGYPMP3yBJMEmhpkvgMaYEhqKBB0fC7DJDH1DrNwYOMYixEVDcsAKK/I+GmDmngb3Gy/RKzSpTI6eKimQQmP73Muk5un68o/DaaXzhwmG0xG0Fs08iYkpMMJjyJgSCSYRBfzUJdUMTEIOWckDeeZ6WGBEjEWMhUTDVT5SwkQroKl01jMu5e2Bjqwxppw/30SQ5EEoyZ0WM/W9IRVcfPqqhkRDJ6LOkGWxiSESRmmBLXVxtp+mCpnjiBU9s9p9uCpyXCjpYXyUnfATt0sf6CkMpctAFXHVhEA8/nUeRqIMOu4S3/7Kf8YLt7/PxY03MZMHlZujyhpvXP511s99hkBlVZYYg7GaQymYYx8fjxgbhzGp0h7ZTxTspOfpUyHBokyPISViCph5Cyf7fzGx8RlTJMFFkABefsPMtAEiLMaqeOL4AmmzqS4zpMRIlZnXDlFKEmHNxLGyG2/WXDI0g6tLBX7pWo0vvlBnrmz9wvRbz5Bh6ox5PPhPJcillARBQL/fZzgc4vs+g8GAyWRyKsfGNE0wa0jfyBPMTGYdoMCIcepye1DnxZrBvXGV776+k//v99Ap5+3NlE11EUcG2MrHIKZDE4WYVWx9PDz82f0sm1rL7r167hOTkWA19kZwvtBjMurRbicQaVhyGVvXacs6nq2z3wtZP5ycJQM/DTqjiPWdLonfodez+fxFm5eWijRKZVxrns5gwmE05miksVJQLC2v4Do2rky5rB2yNxSEkcSO2/nKXRFg5SVqNfvKzHuPH6pC5PUAecwQKLthdgmwSCgwHb0bUuZ431NhECHy4KZjEJIChZzkl2BQoseYIgqBJ0LevvQNvvb+//pU50Uoyf3Ln/upz6eppSzx5Fny6QiaREOiI4mRCCwiAhQWI1J07nEFQypK9PIWSoBPISdOagSUkQgKTICELXURmWoUxYgFsXsiEJvE+bnW0ElZYZ0u83nQMSBfm04/lxaLgMQiZoUNHC0kkDZ31IsMqcw8I3S02ZgiMAuGPh47chWZ60Wctup/Ws7B8e0MFTOSHppIcbRw1hLJnC0L1Dl6Kgb/NCEbUiY2LW5c+yTO1RFzg01I4cg5R6u0isuES9xAaToHcokuDRxCIkz2OT8jfWooEqUjUIwo4onMNCqzmZ7LlSxtUuoYSAQJEh2BwCTCo0OFFhtczatoFg4dFBpDSojcutoiOnF8Q1VhTAkdicQgkCYGCZamqBsBrmOyNzKwZECCYK7o8B98ZYlzzcIsAThrDfx84fj0zNCP+eE7H6ClY2SUBX7f92fcmun2U0Z+HMf4vv9Ecm2iDFLNxdFjpIwxkxYOzVwcLcYgypdgFnY4ohP53Jr0OUr0B2Ri5TKgSoiDTpzdv9SESNhUaNNTFcACNDQSBNBklxElBtTzv1iQz7BlQ+QyI1KnkmDY4bYoEmGzUC/w2aUlJqrEzX2fYZByruFyoZld10f9aMaDe9aTg481GagXLa5dXmbjoIinRyxWQlwzxHNc3GIVq7LC37+sc9ib8P/+8C7fevcAR4//f/berEmy87zz+71nPyf3pfbu6mr0BjQWAiRMaiANx5bEoEaWrZAUivD4E8yFb/wBHCHf+8b+Bg7bF3aE7bAsz8RIlhXDIGhxSIAkQKC70V3dtS9ZuS8nz/764iyVVV2NhaQEIDxPRHZ1ZWVVZp48532f5b+gCpVQWGy2VHRNYxpWcRSPRnLIo7OAqVcnRiBRMPAy6pwDxbggId1OLr59QUKNPkscs83LmSqhgCtaVKl9r0ruhagQ4VOixIQ5ZSL0bLuSDKnzcOt3uNv/KdeOPnphdyBvpn70xvcZ11e/8PEUQmBqKR88RbU//5icgpZiLFK5obKY0uIUVcZZoqBlgEGFORYlMUdBUmJKSQ45YguVENDwMElQmGCls2Dp0BQ9KmJcPGdFmbIaHzGhikEu2mRiIVEJcJgQ0SLGKFrNKpI5DidcoyQfM6OcJTl+Rp9L05lFmmKxaRMSFmOGq6v1zxLhWRw5rCmHTJIye9ykK5ex5Jw7PCARKr6wKcsxESY1hkVF/mmjgnSTXsbDyrpZFrHWZr95G5WIiLQSmmMxlhV0EkwmWNik5M+0G2XiM6NMgsout/AxUABTpoyKWKZOlGmrXyVBpc4ZLiU0Ypr08IXFpnaElAlm5KfelarCln6GziFP/esEUsNRXDbVPWxNIISBoig4EShejBQ6KhJVMakbIb6wsNSEUCY0rAg3BC0KcIIe/9P/NaDUvskrmzX+/J21f98R+Byx6P1w1ddP+9lv+rE5DsYLJT/eSXj/42cY0i/wLLpyngRcBbB9UQghCBOVU67hJQ5WMmddPcRWQ+7IB5wlS5yygUTgZgWci0NTG1E3fGaJl43q0go/yq5dL/Ok6dOiLTuYeBmWJaW7JghUQiwCppmZm5cBqfN9AsiKSYmP4IxVpNRoawOGsxj96Xt0wjpOqYUaJzTGp/yP//3/zdlc48l8g/ryJqt18ys/OvhSk4GSpfKH31qmP63TLBsYapK6zp10+T9+0uWw67KxVOLVaw4TT7CxVGEwi9hyBnjehCRIIW1t06FVNaiX17ixqRM81NjvBcSQqemlm3ZKC0y50mFm67MYCYITNtCz+kghzpwD4XyrPp9/5hiDNOnwKTFhhUMmoo4mUz+BOn0iodNUBrz/9p8y+7jB3e0fIWTetTifD4e6xcevf4+DG9/4lY7nZ9HZIN2kVpQjwkQvdAtWxBGaiNHjEI2IhACPEjLTUWjJZ+hqysY4lteYY2UZs8yMktLjEmeIg1gqzz3nmnJAkmziYaVgMwLmWKQOChpxpmugEhOiEGKlOgeKDkaZeuJRCn086VAXE64puxjJ7AJLId/cFRlzxupnVv0AsVSZ4yCSCF/YaElAIGymskIoTBQZ0RIdfGni4WBlyciMMiU5xZfnY4SBbBLEaeKRi0JdFZFUiVCR+eeeHQUBmYFW+v5DJNvcR8j02KrElJhyjT3GokkklazrEjGhQZ7sdlnGicfZogYSFYcpMRpDWuSy25HQU4qonBMpDkvaEE+UKKk+JdtgqWzySjVBtUtcW15DJNc5PT1lOBwynvlYc4W16IwZJcrKHNuARK2yakteWZagKGhKxGFnyPbRlK5XZeSV0Wcj9vshb92s8o2b1SuP0ZcdX/am+3kpqp8Wi54RuZvri76qqpqCYT/HYxVF4XgYEux1cQw4C5bxlSoNfU6bY+ZB5lvB1VieSGoF8FdX4nNAL0a6oYs5nrAIpIlFmOKWxAlRbHLMeoEL8xEo4QTkiBVmBEr6HJFUseQMlzIpwTzGx2RAE42gkJ6HvDiaYigBahIzo0yc9R7PI9WcSX9DRRARY9CLalSiERMR46MgxqdMcDicDJnIKjNtmZmocsP5eowOvnQA4cVWocrKygqBWmX+8RNmw6d82DcY7/eYijaxUWdrtcY/e+MWvzhI+MWjPYQ7pR0OCGc9ekpK97qNRFFtDuMVJDoJcJ0dIhROWc/UBi9fZOn3Pg5u1kI9dw7IM8QEQZyxFVKloTxjDDEw6FFXBvgy3SxMfBIUykzQ8Tlik6f3/yU/uP0vuLf3LpvdX6LFIYmhcbz+Cp31uyhf8BP5Itl3oQiIhhQKJTnFxc5mZTGBMKkwZSLLpLLHqdBsl1Vu8IxApFQck5AwAxFqJBmVM63VY1QGskVZTi9Ux4lQ07a9nGdgHZ8qcxIUAqwsIVCwmSFQCFARKBgiRJceCiEv64+YJmXKyhRLCRZobipxHJ/jIwQXlBlfBAzM5XslChEayHQzVmWERMGSLnNKDGWKPE6ysUSZSSp7LdQMLZICSyeUSDAJ0BAS1pO9YlwCKeUySAx6tDJViwQLDwVJjEJAuk1LQkAHggyNn59rMR4mHdZYlseYzHlKHZc654uXIMDghM2M9dJnRKs4vqlsd0iIjim7qPhsR7cQgI3LkrLDVDbp67fwErinzJlPpzwedVBk6gY6izSeBivY9Rbfvl/ndhuE36Pb7XLSG0AwpneUJkKKouAlVZ4kd7IEXEETCUGUMHYvqjL+KhvqP9QG/avG5918c/rp533s59mgLz/2V/HYeFFIKQuxn9FoRP/kjPlgxDxxSKRARD69SGfIGiEGJWYvxPLkDq6O4rHGIZoSp+e5NDBlgI9FSXhYaohI0vVNEykFvCeXCLK1OhVRF4XibO6NoomIOzxgmDTY5QZzqggS5pQ45lp2TaXHRiWiIsbYwqVBnyPWOMeMJUCMlnXrchbaKEu8NSI8DCayRILORFbQVYFXeomKU+aVtVV+vO1yOgzZWra5uez8xj6Pf4j40pOBq6JZNrh1vYnkFfR4xjVd0u93Gc3PCPYD/s1phf1wncAd0gmqHIkyNU1w3eygyhCkpKlHnMQrRCgIJGPqxZzUxMXDIilax+mHnOGdSbNAkd0fLXxVM0AVcKljoJCwxEmqXJik91rMWBYdykqKJfBkWkFOjQY/v/V93r/9h2gyTH0HMlrdmnyxgYyqqoVyXhAEGIZBtVqlXq8X6NwwDAuZ3ek8YhYKpD8mjuMLZjMpkKYJCE6TNVbFwbmJUQYQHNDM/Ap0YsVGiYMCW6ARZ5VtjJ7pFEaoWXv/+da8kSk19FmCzBhpTRzQYYOJrKFm80Aty7pLwkPVTO4vQTkpI4TAtu1swa5fqJouL/hxHBOGYXaLrxyXLMr3RqgZ1dEjQsfAx0fHpVRs1BEWTbp4WCxzQiRV5jLVvYiEjiNdhjSZUUYnYCpL7MsbIBQMmSaFA1oZe0XBxMVkToMBAToxBg4T5lSYY5KQelAWMr6Qfg5oHLFBn6XsPDZYZM+kjU9JmL1mnRCLGZPivRj42d9McQcpO8bCJ0FQZsw0suh2ZgSYPDiMsfFxhM+acoiuaxxwi56ssKQlHHZn3F+xWVtf5tpquzj+k8mksId+fFRKk6zssxVCY8mO8Hvb/OQnT19Y/b5oM7t8/2XNiKu+z+/TNO03vuku3veb3IC/rJBS4vv+cwyA04HHzpkH7im9o22SSNBOyky5TZelzPZcQUPiYdOUXVQRXwC2zigX37uJhYeOKSTHyTqBcDCyLkBV99GEJMxOjUhqjGUDgUQlHUWUmeBjcZhsPocNshSfEjPUhIxarqJkYNm80gdJlW7WGc10NC4wztJOW4SZ/T8mTUF0UlfZmACHKOs4G/i8VAtxQwV3MuJH3YD28go3V0r8Z7+zfqEr8FUUK/pKJgMlS+WP3l6l/3KzOFhxHHN2dsb29jZPdw85Pp4wlE7qcJfMmIQ640SiKwquqBGHHhKZtYRgkEnqzjO0tIqkyhljWhl2IO8DLO4c5zOjvDNwjjsQKITZ7yZoeEhgJGu42CTojCijkVBmgiJjhEyYUqEkJmmrHpMTucqQFpb0Mje4q9Ho+cLmeV6aqyoVktDD63TodDrPPb4/cjlONkj0KmW9RdMaIb0apcTFkzaVpMs8SUWahrRRBVxT90mEjqWkrTZTakg1ne37scMZG4QoVBjQoMeEOp6wsWQqETykxYvkhjUR0RRdZrKEw5xQ6Ni2yTfrPruRoBfY6HqZu0sKvX6faajTLknurlQw1BJbW1sYxsUW22IFd7mlWhj4RBGu6zIej+l0OgwGA1zXJfbO5Xs1YsCHbH4YYKJk22aQCTKlQKRUubJPiz15E5BY+GzyDFWJ8ROLBIFHCY9U0rkmR0yzuX6cKVZKFOaZq98cBzIgZpJRWS0UBC4zGldcHQoKgjkmc2wu4ln8AqjpU0oBT1hFMpODZjXiBUiUkv2mlTp1JkGmp1FBI8LHoMykwF4EIcwSiZBDDnwLt7vD3+w8+1SMhBZV0GhkCYHParBNa9DlJ+/GhdCTqqrFZq3reiH+lKtELt7y+w3DKH53UQ3yRXFVEvFZ////w+Nyc6381htO6U0CCCbMp0N6vR6jwOSJvE+AgY3DHUXLQLRqhjNS0xEdkpgYk/RnAJoMmSk19CQ9ay8Dd31pMJdWan4mTYTwiQOXZKHrmVOWW7KLiUeNPhUx5YyVzFrbuWLtFKhIbKYZ2yvt6oqMfwaCISscJxFrHDCjlBWBi6ECIYv6NPnvRlmyHqOiC4FtwDwRrFQi1msGD/o237hdxQsFrh/yyf4cW43xfI//58MRk0hna7X2lREr+komA3B5fABeCKFW481v/RbvvKPwH530+OHPn/L3nwwZTUpY0Yg4jvkkuINLKQPwiaymTylOfrbwkqHaZ5loUIoNULITId/8k6wPEGVZYLp4AqgkKESYeFkta+JT4hFv0Ei6hJgEGQI/QmcuHfpJixF1JAq2nKEpMUmG6tYJmVLGlOfz7ctztrwjEEmVo3idUC1hKz7r2mFacWWLYD7/CxKHKKmw3nQYuAmtloYhmsyTDRKvhzE6wItiOlEFW/ioZoVr67e43rbQdZ29ww4VL2DqTjic2eyHNzPxpSkKLo46p6VOiBQbU6Qt+1ncQ0ooax62YWAY5cJYyLIsTKfKx70S3WmMKV1WmOKYgrftIbEhWFlZ4e3XbnJ0eMhJf8b1lToPP/oFtl2hWq2yurqa0o1+xZBSFm3ObrfLk2cHPD0eMplMCL0Zs9ggThRO2KDMjHmmh+DgEqNRFUOm1EikIMiOhY9JLBQ06ZOaV6nZORLhY3HGMjoBVQaZwAnkyWTKnUi9ICZUUYioZDW9x1W00hyboXJuMrUYZtZATeGzdgaWSrKhlwAspph4kCl1RiTEKOh4aASMqWGrIYp08ZJUkClGxcFFkTEhJqacg4AS04L2+WlR0ya8Fr3HgDYNutS0CUgIfn3rhPSoLFTll+fkubLk4v/z7kCedOT35fcvJh35zxbNq/L78t9dfM7LI4bLCetV//+8j5sHCUM3oWYr2Ib41L+XU/lyn4wgCAo0/2QyYTKZ4LqpfHf+sziOL3iKOMJnSYyYywoHcpMpFXRCZpQ4TK5RTsYccZ2QPElPV9IEFQOPoWwRYuJiESYGKiY6wXNsIyTYwmMuLRxljq1GqCI9rrkFd8HqETZ1MWJNOUZKmCTVLLFIz0+XlN6cCBUdn6Y4YyrLqFlhaDIjRimo0gkiFVRL1CIxfz7yNSdnqJ0/Rs26DIKENcfjP9gUbK02MAyd6XbEg6cdqkbI/9rZJ5AmjRLcXdE4mwg2luyvlOCWkL/OgOwfKWZezL9+/4wfvf8AI5nyreugaBb/7w4cdkYYImCZQ8Y02JM3CdBJCkoIWSYXQ9EByDd1b0Eh7RwwklZPASVcplSJULNWE+hEKKSI/RTNXcKlhJqBDZt0UImRWcJh4qHhM6BdbAYlpmyp2ygyZi/Z4oxlIB0T3BW/xFKCC3O23321wt1bN/j444/5ZL/PkdzEFAF+YvCS06FmhBfMd6IoYupFTJ17JHqdWxsN/uCbbc7Ouvzopx8yPNtnpVVj8/Zr/HhfRegOZWXOrXIf3x0TxIL3DxXOJhGGKgiEwyTUmYUKqkjYLM347ksxhioZj8cEQcBolCZjtVqNRqNBo9HAcRxKpRKmaTKfzxkMBoxnqdhQs6Ijw5RnXCqV8DwP13XRdZ1ms4kfAUaVlYbNxmqb09NTkiSh3W7TbrdRFKXoBlz2BPi83wdBwHQ6ZTqdMh6PGY/H9IYzHo8qTGMzVdQTZMyH83nnTJYZUwMkNnM22WaPW7iUiVAx8TJRJo3csa/MiBanDGkypMH5CEACAQIVkzkSkXUsLFyqXFyc5KXbVbm8zM7m1IorFw3KoaoOM+oMadFFERGB1OmywpwyIXrKb1BibC2iZgleac+JolQ0ZsdtohglmiXBtbKPJmKmoc5aXeX6cgWhWQzdmMgdMB31CkEZz/OKRf2rHldV01dV1FclHlclIHmCsSh3vXi7qvux6JxpWWlyPvEF//vfn7B33KNsKnxr3ccyFKa+wBQ+xH5ha+37PvNQ4oYKxAFhIl6InYHzwiOMVQ5IdTxs5qhZYTKiRohFUii4kpVHIju/F8F2KcbKYk6FMSY+XZYyQHZaNl0XuxiKjykCDDXDcgidUFhoyRxLFyRJgqqqz9l0S71EyZBEXipMlL92RcacJutMKJNko7408TjEFzZnySohBnOszOfFKqjfJj4qMTZTOqxm10qOC4OLXeGcDp2Oj02RAmXXrQn3nV10OU/HuInCznyFSeJgazGqbvNPvvkyI1fy/beW+GB3wm5nhq0r/Pb9FrfXSl96d+Ar2xlYjP404HToMx+dcOarxIMjenKFTtzCyqhcB2wxpYKPyaIK4TkIMH+r5xd2Si+JOD+Z00RBEKMT4GZ8fIUEicQiyuhsE1TiFLAiE6IMEa+RAqICLAw8BJIBLcJMVDfOWA06IUkCPVaZZyevlj3fodxiXe4Xc7VIq+DUVzg5OaHT6WCKBBsfadZpayFbKy3u3rrBm2++yZMnT3jy5Am9Xo8wHFFRDjGdgDc3qtiGwmR4Rjw9YW2pwWuvvcbe3h7fXl+i1mqwtbHOcuubzOdz3n+wzwejHo2kQ6SUqRgK0jUpCYW26fJPXyoTznocHp4QBAFBECCEoNFoUK1WMc20qg2CgMlkgud5qKpKuVzm2lobTdMy3IPOdDplNptRLpeJoojhcMjeUYensyax5nF3s807YYiuJEwmE/b39xFCUK1WqVQqz7nqwcUZ8ovmyXm1t/g38vnoG6MZ/UlIPB/Q6XToDHuocSoDnAMTkwR8YVNims5BEzsT8qllU8VgQRo7waVClNEwTSJiZAFMSpdPJQO2psDMpKj+rwo1O28XI1+sMstlJAEWkoTcJAjS6idCY0qZhhxwXd3FkT47yUsIElRNRxcRVQbU5qf0DnxiNHbiW3TiBvo8pD+a4IoD9uUWaqmB0/V5o7NDN26i2m1Wm2t8/7dfY22pUeA88vMkt3ZeTMCuqlJzrvqn+Tv8Q8SnVexfJPJkFV6MfbjqZ4vJRv41kirPwk1OozYJDmKeMBiOCmXUlL1ygCbiczZNlrTmBUVJTK/U21jUvJhkYl65fgqknaCkmKPnm5XISiM4X09l8b2SYYpM/OzvQSrvnlK1d+VLaHFAw/C45XQBmBFVC3EAACAASURBVPo5JTbC91Mg+GUwpyYiiEYEC28hBw1PZIUebeIM/5MelTpSKlwTO7hiykyWiTO6d40BDc6YUMdizpAmPiYGIYK4YJ5dHBukyiypS0v6U0sEIFRu16asVhyCQCMMQ2YzgRtrOIxBa1FxNB4+PWKporLzpMOwM2H3UDITdR4de3znbu1Ld/D8WiQDzbLBSt0k+cZvoYQjNNehvweW6+NhAQl9WkgWW8j5bB/OGQH5/YuRH4JzH+IEHZlRUJQsA7SyWs1hzqo4YMASHjZVMeaa3GFMCoIb0c7aTTDPkPop4e78tfkYuJRwpZOdUimi3soqw/T50rmak0w5eJpW7EIINjdWWI4C1m80+Ke/9SYynLOzs8MPf/hDTNPkW9/6Fn/7t39LuVxmZWUZXdd59vgBv3jvx4xGI+r1On/yJ39SaICvrq4yGAzY3xnQOTZptVrcv3OdY6/KyXCNpi14bR2OOumiPTg5YOeTPnEcFxWMaZrcvHmTzc1NqtUqUqbWwEEQsLKyQqvVolqtFhe47/vM53Nc10XTNHZ3d4vXsrq6Sn+ucrodUtYTfEpUWktca1mFo2C326Xf7wOwvLzM0tLSBWDYrwviiuOYvb09dnYEtbLF65aFZVkMBgMODw8ZDAb4vk8Ztzh1THwm1DKAU5CBIZVsxJQOlkI0JCJr0IeplDIBI5r4BJApol2kswYL52g+t1w8b/PIvTfSUdfFa0FwniToBKjZkMumkfQoK1OqYkRfLhFGIZDQo8SI67TFGQA9WcXLKqsAjZrs4wuH260yA9dm9c51wl5Iq6JxMnB5snvKsHuCpmnUajWq1WpxW15efu6YR1FUJAx50pCj1/NbUfVmwjY5SPSyc+QifmTRbfIfM67Cr1yOfKxwecSw+FVVVeaJxTzSMiyIhY7PDBsFiygbSc4TKzv30k84rYKdzHwsPSPymXou6Q2SSeJwxDUSBCFGlsSaC6nm4nqZd7Ly+y/KvmfvHEFClSGr4oAxDWKpZEycCjYuI5qoBPiBjRN2mVAtkpYN7QhDhfbZLus7P8eYDQlMh8Nrr9FZvYO8IvnPn19kiQikqoIqEWNqhJisKYeMZI2eXMFinlrDizNIFHq0UZAY+BlV2kQnosw4wwwJ5lQKtc4KQ2Ktgil8ZrGNRsTJRFA3BLG0cUyTzYpO/1gwnDvY0sOMZ+jTY+ajMf/bwzKhucw4stFUF8e22T2bf+njgq9FMlCyVP75N5cy9OUm8DrNn57yyeGQ8eCMXx6Glxa/PC6fqJ8WyoX/zzPudwrumlFlkF0sIZYSXFD6i6RKkNh4NDIOfciUCqlXAgWIMb0kU0S3lGnWGWBQYUSAkYr6iCm2cLGFW/x9XWlj1+u8/fbbrK6u8vTpUyzL5GjvKbdv38ZxHI6Pj1FVlQ8//JAgCPjud7+L4zjs7OzQ7Xbp9XoIIajVauzu7jKbzdjc3GRjY4Nr164xmUzo9/ucnJyQJEfcqZa5u1Rha70NsYc/7tB59oTB2TFSSmzbLjbnra0tbt26haIodLtdFEWh2WzSarVQFKXwHXddl/l8XuAbNE2jXq+jaRqz2YzXXnuNer2O6yfE1TMePjul4UhuXb+YMbdaLYIg4Pj4uAAFrq+v02q1fq1EQEpJv9/n6OiIIAi4desWa2trSCkZDoeMRiPW19fJVdWOjo7Y399nNBqxKZ+yI1/CwyHAIckAqwIvw6WkolQg8NHQCKjhscwRLiV8ale8orSP9Hwb9vJ7zO/LMS+XH/P8ZpSmxxqetFBlTEmOMyyBZEgLH4s+bUaySYUBUfYaVBIs0+KPv/8f8/efTDkZ+lxvl3jntQ1+8mTE6dDn3o0Kv/1WGxnNGY1G6fil1wOgVCoVyYHjOMXnlbfIHedq+lV+zBcThiAILiSWvu8XnYUgCC6xSs67DVEUFY6Ul2mFiwyVRZGd3KUSzjfxX7djcXnzvyqiKEImKTCUjOwbZ8p4MTCjjAB6WQFi4lJmAiiZ3HRAgE6VMFurNPbjG3RZIib1IzlfO2XWqco3+cVzKb/v/HuNeYa0P2+rq5naiMWUnlzJEpIKKfMo7aIm2dYrUfGkhSfO2Qaq0PmtH/4P1E+eIIWCkAmJEKwfPmBUW+HH7/wLAqv83HGyhUtTpIJaJTliSqOo3iGlJtYY4S50S2zh0lTAlSU0GdBjBYFEx6dOH1SNMiMadDhJ1glk6l/j4SCiGFvMMYmpqR4DV+MnroZQdSpmxIbRx/QiqonG/nSDnWkNXROsaafMpEbbiIh0ExQdL0womSqW/uWOCb4WmIGrIqdmbB/P+K//l4f85vOaKGt3hdzkE6aikaFWTTaUvYLTGkmNveQmPdnGKNpicQYi1EjQMtZBegGkc2aXFmcEGMwpYTOjJGY0RfeCiA5QVN6vv/4677zzDrPZjKdPn3Lr1i329vbodrvU63Xu3r3L/v4+P/jBD2g2m/zpn/4pruvy4MEDPvjgA8Iw5KWXXsJxHPr9Pp7n8dprr7G1tUW9Xi+eL45jhsMUQXx8fMzx8THD4bCY3amqSq1WY2lpiU6nQ71exzRNptMpiqIUVEdN0y60+UzTxHEcbNvGcRwcxynAgEmS8ODBA1RV5d69ewghmHkx+6cDesc7vH7/LtXq1eI0nudxfHxMv9/HNE3W19dpNBpfOCkYjUYcHh4yn8+p1+tsbGxgWc+7Tea0ueFwWCQOw+GQqRfx3kmZIz/lNMfoVOkTYOPiZLP7FLYXZeeBjk+FMW5WGT3ftcrj0wyw867XIvj1PFIfzyDj+OsL98dUGVFlmHUmDEwC1uwJQaRwGtWRUsVUI9plheV2jcdngiSBuxsl/sv/5CbABanVT6NLBUHAeDwukoMkSdA0jWq1WiQHmvbrXcNxHD+XLFzuNkRRVHQh8k5CniC86LY4rliU2c2fc/H7xXP+qmq/+NSu6AJc/nmqyqdwFG8wlaUMk6JjEqBma0qQqXYmWVcgpTSn7J7Ue2ROkwHXlFTWe5JUeJS8WoxAL274OVhWzUZM5yyr7Ahnj8+7AvLC97nSiEIqJa6SUGbIkCYVxoCkzLhQElRIuCU+YUKt2KD/+N/9N6ydfpKJsl2MRKR23n/zz/4LDBG+UDU0xw/MKBV6B/ljvcRMBcOYFpLix8kGQ9lgTB07M0m7KR5TUmYF1iL/PRI4ZQ2HOYEwUWWIFBpCRkUXOETDFBllXCoMshGEREMhoq5MWa0plA3oTkLG1GlUq7zzSuNLVeX8WnQGroqcbfDuxwNevIh+VixSBxcjXahtfGIMNCFfqGOfehHomUxuCR0fNRsLxFlVlyBJxYrShcNgjodJmIntqMSsiKMrFesURWE+Tyushw8fFhVpGIYMBgN6vV6BDj4+PkYIgWVZ/OVf/iVSSkajEUmS8PLLL2MYRjGbBXj06BFPnz6l1WqxtrZGtVotqvsnT55wdHSE67rFQlUul2mvXONs5LF7eErZOkdZLy0tFfzkTqdTVHntdpulpSXq9TqqevVJrigKN27c4NGjR5yenrK6ukrJUnn5RpsH7hmnp6cvTAYsy+LmzZusrKxwdHTEs2fPODk5YX19/UKS86KYzWYcHh4ymUwol8u8/PLLlEqlFz5eVVXq9TqWZTEajYo2uGl6fFMJEScuJ3ObEMGINgoxITqpO6S2wFmGEI0+NsqnKCSm8WmJwBwyE5XnIyd8heRKECCKEcUa+/RpI4WGolhUymWub77E999q8uPHUx4ezFBVhW/frvG9N9sc9eeM3ZiXr5ULzvQid/rTvAYMwyjAn1LKAjMwGo2Kkc+LugafN1RVxbZtbPvq15CDaz8tYVjc/PMEYFGwKE84FscTi52IRYDqovbFVWqCebdh8eeL71lKSRRbeK5NScxB5r3FdFyQqn6ktFdRVOZJ1uZXMpCfSkt0FtYWkQFKL7f/yYqf3Ow9JoYM85Ju+mlfIK+21eynYfYXk0yK3SFGJ0RDEBJhYjNHIcHJhH186eCR2sKrItVnSYRKc3LI+smjF36+ipQ0hsconSnHSy89h4FYFB3bEPvPiY5FUisEj1zKhabLmnKIE6cS7S6lTEhsdqHgy3/PED4lOSMQZmq3rqSvPUngmbzLhCoqMb6MsXGJs2Qrx7ElKEhFpS1Oke4ML1hnGoUE8Zy/fyR4516duxvPdz7+MeJrmwzkca1tUDI0ZkHIRbGIz4rzlttFilZEmREaZOjqGRUxoiH6VyraGQTo0s/Q5UkGMTRxcchbZzKbFefVW3rCpKAxAy+9lMTVG2U+Cz85OWFjYwPHcdA0rUDh37t3j93dXbrdLlJKbty4wdraGs+ePeP09JQwDLl//z63b98mSRJOT0/p9XqUSiV0XScIAvb39zk4OABgOp3iui5RFKHrejEOqFQqKIbDj7YDejOoGjZ/8Fabrc11qtVqUfGbplks9rlF6c7ODkIIyuUytVqNWq32XNWdYhzSDT3fbAFWVlZ49uwZ8/n8hYs8gOM43L59u9jct7e3KZVKrK+vX5lIeJ7H0dERg8EA27a5ffs2tdpVrfrnYzab8fjxY4bDIeVyeWGh77A56jOa1yiTWmHrWfszPWOu2tzS8+WLxaI0dt6mvRxJIS+UukxqWIQEpGZCTaVPUxkyj0qMZBOJQiwMNloOr1xv8Mr1Boe9dGyw0bIpWepvTEpVCEGlUqFSqbCxsVF0DcbjMaenpxwdHf3Guwb58+b0wBclfDnL5KqRRH67jEfIwamLCcPlEUU+psiThsXHLo4m8q/539ZiQTmSzJIGDXXGMocMohK70RYyQwnU6TKnAsQEBcxZB0IU4lQILQtbuFQY4OIURFXIGVSpnXmNMT0MckEuMjDhORj7nH4NYOLRoE+dHnvcwkdBolLlLBWqIiARagFsjDLl0gSFE7meCgaJQzYOPyIRCop8McYjFiqvHP2I/aVXX6jJAguJwULkDqS6DJlQoS5tKmKCJiJs1aUWD4sraxGaMJc2E1nBwmdGhSad57q4ruJgJgGG9OmyTITOmDoVxthMi86fQKLIGDMZozsOiacRoWIQo2vnAOAvI76WyUCSJIxGo3QOPh7ynRtwMrXZXE5bX+9+dMYsupwQJFz2GpAZ6ERlToSBQoTDnCV6tMRpgRYvsmqZnlBILnjF+5iZNK9PgJ21ZPNQsn+T7AKNSTKJ5ByTYIiLbnCLoes6GxsbHBwcMBgMaDQaTCaTYi5/eHh4gd5Xr9cZDocFmG5jY4OVlRWWlpaoVCokSUKz2aTdbnN0dJSKjPR67O7uMh6PkVJiWRabm5u0Wi2Aoqp/ejzBY8ZKPUFzWmiOydLS0nOz+hztX61WuX79+gXv8sPDQw4ODjAMo0gMckT/+vo6w+GQnZ2dYlzQaDQ4ODjg9PSUra2tzzw3SqUSd+/eZTwec3R0xOPHj6lUKqyvryM0m87QJZj2mI56GIbB1tYWzWbzc1eho9GI7e1tJpNJQeVUFIXpdMpkMqHpSG6ZZT45dgGJS4Vc0/wiAOvXiawNTYDk+VFGHikTJmZKJVvqFRTSNnLZsWhZFfTQI5hOuXWzhmGXeOflRtGmvLvx4g7JbzIudw1yLYjLXYM8OfhVugafNxRFwcoAoy+Kz+ouhGHKKsqT11z7YxHguth9yF39FpkU+dfpPEKOJGEU4EcBieJhyPS9x1mRMaOKToTDiC52VqlHqITUGGCLefHaNRGxKk6YyFo2DkgNr1IEvkdKAExNvlJDq5Bc/DfvDEgCJCqp2dUZ6+KQsjIBYJacMZNlDAKuKTsXup0uDnNZIsRI9QCIWJLdwvpbCUOeF/25GEImaKH/mZ4jV4VBuln3aCMQ9GUbW6YbuiLjggHkiIuaBX3ZxqPEiCYSmOHQTs64ru5e+Ns2M/q0iNCz4yRwsYBypuihUqeHI2Jmscnj7jKjuAQoVEsmb9+qstF68Xn3Dx1fm2Rg5sUcno2Q/pj5dEgcx+nCf+sGr71eZTxPaJbTyuV3X1/iv/urpxwNA86zVxeyTDrNgwWpEXG6RJcYscEutjIvMr4CLQ7FbOmyxvZYVhlSz5QJTHJjDC4kBNECVSw/5Cl9x8Z9TrhlUXAoSRIqlQqqqrK9vV20qW/dukWlUmF3d5dXX32Vhw8fpmj/waBYRJeXl7l+/TrHx8fs7e1Rr9fxPI+bN2+SJAmz2YyPP/6Y4XCIlJJSqYThVEnUEvMgoNPp0GikKnilUglL6bFU0am0N7m2XOL6sl90JW7cuPHCyt00TZaXl1leXiZJUopgvtifnZ0VlWKtVmN9fZ1nz57R6XRYWVlBiFSM6PDwkI2Njc8tOpQnI8PhkKOjI37xy4f8ZE/SGUes1Az+099a58bGypXUxBdFr9cruhR5ByQf4/T7fXzf59XXv8nBB8PsPFsMsXC7PJ76NEzA5UjIz2l5oaOQSh7l89uUSJi6sbnYSFIJ5ACHkhbTXLvFO9/+D7m1VuHfftTndOizUje/1MUIKDpI5XKZjY0NwjAsxgmdTofj4+Oia5Dffh0hql8lflWw4+JtUSTMMAxKpdIFTQIhBL7v88vtU4KDISVm+JipAqCYU2VAjyUquKgE2HgkQqMiU+lzQUI9wwpcnq1bwqUmh4xooGXE6DJTbFxMPEpijCZDdrnDHItcdC0lFKY4Ao2IJme8pDwpKI1JknahamKIJVwSoRJJrXj+1LwoZEStkDl3sakwwSBgbtc+tSuQHTBkybiSJvmZn5uIaCo9XFlKLY2z44mEM7lKLHRUGePIaWbIZqMTIEVqSe+xXDC/OqxixzPaajftQoiIJXHCRObJf7rOp6DzOLvi4xQ5Fo8ZTn2m0kAQoykqzYrJzZUvV3joa5EMzLyYv/rJMT/54AntqsYfvb3CyzevX8jeawtFzHfu1fmvSnf5b//PZ/TGHlo84yV9l5OgySAsoagaa+WYhjwk8SfMY4OWEyO9YZHVX468xXRZY1snIJ+fpd7ycTYXhvNFfrGtJi7dwgttvMWkw1E8GmKGaZrcuHGDhw8fsrOzw/Xr1/noo4+oVCpsbm5SKpUYDofcvXuXIAjY3t7mxo0b/N7v/V6qKpaB7B4/fsxsNqPb7dLtdpnP5wghcByHSqWCYVd45rY5HszR4yl3amNM02U6j9g7OyWYTvjPf++b2LXlAiQ2mUzY29vj448/ZmVlhfX19U/dYBVFKToCkLbr88Tg4OCgGDH88pe/RAhRVIw5c2BjY+OLnDrU63VqtRo/e7jPs6NHqT+CvkqsOF8oETg5OeHg4ADf94tEQFXVArsxGo3Y2tri5r03aHWPkMcfE2FkKPxFRDZQGBEtSl1/3o6BzFr/E1zKWdKhoBGwwS5TKkyoZUmpgp+xYtK6J9VCiBN4snfCv0Kwudbke99ooyh8pXTS89B1nVarRavVutA1GI/HRdfAcZxinFAqlb50f4B8g78sn70Yl8GOruvS6/Xo9/uMRiMmk0k6PpkFWNSJ7DqrZsxWpU3kTYl7u4hYFpVsgzN8YafCVSLdsC+DkeF8/h1kegLLnBJgsC4OUEWSKaW2SMeoYYZIKGeoJw1BlHUdJHqmq3KcpADHCXVS75c5FTkiEnpROOWKg+tij0QKfEyqjGgrnaJz8bON3+f1j/4NqnyxpLQiE45v3P9cicBlFVdIxyRlOUll1LPuQr62G9JjQJsZDi5ltEy+uy4HWeHm4VImRhBhs8dNZnElVT8kwhZBATqPCtEihSj7ajDFzI5HjIouA1wqmJrOdObyNz875aDr88ff+XL0BtS/+Iu/+It/9Gf9gnE69Hlve0zdURn7gpruE87PTXmuuujaVYPv3G1wf7PKP3+rSYkJYnpATR2zrPe50wx4ZasN4YyS6rG23GR5eZnRaIRlWRiGQbl8DuSQSYwnbfxMD6Au+gSZHW+SIWMNIjTC7MJZVOZKDX1yTevzdrFEJ6Kh9NFFemF5WAxkO006pEVFm+NOJwy9NDPXVMHS0hKTyYR2u00QBLz77rvEcczGxgY7OzvUajU2NzepVCq0Wi0cxyFJEh49ekS/32cwGKAoCisrK9y/f59XX32Vra0t5tLmo0MfgtQAZLNtoSjww8ceH+zPCUSJb9xZ5vpyDctI80jTTEcFQogCj2Ca5qe2WRdD0zTK5TKtVovl5eVCsfDk5ITDw0Nms1lBRxwOh6ysfLFqHtLFeTab0BmFhGoJJRhhhydoStrxeBGwEdIq7+DggKOjo0JbIX/dOeVwf3+fRqPBH/7hH2KZBo+PXU6nKmo8JUjSc/Pc8+JyzyBnA3ze95SeQzmnPHc11PFxmNOiQ5c1QiwUVJadkCjRsOQEC48tntJ2QgJRZh6pHAwlfpTw7Tv1r1wicDnyTbZarbK0tMTS0hK2bRNFEf1+n7OzMzqdDq7rkiRJIR38VYv8vDk9PWVvb4/Hjx/z+PHjAsPi++eOj0kcUFJcVqsKS8YUIo/xeIxIAqpiTFmZUmZCjxUm1IgwaCh9bMVDEc9X2fn6YpNqtChCUhETWkoPKQRDWqgyZkAr0zBIr+O0N5CqWiooqQkQMboIGcgGPhYuJUzm+KQeHWUxw8NhKiuMaeBJm5KYZqOClBXRVFLK6UjW6KuraERc6z28+rgB2ze+zSebv41KfOX7yyMXUzqTK3jSpiymKCJBEQklMaMkptTFEE2kAkKetHFFOcPWzJlQy64thQ12aatdmpxlHqVpchSiMqNGj2V6LDGjipFJgC86I2oZ1yPXMiiLGT25zJQKAQZxnOAGAkWkqq8vbzi0qv/4Vsdfi85As2yw1rQ5HSq8vmrw5h2LYJ66op2enmIYBvV6nUajcaEyWKoZBehpc/X3aDTe5/3338d1XYa9MSLxqVQqRXV6+/btYnNTVZUgCHjrrbcol8s8e/YMPnhQiHVoIqYhz+ixREKq4d7imLOMNnNRkCM9dURm9ZsDFlViaowuzL4KDe5sHDGfjvmFVyVUTJr2Cg33Gd5HHxX6ANvb20gpWV5e5mc/+xmmaXLv3j0AHjx4UIADnz17hud5lEolVldXaTQavPTSS9y+fbsAZ61di5loZ+yejDFxWa+NGEwjIk1jvRUzT3R++otH9DtHbGxssLycihoJIVhbW6PZbLK3t8f29jb1ep3r169/anV0OfIRSL1eZ2lpiQ8//BDTNInjGNd1C/7/5uYmtVqNcrn8uatAbzrkD95qU2qs4U+7HOw84fHjx/R6PZaXl1lbW3uu3ZwkCTs7OwVHPreczZ/T8zz29/cxTZPvfe97WJZFkiS8vRFyfBJxZjWJh5J41inUzWxcxtQy3nhqfR1dqZHxokgy6qqBwxSdEBcLg4gAnRnVbBjlk2DQsmMs4TNyI0qMqSlDGnaDUNE4mMGtlsk0owR+FfTRv0hc1TXIRwo7OztA2jXIsQb/0F2DHAMwcQO6Y5+qJTA1inHY6ekpw2HmhZFhAi7rF+RAREVR6A1n55XtdPjc8+UgORencETNDaVy8NxzHieca/y3ZJem6GFnqPlYamgypEubEAsro9nlqYCBj8MUjQCJhoWHlgSMaWTUuVS4yGZOhQk+JhohPjq6TF/nTJQJhEk5G3vMpc1QNnFlajT07t0/RyoKb3/yl6hxVGgNSKHwi5u/z1+98i+RiU51gS65GPn7DRKDLktI1NR9NA5ZUs6wFP85cGHOKJhLh75sMaZSlGwAqsjUZlVoRacMaGXuH2omeJ92f6eUs57xgAAjW+tlxumISTCwdANd0ZkHaVdPIDA0hUgKQikyh9Uvp7P1tdEZuIrDnLeUB4MBw2Ha4td1vdDGv3zxSyl5/PgxP/jBD+j3+0gpqdVqSClxXZfV1VXOzs5wHIc33niDhw8fsry8zO///u/z3nvv8W/f/TFPxvXUntOBshby0WQNLUn97FfZ55RrGXr8PM9SiKgzZI5JhI0kxiSkzTFryvELT+i8hXWYbGIJH2HVua4d4AiXVqtFuVwuFpYkSTBNk+985ztIKdnf3+fJkydMp1MgBWldv36d7373uywtLTEej9nd3UVRFG7evEmlUnnuOBtqwu7hKf/qp6ecjWPqtuQbayFEHkmSUK1WC4Di4qY/GAzY398njmPW19dZXl7+lRbh/f19zs7OuH//Prqu89FHH9Htdmm1WkRRVOga5GOHF82OZ7MZDx8+5M6dOwWzIAcCuq57gR65urqKpmnEccz29jbj8Rh4Xos+DEMePXrEZDLhd3/3d7l37x6u6/Ls2TOCIKC5tM4wtPif3z2hMwooqSHLTsQ0Vnn4tENM6vPQdmIOZ6lj4PmoINeAP+8iiQwjnqMBFGIqjNHwmWbKh5YIWJO7POY+EToKCev2FNeLUGRAmSkb6j7f/MZ9qu1r/LJfQSoW11rWV8Y57TcVOdYgv0VRhKqqBc7gqvNlEdSXaw9cvu/y/TnYL2cZzPyYdx/7PDsaYOKywsELW9pXSRFf1hfIi4JPm5FfxjPlj/20+xcThMXHCZk7XWp4mdOfhcuIVkGStnELiWNTznnKy+Sb3jp7rCuHQCqIpCUBe9wqXsNN8Umh3pp2WAecyHVMfObSoq10qIkRVjRj9eghljchMByerr3FJ9rrmUCXhYJkiRO21KcLYO7UEG6Og4/JhCpJtmkbeJj4bPKUsjK9aJR06Vj2kwb78iVkRs+8o3xMJQNIeonJJ8mrzChnSjRqhgcT6MxoMaBOj31uIhEkyJQtpNqUDPjz1302miYfdkt8eJRw1PdRhKBsq9xeLXF3o/SlyRJ/bZKBz4q8MhgMBgwGgyIxyDsGi1Vkv9/nr//6r9nd3SWKIhzHIYqiovJTFIVvf/vbeJ7HcDgs5npPj8d8Mmlh4iOsKt/atPjxgcbAExiJyxYPOZNrnLHCHCtr/EpanLEpnnIm1+jSRiH1JzDwMUQ6R7tKYwCev9A3zVMcMzU5efvtt9nd3WU4HGIYBi+99BKTyYTDw0NcN832c8lgjTeh9wAAIABJREFU27Z55ZVXaDabxeapqio7OztMJhNWV1dTxP0Vm/bEDdk56hK6A2J/du5w5nnEcUylUuHatWusrq4WvgRxHHN0dESn08G2bTY3Ny+MXT5PJEnCxx9/jKZp3Lt3j/l8zoMHD7h582bB8x+NRsxmMyBFb+fvbTER3N/fp9/v88Ybb1x4f77vs729zXw+x3GcQn+h1Wpx2hvRy6o7gGmgUDElZTulYx4eHrK7u8ubb77J7/zO7xSUONu2i9cHcDYKeHbq4vXT8c2//vmQn3/8BEPEvL6h8dv/5G3e3Y7ZPp4ycBPaFZ0whsE0JIoT/CjGVNKEcskYovgDjv0mNiOkYlNOuoypE2ATCYP1SsLQjTEMG19xeGXD4oPtHuXoBCkUNpQ9vv/db3Hnzh32Dk8pNda4c2P1a58ILFL1Lm/iURQVWIPcByGOU/tk0zSL6/6yOuFliePLegGXKYEAo0Dn5ycWwbT3nEDZFwlXOhwmm88JnV01B4er5+Mv+htwMRFxpcNBfL3YkHUREcpU/0QlRdWnSHpRMBXanCGFgiPH7HInExGKuckT6kq/4OWrxAQyFeNJhMY1Zacocmw1TdB2veXPTHpy5cQjNogyi3Eblxtim4oYcyZXmVLBlSWCTCVmEaybMwXszEJZx8MgZEN5fu3NRwwzStjMaYg+qogymWeTIDHwMJhQY0yNIDOgs5izop6xzAEH8SY9lklICLERCCwN/uiey6vXUi2G06ng/SMVX9rcXnP43jeW2GhZ/1506NeNRRTytWvXcF23SAzOzs4K6du8a/Bnf/Zn/N3f/R0///nPmc1maJpGEARFhZvL9Uopee+996hWq4SzARYOHjblcMzZ7iNuoNHWK9R0j2tLbXrDIYeDPh25jI+JjceqOEBRYE0e0KaDJy16cpkQg4msE0qdG2xfmRDkLaz8QpdRxCxKT9ifPzrAGw+olVPlvd3dXUajEVJKWq0WN27coNls8vTpUyaTCd1ulyiKOD4+Rtd1yuUy9Xq90DEYj8cXNrI8Ko7O67fXgDVmsxmdTod+v18soLPZjI8++oidnR02NzdZW1vDsiyuX79Oq9Vid3eXR48e0W632djY+NyccUVR2Nra4tGjRwW7oFKpcHp6yiuvvILjOKytrRFFUdEe7na7nJycXKgCu90u7Xb7uUTHNE1efvlldnd36ff7NJtNkiTh373/Ab/smARKiWZJByHo/X/sveePHHea5/kJlxGR3leWZ7EMnZpSq1tqjWbVZntnd2fH7AKLXeCwwP4F5/+CeXVv7/29vcPt4XCYO2BvdgbdPTfTVt1Sy7NpiuVtem/Cx73IjFBWsUhREilREr9AgcWqyqrMiIz4Pb/n+ZqBTSqq8OqiSQSD/f195ufneeWVV9jc3KTf719YUBVSEVTB4H7PRY+nEBWDrO4h6Rn+3b/5YwopnZN+DUUSiesyf/JiHtP2GFkOhuXz7k6HvumSiSn8ixdfoF2v8L/+bIv79TSSKLJ8+QWOKzWOegoR36A20MgXS0RkiaQuo8geccXG92Q0fxCOpBYXFyc8jzK9tkSsVPo0l9sTR+Du90k78fO78cCSeLrtfn4hP7+YT3sABI8JIo3PRxWLokgkEgl5KmGC3kReGDy34HeZpovipRnJMRKCQUIG0VfOPIfp1/wwnB8XauKY+3HRTh8Io4DHSgKQBRdNsElIDiMvRtQfoApWSBYWRTH0ElG0OFI3Qc/OUFIclmNdBoaJb47zS/ruiIOhQ8PJ4vsequgiyTqqP8RxYuieiY1EBJOukGHox7F9GV0wQpK1J0jofOzoJ+MQkSOoqsyy3KVjW6QUA0yPh0VJxIUuup/GmKjBLFQqfomun8YVFFTfoM2Yv3A2fG48jgv26UOiRJDpouB7ApeEnQfMi+alQ0Z+lLpXYNu/gu1LyNgIE7KvMCFQJiQT23dJSQMsVGYiXTRPxB8JE2smHxMRXQJBlPAEFcdxEASXTh/26zrppMf90xF/8qL/pRblX5vOwKMQdAwCW92gMEilUuzt7fHTn/6U0WgUXpyyLPPCCy8wOzvL7du3cV2Xcr1Nd+SFWdmaaBPXFVzXDcl4qqrS7XbHc8GhHVpjBlVycAEDHHgr1PziJEXLpUCVZWn3sVmyQeUaF4esJxrIjDsbS0tLvPrqq8zPzyMIAv1+nz/84Q/EYjEqlco4i12NUe+ayN4ICSe86TmOg67rbGxsMDs7+8jnYNs2tVqNWq1Gv9/Htu3Q7jUWi7G4uMj8/HyYWler1Tg5OUEQBBYWFkIPg8fB9LjANE22tra4cuXKhZ2GYOQzrVOvVCqhS+HDdOrVapXt7W06nQ6WlOSXWw4RDIZ+nO5gCEIEw9f41oJCtPkWydiYJ1Cr1ZAkiUuXLoWjlvPY29uj3++zsnaNv323Fsr4gtb8o2x8L/re5vGA//0f91maidEfeXx7WeHNOw3u7VfomiL//HsbNHo2f/pyAWvQ5B9+9ne0u0Mkb8wu/8EPfsAPf/hDAE5OTjg9PWV2dpa5ubnHPicXHffHabOfX8Sntfnnf3Y6P+BhLn7BeZzW8AfxwEEccBAT7CBjuAqZmIQeGS8W3YHFzlEVrD620cM0zTHT3xMxXJmIYCH5HxcNF3UDzt9CH7Z7DxAUFtNjJ0mSHohENl2BgSWQjspI2FR7HkfO4oSkprIgHZKL+giyTtdWOOrpWIJ6plBwkTH9j5+LJygQSaDLLum4hq7rY+twQcH0VdIxiYQ+Ll4C59Ner8fAdJFiRaK6jiR4VLs2vmNSdvJosk91pOI6LqWET9eSEOw+ruuheIMzagIAR9SQPQNFdHF8ibK/gCsnyURhNd7CHHYZjUZYlhUez1NvnhExRr6KTQQPCQmXHHVGkzTQsV2zHEbFfxw5/LGiR2OIhMuIKDIOGuaZMcA0hn6UXXedBlmC5EYJE4GxyXcEmyD6SxE80kKTnFAFHw69JUwhji/pCIKEKEJac/jxpR4pDfq2zN9uJagMI0QUgcWczn/355e+MG+Pi/C16Qw8CrFYjFgs9kDHoF6vI0kSP/7xj/nHf/xHer3xG8JxnJAZn0wmiSYy/PbgiJE/VhJcjjVJRnVGoxH5/DiSt9/vYxgGqqoiCMIjyT0RLOJ+mzKzWKiTKNIII1+fRJA8PHscxo5YDfKAgOHpZPp18poTts5/9atfEYvFiMfjmKaJJEnMzc2h6zrb+8e8d+DjynkKSZnvXZIwh90wr+Dg4ICdnR2y2WwY1JPJZB5g8CuKwtzcXJh6WK1WabfbDIfDMBMh2D0vLi5SLBbJZDIcHh6GpLylpaXHUh3Mz8/T6XTY399nY2MDTdMol8usra098LOCIITne25uju3t7VDOeF6nPu1uF4w3RqMRpmuQi+WodhRSugWOz2EX8mmBj3brbGgar3/vBuVymWw2y9LS0kNZ6+2+wb39BmuXSucCtz5e3B9l43vR9+ZzGi+sZKm0TeZyOi9vFHh5Y5bjxhq/32rTGjiszcZYm42xc38fVTCJikM8PM6X/oEU9OjoCNu2KZVKFy7i412veeEibppm+JiHtdgvSg4MFr3pBTBYyIMdeqDpP/9z5zkcwbw9WLCDxTvYsXf6Jh+UFfYrXVR/wKx4jO/7nHrzDD0NDZNZsfbIWfvjQBAEIqKHKpiT56U88LwvKgbORxcDuK5JTHSQBZ3hcITs+agMP44lVjxGls/JKEXHjTNEJes3cZQEYiSFSn/MJfLHHQzHlzl15zCdKLposGiV0ZSxeZYkSWMPkOrH50wQhJA/I3o24vCU3kDiyCphiTFiikZUdunZ45hiV9TY7kqoksdS0iftHOENqkiTjYovaRxZM4x8HV0ymBWPsF0Z04+SlB36to7lq+i6ztDyQE+RSyjUOibmMDrOXBBgliMUbLp+BgMtDA+yUIlMZH5BRmeUIX2SE7fZcU6MjToh//lTzrAPIoKFMDGJC37GJeBG+aGJV5welq9i+RJlYQ7RdydqBA0NnzeWeyTSRdZmIswk8nQHJju7BiYyhZRCZ+CyVNC+fI+Pb0Jn4GEYjUZhYdDr9fjtb39Lp9MJK/uVhQILpTx/2KnwUT2OioktalxJtlC9XuhUFo/HsSwLVVWpVqshqQ8eblbU8jMTXa6Lg0KWKglhMHECO3sDmg48Aeh5Sba8q6F6/bq2TU4zz4SkBBfzdNRwJBJh6Ee538+TS8iYvsafvJDg2qU86XQaQRBCYuHe3h6GYYShQplMJswZSCQSF6oEghFCrVaj1+uFUbPRaJT5+flQ7tjtdjk4OMCyrDC2+JPkgv1+n3v37rGwsDCeM07Mlh5VTPi+zwcffEChUGB+fv4Bd7vRaKxvDoyQgoWoWq1iOiCoKbC6jCyP9+sptlsqjuczl4T/+Hqcm1fH7oUBbNsOkxmHwyGNzoBf3hvRs2SurhT581eeXAjJ+Y5BsDPvDMyQ66DK8Oabb3Lr1i0MwwjfG+vr61y6dClc1B3HCfMtgmCsYFENdubTOL+Dnf43OIaBeU7w+fnzMv35dAv9UW3+4FwFj5tuu093CKafS/Bvx1L4QzOBM2gxdCUu61UkSWbXmEHFwPBVrqZaZDSXgadzuzU+95avcjlaJSGPR3iSJKFpGrFYDF3XUVX1zN+cXuynj1Xw3M4v/Bf9P3j8/fv3gbEl91tvvTWO/3bAlaL84PXvIHoWB7Uhvz9SkAWLk0GUhUKMuSRczw3QIyKWZYXdu4Gnc6+TIRuX6RiwIB0iWa0zY5LgNQXyasdx6HQ6mKaJKIqcth2O3HmisovhRZiTTrGIUPeKRCIqx0aKCCa+a7Ek7bGQMLm6donvfOc7uJEs/+kfd1H8Eff3K8wJ+8QUnwOzyNBTSakuVzMDLMvkw4qKqGeZSSss6h1u12QafRfZ6TPDYVi0Nb0Mx/4S/VAKOE5WGPMdxqTbMZl27F2QoE2b/KQ4UMhR5UamTToq0ewMEOweEk74Xqw7Oe7yrUm4GIwD521kRCLC2IrenagtRDyyQp2+n2JADE20sPwIabFNLpOhkI1zJTNkswZKeom7R318zyeXjPDf/NkllovPTYe+NAShJnNzc4xGI5aXl/nf/tP/xb12AgMdoylgjA4Zddrogjw29fBHCM4A27XRdZ1Go4Hruly/fp3T09OQ2R/g/MzfIjLWvTIIbWJlXGQ8zEnBYKAz8qNIOBPXrrO7kum4zmIclrJxNi5fRxCEMAc+ID+ORqPQHMe2bUx3CKbI0VBHF2v8/s0KH/5urMnWNI1kMkkul2NtbQ3TNOn3+6iqimma3Lt3jzt37qBpWuhhkE6nicViRKNRYrEYKysrLCwsUKvVKJfLtFotBoMB9+7d4+DggLm5OVZWVrh+/TrlcplyuUyz2WRpaemhYUQwzi4oFoscHx9z9epVZFmmUqmwvLz80Md0u11c1w0X7PPudpZlsbOzw/b2Nv3+eBclSRLxeBzFdbHtDkjQ6LVwBwb4cxRjArYYx4+OZ+xHR0fh4u844/MUBOb4chwvEmGtFKXee7R87/wiOD3XNgwD0zTPfATfCxbz8zvzYHccdHymF+BKpRKSJc8vosHIJxqNhq32AOcjfYN/p79+0efTC/b5AuKij4DYN93qDzoEsjwOxwq+Hnwe/Ox0ATL9MbJ90u83qXQtSumxegJ46Njmoq8HRVNgemTbdqhoCTpNn0ZK+yj4vk+lUqFYLLK1tRUWRZoi8W//7b9iZWWFf/iHf8AZtplJzzNw4yzQ4JU5mfWlHDE1FZKIPc9jYWGBarPLIBKla8oUExbXZhdJRC9jmmZIrAzeS8E9ZFqa6TgOseQAzc5R77skGLE84R8IHYGTroPrmDiYOKh01UuIpRRv/OhFMgmdWscirkc4OOkyl9X5s1d+QEyVuH1vh/3TBr7ZxRoJ+NFZiKe4slxg5IpcXV/mujPgsNLG7Hm0G2larRaOAyPimBP1QzAKCMoBAUhTw8cnQX+iRFAmO37Q6aJicq+dxGypJCIZZlIiK7EmjtHHNE0irs3IqHFi5bCQJ7wDkQgm12LHxBTYGeZQGNFykthCkrQwRPBkDE8lIo6Do5pmhJMjaA80dFVmJTvuIF9fjPHqWvqJ5X58HnyjOwPn4fs+/9P//L9wp51GxSSSyDMvHuD2K3iCguGN30jFXDKUtsF4rHD16tXQSCQYN1yE6U6B7/sYxIjTxUZBEcbBSRHMMRlIeLBLMP17LCIU01GyqbGb3pUrV87IpY6Pj4nH48RisTDC1bIsOn2DZt9GsPt49ujMvHZ6FzZ909Y0jXw+j67rCIIQ6qOD3YSu66EDXFAcBGOLcrlMvV4PVR66rlMqlUJfh8PDQ3q9HplMhsXFxYdKBAN1gaIoJBIJyuUyN2/efCghcXd3l+FwyI0bNy4810dHRxweHp4JjwkWWYBer0e51mazk6DvxhgqeTRVJR8X+TffEkhHx+SyIKBJVdVwcbIsi2Z3yN9/1KHSsUipHt+ecxA864EAm+D4Bwv49MI+nWwXPO/pf6cX8+n/B+co2NVNX+bxeJxkMnmhciQYBwS7w2B3Pb1QBx8ByW56oQ4W7umFenrxnrbcfdjH08JF/IuH8TUexeOA8fEPZurdbjeU8GqaFo6f4vH4Z349hmHwd3/3dxQKBX7961+H474f/vCHrK2t8e6771KpVIjH45Tml9ncO8UZtblxZRVVVcPrvtPpcHh4iOOMd7v5mXlGrkImLqPJhByJ6b877cLa6o64v3+Ka3TAMcavR9ZQohlWF4ssL1/i9n6bd27dxzMH9MQMlpTFEVSulARcNP7JmsxsLs5vti12yz1Ez+QvXinwvZeuhscn4AJ9+Id7/GrHpe7kSCaTvLqe4t+9sUg6roXXZ5Cn8ut37/H/3R4ysHyqzDId4DUW/dnE6ZFkLA9ukcNHJEWTlNBGxqJOCcH3aJEjQ4OIqvHGusLL18YjzEqlwv2dQ/YbFnuDHE0njiBKSCIUpTrz0iE1r4QtxkhqIpcyNhG3R7k5YHM4hytpdC0Nw1fQFIlSRuXlyyk8nzOF5rOAb3Rn4DzefvttjG4dDRVHTpBSXTTXYSSKaBEJyRyFu5vA4axQKNBut7l//344Xwt20tOYJhWNPayTiPj0BQsLlSjDkGjj+hJl5i80EQkgCw6q5OPZkM8vUalU2NvbY2FhISQOGoYxVkHYNr7vh3PYaDTKfEkMF5npWNZgMQjSC4NdaNBah7Ot2OlFIlgYE4kEmUwmLA7i8TiJRIJisUi9XqfRaLC9vc3R0RGzs7Osra2Ry+U4Ojri1q1bzM/Ph66G05hWFyQSCQRBoFqtXkh88zyPdrtN6QKWfGAmdHh4GC7Ewdw0Go0yGAyoVCpjJzs5hoFOTBqRiJosJEYsJQ1aFYfGZPGeXtCno289z8PyRPAUDNHm7YOz53D69Z3//GFz5U9aSKfJc0EBGNzcg5v+3Nwc165dC8l1iqKgqmq4WPd6PY6OjshkMqysrJzZaX/ZVr+fBxfxLx7G13gUjwPG5yUYoc3OzuK67plI5kqlEqZ9BsVBwEt5HHS7XTzP49atW6Ft+JUrV1BVlV/+8pcIwjgMzPd9fMcgKgyxlXHGh6qqGIYRxpqrqko0GuXatWuUSqUHvFdGo1EYtBX82+12MWzY7CTYGxZR3ChXs33ymUR4fzs5PeVvP+pzMMzhscxs0ue//9cbRPQY7+30afQtslFYXVI4rfc4bgxJRGwcIcHc/PKZQklVVW7cuEFy5jIV9YRrWJw0DYqRNtv3usTjcTKZDOl0OuzEFGeXUGcqvHO/RmenNTF2GxcEHhLCJJxuHMg0HicKeFhoRGQB1R2h+SNGQgwdE1+QkZweB1undCs7LCwssLCwwD/9weuIosg7dw75f98fUB8J6BgISpTV1atsuENOGy2wergdFzcSIZUt4Lo5kKPg2sSkccdQEiVev5ohm1CeOfvv58XABJ1Oh1//+tfIgsOyVkVQDVTHZjRohy1013XDgBJVVRmNRmGQULvdDtn0vu+fWfyBsBsQ8U08RNrk8BGI+20KQpmE2P/YPIMoEd/EnHQGLkrnCngKvu+jqio3b94MTYQWFxfZ2dkZXzDF4gPErvO7z2CRUZQxizgajZJOp4GPM+BHoxHtdpvBYHBmsQta48E8PvCLh4+Lhmmvg6A4iMVijEYjNjc3OTw8pFQqsbq6Sqdv8O6dA4rlOldWlx+Img3GBZVKhUQiQa1Wo1Qq4fs+lmWF7c1arcbR0RGGYXD//v0xMdA0L3wd063v4GvBMXGR0Skx8DRigwqCXeG05V449z3fAlcUBW2ykErS2d1xsGCf31mfZ8AHnweF3DSx7pN21bu7u/ziF7/AsiwEQQgVM/Pz87z00ksPvRYymQyJRILd3V2Oj49ZWVl5qjv2rwMkSQplywDD4TAsDg4PD8M00KDl/kldg6DjUKlUACgUCkQiEe7cuROO5Lrdbvg+CGTRlmUhSVIok/V9P7xnXaQQmi5qisUiQFhIfLB5zMlOdSx51vN8/5/9gG+tjQufSqXC+/eO+HDkoLgyqirjqRKmoPPiYpKlQuxMZ6WQt/jg4Da1nsi1lSL51MVcn2w8wkIhRqUt8/KVDD98MYM9GgewBZ28WCwWFgb/6rszvLiS4td3m9zdraJJLigag36fzVODqG/g+NJEgaGFNsJlO0tU0MINWKASC+TbrZZBq9Xi3r17EF+gyjxdSyQWS+LJLomIQEYxweqSSOisXrpKPB7n/n6FO/st6rUR9b6HIFmAQDYVQVckXruSYm029kwVAQGejwkY75j++q//enziGXMJotFoyAeIx+Nj8t1wSDqdJh6PE41GOTo6IpvNYhgGg8GAXq+HIAhYrsCRPXuhy1bPj2OhYaHgoCDgEKfPHEfExT4Vb44BsUlIiE2OGin5wbFDNptlMBjgeR66rrO4uBiaqei6jud5FIvFcDdyEXN5ehG8aM47PRcOiojgJhdolINFOHBgC2bdDyOfPQrBCCVZXEYXRixpNXRlTACb1nLbth0WYgH5afq5T7+m8+3z6dd6EYM7aH+rqhqOPFxB4eC0SSausHF56cwiff4jIGoGrfHphfqL3lV/+OGHvP3226FqJpgh//CHP+T73//+Jz4+cGlMJBKsrq4+Lwg+I4KuQVAcBFyDRCIRFgfnuwZvv/02P/nJT8LrLCh44/F4SFweDMYhZjMzM2E42Xe+851wzHb79m2GwyGCIHD16tUHCutHodPpcPf+Lr/bc3HkBEvFJP/y23nM4TiG3HEcEpkCv9r2+dmHTUzHZ2Muyv/wFysPzL9932dra4t6q0d+doW5QvKRi+HDRjRBPkm73Q79VIKNSySapDN0Odzb5g9VCVNI0OzZZOIyhYTAcrTDWx/c4aQ+pGIk0YTRY5lC1Zwcd3hpIi0EHYPvXS/xp98tsTGr0aqdcnh4SKPRoGeJvFkpYAoxIrLIadMgoki4Hvz712d4eTXFfE5/JgsBeN4ZAMY3zYODgzM72WCxCUYCmqaFutdGo4FpmuFFVywWWVpa4ic/+cl4Lu/HziQcQhONUei/PWQc1DGGQpMofdJkvQoDUliImMSR8Kgyz2XnLlFhgCnoxOijiWa4IMN4znv37jjcw/ElDE9BE2329/cv1EOfJ3ad//6XhSA9jNohNV/DlxtExfGFep6lHoxkgl1yEGUb7Jy73S6FQoFcLoeu64iiGPoVCIIQzvcDRn0kEmFmZob5+XlKpdIDHga3bt1iZ2eHl19++aF+As8SAr5AMBoIeBWfpiBJpVKsra2xvb3N1tYWa2trzwuCz4DzXYNprkGw21VVNRwnJBIJfv/eR3TtCBEgrqpYlkUqlQr9UfL5PO12O9zxHx8fMzc3F96TAmdOz/MoFAqPXQh4nsfx8THVapVcOsV//JcL9AwfVbA42t9iMBiQyWSYn59HVVXmZl1eXk3RHbpcXYhfSITb39+n1+tx4+raI0nCAR42opEkKcyiCAqsVqtFuVzG807QNI2FYhLfqSFEddLZEnpEDBfgN773IuVai//8VpmDag9v2CBpKDiGFF4nQUdX9F3K3gz7rOFPLZMmUXRV4cZigpgmkY6vsLKywmg04r+8uUV7r8diKUKtbTGX0xmaLnMZjR+/WHgmSIKPwje+GKhWq7zzzju4rhsS4gJWPhBeXIIghDNY13XH1WgkQq/X4/Lly8zMzIQ33IhgktY8OsY47EPBIi00EX2bDlnc0ARDJHDKspBpkcUhgjuJt3URcImyxVUk30P0QWPAOnfQnI85CcHcf7yznnQk3BGz7qfP/P4yEbiuaalZkt6AuViC2eIyxWIRTdNIp9MsLS2Fu6jDw0OOj4/DeWow2qjX6+zv73Pz5k0URWEwGPDuu+/SbDbDXX0gAwz8ElZWViiVSuj6xXPi5eVl9vb22NnZ4cUXX/zCjslnhWEYYXrfebnbpyn6kskka2trbG2Ng53W1taeySTArxICwm2pVBoHG00UCu12m2q1iuUKvHMkYrBEXLZYm1G4ur7C/Px8qN4RBIGtrS0EQWAwGOD7/pkitVKpYNs2mqY9duz3aDQKA80CbxDLsmjVjqk2m6Eh2fTfiWkSL66kHvo7T05OaDQaXLp06bEKgcfFdIHleV5YGHQ6HUzL5Ld390kUYKmYYD43vqYFQWC2mOU//LMUjd5462EOb1Cv1zk+PubwpMpHNY2erdL1E/RJn/urIsmYyA9uZB/Y3eu6zve/c4X3T/cot00W8jr/4QdzdEcOK8XoM18IwDe8GDBNk9/97nf0+/0zrPnARAXGJ9m2bRqNBr7vhwvOjRs3aDQatNttZFnmt7/9bUj0EVyLnL9LTFTwPDj2lrBQMIhhEgndrM5CxiSo3j+OPoaxu7aLhsqQIXF6fgqN6gOvJ9hZP4p4+GViumUeGP3ouh7OqOPxOFIkCpEECRWatVMsmZ45AAAgAElEQVSOjo7Y2tpC13XS6TTtdpuFhYVwF9/pdKhUKpTL5fDcNJtNEokEiqLQ6XR48803OT09DXfFg8GASCTCwsICGxsbDwQtXYR4PE4+n6dSqdDv9z91zsIXjeFwiGEY4ajnPCHx0yCRSLCxsRFG7U4nXT7H58N0UieMF+Rb2xUMdHTRYuXad/jh95dZnnn4zr7T6YSqHhi/v9vtdphm+jjExVqtFnYorl27hqqqnJychETI5eVlcrncp3rv1Ot1Tk9PmZub+1SOo58WoiiGx9D3fe7s1XmnespcLkalbT4g6f2486ADGZaWllhfX+f3f9hn83dlnH6Xqjl9fYvIAqzP6by6keGF5YuLmkIqwn/755fYrQ6/MgXANL6xV7Tv+3z00UccHR2FkpV0Oo1t22GlHbSmNU2j1WoRiUTIZrMheafRaGDbNm+//fZE9zoVG+or41YTSzQoIOJioZzJuZ56NgQxmB8n130MBxUQGJJAwqHrp0h4nQeSt877mV9EPPysOG+YEkjOgmM5Pb+fJrgFmvuAVR3M0wO9/zTzeTgcMug2cd0ag8lxv379Ou12m5OTE46Pjzk9HRcIKysrrK6usry8HLYKg8jkXq/H8vIy5XKZX/7yl9Tr9XA3rGkaS0tLXL9+PUwofBwIwthG+YMPPuDk5ISNjY0ndmyfBkaj0RkyJHy6EcF5xGIxNjY22Nzc5P79+6yvrz8vCJ4CdF1nLh+nmFRAK1JKRx5KtgvO7bRZFEC5XGY4HJJKpS5U00zDcRz29vbodDoUCgUWFhZCdZTjOMzMzFAqlT51NygwL8vn859obf4kIQgCy7NZNpbd0CciG3/0ohwoM7737es0/QJHDYPISZ+7R8Owf/tf/9kSL6+mPlEBUEhFvnJFQIBv7NV8eHjI3bt3QwVAII0LFo5gEVtYWEAURdrtdqgmsCyLzc1NXNcNHeeC5LxpHwHRdyc53zAiihcu+NNw+TiqdgwJA3dSAIzxceiGgEufKPveZQRBQGcQ+hCcNzg6PyK4yDEu+Dhv+Ros9tNEwmCUMv27RFEMyXJBkqEsy2SzWUqlUjhOCSSK8XicQqFAJpN5QOIUFAVBLHW32+X4+BjP88hmsyQSiXDhL5fLbG5u8q1vfYu5uTnu3LkTyuEEQaDRaPDLX/6SdruNKIrEYjEuXbrEzZs3mZmZ+Uyz73w+H/obLCwsEI1GP/Xv+KIQkEmnCZYBPmtREI1GuXLlCpubm2xubrK+vv5QT4jn+OzwHYMrmR6FuQJz6R4RyWMcaf0gAhlxMDoIlDSCIDA3N/fIgq3b7bK3t4fv+6yurqIoCpubmwwGA9LpNAsLC59KDhlgOByyvb1NKpViaWnpUz/+8+Jhtt+f5nGaMsebd5t8uNfjxy/m+KOr2U/+BV9xfCOLgX6/z4cffkij0cBwYGhHiGBSqVRCKc7C8ion9T6mA9ZorK93XZdGu48rRSmX61jDsRZ4TDqJfuwwOGnVj9CQcBERiDLEQMZBmBBS/KmPj9+sIiYK5oQ3wNT3BAKewViNEEfzhyDAyI+iygKqYJKLqZOFXMd1XUzTDD0RAiLdtLwteF3TVrDTFrFBoRBI4AJZZeBqOE7gEsLwp3Q6HfrXqxPik+M4ZLNZisXiQ2fygiCEs9RA4hQ4o3U6HWq1Gp1Oh0QigSzLYaFwcnISWiRvbW2xuLjI/v4+W1tbYWjS6uoqL7/88gMa608LTdMoFoscHR1xenrK6urqZ/5dTxuDwSBUdYiiGBJGPy8BUNf1BwqCJ+W69xxj9Pt9YqrExmIG13XDTth5BLJfwzCYmZkBCE3PisUihULhwt/v+z7Hx8ehPHd+fj5MIr2IF/BpEJgHaZrG5cuXvzRfik/yiXicx/3l90r85fe+3DTPLxLfuGLAcRzee+89Dg4OGFoeB0aRvq0QVyyWtBoyQxQ9wU4/y25bZLs9oKhb9AcJbGQ2b5s4godGilmxj+MrHHtLOMhEhbFxUKAckHFI0sRBnpAB4wgY2KiIgIeEfyZqU0DDQsLHx8JFwAnHBiIqI5K0J3abEQw0dH9A088hCEki3oCk1CUzMQZRVTWU4wwGg9BTfTp+dbqNHOzypxf+aDQaShUty2IwGIQhMMlkknw+H954RFGk0WhQrVbp9/u0220KhQI3b978TLvo4DXk83lWV1exLCuMYq5WqyFXIBj1jCyPN9+/j+QO0SMia2trfP/73w9vlE8CuVwuDLEKwp+eNQR+C0EBMN3ifRI3Z03TzhQEGxsbzwuCJwTP80JiazCa2tvbI5fLXUjACwyvUqkUlmVxfHyMJEksLi5eWPgZhsHu7i6j0Shs329ubiKKIktLSxdGfT8uHMdha2sLURSfK0++gvjGFQO3bt3i7t27Y1c2JYFhaGjiEEtMMPT6OK5HlDhH9SGSa1ElR7kvje2DJ1lXeb/GkCgjX6fml2iSJ4KJ48ukhRYFocwJSwx9jRrXYJI9MF7MRwxIYKFh4+GHHQABERuNATbaZN4/zitwEdHpscguqmDTIYPhu8TEAVG/x0DM8cKlWfbLLYQIpFJJDMMIvfmDeX673R7rgxOJ0FY4mOtr2jjONJVKoet66MM+bXwSePoXi8UzpDvDMDg9PQ19GVKpFN/97ncRRZG9vT3u3bvH0tLS5yYRRSKRUFp05cqV0Hv/4OCAt9/7iK1DAcPRSSgO/+O/f4P1y0++RRmMKwaDAeVy+cId25eNYHQF48VFluWw6HtSOzVVVcOC4N69e2xsbHymlvJznEVQxEUiEXzfJ5fL0Wg0ODg44Pr16w8ssMPhEN/3w1TOTqfD0tJSKGOcRr1e5/DwEEVRmJmZCTlPxWKR2dnZz6US8TyP7e1tHMd5wBb9Ob4a+EYVA3fu3OHDDz/EdKBrR1BEG5URppwEz2Orn8WjiN4aItJlSAwfEQ9psov38ZBpUiBOF9eXcVCIYNIniYxJ3SuQF2vYvoxJFBOdCAYGYze7PinsSYiGPyEMCpNugM6ICC5R2uj0qTMzcdkWUHDpkaEnSCiewYxQpuOn6ZJBUOLsnLbQ/QGjXo1OZ+xKGFj2ep5HOp0O/RFSqRQzMzOkUikymQy6rjMYDMJY58BnPRqNks1muXr1KjMzM2d2wb7v0263qdVqoRNaoVAIndICXLt2LYwt7nQ6LC8vPzFpmizLFIvFcXFy6Qb9n++zdftdhl6Edz66z6XF2Sd+UwrY36Zp0mw2mZ2dfawY5i8So9HoTGCWLMuhJfGTLAgikUioMggKgmftWHzVMBgMQolzQHpdWlri9u3bnJ6enpEJBq6fsiyjaRofffQRkUiEpaWlM+fYdV329/dptVrEYjE8zwvVN/Pz85/7nPm+z97eHoPBgCtXrjx/D3xF8Y0oBlzXZXNzkw8//JChq/BORcF0JaLCkKRfpY1GlxQmUWRsDHRWhE2yQp26V6TOeIYt4CPgk6SFIrhIgovuDzAmu3sJaJEl4zeQJ/nZMhY2yiTk0sEmOvldLuAhT5wGNYZ4k1QsB4URcWwiWBMioQ84pClKbRwxiuf3sLyxXbEo6by0GKWgupweyaFFcdD2DwxNbt68ye7uLt1ul1QqhSiKbG9v0+12w8dks1lWV1cplUoXGpU4jkO9XqdWq2FZVkjMy2QyF7YFJUkKNcYHBwfcvn2blZWVJy7Ny8YjrMymEYXvsnfvPbbvvMffqzavv/76E9U3w3hU0Gw2w5vqpUuXnujv/7wIyIPTnI/AMEuSpCdqLnVRQfAsjk6+Kuj3+0Sj4+CxoJjTNI1SqUS5XCabzZ45vsPhEE3TaDabtFot1tfXz8z7+/0+u7u7WJYVem7ous76+voTuy6Ojo5otVqsrq5+KpfD53i28LUvBkzT5P79++zt7eH4Eh/VdGquhoaJ5wsMidIlM9H/C9iTiEtZcEmIPXRhRNprUPFLOFIKSRKRHRfNH6ALQzzPp0EeH7CRUXFxfIkYXWxkTDRsIrgTHwERD2+SqSViomJiodAnhYNCjzQ6vQnx0MeZdBF0bEDClpLkVJO5iIJgiDSHOlGrhd04QVueJ5lMIssyL730UminqyhKOMsXRTE02ZidnWVubi6U2aVSDzcPGQwGVKtVWq0WMG6Xfxpns2w2SzweZ3d3l3v37jE7O8vs7OwT26V+zAROMXpR5b/851Nu3bqF7/vcvHmTubm5J/a3kslk2MZtNBrMzs4+Uy3yaVlhQBqcLgCeNKlLUZQHCoJnWWnxLCNw+IOz5lClUikciW1sbITncDQaUSqVQtJeEOnt+z6np6ecnJxg23Y4Kvq8vIDzqFQqVKtVFhcXQ6+E5/hq4mtbDAwMl4Nyi07tEHPYRRAEOiOPTt9EQ8CRYsREFyWi4nsStZGEiIeIR1buUohLeFYEwbbJCG2S9HHEKIroYUkge+MAjF2u0COBgI+PgMaAY5YmoRgiGiMEBBTsUGYoTUoDGQeDKCIuNgoSLh4CI2IEfYix/gA8KUZRbrKg1ikmJJbm53gpnmZz9xTPMFBlgUqlQjpXotm3GFkeg0GVer1Os9nEdd2wxf3666+HiX1Xr14ln89feAw9z6PValGtVhkOh0QiEebm5sjn859JYx7sIsvlMicnJ3S7XVZWVp7YQhoygfPL2H/yJ/z0pz9lc3Mz1GI/qb8lCALZbJZarYYkSZTL5fAm/GUjkHcGQVQBJyTA02J3y7IcFgSbm5usra0988ZMzxps2w67bcF4L0Bg/LO5uUmj0SCfz4dyXN/3aTabXL9+HV3XMU2T3d1darUavu8Ti8WYmZn53LyA8wjCg2ZmZkIF0HN8dfG1LAYGhsv/8Q/3uXX/mGJS4VpuhOi7NGplFKGAHAFd6bISbWHHV+j7caTqADwDzR/wT1ZEZnNXGY1GHB4eMjBdhraI5o3wHQN54l/d9ZKYaCg4GKhEMHGRGBFDxmZAFJURHiImOiIuztQoAARURjjIiHi4yPgTNoGKiYOMIriookcpbvNi3kKXxgY+pVKJS5cuoQgujca4Ff/792/x97c6DL0I92of8N1FKGaTXL58mWKxSD6fD28GV69e5Re/+AVvvvkmf/zHf0w2+7GO1jRNarUa9Xod13VDS9pkMvm5FxNBEJidnSWZTLK7u8vt27efCLnwPG7cuEG73ebtt99mZ2cHSZIwDIPl5eULyVWfFoGqIJlMht2BZ4FRPxqNQrXHtBXx+XCmpwFJklhfXz9jXfxVyHF4VhB4lQTFwHkkEgmy2SxHR0ek0+nQGr3RaKDrOpcuXaLZbLK1tUWr1SIejzMzM8PCwsITn+MH44dsNvvYdsfP8Wzja1kMNPsW793exx422OpGsWsnYPU4MGcwfQndM5hxD2HkcHkmhRKDNaVGudZEcAb0mxHu1sbBFaYrcGjO0HdkVH9Ezj+h5pcY+lFG6JPEbAlp8lmXDB7CJKBIoEMWnR4KBmOmgIKDgIiAhYaDi4JFgg4eIiPikwxumZzm8O1CF9EZEnG7pPQsmcwM7XabO3fusL29HRr1KIpCLD1DZCCTFCwML8Krf/wqK6WLb8aRSIQ33niDn//85/zmN7/h9ddfR5KkUM8vSRL5fJ5CofBUWuCxWOypkgsBXnvtNfr9Pnfv3mVvbw9N09jZ2SGfzz9UevW4CDwRgjZ8pVJhcXHxiT33z4rhcIhpjnMrPM/7wnMEpguCra0tVldXnzhn4+uKfr8fhm1Ncwamsbi4SKfT4ejoKPSSME2T69evs7+/z87ODr7vMzc3x/Ly8lM59oZhsLW1RTweZ3l5+UvzEniOJ4uvZTGQ0iVycZE6GZKiSToicTwQx37fgoHtaRi2hyq4VE8PUZQy/X4fb3IT7blm6MbXNmQ6zljjP0RFE+IY6Ei42KikqDEgxQgNBxUHmXGagIiAAwg4RNAwsUOzIWliH2TjI2OiTiyHx49TMJmPmbxU6LCY00in57HtIuVymWazSTKZDMOJAlngH/3RHxHRk6gfNLl/UENpn6AKj7YjVlWV1157jZ/97Gf8zd/8DZcuXSKXy7G8vEw2m33qOuGnTS6UJIk33niD0WgUZhzcvHmTRqNBv9/n8uXLn4vslsvlOD4+Jp/PU6vVKJVKX7qkKkjbhLOywuBrT1JN8DAEOvOdnZ2wIHgUH+U5xhgMBuF7P3D/PA9ZlllYWGB/fz/0DykUCpyentJqtcjlcmxsbFAoFJ7KebZtm/v376MoyvNY668ZvpZn0nZsSvqQq9kh66kuvXYdTbTJRsFVkiji2C/A931GoxHVRofqUKHjxLBcMTTyMAwD37UQfZeRrxHxTUTfJeKPxwERDEYksVAnEkAYOwVKgB8aCkUZImPhIyJOiIECHkIoG7TxEJBw0RiQiYm8NDPi6lKO9fV1isUimUyGubm5MLpzdXU1/J7v+xweHqJHBP705QL/1Y9W+NaMRa189NBjNBwO2d/fZ3t7m1KphKqqtNttZmdnyefzX+hFns1muX79OpFIhHv37nFycvLEGO/RaJQ33niDYrGIaZrcunUrbJneuXOHWq32uZ43EBrEBH4MXyamkwodx0GW5QcspL8IiKLI5cuXSaVSbG9vh8TT57gYvu8zHA7PEHIfdg3kcjni8Th7h6c0hgKN9oBer8cLL7zAa6+9RrFYfCqFgOu6bG1t4fs+6+vrz9Mrv2aQ/uqv/uqvvuwn8SQxMFz+798c8OadGo2+h9c9BtdEFHw0waRpqliehOWraF4X2/E5chc49pZp+HkcXyEm9BD8cSRwxZ/DEjSEyUx/QAIRj6TQIkWbAfFJ5sD4wyMQAkKCNhkaKNgoOJOiQcJFIkEPjSEiHs6EWOjhI+GRcGsk3VME3w0JRYuLi2xsbLC2tka/36darYbKgXq9jq7rDIdD0sk4M9kEvU6LWq3G2tramUChVqvF/v5+yDKemZlhfX2dxcVFTk9PqVQqpFKpL5wNHmSVC4LA6ekp3W43tB7+vAicFBuNBoZhUK1WWVpaIplMcnp6imEYJJPJT71QSpLEYDBgOByGhMLAifHLQFAU9no9HMeh0+mg6zqKooRfC0igX4RnvCAIZDKZ0JQqMLZ6jgcxGo2o1Woh92Rvbw9FUVhYWHjgZwVBAEnl//z5LnU7TaKwzF/8+FXm50pP7b3n+z7b29sMh8PnXgJfU3ztxgTNvsW9wxZdQ8QggSHMsSTuIuMwslw8QULHCCN+gYm5EIDAgFgY/RvkDER8kwYFHCQ0RgxIMvJ1dEb4SNhoiLgkaOKiYjLOOljlHr4gY/jqpIhwUbBRMYhgkqCLzoAdVnGJ4BLBx0VAQJbG/vv9fp+joyMikQjpdJp8Ps/MzAyKonB4eEgymcRyBao9n2RWZHNzk/n5eRYWFsIs8WQyGXoDBA6Ely9fJp1Oh4VCJpPh29/+Nu+//z4fffQRN27ceKi3+dPCNLlwZ2fniZILV1ZW6HQ63L17F9M0eeutt3jttde4fPky+/v7n3lEkcvl2NnZYWFhgWq1SrVaZW5u7nM/38+CgFkepGcGVsQBgXA6xviLgiAIrKysIIoiu7u7eJ73UPXKNxlBjHpQhH/SOXr31hYmUVYX0+jpWYaOxNMLCYb9/X16vR5ra2vPC7qvKb52xYAm2gzaVQx0FCwsPzJO8RM9ooKLZj0Y8RtlgEEUH58Yg/DrQSTwWDrooWGN0whxiDJiSCx0IHRQEBFI0CQmdIkyoMEMTb+Ai4iIT4YGQ3Qi2LiCPPkbNrLv4yAiAlE1ghotEU0r6IydAIMAoXK5HKb4BS26nf0TtvtppL7DqTHkjesZ3r93xGwuged5vPPOO2HbP5fLUSgUHnoxz8zMcP36de7evcvdu3fxPO+J+vo/LmKxGNevX+fg4IC9vT263S5LS0ufuy158+ZNer0eJycnuK7L7373O1599VWuX7/Ozs4O9+7dY25u7lMFGqVSKSRJCiNgq9UqMzMzX0oLNfAXCDwGgDCNcrrl/CRNhx4HgiCERLP9/X183//CC81nHYPBIDQbAh6QFk7j+PiY4927pHWVVHH5sWJ6Pw+CTUXA73mOrye+VsXAcDjknbd+Q8Y/QWQJkwgSNqI/VgbgmhSEMgPixOiHEb/z4iEpr42NTELohl8PIoHTvk7Tz2OiE/MHSDjYgkLENxihIU6SBSMYOIJCXBxLhAZuPFzkXcAUNHTfwCaC4luYgo4iN1nWRjRJMrIEsimdN27O8C9eSjPqtUJ3L8uykGU5nE8Ph0MGgwG92pChqxI1Wny4abC5e0xES6CLZRaUFo3OgOLyDVYXiyRjn3zDWFhYwLZtdnd32d7exvO8LzSPPIAkSaysrJBKpZ4YuVAURV555RV+/vOf0+/3cRyHt956C8/zuHLlCicnJ5ycnISeBI9DBhRFkWw2S7PZ5OrVq2F34Ms4ZoFPved52LYdug8GZLQvgjz4MAQFgSiKHBwc0DccZD39qSJmv84YDAZnSJYPIxBWq1WOj4+xjR4/up7nxVdKT/UY1uv10Ab5Sct/n+PZwtemGGi1Wty5c4e9ozIH/SQOIjIOIjaeIOF5JoancuIv4aAwJM6sfxwu/D2SGOgYfpRZ/xhg3FHAQhdGZKkDAro4DL8n+i665NO2NRRkPGRk38byVORJt8BGQ8BlhgoFsYyEy7a7To8kmj+ilI2jqy3QJOSIhmMZpEZNOo3LZLNZvvOd7zAcDkMHweCGn8lkKJVKzMw7DG736NkKDHsMTA/Jb9GWdBKeTKWjUX6rwtW6wJ9/t/SJNw1BELh06RK2bVMulzk4OMB13Qtnl18EstkssVgsDDz6vM6Fmqbx6quv8qtf/QpVVTEMg3fffReAK1eunPE/uHTp0mOx4HO5HLVaDcMwyOfzVKtVisXiF94dmE4qDJQmF3kMfJkM8MXFRQwH/p83j7CEFqvzWf705cI3uiAI5IHT5MGLioF2uz32PRkMEEWR7377W5TyT69l3+l02N/fp1AoUCp9c6J8v6n4yhcDge3m7u4ue3t7NLomhhtHQGSENrb19V0MX2XPW6VLCh0DBB7gBii+TY8ECS8RFgcRTPDBEsY5ALowRBacsTOgKJBzD9DEOLJnUWOWLmm6fookHRQMCgxQYhlW1RFR36feF4m4JjpDXCRmFy5xeTZBuVxG130kKUqn0+G9994L7X5VVUVRFLLZLJFIhGazSbVaxXEcTNOkJNjMJlJE8xInVh5TiJFSPeZiKRp7Np7R4Q9bHispi29fXfjEHa8oiqyurmLbNp1Oh5OTEzzPY3Fx8UvZWaqq+kSdCzOZDC+++CLvvvsuqVSKbrfLe++9h+/7XL16levXr7O3t8fW1hYzMzPMz88/8nXHYjE0TaPRaDA/P0+9Xqder3/hI5Ygk0AUxbAYAMJ/v8zOwDS0RB5L6KH4I3aOWzQ3Up8pe/7rgsBsaLrrdX5M0O/32dnZIZ1Os7OzQyqVeqoL9HA4DP/Os+Cf8RxPH1/pYsB1Xfb29jg4OKBcLtPpdMAeEVXSDD2JiNtHY4QtqNS8GbqkAWE8t/cNRH/sCOj6ErJv0ySLgEDdL+AioQsGgwm5MM4gJB3KjLsJtidx6i3QJ4GKgUPQhhewxSgp1cEjwkpJQ6h1MB0T2fdIKiZDTyPqDXCG8Mor/5STkxMODg5Ip9PE43GOjo7Y3d1F0zRUVUUQBFzXRVEUotEoCwsL+L7P7u4uUc8jkxkXC5cljaED2YSG68jsd0acNg3mYzZWv86tW20KhUJIQnwYZFlmfX09JNxVq1U8z/vSTEYCcmEikXgizoVLS0t0u13u379PsVikVqvx/vvv4/s+165dY3V1NWzJ9no9Ll++/MjiI5fLcXp6Gj6ncrn8hSoLbNvGcRxs20YUx/LY6SLgi+YJPArZeITV+Szbx00ifh/X6ADf7GIgMBsKMH3OApOfWCyGrut0Oh1eeeWVp/Z8gjwXTdO4fPnyM1FAPsfTx1dWWmhZ1ngssLc3TuzqDmkOPHzbIEYPx5cRfYeoMEATDLp+BgEfG4Vx8LDDyI/S8nN0/XHAhoBAjC4WGgo2jqBMiIZ22BlIC21EYVyxd7wke6xhoDMiSpQ+rqAiyzKzMZP1ZJtrSxmMyl1cc4DrusgivP7SOoxqyEaVnuGytDiPYxnUajVOT09JJBIkk8mwjQ3jxWZ2dpZisUgymQzlhf1+n2w2Sy6XG5vMSJCKKiiSgIjHTEJA9TqkaJJJjglK3W6XRqOB67pnSEvnIcsyiUSCdrsdyugMwzijQviiEYlEyOfzmKbJ6ekppml+JlkgQD6fp9Pp0Gg0mJubYzgccnp6iiAIFItF4vE4qVSKZrNJpVJBVdWHki8jkUj4M0ExoCjKF5biNhgMaDabYQu51WqhKErYVQpCqmRZZm5u7kvd7UVkkeWCztp8kss5gXa9TCQS+caGG5XL5TAxNMDR0RGu6zI/P8/m5mZYnL/99tsMBgN+9KMfPZUxlOM43L9/H0EQ2NjYeCLS3uf4auArWQz0ej3eeecdyuUypmlSb/XY7mfY7Wi0nTgxr0VWbKKLBrpgIvsGFio28iQv0ELBpkWOIfGJNZBHBJseGRxkogwpKVWyQp2E0CUm9EkL7ZBjANDzEzQpTuyGRJbVGi+UHGYiXWYibdZX5mk3G5zUuoiCj4hHOp3mX//ln3F6csTtukrdSdG3I8xnFOZnx21lVVV56aWXWFtbC3firuuiqiqtVovDw0NGoxG5/5+9N/tx7L6zPD93IXnJy50MxsLYl1ylzFRKqdWqUpfdXXbbVW7UTKPQmIdBoQaYwTwMMP/A/AXzNsA8zUO91KAxGBuN6hrbsqu67XJJllSy1lxij4yN+355Ly/Ju8wD815n5CJlSillpsQDRCIWBrcM8nt+3+/5npPJEA6HOXXqFKqq+sElrVZr5KjoOERVhelsAl1rMxwOMQyDwWCA4zh0u10/ivd+pCAYDBIOh33/8263O3NJAoEAACAASURBVPIzeIyEQBRFUqkUiqJQqVSo1+uoqvrQ2QBe0S+VSmiaxvz8PJqmUSwWAcjlcgQCATKZjE8+BoMBsVjsrudKkiT/uZmcnKTf79NoNL4yA5g70Ww20TSNdrtNMBikXq+jKIpvbVupVJBlGUmSHjsZgBEhSEQCZFIJLMuiUCgQCoW+dYTA84bwUj09HB4e+p0e27Y5ffo0juPwu9/9jnw+z9ra2iO/L47jsL29zWAw4NSpU09UEucYXz2eGjKgmzblVp9KucQH779Hva1T79qUCgW6A4FyP0l3KKERx3IDxESNmp2l6aYYoBB3G9SZunWKj97KFQigYDIgiIpOlDYDQiTo4MohVDQcd+QMGBL6iIKD5cqYKAi4REMCg+AEg6FAVOxzZTVKYNAgKg8IK0HkUJS392yO+ymGYpRkoMfy4jzPPfccV7eOOOiEkG2DRG6BF59ZYH4mSzabpVarYZomqVSKUChENptF0zQODg78GNLZ2Vl0XafdbqMoCoqikMvlmJmZYWJiwjeaqdVqNJtNX1g2Pz+P4zi02206nQ6GYdBqteh0OriuSzgcvqvQKYqCLMvU63VSqZTvf5BMJh+rGC0cDpNKpU4U8Gg0+lDFV5ZlMpmMn+KYz+fpdruUSiVc1yWXy/nkIxQKUS6XaTQaRKPRe45ZKpWK7xBXKn19J95qtcpwOKTRaIAU4qDcIaZGCAYkBEGgVqv5ZGB6evprMR16UMTjcYbDIYVCwc98+LbAMxuamZk5QWaPjo6oVCokEglOnTqFoihcvXqV4+NjXnvttUceAOWNHDVNG0dQf0vxVJAB3bT5+QdV/r+3Nnj/012CrsFWS+WTgx7doUwi0EMnhkaCiDREFl2Cok3bTSC4NjoqXeJ0ieEi3UoMdH0L4SRNJBy6JLEJIIoQcHr0nDAtMphuGFXQcRApOnmabhZZnWAmZqH0DkmFbc6cWuHGYRvDDqIKOomYSmcYZlPLMHBk+oJKKtDl0rmVkdtf4ZiWAfWuRTxo8d0XVgjKozZuOBz229WhUIijoyO63S7BYNBvPS8sLGBZFul0msnJSUzTpFar0Wq1sCyLVCrFysoKy8vLRCIRLMuiWCzSaDSQZdl3GTQMA03T/G2FZrOJJEmoqnqi0KuqiuM4vjDOIxCPmxB4xRz4ws6FiqIQiUTY398nGAySy+XodruUy2Ucx/HjWSORCKlUina7TalU8p+n26/Ha8d7zntfV3fAE3kWKw0+KgbYa0oMpTiZsEVAEqhWqwhymJ6rMD2ZY2nxyRGFCYJAIpHwuy/hcPhb43DnvY7uFOd++umndLtdXnnlFf+199ZbbxEKhXjppZce+f04OjqiXq+Pg6W+xXgqyEC51eeDnQ7CoItuB7hw/hQ9MY1rtlAzs/zgjy7yvZdOgRQmFJBQJZOw06A0yNAmQZcEXdRbLn9/yA0QEXARCWJiEL9lGiwz4RZIiG3apAjRp4+CKnRxBJleKE8qptDoSThGhamEzJ/96EcUukHC0pDjukEqOGRtKU8sm2e95CAHZBzbYSLQ5o1XL5NIJGg1aqiCjtk8JC21ef3VPwiCFEXBdV3W19cpl8u4ruvbEWcyGer1OuVymVar5ZvkZDIZJicnCYfD2LZNo9GgWq3S6XRQVZXFxUWmpqYYDoeoqoqu6/R6vRPpe91ul1qtxsHBAcViEcuyiMfj/mwyFothmib1ep25uTmazSatVotUKvVYCYEgCL7OwntuHvZE7oU/7e/vk0wmSSaTGIZBqVTCsiy/oHvkw7ZtisUihmH4mgVBEOj3+7RaLXK5HIqi+DqCr/Kk5TgOR0dHOI5DoW6wWXERLQ1bjpEKWUQCLsVKg5KbpzpMMBSjXDw1Q1B+cqJJBEEgmUzS6/UolUr+Fs03HV42hkc4YWQqtLe3h6qqPPvss8CI7F27do1nnnnmkW8RlMtlisUic3NzYy+BbzGeCjIgiyLFZp+hEOb04iSvnp+iqdsE1Cxr81memY9ysHOD6s0PGbQOychtZmYXsUMZWm2NHhECWDhIiFi4jJIERuHDDjI2QySsW5bAAAkaWATpo6DQIyN3WJqfRU7McL1o07MkpECQH/3xJZLxCNsFnd9vVlAEg+++sMh3Xn2ZRrWIrERRwipoB+QjXd74o+8gSdJIxFcrI7l9tHaTF1980S+6nmCt1WoBI+c8b0YfDAbJZDI0Gg1/+yCdTvshNF7rfHJy0p9tdzodqtUqhmH4Pvrnz58nlUr57obhcJhkMokkSfR6Per1OgcHB2xvb/tzaEVRSKfTaJpGs9n089Obzab/u48TX1ZcmE6n0XWdw8ND8vk8kUgE0zR9QjA5Oemv5yUSCVRVpVqtUqvViEQihEIhJEnycyNUVcUwDN+d8KvqDhiGQa1WYzgcousaxUafnhMkowrMxS1kSeCw2qVupwkKJm4wwTMrORKRx5uweCe8LANPyBmNRr/xhODo6IhYLOb7WVSrVY6PjxEEAUmSWFlZAeCdd96h1+vx+uuvP9JkTC+rZGpq6rEYZY3x5OCpIAOe+nh+QuHCQpxkNMBMSiZotWgffcJH779DoVAgogR5/uJZnjl3hlqlxE6hTXMYYUgAG/lWH8AhhkEQGzUcRA0KxN06sjOgTwQRmwEhHCSmxGNiosZEsMvi3DSJuMrxcYFiL4YogBTOEKPN8dEB/+Val84gSDSe4j98/wX6Rgej2+H159dIB3s09t5nZjLNxYsXgdE2xOHhIdlslkKh4L8h7O7u+sXkmWeeYTgc0mq1yGQyflHzss49k5lOp3PiBA/4I4Z4PE4ulyOdTvvbCfv7+/T7fd+iOJ1OoyiKLyScnJwklUoB+PP47e1tDg4O/Da8aZrous5UfoHd4wbNRp1sOvnY1cdfRlwoCAKZTIZarUapVGJpaQlJknwDpsFg4BMC4AQ58jQLnhuh44zEoqFQ6JaHxFc3C+90OrTbbXq9Hlq7SWDYIBUaMhuziEWCOI5DvVbBRKXnhMjFZX8s9aTB6xB4Y5pYLPbQwtCnBZZlcXx87Hf0Wq0WN2/eJJfLMRwO6fV6rKysoGka77//PjMzM5w+ffqR3X6322VnZ4d0Ov3YPETGeHLw1OyNqIqEqoTRNI0Prm9x48YNms0mgiAwMTHBs88+i6IofPzxx3z88ccAnJvO47YUarUKDTdJkhZCOMvq3BxxUUcvXsPQmoSFHpYo4ToCbVKEMbGQcQSJqGQyPTmNqqrUajVEd0RO4vEEISVIfjbFQbHBQHCYyQRwAzH2aybqoDpqN0cVLK2E6A5OBNh4AqClpSU++OADfv/73wP42wHez1dWVlhfX2dvb4+VlRX/BatpGvl8nunpaT/UZ3FxkWQyec/nzxMZTkxM+KetUChEtVr1/QuSyaQf6+y6LouLiywtLdFsNqnX62ia5t+XYDCIbloU3m8QjE8RcnVw17lw/slINPOcC/f29h7KuTAUCvHcc8/xzjvvsL6+zoULF3wr393dXVzX5dKlS/71BIPBE4ZImqYRj8dpNBrMzc2hqqqfjvhVbWAYhuGLG3u9HkpAIBESsV2XRk8iIruI7pDZYAkCMeZVh4BoA0+m658oiqyurrK1tcX29jZra2tf24rm1wnPbEhVVd9UKJVK+aFXns/A9vY2tm1z5syZR3bbnndBNBp9bN4hYzxZeCo6A15IzzvvvMPbb7/N7u4ujuOwsrLCG2+8wczMDNevX+e9339MqdVnIpNmNj9Ns16mVNdxRZloWGFhPs9cEoTK7zGLnyAPm4SEAbIEEhZRNCw3gIBDRDBIS21WV5b8UBVBELhy+SIWAeRAgNm4w3JqiOj0qfUjDEWVqWSI76wpaK0a8/PzhEIh/uGf3uOoLXL+7Blmp0eJbZIksb29jSAIHB0dYRgGb7zxBgsLCydao7cLCmFEIhzH4eDggGw2SyqVIpPJ0Ov1KBaLOI5DLBa774tbEAQCgQDNZpOFhQXm5ub8cUK320XXdVzX9U9jw+HQT0z0vA+8+2+6Cts1AXfQQrcCpEIWA6NFIpF4pK3ML4ovKi70/AS8Fc7V1VWGwyGu6/rrrLeHGd2pWfC2NOLxOOFw2O8ORCKRr4QolUolRFFkf3/fdx60xAgflCMcaQG0gQRGGTUkkY6FiEYUksnkA1ktPy54I4NOp+Or6p+Ev6lHiUajgWmaZDIZtra2iEQirKysIIoipVIJXdeZn5/nnXfeIRQK8eKLLz6Soj0cDtnc3CQQCLC2tvbYx3tjPBl4IslAtT3g2qGGNehROt7nt7/9LR988AHVahVVVbl06RJ/8id/gqqqfPjhh3z44YfUW13KzNGRpqh1bdqlLYZml9l0gJeef5Z2X2broEKndkx8eDSyFJZl4vE4umnRcxUCgkVSbBEVR54C8/lJpqamkGWZ4XDIxYsXSacSdCvbLGQDvHx2gkwyiizYfO/FVU7PJfj+cxP0tZEoaHZ2lmp7wP/55hGFfmZECOZUYpEgnU6Ha9eu0e/3CQaDtNttLly4cE8lr6IoiKLor17Ztu1b3wYCAT8sR5blByp6Xkuy2+2SzWbvGicEg0GGw6FveOSF33iahUAggGVZiAIMpSi6FUBBZyJk0NValEolYrHYE3Gau7NQVyoV3zvhs+B1Zg4ODvy8BtM0EQSBYrGIaZp3pRt6eo5+v8/x8TG6rpPP5wmFQmiahqZpjzytz9tTDwQC7OzsEAqFGDoS/1IIcmSoDPoDLNslZLdIRAIoiuKPnDKZzBNdCLyRT7vdplKpkEw+/jHUo0SxWESSJKrVKpIknSjMpVKJbrdLOBxmfX2d8+fPP5KZvm3bbG1tYds2p06d+sYRrDG+OJ44MlBtD/jf/9MOf//uMf/1g0PqNz/EGXSZnJzk1Vdf5bXXXkMURd577z0++OADak2NQHSC+dXz7NZc+p0qLcMlG3G48tx5vvuv/5Rfr/f5pxttTDdIjwjZkM6FU3NEo1GOSzWOrRmabhbTDZMKGARck4lsimeeeQZN0xgOhywuLmJZFvV6HRGHV69cIpNOcnh4yNTUFHMzOfIZhaA0OrVPTU0RjUa5dqjxz+stZNeg3YN2cYOda++xvr6Orus4jsPExASFQoFWq0U2m8W2bV9A5BWbaDSKaZqUy2V006LcGjCbnyEYOLn+d3vR80YDd8LTE9zrtCrLMtFolGw2Sy6X882IvFhcy7JwXZdAIIAsQshuE5NNljIi0fAoVbHb7XJwcIBhGMiy7JOZx4kvIi5MpVL0ej2Ojo4Ih8Pk83n/MZVKJQzDuGv04BEzgL29PSzL8tc4y+Wyn2PwqDAYDEbeB22D3eMmyXiUutZnryEiIGCiEBN1km6FRGyk0Pdm1JZl3Xes9KTAIwStVotqtfqNIQTe5oq3Mnz69OkThblSqdBqtWg2m5imyWuvvfaltROu67Kzs0Ov1/O9C8YYw8MT96paP+qyXerRNR1sV6EUP8f3Xl/k7FKOTrPCP/7jP3J0dIRlWUQTGczgKoeaxfYnJQxDZ+AEyWcV/u13XyCkZnh/u8n1m6PEQQBJDpGbXWP7eAezU/NDikL0GYgxGpZOTpF5+eWXWV9fH1kLT0/jOA7ZbJbZ2Vlu3ryJoih+dsDtWoBareYL0QCWchEWp9PsFWWyKixOKMSVKVRVpVgs+roHGLmOvfPOO/51SZJEMBgkFAr5H8VKg3f3y0iRLDW7wJ8+lyEeCfpRtaqq+kE7Ozs75HI5Zmdn72ovxuNxYrEYx8fHJBKJe7YfZVkmnU6TTqf91cNWq+UbFjmOQzIWRjFNet0mhuYSCoV8J7VyuYxhGP5+fjabfWhToEeJ22ORvTfiz4pFFkWRc+fO0ev1fG/4xcVFbt68iSRJvgnU5cuX7yIVKysrNBoNNE3jxo0bvn6gWCw+0va8YRj0Bg7/72/30IYRmmIUu1VBEVxwIYLGNCN1uuGqCHaQuiEwu5ijXi0yNTX1xCv2PSvejY0NNjc3OX369FMvKuz1epTLZdLpNGtra/d8PN6a6vT09JeK7vawv7+Ppmmsra19q4ydxngwPHGdgZY+4J9vtBhYAqGARFBR2S51+fnvdjnY+pi+ViWRSHD58mWWz73ARtmhUbpJS7dZSw/4Vy+s8MM3nuPd3QH/8df7/O5akcHABEFGECXicp9avcWxodJ3w8SEURZBzw1jukFMN0x0+hz7e1tIDFldHonolpdHkcL9fp9mswmMVNyrq6v+C9l1XW7evEkikSCRSNDtdmm2muwXW+i9HgvZID945TSXL11gfn6eQCCAYRh873vfY3d3F13X+fGPf8zc3BzZbJZ4PO6z98FggKZplJp9DtoBUqpEqdFD6tfoNisUi0XK5TLVapVGo4Hruv7GgqclGAwGmKZJv9/3tQDlchlZllFV9TOLtNdNSCQS5HI5JiYm/PvnCey8+9hqtej1esBoxJHNZun1er6633Ecfw3vcSAcDpNOp+l0Op/rXOgZNFUqFarVKvl8nmg06pOc4+NjDMO4a2QgiiKDwQBRFEkmk76JlKcleFQFuNlssn6zwsc3DSS3T8GM0u5LBBmSE8tkxSq4NgU7T6mf4NBIUDWk0SaMZOA6T353AEZELplMUq/XaTQaT8Qq65fB9evXqdVqXLly5Z5ugtVqld3dXQAuX778pf+PCoUClUrlM0XGY3y78cR1Blano3zvQoZ3N9sguAjAjSODgSNTCCzwP/2Rwh+/eJ5wOMyn17eoHm2jDyUWpmL8hx9+h5nJDIe1Hgc1ExeXcFghGwsRlEWKtQ5az6JpZxBw6BMhTY1p8Zi2m6DqTNEnxPsHA1R5hj+aSfPsc2dIRv/QTrNt20/x83bRXdfFMAzK5TKFQoFsNku9XgegbogMHJmXz87Qs2VEJe4XjVgshm3bGIbB2toalUqFg4ODz0wk002b6Pslys0Bi3GJ587HCcmj+2XbNpZl+Z8HAgECgQDFYpFr167564W3o9UazfhnZmaQZdm3rL39487veV/H43FSqRTLy8u+i2GhUKBYLNJut2k2mxQKBQqFAi9/5w0ChHDMtq+8j8fjZLPZx5JzEAqFOH36NMVikWKxiKZpLC4u3rNIx+Nxzp49y8cff8zVq1d5/vnnmZmZoVAoMDs7y+HhIa7r8vzzz5/oEGQyGZrNJtlsllgsxsHBAY1Gg729PS5cuPBIHodhGLQqhyiChS4kGA6HxOgxEEJIgoUsWGhODM2NERgOaA1V3N4xWwcp1i5PUK+XmJqaeipaxt7mxubmJltbW0/tzLtQKFAul8nn8/ctzIPBgG63Sz6f/9LW0bVajWKxSD6fH5sKjXFfPHFkQFUk/rs/zvPGM+lR+/PtIoc1k0gIXDFIW5zhN1drHO1t4HQLnE1HWHz5AhfOLBFXRyf0dDTIwkSYUnNAJAKzGYlqo810Amr6yG/ARcBBAARkwSJBm7aQpu0mEXDJpFP0hBia6ZK8rUPX1vtsHjZYmRvtAq+vr2MYBq7r+kKgiYkJVFVFVVUsV6Yj1Si3+kynQ6Sjf2gHRqNRRFFE0zQuXbrE7373O27cuPGZZEBVJH70whSN7oB0NIiqfP7p6JlnnuHmzZu0WqP4Ym/sYds2vV6P69evE41GSafTd5GKwWBAr9fzv749Y/1OSJJEJpMhHo/TarUoFotUKhW29w75p53/gpKY5sULa/zoynkGvQ61Wo3d3V1/HJHNZr/W9qUgCMzMzBCPx9nb2+PGjRvMz8+fSI/zMD09ja7rbG5ucv36dS5cuIBlWVQqFebm5nxC8MILL/iEIB6PEwgEqNfrzM/Pj/4eLIudnR2i0ShLS0tfmgQ1m006zQp52WQgapTsuJ+wGWSA5co03Cx9IpgIBDFxBBmzXWBl7gx723WKxSJLS0tf6n58XQiFQqytrZ0gBE+ThsBLJlVV9TOdBPeLTY70COdz819Kb9Nut9nf32diYuKROxeO8c3CE/kqUhWJU/lRBQ4FRG5We3QMm2RE5p3NJtvHbQRX4crCGv/z958lm4rd9fs/fnGSF1YStDtttHqBj0yX9YMuIddBQAIE0lQJCwYAsmAxIxyAIBKaOE1YUViYCJ8o3rpp80/rBh8VFeqOgxJuk01GfSW/t5ufzWZP3J8fXJ64Z/EOhUZxx5qmsbCwQCQSoVar+ethn/X8qMqDF03PyaxSqXB0dISu635mQSQSYXFxkVqtRiaT+dw3Vtd179mFuPN76XSahYUFdF3n/Wv77O0McZpF/vGfO2gHDi9dWOHMmTO4rku9XvdFj6qq+kZIX1cbOBqNcu7cOQ4ODtjb26PdbjM/P3/X7S8tLWEYBoeHh4TDYc6cOeNvdiwtLbG3t4fruly5csW3J06n0759cygU4vLlyxiGwcbGBrZts7i4+IVPt5Zlsb+/j2VZREIS9DXS4hBwCQs9ZMGih8qAEClq9IQIM+IxMUUgbdXBHm1EHB4eMj09/VR0B2A0erqTEDwNI4NWq8XBwYFvKX6/bZtCXec/Xxdp9JcQdyNcuDBgIvHwGgnDMNjd3SWRSDz2lMoxnnw8cZqBO5GNB3l+OcHchMK5OZUP9jQQRRBlMukUF5dT97RVHVou27u7HOxtUmu0aR2vM9Sq9F2JIQES1MmLxwTFof87UxMp/tf/4b/l8mqWF9eSXFlLnije5Vafq0cmi/kMlqjywvl5FvKjLoC3M7y4uHjXac+La73T8U2SJG7evIkgCMzOzvpJZZ7I7VHjzm0Db5/es9W1bftzb9ezPZZl2Rc3hsNhIpEI0WiUeDxOIpEglUqRTqeZmpri9NoqQjhDzwkhOxpKv8jh/h5Xr16lXC4TiUQ4ffo00WjUH8FUKhX6/b5/O1817kwmvJdzoTf/73Q6vtbCWzns9Xpks1kODg6o1DsISoqALKGGQ/5jVBTFX3XsdDpYlkWj0fCtjB8W7Xabd999F9OCjhXmuJ+lTQqLADFBQxQcBNfFdMMMBIUIOhNyg7nJBNbARJZlTp06Rb1eZzAY+K6TTwMCgQDxeJxKpUKn03ns+RifB13X2dnZIZFI+Hbi+Xz+nuT77U+PeHurSyYaoOeEWJ6KkM88HFHr9/tsbm6iKAqrq6tP9HMzxpOBJ54MACTVAKdmVFLRINcOutQ1CyUocWUtwQsrybuK7CjlsMLf/ux9Pi6IbFZdCmaCMjmaTNMnQocMbTeO7AwJCQPWVpf4q7/6K6JqmEw8SCYevOt6vYyERtdmKjWyRg7KIt2exYfX95jIpMlmHu4NdfNmma2Syfxsnmg4wD99UubXOyLpVIK57KNvmXsrdp5J0e0EwFM3P+q2q2cnfXYxzXMrKVLxiJ+LUK/X2d/f59q1azQaDRKJBCsrKwQCAdrtth8Z/HWJDiORyAlxoSAIJ8SFsiwTi8VG+ohyHd0KMpefYdjv0ev1EAMRfvb7Mm9dL3NcM0iFhrQaNb/j02w2/ewHy7Lo9/vs7OxQq9XQdZ1arebnHVSrVZ8YVSoVSqUSR0dHfgfjvffeo1Cus2dkKQ3TdEmiojEQFKKiToAhouAQwkQWLJJCA0Wy/TXZTqfDuXPnCAQClEolUqnUUzWDDwQCxGIxyuUymqb5GR1PGkzTZGtri3A4zMrKiv83MDs7e9dlXddlY/0626U+diBOPhPh+89NPNA40INlWWxtbSEIAmtra0/VGGWMxwfB9TwvnxJU2wPWjzTikQCr0+o9XySHtR5/916FT67eYFeLYCHBrbRCb8XwD7C4Mt3nf/urPyYa/vwXjW7aJ1r+umnzn98r8s5HGyQVl+dmLJTAHzwCRFFEFEX/a0mS/O91TPi/39Wpdiyi8oCpUIMPtCW4laf4w6UGl5ciZDIZcrkcyWTykbZyvbFBOBxmcXGRra0totEoy8vLj+w27ne7h4eHvvPh0dER1WoVXdcZDocEAgEmJydZWVlhYmLC37d2XZdEIkE2m73vOuSjguu6vrgwGo3eJS7cPSjwH//LFsfNARPJKC/MWrTK+1S7LhvtFHavCaEE/+qMQi4m0uqaZKYWSUcDREKi76y3sLCAYRg0Gg1CoZC/lTAcDhkOh1iWxWAw8D8H/Md97do1ql2X3d4kAXdIgzRhoUcUjWnxGFmwsFyZY3sOHRUVnbnAEa+/+iK2bbO3t8frr7/OuXPnuHr1KqqqfuX/918Fut2u/7frOfg9KfB0RaIocvr0aWRZ9gv16urqXZdvNpv88pe/xJajrDzzKstT6kONCBzHYWtrC9M0OXPmzBO/NjrGk4OnjjJOJIJMJD5bEZuOBklFAzhqHkvrMCIC9/NilzEDKZr68IHIwJ3z+kZ3QL1rszafo9Luo8QE0hHHn607juOL9bzPHWf08+2aQKevEMCkMwhiDBKACDi4iPzLXg/96PcnbG+9GN1AIOBH43qtx2w264cMPcgJOpfLEY1G2d3dZWNjg1gsRrPZRNf1r9Q9MJfL+fa5mUyGK1euUCqV/BOTpmnUajWOj48JBAJMTU2xvLxMNBql1Wqxs7PjWw1ns9mvZNb9eeLCQCTFUE5Sbh5w0IDDwwYXMzrhUIiplEItkEMctrF7JlZijl9v9RhsHvDM8hT/zXfmmZmZYTgcYhgGExMTBINBDg8PuXHjhp+rIIqi79EQCoVQFMX3m6hUKqyvrxMSeyj0MIUwGbdGnCayYPuPo+eGqTGBi0SPCGmnjm3bLCwssL+/z/b2NmfPnmV6epr9/X0/1vppQjQa9bMMdnd3T2R4PE7Yts329jau6/ondNd10XWdycnJe/7O/v4+pmny0ksXOXP64bqMruuyt7eHYRicOnVqTATGeCg8dWTgQaAqEi+sxNkt6QzMHsctcBEQsYigYRDBIgiIiAKkY8ETQsGHQToaZDIZotyK8+xaiO9cfvCW3nPtAcW/v0mplWQyGeLFlQj/x88LWI6IJMCfXp5lMhjxC7Rpmv4psdfrYRgG9Xqdw8PDZd3UIQAAIABJREFUE9frdSQkSSIQCPj2u7FYjHQ6zeTkJHNzc6RSKSKRCGfPnmV/f59GozFSzO8ekJ1efOBthS+CbDaLKIrs7e1h2zbLy8v0er1R+mQk4q9TFYtFSqUSh4eHBINBpqenmZubIxwOU6vVKJfLRKNRMpnMA5Ogh8H9xIXpaJCZXIrrh13C/TZDN4BhSWB3CJqfkHECBFyTgwOBtw5kir0EitDno/Uj+qVPmEpIPonx2t0XLlygXq+j6zrJZJKlpaX7nnI3Njbo9/tYZpdp0WRAENG1qbpTmG6YoNMnLdbpOwEGKNhIiDgMnACVSoVXX32VRCLhq80XFxf9lU8vNvdpQiwWY2VlhZ2dHfb29h7JpsaXgeu67O7uYprmCZOkfr+Pbdv3JNuGYbC3t0ckEvlCHZqjoyNarRYrKytPhBX4GE8XvpFkACCfCXNmNkZUkbngOEwkFMyBzdB2UUMSH93UKNRNJpIB/upPZr9w0VMV6b7bAp+HiUSQ/+VHi+xVDJZykVHXIxnh19cavHE+zStn7l5xg9EbjZcdoGkajUaDcrlMs9lE0zR6vZ5vLNTv9+n1er5R0p3wxhaed8DAETkaTDI5b3J2eYofXM59ZYQgnU4jiiK7u7tsb2+zsrLC6uoqhmFQKBRot9tMT09z6dIlNE1je3ubYrHI/v4+iqIwPT3tn7D29/c5PDwknU6TyWQeiWObB8+5MB6Pc3Bw4DsX/ruXRi39vaMSvfohcUXgO6+8gSzLfPTRR5TLZWq6QKdvEcDAEMJE3S6KOECSRjqEdrvN9vY2586dG9laz81Rq9X8LsHy8vJdJ/VWq+WHKMFoE0bGwiCC6YYJuEPqZDFcFQkLBwEbCReRupulo3f9WOzj42O2t7dZWlpienqamzdv+oZKTxsSiQTLy8vs7Oz4eRKPixB4bn+rq6snnstutwtwz2Lt+XNcvHjxoUWz5XKZSqXC/Pz82FRojC+Ep04z8DC413zf+9ro2yeK8DcZtm374rRCoUCtVqPdbmMYBv1+n8Fg4K8Gdm2FI3uOuVycgaDw+mqAs4sTZDIZ31f/Ub/BdjoddnZ2UFWVlZUV/3R/OykIhUJMT08Ti8X89nalUmE4HBIOh5mamiKTySAIApZl+c6H6XT6kYri+v0+e3t76LrOzMwMseQETX1Is3zIu2//BsuyeOWVV1hbW+OXv/wlpVqLjWaUhiERkh3mAscoQh/A79rYtk0sFvMzIWZmZsjlcn4g0tzc3ImAo3fffZe33noLTdNO3DfLlSk6eTQ3Rp8IKWp0iaIRxyaAiEWcDs/melxaTrM0P8PVq1eRZZnXX3+dyclJrl275ivQn1Z4xk7ZbJaFhYWv/fY9463FxcW7TH729/fRdZ1z586d+L5lWbz55pu0223+/M///KHIbLPZZHd3l6mpKfL5/CN5DGN8+/CNJgNjPDx00+b/+c0ulc4QhR6rsSbOsIfjOP76YCqVIhqNEolEUFX1kcwmu90u29vbfiG6XQF9L1KQTqcZDAbs7u6yu7vrr0ZGIpETroaiKPqiw3g8/kiIzJ3iwqWlJYLBIIVCgTfffJNut8vs7CzT09McHx9TqbfpDkSSqsTKQp5qtYosy7RaLQzDwDTNEyJTL7Z6amqKZDKJKIpMTEywsLCAZVn87d/+LeVymd7AZUCQIAMAf1QwJEjDzWK6Cn3CDAgyIEiAATI2YQzW8jH+9FKGSvGQ4XDI9PQ0r7/+ul9Iz5w581S3muv1Ojdv3iSXy32tO/bVapWDgwPy+fw9TX6uX7+Oqqp3kZRCocCvfvUrlpeXef311x/49jRNY2tri1Qq9Vg7IWM8/RiTgTHuwu0dlEhIpNvt+t4E3W7XN0UKBAKEw2E/28AjB5FI5At5A+i6ztbWFsFgkLW1tbtO9PcjBYIg0Ov12N3dZWdnh0aj4RODdDpNLBbzBZee6PBRERhP8+CJC6vVKj/96U/RNI1nnnmGfD7P7373OxRFwbIsFhcXCQaD1Ot1ZmZmcF3X79QEg0E0TUPXdX+27JEDRVGYnJxECkb4l4/Xsfq9kT6AMEH64OI7D06LxwC03QR1d5Kga6ITwwZMIoQxiYdc/mhNIhcTsSwLy7L47ne/Szwe5/r16/7/wdMMrzBPTk7ec43vUcMb+UxMTNzTQti2bT766CMWFhZOGJO5rsuvf/1rjo6O+P73v//AMde9Xo+NjQ0ikQhra2tjIjDGl8JT4TMwxteL202SvICiZDJJPp8nl8sRi8WQZRnHcRgOR6ZNlmWh6zqNRoNKpUKtVkPTNPr9Pq7r+tqEz7zdYJBEIkG1WqXZbN4VRhMIBEin0ySTST/1rdFoIEkSsViMXC7H6dOn/Tltt9v19/W9KOput+sLJYEvNfbwPBtM06RYLI5yAm5ZPtu27esL4vE4pmn6j8UzZ9J1nWAwSCAQwDRN5ufn+c53vsPi4iLpdJpwOIwgCPT7fTRN46hY5f1DgZqVouuOxjgKJgYqA4JEhB59FFShi4SNi8iQIAMhjIgNuMiAiYLitEm6ZaIRxb9fw+HQN8Ipl8vE4/GnOh1QVVUkSfLDqO4VCPSooOs629vbJBKJ+57Qvb+9fD5/gui2220++OADstksFy9efKDbGw6HbG5uEggEWFtbe6LWKcd4OjEmA2M8FILBIPF4nFwuRyaTIRwO+4mIwInugGVZtFotX/XvKeUHgwGu6yLL8l1vYoFAwE+nq9fr98yv/yxSEA6HCYVCTE5Ocvr0aZaWlgiFQui67l9np9Px45hbrRbD4fALOx16zoWCIPDpp5+iaRoXLlzg0qVLfqvadV2/+GezWTqdDtFolFAoRDweRxRFer0epVLJJ06DwcDXc3idAZMwJTM2itsmSECwGBK4lUMw9DsDUTTK7gwt0riugIWMg4hDAJk+UbrkxQPs/sgFUZZlstks1WqVxcVFotGov+b5tAfbePkfhUIBURQfqbDUw52mQvcrzI1GA8Mw7ooU//TTTymVSrzwwgsPJP6zbZvNzU0cx3lqw5rGePIwHhOM8UgwGAz84uoJ26LRKIlEgnA47IsYDcPAMAw/8EhRlBMjhnA47Mf/3v6G91leAp81PvDgui6NRoPd3V0ODg7odDq4rkswGCQWi5FMJslms0xMTDy0C6NpmmxubmLbNrIsMxgMmJmZIZlM8tOf/pRKpeKTjeXlZX+s4UViR6NRjo6OODo6wnVdX/fgeUZks1mi0Sg/+U9/z69v6KPRgNsnIbSQBNvP1/D0AwOCHDmL4Np0SGMjIjPAQiJBk1nhkKhk+Pc/pCZYPXsJ22xz7tQyzz77rC9K82yin3Z4or65uTlyudwju97hcMjGxgaCIPimQvfD7Z4DHkzT5O/+7u8IBAL8+Mc//twTvuu6bG9vo+s6p0+ffuo8IcZ4cjEmA2M8cngdgVar5RfdcDhMKpXyXRRN0/TJga7r9Ho9XNdFEAQ/6yAYDFIqlRAEgVOnTn3uutuDkALADxfa3d3l6OgITdNwHMcnBul02lf0x2Kxzxwj9Ho9Njc3fZ9/WZZ9ceHtJlPvvPMO7a5JZnqRaBAMrcFwOCQYDBIMBsnlcpimSafTIRwO+6uTyWQSx3Eol8u8/e7vaZgKphuih4olBE5oBDwBoe7E2GcZkxACAjImOkk8902FLmf5hISs+RsIQjjNSj7FWrzDv/uz7yOKIjdu3GDoSKSn5r9Sz4mvC0dHR5TLZebn5x94Lv9Z8E7ow+GQ06dPf64O5eOPP2ZiYoKZmRn/exsbG7z11lu8/PLLd20Y3As3b96k0Wiwtrb2lY49xvj2YTwmGOORw3POS6fT5HI5f2TgiRAbjQau6xKLxfzT+OTkJMlk0j/p6LpOs9nEsixKpRIHBwc+WfBsne8s0vcbH3htdu/yoiiiqiqzs7OcOnWK6elpJEmi1+vRbrf9FcxisUiz2UQQBBRFucvQyIs0DoVCfrtWEARUVcV1Xa5evcrx8fFo7m8LbLRiHHRCaAOJZHCAJLi+TiKVSjE3N+cLH70QI+9xfXJtg+uNBMfuLG3SmEQIYmLdGg3U3BwNN0fJnaZKji5RbCQcBAQEbP4wArEI0iJJ0q3jCBJNN4siDtCtAKpokI6FiEaj3Dws8g+fttitS5RaAxYmwnfldTxNiMfjWJZFsVj03Tu/KDxTIc/t7/NO6KZpUi6XmZqa8rtctm3z9ttvIwgCr7322ucaZhUKBT/IbOwlMMajxrgzMMbXBsdx0DTN7xpYluVrBJLJ5F2ncNu2MQzDX5/SNI1UKuUX5tv1CXcmDMLdnYKZmRl/vn8vDAYDKpUKu7u7FItFf3MiGAySSqWYnZ0dbQOE4xxX2zTLB6TiET8/odVq0W630TTNDyXy7qcUneSTqkq3UcCwZP7tc2liskmtViMcDjMxMcGZM2fodDrUajWWlpbY2tpic3MTXdc5bgzY7M3QtcPYSFgEkLCIoDPNISVmcRDQiWEBNrcXuiFw51zZYYIiK+IWVXcKQUkRCThMhjokVZmllVNU623WmyrPnlqg0R3y5y/mvpLwrK8TrutycHBArVZjeXn5Cyc17u/vU6/XWV1dJR6Pf+7lPf3IxYsX/VHC8fExb775Js8++yxXrlz5zN+v1Wrs7+/fd2VxjDG+LMZkYIzHAs+jvdls0mq1GAwGSJLkEwNPWOfBcRy2t7fpdDpMT08jiqI/YvA2Gu5ccVRVFVmWH5oUwOgkVyqV2Nvb81PxXNcFWeGwP0lVs0iH4eKMReBWFoCiKCQSCZLJJJFIhHK5zLlz50bK7519fn8ooNtBOtV95pUqZ9eW6Pf7NJvNE52KGzduMDk5ia7rXL16lZ2dHcyhy6GzyGF/AgsJEZsM1Vsnf5cq0zhIuDi3HsHts2vn1sft33MJobPINhEMGmTRiRGURSxXZnVhgkQIMpkMpi0zmQzxg4ew2n6S4bouN2/epNlssry8/NCn7M8yFbofDg4O0DSN8+fP+/fhV7/6FaVSib/4i7/4TF3G560sjjHGo8A31o54jCcbXjRwNBplbm7OX8trNpvU63VEUSQej/vkQJIkVldX2d3dpVwu+/a5MBJx3a4/qFQq2PaoQAeDQVRV9df5Wq0We3t7FItFpqen70sKFEVhcXGRxcVFdF33icHmYZNye4BrtiiYEVKCxrOrU5w+fdoPGPJW84LBoK9mvxyNooR3KTd05i+eZuN6n62tLebm5lBVFU3TKBQKxGIxEokEH374ITCyQlZVFbnfJ6HXKJBAQsRCYohMGBONBA4iLi6jxEvz1hLh7biziLv0UThgBQeBPgogErT6KBIYWheXFH96Kutnd3wTiADgWxV7rf4HPd3D6IReLBbJ5/MPtWlxZ/hXu932BY2fRQQMw2B3d5dEIvG1mieN8e3DuDMwxhMH0zT9truu6wiC4Cv+E4kER0dHNJvNzzyZ9fv9EwTh9g0GQRAwDAPLsojFYiwsLPhWxp8F13Wp1Nv85K0Ddo8aCP0mU2IBWbB8QyPPNbDVahEKhXxhmZcnUSgUKJfLBAIBDg8PqdVqxONxHMeh3+/7BaPRaJBKpfycCVmW2S712LbP4L1g54Q9wuhsus/QIeHdS0QcHBxGBEBkFN19r0JuEcL0icBIYOgSpouMw/xsnlfPZvjxi5PfGCJwO1zXZWdnh06n80CCvGKlwcc3dlnKZzm9uvjAt+M4Dh9++OEJ4eLbb7/NxsYGP/zhD++73dDv90fJlLc0KWMvgTG+SozJwBhPNO61sqiqKoZhMBgMmJ5dQlTin3tydV0X0zRPkANvRNHr9VBVdZQ1kJpg6IaYzsaIhmU/itq2bSzLwrZtNGNAtd1HtHTajTKHh4c0Gg36/b6/DQEjkxtPpOZtDXjEoNPpAPhBU4qi+OuXkUiEubk5TNOk0WgQDMfYLzYx9Q5ldwYDlQg6k0IBnShlZxoDFR0VEZAY4t4iAS4CFgojQnA32ZHoYyMy0hS4CDgkBI2AEuHfXFmiP3S+EVqB+8FxHHZ2duh2u6ytrd33lH71xhZ/+w8bhOLTPLM281ABXpqmsbm5yblz5wiHw/T7fX7yk58Qi8X4sz/7s3v+jmVZbGxs4LouZ86ceahV1zHG+CIY/4WN8UTDW7vL5XJYlkW73abVagFQa2q8+emnmESYSoZ4dTVILBzwExg9nns73/U+l2WZTCZDLBaj1WpRr9f5lw8+ZbMdQ7dDxEM2F6eGJKMKoVCIUCiELMsnuweSRCqVIp1OY5ojMWCpVKLVamGaJpY16hjMzs6STCZ9EyFRFInFYnS7XX+N8vDw0P+ZtxXx4SfXaQ8USq0QjW4GhQiTQoEhIWxXpOzO0CeMjUyQPgNGKvWhvzkg3BodDLn3S9251Q8Y3vInHBW3SEQhmcpQ6wxYnVa/cLz30wBRFFlZWWFra4vt7W3W1tbuymSwLIu//+VvKLZTnM/YlFsDGt0BqvJgBEnXdURR9LcItra26PV6vPzyy/e8vKePsSxrTATG+Now/isb46mBV8AzmQyO4xC6WeX31SMilsZhZcC6YJIO235AUSAQIBAYkQPvc+9DkiRf6R+JRJiZmeGg2mPvmk4Og6buoplDBLvtWzKHw2ESiQSZTIZkMnnPkCbLslhfX2d9fR3TNKlUKpTLZaLRKMvLy5w5c4ZIJIKu6+i6Trlc5ujoiMFgwHA49D0Y3n3/I3a7aVpugk5fIkmVvhBhSIiWmzqRTIgAYVfDIoSNyBAJAW7FF0u4cEtW6IkLhVv/juSGIiICIDJEBHp2kNfmo3zvQoZ8JvyNHBHcDlEUWV1dZWtri62trbs8LX7+859jm23OLJ1B6wtMKc5DESRPLyAIAo7jsL6+TiwWY3Fx8a7Luq7L3t4evV6PU6dOPZIMjTHGeBCMycAYTyVEUWRxJsv5VZdyq8/ZZIjvXUgSEGz/BH67pe/tMc1eToDXtvda+KfUBEVTp6bZnEkpvHFWBbtPt9ul2WzS6XSo1+u+130wGPQJQiqVIpFI+H74ly9fZnZ2llqtxo0bNzg4OOCjjz7i008/JZVKcebMGabyC1S0ImIgzOLiIoPBwN9c0CyFliWjOzYmYVpijkmxAo6LSZgIPUxUOiRRXIMIPVLU0IjRR8YmiI1MGJ0hQSxGJ38BBwHLfx5lLCyCiFgIjGbSEdni8syQU/mn33nwQSFJEmtra2xubvqEIBwOc3h4yMbGBvnJLP/+37/CB1c3iQQMIqEHn993u10/mOj4+JhWq8WVK1fuqQE4Ojqi1WqxsrLyVKdGjvH0YawZGOOpxu0Ji593gh0Oh3eRhNvJguM4mEMXrQ/JiERcDZ0gDJ4HvGVZvuag3W7T6/X8bAZJkuh0OszNzTE/P+93ECzLolAocO3aNYrFIpox5EZDHRV20eRUQkMJ/GEzom8J7NtLNMgSpE8Aizlxj7DQo+jk6aHSc0fxxENkFPokaGISokWWUSiRxRzbVJlFIw64RNHoE0RhiEYUAZsQA4bIuMgkw5BPBTif1vjOK1eYzSW/8Z2B22FZFpubm1iWxalTp/ibv/kbdF3nr//6r0kmk3S7XTY2Nh7Yo6Df73P16lVWV1dJJBL87Gc/o16v85d/+Zd3+WJ4XaJH5ZA4xhgPg3FnYIynGqoiPfDs1hsR3O/EZVnWPUlCp9PxyYIHURR9PYDX/u33+1SrVTqdjq9D8PIPVFUlmUz6BjNXd0p89OYmIUwMR6HarhCVTL9LAQPy7gGuDUvFD7m8/wtSRpmummFr8WVuTL1KH5mR8E/CRsRAxUG4tU0gIOEgIqDQxSCMhIOKBsQxCBPBAFwGKAwJIGLT7susKCo3yhpbP7/BC8+ufmP8BR4Esiz7HYKf/OQndDodXnrpJd+LwFtRLRQKJJPJz91A8dIxVVWl2WxSKpU4derUXUSg0WhwdHTE1NTUmAiM8VgwJgNjjHELsiz7xkX3wu1k4c7uQr/fx3Ecf11xenraXyfs9XoYhkGj0cC2bURRxJVCnFnKcWOvjEKPkHCrM2GaiKI4ui9Di3/9yf/F+YPf3iryLhGjzVR1G2W5wS/O/48IuAi3jIejjLYtLAI4SAQYUGUKjeQttYCNQYQhMs6t3wxjoAgDam4WFxHLgWJDByHB8wtJyq3+Q4nlvgkIBALE43EODw+JRCK88sorJ34+MzPD+vo6zWaTdDr9mdel67ovPv30008RBIELFy6cuIymady8edPPxBhjjMeBMRkYY4wHxIOQhY8//hhFUchms3cRB8uyGAwGGIZBr9djKVJHSHXotStIWH6ks3e5VPWY8we/BUC85S4g3irrV3Z/xkfT36OVniHHNkFxSIA+Q0Kk3DpDgtTdCb/4i7fEgj1GowkBBwOBMDpSMIxqiyihILppkc/FaZsiXSvI6kToG71NcC+4rssvfvELZFnm8uXLvobAGxOpqkoikaBQKHyuk2W320VVVUzT5ObNm0xPT58wOOr1euzs7BCNRllcXPzcTsMYY3xVGJOBMcZ4RPBcD/P5/D0tbr0ifztJuKzr/P3P/4Fqu0fIGhCLyMRiMer1OssH7+MIIqLr3HVdtiDx/NEv+K/p/56w1CPIgKKTxySMQo8JoYRGgo6bQKGHA0TQ6aEyohbSre4AWJZNJuoQEAdYFuwUuyxNp/jB5QlWp9VvzYjAw29+8xuazSaXLl3iypUrbGxs+ITAW/ObmZnhxo0bNBqN+xpfOY5Dr9cjm81y/fp1BoPBia7AcDhk+/9v785i7LzPPL9/3/09+1o7WVVkFYuUKFvUYrnl3R673V562tNBMkGQycxVkJsEQe5yFd/lYi4yyAAJBskgmWxAkulJt6fbhttur9LIskxJlrkXq0jWXnX2/d3/uTjksWRJlixSokQ+H6AueMA6rHMOUe/v/f+f//Ncv45t26ysrEgQEPeVtLQS4h45rHeo9RW69eZpeHfqdO8cebxzVNFO54mq59hnif3kGF6oftu8yOu+ZRAA0FVMzm+S1obYBATYeKRw8BmRYUCWaXapUCNPiyo1StSJsPjt0cKEIXn8WCPRTE7P6hwvJDyxnGG6YFPOWQ9dEKjX67z88svk83m+8pWvTLr/hWHI+vr6JPCl02mKxSJ7e3u8XQ32cDicjO++du3aG7YB4jhmfX0dpRSrq6vvOLFQiPebrAwIcQ8MvJi/+dUh27WQ7f4Gz540sfRxDcGdr7dSH2g0ejFZO6Hnp/ASG4bjoUid/CzlxvZbBgKlafj5PHP6LqYWESUGBjFDlSbEoq6mSWtDFvQtQmyaqkpXVW53Gxw/n0Vw+6ihhutYfPnZU6zvDzls+8wUH87tge985zskScI3vvGNyZ2667pvOHZ46tQpDMNgfn6eS5cu0Wg0JkcHX+9Os6HDw0P6/T6f+cxnJv/O5uYmQRBw+vTpNxUTCnE/SBgQ4h5o9gMOOwEZK+Kg5dEepjhWcSeDi97qyzAMrl6/ycJBTL9whub+JnpoUPNKmEnA84vf4sTmL9/USFgxnkDwyuIfk8MjUiY1NUuoTMbdBKJJMEj0cUgIlIONh0mCun3aoKx1sdUQT0tzLD1gedphdS7zro9qPmief/556vU6jz766JuGAqXTaU6dOvWGToWpVIpSqcT+/j7lcvlNfQP6/T7pdJoLFy6QSqVYW1sDxuOPe73e5DmE+DCQMCDEPVBMmxTchNiYYnmuyBNn3/k4XqvVYtBt8g8+tYjm5HnhhSb/z0sWA9Lj1sC5mP/vyf+Kb73yz9BVMqkfiHWTv336P6OePobDFgAeKVKax0ClCHAZkMNlhK5iTC3GZcRIy5BVPQJsQOFqHjPaDiE2hhdw5UaNx1bnHtg5BL9Pq9XipZdeIpvN8tWvfvUt/04mk5l0KtzY2GBlZYX5+XkuXrxIo9F405HAOysDtVqNxx9/HF3X2dvbo9FocOLEiXccjCTEB0nCgBD3gKlFPLOoUZ2feleNenzf59atW5RKJZaOzYwHIVklehi3DwqaQMILC3+fy9U/4vM7/5p57wbDdIlfLXyVtjONy7hwUNPAZYRHCpsQjRFZuiSaSaIZuFbMqtPGTGns1Q7YjedJMyJQFqFm00yq3Dgqcf0HO3y5qT+wUwrfTm8Y8n/+m+8zChXf+MaXJ6cG3ko2m50Egs3NTVZWViiXy+zv71OpVCarA3faS+/v72OaJo899tgbxh+/05FEIT5oEgaEuAd838e1NE7O5bGs338hvdN/3jAMlpaWaDab48mH9SNi0iS/M26475T5u5V/xGn9Ejm9S0l1yeBhE2Bq4yOJx/R9fGVjELMTztMjj6vGKwPjmoUO4ahHJZWmN+wzUi4uI0BjpGexbIcoTtg86NPslx6avgIDL+Zf/OV5LuxaHJ96lIXFlXf8nlwux8rKChsbG9y4cYO5uTmazSb1en0yjngwGOD7PkdHRywtLREEAbdu3WJqaorZ2dn3+2UJ8QeTMCDEPXCnWdDvu6u8Y3d3l+FwyNLSEhsbG5MRzYe7m6Q4QUCKEAODBIWBToxGArd7DZhahPm6+QJxHOPaBnlbYxin6IZF+uQYkMVOQhaNLXQVEsQ6wSihyj6JbqCrGE+lsfQYzXHQgEoqfqgKB//dxV1euNIkp0ckVpGXfn2FtePjORPpdPptj/sVCgVOnjzJ5uYmmqZNVgeq1Sq6rtPv9zk8PCRJEk6fPs3m5ibFYvFNtQhCfFhIGBDiHvB9fzKi9vfpdDocHBzgOA63bt0ijmNarRbXrl1D97tMk6FHFpuQIk3alPGwSeNhEbzlc2qaNpl4GBlVfFLj5kSaRY8iHdXFZcRePEeiW6QYUlX7HKp56mqaKDY45cR8ds1lsRL8QUN4Psqu7PT5Z3+1iacKDCjysWKWat7m6Ohosryfz+cpFArk8/k3jRIuFoucOHGCzc1NCoUCURRRq9WYmZmh3+9Tr9eZmpqi0WiQSqU4ceKE9BL4rmriAAAgAElEQVQQH1oSBoS4BzzPe8dxs2EYcvnyZfr9PsViEcdx2N3dnVSXG0QsGNsE2JMtgHzSYU8tEmFRU7PMqfFRwtdLkgTDMBgMBmRzPVJajp7KYRtg6Q5t7Tj90MDDpmDGJGYKzUjo9PIMyKDQ2agrnlwY0jIUl24csTxffaDrBgZezL/8/jojZY9HPScGhzvXeS0YksvlSKfTOI7DaDSiVqthGMak82ChUCCVSqFpGqVSieXlZW7evEkcxxwcHFAul9nY2CAMQwqFAoZhsLq6+pZTCoX4sJAwIMQ94Pv+760O932fF198kVarxcrKeF/68uXLHB0d4fs+YRgCb94CSDSDWBnj0wBk6KgCBToABNi4eoiuxt9rWRajziGPWB2GRgXNdOhSZvXEMr9a7zLlQM9LSMeH5NMJul9ABRYaigTFIDR4ZTfiUr/H8QP1QA8oavYDgtEAk5hEc8jZMWvT44t1vV4nDMPJHAnTNCcDpO4MuiqVSkxPT1MoFCgWiywuLrK5uUm9XmdnZ4e9vT1M06RcLnPq1Kk3rSoI8WEj/0OFuEtxHBOG4VuuDCilODo64tKlS3S7Xc6cOcNwOOTSpUt0Op3JIKO3kzZjUqHHUKXxlU1dTdMnDxoEOKSUx6y2g5bEaJo2/ooDypmQjAubvR7bu0dkLJN8KsXHThbIdfcI4ix5L6Qb2USJgWUkHJutcKvrMFWwH/gBReWsTVbvMW2GHFtc4s+eLrNYXp60ix4Oh3S7XXq9Hv1+H8/zGAwGRFE06UJ4p0YklUpRqVQoFouMRiOee+EldpsBj546zurq6juuGAnxYSBhQIi75Ps+wJtqBvr9PltbW7RaLaIoYnl5mUajwfr6Op7nTaYU3rm4/K5xMWLCnL5DOylQV9OkNI++yqABGQaMlEtsprEZX7BiTA7UPH4vTcZTrM5YxFGL6wNFaE1Rzk2T1TKcPHmSYB361/vYJthJl94gTSWfo9ELH/gOhBnXYMmtkc55/Of/wZ+Qz7z5td6ZOvn6YVODwYBGo0G9Xp+EhXa7zdHREVEUMfST2zMiplgpPAbGO9eRCPFhIGFAiLt0JwzcuQOMoojd3V3q9fpkfK1lWdTrdba3tydbAsPh8G3bFMM4DARBgKUnFFSHoZbFI0WGAYahM4odXEZYaoRpmQRBgIdFbOZxtZB9L4dX06jmTEIGpMIGN/dyzJsalWHCn392hXT2kL2jLvu1FDfaFifT8JXHqyxU3Ad2i+CO2B9QzehvGQRgXJh5Z3tg8j1xzOzsLMPhkE6nw+HhITdv3mRvb28cGkhPZkQ0BzzQqyviwSJhQIi75HkehmFgmiaNRoOdnR2UUlRnjrGxfUjrsE7K1jg4OJgs5fd64/kDb7cq4LrupPJc13XMJGLB3MNLLGwCXMeh6ylsAnQVAeMLlo2PpQb4+rg9rpN06Y3yzFaLNDs9vF6NS75ifTDkCb/Fn//RPDeOijx/ucVcyaHRC0k5+gMfBGAc4t6u+Y9S44FRo9GI0WjEYDCg0+nQ6/UYDAY0m0263S79fp8wDEmS8bwHm2DSAOrg1mXKX13+AF+REO+dhAEh7lK7N6I+gFd/c4U4GFAulylNzfFvntvitWs18rbJvLlP1rWJooh2u42maQTB2x8VtG0bpRS6rmMYBnEc45hgRCOUUtiGTdbwCGKdoUoTBwGmpmHriplki1C1ma6s0Oo7lO2AtdyAvg2NUczmsEDRNvnl9Q5Pr+Y5ezzHVs17qAYUxXHMMEjImUU6Ax8t/u2FfzQaMRwO8TwP3/eJoogwDBkMBnS7XQaDAWEYTrYQAAzDoFKp0Gg0mIt2xydCWgGh9xlw3zzOWogPGwkDQtyFgRfzt6822WkMWZqBf/9zK8xUi2zXR/Qji6wdU+vFLM6XSOIOzWYT0zQZDAYEsc6AAn5ikte6uPp4uyGdTk+2CJRSkxUCwzDesK0QxDr7yQIjMpiELFq7uFqAqcXYdJjNNTGmCzQPtuh3LDYHFXoqi68sDNNiPHlXI+MafO3JqYdqQNH1rRrXvQV2D1y6f/MaTx9Tk1MZSZIQxzFKKTzPo9Pp0O128X1/sgIQRdF4C8eyOHHiBKdOneL5559HKYWpxZMTIa+88gpf/OIX79vrFOLdkjAgxF1o9gP0dIVT2Ry+cggY1w04WkD7YJNGL2Ku5KBHbRrNBqZpMhqN8CPY11fYCadR6GRVjzUukjbDN0yy03UdXdfRNO0N59TH+9M2IzL4yqFDAUKN09l99HB8OqF+uMPSksH8TJmbh32UXWAx7xI0DPIpncdPFFiojAvcMq7x0OxtD7yY777aoqWm0TE56ik6I8VswZmsAjQaDXq9HqPReCXmTgOidrvNYDAAYHp6mq9//eu4rst3v/tdYPx53QkMAOvr6zzyyCPSglh86EkYEOIulLM2c+UUh22dudJ4if3o6Iif//znzBlDzpxZYNg+pNOsYdv2pCpdc8r0vCwJOjoKjzQDslTT/uSir5TCMIxJnYFhGKjx7TxRFGEDJiEdCrj4xJqJMjOkLY3RaIRt2zSbTb7whS9gXtukvtml79mcLIacWzD40tNrD8UqwO9q9gPCxKCSMxhGFlnXIO+OGwa1222GwyGapmFZFsVikXQ6TaPR4PDwkCiKSKVSfOITn+DZZ58ljmO+//3vMxgMyGQyDIfDybYOjDtOXrhwgenpaWk6JD7UJAwIcRd+d4n9aH+LX/ziF8RxzCOnTrC9vU23VcM0TTRNo9/vY5omK8uzbF3u0CGNQsdhQE4fkMkU0HWdOI4nnQXvnG0fDodv+LdNLWJe20IpiDBJayO0aEC6kCGKosnRuBdeeIE//dM/JQye46B5k9PH5ul397lwrcjHz5x86AJBPqUzWzDoV7JEXo/p6BbXr47v9l3XpVqtYts2ruvSbrfZ2NiYFImura3xpS99iUqlAsCLL75IrVYjlUphGOP38c7nB0w6GG5tbbG8vHxfXq8Q74aEASHu0tCP2dwf8OLBJTq7V8ilLVZXV7l+/TqNxnhrwHEcdvZr+CrDx1aXadUPOKa1gJAmVarsUc3bOI5ze8pgxChICLCIg4RES2NHAaYGkTInLYtd3WdJuzH5M5GG5xnEmsUwsilY4wDy4x//mL//zW/yne98h83NTfbiBV5t1tgd5h7YToMDL56ENEuPabfbNBoNtre30eptqkFM2o7Jp2zS6Wls28YwjEkb4mvXrtHtdoHxlsCzzz7LI488MrnDX19fHz+XpjE1NcXOzs4kENw5PqqUIggCrl27xsLCwrsaZCXE/SBhQIi7UOsE/Hf/9ga/2WygkpDHpmf41tkKGxtXaTab6LpOLpfj1s4BO+EcRqbKrw8UudGITlLiJmuATpcy5fAqtNtEUYQXKnbCWUZkGSY2OiE53SMbt6gxjY9DgS5T+v7t3gN90KAXOQSDmKa+wCBysIIRx7MeW7tHfPe732VpaYnt+hXqg5gnl0sPbKfBgRfzvZePuHijSRh4PFZqYYStyXTJtOtSLeXIZDLA+KKdTqeJ45jLly9Tr9eJ45hsNssjjzzCM88884Z2061Wi4sXL44nRrouc3NzrK+vY9s2cRy/YavA93263S4bGxucOXPmvrwfQrwTCQNC3IUbR0N2mx5JEhHFGlf3Q/7Xv3kNNJh2FFPlHC9vBXh+ntgp4iifWw2TEjkO1RygAwmgc2M4RSnXxdR1Akx80uRzaY7aKSxCOkkRjVlCXDQS+uSpJVUUOjY+Nh5R7JCOPArFEtMFuHaYYtALKFlptJ1DlpaW+A///Jv8D3/xIheubXHm1El+td4mSWBp+sEJBM1+wI3DIVd2B7QGEet7Fn980mVxtojrupimOam/yGQyGIbBpUuX2NnZmUyAXFhY4KmnnmJ5efkN0wajKOKXv/wlURRhGAblcpnhcEgcx2QyGQaDAY7jTLZ1ut0u8/Pz3Lhxg+PHj08CiBAfJhIGhLgLJ6bTLJRd+sOI/tBnoFJci1cBuBkNcQYhHhk0ElxvQA2HAJsma2gEgGIcCBQqhhvDCgvGHkYc4DCiM0yjk5CgiG83FlJogEaIRYSJi0ePAglldBR9FRH3+oRGFdv2KZpDsEok5oBXfnOZT1cW+cfffIq/+N5z/N2rByRGmn/7qxr/zT889cAEgnLWxtB1hpGBYSg6kc6V7gxrS2AbiiDWCLUUc5UMNzeuTlpEW5bF3Nwca2trPP7442842XHHq6++ynA4xDRNdF1nfn6eq1evous6ruuOC0RfFx7uHEmM45j19XXOnTv3Qb4VQrwrxre//e1v3+8fQoiPqoxr8PGlPMWMxf5Rg74fEWGjoYgxSTBvX8x1NMZHzmJsYix0NDL0cOnj0iOjDQlxKTkBrh5QTkV8+ok19vf2iJT9uucy0FGYhLjERJqLdjsggEaCQZQAmknOtVAqxtYiDDvL1abLpe0BTqaMnS7wm92Qcs6hPYw4PuWyNv9g3LXaps582eXXN7s0+hEGGgrFUlkjm83zs5sWP77U5We/3mZQu4GjRxSLRU6cOMGnPvUpzpw585b7+7du3eLKlSsUCgUGgwFTU1MsLS1x/vz5ccdHx5kcLfQ8Dxj3LUin01QqFVqtFtVq9S1DhhD3k5x1EeIuTRVs/viJKc4u5dBJAIVCRwEmHgkGCQYjHEa4hJhwOyBk6bGmX8HWDNpUiY00pUKGdDrNTKXA4nQaU4tJmRHT2YSS0WPBbrCS71Olyeqcy+lpWMwNsfUEHYVOiEIjSRJSKZulqsnB0ObFwyK3RhUOOgk/fXUHZWWZKqTojiLKWYvHjr/9COaPoqXpFP/ki/McK6coOCHEIUMv4q9f7fHD37S52dLY9kr8xjtNcXqRT3ziE3z5y19mfn7+DXf2dxw1Ovz0xYukcyX6/T7ZbJZisUiSJAyHQ3K5HJqmTU6OvH6mQafTIZ1Oo+s6169ff0MvAiE+DGSbQIh7pJBL4zIkQhGSgdv7/hm6DMiRYPHbu3cNnZARabT8cTJRipyKCcOAo25MqIpohTJbR0NiPcVCTkfPpAgaB9wYlGnEWRQOcySUszrb/YApY4imBRzEFUJSNEcaOR+aeh6PCMPQiCKDuqfR8CP2BzWOV12+9mSVZ8+UH5gtgtd7bKnA3/u4x+aBw3zJZO24y/nDOoqI8WcxLrpsRTkee+yxyWmA33XY8vjv/+I1OqMU1YHLyXSXtZkS09PTbG5uAlAul2m325jmeGjUnS0DGB8x7Pf7lEolarUah4eHzM3NfSDvgRDvhoQBIe6BZj/AT2w+d26Zn131aI8SNGIUFrqZxokVI6UBBuOCQZMInRYpXu2UsU2dWCmyusHF7iwDMrza1zlZa0ESsD/MUzEi9kc5+iqLpVskccJBD3THIQkGtMISGjYxJiYeES75lIZpOUCMF40vdI5pYJgGtqnTHoScnMs8kEEAxts4f/bJGZr90mTmwuP7CTfrIa1BjEaEQczezWv8839+ic9+9rM89dRTb3iOgRfzL77zGhf2IjRNY7sd0KmUOH7MIp0v8/zFF7nlzZPz8kRBj0SzGcUhWFkiNcDUxl0Nm80mMzMz9Pt9NjY2qFarctRQfGhIzYAQ94Cp6+y3fEaxyfFqir1WQKJ08mmLL3x8DgwbkoRR8Ns70juFgwkGJMntKYaKAIcAkxiDpq/jJRbd0OVoqDNMbAwgTMalh8QhtmXRjTN4iYWpaYyUQ4KJAvwwwbQdShkD0zIoZkyyrkWiNJJEsTyV4mtPTj+QfQbusE2dQtrCNnVsU+fUXIa1uQxRHFPJWTx+zGHObdHrtFhfX+e1116jVCpNGgsdtn1+td6g0x/Sj2xQCe1hxOb2IT/45QbnG2WOohIXDxU7bY2DbsLWsMiADP3QJE0fnQTLspienqZQKFCr1XAch1KpdJ/fHSHGNHXnfI0Q4q68vsnNdn3ESxsdPrFS4Hg1xW7DYxRE/PRCnfMbPbpezMCL0QDH0tFQJHFAHPqYhk4/doEEhUJDwwA0w8TUIgwSCk5C11NoOqTdFK4R0PGg69kkQC6lE0YJpbSGYVpUcg5hrDANjXMncjyykCGIEs4cyzFVePCnFL6V139etpFw48YNfvKTn1Cr1QCoVqt861vfIluo8r2Xj7hwo8GVW028SGFGXQwiPJWiSw7tdoGiTUiZOj3yzDg9giBmXr9FWhtSLBb52Mc+xrFjx9jb26Pra5TmT3NmsfzQfgbiw0PCgBAfoIEXs9sYMQoS2v2ARj/kxEyav3utwfMX64RxxPFqhqEf0R3FdEYRGjpK03EtDddSOFrEbMHk8kFMnGhYhs6j8ya7XYUfQhCNDx9mUgYp22Cu6FLKWfzRqQIzRZuFSuqBXgm4G0mSsL6+zg9+8IPJqOmFhQU+/5U/5eUre6QsxYX9hK29OpYaECibq+0sMQY6EXl6uIwIschYMU7SZ4ZtTC0ik8mwurrK8vIyvnL5n350iEeaE7MF/otvLksgEPeV1AwI8QHKuAZrC9k3Pd4fxfxmq0c5naLvw3/8xSW26iP++peHaLoiijW+cLbEMFCU3Zjrhx6OFWAaOkqDL5xbYKvucWl7QKIUS1WXP36iyvmNLn0v5ljF5cmVgoSAd6DrOqdPn2ZtbY1Lly7xwx/+kJvb+7zwP/8NqdI8z3zsFP/JV6Z57aKiedgnkzaoXLnFbisiTZ+s3ifRDHQVkyQGSQIdrUBG9XHjmEajQS6X49dbQw47KdJmg4O2y42joYQBcV9JGBDiQ+DMsSyLlRQHbZ/ZosO5E3nOncizsT9kr+UxX3L59z41z0vXOxy2fT6+ksG0+hx1feZLLp9cK/HFjxnsNjxATe7+1+azk6VwCQLvnqZpnD17lrNnz/L9n57n/31+m2rOZqcxJEzgC588y4sv9mk2m5wsRzijXZLbdR/jLoQjRrHNhnoET6VwGXHau4LZbrO9vU1zr4OpVgm1HLNFhxPT6fv9ksVDTrYJhPiQqHUCbhwNOTGdntwl/u5jr9/nHvrxm/6+uPfGcw5qbOw0sBnyzadnOHVykV6vx3PPPUej0eDmzZuYponv+xSLReI4Zm+Y4Yp/AgcfD5fj+i1mnS6JmWG3n8bXspw5s8Y/+nsnH9jTHOKjQ8KAEEK8gzshLBq1aR7tUalUWFpaYn9/n5/85CdcvX6TxMyghX0MxkcQlZXjanSaTjA+PpilS4yFocV4ymGpELD26Dn+7JkZjlclDIj7S7YJhBDiHWRc4/ZkxxSFjMPNmzeJooiTJ0+yevosP7oS4EXj7YA5fXd87lPpPFE6YqMW0UpKaChGpCipBj4uOBVmi+6k/4EQ95O0IxZCiD9AuVxmdXWVXq/HtWvXmFo4iUfq9nZAipFKs58ssBXM0zXmqFh9Ykx65AGIMZmxW3z141m+9uSU1HKIDwUJA0II8QfK5/Osra3h+z6Ng1tkDR8fB5cRoPBIYSYj9lsjBrGNowWUaZCnw5R+wGqmwfGSIUFAfGhIGBBCiPcgk8lw+vRpHEOxmKpzzNhm3tglpY1wGeHjgNfGigfoKsLHIaUNKWgdTNPg6laDgRff75chBCBhQAgh3jPXdTl9+jS5lDXuMphLkXZ05vRdZrVdcnSpqTk6lOmTI1AWvSTLpU6ZH16J+ctf7EsgEB8KEgaEEOIu2LZNpVJB0zS6Ax9Py+IlNkfJLLvqGA2m8bEJsTlkjltqhe1gmv1OzA9f3mG3MbrfL0EIOU0ghBB3y3EcAly2wgWCwMYjRYiDjYdCI8YgwUCh4eMQYWIQ0Wq1+NnPf479mSfQ7DzVvCN1BOK+kDAghBB3KcLkVrBAkyoWIQEONgEBNhnaBFSJsYEEj/S4FwGQp8XFSzWeu9ggNAs8+/RZ/uFnjkkTKfGBkzAghBB36aAdMsLFJsDHxiLAIiBLlywdOpTRCFGYKDQSIEHDw2FHLdEjj4o0vvvSHpqm8U++tCgrBOIDJWFACCHuwsCLubDjEVIhYXy3DzoRBhYBKQboKBQ6t7sRkWDhYRJikMInwgQ0iCN+9sKreDd/xuefOcvUwgqHfY2ZgoOuIzMmxPtGwoAQQtyFX1/eZBRblKgzIEOCRY88LiM8XIakMfFIEzEky526bYVGhE0P+/afxo8nwNZ+m3/5V+c55IAAB8dxObdS4ZGlsjQqEu8LCQNCCPEedQcBP/jRT7GVTaA5WCqkTZkIkx4FdEK2OfmGEKARodAYrxIYgHb72UbEWLQo0aaMTkKETYoeXV9xfXMDxza5uO1y9nhOAoG4pyQMCCHEezDwYv7yFzusd3LYms8UBxwwi0cKhY4ioUOZCJvfXvATQMcgIkZ/3eOgcAGNcdcBE/P2SYQRGSxC+h68+OpVhoMBW7U5WSEQ95SEASGEeA+a/YDWUJFzFC0vRYjJgAI6EREWGooYk/EKwJ2WLgqDCIcRQ7IoFExWCe40HxrXFsTYWPgoEnQiPFx0Evb39+h0u1TtHivLx6SOQNwTMsJYCCHeg4EX872Xa5y/vMOrN9sEuCToaCRojNcAxhd2nfF4ooAKRwS4eGQAjREOdy7+Bgnj4kIDhx7qdi1BgoVOjIlPiItJTFr3KZg9StU5zp1Z5FvPHpdAIO6KrAwIIcR7kHENvvbkFKYW8+rN3uRxhYZ5+2ihT4Y7gSDGos3U7Y0AjTQDYBwaxuFBJ0uXHoXbPQnGjxoEJFgoDGw85rMhmpUljkxydsLlGweslCOePruMacqvdPHeSDtiIYR4jzKuwacfnWJpOnP7ER2dBIVOgs34V+z4cq/QCLFwCNGJKdLEYUiCQYgFgEcKGEeACBsDEwOoUGdFv8a0XsMLIio5h8fPLJKYObJWRG13k/Pnz1Ov15HFXvFeyDaBEELcpevbNf7b/+VH7IRTgEGEgcmIBIsIBwCdBAsfgwgXnyl2aVMhQadHkQINupQJXhcibGLmMyNW7JskoxaD0GArXgIrx+c/eZbPPlolrY9o1fc5ODggjmPm5uY4c+YMqVTqfr4l4iNG1pSEEOIuzVZLpBwdKwzxsNAJMVDEJLcnE8TY+CxzHU3T6KscPa1CpGzM242JQlIYRGQJGJDBwadEg1NOh7WVE9S7c9zabzDolTA1ix+dv0Uu2OHcqSny+Tyu63J4eMiNGzfY3t7m2PIqlZklqgVX6gnEOzK+/e1vf/t+/xBCCPFRdtjxOfSy6KM6vrIJY0WAg8ICYnQ0qlqdJfcQVEiHMrYKiLEoUcNAkWCiAQ4j8nQ4pt1ixjhk6AVc6pTx3HlSpWP4uNi2jVIJBXWIHvWxbZs4jjFNE9u2qTW7/PDXTc7f6DGMHZamUtim7AqLtycrA0IIcZfKWZtj1Qz93hw53+Pqdp9+ZOPjoAMOAU8v22STCnuHDZwgoK4qaGgMKJBoJll6eKSoaIcUtA6mFhEpk91kkWY/BVnQdVgsQt+HmRmXM9NT9Fo1tra2OH36NDMLS9TaHqmpU9yID5gtZzhs+zT7ARlXtg3E25OaASGEuAcGXsyN3Rp/+4Mf8tqhTY8Ko8jA1EJmrCbnpnrkMw6lUomXLu9zrV8lo4/wExtdBcQYuIyY03cBCLCJlclucpwRaUJsPraU5z/9xqP4voeZDAm9Pu12m93dXVq9ETvBDNnqIsemC6CgNQiZKTrSoEi8I1kZEEKIeyDjGizNVTjw8qDHPH1qCr27Qf1on7RjMRiOODY3RS6Xo+RuUxj28MhQdCNy/hYxBjYBkTLYU4tEWBgqZESaABuFxo1b2/zvf93lv/yPPkshUwUgDENOnz7Nry7c5MLLDU4WHFr9kK88XiXl6NKUSLwrUjMghBD3yFEnYLNpMF1wsNN5nj49zctXj6gFORKryNe/8BSzM1NsbqyjjWoU7IApZ4CthRiJj0JnO16mSRWFxoA8ASYGCQrI0aPR9bh59ddkSnP0PMi4FoV8hrnZGUIjR2uYMFN0eHKlQDVvS62AeFdkZUAIIe6Rctbm5HyRy5s+pajH7MwqdmGWgh4Rai4b20d8+snTLC8v02630bQhjunS9Q0GSYpYGUSajaUiRqTQb08w8EmhE+FjkVVDrtV0Xvo/zlOpVPnSEwv82TMzkyZIzX4gqwHiDyZhQAgh7pHxBXmac0tpjnauY4QtPvfMxzls+4za+0TDFvV6nXQ6TTabpd0bkS0sstv36SsNIwnwsAmwcAhwGNKhjEaMToKJIq+12FXHCZXOyAu4VRtNCgQzriGFguI9kTAghBD3UMY1WF0okDUW2N3d5fNnTuElBVqHPnvb42I/x3HIFatcaEbcPMwQOtNMp9vsNT0sFVMwW3jRuPHQuBuhiUn0utbFFiEOzb7P4a1rdAdlBrIaIO6CbCYJIcT7YGZmhnQ6zdH+Ngtlh0oxg23b1Ot1NE1DdwtYuXErY03T0VJVVubzZPU+jpsm52okmDiMsAiJGY87ipSBjU+RBmn67LcG/NN/9RP+rx9vcm13wMCL3/FnE+J3SQGhEEK8DzRNI5vNcnBwAIDruhwdHTEcDrFtG42E0vwqkZGm7Hg8vgBfemKBg43zZPUhjyykafQChrGLTozCJMJmSJYYkxEZQhxCXOJEcX23R9u3aA0iaTIk/mDyv0UIId4nqVSK2dlZ9vf3UUrRH4X4eo79Wou0Y/An5yr8+R/N8emTOienbbQk4OTiPFbU4fFHTvD49Ig16yoz7GKQ4DLCwwUScnQAha0rfC2N0nRKaTVpMiTEH0LCgBBCvI/m5uZIpVLc2N7nlT2DS608L+877HbAME2WZjLk0ja2bTMYDPjc5z5HP07xly/s8ui5Z5nNJkzpNVwGeLjYBGTpMx6WrPATDUtLWJ2x8COdmaJDOWvf75ctPmIkDAghxPtI0zSWl5dpdH2cwhyLc1V2+ileuKXxd79pM/BiXNdF18e/jhsjgwvROV6qVfhXL0YsrJ4ja8csskGGHg4jTC2iqtXI0sUhIBmj2iQAAAPeSURBVEzgoNbmM48WpdugeE8kDAghxPssnU6zsjiDowZs1YZYlkXeCrm8eUCjF5BKpYjjGMdxeHWzhebkmCplaA1C9OJJipUZ6szerhewGKk0sTIADR8HBTTDFP/j//1T/t0rV6WIUPzBJAwIIcQHYGVpgc+spThd6HJy2sFIl0iGDQ62rmFZFp7nkcvlmE37lLMWfS+hnLV45swMp84+hZXOU82ZeKQZkWaXJdqUCDEJsbAJqPlp/rcf7/BXLx5IIBB/EOkzIIQQHwBd11k8fpzvna8R6A7LCzOsZnQO97ZQkQeA4zhUUjH/9T9Y5tphwGPHcyxNp8inzvDcxSN2Wh7HKznqLY9RYqIYHzPUABiPTfaxeOFqm6dXC6wtZO/nSxYfIbIyIIQQHxBf2eSnFzm7skAQKU6snmZ+fp5Go8H+/j5BEKBpGkUn5BtPTbM0Pe4mWMql+Pozi7hGiEFEsVQl0VyUZpLOlTg7bzJr1ADoBxrNfsgoSO7nSxUfMbIyIIQQH5By1mahkuGw7TNTdJgqpJjJP4pSiktXN3jxtQ3KhSyj7RbpXPkNhYBzx5Y4/YhN0GuwfjDi5EKJvBUSxPCP/+QpRsNH+ad/cRnLscinDVK23OuJd0/CgBBCfEDeephQioXFk3z31TbdrkX/ekDWrbHv5fjak9OTQFDNOyxUMmwGMVEyQosS+rrLUt4jaO9xenWVb35qhQubR0xlfFwjYrs+kqFF4l3RlFLqfv8QQgjxMNuuj/jXz++ScmxeuFxjbVonXyzxrU/OcLz628FDAy/m4naP5y42qRZs9po+f/J4nqS7TTpXQk9PESUJ7aNtXtr00Nwy85WUHDcU70jWkYQQ4j4rZ22OT2XxwoTF6RyZXJG5kvum5kEZ1+Ds8RyL02l6o5jVuQynjpWpzhzje6/U+c6Lu1zaHlKaPk6gZ5guOtKRULwrsk0ghBD32eu3D1zLwAvjt13ef6uthqaTIzbzzFeyHLZ9Pr6U5cRccVKbIB0JxTuRbQIhhPiIG3gx33u5Nrn4f+3JKYDfqU0Q4u1JGBBCiAfAwIvl4i/eMwkDQgghxENOCgiFEEKIh5yEASGEEOIhJ2FACCGEeMhJGBBCCCEechIGhBBCiIechAEhhBDiISdhQAghhHjISRgQQgghHnISBoQQQoiHnIQBIYQQ4iEnYUAIIYR4yEkYEEIIIR5yEgaEEEKIh5yEASGEEOIhJ2FACCGEeMhJGBBCCCEechIGhBBCiIechAEhhBDiISdhQAghhHjISRgQQgghHnISBoQQQoiHnIQBIYQQ4iEnYUAIIYR4yP3/OLXjnTaQ2qwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "draw_metric(G,deg_C,spring_pos)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -531,7 +654,18 @@ "id": "vLp2CBJHtC1d", "outputId": "e5e9c70a-1327-4590-d4c4-049e0484115f" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0.2761677635668376" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# closeness centrality\n", "clos_C = nx.closeness_centrality(G)\n", @@ -540,7 +674,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -560,14 +694,25 @@ "id": "jjVxMxbWi23s", "outputId": "709444e2-13b5-473d-b0f1-f920889be174" }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdWYxk133n+e/db2wZkZH7XskqsooUixRJiZIla6ElUtTSlIWx3XC3AaHhQaOBBhoYYJ76rQeYl5m3GczMywxmxuiecbvVantkt+22LGshTZOUSNbK2jIr9y0yY4+733vmIbJSJKuolWRmVv4/RAGVFZkVJ6KYeX/3f875H00ppRBCCCHEiaUf9gCEEEIIcbgkDAghhBAnnIQBIYQQ4oSTMCCEEEKccBIGhBBCiBNOwoAQQghxwkkYEEIIIU44CQNCCCHECSdhQAghhDjhJAwIIYQQJ5yEASGEEOKEkzAghBBCnHASBoQQQogTTsKAEEIIccJJGBBCCCFOOAkDQgghxAknYUAIIYQ44SQMCCGEECechAEhhBDihJMwIIQQQpxwEgaEEEKIE07CgBBCCHHCSRgQQgghTjgJA0KIX0gvSFnd9ekFKbVWxKs3m9Ra0T0fF0IcL+ZhD0AIcTQt7/hcXu3w6EyJvGPwZ69u0/UTKgWLK6sddpoRU0Mu/80L8wD82avbNHoJgwWTrz89xkjZPuRXIIT4RUkYEELcZXnH59/8+5vUuzGVvMX5uQIXl1pUizobpsPVlRaGBi0v4i9fusbybsD1mo5uGJhGv+D4+5+ZpOAa9IKUejeiWrTxwpTbOx7zo3kJC0IcIRIGhBB3ubzaodYKMLKQvU6eWxtt8npEvWtzalQnSTIidGwUXT9gp94hZ5bYbGdMlHW2GgHrez6TVZf/+PdrrO3FjJQdlnY8tpoBU9U8/+prpyQQCHFESBgQQtzl0ZkSJQf2OjpjVYOZSka9GXNussKDYyaXb/oow2JwoMCgG1MtaHQxSNKUOIMrt2t8m4THZkz+6pV1DNPkllui3elhpW0uN1y+/b0mTzz6kFQJhDgCNKWUOuxBCCGOnr956QJ/++pNvvmNz9PYXma91ubTH3+Mmzdv8Sc/WsEdnGVsQKMULLDqV2mnORxLZ7Wh0Ysy0HSmiyHNQCfLUnTDwjI0UgyIe8RxTG5glFPjA1IlEOKQyW4CIcQ9zQw5nCk1maiYkIaMlnQGB/LsbK7wcKXJv/jaWZ49X8K0XZp+hp006HgRYRSRZqDShE6QMTYAloqpajX+5ZfG+ZdfPcPT8ybKLDA84LDVDLm94x32yxXiRJNpAiHEPWmaBkAYhsRxjGEYZFlGo9GgUhnEMHQ21tcpuRojJZNO5OKGbYZdi73AJVYmMSZrtQBdxSS64uJbt1GAkWacmpyiHcB4xWF+NH+4L1aIE07CgBDingzDAPphIEkS8vk829vbdLyYdmGaf/+DZfxmysPVjN94wGRxo8XFVZ8wcXHIcDTQgx5txrDQWQkLbFxN0AyXmfEKTzxQ5uGpAuemSzJFIMQhkzAghLinKNVoxzatbr8ykM/nWVxcxE8Ntnc6DBV9moFGJ3FI2yF7e3V6SZkgNQhwsYjQyKPRX5akMFFkJGlGkirqnZhTY7J4UIijQMKAEOIuvSDlpVsRNzpD2Nd6DKmMgchmaXWLoq0ITcVuO8Y1M67tOjQ7HjYFDFJCrYylQkIsXFJyeGhk6KTEOFiWjWWazA7nqBYlCAhxFEgYEELcpd6NWNpsoScdNpsxy57DQuhRq9l8ZLjAcK7NUhSyFo+y0dZwNB1Hs6hodWKlaFEhxUERk2KgkxFhkmkOedvl9FiOZz86TME1DvulCiGQMCCEuIdq0aZkx2ymNroKqbd6FByNTmRi5QcJ/BZrfoEN3yBVCk+5JGhkDKChsIiwiAlwMVC4+HRxMVWKpkGzlxDEcoaBEEeFbC0UQtyl4BqcHw2Zc7Y4nduhaAXUuwkFPaKcM2j0Erwww856aECRLg4eDhFdyiTYJJhYxAB45HCJsWwLx9I5M5GXKQIhjhCpDAgh7pJlGQYJJTMg9Rs8NKDw4h72QEjoKVTUxlUaqZanpPUY1dbZy4bpqBIaikH26FIixkUnxTAs/snnJhkbHaGctzgzUZApAiGOEAkDQoi7+L6PYRgopQjDEMe2Cb0GhYEB2u02adhjXOsQGQ6WCjG1BFsPqagcu9koPjly+KRYmIbBxMQojz80w0NThcN+aUKIe5AwIIS4y50wkGXZQcOhNE1RStHpdEiSBIOMHAn0exNhagk5fHQtQ6PfdXB+MGV4+jQPjBeZGnIP9TUJId6bhAEhxF1838dxHO4cXRIEAZqm4XkeQRCQZdk9vy7CJsKhqPUoDk/yz3/7Y5TyDtWiLdMCQhxhEgaEEHfxPA9d11FKHVQHNE2j1+u9ZxAAsInI6wHF4Vl+46NnmRstSQgQ4hiQMCCEuIvv+6Rpf+tfHMckSXLw+5/FNjK++sQYT3zikwyVpBogxHEhYUAI8Q5RFBHHMWmaomkacRyTZdnPrAhA/2CjT33qU3zhC1/4kEYqhHi/SBgQQryD7/t4nodt2yilDqoC95JiEiobm4jf+uyneOaZZz7EkQoh3i8SBoQQ7+D7Pr7vMz4+/p7VAMMw0Kwcq70hAnJ85PQkT//Gpz7kkQoh3i/SgVAI8Q7tdps0TRkeHr5nVaBYLKLrOm0/IyTPuQcmGRiZpd6NDmG0Qoj3g4QBIcQ71Go1HMehUqkQpTqeypOofhFxenr6YHeBo0Wcf2iawdFZxiqOtBcW4hiTaQIhxIGOF7Ow3mJ6rMJP3rzMZjZFQA4Xn88+UmF5o06ra5LTTH7rc5/i4598mkYvlj4CQhxzmrrTVUQIcaL1gpQ/+cEiL79xjbweYvlrbKYTOIRk9iBBGNEjjw48MqHzr//ZFyjm5H5CiPuBTBMIIQDYbQUsrNcp2ikNX6GUYqRkkq9O0o4MWlSIcLDcHKXRMzR6P7vngBDi+JAwIIQAwGtto4UN6t2UnBZwdm6YP3juHIPZJrbycPEwTZeh6jBzozlZIyDEfURqfEIIdnZ2uH71IiV/hSk94/TMKOcePMWVCz9B665RMqYZHRrioTOT/Oa5qhxBLMR9RsKAECdco9Hg7//+71ldXUXFPnOjg8xMjnD58mW2t7exdI3nHx/mY5+SFsNC3K9kAaEQJ9j29javvfYaS0tLxHGM67qMjo6ysbFBs9kE4KMf/Shf+9rX0DTtkEcrhPigSGVAiBMoyzKWl5dZWFhgZWWFLMuoVCqYpsnKygrdbhdN0zh//rwEASFOAAkDQpwwURSxsLBAvV5ncXGRJEkoFArYts1WrUmtneJoBo9/5BwvvPCCBAEhTgAJA0KcIJ1Oh8XFReI45tatWwRBQC6XI01TolTnWqOIr4Y5NVHmuS9/UYKAECeEbC0U4oTY3t7mxo0b6LrOwsICtXqHUB+g3YtwHIfFtR0ClWO8mmd87pz0ERDiBJHKgBD3uTvrA+r1OuVymStXrrC+tcdaPEarqzNcKBNsLWKphNPTgwxPP8h4xZU+AkKcIBIGhLhP9YKU7UaPZm0NLQ0ZHx/nwoULrK2toawinu8yVjGotSIczeBTTzzMZ595Rs4aEOIEkq2FQtyHekHKn/3DOjeWawwVNb7+yWmuXnqdpaUlDMMgSjVq+inWdruYaZcvPT7Eb/+j52WNgBAnlFQGhLgPbe51eeOtJcYqLrFR4aXXLuLtrWNZFmmaMlQpEWxdZ4KEJx9/SIKAECechAEh7jNJkrCzdouiGRHrVbLGJh21gaXrJEmCbdtsb28TBz6ffPw8X/mKBAEhTjqZJhDiPqKU4tatW6ytrZFqFnvtiM7eBo6piKKILMvo9XqEYcgjjzwiDYWEEIBUBoS4r6yvr9NutzFNk+ZujaDdJmebJElKFEUEQUAURZw9e1aCgBDigIQBIe4Te3t7bG9vk8vluHbtGlEU4boumqbRaDQIw5A0TXnwwQf5+te/LkFACHFAmg4JcR/o9XosLy+Ty+W4efMmrVaLXC5HLpejVqsRBAFJkjA/P883vvENCQJCiHeQMCDEMRfHMQsLCwBsbW2xsbGB4ziUy2U2NzcPgsDc3By/8zu/I0FACHEXmSYQ4hjLsoyFhQU8z8PzPFZWVgAYHx9nY2ODdruNUorZ2Vl+93d/V4KAEOKeJAwIcYytrKywu7tLEAT97YJxTKlUotPpsLu7S5IkzM7O8nu/93sYhnQUFELcm4QBIY6p7e1tVldX6fV61Ot1kiTBcRxs22ZpaYk4jpmenub3f//3MU35VhdCvDf5CSHEMdRut7l+/Trtdpt2u00URZRKJdI0ZXV1lTAMmZyc5A/+4A8kCAghfi5ZQCjEMRMEARcvXqTRaNButwmCgMHBQQYHB1ldXcXzPIaHh/nmN78pQUAI8QuRMCDEMZKmKW+88Qbb29v0ej08z2NwcJCZ+Qf58ZUlWt2AcrnMH/7hH0oQEEL8wiQMCHFMKKV48803D6YBOp0OQ0NDnH3kMf7uSpuLtQK7xjz/9Jt/iG3bhz1cIcQxImFAiGPi8uXLLCwsEIYh7XabkZERnn76abYbPmu1HtMjJR589Gm8WL6thRC/HKkjCnEM3Lx5k6tXr+L7Pr7vMzY2xtNPP83GxgY76xvMjk1gFk8zMehSLUpVQAjxy5FTC4U44paWlnj11VcPdg1MTEzw2GOPsbW1RbPZZH5+nplTD9L0EqpFm4Ir/QSEEL8cCQNCHGGrq6u8+uqrBw2EJicnOX369EEwmJmZ4fTp0+i6TA0IIX51EgaEOKLW19d57bXX2NzcPAgCc3NzpGlKmqaMjo7ywAMPSBAQQvza5KeIEEfQxsYGr7/+Omtra8RxzOjoKDMzM7iui2EYEgSEEO8r+UkixBGzvr7OxYsXuX37NnEcMzIywpkzZxgbGyOKIiqVikwNCCHeV7KbQIgj5ObiCj+5dJO1xVuQRkxOTvLYY48xOjrK6uoq5XKZBx54QE4fFEK8ryQMCHFE3FhY5tsvrXBzpYNDlU/OG3z605+kXC6zuLgoQUAI8YGRMCDEEbCyssKl68us1jxyRoSRG+WJT3yEcjknQUAI8YGTMCDEIVJKsby8zI0bN6htbOCoAfTyGE88PMdQyZYgIIT4UMjWQiEOiVKKpaUlLl68SK1WQ9M0pmYfYP7sY5Qc2FpfplKpMD8/L0FACPGBksqAEIdAKcX169d544038DwP13U5deoUjz32GFmWsbi4KEFACPGhkcqAEB8ypRSvv/46ly5dAqBYLDI2Nsb58+dRSnH79m0JAkKID5VUBoT4EHW8mL/63ovsbi5RHchTLBYZGBjgkUceQSnF4uIig4ODEgSEEB8qCQNCfEi6fsL//VdXuHLLY3JojpmBlGLe5ty5c+i6zuLiItVqlVOnTkkQEEJ8qKSFmRAfkrcW1thpxTw0P0EvsQkyi7Nnz2KapgQBIcShkjAgxIdgZ2eHqLvLRNVhu+Ez4KQ8/shpbNuWICCEOHQyTSDEB6zRaLC6ukq1XOC0V6OiIp589AxD5QK3b9+WICCEOHSym0CID1C32+XGjRs4jkO9XqfX63H27FkGBgZYWlqSICCEOBJkmkCID0gQBNy6dQvTNGm1WnS7XU6fPn0QBIaGhiQICCGOBAkDQnwA4jjm5s2bAPR6PZrNJg888ACVSuUgCMzNzUkQEEIcCbJmQIj3WZqm3Lx5kziOiaKIer3O/Pw81WqVlZUVCQJCiCNHwoAQ76M7jYN83ydJEnZ3d5mbm2N4eJiVlRWGh4eZnZ2VICCEOFIkDAjxPlpeXqbVapGmKbVajenpaUZHR1ldXZUgIIQ4smTNgBDvk42NDXZ3d8myjFqtxsTEBOPj46ytrUkQEEIcaVIZEOJ9UKvV2NjYOKgIjI6OMjExwfr6ugQBIcSRJ2FAiF9Tq9ViZWXlYI3A0NAQU1NTbG5uMjIywszMjAQBIcSRJmFAiF9Dr9djcXGRKIrY29ujUqkwPT3N1tYWIyMjzM7OHvYQhRDi55I1A0L8isIw5NatWwRBQKPRoFQqMTMzw87OjgQBIcSxIpUBIX4FSZJw8+bNg4ZCrusyOzvL7u6uBAEhxLEjYUCIX1KWZdy6dYt2u02z2cSyLObm5qjX64yOjjIzM3PYQxRCiF+KTBMI8Uu401SoXq/TarUwDINTp07RbDYlCAghji0JA0L8ElZWVqjVarRaLQDm5uZot9sSBIQQx5qEASF+QZubm2xsbNBoNMiyjJmZGXq9ngQBIcSxJ2FAiF/A3t4eKysr7wgCYRgyNjYmQUAIcexJGBDi52i32ywuLrK7u0uSJExOThLHMWNjY0xPTx/28IQQ4tcmYUCIn8HzPG7evMnOzg5xHDMxMUGWZRIEhBD3FdlaKMR7iKKIGzdusLW1dVAJ0DSNiYkJpqamDnt4QgjxvpHKgBD3kCQJN27cYGNjgyiKGB4exrIsCQJCiPuShAEh3uVOU6HV1VV832dwcBDXdSUICCHuWxIGhHgbpRRLS0ssLS3R6/WoVCoUCgUmJyclCAgh7lsSBoR4m7W1tYNWwwMDA5RKJaamppicnDzsoQkhxAdGwoAQ+7a3t7lx48bBCYR3jiM+zkGg1op49WaTWiu667FekLK669ML0p/5Z0KI+5/sJhACaDQaXL16lVqtRqFQoFqt3hdB4H/68yW2miHjFYf/+tkZdB2qRZuuH/MfXtqg6aU8MFbg658YA+AvX6+x3QwZLFh87EyZqSGXXpCwVPOZH80zUrYP+VUJIT4IEgbEidfpdLh06RKbm5vk83lGRkaYmZk5lkGg1oq4veMxP5rn9o7H0nabvB6zUYf//S/fIg48KuUit7c8lvZS8o7J8naHcxMm1XKei7c2KBULXFlpc221jkPAldUOmj3AWCXHP//SLLoGoDE15FJwjcN+yUKI94GmlFKHPQghDovv+7zxxhssLS3hui7j4+PMz88zMTFx2EP7pdVaEf/9/3uJug9zoyX+6ecm+V/+7Co77ZjJ0QqdvVWMpMdqOEqUaWRoGMSUzJTfmm1hEvLixhCeypNkcHrAY6nj0IkMdDJAp2hGOJbBQKnExx6s8Lnzo0wN5QCodyOqRVsCghDHkFQGxIkVxzGXL1/m9u3b2LbN6OjosQ0CAG8t77Gy0yFvpmw1bdp+wj96FBa3Qj79sWG++xOP2/Vhsg0fi4gIB4uMcrpJ2GoROSX0uMug5dOiwK4HKokwMYhwsQnxE4jThChp8r0LPru9jOmqTZIkeLHBWMXhcx+pEsSpBAMhjhEJA+JEStOUK1eucPPmTQzDYHx8nNOnTx/bIADg11cYsBO8zOFUxWF+NM+t3ZSHRmCspPGJOZ0nHp7jf/5PF/HjjLLeYd5aZoAGXiem1wqw7CroBlN2hxJ1tpMcqjBMKwrRsxgvsUg1Gz/NMNIU11BcuFXD0OGJhyZYqfn88Q+W0E1HgoEQx4iEAXHiKKW4du0ab731FkopJiYmePDBBxkfHz/sof3KWq0WXmODbzxe4fZ2h9957qOMlG1uZBm6rhPHMQkmf/3mLkGiYZLxxUdyfOyR5/jRT65ze3md1WSSOHEoufD4pEa46zFSjemlMStxga45gEPGgNkg1lyCKOOHF9eZqOZ58qFRaq2IOGix50U8Mj/JSs3j//yrLSy3yMxIkS8/OSKBQIgjSsKAOHEWFha4ePEiaZoyNTXF2bNnj3UQALh8+TK2bfP4+QdJ/Vcp2RnQr4Douk4URay3dS4s7JIqjZA8/+Vyk7+4vEBCnoSzZOhoJASBwYvLMGKO8dSoztpal2ZoUrRa+FkZ3bAZL2rs7AXoqkW18AC/+XCV7c1VVJKxEY5R64SEvRa9MOOhEZO1vf5CxI/MlCQQCHEESRgQJ8rq6io/+clPiKKI6elpHn744WMfBPb29tje3ubRRx+lUCgA/YWRETlu7CgmB02iKKKStyBLyNABhU5GiINGRoYGgMIEdBqRThgP0r7VopmOE+HSjRJGXZ+npi1yWhsrc/ApktNDFhYXGMrD+cfP0gsS3ry6SH7cYj0YZLOZsL7T5nthyPK2x+fPD8vUgRBHjIQBcWJsb2/zyiuv0Ov1mJ6e5tFHH2VsbOywh/Vr6QUp33/lCqad58yZM0RRv7nQeq3Dty80ub6sU3ETvuKvMlB0mTS3aMQFFBqOlmKrkAgbgwxISfd/JGSYxCqhmzpEOMSYxFg0M4eN0OJMzucfP3OGW+tNXl9s87eXU6anJtgKdxhgj1NjAzzwwAN4YcZfvnSFq3tbWKHOhc4Qm3sdDMtlrOLI1IEQR4SEAXEiNBoNXnrpJZrNJlNTUzz++OP3RRD405dXee1WxMPzM/iRImfbGIbBUi1gcaMHYZt6WuCtpTqThR7T2hZDhomuUrAKrIdDdCliEWETUGeEBJsMgwIdTBK6DMB+5aAbKS6sJljzM7wwN8sPXn6dtZpDpMOlrR0sAx6azPOvH50jjmOuX72Maq8zUS5gD4yyvbnO3t4en/vEebabIfVuRMHNHe4bKYSQMCDuf71ejx/96Efs7u4yOTnJk08+eeyDAMD6XsBbKy0cLcFLHerdiJnhHKZpUnZjXC2kQ47JAZsnH57GSLtsbW1haiFKKZRjkEUGZdWmThXQcYlQ+GTYmKQ4hAxRo8EwMRYxJloSs1DL+KM/+XN2d3fx42lamKRkkKYsbfv88fducKbcRgVNTs9NYVh1bqzfZIw6qvoQe52YsYpDtSgdDYU4CiQMiPtaEAT84Ac/YHNzk/HxcT7+8Y/fF0Fgecfnj3+0zs2tkDTOkytscePKNlf8Drdv36Z1+Rq6P0FBKzE7mGegYLK90QVAs3J4oYYR9HDJ06GEhkaeHpHmUqRFlzIuPiEOQ+yQKZ0EkyZDJOhsNXtcarapM0eACyg0IMGiFWX8xRu7DNkRv/WQwZtrGyzvhmR6nsnRj/DNLz+GbZmyZkCII0TCgLhvxXHMiy++yMrKCsPDw3zyk5+8L4JArRXx3/3biyw2EgAMNBbW9yiGHgXDp9Pp0IksosxkQG/S6BZp+QVarRaJMthJp2gmOjndZ0TbpKLVqathAuViqpgCbXzy+LjkNY8BrY1PkW01Rr9dqU6KyTbThLgU6eCjU6BHjEVAgQRFLdL5s8s+KQUySuTwiNouf3e5ye9/ZlKCgBBHiJxaKO5LWZbx8ssvc/PmTQYHB/nMZz5zXwQBgIXNDpuNHjoKMEjR2YkqvLpZ5Md749SSQSqlAtUixFqOnB7itXZot9uEysbLXBwtxMtcMs2gpHcY0zawtIQYm2UeJCCPQcaItoWrh1S1XRxCbCI0UjJ0UgwydDzy5Ago0doPCxkKA4VOhIVLSIaJTx4VNOj6CfXu3acoCiEOj1QGxH1HKcVrr73G5cuXqVQqfO5zn7tvggCAkzZx6RIxSL88rxFj0FQF9jwH1/gIlhMwbSxSySJ+48yj9No9er0erm5R0ELaaR437WDTvyhnmkGqDAwSuoxgEeKTJ5d1GaCNplIK9IhwSMmhUKT0P9/BZ4AmVXboUSLFIkXHwEdHx8elQIei7jE2NEsxZ+JaUhUQ4iiRMCDuOxcuXOD111+nWCzyzDPPHPs+Au+2dOMiZ/XrbGWTrDGLQidFI8VGIyXNNHY9kwFDo2gElPI2pAWUUhhawqixg206aGmLCBsU2ES4+LQZADIibBJMbnMaJ4sxidBJyAANhUmEAkwiCnh0KGAwiEGMTYBHkRQHBeToUdGbzOQabGzD5dCnUrBkW6EQR4iEAXFfuXbtGi+//DKu6/LFL37xWJ81cC9hGHLr1i1cPWSIXfaykYMmQhoaES46GYN2iJUGQL8LYbvdRilFplms9Mp0U5eIMZwsIkePCX2dCX2dUtYmVC49BgBFgkmGRUYek4gElzvbDF06GChqjJKh06UCaKQYgNqvEGi4+PiZzbbn4imF262x3ZyXbYVCHCESBsR9Y2lpie9///tYlsVzzz3H5OTkYQ/pfXf9+nU8zwMgp/kMU6NHgQI9hrRtfK1IpWgxX87R3ItRmkaWZbTbbTRNI9ZyeJmDQUpAjpzyCLQcETZ5zcPWQ/KphwJ6lPbn/hWg7weBny4zCsmR7jcqUmjE6OjE+90Mtf3PVfTIo5ORc3LknBLDowOyrVCII0bCgLgvbG1t8dd//ddomsbzzz/P1NTUYQ/pfaeU4pVXXjn42NQSpoxVfJUDNFwtYshtYWCQxYps/5CiLMvodrsopbCUj4uPRx4XnwQLS0X9JkRaf7ogp3l4qoBNSIKFQiO9x1pjhU4MsF8JUPtTFQbJ2z6/Hww03eKJR+fY2mvy2fOjfOJhmSIQ4iiR3QTi2Nvb2+M73/kOWZbx3HPPMT09fdhD+pX0gpTVXZ9ekN7z8a2tLba2tu7687oaZk3Nsp7NoFn9snuv1zt4PEkSgiBA0zRUEjChrzNjLDOv3cDWImJsNtQsQeZgaglVbRcXj1F2sAkB0Ei4Mz3wTiag9h/LuBMK+votjjU0Qr3IS9c7DLgaHz87KkFAiCNGKgPiWOt0Ovzpn/4pURTxpS99ifn5+cMe0q+kF6T85es1Vne6TI8U+MpTd18w//b7L9JNXWwiTK3fY8BXefbUCCl6vzeAiigQEcfxQWXA8zzSNCXLMrIs4863vdJMEmURY9NWZSJlMa2WQNP6Owc0hwHVoEUVBQTk6N8/9O/2+xUAm/5FX0cjQ9v/zyAGNHRSQKdkBmiYPDhZopS3PqR3VQjxi5IwII4t3/f51re+hed5PPvss5w5c+awh/Qrq3cjLlxfIers0u6M8/isw0Mz1YPH12odvnstIczmsbWISW0FVw9JlU6Ig9q/NMeZQqEOLvymadJutw8+TpTJZjZFQA5bheik+PSnGVqUCdQj5PFwNJ8RtmgwhLl/uqFF3G9HjI5Ohk2MIiXe7yngEKERY6GIsSjRZFir0XTOoOeqlN2UJ84MH96bLIR4TxIGxLEUxzHf+ta36HQ6PPPMM5w7d+6wh/RrqRZtBnOw4RcYLurU1hfJax6Tk5P4keJ/+KMfsZuN9Jv6qAyl4EFnjZxp4BIYOMYAACAASURBVAQRKVp/qV8SoVkamqaRpilKqYMwAOwfR5TDISTUHEbYIlEGbcpYJIS4FFSXUMvhERHvVwfqDFOhgY+LQqdEmwibCjU8Slj7vQfbjJABZS1i2ljh0Ydm+eyzv8GbNzYp6T3mp4YO820WQrwHCQPi2Gn1Qv7dn/x/eM0Wz3z205w/f/6wh/RrK7gGT0ymzBQzvvyFR+m2dtnY2KDZbGINTBCkGhYRXYoU6WLYec499nG85jZbN3bwKJCnhxk3yQyzvz5A9SsEvu8fPM+dfgJ3KgOGnjGhVgGNLiUyNNpUMFVMiInCxCYkT48M+s9NSqJZ5JRPjWl6FOkvJ8zQNJ2SlTJnXaOoa5imyVjFZbrgUa0OoWn3WncghDhsEgbEsdL1E/7HP/o7ths2Z+ee4txHPnrYQ3rf2EbGSFGjmDMp5sapVCosLS1x6+obWHGDguGiK3DxqbiKnbUFykWXOXsDLzGwiTBISBIwjP56gyRJSJLk4DlMLWFCX8dXOeoMs6mmCffn/RWKEbbxKBJio++3Gx5iG5eQBlUyzcQiZlxbx8dlR42j7fcjiDFwVEygFYiMMmnSIU1Ter0eSZJQrVbf45ULIQ6bhAFxbCil+PZ3/gub9Yj5qSFyg5PHpnFNL0ipd6OfeVJfmqbo+k83+Liuy9mzZ3nrrbcY19YYdnMYWkYuP4CjR3RbTQzK/Q6Dnc47/h5N608VJEmCUuodz2NqCQYpkXLQVUJAmQp1ElwCHCxCQiwiXDI0dpjsTyvgMqh2iTQHQ0sZoE1O+XQp7fdABKUbGFpKzlRkUX+dQqPRwHEcCoXCB/LeCiF+fRIGxLGglOK73/0uO+uLnBp/hMHR2WPTuObOToHtZshYxXnPNrxZlmFZ71xpH4YhW1tb5Gwdw0iI45i5sQLNZkxkGPR6PUzznd/GSinCBILsnTsPEmUe9CTQVIKmMnzymCSkmBRpEuCSoWOSkZKSp7/10MYnA3wtT5H+mQamnvBYboHq7GOMDA9ycanN6l7EiBMxWkjY7fbDQLPZZHR09IN6e4UQ7wMJA+LIU0rxox/9iKtXr3L61CzPfflzP/cu+6joBSlXVjvc2upgpCHLUcL6XgnX1hkq9cd/p2rQ9DIMS6cXpAev6+rVqzQ6PppdIZ/TsGKfKIpI0xTLLdIOFEbokyiTCBtXj8kyxWY62V8XQEiZBgqoqxGa9BfwmcREmES4+4v/oMMgIXlMQnL4lPFI0Qlw6VAhh884a5TNHkOVEufOneMTn/gE5XKZNE05ffEqb1y+idfcRld6P5SEIWmayhSBEEechAFxpN05gfDNN99kfHycF154AcMwjvzUQJqm3Fxc4X/99muQG6MW5IjiGFff5dqVN6hUR3n6/Bkenzb4/tUWq/WEtU2DsUGdsFDjy0+OkLM1fvzmZZa8IZKwxBAGp4sNqtUq3SBhoZUj0goQd4iymJAclkqoqB0CclgqYo8RdhgnQyehX3XQUET7hxrFmCQY+7sEtP35/wIaGkW6hDhkmGhkZFhUK0WeePABnnjiCaampvDCjNVdn2rR5qOPnoMk4Mc/3j5oeuR5Hvl8Htd1D/OfQwjxc0gYEEeWUoqLFy/yyiuvUK1W+cY3vnGwMO4oWd7xubzS4SMzRbS4w1sLq7x17To3NgP20kGybgNvf4mdj0WbAbzNHb61Wed7aptNZlG6TagsJiop282QejdCeTXWtpt42RgFw6cTlmlqCRNxTECeeuRQzSXUYodMuaQYNFUZH4scAb6WJ1Um0f6RwhkG5n4nQYsAnwJg8tMVBXe6ByoUOh4FEsz97oMGluPysaee4guffBjLstjebfKff7yDr9yD6Y/z58+zt7fHhQsXUEoRBIFUBYQ4BiQMiCNJKcXVq1d58cUXKRaL/PZv/za2ffTWByxte/y3/8ebtPwUi5gKeyQYdBgnQxHj7vf87jcDcvHpUsBT45jE6PsH/eRdmzTM6IQcrIX4mxdfR096uPjo7ihFM2JqZIB6y+PyWkI3LdGJFYPUSTGoMwTodCijAVW1jU+emDx3WgkrdNz9bYLZXd/+/bbCJiEJJhEOADo6OUtxupoQtbf48z9foF6vs9mMWUumefL8gyyueyyOKmZH8jz11FMsLS3R9ROaoYWdH/iQ/jWEEL8qCQPiSLp58yY//OEPcRyHF154gWKxeKjjefdugF6Qsr4X8G//6iJ1v38/7eMSM4ZGRoINJCgM0v2WvA7Zfrnd7O/K11xCZxwrjci5OUbtbT49X+bLT44QBx3W19fRVcyMvcVQ1SXs7FFwJ7ixEdJJ85SpE2ouw1oNi5A4s2gyiA50qaCToROgUURhoZFhE6ChCCnw0zMFALL9HQEx1n4VI4fH+IBBZOV4fNJgIh/Qqu/QarVQSjFWLWPoA6xutSjZMUs3Vlm/lZEkCZqV63c6jHL8P9+9zgufmGJ0aADHcQ7pX1AI8bNIGBBHzsLCAt///vcxDIOvfOUrDA0dbte6pbUt/t3fXKcRWkxOTPCbDzr86fcvcb1m0Es0FDnU/nx8gg7c2RFwp5JhAik2PkU6dCiToJMonV6QMV/qMFAqMZq0mS6XKbgG3/+HN2l2A3pZjkrOJG5vkiUJllukpeWJNEWgcgypXXK6R6IMDFKM/SDi0ibBJKRE/1TB/uFH2f6CwPTgjAEAhUXEDAuUaZHoNo7yiYunsIojDBohqrXGynYXwzCoVqtMT09TLBYJYkUvNhgsFtCzPO12u7+10S4REOMQ8vIb1yklm5ydrZLL5SgUChSLRYrFIvl8XhoRCXEESBgQR8rS0hI//OEPybKMZ599lsnJyUMbi1KKhYUF/uJ7r3J51aZFhQvr6/zwdR8zC+hSJjq48Pe37+lkZPu/699560CGQUoRjzFtk5aq0ttv4VsumCS4TJQyCr0YXdfZ3Knz0oUlFr1RQmXjJTBjbDNUHaAwOM7qP7xFRUX4Wp6qtgfAejZLi0EsIhQaCm2/T4DaPywILAISDBIcDGIU2f46ghgNjZwWUTY6aJq2v0hxnSxoUrQznJzFzPw8c3NzDA4OYpomhmGgaRqNRoNms4kfhhSLRebm5mj/+M2DTocuPiu3VhgpPsrQ0BBZlrG7u0uWZUSpTmrkGK8W0K08rcjhgYkiI+WjNyUkxP1MU+/uSCLEIVlZWeEHP/gB3W6Xz3zmMzz66KOHNhbf97l06RIrKyssbdR5uTZOg2HYv6fO0aXHAAoDUGgk5PD3VwboRFhk2ICGRsYQ25zRb+DqISo3wi1/kkyz+Mj8CMVomUceGGdl8Qa5YoU3NgzWmgovc6hSR3cKzOe2GXRTtmpNNrMpfAqYxExqK2SawUo6j0cenwIKhUGGRoxDSo88BikxOhk/LdObRKRY9CsDCWe5zJC5h6b12win6X6IsCyKxSKWZaHrOrre3zaYJMlBoyTbtg9+ZVnG4uIiQdw/C+FOrwPLsqhWq+TzefL5PMpweHPTpJfYRF6T7Z6NXRrhzFSVf/W1UxIIhPgQSWVAHAkrKyu8/PLLdLtdnnrqqUMLAkopri6s872XLxM2VugGCZc747Qp7a+0t0hhvx9/tv9V2v4jEQkWCoVDQrR/zK9JypS2iqv375yn5iap3YxoRhqOqZGLfXa31vB9n61WwmazgqsifFw8ckzYKUMlm9rWGqamGNG2WM9miTHZZpJi1ibExcclpT8pkOCQ4ZARYBGhkxEyAPvLGTVi2N8loNDQSWhToaxamCT4kSLCxdEiiGPCMMQwDLIsOwgJpmmSz+dxHOegSgDQ7Xb7JyZq2f7uhb44jmk0GiRJQr1eZ7udshzP4FjQil0CchQyn61myO0dT8KAEB8iCQPi0K2srPDjH/+Yer3OuXPnePrppz/Q5+sFKXudiJILlpYSRRGNjs/qVpM3L13hhytFImVjMEMPh3T/iF/esQnP4s7FFPpz8R5FMvpz9zYR+v7OfZeQnOZjGAZjY2N0AkWQ2uRVm43dEkrLKLqKXC5HvbWLi4OvFSipFsPaNgNBj53NGOh3EeyoAUJyOHjU1QgtBulSIEMnwyTbH6sGRJhoOCh07gSB/p6Cfj+BO+sGMnTqDDGsdsjhHxxz7OIzkm3R7WTYnfpBN0Nd17EsC9u2cV2XXC6Hbdvkcjk8z0PX9YOTEt/OCzM6cYSR+SSZjU+eVmzjEJHTYqzCCOMVh/nR/AfwLy+EeC8SBsShWllZ4dKlS+zs7HDq1Ck+//nPf6DP1wtS/vzHW/z1373CaNni47M6pmlwYcvireUGHSoEuBjE9Cjz0wso/HTB3R3v7HmQYGMRotDI0HAJGKBJho5m2DiOge/7BLGHqxVpK4eZXMZUqYSlZ3S7XVQSHNz5J5i01CBGmpHT+kFkPZ1hlxEiHHRK6ChsuqQMkh0sCryzjbA/RvW2j+68jpR33nX3mxBBmNn4mktHlbEI2GOIjiphkJLXPCb0dUwtIcsywjAkDEM6bzsX4eC9UCYReWwiEmXQo4ijfGpqgk46gE2ATkaMi0lEwTH5F//Vx7BMk/nRvFQFhPiQSRgQh2ZlZYVr166xtrbG2NgYzz777Ae+srzejVhcq2MRsNXIWDBDCuURbm129+fccyi0/WqAfo+/4e3b8bR3PaJI0BhmlzG26WolIhzyeFgEKGXSbrexbZszpYTthsesk5JGCfVW6+CiGuMQaQ6OCthjGE8VKKoOFa1OjwL9ZYoQY6ORETLMT+/BNfrTF/rbxqruGuu9XleGzg7j+KpAhEuyX2XQgRJNUP3Q8PbS/70EmcOGmiXBwlIhTSr45NFISN+2k8EixCAlpEilVObmRsDvfnriyLeYFuJ+JGHgffbzTqd7++PAsemx/35bXV1lYWGB5eVlKpUKX/nKV+46cOeDUC3aPDg7gmU/xebKDZYaKc3NJh5FPAr7BXT46QX13d59Uc3e9rna/jy9TkHvYBMCGjnNw9QyDKO/eC/LMixDI6957GyuYpomvV6PLMsIMoftbByPPF2KaGjYKiDQ+lMVBXp4FAETjZQU5x7jvPPxu0PLu0NBgkFGun9YsUKnQwWTBJ2UDAuTlBQdnzwl2thEP/P9TZTJejZLnWFcAroUaFPef953jjMiz52KxcZug58sWnzqXIWHpg63p4QQJ5GEgffRndPpNuo+k1WXLz85+o6L/J3HV3baVPIGSZLixTrTI8X3PMnufrS6usry8jKLi4vk83m++tWvfmjNaAquwZefHKHeLdPqjvJ//eeLhFvLhMpBI9u/NP20Ec+9A8Hb3Sm/3/m8jASH9WyWTDNw8SlZIVmaEIbhO+bRlVL4vo+u63iJRVsN0FDDNBjCIt5/dkWbKlVq5DSPKcOjnDXYUuPUmPwFxvd2b68SJPsNihOM/RUFLgEpJhlgkuISkGBikTBEjSl95WDNwHuJsEkwcQnxcAlxePd0yr3GlWASxCk/v4IhhPggnMgw8IucLf+rqHcj1vc8eo1NLtZsxp0WpyfLFItFCoUC9W7E2m6PreWbXAlMkjhmwAy4fbtCKany9Pl5KpXKXaXyD2q8h2F1dZW1tTUWFhawLIvnn3/+Q+8uWHD7Bx1VizaPPTTNi72AuK1IMfj5F653uzNH3790aygsAgJcCqpHoOXoxDaGZmBHEaaWHnzlnZMGsxhuqUfoUiLFQJERkMMkYZhNMmxs5eGrPDnNo2I0MbKMVlbBp/wrjDfDJETRX7jn4GGRoGkaDj5lGhhahqYSPApYxJT07juCwJ2x39k2GGTOwbqAvOaB6l/iYyzuXkb47vEoHNPm3GSBqSE50EiIw3Dfh4F7tZH9jy8usbzVZrRs8/mHC5TyNqZpvqORynv98qKMlpdScG2CODs4hhb6Jejxis2FbZ3JqsWAq7O9vc3Gxkb/660cVhaR6HlOjZo06nt0YwfH2+WNVy9z69LLDA0NMT8/z+zsLCMjI4SJxn/4+03eWmnx8GyZ3/3UBHA8pxdWV1fZ2NhgcXGRNE15/vnnD627YNdPeOPKTVrLF6i3HXqM7i/A+1X077a1/Y7+wf7ug4gcFbVHnWEi5fRX5mtbZJqBrtL9RkEVUrR3LVbs9y5IsKgxTg4fj1PoGQzQYFxbI0Xfv4f/ZSX7I+5PU0VYlImY1pfINOPg4n5HEe/uv0GZB7sNbBVSoM0ac/s7HHyG2UInJb/fdKh7z6mMO62ZUsYH8xRchy8+Pnys/n8W4n5yX4eBXpDynVc32WqETA65fPVj49S7ETdWanjNbWq7ObJmiG0oClaKbSg0TUPX9YNQYBjGQaOVONN5c9NiYaNFkFm4RsLcSI7nHq8yPztJsVjky0+OMlP0yZKAwbEZBgsWuorodrt0u10eH+vieh1mJwZpDZoUB8cp2opWvcT6+jpbW1tsbGzw6quvUqlUiPNT/KdLJlGquLRYY/f2G2jFSVqRzenJAX7n09PH4gfo6uoqW1tbrKysEAQBn//85w+tu2AvSPk3/9t32GxGpMqgwTDZL10R6NNJMYj3d+srbCJiTCrUSbAoam2aDGGpiA5lQuWQYuBj02SE965E9O/gUyx6GFgkKBQh47RUhQxzv/th/9yDX6y8fucC3B9vf0eCiaLf2tggA+1nrwmA/lRA/4jkmD2GqTNEhwE0UnwqtKjuN2PK9seXcWc6Rd9vy2QRU3E1PvvEPG0/ZW4kx5mJwi/wGoQQH4T7OgzUuxHXbm+jwia1WoFyusVgyWK87LCWDDOgx7T1Co1ORMlO+MxDeQqugWEYBLGiHUDJUdhG/wfZZjOhE6XYJtR6JlrS5fKqortzgzHHw3VdCoUChp3ncs0lea3OQ7Mj/ONnTjM6Osro6Cizs7NYeka1WuV27DOYV+i6Tm58nKmpKXzfZ2dn5/9n781iLEnPM73njz1OnP3kyb2y1u5mF7u5syWaEElREiQKA0iGDWPGM4Bh39sGDBiG50pz54sBBr40bMALxoZtmZrRaDAai5ZESVSLzWaTbPZWa2flvp19i/3/fRFxojKrsprVTUpd5OQLJE4ucc6JiBMZ3/d/3/u9L8fHx/T7fbb3EqL0KgJFqgS3tnp0VGY7+94Dk4bo8KWXNwqJ2DmepdbCzs4OR0dHHBwcMBwOeeWVV7h+/frHtj+9SYS069js0GUhrwg8DeP+NObEwWx4r8EJer6aNzBRaFTEmIoYMVNlTlgiwCGBzFSIMj+53z/3OxS5YHA2rzCmUnT/LaI8KfhJ/8pZYDZJi1cyiTEJ6LPAQDUxlKQpTljTdj6QG2AR4eDn+yGw8FGnRhtVcVyntQ0AEkwCrnKHl198jv/wt7+C5xjPzHV6gQv8uwz9937v937v496JnyWmQeYHb2garqVzNIroTVMqVsLzyyYr7QaXWhbrTQtDxby16xNPOnTHMXJyiIqnHPdGvHov5K2dgIN+QEWfodIYQxdMEosQjzBWDJIKgbKJtCo1R6HJiNCf0plItoYmqd9n72TCzp03ON5/gO9nwjPdwQRp1QjjlMbSBleubIBmMAo1bNukWi7RbrepVCoEkyFHUyuzuWVKixOGNACQqcTf/xG777/H3t4eSiksy8KPFf/LH7/N//P/vcleZ8rNK21s8+O50e7s7HB8fEyv12N/f5+XXnqJz3/+8x/LvsxhaBoBJdz6Mu2qwckgJpJPYtyfD4FEy2V/LUISLNbEDk29y4I4pqqNqIsBmlBMpccRK7k8sZFLAn84olw2hhfnjocGWZDV83Tkcab+WSh0AiwUCoFFRJUhWY3AyVUTM7EkBFTECFPET3w1TUg8MaUkpgDEOMRYOQ9By6sC50NisLayzH/1H/8KjbKJZWjUStnjBS5wgY8PP3eVgZNhxObx7Fxhkjlb//5ej/V2lZcuV/nU1SavPN/GFTP6nQP2j7o41UVeuLHGg8kx0uwQ4rFsD6mVZui6jldfJzyZYTKgN3M5GQbIOFvBr1kGx9LGn84IKeMxoxu4vBlUqYuUFa1PogJSWaaHSyUeMoh3ePPkAW+++SZKszhIV4nNfQLpoNIjNlYXONl7n1DqLNct/v7Xn2N1tU2p0uTt+4d8vnlIKDyYHqCSgElywkSVsQlJ45DdrsZh731+dHuXesnAcOvcn7Ux5JQfvbfF/xXu8I2vfZHl5WWC+O+ObzBPBCaTCdvb21y/fp1f/uVfPnfbuUXGz+oRKLTzz3t8rprQFBGqIXmw3SFOKkh0NBJk7i3w0H3wNOYcf9BJzigN6kJm5Lk8zs976ye0+en+1VKaHONTYYrDwykHiUCgIXOb5PM+T4nHiDp9RtSx7BKfWi/z2VWHN+932JyYzKKYQNSpOiV+8wuf4nde+d3Hro25F8HJyQnvv/8+7Xabzc1N3nr3LsNoysyyOJ6kxPGAE5YKTsLDc5adFFMX1BttepMIz3F/inNygQtc4GeJn5tkYBqkvL015J9/e5fBNGKpZvAPXvGoOtlNfzgJuHMY8cMHAdPhAd99Z4Hf10xc2+QL1zz+oy+vsn7lBv/Hn73PG996E5H6aLqFSKcEqkR1YQxpQqczg/4Ez1hmZFVp2SlX19pUSmY2GjYF3dJomMf4sYufG7+YJPh4+JToqRYj6ig0PGYIIbKbqTIYpmVG0kFLZpxQAyxOtiNMFlngiMMB/P6//GNcPeFBdIkJNeqmz43SIanySVRCiyMCHCIsNtXzGHGUq9/F2EHEotgjECkBZXRCdrcO+OY3t1lau8xutMww1Fhrunz5ORvHzNXqfoZBWClFr9djOBySpim7u7vUajXq9To//OEPz33Ok5CmKVLKM4E8juMzX2maFt8nSUIURQRBUPztg95npkr4coNlJkwp0eKYCTU6LBKh8rCrYRESY+X1AIlBjIGkzBiEoMQUV5wl281762XGjGjw4cYAM2hEVOmzIHp0VRagZ1RIyArytpBYukQJSRyHxLnTgELHZoZFzIZ4n9W6YJqOaLUW+PwnLqMpwUvrJaphnfcPxiw0DD5/1eUrn186N0mcc2k6nQ4rKysIIeh0OjgmfOblG/RGM9585z5Ki7BlTIdlYsxcoCil7tlMU5d2zeL5Va/Q2bjABS7wbODnIhmYBil/8N19/vDVbQa+wCZgOFB8s/tDlp0xUaqxHbYZhCahshB4+KlJnOpMYsm3f3zMZPt1HK/Kd49apImOwKMaD1BCw9MG+L19jiYajuOg6z5tK6TleJQMyeGeQC4uUi6XscUMS6aYjkc7PmZCiSlVerSoMEEJgxkZEUog8XGJcXAMnY5cY5zYhfSryINNpiZn02eBljphlrocphWOWEMimMQV3GGHkm4hpcWuusKIGjopETYVBgR4JESMVRWpYEnsEeYks92gSRgecq+7Qy/v956cLHClvsz11eqZaQngQz9CFtillCilOD4+JggCHMfh7t27VCoVbt68SRAERFFEHMfF4zyAz7/mgX0e1OeJQJIkxev/LDHvfwfCpcqIBa1LXQ1AwpA65CtvlxkmmXnQiDqgUWLGJbGJpvEYC//0a4+p4DAmoMKHSwgkFgF1M2KlrPPc+hXG0uVgbxcpdEJjAdfSWS/7vLhmc/fWO/QOtwmUS0ctIYWOy5SKNoHEpG6m1I0pjimYTCKqnsXNis+yLVlflNy42vzAatHBwQFpmuJ5Hq+//jr9fp+lpSUA7t16G1sloMF1c5ur9pgUA8d2MJrX0b0Wnm3x5Rcb3FjxLvgBF7jAM4ZnPhnYOvb5N9/b5o3bR8g4zjueFnV9Qt0KqVarOI1L+JMWLX/AySih5Sa8NzDp+6BUFm4HwxndYZmZ0hFo2IQsiBN0kYAShInATzUsf4Kppej6MLNxdV36yuDe3oCKDbYBziyiFgqmLBBQAmRGzFIRQsaUmBJQQqHwmGIonyB1GScmNj4pgjIjbGb0WSDBosQYnYgpDvu8TIwOaBjEpBgcsoKWwpgKMRYKSDEQCAY0cfGLue8Ik1C4pCoTvZmqMjN1DYVGnFPIjNGQb7+6S//GIr/8hc9gOmV6kxjPUpiaJM6d6uaBex685yvu+c+ng3iapgRBQBiGhaCOEILZbMaf//mfF8FcSll8/3E7aBsiYd08IBYurh6jKYGUCVfT95nJbETQJCzG7gAmskKMQUWMcLTwA197Rdujrlx6aoGhmjGhRpRzB56MFA2FywQQTGMdfeFF/v5vvMQ7t+6ymw6o1Wo8/+mr6JrBtLeNY4DsO8R9iRMPKKvJGR2ANM2MheaOg3Ec4zgOk8mElbqHbfCBeg9zYmu73eb+/ftsb2/jui4LCwt873vfI0myREjXdVzXxDACXNfls599nhufeIlJyAVJ8AIXeIbxTCcDW8c+v/d/3uGgN0UonXbNoWEYNO2Ez7QFRtwgDEOGnV38WUBq1Xjxap3PXDIQb/Z571iggEuupBRaHE91PCYEOFTp44gZJ2qZqSoTZF5xlMWUFfZQKgtyEz854+C2qu/hOQZlt4qmbEppzEh6QIyXz2Sv6Ac0VReUwiQiVBa2LikbEePEJcZkShlHBFxWd/Meq4Ygocty7oiXIcECJF2aZL3qs0p9ipgUC40RGoIIAw0bJcESIQEuPiVC7GJ1CzCizrvTGgdv9vjuj/+QkWogDY+qnXC11MXU5JnVvpSSSGoEqYlJgCnS4m/zUvx5LnVAESg+LgghzmhInK4wzMdIDQNsu0ypVKJWq2GaJsPhkJOTEwaD8IzITl3vP/V7GyKhIsa4yqeNhZSwqy5zzGJOKDw9GpjSdmIqjiCKBQYavWlCw0mYpjbf+ZvX0MIel1azKpWnhmysbdBzl9jc3GRpaYnt7W2GwyGGSM54CJz+rCBLBsrlMmEYUq/Xs4kW98k9/J2dHSzLYjKZ8O6776KU4sqVK7zxxhuE4cOEyLIsdF2nVCrx+c9/nk996lMYhkGj8mE+sQtc4AJ/13gmk4FbuxNevz8kjFK6owhbSwhSnQWtx0vLgk9ePSugygAAIABJREFUW2Kx9TxxHNPpdOj1epjdIaOgj+oo3pl4vHJliS+9UCNJYyypSOLnUfcjto9nVOWYNW0bdIcg9vBViSllFBqaUmfMWCIsfDw0leALj1BZ6MGMRCWItEKIh0VAhSEAh2qNipZw1esynUzYS1bxlYcRxSyyhyVcOmoRVwT4yiHGJMIjRSPEOpMIZBBkw2tPulHrQEpICXJfep8SB6xRVlNsJgypoBBMqdCgk/e9M2Z3hzYjVSXCopX06KU6bjDNKwwPV5anhWYc/MK97lnAPNibpolpZufvdPXh0STFdV08z2NhYYF2u02r1aLValEqlXBdlziO2dvbY3d3lzAM6fQnP/WxF8FZhxvqLsvykEDZeGaCls6QZpW1hsFnP/VJEs2h3zniZBhwryNwKussN2xE3CmqLlEUce/eParVKo1Gg93dXTRNo1wuMxwOH3v/eZtlfi7iOC6Sg/nznmQS1ev1GI/HNJtNXnvtNabTKVevXuWdd95hNnvIk7CsTLyrUqnwyiuvcPPmTXT9ohJwgQv8POCZSwZu7U74x//8DmM/wTGhUjKZBiUWXMkXr+jgd7j1ziH38pvO0tISl648R6kVMRn1eO3elP2jGO3BHpfdtyh7JZabHqZlsV6Bugix5ZjpzKY3FSgpibAxiQvC02kzFk2lhMoioIajfHSym6eQmc1LSlaKlxj46JSZMo5txoFCsyoEqUcobYbUUMCa2GYmysxUCYXI1eoyx7isCvBh592zwJ7kY2aSCpkQrImPi4kkxkYnBgQtThhTY0Azs9ZFIlDEuHRpUVc9pIQDHirMNbUuAAEuNlm14Wnc635WOC0ENQ/685X+o5yCKIqK5GAenCzLolarsbKywuXLl6nVariuWyQOAKPRiO3tbQ4PDxkMBiRJJs9bLpdZufwcm5sKm5BY81CmB8njAfdpYYjkYXVBgdAFuohw9RZLCzVefPFF0jTlzp07NN++RSB7BJ079EXKcq5HkSQJm5ubvPrqq1y7di3TxggCms0m+/v757Zf5udq/hjHD8cHPe98wZ85AbRUKnH37l2Ojo5oNBocHBwwGAyK7UzTxLIs6vU6X/rSl3jhhRfQtItxwQtc4OcFz1wy8Op7fUazBKUSpqFGW+zwfEvnc9dbfPlzn6NUKrG3t8fBwQEHBwe89e5d3u2WGARQK3uMIp2xNJjEHp2ojDWM0PYTwtxAZkHX+UQ15VCu0VGCGTYaCRpQo8e6ftaMJesVh7jMSPPgL2VIqBwkOiXhk2geJb2HngYEMpOd1ZIplUoVK5QMpINDmFnCCp2GOmHGFSRa3h3OTGkzpzidD2/WopE8UjlIsHPDmAkJBikGOjEd2rmFrMztakwSTOzcYS/G4Zg1YmVgE2WVA1mjxBSBIhAuLtOf6F73YWAYRpZg5UF/HuiBM/LQ85XtnJugVKYYaZomlUqFcrlMtVrFNM2i7L24uMjKygqVytk69ZzouL+/X4w/KqVwHKdIIqSUlEolltdq9NSMezsdLDlFS6bF35/UGnkSHtX0n+/LafLk/Lg1TeMLn32ZNE25fVsW+7i7u4vnedTrdU5OTjg6OsI0TY6OjoBshX66dH8a80QAsurAXF3zSXyBg4ODgsx5584dLMtCSlm81/zzs22bZrPJV77yFa5du/a3bkV9gQtc4GeLZyoZ2Dr2GcxidA0SaWS65c6UynSf2z+S3P3xXxekpcuXL/P1r3+dzcMJr/3RjxHRgMOuZEI5t3iVhDjoKFIM5gF2mlYw+hMCIRFKElOllkvHLmkH2OLsTdQioiRmBLiUmGERkSiDVBk4BKCglI5ZFTsITTAWdTTpI6VCJ+bTizN+dKIxjXXKZoKjazwIVxhRyz3dQpbYBwRHLNKnzUPzm58WOgFl5u0D0OixmAvnkiceKSYSiUBH4OATqaxCMcIjznXlx1QoMcVTE9raYdE6eDSwPYp5sD4t7Tz/fh7k56Xq8wLI6f6+UgrDMCiVSlSrVdrtNisrK5TLZXzfZzKZIKUsWgCNRuNMmTqO40Lu+eTkhCiK0HWdarVKq9UiDEN838eyLNrtNq7rsru7y73b79BKYel6nXAcEflusRKfjy+expPOy09qtUwmkyKIJ0nCZDKhUqkwHA5pt9vcvHmTcrnM0dERs1mmeFkulxmNRiwuLqLrOuPxGNM0z00G5tyOecIRxzGGYSCEOLcyMCcNmqZZkASr1Sqbm5vFNpqmYds2rVaLr3/962xsbJx7HVzgAhd4tvHMJAM/fH/If/fN9xnlycBKw+SLN9r8w69+ljScFpa3nU6nsMD9zne+g2F71O0lOomHFYfYKiTEIcEAdNLHgqrOjDIlZvjCw1F+IR3rCp9EGfgq81l3hY8hEhb0LkNVp64NMXWDnWgZXzlYImRV7OIKHxTsJZfosoBA0BQnMNxhySnTKFvM+vmcvOUiNRsnzZztXCaEWZhlUsyif9hWwQchC4bZZDzoRGQqeHr+Pho6MyxSFDp9GpgkWIRYpMREpAhSLGISxuiZ2pxK2UsvMaWCRcC6toVnJliWVZSHDcNAaRahygKjqT2c+Z9rL8wDPFCsUud/03Ud0zTxPI9ms8ni4iJLS0s0Gg2EEPR6PbrdLkdHRxiGQbvdZmFhAcd56Hw3m83Y39/n4OCAbreLlLJIKOeEuNFoBEC1WuX69evMZjPu3r1Lv9/HMAxWVlaKxCII2ty6dYswDHnppZcIw5B79+4V9sSJMvLz4uExZU1/KO071x14UqsliiLeeecdlpaWcByHOI6LfXNdl8uXL2OaJouLi8VxV6tVoijCtm1u3rzJrVu3Ch+MR3Fas2H+fpZlUSqVzu3t7+zsAHD37l1GoxG1Wu1MIiCEwHEclpaW+PVf/3VWVlY+7MV5gQtc4BnBM5EMnAwj/uk3b3M8ygxNNBQlfx/n5F3+4k/LNBoN2u02v/Zrv0alUmEymfD+++9z+94Ddo4GlMMHmV6cLTlIV4iSEr4SpKSPse/Jh/JOu8edHhvbk5foqTYSqDGgzQHbXCfA5SRd4FLyAB8Hm5AQG1NXmKRMpcsUD/JV9wyPCIudowFdUacsfEJlEwYhjpogRQmPCU1OOFRrjKnmq/C5Wlu2kv8oQjXnI9Ojz8YRFXPjGACLGIeQEjPGVNGRRTWkpvrM8PKJhUzXHgS+cumySIidVRokXE3eJ0394nWzlXCdSPOoWSlXvR6WLove/2kewGkugOu61Ot1FhYWaLVaVCoVNE1DKcV4PGZnZ4fBYIBSinq9zsrKCrVarags9Pt99vf3OTw8LMh0tVqNq1evUiqVGI1GdDodgiDA8zyuXr1Kq9Vid3eX733ve0ynU8rlMi+88AKVSqXgD6RpSqlU4mtf+xq3bt2i1+tx7do1XNdla2uLyWTC4VijywLkfJCm6lAR4/w855oGeWXgvFaLUorvf//7SJmdp0uXLqFpGqurqwXHQdO0IvEZDAbEcczm5iY3btxgZWUFwzDodDqPTXFIKZnNZnQ6nSIRm/tpPIper8doNGI4HLK1tYVt2+zt7T28mvJEYHV1ld/8zd9kYWHhI12VF7jABZ4NPBPJwObxjGmYaaplVrApnuowHkwY9Y+B7AZommYx+lWqNOjqV+k7Pq4747pxxKB7iBntUVFdDpNFBtSZFYf4UL+9ywpCamxom2fmxGeqxAwPiSDE4oQlfFwCPOz8Jh5jnbmhGzJAicytzmNKgIsgU6Sb3+wdfELdw0nH1O2ENW/KYe84bznoBMolwuFhgJZn9vej43SFQTA318kkd7Pf6yhC3Fy1TlBmjCYkIXbmbS/6gKCvmgTCLZT2/JwAKfNnRtiPr3TnK2HpM5VlsMqsLVcolUpFMqBpGpZlFQlAtVqlUqmcIfeFYUi326Xb7RJFEY7jsLa2RrPZxDTNooe9t7fHyckJs1kmK91sNnn55Zcpl8sMBgMODg7Y2trCsixarVYRaN977z3eeOMN4jim2Wzy4osvYpomQRAULY00TWk2m6yvr2PbNgsLC7z66qtsb2+zvLzM0tISKysr+Pc7iL4oTI1PV3jmugOnWwh6ErG28xaXN3+AN+2jK4XmlemuPMfBi1/m/Sji8pUr5wZbIQSNRoMvfelLfP/736ff7xe6DvNjPnM15AnA0dERaZoW/f9HiX5z0mAURdy6dQvIkoPT/AjHcdjY2OAb3/gGtVrtw16YF7jABZ4xCPVxq76QVQb+2b/a5J2dMXEiWS0N+VRlH1eLMAyDSGoMZyl66iNkSCQ1enGZo7iJmU4Jlc1le5+lqs7KygobGxts9yR//KMB4+mIHit5u0DLV8VgErHIIVf094sybqIM9uQljtUSAR567rJmIHMyns9VcQclDE63EebIWgyZUI0rZmdeN9EcDBlgiKyUHkUZ92CoahzJFQJcZniZWQyKEJunz9XmQX+uT5/yMPifDUgmMW0OGNLMCI1k2gspBiYBNYbU6TCiRoSLFNm0xLyScnrUcCe9TJc2AskCJ2dK4rqu45Yb7MZL9GewUNF5rjbC1hXVahXP86jVajSbTVqtFvV6/UypWkrJYDCg0+kwHo/RNI1ms8nCwgKe5xFFEQcHB0X/P0my8zonDFarVfr9Pru7uwyHQ5TK3nd9fZ3FxUV6vR5vv/12QYRbWVnhueeeK3r1tm2j63rRm7906RLVavXsdXtywg9+8AMmkwmaphFFESvrV/mDV/c4HEtKTJ/sAKgU1+/+Dc/d+iv0NOvhn24MKU1DSEmwsE7nP/gvWfzML/Hiiy9Sr9fPvQK63S4PHjxgbW2Nt99+m3v37p0h+c3hui5XrlxhMBgQhmFB/KvX6ywvL7O6usp4PGZ/f59bt27R6XQKpcg5HMfh2rVr/PZv//YTpxDmmAYpR/0pnd6E9/amLLdcri7XWWu5FwJEF7jAM4RnIhmALCH40eaQd3cmTGY+TSflWrlHv9/nva5HgEujBC80Q36wnbDT9fETE136mMSsaVuULfmQiGY4HKlLnMQVjmZZiTvEKW64BiEWETfELRr6wxVUogyO0iW2uFGw/K9xC0OT2MqnT/up5s0fJZHNf7alz/rhO1za/BHOZIiRxgRGiaP6Nd668qvMmi06YpFjVvO+/tNVB3SiYuIhzFURMzOdGJlb6prEtDhEEwKLkLIa06dJhEOATZMes1ykKM6fs8gBUhisaduZCc8jx/gov+I0hBAkSifCZqlR4rOfyiSJpZS0Wq1ipn8Oy8r06udEPl3XaTQaLC4u0mg08H2f3d1dDg8P6fV6KKXwPI+lpSXW1tao1Wr0ej12d3fpdruEYZhNA+RBzvM87t+/z7vvvstwOMS2bS5fvsyNGzeYTqcMh0McxymU+aSUrK6usri4+ER2/P7+Pm+99RZBEDAajXAch/byJf78r7+PDIZPTAReevPfcmXzjZ/8wWo6WDad//SfEK1eZ3V1leeff/7c6Yjbt28jpaTRaPDGG2/wxhtnXz9RBppT5YWrq5CGaJrGjRs3qNfr7O/vMxgMiKKI2WxGEATFOZ4nrhEWVUfwyU/c4Ld+67cKzsVgMGAwGDAcDgu+wmQyYTyLuDuq0w1tTtIGCSYacG3J41dfbvM7v3S+D8IFLnCBv3s8E8nANEjpTSL8MOVfv37M/u4msdT4yo2sNfBXd2NM5TOOBBuVgL1ZGRUMmKoSSqUEQYquSZ7zjqhbmVRumqaECQwTjwfxBj4OOgkV+gxYIMEEBIscnKkOAIxlhTvyRRQ6gpTntfdwhc9Q1TiRyxjESGGwrj14LEDC46zxtjjkRC7yyfvf5ov3/gg3mhTl9Tmk0NCUZFRe4PUXf5fvLf9GPtDoIvN9zTBf6WclW4OIFB2dMN9KElBCIrAJKTEBNEyydkhbHOGIoAjegbQZqxoTVSHEYUyVAAeTiBSDKkPqon9u4vM00wSnYZomzWaTjY0NGo0G9XqdS5cukaYpR0dHHB8fMx6PUUph2zalUokoihiPx0ynU6IoqxQ1Gg3W19e5fPkynucxGAw4PDzk8PCQ6XRavM/6+joLCwvEcczbb7/N/fv3mc1mVKtVnn/+ea5cuUK322UwGGDbNvV6ndFohO/7tFot1tbWzrQrnoQHDx5w9+5dptMp3W6XdrvNaDRic3Pz3NHDa3f+hpvv/OlPfN0Cmo5WriL+yf/O7jRECMHGxgbXrl07szKfTqfcunWL1dVVdnd3+au/+ivG43HxWR3INUJKLDdtblQG1MsOX/ziF7l27RqQJWGvv/46d+/eZW9vr5iSOH09uyLgudoQTUaPyUpLKYsEcCyrTJXHWFUIpE1XtYr9bFctPnetxj/86iqXFi6cCy9wgWcBHztnYG47/M69PXQV041cDqclXC0gDn0sQlrVKv2wzEotpW4N6YUxY6NMSSUMA4NeWiJJTWYjl89V36eRs6OVUixIScvf4WSiYaRjJAZIjT4LmViQMB7rdZtEVBkQYVNmgknEgVxjqsqMqAEKV/loKj2X9P8oa3wmXb72g/+VF/deLbY5nQgAaCoLGpVJl6+//j8RfVLw3Wu/i0amc5BgoBPlzYCstL/MDkdcYkQNkyw9MJHYzHLCX+aNYBLnLoc2fdq4aoor9pikJXbUNVI0XPyCUaAhSbDwGLMuHuCKzPcARVHl8FWJnmwRCfupVfniOObo6IiTkxN0XS8C8KVLl2i1WqysrHDz5k1msxl7e3scHR0xnU4RQlAqlVhcXCz4BsPhkNdee43xeFzMy9dqNV544YVi3LDT6fCd73yH3d1d4jhmYWGBV155hZWVFY6Pj7l//z6WZbG2tsZsNuPo6IhSqcQLL7zwgTr9j+Ly5cskScKDBw+Ioojj42Ns2y6C8mnoScTzt/7yqV8bAJkiJyOW3vwzrv1n/y23bt3iwYMH7O3tcfnyZa5cuYJt24XY0nvvvXdmSgNOX5MB3bFBOZoyHXYLguXc6TEIgsdGJU9fz75yOB520YXCIsYQyRmjKylMdtIN9uNl0E1KFjgGMH5Y4TI0Qbtq4ocp0yC9qA5c4ALPAD72ysBOx+dffe+YvQfvsduLQRho8ZhECi5be7i2zma4xjjSEZqFZ8Q0yzob1QBNJfzFfptu5GAQYxJzXbtF2+hj2zaWZRXl3Vjq3BlW8aWDriJSkfXLXaa0xWHO5M+8BE7UMj4eBjGrYhspdPbkBkJJeixQZoREY0kc0tB6566Yi/EyNeG33vofuLb1+oceFvz9z/7X/Gj914mxUUhUXhVw8anSZ1E74kQuM6RGjE2JKRqSGR4CRYtjNrRNDJEyVDW6aqkgP5bVkH0uMaWMhsTGp8QMhY6Pi8uEVXaxhc8xaySYxbk6UctMqOArlyY9YmGe20Z49Jx8UEthPttfq9XQdR3HcVhcXGR1dZWlpSV0XS+IhFtbW3Q6naKV4HleISUshKDf73N4eMhkMsEwDJaXl/n0pz/N4uIiR0dHdDodTNNkeXkZKSUHBwdomsba2hqtVusjCeZIKblz5w5bW1ucnJwwmUyoVqvs7u7i+w8nLDY2f8DLP/o3H2lwVCvX+PSf7hIj2N/f5/bt23S7XTRNo16vkyid7eMpnW4XW01Iw2kxUfDTyEmffq6lQhAQcX4SOFMl7qXPM6GOQOZmXeNcPyObjvnyZYVbsvAqDdZbDt/4XPsiIbjABT5mfOyVgWbZYqluIy9/glZ7yP5Rl/FMUU6GmEjuT5c5ScsYJMSpjpUOOIw09ME2um5gxCY2dRIMLEI8sl6v7/vFTVgIkU0KyDY2AYFwqXOCK0IsEbKfrtOhDUCNPuSkuRC7IM05+LkuQYCfjw1GymUmvfNJYiIrGqx273B96/UPfV4U8Ltv/vdsLb1Mz1zMlA8xC9tjixiPCTMxySRtkSxwTIdFSoyJsVjR9oppiRpDZqqMj0egHAbU8fFQuRSyygWHUnRcJggUh6wSKZsEG4cZCBirKmNVwSEgoMQMlwrjD1QknBMze6qNQtGic4ZsCNnKdG9vj729vUw9sNxA8xYxe2O63S7j8ZjhcFjM1C8sLLC2tlboCoRhyDvvvMPt27cZjUZFErC4uIhpmty+fZsf/OAH2LZdzPE/ePAApRQrKyusrq6eWUl/WMz770mSEAQB0+mUIAi4dOkSd+7cKbbbePDDj/wecjLk//7H/zmHlz5JGIaFT0FxjtO5zsUaTXHCmjbFyLOO8yYZnhann5sqg0O1WlS9fFVCzyW8DZEUUzVjaiT59Tplzm9I0YGtTgCmxqU0u2Z6kwjPuWgXXOCjY95qvnDG/Oj42JMBz9H5xufa7HUD/uT1CRM/wrM0nl+AwbSF381Y/VkpPybCwiFEUyl6GuExQtMUmia4Yu5ClDJTpcfkXk0VZgEdD1/ZxCxTVhNqYkCXNgFZ71UiaKkuYV7+nr/O/GYYSYttdSVXKxBMVeXckboIG48pn9z8dsEH+DAQgCEjPr/7Ld64+g26LEIuJFxnwJq2jaOFrKiHN3iAmSwT4FJllIkh5Zgfw1DVOFCriMIHQQcSqvRoiWMEECibPS6j0AmwsvIwDq6aMqFKSCkjdNJlQTs+d6UPDzkFqTKY4eWNEcE0T6ae5G0QpRpb/TI//NNNDOKs6mBk0wLlcuYsOBwO2Tk4YRoJ4lkff9wnTVNc16XdbrO4uIimaYzHY0ajEVJKHMchSRLee++9oqowl7eemxzNNfbn38+rBHPp40cLaXNOwGkDoHnJfTKZkKYppmkWRMnStP+R5aSk0EgOthhW1x8/Z1jn6lycPsePOhk+LTRNwxa5N4OMKcmQmbSxCB9rFc3fx1NjfEoYJHkKkI/KCih7JSpll5NRyLVll2bZ+mgn5AIXAMazmD96bZ/dXohjKP7B167Srv3sr6lf9ITjY08GIEsIXFvjqD/DiEcMA4O9YMBh1GCYejlBLsUiIMJBKMkRq3hyhElISU0yfbww5FhdYqzKuHrMqnyoIzAPhj3ZYMxVUkxCHGzlF917hUIHWuIYQ8zH8yiej4JU6HhqyowKKRoGKVIyF/oDHorL6EHAjcPvf+hE4DQ+s/kt9q5+GoOEMO/5rmsPzhzX6Rv8o6u/R0l+NYZ5QM+SLEGEhiSgwqHKzJJErhugE6HyAUuTCIOACQ1KjEkxWNBOqGjjc/c7kDZ7ciMfyQzy9kQpLxt/sLfB3CkyVLnBUwqX2SRNH1Z7zpa9JWvGlJKdSRzv7++zt7dXzNDPA3y/3y8EhCzLQilFv58lEXN1vtOEOOBMy+C89sF829OSyVJK4jhGSvmYEqAm08de48NAl+cH8w/Sufhp8KgGgU7Cstgh1CxSpXPI2hlFRchaCHWGpPnoaojDnPRqaAaJcKlXHZ5ft/mdVy4mCi7wZEyDlL1uACjWWi4lW8P3fabTKbPZjF6vx5/9zY/54WGJQNlEokSp5PI7rywTxOlPDNzZ6/uAYK3lnNl2Lt0dhiEn/TH/8tVdNLfFetv7hWxtPRPJAGTtgk+/sMHB4iJlI6aurfMnb08xeyECgxQNHUmAiYviWK0QcgmBwCChJgcYxAxpEGIzSHUSYFVtEwo3C/pCJ1ZmTpJTaIAjQhbUCR00JIIaXQTQkYuZyI6asiT2ibHoqQUibBQKmxkSnRiTY9Zw1GaxOp4nHksn7/5UiYAAGtNDFoMdyt7kqUq8p5ODJ/WJ1/QdanLAgVplTB09r7gYRPiUqNPFxskNnGbFhMI+GdlQI6XMqJhQeBSJMthXG/RYwMm3WdV2WeCEJ3EGTsMiwiBmQA2LhAjzyYJGeSAKpIkWZCNxpzH3QICHVse2bReTCfOf5yZJmqYVGv7zBOF0ogCcCfzzROLRZOJJBkaJaWOk8bl/+0kQShGbzrl/m3+uTdXhUZ2LD8JPmgh59DiEEOgkeFqKFCaeDJmlDk7u2wGZyFYgXJqqi19ULLJB3TCN2D2OWF+w+Y1PLxDEFyTCC5yP/tjnf/uTO/x4J5ugeWndxCbix3sRzWSXkn8/cyxVBjpXCalTd6E/ifkX3z0gTmGpbp8buKdBym7H5w/+4j3e3plRrzf41IbNV5+z0EkIw5DZbFaMHG8dz7g7qHHzhsPRwChaW79I1YJnJhnwHJ2vfrLJ5vGMq4slSvY1fPuIv3znhP3jESpJ8PGwiBhTI8QmQWCQqeXJvPwc51RCBXRYYKBqSGUBKZpKSXAKxnyFAUIl1EWXSBnEOMzw2FEbTKhhqSw4xioLRiElavQY0CLJV8weYwJlcyyXaIpOsWJPlE4c6Y+NEH4UuPGYSFSeqsR7+ub+JC38uYWukYbcUzcJsEkxmeamRgkmLY6piQEd1c6FhRRJrqlnkCUcMTZS6Y8FEl+VCJSLRUiATYnxmQRgkpYYsUSVPmV99th+GyKhpQ5zDQQLnfixyY2nkfYFHmPGx3FcKAvOg//8S9f1wg9B07QiEZh/zZ0F50H/vLbBnFVvGEaRVJzG8eJ11nfe+khJokDRWbxa/PzoOTNEUkgfPwmnnwOwk15mTIUKYy7pW4+JaJ3nsDh/FCpiUe3gi0xoa4666BPJCV3aDGlxpmyGRqjg9btDTE1Rdi1WW+4v5ErrAh8OYRgyGo3Y2tpid3eXB0cTftRtMgx1dN3gTzoxPnWysHWZT9DjkjugWamwUdXZk2UMp0IajHh7Z8T1y6vsdCQH3QmLFcF0OmXvqMu79w959Xafjm/h42at0aiDSsq4GKyWE7rjiDAMcZiiaQbrl69jrTYYhjobnkHZhr3DDt/6cZ9xbLLS+Pknwj4zycA0SPmzHx/z/l6f5YbDV1/0+KXLCl2W+HYS4kifUSCoqwG7szKakoyp5RWDhFneL00w8mI/RLhElNByV76HCn0ZK7/LAlMquGpWsOVnlLDxicjmyw1iQmw8Mq3+CVUUgjpdRjSQ6IxoMFE1uqrNc7yHIVJ25WVcdp9wtB8O6inZ7efpG3xQwNQ0cNMpNj5D6ujWc7YOAAAgAElEQVRIUgQakiVtH0cLceQMJWFAk5QSCo00J2ueN1qYKIOebBFgA4IGXda0bRKlM1Q1hEy5x00isp7zC8lbSKHTVYtIYRQTCx2WSdExiTCJkeLsP9m8+hILG1OFH4oQNy/rR6lGhPETqy0Pg2IWcOfJw9xLQRguieZgiwgZ+4RhSBzHjyUCAFvXvsDG9ptPva9zSATd5gb9yioGyblVH+CJq/y5OmZPLRAoB4MElxEHrKMQTKlQTQdYWoSma5gqZD9dy901A5aNQ8pijCHSx6oFA9V8OGmgyJtCJULc3DH0NDQEKWGiuL8/5EsvNDgahBckwn/HEMdxsfIejUYcHBwUaqNzzwxbi7HTAYlsMpUm8RmbdgHtL/DLL03o9XpEUcQn3Q6pNmM8HvPWyGHz+w9whE/vzdtZiznVOJBrjFWVIa383u4CiiCG6dGM4z6oNEYqgaYbLJQsRDQhUock2oSSo9Pbm9F/b5/BTLIVrVB1DLbcFi03xSt7XF0s/a1wFv628bEnA6cFh7aOxkwHB7zTtaimGistj71jwWA8BSw2Kj7XKwZiYLI7EiTxFJcJKRYCSYqOwuChDC9kPPu5E6DBmeVlbiaTIJA56U8g6dMk0yjUMfJglDkMzgixSdEYU8cgwcchxsYkZEKFgWzgaVOG1JlY9Z+6KgAQWaWn2+6RSoAUOivicQb5PDBE0kYnJUEDBCEuBjEpogi+GUlxF1+5JFio3AA5xiTFxFAxvnhIVouwiIRNU2VqhkvaAQC35U0CSggkUS5qFGGzw7Xcm8GmpCYkGNjMSDBwCQiwsURUJDLzEcVU6egiwcU/c1xPy5Z/2lG787azhSqMi6JUsDP2mEkHB40VrfuB7z1srDCor1AdHqJ9iKleDcWrV/99tuXVYtx1pkropMwo4asSA9V47HhOJwFT5eUy2zERLooFYky0/P/lgBV86aFL8BjTpUWMhUJjkNRZEgf55MzDZGAsywxUA09M8CmjADM38ZoTfx/KZUs0YWAZGu2qxRc+UcNPBCtN+4JE+AuMNE2LHv/8MQxDhsMhw+GQ2SyrDsZxXKhYzhPOalrigGZOQj2L2XTAO/cO0ZMJdqmG22ygZj2Ojg4hbFEjJVIWk9jG0iBVBgEuOgkpRnFn9hgW8vPjyCLJkw4hBcOhjo2Gx4QJcMWcMU4gcUpcWtLpnwg2BxpJt88/3R2xtNhmrenyX/y9Kz93CcHHmgxMg5Rv/vUWuydTGp6BZ0j8UouqFqKnI+5tTznoelyuxQxCg41KgGMKDF1DJQE2BjEuCoWGIMbEJCTF5mFp8vQq5nE7Y5D5hy+QJNjEUDgdakypoKFI0PGxAJvM0DfEyo2BYyxCXDQkR6yxJh+gAZuLnyHRTAz50XrECsGotkRQejojmPNK548SDOcjaB3aeRITU2KCx5gpFRJMIkr4qUuqGZiEHLOWB/LM9bDEhBiLGAuJhqt8pISZVkJTadEzruTtgZ5sMKWaP99EkORBKCFFQ5C5VY6p4eIzVA0kGjoRTcasim0MkeQiSVeL/TRVWHgiAI9VRU57KTyKn2Qn/IHbpQ/1FMbSZaTKuGpGIJ78Oqfxwy/8Ll/+9v+MkYZPlRAoBG+u/ypvr/wKkXJQChY4xMcjxsZhSqq0x/YTBXvpJYbUSLCoMmBMhZgSZt7Cyf5fTGx8ppRJcBEkgJffMDNtgAiLqSqfOb5A2myr64ypMFFVFrVjlJJEWIU4VnbjzZpLhmbw/EqJX7nZ4EufaLJQtX5h+q0XyDB3xjwd/OcS5FJKgiBgOBwyHo/xfZ/RaMRsNjuXY2OaJpgNpG/kCWYmsw5QYsI0dbk7avJiw+D9aZ0/f3Uv/98foFPN25sp2+oqjgywlY9BTI82CkFmDgc+Hh5+cT/LptayGKDnPjEZCVbjYAKXSgNmkwHdbgKRhiVXsXWdrmzi2TqHg5DN49lFMvBh0JtEbO71Sfweg4HNL121+eRKmValimst0hvNOI6mnEw01kqKldU1XMfGlSnXtWMOxoIwkthxN1+5KwKsvEStiq/MvPf0oSpEXg+QpyyOsxtmnwCLhBLz0bsxVU73PRUGESIPbjoGISlQYkyUFZOpMGBqlfnx2tf4zO6ffuQe8eb1Lz719qaWssIHz5LPR9AkGhIdSYxEYBERoLCYkKLzPjcwpKLCIG+hBPiUcuKkRkAViaDEDEjYUVeRqUZZTFgS+2cCsUmcn2sNnZQ1NumzmAcdA/K16fxz6bAMSCxi1tjC0UICaXNPvciYWuEZoaMVY4rAQ5U8PPbkRmGydN6q/2k5B6e3M1TMRHpoIsXRwqIlkjlblmhy8lQM/mF5iX/x7/03/L3v/jPcaFIc/aOYc1s2L32Ov/zUPyISDg4hESaHXCpInxqKROkIFBPKeGKCRZTbTC8g0fKKVhMDiSBBoiMQmER49KjRYYvn8yqahUMPhcaYCiK3rraIzhzfWNWYUkFHIjEIpIlBgqUpmkaA65gcTAwsGZAgWCg7/KOvrrDeLhUJwEVr4OcLp6dnxn7Maz94Fy2dIqMs8Pu+X3Br5tvPGflxHOP7/hPJtZAtVlLNxdFjpIwxkw4O7VwcLcYgypdgFnY4oRf53JkNOUn0h2Ri5TKiToiDTpzdv9SMSNjU6DJQNcACNDQSBNBmnwkVRjTz31iQz7BlQ+QyI1KnkmDc464oE2Gz1CzxhZUVZqrC7UOfcZCy3nK50s6u65NhVPDgnvXk4GNNBppli5vXV9k6KuPpEcu1ENcM8RwXt1zHqq3xn1zXOR7M+H9fu8+33jzC0WN0oRMLh42WjmkYTOIqJS2gIfe4fRIxCeqkCBQaFkE+OleCol0gycLJ2cMXSGr0aHPAfT6RqxIKOKdEldn36nmtQaCREOLhMcanTIKJROf1K7/N53a+9aHPjSJjnu+v33zq5wghsI1sHjxjtT++zXwELeNYZHJDZTGhxRG6SvNEwcgJgxo+Dp7wc2njCZ4asM8VdGLAIMBGojHGyXrBqkRTdKmIUfGeFW3CcrrPmCoWc9EmGweFTkSJMQktUqyi1Kyj8ClxyDqeusuUcp7khPn4XJbOnB5TLII2MXHRZjh/tf6TRHhOtxxWtD3Gssw2V+moRRzl8xzvIYVOKFzKakSCTY1BsSL/oFaBr1zu1m5y/6v/I688+Nd86cEf4sUjUpG1azQlESi2mje5d/WX2F19GRMfhxnZ8GdWjbIJmVJGorPFdUIsNMBW2URFqgxS9LzUryPRqXPCDA+DlCZdQuGwYeyjlMROQgxSdF3jinmCyR7vh5eIlEFJm7Ghb+MaAiEsNE2jlIAWpChhoqPQNZu6FRMKB0eXxErScBJmMRhJ9P+z92Yxlt33nd/nf/Zz96326uoq9sImxUWkZEqmZDmWociyPXFsj4NggMwMAuQhT0GegwGcpzwlQQLkYV4mGGSSYDIex/HY40X2OCNLXiBTlkixm83eal9u3X059+z/PJylblVXN5uUbJKIf8BFVd26dZdT5/z/v+W7UPC7/O+/26fY2uKFjSq/9ubK33UEniHmvR8u+/q03/24H5vhYNxA8pfbMd+7/QhDejSULrZw0JWzJOAygO2TQghBEKucsI4bF7DiGavqAbYacEPe4TRe4IQ1JAInLeAcCjS0ITXDYxq76aguqfDD9Np1U0+aHk1aso2Jm2JZErprjEAlwMJnkpq5uSmQOtsngLSYlHgITllGSo2W1mcwjdAfvkU7qFEoNlGjmProhH/xz/+I05nG/dkatcUNlmvmJ3508LEmA0VL5ec/t0hvUqNRMjDUOHGdO+7w/3y3w0HHYW2hyGfWC4xdwdpCmf40ZLPQx3XHxH4CaWuZBZoVg1pphasbOv57GntdnwhSNb1k005ogQlXOjhn/pNEjOCYNfS0PlKIUudAOJt7ns0/M4xBknR4FBmzxAFjUUOTASEaTq3Ft5//Nb58918983HJxHne+olfIVY/2Cgnf/9Pybiz0ETIknJIEOu5bsGSOEQTEXoUoBES4+NSRKY6Ck35CF1N2BhHcp0ZVpoxy9QoKTkuUYo4iKTy2GuuKPvE8QYuVgI2w2eGhYFKhEaU6hqoRAQoBFiJzoGig1GiFrsUAw9XFqiJMevKDkY8PcdSyDZ3RUacsvyBVT9AJFVmFBBxiCdstNjHFzYTWSYQJooMaYo2njRxKWClyciUEkU5wZNnY4S+bOBHSeKRiUJdFqFUk7GT1eSbt/5z/ujmf8ZnTv6MunOMGgW4epn7rdc4KV9FTdPaCA2ViCIT1tllJBqEUkm7LiFj6mTJbodFCtEoXdRAolJIbaoHNMlkt0OhJxRROSNUCixoA1xRpKh6FG2DhZLJC5UY1S6yvriCiK9wcnLCYDBgNPWwZgor4SlTipSUGbYBsVph2Za8sChBUdCUkIP2gAeHEzpuhaFbQp8O2esFvLZV4dWtyqXH6OOOj3vT/SCK6rPEvGdE5ub6pK+qqiZg2Gd4rKIoHA0C/N0OBQNO/UU8pUJdn9HiiJkfpfTgy7E8odRy4K+uRGeAXoxkQxczXGHhSxOLIMEtiWPCyOSI1RwX5iFQgjHIIUtM8ZXkNUKpYskpDiUSgnmEh0mfBhp+Lj0PWXE0wVB81DhiSoko7T2eRaI5k/yFiiAkwqAbVimHQ8YiwkNBjE4YU+BgPGAsK0y1RaaiwtXCp2N08LEDCM+3ClWWlpbw1Qqz2/eZDh7yTs9gtNdlIlpERo3N5So//co1frAf84O7uwhnQivoE0y7dJWE7nUdiaLaHERLSHRi4ArbhCicsJqqDV68yJKfPQo4aQs1JVFxliHGCKKUrZAoDWUZY4CBQZea0seTyWZh4hGj8M7Nr9GKjrl1/08/kGoYi4Tp8Nc/8ct0lq594PH7MNl3rgiIhhQKRTnBwU5nZRG+MCkzYSxLJLLHidBsh2Wu8ghfJFQck4AgBRFqxCmVM6nVI1T6sklJTs5Vx7FQk7a9nKVgHY8KM2IUfKw0IVCwmSJQ8FERKBgiQJcuCgG39LtM4hIlZYKl+HM0N5Uois7wEYJzyoxPAgZm8r0ShRANJIToqDJEomBJhxlFBjJBHsfpWKLEOJG9FmqKFkmApWOKxJj4aAgJq/FuPi6BhHLpxwZdmqmqRYyFi6JI7q38BH5K8ZREgA74KRo/O9ciXEzarLAojzCZ8ZAaDjXOFi+Bj8ExGynrpceQZn58E9nugAAdU3ZQ8XgQXkMANg4LyjYT2aCnX8ON4Xllxmwy4d6wjSITN9BpqPHQX8KuNXnjxRrXWyC8Lp1Oh+NuH/wR3cMkEVIUBTeucD++kSbgCpqI8cOYkXMeS/NRNtS/qQ36o8azbr4Z/fRZH/ssG/TFx34Uj40nhZQyF/sZDof0jk+Z9YfM4gKxFIjQoxvqDFghwKDI9IlYnlOZJOoFxWWFAzQlSs5zaWBKHw+LonCx1AARJ+ubJhIKeFcu4KdrdSKiLnLF2cwbRRMhN7jDIK6zw1VmVBDEzChyxHp6TSXHRiWkLEbYwqFOj0NWOMOMxUCUsHfyvxEM08RbI8TFYCyLxOiMZRldFbjF5ygXSrywssxfPnA4GQRsLtpsLT4bEPzjio89GbgsGiWDa1caSF5Aj6as65Jer8Nwdoq/5/MHJ2X2glV8Z0Dbr3AoSlQ1wRWzjSoDkJKGHnIcLRGiIJCMqOVzUhMHF4s4bx0n/+QU70ySBWZWweHcVzUFVAEXOgYKMQscJ8qFcXKvxZRF0aakjHn7pW/woPoqX3j/t2iN9x+TKI6FgpAx7YVr3H/hpxg01h47Lqqq5sp5vu9jGAaVSoVarZajc4MgyGV2J7OQaSCQ3ogois6ZzSRAmgYgOIlXWBb7ZyZGKUCwTyP1K9CJFBsl8nNsgUaERKCk25dKSIiatvcfb80bqVJDjwVIjZFWxD5t1hjLKmo6D9TSrLsoXFTN5MUFKMUlhBDYtp0u2LVzVdPFBT+KIoIgSG/RpeOSefneEDWlOrqE6Bh4eOg4FFGQ6SZq0aCDi8Uix4RSZSYT3YtQ6BSkw4AGU0ro+ExkkT15FYSCIZOksE8zZa8omDiYzKjTx0cnwqDAmBllZpjEJB6UuYwvJP8HNA5Zo8dCeh4bzLNnksanJEjfs06AxZRx/lkMvPQ5E9xBwo6x8IgRlBgxCS067Sk+JncOImw8CsJjRTlA1zX2uUZXllnQYg46U15csllZXWR9uZUf//F4nNtD3zssJklW+r8VQmPBDvG6D/judx8+sfp90mZ28f6LmhGX/Zzdp2naj33Tnb/vx7kBf1whpcTzvMcYACd9l+1TF5wTuocPiENBKy4x4TodFlLbcwUNiYtNQ3ZQRXQO2DqllP/sxBYuOqaQHMWr+KKAkXYBKrqHJiRBemqEUmMk6wgkKskoosQYD4uDeOMxbJCleBSZosak1HIVJQXLZpU+SCp00s5oqqNxjnGWdNpCzPT7iCQF0ZEoSQFFgTDtOBt4PFcNcAIFZzzkzzo+rcUltpaK/KdfXj3XFfgkihV9IpOBoqXyi59fpnerkR+sKIo4PT3lwYMHPNw54OhozEAmVsVWPGUc6Ixiia4oOKJKFLhIZNoSgn4qqTtL0dIqkgqnjGim2IGsDzC/c5zNjLLOwBnuQKAQpH8bo+EigaGs4mATozOkhEZMiTGKjLi3+gbvrvwUzw3f5vXdP6A47UMQMTbqtKub3L7601TKzqXuf9nC5rpukqsqZeLAxW23abfbjz2+N3Q4iteI9QolvUnDGiLdKsXYwZU25bjDLE5Emga0UAWsq3vEQsdSklabKTWkmsz2vajAKWsEKJTpU6fLmBqusLFkIhE8oMmT5IY1EdIQHaaySIEZgdCxbZPXax47oaDr2+h6iZsLCt1ej0mg0ypKbi6VMdQim5ubGMb5Ftt8BXexpZob+IQhjuMwGo1ot9v0+30cxyFyz+R7NSLAg3R+6GOipNtmVq0nQKREubJHk125BUgsPDZ4hKpEeLFFjMCliEsi6VyVQybpXD9KFSslCrPU1W9GAVIgZpxSWS0UBA5T6pdcHQoKghkmM2zO41m8HKjpUUwAT1h5MpOBZjWiOUiUkv6llTh1xn6qp1FOJbANSoxz7IUfwDSWCDlg37NwOtt8c/vRUzESWlhGo54mBB7L/gOa/Q7f/U6UCz2pqppv1rqu5+JPmUrk/C273zCM/G/n1SCfFJclER/0/f8fHpeZa2W37mBCd+yDP2Y2GdDtdhn6Jvfli/gY2BS4oWgpiFZNcUZqMqJDEhFhkvwOQJMBU6WKHidn7UXgricNZtJKzM+kiRAeke8Qz3U9M8pyU3YwcanSoywmnLKEmTINHscGCVQkNpOU7ZV0dUXKPwPBgCWO4pAV9plSTIvA+VCBgHl9muxvwzRZj1DRhcA2YBYLlsohq1WDOz2bV69XcAOB4wW8vzfDViNcz+XfvTNkHOpsLlc/MWJFn8hkAC6OD8ANINCqfPZzX+TNNxV+5rjLt7//kL94f8BwXMQKh0RRxPv+DRyKKYBPpDV9QnHy0oWXFNU+TUWDEmyAkp4I2eYfp32AMM0Ck8UTQCVGIcTETWtZE48id3mFetwhwMRPEfghOjNZoBc3GVJDCoWj2nXebiaqhnvR1cQ8CZsmp7S4Dzw+Z8s6AqFUOYxWCdQituKxqh0kFVe6CGbzPz8uEMZlVhsF+k5Ms6lhiAazeI3Y7WIM93HDiHZYxhYeqllmffUaV1oWuq6ze9Cm7PpMnDEHU5u9YCsVX5qg4FBQZzTVMaFiY4qkZT+NukgJJc3FNgwMo5QbC1mWhVmocLtbpDOJMKXDEhMKpuDz9oDIECwtLfH5l7Y4PDjguDflylKN9979AbZdplKpsLy8nNCNPmJIKfM2Z6fT4f6jfR4eDRiPxwTulGlkEMUKx6xRYsos1UMo4BChUREDJlSJpcBPj4WHSSQUNOmRmFep6TkS4mFxyiI6PhX6qcAJZMlkwp1IvCDGVFAIKac1vTvHcjmLDJuhcmYyNR9m2kBNcAZ2CpaK06GXACwmmLiQKnWGxEQo6Lho+IyoYqsBinRw40SQKUKlgIMiIwJMTDkDAUUmOe3zaVHVxrwUvkWfFnU6VLUxSPB/dOuE5KjMVeUX5+SZsuT891l3IEs6svuy++eTjux38+ZV2X3Z386/5sURw8WE9bLvn/VxMz9m4MRUbQXbEE99vozKl/lk+L6fo/nH4zHj8RjHSeS7s99FUXTOU6QgPBbEkJkssy83mFBGJ2BKkYN4nVI84pArBGRJerKSxqgYuAxkkwATB4sgNlAx0fEfYxshwRYuM2lRUGbYaogqkuOaWXDnrB5hUxNDVpQjpIRxXEkTi+T8dEjozbFQ0fFoiFMmsoSaFoYmUyKUnCodIxJBtVjNE/PHI1tzMoba2WPUtMsgiFkpuPzEhmBzuY5h6EwehNx52KZiBPzr9h6+NKkX4eaSxulYsLZgf6IEt4T8UQZkf0sxdSN+73un/Nn37mDEEz53BRTN4s+34aA9xBA+ixwwos6u3MJHJ84pIaSZXAR5ByDb1N05hbQzwEhSPfkUcZhQIURNW02gE6KQIPYTNHcRhyJqCjZs0EYlQqYJh4mLhkefVr4ZFJmwqT5AkRG78SanLAKJ+t5N8UMsxT83Z/vqZ8rcvHaV27dv8/5ej0O5gSl8vNjguUKbqhGcM98Jw5CJGzIpPE+s17i2VufnXm9xetrhz/7qHQaneyw1q2xcf4m/3FMReoGSMuNaqYfnjPAjwfcOFE7HIYYq8EWBcaAzDRRUEbNRnPKV5yIMVTIajfB9n+EwScaq1Sr1ep16vU6hUKBYLGKaJrPZjH6/z2iaiA01yjoySHjGxWIR13VxHAdd12k0GnghYFRYqtusLbc4OTkhjmNarRatVgtFUfJuwEVPgGf92fd9JpMJk8mE0WjEaDSiO5hyb1hmEpmJop4gZT6czTunssSIKiCxmbHBA3a5hkOJEBUTNxVl0sgc+0oMaXLCgAYD6pyNACTgI1AxmSERacfCwqHC+cVJXrhdlsvL9GxOrLgy0SCZDsEKTKkxoEkHRYT4UqfDEjNKBOhYBOhKhK2FVC3BC60ZYZiIxmw7DRSjSKMoWC95aCJiEuis1FSuLJYRmsXAiQidPpNhNxeUcV03X9Q/6XFZNX1ZRX1Z4nFZApIlGPNy1/O3y7of886ZlpUk52NP8H//xTG7R11KpsLnVj0sQ2HiCUzhQeTlttae5zELJE6gQOQTxOKJ2Bk4KzyCSGWfRMfDZoaadveGVAmwiHMFV9LySKTn9zzYLsFYWcwoM8LEo8NCCshOyqYrYgdD8TCFj6GmWA6hEwgLLZ5h6YI4jlFV9TGbbqkXKRqS0E2EibL3rsiIk3iVMSXidNSXJB4HeMLmNF4mwGCGRYkxPhZTSkgEJh4qETYT2iyn10qGC4PzXeGMDp2Mj02RAGVXrTEvFnbQ5SwZ48YK27MlxnEBW4tQdZuffP0WQ0fy9dcWeHtnzE57iq0rfOnFJtdXih97d+AT2xmYj97E52TgMRsec+qpRP1DunKJdtTESqlc+2wyoYyHybwK4RkIMPuoZxd2Qi8JOTuZk0RBEKHj46R8fIUYicQiTOlsY1SipJ0vY8IUEa+RAKJ8LAxcBJI+TYJUVDdKWQ06AXEMXZaZpSevlr7egdxkVe7lc7VQK1OoLXF8fEy73cYUMTYe0qzR0gI2l5rcvHaVz372s9y/f5/79+/T7XYJgiFl5QCz4PPZtQq2oTAenBJNjllZqPPSSy+xu7vLG6sLVJt1NtdWWWy+zmw243t39nh72KUetwmVEmVDQTomRaHQMh1+6rkSwbTLwcExvu/j+z5CCOr1OpVKBdNMqlrf9xmPx7iui6qqlEol1ldaaJqW4h50JpMJ0+mUUqlEGIYMBgN2D9s8nDaINJebGy3eDAJ0JWY8HrO3t4cQgkqlQrlcfsxVD87PkJ80T86qvfnnyOajrwyn9MYB0axPu92mPeiiRonxTwZMjGPwhE2RSTIHje1UyKeaThX9OWnsGIcyYUrDNAmJkDkwKVk+lRTYmgAz47z6vyzU9Lydj2yxSi2XkfhYSGIykyBIqp8QjQkl6rLPFXWHgvTYjp9DEKNqOroIqdCnOjuhu+8RobEdXaMd1dFnAb3hGEfssyc3UYt1Ch2PV9rbdKIGqt1iubHC17/0EisL9RznkZ0nmbXzfAJ2WZWacdUv83f4m4ynVewfJrJkFZ6Mfbjsd/PJRvY1lCqPgg1OwhYxBcQspj8Y5sqoCXtlH01EZ2yaNGnNCoqimFyqt5EBacdUGKdiXpl+CiSdoDifo2eblUhLIzhbT2X+s5Jiiky89PkgkXdPqNo78jm0yKduuFwrdACYeBklNsTzEiD4RTCnJkIIh/hzHyEDDY9lmS4tohT/kxyVGlIqrIttHDFhKktEqChIqvSpc8qYGhYzBjTwMDEIEEQ58+z82CBRZklcWpLfWsIHoXK9OmG5XMD3NYIgYDoVOJFGgRFoTcoFjfceHrJQVtm+32bQHrNzIJmKGnePXL5ws/qxO3h+KpKBRslgqWYSv/pFlGCI5hTo7YLleLhYQEyPJpL5FnI224czRkB2/3xkh+DMhzhGR6YUFCXNAK20ViswY1ns02cBF5uKGLEutxmRgOCGtNJ2E8xSpH5CuDt7bx4GDkUcWUhPqQRRb6WVYfJ6yVytEE/Yf5hU7EIINtaWWAx9Vq/W+akvfhYZzNje3ubb3/42pmnyuc99jj/+4z+mVCqxtLSIrus8uneHH7z1lwyHQ2q1Gr/8y7+ca4AvLy/T7/fZ2+7TPjJpNpu8eOMKR26F48EKDVvw0ioctpNFu3+8z/b7PaIoyisY0zTZ2tpiY2ODSqWClIk1sO/7LC0t0Ww2qVQq+QXueR6z2QzHcdA0jZ2dnfy9LC8v05upnDwIKOkxHkXKzQXWm1LCQrIAACAASURBVFbuKNjpdOj1egAsLi6ysLBwDhj2o4K4oihid3eX7W1BtWTxsmVhWRb9fp+DgwP6/T6e51HCyU8dE48x1RTg5KdgSCUdMSWDpQANiUgb9EEipYzPkAYePqSKaOfprP7cOZrNLefP2ywy741k1HX+WhCcJQk6Pmo65LKpx11KyoSKGNKTCwRhAMR0KTLkCi1xCkBXVnDTyspHoyp7eKLA9WaJvmOzfOMKQTegWdY47jvc3zlh0DlG0zSq1SqVSiW/LS4uPnbMwzDME4YsacjQ69ktr3pTYZsMJHrROXIePzLvNvm3GZfhVy5GNla4OGKY/6qqKrPYYhZqKRbEQsdjio2CRZiOJGexlZ57yX84qYILqflYckZkM/VM0hsk47jAIevECAKMNIk151LN+fUy62Rl95+XfU8/OYKYCgOWxT4j6kRSSZk4ZWwchjRQ8fF8m0LQYUwlT1rWtEMM7SxxfxoG5MLRRHDG1Jql8sIjqgSYrCgHDGWVrlzCYoaHybI4hVihSwsFiYGXUqVNdEJKjFLMkGBGOVfrLDMg0sqYwmMa2WiEHI8FNUMQSZuCabJR1ukdCQazArZ0MaMp+uSI2XDEb75XIjAXGYU2mupQsG12Tmcf+7jgU5EMFC2Vb7y+kKIvN4CXafzVCe8fDBj1T/nhQXBh8cvi4on6tFDOfT9LGfAJuGtKhX56sQRYin9O6S+UKn5s41JPOfQBE8okXgnkIMbkkkwQ3VImWaePQZkhPkYi6iMm2MLBFk7+/LrSwq7V+PznP8/y8jIPHz7EskwOdx9y/fp1CoUCR0dHqKrKO++8g+/7fOUrX6FQKLC9vU2n06Hb7SKEoFqtsrOzw3Q6ZWNjg7W1NdbX1xmPx/R6PY6Pj4njQ25UStxcKLO52oLIxRu1aT+6T//0CCkltm3nm/Pm5ibXrl1DURQ6nQ6KotBoNGg2myiKkvuOO47DbDbLL3BN06jVamiaxnQ65aWXXqJWq+F4MVHllPcenVAvSK5dOZ8xN5tNfN/n6OgoBwWurq7SbDZ/pERASkmv1+Pw8BDf97l27RorKytIKRkMBgyHQ1ZXV8lU1Q4PD9nb22M4HLIhH7Itn8OlgE+BOAWsCtwUl5KIUoHAQ0PDp4rLIoc4FPG4THI66SM93oa9+Bmz+zLMy8XHPL4ZJemxhistVBlRlKMUSyAZ0MTDokeLoWxQpk+YvgeVGMu0+KWv/wJ/8f6E44HHlVaRN19a47v3h5wMPJ6/WuZLr7WQ4YzhcJiMX7pdAIrFYp4cFAqF/P+VtcgLhcvpV9kxn08YfN8/l1h6npd3Fnzfv8AqOes2hGGYO1JepBXOM1TmRXYyl0o428R/1I7Fxc3/sgjDEBknwFBSsm+UKuNFwJQSAuimBYiJQ4kxoKRy0z4+OhWCdK3S2Iuu0mGBiMSP5GztlGmnKtvk58+l7L6znzVmKdL+rK2upmojFhO6cilNSMokzKOkixqnW69ExZUWrjhjG2CUKdlx3rk7PDx8pmNpC4eGSAS1inLIhHpevUNCTawyxJnrltjCoaGAI4to0qfLEgKJjkeNHqgaJYbUaXMcr+LLxL/GpYAII2wxwySiqrr0HY3vOhpC1SmbIWtGD9MNqcQae5M1tidVdE2wop0wlRotIyTUTVB03CCmaKpY+sc7JvhUYAYui4ya8eBoyn/7f73Hjz+vCdN2V8AW7zMR9RS1arKm7OaI/1Bq7MZbdGULI2+LRSmIUCNGS1kHyQWQzJkdmpziYzCjiM2UopjSEJ1zIjpAXnm//PLLvPnmm0ynUx4+fMi1a9fY3d2l0+lQq9W4efMme3t7fOtb36LRaPArv/IrOI7DnTt3ePvttwmCgOeee45CoUCv18N1XV566SU2Nzep1Wr560VRxGCQIIiPjo44OjpiMBjksztVValWqywsLNBut6nVapimyWQyQVGUnOqoadq5Np9pmhQKBWzbplAoUCgUcjBgHMfcuXMHVVV5/vnnEUIwdSP2Tvp0j7Z5+cWbVCqXi9O4rsvR0RG9Xg/TNFldXaVer3/opGA4HHJwcMBsNqNWq7G2toZlWY89LqPNDQaDPHEYDAZM3JC3jkscegmnOUKnQg8fG4dCOrtPYHtheh7oeJQZ4aSV0eNdqywuSwDmfze/eJ+PxMfTTzn++tz9ERWGVBiknQkDE58Ve4wfKpyENaRUMdWQVklhsVXl3qkgjuHmWpH/+u9tAZyTWn0aXcr3fUajUZ4cxHGy4FcqlTw50LQf7RqOouixZOFityEMw7wLkXUSsgThSbf5ccW8zG72mvM/z5/zl1X7+X/tki7Axd8nqnwKh9EaE1lMMSk6Jj5quqb4qWpnnHYFEkpzwu5JvEdmNOizriSy3uO4zN34M/kI9PyGn4Fl1XTEdMaySo9w+visKyDP/ZwpjSgkUuIqMSUGDGhQZgRISoxyJUGFmGvifcZUzxls2YbI/y8X42lmZBfxA1OKud5B9lg3NhPBMCa5pPhRvMZA1hlRw05N0rbEPYrKNH+d7O+I4YQVCszwhYkqA6TQEDLMu8ABGqYIiFCJpUI/HUFINBRCasqE5apCyYDOOGBEjXqlwpsv1D9WVc5PRWfgssjYBt+53efJi+gHxTx1cD6ShdrGI8JAE/KJOvaJF0ECWHFlga3+D3j54E8oeGMiVEZmi++v/Qy79eeRIjm5DWa4mASp2I5KxJI4vFSxTlEUZrOkwnrvvffyijQIAvr9Pt1uN0cHHx0dIYTAsix++7d/Gyklw+GQOI65desWhmHks1mAu3fv8vDhQ5rNJisrK1Qqlby6v3//PoeHhziOky9UpVKJ1tI6p0OXnYMTStYZynphYSHnJ7fb7bzKa7VaLCwsUKvVUNXLT3JFUbh69Sp3797l5OSE5eVlipbKrast7jinnJycPDEZsCyLra0tlpaWODw85NGjRxwfH7O6unouyXlSTKdTDg4OGI/HlEolbt26RbFYfOLjVVWlVqthWRbD4TBvg5umy+tKgDh2OJ7ZBAiGtFCICNBJ3CG1Oc4yBGj0sFGeopCYxNMSgRmkJiqPR0b4CsiUIEDkI4oV9ujRQgoNRbEol0pc2XiOr7/W4C/vTXhvf4qqKrxxvcrXPtvisDdj5ETcWi/lnOl57vTTvAYMw8jBn1LKHDMwHA7zkc+TugbPGqqqYts2tn35e8jAtU9LGOY3/ywBmBcsyhKO+fHEfCdiHqA6r31xmZpg1m2Y//38Z5ZSEkYWrmNTFDOQWW8xGRckqh8J7VXklXmctvmVFOSn0hTtubVFpIDSi+1/0uInM3uPiCDFvCSbftIXyKptNf1tkD5jnEqxF4jQCdAQBISY2MxQiCmkwj6eLOCS2MKrItFnmRfnGvp6ugmf3/yBpzqNzouOrYm9x5KGUGq54JFDiRV5kMuSF6JEot2hmAqJTc8VfNnfGcKjKKf4wkzs1pXkvccxPJI3GVNBJcKTETYOUZpsZTi2GAWpqLTECdKZ4vqrTMIAP5rxF3cFbz5f4+Za6UOd9z+u+NQmA1mstwyKhsbUDzgvFvFBcdZyO0/RCikxRIMUXT2lLIbURe/SjNTAR5ce64dv89Pv/58sjXeIhIpIBYWkUPjy9m9yVN7imzf/EW+vfjU9YRLQmIGbXEri8o0ym4UfHx+ztrZGoVBA07Qchf/888+zs7NDp9NBSsnVq1dZWVnh0aNHnJycEAQBL774ItevXyeOY05OTuh2uxSLRXRdx/d99vb22N/fB2AymeA4DmEYout6Pg4ol8soRoE/e+DTnULFsPm511psbqxSqVTyit80zXyxzyxKt7e3EUJQKpWoVqtUq9XHqu4E45Bs6NlmC7C0tMSjR4+YzWZPXOQBCoUC169fzzf3Bw8eUCwWWV1dvTSRcF2Xw8ND+v0+tm1z/fp1qtVnc4ecTqfcu3ePwWBAqVSaW+jbbAx7DGdVSiRW2Hra/kzOmMs2N4V5s6xni3lp7KxNezHiXF4ocZnUsAjwScyEGkqPhjJgFhYZygYShUgYrDULvHClzgtX6hx0k7HBWtOmaKk/NilVIQTlcplyucza2lreNRiNRpycnHB4ePhj7xpkr5vRA5+U8GUsk8tGEtntIh4hA6fOJwwXRxTZmCJLGuYfOz+ayL5mz61FglIomcZ16uqURQ7oh0V2wk1kihKo0WFGGYjwc5izDgQoRIkQWhq2cCjTx6GQE1UhY1AlduZVRnQxyAS5SMGEZ2DsM/o1gIlLnR41uuxyDQ8FiUqF00SoCp9YqDmwMUyVS2MUjuVqsrGLA+DJaoUWM2qi/0xOozCXGMxF5kCqy4AxZWrSpizGaCLEVh2q0SC/suZxyTNpM5ZlLDymlGnQfqyL6ygFzNjHkB4dFgnRGVGjzAibSd75E0gUGWHGI/RCgdjVCFExiNC1MwDwxxGfymQgjmOGw2EyBx8N+MJVOJ7YbCwmra/vvHvKNLyYEMRc9BqQKehEZUaIgUJIgRkLdGmKkxwtnmfVMjmhkJzzin/9/d/lS3d/40yHQM61t9Lvl8bb/MO3fp3fm+zyxzf/UQpXTDAJhjjvBjcfuq6ztrbG/v4+/X6fer3OeDzO5/IHBwfn6H21Wo3BYJADcNbW1lhaWmJhYYFyuUwcxzQaDVqtFoeHh4nISLfLzs4Oo9EIKSWWZbGxsUGz2QTIq/qHR2NcpizVYrRCE61gsrCw8NisPkP7VyoVrly5cs67/ODggP39fQzDyBODDNG/urrKYDBge3s7HxfU63X29/c5OTlhc3PzA8+NYrHIzZs3GY1GHB4ecu/ePcrlMqurqwjNpj1w8CddJsMuhmGwublJo9F45ip0OBzy4MEDxuNxTuVUFIXJZMJ4PKZRkFwzS7x/5AAShzKZpvl5ANaPEpl7hY/k8VFGFgkTJmJCOV3qFRSSNnKpYNG0yuiBiz+ZcG2rimEXefNWPW9T3lx7cofkxxkXuwaZFsTFrkGWHHyUrsGzhqIoWClg9EnxQd2FIEhYRVnymml/zANc57sPmavfPJMi+zqZhcihJAh9vNAnVlwMmXz2KAWkTqmgE1JgSAc7rdRDVAKq9LHFLH/vmghZFseMZTUdBySGVwkC3yUhACYmX4mhVUAm/pt1BiQ+EpXE7OqUVXFASRkDMI1PmcoSBj7ryva5bqdDgZksEmAkegCELMhObv0N8CS1wmQz7T2T0+iTwiDZrLu0EAh6soUtkw1dkVHOACqI85oFPdnCpciQBhKYUqAVn3JF3Tn33DZTejQJ0dPjJHCwgFKq6KFSo0tBREwjk3udRYZREVCoFE0+f63CWvPJ593fdHxqkoGpG3FwOkR6I2aTAVEUJQv/tau89HKF0SymUUpOqK++vMD//DsPORz4nGWvDqSZdJIHCxIj4mSJLjJkjR1sZZZnfDlaHPLZ0sWs9dqjP+dLd38DgKd5DmS/+8bdf4Zj1PnzzV8iQsXGeUy4Zb41Fscx5XI52Yzvvkfh+/8vz/3572J0jyDw0a0CjVfe5OD5n2SsFOn3+/kiuri4yJUrVzg6OmJ3d5darYbrumxtbRHHMdPplNu3bzMYDJBSUiwWMQoVYrXIzPdpt9vU64kKXrFYxFK6LJR1yq0N1heLXFn08q7E1atXn1i5m6bJ4uIii4uLxHFCEcwW+9PT07xSrFarrK6u8ujRI9rtNktLSwiRiBEdHBywtrb2zKJDWTIyGAw4PDzkBz98j+/uStqjkKWqwX/0xVWuri1dSk18UnS73bxLkXVAsjFOr9fD8zw+8/Lr7L89SM+z+RBzt4vjqadhAi5GTHZOy3MdhUTyKJvfJkTCxI3NwUaSSCD7FChqEY2Va7z5xn/AtZUy//7dHicDj6Wa+bEuRkDeQSqVSqytrREEQT5OaLfbHB0d5V2D7PajCFF9lPioYMf527xImGEYFIvFc5oEQgg8z+OHD07w9wcUmeJhJgqAYkaFPl0WKOOg4mPjEguNskxs1AUxtRQrcHG2bgmHqhwwpI6WEqNLTLBxMHEpihGaDNjhBjMsMtG1hFCY4Ag0Qhqc8pxyP6c0xnHShaqKAZZwiIVKKLX89RPzooAh1Vzm3MGmzDgHYisyYoZFQTgUmeAwD/ibYYune4489f8mQhpKF0cWE0vj9Hgi4VQuEwkdVUYU5CQ1ZLPR8ZEisaR3WcyZX22WsaMpLbWTdCFEyII4Ziyz5D/ZWhPQeZRe8VGCHItGDCYeE2kgiNAUlUbZZGvp4xUe+lQkA1M34ne+e8R3375Pq6Lxi59f4tbWlXPZe3WuiPnC8zX+SfEm/9O/eUR35KJFU57Tdzj2G/SDIoqqsVKKqMsDYm/MLDJoFiKkO8iz+ouRtZjms9YohJ9591986M/z927/L7y1/h/iawUgONfGm086CopLXUwxTZMXjm9T+v1/jhb651IOEXhE3/m3LH/nd2ktbzL4+/8Vd52Yq1ev8rM/+7OJqlgKsrt37x7T6ZROp0On02E2myGEoFAoUC6XMewyj5wWR/0ZejThRnWEaTpMZiG7pyf4kzH/4Gdfx64u5iCx8XjM7u4ut2/fZmlpidXV1adusIqi5B0BSNr1WWKwv7+fjxh++MMfIoTIK8aMObC29rhnw9OiVqtRrVb56/f2eHR4N/FH0JeJlMKHSgSOj4/Z39/H87w8EVBVNcduDIdDNjc32Xr+FZqdQ+TRbUKMFIU/j8iGRN50niUwT4P9oJBp63+MQylNOhQ0fNbYYUKZMVXUVD/DS1kxSd2TaCFEMdzfPebfIthYafC1V1soCp8onfQsdF2n2WzSbDbPdQ1Go1HeNSgUCvk4oVgsfuz+ANkGf1E+ez4ugh0dx6Hb7dLr9RgOh4zH42R8MvWxqBHaNZbNiM1yi9CdEHV3EJHMK9k6p3jCToSrRLJhXwQjw9n820/1BBY5wcdgVeyjijhVSm2SjFGDFJGQiPNEaAjCtOsg0VNdlaM4ATiOqZF4v8woyyGh0PPCKcMErIpdYinwMKkwpKW0885FtiHrBCyIY4p6SEFpM/HPiyY9aTRwMS4DG9rCoSTHiYx62l3I1nZDuvRpMaWAQwktle+uyX5auLk4lIgQhNjsssU0KufW4rbwc9B5mIsWKYTpV4MJZno8IlR06eNQxtR0JlOHb/71Cfsdj1/6wsejN6D++q//+q//rb/qh4yTgcdbD0bUCiojT1DVPYLZmSnPZRddq2LwhZt1Xtyo8I3XGhQZIyb7VNURi3qPGw2fFzZbEEwpqi4riw0WFxcZDodYloVhGJRKZ0AOGUe40sZL9QBqosdzO3/F1sn3P/SUR5EhA3uJ/dpNdELqSg9dJBeWi0VftpKkQ1qUtRnN3/9nLPzpb6DE2Xzv8hCTAdZb/w5x63VWX3qNcrlMs9mkUCgQxzF3796l1+vR7/dRFIWlpSVefPFFPvOZz7C5uclM2rx74IGfGIBstCwUBb59z+XtvRm+KPLqjUWuLFaxjCSPNM1kVCCEyPEIpmk+tc06H5qmUSqVaDabLC4u5oqFx8fHHBwcMJ1OczriYDBgaenDVfOQLM7T6Zj2MCBQiyj+EDs4RlOSjseTgI2QVHn7+/scHh7m2grZ+84oh3t7e9TrdX7+538eyzS4d+RwMlFRowl+nJybZ54XF3sGGRvgWT9TMlfMOOWZq6GOR4EZTdp0WCHAQkFlsRAQxhqWHGPhsslDWoUAX5SYhSr7A4kXxrxxo/aJSwQuRrbJVioVFhYWWFhYwLZtwjCk1+txenpKu93GcRziOM6lgz9pkZ03Jycn7O7ucu/ePe7du5djWDzvzPExjnyKisNyRWHBmEDoMhqNELFPRYwoKRNKjOmyxJgqIQZ1pYetuCjicX2FbH2xSTRaFCEpizFNpYsUggFNVBnRp5lqGCTXcdIbSFQtFZTEBIgIXQT0ZR0PC4ciJjM8Eo+OkpjiUmAiy4yo40qbopiko4KEFdFQEsrpUFYZUcdiRoBOWRljqamzpxZDnIxlp7KILy1Uoks/XxaZmNKpXMKVNiUxQRExiogpiilFMaEmBmgiERBypY0jSim2ZsaYanptKayxQ0vt0OA09ShNkqMAlSlVuizSZYEpFYxUAnzeGVFLuR6ZlkFJTOnKRSaU8TGIohjHFygiUX29tVagWfnbtzr+VHQGGiWDlYbNyUDh5WWDz96w8GeJK9rJyQmGYVCr1ajX6+cqg4WqkYOeNpZ/lnr9e3zve9/DcRwG3REi9iiXy3l1ev369XxzU1UV3/d57bXXKJVKPHr0CN6+k4t1aCLile0/4qPMgSWCN7d/i+9u/gJVhudmX7kGdybC8f3fZ+XdP3qm5xWAEgVs/Ov/AV75HHfueDk48NGjR7iuS7FYZHl5mXq9znPPPcf169dzcNbKesRYO2XneISJw2p1SH8SEmoaq82IWazzVz+4S699yNraGouLiaiREIKVlRUajQa7u7s8ePCAWq3GlStXnlodXYwMqV+r1VhYWOCdd97BNE2iKMJxnJz/v7GxQbVapVQqPXMV6E4G/NxrLYr1FbxJh/3t+9y7d49ut8vi4iIrKyuPtZvjOGZ7ezvnyGeWs9lruq7L3t4epmnyta99DcuyiOOYz68FHB2HnFoNooEkmrZzdTMbhxHVlDeeWF+Hl2pkPCnilLpqUGCCToCDhUGIj86USkph9IgxaNoRlvAYOiFFRlSVAXW7TqBo7E/hWtNkklICPwn66B8mLusaZCOF7e1tIOkaZFiDv+muQYYBGDs+nZFHxRKYGvk47OTkhMEg9cJIMQEX9QsyIKKiKHQH07PKdjJ47PUykJxDAVdeDqx7zOOEM43/puzQEF3sFDUfSQ1NBnRoEWBhpTS7LBUw8CgwQcNHomHhosU+I+opdS4RLrKZUWaMh4lGgIeOLpP3ORUlfGFSSsceM2kzkA0cmRgNIcBOjc7mJaznLcdBoTJHl5yP7PP6sUGHBSRq4j4aBSwop1iK9xi4MGMUzGSBnmwyojwn0wWqSNVmVWiGJ/Rppu4faip4n9B6J5TSnnEfHyPt4cmU0xERY2DpBrqiM/OTrp5AYGgKoRQEUqQOqx9PZ+tTkQycFx3KWpl1rly5wmQyod/v0+8n0rG6rufa+PMXv2mafPGLX6TZbPKtb32LXq9Hp9OhWq3mlLvT09N8BvzKK6/w3nvvMR6P+cIXvoDrurz/cJejUS2x57ShPO0iPmQiAAl+YGG6yzoPWVGOHqPHrCjJXMyKHF6+/Qcf6rkFgDfD+c1/yg9e/jqTyQRIQFpbW1t85StfYWFhgdFoxM7ODrdv32Zra4tyuTx3nKs0SgaGGrNzcEI7OOF0FLFoS1pVwWg0yiviDKCY6SHcuHEjUTTc2+Pdd99ldXWVxcXFD70Il0ol1tfXOT095dq1a1y/fp133303F1A6OTnJdQ2yscOTZseZet2NjQ0qFRsWrrDYqPDgwQMcx+H4+Jhut8vCwgLLy8tomobX73Dvf/0fcf/0dxDDXvL+ay3Em99AvPkNQs1kZ2eHMAz56le/SqvVwnEcHj16hPR9/uHPXGUQWPzL7xzTHhoU1YDFQsgkavHewzYRic/DWsHjYJo4Bp4llZkGfLbQyLQ9G+dogMR7IEJLeeEhGr4o0pQdFBLbVYWYrgOOyzm77K2NFV5t1flhr4xUDNabVo63+bTGPNZgdXU1xxqMRiM6nQ7Hx8eoqprjDC47X+ZBfZn2wMX7Lt6fgf0ylsHUi/jOPY9Hh31MHJbYf+Js+zIp4nl9gafR6ObjYgGRFRcXcU7Zc2TrS5YgzD9OEGMzwyBIkPdpzT9M3V3H1LFxEi0DATNZJEJHIyJGsMARq0rCDJhSQot9drnGJMUJmPK8ayEIXGxs4YKEpmhTFcPHPmtmOZ6pMHosQwyb4uEcmDsxhJtRSBINCsTppr3PJqfxChvxQ0rK5LxREsm6WxajRPAtruPLBGejEJ8b49aUAZV4yJQSYVrxx+m1qqU8igZd3FRoKUYmbCHVpmjA119usNZY4Z1OkXcOYw57HooQNGyVzQWbm2vFjw2386kVHboYWWWQJQZBEKDret4xmK8ie70ef/iHf5gv5oVCgTAM88pPURTeeOMNXNdlMBjkc72HRyPeHzcx8RBmmf/yX/0nH/39Av/9L/4fGErAqti9VGPg+nt/yq07//4jPX8sVL719/8blEIJwzCwbZsXXniBRqORb56qqrK9vc14PGZ5eTlB3F+yaY+dgO3DDoHTJ/KmZw5nrksURZTLZdbX11leXs59CaIo4vDwkHa7jW3bbGxsnBu7PNNniGNu376Npmk8//zzzGYz7ty5w9bWVs7zHw6HTKdTIEFvZ59tPhHc29uj1+vxyiuvnPt8nufx4MEDZrMZhUIB13WRgYf5W/+U2R/+S4hCkGfq5An7BNANxm98nR/e/Cleff1zfPnLX84pcbZt5+8P4HTo8+jEwe1tU61W+b3vD/j+7fsYIuLlNY0v/eTn+c6DiAdHE/pOTKusE0TQnwSEUYwXRphKMnlcMAYoXp8jr4HNEKnYlOIOI2r42ITCYLUcM3AiDMPGUwq8sGbx9oMupfAYKRTWlF2+/pXPcePGDXYPTijWV7hxdfkTPyL4oJin6l3cxMMwzLEGmQ9CFCX2yaZp5tf9RXXCixLHF/UCLlICIeHIf//Ywp90HxMo+zDhyAIH8cZjQmdPEt257P4nPQecT0QcWWA/uoKJx0xa6CIkkIn+iUqCqk+Q9CJnKrQ4RQqFghyxw41URChii/vUlF5OCVSJ8GUixhMLjXVlO5/T22qIqqrsuIsfmPRkyomHrKWJbsLjvyoeUBYjTuUyE8o4soifqsTMg3UzpoCdWijruBgErCmPr71ZF2JKEZsZddFDFWEq82zixwYuBmOqjKjipwZ0FjOW1FMW2Wc/2qDLIjExATYCgaXBLz7v8Jn1RIvhZCL43qGKJ22urxT42qsL0WWHSgAAIABJREFUrDWtvxMd+lFjvjJYX1/HcZw8MTg9Pc2lb7Ouwa/+6q/yJ3/yJ3z/+99nOp2iaRq+7+dt7UyuV0rJW2+9RaVSIZj2sSjgYlMKx4SagRZ+NB9WX7MJhMlY1gmkzlUePHZSbj787ofCmZ87HjLiJxhS+ulf4OHDh4zHYzqdDmEYcnR0hK7rlEolarVarmMwGo3ObWRZlAs6L19fAVaYTqe02216vV6+gE6nU9599122t7fZ2NhgZWUFy7K4cuUKzWaTnZ0d7t69S6vVYm1t7Zk544qisLm5yd27d3N2Qblc5uTkhBdeeIFCocDKygphGObt4cuqwE6nQ6vVeizRMU2TW7dusbOzQ6/Xo24bjP67/4LZvbcRl+TIeRco8Ch959/w2cNHvP6P/zHvv/8+k8nk0oRqoWpgCpd74wi7VEXRXRp2jGrX+bX/+EssVG0OJ6foqkLJ1vjaqy28IGbmh7i+5HsPh0y8iHpR5+uvvsSgc8L/9kf3udepoSoKV597iYOTU/bHOoZ0OZ1atBaXMTSViq2hazElPUDGGpac5lXjlStXUpzHMeOBSnF5+UOcXT/+yNT9PqgSv1iNZ5LE8233ixv5xc18XgMg+5vM0viiVbGiKBiGkeNUcge9lF6YvbfsuTwvQo9rzLQiZeFS1kCR+rn3MP+ZnxQXq31LSbAfT+oWZFbACZMANBFhiYCyGjKLixTkFFP4OVhYUZRcS0S3SqijMuOgzrIecrU4Yup6SC/xL5lEM3adkG7YQMoYU4lQNRtTOoRhETv2CFAx8BiJOo4sEUgNW7hpdyHRGcja/1mb3tAMTFPjqjZiGPhUdRe8mCdZSZTECFvWcFM2mI/JiVxmJGtEQseULgMS/MJ587lkHJfV6Q4FDDRG6MhY5N2FLDQRsqbuMZMFOvECD+TzBFJFI0CkYF+RAijLqkcgI6rqFB+TJWOEFSvImUilmSQeCrYKQlGJhUkYhggRMZzATsemVom5dzTja6/KvzMq+nGHEIJisUixWGR9fT3vGAwGAzqdTp4YvPHGGywuLvLNb36T2WyWK5RpmpaPH3Z2dqjX6xx3BvgYOTLWEgG9lRu09u+ca8E+S8QIZkaZf/Dtf4Ieubh6iePWDYZbW0R2CtgJA0zP+cjTIwFcjR2aN28SBAHFYpGTkxOiKEIzi5yOPPqjNoeHh/milwGwbt68ycrKyqXPWywW2draylv4p6enTCaT3Cs9SwquXLmSiyTdunWL09PTXLp3fX091zD4oCiVSiwuLnJwcEC1WmVpaYn79+8zmUzyToOmaTQaDRqNBlJKHMf5/9h77yBJ8uy+75OmqjLL+6qu9mZ63O6suTV3u9gzOBDEEcAB1AEEggAhCYCCkCGJQIgMigiFIIkhCkGJigCkkAgphCAFCQgRClLEne5wd8DZ3Vtza252bkxPe1vem8ysNPqjOnOrZ3p2x8+a+UZ0dHd1VXWaynzv9973fb9e1cBVNQQ8KeXxOXVRFJmfnyeoqmz/1hcQrr59bCJw/fF1UDd/yKW//zfx/53fZXl5mUgkcuxzXankyUyMhYJBKPhxcvEAmZh6gxbYO3hkNnLkb9PZKL8eK/B/fXOLmVyI7sDmU09M8r1LNa5slWjr8PRSnFpnyOeezGD06viL6zTNPpJ9OFN9GNimpqYQRZG9vT1s26ZQKNzUOTkOxwXz48rs1wbx8dn8a5877h9wIxW/8fPo8jlce2BZlj0LYFmWMZHRLB+JkITqHx2Dds9gfbcMRpehNpKZtiwLwxbRLBm/YCA57yQNx1UDrg3qMaeKerhKt2yTa0V13eN/7TZfa4kctBr0jCbxoIyESrljo9tBAoyC7FAIEA36EWSV9tDHXkfFEAJjicKQjLOJ7oy2RcKkOxDoWkNU2SIeHhGlZdHmVKKL7gSIhyQiagLbthkMQrRaLXydDn6ly8nQkKCqIgk25fYQxzQommnmZIPyIIBliqQjIdqGhDLsYloqqv2OSp+biGpCGNnWEIZDBoZN0ZnCkqMgw2I8jN5vMxgMMIyj7Y6R+ZCN/9DvYzQS2WdAANsRaZHmnVbbtaRc+zCEi6PjcDgt0CbB4FB8aByyYCJh0idMDxXXuVFCR2Ak8u1nCNbIGKrhhIkLdXRNR3d8oyqNYOFIKlFhJGIUV3SiUoduF7pDme9uRGgMBHqmxnTKrWQ8OHwok4FrMZ4YjFcMqtUqkiTx2c9+lm9+85t0OqMPhGmaHjM+Go0SjCR4eXuXgTOaJFgI1YkGVXZPfoLszg9veXtEHKL9CvF+GRh9fOdqb8OKwM7kI1w49xMEzN4dfzT2Vy5y6bvfRZIkCoUCqqqytrXHm9sOlpwmE5V5dk5C77c9v4Lt7W3W19dJJpOeUU8ikbiOwe/z+SgUCp7rYblcptls0u/3PU+Era0tJicnmZ6eJpvNkkgk2NnZ8Uh5MzMzNzV1MDk5SavVYmtri+XlZRRFoVgssrS0dN1zxxPBQqHA2tqaN8547Zz6uLqdfeFlxIuv3toBdmx49WvMOf/FDROBZlfjylaNpbn8DQP/u8n4Hve3yZTCI/NJSk2dQkrlyeUMTy5PsFdb4vurTRo9k6WJEEsTIdavbhEQdIJiHxuba/McdxR0d3eX4XBIPp8/NoiPVr36sUFc13XvNTcqsR/nHOgGvfEA6AZyd4XuzvRf+7zxwDnu+ucGbDd4uyv2VlfnB0UfW6U2AafHhLiH4zgc2JP0bQUFnQmxcl0P/b369cftk1+0CQj64Xb5rttu91q6dvvdx1xYlk5INJEFlX5/gGw7BOi/Y0vssxkYDvuDGC0rTJ8ASaeO6Ysg+mME6GLbNgFnVMEwHZkDq4BuBlFFjWmjiOIbiWdJkjTSACm/c84EQUCWZSzLQrSHiP0DOj2JXSOPIYYI+RSCskVnOLIptkSFtbZEQLKZiTrEzV3sXnnEaJFlHElh18gxcFRUSWNC3GVoyehOkKhs0h2qGE4AVVXpGzaoMVIRH5WWjt4PejyFCXbxMaTtJNBQPPMggwD+wzE/16MzSJ8u0UO12ZFPzJDAIfnPwXWJPQ5+DASsQzVHV+jJ5dY4nohXmA6GE8BwJIpCAdGxDqcRFBQcXpjtEIlnWcr5yUXStHs66xsaOjKZmI9Wz2ImozxwjY+PRDIwDtckZ3JyksFg4CUGzz33HC+//DKtVgvTkVnbbzE/lUFRFN6+ssnACY+UusQgjqyjaR2YPcMgkUdplj354feCJ3c5RjwcfRwdcBym9y4Qrx/wgyd/8o73td7ucP7NN/H5fFy6dGlElHSCXO2mSUWalMoKE0qE03NpFhYWEATBIxZubm7y2muveccrkUh4PgORSMRrp4ii6DG63RZCpVKh0+kwGAy4fPky29vbTE5OMjMzw8LCAu1229MmcG2L30ub4Np2wdbWFpqmvWsy4TgOnU7Hc2e8kbqdbdtYf/jfI4siwq3a3Uoy1T/9AyLnnmU4HHrOjP1+n1qrx3euDOgYMk3RIZ+z3jXw3yyOSyocx2EhFyAVjlM7ZLIbgzY7Ozvoun7EQGd/f5+XXnrJC+qmadLpdHjzzTc9IqgbVN2V+TiuXcGOfx9flbvB/dpze+2qeryE7v5Pt68/XuaHo3368bL7eIVgfFvc7y3DR0v3E/bZ9K0wsppAkmTQkiTQ0Jwk8ZhAQrHo2SrVRgyf0cZwYihBnYg8auFJkoSiKIRCIVRVJRAIHPmf48F+/Fi523Zt4D/ud/f1V69eBUaS3K+++irBgM2UeYAlBfnUcx9DtGfYrvQp7/rICQb7vQCJzBKFKJxJxVH9IoZheNW7nq1SaiWYDMu0tDCiNMAyGvR6Pa9N4u6TO15tmiatVgtd1xFFkXrTpGNJBOUezaGfgrSHiJ+hnSXkD7CnxbBtnY2awIxkMRUJc2ppjo997GNY/iR//M0NfM6Aq1slBKFNxucw0AX6doCY3yQcAMPwsaPnENUkgs/H3HSLfkWm1pUJmV2SNEaEP6dL3U6w58wwshqWGRCDQ66D5PmCmIeCPxYqA5qE8KFh4UOlSzQWJR5MUG/1EIYdJEwcx0G2TbIcUCd9aC42wsiMXMQvDPE5+qFR1EiHIUmVLjFAICR0MCw/b270SCWalNthTib6rFTAF58hqHRxbIflQpBf/JHCA+ftfGgIhHeKwWBAs9nkj/74T7nSjKChkgoLzKs1ms0me2ZhJOrhDJgP1RAsnWg0ir2/wbNf/eeIlvGegeRm+/+2INIJpYl1y3e0TxvPf4GthaeRJMlTPNMtgR09y8BWR6uDQAm/OJrJVhSFaDRKKpUikUig6zrdbtcLDt3uaKWhKIqnYRCPxwmFQp5nAsBwOKRSqVAsFmk0Rjcb0zRRVZVCocD8/DzhcJhisUixWMTv9zMzM3NDMyIXOzs7VCoVTp06xdWrV4nH48zOzt7w+a1Wi9XVVc6cOXOsOqJhGKyvr7Px5mtkfvfXbmsyBABJRvr9r2EFRv/DNcxpGX6+fdVgIhmk2bf5/DNZptPHJwLXrqjH+9qapqHr+pEv929uML92Ze6ujl3r6PHL3K2KwNEgapommqZ5DpPjgQo4EnxvFJSP+3k8YF+bQBz35SYT7vfxCoFrbes+7v58XAIy/jUYOnztrTqltkE+rvC5JzMAfPmNiqe++LknM4QUiZ5mHfu4mzS5okfD4dCbaHGP6a2M0r4bHMfhy1/+MtlsltXVVTY2NrBtG0mS+MIXvsD8/Dzf+MY32NotcWBP0rP8GN0aTy/FODGTIhSQ6PdHZEGXxFuut7lcD9LWZUKSwWMTJpGgD13XPWKlO87nJlLBYBDHcYjFYpimSa3ZY3eYo9q1CDBgKTKSPl9pRdlvi9SGYXzomATIhQwemYnxaz/9GImISqVl8H9/Z5vt/SphacBPPp0jFJC4eGWdrYMajt5G8Qk4wQnersc4PZthYIl88oQP0eyxU2qid6o0a6WRHoMpsGdPc+AU0LxpHBHh0EfBlUt2cIjQPbQK96Ed2j770InSwhJ86E6AiN8hFxOZD9Uxte7oWrME1rRp9o0UBvIh70BERed0eI+QD9b7KXwMaJhRVEFDFQa07CiaHUAWRx4hvmAczfIzm7BRAzKnFybYaxicmQ7xzFL8rvl+3AkeJgNjcByH/+Z/+AMuNeME0PFH0kyK21jdErbgQ7NHblrZVBTTfKf3Gqjs8OQ3/wXi4SzwcW7zxz3+rtsC9PxRwkb79nZGENn77T8inEwRCoU8C1fDMGh1NerdIcKwiz0cHOnXjq/Cxm/aiqKQTqdRVRVBELz5aHc1oaqqpwDnJgcu479YLFKtVr0pD1VVyefznq7Dzs4OnU6HRGI0LnqjEUF3usDn8xGJRCgWi5w7d+6GhMSNjQ36/T5nz569/vgeignt7Oxg/fBVgv/T37+943yI5O99ifDpJ7zgZBgG9Xafv3i7RallEAvYPFEwEWzjOgMb9/i7AXw8sI8727nbPf59PJiP/+6eI3dVN36Zh8NhotHosZMjbjvAXR26QWE8ULtfLsluPFC7gXs8UI8H73HJ3Rt93SscZ7F8I9vld7NjhtHxd91E2+22N8KrKIrXfgqHw7e9P5qm8ZWvfIVMJsOLL76IrutIksSnP/1plpaWeOONNyiVSoTDYfKTs6xsHmAOmpw9uUggECAcDhMKjXr+Ozs7mOZotZvOTTKwfCTCMoo8mqgZtwrWNO2ICmujPeDq1gGW1gJTG+2PrOALJliczjI7O8fFrSavX7iKrffoiAkMKYkpBDiZF7BQ+JElmYlUmJfWDDaKHURb56efzvDs46e846PrOqurq5z/4RW+u25RNVNEo1GeORHj51+YJh5WPJln10/lxTeu8JcX+/QMhzITjBt4jayShoTpEGV0D22QwkEkRp2Y0ETGoEoewbFpkCJBDX9A4YUTPp48PWphlkolrq7vsFUz2OylqJthBFFCEiErVZmUdqjYeYZiiKgiMpcY4rc6FOs9VvoFLEmhbShojg/FJ5FPBHhyIYbtcCTRfD/gI9cmeDe89tpraO0qCgFMOUIsYKFYJgNRRPFLSPrAW924CmeZTIamovDK53+LifU3yV34FsFu/br3vtX+v4OAI8q3NU3gAMOlx9Bsh6goMhwOcRzH68MGg0Em86IXZMZtWd1g4LoXuqtQt7QOR0ux40HC7/d7bOVEIuElB+FwmEgkQjab9XQC1tbW2N3dZWJigqWlJVKpFLu7u1y4cIHJyUlP1XAc4+2CSCSCIAiUy+VjiW+2bdNsNskfw5J3xYR2dnZGq7te9xaP8PV4+VvfoH1p44j1rW3bGLYItg9NHPLa9tG+87XmTuM/36iv/F6BdLxM7yaA7s3dvekXCgVOnz7tseZ9Ph+BQMAL1p1Oh93dXRKJBPPz80dW2g9a6vdOcFyL5kZtm/dq57irZneixbKsI5bMrg6G67kRjUa9sdubQbvdxrZtLly44MmGnzx5kkAgwHe+8x0EYWQG5jgOjqkRFPoMfSOPj0AggKZpnq25W+k5ffo0+Xz+umrPYDDwjLbc7+12G20IK60Im/0sPivIqWSXdGL0/rqus39wwJff7rLdT2Ezy0TU4Td/Zhm/GuLN9S61rkEyCIszPg6qHfZqfSL+IaYQoTA5eyRRCgQCnD17lmhugVJgn9MY7Nc1sv4ma1fahMNhEokE8Xjcq8RkJ2YI5Eq8frVCa72BcGinPPKekRAOzelGhkyjdqKAjYGCXxYIWAMUZ8BACKGi4wgyktlhe/WAdmmdqakppqam+NFPPYcoirx+aYcvvtWjOhBQ0RB8QRYXT7Fs9TmoNcDoYLUsLL+fWDKDZaVADoI1JCSNqi2SKPHcqQTJiO99J//9MBk4RKvV4sUXX0QWTGaVMkJAI2AOGfSaXgndsizPoCQQCDAYDDwjoZ1mk9W5J7k8+SiR5gFSr8cQH4XKCotrL3OrKoUiDhGtzlDyI1vGTScEbvIw/Bu/yfTUiLh3LbHr2tWnG2R8vtEIVDAYJB6Pj97vcMLCbaP0er0jwc4tK7r9eLcPD+8kDe4qUVVVLzkIhUIMBgNWVlbY2dkhn8+zuLhIq6vxxqVtssUqJxdnr7OadacLSqUSkUiESqVCPp/HcRwMw2AwGKBpGpVKhd3dXTRN4+rVqwwGA3RdP3Y/YqU9nrqls3M9WrpJ/7D3On48lcNAKklHV8fXlsKvXV2Pr7DHR97GiXXvtare2Njg29/+NoZhIAiCNzEzOTnJ448/fsN9SSQSRCIRNjY22NvbY35+/p6u2D8MkCTJG1sG6Pf7XnKws7PjuYG67YT3qhq4FQd3EiaTyeD3+7l06RLBYJBQKES73fY+B+5YtGEYSJJEMpn0qnzuPeu4CaHxpCabzQJ4icQPVvbYXy+PRp7VNJ/8sU/x6NIo8SmVSrx1ZZfzAxOfJRMIyNgBCV1QeWw6ykwmdKSykkkb/GD7IpWOyOn5LOnY8VyfZNjPVCZEqSnz5MkEn34swXDQodFoeJW8UCjkJQZ/7akcj83HePFyncsbZRTJAp9Cr9tl5UAj6GiYjnQoE6x4MsLFYZKgoHjTYaJjeRMPjmnSaGg0Gg2uXLkC4SnKTNI2REKhKLZsEfELJHw6GG0iEZXFuVOEw2GubpW4tNWgWhlQ7doIkgEIJGN+VJ/Ex0/GWJoIva+SABcPkwFGK6avfvWr9Hq9Ub83IBEMOtRqLa8C4K66YrGYl2nv7u5i2zaapqGq6shaWJJoxKfZDU2goRIv7WALAtJtdmN+uPRpzq187Yj4zY3gJgKlH//3aA4h2+uxv78PHM9cdhnD44Sr48a43CAUCoW8m5w7o+wGYVeBze11jwvAGIbhjXfecD9/+EP+/Ovf4sCeJJqdRRXKzLz2GqpP8DgP4/aubiJm2zZ//qUvktm/gtquIlgmpl+lklugG05dVz4fb4O4j7UiGSxRRrJvzQXNQzDCX/nlX8UfCnsGNW5pfDxQ3+9VdafT8crD1x6H94I7QbK2tsba2hqLi4sPE4JbgBtg8/m8VzVot9ve5I1bNXCTg2urBs1mk7290cSDW7kpl8uEw2HPb8Gtxrlfs7OznDt3zmuzXbx40atiTk1N3fS2K4qCrutEArA0ncKU55jJRpmfTFOr1djb28M0TU7MTfCM5fD183V002EyqTCfHTk5jldWHMehtL/Fk5M26YkFCpnoDYPhsRM3oQDpdNrzJ3GPze7urrdw+fxTST51JsbO5ho/LIMenUCNDEmE58hEBGaDLV79wSX2q31KWhTlUAPBFqSRENMNLou9foRL/fnD0UJQ0Xj2TJ7PPZVneUKhUTnwJN87hsj3Shl0YQF/REQZavh9EpYNn3s8zZOLMSZT6vsyEYCHyQAA58+fZ3t7+8hK1g027sWkKIo391qr1dB13bvostksMzMzfPWrXx315Z2Q53Do2MIdjQheDD9D+ek5Pvv9/x3Rtm5IcnMfPf/4T3IldBJlbYutra1j56GvJXZd+/cHBdc9jMoOFUfBkWsExREJyi1/u+dIlmXEXovpKy9RWHkFn97HEUQQBHBsTjkOxsKjSH/tb6E++2OIougREAVBIBAI4Pf7PUZ979wLRM5/G8G+dir8PSBK5P7G32bq1Ol7cERuHy5fwG0NuLyKW0lIYrEYS0tLrK2tsbq6ytLS0sOE4DZwbdVgnGvgrnYDgYDXTohEInz/zbdpD/34gXAggGEYxGIxz4UznU7TbDa9Ff/e3h6FQsG7J7nKnLZtk8lkrquw3Qi2bbO3t0e5XCYVj/ErPzFFR3MICAa7W6v0ej0SiQSTk5MEAgEKExZPLsZo9y1OTYWPJcJtbW3R6XQ4e2rpPUnCcOMWjSRJ3uSSm2A1Gg2KxSK2vY+iKExlozhmBSGoEk/mUf2iF4BfePYxipUGf/Zqke1yB7tfI6r5MLV3CNaukqPoWBTtHFss4YyFSZ0gasDH2emRfHs8PM/8/DyDwYD/73urNDc7TOf9VJoGhZRKX7coJBQ++1jmfUESfDd85JOBcrnM66+/jmVZHiFOEAQ0TQPwLi5BELwerGVZxONx/H4/nU6HhYUFcrmcd8P1CzpxxaalKZj+m+8THoemP8uF9Atc+PTH+fjmn/GxrS8TsLQjpERbENmdfpS1hY9zOfoUmqWiWAMmrJufj34/wFVdU2ITRO0ehVCEiews2WwWRVGIx+PMzMyMeqIbl7n0638Fq1H2pjgExz7SjfFvXoT/8R8Qrv0ddj/xs9Trda/07o4BunoJU7/y92j/1jdufaMdm8zP/Qd36QjcPWia5rn3XTvuditJXzQaZWlpidXVkbHT0tLS+9IJ8IMEl3DrVg3cCYVms0m5XMawBF7fFdGYISwbLOV8nDoxz+TkpDe9IwgCq6urCIJAr9fDcZwjWhelUonhcIiiKDdt+z0YDDxDM1cbxDAMGpU9yvU6qqpeJ64VUiQem4/d8D339/ep1WrMzc3dVCJwsxhPsGzb9hKDVquFbui8fHmLSAZmshEmU6PEQhAEJrJJfunHYtQ6o6WH3j9LtVplb2+Pnf0yb1cUOsMAbSdCl/g1/1UkGhL51Nnkdat7VVX55MdO8tbBJsWmzlRa5Zc+VaA9MJnPBt/3iQB8xJMBXdd55ZVX6Ha7R1jzrogKjE7ycDikVqvhOI7XSz979iy12mjsUJZlXn75ZY/oI1gGKWeDkOijOjGHePUWZ9cP0fNF2UqcRcCkFJrnK2d/na+f/Hf5kcq/JWvsITgOeiBIJbfI0K/Sd4Jo9vHuZe8HjJfMZVkmEBgJjLg96nA4jOQPgj9CJAD1ygG7u7usrq6iqirxeJxms8mEIlP7zZ/GblbffZzzcJVf/+Pfp7O2jvHczwIjqWm/38/U1BTLy8ue0dLur/wWpX/5z25pnwr/0X9JYGrhto/JvUK/30fTNK/Vcy0h8VYQiURYXl72rHbHnS4f4s4w7tQJo4B8Ya00Mu8RDeZPf4xPf3KW2dyNV/atVsub6oHR57vZbOI4Dtls9qaIi5VKxatQnD59mkAgwP7+vkeEnJ2dJZVK3dJnp1qtcnBwQKFQuGnF0duBKIreMXQch0ubVV4vH1BIhSg19escOd+pPKhAgpmZGU6cOMH3f7jFyitFzG6bsj7uoyIiC3CioPLMcoJHZo9PajIxP3/3p+bYKPc/MAnAOD6yV7TjOLz99tvs7u56IyvxeJzhcOhl2m5pWlEUGo0Gfr+fZDLpkXdqtRrD4ZDXXnuNRqPhJRCmI2M4PkTH4kr8WR6N/jn59voRoaH3go3I92Z/Bkvy4zrY9YkgySZvT3yKSXH7OuetG7mX3Q1cK5jijpy5x9Lt37ttlvGZb1VVPVa12990fSTGmc/9fp9eu45lVegdHvczZ87QbDbZ399nb2+Pg4MDBl/7Q0KNqhfsbwa5V79EaeYRnMICMzMznDlzxnModDH5m/8Ea9Cj+q/++WG74QbnSxDBscn/6j8g/+v/8PYP6j3EYDDwCJLHqdvdKkKhEMvLy6ysrHD16lVOnDjxMCG4B1BVlUI6TDbqAyVLPu6/IdnOPbedTscTiwIoFov0+31isdix0zTjME2Tzc1NWq0WmUyGqakpms0mV69exTRNcrkc+Xz+lqtBrnhZOp2+obT5vYAgCMxOJFmetTydiPdy5HQnM5594gx1J8NuTcO/3+Xybv9QuQD+k5+c4cnF2HtOAGRi/g9cEuDiI3s17+zscPnyZTRNwzRNj4xTrVa9REBVVU+/3dUsd0e2VlZWPKW0wWDgOeeNS5mKjoVOgO+c+Hl+4fX/9qa3zUbAEmVenv2Zw0feMd0QsOgSZMseKQaq9Dy51OPsScdxnGKc+3Wt5Ksb7MeJhG4rZfy9RFH0yHKuk6HrFZDP5712ijuiGA6HyWQyJBKJ60ac3KTA9YVot9uebn4ymSQSidDe3SR46eUbB+obwBFETuy+zeKbk0LlAAAgAElEQVSv/cfkcrlje9+CKDLzj36f8LlnKf7hP0VbvwSS/M7/EgSwTKzJRWZ+47fJ/9Qv3dI23E+MK/hdu6+3mxQEg0FOnjzJysoKKysrnDhx4oaaEA9x+3BMjZOJDplChkK8g1+yGS0IrocgCHS7Xa914E7SCIJAoVB414St3W6zubmJ4zgsLi7i8/lYWVmh1+sRj8eZmpq6pXFIF/1+n7W1NWKxGDMzM7f8+jvFe/l93MzrFF+B712uc36zw2cfS/GJU8l7vNUPHh/JZKDb7XL+/HlqtRqaCf2hHz86pVLJG8WZml1kv9pFN8EYjObrLcui1uxiSUGKxSpGfzQLPCKdBD1rTpc8OEBBwuJi4VO81LzCc2v/+j23zT6kG/7Lp36HZjA99peRmAaIGCgYhFGc/qGneJCALBAQdFKhwGEgV7Esy5OidcuI4yt3N9sfHxUc/3lcn9wdgXPHKiVJ8tj97nPcUp2rXx84JD6ZpkkymSSbzR6rBAijm5rbS3VHnFxltFarRaVSodVqkb/yym2dc8GxCb75DbLRdx/pEgSB1E//LZI/9cv0fvA9Gl/7fzDrZRAEfOk8rZPPchCI0Zufv63tuF/o9XreVIcoih5h9E4JgKqqXpcQ3C3VvYcYodvtEgpILE8nsCyL3d1d5o/5vLljv5qmkcvlgBFXoNPpkM1myWQyx76/4zjs7e1547mTk5OeE+lxvIBbgSsepCiKJ3H+IHC7st/jr/v8s3k+/+yDdfO8n/jIJQOmafLmm2+yvb1N37DZ1rJ0hz7CPoMZpYJMH58aYb2bZKMpstbskVUNur0IQ2RWLuqYgo1CjAmxi+n42LNnMJEJCn0yQhGFAX0niIxJlDomMt88/YsM5BCfufJ/AgIiR3vd9qFX+FBS+FdP/UPWs08hM8T0WgsiAQZEaY5MQfCjoaA6PepOCkGI4rd7RKU2iUNhkEAg4I3j9Ho9T1N93H51vIzsrvLHA38wGERV1ZGAzuGIoGsCE41GSafT3o1HFEVqtRrlcplut0uz2SSTyXDu3DmCweAtnyt3H9LpNIuLixiGweq/+T0Gtzn14OgDtPVLhB595j2fKwgC4cefI/z4c0e3qVKhevEitVrNM396v8HVW3ATgPES7924OSuKciQhWF5efpgQ3CXYtu0RWwVBYGpqis3NTVKp1LEEPFfBMhaLYRgGe3t7SJLE9PT0sYmfpmlsbGwwGAy88v3KygqiKDIzM3Os1ffNwjRNVldXEUXx4eTJBxAfuWTgwoULXL58eaTK5ougaQqK2McQI/TtLqZlEyTMbrWPZBmUSVHsSmioOIdeV2mnQp8gA0el4uSpk8aPjunIxIUGGaHIPjP0HYUKpwnpNZ7Z/nOe2vryIW/AuU5ZsBKe4cX5v8761BP05MRhv99GR8VCRKXDNBsEhCEtEmiORUjsEXQ69MQUj8xNsFVsIPghFouiaRrtdvuIrG2z2cQ0TSKRiCcr7Pb1FUVBVVVisRiqqno67OPCJ+FwmMnJSbLZrEe6g9EN5uDggFqthmVZxGIxnnrqKURRZHNzkytXrjAzM3PHJCK/34+kD+7oPaz+nakNuu2KXq9HsVg8dsX2oOG2rmAUXGRZ9pK+u7VSCwQCXkJw5coVlpeXb6uk/BBH4SZxfr8fx3FIpVLUajW2t7c5c+bMdQHW9Z1wXTlbrRYzMzPeGOM4qtUqOzs7+Hw+crmcx3nKZrNMTEzc0ZSIbdusra1hmiYnT5582D76AOIjlQxcunSJ8+fPo5vQHvrxiUMCDNDlKNg2q90kNlnURh+RNn1COIjYSNhIODjYyNTJELOqzOy+xdP7KwT1FkPBT1PNsDn9Mfq5LENHRndUnr/6p/z4yh8iOPYRjYDR6l5AwqGhZPiTJ/4zmvFJQnSJ0USlS5Xcocq2gA+LDgk6goTP1sgJRVpOnDYJBF+Y9YMGqtNj0KnQajkEAgFPste2beLxuKePEIvFyOVyxGIxEokEqqp6okDVatXTWQ8GgySTSU6dOkUulzuyCnYch2azSaVS8ZTQMpmMp5Tm4vTp055tcavVYnZ29o5uOlL4zsaTpGD4vZ/0bq8/ZH/ruk69XmdiYuKmbJjvJwaDgdcigJHGgCtJfDcTAr/f700ZuAnB++1YfNDQ6/W8EWd3BHRmZoaLFy9ycHBwZEzQVf2UZXnkrvr2257p1/g5tiyLra0tGo0GoVAI27YpFovE43EmJyfv+Jw5jsPm5ia9Xo+TJ08+/Ax8QPGRSAYsy2JlZYXz58/Tt3y8XvKhWyPlqahTpolCmxg6QWSGaKjMCyskhSpVO0uVUQ9bwEF0TH7i6v/G02tfRDH72AjelMBUU+Sx/W/RVRN859QvEGsWeW7j39xwu6TD10W1Gv/hS3+P/+O5f0wzXsDEx4AwQ/wYBA7/M5jEyUpNTDGI7XQw7AAKA0RJ5fHpIJmAxcHuaBXoWqu6LONYLMa5c+fY2Nig3W4Ti8U8hbl2u+29JplMsri4SD6fP1aoxDRNqtUqlUoFwzAIhULMzc15inXX7aMkeTPGrm2x61p4Owg9+gyt734ZbtVqGBACCsrCnYsDpVIp6vW6d1Odm5u74/e8m3DJg+OcD1cwy1WZvFs4LiF4P7ZOPijodrsEg0FEUfSSOUVRyOfzFItFksnkkePb7/dRFIV6vU6j0eDEiRNH+v3dbpeNjQ0Mw8Dn89Hr9VBVlRMnTty1uf/d3V0ajQaLi4s3LW70EO8/fOiTAV3XuXr1Kpubm5iOxNsVlYqloKBjOwJ9grRJoOPHRmCI75CJbxERO6jCgLhdo+TksYQwf/313+XE/ve8Ev/4uKDkjC7e0KDB5978X256GyVsBGvIL778X/NPf/SPwA8SFiIOJhICoDIEJIZSlFRAp+D3IWgi9b5K0GgwrO2jzE4SjUaRZZnHH3/ccxD0+XxeL18URU9kY2JigkKh4I3Zuba2x6HX61Eulz1J4WQyeUvKZslkknA4zMbGBleuXGFiYoKJiYlbXqWmf/bfZ/9//q9u6TUASDKpz/8KUuj2iFHjiEajXhm3VqsxMTHxviqRj48VuqTB8QTgbpO6fD7fdQnB7XBEHgJP4Q+OikPl83nq9Trb29ssLy9753AwGJDP5z3Snmvp7TgOBwcH7O/vMxwOvVbRnfICrkWpVKJcLjM9Pe1pJTzEBxMf2mSgp1lsFxu0Kjvo/TaCINAa2LS6OgoCphQiJFr4/AEcW6IykBCxEbFJym0yYQnb8CMMhySEJlG6PPLWV1jYf/k95YVv5zITsVGHHZ7c/QovLnyBUTVAQMYcqQxKIbJynalAlWxEYmaywOPhOCsbB9iaRkAWKJVKxFN56l2DgWHT65WpVqvU63Usy/JK3M8995zn2Hfq1CnS6fSx22Tbtqel3u/38fv9FAoF0un0bc2Yu6vIYrHI/v4+7Xab+fn5WwqkvswE8c/+LM2//H/BugVBJcsk/jO/esvbfBwEQSCZTFKpVJAkiWKx6N2EHzTc8U7XiMrlhLi4V+xuWZa9hGBlZYWlpaXbrv58VDEcDr1qm9vec+EK/6ysrFCr1Uin0944ruM41Ot1zpw5g6qq6LrOxsYGlUoFx3EIhULkcrk75gVcC9c8KJfLeRNAD/HBxYcyGehpFn/yjatcuLpHNurjdGqA6FjUKkV8QgbZD6qvzXywwTA8T9cJI5V7YGsoTo8fmReZSJ1iMBiws7NDT7cQ6jUWN16+x1vu8PzGv+Y78z+HXxhiIuMTLAKiTT485LG0gSqNBHzy+Txzc3P4BItabVSK//5bF/iLCy36tp8rlR/w1DRkk1EWFhbIZrOk02nvZnDq1Cm+/e1v873vfY/nn3+eZPKdOVpd16lUKlSrVSzL8iRpo9HoHQcTQRCYmJggGo2ysbHBxYsXb5lcOP2f/nd03/guZrMK1s0JDw1+9BfYMCVmG41jyVW3ilQqRalUIhqNetWB9wOjfjAYeNMe41LE15oz3QtIksSJEyeOSBff7ojaRxGuVombDFyLSCRCMplkd3eXeDzuSaPXajVUVWVubo56vc7q6iqNRoNwOEwul2Nqauqu9/Hd9kMymbxpueOHeH/jQ5kM1LsGb17cYtivsdoOMqzsg9FhW8+hOxKqrZGzdmBgspCL4QvBkq9CsVJHMHt0634uV0ZBRrcEdvQcj698A1sQEZ3bkxa+GYhAqn/AbPsSu7FTpBSTJzJtRLOP32oTU5MkEjmazSaXLl1ibW3NE+rx+XyE4jn8PZmoYKDZfp55/hnm88ffjP1+Py+88ALf+ta3eOmll3juueeQJMmb55ckiXQ6TSaTuScl8FAodNvkQn9uiuX/9Wtc/Y3PMawWb6xEKEpgW+ye/RTlU5/kVKfD+vo66XT6hqNXNwtXE8Etw5dKJaanp2/7/e4W+v0+uq4Do8rO/fYRGE8IVldXWVxcvKua9B9mdLtdzyF0nDMwjunpaVqtFru7u56WhK7rnDlzhq2tLdbX13Ech0KhwOzs7D059pqmsbq6SjgcZnZ29oFpCTzE3cWHMhmIqRKpsEiVBFFRJ+6X2OuJI71vQWNoK2hDm4BgUT7Ywecr0u12sQ9voh1L99T4mppMawiPbP7lPU0Ejmy/XkMM9Xg802I6pRCPTzIcZikWi9TrdaLRKI7jeKV/RVH4xCc+gV+NEvhBnavbFXzNfQLCu8sRBwIBPv7xj/P1r3+dL33pS8zNzZFKpZidnSWZTN7zOeE7IReqC6c5/SevUv6j36Pyp3+A1W6AJI9UEy0LHJvwkz9C/Od/g52BjH7ocXDu3DlqtRrdbpeFhYU7IrulUin29vZIp9NUKhXy+fwDH6ly3Tbh6Fih+9jdnCa4Edw58/X1dS8heDc+ykOM0Ov1vM++q/55LWRZZmpqiq2tLU8/JJPJcHBwQKPRIJVKsby8TCaTuSfneTgccvXqVXw+30Nb6w8ZPpTJwNAcklf7pP0mAadH5aCKIgokFWgPo/gcHckZEawGgwGNdp+upYAjowoDHGfoZeaO5Uc1OvhN7b5tf1iVWMwNODWVolAoIAgC/X4fURQpFou0222WlpZwHIdGo8HW1hY7Ozs88sgjfO7JDE8thnntpU0qxV0KuePL7/1+n0qlQr1eJ5/Ps7u7S7PZ5JFHHrkrZfRbwe2SC33JLJN/9x8z8Rv/Oa1v/hnazhqOriFF48Se/6so86cAeKFW4y/+4i+o1+tcuHCBp59+emRocukS09PTN1Rqu5nt3tvb8wRiSqXSLfnG3wuMOxWapomiKNdJSN8PiKLIwsICGxsbrK2tMT8/f98/Vx8kOI5Dv9+nUCgceew4uNoDmzsH1PoCkWYPSZJ45JFHmJ2dvWeeEZZlsbq6iuM4nDhx4qF75YcMH7pkoKdZ/Nkr+7y2Az4BcnYZyTKRBIGkvUfTyGMgUxJyTDh7gMWePU3dyeDgkKLKJDvIjonpyFScPKJz9wx/bgYDAXq1bQ6kJIZhMDk5yezsLLFYDF3XeeONN9jd3WVycpJwOIwgCDQaDS5dusT8/DxzuQjFiQz7+/ucO3fuiKGQSwjs9Xr4fD7y+TzpdJrTp0/zyiuv8Prrr/PEE0/cU5ex43An5ELRHyDx4z93w7+nUimefvppz6Hy9ddf59lnnyUSibC9vU2n07kt/QOfz0c0GqXZbJLNZimXy9eZH91PuMntcPhOMutKSY8Hlrs5WvhuGE8I1tfXmZ+fP8JNeYh34FZ03OmcG7UJ4FAyO1vgh9UgfStORJ7i888/Qip+7wibjuOwvr6OpmmcOnXqfcGPeYi7iw9djafeNbiy06CtiewNImwZBUxnVCodGBa2IKEKmmfxa+A/FBcCEOgRwmD0QXd9Bmz5/pR+bQSKkTkakUlkSfacv1555RW++MUv8qUvfYm33nrLY+/u7OzQ7/cxLIFyx8GwRVZWVigWi0xNTTEYDKjVahiGwf7+PufPn2djY8O7ST/66KNMTEzg8/lIJBI88cQTWJbF22+/TaVSuS/7PA6XXHjq1CmGwyEXD2V/7wbm5+c5deoU4XAY27Z59dVXMQyDhYUF2u02Fy9e9MSWbgWpVIp+v+/1Zsvl8l3Z3tuByyx33TNdKWKXQDhuY3y/IAgC8/PzpFIpNjY2qFar9+1/f5Dg2qi7I5nvdY7euLCKTpDF6TRqfIK+eW9X6VtbW3Q6HRYXFx/qSHxI8aGrDCjikF6zjIaKDwPDGQV8v2gTFCwU43qL3yA9NII4OIToeY+7lsAdKcp6+hxztQv3lDcg4PDG8r9DID5BMO5HZRScXAOhYrHoufi5q9j1rX3WunGkrsmB1ueFMwneurLLRCqCbdu8/vrrpNNpRFEklUqRyWRueDHncjnOnDnD5cuXuXz5MrZtewYo9xOhUIgzZ86wvb3N5uYm7XabmZmZOy5Lnjt3jk6nw/7+PpZl8corr/DMM89w5swZ1tfXuXLlCoVCgXw+f9MBMxaLIUmSZwFbLpfJ5XIPpITq6gu4GgOA50b5ICoDLgRB8IhmW1tbOI5z262ZDyt6vZ4nNgRcN1o4jr29PfY2LhNXA8Syszdl03sn2N/fp1arefyeh/hw4kOVDPT7fV5/9SUSzj4iM+j4kRgiOodsc0snIxTpESZE17P4nRR3iNlNhshEhLb3uGsJHHdULs+/wEL1/D3bdkuQ6KgZDs5+nhc+NsdffTzOoNPw1L0Mw0CWZa8/3e/36fV6dCp9+laAoNbg/IrGysYefiWCKhaZ8jWotXpkZ8+yOJ0lGnrvG8bU1BTD4dDr9dq2fV/9yF1IksT8/DyxWOyuKBfCqPT69NNP861vfYtut4tpmrz66qvYts3JkyfZ399nf3+fTqfD/Pz8TZEBRVEkmUxSr9c5deoU5XKZcrn8QI6Zq1Nv2zbD4dBTH3TJaPeDPHgjuAmBKIpsb2/T1UxkNX5LFrMfZvR6vSMkyxsRCMvlMnt7ewy1Dp85k+axp/P39BhWq1VPBvl+tw4f4v5C+p3f+Z3fedAbcTfQaDS4cOECV9a2uFgN0XGCyFj40IiLLWQMNDvAvjNDjygGAUJCD1GwsRGpORm6RDFQCAk9bES0Qwtin2DSCyWY23kD2dJvWlTIQfCMh9/tNbYgYithNn/ld0kkIOdvEgn6icVizM7Oks/niUQi3gSBIAiEQqGRF0A6RWMAlhxBsHV6uo3fGdC3fQTQ2Gir7LQDNHWR+WwIv/zunSFBEIjFYpimSbvd9mafH9SKQFVVEokEnU6Hg4MDAI8ncTuQZdmbAnD7nu7P8/PzRCIRT25ZVdWbms+WZZlyuexJPNdqNc/F8X6iVCrR7/fpdDoYhoFhGN6cv6sc6fP5mJqaemBjkLFYjJ5u8W9f2eetzR61nsNsRn3Pz+WHGcPhkP39/SMW31tbWwiCwMzMjPe8ZrPJ5uam5wj66U+9wGQ2cc+OXavVYmNjg0wm81BL4COAD3wy4MpuupLDB/UB+/0wBio6CjI2GaGI6chs2os0SI4CtCASEjr4hCEaCg0njc8Z0iNEAJ2ak6HhpOk7ITp2jJaQ4iCzzKndlw5Nh94dtiDSCE/w0skvMNlcRbYMHEE48jpbEEeuAwtnKf/yPyI2M0UmFqDXbXNwcEC326XRaHgB2S0julyAer1Oo1bBbzZJBx3mUwKBSBp/NMtkKshsLsZBX8GPTrllkAgMySbD71nCFgSBeDzuud+5Wvd3Q3ToduAGcEEQODg4oN1uE4lEbpuo52oE7O3tEYlEME2Tvb09ZFn2VkD9fp+DgwNs2/YMn24Ev99Po9HANE0KhQKlUglZlu+7At/u7i66rjMYDDxBmlAohCRJ1Ot1YJQMFAqFB6qJ0Lf8vLXZw+cMqHUsliYjxIIfXZe7TqdDo9Fgenrauza3t7dxHMdTtux2u6yurhKPx1lbW0NRFJ599tl7tk39fp/V1VWi0Shzc3MPtQQ+AvhAJwOWZXlM5b29PZrNJtqgT9eJoAkRAk4fhQEhsUfJmaRBChAZIqMwICHUAQHD8aM5Kg2SWPixkDAIoAg6/UNCYVAY0Axk6eYnmD74IbJpYCNclxRYgoiIw37iBF/5zG9Tzj9G+5N/k55sERi0EU0DB4lBIMra5FO0f/Zv89l/9i8IZXIMBgNP5KfdblMul2m327TbbWq1GqVSiV6vh9/vJ51OE4vFaLfbiNhkEyEKuRQzaZV8VOBkIUA0KFPrO1Q7JumwSCGk06yPVAVVVX3XpEAURe/9Lcui3+97vukP4sYgCAKRSMRT/CuVSvj9/tvWwHerH8VikUwmg67rnhd8LpcjkUh4UsOtVsvzfLgRbNumWq0yMTHhmTlls9n7dqyGwyEHBwcMBgMMw6DT6SAIAqqqen4U8P5IBmRRpNYbfS79To+TEwHi0Y+udLHrJjo+Vri9vQ3A7OwsmqaxsrJCMBgkFApx4cIFzp07Rz6fvyfbo+s6KysrBAIBTpw48VBL4COCD2wyYBgGly5dYnNzc7RCbvep92ycoUaIDqYjIzomQaGHImi0nQQCDkN8yJj4MBk4QRpOirYzMtgQEAjRxkDBxxBT8B0SDYcYwsghUFFNtheeoBdK4u93Ceodb5scYC37Mb7+2G9w9emfYyGpcXomwaBylVYwyvbMY2ye+hGCv/ibvDn5NLvxCZpShJnpSUxDo1KpcHBw4AW9QCCApo30DVKpFBMTE2SzWaLRKN1ul3K5TLfbJZlMkkqlRqNkEsSCPnySgIhNLiIQsFvEqJOIjioLbnJhWdYR0tK1kGWZSCRCs9lEkiR6vR6aphGPxx/YSsFNhHRd5+DgAF3XiUajt3XDSqfTtFotarUahULBqwYIgkA2myUcDhOLxajX65RKJQKBwA3Jl36/33tOKpWiWCyOVCHvk4tbr9ejXq/T6/UQRZFGo4HP5yMQCODz+TyTKlmWH3gy4JdFZjMqS5NRFlICzWrxjhK7DzqKxaLnGOpid3cXy7KYnJxkZWUFWZY5ceIEr732Gr1ej8985jP3hKRqmiZXr15FEASWl5cf2JjsQ9x/fCDPdKfT4a233qLRaDAcDqm3eqx1Exy0TGSiFIRtpqU1BnIQHAHJ1lHpYSKiMEDARMSkSgYbiSADZDT86LRJ4uCg0icrl1CcHo4zGjMcuRma2JKP3dnHeGPqx6j004T1JpYok4v2yE6lSRgmIbHK0tw0+6Uq9Y6BIkmIgk08Huczn/wEnc6f8626jNEP8sVXi3z6dJgTJ05wcHCA3+/n0UcfRZZlut0ua2trns95tVr1xu3S6TTBYJD5+Xkcx/F6/K1Wy1sVRiIRHlueZGNjg0aj4QUERVHQtFECks1myeVyx174oVCI+fl51tbWUFWVZrPJ2toaCwsLD2zFcLfIhaIo8uSTT/Ld736XarXK/Pw8m5ubXLhwAcdxOHv2LMFgkNOnT7O9ve3ZP4+Xc134/X4ikYhnIpNMJr2qw/1InPr9PjBKkgOBgKcx4BLRxkcL3w8IKRIhRYX0DNvb7/TIP2okNcdx6PV6xxJObds+IvJjWRZ7e3tMTk7ekzl/27ZZW1vDNE1Onjz5wNU0H+L+4gNTGehpFqWmTrlU5I3vv0qt1aPWtSju79M1BEp6nO5QokMU0/ERETtUrTQNJ4GBQtSpUyOPhsqAMANUbHwoaBj4CdEjTAuDADHaOHKAEB1sR0DCIiDoiIKN6choKAg4hAMC7eAcNSkFapAnT6bwGXXCsoGq+JEDYV7asNjTEwzFMHHfgIW5GZ544gkuXN1lux1AtvrEsrM888gsM4U06XSaarWKpmkkEgkCgQDpdJpOp+P1EWdmZpiamvICv6IoKIpCNpulUCiQyWTw+Xx0Oh2q1SqNRsMLCDMzM9i2TavVot1u0+/3aTabtNttHMfxysrjUBQFWZap1WokEgna7Tbdbpd4PP5AA8zdIBe6fATXxXFycpJut0uxWMRxHLLZLKIoeueiVCpRr9cJh8PH3izL5TKpVIpwOEyxeP9WvJVKZZQY1+sgBdgutYmEgvh9kpdEugJEExMTR4hpDxrRaNQj0bl8jo8KBoMBlUqFQqFwJMDv7u56pNTl5WUUReHChQvs7e3x/PPP33UDKMdx2NjYoNPpPLSg/ojiA5EM9DSLL79R4UsvXuH7b6/jd/pcbYY4vz2gO5SJ+Qb0iNAhRlAaIosOftGi5cQQHIseIbpE6RLBQcLEBzg4iDhAnAYSNl3iWPgQRfDZAwa2SpMUmqN6EwYH9iQNJ40cylCImCiDHRKqxanlRS7ttOhbfkJCj1gkRHuostJJYdgyuhAi4evy+JlFpqenOdjfo9mHWtck6jf57FOL+OXRql1VVa9cHQgE2N3dpdvt4vf7vdLz7OwspmmSTCbJ5XJomka1WqXZbGKaJolEgsXFRRYWFggGg5imycHBAfV6HVmWicViBINBj31eq9Uol8s0Gg0kSSIUCh0J9KFQyOuL53I5L4F40AmBG8yB2yYXKopCMBhka2sLv99PNpul2+1SKpWwbduzZw0GgyQSCVqtFsVi0TtO4+/jluMTiQSaplGv1+8Ld2B/fx/btjko13nrwMdGQ2IoRUmpJj5JoFKpIMgqA0dhIpdlfu7Bmyq5cCdY3NbPzU5xfBjgXkfT09NHPiNvv/023W6XT3ziE9619+KLLxIIBO4JcXB3d5darfbQWOojjA9EMlBq6ryx1kYwuvQsH+fOLjMQkzhak1Bqis998jF+7NllkFQCPomQpKHadYpGihYxusToEvLIgW4iMOLyi/jR6BNliA8TmYyzT0xs0SJBAB0dhZDQxRZkBoFJEhGF+kDC7pfJx2R++qd+iv2uH1Uaslfrk/APOTE/SSQ9yeWijeyTsS2bjK/Fp597klgsRrNeJST00Bo7JKUWLzz3tLe/iqLgOA6XL1+mVCrhOA7T09MsLy97uuSlUolms+mJ5KRSKXK5HKqqYlkW9QHHe8UAACAASURBVHqdSqVCu90mFAoxNzdHPp9nOBwSCoXo9XoMBoMj7nvdbpdqtcr29jYHBweYpkk0GvVK4pFIBE3TqNVqTE9P02g0aDabJBKJB5oQ3A1yoWv+tLW1RTwe96YpisUipml6Ad1NPizL4uDgwFMfdI2tdF335IkVRfF4BPdypWXb/z97b9Yk2Xmd6z17zGHnnFnzPPWM7kYTDQIgIOGIlEkdSuKx7BOKE75SyBcOXzjCf8C/wHeOcITvdEPHiRMmQ8EjiwIpyaQkTCRGoocas+ac58yde2fmHnyRvTe70DNQALqBfCIK0V1dVZlVqKpvfWu9630djo6OcByHXLXLZslFtNrYcpRkwCKsuORLNQruDOVBnIEY4cqZ6adqnc/bYDEMg0KhgKZpX0ha5tOG5/TpFZwwXHXd3d1F0zSee+45YFjs3bx5k0uXLp26cLBYLJLP55mbm/vGjWlG/J5nohiQRZF8vcdACHF2cYJXLk5S120ULcPafIZL8xEOdm5T3vuQfuOQtNxkenYRO5Cm0WxjEEbBwkFCxPL3/kVsJBxkbAZIWKjYd6yI49SwUOkRJIhBWm6xND+LHJ/mVt7GsCQkReVP//AqiViY7ZzO+5slgkKX776wyKuvvEStnEcORgiGNGgfMBPu8PofvIokSUMRX6WI5PZoN+u8+OKL/qHrCdYajQYwdM7zRHuqqpJOp6nVahwcHJBIJEilUn4Ijdc6n5iYIBqN+oLBcrlMt9ul2+2SSqW4ePEiyWTSdzcMhUIkEgkkSfJXFw8ODtje3qbZbKKqKsFgkFQq5a9Cefnp9Xrdf9+vks8rLkylUui6zuHhITMzM4TDYUzT9AuCiYkJ37gnHo+jaRrlcplKpUI4HCYQCCBJEqVSiVgshqZpdLtd353wi+oOdLtdKpUKg8EAXW+Tr/UwHJW0JjAXs5AlgcNyh6qdQhVMXDXOpZXxp26dTxAEksmkL+SMRCJf+4Lg6OiIaDTqGw6Vy2WOj48RBAFJklhZWQHgnXfewTAMXnvttVOd5XtBZ5OTk1+JUdaIp4dnohjw1MfzY0EuL8RIRBSmkzKq1aB59Ds+eu8dcrkc4aDKt66c59KFc1RKBXZyTeqDMAMUbOQ7fQCHKF1UbLSQiqYKxNwqstOnRxgRmz4BHCQmxWOiYpsxtcPi3BTxmMbxcY68EUUUQAqlidLk+OiAf77ZodVXicSS/KcfvECv26LbafHat9ZIqQa13feYnkhx5coVYCj0Ojw8JJPJkMvl/F8I2WzWP0wuXbrEYDCg0WiQTqf9Q80LMTEMwxcO3n2DB/wRQywWY3x8nFQq5W8n7O/v0+v1fIviVCpFMBjEcRzC4bC/Wgf48/jt7W0ODg78Nrxpmui6zuTMAtnjGvValUwq8ZWrj70Wvdeyr1araJr2WIIrT8BWqVQoFAosLS0hSRKDwYBCoUC/3/cLAuBEceRpFjw3QscZikUDgQCFQuELnYW3Wi2azSaGYdBu1lEGNZKBAbNRi2hYxXEcqpUSJhqGE2A8JvtjqacNr0PgjWmi0ejXNhTH87fwOnqeqdD4+DiDwQDDMFhZWaHdbvPee+8xPT3N2bNnT+3xPXFyKpW6Z0wx4pvHM7NN4KmP2+02H9za4vbt29TrdQRBYGxsjOeee45gMMjHH3/Mxx9/DMCFqRncRpBKpUTNTZCggRDKsDo3R0zU0fM36bbrhAQDS5RwHYEmSUKYWMg4gkREMpmamELTNCqVCqI7LE5isTiBoMrMbJKDfI2+4DCdVnCVKPsVE61fHrabI0GsdgHR7Z/YI/YEQEtLS3zwwQe8//77wFAUd+bMGf/fV1ZWWF9fZ3d3l5WVFf8Htt1uMzMzw9TUFNlsllu3brG4uEgikbjv188TGXo+BgCBQIByuYxt2yiKQiKR8JPvXNdlcXGRpaUl6vU61WqVdrvtPxdVVdFNi9x7NdTYJAFXB3edyxfPPhXz3lQqhaZpTxyLHAgEeP7553nnnXdYX1/n8uXLvpVvNpvFdV2uXr3qf5xPpy22221isRi1Wo25uTk0TSMWi5HP57+wlcxut+uLGw3DIKgIxAMitutSMyTCsovoDphVC6BEmdccFNEGnk4bYFEUWV1dZWtri+3tbdbW1r60Fc0vE89MTNM0Op0O2WyWZDLJ7OwspVLJtyPe3t7Gtm3OnTt3ao9tmibb29tEIhE/N2LEN5tnojPghfS88847vPXWW2SzWRzHYWVlhddff53p6Wlu3brFb97/mEKjx1g6xezMFPVqkUJVxxVlIqEgC/MzzCVAKL2Pmf8d8qBOQOgjSyBhEaGN5SoIOISFLimpyerKkh+qIggC169dwUJBVhRmYw7LyQGi06PSCzMQNSYTAV5dC9JuVJifnycQCPCP//IbjpoiF8+fY3YqAwzX47a3txEEgaOjI7rdLq+//joLCwsnWqN3CwphWEQ4jsPBwQGZTIZkMkk6ncYwjMdyzBMEAUVRqNfrLCwsMDc3548TOp0Ouq7juq5/GxsMBqiqSiKR8L0PvOdvukG2KwJuv4FuKSQDFv1ug3g8/lSsJX1WcaHnJ3B4eIhhGKyurjIYDHBdl0KhQK/XOxFm9GnNgrelEYvFCIVCfncgHA5/IYVSoVBAFEX29/exbRtJkrDEMB8Uwxy1Fdp9CbpFtIBEKhogEg6SSCROeOE/bXgjA89862n5njpNarUapmmSTqfZ2toiHA6zsrKCKIoUCgV0XWd+fp533nmHQCDAiy++eCqH9mAwYHNzE0VRWFtb+8rHeyOeDp7KYqDc7HPzsI3VNygc7/Ov//qvfPDBB5TLZTRN4+rVq/zRH/0Rmqbx4Ycf8uGHH1JtdCgyR0uapNKxaRa2GJgdZlMK3/7WczR7MlsHJVqVY2KDI2TBQpZlYrEYumlhuEEUwSIhNoiIHRJCg/mZCT+ffjAYcOXKFVLJOJ3SNgsZhZfOj5FORJAFm++9uMrZuTg/eH6MXnsoCpqdnaXc7PN/vnFErpceFgRzGtGwSqvV4ubNm/R6PVRVpdlscvny5fsqeYPBIKIo+qtXtm1TrVaZmZlBURQ/LEeW5cc69LyWZKfTIZPJ3DNOUFWVwWDgGx554TeeZkFRFCzLQhRgIEXQLYUgOmOBLp12g0KhQDQafSpuc58+qEulEqqqPrJl73VmDg4OEASBxcVFTNP0LZFN07wn3dDTc3huhrquMzMzQyAQoN1u0263Tz2tz3VdDg8PURSFnZ0dAoEAA0fitzmVo65Gv9fHsl0CdoN4WCEYDPojp3Q6/VQfBN7Ip9lsUiqVSCS++jHUaZLP55EkiXK5jCRJJw7mQqFAp9MhFAqxvr7OxYsXT2Wmb9s2W1tb2LbNmTNnvnYF1ojPzlNXDJSbff73v93h79495v/74JDq3oc4/Q4TExO88sorfOc730EURX7zm9/wwQcfUKm3USJjzK9eJFtx6bXKNLoumbDD9ecv8t0//j6/Wu/xL7ebmK6KQZhMQOfymTkikQjHhQrH1jR1N4PphkgqXRTXZCyT5NKlS7TbbQaDAYuLi1iWRbVaRcThletXSacSHB4eMjk5ydz0ODPpIKo0vLVPTk4SiUS4edjm39YbyG6XpgHN/AY7N3/D+vo6uq7jOA5jY2PkcjkajQaZTMYPI5IkyT9sIpEIpmkOLYlNi2Kjz+zMNKpycv3v7kPPGw18Gk9PcL/bquepn8lkGB8f9x0KvVhcy7JwXRdFUZBFCNhNorLJUlokEhqmKnY6HQ4ODuh2u77B0VdtePNZxIXJZBLDMDg6OiIUCjEzM+N/ToVCgW63e8/owSvMAHZ3d7Esy1/jLBaLaJp2qt2Bfr8/9D5odske10nEIlTbPXZrIgICJkGiok7CLRGPDhX63ozasqwHjpWeFryCoNFoUC6XvzYFgbe54q0Mf9rkp1Qq0Wg0qNfrmKbJd77znc+tnXBdl52dHQzD8L0LRozweOp+qtaPOmwXDDqmg+0GKcQu8L3XFjm/NE6rXuKf/umfODo6wrIsIvE0prrKYdti+3cFul2dvqMykwny77/7AgEtzXvbdW7tVfByAyU5wPjsGtvHO5itCn1UTEIE6NEXo9QsnfGgzEsvvcT6+jqyLDM1NYXjOGQyGWZnZ9nb2yMYDLK7u0swGDyhBahUKiec1JbGwyxOpdjNy2Q0WBwLEgtOomka+Xze1z0AHB4e8s477/gfS5IkVFUlEAj4L/lSjXf3i0jhDBU7x/efTxMLq77bnKZpXLhwgb29PXZ2dhgfH2d2dvae9mIsFiMajXJ8fPzAvAFZlkmlUqRSKX/1sNFo+IZFjuOQiIYImiZGp0637RIIBHwnQC9Fz9vPz2Qynytx8PNyt3Oh94v4Yc6Foihy4cIFDMNge3vbX9Hc29tDkiTfBOratWv3FBUrKyvUajXa7Ta3b9/29QP5fP5U2/Pdbhej7/D//Osu7UGYuhjBbpQICi64EKbNFEN1etfVEGyValdgdnGcajnP5OTkU6/Y96x4NzY22Nzc5OzZs8+8qNAwDIrFIqlUirW1tft+Pt6a6tTU1KmEXu3v79Nut1lbW/tGGTuNeDyeus5AQ+/zb7cb9C2BgCKhBjW2Cx1+/naWg62P6bXLxONxrl27xvKFF9goOtQKezR0m7VUn3/3wgo/fP153s32+c+/2uftm3n6fRMEGUGUiMk9KtUGx12NnhsiKgyzCAw3hHknsCgydYH93S0kBqwuD0V0y8vLpFIper2eHwfbarVYXV31f5Bd12Vvb494PE48Hh+mDjbq7Ocb6IbBQkblT14+y7Wrl5mfn0dRFLrdLt/73vfIZrPous6PfvQj5ubmyGQyxGIxv3r3wmcK9R4HTYWkJlGoGUi9Cp16iXw+T7FYpFwuU6vVcF3X31jwtAT9fh/TNOn1er4WwEvY0zTtoYe0102Ix+OMj48zNjbmPz9PYOc9x0ajgWEYwHDEkclkMAzDV/c7juOv4X0VhEIhUqkUrVbrkc6FnkFTqVSiXC4zMzNDJBLxi5zj42O63e49IwNRFOn3+4iiSCKR8E2kPC3BaR3A9Xqd9b0SH+91kdweOTNCsyehMmBcLJIRy+Da5OwZCr04h9045a403ISRurjO098dgGEhl0gk/LTOp2GV9fNw69YtKpUK169fv6+bYLlcJpvNAnDt2rXP/f8ol8tRKpUeKjIe8c3mqesMrE5F+N7lNO9uNkFwEYDbR136jkxOWeB/+oMgf/jiRUKhEJ/c2qJ8tI0+kFiYjPKffvgq0xNpDisGBxVzmDEQCpKJBlBlkXylRduwqNtpBBx6hElRYUo8punGKTuT9Ajw3kEfTZ7mD6ZTPPf8ORKR37fTbNum1+tRKpX8XXTXdel2uxSLRXK5HJlMxs8PqHZF+o7MS+enMWwZMfj7GOBoNOonAq6trVEqlTg4OOD69ev3+9IAQzfGyHsFivU+izGJ5y/GCMjD52XbNpZl+X9WFAVFUcjn89y8edNfL7ybRmM445+enkaWZd+y9u6XT7/O+3ssFiOZTLK8vOy7GOZyOfL5PM1mk3q9Ti6XI5fL8dKrr6MQwDGbvvI+FouRyWS+kuCjQCDA2bNnyefz5PN52u02i4uL9z2kY7EY58+f5+OPP+bGjRt861vfYnp6mlwux+zsLIeHh7iuy7e+9a0THYJ0Ok29XieTyRCNRjk4OKBWq7G7u8vly5dP5fPodrs0SocEBQtdiDMYDIhi0BcCSIKFLFi0nShtN4oy6NMYaLjGMVsHSdaujVGtFpicnHwmWsbe5sbm5iZbW1vP7Mw7l8tRLBaZmZl54MHc7/fpdDrMzMx8buvoSqVCPp/347lHjLgfT10xoAUl/oc/nOH1S6lh+/OtPIcVk3AAXFGlKU7z6xsVjnY3cDo5zqfCLL50mcvnlohpwxt6KqKyMBaiUO8TDsNsWqJcazIVh4o+9BtwEXAQAAFZsIjTpCmkaLoJBFzSqSSGEKVtuiTu6tA19R6bhzVW5oa7wOvr63S7XVzX9YVAY2NjaJqGpmlYrkxLqlBs9JhKBUhFft8OjEQiiKJIu93m6tWrvP3229y+ffuhxYAWlPjTFyapdfqkIipa8NG3o0uXLrG3t0ej0WBsbMwfe9i2jWEY3Lp1i0gkQiqVuqeo6Pf7GIbh/91xnAc+jiRJpNNpYrEYjUaDfD5PqVRie/eQf9n5Z4LxKV68vMafXr9I32hRqVTIZrP+OCKTyXyp7UtBEJieniYWi7G7u8vt27eZn58/kR7nMTU1ha7rbG5ucuvWLS5fvoxlWZRKJebm5vyC4IUXXvALglgshqIoVKtV5ufnh98PlsXOzg6RSISlpaXPXQTV63Va9RIzsklfbFOwY37Cpkofy5WpuRl6hDERUDFxBBmzmWNl7hy721Xy+TxLS0uf63l8WXixuncXBM+ShsBLJtU07aFOgvv5Okd6mIvj859Lb9NsNtnf32dsbOwLizwe8fXgqfwp0oISZ2aGJ3BAEdkrG7S6NomwzDubdbaPmwhukOsLa/zPP3iOTDJ6z/v/6MUJXliJ02w1aVdzfGS6rB90CLgOAhIgkKJMSBimvcmCxbRwAIJIYOwsoWCQhbHQicNbN23+Zb3LR/kgVcchGGqSSUR8Jb+3m5/JZE48nz+5NnbfwzsQCCDLMu12m4WFBcLhMJVKxV8Pe9jXRws+/qHpOZmVSiWOjo7Qdd3PLAiHwywuLlKpVEin04/8xeq67n27EJ9+XSqVYmFhAV3Xee/mPrs7A5x6nn/6txbtA4dvX17h3LlzuK5LtVr1RY+apvlGSF9WGzgSiXDhwgU/mbDZbDI/P3/P4y8tLdHtdjk8PCQUCnHu3Dl/s2NpaYnd3V1c1+X69eu+PXEqlfLtmwOBANeuXaPb7bKxsYFt2ywuLn7m261lWezv72NZFuGABL02KXEAuIQEA1mwMNDoEyBJBUMIMy0eEw0KpKwq2MONiMPDQ6ampp6J7gAMR0+fLgiehZFBo9Hg4ODAtxR/0LZNrqrzX2+J1HpLiNkwly/3GYs/uUai2+2SzWaJx+NfaWT1iGeDp04z8GkyMZVvLceZGwtyYU7jg902iCKIMulUkivLyfvaqg4sl+1sloPdTSq1Jo3jdQbtMj1XYoBCnCoz4jGqOPDfZ3Isyf/6P/73XFvN8OJagutriROHd7HR48aRyeJMGkvUeOHiPAszwy6AtzO8uLh4z21PlUXiYeUexzdJktjb20MQBGZnZ/2kMk/kdtp8etvA26f3bHVt237k43q2x7Is++LGUChEOBwmEokQi8WIx+Mkk0lSqRSTk5OcXVtFCKUxnACy0ybYy3O4v8uNGzcoFouEw2HOnj1LJBLxRzClUoler+c/zhfNp5MJ7+dc6M3/W62Wr7XwVg4NwyCTyXBwcECp2kIIJlFkCS0U8D/HYDDorzq2Wi0sy6JWq/lWxk9Ks9nk3XffxbSgZYU47mVoksRCISq0EQUHwXUx3RB9IUgYnTG5xtxEHKtvIssyZ86coVqt0u/3fdfJZwFFUYjFYpRKJVqt1leej/EodF1nZ2eHeDzu24nPzMzct/h+65Mj3trqkI4oGE6A5ckwM+knK9R6vR6bm5sEg0FWV1ef6q/NiKeDp74YAEhoCmemNZIRlZsHHapti6AqcX0tzgsriXsO2WHKYYkf//17fJwT2Sy75Mw4RcapM0WPMC3SNN0YsjMgIPRZW13ir/7qr4hoIdIxlXRMvefjehkJtY7NZHJojazKIh3D4sNbu4ylU2TST/YLdXOvyFbBZH52hkhI4V9+V+RXOyKpZJy5zOm3zL0VO8+k6O4CwFM3n3bb1bOTPr+Y4vmVJMlY2M9FqFar7O/vc/PmTWq1GvF4nJWVFRRFodls+pHBX5boMBwOnxAXCoJwQlwoyzLRaHSojyhW0S2VuZlpBj0DwzAQlTB//36RN28VOa50SQYGNGoVv+NTr9f97AfLsuj1euzs7FCpVNB1nUql4ucdlMtlvzAqlUoUCgWOjo78DsZvfvMbcsUqu90MhUGKDgk02vSFIBFRR2GAKDgEMJEFi4RQIyjZ/ppsq9XiwoULKIpCoVAgmUw+UzN4RVGIRqMUi0Xa7baf0fG0YZomW1tbhEIhVlZW/O+B2dnZe97WdV021m+xXehhKzFm0mF+8PzYY40DPSzLYmtrC0EQWFtbe6bGKCO+OgTX87x8Rig3+6wftYmFFVantPv+kBxWDH72mxK/u3GbbDuMhQR30gq9FcPfY3F9qsf/9ld/SCT06B8a3bRPtPx10+a//ibPOx9tkAi6PD9tEVR+7xEgiiKiKPp/lyTJf13LhP/7XZ1yyyIi95kM1PigvQR38hR/uFTj2lKYdDrN+Pg4iUTiVFu53tggFAqxuLjI1tYWkUiE5eXlU3uMBz3u4eGh73x4dHREuVxG13UGgwGKojAxMcHKygpjY2P+vrXrusTjcTKZzAPXIU8L13V9cWEkErlHXJg9yPGf/3mL43qfsUSEF2YtGsV9yh2XjWYS26hDIM6/OxdkPCrS6JikJxdJRRTCAdF31ltYWKDb7VKr1QgEAv5WwmAwYDAYYFkW/X7f/zPgf943b96k3HHJGhMo7oAaKUKCQYQ2U+IxsmBhuTLH9hw6Gho6c8oRr73yIrZts7u7y2uvvcaFCxe4ceMGmqZ94f/vvwg6nY7/ves5+D0teLoiURQ5e/Yssiz7B/Xq6uo9b1+v1/nFL36BLUdYufQKy5PaE40IHMdha2sL0zQ5d+7cU782OuLp4ZkrGcfiKmPxhytiUxGVZETB0Waw2i2GhcCDvNhlTCVJXR88VjHw6Xl9rdOn2rFZmx+n1OwRjAqkwo4/W3ccxxfreX92nOG/b1cEWr0gCiatvkq3HwdEwMFF5Le7BvrR+ydsb70YXUVR/Ghcr/WYyWT8kKHHuUGPj48TiUTIZrNsbGwQjUap1+vouv6FugeOj4/79rnpdJrr169TKBT8G1O73aZSqXB8fIyiKExOTrK8vEwkEqHRaLCzs+NbDWcymS9k1v0ocaESTjKQExTrBxzU4PCwxpW0TigQYDIZpKKMIw6a2IaJFZ/jV1sG/c0DLi1P8t+9Os/09DSDwYBut8vY2BiqqnJ4eMjt27f9XAVRFH2PhkAgQDAY9P0mSqUS6+vrBESDIAamECLtVohRRxZs//Mw3BAVxnCRMAiTcqrYts3CwgL7+/tsb29z/vx5pqam2N/f92OtnyUikYifZZDNZk9keHyV2LbN9vY2ruv6N3TXddF1nYmJifu+z/7+PqZp8u1vX+Hc2SfrMrquy+7uLt1ulzNnzowKgRFPxDNXDDwOWlDihZUY2YJO3zQ4boCLgIhFmDZdwliogIgoQCqqnhAKPgmpiMpEIkCxEeO5tQCvXnv8lt7zzT75v9uj0EgwkQjw4kqY/+PnOSxHRBLg+9dmmVDD/gFtmqZ/SzQMg263S7Va5fDw8MTH9ToSkiShKIpvvxuNRkmlUkxMTDA3N0cymSQcDnP+/Hn29/ep1WpDxXz2gMzU4mNvK3wWMpkMoiiyu7uLbdssLy9jGMYwfTIc9tep8vk8hUKBw8NDVFVlamqKubk5QqEQlUqFYrFIJBIhnU4/dhH0JDxIXJiKqEyPJ7l12CHUazJwFbqWBHYL1fwdaUdBcU0ODgTePJDJG3GCQo+P1o/oFX7HZFzyixiv3X358mWq1Sq6rpNIJFhaWnrgLXdjY4Ner4dldpgSTfqoiK5N2Z3EdEOoTo+UWKXnKPQJYiMh4tB3FEqlEq+88grxeNxXmy8uLvorn15s7rNENBplZWWFnZ0ddnd3T2VT4/Pgui7ZbBbTNE+YJPV6PWzbvm+x3e122d3dJRwOf6YOzdHREY1Gg5WVlafCCnzEs8XXshgAmEmHODcbJRKUuew4jMWDmH2bge2iBSQ+2muTq5qMJRT+6o9mP/OhpwWlB24LPIqxuMr/8qeL7Ja6LI2Hh12PRJhf3azx+sUUL5+7d8UNhr9ovOyAdrtNrVajWCxSr9dpt9sYhuEbC/V6PQzD8I2SPo03tvC8A/qOyFF/gol5k/PLk/zJtfEvrCBIpVKIokg2m2V7e5uVlRVWV1fpdrvkcjmazSZTU1NcvXqVdrvN9vY2+Xye/f19gsEgU1NT/g1rf3+fw8NDUqkU6XT6VBzbPDznwlgsxsHBge9c+B++PWzp7x4VMKqHxIICr778OrIs89FHH1EsFqnoAq2ehUKXrhAi4nYIin0kaahDaDabbG9vc+HChaGt9dwclUrF7xIsLy/fc1NvNBp+iBIMN2FkLLqEMd0QijugSoauqyFh4SBgI+EiUnUztPSOH4t9fHzM9vY2S0tLTE1Nsbe35xsqPWvE43GWl5fZ2dnx8yS+qoLAc/tbXV098bXsdDoA9z2sPX+OK1euPLFotlgsUiqVmJ+fH5kKjfhMPHOagSfhfvN97+/dnn3iEP46Y9u2L07L5XJUKhWazSbdbpder0e/3/dXAzt2kCN7jrnxGH0hyGurCucXx0in076v/mn/gm21Wuzs7KBpGisrK/7t/u6iIBAIMDU1RTQa9dvbpVKJwWBAKBRicnKSdDqNIAhYluU7H6ZSqVMVxfV6PXZ3d9F1nenpaaKJMer6gHrxkHff+jWWZfHyyy+ztrbGL37xCwqVBhv1CLWuREB2mFOOCQo9AL9rY9s20WjUz4SYnp5mfHzcD0Sam5s7EXD07rvv8uabb9Jut088N8uVyTsztN0oPcIkqdAhQpsYNgoiFjFaPDducHU5xdL8NDdu3ECWZV577TUmJia4efOmr0B/VvGMnTKZDAsLC1/643vGW4uLi/eY/Ozv76PrOhcuXDjxesuyeOONN2g2m/z5n//5ExWz9XqdbDbL5OQkMzMzp/I5jPjm8bUuBkY8Obpp819+naXUGhDEYDVaxxkYOI7jrw8mk0kihSjuygAAIABJREFUkQjhcBhN005lNtnpdNje3vYPorsV0PcrClKpFP1+n2w2Szab9Vcjw+HwCVdDURR90WEsFjuVQubT4sKlpSVUVSWXy/HGG2/Q6XSYnZ1lamqK4+NjStUmnb5IQpNYWZihXC4jyzKNRoNut4tpmidEpl5s9eTkJIlEAlEUGRsbY2FhAcuy+PGPf0yxWMTou/RRUekD+KOCASo1N4PpBukRoo9KHxWFPjI2IbqszUT5/tU0pfwhg8GAqakpXnvtNf8gPXfu3DPdaq5Wq+zt7TE+Pv6l7tiXy2UODg6YmZm5r8nPrVu30DTtniIll8vxy1/+kuXlZV577bXHfrx2u83W1hbJZPIr7YSMePYZFQMj7uHuDko4INLpdHxvgk6n45siKYpCKBTysw284iAcDn8mbwBd19na2kJVVdbW1u650T+oKBAEAcMwyGaz7OzsUKvV/MIglUoRjUZ9waUnOjytAsbTPHjiwnK5zE9/+lPa7TaXLl1iZmaGt99+m2AwiGVZLC4uoqoq1WqV6elpXNf1OzWqqtJut9F13Z8te8VBMBhkYmICSQ3z24/XsXrGUB9ACJUeuPjOg1PiMQBNN07VnUB1TXSi2IBJmBAmsYDLH6xJjEdFLMvCsiy++93vEovFuHXrlv//4FnGO5gnJibuu8Z32ngjn7GxsftaCNu2zUcffcTCwsIJYzLXdfnVr37F0dERP/jBDx475towDDY2NgiHw6ytrY0KgRGfi2fCZ2DEl8vdJkleQFEikWBmZobx8XGi0SiyLOM4DoPB0LTJsix0XadWq1EqlahUKrTbbXq9Hq7r+tqEhz6uqhKPxymXy9Tr9XvCaBRFIZVKkUgk/NS3Wq2GJElEo1HGx8c5e/asP6ftdDr+vr4XRd3pdHyhJPC5xh6eZ4NpmuTz+WFOwB3LZ9u2fX1BLBbDNE3/c/HMmXRdR1VVFEXBNE3m5+d59dVXWVxcJJVKEQqFEASBXq9Hu93mKF/mvUOBipWk4w7HOEFMumj0UQkLBj2CaEIHCRsXkQEqfSGEiA24yIBJkKDTJOEWiYSD/vMaDAa+EU6xWCQWiz3T6YCapiFJkh9Gdb9AoNNC13W2t7eJx+MPvKF733szMzMnCt1ms8kHH3xAJpPhypUrj/V4g8GAzc1NFEVhbW3tqVqnHPFsMioGRjwRqqoSi8UYHx8nnU4TCoX8RETgRHfAsiwajYav+veU8v1+H9d1kWX5nl9iiqL46XTVavW++fUPKwpCoRCBQICJiQnOnj3L0tISgUAAXdf9j9lqtfw45kajwWAw+MxOh55zoSAIfPLJJ7TbbS5fvszVq1f9VrXruv7hn8lkaLVaRCIRAoEAsVgMURQxDINCoeAXTv1+39dzeJ0BkxAFMzqM20ZFESwGKHdyCAZ+ZyBCm6I7TYMUritgIeMg4qAg0yNChxnxALs3dEGUZZlMJkO5XGZxcZFIJOKveT7rwTZe/kcul0MUxVMVlnp82lToQQdzrVaj2+3eEyn+ySefUCgUeOGFFx5L/GfbNpubmziO88yGNY14+hiNCUacCv1+3z9cPWFbJBIhHo8TCoV8EWO326Xb7fqBR8Fg8MSIIRQK+fG/d//Ce5iXwMPGBx6u61Kr1chmsxwcHNBqtXBdF1VViUajJBIJMpkMY2NjT+zCaJomm5ub2LaNLMv0+32mp6dJJBL89Kc/pVQq+cXG8vKyP9bwIrEjkQhHR0ccHR3huq6ve/A8IzKZDJFIhJ/87d/xq9v6cDTg9ogLDSTB9vM1PP1AH5UjZxFcmxYpbERk+lhIxKkzKxwSkbr+8w9ocVbPX8U2m1w4s8xzzz3ni9I8m+hnHU/UNzc3x/j4+Kl93MFgwMbGBoIg+KZCD+JuzwEP0zT52c9+hqIo/OhHP3rkDd91Xba3t9F1nbNnzz5znhAjnl5GxcCIU8frCDQaDf/QDYVCJJNJ30XRNE2/ONB1HcMwcF0XQRD8rANVVSkUCgiCwJkzZx657vY4RQHghwtls1mOjo5ot9s4juMXBqlUylf0R6PRh44RDMNgc3PT9/mXZdkXF95tMvXOO+/Q7JikpxaJqNBt1xgMBqiqiqqqjI+PY5omrVaLUCjkr04mEgkcx6FYLPLWu+9TM4OYbgADDUtQTmgEPAGh7kTZZxmTAAICMiY6CTz3zSAdzvM74nLb30AQQilWZpKsxVr8hz/7AaIocvv2bQaORGpy/gv1nPiyODo6olgsMj8//9hz+Yfh3dAHgwFnz559pA7l448/ZmxsjOnpaf91GxsbvPnmm7z00kv3bBjcj729PWq1Gmtra1/o2GPEN4/RmGDEqeM556VSKcbHx/2RgSdCrNVquK5LNBr1b+MTExMkEgn/pqPrOvV6HcuyKBQKHBwc+MWCZ+v86UP6QeMDr83uvb0oimiaxuzsLGfOnGFqagpJkjAMg2az6a9g5vN56vU6giAQDAbvMTTyIo0DgYDfrhUEAU3TcF2XGzducHx8PJz72wIbjSgHrQDtvkRC7SMJrq+TSCaTzM3N+cJHL8TI+7x+d3ODW7U4x+4sTVKYhFExse6MBiruODV3nII7RZlxOkSwkXAQEBCw+f0IxEKlQYKEW8URJOpuhqDYR7cUNLFLKhogEomwd5jnHz9pkK1KFBp9FsZC9+R1PEvEYjEsyyKfz/vunZ8Vz1TIc/t71A3dNE2KxSKTk5N+l8u2bd566y0EQeA73/nOIw2zcrmcH2Q28hIYcdqMOgMjvjQcx6HdbvtdA8uyfI1AIpG45xZu2zbdbtdfn2q32ySTSf9gvluf8OmEQbi3UzA9Pe3P9+9Hv9+nVCqRzWbJ5/P+5oSqqiSTSWZnZ4fbAKEYx+Um9eIByVjYz09oNBo0m03a7bYfSuQ9Tykywe/KGp1ajq4l8++fTxGVTSqVCqFQiLGxMc6dO0er1aJSqbC0tMTW1habm5vous5xrc+mMU3HDmEjYaEgYRFGZ4pDCsziIKATxQJs7j7oBsCn58oOY+RZEbcou5MIwSRhxWEi0CKhySytnKFcbbJe13juzAK1zoA/f3H8CwnP+jJxXZeDgwMqlQrLy8ufOalxf3+farXK6uoqsVjskW/v6UeuXLnijxKOj4954403eO6557h+/fpD379SqbC/v//AlcURIz4vo2JgxFeC59Fer9dpNBr0+30kSfILA09Y5+E4Dtvb27RaLaamphBF0R8xeBsNn15x1DQNWZafuCiA4U2uUCiwu7vrp+K5rgtykMPeBOW2RSoEV6YtlDtZAMFgkHg8TiKRIBwOUywWuXDhwlD5vbPP+4cCuq3SKu8zHyxzfm2JXq9HvV4/0am4ffs2ExMT6LrOjRs32NnZwRy4HDqLHPbGsJAQsUlTvnPzdykzhYOEi3PnM7h7du3cebn7dS4BdBbZJkyXGhl0oqiyiOXKrC6MEQ9AOp3GtGUmEgH+5Amstp9mXNdlb2+Per3O8vLyE9+yH2Yq9CAODg5ot9tcvHjRfw6//OUvKRQK/MVf/MVDdRmPWlkcMeI0+NraEY94uvGigSORCHNzc/5aXr1ep1qtIooisVjMLw4kSWJ1dZVsNkuxWPTtc2Eo4rpbf1AqlbDt4QGtqiqapvnrfI1Gg93dXfL5PFNTUw8sCoLBIIuLiywuLqLrul8YbB7WKTb7uGaDnBkmKbR5bnWSs2fP+gFD3mqeqqq+mv1aJEIwlKVY05m/cpaNWz22traYm5tD0zTa7Ta5XI5oNEo8HufDDz8EhlbImqYh93rE9Qo54kiIWEgMkAlh0iaOg4iLyzDx0ryzRHg3nz7EXXoEOWAFB4EeQUBEtXoEJei2O7gk+f6ZjJ/d8XUoBADfqthr9T/u7R6GN/R8Ps/MzMwTbVp8Ovyr2Wz6gsaHFQLdbpdsNks8Hv9SzZNGfPMYdQZGPHWYpum33XVdRxAEX/Efj8c5OjqiXq8/9GbW6/VOFAh3bzAIgkC328WyLKLRKAsLC76V8cNwXZdStclP3jwge1RD6NWZFHPIguUbGnmugY1Gg0Ag4AvLvDyJXC5HsVhEURQODw+pVCrEYjEcx6HX6/kHRq1WI5lM+jkTsiyzXTDYts/h/cDOCbuE0Nl0L9Ei7j1LRBwcHIYFgMgwuvt+B7lFANMvBIYCQ5cQHWQc5mdneOV8mh+9OPG1KQTuxnVddnZ2aLVajyXIy5dqfHw7y9JMhrOri4/9OI7j8OGHH54QLr711ltsbGzwwx/+8IHbDb1eb5hMeUeTMvISGPFFMioGRjzV3G9lUdM0ut0u/X6fqdklxGDskTdX13UxTfNEceCNKAzDQNO0YdZAcoyBG2AqEyUSkv0oatu2sSwL27Zpd/uUmz1ES6dZK3J4eEitVqPX6/nbEDA0ufFEat7WgFcYtFotAD9oKhgM+uuX4XCYubk5TNOkVquhhqLs5+uYeouiO00XjTA6E0IOnQhFZ4ouGjoaIiAxwL1TBLgIWAQZFgT3FjsSPWxEhpoCFwGHuNBGCYb5b64v0Rs4XwutwINwHIednR06nQ5ra2sPvKXfuL3Fj/9xg0Bsiktr008U4NVut9nc3OTChQuEQiF6vR4/+clPiEaj/Nmf/dl938eyLDY2NnBdl3Pnzj3RquuIEZ+F0XfYiKcab+1ufHwcy7JoNps0Gg0AKvU2b3zyCSZhJhMBXllViYYUP4HRq3Pvrne9P8uyTDqdJhqN0mg0qFar/PaDT9hsRtHtALGAzZXJAYlIkEAgQCAQQJblk90DSSKZTJJKpTDNoRiwUCjQaDQwTRPLGnYMZmdnSSQSvomQKIpEo1E6nY6/Rnl4eOj/m7cV8eHvbtHsByk0AtQ6aYKEmRByDAhguyJFd5oeIWxkVHr0GarUB/7mgHBndDDg/j/qzp1+wOCOP+HwcAuHgySSaSqtPqtT2meO934WEEWRlZUVtra22N7eZm1t7Z5MBsuy+Ltf/Jp8M8nFtE2x0afW6aMFH69A0nUdURT9LYKtrS0Mw+Cll16679t7+hjLskaFwIgvjdF32YhnBu8AT6fTOI5DYK/M++Ujwlabw1KfdcEkFbL9gCJFUVCUYXHg/dl7kSTJV/qHw2Gmp6c5KBvs3tQZp0tdd2mbAwS76Vsyh0Ih4vE46XSaRCJx35Amy7JYX19nfX0d0zQplUoUi0UikQjLy8ucO3eOcDiMruvouk6xWOTo6Ih+v89gMPA9GN597yOynRQNN06rJ5GgTE8IMyBAw02eSCZEgJDbxiKAjcgACQHuxBdLuHBHVuiJC4U7/x3KDUVEBEBkgAgYtsp35iN873KamXToazkiuBtRFFldXWVra4utra17PC1+/vOfY5tNzi2do90TmAw6T1QgeXoBQRBwHIf19XWi0SiLi4v3vK3ruuzu7mIYBmfOnDmVDI0RIx6HUTEw4plEFEUWpzNcXHUpNnqcTwT43uUEimD7N/C7LX3vjmn2cgK8tr3Xwj+jxcmbOpW2zblkkNfPa2D36HQ61Ot1Wq0W1WrV97pXVdUvEJLJJPF43PfDv3btGrOzs1QqFW7fvs3BwQEfffQRn3zyCclkknPnzjE5s0CpnUdUQiwuLtLv9/3NhbYVpGHJ6I6NSYiGOM6EWALHxSREGAMTjRYJgm6XMAZJKrSJ0kPGRsVGJoTOABWL4c1fwEHA8r+OMhYWKiIWAsOZdFi2uDY94MzMs+88+LhIksTa2hqbm5t+QRAKhTg8PGRjY4OZiQz/8T++zAc3NgkrXcKBx5/fdzodP5jo+PiYRqPB9evX76sBODo6otFosLKy8kynRo549hhpBkY809ydsPioG+xgMLinSLi7WHAcB3Pg0u5BIiwR0wInCgbPA96yLF9z0Gw2MQzDz2aQJIlWq8Xc3Bzz8/N+B8GyLHK5HDdv3iSfz9PuDrhd04YHu2hyJt4mqPx+M6JnCezbS9TIoNJDwWJO3CUkGOSdGQw0DHcYTzxAJkiPOHVMAjTIMAwlsphjmzKztIkBLhHa9FAJMqBNBAGbAH0GyLjIJEIwk1S4mGrz6svXmR1PfO07A3djWRabm5tYlsWZM2f4m7/5G3Rd56//+q9JJBJ0Oh02NjYe26Og1+tx48YNVldXicfj/P3f/z3VapW//Mu/vMcXw+sSnZZD4ogRT8KoMzDimUYLSo89u/VGBA+6cVmWdd8iodVq+cWChyiKvh7Aa//2ej3K5TKtVsvXIXj5B5qmkUgkfIOZGzsFPnpjkwAmXSdIuVkiIpl+lwL6zLgHuI5AnyCa0Ea5kzuQpIyERQ+ZofBPwkaki4aDcGebQEDCQUQgSIcuISQcNNpAjC4hwnQBlz5BBiiI2DR7MitBjdvFNls/v80Lz61+bfwFHgdZlv0OwU9+8hNarRbf/va3fS8Cb0U1l8uRSCQeuYHipWNqmka9XqdQKHDmzJl7CoFarcbR0RGTk5OjQmDEV8KoGBgx4g6yLPvGRffj7mLh092FXq+H4zj+uuLU1JS/TmgYBt1ul1qthm3biKKIKwU4tzTO7d0iQQwCwp3OhGkiiuLwuVg2CgP6qFiuzJG7iIXM4I77oEUAARfhjvFwhOG2hYWCg4RCnzKTtEncUQvYdAkzQMa5854hugSFPhU3g4uI5UC+poMQ51sLCYqN3hOJ5b4OKIpCLBbj8PCQcDjMyy+/fOLfp6enWV9fp16vk0qlHvqxdF33xaeffPIJgiBw+fLlE2/TbrfZ29vzMzFGjPgqGBUDI0Y8Jo9TLHz88ccEg0Eymcw9hYNlWfT7fbrdLoZhsBSuIiRbGM0SEpYf6ey9XZ8wfSFA2DUoM46FTAATCxWVHhYqEZqMs40qDlDoMSBA0q0yQKXqjvmHv3hHLGgwHE0IOHQRCKEjqSE0WyQYUNFNi5nxGE1TpGOprI4FvtbbBPfDdV3+4R/+AVmWuXbtmq8h8MZEmqYRj8fJ5XKPdLLsdDpomoZpmuzt7TE1NXXC4MgwDHZ2dohEIiwuLj6y0zBixBfFqBgYMeKU8FwPZ2Zm7mtx6x3ydxcJ13Sdv/v5P1JuGgSsPtGwTDQapVqtotIniEGbOH1kQEQnQgiDPgohDERsQpKBSp+8M4NJiCAGY0KBNnFabpwgBg4QRsdAA0TcOyFGLmBZNumIgyL2sSzYyXdYmkryJ9fGWJ3SvjEjAo9f//rX1Ot1rl69yvXr19nY2PALAm/Nb3p6mtu3b1Or1R5ofOU4DoZhkMlkuHXrFv1+/0RXYDAYsL29jaqqrKysjAqBEV8pI0urESNOiWKlSbnjIir3puF5Ol1v5dFbVVTDMazMVfIskHdmMQeub14kCxZT4jFJineSB2VcRIK0SFFFxSAsdFHvaAlMQgToYaChE2GcY9KUiVEnQ5kkFSwUfr9a6NAlRs8WcASZs5Mic3GH5xc1xuMqqajyjSsEKpUKH3zwAbFYjD/+4z/23f8GgwFbW1t+wRcOh0kkEuRyOR6kwe52u3589+bm5okxgG3bbG1t4bouq6urj0wsHDHii2bUGRgx4hTQTZv/970ih+UBh50dXl6WUcShhsB7uR8VXaDatomoDu1eCNNRoTsMRbJcmT4qQaGH4g5wEJFwAIW4UCEoGIQEA1mwsBwJCZuuG2aAQsUdJyx0mREPGKBSczO03PQdt8GhgkChf2fVUCAYUPjey2ts5bsUGz0mEt/M8cDPfvYzHMfhhz/8oX9TDwaDJ9YO19bWkCSJ6elpbt26RbVa9VcH78YzGyoWi3Q6HV599VX/cbLZLP1+n7Nnz94jJhwx4qtgVAyMGHEK1Dp9is0+mmJRqJs0uiFm00E/uOh+L5IksbG9x0zBphM/Ry2fRRxIlM0kstOnwiQWMkFMUlRokAZcHCTqZAi5OiHhGMuVKbuTDFyZoZuA5RcGjjgsEvpuABUTGQf3zrZBSmihul1MIcxsWGdxPMDqlPbYq5pfN958800qlQoXLly4JxQoHA6ztrZ2wqkwFAqRTCbJ5/OkUql7fAM6nQ7hcJgbN24QCoU4c+YMMIw/brfb/scYMeJpYFQMjBhxCiTCMvGggy2NsTiV4PmLj17Hq9fr6K0a/+0r8wiBGG+/XeO//FZBJ3zHGnjoAdBHYU44YFwoYroB6owRxMBk6DMAYBIiJJjobog+QXSiBDEQXRtZsAliYAgaEbd9531cgoLJhHDEABXJ7LO+W+bS6tTXNofgYdTrdX77298SiUT4/ve/f9+30TTNdyrc2dlhZWWF6elpbt68SbVavWcl0OsMlMtlrly5giiK5HI5qtUqS0tLjwxGGjHiy2RUDIwYcQrIgsWL8wKZ6bHHMurp9Xrs7++TTCZZmJ0YBiEpSdpIdxYFZcChTwiZMGHXYEHcJSR0MZ2wLxRU6SMI+MWBygABgwgtHEHGESSCis1qoIEcEsiVCxzb04Qx6LsKA0Gl5mTYLSXZ/uUR36uJX9uUwgfR7g748U/fwBi4/PCH3/O3Bu5HJBLxC4JsNsvKygqpVIp8Pk86nfa7A569dD6fR5ZlLl26dCL++FEriSNGfNmMBIQjRpwCvV6PoCKwPBV75EHq+c9LksTCwgK1Wo0bN25Qq5SwEXHuiRsWqJPGcMO+qHBGPGBKPB7GJ8swq+SZk4+YV46GRkZo4DqI7jBtsac3MWoHpEN9YmKHgaAQxAAEDDGCogawbIdsoUOt0//Cvk5PG7pp83/97fu8d6xgRC8wM7/yyPeJRqOsrKzQarXY3d1lcnKSwWBApVL5/cfVdXq9HqVSibm5Ofr9Pvv7+4yNjTE5OflFfkojRnwmRp2BESNOAc8s6GG3So/j42O63S4LCwvs7Oz4Ec3F4ywhlugTYoCEhIOLhIiNgMMwhnjYhZDvyhewbZugKhFTBbp2iNYgQYcoOhFUZ8C8dIDoDujbIn3DIUMeR5QQXRvTDaOINkIggACkQ/Y3Sjj41s1j3l6vERUtHCXBbz9e58zcMGciHA4/cN0vHo+zvLxMNptFEAS/O5DJZBBFkU6nQ7FYxHEczp49SzabJZFI3KNFGDHiaWFUDIwYcQr0ej0/ovZhNJtNCoUCgUCA/f19bNumXq+zubmJ2GsxjkabCCoDEtRokMJEJYyJwv1v7ILw/7d3Z0Fy3Vee3793v7mvlbUBVQWgUAAIUoRIimpqa0nT3dPSqN2anpglJmZ7mreZ8KufrLd5mIdxeCLscNgT9tgORzjsdnRruqnQSK2VMgVJoCCK2IECUHtV7svNvPvfDwmUSFE0KYIiQOB8IvCADKBQNxNR93f///M/RzuceBgbdQIy6KSgWQwp01cDXCbsJPOkukWGMXW1y75aoKUaxInBSSfhs2suS7XwtxrC81F2dWvEf/OX6/iqhEeZZ8p56kWbg4ODw+X9YrFIqVSiWCy+bZRwuVzm2LFjrK+vUyqViOOYZrPJ7Owso9GIVqvFzMwM7XabTCbDsWPHpJeAeGRJGBDiA+D7/ruOm42iiCtXrjAajSiXyziOw/b29mF1uUHMorFJiI1NiKnFFNM+O2qJGIummmNeTbcG3ixNUwzDwPM88oUhGa3AUBWwDbB0h552lFFk4GNTMhNSM4NmpPSHRTxyKHRutRTPLY7pGorLtw9YWag/1nUDnp/wH755g4myp6OeU4P9rZu8Ho4pFApks1kcx2EymdBsNjEM47DzYKlUIpPJoGkalUqFlZUV7ty5Q5Ik7O3tUa1WuXXrFlEUUSqVMAyD1dXV3zilUIhHhYQBIT4AQRD8/1aHB0HA+fPn6Xa7nDgx3Ze+cuUKBwcHBEFAFEXA27cAUs0gUcb0NAA5+qpEiT7AtAeBHqGr6d+1LItJf58zVp+xUUMzHQZUWT22ws9uDJhxYOinZJN9itkUPSihQgsNRYrCiwx+vh1zeTTk6J56rAcUdUYh4cTDJCHVHAp2wlpjerNutVpEUXQ4R8I0zcMBUvcHXVUqFRqNBqVSiXK5zNLSEuvr67RaLba2ttjZ2cE0TarVKidPnnzbqoIQjxr5HyrEA0qShCiKfuPKgFKKg4MDLl++zGAw4PTp04zHYy5fvky/3z8cZPROsmZCJvIZqyyBsmmpBiOKoEGIQ0b5zGlbaGmCpmnTX0lINReRc2F9OGRz+4CcZVLMZHjmeInCYIcwyVP0IwaxTZwaWEbKkbkadwcOMyX7sR9QVM3b5PUhDTPiyNIyf/pClaXqymG76PF4zGAwYDgcMhqN8H0fz/OI4/iwC+H9GpFMJkOtVqNcLjOZTHjl1Z+y3Ql56uRRVldX33XFSIhHgYQBIR5QEAQAb6sZGI1GbGxs0O12ieOYlZUV2u02N27cwPf9wymF928uv25ajJgyr2/RS0u0VIOM5jNSOTQgh8dEuSRmFpvpDSvBZE8tEAyz5HzF6qxFEne56Skia4ZqoUFey3H8+HHCGzC6OcI2wU4HDL0stWKB9jB67DsQ5lyDZbdJtuDzr/7BH1PMvf1a70+dfPOwKc/zaLfbtFqtw7DQ6/U4ODggjmPGQXpvRsQMJ0pPg/HudSRCPAokDAjxgO6HgftPgHEcs729TavVOhxfa1kWrVaLzc3Nwy2B8Xj8jm2KYRoGwjDE0lNKqs9Yy+OTIYeHYehMEgeXCZaaYFomYRjiY5GYRVwtYtcv4Dc16gWTCI9M1ObOToEFU6M2Tvmzz54gm99n52DAbjPD7Z7F8Sz84bN1FmvuY7tFcF8SeNRz+m8MAjAtzLy/PXD4d5KEubk5xuMx/X6f/f197ty5w87OzuGkyfszIjoej/Xqini8SBgQ4gH5vo9hGJimSbvdZmtrC6UU9dkj3Nrcp7vfImNr7O3tHS7lD4fT+QPvtCrguu5h5bmu65hpzKK5g59a02mGjsPAV9iE6CqGe50IbQIs5RHo0/a4TjpgOCkyVy/T6Q/xh00uB4ob3piPB13+7PcWuH1Q5kdXusxXHNrDiIyjP/ZBAKYh7p2a/yg1HRg1mUyYTCZuBbJnAAAfbklEQVR4nke/32c4HOJ5Hp1Oh8FgwGg0Iooi0nQ67+H+pEmfDHt3r1D92ysf4hUJ8f5JGBDiAfWGE1oeXPzlVZLQo1qtUpmZ5/95ZYPXrzcp2iYL5i551yaOY3q9HpqmEYbvfFTQtm2UUui6jmEYJEmCY4IRT1BKYRs2ecMnTHTGKksShpiahq0rZtMNItWjUTtBd+RQtUPWCh4jG9qThPVxibJt8pObfV5YLXL2aIGNpv9EDShKkoRxmFIwy/S9AC351Y1/MpkwHo/xfZ8gCIjjmCiK8DyPwWCA53lEUXS4hQBgGAa1Wo12u818vD09EdINifzPgPv2cdZCPGokDAjxADw/4T9f7LDVHrM8C3//cyeYrZfZbE0YxRZ5O6E5TFhaqJAmfTqdDqZp4nkeYaLjUSJITYraAFefbjdks9nDLQKl1OEKgWEYb9lWCBOd3XSRCTlMIpasbVwtxNQSbPrMFToYjRKdvQ1GfYt1r8ZQ5QmUhWFaTCfvauRcgy89N/NEDSi6udHkpr/I9p7L4K9f54Uj6vBURpqmJEmCUgrf9+n3+wwGA4IgOFwBiON4uoVjWRw7doyTJ0/yox/9CKUUppYcngj5+c9/zhe+8IWHdp1CvFcSBoR4AJ1RiJ6tcTJfIFAOIdO6AUcL6e2t0x7GzFcc9LhHu9PGNE0mkwlBDLv6CbaiBgqdvBqyxiWyZvSWSXa6rqPrOpqmveWc+nR/2mZCjkA59ClBpHEqv4seTU8ntPa3WF42WJitcmd/hLJLLBVdwrZBMaPz7LESi7VpgVvONZ6YvW3PT3j5YpeuaqBjcjBU9CeKuZJzuArQbrcZDodMJtOVmPsNiHq9Hp7nAdBoNPjyl7+M67q8/PLLwPTzuh8YAG7cuMGZM2ekBbF45EkYEOIBVPM289UM+z2d+cp0if3g4IAf/vCHzBtjTp9eZNzbp99pYtv2YVW65lQZ+nlSdHQUPlk88tSzweFNXymFYRiHdQaGYaCmj/PEcYwNmET0KeESkGgmysyRtTQmkwm2bdPpdPj85z+PeX2d1vqAkW9zvBxxbtHgiy+sPRGrAL+uMwqJUoNawWAcW+Rdg6I7bRjU6/UYj8domoZlWZTLZbLZLO12m/39feI4JpPJ8IlPfIKXXnqJJEn45je/ied55HI5xuPx4bYOTDtOvvHGGzQaDWk6JB5pEgaEeAC/vsR+sLvBj3/8Y5Ik4czJY2xubjLoNjFNE03TGI1GmKbJiZU5Nq706ZNFoePgUdA9crkSuq6TJMlhZ8H7Z9vH4/Fb/m1Ti1nQNlAKYkyy2gQt9siWcsRxfHg07tVXX+VP/uRPiMJX2Ovc4dSRBUaDXd64XuZjp48/cYGgmNGZKxmManlif0gjvsvNa9Onfdd1qdfr2LaN67r0ej1u3bp1WCS6trbGF7/4RWq1GgDnz5+n2WySyWQwjOn7eP/zAw47GG5sbLCysvJQrleI90LCgBAPaBwkrO96nN+7TH/7KoWsxerqKjdv3qTdnm4NOI7D1m6TQOV4ZnWFbmuPI1oXiOhQp84O9aKN40yXquM4ZhKmhFgkYUqqZbHjEFODWJmHLYtdPWBZu334e2IN3zdINItxbFOypgHku9/9Lv/FV77C17/+ddbX19lJFrnYabI9Ljy2nQY9PzkMaZae0Ov1aLfbbG5uorV61MOErJ1QzNhksw1s28YwjMM2xNevX2cwGADTLYGXXnqJM2fOHD7h37hxY/q1NI2ZmRm2trYOA8H946NKKcIw5Pr16ywuLr6nQVZCPAwSBoR4AM1+yL/7T7f55XoblUY83Zjlq2dr3Lp1jU6ng67rFAoF7m7tsRXNY+Tq/GJPUZhM6KcV7rAG6AyoUo2uQa9HHMf4kWIrmmNCnnFqoxNR0H3ySZcmDQIcSgyY0Xfv9R4YgQbD2CH0Ejr6Il7sYIUTjuZ9NrYPePnll1leXmazdZWWl/DcSuWx7TTo+QnfeO2AS7c7RKHP05UuRtQ9nC6ZdV3qlQK5XA6Y3rSz2SxJknDlyhVarRZJkpDP5zlz5gwvvvjiW9pNd7tdLl26NJ0Y6brMz89z48YNbNsmSZK3bBUEQcBgMODWrVucPn36obwfQrwbCQNCPIDbB2O2Oz5pGhMnGtd2I/6Xv34dNGg4iplqgdc2QvygSOKUcVTA3bZJhQL7ah7QgRTQuT2eoVIYYOo6ISYBWYqFLAe9DBYR/bSMxhwRLhopI4o00zoKHZsAG584ccjGPqVyhUYJru9n8IYhFSuLtrXP8vIy/+jPvsJ/9+fneeP6BqdPHudnN3qkKSw3Hp9A0BmF3N4fc3Xbo+vF3Nix+KPjLktzZVzXxTTNw/qLXC6HYRhcvnyZra2twwmQi4uLPP/886ysrLxl2mAcx/zkJz8hjmMMw6BarTIej0mShFwuh+d5OI5zuK0zGAxYWFjg9u3bHD169DCACPEokTAgxAM41siyWHUZjWNG4wBPZbierAJwJx7jeBE+OTRSXN+jiUOITYc1NEJAMQ0ECpXA7XGNRWMHIwlxmNAfZ9FJSVEk9xoLKTRAI8IixsTFZ0iJlCo6ipGKSYYjIqOObQeUzTFYFVLT4+e/vMKna0v88688z59/4xX+5uIeqZHlP/2syX/9D08+NoGgmrcxdJ1xbGAYin6sc3Uwy9oy2IYiTDQiLcN8LcedW9cOW0RblsX8/Dxra2s8++yzbznZcd/FixcZj8eYpomu6ywsLHDt2jV0Xcd13WmB6JvCw/0jiUmScOPGDc6dO/dhvhVCvCfG1772ta897G9CiI+qnGvwseUi5ZzF7kGbURATY6OhSDBJMe/dzHU0pkfOEmwSLHQ0cgxxGeEyJKeNiXCpOCGuHlLNxHz642vs7uwQK/tNX8tAR2ES4ZIQay7avYAAGikGcQpoJgXXQqkEW4sx7DzXOi6XNz2cXBU7W+KX2xHVgkNvHHN0xmVt4fF4arVNnYWqyy/uDGiPYgw0FIrlqkY+X+QHdyy+e3nAD36xide8jaPHlMtljh07xqc+9SlOnz79G/f37969y9WrVymVSniex8zMDMvLy1y4cGHa8dFxDo8W+r4PTPsWZLNZarUa3W6Xer3+G0OGEA+TnHUR4gHNlGz+6OMznF0uoJMCCoWOAkx8UgxSDCY4THCJMOFeQMgzZE2/iq0Z9KiTGFkqpRzZbJbZWomlRhZTS8iYMY18SsUYsmi3OVEcUafD6rzLqQYsFcbYeoqOQidCoZGmKZmMzXLdZG9sc36/zN1Jjb1+yvcvbqGsPDOlDINJTDVv8fTRdx7B/FG03MjwL76wwJFqhpITQRIx9mP+6uKQb/+yx52uxqZf4Zf+KcqNJT7xiU/wB3/wBywsLLzlyf6+g3af75+/RLZQYTQakc/nKZfLpGnKeDymUCigadrhyZE3zzTo9/tks1l0XefmzZtv6UUgxKNAtgmE+ICUCllcxsQoInJwb98/xwCPAikWv3p619CJmJBFKx4lF2coqIQoCjkYJESqjFaqsnEwJtEzLBZ09FyGsL3Hba9KO8mjcJgnpZrX2RyFzBhjNC1kL6kRkaEz0SgE0NGL+MQYhkYcG7R8jXYQs+s1OVp3+dJzdV46XX1stgje7OnlEn/rYz7rew4LFZO1oy4X9lsoYqafxbToshsXePrppw9PA/y6/a7Pf/vnr9OfZKh7LsezA9ZmKzQaDdbX1wGoVqv0ej1Mczo06v6WAUyPGI5GIyqVCs1mk/39febn5z+U90CI90LCgBAfgM4oJEhtPnduhR9c8+lNUjQSFBa6mcVJFBOlAQbTgkGTGJ0uGS72q9imTqIUed3g0mAOjxwXRzrHm11IQ3bHRWpGzO6kwEjlsXSLNEnZG4LuOKShRzeqoGGTYGLiE+NSzGiYlgMk+PH0RueYBoZpYJs6PS/i+HzusQwCMN3G+dNPztIZVQ5nLjy7m3KnFdH1EjRiDBJ27lzn3//7y3z2s5/l+eeff8vX8PyE/+Hrr/PGToymaWz2Qvq1CkePWGSLVX506Tx3/QUKfpE4HJJqNpMkAitPrDxMbdrVsNPpMDs7y2g04tatW9TrdTlqKB4ZUjMgxAfA1HV2uwGTxORoPcNONyRVOsWsxec/Ng+GDWnKJPzVE+n9wsEUA9L03hRDRYhDiEmCQSfQ8VOLQeRyMNYZpzYGEKXT0kOSCNuyGCQ5/NTC1DQmyiHFRAFBlGLaDpWcgWkZlHMmedciVRppqliZyfCl5xqPZZ+B+2xTp5S1sE0d29Q5OZ9jbT5HnCTUChbPHnGYd7sM+11u3LjB66+/TqVSOWwstN8L+NmNNv3RmFFsg0rpjWPWN/f51k9ucaFd5SCucGlfsdXT2BukbIzLeOQYRSZZRuikWJZFo9GgVCrRbDZxHIdKpfKQ3x0hpjR1/3yNEOKBvLnJzWZrwk9v9fnEiRJH6xm22z6TMOb7b7S4cGvIwE/w/AQNcCwdDUWahCRRgGnojBIXSFEoNDQMQDNMTC3GIKXkpAx8haZD1s3gGiF9Hwa+TQoUMjpRnFLJahimRa3gECUK09A4d6zAmcUcYZxy+kiBmdLjP6XwN3nz52UbKbdv3+Z73/sezWYTgHq9zle/+lXypTrfeO2AN263uXq3gx8rzHiAQYyvMgwooN0rULSJqNJiSJFZZ0gYJizod8lqY8rlMs888wxHjhxhZ2eHQaBRWTjF6aXqE/sZiEeHhAEhPkSen7DdnjAJU3qjkPYo4thslr95vc2PLrWIkpij9RzjIGYwSehPYjR0lKbjWhqupXC0mLmSyZW9hCTVsAydpxZMtgeKIIIwnh4+zGUMMrbBfNmlUrD4vZMlZss2i7XMY70S8CDSNOXGjRt861vfOhw1vbi4yO//4Z/w2tUdMpbijd2UjZ0WlvIIlc21Xp4EA52YIkNcJkRY5KwEJx0xyyamFpPL5VhdXWVlZYVAufyP39nHJ8uxuRL/+isrEgjEQyU1A0J8iHKuwdpi/m2vjyYJv9wYUs1mGAXwT76wzEZrwl/9ZB9NV8SJxufPVhiHiqqbcHPfx7FCTENHafD5c4tstHwub3qkSrFcd/mjj9e5cGvAyE84UnN57kRJQsC70HWdU6dOsba2xuXLl/n2t7/Nnc1dXv2f/ppMZYEXnznJP/vDBq9fUnT2R+SyBrWrd9nuxmQZkddHpJqBrhLS1CBNoa+VyKkRbpLQbrcpFAr8YmPMfj9D1myz13O5fTCWMCAeKgkDQjwCTh/Js1TLsNcLmCs7nDtW5NyxIrd2x+x0fRYqLn/vUwv89Gaf/V7Ax07kMK0RB4OAhYrLJ9cqfOEZg+22D6jDp/+1hfzhUrgEgfdO0zTOnj3L2bNn+eb3L/B//WiTesFmqz0mSuHznzzL+fMjOp0Ox6sxzmSb9F7dx7QL4YRJYnNLncFXGVwmnPKvYvZ6bG5u0tnpY6pVIq3AXNnhWCP7sC9ZPOFkm0CIR0SzH3L7YMyxRvbwKfHXX3vzPvc4SN7258UHbzrnoMmtrTY2Y77ywiwnjy8xHA555ZVXaLfb3LlzB9M0CYKAcrlMkiTsjHNcDY7hEODjclS/y5wzIDVzbI+yBFqe06fX+Kd/6/hje5pDfHRIGBBCiHdxP4TFkx6dgx1qtRrLy8vs7u7yve99j2s375CaObRohMH0CKKyClyLT9EPp8cH8wxIsDC0BF85LJdC1p46x5++OMvRuoQB8XDJNoEQQryLnGvcm+yYoZRzuHPnDnEcc/z4cVZPneU7V0P8eLodMK9vT899Kp2PVw641YzpphU0FBMyVFSbABecGnNl97D/gRAPk7QjFkKI30K1WmV1dZXhcMj169eZWTyOT+bedkCGicqymy6yES4wMOapWSMSTIYUAUgwmbW7/O2P5fnSczNSyyEeCRIGhBDit1QsFllbWyMIAtp7d8kbAQEOLhNA4ZPBTCfsdid4iY2jhVRpU6TPjL7Haq7N0YohQUA8MiQMCCHE+5DL5Th16hSOoVjKtDhibLJgbJPRJrhMCHDA72ElHrqKCXDIaGNKWh/TNLi20cbzk4d9GUIAEgaEEOJ9c12XU6dOUchY0y6DhQxZR2de32ZO26bAgKaap0+VEQVCZTFM81zuV/n21YS/+PGuBALxSJAwIIQQD8C2bWq1GpqmMfACfC2Pn9ocpHNsqyO0aRBgE2Gzzzx31Qk2wwa7/YRvv7bFdnvysC9BCDlNIIQQD8pxHEJcNqJFwtDGJ0OEg42PQiPBIMVAoRHgEGNiENPtdvnBD3+I/ZmPo9lF6kVH6gjEQyFhQAghHlCMyd1wkQ51LCJCHGxCQmxy9Aipk2ADKT7ZaS8CoEiXS5ebvHKpTWSWeOmFs/zDzxyRJlLiQydhQAghHtBeL2KCi01IgI1FiEVIngF5+vSpohGhMFFopECKho/DllpmSBEVa7z80x00TeNffHFJVgjEh0rCgBBCPADPT3hjyyeiRsr0aR90YgwsQjJ46CgUOve6EZFi4WMSYZAhIMYENEhifvDqRfw7P+D3XzzLzOIJ9kcasyUHXUdmTIjfGQkDQgjxAH5xZZ1JYlGhhUeOFIshRVwm+LiMyWLikyVmTJ77ddsKjRibIfa9301fT4GN3R7/4S8vsM8eIQ6O43LuRI0zy1VpVCR+JyQMCCHE+zTwQr71ne9jK5tQc7BURI8qMSZDSuhEbHL8LSFAI0ahMV0lMADt3lebkGDRpUKPKjopMTYZhgwCxc31Wzi2yaVNl7NHCxIIxAdKwoAQQrwPnp/wFz/e4ka/gK0FzLDHHnP4ZFDoKFL6VImx+dUNPwV0DGIS9De9DgoX0Jh2HTAx751EmJDDImLkw/mL1xh7HhvNeVkhEB8oCQNCCPE+dEYh3bGi4Ci6foYIE48SOjExFhqKBJPpCsD9li4KgxiHCWPyKBQcrhLcbz40rS1IsLEIUKToxPi46KTs7u7QHwyo20NOrByROgLxgZARxkII8T54fsI3Xmty4coWF+/0CHFJ0dFI0ZiuAUxv7DrT8UQhNQ4IcfHJARoTHO7f/A1SpsWFBg5D1L1aghQLnQSTgAgXk4SsHlAyh1Tq85w7vcRXXzoqgUA8EFkZEEKI9yHnGnzpuRlMLeHineHh6woN897RwoAc9wNBgkWPmXsbARpZPGAaGqbhQSfPgCGlez0Jpq8ahKRYKAxsfBbyEZqVJ4lNCnbKldt7nKjGvHB2BdOUH+ni/ZF2xEII8T7lXINPPzXDciN37xUdnRSFTorN9Efs9Hav0IiwcIjQSSjTwWFMikGEBYBPBphGgBgbAxMDqNHihH6dht7ED2NqBYdnTy+RmgXyVkxze50LFy7QarWQxV7xfsg2gRBCPKCbm03+zf/8HbaiGcAgxsBkQopFjAOATopFgEGMS8AM2/SokaIzpEyJNgOqhG8KETYJC7kJJ+w7pJMuXmSwkSyDVeD3P3mWzz5VJ6tP6LZ22dvbI0kS5ufnOX36NJlM5mG+JeIjRtaUhBDiAc3VK2QcHSuK8LHQiTBQJKT3JhMk2ASscBNN0xipAkOtRqxszHuNiSIyGMTkCfHI4RBQoc1Jp8/aiWO0BvPc3W3jDSuYmsV3LtylEG5x7uQMxWIR13XZ39/n9u3bbG5ucmRlldrsMvWSK/UE4l0ZX/va1772sL8JIYT4KNvvB+z7efRJi0DZRIkixEFhAQk6GnWtxbK7DyqiTxVbhSRYVGhioEgx0QCHCUX6HNHuMmvsM/ZDLver+O4CmcoRAlxs20aplJLaR49H2LZNkiSYpolt2zQ7A779iw4Xbg8ZJw7LMxlsU3aFxTuTlQEhhHhA1bzNkXqO0XCeQuBzbXPEKLYJcNABh5AXVmzyaY2d/TZOGNJSNTQ0PEqkmkmeIT4Zato+Ja2PqcXEymQ7XaIzykAedB2WyjAKYHbW5XRjhmG3ycbGBqdOnWJ2cZlmzyczc5LbyR5z1Rz7vYDOKCTnyraBeGdSMyCEEB8Az0+4vd3kP3/r27y+bzOkxiQ2MLWIWavDuZkhxZxDpVLhp1d2uT6qk9MnBKmNrkISDFwmzOvbAITYJMpkOz3KhCwRNs8sF/mXf+cpgsDHTMdE/oher8f29jbd4YStcJZ8fYkjjRIo6HoRs2VHGhSJdyUrA0II8QHIuQbL8zX2/CLoCS+cnEEf3KJ1sEvWsfDGE47Mz1AoFKi4m5TGQ3xylN2YQrBBgoFNSKwMdtQSMRaGipiQJcRGoXH77ib/218N+C//8Wcp5eoARFHEqVOn+Nkbd3jjtTbHSw7dUcQfPlsn4+jSlEi8J1IzIIQQH5CDfsh6x6BRcrCzRV441eC1awc0wwKpVebLn3+eudkZ1m/dQJs0KdkhM46HrUUYaYBCZzNZoUMdhYZHkRATgxQFFBjSHvjcufYLcpV5hj7kXItSMcf83CyRUaA7TpktOzx3okS9aEutgHhPZGVACCE+INW8zfGFMlfWAyrxkLnZVezSHCU9JtJcbm0e8OnnTrGyskKv10PTxjimyyAw8NIMiTKINRtLxUzIoN+bYBCQQScmwCKvxlxv6vz0f79ArVbnix9f5E9fnD1sgtQZhbIaIH5rEgaEEOIDMr0hNzi3nOVg6yZG1OVzL36M/V7ApLdLPO7SarXIZrPk83l6wwn50hLbo4CR0jDSEB+bEAuHEIcxfapoJOikmCiKWpdtdZRI6Uz8kLvNyWGBYM41pFBQvC8SBoQQ4gOUcw1WF0vkjUW2t7f5/dMn8dMS3f2Anc1psZ/jOBTKdd7oxNzZzxE5DRrZHjsdH0sllMwufjxtPDTtRmhiEr+pdbFFhENnFLB/9zoDr4onqwHiAchmkhBC/A7Mzs6SzWY52N1ksepQK+ewbZtWq4WmaehuCaswbWWsaTpaps6JhSJ5fYTjZim4GikmDhMsIhKm445iZWATUKZNlhG7XY9/+x+/x//x3XWub3t4fvKu35sQv04KCIUQ4ndA0zTy+Tx7e3sAuK7LwcEB4/EY27bRSKksrBIbWaqOz7OL8MWPL7J36wJ5fcyZxSztYcg4cdFJUJjE2IzJk2AyIUeEQ4RLkipubg/pBRZdL5YmQ+K3Jv9bhBDidySTyTA3N8fu7i5KKUaTiEAvsNvsknUM/vhcjT/7vXk+fVzneMNGS0OOLy1gxX2ePXOMZxsT1qxrzLKNQYrLBB8XSCnQBxS2rgi0LErTqWTVYZMhIX4bEgaEEOJ3aH5+nkwmw+3NXX6+Y3C5W+S1XYftPhimyfJsjkLWxrZtPM/jc5/7HKMkw1+8us1T515iLp8yozdx8fBxsQnJM2I6LFkRpBqWlrI6axHEOrNlh2reftiXLT5iJAwIIcTvkKZprKys0B4EOKV5lubrbI0yvHpX429+2cPzE1zXRdenP47bE4M34nP8tFnjP56PWVw9R95OWOIWOYY4TDC1mLrWJM8Ah5Aohb1mj888VZZug+J9kTAghBC/Y9lslhNLszjKY6M5xrIsilbElfU92sOQTCZDkiQ4jsPF9S6aU2CmkqPrRejl45Rrs7SYu1cvYDFRWRJlABoBDgroRBn++//z+/y/P78mRYTityZhQAghPgQnlhf5zFqGU6UBxxsORrZCOm6zt3Edy7LwfZ9CocBcNqCatxj5KdW8xYunZzl59nmsbJF6wcQny4Qs2yzTo0KESYSFTUgzyPK/fneLvzy/J4FA/Fakz4AQQnwIdF1n6ehRvnGhSag7rCzOsprT2d/ZQMU+AI7jUMsk/Fd/d4Xr+yFPHy2w3MhQzJzmlUsHbHV9jtYKtLo+k9REMT1mqAEwHZscYPHqtR4vrJZYW8w/zEsWHyGyMiCEEB+SQNkUG0ucPbFIGCuOrZ5iYWGBdrvN7u4uYRiiaRplJ+LvPN9guTHtJlgpZPjyi0u4RoRBTLlSJ9VclGaSLVQ4u2AyZzQBGIUanVHEJEwf5qWKjxhZGRBCiA9JNW+zWMux3wuYLTvMlDLMFp9CKcXla7c4//otqqU8k80u2UL1LYWA80eWOXXGJhy2ubE34fhihaIVESbwz//4eSbjp/i3f34Fy7EoZg0ytjzrifdOwoAQQnxIfvMwoQyLS8d5+WKPwcBidDMk7zbZ9Qt86bnGYSCoFx0WaznWw4Q4naDFKSPdZbnoE/Z2OLW6ylc+dYI31g+YyQW4RsxmayJDi8R7oiml1MP+JoQQ4km22Zrwf/9om4xj8+qVJmsNnWK5wlc/OcvR+q8GD3l+wqXNIa9c6lAv2ex0Av742SLpYJNsoYKenSFOU3oHm/x03UdzqyzUMnLcULwrWUcSQoiHrJq3OTqTx49SlhoFcoUy8xX3bc2Dcq7B2aMFlhpZhpOE1fkcJ49Uqc8e4Rs/b/H189tc3hxTaRwl1HM0yo50JBTviWwTCCHEQ/bm7QPXMvCj5B2X93/TVkPHKZCYRRZqefZ7AR9bznNsvnxYmyAdCcW7kW0CIYT4iPP8hG+81jy8+X/puRmAX6tNEOKdSRgQQojHgOcncvMX75uEASGEEOIJJwWEQgghxBNOwoAQQgjxhJMwIIQQQjzhJAwIIYQQTzgJA0IIIcQTTsKAEEII8YSTMCCEEEI84SQMCCGEEE84CQNCCCHEE07CgBBCCPGEkzAghBBCPOEkDAghhBBPOAkDQgghxBNOwoAQQgjxhJMwIIQQQjzhJAwIIYQQTzgJA0IIIcQTTsKAEEII8YSTMCCEEEI84SQMCCGEEE84CQNCCCHEE07CgBBCCPGEkzAghBBCPOH+P8mYrKkMV6NFAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "draw_metric(G,clos_C,spring_pos)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -586,7 +731,18 @@ "id": "MQOah_yDtbaW", "outputId": "7a449548-ba12-41be-cd93-6a3c0f1beb88" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0.06357722918564916" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# assortativity\n", "assortativity = nx.degree_pearson_correlation_coefficient(G)\n", @@ -595,7 +751,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -614,7 +770,18 @@ "id": "axqLxhKXtoqF", "outputId": "118e10dc-f058-47c6-aa5a-5db66d6a5cef" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0.5191742775433075" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "t = nx.transitivity(G)\n", "t" @@ -622,14 +789,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": { "id": "_KKwGKCUARdb" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0.7368407345348218" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "#import networkx.algorithms.community as nx_comm\n", - "#nx_comm.modularity(G, nx_comm.label_propagation_communities(G))" + "import networkx.algorithms.community as nx_comm\n", + "nx_comm.modularity(G, nx_comm.label_propagation_communities(G))" ] }, { @@ -644,7 +822,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -664,7 +842,34 @@ "id": "KP54IveMbNLD", "outputId": "39f42abd-9cf5-4755-de44-b9f7b4600d4b" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 is in community number 0\n", + "107 is in community number 2\n", + "3980 is in community number 13\n", + "3437 is in community number 12\n", + "686 is in community number 14\n", + "1684 is in community number 4\n", + "1912 is in community number 3\n", + "698 is in community number 14\n", + "348 is in community number 1\n", + "414 is in community number 1\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3Rc933n/fct0we9AyQIFpAEexE7qUJRVLOKZdlOYjuJErfnSeyUY9nek+ds9nl2E2927d2cFMdxNpGlRJItUb1RVKEaxSZ2kRAJFhAkiF4H0+fe3/PHAAMMAbCIAAEQ39c5PMTcuXPv71LC3M/9VU0ppRBCCCHEpKWPdQGEEEIIMbYkDAghhBCTnIQBIYQQYpKTMCCEEEJMchIGhBBCiElOwoAQQggxyUkYEEIIISY5CQNCCCHEJCdhQAghhJjkJAwIIYQQk5yEASGEEGKSkzAghBBCTHISBoQQQohJTsKAEEIIMclJGBBCCCEmOQkDQgghxCQnYUAIIYSY5CQMCCGEEJOchAEhhBBikpMwIIQQQkxyEgaEEEKISU7CgBBCCDHJSRgQQlwRy7JJWPZYF0MIMQrMsS6AEGL8SiQsTNPgiXdr+LN/2UnCslk2K5+9NS0oBQ+snsYPH1rEn/xyJycbuplelMEXVpbz4OoK5k7JHuviCyGukKaUUmNdCCHE+PIPrx7lR7/aA4CpayTs4b8mNODid52mzrt/dS8LpuVyuLaNgiwP5QX+0SuwEOKaSBgQQgzi//JjXMs3gwbcuWwKZ5t7qD7fCcAjmyp5eXcdgXCcjYtK2fKfNqFp2sgUWAhxTSQMCCEG8T382BXu2ff10Vc/cOU399mlmVSWZfFfv3YTc6RJQYgxJR0IhRCDTC/qq9JXA/5WeJ0Xf2VoeAw79fPgBoPhKE5c6OK1vedY8ecv0tQRusYSCyGuhYQBIcQgh//+S6yYopPnivNn987k1rIQ6wq7eOw7C3HoyWAACoeuCFvGgE9eXDOQHib6/2ipfS1b8fi7NaN6PUKIS5MwIIQYRNd1/ni9jz+c3cjvritmZW4b64q6WTG3jIenNVPui3D30hIenGdc/mADmhKchobHadAfCpKqpJlAiDElYUAIMSTTTI487u7uTm377HwnL9blUxf08GF1K2boAkXu2DBHGFgDkGxCiFmKcGxgswLcv2oa962aNkpXIYS4EjLPgBBiSKZpYisIBAIAeL1e/vsz+4lYyWeIYDTBruYsvjazkYaIh+31mTRGXAOOcHGTgZb288ziDA7/w8Ojeg1CiCsjYUAIMcieE81895k2OkJT+bjnArNNB7MKcuk42Qn03vCVojNm8m81JWQ6FdmuGI0RJ+k3/eFHGHQFh6tREEJcbxIGhBCD/OHffUBn2AY0Pq6N8TEl6KdgXUEYp+4kamtoGnTEHAB0xhRZDg0DhXVRDcBwgeBPHlh4PS5FCHEFpM+AEGKQ5s7woEmHbAW7W7P41uwLrCvsQk/rBKjRFTcxtPSOgX3vXWzT4lL+/EEJA0KMFxIGhBCDfPuuqt6f0m/utoLOmMmO5kwSanBzQEwN95WSHhDONPeMYGmFENdKmgmEECl2zzmsCx/xF7M/41tf+QSnniBm69QHfexvyScY93KwvZTLdQ4cPDNhH4Wmady6oGQUr0IIcbVkOmIhBFbrYeLHH8duPYitQ9QbJeIJYZsWKA1HzMTR48UdM4laBr86Ppv/dWQBnTEXLt0mYvfVCPSFApX2s6EpHlicRYBMlszI48cPL8btlGcRIcYLCQNCTGIqESZ27F+wzrxE1Buno6CVnuwelD7014IZNclqzSazJYdA1Mn/PrQUXfPSHTOp7vSyry0DNUQgcJk67b/+vetzUUKIqybRXIhJSsW6iHz8KHbgFC1lzXQVdF52naGEK0FbWSudBZ0U1hXx/63Yw/sXprOneSq1Pe6hzgJofPeeeaNxCUKIESJhQIhJSCXCRD7+AYngac5XniXmjV7V5y1ngoaZ9eQ25nELkLB1DrT5B/QOUGQ4LH705eXMmpLHF1aUj/AVCCFGkoQBISah2NF/wQp8viCQokF7SRu6pXGbgtpAFqcCbk4HvLgMxdM/vovbFk8d2YILIUaFhAEhJhmr9RBW7Uu0Tmn+/EFggNbSVtzdfu6f/hmdUS84M/jxo3+Kw5SvFyEmCvltFWKSiR1/nIg3Tld+58gcUIeWaQ2Un3CyoDjEA9/6S3RdpjARYiKR31ghJhE7UIdqPURnQetlOwtejagvSsgb4a75CQkCQkxA8lsrxCRiNXyIbUBP9sjPABjI70S1HUbFukb82EKI0SVhQIhJxOo4TsQbGXYegWsR9oUBsDtrRvzYQojRJWFAiEnE7j5O1BMalWPHXXFsHezu06NyfCHE6JEwIMQkouJhLMManYNrYJug4sHROb4QYtRIGBBiEtE0HW0kew5efHwFmmaM2vGFEKNDwoAQk4k7DzPqGJVDa5aGHgfNkzcqxxdCjB4JA0JMIkbOPDxh/6gc2xV2oQF61uxROb4QYvRIGBBiEjFy5uMIG5ixkZ9vzNftQxlOtMyKET+2EGJ0SRgQYhIxSm8Gw0Vma9bIHtiGrPY8HFPvQtNHpxlCCDF6JAwIMYloDi+O8rvJac3DiI9cR7+s1myMOJjT7x+xYwohrh8JA0JMMo4530DT/RTWFcEIzD3kiDrIbyjEqHgAPXP6tR9QCHHdSRgQYpLpCsP7zYvwd/vJbcq9pmPpCZ3S01PRXQU4539rhEoohLjeZNVCISaRM2fOsGXLFjQtGys4ndsBzdJpK736hYscUQelp6fitLJxb/gbNNMzKmUWQow+TSk18pOUCyHGFaUUu3fvZtu2bRQVl/JPu6LUdHv5o3lH+c/LDhBxx2itaCDqjV7BwZJ9BPIvFKK7CnCv+Rv0jGmjfxFCiFEjYUCIG1w8HufVV1/l8OHDLFq0iC0fneTFs/mp95flt/Jvt3xAmTdEjzdMT0EnYV+EhDOeqi3QbA1n2IWv20dWWx5mHIyK+3HO/7bUCAhxA5BmAiFuQE+8W8Nf/PteUIp7pocoN5vZuHEj27dvJ26l37z3t+bxxGfLyfSEuGt6EzND5wGwjeQfACOWzAXKcOKYeifm9PvRM2dc56sSQowWqRkQ4gZztjnA/D/aQvI3W6EBL/3ZInZu34plWUQtjf84VURb1AnAivxu7p4e4Qc/+AGGYaCiHdidJ7C7TycXHdIMNE8+etZs9MzpaIZzLC9PCDEKJAwIcYPZ9VkTt/8/r6dt+/3KJgrd/f0BYrbGuR4XbsNmeo7GD3/4KIYhCwwJMVlJM4EQN5jZJV7y3BZtkeQKhXmuOHnO9I6BTl0xMzOCy+Xi0UclCAgx2UkYEOIGYts2r7/yEt+obOZIuw9lWyzI6cEYYkYRp9OZahoQQkxuEgaEuIG89dZbnDp1iiyPh+W5ncPu53A4ePTRRzFN+QoQQsgMhELcMA4dOsSuXbuoqqoiHA4Pu59pmhIEhBBpJAwIcQOor6/nlVdeYebMmVRXV6e263r6r7hhGPzwhz/E4ZCVBYUQ/WQ0gRATXCAQ4Je//CVut5vW1tbUdtM0SSQSqde6rvPjH/9YgoAQYhCpGRBiAkskEvzmN7/Bsqy0IOBwONKCgKZp/OhHP5IgIIQYkjQaCjFBKaV49dVXaWxsxLKstPfi8XjqZ03T+PGPf4zTKZMFCSGGJmFAiAlq165dHDp06JL79NUISBAQQlyKNBMIMQGdPHmSbdu2pW27uLMgwKOPPorL5bpexRJCTFASBoSYYNra2njmmWfStgXiJo0RNwm7f9sPfvADPB5ZUVAIcXnSTCDEBBKJRPjVr36V1ifg0w4fb5zPRaGR64zztZlN/MUP/xSfzzeGJRVCTCRSMyDEBGHbNo899hg9PT1p2z9syadvfHB7zCRnwV1kZGRc/wIKISYsCQNCTBBPPvkkzc3NadvWr1/PwKlCNE3D45WmASHE1ZEwIMQE8MILL3D69Om0bbfeeiuHDh3ilsJWtN5tlaVZfOO2yutfQCHEhCYzEAoxzm3dupXdu3enbVu6dCkHDx5EKcW0adO47e4v0tIdY2FFLi6HrEIohLg6EgaEGMfefvttduzYkXqt6zpFRUU0NDSgaRozZ87kq1/9qiw6JIS4JhIGhBintm/fzgcffJB6res6pmlimiaRSIRZs2bx5S9/WYKAEOKaSZ8BIcYZpRTvvvvuoCBg2zYlJSUSBIQQI07CgBDjiG3bvPX2O3z44Ydp203TZM2aNZw/f57Kykq+8pWvSBAQQowYaSYQYpzY9VkTD//1VjpCFvOzg9w9pR1dg9LSUpYvX87rr7+eqhEwDOkkKIQYORIGhBgHlFJMf+QJWnssVO9AwbuntPHtexZRXl7Os88+y+zZs3n44YclCAghRpw0EwgxxpRSvPHGG3QEE6kgoKGYPmcx06ZNkyAghBh1EgaEGENKKV599VX27t3Lkty+aYYVXpfJ5kUFPPPMM8yZM0eCgBBiVEkzgRBjRCnFiy++yOHDh3tfw8keL1VL1rJmpo8db7/C3LlzeeihhyQICCFGlYQBIcaAbdv8+te/pqamJrVN0zS+9rWvEYvF2LJliwQBIcR1I2FAiOukJxznP96rIRq3sOp2EmhrSHv/K1/5CgBbtmyhqqqKhx56CF2XljwhxOiTgcpCXAeWZXP3f3mDA6faUCiyHBp/MFvHodsAPPjggyil2LJlC/Pnz+eLX/yiBAEhxHUj3zZCXAcnG7vZf6qNZDWcRlfcpD7oBOCee+7BNE0JAkKIMSPfOEJcB/mZbgwdoL9Vzu9IcPvtt+P1ennuuedYsGCBBAEhxJiQbx0hroOaowe5d0oLfpeOU7fZVNLOg5tWk52dnQoCDz74oAQBIcSYkD4DQoyyY8eO8eabb/LgqrlUHT+OUoqbbrqJwsJCnn/+eRYuXMgDDzwgQUAIMWbk20eIUVRXV8fzzz9PRUUFx3uDwKJFi5g6dSovvPCCBAEhxLggNQNCjJKWlhaefvppCgsLOX/+PEop5syZw4wZM3jxxRdZtGgR999/vwQBIcSYkzAgxCgIBAI8+eSTeL1e2tvbsSyLGTNmMGfOHF566SUWL17MfffdJ0FACDEuSBgQYoRFo1GeeuopEokE8XicWCxGaWkp8+fP5+WXX2bJkiXcf//9aJo21kUVQghA+gwIMaIsy+LZZ5+lvb0dXdcJh8MUFBSwZMkSXnnlFZYuXSpBQAgx7kgYEGKEKKV45ZVXOHPmDF6vl56eHrKzs1m+fDmvvfYaS5cu5b777pMgIIQYdyQMCDFCtm/fzqFDh8jOzqazsxO/38+KFSt44403WLZsmQQBIcS4JWFAiBGwb98+PvzwQ/Ly8mhvb8fj8bBy5Uq2bdvG8uXL+cIXviBBQAgxbkkYEOIanThxgtdee428vDza2tpwuVysXr2ad955h+XLl3PvvfdKEBBCjGsymkCIa1BfX8+WLVvIzs6mra0N0zRZuXIl27dv56abbuKee+6RICCEGPckDAjxObW3t/PUU0/h8Xjo6OhA13VWrlzJhx9+yIoVK7j77rslCAghJgRpJhDicwgGgzz55JNomkZ3dzeaprFixQo+/vhjCQJCiAlHagaEuErxeJynn36aYDBINBoFYOnSpezevZuVK1dy1113SRAQQkwoEgaEuAq2bbNlyxaamppIJBIALFq0iP3797Nq1SruvPNOCQJCiAlHwoAQV0gpxeuvv05NTU1q27x58zh8+LAEASHEhCZ9BoS4Qh999BH79u1D0zSUUlRWVnLs2DFWr14tQUAIMaFJGBDiChw6dIh3330XwzCwbZuKigpqampYs2YNmzdvliAghJjQJAwIcRmnTp3i5ZdfxjRNLMuirKyM2tpa1qxZwx133CFBQAgx4UmfASEuobGxkWeeeQZd10kkEhQWFlJfX8/atWvZtGmTBAEhxA1BwoAQw+js7OTJJ5/Etm0SiQS5ubk0Nzezbt06br/9dgkCQogbhoQBIYYQDod58sknCYfDWJZFVlYW7e3trF+/no0bN0oQEELcUCQMCHGRRCLBr3/9a9rb27FtG5/PR1dXlwQBIcQNS8KAEAMopXjhhRc4d+4cSik8Hg/BYJANGzZw2223SRAQQtyQZDSBEANs27aNY8eOoZTC6XQSDoe5+eabJ3QQsG170LZYwqYjGCccs8agREKI8UZqBoTotXPnTnbt2gWAaZrEYjFuueUWbr311rEt2OfU1B2lsTMGgMvUmJLjwu00iVs2JxpDqf3KclzkZzhp6Y7R2BVFA8py3eT4HMQSNi2BGCjIz3DicsjzgxA3Ik0ppca6EEKMtaNHj7JlyxYADMPAsqwJFwQSls2Fzii2rSjIcHCyOTJoH10D09CIJdJ/7WcUeDjdEk7b5nXqhGLptQo5XgO/28TvNnGaEgyEuFFIGBCT3tmzZ3niiSewbTs11fBECwJKKT4934N9md9mpWxAS2vyUEph2FFswz3omJdqGvG5dLI8DjI8BqGojduh43UZ13IZQogxIs0EYlJraWnhqaeeSrWrK6W49dZbueWWW8a4ZFcnGLMGBQFdA1v13dQBtN4/gzU2t1BQPCUVhjRNu2wfiWDUIhi1obN/W1mOC9PQMHUNn8uYsP0shJhsJAyISSsQCPD4448Ti8VS22677TZuvvnmMSzV5+PQNUAx8GZfnOVk38HDmC4vBcVTYJgbfFd7C7FIfx+CgYFgOOnv95+3viOa2ifXZwIaccsmz+8gy+u4hisUQowmafQTk1I0GuXxxx8nGAymtm3cuHFCBgEAl8Pg/MmjKKVQSuFzauRnODlxcCd7332ZaHMNtccPA6T2UUrRVF9LoLONsorZqWMppQgGOmlpOHdF5x6uobE9mKA9GCcQsahtjRCMysgFIcYrqRkQk45lWTz55JO0tbWltm3cuJENGzaMYamuzcmTJ/nkw22cPLKHzs5Ovve976FpfhKJBIZh0BOKMG32otT+fU//RWUVg46laRpefxaGYdLWdIHcwpJULcDAGoGLaw/6miWG0x1O4HXq0nQgxDgkNQNiUlFK8fzzz3PuXP9T7+233z6hgwDAq6++iqZpLF68GICOjg4Slk1GTgEOpwtLd6Zuwhf/PRRd1/H4MsgrKk27+fdRSg2oElD4nLBn27M0nK1JbQv3dPf2xUju19wd42xrBOmzLMT4I2FATCpvvfUWx44dS73etGkT69evH8MSXZtI3OLIZ6cIRaIsXLiQkpISADpCCY7WB1l5+4NsuPdrdLY1pzUPXO6GPNQ+faGg/swJ9r77CpbVW+2v4Pz5emzDyezpZWTSyVvP/h8Of7wVvxMG9mPoCic40RjiQkcEW0KBEOOGhAExaezevZudO3emXt9xxx2sW7duDEt0bdp74hxvCGF7C9n00CNsvuse8vLyMEwTM7OYvidy0+nEm1XI8QM7SMTjWFaCcKjnkoHgUqMJSisqcXv9dNQnawE0XSe7oJSVGx8gYHtpjbgoLi7hG1/7Hcpy3IM+H4nbtATiNHZGB70nhBgb0mdATArV1dVs3bo19fqOO+5g7dq1Y1iia9fYFU1W1WsaTpeb7ijkZWbi9Wehaf05X9M0DIeTzw7t4bNDewCYUbWUhatuveTxhxpR0Pd60ZrbyHBCIGajaen9AJxuD8tvu4/2rgDPPP0k06qWM3Pe0kHHlA6FQowfUjMgbnjnzp3jmWeeSb3evHnzhA4CCcvmlaON1HWGOdbSQ21nCHrnEnA6nfRobiIJC1up5B9bceLQHjIyMlLH6GpvTnUi7HNx08DAvgKDmwx06pvb00LHQNG4TUOPzrSqZbhdLpov1BGLRlLHA/C75VlEiPFCZiAUN7TW1lb+6Z/+KTWp0ObNm1mzZs0Yl+rzs2zF335whrZQIm37VL9J9NQews1nCRYvwldWyfzCTHQNahpb6f74WUzTxOn2smj1Rjy+DLo72sgrKsXjyxh047+SSYcGutS8BH1fMX3hw9A0CjKdFGU5ZWSBEOOE1AyIG1YwGOSXv/zlDRMEAM53RQYFAYBzPQmai5YRmL0ZYhECUYtd5zv5uK6d9rZWABKJBCs33k9hWQVZuQVMnTmX6v07iMeiaTfsgcHgxOG9hIOBy3Y6vNRNfeAxNU3DBrwyO6EQ44qEAXFDisVi/PznPycejwM3RhAAcF1ucSCXD7u0CiIBsBNowQ6MM7tTb2fm5KHryWMoZeP2+tn+0hNEwsEhmwjcHi8fbX2WaDjIUPo+Y1mJtMAwaBjiRWKJwcsqCyHGjoQBccOxbZt//ud/JhRKTrF7xx133BBBAKA4w0WBFhx+2j8ATQdPJmbtJzirt5Hjdabear5Qh7LtZG2JgramesLBHno629NqB/r+Lq+cz6aHHsHt9Q99Kk3Dtm0CXe2DagAGikZCaWGhMxTHutyqSkKI60bCgLihKKX41a9+RXt7O3BjjBq4WGj/69By+tKBQNkoTyaQvDE7nU4Mw8Try0TTdXRdR9N11t35JYqnzuDQrncIBwNDHupykxTpuk52buEly6zrBvFY/5LKwahNSyB2iU8IIa4nCQPihrJly5bU7IK33377DRcE2traklMMqwR98wigFKgB1e52cplivfMCkOwrYFkWBaXlZObkpR1PN0yWrr+Tnq4O3tryr0Qj4asqz5VMYKRpGqbDicPpTgsUCUtqBoQYL2Rsj7hhbNu2LTW74G233TahZxYczhtvvAGA3nQCK68CTBeg0JpPonWeR/mL0EwHRsc59J4WoD8MxGODJ/nRNA3T7F9N0DCMqyrPlXYCHLhf38iDHJ+sYijEeCE1A+KGsGvXrtTsghs2bJiQqw92huJc6Bx+7n6lFKdOnQJAj/bgPPwqWucF0HRU0Wzs6atxNB/HUbcPPdCc+lwkkqyeb2uq59Sx/alj9TFMk8qFKwA4W/Np2vlGlFJ0tbdgxrqYXezF57q64CGEGD1SMyAmvGPHjvHmm28CsGbNGjZu3DjGJbp6z+2/wE+31aCAmyvz+MkX52Po6U/de/fuTf+QnUBll/a/dnqxs8swWk+n7Tbwpn5k93ucPPIJC1beSum0WWi9IwvmLV9PNBKiq701te9ID/1TQGdrI2sXrMQ0JQgIMZ5IGBATWl1dHc8++ywAy5cvZ/PmzWNcoqsXiVv8r7dP9vUA4IOaNnacauPmyvzUPh2hGC+dDKIW3Yfe1Yhxdh+2Nyc1HfGVKiyrYNXG+zFMc9CT/9J1m9NmJez7+WpDwXCf0TSNguJSTFO+doQYb+S3UkxYbW1tPPbYYwAsXLiQL3zhC2Ncos/HstWgYXaNza3QGwb2neviuSNNkF0GgF04CztnClqoc1AQcMQDlPi6KPT04DHjaEA44aAp7Kc57GfRqtvQjcGtgxdPTWzbNrquDTvdcJ/h1i9QyiYcDOL2eNENQ/oJCDHOSRgQE4pSilDMJhpL8PqbbwEwe/ZsHnrooTEu2efnc5n8zsopPLXnPAC5RoSj72xhW3AlazfcwgufNg3+kOlCuXyp4YVT1UmWW+8zd9p+TF0RtzS6I04UkOmO4zRsLFujuylKj3Y/kYyFANiWhd7baXDgTf1KOxIOV2twZM/7nD52AH9WLvd9+ffoCgQ4ceQTfvtL913pP4sQ4jqSMCAmlEDEJppQ2LbGXfc9zO4P3+YL99w11sW6Zt+7bQath7YTiMT56z/5Fvv2+HjvvfeoPlmLXXHr0B+KBPAbIe5mC3P4lPouL499WsmhC7nUtftJ2MmnekO3Kc8Jsqi0nXsWVDM1+Ak9/iU0l/8Rlqtg0NP9xT3/I+EQHq8v9fpKmg2i4eSETz1d7UzJMXn56adZsGBBavZDIcT4ImFATCixRPJJWNd1bNvm1tvvGOMSjQxN08ghgE+P4XGarF+/njlz5vDyyy/T0lqLnV+R3LGvj4Cyqezazv2uXUTiOn/1wWI+Pl2IYvCN2rJ1zrRlcKYtg5eOlLOqooXv33qcqT3fo3nGDwhl3XTJcjkczvR+BLZNKBjA68+8on4FFy5cIBgMsnDhwmv6NxJCjB6J6WLCUEpxru5MauEhXdcx9fG/2I1lK2qaghyo6+JsW3jYIXuWZaU9ORcUFPDII4/gPrcX88R7mCc/wjz2Juapj5l95nG+VLyDoxey+O7Ta9lxumjIIDCYxu7aQr791Gr21WZScuqv8XXtSVtT4OLyGaaZvoAR0HT+DD1d7UNfRyLBhdqa1OujR4+Sm5tLaWnpkPsLIcae1AyICUEpxc9+9jMsW3HL7XcxZ24VLoeOyxy/YcC2bbZs288nxxtZvmwuJUW5BCJhPvjkBLv3HuPB25ewaU1Van/LsnA40jvY7TlxgaOqHE8gylT7PDqK7MQFHpizj311efzVm0tSzQFXIxhz8N+2LuLHm4+wRvufRGf/lIRv2qCOhDC4X0B78wWq9+/gcCyKYTrweDwsXbeZ7IJSIqEedr71AmrAjIjV1dWsWrVKVikUYhyTMCDGPaUUf//3f08wGMQ0TVYsmXfVM+WNhe//9W/41+d2oGng+c12/ul//N8U5mdxoq6VX724k399bgczpxZwrrGdvGw/ph2iJM/DHwRCZGd4qWnu4c9fPIkypqDQ6LQzWJyo5s7yGjpDbv7mrUWfKwj0sZXOT99ewM9/azeFdf/Ahbn/HTRj0PBC6J+r4MPXf0N7c3KaY5fLxcMPP8ysWbOIRCI89thjNDc3DzpPNBqVJgIhxjlpJhDjmlKKX/7yl3R0dKDrOo8++ui4CgLtXUH+3398lR/+9DmOn2mkqa2bt3dWs+XNvTz2/MdAspk/FI6yY88x2joCPP/aTiwr+eR86lwLsbhFQ0sX59ri7K3p5tv/+T8A+OBEC7YCpemgaTTqBczNbqHc38n/fncekcS1Z/mYZfCzt+fhDdeQ2f7esPv1NRNk5iSHO958881849t/StRdTE1jEM1w8vWvfx2fzzfosyUlJeTn5w/aLoQYP6RmQIxbfSsQNjY2AvC9730Pp9N5mU9dP7Zts+xLf0VTWzcA//jUe6CBPczSvIera/m3p98mkbCGPaZSsOtQcgbBQENtck6ECm8AACAASURBVDni3je8KsLS/AYOX8jj8IXcEbuO6qZs9p0rYJ77NbrzbgeGHjKolMKh2fzxH/8xtunjQlccgERMcbYtzOziDB555BF+/vOfE1UmbZ5SdGVx67y5I1ZWIcTokDAgxiWlFE8//TR1dXUAfPOb3yQ7O3tMytLcHuCTT2uZU1HMzPICTp5t5qP9J+kORlJBAMBWKrWQ4FB2fXL8sufSNNhwUyVKKQLHdzCTcs4ZJbhVhNuNT5ji7+LxHYtG4rLSvPrpFG4qP4AzdIaYd3rae0oplG2z/8M3OX/mM2o++5SqZWupXLgy1eExFI5x8GANfr+fO++9j5/s7CRmeAB4qcnLBqXQpc+AEOOWhAEx7iil2LJlCzU1yR7pX/nKVygrKxuTslSfauDW3/8Z3T0RdF3jD7+0jide3EU0nhjxc03JM6ko9vOLv/waJ06cwLYsZnOG2dYZAGZlNGMr2H9u5KvcD5zPxbI1PMFqYt7pqeGCSim6O1r56I1n0pZJbqg7TeXCldi2jaZp1J2q5sCO5CRQnc4CYrn9wxWPt4Z5f88hlsyeRnZ2tnQkFGIckjAgxhWlFC+99FJqKeLNmzdTVVV1mU+Nnl/85gMCweSqf7at+JdnPxq1c925OIOZ5YW0hCwef2U7R8wFJDSTGVYdhXY7RZ4e6rt8hOMj/2sbtwzOdvhJRN/ho70BZi1YTkHJNAKdrex977VByx93tjby4eu/obSiklg4SGv9aXJzc4lEIoRikf4dlUJD8e6br/HB1gR+v5+pU6cydepUysvLKS4uxjAMmgNRfnPgAnHL5oGFxczMH9z3QAgxeiQMiHFDKcUrr7zCoUOHAFi5ciVr1qwZs/JYlsW5c2cZZlqAqza7xEFda5xIfPB7N1Vm48/w8GpkLr/5109AzU11791nLmRDfA8ZziiNnZ6RKcwQGro8lJjttDXV09ZUP+h9h8NBRUUFpaWluN1u3G43Sinq6rppTCQIBAJkZmayoaqS7s8+47xvFho207uOYqoEmqbh8/lob2/nxIkTtJj5tPjKyXAaNGtZxFTygj881c6//s5icr3jp3+IEDc6CQNiXFBK8eqrr3LgwAEgud7A3Xfffd3LEQxH+Ycnt3OuoYVCvYlAx+Chcp9Hvl/noVXZxBM2T+/opLHTwmHAxiUFFPnjVE7NZW+okJDtAI1BCxAFND8aCkuN3gAg29bQNEVOfjGFZRUEutrSJg+Kx+PU1NSkmm+G0t3dzb59+ygGioNn0t5TStHUlFxnoceRxcnspQB0KWDAhEkxS1Hd2MO6GSPXSVIIcWkSBsSYU0rx+uuvs3//fiA5FO23f/u3R+VcwXCU37zxCYmEzVfvvomsjOST9o4DpzhYfY7/+W/b0joFjpQN8/wAGIaGyi6iZHoR3rxc6vx+Gk2dY1ELTbdRKEBjYHWEjk2WHSBmmWS6YyNetj4ZngQ4/Nx872+hSM7weOLIXjpbmwh2d9DV3jLsZy9ez2AolmbQ5i7F1nSiurvvg0Pum+mRryYhrif5jRNjSinFG2+8wSeffAJAZmYm3/rWt0blXJZlc9e3/o5Pjp4F4B+eepfnfvoNnn1zH//1/7w/KucEMHSYUeTknF5MjVFB4Up37xLByad8G4hiMmgoQu8aBAvin+ElgpY3j4r4R+iawlYj3QlPMasgQKN3YSoIAFQuuCl1o9//4ZvUnTw69Kd7Oxzquo5l9Q+dbHUV0+ybhjMRJmp6CTr6RoSoiw+Q/FvTKPQ7mVeUMZIXJ4S4DAkDYsz0BYG9e/cCyRntvv/9749ab/Pq0w2pIABQc7aF7//lP/PJ6fConK/P1GIfB9yLadNzUze9IVfvG/K6NY445pJlmPhnzMNz6j0qcgOcbssc0TKWZYfwO2O4p64lPKBsA2cgnL145bBhoG+fhGXR5Kmg2TcVhUbU8CbfdF5c5a8N/CCgWD0tm4p8Pw8sLMKYAGtOCHEjkRkIxZi4OAgYhsGf/dmfjersgnnZfvSLbjLvHQvSE7GH+cTnPI9fI8eno2tQVOCncO1ttGu9T8RXGnT69tM0FDq77ZlEfFXEtAzumHthRMsLcOfceuKal0jm4mH3ScQv3UShgBPZy6jLqiJi+pNBQNMuf82aBprO7rpuVpRnk+l2XHp/IcSIkzAwghKWorE7Sn1nlEBk8Dh0y1a0BGLUd0Y43xGhti1MU3d02BnrblRKKbZu3ZoKApqm8Ud/9Ee4XK5RPW9JQRa/+Muv4fM4cTkM/O7RefqMJqAzZKN0nZyb1hHVXckphT8vTSOmDLq6AwQKNrO5qgG/a4ghCZ+T1xnnrvkN9ORvQunD/zc4vOu9Sx4n6Mimy13Uv+Eqa3gU8PqxkemwKYS4OhIGRlBjd5Rg1CYSt2gOxAnH0qedbeqO0R2xiMRsogmFZUNPxKI9NHJf7ONdXxDYs2dPatsf/MEfkJOTc13O/437V9Oy42d07P5bVi+pHJVzWHay5rt4/nycGRn9Uwpfo39/fTu7zuVgmAbfXf/ZiBwT4JtrT+B2QmfhfWnbBy5rfHDn27Q3Dx5umNoXsEbgOv2u8bPuhBCTyaTqM2ArRXN3jFDMxmFqFGc6cRhX/gVm2YqOUIJowkYD3A6dbK+J3jtTWzTR94SffL1zzz5MO0J5eTllZWVE4r3V0b37a71VqNUnTnLy0G7WrVtHZWVlWpt5VyhOWzCBAjJcBoWZybHXqc9PIEMFgYcffpgpU6Zc13JEYwl2HTrN976+iZ2HzhAMj2wYC8cUTr+fgrlzRvS/0RFtBnV1FiULv8jG2U/zSV0+79WUXNMx181o4q6qepqmfJe4I5/m+lqazp2huf4M4VAQX2Y24WCAeLR/IqGo7uZk9lJCjgyyoq1khpuoy16QDD3KAq33hq7UVdUO5HhMvrq09JquRwjx+WhquHFAE5xSiraeOOG4jduhk+d30BlK0BFK9L5vE+ruoL7uFMrpI8etk+lx4XA4MAwDwzDQdT31s6brhDQvNjoDOz/5XTpFmcmq1fqOKJGEleoYfeLgLg7v30M0GkXXde566GvkFBQByRXgbNtC1w12v7+NmqMHU8csKChg6dKlLFi4hOZw//VomkamWycYtbEUeBw6xVnOCTHnu1KKN998k927d6emud20aRPr1q27ruUIBCPc9vs/4+jJhlE9T+mSxeRXzkIbqqPgNTJ0+EHRi9yeeYT/8dZCPjpd/LmOs6qimb+48zDBrJVU+79OS+N5ThzejW0Nv5ASwIns5XS68ntv/v2jAFKuJgT07uvQNZ763aV4XZPq+USIceOGDQPtwXjqxo9S+BygGyaBaP8XXW1jC9WdCTRdx07E6PpkK1ZPBwAut4dYLIqyk0/zDqeLr37zTwadJxIOsf/911mwYAFFxSVoniwC4QSGmfxSy/eZhLvbqKur40JDI768ElxuL4Gu5HnseISm87W0tLQQi6V30KqYPY/1m76Qts2yEui60fvEqcj2mOT502dqi1s2XeEEoJHtMTGNsQ0LA4OAruvYts1NN93Evffee93L8u8v7+Lbf/kfo36e+V98AHMUV1jUsflPpS9wW+ZRXjlSzq92zyJ6hUsaOw2Lr688yUOL6+jJWkVjxZ+D7kDTNMLBHj7a+gzB7s5hP38kbz1hR+/Qv6t8+h/4GXc8QGV5CR6nyTdXT6Use/RmVxRCXNoNG8OjiQE9xDWN03Xn+HTfTjZ+4eHeTTon23rQzOQXkGaY5M5ehq/jDIvXbCQjO5dYNMLBHe/Q3tpELBYj1BPA4/Wh6TpKKT5t7KY1FMM94ya2v/82ga525i1ZydLVNwPJm2BjZ4iyTD8rV64EIBgM8tOf/pSlS5dy4MABMjMzKS6fSeXi1QQDndR+doTOzg7i8ThN5+tS7bZ9T9P9QQBA47MTJ3HZIebPn4/H48GyFfUdUazeiNcTTVCe6x6z2oOBQcDpdBKLxZg1a9aYBAEAh2P026SdPt+oBgEAG52/vvAQxyNlfGvhu6yZ0cqLh6by9mel9MSG7o3vdca5fXYDX1xyjoKMKG2lv0tHwX1oev/XgMvjZe6Stez74PVhz10QPkedY17axEhXIzPaSrndxE/+5PeHHmIphLjubqiagePNPew914mpa6wpzyVh93eCOrTnQzoaz1E+ez6WO4toZzPnjAI0lzd5o7VtIvUnqMx2Mm/pqtQTbFtzA28+/ySappFfWMyyW+4mIyuHuq4Q57sirCnPxeMwUEqx672tOJ1uZi1bS9SCHLdJIhbhuV/9I4ZhUFJWRsacVTQGLQr8LqqKc/B7valwAXChtob333wZ27YxDINplVWsunkzmq7T1tJEQVF6G/Hu97dx8kQ1Kh5l2rRprF53M47s9H2K/QY+z/Wf510pxbZt29i1axc+n49gMEhRURHf/e53r3tZ+kRjcR7445/z/t6a5Jw+I/h/v9epsbrSi55XTEvJspE78GWsLw7zg+k78XfuxLLgVFsGJ5szaAu6UECuN8qcoh5m5HVj6Iqe7FU05X0JlTkzbR6BZOC0aag7zZ53X77kOTtchbR6yuhwX30ThVPFeOG76z/PpQohRsmEqRmwbZuGrhiRhMLQoCTbhctMPlUopajvivJ2TSsAPqdOT9TC7Ug+RfudGhUl+Zw530BEL0KL62i+irShFCoRJ1x7BMfKtaltmqbhdLpTX5gtTQ3srDmPIze56Mr0HC9us/8oS1bdzJsffkTLuWQVq9vUKeg5DyQXvWkzsgnbHgyvRrsNtT0WC3xa6lwAvqxcqubNo2r5elzeDCzLYvtrz9FYn5ws5+Y7H6B85pzUOWcsW4824yZm5ngwExE+/exTFq0o7H3iUigFr7zxNsW5GSxavpruWHJd+YIMB55RfEoeGARycnLo6OjA7/fzne98Z8h9+/7Ytp32+lLbL7XNtm1isRiRSIRIJEI0Gk39+b/unc7dS7Opa+zk5y8PP8/+1Vo7x8tNM72c170MP3HvyPuo0cOhjs1kGWt4qLgGn+sUC2ZeIMtsAxSGMwuyF9LpnUUgZz1t3QkOv/cG5VVhplUuSOvkqGs6G1Ys5O4NS9POYVkWoVCIw4cP8/bbb3PLnGKOHj1MW+gcZ7IWEDd6q/gv12ygFF6PdxT+FYQQ12JChIF4wqauo38J1YStONvSw5nDO4lEIkypXETMk516v6ogE+eAm3QgauNwechcfCvx3vpze0BvfKUU8Y4G7GiImmOHmDl3AbruRNM0jh7YRWFhIbFYjI6ODqxwNw6SnQAHTZKmG7inLUy9jCRsvGWVmI73mTJtJituvR3dMDje2sP5rjCBaGLQnO4tDfVkFpbj8magaRqmabLxvi/z7L/9HZpm4PVnpZ2yIMNLrs/TWxY3S1dv4GT1EaZMm4HL40XTFCs2bKKzvZWOSPLaE8qiriXKwQ+3pt1Qr/aGe6ltkUiEeDyOpml0dCT7R0SjUX7yk58M2nesBLsGjyLwe0x6woPniBhOSbZBOKZYWO5m+YzeJqeLp9odaUPccAPRBAE8NGXdybNnGkhOXaHQgc3aQebNm0+mXkDr/sOc+ewQubk5HN3zPj6fD4fbTzTYhR3tYeMt69N+d/oYhoHT6WT37t3MnTuXRCKBZVlkW60s6/iYDkce2AmCpp/6jLmDq1wGTKL0e6umjso/ixDi8xvXYUApRSCSoLUn/ctZ0zR0w2TXrl14vH4WrN1MNGFj6hqWrXAY+sDJTtE0jermMDGnZ9DNt+91vLsN3e2js62Fl5/+VwpLptDd0U57a1PauUMn96O7vMyZVcnZzjBFfjeZbgcK+Kw9wsVzrpuGjj8zi7Wb7kXTkqMI5hdm0BaKUegfPMHLrHmLBg1H03Wdr37zT1OjDy528dStRaXlhEJB3F4ffcMcs3LyBvx76JgOJwVTZtJy/hROtwdvRjaRYDfxaARd11NlvfjPUO/16bvJnz17lkAgkGoaAJgyZQqJRIJYLEY8HseyLBKJBLZtp4WD66k422TZdDf7zySHzW2o8rJqdjaqYAmffFrL2fMtRKIxWtq6yHDrhGI2sQH/KzpN+O31OTjN9H9/rxrd6Y0v5rcD5Puc+Lpr6dr1Hov1fD4zZqKhmGudQrO7qN7/cdpnIpEImgaHPn6beDxOPB7nzjvvHDII9Hn//fcJh8NUVFSwdevW1Ha3wyA7nBydkR1twR8PEHBkkxHrQGkadVnzMTw+NszM44uLSpgiHQWFGHfGbRiwbZvatiiKocfUh4M9AMTjMWzbwmnorCnP5VxXmEA4QpY7faGTYO+T/kDxng4c3kw0w8Q3axn+yuXE2i7QffAdamuqAdAcLnyzlqG7fEQaThJrqsU+9Qn+BfNJdEXYWdeOz2kQTdjEbUW04TTustkoIMfjwG5PTh2rXzTf+9x8P9mO/pvfwI6CF+u7fm2ISV3623r7P286TDramsnJzUfrvXkP9bnyynlohsnU6ZW9/RZsOutPEehsIxQKEQ6H06rZ+27kF9/Eh9MXBADOnz8/7H5jRdM0Ni/OYO0cL7qm4XXpQBxv5Dh/eO8ibGsWp6sPEIsm+1vYtmJ/bZijdREyPAabF/kHBQGATNXz+XrZX668QKERYlroOCHDx113bmb59Hzefek3aBqc60zekIvtVort1kseKx6P43A4CIVCZGZmEo1GKS8vH3b/lpYWdu/ezZo1a3jnnXdS2zMzM+nuTl/lMSvWSlYsef6MjAz+y9eWkpWVXqMlhBhfxm0YaO2daAf6e9L33dQi4RCvPfMrIDlf+s5332DVrXfhdRi4gy1caO8gyzUPvye5TOqxg3tobwvhnjoXTdNTzQIqEQdfdtp5nXmluIpnEG04CUDmotswswpA03Dml9EZDRMLdVLoc+B3GvTELHpiFq7e4XvO4hkEj+2gKDcLh9NB3rzF3PPl3yMaieDsnW5X0zSKMtxEIuG06xpugppLvT9wW9/PHq+P8hmVRKMRnE5XWnNI335926bOmJ12vJ44fPDBB4POk51XwNJ1mzAMg0/376L5wrkhyzoR+d3ptS2RUA+nj35CJJKsMTjTHGPboR4sW7Ghysfv3XrxojvpDGxyVBcdZI1oIFBASeQMBXoAXQvibTnK9BX3sGrVSp577jmys7Pp7Bx+SOBAiUQiVXPjdDpxOp0UFhYOfd7eJaazsrKor68nHk82r3i93kFBYKC8vDweeeQRfD7fVV+rEOL6GndhoDscp6Vn6DbbjtYWjh7YRSTQwaKFCwiFQtTU1HDmxDFqa6px5pXhX3Qbmt/HR3Wd5HbU0Hr2BB3t7XjyS4l7/GgOD/H2ekKnD5O18t7UpDBpvaoHLJZjZheknsiVUjiyCoiEujh2oZ1VU/PpjsZp6olytiOUPIZu4Jq5lDMfPsv9v/NNfBmZaJqGy+0m2NON1+tPzUDocrlT57mWmeqGm41wYBC41Of6Q4KOy+WhaskKymfMoaujlaP7d4MGdzzwWzicLjQNikqn8uKTv0zVzkxkmZmZlJaWMmPGDEpLSykoKCAYDLJz506qq6tp6+jmuV1d9I1UfW1/gNIck7yMS//qTLPq6XBkX3Kfq+VQMYrsVmwUbrebvXv3UllZSVVVFRkZGfj9/isOA5ZlpRaFsm2bKVOmDDvM7+jRo9TW1rJixYrUehK6rhMKhYY9fllZGd/4xjdGfb0JIcTIGHdhYLggkIjHePeVXxMOJ9tjGxsbAciuXEJ22VxIRIlGwmkdldpzZmGbefgK2/BMSfbAtyJBMJ3kbvgymmPwF5UdDRFtqk0ewnSAAkX/E3Ui2Im7tJKGsEXjqRaSU//00zQNzUj+s3r9GWk3Y68vg2CgG39mVmrfkXC5GgXov/HblpUWdgbup5QiJ7+QwtLk9MB5hcXMqlo06LiGqZOdmz+hwoCmaeTk5DBv3jymT59OYWEhfr8/9X5tbS0fffQRtbW1qRoBTdMIRhWJixY17AxZlw0DRXYrPjtIUPNepnZAUWR2MdvTQKHZhaHZhG0np6OFnIoUE1H9Q0JnWWcxdY25c6sIh8OcOXOGp556iilTplBSUkJNTU1auLscq3emwe7ububPnz/kPtFolG3btjFz5kz27duX2m7bw6/0OGvWLL761a9imuPu60UIMYxx9dsaTwyeBlUpRfWhvTScOc69995LQUEBu3btoqamhojpw5y2GBtQugPT0T9kKTnvv4GZmYeZ2d95znD78JbPG/L8blNn3fxpdBR8ieNH9tPQ2j5oOlnNSpDhS84NYKmLuwsmRWuTa7431NUydUb/YjiaphGJhFO1BX3Xl1bmUZJqahlirfqBrx1OZyo4XPykqHrXnU8kEpimg2VrbqWrs41T1UdGrdxXyzAMTNMkGo1iGAaVlZWsWrWKadOmpV2vZVkcOHCA/fv309DQkLoxmqaZmhxJKUWOz6Ak10VjexQ08Dg1ynIuvcSubSvCMZtFVLPTuXzIfXLNAPdm7+eerP0UOQMAhBMGltJxGwlMXWEpjf3B6bzccRPV3UVMs+qxgePHj6ee7C3Loquri/r6epRSmKZJInFloyH69ovFYsP2F3j//fcJhUJ0dXVdMgD0WbRoEQ888IBMJiTEBDMuJh2KJWxae2KE44OL0t7SxOvPPp62zTAMioqKmLZsAzURd9p717KAz7ryXBJK0RONk+txkgh1c6gtTrB3OKKJzepiHxlZ2SQsm/0XOmkLRgifq8aZX05+Xh5LS7NxmTrnzpxkx9uv8sVvfAeXO9l7OhwKkojH8WdmpW7OiXgMw3Sg9048NBaLDw3VeXG4siil2L/zPZatubV3RkSd82dOsuu9N4mEg4P2Lyydisfro+FcLbEBi92MBL/fz5QpUygsLKStrY3Tp08TDoeZOnUqS5YsYf78+WnV1KFQiN27d3Ps2DHa2tpS1+33+zEMg+7u7tS27OxsCgsLqa2tpasnwv7TYSwbFle4yfIOPz9DfXucX+/oIm4psr06Gzct4JSnf14IHZuv5O3k9/Pfw7LhnbpSdjQUcaIji/be/5cNzaYiM8C8vE7uqqhnXm4HjeFMaszN+EsWsWvXLnp6eigsLKS7uztVk9E3UdaVcrlcWJaFZVn86Ec/GlSl39LSwi9+8QsqKio4ffo0wCVrHtauXcumTZsm3AJaQohxEAZ6ogmauodYNU4pdF2jwG1z+vQp9u7dm/YEB6B7MshZfX9ywRRNQ8VjaI7BowYuxalreJ0mM3O9nOsK0xzsXx8gy2XSFe1/yjLtOLfMKsFhGijbprOjndeffxIzM5+spZvYUJGHt3eiI6UU+z7ezvK1t6WVp7tuD0VmE87gKbTQBexEDN3pxfaVE/fPIpq9FNuZx3jVNxdCQUlZ2nVFI2Fef+Zxgj39HcoWr1zPwpuSkziFggFef+ZxIuHh25kvxePxUFpayty5c6mqqkLXdY4cOcLBgwdpaGjA5/OxePFili5dSn5+fupzzc3N7Ny5k5MnT9LTk2zW0HWd3NxcvF4vjY2NqTUhHA4H8+bNIxQKcerUqdSN1e1243Q66e7uTus973Q6icfjaTfHv32tlciAULtgqouFK6o4Zs4iWw/w38qfYY6ngWdPTOc/qmcRTFy6lgGgKreDHyw/QkVWENf8b6NVfJFDhw6xY8eO1BwO06dPx+/3c+TIldfS6LqOw+EgJydn0GRQSimeeOIJ2tvbL9lJsM8dd9zB2rVrL7ufEGJ8GvNmgrYh+ggopQgHe3j+iX/CMAwyMjKYMmUK69evp6ysjLNnz7J33wHa3UUkQt1gJYi11ZMIdJC5+LYrPnd5loe5hRnomkZXJJ4WBIC0IACQ0EzquyNU5PpA05LT2cajqHhyQiSHoadV/7tcnuQTNuBu24Hn/IuUhD4jYeucb/VT1+Qibml4nB3MKD1Fcfar2EonkreaUNmXiGfM4XoZLhP2D2vsv/GbjsE3MIfTxfQ58/l0387UtnlLV6Z+9nj9TJs1l+NH9l9RebKyspgxYwZVVVVUVFTgcDhQSnH69Gm2bt1KdXU1tm0ze/ZsbrnlFmbNmoVhJKeFPnHiBHv27OHcuXOpG73T6WT69OlkZ2dTW1tLa2v/0Lvy8nKqqqo4cuQIhw4dSm3Pzc1F13VaW1vJzMwkkUgQDAZZsmQJBw8eJBaLpZ6mo9Eo8YRKCwIAHUGLaXY9JXYz35i+D68W4fvb13CsPeeK/h0Aqttz+M7b6/nDBcf5LX6BwwqzfPnvsnTpUqqrq3nj/2fvzaPjuO57z09VdVXvWBpbY9/BfadIkRRFiqJkyZIs2ZadKF7myS+x571M8iZ5z3nzZskkM5lkcjJJjh3n2E5sOZa8x5G12JIoUSIpkiLFTdwBYt+BBtCN3tda5o9GN9BAgwQ3U/Lj9xwcdFfdunW7lvv73d/y/b3+On19fVRUVFBWVkYgEFhQ9CofMumhtbULSYAyQYNW67U5AZ566inWrVu35N9zF3dxFx8+3HFlYDFc/iBd817TNJKqxtjEFJd/9jN0w0ApLMfevA5zkTsbnJUY7yE1NcT0iV9StPFjCCb5mhaC0VCclpKFueI2WWJrrYseX5hBfy6BzFQkhigKVNgVzp04AoAanCLad55+1720lab5DTQ1Re+ViwhxD/cVncYa/ICLA0X86v3lnOpyoWoLfap2i8r9ayZ4fOs5Kr3HiFR9glDdF0CyLGi7VOQz91/NHaHrOqlkIp2JIIoYus7E+AjlVbWIosjE2DB+7yTFpblpaIIgLHADqKlUtrCSIAikZgRUxi8vCAKxWAxd13E4HDQ3N9PU1ERTU1NOcJ/f7+fs2bOcPXuWQCBAaWkpe/bsYe3atTgcDlRV5dSpU5w7dw6Px5Nd0TscDpYvX05lZSWdnZ309fVl+ywoKOCee+7BZrNx6NAh9u3bB6RXyw0NDcTjcUZHR6msrKSiogKPx8Py5ct5+OGHKS4uZsWKFfz4KxXEwgAAIABJREFUxz8mkUhkr6Uii1hkYZ5lwIKAwf/QcAKrkOQPD2xjNHL9qXaqIfLtCysIp0z8Lt9HsNdgqtnDqlWraG5u5mtf+xqhUOiqEf75kEqlcDpzOTkyQYMZGumr4ZlnnqGtrW3R/bquc244RDiuIYkCVlnAqpioL7FiVW5/0ai7uIu7WBo+dG4CwzAY9Yc4e+wQ0/3tNC1fzbYHHkUQBLyTHt7rHUcuzi2OYug6ibFuwu3HUBSFsopKEk3bcBU4SKg6kdTi9dkbi20sK3NiGAbnxgOMhxLsbiql1G4moeq81eUhPj+c3DDQ42F8x14GfU7fgoi7pg5noQvPlBd7pINP1X1AIiHxjVeaOdN99fz0DETB4PGtI3z+wSE0Ww2BNX+Brix9JXktXI3gKF/beCzKKz/8ZxRzOj2yzF3Nw089g8EsmdLoYB8HX38RfY4bp7q+mZ0PfwKTLDPU183hfS9lBbUgCBQVFVFdXc3y5ctpaWnJ8VmnUik6Ojr44IMP6OvrQ1EUVq1axcaNG6muriYUCnH8+HE6OjqyAksQBFwuFytXrqShoYFLly5x4cKFbF68yWRi1apVbNq0ia6uLo4fP57dpygKa9euZWpqiv7+ftxuNwUFBXR2dlJaWsojjzxCc3NzzrU5c+YMr776as62pODg+f2DRBM6Gxut3LfCzpbyIXZW9vEHB7Zfl0VgkTvCn957lvvrgzj2fg/Bkn6mzp07x0svvcQjjzzC/v378wYROl1pBS7km1iwT5Zlamtr2bBhA4ODg5w5cybHJZcPX/rSl/JaFTJIqjqn+v3pbIzMNJPhzAA21hdiN99VCO7iLj4MuOPKAEAipTEZSdIxHiKqGiS1tMAYOfYrHn780zP57QKT4TinRwM5xxaaJWRJIjDWz9jJt7Lbza5KnvrM53hv0EfsKsqAXZHY2ZD2MRuGQSipUu6woEiz3AL+aApBhP7pKJ1Ts+l0gdP7SE2P5/Qn2Yso3PwIpcI4j0z/NX0jZv7iRyuJxK/fCFNXHuHPv3gZa3EZ02v/BkN2Ltr2WgJ+/v6hvi5MJpmCIhcWazo7YrEgRl3X+NG3/jZnW2lFFdUNzYQCfob7uhYNDhQlCVlWSMRj2Gy2LPWty+VCVdUcf3RBQQEFBQWkUim8Xi+qqlJbW8vGjRtZuXIlk5OTHDt2jL6+vuwKWJIkqqqq2LBhA42NjVy8eJFTp04RCMw+JzU1NWzZsoXa2lreeOMNOjs7s9ejsLCQe++9l56eHrq7uykvL6euro6LFy+i6zq7d+9my5Yt2Zz8+Th06BAHDx7M2VZeXs7ERFrg2k1Jfm/lCV7srudb5/NnsVwvCpQkLzx6mOLm3Zg3fBVI39/nnnuOZDLJ6tWreeedd3KOWbntYSoa0m4nz0An7cfexDAM7HY7bW1tdHZ25jBGzoWjuIzV930cs83OeP8Vuk4d5Ctf/jIlJSWMjIzQ39/PyMgIPp+PSCSCZLZTUtNIWXUTjuKyRZ/JWpeFxtK7RYvu4i4+DLjjboLpaIp3e73ZAkJzYcjWGd98fgY+AVheXkCp3Uy4ooAj/nE8XekAqqoyF7Ik0uSycckTyh5jkUTi2uxKP5LUSKo6iint73cqJmKpNL1xNrLclvaRr6ssRBSgYzKtEOjJhQLQ1rgWWdTZPf2PDHsU/vwHK4knb+wyD07Y+d+/t4q//t2LFPR8g8Dy/5Z7fZbAXmgYBr5YklBcpbbIhiSkg/0unXmfbXsexe4smMlqSCHIua6VTP+dF89mt4mihN1ZQNzpZtjRADYdwR+B8d6859c1jYSWdrVkBLjNZsPn8+F2u3n66adJJpOcPXuW3t5ehoeHcyLWh4aGGB0d5ZVXXsluUxSFlpYWduzYQVVVFVeuXOHUqVO88sps2V2Hw8GmTZvYsGED4XCYV199FY9nts5EXV0d27dv59y5c+zbt4+SkhJ2795NR0cHp06dYt26dezduzfHXZEP999/P8FgkDNnZmMhMooAwJqScXQDftDemu/wG0IwqfCTjnr+vbwfZdVXEJR0quojjzzCd77zHSRJyqYdAtgLS7KKAEBFfRuDl08T9k/R2NjIJz7xCQC8Xi/f//73CYVCOedbtf1jWGwOBFGkqmklvokx/vFb/4RoLFSyWzbupHbZ+qX9jpiKqhuYFlT8uou7uItfN+64ZeDdHi8T4bQvORNsl2Ho8w9ewV3hpqm2FossEU2qHB+YImmkJ481FU6Wlxdkhcd0OMJP/vlrAOzY+zj1LcsRRRF/LMloKI6u6wiCwFBgVogLwIMtZZhmzN3tE0EG/TEaXDZcVoX6Ihsmada/Px6K825fOvhMCk1giXoxq2n2wUQiQby4no2mg7SED/JH31rPmO/mi7LsWDnJf3n6Cr62/0qidCeQpmS2LKEUbDwe40jvBBsa3LisaT+9rusIkMM5MN9ykPl+5cIZzBYLVruT4b5uVq6/B5vDSVLTOTE0TSiRAsPA9+5P0vTOeSAIArUtKzAXljLc10XMO7agjSiKLFu2jFWrVjE1NcWlS5eYnJwtBGwymbL8AZmxzU+lE0WRtrY2tmzZQn19PefOnePtt9/OrnhFUWT9+vVs3LiREydOcP78eQoLC9m6dStjY2NcuHCByspKHn300auav+dD13V++tOf0tXVNS8Q0+D3VpzgvdEy/ub0rQ2wKzIn+Nljb3MpuYXWPX9EcXExExMTvPHGG4yOjmI2m2eVr4Jitj72+ZzjT7z2IyIB75LOtfPpr2CS0+RHH4wGODseAgOKpy5S6JstAW1SzOz89Jdzjs21NBlAruAvdcisrFrc4nUXd3EXvx7cccuApufqInOnC3tZDQmLg/bJEJIAmgGFFpnAxAgTF45S+cWvZNsLgkCBbVbwlrqrsv5sVTdIzPj9DUOnwGwimFARgJUVzqwioOo6AzMBg32+KH1EKbTIlNiUrMLhi85GaVtclTgqa2krdVBZMHPu2ATW9w7wwoG6W6IIABy9XMquzknWyv9ComQHBgKaNusTnq/PZcY65Rnl4Ou/IBGLoj71DFiqIQ+ZUOaYDDRdZzQQI6EZVLetwWFOW0bc1XX4owmCoTglNpm2UgdnRv1p642kLKoM3P/Ip6htTPvbV6/fzFsH3ibccy6nja7rtLe3097eTkPrClZs2kFbMoFN0ti0aSNmsxm/38+ZM2c4c+YMkUgkqwiYTCY0TUPXdTo6Oujq6srxd8uyzL333su6det47733+O53v4vdbueRRx4hlUpx8OBBTCYTTzzxBBs2bLjuPHlRFPn0pz/N888/z/j4ePbcDjlJkTnBe2MV19XfUuBPmGn3FWGRevnmt75F68ZduBuX0bzjSdx+L+ff/WW2bTQ4zUjXBapb0+W1R7ovLlkRABjruUTt8g1Mx5KcHQ8DAggwXbaGOqeMKRXFOzbAfEEP8y1Wcyi/Z7ZPR/I/M3dxF3fx68UdVwZWVDg42jedFurzVqWKbdZEm/EiCKKIxWZDjYaR1ASiYM62j0dnfZ52x+xqY27MgCQKrHanXQspVSel6wTjKQotMpIoLnAjTMeSOM0mJFFgIpTg8sSsj9s8U+51KpLIKgOxvleQVJE3TucGOd4cBH5xtJp72i6gBM6RLNpA9+XzAKxYtxkA78QYsmLBVVYxaymZmiAxk9d//sRR9jz+NNIizHCZa2gYBpc8IUZDcRyKCc0wqJckLHI6bW88kqR/OopNllhWmr4/yalh9ER+f7PV7sgqAgB2xUTtys20z1MGMqiub+a+h57IjicZj/HmO4fo7WzP4d23Wq3sefhRausacdgsREPTvPLKKwwPD2eFccbPn0qlOHz4MIcPH0YURdxuN2VlZRw9epRwOMzmzZt54IEHlpRGtxgUReGZZ57hueeew+/3o+s6bmva3N45fXsq9l2ZLuLB2jHqlm+kqmVV9v2xF5XQtnkXF+YoBJ2nDjJ0Je3uiYWWVr8gg+4PjhD0ekhYS4CqnH3163dSYlOYGOji0ntvMNbbTmXTiqv2l5OmKt11EdzFzeHKaJA/fO4k3eNBygss/M7ORn7/Y8sQb7H7KRRLEYimqHZZfyOJte64MuAusLCs3E7HRFqYGIaBoan4h7txNeROKuurChkPxhkXSmna9RSHz19mx8b1OCwK8USSV1/7Fc17PoMgCERTOo6ZSGWn2cTUzIp+eVkBpfa0ydNikuj1hmkqcWSFzwPNZbzR6cEAKhxmymeyChRJpMJpZl1lISOBGCndQJ5xH9iU2ctomzjIofOlNxwnsBjahwoY8ToonjzISMLNhVPp+vSZ/wDFJeU8+InPYrHaiISDDPV307Z6A77JcTyjg7z0g3/iyc9/GUmS8gQJ6tk8/dFQnEKLzNba4qzVRdd14qqOb4aLIZrSuNjRQXCwi+REf05fJsVC47rt2EqrCcykDs7lKkimFl8NVlTXoesaopi+d4rFyvKNO+jt7spp17ZiDfXNK9B1jWgKDh05nlMmOaMQzbWaZAIkx8bGGBubdVWcPHmS06dPZ33tGZdE5jrNjctYjJVx7v+MxcKpJFB1gcnYjaeGXg2jYRsFSgKbPTdDQRAEzLaFsQ7XqwTMxcRgFwbdmOvun1EKwO1QcFnTVqPy+la6PjiMKKUJuQRRzHE9nRwOsKLcjkMx5VgGqotvz7W5i98M+CMJDl7yUFtiZ1NzfjK2Z//xKH0TEQygbzLC//PiRSRR4D9+bGk8LeP+GBZZosiuLNrmpZND/MF3T5DSDHatrOCFP9iBYvrNoty+48oAgNmUG6mtaxrF9bk30ipLFJhlCspkvNEkRlEpQnEZH4wFsxNL5eYHs0KgyxuhtcSOwyxTZFWoNyCQSFFkkdGNtIXAMAxMUm55ZLvZxObqIkZD6bgCbzRJZYEF80yAYWupk0aXne6pMMVWhUKLPPtQpILY9EkuDSyed33jELjQ52Bn6UX2vfVC3hbT3glefP6bWG0OCl0l7Pn4p7OT8pG3XmWgu4Nj77zGjr2PLxBqmVW0KIpYTCJVBelJeq4gtCkmWjKuAcDb30FycnDBONbc/xiFpZUAFBcW0j4RZnm5AxHo84YZOn1g0V/pnRhDFNPxIfGUjiwKOCwmyipr8PtmiYLqZ2o+iGJagalvbOHS+dkgvvmKAFy9uE6GgCd1FUXleiEKBqouks98fiug6iKiYOAd7cfdsDznOR7ruXzN4wtK3bjcdYT9U0wN5w8AnQsBg4qhw8TsbuwFxdy/fpZd09B1dDWFzVmUfeZiKY2YqnN5IkKPL8pQIEaFw8xEJMnKMjs7m11UF91VBu4iPw5c8vC5rx0m40n+Tx9fxisnhxidjvHYCjuPNCTp6emhf6IGY9479o03rrDv3BhffWIl963IX5r7g34fn/vaEXzhJALwF8+s59/vacnu13WdYDDI9PQ0//NzZ0hpOiBw6LKHz/7duwRjKQLRJKIg0FDmYH1jMbtWVrBj2eIZNB9mfCiUgXqXlT5flGBcRRAEyqQY00LuJBFLaYwG41QXWjGJIil9YSrd/Mj6Hl8EpyKh6mCRRSIJlfcG077SJped2iIbmp5bxjee0hgKxLIFiIYCMRSTSPWMG8AwDEyiyPLygpzxGYaBFEpPqL1jV49Av1H0jDl4WO/GJLSgGvlT3ZwFRVjtjnS1wTnPY+uq9Qx0dzDQ3cHYUD/3PfQElbUNeR/a9ZWF+CKJnNcr067cYUYWBZxmCWPN/SQnBokNd6D6JzINKSqbNSUbhkE0qfLKW/tJjHajair2hjVYapYRH+kiOTGAaLZjdjegp5IM9HRSfPkyxZWNAMRIx3L4JnNTOH3eSapq6rKrfZ93kg8bkpqEImnIokZKv/X59A4lRVKTmBjowtB1yuvaEASB0Z5L+MYG8h5jcRRgcxYhSjKr73sUZopXjXRdoPPUwWueUzR07OFRCI8y2uWidtl6dF2j89Qh1FSSsf4rxJVC9vd6iau5ylggoRFMRDGA94YCuOwysaSGy65Q57J8JCfQu7h9+IPvvs/ckLKvvdZBZlJ78UKI813TPFQapNEaoCeWccWl9/vCSU50TfE7Xz/Cib96FHeRlURK43jXFKFoir966SI9ntk0cQP43358FmXqMlo8yOBEED3qQzA0AimZuNrK3An1RPdUztiGvVGOdU7yD69foaHMzh89voLPbqv/SD3THwplQBYFqgrMRJMqiiSyvqWF7qkIQ/7c1L2xUAyrLBLLU90wH3QjPQEBC4iHen0RgvEUoYTKoD+GxSRSW2hFlsQFlQgT80mH5iAYT3HJEySp6SzTPDQD/sji5qabgT8iIwpgljRUdaFwWb52E5vvexCAZCKOYaQ5XgzDyImnSCbi9HZcpKquMe95iqwKfeMTxAttWGYsIsF4io7JEKpuoOoGbaVOjsdUlIoGzO5GEhODhDuO0bhi44JKjKphUOK0EyivhYpmTE4XgiCglFQT7jyFvXk9zLgFzJXN6IVVOavcQDCMdyJXGTh+5ACKolBZXcvI0AAnjx++uYt7g3AUl1Fe10oiGma0+yKGMfusTMXtiAI0F4bomC665eduKQwSVWqpX7WZ8b4rKBY7yXgkryJgtjlxNyyjcc1WBFFEnwlAzWSUVLeuwTvaj3e0H0gTFK2+7+NIJpnBK+cYvHRiQZ/dZw4TmByjZeNOmtbeS9JSxNGEC65MzsybeVwqcz6PBhKU2cyE4jEkUaDmrsvgv1sYhkEgEKCvr49Tp07h8XgIhFuBxZXo7ngxDzHGg65RysNxeqIFmKxORoPpud4gTXy1/0wf6ypEvvLCFXq9GcvfwswWgK++lQDMQDlQRokphle1LGg7L+4dg3SgOsDAZIT/9L1TvPj+EF9/djMVRbcmkPx240OhDIyHEtmYAVXTONTpoSQyAPaG2SJEhkEkFORCQr1GffilY2pOZkBc1enyRqjI4zeaDMepLbKhSAIp3UDAQBBAEgTaJ4I4FBOldgXT5O31Ic1N0MqH9Vt3Zj/LiplIOIjDWUhw2suZYwez+0RJQhDTAl4zDIqtub85pWmMJyRio3621LrA0Dk5PJ21xsAs10KWire0htrdn6G+JC30MgrB2MQ4VWWltJe2IJdCVkOZgb11U472rBRX5Ch7hmHg88zGAkiyQsPqLZitDs5dvMQ7+9JBciZZoXHNvchmM6M9lwlPX91SUFDqZsW9D6GYrQx3nqPvwvt525lkhZaNO7EXljA13MvA5VOzYy8qZdNDn8lyYThd5XS8vz+7fzJmR9MFVpZM3wZlwGBNWYBU4f00VtxL/crNiJIJQRAY6TpP56lD2Zblda2s3P4wgjDHjy8ujBtZvfOxNG10IoasWLKKQvParTSu2szpt35GeHrWVWOSFVZuexhBTCuMa9ZsoPuyJ6uAXwul9tkaF6H40sou38VvBsLhMKOjo4yMjDA0NMTQ0NAC1sx19ilOhedm4szPTDEIqGYKTQnWO72sd3pRDZF/Di5n7mz5/VfepdIcpddXt0hfLLrdq16/IM/Mkkc6Jnj0r97h5T/ZTW3J9VOQ/7pxx5SBpKZzvH+ayUgS69yYAUFAF0ycPHuJhp3NczYLDF88SdX6nYgz/u3bUfLXE1lY4CWhGRwb8CKLkJpZ+JXaZGoKbdhkiTWVheiGgaRVwACUFCRuiHHwWigpSKLqAgktf9+6rudck0unj9PTcSHHV15S7uahJ59hIqby3qCPcruZ4upZZSDjBim0KoiCgChAQjVyFAEAfzzXty6IIoo8ex8zY3AYUdqn5vDlz7td+eom+OIpZEmkQDERjYTpPHkQSTaz+r5HKCqvRhDSQqq8roWBS6fou3CctbueoKDEjQG4m1Zy8rUfEQvnslXOxZqdj2UFXsPqLQSmxvOuqJdt2UNZTTOCKFJQUkEyHmWsN+2Pr2xckRWEmfHMVQZUQ6IvVMyjDUO82N2w8MffBNaXeSm3RrjiTBeDyigCAFXNq+k6c5iWDfdRUt2EYrYuOHe+9yaTcqpYFvJXCKLI6h0f5/gvn88ev37PJ7PvYmabXTEtSRloKbFkXW8ARbYPxbrkLm4DMnU+Mn8jIyNZ5tGrlcRe7vDPUwYgd0UvcMRfwUr7NAemq1ANkc0FUyiCRtKQZtoJXIiU0hm9EWXz5t5XTTfw+OM8/f+9yzv/50PYLR/uZ/yOje7yeJjJcBIDiCZVMjfZAKITQyQjwRmT60wEt2HQXF9HyiRlTTS/Tn+MAFQV2LCbTUxHk4yF4kxFA6woc6IbBqIgYDibMRBorgwzOHHrNcHmyjBTMRuakd8CceLdt9j+4McRBIkpzyi9nZcWBM3t/vjTSCYTvb60oJSlhULCMAxcNgXHTJaExSRikyWiV6F1BvAnNEzhOBU2JV3UaLCbhMkM84Z7LSVOEAQmoknGQ1H877+Knkqw/akvZYXU3BTU+lWbGO9rp3AmTiG9R2TtridQrHZ8YwO0H9+fNYvDjOIyT+BZ7PmJb5yuiuwKWdd1nK4yxnrB6iyiunVNzlhi4YWlfs9OVfF080XWlvo4P3XrSlM/3dpPxFRF0LpyAWtkMhGjYdU9VLeuXZCue6PvjCAImMyzZvzqZeuytQ4y/UdnaMV31BVxZjSIphsokkA4NfsMWmWRv36sDbvZxJAvTiShUmSTcReYuYuPDqYjSb7+WgfTkSSf39nI5plI/1QqxdjYWI7w93rTcVqSJGG1WnMqai4I8jUyvDFgF1UEjDmW0IXkVf6UwlveGrQZwf9+oJx8ttOEIWFCQ83rdpjbXmAxF8KNQNMNBqYi/NcfnOEbv7vl2gfcQdwxZSCW0rK3wAASQR8J3ziKKGCOemlrbiQ+eAlz9XIkWaGxxE5V0xamwjEuTYRz+pqvXd6MkiAKC/1BkA44rC5Mr2TK7GYUScDttGazDAAMyUZSqWZtU4AD524t0YyAwdqmIKOxxc3N/V3tjA31Y7ZYCfp9edtYrFYCcRWLScIAPOEEzUk1Jz1SEARCCRWzJGZTC++pKaJ9IrSgzPN8TMWSRFMq+D0Mvb8PR+MazE2z9LTzFwHzFYO5n0XJhLmyGXWkA7N1oXKVbisgmWQS0XBawM+Y7C2OQkRRpKy2mWhwOscNYOg6E0PdlNU0g2GgaWrWVw5p83dlczpv3z8xjMWeTnEVRZHK5lUYBiRiYYR5ecwRv5fa5RsY7jyHMaOE9YWKGY04+OONF/m9/ffdkkDCHZXj7Kjy0Fv+hzkskplrkoxFKXbX5b2u+d6TwNQ4haW5vBiJWATFYsvpY2KgM/vZUVi64LxnR4OkdIO6QjOtJe7ssaGEyuUZt9LqMgfnhkLUl1ipL/lo+FLvYhaGYaCqKr/9d+9yYcgPhsFPj/bxqRoP5aI/t3DbPGiaRjgczr/PENjvq6Y3VoBNVHmkdIgKJcbHSwZ4w1uLlhXic985gzI5RlDLp0jmsXwt6mAFCR1t/qrlFuLn7w/y7J5mNjXdugXBrcYdUwbqi62MzNACC4KAFJ5k5PyxNC3tph1YqltxWcysrSrE0IWsn9llMxOe6ECSFWI+D66m1SAIqIkowZE+XE2rbsp9sBg5c9EMlW+6jUF1oQ2TKOQoItOxJOU1H+O+2Pd47o1GQjE5f2c3gPXNfsoLY7zVefXc2UQ8RiIeW3T/2OQUHlVGEgXssoQkCLzb0c/6hmpK7emCUBc9QbzRJMF4iiKrTLFVwTAgnFyaLziq6hi2EjDJhPovIBa7kYvd2ftyPYqbvXEt/okBdF1DEMQFQi08PUkk4OPcwVdo27wb2WxBMsmzK30DLPaCBf22H38LaYcJW4GL6ckRGtdsBQP6Lp5g7a4nsBemqwFqapLw9CSO4jIgncpY07aWka4LWXdFZixldS2U17fiKC6j4/39MwqBwL6hZXyh7QxfWdPBN86t5GZWHaXWGP958yV89k34Cu7L28ZRXIqaSuRsy1z7zPXPXEdd1wn5PAuUgcHLZzAMjZYNO0EQ8Ax05mQbTHuGFpALhVI6GAZnLrWzdfXytJKmajgUiS3Vs8RLumHQNxWj2GbCYbl178hvKnRdR1VVNE3L+b/Y56Xuv5FjdV0npYucG83c+/Rz9G/DbgqkYp4q78cuzVrhNEOgI1JEXJdosQUoNKVI6QIx3YRDSpHRpzsiRfTGCgCBuC7Sm7Czo2yI5UUTNBV4eWuqnq6wa55VVGCdc4qEYWI44QAMZHRSeVf/AslFgxEFFEEjtojF9Vbhb16+xE/+6P7beo6bwR2tTTAVSTIZTlJsk3E7zYRCIc5c7GDCWj3TwsBlMbG2Oq1N6bqOzzvJq798mZp79iJbbASGe/D1txMPeDGJAu5191FQk1sUJmP4uRm0ljqodFqyk6luGAvY/AzDQEgFsR75HV484uaH7zTc5FnTEDD4i2cv4nKpvNC1kRsRJpKtEKWigVJ3NQXlaVriCocZswg+3xStdWkufl3XOdA7lRMjsJi15GowDINo9xliAxexVLdhX35vjiC/HmUt8MF+Ci1mVmx7CMkkk0rE8Ax0EQtNM97XgTaPBrl2+QZaNtyXFsaCwIV3f5mz8gdYt/tJit3p3zxXQC42trnbDcPANz6Ey12bo9zMPS4WCdJ/4QSamsQ3NsTDG6ysTr3K8+0tfO9SGzdyD8usMf5u10lKChSuNP0lqrx4SexrXeO5Y9Y0dQ6hUkZh0Ok48Q7jve0AOJ1OTCYToVCIisYVtG7aldP/lD/Avo5RlOgUZd7LWGQTJqudKXstD23flpf5srbYTGPZhy+wyjAMdF2/pmC8GQF8PX3f6BQtiuICEq25//N9vtq+uW2++P1+JsMpdGPWpC5gYBY1BAxWO6bZ5Jxkn7eWvrgTATAJOg8Uj3BgupqUIVFsivNUWT9mUeOIv4Iia5TPN1xiZ9kQVmnhwiOhi5zwVfLD/tW87alHM0SerexAR2Ag7iSlizRaAvx8ooW4kd/Z4ctkAAAgAElEQVSSsNh7Vy5HmUgtjK25lZAlka5/eBKL/OEs233HCxXNx7A/xvGBXKY0s6eD5ctXEY2E6G6/gNi4EU00YZdNrKwoQBGhs/0Ch/a/jmEYlLSuw71qa04fsgCGIGAxiZTaFPr9i6+e80EUoMnlwGE24YsmMUsCVYW27IuqzdQtKHdYMPX+ALnvB3z1O+tuCefAo5tH+fLHe/lp9xoGw8XXPgAoqmvDUVFHMuzHO9hF0ZbHQRSxyCaKLHKWZ0GfKQ4VTqhZhelAzyQJbfF0yqXAMAxSfg/B0/tQymopWLcnu/16/Nh6Ksn00Z8vWvdgMZTVNOMoLmV6fAj/5OiC/bt/+3+6KXeSp/8K5XWtC8z0Gcz9nWoqiUlWqJh6idrJH3J0tIK/Pb2a6cTSU+nuqxrnP2++hNlip7vxz4jLFdc1/nzKwfx7YRhGTt0KwzB462Q3rx67wuaCCZqcKdY98GQ6UDNzrGGQCk3R/v5+goHAAtKm1fc/Tll1Y06fkL7nG2qdOGcYDA3DQNO0mxa6NyOA5267USwmUK9XAF9LKF+rrSRJeWuQ3CgGJkK8dboXpxDGHJ/kVMcQbww7GUnYZgh/5i650s/Ux1wD7PPV5/RjF5NEdBkQEDBY75iixBrhj1ceZ7lzGp8Mw8Uppi06AYuOKoKkQ0FCpDguUuU3UZ4QGIo5+JOzD3DSW4WOyDLbNA8UjyIIENVMnAqW0R4pQr+m6d9AwmCDY4JT4VtJIZ8fr/+ve9jQ6KJ7PMTFQT/rG4ppKL89vDTXiw9deGOJXcEkCmh6enJKRUO0v3+UM8fezbZZ0bAZEYHl5QVY5XSK1Mo1G/CMjXKl4xKh0f4FykDKAAyDcFIjnIxd92pXN6Dbm+vv0gyocFpIaTqdkyGKZlL0QtWfQRk+xFc/08n/8t3VBG6Cd2BZTZB/93A/H0y6s4qAIJkw5gTESZKUzSQAKKhupnrj7tkaD65KYjOpZAk1XYuhfCaFUhQEdMNAx8i+yw7FRCJ29diAa0EQBGRn2qKTnBwiNngZS+2sWdkwdPREDNGcG8g3X0EIXT563YoAwORwD5PDPYvuTyXj6WyCG1QIyutasymv+SwKOfz7MxX/PKVPkVAq2Sx8m++XHebnnQ38sq8WX3wxpcBgY7mXT7f2s73Sg8++iStVX0E1FS95/TLXPTAf88c7/3cIgsDDW1p5vz/M6wNW/q9NhTiLc9ncDCAeCVDpdlNeVpZlcQyFQoRCoZlMhtxz6rrOyJUPOPaL01kT+NXYIa+FuQJ1vmCUZTlnu9lsvmEBvJT9HyWSmcVgGAZerzcb+X+ic5xvXXTMCH2DlfZpdhX7WGFLzZjn52I2yG80bsck6KiGkN0+vyzdozVdPNt8Hr/Z4EBlgimbvmBxrokwZdKZsut0lagUxQTWjhn8eNurPNe7hr+8vJ0r0WKarUHqrWFsksq9hR4uReYvnPJbBjREhpLORfffKgjAxSE/05EkX/iHo2gzlPY/++OdbGsru23nXfL4PmyWAYBALEWPN4okCiwrs2ORJRKJBGfPneP0qVOYqpbhalzJ8jIHkihSYlMwDIPusSnGEoubem8XrLLE2opCJElAlkTGgjGGxnrZOvJnTPs0/vyFFUwGrp9QZU2jn//2W+1MJez8vHcNhmyjbtuj2IrLSUaCDLz3GsnIwgj2ynX3UVy/PLtqTcWj+NRMOqaOHo/yYEs5pa7idBaEYXB2LIDNJBFOqvT48hcduhF4D/0EY8Z/7Vy7G6WsdibfXSc5OYxcWIY4V2AkY+iiCUEUifZfQBtuJ5lMUldXh6IoOXUA5tcCyGybu13XdeLxONFoNCeK2VFcxroHnkRWLGhqCskkLxCGS7FiGIZBeHoyG1m/FDeDSQ1SNfkTXP5DCIZKp7+QDm8BI2E7qi7gUFK0FoVYVRqg1BIlbKpmovzT6RiBW/RcX8tSMBfffL2dg5fG+NvfaqGquibL+igIAmH/FB/sf3FBjEIG1sJitj76uZzrePjn317g2rndmKsQZT7/9/T9attVVSUcDjMZiPJ6n4krQQsWUee+ojH6Y04uRVzz6H4NLIJK3DCxuPCcK1hnLQZuOcJ4Kr0A+NOVR/h3TRe5XJricpmKcT2PtgEtPom1HoXXRpr5ow/20mb3U61EKDClEDH4t8nma/cz05mEkc1IuF0QgN/eXMz5oRCXPCkgnbr96IZqvvsftt228y4VH0plYD5CcZWjfT7CSY1yh8I9tQXsa/dk00SKLTIryh0cH5zmetYXt0JpqHAoLCubDVDL9NczFSLsH2D98F8hJvz8y5v1vHnavYBDOx/MssbnHhjg8a2jJAvW8sOLdXing7hXb8PVtCrN/a7rhCeGGDy+b8HxRfXLqN6wK/0bdZ3ASC/TgQDWmjYENUnwwrsU1y/jge334lBkhgJRzoz4bzquIh+87/4UI5kOFFUKS3FueAjBpKAn4wROv4GeiCEXuxHUOC3V5Ty4Zw/73nyTiYRIRW0DnScPo8dCbNmyhZ07d+Jw3LhJTdd1hoeH6ezspL29HZ9vNuNCNlspr2+lcfVWTIp5QSzA1Vwa13J35DPBA0haBFfwKI5oB5ZIF2bNi4COhpmYpY6YrRm/cwth64rrUgKWMh5dVRFNpgVt5itA4bjKf/necX7voTY2t+ZmyAS9E0wN9zBw+RTF7lpKqhqIBqcZ7bmUE4nrcJWzcttDaKrK5aP7iIVvvGDSrcRc4Zj5E0Ux62sXRRFZlrMWBkVRMJlM2f8ZC4M4wzWReU7mKqRL+b6UdqfG4PAQJDWoshusr9ARBQPDgOYiHZHc9uNhCCQM3JYkkqGiaSqpVIpUKpV1iQAEVIXzIRcpQ6Q3VkAq62s3ZtL6Ms/H/GfJWGT7tWCwo2CUnZWDfLn1LGfcSXpcSwtMzofqoMi9Q2a+07uO/7d9e855ykwxJtWFnBmLjet2KgKZczikFFU2lc7QbHzCtrZSfvHV3bf53NfGR0IZONTtZSqS5iQwDJ14wIe1KDe1CUMH4c5UkbqnpjgnNS8DXTcQ9Shy1z+jjL3OuN/Ga+9XcKy9hKmgmbkPnygY1JRF2b12goc2TmKzGKRavkSy+gnOf3Ca/u52hMplFFY3zxaC8U/Sd+ilvGMqbV2Hs7KBeMBHc5FEtbuCM2fO0NWVrv4nWp247n0CpNsczX3+DcpKXASDQcbGxtAFEbOzmERwGvS0qyOz0sw8ioUrtyFXtaW/6xrN2hjn3j+KpmmsX7+edevWYTKZUFU1O7nN/ZxvW77vsViMSCRCLBbL+rpNssKyLQ9SWFZJeHqKwrJKTLKCmkwQ9nspKp+lSs4ndK/XsnCnEAsHuXjkVxjAhj2fQlZy07PCAS8D3d28eWmK5jo3n9i9KWf/3N8WCXixF5aQ4QXx9F7iyqlDN2X6/01EvhX6XOUj425QFAVFUTCbzVitVs5PyXzzRJyF+fBp1FvC7CgaYzRho9iUYDJl5Yi/cmavgYjBfUXjrHJM54wnoYv8aLyVhC7N9PzreTYb7dO8tutnDJQmOee+eQtR25SJNR6Zz773Sc5Mz/X7GyyzTtMdK8qz6r9RZebmIInwp0+v5f/+twuo2uz9/Mtn1vOlOUWS7gQ+EsrAGx0ThGdYzTIR4rdyUl1sAl8qNtcUY59XmnV+X2KgHdPQS0gThxHRCMcVhqdspFSwWXRqSqOYTSoprMRKdyM2fxbBXoWu61w+f5qjh97GXFRGw47HEGZ4/IdPvUNguJvy8nKeeeYZXn/9dTo7OxeMr6mpiS1btvDyyy8Ti6UDJ10uF/5IHHNpNfbl226Z+XkutFiI6aMvXvdxJbt/B8GUCSzTifacJdZ/YcnHZybVjL848/9qnyFNkerz+fB6vVmXgkmxYC8oJhLwoaYSCKKI1VFI45p7EUQRs82Os7h8wX2HxZWEDws0VeXdf/0mmz/2WziKyxa4SaY9w5x/95fs/NTv5TANwtWDD1PxKEqgj5aWFtxuN6qqEgwGCQQC+Hw+PB4PU1NT+P1+IpHILa0U+ZsG3YDvjS6bw6iXH3NX8flz5g0+7+5CFnV6owWYBI3JhJnz0fwV/W5+pTz/+NnvL9z7Mqvdo7zdEkO7Fes3A3b3Wgj6inj4wDMLrK+7i4Y5FnCTyLmG85WBX4dlAKyiRkyXFpzPIkt0fv3JO1oW+SOhDHRPRjg7OuMbN3R0TUe4Q8E6sgBmWcrm3JfYFFaWOxcN0lqAZAAp2I46dQGLNg2GiiGZ0e116I5WPPEiDr97iMc++VuYzRYmPWO8/PMfkkykfbKKowh7iRvZSPKFz3ySoaEhXn755Wzg1u7duzl48CBAduWRMQlm8LnPfY6enh4++OADNm7cyBXKEGxFt1bB0nUSnj4KpntZtWoVDQ0NQNo/GQqFmJycxOv14vF4mJycrSMgCALF2z+FYLGRyeNvViJUW3RkWUZVVS5fvsyVK1dQFIXNmzezYcMGLBZLVrjf7O9IJpPs37+fM2fO5Fw7RVFy4g4AXJV1rNv95A2f604rCSdf+zHWwiJWbX8k7zgymRCLYu70IaSzC+JBL6f3/xvJZBK73U5LSwstLS00NzdjtS4kGjIMg1gsRiAQyP75/X68Xi/T09OEQiESifwxCb/pCKRkfuRZSkn0/D76uXiytI/9vmoi+u0ppLZwLAsFbIvDx5u7f8rx6iRDhTfuHpiP0ojIAwNmvnD8CY5O1eTs2+CcxGVK8PZ0ZruBWdBwK1EGE845ysPtVgiu3v/Zv3kM9x0savSRUAYAPKEEwbhKuVMhGFM5MXh7fNzzkZmsW0vsmGUJVyZjIJE2cTvNNy98MtA0ldde+leGBnqRJAmL1UYkHMrub25upq2tjTfeeAOz2UxhYSHPPPMMv/rVr7Lmf6vVSiwWY82aNTidTo4dO7YgT7myspKpqSm2bNnC3r17OT8a4HCfj1v9ImyvkHDbTYyPj+PxeBgfH2d8fDw7sdtsNtxuN/F4nLGxMT772c/S2tqKN6ryxpUJQvEUTI/yPz62fUGeeiAQ4NChQ5w9exan08n999/P+vXrkaQbz+HVdZ0LFy5w4MABgsEgGzduZNeuXWiaRmdnJ11dXfT19aFpGk6nk1gshqqqlNW2sHL7xxZN5bpaUCHcWddBPBJCsdqzVoH5v2Gxsc8GXEFDiYWkZjAVTmJXJNrcDkyCweDgIN3d3XR3dzMxMYEgCNTU1GSVg8rKyiX/dk3TCIVCWWUhY2nw+/1MT08TDAYXWBjmu2g+akjpIj/zNM1h2Jsv8Jf+3JTJMZqtfo4HK6/d+KaxmAne4P9YeZTPNl/k9eXR6wsYXMIp93ZbOT7YyO+f/hhzr9MW5wQbCqZ4y1dDb6wQWdB4yDVMvTXMPm9Nluzo2uO/RQNdpO//+HAbf/qZtbfhnEvDR0YZmI+UpnOwe4pA/NZpl/mQuTxWWWJVRQF25eaEf76gNMMwaL94llPHj+QI/7mwWq187nOfY3x8nF/+8pd88pOfZN++fSSTSXRd5+mnn+bEiRP09/cjCAK///u/z+joKC++OGumz6yaM5NmWVkZDz74IA1NLfzLqeFsCc6roa7ISpFFxh9LMRhYhKvB0DGSMaaPvpj1G7tcLtxud86fw+HIjufb3/42FouFL33pS1mB1NvbxwsvPM8XvvAFmpqa8p7K6/Vy8OBBLl68iMvlYvfu3axevfq67pFhGHR3d7N//34mJiZYsWIFe/bsobS0dEHbZDJJT08PnZ2ddHZ2Eo2mizAVV9azbtcTwNKF+6/DKrAUhSPH5K/ri3InZGCRRe5pKCSlGZhElpTPHggE6Onpobu7m56enqzVoLm5OWs1sNmWGuyVH4lEYoGyMP9v7nSX8dUDWaKhD1OcQ1/MyRveunlbr3/1WmKK8snyfg75q+iK3kz1zMVN/1c/BjKWgtd2/RSldpLTVbfeNbRqwkTNuI0vHP4EFyJp94dFSPEZdy92UeWI3017pAiHpPJwyRClSoKoJvGvnmai+tzMCIMqJcxoMn+9kptHhplBR5/DiigAg9/8FPIdchV8ZJUBgOP9PoYDt958OH8CTUaCiHK6+I4rFWBZcyMWixVd067qS13qeXq7Otj3y+v3rc/FYtHvGWTMs5mYgfn7KldvJVhYv2DfXDQU21hW6sieo2MyRP90NG/bwOl9SDE/dXV1rF69mmXLlqEoi5snh4aGeO6559i7dy87duwA0tfnn/7pn7Db7Xz+85+/6tjGx8c5cOAAnZ2dlJeXs2fPHtra2q55L0ZGRti/fz/9/f3U19ezd+9eampqrnoMpJWQ559/nkgkknUlZJgPP4zIF8+SzxIABpIgMCe2iSKrRFOZDV8khSxJuAuVm1JiNE1jaGgoazXweDwIgkB1dXXWalBVVXXLFSXDMAiHw3mVhcz3SCQ3rVZRFGRZzga5ziUqut1T52jCxsuTjXN/AU4pSSgvF//iWGWb4n6XhwshF0cCbq4uwG/GVL5w1VsuR5lMWTAQqVDCHH7oB5yrTNB7ExkEi6EqJLJjyMy3Lm2hJ1JEWJOpMkexiBqdkcKsm0DAoNCU5Bl3NwBXIoW8Mz33nTd4oqSf06EyRpN2boeF4Fl3Oy9NNjCt5boFfvAHO9i79tdhvVmIDx3p0PVgdWUBw4HJtN9SuDF+AUUSSGq5L7WuqYhS+tIYhsHouSMkfB7u2bYTZ7GL9w69jclkYsXq9ZRVuHPOez3nz7R1V9cuqb3dbqewsJDR0VFkWUbXdVavXk17e3vWly3LMmVlZYyOzrLu2Ww2GhoaUFWViYkJ/P50alcmIj8Wi9F78iAFGx5Cdrmzvvr5KLXl1mcosSl5lYFV5XZqH9tLV1cX3d3dvPjii0iSRH19PS0tLbS2tlJSUpJzrWpra9m2bRsHDhxg2bJllJaWIggC27Zt4xe/+AUej4eKisWLP7ndbp555hmGh4d55513+MlPfkJ1dTV79uzJWhUyc7cgpIX5O++8w+XLl7MBmK2trUu6fyMjI/zwhz/MUtZKkoTZbCYanF7Q9maDU28W80mHMt81NYlJNi8YU4HFxOpqJ55gkmAshdNioqrIgigKt6yOgCRJNDQ00NDQwN69ewkGg1mrwbFjxzh48CA2my1rNWhpablpqwGk3zen04nTufiKL5VKEQwGF1UWAoFADkOhKIrYbDbMZjMmUzqIWNM0UqkUyWQya7m7EVTIUZxSIiv8q5QIqx0+3vRdn7Wg2pJ+R1c6pumOFTCetF/lmOtM9p9Z8YsYC9j+ltumecA1SkIXiWomrsSdmASDkPn2KFFBZSYbSYlTnopTTjy7L6TJ2fEaCARUhZQuIIsGLnn+glJAFGFX8Sg/8bTeFnf0L6Ya8WsLuWcS6p2zTH0klAFdN4in0rfEogjomsaVK1c4d+4c46EE5Su3YFbMlNpNeK9TazZLIvXFViJJlfFgHB3wdp0lND6EtbiMqM9DIuhj76NP0rIsXS62qWUZqqpmX/6bmewNw2BseHBJbTVNy67wM6b+c+fO5bQRBIHR0dGsoM9s27x5M42NjTz//PPY7XbWrVvHwYMH0TQNs9lMPB4ndP4gBRsfxlTgyqsQBBMqJXMUgkzcxFw0uWzc31KKKJTR3Jwm/fD5fFnF4O233+bNN9+kqKiI1tZWWltbaWhoQJZlHnjgATo7O3n55Zd59tlnEUWRVatW8fbbb3P8+HGefPLagXo1NTV88YtfpLe3l3feeYcXXniBpqYmPvHJpzFbrBiGzsnj73HwwDs4nU6efPJJ1q5du2Tq1q6uLn72s58hyzLJZDKbAhYKhYgnhkhEw5hts1wIc5+HOxEbMD9DIPPfJJvxjg3gqqhNT5Ez26uLLZgkkepiC9XF10+UdSMoKChgw4YNbNiwAU3TGB4ezloNLlxIZ5HMtxrcSqrduZBlmZKSEkpK8leXywQ7Xk1ZCIVCOVYDs9mMw+HAarWiKEo2qDeVShGPx7N/82mQJ1LWHCvAaNLBDtM4CwV5/mA90LnHOUmTNe16lASDEjnOeNKWpy2wQOxdOz6h1BRFRaTeHGIg7sSvmRFIVwistoQxDDCLOmYxSTSaFjf6bXoNMv1KwkLx3WgNcTJYlg0WNICjfje7XWOMJ+YqmuljX52sxyGlblNcmoFftWQ/Z65tgdXEPc2L1xu53fjQKwOGYTAd1dCN9Ocpf5SfvfDPRCIRqqur2blxHatXN2WFZCShcnxgmumYmtMHsEBoC0BjiYNiq8LIdJjRy+8T900SmUqvquOBqWwfNXUN2QnIMIysr3H+ZH+9CkEymeDQ/tez31uWreTe+x5A13WOHHyTwb5ZSt14PM7g4CCSJNHY2EhVVRXvvvsubW1t9PT0oGla1kIwd2KJRqM8//zzFBYWEggE2LBhA4IgYLfbiUajxONpDdrpdLK1tghHUTHDYZUebwhBEJFFAUkU6PaGEQUBl1XGF0vSlaFnnrHMbKwuYGt9mtVwLlwuF1u3bmXr1q2kUin6+vro7u6mq6uLkydPYjKZaGhooLW1lQceeICf//znHD9+nO3btyNJElu3buXtt99mz549V13VzUVTUxONjY10dnYyPjGFYrZkh9rcugyTJLJly5ZsWuFScPbsWV5++WUcDgfRaBSz2Ywsy4RC6clWEESUPKWW7zQWex5LKutRJIGUlq4ZX+KQKXXc7kjzqyNjQaqvr+fBBx8kFAplrQbvv/8+hw4dwmq15lgN7PZf3zUXBAGbzZYNfs0HXddzgh3zKQyZdy7TZ8ZiYbfbURQFSZJQPHGYzO3bLOppwZtYWIkzjfRcZxY0Pl3eS6E865uP6xKd0SLyKQ8COnZJJTxnBT3nV+c9k1uOMJmyoSHgV81z2qZTG9/21eKxe6kyR/AkbViEtGvAdJsWv/JMvyl9oaLokhPUW8L0x50zYxQYS6afmwvhuQI4fW10RILa7XgXjOzVnz1fGsGYyu4/e4uX/2Q3rZWL3d/bhw99zEBKM/BHc/1L508eYe2aVZSVLc7nfHrIT58v7R9XE3Gi0x6c5TUgiOhqiskrZ4h7R2lbew8pVaXj1BHUxOLFix75xNM0NLVmFQJd17N+xAxuZOVnGAaH9r/O5QsfUFBYxO88+x/S/RgGmq6z79WfU1ZRiWd8lKH+3pxzGYbBihUrqKio4ODBg9n8+kQigSiKfPGLXyQajeLz+Whvb2dkZOSqY3n8t79EQZEr+xtP9oxgdzpZUZZOnRwLxjg3Pkt/nH2owz4C7ce5Z1Uru3btumpswPzf7vV66erqoquri4GBAXRdx2KxkEgkePzxx1m7di2apvH3f//3bN68mb17917vJSalGaj67P2Jx2KoiUjeAMHFxnn06FHefvttCgoKCIfDWCwWJEkiHA7PBpnaHNz75LPXPb4bQT6lM1Nv4XrRVGal3Gm+oznOS0GGQTJjNRgbGwOgqqoqqxhUV1ffNqvBrUQikchRDiYnJxkeHsbn8xGPx2diOmC/r5ruWDrob51jiu1FHlRD4JWJBjwztL5mQZ3JoU9neay2+9hUOIlZzJW6AzEHr3nzxwWts09yLpKZT5cWTa+gzpQFvnYMgjDDaHj+0e/QXRnnSumNF4NaDHV+ia2jCl+/sI3LIRfvByoQBIP7CseptUa4HCni0HQ1GYG8wj7NruIx/s3TyGTKugg77LVTNq8HJjTabD4uR+fKrtlzCAJ85t56vv6le274HDeKD70yoOkGvogGpF8OwzB44TvfQDZJrFixgpUrV1JdXZ1XEMdTGpGkxnDPFV5+6RfXDPiRJGlBTn4GZrOF7Q98jFJ3FR6Ph4baGhyO9Cp1KQrB1dLLjh85wAcnj1FdW8+Tn1kYKJeJ8H7rtZfo6riE0+kkFAphs9my0ewAJSUleL3erKLw2GOPsXnzZlRV5b333uPAgQML+nY6ndkUr00PPDFr/dB1zp08yrp7duREl58e8hJO6ZTaFcqdZlpL7RRZJI4ePcrhw4ex2+08+uijLFu2LO91uBoSiQR9fX1cuXKF8+fPo+s6/z977x0e1YGm+f5O5ahQygFlCUmAQGSTkzFgG9vgnHC73W139/Rtu2fD3Lu9ez2zc/fO7OTx9AzuZIINxiY4YaKJIggQIIIEKKCcU0lVqnzO/lHUQYUCAgQ48D5PPaA6+VTV+dL7vZ9KpSItLQ2Px0NDQwO//vWvh+1sBCBK4HB7UV7jgRzc/w3HjxYwYcIE5s6dS1jY4AxrSZLYtWsXhYWFhIWF0dPTI2eh3G43kiTJJZu3336bFqeSRqtb3hZu/TsxHNxKW2Lf49SXnycubUyQwTRoFExOuROW+f2BzWYL6lBwOBzodLqgrMGdyFffLXi9XsrKyrh8+TJ1dXV0dnb24xWU94Zw1WEmTOUmVd+NWiESqgpm4Le5tdh8Kna0pwS9v8hSS6bB77RLEogIKAWJLo+Gjc3XVe4EwKJ2kqLrocujocI51HegfyeBQeGlVxyKR9I3Cvb/75OZ24hJauD4qDsbhDYQJjSpsTSZeLtwCUeswVmb0fpOJoW0Ue00U+s0EaFxMjmkFZUg0erWsb0tCYc4UFYEHgptJE7r4HR3BFXO0H7XeCsdFlGqXiQE2ry6Qdd7YnIi7785fZhXPXJQvvvuu+/e86PeAhSCgFIBHt+1dJpOwaiEOHw+HxcvXqSwsJAzZ87Q3d2NVqslJCTkel1UqcCgURIbE0NeXh6lpaVDipcYjcZ+ojLh4eFERERgd3tRp02kzQW9KgNV1VWkJcQGSYve7ME80HKXy8nhfbtwu104nQ6yc/NQqdSykVEoFLL8sFan43LJefkcJ02aRGNjI5IkoVKpZCZ0SEgI4eHhnDlzhvLycnbs2MHVq1f7HTs9PZ1XX32V/Px8xo4di8cn+VPGkj9tfL7oKBk5wX2vZUd30VR8iJRQNZNGpxBq1KNQKEhOTmbs2LE0NCOoi7gAACAASURBVDRw6NAhmpqaGDVqFDrd8CNVlUpFZGQk2dnZpKSkcPbsWdLS0nC73VRVVeHz+Thz5gx2ux2FQkFISMgwo0CJD9evQyEIJMTFUFtTRU1NDa2trRQWFmK324mNjUWrDeabeL1etm3bxpkzZ7BYLNhsNkwmk+wwKhQK+fu0YsUKkpKSCNEKlF0pxeH0oNVfF07qK2F8O2TTG3Er+wisI/p8lBzdhSnUgs4UGkzgtNw/sZPbhUajITY2ltzcXB566CEyMjLQ6/U0NDRw6tQpjh07xpUrV7BarSiVSsxm813jbQR+r1uOVvDj1cf5YH8ZBrEH0dbKuXPn2LdvH7t372bfvn0cPnyYixcv0tzcjMPh6BekXHWY2d2RRIdXS4PbiCgJZBut/Y5pUPowqbycs0Vcm8niv7Y8UwdmlYcGl4EtLWkUdsfQ6dGSbewkTO2m3a3DoPSyyFLPQ2Et1LpMlPTemCqH4EhY4MbIeKKplXq38YZt/BQ9EFBcE/fxopCXWzQuHg5poDLcOzLqg9egEGFinZbParJZXzumzzn7X+1eHRfsFqaFNKNTivT6VCgEiVCVB6PSS56pnTR9N2X2kKB2P5CYb2nAcu2+NblvLEndCglTYnlkFZd6w3FJg5cn/9eLE0iKvPflxm99ZmAoiKJITU0NJSUllJaWYrPZMJvNcsZg1KhRQcbC5/Px+eefy6SkoRAeHk5nZydKpZJf/OIXbN5TQPjoyfJyrUrB9KSBSUYDobvbitkc0j+16/Hw+SfraWn2pzyNJjNj8iYiiiLmkBBG5/rJbaIocrnkPPt3fzXkcbKzs+UI+0YoFAoWLVrEpEmTKC8v58svv0Sj0fDUU0+RkpKCKElYHV58ooRJq8LjtFNR34Y5wu9lWzva2Pv5RhwOhzycZfLkycyYMYOQEH+NS5IkSkpK2LlzJy6Xi3nz5jFt2rTbEgPatWsXp06d4s0338RkMrFx40aamppQq9XY7XY0Go0cBWZmZg7KJ6ivr+cPf/gDL7/8skxqLCsrY8uWLQiCIPeXT506lZkzZ2IwGHC5XGzatInq6mri4+NpbW2VuQJ6vR6XyyU7X3l5eTz11FM0NjaydetWurq6WLx4Mbq40XT2Xk+Hij4fkuhDoQqOpoYb3d+47kCZhaEyBpIocvXCCWwdzYybu9z/yBIE4sO0ZER/+7gOdwK73S5nDcrLy+WsQVpampw16Pt9kSQJt9sdROgb6OVyuYL+djgc8v+7vWo2NF1nn6sEiVfjLvdL198MhztjgyYFGpVuXo3zi4p1eLT0eNXEanvl/VY7TOzvTMAjKcg3tzE5xE80WN+YeY0D4N/PvPB6coz9h0RtbUml2R0g0fVVD4ShDFuYwkWXGOzsKxCJVvfS5DHJ6/V1LiI0vRxdtJ7SWPeIlgoCJYKHDzxPhS0wunigKD1YHXFZRDXJ+uuj6Q92xlFiD5e30whe5oX7OyLqXSbKHX0zA0ORMAde9nLsZSrdURztGNh2PD4pgd+/dX8mGH6nnYG+kCSJ2tpaSkpKKCkpoaenB5PJRHZ2Nrm5uSQnJ8uOQUlJCZ9++umQ+7NYLPJUO4VCgT4ynpQZy64dS8TndpEbIhB3rS3Q6XRQW1VJZvaYfvvq6OygvqaaMePGB/EMApFit7WLrR+vxdEb3OOs1elZ8vhKYuMTaWlqYOeXW4LWCQsLk9sEYWC53BuRlJREZmYmWVlZaDQaPv/8c6qqqpg5cybz58/vZ7QlScLu8lBdXcPxgoPU1dVhMBhkVnXgnk6YMIFZs2YRHu7/IbpcLvbt28fJkyeJjo7m0UcfZdSo4bVQBuDxeFi9ejVGo5HXXnuN5uZmfve737Fy5UoiIiLkDoW6ujokSSI2NlZ2DBITE+Vz27VrF+fPn+fXv/51kHPY2dnJpk2baGtrIyMjg8rKSgRBYPbsOWRk5xISEorH4/G3Dfb2svWTjUiSSHt7Ox6PB1EUCQsL45e//KVchomJiWHFihVERkYiiiJlLb3YnF7KLp4hKiYOlfn6DABHjxWDVgnam5MiRZ+Py6cOkj5+Omqtvp+uxGC48btWVnSQ7qYqxuRPpa3HRcqoeGZMyL6vKogjAUmS+hnqgPF2OBy0trbS3NxMZ2enXFoLDAfy+XyDlgcDGMzp6os6p5Ev21KC3nsupnyA1rWhUWoP40Bngv+4SKToelgSWctFWziHuuIBMCg8PB1TiVEZbFCvcXkB+H19Dl5JIe9nWohfie9GHOuK4awtgr5GUiX45KFHQzkENy4LnnQYWOf60tmhDTyXdoFFCRXsznTiUN+5+VH74OEyPccak/jpyUdvadtIVS/PxF4PnK4LPQWftx/BAkrBy/wwKtwoBamPamQwxhvbeCismT3t8VQ4w4OWrf7JNJZPTkShuD+/xe+NM9AXkiRRX18vOwZWqxWDwUB2drask2+z2fiP//iPIFZvX2i1WhISEmhra6O318Hk6bOITkqjW9JQ39ZJXdF+nJ0tpGZkoVKpqSy/jNfjwRwaxsoXXkOn0+MTJXo9PjmCq68qp7qshHH5k0lITA56wLjdLjZ/9AFdne03vb7QsHAWP/oUIWHhlF8u4dA3OwecQWAwGBBFUb5GpVKJwWDAbrcjiiIhISFkZWXh9XopLi4mLi6OFStWDNlWVV9fT2FhIRcvXkShUMiGMmBs8vLymD17tkzOa2hoYPv27TQ0NDBx4kQWLVo0oD79YKipqeGDDz5g8eLFPPTQQ6xbtw6Xy8Ubb7wh37/e3t6gKLC3tzeodvzNN9+Qm5vL0qVL++3f4/Hw1Vdfce7cOfLz8xFFkbyJU4iNjZMdt8C1+Xw+Nqz/AJfTSUdHB0qlkjfffJPt27dTXV3NrFmzmDdvXj+HqqKigg8//JAlL/0cl3hd8c5iUDImMZTqtl6sDi9hBhUmrQqv6Bf6qe100dnrwaRVkhVjwtrVQcHxk4RlTO5Xfrjhk0ImJIle3B4faq2W9voqLhR8jclk5O2332bv3r0cPXqUhQsXMmvW/RVLEkURl8s1oEG/8eVwOHA4HHInjMvl6teWNxDaPHp6vCritXa0ChGHT8mp7iicooocYyeJOr+j7REF6lwmNIKPeG2v/HAOjCsO3HNRFGXlQkmSgqYAAoQo3TwXWzFgq9tQkCQ43RNJhSMEi8rFrPAmdAofHzSMxin608sCElNCWsg1dlLuCKXHq+aKPRSXpCLX2MGssCYKu6M50+MnqmkEH3PCGmj36rCoXWTqrbLT4JMETnVH0ezWE6/pJdvYiU7pQ5IETvdEUuM00enRyvLT/VsOBzKc8tWQrO2mV1STYbDiFFWoFT7en74dZ4iTwymuO5MllmBqvQZLh5bFB16g2XlrHBEFIm8mlga9V9Frptppprw3BB83y2gGOwgZeqtM+BwIE01+h+yDhux+ugzl7z0xYloet4PvpTPQF5Ik0dDQIJcSOjs70ev1ZGdnk52dzfHjxwdMqYNfw7+xsTFIY0AQBHZ8sZmr5Zf7rS8IAnqDkTF5E0nPyiEkNEw2DKIEXp+PI/t2otXqmDkvmBUviiLnz57iyIE9N72mF3/0M0LDwmUjdWjfLi4WFwH+uvucOXOYOXMmCoWC6upq1qxZQ3Z2NpcvX2biQ3NJSs+mp7uLY/t24LD3yJ0RgXLEokWLmD59+pDRYk9PD6dOneLUqVNy6tzhcMjnlJ2dzbx584iJiUEURU6dOsW+fftQKpUsXryYvLy8YUejO3fupKioiLfeeouOjg42bNjAa6+9RnJyf2a0KIo0NDTIrYsB8aXIyEhyc3PJzMzs16cuSRInT55k586dCILAz375jkw8u1FHQhRFThw/yqED+1iwYAFHjhxBp9Px1FNP9TsfSQKvCE3NzZRdvkRG3lSq2h3y4zMrxkhs6K3pYgCcqbHS4/DKIaAgeZGE/jXIsQkmio4e5OixYyiVKnxePwEtNDSUt99+29/JcvAgBw8eZO7cucydO/e2MwQBYz5cI97b24vD4cDlcuHxeG4amd8uApLD53osHGjzO6gmtcgvx/ey7pKeBtv178EzMRWEKN1saUmj81ofeK6xg7nhjcM+XrdXzQWbBYUgkWdqx6Acueta15iF3ReQzZWYGtJCqT38mqBOAP7Pb0lEDSm6HmqcJmw+NUpE9nclypH71JBmJg2QJdBo/DoiN3KrRAnO9URQ1BOFW1Je20/geIOT5iaHtDAlpBVJgk+a0+m81oI4M7KOP03bTn2Il5OJ7ttzCCSY0Kwms0PFL4seZntjxpDnMhBU+PhJ4qUBl/2uLmfA6Y+DEQYViJgUbrrFG3lSgTslsTL6Kvs74mn3BgdEoQY1l//l9geejQS+985AX0iSRFNTk5wx6OjoQKfTERERIbfdJSalMmb8RJwOByeOHsTp6GXVT/8vDEa/cRB9Pr/RPrg3aN8Go4kZcxaSMTpXfm+goS8B3PjQFUURz7UUf/HpQk4dLxjwGrQ6Ha//7NdB21+6WMy+Xde5BIIgoFKp0Ol0cjp7ypQpqA0hJGaOk8/F53ZSdvYo1dXVtLe3B51fQMsgPz+f7OzsQYl6gSmChYWFNDQ0yKWKgFOQnp7O/PnzSUhIoKenh927d3PhwgVSUlJ49NFHh9Xe17dcsGrVKt5//30sFgvPP//8Tbfdtm0b5eXlpKSkUFlZidPpxGAwBE3SMxgMlJeXs2nTJnw+HzNmzWHWnHlD1ukvni/mqy8+Iy8vj6VLlw5IlHT7/N0wgX0oBYl2m5sepz8LEGW+dUcAwOH2canJhsMtEmXWkB6lp9HqpqL1emdJlElNTryZP/7xj9TV1QVtH3AGAigoKOCbb75h6tSpTJ06dUCjHjDgdrsdu90uR+Rutxuv1zvimv6CIMhpfJVKJRv1wCvgvN742fh8viDJ4MC/q6vSr40B9j+UJ4e0cLI7WNFydlgDeoWP3R3B5azX40tvue5/N1DlMLG7fRQ+FESqHeSb29jTMVDpTWJ2WCNjTdcVMfd3xHO5N0xO4YernDwfWzHAtoPjhDWK0z0B4Z6bpcwlFoXVkmnya3DYvCrWNwV3GD2fWMJfjj9Eh16kKNGFXTN8U6TzQH6Dhnibkv9xfg4bavqXZ28OiTi1nelhLURpnP0yOF+3JlLtuln3QP99DrZcp5RQAP5O+eB1fvfmNJZPvrUy6kjjB+UM9IUkSbS0tMiOQVtbG5bIKJ59+Q2utfnT0dbKJx/+gSWPryQlPUs2iIEWvwDSs3KY//CjqNQqFIrbm5on+fsm5Ta+Iwf3Un65pN/gopDQMF7+8S+C3ivYv5tzZ07e9Bh5U2YxdtJ0+TrcbhcFX39Keno6aWlpciahuLiY9vbgcoXJZGLUqFHk5OSQnJzcj5l9Ywkh4AwEvl6jRo1i4cKFJCcnU1FRwfbt27FarcycOZPZs2ejVg+dHgtkOBYvXoxOp+OLL77gF7/4xZDOhM/n4+///u+ZNGkSixYtkvvUA1yDpqYmBEEgLCyMzs5OTCYTNpsNhUJBekYmsXHxdHV18sjSR1EolEEZAqu1i7amesaOHSu/Z7PZ5MmMzc3NzJ63iNBrbYuSJKFSCKhvf6jikPD5fLRZe2ntcYPoReez4XI52bp1az9DHRC5CRjykdbZFwRBNtTKa6PGB3KM+75uTLmPNNY2ZPUZRiMxM7SJC3YL3V6NbMpWRF3FKSqDevEFJH4cX4paEXxOCoUClUolX99AXUUD/d33/vR9r69jE1je0NCAJEmYzWa6u/2tgi5RgcOnIi02hFqryLqqgI799ZS9ViHybHQ50SEamR9R1B3Jie5oAj3/yboelkbWDniv+p5338/jWFcMxbYI2RkwKT0kam1c6h1cNW9maCN55g7mzFvAW1s76O71yDmFBeH12AQFf5+/l2i9nfJIDxXhXpxDPAo0XkjpUpHdqsbu0vJfi+fzTXPq4Bv00wkY2FCrBB86wcc4cwcTzP5nn9On4IPG7EG3GR5unqmYnxvDxndm38ExRgY/WGfgRrS2ttLQ3EZ8cmbQ+7/71/+NUqnkoTkLCLdEUnGlNMjwjsmbyNxFS++K7rzX62X7tk3U11YFvb/86ZdITErxk/tsPWxYsxrjNVKf0+nE4/EM+ECNiI5jyYqX/IlCQUHlpQsc278jaJ2Awlp4eLis0W42m+UoMACtVkt8fDwpKSkkJCQQHx8vcwFuLCEEyg8AMTExPPzww4waNYojR45w5MgRQkJCWLZsGRkZGQyFQLngJz/5CevWrSM7O5vHHnts0PWvXLnCxo0beeuttwaca2C1Wtm1axelpcE1w0Bpx+fzkZ6Zxdz5C6/NUlDITo7L6aC2qkI2/k1NTfKDV6vVEhsby9z5C4mNT7ze6qrwvwaC1+sdMBq32Wx0d3fT09MTlFoPGPK7EZXDwJMI+36n7uZjI2CIAtG/SqVCpVKhVqtRq9WyBLRer0en06HX69FqtWi1WjQajTxcqO/6h6908ss1Z3F5RaakR/DxO7Np63bx7ifFtPa4+PH8dJ6aloQoSvzZn06wtbAWpULgb17K55U5/tkWDoeDyspKmZtis9nQaDSkpqbKxNXQ0BsjyduDJEn81V/9FbGxsTQ3Nwfd7wD35r333uNoi4GT3dGoBMg0dBKq8jJvdChmlZfq6mpUKhWiKGIwhfB5lYFqp5kIlZNFEfUYlV7UajVKpRKXyzXoZyoIAhqNhi63ko/rR13jLUgsCK/noi1cFj+6tnbQtjqlyLn/vYS9pV38z83nabc50YgupoW1sCwvih5Rz8lLNTyTdI7p0bWoFCItepFOgw+rTsKnkFCKAiEugTCHgmi7EkESONkaz8/PLKbLM5zW5cEY/gMb6kcjq0i6xh850hXDOdtAAYdEiMKNQeW51m54PUOiQsSLcojj+qFUCPz3lWN58+GbD1S7F3jgDPSBxyvSeU3tUJIkrF2dbFyzetD1k1MzePSp5+74uIHo6EZpY1EUaWqo47NP1getr1QqyRg9BpVKRfnlElyu/iTIQLper9djMpnwer14PB5CwiNJSMmgx9rFlQunb8mQ9B35euPsePB3YAQcg4SEBCIjIykrK+P48eM0NjYGMeAtFguLFi0iMjJS1kEYM2YMjzzyyKAtgm63m9WrV2MymUhPT6egoIC33357UDnarVu30tTUxM9//vN+y/qKCWk0GkRRxOv1otVq5Xqp2WzmzV/8qh+RsL2tjXUf/B6v10toaCgxMTFER0djsVgIDQ2VNR96enqwREaj1empr6uh+MxpuUYeqJPfi+l3I40bjXUglR8w2AFjHTDYBoNBNtxDGeyAYbpbD0a700uH3UWixXDTY7RYnejUSkIMA4epgZJjwDGora1FkiSioqLkElRSUtItyV33RUdHB++99x7R0dG0tLTI78fExDBlyhR27NghD8kSBAUejwdB8M9W8Hg8jBo1ivT0dOrr6ykrK5O/uwEnPsDxaWhokBVLLRYLDocDu92O0WhEUqjYXWei3qEjXmvnobBmvJKCZpeeUJWb/V2JNLn0BIyqAl8fUtz17MHTCU2srRklZxRUgsR/m2LnJz96Rb4/HR0d7Nv9FRerLjHR0kReeDNRmuvPNUljQhE6Gq95DG2a8Rw+X89/2dXb51hDoX+dP1Tposen6UfiA4kZoU3MSfSRnJxMbW0dZxvc7O+MvyZKdH09BRI/irvEse5Yap1GlAIk63roFVWU9YYOel56jZJwo4a/e2UiC8fdnwmFA+GBM9AHf/zjH9HojIydMBmHo5fjh/fR091f7AP8tfsXX3sLrU5/x/KnkiTR2dHO+bOnyBmTR2R0rBxNN9TV8MXmj4a9L6VSiVqtlgehGI3GoF76ochaN852v1MIgkBMTAzx8fEYDAYaGxupqAiuU5rNZhYuXAjAnj178Hg8LFiwgClTpgx4XwPlgvnz51NQUMCMGTOYN29ev/U8Hg9/93d/x6xZs5gzZ07QMq/Xy+eff86FCxeCjEJgEqRer6enp4ek5BReeHlV0LbrPvgDLc1NQSnubxv6pqYH+hwVCoUsCKXVajEYDBiNRtlwNzQ0UFBQQHp6OkuWLEGn08lG+7sg9Xs/4HQ6qayslEtQNpsNtVodlDUYSunyRhQVFfHVV8GaImq1GovFIo98Bv9vta8SaXp6OiqVioaGBnlmRsDBXbx4cT9isCiKtLS0UF1dTXV1NVVVVfKY86NdMZzrUxbIN7cxI7wNhUKB1+tldV0OUh9jKiDx0pRwvi6x02H3oFMp+F8r02hpaeFv9l+XMQf45jfzGJPcP+L+rx+eZv2hSkQJjEoXM8KbyDV0ETcqjZycXHJycmRNk01Hq3j3k2I67f0DEz+G1kywqBx0yEqA/nUU+ImkgXZQQVAgRedytEHBxUZ3kICSEpGfJJRyo1/5TXscVxzXtQr6QqdWcPEfl2PUffvGAj1wBq6hvLycjz4avtGdMXcRefkDG6zbRc3VCmLi4lGp1ChVKtwuF19s2UBLU8OQ22m1WsxmM21tbZjNZvLy8igqKkKn0xEXFxfUshX492atWH2va6TT0IHopS/0ej0PP7IMY6iFttZWrpaVMH/eXOLj4/ttv2PHDk6fPk1OTg4VFRX86le/ulbHt9LR0UFXV5csURsbGyuPknW73cPqKQ9Aq9Xy05/9Et218ofN1sPv/+PfhtXGdjP0jaz7kuMC0XUggtZqteh0OoxGo/wyGAzodLp+EfaNUfXWrVsHFNgKCwvjV7/61ZDnV1payubNm8nKymLlypW3HeH+ECFJEs3NzUFZA1EUiYyMlLMGycnJQ97Tbdu2ce7cuUGX9y29BQTSAoiJiZE5QEeOHCE8PJyQkBBWrVp104yIJEm0tbVRXV3Nrz4up8IaOEeJKclGvvhvS/F4PBQUFPD6xy04peuzCcIMai79yxNIkkRjp4MwowaDVkWn3c3M3+yk0+Y3sKnRRg791RJUyv7PTrvLy7ufFHPmagfzxsTyy8WpVJaXUVJSQmVlJaIokpiYSE5ODjk5OYSFhbH4r7/hfE0Xg5Ma/UqILqn/HIVlEVVoFT7qnCYcoorRxi6ir2UknD4F6xqzBm0vnBHaxHhzOyqViqioKArawtktN6b1v8/RoVp2/N8LSYi483HcdwMPnAH86ee//du/HbbRU6nU/Oitt1Hfokb+zTAQ78Bq7aKzrQWFUkl3Vxcnjx/uJ07U//z844v7Gpu+qd3hyCcHvhZ9SV13g2wWQEhYOC+sehOFQkCSwG7v4cM//DYoAur7772CJSKCyVOm4/N5OVF4DIUg9KtdB+rWgQjbZDLJI2sDkw0DjPh7iffee08WzuqL4TgD4OdcfPLJJ6SmpvLss8/elOT5AAPD6XRy9epVOWvQ09ODWq0mJSVFzhoExLrA34HyN//6e3o7m9EM0sXQd0S50WjEbrdjsVh4/fXX/Sl+SeL9999HFEVaW1t54403SEhIGPY5X7lyhd98cIBDbRYUgr+18N1n8ngoxsE333xDb28vSTlT+B977Ti9Ijq1gr3/YxEZsf2n7fl8Pn77wcfsumRnUv54frV8AhG30UnjdDq5cuUKJSUlVFRU4PV6iYuLIzl9NKc7TfS6Jc6cLaZLNBIfH8ehUr8SowC8ku3A1VHHppZgTtizMeVEqPu3Ue5oSaDGM3iq/6VZKfzlymwOHTpESUkJrVYna+Vuif7bXPqnxwkz3V730L3CA3cfWL9+/S1Fv8lpGSPuCMDASnKhoWGEhl5npI9KSeOjP/37gNvHxCWw7Iln0BuMXK24wu6vto5IFHsvEBUd22csNJjNoRiMpn7dFIOhr7MTIEQZDAYsFgt6vR6VSkVZWdlN70dmZiYzZ84kKSkp6PNYt24dPd3dvPrqq6SmDsVe/nbA6/UO6AjcCrKysnjxxRfZuHEjGzdu5Pnnn7/lIVEPADqdTo5kA11MgazBrl272LFjBxEREaSnpxOXlMafb67hYp0FJWE8ElEbJJcLyMO7Ojs7MRqNTJkyhU8//ZSsrCyZP1NRUUFzczN6vZ6xY8cO2xHwer3s2bOHEydOsHxsJgsicjlfZyMjQoGy+hCfHasnNzeXRYsWER4ezqsrh96fJEl89dVXWBsree/nL5GWlnZb9xD89zEvL4+8vDzcbjdlZWWUlpZSVHgEj8dDXFQUE2fE8/f72mVHYFZ2FL9ZOY4JKRZ8Ph/CHw/z8Um/vsJYYzsWld8R8ElwoDOeit5QFIh4bjKN8cVZqZhMJpYtW8ayZcs4cKaStf9+ut96SoXAf3967LfeEYAHzgBFRUX9+rBvhpjYeJm8cy8hCAKhYeFERsfQ1tLcb/nCRx5Hq/OntFPSMskZl8+Fs6fu6TneLlpbmvD5fNczA7Yeeu3+h2BgSmN6ejrLli3DYvG3Mu3YsYOioiJ8Ph/PPfecPCnx9OnTfPXVV7z11luYzWYaGhpYs2ZNkCPQl8wI/vkCM2bMGLDrAGDWrFlcvXqVPXv28NOf/vRu3YYRQ2tr64jsJy0tjZdffpkNGzbw0Ucf8eKLL/Yb6PQAw0eARxMTE8PMmTPlOSJlZWVcunSJ97+p4KI1BhDwIXC4K45kfRnh4eGMGTOGzMxMEhISUCqVbNiwAYVCQVNTEwCJiYnycY4cOYLZbKa3t5cFCxYM69xaWlrYsmUL7e3tLFmyhKlTp9Ld3U3U3r1cOHcBQ2wsq1atIiUlZdjXe/DgQc6ePcuTTz55R47AjdBoNIwZM4YxY8bg8XioqKigtLSUfWeqqHBcvw8Fl1qJDvF3HCiVSv75p/P4z0/3+jlV3ddby0+16bnSG0bgvg/lCLz7TB6T0oNVWmflpRBqOI+111/+VAhw5K+XkBr97ZuaORh+0M5AV1cX27dvv+XtAgS/YUGSUNjKUXRdQNldhtTbhCR6EdQGMKfiM2fis0wCzc1bkgLGa/nKl9i49n28Xo8s3f9AzgAAIABJREFUVASg0xuujyCWpFuS/b2fEAQBW7eVL7duZNKUGeh0WprqrmI0GrHZbDIRqrq6mt/+9reywuLChQspKyujt7eXo0ePys5AQNTIbDZz+fJlNm3a1K+8IEkSCoWCiRMnMnPmzJuSu1JTU2USZG1t7S3PWbjXCBiIkUBycjKvvPIKH374IevXr+ell176zny3vu3QarWyGqokSfRsOsWJfdVc06pCqdHxF3/xF4M6YIIgyIJpsbH+gWJ1dXVUVVWhUqmYMmVKUAliIEiSxKlTp9i9ezfh4eH85Cc/wWKxcPDgQY4cOYJWq+Xxxx9nwoQJt1TqOnPmDAcPHmTBggWMHz9+2NvdKtRqtXwPo3Oa+fQfDgctF2+oLCZYrtXso8ykp6fz6KOP8hdrjnDkWFPQ9MeBsGRCPD9dlNnvfZVSwfH/bwm/+biYHqeH//LEmO+UIwA/YGdAFEXWr19/WzVonV6P4OtF0VOBwlaB4LGBICBpwhHNmYimFBCUqJq+QVG1DbWjEo9PQXWDnrpGFT6fgNHgIz25lMgwJyIqfDFz8SQ/g2QaPAUdSFvr9Hpeev1naDRa6mur+fqzT/B43BSfLmTazHkAeD0erpReuJ1bc9eg0+lQKBT09vZiNBrJysrCZDLR3NxMdXU1DbX+V6AeqlQqiY+Px263Y7Va5cj+wIEDnD17luXLl7N8+XLWrl1LTU0N9fX1hIaGUlVVxWOPPUZhYSE7d+7sdx5KpZIZM2Ywffp0DIbhkXkEQWDixIkcOXKEgwcP8vLLL4/ovRlpNDU1BZHM7hSJiYmsWrWK9evXs27dOl555ZVh37sHGB4EQeAnj4zl42N1dFxrcX5lSvigjkCAY9Te3o4gCLLRDxhwQRD6ddLciN7eXr744gsuX77M5MmTefjhh7l06RIbNmzAbrczffp0Zs+efcvZoMBU1EmTJt3TuRfTs6JZNC6Wvef9zvBr89JIvAlhT6FQsOrhcXx8shWvT0SU/Kx/p8f/21EKsPk/zUWvUZKXFD7oIKFwk5bfvjF1ZC/oHuIH6wzs3buXUEsUYyZMobW5iUsXi4OWh4SGYTKH0N7a0qePX2Jqhpaoq/+E/txZBEHC41XQ61SDAGa9G4VCwocKVEYUHiunS0LYeTCJ4lITPnEAToDZy7xpXSydd4SIpv14017Ck/wcKIYma2k0/h9nfGISy59+kcryy5w9dZzmxnrMoWHUVlVi6+kech93G0ajkbi4OLRaLVVVVdjtdpKSkpgyZQo5OTlBZZZALbW6upqamhquXr1Kb2+vPFsAgrsQurq6WLduHZmZmYwfP57i4mIOHDhARkYGgiBw9epVLlwIdoaUSiXz5s1j6tSpt1X7njBhAgUFBVRUVNDY2Ehc3LenR/hGNDc3j3gXSFxcHKtWrWLdunWsXbuWV155RZ7h8AAjg7hwPX+9SM9XRy6SEK5DWV+BzTZlwPsccAZsNhsmkwmFQkFbWxuXLl1CEISbDgWrrKxk27Zt+Hw+nn/+eYxGI+vXr6euro6cnBwWLVokl+RuBY2NjXz66adkZmaybNmyeyqoo1QIrPuzmRRXd6JRKchNHJ4I1JhRYez6zUL2nmskKdLI8smJ9/S8vw34QToD1dXVtHZYWbr8aUSfD8UEJQaDkdMnjwIwOnccCx55HEEQ6Om28sXmDeTnJjBG3I3BWUZ1mYFdB2MprTBQ16RFvGbkNWqR5AQn47NtPDK7E0sYdPcIXK40DOgIAFh7VHy+N5Lt+y08vaSNlUs+RGgrwp3/16AKFtMZbLZBdGwc0bHxREbFsOfrz4Z9H26UE74VqNVqucMgAL1eT1RUFD09PfJAqMrKSpRKJePGjWPq1KmD1uT71lKnTp3q117o7KS6uprKykquXr2K3d6/i6KszD/n3WQykZ6ZTURUFLljxnHh/HXnTqVSsXDhQqZMmXJHPI+IiAgSExNpbm7m0KFDPPfcnQtO3Q1IkkRj4+DDde6kIyMmJobXXnuNdevWsWbNGl599VW57/sBRgadLfUk621kJMbS0NDLrl27WLmyP1MvMIvB5/PJk0aPHj2KUqnEZDIxderAUarP52Pfvn0cPXqU1NRUFi1aRGFhIefOnSMmJuaOSLJdXV1s2LCByMhIVq5ceV90KRQKgfzUW3dichJCyUkYGQXJ7yJ+cM6Aw+Fg48aNzFm41D+t75pxSMvMpvRiMaLoY/rs64QbkzmEV5eNRl3yj7R3KPnb9clcuBKQnwyG26OgrMpAWZWBrbujmDeti9dWNDE+287fvJ9ERc3gXrrXp+Dj7dGcKTXxmz+7gub0/4N70t+C0k9+CcxrF31eeWhSAIFxtslp12tZAVa9IAhBMsJ9MRyjoFAoMJvNMkO/t7cXSZLweDxoNBqSkpLIyclh/PjxKJVKzp8/z4kTJwBoa2sjNDSU55577pajaEEQsFgsWCwW8vPzAeju7qaqqoqSkhJqampkcRSAx55Ywagk/1joxFFJdHdbqautYcmSJUyePHnEvPzx48ezfft2Ll26REtLC9HR0SOy35GE1Wod9DMfCURFRfGjH/0oyCG4FUGdBxgcXq83yJFbvHgxn332GRMmTCA9PT1oXUmS5M85ISGB7u5uzp49iyRJLFiwYEAdg/b2drZs2UJzczMLFizA5/OxZs0a1Go1jz32GPn5+bdtwB0OBx999BFqtZoXX3zxQefJdww/KGdAkiQ+/PBDXC4XXZ3t18dXiCIhYWH86K23g35gAOqmPWhL/4EDhWH87uM4XO7h/VBEUWDfsXDOlpj4T2/U8pe/quL//ZeUIR0CgMuVBv7yX0bxP39dhrr8j3hGXx9KpNPpglL/gdHDgf93drQFLRssTXwjkz4ApVKJxWIhMjISj8cjC/hYrX4VRpVKRWxsLFlZWUycOFGOCNvb22XWsNvtJisri8WLF6PRaNi2bRtr1qxh6dKljB8//o6MckhIiNxaBP5656VLlygqKiIhcVTQvZgzdx7pqf1HHN8pxo4dy86dO1Gr1Rw+fHjAiO1+YyTJg4PBYrHIGYIPPviAVatW3VZK+QGC0dTUJItiiaJIXl4eZ8+eZfv27fzsZz8L0nqQJEl2iFNSUjh27Bjgz96MGzcuaL+SJHH27Fl27NiB2Wxm3rx5nDp1CpvNxrRp05gzZ86AkzeHC6/Xy8cff4zdbufHP/7xoBLhD/DthfLdd999936fxL2AJEls3ryZcZNnsGDxYxgMJurraggJDUOpUqFS+X9kgfG/kiSh7C5FW/wue46E8+8fxePz3brH7HApOXI6hPHZNpbN62D/8bCbOhQdVjUOp8CUUUX4Qsch6WOvD7tRq6muqvAr1V2bPQ7Q3tbCri+34O4zhzygajeQU6BUKomKiiI7O5v8/HwsFgter5f29nZaWlro6OjA5XIRERFBXl4eTzzxBEuWLGHSpEmkpKSgVqu5cuUKO3bsYNeuXXR2djJp0iSeeuopJk+eLOv0T5gwga6uLg4ePEhbWxtpaWkjpmanVquJi4tj0qRJfqXwaw6OQqHgmz27SEtNHfHoRKVS0dLSQk9PD3V1dYwbN+5bR6S7ePEiNTU1g2Z+dDod06dPv+PjBPrnL1y4wKlTp8jMzHxgBO4QJSUlVFVVAci/n8TERI4cOYIkSUHp+7Nnz9Ld3Y3b7Wbu3Ll88cUXiKLIypUrgzoInE4nn3/+OQUFBWRkZCBJEufOnSMlJYXnn3+ecePG3dFvUpIktm7dSlVVFa+88orc1fAA3y38IJwBt9vNxx9/zPgps+Qpcjq9HrVajU4/8NCS0uJC4uv+hatVIv/7d4lI0u1HtF6fgqILZpbO7SAx1sWxMzevS5VX65mQ20uEsgJf4tKgZfaeHsIsEXL9WxRFLl0spvpqeb/JcoHsQXR0NKmpqXR2diKKIikpKSiVSiorK7l06RL19fXY7XZCQ0PJycnhscce47HHHmPKlClkZGTIBs9ut3PixAm2bdtGUVERBoOBhQsXsnz5cjIyMvpFFyqViuzsbCIjIzl+/Dhnz54lLi5uxNPKSgFAoLe3lx1ffcnlSyUUFhaSmJh409aqW4VaraaoqAi9Xk9vby/Z2dkjuv87RWFhIV1dXYNmhkbKGQB/a1xubi6lpaWcOHGCjIyMB6TCO8Dx48fRaDR0d3cTEhJCfn4+BoMBURQpKCggNzdXdrjOnDkjZ+0C/JzU1NSgWR01NTWsX7+elpYWEhISqKysRK/Xs2LFCmbPnj0ijuzu3bs5c+YMzzzzzIhqCTzAvcX3tkwQYNp2dnby8ccfIwlKomKu160FQcBwbYjPQFDXfQHaJv51TbpMELwTWHtU/PGTON55vY7dh+1cKBs6gpIkgc/3WPjPKZfx9lQgmtNlQ19y7jQ93Vayx+RdG5YjUna5BJ/PR3RMHObQMKIiwoi9NiQoNDSUkpISzp8/L6fSr171i2ibzWYyMzOZMGGCrGc+EOrr6zlx4gQXL14EYNy4cUyZMmXA2QEDYezYsSQmJrJt2zbWrl3LrFmzmDt37ogJNwkCqJUQHmIkNiaK0hI/UWr9+vXMmjWLefPmjdix0tPTMZlMWCwWiouLmTt37reqZn43OgmGgslkktsO165dy8svvzzs78UDBKOuro7c3Fzq6+uDPsNZs2Zx4cIFvvrqK1577TW51OfxeDCbzRw96ic/L1myBPAHCAcPHuTw4cOEhITg8/loa2vj0UcfZeLEiSNG7Dt27BjHjx9n6dKl3zqn+AFuDd87Z0CSJGwuEadHQvR52fnV11itViKj+xPY2lpbiI6JCxpRC3C1/DIpigscOhFKffPIqa0VFIXw9FItS+Z23NQZADh5zky3XYOueT+iOZ2ebivf7PqCxrpaKsou0drSiMlkpuxyKR1treTlT2HW/MUAeL0eThzay969e7HZrsuZGgwG0tLSqK6uxufzsWjRIrkGfyM8Hg8XL17k5MmTNDQ0EBYWxvz58+Vo5VYRFhbGqlWrKCgo4MCBA1RWVrJixYoRrzXPmTOHhoYGLl++DEBBQQFVVVWsXLlyRIy2QqFg3LhxnD17Fp1OR0FBAY899tgd73ck4HK5gobW3CsYDAZWrVrFhx9+yLp163jppZe+9cJM3zb09PRgtVpJTEyksLAwyBlQqVQ8+uijrFu3jrNnz5Kfny9PzVSpVLjdbnJzc4mOjqarq4stW7ZQV1eHVqulu7ubadOmMXfu3DviBdyIixcvsnv3bmbMmDFo58IDfHfwvXMG3F4Jp+daqlxQMH/xY6z/w2+Zs/CRoPVqqyv5+vNPmTl3EfEJSajU/h/UmZPH8TUeYWyqi12Hhj/YY3gQ2HkonNefbsJs9NJjH/r2+0SB0nId+bGXOHJwL8VFhfKy8PBwMlJGsW/fPrq7u0lKSmLStOviHgqFEpXOiMfjITU1ldzcXPLy8uQaend3N//2b//Gtm3bUKlU5Obmytt2dnZy6tQpzpw5g8PhICMjgxdeeIGMjIw7jigUCgVz5swhLS2NrVu38v7777Ns2TLy8vJGtK/3ueee47333pMNY0tLC6tXr+bxxx9nzJgxd7z/8ePHc+zYMZngNWfOnG9Fi11zc3+Z6htxt4Y96XQ6XnnlFTZs2MD69et58cUXb0m69oeOgCx6YmLigCTf1NRU8vLy2LNnD1lZWTLR2Wq1IggCS5Ys4cKFCzJ3APzqkYsXL5ZbD0cK1dXVbNu2jbFjx7Jo0aIR3fcD3B987zgDHp+E2+f/EQmCgFKpoqWpkbz8KUHrbdu0DrfLSV3NVcouXeD0yWNcPHeajrYWcsKbCBNsfLA5lqGkKW8HPTYVjy/s4MIVI02tN886xEa6GZ1Yy5fFwUbY4XBw6dIlXNcIg1arlbHjJ6LR6mSjmpKUwMML5zN+/Hji4+OD0uRarZYxY8Zw+vRpLly4QGxsLF1dXezatYuvv/6a1tZWJkyYwFNPPcW0adOIiIgYUWMdEhJyV8mFgiCQn58vR1g+n4+QkBBOnz6NzWYjNTX1jsoGJpOJy5cvo1QqsdlseDweMjIyRuTc7wSXL1+moqJiyHW0Wi0PPfTQXTm+SqVizJgx1NTUUFBQQEJCwoMug2Hi7NmzWK1W5s2bx6FDh9Dr9UyePDlonaSkJE6ePInVaqWtrQ2Xy4UkSeTl5VFWVsbBgwcRRRGLxcLKlSuZM2fOiBNcW1tbWb9+PQkJCTzzzDP3fEbLA9wd3HtFiLsMjco/vzrgVV+6eA6XyxG0jiSKiJLfcw4NtzB7wRKWLn+azOyxqFRqYvS2ay2AI69A1dyupseuJC3JefOVga4eFXq1F73+enpvoFGyTz75JHGRobLBbqyvpaWxdsh9WywWXnnlFQRBYNOmTXz00Ud0d3fz+OOP8+tf/5pHHnnkrj7ItVotTz75JCtXrqS8vJzVq1dTXV09YvvXaDS88cYb8t+dnZ0kJSVRXFzM73//e1paWu5o/+PHj6e8vJyJEydSVFQUVI65X2hqahrRVPDtQKPR8MILL5CamsrGjRu5cuXKfT2f7wrq6urkYUOCIAzI+zAajSxatIgTZ85zukXFVYcZCYErV65w8eJF1Go1S5Ys4ec//3k/XYKRQE9PDx999BFms5nnnntuxJz3B7j/+N45Az5RAlHE7XZRcqGYg3u/prG+lvLLJXKNTQJmzX0YjUbLk8++QnpWDinpWTy87AlefP1nhKg9NLferdntAi3taiLCPMNc2+/U9BXY8Xg8JCYmolAoZLnR48ePI3rdRJqU6BVuPvtkPceukYoGQlNTE1988QXr168PivhnzZrFxIkT7+ns+rFjx/LWW28RGhrK2rVr2b9//4gR4KKjo1mxYoX8d01NDVlZWQD8/ve/59SpU7edNg/0chsM/gFRgT7v+4nm5uZvhYyqWq3m2WefJTMzk02bNlFaWnq/T+lbDZ/PR0NDQ5AzMNj3MjNnLJ93jGZPWxw725PY3Z6A0+lk/PjxvPPOO0ybNu2uKP+5XC42btyIKIq89NJL993pfICRxffKGZAkCatDRBIUaLU6cseOJ2O0vz5s7eqUSYIKhYLktAzCLBHodHoUCoX8ADUYjOj1ukHlg0cCPlFAoRieAYoI9+Lwanj88eW88847vPbaa2i1Wurq6oiOjpblgNvb23n//feprq7GZDQQHh5ObW1t0APF5/Nx/vx5/vSnP/H+++9TXl7O7Nmzeeedd3j22WcB2Lx5M+fOnRv5i74JAuTCefPmcfjwYT744IMRI8IFOh8CKCkpIT4+XlYT3Lx5M07n8DI1fWE0GsnIyKCkpISpU6dy8uRJent7R+ScbweiKNLc3IzX670vMrA3QqVS8fTTT5Obm8unn37K+fPn7/cpfWsR+NxulhkAOFzaSrvz+udb6QjlmZdf58knn7xr0yR9Ph+bN2+mvb2dl156idDQH65s7/cV9/+JMYIIjKrsGxk9NHs+AO2tzUEKde2tLXR1tss1tyCjKWgxG3137TzNBh8O5/DqbOnJThrtRr788kv++Z//mc8++4ysrCwsFgtNTU1MmzmPN3/1F7z841+QkZXDunXrOHz4MBMmTEAURc6fP093dzf79u3jn/7pn9i6dSsqlYpnn32Wt99+mzlz5mAymcjJyZHbkgIaAvcaAXLh66+/js1mY/Xq1RQXF48I4W3p0qUkJFwnhBYXF+Pz+XjmmWeorKxk9erV1NYOXVYZCOPHj6ehoUHmCxQWFt5ki7uH9vZ2/5x2j2dIZ+BuEQgHglKp5KmnniIvL4+tW7dy5syZe3bs7xLq6upQKBSybPdQmYFQQ9+snYRKKZCccPeGZkmSxFdffUVlZSXPPffcoPNFHuC7je8VgVAA7E4vIMgOgVKppKjwCB3tbXi9XkLDLFitnezf9RV2Ww911ZVEREdjMpkRBIFeu52mkj3EGbvYeXDk6+V6nY9VK5rZXWChqn7oNJtaJfLjZ5qpsEVSa/O3xDmdTlpaWnA4HIxKSWPOgiUoFApUShWxCaPIyBqNUmOg22rF5fag1Og5VVTEpdISxo0bx5NPPsmMGTOIiorql05OTEzE5XJRV1fHlStX0Gq196U9LCC20tnZycGDB2lvb79jcqEgCIwbN46ioiJ58mFTU5McvVZWVnLo0CEUCgWjRo0adqo9PDyckydPotFoiIuL49SpU0yePPm+1FIrKyvldPxQ44vvJoFwIAiCwOjRo7HZbBw4cACj0RjkmD2A34lUqVQyYfDIkSMolcoBxaEunzlKeVUDLR49GpWSf1w1mQm3MZhnuDh48CCFhYU88cQT5OTk3LXjPMD9xffKGWhqaqKqug5LZJT8nkKh4OK5M3g8bnLH5ZMwKhmTycyolFQulZyjp9uK6BNJzRh9LTXno/rSCcZE1LHjoAW3Z2STJ7kZvcybZmXjl9F024Y2GLMnW5k92crOmixcoka+ngA7OCYugdSM0cD1zgmd3khIaBixCUnkjB1PXEISo3PG8dBDDzE2N/umcrHp6em0tLTQ3t5ORUUFgiCQnJx8z+vQKpWKnJwcIiIiZOXCgIDS7UKpVJKTkxPEE2hubsZut/PCCy/IQi21tbWkpaUNa4a7QqHAarVSUlLC8uXLOX78OCqViuTkkZ+LcDOcO3eO9vZ2PB6PfH0DfW732hkInEdmZiZOp5Ptuw/w/2+5zN9sKKS2pZv5E1MGnRH/Q8GePXtITU2VM0xHjx5FoVD0+5xOnDjB/v37SdLbmBHdy6b/+SPGJY+swmZfnDlzht27d7NgwYIHWgLfc3xvygQXL15k62efk57VXwUrJDSMx1Y8T/aY6+I6YeERJKX42baTH5otv6/RaMlZ9AsQlMyb1jXi57nwoU7qmzTUNg5taFRKkaeWdOALy+PRZ94gNzdXnjPg8XjweDzU1VzF6XQEpRMD/IeAEQiki93DrHoIgsCKFStITExErVZz4MAB9u7de09Ty30xbtw4mVy4Zs2aOyYXWiwWnnnmGeD6vblw4QJbtmxhwYIFvPrqq7S2trJ69Wp5PPLNMGHCBHp6emhrayM/P5/jx4/f1amBg6G5uVkmdQ31ed2vz1IQBB555BEK26I4frmNqiYr720+we++uPclqW8T7HY7nZ2dMl8ABi4TlJaWsmPHDtkhXjR/DmrV3XuEl5eX8+WXXzJp0iRmzZp18w0e4DuN77wzIEkS+/fvZ/Pmzej1/aNeSZJ4fOULjEpOk/8OwHWNNOb1Xo+kFAoFhvBR+GJm8+gCKyrlyMm6RlncTM/vZtdhCzdrW1y5pI34KCcfFqrYtWsXPp+P3Nxc4uPj5XO19fSwad3vOXJgD9/s+IKWpgZEUezHgRBFkaqrlezcuXNY7W8qlYrnn3+ekJAQDAYDR48e5euvv75vRiRALpw7d+6IkAuzs7OZOXMmoijKxrOkpIRPPvmE1NRU3nrrLRISEtiwYYN874dCfHw8ERERFBcXM2vWLFwuF6dOnbrt87tdDDat8NtAJgxAEARa7CARcFYFLlW33WSr7zf6ig0FcKMzUFtby9atW8nNzZVFhu5mpN7Y2Mgnn3xCZmYmy5Yt+1Z0qDzA3cV3ukzgdrvZsmULRUVFWCKiUCiVxCckoe0jvBOQ6wz8HfjX4/EQFm4hb+JUBEFAf8PAItGQSEj7FwgwLOngm0Piz39ch0Yt8R8b4vF6B39ATxzTw0+fa+J46yguW2Po7e2lra1NnpYXGDVsMpno6uykuamBzo42mhvqAAFbj5VLF8+i0WjRG420t7Vw+vhhKirKOXbsGE6nk9jY2CEn+qnVajIzMzl9+jQmk4nKykq6urrIysq6Lw8GQRBISUkhLS2N4uJijh07Rmho6G2TmVJTU6murqatrY2wsDCcTidtbW00NTWRn5/PuHHj0Gq1HD58mLKyMlJTUwdlaguCgMvloqioiDlz5mCz2Th79ixTpky5Z4IsNpuNgwcPolQq+2UlAnLbAWg0GmbMmHFPzmsg1LVYKSypRyH4Sb9PT4/hoQlZ9+187jeKi4vp6Ohg/vz58m/r2LFjiKLIzJkzaWtrY/369cTFxZGWlkZFRQUpKSlMmDDhrpxPV1cXa9euxWKx8MILLzzQEviB4DvrDHR1dbFmzRpqamqYPns+Dy97kpwx45FEkebmBkJC/YQ7n8+LIPQ3vEqlEpM5BIPBiE5vACQCxENJkkAbDkiMjSjkYpmB1o47G4X76PwOls7t5B/+lEhd4+DEwekTuvnzN+q4ardQ0DYWj/d6VBoZGUlycjIWi4X29na6uvxlDEEQMBqNWK1WaqoqsHV30mvv4dSJo5w6XsDlknN0dXXi8/mIioqisrKS48eP43Q6iYuLG1RTQK/Xk5KSwokTJ4iNjaWiooLW1lays7PvW7QZGhoaRC7s6OggNTX1lh9YgiAwZswYeQxsdHQ0drud9vZ2GhsbGTt2LKNGjSIzM5Pz58/f1PkIDw/n6NGjhIeHk5eXx5EjRzCZTPeMKFdTU8P58+cRRRGVShWUzbjRGVCr1ffVGZiXn0JkqJ5R0aEsG2fC0XAOs9n8gx1udPjwYSwWC2PHjpXfO378OKIokpeXx9q1a9Hr9bz88sts3rwZj8fDq6++elfaCB0OB2vXrkWhULBq1aq71qr4AN8+fCedgerqaj774kt/K6EkseyJZ/8Pe28eHNV55m1fp/dFW2vf9x2BkDCCmN02NmCIITYGYxY7jhM7ydRkqSQzU7PUV9/7TqXeZCb1TiZf4mTigDHGYBsbY7wvkpAQEkhCEkISktC+trq1t3o/3x9NHyMkNlsYsPsqdyF3nz59uvv0ee7nfn7375YeUypV6PR66qrPEB4ZjVyuoLe7E61OP20A866rf36TTbvf7XbTbFTgGqzkwYIBGlq1DA1/sYBg7TIzz27r5+jHIXxwYnaPcJ3Wxfef6GPnI4O0W6JJ/c4LrF7zACkpKbS0tAB3oGr0AAAgAElEQVSe9e6Ojg4GBgY8mY1LM9r58+cjk8kYHx9HFEUmJycZHx9HoVAQHR2Nv78/Y2NjgOfH7nQ68fPzo729nfLycux2O5GRkbMGBQEBAURERHDq1CnS0tJobm6mt7eXzMzM22ZDOlfiQrlcTkZGhuQeGBkZKQUEPT09zJ8/X7JN9gYfIyMjJCcnz3jvarWarq4u+vr6uPfeezGbzdTV1VFQUPCVBE7nz5+nu7sbURRZvnI183MXIpfJGDIa77jMgEwmsDgrhg3fSmPFPdlYLBYKCwsJDg7+xpWtud1u3nvvPRYsWEB8fLx0f3l5OU6nk+bmZux2O3v27MFms1FaWiq1DZ9rnE4nBw4cYHR0lD179vi8BL5h3BXBgFsUGbe6mbC56e7po7ffyMr71pGTm49/YBDBIWHTtpfJ5IRHRksX4YDAoGnCutnS3LOpr0NCI9Amr8c1UMHaRe243HChTYco3lia3DPA97J1/RAfnwzir4ejuFwrIJOJJMZaefShIf7+qT5SEkXsKc/wymk5RqOJefPmERgYyMKFC2lra6OzsxO32018fDwpKSlSUDA0NERoaCiLFy8mLy+PiIgInE4no6OjjI6OMjY2JpktxcTEMDU1xdTUFG63G7lcTmdnJ6dPn8bhcMwaFISGhqLVaikvLyc/P5/GxkY6OjrIysq6rSnEiIgIcnJypLJAt9t905UPWq2WqKgo6urqsFqtUobAbDbT1dXFggULpODDO/s/d+4c8fHx+Pn5TduXIAiUl5eTm5tLbGwsJSUlBAQEfCUz3tOnTyOKIstWrCL/nsWEhoaTmT2PwYF+hofNMzIDy5Ytu+XHdCMIgkBqaipjY2MUFhYSGhpKeHj47T6sr4yBgQEqKipYuXLltI6ap06dwmKxSFmAkJAQDh8+zOjoKGvWrJnzkl9RFHnjjTfo6Ohg165dREZGzun+fdz53BXBwITVjc3psRHWaHWEhX9+ogaHhHG+rpqwCI/phiiKuJxO5FcMUtcaILzOhN4lApfL+fnMT6ZEFreWseEBlibW8638CewO6BlQX9WlMMDPyYbVJn763V7SE20IiKTEW1m3apTFC8ZZWTDKw/cN893H+lm/0kx0jIuAnMdRL/oVupjFhIeHU1hYiEwmw2Aw8NFHH9Hc3Iy/v7/Uv3zdunX09vYSEBBAQUEBRqORyspK6uvrpU6D999/P/n5+YCnkZHdbmdsbAy3242/vz86nQ6r1So18unq6qK8vByHw0F0dPS0gT4mJga73U5FRQWrVq3i/PnztLa2kpWV9ZVaF1+JRqMhNzcX8KRbW1tbr7m+Pxvejm5tbW3IZDL8/f2xWq2YzWY6OzuljoqRkZFkZ2fT1NRESUkJarWamJgY6dwyGAxUVFSgVCqZN28eRqOR+vp6CgoKbrnO4rPPPkOn01HwrWVoNFoEQcDlcmGdsnKxtRk/Pz/WPbyJgqX3IpPJSLsDmip58ZYdms1miouLiYyMJDQ09HYf1ldCY2Mjra2trF+/XrrmiKJIYWEhLpeLJ598ktjYWOx2O++88w6CILBjx445P58++OADampq2Lp1K8nJyXO6bx93B3dFMGCxuyV3QZg5sJsHutGqFChVasxDRj589y3iEpJRXadO3BsEXL5fT0BwhQJbkDMiT0KdsIZARR9L0i6w6QEzuVnjJETbSIqbIjvVworFo2zfZGL3ln7mpU+hTLwPe+6/4UzYijMwi8HRKYLD9aTOS8U45eScKZiy/ngKe5O577GfISg9/gGhoaFSzfvp06cZGxvjoYceYsuWLaSmpnL27FlOnTrF8PAwixYt4t5772XhwoUsWbKEyMhIrFYrdXV1nD59mubmZkJCQli2bBlqtZqBgQF0Oh0TExOS+yIglS263W46OzspKytjYGCA2NhYSXGfnJyM0Wikurqa9evXc+7cOZqamsjKyrqmGPFWMxfiwoSEBHp6eujr6yM4OBhBEHA4HJjNZtrb28nNzUUQBHQ6HQsXLsRqtVJUVERfXx8pKSkolUrkcjlms5mmpiap02NpaSnBwcG3dKblcDj48MMP8fPzIzAwCENwiJQJOlt1hoGBfh7fsYvEpGQCAgNJSk5FAO6k0n6vMdHg4CAnTpwgOjr6G9HtsKKiYkZlwKeffkpbWxtyuZxHHnkE8JgQtbe3k5iYSF5e3pweQ1lZGcXFxaxfv14KrH1887grggERT2ti8Fw0FLLPrYdVcnDaJjn+zjFKij6lvraaifExIqKiMYTMdNm7nCsfu7ziYGJ8XDKd6e5q50JDHQnZ38IZeR+uqAeQawz4B7iID+0nP8fBvEwXiWkBBKYspMYYTuiq/4fmqWQCw+JArsWpjeGd4maWbPoJ+uQHOdFoo6bdxrhDg4hAfn4+arUaURSpr6/n5MmT2Gw2ZDIZu3fvJiPDY4oUEBBAbm4ubW1tjIyMoNfrSU9P97gQKhSEh4eTlZXFvffeKwnrLl68yOnTp6UufZGRkWzcuBGNRoPJZMLpdKLValEoFFKvA1EUGRoaktbkwTPznT9/PhcvXqS+vp7NmzdTV1dHfX09mZmZN2TScyv5MuJCQRDIzMzk3LlzDA4Okp2dzfj4OG63m+HhYS5evMjChQulQTY1NZXo6GgqKiqoqqoiKiqKoKAgNBoN5eXlJCUlERsbS19fH42Njdxzzz23LDvQ399PVVUVKpWK8/V1+Pn7I7rdVJ6poOpMBQBrH9ogzTzdbjdymXBHBQPw+XfQ29tLSUkJ8fHx01LnX0c+/vhjEhISSEtLAzzLPZ988gl6vR63282KFSsQRZGDBw/icrnYvn37jOWpL0N9fT3Hjh1j2bJlrFix4vpP8PG15a4IBhQypIuXViXDTy3DZbdSV32G1159mXPnzmGz2QBPyjc1NZX2tjaycq5feuPNDrhcLikbIAgCKpWKt18/wPm6aqoqTjI40EfW/DzPDFjpjzsoBzFqNWW9ocSs+SdcSY/jjv82rrBlJMxbQ0NTM598+B5LlixhyDjA8aOvYx4y8uCDDyIIAmazmba2Nvz9/bHb7fT39xMWFsbrr7/OqVOnSEpK4tFHH6W9vZ2GhgZp7Ro8a75jY2N0d3czMDDAxYsXSU5OntZFTBAEgoKCSElJoaCgQBLDmc1mBgYGqKurw+VyMX/+fNLT03G73QwODiKXy4mKikKlUkmdEm02G62trZSVlVFXV0dcXBxTU1aiE9NZtvpBwqNiePfYUVKSk2+7+vhKcWFNTQ0xMTE3JIa6XFDY09PDypUr6enpQSaTMTw8TGtrqxQQgOdcmz9/Pu3t7ZJmYcGCBdTW1mKz2cjIyCA4OJjS0lLCw8Nv2Vp4S0sLzc3NiKKI1Wql+UITNdVVGAcHCAkNxWazER0TS2BQkHS+K+UCd2LpuEwmIysri66uLkpLS0lMTPzaCtksFgsff/wxS5YsISIigsbGRo4ePcqSJUuYnJxkamqKlStX0tbWRnV1NVqtloceemjOXr+jo4NDhw6Rk5Pj8xLwcXcEA4IgoJALqOQC3Z0dvP7663z04Qe0t7dJF7esrCypBndgYACb1UpufgHCZQP85SIqu91GT1cHXR2tnCz6hInxUWLjE6e9ZmV5CSajZzYtl8sJMoQQHvF5QxCXywVuF4GGkGk/JL1axrFjbxMfH8+ivFxeP3wQ46AnPe8VbomiSE1NDdnZ2fT39zMyMkJVVRUajYZHH32U5cuX4+fnR3JyMqdOnZLK3byvU1RURGhoKJs3b+bs2bOUl5cTFhZ21bVWnU5HXFwcixYtoqamhpCQEEJCQqirq6O5uRmHw0F6ejqRkZEMDw9jMpnw8/MjOjqaqakpqVTNarXS19fHwsXfIiUty2PSpPdDr/fj6JHXSEtLk+ySbycRERHMmzdPEheKokh8fPx1L3harZbo6Gjq6upoa2tj48aNNDc3o1QqMZvNMwICtVotaQqKi4tpb28nISGBuro6li5dSlBQEN3d3TQ3N9+y7EB1dTVWq1WqGNFoNNy7YhVbHn2cRfcUMD83j+PH3sLldDI+PkbRZ5+QlJhw2zM5V8MbELS1tVFWVkZycjL+/v63+7DmnPb2durq6njwwQcZGhri1VdfJTMzk29/+9tUVVUxOTnJypUref311xkfH2fZsmUkJibOyWsbjUb2799PTEwMW7duvW2VQT7uHO7IYOBKZb/VauXUqVMcPHiQqqoqxsfHAc9F74EHHiA8PBxBqSUuKZ3Q8Eh6uztRKZX0dHcQGR2HSq2W9jVsMtJyoYEP33mT83XVdLa1MjE+xuBAH6npWZc8B6C7s53aqgrpmARBoLO9lZT0TLRaHS6Xk88+OEZrcxNZOQslvYFSDsa+LsrKyli/fj2iyp+MnDxyFy0Bl4O0VI8Fskql4uTJkzgcDmkGvmHDBjZt2jRtrVSn0xEREUFhYSGiKJKUlITT6eTdd98lPz+fefPmkZubS39/P0VFRdhsNpKSkq5aziaTydDr9Zw+fZqNGzeybt06EhMTkcvltLe309bWht1uJzY2Fp1OR39/PzabjeDg4GmGNtnzFxIcEip9rk6Xg5bGeqqrq0lJSZnTVOYXRavVSmugxcXFXLx4kcTExOtmL7zvta2tjfb2dh555BHq6+vRaDSYzWaam5vJy8ubtqyUmJhIUlIS1dXV9PT0YLfbCQsLIyIigqCgIEpLS2+ZMK6kpAR/f3/MZjMqlYqnvvcD0tIypHNAqVQgE2R88tH7NDU2MGw243Q6SU+/c41+5HI52dnZtLS0SGWtd8I5NZfU1NQwNDTEggUL2L9/P5GRkWzbtg25XE5VVRUTExMsXLiQjz76CICdO3fOSZnq+Pg4+/btQ6/Xs3Pnztuq9/Fx53BHBQOiKDJhdTFmFbHYRSam7Bw/+gZHjx6lra1Nmp16fzRqtZrPPvuMAEMYy1evxT8gkLDwSPR+fjQ3nmdsdIQgQzCRUR7jF0EQ0Gh1vPnqPhwOz6CWlJLOhs2Pk5O7iNMni+lsb6X1QgOnSguloESlUuF0OsnJyWFqYoTjb7/J6bJiYmOiCQ8LpbS4kMyMDAL9NOjVMj755BPcbjffWvkADpe3iZCciKhYrBMjKJVKWlpaaGhoYGpqShpUUlJSZi0ZCgkJQaFQUFhYSEREBFNTU1RXV/PAAw/g5+cnqdc1Gg0nTpygpaVlxrLB5YSHh9PU1ER7ezv5+fkYDAZSU1NZsmQJOTk50nJCZ2cnTqcTg8GAIAiMjo4ik8nQarVYp6ZIy5yHKIrIZDLKS4vo6fZsX11dTVBQ0B1RM36luPDUqVOSd8K1iI+Pp6+vj4GBAQYHB9m4cSNnz57Fz88Ps9nMhQsXyMvLm3Zx9paBDg4OMjQ0RE9PD4sXL8ZgMEiBVn5+/pxmB0RRpOxUOStWryEpJRX/gAAys+ZdsQ0YBwdoab4AeAbavr4+cnNzr3qO3AkoFAqpeqOiooKMjIw7Ius0V3iDuIqKCrRaLbt27ZKyNdXV1UxMTOByuejp6ZGyel8Wm83G/v37Je+Cr1uA5eOLc0cFAw6XyKT981S+IJMRGhlDbVUFMpmMhQsXsmPHDiwWC8eOHWNkdIz71m0iPSsHuVwhzc4VCgXnzlYSERnN6gc2cPniqCAIiG43Y2MjKJRKvrN9j8eKWKGiftyfj840YRlsR4FHSCeTyXA6nSQkJNDV1UV7eztOp4Nt27aRmprKsWPHyM/PY0FOFgq5wOTkJMeOHWPFihUEh0dLQkdBEBBkMv74+/+kpKREajULnhms0+mkra0NhULB1NQUcrkc9WUZjbi4OIxGIxNTDqLiU0hITiUxPlbq9iYIArGxsaSmplJTU0N5eTmhoaGzzkQFQcBgMFBSUjJjtupdTli4cCEFBQWEh4djt9sZGBjA5XJJs4gh4yB9PZ2MjQxTfbqMjrZm6fNyu900NDRQV1eHTCaTgpnbiXegNpvNNyQu9Krbz58/j8lkwuVysWrVKs6ePUtgYCAmk4mmpqYZAYE3MDOZTHR1ddHQ0EBSUhJRUVGUlpYSGxs7pyr5kZERsnJyCQkNIzQ0jPj4ROl4vEtoDocdi2WSkNAwhofNBBmCcbtdTE5OkpGRMWfHcivwBgQNDQ1UVlaSkZFx23Upc4Hb7ebdd9+VKnquHJi9zpj9/f2Iosijjz76pbUTLpeLQ4cOMTg4KHkX+PDhRRBvV/eZWbA63IxbpzcG8vgGOFAr5VSVn5A8uwF2PvMj/PwDpnkEIIq0XGggMTkVperqa6Iul4viT99nzdqHEUWRn71STcVFMyCilsPjSVO4++oAzwVJFEXy8vKIj4/nyJEj/PCHP+T1119HEASeffZZac3txIkTFBcX87Of/QzkKiZsn3+8oijy2st/ZWx02NNXYGQEt9t9zd7zMpkMpVKJRqMhOS2Tb618APBcTBBdKFwWNBoNGo1GOgar1crRo0dpbGxkyZIlrF27dtY1wf379zM2Nsbzzz9/3fSjy+Wis7OTpqYmLly4wPDwsORsd/kp5P0e1Go1drtd6g2RlZVFXl4eiYmJt12oVFtby/Hjx9HpdHznO9+5poGL2WzmT3/6Ew6HgzVr1hAQEMDRo0cJDg7GbDYTHh7Os88+OyOosFqt/Pa3v0WtVuNwOFi3bh1VVVXIZDKefvrpOfsMmltaibvUffNyvH4bDQ31zF+wUDq/vL+VyYkJ/vKn/+YHP/gBBsOta4E7V0xMTLB3716cTidPPfXUXV9l0NfXx5///GeUSiXPPPPMjEzV3r176ejoADzLob/61a++1OuJosjbb79NbW0tO3fuJCkp6Uvtz8fXjzsqMyCTwZR9emwiCCCTKxCREWAIo6aq/NLaeTI5CxdPcxQcGhygu/Mi6dk5lwa/a5cVBoeE4bDbmXDAb99r8j6CSxSoNSsJMQQS5DJxzz338NhjjzF//nzMZjP19fXIZDJaWlp48sknCQgIADwD9FtvvUVGRgapqan0dnchU+mmmYnEJ8SzccNDLF26FJPJxODgID/60Y+oqPDoEzZt2kRycjLBwcHo9XqUSqWkEo+IjiU6Nl56zy63yB9//ztOnjxJcXExJ0+e5PTp05JHvVqtprm5mcrKSkZGRjAajRiNRoaHhxkfHyc4OFgSLV5unjP7dyOTlhMKCgqYN28eAQEBkpHRlbhcLuk4582bR29vr6Tut9vtUhne7cDrXNja2npdceHlDoVev4HY2FjOnTtHWFgYRqORhoYG8vPzpwVUCoUCo9GI1WolLS2NoqIiDAYDXV1dJCYmztlgdq6ujuDQMOTyz4MRb0B24UIjY6OjxMTGSQ6c3sdVSuWlKpEWMjNntv2+01CpVGRmZnL27Flqa2vJysq6YwWQ10MURQ4fPszY2Bjbtm0jISFhxja1tbVS75HFixeTkjIz4LsZioqKKC8vZ/PmzXfF9+3jq+eOygwAOJxORqau/nhXx0VioqPx12sYGBpF53dJZSyKjBq7SE1NwTQxs+WsN2V6udGQ3W7jlb/9icz5+fxjoQ37FU/TqWSU/MO9UvpOFEVaO3po7+ik8VwNuQtyWLFiBS6Xi4GBAaqqqqisrCQwMJDR0VEAHt3xNGHhkZcGChGdSoZe7QkOTp06xQcffMBjjz3Gp59+itlsJi4uju9+97uzfzYukRGLCxA9/7nsWEY9A87VbqOjowwODkoNbLw+ArOhUqmkLMPN3ERRpLOzU3IlvDLLEZeQxPpHtiKXK+jpaOW9Y0dwOp2kpKSQl5dHRkbGbVEzu91uiouLKS4uJjY2lu985ztXHaRLSkr45JNPkMvlPPvsszQ2NlJYWEhkZCT9/f2Ehoby/e9/f5obY0tLCwcOHOB73/sew8PDvPPOOzidTiIiInj22Wfn5D28+uqrmIeHWbFyDdGxcWi1WinTVHu2Gq1OS0ZmNjDdZEsURXq6Onjl5Zf40Y9+dNekjEdGRvjb3/7mEUo+9RR6/Vx0FP1q+fTTTzlx4gQBAQH89Kc/nXWb7//vfVw0TpGjH+b//NvPv5TIr6qqimPHjnHffff5vAR8XJU7LhjwIooiQ1cM6ldezBrP1eBwOoiMjCIpPhqdxvODGbE4cVz2VNHthll6EvT1dPLmof0A9DoDOeXKYsp5qZIBCPNXU/Iva6TtRyxO7E5PWtztdtNw9hRtF1vp6+uTxI1KpVKaPcbExBAYFMyY1eOgqJBBoE6O7NJxdHZ28re//Y2lS5eSnp7OSy+9hCAI/Ou//utVPxe7U8TmdCMTBHSq2fssXInVauXtt9+moaGBgoICVqxYgcPhwGq1YjQaOXr0KOnp6cTHx18zsLBarTPa416OWq1Go9Egk8mw2WxYLBYEQeCZH/4cpVIplXnqFC6aGjyVB93d3eh0OhYsWEBeXt5t8aXv7OzkyJEjWK1WHn74YebPnz9jG+9srqmpCb1ezw9+8ANKS0s5deoUMTEx9PT0EBwczHPPPScFBG63m9/97ndkZWWxYcMGhoeHefnllzGbzSxevJj169d/6eWC3/72t0xOTgKQsyCXNfetRafXM2Q08tknH7B1+85p70GqqjGbCTH489+//z1JSUls2bLlSx3HV4nJZGLv3r3odDr27NlzV4kKz5w5w/Hjx9Hr9WRmZrJx48YZ22z/3QkKzw9c+j+R9/7xPvKSv1iw1tzczMGDB8nPz+fhhx++7Ut0Pu5c7thG1YIgEKgVGJ2avh59+d+ZObk4xgdntIn1U8vYW9JJc/846QYRzWgry9as47kXK7g45Ek7rMoIIdVUJD0nWjHKDkMjFbJ86nonUStl/O+tn7cUFUVRqgzwutBN2TxKe29DocOHD7Nu3TqpH4CXYL2ACFIQ4MU7GxsYGJDMRERRxG63X3UmoFIIqBQ3N4vWaDRs3bqViooKPvzwQ7q7u3nssceIiooiKiqK3t5eqqur2bhx43VnWi6XC5vNdtVgYWpqCqvVis1mY2pqCsvU1Axb6HeOv4vNMs7mzZtxu91UV1dLSv+YmBjy8vLIycn5ytLA8fHxPPfcc7z77rscOXKElpYWNmzYMO31BUFgy5Yt/PnPf8ZsNnPo0CF2796N1Wrl7NmzJCQk0NHRwR//+Ed+8NxzqJQqZDIZCxYsoLq6moceegiDwcDzzz/Pf/7nf3L69GnMZjObN2/+woruqakpJicnSU5J5d7lq4iJjQVgYmKcgy/vJSIyatr2giDw6oF9iCL09nSzc+dOli9fzvvvv8+KFSvumn4AISEh7N69m7179/Lyyy+ze/fuO7oqwktTUxPvvvsuixYtorKykthL39eVfB4IAAj8n7fPc/AnNz+j7+3t5bXXPN4fPlMhH9fjjtIMXIlcJkOrBIUcVHJhRhpfEAQiQgJnnOT/8f4Ffv9RC419Y5RenKCoV8HLpW0MW5x4dQQdpinqLMEECFYC5VYAnHYr/7JnLc/cn8XfrU0lNWL6Rdrq8DRL8pKdkcK87CzCo2LoN5owDRlZv27djJT31TolKpVKTpw4gUwmp6CggJKSErIW5KFQaggOCpjT1rfeaoO0tDRp4A0JCSEsLEyy1bXZbJIt6tXwChq1Wi3+/v4YDAbCwsKIiooiLi6O5ORk0tPTycrKYsGCBSzKz8fpcuMSPYGOdcpCadHHGI2DkpWvRqPh8ccfJyEhAZPJRHl5OeXl5ZhMJrRaLYGBM7/jucYrcgwODqasrGxW50K5XE5qairV1dUMDw8zNjbGpk2bGBoa4uLFiyQlJREaHkFyaiZuZLhFCArwp6ysjMjISMLCwpDJZAQEBNDQ0IDVaqWyspKIiIgvVGHQ2tqKTK5k86Nb8ff3lz4jpVLF8PAwLc1NpGdkorsU4HV2tFNSXMToqEe42tXVxaZNmzh79iwjIyNkZ2fPzYf5FaDX60lJSeHUqVO0trYyb968216xci26u7s5ePAgGRkZ5OTkUFdXx9q1a2fNavzHsfN4TNg93+fCRAMbF80eOFyN4eFhXnrpJUJCQnjiiSfu6M/Gx53BHbtMMBtTNhcTlwkMNQrw1848yR/6zQnajJOX3fP5D2s6nvvzFO3M0wzyq1/96pqzUadLZNzqwi169ARalYxJmwuL3bt04CI0QI3iBk3fp+wuxqY8NsgC4HK7kMk+DyQMWgHFTWYBboQrlw3Wrl1LWVkZhYWF/PjHP55zdbkoiticIm4RaqpO8+EH76PX66X0thelUkl6ejrLli2jubmZs2fPMjw8THBwMHl5eeTm5n4lTnTDw8McOXKEnp4eVq1axYoVK6YFZi0tLXz2WSFr1z1MaGgoCqWc4s8+pbqqkr/76S+mbVtZUeZp95w9D7lcTsuFRpxOJy0tLZI4dGpqisDAQAICAqQlKO+/V96cTiculwuXy4XD4WDbjl0kJCbN0MMcPfIajQ3nWbR4CQ88uA7w9Kt/ed+LGAcHJF3HT37yE5qbmzl+/DjPP//8Xdc+uKenh5deeomoqCiefPLJ29pB82qYTCb++te/EhYWxq5duygpKaGiooJf/OIXM4Jcl8vFY//0P5SZgwEBg15F2b+vI0h345oBi8XCiy++iNvt5plnnrkrdRU+vnru6MzAlSgVlzIFMtCr5WhVsw+Upy8O0zI4cdk9VxucPfcb3X4c/n+/d93oWSYT0Kpk6FQylHLPc8emPi/ZAig5cYJDBw9QUlJCaWkppaWllJWVcerUKSoqKqioqODMmTNUVVeTnJk7LWsgCNMzAT39gxx8eS/t7e1YLBZUKhVarfZLz5K9tds6nY6SkhIuXLjA8uXLaWxsZHh4eM5niF47aaVcIO5SF8SGhgZpJm4ymZDJZLhcLqkVc29vL6mpqaxevRq73c6ZM2c4efIkvb29KJVKDAbDnGZOLker1bJw4UJEUZScC5OSkqRUtMEQTMa8+fgHeLM3AgmJyXR1dpIzf8G0fbW0NPPQ+o2EhIYREhqGVqejs93TKqenv+gAACAASURBVHlkZIS4uDhUKhVmsxmHw0F4eLikuwCkQd+7JOBwOHA6nVI5Z1x8AuERkdMqBXq7uyn67BNEUWTbjl3Tzmu36Kars0MSGZpMJh544AFqamowm83MmzfdsOhOJyAggISEBEpLS+nu7iY7O/uWnRdfhImJCfbt24dGo5FMhUpLSwkMDGTBggUztm9oaMDcXEFewDC/+9l2/uWx+WhVNz6rdzqdHDhwgLGxMZ566qmvbV8HH3PPXRUMgHdgkUlmO7OxNDWYvxa1XeXRmVkCtULODx/4Yv3drQ73tKWDwf5urJZJVCoVCoVCujB5Z3V2ux2r1YrD4SS/4N5rDux2m42KshMMDQ3R0tLC6dOnKS4upqioaNrNm9bu6urC5XIRGBh43cBGEARiYmJITU2ltraWiooKsrKyqKmpIT09/ZbOwGNjYwkICJBMeDZt2sTExAQmkwmdzlOKabPZGBgYoL6+ntHRUXJycsjJyaGnp4dTp05RWVnJ5OQkgYGBt0RAJggCSUlJJCUlSS2jL2+LLApyKZDzzspHhs2Mjo4QEeFpV2wyDREdFYPmUgAnCAJ6vR9+Og0LFiygsbERmUwmaV5GR0cZGhpiaGiI4eFhpqam0Ol0hIeHk5ycTG5uLkuXLmXNmjVotVra29vp6e4iMjIKvd7Pc2YLAgGBgWRkZhMeEUlM7HQPha7ODro6O0hNTZVeZ/ny5Wi1WkpLS8nKyrrrXOkCAwOJjY2lpKSE/v5+srKy7oiAwG63s3//fqxWK3v27MHf3x9RFHnvvffIzs6etc/AG2+8weTkJDnZmaxcuuimAn9RFHnjjTfo6Ohg586dd4QDqI+7h6/lQpJBr2JpajBlLR4ToatnBjyPbVkUc5XHr4+/Vs7YlGfpQK2UsXbNSh68b9UNPXd40olTqsITEcXPMwyiKFJ+4hO0Wi02m+2qpkTgueiYTCZMJhPnzp2bdRuvJbJerycmJoaFCxeSnJxMdHQ03//+9zl27BiVlZUkp2Yw6ZAxPOlEr5ahUtyai2p+fj5KpZI333wTu93O1q1bGRwcpKioiKamJoKDgwkLC6OrqwuLxUJVVRXweb8BuVxOdXU1J0+eJC4ujry8PObNmzfnPuteceHx48clceH6DRsQ5Grcl/XQkMlkDBkHKT1RROP5elQqFZFRMSxeslTalyiKDA4OcOjQIek+i8WC2+0mPDycpKQkOjo66O3tJScnh02bNl31/ZSVlQEeEeGhgy+TlT2Pb295THo8JDSU4CvKBQVBIDwiAofDQUFBAQ0NDYiiyEcffcRDDz1ESUkJhYWFbNu2bc4+v6+KpKQktm3bxsGDBzly5AiPPvrobQ0IXC4Xr732GiaTiaeffloqWTWZTFit1lmNrvr7+6U24+vXr7/p1/zggw9obGxk27ZtVxUn+vBxNe66zMCNsjozjBGLgwCtkvuywugetjBld+OvUZAdHUD/qA0QuD8rlN88kfuFU+9ymYBWKaBTydAoZTe1H43Ss61MEPBTy9CqBGwOT+gSoBHIz8tl2bJlrFq1itWrV0u3VatWkZ+fT1paGuHh4SgUClwuF06n85pBg9vtxmazYTQaqaurk7IMpaWlGI1GdHo/tmzfjVanxy2CzQnaGyxf/CJEREQQERHBiRMnJB//3NxcMjIyMBqNNDU14e/vz/3334/BYJAupAMDA/T19aFSqUhJScHlcklLMMPDw+h0OgICAubsuL3iQoPBQFlZGbU1NSTEx3nW+IGJ8XFOlp6g5mwVKSkp6LRazp+vJys7R0rhe6pEbBx8eR92m23asVmtVkJCQigoKGDlypUEBARw6tQpzp8/T0JCwoyZ+oULFzh79uy0+7RaHfNzp7fsnu39GwzBRERE0tvTTU9PD263G6PRyMqVK9FoNJSWlpKRkXFXdgkMDg4mIiKCoqIihoeHyczMvC0KelEUOXbsGI2NjTzxxBPTBv6mpiaamprYsGHDjOzd+++/j9FoJCYmhqVLl16522tSVlZGcXExGzZsmHX5wYeP63FXCQi/DC63SP+olVA/FWrlN6tdp91uZ3BwkMbGRlpaWhgdHcVut88IHKJi4tiybfe0+945chCdRkVaWhqxsbGEhobO+YyrtbWVQ4cOERMTw/bt2yURZ19fn5QpCAkJYeXKlSQmJlJYWEh9ff00zwO9Xk94eDgmk4mxsTHCwsJYuHAhubm5cyqgupq48O2336a6uhrwZBMeeugh3nv/A7Y/uVuqLnn/+DFqzlZdc/8ajYa0tDRycnL49NNPGRoa4qGHHprW/vj3v/89ZrMZhUKBSq3GckmIuWLVGpZ8a9k0x0uYHhR47aPPn6vjXG21ZHm7bt06Fi9ezB/+8AdCQ0N54okn5uwz+6o5d+4cR44cIS8vj40bN37lAcFnn31GcXExW7ZsmTEwHzt2jO7ubp5//vlp909NTfGb3/wGURT53ve+N6Nc+lrU19fz+uuvs2zZMh544IE5eQ8+vnl8Y4IBH9fHLYqYJ5xScyWrdYpXXvwjNptV2kYulxMdHU1MTAwxMTFER0dLXQ2/DJ2dnbzyyiuEhoby5JNPTmtG09vbS3Fx8bSgICcnh7GxMT7++GOampqmOSvq9Xr8/PwwGo0AZGRkkJeXR0pKypwEMm63m6KiIk6cOEFcXBxbtmyR2hR//PHHgCebIAgCgUFBxMUnYhwcoLurE7Vajc1mQ6lU4nA4rvk6KpWKgIAAhoaGLvW5fwS708nbR48il8v59uZHUSiVdLS3odFoCA4JpflCI309Paxcc790DLMxNjrK22++Rk9PzyUtg56f//zn1NbW8uabb970gHSncfbsWY4ePUpBQQHr1q37ygKCyspK3nnnHe6//36WL18+4/E//vGPxMTE8O1vf3va/SdOnODTTz+9pivhbHR0dLB//36ys7PZsmWLz0vAxxfma7tM4OPmEQQBtdIzWCrlAiH+GpYvu1fq7ufNKExOTtLf38+5c+ek9HxbWxtGo1EyTLpZw6DAwECSk5MpLy+nsbGRrKwsab3c39+fnJwc0tPTMRqNlJSUUF9fT1BQEKtWrWLVqlVkZWUxOjrK6OgoNpuNyclJRFFEo9EwPj5OZWUl1dXVWCwWgoKCvlTnu9nEhUFBQdxzzz0EBQXR1NSE2+1GqVQSFRlJ/bk6xsY89tQul4ugoCAsFgsBAQFSI6PLywK9uFwuLBbLpb/dLMi7B7VGx7ycBaRlZCC/NNgHBRnQ6fQoFApCw8LpaG+jr6+XuPgEqUun97jBkx0YNpsoKfaYbikUCmkd29upsb+//65ON0dGRuLn50dhYSEOh4Pk5ORbPlBeuHCBN998k8WLF3PffffNeD2bzcYHH3xAQUEBUVGfG0K53W4OHjyIy+Vi/fr1REZG3tDrGY1G9u/fT2xsLFu3br0jRJM+7l58wYCPacgEAbVChlohQ3ZJAR8UFER6ejr33nsv6enpaDQaJiYmsFgsKBQKAgMDcTqdtLe3S4NjZWUlnZ2dUsmcRqO5bg24v78/aWlpnD59mvr6ejIzM6cFFVcLCjQaDUlJSSxYsIAVK1aQnJzMyMgIY2NjOBwOaTlBJpPR2dnJqVOn6OjwlNcFBwd/4b4I3rbIJpOJoqIiqWkRIPkBmEymGYOCIAgolUqcTicWi4XAwECsVithYWFs2bIFnU4nBV5e8u9ZTGLS5wOaIMimDe6XV60Eh4aSkJCEw25HoVR63C8vdZj0VjWUlZ6gv693Wr+Kvr4+CgoK0Ol0lJaWkpKScleXpkVHR6PRaCgsLASYVb0/V3R3d/PKK6+Qnp7OI488MuvA3NnZSW1tLffff/+0pasLFy5QU1ODUqlk69atN/R64+Pj7Nu3D71ez86dO+dcOOvjm4cvGPBxwwiCgL+/P8nJyRQUFJCTk4Ner2d4eFjqzxAfH09qairh4eFMTEzQ0NAgqf5ramro7u5mZGQEl8uFVqudIaLS6/VkZGRQVVVFTU3NrP3rrxUUhIeHExQUxMKFC1mxYgWxsbGYzWYmJiamCSwnJyepr6+nvLyc0dFR/Pz88PPzu+nZo1dcqFKpKC8vx2q18sgjj7B+/XrOnDkzQ5eh1WqZmpoiICCAiYkJsrOzGRgYQBRFJicn6e7uRq/XY7PZplWRhISGkpqWjiAIUpmqN4ix220oFAqpHbZarUapVKJQKqf5D3j/7Whv47OPP5SMjQRBIDAwELPZzPz580lISOD8+fP09fWRm5t7U5/HnUZsbCxyuZzCwkIUCgXx8fFz/homk4n9+/cTHh7O9u3br1rWW1dXR19fHw8++OC08+zw4cNYLBaWLl16Q90JbTYb+/fvx263s2fPnruuFNTHnYkvGPDxhdHpdCQkJLBo0SLy8vIIDAzEZDLR2NhIT08P/v7+LFq0iGXLlpGSkoJKpWJoaIi6ujqqq6spKSnh/Pnz9PT0MDY2hiiK6HQ6/Pz8yMrKoq6ujsrKStLS0mb1Erg8KBgcHKS0tFQKCrzWvyEhIeTn57N8+XJCQ0MxmUxMTk5Kg6y342RlZSUNDQ2emXVw8E052ZnNZt599100Gg2BgYGcOXMGlUrFunXrOH36NABh4eGsuW8tCUnJjI+OMjRkxGAw0N3dTVhYGBaLRWpVPTAwwOTkJP7+/iQlJXHvvfcyLzubvv5BggwGqQMleNb+//qXP9LX24PJbCIoyIBGo5lhgT3tb5lA/bla3G43m7+zlU2bHyUjK5vOjjY6Ojok0WVvXz+x8Qmo1RoEPO3E70YSEhIQRZHCwkI0Gs2clt1NTEzw0ksvoVar2bVr1zV7JJSWluLv7z8twDIajRQVFSEIArt3775uqt/lcnHo0CEGBwfZvXv3XdNt0sedj09A6GPOsVgsNDU10djYSGtrKy6Xi8jISDIzM8nKyiIkJIShoSF6e3vp6emht7eXgYEBaWYbERFBdHQ0wcHBnDlzBpvNxq5du667ltrb20tRUREXLlyYJjS88gJrt9upra2lrKwMs9k8Yz+CIJCZmcmiRYuuu9Y8MDDA/v370Wq17N69G51OR3FxMSdOnMBgMGA2m4mPT+A7W7ejvJTKtVgsvPCH/ztN9Ogd3C+/LyAgAJ1Oh8PhYFHBUhbmLZKO73JOFH9Gbm4+2kuGTZcvCVzO5fdZrVbKSopZff9aKdtgNg3x4l/+xC9/+UsUKjVOtyB9JwqZx/nzbsXrp1BWVsbGjRtZtGjRl96n3W5n3759jI2N8cwzz1y1/bX39X/zm99QUFDA6tWrpfsPHz5MQ0MDGRkZbN++/brv4e2336a2tpadO3eSlJT0pd+DDx9efJkBH3OOUqkkKiqK+fPns2TJEiIjI7FYLJw9e5by8nLOnTuHy+WSsgr33HMPy5YtIyMjg/DwcERRpLu7m7q6uktujQ6qqqowGo04nU4UCsWstsz+/v7Mnz//qpkC7/beioglS5ZQUFCAVqvFZDJhs9mkfQ0NDUnOjDabDYPBMGPW5/XFDwwMZPfu3fj5+UmOggqFgsbGRgAMIaHk5uVLs3WVSkVjw3mpJNB7TH5+flitVinlb7PZcLlcRMfEsvq+tbM2vBJFkfiERNRqNXK5fMaywOVcfp9CoUCv90On003b7+DgAFq9H37+gQgIUiAlind3MCAIAsnJyVgsFgoLCzEYDDcs1JsNt9vN4cOH6evrY/fu3dft+Gg2mzl58iTLly+XmlLZbDbeeustAHbv3n1d0W1hYSHl5eVs3ryZzMzML3zsPnzMhi8z4OMrw+l00tbWRkNDA01NTVgsFvz9/cnIyCArK4uEhIRpYj673U5fXx/t7e1UVFRIynoAtVpNdHS0VOYYHR09w2joRjMFXsbGxjh9+jRVVVXTXstLREQE6zZsJDI6BpfLzfvvHmPEbGLp0qW0tbXR09OD2WyeJvwD8PPz4wc/+nvkcrmnFbbdzuuHDtDd3Q14AgGXy8WuXbtoaWmhqqqKrVu3cuzYMcZHh0mL0fLIQ98CtwNkKvCLQ9TFIZMrZs0A3Chez4ErgwxvNuDzfYvIBIGrtAK5q/AaAp09e5ZHH330C/Vi8O6jpqaGHTt23NA6f01NDW+99Ra//OUvJQ1MUVERhYWFRERE8Nxzz13z+VVVVRw7duyqJYs+fHxZfMGAj9uCt4VuY2MjDQ0NjI6OotFoyMjIIDMzk5SUlGnr9na7nUOHDtHZ2cnKlSsRRZHe3l56e3sZHx8HPOLDKwMEvV5/00EBeDIDFRUV1NbWShmDIIOB7z//d5KjoNvt5v/7/e+kGb5MJsPPz4/w8HDCwsIoKyvjySefZHJyktq6cyxbvhI/f3/efOM1+vt6MRgMDA8PA0jZjp07d/KXP/+JDYvDCBw7SYi8D6V85k/UjQohNA8h8dsI4QUzmlzdDJcHFFcuJSgVCs9NfvdqBq7E7Xbz1ltvUV9fz9atW296ll1YWEhRURGbN2++YYHl8ePHaW9v50c/+hHg+Zx//etfY7fbefrpp68pbGxububgwYMsWrSIDRs2+LwEfNwSfMGAj9uOKIr09/dLgYHRaESpVJKamkpmZqZUzuh0OnnttddoaWnhscceIysrC/CUWXm1B97b1NQU4Cn/i4mJISoqCo1GQ1NTEy0tLTccFIiiSF9fH+Xl5YyNT7Btx65pj7/4lz8xMT5GdnY2mZmZREdHo9PpOHnyJJ999hm/+tWvUCgUmM1mjhw5Qm9vL/fccw+VlZW43W40Gg1Wq8fUSSaT8a1Mf+bLCvFXjNPcoqS4WElLi5yubjk2m4BaLZIQ7yItzcnq1S4SE+y4NLEo8v8BwZD1hT//K4MB778KQUQh//oNPm63mzfeeIOmpia2b99Oauq1G5V9VtXGh6cvohcsOHureOCBm5uhv/DCC0RGRvLII48AngH+lVdeQafT8Ytf/OKqz+vt7WXv3r0kJyfz+OOP+7wEfNwyfMGAjzsOb0VCQ0MDPT09yGQykpKSyMzMJDU1lY8//pjz58+zefNm5l9qGXz5ZEkURUZGRmYECF7Hv8DAQNxuN+Pj4wQGBrJq1Spyc3MRBBluEWTC7LNgl8vNlN2F/JLYzzg4yL4X/zyjfNBgMOBwOFAqlTz88MMEBQXhdDqZnJyksrKS8+fPS6WF3tI+RDcro9soCO+moUnJX/6spfXi9fqIiWRkOPnB920kJzkQ0ndC6vUV6Zd/TrPNMi8PCDy+Eze0u7sOl8vF4cOHuXjxIjt27LiqIO+D8lY2/9Mh5DIBl1tk69II9v2v797wDN1ut/PrX/+ahx9+WBIuei2lryVmHB4e5q9//StBQUHs2bPnpipcfPi4WXzBgI87mrGxMRobG2lsbKS9vR1RFImNjcXtdhOfmMyqNfcDngFcKbt6KtvtdmMymaYFCH19fdJAHh0dw/adnguuKIooBDdKhRy3243VasVqtTI1NYXdbkep1mK32ag/V0trayujo6Nf+P15Bl036+OayDYMsneflrePaRDFG5+Ny2Qijz1q5ckdUxC/CSHn7+cslSwT+FpoBa6G0+nk4MGDdHV1sXPnzlnT9T/8j3fZ995ZyaY7LTaY2n3XXuO/nPb2dvbt28dzzz1HREQEw8PD/Nd//RdyuZx//ud/nvU5FouFF198EVEU+e53vzun/TV8+JiNr2nM7+PrQkBAAAUFBRQUFDA1NcWFCxdoaGigf2BACgQA3CK8c/w442OjKJVKSQDnvQHT/l+n05GUlITVamViYoJ7CpZOa/DT2t7B4YMvc61YWaPRoNVqiYyMxOVyMT4+LqX8vcjlcsLDw/Hz88NsNmMymQCPRkClUmGxWFgV00W2YZD/+E89JaU3Z+MM4HYLHH5Ni9ks4+9+fAx0EZAyN42GlF/zrLRCoWD79u0cOHCAV155hd27dxMdHT1tm4QI/0vtqgVkgicYuBm6u7tRqVSEhYUB8N577wFcNSPgcDh49dVXmZqa4plnnvEFAj6+EnzBgI+7Bq1WS25uLrm5udjsdq4cpo1GI12dni58MpkMhUKBQqFAqVRKN5VKhUqlQi6Xo1AoUKvVBAUF4ec/3cXN5XLOCAS89sXx8fEkJSURGxtLYGDgtFm4xWLhyJEjXLx4EVEUcblc9PX1ARAUFMTmzZsxGAwMDhqRK1VM9lax0FrMgVe0XygQuJyPP1ETHe1iy5a/IQ9fiuD/xerQPcsEImq57GsjGrwWSqWSJ554gpdffpn9+/ezZ8+eaWWHzq5SFkSKtJplhOpc/P3Ga+sLrqS7u5uYmBhkMhl2u53m5mYA1q5dO2Nbt9vNm2++SV9fH3v27JHKEH34uNX4fAZ83JXIZXJEkAICAZGsjDSys7NJTk4mKiqKwMBAVCoVDodD6lUwOjqK2WxmfHwcURRRq9UEBASgkMsJCQ1DJvNkB0IMgWRkpEsVCQ6HA6vVyuTkJH19fTQ0NFBeXs7Jkycl0aPT6cTf35/q6moSEhLYsWMHGo2GgYEBnE4nVquVxsZGLly4wNp1DxMRGUV453/T3jLJ//0v3U0tDVyN+vMKVix3oHdeQJaw4QvtQxRFero6CTZ4THS+CQGBQqEgOzubCxcuUFFRQXp6Onq9npKSElpbmkkLEXn3L/9MgK2dnq62aS2lr4UoinzwwQdkZGSQlJREUVERnZ2dJCUlkZeXN+u2tbW1PP744yQnJ9+qt+vDxwx8mgEfdy2iiLSOezXR3+fbilgsFkZGRmbcRkdHGRkZwe12E2QwMDY6ikwmIygoiKCgIAIDAwkKCiIgIADw9J7v7++nu7sbk8k0zTXQS2BgoCR4jImJYXJykvLycs6ePUtqWgaPfOcxRFMt4qmf8q//5k9N7dyJw5YusfOP/zABy/6IS580TXh2I74E3oyGQqFAwKMZ+CYEBODJ7Ozbtw+LxcLOnTv505/+BMCOHTtIS0ujq6uLF198kccee+yGPAq8+oAnnniCtLQ0/v3f/x2n08lPfvKTGU2gysrK+PDDD3n44Ye55557bsn78+HjaviWCXzctQgC3GjVmyAI6PV69Ho9MTExMx6/WrAwOjpKW1sbIyMjUjUCgEqlIigoiKSkJMlExmKxMDAwwPj4OKOjo5SXl1NeXg54TJJCQkJYtGgRsXEekZq74236B5TU1M7tz7DitJLhUQWGruMocn5y1e2uFRhI+gnA6Qbl11hEeDk6nY5du3axd+9eKRAICQkhLS0NgLi4OFJTUyksLCQrK+u6lRteY6nY2FiamppwOp0YDIYZgcC5c+f48MMPWbZsmS8Q8HFb8AUDPnxwY8HC1NTUrMFCf38/w8PD04IFpVKJVqtFJpPhcDiw2WxSFUN5eTlL713Ot6xVnCyVA3M77Xa7BcpOynkwrArV/Jntk2f7+2rbfBPx8/MjNzeXTz/9FIBdu6Z7S6xevZr/+Z//4dy5cyxYsOCa++ru7iY4OBidTicJBzdt2jRtm46ODt566y3mz5/P/fffP9tufPi45fiCAR8+bgBBENDpdOh0uhlqc/g8WHjhhRcICwsjOTl52hLE5YECQN3pz1gxb5SWllvTfralVcF6Wx+i04KgmNnx0XvMl3PVLMHXvKLgSlwulxQIqNVq9u/fz1NPPSW1Co6JiSE9PZ2ioqLrmlZ1d3cTGxvL8PAwY2NjqNXqaX4GRqORV199lfj4eB555JFvfCDm4/bhCwZ8+JgDBEHAZrMxNjbGunXrJHdEL972xN6Mgt1YC8Nl9PTcmpG2p0eGIIgwNQj+iVc95stxuVzIZLLPmx3xzdILePnDH/4AeBpfPfXUU/ztb3+Tqgy8rbRXr17Nn//8Z2pra8ldkIN76Czu4SZco81gHwFBQFQGEefqJi7sAY6+dQSAVatWSa8zPj7OgQMHCAgI4PHHH5/Wl8OHj68aXzDgw8eXRBQ96+oav0D+/ue/RDPLArvX30CpVKLX61FbdDAMTuetGWmdDs9+LRMj6PxurJmRt3GUl+uJMr+O1NXVSf0ifvzjH6NSqdi9ezd79+7l5ZdfZvfu3Wg0GqKioliQlcR4zQtM9feDbQzkAjK9DZQOj9hiXMXyaAUy00VC/VVUR8RSsMizrGCz2Thw4ABut5snn3xyRkdMHz6+anzBgA8fXxK3CC4RBEGGWq3B5Xbz2muvMTExgcViYXJyUuqV4CVCO87uDNBqb00xj1bn2e+p8kru37wQuLZg0O12E+jvz+XGyt/E5YEjRzwz+DVr1qBSqQAICwtj165d7Nu3jwMHDrBz507k5tM86PcGomYceeAE8vBJBJ1jRvAkiiBOqAgc9GOFyo698BkUub/k8If1jIyM8PTTT0tVKj583E58wYAPH3OIIAiX0r0CBoNBalx0+U2v16NTCYifbiMh0UVL69z/DBMTXLhRIPeLnrVNMXic7iYnJ3A6HJwoKmTzI5tQa7SI1+jP8HXmhRdeADw6gZX/f3t3Ht1Weed//H3vlWRJ3nc7TmI7dvY9kAVISICWEPYdEiD8StOW0kJaSjltZ+Z02jkzpf210/ZASyEdCkyn7VASCIHQkKS0YQ2QxSEJWZzNWbxvsixb0tV95g/FsuUl8SInjf19nROwrq4f3Wsf6/noWS+/POq5nJwc7rvvPl588QX2vPoYE5x7MVL82Atr0BxWd8UB4Z+hlhjAkViHlddI8HCQ4IffJt1bxPy7vkt2dvag3pMQvSVhQIgB0jVAKRThMKADd9xx+1m/r1ZPZ9zYJjZvHtjKg90ZN85ExRfSUOfF52smPj48+K1j64DdbqfJ42HkqNHccvudKMtCqeHXIgCwf/9+qqurAXj44Ye7PWfEiBGsWGjHXbUX2+h6jBxvnwKT7gzhmFiBeSKZRRzCbm0D+rdKpBCxNgz/7IWILU2DpoYaNr31Jo11Nb2ak19fX8/emngWLDBxOGLbVRDvtpg3z8TIvYSKU6d47tmnWb9uLa+vfSXcbt3BqNH57S0GCd5n8QAAG9NJREFUmkaw5w+5Q1JZZSNXPPIC8x55mTcPGEybPrPHvQDMU+/irnoTW349tty+BYE2mgb2UY0YuR6Cu58mVLdngHcgRGxIGBAiBmpqatj+ycfEu51nrSRCoRCrV6/mYEsx8e4Qly8IxPRarroqgM0GjL6OMcXF+Hw+Pt21k8/27ubdd/4eOa+1pSVqemHbDorDRWvAZOn3V/PhnpO0mholFRonzO6b7VWgkUDJT9FTWzGyvQN+bduoRrQEk8D2H6FC/gGXJ8RASTeBEDFQV1eHw+Ho1Q5zmzdvpry8nNtuu43ju0u5//7jbP3ITlPTwLN5errFsmV+9FFXo7sy+NzVS6ivq+PiOfMoHFOEUopPd+1kytTpxDmdpwNAe9fB4dKDTJ44fsDX8Y+urKKBaf/vGfzBUOSYBry+6T2mpPsYO3YsI0aMiKwhEDy0GkJe7AW1MRlLoWlgH1NNYJcN89ib2MfcPPBChRgACQNCxEBtbS3p6elnncJ38OBBPvjgAwoLC1mzZg1pCcXcmXeSr3/NxxM/jh/QZkW6rnjkYR+O+CS0SQ+ePqZz17LoFfSmTJ2OUipS0bUFgq0fvEdGZhYBU2Ezwtv1DlW3/vOfo4IAgELj0gnpfPTRR2zZsgWXy0VxcTFjiwspOrEWI8NzxsGCfaW7TPTUVswjr2ArlAWHxPkl3QRCxEBdXd1Zt5ttampi9erV2Gw2jh49yqhRo6huDLLh5DjmzAnw1Qd94YWC+kHXFd9Y6WPaNBPbRd9Bsyf2eG53Mws0TePiOfMYU1RMSEEg1GV4wZDhD5h8drS6y/GbJprQeBTTNElISMDtdnPs2DF2bHoeguHpg7FmZHtQ3hMoz6GYly1EX0jLgBAxUFtbS35+fo/PNzQ0sGrVKvx+f2Rv+6NHjwJQ2pjBhuPjWPy5A2RlKZ58yk1tbe9zelZWiJWPtDBxYoD1xyeTluxlpPcwI0eNxmYL/4l37ArweDxRiwu1Pd92buQYsd414R9DRZ03sttlG4eumJQVvlvTNPF6vXi94bEBk7ObsHSF5gp2LmrA9ITweBGrfj96cnHMyxeityQMCDFAgUAAr9fbbcuAZVls3bqVzZs3EwqFmD59OocOHYpUNG121+XgDTpYPGE/Tz3pYfXqODZuiqOxsedQkJZqcfXVrdxyi59Wy84rZbO44o7HyMzKRilFZUU52Tm5US0BrS0tnDxRxvgJk7q0DiilwpV/h+WIh6K8zCQKc1M4Uh5eaVBDY9Ujl5DmsvB4PDQ0NFBfXx/5HWW7m9DjA4Oy7oJmKDSXwmosjX3hQvSBhAEhBqiurg4Ib3Xb0fHjx3njjTeorKwEoKCggJKSkh7LOdqUxvMHZ7Mg5zB3L61k6dJWPv3UxsGDBmVlBsGgRlycYvToEOPGWUyeHATNxo6aEbxbns+UmfPIyMwCws3+2Tm5XV7D6XLRUFePruuRmQRRoUDT0AhvWTxUu7Bths6G/7yXux79JYGQxlPfu5d5U7u26liWhdfrRX38GHrc8UG7Hs0eRAU8g1a+EL0hYUCIAaqtrQXaw0BLSwubNm1i/4EDZGZm4na7UUpFugXOxB+ysenkON6tKGRyWiWjCxpYMqGJRGdr5BzTSMVIG4+WeRHbT6Xwdsk7QNc+/p4GpF0yfwGWZWHoOpZlhQNAh3OHw+ZEo7KSWDw2PBiwuyAA4cGXSUlJtDqc4T6TwTTEf97iH5+EASEGQCnweptJS0vH6XSyc+dONm7cyCWXLeDrK8P71n/04Qe8vfmtPpXbGrKzrXok26pHAuCO05gzezbuxBSClkFScgr1VXWcrDhBWno6dbW17N29ixkzLyI7JydSjmWFK7zO2+xqmoYC4mw6AQuG7giB7tV5Wihr0MjoYSaoZVnU1dVRWVlJksckwzV4b5UqaEd3JA9a+UL0hqY6b2ouhOgVpSAYAotwf/u2jz5k86a3mDfvEhZedXXUub995lfU1tREHZs562Kmz5xFY2Mj615djWmavX7trOxs7ln+AA6HA8uyeHXNnzm4fx+6rpOZlc2EiZOYedFsAgE/O7Zt4/JFV2BZVpdQ4NDDMcC0wlHAZjCkpxQC7D5cxVUrX8TjC2DT4ZV/v50xGTaqqqqorKyksrKSqqoqQqHw1MNLco5zae5hXLNPxLzFRIU0/J+MxDHjMWz5S2JbuBB9IC0DQvSTpYjs8qdpGrNmzyUvL5f8/AIC0VPYu4zUv/6mW5g0eSoAWdk5PPClr/Ls00/2+rVnXTwnUqamaSxech3Hjh4h4PdTWVFOZUU5f397M3a7ncsXXYkVCqEbXddJ1rRw5T+c9iP4yR/ex+MLj+I3LcXXnniJZdND6Loe6dJp+4yk6zqnmhPRlYby2dHiYzujwPKE96XQUyfEtFwh+moYvQUIMbh0XaMgvwAN8Le2b1l8qPQglRUVkcfJySlMnjItMspf0zRSUlP79FrBQHSl5HbHc+31N3Y5zzRNqqurIkEgqqJj6I8N6M7OgxUdHmk0mwb66fETwWAwqvXEsizKmpJpNu2YlQkxv5ZQVRJaUiFaYkHMyxaiL6RlQIh+0rVw03pbP5uhaWga7Nixg3Xr1jFqdD5xcXGUHjwQ9X1Ol6tLWaE+dBEAfPjBu0yeOg2XyxUZ/Ddy1Ogu5ymlsMwg77+7hXHjJ9DU5OH4sWMkp6QwfeZMLKUP+W6Bzmy26M9AGYl2MjJSqK6uxu/34/dH7xWg0NhRPYJL7QHseR60uE7NPv1kNduxGuJwzLhFVh8U5520DAjRT5oWHnlv10//34D169fz2muvoZTC09jAwQP7UUrhcDjIyR1BnNNJVWUFJ0+eiJRjWRYv/+8fu5SflpZOUfFY0jMzu/T1N3u9bFj/OnC6wrcsjpcdA2DsuPF8/pprmT5zFgC7d+8mMz2V3/32GV764//gdLmYPvMiLCu80mDnBXiGuiVzxqDRPlyyIKGFqqqqLps2QfvAy23VefiCDvyH0mOyMqOyIHg4Ey1xNMaoq8/+DUIMMmkZEGIAlOL0tr+KUMgiEAx/ws/NzaW8vByAtPR07ln+AG63m4Dfz+qX/siffv8Cy7+wgozMrPD+Affcx+tr17B3z24AJk6azA0339a+WFBrC2vXvMyUqdMZUzyW+vo61q97lcOlB8nKzqGqsoI3X3+NCRMncdOtd0TGCBQVj6PJ4+HT3Xv44he/yKpVqxg3fiLQXtGFLNB7se3yheSTfadY+cs3OVnt5Zp5RfzHA/MpLT3Anj17sJWXsbBQp8KrkZ+smDmivXa32WyYponL5cLn80VmYwQsG7vMK7m0aQOhk0nYRvZ/XQClwDyWimqx4bz8u2i6fcD3K8RAyWwCIQagtUPrftufkt/vp6L8FK+vXUNGZhYXzZ5LUfHYSL+01+ulurqSMWPCy8+2bRSklOL//+jfAFjx4NdIS4ve+KjjksLh8y103Ygc7zzwrU0oFMIwDNaueZl9n+3hrmX3MTq/IHKOTQ//GyoCwRAFd/yS+qb2tRlcNsXX55mRgZK6rqPreqTib+sayMjIoKqqKqo8p9PJ0qVLGT16NMH9/0Nw33MYeY3Y8jx9HnOhrHAQCFUl4JjxLWz51w7oXoWIFWkZECJG2ipqp9NJQeEYHnrk0UiF27GSTkpKIikpic45XNM04pxO/K2tZ51mGB54aES9buev20KCYRhYlsWUadOZMXMW6enpVFVVkpWVjaZpmJYGKjytcCio9bREBQGAFlNjZ4XO/KI4Wlpa0HWd+Ph4GhsbASgqKqK0tLRLEJg9ezaLFy/GOD0A0zZuGUHTJFT6IqFGJ46iWnRn78YQWM12goczUS02HDMelSAg/qFIy4AQA9DbPveOn+p7el4pxeFDpax+6Y+MHDWaO+++B7vD0esyuisT6NJqEH4cblXoWK5ziHw0sCzF5Pt+zdGKxqjjaS6Lxz+fyM4TAV7b5Sdo6VwyLpUrRjV2GTSYkpLC0qVLycrK6lL+008/TZzvANfm7yPRHsBI82Fke9ET/GidWlhUSMNqisOsTMBqcNFoJpJ95Y8xUsfH/L6FGAgJA0IMkN/s/2q1bZV0WwuCZVn84qdPEAwGsdvtLL13ObkjRvapvM6Boa2b4GznDpUwAFDT0MyYu54kaFpRx+eODLH1RPTPItVp8ZU54U/3mqZx5ZVXctlll3UbvDZt2sR7771HYmIirc0NTEsvZ/7oOhyhBhQKnCF0R7hVJ+S3ofltaEBNq4td9YXsrErj5lvvYMqUKYNz40L0k4QBIQZIKfD3Y7aZUoqdO7Yxc9bFUf3+p06d4ERZGe+/u4VHHn08qiLvXIErpSIr5bWdd7bWg+gy2pchHkphAOCVLftY9oM1UcfcdoUv2PXnc/tkk4XTRnDnnXeSlJQU9VyLP8hDP1vPhq2lJOgtLCi2ke30kxQfh2EYLFp4Odv/9mdy3E1kub24DBMFtJh2Kn0JlPsSqW6Nx+Vy09LSgtvt5hvf+AZ2uwwcFP84JAwIEQOtfVsmIKLzzoEdK+qe9hXo7vtRCu0M552NXYNuGg8uaEopptz3NEcqGlAqvC7E2Lwk9p/oOhNgzijY8JtHcTqdUcctS7Hw4ef5ZF95W6mARrxd8YWLFcUTp/GTl/cQCIa4eCTkp4Rw6FDt04h3KDI77X2QkpJCQ0MDixYtYuHChYNz40L0g4QBIWIgGIJQD39J3W4V3EudZxAMxuI0Q61FoKPyWi8//N3fqWn0seL6WeTnJHPFIy/Q4I0eI3DNWJMZuYqCggKWL18e+Tn/YeOnfPGJdd2W7TAUgVB3v4/21pYrCkPMHdUe6rKzsykvL8cwDFauXEliYmLM7lWIgZAwIEQMKBXe7KenQND/cs8eAM4WNs5UxlCbVtgbZshiwdd+x86DlQDkpdq5d4ovaprgnDlzWLJkCU/8/l1++PyWHhYa6mmnx/bjhqZ4bL4ZVXZeXh6nTp1i6tSp3HLLLTG6KyEGRsKAEIOg7a+qrRIwrfC/jmMDevMpv6fzBtJKoBOuqgwdBtCzcEFrDZi8+WEpuq6xZG4xAX8LGzduZNeuXVHnTZlzJQ/84n3MUOj0rJGOAaBzGOj62K7Do5e1hwGbzcb48eN5dv1nfHJSB93G9ZeN4zePXY/bKWMIxPkjYUCIc0CpcKuBdbrvGgvONMygL5V9b8/VCbcCDNcA0BuBQID169dTUlISObblqM4Hxw2Ugikj7Ow+1bZJVNtbp9bp67avFPMLQoxJhZwEhaaB3W6npELjtT3Rb7uPL7uUH3xx0WDdlhBnJWFAiPPMUnTZ8rg3OoaAjtURhCt+XQPz9EG7Pry2KR4oy7JYs2YNW7fv4amtNjpW8qu+fS1vbPgryYYXhwFH6mBksiLFBccbNRIdCpsBW47oHKgNj8pMilN8ZXZ4BcQ3DxiUVGhRZd5y+QT+8P1bz/FdCtFO3h6EOM+iq4Ww7gb2G51Oimymo0GcLTwQ0GG0b5pkM8LHnDYJAn2l6zq33347D3z5ITr/dkbnpPL09x8gP91Oultx8UhFTmL45zw2Pfy1wyASBAA8fo23D4d/CYbWuasBbpwvixCJ80veIoQ4z7TTlXlbRe60gd0W/jSva+F/Dj1cwcedPieuQ0Xv6JAc2s6XHXFjY/zoDBbNzI88zoq38JbvIzk5mWXLlgHhLqD6FvAF27+vux//J6cMfvORwfZynXAIUNh0nRe+dyN3XzV5UO9DiLMZwpOKhLiw6J1qEEPv2kKgad1XNGJw6LrG2h/dzavv7CMUUmQ7Gnjnb5sJ+Fu44YYbWLjoCh56cgtH6nU0FNeMDTE1RxGyIMNtUeOL/rzV0Br92LQUn5tddC5vSYhuSRgQQogzcNgN7ryy/ZN7RmoSa9euxefzYWRP5Uj96c2o0NhQarDtpKLKp2NoiuI0i9K67hpgw10FUwozSU10dvO8EOeWhAEhhOiDadOm4Xa7eemllzi2ty7qOUtBlS/cdhNSUOPTsOkqvDMk0HHWwaRcO6//ZOmgLCQlRF/JmAEhhOij4uJi7r//fka6m8lOan8bHZmkorpxTKvrCo+ZbsXNE03uu9hOdlrCublgIc5CphYKIUQ/1dTU8LsX/ps9ZU247AqXHV7YYYtshrSo0GRXhU5dS1tgUHyuKMT7ZQaBEHzn3sv43vKF0jogzjsJA0IIMQAej4ef//znhCzw+KE1CG8fMahu1miNbG+tYdctriuq4qr8Wi7ObWRMcgs2PTzWQI/PRk+djJExEyNvEZrNdZ7vSgw3MmZACCEGICkpiQov/LHEhj+koaE6LAAVDgFfn3WMh2YdI81pEooL4kj2o7mCoCtQGqrFg1l3HPPEZrTdT2EruBH7+OUSCsQ5Iy0DQggxAJ5mPyNv/ilBq2tT/+SMJp5ZvJvxaT7s2U0Y2V50d88LUVt+g1BlAqHKZDRnBo6Z38XImD6Yly8EIAMIhRBiQDZvO9JNEFAsGFnHhjs/ZtwID86pFdgLG84YBAD0uBD20Y04pp4C4xT+9x/DPPHXwbt4IU6TMCCEEAPw3q6yTkcUs7I8/OmmnThTW3BPrUCPD3b7vT3RnSaOiRXoaV782/6DqgNvx+6CheiGhAEhhOinD/ec4FevfHL6UXiJYbctxKprd+NI8OOcUINm9K8nVtPAXlSLluzD3PkEC1b8gufX74zZtQvRkQwgFEKIfgiaIX4dCQLQtlD0t+ceYXRSC86xtWj6wIZkaRrEFdWR4HHylfFb+dLPfFTWN7Pyjrk4HfL2LWJHWgaEEKIfHv/1Jl5+ey/tqwoqkhxBvjzjOPY8D7rrzOMDekuzWzgL6rl1XBUFyT7+9bm/c/U3f08g2I99r4XogYQBIYToh3XvHYisIdC218DdEytwGApbljemr2Vk+DA1xRemngTg432neOL37/LU6o84XuWJ6WuJ4UnCgBBC9MPUoqwOSw+Hv7quqAo9uQXNYcX0tTRdEZfZzA3FlZFjP/r9ezz+603M+dJvJRCIAZMwIIQQ/fDMt68nMzW+wxHFjGwPtkT/oLyenuAnP8lPoqO9+0EBDd5W1r23f1BeUwwfEgaEEKIfslLjWfq5KZHHIxL8JNgtNHffphH2lnZ6euL4tGbaZi60OX7oM5qbmwfldcXwIGFACCH66d9WLGLcqDQA4u3hAX2aLbZdBG00I1xugsMk3C2hoQEzc0O4fMd48skn2b59O7KorOgPmZsihBD9ZLcZfPTsCnJv/hnm6QygulmWOBaUCpdrdij/87PHMCHXwVs7SmnyBfjfHevJSXub2xZfyvjCEZys8TJ34ggKR6QOyjWJoUPCgBBCDEDJoUpa/CEqQk4sBcpvA2I/bkC1ht+uj3vaNy966+PDbAR0HUKWjgYcqG3lbx1WLLTbdDb+/D7mTsqL+TWJoUO6CYQQYgBy0hLQNGgxDUobXKhmx6C8jmp20BQwOOZxth2J/DdktR+xVHTLRNC0+Np/rpd1CcQZSRgQQogBGJ2dzNPfuo7k+DjeO56Gv9bNYHTb+2vcfHAqpcOR3ndH7DlSzY3f+RO+1sEZ3CgufBIGhBBigO5fMp2/P3U//703D1tIx6p3nf2b+sDyOjBa7Tz/aR59CQEdvbOrjLv/dTWWJQMMRVcSBoQQIga2lJRRUpXIxxVJtJaloGI0qUAp8B9L4YQ3jo1HM/pdjmUpNn58mKdf/eTsJ4thR8KAEELEwKSCTAC+9dcJqBYb5smkmJQbqopH88bxjU0Tu4wH6I9/evavnKxuisGViaFEwoAQQsTAZVNH8atHl2DFF/Bfe4oxTyUTqnEPqMxQYxyBo6m8sHsEb5elx+Q6zZDFc2/siElZYujQlKxQIYQQMVVTXcXh17/J5NQK7Pn1GDletD58qFcKrFo3/kNp/K0sjXvWzSAQit1nt4xkN2WrV6L15aLEkCYtA0IIEWMZmVkEir/CB5UjMctS8e/NxvLZe/W9VquBf38GwUPprN6XE/MgAFDT6ONIeUNMyxQXNll0SAghBsGll83nt5/tw1N9imtcnxH41AEJfmyZzejxATRXEE0PtwKoFhuq2UGwJh7V6KTeb+PRzRNZdyhr0K5v+4FyxsjKhOI0CQNCCDEIdF3npptu4tlnnyW1cAU5KWWYx16nsCkO/XTrvIVCO73HAECdlc7qPensr89ky4m4wbs2TaOqXjY2Eu0kDAghxCDJzs5mwYIF/GXTFv68P5FTdbNx20xWzGxkcmYzwbhMDLsLT201ydljMYmjPlTOlmMKt9NGk9/E6ue6AmeiUDJeQESRMQNCCDGIFixYwGFvIuV1LQD4TBtPfpzGoxtHURKYw/IvfRfTOQq7K4WTJ0/yq48dHKo3KG8cnCAA4a6JrNT4QSlbXJgkDAghxCAyDIPp06agaJ+4pYDmoMaqNz7lxb+UkJGRgWVZ+AIKb4t5+iytw9mxN2tszqCUKy5MEgaEEGKQPXzX5RRmdfwkHq7odQ0OHK8lMzOTxsZGcrO6G9AX+9aBrNR4CnJTzn6iGDYkDAghxCBLio/jk+e+ythMI+q4Ugrq9pOSkkJtbS1FY8ZweVH7UK4ElwOHLbZv07qu8eUbZ8mYARFFwoAQQpwDJYerOVgdvY3wvXPjiQtU8+GHH6KUIisri0vzWjj55wfx/OVxql9/jK/fNiem1+GwGTxw3cyYlikufBIGhBDiPPnmirtITEykqclLlRdKSivRNJ1Dhw5ht4dbCP5p+QKS4mM3zfCJB68iNz0hZuWJoUHCgBBCnANzJ+Zx0/zxkccP3nQRE8fkcs899/CXgwbPbbfzyH99yjOf2Fj247/xrafewh8wcTvt3Hr5hAG/vq5pXDO3iC/dMGvAZYmhR/YmEEKIc8SyFLsOVeKwG0zMz0DTNEpP1DH1/t90OVfXNL519yX8cMUi6jwtzH/od/1eQljT4KqLxvDSD2/DFde7ZZHF8CItA0IIcY7ousaMsTlMKsiMDODraRyfpRQlpRUApCW52P3iV/nBA4v69brfu3c+a/79DgkCokcSBoQQ4jwqykvjwZsuijrWFhCuvKgwckzXNR5begnLF0/r9twzrUew8s652G1Gj88LId0EQghxnimlOHiijkAwxJaSY2zde5JLp4zqcQqgp9mPw6azr6yWzduO8M+r3o56PtHtoMkXAOC+xVN59vEbzsl9iAuXhAEhhLiAKaW4419e5o0PDgKQn5PMhp/dwzslZaQkOrl23lh0XdYUEGcmYUAIIS5wQTPEmi37aG4JcPOCCaQluc73JYkLjIQBIYQQYpiTAYRCCCHEMCdhQAghhBjmJAwIIYQQw5yEASGEEGKYkzAghBBCDHMSBoQQQohhTsKAEEIIMcxJGBBCCCGGOQkDQgghxDAnYUAIIYQY5iQMCCGEEMOchAEhhBBimJMwIIQQQgxzEgaEEEKIYU7CgBBCCDHMSRgQQgghhjkJA0IIIcQwJ2FACCGEGOYkDAghhBDDnIQBIYQQYpiTMCCEEEIMcxIGhBBCiGFOwoAQQggxzP0fP4j5sxuN0LwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import community\n", "\n", @@ -706,7 +911,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -726,7 +931,18 @@ "id": "shV3rrYbjkGy", "outputId": "23e0e823-56d7-4044-a490-a98d91978dc7" }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9Z3RUZ5bv/TuVlHMACRQQiogggiSCTQZjMMkYHDC0jd3T3dPTt71m3rfvu+7MnZm+c9ea7tsfbt/b42l3t+22TTAGbAuTMSYnCQkhhAgqSSjnnEoVz/tBrmOVVJJKQjK2eX5rea3uqlOnThWl8+xn7//+b0mWZRmBQCAQCARPLKrHfQECgUAgEAgeLyIYEAgEAoHgCUcEAwKBQCAQPOGIYEAgEAgEgiccEQwIBAKBQPCEI4IBgUAgEAiecEQwIBAIBALBE44IBgQCgUAgeMIRwYBAIBAIBE84IhgQCAQCgeAJRwQDAoFAIBA84YhgQCAQCASCJxwRDAgEAoFA8IQjggGBQCAQCJ5wRDAgEAgEAsETjggGBAKBQCB4whHBgEAgEAgETzgiGBAIBAKB4AlHBAMCgUAgEDzhiGBAIBAIBIInHM3jvgCBQPD9QJZlCmraaWg3EurrxrQwXyRJ+tbPIRAIxh4RDAgEgmG5UtTIvx4pQF/fqTwWF+rNrzcks3Bq8Ld2DoFAMD5IsizLj/siBALBd5crRY3seD8TWYa+NwsJkCTYvSudRbFDL+ZjcQ6BQDB+CM2AQCAYFFmW+dcjBQMWcej9/zJ8/fzge4qxOIdAIBhfRDAgEAgGpaCmHX1954BF3I4sg76+k7s17eN6DoFAML6IYEAgEAxKQ7vRpeNOX8rk1q1bVFRU0N3dPapzVLd0jfj6BALB2CAEhAKBYFBCfN1cOq6hrIjD968p/9/Dw4Pg4GCCgoLo0Pi7dI4Tn+6nIW8icXFxxMfH4+fnN+xrRHeCQDA2CAGhQCAYFFmWWf37ixQNkuaXJIgL8ebUW4sxm800NzfT1NTk8F9DQyOfdMTSKrvTKxnsdw4gKkDH/1zoQXFxMeXl5dhsNkJDQ4mLiyMuLo6IiAhUKsdEpuhOEAjGDhEMCASCIbla3Mir72X2iv363C0kCVRI7H4jbcjFV5ZlzhZU8uN9t52ICGUkYLW2kCj3HgIDAwkICACgu7uburo6jEYj7u7uxMbGEhcXR2xsLLnV3aI7QSAYQ0QwIBAIhsXZLjw+1Jt/HaHPwH/PuE1Jk0F5LC7Um39YGkmMl3lARqGjo0M5TqvVIkkSJpMJWYYj1pk0W3SDZitiQ7w5/dbicSsZiPKE4IeGCAYEAoFLyLLMb97Zg9XNh81rlo1qAbx37x5/3H+EZza9SPQE/yHPYTQaaW5uprGxsU/JoYH7dV1k9CQO+17HfvEUyeHD6w5GiihPCH6ICAGhQCBwCUmS8KeTqIlBo15kGxsbmeQpszYlcthAws3NjbCwMMLCwhweP3u/jowPs4d9r/p2I8nhgz8/mt19X/OkvhTVd/Lqe5miPCH43iKCAYFA4DI9PT14eHiM+vUNDQ2EhIQ8Uko91NfdteN8Bu+EGM3ufjjzJOg1TxrP8oRAMF4InwGBQOAyBoMBd3fXFmNn1NfXExIS8kjXkBzmS1yot5O+hF4kZPwlA5eO7KeoqGiAs6F9d1/UJxCAb3b3V4oanZ5XmCcJfsiIYEAgELiE1WrFbDaPOjNgs9lobGwkNDT0ka5DkiR+vSGZ3s233O85UEkq/uW5JHQ6LXv37uXDDz+koqICeDRrZFfNk+pdPE4g+C4hygQCwQ+UsVa89/T0AIw6M9DS0oLVan3kzADAwqnB/CrNiz/daKLF9s31xIV80+EgL5iGXq/n7NmzvP/++yQkJDBperpDaaA/fXf3/XURrhowhbp4nEDwXUIEAwLBD5DxULwbDL0tgaMNBurr6wEeOTNgx63lIb+a7sHMJSupdxLwSJJEfHw8cXFx3Llzh3PnznHmwGEgbvhrdSI+tJcnhjNgmhbm++gfTiD4lhFlAoHgB8Zoa+LDYc8MjLZM0NDQgIeHB15eXqN6fV8MBgMVFRXEx8eRHO7HssRQksP9nGY+JElixowZ/PznP2f102kund/Z7n7I8gQyKiT+dUOyEA8KvpeIYEAg+AExnuOCHzUzMBadBHbswsC4uOF3+XbUajVbVy4gNsRrUPEhyASoDHRW3Hf6HS2cGsxPE60EqE0Oj/tJPfyfzbHCZ0DwvUUEAwLBD4jxVLyPRWZgLPQCAHq9nokTJ+LrO7KUvCRJ/I+N0wfZ3YNKkng1yZ2TJ0/y4Ycf0tzc7HBMS0sLxrI83l47kWO/eIq//iiVIz9fyK6JNbQV3ni0DyUQPEZEMCAQ/IAYT8V7T08PKpUKrVY74tfaOwnGIhiw2WwUFRWNKCvQl4VTg/n10hD8pR6Hx/0kAxt9K1iaFMarr75KW1sbf/zjH7l+/To2mw2Ay5cv4+7uzrx585TyxIzJAaxcuYKioiJKSkoe+fMJBI8DISAUCH5AjKfi3e4xMJo0f3NzM1arVREPPkqnQ1VVFQaDYdTBAIClqoC34lWkrl6liA8nulk4f/48R48eJTAwkKVLl1JdXc2pU6e4e/cuS5cu5datWyxfvhydTudwvqSkJCZPnsyZM2f48Y9/LHQDgu8dIhgQCH5AjKfi/VHcBxsaGgAICQl55E6HwsJCPD09mTRp0qiupb6+nvLycrZs2UJyuJ9D18CWLVtYtGgRZ8+eJSMjg4kTJ7Jq1SpycnLYs2cPGo2GuXPnDjinJEmsXLmSDz74gDt37jBjxoxRXZtA8LgQZQKBYByQZZk71W2cu19PQXXbqAR7o8GueP9GLtj3OR5J8f4o7oP19fV4eHhwq8bwyJ0Oer2e2NhYVKrR3b5ycnLw9PQkKSnJ6fMTJ07klVde4bXXXkOr1fLll1/i5tabSTGbzezevVtpk+xLVFQUCQkJnD17FovFMqprEwgeFyIYEAjGmCtFjaz+/UWe+8NlXv/wBuv+cJnVv7/I1eLRtfSNlEi3HlZrC4nwc6ztx4V4s/uNtFEr3nt6eh6xkyCUXx+9+0idDu3t7dTV1Y26RGA2m7l9+zYpKSmo1eohj42KiuL111/n5ZdfprW1FVmWmTx5MgaDgT/96U9cvHgRq9Xq8JoVK1bQ1tZGdvbwg5QEgu8SIhgQCMaQ8erxHwnnzp0jJcyDC79axT/NVbMlqI5jv3iKU28tfqTWt0ctExg9Qx6500Gv1yNJElOnTh3VdRQUFNDT0+M01e8MSZIICwvDZDKRlJREV1cXLS0tBAUFcf78ed59911qa2uV40NCQpg9ezYXL15Uui8Egu8DIhgQCMaI8ezxd5XS0lJKSkpYtmwZKpWKuBAPwqWWQQ15RsJoMwNWq5XGxkbwcE2nMFSng16vJyIiYtRBSU5ODjExMQQGBrr8mitXrqDVatmwYQM///nPWbt2reK50NbWxl/+8hfOnTunZAmWLl2K2Wzm8uXLo7pGgeBxIIIBgWCMeNxT7WRZ5uzZs4SHh5OQkAD0GgSN1Q51tJqB5uZmbDYbU8Ndy0oM1ulgsVgoKSkZdYmgrq6OyspKl7MCAJ2dneTk5JCeno67uztqtZrU1FR+8YtfsGzZMiUAuHTpEu+88w7V1dX4+PiwYMECMjMzaWtreyzaEYFgpIhuAoFgjBhJj39/3/uxoKioiIqKCrZv365kAdzd3bFYLFgsFjSaR/tzH22ZwN5JsCAxgrjQ+lF3OpSWlmI2m4mPjx/xNUBvVsDb21sJlFzh6tWrqNVq0tPTHR7X6XQ8/fTTzJs3jytXrnD9+nWampr4y1/+woIFC1i0aBEZ1+/zzP+5RK3hm4zMo86HEAjGC5EZEAjGiMc51c6eFYiMjHSop9t38kbjo43VtdlsGI3GUWUGGhoa8PT0xNvbW/H271+wcKXTobCwED8/v1EZF5lMJpeFg3a6urq4ceMGaWlpgwZBHh4erFy5kl/+8pfMnj0bSZK4du0a//h/P+JoRxS1Bsfjv03tiEAwEkQwIBCMEfYe/8Eq85IE8aHjM9Xu3r171NbWsnz5cofF1N4S96ilgkcZX9zXhnjh1GB270onxM1RhT9cp4Msy+j1euLi4kalfSgoKMBoNI6oRHD16lVUKhULFiwY9lgfHx/Wr1/P3/3d3zF1aiznO0KwIdM/7Pm2tCMCwUgRZQLBuDMSt7lHcaZ73Nh7/F99NxO530LwqD3+Q2Gz2Th37hxTp04lKirK4Tn74j1WwcBoygT19fUO17UoNphX/B9S3mFl/dZXXfp3bmxspLW1ddQlguzsbGJjY/H393fp+O7ubm7cuEF6evqIPnNgYCApy5+jtWBw8WBf7UhyuJ/L5x4vvs9/c4KxQwQDgkdiuBvJSNzmHtWZ7rvAvAhf1nk9JFueQk33N4/Hhnjx6w3Tx+Vz5Ofn09jYyObNmwc8N1bBwGgnFlqtVpqamkhNTXV4vLOzg6mBASxLDHXpPHq9Ho1GQ3R09IjeH6Cmpobq6mpefPFFl19z7do1AJeyAv153NqRkfBD+JsTjA0iGBCMmuFuJPae+/7ZUHvddPeudBbFBivncvXY7zK3bt0ixNbMif/yKlXdEg/Kajl/8jD/Zf3zxI7DzdVqtXLhwgUSExMJDx+4sjzuzIC9k6Bvnb+jowOr1er0egdDr9czZcqUUQ1JysnJwcfHx+WsgsFgICsri9TUVDw9PUf8fo9TOzISfih/c4KxQWgGBKNiOHOdy/oGl3vuvwv9+WOBzWYjMzOT5ORk/P39SQ73Y/P8eKb4aykqKhqX98zNzaWlpYVly5Y5ff5xawbstr32AUUADx48AHDZOKinp4fy8vJRtRQajUby8/OZPXu2y/bF165dQ5ZlFi5cOOL3Axe0I4yfdsRVfih/c4KxQwQDghEz7I1Ehl/uzXSp5/6//uYP/Orf//BY+/PHisLCQpqbm5k/f77ymCRJxMbGotfrx/z9LBYLFy9eZMaMGQ6LbV8kSRoTrwGDwYAkSUpw4SoNDQ14eXk57LDtY35jY2NdOkdxcTE2m21UeoE7d+5gNpuZM2fOoMf0nSNx82E9mZlZzJs3Dy8vrxG/H/R+5/+wNBKQnQQEvUvtPz6b8Fjr8o/bE0Pw3UOUCQQjxn4jGQwZaDK6dqPrsmkY2GjmnO9CjXUorl27RmRk5IBpevHx8dy8eZOmpiaCgoLG7P1u3LhBZ2cnS5cuHfK4sQgG7O6DI13A+nYS2KmtrUWj0bicgtfr9YSGhuLnN3KxXU5ODrGxsYO+1lmpy1+KJS3c+RAjV5BlmYY7l3k+wECeJp6ihi7luSmBHkwzFFCZ04Y17iWX2xzHmu+TrkHw7SCCAcGIcfVG4gp/+/p2ZODYH4a3bn3cNdahqKqqory8nG3btg14bsqUKajVagoLC0clSHOGyWTi8uXLpKSkDGutO1aZgdG0FdbX1zNlyhSHx9rb211W9cuyTFFRESkpKSN+7+rqampqanj55ZedPj9YzbxN9uDH+26ze5fHqGrm+fn5lJSU8NNXXiE2Npa7Ne3U9xHYlpREs2/fPg4fPszmzZtdDrDGUvX/fdE1CL49RJlAMGJcvZFEBngwsJDQS9+6aXywB0Ea0+DHjmN//lhx/fp1AgICnLrb6XQ6pkyZMqalguvXr2M0GlmyZMmwx45lZmAkWK1WmpubHUoY7e3tWK1WJk6c6NI5qqur6erqGpVeIDs7G19fX6fliPGqmRsMBk6dOkVycrLiiZAc7seyxFBlPsTUqVN5/vnnyc/P59SpUy69x1hPwnycnhiC7yYiGBA4pW8dtb+nenKYL7EhXgy30G+Pl76+2cj9nu+93f790kh6enr485//zDzpodNj7XXX8ejPHyva2tooKChg/vz5g4rU4uLiKCsre2QnQOhdcK5evcrcuXNdSp2PVTAw0k6CpqamAZ0EdiFlTEyMS+coLCzE3d2diIiIEb230Wjkzp07zJkzx+m/yXjVzL/88kusVivPPPPMkMclJyezdu1aMjMzuXLlypDHjsckTEmSeDVJhzNdg8T4eWIIvruIYEAwgOF2IZIk8VKcetDFG2Rem+lNbd5FntHp8ZccF6IwLxUvBNVQcu0Ef/7zn2lqaiJc3cFqbeGAY0PdbGz0rWDOJO/x+riPTFZWFm5ubkOmsuPi4rDZbBQXFz/y+127dg2bzcbTTz/t0vGPKzNgn0nQNxiwf35XgwG9Xk9sbKzLnQB2bt++jcViYfbs2c6vbQQ1c1cpKysjNzeXlStX4uPjM+zxqampLFmyhK+++oqbN286PWa8Mhj5+fmUZp7m76ZLxIY6/m2Fe6uGdIMU/DARmgGBA670Hs+a6E59/iVWa93JskbRYvtmkfCXekjXlFN05Sa+vr7Q3s4bYbXoG7tJmjOfezevkxziz7JlS/n444+V14WHh0N1Na/6llHeYWXjSzuZ6OfBJE+Zd955h5MnT7Jp06Zv62twGaPRSE5ODvPmzUOn0w16XEBAAMHBwej1eqZNmzbq9+vq6uL69eukpaXh7e1agOTm5jYmmgFX6/x26uvrB3QS1NbWolKpXMpodHR0UFNT49Cd4QqyLJOTk0N8fHzvb9AJY10zt1qtHD16lMmTJ4/I8njJkiV0dXVx9OhRPD09SUxMdHh+WLHuKNwM79+/z+eff86sWbPYuHEtfw+KriEv8yKexhYWTn3W5c8g+GEgMgMCBVd3IV9+eabXNEbdwY8n1bNBV8BKrZ4/bozkJd9iwtUdyLJMe3s7Wq2Wzs4OglQG1qZEEeZupa6uloyMDOXc0dHRVFdXo9VqMRp7mOQpsyJpIsnhfvj7+7NmzRry8vK4f//+t/l1uERubi5ms5m0tDSnz/ctt7hPjKWwUP9IvduXL19GpVKxaNEil1/zuMoEDQ0NDnoBWZZpa2vD19c14ZtdY+FqC6Kdqqoq6urqhlyUh6uZg8xED5mEUNfaC69cuUJTUxPPPffciFLrkiTx7LPPkpSUxKFDhygtLXV4fqwzGMXFxRw6dIikpCQ2bNiAJEkOuobls+Opqammvd15eWSo8qHg+40IBgQKrtZRz90qVG4Cnp4eBKkMRKjbmKAz4+Xl2C4WFRWFyWQCen3bAwICkGVZWZx8fHwoKysDYPbs2VgslgG7xlmzZhEfH8/Ro0fp7u7mu0JfkyFnO9D+5ZZ/y7awtyWaI1kPRvV+7e3t3LhxgwULFoxoYX5c3QT92wrb2tpGJB7U6/VERESM2AUwJycHPz+/IU2N7HMknGpaJFBJEnPkIvbs2TPsb665uZlLly6xYMECJkyYMKJrBVCpVGzevJnIyEj2799PbW2t8txIMxhDLdZlZWXs37+fmJgYnn/+eaell7i4OFQqlWIM1ZexFjEKvluIYECg4HLLoEdvutjLywubzQaAp6cn2dnZNDc3OywaJSUlSJKEWq2mtrZWqSPLskxwcDAvvPCCcsOyLxL9+9IlSWL9+vXYbDaOHz/+SJ9xLLl//z6tra1O2wUHE321yu68lVE8KtHXxYsX0el0I06bu7u7Y7FYsFqtwx/sBHvwNpJgwGKx0NTU5PBvad/19m81HOz1JSUlI+4i6OnpGVI42Jd5Eb4861E8QKcSF+LNnjfS+f9ef56GhgbeffddGhud/3vJssyxY8fw9vZ2qbNjMDQaDS+++CKBgYHs2bOH5uZmoDeDERM0eFcOyET6aUia6DPkYl1dXc2+ffuYPHkyW7duHdTfwMPDg6ioqAFZuPEQMQq+W4hgQKDg6i7EXe5Bo9GQlJSk7Jo0Gg01NTU8++yzyqLh7e2tBAseHh7s379fSaFKksT27dvJyspSHsvKygJwurvy9vZm7dq1FBQUcOfOnUf7oGPE9evXiY6OJiwszOHxocotIGFDHrHoq6WlhdzcXJ566qkRuwA+6nwCewfESLIRTU1NyLLsUCawdxK4EgyUl5djMplGHAzk5eVhs9kGFQ72JTMzk1C5hf+WIvNKQBlvzXbj2C+e4tRbi1k4NZjIyEjefPNNNBoN7777ruKc2Jc7d+5QUlLC2rVrh9SMuIKbmxvbt2/Hzc2NPXv20NnZSU9PD/OkEiScWXP1dgIkdRfw63f2D7lY/+avnxMaGspLL7007HyHxMRESktLld+LsC5+MhDBgEDBlTqqv2TA09iC2WwmMTGRrq5ed7X29nY8PDzw9fWltbUVSZIUMxxZluns7HS4CdnrxwUFvTeRpUuXKunRwUx0pk+fzrRp0zh+/DidnYOLqsYbWZY5m1vI1dJ2QuJmD7gJDlduAWnEbWvnz5/H09NzwPQ/V3jUYGA0EwuddRLU1NQgSZJLLoyFhYX4+vqOKO1uFw4mJCQMq+Y3m81cvtxrdLVy5Qq8La3Mj/RWvADsBAQEsGvXLiZPnsyePXvIzs5WnuvvKTAWeHl5sWPHDsxmM7t37+bgwYMEWZr4z23JA1T//lIPLwTV8NbLz3K0xgObLDtdrG2yzFXjJF5++WWXAsmEhARsNpui2RDWxU8GIhgQKAxVR7XvQtI15ahUvUdcuHBBWWC8vb2xWCycPHkSgBkzZlBeXu5wBqPRiNVqVRaV06dPo1ariYmJYfHixWg0wze3rFu3DpVKxdGjRx/LTsSeit11QM8Zcxx/e6RiQN10rEVfDQ0N3L59m8WLF49qat+jBgOjmVhYX1+Pt7e38hpZlmltbcXHx8elNkF7S+FIxHgVFRU0NDS4pOa/ceMGJpOJxMRE/Pz8MJvNgwY77u7uvPLKK8ybN49jx45x8uRJbDYbZ86cwWKxDOspMFL8/f159dVXaWpq4uHDh2zevJlnZ0/h9FuLOfaLp/jrj1I58vOF/HhSPd5d1Ry7mkeTRcfgtt4SjWYtD1vNLr2/n58fYWFhim5gPNowBd89RDAgcCA10o/nvEuZ4O640PpLPWwLqVc6BYKCghx258nJyZjNZtra2nB3d2ft2rVOF66IiAhiYmLQaDRUV1djtVqZP38+PT09WCwWAM6ePauIDvvj6enJc889x4MHD7h9+/YYfvLhcbVuOtZta+fPn8ff33/IYTtDMZpgoK8Q7U5lK7I88sxA3xKBfZTxYAOV+tLU1ERzc/OIBxPl5OQQEBAwrIeBfcATwMqVK12ayKhSqVi7di3PPvssWVlZ/PWvf+XmzZusWLHCJU+BkVJbW4vVakWlUpGbm4vNZnNQ/c+YHMC2bb21//tltcOfkJEt1gkJCej1eiwWi7AufkIQwYDAgYKCAoIsjfznc+Fs0BXw27VRbNAVsElXgE93tbLA22vCdnJzc5X//dRTT3HixAnMZsediFqtpqKiAo1Goyz8gYGBxMbGKiUCrVZLe3s7J06cGPQaExMTmTlzJidOnBi0BWqsGUnd1BWHxgCVwaW2tZqaGu7evcuSJUtGPdRmpMFAfyHajz8rIcOUTF6tweX3bGhoIDj4G9OaiooKwDWzIb1ej1qtdklbYMdgMFBQUMCcOXOGzSZkZ2djNBqJj48nKChoRJmPtLQ0XnrpJaqqqtBoNCNue3SFyspKjhw5QkpKCtu2bePBgwdOM2EhISGsXLkST8l54NyfkSzWiYmJmEwmSktLCVYZCFQb+T7bhQuGRwQDAgVZlsnKyiI2NhatVkuQysBUjx6CVAYkqddYpW+at7W1VXlt3xvpgwcPyM/Pdzi3j48PNpuNwMBACgoKlMdnzpyJJEnU1tYq9eR169Zx69YthwCjP2vWrEGn0/HFF198K+WCkdRNbTYbT3vWOhV9SVLvf2nq8gFlFGecO3eOoKAgZs6cOeprt9eJXQkGhuqCeGPPLZdU4xaLZcBMArvzYGRk5LCv1+v1REdHj0iQl5eXhyzLwwoHrVYrFy5cAGDVqlUALmUG+lJXV4csy3h4ePDee+9RWVnp8nUOR3t7O5988glhYWGsW7eOhIQENm7cSG5uLmfPnh1wfHp6OnOmTMBfMjCWi3VoaCj+/v7cuHGDDz74gDUh7agkif5xlrAu/uEgggGBQmVlJTU1NaSlpdHV1YVWq+XcuXMOgr6WlhanfeL2HbokSVRUVCjBgf0Gm5aWxqpVq2hubna4adgzDbW1teh0OgIDA5k1axYpKSkcP36c+vp6p9fq4eHBhg0bKC4uHtTKdSxxtW5a197DkSNHUDXo+d26KGKCHXvkpwS6s3tXGgn+DDu4qKKiAr1ez9KlS0dsx9sXSZJc8hoYrgvCVdW4PWvUVzxYXV0NMGyZwGg0UlpaOiJBnl04mJSUhJfX0NmW3Nxcenp6iI2NVTIXIxFINjc3c/HiRRYuXMhPfvITAgMD+eCDDwYEv6PBbDbzySefoFKpePHFFxUNzaxZs1i1ahWXL1/m+vXrDq+RJIlp05JI15SP6WwPSZIICQmhsLCQSZMm8S8/fZndu9KJDeknYlQZ+OOLycK6+AeACAYECllZWUravru7G0mSsFgsLF26FOi9QciyTE1NDUlJSQ67PPsCIUkS4eHhSpdBT08PKpWKnJwcUlNTCQ8PV0oEkiQpvee1tbXIskxAQAAAa9euJTAwkIMHDw6qH4iNjWXOnDmcOnWKlpaW8fhKFFytm5Y/yCcvL49NmzbxwlMz+PDFODboCngrRccL3nr++1wVi2JDiI2NHTIYkGWZs2fPMmHCBJKTkx/5+l0JBsZKNW4P4OwLv81mo7W1FS8vr2EFkCUlJdhsthHpBcrLy2lsbBxWOGiz2Th37hzwTVYAXM8M9PcU8PLyYufOnSQnJ/PZZ59x/vz5UWepZFnmyJEj1NfX8+KLLw6wml64cCELFy7k1KlTDlqZoqIiTp06RVqUn9PZHr0dB7WkRrpmVWwnMzNT+X0uXrwYNzc3FsUGO4gYP/9JGtsDymi6e1W0Ff4AEMGAAOj1gb979y6pqalIkkRjYyMmk4klS5You1L7H7wsy6xatYqwsLABHQBubm5UV1c77NBUKhWtra3k5OQo9qf28xQXF9PT00NDQwMmk0kJBrRaLVu3bqWtrW3IzoHVq1fj6enJ4cOHx/WGNG2iDyE6C0OlYiN81ZTmXmHlypXMmDEDgMbGRoJUBpYlhrIwKcuOIAsAACAASURBVFJRaMfHx9PU1ERTU5PT8z18+JDS0lKWLVs2JulXV4KBsVKNNzQ04OPjoyyu9umFrogHCwsLCQ4OVn4HrpCdnU1gYCDR0dFDHpeXl0d3dzcxMTEO19LT04MkScOWJZx5Cmg0GjZt2sTy5cu5cOECn3322QCtjCtcvXqV/Px8NmzY0DunwwkrV64kJSWFw4cPo9frKS8v55NPPiE2NhYPDw8maTrZ6lXIFq9CfhTdzf4fzWKLx318uqv58ssvXboOWZY5c+YMJ0+eVJwu+watfUWMs6NDWLduLYWFhdy7d2/En1nw3UIEAwKg94aqVqtJSUlBlmXKysrQarWkp6eTnZ09YNd0/fp1Ojs7HRZgSZIwGAyK/0B4eDiBgYFKzfr06dNUVVU59DpbrTbe+eQo5RZfmmweDsNwgoODWb9+Pfn5+YOWAtzc3Ni4cSNlZWWKadF4cO3aNebIxb06ACd1UwlI7rlHenoaCxcuVJ6zZyyCgoJITEykrq6O5uZmYmJiUKvVTrMD9qzApEmTRqyoHwx3d/dhxyePlWq8vw2xvaYeFRU15OtkWaaoqGhEJYLu7m7u3bvH3LlzhwyabDYbX331FdAbQPbFbrU81OuH8hSQJImnn36arVu3cv/+fT788MMR+WDo9XrOnDnDU089pQSRzrA7ccbGxnLgwAH27t3LpEmT0Gq1FBcXs3nzZtzcdCRN9EFVe5eOit7foyRJ3LhxY9jZHlarlcOHD3PlyhVWr17N6tWrSUhIcGpNbCcxMZGEhAROnDjxyJbXgseLCAYEWK1WcnJymDVrFu7u7ty5cweDwUBERASNjY2UlpYqGgB7JuDGjWxySuopNXnTZPPA3d1DCQzsN50VK1bQ1dXF/PnzWbVqleJG2NPTQ1RUFNVWHzJMyfz+vgdnzHF8YUrmx5+XOfTsz5gxgzlz5nDixAkHz/a+TJkyhbS0NM6cOTPoTvtRuHfvHmfOnCFc3cFv1kQMqJuGuFlY41bE8uRJPPPMMw6Lil1k6e3tTWxsLBqNhnv37qHT6YiOjnYaDBQWFlJVVcXy5cvHTJTlSmbAbjr1qEK0+vp6h2Dg4cOHwPDiwZqaGjo7O0cUAN26dQtgyPHR0Duyt6uri+jo6AFGRq4MYXLFU2DatGm89tprtLW18e6771JXVzfs9Tc2NvLpp58SHx/P8uXLhz1epVKxfPlybDYbJpMJNzc37t69y5YtW5gxYwbr16+nqqqK5ORkrl69ip+fHxqNhoCAAL744otBu29MJhP79+8nPz+f559/Hp+oaZy7X48mJJqGhsZB7Zjtg5ZMJhNfffWVGGT0PUYEAwLu3r1LV1cXaWlpGI1GTp8+jU6nY8KECWRlZeHm5qbscC0WC92+EXzWk8THLVHKIv5xWwzNWkcRkclkwmg0EhgY6NBmBpBfb+K0OZ5W2THj8LDJMMDrfM2aNQQHB3Pw4MFBd7crVqzA19eXjIwMJegYC6qqqvjss8/w8fEhKCiIbYtncvqtxbyVYGBHZAf/kq5jLbeYM8mLzZs3DxD62W++np6e6HQ6YmNjlZRqXFwcpaWlDp9JlmXOnTtHdHS0S214ruJKMCBJEjuT3Z0P70F2STVusVhoaWlxSMNXVVUBDDugSK/X4+bmRkRExJDH2ekrHBxqmJEsy0pWwNliPtzchfLycpc9BSZNmsSbb76Jh4cH77//PoWFhYMeazAY2L9/Pz4+Pjz//PMuBX7t7e18/PHH+Pn54e7uTmFhIatWrVLGYickJJCSkoJeryc5OZnTp0+TnJxMW1sbarWazz77bMDfR1dXFx9++CHl5eUkLd3E359pVtpKf36kkgxTMp9dGdwC3M/Pj2XLlvFF5gOW/e4rMcjoe4oIBgRkZWUxZcoUQkJCuHjxorJo6HQ68vLyMBqN+Pv7o9FoqJcCOFAfOmARb5Xd+aKjd7dvf+2hQ4eAXkvXc+fOKQtEZGQUF7smfL3cON4AnXmd2/UDnZ2dHDlyxOluQ6fTsXHjRiorK7l27dqYfC9tbW3s37+foKAgOjo6WLBggaJ5iPJTE6XtpPXhHSSpdwyzM3FcV1cXkiQpzyUlJVFVVUV7eztxcXHYbDYHz/uCggLq6upc2iWOBDc3t2GDAbPZTH3+ZVZrCwnzdPx3CfOS2P1G2rCq8cbGRodOAqvVSmtrK+7u7sPuvvV6PVOnTnXZT6G0tJTm5uZhhYMFBQV0dHQQGRnpNCAZKhiwWq0cPXqUSZMmMW/ePJeuy8/Pj9dff50pU6awf/9+rl+/PuA3a7PZ+PTTT+nq6nLZJri7u5vdu3cDvYGkPaNx8+ZNh8mKa9aswcPDg/b2diIiIrh79y4eHh6EhIRQXl7OpUuXlGNbWlp4//33aWtrI3nF8/zqRLnTttJ/v945ZFupOSiG0+Z4Slscf2MjGWQksgqPFxEMPOFUV1dTWVlJWloaDQ0NXL9+nUWLFmEymaiqqsJqtRIREUFHRwfh4ZO40hPudBG3t55lWaOQ5d6bqF1EePToUWprazEajb2OaqX1NJg0Ts7RizPVelBQEBs2bKCgoMDBH74vkZGRLFy4kHPnzg3akugqRqORffv2odFoCA8Px9PT06HXX5Ik6uvrsdlszJgxg7y8PKdTAbu7u9FoNMquLz4+HpVKxb1795SMiX33aLPZOH/+PHFxcS7vjl3FlcxAZmYmnZ2dxPna+P3qYDa63eX9H81jm28x//60t0vtY/bv3R4MNDQ0YLPZBkyi7E9XVxdVVVUj0gvk5OQQHBw8pBZBlmVFPDdYin+oMsHVq1dpbGxk/fr1IyrZ6HQ6tm3bxoIFCzh16hTHjh1Tfh+yLPP+519yQd/I7OXrXRJLGo1G9u7di8FgYNq0aWRlZbFy5UreeOMNuru72bdvn9J14+bmxqZNm6ioqGDKlCl4enoiSRIPHz5k9uzZXLhwgfLycmpqanjvvfcA2LVrF3+4UjtkW+k/H853ukDLssz/OHoPnDhruDrISIxHfvyIYOAJJysrC39/f+Li4jh58iR+fn7MmjUL6DWK0el0zJ49G6vVSrvah1bZg6E80Fts7jTLHr3Hf50ir66uRpIk2trakCSJbtk1M5n+qvXk5GRSU1M5deoUNTU1Tl+zbNkyAgMDycjIGPXIXpvNxqFDh2hra+P555/nzp07zJs3T9ndW61WSktLsVgsbN++naeeeorOzk6nimqj0eiw63N3dycmJkbRVcTFxVFUVIQsy+Tl5dHU1MSyZctGdd1DMVww0N3dzeXLl1GpVMybNw+r1UqYu5VlCaF4m1uHTMP3pX8ngb1EMJx40K6dcDUY6Orqckk4eP/+fdrb25k8efKgKn2DweB0Z273FFiwYMGIBibZUalUrFq1ivXr15Obm8vevXs5W1DF4t+c5n9mW/jSFMfffPZw2EXPYrGwf/9+mpqaSElJ4dq1ayxevJhFixYRFBTEq6++SkNDAwcOHFB+89HR0cyfP59Lly6xevVqTCYTWq2WlpYWIiIiOHDgAH/961/x8/Nj165dVPeohx2uVdzYzblbeurr62lra6OnpwebzeZ6S2q1c72CGI/83UAEA08wXV1dykL34MEDiotLiEtbxtn7dTTZPLDZZMXYx8vLi/yiCpfO2y3rWLRokUP93L4r8PT0fCT71NWrVxMaGsrBgwedLm72Vq/a2lplKt1IOXnyJMXFxWzdupXy8nJsNpsyLVCWZY4ePUp7ezuenp5MnDiR0NBQoqOjB3QzWCwWLBbLgF1nYmIiZWVldHV1ERcXR2dnJ5WVlVy4cIFp06YNGIk8Fri7u2M2mwcNkC5cuIDVasVmszFnzhxMJhM6nQ6TyYQsyy678/WfSVBWVgb01tKHQq/XM2nSpGFNg+zk5uYiSZISuDqjb1ZgzZo1gx7nLDMgyzLHjx/Hy8uLJUuWuHRNgzFnzhx27NhBdkUHb+zJpaLdsfVwqEXPHphWVlaSmprKlStXmD9/vuL9ARAWFsZLL71EaWkpGRkZyt/aihUrCAwM5Pz582zZsgWz2czDhw8JDQ2lq6sLnU7Hzp078fLycrmtdN/nx/njH//I73//e37729/yb//2b/zHux+59Nrf//mv/O53v+Ptt9/mww8/5PPPP+fMmTP814M5YjzydwARDDzB3Lx5E0mSmDFjBn85cpHjzOZnh8v5hy+K+cKUzBHrTBrVQdy7d4+uri78XbQ295RMXL16VQkG+gYFHR0dBKl6hrZPBfwlA7qugal+jUbD1q1b6e7uHtSKODw8nKeffpqLFy8OmkEYjMzMTG7cuMG6deuUBX7GjBmKCcz58+e5desWCQkJDjvStLQ0KioqHN6vo6MDYMACl5iYCPTuWjs0/tSqgtl/6gptbe0ON/mxZKj5BM3NzWRnZ+Pm5kZiYiK+vr7KTnKkEwsHayscKsCxWq0UFxe7nBWQZZmbN2+SnJw85HXp9XpaWloIDw8fMhhxphm4c+cOxcXFrFu3bkS2yIMRFRXFbW2CyzoZ6P2cX3zxBXq9nvnz53PlyhXmzJnD6tWrB2RDpkyZomSxTpw4gSzLaDQaNm/eTH19PZWVlUpAlJ2dTVRUlLIZANfbSrdvXseuXbvYvn07W7duZcOGDSxJG9oC2o6XykJ3d7fSoXT79m2+uHSTynaLGI/8HUAEA08oNpuN7OxsZsyYwUenMslonUyD0VG41WzR8dqH2VSaexczb3PbkIs4yPhLBgIlA7IsK7vQ/upltVo1pH0qyDwfZeXTTz912tIUEBDAxo0buXfv3qDeAosXLyY0NJSMjAzF8XA4CgsLOXXqFAsWLGDu3LncvXuX9vZ2FixYAPTWqC9evMiKFSuIiIhwMJdJSEjA19eXGzduKI/Zg4H+CnQvLy8sQVP52ZEqNvznVU50R/N2sQ/HpTno28fH332oYOCrr77C3d2drq4uRSRnNpvR6XQj8u03m800NzcrwYDFYqG1tRWNRoOv7+DtiBUVFRiNRpeDgZKSElpaWoYUDsqyzKlTp4DBtQL24/oHA3ZPgWnTpo1IwzAUeRXNlLYYcVUnI8syJ0+eJC8vj/nz53P16lWmT5/OunXrBi2LTJs2jXXr1nHjxg1FJBgWFsaSJUu4dOmSwwyFyMhI5s6dy8mTJ6mvryfGXzukqZb9b/vetTNIkkRsbCzTpk1j9uzZrE5NIlhrHvS1EjJxod7873/+B/7pn/6JX/3qV/zyl7/kpz/9KXOfck0oK8Yjjz8iGHhCsddS4+PjeTe3DbtIqC/2HUumJRJZ7u0zH84DPV1TjiT1Cqj679r9/Pzw8/PDarUS52vjKZ8mVP3Oo1VJpGormTXRHR8fHz7++GPFO74vSUlJpKenK0ZG/VGr1WzatInGxkZlMM1Q1NbWcujQIeLj41m5ciWyLHPt2jWmTp1KaGgohYWFHDt2jHnz5rFo0SK0Wq1DMGCvtefn5yvKbrtmws/P0Qr2SlEje6r8qTc6/vnVG6Rxq5EOFgxUVFRw9+5dAgMDHcb/2oMB+3fvSmbAHrjZywT2gT6hoaFD1vULCwvx9vZ2uTySk5NDSEjIkCLLkpISmpubmThx4pD+Bs7KIHZPgaFKCyNBlmWOnrk0/IF8s+hdvHiRrKws0tPTyczMJD4+no0bNw47o2LevHksXbqUc+fOkZOTA6A4Cd65c6d3yqGnJ5cvX2bu3LkEBATwySef8N5777FAV+l0GJH9b3u+toLW1hbee+899u/fT11dHXfv3uUvf/kLT3nUDBHcwzLfXiGpWq3G3d2d5ubm3mu8PHD4kjPEeOTxRwQDTyhZWVlERkZy9MotWmWPIYVDrbIH7ere3W24uoO1ng+deqCv1hYSru7dDdtv/n1LBW1tbbS1tfW2OJk8udwRhK3fTslig2xLBMdziklKSsJgMHDw4EGntW67JfKhQ4ecBgwTJkxg6dKlXLlyZcjJch0dHezbt4/g4GCef/55VCqVoraeP38+VVVVHDp0iISEBJ599lkkSUKj0WCz2RyyHnPmzEGWZWXaoj0Y6JsZ6DsMaLTK69HgLBiw19RDQkKorq52EOP1LxO4khloaGgAvukksA8nGq4zQq/XExsb65Jav6Ojg/v37w8rHLRnBYZb0PuXQUbiKeAqV69epb5scL+BvoT6upGZmcn58+eZO3cuN2/eJDo6mi1btrjccrl48WJSU1M5duwYeXl57N+/X+nkaWtr48UXX0SWZfbu3UtqairNzc10dXXxLz99yfkwIqmHV8KaSPDvDRJTUlKoq6vjnXfe4eDBg4SGhhJsbWKNW5HT+8IzOj3W6nvs37+fa9eu8fbbb7N7925qamqYoLOM+cRFwegQwcATSF1dHWVlZURERHC/zLmrX3/azd/8VEJtzWzSFbBBV8BKrZ4NugI26QqUQABQjHQmTJhAUFCQw9z3+voGLg3jM3Bbm8DFi5eYP38+ZWVlnDx5csA1qdVqXnjhBXp6egadTbBo0SLCw8PJyMhw6hlvMpn4+OOPkSSJl19+WakPX7t2jZCQEAICAti3bx8TJ05UAgX4Ztpi33N6eXkxffp0srOzleE89sftjNUwoJHiLBi4f/8+FRUVREREIEmSw/hfu4BwJBP96uvr8fX1VZT5FRW9gtPBVPzQ2+fe2Njosutgbm4uarV6SOFgaWmpImQcrouh7+fr6ykwnHeBq9ithtc/NZtQNyvDLXqWhlJOnjzJzJkzuXPnDmFhYQ4TDF3B7goYHx9PRkYGFRUV7Nixg2eeeYYbN25gNptJSkqiq6uL48ePExgYiNFopKGhQRlG9HpYLT+bBv+SrmOTrgBdS6midbl16xZms1mZ51BRUYEkSUyU2vjXNC0/mlCt3Bd+GtnEJE0narWaoqIiTp8+TWBgIFFRUbS3t+Pl5cl8bQUqSRrw3UiSGI/8bSKCgSeQzMxMfHx8KCgoIG7y8MNjAKUDQKVS4e/vjyRBiMZIhLqNIJUBtbpv5wA02TyosPpxp6qVxsYmpZfe3b239bDF5s5Q9dOabvCPTuby5cssWrSI7Oxsh3q8HX9/fzZt2sSDBw8GjHe1X+/GjRtpbW0dMA/eZrPx2Wef0dTUxMsvv6zsBJuamnjw4AFz5sxh7969eHh48NJLLzmYCtn/d389QlpaGq2trej1eiUY6NuWN1bDgEaKfYG2BwNWq5UzZ84wdepUHj58yLRp0xyu02w2K5kBrVbr0q60fyeBPRszlPNgYWEhKpXKJbdFm83GzZs3mT59+pDBiT1wdCXN3zfzYfcUeO655x5pZLSdvlbDsiwzRy52moa3L3pvzPbl8OHDJCUlUVRURFBQEK+88sqwkx6d0dzcTF1dHWq1GlmWcXNzIzU1lZiYGDIyMhy+v5iYGBITEzl8+LDS/hus7iElVMOr65aiVqvQaDTcvHkTnU6HSqVSZo+EhISg1WqVvwONRo2vtV25LxiNve2HZrOZkJAQVCoVxcXF1NfXExkZSXt7O798aQ1/2T5rQFYhLsTbJaMrwdgggoFx4rvqpmUwGMjPzyc4OJj29nbmTAlxWRQIvTdke/q77w3Tni63zxv4wpSsWBVnmJJp0gSzcuVKEhISwN21carJqQsJCQnh1q1bzJ49mxMnTlBcXDzge01ISGDBggWcOXPGaTkgJCSEFStWcP36daXVDXprw4WFhWzZssVhwcrMzMTT05Pbt29jMpnYvn37gD57+06tf7bBrlzPyspysCK2ozZ3ufTZx7pGKkmSgwthTk4Ozc3NJCYm0tLSMsBdr29mYDSdBGazmZaWFlQq1QAr6r7o9Xqio6NdcuArLi6mra1tyF17eXk5dXV1BAcHM2XKlGHPaf8+enp6FE+B4WyTXcFgMPDxxx/j6+vL1KlTuXbtGq89u8BpGj4uxJvfrYtEf/kYMTExVFZW4u3tzfbt2136XvpTVVXF+++/j0aj4Sc/+QkTJkxgz549NDc3s3btWrq7u8nNzSU6OhqVSkV2djYRERHodDo+//xzbDYbFosFtVqNVqtl+vTpXy/2EjU9aiptfsxZsYGamlqqqqqUTo3Q0FBu377tMKTJYrGQmJiIJEmKAZUsy0iSREVFBVu2bCEpKYkJciubdAUc2DWbTQHVPO/5gFNvLRaBwLeI67kngctcKWrkX48UoO9johEX6s2vNyQ/9h93bm4usixTXl5OYmIiV69e5SmPAI51xyAj47hb/0YUqFJ9M3bYy8uLzs7OAbviWtmP0+bYAWFFq+zOkc4oTKezCFO1g80DmDzstYYHeDH/pZd49913qampwRoSywvv3/o6q9CL/XtdsWIFFRUVHDp0iJ/85CcDFrD09HTu379PRkYGP/vZz7h9+zbXrl1jzZo1Dilqg8FAbm4uvr6+NDU18dprrzl1iHNWJrCTlpbG559/rlyDp6cnVquVixcvcunSZYI002m26JyGX9LXn2k8aqR246Genh4uXLhASkoKxcXFhIaGDqjr980MuNpJ0NLSogQD9hbLoKCgQXfZJpOJ0tJSVq5c6dL15+TkMGHChCHbBEeSFYBvygRnz54dE08B+MZquLu7m2effZbDhw8zd+5c0tPTkSSJ028t5m5NOxmnzmHtaOaNLSl89NFHTJo0icbGRrRaLTt27HDZ6KkvRUVFHDhwgAkTJvDyyy/j6enJK6+8wvvvv89HH33kMJ1x5syZ1NbW4uvry5kzZ1i9ejWnT5/m0qVLWK1WJeBNT0/nZO5DMo2RX5uOwalj1fhLiSzxroPSUqBXKNu3+0eSJNRqNTNmzFAmH9q9OUpKSggODla6NYqLi5kwIZS0uHCKI7wpLKxWBjEJvh1EZmCM+S67adlsNm7cuIG3tzfu7u7o9XpUKhUhthZWawuHFAXKsoyHhwdvvvkmr7/++gB7WVmGa6bJQ1oVXzdHoFZrCJQMBGlMQ/gYfiMa8vHx4eWXX+Z2vYmPyn1psTneHOzf6/WHLbzwwguYTCYH4xU79nJBV1cXn376KcePHyc1NZX09HSH427cuKH46W/btm1QhftgZQLobfHy8vJSFpqWlhb+/Oc/c/nyZRYvfprf71g06DAgkMetRmoPBq5cuYLJZCI1NZUHDx4wb968Ae9nzwy4MtEPBhcPTp48eND38OHD3s4SF9r32tvbKSwsHFI4WFVVRU1NDYGBgcOWHeyZu2tl7bRJPhQXl4yZp8CXX35JSUkJzzzzDCdOnCAqKkoRnkLvIpkc7sdzc6Ygt1Swd+9egoKClB31zp07FV+LkZCXl8fHH39MTEwMO3fuVIIJT09PVq9eTUdHB42NjezYsYNp06bx5ZdfkpqaSmNjIxEREVy4cIF58+Zx4cIFjEYjarWa4uJifvNBhtOhYm395pFUVVXx9NNPA72ZMx8fH9ra2jh48KBSgjMYDJSUlLB48WLa29vZu3cvPT09FBcXM3XqVOAbt8rSr4MMwbeDCAbGkL5K8e+im5a9jt3W1pteN5vNSnp/sraL43+3kP/7bBgrtXo2ud9zEAW6ubnR3d3N/v37efvtt+nqckx3N8sew1oV27sS1q1b27sgSjDYN/Xf1sQpN88JEyZwR5c4rGGLr68vmzdvprCwkKtXrw64gsDAQObPn09hYSFhYWEDdo9Wq5UrV64gyzLr169Xbk7OGCozoNFolDkGkiTxwQcfoFar+Zu/+RuWLl3KzAluPOOuJ1jrGEhM9JRYrS0kMWB8/izd3d3p6Ojg+vXrLFiwgMLCQodr7UvfboLRdBLY2z2HEg8WFhYSGBhIUFDQsOfPzc0d9Frt9M0KDBVM9fXB/1+ZnXxmSOCENIcG1fAzAobj1q1bXL9+neXLl3P58mW8vLzYunWrU82FvXyi0WiwWCyYTCZ27typtKK6WmqUZZnLly+TkZFBSkoK27Ztc9AZ3Lt3j0OHDin1/bNnz7J69WrUajXV1dW9rqCennh5eVFcXMykSZMwmUwUFxeze/cerpsm43zugKS0HkdHT6G7u1sZ26xWq5USjL0kqVKplM8QERHBjh07qKur44MPPqCjo0MRGdszdUVFRaP7RxCMChEMjCGPSynuKpmZmWg0GrRarcOUM4DXXnsNg8FA9te9yf2NgoKCgpAkic7OTmRZ/tpH4BuhYJ3NtZ1MaFQc8+bN4+n4UD58PZUAlaNQLibIg+e8HlKaeVrZdRfUtFPWasIVw5a4uDgWLVrEV199RXl5ucNxnZ2d5OXlodVq6ejoUAa72Dl69Cgmk4m0tDRSUlKG/ByDaQbs2HdCsiyzfPly3nzzTcXf/sKFC0z1svBGWC3/z3QzmwNr2OZTzC/jOpms7VJ8+scad3d3qqur0el0LFiwgJs3bzJz5kynqdi+PgOuZgb8/PwGdBIMVn+XZZmioiKXsgJ9hYODpY1ramqorKwkICDAoXOlP4Nl7up7VI+cuausrOTo0aPMmjWL4uJiuru7eeWVV5x+f52dnXz22WdIkoTFYqGzs5MdO3YQGBioXKcrg3vs5kRfffUVS5YscRA/2oOEAwcOEB8fz5tvvsn27duprq7mxIkTrFu3juLiYmVWxooVK+ju7lYW7LKyMqbOW0K9UT1s6/G8VRvZuHEjhYWFyDJUG1TUEEgLXqSmpjJ9+nTlniJJEp9++imBgYHs3LmTpqYm4Bt/Cvu9xpl/iGD8EMHAGOKqUvzjjOMcPXqUq1evcv/+ferq6gZdVB4V++4iI1NPdnEtZrNlwHslJSXx9qEzbHkvl4/qwx2Ef/YUYHV1tXKTsNlsFDRaHISCmZahW7jslD/I58svv0SWZWI8zWzU3mGz+32lFem3S3z5f3dupKqqik8//RSbzTZiBf7y5cuJiIjg0KFDSgbDbDazf/9+bDYbO3bswGg0Kr3o0LtLvXXrFn5+fi7VmwcrE5hMJk6cOMHp06eB3h1S3zkNTU1N3Lp1i4ULF9LY2EB6/CTWzY7Gme3Z7gAAIABJREFUn04ePiwhKipq3IIBWZbp6Ohg6dKllJaW0tHR4XQsr31Ggb1M4Erd1i4elGWZ3NIG7jT3Bop9uwv6UldXp5heDUdRURHt7e1DjhC2ZwWeeeaZQbMC45m5a29v55NPPiEsLEzxqdi2bZuyuPelp6eHvXv3YjQa8fT0xGAw8OqrryrflaulRovFwqeffqrYZy9dulT57FarlS+++IKvvvqKxYsXs2XLFrRaLREREWzbtg29Xs+DBw+YPXu2MkHzxo0bPP300w6LsAHXyibHzl6mqamJOslfuS980T6ZjJ4kfnakitN5ZTz33HMsWbJEcX38j//4D3p6eggNDUWlUrFv3z4MBgOSJOHh4UlhQ/d3ToD9Q0YICMcQV/29g720VFVVkZ+f77A79fHxUZzgAgMDHf4bjZBmoJAxGX/JQLqmnEmaTtzc3DCZTHx1p5LT5nj677xbZXdOm+NZTaGDh0C11YfT5ngnuwX7IwNvxnZh3CsLFnPq1ClsNhve3t7odFpCJRP+JhP+/v4cP36czZs3s3XrVvbv38/Ro0cJiXfN+7yluhRTjD86nY4tW7bwpz/9ic8//5xXXnmFjIwM6urqeP311wkPD2fNmjV88cUXJCUl4e3tzcGDBwF47rnnXKrXOysTlJSUcOTIEbq6ukhOTqagoACr1crDhw+VGvaFCxfw9vZm0qRJ2Gw2wsPDCQ8P58qVK0Cv1XJeXp5Ssx9LamtrUavVzJkzh3379jF58mSnO3f7b1Kr1bqcGaivr4cJCaz+/cWvf2+9O/57b19zKpzV6/XodLphfQCgVzgYFhY2aMmhrq6O8vJy/Pz8hgwu7Jm7weibYUoOd63jBXp/A5988gkqlYrY2FjOnz/Phg0biI6Odnrsxx9/TEtLC6GhoYq2wl6KGS5ggd6A5YufpnHgwAEqKyvZtm2b4gEAvRMo7c9t3rx5QGklLi6OjRs38vnnnzN//ny8vLyUEcelpaUEBQXR1NREYGAgd3OuAYkMR03xfQ4USk7vC00WLV9KCez0i2LJnCAqKiqoqqrCYDCwe/duAGbMmEFxcTEffvghcU8/x4HOOBpMGg592NtO/F0RYP+QEcHAGJIc5ktcqDdFg5YKZPylHpLD/Vi8eD06nY7u7m6am5sd/quvr+f+/fsOBjFeXl5KYNA/WHB2s7bvLvoH1PYFfo26iIk9bQQEBJLRMHmQ65WQkcm0RLJJVYBKJeHvH8B54zTkZgPOhILf7LEkh7MA7Eh2Z/78dNRqNcePH8fX15fIyEhqamowmUy4u7uTkpJCRkaGMgTl8OHDkHsLf2na1wImZwu1TIjOyu2LJ3iQ+RXJycnMnj2bTZs2sW/fPj766CPKysrYtm2bsqCkpKRw79693vPTm/YPDAwcUifQl75lgp6eHk6fPq20a+3cuZO8vDylnS8rK4uYmBjq6+vJz89n3bp11NfXo1KpmDBhAmq1Gh8fH0wmE0ajEavVSklJicMN/lGx7649PDxoa2ujpKSEjRs3Oj22bzDgimbAZDJxt8nKl3VWZNn5bnb3rnQWxX5zI9fr9cTExAzrX9DW1oZer2fdunWDHuNKVgBG5vGQPLjUwQFZljly5Aj19fWsWLGCU6dOsXDhQgcDJztWq5UDBw5QXV3N5MmTqaioYOvWrRw4cIDi4mICAwNdDlj+11/24W7oFQP2tVtubGxk3759GI1GfvSjHw3q/jhz5ky6u7s5deoUs2bNIi8vD+gVG+7atYvf/e53NDc3Eyip8JcMtA3qUtp7T/O1dXLOkjyogNgmy/zyo8v88zw1UVFRlJWVERgYSHt7OxaLhfz8fKKjo8mp7OS3e27Rf2ka7HckGDtEMDCGSJLErzck8+p7mSDLXzfm2ZFRSRI/mRdAVtZ1bt++zapVq5gxYwZeXl5O/2gNBsOAQKGpqQm9Xu9Q8/fw8HAIFAICAvjH041Odxf2Bf6acTKbdG0UNRlosgy1A+2tCbZJ3gSreyhqMvDQ1MNQQsH+xIb68ExwGyXXTpLlL5GWlgbA8ePH8fb2VhYEg8HA+vXrMZvNHDp0qE9Ln0y6pvzrXYfz9sflfk387as/4969e+Tm5pKb+/+z997RUd5pvufnraSqUo4oJ4RACARC5JyDweRsgjFuh+vpnu49e/ee3bs70zt7d+7u7b0zPd3jgBNgg0kGZGNyBpEUUc4551g5vPtHuV5USELq271n59zme46Pz0Gl0ltvVf1+z+95viGHgIAAAgICqK2tJSUlhYSEhBdXKQisWLGCI0eOoFAosFgso24mgyGTyZDJZDQ1NXH37l1MJhMbNmxgxowZCIIgEaZCQ0MpKyujp6eHu3fv4uvrS3JyMj/99BPjxo2TioqEhARycnKora3F39+fsrKyv1gxYLfbuXnzJj4+Puh0OjIzM1Gr1SQmJg77eGe3QyaTYbPZRu0MtLe3S/kVrzrN3vj1YgRBQK/X09DQwIYNG0a99uzsbEnrPhw6OzupqanBy8tr1Ps11s7dn+Lx8PjxY/Lz81m5ciV3795l0qRJw0ol7XY7qampVFVVER0dTU1NDTt37mTixImEh4dTXV3NrFmzxlywdOpt/G+H33FR9VRVVUnM/f379w8riR2MuXPn0tzcTG5uLnK5HLvdjk6no7CwcNCjROap6rlmcnI7hpced6ORZIfDQ6DDouRpSS1uhmzAYYwESMmp1dU1PNBFDFt0DPc5eo2/LF4XA39hzB8fwMfbE/ifv892+XL4ykwcSFTz4dYV9PSkcPPmTS5evEhmZibr1q0bVsKm0WgICwsbVldtNBrp7u4eUixUV1dT22ejxjz8Qu+AY4PvEjVjngn22+T4YEUvji1vfl1gP5aeFtxlFv7Lv/sVKpWKmzfVXL16FaPRKLWHnYQ2cFgY2+12fHx8sNvtdHZ2olarMZlMhMr7WU0Zxe5Tqet5MVrxEYzMUdThZTBw69Ytdu/ezeLFi6murubhw4eSPOn58+dEREQwdepUZDIZFouFS5cuoVKpMJlMqNXqETec4eAsxjIzM4mLi2PDhg0ugUT9/Q45ZmRkpFQwlJSUsHnzZonFPbgATEhIID09HYvFQlRUFBUVFZI5y5+L3NxcWlvbiJq+gPzsArozilmRMm1EZztnZ8A5px2tM/CsrPGVG8HL7XfnaxuNPGi328nJyWHq1KkjjsmuXr0KMGys78tQDbTiJzfRZVMx7ChLcBgAjdXjwWk1PHv2bDIyMvDz82PLli1DrkMURa5evUpBQQHjx4+nsrKSbdu2OQy4cMQPP3v2DLvdPuaCZd+2DS6FQGZmJleuXGH8+PFs27Zt1PfMGcSVn5+Pu7s7Op0Ob29vKbERIC4uju7ubjQGA6vtZTyzRrq8z87v3tQgFUU9bmAe6a+9QNuAmYiXmkGiKJKXl0en/dUFxX/rGOc1xobXxcD/B5C1l7PHu4putHTqrSTGhDNrQgi3b9+mrW0WQUFB7Nixg+rqaq5evcrnn39OSkoKy5cvH7PRiFqtJiQkZEgRYTKZ+C8nLsMYVDkhsZPQdTTBGAjUoT5aAtUqbCYltI3++EitBXN/L+DQC0+cOJFVq1ahVqu5e/cuERERuLm5sXbtWqlVbzKZ+Oyzz+ju7mbGjBnk5ua6BMmEGvr59cZw7N6hnPnxGp5yO+vmTeX8+ULsdpm0OK9evRovLy9aWlqIiooiJiaGBw8ekJqayu3bt0lKSqKpqYm2tjZ27drFyZMnsdlsmEymMXnAFxUVceXKFex2O5MmTWLnzp1DNoC+vj7sdjuenp5Mnz6d9PR0AgICmDp1Kmazmfb2dhePg8jISDQajXQq7+/vp6WlZcxJfiPBYrHwzfVnPBZm0PrMBEwAC2QVqPCa0DHsDNZ5DU7292idgZqW7jFdi7P9Xl5eTkhIyKhBQGVlZfT394/oONjd3U1lZSUeHh5Mnjx5yM9FUXQoUVp7qMjPpLuqgNX+EZxpCxrSYfpTffDb29s5f/48cXFxNDY2YrPZXLItBuPOnTtkZmZKhcDGjRtdCs/x48dz//59mpubSQwNJdxTTkO/lZFGYnGBHsyKc3wu7HY7N27c4NmzZ8yePZs1a9aMaqVsMBj44YcfKC0tZcGCBSxdupTvv/+e8vJyFxXR/Pnz8fb25ssvvyRU3s9mWSFdoga9qEIrmPETDAgC2O2+KK1j62j4aWRs3bAVT09PyUJco9FgNBoRtD5jKyj+hDHOa4wdr9UEf2FYLBZyc3NJTp6OLzqiVTrcLd3MmTMHHx8fbty4IZ24YmJieP/991m7di0FBQX88Y9/JCMjY4isb6yoq6tzbKZNtaM/GGiuKiFEbSfEfWhIyAuI+AoGZH3NzJs3D1lvE6GjPN5HMCD0NCGTyZDL5ZL7mCAILF68mLVr11JfX49arSYpKclFhqfRaNiyZQvFxcWS8YpcLsdgMBAWFsaFCxfwsPSwZmo4lvZqEhISWLp0KXa7HaVSyZMnT3j69CnfffcdHh4e7N69myVLlvDWW28B4OHhwZMnT6iursbX15esrCwphfCnn356JWt5YGCAs2fPcu7cOSIjI/H29pZkUC+jv99BuNRqtYSGhmK32yX715aWFkRRdCHEyWQyEhISpJ+rVCopz+HPwZeXHpLaG06b0fWrXt1pGFFK5+wMOJMiRztl2vVjKwaCvNyw2+1jlhRmZWURGho6YkH0qq7Ao4oOVv0szfvobAH/XKzmlmoORqORteqh6Xp/ig++wWDg9OnTeHp6olQqaW1tZc+ePXh5De0oPH78mLS0NKkQWLt27RA+QWhoKCqVisrKSh48eECisQgZw2QY/Dxq/IdNUxAEAZPJxOnTp0lPT2fdunWsW7du1EKgsbGRzz//nNraWvbs2cPKlSsRBAFfX1/sdrvLfbTZbPj5+UncEkEAf5mBCHkvsb4q6fq6u7vxRT+qrbm/3ESsrxupqank5eVJ5EmDwYAoioj6nldeuxOFmY8pLCyUwtDGgn+r9vD/lvC6GPgLo6ioCIPBwMyZM7FarSgUCnp7e1EoFKxevZrKykoXMw25XM6cOXP45S9/SUJCAleuXJG+rGOFzWbjzp07HDt2DFEU8REH8JUZGW3DnhMfztq1a0i2lTssRUbIMZ+tqEMQHMYvMTHRLNK2IDBcQfBihmgyGSUuQHl5ucuXb8aMGVKc6rFjx1y8zGUyGZcuXcLb2xuj0UhsbCwKhQJBEFi/fj3h4eGcOnUKT09PLBYLTU1NLF68mMTERCwWC25ubly/fh2DwcDevXuljSw2NpYlS5bQ3NyM3W5nxowZaLVaiouLEQSBkJAQSkpKyM/PH3q3fm5jfvLJJ9TW1rJjxw527tyJSqUa1oHQarVK7oMajYbMzEzc3NxoaGhAFEWamppQKBRDXBwTEhIwm810dnYSERHxZ0sMBwYG+DyrmxcUzkGviZGldH9qMSDvayFE+woWyaAY2vr6eoxG46iSwp6eHioqKkbsCjjDoJxJkYPxQprX7/Lvjf1WfuiLBBE2qwo5tnsiK5XlfPJmxJh98AdbDcfGxlJcXMyWLVuGVTpkZ2dz8+ZNYmJiqKysZPny5UMcL8GxBkRHR5OVlcW9e/fYt2oW3x4emmEQF+TJicNzmD8+gJ6eHr7++mvq6urYu3evxMMZCaIokp6eztdff427uzvvv/8+8fHxdHd3c/ToUdLT01myZIkUJgSQl5dPQWMPJ+7k0GnXSGRkmUzGmjVrXJ5fEBzf++GcNZ3rwkxZDa2tLdL4p6GhAY1Gg5ubm4MgLRheHWcMhLoLyPtb+P777/nd737HiRMnyMjIoLe3d8TXPlbPhr92vC4G/sLIzMwkNjYWX19frFYrSqUSnU6HxWJh4sSJxMTEcP36dWmhdcLd3Z2NGzfy7rvvolAoOHbsGOfPn5fCbkZCZ2cnR48eJS0tDQ8PD3p7e4mPn8Bsee0rv5jzVPVUVJRz4sQJEgMUHDs4c9gc89XKMpZNdix09fX1mM1mtP31/N0iX/wVrn4FvoPsi8HRJbHZbAwMDEinAHCYs9jtdoKCgqT4Uyfq6uqQy+XYbDa0Wi2LFi3CZDLh4eHB6dOnWbt2LX5+fty4cQOVSkV1dTWCILBlyxZCQkKk08LLpxxAmukrlUqWLVsmSa6Sk5MlT/XU1FTu3bsncQL6+vo4deoUFy9eJC4ujo8++khqSSuVymH9IZxdAef7U1dXx7x582hpaaG+vp6mpiaCg4OHMOljYmKkVDiVSkVjY+MQp8c/BScu36fbrv6TTbCcr8n5/1eNCcxmM319vXw4O2B4i+WX2u/ODfxVzoTg6Aq4ubmNyONwzrWdJ1snTCYT/+OpZ9jFl4mmro55kyZNYkqYDxHyXhLDvMfMzXBaDc+cOZP09HSWLVs27IiiqKiIn376iaioKKqrq1m4cKFk1fsy7HY7er2evr4+Vq1axaJFi5gX68ev4vrZqCrk7Rg9G1WFXPmb+cwfH0BDQwNffvklZrOZw4cPv9JkyXlPvv/+e65evcqsWbM4dOgQPj4+5OXl8dlnn6HT6Th06BBLly5l//79aDQammye/EOmjQ3/+ohv6zz50ZzID5YpNNk8pYJoMARBcPB6RrE1d8Lb2xu73Y5CoUAURXQ6HTKZwFxl/cifI0Hg/9kzmw8//IC//du/ZdWqVdjtdq5du8bvf/97jhw5wr1792hubpYK3H/L9vD/1iD/7W9/+9v/vy/ivxe0tLRw9+5dVq1ahZeXF2lpaXh5eaHX65k2bZoU0pGWloZWqx3Wt93Ly4vk5GR8fHzIzs7myZMnAISFhbm0AEVRJCcnhzNnzmAymbBarXh5ebF27VoeP36Mp8xMkNDPgMoPnfXFQhfprWSuvYS1ybG0t7cjiiJ6vR5bXxv/fvMclsT50l/yhP9l62wCmp/h7yYiiiJRUVG0t7djMBgcBLyeFv5uz1K6C+4zY5ySWFMVyYomvGSOU+XgxVUQBLRaLbGxsYiiyJUrV+jq6kIURebMmePiFOjv709fXx8Gg4G33nqLZ8+eYbFYeOedd8jLy6OwsJBt27ZRVlaGyWTCYrGQnJyMTCaju7tbcr5TKBSUl5eTlJSEQqGgoqKCCxcuMGXKFPr6+qitraWqqorw8HC2bt3KnDlzCAoKoqysjOrqap48eUJpaSn37t3DYDCwdetWFi1a5EK6y8/PR6VSuagUwKG5f/78OeAoJnx9fdm0aRMFBQX09/fT3NxMVFTUkFa5TCajo6ODrq4uZDIZAwMDBAUF/Tel6HV0dPDt5XtU2Ua3+l2VMI6YgBfE0Lq6OqqrqyUJ2NKlS0f83ZaWFrKzs1m7cCadJel02N0xii94F/FBHvxhT7J06r5+/TpRUVFD7tlg2Gw2UlNTmTJlyrAKgb6+Pn766Se0Wq0LYa+srIx/+eYCT/q8eZXaxSAq2DE/Hj+NgpycHObOnTumLIDnz59z+/Zt5s6dy7Nnz5g6deqwCpTKykrOnTtHaGgo9fX1zJ49m1WrVg1bcDhfa2VlJQDz5s3D09OT8+fPU1BQwK5N61iQNIHS3AwSExOpqanh9OnTBAUFceDAAXx8fFyez8mTKGzsQ2+2Yhvo5ttvv6W1tZWtW7cyb948LBYLP/30E/fu3WPy5Mns3btXMkdSqVRUDij4slKNEYXLfTSKcqrs/gQJA3hgxM/PT+qAOeEpMzNJ3k681kCir53xlmqW+uvQinqX8afFYkEURUwmM+1WFXo3f1CoCJLpCBB76RTdMfLiuxbrr+Ff986QPkdqtZrw8HCmTZvGnDlzCA4OxmAwkJeXR3p6Ojk5OXR1dfEP99vpNdqGL4gFyGvoZf/cqNfqBF4TCP+iyMzMxNPTk4kTJ0oneuepqre3F39/f8aNG0dycjL37t1j6tSpwxIGBUFg+vTpTJo0iQcPHnDv3j1ycnKkhD29Xs+lS5coKSlBrVZjMBhYtGgRKSkpHDlyBLvdjpubG2EMECnPp0PtRr9NzprFc9i+Yi537yp5+PAharWaadOmkZ6eTnNzM1988QWJiYlEyHuJ81cjpMzg2bNntLa2MnXqVKqqqjAajVJqYVZWFv4yA0J3FZ5uCmw2mfSFH9x6FkWRZ8+eMXHiRG7dukVtbS0+Pj689957aDQa8vPzpTafn58fnZ2djnS3Gzeoq6uTmPoHDhzg6NGjnD9/nq1bt/LNN99QV1fHwMAA1dXVPHr0iLlz55KVlYXJZKKjo4OLFy+yaNEizp49S1xcHJs3b6auro5vvvkGURR54403AMdGnJiYiFKp5NSpU2i1Wil5z2njGxQU5CLXckoSX8bgzkBLSwsHDx5EJpMxa9Ysbt68id1uH/GUmJCQQF5eHs3NzYwbN47y8nKmTZs29g/hz7h9+zaBHm7QNfpjX5bS/Sm5BM5MguzsbGLdLQSJBXSj5c2d+wjx0TI5xEtaaHt7e2lra2Px4sWvfM7S0lIGBgZGHBE43R1XrFiBTCajr6+Pa9euUVxcjDxo4phes9IrAIPB9Tv6KjithhMTE8nPzyc0NJQ333xzyCbS0NDAmTNnCAoKorGxkenTp4+YlWC1Wjl37hwVFRVs376da9euUVZWxsOHD2lqamL37t3Ex8dLG+6DBw8oKioiKSmJN998cwjZdbi0VB/BwLogT/79e2/h5+dHU1MT58+fZ2BggM2bN5OUlORybf39/fxLWhPiS4WAA66+I05poBNJSUnk5eUhCBCkMrNjy1KOHTtGX5+BmBhHdoHBYJDItU02zxcKBfOL652jqOMt3xp0Kh86dBZkpn7enJY84hjHqQSaMmUKNpuN2tpaSktLeVhQQ21P5LC/A6/VCS/j9ZjgLwSTyUR+fr40D3e2md3dHSeuwTOt5cuXY7fbuX///iufU61Ws3r1aj744AN8fX05deoUX3zxBR9//LHEO/D29ua9995j0aJFnDhxQjq5m0wmEhISWLt2DT4MEKXsxxcdVquV2tpa5HI5ZrOZyZMnc+jQIUnv7yT75efnk5ycjNVqJTIykvv370sncJ1Oh0ajoaioCHCQ8mSyF4WAc3EZfIq2WCx89dVXdHV1IQgC8+fPR6PRkJ6e7nJvysvLmT59Om+99Rb19fXI5XKpDevj48OBAwekYsg5t/z6669JTU1l2rRprF69mrfeegtBELDb7ZSWlnL8+HGCgoLYtm0bMpmM6OhoaVMfPPMXRZHu7m4EQUCn07Fp0ybeffddJkyYwNOnT/nDH/7AN998Q35+vhTx+zJnQBRF8uq7aBJ96RK1xMTESk5006dPl7o7I7XJx48fLy3y3t4OGd7LI6XRUFtbS0lJCbtWz2dCkMeYZvmD4cwlGEtiYVtbG+7u7pSVlTFt2jQEASYGubNycgiJoa7t97KyMmQy2ajGTllZWYSHh0tZDoMxMDBAUVERGo2GpKQknj17xscff0xtbS2zZ8/GTzO28804L7WkVBmt4HFaDQcHB9Pe3o5SqWTXrl1DNuPW1lZOnjyJj48Pra2tTJ48ediCARwF13fffUdVVRV79uxh8uTJhIeHk52dTXt7OwcPHpR4FUqlErlcTlFREcuWLWPz5s3DFgLDtcN7RTVn2gIp6nSEcH311Ve4ubnx3nvv/fx+vbi2goIC/uGPR+mwKBktcKxHcJUYy2QyqSsHDultUVERgiAgCAI2m43Ozk7pnjtdTF9OQnSaolX0y4j0lDEnwgN/mePEPxqxWhRFKTvFz88Pr3Gjx6TDCxvzv3a87gz8hZCXl4fFYmHGjBnACx26VquVZvlOuLu7s3jxYm7fvs3MmTOHEMleRmBgILt37+bcuXMupLKFCxeydOlSRFHkyy+/lObebm5u+Pr6sm7dOj799FM8PT2x2Wy0tbVx4cIFmpqa2L9/P3fv3uXMmTO8++67fPDBB1y/fp2cnBzAcdKrr68nIiICnU6Hm5sbLS0O8s/kyZOlQsCJwcxeZ1dApVJhsVhcCgWTyYQoisTExJCWlsbt27fx8fGhp8fBJBYEgZqaGuk0LIoiZ8+elWRb/v7+7N+/n2PHjpGdnY1cLndooTUa3njjDQRBICoq6oV7IY7NLSkpSZJ9tbW10dXVRVBQEBcvXuSDDz7AZDLx448/Ul9fT3JyMpWVleTl5bF//37CwsJYs2aNZGh04cIF1Go1Wq3WRf/uejJzbHi5LW7EVTokfGq1mnHjxtHY2DiiIYxSqSQ+Pp6KigoMBgMmk4n6+vphrW2HgyiK3Lx5k5CQEJKSkvifhHreO5X380/HJqUbHF882kbZ1taG2WwmOjoapVKJIAgujniDUV5eTmRk5Cufs6ur65XuiM5ci5SUFL766itaWlrw8fFhYGCA9PR0goNDCPOIoGnAPqJjXtzPXgKZjUZkMtmIfgvwwmrY6SbZ3t7O4cOHpSLfie7ubk6cOIFWq6W7u5u4uDi2bNkyLLvfYDDw3Xff0dbWxr59+4iKiqKtrY2amhpsNhu7d++WRogDAwOcOXMGu91OeHj4sF2VV1sYCyDCb048Zr3wnAUL5rN8+XIXvoper+fKlSsUFhbiGTYF+hkVAzYFvoMoL3a7ne7uF6oSJ2HRmcg4eBQYEhLKxRrfV8SdO7oPUS3lzJs3l4yKZup75VxPL2TtHEfgUVdXFx0dHUP+G2zv3oU7MPI4yok/xWTqv2e85gz8BSCKIj/++CMRERFSa7OxsZHi4mJiY2MxGh3M+sHzz9DQUPLz82lubn5lLCs4ThwnTpygoaEBcJzEbTYbXV1ddHd3c/HiRcnxbuXKlZSWlrJp0yYePXpEV1cXERERDAwM0NnZKWnrx48fT3x8PPn5+RQUFJCcnExiYiJBQUEUFRWhVCpxc3OjubkZg8HAtGnTKCwsJCgoCFEUmT9/vtSd0Gg0WK1Wl9GATCZzMa8JCAiQrHbB0SnJzMxkyZIlAFJymVOql5WVJZ3Anj6fCJkVAAAgAElEQVR9SnV1NZMnT0ahUODh4UFMTAyPHj3CZrNJTnl9fX1MnDgRQRDw9/fn+fPnmM1miTMQGxuLt7c3t2/fRqfT8fbbb5OTk0Nubi6PHz9GJpOxa9cu5syZw7hx47h//z5arZawsDDkcjnBwcFMnz6dqVOnIggCVVVV9PX1UVpaSm6Lkd/8WEmXzlUo3Wu0cTGnkZlRfkT6aSksLJR86UcK8bHb7RQUFDAwMIBWq0WhUIzZJrmoqIhnz56xdetWfH19eXzjR5Q99Zjcx9FnfvH+vDzLH4ySkhL0er20UU6dOnXEv3f16lXMZjN79uyR5rSzZ88ewnOwWCxcvnyZlJSUES1yAR49ekR7ezubNm0aQrDU6/WkpqYik8mora2VVCi+vr7MmjWLN998k4ULF+KFnpsVzuJ7qGPef3pjPPGhflRVVdHS0sKCBQuGvRZRFPnhhx+ora1lwoQJlJWVsXv37iHX39/fz7Fjx6RrDA8PZ/fu3cN6Vuh0Or755ht6eno4cOAAERER1NbWcuLECTw9PSWVwrhx42hra+P48eMYDAZiY2MZGBhg1qxZQ56zsLmPf737amMRvU3Ghxvns3rxXJcCpbS0lJMnT9LV1cWmTZuIm5TImazR0wKnKFoI8/OUTvqi6Igx77S7Y5cp8FIK2O22YU/ztX1Wcm2hvKr7YESJWjRyutaNHHMwVXZ/Lpf2cuJ+IbkPr1OcmUZhYSHNzc0IgoC3tzeenp5SCBKAWrRQLwRgsMuG/VvOztj/sCr+NWeA12OCvwgaGhpoa2tzmXE6OwMajQYfH58h0heFQsGqVauoqKgYUUImiiJPnz7liy++kNrrK1eu5Ne//jVr167FZDKRlZUlbbp79uyhuLiY8PBwLBYLBQUFrF27FrVajcViwWw2s27dOqn9qNVq2bNnDwMDA5w7dw6bzcbkyZMl3XFHRwfR0dEIgkBmZiZ+fn709vZSW1tLfHy8tEkoFIohZLiXFwHnSd+5wJeVlREXF8eSJUukjgY4No0dO3ZISgSNRsO+ffukFqyzAxEcHIy/vz+iKGK321m/fj25ubncvHkTm83G+fPnMRqNRERESBLP06dP09TURF5eHrNnz8ZgMODm5kZPTw/BwcF88MEHkjNibGwsM2fO5NatW0Nmo/7+/qxcuZLk5GS8vb3x9vbhj49bsIviqBK+zs5OvLy8SE9PH/Y9B0eeu7ObEhgYOGaJodVq5fbt20yYMEGSs1VVVRHvLXL/P6zi6K54VirL+Wh8/yuldA7OgIrqHitVRs2Iuuz29naMRiPjx48nMDBQSrsbzjGzpqYGq9X6Sn8Bm81GTk4OSUlJLqd15wjuX//1X6X328vLi+XLl/OrX/2K9957j4ULF+Lr60tLSwvlaZdZ6zbUS8BHMLLNr5mS+z/Q3d2NwWB4ZZfCaTWclJREfn4+a9asGcLcNxgMnDhxAovFgslkYty4cSMWAr29vRw9elQqRENDQykuLubbb78lJCSEd955h6CgIKqqqigvL+err75CrVbz7rvvEh0dTWdn57Cba3P32BQnKq8XHUij0UhqaiqnT58mLCyMDz/80GEIduHEqH4BPoIBP8GATqcjJCSEJpunS4JpqjGBc7p4KfHUCUEQ8PDwwCwfnaMB8MgSSbvZtSDssiq5bo5nyoptfPjhhyxbtgyZTEZRUREVFRWS+iYmJoZDh97mf10XPyaVy2u8Lgb+IsjMzMTX19fl9OYsBpRKJV5eXlIbfDAmTZpEdHQ0N27cGDIX7u/v55tvvpFkiM7NKjg4mK+//prLly/j7+/KFM/IyKChoYG5c+dy5coVJkyYwNSpU+np6ZGq5ZcX6oCAAHbu3ElNTQ1Xr15FFEVUKhVJSUls2LCBxsZGNBoNoijS29uLyWRCEASeP38uzb07OzsRRXFYRrZzUffx8cFms7nM2CsqKjh27JjUFQDHIpWbm4ubmxuBgYEcP35cih1ub2/n22+/xWAwcPnyZdra2iTdtnOxfvLkCUePHqWsrIzt27dz4MABAgMDMZvNUmKc8+98/vnnErGvsbFRsi52YtWqVXh4eJCamjrsIuyc5U5ZvPZnG9WRonMdRKWsqlZ6e3tJTEykvr5eIii+DDc3N8aPH49SqcRut9PR0eHSgh0JmZmZ9PT0sGrVKqxWKz/++CPgMOWRy+VMi/QnQt6LLwOvXACLu+x8WuvH53V+fFGmHFGX7TT9WbRoEf39/RiNRhQKBQEBQ4uMsrIyfHx8hv2Z9HeLi9Hr9cycOVMqAM6cOcPvfvc7Lly4IMXbHjhwgN/85jcsWrTIZdzS19fHd999h0KhIEwxwBa3InZ6VvLZniQ+iu3jo5gefvvhHhQKBd9++y39/f0jciKcbpZTpkzh+fPnzJw5c4iW32w2c/LkSYkQ5+vry969e4d1Iezq6uLo0aPYbDYOHTpEUFAQmZmZnDt3jkmTJkmeGDExMRQXF3Pq1Cmio6N555138Pb2JiAgAJvNNmQd6ezs5OGNyyPe08FwtsMrKyv59NNPKSkpYdOmTWzatInbt29z8uRJDAb9iPK+wT4iguB4/VkNA8PO/rvtbtywuBYEzpm+ymZg7BhGHirC/3Wrik8//Yxr166h1+ulNSo2NpZf/OIXHDhwgODgYOozb7PZuwFfmSsv4E8xmfprweti4M+EXq+nsLCQlJQUlwV2cDHg4+NDX1/fkNOVIAisWbOGjo4OMjMzpX8vLi6WSFFOg4+VK1dy+fJlTpw4gUwmY9OmTZIELSYmhjVr1lBeXo4gCDx9+hSj0cj69espKyujpqZGmm072d+DERMTw4YNG8jKyuLp06cSMS4lJYUPPvhAki8FBARIY4K0tDSam5vx8vJCoVBIDPCX4dz8KyoqpK7A6tWrWbhwIfDCV8AJs9lMVlYWc+bM4eDBg4SFhXHixAn0ej0HDhygq6uLTz/9lJycHDZu3MiaNWtQqVTU1NTQ2tpKdHQ0jY2NJCUlER8fj0Kh4ODBg2i1WiwWi3SNT548YeHChbz33nusW7eOCRMmcPHiRZcOjkqlYtOmTdTX1/P06dMhr83pM1BW1zLi52MwSmodm39KSsqo3YGEhAQsFgstLS3IZLJR3QiNRiMPHjwgOTmZwMBAHj9+TF9fH/7+/pJW33kKfpVz26OKDr6sVNNmcl0aXtZlV1dXU11dDThGXk4fiZCQkGG9+cvLy5kwYcIri5CMjAz8/f25c+eOVAA4CybnZ2TlypXExMQM+V2TycR3332HzWbDYDD8XFyLHNi4nFlhWvRNZcyePQsPDw8OHDiA1WqlvLx8WL6A02o4OjqaiooKoqOjWbduncu1W61Wzpw5Q1tbG3K5HHd3d/bt2zdsp6GtrY2jR4+iVCo5dOgQvr6+3L17l8uXLzN79my2bduGQqGQZuEmk4lp06axa9cuqbBwFlGDu2gFBQV89tlnyPua8ZUZRyWKxvmr+emnnzhx4gQBAQFSN+CTTz6hoKAAcLyXOxYnsU5d+Uq/AMcp36EGGHn2jxRgBY6iuNOuQW9X4cGrTdGczzHST9tNcrwiE9BoNHR2djJhwgQ+/PBDdu3aJR1Sbty4wcDAAGGKAf6PeWou/3IhRw/O4vIvF47ZZOqvCa+LgT8TTj359OnTXf7d2a5SKpV4e3tjs9mGNZAJDg6WpIa9vb2kpqZy9uxZTCYTYWFh7Ny5k6qqKo4fP47RaGTPnj3s3r2b+/fvY7PZcHd3Z/v27QQHByOKIsHBwZKzV1lZGd9//z0BAQHSdbS1DR8skJyczPz58yW7ZKdkzs/Pj8OHDxMZGUlraysymQx3d3dsNht5eXmYzeZXarSdBVBBQQE2mw1BEJg7dy4LFiyQZJXDseXnzJmDSqVi7969jB8/ntOnT9PV1cXChQvp7+/H3d1d2lzGjx8vcQRqamoICQkhLy+P4uJiAGmhdsJmszFt2jSWLVsmuRtu3rwZpVLJ+fPnXa4nKiqKuXPncufOHZdCShRF+vv70el03Lv6w4ivfzDsum4pYXLWrFkUFBS4pE8OhjPExmw2ExQUNOqo4OHDh1itVpYuXUp3dzcPHjwAcNG3j1YMSEQ0YOiJ7MW4w2q1cvXqVTw9PfHx8UGpVNLY2IggCMPyAdrb2382wxrqOmgymcjLy5Nkop2dnfT390vE2t7eXpKSkqSO1XAOfjabjXPnztHd3Y1arZbe07i4OBITE8nMzESj0UgpjT4+Puzfv59mk4L0Bh3Pazqkz6nTathJ+vXw8GDHjh0uc3a73c6FCxekIlulUnHgwIEhpEJwcIeOHTuGh4cHb7/9Nh4eHly6dIkHDx6wcuVKyafAaDTy3XffUVlZKTliDv6bXl5eqFQq2tvbsVqtXL58mfPnz2O1WomKiuQft00f9C65vnMC8OGcAI4cOUJeXh5vvPEGW7Zs4ebNm5w5c0biNG3YsIGDBw/SYlJgQ2CRooo3lYW8M97IRlUhW9yKJOOgiRMnUttnfWVHbHAgmssowTqBAdTS9b18vWNFSW0zCQkJ/PKXv2TLli0uHJzS0lKys7OZMWMGOp2OGTOSSQz1ZtmkoCEql9dw4HUx8GdAFEWysrKYPHnykIXAufGrVCrJ+W64UQE4pIY2m42PP/5YihNdvHgxXl5enD59ms7OTrZt28b7779PbGwsZ8+eZWBgALvdzs6dO9Fqtdy/f59x48ah1+sJDg5Go9Fw5coVVCoVEyZMwGq1EhQUNGxnwImVK1eSkJCAXq93uVaZTMaWLVsApHYwIC1iPT09KBSKIXPSl33O3d3dJTveixcvYrfb2bp16xCiWGJiolQoKBQKduzYQWJiIufPn+f27dvExcUhiiLHjx9Hp9MRFRUlSQLB0emYPHky58+fp6amhrq6OhfHNEEQyMnJcbEe1mq1bN++ncbGRu7cuTPk/fH19SU1NRWr1UpRURFffvkl2dnZ2O12Dm9dQ1yg+6gnM0V/K6GhoQiCQHJysmQcNRy0Wi3R0dEoFAqUSiU1NTUuTOnB6Onp4dmzZ8yfPx8PDw+pfR8SEuKyATuzIkZ6nsLmvp+VEK8ed5y79YSOjg68vb2lBbi+vh5RFIctBsrKylAqlZIiwlkAnD59mt/97ndcvHhRkuz94he/ICwsjPT0dGQyGe+++640Llm8ePGQz4rTxKq6upqpU6fS1dWF1WqVNjer1crz589JTk6WPp+PKjrYe6KIH4wJXB6IYvORZ6z65/uklTs6Ak7prLP4HnzaF0WRS5cuSdkZMpmMAwcODBu6VFNTwzfffENAQAAHDx5EpVJx5swZcnNz2bx5MwsWLEAQBLq7u/nqq69obGxk3759REZGSl0XJwRBICAggMbGRr744gupk7hkyRKWLVtG6YNLrHevJtLbdUQRohVYrSwj7+b3eHp68v7776NWq/n4448pKSkBHPyYjz76CKN3FGv+5SH/8eEA143juWRJ5AnxNNbV4i9z8AicSpGqqipQj02b32DzHnaUMBx8BCPzFGOzYj/81nY2bNgwRJmj0+m4dOkS8fHxDAwMEBgY+GcHfv014HUx8Gegurqarq4uZs6cOeRng8cEzmJgOP9su90uuexZLBYCAgKYOHEiDx8+pKGhgTfffJOPPvpIavVeunSJhoYGrFYrq1evJjw8nNraWinTXafTsW7dOgwGg7RApaenYzKZ8Pf3f2Ux4LT1VSgUUmKcEz4+PkyaNAmNRiOdWkVRxNPTkxkzZmC1WiUXRCdEUZRag/U2b+r67cjlCm7dukVZWRlbt25l6tSpkhzTiZfjauVyOcuWLZMy16Ojo3n77bfR6/UcP35carGGhoayYsUKHj9+TGBgIBEREXz77bccPXpUKhTmzJmDKIrIZDJ++OEHifQGEBERIf3+4La8Uqlk/fr1NDU18V//63/l3LlzuLm5SafUpKSkn8NjYAhRCREZAn//5mSam5ukFqbTU/9VwVQJCQlYrVa6urqw2WxDNggn7ty5g0ajYf78+ZSWllJeXo7NZmPFihVDTkAjWSgDtI9Rb/0gPZeUlBT6+voIDAxEFEWpnT8cebC8vJyoqCiKiopcCgCdTseKFSv4m7/5G2w2GzExMZw+fZqcnBxWrVrFe++9R2BgoKQsGa4r8OjRI7Kzs1mxYsXPhjeO17ty5Uq8vb0pKCjAaDRK39ER7WnbBzjwdToPy9qIiIigqamJXbt2Sc588EK2+fz5c6nbN5wLoPM1nzx5kvDwcPbt24fdbuebb76hurqaPXv2SITauro6vvjiC+x2O++++y4xMTHExMRQXV095HOhVCopLi6mvb0djUbD/v37kclkHD9+HE9PT/7T3+zn/n9YJbXDj+6KZ69PNSGyPrRaLRs2bODGjRtcuHBBko9u27aNPXv2kN9mHva+dFgU3LDE06VykA+d64fZbAbjyHkAg1FmCxhxlADggZEVinI2qgrZrCpkorxjVBJjpJeCmeOHOnOKoshPP/2E3W5n5cqVlJSUMH369NedgDHgtc/Anwin3Wd7n4ncp9kEBgYNexpynp6VSiVqtRqVSjWkGOju7ua7776jo6MDmUwm2dEaDAbWrFlDSkqKy2n7wYMH5OXloVAoSEhIkAhNDx48wNfXl/LycpYtW8blyw5C0bvvvotKpeLcuXNUVVWRl5eHXq+XFoLhoFQqCQ4Oprm5mVOnTvH2229Lj01JSeHkyZN0dnZKGej9/f2MHz+ehIQEiUzlhIvD2M/wt5uZWVnNnuVLJGb5y6eqZ8+e4enpyfz5813S2dzd3SUXQ4vFwoEDBzh+/DiXL1+W/AUWLlyI1Wrl3r17qNVq7HY7KpUKtVpNaGgoa9aswWq1kpWVhUKh4NSpU7z33ntSETNv3jzq6uq4ePEi77//Pm5ubmRkZPDs2TPAcap1FjHOzoLVamX++AD+frE///ygweX1egtG/tOWJKYGuXFrYMDFbGj27Nnk5uZSVlY2rO1uQkICV69eRafT4eXlRVlZmVSISfe4qYn8/Hw2bNgAwLVr13Bzc2PcuHHExsYOeU6nf4DNZhtyyg4co97aU2lnwYIFZGZmEhQURE9PD2azGY1G4/JeGo1GCgoKqKurQyaTUVFRQXh4OCtWrGDy5MlSkfz06VMMBgNlZWXEx8ezbt06aYO9d+8eNpuNxYsXD+k8FRQUcPv2bRYvXizlXYCjIzJr1ixEUSQjI4MJEybg6+v7Sj0+CNgRyZHFEVKew+bNmyRliRNpaWk8efIEHx8fjEYjb7/99hASL0BhYSEXLlxgwoQJbN++nYGBAckQzKkiAMjNzeXSpUtERESwc+dOicwYGxvLvXv3aGpqIjw8HJvNxs2bN6XwssjISNasWcP169epra1l8eLFLFmyRBorTBrnQWtJFmlpaYSEhLBnzx7Onj3LZ599Jm2KU6ZMYc2aNWi12lHvC4jc7w9is6rdxX7YTzDgKzPSbXdjpLhlD0yDRgLDQWAANe4yM4EKE876Z46ijhuW+CFR086xR4KhkK++qmPVqlUuHhy5ubmUlJSwc+dOamtrsdvtr5TGvsYLvC4G/gQMtfvUEO4Zw/SqziFklMHFgFMH6ywGRFEkMzOTa9euSZn3g79k69evH+Ldnp+fz71793B3d0etVkvOZvX19VRVVeHp6UloaCiVlZX09fXxzjvvSBvc9OnTqaqqwtvbG71ez4kTJ9i0adOwCxk45JChoaE0NzeTmprKjh07qK2tldrPfn5+vP/++/zjP/4jAOfOnRuig3c6jL28uHRaldwgns1eL4xphpNh3bp1i46ODt544w2+//57ent7OXz4MIGBgXh6enL79m36+/slAphcLqe6uhqj0SgVJEajkUWLFpGfn09DQ4NkSrR+/Xo6Ozsl9cCpU6d45513pPdq06ZNfPrpp3z55ZfSfH369OnMnj2b77//nkePHkmeB4DkRqjureWDyB6KmnvRiyrcZRbCtNBXbqbJ09H9GFwMhIaGEh4eTkZGxrDFgKenJ2FhYTQ3N+Ph4SGlPzoXdOdJNSAggOTkZO7cuUN/fz92u33YrgA4eAN9fX2YTKYhVth+6F65uAuAt2Bg1+oFEhEzMDBQIg+GhYVhNBopLS2lqKiIyspKiX+xaNEiSYrphN1u5+nTp9y6dQu5XM62bduYNGmSdN0Wi4WMjAyUSiXz5893uZa6ujpSU1NJSkoiLCxM4kg43z+ZTEZDQwPNzc3s3bsXGDwGGQkCbSY5kbPnDeEAZWRkcOfOHXx8fCQy63AOiTk5OVy6dIkpU6awadMmOjo6OHHiBEqlksOHD+Pn54coity5c4e0tDSmT5/Ohg0bXAqzsLAw3NzcpO/1mTNnXJQnSUlJfPvttyiVSg4ePOiyGba0tJCamkp7eztLlixhypQpXLlyxSWBcteuXS4Sz9Huizho9u8vvFinBAFmy2u5YR95046Xd5BtG90JUC+qsNsdahFRFB2hR5SRKcbQaX1xcPERjKz27yXe20saFcbHx7NixQpUKhVXr15l2rRpJCQk8OWXXxIXFzfsCOc1huL1mGCMGKm92NhvG5J+ZbFYJBa9c7NyFgMGg4GjR49y5coVRFFELpdjMBiYO3cuv/nNb4iKiuLOnTsuLULnwufr64vZbGbnzp1SK/3BgwdotVoGBgYkD/09e/a4uBo6r2HHjh2AQ470ySefcOvWrWHJZE7J3LZt2yguLubIkSMcP34cd3d3lixZQldXl4sc0MnmB4chkigyKsv4P154LsnlnCca58nIucg+f/6cP/zhD1RWVrJz507pNS1cuJA1a9aQnZ1Nf38/e/fupUfwJL1Bz9///gsKCgp54403SElJIS0tDXd3dwRBICMjQ5Kn7d27V0qWbG1t5YcffkAURVpaWrh69apEDhw3bhy//vWvWb9+PYGBgWzZsoX29nbu378v3VfniKSyspKIiHAp831WXAju7lrKy8ulGfPLC9OsWbOoqqoacXwzefJkKdWtv7+f1tZW6Wfl5eXU1NSwatUqOjs7efLkCWq1mri4uBFdAJ332FmsOlFZWcnRo0dHTLt0jkDWB+uYMWMGbW1t0hzbeWLt6enhd7/7HampqRgMBlauXMmkSZMYN24cS5cudSkEGhoa+PzzzyVHQWcBPLiAefDgAVarlXnz5rkUjJ2dnZw+fZqIiAjWrVvH1atXpc/QggULpM9PZmYmPj4+UqE61jFIj8n1tefn53PlyhXJ6XDv3r3DjkOePn3Kjz/+yIwZM9iyZQv19fUcPXoUT09P3nnnHfz8/LBYLJw7d460tDRWrVrFxo0bh3RonJbZhYWFfPLJJ7S0tKDRaKTuz6VLl4iKiuKDDz6QCgG73c7Dhw/54osvEEWRw4cPo9VqOXLkiPT+OAuRl+WdY70vevHFpux0khwtqTBcPrZRglYw/7x2vLj3ofJ+driXsVFVyHsTbWxWF/OLsDYiVHoaGxvZuXMn27dvp729nU8//VSyWl67di3t7e1SNsRrjA2vi4Ex4NV2n0Nz4fV6vTQnr+oyI4oi3t7etLa28k//9E9SbK8gCKSkpPC3f/u3rFixAq1WO0Rq2NXVxZkzZ/Dx8aG7u5v169dLpK3GxkbJtjYkJITq6mq2bds2ZCNwblqCIODj48OUKVNYvHgxT58+4+9//yVfX3tGYeMLYxnnXNkZeOQMKjp06BDz58/Hzc1Naps73f98fX2lpL0uUTMqy7jL5sZ//vRbKioqpLm9cz7rdB50Pp+Tge+E3W6X8hXqzVr2nijiXP94blkmcKY3lhuKWVj8Yli/fj2TJk2isbGRiRMnMjAwwKlTp6ST/KFDh3Bzc3OMfgoL+eMf/8iRI0eoq6tj7dq1rFy5ksbGRhcr1eDgYBYvXkxaWprU6bFYLFRXV2OxWCSikkwmY/LkyXR0dBAYGEhZWdmwsrvExETc3d3JyMgY9k4lJCRIHg9KpVLiMtjtdm7dukV0dDRxcXFcuXIFjUaDXq9n2bJlI9z34YuB3NxcTp48ic1mY9nkUFYrywhQumYuhHvIWa0s499tc0QGNzc3o9VqOXfunHTtgiCwatUqfvOb3/DOO+8we/Zsyb3PCaPRyJUrV/jqq6+QyWRMmTIFrVY7pJVrtVp5+vQpCoVCkqGCgxx28uRJ3N3d2blzJ48fP6a3txe73Y6Pj49k16vX6ykoKGDmzJlSoeDvPrLt8GDUFOfy6NEjwFFwXbx4EW9vb/r6+ti1a9eQ8YEoity/f5/r168zf/581q9fT1FRESdOnCAsLIyDBw/i4eEhORVWVFSwa9cuaQz2Mux2O2azWbJ6joyMZOfOndJ3LjEx0WWs0NHRwddff83du3eZP38+27Zt4/r161y5ckXi8Rw6dIhf/OIXaDQaLly44KKYGet4SCu8IJ5GR0dLn/VQeT8fRHbyd7OVrNPWSLP/UHk/foJhzCZGAwMDUsHovC8mkxF/mQFLbQ5+gp7+/j5JUp2bm0tiYiIfffSR9P3W6XQ8fvyY7OxsNBqNC4FWFEUKmnq5W9I2opHWXzNejwnGgFHbaD+zrP/l+Hmscje+rxZoMTtkTLe+yiLKV8VMmvAyvGDoJyUlsXTp0iHko5CQEElqOGHCBMlEpbe3l5SUFJcEu/v37yOXy6WOgHPzexnOYsBisRAUFERXVxdeE2ZxR22jqtMA9zvgfhoxfmr+z63TEEWR9vZ2zp49S3x8PG5ubhQWFpKcnExMTAzJyclkZWUBDuZ+W1ubpH/28PCgvlc+5BqGg5tvECdPnpROfV5eXjQ2NtLf3y8FDSmVSgwGA0eOHGHfvn2EhoZy7do1SktLmbh4I19fb+RlF/qabiP7vnrGt+/MkeyNy8vLWb16Nbdu3eLs2bPs3r0bd3d3Fi1axK1btwAHh2P27NmsWbMGmUyGKIo0Njbyww8/EBwcLLGWFy5cSGlpKWlpadJ9dZrqOONo3IAAACAASURBVFvvWq2WSZMm8dNPPxEdHU1GRsawBjdyuZyUlBSePn3KihUrhpAnfX19JRWIkxeyePFinj9/Tnt7O5s3b6agoICamhrc3d2ZNGnSiCFI8CI4y2g0Iooijx494vbt28jlcsLCwnjjjTcoLf1npge1UNzSx+Y9B/FSitw6d5z46ROkrohT6ugMxrLb7Rw+fNjl+hsbGzEYDMTHxyOKIkVFRVy7dg2z2cyaNWtITk7m97//PTNmzBgavPPoEVarlYULF7p8fk+fPo3ZbObw4cPodDoePXokLeobN26UHutUaSQnJ0vXknbpR3yEwJ9Z7cOPQSYEebB5msN5UqfTkZ6ejqenJ319fezYsWOIA6FzVPPkyROWL1/OwoULSU9P59q1a0ydOlWyVW5paeHUqVOIosihQ4dGZLf39/dz9uxZyXp8ypQpREREcPLkSfz8/PD19UWr1Urt9KdPn3Lnzh28vb15++23pY6L854sWLCAJUuWSPd327ZtfP3119y/f5/ly5fT2dlJ7t3r+AiqEe8LiAS52QiQmSTPgAcPHrgUMq2tLcwICyVWrUevdx0ljDb/d5oYeXl54e/vT29vL35+fhiNRnQ6HePHj2fBggUuCiC73c69e/fo7OzE39+fiooKZs2ahZubG48fP8ZutxMZGSld43CJjhOCPPjfNya+9hv4Ga+zCcaAwsY+fshtGvVxSssA5xs0DFhh8Ie+12ilxOhJkDCAp8xB3nMSpkpKSqioqKCmpobGxkba2trw9PSkrKyM/Px8SQPs6+vL9u3bKW4doLCxj7qmFrLS7kmeAEuWLBkyV3VCr9eTlZXF9OnT0ev13C9t4T8/7adb73r66zFYuJDdgNBRhdauZ/v27SxbtoyJEydKxjsJCQmEh4fz+PFjwCG7c3otCILAr371K+xyJTerR3cZ+2BxHF4qJO+D4OBg2trasFqtlJSUEB8fz969e6UMgOfPn9PZ2UlOTg4rV67kt3dbh9xrBxxhJzm1nWgbs0hOno5arSYnJ4dly5aRlZVFeXk5jx49oqioiKCgIHQ6HYIg0NLSQnx8PJ6enpKHgZPkN23aNInoGRERwePHjxFFkaSkJNLS0pg4cSIeHh4UFxfj4+PD/PnzqampYWBggN7eXsxmM7Nnzx5yGvT39+fJkyd4eHgM2342GAzU1NSgUqloa2tj+vTpXLhwgYkTJ5KUlMSpU6cICAigq6uLHTt2DKt3d6KxsVE6rWdlOUhmarUab29v9u/fj9Vq5dmzZ7i5uSE369j1xjLuXE6lp6eb9vZ2SkpK8PDwwGg0MmPGDFasWEF6ejre3t4uJ3hwpA+2t7czd+5cUlNTSUtLIzY2VvKOKCwspKCggM2bN7sUSjabjVOnTiGTydi7dy9yuRxRFDl//jx1dXXs37+fwMBAiUsiiiLTpk1j3rx5gGOjSE1NJT4+XiKcXrp0CU9PT8ZpoGBAgzDkM+PYmP7vTZNYPmcaHR0dZGdno1ar0el0bNmyRVL0OGG327l8+TIZGRmsXbuWefPmcfv2bemEvn79emQyGSUlJXz33Xf4+vpy8ODBEbk6Tj8RZ/CWQqHAYDCQn59PSkoKO3bsoKGhgb6+PiIjIzlz5gzZ2dnMmjWLpUuXcvXqVXJzcxFFkaCgIPbt20dSUtIQvwKZTMb9+/fp7Ozk6tWrWK0Wls6YxP1a53d26Ia9RFlFdKDniL4YAM3NzcMqVTxlZuSinRbR8+dnc0CGyFx1KzEyx0HCqZyRy+XodDrCw8Pp6elh6tSpJCcnk5CQQG9vr4sts9lspri4GFEUJQVVSEgITU1N9Pb2UlBQQOWAgl9eKB2SG9KtM7vkhvy143Ux8BKcaoHCxj70ZivdTbWcPn+RIvPwX+DB6DIJmEfIAQfoFN35YMVkYmNj8fX1xc3NDbvdjk6no6Ojg7q6OkpLSykrK5M2eZvNhtlsprxPxm/vtvL10yZ+yG0itaCDGrsv3oKRieEBREVF0dvbi06nk5IB5XK5FGeckZEhRZb+PtuIUVSOwByGDruWJE0vmzdvlja/iRMnUlhYSF5eHrNmzaK8vBy9Xs/UqVMpLCyUnkGj0bB2yXy+uZuPUZQPcy/A0Ro0MkPZLCkTnN4GNptNWsz27t2LVqtl2rRptLa20tHRQVtbGwEBATwpaSBD7z/C8zteS4/BSqi9nf07NrkkEcrlcnp7eyUzImeKW3V1NYIgUFJSwtSpU3Fzc0OhUBAZGUlaWhp6vV5qebu7u2OxWKivr0er1VJRUcHy5csZGBigvLycoKAgpk2bhtlsJjs7G3CcxoOCgoakVDrT8EpLS5k1a9aQYkGr1ZKRkSG19nt7e2ltbWXXrl08fPiQpqYmrFYrkyZNGlbmOhidnZ2Ul5fT3d1NWVkZ3t4OA5aDBw/i6elJf38/GRkZiKKI1WrlyZMn9PT04OPjw5IlS9i4cSP/L3vvHR3lneZ7ft7KyjmjjEAgkSQEIolgMjYmGGOCaWx3t8dzZ/bu3Dl7d/fc/WPu2b139+zcGc9Zd7fbbmwTDMIGTEbkHBSQAKGccw6lklRJFfaP8vtDhSSQJ5wz7u7nH2OVqvTWG37P83ueb5gzZw537twhMzOTwcFBKioqSEpKElbTcly5cgWdTsfdu3exWq1s2bKFFStWiO7BpUuXCAoKIjMz0+19Dx48oLa2loULF4o277Vr13jy5Ak7duwgISGBkpISHj16hNPpRKfTsWfPHtEVqKmpoaCggHnz5nHmzBkaGhpYtWoV3t7etNeUsC5tKiVtBsy8GBskBHmyQlOPva2M8PBw0XGwWq1kZGSMKXTsdjtnzpyhuLiYt9923V/nzp2joKCAtWvXCgOuR48ece7cOZKTk3nvvffG7Q7Jdubnzp37UUQollWrVlFWVobRaGTnzp0sWrRIdBgqKysFJXXHjh2YTCZOnz7N0NAQCoWCN954gy1btowLnHM6nRgMBqqqqujs7GTBggVERUVRln+PUMUQPXZPt/PiL5lZoaknXDKMKQS8vb2xWq1C3XOiaLP7cN8W/2Mh8OLedgKtNm8iVCa8MYtuhvxfWUJcpVIJM7eYmBgKCwtRKBTC68BkMokxa0NDA7W1tYCrq+ZwOPltiR2Tc7x12fWj4pYB3s+M/ZOnH/5JjwlG0wRDfbX0D1v5rxfK3FpJ/pKJhSoH/pLplW00H8nK4CtFNVyI3MquYVbNm4a/v79Qb3v5mO7evcvt27dRKpXY7Xb8py/kULGdl0dcsve3prOBtovj65PL7oPgWnwHFL7ona8SC3EdZ7tZwZdffsmGDRuIjY1Fp9Oxe/duDhw4wPfff09wcDDd3d2cPHlSgCOTkpK4c+cOKSkpfDDbi0+f2l7ZGqypcekYbNq0iYsXL6JWq4Ugztq1a8W50Wg0LFiwQKDpe3p6sHmM3UGPFxZJR09PD7m5uXR0dAgVxIyMDAoKCqipqSEyMpJly5bR3d3N8+fPMRqNHD9+nP3796NWq4mMjGTt2rXk5OQQGxsrlOwyMjJ48OABjx8/RqPREBsbS0dHB5IkiXFBcnIyOTk5gqFx8+ZNkpOTx1jbZmRkcPDgQerq6sYwM4KDgwkICKC/vx9fX18qKyvJzMzEZDJRUFDAtGnTqKqqYsWKFa89H3K7uLOzk6ioKLq6ugR24smTJ26Fi7zYajQaPvnkE3HMsm99SEiI+P2X5+gVFRUC7JiZmcnKlSvd6KxdXV00NzfzzjvvuL3Pbrdz//59lEql+D4FBQU8evSI9evXk5ycjNls5vLly+I9GzdudEuyubm5eHh4cPnyZeLi4nj//ffp6Ojg+vXrLF68mMLCPP4iJoCy9gGSZs9n1aJ0Zkb4otfP45tvvuHQoUPodDoh1PXkyRNmzpwpwHo2m40TJ05QU1PDO++8w9SpUzl+/Dh1dXVs376d1NRU7HY7Fy9e5MmTJyxbtoyVK1eOm2yGh4f5/vvvBS4lKysLh8MhnrGenh5hZywncVmueN68eVy6dEl01mJiYti8efOEnYfOzk5ycnJobGwkISGB5uZmCgsLsdlsSJJEnM5CmLOU9e99xLBTRX9bA6X3rwJOYUUsh4znARfdNjQ0dFx109eDiZ08tESxRaPn5dMzPGykz+lBc1UPMc/rWJYaL3BVp0+fBlz3UVZWFgsXLsRms2EwGPjiiy9ISEhweag09rpRfcc7vuquIcraDaRETk5E6Y81/mSLgfFmSDD2dpUTbrqyhUL7lAmTW5Kie1IUmoKSajrKX/gQeHl5icLAz88Pk8nEkydPmD59+o8dAvihUYnTaR9/Jy9BhdcsLv9PS7FYLJhMJkwmE0ajUfx7YGCA3NxcNBoNhkl6hJjQoFKpOHjwIKmpqaxZs4aAgAB27tzJ4cOHxcLu7e1NVlYW58+fJy4ujq6uLi5evEi0lxdr1fVjdAb8JTNLPdpInxJAU5OrGJA1+kcXRvfv32fKlCmo1Wra29s5fvw44CoMRkZGcAz3Aa9XFfNW2Tl27BharZYlS5aQmprKyZMnKS8vd1EFb+RSMaBkSbqLCtbb20tbWxttbW2cP3+erVu3iuKhqamJc+fOERERQWBgoCiyrFYrAQEBQt1vdDEgy8iqVCpWrVrFH/7wB549eyZm2XLExMQQFhZGQUHBmGJAkiRSUlJ4+PCh6PosXryY48ePExwcTFNTE3PnznUDWY4XAwMD3Lp1C3CxW1pbW4XUcl1dHQ6HQyDxZUaJwWDggw8+cCtexmMSyOMNk8nEjRs3BKZk375943oJPH78WGAcRkd+fj5Wq1XIUVdVVZGTk8PChQuF6NDNmzcFFTchIUG072Vdgbq6OlQqFW+99Rbz5s2jp6eHs2fPMn36dMrLy/Hw8KCnp5tV81J5++0XSVq+TvL3WLBgAWvWrCE7O5vs7GxhenX8+HGam5vZtWsXERERHDp0iJ6eHvbs2UNCQgImk0kk+C1btrjhfEZHY2OjkAP28PBg48aN5OXl0drayqpVq5gzZw6ffvqp2Onm5OS4MQ8OHTqEJEmoVCqhSzJewWEymbh9+zYFBQUEBgayYcMGSkpKxG5eoVCQlZVFa2srw8PDBEjDFN28QXd3N9HR0UJdMioqipaWVvqcHhjtGjwlKymR/kyZEuXmrTI6XoCJJ4qxtEW1Wk2bw4f7xgjx3uvHygnRFLMmUE+UaljgVMCFX5CppXLI9up99skl+C6DhZSJoTZ/EvEnWQzINMGxYFKn20zLFa7qtcYRzBpVFfn2scltoaoJrWSbVDHgKVkJDw9n7lzXHFuv16PX6xkYGKCpqUmo/lVWVgKuh6lRP758LLyobCs6h0iJ9BvDHQcX8Co3N5eMjAwWBMVw9LP7rz1OD6zs37+fkpISrl+/zm9+8xuWLVvGokWLSElJEeJHBoNBLMzNzc1s3LhROAPGeWiIsJSil7zwDIpkqLuFQMmE5IC2Ntf31Ol0glY3WgK5sbGRr776iiVLlnD27FnsdjuzZs1i48aNtLW1cfToMfxHXt2t8ZfMhGvtqNV+WCwWpk2bRnBwMHv37uW//v44Rx+Y6LOncO6hHh7eJynUm/+y/k0Gc7IZHBzk+fPnhISEsGzZMiRJ4q233uLLL7/kxIkTfPTRR27FS39/P/X19VitLvaIfB2cTqfwpQgJCWHmzJncuXOHWbNmuYHmJEliwYIFnD9/nv7+/jESqzNmzOD+/fuCCvrw4UNaW1tJS0vj2bNnoi09UcgW0PICqtfrhalVbGws69atY8aMGUJsyuFwYLPZmD179hh2igxmVCgU9Pb2IkkSISEhlJSUcPnyZQFU1Wq14xYCIyMjYtw0OrnJ7XKFQsHKlStpa2vj5MmTTJ8+nbVr1wIukSWZvaBUKoXehsFg4NKlS1RWVqJQKPjkk08IDAzEYrHw3Xff4evri8ViwWg0olAoiIqK4s033xyFWrdw9OhRhoeHxeihrKyMjIwMdu7cyZEjR/j222/x8/Ojv7+fvXv34uvry9dff43FYmH//v1ERETQ29vLsWPHMJlM7Nu3b0zHRL4n7t+/L2SvY2JimDVrFhcuXMDDw4MPPvhACJkFBwdz8+ZNDAYDs2fPZsaMGULSGGDq1Km8+eabbsqfo//OkydPuHHjBjabjWXLljEwMOBWVAQFBaHX60lMTOTu3btCAj0+Pp4tW7YQERHB119/zcDAAAVNBvJsKW7r370mMwtaK4mcADM8mo74qjA6NQRLrlFBo1nH1ZH4MZufbquK7I5g1mv1hEvu6owKhQKdTofVahWjPYvFgqlzGMZXgXeL0EkyKv6Y44+aWjgeleT1alvjhat61SlsbNGUsllTymq1Sz5zh1fVT6bQdHR0cPnyZc6dO0deXp6g142W/5Vjsg9T1yu4wqPFcVIifAnV2id1nBcuXCA+Pp6/+qu/Ij09ndu3b/OP//iPFBcXC2dDtVpNRUUFWq2W6upqdDodkiShVCqZOnUqKpWSAIaZE6IkSGFCrXYdi6wf7+fnNy6yeu7cuRgMBn744QccDgfbt29n27ZtaDQaKisrcTjsk7JatdlGROv08OHDtLS08KzDzKm+CPrs7ue2pmuID48UkfrGdpHob968KQyPtFotO3bsoLu7m8uXL7vtlqOjozl79ixGo9GtGOjt7cVut+NwOKipqWHlypUYDIZxd1KzZs1Cp9ON+1pERIRYwLVaLfn5+cyaNYuysjLS09PdOPwvR3l5OQcOHMBqtYq5r1KpZMOGDfzt3/4t+/fvZ8GCBfj4+IgxjUw9W7169ZjP6+7uJjQ0lJ6eHkErPX78OKdOnSI2NpaPP/6Y/v7+cY2JwKUcaLFYxshQP378WPzcbDaTnZ1NSEgI27ZtEzvB8+fPj5Ecfvz4Mb/73e9oaWkRIyWZU3/mzBmXc11UFA0NDXh4eKDVann33Xfdnovs7Gy6u7uxWq2kp6fzl3/5l3h4eHDw4EH0ej1vv/220KTYunUrGo2Gr776CoCPPvpIUHsPHDggPBXGKwSMRiNHjhwRhYBsw3zx4kWSkpL4+OOPRSFQWlqKXq9ncHCQbdu24enpyXfffSeunywlPF4h0NLSwoEDBzh//jwJCQksWLCAR48eCTR+VFQUv/71r/n444/x8/MTVuFqtZq9e/fy/vvvExkZid1uJzo6mko9k7YqHh2j6YivCk/JKuTLX6dRkm+PxelEnCenE1Zu20fiss10WtWEhIRSV1dHU1MTCQGaV67Lsm/IzIix5/BPLf5oOwMTUUk+WBz3GhWyicPo1BCkMBEkmQjCtRuWx2g/hUIjh8PhcFMedH2OizLk7+9PQEAAHhY11+tef2zB3hNzqOVW4sjIiMsPPkXHPxRZxxyn/K/F2hYkXPzzZ8+eMWvWLJYsWYLFYhGULdm/Xa/X09bWJiSMv/vuO4KDg9Hr9QwPD4ukIiuojeb22u12NxGd0VFaWirm1rL2fXx8vHCLi4uLQ9HUxHpFDY8sU8bt1syL9KSry6UtsGPHDu7fv8/hw0e4qsr4sSs01pkPJ/z9zQa+fv99vvnmG4Fi/+Uvf0l4eDjh4eFs2LCBCxcuEBsbK9Qlt23bxueffy7a5h4eHpS0DZD3rIZehwfTQ72pqKhgxowZzJkzh3v37pGWluY2R1er1cybN4+ioiJWrFjh1nlobGwUeAen04nD4cDT01Ps+F4Oo9FIRUUFeXl5YpYbGBgo/h0SEkJGRsaY9402MQoMDBwXhNbd3c3cuXMFdkD2Tti1axfTpk2jpqaGkZERN32B0VFYWEhiYqJb98PpdHLr1i0UCgVLly4VlNNdu3aJ81BYWEhHh8suOiwsjMTERA4dOkRjYyPz5s0jMjKSixcvvvAhePCAiooKFixYQH5+PiEhIRgMBj766CPBuLDb7Zw8eVK0wmfPns2mTZuQJIn9+/dz5MgRvv76a3Q6HVqtFk9PTy5evIjFYiEkJITdu3fj5eVFUVERFy9eJC4ujh07doxrZdzS0kJ2djZGoxEPDw/eeOMNHj16hMFg4O233xYAX6PRSE5ODiUlJaJNf+3aNTGj9/LyIjw8fAy7AWBoaIgbN27w9OlTwsLCWLlyJUVFRZSWlgq9k3Xr1pGcnMzg4CA5OTn09fUBriLzk08+QZIk7HY7T58+5d69ewwMGChwpL5y7p9ni2GLonTM3F/eJL2ugxestODt7UPDgO21Y4Vemwa9yout6ek877ZyayCYg9+W/Ph6Cg/qrfwqLY4p6mEKCwvZkRDAV3XSmA2gJIECib/bnPInDx6EP1I2gTwGGI9KcrNifAvfyUSqqgNvpWNCsQofhZVQaYhep9cYRO4qXSOxOrNIjjJdarxITk5m1apVtLW10dFQTSNBr0Xm+9S7eL+hoaFjFM3ABaqKiooiJiYGD4eR3oqCMceZFOrNf1kZibW5ROwSHA4HXV1dPH78mI6ODubPn8+SJUvE7s7T01PYGMte8h999BH+/v5uO1y5vT1aTvflBzApKUksTDabDYVCwf79+wkJCeHOnTvk5+czPDxMZmYmxcXFREVF4TB0k6zsJkbZT7RigFnqTuYp2/BVWMnMzMRut6PX6yktLWXNmjVUdRu50fFq8Zm+YSurk0NITYwR45qKigpmz56NRqMhIiKCvr4+Hj16hN1uJyoqigULFuDp6UlxcTFtdh8ON3rx+d167jaaqLSH0mAPwNLdyLol84mIiODRo0colcoxu8fAwEAePHiAv7+/6Jg4nU5OnjyJVqvFaDSKe6irq4sFCxYIYaLCui4uPCzmxp173LlygaqqSoaHh4mKiuLtt9+mqKiImJgY9Hr9hMY/jY2NYkadkJAwhiFgNpu5efMm8fHx3L17F7vdTlJSEr/4xS+EGFZeXh5DQ0PjSiJ3dHRw69Yt1qxZ48aqKCwspLy8nDlz5vDs2TN6e3vZt2+fKBiGhoY4fvy4+O4pKSmcP38egHfffZfMzExycnIIDg4mMzOT2tpazp07Jz5PBuPt3Llz1I7SydmzZykvL0eSJJKTk0UXAhDg0cLCQsxmM1u2bCEkJITy8nJUKpUQE7p27Ro3btwgPT2dbdu2jQsKzs3N5eTJk4yMjBATE0Nqaio3btzA19eXffv2CcBbVVUVR48epaenhw0bNmCz2ejo6MBqteLl5cWOHTvQaDS0tra6XT+73U5+fj7ff/89fX19ZGZmMjw8zLNnzwQi/4033mDr1q34+vpy584dfvjhB/R6PVlZWdTX12O32wkLC6O1tZUTJ05QXFzM1KlTiU9bysnyYV7VOTWjJkbZj6fkTleWJJc/R50jSPzuqDMjaIs+kmt96LF7UGt/NfYFYIqkp7C8jovGeMwvMbjMDiUPWq04OqvZtjaL3ZvXkhEXyIOKFoZsL35vWqg3/9+ueX/WGfgx/ug6A69TC2TMrn1Sn4q/ZCZQMuEYx2BOp9MJ2lekcpAtilIXyMbpAtkESiaUCgVZWau4ceMG0dHRAj0so3TlHR+4Eo/cel+wIIPeolouDMdP2HFY5tnOlClRXL16lbt377JgwQKRnOQY7VYXHBzsdpxJs+ZT/fwx/9tOl6jPUy8bZ8+exdvbm7i4ONENkCSJx48fCy36GTNmCEW80drpDoeD+fPnU1xcTEdHByqVyk32eDSFSKFQ4Ovri16vF0lo9OeUlpaSkJAgxhJKpZL79+8jSZJoC+t0OiSDQXRrwLUzv3fvHh9//DFXrlyhqqqKkydPEpWxFhr7XnvFvzl+mmjlgLg+Q0ND/P73v2fRokUEBASQlpZGXV0dVqtVtGnT0tL4JuchV83x8BLOo33YyQXiWfaghHez5pCens7Dhw/JyMhwQ8L7+/vjHZ1M9p3naMMSmRnpS0lJCW1tbezbt48jR46I8+dwOJg3bx7fXHrI7/K66bbKj7MfIZo5pDlreXf5HDIyMvjqq6/w9/dn586d/P3f//2ENsaj1RbH6wrI3YA7d+6INvv69etFh8PpdFJdXU1SUtK4u63CwkK8vb3HKMPdunULSZKw2Ww0NjYKLQE5rly5Iu5fmWopsxRkkGlLSws7d+5Er9dz6tQpYmJiqKmpwdfXl+7ubjZs2CBEg5xOJ5cvXxZU0/j4eLZv3z4GKJmdnY2fnx9arZZTp05ht9tJTk4W4D9vb29qa2tZv379uBoSZrOZU6dOCUDb4sWL6ezsFNTMN954A5VKhdls5sqVKzx9+pSkpCRmzZrF1atXhRW6n58fn3zyCVqtFoPBQF5eHjabDZVKRX19PTk5OfT09DB79mwcDgf3798X3yUtLU1QOvPz87l37x52u53FixezePFiMQYLDQ3lxIkTOJ1OZsyYwbp16ygrK+OHnBvA+F2e0WF0agjCREBAAD4+PuJekn0GxgMTv+Hfh69pEJVKhUajwcMyubFCgFbBteEp43Yr5HW/wmsWixYtQpIklkwN5sPwdka8Q5mZtohQXy0zI3z/3BEYFX8UxcBoiuCgZeS1ZiQ/vouJdtqTafGPDrPZLJKGRqPBarUSJJkIV9vEAuZwOKiurqHHriNtzgp8Y7t4fveyoOuM1yWQ9QGCgbXqkTEPU7Daxgezvegp7aO62qWQ1tDQwIMHD3j48CFpaWksWrQIPz8/t2JAXmAkCYIkE9sXJ3Og7D7t7e1ERkaKHanFYqGkpARJkggMDBR+BLLaYGtrK0uWLOHOnTuAC8SjVCp59uwZq1at4s033+SLL74Y88B5eHiI8Yinp6cwFhrPyjc/P5/8/HzCw8PR6XTCAyE6OpqWlhaysrK4cePGmPeZTCY8PT25du0aO3fu5Ny5czx79ozivHtAyvgXclSEemvYuHIjRqORoqIiDAYDw8PD3LhxY8y1Ki4uRq/X4+vrxwNT5LjTSfln/3i7mR3LZpOVlcWTJ0+ERj2MHm15A96c+M19poZ4McdWRcb06XR0dIjOivzf/+OzI1yxJuHEPrnADQAAIABJREFUvRvUbVVyTZrOrsiZHDt2DIDdu3ej1WontDG2WCzU1NQISuto8SKn08nz58+FI+aaNWu4fv06arXard3f29tLf3//uCMCq9VKcXExCxcudOtePXv2DKPRSHh4OCUlJWzdutXNfKe+vp6SkhLx/97e3uzZs8dNabGgoABfX1/i4+M5dOgQWq1WqCzq9XoXePZHl09AdJpUKhVRUVG8++67bsfU2trK0aNH8fPzY8+ePdy9e5f29nYUCgULFiwgLS2N7OxsOjs7effdd8dV/mxvb+fYsWPCN2TZsmVCrGvPnj2iMKmrq+Ps2bOYzWbWrVtHe3s7P/zwA+AqDuPj4yktLRUdh+DgYBfQrrGRoqIiysrKmDJlCgsWLKCoqEh0T+Lj41m3bh1BQUEUFxdz69YtBgcHSU9PZ/ny5cILQJZ97urqQqVSERgYiCRJfPfdd2i1Wvw0OphEjvZVOcDpAtO+TG+UNx96yYshu0pskhakZlBQ0C4K7gCY1FghaVoSJ4rGt/52hURDv0VQBl2U5G5WzkplUXLo67/Mn2D87IuBiSiCk4uxif/lkOfPkcqx4L7RISf10TsunU7H+vXrOX/+PG12H05XeaF3pnDuRNmPn53CYm0LYbibeXh6euLn5+e2245UDrJNVU6PXcu8RSsI9/cg7/IPvJmxn574QC5cuMCJEyfYtm0bWVlZIokWFBQwe/ZsJEkSCeDRo0fAC5peaGgooaGhtLa2kp6eLhYdb29vurq60Ol07NixA4PBwNmzZ0UxIaO/5XA4HDgcDvLy8li4cCHh4eEkJU0jt7IZo9NLLAAOh0MkNHkOCozhKkdERIhz0NHRgVKpRKVSkZqaytOnT5EkifDw8AnHLXa7nYqKCqqrq9mwYQNdXV0429ontdhojN3cv3+fX//61yxdupQvvviC7u5unE4nWVlZTJ8+nSNHjrgJQ5W09tPvCBnnM+WQ6DBBYV0n8xPDyczM5NGjR66xR6dlXIZLbfcwtUQyPyOSGzcu4enpKUCAIyM2SrQzwGof9285gf/leD7bdHo++uiFi6VGo3E773LIdsEeHh4MDw/j7e0NuBL8pUuXqKurE8C8+Ph4IQ41utirqqpCpVKNyyJ4/vw5VqvVDTjodDq5fv26UH9cuXKlEJgB1zWUEyMwrsufrNK3dOlSLl++THd3N3FxcdTX16NUKklISGD9+vXi93Nzc4XRVGhoqBsuAaChoYHs7GzCwsLYuXMnly9fpqSkhLVr11JTU8PRo0dRq9V4eXkJKnBSUpI4JtmVNCcnB6fTSXR0NGFhYVy7do3ExES2bNkiBHuuX79OQUEBcXFxYnQgdxmXLFnCihUr6Ojo4MmTJ7S2thIdHS2Kr+zsbHQ6HQsXLhT4EHAxBNavX09iYiLV1dWcOHGC7u5uZs6cyapVqwgKCsLpdFJeXs7NmzeFf8ayZct4/PgxTU1N9Pb2otFosFgseDstBKms9NrUTPTMBEhmfB2DILmszuVu4ovrDAalL0MjklgHJMlVxI2+pyeLvXpcqgTcpaHHC5ky2N/fL9a6P8f48bPGDEyEDZhMLFI1MuTUjZntZ6nqSFF1Eq0YIFXVwTyVa/78zwmr1YpCoUCvDeNET9jY2RYqamyBQqY4IiKCoaEhHA4HBoMBrVbrZigCTjwlGwOtNWA2oFAo6O/vZ+3atURERFBaWkpZWRkajYbly5eLFrS8cx0eHkar1ZKbmwu4RhS+vr4sWrRIcOvnz5/P8PAwBQUFWCwW3nnnHTo7O8nNzSUtLY3Vq1fT09NDT0/PhK1mu93O48ePqTYoOFivI3cogDpHkGt27gjAyz7EjOgQ0RGQsQky/U5eGOSEJZs6yXrjb775JoWFhTgcDtGqlyM5ORm1Ws3g4BBdIxr6nF6UVtbwPP8hen0/CoWEL6bXzjDDvFySqHl5eS6Z4NSFPChrxmxz0NVYS3BwMJWVlQQHB6PVaunv72dqxkqu17zepa3v+V3qnuWKXWtHRyf/WGii3zgyIcejsK6baVInoaEhgnXS5/SgwPTqeafRruAvNi1i9rQ48bMnT54wPDzMsmXLRCu5q6tLeDDYbDYsFgvp6emUlpZy6tQpwejo7u7G398flUpFdXU1c+bMISEhQXz2zZs3CQoKGtct7sKFC0RERLgBF0tKSiguLgZciX7t2rWiuDCbzRw8eFDgSKZNm8Y777wzRrCpsLCQ2tpaEhMTefjwITNmzKCyshJPT098fHzc1AmfPn0qBK4CAwN5//333cB+1dXVwhFx+/btnD59WogLpaWloVAoKC8vx2azsWnTJubNm8fdu3fp7e0lOTkZq9XKyZMnxTO2YMEC+vv7qampYfXq1WzcuBGtVktTUxPffvstjY2NrFixArPZzMOHD7HZbISEhLB3714hf+3t7U1eXh5eXl5YLBZOnTol1Cy9vb0pKyvDarWi0+lYu3Ytb7/9NkajkR9++IEHDx4QGhrKO++8Q2ZmJh4eHlRVVXHq1CnxmUajkYiICKFjIbNf7HY7kZGRbN26hZlTgrhcIY/Xxj4zWeo6ogM8sFgstLe3ExQUJJ7jNrsPN0aSeDIS7rYO+ElmkiID3SjFkiThI1kmxF6t1NYToRhkxClRaX99Yv91VgKhPjoaGxspLS1l9erVY/w//hyu+Nl2Bl5NEYRXjQH8JTPTlT1MV/aMme3Lm5zR8+d/SZSXV3DGmvJKJO5TZRLbMjXk5uYSEhIiePfynN3b25vNmzfz7NkzysrKhIEOIHjDy5Yt44MPPuDw4cPcvn2bvr4+Nm/ezKJFi8jIyOCLL77AYDBw7tw5QdOyWq0CwBYVFcXTp08ZGBjg1KlTgIv2NGPGDOLj48nOzubw4cPs3LmTmJgYsdjKCdvb2xuj0Sha/S0jXnx5v3/M95ZFnBTNNcTqtFitVvEenU7nhnOQRy/x8fHU1bkoFS0tLXz++edYLBZ2797NmTNn3M5oWloaN0paONMQ+GKkYnW1HjeFD5MR44fz2bNxZ5gRnhKZ6mb8LYOYTC4wX2mPjV/+0IDe2Qm4+Pb+komOy7nEaNV4e3vjcDgwGo3cv36JyYwgpseEMzMmUHQ98qtbqbP6v+IdLmqr3Tdc2D7D5GmnKh/3lq2MUZABoE6nk5ycHAICAggICBCdn0uXLmEwGFi0aBHLly9HrVZz9uxZ5s2bJ8Y1ozUIzGazcHx8Odra2mhvb+e9994TP5Pn9vLnjOb9l5eXc+HCBZFQtFotb7/99pjPlYWG4uLiuHnzJklJSZSWluLn58fIyAi7du0Syb6iooKzZ8+i0Wjw8fFh7969bniN0tJSfvjhB5KSkli/fj3Hjh0TmgKxsbHcvXuXW7dukZKSwsjICGfPnmXHjh1s376dkydP4nA4aG5uZnBwEJ1OR3p6ujA6+uijj4iMjMRms3Hr1i0ePnxIVFQUGRkZ3LlzR4hVrVy5ksWLF7t1PmRdhLy8PMxmM3FxcZjNZjo7O4Usb2ZmJllZWQwNDXHixAkqKioICwtjz549QsSqpqaGW7du0dbWRmxsLJs2bRIiVK2trSgUCtGV0Gg0aLVa9uzZQ2VlJc+vX2Kt2oNCEugZeZGgw3ROVvh04zk4yOCgq0jT6XSigGuz+/y4y3cPeR2gtYpI5YtX5S6fPFYYkLwZtCvxVtrwdw67GAAKBYHOV7MUJAmSQl5QBjs7O/Hw8BDdrj/H2PjZFgOvcxKcqBB4ef4/mib4bxGTUeDqNEtMSc0kZXCQ0tJSPD09iYqKEs5wQ0NDfP/996xcuZK1a9eSnZ0tKFbwYq6elJTEhg0buHr1KsXFxfT397N79250Oh2BgYF4enrS1NSEUqnE4XAI/XmHw0FkZCROp5ODBw+KnbYMINPpdOzdu5cTJ05w7Ngxpk2bJlrNwcHB9Pf3i6LAhRtQ8WAo8pUF0HNNMjszddy5c0d0P8xms6DmAWzYsAGDwSBaunFxcVRXV4viobe3Fykwmg5TD2q7kUDJRLVBwf9bYMTxEh9a79RxrF1HT08Vv3zLJV8bcfKUezFoN7Fh7XquX7+OzWajpHtkwoXsijWJtc4qaGlhZGSEXnUId22v26m4CtHhlkoetb74qdE5sbHQ6FB4BmDq7BAF42Q53C8LqsjJ0Ww24+npSVlZGQ0NDezZs4e8vDyRgL28vNi1a5dorZpMLpvZ0NBQsZsfPbeXVQzHwwsUFhbi4+Pj9lpRURFGoxGtVsuuXbtQKpUMDQ1x6dIlysvL3QrDjRs3jiuoVVdXR19fn9gpNzQ04Ofnx9DQkBsbob6+nhMnTqDRaPD09GTfvn1uieHJkyecP3+e1NRUli5dyqFDh7Db7XzwwQcEBQUJH4IVK1YIyeDTp0/z/fffs23bNmbPni2EgKKiovDx8eHBgwfMnTuXDRs2oNFoaGtr48yZM/T19bFs2TLa29u5evWqeM+WLVsIDnbv9FitVu7evUt9fT1Op5NZs2ZRUVEhRn7Tpk1jzZo1qFQq4d/g6+vL1q1bhS10fX09t27doqWlhejoaNavX091dbXAf0iSJIqAadOmCQvsAwcO8Omnn4oR6IeblvB5RgZlbQYOfn+aIE8VGxfN5syZIsLCwnA4HHR3d+NwOH7EnTheK0U8ESURICgoEKmvD/8f6yIvby8WLlxIU1MTNTU1LFQ1cW1k+o+upaMo0uNQBru6usaMtP6142V5+58bQPFnWwx0v0JkZ6KY7Px/ohiN+Pfy8kKSJJEEQ0JC6OnpGTO/nuzu7eSl69BWSkZGBmVlZaIQyMjIoLGxka6uLq5du0ZeXh4rV67k4sWLJCQk0NHRIdrt1dXVVFdXC+BXc3MzX375Je+//75L4rOtDR8fl/NYcnIyFRUV1NXV8Zvf/EbMac1mMx999BGff/65G8hMrVazc+dOzpw5I8BcCxcupKWlhZSUFAIDA7lz545rQbApX1sAtQzaKW4ei+qXKWAqlYq2tjaam5vx8fHBw8OD2tpapkyZQktLC73qEP7iXAt6pw/gKlr8MHHqh2IczvFmm67F57Eznt+lpWE0GgWAUi4GJUni8uXLJCYmUlNTO6mFLMJaSrvDh6vmmAlb/K5wL0QjIiJczAFvb3Qteq7Xv/LNAGgcJlCpBIDzdRzul3dHcoy2MbZarVy9epXp06czPDwsEjrAhx9+OAZdDy4DGIPBgIeHhxvIsLq6mpCQkDG23BaLhefPn7N48WLxeVarlUuXLgEuyWLZG+Hq1asoFAoyMzNFqz02NlYktpejoKAAtVotEppGo2FgwGWyJXctWltbyc7ORqVSodVqef/9992EenJzc7ly5Qrp6enMnTuXQ4cO4enpyf79+1GpVBw+fJi2tjbhOwAuavC2bduQJEl00uSQx2jbtm1j1qxZ2O12bt26xb179wgLCyMrK4v79+8LNsDatWuZP3++W+JwOp2UlJRw7do1jEYjU6dOpbq6WogGyQY9b731Fo8ePSI3Nxe1Wi0+S6VS0dDQwO3bt2lsbCQqKoo1a9ZQU1PD5cuXx+ggpKSkCGZGbm6uGMM5nS5fgpSUFEFlTJ3iz19sXsbRo0dRKOaiUCgICgoSrAS73Y7dbp+0FPGgypcQlcUlMz4KRCx3F8BlTx0bG8uxY8fo7e1FqVQSySD/Oc2L3+f3uP2dqSFjrYm7urrGxbH8a8Ufg0Xyz7YYCJmkfORyVS1qySHGAAC9jvFHA6+L0UhuuZUqh9zafzkmu3vrbaklSOEyIxk9A/f392f9+vWUlZVx7do1AeLz8/OjpqaGDz74gIMHDxIWFkZnZ6eQvpWjv7+f3//+90RGRjI0NMTs2bMpLi5mzpw5wp3PZDIJIKC3t7cwp3kZca5UKlm7dq0QMPH29qavr4+EhASCg4NFgTHZAqi4uonolyQR5ERns9mEvj0g5uQtLS2u1uM4yXcAHThedTFdgiX/6f/8R4IUY7tBciFXW1s76YWs1+HxiqLhRQSpRpgv1ROpHESSJOLj41m1ahX5+fmMFD3BX5r+SlBjgGRmpKuBwMAAMjMzyc/Pp7e3d0Kw1asEVUYXA/fu3WN4eJihoSHOnDmDh4cHkiRhMpnGzOa7u7sF/c/pdLopR8qUwvF0+J8/f47NZhPAQYfDweHDh3E4HMIE68iRI9TX1zNnzhxWrFjBgQMHfvweElu2bBl3hzUwMEBlZaWQQ5ZxLEuXLhXH0d3dzZEj39Jj98Ci0LJr3UbRLXA6ndy7d09YDsfFxXH48GHCwsLYtWsXw8PDHDx4kJGREfbv3y8Mg+To7e0VVEtwjTqampqwWCysWLGCWbNm0dnZyZkzZ4QmhKyzAC4dh82bN49Rj+zo6CAnJ4empibi4+MZGRkRmwOVSsWmTZvQ6XR89913fPbZZ9hsNhYtWsTixYvR6XQ0Nzdz69Yt6uvrCQ8PZ9WqVdTW1nLt2jW3rhC4nvdf/vKX4l54/vw5arWajIwMFi5cyDfffEN/f/8YN8zExETi4+O5c+cOYWFhNDQ0iOdn2rRplJeXT3odGLIp8bWPv7mTR5oajYYvvvgCq9VKcHAwu3btcnVZah7zfpCCRoMNv/AYBjqafqRIv0jANpuN3t7eMe6Y/1oxkbx9TdcQe7/K48iHC1ky9d9/QfCzLQZSInxJCvV+xajA1ZKNV/aLZN9m9xmH62qadLfA6YReh27cQsLLy2tMgQCTV+CSCxVZ5AZchcC1a9dob29n8+bNzJgxg6KiIm7evMnAgAuodvLkSVJTU6mpqeFv/uZvKC0t5eHDh+J1cO3C5Bmv0WgUMqPya+3t7cLkpqenh3/6p38ag/QHV8X/3Xff4XQ60Wq1gtJ37949t9/7KRKkL5+3Dz/8kK+//lrgBRYtWkR0dDRWq5WBgQFu3rz1yh37ZGLYoSZQmtiXHSbf0el0+rymaHDFYqma5DAvenuHcDqd5OXlUVlZSV9fn2snrG7+kSI4PoJ6lX8f/ho//vIv/5Lr168LmqfM4a70nk1D/4sFNSnEm7+bYFcit8fb29t58OCB6/sajezdu5erV68yODg4rnBVd3c3QUFBAuswGjjY1tbG8PDwGAlip9NJYWEh06ZNE7vxK1euCMxLTEwMn3/+OV5eXoJuN5pfv3r16jGdBjlycnIAhG6HUqlkxowZrFq1CnD5L/y3Aye5MzSVfocrCV78tpSk0Eb+7q2ZDNc94dGjR6xatQofHx+OHz9OUlIS27dvp7GxUThy/uIXvxhzDMXFxZw9exaHw0FERAQGg4GmpiYSExMJDAzk9u3bdHd3U1FRQUDAiwLObrej0Wh48803SU1NdStyTCYTt27d4vHjxwQEBJCUlER1dTWSJKFQKAgODhYqlHJXZcqUKWzevBkfHx9aW1u5desWtbW1hIaGsnz5curq6rh586YAzZnNZpRKJXPmzKGoqIjU1FQuXLgg9BhWr15NWlqaADn29/fj6elJTk4OH374obgvLBaLkGCWQ3YvTU5Odo15JrkOaJ3mMY+uj48PPj4+2Gw2urq6OHnyJABz5szhzTffRKVSsWLFCo4cOUJ8fDxDQ/WsmxfHlSuVPH/+3G18JXds/y2YBK/XtYG/O1/K1f8569/9yOBnWwxIksSO9Cn895yKcV4diw14HZBlLVWvLAheV0iMVwi4jvP1VJkVPt2M99zIKNuSkhKqq6tZv349aWlpzJ07l0ePHnHnzh0GBgZ4/vw5DoeDyspKFixYQEZGBg0NDTx8+FCInchRU1MjHmKFQkF1dTVhYWHs3buXmpoaTp8+zZw5c8jPzyc3N5fW1lY0Gg19fX3o9XpR/Y8WERodarWaQOvkC6DhYQSvHRBFi81mQ6vVkpKSwuDgoODA90tek0q+rwqZDz06goKCRILVaDT4O4CJLdpFSK8ZDsgRkTAdQ3sZCoVCtFHlgs3Hx4cIvZ616rGgxlCNncW6VnxN3axY+zanTp2iosL9no9UDpKiK6czSIXSOxBPaYT/9dcbJ1x8ZCzIzZs3hQOiLH8sAzonKgZCQkJEApCV/MBFKdTpdG4/A1eR0NHRIRJ0bm6ucKnUarXcu3ePhQsXsmrVKjQaDV1dXWI8IKsJjhft7e1UVlbi5eVFU1MTOp2OgIAA4TI5NDTE//WHE5w1RI+5QvKOba26ig83rRdgwLS0NDZt2sTjx4+5fPkyU6dOZfv27W7oc5vNxrlz50S7PiUlhdraWtRqNTNmzKC8vJzw8HA8PT2FYJbMFACYOXMmGzdudBuvOBwON0OhadOmUVdXJ8CiKSkprF69mvz8fB4+fMiZM2eYMWMG1dXVPybCIS5cuEBVVRXBwcEsXbqU+vp67ty5I47dYrGgVqvJzMxk4cKFopDPzc0lLCyMrVu3kpKSIq67bMEcFRXF+vXr+eabb7h16xYzZ87k8ePHlJSUYLfbhdOq1WoVxYBsL/xTN0Kjw2w2s2/fPm7cuCHGU1lZWQLPAAihK/m5jYiIQKFQCLCxHPL7/y2Kgddh135OFsk/22LgQU0P/8/l8QoBV6QrW0Ryn4yn9quALD+lkBiNK/DwcFFtkrwcYBhfgStT3UyQbQifHx8k+TOmTp1KfX29AO9YLBbOnj3LuXPnSExMJD09nf/4H/8jf/jDH8QO/uLFiwKkFR8fT3x8PAMDA3z33feUtPaLjoazrV3s7iRJ4r333sNisYiHprS0VBzj6Dao21kb9T3BtbBbLBbhA/9TfBpG0ydlAxf5O49uFwPY1SFgHveQJhFOwnQOwYceHYmJiWJRsVqteDutk1rIQqXJ6VusXbqQayfK3L6rLFIlF30ygtrmE8aAFXzVTnxsBjw9Pei3umR+Ozo63Oxb5RgaGuRvfv1rKisrBXZjvIQ+PDxMUVER4EpCGzZscBPjsVqt2O32cbX1u7q6SE9PF+8fPSaorq4mMTFxzGjh8ePH+Pn5kZiYSEVFBVeuXBHFn6enJ3v37hXtd1keWL6vRksDjw6z2czRo0fF9/H09ESpVAq9ALPZzOHDR7jeH/JKhboyjxR6e3spKChg+fLlLFu2jMuXLwt1wzVr1rj9/b6+Pr799lv6+/vRarXExcVRWlrK9OnT2bx5MzqdjqNHj/LgwQN0Oh3+/v4iMXl4eLBly5YxnZPm5mZycnKE90Zvb6/oDkZGRrJx40acTienT58W4Nrly5ezYsUKfvvb35Kfn8+1a9cIDAxk0aJFNDQ0cP/+fZEoLRYLWq2WZcuWMWfOHEpLSzlw4AB6vR4PDw+2b98upJBHR25uLt3d3fzqV78iODiY6dOn8+DBAx48eICvry9LliwhLS2NgYEBvv76a8BdvRJAqVT8ZL8WOZKTkzlx4oRYk3x8fMjNzWXq1Kmi4KysrBSKjPI59vPzc8MagItJIKtI/muE0+mkt7eX2tpaLj1tAsYCW1+On4NF8s+yGBjdmpkoahzBpDo7kaR/nqf2i781+UJCoXBPkCaTCR8fHwYHB4nVqYmwussUL5kZx6ZNv6KsrMxNRc/pdNLZ2clf//Vf09fXJ3b4sutiTU0NNTU1YlY6NDSEv78/er2eY8eOER4ezjvvvENQUBCFLUN83hhIv+PFnTi6o+F0Ovn000/dvpXJZHLj9o8XQUFBeHl50dzcjMPhEIXA4OAgfn5+OAcGSHe0UGSPwjHqvClwkqZsfe1YRk54Mpq7qqqKc+fOEaBTwqTwn+MvPnPtNWg9NGM0El52CpQkWObZwYXhuFcuZEGK1+9+orwV3L/wnZt/vHxeRx/HkiVLXIut3YDObmXfnn0cPHgQi8VV/XR0dAjp65eLsejoaIKDgzGZTIyMjNDZ2enWKnU6nTx9+pRr166JAtPHx2eMWdHIyAhOp3OMvr7RaGR4eJjAwECGhobw9fUVvzM4OEh7e/uYXbzZbKa0tJSlS5fS3t7OyZMnRSEQEBDAf/gP/8GtYHn69KmQul64cOG4bpZyYnQBQCV0Oh0jIyPs3btXuC4ePXqUqm7ja5/5ZoONK/ll7HvrTVJSUjh+/Di1tbVs2rRpzIy8pKSEM2fOYLfbhRZDTU0NGzZsICMjg4GBAU6cOEFDQ4MQz5Ln8pIksWPHDjcA29DQENevXxe+CaNb7j4+Pqxbt47Q0FBu3bpFeXk5oaGh7N69m+vXr9PR0cGJEyfo6ekRioiNjY08evRIFAFWqxVPT0+WL1/OtGnTKCoq4re//S0Wi4Xp06ej1+tZvXq1oB2OjoGBAWGzLZuVmc1mPDw8cDqdfPDBB3R0dHDu3Dm3zqPTiTs7x2kSY6x8Rxz99hfJWAZzRygGx2C4lEoFJSUlQtxKr9eTlJREZ2cn3377LXv27CEmJkYYf3V0dNDR0YFGoyEmJoZnz5652YDLTIJ/SRiNRurr66mtraW2thaDwYBSqcQjJI7JFAM/B4vkn2UxMBla4ejk/lM8tV+mGf6kQsJpGrNIy8A3l2OgO3q9ttYl/SpJkuAZy7Qog8HAp59+ysyZM1myZAnvvPMO5eXlXLt2TYwknE6nqJz1er3YxXR0dPCb3/wGZeRMvqrzwIn7jfi60Yi8q5T52PLfkD3hLRYL/f39Auwnz/3lxW9gYIA2uw+F9iljuikOJArtUwhSGF9ZEMjJUu6uXLlyBYBYXyVRJgWtQ3YmSr5eWFFJDgZGXbcAhZkFyiaWJoWIUcR4fw8QCS/Y2statXXcjs5onMnrdj+plgqUvmqioqJoaWkZt8AKDAzk6dOngi2RmppKdHQ0Op1OSDeP5oGDu0JjW1ubmF8rlUqam5tFMdDd3c3FixdpbGxk9uzZqNVqCgsLCQoKGoNgl50tX95FyQBZ+d6OiooSr8kJQZbXlaO4uBibzcaUKVM4ePAgdrtdJP99+/a5FQJGo1FoDnh5efHGG2+MOUcAd+/eFX4YKpUKk8nEu+++S0REBHa7ne+//57W1laGHZOzpE1fuoqEhAS+/vprDAYDe/d15BQLAAAgAElEQVTudcNC2O12Lly4wNOnT8V3rK+vJzAwkF/96leEhoZSVFTE1atX0el0zJkzR9AuwTUWMBgMnDhxgv379xMUFER+fj63b99GoVAQGxvr5lOSlZVFamoqDx484NSpU/j6+rJlyxZmzZpFX1+fGAf6+voSGRlJe3s7+fn5ojCzWq34+PiwatUqIiMjycvLEwyNtLQ0MjMzqaqqoqqqalwJZfkcOhwOiouL8fT0JC0tjfnz5zM0NMShQ4f47LPPhIoouArRgmYDj6wvu4e+2HTs8q6lZdiJWdKic1oIlEy0O3w4Y02Z8D1Tp05l165dHD58GKPRyO7du8nOzubbb79l06ZN9PT0CExJR0cHDQ0NpKamumTHi4tZvnw54CoGJmKjTBR2u53m5mZqa2upq6sTRWpISAgzZswgMTGR2NhY1Go1N/7pLjVdQ+MODCdi9Px7jJ9lMTBZWqGc3H8KoG28z/gpf2siadyXw+mEDouKv/6/v/ixIgZwWYxGRkbS2dlJb28vZWVllJWV4eHhQUxMDCtWrKC3t5e8vLwxO/fR/3Y64WS99M8ejcgOhKMtluV2nPy6HHJxolKpcDqd+Pr6cdOUjFNv+Wf9bfn4+5we/I9jOVj0Xfg7LWRmLsRoNJLaVE4bEyffpeoGIhSDbruUxEAdev0g9fVDr71Ger2e6dOnU1lZSSTjG0+NPu5XGbHIC1tfn4vZoVarhX/FaLZGX18fkqTA7BFMGwHYm/oIe/BAnH+/UWOkgIAAzGYz7e3t4udms5nm5mZiY2OJjIykubmZ9PR07t27x/379/H392ffvn34+/vz29/+dsw1BMTxOJ1ONzEecC2oCoVC3AOjd5TV1dVMmTLFTQdABg6Gh4dz9OhRHA4HaWlpFBUVER8fPwaQd/XqVdEl2bp165jOBLhwCbdv3xbeFjabjTfeeIMZM2bgcDjIzs4WZlcekxHTB6ICvTlw4ABarZZf/vKXbjx/vV7Pt99+S29vL1qtlrCwMGpqakhPT2fdunWYTCaOHTtGTU0N06dPp7u7W2gNLFq0CE9PT27cuMH8+fMZGRnhm2++wcPDg/7+fqKjo+no6BCt/3nz5rFkyRKePXvG559/jkqlYs2aNWRkZAixsOLiYjG+USqVIkHJ1y4gIIA1a9bg5eXFo0ePOHv2LF5eXixfvpz58+eLa1pWVkZCQoLb9RoYGKCoqIiCggJMJhNBQUFkZWUJEOPp06fdRoYajYbMzEyCg4PJKarjsjn0lWPUZLXEzAgPBgcHCQsLJ79pgKvD8a98DzU1fPPNN2i1WgYHB9FoNKIgOHfunJCaljdc9+/f5+OPPwZcBery5csxm80YDAbCwsJeeR+Mbv3X1tbS0NDAyMgInp6eJCQkkJGRQUJCghslVY7/ujmFvV/l/biujGL04ESB4mdjkfyzLAYmSyuUk/u/BMjyLykkgDHzXS8vL6oNinHBiGsC+9HpdBiNRjQaDd7e3gIPYDKZqKysdGMbjJfU5CTa4Xgdyn3i0cjL4e3tLToECoWCkZERNm/ezLlz58TvyHPJuLg4Pvv2NI16K6+yPJX5xb52w5hX3cCaHQBBBCjMDDxtIAw9n2xbj/LsHR5aol65Yx/dhdHrTT+en/ELgSlTpojdtcPhcOM8v9zRAXenSnAVBLu86mg1MqZokH9Xpqb6+/sLND247pGWES/Xd27xAFy4iHOXOlio8mG6P6IQkKWPJUli4cKFBAUFcenSJZRKJdXV1cTGxhIdHc3Tp0/53e9+h8FgYOnSpSxbtgyVSsXx48fx8vLCYDC4HT+M9dUYHd3d3QQGBroZRYGroKitrWXJkiVuv19dXS06SgqFgn379omd/1tvveX2u83NzSKJyruul6Ovr4/Tp08LoKckScyePZvo6GiuXr1KUVGRALWGhoaSHh3D3Yevf+bvnTtOaGgIv/jFL9xAfeXl5cKlMCQkBJPJRFdXlzAlev78OTk5OYLBUFFRgdPpJCgoiO3bt4sRh1ar5dKlS/j5+QldB29vb5FYY2JiWLduHU1NTXz11VeMjIyQmZnJkiVLMJvNXLp0iadPn+Lp6cmsWbNoaWnBZDK5Sfj6+/uzceNGbDYbjx49orm5maCgIN566y1mz54t3CXB1alsbGzk7bffxul0Ultby+PHj6mqqhIFWFRUFJs2baKoqIgLFy64jbemT5+O2Wymvr6eoqIiBgeHOG+fzfipRIIfFVbn6lpJSUn50f/CQblHKs7h8WyRX7wn2bcWi8VCS0sLWq2W4eFhIYT1D//wD1itVpqbm7FYLGg0Gnp7eykvLxeeKvBq8KDRaKSurk7s/uXWf0xMDFlZWSQmJhIeHv7aRL44MZjf7pjJ/36i0G098pPM/Ldtc/6sM/BvGS9ohYNMJrlP1vxivGv+LykkYKwTX7VBMSEY8WRvBD6+w/yn3dsF/WtgYICvvvqKwcFBIT368o4OXJV6o1lH7kj0T0Lbjx6NxMbGkpaWJtDAcgwNDTE0NIRKpcLHx4e+vj5RCMTExLBhwwZyc3O5efMmGo2GoCmzQP/6DsmAVWJ2Ypxb234isGa/Q8uZgSn809srcDiMhKFni0Y/Zsfuwm1M+uu7xdy5c3ny5InAZbwq5Ln76DCbTQQpxkpZm81mdDodVquVyMhIGhoa3MZJ/ZpQrhqjJtwlKQw1hEvubo/JycmsW7eO4eFhLl26hNPppKqqikWLFtHa2orRaCQgIIDdu3eL3W51dTWVlZW88847nDlzZgxuYnSn4mW1v+7ubqHwJ9PcABobG7FarQIY53Q6KS4uFveHJEns27dPuOLFxMS4uRw6HA4hKa1SqXjzzTfHnFer1cp3332HWq0WIE9ZY//Zs2duLowrVqxgcHCQwsLHLFT5TPjMK5BYqGrCy8uT7u5usrOzWb58OfHx8Vy5ckVgSGTtgNjYWLZu3YpKpeL777+noqKCxMREuru7KS8vR5IkVqxYwdKlS8X4Y2RkhOHhYRQKBQMDAwJkK2MuNm7ciNls5sSJEwwMDDBv3jzR2r5+/TpPnjxBp9Mxc+ZMWltbhd2yfJ4jIyNpa2sjOjqaK1eu0NvbS0xMDO+99x7Tpk0bN4mVlZUhSRJ6vZ7PPvuM/v5+wsLC2LhxI11dXTx+/Biz2cyXX34p7lHZa0KpVFJeXk5zc7PQm1i0cQcHT0+smOX8UWG1vMNAT89tF3OioYtaawgTbRbk99Q7rPznX73DgwcPqKio4LPPPmPlypVMmzYNi8VCaGgo2dnZTJ8+HQ8PD+Li4rhz5w5RUVFUVlYyNDQkNjAyLXOi1v/MmTNJSEggNjZW4C5+SoQ6+tiqLSM58w2uPyzgrz56n7tns+krN+FMn/rnzsC/VUiSxN+uiOGT70snndwn08p9OWQ3rckUEvB6MaPJgBF/aFDi+B//gFrtarmPTvxyYREREcH/z96bR8dVnum+v12zSrNK82jNs5FtecCG2Nh4wCbGBjMkkABpkk530t25OX1P+vY6fbvP7Zxm3fRqAuk0JDQJNgRjIAwBAzI2nm15kCzJmq1ZKs2zSlLNte8fxf5cpVkGOsO571pay5Krdu2969vfOz3v82RnZ6PT6Whra6O5uZl2q55PnJlLHHS7aWF6wOXFA3R0dBAYGDgr61XM5XIJpK5S8di+fTuxsbHs27ePu+66i9LSUj65Wg9kzXr/TDNKDj/k71Luzz++X8MBo7c6MlfGvpw2DRGJmIcs3qqOuRuz2byk9ypgzeWY3W4nLCyMjo4O4uPjsVgsWCwWZBlOjpsWvOZSRyL3Gyzi+w8MDBQjdEFBQYJwanBwkH//938XG8+6deuE03a5XJSUlJCamkpeXh5Hjx6dFQz4/u6bJYM3w1q1ahV1dXWYTCaBT2lqaiI4OJiYmBjGxsY4evSoKNWDdyIgJSWFX/7yl4CXSc7XLl26JNbAvffeOysIUQCDQ0NDfoF1QEAAubm5QuYbvKX5mpoagWVJ1lvZH9jNFXcKZsvN50h55h/bvpaw1AKqmztpr6/itdcOo9XelCIPDQ2lq6uLLVu2cOedd9LY2MjRo0eRZZmMjAwRMMbExHDgwAFxr2VZprGxkWPHjjE+Pk5MTAx9fX3Y7XYkSUKtVqNSqTh58iQDAwPk5OQI2vDz589TXl6OVqslOzubnp4eamtrxf1WwJcWi4XMzEx6e3uprq4mNzeXffv2zSJG8r2PZrOZs2fPAt6Sen5+Pvv27QPgwoULAosxPDyMVquloKCA6Ohourq6OH3a68jT09N54IEHCA0N5dChQ3x8+iIwG+g506ZlHcXFhd42BEtzth59MNevXyc/P5+GhgZycnIoKSnh/PnzqFQqvvGNb/D+++9TV1dHaGgoW7Zs4cUXXxR6KzU1NZjNZgICAnjjjTf8Sv/p6ekLlv6Xa+3t7SQkxFO0IpKGS+OkR+jRb7+bN954g+bm5jkpuv/Q7I8yGAAIsfayS988B2hlfueujG4t1P/1NYWjPdXoYKe1aVbWrXwWsCAQRrFlgRFdNylyo6OjRWSujCElJSVxxx13cPvttzM1NcW2fzuF7PQeY2nmrWgEOcdB8uIBtFotdXV14hVarZaioiIqKytnsREqDufIkSMUFxezevVqQkND2bVrF3FxcZx8o2lJ1ZSJCavoey/1/gw4tZhUszNzX1Nojecy0YboDQBigeWRT42Ozq5ILBT4K5MZ4+PjAqlvsVi8M/IWz5KuOSw1n9HWajQajRj/U8q6aWlp9Pf3A94s52tf+xq//vWvMZvNgma6tLSUsbExHnnkESRJEiN4vub7HStcBODFhExPT4us1JdLoKmpiYyMDC5fvszJkycFtqWzs5M777yTgoICent76evrIykpyU/nfmJiQoySJiQkiHOVZZm+vj4aGxupqKgQOAUlU922bRt33HEH5eXlHD16FPC2FxRSH/BWGUJDQ9myqoDQE58Smp1HeuFqqi6dxT3USY87iP/r3BTmjy5+djYmwiQj6z3eNeBwOJiamuLxxx8nOjqa9957j+rqapKTkxkeHqa52Qv+3b59O+vWrRPPw9DQECUlJbS0eJUtNRoNfX19SJJEWloaLS0taDQaxsbG0Ov1fPOb3yQ6Oprz589TVlaGWq0mIyODnp4e6uvrRRDg8XjIyspi3bp1XLt2jdHRUc6fP09oaChBQUE89NBDc64ehQq6rKxMrJH8/Hw2b94ssAC+gW1CQgLZ2dlMTk5SV1dHRUUF0dHRbN26lYKCAkZGRqiurqauzjsm65kaYSnBgFFycP36dS8eZYl4DpXdQnl5ubi3mzZtYt26dYK9sqSkhJ07d9LX18fY2BiTk5NkZmYKHo4TJ04IkiaXy7Ws0r9iS9EbkGWZtrY2Vq1aJSq6k5OTZGdnk5KSIqSr5xqT/UOyP9pgoKGhwevcdbWMSYF4dMFI9gnC5GlGCaDLHTrnRj1XNgneDXUmWYVidrudOJWdfbparIYIhqfd4ti9nqVzECwVjLjjvgcpiJD44IMPGBkZwWKxiPnsxMREgSBub2/nkUceoduqos+6nDLU3NWTmQ7f6XRSVVVFUVERw8PDtLa2YjAYhMwpeLPJc+fOcebMGXJycoiIiKC0tJQH0/J4qYV5qym56n7MHu93JI+NI0nLB2vOZzqdjsLCQkH76mtfFvnUtrARQqy9fq9V6JmVkVBAVAfAW9L+xfvnF7tcAC7e6CdICiUzLgp7XytVVVWsXr2as2fPCpIelUollB+TkpJEX3p8fJxz586xbt06oqKiAG8veybDpG9lwDcYUCYJFKCoMjUwMjLC8PAwsixTUVHB2rVrSU1N5c033yQ8PFwQxHzwwQfAbKzABx98INbRfffdR0tLC42Njdy4cUMEp06nk4CAABEABQcHs2nTJmpra0UgEBMTI0r14AXXmUwmMjIyOHHiBMXFxaxatYo33ngDoyyTuuMAB99vRXa68F2bvmsgI9jN9PQ07733nljvSpAD3vbB/fffL6iE7XY7Z86c4fLlyxiNRgIDA0Uwmp6ezu233y74GWw2G5GRkYyMjPDBBx8wOTmJJEmsWLFCBEHKtciyTEFBAQUFBVRXV/Paa69hMBhQq9WsW7cOtVrtN72gWH9/P2VlZVy/fh2n00lWVhbx8fFUVlZit9t54YUXxJpUAK0FBQUMDQ1x8uRJjEYjBQUFgta5pqaGl156CYvFQlhYGMXFxRQUFHD69BnOXbcx5jHMU5W8GfjbbN71L4+OkRZppG1oet73hEs2orVO3G6PqPy8/fbbFBQUYLfbKSoqorm5mV/84hcEBASg1Wo5fPjwzSPIMOQOwCbpuP22PL6xd+uyS/VL1RsYHBxkamqK1NRUUVGbnJwkNjaWHTt28J//+Z9cu3Zt1rjqH5r9UQYDU1NTYqPTaNTEqJ04nf10e4L4nWvxDF0x376tEgj4suHNfj0Y7SMYP5uIWi6Z0VLBiJ/87i3qgyTy8vK47bbbuHDhAgEBAaSnpzM+Pi761QMDA/z85z8nIv/OJR1XsTDJxlcC+zG5Fs+CNRqNiOi/9rWvcfr0aWJjYxkZGaG7u9sPXNTc3IzL5UKr1bI6MYjOzrpZkqeBn2UFpa4VPufj/Y4+L1hTMYfDweXLl8Xvymb3ZZJPvTMazw7tpN86m4vkxJcm+vjx4xil2cRAc9kll1d050QbROtvY/RUBZcuXcJisbB582YqKysZGxujra0Np9NJUlISVVVV2O12jh8/jl6vZ8uWLeJ4BoMBWZbxeDx+4kGK+fLlDw4OolKpRGaZmJiIy+USlLiSJPHkk0+i1+v51a9+BcCePXuQJImBgQF6e3tJSEgQgQh4KwpKmT0yMpKXXnoJh8NBWFgYOTk5JCUlUVJSQkBAgF9lYNOmTbS0tPD2228LnoH+/n7xHatUKuLi4jCZTFy4cIG77rqL6OhoDh48SGRkJA8//DAHfl3J3BUr7xqoDcjn2e9/hXfffVdoAkiSRGdnJ1qtlj179rBy5Uqxf1RXV3P8+HGsVm+VS2EOjIiIYNu2bbS1tXH48GEhRa5WqwVOYnR0lMDAwFk4FUmSWLVqFStWrODatWscOXJE6JQUFRXx3nvvYTabWbNmDRMTE9jtdtRqNXV1dZSVldHV1UVQUBAbNmwgMzOT5uZmzp07Jz5HITaLjIwUjJB1dXVkZWWxefNmTCYTdXV1okVjNBrJz8+nsLCQxMRE4Vj37v0ql9sP8e5YoriHN80b+P/jvXnIfd79wRv4wAZNB+1S1CwEvvKedZpO3G4XQUFBgvVSlmXBx9LW1ibA1so0QUBAADabDWtoCh/332QqLblk4zetZ5clGrQcvYH29nbUajVJSUniviiBdnx8PCtXruT06dMUFhZ+YcRHX4b9UQUDSsnm4rVahj0BREhWPB4Pbrd72RmfVqtFq9WSnJxMe3u7KJnOFwjMZcslM1oOGHF6+iYRjkajQafTUVNTQ1JSEt/4xjfo6uriwoULOJ1OGquuAPmLnu96TQex6inCmUaLBvcMToS5TGmVgHf8a3JyUsgd5+bmsmnTJs6fP09tba0IUtRqNZcvXyZeDYmqGpxh0fSMTTMlayl1pcz6DOU72q698bnAmnAzwFPO2xcVf6vkU+Hh4YyMjC47kFAQ8n5X4HO/HQ7vSOli16x8hmIDdhXv2RN5WD/I//kXj2EymZBlWchBt7W1kZycjCzLXL16ldraWvbv3++3Ec2UMQb/ypBvH3VgYACTycTg4CBarZbx8XFee+01BgcHCQsL47vf/S5Wq5WXXnoJtVpNUFCQmNWfWRVQxmVPnz4tjq/T6di0aRPZ2dlER0fj8Xg4ePAgLpebTosHK6GkRIchjfVgMpk4cuSIeK/VaiUiIkJoPCQnJ6PT6bh+/Tpf/epXsdvtvPHGG+Tk5LB//35uDFkX5SgxT7j455+/TJBzTHA5KN9bSEgIarVatDI+/vhjurq6CA8PZ2pqitFR70TQli1bmJqa4r333kOtVrNt2zYKCwspLy/n0qVLYixYkiQ/KnO1Wk1xcTEmk4mysjKuXbtGfHw8Bw4cIDc3VwRuaWlpfPTRR4Lm+cMPP6SlpYXp6WlSU1N54IEHkCSJq1evCpwAIDJ+h8NBY2OjCAzuuusucnJyaGtr4/z584KGXAGqpqamzmK0dDgctLa2cltsAFNTc1Bp6z2s8jRTFJfPWEAqNTU1PPLII7z++usETnazXTMyJ4ZrT+w0ulHvXq2Al7VaLWq1WiRrvkG1Wq0WnBMjuije7zPN8gPLEQ1art5AW1sbiYmJom1nMBj8qm5bt26lrq6O8+fPz8uf8YdgfzTBwOySTb7IKONUFsrk1EU36gO6RtxulyDJUdTAlhMA+NpSy9o2SQ9YMRoDWO9ZHIw4k8nQ5XKJxdXV1cWrr77qd/ylBhm56kHhqOZCw4PX8SmZja9JkiSQ3EofT3G8ISEhgi2sv7/fL4DweNyoLb0kqry4is+ONvPoyMhccSWzTt3Jcdfypz7Eq2TZnwlt2kFKiAaw3VIbQpIkRkdHlxVIxOndfll2UFAQarXabwMT71pk0kU59szPkpE5OW7i6c8EpgoKCjhz5ozQm9i9ezcBAQFcvHiR5OTkWaQrSgDgGwz4nrMvz4AyVjg4OIjRaOTll18mNjZWSA273W4OHz4sRjLvuOMOJEliaGgIs9mMyWTi+vXr3Lhxg6GhIb+KnCJO5GslJSWUdVkodaTfvOdmiNZH0Pv6R0R5bj6v6enptLS0iJ68zWbDbDbz0EMP0dTUxLVr19i0aRPbtm1jenqayvq5W4EzzS4ZCJYkent70ev17Nu3j8DAQM6cOcPbb7/Nhx9+iM1mIzAwEI1Gw+joKCqVivXr1xMUFMTZs2dxOBysX7+e4uJiqquref7553E6ncTHxzM4OCjGTRVLSEggMzOT8vJyARC85557SElJmVXiXrFiBbIsi3HNhoYG1qxZI9qdR48eFaOWarWayMhI+vv7MRgMXLlyRdCWKwC9zs5OTp8+jSRJQqwpOzt7Ft+D1Wrlxo0b1NfX09zcLBgZb0+LIK69lnEpiIyVxYTqZFrLzxEaHkJVVRUbNmxAlmWxxrRaLVszEoirv4nhKspeQajHxvDwCIbPQLFwk5PFPOBE69KzbXUO99yzC5fLRUNDAx999JGo/J2xRM/pB5YjGrQcvYHc2GDa29uFvDN4n3ffAC80NJTbb7+d0tJSiouLZ6lU/qHYH0UwMF/JRskoN2g6GHYttNH7A898v6ilBgJGo1HMeIu/LbGsbZDtIHkfpHg1XnpOd4pQUoObYMQk3TRu902p5Ll46H1NIbFZP3Fro5Mzba5AAGaj9GVZprOzU6DEU1NT2b59OzExMbS0tPDmm2/6BRxLdaYGlWtOwR7l/qwIsONY4LbP1dOPm4bVUgtGaWmiBr7fq3LdywkkAgJu0vqCN7tZaFxpvkmXhcGgEgN2Nf/47EusCPVmRkrWVFVVJdaM1WolJiaG0tJStFotGo0GrVYrHEVbWxs2m01k/Mq6U9oHkiSJsULleDt27CA0NJS33nqL9PR03n77bUZGRlizZg1XrlwhPz+f+vp6PvzwQ8BbDaiqqhIAOEVtcPXq1bMCgcrKSt6/3DhnlW/AruJD0tihvUGKwUZ+fr5gBszOzmZoaIipqSkeeeQRzp07R1dXF7m5uYyOjvLcc88xPj7OsCeApVTRnJYhHCoHhYWF7N69G4PBgMfjIScnB7PZLO6fspdkZWWRlpbGpUuXGB8fp6ioiE2bNtHQ0MCLL74oVP6GhoZmkfe4XC40Gg3d3d309PSwcuVKNm7cOOdsvMVi4dq1awJ/MDk5icFgICEhgfb2doEfAS+WIiEhgdHRUdra2pAkifj4eHbs2IHL5RKYi5qaGlJSUtizZw95eXmzCKcmJydpaGigoaGBtrY2PB4PiYmJbN26ldzcXMLDwxkeHubnP/85YUySHewNCJ+tvkRwcDB1dXXs3LlTBE3KOhoaGiIgwECiBFbrOMPNVYx+tt8pa7HbFXTzufjssay+EUBk/jgb0yNZtWoVx44dY9OmTQx7jBw8PreUPCwsGmS1WjGbzXR1dfFJdTcQsegaGZiwEyFNY7PZ/KimfflhFNu0aRPXrl3jxIlPyb5924KAxN+X/cEHAwuVbJQM6bprcTQr3Mz4FAfrm6EofwsMDCQvL4+rV6/6/f/09LRfxgu3zkEQr7Zwn6pmFiI9IMBATk4hjY2NYp58oUAAvE7H6XSKIGOpo5NarVa0WBay+cYM4WZJXqPRYDabefHFFwkLCyMlJUVscEpAsBxnmqQeZ5/K2woakL3o3GhpEpPKumggMJcT6Z2W+Yi0z9WGWA6eYXx89vtnjvHNNN9JF5ukZ9yt5fIcLZWZZkVLREQYLpeL4OBgxsbGcDqdtLe3izVUW1uL2+32I1JSTHEIM+3HP/4xinSu2+0WXBCBgYHU1dUxNjaGRqPh8OHDjI6OkpyczNWrV1GpVPzsZz/zA6dt3LiRqKgotFotx44dQ5ZldDod69atw2KxiABlYGCAo0c/5Io7Z8EqXxlpfHWllvJybxstJyeHjo4OZFkmNjZWVCkAWlpaiIuLIyEhgYmJiWU9s4GBgURGRgoRr48//pi+vj6CgoJEMKBgFVpaWrhx4wZZWVk8+OCDdHR08PLLLzM9PU1sbCxDQ0N+RFNGo5Hi4mLGxsaoqanB4XAIwGR8fLxfICDLMu3t7ZSVldHQ0IBKpRL0xH19feLzwYtTycjIwO1209ra6qdRsWHDBmw2G++++644/3Xr1rFx48ZZ2er4+Dj19fXU19fT2dkpAI47d+4kNzfXD2AK+E0kNDY2sm3bNoqLi7ly5QpOp5MbN24QGxvL4OCg2DdmVomUUVnvyK2MOiGPT5pnAxPbhq2i5L8hNRy73U5nZyfVwx4gisWsf8HNX6IAACAASURBVMJGjM5JV1cXXV1dmM1mAZJVqVRMu/QsJRiIDtHT1laLRqPxG+kMDAycFQzo9XpMeRv55/M9jJXdBA3PBUj8fZkkL3Uw+/dkNT3j3PvvS0NcL2brNR3EqCbnHAXzXZT79++nra1NZB0Lmb8Dml3ivV3TQa52BFle2KnPtIUqAjP1D3xtlljIImNvgN/M9HJNkiTRdlHOyfccgtQuNuamcL62jfcdi2dke3W1mFTWRSWjZ5osK+OdC2/yN9sQMFcFZYd27mmCpRw/GDv362pQJohCQkL8KJyXYgq3xbAnYEn368GgZv7lv/8lWq2Wvr4+fvnLXyJJEjExMYyOjmK32/nzP/9zYmO9I5RKKb+6upoPP/yQLVu2kJWVhcvl4vLly9TV1aFWq9mzZw8dHR1UV1eLMUan00lRUZEXu1Nbi1qtFsA1JahUqVRoNBq/yshybKnXrawTxRkrnw1eB33HHXeQlZVFREQEhw8f9psUUp5Zb3Dha9418FcFEnvXZ1NTU+OHhdHpdOK6AgIC2LBhA21tbbS3t4ugOSAgQAh3xcTEMDw87FchCwkJYeXKlfT29tLS0kJwcDAbNmwgMTGRI0eOIEkS09PT7N+/n8zMTKqqqigrK2N4eJjIyEiKiooAb6vOt4qn0WjIzs7GbDYzPj5OWFgYK1euJC4ujtLSUjEFER4eLoSLCgsL/SY8FAa/+vp6enp6UKlUpKenk5ubS3Z29iwOCF+7evUqJSUlBAYGYrFY2Lt3L5mZmTz77LMEBwcTFhaGXq+ns7NzVnsEIDY2Fo1Gw5/92Z8xNDTECy/8gndsuYx69Mz1vEnIhKsd3KetQdlrR2Qjv7PnzXuOij0U3EKg03vvgoODkWWZyclJwbBYUFDAX5cM0DI4taDewLEffIXDhw8jyzKPPfaY+H9ltPR73/ue+JtS3fbMoiz2Hm8pWIYv2/7gKwNL1SEIxM4UOuYHYUki05rLqfguzpkMfIpJkkRKSgqTk5NibGixEm+pawX17pg5ndhCTn1mIBAbG0tISAgDAwOzCG9UKhVGo1EgdecanQSJYY+BaVlHZKAGg3VYBAm+5Ck2m21Wb3shBUPlQVJslhN3wulKK+s1miVnZLcy/vd52xARKjtr1R3zjhUu3Nv3Ht+Cgd8588V3vdxAAG4CNhfLYJXNMNA5RnV1NatXryYmJkawFPb19bF7925KSkro7OwUwYBKpUKv1/tx8CvUuTU1NYKDoK6ujqamJmJjYwWlq8FgID8/n4qKClwuFy6XC7VaTU5ODuPj40xPT/P973+fiYkJnn32WaKiovjud7+Ly+Vtzb3wwgs4nU4SExPZuXMnTqdT/N+ZM2e8x1hGBSnBIIsxvezsbEpLS0lJSeHBBx8kICCAyspKfvGLX/itW61Wy99+/avcVt3Ji2Wjs6poD2eo+OGj9+N2u+nv7xckQW73TRxIVFQURqORU6dOERkZyYEDB7BarZw+fdqvBan0vMHrhHNzcwVALzo6mn379lFQUCCAeU888QSvvPIKOp2Od999VwAVc3NzWbt2LW1tbZw8edKPfGpqakp8501NTeTl5ZGamsrIyAg1NTWcPXsWlUpFREQE+/fvJyEhgXfffRetVsu2bdvo7+8XAcDAwABarZaMjAwxhTCXlPVcNjIyQlhYGAaDAZ1Ox0cffcRDDz1EfHw8ZrPZb8/S6XRCFEux9PR0AbiNjIwkdfWdjJ5foG+PxIhbj9sUh3qih127drF27Vrqnjs3r2gQyETr3KxJj8ViMdLT08Pk5CRpaWls27aNnJwccb3/jz6ax351GWZUpCUJVEj80958PB4PHR0dfOUrX/H7lJltAn+V3VvHMnzZ9gcfDCxVh2ClppdLrpQFQFg3zdepJOm8m+9SsANKuS4nJ8evbaCUeBvdkT5o+dnzy1/VdxDpHvbJoOfPnGYGCopMp6/p9XocDgcej2dWWcrXZjnoMQiTYmcFKP39/QIN7p/py4tmebLMjOu/acr1r1GbP1MyXJjJcamofbX6ZvXkVtoQvhWUSLUdg0GPdQGZhvkDv9nXuhhfwWK2KIW2JLFW1U58fBxXrlxh1apVSJJEbm6u6Cfn5+dz/fp1urq6WLdund/xlXloX+elrCUlmHj44YdpaGgQiG6Xy8Vrr70mQGUrVqzg0UcfxW6388wzz3D33XcjSZLfBIFKpRLOwel0olKpuPvuuxkYGMBsNvuVaGHp7ZiCtEQmOuvIy8sjNDSUCxcusHr1anbv3o3ZbOatt97yuzbwjnnt2rWLjz/+mMHeXr5hCqZjwoUVHbcX5THS0sC0eYrKyjTePnmF3rFpwvRGglxeHoy0tDSmpqaEkzcajURERHDs2DEsFouQkPYNPlQqFUlJSYyPj3Px4kVSU1N59NFHSU9P99v4HQ4HZrMZo9Eo7ofb7SY/P5+Ojg5qa2vF8VJSUlCr1YKvQrHVq1fT2dlJZWUlOp1OTPu8//77bN26lcTERFpaWqiuriYjI4Nf/epXjIyMoNfrycrKYsuWLWRkZMwpErWYjYyMEBoaisViweVyCVCpEtBIkkR+fj41NTWEhIQIMDJ4k5DIyEgmJyfp7u6mtbWVmuZOllKqX7n+DmqPv8no6CjvvPMOhY4hmpk95qj8a626g4aGURGQ5ufnC6IgX9uYHsmr31rPD18rpd92kywoMyqIf/qsrN/V1YXT6fTDC4A3GLDZbKJVuhxA4kwsw3+l/cEHA4oOwULRXnpkIAe//xRvnb3Oc+d7GHTMvKz5nUrcZ6NgSvSfnZ1Nd3f3gs5VYbiaafVuRRlr7s87OxXDPt2QmBaQJAmdTif6d4oFBwczPT29aIAy831z2XKzbEmSZpV456tgKPesxx3MJVeyn2Swv3mvv9kTyXbNDa6458c1DHuWMf7nuem5l8tRMLOCIss3WRVjY2Pp6+vzwzwoFq+2cJ9Uy9uOAiaZq4S5NFXGpZgSfFRqsuj3CVLCJBvfXWvCaIn0MjeOjNDV1SXG6hRraWkhMTGR+vr6WcdWQGKKwxwaGhIiWHq9nuLiYi5duuTncFJSUtiwYQNvvvkmRqORRx99FI1GIxQ0b7vtNiYmJmhpacFkMpGUlITVauX69esi65MkiYMHDyJJ0pw0sBGSlXCVbd7yMMhE6z2Mtdeydm0xFouF0tJSdu7cSVpaGi+++KKoZPjali1b0Gg0HDx4EIPBgEqlYnLSQnZ0JA899BBRUVE0NCTz08Mf8cSbzYzJn0k0OyFS6+RrWRq6Oq+jUqm46667sNlslJeXCwpf5R4qFhsbS1hYGE1NTXR0dKDRaNi0aZM4D8UGBwcpKysTnBAZGRmkpqZSVlaGx+MRQUB4eDgRERH09/fT0dFBZGQkd9xxB+3t7QKQePnyZbKysjhw4ABZWVlotVrOnTuHRqMRgknl5eWAV/I6OzubXbt2kZaWNmtscCnmcrkE139LS4vYr/R6PYWFhVRXV7NmzRqsVisNDQ309PQIBk1ZlsX+oVKpOHfuHAAvvfQSANOeAJYSDJw//iHheMewExIS2JgeydT12QF7qGRlZ+QE965dRUFBgZ8+xnx2e1oE+/V1xBUVk5xdOAvw19bWhl6vF5U1xZRAu729nampKU7U9c469lw2MGEnP35JL/1S7A8+GJAkSUhEAn4TBcpWUeRuwmZbzWPb1/Lo3TI13WOUlDfxH5cGmXtD8b7bd6ZcWciNjY2iVBQUFMT09PSiID5Yepl6Qh1MqMfy2bXI2O12oqKi/LIji8VCcXExCQkJ1NfX09TUNMsZG41GAR6cz26FZEcp/yqiKsp5zmUL8TvMd/1GjYd96vkpoW91/O/zCkqBt0Sv1WpFpjDf+OUoAUyyUPl06YqQ81lKSorXwWusZOobmQgKxqUN5Gv7d/P+oRcYqYetBw7w+uuvExISwpUrVzCZTFRUVAi8SWNjI/n5+Vy6dImJiQk/56uscavVypkzZ/xm0e12O+fOnWPFilTGVSGoAsNwjA/y9Y0b+eijj/B4PGzevFlIVpeXl5OXl4fBYODQoUMAQirZ10FKkkRwcLAY6/VtR0mSRHh4OBqNhnW9HXzimX8yZpWnmTs330FzczMjIyPs3buXqqoqjh07Nus+Go1G9u7dy4ULF+jq6iIgIIDp6WlRodi4cSMul4tTp07x5tmqOdfykFPDz2vhb25bxZ2Z0ZSWljI8PExYWNicgXNISAiDg4MMDw+zZs0asrKyqKys5MKFC1RXVwt544qKCtrb24UiodvtFiN7M210dBSbzUZeXp5QvTx//rwf/fKGDRvEHLvb7aa5uZnS0lJkWea1115Dr9fj8XjYu3cvt91227LpcWVZZnBwUAj9tLe343J5R7U9Hg+FhYUCtLp//35iY2P55JNP2LNnD9XV1aKVoLTPlHPv7b3pLBMSEli/fj2pqanU/vIqLUNzKRuC8jyHyVMgwfe//32Cg4N5/vnnSdBM8qD+Bv0ODXbJgF62sWfjbezY8cCyyvDeqREb29Zkk5g4e7Kjra2NlJQUUS1SfhSg6GuvvQaAIzAaSF7086KXWAX/suwPPhiAmyWbuagh/3ZrCvWnWzh06BCPP/44oaGhFCaGMzS5Ai7NP2ai2FzUtgp6fqHqwFzHWYpNOFWEzgjCBwcHRZSsgO/evdyEUaolOVhNRESEX1kNmDXZIEmSAG6Bt5w46NLfsozxzKqDQljj+/eFg425bdKtIVw9H67h1iSjvVWWW1em9LXs7GwBtprPvija5PlMkiQ6OjrYtWsXn376KVbrNDnpcTQ1NeEZ7mTLls2cOHGC9vZ2QdKjZP+SJJGVlUVDQwNNTU3s2LEDgM7OTgoKCsRnKAFue3s7bW1twE0AXnx8PJl33ss/f9hAy3QoTANEc/HVWjZoJaKAvLw8pqenKSsrE0Q7Tz/9tAiglJaTLxA2MDCQ2NhY4uPjiYqK4vjx40xMTOB2uwkICGBqagq73U68Gnapm6kPKKB99OZ6i9K6KFa18chdawTXRUJCgp9Coq9jzszMJC0tjbfeegutVoskSd7x3vh4HnzwQUJDQ2loaKCkpISJCQul9rx5A2eAV2ttjDUcJSzMW8r17YMreg1dXV1MTEwgyzLBwcFiIuGBBx5g1apVlJSUiKAlLCyMNWvW0N3dLQjGwNsz1+v19PT0iOvRaDSkpKRQU1MjxhS3bt1KdnY2L7zwAkFBQYyOjtLQ0EB9fT03btwQ+1h2djYrV67knXfeYePGjaxatWrxRfiZTU1N0draKqR+LRYLarWalJQUtmzZQnp6OgaDgeeee05UAxRnX1xcTE1NDceOHRNVtrkEvrZt28bq1at55plniIuLY3R0lKqqKjInBmklc87nWYXEluAB1C7v+nr33XcZHh72ocxOx3PjBps2FXPu3DlaW1uX3Y9vbm4mICBATGO4XC6GhoZEy7a9vR2dTsczzzwDePEoMTExJCYmMjIywl133YVarebixVLCJCvjcsCCgMS8uM8vmPR57I8iGADYlBHJJz/4CnW9EwzMmNFcl/I4hw4d4tChQzzxxBOEhIQsGWuwVOezkMkyOOWlRdnzfZ6SZc9C0I8oYEd/CduZplar/TJZj8ezZKclGcNQOewLVkAUxTXFDAYD3dPSsuSSYfH7/Xky/FtRppxpNTU1i77mi6JNnst8kfkOh4Pt27fz0Ucf0dTUxIoVKzh+/Djf+973OH/+PFeuXGH37t188MEH3t5kbS27d+/GZDLR0NCAw+FgbGyM8PBw0UZQCGOUAECWZYqKili9ejVHjx5lYGCAUX0M33rl2ixejyGnhg+daXw1yDs256s4qTh1xTweD1FRUcIxrFu3jnvuuUd85ltvvcXY2Bgejwe1Wu0X3KpUKv7261/l9OkzXJ8exibpiQ0NQDc1yO23b+D8+fNC335iYkIg+X1H1LZv305TUxPHjh1Dr9djs9lQq9Xcc889rF69mqGhIX7zm9/Q2tqKWq1m2GNYcC3LwLBLx4gqAOmzioYkSSQlJYlyuclk4t5772XlypWYzWaqqqo4d+4cp06dElMiOp2OzMxM+vv7GRsbE2V7g8GAyWRieHiYoaEhYmNj2bBhA5OTk9TU1OByuWhsbGTdunUUFxcLAKjdbiciIoLR0VHq6uqora0lKiqKdevWYbVaqays5P777+ett94iKChISCTPZy6Xi87OTuH8FZxSdHQ0BQUFpKenk5yc7IcrUNZScHAwVquVgYEBfvaznzE2NjZvVdG3BdfW1ibGX8vKyjAYDGg0GhI00/yPtWH8omyEQfvNDCpC7WCj3sye4lwuXfImScr4Y0BAAEajkQMHDvDjH/+YsLAwP8K0pZgCiq6pqSE0NJT33nuP/v5+P+VMpXpYWFhIeno6MTExhIeHizbr9evXKS0txW63c9ttt/H/ptzmVdmdOU3gA0j8ffMN/NEEA+B9+PLjQ2f1VcLCwnj88cc5ePAgBw8e5IknnhBYg6YBC/OhsUMlG3lxoeTn305fXx+tra3zztTPZ3M58Llt4TL1knr7VguSJFFQUMDWrVs5ePCgKLXOVdJeqjOSp8fwqLyLXEGbzxV0+D7YQUFBREfGw5InEhcv08MSgHMsnOEvV5nyVuyLaEnMZ4pDVavVnDx5km9+85ukpqbS2dnJyMgITqeTU6dOsX37dj744APMZjMhISFMTU2hUqmEuqWSkVdUVKDT6aioqODKlSsCHa9wCAQEBHDfffcBCBa3dzvUC/J6nJ2KIVZqEn9VGO4UCexvf/vbhISE8NprryHLMoGBgezcuVO8/uLFi344Bt8gQpIkHnzwQU6ePElvby+xei0BAVocjlHyblvJuXPnBIWvwWAgKCjIrxURHh5OcXExp06dEpurkkmvWbOG6elpXnzxRT8wrtvtXla1J1KykZCQwNTUFJ2dnSQlJfHwww+TnZ0tPjM6OprIyEgCAwMZHx8XFTuHw+Gnd6Bghmw2G4ODg+Tk5KDVamlra6O0tJTAwEBWrVpFa2srY2NjNDY2UlxcTEVFBQ0NDX69epVKxV/8xV8IDYgXXniBnJwcmpubaW5u5uGHH55FfrVQ6T89PZ0NGzaQlpY2i1dAua9tbW2i368QkIG3uhoREUFqaiphYWGcOHFCBETgv191d3eTm5uLLMsYDAbi4uK4dOkSDz30ELm5uRQnVfGrd46RkJ7HUFcLgc4xJI9XidNkMjEyMoLH40GWZaxWK+vXrxf3RKvVEhoaytjYGFardRahksvlYnBw0K/M78uiqnBgJCUlsXbtWqKjoxn2BHDmciVTrfXs3r3bT1myurpaUG2HhITw4IMPisDtZ04n/+PdKj9fkREVyP/cW/AHwTPwRxUMLGRhYWE88cQTHDx4ULQMFKzB7NlO7zb337etYLJlhJMnT1JQUMB3v/tdxsbGOHz4MG63e1EA3/z98uU5saX29p+K7md6eorq6mqqq6v9XzWDsTAiIoI78/OpuOyka8I5x3G95zXTaSlo8sVsaGiIYc8US2FzWy4L4ufN8Ocfr/xi7ItqScw0380SvCNYb7/9Nl//+tc5dOgQFouF5ORkysrKeOqppwgMDKSyspKsrCwB/qutrSU4OJjg4GDGx8eprKwUWZiiZJiYmMi9997LwYMHcTqdYoxuamqKETmA3un5zhCU1lJM9mpCZQsNDQ388Ic/FGyD9913H6GhoQJUBvDII4+IDbO1tVWIzcxl9913H6dPn2ZgYACdTidYEENCQkQWrfD3V1VV+QUC8fHxTE1Ncfz48Vktg97e3jkJlpTXLTVwDlR5MQJms1lk+Tk5OYSHh+PxeDCbzZSVlVFXV4dKpSI1NZXw8HC/1pPymcp4XVJSkpdbYniY69evo1arycvLY/fu3aSmpnpbfoODvPLKK4yNjfEf//EfgFc58e677yY8PJwjR47g8XhExj44OMjAwAB33HEHJSUlZGVlkZOTA9ws/SsBgG/p/6677iI9PZ3o6OhZmarVaqWlpYXa2lrMZvOsNmp0dDQajYaJiQm+/e1v09PTQ1dXl1BhVNa2Lw9JUmQwGscYe/fu5dixY9TU1IgWWW5uLk6nk46ODkwqK7a2coIApJvcKNHR0TidTqampkSAUVVVRXZ2NuANBnJzcyktLeXUqVOiKqP8DA0NiXUSHh5ObGwsa9euxWq1cuXKFf7mb/5GVAEuNA/xZ2/7tqrTqXjuHP/01TwinEOcOnWKwcFBERSmpKT4jfBOtpSzT9fIuh37mfJoOHf8KD966FESEn7/gQD8EZAOLddGR0c5dOgQarWaxx9/nHLzJP/Hby7OisaK3E1khnh48sknqa2t5dNPP8Vut7Np0ybS09M5cuSIANPNPV+/GAnNTVN4DZL13rGjmcdbDtFKpNomJF1dLq+qV3a2lyBFr9cjSRLj4+OEhoZ6Mxd7wIIEK/OR7CzFlnoPQrGyQbu0Mv3M43+ZGf7nteUSI81lC3FNqFQqIb6Tn58vRvbCw8MJDAxkw4YN/Pa3vxWb9k3ciezXUtq0aRMXLlxAq9Wyc+dOMjMz6e7u5v333xflcyXw7XKHcsKZueh5//rxYqqPHSElJYVdu3bxk5/8hJCQEH7wgx/gdrv5t3/7N6xWKwUFBTzwwAOAl9Xul7/85ZykM+BVOrx8+TLDw8MYDAZcLhc6nY7p6WnxepPJhMvlmlPnYaaZTCaKi4uRJIlr167NOWWgmCzD75wFC04xhEs27g9oIDs7i9jYWMbGxuju7p51XL1eT3h4OBaLRfSw1Wq1AM85nU5MJhNut9uvhx4dHY3RaKSjo4OAgACKioowGAw0NTXR1dUlOCAcDgeRkZF85zvfEUyiP/nJT7Db7ULr4fTp01y6dImioiLKysrYu3cv/f39tLa2iqpITEwMaWlpc5b+wRs0NDU1UVdXR3d3t1+gqtFoiIqKIiMjg46ODtxut/isgYEBP2GnpKQkEhISvKJZQ645n5n/df9tuLrrqKysZP369WRmZlJdXU19fT0Oh0NUu5KTk2lpaSEnJwe73U53d7eYhFBaR06nU5BRKWPgvsGYTqcjJiZm1o9v1eStt95ifHycp556CvCnxPfjHfhsbezQ3uDOrGjuuusuEhISePXVV9Hr9Tz00EOAF3/2zDPPoNVq+dGPfoTb7ebpp5/m3nvvZfXq1fOuy/9K+5OpDCgWHh4uWgZKheAf1qio6uxhyz17iQkxkBcXwsBALi+99BIffvgh+/btIy8vj3PnznH+/HkqKirYuHEjFy5cEMQqarWGXpuKpKxCum5UEx5hYqxv8X75Zk0LqepRJAnmAacvq0Qpy1ahrw7eRVZeXo5arRZ88hs3bhTMafFqCw+FD3BsMGTBLHsxDYS5bLEMGbwMjNnqoVty4p8nw/8iA4n5jvV5WxKyjCCCUt7rK1IlyzIul4vW1laSkpLIzMwUZWGz2UxdXZ1fMKFkRorIzNNPP40sy1y4cEFk16dPn56VIftWwJaaITvGBxkbG+P+++/nww8/RJZl0Qrwgh6taDQawXDncrk4cuTIvFWnlJQUPvnkE5xOpwD6gb+SohLg+rbywsPDCQkJoaOjQwQ1BoOBBx54gPj4eD799FPBuzCfKZMzmwzdfDidNm+156nVoTy+6wciU+zr6+Pq1auMjo7icrkICQnBZrNht9uFw/WldFY47F0ul3CgKSkphIWFMTw8jNlsRqvVEhUVJXgJwBvU7Nmzh/z8fFQqFS+//DL9/f0cOnSIJ598ErVaTVpaGvX19QwODpKens7169cJDg7m8uXLqFQq3n333UVL/xaLRQAQe3t7/e6zVqslMTFRaDD4cvl3dXUhyzK9vb0EBQWhUqnYv38/iYmJfjTHNYNOPumdmLMV+v23b7BL30asBNevX+fy5ctERERw++2309LSQlBQECtWrKCkpASNRkNraytPPfUUzz//POCtknR2dhISEoLT6RQEUR0dHaxYsQKQGJED2HbvA6THmciLn18TwOPx0NraKsSHlqJi2Bi0kl88uk0cUwF0KnblyhVkWRZTHCqVisjISL9Jit+3/ckFA+DdIJSWwSuvvMLmzZupqakmO9hFwmekDjExMezdu5d33nmH+Ph41q9fz913383q1as5fvw4J06cIDY21ivyMa27Gc3WeIB8AvuWxoyolTyo1d5S53xth+UC0mYeR2EHVP5+8eJFQR2q1WoJmuzm/y4OZ0pn5FJVA2qHBZPKhiTdnK+fr/qxmKP7IkB7X7R9ERn7Uo91qwHLUs5RmcX2eDycOXOGLVu20NraKkB5dXV14r2JiYn09PSg1WqF9K1v9i3Lsh+IymQyYbfbmZycFNmd0+lcAvOhd4pnrK2W6OhooqKiRGsiNzeX4eFhSktLAVi/fj1VVVVMTExQXV29YDbf2dnpN3uumEaj4cCBA4SHh3Po0CE/B7Vy5Uqam5sxm82A97lYuXIlO3bs4PTp04Iq1u/8fYInhWJZ+bwozyg7tLNFxBKDNfyv+4vYnBOL0+kUFMFms1lMSAwODorr02q1GAwGLBaLyOY9Hg9TU1PcuHEDjUZDbGwsubm5pKen4/F4aGhoYHp6mpGREVFpMBqNhIaGMjAwwKeffsrU1BTr16/nW9/6Fi+//DLd3d28+uqrfPOb3xRjyFevXuX8+fMii9dqtWzevJmMjIxZpf/R0VHq6+tpbGwUGgeK6fV6UlJSyM7OJi4ujvHxcbq6uqipqeHkyZOAF9CclJSEJEmsWbOGHTt2UFlZSUlJCfn5/pVOWZZ5qWL8s7Bq7lZoqSORfbpxUlNT2bRpE3FxcUiSREVFBcnJySQkJBAYGIjdbsfhcPCrX/1KHMFsNqNSqUhMTCQiIgKz2Sz0OdptBn7nLGDEred3b3uxKglBKr6erSEzRBYVYLfbjcvlwmKxYLPZqK+vp6Ghga5JmabhhUYDJdpH0WQjugAAIABJREFU7X6kQUFBQYL/wel0cvmydzR+zZo14l2xsbF+LJW/b/uTaxP42sjICIcOHUKj0WC328nNzWXPnj1+rzl27BiXL1/m8ccfJyXlJnteW1sbJSUlVPZaF9AeWDwFVDjU5zKlj+p2e5bEq79Pd+skNsomEBcXR09PD7m5uXOS0Sh2K9oAX1ZJfznHXkgrYrltkaUcK8VgW5Dr4Ys4x7kcmGI6nQ6NRiNm5+er7kRFRTE6Ospjjz1GUFCQ0Fd3OBxiTlzJxhc6P5Uk8ZN7kqg79R55eXmiNx0ZGYnH4/GbMICbWgW+jsbX4RcVFdHc3Cy44X3PPykpiUcffZSqqipKSkrEPVCc0I0bN/wExtavXy9AcAudg4KhmBl4KFS64+MTqE3JJGYVsDY/k/yEUEZGRigvL6eyshKr1Up0dDQul0tcr6LRYbV6OUvi4+MxGAwCixERESGy8bGxMdrb2/0yR5VKhclkIisri6KiIiYmJqiqqqKurg6XyyXY/bRaLRs2bGDlypX85je/YXR0VJTEZRnGpCAM4dHYRvsJk6d44onHWbHCK3esUBQ3NTUxMDDgt46UEbqsrCzBEKhk/UpgERUVRVJSkviJiIjAYrHw05/+lEceeYTs7GwqKip4//33+Yd/+Ac/HoNq8yhf/Y+Lc65NX9urqyU7OhC1Wo3NZhOVllu1xZ61A6Y+0gK990FJqKampnA4HGJtLbV19vLja7krx8tHcPHiRU6fPs3f//3fU15eztGjR4mKiuIv//IvxeuV1/zd3/3dsjkfvgz7k6wMKBYRESFaBgrSU5HSVGz79u309fXx1ltv8Z3vfEcQs0RERJCVlcWL5rEFZo9ln3/PNJkorWtBRLmy8S0VkOZLvwveDUQZKVycLtj7/z09PQCLBgLL1Qb4vKC9+Rz+coKSWyFZWuh8lnKsRPfcbJSf97i+56iwVYI341AkXsGLTlecnO/aiI+PZ/Pmzbz++usAFBQUcOrUKU6ePElXVxdqtZrg4GAcDgdTU1N+DHSbc2JJttp4q4U5qz21J70z8b4UuTExMdjtduEcH330UaKjo7lw4QJXrlwRx/BVwSwsLKShoUH8rowZut1u1q1bx7Zt2/jtb38r0PfgrYCMjo4KYh6PxyN68UrGqpivZofSd3a73eI+KYGAgjC3Wq0kJiayb98+4UAbGxv5zW8+oLW1FYPBIMrQSvau0+mQJEkINiUlJTE6OkpPTw9BQUEUFBRQWFhIbGwsnZ2dglTIYrFgNBpJTEwUQURPTw8XLlzgwoULBAUFkZiYyKZNm3A4HHR2djI+Po7D4eDMmTOcOXNGXKPD4cAWmkLJYLC3otELEEG03k3k1RvoPvmEgYEBv8AnMDCQtLQ0UlNT0ev19Pf309XVxbFjxwQQMTExkeLiYtHzn4nEB8T3HRHhZQtUcAcOhwObzUZfXx+9vb18UtMNLM76Ny3r/EChyroMDQ0lLCyM4OBgOjo6PlM29AY/BITgmRpl2+oc1qxZjUajoaenh/ff/4CGwELkMTvz7d+fjkUQOFktnjWj0Ygsy0RERLBmzRoiIyMZcgdw4pXri567L2lQYGAgfXYNn1R3c+5MGWqZWdiA2FhvpWlkZMQPaPj7sj/pYAC8i/SJJ57g17/+NVarlaqqKr9SjUql4sCBA7z44ou8+eab3HnnnVRUVHDjxg3GVcGMerIWOLqywOZ24BsN3YQZQ1GpVHzrW99CrVbT3NzM9evXRVlWsaWU232TPr1eL2Rp57JbzdSX66x8Vdpu1eZz+Bmqoc+0DPxtvqBkqSyQS2EGXOqxBl26eSs/n+e4M89RCeZ8s0lAzFbbbDY8Hg+hoaFYrVampqbIyMgQs+uK8xgeHiYvL0+A3xTzdRSK892n855vWFwK432dbMhOYuXKnXz88cesWLFCjCzu27eP7Oxs/vVf/xXwBthJSUkcOXLEL0v3nZZIT0+ntrbWL4AJDQ1lYmJCoOh/9rOf+ekLpKamipl2XxsfH58VDAcHB2OxWPwqDsprlM8MCAjA5XJht9spLCxk48aNREdHMzExwZkzZ7h27RoWi4Xw8HAhPmOz2cRIptVqRZIkoqKisFqtDA8PY7PZyM3NpbCwkMTERDo6OigvL6exsZHp6WlCQkLIy8sjNzeXpKSkWRmhxWKhu7sbs9lMZ2enH8ugsg58K0WyLDOsjeKD/shZz8mAXcW/XXOwQztJdpiRpKQk4uPjkSSJvr4+gfQH7zRWUlISK1euJCkpiZiYmCVlq0ow4HK5uH79umhdPffccyLIMxqNIAeylGAgXC8RYgwhOTkZp9PJ4OAgIyMjWK1WvzaT355hA4jn7GUrj45foyBKy9DQECNyAB1jDuar4CpiRyu33sPazDgiIyNxuVw888wzbNmyhcLCQgAyZZnM6NYFKfHDJBvDzVV4Yu+gtHWEvy8ZoMORz/uHK4FEwiQTdwYl+r1LEQ/r6+v7/4OB/yqLiIjgySef5Pnnn+fYsWNkZ2fPEqfIzs7m6tWrHDlyhJiYGHbv3s2IPo63Dy8uYxyIgyluRoXReg/fXh3KfRsepKWlhRMnTqDX69FqtRQWFlJYWIjH46G7u1uQwAwPDy8LkKaQAM2FRh9UR3B+Ou6WeubLdVZLGUNcyBaqQpS5ZwuOKL/PlUEvGYjp0YnXz3ePl3qsqSUc61aOuxh7oe942vT0tMi4XS6XqBb4MgIqDnBqasovo/d4PH7U0yqVir/+67/mjTfeoLe3l2iNgwfvKuLIkQZ27NguWN7Wrl3LK6+8QmBgIIWFhfz2t78V5ezU1FR+/vOf+42eGY1GsVZCQkLE2KFyLQr47utf/zoTExM8//zzYl0HBgbicrn8AgHl+meuf0XJT+nX+4ps+QYBNpsNt9tNcXExGzZsIDg4mNbWVk6dOkVjYyMqlYrg4GBUKpUIwBQJY4/HQ3BwMEFBQQwODtLb20tWVhZbt25lxYoVtLe3U1lZyZtvvilIgVatWkVubq5wxnOZMvOu8P0r/WSTySTIcyYmJvyoyz0embOT0QsyJ17X5bDRNCQmA1QqFfHx8eTk5IiS/1w8AvOd48DAAL29vfT19Ylg4sUXXxTfM3grU0r7amhoCL11kDApetFWaIjHgiQFsWfPHgwGAydPnqSyspIf/vCHYoTwRHUXBz/qmHPPeL4edjTXE6+2MC0vTfRnaMop1qqixZGWlnbzLkoLU+JLksR6TSenTtXycUUbb/RHziLsGpMNfPtwFa9+yyCkio1GIyEhIfT19fmxg/6+7E8aMzDTzpw5w+nTp0W1YHh4mPLycvGAxMbGYjabuffee1mzZg01PePc++/nFz3uffp6ZNkzp0NQNiTloYuMjCQyMhKTySQeHFmWefrpp/F4PKSnp9Pa2jovL75SUpyvN9zrCeGYI/OWe+ZL7Y/drW0iSb34eNdCtpzxzPnMF5Ox1BHNIGx+2gJzBUpf5LF8bTljpL4VB6UvvBxTqVSsWLGC1tZWv2OkpaUxNjbG+Pi4yDrz8/Opra1Fr9fzox/9iH/5l3/B5XJhMplYsWIFbW1t/NVf/RWvv/46ExMTJCYmUlZWxn333UdMTIxwBlu2bOHs2bN+61Ov1wsnOvP8tFqtILp6+OGHOX36tHAw8123Wq3GaDRisVgWfN1MU7L54OBg1q9fz5o1a/B4PFRWVlJeXs7IyAiBgYEC+a98liRJItDR6/WCiS41NZXCwkLS0tLo6OgQLQCXy0VMTAw5OTnk5eURFRU1ZwAgyzIDAwNi3r+jo0OMC6enp5OWlkZaWhpBQUG43W7a29uprq6mvb1dZMlLXU9/kzXNuqx4UR3wbZXOZ8pUhOL4e3t7/Vj4IiIixJhodHQ0FouF0dFRvzHQmJgYwsLCuHjxItrEfP6z2TBrb5IkkGTYrm0Uz41Wq2X16tX09vZitVpZsWIF/f39jIyM8upw8pLwVSPy0u7Nffo6IiR/cg2NRkNQUBCBgYEEBQVhNBrptAdwpMmN2XKzUmPSOPjZ43cQp7Jw5MgbvDmZOT/4VoKMqCA/qeLXX38dt9vNY489tuh5ftn2v0VlQLH169dz9uxZxsfHee6553C73ZhMJu6++26KiooICAjg6NGjfPzxx8TExJAUHExSiGZe0h4FWf3sD/4bP/3pT4mJicLj8dDT0yM2E+XB6O3tZXBw0A8NbTQaRXnI6XSSnZ3Njh07BBK1rq6OiooKv8xnpiyrTqcTBEmyDJecSUsq8Wu1sxX54Mul2p1pi1chFjffDHopzIDAZ2qDN22utsMXeSxfu1X2woUc3cyWUJzBg+Mzeuk777wTs9mMw+EQG1BHRwcmk4mVK1dSUVFBQkICRUVF1NbWotVqhVwxeEe2mpqayM3NZXx8nKamJnbt2sUnn3yC0Whk5cqVPPvss4C31Kywrymm6GXMDAQ0Go1g30tISGDHjh28+uqrszQ3fK/bZDJhMpm4ceOGCASUaYuF7o9S+QgODmbHjh0UFBTQ19dHSUkJNTU1eDweEZgrz5cC1FSr1YSEhIjgKT4+nu3bt5Oamkp3dzd1dXUcPXoUj8dDQkICW7ZsITc3V/TQZ9rk5KQf1//k5KTQHdi6dStpaWkCnNja2kpJSYnQO1BMpVIRGOgF2fVZliY3XHT7ZjblzBbb8T0vxekrjl+piKhUKiIiIjAajSQnJ2Oz2RgbGxMtAqWvn5GRgcFg4OzZszz55JMkJ3sR+Irugrunnl36YEodiX7PfXqkkW+vDqPhTJloJfki8AFRDRklaEmVy9jcYqgvW5ImwE//5r9htVqZmJjg5ZdfJiMjg+TkZCYnJ5mamhJCRM7JSXa6pxjU6fwSv08PV3tliwMiGbMsQGktz5Yqjo2NpayszA8X9Puy/y2CAVmW6enpETfd4/Gg0WgIDQ3liSeeEC0Dp9NJZmYmjY2NvPzyy3g8HvLcwZjx4gb8yCakm5zS4N1EsrKyWLt2LeCNqhsaGqj7/9h78/Co7itbdJ2a57lKpaE0CwQSxWTANhgzGGw8EsdxPGHS13aS2+7ky7vv5b7u9979bg/pdNIZnHTScTsxcWNiDMTYxtjG2MyjAIEQSAjNUmmWSiWVah7P+6P4/VSnZjGZe531ffUhquqcOjWcs/dv77XXunKFrhbIBZa4t6lUKo4veWtrK1pbW8Hn86HX62EwGFBcXJzkWw7EKgQCgYDTR/OKdZgM5FjiD6cuQd9KqV3OXlhgJJrsIz5TxCcluegeXHtmwl6S2w43c1+cR2+yemFKvkXIh9UqO7TBUWzbto1erElALikpQWlpKSXcGQwGyj0RiUQcER2z2YyGhgZUVVWhoaEBQmGsHxuJRLB69WqcPn2aBubJyUnOtANZUSeCx+NBIpHA7XZTpThiXZsKarUaS5YswalTpziWwYnTAIkgx5Kfn497770XxcXFaGpqwpYtWzA8PEwVDgmDnOyPYRjqWBoIxJKq5cuXo6ysDCMjI2hpacHnn38OIJYsrV+/HtXV1ZyZeoJQKMTR+ielf7PZDKvVSgV/otEo2tracOTIkSR1P1IJAUC5ISRpESO3c4iQ21iWxeTkZFLgJ68nEomgVqshl8upeZTT6YTdbgfDMHS1P2fOHOTl5WH37t1YuXIlVqxYASCmTBrvgAnErmvkuzAzTnxT6Yc9IkaILwMv6IJmyoOrMUoLTQZTfbcMw8Adzs1q+fyVdlj4DP7xiXn4wZ4OIIVYELl+k+TKbrcjFAph+fLlKCwsTNony7JwuVwYGxvD2NgYmpqaMDAwAIlEApZlMTKV2zUx3qo4Pz8fXq8Xbrc751bNrcL/1slAMBjE5cuXcf78eQwNDUGtVsNqtaKxsRFf+9rXsG/fPvzxj3+E1WpFX18fFQIhwhk6nQ7/5+bNaBz2JzsmGhX4+8drYv7ZHg/tIxKIxWLMnz8f8+fPx5EjR3DmzBk8/vjjaG5uppl+fLbP5/Mxa9YsGI1GKuk5NjaW1kHP7/cnZZLOQG4dn0z96FsltRuP3P0cMiE5KWFZQMyEsZA/gLaIgVO+VyIAVw62w+NRKQz82D7TkToVCNyQhXEB34Wvq4ZwwKG9IW2GTHyLD51FWC/0olDgxqOPPooPPvgAoVCIkuYOHTqEFStW4MSJE/D5fHRlLZFIOD1pj8dDtdn37NmDmpoaXLhwARKJBNXV1fjFL35Bn2s0GjmKeonWvuT/JBGQyWSclkAi+Hw+Vq5cifb2dhw4cIBzfya5cPL4rFmzcO+990IgEKC+vh67d+9GIBCg9s3kPRPuhFQqRSQSgc/nQygUwsKFC1FSUoLx8XFcvXoVR48epRLDjzzyCKqrq6l3ffx7zlT6v/fee1FeXg6BQICWlhbU1dVh9+7dSUZNEomEVjwikQh9nIwAVlVVobS0FAaDAc3/diIjuS1PHIWt8RTOfT6C4eFhyg+RSqVUuloikWBqagrBYBBjY2OQSCTIy8vD7NmzkZeXB7PZDKPRyFEpdLvdVE2RgCR/DQ0NqKurw9jYGGc6IPa5B6BCAHx4IJaJIRbHrKvJfD+QrKVC1AFlkdwqklIEIZFI8Piy2dDr9fg//nQKo3FmR0UqAX769GKOJ0BLSwskEgk8Hg/q6+vhdDoxNTUFp9NJ/46vcJHPwu/3Y8GCBTDxVNh/klu5TYX4qQNCIhwaGvpLMnArMDIygvPnz+PSpUsIBAKYNWsW1dz2er1obW3F4cOHEY1GMTExgaNHj6KsrAxr165FZWUlDAYD+vr6sHXrVpw4cSJWFv3BSnx0/AL2HjiOl59/CstmFdJgTFZG6b5Mi8WCo0ePwmg04qmnngIQuxD19vbigw8+oLPJLS0tdORPLpdTeeFFixbh/PnzeOCBB3Ds2DF6gUiEmM3NZClbif9WCgml93NIhXQr8OSkJFWCoYAfs/h2FPGd8ERFOBjOzoU4FKrECvTQ95iK1OmNinAgh31lSrqUnkFsFA3ekHphrlMfH3zwAX1EKBTCZrNh5cqVWLVqFU6ePEmDHxAL1EQVTSAQoLu7GxUVFeju7obL5aKz2GvWrMHrr79O97t48WK0tLQkTbcIBAIqkQyAatTzeLyMpmDFxcXQ6/U4fPgwvS9TEhAvybxo0SIsWbIEQ0ND2L9/P2w2G/h8Pj0GMhEQjUYhEokgFAqpjG11dTVKSkrgdDrR2tqKuro6CAQCVFZW0qkJkkwQkNI/SQASS/8VFRWQyWS4ciUmt7tv3z7Oe+fz+Zx2XzQapcm+TqdDcXExZs+eDYvFkpR8AKDktkRHPHKeLIh2oL7eA71eT4maLpcLPp8Pfr+frvatViuV5lWpMiv0TUxM4NKl2Ljd8ePHsW/fPni9XvrdXLyYTLxmGIaaBgGgSQ7LstDr9ZTEyePxsGTJEhQVFWH37t345je/iePHj2NwcBAmoQBGhDAWFCBd5bJEI0IByyIUio1c31uhx5OSFuhrrZDp83HmyOcol4oxcTWMd89OB3vynbz77ruU1KpWq6FWq6maYvxNLBbj3//93zE+Po6ysjLU1tbi7fZjaRMz0laOtypWq9WQSCQYHh7GrFmZJtduPf63SQbC4TCuXLmC+vp69PX1QaFQYOnSpZg/fz7cbjc6Ojpw5MgROmcfCASwdOlSmEwmHDp0CB6PB1arlZ5sxcXFePDB2BhVQUEBrFYrfIPtuLtYgbtnc0dEsiUDRUVFYBgGNpuNcgREIhF0Oh18Ph+MRiNefvll9PX1oa2tDZ2dnRxvbmLQcubMGZSUlHDmrhmGQXl5OfR6Pez2cRxruTkl/lvh/pc5gCUfK9I8LzEpSZdguCFGQ6QQRp4Hcl5uKwoPREk9/+vVUMiWdDEMYBIEEYnMvOUyk6kPA2/aC2BqagoMw2DFihVUKpeIuwAxHgs5RzQaDSXUnj9/Hvn5+WhuboZIJMLp06fpavX+++/HqVOnkhIBHo+X1CYgo5CJK2Gy4hIKhbBarbh8+TKtipGqQrokgLjdEU37K1eu4K233oLX66WrN1L+jz8GYm5TUVGBwsJCulBobGyESCTCrFmzcN9996GyspKjW09K/yT4pyr9a7VaqmB39OhRzugtn8/nJEkkCRAKhcjPz0dlZSUqKipgNptTEv18Ph8t8ZMy/3phAHUhS1LyvlwyCBMbG0seGxtDUVERysrKYDabkZeXl7TaT3wdUp0cHByE3W7H1NRU0hjx0NAQTWj4fAF6p8II8qUQRXycawZRrHQ6nZg3bx6WLl0KnU5H9QsikQh++tOf0rHpqakpCIVCavyzY8cOCIUCLIn0Yh8qALDX0h2C2P8218rh6ZLB4XDgN7/5DUKhEAIBPwabY3oXeh7gdPrQ19cHtVpNpb5PnDiB+++/HwsXLqSTJNlQW1uLY8eO4fz585g3b17GxAwAvrNEz0myGIaB2WzmuGh+WfhfPhkgEwFEGaysrAwbNmwAy7Lo7u7G73//ewSDQchkMpSXl2PJkiVQq9V4++23UVJSQud9t27dirfffhubN2+m/bklS5ZgcHAQe/fuhUajQUdHB9asWZN0DCQZSJW1A7GWgclkQl9fH0d4gri3rVq1CiKRCBUVFVSe9M0334TX60V1dTU6Oztht9vhcrk4DGqipNbb2wur1YrFixfjZMc716YJbrzEbzbngRkZgZEXmLFvQSrcOGEw9h6WciR7c1shPyFszsKFSN4mnTjRzeRVZHPGTIdcRxR9iPlZEMdCIFbK/vOf/4w1a9ZQZT6SeMpkMkoMU6nUaB31oNMrQV1rP5bNKsLQ0BAYhqEldqPRSDUMAG6vN9VvJhqNJpEEyfOKi4vh8Xho8kuQauCJJAEajQb33HMPdXA8cuQIeDwe3SY+QSFEQsJ+LywshN/vR3t7O1paWiCVSimJl5TyyeuPjIxQJ0abzcYp/S9fvhw6nQ4dHR1oa2vDuXPnOK9LxMHI50L+JcJCs2fPRmlpKdRqNSdQkB710NAQp8dPVtY8Hg8KhQJ8Ph/FYh/MTHLyPn+eFbW1G9DV1YW6ujoMDg5i+fLl1MGQqEYODAygr68PIyMjmJiY4Kzy4z9zgUAAmUwGhmHoeCZ5T70BKc6ELLCHppMLMl3zt3/1NZSVlcHtdqOpqQlz5sxJ6svz+XyUlZWhv7+f+j2Q2f/9+/fDbDbHpryamhDtbk+Z/CwT2NB/3k2nVJxOJ0pLS+F2u/H000/DYDDgyJEjuHLlCp566im6OLtw4UJsRHDZspTiSukwZ84cHD16FL29vRgfH8e9FQa8+fwC/Ld3TnOOzSAM4S6mBy1HLqLNJOJUAcxmc8Z22e3CHZcMsCyL5qEpjE0FYFKJMTc/uVwViUTQ1taG+vp6qgxWUlICoVCIgYEB7Nu3DzweDxaLBStWrEBFRQXVuSYoKChAY2Mj5syZA6PRiM2bN9OE4MUXX6Q/+EceeQSjo6PYuXMnIpEI5s6dm3TMbrebsnvTwWKxcOakvV4vrl69ColEgjlz5nCee+7cOQwNDWHDhg0YGhricAviCVpk1RUOh2kpOJ8HPF84iY8HJZwfo44fxHPVQkidYtjtieqBqZ3zyIon1UWdXHBnMpmaawCTIAg/hEgX3M/GBepcV8gTkGbgQqTehvT8Uwk45cKrAGKjX7dCojnXaQ4pYs8jqoNkhdzb24s33niDfo/kNyYQCGITMRElPu5QYixYg48+6QZQg2PNPiwTKDltonh+AZA+uREKhZwkIv43JxaLYTabUxJlE0G2KygowOLFi+FyuXDy5Ek4nU6Orzw514kvQCQSgU6nQ0FBAUKhEDo7O9Hd3Q2FQoHq6mrMmTMHJSUl9Bx2u9105R9f+i8tLcWaNWug0+koMZCYghEQ2+V4fQM+nw+j0YiysjLMnj0bRUVFnGoDkQuOH+UbHh6mSZpAIKBBiiwCotFozE9Cp0MwGIxpEYyN4f9++Xm89dZbAPiw2+2orKyExWKBSqXCF198gZ07d2YUCyOVC5FIxHkOeT9KpRJ6vZ66Ez7++ONoczL49ruXUs7Xfx6ahRcjSpQBlPBMyJYsy1JBIfIdEpdB4pny4x//mO7vk08+gUwmQ4UCMHumkx+tmMF988rR2OhBNMpCKBRCrVbD7XZjcnISJpOJXmeXLl1Kq8gPPfQQAKCjoyOtymImmEwmaDQauFwuXLhwAevWrUM+bwobRc2IqMwYmvTh+6+8iNkmOT788ENcvXoVO3bswNe//nXq32A2m1FXVwe/35/UgrqduKOSgZMd9mSinkmBf7hG1HM6nbhw4QLOnz8Pj8cDtVoNvV6PiYkJtLa2QqvVoqKiApWVlSgtLYVYLE77WvPnz8dnn30Gt9sNhUIBo9GIF198MSkhEAqFePrpp/Hb3/4WYrGYyhXHw+VyZSV/WCwW1NfXw+v1QiaT4eTJk2BZFnfffTcnSenp6cHnn38OkUiEffv20ZWP1WrFrl27MDIygq9//evYv38/8vLMCCvNONfUCn7QTYONcLyTqseRQLR6wSwwTASNnXbw+XxotVpK7LkeqYnrqRTkGsD8yJQ0xAJ1S8SIPJ6biv5kg5cVwcJ3Yj3acCJUyhGJyrRNICJIK4e8XpieVwEQDYUbN0tKheupTpBATQR15s2bR/0Jrl6NySr7fL7rkqPOhJKSEmpERI/u2t/5+fkYGRnJmgiQ4FpVVYWKigrYbDbs3buXs89pee9pp0CFQoHCwkI6pz84OAi1Wo3a2lrMnTuXtvBCoRB6enrSlv61Wi1GR0fR09ODgwcPcpKexHJyNBqFRCKB2WxGVVUVqqqqYDAY6HkeiUQwNjaWNMMfP9FBOAQExI0x0XZXqVTC5/PhZz/7GaxWKxUtkkqlcLvdGBwcxI9+9KOk85UIQJGEJH40k/T2dToddDod9Ho9/VehUND38fvf/x5msxkWiwUv7T6W0tWP/Db/n90NeG2dnopN7d+/H263G06nk5NIkWSxhQQwAAAgAElEQVQsFApR46Hh4WEUFRXh4YcfRigUwt69ezE0NITVq1ehqKgoNqsfjiAYDOCVV17BO++8Q8cCtVotHA4HKisr6WsUFxeDx+Ohra0dRdZ7MDzpw5m2ATx+38ythBmGwdy5c3H27Fk0NFxEXvVd+Oh0KxysFI/NK8epU6dQrORRO+PDhw/j+PHjeO+99+Dz+XDXXXfBbDZjPCrFnrMdqK20pFwA3w7cMaJDmfyiGQbYXOwCRlqp/SPxOi8rK6Pl9XSzvang9Xrxy1/+EmvXrsU999xD7x8dHcXWrVuhVCppQhAIBPCv//qvdMTogQce4Oxrx44diEajeO6559K+3uTkJH7961/jmWeeQXl5OX72s58hEonghz/8Yawa0tyMxsZG6sA2f/58LFq0iLqCnTt3Dp9++ikA4LHHHkN9nwu/OzN2Q8EmXUXgViG7yBCbpOaYDYmiP+kQL+Jjj0ixN5RdjOQeQQ/qwiUZBZzyea6kqsFQ9OaZJWXCzTRlmpbszf4d5WKaRS5mBQUFHNljArICykQijD+2efPmQalUUrXOVCCVD7lcjsLCQoTDYaqxYDAYMGfOHMyZM4cyuEdGRijxj0wSKZVKlJeXQ61WU4+BiYkJTjBNPG9I8CwuLqYERNJqDAaDGBkZ4az2R0ZG6P7EYjH4fD7HllwqlcJsNsNkMnF6+6RtEQgEaAI1ODiIwcFBTvUwFUg1Id1nW1RURIN+JvIgAcuy+MlPfoKlS5eCpy/GX+1sy/h8IHYO5ksilKiZSMhTq9WQSqX4+c9/gX4PCy8rQk1ZITwDbfje9/4GHR0d2L9/P5RKJbVIBmKJRV1dHU1sFi9ejNOnT0MkEsFoNGJgYAAMw+Chhx7CwoULIRQK8Xe/+k/sG+VqFpTqJPjxk/M5Ewa5oL+/H//0+11JC4NSnQSzXY34/175BiwWC72/ubkZu3fvBsuyMM5bgfd7+OgYm55CiF8A307cEckAy7JY/6v0LMz4C1B+vpmuDoqKijKW5rNh165dcDgc+O53v8u5nyQEKpUKmzZtQmdnJ95//306ivWNb3yD0y74wx/+QC2RM73H1157DVarFSqVCvv27UNxcTEUCgVaW1sRjUaRl5eH4eFhPPnkk1QXG4hpxb/77rtYunQpnE4nzve78d64GdE07OEHRe3I52W+OBCkknNNp3CYba47F2QLYHcLenE6XDqDPWaa+Y89nhi8cgl4avgBBnDOMCjerGCaK2Zi5JRL8perot3XJFehgTvlY8QlkM/np5SrJr4B2SASiTB37lyEw2G0tLSk/O3FTwWYzWawLIuhoSGEw2FqE0xagS6XiyP44/F4KOtfo9HA7XZjZGQkpddBPIRCIYxGI8rLy1FdXQ2z2Qw+nw+v15u02ieJC8MwEIlEYFmW0yoxGAyclb7ZbKa6J5OTk+jr60N/fz9GRkYwOTkJj8eT9hxM5VpJvvPq6mpKNCYB/+zZs9i/fz8YhsFjjz2GhQsXcrYNBoNwOp2YnJykI4IOhwNTU1NUgwHIXbX0zU2LELY1orOzE6+++mrK55zssOO/vXMaI/7paku+DHjE7EFksAWLFi3Cgw8+yGmxDA8P44033kBFRQUMBgPOnTsHYhlfXl5OFTiBGCdGXrEIPz/nRzShxUcWntv+yzIqGZwLTrSPxRaydC+I+4vFPz+Qj+fWLuZsMzg4iH/eshufesuuPevGj+NGcUe0CZqHpjitgWTESsOWeXdjboGKaosPDAxAKpXS20wTgwULFuDdd9/F8PAwXS0AsT4Q4RBs27aNlhrXrFmDiYkJ7NmzB0ajEUajEUCsTRBfhkr5DhgGRUVF6OjooAQtm80Gs9mMtWvXoqqqClu3bkV1dTUnERgeHsZ7772HqqoqrF+/Hn19ffiXN85d682l7qnXhSx4StaKSGR6JSCRSCAQCODxeFKWawk8Hg+VbU3EjSYCQPaxxXyeCy2RvBlIFDOYTghyI00yDLCUb8Pn4Vlpt5krGMmSlKTWEriZZkm5IJepj3ijnry8PFoCf/DBB3H0Uifa+8eg5EegZt058zpcET40KU63+GmBRFVAIhmcLRGQy+VU4CfdiBrLsuDxeDCZYqp6o6OjsNlsKCoqwurVqzFnzhwoFArYbDY0NDSgs7OTiimR0rbP54PD4eD4JKSCQqFAfn4+Zs+ejcrKSqhUKkxNTWF4eBjt7e107I28L5IMxa/EpVJpUonfaIwplo6MjKCnpwcXLlzA+Pg4Z94+HoSLkAoajQYajQY9PT147rnnYDAY8Oc//xlDQ0PIz8+Hx+PBXXfdRbePRqOYO3cuhEIh9u3bh48++giHDx+mUxbx5MBUnz+ZQCgsLIRJYcaBxowfIQAgXyND02VnSnEmIL46zG27DHlZbOmS4V/WP47HVi9M2i4vLw9CoRD9/f144YUXcNddd+HNN99EJBJBV1cXBAIB7r77bpw8eRJlZeX4Uf0Eoki+vpCryN/vbeZIBmcCy7L4h4+vJO0rfn+/OzOGZ9dwFQbz8/NxVVYL1uu5KcdxM3BHJANjU7k53jW292K0bTyt9KhQKOQkB4k3iUTC+b/BYIBMJkNDQwM2bNjA2ZfJZKIcguHhYaxatQoMw+Dxxx/Hli1bsGPHDrzyyisQi8VZ1aOmpqZw+fJl9PX1UaUvuVyOTZs2IS8vDwDw8ccfIxgMco7D5XLh3XffhVarxapVq3D58mXUtfbnFGxGQ0LoedMXo1AoBJPJhJqaGjidTtoj1mq10Gq16Ovroz3LGzUfyoZsASx3oh9B7DnJPgF+LOXbIGbC6IuoOWX8s5HilPuWIwirYAhypHaDTESilsDNMiJKhVQrPyD76GP8NoSQNhRV4dVPhjAe1gDQAKFYRWEOfySnY0nH/yDBJBF8Pj+rd4BWq4VOp0Nvby+amprSPo+0A8fHxzEyMoLS0lI8+OCDqK6uhtfrRWdnJz7++GOOiJhOp0N+fj6cTict16cC4dOUlJRg7ty5KCwspIz+4eFh7NmzB4ODg3RVHO9dAMS+I71eT8v7eXl5MJlMiEQi6O/vR19fHxoaGjKu8lONtKnVahgMhqQ+fjAYxO9//3s8+uijGBsbw8DAAKqqqqi+ytDQEKLRKPr6+vC73/0OoVCIIzIVDzKtJBQKoVAooFQqodFoYDAYYDKZoNVqoVLFFmOXL1/GBx98gE2bNkEkEuH9oQzz9UxMpG1uvgonnU7k5+cnPYdlWfz93uaMvIMtF6fwzVXJsr0Mw8BisaCrqwuTk5MwGAxQqVTQ6XRob29HOBxGX18f5HI5mgYnMcmak15h+jiSJYNZlkU4HIbP56PaDOTvlhF31oVsvyuC13fsRak6Vi3j8/mwuaLotKeWuU93HLcad0QyYFTl1iP+zovfRE2BmqqEZbqRL8zpdHLuS4WzZ8/iypUrKZMHs9mM7u5uXLhwAUajERqNBg899BB27NiB999/H4899hhYlk1KBggpq7GxkWanJSUlNBl49NFHaSJgs9lw/vx5bNiwga46ent7sX//fjoDToxgnPIiAOl/zASJwSYSicBms2F4eBhKpZJOJZARHolEwvF6zwXXa5MMZA5g6aoH2XC3oA8yXpAej58V4Gy4GJPh6X3IEYAnJUExlnh4IMbpcCkUuD4Bp1vp7XAzxjvdbve1Vk1V0kV3kpWgLlwS9xnNbGySuNTFgyQwmapKBoMhZsU7Pp5k0UxA5r6dTicmJiboSF9hYSGGhobQ2dmJY8eO0dK/TqeDRqOBx+OB2+3myPvGQyKRwGQyobKyElVVVYhGozRZOHToEIaHh+mxEx8EUk0jvX0S9Imsc39/PwYHB9HY2Jh2lZ+qZaNUKmnAjyftaTQajt5AJBKBy+XC5OQk6urqwDAMTpw4EdPPD4XwT//0T5zfCqkE2e0x8rBUKoVWq6Ukwby8POh0Opw5c4ZaED/11FO0J58KDocDCoWCkrSpqx/Lnf1nmJjs7/+7YTb1MzAYDLh48SI8Hg+8Xi+8Xi/a7T60j6ZfULGIBceGnjGUqmO/M5/PR/8llYrt27dDoVDA4XDA6XTSz4EQVPsjfORy/fzT7r0o4jlp3Ej3+x1idADKUz4Wj8a2HozznHQCqy+iBpC9tRIvXXyr8b8EZ4BklvtvsGRCxmTik4bh4WEcPHgQtbW1tF8en/lNTExkvJCRcqDJZIJSqUQ0GoXL5YLD4UA0GoVer0dFRQVmzZoFj8eDDz74AAKBAH/3d38HHo8Ht9uNN998EyzLwmw2Y2hoiFNGLS0tRXl5OQoLC1FQUIAORyAnJ8VE17ubjZn0qq8XJNkYjipxNlyc9fnx7zkTNwFJ96V89bi/71zOwEyRO4mTJEy3jgCp1+uT2OTxEIvFtLUlFAppwBaLxejr60NXVxct/RPSGzG5SQWiKldYWIiqqirI5XI4HA4MDQ2hv78fDoeDBuj4KgzR5M/Pz0deXh4UCgUCgQBGR0cxNjaWtZcfD5lMBqPRyAn2Op0OWq0WQqEQLMtSI6DR0VGMjo7C4XDQ1/D5fGk/r/jPValUQqfTobW1FR6PB+vWrcMXX3yBzZs3o7S0NO22jY2N2LNnD1iWxbp163DvvfcmPYdlWbz33nuYmJjAww8/TIP65429eLctzLkm6PkBLBP2IQ+TSfsRiUSQSCQQiUToDSmwayR7fzyVWypxvwwEAuDxeFCpVHA6nRAKhQgGgxxHy1w5MS8aB2ASBamXTSQSofbg8d9zrvv7u4VAlSG2wJRIJBjwMvjeJ4NZt/vkeytuW2XgjkgGAOBUpz2m3IQEv+hrmeW2l5beMnblG2+8AY1Gg29+85uc+wOBAH72s59h9erVsFgs2L59O1QqFdasWYNIJIJLly5R4xSj0UhX2aQUFI1G05648TPRsfcZM0dRq9Xw+/2w2+247777UFFRwalURCIRrPjxZ7CH0stxJgYbiUQCrVYLILYyzNSzzcUK9may2NMhvuogRRDHQuVwpujzkdeNf883wxqZ7Hcad940wfUg14vXclEvmkOmm57sMQwDuVyedqUuEAggEAjg9/shFotRVVWF/Px8Kq5FSv8kUci0ahMIBDAYDCgsLITBYEAwGMTQ0BAGBgY450CibwJZ7YtEIvj9fkxNTVHiXKq5/ERIJBKOVTkJ+lqtFjweD1NTU7Db7RgZGYHdbsfk5CRcLhflWaS7JItEIuonoNFooNVqceLECdx9991YuXIlDh8+jO7ubvz1X/813aaurg779+/H+vXr0djYCJlMhhdffJGzX5ZlEQgEaFAfHBzEgQMHEA6HodFoUFRUBJ/PRx38UgkSEfB4fEzxlJgMsijSK5EnCoNhYtWMQCBAFTAT3+P1WnsTxO+TEFRJ9ZNYQPt8vpySYS0vgG8XjUEqldDgLZFIIBaLOf8n972w/Sq6x31pJYh1giDq/3FjkqDU7VgAzwR3RJsAAO6tMGDbf1mW0RDoVmHBggX4/PPPqQYAQWtrKyKRCGpqaqDRaPCtb30Lb7/9No4fP46nnnoKHo8HXV1dCIfDcDqd1JioqKgILMvCbrfDZrOhr68PfX19nBIoKbGNjY1Bq9VCo9HQJICUFY8fP47jx48nHe9iKPE5cjcSIvtdsGABurq6oNPpMH/+fBw9ehQsy0IkEqGkpARdXV1ZE4GZaOIn/oZzbSukqjrIQS7C2d/zzbBGJu8HSM1FyKYlkEmD4MtKBIDcOQ1SNkg94W+GaBLDMFREJlUiQC7cIpEI5eXlUCgUcLvd6O7uRlNTE139keQ5EAgkBWapVEpX3QKBgM7yp+IHMAwDrVZL5XgDgQC8Xi+mpqbQ19eHnp6ejO9HKBRCr9fDZDJRa2WtVkvn+4eHhzE2Noaenh5cunQJHo+HMz6YCIFAAIlEAo1GQ8v3RqMReXl50Gg0VAQtHp2dnTh+/Djmz58PiURCPz8i5OP1eim/4tSpUygpKUFzczPefvttALHxahLcU3NRGGrdrFarwefzIRQKoVQqMTk5mZLDEo1GoIhOQsEDhG4vnNc4FcC0SFqqZOdGVT1T7ZMYPhFr5VAohIaGBqzVOPD+REHS9ZNhAIZlsJTfC52uEBs3bsyoVUPwo6+JYi0SJC9kGQD3iPpS8hymWyvpHXFvp97AHVMZIGBZFleGpjCaQYHwZsPj8eAXv/glZi1bg7ySKvq6O3fuhNvtxssvvwwglt2ePXsWBw4cQDQaBY/Ho8YbWq0W999/P0ZGRujsb7xkazQaxfj4ONWhfvjhh3H69Gn4fD6UlJTA5XJhfHycc4Ej1QK5XA6ZTIZwOAybzQaNRoMr4xGcjZRgIhofpHy4W9iXdayQWKK63W56gSY+4vGTBDczg8+1rZCtvJ+oQ5BqH7mOOuWKtYJ2yOO4CLmu/hOrBlr4MIFbo0iYK67n+7tVehRkVFWhUKCgoIAGcKJqmG42nhwTMZIRi8VwOp1wOBwpny8Wi+nzCBGMGBNlOz6NRkMd+9RqNU0cJicnYbfb4XQ64Xa74ff70ybSPF5MdEYmk9HyPRkpJEI+mSahotEoDe4keHs8Hly6dAkjIyOoqqqC1+ulwkXplEGFQiHC4TC17I33RchUkSAQCAT0epGtJUJUDMlvh5DwMvFehlkVPgtUJZ1TDFgwYPBXZW5gpA0SiQR33303SkpKOKt0p9OJ3/3ud6itrUVTUxPkcjnmzp2Lhx9+mO6rqakJu3fvhlNixlG3CePh6eTYouLjX55aDBM7gd27d0Oj0eCZZ56hVdVMSCeYt7lWhs5Tn+Jv//ZvUyYWJzvsSY6Ks0y3fgGcCndcMvBlINUXUmmUY5brIp5/YAlKS0vR2NiIpqYm+Hw+6PV6TE5OQiKRgM/nw+Vy0ROJqBkqlUqapTudTnR0dKR8baVSSVcnHR0dMBqNWL9+PXQ6Hccsw+Px4I033oBWq8XExMS1i08IDlaK8rkLsdQ6G1/s+k9s2PAQrFYr2tra8Nlnn8Hv93NOcqIvHu85n+4nEL+SVwmiUEVd6I/mFmjje3u5thVymv9n/Fgp6IIP6QNqrgEvVyQmNtfDC7gdHItccKdwGhQKBfR6PRXlIRLC6X6LAoEAcrmctrGmpqaSnkvGGsl5R6oHmS5xRI3RaDRCp9PRc4M4+5GZ+mAwmHb1TKaYFAoFNBoNdQE0mUw0gYgH8WcgQT0+wMffT3zuE89h8rosy9LVOoCs75W8X7KQySQnTlQccyGAEggEAvB4PASDQRQUFEAmk3GC9cDAAAYHB/Hoo48mldvJ6HOqoBofHB0OBz766CP09vZi8eLFWLduHSfI/vjHP4ZIJKITLYmaLQBw5MiRa34aDApqluDMpVaYlCKIPGPIyzPhoYcegkKhwI4dO+Dz+fCNb3wDZWVlWd8/y7LU2VbGBPE/v/8SXC4Xtm7dir/5m7/hWD0TxATtfobKJffDXDr7ti2AU+GOaRN8WZiebeVm5p1jHnSiErJTV6A8cABisRhKpRICgYAKiZAfnFAohFAopCcvKYMKBAKo1Wp6EVEqlVi3bh0OHDgAt9sNq9WKJ554AlNTU3jzzTdhMpnwrW99iyOoAcR+ZHv27KGSpKTfabXOA8Mw6OlpwrKn1mCwZi5Onz6NxYsXw2q1oqqqCp988gmam5s5+4pfEcVfDMhKrba2Fg6hEf9eNzodvK5z9GwmbYVcZvSdrBQMA1h40ySixPaDFtlLjmR/mREj07Fs7DVyb0NwtQRutrzvjYBhMo1uztzMaiYgFS6ymk5sF8T/Fok2Puk1k1YcAQmCZMVJHABJMOW+51iSoFKpaBuQBHxSJYjfdzxI+V6tVtNxNZPJRBn4EomEBvf4oO5yuTA8PMwJ+OSWjnfAjyupR6PRnKZH0lk6EyRykxL/jYdQKIRYLOZwlEhfnGEYXLx4EcFgkLZwXnzxRTidTuzZswcbN27E/PnzsX37doRCIWzevDlp/x9++CFCoRBqa2vTHu/ySgM+/8FKXBmawtnLbWg4dRj//PJ/pdNaOp0OmzdvRn19Pb744gu0t7fjscceozovBQWFuNA9Ai8bGyVONRFx//33w263o6WlBcMt9SiXCOCM8FGz7mm0XzqHrVvfxpw51Xjqqadw8OBBbNu2DQ899BCWLFmSMUgzDIMHl9ag8cgnAGLS8oSsOTU1lTIZiAnORfDwPda0+gu3C1/pZCDTbCv5/4EJLTaKYnPFiaW0eH/12tpaOBwO9Pb2YsOGDZg7dy7kcjnC4TB++ctfAoiJvNTU1ODQoUOUrRsMBql/9rPPPktXNfFmTc6eZrS3t6O0tBRtbW1gGAZPPvkkamtrMTo6ikuXLqG5uRkrVqzAG2+8gYsXL2ICCrT3jyDoZcDnCzgCRPEQCARYuHAhFApF7OQYHsbnjb34PCQGmyDzO8lKcHqGo2czCZzXM6OfbsVdybPjfKQojVZBugQhsS0RGzXcG6rhrOJncpw61nfdHItbhWzCTzczMZFKpZQhT4JhKpAyOQls4XCYM7sPgLOSTRUESTAjK+VQKIRgMIhQKJQySSDle7VaDYVCQTkEBoMBcrkcDMPQZCE+qLe2tlKfkXQz++mOOxMyifyQ/RBkqqAQ7gK5icViNDQ0UB2TiYkJ1NXV4Wtf+xosFgsN+Nkse9evX4/t27dTRT+FQoFPP/0UxcXFsFqtCIVC6O7uTunsCoByD7KBYRjUFKhhUcyGre5T9PX1cRRfGYbBkiVLUFVVhb179+Kdd97BggULoKy8C1uGzOgLTpfXW/7zUpK0L8MweOKJJzAxMYHz/W6c8RdjIirBzo+7AOhhUedhqqcb7e1bsGzZMuh0Ouzbtw/Dw8N45JFHMrZ0JBIJKioq6LQLqUqkI203NzfDYrF86YkA8BVPBnJVPnQJVCiQxiRP4xmlYrEYTU1NiEQi6OjogNVqhcvlwoEDB+D3+6FUKmGz2SgzWiQS4cSJE9SC1OFw4NChQxgfH8cLL7wAiUSC4+2j+MePWzjHpWF8uE+mB3p6wOPx8Oqrr1JikMFggMViwcGDB1FRUYExvg4v7e6Ou8hLoGFmY6V8BPqwnfPuCgoKoNVq0dDQgEgkAj6fn3Ulj7hH0q0s5/BH0B+NZeYzMRLKdfY+xPLQF1HDwwrjvAOmMclKcD5ShMX8fnREDRmSkdiWc3kjGIiq4UT6pCV+FT8TLYHbrUiYK3JRLrxexPf6cxWwyrS6jV/FktI1KXPHa2OEQiFO+4uU70lfXi6XQy6XU18En89HhXY8Hg/Gx8fR1NSUdXQvV8xEF4Icr1gsptcYmUwGmUxGA3p8Sf3s2bOYmpqi1w2RSIT/+I//QElJCadHTsDn83Hq1CkwDIN169ahvb0dV65cgdVqzfkY+Xw+Nm3ahDfeeAPDw8N4/fXXwbIsvvOd74BhGHR3dyMcDqOqKnUb0el0oqAg96F5lUoFjUYDm82W0i1Wo9HghRdeQENDA/746Ul8UsdH4jWrY9SNF7acSZL2FQqFKF32IH7cdSnp+tHvDGOAseD/WlyFs2frIJFIsHDhQjQ2NsJut+Ppp5+mktGpMGfOHHR0dKC7u5t+p6mSAb/fj46ODqxbty7nz+RW4iudDOSqfGiwVKBcFaHlyHA4TJnH4XAYUqkULpeLmmOEQiEcPnyYs49AIIDt27dz7tuyZQv9+6233krbW59kJfjYU4r1wiBqtAK8++67dNUT30/c39iLT71lKYPjXncJ1gsDqNYy1NSEEB2B2AouGMwteHkgxj2CnmuywfGM/1iQjJfxnYl4Ty6MYh5YHA1XcO5Lt+LuiBrwuKAZ74dq4YY45fMAFoOsmjLnD4Uq01Q9plfxTwibc2Y+90dzy/ivR5HwRsEwgO7aa5Jqhw43nhDcjGCaajUMTJfP+Xw+RCIRZDIZrQaQlS0hCZK+f7oWwM0ECebxCwapVBrTwpfLOWX3VONpxOI5F7Asi48++giLFi3irCjJNEEqWK1WnDp1Cg0NDViyZAnuu+8+fPjhh0lS7LlAKBSipKSECvnU19fjkUceQVtbG7RabcpyOOFOzXQFXFxcDJvNlvZxhmGwcOFCXDnsBJui6pRO2pdlWfzrwW5kkhH+wCbAn199FQcPHkRDQwMMBgPsdjv+8Ic/4JlnnqFKiomV3FmzZgEA1bFJ58Vx9epVKgt9J+ArnQzkqnz46Nr7MK8omVHqcrnwy1/+Ehs3boRcLse2bdtgNBqxdu1a/OlPf0JhYSF6e3vBMAy++93v4vTp07h8+TKefvpp7Nq1C5FIBEuXLkVFRQVCoRC+u7cfcKa6kE4HonxHrJxMMk4iVmK3j+OUryBrOTrfmbocTVZwuZbA5UyIM3rmYYU4HS5Jel4sCGfq0U8Hzmz9bACI5lTyj90/yUrRy2qzuBrGnjeBGBchs2Pi9Co+1757rlUEk1IEeLM/72biTiE1JoJhGNo/T+yhk9V2vArpzXpNwlMgq3NSZpfL5VAoFJQQl2rePF4h8FaDcBEqKio49weDwSSyIoHJZIJMJsPQ0BC8Xi/mzZuHo0eP4tixY3j66adTbkMEdwiBkPxrt9upvbtYLMb58+fR2dmJYDCIkpISdHd3c54fjUbh8XgQjUYxNjaGs2fPch5L3H/8v0QUaufOnQCm20PkOZFIBIM+Prrsecgm7fuvf9gOiyL22xoOCNA+mv66QLYZ8DL4+te/jiVLluCzzz6jv7ctW7Zg48aNcErMKacI7jFUQDAeM8VKlww0NzejuLgYKpUq7XHcTnylk4GafBWqTIr0wg/X2OsH33sb0dWrMG/ePE5fjXzBSqUS+fn52LRpE7Zt24aDBw/ioYcewscffwyGYWg/rbGxkdofRyIRqFQq6kXQNOhEn7Mnw9Fyy8nxJVEgxqCPHzPMtn06zKQETiSFdawPH1L2fvrWQi4aAen62Tyw1xKBmS1bY66D2ZFrEgQAh0KVWCHsyUlLINf5aZFn7PmvTY4AACAASURBVMb0kWaIO4nUmAhCCpwJSAJBAnq8DwkhLpJWQeIqndgI3+gxx7ctMgW6TMEv3WPxt56eHjAMg6amJly6dIne7/V60dzcjL6+vpT7I4nUb3/7Wzoi2dLSgp/85CcAQKWWyb+ZeA4kKJJrEGl9trS0oKWlJe129fX19PsiyFQRIcdAvFRSISbtm5f2cYL2/jH4r004zVQOuLi4GK+88gouXryIgwcPIhqN4je7PscXodlJ51DHqBudjBbrBAp0dnZCqVQmyWz7fD50dXXhwQcfzHoMtwtf6WSAI/yABMEIADyGh39+cgHcnRF8+OGHOHnyJFavXo3q6mowDMNJBoCYg9cLL7yAP/3pTzh37ty1fbIoKirC3r17kZeXh5KSEmzdupUqFpJefa4tC1JOjh/9YRgGobAcyCGOZypHE9b8TLXpc2ktAOnFexKDTmI/O8TyEloDuUPNXJ/HQCZ4IIoFTGEbnhA2oyeqhZOVQM34UcqbQDwP68tk76fDjQhH3UrEB3QyoUNW4YRzIxKJIBQK6Qx7PFs+MWiS+wgJcHh4OCk4ZrolBsZUf8c+z9wIgjcb58+fT7ovXqchHRIrKqmmGxKrM/GOiX6/n+o8kGvQ1NQUTQzI5AWPx6NqrB6PB4ODg5gzZw5EIhHn+kX2Hf//+PuPHz8Oi8WCWbNmpXxO92QIBz4dyvp5vfiNx1GdpwDDMGgb8+HAtstZtzHFVY9JS2Lu3Lk4evQo/vuRqSQbZODa0ufaOVbUexXLli1NanXcaS0C4CueDADplQ8NwhB+vXlFjIV6VyUGBgZw6NAh7Nq1CwUFBVi7di1cLhcYhuGoFhYVFeGFF17AW2+9BSAmIfrFF18gGAzi2Wefxc6dO2EwGPDAAw9g27ZtGBkZQUFBQc4ti2KDCpicohauxA1OGE7N0k5EuqCXqmScqyVwrqvqRCOhTIQ1UnXQw3cti58pYklLKW8CjTNQNsu8iqdHBxYsToRKIWCicMZ9Zo0pyuy3k72fC+5UUiOpCITD4bSmYrcaqZTiyH3x/5JKAnk8/rFMN5K8xAfY+L/J4/H/j9+eZVl0dHTAZDJREjF57ZaWFhQWFkKn06U8HpZlcenSJUSjUcyfPx8ikYiqJFqtVs51LB26urrg9/sxe/ZsTv+/ubmZqi86nU7w+XwOkZD4BigUipSVgHgBpEQoFAqMjY2l5CIAAJ9lkS8Dhr2pHA9jZ7JZBkz1tuCcjbweYJYCI75027AwS4Gu88fRfSH58T43Mp5DLGKPj4VFCIfDVIuGvPfm5maUlpZmJCLebnzlkwFgera1sXccr//ndsyrKoa9vRFVquX0OYWFhdi0aRO6u7vp7KlGo4FUKk0ayZFKpbQkJ5VK4XQ6IZfLcejQITpCKJVKY1aWNhsKCgqytiwAFiUaMf7H9/4KwWAQPT096OrqQnt7O/x+/w3JeaYrGSciXfDKubXAC0LPS+1UmEmqeOYOf9NJC48X+3d/aBZSjw9yk5vc7ZNjREokrAhTldlZFhAzYSzm9yMMHoSIQsb7chQIgVtrs5wL4oMn+X/i/amCci7bZ7oveV8MxsJieKJ8yHlhGAXBDMnpzL+oVNvETxikCnzZXoesvolREtmG7HdqaipjIkXaA52dnZBIJHRR0dramtGGHQB1lgRi9tHkbyIxTdQVJyYm4HA4cO7cOeh0OvB4PLpwIqTDbIj/HEKhENxuN+VfpcL9CjF2eo1k6/ijBgCsUtoxMMCtgKxWibHDZ0i7zWq1HUNDydcehmHQ4xUDSJ2cxMPLijA1NUUrVETptauri2NXfyfgL8nANTAMA97UIAqYCTz70PPYMtCGixcvJo19lJWV4aWXXkJrayv27NkDv9+PHTt2YM2aNTCZTACA06dPQyCIeVdPTU2Bx+NRx7Fvf/vb9KQrKChAX18f7r777swti2tt9xp/Mzo6Sql5S1tbGyYnJ2n5dJkzczk6ppHNfd+5jBLKEcQaYQf0vNTB60Z1xbMR2XLZf/z9N7LiJqv4E6HSLGRCgsxl9qFomvfG2MBkHuu+ZZDm0k/C9dks54JUZXVC4CPtAdL3J2Q+ct9MbvETBomgSncOLvHrHx67/TKwM8G+ffvQ1taG73//+5zA6HQ68atf/QpPPPFEErEwHu3t7di+fTs0Gg1eeuklAMC5c+ewb98+PPPMM2lX3wDw6aefYmJiAiaTCd/5znfo/ZcuXcIHH3yAV155BUqlEizLYu/evWhoaMDk5CSef/551NXVIRKJ4Pnnn5/xex4YGMCbb76JRx99FBaLJe3zHkupXqjMKO376HVsA8Q4XjtzcI+VMUHqjeFyuSCTySin4k5qEQB/SQY4uHLlCgoLC6HX61FbW4vLly9j7dq1SRcUhmFQXV2N8+fPw+12Y2RkBK+//jqsViuWLl2KxsZGRKNRVFZWcogv0WgUg4ODyMuLkV0sFgsuX75My0eZzJr+xyNzMHDBjZ07d8JsNtORQFJaLSoqAo9nh8DdjZO+/JTlaDPjglQqhd/vh1QqhclkQtOAE5OB7KOEDIOMJf3r7YvnSmTLNmVwj6AHciaUVFUgyQ55L4nvDSn64wV8F9agA3tD1ytpHCuzt0YMaXUQviyS3mBEibpQNjvozMnbrQBRxsxkPxwf/HLt0xNCYfytLyjDVhtZBU/vk8yk/8MqI5YUq2hCkbg94St8Gejs7ER5eXnS6xPho3TTBARlZWXg8/no7++Hx+OBXC7HwoULqSnaxo0bU243PDyM+vp6qNVqGAzcINnW1ob8/Hy6yGEYBo8//jhKS0vx4YcfYuvWrVAoFJg9e/Z1vef8/HwIhULYbLaMyUC8emGu3jbXsw2QA/mciV23iyN8OtrqcrmQl5dHWwRyuTyn93+78Jdk4BoCgQA6Ojqwdu1aADEnw3PnzqGrq4tKXSbC7XajsLAQGzZswIULF3Ds2DFcvhwjpbAsi97eXmpMxOfzIZVK8cknnyAvLw8FBQWwWCw4deoUnE4nNBoNgNiP840nLPjV1vdgXbYS98yfAz3fh6tXr2B4eBiRSAQDAwMQCoWwWq2YPXs2VQKbmpqCCcBGkQOTjByeqABSBDHLKIfbHUQgEDdC6PWip6cHEzn247OVjHPtiydaE9eFciOyzXj/0Vi7gWUz9/bS9cf1vGzViOy4FM6/o0h6ubWDbi6pkbgNkn5wtgCeTl/gekl64XCYJsyBQAB8vgAfTWhTfi/stdf5xRFbRm8GhmE41Yds1YlcKxnZFAAnJycxPj6eUuGPJFHZkgGBQIDKykq0trbi6tWrWLx4MQQCAZYvX479+/dj5cqVlItAPxeWxb59+6DX62MtybjHo9EoOjs7sWzZsqTXslqtKCwsxJYtW+B2u9HV1UUJ0zMBj8eDxWKBzWbD8uXLMz6XqBfW5K5tdN3bZKrkEtfBiatuOkFBxK16enrwyCOP5P5itwl/SQaugdgVk9JNfn4+jEYjGhsb0yYDLpcLSqUSfD4fS5YsQU1NDV577TU6FhUIBDA8PIx77rkH1dXV2LZtG/h8Pnbu3Ilvf/vbNMvt6+ujyUA4HMYnn3yC2SY5DMFh7Hv3BJVwZRgGJSUl4PF46O3tjRl7nDxJ+3BisRiBQAAMA2jhQU1RAUQiLQYGBhAKhSghiZAOGYaZ0ShhNmRTtUtNUswEbqC+nv1PWx9nRmKyk63akUuCkKtmwe0g6WVuB03jZpMao9Eoh63O5/OhVCqhUCgxFhbBGQSEYR8kPjtCofTOeSSpIJME8SqE5DUI+TBR+S+emDYelcIRyf17ia8skDYGn8/nEPsIiAgYESYLh8MIBoNUEjkbiJBSuhtZYQ4MDGBiYoLzmMPhABDjDBBFQvJ5Ja5ya2pq0NraisbGRixevBgAsGjRIlodeOKJJzjPb2pqgs1mwzPPPIMdO3ZwkoG+vj74/f60qoN6vR6vvvoqfv7zn2NiYgK/+tWv8NJLL9HrXa6wWCw4c+YMh4T3ZSNTJZe0GQalC1FfX08N7UiLYM6cOV/WYafFX5KBayAtAsKQZRgG8+fPx+HDh+H3+6mEKQER0ogn3TQ3N3NIQcQdTCwWw2w2Ux0Ct9uNXbt2YfPmzdDr9bDZbNDpdOjo6EBDQwM96ckFjmEYzJs3D6tXr0Y0GkV9fT1sNhvOnDnDETshyQDxhh8aGkJ5eTlWrlwJoVCI+vp62O12iMViPPPMMzhy5Ah4A4PQRgKYiGQeJWTZ2GzuTKYA4pErSTEV4gP1TPcfG5HMjlTJTrpqhBp+hMHLOH6ZaLWcDrdLeTD7BEEM9wm6YODfuuOJRCK4Mh7BmRFV3PFooeXp8Gi+F3N0fNjtdkxMTEAoFMJgMEAoFMLtdlN/gEy6/BKJhHIFwuEwbT2Q8zJX8uTiFWthNfDg9/upoVEgEKDKhvH/ptNE4PF4kEgkUCqVlPsQn1TEJzXxVQGS4JBjDwaDcLlcGB0dhUAgQFNTE00yEhOfHTt2JB1HqjYHEAvk7733HmQyGUQiEfLz89HY2AidTgeNRkOrFZ999hnKy8vpdvFTBG1tbZDL5RllhoknBLEW/s1vfoOnn356Rm2DkpISHD16FGNjY5SbdScgW5shPz8fAoEQoyEhTve6wHptKCsrz2ly43bjL8kAklsEBFarFQcPHkRTUxPuuusuzmPEcY0QZpoGJvHO4UaIRVooQs5Y0NLrUVJSguPHj+Ps2bO477778Oyzz2L79u2w2Wx45513EIlE8fm5K/jgTDvUIhaqiAtmsxmhUAjj4+Oorq7G/fffD4fDgQ8//BC9vb3UVhTgSr8S3YMlS5ZAIpHg0KFDmD17Npqbm9Hb2wuLxYIHHngABw8exHvvvUdP0ntF/fjUV562Hx9ieZz++UxV6nJdlaZDtqpErn4KmZIdLXwYjyZXHNJVI4aiyowcCatgiCPLfL3v7WYh1yDogwi4hclJuqRtIirGnwbEeHCsHfm8mFw2SWgBwGg0ora2FhqNBsFgEHa7HePj43A6ndS6N97cKB1y/bzvqqlETUFuLTQyChl/I8lCqmTC5XJxHkuX3BASJbkFg0EYjUaUlpbS+0hwHxwcxJkzZ/Dkk09CLBbTZIIkDfG3UCgEh8MBr9eLwcFBagtNjNgOHTqUdCxdXV3UoGjr1q3g8Xh0O6FQiDfffDNte4Rcl/Lz86HRaHDq1Cns2LEDtbW1WLVqFUQiETodATh8EeSpJCl79jFOVKwieiclA0DmNsOpznHsCdViNMAHrgCAFkUqASo67XccUZVhvwy1jDsMhA37gx/8IEk7+5133oHf76fMWwLCcF204Vn828mhJGOhVcox/Oh7m6BQKDA5OYmjR4+isbGRnrwejweDESXORko4yoEk0N5boceyZcvQ09NDHccI4o1gCO655x7KWn3xxRfR39+PrVu3IhwOQ6fTwWq1wu/3o6uri44kSSQSaDQaDA8PYxhqnA4UJZXYp1fWqUh7vSlJe4kYj0rxUfB6yHixQJ2qfxvPPchdlCh14E5laJRLwpNpCiKf58KHwZqsExaZetM3E7l+B4+LmqHn3ZpkgGWR02fyDXkbIpHwjDgCpJwPTK9E+Xw+XeG6XC643e6cjkHHD+CVwjFoNGpqWazVaqFSqaBSqW6q9DDLsggGg5zkIVUi4XA40NnZCZPJRF0gc6lKxN+I4ZFUKoXdbkdrayv0ej02bNhAn3Pp0iUcO3YMr776Knw+H9566y0sWrQIVqsVFy9exOXLl/HII48gFArB6XTi5MmTqKqqglKp5CQb8cmH1+tN2yZJdQ5p+QGsVY+jUhnhJBg9PT2QSqWorq6eEU8j3hr6duJkhx2b/ngmyRWXQazCmWie9GXjL8kAYqU1t9uNl19+Oemx5uZmvPfee3j11Vc5LNqrV6/ite2f4ovw7BQWyCx4DIP/eKYWhvA4Ojs70dnZSYU3otEo7Hw9PvaUpljNsuCBwZP6QSg9g0nHI5PJoNPpIJPJqCuWQCCg5kNCoZCSpmaKRHLfsVA5nMh1nC998OyLqHEglF36M3H/DID1wjbk81yclbmfFeDsjLgHMcSSm+nSPdfqGEiVKKwTtEHCC6cVSsqkj5DOeCrTe7tV2gO5BuJsideNHOPtSEgkEgn0ej0sFgtKSkowMDCAc+fOIRqNYtmyZVi+fDnO97uw6Y9nU563DIANkk7kYTLtaxA3RKVSCa1WC4PBAL1eT5X3lEplVjLgTHHkyBGcOXMGP/zhDzn7JlWJc+fO4fjx43juuecyViUSE450IK2LaDSKwsJCmkD4/X5aeRwcHERTUxOeffZZqFQqmnAk8hQOHTqExsZGfP/736fJgt/vx7/t3I93BpPJnMy129/UAhWKad7FyMgIPB4PrQ6RWzaQKkYupM5cCZ+ZxlaBWJK3/lfHMk4bVBoVHPOkLxtf+TZBuhYBwezZsyGRSNDY2Mh5jsvlipWmky4oAMAgyrL47zvOYaOoGSaTEVVVVdDr9ZBIJBgbs+N/ngmmLWtHweKAQ4uNokHOiJyDlaLPJYTCOwEtBgDEGNbxBK10GTghW6VKEmQyGSwWC5xOJ5jhYeivlcwzWfomHnemcbnrKYUTIhtAgliiMuLMsUbYAYaZtkvWwoc9oZqMjP8D4SpEMX3SJyY96TgMQPYJi1Tv7WYaBSUG8aV8G74Iz2z882aaGd0OsSMijDM4OIi6ujoAsaqB2WxGIBBAU1MTLCYTtrywED/e355mvvxRhEIhTE1Nwel0Ynx8HGNjY3A4HHA6nXC73XC5XJiamsLAwEDK4xCLxZDL5VCrY9UFg8EAjUYDlUoFtVoNmUw2oyDQ1dWFsrKypAAkEAigUCiowVI6snMqECvi1atXY9asWTRRaGxsRGtrK8LhMCorKyGTyeD3+ymR+cKFC5yqRKIba2JVgojufPrpp9QXQiwW45gnDzEN9eSpDjDAvlEFPn9uOlhevXoVO3fuxKZNmygBkbSHUrVD0rVIEqsWk5OTSY/l4o2RamyV3EZDYrSPpp/sIEZIV4amcm5H3Wp85ZOBxCmCRAgEAtTU1ODSpUtYvXo1PRmbB6dyHllj4vTCBQIBnDwVHJHynLbVM77kC3IodkFeqxnHXL0AbrebGoXQPTAxyVTyoyYcA4ZhUFFRgZKSEpw8eRLhcBgajQbz58/Hrl276Pa+HIl38cecblwuF9EgOYJYzO+HiJlW55vuy6d+vVT7ybTqJaJJJNCMR7PL8ia6JOaiEZAYhJ8QNmMC6TgHmPH+c0G6IJ66JZJ6guBmmxndrMkVMhWTqOAnl8sp6z4+6RUIBHA6nXA4HKivr6ePbVCqsEQnhjMIPLB8CZbNKoTJFAsyQqEQer0eer0e5eXJ5yrLslR6l4z8EeIjGSFzOBxwOBzo7u5O+R5IdUGj0UCv10Or1dLqglqtpqRlv9+P/v7+jONooVAo61hhImprazEyMoKuri6sXLmS3m+xWNDa2gqVSoXnnnuOBuPXXnsNVqsVa9euRTAYxE9/+lOsXLkSNTU1GVsck5OT4PF4GBoaovcPeBnYAnORjkOUKlgWF8f0MWw2G00GiHW0UCi8qXP70Wg0ayKRKdkYmvQCyB7kiRHSnYCvfDJw5coVFBUVZfTZXrBgAc6fP4+enh56YRia9ADIPi/rgwhKpQAmkwkWiwUOhwOfNfbldGxeVoRARJD2gvz+RCHc7tQX5HTOb0TbvKOjA0Csrzo4OMhJBIDcVeq4SD0ul8uYngdiHItUUHU+MNlIgalfPxmxPSzlJ696Z+JUGP8amTQCMq2kLdcc0261UVCmIH4+UoR1wjZIeRF4osK0Zf9bcYw3qlQ5fWwxHXuit0+SA4/HQ1evSqUSpaWlkEqlCIfD1AqXJAIxp0IeNGE3xGEfLh39FJeOxoIL4QnE34isLv0EGAZKpRJKpRJFRUUpjzMQCMDpdNKEIZ70SKYjvF4vRkZGUm7P5/Mhl8shEAjAsizsdjsuXrxIkwWVSkUTgGAwSDkTuaK6uhoHDhyAzWaD2+2mOvnEAMnj8VCZYVIpIWOF3d3diEajqK2tzahaCAC//vWvUVNTQx1bAeDQ1RHs2Vqf9Ri/OHEO2hVzkZ+fD5lMBqPRiN7eXlit1hm915kivrpxPWgadGJ7DgqFphw9aW4HvtLJQLYWAQFRJbx48SJNBgQhL4DMWt4AYFZL4fGMUt4AAIhz7HWvWrYAv6l3gQ0Bt0q4JnE0iSD7hTs9UpV505XME0FWnXcLemfMCUiN2LGfjRRjGcNd/V4/kz910pPrSvpWGgXlEsTPhovxpKQFOsabdj+34hhnolTJ5/MhFovh9Xrp336/n/N7jXcNTKwSuFwuKgAGABqNhrbqRCIRfD4fRkZG0Ntro1MkKmEUperYKnNsbAzd3d20ry4QCGAwGJKSBJUqvVqdWCymz0uFaDT6/7P35tFt3de97+dgJEGQBElwnmdSFEVREql5HizHkqzYstM4ifMcJ3lNm7Rps5w0vb339a532+alNytt0rqJ0ziN0yZxXNeyrdiJPMrWQFISJ5HiPA8gQRIkQJCYCOD9AZ+fABIkIVlJ/OL3XUuWKQLnHJxzcPb+7f3d3y/z8/MiWZidnWVmZgaLxYLNZmNhYUFwgQDR9giGRqNBr9fj8XhYWlri4sWLIdUFWQclHOTKx8zMDB0dHdTU1GC1Wnn33XfZtm0bra2tXL58mXvuuUdY8MrJQHd3N4mJiesmAj6fD5vNtmKxlRIXWZAd62nnBx2XiI2NFeZIkfob/C4RqULhhvS43/qxrYYPdTKwXotAhiRJbN68mQsXLuByudBqteg9c6RG65l0QLhgGSCIxHDfziouXryIw+EgLy8PlUrF5KQZg3n1QCsBWXFK0tPTmXSu5UYY/oEsC6PIVqMqlQqPx0NRURGpqam0tLSwtLREcXExJpOJ6enpsMcfuWlPKFYLsvKY3owvmjc9RavM6QcCVutSesT7W4mVo4TBAVkm7S34NO/ZKmvDHMf6CE56bmcl/ZvsnUcaxKe92jVJeu/3GIPHX4MRqZKk1+sVUwEy5O0lJiaysLAQ1npXhlKpDLEZnp+fp7e3l/b2dvx+f8Cwx5DHr9wVTLrfW/F7INXnY69ugtjFabEd2ZBMkiRMJhMdHR2CmxMc8IP/RDJHrlAoiI+PJz4+XpTAg+H3+3E4HPzLv/wL6enpFBYWioRhbm6O+fl5XC6XEBwCeOONN1ZsJ7gdkZiYGJIsFBUVYbFYaG9vp6amhvPnzxMVFcXhw4eJjo7m8uXL7NmzR+wjMTERv99PT08PFRXrk0Htdjs+n29FMhCJMVuCwsmnTh4kNjaWrq4uurq6RDv0Zz/7GRUVFRQXFxMdfTcWDXcXIQqFy6cJghQKPyjkQfiQJwORtAhkyJoD7e3tbNmyhYUFO8eNNp4ZCWR2K0ZHgE2eLs6fn6Sqqor9+/eHqG5t7Z7k0/92DZ8//Gz/BsdNfna2E1ifhb/8gRys8S5rvkuSRE9PL1d7J7B7legkL47WG2tWFFZfza/dm1+rzCt7HKynzheZSdDK/QfCrnwFQrcpbIfxLSNH+olUVTAYwUnP7ayk76bq43K8nyAuO2na7fb3fYyrVZwgVLthSR2DxuvA4F8IuRfl8b2lpaUViUFw8JPZ37Lyn4zllYLl9rgTGHh5JG5FIDI7Jf7LlcG3Tu6mKjUKs9nMxMQEJpOJqakpkVwkJSURGxsrpneGh4dpamoSn1uv169IEJKTk2+rlC9JEg6HA7vdzrZt2ygpKVnxmqWlJWw2Gy+++CIOh4MNGzZgsViYnZ1lbm5OGKQ5HA4xUhwOQ0NDfPe738VisVBcXExra6uYnrpw4QLx8fGo1Wr0ej0TExPMz8+vqjoYDFlAbfkzdj05XwmJjxUpeeGFF9i5cyfHjh3jnnvuoa+vj//4j/9genqaF154QaiylpaWUlpaSkJCwrrH9NuCrFD4tV9cY3T+1r0XrFD4QcKHNhmItEUgIy4ujsLCQpqbW1Al59NpUxHnmOBPKg28MhkTwkpOULqoUQyyPS+LgwcfIDk5ecX29pak8uPHaviTf3s3RGcg16DhoQKIXUyiZdgC66uYopPc4qHo9XrDjgyNLenviBW+XHRnwa9+z3wnckb6ckLdgi+yB+ItnYNIyILvlYxZa6RLTjLCFu4i2Metf1+e9NxOEM5SWO9K7zwc7iSIK5VKvF4vHo9HeFfcjf6+3NOPjY0VwjPyv4M/UM3yOkhOTkanMzI5OSnu3UjY3PLrIpH6DTlyP7xjT1nFnyBwzP/z5Zs8rO8hOzuLrKwsNm7cSGpqKjabTSQHExMTjI6OimOViYByn9nlctHV1RVS3k9ISFiRJCQlJa1ayu/r60OhUJCXlxf29yqVisTERDQaDTqdjgMHDiz7rH4WFhYEd0FuSVgsFubm5rDZbGI8T06yent76enpEdu4evWqkF5+5plnxIi0xWLB7/eLKkO4RGe1ZADWl/PdWZBEfX0658+fx2QycebMGYqKioiLi6OkpIRdu3bR1dVFd3c3r7/+Or/+9a9JSUmhpKSEsrIyMjIyfucr791FRr5UaKPP4mTnweMRGyH9LvChTQYibRGEILWU77w1xFzPZaAYPFAwHsX/fXoDi7PTvHH5GosWE9l6BY888nEyMzPX3FxelIv71W3su//jSNEGkmJUZOr8740tpZGfP8elt6xMOsOtdCH4gezxrD5W+H5Z4cvH5+Ik17pl3uB9L3+tntXnm4OxSWVaJfEgzM+3g/dHSAyX9NxOEH4/Lo/r4U6CuLxiDg7A7/cY4+LihH233W7HYDCwsLCAx+PB7/cTHx+Py+XC6XQyNTWFJEmCmV5fXx+yyg6G0WgMCWDySl0m2S2vCIRDpFUcd0wydrud+vp63nnnHSCghJiVlUV2djY7duwgISGBmZkZkRxMTEzQ29srWhh6vZ7CRf2EAQAAIABJREFUwsKQKoLVaqWpqUmomCoUirB8BIPBQF9fHzk5OetWFNxud9jWhCRJ6PV69Hr9qs8j2W7Y7/ezd+9egJCEQZaA9vv9DA4Oivf98pe/DNmORqMhLi5OCDTFx8czOTmJWq3G4Qj4PCwXbFpPznfHjh2kpaXxn//5n3z/+9/n4YcfJjc3l5GREfR6PVEZxaTrc9iwW4lmYZLu7m6uX7/OxYsX0ev1IjHIz8+/q2JRkSJgWDfIjm3bOFj2wVJOXI4PrejQz3/+cxYWFlYoC64GWU1qeVk/8H9+jqm72ZYdi9FopKuriyeeeCIk25f1xeXZZZvNRkdHB2azmbi4OBYXF1cIaEiSxLg3ll+7i9cUrlkrkN+J2EwkIjPya1yKKGIUS+QbNNhs1pAH8lqiO0Gfcs1jMvnWMzdab1t3F6tVU+7kPN/NGf5grHXeFZLEUVXXmtsP7vffyTHKCpkJCQnMzc3h9/uJjo7G4XCg0+lwOBwiiOfn5zM6OioSWaVSybFjxyguLubcuXNCAjcYRqORrVu3MjY2RmdnZ0gSo1AoxAz/wsJC2IQiUhGsh1OniZ0fxufzERUVRUJCAkqlkoWFBUGoi46OJisrSyQImZmZqNVq5ubmRIIg/y0H/6ioKNLS0khKShIBfHFxEbPZjNlsFomERqPB4/GQnp5OZWWlSBJk1n8wnnrqKTIyMjhx4sS6n2s5Ojo6xDTRV77ylRXbP3/+PFeuXGHDhg3k5+fzy1/+UvCfZmdnsVqtKyo5SqVSeCwEIzo6GoPBIDQXgicj4uPj0ev1YcV8bDYbzz33HCaTifLycl6/MUJP3GZ6p25xqopT9PzPUxXsyE9kZGRE8AwsFgtqtZqioiJKSkooKSn5rXkDTE5O8r3vfY9HH32U/Pz838o+7xQfymTA5XLx93//9xw+fJidO3eu+/r11KTAT6ZeyXeOpzA4OEhbWxsGgwGv14vL5RKroduFbGgyiYG355OZWbq1OsiKVfDpjTGMN73FkSNHiImJobGxkZGREfEwlyQJmzKe/7SvL0Qiq77d7sNfdm8LXpFJkoTP5183ON7C2kmOzwfPuzfeMdHv/WK/qg+15FtXfS8SxcFwScRvQoFwzBvLZU8udm61oBIUDmqV6ycaOp0upEcffIwpeg1Rzhm2bKkWI2jhIJtmyWNpwa2rjIwMvF6vGKlTq9UUFBTQ3d294nuSmJiIUqlkdnY24taBDIVCgcFgQKvVMjc3h8PhCMiBJ+fzz33rTwKd0rSTrZdITk5Gr9czPz/P2NgYXm9AJtdoNKLVanG73UxNTQkn0NTUVJEcZGdnYzAYkCSJ+fn5kORgYmJCJBUqlYrU1FRSU1NJSEhApVJhNptpamoiKSmJubk58R3T6XQrqghnz56lpKSEe+6557bOEcDZs2dpaWlBkiSOHz9ObW1tyO+tViv/8A//QHFxMRUVFZw9e3ZF0uB0OkPaEPL/9/b2Ct7H8msja0UEX3O5kmEwGESSEJwoXLt2jVcb+znvKSHAA7oFCVbI/MojmXJiMDo6iiRJZGdnC57BehMRMvx+P+0mG1NhKhiroa6ujtdff52vfe1rt60D8dvGh7JNcLstgnaTLaSntRISY3YfP37pDcHQDhYBkgWAVCqV0AbXarUMDw9TUFBAUVGRyJZlsZHl2fH169d55uU3OfnwJ0k36NiQHselS5eYUqupra2ls7OTkZER9uzZw4EDB5iYmGBsbIzzbePQw7pYT9MgXDsh2EI2GH6/P6JSLPAemz/Ym2Flu2GW6JDX3BlunyAor+bzlbMRBehImfLBWEvB8E5hViTS4EoPOWd6nNQoIqs4LGfxy8dolJwoPUp8UsCbIzMzM0SBL7ii4HK5hCeA3G+WNQHkeX/53zweD11dXWGPZXZ2lrS0NCoqKvB4PExOTjIzM7PidXl5eRw7doyJiQkaGhqYmJjA5/OJPnhCQgLV1dUoFAo6O7swSKqIWimLi4SMsiUkJJCWlkZ0dDRzc3OMjIwIwZ/MzExiYmLw+Xz09/cLH/uYmBiys7NFgrBz504RGJxOZ0iCMDIyIkr2gXMvkZmZydatW4mJicHv9zM7O8vU1BR9fX1cvXpVvLapqYmZmZmQJMFoNK5ZHh8bG6OlpYXMzEzMZjM3b95ckQzIVZvBwUEUCgUZGRkrqgfyTH5qamrIv3/ve98jOzub48ePi6pocMIwNzcnuAtyYiD7SMgmVcEJQ2BqpyLsosz/3n/+r5faeO3P9ov7Ljk5meTkZPbs2YPdbqe7u5uuri7eeustXnvtNYxGo0gMsrKywgb4S73TK7kN71Ui1iICDg4OkpWV9YFPBOBDmgzczhQBwJRt9RGmYGQUlrO/2MjAwAAmk4kvfvGLaLXhWfGyR/j9999PXNz6s6azs7MUJGg4suHWyF1nZydFRUWMjIxw9uxZqqqqOHTokHiAZGZm4o0b4V97WtfdfqzSxwVPOK+EwM/hNA3WYoxHSqjboRohWnJj9gceLimSfcXI252JA4VChwcJ/20REu+kd7+ay+Fviy807o3lvDN/xcPSjpbXlko4Jq3dVgquKgEhqza/309KSgozMzNMTEysuLeX3w/L+/pytQBuVR9SUlICXh1B463l5eVotVqam5vx+/2YTCbm5+d58MEHycvLY2ZmRvAK5GrB4OAgTz31FHFxcRw6dIicnBxaW1u5du0adrud2dlZLl++DAQqE1/cmcrfXrbhW3bdA6tLiU9v1OEz6UVpX8bs7KxYzSsUClJSUsjKykKj0TA1NcXQ0BAulwulUimeMZIkYbPZuHDhAh6PB4VCQXp6ukgOsrKyQgiCHo8Hs9nML37xC1QqFdPT0yH26AkJCaSnp1NVVUVKSgoqlYpnn32WtLQ0/H4/N27cEPoEkiSRlJS0opKQkJCAJEm88sorpKWlsWvXLp577jmGhoaYn58PsWaXEyqv10tvb6/gFUQCq9XKxo0bUSqVJCQkrMr29/v9LC4uriA62mw2kTA4HI51Fxl+oHdqgSf+9h8pSNCEtCDkv3Nzc6msrMTv99Pf309XVxdNTU1cunSJmJgYSkpKKC0tpaCgALVaHWI4FIxes51P/rB+VcMhn8/H4OBgRNXnDwI+dMnA7U4RACRHqBJ18sg+KjLiSUlJ4d///d+Zm5tbkSnL6OvrIzk5OaJEAAJfSFnwAxAly5KSEp599lkKCgo4efJkSFbr9/vpv/4uicooZr3a1ed5JSdevw+Ld+1xv9sRmYmUULeAmmtLWWu2Je6Gze8iGmKQk7rwkwjBWG01H0lZ/zex2o8Ed0M1UA7oq7W1TCYT6enpTE9Pi6C3vASsUqnEak52jFtaWsLlcrFlyxba29tZXFxEr9eLcT2DwcDS0hJ2u52Ojg40Gg0nT54Uqzi73c6Pf/xjEhISOHPmDB/5yEc4ePAgjY2N1NXVYbfbRdA9e/YsCoWCTZs28YUvfAGLxUJzczOtra14PB7Gx8dhfJx7tPFc8+cz5b71GIx/794zuBIo27WLwsJCpqamqK+vZ3x8POSz+nw+Ue6HQI9fDvAKhYKJiQkGBgZYXFxEkiTS09MxGo2CUNfd3U19fWC0Li4uLiQ5kAmY999/P5s3b8br9TI9PR1SRbh06VKI1sLi4iJlZWVs2bKFxMREQc6UuQj19fViWkSlUhETE4PVamXbtm0hxkQdHR0h1QGLxYJKpaKwsJCurq5VJxuWQyaIRrLokiSJmJgYYmJiyMgIr8/r8Xj4ZdMQL70QvooUjPzyzeRFLWKz2RgfH6ezs3NFxUun04kkoaKiAr/fj9Vqpa+vj6amJpRKJYWFRTw5mBDWg0b++a9fbg9rODQxMYHL5Yr4fP2u8aFLBu5kiiASgQyD5KSr7k0yDx0kNzcXjUZDV1dX2GTA7/fT19fHxo0bIz6G2dnZEDZwV1cXkiRRX1+P0WjkoYceWjGe1NnZSW9vD08cOslfviY7IK5c/X55XxZJKVt56bmb6x5H8Hy6QqEgKSlJzEIHI1I/gitLuSt+s7wtEcm2bmF5kL/1s2zHHIN7mXuhk1rl8JruhPCbI/zdLUTitbBeQqdUKlGr1as62vn9fvbs2UNaWhr//M//TExMTIhKHgSCpFqtYcKtYsGtQie5yYrR4HI5aWxsJD8/n7GxMRHAjUYj09PTVFVVkZCQwDvvvIPb7ebll18mPT2dRx99lLfeeouRkRFmZ2f5wQ9+QEpKCmfOnGH37t3s2LGDmzdvcuXKFUwmkwhqzc3NNDc3k5qayr333svx48fp6emhqamJ3t5e0rByH81YNNG4ldGU52Xw0QO1zMwU0tnZyRtvvMH58+dJT0+nrKyMEydO4Pf7aWlpoa2tLWRcEgKVkP7+fkF61Ov1FBQUkJ2djc/nY3x8nIGBAfG+1NRUqquriY6Oxu12Yzabef311/F6vaJNODY2hlarJTs7W3AKqqqqxLWYnZ1lfHyc559/HkmSaGxsFJLMMlExLS2NLVu2kJaW9p5R2hTj4+NcuHCB6OhoWlpaREsDAi6DU1NToopgNptJSEgQrYGhoSFyc1d+b5djrbHCO4FaraYoKxlYPxkoyEji+Pb9IQFallQOblfIPw8ODmK1WkNI3F6vl/ruMUacq/NL1jIcGhwcRKVSrTtV9kHBh45AeLtTBDIu903zyR/WB+RpVghkwH/fk4Cl4wqLi4ts27aNubk57HY7n/vc51ZsS2aYfvKTn6SwsHDdffv9fr7xjW+wf/9+du3aBcCPf/xjRkdHiYuL4zOf+cwKkw6Xy8WTTz5JWloaGRkZ/PSN6yt9wyUHtaphTtQU8/r1Tl50rZ8gBdvLSpIkHhbBPb1gTYJbwX5lEqLDvWbZPph9vx45L5wBT3j4iZec7FP14yDyMv6dkAN/mxj3xnLRkxeRWNMRdY/wSQgHuZe/GjQaDffeey+Tk5M0NDRQW1sbMksf1qNe4WS/3kzS0jQ+nw+lUkl+fr7wyCgqKmJoaIiYmBiOHj3K1atXQ8bYampq2LRpEy+++GJISyErK4sHHniAhIQE/H4/IyMjXLlyhc7OzhUqiFqtll27drF7927hYNjY2LjCG0Cn01FRUcGOHTuE4mBPTw9ut5ukpCTKysooLy8nKSmJvr4+rl27xsjIyLpjjYmJiZSUlJCVlYXL5WJkZIShoSHRdjAajeTk5BAXF0dHRwdzc3NotVqRbBkMhhDuQWpqKgqFApfLxTe+8Q0efPBBNm7cuIKoaDKZBIdJJip6PB5mZmb42Mc+Rl5eHna7nbq6OhoaGoCAqNLs7Kw4fyqVSqiZLi0t8YlPfIKMjIw1e+E9PT389Kc/5ctf/vJdSwgiIXMb1UucULSQlJRIbW0tmzdvXrVduxxOpzNk4uvdXgv/0Lx+ZfJHn65ZMTr405/+FK/Xy6c+9amI9v27xocqGbjdKYLlCEciKUm5pSbldrupr68XboBer5c//uM/FkpeYjuXLvH222/zta99LaLZV7vdzre+9S0+9rGPUVZWhs1m49vf/jYajYY//MM/DNuH+/Wvf821a9c4evQor776KgBqtQZdZjFtfaNsyM/ANtQhgqBCoeQF1wYs3siCc7hyebgxQLk0H7oSd1CunOTKUt66nz04+VhvZe73w4A3gQtL6ydYwdtdD3cyNvjbxOqJSnjczmdfD7L7XkVFBVevXl03abpH00NetAuXy0V8fDz79+/n1VdfxePxkJqaikqlYmxsjF27dpGRkcG5c+dElUKj0XDfffcRHx/P888/H7IyLygo4PTp06LXbbFYQngFwS6HkiRRUFDAvffeS1JSEtPT07S0tNDc3LyiwmUwGKiurqampoaRkRE6Ojro6urC4XAQFxcnEoPs7GxmZma4ceMGra2tK6olyyHzBsrLy8nIyMButzM0NMTQ0JBIdrRaLeXl5SQnJ6NUKrFYLIyNjWEymd6rvgRIiykpKTQ0NPDAAw9QWVkZdn8Oh0O0NAYHB+nu7g45luTkZIxGI+3t7QAcOXKEHTt2MD09zU9+8hP0ej2Tk5MrJk3CmTolJSWhUCi4du0ar7zyCn/1V38VdlzwTiEWZn5ZbTQAebbggYQxvvDAYZqbm7l58yZqtZrNmzdTW1sb8eSAjLZxKyciMBz65Zf2hFQGvF4v3/zmN9mzZ89tcSx+l/hQJQOtra288MIL7ytT9Xg8fOV/fZtN2/exc3N52PGSxcVF3nrrLa5du4Zarebw4cNs27ZNlPGfeeYZlEoln/jEJyLa5/DwMD/60Y/4whe+QFJSEj/4wQ+YnJzkkUceCSsJOjk5yfe//322bt3K9evX8fv9aLVajh07xrlz5/D7/SFf6m3btlFQUMA//OzVsA9yCVBIEn97LIOei+cYcevCBv0FYXu8MgjsUA0RI3lE4jDqi2zWe/kqdr2efaQz5OutjoMx44vmJff6Oux3M8hGivUTlZBXY5CcPKzvweMJv9rZv38/PT09gb76XT8WPwkKF48YBoiJ0TE1NYVGo+H06dO8+eabTE9Po9FoqKiooKWlheTkZE6cOEFzc3PIGGN6ejr3338/FouFF198MaRvXl5ezsmTJ4VevdPpFLyC+fl5NBpNSCk4Li6Ow4cPiyA6ODhIa2srbW1tK0YZU1JSqK2tpaqqitHRUTo6Oujs7MRms6HT6SgpKaG8vJyCggK8Xi99fX1cv36d4eHhdcciNRoNOTk5VFRUoNFoeO655ygtLcVqtQpOQmxsLLm5uWRlZREdHY3NZmNsbIzh4WHxXU5KSgqpHiQnJ6/gET3zzDPMz8/z2c9+dgUPIfi6JyYmkpqaSkdHBzk5OYyOjvLVr36VX/3qV3R0dHD48GFmZmYEJ0FuTyiVSoxGozApeuCBB0hJSRFkyruBS73TPPHzBsYXboWvkhQ99yTPY++7TlRUFJ///OdRKpVcu3aN69evs7i4SHFxMbW1tRQWFkZ0LHIlosc8T7h7WjYc+vUyzsDo6Cg//OEPefzxx1d1tfyg4UOVDNxpiyAYc3Nz/OM//mNEJf4f/vCH2Gw25ufniY+P5+DBg5SWlvL3f//3HD16lO3bt0e0z+bmZl588UW+/vWv88orr9DS0kJiYiJf+tKXVrzW7/fz9NNPs7gYIM8sLS2h1Wo5ceIEZ8+eDTsKGBMTI77I495YmhRFmF23+Ac58WoeyPWiXxjj+qidX7mK1hASimzl/H4D7GpJwW8icP8mEoy7hUg/72+jnRHpsXw8YRCD305qaipDQ0NIksSpU6eEvj9AdXU1o6OjWCwWDh48SF5eHi+88ELIWGFNTQ2HDh2itbWV1157LSTgbt68mePHj4vysM/n4+bNm9TV1Yk+vNvtFu0QpVJJVVUVR44cET38zs5OWlpaVggfSZJEVlYWe/bsoaioSLQSOjs7mZmZQaPRUFxcTHl5OUVFRWLSoL29nZaWFtFLXw+VlZVUVFSQlpb2nsNioHIwPj4uEvrc3FwSEhK4fPky+/fvZ2FhgdHRUSYnJ8UiIFgUaX5+nhdffJFPfOITFBWt1B+5cuUK58+fF9dgcnIyJEGIjQ0Iqw0MDFBVVcWBAwdEkF9YWBCJgdlsprOzM0RgSqPRhDV1Wt7ijBS9vb185yf/xaGPfJTi7BSxMHv33Xd58803USqVfPrTnyY7O5ulpSXa2tqor69nYmICo9EoErv11B3//bWr/Pc3Jwmna6CQJH7yeO2K8cJ3332Xixcv8tWvfnVVqekPGpR//dd//de/64P4bcDlcnHu3Dm2b99Odnb2HW9namqKpqYmdu/eve5NLGuTP/7448zMzHDx4kXa2tpwOBwcO3Ys4i9BR0cHFosFl8vF1atXUalU1NbWChKPLIbRPmaj8UY7PTca8ft9eDweURF48cUXhYubJEnCxwAQ404ZGRlgn+a+kjhi5nrJU81ToTSxwTtAtG+BxMQk/tNsZNGnILyk7+qyvk7U5Chn0UmBB3Y0Swz6EnCiWuV9gQSiWjUelsj3hqeYFm8G/b4kurwpDPoSiJecpCgW7ni7q2EJBV3e9aVEN6omxOe7XcjJzYwvhiUURLO07vFJkoQ/IYt2+/pqajG4OajuI0M5L/QhZKjVapEgarVavF4v8fHxJCUlidV0uH748pXVjC+Gft/6Zdg07xSZcWosFgvl5eWYzWa6urooLi6mpqaGrq4uTCYTCQkJFBUVcenSJaanp3nooYcwGAwMDg7i9/sZHx/n2rVrlJeXc/r0aSRJYnh4GECw7Z1OJ7m5uahUKlJSUtiyZQuFhYUsLi4yNTWFWq0WfXCTycSlS5cE8be0tJSqqiq2bNkiRIfkyQCr1UpbWxuXLl1ifn5eJCYVFRVER0czPDxMQ0MDV65cYXx8HK1WS1VVFXv37mXnzp1kZGTgcrmw2WyrjuiazWba2tqoq6tjYmKCpKQktm/fztGjR8nPz0en0zE9PU1HR4cYwYyKiqKkpIQ9e/ZQWVmJwWBgfn6ejo4OGhsb6erqQqPRoFAocDgcqNVq4cgIgWBfX1+PJElUVVWxYcMGbty4gUKhoKqqipycHLHQMJlM1NfXU19fT39/P7Ozs4LsWFVVRU9PD9nZ2TzyyCPk5+djNBrFcba1tdHc3Mzly5e5du0avb29mEwmoTeg1WrXbaHq9XoaL7/NtrJcqkrzxWfIzc3FYDDQ0dFBc3MzycnJpKamkpaWxtatW8nPz2dubo4rV67Q0NDAwsICiYmJYd0PHQ4Hb738HJszY5lwa5h33/reGCQH//uBCg5vXLnyf+eddzAYDILs+f8FfGiSgZs3b3Lz5k1OnjwpjETuBGNjY9y8eZNDhw6tKyQRExNDXV0dRUVFHDx4kMLCQm7cuIHb7WZycjLi0UKZIdzd3U11dTXj4+Pce++9xMTEcKl3msefucY/vdXLiy3jnO9fZMifSIzXTlJUoKQqk4I0Go1ICLxeLzqdjpycHGZnZ/H7/aJfarHMoJOWyDPGkJ4Qg0KhYH5+ni6znSZPGneqApitsBKvcL2nI+9jya9g3B8XZnuBVex+dT9xitByttyTXh7snajo9yWRorATJzkZ9ckOkStbFuG2uxbeT+ISCdZKbmLXOE6FQoF1wRlRonJc3UWqckGM/cGt+yGYaPfggw9SUlKC1WpldHQUWOkAGIy8vDwWFxfx+XzvJU0rTbmWozp6Br/DSlxcHCaTia1btzI+Ps7w8DCSJPHAAw/Q29vL1NQUFouFI0eO0NfXR11dHWVlZRw/fpypqSlmZ2fxer10dnbS19fHnj17OHLkCA6HQwjWjI6OcunSJXw+Hzk5OcI2uKKigqqqKhGcfD4fer0et9uN3W6npaWF+vpAX7qgoIC8vDy2bdtGaWmpkOGV3UCnp6dpbGykvr6excVFamtr2bNnD5s3byY2NlYIIV25coXBwUG8Xi8FBQXU1NSwd+9eNmzYIKYylk9xyMI5i4uLjIyM0NzcTF1dHTMzM6Snp7N9+3YKCwtpa2ujtraW+fl5WltbaWpqEklCTk4Ou3btQpIkJicnKSsrw2Qy0djYSENDAw0NDQwPDwvCotyWsNvtxMbG0t/fj8/n46GHHqKiooJNmzZRUVFBQ0ODSK6cTieDg4M0NTVx9epVrly5IrwpoqOjSUxMpLS0lIqKCrZt2yaSldzcXOFTMTIyQktLC01NTVy8eJGWlhYGBgZCWhDR0dGCf6BUKunu7sbj8VBeXh5y3tLS0sjKyqKtrY329nbUajU5OTlIkoTBYKCiooLNmzcDgcrrpUuXMJlMxMTECMVIgFdffZXJyUm++NjHKVVMEjPbx59/7CiP787FaKpnwTxEdXV1SGLs9Xp55ZVX2Lx5c1hr6g8qPjRtgrvRIgBoaGjg/Pnz/Lf/9t8i6jk9+eSTZGRkcPr0aQC++93vkpiYiM1mw2w2U1ZWxqFDh8I6G8r4zne+w+zsLDt27MDj8dDf38+XvvQlLvfNCDGM0Iu4ekk4eAY8GLJKYrjepswuj7RcvhqWkwFXJ7352aCYpFY9GhJcI+lJK/DjW8W5UCYbpivmb1sUaD2Snl5ys1s1cNsl+PX8G7Yox8hSWlc9xvXOiSRBRoyCY0tXWX6XxMfHY7PZSEtLE8EzWDdAXjGvBbVazc6dO3E6ndTXN3DWXYHVH72mpsX9Qe0i+d7KyspifHwcn89Heno6Dz/8MK+99ho3bwbGXXfv3i2CdGlpKSdPnmRkZISXX345hNAmr9CXlpZ45ZVX6OjoEL9TqVQcPHiQHTt2hBDaXC6XCOZWq5X4+HjsdnsI4bCwsJDjx48LAprX66W/v5+WlhY6OzvFOGCwhXFlZSX79u0jKioKu91OV1cXnZ2dIrhmZmaGTCbALZ+AvLw8xsbGVpiPyVWd4O+vfJ3uuecekViYTCbRVhgeHha8ivj4eDZt2kRubi7JycmYzWZGR0cZGRlhbGwshH8BgVW2yWRCr9evaEuePXuW/v5+/uRP/kSs4mWi4vj4OK+//jp6vV4YHclExfT0dDHymJaWFsL093g8IdoI8h+ZLCqPM8sthrGxMcbHx/nzP//zsM/j8fFx/u3f/g2Px8OWLVs4ceLEitd5PB5u3LhBfX09ZrOZ5ORkamtrMRgM/Md//Acf+chHqKmp4dVXX2VgYIA/+qM/AgILwx/+8IccPHgwhCQoc7w+97nPraqZ8EHEh6IycLdaBBCY3bdarezYsSOi19tsNtra2ti5cydzc3O8/fbbHD16lHvuuYekpCTa2tq4ePEiVqtVzAEHY3BwkLq6OlJTU3n44Yc5d+4cFRUVFBYW8vgz17AsuMM8eAM3+4w/hjLlFAqFJL4Aa6kGhvtddHQ0arUar9dLdc0O3hy+EwGg0JWz3w9veIrXWGlLTPn1DHhDV8cWfzQt3oxV3hN4nz9MYgGwUzXEHvUQdr/2jlbhsQo3KZKdCV8snjDyHG718x83AAAgAElEQVQUgcqEZF9zOyFHtuZ5CLRdTP64VY9RvqbxkjOoPB9E/Hxv7PVk0hRqt21FAig/+IP7ujqdjgcffJBDhw5x9OhROjs7WVhYIC4ubkWgCHwGP8PDw5jNZnJzc/HNmegLcyxygrpP3U9+cixOp5PY2FhcLhdarVZUpyCwIr1+/To5OTkiSRgeHkaj0XDgwAGam5u5du0apaWlHD9+HLfbLWSRx8fHuX79OklJSRw6dIhNmzYxMTGB1WoVMsF1dXXodDrS09PFuFx2dja1tbWkpqYyNTXF3NwcMTExqNVqPB4PFouFhoYGWlpa0Ol0wmhow4YN1NbWkpiYiMPhwGq1IkkSHo+HkZERLl26xI0bN1AqlWzdupXNmzezfft2UlJSmJ+fp6mpibq6Om7evIndbmd0dJSFhQX+8A//kL1791JeXk5sbCw2my3kOsnXPzh5k6snTU1NuFwuIX28b98+BgcHcblcZGVl0dnZyfXr12loaGBmZobY2FgqKio4evQomzZtIiYmRkgwW61WvF4vS0tLjI+PY7MF7qOYmBhSU1O5dOlSiCOiWq0mISGB+Ph46urqOHPmDCdPnqSkpIS0tDRRnbhx44aoANy4cYORkREsFgs+n0+MWBYWFrJp0yZ27tzJ9u3bKS4uJj09HbVazezsLF1dXUxOTuJ2u0V7Z3R0lNnZWdzugK17UlISGzduFPsYGRlhw4YNIX18pVJJeno627ZtIy8vD4vFQl1dHTdu3ECv13P48GGio6Npb2/H4/FQXV0NBMinHo+HS5cuUVZWJtq+zc3NmEwm7rnnng+kVfFq+FBUBu7GFIGMs2fPYrFY+MxnPhPR62VW6WOPPcbk5CS/+tWv+OpXvyqy4aWlJa5fv84777yDy+WitraWvXv3Eh0dzeTkJE8//TRut1vMUsvbsqniIxp5CV6NR0VF4fP5VrgjrobTp0/z9ttvY7fbSUpKwmye4r+c5euI/4T+u0y5Ca5S3Cnp7c4rE34hLPTa0p0bCUXj5oKnABt3Z8Qw8vOw+jEqFApUKhWDDu2qOhKrGUzpdDrsdju7d+/m0qVL4neVlZV89KMfRZIkfvnLX9LU1ITRaAzRkwiGrEk/OTkZ0Nonnoal3BBjLbkqUxTrZXFxkfT0dEwmE8nJyUxNTZGdnS0e1P39/WHL5X6/H5VKxZ49exgdHaW3t5fq6mruueceLBYLL7zwAlNTU+I9GRkZnDx5krS0NMbHxzl79mzI76Ojo/nIRz5CRUXFiof26OioCNJqtZrY2FgsFssKwuHhw4dDHPBmZ2dpbW2lpaWF2dnZkGAtSRJpaWns2LGDyspKkTT09fXR2dlJV1cXTqcTjUbDli1bKC8vJysrS1QxXC4X/f393Lhxg97e3hVVg2C1x2DIaoYHDhxg9+7dKJVKpqenReVAliCGQHk9NzeXGzfamPFFYXF4ifK72FdZyMKCXVQr5NFIp9PJ4uIin/3sZ0MUUoMnoFJSVraxZEVFk8kUYtwkP5tiY2NFBUH+e/k0gt/vx2w2873vfY/KykqUSiWTk5NMTU2JcxAdHS3soOXzazQaeeyxx9Z0LvzVr35FfX29cI4sLS1lYWEBrVYbMgW2tLTE97//fTQaDY8//jgKhYIf//jHaLVa/uAP/mDV7X8Q8aFIBu5WiwDgJz/5CVFRUTz00EMRvd7v9/Otb32LqqoqZmZmcDgcPPbYYyte53K5uHLlCleuXEGSJLZu3UpraytarZaZmRk+//nP097eTlNTE1/5yle40D3NYz++uu7+T8WPkaOyiZ7bckEZSZJITEzE5/MxOztLdnb2CtnVYKxX1l6u7pekcrNNCi2f315QvxVgLf7bCZ4rETBFWs35MDKL4UgQ6aTC7Sc3gdG8+9VtIcmGvHpdPmGRqllCqVSEXdHDrfJyRUWFmC8vLS2lq6uLmpoa7r33XlpbWzl79ix6/S2d/uD2gbw6VSgUuN1uEXj8fliKTWV6wYPG66AsNZapKbPoIS8sLJCXl8fg4KBIDAoKCujv72fv3r0MDg4yOjqK3++nqqoKpVLJzZs3Q5KEmJgYHA4HWq1WjAc2NTXx+uuvhwTEbdu2cfjwYaKioujt7eWll14K0SiIjY3lxIkTFBcXr0gKrFYr9fX1NDY24na7SUlJEStPGenp6Rw7dixEdtbv9zM6OkpLSwvt7e04nc6Q86ZUKsnJyWHv3r3C2laeVCooKMBsNmO324mJiaGsrIyysjLy8/PFilYOhN3d3dTV1a2Q2gUE8TP4u6xQKER7orCwUATq2dlZ0VJ4p2uSN+YSQ+777DgV/+O+cg5vzGJycpKRkRFGR0cZHBwU5zIuLk6MNbpcLt5++23+4i/+ImLBH7/fj8ViWSGYJH+26Oho0VpIT08nPT2dxMREnnzySfLz87nvvvuAQIVzbm6OyclJzGYzU1NTwuAq2AAqJydH6DQkJydjXtIyu+hF63fyxn8+w86dO9i3b59oIUxNTQlCdmVlpeCMjY6O8vTTT3Pw4EHicit48ul/5+DOLXzs2O7/vzLwQcL7FRpaDvnGu/feeyN+z0svvcTQ0BB2u31dEYqFhQXefPNNGhsbkSSJiooK2tra+NrXvsa//uu/kpOTw6lTpyIWw1gtMMnuiJOTk5SXl4f0VoMRGxuLRqMJGenyp5TwzkIq/TO3tpsgOdiuHiFdMc+MLyqkH69UhirB3d6K+NbnSJQctzFTf2cItnK+HSGfYEQ6Yngn5yH4GCEQVPR6vRhXU6vVPPHEE3R1dXHhwoUQtT45eMpGROG++tHR0SQkJDA+Pk5ZWRmbNm0SXvey0VDwalceS33ooYfw+Xy0trbS09MT8vrl+9LpdPh8PpxOJ8XFxfT09JCVlcXo6CglJSV0d3ezc+dObDabSFJqa2s5duwYly9f5s033wQCfXk5WZaRlpZGcnKyCAQyoqKiOHbsmCCN3bhxg1dffTUkuUhISODUqVNhteRdLpcg783NzZGcnMzS0pJQD5T3sXPnzhBXQgisHru7u2lpaaG3t1dUOOSVvVqtpqioiLS0NN566y2eeOIJoqOjQ7QMZKa+rGVQWFgoRuLeeecd6urqOHnyJO3t7UItMRgKhQKNRoPL5Qq5Flqtlvz8fEpKSigoKKBtyrMmD+nBRBN7S1LIzc0VrP2f//znjI6OsmnTJtHDl+8PudUj2znf7hih7GK4PEEIvt9lIuyRI0dIT08nOTk57CTC0tISk5OTnD17lunpaeGH0G2Vwipm/vn+bO7dUkBiYiKSJPHd734Xv9/P3Nwc0dHRbNmyhZqaGuLj4/nOs7/m6Zb5kG1E4mr4QcLvfTJwN1sEAN/85jfZtWsXe/bsifg9XV1d/PznPwdYl1Ti8Xj4yU9+wtTUFDk5OXR3dyNJEkePHuX8+fN8/OMfp7i4mMnJSc483czo/BJrrXQ/lTSMXh+D1+vFZrOtukoMh3BqY4888giJiYl4vV6+9/NzNHcPopPcJCmchDP8WY7AQ3DptoO6HGDfT5COdD9ZCuv7Sjru194kUVq5Ultu6nN7gkGhx5ijWskBANi1axdHjx4FAiukb33rW+Iayh4ASqWSjRs30tLSAsDGjRtpa2sDAop7cXFxISVbGXLJNNx+k5KS+OIXvwgEeDJPPfUUHo8Ht9sdNvEwGo3YbDbcbjdlZWV0dHSiTSukb3yajYVZzA20s23bVqKiokQLo6ioiDNnzmAymXj22WdxuVxERUXx0Y9+lO7ubq5fvy4swufm5sIeZ3JyMqdPnyYjIwOv10tDQwNvvPFGyHVJSUnh/vvvD/s99fl8dHV1UVdXx/DwMHFxccTFxQnyIwRWnUVFRRw7dmyF+ujCwgJtbW20trYyPj6+orQvSRLV1dXs379fTBrJVYCOjg46Ojowm82oVCqKioooKytjYmKCzs5O/vRP/zTk9Tdu3Ahp/wRDq9UiSVJIMuT3w0tLlcx6NWG4N4E7NE0HjxpHMJsDEs5xcXGkpqbS09PDgQMH2LdvH16vl+eff57R0VFycnIYGRkR1YOEhIQQUaSUlJQ7UieUJ0YmJibo6OgQky9wy00yuIqQmpoqKhRer5cXXniB9vZ2TL64wPNkDRJ2tmaR5ORkLBYLGRkZbNq0iZGREcEhUGZu4Id90fj84RwwWdXV8IOG3/tk4G62CJaWlvibv/kbTp8+fVvzox6Ph7/7u79DpVLx9a9/fdXSkc/n4xe/+AX9/f08+uijZGVl8bOf/UzYokKgD2qxWHA6nasGRvkmfOrjlRypzMHr9TI6OkpjYyOtrevbGa+H9bTrl2O5Rjy8PwndMW8slz252LlFtlTgw7eq1oGfWFzMs/5I6SlNYCV6Z+2I25clvpPkRj4XcnsgGH/2Z38mgsj4+Dg/+MEPxO+io6OFa92ePXu4eDFQWQpOBkpKSvj4xz+O3+/n1Vdf5erVq8THxzM/Py/K+8sh3w8VFRVkZ2eTlJTEwsICZ8+e5ciRIzidTq5du7aCB6DT6QIjZW7dCqGr1Gg/m5e6OV6dT1ZWlpDUTk5O5pFHHkGpVPLss8+KIHDgwAGKiop48cUXsVgs7N+/X/AQWlpaQqoHEKgqlJeXk5eXh9FopKWlRVgcy8jMzOTUqVNhe94QYJPX1dWJ0bWsrEAJPfgcJSQksH//fiorK1cEvampKVpaWmhtbRXBMvi7FRcXx+bNm9m9e3eIMI7FYhEVg9HRUUGCPHbsGKWlpUKS+fnnn2dgYIDPfe5zjI+PCynl5UmeUqkkKiqKcYeS/1osCftZg/HLL+2hIEHD8PCwaC3IBE5ZCGl6ehqdTsenP/1pIJAgygS+0dFRJiYm8Pl8aDQaMjMzQxwbw837r4XZ2Vm+853vcObMGZHIyomC2WwWiV5SUlJIcnDzZgf/o861+iQOkGPQ8I19AXfN5uZmJEkK0eSIjtbxb+ZMZn3h24+SBEXJ+rCuhh80/F4nA3e7RSDfdJ/61KcoKCi4rfd+4xvfQKlU8sQTT4T9vd/v59y5czQ1NfHQQw+h1WoZGhqivr5+xWo+OLiaFYnUubNCyFolKXq+cjCXeOcEbW1tYo46+P2yqpms097f37/qWGFycjIKhYLZ2dnbqiwsh9wbljHujaVuKQfrmj35lYZFy0t6epyUKqZo9GWtymXYqRqidSk9ImOkSKWSw21jm3KUSvUt45va2lqioqJ45513Vn1X5NyEwGjeY2kmrNY5JEkKWdEWFxfzyCOPAIHE9cknnxRlbEmS2L9/P2+//faKrcp9fgjoBsgPcL/fz0svvURzczMKhQKDwSC87YNlfeX7MaAf4Q8hzAEUFhaSnJxMX1+fsCwO/uxreRkc1/ZyoDydqqoqnn/+eaGq98gjj5Cens4bb7whgnheXh6nT5+mrq6Ouro6cnNzOX36NAaDAZPJtIJgGAydTkdqaiqLi4srjIvy8/M5ceJECEEuGFarlYaGBhobG3E6neTl5eF2u0OU+1QqFZs2beLQoUMhpXK/30/b2ByXm9ppv3aZFLUHr3eJqKiokJK+0WikpqaGrVu3hjDhbTYbzz33HFNTU0JRUTYxunbtmrBADt6f2Wymp6eHtra2kM8aKYclnCnPyMgITz/9NCUlJTidTiH+FBUVRU5OjmgrpKeno1AohJW0nByMjIyEVLCCWwtGo3HNQOr3+/n2t79NZWWlqIrJ8Hq9TE1NhSQIctUr0jbd/9oTQ3qUl4sXL5KTkyNaYw6Hg+F5Hz+fy193G8u9Cz6I+L0eLbxbQkMy5Oxwz549t9X7stvtvPvuu3g8HmpqalbIXy4uLvLyyy/T0tKCwWCgsbGRlpYWxsfHA2UopVI8FGR3NjlwVxdnY5zt4NOHN7M7L5Yq7RQ51jYG26/R19cnFOSKioqQJAXT3ijc+lTm7A50khefL8DqXb5y12g0whTJarWGzF3L0Gq16PX6sKVjSZJWKN0tN4GJVbgpU04RLbkZ9clflNVFglYTHHKjZMIfx1blKItocHKrXxuDGw1e+n3G90YCJVZOPYTuJ1LFwXAw+eNCxgutVqtw5pOhUCgoLCwUgVU+DznKWXZUltI6IXMxwo/mqV1WMjMzhdiPDKPRSGVlpQjiw8PD6HQ6PB4PycnJ+Hw+wSHYunWrSMyCEzydTsfWrVsDe5ckSkpKGBgYwGq14nA4SEtLw+FwhCSOfr+f+Ph4HA4HX/7yl8UYWGJiotDln5mZWbE6X3+0Eha0SSRZbrKwsMCpU6fo6uoS/fvk5GR27NhBeno6XV1dgsm/b98+qqqqaG5upr6+Hr1eT1FREdu2bUOn0wkFQxmJiYkUFhaytLTE9PT0imrL3NwcDQ0NjI2NkZubu+JZEhUVRWFhIbW1tUKkx2w2k56eTkZGBlarVSgcXr58mZ6eHhITE2mfXuKzz1zjn97u4+KIiy5vClZDAQe3lhOrcDM7O4tCoSAqKgqbzUZvby/vvvsuvb29REdHYzQaiYqKYmBgAK1Wy+c//3mMRiNzc3PcuHFDHPvCwgI6nQ6dTockSej1enJycti2bRs7duwgIyMDj8eDedZK19L6olHxpms45wKTJXq9HpVKRXx8/Hs8jSl2n3iYt5p7KSzdwOayAmZnZ4VN8pUrV8T0gsFgYMOGDWzatIldu3axadMmMjIyUCgUjI2NCQGj+vp64e7o8/nQ6XQhnABJkhgbG8NsNrNly5aQY1UoFOj1etLS0iguLqa6uloIHtmUBi4Mrqx0LUe0pQ+PZUwkZzJpNiYmBpvKQPPs+mZzR8tTyTfemezybwu/18nAW2+9RXR09F2pCkCANSqrD0biNihDLulBoMwZHR1NT08PV69e5fXXX+e1114TfUC1Wi1WV7K4SHJyMgsLC/zpn/4p+/fvp6ioiOvXr6NQKJienkalUmEa6GJupBvX3JQQbtm+fTv33nsvR48eZUqRyN9dmuW6M4V2u442p4FedywGhQs9t8q3cgYuZ9TBD32VShUSfGQS2PJEQK/X4/P5Vp1ICM7yJQmMikVSJTsz/piQQG6QnOxX9wtHwvUCxyIa7le3k6ucJVthJVUxz4AvCTfKVd+zfD8QmeLg8m0E/yzrO0gSYcc4ZdY03BKRkSTQSUtI0/1kqJ1MeaNDzkVWrIqd/k5xjOFkbGdmZjAajfT09FBXVyfIVW63m8rKSkZHR3E4HEiSxN69ewU5L/h6qFSqEM8MSZIoLi7mypUrQKCfbrVa8fv9GAwGkUjo9XocDgc2m42tW7eSmJhIXl4eKpWKzs5OHn30UY4fP05KSgqdnZ3k5uYy7lBy3ZWyyjkOnE+7B05UZ2Pq78JsNnPmzBkGBgZwOp20tbWhUqmorq6msrKSgYEB5ubmaGlpEWRAq9XKhQsXMJvNFBQUkJ+fz+bNm7FYLCI5cblcmEwm8vPzefjhh6mpqSEnJweNRoPFYhH3sTx/3tzcjMPhEOOZ8kpdqVSSmZlJTU2NqIL19/ej1+spKSnB4/HgdDqZn5/n1cZ+/vd1J5aFZYnHooe3hxZ5/NQB7j+yB51Ox+zsLIuLi2i1WtTqgIxze3s7Fy9eZGRkhIWFBaKioqiurhbJWm9vL4cPHwagpaVFzM3bbDa0Wq1oJYyNjVFfX09vby9p8TEMk4Q99JCC71wSFC72xM0xMTFBY2Mjly9fpr+/H5vNxozKyJPtPn7UMEHvUgIXJyXa57U8eHQ3f3DiKMXFxRgMBqG9cv36dfH+ubk5kVSVl5eLRCU/P1+IY928eZPGxkYuXrxIZ2cnExMTQlLZ6/XS3NzMrl271vUCkCQJnU6HWqfnpw3Da74W4B/+z/s4sGMLdXV1PPjggxw5coTNmzdTWVmJMT0zom18fl8BKbHvf0H6m8TvbZvgbrcIAOrr63n99df5y7/8y4j7P36/n5/97GeYzWZBqJIDbExMDH6/X5TH5LEfuaSm0Wj40Y9+RGZmJhqNhjNnztDZ2cn58+fDluvT09M5ePAgBQUFIV+Id7rN/B8/uopvlRVxpOY1sob9zp07hciKyWSip6fnfbUPxNG8NxrnUerQK73EeObu2NgoErXCGNwcUveSpFip7rf2COXtcRwgsGqvqKjg3XffXVP4SezlvXPhj4rjwPZqTDevAX5mZmYoKipaUW1YjoSEhJA594ceekgYVcXGxrJ//37Onj0LBMrgAwMD4r3V1dXs27cPg8Eg/u2f/umfsFgsIVbAwRwEuDWt8PWvf10ky16vl+9///tERUXx2GOPhRjJFO49xV+9tr474hF1D584WEVDQwMGg4EzZ87w8ssvMzw8jN/vZ/PmzZw4cULwHBobG8XnevDBBxkaGuLcuXMoFApOnTpFSUmgL97V1cW5c+eEQp4kSWi1Wo4cOUJ1dbXo8Q8ODnL27NlVDYaSk5PJyMgQf9LS0sTnN5lM1NXVicSlpKSExUUH3+qIWlM1MrjPLEsmt7S00NbWxuLiIjqdDq/XK753CoWCiooKampq+OlPf0p5eTmnTp0CAi2jgYEBOjs76ezsZHFxUcj6LiwskJKSwp49e6ioqKBuwMIn/rUuIi0OSZKIi4tDq9XSNr3EK4v5q/KXlpPofD5fiPnS0NCQSLAyMjLEMzA7O1tUYvx+P9PT06KtMDo6Kto+UVFROJ1OtmzZQmVlJZmZmevKxcuOhL1me1jqs4Q/cB3+bD9TU1P8y7/8C5/5zGdChOvm5+fZ//+8tqr1uySFdzX8IOL3tjJwt1sEgLArXUt90OfzCSOOy5cv88orrzA5OYnL5RK9Mjmoer1e3G43RqORBx54gPvuu0/YCScmJgr/9Pn5eRwOB++88w7d3d0hhJj77ruPY8eOCZ3u7u5uVCoV6enpWK1WLl68yFde6sXhX311HLySDYZer2f37t2UlJRgs9nE3HNvby9dXV0MDw9jtVoFMWx5WwAIaXGshezs7IAVrLREvNKN2hsaoCM1wZH9DyJRK/Sgokw1hU6xkishKw4ur1bE4A6rQLgcBZoF9AQCpSRJREVF0dnZGTHxUqlUoJOW0HntmId7cTgW8Xg8GI1GTp8+Lfwmbr3+1nkOMNQVTLiUTHmjWUKBwr3A9PQ0arWalJQUYmNjGR4exufzCaa0/F6r1SoMeFJTU4mKisJkMjE3NxfCB1jewsrMzBSa/bIjnkKhwGg08u6772IwGEhLSyM7O5uhoSFudvfT5jSwHu4vjaGr5Sp79+5lYGCArq4uzpw5w+LiImazmcnJSQYHB9mwYQMVFRUkJCTQ3d3N3Nwczc3NbN68mX379mEymbhw4QLz8/Pk5+eTmprKtm3b8Hg8gojn9Xrp7u6mp6eHtLQ04uLiMBgMQjVweHg4pNojl93tdjutra00NjYKNbzx8XEkSWLDhg3s3r0bhUJBW1sbXeYFWpbWujfBsuDm2IZUUmKjkCSJ2NhYiouLRVnf5XKJQCh/7yYnJ2lqamJpaYmMjAyys7NRq9VCwre4uFh4JdjtduFT4vP5hFZE1NICUzfrcepSQkx5EiQn+9T9HN6YhVqtFi0/l8uF3b7Aa66CNStpV/vNfGxLugjQ8mfKyspi48aN7Nq1i4qKCoxGozB4kysHnZ2dTE9Ps7S0RHJyMjk5OZSWllJTU8P27dvJy8tDr9czMjKC2WymqalJXAOz2YzT6USr1YoJiuBrV5Si54WmsTCHHUh+DkUPUZGXxk3TPJc6RsgvKiU7OSB+ZDKZeOqpp4jx2ldVAFUg8Z2PV5OT+MFuEcDvcWXgbk4RyHjhhReYm5sLEQ3yeDzCU3x4eJiRkRHcbjcKhYK4uDjh6Q23xFoqKyspKCjg17/+NampqXzyk58UKwm5zCmPEMmXRx6XMZvNYnV+9OjRkJt7fn6et956i+bmZuEzYFXERcQQlley8mx4sK2xDKPRSGFhIf8ve+8dHPd55nl+OgONbuSccwaRAYIBJBhEUqREibIsS7Lk8TjNzrpmxzu7M1t7tVV7dXV3W6673dmt2fPWbI1vxut1eYJsSVYirUASRGzkDBA5hwYa6IDO3fdH6/cSjUBAvtmxbuqef1QCwA6/9D7v9/mGpKQkvF4vH3/8MU6n80Q73ePqOIXCF0UG/r5ih/1+2NVEYXL4CMWF3w+/cp/sc6Tr5Yey7+Hgrvq4Okw5INV+CeiyV4/Bl8mW93DzJ2nGa7PZcDgcZGdnMzMzI47/v/yX/1I8UF0uF1VVVYSHh/PJJ58AT/ItIDA2MBqNeL1elEqlWJj2q2beeustpqen+f73v09oaCg7Ozv86Ef/hV86i1h3KI7YmUG00sXrUbNkZKQzNDTElStX6OzsRC6X88Ybb9DX10dzczMKhYLw8HBef/31z90y1/n5z38uJIZNTU2cO3eOnp4e7t27h06n48UXXxS7vJWVFd59910R0iMhKpWVlVy5ckW41fl8Pnp6esS1L5VSqeTMmTPCMGh5eZnl5WVBmJRm1wqFgtFtOR/ajyed/ZMiP7//4gUB6e8vu93O8PAwP/uwGbNbRrjSR7jPglz+5F6KjIykoqICtVpNZ2cn29vb5Obmcu7cOdLT04U0b3R0VPBJAkZHRdwzDHPrK6/jMm/Q9et3kMkC1+Hv/d7vodVqmZqaCsRCjy/ylu34Z8xtzQhlqVFkZ2eTk5NDampqkInS8IqZDbOT+HANRYl6tre3g5CD7e1tIIDESMhBRkaGOD4/+9nPREbDXmKi1OjqdLogWWNSUhJKpZKWSSP/9lfDPF5/wmmKkjuoU8wREhrCA0v8Af+Ab54KY7LlA/x+P42NjazLovjf703+/z4DX7b6HzEiAPjJT36CRqOhqqpKSGokgw2VSkV4eDh+vx+z2YzH40GlUqHT6TCbzXz9618nNTWVH/3oR6SkpDA/P49Go+HrX/868/Pz9PX1sbCwEPSAkRzEIiMj+f3f/31++tOfMjMzE2QXK9X29jY9PT309gos11oAACAASURBVPZitVrFrHjJH8k958Hc8v21f1GMiIhgZ2dH2MzeuHGD2tpaFhcX+fDDD3+jYBuFQsEPfvAD/uIv/kKw3CV477g6Cey/V3Uw5omlzZN57Oue1C0QAudDrdbw3zbTj/0cL2pGiI2NISMjg+7u7qC/2N8IHCa9lOokYUG5ubmsrKxgs9meKjcFP9c1k5zOisJoNIrd3f5GrLGxkaamJpxOJ52dnbS2tuJyucRnLC8vFx4FAd/8J8FPhRmJWBfGefbZG9TV1YnXtFgs/Nmf/RmnTp0STnEjIyP8x59/xK89BQF+zCG7qv/ytVKGP/2FmMcPDg5y7do1DAYDbrebN954g4WFBd577z3RjHzta18jMzMTp9PJu+++K8KOpLGB0+nkl7/8JUtLS5w9e5aLFy+iUCjw+XwYDAbhOyAlOqpUKq5cuUJVVZUYHbjdblpbW2lubg7ixqhUKkpLS9Hr9aytrYlYXuk8y+Vy1lyqL9TYJicnc/nyZbKysoLu+cMWMcn2OS88sNuX3hsC91p9fT2NjY2Havvv3btHW1ubsIiWjllSUpI43gqFAqVSiVarFXHDJ228X4pZoyjSx9bWFna7HbVaTWZmJjZ9Kj8bcweZmB22kO7s7AQ1BxLnIzo6mvT0dFwuF48fP+ZP/uRPgsakNpstaLSwtLSEx+MRmQSpqamkpqby3977DKPNw1efe4b6/BT+zX/+7/zKkn7kvfSMaoLv3r5AdXU1d+/epa2tnazKc4REJ9Dy8Qf8T7//DRISEo49Ll+W+kc5Jvj7HBFYLBYmJyfp6upibGyMjY0NBgcH2djYQKFQiEXX4/EI4l5FRQVNTU1cv36dsbExEhMTOXfunCD89fX14fV6kclk3L9/n5GREba2tlCpVGRlZdHU1ER+/SV6ZzfZsdm5UF/J6uoq3d3dJCUl8dprr4kFZGJignv37vHBBx+wtLREWFiYGD/odDr8CvWJoNhS5SoxWpXQ0UpNic1mQ68PdOkff/wxBoNBLCJyuZz8/Hy2tw/K3PaXTCbj4sWLJCQk8Nlnnwl4ea/Zyt6SZuabvjA8yAmVeY4M5DlMdXDfk3PI3wW9w4lihyVpZVlZ2eeoj/NEn0MvdwpCncfjCVpspe8cFRV1KAFTKqkRkJrCgoIC8RDeW1tbW5/H6cr5xJ2H3X8UXAtGn5bvXzuFy+VCr9djt9uF3l+qubk5kQ+QkZFBU1MTSqVShNcAAvGYtWv41JNPvycQ/NS5pWHWF4VlaZLr52vF30v59M3NzeTn56PX64mLi8Nv2UBmnMEdkcy2/UnTkxev4z+9WsnFoiTy8vLo6urC7XaTnZ1NW1sbTU1NbGxs0NnZydmzZyksLBSEyN7eXsLDw0lNTaW4uJjQ0FCmpqbY2dmhr6+PnJwcLl68iFwu59GjR4yPj5Oeno5OpyM1NZXy8nJMJpPYKUv32cTEhBgdSFJLKXBI8gnw+Xysrq4yNzeHTCajsLCQ+vp6Ll++zLVr12hsbORCfSXvDSxjdhx1v/hJ0sr4XkOKGIUMDAxgMBjECKB9xsQbP+5gyxZMUHWiYtofS7YevOaAA6NarSYkJAS73c7c3ByPHj1iZmaGsLAwQkJC2NjYYGJiggcPHhAXFyd8JSRb34WFhaBm1ePxEBMTQ0NDA7W1teQWFvPLwcMlm3srzzuHx7qFx+MhLCwsMM4xy/i/RuSY7G72XrMmm4tf9i5RkxFNenQAlZEyMAoKCqirq6OmpoaUlBShPpidncXn89Hd3c3q6iq7u7uo1WoiIiKIjY0lOztb+DYUFBQQGxuLy+ViamqK3t5eVB47EXInbvMmSqWSn87r2HZ4OepecuuT+Ncvn0Mmk33uZmnnq89fpzw7md7WB2RkZBzpUfFlrH+UyMBvOiLw+/1BHt3z8/NBEJPNZiM0NBSn04nX6yUkJCQIrkpMTAzquB0OBz/84Q+5cuUKAMPDw0HaY4VCQXx8PEVFRZSXlxMeHn5ot5+qV1DiGCFL6+KP/uiPsNvt9PT00N3dLVAASd4XFxdHXFwcKpUKs9nM8vIKPzfnPNVYI0rh5HnlIN/73nfx+/381//6X6mtrcVgeHr2gUqlOrDQwZMZud1uR6lUEh4ejslk4l/8i39BS0vLAXOX/XWY7l7a8fjhgOGQ9DtJdXC8q9/hxMn93v7RMjt1dbXk5eXx85//POiB+LTPeBQZMyQkBK/XGwT37/degEBQkCQNk+oo9CAnJ4epqSkiIiKY2XbzjrP4iO/8pH70fDrrEz3odDrm5+fR6XSsra2JZk5qoKXPqlQqSU1NFax2qZlZ9UfwoSPnSLLZv7uexisXnphzeb1e/vzP/xyVSsW3vvUtZDIZLpfr86AXDZWXbvEXP/s7ND4H50qy+OpXn+R/rK2t8Zd/+ZfExcURFRXF4OAgN2/epLe3F6PRyGuvvYZareZnP/sZTqcTl8vF2bNnuXz5MjKZjMXFRf76r/+a3d1d/H4/Fy9e5Pz586yurvKLX/wCk8nE5cuXOX36tGhMx8fHef/997FarQLq9/l8Qk4rNVBhYWFC8bPfxyAsLIxr165RWloa1PC2Thn5+l904Cdw3e0/dnuvzdDQUBQKhSA6goz3/RVsOA8fr0is///1bKgI6FlYWAACTZnb7T6ycY+LiyM6Opq5uTni4+NpaGhAo9EwMzNDc3Nz0N9WV1dz+vRpYmJiOPe/fcSS9fCFU4afZJ2CbyYss7y8JJ4XJ0H7krQyfvpaIRkZGccquCwWC3/6p38qUIKVlRWRsLj3OR0fH39g82GxWPjLv/xLzGYzarWapV05bzsKn/p+8MSA6Yc//CEhISH88R//MTKZjH//7/89FRUVXLp06djX+LLUPzpk4IvEFUukm5GREdra2vjoo4/ETsHhcBASEoJGo8HhcLLikGP0adFFRHPlXB1XrlwRgRVpaWno9fqgmODHjx+LQJTp6Wmmp6eDMrlPnTrFd77zHWpqasjIyECj0dAyaTy02ze7fEz7Yrhamc1IZzMfffSRIDJJ/toSImCxWNjY2MButxMZGUlycjK7qzOHE1wIwLHnFVNEqbxcu3aNoaEhpqenRdOy96aJiIgIvN7uroBRjyppwYiNjRUBIR0dHcKM5Kg6ykvAgZIpXwyrPj22PY2ADgenlfOkKAPH9njiYOCbNyjnyFJuB73vUdHGg22fHWh49noDpCt2KFWsUqVaQS8PLBD7ZZjSMZHQIwld2e+9AAHZ4P7xQHp6umCzS3P5sLAw1tbWOHfuHK+99hqq+GzeHVg58Hr7yzndhdq5TUREBA6HA7lcLhZJgDt37tDf38+NGze4ePEi0dHRWK1WVldXxWdSqdR8ZM98qtSzd3aT7zYVimtI4r00NzcTHh5OUlISCoWCtLQ0Hj1qJl4fwp2r5xjvM2A0bhAWFiaicXU6HZmZmbS0tKDVaklNTeXRo0dcvHiR3d1dHj16REFBAefOnRPqlrm5OdbX18nPzycqKoqKigpWVlYwmUzMzs6ysLBARUUFdXV1OJ1OHj58yNzcHHq9XrjluVwu0QxIx0ciEFZVVfHKK69w6dIlKioqqK2tpaSkhM3NTTEGc7vdjI6O0tfXR2RkJDExMchkMtKitdRkRDOwuBN0v+fH6/kPL58SoxzpORQaGipGNZu+UHpcT4OfZTj8SjTGcZamRsV1I6F+e8cfQBAvKSwsjOjoaJaWlsT1sbq6isPhwGw243Z7cITGsu5WM7e0yqChlUePmglx7TwVLWtUTqFymcW14Pf7T0Tytbphe+gBfe0PmZ+fx2q1olKpCAsLO7CgS02LVqvlzTff5PTp02RkZBAaGiqIhZJvweLiImazWXA5QkJCmJiYwOfzBeToz758onupLjkEpT0g9SwsLKS4ONCMT01N4XA4KC0tPfY1viz1j6YZkAgoH3UMMTW3yFefu35gROD1ellaWmJwcJBHjx7xwQcf0NHRwdTUFD6fj7CwMNRqNQ6HQ8C39vB0PtrNxGCPZdoXQ68ljAGTgorsRNJjnjBENzc3efjwIR999BF3795lcHAQi8WCTCYjJyeH6OhoTCYTr7zyCnK5nNXVVWpra4M+/7d+0sWWzXVItx+46IeWzCRaHiOTBS/SoaGhJCUlUVxczJkzZwQcWVxcTHd3N56dNRLkVqzqGKyeJ/8uSmbnmwUQag6Y03R0dAg/BNjvBxDwMZcY5YcpBw6Tzuwl0B0HQp3ES8C9zzPAhYJpX4ww+jmp6qBQsUHE5wv30xqQvm11kIlQ0Cf63BsgXOZEK/OQkZFBTEyMMEd58nfB38VqtRISEnIkF8Dj8Rz43d7RgHQcfT4fBQUF3Lp1C5lMxq7bdyLN8+9dyGV9fpKNjQ3cbrdQtkif+fLly4IvcO7cOXJycigtLSU+Pl5A8d6IJNotUTztQW73KahNVJMe/2RMFRkZiclkoquri8rKShEPrFAoePDgAWVlZcTHxzM9Pc3jx4/FSAECTokpKSk0NzcTFRVFUlISzc3NXLhwAY/HQ3NzM2lpaTQ1NYmH/dbWFpOTk+Tn56PT6YQt8OzsLGazWbgGejwe4Ro4MDAgJHjSiKioqAizOZD+KRlqLS0tMTMzQ0JCgsg9CQsLo7y8nJycHMHah8AmZXh4mMHBQWJjYwNz7mgtb5zO4JniBK4WJfDdxmz++dV8MmP1JCcnU1dXJxQaS0tL6HQ6qqurUcfn0LxwPM8mBZO4xvdfO4DwMtn7O5vNJkiUDodDICBOp5M5RwgfWNPpcsQx5Y0WDXM4dpIVlkPVN1FyJ02aOeL928Ikyev1BoyoTnivfu/WGcoyEzCZTPT19WEwGOjq6mJ1dVWQnaXcgc3NTcbGxjhz5gxKpZLo6Giys7OprKwUBE8pjloyQmpvb2dubk54d2xtbVFVd4afdy0e88lAO9eKY3sdi8XClStXiIkJfJ+VlRXm5+eDPDu+7PWPohlomTTyrZ908WefTfJgbpdxbzyfPDaRHqnBa16nr6+PBw8e8OGHH9Ld3c3CwgIKhQK9Xo9SqRSZ3BCQuNXW1nL16lVCMsr5N5+uYXYGL2LSPEtnX6fv0cd8+OGHtLe3s7S0JGJOq6ur2dzcpKKigoSEBLq7u7l58yanTp3C7/djMBgoLy8XPtzDK2b+7LOnacdlOFCRE2IlPT6SlJQUcnNzKS0tJTc3l7i4OJEGZzab6evr45133mF1dZWwsDC+9txV3mzI5EJOJI3ZUbxYpKfYO8vE7DybvjB2XR7U3if2p9Kcem9JDYBKpeLUqVNBhiz7d8IymUxIKPf+7Gl1kp3CcfLIk7oHlipX0co8J2pA9ksvNRpN0LHRaDQ899xzzMzMsLi4GCS3O6xpgsDCtpdEqNPpDjUoAml8ocXo0wb4E3iQyQL/5s033xTwaZxOw1ud05hdvkO+C4CfWJWb//C7V3j06BHV1dUYjcYDToaVlZUUFxfT1dWF0WikpCRAdgsJCaGtrQ2NRkNYaiEdq8erSEI2H3O5/lTQz9LS0ujo6MBmswnNvyQ37Onp4ebNm2xsbLC1tcXg4CA1NTViFxsVFUV8fDwPHjwgMTFRIA2NjQEd94MHD4iNjeXKlStsb2+zsrIiHAvDwsJYXFzEaDTidDrFyGNxcZHt7W3S09MpKSkR1tvZ2dncvHmTnJwcUlJSqKqqQqvVMjc3J5ACt9tNV1cXOzs7pKWlCXfRiIgIqqqqSE5OZmlpSZBk7Xa7aDakJiJeH0JWbJiQEUolk8mIiYmhvLycoqIibDYbPT09zK+sM+Y5nqEuXeN7Sy6XExERQUJCAmlpaSgUCqxWq7hOExISUCgUYhRqs9kC8sTkYv78sfoAH8WBkmlfDAlyG8kKC6dj3MS7V0iT71CqXKVKuSJMzaxWKxERERQUFFBTU0NhafmJuAaF/kVyUuJoaGigqamJrKwsNBoNS0tLwtVwZGSEzc1NNBoNjx8/pqysTChApFIoFERGRpKZmUl5eTlnz54lNzdXkKWXl5fFPbm9usC0OwKL+yhfkQDn6FKcXYQ2Xb16VTQlZrOZT3snUMZn4fD4iNNpjn3+/bbr//PNwFHQ+pbNyTv9K6wOtuIwLgoiiTR7kzr8jIwMEY/a1NREcXExycnJhIaG8u0jd+rgx8/A4jZJ1kl0Oh2FhYXcunVLeAXodDpaWlpIS0sTD6uzZ88CgYWgra2NyMhIUlNTARheMvNO//EGLFlqC2rnDltbWywtLQnN/9jYGKOjo4yMjDA8PCwgTghAlWNjY/T29jI3Nsj61BCG8UV+YYwLgsVnPJFEyBzo5a5DZ4rS3BQIiikFDh0ZfBHJoVwux+jVnmincLACjVK6wkR+XBgjVs1TNc97iYMnaUAcqMgPsxOuCuza9x8br9dLRkYGt2/fFrapUmk0GrHLl4yaILAoxMXFsbu7K2bnh5UYX3gOji80bgs7OztkZ2ejVCoD2ufxPnqFPepBuPb1LDcNZXk8fPiQ06dPi5HPXktpo9FIfHw8qampNDc3k5SURGxsLGq1mv7+fjQaDTanl+6d4wNlspxTnK8tD7LgVqvVqFQqmpubycvLIzw8XGRkSLnxd+7coa+vD4fDwdjYGLW1teJhGhsbS2RkJA8ePCAzM5OoqCgePnzI+fPn0Wg03L9/H5fLRUxMDBaLRaQjjo2NiQjh1NRUCgsLsVqt7O4GPBx0Oh2XL1+mpqaGuLg4Ojs76e7uJi4uTsD7EsFwa2srKB7aaDTS2dmJWq0mOTkZmUwmFvPa2loiIyOFNTMEELPe3l6mp6dJTEw8Uj4olWR/vrGxgduydaxDZqTMQW3IOpGREUGoj06nExsQq9Uqsgmkc2+z2QQXQiJ9ms0W/tuc9ghiauD/jb5Aw+x0OgJeIXInOoUvqBkOCQlhd3eXGzdukJOTQ3p8JB8MrrBlcx76PWRAik5Og26L7u7ADn58fBwIKGiampqor68nKSkJj8fD48ePxe+npqZwOp0olUp0Ot2hC7HUGKWnp1NWVsbQ8g7LdgU2p4fYMDWYV5nyHj5elctk/FFDDJaVGXFOh4aGSE5OZtjo4U/en6HDFs2vBlb5Wec8HwyukBuvIy1ae+BzfFnqt9oMSND+8JKZXZfnC3dPJpOJb/2kC7PTe0jkZuD/t+XhZHuXsFoDM+WEhARB2MvJyREabSk7fHBwkL6+Pn71qI9frzyNsBJYJP6X3/sKt681UVhYKB5qEIhOnpmZYWFhgcrKSq5duyZ+p1QqmZ+fx2g0ivRDm8tzMmvM37vFnWevBFjJFy5w4cIFGhsbSU9Px2g0YrFYSE1N5caNG0RGRrK8vMwLL7yAUqkUEP+6PJqPnLmHwuIS5B6uCJDcJL+EwGIlw+gNEUY20g5V+k7R0dFBendxpI44p/vRBK9MeaIdz1GVJt9B5TCdWHUAJzczqk/V4jEFN2vS91Kr1UxPT2MymcTDKDw8HKfTKR4UISEhWCyWoO8sWcx6PB6Ki4sPkM+eNr6QzpPbtMLg4CBpaWlotVraPn6P2sxoJrdcB6ydr2jnaSpOJiEhgY6ODqqrq1lbWxO5E9Ln8nq9dHR0sL29jVarZWRkhKqqKpRKJUtLS2xvb+PY3sAYmobZeRTb2k+qTkGJLwC/SrNUqZKTkxkfH2dqaorKykrh/hcTE8ODBw+IjIzk0qVLGAwGdnd3MZlMFBUViX+fmJiIVqvl/v37JCYmIpPJhNLF5XKxuLjIzMwMERERREdHYzabCQ0Nxe12C2JhZmYm1dXVOJ1OlpaWMJvN9Pf3k5ycTH5+PqdOnWJxcZGHDx9itVrJzMxEoVCg0WgoLS0lKSmJubk5MWpRKBSMj48zPj5OfHy8GB3IZDJhDx4SEhLEzjebzXR3d7O4uEhSUtKBzBOv18vg4CC/+MUv6OzsJCYmhlu3bnG2LJd3B1bwH+Eqejl0Hq1vVyASOTk5VFZWCo+H1dVVMcLLyMiguLiY0tJSSktLhToFAvwIE9pjTJICz8LGnAhitAFDIukYeb1e7ty5IxwYpQTLxcVF/H4/4dhpWXIj2/faMllgwf3Rm3U8f/ksdXV1JCUlCQ6GwWCgvb2djY0NIiIiqK6u5sKFC5SWljI2NobP52N6ehqDwYDBYGB5eRmHw4FWqz0wPpaQ5V9Nexiz6xn3xjNqDSFZtk1llJsdRUSQAVOkzM6LCducSgghKiqK1dVV5HI5LpeLD7qn+D+6HJ+rEJ7UYeqIL1v91pqBvdD+O/3Lx3ZPkhXl6Ogo7e3tfPTRR/zyvgHDbizHzS3TFSa0Mg9Op5PNzU3m5+eZmJhgbGyMqakpQSqS4FKVSsW2TEf35vE5288UJx4aQHH37l3MZjP5+fncuXPngK7X6XTS3d1NfX09SqWSOJ2GDwZXMNkO3yHKZIE0wn9+NT9ocV1eXubdd9/lwYMH6PV6bt++zaVLl1CpVNy9exev18vw8LCYY/t8/qe4hT2BxQvk68hkCDjUHJrE+5a0Qwl2cdoAy/owMtz+Ki4uFj7ye+Hzf/pP/ynL0+OMWDU4ebqN6FFVqlwlTO5FL3MeOr/cn0EAnHiskGYbPwC57i2v1yt2WeHh4Xzve9+jvb1dfEePxyNIYPv/HQR2fhJcCcfzJ2SA0R9GvmwNlUpFR0cHu7u7zM/PkxmnJ35nnH/9jZs8eyqNWGMfBc5JwnCQlpZGVFQUPT091NfXs7KywtbWliCWAbzwwgtUVFRgNBoFwjQ9PU1eXh4ul4vR0VF8Ph83zlbyyZRFfKYnFViQvpq6i07mYHl5+YBnvEwmExC/Xh+YkUOAzW42m2lra6OqqoqcnByRrhcg8zoYHh6mvb2d0dFRnE6niA3WarXYbDaRDbC8vEx5ebkwFxoaGiIkJITR0VFsNhu5ubkoFAoxZpPcPXt7e0Umw6lTpwgLC6OtrY3BwUFSUlJERHRsbCzV1dXCeExSG0h+BSaTKWh0IJfLxRgSEPHLENjYGAwG1tbWSElJQalU0t3dzVtvvUV/fz+pqancvn2bCxcuBHIfYnXUZEQzuBRMQJSu8YJIOHv2LMvLy3g8Hra2tsQ9d+nSJWpra+nv7xfW5dLzcGxsDKfTSXh4OE1NTZSVlbHmUmM4Hs2nJikEmXUDh8OBUqmkurqanp4erl+/jlqtZmpqitu3b4ssg5GREWxrc2TqfFhU0Zj3LLj5n0tLJZ8ByTmzsLCQhoYGCgoKBIG2u7ubtrY2RkdHcblcqFQqbDYbP/jBD8jJySE0NFRIs6WMBimcbXDdxe/8VdcBZNnuD3CR/uSVJv7nF8qRLQ2QF+rgX71Qw508NXqZi8nJSWZnZ4HA+Eqn0/PudjL2oxAbGQws7vDG6Ywv5cjgt9IMHAXt7+2eUiNDWF5eZmhoiJaWFj788EPa2tqYnJwUN3BEZimfzRy/AH2loYBrZ6qoqqqitraWM2fOcP78eZqamrh48SLnzp2jvr6empoaKioqKC0tJSo+6UQ79TvF4WQmBEebrq2t8emnnxIREcHv/M7vHCqJ0ev1tLW1kZCQQEJCQrA15r46zNZyfX2d9957j3v37qFUKrl16xYXLlxgaWmJu3fvcvfuXQH3SZajfr8folOPJX45UFGbrCZcHSARuaKy+Pla7JHzwmjvNmEEE5r2XuzJycmCUKXX6+nr68Pv94tEPZVKRWNjI5988jHh2Jk6Yld/8GdPfidB/+L47mH7S/PLSuWyQASkOkkoUYzSTYV86YAfgbT7388JcDqdGAwGsdBrNBoh9zwMOYGAaZTFYhGvtS3T0edJOuIzBY6DNBpRuG0ijU8ul4tRxqsv3CQrNoz2z+7h9/uEIVZGRgZDQ0OcP39e+LtL14ff7ycvL080bWVlZayurrK4uEhHRwderxeTyYRaraY4PYFQ2wrLDhV235OFPkruoFE5jX53mfPnzzM1NYXX6yUnJyfoG0jNj8FgoKqqSvACMjMzGRwcZHBwEI1Gg9lsxuFwMDU1xeDgIKurq4SGhpKVlUVtbS2hoaGsrKyIRWdgYIBz586RkpLCZ599xu7uLnV1deTn5zM0NIRCoRAGNPn5+SiVSiHxnZqawm63C1QvNzeXzMxMiouLmZyc5OHDh3i9XtLT05HL5eJZlJ+fz9LSklAMyWQyNjc36ezsRKVSidEBBBCx7OxsqqqqBFtfKqPRSEdHB62trUxMTIjNxOnTpwXSIJVEQPTMdJMbuku2c1pc406nk8XFRe7cuUNqaioLCwuCAzA0NCTGPd/85jeprq7m7NmzlJSUkJiYyMTEhLBOHh0dxWTZZcR1eHzz3kraHkLmsIjjcvnyZTo6OkhLS+PUqVMiKOmFF14I6PpVKjQaDbmJUcRsjZAm3yJNvsOd4nD+7Uu1FKQcjhJKVsYZGRlUVlYGoQYjIyOsrKzgcASa0LCwMEpLS2loaKC+vp6UlBT8fv/nqEEX/7HXeeT4Q4aMgcVtXiiJZn58iBi1l9qyAnQ6HUlJSRQUFDA4OIhCoSAhIYHJTTtdjrhDXutJ7bWZ/rLVP3gz8HTWfKAeDs9hbPslXV1dzM/PExYWRnFxMefPn+fmzZvU1dUFuvqQsBMt2P/qdg0lOWlER0cTHh6OVqtFo9F87uF++Ik7bqcuLUAhE5+wtbVFamoqGo0Gq9XKj3/8Y9xuN6+++uqRGegajYaJiQnsdruAUNOitVSnR9E8PMeu9wmSsLdL3tra4sMPP+T9998X1puS4co777zD2NgYNpstCH5PSUmhsbGRyspKxtds9Gw9PdUL4Pdvn+PVW5dJSkri37Vus+uTcxKCXUREhMhVDwsLw+12853vfIcHDx5gt9vZ3t4Wumm1Wo3T6SQmJobQ0FDGx8ePyQRQfP6OT4f+pUVaYvtHyANs/8NOtUzGsWOFi+pZdLKD+QtPC2fae/zlcrlY0DIzM48MvNnbVFiUkTx2HZ9/LmUxSF4TEGjgIiIikOkP8AAAIABJREFUqK+vx+Vycf/+fcLCwnC5XLjdbgG7X7p0ifn5ebEYSc1Adna2kPRptVrKy8sZHx8X3AaHw4FMJsNisVBblE34Wj8pGEmT7/DvfucKNeo17MaArj01NZWVlRWWl5c5d+7cgfstNTVVSL02NjZobW3lk08+wWKxiAe6NBOWdn1/+Id/SE1NDTk5OSQkJJCfn4/FYuHhw4dBRMKqqiqysrK4f/8+29vbVFVVUVpaysTEBE6nk52dHUZHR8nLyyMkJAStVktFRQU7Ozusra1hsVjo6+sTAUQVFRXIZDIePXrExMSEyLaHQHNfWVkpmjJAGEZJO+74+Pig8CeNRkNBQQFlZWVBckTpXMhkMlJSUigoKDgQey6VTCZjZWacSIULr82E3+8TBFafz8fQ0BAul4vr168TGxvL0tKSOM8ej4fW1lYxopBIyG1tbbz00kvcvHmT7OxsEiJCaV10YPMeRuAF8BMtd1KtXgt67cePH+P3+9FoNELe2dzc/Hmcuozl5WVycnJ47bXXqK+vw2ZcwWNaxrUTaIhGR0exWq2EhoYeKiWUaj9qkJaWxsDAADKZjP7+foEaWK1WEhISqK6uDvgnJObw3/u2jvhOgTLtulnu/BDnzgbb29t0dXXR3d1Nb2+v2NT4fD5MJhOrTvWJRo5f1jjjf/Bm4HjWPOx65bxUn8sL1y9x48YNKisrycrKIjo6OghqPBZa53Bo/ST1tBALaZ71x+fi2V2fZ21tjc7OTtxuN/fv38dqtaLVarl+/fpT39disTAwMEBDQ4MYI5gWJ/GO3eefPH+Gl+rzhNwoUunl17/+Ne+++y42m436+nqio6Pp6Oigu7ubzc3NIGKbWq0mMjKSb3/720K90NXVhdsvZ2A3/NjvL5/4lKXJUWZ3vNxbOqwREEdD7FCleaH0/s8//zzDw8P09vZisVgEp8LpdIr5rcfjISsrS+hyfT4f4Qo3l9JURNnmxa6+RrlEboSMZYfqWOg/JCTkC6UoHtWASK+dJH8i65PJZCiVSurq6tDpdEEksgNHZo/vBAQe8Ha7Hb1ez2uvvcbKysqB0YpkfGT0aFj0Hd8MfLcxG+vG8oGcA4fDgdfrJTQ0lN7eXiIjI7HZbFy6dEnEXzc1NTE/Py9CeqQHW0ZGBunp6UHfIyUlhfb2ds6cOfO53tyNxWJhbW0Nl8tFpEaOHju5qfHk5+eJ5ECj0UhVVRWzs7NotVoBF/f19dHS0sKnn36Ky+Vie3ubzc1NoqKiKCgooKGhgaioKGZnZ7l16xZNTU10d3cLy9mamhpxfCVI32g00tzczOXLl/F6vTx8+JDy8nIKCwtFjPGpU6coLy9ncXERk8mE3++nt7eXtLQ0QTAuKChAr9czMTEhfi+RjTMzM8nLy2N4eJiWlhbUajUpKSmCMLjfwXBvyqPBYAjaOEBgPNDW1sbY2BgKhQKtVhs0SpJSDx0Ox5FJfJK7YmZmJmtra0LxIxkkGY1GBgcHsdvtnD59WqAESqUStVrN+vo6BoOBgYEBgShcunQJvV5PVFQUmZmZlKTF8MuepSM5Co3KadEwS+fF6XSKEcrk5CQpKSm43W56e3tZXFwkLy+PiYkJFAoF2dnZ9M5uMLi4w6mqGq6eq8fpdNLf309HRwcDAwPs7OygVquDuFn7SyaTER0dzcDAIOqEbErOXSc+KZUwhU9wDTo6OlheXmbBCs3zx0s037xcidJuIjExkTt37lBbW0tdXR1er5fV1VVefvllnn32WbLzi/jr7oPI7v76ssYZ/8M3Aydkzb/RVE55TvKhHtpSnSR16k+/WkFGrO43+qxHG4MEdurP1xdw6tQplpeX2d7eZn5+XmSL5+bmBhGeDquQkBDa2ztw6xJYsPgxWWz8+t1fUFCQz/NXL5IVG4ZO4eP+/fv84he/YHNzk6ysLKEOkKSMUiUlJXHlyhVu3brFo0eP0Ol03L9/n/n5eXJycrhx4wa3rzXxwdDqsYjHc5lywsK09M0ZGXM8nekMgR3qqaxELl68yOjoKHFxcQwODuJ2u4mLi8NqtXL9+nWGh4dFjK7E0fD5fKyvr4sGITQ0FJNpC63MQ6TCxTdffYmdnW2cm0sUKjYoj4WSSB9ZzikBi+6VMSqVyiNDfY6q48YK0uurVCq0Wi2rq6tBzoFSnOtxTYjX68XhcLC1tUVjYyNpaWkijniv8dGTRuBoaVOsykPa9gBvvPF1hoaGhMW1VPPz88zMzOBwOIiNjcXr9fLKK6/Q19eH0+mkoaGBlZUV5ubmgnaTqampZGVlBR8fvR6n00lrayt5eXmCoS8twtJ7WywWLl68yNDQEHa7HbfbjVqtxmQyMTk5icFgEOhVdHQ0xcXFnD59Wpz/N954g6ysLGJjY8nMzGR+fp6enh5qamooKiqiu7sbm82G2WymoKAg6PgXFBSwvLxMa2sr165dw+128/DhQzHuePjwIYuLi5SVlXHq1Cl2dnZYWFhAq9UKcp7kTieRCMfHx3G73UxPT4uxQUxMDJWVlSJJdH5+nszMTEFM02g0lJSUkJSUxMzMjHD8UyqVbG5u0tHRgd1up6+vj/fee4/t7W3Onj3Lyy+/zPnz5wWaIo2U/H4/i4uLtLe34/V6SU5ODho9SujOs88+i8FgEKin1+vF6/WSkpKC1WpFr9fT398vApji4uJYWVkhNDRUuIRKToUej0ekHkLgWfi4/S7rntADDfML8VvcqMoWjn9SyeVy4adhsVgYGRlhe3sbp9NJSEgI3/3ud5HJZPzsk25+2GHhnUkX074YPlvw0Lnq4VZjDV+9eZn09HTBfZIUHltbWygUCiIiIg6sES2TRv5Pg42PFmS8N7TGh5NWpt0RvHH7KlcaKgkLC2N1dZXB0XHGvXFPvV8B/ujZcpanx4iOjqa2thadTses2cvb97vZdXt5/aXn0Gg0JEZqfyPe15el/sGbgZOy5k/aPR21YEfKHDRpZkhWWCkoKPiND/5RxiDS7D4kJITy8nIeP36M1WpFoVDgcrlwuVwkJiYGwYL7q2/Fzp/2OvjbEQvv9C/z193LTLr0PH+xjuQIDc3Nzfzd3/0di4uLwg55c3MzaO4cHx/PhQsXeOWVVygoKBDZ6y6Xi5CQEBobG3nhhRcoKysjMjLyWMRDBnw9241nezVAiFOGnDhm9qvPX6etrU2E4OTn57OxsUFcXBwKhYJr167x6NEjIDBOkIx09j60tre3gwx3fvd3f5d79+6xsrKCXC4PoDJOK4rdTeL1IbjdgXMuuartNeQ5qi5cuBDks7/3+x81VvD5fMKJ7+LFizx+/Fi8h6QI+CJoxM7ODkNDQ4LUtUoEd11HEQbhsN3YGzketP5dRkdHSUpKEg9Iv98vzF0kNrlk7lNVVcXKygrr6+vYbDbCw8OZnJwUi4u02Oyf70PAC6C/vx+73Y7JZBJ+E2q1GovFgsfjwWq10traGnSNSguR0+nkypUrfOUrX+HcuXOUlJQIo6akpCQePnyITqcTIwqZTEZWVhadnZ2sra1RX19PREQE4+PjrK6uEhUVRWJiongfuVxOYWEhs7OztLe3c+vWLbFgl5SUUFlZSUtLCzMzMyLuWCaTMT4+LkiVEgIgzaXLy8tZX19nc3MTq9UqxgZSJHB6ejo9PT10dHQEPAP2WN3uJRguLi6iVCqFa6ikJqqpqeH1118PkodKi05MTAyLi4ui4ff7/czNzYnURsnBcXl5mdnZWa5evUpfX58YE+bk5Igwn4yMDGZnZ5HJZCQmJjI7O8vGxgaFhYXCfyEyMlJkrSwvL9PS0sL09DRxcXEYjUYm+zoo15opDncT716jVLlKtXoVpXOH27dvo9FoghxGpWeWuIJlTwKxPB4P7e3tLHv1/PV6HDvOYG8MiT9WlxVDeW4q+fn5nD59mpycHEF47OzspLOzk42NDWQyGRERESKzweoOvodMNhe/7FuiqTSd85VFVFZWcqGukl/1Lx2piJHhJz9ezz+/mo/BYCAqKop1WZQgvo/adYx54vhgaJXceB3p0WFPR5P5cscZ/4M3A78pa/5ptXfBzlSaiV7v4U6uBrXbIiDQzMzM3/gzy2SyI41BAH79618zOjrKtWvXhIWoQqHAYDCwvr5OUlKS0PZK1TJp5M3/uxO7L5hc6PQreW9wnWnDJxhnx8Rube9CExERwdmzZ3nppZc4ffo0NpuNjz/+WIQVabVaQkND+f73v09qauoBaPGoBiovLowa9xDfuH6aW7dusby8zM7a4ok0zZnmYTo62jEajWKXfOPGDfr6+tjd3aWkpISCggIMBoNQHkgPhvj4eNRq9QGP/qtXr/Lee++xs7NDYmIi0dHRIsZUrVZjt9upqKhgdXU1yPL2aYFJAAsLC8e6IUql1WpFc5KRkYHJZArSi0vMb2nxe/XVV0lJSWFqaor6+nph+nS0oZAfvx8+dh2UegZKtu+/0m7MhHzjMVevXmV8fByj0Uh6ejomkwmtVktaWppYCCAgY1QoFFRVVTE2NobX62V6elpYz+5tBqQ5/P6SdmKdnZ1A4BzMzs4G5RrAk8wKqXw+H2+88QY9PT1YLBbOnDlz4LXDw8Mxm80YDAYqKyvFjHyv3FBqZkwmE2tra4yPj1NUVBQkx1MoFBQVFTExMYHBYOD27dtYrVYePnxIYWEhtbW1tLe3MzExQXFxMXl5eURGRjIwMEBUVFSAMGcykZeXJyx7S0tLUalUTE5OIpfLRdOQnp5OdHQ0FRUVbG1t8eDBA4xGI1lZWeKeUygUQsI8PT0d5Pqn0+mYmZnBZDIFjQ4g8MxJSEigrq4OrVYroH3pHEmyObVaLSSNjY2NQlIXHx/P6uoqWVlZonGSmsOGhgZefPFFVCoVIyMjrK6uChTAaDSi0WhoaGhgd3eX1dVVent7GRoaEv4MlvUlIhUuQmVuEZcs+Y4YjUZSUlKwWCwoFAq+/e1vMzAwEHRNSPeqx+Pl79Zjj3627GPfSwt+Tk4O9fX1FBYWotFomJ2dpbOzk7a2dv5TvxObR344H23f66lUKgqSIp6KLF8NW0Jm22RpaYktVRz/6u7iU4nvZ3Njn4omf5njjP/Bm4Gn7kwJkGZ+k+5JWrAzY8MYNLRw9uxZxsbGyMzMpK+vj+jo6P8hcZJtbW08ePCA69evc/r0aaE73t3dRafTsb29TWtrKw6Hg9TUVJRK5bEkSj9+Njyhn5PyAgdJo9FQXV3NrVu3uHLlChEREXR1dfH222/T09ODWq2msbGR5557jpaWFkGeOqoOQzx+tzaBEUMz1dXVAm6VySBRK2PcKcHWT06aRCe6HDqPDofQ0Ot0OiwWCz09Pfj9frxeLxEREaytrTE9PS2sn6UF0mq1Hph5x8TEMDQ0hM/nE4mBW1tbIhVyZmYGtVrNiy++yNraGtvb2yKG9qiSoP4vks0VHR2NyxUwYZIIolI405kzZ4iIiBBGNjExMdy4cYPk5GQmJiaYnp5Gr9eTmZnJ5uYmPp+Py5cvExMTExRYdTLnRahXzlGrXqFCsYTabQ7AlZ/vCEdHRwNmQDYbHo+HV199lfz8/KDAI4fDweDgoEA5IiMjefz4sYjghsCOLTY2lqKiIhwOBwsLC2LW+umnnwaFV0le95cuXWJmZobExETcbjcpKSm8+uqrjI+PiyZ2fn5eXAMlJSUH9PQQIBN2dnZiNpspLHwSEhMbG4vFYqGlpYXi4mIqKioYHh5md3eXwcFBamtrg2BzpVJJUVERw8PD9PX1cefOHcxmMw8fPhQ7TIPBIPzkMzIySEtLo6+vD51OJzwK8vPzUavVYuHPzMxkdHQUCMzppbGBVquluLiY2NhYweGRyIKjo6O8/fbb9Pb2Eh8fT15eHltbW8jlchwOB6GhoUJ1IJfLRQqfVHK5nNTUVGpra5HL5UKfL52ryclJFhYW8Hg8NDQ0EB8fL543KpWKxMREHA6HcGLMzc2lq6sLjUbD+fPnqaurIyYmhrm5OVZWVsQiOT09TWxsLFevXsXpdIrANon8qlQqxQKv1+vFqMjhcIgMCMmCOSUlJai5U6lUuFyuE+WIHMW+l8lk6HQ6oSgpKyvD6A3h3emnx33vf72jNkZpeiWn/WM0FiQwNjaGxWLl5yuRRyeC7mk00mPCnoomf1nrtyItfBq0/4P6SF5oOD557agKDQ0V1qOpqamMjIxQVFREa2srGRkZT4Xtv2gNDQ3x3nvvcfbsWdGVv/fee9TU1HD9+nVhRJORkcHY2BhdXV2oVCq2/GH85/tTT3nlACkvQ7lNRUE2V65c4bnnniMnJ4fFxUXu3r3Lhx9+yOrqKiUlJdy6dYuLFy+SnJzM4uIi3d3dPPPMM8e6mu1HPLa3t+nu7iYjI4Nf/epXwghG5dwhUbGL0afdNy+0c0E1TWNBArW1tWL2XVZWxsrKCrdv32ZmZgav18vW1hazs7MHvNGPKinvPCEhgampKWQyWYCkk53N3bt3KSkpEVawzz77LP39/Ucu8lIT8EUcESUi37Jdgd3jIwS3kI35/X5KS0u5efMmH3/8MRaLhYSEBLa2tqivr0elUjE3Nyd2ZsPDwzz77LP4/X5mZmZ47bXXkMlkzM3NkZeXx7zVz8QJlANFig0S5BYxvpDUARaLlTmLlzmzHw9yYnUapqYmOXfunCC5ScdaCpwJDQ3lxRdfpLOzE6/XK8YLXq8Xu92OwWDg448/pr+/n4WFBZRKJWlpadTU1FBfX8/g4KCAlK9evSrGOCaTie3tbS5evEhsbCwjIyPifErHb2Zmhurq6gOzXilqt7m5mezs7CApnXQcx8fHhV2yRCicmpqiqqoqCLFTqVQUFhbS39/P0NAQL730Etvb2zx8+JDc3FzOnDlDT08P/f395Ofnk5ycTF5enpCK2Ww2BgcHyc7OFo1LZGSkMCLa2dkRLoLJyckiznivUZFEfIuLi+O5557j8uXLFBYWCgfDjY0NVCoVDoeD8PBwEb0eGxtLVFRU0LFRKpVkZWVRVVWF2+0OQtGkc9vf309sbCw2mw2TyURhYSGDg4Pcvn1bZEpIqoLPPvsMp9NJXl4eiYmJVFdXk5iYyNDQEB6PR5Bw+/r6cLvduFyuA2M4n88nklp3d3dxOp3I5XJycnJYXl6mpKREWD2bzWb8fj/f+c53uHjxIqmpqbSNLZ1IMXMS9r1Wq2XTqz0RH23/6x22MfpGVSwTPa08++yz3Lhxgw/aBuhxxnPSxuU4NPnLWL8106HDTsBprZHxntagcJIvWjKZjLW1Nebn53nxxRdFtrkUxFNYWHjAs/o3qenpaf7mb/6GU6dOcePGDWSyQExqV1cXV65cETtYmUzG4OCgmIu2t7fTMbHEqP14UuMfvnyJF6+cRSaT0drayttvvy0anYsXL3L79m2KioqCjlV7ezsWi4WrV69+4QtwY2ODgYEBZmdnBZzp8QQCeG5dPA2Pm3nlXCF68yz5vnkqlcukRGiora1Fr9czODhIcXGx2I1GRkYKKVNUVBRnzpxhZmYGeHojAAHCmtvtZmdnh5SUFL773e9it9t56623KC0t5cUXXxQysc7OTnQ63R5fhcBCvukLA6Uapcd+qKwQCMoRkGovkW/SE8W4N04YLOllTrKysnjllVdob29nYGAAgG9961u0t7eTkJDAzs4On3zyCQkJCczOzpKbm8szzzxDTEwMLS0tREdHMzk5ic1mw2g0Ynf7TmR8dC7WidJtC/q8y149v9xMoN+TJMyg5olBbl3HbVplY2OD+Ph4rFYrJSUlwuXQbDYzOjoqgrk8Hi8bHjWbvjDcfhm1ZYHM+EuXLvHMM89QVVVFXl4eSUlJREVFsba2JhqAmJgYwT3Ym1ZZXFyMwWAQP6uvr2d9fR2r1SoWcsnmWKrExEQmJyeZmJgIWuCldMPm5mbcbjfFxcWkpKQwMDCA1WoNyjmQSpLudXV1MT4+zksvvcTW1hbNzc3k5ORw7tw5BgYG6O7uJjc3l/j4eEpKShgfH2d3dxelUonBYCA5OVkszhqNhlOnTuH1epmdnRXmQNIsfnBwkPHxcZEwGB4ezq1btwQPQXoNiWA4PT0dFEylUqnEHDwtLS1odACBhik/P5+ysrIDkckul4uRkRG8Xq9As6TxhIS8jY2NcfPmTaKjo7l//z47Ozvk5+eLBb2vr4+vfe1rKJVKYYq0168EAmNKKYFTsnOWyL9qtZqMjAwWFhZ48803hRGQz+cjLi5OmE9FR0ezZbbx2cLxRN+T8sf+3/DR9i/eoaGhtLS0kJCQQGpqKm8/6OKx+/iN5JdVNniS+q3aEe8/AZmZmUxMTDA8PExlZWWQjPCLlLRjrK+vJyoqikePHnHt2jUWFxcZGBigrKzsUInOSWt1dZWf/vSnZGRk8NJLL4kdTk9PD2tra0JSKJfLhRRJYv/X1dVh3nWdyNf9mTQ5Hfd/zb1799jY2KCsrIznn3+e8+fPC/LQ3vL7/bz//vsUFBQcOvM9rkZGRsRcU6rKykpefvll3n//fRwOBxvzU+QmhOO1mYS9aUtLC6Ojo+j1er7+9a+Tl5fHwMCAgDRDQkL4Z//sn2E2mxkbGwtarPfbGksleRVUVFRw9epVNjY2+Nu//VsKCgqEo6NarSYpKUnwEuBgFPGoO/bJQi53HWD8H9YIPM0CuCBaxR9863Xm5uZ4++23Bepw6dIlgQQZDAYyMwPWtdvb26SkpFBcXEx4eDgrKyv09/eztrbGc889x8TEBHol7IRns7171IMxkE9f5J6Cz0dpT/usVg9MeqKRGWfEd7ZYLEK2Ji08TqczoOXfd8xGXDGM28M4W5ZDYWrcoU2lVqulv78fuVyOXC6noqICg8FAYmKi8AQoLy8X8kPJne/mzZsMDg6i1+uZmpqitbWVra0twsPDhWQsMTGR5uZmEVUslV6vR6VS8eDBA9LS0gSZbGZmhuXlZWJiYg6MAkNDQ8nNzaWjo4Pp6Wm+8pWvsLGxQXNzM1lZWZw/f56RkRE6OzvJzs4mNjaWsrIyFhcXWVtbIyoqivb2dnQ6nXBJlHIUkpKSGB4eRqlUMjk5SWtrK1NTUxQWFvLSSy9RV1fH9PQ0zc3N+Hw+YVQklUQwdLlczM/PizGUlKrX3t4uZJ37UZTQ0FCKi4spKChgdXVVoC7SvQMBNCY3N5e5uTlhnrS0tMTExAS3bt0iLi5OSC4LCgpEUuTt27cpLCykpqZGKKX2ltPp5PTp0ywuLlJUVITRaBTXlNfrJT4+nrW1NRobG4mLi6O3txcI5B7Mzs6i0+l4++23mR0bZEEWi/1QD5PAdZ8cJud3a+LR6Y7fPP198tHkcrkYCRUWFvLx/Ucnskr/ssoGT1JfqqAiuVxORkYGLS0th3b6Jy3JPjQpKYmysjKmpqaYmprilVdewWAwMD09LaJMv2iZTCZ+8pOfEBUVxeuvvx7UVHzyySckJyeLlDepJEMSl8tFe3s7So+dSZf+SOKMjICLW8T8IyIjI7h06RK3b98WFpxH1erqKq2trVy+fPkAzPi02tra4t69e7S2toqfyeVykeHw1ltvsby8TEREBF/96lfZ2NjA5XLx+uuvc+rUKRISEhgaGhKxt8PDw7jdbgErejwe7HY79+/fZ8mjC1p49toa740J1mq1REREMDMzg8FgYHBwkNDQUPLy8oSh0cjICH/zN3+DUqnE4/Ecu5AnKe2onIcb/gCoVGruOZ5u1WzXxvN8USQ//vGPxehiYmKC2tpaPB4PPT09aDQaysrK6O7upqqqSkDRer1eEPDi4+MJCQm4bKrVauJDfAxaD2sQ/ciR8RffOstzl86IHdzurv3EaYtSLoc0s56fn6empoadnR3mHCGHHrPjvNTDwsJoaWnB5/Oxs7PDjRs3MBgMREdHYzQaMZlMohmXSKMWi4WGhgbGx8exWCz8wR/8ATqdjtHRUbGQqlQqsrKysFqtdHZ2UlFREYQcSG563d3dVFRUiNGZyWRibGyM4uLiA/dIWFgYmZmZwmDnK1/5Cuvr6zQ3N5OZmUljYyOPHz+mra2N9PR0YmJiKCkpwWw2MzU1RXJyskAysrKygnb4NpuNpaWAtlwmk6HVarl06RIpKSnCxEgmk9Hc3Mzk5CQZGRlByOReB8OFhQUsFotwqoyOjmZ4eJjh4WFiYmIONTDT6/Xk5ubS3t5OZGSkUI9Itb6+DgQ2SK+99hoTExNsbm6yvr7O5csBU7FHjx4xPz8vfDAaGhqAwGji7t27h0ZtS9/5ypUrQmorkWEHFrZYc6vxyhTMTwyzs7ODz+cjMjKSzc1N+vv7USgUvPLKK9QVpvPuwOoBMzEZAfb9Rc0sI50PmZiYwO12ExUV9VQDpr9PNv/S0hJra2tUVVXRfv/XGLVpQRkF+1//yywbPEl9qZoBQDDhHzx4ICQ8X7TUajWjo6N4vV4KCwuFbCk6OpozZ87w6NEjNjc3KSoq+kInzmaz8Vd/9VfI5XK+8Y1vBCkEdnd3+eijj2hoaOD/Ye+9g9s8s3zNB4kkwAiQBBOYc6ZISqISZcmycpYc23bb7jg9oW/vbm1tzd66tVt1796991ZNzW7d2Zmanen2dLu7nW0FSy3LSgxgzjnnBALMAAPS/gF9r0mRouie1J7aU9VVbZEAgQ/43ve85/zO84uIiNjwOJPJREVFBc3NzY/n390Eypbpd26VaXpUrH+Uq+b7r15k//79hIWF7ShxqaurE/PGO/n96elp7ty5w82bNwWrGzyLQEhICG63m9LSUmQyGU6nkz/90z9lcXGR+/fvc/bsWfE+y8rKsFqthISECDMk6SQo2f2Oj4/vyHhHMkiSeovR0dG0tbWJnmxnZyf19fWUlZXR2dkpqHgqlRd3VxO3dVabdmrYF+IQVYdN18Ph9Uwh36zNzmzzQ1TOZV599VV8fX3FZj8wMMDU1BQpKSnU1taSmJgoxI8dHR2oVCpT2UwHAAAgAElEQVQxI2232xkaGiIy0mMcNDPSQ4I/TKyqWHF/LYYLkq1wxGcI+2gb9fX1ArVqdvnQtENcsdbHMwXw/e9/n9DQUCoqKjh8+DCnT5/mPxvnWLSz9fPIns5SVygUdHZ24uXlhdVqJTw8XKCKrVZPK0Ov15OYmCiEhNKkh9TeUSqVHD58WOBkJycnqaiooL6+Xszaz8/Pb+B1SKfy6upqJicnycrKEtqA1dVVWltbKSws3IQADwgIEG2G6elprly5wuTkJKWlpcTGxnLo0CGGhoYoLy8X645UPpc8Cdrb25mamhI992vXrmGxWNizZ48wrPH29qa2tlaIDqXqYFJSkkCr+/j4bMATw0aCYV9fnzD1kcBAVVVVmEwmDAbDJqMdiYp46tQpsrKyhCnP+pBaCC+88ALd3d2YTCZkMhkFBQXExMRgNBoxmUyEhYWRk+OxnO7o6BBtMLlcTnJyMhaLhbCwMAHLamtrE7yCDRUmZzB3+qzUTjlJ0vujdtlYWlpCpVIREBAg2n/7c1IJss/QODy7QY8Up/Xmr14v5J0zB4mIiBDYaqPRyPj4OHK5HJ1Ot2mdexYb5puo+efm5mhpaXm8Z5RybE82j4Zsm8BL34axwZ3EH1wyAB6W/cTEBDU1NeTm5j41E9wuLBYLPT097N27F39/fxYXF6mpqeHw4cOEh4fz8OFDXC7Xtor79bG2tsavf/1rrFYr3/3udzdxwru6uujo6OD06dN4e3uzvLxMQ0MDt27d4sGDB1gsFiE6O3bsGF72RezjnczI/B9vYJ7Qylf58+ci+MH54m+sbfjd734nPNm3i4mJCW7fvs3t27dZWVkhPj5enCDAs9AvLCzg4+PDmTNn6O3tJT09nfT0dD744AN0Oh3Hjx8XSNHbt28LrsGlS5d44YUXmJ+fZ3p6WrQcZDI5d9cStz3JzisC+c6eaMbHx8nKysJqtfKb3/yGyMhI3nnnHXbt2kVqaqqgFa6PaYfXjpzVotxmvFxbU8d26mAY6bYQKF+lpaWFpqYmAFH6B0/y53K5mJmZERWTlZUVuru7hZJcOm1J3vEqlQr34jSpchM5Ojehj+e4DwTM4e1YJD09nZiYGGJiYkhISMAVGEXZyLO5BtHyeXxdHk/6ffv2CaTq3r17GbXJ+Nvy4W2u2fYs9cnJSebn51leXmZ0dJT8/Hzq6+tFIrm2tiac6yQ0rdls5vz589TU1DA2NsbBgweRy+WEhISQm5tLRkYGKysr1NfXY7fbmZqa2mBkBBvHDf38/IiJiSEpKYm6ujrsdjsDAwPCCXF9BAUFER4eTklJCfPz81y8eFEkBDExMRw6dIjx8XFKS0sJDQ0lNDSU2NhYdDodtbW16HQ6oQuan5/n0KFDXL58mdTUVNLT09FqtbS1taFWq+nu7mZ0dJTExERBzdu1axc2m41Hjx4xMjJCfHz8pnFCiWBosViYmppCo9EwPz+PVqsVvgXAhtaBXC6npKSE+Ph48vLyBBinp6dnw/tfXl6mtbWVsLAwFhcXGRwcFEyJxMREampqWFlZIScnB29vbz744AOhNVAoFAQHB2O32/nJT35Cbm4udXV1HkbG5OS2iX7zgjc65xz+co+t9I9//GNRKZyfn+fKicOoBitJVts4lBhE2GwL/+FSPgWpccjlckJDQ8nKymL37t0EBgYyMjJCVVUV1dXVzM7OCmiS9Hk/iw2z03A4HDQ0NJCSkkJDQwPP780lK1xDXf/0hsTl2zA2uJP4g0wGpOy/trZWbAzftPTicrmora0lJycHtVotxpYWFxc5dOgQKpWKhw8figViu3A6nXz00UeMj4/zxhtvoNdvFntVVFSIGe379+9z48YNenp6iIyM5Pnnn+fcuXNiVKm1tdVjdWu1kKaYJl65wJm8aP7k+TSyGaa3sZLe3l5CQkI2JR1Pi7m5Oe7du0dxcfGWrw88Lmk3b97k7t27OJ1OXnjhBdLS0igpKdlgravVajl79iwnT54UEwZnz56lu7ubxsZGXn75ZaEV+Oyzz3C73Rw/fpyLFy+i1WppbGyktrYWl8slntfi8nnmqdvmUlCcEIR51DMnfePGDUJCQvjOd76Dl5cXLS0t/Pa3v2V1dRWXyyXcy/r7+4nI2Evl5PaiRIAoZgiUb72J7tTBMEs5SYivF/Hx8WRkZDA8PIyXlxchISH4+vpitVq5ePEix48f58CBAxw6dIj5+XksFgt+fn68+uqrNDY2otFo+OlPf8qePXsoKip6vJmtEaH1xddlJVijEifqjIwMiouLxRicj3/gjsRS2aopNHIPECk01ENba2pqYu/evZS1De7I6OtpoiibzUZDQwMhISHMzs4SGRnJ4OAg0dHRTE9Pi+kKqRohcesDAgIIDg5mcHBw00bv6+tLamoqu3fvxsfHh+HhYWF17OXlRXBwsEgelpaWKC8vJz09ndDQUDG9IPkaJCUlbXrNUrn94cOHrK6ucvbsWSYmJkRCcPDgQcxmM48ePUKr1RIWFsbq6iomk0loH7y8vERVY307Ljw8nNTUVFHSXlpa2jBtoFAoSE5OJjo6WoCKpIrX+lgvMJREmTKZDJvNhl6vp7W1ldbWVvFeZDIZVVVVREREEBsbi1wuZ3p6WthpPxnr9QUdHR1kZGSg0+koLS1FoVDQ2tpKUFDQhjHSgoICWlpaOHLkCAaDQXiJSFWPX/T7bJvoz8kDSJFNYbNZqampIT09nczMTMrKyujt7aW4+BCttUYyY/T0T5hZVAbhG6jbYGuvUqmIiooSHhNKpZLOzk4h5F1eXiYwMBC1Wv1Poub38fGhvLyciIgIenp6yMnJYWG8nyT3BP/rW2e/VWODO4k/yGQAPKV+SeCi0WgElWyn4efnR3l5OSEhIURGRuLl5YWXlxelpaWkpKSQkZEhzE1iYmKe2mN3u93cuHGDzs5OXnnlFWJjYzf9ztTUFHfu3GFlZYWmpiZkMhn79+/n4sWL5OfnExISwvj4OA8fPuTatWt0dXURHh7OCy+8wJkzp3HZ5hhorkK+tsTZs2dITU2lp6eHsrIyzGbzltCiJ6OxsZHBwUHOnTu3oUQqUcuuX7/O/fv3kcvlnDhxgrNnz3pQoL/5jWgDgGex/MlPfiJIal999RUKhYKioiI+/PBDMjMz8fHx4f3336enpweZTMbu3bs5cuQIIyMjvP/++zQ1NaHValleXhYJxpJKS8/as9W4hxKCmBvpZnh4GJ1Ox5tvvolSqeTWrVvcv38f8LSSXnnlFcLDw/nss8/Ys2cPloUlKqc3u0M+GVnKyQ1WxD4+Phw7doze3t4dORhq5av8xVtHcblc9Pb20t/fL376/PPPCyb/7t27iYyMFHPVDoeD9vZ2DAYD/f39yOVyFhcXCQoKIiIiQpDlpL6qw+Hg+eefp7+/n6CgIGZnZ8nPzxd/K9TPm09rB55KT5NgUEeCbaLcLPm8T01N0dTURHf/0I6Sn6eJoiS1fVxcHHNzcwwNDQna5MzMDG63m7CwMKKiojCZTCwsLCCXy5mZmeHy5cui5Cv1qNeHSqUiJiaGxMRE6uvrUSgU1NfX09DQgN1uJyQkhNTUVNra2ujs7CQvL4/w8HCWl5cZGxtjbGwMvV4vEqD1ERYWJlDdku5jfHycsrIyDAaD8F948OABzc3NVFRUoFarKSoqwmKxIJPJUKvVVFZWiiRECj8/P3JzczGbzUxOTuLj40NNTY1oG0iEQcki+tGjRwIz/qSoeb3AcHBwEF9fX1Gx8/b2prKykqmpKQwGA21tbWi1WhITE1lZWeH9998nLi5O8AFSU1M3QKjEt8TtprGxEb1eT1tbO7nPnaFhcJqahmZ83HZkMk9yEhISwvz8PJcuXRLCZcnhMXnvUX5eNcF2if6yS0FRtBrZyqIYB+3t7SUuLk7oPey6BP6mHZockRjH7dva2ms0GuLj49m7dy9xcXGsrKzQ0NCA0WhkYGBAsDS2cozdaSiVShobGwUQLScnB6PRSHZ2FkW5Gd+qscGdxB9sMgCejclms4nsfzvx3JMhKXyXl5dF2TwiIoLOzk5RRkxKSmJkZITKykpSU1PRaDS0TSzQNraAbc1BqJ83Dx48oLq6mosXL27oXUpscakN4HK5SE5O5sqVK6LXLXmj37hxg7KyMpaXl9mzZw+XLl2isLCQkJAQDwUrNZXIyEjq6+uprq4mJiaGU6dOiVO20WhkdXVV0O62inv37glmOnhu8r6+Pq5fv05JSQk+Pj6cOnWK06dPEx4eztDQEL/85S/FCKFMJiM0NJTIyEjhori4uMjNmzcpLi6ms7NTTAfU1NQQHx9PamoqIyMjnD59mnv37vG73/2OwMBAcnJy6OrqElamLpcLl1xF+9qzS/BXMgKYGOjC29ubH/zgB9hsNn75y1/S1+fhMmRlZfHaa6/h5+fHr371K7RaLfPz88yOD2HWRLOw+jSWwNc2x97eX8/dR0dHI5fLGRvzWBQ/y8HwmGaE1y54nCKLiopYWFgQ5jCdnZ1i83e73YKd73A4+Pjjj1Gr1R6q4/w8ly9fxuFw0NbWxu7du7l165awQpUMbi5fvozNZhMCuV27dol+sUwmw9zXRq1ZjuyJRVgm8xhpFSv78VrzIJ+luXCplXHkyBGunHmBB33zzFhX2Wohf5YoSq1WU1VVRUhIiGDcy2QyZmZm0Gg0KBQKHA4HmZmZeHl50djYiNPpxGazkZSUxNraGqOjo0RHRz/V3TMgIACr1cro6CivvfYaDoeDmpoaKioqWFhYIC8vj4aGBgHUSUxMFGjwzs5OsrKytmy3SXz/hw8folarOX78uEgIHA4Hg4ODWK1WVlZWyM3N5fXXXyc2NlaMHs7NzREREYHRaMTLywuDwSCukVKpJCMjA7VaTXt7O/7+/nR1dW1oG6hUKjIyMggODqaqqor6+nr0ev2m67BeYDg8PMzCwgK+vr7MzMyg1+sxm81UVFQgl8sJCAggNTWV+/fvMzIywuuvvy4gaIGBgbz88ssCBPYkM+CrlhHu2ZP5rHuZzmV/Oh1fj9OeO7KP6upq9u/fT0JCgnhto6OjHgFsWCI3WiZ5VjyXHMyaZZSAgABRXZGMrsYcfnxkDtuk+XmWkFUmkxEUFCTux9DQUKanpx8TCSswmUwolUqCgoJ+L8H44OAg8/PzLCwsEB0dTUdHh4C+/VuLP+hkACAuLm5D9v9NPtD5+Xna2trYv3+/wFmGhoZSWlpKUFAQkZGRpKam0t7ezo3qbv5r1SJ/9bCPa03j/KZ6mE+q+zH1tnD5xGEKCwvFaXB9GyAiIoKoqCgsFgs//OEPCQgIYHh4mAcPHnD9+nV6e3sxGAwcP36cU6dObeoTShEcHCywpiUlJUxPT1NUVMS+ffuQyWRUVlZSV1cnxunWL87Ly8vcunVLiBe7urr4/PPPMRqN+Pn5cfbsWY4fP45er2d2dpZbt25x9+7dDRCeF198kcHBQfR6vSivVlVVMTIyQl5eHnfu3BF0wStXrrB//36uX7+OTqejoqKCmZkZnn/+eZGhg+dEIY05GYIDaVv02naCIjFEjXa0Art9TfjMSzoNiTZ4+PBhFAoFH3/8MRaLRcxTv/nmGxSmGLZFix5W9ZMZG8bc3JxYDAMCAujo6MDPz4+1tbVtHQzP6qbRrplIT0/Hz8+PiYkJ7ty5g0KhQK/Xs7y8LESUk5OTWCwWgXzt6uritddeo6mpCS8vL86dO0doaKjwamhoaKC4uJiqqirx2qxWK/v27ROLvb+/P9HR0Z535HZTde8L9ieHM2KTs7BO5ZwYouFC6Az+tq8BLJJhDHg2q9dffx2NRkOS3o9P60fXfQpf/z/5M2igEjhpbW2N2dlZ8vLy6Ovrw+FwkJCQwMzMDBaLhaKiIoKDg8VGJIF2Tp70eFlMTk6ye/fuLf8GeBK22tpa1tbWuHjxIoWFhXh7ewvCoESBjIqKEhUDqYIgCQo7TdYNSb50Unc4HDx8+BB/f390Oh39/f0MDg4SEBDA5cuXxfSH0+kU925OTg5jY2NiZK+mpoaFhQWSkpLE+iT1/xMSEgR4aWFhYUPbABCCvZGRER49eoTNZhNjqetjvcCwu7sblUqF3W5nZWWFiIgIzGYzMzMzqNVqHj58yOHDh0lJScHpdNLV1YXFYmH//v2EhobS1dVFVFQUCwsLHt3PM4S9oSwgs81w5cqVDdULs9lMR0cHmoAgvhp8tvvf9w/GMdDRxPHjx2lpaWHv3r0cO3YMk2maT6ZDd4wlflpIyXROTg75+fn4+vrS398vqJBSIuXn57fj0/z09DQ9PT04HA40Gg2Li4vPdKP9tsYffDKgUCiIiYkRsJGtDFSeFjKZjNraWmFJCh4Rkdlspr6+noKCAnx8fJhRhfLfapeZsdlZ/2VcWHMx4ArhuexYhtrquHbtmgCMSG2AgoICampqxFjP9evXMRqNrK2tCQZ4fn4+wcHBz/wCSaeF0NBQYTkcGhrK7t27ycvLY2FhgbKyMjo6OtBqteIU0d7eTmdnJykpKVy/fp3q6mp0Oh3nz5/n6NGjosT35Zdfcv36dVHCleLkyZPs2rWLkpISYdPqdrv5/PPPCQgIoLq6GplMxpkzZzh79ixarZZHjx7R3d3N4uIieXl5HDhwgPv372M2mwkKChIbo2TetLS0RKi3ax24Y/3G43kte53tBCrswvSnsbFRiDzffPNNMXNuNBqpqakRivU333yT4ODgbcmWks2x1N+W3r/VasXf3x+n0ymcDv3laxQE2IhwmoSD4WHdEjKbRUB2QkJCeO+999DpdIKwePr0ac6dO4der6e9vZ21tTVqampEkuVwOBgeHsbpdKLVaklKSmJ6epqmpiaxGUnVl2PHjlFeXo5er0epVDI3N8fy8rJoFUxPT2M0Grl66gjRK4PEKuZ4Pi2UDPk40bPNyKyeknBSUhIzMzM4HA4iIiJYWlrC5XKJEnq0TkNX+S0sLt8NUwwJwWr++2v5zxRFzczM0NXVRUhICGq1WrQ5JDa+y+UiIiICvV4vqhwOhwOz2cy+ffsYGxsTtLqnVf4kp0hpFDA0NJSYmBj27t0rKimS8ZPD4RCCwoaGBoZWfPhPZTP8XcWoSPLXl54jIyMZGhqirq6O3t5eUlJS8PHxwWQykZ2dLXwSHj58KCoaSqWSrKwsFhcXaWtrE+2KkZERUlJSNmyYUqVsbGwMs9ksHBLXtw2kBEOtVmM0GmltbSUqKoqAgI1W408KDCcmJggKCmJ6elqYHHV2dqJUKjl58iQajQatVovRaESpVCKXy8Vop1Kp5NKlS5hM03w2E7Ztv79v1s6ZlADy83dt+OnExARdXV1Mj/Rv216T4akw/fm5XCorKzEYDMTExFBSUkJeXh6hqfnPaDNsL2TdKry9vQUxMy0tDbfbTWtrK5WVleLeDAoK2vJgtj6k1i94+AoJCQnPdKP9tsYffDIAnj6cBBvZrr+/1eMqKysJDAzc4M8uebPb7XYSEhL4o/ebmbFuTAQ8IcONG2PnKCGzHWIaQGoDqFQquru7KS8vZ25ujsHBQeLj4zl58iQnTpwgNjb295qE0Ov15ObmMjU1RUlJCTMzM6SmppKdnS3KhaWlpYyOjhIaGsr9+/dZWVkRWoQLFy7w3HPPodVqWVxc5KuvvuLatWssLCwQGRm5wd1u3759HD58GLfbzb1798Qo5t27d0VP0O12c+nSJXbt2sXS0hJffPEF1dXVeHt78/bbb2O1Wrl58yZ+fn44nU6WlpYICgriwoULNDU14XK5kMlknDuyD/t4JyaHz4ZTd1KoL0e8BwljXlQSVldXkclknDp1ilOnTombdmhoiE8//RTwYI9feumlDaNWkpL4SJIOW281qe4RdinHCfHxCEGfNH2Sko0nTZL8/PyQrS4SKF/lub35JCUl0tfXh1arxW6309vby9TUFFeuXKG6uhp/f38uX76MTCYjODiYuro6UR5fWloS5jJeXl7odDo6OjooKCgQ8J7ExETa29uRy+WkpKRw8uRJbDYbJSUl7Nmzh87OThYWFsjPz8fb25umpiaGhobw9fWlsbERt20ex+w4ydFhFBcXC7e79PR0TCYTL774ojDYcblcdHd3k5WVhVqtptl4nyzvWZLVNt4+XojPQBl/8fZRMmKf7eUhsRUSExMZGhripZdeEkJdpVIpRkvT09MJCAgQaniZTIaPjw9FRUXU1tZiNpvJzc196t8JDw+nr6+Pzs5O8vPzHztYeip9u3btEiOoQ0NDVFZW4nK5WNPG895YEFbnRqiNVHpWzg5TevszZmdn0Wq1Aq383HPPMTo6SllZGdHR0eTk5ODv78/Dhw+Zm5sTI4dS9aqmpkYgeFtbW0lKStqg8fHy8iI7O5v1DokdHR0b2gbSRp+RkUF3dzelpaW43W7Rxlof6wWG3d3dYpRXune8vLwE2yEuLo6pqSlsNhsTExMUFRUREhIitFOG7L38vHr7fv8KKnzneonQ+gqvg/v37/Po0aPHCXkoSptly/aalOj/5Uu5xIcGMDAwwOLiIqdPn6a/v5+mpia8wxO52TL1zO/a70P3kzwMkpKSKCoqwmAwYLVaqa2txWg0MjIygkwmQ6vVbgm5UygU3K5sweLyZWlljROH922pQ/m3EN+KZAA8sBHJ2zwvL29HBEG5XM7Q0BBzc3NidhY8JVO32015eTmKkFj+rmJsm2fx3Az/4Z0LHCzwLApWq5WqqiquXbtGbW0tAAcOHOCll14iNzcXrVb7jy4jeXl5kZmZiVarpaqqSqi24+LiyM3NJSQkhIaGBiorK8Xm+53vfIeDBw8SFBTE0tIS9+/f57PPPmNmZobi4mIxoeHj4yOQrufOnUMmk2G32yktLRWJgNT/9vX1JSIigmPHjlFdXc2HH37IzMwMTqdTmCI1NTV58KIzMyQmJjIzM0NoaCgPHz7E29tbCBSzsrIY7WwkXWkmXrmAQTbL//7KIUImqvBxWikuLhaWvuDpSUdERBAWFiZOx3//938viH/Hjx/f8gZeXl7m5se/wb0whUbmEM5qbrcbu92+iTFgNps9n/TjzywoKGgDde3s2bMkJydTVlaGTCbDYrEwOTkp2P4zMzPExMSQnZ0tnmdmZoaOjg6mpqY4f/48/v7+jI+Pk5KSIkxcGhsbmZ6exmq1srCw8BgL7OD06dMEBQWRkJDA4OAg7e3tBAcHC6fH/v5+ysvLcTqdTE5O4nQ6KS4u5tVXXyUnJ4eQkBDu3bsnqhgOh4MTJ06QmpoqSvUul4uenh7y8/O5UdaA2aXBW+7mtRf20lprJCcnZ0c+HtJUSWxsLH19fcJFc2xsjMjISJaXlzGZTOzbtw8/Pz/RRpDL5ZhMJo4ePUpbWxvj4+Ps2bPnqfe1TCYjMjKS0tJScepbH5IRWWtr62Ow0gjvPlXh7jED65iy8tpuAy+99BIHDhxgYmKCsrIy4uPj2b9/v0gIYmJiRH+/pKREEPukqqXU95cmD2pqajAYDBuun+ScajAYhK/DVm0DCVQEUFpaSl9f3yZQkRTrBYaSJbeUJBkMBuHLEBcXR19fnxBepqWlicRFHZXC9eaJTc/9ZMSpFhnvasRkMnH37l1GRkbYv38/w8PD2Gw2/OVrRPvYmcEfm/Pr5CUhWMNeZzv5Ub5ER0czNzdHW1sbBw4cICEhwYNPX16jYvrZtNl/LN1PStQzMjLYs2cPOp2OyclJDyK+qgqLxYK3t7ewei/vNfMnH7ZSsRAkAGlVE/YtBY3/FuJbkwzIZDLi4+OpqqpienqajIyMHW24kgf5/v37N2TYUVFRtLS00DwyS/PC9qUigGPpYTjnJvjqq6/44osvGB4eJikpCa1WK1zifp8qwHYhoVnXm5/Mz89jNpspKSnBarWK9oTD4SAwMJCgoCBKSkr49NNPMZlMHDhwgKtXrwLw6aef4u/vj81mw2Aw8Oqrr4prMjo6SmNjI8PDwyLhSUpKYnx8nEOHDnH9+nWam5tF2dTlctHV1cXS0pJAL1+6dAlvb296e3tZXFzkyJEjREdHC8V9TEyMUMernMv4uW0sz06xsLBAVFSUKP3L5XI0Gg3p6elinnhubo6bN2/icDi4cOECe/fu3fLzX1hY4N133xXK6TNnzjA8PCxaAFIisF5ABZ5NTXI0NBgMQoUNMD4+TmFhIV1dXczOzuJ0OsnIyMDf35+KigohHnvyZFtfX09YWBgHDx7ks88+48CBA5w5c4aioiLm5uYYHR0VBi4OhwOlUklwcDDHjh0T1zQxMZHa2lpsNhtOp5PR0TG6TDYmV5UkpWVyqDCX3t7eDd8/i8Ui/Nelk5FUhpcmCux2O/1WFf+pbIba5VB67UG0rWq51zOLanmGvVlJOwJ+qVQqWltb8fX1ZWpqioiICAoKCqioqGB1dZXl5WWcTicGg0E8X1tbm2gFRUVFkZiYSGtrK0tLS9uWYP38/LDZbFRWVpKbm7upxCuZ9HR0dFB06irvt8yx7YnXreQn5w8QHRIoiJtDQ0NUVFSQnJzMnj17GBkZoby8nOjoaFJTUwUqWULxSn3qmJgYampq8PHxISAggPLycgIDAzeNLet0OrKysoR1sa+vr8AOS20DuVxOfHw8iYmJtLS0UF5ejlqt3gQqgq8Fhj09PSwuLuJ2u4UtdXBwMGq1mra2NuRyOX5+fszMzLBr1y7Cw8MpKyvD2zeAe0Nb43vXR6Z8Ao3M097x8fHhBz/4gQdK1jrAvDyANRfoXAv853dOErQ4RLRijv/29gn+pxNpyKwWamtrKSgoEF4O6enphISEEBAQQH35Qyx+MSw+Rfz7z0H3UyqVwj9G+i719PRQWVlJQ0MDtaOL/M+3hzfbFdvs2woav83xrUkGwFMe0+l0PHr0aEd8APh6/CkhIWFDpi6XywkKCqK0snpH41V+I5V01FehUCg4dOgQFy9eJHs0JDkAACAASURBVDs7mwcPHpCQkCCU4/8c4e3tTUpKChaLhdbWVgYGBoiOjua1115jaWmJlZUV0tLSMBqNVFZWMjExwb59+7h69SpJSUnMzc3x3nvvidGkoKAg3nnnHSHkun//Prdu3cLtdvPcc8+h1+sZGRlhbm6OgIAAMSr4yiuvEBkZyd27d1ldXUWpVLK6ukpBQQGXL1+mubmZkpISFAoFP/rRj8jIyBCjSzKZTIycra56zH5mZ2cf0wNVTE5OotFoeOONN+ju7sbhcAjQ0NzcnGg3xMbGUlRUtInCBp7+9S9+8QsWFxdxuVxkZGTwwgsvoFQq6evr2+SJ4INndEomk3H48GExsbA+EZDJZBtGALu7uwFISUmhpKSE3NxcfH19mZubo6CgQDyus7OT/v5+0tLS6OvrY3FxkatXr6JUKlEoFKSkpFBTU4PT6WTXrl2iv766usr09DQmk4nGxkbu3LkjNtQJVwBf2ZOoW9XT7wymfEpGyeAS0QEqThwsFH97aGiI9vZ24uPjmZ6exmAwCK1NeXk5mZmZzHrpeX8qBKtTxvoNc85mp++xB0NOwtfz/9vF+Pg4JpMJtVqN2+0mOzub9vZ2IVDz9fUVNFCdTudBcj8m6y0tLfHcc89RW1vLxMTEpqT9yYiOjqaurg6LxSKmXtZH/GN3w+reCdqtzy4pry89SwlBb28v1dXVgs+/PiFISkrCYDBQXl7OwMAA6enpQq2emppKY2MjKysrxMTECFxzXFzchk3Mx8eH3NxcVldX6e3tJTQ0lLa2tg1tA2ATqGh0dHRLAfL8/Dz379/H7XZz8uRJQYaUeAMJCQmi8iQJHSX9SE9zPZNeESysudhuRHWXclz4h6ytrXG9qov/q2F1nZmXnhFZCAdzksiLDqSrtowDBdkEBAQQGRlJVVWV8KswGo0EBwdjMBjQ6/XMzFhYMQ3S49D+k2CEv2mo1Wri4uLYs2cPiYmJrK3Z+YtaG8tuxdbXZIeCxm9bfKuSAYDQ0FDm5+epqKggMzPzmfP3fn5+VFdXo1arN9EGg4ODmRkbonFGtkE8tTHcaOUrvJ7jAfFI0A2VSsXMzAyPHj2iuLh4w6zxP2UsLy9jNBr55JNPMJlMZGZmolQqGR4eRiaT0d7ejlarZXBwEJlMRmBgIDabDZfLJcan/uEf/gGZTCZmlH/0ox/h4+NDbW0tH374IaOjo2RlZQnznDt37gAe8Yw0h33q1ClWVlZ49913BQRFp9PxyiuvEBwczPvvv8/g4KDg8ksjjh7hVxkWl5r+OTtrLgj29WJ5eVnAg6Te9ltvvYVOp6Ouro7l5WWKi4tpb28XinuDwYDZbMZoNDI7O0twcLAQnU1NTfHuu+8KYppSqeTNN98Unu6fV3RwZyV+nSfC16NTAfI1CgoKhOr7yaqBpJqXRqGkRVaj0fDyyy8zNjbG5OQke/fuBTzVqI8++oigoCBmZmYYGhrixIkTG0rba2trotQvWQc7HA58fX0ZHx9ncHAQk8lESEgIx44dYyUwlr/vV28qe1sd0G71pTDu65OK1DvPzMyku7ub7Oxswel4+PAhiYmJ/H2v11N0Mp7osazy9sHEb1R9S01NZXh4mD179rC4uMj4+LhAUk9PT7Nv3z5UKhUWi0UkgpJWQCLmSRXAp4VSqcTX11dAgp7UD0ml+xJj1Y6MZb5/MI6wgK/XEKVSSXp6Ou3t7dTV1ZGVlUV+fj7Dw8OUl5cTExNDfHw8cXFxVFZW0t3dTXp6OiqVCl9fX7Kysujq6mJiYoLs7Gyqq6sxm80kJydvaGnJ5XKSkpIIDQ2lubkZX19f5ufnN7UNpMTRYDBQV1dHVVUVWq12A6jo5s2bAgP+8ssvs2vXLqanpxkdHSUkJITp6WmBgoavEcI5OTl8Ut5G76ofq66tyvSeKZwXfEcJ8UFMo4w7/bmzttkXY8Wl4LOGMV7YlYB50OPcKIHW3G43RqORvLw8xsfHsdlsZGZmCsBcf3MNyUEKrD4h/2iM8O8b0vpp9w/j51XjPL2q9M0Fjd+G+NYlA+DJ/pubm+nr6xNGIE8LCZkrGU48+bOoqCi6a0voc25VEnUjl8n46zf2cvJg4QbkJUBrayt9fX2cPXv2HwW32CqsViulpaV88sknDA0NkZeXx4svvsiuXbvIz89HqVRSXl4uSGeFhYW8+OKLHDp0yMNgbxvkemkjVXUNyNc889IKhYIf/OAHWCwWPvjgA5qamsjMzBSWpe3t7aKUbLfbiY6O5nvf+x4Gg4GGhgZ++9vfYrfbkclkHDlyhNOnT1NVVcWtW7fQ6/WcPn2a+vp6nnvuOVESrhyY5S9qbRtOEP32QLxWZvGXr6FQKLhy5QpHjhwRi2VzczMLCwusrq5y7949VCoVBoOBt956iz179qDRaGhubqa8vFzMKX/yySc4HA68vLxwOBwUFxeLEcmK/hn+S7V10wzz154Ii6RE6oS9ckFBAePj4/j4+IhF1Ol0MjU1JdgXUmsoODiY8fFxBgYGOHDgAAC3bt1idnaWo0eP0tjYKCY71n93jEYjg4OD6HQ6pqenxUIrvfY9e/bg7+/P6OgoTU3N/GrIF5trq5OK57+bx74+qVRWVoqTc3d3t+iPulwu7t+/jyYq9XEJ/WkhY2HVtePFTi6XU1tbS0pKCh0dHRQWFqLRaKirqxNobofDIXgCPj4+AmUrqdwPHjxIRUUF4+PjHDhwYNt7OiwsjIGBASHCfLKS4OfnR4AX3OuZZZWnaYs8J96g4XI0GjWhoV+7M6pUKtLS0mhubqapqUkkt+sTAmliobq6mvb2dtLS0vD29hZiwYmJCdrb2yksLKStrU1MKjzZStTr9aSnp9PV1YXVasXPz4+KiooNbQNgE6hoZmaGuDiPC+Hdu3cpLCwUrqj+/v5kZWUJrsra2ho6nQ6r1YpSqcRut9PW1kblwCwfT4ex4tpYHZLClzUuhkzzf/7sbQ4fPkxmZia9vX3cXDBsOwbYMrbA1Vw9jY2N7N27F4VCQWRkJA0NDczMzBAREUFHR4cY+ZZK9s3G+7x9IIHvn9z9r0r3axtb4FrT+DN/79tsV7xVfHMKwx9AeHt7c/nyZcbGxigpKXnm7yckJDA2NrZBRS5FUFAQxanhHPfqJlC2vOFnOsUq//BWIc+lR2x6HEBvb++WnuP/mFhcXOTOnTv85V/+JVVVVRQWFvLTn/6UU6dOERAQgN1up6KigoqKCvEYl8uFQqHw4DN7zfz4+ijvToTzlT2ZDxcS+XApmTGHHydOnODLL7/k17/+NRqNhh/+8IdcuHABf39/ZmdnAXjw4AEymQx/f3+++93vIpPJ+OCDD7hx44aYCvje975HVFQUf/u3f0tjYyMnT57krbfeEoAP6WRX3mvmjZ9XMefeuKFYHCq+tKdgkuv42c9+tslLQVowKysrBZjp6tWrAgVbVFTEn/3Zn3Hu3DnGxsa4ceOGaDdER0cLWhx4NAL/2402PAf9raZFoMoRw8OHj8S/SvqCzMxM1tbWUCqVolKwfrRValWo1WpWVlZwu90MDw/T1NTE888/LxLE9da1i4uLVFZW8ujRI5xO5wYq3MWLF3G73Wg0GjIyMjhx4gQ/+9nP2Hf6RSwOry1evyfcQI9pifYJD2BIAgtJf186ZUpVE6trZ4mraeHZ3gfg2dAkK2eA4eFhoqKiUKvVAlLj5eUlKi9xcXEEBQXh7++Pt7c3DQ0NuFwuCgoKhLByu5CqVRaLZcN9sD727dvHpRgH0ul2Y3j+7d8diiQsTM9nn33G3/zN39DR0SE+Z39/f9544w0cDgfvvfeeSP6ioqL49a9/zfDwMOHh4bz99tusrq7yi1/8QohOvby8ePnllykoKKC2tpasrCzm5ub4u7/7uw0eIFKEhITw/e9/n4yMDMxmM+Hh4Tx48EAwNqTQaDRcvXqVS5cu0d3dzV//9V9z7do1DAYDaWlpABs8O1JTU/njP/5jCgsLMZlMG1gToaF6Ph9R4XrCdGf9NVLKXGgWx6irq2NkZMTT+ppdY86tfspjwO32fBd9o1JZXV0Vn7lKpRJiUY1Gg81mE8JdgNjYWA4ePMjDhw/RYuVImp7MyMB/lTJ8aMDO1nP9Dn/v2xLfysoAIGZwS0pKSEhI2JYI5ePjQ1VVFQaDQZTzLRYLZWVlfP7550xOThKosHPEoOR/fOUFTmRG8HJuMMqOL8mKC9/ATpfC6XRy8+ZN8vLytkQUf9OQvAU+//xzob6+evUqaWlp4rRbU1PDRx99JMbCbDYb6enpZGRkUFZWxu8aB/iP5XObRC/SCXi+twHV2gIXLlzghRdeEPP1FRUVfHyvCrNTjVOmwMdt58qVKywvL/Pzn/+cyclJVCoVCoWCnJwcJicnuXPnDuHh4bz++uskJSUhk8m4f/++OMG43W6+98vax69l69PsgiKIPzqWueGGt1gsYqPMzMxkaGiIl19+eZM+RC6XMzc3R2NjI3K5XIxWWSwWcnJySEtLQyaT0TaxwH9/0LvNlfdMixhkFoEpliyXz5w5w+LiouAyyOVyJiYmxIYRGhpKVFQUMzMztLe3U1RUxMcff0xAQAAnTpzg448/Ri6Xs7q6it1u5+7du9y5c4f+/n7cbjcHDhxgfHwclUqF0+nkyJEjrK6u0tzczO7du4UyfGTRveOTSqxOzd27dwGEsOz48ePietXW1jI9t0CzLeAZz7Zz9bZMJhNqdafTKUrbk5OTony9srLC/Pw8+/btQy6Xs7KyQn9/v7g2oaGhFBYWUl5eLjQv24Wfnx/Ly8tUVlaSk5OzpZNfYVoco40lzMr8H48XekKnWOOYZhilpZ+XXnqJ7OxsQR/s7u4mICAAnU6HWq0mKSmJqqoqent7ycnJITs7m6GhIYxGI7GxsURERJCenk5TUxN1dXUkJyej0WiQyWQkJyejUqkwGo0kJiaKRD4iImJL0mBaWhr+/v5CozM7O7upbSCTyQgLCyM7O5u2tjZmZ2eJjo4mNjaW+vp6cnNzN/AJ1hMMBwYGsFo9plWD8w4an+F6ufrY9XJioIuGhgYGBgYwO9U7MvNSz/ZiCPRmampKtAz1ej1dXV2YzWaWlpbQ6/Ub1tbY2Fi6u7tpbW0lLy9vy0mhf4kI9fPmVssEs9athZX/HILGP4T41iYD8LU6vampiby8vC0pY+BJBiTPgOXlZW7fvs3du3fFxnH+/HkMBgM1NTXsyU4lP9lAdGggU1NTdHV1sXv37k0f+tDQEA0NDWJT/X3DYrFw9+5dbty4wezsLAcPHuTKlStiIXE6ndTX1/PRRx/R3t5Oeno6L730EpGRkZSVlXHkyBHy8/NJSUnhP5bOPB7r2XrznVcEEu8YxWIxo9PpWFhY4L+8+zn/d5OdRkeE6KWPKfT4Ohep+OomdrudlJQUcnM9qvWlpSUmJiY4efIkp06dEpqNlZUVbt++zZ49e4iKitrRJmx1yDaUovv7+3nvvfeQyWQCTFNcXLypvQMeL4ZPP/0UhUKBTqfjhz/8ISMjI4JN397ejre3Nya7N9ebnj06FS2fFwZGKysrqFQqTp8+Lexepc/C7Xaj1WqFniI7O5uFhQVaWlrw9vampaWFF198kYaGBjGeOTs7y9DQEGFhYWKELTk5maCgIAYGBnA4HPj5+TE+Pi5gQxqNRkCWrGuOHZkS/bA4AcWaVXAPpA3lwIEDjIyMcP36daxWK5FaP0blocyvPM3YyU2ERsb/cmbnBmFms5menh7i4+MZHR2lsLAQu91OTU0NBQUFAjYUFxeHVqslKCiIiooKvLy80Gg0zM7OUlhYyNTUFGNjY8TGxj6TJ2IwGKivr8dsNm/p1Onl5UViWCArLXd5rTiT1w5n88PiBN4p1NPd4CnF9/f3c/DgQXbt2kVcXJywMR4YGECr1RIVFUV8fDxGo5Hh4WFycnLIyspicHAQo9FIXFwcYWFhZGRk0NHRQXV1NQkJCfj7+4tSf0hICEajEZ1Oh1arpaSkBLVavclvRRqfTEpKoq2tDbvdjp+fH0ajEblcvqFt4HK5KC0tFWhxyclTMh16Mvz9/SkoKBCGPmaXZkebeqKPDT+3DfC0Z85dusJHDTsYRVzuxbk0y/z8PAaDQRgq6XQ6ysrK0Gp1DC+5WfYOFuu1XC4nNjYWo9HI4uLiP6soe7uQyWQk6f22pJn+Swga/7XiW50MSLO7H5W28H+Uz/L/lo9sSRmTHLx6e3sFve/o0aOcP3+elJQUfH190ev19Pf3b4CaBAYGYjQaCQ8P3yQQlHzpJSvfbxomk4k7d+7wxRdfsLS0xOHDh7l06RIJCQnC6a+xsZGPPvqIlpYWkpOTefHFF8nPz0etVtPQ0MDo6ChnzpxBoVAwtOji7yvGeJYr4E+vPsfshOdkc7u+n+uLMZv6qjanjMpJF1Heq3z/lYvs3r2bDz/8EKfTSXR0NN/5zndISEjY8L67u7tpa2vjzJkz+Pj47LjvppnpxTk/SVNTE19++aUY4RoZGSEsLIwrV65sur6VlZV88cUXKBQKQkND+e53vyswzhcvXqSoqAiTyUR5eTm9gyO0LD+bI/6kgVF8fDxqtVpUO1wulyixSqwCycZWsquWBFttbW3CmyEhIQGLxcLzzz/PqVOnMJlMNDU1ceHCBe7cuYNarcbX15czZ84IUZxKpaKpqYndu3d73uM3OKkMDw/T1taGwWAQI4Q9PT189dVXYvrjxz/+EVkxIU9d7GTAm0kuDuSlPfO6SbG2tkZ9fT05OTk0Nzezd+9eseFLp1LwaGGkk7w08rm8vMzs7CwZGRmkpaVRWVnJ5OQkhYWF2/5NpVKJv78/JSUlT/U3kDQebXUVnDxYQHx4MAEBAQQEBNDe3i7+dlpaGlqtlry8PKKioujr66OsrExYDUsOe5OTk2RlZW1KCEJDQ8nMzKSnp4eKigpiY2NFtVKv1xMbG0tVVRVut5uUlBThVZKYuFmk6e/vT25uLpOTkwwPDxMdHU1TU9OGaYM7d+5gMpn43ve+R05ODt3d3VitVjG1sdWaJE309PT0gNKbDvuzk4Hi0DXcy/Pis+tpqWfQuT1tMMzHRa5sVPxbS0sLExMTGAwGIiMjKema4rfjgTww+Wxar1MNIWg0Gh49erTluvsvFU+jmf5bsSveKr7VyQBA/ZiV/1pjY8kOW1HGpturqC+9K9Tab7/tEcOEhYVtEB5JM/2lpaXC8jgwMJD+/n5GR0dFqUuKu3fvEh0d/Y3RlBMTE9y+fZvbt2+zurrK0aNHuXjxIrGxscLUp6WlhY8++ojGxkbi4+N58cUX2b179wbwyJdffikYBLBz0YuPpRvH7DgKhZK7a4mbRHWPrwYywBUUzakkX371q1+xurrKoUOHOH/+/JYTHEajEafTyaFDh4Cdn2Z3+80z3N0qCIBzc3OMjY3hdrsJCgoSs+rgOemVlJQIoE5kZCRvvPEGPj4+fPbZZ6jVak6dOkVQUBDZ2dmkpaWxNm+hZtKxrRNhkGyFPMX4hrHD4j15fPnllyQkJFBUVERzczPgsXe22WyPQUou5mS+fFXXxfTsAl6uVdxuFxqNhpWVFdGvHR0dFar5Tz/9lKioKFEOXltbo7i4mJycHKampmhsbOTUqVNUVlaK6sC2JxU2egh0dHQwNDREXFwc3d3dzM3N4XK5OH36NNHR0XR3d3Ps2DFign23XOyS9b6cD7GQEsiWo3tPC29vbyoqKoTjZnR0NJGRkXR3d+NyuYQI02w2C7iQTCYTI6MSqTArK4u+vj4mJiaeajK0PvR6PYODg7S1tW0pJgSPRqG9vZ2Ojg527dqFXC4nIiKCxcVFJiYmmJqaEiAjCUyTn58vytrSxl1YWEh1dTWzs7NkZmaSmZnJwMCASAhCQkJEklBeXk5UVJSobkhmOk1NTeIaVFZWChDVkwJklUolbHqbmpoIDw/HbDbT0NCAt7c3Dx8+5NixYyQkJODr60teXh6lpaVMT0/T39//VFCRVqulsrKS+PBgWuaU294XBn8lGc4BIT4U11Onpk2Mbco2PEYG/Em+H2efKxKTMeCpgFZVVXGvbZRfjQRuGttbb0i0JzORyclJqqurycnJ+SfVZH2TkGimxzPC/s3ZFW8V3+pkYPu+tIcyNrHmzZ+/eJBjx455boL4eMLCtsas+vv7s7S0RHV1tYDrSLzwpKQk0YtbWlri7t277N+//6nP9WSMjIzwxRdfcPeuJzE5fvy4aE9Io2zt7e188skn1NXVER0dzZUrVygqKtrEbF9cXOTLL7/k4MGDopc+t2Tjg7rtSIqeSFwbwFfhxGRX0eSI3PK6eULGjM3OQkcZASrPonv16tUtTxxut5ubN2+SkZEhBHahft580TzOjG3rzwbcRAeoKNYuMj8/x4kTJzhy5AjLy8tMT0+L5+3r66OpqYnq6mrKysoYHBwEPJoR6eQ4NDREVVUVFy5c2ADK8fPzQ6sNYrC5il6HVHLevHjlqKYwOmLXjR3qedS/QLDKzh+98RKlpaXMzs7i4+ODQqHA6XQysqbhnj2Za71r1FsUdDn1jCvDePXMUfqaqjhw4IDYTKVyuVarpb6+nvPnz/Po0SPxXJcuXUKpVGIwGIQLnk6n21AdeNpJJfmJk4rRaMRisTA1NYXD4SA5OZm3336b8PBw+vv7BUQKNi52yeplAidqePd/uIp5qAuHwyGIijsJb29vGhsb8fPzY2FhwVOiT0wUZmFZWVlMTEwIH4fMzEx0Op1oaSgUCsbGxti7dy9RUVHU19djsVi2RRTD16X1srIylErllvodadywrKyMlZUVMWWSmJhIb28vq6ur9PT0bBhVlFDHhYWF6HQ62tvbaWlpwWAw0NPTg9VqJS0tbUNCEB8fj06nIzMzk7GxMUpLS9Hr9eJ0q9FoyMrKoqenh+7uboqLi2ltbaWjo0N4Ijz53mJiYoiNjRWiSj8/P+rr69FoNFy5ckUkP3K5nKqqKvLy8jCZTBiNRkHwXH/PqlQqxsfHGRkZwd9t29ahc5+7kxC1x+Gyv78fp9OJRqPh3/+7H7MnPoSWsY3fxQg1XAybxTXRQVNTE2NjY6LKKZPJcLvh+lzkUw4gbJjfT0xMpK6ujtHRUYFy/tcImUyG3t/n35xd8VbxrU4GdtKXtjnlXCiIIyEihM7OThwOh1DebhUGg0Gw1VNTUwkODqa1tVUsYAAdHR10dnZy9uzZbamDbrebwcFBbty4wYMHD1AoFJw8eZKzZ88SGRkpkoCuri4++eQTampqiIiIEK6AT9MitLS00Nvby7lz54SK+/4X16g3u7fN9ENVDv6fPzrN6dOnkeli+aL12TzwUznRWCcHOH369FNLdhMTE1RWVnL06NENQietYo3fdVo2W+w+/t8R7yEUK7O89tprZGZmYjabuXfvHkVFRWIReOedd8jLy2N6elpMPPj6+qJQKIRrXWdnJzKZDLPZzPDwMCaTCavVyuzsLB999BEJ+gDeOX+Y5rEFZm128TqClXYyZBPUOjaPStlccrpWA9HLFulrqhKCuJWVFUbtvlu6vNmccm62mTD4rPHOSxfEaU9qN01NTaHX60lISKC0tBSAnJwcUV1aj8l+/vnnqaurQ61WCz7B+s3bPdrEsSj4qx+dIkbni81m4+HDh2LTkMYji4uLiYjwTMNI1rsSD0H6nPT+PnitzjHY0czBgwfp7+/HZrMJLO5OQ6qAhIeHMzExIYhzNTU15Obm0tnZiUqlYmpqSmgmZmdnmZycxGq14nK5CAwMJDU1VZSWd+/e/Uz0uK+vL6urq1RUVGwpJgTPJurl5cWjR4+IiooiODhYzPrX1dWhUqno6OggMzNzw+OlimFhYaGwIl5bWxOz8usTgoqKCqGJyMzMZHp6mkePHqHVasWhYf3oYX19vRCR1tTUEBsbu8mcCBCVrqGhIcbGPAm/3W5nfHx8A6Sorq6OyMhILl++zNLSEo8ePWJsbGwTqKirq4upqSn85WuEya2YXRsdOkNVDg4qeolULGK32+ns7CQmJgadTifurWNFebxRFItzqJ6AxWH+/dUi/uPLRRzdm8uBAwfIz88nMTERvV7PxMSE5/50+dC0rWjx6/n9KJ0/er2eR48eiUrt/x//vPHtTgZ2WBqfayulrfKBYLm7XC5RepZmyaVQqVR4eXlRWlpKcnIyAQEBKBQKjEYj2dnZaDQaj6eBQvFUxbPb7aa3t5dr165RWlqKj4+PAPeEhYU9zpI9v/Ppp59SWVmJXq/n0qVLHDp0aMsFYX08ePCAgIAAYft6+/ZtWltbCZSt0O/ayh3Rk+mfDJzk4C6P/e6qix2V8YuClvCVOzl16tRTs+K6ujomJyc5derUhmtpMw0z11MPupjHjpCeMPjL2efuIk0r46233iI8PJylpSV+9atfER0dzZkzZygrKyMwMJC0tDRhFw2QlZXF22+/zb59+zhw4ABeXl4MDAxQWFiIWq1mZmaG3t5ewWUXff7ZSY5GqwheGUVvn+JwmJ0M5yBla9HbOrY1DM+QrjRjsZhRKBTIZHIeutOwOZ9CJwOsXsH84LlUcb28vLzo7OzEbDZz5swZAVWy2WxcvHhxQ+VHYtebzWZiYmI2VAfAsznp1Eqq793k8N5d6PV6ysvL+fjjj4XjIXicKBsbG9m3b5/oXbe2tmK327cUZFosFmH3Lfl5rCcq7iQWFhZobm4mPz+fhoYGioqKCAoKorq6mpCQEMxms2izjIyMkJ+fL6BgXl5eBAQEYDKZKCgoICAggLa2NnECf1ZILAyTyURWVtaWvxMVFcXY2Bi1tbXk5OTg5eWFj48PkZGR1NXVIZfL6e/v///Ye+/oKM88z/dTSTknJFBWSUiIIGFAkQxCmGwwmGRsbBy62+2+O7N3z5w5c3fmzN6z5/Ruz3ZP6GnaHmiSjTEmucFkZLCEAggkIYESyjmVYqlUUr33KPt1VAAAIABJREFUj/L7oFIsYTx7Z833L1uUVG+9VfU8v+f3+wbmzp07iskuj6Xkz1l1dTU1NTXCZTImJoanT59y9+5dQkJCcHV1JSoqis7OTtLS0nBychLMeZVKRXR0NH19fWRkZDBv3jxhQuXl5TVmEI6trS2RkZHCtTIgIIDm5mZyc3OF2iAvL0/YeEdERDBjxgzu379PdnY27u7ueHt709HRweXLl8Voxt7UR6SqhUBVB8HqbnbN92Fa831cVUaLU313dzdLliyhpqaGqqoqgoKCcHNz41ZmLrqefhIWxjLDw0yalJMYZbOhvr4+mpqaMDj48EQ/Odla1u97eHjQ39/Pd999x8yZM3Fycpr0d1/i+fEfuhiwdi79n9fHEhk8XUjP6uvryc/PJycnhzt37lBQUMDTp09pbGykq6sLHx8famtrqaioIDY2Fm9vb+7du095u4FOlQvffpfJgtkRQkMtQ5Iknjx5wtmzZ7l79y4uLi6sX7+e1atXC1MTSZKoqKjg7NmzpKen4+bmxubNm1m2bNmE8kgZBoOBixcvsmjRIvz9/cnKyhJeC8sWzmHX6jjuV7RYMMWn2Zr4zbY5KFtKycjIMJ9cQgMmJaWFedrj23KfFStWjGI+D8e1a9eYPn36qEX44cOHaAyd/NMvXydl1jRWRfkQ59qNa3U6LsoB3nnnHUHOO3nyJHq9nj179ggCkZ2dHY8fP/7eSlgiNjaWTZs2iYXaZDJx/vx5goOD2bJlC5GRkcTGxrJgwQIxq16+fDmenp6CSGfq1ZlVA/1dtJnsJhmVQD8aXlsUxt5tm8x+7oWVPBiYyAZbQdeANMqwJzMzE71eT2JiIleuXMHBwRyfO7KgVCqVuLu7c+fOHV555RWhSBjuXlhTU8ODBw/w8fHhwoULlJeXM3/+fFJSUsjNzcXOzg6tVsujR49Yvny5OBU+fPgQtVo9ZvtfLgYSEhKEvfCiRYsmeJ1j4/79+8TExFBYWEhwcDCenp40NjZSX19PUFAQzc3N9Pf3C4lbdHQ0hYWFwpq4s7MTrVZLaGgoOTk5VlkUwzMy4Z07d8TJfyRktzv5786ePdsisa6srAy9Xo9OpxuXhKdSqQgICCAuLo6amhqqq6vJysrCZDKxcuVKqqurLQqCmTNnotfrSUtLQ6PRiPRUhUKBVqsVPBg58EgeHw1XDshIS0ujtraWV199VahXHB0dSU9PR6lU0tXVJRwUwUyelMcG3377LR0dHcImemhoCBsbW5oG1LRJjmgUQ6TEhtFYYSa+Dg4OYjKZmDZtGra2tvT29vLkyRO0Wi2tra1cK6jhf93Xc71Bw1OTJ18+aOTMvQp66sopfZjJ1atX+fbbbykoKBDP5+jqQW7X5PP24ZLW4OBgHj9+bMH3eIkfB/+hiwFrWdZ/t20hgYGBREVFkZGRQUpKCps2bSI8PJwZM2ZgZ2dHT08PlZWV5OXl8eDBA/r6+kReeUZ5G6eaPLhSp+RCXgOFAx7k69RE+LoQ4OGAyWSisLCQM2fOiFPQxo0bxUYkf6mrqqo4d+4ct2/fxtnZmU2bNrFixQqrI5nB3OKTWfu1tbWcPXsWgAULFrB48WLy0m/gWJ/Lohm2ePbXszHCAf+OfDavSiY+Pl7o+AcGBlgdN5dzD+uQRhmPmDsJe7WDKPUdbN68eVzNb09PD1evXiUxMXGUF0B6erqYoXrYqynIuElRbiYREeFCiaFUKklLSyM/P5+dO3cKm9U7d+7Q29srCHBxcXG8+uqrFotBTk4OhYWFbN++XZyuBwcHOXnyJK2trbz11ltERUURGhqK0Wjk0aNHuLi48N577xEeHk5dn5Kclsnv+ZsrYpkVYD6xXcl+TLFhco3+cHcyOQ0PzKfn7u5uent7SUlJGXP04unpKRzsIiIiLLoDJpOJq1ev0traSk1NDdHR0Wzfvl3M5B89esS0adNwdXWloqJChB7J98vZ2XlM0mt7ezuPHj0iISGBpqYmamtrJ9X6j4SDgwMZGRn4+/vT0NAgTIcGBga4d+8e8fHx5OXlYW9vdvwrKioSJDl5hOfg4IDBYCAqKgqlUklZWRlKpZLg4OBJn9/b25vq6moePXo0LpnQxsYGb2/vUe3nwMBAGhsb6ejoENc+UWtapVIxb948YbtcX19Pbm4us2bNYmBggMzMTEJDQ3FxcUGr1SJJErdu3bLIKlAoFAQEBODt7c13332Hvb090dHR3L59G51Oh1arFa+hra2Nc+fOkZycTGJiorCabmlpQavVcu/ePYxGIzY2NhY8C41Gw6xZs3B3dycjI4PW1laGhoawD4nls1oXC55MdqMRh8Fu7AZ7iIuLIzExkSdPntDT00NYWBg6nc6cm6Fw55I+dBQfqMswRGajiVBnibjZWuLi4li5ciWrVq1Cp9Oh72imzSFw3PValrT+YmmwKGBlSeVIvsdLvHj8hy4GpqoHValUPH36lN7eXmJjY3FzcxO63rlz5xIfH09iYiKzZs0iMDDQHAzUauSzeo/RgS79g5zJraW3Kp97aZcF43fz5s0sXbrUIsa4traW8+fPc+vWLezt7dmwYQOrVq0S2tupQI7RjYiI4OjRo0iSxPz583Fzc+P06dP09vayfv06tq5bTX3xQwK93ejt7aW7u5vo6GiioqKwtbXl22+/pbuhAvehdpoH7S1mhm6KfpZqnmLXWU1CQoKF695IFBUVUVxczIYNGyz4E5IkceXKFaKiovD09OTEiRM8ffqUzZs34+DgQF1dHUuWLKG8vJyvv/6a5cuXi0Wsp6eHjIwMkSK4ZMkSi00NzB2SU6dOER0dLdrekiRx9uxZysvL2bVrl1jM6+rqOHnyJBqNhp///Oe4urqaW5CDcKGonckgn1SUSiXdegPXKvqt/h2Ay5cvi1TJ2tpaPDw8UKvVZu7GOO+/HIYTEBBATU0Ntra2IvOguroaJycnDhw4wPz588WM+/Hjx1RWVqLVahkYGKCvr8+CH5CRkYGPj8+YC2pHRwcFBQWiYJT191OBUqkUIVMuLi60tLQQGxsrLHbDw8OpqKjAy8uLvr4+1Go1dXV1LF26lLt37+Lu7o5araampoYFCxYQHBxMRkaGVRbF8IxMKJ+UxysgZLlhenq6aD/LJ/XCwkIUCgVPnjwRrfCJni8iIgKdTkdTUxOhoaHk5+djMBiws7MjNzdXFAQhISFoNBrS0tLQ6/XCqAvM5Nzg4GCysrLo7u4mOTmZrKwsKisriYiIQKPRcP78eYxGsxmYSqXC3t6emJgYuru7efToEWFhYbS1tdHZ2TnquhUKhYg8HxgYoH7ImVNN3uhHjMf0koqyQQ/eWBXHppXmEZyXlxc6nU5kn5hMEtcMYeOO1hQKBd0ad/7mjaV4e3tjb2+PQqHA3t6ezMxM1i1+hWulneOu18tsKijKucPAwAB+fn5oNBoLvsd4EtKX+OH4D10MwNT1oJ2dnTx69Ej4Yo+ESqXC2dmZadOmmY18brfRL2kYb6b8tGOQ0KE6FArz35bHC01NTVRXV3Pz5k3RIly3bh1r1qzBy8trykWAJEkU1Or44tpd/INCybh5BaPRSHh4OI2NjRQVFbFw4UK2b9/OjBkzRLhOZ2cnsbGxYjZpb2+Pq6srNTU1NDU14aYeJJxG9q6Yi7qpiDcXTSfRqQN6zSeI+Pj4CbW+d+7cQaPRCPtfGTqdjoyMDCIjIzl37pwYAYSHhwsi26xZszh27BiBgYGsX78ehUKBTqfj8OHDwlZ11apVLFmyZNT9Sk9P5+nTp+zYsUMQ7y5fNhdl27ZtIzw8HDAXFgcPHjQrT74fS8hwUBg5nf10XP/6sZzGwgOmcfx2Ef3jJJqN/J22tjYuXrzIypUr6enpoa2tjf7+fpKSkiZ0rrS3t2doaIjs7GyRTV9YWCj4FYmJiaNO+Pfv36epqUm4RNra2grpKcC3335LSEjImM/b0dEh/AE6Ozt58uTJmPd9MjQ3N1NRUUF0dLTgLNjb21NSUoLBYMDNzU24Oq5YsYKcnBymTZuGyWQSnSCFQoGDgwOBgYH09vZSXV1tdUqpo6OjcPqbM2fOuEFmwcHBPHnyhMePHwu3O7VaTXBwMDk5OTg4OAgVxFiERBlyQdDU1ER5eblQhlRVVWEymcjLyxMFQWBgIE5OTqSlpdHZ2UlExLPPlcyPycvLo7KykpSUFB49ekRBQQEqlYrMzEw2btxocQ+USiUzZ87Ezc2NnJwcNBoNkiTx4MGDUSZF6enpFBcXI0mQrplLt3EsG2Iz1fdhdQdtmefIyEjn8ePHDA0N4e3tbeZcGdTkDU08WhsrxMfV1ZWCggJcVYPsTU0cd71+c00ckiSRlZUlIs39/PwIDAyktraW+/fvM2/ePEpa9WMazL3E8+M/fDEAU9ODyqEqM2fOnNQ5sKzd8H161XgwW9n+9VvrSYiNxs/PDxsbG1pbW0WEbVdXl3jerq4uGhoa0Ol0wvNe1ltPhPSyVt45eo9/SSunzOjG7QaJsgFnZjir6W2qwsfHhzfeeIN58+ZZ6JVbWlooLS1ly5YtgrTW09PDyZMnGRwcJDU1laamJvr79cyNCMZ2oBMXDSxduoScnByR8T3egihbMs+bN2/UKayqqorCwkIqKytxc3Nj3759ghhVUFDAwMAAxcXFGAwG9uzZg42NDS0tLfzpT3+iv7+foaEhlEole/bsGfW8vb29nD59moULFwqFR3p6Ot999x3r1q0THYbBwUF+//vf09/fz5YtW0adiAcGBniS/S1PpbGKHclCvy9DpVKh6G4mvU5eyJ69dwoklAqlxe9cv36d7u5uNm7cyK1btzAYDCiVSl577bVJWfIKhYKCggI6OjpEByg5OZmcnJwxOSZpaWn09vYSHx9PYWGhKGjBXEzeuHGDWbNmjWmv3dnZSV5eHnFxcfT29vL48WOSk5OnPKOVDZiSkpJ48OCBiA6XJYaLFi3iwYMH2NnZ4eXlhaurKzk5OWKEYGNjg5ubmwjdCQgIEN0Ba8cW/v7+PHz4kMbGxnHlkSPlhnLxaJajupOXl4dKpaK8vHxMQuFwKBQKIiMjqampIScnh9TUVJKSkujp6RHeEXL8tsxnSEtLo6WlhcjISHGPZemhTIBNSUmhtraW/Px8fH19SU1NHXOt8PX1ZebMmcK3IioqipycHGFSpNfrOXXqFCaTifBFyzlfZmBCc7IhJVsWhrJ2WRKrVq1i+fLlvPLKK8THx1PdLfFd7eSZFSNDfBQKBUajkXv37rE1dRlvJ4eNuV5rNBpCQ0OJjY3FYDCQkZFBbm4uarWahIQEzt19zP97p41PMmrHNJh7iefH/zFsDIVCQfR010kDLmbMmIFGo+Hp06eT/s0WK4NaegZVhISEEBISQl9fH3V1dTg7O7Nu3Tr279/P5s2bmTt3Lmq1mrKyMi5dusSRI0f4zW9+w69//WsOHTrE+fPnycjIoKSkhPb2dhH6Iof9lDX3WDynTrLjTMd0whJfZd++fWP6HXh7e9PX14fRaGTevHncv3+fr7/+mqioKH72s58RGxtLdHQ0SqWS69ev09/fT0tLiwi6MZlMqNVqTp48KcJ7hqOmpgaDwSA2HBlyZQ8QERHB22+/baGQ0Ov16PV6qqur2bp1qzAnOXToEEajEaPROCGZ8s6dOygUCtHGfvjwITdu3GDJkiXCe0CSJI4ePUp3dzcJCQkWJ2QZGo2G6apu/nvKDLQ+lkxlb5shtrjVMn/GaAbzW2sTWGtXjpvCclzgqRnk2DuLRDeqq6uLvLw84uPjRWEox6ROZKbT3NzMyZMnOXLkiOBChIWFCTKlnAI3HJIkidAjT09POjo6LLgocpDSeCdleUMymUxi3DMwMN5sd3zIoxm5VV5VVQVAeHg4er1e2PTKnIGUlBQkSeLp06c4ODjg7u5OT08PHR0dPH36FDs7OyIiIujq6hIeE5PBxsaGNWvWUFJSQnFx8biPmzZtGqtXryY7O1uoVQDmzJlDXFwcBoOB5uZmLl68aBFpPRbUajU7duzAx8eHEydOMDg4yLZt29i/fz+2trbcvn2bf/zHf+TRo0fMnj2b7du3U1xcPOq75ejoyL59+wgLC+PPf/4zHh4eSJIkioqJXovc7Xz8+DFRUVE0NDRw8OBBvvrqK0wmE/7+/kwLjhj3bwzHjLBZQk0lr6VKpZLkhaO/R2NhrBCfmJgYhoaGKCgomHS9dnJyYu3atXz00UeEh4dz5coV/v6Pp/hzTzDNBsttq6y5hz3/lkV6WSsv8fx4sbm7/wGgUqkICgqioqJi0pmotelVdpKBs2fPUlBQgIuLCxs2bGDevHniNDGcCQ4I45XW1lZaWlqESYzsRy5fp4eHJ0da/JEkJaOXIvOX58ijPnavGuf6vz+J37lzhwcPHgAQGRnJpk2bxGPq6+sJDQ0lPDycy5cvi8eHhYVRX1+Pn5+fmOtv2bJllAWxo6Oj0LGDWf98/vx5KisrcXd3H9OoSM6zX7FiBUFBQVRWVvLZZ5+hUqkwGo1s27aN+/fv09nZOeo1yWE7S5YswcHBgZKSEi5cuMD8+fNZtmyZeNylS5eoqakhNDSUlJSUMe+PfDKf7a3h3HsL+JvfHESPDb94Zy/THUwcPHiQS5cu8dprr1n8nq2tLa8lRePzXTodOBASFYOLjUR3dbnFWCozMxONRsPChQv5/PPP8fT0pK2tTdjGjjxtdnR0CDKlm5sbW7ZsITo6mpMnT9Lc3CxCjGbMmDHKsU4OBFIqlWg0GoxGo0UxIEtpxytChnveDy8GJnMAHAk3NzccHR2pq6sjMDBQFAMyUbempobAwECMRiPt7e2CSHnhwgUiIyOpqqqiv78fV1dX7t27R1hYGKmpqRQXF3PlyhXef/99q65DJo5evnyZ0NDQcbswixYtory8nPPnz/PBBx8I+drq1aupr6+npaWFvLw8pk+fPqm6wsbGhl27dnHkyBGOHTvG/v37CQgI4OOPP+bQoUO0tbXx1VdfiUyRnTt38sUXX3DixAl27tyJra2t2XekpQ+vuUtpM9lTUvyA6dP98PPz48KFC7S2to7iz8hwdHREkiRWr17NjRs38PX1ZWBggJqaGhQKBVu2bKFeb935b7xEvmg/F8J9nChr7hljTTKPycK9nZjlN5pk6+TkREREBA8ePBCy6Mng5ubGpk2bSEhIYMO/Zo2Zsihfx99+XcjVX019tPUSZvwf0xmYCkJDQ6murhYa9PEgf/DHb6iBr73E1VOHqaioYO3atfziF79g/vz5E7YVZU/9qKgolixZwpYtW3jvvff4q7/6K371q1+xZ88eVq9ejcIjgKb+sQoBM0ZG146HrKws5syZQ0JCAuXl5fT1mYNHJEmitraWgIAAFi1axMqVK5Ekifb2dmbOnMny5cspLi5myZIlFBQUjIqLLSsrIzw8XHz5urq6OHz4MCUlJULvPPKL2dXVRVtbG25ubiQnJ1NSUsLx48dRqVQiJnbWrFliExr5HqWlpWFnZyeMib788ktmzpzJunXrxHPdu3ePe/fu4ebmxu7du8e9L/IGMTAwwMWLF/FS9+MrtRHubY+7u7uQcBUUFIz63YSEBBQK8FD0sX9tHBHeDhgMzzoFer2ee/fusXDhQtrb26mqqkKpVOLr64vBYBCbJJgdJS9evMg///M/8/TpU1599VV+8YtfiPZ0amoqvb29+Pj40NLSMqbMU3Zt9PT0FFG6w4sB+T0fb3OXOwOSJFncl6lCoVDg7+9PbW0tQUFB1NTUiCJFdvybOXOm4DTIM/vg4GDq6urQ6/V4eHhgY2NDcXExXV1duLm5MWPGDBobGy0inye7jldffZWuri6h5BjvcXJxfP78edEBUKlUvP7660KyeOXKFYv3bDzY29uLsZfcmbKzs2P//v34+vpia2sO5Dl58iRpaWmsXLmSxsZGjh49yo3CWlJ+e5v1//Qd7xy9z6/zVZw3zuZ+bQ8Gg4GVK1eSkZHBl19+OWanTh7lxcTE8NZbb9Hd3S1igmWX0MLvruKm0MM4q4oCiQifsTdz+X793cZoc4bFqIXRrEL6243R427IsbGxNDQ0CPtxa9E8aEtT/1ghbN8/s2TdWvgS4+MnWQyEhIQwODhITU3NhI+z+OCP+lcJkIjXVLNmTQofffQRCxcuHHVimwrkFnJYWBhxcXFExlin8x6ZOy9JEpmZmXzyySeCZLR+/XqSkpIARAu/paUFg8EgOheyfa5KpeLKlStmdzofH0pLS0lMTOT69euUl5cDCJmRPGutq6vjk08+obe3l927d9PX1zdqdGEymfjqq68Acyv20aNHnDx5EhsbG0wmE7t37xZzfbk93tPzbDwih/wsXbqUzs5OPvvsM+G4Jm9m1dXVXLx4ERsbG957770JZ94qlQqlUkllZSWPHz9m+fLlAGKhkhPqLl68KDZYGTIXBKCwsBA7OzvRigfIzs5GkiTi4+PJysrCycmJlpYWkpKScHV15fHjx+j1eq5fvy7ax8uXL+eXv/ylhckQmDf4hIQEmpubASx84mW0tLSI90t2ahzOKJc7Az/2mACemfsEBgYyODgo/Om1Wi319fUEBgZiMpnw9fWlqKgIhULB+vXr6evrw9HRPDduaWlBrVZz//59wGyiBGaDLWvh6elJYmIi6enptLePrxpxdHRk06ZNlJWVkZ2dLX7u7OzMtm3b6O7uxsnJiS+//NLifR8PTk5O7N27F5PJxLFjx+jr68POzo49e/bg4eGBTqdj3bp1mEwmLl++jKenJ/lNBt49/nD0ONBkx7XBmdwsrBP8n7KyMg4fPkx3d7fFY+VioL+/n4CAAIskx6ioKCorK3ny5DFx6urv1zPLgkDx/f//l9Wjw5OGIzHMi2P749B6W47QvDSDrFYX0/EkSxCARyI8PBwnJyfRqbQW1o5sR66FL2E9fpLFwLRp03BwcLCKNyA++CNmym6Kfl73auLXf/Eu8fHxk5LBngfWjimGt/RaW1s5fPgwV65cITY2loiICLGoOzo6Mn/+fLKzszEYDNTW1qJQKMRJU94woqKiiImJ4eLFi0J54OPjQ1hYGKdPn6a9vZ2SkhKRyldQUMDhw4dxc3PjwIED4lpGsr9v3rxJTU0NkiSh0+k4c+aMUAK8+eabFiREmdw5fBO+efMm7u7uaLVajh8/jrOzM2+88Ya4993d3Rw7dgyFQsH+/fvH3fiGQ61WU1hYyLx584iLi0Oj0VBb+yxxTU5hPHv2rOBxSJLE1atXhTIhIyNDtHiNRiMDAwNkZWURGxsrgqdcXV1xcnIS7nD5+fn87ne/Izs7m/j4eD7++GOSk5PH/RwtXrxYbNLFxcWjFlu5GJClYHZ2dhakz8k6A+ONCZ4H/v7+giBrY2MjTtRyodfa2ir8JFpaWmhtbcXT05MlS5bQ29srIqO9vLzIzc1laGgIf39/3N3dhVWytVi8eDFOTk588803E879w8PDWbRoEdeuXROcGYCgoCDWrFlDV1cXJpOJU6dOTdpRBHMhtnfvXnp7ezlx4gQGgwF7e3v27t2Lm5sbN2/eZMOGDezYsQOjcZA7fb7fHy8sIf+syD6a5uYWbt++zbZt2+jp6eHTTz+lsbFRPNbW1pY2kz03nzSRXVpPVlY2SqVSxCvL3gbTVd3s9e/EXWm5cbop+1lrV4atrnLS15ek9eLqr5Zw8aNkDu9byMWPksn6rxvYvy6J/Px8/uVf/oXCwsJR91ypVBITE0NBQcGY3Y3x8Dxr4UtMDT/JYkChUBASEiJiVSdDjJ89fzmrn9fsi1mlKWXftHr+uDkQx55aq04KzwtrxhRyS89kMpGens7Bgwfp7e3lrbfeYu3ataK1LCMxMVEE58gxwfLin5WVhVKpxMbGhvXr17NhwwaePn2Kvb09169fZ8OGDTg4OHDy5EmKi4sJCAggPT2dM2fOMHv2bPbt24eTkxONjY2oVCoLSWJJSQnp6ekiJKegoEBYQb/11lujWt9yMSDzBmpqaiguLiYpKYmTJ08CsHv3brHhDw4OcvDgQQYHB9m6datVAVJyLLFGoxFWyvKpVoadnR1btmyhpqaG9PR0AEpLS6msrCQ1NZWwsDB6enpE0dLf309ubi79/f0kJiaSk5ODSqWiubmZ+fPnc//+faGmCA0N5Ze//CUrV66cUL4G5nm0/JqMRqPo7shoamrCZDLh5eU1ijwI5mJAo9GM27kaPib4ocXA9OnTUSgU1NfXExAQQHW12SXUyckJPz8/ysrKiIyMpLGxERsbG4qKigBISkrCy8sLSZLw8fGhq6uLnp4eQQKUx1jXr1+3+lpkMmFZWdmEZEIw8wQ8PT356quvLDaquLg4oqOjGRgYoLGx0SpCIYCXlxd79uyhra2Nzz//HKPRKAoCV1dXjh07hru7O0s27UQn2TNRC7yyw8DijW8gSRIXLlxgw4YNODo6cujQIYqLi0kva2XPZ0+4MBDNX379lO2HHnCmPwqN/2weP36Mt7e3uOY5c+agai1jh3MZp999hcP7FnL2/UW84fKUWZ7mboxc+E6EkSRAlUpFXFwcP//5z/H39+f06dN89tlnolMlIzY2lv7+fh4/fjzpc8iYdC1UMOF44yUmx0+yGAAzb6Curp7cihZuPWmmsL5z1Bdcr9dz48YNfve735Gbm8uGxbF8sDEZZWc97u7uwkzlx8Jk8zmQ+IvlQbS2tnLo0CGuX7/OggUL+OCDD4SW3Nvbm56eHnHqd3FxYd68eWRmZlJTUyPY311dXTx69AgfHx8xl50/fz5vvfUWSqWSnp4ebt68yRtvvEFnZ6cwb/ruu+9YvXo1mzY9C+ZpbGzEx8dHbDCdnZ2cO3cOrVYriicbGxtsbGx4++23x9y45RZ3V1eX2ACmTZtGfn4+3d3d7NmzRygUJEni8OHD9Pb2snjxYov26ERIT0/HZDKh1WqF49mMGTMprJONAAAgAElEQVQsOgNgPh0mJSWRlpZGTU0N165dIyQkBK1WK9rXeXn5tJnsuVZYz4XbucyePQdHR0fu37+Pr68vg4ODPHz4kG+++YaIiAjBnJ+K33pXVxcuLi5oNBru3r0rugOSJInZsLe3NzqdblQxoNfrJyQDvsgxga2trbD0DgoKorq6WmwuWq2W8vJywsPDMRgMTJ8+XWwKKpWKjRs3AghyoZeXF/fu3QPMYyx7e3vy8/OtOp3LiIyMRKvVcvny5QlPo2q1mq1bt9Le3s61a9fEzxUKBRs3bsTDwwM7OzsePnwormky+Pn5sWvXLurq6vjyyy/N7n/29rz55pu4uLhw9OhRSmomDwwDMCjM3AN3d3dOnTpFUlISYWFh/MOJi+w9lEVFm97i8TrJjoMlGlzCF+Ls7IyNjQ0+Pj5irDU0NMjt858Raq8nNtibJUsW097ejk6no6xsogC4ieHi4sKOHTvYsWMHzc3N/P73vyc9PZ2hIbNFuoeHB0FBQeTmPuBRfee46+9wKBQK/jo1AjMvYcR443vDoom4Ci8xOX6yxUCz0p2zhlm89sds3j6Sw7p/+o6U394mo7yV/v5+0tLS+N3vfkdWVhaLFi3i448/FnrbwMBArl69ysKFC8nLy7OYa79ojDef03o7stWjgbyrpzh48CAGg4H9+/ezZs0ai1azrCgY3h1ITk6mr6+PtrY2wRfIyspCo9Gg1WotHuvv788HH3yAi4sLeXl5FBUVCZlee3s7O3fuHGXg1NTUJEYEQ0NDnD59GrVajYODg5BH2dnZ8fbbb4/pIQ9mk5I2kz2Z1d1cznpEVVW1iF/duXOnRZjLhQsXqK+vJzw8nBUrVlh1XxsaGkhLS8PBwcFinODv7093d/eojs+yZcvw9fUVVscpKSmiLa93CeTT+mlcGIjmLy6U81lHEP9U7sKJ6zlCaipJEtOnT+fDDz9ky5YtREVF8fjxY6tOmGAegXR0dJCQkCDkl5mZmYC52JI3Rw8PDzo6OkY55/X19U1YDAwfE6jVahQKxXMXA/CMNxAUFITBYBCtd61Wi16vR5IkXFxcUKvVNDY2ipl+QEAAERER6PV63NzcUKvVVFRU0NbWhkKhIDExkaGhIdGlsQYKhYK1a9fS09Mj0iLHg4+PDykpKeTk5FBSUiJ+bmNj831L36zSuHz5suh4TIbAwEB27NhBeXk5586dw2QyWRQEmbeuWvV3fFzMWQRvvvkm4eHhfPXVVwQHB5OvmYlJksZRHCn4osxERUUlO3bs4MCBA7zyyiv09/fj4eGBu7s7R44c4c6dOyxYsAAXFxfs7OysLnYmQmRkJD/72c9YsGABN27c4I9//KPgaammz+K3JY6s/6fvRq2/40Ff+ZBX7Z8S4mn5OQ73drKQ9L7E8+EnWQykl7Xys1NF6CTL1mxZcw97Ps3iP//PT0lPTyc2NpaPP/6YVatWiYVUXljkxUmpVFqQjn4MjDWfO74rilBHI3q9Hnt7e95+++1REkZAZCMM3+Dd3d1F58DPzw+DwcD9+/d55ZVXmDZtGn19fRZzWScnJz744ANhpyqTumS74OEYGhqiublZnPZv3LhBXV0dXl5e5Ofni+7B7t27x7V6TS9rZeuhh1wYiOZfHkl8eL6aC4NzyKnu4vXXX7d4nVlZWTx8+BAPDw927txp1f00Go2cOXMGHx8f3N3dLU6L8rhiZHdApVIJkpuHh4codtLLWjnV4jPqs1TZ3s/f3W6nfsgZk8nExo0bhQ4dzLyMjo4OQQqcDPLGM3v2bOH2KHcH5PfW2dkZlUpFZ2fnmJ2BiTgUw8cECoUCGxubH1QM+Pv709zcjKenp3Dkk39uZ2cnVAXNzc2o1WqLlvHmzZtRKBQYDAYaGxstNqeEhATUajV37961upACc5GUlJRERkbGpIqEhQsXEh4ezvnz5y0KfU9PTzZv3kxHRwcuLi6cOnXK6jGhVqtl69atFBYWijGDPDIIcdPgruy3ugWu0WjYtm0bcXFxnLj0LQ19MO6IAWjog6jEVYSEhKBSqcTnR+6+zJ8/n5s3b/LFF1+QlJREf38/paWlo9r7zwNbW1vWrFnDgQMHUKlUHDp0iN+cuMh/TWsZe/0dxy+grq6O7Oxs9qxeyI2/WG6xFl751ZKXhcALwE+uGJAkib/9uhDzOjJar2pC4p4UwkcffcSaNWss4mVl+Pr6Mn/+fNLT05kzZw45OTk/aOG0BvJ8bkm4Jy0lD/jkk0+EdnhgYICzZ8+KNtxwqNVqPDw8LIoBQJDfampqyM3NxWg0EhcXJ07ccttZhr29vUgllBeysLAwzpw5Y/G329raGBoawtfXl+LiYu7evYunpydVVVVoNBpxP8ezOJZNlspHsKrbh2y4aoygRfnMTriyspLLly9ja2vLe++9Z3WL8Pr16+h0Ol577TVsbGwsigFnZ2eRITASRUVFKJVK2tvbxal+os+SBNyTQvDzm05MTIzFvwcHB4tURmtQVVWFh4cHTk5OwmNBtt0driTo7DS3W8fiDFg7JgCEV8HzQh4/NTU14e/vL4qBkRLDrq4uAgICLO6Dvb09kZGR6PV6lEol3t7ePHz4EKPRiEqlIiYmBoPBMKbkcyIkJyfj7Ow8KZlQlhsqFArOnTtn8dioqCiSkpLQ6XRIksSXX35p9chi1qxZbNiwgdzcXK5fv44kSTg4OLBv35us8epCluZZXsvYLXClUsmaNWuYNd86V0Yv/2f5IvJ3e/fu3SiVSvLz80lKSqKhoYE7d+7g5uaGQqEgJyfHqr9tDfz8/Hj33XdZs2YNx4v6MUlj+wVI8P136tk9N5lM/PnPf8bX15e4uDirDeZeYmr4yRUDhQ1dlI5jmGGGgoY+qOmZ+NSxYsUKlEol/f39GAyGKUtlngf19fV88skn3Llzh+TkZA4cOMDcuXPZsWMHT58+5euvvx5zkfP29h61uXd0dODk5ER6ejqZmZnMnj0bFxcX0UkY/nhZAvXgwQOL02V9fT329vacPHlSyOrSi6qpGXKlusvEmTNnsbe3p6OjA6VSiZ+fH/PmzcPBwWFMyd/wzXWslufwhUKn03H8+HGUSiXvvPOOmPlPhvLycrKzs1m1ahXe3t5jbnr+/v4WJEIwt+IzMzNJSkoiMjKSr7/+mpyyxkk/S22DNniFzxu1YKlUKiIiIqwuBqqrq0X8rXzakiSJu3fv0tjYKDbNsWSFYC4GJuoMDB8TAD+4M+Dl5YWtrS21tbXCfEj+bMoSQ29vb2xtbbGzs6Ours5CObJy5Urx3x0dHfT391NYWAiYv3sKhYKbN29O6Zo0Gg2pqamUl5dPet8dHR3ZvHkz5eXlo8iaK1asICQkhKGhIRoaGqYkd4yNjWXNmjVkZGQI/wMHBwf+n/d3sMOnBTeVJcN/shb48zgCtrS0YGNjQ1BQEO+++y6RkZGkp6ej1Wpxd3cXBeW9e/emxM2YDEqlEqfAKDpMdkzFLyA7O5vGxkbWr1//MsL4R8RP7s6+KL2qg4MDy5cvp6ioiNDQUDIzM61i4D4PBgcHuXHjBp9++ikKhYIDBw6wfPly0XIPDQ1l8+bN5OXlcePGjVG/7+XlZXF6N5lM1NbWMmvWLNrb2+nq6hK+72q1Gjc3N/H4/v5+PvvsM7Kzs1m7dq0g5yUkJODr60tnZyddXV38+sh5Vv/2Nv/XlSauG8PZ+1kRX3RrqdSbF6HAwEB27949oavdZIWavFDk17TzySefMDQ0xOuvv27BH5gIfX19nDt3jtDQUOEmN7IzAOZRQX19vUWn5datW9ja2pKUlMSGDRtQqVR8fe1bq57XZdro8Q2YZ6rNzc2Ttq37+/tpamoSxQBAdHQ0AQEBGI1GKioqGBoaErJCGF0MWEsglDfsH1oMyOZDMm9Ar9eLz5QsMaysrCQ8PJy2tjZUKpXFBu3p6cn06dORJImenh78/PzEqMDe3h6tVktnZ6dVRkDDMXPmTCIiIrhy5cqkr0+rNcfwXr9+3ULCp1Qq2bp1K7a2tjg7O5ObmytGZ9YgPj6epUuXcvPmTXH6lguCA9Ob2OH6lN9ujrCqBT4VxZGM1tZWEZZmY2PDli1bWLdunXBAlS29BwaMfHk90yqCn7WY6vrb2dnJzZs3Wbhw4ZhmWy/x4vCTKwZepF5VnrF3dXWh0+mEROpFora2loMHD5KRkcGyZct49913x0xvmzNnDikpKaSnp486yXh7e9PV1YXBYP6CNTc3YzQaRZzxcNkamIuH1tZW2tra+PTTT6mrq2PPnj0sWrSI5uZmXFxcuHv3Llu3biUhIYFqgz2HKx1HtfZ1kh3f9IfBtJns3LkTGxubCdvV1i4Ux7/6M319fSxfvpzIyEirfkeSJC5evMjg4KBoAYO5+BmrMzA4OCjm+Q0NDeTl5bFs2TJsbW1xcHBg8+bNdDZZRyDzcxv79Wq1WtRqNU+ePJnw92XS1fC0QdmoB54ZM8myQhcXFwvTIkmSJu0MjBwT/NBiAJ4pM/z9/VEqlWLjHi4xlHkDgYGBo07rCxYsEBvQ0NAQdXV1whBKVnFcuXJlytclOzrevn170seuWrUKLy8vzpw5MypDYPv27XR3d+Pt7S3sr63F0qVLiYuL49KlS+Tn5wOIkUGwq5qyO+eZZmO0KrZ5PGM0BaBUjB4xyMXA8L+xYMEC9u/fj16vp6CgAKewVzg3EM1ffdtpNcHPGkx1/f3mm2+ws7Ozmhj8Es+Pn1wx8CL1qkqlkrVr19LS0oKXlxcZGRkvpHoGM8nt6tWrHDp0CBsbG95//32WLFkyoc1xQkICCQkJXL58WbRUYbSioKamBqVSyeDgIAaDgYGBAQvmtJeXF42NjXz66acAvPvuu4SGhqLX66mpqWHhwoUMDQ1x584dVq9ezWOH2WMapsjLU1q3t7juiYoBaxcKg66JyMhIlixZYtXjAfLz8ykqKmL9+vUWoUkajWbUpufr64tSqaS2tlYYDHl5eTF//nzxmLCwMF5NmIubQj9BmKtEmJfDuJ8ljUZDeHj4pC3rqqoqkaY3HD4+PhapfHJnYOTjjEYjQ0NDVqsJ4MUUA/7+/vT19dHT08P06dMtTvFarZaysjLCwsLM7WMnJ2pqaixc9WbNmoVGo8HOzo7m5macnJzESdrDwwM/Pz8aGhqstiiW4e7uTnJyMnfv3h01PhsJWW7Y0dHB1auWrP8ZM2aI77+bmxunTp0a5Qo4HhQKBWvWrCEmJoZz586JglBWCzg4OHDkyJFJrw/GN0YLdNOMGjFIkiTWq5GYPn067733HgPuIfxzIVMi+FmLqay/T548obi4mNTU1El9OF7ih+MnVwxMpN1/Hr1qUFAQc+bMobu7m4aGhim3LcdCdXU1f/jDH8jOzmbFihW88847goU+GVavXs2cOXM4e/asMFWSv/hyMVBbW4uvry85OTn4+PgQGBjInTt3kCQJSZLo7u4Wrdl3331XyP/Ky8uRJIk5c+awePFicnJySC+qorrTyPhsZgVlLb1iBjhRMWBNy9NNoSfC23wqsxY6nY5Lly4xd+7cUR4EY40JNBoNvr6+1NXVCYOh1atXj5pXrlq1ilTvbvOrHMen/RcJPhN+liIjI6mrq5uQlS7zBcb6O7KFtCTB48Zucmr76LVxtyhKJ3MfhBc/JgBLZUZQUNAo3oBer6etrY2QkBA6OztRKpUWhZGtra0oCMD8vjx69Ej4K8jdATlgaypITk7G1dWVS5cuTVrAe3t7k5KSwr1790YZF82fP5+YmBg6OzuFQ+FYRN6xoFAo2LBhA5GRkZw+fVo4osrJhfb29lYXBElaL/4+wZaNNoX8VaIrv4rUs1x/F1VruXiMJEnklDVS1mdHl8plzNdtZ2fH7d5pyLLE4ZAwf85GEvymggk7GcPW34GBAb755hvCw8OJiop6rud6ianhJ1cMwPja/efVq65atUqYiWRkZDz3dclfgMOHD+Pg4MAHH3ww5Ux5mQkdFBTEF198QWNjIxqNBnd3d4vOgJeXFyUlJSQkJLB48WLq6uooKyvj4sWLPHr0SLyu4RV5aWkpPj4+uLq6Eh8fj5OTE19dss4NTp4BTlQMTFioASCx2KGR9947YHWxZjKZOHvWTGRcu3btqH8fjzU/Y8YMC4MhOYNhONRqNf9p9zrW2pXjO6ID76bo541prTz59sKE7eOIiAiUSuW4owLZ2384X2A4dDodDSYXzg1Es+3T+5xs9OB/FKgtWrqT5RLAjzMmcHBwwMPDQxQDcjQxPJMYlpaWMnPmTGpqaggKChrVJYmJiaG7uxtXV1c6OjoYGhoiLy8PMPNQXF1dLcK3rIVarSY1NZWKigqrxnsLFiwgIiKCCxcuWJz+5UAkb29z92uqhEKlUslrr71GcHAwJ0+eFCqWkQXBZN2PsrIyrl69yrrEeby/IZmP39xKYqK5S3jlyhW+K20h5be32X4ol+vGcH7+de2Ybf9JeTv88EAgef31d7F0wxy+/t66dQu9Xs+rr776Ui3w74SfZDEAY2v3n1ev6uLiwtKlS9Hr9ZSWllqtHR+OyspK/vCHP5Cbm0tKSgpvv/32uPK7yaBSqdi+fTseHh6cOHECnU4neADygtzV1YWTkxNz5swhLCyMadOmcebMGR48eMCaNWsALBYgk8lEWVkZgYGBZGRkcOjQIbq6uhjqGT8AZjjkGeBkErfxCjVXhZ5U21L+7me7hEOeNcjIyKC6upotW7aM2Wocrxjw9/cXMdOrV68ed0Hy8fFhX2o8a4bu8TcL1azSlPJhiI73/Fv42w934uvry/Hjx0epE2TY2dkRGho67qigrq6OoaGhcYuBO6XNXBkIn7Cla01nYOSY4IdKC2XIJMKAgAAUCgWVlZXAaImhJEm4ublRVVVlEcQUFBSEu7u76E5pNBru3bsnTqYrVqxAkqQxibOTISIigpkzZ3LlyhXBpxkPsguhUqm0SDeUr2n79u0YjUY8PT25f/8+ubm5Vl+HWq1m+/bt+Pr6cuLECWHQJI8M7OzsJiwIWlpaOH36NFqtltWrV4vrTUlJYe3atZzNKGLvoaxRIUhjtf2t5e3cvHv/B41Ek7Re/LdEO7Y7l49af+vr68nOzmbZsmXjepG8xIvHT7YYgNHe2j+kAo2Pj8fd3R2VSjUli2KDwcDFixc5cuQILi4ufPjhhyQkJPxgCY2trS27du1Co9Fw/PhxoRCQTx7V1dXExcWhUqloaWmhp6eH/v5+UlNTiY+Px9HRUbQne3p6uH79On19fdy7d49bt27h5ubGtm3biAnynjgSddgMcHBwcEI1gYzhhdofd8fwulMZm20K+U+71wt/BGvQ0NDArVu3SExMtCDfDcd4m57MswgNDcXPz2/C51m0aBFabRj1hdnEBzphaCxn0aKF4j2YNm0ax44dE+l9IxEZGUlVVdWYp9uqqipsbW3HtGyWJIkvSk3f3/nxNdvy5vrvPSYAczEgZ1X4+vpauPbJEkOVSsX06dPFdQ7vkigUCmJiYqipqcHZ2RmDwUBLSyvX7z/h1pNmVJ5B2NrakZeX91wyuNTUVPR6Pd9+O7kyZLjcUHZ/lOHu7s5rr71Gc3Mzfn5+XLp0aUyvivFgY2PDrl27cHNz49ixY8KR0cnJiX379mFraztmQdDX18fnn3+Oi4sLW7duHbVuLFy4kCL76AlDkIa3/a3l7ZTm3+PEiRNjJmhaC51OR7i3vcX6K3sK+Pj4EBcX99x/+yWmjp90MfAiIbcd5TamNUSi8vJy/vVf/5W8vDzWrl3Lvn37prTZTQYnJyf27NnzfceijPJ2A1/fr6BL5YJSqeKVV16hpKSEf/u3fxMt3dLSUgDx30ePHuUf/uEfyMzMRKlUsmnTJv7yL/+S7du3M3PmTAYHjSISdTLDFGtOqM9+V8EsPxfKbp/HaVDHqlUrx2zVjwej0cjZs2fx9vYW0cRjQaPRYDKZRs155daxNVwNmY1tMpno7OzExsZGWDbb2tqye/duvLy8OHbsmIVETUZkZCSSJI0ZpFNdXU1AQMCYxWFhfSetRg2TabafNPagUqkmTNb8McYEYC4GTCYTDQ0NgjcgQ5YYlpeXExkZSWVlJUFBQaPa9vPmzcNoNOLv70/9kDPnBqI58NVTM8v9n7/j66G51Aw4PFdOiJubG4sXLyYrK8uqjl5YWBjx8fHcuHFj1HsZHh7OsmXLaGhoEPkBU7Eql2OO7ezsOHr0qOCRjCwI5EJhaGiIU6dOYTAY2Llz55heG4UNXRNzekbo+q0l+P1y72s0NDRw8ODB5+ZJ6XS6USf/nJwcGhoaWL9+/YRk6Zd48XhZDLxAREREEBoaiiRJZGRkjBvC0d/fz4ULFzh+/DgeHh58+OGHLFq06EeZjXl4eDBzyUYON03/3t7XxFe9EfzZNI9jV7P4/PPPCQkJ4Z133iExMZHS0lIOHz5MTU0NDQ0NQsLm7e3NrFmziImJwdbWFpPJxOnTp2lsbGS6qpu1duWEek3sGT6VYgDgyy+/pKWlhejoaJKTk6f0um/cuEF7ezuvvfbauEl9gBg5DO8OyAZD7u7uVpG3wKxWcHJyEsTL4aMMW1tbkWV/9OhRi4hcMJ84g4KCRvEGTCYTNTU1444Iqpo7rbq2hk6zrHCiz9ePoSYAczGlVqsFb0Cn04kkSicnJ3x9fcWoYGBgAG9vbyoqKiy6JK6uroSGhpLX2M9VY8SokUh9j4mrxghOfZv3XK3rxMRE3NzcJnUmlLFy5Uq8vLxGpRsCLFmyhPDwcLq7uzGZTCKcyFo4Ojqyd+9eAI4dOyZO3k5OTrz55pvY2NiIDsHFixepqalhx44doxQkMqaq67eWYK3Vavnggw/w8PAQ2QZTvfcji4Guri5u3rzJggULhIPlS/z74WUx8IKxbt06Gkwu/Jdvu8cM4SgtLeX3v/89hYWFrF+/nr179477RX4RSC9r5Vfny+iULMljDX0S/z2zB/fIeGbPns358+e5dOkSYNYhR0VFoVKp2L17N+Hh4TQ3N4uTuSRJnD9/nuLiYhQKBZs3bybY3sAvtd1c/CiZv1sxjY02hXy2N9qCgzGVYuD27ds8fvwYHx8ftm7dOqXXLLvGrVq1atKTvXxaHr6oywZD0dHRImRoIuh0Op48eUJISAhgJmiOtH+WT32urq4cPXp01L9HRkZSXl5uMbtuampiYGBg3GJAbbSuRWsnGay650ql0qIYMBqNP9hISx4B1NXVidcxlsTQ09MTd3d34WQ5sksyb948LjY6jDsSAbjT5ys0+1OBWq1m7dq1VFZWCvLsZI/funUrOp1ulM+BbBHu4OAgHBin6oXg6urK3r170ev1HD9+XKgnnJ2d2bdvHxqNhk8++YQHDx6wYcOGcT8f8Hy+KtYSrJ2dnXnzzTdJTk7m5s2bUxobyF204WvfN998g42NjYX75Ev8++FlMfCC8bjdxNWB0aeXsuYedn+ayf889jXTpk3jZz/7Ga+88sqPypS1xt73cH4Pp09/RWdnJytXrmTlypX09fWh1WoZGhpCp9OJ0YFWq0WSJC5fvkx+fj4qlYqdO3cyb948li1bxsOHD3Cnl13L5uFrOziKFGdtMVBcXMytW7ewt7fnnXfemdI90uv1nD9/npCQEKtmjnIxIJ+ChxsMyc55clt2PGRlZWFjY0NzczNhYWG4u7tz5syZUSdCOZjGyclplGQsMjKSoaEhca/BvGmqVKpxnddcTV1W8TU8lf1Wj2aGcwaAF0YirK2txcHBAW9vb4tiIDw8HL1eT0NDA5GRkVRUVIxpQGRym4FOsmciCatOsueLq9anGQ6HVqslKiqKq1evTkomhGdyw/v374/q6Njb27N9+3a6urqYPn06OTk5U7Yr9/T0ZO/eveh0Oj7//HPxPjg7O5OcnIzBYBCWwhPheX1VrCVYK5VKVqxYwe7du6c0NpCjyeXOQHFxMU+ePHnpKfC/ES+LgRcIsfkC4xG6iuyj2blzJ66urj/69ViTw9BhsmPNjv0cOHCAxMRE4uPjcXZ2przcrE9uaWmhtLQUf39/HBwcSEtLIzs7G5VKxd69e8Xcd8GCBXh7e3P58mXUajURERGjZr99fX2oVKoJ1QCtra2cOnUKlUrFgQMHpqQckF0GjUajSL6bDMM7AyMNhsZLMBwOOZciIiKCpqYm4uPjBZFsLO98BwcHC1MZmRDm5uaGn5+fxcZSXV3NjBkzxh1ztLa2kmxfPylfo79/4sRCGSM7A8AL4w10dXXR1dU1ijcwMsVQNigqLy8XJ2KAjj7rWu3N3QPPPcNes2YNBoOBtLQ0qx6/YMECZs6cOUpuCGbjqvXr14tshosXL46rKBkP06ZNY9euXTQ0NAj/gubmZr755hvCwsJwcnLiT3/604Tpgj/EV2UqBGutVsv7779v9dhgeIbGwMAAly5dIjw8XPhmvMS/P14WAy8Q1my+NV2DPG60zqXsh8LaeWG/4lmLUK1Wk5iYSFHRYzqVLlx9VEd2aT1arZaMjAxu376NWq3m7bfftjiVKJVKUlNTqampobCwkFmzZlnk1MMzWeF4i4rBYODTTz/FZDKxa9euKY9PCgoKKCwsZN26dRYugxNBrVbTZrLndlkblzMfUVHxzGDI3t4eT0/PCRdxOU1vYGAADw8PwsLC8PPzY8WKFWRkZAjjp+GQJWO2trYcPXpULIxRUVGUlJQwODiIJEkW4URjoaWlBT9lN38x3xY/R8t7OrylO5mcU8ZYxcCL6gwAIqegra1NEOuGSwwDAgJwcHBgcHAQk8lk4YppbbvbQTHwXBbFYG7PL1myhKysrFG8jrEgmwapVKpR6YZgHm0sWLCA2tpaPDw8+OKLL6ZEKAQICAjgjTfeoKKiglOnTvHZZ5/h7u7O66+/zr59+1Cr1Rw5cmTCguBF+6qMBxcXF6vHBsMzNG7dukVfX99LT4H/zXhZDLVo4EwAACAASURBVLxAvKgQpBcFaxfQB3fTLGbY/W5BnBuI5kxfBL+5p+er3gj+6k4vRy5nolareeedd8ZsXYeGhhIZGcm1a9cIDg5Go9FY2CJPtClJksQnn3yCwWAgJSWF0NDQKb1W2WVwzpw5Imp5MqSXtbLzWCEXBqL5vy9W8uGFai5KMbQonxUhcot7LJhMJrKysggPD6e0tJSFCxeKxSwxMZHg4GDOnj0rTH+GQ2aIy4u5TqcjKioKo9FIeXm5yJofrxiQJInm5mYGBwdZGunL+wGtfBTeM2ZLd7JcAhljjQleRGfA2dkZFxcXQSKE0byBuro69Ho9ERERVFZW4u/vbzEqkNvdk0tYXWloaJh0tDMeEhIS8PDwsMqZEJ7JDZ8+fTqmmiE1NZXp06ej1+sZGhri9OnTUyIUwrMgspKSEnp7e9mxYwe2tra4uLiwb98+lEql+AyNhxfpqzIRrBkbSJLEw6o22mx8SS+qIjMz66WnwP8P8LIYeIF4kSFILwKTzQtBwk2hp6vqMb///e/5zW9+wz9/eY39R3PRmUYwtnvNjO3Y1DfGDEqSsXr1anp7e8nOzh41KpgoOe/kyZO0tbUxd+5ckaBoLUwmE+fOncPW1pZXX33Vqt9JL2tl76EsKtosN+rWATV7D2ULI5YZM2bQ1NQ05gm5pKSEjo4OHBwcUKlUxMTEiH+TiZVGo5E///nPY24sMiFMXsw1Gg2enl5cv/+Es1kltJnsx2VV9/X1iTa6u7s7dXW1xM/0H7OlO1lioYwfa0wAz4oqZ2dnPDw8xpUYzpw5k9bWVoKCgigrKxPPL7e7lQoFYynmFcDfboxmzZoU4PkCjMBMeHz11Veprq62mowYFhZGQkICN27cEEFKw//e66+/jiRJuLq6UlNTMyrjYDJIkkR5eTkKhYLBwUGys7PF58nFxYW33noLpVLJn/70pwkLghfpqzIZxhsbpJe1kvLb2/xdloELXf7s+/wJFwbnYPK2Xjb8Ej8OXhYDLxDWbL4hHnZWhSC9CEw6L1QoSPXuxsnJ8Xuv+H4+fdCJSZLGCR1S8L9u1054YvLw8CAhIYH09HSCg4MtRgW9vb1jbkq3bt2ipKQEPz8/Nm/ePOXXeffuXaqqqsZ1GRyJiYiVI41YhuvkRyIzMxN/f39KS0uZN2/eqOd2dXVl/fr1FBUVCQvdkZBPdwB//8dTnOgI5n8UqPlvd9q5MBDNxj9kj5kUN1wTbzQaMRqNY5LJrDV6gh+/GJBjoUfyBoZLDMPCwgRHYnBw0IJQmRjmxR93zsVN0W/xt31shtjoXMX8GU6EhITg4uJCaWnpmB0ZaxAaGkp0dDTXrl2z4C1MhBUrVuDj4zMq3RDM7/G2bdtobGwkODiY7OxsHj58aPX1ZGRk8PDhQzZv3kxqaiqZmZkWiYtT6RD8e2Lk2ODv/3hqTCfE9kEb9v0p5wcFIL3ED8fLYuAFYjJvfQUQ2Zv/QtMNJ8NE88Lj78Tx1+9uQ6PRoNPpSN357iSMbet8yZOTk7Gzs+Pp06cWo4Kx2tVFRUXcvn0bR0dH3n777SmfVhobG7l58yYJ/197Zx4W1Znn+8+pKqrYkX0pNhEBwQVwj7ui0ZhEjYkZbZf0dLbuudM3M3OfuTPP3dJ3nuk7t2/f6Z7u25OkE9NxSUxixLgbF1xiVKRZFI2CiCACSoHsRRVVVN0/yCkpKKCKTdT380+WOqfOoSjO+3t/y/c7ezaxsbFOndOv/noXIZbQ0FBUKlWPvgHZlEqr1dLS0sKMGTMcvldKSgqpqakcOXKk19S1n58fSQtWsedBONV6+7vqzSlOp9MhSRI+Pj5UV1fj5ubmUCnRGV8CmeEqE4C9LXRMTAw1NTV2i7U8YqhUKhk3bhx37twhPDy8RxNqxqQo/kNcIy+qr7HS+w6r3a/zz3M9CbE2cOrUKQAWLlyI1Wp12MDpLMuWLaO9vd32nv3R17ghQGxsLBkZGZSWljJ27FgOHjzYqyJlV4qKijhx4gRz585l8uTJzJw5k0WLFnH69Gk7q3I/Pz9bULlt2zablsOjRi4bbNiwgb13VA43Go6UEAUjjwgGhpheF98Qb7b/eAYvzZnIiRMn2LFjR59OdUNJX/VCHx8fNm7ciF6vZ8/h4069373GvndcGo2GjIwMrl+/jlartT3Qu/cM1NTU8NVXX9kmB/pSyHOE2WwmMzOT4OBgl/zOXentUCgURERE9OgbyM7Oxs/Pj8rKSsaOHWuTL3bE8uXL8fLyYu/evQ7n9q1WK78+VU6vTnH0fFDqdDrc3NwICQmhvLycyMhIh4ptrmg7dM0MdB+5HCxdbaHlDEZXaWJ5xLCqqspmXDRu3Dhu3rzZY6cdFhZKoKKNZydpCZD0VFZWsnDhQpt63ZQpU1Cr1RQUFAxIohge+o3k5OQ4VI10RFBQEM8++yy5ubkOvSZmz57NhAkTuHv3LoGBgXzxxRd9zuXfv3+fzMxMkpKS7L7f8+bNs1mVd80w+Pn58dprrwHwySefjJqAAMDoFUK9xR1nlRAFI48IBoaB3hbfeQkhLF26lE2bNlFbW8v777/fq1vdUNNXvTAwMJANGzZgbND18Q4POfDlTrZt29bnyN3kyZPRarU0NDRw79496urq0Ov1eHl5AZ071q1bt2K1Wm1iPK4iqwyuWbOmT5XB7rja29G9ibC5uZnCwkKSkpK4e/dur1kBGY1Gw5o1a6isrLRL78q4kqmQkTUKAgMD+5w6kIMBV0cLlUolSqVyyIIB2Rb67t27jBkzBj8/P5tpEdiPGCYkJCBJks03oqSkxO691Gq1LYthtVqpqKggPT2doKAgDh8+jCRJzJo1C7PZ3MNDwBVmzZpFYGCg082EAFOnTiUxMZEDBw70CPZlR1E/Pz/MZjNms9mmUGi1Wu0US5ubm9m1axcBAQGsWbPG7u9VkiSWLl1KWloa+/fvtws8RmuGYLQ1Vwt6IoKBYaKvxTcuLo63337bZjN88ODBIRnhGgxarZa3X13JGKntBzminkgSRPooifPXUFZWxtatW/nVr37F0aNHe9RnJUli+fLlNDQ0oFAoOXT+MmXt3twzqOjo6ODDDz+kvb2d5557zun0fldKS0u5ePEiS5YscWji0xeuCrFotVqamppss+Q5OTmoVCpaW1vx8/MjISGh32tGRUWxYMECzp4928PSeCAPSp1Oh8lkQqPRYDAYehWfkX8vrooOwdBJEst0DapiYmLsMgMKhYK4uDhKSkrw8vIiKiqKyspKQkJCeuyyGxsb8fHxobi42NbTUVlZycqVK7l79y75+fk26+/vvvtuwKlnuZmwoqKi156P7sjuhr2NG2o0GtatW0dLSwshISFUVFTw+y+Psey3Z+0USxf/+iRlbRr+4i/+wqHWhiwTnpyczFdffWXTBYHOcb0tW7ZgtVrZtm3biGUg+2K0NVcLeiKCgUeEp6cn69atY+XKlVy+fJk//vGPTqcjh4uEhAT+dkEU0LuIza9encbPf/7X/M3f/A1Tpkyho6OD7OxsfvWrX/Hee+9RWFhoewBGRkbiHjOFPW1J/PfzbZwwjefnR6qZ9U+HuFZrJi0tjenTp7t8n21tbXz99deMHTuWWbNmuXy+q0Isckf/3bt3MZlM5ObmkpKSwvXr15k2bZrTDpPz5s0jMjKSzMxMO5U7Vx+Uer2e1tZWrFYr7e3tKBSKPqcOJElyqrGya2YAhicYePDgAXq9nujoaKqrq+0+B3nEsLW1laSkJEpLS0lMTKSoqMgu3V9fX49Wq0Wv1xMV1fl9LSwsJCYmhsmTJ3PixAlMJhOTJk3CYDA4JTHcG2PHjmXixIkcP37c6YZET09P1qxZw+3btzl//nyP14ODg1m1ahVlZWUowifwb1c6ejTV6dpV7G+O5qqu902CQqFgzZo1xMXF8cUXX9gFmXJAYLFY+OSTTx55QDBQJUTByCGCgUeI7Hb35ptvolQq+eijj7hw4cIjbaLZ/OxM/vNMb/wk+wdfd4ESX19fVq9ezT/+4z+yYcMGtFotOp2OzMxMfvnLX/Lll19yJP82HxS79ZBm1hkVHDMlEDDBtRFCmcOHD2MymVi1atWAx6NcEWLx9fXFx8eHyspKCgsL0ev1tsU1PT3d6WvKD2+9Xs+RI0ds/9/VB2VXTYiGhgbCw8N77bdoa2vr16So6/0NZzAga1NUVlYSGxtrS/HLdB8xNJvNeHp60t7eTmlpqe24+vp6wsPDiYiIoLa2FpVKZZs6WLp0KRaLhZMnT5KRkQEwqEZC6GwmNJvNTjcTQmf2b/bs2WRlZTmcRElOTmbWrFnsLn3YF2KP5FRTnVKpZN26dYSHh/Ppp5/abSjGjBnDa6+9hsVieeQZgsEoIQpGBuW777777qO+iacdLy8vUlNTMRqNnDlzhrt37xIXF+eSFO9QMjUxhpj2clT3v+dHCyfxn55P5W+XJhAd4OXw+MDAQNLT03nmmWeAznp2ZWUVfyg002ZV4SDPgCRJFFY2smlWjEsPgMLCQs6cOcOLL77YpzqfM0QHeLJpVgzLkkNZOiGUN+fH9fpzVlRUUFtbaxPEKSsrIzExkUmTJrl0TQ8PD3x9fTlz5gxBQUGEhIQgSRLxId7sza/s8VHJD8rfrU+z3VdJSQklJSWo1Wr0ej2JiYmMGzfO4fVu3LhBc3Nzv30NAHl5efj6+toMqS5fvoy7uzuJiYku/Yy94e7uTk5ODt7e3kyYMIE///nPeHh42ASmNBoNRUVFGI1G0tPT+f7775EkiY6ODoxGI0lJSRgMBs6cOUNaWhpBQUFcunSJ6OhodDodqamp+Pr6olar+fbbb0lOTrb1rMTFxQ1YAlyj0aBSqTh37hwJCQn4+Pg4dV5sbCxFRUVcvXqV1NTUHg2ebe6B/OnSPXprqgN40NrOsuRQQnx6z+wolUqSk5MpLi4mJyeHxMREW1lI/v3l5+dz5coVJkyY4NDqeCSICvBkWkwAV+428qD1YZCZEOLN79anDbkAksA1RGZglKBSqXj22WfZuHEj9+7d47333rOTYx1J5Hr/3JRYKrKP4mNudFrnf/Hixfzd3/0dS17e3PeY4gC6hxsbGzl06BATJ050eRHuDWeFWCIiIrh85wF599oxeYfS0NDo1ALriMmTJ5OSksKhQ4dsDV6uZCp0Oh1qtRp/f39aWlr6DIrkzIAzSJLUIzMwlL0skiTZ+gYkSeqhNwCd2YFbt25htVpJSkqiuLiYpKQkioqKbMZZ0Cm0NHHiRBQKBUFBnZ+NnJKfNm0a4eHhHDp0iKVLlwIDFyGSmTFjBsHBwRw6dMjpzJ1SqWTt2rU0NjY6vH5ti3OfrTNNdbJNtoeHB9u3b7drHPT392fLli2YzWa2bdvWw0dhJBkpJUSB64hgYJQxbtw4fvrTn6LVatm1a5ctJT7SyCntyMhIdu3aZSdy4wxmleMsQnec7R62Wq0uqwwOFd+V1PJfzxv42pDECdN4/vv5Ng5Zp3Bb79oopIwkSaxcuRK1Wm03bujsg1LWGJAzR30FA876EsDwlwmgs1Qg20LHxMRQWVlp9/0eP348er3eNmLY1tZmsza+ffu2TYPf398fDw8PJkyYQFlZGSqVytZoqFAoeO6557h37x4VFRWEhIRQVVU1YIlieNhMWFlZ6ZIDYVBQEMuXLycvL69HI+RQN9V5enqyadMmFAoFO3bssPNBGE0BwUgqIQqcRwQDoxAvLy/Wr1/PihUryM/P58MPP3TKOGWoUalUvPrqq/j5+fHpp5+6VHMc6gfdhQsXKCsrY/Xq1U7vdIcCWba4vN4+aKltd3MoBuQsHh4erFmzhvLycrsmM2celPIkgdlsJiQkpM/Pw1lfAuhcRIdzmgA6mwiNRqNNcthisdiNbcojhjdv3iQiIgIfHx/u37+Pv78/169fp76+Hjc3N1uAk5qaSm1tLaGhobS0tNj6KSIjI0lPTycrK4u5c+cCuCwD3J2uDYquqBump6eTlJTUY9xwOJrqfH192bRpE0ajkZ07d9opKAYEBLBlyxZMJtMjDwgEow8RDIxSJElixowZvPHGG0iSxIcffkh2dvaINxe6u7vzox/9CEmS2Llzp9MPwX4fdHQKMTnzoLt//z5ZWVnMmjWLsWPHOn/zg8QV2eKBEBsby5w5czh16pRTanTQmfZvaWmho6Oj3xKBfLyzmYHuZQI3N7dhyQxA52SGHMh0LRV0HTGUJInExESKi4uZMGECN27coL6+njFjxtiCJFl+WK6Ddw2slixZgkKh4ObNm3h7e1NcXDxgiWKZrg2KziK7G6pUKrtxw+FqqgsICGDjxo00Njby2Wef0d7ebtMxuFxjZtbylzEa29m2bZvLLoqCJxcRDIxyQkJCeOONN5g6dSpHjx5l165dfaqWDQeySmFLSwuff/65U2ULSZL42cxgOk1k7BfLzkeblRci+td9l1UGAwMDWbJkyYDuf6AMRAzIVRYtWkRoaCiZmZlOLbxdJwmam5t71ReQGW2ZAY1GQ0hIiK1vIDo62k5vAB6OGMrNkQ0NDYSFhaHX66murraztlYoFEyZMsUmF33t2jXbGKKnpydLly6lsLCQiRMnYrVaXZoIcIS3tzeLFi0iNze3T2vr7vQ2bthbr8i4IK9B2QuHhoayceNG7t+/zy+37mHpb87YdAzWb7/CIWsqt1pUIiAQ2BDBwGOASqVixYoVbNiwgaqqKt57770eqmzDTVBQEOvXr6eqqorMzEyHsrpdqa+vp+S7Q2yKbGScA2nm/zrHj/obF8nKyupzZ52VlUVdXR0vvfSSSyqDQ8FIqKYplUpeeuklGhsbnUpjdw0GoO9+AYvFgsFgGFU9A9CZHegqPlRRUWFn6yuPGJaUlDB27Fg0Gg11dXX4+flRV1fXw+pWnsTx8/PDZDJRVFRk91pkZCQlJSW4ubmRn58/YIlimenTpxMaGsrhw4f7/TvoytixY3nmmWfIysqyywR17RX53dokXva+yU/C7zE7LnBQ96nVahk/73m23fGhRGe/4N+ua2NfUxQlzUoREAgAEQw8VowfP563337bNlN89OjRQT/YXCEqKopXXnmFoqKiPiVajUYju3btQqPR8A8/XsPxv1nA12/PIsPtJv+2Ioxv3pnPT56fx7Jlyzh37hynT592+D63b9/mwoULLF682GWVwaFgpFTT5Caz3NzcfuWpdTod7u7uuLu74+/vj69v72UWV9QHwfE0wXAEA5GRkeh0OoxGIzExMZjNZrvF0cfHx+ZiqFQqiY+Pt00VGAyGHsFAQEAAMTGdI6oKhYLc3Fy7n2nlypXU1dWh1Woxm812Bj8DQW5QrKqqcqmZELB9l/fs2WP32cq9Ii9OG8ebrzxHcXER586dG9R9Wq1WPsh5QF+eF5dVCbS1Gdi+fbsICJ5yRDDwmOHt7c2GDRt49tln+fOf/8xHH33UY7c4nCQkJPD888+Tm5vLt99+2+N1i8XCnj17aGpqYsOGDXh6eiJJElOiA4hxaybcvcNWA509ezZLlizh7NmzPTT7DQYDX3/9NbGxscyePTBxosGSEu5LlJ8KR5IwMLSqaenp6SQmJrJ///4+G7t0Oh1KpRKr1epUvwA450sAI1MmgM5gwGq1UlVVRVhYGGq1us8Rw8TERKqrqwkJCQFwGACnpqbS0NCAxWKxmzqATpOkGTNm2EoTg5EolomOjiY1NZWTJ0/a/B+cQc4ENTc3c/ToUYfHJCQkMH/+fE6dOmUnM+wqzpS5SuvamP3cy7S1tbF9+/YRL0EKRg8iGHgMkY1YXn/9dSwWC3/84x/JyckZsebC9PR0Fi1axKlTp8jLy7N77fjx45SUlPDKK6/Y5r/le/bw8OjRwDV37lzbe3XdCR0+fBij0cjq1asf6ejRfM97nfuqYVZNk5vMlEol+/bt6/V3KU8SGI3GfoMBVxwLwXGZwGKx2KXwh4Lg4GA0Gg13795FoVAQHR3tMBiQRwzHjx+PQqGwjbc6Cn6Tk5Nxc3OzGSx1/14uXLgQd3d3fHx8aGtr62GNPBAyMjKwWCycOHHCpfPkTFB+fn6v97FgwQLi4uLYs2ePTVvBVZwtc7UrPNiyZQttbW1s27ZNBARPKSIYeIwJCwvjjTfeIDU1lcOHD/PFF1+4tEsZDPPmzWPatGkcPHjQVqPNy8vj4sWLLF++3KEinoeHh92ok8z8+fOZP38+J0+e5MKFC1y9epXCwkKee+65AavGDQUVFRWo68v4l+VRTokBDRYvLy9WrVrFrVu3HKayDQYDzc3Ntt26M82DMLgyAQydjXHX68h6A4CtibDrtaOiotBoNNy8eRN3d3diY2NtksRlZWU9giW1Wk1KSoot6CwoKLB7P3d3d5YtW2Yb7XNlGqA3vLy8WLx4Mfn5+X06eDoiLS2NCRMmcODAAYfOggqFgpdeegmNRsPu3bsHVA50tsxlqL9PYGCgLSCQMwTdnRQfpUy6YPgRcsSPOUqlkoSEBMLDw7l06RK5ubmEhYXZdVwPB5IkER8fT01NDefOncPd3Z0jR44wdepUFi5c6HC3fPXqVdzc3EhKSurxWmxsLB0dHZw6dYqbN28yYcKEXt9npPjmm2+wWq38+JUXnJYtHiwBAQEYDAbOnTtHYmIi3t4Pg5B79+7ZatTu7u5kZGT0+flUVFRQVFTEkiVLnPocr1+/jtlsZvLkyUCn4mNhYSHTp093yujIFerq6igqKmL27NlIkkRubi6JiYk2qV9Jkqiurqa6upr09HTa29u5cuUKGo0GvV5PfHx8j34JDw8P8vLyMJlMtLe3Ex4ebpedCgkJoby8nJaWFvR6/aAkimXCw8MpLi6mpKSEtLQ0p7+vkiQRFxdHXl4ed+7cYfLkyT3OdXNzIyYmhm+//Zbm5maXZaGDvTUcLqymvtVxMCcBQW4mvEpPc/VqIR4eHsyZM4e8vDyO5JfyL+cb+cPpW+y7XMVnl+5wuLCa+BBvogKcCy4FjxciM/CEkJiYyE9/+lNCQkLYsWMHx44dG/bmQnn3EhwczJEjR4iIiGD58uW9PhB7ywxA58Nx0aJF+Pr6YjabiYiIeKSBQENDAzdu3GDmzJlIkjSiqmkZGRkEBgaSmZlp9zvsqgIpN8z1hWyo5KyroqMyAQx9ZgA6+wZaW1tpaGhAq9WiUqkclgq6jhharVY8PT3x8vJymF6Pjo7Gz88Pq9VKQEBAj1KBJEk899xzts90sCJE0PmZrVy5kurqarvGRWeQhafKysocuhtCZ7CxcuVK8vLyyMvLc2m33q+OgSTxb5vn8PrrPyEiIoLjx4+zfft2TIHj+LImhFu19uWCkpqWQQltCUY3Ihh4gpD1AJYuXUp2djZbt26ltnZ4/3DNZjNGoxGlUklTU1OfZQp3d/c+RV+ys7NpamoiKSmJ48ePu/xwHUqys7PRaDRMmTJlxK+tUql46aWXqKurs6tHy5MEgFPiS65oDMDIlQnA3hZaqVQSGRnpMBiAThdD2YCoo6ODpKQkrl+/3mMhlCSJ9PR0rFZoVftzqqiG7OJKu+OCg4OZM2fOD9eu5Pz1ikGnwSMjI0lLSyMrK8vlevvYsWNtwlO96RakpaWRnp7OhwfOsujXWTa9gJW/P8ey357l/K3e/8b787yYEx9MZGQka9eu5Z133mHmzJl8WWL5oenQ8QTCYIS2BKMXEQw8YUiSxDPPPMPrr7+OyWTigw8+IDc3d1j+eC0WC1999RV6vZ5NmzYB9JBA7YqjBkKZmpoaTp48ycyZM1m3bh3Tp0/n4MGDLo9uDQVGo5H8/HymTp36yJwjQ0NDycjIIDs726YpUVtba8sG9NcvAK6pD4LjaQIYnmDA09OTgIAAO72BO3fu2F2/64ghdH63W1paSEhIsLkRdscwJoav21N4v8yf4+3jefVPBT0WzPnz51OnCuLr9hQ2bL/i9MLaF7IglqvNhOCc8JRfwgyOGuIpe2D/9+PMbt2R58XR/ziP1HBPampquH37NoWFhVy7do2yRjP1FneG0mBM8HgwsioughEjPDycN998k2+++YaDBw9SUlLCCy+84NLi0B/ffPMNpaWlbNy4kZiYGDZu3MjHH3/M559/zsaNG3uIBPWWGZBVBgMCAmx18BUrVmCxWNi/f79NZW6kKCgowGQyDdiVcKiYOXMmJSUl7Nu3j7feeotrVU08MHjgjoLg4OB+z3fFsRBGNjMAnTtqeTccExPDmTNn0Ol0thFC6MwO5OXlYTabbbK60BlYfv/994SHh9uO/a6klrc/v4rFat/fIC+YO/5yJnPig8i508TB1lgs3QLk7se5gpeXF0uWLOHQoUOkp6cTFRXl9Lmyu+EHH3zAkSNHWLVqld3rVquVfzp8A0cLtPwTvHvgGkd/PheDwUBLSwstLS20trba/tn13/NaWsjU63sIJqlUKnRuIUBEv/dc02Qkpf/DBI8RIhh4glGr1bzwwgvEx8dz4MAB3n//fdasWTMk+v45OTlcunSJlStX2vzog4ODWb9+PTt27GDv3r2sXbvWrl7dW8/AqVOn0Ol0vPHGG7YAQhaLsVgs7Nu3D4VCMWS2xX1hsVjIzs4mOTm5T0GfkUCSJFatWsV/+d12Fv86ixrjw1HCa787xy9eTOlzmkGv1/cQ6OmLkewZgE6FvKtXr2I2m4mMjEShUFBWVtYjGDh37hw3b97EarXi5eVFcXExiYmJXL9+ncWLFyNJkp2PhKP0NnQumN/8x3lOHXfsnfku94Wkp6eTn5/PoUOHePPNN53u1QAIDAxkxYoV7N+/n/j4eFJSUmyvyXoBvSHv1v/2n/6VAMm+TKdWq/Hy8sLb2xsvLy+0Wq3t37v/U61Wc626ia9/37/Y0WCFtgSjDxEMPAVMmDABrVbL3r172b59O3PmzGHRokUolcoBvV9paSlHjhxhxowZTJs2ze616Oho1q5dy5dffsnRxPPwjAAAFYVJREFUo0dZsWKF7aHq4eGB2WzGZDLh5tZp/ys3T2VkZBAWFmb3XvLsvcViYe/evSgUCruH5HBQXFxMfX09a9euHdbrOMuV+8YB72L1er3dzrk/upcJ5N/RcGYGLBYL1dXVREVFodVquXPnjl1GJioqCrVaw8m8Iio6/EiLGEtRUTEvvPA8BQUFtkyCswvmH4/mOnXc99VNpES4NmkgKxN+9NFH5OTkMHPmTJfOT01NpaSkhIMHDxIZGWmbdHBWLyBl2hzmxwfYLfLy79BZZIOxkl7EiiSps99gKIS2BKML0TPwlCBbmy5ZsoQLFy7w8ccfU1dX5/L71NXVsXv3buLi4nj22WcdHpOUlMTKlSvJycmxExKSU9ZyqUBWGYyJielVZVCSJF588UUmTpxIZmZmv3K9g+XixYu2helR099ut79mLld7BrqXCSRJws3NzSljqoEQGhqKSqWy6xsoLy+3+3kulD7g6/YUfn3VjROm8fyfQhU76qK5VmtGo9HYpgpKq5z7Lh8971wPykD9JrRaLenp6Zw6dcpleV9Jknj++edRq9Xs3bvX9rtwVi9gTnoKSUlJREZG4u/v73IgIN/DcDgpCkY/Ihh4ilAoFMydO5e//Mu/xGAw8MEHH5Cfn+90c2FbWxufffYZ3t7evPzyy32mQadOncqCBQvIysqioKAA6OwZqLN4cPL6Pa5VNXL48BEMBgOrV6/u870UCgWrV69mwoQJ7N69286IZiiprq6mvLycWbNmDcv7u8pgXBOtVit6vd7lBsLudeThkiSGzlp5eHi4Xd9AS0sLDx48ADp7ADZ9nE2Nwf670WB1528P3KbFS8vFixf513/9V04c+Mqpa0aNca4hdDBpcNk6eSDNhPK4YXl5Od999x3ghB34EMpiQ/8TCEMptCUYPYgywVOIVqvlrbfe4siRI+zfv5+SkhKef/75PpvNOjo62L17N21tbbz++utOidAsWLCA5uZm9u/fT1GjxAc5dZS2p7D/65vATcZIHfzdwkVO1bUVCgVr1qzBYrGwe/duXn31VcaPH+/Kj90v2dnZ+Pn5ORRFehS44prYvZnLaDRitVpdaiDsXiaA4Q0GoLNUIO/uo6KikCSJ8vJyAgICbFmRnsGQhBUrB6s9WK02YjQaCZBgjNRGg7W3TngrAUojAc3lBKr8qDO7OTxuKNLgnp6eZGRkcODAAdLS0pya/OhKbGwsc+fO5fTp08TFxaHVavnFiyls3NqpStn1VzRcu3V5AuH76iZqmoyE+GpIDvcVGYEnGJEZeEpRq9WsWrWKl19+mdLSUt5//327OW87cZPKzl18eXk569atIyAgwKlryE2AivAJ/MPRCm7X2U8SNFjd+R+na50WMZG7ruPj4/niiy8GZeLSnebmZgoLC5kxY4ZLjV/DyWBcE12VIoaeZQIYmWCgsbGR5uZmNBoNYWFhlJeX95sVAYkGqwcNkhcBAQFIEqyJNv2wvHc/y4oETFeUExoazAxlWa/HDdXCmpaWhlar5fDhwwPydli4cCFhYWHs2bMHo9H4SHbrIym0JXj0jI6nnuCRkZKSwttvv42/vz/btm0jKyuLs8U1LPvt2YfiJv/vHP/tgoHo6RnExsa69P6SJHG6OdhW4+72qssiJkqlkpdffpm4uDg+//xzbt++7dL99EZOTg4qlYr09PQheb+hYDDp4YEEAyNdJgB78SF42DfgbFak1aLiwYMHLFy4kLdWL2K5poRgtf3iO0Yy8JJ/JelaL3Q6HWFSE+vD6/BXGHsc979XRA7JwiqrHdbU1JCTk+Py+XLg29LSYnM3dKQX8M0780XaXjAkiGBAgJ+fH5s3b2bhwoV8eeYyW/50iZJuHdeNVg9+cfaBy1Kk16qbKNG1MpQiJiqVinXr1hETE8OuXbt6KNe5islkIjc3l9TU1CHX4B8MXZu5uodS/aWHXbUvhkcTDPj6+uLj42MXDDQ2NuIhOXdNH2Xn/Z4+fZqPPvqICGUzK6UCXlRfY1N0Mzs2JPOyZxFJ/gqbSFFYWBia+jJ+En6Pv5/cwSshOnb/JJ3V6mvcv9LTlnugREREMG3aNE6dOtWnLXVvBAQEsGLFCgoKCrh2rTNgvibS9oJhQgQDAqBzIZg3bx43vCY53MUPVIrUlbq3K6hUKl599VUiIyP59NNPuXPnjkvnd6WwsBC9Xu/yKNhI8My4IN5dEMQYyV6fob/08EDLBCPdMwD24kOyLbN7Wy1xgR44yid1YmWM1MaG5+ajVCpxc3OzpeMlCQIVbQSbajDpbqPVRlBVVQV0Wh0nJSUhSRLNzU003L5KtKqZ6fHhxMWNRaer5cyV0iFz6lu8eDEqlYrjx48P6PzU1FSSk5N5b28WS/7vKZekiAUCVxDBgMDGteomyuqNDOUu3tm6t7WtweUHr5ubG+vXryciIoJPP/3UZRtZ6OyNuHjxIomJiU73Qow0EcpmtgTfdSk9rNfrcXNz66EC2Re9ZQaGa7RQJjIykqqqKiwWC56enjZ3wdnqCiQc6+5JwEzVHQ4dOkRHRwcmk4moqCh+/vOf247y8fEhOzvbFigqlUqbrsXUqVP52c9+hkaj4cGDBxw9epSA5Gf4uj2FLbuuD9mC6+HhQUZGBoWFhZSVlbl8viRJBCY/w6HWsZTW2QsKCeMgwVAiggGBjeHYxfdb9wYClUbO7tvFH/7wB86dO+dSStXNzY0NGzYQFhbGzp07ezV76Y3S0lJ0Ot2oGSd0RG1tLSEhwS41c7mqMQCOgwE3N7cRyQyYTCabK2NMTAw3btzAvfEOv10VT3S3ccAxkoHlmptEKJvtZumnT59u9/sfN26c7d7HjBlDR0cHer2e9vZ2ioqKOHPmDP7+/vj5+bEv+wZ/vefGD9MIDxmKBTc1NZXIyEgOHz6M2Wx22nUQOoPV/3WsBByERcI4SDCUiGBAYGMw3eu94YyN6u9em8fmzZuIiIjgzJkz/OY3v+HTTz/l2rVrTtkwq9VqNmzYQHBwMDt37qS6utrp+7t48SJhYWEuj3+NJDU1NQQFudYk5qpjITy6MkF4eDiSpODs1duculGDzqShrc3A7NmzGWO8z2LDBV5UX2N9RD2rNN+zWn2NqZE++Pv7YzKZfrhv2Jp5jF1nrtCq9sdq7ZS5hs4R1zfeeMMWOHh7e5OcnMzdu3epqKigoaGRS+aYYXPqk6dqrtw3suB/H3cp1T8YrQmBwBWEzoDAxnBJkcpjUe8euGYnBTs+2Jt3bfr6wcTFxWEwGLh69SoFBQV89dVXeHh4MHHiRNLS0ggLC+t1R6zRaPjRj37Ejh072LFjB5s3b+4hb9wdnU5HSUkJq1evHrWNWCaTifr6eqeMiboyVJmBkQgGLpU3st88iY9PPgA6BYfGSCk0593Cz3AfLy9PaG3Fu/0+zzw7l7q6Or7//nteffVVPvnkE6o6fMglDp1RBXcAfBgjtTFTdYeX501iwYIFSJJEdHQ0t27doq2tjalTp5KWlsa+ffu43WCmrr53MaLBSBTL3GpRcaw9AUt7B10Dju6y0q2trdTU1HD//n1qamr47nYDENjv+wvjIMFgEcGAwIa8ix8OcRNnRUzc3d2ZNm0a06ZNQ6fTUVBQwJUrV8jJySE0NJTU1FQmTZqEl5dXj2u4u7uzadMmtm/fzo4dO9iyZYud6U13srOz8fLyGna/g8EgS0a7Ggzo9Xq8vb37P7ALjyIYkFUGrVZ76dwGqzuZ9VqWubWSolbR2trKW2+9hbe3Nw0NDeTn55Obm0tVhw/HTON7BK8NVneOmRIYW9lCzWef0draassYdXR08O///u+2Y3Udzi3wA11wbbLSgENzJCu8s+M71nnfRK9vBTobZIODg4kKCoGeTs09EMZBgsEiggGBHc7t4geGLGLi7AM1ODiYpUuXsmTJEkpKSigoKOD48eMcP36chIQEUlNTGT9+vJ1IkBwQbNu2je3bt7NlyxaHC6ler+fy5cvMnTvXpSa7kUan0wGuBwNtbW0un9NXmcBqtQ559qSr90JvKoNX3BJZGNxMfX09x44do62tDb1ej0Kh4MqVQrLNKQ4XWfn8L25a2BJci9HY0y3Tx8cHg8GAj2QBJ3okB7rg9muiBOjaVYQkpDEtPozQ0FACAgJsipD7fntWGAcJhp3R+xQUPDJGmxSpQqEgISGBhIQE9Ho9hYWFFBQU8Pnnn+Pl5cXkyZNJS0uzLX4eHh5s3rzZFhC89tprBAbap1rz8vKwWq09XBdHGzqdDh8fH5f1D1z1JYDeGwjrLB4cv1aFNsB7SL8H/S2SIFGthws37hCogOvXr6NQKGxumw+sHjRY++qLkKi3uHOnqYNApZmAgADmzJljUwU0mUyYTCbCPdwIMpuoNakYDoliZxtzoxMnkZJkn8kazmydQNAVEQwIHOLqLn6k8PT0ZObMmcycOZN79+6Rn59PQUEBFy5cQKvVkpqaysSJE/H09GTz5s188sknbNu2jddeew1/f3+uVTdxr6GNk+cvM2vSZIflhtGETqdzeYcvmxS52kAo70TlLMB3JbX84+F73GlPYf+nnWZT40O8+cUgM0Qyzi6SRskdhcJIeHg4np6eWK1WiouLManGgBMVDINCg9ncTExMDEVFRTY9Ag8PT1rVAZTrzSRJVZwjms59+sOFdSgW3ME25g5ntk4gkBHBgOCxJSwsjBUrVrB06VKKi4spKCjg8OHDfPPNNyQlJZGamsrGjRvZsWMH//Thl1xWJlBq80eI5WKxO8G3akf1w1Sn0xEfH+/SOSaTiY6ODpczA/JiZ7VaOX+r7odavv0x3RveBoOzi2REgBeq1lZ0Oh0GQ2e6X6FQoA30Bn0/JwPu1s6gIz8/H09PT5YtW8aOY5fYey/cLrPghRFvb2/utzysGQzFgjsUjbmjLVsnePIQwYDgsUelUpGcnExycjLNzc1cuXKFgoICdu7cia+vL4Qm8nWlBSt6uu76yh4YhmxhGw7MZjMPHjwYUL8AuCZFDNh6LywWS6+1fPm/3z1wjWPvzB/UYtTfIglW/CUDMb4qJL8INm/ezPnz5zlx4gRJSUmUlt5mjOTVp1PhGMmAb0czSBASEkJtbS37s4s4YhjX45p6NLS1mvjn1ROJ8PMYsgV3qFL9ozVbJ3gyEDoDgicKHx8f5syZw89+9jN+8pOfEB8/nu3X2oZthnw4qaurw2q1DmiSAFyTIoaHwcDVqsYRmW3vS4NCdhCcobpDeXkZjY2NNDU1cf78eVJSUqivr8dgaGOOe1WfToWz3CrQaNRER0fT1NRER4eFIzXefX4fPjlfxsLE4CF16nsUroMCgSuIzIDgiUSSJCIjI2lQ+FB//lyvxw3FDPlwMdBJgoEGA/LCV9PYs/PeEUMx295bPdxfYeSVOCvtFc20qgO4W9fB//z9x/jTTmVlJQ0NDQQGBvLOpk14ffQVx+r87FL+Ye5WXpvsxf0rTQQHa38IHgz9Nh0O5/dBpPoFoxkRDAieaFyRWB5t6VedToe3t7fL6f7BlgmsbY1OHT9Us+2OFsm2qpt8uP8slzomUm/8YZKinU4xofY7zI6LYcqUKWRmZuLVcpfV6rs8sHqgt6rxlNp5fc1y8vPzCQ0NZfny5VRXV3P27FkqGpVO3dNwfR9Eql8wWhHBgOCJZjgklkeKgUwSQGdmQKlUolb3rqrnCNmQ6MLh3QS6TeGByW3EZtu7L5LnWmM4ZkroVUyI0mLKy/cTGxvLqlWrOHnyJDS3ICkUtHao+eLYd7i11CBJsHXrVts1IvzDoab/+xmN3weBYDgRwYDgiWa4JJaHE9m3PvtOC4kxYS4L/shjhc6eY7VaycvL49ixYwAsWbKYjLAkNv/p0g+vPzx2JGbbrVYrvzj4PY6bAjvFhC51xLBKcZXKykrKysqo6vAh25zysARQB/6KEH482Yvmklx8fHwICwvj+vUbBCgDqe/QPDbfB4FgJBANhIInmn6NkkaZaMt3JbUs++1Znv/9OfbUhfLLPKvLNrqu+BJUVlby0UcfceDAQRSB0VR0+KEJG8ec+EfX8NafOY8sJqQIiKKjo4M6t2COmxN7OA7WWzT8psBMnSqIhoYGKioqWLFiOf+2ec5j830QCEYKyToa26gFgiHmu5LaHk1qCSGjS7TloU6/fW+8ROdC5ewIZGZmJs3NzWzZsqXXY/R6PVlZWeTm5tLmG81FUxRl9Q/7K2RxodlxgSPe8HbqRg0/3pbT73E/nWBlTtwY3jlW26t6IFjxVxj5w8pwpk+fbnMufBy+DwLBSCKCAcFTg9VqHbWd3FZrZwagr3JGfLC3U7P9O3fuRK1Ws27dOofXyc/P58SJE1gsFoImzuGX55sGHYAMJVerGnn+971PgMhsDqmioaGe/e39G00d+uu5PaYDRvP3QSAYaUSZQPDUIDepLUoKGdIZ8qHAWd/6c1fLePDgAU1NTej1epuJ0MPjrJTWmyg1eHCtqtHutaqqKrZu3cqBAwdISEjgr/7qr/jipqVXcaFHpcEg93n09tuRpM5d/C/eeZ3n1q536j1rHEyVjObvg0Aw0ogGQoFgFODsCOS23fuIUvYc/VMqldzDj+8MWuo7QqAK3r9+jmC1iRUhLQSYamlsbESj0ZCQkIBGo+HL4+e5WWPu9VqPSoPBFcW+yCDnGv3EdIBA0DciGBAIRgHOjkD+aM1Kxvq7YTabMZlMmM1mzGYzeZWtfHy+sYeXgK5dxY67Y1iuqSUlKBAvLy9aWlpoaGigqNkNCO/3mo9Cg8FZc57HcVpEIBiNiGBAIBgFOLuoLUyN75HOtlqt/P3psw7T/Z3VfyvFPlP4979aaHfu1apGvnaiNv+odtXOKPYJi1+BYGgQPQMCwShgMCOQ/fYbIHGrVt/DS8DZ2vyj3FU7U9cXuv8CweAR0wQCwShiICNvzo7i/WnLdBYlhdj9v/O3atm4NbuzYdDBrvpxWkzFdIBAMHBEMCAQjDJcXdScHcVzNF4HYuZeIBCIYEAgeOxxRqNgfLA33/ShUSB21QLB040IBgSCJ4AnKd0vEAhGHtFAKBA8AYgmOoFAMBhEZkAgeIIQ6X6BQDAQRDAgEAgEAsFTjigTCAQCgUDwlCOCAYFAIBAInnJEMCAQCAQCwVOOCAYEAoFAIHjKEcGAQCAQCARPOSIYEAgEAoHgKUcEAwKBQCAQPOWIYEAgEAgEgqccEQwIBAKBQPCUI4IBgUAgEAieckQwIBAIBALBU44IBgQCgUAgeMoRwYBAIBAIBE85IhgQCAQCgeApRwQDAoFAIBA85YhgQCAQCASCpxwRDAgEAoFA8JQjggGBQCAQCJ5yRDAgEAgEAsFTjggGBAKBQCB4yvn/ef79dQnjRPwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "G0 = nx.read_edgelist(\"facebook/0.edges\", create_using=nx.Graph(), nodetype=int)\n", "for node in G0.copy():\n", @@ -748,7 +964,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": { "id": "_mX4VNsvlPRb" }, @@ -766,7 +982,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -786,7 +1002,18 @@ "id": "W-TKkMJemhlv", "outputId": "2b1455cc-bb4b-4b5f-ecc5-a0411734184e" }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydeXhU1333P3dmNNr3BSQkIYRWxL4LMDs2BrMHbzhu4iVOm6ZukjZt2qZvt/SNmzRNm/h1Eu81xthgDDZmM0ZiByEhhBZAIwGS0C6N1tHs975/yDPWIM1oRggv4Xyex49h7r1nzh1m7vme3yopiqIgEAgEAoHgnkX1ZU9AIBAIBALBl4sQAwKBQCAQ3OMIMSAQCAQCwT2OEAMCgUAgENzjCDEgEAgEAsE9jhADAoFAIBDc4wgxIBAIBALBPY7Gm5NkWaahoYHQ0FAkSbrbcxIIBAKBQDAKKIpCT08PCQkJqFTu9/9eiYGGhgaSkpJGbXICgUAgEAi+OOrq6khMTHR73CsxEBoa6hwsLCxsdGYmEAgEAoHgrtLd3U1SUpJzHXeHV2LA4RoICwsTYkAgEAgEgq8Zw7n4RQChQCAQCAT3OEIMCAQCgUBwjyPEgEAgEAgE9zhCDAgEAoFAcI8jxIBAIBAIBPc4QgwIBAKBQHCPI8SAQCAQCAT3OEIMCAQCgUBwjyPEgEAgEAgE9zheVSAUCASCHquJM606DDYzE0JimR6Z7HPjsmsltZw6WILRYCYpNY7lm2cTGh50l2YsEAi8RYgBgUDgEVmReanyGG9eP41FtjlfTwmO4WfTv0FOxLhhxzAazPz7n79JYf5V1GoVSCDbFV79+X7+8oVHWL5x1t28BYFAMAzCTSAQCDzy66tHeLnquIsQAKg1tPP0uVe50ds67Bi/+MHbXDxxDQC7XcZuk1EUBavFxi9/uIOSs7q7MneBQOAdQgwIBAK3tJi62X79zJDHZBSssp2Xdfkex6itaubsJ2XIsjLkcUkFO188eqdTFQgEd4AQAwKBwC1HGss8HrcrMkcay7DeZjUYyLmjZahU7mMLZLvCpdM6TEbLiOcpEAjuDBEzIBAI3NJl6UMlScjK0Lt6AJsic+jYUZJixhIdHU10dDRBQZ8HBVpMViSVBG4sAw6MBiMBgdpRm7tAIPAeIQYEAoFbxgVFYlNkj+doZRWVpRVc7D7vfC0wMJCYmBiio6MxY8Zu8zyGX6DEi7/7DampqaSnp5ORkUF4eLjb862yjX23itldc4FbfXrC/AJZlziDR8bPI8o/2LebFAgESIriQfJ/Rnd3N+Hh4XR1dREWFvZFzEsgEHwFMNjMrDj6Aia7dcjjakliW8oCfjhpNRaLBb1eT3t7u8t/rS2tnN3ehtXoJmZAgvVP5zJlaQJVVVXU1tYiyzJxcXGkp6eTnp5OUlISKlW/V9Nkt/K9gv+lSH8TCXCMqkIiyj+ENxY8Q2JQ1F34NASCrx/ert9CDAgEAo98eKuYfyzZg4SEwuePC7WkIj4wnLcWPkek1v1uXFEUik5V8C/Pvondah8USBgWryZrZTD+AVqioqKIjIwEoK+vj+bmZsxmMwEBAaSlpZGens4RqY4dteeRGfzoUksqssLieXvRd0fp7gWCrzdCDAgEglEjv/kKL177FF1PMwB+kpo146bxfNYqovxDvBrjVnULO148zPGPilFkiXETYnnoiQXkPphNZ1fHIItCT0+P81o/Pz8kScJoNXNgmh3bMA7Odxb9KdnhCSO+3+Ho7TZSclaH1WInbdI4EifG3bX3EgjuBG/XbxEzIBAIhmXpmGyWxGXx3//7Mv5hwXzzoS2E+AX4NEbixDjWf2cOxvDr/PCHPyQ0NNR5LG5M7KDzzWYzer2etrY2p0Co7GjApmkZ9r3KO+vvihiw2+y8/h8f8+Gbp7BaPs+gmJabxg/+41HGJAr3hODriRADAoHAKyRJwr/PzvjYSJ+FgIPW1lYCAgIICRnemuDv7098fDzx8fHO1+oMet7N/69hr9Wo1B6Pd1h6+LjhHPktlzDZLaSFjGND4kJmRKZ7vO7XP3mPT9+/wO321NKC6/xo62/47f4fERHtnaVEIPgqIeoMCAQCrzGZTAQGBo74+tbWVmJjY33uaeAgMShy2OBASYFovR13HtDq3ga+ff4F3rhxiBuGRhpN7ZxpL+OvLr3E76o+dHvdjasNHN09WAgAyHaZjpZuPvrfUz7fk0DwVUCIAYFA4DVGo5GAgJFZBQBaWlqIjR3sEvAWSZJ4Jm2x2+MqJCZZwzm29wB/+MMfqKqqclnc7bKdv7/8Cgab0SUY0v5Z+uSuunzyWy4NOfaxvUX9fRXcIMsKR9477/a4QPBVRogBgUDgFXa7HavVOmLLgCzLtLW1ERd3Z8F2GxJn8lz6MqDfCiAhoZb6H2ULYtN5df3zfOtb38LPz4+3336bN998k7q6OgDOtpfTau4cMhMB+sXErrrjQx7rau8ddm5dHYaR3JJA8KUjYgYEgj9CDN19HHv7JNWXbuIX4Efu+jnMWD55xOZ56HcRACO2DHR0dGC32+/IMgD91oE/zVjO2EYr71afI2laJhHaYNaMm+psqzx+/Hi+/e1vo9PpOHbsGK+99hqZmZk0TupPP7S7KaQko3Ctpxa7IjsFhoPYhEgXa8JQxIx1XyhJIPgqI8SAQPBHxrn9Rfzssf/C1GdGre4PpNv7m4NkzJ7Izz7+CRGxI1uwjEYjMHIx0NLSnwVwp5YBB53XG9gYlMmjsx4d8rgkSWRkZJCenk5ZWRl5eXlcsjSgJCrgQRNJSEMeXrllDjt+c8T9dZLEmsdyfbwLgeCrgXATCAR/RFRdusE/bf4F5j4zKP2pcHab3XnsHx76udsAueFwWAZG6iZobW0lMDCQ4OA7LxdsNBqpq6sjPd1z9D/0L9JTpkzhe9/7Hg+kL0CW3N+/pEBOyHhU0uBHY3xyNI/+2cqhr1PB+IyxrH1iofc3IRB8hRBiQCD4I2L3rz4ClKEj3m0y1y5UUZJfPqKx79QycKeZBANxBAZ6IwYcqNVqHp3/EMmBcW72/qBIoLmgp6CgYEjR9OSPHmTRN9LQBn3+6FRrVMRM9OOvf7OVwGB/329GIPgKINwEAsEfEac/KPDYFEitUXNm3wWmL5vs89ijYRlITEwc0bW3o9PpGDt2rM8VUVWSip9P/w4/Kv5/NJr0/Y0NpH6LgCLB00mrCTNYOHjwIBUVFaxfv56oqM9TGTs7O5HD2vnxHzYzNnI8FrOVhJQY/nf765wtOE1qesqo3J9A8EUjLAMCwR8RA6viucNiGrrp0HCYTCZUKhV+fn4+X+vIJLjT4EHHWFVVVT5ZBQYyJiCKvwxaQ+bVQGaHZzA1NJUZtiTmFoXR9GEZ8fHxPPHEE3R1dfHSSy9x7tw5ZLlfYJ06dYqAgADmzJnNxEnjyJ6RQnhkCCtWrKCqqorr16/f8f0JBF8GwjIgEPwRkTp1PFXFN1Dkof3idrudtBkTRjS2o8bASMz8er0eu91OXFwcRpuFAw2XOdlyDYvdRk7EODYnzyY+MMKrserr6zEajSMWAwClF0uYF5TBn8z6k8/nOFtPXl4e+/fvJyoqiqVLl9LQ0MDhw4epqKhg6dKlXLp0ieXLl6PVal3Gy87OJjExkaNHj/Lss8+OiitEIPgiEZYBgeCPiE3fX+NWCEiSRECQP8sfXzSise+k+mBraysAfcEq1uX/mn8t3cfx5mucaavi1aoTrM37FftvDV3s53YqKysJCgpi3LhxI5pLS0sLtbW1zJo1y+X1qKgotmzZwnPPPUd0dDR79+6ltraWVatWYTAY2L59O2q1etB10P/Zrly5ksbGRsrKykY0L4Hgy0SIAYFgFFEUhRO7z/KDxT9lTeBjrAv7Jv/22H9x7ULVF/L+K564jxXb7uv/y4DNqVqjQq1R8Q/v/pCg0JEt6HdSfbClpQVtUAA/LH2PDkt/8R5Hzr6Mgqwo/LRkD2Wdt4YdS6fTkZaWhko1ssdXUVERQUFBZGdnD3l87NixPP74487CRZ988gn+/v2BgVarlbfeesuZJjmQ8ePHk5mZybFjx7DZhnfXCARfJYQYEAhGCUVRePH51/jXh39FxZlrWM02TL0mTr1/ju/n/h3H3ztz1+egUql4/GcbSd84jsTseFRqFRp/NcseW8RvC37OvDUzRzy2yWS6o0yCrsQgmk3d2N2kNqokibdveP6Muru7aW5uHrGLwGq1cvnyZaZPn+6sweAOR+Gixx57jM7OThRFITExEaPRyO9//3tOnDiB3W53uWbFihV0dXVRWFg4ovkJBF8WQgwIBKPEuf1F7PvtIaC/Tr0Du01GURR+/s3/oaOl667P4/jx40xZlclrpf/ND/c/xUO/vI+/efP7TJyWckfj3qmboCVMGVTVbyB2ReZ0q87jODqdDkmSmDhx4ojmUV5ejslkGtLUPxSSJBEfH4/FYiE7OxuDwUBHRwfR0dHk5+fzyiuv0NTU5Dw/NjaWGTNmcOLECWf2hUDwdUCIAYFglNj7mwOo3DWyUcBulzn8et5dncPNmze5fv06y5Yt648RCAgYtUVppJYBu91OW1ub09Tu8dxhCiLpdDqSkpJGLEqKiopITU11SRccjtOnT+Pn58f69ev53ve+x5o1a5w1F7q6unj55ZfJy8tzWgmWLl2K1Wrl1CnRwVDw9UFkEwgEo4Tu4g1ku/scfwmovnTjrr2/oigcO3aMhIQEMjMzAUZVDIw0ZkCv1yPLMtOjxnO20X1MgFpSMSNyvNvjNpuN69evs3ix+66FnmhububWrVts3brV62t6e3spKipi4cKFznufM2cO06ZN4/z5884F/+TJk1RUVLBp0yYSEhLIzc0l7+xZrgYEcKO7B61azcq0iSydMAH1CGMdBIK7iRADAsEooQ3wnH8vqST8hjnnTqiqqqKuro5t27Y5U9sCAgKw2WzYbDY0mjv7uY/UTeDIJNg8cR7bW4sw2MxDdg20KzJPpC5wO87NmzexWq1kZGT4PAfotwqEhIQ4hZI3nDlzBrVazbx581xe12q13HfffcyePZvTp09z7tw52tvbefnll8nNzcUwNp53tQHI5wpQSRKSJPFeaRkZMTG88Y3NjAkJGdE9CAR3CyFRBYJRYtGmeag0HnziNpncdXPuyns7rALJycku/nTHbtZsNt/R+LIsYzabR2QZaG1tJSgoiNjwSP57zja0ag2qAakOjjiC72WsYH6M+1iAyspKwsPDR1S4yGKxeB046MBgMHDhwgXmzp3rVgQFBgaycuVKnn/+eWbMmIEkSXx0/jx/feQIdklCod/1YfusaFF1eztPv/8B8gj7QwgEdwshBgSCUWLjX6xBrVEjqQYXnFFpVCRmxLNg/ey78t5XrlyhqamJ5cuXuxS8cfjp79RVcCftix09CQBmRqWwd8nzzDNHE2KEhIAIVsXn8EbuszybvtTtGIqioNPpSE9PH1FBn/Lycsxms9eBg9BvFVCpVOTmDt+JMDQ0lHXr1vHnf/7n1EZG4a7TsV1RuNLaypmaWq/nIRB8EQg3geCO6DaZaOjpIUSrJTF8cGvcPlsXxR0fUtZ5CKO9mxBNDFMj1zA9Yi1adZDLuU2mFj5pyqeksxwFhZzwLO4fs5TEoIQv6nbuiMT0eH62/yf8dMPPMRssqDUqZEVBsSskZSTw7wf+DrXGu12pL8iyTF5eHhMnTmT8eFefu2PxHi0xMBI3QUtLi8u8xgaGk1UHSYZA/u7vfuTVGG1tbXR2do7YRVBYWEhaWhoREd5VOezr6+PChQvMmzfPp3uOioqiymZH8SBYNCoVx65fZ1GK+/iILxK7InNRX0ObqYfYgFBmRg3dtVHwx40QA4IR0dLbywsnTrL/6jWnCTQnLo4fLlrI0tT+crfd1hbeuflDem3tKPSf02lt4GTLq1R0HeXR8b8kQB0KQKH+Er/W/R5FUZA/O7fJ1MLR5uP86cRvcV/s16NPfM6iTBb8OAetPgS1QUtLWwuWsD7+7x/+ZVAJ29GitLSUtrY2Nm3aNOjYaImBkXYstNvttLe3M2eOq3ukp6eHyMhIr8fR6XRoNBpSUlJ8en+AxsZGGhoaeOSRR7y+5uzZswBeWQVux/F78ITltvoEXxbHmip4ofxjmk3dztfGBoTzk8kPsWRM1pc4M8EXjZB/Ap9pMxjY/PY7fHTlqsuD70prK8/s+YCPrl4F4HDDr1yEgAMFhXZzLfnNfwCg3dzBf+t+j12xO4UAgIyMgsJL1W9Qb2z8Au7szrl06RI2xcaz//Qn/OAP3+X5//cdwiYEUldXd1fez263c/z4cbKyskhIGGxB+bItA45MgoF+/p6eHux2+5DzdYdOp2PChAkjapJUVFREaGio11YFo9FIQUEBc+bMISgoaPgLbiNnTBwqD5YBmywzZcwYn8cdbfKbr/CjondoGSAEAJpNXfxl4ducaqn8kmYm+DIQYkDgM/9z5hwtvb2DcsIdQVE/PXKUxr4aavqKBwkBBwoyFd3HMNq7OdZywmNAlYTEkab8UZv/3UKWZc6fP09OTg7hn7lMxowZQ1hYGDqd52I6I6W4uJiOjg6WLVs25PEvO2bAUbY3Li7O+dq1a9cAvC4cZDKZqK2tHVHVQbPZTGlpKTNmzPBYvrilu5e69k4sNjtnz55FURQWLHCf2eCJb82c6fH7HKL1Y13Wl7vrlhWZX5QfBAaHNzj+/suKgygi0PGeQbgJBD5httl4v7zcbXEYBeixWPj1gd3E5ngeS1Zs/Pb1F6hM7EGOcG9alZGp6L52B7P+YqisrESv17N582bna5IkkZaWhk6nY/Xq1aP6fjabjRMnTjBlyhSXxXYgo1V4yGg0IkmSV4WDBtLa2kpwcLDLDtvR5jctLc2rMaqrq5FleUTxAmVlZVitVmbOHLoM89GyKl769BxXG/rTH0MDtCTTx5PzZxIcHOzz+wGsy8rkuK6KvZWVSHy+uKolCWSZdVotGncRhl8Q5Z311Bs73B5XgJuGNq51N5IV/vWI2RHcGcIyIPCJTpMJ0zBNWCRF4Xpjp1fjKXYJkNxGXzvH5KvfEvbs2bMkJycP6qaXkZGBXq+nvb19VN/vwoUL9Pb2snTpUo/njYYYcFQf9DWSf2AmgYOmpiY0Go3XJnidTkdcXJzT2uILRUVFpKWlDXntjjOXeP6tj7jW2Op8rcdkocKk5q2qdszWkTcbmtapZ41axayEBIK1WqICA3l06lTefGgNQfp2du3aNaivwReJ3mIY1fMEX3+EZUDgE6Faf1SS5DlPWpJYPmMFJoqxY3V7WrA6kue+88981HCEd+v2OrvY3Y4KFdMihjEzfMnU19dTW1vLww8/POjYhAkTUKvVVFZWjiggbSgsFgunTp1i+vTpw5bWHS3LwEjSCltaWpgwYYLLa93d3V5H9SuKQlVVFdOnT/f5vRsaGmhsbOSxxx4bdKytx8DPP8r/7D1ue08kyutbePfcZZ68z/fGTqWlpdy4cYO/ePzxIV0bcVotO3bsYN++fWzatMkrgWWzy5zV1dDc3UtMaDAL0sejvYPMlDEB3gmrsV6eJ/j6IywDgiHptZoo6ailrPMWVvnzHVKQ1o9VaRP7TZ5uUKtUPDJzHjOjNnnc8c+LeRSVpGZR5Dwku8SQ4QUKqCQV949ZOvKb+QI4d+4ckZGRQ1a302q1TJgwYVTjBs6dO4fZbGbJkiXDnjualgFfsNvt6PV6FxdGd3c3drudsWPHejVGQ0MDBoNhRPEChYWFhIWFDemO2FdUMUgEuKDAznMlPr+n0Wjk8OHD5OTkuJ3zxIkT2bx5M6WlpRw+fHhYv/yRUh3L//1lvvv6Xv7P+0f53hv7WPazP/DhxQqf5+cgM2ws6aFj3NrbVEjkhI8jNXRo95Pgjw9hGRC4YLRZ+O+rR/igrgjzZyIgwi+IJ1MX8q2Ji1BJKv5iQS75128g2+1DrvXfnj6NqKBA1MUZWDtj8UttRZH7Tf0KCpIEdl0y4+Puw2g08s5rO0i0R1E3qx1F+mxE6TPXgKzwWPhGYgNivrgPwUe6urooLy9n9erVboPU0tPTOXz4MGaz2We/++0YjUbOnDnDrFmzvDKdj5YY8DWToL29fVAmQVVVFQCpqalejVFZWUlAQABJSUk+vbfZbKasrIyFCxcO+W9S297p0cKlAPX67iGPeeKTTz7BbrfzwAMPeDwvJyeHvr4+Dhw4QEhICIsWLRryvLyKan64ff+g31lnn4mfvHsYtUrF2um+ByNKksQWbQYvyM1IKlfNrkJCo1LxtzlrfR5X8PVFWAYETix2G98teIP3agqcQgCg09rH/1z7hH8r/RCArNhYfpIziZDb8qnVisJ0i5mAyyVUVFTw6dFjWIsyMB2ZgbUygaDOVKxXEslufoag2qm8++67/OEPf6C9vZ2gTn8mnhjDmKoIgtr9yQxKY0viOpbXzufqobKvdDvYgoIC/P39PZqy09PTkWWZ6urqO36/s2fPIssy9913n1fnf1mWAUdPgoFiwHH/3ooBnU5HWlqax0yAobh8+TI2m40ZM2YMeTwsMMCtW8pBsL9vdSFqamooLi5m5cqVhIaGDnv+nDlzWLJkCZ9++ikXL14cdFxRFH554KTHMf7zwEnsXtQ1uJ3S0lKuHT7Ld1Q5TI1wFVoT1OG8lvsMUyJ9E2CCrzdCDAicHGgooaSjbsgmMgB76ooo76ynt7eXusILbDQaWGs1k2s2sdhk5D8mZTHVaqGrq4vdu3cTFhaGoihEqBOxXk5hpvpJrOXJ1Os6eOCBB2htbaWzsz/QMCEhAY1VTVLLGJKLYvjHyX/FlsSH2LpmCxaLhUOHDn2RH4XXmM1mioqKmDVrlseiQpGRkcTExNyxq8BgMHDu3Dnmzp1LiJfNbvz9/b+UmIGWlpZBmQRNTU2oVCqvLBo9PT00Njb67CJQFIWioiIyMjIICwsb8pwHp2Vgl92LAZUE62Z6v+O22+3s37+fxMREn0oeL1myhNmzZ7N//36uflafw8G1xjZutnZ4lCzNXb1cqmnw+v0Arl69ygcffMC0adP47ppHeHPhd9i/7Ae8nvsM3zNmsboujMkRiT6NKfj6I8SAwMn7tYUuDWRuRy2p2HfrIkePHsVutyMB2RERpNuspNht5GRkOBcMRVHo7u7Gz8+Pnp4eAOLj49FqtTQ1NbF3717nuCkpKTQ0NODn5+fcgTp2guHh4axevZqSkpJBD8uvAsXFxVitVubOnTvomKIoXO6s5rXrB3ilej9khFOpq7yj3O1Tp06hUqlYuHCh19d8WW6C1tZWl3gBRVHo6uoiLCzMq6A5h3DyNgXRQX19Pc3NzR4X5UnjxrByctqQxYFU9Fu54o3tXkf8nz59mvb2dh566CGfMi4kSeLBBx8kOzub3bt3c/PmTeexzj6jV2N09nn/b1tdXc3u3bvJzs5m/fr1zrkmBkUxI2o88zKm0NDQQHf3YBdJo7GTl3X5/Fvph7xUeYxaw+hmxwi+XIQYEDhpNHa6tQpAfw3zG/omSkpKnAvawAWip6dnULrY+PHjsVgsQH/d9sjISBRFcS5OoaGh1NTUADBjxgxsNtugXeO0adPIyMhg//799PX13fmNjhIDiwzdvgNtM3fxp4X/xQ+KX2Rn7THeq8tnj+YieTlNnLvhe2Aa9AffXbhwgdzcXJ8W5i8rm+D2tMKuri6fggd1Oh1JSUk+VwEsKioiPDx82KJG//Hog8xJiKTfY644ZXBybCT/+uA8bumu8tZbbw37ndPr9Zw8eZLc3FzGjKCyoEqlYtOmTSQnJ7Nz506ampoASIgc2qpxO47zGnq6+VXBaZ49uJfvH9nP/qqrLmWPa2pq2LlzJ6mpqWzevHlI10t6ejoqlcpZGAr6Rdxvrx1lzbFf8VLlMfbWFfFK1XHW5/+an5ftR1Z8d1MIvnoIMSBwEu0f4jGbX41ET1Obc+ELDg5G/sxfGRQURGFhIXq93mXRuH79OpIkoVaraWpqcvqRFUUhJiaGb3zjG05h4Vgkbs9LlySJdevWIcsyBw4cGK3bvWOuXr1KZ2fnoHRBq2zjry69xHVDv/nWrsjYP3tgmv0VflbzDnpLj8/vd+LECbRaLfPnz/fpuoCAAGw224jz2h3izRcxYLPZaG9vd/m3dOx6b081dHf99evXfXYRmEwmysrKmDlz5rBxBpIik9Zbz0MBvSyOVLM+LY43ntvK/h/9CeuWLuTJJ5+ktbWVV155hba2tiHHUBSFjz/+mJCQEK8yO9yh0Wh45JFHiIqKYvv27ej1epKjI5iVMs5DaWOFSLWCpbWRnRWXuW/7y/y26Byf3Kji4+pr/PmR/Tyw8w0aerppaGhgx44dJCYmsnXrVrdtnAMDAxk/fryLFW7nzfO8UnUcBQUZBduA7/POmvO8XHV8xPct+OogxIDAyYZEzznVdhRi68zYbDY0Gg3Z2dnOXZNGo6GxsZEHH3zQuWiEhIQ4xUJgYCA7d+50miUlSWLbtm0UFBQ4XysoKAAYcncVEhLCmjVrKC8vp6ysbHRueIT0GExU6Bo5cOQU48ePJz4+3uX4ydZS6vpanA9MFyQwKlb215/x6T07OjooLi5m0aJFPmcj3Gl/ArPZDPjWl6C9vR1FUVzcBI5MAm/EQG1tLRaLxWcxUFJSgizLbgMHB3L+/HmsViuzJ2eT4S+zKi2BOamJzu9jcnIyzzzzDBqNhldeecVZOXEgZWVlXL9+nTVr1txxIyp/f3+2bduGv78/27dvp7e3lx+tzkU1wGrhQEJBBWyYEMXvPv6Qv80/gl1RnNkRjv/XdnfyzX3v8db27cTFxfHoo48O298hKyuLmzdvYjKZsMp2Xq7K93j+m9WnMNosI7xrwVcFIQYETjYmzWR8cAzqoewDCozthOje/vauVquVrKwsDIb+CmXd3d0EBgYSFhZGZ2cnkiQ5i+EoikJvb6/LQ8jhPy4vL0dRFJYuXeo0j7orojN58mQmTZrEgQMH6O3tHeW7H57uXhP/96XDPPTMSzz7dzv44HQP758y8OHRyy5xACdbL3uMvUCCT5sGR497Ij8/n6CgoEHd/7zhTsXASHmDpooAACAASURBVDoWDpVJ0NjYiCRJREdHD3t9ZWUlYWFhPpndHYGDmZmZw0bzW61WTp06BcCKFSswGo1Dip3IyEieeuopEhMT2b59O4WFhc5j3tQU8JXg4GC++c1vYrVaeeuttyg5mceDoVbmpY5z+UalR4awPMBAgKkH/cTxSG68e3ZFobq7k46wYB5//HGvhGRmZiayLKPT6bja1TBsFcI+u4WL+hof7lLwVUSIAYGTII0/r+U+TaYU5ZJ4LMkwoVVibrUaCcm5czp+/LhzgQkJCcFmszmj/qdMmUJtba3L+GazGbvd7lxUjhw5glqtJjU1lcWLF6PRDF/2Yu3atahUKvbv3/+FNlExGC386U93ciC/HJvt8x2/vsvEC7//hDf3nHe+ZrSbPcZeAPSYvS/z2trayuXLl1m8ePGIuvaNRAwYbRbq+zrotZpG1LGwpaWFkJAQ5zWKotDZ2UloaKhXaYKOlEJfgvHq6upobW31Kpr/woULWCwWsrKyCA8Px2q1uhU7AQEBPP7448yePZuPP/6YQ4cOIcsyR48exWazDVtTwFciIiJ44oknaG9v58aNGzy1dSOvPvcw+f/wHXY/v428v3+W3X/9NJljomnX67nQ3oLi4WNSKeCfleH1v194eDjx8fFcu3YNk+xdSWaz7L7SqODrgRADAhdCVf5ML7PwfUs2c6pVbJMyebBEzfRaNWNj+k2+iqIQHR3tsjvPycnBarXS1dVFQEAAa9asGXLhSkpKIjU1FY1GQ0NDA3a7nfnz52MymbB91vPg2LFjzqDD2wkKCuKhhx7i2rVrXL58+S58AkPz/qFiauv1yG7S0V559zTNbf0R2BOCx6Ly8NOSFAg3eW9Szs/PJyIiwm2zneHwRQzU93Xw95d2c9+Rn7E271csPvLv/LPuY7oDFJ8tAwNdBI5Wxu4aKg2kvb0dvV7vc2OioqIiIiMjh61h4GjwBLBy5UqvOjKqVCrWrFnDgw8+SEFBAa+//joXL15kxYoVXtUU8JWmpibsdjsqlYri4mJkWSYmNJjshDjiwkJQq9VO3/9wolilUiGpfXvUZ2ZmotPpGB8QhVoa/tr0UO+CQgVfXYQYELhQXl6O0WhkRkoWiR0qHpm8GH97/7ZDr9c7F3iHT9hBcXGx88+LFi3i4MGDWK2uuwW1Wk1dXR0ajca58EdFRZGWluZ0Efj5+dHd3c3BgwfdzjErK4upU6dy8ODBIVOg7gZ7j1z23GZZkjh0vL887NqEXGQ3rZsBFAmibsheBfQ1NjZSUVHBkiVL3AZ9DYe3YqDW0M7jp17iUEMpts/iHWQUCnpqyc+2U2vr8vo9W1tbiYn5vGpkXV0d4F2xIZ1Oh1qt9iq2wIHRaKS8vJyZM2cOa00oLCzEbDaTkZFBdHS0T5aPuXPn8uijj1JfX49Go/E57dEbbt26xUcffcT06dN5+OGHuXbt2pCWsNjYWFatXEm0TUby8N20KTIzxvrWeTArKwuLxUJ3YyuLIia6dUOoJRXzYyaSFOy5P4bgq48QAwIniqJQUFBAWlqa02Tv6EcP/YVVBpp5HQWDwPVBeu3aNUpLS13GDg0NRZZloqKiKC8vd74+depUJEmiqanJ6U9eu3Ytly5dchEYt7N69Wq0Wi0ffvjhF+IuaNN7jv6XJImm1n5hEu8fxdzO/s6FLrEDn01zRcQ0QltwplR6Ii8vj+joaKZOnTqyiYPTTzycGHih/GN6baZBgY8yCnYV/N+r3mVy2Gy2QT0JHJUHk5OTh71ep9ORkpLiU0CeI911uMBBu93O8eP90e+rVq0C8MoyMJDm5mYURSEwMJBXX32VW7dueT3P4eju7ubdd98lPj6etWvXkpmZyYYNGyguLubYsWODzp83bx5LQyJQ3AggFRAdGMjqVN9iGuLi4oiIiODChQtEnq4nzK4ZFAcjKRCKlv8zdaNPYwu+mggxIHBy69YtGhsbmTt3LgaDAT8/P/Ly8lwC+jo6OobME3fs0CVJoq6uzikOHA/YuXPnsmrVKvR6vcvOzWFpaGpqQqvVEhUVxbRp05g+fToHDhxwESMDCQwMZP369VRXVw9ZynW0CQsZZqFQFCLDg1AUhY8++oigsj7+Im4d2aHjnacEG1R8N2ENfzvtm4SFhg1bjbCurg6dTsfSpUt9Lsc7EEmShq010Gzs4kyrDrs7YSXBtZ4mrnY1Dvt+DqvRwODBhob+NMvh3ARms5mbN2/6FJDnCBzMzs4mODjY47nFxcWYTCbS0tKclgtfAiT1ej0nTpxgwYIFPPfcc0RFRfHGG28MEr8jwWq18u6776JSqXjkkUecgnzatGmsWrWKU6dOce7cOZdrJEli6+TpZPf1W+EGWggkRUEtK/wydxn+at/a0EiSRGxsLJWVlUwcm8juFc/zXMYy4vxDUSERpQ1msZTA4jIIsnz124sLhkeIAYGTgoICp9m+r68PSZKw2WwsXboU6H9AKIpCY2Mj2dnZLrs8x+5ckiQSEhKcWQYmkwmVSkVRURFz5swhISHB6SKQJMmZe97U1ISiKERGRgKwZs0aoqKi2LVrl9v4gbS0NGbOnMnhw4fp6Oi4Gx+JkzXLJqNSuX/o2WWF++/LJi8vj5KSEjZu3MiGnGX8TfwWFp0M42+UB1lQHkNsowaVSkVaWppHMaAoCseOHWPMmDHk5Nx5++bhxEBdn36YkMd+avuGrzrnEHCOhV+WZTo7OwkODh42APL69evIsuxTvEBtbS1tbW3DBg7KskxeXh7wuVUAvLcM3F5TIDg4mCeffJKcnBz27NlDfn7+iK1UDhHZ0tLCI488MqjU9IIFC1iwYAGHDx92iZWpqqriyJEjbImIZVWXiXEWO8EKJIWGsSwkkk2dJio+zRvkshuO8+fPO7+fixcvJjYkgufSl3Fk5Y+5uPZfOLbqb3lhxbcJVwdw4MCBLzSYV3B3EGJAAPRXD6yoqGDOnDlIkkRbWxsWi4UlS5Y4d6WOH7yiKKxatYr4+PhBGQD+/v40NDS47NBUKhWdnZ0UFRUhSZ9nIyiKQnV1NSaTidbWViwWi1MM+Pn5sXXrVrq6ujxmDtx///0EBQWxb9++u/pAenjtTPz9+vO7b0cCHlo+mbamG5w8eZKVK1cyZcoUoN93rlIkxkTHkZGR4SzmkpGRQXt7O+3tQy+uN27c4ObNmyxbtsyniHp3DCcGQv28M5GHaoY/r7W1ldDQUOfi6uhe6E3wYGVlJTExMc7vgTcUFhYSFRVFSkqKx/NKSkro6+sjNTXVZS4mkwlJkoZ1SwxVU0Cj0bBx40aWL1/O8ePH2bNnj88LL8CZM2coLS1l/fr1JCQM7d9fuXIl06dPZ9++feh0Ompra3n33XdJS0sjKCiIJKvMGqPME91W/kwTyn+u30IYEnq9nk8++cSreSiKwtGjRzl06JCz0qU70eoIFK6srOTKlSs+37Pgq4UQAwKg/4GqVquZPn06iqJQU1ODn58f8+bNo7CwcNCu6dy5c3T39rgswJIkYTQanfUHEhISiIqKcvqsjxw5Qn19Pf7+/iiSgj65l6rcRp4qfp5ry+ppyu5ECft84YuJiWHdunWUlpa6dQX4+/uzYcMGampqnEWL7gbXKkqYNb6X6DDXn4xKUnhoWSYbliRz4MAB5s6dy4IFC5zHHRaL6OhosrKyaG5uRq/Xk5qailqtHvJB67AKjBs3zueIencEBAQ4iwcNRUboWJKDoj1WoIzwC2J2dMqw73V7GWKHT338+PHuLgH677uqqsonF0FfXx9Xrlxh1qxZHkWTLMt8+umnQL+AHIij1LKn6z3VFJAkifvuu4+tW7dy9epV3nzzTZ/qYOh0Oo4ePcqiRYucInIoHJU409LSeO+993j77bcZN24cfn5+VFdXs2nTJrRardO8X1hYyNy5c5EkiQsXLgzb28Nut7Nv3z5Onz7N/fffz/33309mZqZLaeLbycrKIjMzk4MHD36lO4sKhkeIAQF2u52ioiKmTZtGQEAAZWVlGI1GkpKSaGtr4+bNm84YANlfzZUEO/9kPsO/B15m7xQzl5PsKKH+TmHgeOisWLECg8HA/PnzWbVqlbMaYZ/FSMvCXlqyurAE21AkBdlPoTPRwG/1r3O99/PAuilTpjBz5kwOHjzozDi4nQkTJjB37lyOHj3qdqd9J1y5coWjR48SpFX45d+u461f/QkrZ0fw4PwoNuZqGRfawQcf7CErK4sHHnjAZVFxBFmGhIQ4AzOvXLmCVqslJSVlSDFQWVlJfX09y5cvHxWrAAxvGZAkib/IWtVv93BjYPle5gr8VMP7nltaWlzEwI0bN4DhgwcbGxvp7e31SQBdunQJwGP7aOhv2WswGEhJSRlUyMibJkze1BSYNGkS3/rWt+jq6uKVV16hubl52Pm3tbXx/vvvk5GRwfLly4c9X6VSsXz5cmRZxmKx4O/vT0VFBVu2bGHKlCmsW7eO+vp6cnJyOHPmDOHh4Wg0GiIjI/nwww/dZt9YLBZ27txJSWkpYxcu5GBvHz/95CiNISE0t7W5LcfsaLRksVg4+ulRLnde5zeVe/j5lR3sqDmK3vzFZPsI7hwhBgRUVFRgMBiYO3cuZrOZI0eOoNVqGTNmDAUFBfj7+9PR0YFZo3A03cy1eAXzZ65fmwauxykcSDVgi3CtbmaxWDCbzURFRbmkmekn9NAR1N1vXx+41qnAqlj4r8qXXJqfrF69mpiYGHbt2uV2d7tixQrCwsLYu3evU3SMBvX19ezZs4fQ0FCio6NJS0sjNSmGnAmhpIzxY/rUHK5fv86YMWPYtGnToEA/x8M3KCgIrVZLWlqa06Sanp7OzZs3Xe5JURTy8vJISUnxKg3PW7xpVrQyPodnI+eg+Szj0ZFOppElVstJbB0/uDPj7dhsNjo6OlzM8PX19QDDNijS6XT4+/uTlJQ07PuAa+Cgp2ZGiqI4rQJDLebD9V2ora31uqbAuHHjeOaZZwgMDOS1116jsrLS7blGo5GdO3cSGhrK5s2bvRJ+3d3dvPPOO4SHhxMQEEBlZSWrVq1i0qRJQH99gOnTp6PT6cjJyeHIkSPk5OTQ1dWFWq1mz549g34fBoOBN998k5LaOg5FxfAfly7zbmkp75WW8YviEvYEhXDYQ5BueHg4uUsX8Zr5OD8o/i0fNZzhWNNFXr9+kEfP/gsf+VB6e2AfD8EXixADAgoKCpgwYQKxsbGcOHHCuWhotVpKSkowm81ERERQnqzQ58+gameKBFYNFKV8njev1WrZvXs30F/SNS8vj7i4OBQUulNMuLNHyyi0WfSUdn3ug3TED/T29vLRRx8NGRug1WrZsGEDt27d4uzZs3f4ifTT1dXFzp07iY6Opqenh9zcXOcD29Fu2RHMlZKSMmRwnMFgQJIk57Hs7Gzq6+vp7u4mPT0dWZZdat6Xl5fT3Nzs1S7RF/z9/YcVA1arFdNZHWtK1DwmZZBzS8U/T9nIYzXRLPdP8ep92traXDIJ7HY7nZ2dBAQEDLv71ul0TJw40et6Cjdv3kSv1w8bOFheXk5PTw/JyclDChJPYsBut7N//37GjRvH7NmzvZpXeHg43/72t5kwYQI7d+7k3LlzLt9Zu91OT0cvu97bhcFg4LHHHvOqTHBfXx9vvfUW0C8kHRaNixcvunRWXL16NYGBgXR3d5OUlERFRQWBgYHExsZSW1vLyZMnned2dHTw2muv0drVRV5oGO2ffUdssoztM9FgkiT+vbScdg/dG48GX6M7ov/3b1dk7Mj9KamKzK8rd3O+vcLjvZ1svcz3i/6HB/L/igfy/4q/vPhbzrSVe7xGMLoIMXCP09DQwK1bt5g7dy6tra2cO3eOhQsXYrFYqK+vx263k5SURHtfN3WRstuyp4oEDRoTpvD+Rc9utzuDCPfv309TUxNmsxk5ACwazwFWKlTcNLiWMo6Ojmb9+vWUl5e71IcfSHJyMgsWLCAvL89tSqK3mM1mduzYgUajISEhgaCgIJdcf0mSaGlpQZZlpkyZQklJyZBFhPr6+tBoNE4RkZGRgUql4sqVK06LiWP3KMsy+fn5pKene7079hZvLAPnz5+nt7eXsKAQlsVkktGiZn3STGSjxescfMfn7hADra2tyLI8qBPl7RgMBurr632KFygqKiImJsZjLIKiKM7gOXcmfk9ugjNnztDW1sa6det8ctlotVoefvhhcnNzOXz4MB9//DGt9e28+PxrbIr8Fpujv832Z/djLJYwdw0fcGg2m3n77bcxGo1MmjSJgoICVq5cydNPP01fXx87duxwZt34+/uzceNG6urqmDBhAkFBQUiSxI0bN5gxYwbHjx+ntraWxsZGXn31VQCicxfQYTINmVqqACZZZnvR0NaBGkMzZ9sr3D4bVEi8ffOo23t7/fpB/qnsDa5213zWTBrKu27w09JX2VHj/jrB6CLEwD1OQUEBERERpKenc+jQIcLDw5k2bRrQXyhGq9UyY8YMuvzsyF48C1vV/SZvu93uNJE3NDQgSVK/qVIZ/isnKzJ+0mDfdE5ODnPmzOHw4cM0Ng6d775s2TKioqLYu3fviFv2yrLM7t276erqYvPmzZSVlTF79mzn7t5ut3Pz5k1sNhvbtm1j0aJF9Pb2DhlRbTabXXZ9AQEBpKamOuMq0tPTqaqqQlEUSkpKaG9vZ9myZSOatyeGEwN9fX2cOnUKlUrF7Nmzsdlszoh5d018huL2TAKHi2C44EFH7IS3YsBgMHgVOHj16lW6u7tJTEx0G6VvNBqH3Jk7agrk5ub61DDJgUqlYtWqVaxbt45z+ed5eupf8uH/O4yxt//fQbEpnNtTxJ/N/htqKurcjmOz2di5cyft7e1Mnz6ds2fPsnjxYhYuXEh0dDRPPPEEra2tvPfee87vfEpKCvPnz+fkyZPcf//9WCwW/Pz86OjoICkpiffee4/XX3+d8PBwnnrqKU7XNwx7P3tLLlNXV0dLSwtdXV2YTCZkWeZ8e4XHxlwyCuXdN+m1Ggcdu9JVw/aaT5znDbwG4NXrB6jqqR92boI7R4iBexiDweBc6K5evUphczW3Zkby9+UfUJJkpyNQdhb2CfH3bjGICAkDYOHChS7+c4eZNFQbQkCH1m2QGgASqGuHPnT//fcTFxfHrl27hlzcHKleTU1Nzq50vnLo0CGqq6vZunUrtbW1yLLs7BaoKAr79++nu7uboKAgxo4dS1xcHCkpKYOyGWw2GzabbdBCmpWVRU1NDb29vYxLi8GgtFFbV8Px48eZNGnSoJbIo0FAQABWq9WtQDp+/Dh2ux1Zlpk5cyYWiwWtVovFYkFRvO9LcHtPAkeVxXHjxnm8TqfTMW7cuGGLBjkoLi5GkiSncB2KgVaB1atXuz1vKMuAoigcOHCA4OBglixZ4tWc3DFz5kws5RpMXSZku6s/3G6T6es28p/P/m7Iax3C9NatW8yZM4fTp08zf/58Z+0PgPj4eB599FFu3rzJ3r17nb+1FStWEBUVRX5+Plu2bMFqtXLjxg3i4uIwGAxotVqefPJJgoODMdlsnutMSBJdfQZee+01XnrpJX7961/zwgsv8K//+q98kvepV2m9P//lC/ziF7/gxRdf5M033+SDDz7g90W7PQoJtaRif8PouP0EnhFi4B7m4sWLSJJEds4k/v7y+xzPtvNpdxVnOm9wI04hb5Kd96zXqLhSgZ/e2F9pzMNvXm2HgFv9ZXvPnDnjFAMDRUFPTw+xN0L7YwaGGkuB8eZxnD9ylqqqqkGHNRoNW7dupa+vz20p4oSEBO677z5OnDjh1oLgjvPnz3PhwgXWrl3rXOCnTJniLAKTn5/PpUuXyMzMdNmRzp07l7q6Opf36+np/yxuX+CysrJQJ7fwvzXf5aD5JwStvcj7nX9B37gy7luyyKf5eoun/gR6vZ7CwkL8/f3JysoiLCzMuZP0tWOhu7RCTwLHbrdTXV3ttVVAURQuXrxITk6Ox3npdDo6OjpISEjwKEaGihkoKyujurqatWvX+lQWeSj0TR1c+qQcd3Fxsl3mytlKbpa7WgcUReHDDz9Ep9Mxf/58Tp8+zcyZM7n//vsHWUMmTJjgtGIdPHgQRVHQaDRs2rSJlpYWbt265RREhYWFjB8/3rkZAJg8dgxqDxYWCYiRZZ5++mmeeuoptm3bxtatW1m/fj2L0mZ57JqIAv4WFVqbir6+PmeG0uXLl6k2NHrs8GlXZHS9o1fuWeAeIQbuUWRZprCwkClTpvAv53dxM7Tfb2lXZJA+DxLcd6uYq2PsSEhk1UtuA/9QYEpPMFrl8wJFjl3o7dHLYfpgxpZFIMvQaQqgsTeUpt5Qei1aQtoDyawbz8SJE9m9e/eQKU2RkZFs2LCBK1euuK0tsHjxYuLi4ti7d6+z4uFwVFZWcvjwYXJzc5k1axYVFRV0d3eTm5sL9PuoT5w4wYoVK0hKSnIpLpOZmUlYWBgXLlxwvuYQA7dHoJf0fYD/PB19UqvzNdnPjDanjtOm3yIrI3NveMKTGPj0008JCAjAYDA4g+SsVitardanuv1WqxW9Xu8UAzabjc7OTjQaDWFhYW6vq6urw2w2ey0Grl+/TkdHh8fAQUVROHz4MOA+VsBx3u1iwFFTYNKkST7FMLijXteE4qbb5UBqKj5f9BRF4dChQ5SUlDB//nzOnDnD5MmTWbt2rVu3yKRJk1i7di0XLlxwBgnGx8ezZMkSTp486dJDITk5mVmzZnHo0CFaWlrYnJnpvhQ1/bo902rho48+QpIk0tLSmDRpEjNmzGBN1n0EWTUeNwpPZK7mH3/6j/zDP/wDP/7xj3n++ef57ne/y5jIGI/XSUCgavjgSsGdI8TAPYrDl5qUNoETljr3i7wEujEydklhfLuKnDpVf8qZApKM888TWiRSqkzOnbpWqx20aw8PDyc8PBy73Y7GEsWN9rE09obRZQqk0xRIXU8kzQHJVN6qJSQkhNDQUN555x1n7fiBZGdnM2/ePGcho9tRq9Vs3LiRtrY2Z2MaTzQ1NbF7924yMjJYuXIliqJw9uxZJk6cSFxcHJWVlXz88cfMnj2bhQsX4ufn5yIGHL720tJSZ2S3I2YiPDzceZ7efIszbW85P9vbP+sbhkKudOcNO19fcScG6urqqKioICoqyqX9r0MMOD57bywDDuHmcBM4GvrExcV59OtXVlYSEhLitXukqKiI2NhYj0GW169fR6/XM3bsWI/1DYZygzhqCnhyLfhCQLB3i1nggP4XJ06coKCggHnz5nH+/HkyMjLYsGHDsD0qZs+ezdKlS8nLy6OoqAjAWUmwrKyMlStXEhQUxKlTp5g1axaRkZG8++675O15n4VyvwgdaCFw9DqYL0GsotDR0cGrr77Kzp07aW5upqKigldffoUZVZGo7eDSrPOzZ0NUhwapoA273Y5arSYgIAC9Xk9eXh7SVc91CBRgSZx7V5Bg9BBi4B6loKCA5ORk9pedRR7mW2DVQG9Yf7pXRrOK9VcCmXxLxYRWiawGFfeXqplep0YasLo5Hv4DXQVdXV10dXXhHx/JsSQDVpUCkoTy2X8A9ZZuLk335+KlYrKzszEajezatWtIX7ejJPLu3buHFAxjxoxh6dKlnD592mNnuZ6eHnbs2EFMTAybN29GpVI5o63nz59PfX09u3fvJjMzkwcffBBJktBoNMiy7GL1mDlzJoqiOLstOsTAQMtAadchJA8/OwmJko6P3R4fKUOJAYdPPTY2loaGBpdgvNvdBN5YBlpb+y0dDsuAoznRcJkROp2OtLQ0r6L1e3p6uHr16rCBgw6rwHAL+u1uEF9qCnhLk6EB/3DPPRmCw4OYvqy/B8X58+fJz89n1qxZXLx4kZSUFLZs2eJ1yuXixYuZM2cOH3/8MSUlJezcuROz2ez8DT7yyCMoisLbb7/NnDlz0Ov1GAwG/uvpp3jr4W9wX0oKakAjScQrMitMfSwNCyU0NBSr1cr06dNpbm7md7/7Hbt27SIuLg6t3s6c4jDGNfjjb1OjskOIQU26LpDJ5cFUXdOxc+dOzp49y4svvshbb71FY2Mjie1B+Fklhur4rUJFrH84K8bM9PUjF4wAIQbuQZqbm6mpqSEpKYlbjd5F6loHLMaqPivpzSqm1anJalQRPETXMkchnTFjxjiL9Ti4oGlDHuCKGIhdkWm09xI+P5OTJ08yf/58ampqOHTo0KBz1Wo13/jGNzCZTG57EyxcuJCEhAT27t07ZM14i8XCO++8gyRJPPbYY07/8NmzZ4mNjSUyMpIdO3YwduxYp1CAz7stDhwzODiYyZMnU1hY6GzO43jdQaelAcWDXVRBocMy+j7SocTA1atXqaurIykpCUmSXNr/OgIIfeno19LSQlhYmDMyv66u3wfuLoof+vPc29ravK46WFxcjFqt9hg4ePPmTWcg43BZDAPvb2BNgeFqF3iLTqfj2LFPWfmc51iQx/9uM9oALZcvX+bQoUNMnTqVsrIy4uPjXToYeoOjKmBGRgZ79+6lrq6Ob37zmzzwwANcuHABq9VKdnY2BoOBAwcOEBUVhdlsprW1lQXJyby6ZRM/DAniV1kZ/NOsmYyz22loaCArKwvor/potVqd/Rzq6ur6/2yU2BI2n4d0E1h0OpyZF0OYQTIqSYVarXY2VYqKimL8+PF0d3cT7h/CtMshxPj1Cy9JkZA+EwYJgdH85/Q/I8iLfhiCO0eIgXuQ8+fPExoaSnl5OdOix3uO7AdUMoR9tvFWqVREREQ4/+w8R6VCUaDNrqbAHMCnpiBOmgI5X9dKS1u7M5c+ICCA+kjFY8CRWlLRMUZLdnY2p06dYuHChRQWFrr44x1ERESwceNGrl27Nqi9q2NeGzZsoLOzc1A/eFmW2bNnD+3t7Tz22GPOnWB7ezvXrl1j5syZvP322wQGBvLoo4+6FBVy/Pn2eIS5c+fS2dmJTqdz6qQyzwAAIABJREFUioGB1fECVKEeLQMA/qoQj8dHgmOBdogBu93O0aNHmThxIjdu3GDSpEku87RarU7LgJ+fn1e70tszCRzWGE+VBysrK1GpVF5VW5RlmYsXLzJ58mSP4sQhHL0x8w+0fDhqCjz00EN31DLawcBSw5OWp5H6YDwarRpJklBr1CCBSq3iiZ9+g61/tZ5r166xd+9esrOzqaqqIjo6mscff3zYTo9DodfraW5uRq1WoygK/v7+zJkzh9TUVPbu3evy+aWmppKVlcW+ffvo6uoC+r8fGo2GxYsXo1Kp0Gg0XLx4Ea1Wi0qlcvYeiY2Nxc/Pz/k7UKvVLlY6R/qh1WolNjYWlUpFdXU1LS0tJCcn093dzbceepRXZv01OeXBLA7IJrEhgAW1Y3l93t8wLshzfQrB6CHEwF2ixtDOy7p8flVxiF01BfRYvxpNPIxGI6WlpcTExNDd3U3G2GTiOz8vPXs7kgJJ7RJae//qLcuy0/w98IFpt8tctARwzBxMjd2PdllDo6zhnCWIo6ZgJP9AVq5cSWZmJrLaszlYURTMso1NmzYRGxvLpUuXmDFjBu8cOsSP9+7jub37+PHBw5y8eRNZUcjMzCQ3N5ejR48O6Q6IjY1lxYoVnDt3zpnqBv2+4crKSrZs2eKyYJ0/f56goCAuX76MxWJh27Ztg8rdOnZqt1sbHJHrBQUFLqWIHYyRp6LgKUBQIid8pcfPZyRIkuRShbCoqAi9Xk9WVhYdHR2DqusNtAyMJJPAarXS0dGBSqVyKUV9OzqdjpSUFK8q8FVXV9PV1eVx115bW0tzczMxMTFMmDBh2DEdn4fJZHLWFBiubLI3GI1G3nnnHcLCwpg4cSJnz57l2z99nPcaX+H7Lz7Dw3+9nqz14/nTtx/nT/75EWpqati1axepqancunWLkJAQtm3b5tXncjv19fW89tpraDQannvuOcaMGcP27dvR6/WsWbOGvr4+iouLSUlJQaVSUVhYSFJSElqtlg8++ABZlrHZbKjVavz8/MiZnEN9kIUzKRYOpPdxPMNK5APTudXSSH19vTNTIy4ujsuXL7s0abLZbGRlZSFJkrMAlaIoSJJEXV0dW7b8f/beO7qqM03z/e19snKOCCVACJDICJOjgQITjMkgG5ui7NWuul3dt+fOzO11a63pnpmu66mequoq5wA2GQuEydnCZCSEJFCOKOd4dPLe94/D2eighKuomblTPGtp2Zy4z9lnf98bnvd51pOYmEhVRSWBrWr+dsJGJreFYqi1Iwovt6f/kXj5bb9g2CQHv8o5xprvf8tHxVc4UHmL//LwJEsu/ZrvarL/Zx8e2dnZyLLM48ePGTt2LDdu3GBGnQFPMwrhB57+v28vJFWLbtbDnp6eCILglhWX2jWUObRPnura7J3/7ZJFbvRquHz5Mjk5Ofj2yIMGH663TvAJQ6PRsHnzZgCOVFZxwuDJsZJSLpWWkZ6fz1vfHmP74aP0WK0sXryYiIiIQfkDKSkpjBw5kvT0dKxWK5mZmdy6dYtly5a5lahNJhPZ2dno9XpaW1vZtm3bgHa6A7UJXJgxYwbl5eVuwYDD4eDq1auc/OoGYnugG79CgSSgdhiY6L9y8C/nz4BLeMhsNpORkcGkSZMoKysjJCSkX1+/b2XgeScJ2tvblWDANWIZGBg4aJZttVqprKx8bsZ+VlYWoaGhQ44J/piqADxtE1y5cuWFaAqAM2BOS0ujt7eXOXPmcP78eaZOnUpKSgre/l689u6rvP2ft7IodTaN7Q3U1dVx8OBBIiMjaWlpQaPRsGPHjiH9FgZDaWkpe/fuJSAggJ07dxIcHMzWrVsxGAx8/fXXHDlyRLmOk5OT0Wq1hISEcOnSJV555RVFrthVGZBkiZthvdwcI1HnK9FtgBZPmS9bM7mYYAUfPZWVlQAKOdgFQRBQqVRuToweHh7ExsbS29tLYGCgcu5dv0MfHx9CQkKw2WxDumy+xIvHy2DgBeP/fXRa2fQlZOyyc4rWItn5f3KOcb1pcOOSvzQkSeLevXt4eXmh1+spKSlBFEVEk40FBSqSqkVCBQ+0NvA3i0x6LDKvUIVGEpBlGYPBwK5du5RFxgVZhkK7jsH6DTICNRbodDiJd/FN4uBtAhlEQWBtlDP78/b2xjclhVtW56brIhq6xqDu1dbyf507r/AHrFarm/CKC652gdFoJC0tjTNnzjB9+nRSUlLcHnfv3j1FT3/jxo2DMtwHaxOAc8TL09NT2Wja29v59NNPuX79OnPnzuO96Z/gZYxHllH+ALTWAMQ7M/FQ+w3y5fx5cAUDN27cwGq1Mn36dIqKipg2bVo/Mp6rMvA8jn4wOHlwxIgRgz6noqICh8PxXMFAV1cXxcXFQxIHa2trqa+vJyAgYNi2g8PhICfjEZlncumtt7wwTQGAixcvUl5ezrJlyzh79izR0dEK8bQv4uLiaGhoYN++fQQGBioZdWpqqqJr8WOQk5PDwYMHiYuLIzU1VQkmPDw8ePXVV+nu7qalpYUdO3Ywbtw4Ll68yPTp02lpaSEqKoqMjAymTZtGRkYGFosFlUrFv2We5lKr08JYdo/xMeng5sinG3ZtbS1z584FnJUzb29vOjs7OXr0qNKCM5lMlJeXM2/ePLq6uti/fz9ms5mysjLi4+OBp2qVriDjJf7H4PlZKS8xLJrN3aQ9zhy0BS8i8EnJVeaEvBiP+h+LZ/vYfbNaHSp+veYdCpuLuXD1AjqzCtHydPHS6XT09vZy6NAhxf/dBaMsYBpWZlimWVITplXz9qylROkbOFp9D0F+usiICEjILGzxw1N2/jRlWWZ/weB+6pIsc764hOqOTqL8fFm3bh0HDhzg5s2bzJ492+2xAQEBikRrREREv+zR4XBw48YNZFlm9erVyuI0EIaqDKjVapKTk7l16xaCILBnzx7CwsLYvXs3oaGhdHZ20nwunKDoUZg9azCajUitXowfvZi7NXdpa2sjICBgmO/zx0Ov19Pd3c2DBw945ZVXKC4uVo71WfSdJvhTJglc455DkQeLi4sJCAggMDBw2NfPzs4e9Fhd6FsVGGrSIOPoLT7+uz201LYpt/mGe2Gcb4E/U1bgwYMH3L59m8WLF3P9+nU8PT3ZsGHDgJwLV/tErVZjt9uxWq3s3LkTX19fWi097K+4xXc19+m0mQjX+7J+5HQ2Rs/AoHYPWGRZ5saNG1y+fJkpU6awcuVKt2pMQUEBx48fJzg4mM7OTq5cucLrr7/O559/Tl1dHR4eHnh4eODp6UlZWRmRkZHU1NRQWlbKIZ9yGCQ+kgRo1NvoMKiYHBZHRUWFYtusUqmUFkxQUBAtLS2IoqhM30RFRTF69Gj27dvHnj176O7uVkjGY8aM4eLFi5SWlpKQkPDnnZCXeG68rAy8QFxrKhpSTUtCJq+jhlZLz6CP+Uvizp07qNVqNBqNm8sZwKSN0/jPNb/lM9MBqma2UDy/jtrkVmw6Z9kvMDAQQRDo6elBlmW0Wi02lUyNv0RNsITgY2M4JqIsyyQnJzN9+nT+Y9Jr/NdJGwjoFREkJ0lxjN2b3ya+QVCdhUOHDmG326nr6qbqSQAz6OsC159wAUaPHs3s2bO5fPkyjx+7axr39PSQk5ODRqOhu7tbMXZx4dSpU1itVmbMmMGkSZOGfM/BOAMuuDIhWZZZtGgRu3btUvTtMzIynBus0UCMOBef1vHoTCF0dXYhiqKi0/+iodfrqaurQ6vV8sorr3D//n2Sk5MH7Ev31Rl43sqAr69vv0mCwfrvsixTWlr6XFWBvsTBwXro9fX11NTU4O/v7za58iwyjtzknzf9q1sgANDVaOTfL/sncq8N7a43FGpqajh16hQTJ06krKyM3t5epUT/LHp6ejh27JjSbuvp6WHHjh0EBARQbWxj4w9/ZE/ZD7RYerBJDh73tvHbwgvsvPU5PTb38dBz585x+fJl5s+f70Z+lGWZ69evc+TIEcaMGcOuXbvYtm0bdXV1nD17lpUrV1JWVqZ4ZSxevJje3l6lqlZYV4VJx+AaJODUG4kNJDU1lTVr1nC3pITbWh0HRDWHNDqu6wwEjE1kwoQJSiAgCAJpaWkEBASQmppKa2sr8FSfwrXWDKQf8hJ/ObwMBl4gTA7rkDrbLhw4ephTp05x8+ZNCgsLaWxsHHRT+VMhyzLXGov4xb19/OTKb1h35becM5VhlG393ks/3ZsD7cdpc/TZdAXoDjVTldKEXescLXItEg7JwQ1DC2cmOrgXL1EQ60A9qRv1tE4Er8HU/gRemzOD27dvK3rxyQQyr0BkfY6ONffVJD7oxavdxtatW6mtrSUtLQ2rY3j1QAEUu1WARYsWERUVxbfffovRaAScm9uhQ4eQJIkdO3ZgsViUWXRwZqkPHjzA19f3ufrNg7UJrFYrZ8+e5cKFC4AzQ+rr09Da2sqDBw+YNWsWzc3NREZGkpiYiN1up7y8nOjo6L9YMCDLMt3d3SxYsIDKykq6u7sHtOV1eRS42gTPQ2Jrbm7GOySAz0q+Z/nlD/g6vpXzSXZOGYvoGsCgprGx0UlgfY6RwtLSUrq6uoa0EHZVBZYtWzZoVcDhcPDhL/cMeJ8syUiSzGf/7pthj2cgdHV1cfjwYcLDwxWdio0bNw5Y4TGbzezfvx+LxYKHhwcmk4nt27crm+E/PviWDmtvv8RCRqa4q4HfFTqvH7vdTlpamiKfvWDBAuWzOxwOvvvuOy5fvsy8efNYv349Go2GqKgoNm7cSElJCUVFRUyePFlx0Lx37x5z585VNuHn9Wg0mUycOXOGi2VlnNAZKFFrMIoiPUClWs0/Zj/g28IiVq1axfz58xXVxz/84Q+YzWZCQkIQRZEDBw4orbWeQC23hUbSHmfSaOr8E87IS/xYvGwTvECM8g4dsjIAoJVFgnRe1NbWkpeX55adent7K0pwAQEBbn8/hlUsyRL/lHeC49X3USHgQHamz5FQFgpzC1X4WEV0Oh0myUyOr9NBr9/VL4JdJ9Ea101o4dM+9sMREqWhcv/HGyRUE7uw3/cF09OyqIBMYmgAG5cv4Y6/N+fOnUOSJLy8vNBoNAiCgMPhwM/Pj9OnT7Nu3To2bNjAoUOH0Or1+Op0dA5BJpKBqnt3yUZm/PjxaLVa1q9fzyeffMLx48fZunUr6enpNDY2snPnTqVF8N1335GYmIiXlxdHjx4FYNWqVc8lfjNQm6C8vJyTJ09iNBoZP348jx49wuFwUFFRofSwMzIy8PLyIjIyEkmSiIiIICIighs3bgBOqeWcnBylZ/8i0dDQgEqlYsqUKRw4cIARI0YMmLm7fpMajea5KwNVrQ1cjO2lvbjUeQ2I0KuFT0szOFWXy95ZPyVQ97QPXlJSglarHVYHAJzEwfDw8EFbDo2NjTx+/BhfX98hg4vcjHza6tsHvV+WZArvllJbWk/kqOc3i7LZbBw+fBhRFBk1ahTff/89q1evJiYmZsDHHjx4kPb2dkJCQhRuhasVU9LVQE7H4A6GEjLf1dzn3dh5nEpLp6amho0bNyoaAOB0oDxy5Ag1NTWsW7euX2tl9OjRrFmzhuPHjzNz5kyFEFxRUUFlZSWBgYG0trYS4R2Ap6UZo5YhFUo9Gkz88Dibb3V65+rX5/pxheh3dXp0I0YwJSSE6upqamtrMZlMfPONM/hKSkqirKyM/77/c+7GS1TGGEGG+3knEBFYGTmRf0xajU7148csX+L58DIYeIGYERhLpMGfelPHgEGBIEN0EwSPDOT11WvRarX09vbS1tbm9tfU1ERhYaGbQIynp6cSGDwbLDy7WB97nMXxaqf3uMN1HE+uT6sK7oyWeLXA2dOzj4Eh2/0idET2ElLoiyiIaIN8KAtrG/ChwhMhIdXIXhxF3ji3aYEAvYZRXdXk5OSQkpKCKIqcOXMGHx8fRo4cSX19PVarFb1ez6RJk0hPT1dMUE6cOEGMRkuORuu2yCjviUygJBOp0fDdd99x7tw5xo8fz+TJk1m7di0HDhzg66+/pqqqio0bNyobyqRJkygoKODEiROAs+wfEBAwJE+gL/q2CcxmMxcuXFDGtVJTU8nJyVHG+e7evUtcXBxNTU3k5eWxcuVKmpqaEEWR0NBQVCoV3t7eWK1WLBYLDoeD8vJytwX+z4UruzYYDHR2dlJeXs6aNWsGfGzfYOB5OANWq5UMvzban3A+FAjOzave1MF/eXiS30zdotxVUlJCXFzcsPoFnZ2dlJSUsHLl4BMWz1MVAGhvfL4Ms72x87mDAVmWOXnyJE1NTSxevJjz588za9YsNwEnFxwOB0eOHKGuro4RI0ZQXV3Nhg0bOHLkCGVlZQQEBFDQNbyxlkWy8+HhvWhbTOzYscNNbrmlpYUDBw5gsVh48803B1V/TE5Opre3l/PnzzNx4kRycnIAJ5fo7bff5oMPPqC9rZ0xahXZIwcehRVkCOx2apA80Ij9AgH3x8r846HDvBMXS3R0NFVVVQQEBNDV1YXdbicvL4/AuEiO+lRhM+Jcr568lITM6docjHYL/zpt67Dfz0v8aXgZDLxAiILIv0zewE/vfIXFbnNjzAsyxHkGsytuPHdu3CYnJ4elS5eSlJSEp6fngBetyWTqFyi0trZSUlLi1vM3GAxKYODn58dntv7iPC7IInTrZRo87IR0i3RIXa49e/DnqGUEnYjKoeKR2O6kvw/yeEEEIdiGV7mMxuFgcog3//zeTq5cOE96ejoWi4UZM2YAcObMGby8vJQNwWQy8dprr2Gz2fj222+Vkb4JNivNooo6tfqp2eGTloVBllmKhMlk4r333qOgoIDs7Gyys7MJCgoiKCiIqqoqpk6dSmJi4tPjFAQWL17MJ598glqtxmazDbuZ9IUoioiiSF1dHVevXsVisbBq1SqmTJmCIAh0dTn7/xERERQXF9PR0cHVq1fx9/dn8uTJnDp1itDQUCWoSExMJDs7m6qqKgIDAykuLn5hwYAkSVy4eAFdoA9dvb3cvXcPvV7P+PHjB3y8q9ohiiIOh2PYykBhXSX1fjAYZ8QhS1xtKKDJ3EWI3ofe3l5qampYtWrVsMd+//59NBoNEyZMGPD+1tZWKisr8fHxGfb7Ch4xPFHxxzwOnO6ceXl5LFmyhKtXrzJ27FiWLOmvEyFJEunp6ZSXlxMTE0NlZSUbN24kISGBESNGUFFRwfTp09GJz7ck281W3n37bbepnvLycoW5v2PHjgFHYvti5syZ1NfXk5OTg0qlQpIkjEYjjx49Uh4T0yzQqRcpD5Gekn2frBdeZphR7rx2m0WVMukzEGRBoNruUIJScAojgfNaTEpK4mhPPjbVwMqkEjJXGgvI76xlnO/Qdtgv8afhZTDwgpHkH8VHE7bwq8vfUBMgI4ngJWuIaYL1obEsW7mYlElTuXjxIsePHyczM5MVK1YMOMJmMBiIjIwccK7abDbT3t7eL1goqiqjcczQBEVBhlYvCOkGtVU1bHNQkEC2SthlGatKHjZ4QIQdo3xoqqpF6DahFQVee+019Ho9Z8+exWw2K+VhF6ENnBLGkiTh5+eHJEm0trai1+uxWCwsspiotKtpC4+g0WzG3mtkbkgIXo+r0EgS7TYbly5dYvPmzcybN4+Kigp++OEHZTzpwYMHREVFkZSUhCiK2Gw2Tp48iVarxWKxoNfrB91wBoIrGMvMzGTUqFGsWrXKzZCou7sbWZYZOXKkEjAUFhaydu1aVCoVdXV1bgFgYmIid+/exWazER0dTWlpqSLO8ufi41unOBRUT9eTsfXLphssSI5GUA0+/w8oHJHhKgMPGsqH/Q1JyJR0NRKi91E+23DkQUmSyM7OJikpadA22dmzZwEGtPV9FtoQEUOADlPbwC0nUSWSNDeR0OjnU70rKSnh0qVLzJgxg3v37hEQEMC6dev6HYcsy5w9e5aHDx8SHx9PWVkZ69evV5jysbGx3LlzB0mSSAmKRy2I2AfzO5bBy6Hil9t/il+f31tmZiZnzpwhPj6e9evXD3vOXEZceXl5eHp6YjQa8fX1VRwbAUaNGkV7ezuvtJgY0WqkMliixyCgsUlEtYlEtAuoZIHAwEDUJvOTJGHwcyA57HT19Pa7XZZlcnNzKZ1oH1aZ9Fxd3stg4C+El8HAXwBNj8qZ0+iF2CLS3WtkfMJYRowdwaVLl5g9PYWQkBA2bNhARUUFZ8+e5dNPP2Xq1KksWrTouYVG9Ho94eHh/YKINmMXh7//YNjnh4WEMDksiuKaUhrljsEXcwlCOwIJCghCFEVCtEaKhKGdxtQO56giOC/0iooKEhISWLp0KXq9nqtXrxIVFYVOp2P58uVKqd5isfDxxx/T3t7OlClTyMnJUVolngYDcSYT/2H2K4wdO5b9+/cjyzKTX3+db7/9FkmSlMX51VdfxcfHh4aGBqKjo4mNjeXatWukp6dz+fJlkpOTqauro6mpiU2bNrF//34cDgcWi+W5NODz8/M5c+YMkiQxduxYNm7c2G8D6OrqQpIkvL29mTRpEnfv3iUoKIikpCSsVivNzc1uGgcjR47EYDAoWXl3dzcNDQ3P7eQ3GD4qvMynHfegT3JvUsuckyqx3D/MB1M3o3pG6c11DC7293CVAWPn0L8HF7Qq53dbUlJCeHj4sEZAxcXFdHd3D6o42N7eTllZGV5eXowbN67f/VaHg3s1tbR0dlL78CHNJcVM2TKWGx/m9CtiiCoRtVbNz/5b6nN9lubmZtLS0hg1ahS1tbU4HA43b4u+uHLlCpmZmUogsHr1arfAMz4+noyMDOrr64mMjGSudiRXzZUDX5MC/HzCMiUQkCSJCxcucOfOHWbMmMGyZcuGlVI2mUycOHGCoqIiZs+ezYIFC/j2228pKSlxM96aNWsWvr6+fP755wT2CgQaXS0d99eXJIlwm41qzeAcFwGZeJUKDw8Pli9fjre3tyIhbjAYnC3L4S49WabL2p+M+hIvBi+nCV4wbDYbOTk5TJo0CYfdgVZU09nZyYwZM/Dz8+PChQtKxhUbG8vPfvYzli9fzsOHD/m3f/s37t2753ZB/hg8fvyYbz7/Cv9eYWiFPwEiTVqys7PxQM8ke+LAD5RAdAh4FWhpbW3llVdewfexEY0gDjpFKMjO0mJzo7MnrlKpKCpy6gQIgsC8efNYvnw51dXV6PV6kpOT3cbwDAYD69ato6CgQBFecemdR0ZGkpaWRlVVFTExMYqK4oIFC5AkCY1Gw61bt7h9+zYHDhzAy8uLzZs3M3/+fLZt2waAl5cXt27doqKiAn9/f7KyshQXwlOnTg1oduRCT08PR44c4ejRo4wcORJfX19lDOpZdHd3A84ebEREBJIkKfKvDQ0NyLLsRogTRZHExETlfq1Wq/g5/Kmo7Gnmk7Lvn5yYPncIztN3pbGAS/WP+j3PVRlwqckNl2V6tFrRDqMz4aXWk+w3AkmSnnukMCsri4iIiEEDosGqArIs8/X9bF756BNSj37L3124yG/q6rkTHoktWk9yahyeoe6fafysBH77wz8xesrwHgkmk4lDhw7h7e2NRqOhsbGRLVu24OPj0++xN2/e5Pr160ogsHz58n58goiICLRaLWVlZWRkZOBzs5opKudkgUpwWoa7rMJ/Fr+AjXEzAWfwfOjQIe7evcuKFStYsWLFsIFAbW0tn376KVVVVWzZsoUlS5YgCAL+/v5IkuT2PTocDgICAgbklvStgrW3txNns6LlqeWxG2Sn4miySsTHx4f09HRyc3MV8qTJZEKWZTxcKqiDwCHLlGc+5Pjx4zx69OhHKRRW9NRztTGb2y35mB3W4Z/wV4iXlYEXjPz8fEwmE9OmTePevXuo1c5gQK1W8+qrr3L48GG3xVClUpGSksKECRO4fPkyZ86cISsrixUrVjwX0xqcF21GRgbXr1/Hx8eHMQ0q7sQNPJInyOBvhN7iOkaPHk1KSgoHDx1k/NRRlAVUY5aeXmC6bg1jq2OwPCntZWdnM3pkLN0tzWQEdfZrFwgyGCwwpl7E7HAa3Lgy9r4l7ylTpnDhwgU6OzvZs2ePm5a5KIqcPHmSgIAA5yITF0dtbS2SJLFy5UouXLjAwYMH+clPfoLNZqOuro558+bR3NzMo0eP0Ol0nD9/Hr1ez+7du5WNLC4ujvnz55ORkaEcQ1tbGwUFBahUKsLDwyksLCQvL68f+1qWZfLy8jh37hyCILBhwwbGjRvHhx9+OKACod1uV0akDAYDt27dQqfTUVNTgyzL1NXVoVar3fq94GwV3L9/n9bWVuLj4ykpKfmz5HEPl912E3V6FiICR6vusiwiye32HxsMtDe1sChgJOcclYM+5q34OehUGqqqqjCbzcOOFHZ0dFBaWsprr7026P0lJSWKU2RffHL3Hh/8cL3fc0q6uqiQBV6L92byu6NYueA1Duw5xPpt65i95JUhj8eFvlLDycnJ3L17lw0bNgw46XD//n0uXrxIbGwsZWVlLFq0qJ/iJTjXgJiYGLKysujq6mLJosXMnTuXos56Pr17htLaKrwlNb/e9D6RngHK5z948CCdnZ1s3bp1SG0FcP6G7927x/nz5wkPD+fNN9/Ez8+P9vZ20tLSqK+vZ/78+RQUFNDS0kJPm40Pf3WMpjITRqMRj0AIG6fDJ1SNKIosW7aMI0eOKK+vBZaae7mo98D6TECgAhZaTMi9DhqeGCFlZ2cjiiIGgwFJklCr1cQ1d5MbNXgiJAoCr8dMo6GkitzcXOV7S0hIYMyYMW4BigtVxkY+KDxEQddTTxKDSseWkYvZGr34hbTh/nfBy2DgBSMzM5O4uDj8/f2x2+0YDAa6u7ux2WwkJCQQGxvL+fPn+zGpPT09Wb16NVOnTuXs2bPs2bOHCRMmsHTp0gEzDhdaW1s5fvw4dXV1eHl50dnZycKEBLprC8iPHJj0s7jBF0k0UVJSQklJCUFBQewS6hoFAAAgAElEQVRevBtJlPi+7Drnv7/A7MRXeHg7Bwu9JCQkUFRURHV1NREREQTUGfn5qBT2NWbS/kSUSJRgZLvIuGoB3RNTI1e5uaenh7q6OoX7UFNTgyRJhDwZM3I6HjoXkMePH2MwGHA4HHh4eDB37lz27t2Lt7c3hw4dYuvWrZw4cYILFy6g1WqpqKggKiqKdevW0dbWpmjiP5vlwNNsRqPRsHDhQkpKSqisrGTy5MlKFp6enk5bWxszZszAw8ODrq4uTp06RUlJCUlJSSxfvlxp5Wg0mgH1IVxVAdf5efz4MQsWLOD777+nurqauro6wsLC+jHpY2Nj0Wq12O12JVM0Go1uFsg/Btk1JUMOukrIVBhb+t3u+kyu/w7VJrBarXR2drIxdD69TXau2WucmewTLwuHLLElZiZvxztlal0b+FDKhOCsCuh0ukF5HK6+tiuzdaGxs5N/vd4/EHB+XrABj/QGUqNGEDN+JL4xnowYPfSx9IVLanj27Nlcv36dhQsXDtiiyM/P59SpU0RHR1NRUcGcOXMUqd5+xyVJ9Pb20tXVxdKlS5k1a5YziP4hC5+sGrYkjKOoqIhQnXMdqKmp4dChQ2g0Gt555x23oNLqcNDQ3Y1OrSb0SWXNYrHw3XffkZ+fT0pKCkuXLkWlUpGbm8vp06fx8PBg586djBgxgmnTpvFP/+6/k3euB5keJVM3G6Gtys7IqXoiknSkpaW5fQZBEAiUJNb39lCu1tCo0eCQZEIcduLtNp4NJ319fZUkyWKxYDQaiTWJ1ARItHniXsl6snb93bjlrI2dBYudwVBRURFFRUWcO3eOM2fOEBYWRkJCAgkJCYSFhdFobucX939Pr929gmByWPiy4gwmh4Vd8X8ZH5D/P+JlMPAC0dDQoMz9urIrnU5Hd3c3XV1dBAYGsmzZMj755BMyMzMHzBIiIyN55513yMnJ4dKlS/zhD39g7ty5vPLKK279bFmWyc7O5ty5c8rter2epUuXkp6ezlhZRXi7QPdYfyqNLagdMNbuy/YpSzj56AQTJ04kLy8PSZJoaWnhm2++YcWKFUz0Gc/t+utMWzaZcg+n+E1HRwfjxo0jPz+fpqYm1Go1HbeL+GJdKh8f/pqgyDC6qhrQSE+vYEEQlA1eEAQKCwuJjIxElmVu3rwJOIOEOXPmKDP2gDLjbDabeeedd7h58yZ+fn689dZb7N27l8OHD7Np0yaOHj2K1WqlrKyMefPmoVKpiIuLU4IBQRA4ePAgb7/9NjqdjtLSUk6dOkVSUhLl5eWkpaVhNBoZM2YMK1euZMWKFRQUFJCenk5GRgbXrl0jLCyMlpYWdDodmzdv7ieN2te6tS9cbGlweh1ERUUxd+5ccnNzuXfvHvX19QOOMKpUKsaOHUthYaEiG11aWsrEiRMH/c0NhpaWFnpbOxADhSG1L7wH8Iq3Wq2oVCqFQzEUj8IlQ+zp4UFoZgvL9TrKfa2MHDea6IAwVo+YTLTXU9fCkpISRo0aNWRG5nA4ePDggWKk8yy6urooLCzEw8PDrYpTXFzMr0+dxiENTmSTBYFiWWbilClu9sXPA5fU8MyZM7l16xbJyckDbvBlZWUcO3aMyMhIqqqqmDFjBosWLRr0s6anpytCPy6TnmPHjlFUVMTq1asJDAykqKiI1tZWmpubSU9PJyIigk2bNimBYq/Vxh9u3+ZATi7dT8rnicHBbE8cS/Od2xiNRqWiZbFYOHnyJDk5OSQlJbFy5UqFoGkzyeRf6qRftf/Jvx9nmfEOUeEd6pT3dk0EuK51DZBgtzFJo8YvwI/6+np8fX0xGo1u10p3dzd2i4OCG+U0ZrdjMzrQ+2oZPTOA1hXeVIWC7cnPzscEfztxJa/HzlSe7+fnR0pKCikpKZjNZkpLSxUOQkZGBj4+PjyeINGrNg/6+z/8+AprR8whSNe/ovDXiJecgReIzMxMvL29SUhIcCsTA4pPeGhoKJMnT+b777/vJwnsgiAITJo0iffff59p06bx/fff8+GHHyrZq0tU5OTJk0o/fc6cOWzbto2zZ88q6nG+FpGYR0bmletIKVezNWkBUyZOYu7cueTk5KDVaklJSUEQBOrr6xUzHXBe3FOmTMFms9HY2EhERAR6vR673Y5Op6Onp4esrCw8rQLmyiY8VFq3fmXf3rssy9y5c4eamhr27t1LaWkpfn5+vP/++yxevNit8uFSbBMEgQsXLpCfn8+cOXPw9fUlNTUVh8NBWloar7/+uqL01tPTQ15eHjdu3GDmzJloNBosFgstLS0cP36c2tpajhw5wqhRo1i7di1vvPEGVVVVNDc388orzvKwKIqMHz+eDRs2AM5ef319PTabDUEQqKuro73dXbDGNZLYFya7lfzWanp0MjIyDQ0NLFq0CFEUmT59Ovn5+U5Bl0Ey48TERKxWK/X19YSGhv7JaoSXL19mtNlryEDAJebyLH6ML4ErGLh//z46nQ5Dj4MJdWr+ZcYWfj52qVsg0NnZSVNT07B8gaKiInp6egYlDrrUHRcvXowoinR1dXHkyBEOHjwIBgPqYfrmkiAQFBHR7xodCi6p4fHjx5OXl0dERASvvfZav6CmpqaGw4cPExISQm1tLZMmTRrUK8Fut3PkyBHy8/N544038Pb2pri4mH379lFaWsrmzZuZPHmykvlfu3aNtLQ0xo8fT2pqqhIImG02dhz9ls/uZSqBAEBhczP/97UfeIjA7t27GTduHHV1dXz66acUFBSwdu1a1q1b5zapcXLfNez2IThLAjQUON/DFQi40Dcwc7USwHneo6KiCA0NVa51c5eVB5+WUXm5EVOrFbvZQU+jifITtdh/VcmaPA8214Xweok3i/JV+DwefELKNQm0fv16/uEf/oEdO3YwZmwCD8W6IX//MnC18X++k+z/KngZDLwgWCwW8vLymDJlCqIoKhu964J1BQPglMuVJEnpXw8GvV7Pq6++yrvvvou/vz8HDx7ks88+449//COlpaWAs9y2e/du5s6dy759+zCZTIiiiMViITExkWXLluFwOBBFkY6ODmw2G1VVVahUKqxWK+PGjWPnzp3KvL+L7JeXl8fkyZOx2+2MHDmSjIwMJk+ejCiKGI1GDAYD+flOHXcvLy83ExLXwudS6QNnyfmLL76gra0NQRCYNWsWBoOBu3fvun03JSUlTJo0iW3btlFdXY1KpVLKsH5+fqSmptLb28vJkyeVxebLL78kPT2diRMn8uqrr7Jt2zYEQUCSJIqKiti7dy8hISGsX78eURSJiYlRZrD7ZiuyLNPe3o4gCBiNRtasWcOuXbsYPXo0t2/f5ve//z1ff/01eXl5isWv6/k9NjO/fnSahZf+hf9Qf56LSQ4uTnBgHhukKNFNmjRJCZgGCwbi4+OVTNzX15fS0lI3W9jnQVVVFYWFhexIWUaS34gBSekqQcRf58kb0dP73efyJXgex8KmpiY8PT0pLi5WKhhBQUEDVhOKi4sRRXFYYaesrCxGjBiheDn0RU9PD/n5+RgMBpKTk7lz5w5//OMflQzcX6d1k6YeCBpRxPeJgyMMXxlwSQ2HhYXR3NyMRqNh06ZN/T5jY2Mj+/fvx8/Pj8bGRsaNGzdgwADOgOvAgQOUl5ezZcsWxo0bx4gRI7h//z7Nzc28+eabCq9Co9GgUqnIz89n4cKFrF271u29D+TkklNfj/RMOu/611WrDYdWy40bN/jiiy/Q6XTs3r2biRMnuh3bw4cPufDd9aEtRmTobnL0IyqKoqj4UYAzYcnPz3/aLnI4lIofQOnJWszt1gHfy9hkpuBYOSEqT2IDwxEQyMnJGZZYLcuy4p3i7e+DJA6tBqsSRDps/3N8Yv5XxMs2wQtCbm4uNpuNKVOmAE/n0D08PJRevguenp7MmzePy5cvM23atH5EsmcRHBzM5s2bOXr0qFumOGfOHBYsWIAsy3z++ee0tDj7vzqdDn9/f1asWMFHH32Et7c3DoeDpqYmjh07Rl1dHTt27ODq1ascPnyYXbt28e6773L+/Hmys52R8v3796muriYqKgqj0YhOp6OhoQFJkpSWQV/0Zfa6qgJarRabzeYWKFgsFmRZJjY2luvXr3P58mX8/PyUsrggCFRWViobiyzLHDlyRBnbCgwMZMeOHezZs4f79++jUqlob2/HYDDwk5/8BEEQiI6OVtQLwbm59S05NzU10dbWRkhICMePH+fdd99V+qrV1dVMnjyZsrIycnNz2bFjB5GRkSxbtkwRNDp27Bh6vR4PDw+npLPdyq7bX1Lc3eC2IBt1cFbfwJiya+yMn4deryc0NJTa2tpBBWE0Gg1jxoyhtLQUk8mExWKhurp6QGnbgSDLMhcvXiQ8PJyJycn8S1s475z/Aw2+sjMoeMIhifUM4jfTtuKv7c9H6GtfPNxG2dTUhNVqJSYmRpGW7quI1xclJSWMHDlyyNdsa2sbUh3x4sWLyLLM1KlT+eKLL2hoaMDPz4+enh7u3r3LyLAwNKKIbZCpEEGWWZs4Fs0TVz1RFN2C1mfhkhp2qUk2Nzfzzjvv9ONxtLe3s2/fPjw8PGhvb2fUqFGsW7duQHa/yWTiwIEDNDU1sX37dqKjo2lqaqKyshKHw8HmzZsV6+eenh4OHz6MJEmMGDGCefPm9Xu9/Q9yBj1+cO63/7hvPxGNDcyaNYtFixa58VV6e3s5c+YMjx49wsvLkzbB0r9N0Pc7FOm3MUuSRGtHm1OBVHa2CO/evas4MvY1DfPV+9NW/HDIA27O66Smopb5i19BtP+Al8FEXeVhImM3IEkCbW1ttLS09PtTNDKQUc0CxxA7nEOWCNEPLcz014SXlYEXAFmWyczMJCEhQSmD9S1BusgyfZGSkqKMGg6HxsZGPvvsM6Ua4Mric3JyOHv2LB988AGNjY2IosjSpUsxmUwsWrSI8+fPI8sykZGRqFQqqqqqKCoqYsOGDURHR7Nx40b0ej0HDhxQbHtdZXKNRoMsyzx+/JjW1lYSExOpqKggJCQEo9HIihUrlONzjRD2hauCAM6FIigoCJVKpZTVL168qDit9c0AAwICFNMSnU7H1q1bqaurU4xdwNlq2b59O42NjUiSpFRCzpw5owQi48ePV0YW1Wo158+fVzKX27dv4+3tzbZt2xBFkS+//JKPP/4Yo9HIW2+9xerVq1mzZg0VFRXcu+dUc9RqtUycOJG33nqL999/n6lTp9LV1UV9fT1/d/j3FHX1z8xcKfm/FV5SzFZcJdnCwsJBz/fYsWOxWq3U1tYqWffzIj8/n9raWpYuXYogCFw5c55XSlT8p4CFvBk8nfE1IjvtCRyd9z7RngMr7bmqHs/jS1BbW4vNZmPFihXKtIRrI3v2NSsqKoZtEdy/f39QdcTe3l7y8vIQRZHr16/T0NAAOK+x+fPn84tf/IJf/Oxn/HTCk+c+cz4EWUYH7Eh0KhW6gp3B+At9pYZjYmKoqKhgw4YNiqGQC93d3Xz99deIokhPTw9RUVGD2hYbjUb27t1La2srb775piLN+9VXXymjtK61oqmpic8//5yOjg4SEhL6uWy6UN3ZObQjiiRR19PD9u3bFfKgC0VFRXz44YeUl5ezfv16Vm6cP2QggAD+Uc7gyRXQNvhKXEuwc2Kqg++mOrg83k5NqIiMPCCnpiy7qt9tz0J2yMQH5zM97u/ZsuJ7XltwhwiPX2GsmkbagXf58MMPOXLkCDdv3qStrQ0/Pz+io6OVYxIQCGvQDjlirRJEFoYM7U7614SXwcALQE1NDU1NTW49TldlwGAw4Ofn1y8YUKvVLF26lNLS0kH7wrIsc/v2bT777DOlvL5kyRL+9m//luXLl2OxWMjKylIWiS1btlBQUMCIESOw2Ww8fPiQ5cuXo9frsdlsWK1WVqxYoZQfPTw82LJlCz09PRw9ehSHw8G4ceOUueOWlhZiYmIQBIHMzEwCAgLo7OykqqqKMWPGkJSUpHyWZxf5ZzMHV6bvWoiKi4sZNWoU8+fPVyoa4Nw0NmzYgM1mU6RwXRt/34AgLCyMwMBAZFlWxg5zcnK4ePGiwiswm81ERUVht9tRq9UcOnSIuro6cnNzmTFjBiaTCZ1OR0dHB2FhYbz77rvKOGdcXBzTpk3j0qVL/XqjgYGBLFmyhMmTJ+Pr60uBT+/QCyjwXY2z4tLa2oqPjw93794d9LFjxoxRqinBwcHPzRuw2+1OrsDo0co4W3l5OV5eXqxKWcCGyKmMbhQJ6hGGJPA1mo3c0do4ZmnmB8FIbc/AokLNzc2YzWbi4+MJDg5WSHADKWZWVlZit9uHDAYcDgfZ2dkkJye7ZeuuFtwf/vAH5Xz7+PiwaNEifvGLX7B7927mzJmDv78/DQ0NWLIymWO14PnMFhnhcLBZq+b8sWO0t7djMpmGrFK4pIaTk5PJy8tj2bJl/Ub4TCYT+/btw2azYbFYCA0NZfPmzQO2STo7O/nqq6+UoDMiIoKCggK++eYbwsPDefvttwkJCaG8vJySkhK++OIL9Ho9u3btIiYmhtbW1gFL5Z7DGVoJAimTJrm1Z8xmM+np6Rw6dIjIyEjee+899Ho9hfV30RiEweXGBQhNdL6f0WikaZQXt0ZLtD71oKJLD/eirGRHS8h9zoEgCE5zMt3wBen5a9rZsjELncZdZMig62X9kgze3TmG9957j4ULFyKKIvn5+ZSWlioJSGxsLP8w+0381V5P3ZKewe741/DR/GmTOv874mUw8AKQmZmJv7+/28XmCgY0Gg0+Pj5KGbwvxo4dS0xMDBcuXOjXF3ZlG+fPn8fhcCibVVhYGF9++SWnT58mMNA9s7t37x41NTXMnDmTM2fOMHr0aJKSkujo6FB6dc8u1EFBQWzcuJHKykrOnj2LLMtotVqSk5NZtWoVtbW1GAwGZFmms7MTi8WCIAg8ePBA6Xu3trYiy7KS2fSFa1H38/PD4XC4ZQqlpaXs2bNH8TMH5yKVk5ODTqcjODiYvXv3KrbDzc3NfPPNN5hMJk6fPk1TU5MykeFarG/dusVXX31FcXExb7zxBqmpqQQHB2O1WhXHONf7fPrppwqxr7a2VpEudmHp0qV4eXmRnp4+4CLs6uX2qBxDyvEKgkCdqQOj0UhnZyfjx4+nurpamXx4Fjqdjvj4eEWnoaWlpR95cSBkZmbS0dHB0qVLsdvtfPfdd4BTlMc10w1Pq1bPQpZl/tv9a/yzsZIrQg9ZmDhraWVO2kf8OiujnyCTS/Rn7ty5dHd3YzabUavVBAUF9Xvt4uJi/Pz8BrzPhYKCAnp7e5k2bZoSABw+fJgPPviAY8eOYTKZEASB1NRUfvnLXzJ37ly3dktXVxcHDhxwBqeSg/WmXl6X7Hyx5jX+LjiQ1KAAfvnOO6jVar755hu6u7sHrXy41CwnTJjAgwcPmDZtmuKp4YLVamX//v2K2qS/vz9bt24dcAKira2Nr776CofDwc6dOwkJCSEzM5OjR48yduxYtm7dil6vJzY2loKCAg4ePEhMTAxvv/02vr6+BAUF4XA4+q0jra2txNvtA4v9PIEEvJ78VEuirKyMjz76iMLCQtasWcOaNWu4fPky+/fvx2ozM26ZFxp9/x+0qIKERR4YfJwBfZtg4Ybvk+N5RtQKoCpYpsHXnUjc09ODZ6QOUT34BSOKMrt/VT+gurHz3wJa2+/5+OOPOHfuHL29vcoaFRcXx09/+lNSU1MZExnHtId+hHca3LgJofoA/n3iVtZH9W+5/DXjZTDwZ6K3t5dHjx4xdepUt2yrbzDg5+dHV1dXv8VUEASWLVtGS0sLmZmZyu0FBQUKKcrFyl2yZAmnT59m3759iKLImjVraGtrQxRFYmNjWbZsGSUlJQiCwO3btzGbzaxcuZLi4mIqKyuV8rSL/d0XsbGxrFq1iqysLG7fvq0Q46ZOncq7776Ln5/TvjgoKIiQkBBkWeb69evU19fj4+ODWq1WGODPwrX5l5aWKlWBV199lTlz5gBOXYG+ZUur1UpWVhYpKSm8+eabREZGsm/fPnp7e0lNTaWtrY2PPvqI7OxsVq9ezbJly9BqtVRWVtLY2EhMTAy1tbUkJyczZswY1Go1b775Jh4eHthsNuUYb926xZw5c9i9ezcrVqxg9OjRHD9+3K2Co9VqWbNmDdXV1dy+fbvfZ3PpDHiqhreX9tN6KIprU6dOHbY6kJiYiM1mo6GhAVEUh20VmM1mrl27prDPb968qYyzumb1XVnwYMptX+Rn8oe8WzwRu0N6olQoAx89vM1nj54eb0VFBRUVFYCTDOn6bOHh4QNq85eUlDB69OghKxL37t0jMDCQK1euKAGAK2By/UaWLFlCbGxsv+daLBYOHDiAw+HAZDI5g2tZ5s2f/ISkgABaKiuZPn06Xl5epKamYrfbKSkpGZAv4JIajomJobS0lJiYGFasWOF27Ha7ncOHD9PU1IRKpcLT05Pt27cPWGloamriq6++QqPRsHPnTvz9/bl69SqnT59mxowZrF+/HrVajSRJtLW1YbFYmDhxIps2bVICC1cQ1beK9vDhQz7++GPierrQ4BTleRYCsHz0aMaFhGC1Wjl16hT79u0jKChIqQZ8+OGHPHz4UDmXS1fNY9omf+JmGwiK1RISb2DkND2TN3jjN8L5fQmCQF2EekhLCkGGiuCnQbS5w0rNzRZqb7TgGzN4Rj5umpGgMNugNgeCIOPr2cqMKb4YDAZaW1sZPXo07733Hps2bVKSlAsXLuDoMDOp3J93TXP53eSf8+n0v2ffzP/I0rBpQxz5XydeBgN/Jh48eAA4meJ94SpXaTQafH19cTgcym19ERYWpowadnZ2kp6ezpEjR7BYLERGRrJx40bKy8vZu3cvZrOZLVu2sHnzZjIyMnA4HHh6evLGG28QFhaGLMuEhYVRU1ODwWCguLiYb7/9lqCgIOU4mpqaBvwckydPZtasWYpcsqu3HxAQwDvvvMPIkSMVXoKnpycOh4Pc3FysVuuAFQEXXAHQw4cPcTgcCILAzJkzmT17tiLeMxBbPiUlBa1Wy9atW4mPj+fQoUO0tbUxZ84curu78fT0VDaX+Ph4AgMDefDgAZWVlYSHh5Obm0tBQQGAslC74HA4mDhxIgsXLkStViMIAmvXrkWj0ZCWluZ2PNHR0cycOZMrV664BVKyLNPd3Y3RaCS4xjxkb9IhS6yIcPohuBwmp0+fzsOHDwcdL3VpGlitVkJCQoZtFfzwww/Y7XYWLFhAe3s7165dA1C4AzB0MGB1OPhj3q0h3+OPebexOOw4HA7Onj2Lt7c3fn5+aDQaamtrEQRhQPfN5uZmOjs7B1QdtFgs5Obm8vXXXyv8lO7uboVY29nZSXJyslKxGkibw+FwcPToUdrb29Hr9co5HTVqFOPHjyczMxODwaDwEDy8vRi5ciZ5AWauW6up63pamXJJDbtIv15eXmzYsMGNCChJEseOHVOCbK1W6zbq1xe1tbXs2bMHLy8v3nrrLby8vDh58iTXrl1jyZIlilOm2WzmwIEDlJWVIQgC4eHhbu/p4+ODVqulubkZu93O6dOnSUtLw263My4qii/XrCbwScDk2kMFIM5mZUOgP1VVVXz88cfk5ubyk5/8hHXr1nHx4kUOHz6M2WxGpVKxatUqVmxaR7bQQlWIA12yhlHzDaz62SQiJujQGp4G7QkJCbSoLEMPHgjQ6QGSQ6bku1oyf1dM5aUGam40017ag8sSQxCfHOyTf0enDD/qCdDSVExiYiI///nPWbdunRuXo6ioiPv37zNlyhSMRiOzJ6cwwS+WeK9IROHltjcQXk4T/BmQZZmsrCzGjRvXbyFwbfxarVYhFXZ0dAy4cS5atIiHDx/yxz/+EZvNhkqlYvbs2bS0tHDo0CECAgJYv34948ePx+Fw8M0339DT04MkSWzcuBEPDw8yMjIIDQ2lt7dXCQzOnDmDh4cHo0ePJjs7m/Dw8AErAy4sWbKE9vZ2N9EbcJIB161bx+9+9zulHAwoi5irPAzuo3p9hYdcgYvRaKSuro5r164hSRKvv/46J06ccNuAx48frwQKarWaDRs2cOLECdLS0pRFvq6ujr1795Kamkp0dDRFRUXK+8XGxhIQEEBaWhrbt29HFEWlZO46ruzsbGJjYxXeg4eHB2+88QZ79uzhypUrLF261O38lJaWkp6ezs6dOykuLubGjRtKNvzzKSv5VfMVuu1mHM+4zQnA8ogkxviEkVV3lYiICARBUALA7OxsZs+e3e9ceHh4EBMTQ01NDRqNhsrKSoXl/yw6Ojq4c+cOc+bMwcvLS2mFhIeHu23ALqLnQES0By11tFuGNoHptJrJaqpFqKyjpaWFyMhI5TxVV1cjy/KAwUBxcTEajUaZiLBYLBQVFSl9XofD4ewlazS89dZb5OTkcPfuXUJCQti1axe5ublIkqSIS/WF63deUVHB5MmTycrKApy/m1WrVmG323nw4AFTpkxBrVZztaGAX+Uep8tmQogAGQcrr/2W7bGz+D/GLlXEqIKDg2ltbWXXrl1u2b6LVFhQUKBc16mpqQOaLlVWVnLw4EFCQ0PZunUrKpVKkSNfu3atwqNpb2/nwIED9Dwh+WVkZFBRUeHWlhAEgaCgIGpra/nss8+UoH7+/PnExsZy/Phx1pjNxM2ahcnLC51KzcK4WHJu3uTalStkPHHQ3LZtG3V1dcpaA05+zOIVr/K7yqucvZru3OCjAAFCLVp6ix7hgaC4cD5+/Jjy8nIMMRoEbEMGBGoHlJ+tozH7SZtLfsrrlCXne/iP8UYUBbQ+GkIn+WMY3QsMMW3wBGte/xu8/foTTY1GIydPnmTMmDH09PQQHBz8Zxt+/TXgZYj0J6DT2ku1sY2CsmLa2tqYNq1/yalvm8Alg/ssiRCcWcadO3ew2WzYbDaCgoJISEjghx9+oKamhtdee42/+Zu/UUq9J432JtkAACAASURBVE+epKamBrvdzquvvsqIESOoqqpSPN1dTH+TyaQsUHfv3sVisRAYGDhkMCAIAuvWrUOtViuOcS74+fkxduxYDAaDkrXKsoy3tzdTpkzBbrdjt9vdBIQkWaIl0MbD8UaypnRzJ7qJ9mCJC5cuUlxczOuvv05SUpIyjunCs3a1KpWKhQsXKp7rMTExvPXWW/T29rJ3716lxBoREcHixYu5efMmwcHBREVF8c033/DVV18p2XFKSgqyLCOKIidOnFBIbwBRUVHK8/uW5TUaDStXrqSuro7f/OY3HD16FJ1Op2Sp8ybNYO+snzLK051lLsgw1R7If5r4uuJJ4CphujT1hzKmSkxMxG6309bWhsPhUMryz+LKlSsYDAZmzZpFUVERJSUlOBwOFi/ur70+mISyyd7/toHQ0dPN999/r0xTBAcHI8uyUs4fiDxYUlJCdHQ0+fn5HDp0iA8++IDjx49jNBpZvHgx77//Pg6Hg9jYWA4dOkR2djZLly5l9+7dBAcHk5WVhUajGbAqcOPGDe7fv8/ixYvJzc1VPu+SJUvw9fXl4cOHmM1mpk2bRmZrBX+fdZBumzPokQWcpk0CfFNxk//z/OeUlZURFRVFXV0dmzZtUkSw4OnY5oMHD5RqX2pqqtJGe/Yz79+/nxEjRrB9+3YkSeLrr7+moqKCLVu2KIHA48eP+eyzz5AkiV27dhEbG0tsbCwVFRX9fhcajYaCggKam5sxGAzs2LEDURQVue733n2XTfPm8daUKWyZmIyjq0vxBfHw8GDVqlVcuHCBY8eOKYHl+vXr2bx5M78qPsW5urynG/uTn02T1srNCQJqb2e27lo/rFYrIc2OIS2HkSG83E7D/aH5Lg6LxNgNI4lbFo5nqJ6GVn8aWvyQpIFfXJIEjNaxePn2l4GWZZlTp04hSRJLliyhsLCQSZMmvfQgeA68rAz8COR11PBh0WVut5Qi45ynHTVWjy64v5ylK3vWaDTo9Xq0Wm2/YMCVEbS0tCCKIqIo0tLSgslkYtmyZUydOtWNlXzt2jVyc3NRq9UkJiYqmcO1a9fw9/enpKSEhQsXcvr0aQB27dqFVqvl6NGjlJeXk5ubS29v76AZput4w8LCqK+v5+DBg7z11lvKY6dOncr+/ftpbW39/9h786go8zTP9/PGQiwE+yYgiCgKCoqaoLjglm5pZqrpVmoummalnd0z09VT98zMPXfmzpw70z09Uz1V3dnZZZmVWmqmiYpruiuioKCIgAgoCqLs+xZssb7v/SOMn4SA2eeeOfec6srnHA8SRLzxrr/f9/c83+f7Fav8vr4+Jk2aREJCgiBTAThVCuWJA/T6O4W2+IBRpiu4j4auCv4sfbVglr++qiooKMDHx4f58+cjSZJwZ/P29mbq1KlkZWVht9v5+OOPOXToEBcuXBD6AgsXLsThcHDz5k30er1QY9Tr9URERLBq1SocDgdFRUVoNBoyMjL4/PPPBYhJS0ujrq6O06dPs2fPHnQ6HYWFhRQUFACuVa0bxJSVlQGubMgEUzD/wXc+h++dpceooJYh1Cyhc/TSObcDo9FIf3+/h9hQamoqpaWlPH36lPj4+BHXIiEhgUuXLjEwMICvry9Pnz4dIYnc1NREWVkZ7777LgCXL19Gp9MRFhZGbOxIBz63foDT6fRYZU/xD8ZtYTFWSEBL2WM0Gg0LFizg/v37hIaG0tPTg81mw2AweFxLi8VCeXk5dXV1qFQqqqurGT9+PMuXL2fatGkCJN+9e5ehoSGePn3KlClTWLNmjZhgb968idPpJD09fQRDv7y8nOvXr5Oeni78LsCVEUlJSRHmPHFxcQQEBLD3zikY6xglyHE28m+mTqX6STXr1q0bYRR2+/Zt7ty5g7+/PxaLhZ07d44g8QJUVFRw6tQp4uLi2LRpE/39/UIQzN1FAFBaWsq5c+eIiopiy5YtgswYGxvLzZs3aWpqYvz48TidTq5du0ZtraslLzo6mlWrVnHlyhVqa2tJT09n8eLFoqww3LgsPDycbdu2cfz4cX73u9+JSTExMZFVq1ZhNBop7KjhbsezUa+5IkE/Dh6bBonrkzzIp+E9Er4WiT6dMhIUKKB1gu+tfkZSpz3f1/t8AIfFiZdR+/IaSly8NZeP37/mck4dJh4kyxIOp4ojZ2NR679hxYoVHhocpaWlVFZWsmXLFmpra5FlWWT/foo3x09g4J8ZhR01fHHvELLyqlnGKSlUmSx8mLeP7xb+GWH6V6vi4WBAkiQPrQG3LsHly5eF5/3wh2zt2rUkJHjaCpeVlXHz5k28vb3R6/VC2ay+vp6amhp8fHyIiIjg2bNnmM1mPv30UzHBJScnU1NTg5+fH4ODg3z33XesW7du1IEMXO2QERERNDc3c+bMGTZv3kxtba1gjwcGBrJnzx7+5m/+BoDMzMwRqnLPJg3R6/cy9e8eKF7moboDnJQGt/H2y5dHa8PKysqio6ODd955hxMnTtDb2ytMWXx8fLh+/Tp9fX2CACZpVFQ/r2GRxSIAicViYdGiRZSVldHQ0CBEidauXUtnZ6foHnB7GLiv1bp169i7dy/ffPONqK8nJyeTmprKiRMnyMvLY9q0aWK/3X35T58+Jd43XPS/S5KEwWggOztbZD+Gg4GIiAjGjx9PYWHhqGDAx8eHyMhImpubMZlMI9wf3SvV4OBgZs2aRXZ2Nn19fciyPGpWAFy8AbPZjNVqFSl+gHBvXxaEjCevrR5llM+pJYmUgHHUFz/ivffeE0TMkJAQUS6JjIzEYrGIEsCzZ89E+WfRokWiFdMdsixz9+5dsrKyUKvVbNy4kfj4eLHfdrudwsJCtFot8+fP99ifuro6zpw5w4wZM4iMjBQcCff1U6lUNDQ00NzczPbt2+my9lPU9WLEcQ0PRYJbHVVsX7BoBAeosLCQ7Oxs/P39BZl1NIXEkpISzp07R2JiIuvWraOjo4PvvvtOmAoFBgaiKArZ2dncvn2b5ORk3n33XQ9gFhkZiU6nE8/1sWPHPDpPZsyYwbfffotWq+WTTz7xmAxbWlo4c+YM7e3tLF68mMTERC5evOjhQLl161aPFs+LTQ9RS6oRJS5xXoAXgU7imj2fU5UiseCJijuTnPSYXtksKyow2CCtWo3ZovCjKBNw2mRkvSxKfY1twRw8s5LViyoYH+rSB1EUeNYQTvGTpWgMLp+TQ4cOMWXKFJYvX46XlxeXLl1i5syZJCQk8M033zB58uRRSzg/xcj4CQz8M8KpyPyn0lPIijJC61pGocs2wJeVV/nr5E2AaxAbUNlwGhTkl8+4GwwMDQ2RkZFBfX09kiQJb4F58+aRlpbG8ePHyc7OZurUqQLpuwe+gIAA+vv7+fjjj0UqPTc3V6w6Q0JCqKur46OPPvJQNXRPmJs3b+bLL7+ks7OT3/72t6SlpbFo0aIRaXl3Knnjxo0cPXqUffv20draSlRUFElJSeTm5nq0A7rZ/OASROq2mGkNs4/dbifB5bb7bOtcRkRQmDhOg8HA0NAQYWFhtLa28uDBA9E7/OGHH4pjWrhwoRASag2EzgUBPLG0Aw1knv/vTGnX8OmaNbS1tXH79m0iIiLo7e2lsLCQxMREDAYD27dvZ+/evXR3d9Pa2srZs2fZuHEjra2t5OfnixJJZGQk27ZtE5yQDRs28Pvf/56cnByhtOcukTx79oyZM2cKMBAbG0tvby9VVVUYDAZMJtOIgSklJYXTp0/T3t4+qhKlW0/enYVpbW1l3LhxAMJ1cdu2bXR2dnLnzh2RARlLBdC9+rRYLB5g4NmzZ0SXvqAkVMWgGg9AoJYkQvTezG7sJyAiglmzZlFSUiLq2G7Vyp6eHn71q18hyzJRUVG8/fbb1NbW0t3dzZIlSzz2w63139raCowOgHNzc3E4HCOyAp2dnRw9epSoqCjWrFnDvn37hC7DggULxCR9//59/P39mTRpEo1Db1yfirCP1AmirKyMixcvCqXDDz/8cNRyyN27d7ly5Qpz5sxh7dq11NbWCs7P9u3bMZlM2O12Tp8+zePHj1mxYgVpaWkjQJtbMruiooK8vDzsdjsGg4Hly5dz/vx5zp07R3x8PO+//764nrIsk5eXx82bNwkODmb37t00Njayb98+kTEJDAxkYGBgRHtnr20QeQwgAIAEttdmiujoaBdvwWJhSaWaLhN0BEg4ZCeB/RLjeiUkJBzBujH7/N2h1qnQemswmUweHUnNHUFkXFqJRtXF7OQJlJQ2oDe6MiVdXY384he/oKGhgevXr7N3715MJhM6nY7Vq1fT3t5OY2OjEFH7KX48fuIM/DPiXkcNLZbeMU0vnIrMlaYy+uwW8trL+aLoNxTM6+N+Sj+7K37NV1Wn0ft509rayq9//WsBBCRJYs6cOfzlX/4ly5cvx2g0jmg17Orq4tixY8J7fO3atYI129jYKGRrw8PDef78ORs3bhwxEYjVsyTh7+9PYmIi6enp5N8p4P/87//EV0cucbf8Bc6Xg4YbDMiyjE6no7W1laSkJHbt2sX8+fPR6XQiba5SqXA6nQQEBAgFtj4fJ8qP3FmySuEfjn9NdXW1qNu767Nu7Xf39twMfPFZWaa2tpaqCIX8WAdPh17xILr0Mnejbdw2dbF27Vri4+NpbGxk6tSp9Pf3k5GRIVbyu3btQqfToSgKFRUV/OM//iP79u2jrq6O1atX8/bbb9PY2OghpTpu3DjS09O5ffu2yPS41fXsdrsgKqlUKqZNm0ZHRwchISE8ffp01La76dOn4+3tLZQOX4+EhASh8eDOPrjPQVZWFjExMUyePJmLFy9iMBgYHBxk6dKlY5734WDAHaWlpRw5cgS93clfGaNJ7HVieJn39ffS8/Ppqfy3qGSGWttFdqW5uRmj0UhmZqbYd0mSWLFiBX/1V3/Fp59+SmpqKrW1tR6rUIvFwsWLF9m/fz8qlYrExESMRuOIVK7D4eDu3btoNBrRhgouctiRI0fw9vZmy5Yt5Ofn09vbiyzL+Pv7C7newcFBysvLeeutt1CpVATrTehUP7L2kWDB1Jnk5eUJJ82qqipOnz6Nn58fZrOZrVu3jigfKIpCTk4OV65cYf78+axdu5ZHjx7x3XffERkZySeffILJZKKvr4+DBw9SXV3N1q1bRRns9ZBlGZvNJqSeo6Oj2bJli3jmpk+f7lFW6Ojo4MCBA9y4cYP58+ezceNGrly5wsWLFwWPZ9euXfz85z/HYDBw6tQpD8LueGMg0puaBBXwfq0BJSYmRtzrEhLTTeF8Gr2A2R1GwntVYnuBU3zQemveuDAInxOISi3R398vMkfu82KxWOgfNJKb307/oCur5W6pLi0tZfr06fzFX/yFeL4HBgbIz8+nuLgYg8EgCLQO2Ul2yyN++/Q631TnUGVuGft4/0Tjp8zAPyPqB7t+9D0ORea/XNrLA596USMHsMp2zjbcxlulIanPgMbp+sOMGTNYsmTJCPJReHi4YJrHxcUJEZXe3l7mzJnjYWebk5ODWq1Gr9fT1NQkJr/Xww0G7HY7oaGhdHV1MWSIJLvJjwGLjVu1jzmU9ZggXwP/6dNVKIpCe3s7x48fZ8qUKeh0OioqKpg1axYTJ070YG1PnDiRtrY20f9sMpno4scFcgCCg4I5cuSIWPX5+vrS2NhIX1+fMBpyy+Lu27ePDz/8kIiICC5fvsy92krKp7sGNI965cv/H36ex+KweIKCgpAkiaqqKlauXElWVhbHjx/nZz/7Gd7e3ixatIisrCzAxeFITU1l1apVqFQqV7qysZGzZ88ybtw4IXCzcOFCnjx5Ihwe7Xa7ENVxr7aNRiPx8fGcP3+emJgYCgsLRxW4UavVzJkzh7t377J8+fIRWZqAgABCQ0Npb28XvJD09HQePHhAe3s769evp7y8nBcvXuDt7U18fPyYJkjwyjjLYrGgKAp5eXlcv34dtVpNZGQkG9e+R+NvfsNaXRAtra385//73zE4OMhXX31FUlIS7e3t5OTkiFZHtzGWLMvs3r3bY/8bGxsZGhpiypQpKIrCo0ePuHz5MjabjVWrVjFr1iz+/u//XjD9h0deXh4Oh4OFCxd63L9Hjx7FZrOxe/duBgYGyMvLEx0r77//vnivO1sxa9YsALpa2pnU68Vjk2N00psCQV7e/HzpenKlALKyshgYGODevXv4+PhgNpvZvHnzCAVCd6nmzp07LFu2jIULF3Lv3j0uX75MUlIS69atQ61W09LSQkZGBoqisGvXrjHZ7X19fRw/fpyGhgbAVduPioriyJEjBAYGEhAQgNFoFOn0u3fvkp2djZ+fHzt37qShoYGvv/5anJMFCxawePFicX43btzIgQMHyMnJYdmyZXR2dqJ92Izs8yYzAkglDJWqW2QZcnNzPYBMS0sLERERI7o9JJXE1I3jqThSi9MkYZ/sega0T4ZQDcgYQ3WMT3dlxHx9fQkKCqK3t5fAwEAsFgsDAwNMmjSJBQsWUFJSIng6sixz8+ZNOjs7CQoKorq6mpSUFHQ6Hfn5+ciyTHR0NJIk8bC7nl8WZdBu7UMjqZAVha+eZLEgJI6/nbUFH+0/z8L6X3r8BAZeiw5rL122PgK9fITPte8/82YpMTa46mavDTYyCn16O42RKibUuciEdXV1ZGZmYjQaMRgM4p/RaBR98vv378fhcODl5UVoaCipyfO4cvAGNoudgCiX3anbYW/x4sWjdjWAJxgICQnh9M2H3MtqHfG+TvMgf/X3Z5gXPkSw3smmTZuYNm0asiwzMDDA8ePH+eyzz0hJSeHOHVdPenJyMidPngRcaP7P/uzPuP/oARXmk2/MDqicsCJpIU+UR0Kn3z2Q9Pf3c/LkSeLj41m9ejXff/897e3tHDhwQFjIOhZEoLLUMQbhGEmBw09yiCxq5a233qK7u5usrCyWLl1KVlYWBw4cYHBwkJ6eHkJDQ2lra0OSJIqKikhOThar+Pfff599+/aRmZnJp59+ikajQa1Ws379evbt2we4mNVuEqCbqW80GjEajUyYMEGkwt3td6+vBufMmcPt27cpLS0doXIHrpXgzZs3sdvttLW10dPTw40bN0hKSiIwMJDvv/+e8PBwmpub35gVgFdgYHBwkEuXLlFYWIher8dkMvGzn/1McCTsdjtqlQqLxcLx48ex2WxUVFRQVlZGdHQ0Op2OGTNmkJqayj/90z/h5+c3Asi4yyPe3t5kZGRQVVVFfHw8a9aswdfXl9LSUiwWywirYqfTSV5eHhqNRqz0FUXh9OnTtLS0sHPnTvz9/Tl8+LD4zMyZM4UYkSzL3L9/n8TERFFOKigoIDU8mAaDjT61JyCQFNe/eQ06BvsHWLJkiSi7GAwGzGYzGzZsGFHGkGWZCxcuUFxczOrVq0lNTeX69evk5eUxf/583n77bSRJorKyklOnTgnDsbFq2DU1NWRmZmK1WoWiXmNjI+Xl5aSkpLBixQpOnz4tFCnPnj1LbW0tc+fOZcaMGVy4cEHwN8LCwli/fr0oKblj/PjxLF26lOzsbLq7u3n8+DEmk4l3xsVxcaDKYyHjOvEQ3Afez7pHdCO9LqJWXFw86nGZJnmj/Yc42iIlcCsP2hWCy63MUfxRZFc78sDAAGazGbVaTWdnp+iqiIyMFF0WarWaiooK7HY7iqJQX1/Pw4cPAZewWWxsLLNmzeL+/fvU1tbyt19/yQ8TzNgV18LBMawccqe9mn9b9D1fz931U7cBP4EBEdV9jXz97BxF3a9aymb5x7FaO4PCi7mo48E5Sj0RAAVMNgXJoLwxHdYUYeOT2NVoNBqGhoYYHBxkaGgIs9lMa2ur+N2dwnNrFQwNDFGS8YQTf36N4aU97zA9UzeOZ/LMWEwmE48fP/YAFQaDAY1GI8CAw+HAPyCIkuZREMvLnVRQeNTpxdsTnSQkJAhew+bNm9m/fz/ff/+9IPK1t7d7rAQURaGkpITFCxdy4PhFGoKHRv8aBca1ePGorYyuri6Cg4Pp6OgQKXCn00lISAgffPCBIF6dPHmSp0+fUlZWRnBwMLe6GpDfICuuSFDc/IzAITVpaWmYTCYOHz4sVsFNTU0EBQXx85//nIiICG7dukV2djaKovD999/z+eef4+Pjg16vZ/PmzRw4cICrV6/yzjvvABAaGkpaWhp5eXk8efIEs9nM1KlThY+Be9JNSEjg8uXLAGLwdVsyu8PX15eEhATu3btHSkrKiIEpISGBGzduCEniK1euCDOqGzduYLfbMZvNJCUljTDReT3cE1FeXh4tLS2iRW7Hjh0YDAZRsx0cHHTJE//d3wmp3blz5zJt2jS0Wi3/43/8D9GCB4ypL+Dn58fevXsxGo1s3brVI3NVVFQkNCGGR35+Pna7nbS0NHHvXrt2jcePH7N161YiIyMpKysTPBW9Xi/srMHFf+jp6WHevHns3buX/v5+li9fzuDgIO332ulPjeb2UJ3reVZglnckn8Wmc/fkZQ4ePMj777/P8+fPxXOakpLCjBkzPPbR6XRy5swZKioqWLduHUlJSZw9e5bS0lJWrlxJWloaiqKQn5/PtWvXmDZtmhC2ej1kWSY3N1dYmk+YMIG5c+dy+vRpenp6PM5bUFAQhYWF7N27F29vbz766CMaGhrYv38/8KoNNy0tbVTHREVR8Pf3R61WU15ezty5c9HpdOTl5TE7UENlmIPBl5jOIGmIanaS0KxGkeURbcnuGr/RaBxTPEtGIT/OSadJ5TkWaCU6kvXk9llYUqPD6XCKcc/90w2ih7f/rlixQlhhO51OtFotKpWKZcuW0dPTw/PnzwWfKSAggHzfPmzy6NkgGYXCzuc86K5jVuCEkW/4E4s/STCgKArYS1CGToGzjafWIP7tUwd22RPplnRXUSpXMUPjzdRmFY/Gj8KEefmRMLtMr8Ib+27tXgrmgT7i46bi7+8v1Nte37fc3Fxu3ryJWq12kWVuW2gt7hphhjPQZuHhH55j/EsjTU0XRv1OrVYrVmwXL16kfUiDfazlNAASvTY1Xf1DfP3116xZs4YJEyag1+vZvn0733zzDcePHyc4OJj29nZOnDghyJFxcXHk5OS4apr+C9nfm+3RWogMqCCgW01sjZ4qxZVqXrt2LRcuXECr1QpBnJUrV4pz4+XlRWpqqmDTd3R0oA9Rv4QuY6c3NU7X4NjR0cHdu3dpaWkRKogpKSkUFhZSXV1NREQEixYtor29nbKyMgYHBzl69Cg7d+5Eq9USERHBypUruXTpEhMmTBBKdikpKeTl5XH//n28vLyYMGECLS0tSJIkygXx8fFcunRJdGhkZ2cTHx8/YqBOSUnh4MGD1NTUjOjMCA4OJiAggO7ubnx9fXny5Anz5s1jaGiIwsJCpkyZwtOnT0eQ9EY9Jy/Txa2trURGRtLW1ia4EyUlJWJ1Z7FYhLGMl5cXX3zxhdhnt/tjSEiIeP/rdfTKykoxmM+bN4+lS5d6tLO2tbVRX1/Ppk2bPD7ndDq5ffs2arVaHE9hYSF37txh9erVxMfHY7FYBMACeOeddzxKMHfv3sVgMHD58mViYmL46KOPaGlpISsriyXz51NUVMTugEjqOltYvnAxK9Jd2ZSEXeH84Q9/4NChQ+j1ehwOB6GhoZSUlDBt2jTB2nc4HGRmZlJdXc2mTZuYPHkyR48eFc5/iYmJOJ1OLly4QElJCYsWLWLp0qWjrj7dGTc3LyU9PR1ZlsUz1tHRIVwgzWYzT58+FXLFs2bN4uLFi0KAKDo6mvfff3/MLqHW1lYuXbpEbW0tsbGx1NfXU1RUhMPhQJIkppr1RLcNsennH6M3edPxtJar9y+jKIqwIgbXJKp+yecBV7utO7v2ejQHKHSOReaXoMMXGrzthPe+eh4URaGvzcmzqg6s/TJV+oeEGPNYsT5N8KpOnz4NuO6j9PR05s6di8PhwGw2s2/fPmJjY5EkiRrvjjeOyWpJxbXmip/AAH+CYEBRHCi9/x4s5wA14OSrFwuwy37Ir/MpJZBV8HyKjRlFBhRJxZNw+VVqWgIvB8x+ocLm56DnRzJNKicUFd6nuLBIvObt7S2AgZ+fH0NDQ5SUlDB16lSePn1Kf8sQlTk1YxwMyDaFMGs0n/+3j7BYLAwNDXlkHYaGhujt7eXu3bt4eXkx2DvSUnS0cCgqNBoNBw8eJDExkRUrVhAQEMDWrVs5fPiwGNhNJhPp6emcO3eOmJgY2trauHDhAt7e3sx46E1nkIPuCRJ9kgWvIYlxrV6E9xkJjwoXA6Bbo384MLp9+zbjx49Hq9XS3NzM0aNHARcwsNvthLQ5aYh5QyZGgcguV1bDbYe8YMECEhMTOXHiBCWVj+hNnMgvKvPQNJQwPTSC7W8lE97ZQXNTM01NTZw7d44NGzYI8FBXV8cPP/xAeHg4gYGBAmTZbDYCAgKEut9wMOCWkdVoNCxbtozf//73lJaWilq2O6KjowkLC6OwsHAEGJAkienTp5Ofn4/VakVRFObPn8/Ro0cJDg6mrq6O5OTkESvs16O3t5cbN24Aru6WxsZGIbVcU1ODLMuCie82YTKbzezatcsDvLhLKsHBwaL33c2uHxoa4vr164JT8vHHH4/qJXD//n3BcRge9+7dw2azCTnqp0+fcunSJebOnStEh7Kzs0UrbmxsrBDkcusK1NTUoNFoeO+995g1axYdHR2cPXuWqVOniuxZV3sH8xKTeXvREvHd7uvkPo7U1FRWrFhBRkYGGRkZwvTq6NGj1NfXs23bNsLDwzl06BAdHR3s2LGD2NhYhoaGxAQ/XGnw9aitrRVywAaDgXfeeYeCggIaGxtZtmwZM2fO5De/+Q3Pnrk0AC5duuSRiTt06BCSJKHRaIQuyWiAY2hoiJs3b1JYWEhgYCBr1qyhvLxclLRUKhXp6ek0NjYyMDCAts/O1TMnaW9vJyoqivr6emRFZmCSxzRVgAAAIABJREFUP/e8OujxBhQnwX0w1xbM/ODJHt4qHscYJI8sPQwLSYHmCC3hvS/5P7JCTb6F9mrbq5ZECf7+lyf5/h8vM3dTJApOwVMBF3/B3VrqDrfdu2P2j/Q0AoOO0b06/tTiTw8M9H8JlvMvf3NSZ/XmsSVg7A9I0OttZ9CoI75ZzaQ2iWZ/BZsGjFYY1yuhUiQGbVpqY95wU8kQ2qZ1+WyPG0dycjJ6vZ6enh56enro7e2lrq5OtLQ9efIEgPayXiQVjNX5Iztlrn2bw5/9r09Enfr1sNvt3L17l5SUFJK9Asj62+M/ep50KpmdO3dSXl5OVlYWX331FYsWLSItLY3p06cL8SOz2SwG5vr6et555x0hh6vz0hHcKRHarSIqapKYOOzYRXpZr9eL9ONwCeTa2lr279/PggULhFxxUlIS77zzDk1NTRzOOMITm40hr5HZGElxgbQJHRJavRaDwYDVamXKlCkEBweTvv5dNl/6noG+ZtCpwG6ho/E5NxprWD8lgai+Pvr7+ikrKyMkJIRFixYhSRLvvfceX3/9NZmZmezevdsDvHR3d/P8+XNsNptQfAPXBOX2pQgJCWHatGnk5OSQlJTkQZqTJInU1FTOnTtHd3e3hxsfuEoFt2/fFjX9/Px8GhsbmT17NqWlpSxevPiN19NtAe0eQHt6eoSp1YQJE1i1ahUJCQlCbEqWZRwOBzNmzBjRneImM6pUKjo7O5EkiZCQEMrLy7l8+bIgqup0ulGBgN1u5+HDh6SkpHhMbrIsk5OTg0qlYunSpTQ1NXHixAmmTp3KypUrAZfIkrt7Qa1WC70Ns9nMxYsXefLkCSqVii+++ILAwECsVivHjh3D19cXq9XK4OAgKpWKyMhI3n33XTF5Wq1Wjhw5wsDAAIqioNfrefToESkpKWzdupVvv/2W7777Dj8/P7q7u/nwww/x9fXlwIEDWK1Wdu7cSXh4OJ2dnXz//fcMDQ0JqezXw230lZ2dDbiAYFJSEufPn8dgMLBr1y5RdgkODiY7Oxuz2cyMGTNISEjg2LFjlJaWAjB58mTeffddD+XP4d9TUlLC9evXcTgcLFq0iN7eXg9QERQURE9PD5MmTSI3NxdfX1+OHj3KxIkTWb9+PeHh4ew/sJ8srxYqAzpe6QVI0OkDF6QO6uq6mDxGY9qQF2909FQk6MUKuPwkGspeAgF49V0vf7bVDnDvh1omLTR6qDMqCshOFXq9Dlmxo9VqiI6Oxmq14md7QbdubFdRWVGYaBrZ0vunGP+iWws7mrq4dfIut04V0N3agyIPwuBhhitgtNpHTp6jhUX/su3OKRHdqWJyq4qIHhU6jWuFbBxSE9asHV1cQwa1DFH1rpVkS0sLly9f5ocffqCgoEC01w2X/3WHY2ikic/rMdAz0gBpeAwXx0mOi8TPoH4DtUEh1OBAr3HJek6cOJF/9a/+FXPmzOHmzZv8+te/5uHDh8LZUKvVUllZiU6no6qqCr1eL3gGkydPFhLC7jTucA8DtVqNn5/fqMzq5ORkzGYzp06dQpZlNm7cyAcffICXl5fLh8Ahk/5Ug89LrSZJdv0DF0hb9ESNl1PCbreL1Onhw4epr6/nrwquYFHjMUC420bPvHiMaek8MdFnZ2cLwyOdTsfmzZtpb2/n8uXLHqvlqKgozp49K2rtRqORjqEBSuueY5WdyLJMdXU1S5cuxWw2j7qSSkpKQq/Xj/q38PBwMYDrdDru3btHUlISjx49Ys6cOR5iPq/H48eP+eabb7DZbKK2q1arWbNmDb/85S/ZuXMnqamp+Pj4iDKNu2779ttvj9hee3s7oaGhdHR0iLbSo0ePcvLkSSZMmMCePXvo7u4e1ZgIXMqBVqt1hAz1/fv3xesWi4WMjAzBHXGvBM+dOzdCcvj+/fv89re/paGhQZSU3OI+Z86cob+/n8jISF68eIHBYECn07FlyxaP5yIjI4P29nZsNhtz5szhz//8zzEYDBw8eJCenh7WrVuHw+GgtbWVDRs24OXlJer0u3fvFq2933zzDSqVis8++2xUIDA4OMi3334rgIDbhvnChQvExcWxZ88eAQQqKiro6emhr6+PDz74AKPRyLFjx8T127hxI9u2bRsVCDQ0NPDNN99w7tw5YmNjSU1N5c6dO4KNHxkZyeeff86ePXvw8/MTVuFarZYPP/yQjz76iIiICJxOJ9ZIHyoDXy50hj0zbhBeFiXTpxt9BW6w8UYTL0kGw8tNOx0yzRUjfTNefSG0VlkxernqDuPHj6elUaI4X82dGypuXLJzL1ehr8fEs2c11NXVMdMy9nMBLg2N98bPeuN7/lTiX2RmYKB3gH/44vfcPJ6P8pIHoNao+OQ/xrL1c0+ii6/6DTffsNDaR58+h+u8x1UbUMsSzeE2F5P+ZYrLYFGRUGnEYPFkIMqyPMJb3t0y5O/vT0BAAIOTnbQ+eHOrnv843xHysq9vU6PRYLfbUakkNi+YwP6smhHCYCpJQiUpJAa7jqm0tJTS0lKSkpJYsGABVqtVtGy5SWU9PT00NTUJCeNjx44RHBxMT08PAwMDYlJxK6gNZyA7nU5RV349KioqRN3arX0/ceJE4RYXExNDXV0dK5540Wp00Obr2m5Qn0SY2SV4EhYWRltbGxkZGWzevJnbt2/zP49/x5PgsTGwBBypKePIRx/xhz/8AUVROHnyJJ999hnjxo1j3LhxrFmzhvPnzzNhwgShLvnBBx+wd+9eamtradKr+C91D3j02JWSV0fpmOH0YtKjCj7cuImZM2dy69YtZs+e7VFH12q1zJo1i+LiYpYsWeKReaitrRV8B0VRkGUZo9EoVnyvx+DgIJWVlRQUFIhabmBgoPh/SEgIKSkpIz433MQoMDBwVOZ7e3s7ycnJgjvg9k7Ytm0bU6ZMobq6Grvd7qEvMDyKioqYNGmSR/ZDURRu3LiBSqVi4cKFouV027Zt4jwUFRUJQaewsDAmTZrEoUOHqK2tZdasWURERHDhwgXRVZOXl0dlZSWpqancu3ePkJAQzGYzu3fvFgRPp9PJiRMnRKfHjBkzWLt2LZIksXPnTr799lsOHDiAXq9Hp9NhNBq5cOECVquVkJAQtm/fjre3N8XFxVy4cIGYmBg2b948qpVxQ0MDGRkZDA4OChGhO3fuYDabWbduHTNnzkSSJNHpUV5eLtL0165dEzV6b29vxo0bJ8ojw6O/v5/r16/z4MEDwsLCWLp0KcXFxVRUVKAoCn5+fqxatYr4+Hj6+vq4dOmSIL3qdDq++OILJEnC6XTy4MEDbt26xdXgLiT/sflQEvAiRCapYeT4M6FDRav/2KpDigpiOl1S7PKgFqfNPOZ7XR+A2soOQmJ1NL4wUP3oJQv0ZQwNQsGtHlLnR5CWHkJh0X0mJZuo0fR7jnVIyCj8x6R1BOrewET+E4p/cWDAbrPz71f+V6qKnwsgAC7U+eDGA7Z+7vn+KfpewrUDNNuNjJpLUkBnlfDpc93ow2tVr4dKkZj8zEB0nY6uQAeySsE4qMavV41Wo0XlpRKDrZscOOLrFIX4+HiB5NVRPyLfJYFPgp4vv/yStLS0EROMO4Yb1MyfMYlH5WVUduvosrpvAYWFM2PZuHASN6+cw25/9ZmysjKxonjrrbeYOHEimZmZ9PT0YDQaRWrVrSD42WefUVVVJeSL4ZVJ0/AJbbirIUBcXJzoX7dYLKhUKj755BMaGhq4du0a9+7dE7r4t27dYvz48TQ0NBDSpyLkZVJFkiRBKkxMTKS6upq6ujqOHTvGBx98QF7hTSSlb1TJXddZgLr+XiwqeO+99/jhhx+QZZkjR46wZ88eTCYTs2fPpra2lvPnz6MoCkFBQfj7+7Ny5Uq+yr7IjTAtqoFXAM6pkihV2anpqWbNYD+LFy+mrKyMu3fvitY5d7jbNsvKysTKebjscEdHh7iHiouLSU1NxWQyUTfQSUnbc1qbmuF5Jy01deLcRkZGsnTpUjIzM0W71mg2xuAJBl5vS3Nfl76+PlQqFdeuXRPXbdOmTeK+q6qqws/Pb9TOhpaWFhobG9myZYvH60VFRVgsFpKTkzl79ix9fX18+umnwuWzv79f6EGAi7C4b98+fH19BS9h//79xMbGEhQUxLNnz8jOzmbmzJkUFRUREhJCR0cH27dvF0qPiqLwww8/UFVVhSRJxMfHs27dOpF5MBqNvPfeexw4cEDoDPT29nLlyhW8vLzYvHkzBoOBq1evcufOHd566y3WrFkzghzq1gO4evUq4CoLTJw4kYsXLxIaGsqePXsE6e/p06ecO3cOh8PBe++9R0NDA/X19cK2e926ddTU1HgYaYHruSosLOTmzZsCUNXV1QmApdFoWLJkCampqdjtdq5fv05BQQFeXl4sX76c69evY7VaqaysxGq1kpOTQ09PD9OnT8fhY0Vx9DNWKBL0GkZf/kf0SIT0QrsvI4dXBULNENYrISOP6qY5WqhUKro7Zcruu427RgqN3MtvwmKvZ+Pmlfxfc1PJeHGX/Y+zMUuuMXBOUAy7Jy9mXrAnP+dPOf7FgYGc43d4Uji66UbVQz12m4TW69WNK0mwJ+wR/6XhLUYwXV7+GltjEIpaowEBvV7voejmZVcxrtVzQpZlmfTFi7lw6zrjIyLoeNGIhCRYusMnxsrKSpF6X7hsPj2VA1RdbBjxvZIKvMcZiFkQTmRkJFevXiU3N5fU1FRSU1M9+APDwUBwcDCBepn54UMMOSRmzk6lrOQe/3rLXMLDwzGqnZw9exaTyURMTIzIBkiSxP3790W9PyEhQQxKw7XTZVnmrbfe4uHDh7S0tKDRaDwmH/dxut0DfX196enpEUSp4dupqKggNjZWlCXUajW3b9921RdfpoXdevvDt20wGLh16xZ79uzhypUrPH36lBMnThA5Lwlaxh7Y3PGHAwfQyYjr09/fz+9+9zvS0tIICAhg9uzZ1NTUYLPZRJp22owk8h66JsjX7xIZMKvhb/Ku8L9WbGTOnDnk5+eTkpLyShXQaef2wAsaknz56kkWv4wNY7p/JOXl5TQ1NfHxxx/z7bffimOUZZmo6XFsv/Ylj2yv2r5U/jBzmh/Rj/pJX7CIlJQU9u/fj7+/P1u3buVXv/rVmAPvcLXF0bIC7mxATk6OSLOvXr1aAAFFUaiqqiIuLm5UMltRUREmk8mjhODOCkiShMPhoLa2doSk9pUrVzw0HAoLC0WXgptk2tDQwNatW+np6eHkyZNER0dTXV2Nr68v7e3trFmzRogGKYrC5cuXefjwIWq1mokTJ7Jx48YRRMmMjAyhoXDy5EmcTifx8fGC/GcymXj27JnQGXj9mC0WCydPnhSEtvnz59Pa2kpOTg7z5s1j+fLlaDQaLBYLV65c4cGDB8TFxZGUlMTVq1dFe7Gfnx9ffPEFOp0Os9lMQUEBDocDjUbD8+fPuXTpEh0dHcyYMQNZlrl9+7Y4ltmzZ7NkyRJRXrp16xZOp5P58+czf/58UQYLDQ0lMzMTRVFISEhg1apVPHr0CIu5Hwy8kazrJb3KCgQEBODj40NdXR0SEmnVasrHy7wIUZBfnl61E2I6JBb0BdJHLxqNhoAwL1SaHuQf4ThPmh7OvXvdSJKMMka6QpLAqJssPC0+mbQQa/YjfEODWPfuexjUoxu1/SnHHz0Y6LX1c7nlHk/7GtBIap7de4zkJaHYRiLVvm4N2af8eXtzN8Mz6gt8WvmPkcV81ZJIj/OVcIrWLjHpmZ6QjpG9wcPDYrGIScPLy0sMtELWF4WnoQ4ud2UxMMMJ1BExzoeIpwNEdbnu/NcFPMBFaiosLCQsxR+VHupvtTPY7ppUNTo1sQvH894vVlBw/y5VVVVs3ryZFy9ekJeXR35+PrNnzyYtLQ0/Pz8PMOAeYAAMGoXFc2dQVXaPpqYmwsPDRQ3farVSXl6OJEkEBgaK/l232mBjYyMLFiwQ/dEqlQq1Wk1paSnLli3j3XffZd++fSMGSHcGAVwDu3siHw1o3bt3j3v37jFu3Dj0er3oLY+KiqKhoYH09HSuX78+4nNDQ0MYjUauXbvG1q1b+eGHHygtLaWnuBwlQjfi/SIUhUAHhJh8WbhwIYODgxQXF2M2mxkYGOD69esjrtXDhw/p6emhygA21dhsKUWSON9Uw9/KLhe+kpISbt++zYoVK8hvr+LfFx+nz2FBrVMhe8nsyPsdqUGxxBX2MHXqVFpaWjwyKnYNfHp3/wiSlixBib4XdVoECxcu5A9/+AMA27dvR6fTjWljbLVaqa6uFlkrdyrddVoUysrKhCPmihUryMrKQqvVeqT7Ozs76e7uHrVEYLPZePjwIXPnzvUoaZWWljI4OMi4ceMoLy9nw4YNHuY7z58/p7z8lb+9yWRix44dHkqLhYWF+Pr6MnHiRA4dOoROpxMqiz09PaSkpHgIOuXk5IhMU2RkJFu2bPHYp8bGRo4cOYKfnx87duwgNzeX5uZmVCoVqampzJ49m4yMDFpbW9myZcuoyp/Nzc18//339Pf3o9frWbRoEfn5+QDs2LFDAJOamhrOnj2LxWJh1apVNDc3c+qUy2HR39+fiRMnUlFRIcolwcHBKIpCbW0txcXFPHr0iPHjx5OamkpxcbHIOE6cOJFVq1YRFBTEw4cPuXHjBn19fcyZM4fFixdjMplE1kKj0dDW1oZGoyEwMBBJkjh27Bg6nY7oUC3lhjdYXEswrkNBo3EB9u7ubo/2RrUiMbNezbQmhV5vCUWR8R+Q0MoS8SlTKCwsFP4eYVO9xuYNSBAQpaFnoAPZYUJRRtc2ABepsL11cNjvCh3tHSQlJv0EBMaIP2owcLu9jL9+9C122XXzS0jIG2SYOw7p37UhNY9Mw//uP0cyeaaN2PgBFAVUKpAVSPdpZpLVype3l9CvUqOzSvj3aFC90bD7Vbh7cIevuPR6PStXreI/PT5D82uW582OPppiYdAgMbXR8zuMRiN+fn4eq+2QJH9CZwQw1GVl+dLlhMeO48SpTBIS4wkZF8z58+fJzMzkgw8+ID09XUyihYWFzJgxA0mSxATgVg90t+mFhoYSGhpKY2Mjc+bMEYOOyWSira1NCO+YzWbOnj0rwISb/e0OWZaRZZmCggLmzp1LYEgw1umh3LI3YdW69M1j2lVMsLwqFQw3Jnm9V9mtqgeu9LJarUaj0ZCYmMiDBw+QJFdnxmhAClyp08rKSqqqqljz0riI5mbCLE7adKrRSwWSRFKPDfOAldu3b/P555+zcOFC9u3bR3t7O4qikJ6eztSpU/n222+x2+04nU5sNhu1jkEklTJmCQLAikxzdxfRQSHMmzePO3fuEJwYy78p+Q7ny+NwIovJ/X5nDc+DJb6cuZqTJ096CLxUBdgZ0o1tyXvf1sSXJw/j7OnxcLH08vLyOO/ucNsFGwwGBgYGRIq+s7OTixcvUlNTI4h5EydORFEUQkNDPcDe06dP0Wg0o3YRlJWVYbPZPIiDiqKQlZWFJEm0tLSwdOlSD4Efp9MpJkZgVJe/oaEhysrKWLhwIZcvX6a9vZ2YmBieP3+OWq0mNjaW1atXi/ffvXuXnJwctFotoaGhHrwEgBcvXpCRkUFYWBhbt27l8uXLlJeXs3LlSqqrqzly5AharRZvb2/RChwXFyf2ye1KeunSJRRFISoqirCwMK5du8akSZNYv349JpMJm81GVlYWhYWFxMTEkJiYyPXr10WWccGCBSxZsoSWlhZKSkpobGwkKipKgK+MjAz0ej1z584V/BBwdQisXr2aSZMmUVVVRWZmJu3t7UybNo1ly5YRFBSEoig8fvyY7Oxs4Z+xaNEi7t+/T11dHZ2dnXh5eWG1WoluVqgKlrCpRloVS4qLsBttfqVDMGfOHJFNBFdW7IW3imofLf0qBW+nQpzsJGZAprCw0OOejpqlZ6DLibnZOcLt0OivZuGmSbR3tWC1uRc0Y2cGTKZXvI3u7m4x1v0Uo8cfLRio6W/i/6k45GG7KQRoQtUo/zMUdjYjvYYHBvvV/NdfJrPpP9iZFV+Nr2mIvgEDJY8n8bAqFh+Hhv9dhpd9fX2ce1FE8yidi+57/FG4k4hONT4WSUx+VquV5uZmdDrdiPS6PsCLvAe3iGyPxM/Pj/z8fLZt24bJZOLYsWOcPHmSJUuWsGTJEubPn09xcTF37tyhr68Pu91OSUkJNTUu3QJJkggICECj0RARESHS/+4VeldXF1u2bCE3N5eDBw+yY8cOfvGLX3Dq1CkeP348avcDuADRr/7pHyiaqaXeYAY9IEG/Hlr8ZV50D/KBdQLNDS5lMfdKta2tTSgbwqvSg3uycTqdxMTE8Pbbb/P48WPsdjtnz571+O74+Hh6enp4UtZMR/0gDhv8quIoEZO9UOtcGgBL2+xcGedFt5eEpLgmb/fP5B4HsQOykKH99a9/TdKEWcTo43j+ogFDpJbc3FxRGgoJCcHhcNDW1kby4hRyq4p4U0iKwu//6bcE+b6qqf/q7ikUr9EFlGSg3VfhdxeOEeiUhIUuQG3wWNZZrlApcNfawN9t3ekxCLpTzcNJp21tbRQUFDBu3DgB9ry9vUUPt4+PDzt27CA/Px+9Xi9U4V6f9Kuqqpg4ceKoSntFRUXExcV5+HGUl5eL70tOTvYgQ1osFg4fPiyAy5QpU1i3bt2I7ZaWliLLMhqNhgcPHjB9+nQqKirw9vbGaDSyadMmkTJ/8OABV65cQavVEhgYyI4dOzxklKuqqjh+/DjR0dGsX7+eU6dOUVtby+bNm5k2bRomk4nnz59jsVjYsGEDRqORjIwMzpw5w4YNG4Qrobs1ODU1lbq6OoqLiz1cCt1OpH19fSxbtozm5mbOn3e1PIeEhLBhwwaRoYuIiECn0/Hs2TMGBwe5cuUK4MoQeHl5UVBQgCRJ6PV6li1bxpw5c2hsbOTgwYPU1dURExPDunXriIx02f4+efKEmzdv0tLSIkoxvr6+nDp1SnQDOZ0uRcCIiAiWL1/OWmWA/6P0OEO6l107kosr4GORWNHsi+wYEOJjRUVFgt9il+BqmBdtetXLZ0xFr6LQZFBT6ePkQwLpbn21AFBrVSSs8KbzhZ22KhvWfgWtXiI0zovgWC2dPS8JsGEyvV1jE4EVBZa+/Urp073I+AkMjB1/tGDgZH3u2H/USBChgQUGyPVk66NAYGIQJY99KHk8Otv5f2fk2epBxxtFNwYSglipn8qdO3c8JkM3EDCZTLz//vuUlpby6NEjoVkOiL7hRYsWsWvXLg4fPszNmzfp6uri/fffJy0tjZSUFPbt24fZbOaHH34QJEibzSbanyIjI3nw4AG9vb3Ca2DRokUkJCQwceJEMjIyOHz4MFu3biU6OponT54I62T3Pg4ODgogURhppcn+Uo745bG7VxUt/pDdUk+yzoDNZhOf0ev1HjwHd+ll4sSJAsA0NDSwd+9erFYrP9u2jW8vnWLAoGCygkaWSJw+g9/+9RWePXIiSa5BoUty0PDEQVyyD8vWx/Hw4UPeb7JRZ1RR463GpgJ/u8LmidPp6ayhjz6XAc+AlvuHH5Hb9lDsk1qnIio9lKtcRavVYjKZkGWZwcFBGu/kEjBBwolE35BhRD1TLUlMsEL8pMmEhIQIsFOpMb/R5VVSoMlfZrIuREgSA1h/5OmVgeAJkSMmbDdHwWq1YjQaURSFS5cuERAQQEBAgJicL168iNlsJi0tjcWLF6PVajl79iyzZs0S5ZrhGgQWi0U4Pr4eTU1NNDc387Of/Uy85q7bu7czvO//8ePHnD9/XgAfnU43KhBwCw3FxMSQnZ1NXFwcFRUV+Pn5Ybfb2bZtm2D2V1ZWcvbsWby8vPDx8eHDDz/0UC6sqKjg1KlTxMXFCU8Mt6bAhAkTyM3N5caNG0yfPl0A0c2bN7Nx40ZOnDiBLMuC7KfX65kzZ44wOtq9ezcRERE4HA5u3LhBfn4+kZGRpKSkkJOTI8Sqli5dyvz58z0yH25dhIKCAiwWCzExMVgsFlpbW1GpVEiSxLx580hPT6e/v5/MzEwqKysJCwtjx44dQsSqurqaGzdu0NTUxIQJE1i7dq0QoWpsbET10osCXNkjnU7Hjh07XODh4kVWOtTYYgPoD9TS2tzCJwvXMlBWS4e6g3YGxOJAr9eLDoV7gRrada5rKjJmL3+26VSc6+9kwbDMnqIoSCqJ4FgvgmO9RMnKPWbJsoxKpSIkXKbhBVgsI2Vf1WqJ0DA/lq181W3R2toqbMR/itHjjxYM5HdWeGQFRoRDQUnVI70GBgLjffGP/f/vhuh7uSoeKxRAO86fFSkrMJvNVFRUYDQaiYyMFMz6/v5+jh8/ztKlS1m5ciUZGRmixQpe1dXj4uJYs2YNV69e5eHDh3R3d7N9+3b0ej2BgYEYjUbq6upE77+iKDgcDmRZJiIiAkVROHjwoCh1uAlker2eDz/8kMzMTL7//numTJkiUs3BwcF0d3cLUKBSqbAaVDT6Wd7o01AboeKzyank5dwSNU6LxSKEiQDWrFmD2WwWKd2YmBiqqqpcFsZBMn/+7ASdk13XVy1DdIeEdKiImseugUiMMS9/Vj3ow6E84NN//S4Gg4GTJ08SM/jqHqrvKmX16tVkZWVhbu7nwe8rUByea2+nVebFtRYUh0xUeigNDQ0Mqodon9GHOWCQeLcPi1NFY2cAzd1+wMvMg6KQ1OWgurlaEMoUlDHNlobfJJKXhiBjEFVVVQIwGm0uUuJY51klScSHj+x1d0+OFosFo9HIo0ePePHiBTt27KCgoEBMwN7e3mzbtk2spoaGhujv7yc0NFSYwwyv27tVDEfjCxQVFeHj4+Pxt+LiYgYHB9HpdGzbtg21Wk1/fz8XL17k8ePHHsDwnXfeGVVQq6amhq6uLiwWC6Ghobx48QI/Pz/6+/v5+OOPRUr9+fPnZGZm4uXlhdFo5OOPP/aYGEpiXwP2AAAgAElEQVRKSjh37hyJiYksXLiQQ4cO4XQ62bVrF0FBQZw5c4aHDx+yZMkSIRl8+vRpjh8/zgcffMCMGTOEEFBkZCQ+Pj7k5eWRnJzMmjVr8PLyoqmpiTNnztDV1cWiRYtobm4WHQaRkZGsX7+e4OBgj+Oz2Wzk5uby/Plz1/2TlERlZaUo+U2ZMoUVK1ag0Wi4du0aJSUl+Pr6smHDBmEL/fz5c27cuEFDQwNRUVGsXr2aqqoqwf+QJEmAgClTpgizq2+++Ybf/OY3Iv3/zuo1pKamoiiKq2x29zGzZ8/m9KPThIWFIb/0L5BlGbVazSAy1Sb12J07kkS1Sc1b3Q50owzlgYGBAlTIsoy3tzdz586lrq6O6upqkt5yUlftS2uzmxvgYnxPihvHf/7rTRgMnvLXr5e0/neFrMgUdBZxpeUGtUMNeKm0zAt8izXhyxmn/+PJRPzRggGn/CNiPBJIXq8uvFqnIjwliOgl/99viOGMf29vbyRJEpOgu3Xp9fq11gnWN8lxAm11TWS+yOTx48ekpKTw6NEjAQRSUlKora2lra2Na9euUVBQwNKlS7lw4QKxsbG0tLQIAl5VVRVVVVWC+FVfX8/XX3/NRx99hFarpampCR8fHwYHB4mPj6eyspKamhq++uorUae1WCzs3r2bvXv3epDMtFotW7du5cyZM4LMNXfuXBoaGpg+fTqBgYHk5OQgyzItOscbARDAkOKgsqtxxOvu9KJGo6GpqYn6+np8fHwwGAw8e/aM8ePHc91R5/KJcL4yQnKqoE6nMHjtyRtFTpqrITl5FhbL0Ii/SZLE5cuXmTRpEhcybiA7lDEK8lCX2054ShAOLye1c9txeMkex6xVy8SEdqJVO6nrCMLghMXtNgKtrg2Gh4fj7++PyWQi115El9o25jlTJFiVPJ+hwlo0Go0gcMa0q3gYPTYgllFYN4qgynAbY5vNxtWrV5k6dSoDAwNiQgf49NNPR7DrwcUWN5vNwpHQHW6g8rott9VqpaysjPnz54vt2Ww2Ll68yP/L3ntHx3WmZ56/eytXIRRyziACAeYsUCLFIEqkAhUtqSW11MFuu+3xenzsPeMzOzvrsX3W4+1gq9UKLYlqSaRyi5IoihQlBpEUQRIEQRBEBhEJFGJVAVWoXHf/KNyPVUQQPdO9I52z7z8EUYVbt+797vc93/s+7/NARLJY9Ub4/PPPkWWZ9evXU1tbC0TaCNWF7cY4f/48Op1OLGh6vR6n08nu3btF1uLatWu89dZbaLVaDAYDTz75ZIxQT21tLYcPH2bVqlUsX76c3/72t5jNZp5++mm0Wi2vv/46g4ODwncAIq3BDzzwAJIkiUyaGmNjY4yNjfHAAw+wZMkSQqEQx44d4+TJk2RkZHDbbbdx6tQp0Q1wxx13sHr16ph5SVEUmpqaOHLkCNPT05SWltLR0SFafOPi4vB4PNxzzz2cOXOG2tpadDqdOJZWq6Wnp4fjx4/T29tLTk4O27dvp7Ozk0OHDs3SQaiqqhKdGbW1tVy4cEFsGLRaLVVVVUIOWpIktm/fzt69e1m1ahWyLJOSkiK6EtQSw7hRJvwNc21YknBa9OT5I5ymaBKxCgQgYk9dUFDAvn37GB8fR6PRYDCG+JP/sJr9vzvKpENGr9Njjvfzz//y9Kz2zpGRkTl5LP+zEVbCvND1GifHaoV2gTfk5YvhExwfPcV/qvjfqEj4w2egfx/xnQUDlQkF1Ns7CM+XYJUlCnOTSfxBZGIyZRsYzQ1yMcuF1xhGF5DJtOnIGtKjC96cEGMoGMZn96MQ0dCWopjjNzp6qZE/IdOcvYDohgRJA9O0OCMP0uTkZAwJ0Wq1cuedd9Lc3MyRI0cEiS8xMZHOzk6eeeYZXnvtNTIyMhgeHhbSt2rY7XZeeOEFsrOzcblcLF26lMbGRpYtW0ZraytLlizB4/EIImBcXJwwp7mRca7RaLjjjjuEgElcXBwTExMUFxeTmpoqAMbNRldnF9YbVkB1oQsGg0LfHhApyPbhfpqXzlzPG+YZXffCamcAXneY/+M//SPmhNmTlArk2ls6GGuZnBcIACghhbFmJ/JjmggQmGcIZSc7qO6zUi0lMeqLLKaSJFFUVMSWLVs4d+4chZfCTOTO90GRrMfAp7Xgj6j9rV+/nnPnzhEaG6MvFZzmuQVhnii6heL42TuTaDBw8uRJ3G43LpeL/fv3YzKZkCQpUia5YUIdHR0V7X+KosQoR6othXPp8F++fJlgMCiIg+FwmNdff51wOCxMsN544w26u7tZtmwZmzdv5uWXXxbXavfu3XMCeKfTGVGjnJFDVjUYNm7cKM5jZGSEX/3jC4x3OpFlme/99I9EtkBRFE6ePMmxY8e45ZZbKCws5PXXXycjI4PHHnsMt9vNa6+9RiAQ4OmnnxaGQWqMj4+LVkuIlDr6+vrw+Xxs3ryZJUuWMDw8zP79+xkZGWHt2rXYbDaRmi8uLubee++dpR5ps9n47LPP6Ovro6ioiEAgIDYHWq2WXbt2YTQaeeedd3j22WcJBoNs2LCBW265BaPRSH9/P8eOHaO7u5vMzEy2bNlCV1cXR44cickKQeR5/9GPfiTGwuXLl9HpdKxZs4Z169axZ88e7Hb7LHv0kpISioqKOHHiBBkZGfT09Ijnp6ysTACDm4lwKIzPN3c/oVoe0Ov1vPjii/j9flJTU3nsscfYv38/Z8+eJScvngTrFCUlOXR1dTE8PBwzNoPBIOPj46xfv/6mz+lm48To15wci4DWaAZPmDCBsMLP25/nuZX/jE5euCPt2xDfWTDwQN6t1NnbwBGC0x5whyFHB+uMoJGQw5A1ZkCbJxGSFRqXupmKn8kmSBDShOkp9DGU5WfZpTiMvgXIKGGF/pOjDJ4bJzgdOYYuTkvOhlRyNqQgSRIWiyVmEVajcFTiahr4dHNr6FvdEdENNVTiEUSAwJEjRxgaGuLee++lsrKS+vp6jh49KkR83n//fSGu81d/9VdcuXKFr7/+WrwOkV2YWuOdnp4WMqPqa0NDQ8LkZmxsjF/+8pezmP4QQfzvvPMOiqJgMBhES9/Jkydj3pc6JS1oTgKgC0KCl1nX7Qc/+AGvvvqq4Ats2LCBvLw8/H4/TqeT51u/nKWcKK7nNys3AxAOK7McIKMj6AstCAQgovEQ9ISZzvEuKOotAcvWZmE70Edqairj4+MoisLZs2dpa2tjYmKCQllmMF7Clqhc/yOuA5s1V2Ws5ngUk8Kf/dmf8cUXX0R2R0hsbNNwJTfMQIYsPNvj0PGTxdv4XuGGOc9JTY8PDQ1x+vRpIDIunnjiCT7//HOmpqbmVLMcHR0lJSVFcB2Ki4vFa4ODg7jd7lkSxIqicOHCBcrKysRu/PDhw4Lzkp+fL+x41Xa76P76bdu2zco0qKGKWuXl5YnyV2VlJVu2bAGg68pV/vauv2dywI0kgyTJ/P3nP6d4WQH/9Xd/w+WOS5w5c4YtW7YQHx/P22+/zaJFi3jwwQfp7e0Vjpzf//73Z51DY2MjH330EeFwmKysLCYnJ+nr66OkpITk5GSOHz/O6Ogora2tsQAuFEKv13P33XdTXV0dA3I8Hg/Hjh2jrq6OpKQkIcIlSRKyLJOamipEu9SsSm5uLvfeey/x8fFcu3aNY8eO0dXVRXp6Ops2beLq1ascPXpUkCS9Xi8ajYZly5ZRX19PdXU1Bw4cEHoM27ZtY+XKlRgMBvr6+rDb7ZjNZj777DN+8IMfiHHh8/mEBLMaKoGwoqKClpYW0nxhNGGF0ALttpqwQrJnNhCIj48nPj5ekHPff/99AJYtW8bdd98tRJTeeOMNioqKmJqaorS0lK6uLhobG2PAgJqx/UOQBw/ZjiIhzUn+VVCYCro4O1HPxtR1v/fP/n3HdxYMrEmqoOrdRJpfboIQIEdYropVhr9NZrE5BW0oMgi7i7wRIDBbqAqfXqGtfJpljXPzCBRFofX9fsZbYmUyA64gPUdseMa8lN6TMycQADAEJW5t03C2JMSkmRijjyyXhpVdEvEzvuA3hmrc09TUREdHB3feeScrV65k+fLlnDlzhhMnTuB0Orl8+TLhcJi2tjbWrl3LmjVr6Onp4euvvxa1aTU6OzvFQyzLMh0dHWRkZPDEE0/Q2dnJhx9+yLJlyzh37hy1tbVcu3YNvV7PxMQEDodDoP/5FOx0Oh0EAuROSFxLVlC8YbTX/ChaCOUZQBMBCqXDMrIi4Xa7Y9QYVdASDAYxGAxUVVUxNTUleuA9C0gE+OfbXUeFRgtxiVoUYpFDSkqK0FGwJJqQtVKkTDBPKGHQJWgI678BNSigSdCybNkyWlpahA97KBQSgC0xPoF1nXa60xS6MsK4jREgkGWX2CznIgcncbgj+vgffPBBTPZFF5ZY3qdho9vKhC5AcmISyT4NTxTdMu8pqVyQo0ePCgdEVf5YJXTOBwbS0tLEAqBq6EOkpdBoNMb8DiIgwWaziQW6trZWuFQaDAZOnjzJunXr2LJlC3q9npGREVEeSE1NnXc3NzQ0RFtbGxaLhb6+PoxGI0lJScJlcnx0gr++/f/EPRHZASthUGayiD1X+vnp+v+dqh/mc/d9uwQZcOXKlezatYu6ujoOHTpEaWkpDz74YEy3QTAY5OOPPxbp+qqqKrq6utDpdFRWVtLS0kJmZiZms1kIZnm9XqEvsHjxYnbu3BlTXgmHwzGGQmVlZVy9elWQRauqqti2bRvnzp3j66+/Zv/+/VRWVorODZfLxYEDB2hvbyc1NZWNGzfS3d3NiRMnxLn7fD50Oh3r169n3bp1AsjX1taSkZHB/fffT1VVlbjvqgVzTk4Od955J3v27OHYsWMsXryYuro6mpqaCIVCwmnV7/cLMKDaC+sVKHOFaInXCNJgTCgK5VMh5nqEvF4vTz31FF9++aUoT912222CzwAIoSv1uc3KykKWZUE2VuMP1UkQVsL0Tc8Wg4sOjaThqqvn/wcDf8h49e/20fJi0/X1Xc0cO8Pwn8fQPp0AeTpCsoItc/56LDI4rSGmTSHMntkT4ET71CwgEB3DFx2kL0sisSDycEfzClS3vAytiS3NLiYsMBGnICuQPikR75WEFrn6IKnHKC0tpbu7W5B3fD4fH330ER9//DElJSWsWrWKv/zLv+Q3v/mNABKffvqpIGkVFRVRVFTE8MQY/3zwDXr9dmQFMh0yytBgTNveo48+is/nEw/NlStXxPeLToNGx41SwmobpOoDv6RdwXdxBOVLO9KMAFQoWcv0IymkrEuibOj6DYmWZVYNXNTvHJ0uBrAU6IC5gUgoA3xFoO+9blp0Y1SuSkXBMev3JSUlYlIJhoOkL7Viu2ifN0Og0cukVVpx+r2E9QsQWSWw6hLZtm0LLS0tMd9VFalyOBzISJSMSpSMyiQmWQkGAui0OrxeO/qZvv+zZ89is9nmlMT2Tbr5qz/+Y9ra2jhx4sS8XhVut5v6+nogsgjdddddMWI8fr+fUCg0p7b+yMgIq1atEn8fvfvq6OigpKRkVmmhrq6OxMRESkpKaG1t5fDhwwL8mc1mnnjiCZF+VxSFjz76SIwr1aDoxvB6vezdu1d8H7PZjEajEXoBXq+X//4ff4F7zDvrbwHCwTBTo24ylTwmJiY4d+4cmzZt4tZbb+XQoUNC3XD79u0xnz8xMcGbb76J3W7HYDBQWFjIlStXKC8v595778VoNLJ3715Onz6N0WjEarWKhclkMrF79+5ZmZP+/n4+++wz4b0xPj4usoPZ2dns3LkTRVH48MMPBbl206ZNbN68meeee45z585x5MgRkpOT2bBhAz09PZw6dUoslD6fD4PBwK233sqyZcu4cuUKL7/8Mg6HA5PJxIMPPkhxcfGsMkxtbS2jo6P8+Mc/JjU1lfLyck6fPs3p06dJSEigpqaGlStX4nQ6efXVVwG42tFNwB1EZ9aiNWqQZZnV9iCTWolrZs2sNt5cT5jV9qDYVUtRk3RFRQXvvfeemJPi4+Opra2ltLRUAM62tjbRJqte48TExBiuAUQ6CVQVyd9HKIrC+Pg4nZ2dSIqEsmBtUvlOlAjgOwoGHKNO3v/5gblfnLkvfSdGqH6ikGlzmPDc/j0xMRU/NxiwXZiYJX4RHZIMwxftJBZYZi2QHo+H+Ph4pqam0Ov0pLgDpLivD/jKykp27txJc3NzjIqeoigMDw/zF3/xF0xMTIgdvjLDSO/sjLDR1Vqpy+XCarXicDjYt28fmZmZPPTQQ3QqDv76wlu4rD5U36SOzBDJLljfqcEQjJzvL37xi5jv5PF4kKQIUJnPhyElJQWLxRLxOg+HBRCYmpoizhzPxd80wKAnpoavmQgS/8IwaY1B5O2znQqjQ13wVDZ3e3s7H3/8MWVeC1ek+a2iJx+G9OdBmUMCIT3XiDnTjl5vmCXHe6NTYN6mdCbap/BPB2drCwPFd2Uh6ySsA2YmCl0LlgpMvTpe+eiVGP949bpGn0dNTQ2nT5/G7/Xh9/t55KlHeO2110R912azCX2DG8daXl4eqampeDweAoEAw8PDMUx/RVFoaGjgyJEjAmDGx8fPMisKBAIoijJLJ2B6ehq3201ycjIul4uEhATxnqmpKYaGhmbt4r1eL1euXGHjxo0MDQ3x/vvvCyCQlJTET3/60xjA0tDQILQu1q1bN6ebpbowTk9Pi976QCDAE088IVwX9+7dS3ftwILPLRKc2V/PuGmIu+++m6qqKt5++226urrYtWvXrBp5U1MT+/fvJxQKkZmZSTAYpLOzk7vuuos1a9bgdDp577336OnpEeJZ6n2TJImHH344hsCmei1cunSJ1NTUmJR7fHw8O3bsID09nWPHjtHS0kJ6ejqPP/44X3zxBTabjffee4+xsTGhiNjb28uZM2cECPD7/ZjNZjZt2kRZWRn19fU899xz+Hw+ysvLcTgcbNu2TbQdRofT6RQ226pZmdfrxWQyoSgKzzzzDDabjY8//jiSrZvw0Xt0hLEWZ+RZkSC5LJ6CLRlY0o1sHwkwbtVxWRfArZEiokNTQRRTiJMVYeyWSCYsYxIW2TSkT2toamoS4lYOh4NFixYxPDzMm2++yfe+9z3y8/NpbW2lsrISm82GzWZDr9eTn5/PpUuXYmzA1U6C/5mYnp6mu7ubrq4uurq6mJycRKPRkLbOymicY15AEFLCrLDOTX79tsV3Egx8vf/8nCY/IhRwdLkIekPIN+dQPC/xzDvhX5hIFgbPeGRxmst8RyW+zSX/qkq/SpIk+ozVtqjJyUl+8YtfsHjxYmpqanjooYdoaWnhyJEjoiShKIpAzg6HQ+xibDYb//TysxyvCkdILVLsema3wJnSEJtaNTFoXA01Taz2Y6ufoXrC+3w+7Ha7IPupdX918us40YPr2my2vhrXvh4nY0Uy5tT5kbq6WKrZFVVoJVebwBqdgfP+oVnZHkkBrQWqt8k4O2C0N0zAB0YLZJfqSMoJUFpaIkoRc30eRFqaXHoXS39UTPdhG+Ot18mEplQDBVsySK2M1L+Te+KYzPIQNITmBAQpV+Op6zxHcnIyOTk5DAwMzAmwkpOTaWhoEOZL1dXV5OXlYTQahXRzdB84xCo0Dg4Oivq1RqOhv79fgIHR0VE+/fRTent7Wbp0KTqdjgsXLpCSkjKLwR4IBJAkadYuSiXIRpsfqaGWolR5XTUaGxsJBoPk5uby2muvxWQrnnrqqRggMD09LTQHLBYLW7dunX0xga+++kr4YWi1WjweD4888ghZWVmEQiHeffddrl27RsD7DbwPBVx2F4888ggZGRnCjOiJJ56I4UKEQiEOHDhAQ0OD+I7d3d0kJyfz4x//mPT0dOrr6/n8888xGo0sW7ZMtF1CpCwwOTnJe++9x9NPP01KSgrnzp0ThkIFBQXCD0Kr1XLbbbdRXV3N6dOn+eCDD0hISGD37t0sWbKEiYkJUQ5MSEggOzuboaEhzp07J4CZ3+8nPj6eLVu2kJ2dzdmzZ0WHxsqVK1m/fj3t7e20t7fPKaGsXsNwOExjYyNms5mVK1eyevVqXC4Xv/3tb3n22WcJh8MRoum4j8uv9uD3Bq5PMkoko+q46mLp08XEZZvI90OqIxApk4VDXMoL052hCG6RIsFwItgSQ6zsUSgYlyktLeWxxx7j9ddfZ3p6mscff5y33nqLN998k127djE2NiY4JTabjZ6eHqqrq7l06RKNjY1s2rQJiICB+bpR5otQKER/fz9dXV1cvXpVgNS0tDQqKyspKSmhoKCAbl8f/9eVf5nzGDIyRZYCyuNL53z92xbfSTDgcrgju6vQwo5+QV8I87QOvU/Cr1fmb+8LQ5J97kuhNWthfAE3LQl0lut/O5807o3hNYTpT3Pxp+/+PUavTJpGhzYUIeFkZ2czPDzM+Pg4zc3NNDc3YzKZyM/PZ/PmzYyPjwvVseiFJfrnzowIEJiLZa5IYI+DsXiFtKm5L0ooFMLj8cRYLKvpOPV1NVRwotVqURSF0YbJhXdlM9mUou2zXfHUCGgUBq0K/+XI64Qmpsj0wy3r1kcIkLWNLC410RLviVhFz4TVDau7NcRJEnFlkFN2/cWkJCt2u130ay8UDkfEC6At2EblI/n43UF8dj8ag4wp1RCzgGoDGgrOpjFc6cCVfl1bQeOXSemKJ6kvUj6amJjAbrej0+mEf4UKEBUULofH6MlR8Jrd6OJDjLivknT6K3H9o8tISUlJeL1ehoaGxO+9Xi/9/f0UFBSQnZ1Nf38/q1at4uTJk5w6dQqr1cpTTz2F1Wrlueeem3UP4TpgVR0oo2NkZARZlsUYiN5RdnR0kJubG6MDoBIHMzMz2bt3L+FwmJUrV1JfX09RUdEsQt7nn38usiT333//nAqG7e3tHD9+XHhbBINBtm7dSmVlJeFwmLfeekuYXZnTDLiHPMwrRSJD8dICzGYzL7/8MgaDgR/96Ecxff4Oh4M333yT8fFxDAYDGRkZdHZ2smrVKnbs2IHH42Hfvn10dnZSXl7O6Oio0BrYsGEDZrOZL7/8ktWrVxMIBNizZw8mkwm73U5eXh42m02k/lesWEFNTQ2XLl3i+eefR6vVsn37dtasWSPEwhobG0X5RqPRiAVKvXdJSUls374di8XCmTNn+Oijj7BYLGzatInVq1eLe9rc3ExxcXHM/XI6ndTX13P+/Hk8Hg8pKSncdtttgsT44YcfxpQM9Xo969ev5/3/fIiAd47smQLhoELXgUGW/XEJWq2WjIwMpqamcOfG0Z0wc+5R048yM2dcLAyTPinR2dnJnj17MBgMkeyqXi8AwccffyykptUN16lTp/iTP/kTIAJQN23ahNfrZXJykoyMjHkGwsxnz6T+1Z1/T08PgUAAs9lMcXExa9asobi4OKYlFaBcX8qflf6AF7peE+3u0sx3SQjE8TcVP/2DaBv8IeI7CQZyFmV9IxCQdRJ6ixYJifw+A52L5q4fokCmTTdve2HGMitT/fMbYqBA+tK52c4w2/LYZDHTmDXGUFZk4pVmBLS6SjwsH0rFqDMyPT2NXq8nLopY6PF4aGtri+k2mGtRs5sVRhIU+lPmBgJqSGEYtCrC+nehiIuLExkCWZYJBALce++9fPzxx+I9al2ysLCQ0//019+4K/M5AzGmTtdfUujIVGjJDhOWQMKBkgi6fJjobyB3HO6/d3fEO17RMJqgEJLBOi2R6Jn/C6tkrPmAQG5urthdh8PhmJ5nvUWL3hL7qEQ7Vep8GnIbUtAk6pjUTiGFJExOPdLMDVDfq2aOrFarYNOHJYWzJWFsVmVmLASRtHDaPMkl2xfcptWQakoQQMBgMGC325EkiXXr1pGSksLBgwfRaDR0dHRQUFBAXl4eDQ0N/PrXv2ZycpKNGzdy6623otVqefvtt7FYLExOTsZkGWC2r0Z0jI6OkpycHGMUBRFA0dXVRU1NTcz7Ozo6REZJlmWeeuopsfO/5557Yt7b398vFlF113VjTExM8OGHHwqipyRJLF26lLy8PD7//HPq6+sFqTU9PZ3cJwt4+68/neNOz0QYyPGzZ88e0tLS+P73vx9D6mtpaREuhWlpaXg8HkZGRoQp0eXLl/nss89EB0Nra6uws37wwQdFicNgMHDw4EESExOFrkNcXJxYWPPz89mxYwd9fX288kqklLR+/Xpqamrwer0cPHiQhoYGzGYzS5YsYWBgAI/HI8jFEOk62rlzJ8FgkDNnztDf309KSgr33HMPS5cuFe6SEMlU9vb2ct9996EoCl1dXdTV1dHe3i4AWE5ODrt27aK+vp4DBw7ElLfKy8vxer10d3dz+ssztJ+JJevFhAJTQx7SzVlIpjBVVVUcP36ci4aA6MmfFTOAwLM4jcyeAD6fj4GBAQwGA263Wwhh/exnP8Pv99Pf34/P50Ov1zM+Pk5LS4vwVIGFyYPT09NcvXpV7P7V1H9+fj633XYbJSUlZGZmfuNivjF1HXnhLH722b9hyotj2ulmY9Z6Wo5exlvmITEjYcG//7bEdxIMrNu1Emt6Io5R5zw9ZpCxPAlZG1ngs4b0+AwK/fk+UdOSFFBkSBnTUtJlmuMgkUhbauVa7XikFHDjZ0kQl2UiuTxys1U1OVm5Toa5MSXclDEeAQI3SPSGZajPGSPVnsRP735StH85nU5eeeUV4SGv6obfGCGzjlP5HibiZr7bwpcQAI1RD1Gs+oKCgoii2AwbWA2Xy4XL5UKr1RIfH8/ExIQAAvn5+dx1113U1tZy9OhR9Ho9liQzzqH5UYYkgc6swe/3U1hYGJO270pXuJIb7TcRiYAMp7Lc/JeaOwl7w5FuAyRy7dINx5ZuOjtzYyxfvpyLFy8KXsZCodbdoyPkDGBhNvHO6/ViNBrx+/1kZ2fT09MjzrM1KyxaCtWxoABI4DZC21ILpoZI5iXa7bGiooIdO3bgdrs5ePAgiqLQ3tzV49kAACAASURBVN7Ohg0buHbtGtPT0yQlJfH444+L3W5HRwdtbW089NBD7N+/fxYQiy5l3aj2Nzo6KhT+1DY3gN7eXvx+vyDGKYpCY2OjGB+SJPHUU08JV7z8/PwYl8NwOMz+/fuBSGbp7rvvnnX9/H4/77zzDjqdTpA8TSYT7e3tXLp0KcaFcfPmzUxNTXHhwgVya1IZOD02Z5Zq+T2VWApkzGYzo6OjvPXWW2zatImioiIOHz4sOCSqdkBBQQH3338/Wq2Wd999l9bWVkpKShgdHaWlpQVJkti8eTMbN24U5Y9AIIDbHcliOp1OQbJVORc7d+7E6/Xy3nvv4XQ6WbFihUhtf/HFF1y8eBGj0cjixYu5du2asFtWr7PqJ5KXl8fhw4cZHx8nPz+fRx99lLKysjkXsebmZiRJwuFw8Oyzz2K328nIyGDnzp2MjIxQV1eH1+vlpZdeEmM0JSWF5cuXo9FoaGlpob+/H0mSmBqdu4Nq1mfWtZK6OFGoE9pk/4Ly2wrgMIVxOp388Ic/5PTp07S2tvLss89y++23U1ZWhs/nIz09nbfeeovy8nJMJhOFhYWcOHGCnJwc2tracLlcYgOjtmXOl/pfvHgxxcXFFBQUCN7FvyfG+kdJ7U1gR8UODp86zAN338uLdRGFySeeeOI7kR34ToIBrU7LT/7tKf7vx5+N/CL6QZfAaNWRvyk96lcSRT1GMoZ1DGcG8BrC6AIS6SM64qfmrpsDwk1rydNFtP9uAMfV2Pa/5LJ4ynbnMhUH7ZkhriUpKDIY/VA8KlMyLKGN0pr168IMZs/T2TAzYZ3RXsX7s5+JlHv0wq8Ci6ysLMrLy9Hr9XR3d9PW1cGxIg+umXXoZowWFQlMzgAGQ6Qmn5CQQG9vLxaLJWbXGx3BYFAwddWMx/bt28nMzGT37t3cfvvtnDlzhq6qazhtU/MiEiUM6csi2ZRo5m9IimQE5oyZ6/OL5sPsaJv/Yb0ZIKCgMBqv4Mm04Ha7SHVJcG2AgYGF24TUSExMZMzpRMOCvMGY8Pl8WK1Went7yc7OZmpqCodrkqvp85evFAm6pEmKdRoSAhpx/y0Wi2ihi4uLE4JTo6OjPPvss2LiWbt2rVi0g8Eghw4doqioiMWLF3PgwIFZYCD6/9G7ZIjssFasWEFzczMpKSmCn9LR0UF8fDwZGRk4HA4OHDggUvUQ6QgoKCjgxRdfBCJKctFRW1srxsDdd989C4SohMGxsbHYDJvJRGVlpbD5hkhqvqmpSXBZSnbkkFKQhO2sneGuyO8yilOJrzZgWS6zcetmTGXZXLMNYrvYzr59+2KsyBMTE+nv72fz5s3ceuuttLW1ceDAARRFobS0VADGjIwMHnroIXGtVTOgw4cP43Q6ycjIwGaz4fP5kCQJjSbCtD969CgjIyNUVFQI2fBTp05x4cIFdDod5eXlDA4OcuXKFXG9VfLl1NQUixYtYmhoiMuXL1NZWcnu3btnCSNFX8eBgQG++iri6XLq1CmqqqrYvXs3AKdPnxZcjPHxcXQ6HdXV1aSnp9Pf38/x48cJh8OUlJTw4IMPkpiYyHP//MKcn3VjLF+9jIHpHlavXs358+fRLJzURQImx+1YLBYaGxupqqqitbWViooKDh06xKlTp5BlmSeffJKPP/6Y5uZmEhMT2bx5My+99JLwW2lqamJgYACTycQ777wTk/ovKSmZN/X/PxI9PT1kZ2djtVpRFAWfz8e2bdt455136OzsnFOi+9sW30kwAGDK1bLsmRJ6jtlwXo0gVFknkbE8ifxN6TF1fDXMHg1F3TfRWjATqkZ7fLKFJU8V4R71MtnnjhD9Ci0Yk/SMxof5elEIRbq+CHt10JwdZigRNrZrBCCYSA4uvFBLMJUQwqcPgz+y85QkifT0dIHM1TakvLw8Nm7cyIYNG9jffZ6Pmj9e4MA3hBLJXuSNS/hCkdTq5OQkOp2O5uZm8TadTsfy5ctpaGiYRYBUF5y3336b1atXs3LlShITE7nzzjuxWpL4h/P/im8yMGc2xVochxJSmB7zoShOrFYrTqeTkQSF4EIjUoIpk4JDGyQ+uDDiUWWNbwy3XuHMohBTJpDCUxAPbbJCnCfMhk4Ncb75j+sDruj0tAdC+C3xyIpCUTDAkoCfhAVAiNqZ4XQ6BVN/amqKULKJgHa2vsSNMREPyzLLaG5pwazVivY/Na1bXFzM8PAwENnlPPbYY7z66qsMDAwImekzZ87gcDh49NFHkSRJtOBFR/Q9VrUIIMIJmZ6eFrvSaC2Bjo4OSktLOXv2LEePHhXclr6+Pm699Vaqq6sZGhrCZrORl5cX43M/OTkpWklzcnLEuSqKgs1mo62tjYsXLwqegrpT3bp1Kxs3buTChQvC6a+yslKI+kAky5CYmMjtf3o7X5Z9yY68Gm6//XY+O3KQa0ODNGeHODh5HH/dTJ03DXK0Mkt7AhiIEHrdbjff//73SU9PZ//+/Vy+fJn8/HzRVqbRaNi+fTtr164Vz8PY2BiHDh2iq6uL1NRUtFotNpsNSZIoLi6mq6sLrVaLw+HAYDDw1FNPkZ6ezqlTp6irq0Oj0VBaWsrg4KDQpYDIRqCsrIy1a9dSX1+P3W7n1KlTJCYmEhcXxyOPPDLn2FGloOvq6sQYqaqqYtOmTYILEF1yyMnJoby8HJfLRXNzMxcvXiQ9PZ0tW7ZQXV3NxMQEly9fprm5GWOqDmOyPkKynie0Zg3j4cjnNjY2RjIadomujPnLmIoEaWMRJdULFy6Ia1tTU8PatWuFeuWhQ4fYsWMHNpsNh8OBy+Vi0aJFQofjiy++ECJNwWDw35X6B7D73bzTc5ZPBhpwBKbJMSXxUMEa7stdgUFzndOiKArd3d2sWLFCZHRdLhfl5eUUFBQI6+q52mS/TfGdBQOtra0k5ltY8mQRIW8YvcaAL+Rlon2Kvq9GkGSJ5EXxJBZZburGFxcXzxKrUEOtRZpTDaQVJAvCXFhSOF8cqW3PJWhkt0B7ZpjFgzNCHpqbS18/+YPvY/LIfPLJJ0xMTDA1NSX6s3NzcwWDuKenh0cffZQT4+3z1+AgRg1Q7ZpYfVVGH4q9Ljcu+IFAgEuXLrF8+XLGx8e5evUqRqMRn88Xo2B48uRJTpw4QUVFBcnJyZw5c4b7/3E7h372FY7uqMVOBn2cFkeXC0dX5PfmDANF2zJJKo0ncJM47Zvep9frWbJkiZB9FX8nK3xVEcI38xxHkw/dRjhZHmJbkwbdHM5BXiQOmUxMSbIwXglLEle1Onq1Oh7SadBHqT4CQp5ZbQkFRHYAYO2aNXw6HnuOc0V7vswFuQlWgDUkU3QtSENDA6tWreKrr74SIj2yLAvnx7y8PFGXdjqdnDx5krVr1wrLWoPBMEvoKjozEA0G1E4CddyrXQMTExNCUfHixYusWbOGoqIi3n33XZKSkoRAzCeffALM5gp88sknYhzdd999dHV10dbWRnt7uwCngUAAk8kkAFB8fDw1NTVcuXJFAIGMjAyRqocIuS4lJYXS0lK++OILVq9ezYoVK4R6pn1rIe32TqJLZApwzRrGXa1l42WFBKOF6elp9u/fL8a7CnIgUj544IEHhJSwz+fjxIkTnD17FrPZjMViuZ6hKClhw4YNQp/B6/WSmprKxMQEn3zyCS6XC0mSKCwsFCBI/S6KolBdXU11dTWXL19m7969GI1GNBoNa9euRaPRxHQvqDE8PExdXR2NjY0EAgHKysrIzs6moaEBn8/H888/L8akyt2prq5mbGyMo0ePYjabqa6uFrLOTU1NvPzyy0xNTWG1Wlm9ejXV1dW85trLFz8/M+vz1Sjeno1nxgfE6/VitVopGbEzkC3jDwdnzVmSAhYv5E5q0WhlgsGgyPx88MEHVFdX4/P5WL58OZ2dnbzwwguYTCZ0Oh379u0DIABc1eoY1WqRdBK3Fhfx8O77MM1BSp0vrk3befrr3zDuc4lz7Jiy8U9Nn/DpQAMvrH8akyaSoRwdHcXtdlNUVCQyai6Xi8zMTO644w5+85vfUF9fP6td9dsW3ykw4AsGaR4ZwT3t4Wp/PzoiD74+Qc9Yl4Pmt3oJekJIM5P8YO04lgwjix8vwJAweyBE15dVIBCthjdXRCsN2hIVsbDMGRJ0pylUDipISJinNd9o4COH4K2XXifeaGHx4sUsW7aM06dPYzKZKCkpwel0inr1yMgIv/rVrxhYEzc/EJg5DzUbkDOlpXhQISdsxsP87X9qaLVagegfe+wxjh8/TmZmJhMTE5EWrihyUWdnJ8FgEJ1OR05xFtVPFWIhnr6mQbwuH73Hh/FPxdbap0d8XNnbS8Uj+cStjp/rFGJDAfP8MgNAZFE7e/as+L862fWnKHh1zHkPFCmS0elPUSgenf2Ger0+Bghc/zuJkKLwhQJ33XDouUROomWim47VYqhk4TEETEnXQZpDDnAxH/6friNsPFuLa8rFpk2baGhowOFw0N3dTSAQIC8vj0uXLuHz+Thy5AgGg4HNmzeL4xiNRhRFEZaw6nVTI1ovf3R0FFmWxc4yNzeXYDAoJHElSeKZZ57BYDDwyiuvALBr1y4kSWJkZIShoSFycnIEEIFIRkFNs6empvLyyy/j9/uxWq1UVFSQl5fHoUOHMJlMMZmBmpoaurq6+OCDD4TOwPDwsLjHsiyTlZVFSkoKp0+f5vbbbyc9PZ3XXnuN1NRUlu3axOsNb847BuzaIHGbl/IXa+7hd7/7nfAEkCSJvr4+dDodu3btYunSpWL+uHz5MkeOHMHj8ZCYmCjIqsnJyWzdupXu7m727dsnrMg1Go3gSdjtkXT4jTwVSZJYsWIFhYWF1NfX8/bbbwufkuXLl7N//34GBgZYtWoVk5OT+Hw+NBoNzc3N1NXV0d/fT1xcHOvXr2fRokV0dnZy8uRJ8TmqsFlqaqpQhGxubqasrIxNmzaRkpJCc3OzKNGYzWaqqqpYsmQJubm5Aqz8h//2p4wOjdK8v4eAJ3h9rtFJlNyRQ+7aNL73ve9RV1dHZ2cnLpcLc1DiruEkvsycZDLkFQJhigwJPpkN7RJKKEyQMHFxcUL1UlEUocfS3d2N0RghW6vdBCaTiT6/n6NGMz5FEbe4q7ePT156mT0PPUhVxs3pDfzdxfeY8Ltj5lX1p8uOAX7d9iV/vfguIFIi0Gg05OXlieuiAu3s7GyWLl3K8ePHWbJkye9N+OgPEd8JMBAKh3mu9iyvXqhnamaXrjHHsSgYYFXAT2DcQ9Mb3UI+NrqdyD3qpemNHlb+aWmMsZBOp0On05Gfn09PT49ImS6oX3BDTJpmJJAXyP74deDXgiEIVocGo0fCa5ynTqxApk2PJhxRJVRJTFqtFr1eT1NTE3l5eTz55JP09/dz+vRpAoEAoSE7Utr8XAFJgQwHrO/SIEsSigIBbeCmyHZqqQQi7V8ul0vYHVdWVlJTU8OpU6e4cuWKACkajUYsxl7NNGWbCjn164uE/XMwG2f+3/XpIGvKy4j3zG/7LCmQ6QDjAiUC9Tup5x3Nir+W9A3FSmAgOUzxaOwNNVutXPUHF7RiHQuFGZVl0qPq2ipDPua9Udc76A+wyCbTlBteGCTOkXXqtPop98N/fOJPSUlJQVEUoTzY3d1Nfn4+iqJw/vx5rly5wv333x8zEd1oYwyxmaHoOurIyAgpKSmMjo6i0+lwOp3s3buX0dFRrFYrP/nJT/B4PLz88stoNBri4uJEr/6NWQG1Xfb48ePi+Hq9npqaGsrLy0lPTyccDvObF1+ht2GKwRY3AY9CfLKR1FINiQlW3n77bfG3Ho9HWN3Kskx+fj56vZ7GxkbuuecefD4f77zzDhUVFdx///38rP1zNJI8v/25BKd9/RheeIHp6Wmh5aDet4SEBDQajShlfPbZZ/T395OUlITb7cZut2M0Gtm8eTNut5v9+/ej0WjYunUrS5Ys4cKFC9TW1oq2YEmSYjYYGo2G1atXk5KSQl1dHfX19WRnZ/PQQw9RWVkpgFtxcTEHDx4UMs+ffvopXV1dTE9PU1RUxIMPPogkSZw/f17wBACx4/f7/bS1tQlgcPvtt1NRUUF3dzenTp0SMuQqUbWoqGiWoqXf7+fq1assuaMCS7GeifYpfM4AucXZaLMUikqLaG9vJxQKUVRURFNTE48++mjEQfLaJJv7AlxLknHGRxb/bflLGa5rIjcnV3TbqORlnU6HRqMRm7VoUK3RaNBqtYx7vXxhthBQFJCkmKnG7vXy1Hvvc+xHPyBhDnXN6GiftHHJMbfyKkQMiT7oq+PPyrdi0kR4W7m5uaJsZzQaY7JuW7Zsobm5mVOnTs2rn/FtiG89GFAUhb89dJiPmltibm5IkmjT6piQZRadHUQJzUOhD4NnzMd42xSZS5IJBoNCJEd1A/v3AIDo0IZvjqynm9H/M5vMVLSGaFzqjpQWotccBcwemYJe46xFOhgMisHV39/PG2+8EXP8wlGZq+nzfwdFihAaJa4fdy42PER62NWdTXRIkiSY3GodTz3PhIQEoRY2PDwcAyBCoRC2/mHG2xZ2AQy4gzg63ayMj+NkeSjiDBl1bSUF9EFY0r9wjWDcHKY7NcyUSUEfhNyJaSqCCeCFoIZvXHRv7DCVJIlrzknCZsvcfxMVDllD+ozDWvQuOy4uDo1GEzOBqVE6LDFllOhNU0SbqfrvQmZPkgLtSX5Rg6+urubEiRPCb2Lnzp2YTCa+/vpr8vPzZ4muqAAgGgxEn3O0zoDaVjg6OorZbGbPnj1kZmYKq+FQKMS+fftES+bGjRuRJImxsTEGBgZISUmhsbGR9vZ2xsbGYsa3ak4UHb979yMOv9iOdzLKznbQw8Q1+K9tr1K2zYRGG7kwJSUldHV1iZq81+tlYGCARx55hI6ODurr66mpqWHr1q0RFbmxIULhhcGXzWVHp4vUlYeGhjAYDOzevRuLxcKJEyf44IMP+PTTT/F6vVgsFrRaLXa7HVmWWbduXcSW+quv8Pv9rFu3jtWrV3P58mV+/etfEwgEyM7OZnR0VLSbqpGTk8OiRYu4cOGCIAjeddddFBQUzCp1FhYWoiiKaNdsbW1l1apVotx54MABUd7UaDSkpqYyPDyM0Wjk3LlzQrZcJej19fVx/PhxJEkSZk3l5eWz9B48Hg/t7e20tLTQ2dkpFBmLSoqQtb1oNBq2bNlEKBTi+PHjWK1WLl26xPr161EURYwxnU5HaWkpmtZWmADQkJWiJb6klLGxMUGK9WoVrqaH6U8JEtD2E5cIt5uL+Js7vgfhMK2trRw8eBC/30+7VkdQYU4fhLCi4PR6+eBKM8+sWjn/zQeanbOt1W+M6ZCffvcEpXGRDhvV3hkiz3s0wEtMTGTDhg2cOXOG1atXz3Kp/LbEtx4MXBgcZH/z3HaYiiQxotGS0DI5v7gIgATjrZNCNS76Rt0sEDCbzaLHW40su8TlhcxxFEibBHkmY+HxeEhAy8r6OAaLggwle1Fk0AYksob05PUbMKAlpITEhDmXDn106HQ6smU9FYOTtGYrsQvIzM+FoxLpkzfX2jIXEIDZLH1FUejr6xMs8aKiIrZv305GRgZdXV28++67AnD4XcGb6nX0TQbIcktsbtHQkh1iyBo5fzkMuRMSlYMyVgz4mU1YUlC4nBumK1OJWUyHrWH68bHuipaE6RBOkzJvJkdSmKVVoCgK2pvsCtJFeVKosr4Q2d3M164kIbGiV6ZgDHpTw7iMCoaAhC9Bx7h2fmKWIsFgaIrnnnsOk8mEVqsVu6ZLly6JMePxeMjIyODMmTPodDq0Wi06nU4sFN3d3Xi9XrHjV8edWj6QJEm0FarHu+OOO0hMTOS9996jpKSEDz74gImJCVatWsW5c+eoqqqipaWFTz+N9PmPj49z6dIlQYBT3QZXrlw5Cwg0NDTwu+dq8U7dMOZnxo9zOEB/vcSimgSqqqqEMmB5eTljY2O43W4effRRTp48SX9/P5WVldjtdv71X/8Vp9PJWF5owSwaCpiDsqj3L1myhJ07d2I0GgmHw1RUVDAwMCCunzqXlJWVUVxcTG1tLU6nk+XLl1NTU0NraysvvfSScPkbGxubJd4TDAbRarVcu3aNwcFBli5dyi233DJnb/zU1BT19fWCf+ByuTAajeTk5NDT0yP4IxDhUuTk5AixLUmSyM7O5o477iAYDArORVNTEwUFBezatYvFixfPEpxyuVy0trbS2tpKd3c34XCY3NxctmzZQmVlJUlJSYyPj/OrX/2KUCjE9PQ0Gzdu5PTp08THx9Pc3MyOHTsEaFLH0djYGEajUVhmX7p0Scx3TqcTlxFOlIcIaK/fL7sFfid1M3rpXX6++nFWrFjB4cOHqamp4avWdpQ5DN+ih9DRrq45wYDH42FgYCCScR1qhPmlY67fO1kTASxeb4zUdNwcxnM1NTXU19fzyceHMRsKGR9zkZIax+3bq0hK+uaNxv8X8a0HAx80XUEzU5edKyRFIRRQFtzwRdSwrk8u6oCL3qGov7NYIrX68+fPx7w+PT0ds+MFsPgl8sYl+lPmSPvPnG7F0OydrNmjobRZQwl6wnJksZOI1D8rKipoa2sT/eQLAQGIpHYDgQCVbg3xnjDtWWGcM91ZcT6JUptE4Zg0q31Sp9MRDoe/EQzN12YI11PyWq2WgYEBXnrpJaxWKwUFBWKCCwaD6Mw3xwxU35fokVh8TYM2FMKWGNFgmNYrOMwKJodvzlbQ3lSFrszYfn31baOKh6/zI1mFvrSFMyhFo7ORQpyiYA2FcMjynLsOAFlRyAoGYKZr4Ma4sY0vOiQkUtyQ4o58f1mWOV3kj0xICyxa+lCkTS05OZLxio+Px+FwEAgE6OnpEWPoypUrhEKhGCElNdQF4cb4h3/4B2GdGwqFhBaExWKhubkZh8OBVqtl37592O128vPzOX/+PLIs82//9m8x5LRbbrmFtLQ0dDodhw8fRlEU9Ho9a9euZWpqSgCUkZER3n/rYxzX5s5aqd97tCPAfT+spqHhIhAhavb29qIoCpmZmSJLAdDV1UVWVhY5OTlMTk5SMC5zNWPhMV8Q0anBYrGQmpoqTLw+++wzbDYbcXFxAgyoWaCuri7a29spKyvj4Ycfpre3lz179jA9PU1mZiZjY2Mi9Q2RzcXq1atxOBw0NTXh9/sFYTI7OzsGCCiKQk9PD3V1dbS2tiLLspAnttls4vMhwlMpLS0lFApx9erVGI+K9evX4/V6+fDDD8X5r127lltuuWXWbtXpdNLS0kJLSwt9fX2C4Lhjxw4qKytjCKZATEdCW1sbW7duZfXq1Zw7d45AIEB7ezuZmZmMjo6KeePGLJHaKjs1NUVYCXOxUktAvqEDa+bnU6Md/PbqKZ4p2ojP56Ovr4/JeZxjo8MfCgm1wf7+fvr7+xkYGBAkWVmW0cohpGULZ32zTVbyLSnUNtai1WpjWjotFsssMKDX6wn78/ntS+1IdKDRyIRCCi899yVPPnMrj3+/5n+5FsG3Hgxcm5ycFwhAJDvgzzZj6Fo4De1zBmh5rw99nI6MFVbiMk0xu131Z7fbTW5uLoFAQOw6FooVvTI6g5ar8T4kBaQZ4SG9HOJhayNZi3QMtlfgcc8WNpKQYnpuvV6v+MyFMgLz1fpz7TK5dpmAJuIDpgsx58IJsfXh6J7pG2M+IAAIQGU0GsUOyeFwMNQ1zHjrJOGAQlyWiVvuWUNb0QDOHve890hjkElaFJlgbAlhaksj313dxY/Fw1hCmKIRiWV9csz3iqgWhudNqysSjMdHdv7lgxJt82RQym0yye7ZB5CA5QE/x40mmKlHxn6AQsKxQRq/HiJnfQrZ61KQZImEhIQYCeebCVXbItcuY/sGjsMyUoQwi06nw2az8eKLLyJJEnq9XojcPPnkk2RmRqSf1VT+5cuX+fTTT9m8eTNlZWUEg0HOnj1Lc3MzGo2GXbt20dvbK6x61YWqtLRU1Ms1Gg12ux2NRiNY9rIsi/eqaeFofoAafr+fF16Y3afutC0g/T0ToYDC6WPniUuNcGnUVjJZlunr60Ov17Nx40bKyspITk5m3759omXWOi2RPyrRlzobwEsKJHhgd8EqltyxmKamJk6ePCm6UvR6PZIk4XK5MJlMrF+/nu7ubnp6etDpdELU5vXXX4+4lWZk4PP5hH8ERDgHS5cuZWhoiK+++or4+Hi2bt1Kbm4ub7/9Njqdjs8++wyj0ciiRYu4dOkSdXV1jI+Pk5qaKjgCFy5ciMniabVaysvLGRgY4MqVK1itVtavX09WVhZnzkTY/mfOnCEpKYnly5dTX1/PkiVLuOuuu8QxVAW/lpYWBgcHkWWZkpIS7r33XsrLy2dpQESHytlQuygaGhpYv349tbW1WK1WGhoasFgss+YZdR7LzMxEq9Xywx/+kLGxMf7bG79mTDM/U1hRFF658iXX9h0HIhmuJIORCa1uIRV0jE4n//Iv/yKAcnx8fMyGsLy8nCVLlqD3tfDJtYZ5idk/LN2ELMl0d3dTUFAQw6eIi4sTZFs1PvqgjiMHO4isEBCc2ZyGQgqvvXyCuHgj9z34v7bb4FsPBtIslgUzAygKoQ0Z0LnwpOsa8kTMc2QYOjdOxgorpXfnCFJh9OJ6owKfGpIkUVBQgMvlEmlEjSKxrC1EsVGDu2wES/YwGbpJVll7MWqCKFkSBYubqf9iK47hzFnHm4/AdyMQyMzMJCEhgZGRkRgUDpFBbDabBRrV3dAyqKDgswaYTvQBEqmeJMIj18FAtHiK1+udtbNdyMFQURTxucFAiLaDg0xcciIRWTOVMHR8co38zWlM9k2jhOfmdhRuy0SjkwnICudKwhFUPseOoDtdIW1SIcdx/UWfFiG4NG8oMJqgsHhQQ6InTHtmGMdMds46DdV2E2m22WZSauSHgqz3eTmvNxBSlBiVx4SvbSQd7sOvQPfnNlyDHsoeY/qmYgAAIABJREFUyP13AwG4TtjMtkvEeSItjzfuUGQkLGjIGgri9Xq5fPkyK1euJCMjQ6gU2mw2du7cyaFDh+jr6xNgQJZlDAZDjAa/Kp3b1NQkNAiam5vp6OggMzNTSLoajUaqqqq4ePEiwWCQYDCIRqOhoqICp9PJ9PQ0f/7nf87k5CS//OUvSUtL4yc/+QnBYBC3283zzz9PIBAgNzeXHTt2EAgExGsnTpyIlCnkm9sdqSBUbdMrLy/nzJkzFBQU8PDDD2MymWhoaOCFF16IGbc6nY7/fsujvNb7NV9MXxW6FtJMKeqPLFXcv+teQqEQw8PDQiQoFAqJ7E5aWhpms5ljx46RmprKQw89hMfj4fjx4zElyOgFISkpicrKSkHQS09PZ/fu3VRXV4uF5Omnn+b1119Hr9fz4YcfCqJiZWUla9asobu7m6NHj8aIT7ndbnHPOzo6WLx4MUVFRUxMTNDU1MRXX32FLMskJydz//33k5OTw4cffohOp2Pr1q0MDw8LADAyMiJq+WoXwlxW1nPFxMQEVqsVo9GIXq/n4MGDPPLII2RnZzMwMBAzZ+n1emGKpUZJSYkg3KamppK8tBjJ0zb/7lwCj1bBmJ6Ed9jOnXfeyUOFhdz7xt65369ENkgr9HqyCwuZnJxkcHAQl8tFcXExW7dupaKiQnzfvwuV4gx6OD7cGtnkSRKSBCFF4celm3ggbxWhUIje3l5uu+22mI+6sUwQCIR4c8/JBa/fG3tOsuu+FWi1N6+D8/uObz0YuH/x4nk5AwBIEpXL0vC1jGGrs88pPQpcN9KY+Xf4ogNDgp6irZGJ8Ga4A2q6rqKiYlbZIDdhlLUrD80+PVlBJsSKrUc5/8mTuF1hAQAWYvLfCBRUm87oMBgiVrzhcHhWWkqNgDHIteUTeBOvCwCNSE4s4wayLiWhjWraHx4eFmxwt9sdc54LneuUQaE9K0x/YhhlQxbSVDrGQw7MH4wju8MEpoN0H7ZRem82A1+N4okyftKaNBRuyyBzZTIQae0LySyYHu/KCJPjkK9nT/6d2bUcu0yOXSY0I7qgUSRkOYQhSu53rigLBigMBmidVuhumkIzHSTu0hhaR+xudrTJSWp1Iinl/+PKZhpF4tY2DWdLQxGJaUCeAcXxHvjZykf49MK7ZGVlce7cOVasWIEkSVRWVop6clVVFY2NjfT397N27dqY46v90NGLlzqWVDDxR3/0R7S2tgpGdzAYZO/evYJUVlhYyPe+9z18Ph8///nP2bZtG5IkxXQQyLIsFodAIOJat23bNkZGRhgYGPh/2Xvv4DjOM8//0z0RMwMMMMhhkIlEEsxBJCVSlKi8CraCV5Ilymvv7XqD63zB+9u6vbpau1a1e7ey5SDX6mQzyLJlBdO2AkkFBjGTAAESORI5x8Hk0P37Y9AvZ4hAepN9vnuqUCQGPT3dPd3v+32f5/t8v3EpWoCkTF0URC6T5dObJdbfVkV7RztVVVXY7XbOnDnD+vXreeCBBxgYGODtt9+OOzeItnndd999HD58mIThYZ5MSqZfmUOVYc+qLXRONNM60Mo/nH6H00MtBENBsjKM5IxEMBElKHo8HjHJWywWHA4HR48eZW5uTlhIx4IPWZZxOp3Mzs5y9uxZioqKeOaZZygpKYlLCweDQQYGBoQ8MkTHpJUrV9Lb20tTU5PYn7YS1fQqtFi/fj19fX3U19djNBpFt8+vf/1rdu/eTV5eHl1dXTQ0NFBaWsqPfvQjpqamMJlMlJWVsWvXLkpLSxc1ibpZTE1NYbfbmZubIxwOC1KpBmgkSWLlypU0NjaSlJQkyMgQXYSkpaXhdrsZHByku7ubidEx1Ft4fP7g/gd4e/8bTE9P09/fz+0SnFKj5WOt+0eaz+Y9kZaKd2iQlhhAunLlSiEUFBsmnYFvb3ial39xkNrwCLllReQkpPCocz351ihpd2hoiFAoFMcXgCgY8Pv9olTa3DjA7OzybdyzM15amgZZvSb/5if9bxS/82BgW0E+O4sKOdXTi3LDCCEBDuBbzz9Hyp/Z+Nl33uXwPx1jqjdmZbvMoDJ4foLc7WnoDLJA/+Xl5QwODi45uQIiLRkb+ZXNKIqELC/8QElW0RlCJOc04W6rEBO9ls7V6ndaJCYm4vV6bwpQbnzfjRHRKfRunoja60LcpOlJCdC/cYLC8xnCUAeiICSW/Ka9thgY0Ol0TJrCfFYeQZFUVC3LkqjD9zkHwW02kv9LL/KcgqKozF7zsP7PVjA36MM/HcSQoMNeZEXWXa/TT1tjCICLhQQz89lKbdA1haLaA14jSwMDCVLd8X/UxXyIVvKAaBZmZGREcB5iwwhYjg+TenlqoVNbzGeN1Ez9i8AARFsod7bqSVtbytmRdjZt2Yxl3M9QTQO+zAmKioqYnZ1lamqK/v5+0VanRVdXF3l5ebS0LATTGklMmzAnJiaECZbJZGLjxo2cP38+bsIpKChg69atvPXWW1gsFp555hn0er1w0FyzZg0ul4uuri5SU1NxOp34fD6uXr0qVn2SJLF//34kSVpUBtaQIJNRZmK0fREvkPmo3pVLW3sbGzduZG5ujnPnznHvvfdSXFzMq6++KjIZsbFr1y70ej379+/HbDYjyzI+l5uKtHSefPJJ0tPT+VWalW/2fUx45grM32Mj9iCNmRLPSeX0X+1FlmXuvPNO/H4/tbW1QsJXu4ZaZGVlkZycTEdHB729vej1erZv3y6OQ4vx8XFqamqEJkRpaSlFRUXU1NSgKIoAASkpKTgcDkZHR+nt7SUtLY0dO3bQ09MjCIkXLlygrKyMxx9/nLKyMgwGA6dOnUKv1wvDpNraWiA6kZWXl3PfffdRXFy8oG3wViIcDgut/66uLjFemUwmVq9eTUNDAxs2bMDn89Ha2srQ0BD6eQVNVVXFmCvLMqdORVfOr7322vw+VFjOdVgFuw/eORgVGqqpqSE3N5eHCvKxtrTSYjAwotMjAdmRMJWhIE6vmdXzqpix/hhLfoSqEugc4UubN3PnujsX/P3atWuYTCaRWdNCA9o9PT14PB7OnW1b8N7Fwue9eYns3zJ+58GALEm88vAf8K0TJ3m7oZHw/AQgAbuLCinp7+PnP/kJe/fuZe83nmbvN56OCqL85CO+96V9y+47ElBwD/qwF1rFjdzW1iZSRTabDa/Xe1MSH4Aja2RRICBChZTMUUa7V8dZxQYCAdLT0+NWR3Nzc2zcuJHc3FxaWlro6OhYMBlbLBZBHlwqZnO9hM2RxSdIGQJJYeYyfCSNXq8Faulfrd6sHediEY6EuVQUQZFZ2IOvk4hkGfE8l07iD0ZBgYnGWcofdZKUZyEpb/H64810yyEqnhT3uySzYkTlSv4SHAsV7B5IuQm/yOv1YjAYxEphqfZL32RgaSAAoIJ34ibKSDeJgoIC+vv7kWUZf+cIt5nSsdaN8dxzz/H3l9o4deoUjz/+OD/72c9ISkri4sWLpKamUldXJzImbW1trFy5kvPnz+NyueImX+0e9/l8nDx5Mq4XPRAI8Nlnp9Bbc+idNGOzJZDADNu3b+eDDz5AURR27twp/DNqa2upqqrCbDZz4MABAGGVHDtBSpJEYmKiaOuNLUdJkkRKSgp6vR5l0yh+d4TZwTCyTkKJqCLjV7LBgSHTxY4dt9PZ2cnU1BQPP/wwV65c4ejRowuuo8Vi4eGHH+bMmTP09/eTkJCA1+sVGYpt27YRDof59bGjfNN9etH20zAqB9RWvrF+EyXpuZw7d47JyUmSk5MXBc5JSUmMj48zOTnJhg0bKCsro76+njNnztDQ0CDsjevq6ujp6RGOhJFIRLTs3RjT09P4/X6qqqqE6+Xp06fj5Je3bt0q+tgjkQidnZ2cO3cOVVV54403MJlMKIrCww8/zJo1a35jeVxVVRkfHxdGPz09PaJVW1EUVq9eLTJrjz32GFlZWXz00Uc8+OCDNDQ0iFKCVj7Tjj2WU5Gbm8uWLVsoLi4m0Pgup8c7Fl8YSFAxoo+WHYE///M/JzExkVdeeYVMVSFXiRAK+AXguO2229izZ89vRNIbGBjA7/cv6Sug8QW0bJH2oxFF33gjWrIwGm5tUVBQlH7zjf4N43ceDACYDQa+tedu/tOO7VwaGERRFdZkZ5M9z54+cOAABw4c4Pnnn8dut0e9szOybr5jEDdTbGikueWyAwv2c5NctYqEqkqLTt7j4+PodDpCgRATLS68Y376P/uQ1MokMorScDgccWk1YEFngyRJ6PX6OEVAV/Yy1svRg8KVHQ8GtLgx66AJ1sS+PmUD99KGj6CT8O+2Y/3xOLJPQQmrcSvwxSJzVuJaxjLlEwWyZ+Lfr6oqReMSM5b4fn1tZZkQhC1dSxtSxUZ5ebkgwy0VerNu6XKUtk3CP7/2J0kSvb293HfffXz66adC/Kajo4PGxkZ27tzJJ598Qk9PjxDp0Vb/kiRRVlZGa2srHR0d3HPPPQD09fWxatUq8RkawO3p6eHatWsAYnIwWjOp6ZYZGZ9CQodKCLAy8PKHVGRG76mqqiohjKUJ7bz44osCQGklp1girNVqJSsri5ycHNLT0/n4449xuVxEIhESEhLweDwEAgFkvcTKexPZuno3hw4eZ3rchTlRR9VtOfiZ4Y477hRaF7m5uXEOibET84oVKyguLubtt9/GYDCIFracnByeeOIJ7HY7ra2tHDlyhBrrDOEcFgfOEigSHJlsoeBCnWDex9bBNb+G/v5+XC4XqqqSmJgoOhI+//nPs27dOo4cOSJAS3JyMhs2bGBwcFAIjEG0Zm4ymRgaGhLno9frKSgooLGxUbQp7t69m/Lycn74wx9is9mYnp6mtbWVlpYW2tvbxThWXl5OdXU1v/jFL9i2bRvr1q275XvR4/HQ3d0trH7n5ubQ6XQUFBSwa9cuSkpKMJvNvPzyyyIboE32GzdupLGxkaNHj4os2418J4C77rqL9evX89JLL5Gdnc309DSHDh0iuecajtJ58u+8pov22N2vKyQ1MI1PjpZlDh06xOTkpMh0lZSU0N7ezrZt2zh16hRdXV3iWbjV6OzsJCEhQXRjhMNhJiYmRMm2p6cHo9HISy+9BET5KJmZmeTl5TE1NcWdd96JTqeLEjdTVWampEXLX7JOYv3GIjKzfrv6A/9HgAEtUhISuGdFfF9ycnIyzz//vAAEe/fuJSkpiZK1hUiytOhkr4UkgzXz1ggyS4UqqYRyXJx0VaAEw1jlIEWmcXIM08RyoSRJZWoke8n9TLTN0PbuAGF/JHrcqkrv8THSKsdY8VgeOoMcZ2F7Y+h0uriVrKIoRAw3V7aL6BVR61suA6I5rmlhNptxmb3LCuMAYJRR0vXIfUHMKYabIvOsWYlEX5QQuGBFMP9Vlo4uXNFo/fp5UyrX0lXmElQMYXBOyTgnpUX9BhaLxsbGm26TvsrOZMvy5MCM1bfQqLxIxMphB4NB9uzZw4cffkhHRweFhYV8/PHH/Nmf/RmnT5/m4sWLPPDAA7z33nvo9Xqampp44IEHSE1NpbW1lWAwyMzMDCkpKaKMoAnGaABAVVXWrl3L+vXref/99+kZGOdEqxetEzcW5PaMBAkGTWwq0bFv3744x0ltUtdCURTS09PFxLB582bBXFdVlbfffpuZmRkURUGn08WBW1mWefrppzl58iRZaxVydXZSUlKYmZlh+9ao4qXmb+9yuQSRMLZFbc+ePXR0dHD06FFMJhN+f3SVeP/997N+/XomJib4yU9+Qnd3NzqdjpHs5VNSKtBj8lHA9dZRSZJwOp0iXZ6amspDDz1EdXU1AwMDXLlyRXQjaF0iRqORFStWMDo6yszMjEjbm81mUlNTmZycZGJigqysLLZu3Yrb7aaxsZFwOExbWxubN29m48aNggAaCARwOBxMT0/T3NxMU1MT6enpbN68GZ/PR319PZ/73Od4++23sdlswiJ5qQiHw/T19YnJX+MpZWRksGrVKkpKSsjPz4/jFWj3UmJiIj6fj7GxMb773e8yMzOzZFYxtgR37do10f5aU1OD2WyOqq6qMn9X9BCfXqvnon+QNGcOc91DVPpsmDxjrJkvZQGi/TEhIQGLxcLjjz/Ot771LZKTk+ME024lNFJ0Y2MjdrudX/7yl4yOjgrnzEgErBYrqhrVoSgpKSEzM5OUlBRRZr169Srnzp0jEAiwZs0a/uChtfzNfz3EzLQnDhDIskSy3cLX/vP9Sx/Qv1P8HwUGlgoNEOzfv5/9+/ezd+9e0nIc3P65LZz6xYVFAYEkS6StSsJZkkdVVRUjIyN0d3cv20p3Y6j6CO6t/URSfaAaQTHiVhIYCSeToZ9lh60dnaSiKBLhgImR7qJF9+Me9tH8s14hnBR7vBOtLtRDA1Q+mY/P50OSJFatWsXu3bvZv3+/GJgWS2kbPQZCCZGlfXYVMHn1celajW2+GOiIfbBtNhuFOanUS70LtrsxJH80zZu9KfXm2yKxvV3HmTLNWRCQooOxrMLmLnmBMFDsezPmJDLmbvox/6JwlCdhzTLjGfUvzA7IzLev3rwmuVhoE6pOp+PYsWM899xzFBUV0dfXx9TUFKFQiOPHj7Nnzx7ee+89BgYGSEpKwuPxIMuycLfUVuR1dXUYjUbq6uq4ePGiYMdrGgIJCQk88sgjQBR89E4YCEdUFsfQEkNTKuNpYRyR61kzTeFOs8D+yle+QlJSEm+88QaqqmK1Wrn33nvF9mfPno3jMcSCCEmSeOKJJzh27BjDw8MYDAYSEhJwu91UV1dz6tQpIeFrNpux2WxxpYiUlBQ2btzI8ePHBfDUVtIbNmzA6/Xy6quvxpFxI5HIwu6VRSKsRgC9yEh4PB76+vpwOp089dRTlJeXi8/MyMggLS0Nq9XK7OysyNgFg8E4vwONM+T3+xkfH6eiogKDwcC1a9c4d+4cVquVdevW0d3dzczMDG1tUa5EXV0dra2tcbV6WZb50z/9U+EB8cMf/pCKigo6Ozvp7OzkqaeeWiB+tVzqv6SkhK1bt1JcXLxAV0C7rteuXRP1fk2ADKLZVYfDQVFREcnJyXzyyScCEEH8eDU4OEhlZSWqqmI2m8nOzub8+fM8+eSTVFZWRkW8Dh1iQ1oeTVOz+P0+gkRbJVNTU5mamkJRosRsn8/Hli1bxDUxGAzY7XZmZmbw+XwLBJXC4TDj4+Nxaf5YFVVNA8PpdJJoLeTsZwN0tI4BARKsetatzqS8vAJZjnZbNTQ0iFbapKQknnjiCQHc/vbvH+bv/vYNxod1hMMqsk7lDx7dwBe+uJ20tFvwZfk3jt8LMABRQLB37172798vSgZ/+cpXaKnpYLxnUuSXJElCRcWabuY/vvIn1DVe5tixY6xatYo/+ZM/YWZmhp/+9KdEIpGbEvi8q0aJpMxPmvMDibaSGgsncdXrZK2lj3DQSPOph1Aii1/u/lPjS7OnVZhsceGbCOKsyMHj8dDQ0CD6v7W4UbHQ4XBQaC/hiPzZEjsGZEgeiFe/0tjkN4uJiQlC0yrymqgo0KKhqOh6AsjjIZLyLWRvctx0vwAJIYm7mnSM2FVGklUi0nx/+KS0wGnxtxGyTmLVFwtpfaef2WueOL0Ca6aZyifzo6WE3zBiB0uItmC9++67PP300xw4cIC5uTny8/Opqanhy1/+Mlarlfr6esrKygT5r6mpicTERBITE5mdnaW+vl6swjQnw7y8PB566CH2798f9baYb6PzeDwMzxiXAALRkFCZCdjYs7MCl8tFa2srX//614Xa4COPPILdbhekMoAvfOELogTR3d0tzGYWi0ceeYQTJ04wNjaG0WgUKohJSUliFa3p91+5ciUOCOTkRJ+Pjz/+eEHJYHh4eFGBJW271DmJaevStrqSCmlz1yW4BwYGxCq/oqKClJQUFEVhYGCAmpoampubkWWZoqIiUlJS4kpP2j609jqn04nX62VycpKrV6+i0+moqqrigQceoKioCFmWGR8f5+DBg8zMzPCDH/wAiDon3n333aSkpPDmm2+iKIpYsY+PjzM2NsaOHTs4cuQIZWVlVFRUANdT/xoAiE3933nnnZSUlJCRkbEgi+fz+ejq6qKpqYmBgYEFZdSMjAz0ej0ul4uvfOUrDA0N0d/fL1wYvV4vQRV6wwZcqg4DKmsykjCEfTz88MMcPXqUxsZGUSKrrKwUAlqA+P7hujZKRkYGoVAIj8cjAMaVK1coLy8HomCgsrKSc+fOcfz4cZGV0X4mJibEfZKSkkJWVhabNm3C5/Nx8eJFvva1r2Gz2fjVuzUcePUocky61+eB73/7IxqvDvDok+WcPHmC8fFxAQoLCgriWnjrr1ykpELh//vvT2A0mHj9Jwf53FPVvxNAAH6PwAAsLBk8//zzfP/Ci/z13v+Bq8WPfzZAaq6DPc/vZEDp5nJDLS+88AJNTU18+umnfP/732f79u08++yzvPnmm4JMF5s+V4k6ECrGMCHn7NKrbiS6A5kYm7MY6yghHDRGyVGKEr8/RWXqJrr9SDDeNENCWlT0xGKxEAwGCYfD2Gw2ysvLaWxsxGQyIc0r4EUiEfpP95BUkYArJx6waKl9xzUbZtfiMrm3EsaIRMmoREfWYgqMKsgSSb+YpnBXBrnb0pD1t05YkpDInpXIXijm91sJn0ElqI/yD4wRCYNFz+rnivCM+ZnpdoMKSU4LttyEWyYpBVwhArMh9Ak6ElKNCzwdNFngTz/9lHvvvZf33nuP3t5eUlJSOHz4MPfffz/vvPMO7e3tYsX/61//GlVV41ZAW7Zs4cyZM4yMjPDQQw+xYsUKBgcHCYfDBAIBXnzxRQF8I8pN7gcJSkor2LNnD9/97ndZtWoVsizT0tKC3W5nxYoVRCIR3n33XSDqmaCps83OzvLOO+8suesHH3yQ06dPMzk5idlsFq1Zs7OzYsBOTU0lHA7Hye5qMTQ0JP6vqiqpqals3LgRSZK4fPnyol0G2n6LxmU6syKLl73mn80VUwZkOcrJyMrKYmZmhsHBQdFKqYXJZCIjI4O5uTmRBdBslV0uF6FQiNTUVCKRCDMzM6IbICMjA4vFQm9vL11dXSQmJjI0NERHRwf9/f0ikxAMBklLS+PZZ58VSqIa4XdiYoLk5GSampowmUwMDg7i9XpZuXIlH3/8Md3d3SIrkpmZuWTqH6KgoaOjg+bmZrEfLfR6PdnZ2ZSWltLb20skEmHt2rXU1NTg8Xj49re/DURXx06nkz179vDGyQucnFZQYi5x61CAbDnC5weHCAQCeDwetmzZQlpaGr/85S9paWkhGAyKbFd+fj5dXV3o9XqKioro7OxEp9MJ4q9mFrVvX5Q8fuXKFXHcly5d4tKlSxiNRjIzMykoKGDz5s1kZmaSmZkZlzV5++23yc3NxWazMTYyyysvfwSAsghSPvFpM8NjDWzdXswjjzxCbm4ur7/+ehxYcrvdtLe3YzQaKS8vm++ikBgZGRGchN92/F6BAYiiO61koAGCe/5oJ8PDw3z1q18VA/Xo6CivvfYaH3zwAY8++ihVVVWcOnWK06dPU1dXx7Zt2zhz5gzhcBi/DQbyAoyk+lFkMPtlCsNm9NIyWICo333vSD6GYPQmWyyVr0TU5X0ViIr3RILzinzzHQja4O12u6mtrUWn0wk9+W3btkVrcOEI2Y0ppKkO+lJHCCdE32MNJZDYbsI+eJ04uJjioV+v4jZHGf7J3sXVDFcOykRkhe550p9G3pMViVVdULwz75Ynx3+tCOlVRjODjKeFiOhVbG4dOUNGkuZ+89t9PFGhOVdhar4VWVIhd0pi5aCMJShhzTBjzfjNeCfeiQDdR4aZ6bo+WFgyTBTtycKxIilO3yEcDtPd3Y3T6WTFihUiLTwwMEBzc3PcCli7vzSTmRdffBFVVTlz5oxYXZ84cWLBCjk2A2YxqniCsGTOXJXIz0mhq6uLmZkZPve5z/HBBx+gqqooBXz66af4fD70er1wKwyHw7z55ptLZp0KCgr46KOPCIVCgugH8UqZdrsdj8cTV8pLSUkhKSmJ3t5ewbcwm818/vOfJycnh08//VToLiwVJpMJAgG29hk5nx+EmNZWTVxq86CJe9dvY/PmzaLbZGRkhEuXLjE9PU04HCYpKQm/308gEBATbqyks6ZhHw6HxQRaUFBAcnIyk5OTDAwMYDAYSE9PF7oEEAVADz74ICtXrkSWZfbt28fo6CgHDhzghRdeQKfTUVxcTEtLC+Pj45SUlHD16lUSExO5cOECsixz6NChm6b+5+bmBAFxeHg47jobDAby8vKEB0Osln9/fz+qqjI8PIzNZkOWZR577DHy8vIE2fJ8Zx/Hp7WJNN5RcETR842ffcgqf/SaXb16lQsXLuBwOLjtttvo6uqKliULCzly5Ah6vZ7u7m6+/OUv88orrwDRLElfXx9JSUmEQiEhENXb20tCwEbLW31Md7nR63Ss2l7BXf9xHZvvX5xIqSgK3d3dwnzow/dvokQrgRrK5tlnnxUvaYROLS5evIiqqqKLQ5Zl0tLS4jopftvxewcGIDpAaCWDgwcPsnPnThoaGhgaGiI3NxeIouKHH36YX/ziF+Tk5LBlyxbuvvtu1q9fz8cff8wnn3xCVlYW3aFRLlfMxrkM+s0KrXixulMpsk2ynGiaBCLVuVjZQdZLGJMMBF1LtwiqCljSr9vP3rgfTR1Qe/3s2bNCOtRoMKJrifDYqj2YdRbqL9cRnA0gS3L0Jp7XO4gFAj6DytX8CEMx2vgJAagckimYjIc/EhJr+nWsGFUZSFEJ6lWsAYm8aSmqhPjvnNX3JkS4ssZDyKBqB4g3QWEsM0R+r4nC3lufuIftChdK4wVJVQkGHSrjSRF2teiwBH+zE/ROBLjyWpcAd+L18QBNb/RS+VQ+qRXRViStF1tRFE6ePMmuXbvo7u4WpDxNYhcgLy+PoaEhDAaDsL69UW7IEI3SAAAgAElEQVQ7lkSVmppKIBDA7XaL1V0oFMKZGqJ1eKnsQLQMdf/OlXx05D0yMjJIT08XpYnKykomJyeF/O2WLVu4cuUKLpeLhoaGRT0btOjr64vrPddCr9fz+OOPk5KSwoEDB+ImqOrqajo7OxkYGACiz0V1dTX33HMPJ06c4Kc//ekCAlsseNJkk7XPyxpX2D2noydbYjQpmsHL9Zt4qmALD9+zE6PRSCgUEhLBAwMDokNifHxcnJ/BYMBsNjM3NycUHRVFwePx0N7ejl6vJysri8rKSkpKSlDm3fe8Xi9TU1Mig2GxWLDb7YyNjfHpp5+KVfOXvvQl9u3bx+DgIK+//jrPPfecaEO+dOkSp0+fFqthg8HAzp07KS0tXZD6n56epqWlhba2NuFxoIXJZKKgoIDy8nKys7OZnZ2lv7+fxsZGjh07BkS1KpxOJ5IksWHDBu655x7q6+s5cuQIK1eujLvu/3Ts4nylduHzoiLROOHGaYZEOWp6tn37drKzs5Ekibq6OvLz88nNzcVqtRIIBAgGg/zoRz8S+xgYGECWZfLy8nA4HAwMDEQ7Zc4O0fnrQSQ5Oo4GUag71sjlTxrY8dxGbnt6ncgARyIRwuEwc3Nz+P1+WlpaaG1t5eyJmUUzAjEnwMhwPFHJZrOJjE8oFBKW7hs2bBDbZGVlLZAt/m2GpN7M0J4oU9hutzM7O7uoUMjvakxNTXHgwAH0ej2BQIDKykoefPDBuG2OHj3KhQsXeP755ykoKBCvX7t2jQ+PHOa9oi5CxkXS4ACoZJnnyEhYogUxLGE/UoYUWTx/oNVR+06N0vPp6LK6/Vv+UyWy4Z8/s2qDQHZ2NkNDQ1RWVi4qRhPQqxyvjOA33sDmn0+fruqXWbEIm/9fGl5JwiNJmFWVxJhbMjgXYuTyNLO9HiQJkksSyVybjMGyEMeqqFzcPEfAqC6ZsqlqspA2eXOFNQWVI2siBPQs+t1rGYJtA+ZltR5ujOaf9zLVNrfkd22w6tn89fI4Wd7FJjAtjMZo+UnrnV+qIyQ9PZ3p6WmeffZZbDab8FcPBoOiTzyqnge1vWZmPPq4Q9RUAf/ii9vZtDKdN954g6qqKlGbTktLQ1GUuA4DmDd+mRea0SJ2wl+7di2dnZ243e4Fx+90OnnmmWe4cuUKR44cEddAm4Ta29vjDMa2bNkiSHDLHYPGobgReGhSui6Xi+zsbLZt20ZVVRWyLDM5OUltbS319fX4fD4yMjIIh8PifCVJwmq14vP5iEQi5OTkYDabBRfD4XCI1fjMzAw9PT1xK0dZlklNTaWsrIy1a9ficrm4cuUKzc3NhMNh0fFjMBjYunUr1dXV/OQnP2F6ehqj0UAkcxhD6TCy3YusGgj1Ogi2Z/HcE/+BwsJCVFUVEsUdHR2MjY3F3UdaC11ZWZlQCNRW/RqwSE9Px+l0ih+Hw8Hc3Bzf/va3+cIXvkB5eTl1dXX8+te/5m/+5m/E+OYJBNn833+w6H0p7i9UdqSayPZNkJaWhk6nw+/3i0zLPyf800Fqvte+bAl2x9fWklEW5TJpCyqPx0MwGBT3VnuTzNiwtKxzUWaWnZ+88+fi97Nnz3LixAn++q//mtraWt5//33S09P56le/umCbv/qrv/qNNR9+k7jV+fv3MjOghcPhECUDjempWWlqsWfPHkZGRnj77bf54z/+Y3GxHA4HcnkyIWl5RDgRsJJudi80s1MhbSKf8BJAAK73eudsSWWqYw5Xnzf+xp1/a9ljecgGacFgKcuyaCm8EdP5DCpeIxgjYPMj9qvVVRcDAgDtWcpCIABiQmzKVcifkDD9KxH5ZiSZGqOJIZ0O7SKmRiJsCAYwtk7T8lZ/nJ/BzDUP/SfHWPlMAUn58eTHKUeYgHn572sgL3BLYGDUrhJYZjNVgsEUlcBAZNlSUWyEvOFlgQBAyBNmusuNY8X1FK6WvYHoikOzeIUoO12b5GLvjZycHHbu3MnPfvYzIFq7P378OMeOHaO/vx+dTkdiYiLBYBCPxyMU6GQZnrwrjytdXmpbZwjN3792i0JxWpC2uqO0Rc0C4yRyNVMebXJ85plnyMjI4MyZM1y8eFEcV6wL5urVq2ltbRW/a22GkUiEzZs3c9ddd/HOO++IujtEMyDT09NCmEdRFCFko61YtYj17NDqzpFIRFwnDQho/Aqfz0deXh6PPvqomEDb2tqoqamhu7sbs9ks0tDa6l0zLwoEAuh0OpxOJ9PT0wwNDWGz2Vi1ahWrV68mKyuLvr4+ISo0NzeHxWIhLy9PgIihoSHOnDnDmTNnsNls5OXlsX37doLBIH19fczOzhIMBjl58iQnT56cP0cJ1jZhLpxAVaLt0ioRdKVDWEvGuNp3io8++oixsbE44GO1WikuLqaoqAiTycTo6Cj9/f0cPXpUEBHz8vLYuHEjTqeT3NzcBUx8QHzfDkd0QtV4B8FgEL/fz8jICB29/Qvet1hMuVxkG+KVHLX70m63k5ycTGJiIj29PfSoc/SkKXjNYMVA9kiY+4rWs2n9BvR6PUNDQ3zva/8bWZIWKNdqIckS3Z8NQPL18q3FYkFVVRwOBxs2bCAtLY2+ax7+/psfLn3gEmzeVih+DSkRWuQZrqT7ebXtGKOXouqb69fHWydnZWURCoWYmpqKIxr+tuL3GgxA9Cbdu3cvP/7xj4VndmyqRpZlHn/8cV599VXeeustbr/9durq6mhvb6e/MIicJ6EsBQgkibCqI6JK6NFU0iSQVPQjNgxNDqx2E7Is86UvfQmdTkdnZydXr14VaVkAWS+z6tlCBs9PMnxxkuBcOErwW5GI8/YMEnOjD2HsYG8ymYQtbWy4TSpXnRFG7YgJPMkbre1nzS4/bamo9KQvzahm/vQGU1WKx6IbJSQkoCjKPwu9z0oyhxMshIFYNDUpy3xsTiCzvg9L5IZrr0IkpND0Ri8bv1YWlyGYtYej4iRLnaYErqSIIIEuF14TN9VQUGXw6CIkhm4NGAXnwssTRecjMLsw06CBvdjVJCB6q/1+P4oS1Yzw+Xx4PB5KS0tF77o2eUxOTlJVVSXIb1rEThTXujtJkmBXBQTDEiUlRQz2X6OsrIzVq1dz+PBhCgsLRcvio48+Snl5Of/zf/5PIAqwnU4nb775ZtwqPbZboqSkhKamprh72m6343K5BIv+u9/9bpy/QFFRkehpj41YgqEWiYmJzM3NxWUctG20z0xISBAkytWrV7Nt2zYyMjJwuVycPHmSy5cvMzc3R0pKijCf8fv9oiVTa/VNT0/H5/MxOTmJ3++nsrKS1atXk5eXR29vL7W1tbS1teH1eklKSqKqqorKykqcTueCFeHc3ByDg4MMDAzQ19cXpzKo3Qdx1uuFI+gLopOnFLMrSQZFCdNq+zm+kQ0k2uw4nU5ycnKQpChxTWP6Q5R87XQ6qa6uxul0kpmZeUurVQ0MhMNhrl69KkpXL7/8sgB5CQkWEmQ9PmXpB0pFIt2ow2yKZmfy8/MJhUKMj48zNTWFz+eLfs+oXC5U6EtTxbM+pQbpK4UOdy3/oTZCkjGBiYkJ3MO+ZdP7qqLiGQ7w8MMPk5aWRlpaGuFwmJdeeoldu3axenVUD7mkROEXb12mq2N0wf4kCWSdyujEZU6dsmOuzOUbdW8xFfQgZUFH5wkUp0q2TeKrleVx79XMw0ZGRv4fGPj3CofDwQsvvMArr7zC0aNHKS8vX2BOUV5ezqVLl3jzzTfJzMzkgQceoM0xzf7eheZDN4btUg5hpwvVHMIQNJPnL2NtxhZWPBclfH3yySeYTCYMBgOrV69m9erVKIrC4OCgEIGZnJzEuSOdvO1pKCEVSSch65aeZDQRoNiBwW1SOVEZWSCp6kqAc6UKm7ujJj1LRUQm+t5lQlLBa7j+QNxKG+JSUWM0EWYRKeP5cxp/rIj81mkWYLF5QDBaP0Pett/8Ieo/PYF3xI+sl3CUJ5JanrTALc8Y5uZ8B1UleM1LV90sIW8Ekz2qL2BJMy26ucF6a+2GBuvNH8vY9jSv1ytW3OFwWGQLYhUBtQnQ4/HErehjmejaa3/5l3/Jz3/+c4aHh7GYZXZs28ybb3azZ88eofK2adMmDh48iNVqZfXq1bzzzjsinV1UVMT3v//9ODa1xWIR90pSUpJoO9TORSPfPf3007hcLl555RVxX1utVsLhcBwQiPX3iAUCmpOfVq+PNdmKBQF+v59IJMLGjRvZunUriYmJdHd3c/z4cdra2pBlmcTERGRZFgBM4wwoikJiYiI2m43x8XGGh4cpKytj9+7dFBYW0tPTQ319PW+99ZYQBVq3bh2VlZViMl4stJ53Te9fqyenpqYK8RyXyxUnXW4oG1p0XxAFBFJCiJW7M/B2J4rOAFmWycnJoaKiQqT8F9MRWOoYx8bGGB4eZmRkRICJV199FUBwlXJyckT5amJighKdn0Zl8edCAkwopCk+QiEdJpOJBx98ELPZzLFjx6ivr+frX/86oVCI/912nL7eqK6BBvq1xcu0VeXgdD2bu+ezXLfQvWQw6YlEIuJe1bw4iouLxTY6ncyL//iH/O1/e5er9X3RcVmNdhbYk8384fOraWg6xy/PfsqJ2YgYz1Q5usACGElW+du29/ne5i+K/VosFpKSkhgZGYlTB/1txf8VYACiD9Qdd9zBiRMn2LdvH3v37hV1QO0BycvLY2BggE2bNrFhwwYyvWP8uPfw0jtVIMWlxzKWiDJyvRYzwRyf8AmffPyJGJBef/11nE6nQKCakYvT6WT37t28+OKLKIpCSUkJ3d3dS+riaynF2JWOFs05CmHdEil+FerzFbJnJOQllv46BXQRiCwzZ6kSmML/8hKBD4nBmNLAgpAkIskm/MVJJHQtovanwkzXXBwYSJ7RM+BcxuxDUaEhQN+x64Pp2JUZElKNrPpiISb7deJc1oy0/LUIKqS/OERLjTuamp1f9AyenSBvexoFd2UuGPSNNgP2IiuzPZ5l+SGOFQtd1LSWMnH6Md99QK8yK/kwGoCYlbSiKBQXF9Pd3R23j+LiYmZmZkSpIRAIsHLlSpqamjAYDEJbHxBmOw6Hg9TUVD766COysrJobGxEURTuvvtuhoeHBcBYt24dr7322oIsVqxCoEaAlGUZg8EgCLZ79+7lxIkTYoLRjvlG90GdTofFYmFubk7sUzu32G1vdAfVVvN6vZ677rqLDRs2oCgK9fX11NbWMjU1hdVqFcc7MzODTqcTHIOEhASSk5OZmJhgbGyMoqIibrvtNoqLi+nt7aWhoYFDhw4RDofJzMxk69atVFVVkZ6evigAUFWVsbEx0e/f29sr2oVLSkrYtm0bxcXF2Gw2IpEIPT09NDQ0EAgEot+drCAnLQ/GVUWiZ+YqTtNudu7cKbIDsaXSpULritAm/uHhYaHCB9FFliYlrbVSasCpu7ub1NRUMjMzyc/Px3PmLG5TEj1uLYMYvR46WcKg0/EXm0rprb9IJBJhdnaWl156ifXr1zM8PIzZbObDDz9kaHSEA46eJWctrXTnNapYglGgP9W+tAKZJIG91MKHH364YCz9zne+g81mw2q1YrPZsFgsPPi5XLbvyqKn24USUekfbKa4VM9jn9/D2vWlfP3MQRSuA4Abj+3UeDvNs4NU2XPF65op2u9C/F8DBiDKbv7ss8+YnZ3l5ZdfJhKJkJqayt13383atWtJSEjg/fff5/Dhw2RmZmJPSqLakE9DsG/R1Lkkw3/b9cesfayUl156iczMTBRFYWhoSKTItJtseHiY8fHxODa0xWIR6aFQKER5eTn33HOPYKI2NzdTV1cXd6PeODAajcZo2xJhhhzLpPglCBpgxK6SMyMt6sgnERX2Wa5UIAHOqX85GPDILA0EYiKcsvhqAlgg1JQyrcfslfGblcUJhLKE9NbCmr1vKkjTG72s+9NSMWgbFImKIZkm5yKEPBVs/3sMaqOrCdEaOr/fgTMTmOyGRRUXC+/K5Oq+a3E8iNgo2pO16IomFgho4TapNOZGGE5BZDHSXLB2zEziTFQf4/bbb2dgYIBgMCjOrbe3l9TUVKqrq6mrqyM3N5e1a9cKMKDZFUO0Zaujo4PKykpmZ2fp6Ojgvvvu46OPPsJisVBdXc13vvMdIAocNPU1LTS/jBuJjXq9Xqjv5ebmcs899/D6668v8NyIPe/U1FRSU1Npb29nbi46yGvdFotdHy20zEdiYiL33HMPq1atYmRkhCNHjghQo61otedLI2rqdDqSkpIEeMrJyWHPnj0UFRUxODhIc3Mz77//frTzIDeXXbt2UVlZKWroC74ztztO69/tdgvfgd27d1NcXCzIid3d3Rw5ckT4HWghyzJWqxVZLxFRl3+MZFliy+bb2JHx1NIbzR+XNulrE782scuyjMPhwGKxkJ+fL4CSViLQ6vqlpaWYzWY+++wzXnjhBfLzo3a8NTU16CTYpE7hMBpoD+lxqzJWk5H715Tz1MYqdH43vfUXRSkploEPUREll1klsIxvCRAtBaYauCN3LReCF+k7MUbIE1mgQivLEiariW/t/xtScxx4vV5cLhf79u2jtLSU/Px83G43Ho9HGBF1dXXh8XhE2caRDjOzM3zzm9+MjtkrIsuWWHWSzCfDTQvAQE1NTRwv6LcV/1eAAVVVGRoaEhddURT0ej12u529e/eKkkEoFGLFihW0tbWxb9++aDpQVslZZ2PQ6kae18VVUDHqDPzniidZm1KKqqp4PB7KysrYtGkTEEXVra2tNDc309nZKdpXAOHelpSUFOdL3tbWRltbmxAoSUtLIz8/f4FvOUQzBJogC4DftCzZdf5CgG9+8btU5qFsRGbAEVk8wwCsGJEw32KNfLEIySodWQqdycDC01oQsmcJpr4E9gLrDS9JrG60cGWNh6DxemuhVluUfjSDdH4RuWk12to33RlP3FsxKiEh05KjRDME86v/hPEwCR/NLFv/7z89QdYGx4LyQ2KuhVVfLKTz/UF8E9cnML1FR+FdmWStvzWVxqVKQhOJ8KnNz54BG7bxAK+//roYrLUJuaCggMLCQkG4S0tLE9wTo9EYJ86TlZVFXV0dK1asoK6uDoPBwMTEBJFIhDvvvJNz586JiXlmZiau20GSpEXvM1mWMZvNuN1uoRSnWdcuFna7nU2bNnH27Nk4y+AbuwFuDO1YtM6A/Px8Ghsb+dGPfsTIyIhQONQY5Nr+JEkSjqWBQABFUdi+fTtFRUWMjo7S0tLCRx9FRWjy8/O55557qKioED31sREKheK0/rXUf1ZWFtXV1ULwR1EU2tvbOXHixAJ1Py0TAghuiAZazKPJ6DJmF1p5zoeKQnHiluu/qyozMzMLJn7t84xGI3a7HavVKsyjZmdnmZiYQJIksdqvrKwkMzOTd999lzvuuIMdO3YAUfJfrAMmRMc17bso1QdYaY2m2M1m8DSf5+3Gs2JbDQwu+t0u18MdE8FgiNraWvQmHd/84Bu89NyrjPaMz3Mqon411mQr33rvr0jLjQJ2q9UaVVUNhdi+fbtoQY+7lqrK3Nwc4+PjjI+P09jYyODgIGazGUVVWIYrTvSTwROOB63Z2dl4vV7cbvctl2r+reL3GgwEg0EaGhqora1leHgYu91OdXU1V65c4bHHHuPw4cP8+Mc/prq6mv7+fiEEoglnaN0INpuNjrkBjg9f5vSlc6zLr+Irtz2OTR8l9mk2x7FfpslkYs2aNaxZs4YTJ05w4cIFHn74YZqamgTSj0X7Op2OsrIy0tPThaTn+Pj4kg56fr8/DkkaI9zcNEgC00264CxBiZ0tOi4XRpiKuTf1YSgfkVkx8s8HAkGdymcVEWFCJCeEUHxL9O6pKrI3jKV98d50SZbIXB+v/+9NiDCXGKHwmomgUWUmJUxEBza3jrFv9qO2L+8X3ndiFGumGVNSlBEtIbFiVKJoXGLUrhLUgTUAnPPTfhOhqKArhHcisKggkb3Ayt3/bQu9DYMEpoPoLTrshbZlOSI3RoNzCcAWxaucyXCzZ0yHjMxDDz3EoUOHCIVCgjR37NgxduzYwenTp/H5fGJlbTab42rSHo9HaLP/6le/YuXKlVy+fBmz2UxFRQX/+I//KLZNT0+Pc6W70dpX+10DAhaLJa4kcGPodDruuOMOOjo6+OSTT+JeX04uXPt7WVkZ27ZtQ6/XU1NTw7vvvksgEBD2zdo5a9yJhIQEIpEIPp+PUCjEunXrKCgoYHJyktbWVk6ePCkkhh988EEqKiqEd33sOd9K6l+v19PS0sL58+d59913Fxg1mc1mkfGIRCLi71oL4IoVKygsLMRnHeKd/r9a9DqoCiiTiZy8Uk9Kcq+Y/DV+SEJCgpCuNpvNuFwugsEg4+PjmM1mMjMzKS8vJzMzk6ysLNLT0+NUCt1ut1BT1EIDf3V1dZw/f57x8fG47gC47nyqKFGBKJPJhF6vF/39sFBLxWg0khJRMYTDhG4yazncCBXO9TvWsr/tu/zDf/k2gw1jJNoScUlTPP9f/5Cq2+IJfS0tLZjNZjweDzU1NczOzuJyuZidnRX/j81wadfC7/ezdu1a0qUmJlTvkmuEiKpQZIu3KdZIhMPDw/8PDPxbxOjoKLW1tVy9epVAIEBZWZnQ3PZ6vbS1tXH8+HEURWF6epqTJ09SVFTEXXfdRWlpKWlpafT393PgwAFOnz7Nfffdx4rEPPw90wx31vHCg38ggAAgVkZLfZlOp5OTJ0+Snp7O448/DsybwvT2cujQIdGb3NLSIlr+tNqlJEmsX7+e2tpa7r77bj777DMxQMSGKSyROQtj9qUzBLpI1BXwZpEYkNjZpsdljrr/6SKQPiehu2nqYflozVHi3AhNGT58vYksQDFqNPeZN+Nn+t7CKIjpcWFpnUJSVCRZouIJJ6bE6MMYMCq0lXuZSYm5JgpkjRoo6UpAp0iMdd1cC8A95Kfm5TbKP+ckbeX1VZ5ekcidvn58ozd2OCwR6jLbTU9Pk5RngbyF9tE3C79eZSSmW2RBSOAxw6QN0twqhw4dEn8yGAz09fVxxx13sGvXLs6cOSMmP4hO1Joqml6v59q1a5SUlHDt2jXhbBmJRNi9ezc//OEPxX43bNhAS0vLgu4WvV4vpJUBoVEvy/KypmD5+fmkpqZy/Phx8dpyIEADxjqdjvXr17Np0yaGh4c5evQofX196HQ6cQxaR4CiKBiNRgwGAx6Ph1AoREVFBQUFBczOztLW1sb58+fR6/WUlpaKrgkNTGihpf41AHBj6r+kpASLxUJzczP19fUcPnw47tx1Op0o92mtjxrYdzgc5OfnU15ejtPpXAA+IJN7s7/OR8PfQVGV+WyVhCSrqLNW/GcraA+0Cx0Djag5NzeHz+fD7/eL1X51dbWQ5k1KSloyba2Nm1evXgXg1KlTHD58GK/XK76b+vqFqn2SJAnTIECAHE06WiNxyrLMpk2byMvL49133+Wpp57i1KlTDA0NUTqhoyUzsqT2R45bzx89+hS/+tWvCIVCUSErvQ5dtsIf3Bcd39944w3OXzrPxPRE3GSvfSc/+9nPBKnVbrdjt9uFmmLsj8lk4gc/+AGTk5MUFRWx15bO/2peogVRBYOs48HcNXEv2+12zGYzIyMjlJWVLf7ef6f4vQED4XCY5uZmampq6O/vx2azsXnzZtasWYPb7aazs5MTJ06IPvtAIMDmzZvJyMjg2LFjeDweqqurxcOWn5/Pvffey+HDh8nJyaG6upqmpiZyc3NJTo63p70ZGMjLi0ry9vX1CY6A0WjE4XDg8/lIT0/ny1/+Mv39/bS3t9PV1RXnza0ZdFy4cIGCgoK4vmtJkiguLiY1NRXbzCBvqL3aeLAgVg7I6G/RyhcgyS+R5P/XqWNFJJWetHgugt4SISHfjX/Yghq6ztQzArqAylBKEtKmRFDBvSmbGXeQqitDlFZYSXBEuQRhnUr9GjcB0w0TrwwjWSGCRpWVTRZsOQnMDXiXTe1DdDXV+m4/69JMS9pbJ+Ys7Le+MWSDRELq0nwHLW6W6l4svCZuSdnRawLc8atyl8uFJEns2LFDSOVq4i4Q5bFoz0hycjIDAwM89NBD1NbWkp2dTVNTE0ajkXPnzonV6s6dOzl79uwCICDL8kJeynwr5I0rYW3FZTAYqK6upqGhQWTFtONfCgRobndbtmxhxYoVNDc3s2/fPrxer1i9aen/2GPQzG1KSkrIzc0VC4UrV65gNBopKyvj9ttvp7S0NE63Xkv9a5P/Yqn/lJQUoWB38uTJuNZbjZSogSQNBBgMBqH3X1JSQlZW1qJEP5/PJ1b5Wprf496AvnAU2e6FiI5wvwN1zIFBpydElLMxPj5OXl4eRUVFZGVlkZmZuWC1f+PnaNnJoaEhJiaik+eNbcTDw8NRfwC9Ae+4zMTAHHqDjqQcmQT79edaU6ycnZ1l9erVbN68GYfDIfQLIpEIf//3fy/apl0uFwaDQRj/vPnmm1RPmJlN8DFkV4T0ufZM2/zwh6ZKoeEwNTXF9773PUKhEH6/nwsXLggeguYJYbfbhdT36dOn2blzJ+vWrROdJDeLVatW8dlnn1FbW8szzz3LydFWLk1eiz5v88+oJmm97prMxMAwiUVF4v2SJP3OkAj/jwcDNyqDFRUVcf/996OqKteuXePVV18lGAxisVgoLi5m06ZN2O12Dh48SEFBgej3PXDgAAcPHuT5558X9blNmzYxNDTEe++9R3JyMp2dnezevXvBMWhgYCFqj4ZmXNLf3x8nPKG5t+3atQuj0UhJSYmQJ33ttdfwer1UVFTQ1dXFxMQEc3Nz4rPgupJab28v1dXVbNiwgb7XX+FyQdT+VwtjGKoGZYrGfzOVq8zMTEZHR5dVtrvV8BkXZ+brrWGsJS4iPj1qUKZwCvqnLASRoilvSRIPlWI10LYtnxV40EaA4exgVGhosclRgqnUMK6kCLlbUnMAUeYAACAASURBVGnt9y6y0eLvGzw/QdkjeYv+2ZJuJqnAslAkKub9mesc6IwyyrwA61K6Br8pEID5tsdb2k5FkmRUVRWOhRBNob799tvs3r1bKPNpwFMbRBVJZSZTpd/kp8M8QUt3O5XFZQwPDyNJkkixp6enCw0DiAc3i90ziqIsIAlq2+Xn5+PxeOLc6bTjvTE0EJCcnMxtt90mHBxPnDiBLMviPbEARSMSqqpKRkYGubm5+P1+Ojo6aGlpISEhQZB4tVS+9vkagayrq4u+vr641P/27dtxOBx0dnbS3t7OpUuX4j5XEwcTZlDz/2rCQuXl5RQWFmK32+NW41qNenh4OK7Gr62sZVnGZrNFwUXYQqjlxvtVZdWqSlatWkV3dzfnz59naGiI7du3CwdDTTVycHCQ/v5+RkdHmZ6ejlvlx15zvV6PxWJBkiTRngngGgvSfnyGgFth/tFFVSElX0/p7RZe+KPnKSoqwu1209jYSGVl5YK6vE6no6ioiIGBAeH3oPX+Hz16lKysLDZs2EBWYwPnu3rpSVPwGFWMYSiYlHFOSnSpLXQ3tIouldnZWQoLC3G73Tz55JOkpaVx4sQJmpubefzxx8Xi7PLly0iSxJYtWxYVV1oqKisrOXnyJL29vbimZ/n+pi+yv+MzftxyHL8RUGFjSiFZbXMYJl288cYbPPnkk3FZgKysrGXLZf9e8TsFBrqu9PDOS+9x5tBFQoEQRdUFPPYXD3DXs7fHobRIJEJ7e3ucMlhBQQEGg4HBwUEOHz6MLMs4nU527NhBSUmJ0LnWIicnhytXrlBZWUl6erpwOzx48CDPPfecuOEffPBBxsbG+PnPf04kEqGqqmrBcbvdbqxWqyBqLRZOpzOuT9rr9dLa2orZbKaysjJu20uXLjE8PMz999/P8PBwHLcglqClrbrC4bBIBTuQ2OsqpLF3ALdRxSLpSZ1VsZotlK0vo6+vb0EN78ZebS20Fc9ig7o24N6CmjUQbVtcKiQJ9JYwJIA6bSCAtChFWpUkAio0ykZK1BB2VWEkc3kegKTAaGaQFVVJZG92MHxxatntAVBgujNKqAr6VEZ7VFzj0ROwZ8hkFEqUPZbH1R9fIzgXWgAIrDkJyH+Yzqc5YVwWQIUMV5ScmT73L5cdtQUkkj0wY2HJDIEhDOmu69+rpjqorZB7e3v5p3/6J/E9aveYXq9nLCVA+wofYaMLHPDq6BHkrTDc10gexrjzjeUXwNLgxmAwxIGI2HvOZDKRlZW1KFH2xtDel5OTw4YNG5ibm+PMmTPMzs6KMUJRlOtdIfO+AJFIBIfDQU5ODqFQiK6uLq5du4bNZqOiooLKykoKCgrEM+x2u8XKPzb1X1hYyO7du3E4HIIY2NTUFJcB0VolY/UNdDod6enpFBUVUV5eTl5eXly2QZMLjm3lGxkZESBNr9eLSUpbBCiKQigUwuFwEAwGSU5OZnx8nC9/+cvCtW9iYoLS0lKcTidJSUl8/PHH/PznP19WLEzLXBiNxrhttPNJTEwkNTWVsbExVFVl26adfOuPfkrIN39jxDTKTPeH6T+vUvjNQgBBeNbIlqqqCkEh7Tv0er309fUJz5S/+7u/E8f2wQcfYLFYKMVKTsd1UGk2m6laV0V9fb1QULTb7bjdbmZmZsjIyBDj7ObNm0UW+b777gOgs7NzSZXF5SIjI4Pk5GTm5ua4fPkye/bs4XY1m6GrOhJTU5idmua///XzKJsUDh06RGtrK2+++Saf//znhX9DVlYW58+fx+/3LyhB/XvG7wwYuPDhZf7HY/8QTZuFowNvZ901/mHv96n5qJ5vHPwLccFra2vxeDzY7XZSU1OZnp6mra2NlJQUSkpKKC39/9l78+i4yjPd97dr1zxIVaVSabZkW/Js2cYDmBmMwQwJJAECxEBuE5Lc0J3bfW/37fRwz1nrdJKTbnJoskIngYaTOARjCBDAgDF4wDaeB1myZFuyJkvWLJVU87z3/aO0t6ukqpIZQ6/kWatWSVV7+HZV7e99v3d4nlpqampSamQ5sGzZMt59910CgQBWq5Xi4mIeeuihaQ6BTqfj3nvv5amnnsJgMGTldvb7/TMWf1RVVXHs2DFCoRBms5n9+/cjyzJXXHFFhpPS3d3Ne++9h16vZ9u2berKp76+npdffpmhoSG+9rWv8dbrbxPsiCOHBcZ8o9jnmTE6UpPLhd4L2AE7ApBEJsX4lkwmGR0dRRRFHA6H6hRcqkFPx0eNFJjiMxswQQafN/t3JiMj6UDWwmlBz2n0GCUJy4SE1ezPGTWXBYjrUm07czaUYZ9jpX1rH/Fg/hW5LMmMD0q0HpIyVCV9oxJ9rTB/rZYV35nLwDEPwyfHU6RDdh0llzkZvLuQk24uzogCjBTAcIHEim6oGfvkDsHiCxr2z5NyFo0uvqCZVuOhGGqFUGfp0qWqPsHZs2cBOBvr4/SitJW7EpURoWt2BEGCyr6Z0x/pqK6uVoWIFCh/l5WVMTQ0NKMjoBjXuro65s6dS09PD1u3bs04pvKbTFcKtFqtVFRUqH36/f39FBYWsmTJEhYtWqSm8OLxON3d3TlD/w6Hg+HhYbq7u9m5c2eG0zM1nCxJEkajkdLSUurq6qirq8Plcqn3eTKZZGRkZFoPf3pHh1JDoEBRY1Ry+srDZrMRDod5/PHHqa+vV0mLTCYTgUCA/v5+fvjDH067XxUCKMUhSW/NVHL7TqdT5ZdQnq1Wq3odzzzzDKWlpRzZ3k40Es/O9ifDYIefnW8doKjSrNJIb9++nUAggNfrzXCkRFFEAsYSCTQaDQvKyxkeGqKyspLbbruNeDzO1q1bGRgY4Prrr6eyspIXX3xR1TB49NFHeeGFF9S2QIfDgcfjoba2Vj3HrFmzEAQNHx5t5UQnjE0EGejt5vYbPzrxjyAILFq0iPebDvHM4EGe2t1CMBCgsFLinllzCBw4QSAQwG63c++997J792727dvHK6+8QjgcZtWqVRS6nQyWxPhN6zvMK63hKtcSDOLHl5b/uPhCCBWF/GHuq/g2kWBkWu+4gqseXYFQHlflHxOJBHq9ntmzZ6vh9Vy9vVnPGQrxxBNPsG7dOtauXau+Pjw8zKZNm7DZbKpDEI1G+bd/+ze1xeimm27KONaWLVuQJIkHHngg5/kmJib42c9+xn333cecOXN4/PHHSSaT/N3f/R2yLNPS0kJjY6OqwLZs2TIuu+wyVRXs6NGjvPNOqjjFnajizcffIxFLIupEpKSELMmUrnIw99byae1suZArIvBZYbBQ4mBdDgMmw5xhgcFeG2OCdspbMkkDKe6AaZcmYy0K4qqZmPoGkIoMlPfrmdt50ePvPzxG57u5pUMFDdjn2/HrS3PKS2s0sOIWEb0pc0D99pTSYVZMZjNuaRIxfYL2TAUDhRInqyU1HImQ6vpY3KdhzkdMCSmpoBMrAgSs2Qu0ADQJWHuoAHGG2hPFYJSXl2fQHitQVkD5igjTx7Z06VJsNpvK1pkNSuTDYrFQUVFBIpFQORZcLhcLFy5k4cKFagX30NCQWvindBLZbDbmzJlDYWGhqjEwPj6eYUyn3jeK8Zw1a5ZagKikGmOxGENDQxmr/aGhIfV4BoMBURQzZMlNJhOlpaW43e6M3L6StohGo6oD1d/fT39/f0b0MBuy8Yqkf7aVlZWq0c9XPKhAlmV+8pOfsGbNGn71t7sITOQhPxKgdIGemstNKouj0oqZ/rDabLzQcpr/2Pch4cnz20QNC6MRfvHd79LZ0cH27dux2WyqRDKkHItDhw6pjs3KlSs5ePAger2e4uJi+vr6EASBDRs2sGLFCiRZ4KH/6ykujCYRNQJJSUaYJCm//YYl/P131iOKl37//KZpJ0/2fKCy0UNqYSNqNKxqg3/62reoqqpSt29paeHVV19N1bpcV8UHwlliyUTqd4WMWTTwl3Vf5Zay1Zc8hnz4LyVUtGvzh4SDkdzFXQKcfOsMK76dkuFUVgeVlZV5Q/P5YDabmTdvHo2NjRnOgNvtVlMGzz//PA8++CAdHR1IkqS2YpWXl2ekC/x+PyUlJXnPV1hYiM1mo7e3F6/XSzweZ9asWWzdupXW1lYkSVKP8dWvflXlxQY4d+4c27ZtS0nC7jjNa09cZEVMxi+uHgaPjaPRapi7ofySjHwuOleF4XAqPk6xWzpKvRou64KT1RISqRtGaYWrGRFY2qshjoRHljMoimURyPk1CwTGrFhdIYzW6SkDWQOlg5letnuZne5dQ0ix7EZblkBf6ULOoy4qSTDUJVG1KHNgHe60wqbpQ0WW4bxLZsHAJ3cGyrwaSpoERgomRakSqW6RXF0f+Zw/SZKIGCQCtvzfr6RNCUKVjhtz/hYUlUBRFLM6AopuwEzQ6/UsWrSIRCJBc3NzdgnwtK6A0tJSZFlmYGCAtrY2SktLueqqq9RUoN/vV3PnCoGMUvW/fPlyAoEAQ0NDNDU15b1/tFotxcXFzJkzhwULFlBaWoooioRCIQYHB2loaFBX+4rjIggCer1e5TlRXisoKMhY6ZeWlqq8J0qRW0NDA0NDQ0xMTGSQ3uT6LNKhfOe1tbVqobFi8I8cOcL27dtpamqiurqa2WmFbZByZLxeLxMTE2qLoMfjwefzEQqFiMVifPjhhwT9+VkQNRqBebUL+Lt/2siOHTvo6Ojg3nvvzdhGlmX++q13eLu1NePe9yeSHNHq+c7mF1k0MszKyy7jlltuyUixLFu2jEOHDqkMr4cPH0YURWKxmBodlmWZbdu2sWfPHgZCJfSNTdZvTEYzFGnlt3c3U1FSyMNfuyLvNSlo9w/xs95UzUz6bScLkJAljsyFnvGhDGdg8eLFOBwOfvTurzgrN6uOvMJcGEpG+bezL2IS9Vzrzuw++CzxhXAGOk52pQxNIsdEJENoOMratWux2Wwqt3hfXx8mk0l9fFTHYPny5bz44osMDg6qqwWY7hAoocYbb7yR8fFx3njjDYqLiykuTvWM+v3+jDBUNgiCQGVlJe3t7SpzV09PD6Wlpaxbt466ujo2bdrEggULMhyBwcFBXnnlFerq6li/fj1b/ubtvOcZODJG1TXFmAqMGSsBo9GIVqslGAxmDdcqCAaDKm3rVHwSR0BB9ZiG8nGBC06ZoEFGlxSo9AhYYqk7qZYYbUKm8Za0zMChIBMYNWc6A5PbV1zQYwll/i4C/WGMhTpCI1PypZOVyTU3leCJaGfsPJgYlqmaUkLiM81M/uQzfXrRGA0CJb78J0wX6lGKQkFmze21dPqP4fNOII8XEvBcIj+9NntlP2R2C0xlBVQog2dyBCwWi0rwk6tFTZZlNBoNbrcbSEX0enp6qKys5IYbbmDhwoVYrVZ6enpoaGigo6NDJVMqLS2lqqqKcDiMx+PJ0EnIBqvVSllZGfPnz6e2tpaCggJ8Pl9Kke/cObXtTbkuxRlKv/9MJtO0EH9xcTGSJDE0NER3dzcnTpxgbGwso98+HUotQjbY7Xbsdjvd3d088MADuFwufv/73zMwMEBZWRnBYJBVq1ap+0uSxKJFi9DpdGzbto0333yT3bt3q10W6cWB2T5/pQOhoqICZ0mCsYHcFNuyDHMXVqkkadnImfZ0dfNWtiK6yfEeD4X5+vqb+dKVa6dtUlJSgk6n48KFC2zcuJFVq1bx7LPPkkwm6ezsRKvVcsUVV7B//37KKqp54/Ue5Dw36Za3jnP/l1eh181sHl/qPoxGECaTsdMhCbBt9DRXsSrjdVepmwu1ScgzpT7b+TbXFNd/bsyEXwhnQG+cOT+iEQVaWlqIRCI5qUd1Ol2GczD1YTQaM/53uVyYzWYaGhq49dZbM47ldrvVGoLBwUGuv/56BEHgy1/+Ms899xxbtmzh0UcfxWAwzMge5fP5OHXqFL29vSrTl8Vi4cEHH1SjAW+99RaxWCxjHH6/nxdffBGHw8H111/P3vc+pK81fwuKPFn8pqvP/Grj8Thut5vFixfj9XrVHLHD4cDhcNDb26vmLD+J+NClQCcJzB7NMakhcZkc4YRgRFAiBKly/DwQEH16NMlUbhtAHxOo7DEgDJs4MXlTl0pJtI0e2l7tzd6nbNDg/mYlJWU2PDsuwfHJcv/nK5Rk8jJm2iYXPm5XR/o+wWAQwRzBeO0ZWiwHkU0CWjcImgGKwzpsgSr8yfxFVOZI7hCqYkymQlmp5YPD4cDpdHL+/Hmam5tzbqekA8fGxhgaGqKmpoZbbrmFBQsWEAqF6Ojo4K233sogEXM6nZSVleH1etVwfTYo9TTV1dUsWrSIiooKtaJ/cHCQN954g/7+frWoThTFDKZFpZ9fCe+XlJTgdrtJJpNcuHBBXennW+Vna2krLCzE5XJNy+PHYjGeeeYZ7rjjDkZGRujr66Ourk7lVxkYGECSJHp7e/nFL35BPB7PIJlKh9KtpNPpsFqt2Gw27HY7LpcLt9uNw+GgoKAAk8mk6jA8+OCDlJuP8/N/fiXn96URBNbfvQZIFRCWlZVN22ZLUxOiIJDMEZERBYGDExN8Lct7giBQVVVFZ2cnExMTuFwuCgoKcDqdnDt3jkQiQW9vLxaLhdMdw3kdAQBfIEJ79wiL6lLjlGWZRCJBOBxWuRmUv/cOniaZK5cIIMAJz3nefPNNNVomiiKdjBAQ88+zfeFROoMDzLWW593u08IXwhlY++VVvPaz3CteUavh+nuv4m/+5vsAKktYvofyhXm93ozXsuHIkSOcPn06q/NQWlpKV1cXJ06coLi4GLvdzoYNG9iyZQuvvfYaX/rSl5BleZozoBRlNTY2qt5pdXW16gzccccdqiPQ09PD8ePHufXWW9VVx/nz59m+fbvaA/7MM88QHJ45vwqQzBL+TiaT9PT0MDg4iM1mU7sSlBYeo9GYofU+8zmSjJzyMtbqQ0rI2MpNlK50qkWMnwQLiGGXk5xBz5CsTYXd5dwk7IIs4wwLrD1YQNiUCtMnwlp2G034jCLC5ATTEpeo2dqX8gOyzDlSTKJrLMiZDWYq24HG7NulTgoFxdPHUzEu0FGSW9tBFqB8/ON5+p+0vRMgEPZiuqUFwZwyZkIaja1giHOF7jx7RmuJZZsaZDDHRAomskfgFJW6dCgOTL6oksvlQpZlxsbGpkk0K1D6vr1eL+Pj42pLX0VFBQMDA3R0dLB371419O90OrHb7QSDQQKBQAa9bzqMRiNut5va2lrq6uqQJEl1Fnbt2sXg4KA6dkUHIV34KN3oK7TOFy5coL+/n8bGxpyr/GwpG5vNphr89KI9u92ewTeQTCbx+/1MTExw6NAhBEHgww8/ZGhoiHg8zr/8y79k/FaUYkileNhkMuFwONQiwZKSEpxOJ4cPH1YliO+++241J58NHo8Hq9WKwWDg5nsuZ/+7p2jY35ahASBMpsW+9z++iqXQwPj4OB6PB5fLxcmTJwkGg4RCIUKhECe7u3M6AgBJWaZrfFydy0OhUMazEqnYvHkzVqsVj8eD1+tVPwelQHXcGwZm7hh4482t7DbGVbuR6/cbXpzMfzgZEvE4p1pPqb8dWZYZccVgemPaNAQTn+3CLB1fiAJCWZb5/tp/pO1EJ1Jias4LNKLIU0f+J7XLZ+c4wqVBaZNJdxoGBwfZuXMnS5YsUfPl6Z7f+Ph43olMCQe63W5sNhuSJOH3+1O92pJEUVERc+fOZd68eQSDQf7whz+g1Wr5h3/4BzQaDYFAgGeffRZZliktLWVgYCAjjFpTU8OcOXOoqKjAUeBk46zvEYvkZ9Nb+n/MpnBWds6DTwOhkQinfttNPJBWkDRp3+q+VEHJCkf2HT8CZGTiYuqwHYKeI3pDTmcAYF0kRMXk9xQD3jBZiAhCRv7RemyY4pc78gYZJJuGsd/VIXoEiv+dnM6AIKQKCA3mzKOF9DI7FidTPOVTTiTIYAvDjafFnLwDnzW01cMYLm/P+b4sQ6fXTVuoOFPsaVL7ackpC3bvp7OGKCoqmlZNng6FplahRFYMtsFgoLe3l87OTjX0rxS9KSI32aDk6CsqKqirq8NiseDxeBgYGODChQt4PB7VQKdHYRRO/rKyMkpKSrBarUSjUYaHhxkZGZkxl58Os9lMcXFxhrF3Op04HA50Oh2yLKtCQMPDwwwPD+PxeNRzhMPhnJ9X+udqs9lwOp20trYSDAZZv34977//Pg8//DA1NTU5921sbOSNN95AlmXWr1/PlVdeOW0bWZZ55ZVXGB8f57bbbiMYDOLz+tm66QAnd59XWwwd5UZmr7JhdktZx6zX6zEajej1en4fi9ObzO3sCrJMRTLJjdHpxlFRv4xGo2g0GgoKCvB6veh0OmKxWIbiZzgmsK8tT0sTIGrgK2v16LSCWuORTCZVefD07/lUZTKv848Ml40YubtkBUajUX2MikH+1fOHHDtdxJa1/41io33G7fLhv1QBoSAI/MvWH/DPd/yE1qPtiNqUFUgmkhjMBv7pxb/5xI4ApH40yqpfQW1trdonrPScKohGozz++OPcdNNNVFVVsXnzZgoKCrjxxhtJJpM0NTWpwimyLKs85EqfriRJjI2NMTY2xpEjR9TjJhIJfvSjHwGZ7VCyLKs0l6Ojo1xzzTXMnTs3I1Kx7sFrefe5ndmr3AUwFRkoqMqkuDUajTgcKQMdCATy5mynSuVOhZSUaP7deeLBKTf3pNE892YfpmJDimr3Y0BGpqtYpr1EIjjZclsQDGPzQMBvyDDukJok3FKS8rQbtEOrS1UjT9lWNxpJiZ1ka4GahMYvIYQlki6R8a+D46XM61MIVerWaIhpRM5d0DHqF5EQsJuSzCqKc3UbHKpNEtWluhkgVchYGIK15/54jgCAWDlGniALANWCH+9IBcPFsZRmvAwun56qTh22wCebMgRBwGKxEAgEsnYFaLVatFqtupqePXs2ZWVlKrnW22+/TTKZVB0Fpag1WzW9VqvF5XJRUVGBy+UiFosxMDCgKoKmjyldN0FZ7ev1eiKRCD6fD4/HQ1tbG6dOnZrxGo1GY4ZUuWL0HQ4HGo0Gn8/H6OioKno0MTGB3+9X6yxyrc/0ej0Wi0UN3zscDj788EOuuOIKrr32Wnbv3k1XVxff+9731H2Ki4vZvn07giBQUlLC3r17pzkDsiwTjUYJBoM4nU5uueUWduzYwfvvv8/Ro0eprKwkHA6rCn7phETPPfecehzRDavvt0NSSzwRo7zyoox3MpkkGo2qDJiyLBOLxdS5plKrozePwy8LAnOl7M5WumqlYrjTOVD0ej2iKBIOhzHpZYptSUb9olo0OOVMVBVJmIy6DOOtaChMfW1ciPLt0y+SlKVp6wYNAjpBw6Kwjdtuu23amV49eoTOQD/T9wQNGlY5539iR+Cj4AvhDADYiwv5+aEf0/hBCwfeOEosEmfu8hrWfeMazLaPRgTxUbF8+XK2v7edEd84TlshYkreitbWVpLJJIsXL8Zut/PNb36T3/72t+zbt4+7776bYDBIZ2cniUQCr9erChNVVlYiyzKjo6P09PTQ29tLb29vRghUCbGNjIzgcDiw2+1EIhFGR0fViXDfvn3s27cvY6xxRwKj00B4LJq5atWk0imL7qmeVnCiHHf58uV0dnbidDpZtmwZe/bsQZZl9Ho91dXVdHZ2zpjXHTvjJ+bLE5nQQN/BUQrumZXxckIjc8EhM26R0chQ4hMo8QoZhlFG5kS1RI8r8+bwmQFLGOdQkjHPxYiHIMvMTiS4PBbJuK3P59Bql0xacvauKmMQQTakvv/oUnAIAsajqWJBALtboHSOBp+k5VC7cXLcqbOPBkRGA1rmhGJsCEXpt6ddr1dDUQCiCHgFDUZZ4qN16386ELRSXkcgFYmTmN9qovackZheQpsQ0CU+GTeCIAgqiUy2kL2SttLr9cyZMwer1UogEKCrq4vm5mZ19ac4z9FodBphjslkUlfdWq1W7eXPVh8gCAIOh0Ol441Go6qMbW9vL93d3XmvR6fTUVRUhNvtVqWVHQ6H2t8/ODjIyMgI3d3dNDU1EQwGM9oHp0Kr1WI0GrHb7Wr4vri4mJKSEux2u0qClo6Ojg727dvHsmXLMBqN6uenEPmEQiG1vuLAgQNUV1fT0tLCb3/7WyDVXq0Y92wpKEEQVOnmwsLCFOWwTofNZmNiYiJrDYskSSDEEHWpVIJSUwEXSdKyOTuzE3FadDr8aLI6/A5JojKee27KdkxF8EmRVo7H4zQ0NLB2kYGdJ+ME1Z+PoKY0qstszHEM4nBUc9ddd+XlqgGYDTxheoC/PbGFhJRMGfbJFmKTTs93TSu44G3Kuu/fLvg6f33iKWJSPMMhENFg0Zn4q3lfyXvuTxtfiDTBHxNDER/PnN3J6z0nSIpgFHXcWXkZf1F7Lbtff4dAIMC3vvUtIOXdHjlyhB07diBJEhqNRhXecDgcXHfddQwNDam9v+mUrUqUQOGhvu222zh48CDhcJjq6mr8fj9jY2MZE5wipWqxWDCbzSQSCXp6erAYrJze1sHgcQ/xUBJBK1BS76DiyiLMLuOMbYWKJGogEFAnaEVHPKOTQIaoLwaCgN6mRRAEzr3Zx3DjeM7+ewDRoGHtDy4mxEZsEofnSqmwv0JSpkmFzK88J2Ke7CRQeQjy4PIWLZGYFgEokZKYs1zrVqOZ8SydJdrxKFU/OaGOYSpkDUSvsuH/f1M0qYIEtUMCS/oyjxVLwN5Wy2SAIbtlXVkTpsh6ceIfFzQ06PVcELVqMnVWMsGKWJTCz5HrQb+sG21d/6Sc63TIEiT7iogevKjo9lnxUSireqvVSnl5uWrAFVbDXL3xypgUIRmDwYDX68Xj8WTd3mAwqNsphWCKMNFM47Pb7apiX2Fhoeo4TExMMDo6itfrJRAI5C1s1mg0GAwGzGazGr53uVyUlJSoRD75OqEkSVKNu2K8g8EgTU1NDA0NUVdXRygUUomLcjGD6nQ6EpNkPhaLyqDq1AAAIABJREFUJUMXIV9EQoFWq1Xni5lSIkp0VPntKEV4+epeohoN+01mLij31GQIa5HFzF9UzyI8MUFHRwdGo5ErrriC6urqjFW61+vlF7/4BUuWLKG5uRmLxcKiRYsyVuXNzc28+uqrWKwF9IwKdA9DIBTHbIBbr1vIt75xC+e7u3j11Vex2+3cd999alQ1H0Yjfl7rPcY7Z44QDYepCBt4/P7vc6Gtk9dee40f/OAHWR2L7uAgP9z7n3QbxpEF0AoiN7pX8PDsDZSaLp03Jx8u1X7/STsDfaFxHtr/DBPxUEZFqChoKNCauPxknC9ddSM1NTU0NjbS3NxMOBymqKiIiYkJjEYjoiji9/vVG0lhM7TZbKqX7vV6VeatqbDZbOrqpL29neLiYm6++WacTmeGWEYwGOTpp5/G4XAwPj6uTj5SQua6669l+Yrl/Md//AcbNmygvr6etrY23n33XSKRyDSCFK1Wm6E5P/UnIMsyA0c89B0cJeqdVLNz6KlYW4S/P8xI00ReZ0Cj13DlP6ScgYBBZufiJFKWjgBBTkkCr2sR0cgCB2sTDBWkjHI2CJPERPW9+VtI9+uNdGq101YYAEWvdVJwaGg655EAaAXGn6gmWTOZn5BhWc90Ap+uER3nhvTTL0gZJzIuW5IV1akIz5hGw7tGMxJkjEmQZbTAreEQ9nwf6KcIwRrGdGtD3uhAePdipJHp7V+fJqxWK0VFRSopj0IhnGs60mq1WCwWNY3l8/mmbau0NSr3nRI9yDfFKWyMxcXFOJ1O9d5QlP3Se+pzrZ6VLiar1YrdbldVAN1ut+pApEPRZ1CMerqBT39d0bmfeg8r55VlWV2tAzNeq3K9ykImH524wuJ4KQWgCrRaLRqNhlgsRnl5OWazOcNY9/X10d/fzx133DEt3K60PgOcGx3jaF8fzadOYfJ4+P++/1fqOTweD2+++Sbnz59n5cqVrF+/PsPI/vjHP0av16sdLVM5WwA++OAD9uzZgyAIrFmzhsOHD6v2ze12s2HDBqxWK1u2bCEcDnPPPfdM42DIhVOnTvHaa68B8Fd/9Vf4fD42bdrEX/7lX2ZIPStQUtFX33gtCy9bQoHOgkn8dGOG/6VqBv5Y+FHzm0zEg9OqWJOyhDce4kSlTPnx4+zYsQODwYDNZkOr1aq5TuUHp9Pp0Ol06s2rhEG1Wi2FhYXqJGKz2Vi/fj07duwgEAhQX1/PnXfeic/n49lnn8XtdvPNb34TvV6PzxticMCLs8iKwaDljTfeUClJlZx/fX2qB7XpVBPX33A9ixYt4uDBg6xcuZL6+nrq6up4++23aWlpUa9NluWMFVH6ZCCKIolEgtF9ITp3ZzL0RcZjdLwzQEGNJa8jgACFsy7WC3S6pZShzWJ8ZAECRhgolKmYEFI9+nmi0bIAPuP0ySsagfFRAUkCi01mnjNGRw4ltrE7Z4MoUHhwEKTU+QQJpCIt/r8tv+gITOJMucSITaZ2WENRIHURvnB+Z0RGYCJ08UIO6o3THAEm/0/IMocNBm6JfD5Vw3LAROzkbAwrupAl1AiB8nfsbPln5ggoES5lNT01XZD+W1S48ZVcs5KKU6AYQWXFqeSJFWOaDsVJKCgoUJkBFYOvRAnSj50OJXxfWFiotqu53W61At9oNKrGPd2o+/1+BgcHMwy+8simB6BcUzoPwKV0j+SSdFaQrteQ7TkdOp0Og8GQUaOk5MoFQeDkyZPEYjE1hfPQQw/h9Xp54403uOuuu1i2bBmbN28mHo/z8MMPTzv+66+/TjweZ8mS/LS/da4i6lxFNIsaXn31VZUyHlJtpQ8//DDHjh3j/fff59y5c3zpS1+itraWkWCQM4V2TgRDRM1WTLKMZXSMmmgUW5rDcN111zE6OsqZM2c4evQoGkmk99gQyxcvp7fjPJs2bWLhwoXcfffd7Ny5k+eff54NGzawevXqGXv+6+rq1G26urrU+gyfz5fVGVBS0SsWL6PQ+Nk64DPhT9YZ6A9NcHCkPWfnmITMcCFcOO/BgkA0Gp0WSkvXV1+yZAkej4fz589z6623smjRIiwWC4lEgieeeAKAW265hcWLF7Nr1y61WjcWi6n62ffffz/tbSP85tkPaDjWDYBOL1K/ogTR0MO8+TW0tbUhCAJf/epXWbJkCcPDwzQ1NdHS0sLVV1/Nr57+FS8d28aYIUTIH6RAFPKGW7VaLStWrMBqtaYkVw+007q7O+fn5usOIuo1JOOKdvoUyFC60oGUkNBoNfQ58lTaklrtD9hlKiZAmyQ/uZAMurR5T0pC+1kNw/3pOwiYzDKLL4vQ4krjKgAEJGRRQ83/k6Te6Wf4fQNnB91MVFqJrbCAKKjnUbgNYjoYcMj0O5Ms7dFQO6xByJVnSIPCCD0uaPDkCQHLgsCQqMUvCNg+p3RB4lwZks+Ebn4fYknKCEoeK/G2cpIXpk9YnwQmk0mtkFeMYTYoYXLFsCUSiYzefSBjJZvNCCrGTFkpx+NxYrEY8Xg8q5OghO8LCwuxWq1qDYHL5cJisSAIguospBv11tZWVWckV89+rnHnQz6SH+U4CvJFUJTaBeVhMBhoaGhQeUzGx8c5dOgQX/nKV6iqqlIN/kySvTfffDObN2+ms7MTSEV33nnnHWbNmkV9fT3xeJyurq6syq5ATsKhXJg1K1V31NPTk8H4KggCq1evpq6ujq1bt/LCCy9QtXgxTw+P4glHkCavIwQ8faKB97q6een+r+OYLBwXBIE777wTj8fDkZeb6N03jBSXaRLaQQZ7aQHxu1LMr5dffjlOp5Nt27YxODjI7bffnjelYzQamTt3rtrtokQlchVtt7S0UFVV9ZE+l88Kf7LOQFdgZCaCOQACZgEHelU8JL2i1GAwqDSp7e3t1NfX4/f72bFjB5FIBJvNRk9PD5FIBIPBgF6v58MPP1QlSD0eD7t27WJsbIyNGzdyunmQ//6DVzJu9HgsyfEjfRgMWqAbo0nDY489phYGuVwuqqqq2LlzJwV1JRxbE2BfaBdCYDL0bQf7QpEVXUUkA5krkvLychwOBw0NDSSTSURRZOC4J9VDlmNRImjAVmXC1xtGSnMIBE1qdSkaNZx5KSWVWzjHgvCwEy7L3eYoA9LkHFTl0dBSkZ/AQ/P+BAd/P4yUlNEsnk3SYmOq9xAOgXhI4qorw7Q6RUZJcR+47T6Wzelmblmq77rqvgiV0QH2Ny+nRxBy/h4UZ+bULAlXQKDYlmTQmz3ykBqmjLsgZcj8l6CJDhAQNNjkT87weKmQhuxEh+xktEl8Skh3Pi+VwCrf6jZ9FauErpUwdzo3Rjwez0h/KeF7JS9vsViwWCyqLkI4HFaJdoLBIGNjYzQ3N8/Yunep+Ci8EMp4DQaDOseYzWbMZrNq0NND6keOHMHn87Fx40a1Pe9Xv/oV1dXVWSvXRVHkwIEDCILA+vXrOXfuHKdPn6a+vv6SxyiKIg8++CBPP/00g4OD/PKXv0SWZb7zne8gCAJdXV0kEgnq6uqy7u/1eikvv3QCnYKCAux2+zRnQIHdbmfjxo00NDTw/R27GNMImR0CgoAky3SPj/OjD/bw01svdovpdDrEXgvnd6Vxjk/eCt5hPyeeO8vGJ7/CkSNHMBqNrFixgsbGRkZHR7n33nvVSEU2LFy4kPb2drq6utTvNJszEIlEaG9vZ/369Zf8mXyW+JN1BszaSyPHWVw7n6qkWe0zVZ6VyuNEIoHJZMLv96viGPF4nN27d2ccJxqNsnnz5ozX0tty/vf//jVH94mk5sQpE7MsEI3KdLdruPzqQl588UV11aPkE6N6iXf1F0hqJ7m202zQhD3JsboxljdYKCwoVNuwlEJHSK3gYrEY4dFoTkcAUgY/EZZY+Vgdg8c8jJ71ISUk5IRMzJ8gGbm4s7criPW/B5H/uozIutyeb2Eodb01IwLt7tRqfGo0QZBkNL0xIi8PIsQAs4mkJVf+SyCZlKFL4q61rQg1wwgaEDWZ5l7QgGCKs0YeZ0ljMacqJzsZcthFQYaOYokVgQTndBLRuJClPSm1/6yiSQW6S1zt6y/JNf30IRSG0FaNIWiTSH4TiR4XxD/ZtPBpGNNsq2G4GD4XRRG9Xo/ZbFajAcrKVikSVPL+uVIAnyYUY56+YDCZTJjNZiwWS0bYPVvLmiLxfCmQZZk333yTyy67LGNFqXQTZEN9fT0HDhygoaGB1atXc8011/D6669Po2K/FOh0Oqqrq1Uin2PHjnH77bfT1taGw+HIGg5Xaqc+6gp41qxZ9PT05HxfEAQKq2sYyON0J2WZrWfO8s/XX4d9MjrgHw/w6k/fyrq9LMlIgkzzm+38YMtfsmPHDhoaGnC5XIyOjvKf//mf3HfffZSVldHV3MO7z+1ioGuIAqeNGx+4mnlXzANQeWxyaXGcPXtWpYX+IuBP1hlYYq/EqbfgiWUPWwIYEgIrSmu4fNXqrKEhv9/PE088wV133YXFYuH555+nuLiYdevW8bvf/Y6KigrOnz+PIAh897vf5eDBg5w6dYp7772Xl19+mWQyyZo1a5g7dy6NDRfYv+Ng7gHLAiMDMDoyjqi9GBJVyEqOWHpJaHMYMgH8tiTjjgTCeHZ1M2UFpzXNoO8gpLYxFOiovrGE6htLGDzhoX1rf5Yxp56sTw0QXWVBLtROe1+QoXqSmlifFLi2VeRQbRK/Ka3zQABta4SCH19IOQIALnuKLyCXQqMsMDwAS8rH0WhzG1pZArF0HH23m5AhtyOgjGOoUEYWZVbVhDnWbSISFy5eKKnhLJ8VwWJIveaWkpgkKSvvQeqgMgXAbKt1RuW5TxViEsPl59BWelI1ILIAGhn9sm6iR+eS7C3+/MYyBYIgqPnzqTl0ZbWdzkL6aZ1TqVNQVudKmN1isWC1WtWCuGz95toc7ayfBZRahLlz52a8HovFphUrKnC73ZjNZgYGBgiFQixdupQ9e/awd+/eaaJBChTCHaWAUHkeHR1V5d0NBgPHjx+no6ODWCxGdXU1XV1dGdtLkkQwGESSJEZGRjhy5EjGe1OPn/6skEK99FKK8ENJDynbJJNJWqL526EBEpLEf2zezOxJDZv2fT3Eo7mdVikpcey9kwhJDV/72tdYvXo17777rvp7e/bZZ9F2W9n16wOIWg3JhISo1bD9N7tZceMS6u4uZ2B4gM7OzpzOQEtLC7NmzfrCFOX/yToDOo3Id+pu4H+2ZPcOAW4UKnn/3e0cPXSY66+/nqVLl2bk1ZQv2GazUVZWxoMPPsjzzz/Pzp072bBhA2+99RaCIKj5tMbGRlX+OJlMUlBQoGoRtDR6Z2zhkmWBWBRM2syQKMDQ6kheQyZIMFIcxzmeO7wN4F5qx3c+lHsDGdxLM737gaOevMcUkmDc6SX8lSJ1jEKqHZdVXRqMiTSWwKjAuhaRUZuMx5o6n3jEx+CvL2QeVCsyg3oRyQTk7CNUB3dxG4084yGJ6mF7fZK15+BqXYhhvzZFOiRDoUmi3BFHl+ZPaYDL4lH2G0xqq5SKyf9XRML4Qp9OaPpSYVjdjlie+t5SRYSTESVRwnDFOSIR/WfeUZALSlHgR4HiQCgGPV2HRClcVFIFU1fpiozwJx1zetoin6HLZ/xyvZf+6O7uRhAEmpubaWpqUl8PhUK0tLTQ29ub9XiKI/XUU0+pLZJnzpzhJz/5CYBKl5tOm5sLilFU5iAl9XnmzBnOnDmTc79jx46p35eCfBERZQyKlko2+EUtGGfmohnq7ycx+Rn0tY9Cph+f5eQQnAhR4LQxa9YsHn30UU6ePMnOnTvpPzJK+9sp/oDkJGuu8ty45zRJbYKCtVo6Ojqw2WzTaLbD4TCdnZ3ccsstM47788KfrDMAcG/1GgKJCL9s20VSlieFMiSQ4DbjXH5408OMXDHC7t27ef3119m/fz833HADCxYsQBCEDGcAUgpeGzdu5He/+x1Hjx4FUj/myspKtm7dSklJCdXV1WzatIni4mKV6lgURaxWwyUVGYmTtjy99UcQBJIzfJOyAEkx9/GjWpneIhnfnQVEKiXEXRPo2qZwqgtgdhlwLc40EqHR7NXR6m4ClLbE8a6HCUvK9pZOCNQOa3AGp08EAgLFfoHiSWe6/VRIrUlQEYnmp9FDxmgCabQAoWIsZ189QHIs9f2VejUMF8yc541pYf+8BCv7ZcaWBgkbJfRxAcOQHnF4eo5jbiKBRIRjegNxUJ0APbAmEqY6+fk6AoI1jHbWdPY/mKRAkEC36ALRPZ+vM5Bu0JUOHWUVrtTc6PV6dDqd2sOeXi0/1WgqrylFgIODg9OMY77HVMOY7W+49ALBTxvHjx+f9lo6T0MuTI2oZOtumBqdSVdMjEQiKs+DMgf5fD7VMVA6LzQajSrMEwwG6e/vZ+HChej1+oz5Szl2+v/pr+/bt4+qqirmzZuXdZtIUuLArt3E8tRoFJtM/P0D96Gb/N0cn9PE/3rvV3k/J51Bi73k4j0gCAIrVqxgwYIFbPzp93LuJyUlTr3fyqrF8+jp6WHNmjXTUh1ftBQB/Ik7A4Ig8EjtdXylahXv9jcxEvXT23IOW5ePCnsCQRBwu918/etfp6+vj127dvHyyy9TXl7OunXr8Pv9CIKgtisBVFZWsnHjRn79618DKSrM999/n1gsxv33389LL72Ey+Xipptu4vnnn2doaIjy8nLWXj0PnU4kHs9VUQxV1QXMmqVnaGhIlXBV1OBMQQ3xwmTeVa05lH31c75IoqE61QIoyMCthci329Ef8VPweD9CJDXRFVZbmP+1KjTaTMsq6jQkcslPT8KGhuWtH+/nptFmuaiRcZhVnvd6Sysl4ufK0FaNkYxr6GspwT9qQatPULF4GIszBEkNie6UDO6sMYGzZamUeb4OCFmQMZqjnFuQTNVXaCAsg9cepq8iSn2TFV1atENGZq4UpSYco1+jIyQIWGSZimSCT7Ye/XgQyz15KYkFDWhLvES1SUh8fiNUIgKJRCKnqNhnjamr1PRURfqzEklQ3k9/L99DcV7SDWz638r76f+n7y/LMu3t7bjdbrWIWDn3mTNnUpLCTmfW8ciyTFNTE5IksWzZMvR6vcqSWF9fnzGP5UJnZyeRSIT58+dn5P9bWlpU9kWv14soihmFhIpugNVqzRoJSCdAmgqr1crIyEjWWgQF1zsdvDea3cEFuKGwgJMNDer/SVsSU4GBsD+aNTogaATqrqlh5+4d094b7/fhG84ufJV+PYlhSBakaswULhrl2ltaWqipqclbiPh540/aGVDgNFh4YPbaFAHEK0dYsmQJjY2NjIyMUFycyp1WVFTw4IMP0tXVpfae2u12TCbTtJYck8mkhuRMJhNerxeLxcKuXbvUFkLTZO6qp6eH8vJyrDYj9228kud/vW/a+CC1mLz7/lXcentqnN3d3XR2dnLu3DkikQjlA3p89vz509LB6cVFQwUSJ2ZLang8ZQRTP9jYaivJH89m3nthCmssWEqM0/YHcC0uZPCEJ2fhoSyBa1HuVWYsEGfgqIeRUxMkohKmIgNlq50ULy5E0Ag459noPzTlRo8noLsP5lROD78jYyuEsioZabSA3m2LOHmihERUm1LpkwVO75hH5dIBFhUnUhWLgC4pcFWbyP55SWLKnZHFYJp0cXTi5KSlydwuaJFoqwux+IwFWZAZrwoyXh0gbk6mVP/GDMzqtGEZ/2OQEU8OVStx0fPLA40En4G7km48lf+nvp7NKF/K/vleu/gmDJkSnCuMMqFPYpAE5vgNzPYb0ObwAi+1uG+mfdI7DLIZvpnOo6y+FaEkZR/luD6fL68jpaQHFCY/ZVHR2tqaV4YdUJUlAVVzRbkmRcbd6XSq6oRHjx7F6XSi0WjUhZNSdDgT0j+HeDxOIBBQ66+yYaksM6TV0phIqIrnStbvSr2O6oCfC8FMA77igfkceLppWrpA0AgYC/TMualMLbBOh38wd51ZOsrLyvEygs/nUyNUCtNrZ2dnhlz9FwF/dgbSoBBAXHPNNbS1tXHy5MlpbR+zZ8/mkUceobW1lTfeeINIJMKWLVu48cYbcbtTK8yDBw+qIio+nw+NRqMqjn37299Wb7ry8nJ6e3u54oorAHjwL64B4MXfHSCRFiGwO8ysutLG8Yad1M5zUVdXR1lZGW1tbUxMTKDX65kdtjA6HGe0eDLkrNwzk0Z+3nkL5rgWaYrFbi276AhMgyAwXqenIGLCEs09SVWsLWK4cRxJlqd72QIUzDJTMCv7qiM0EqHp110kIkl1X384hL83xOhpLwvvmUVhjQVruYnAQDjz+IOjEItDZQlYU8cXtTJllTJVcyREESZCGo41V6iDkaWL13HhVClJe4KllRfDpPawwC2nRHYvTBLImoaUMWrjuTMUAoy5EoQNScYWThBwRzLeCzmjhIqilJ1yUDjw8cScPgmkpMxEqx73kvyOgBTRcdEj+nSRLayuFPAp6QEl768U8ymvfZRHeodB+rl/1LyV7T1HEQUNSVlCQGDAHKRvjon/vOIvKDbmN4p/TGzbto22tja+//3vZxhGr9fLk08+yZ133jmtsDAd586dY/Pmzdjtdh555BEAjh49yrZt27jvvvvyrr7feecdxsfHcbvdfOc731Ffb2pq4g9/+AOPPvooNpsNWZbZunUrDQ0NTExM8I1vfINDhw6RTCb5xje+8ZGvua+vj2effZY77riDqqqqnNt9D+j0eHj99BnGQiHKCwr4yqJFlBfk/j5P3tPMb/7bFlr2twKg1Ylcf99VPPLjB3BVZP8sYtE4Hz7ZSGAiv1Nwze1X8tYHb6jaGH6/H7PZrNZUfJFSBPBnZyADp0+fpqKigqKiIpYsWcKpU6dYt27dtAlFEAQWLFjA8ePHCQQCDA0N8ctf/pL6+nrWrFlDY2MjkiRRW1ubUfgiSRL9/f2UlJQAUFVVxalTp9TwkSAIPPTItdx1z2qe+tmL9PcNc/c9d3D1dQsRBPj973/PSy+9RGlpqeqxKqHVyspKLu/XcC44QU9pkIgpNdkW+ESqeg0UeVKOgMlkIhKJYDKZKCwpYszWlf9DkWHQLlM7lNsZMDkNLHlwNmde6iEeTKTy+5NuuX2OlQV3V+UMDZ55qSfDEVDOCeA566fv0BiVV7pY9EA1p1/oJjAQyWDN0/h8zF9YiG22HikJeiOkf12dw0o0JHubxcCElrnuGGZ9GvudJFDqFegwTidMEgUpZwND2mEZrA4RdWcp6pxUARxYMo5l1IA2/vmF4WMhidPbg0T9Bq66XovenkDIcnpZhkR7KZ8m98BMUJgx88kPp/+GLjVPrxQUKo+zhRH2FKYKJxUKcnnyB9cTHOOxvc/xz6U3ZjgUU50MpV7hj4GOjg7mzJkz7fwK8VGubgIFs2fPRhRFLly4QDAYxGKxsGLFClUU7a677sq63+DgIMeOHaOwsBCXy5XxXltbG2VlZeoiRxAEvvzlL1NTU8Prr7/Opk2bsFqtzJ8/P9uhZ0RZWRk6nY6enp68zgDAHKeT//vqqy752MtvWMKT+37IaL+H4EQQV4UTS2F++Xe9QceX/s+b2fKvryNnUUAVtRoWXD6Pldct54NjO9XWVr/fT0lJiZoisFg+O5n5j4M/OwOTiEajtLe3s27dOiClZHj06FE6Ozupra3Nuk8gEKCiooJbb72VEydOsHfvXlXiVJE0VoSJRFHEZDLx9ttvU1JSQnl5OVVVVRw4cACv14vdflGqcmxskLjUy7e+eyfLli1meHiYM2fOMDg4SDKZpK+vD51OR319PfPnz1eZwPw+P6U+kZJeG5JOQJBAk0wRE/kNfqLRqFo4FAqF8PQGYQbCOQFIXsK8V1BlZvXfzMfT5iM4EEHQpsL71tKLy+uoL07/4TFGmr1IsSR6m47wWP62oP7Do1SsLUJv0bLs0bl4u4KMnfUhJWQsJUbcy+xojSIyMv12ma5iiYAJdAmoHNYw2iwyk1Eb9mmpcWUaodkjGtpLPj4JUMgVzR1gnxyOtzxE0fnPZxUqyzKtu0JEfKkUQfNPKln+w/MIsoxGq2yTepZGbcTPVuQ+2EeAojao5INnMuC5+AU+bpFeIpFQHeZINMLx0lDOSJiETFt8jN+8+xqF4dy/GUEQ8joLU6MTlxrJmIkBcGJigrGxsawMf4oTNZMzoNVqqa2tpbW1lbNnz7Jy5Uq0Wi1XXXUV27dv59prr1VrERTIssy2bdsoKioiEolkvC9JEh0dHVx++eXTzlVfX09FRQXPPfccgUCAzs5OtWD6o0Cj0VBVVUVPTw9XXXXphv6jwFXuxFV+6cJAG//bPbQebefEjlMIGkF1CgSNQFG5k3984fsALFiwQO2gUMituru7uf322z/9i/iE+LMzMAklRaCEbsrKyiguLqaxsTGnM+D3+7HZbIiiyOrVq1m8eDH//u//rrZFRaNRBgcHWbt2LQsWLOD5559HFEVeeuklvv3tb6tebm9vr+oMJBIJ3nrrLVwuF93d3ezYsUOlcBUEgerqajQaDefPn0er1bJ//341D2cwGIhGowgIiPFUGkKv19PX10c8HlcLkpSiQ2NSwBCHaJ75Qxag8BJbuTWigGthIa6F0+sDAgNhTv22i2T0ImthIpK/CwEg5ksQDybRW1OrMfscK/Y5mUU3EjJH5ybpd6BO9GEdnC6RsczgCAhAMkutgzUqsKxHQ2O1lGqDnDyMJGny0htAagyCKZbfB5EhZv38uggCI0mCoxedm4kWC0e+P5fqr41Scp0X0SATHdEh9JeTaC+7SAv5CSFJUka1uiiKjJfoaS2KM6iPIshQGdYztx9s3tzOguJUKJ0E6SyEyjmU4sOpzH+KIxLWyQT0M3SLyDBik1VnID2yoKQxRFHMKOxToJCAKcRkiUSCWCymUiLPBIVIKddDWWH29fUxPj6e8Z7Hk4p2+Hw+lZFQ+bymRhEWL15Ma2srjY1eqiA+AAAgAElEQVSNrFy5EoDLLrtMjQ7ceeedGds3NzfT09PDfffdx5YtWzKcgd7eXiKRSE7WwaKiIh577DF++tOfMj4+zpNPPskjjzySsfi5FFRVVXH48OGMIrw/JvQGHT96+x/Z/eJ+3nr6Pfo7higosnHzw9dz26PrsDlSc9SKFSs4duyYKminpAgWLlz4xxx+VvzZGZiEkiJQKmQFQWDZsmXs3r2bSCSiUpgqUIg00otuWlpaMoqCFHUwg8FAaWmpykMQCAR4+eWXefjhhykqKqKnpwen00l7ezsNDQ3qTa9McIIgsHTpUm644QYkSeLYsWP09PRw+PDhDLITxRlQtOEHBgaYM2cO1157LTqdjmPHjjE6OorBYOC+++7jgw8+oHa0h5bSRFbDJchgjIG8e4KmxgnioQSmIgOlK504arNXBWeDLKXSAemOwEdBtlB2OtpLZfqVuUVIezbKyAYJIZrbsMkIWAyZ4WJh8iBzRjQUhAXOlSYZnuQFcQYEHH49npIcxl4G97AOTXleIkcANJcScvmU4O1PTCuUCvUaOPNkBWeeLJ+koBZYvbEAMVv3xqeEptIYbWXRiw6WAN2mKF21cIuvmGWkWN7Gx8fR6XS4XC50Oh2BQEDVB8jHy280GtVagUQioaYeLkV1D1J1qGvWrOYm81wikYj6CIfDamRN+V95zsWJoNFoMBqN2Gw2tfYh3alId2rSowKKg6OMPRaL4ff7GR4eRqvV0tzcrDoZUx2fLVu2TBtHtjQHpAz5K6+8gtlsRq/XU1ZWRmNjI06nE7vdrkYr3n33XebMmaPul95F0NbWhsViyUszrGhCKNLCP//5z7n33nvVtIEsy/SdGyASilI+txSzbXqxTnV1NXv27GFkZEStzfpjQ6vTsv6h61j/0HU5tykrKyNh0tJhi+Hxn0bXH2f+nJpL6tz4vPFnZ4DpKQIF9fX17Ny5k+bmZlatWpXxnqK4FhgK8cSjv2Tfa4cJB8LYys2pSvildlwuF9XV1ezbt48jR45wzTXXcP/997N582Z6enr4Xz//DcfOxnhp7xnYdAa7Raa6KMaS2hISiQRjY2MsWLCA6667Do/Hw+uvv8758+dVWVHIpH5VeA9Wr16N0Whk165dzJ8/n5aWFs6fP09VVRU33XQTO3fu5JVXXkmxmAkywzYNI5bJSSWNFEiTlCn4ST8dxy6yZ4XHYnha/RQvKWTeVyoRZkygw3hHQJVC/kgQwFJqRGfK/TOVkWl35xJSgPiCGLomA0LWKnEZnSgjVcXZWyYxZk3t4whA3ZCGinENroCAq107ZS+RsxqJEXdCbS1Ungt8IrXtJkY1MSYqgxe7DaZCA7ahmYlSPi3Icj6OFeGi5/IZtssP2yTayiZ789O5lybrKN4rGEFzahzjZOZIcWgBiouLWbJkCXa7nVgsxujoKGNjY3i9XlW6N13cKBuMcTBHIZRbfRoZWF+7kgWFZZd8XUor5FTnIZcz4ff7M97L5dwoRZTKIxaLUVxcTE1NjfqaYtz7+/s5fPgwX/3qVzEYDKozoTgN6Y94PI7H4yEUCtHf36/KQitCbLt27Zo2ls7OTlWgaNOmTWg0GnU/nU7Hs88+mzM9osxLZWVl2O12Dhw4wJYtW1iyZAk6j4VX/u0tBjpSGgE6o46bH7yOR37yDXV1DamWbSUi+kVxBmaCJEs8efY93loUQQY0ch+SFT7QjFHS18jtFcv+2EPMgCBfQiLuUvWQ/6tCqYb967/+62nc2S+88AKRSEStvFXQ19fH4//w77S+dCHVI5tIM6YyVKwq5uc7/xWbzcbExAR79uyhsbFRvXnbLkRp6TNMbi6k70qNK8bNV5Rz+eWX093drSqOKcimQrh27Vq1avWhhx7iwoULbNq0iUQigdPppL6+nkgkQmdnp9qSZDQasdvt9A8NcN4t0O5KEDSCmIQqj0Dyl/2Ej3tzGgjnfBv22VZslSas5aackYLzHwxxYd9IfunjHFhwT9W0tkRZhkFJZFwSSYgy7YtjCJYcK784GLdbEUczawcUWSLXNQG65yYz88hKB8aAwOK+7GEJGZkJe5LBkhiRSdKhkiE9RWNaBARi5gRdVw4ja7JQHEtg8uqZdcSlRiE+a0z0xTn7fh5mScBUqGHZVz67GoaDcxMM2fNwOMiweFDL4mGdmuu/VCjhfLi4EhVFUV3h+v3+VN66WKKxOvsPUZChKCiwobcAq9VKYWGhKlnscDgoKCigoKDgU6UelmU5pQmS5jxkcyQ8Hg8dHR243W5VBfJSohLpD0XwyGQyMTo6SmtrK0VFRdx6663qNk1NTezdu5fHHnuMcDjMr3/9ay677DLq6+s5efIkp06d4vbbbycej+P1etm/fz91dXXYbLYMZyPd+QiFQlnTJH2HRunaPjj9e9CAxW3mxr9bjaXQrDoV3d3dmEwmFixY8JHqNNKloT9P/Pzs+zzXsTfrewLw89UPcrV73mc+jku13392BkiF1gKBAN/61remvdfS0sIrr7zCY489llFF23iiib+/6kdIcTlrRSnA95/+FhUri+no6KCjo0Ml3ghFZfa1mtWgdDZcv1SLXp6Y9rrZbMbpdGI2m1VVLK1Wq/La63QffSLNhuBwhIZfts+84aQHYykzsvCeWRgd07kMevcOc/6D4ZlXnYo3NPlcc1MJlVcVM2GS6XFJRHSAT2TogoWwJCKkB/YdMcSFQYRsOgRxqDpgJNCrJ5ZILUPdBQmKq6McWZk/b7+kR4NWSq0q3T4BMR8b0RSE7FH6lntIGqSLK28NmEcNlB6zM3xgnIFjHqLeOFqjiHuZnYq1LgwF+YvAPg5kWabxDwEi/typmjlXmnDPm/79xXQSo644Ca2MMaLBNapD8xE+BwXb6hNE8umDyVA2IXBFx8fvsDAajRQVFVFVVUX1/8/em0fHUZ/53p+q3tXaWvu+W5Ity7K8YRtjYxtssxhIQgiBTDIBwgyZJDOTmZCZzPveM/fm5p7k5uZmQlaSQIBAEmAAm93GxhgbbNlYtmTJkmxJ1i61lt7Urd6r3j9aVe6WWi1BGJL3kO85Opju6qrq6qrf7/t7nu/zfUpLGR4e5vTp00iSxFVXXcWmzZv5waUDPDd4Bg0CYa6Uw6aHtVzXZ0Zw+xNGGJRuiCkpKVgsFrKyssjMzFSd91JSUhYVA75fvPXWWzQ1NfGNb3wjZt9KVOL06dMcO3aMu+66K2FUYi7hWAhK6kKSJAoLC1UC4fP51MjjyMgIbW1tfPaznyU1NVUlHHN1Cm+++SYtLS187WtfU8mCdXCCv1v9r8jhBWJVosDGz65m7e11KqmwWq14PB41OqT8LQYlirEUUedSBZ/xylaj4Qp62XnoewSlBUzkEFiRVsBTW/520fP/Y7HU+ftjnyZYKEWgoKamBqPRSEtLS8w27z5/OpIDXwgCPPrvT7L6/iqys7NZtmwZmZmZGI1Gnj/UCSzsliUg097no7E08v9BrYw1N4DdEkIW3KS77OT169EHI65i0QKthYRKitgqHklISkqiuLgYp9OpRhdc/Usz1lAGUo/VR+tvemn82yp0SbG3laU6hf4j4wvvQ4jYHCcXmgjPmg7lrbFgsOhoLg3Tny0jyCD5RUIdyTDrFRDdMVC26wi3JaNpmJ7vAaCDmowgyUkhwlKk9FAU4FxxOEYcGO+7tZVc+Y11IagfFCmdWtpAn+QwUHU0j+kcH/7UAIIkkDxuRDup4fxjl/FYfVfElN4wI01TjLc4WHVPBUlZf5wpkSTJOAZDuCfDCCKkF2mp3m7iwoEZQr5oh5XI98yp1pG9LJaEyMj0lfkZKvKrHkWyCJqQl+qLSWRPvj/SIi6Bny5lm0RQjHFGRkY4efIkEIka5OXl4ff7udDezuezG9mRvZyXxlo4O9SNPiRz77o97ClYhXHW7zsYDOJyuXA6nUxNTTExMYHNZsPpdOJ2u5mensblcjE8PBz3PAwGA2azWY0uZGVlkZ6eTmpqKmlpaSQlJb2v1Wpvby/l5eXzJiCtVktycrLaYGkhsXM8KK2It2/fTnV1tUoUWlpa6OrqIhQKUVVVRVJSEj6fTxUyNzc3x0Ql5nZjnRuVUEx3Xn31VbUvxOnnWhMuDmRJ5uKRPv7Hb7+lvtbZ2cnTTz/NX/3VX6kCRCU9FC8dslCKZG7UwuFwzHtvKb0x5patxpSwGqcJahfWqcjItDuHGfM6yTP9aXqAzMXHngzMrSKYC61WS11dHa2trWzfvl19GC+fH4wpKZkHOTJBQqxfuFarpaffkDAqICPg8kaO40oJcb7eQ1hZLAmRlsT9xT7W9mdRLefidrvVRiEKFMtU5aZWNAaCIFBZWUlpaSnvvPMOoVCI9PR0GhoaeOaZZ2I+/74gQcAdYuyMneJrYjveJeeZSCs34+zzxB8AZNDuKKKwOglz1GxwoSBMf9aVHLM0Ypitc4zvGSC7dMhOLUL6lQdZkCHXCSl+AYTZ/kazcCTN9xGYs8sYBDXQXB6pLiixLUwITKYZSssuo9f7cbnSGOgvQ4rSB/S8ORJDBKKvQ8gXpuu5QRr/ZumD+ly4J0J0vTlD0CtHeg0Awy1+UnI0rNiThH0wzFRvgHBQJsmiIbdWT1rB/Nr5/lI/g8V+9Too1yqsgY7lM2jPJ2FxLJ0QFNgFenITXHMhEhlYDEpVzFxRoNlsVlX30aRXq9XidDqx2Wy899576nu5qancICQRCAQor9Bi106SnZ2tCvwyMzPJzMykoqJi3jnIsqxa7yolf4rwUSkhs9ls2Gw2Ll+e7+UhCIIaXUhPTyczMxOLxaJGF9LS0lTRss/nY2hoKGE5WjAYXLSscC5WrlyJ1Wqlt7eXrVu3qq8XFxfT1dVFamoqd911l3pf/PCHP2TVqlXs3LmTQCDA9773PbZu3UpdXV3CFIfD4UAURUZHR9XX20/0sliocGrEroqwIdLOGGBgYEAlA0rraJ1O96HW7UuStCiRSEQ2HF4PzGqQEsETWryi6qPCx54MXLhwgaKiooR9tlevXs2ZM2fo6+tTBwaZxdXJgiZSepScnExOTg7FxcXYbDaaL19kMZtXUYSQRqZt5SwRiL6pZgf4M6WTcMZHknf+vhbq/KZ4m3d3R1IAGo2GkZGRGCIAkFr2AR4sGcZb55MBiOT+25/qxz3sVY13lKHAtaOckZIcOn1QoQmyRu9D0sh058bm26VxAwmfLkFGHtdDeigm3SADEykS2dNzVlVhYrUCAQkhJCObROaHF67sr61IosgmIM45F0GQWLf+JHUrzyMIMrIsIIoyfp+Bt9/ezuBAGeGAhPWsfeFxUAbPmI/pES8pBe9fYOh3S1w46EGa/emjA0HTE2F6jvlYebOZolXGhKmkkEaOIQKxXzRynn1lfiznlj4BVYyLXM4OExaZt19BBlMgQhgWg+Jjr/jtK+TA4/Goq9eUlBTKysowmUyEQiG1Fa7ynQ0GA6IoquHzffv2Rc5DEFSdQPSfYqurnq8gkJKSQkpKCkVFRXHP0+/343Q6VcIQLXpUqiNmZmawWq1xP6/RaDCbzWi1WmRZZnJyknPnzqlkITU1VSUAgUBA1UwsFbW1tRw6dIiBgQHcbrfqk680QPJ4PKrNsBIpUcoKL1++jCRJrFy5MqFrIcCPfvQj6urq1I6tAE94n+GpM88hJ6i50Ro1HD16lJqaGvLz80lKSiI7O5v+/n5WrVr1vr7r+0V0dOODYNnUZY6cfDThNnpR+2cTFYCPORlYLEWgQHElPHfunEoGcusykV9aeDAVNSIVG4qwWCw4HA5VNwCQlaJlzLnwpRdFgWuvWoaxwUko3LLggCzLMFIQoKrng6vS55YmKUjKMpBelYyjx/2+FOYhX/z96UxaGu6twNHrZqhtmjGfQDDDxMyqXKSUKyHx3rAOIQDF2TNXoiEKFivFk8HgEwhFna8swngqWNMlVgxBzdiVAb3QLjKRKqFrdpP07BT6toihQihfh/fWDHx70kEzd9aKtDGeSpHJno59b+36JlbWt6o8Qpj1/tcb/Oy87gCvvbqX3tYMpODiF9Qz9sHIwFiHP0IEFojAeKbCOIZDZJYk7pI5lRmMqPwXggDTqWH8eglDYGlpE3NAYPMlDSerwgQ1qK0RZDGi8r/6okbVZGg0GgwGAzMzM+q/fT5fzP0a3TVwbpRgenpaNQADSE9PV1N1er0er9fLQO8g7x1uxTXqQWMQyVuVQeHyPHQ6HRMTE1y+fFnNq2u1WrKysuaRhNTU1AWjaAaDQd0uHiRJYnp6WiULdrudqakpbDYbLpcLj8ejaoEANe0RDb1eT3JyMsFgkFAoxPHjx2OiC4oPSjwokY+pqSk6OjpYv349TqeTY8eOsW7dOlpbW3n33XfZvXu32oJXIQMXL14kIyNjUSIgSZKas47Gjruu4bf//dkFPyeIUL21jFOnTvH222+TkpKiNkdaan+DPyXWZZRRlJTByIwdKc7DqBFEbi5swKz90/UomYuPNRlYLEWgQBAEVq9ezdGjR/H7/ZF8YLGB7AoLk332eSp5QYiEpL/2g7/BJds5duwYXq+XsrIytFotKWNWeqxBfEEhJu+tQCPCVSuzed00BIlS9yLYMkLQE/uyYoyitBrVarUEg0GqqqrIzc2lpaWFUCjEsmXLGB0dZXJyMu7uaz5RRNsTfZGQ9sJ1aVFfHEwZC69OBEHAUplCa2EuDkkT97uDQE9YR1a8WLIpDO7EjoKB1DAicszKXpnULhRJZLoFdG4NQ2gJ2sDcOkzSr6wxE59mLEjyL6zo2meY/ueCuA5Dc237jUYvK1e2xg8ozBK3xjXv0Xdhaf3L53aGXCome4MJfydBAFt/EEtR4hV9WCMv6NQ3b7s4iC5/jUaWW2BPq4ahDBmbOaIFyXUJ5DliIy3hcFitClCg7C8jIwOPxxO39a4CjUYT02Z4enqa7u5u2tvbI7qC9mm69g8ihSQEAQRBZPjdSawNTuo/W8G0d1rdj9KQTBAERkdH6ejoULU50RN+9N9S6shFUSQtLY20tDQ1BB4NWZbxer38/Oc/Jz8/n8rKSpUwOBwOpqcjrqKK4RDA4cOH5+0nOh2RkZERQxaqqqqw2Wy0t7ezfv16Dh48iNFoZOfOnZhMJt599122bNmiHiMjIwNZlrl06RJ1dXWLfke3240kSfPIQNGyfG780k5e+/Vh5nJSUSOiMYik1Ru58cYbSU5Opquri66uLjUd+vvf/566ujqWLVuGyfTRleguFYIg8L9W386XTv6GoBSKIQQiAvmmdL5Sc32CPXz0+FiTgaWkCBQongPt7e2sWbMGj8fD1q+t48D3juMe9aLRapBlCSksozNo+ex3buXAu6/icrloaGhg27ZtMa5bnx6Z4h++/Z+MTbrVMjcZAa1GprHEy7vHDjFQ54EMEg7IcpyRP9rjXfF8FwSBjvOdvPvcewTcQYwWPTPumYSTji5JS8OXKpjqcDHe6sTvCjBjTZDjkiFvXWJLz6AMVmnx284zrQM5tiWzpsBH+GKClp8yCLn++CF+IivRphwBpycZQZbROPzk/zoSohWk2O0AjMemCWycxr91vgI3aU7jppLSPjUSEA+iKFNQMEJaXhhTpj6hDbMggqXqg7U2lRZQZyuQAZ0m/mpE6aTpdrsxeTWLEgFBAv0CUYGFIk4Q6f1QNilQNolaPz+3gZZSvhcKheYRg+jJT1F/K85/CuZGCqLb4zr63HQ816+Spkh/rcjxh8+Pk5KWyjd++wDBYJDx8XHGxsYYHR1lYmJCJReZmZmkpKSo1TsDAwOcPXtW/d5KajD6Lzs7+32F8gVBwOv14na7WbduHdXV88vQQqEQLpeL/fv34/V6WbFiBTabDbvdjsPhUBukeb1etaQ4Hvr7+/nxj3+MzWZj2bJltLa2qtVTR48eJS0tDZ1OR3JyMmNjY0xPTy/oOhgNxUAt3hj7tZ9+iaQUE/t+8jqhwJWUZnl9Cf/8mwdo6T7L888/z6ZNm9i1axe7d++mp6eHp556isnJSV544QXVlbWmpoaamhosFsui5/RRYZWlmKe2/A3fPfk8Z/wjyAKYtQY+UbyW+6q2ka7/8zIe+tiSgaWmCBSkpqaSUlrK9989gba7h6FQmIqQjXsevpN8fSHv7j+N2+mm39ZLxeYielydLF++nLvvvlttgxyN4oJM/vDje3nw//2/CMY88vLyWVaaQVWRiXHrKENDQwy7L0VW/gtAkCB9Nt2gDIrhcHheyZAsywwcHWfw2ESklGd2la81aajaWxDXPliBqBHJXplO9soIkel/08rgsYk4JxOZwLLrYvclCTLTeV48mT4QQWM3IPaYkUILayYEQAiKFNgFRi1XBGdCbgBhMoBs00VtCYo/sF5rQzZGvT4HsgD+5PDsvwWSzsb5HtHbi2B6xR5LBmRI9UL6nJJ9nS6ALAsJCQGAXh+ieGsOF18YWnCbvLUZ8yoylgpTugb3RDhhdCCnOA240s5Vo9EQDocJBoNq74p0hwaDT8BviOOTACBBjlWHNkHqRsnpp6SkqMYz0a9DRByXnZ1NUlISVqtVvXeXouZWtluK1W804t6/s5AlmY63L/GT7/2M9MJUioqKKCoqYuXKleTm5uJyuVRyMDY2xtDQkHquihBQyTP7/X66urpiwvsWi2UeScjMzFwwlN/T04MoipSVlcV9X6vVkpGRgV6vJykpiWuvvTb2+8gyHo9H1S4oKQmbzYbD4cDlcqnleQrJ6u7u5tKlS+o+Tp8+rVovP/HEE2qJtM1mQ5ZlNcoQj+gkIgMarYa/+T9f4LPf+iTvHWgh4A1QXl9C9brKiNB5VTmFhYUcPHiQ0dFRbr/9dqqqqkhNTaW6uprNmzfT1dXFxYsXOXToEAcOHCAnJ4fq6mpqa2spKCj4k1sXV6XkssueyQa3nk9/7k5StEa04kfXnOz94GNLBpaaIlDw86ZT/HTShiDLyAODoNEyIAj0j43yuzu3krkslcOHDxMczkRjFLnvs/dRWJi42cvY6CjpRi/33LOd4uJileWnJEeEMjmOQn4Yej3SXS3OPS0LUDASWeUl6vg2dHyCgbeiVgVR5WydzwxS9zkNlsqlrURLtudgzNAzdHxCXd3qzBryN2RSdHV2jCOh3xxkcO0kIdNsnb0A5HlZUe2k72Qx7on4IkUZgVRBomJAxGUK457V8AgCaFa4kYaNSMMGCEQeKt3oNCknh/F/2kRATkkcSYlKP+gmEpvwCBJoBqIiIXKk9G11v2aeWZDLmY64SF1cMKjF600iZ5WWgDtE36Ex9XvJABJkr0qjfHdewv0kQl6tnu7xxM0kRIuLaGtEZcUcPQELCNR2JtG6yhMJ40YHACQwBATK+xYWV6Wmpqrtu91uN+np6Xg8HoLBILIsk5aWht/vx+fzMTExgSAIqjK9qakpZpUdjaysrJgJTCEVishuMdvhcFDC2btI2awArl4fZXUluN1umpqaePvtiHlMdnY2RUVFFBcXs3HjRiwWC1NTUyo5GBsbo7u7W01hJCcnU1lZGRNFcDqdnD17VnUxFUUxrh4hPT2dnp4eSkpKFo0oBAKBuKkJRcCcnJy84HiktBuWZZlrrom0UY8mDIoFtCzL9PX1qZ975ZVXYvaj1+tJTU1VDZrS0tKwWq3odDq8Xi9arTauYVNqRgo7Prsl7rlv3LiRvLw8/vM//5OHH36YO+64g+KSEg5d7OXpCTd9NgcWk4mbd+yhIdnAQG8PZ86c4fjx4yQnJ6vEoLy8/EM1i1oqlGu2bt06LPo/ry6Fc/GxJQPvJ0Vw4OIl/s+x40BkRQmooegBp4vbH3mUHQ47hQUFrFq1iq6uLvLyYgd0xV9cqV12uVx0dHQgiiLPP/88MzMz8ww0BEFgucVE+wpPZLJQDh1pPMeySyZS3IlZZsgfZvDtBCtgAfqPWFUy4E2L2OgGkkJoAiJpo0kkTxhVO19BEMhdbSGnIZ2AK4goajCmGUi3pKklXeFwGEmUGFw3SUhpDBM1mQgambJNg1w8XEHAM3eQkzEgk68JIYYEru3Q0Jct01EgERYjIXRNsQ+xyAdeyLynG40nMonJZyQCVy/soCfLIEWVwsl6zZWE/kKfMV458WwX1A1rsMzMZxtDQ8XMeJIwmmaI50UiSQKXLtYQDkceuaLNWeTUp2FtceC3B9AmaciuT8ec88HUywoyy3XYB0NMXZ5DDGejQTfds4apcE/czypQ8v1pLi2NZ5PpL/UxlRnpbSCGIW9MT8mAAX0wfopAMcFSxLOKF0YwGCQpKQmv16uuGMvLyxkaGiIYDHL06FGOHz/Orl27+MpXvsLLL7+sWuAqmJycJCsri7Vr1zI8PExnZ2eMDbEoimoNv8fjmUcoFjK5iblUooDZaEaj0WC1WpEkCaPRiMViQaPRqK6gEEmtKNGD6upqtm/fjk6nw+FwqARhdHSU7u5udfI3Go3k5eVRU1OjTuAzMzOMj49z6dIllUjo9XqCwSD5+fmcPHlSJQmK6j8aH6S0UEFVVRXNzc0AbNiwYd7+Dx48yIkTJ1ixYgXl5eW88sorqv7JbrfjdDrVWv/JyUkmJyfRaDRqjwWAhx56SL1e6enpqudCdGVEWloaycnJ87wUysrKuP/++3n22Wd59DeP0ZycRce0D9ExiCTLjDhctI9aKbak8eRf38Ett9zC4OCgqjNobm5Gp9NRVVVFdXU11dXVH1lvgPHxcbxeL+Xl5R/J8f4YfCzJwPtNEfzi1GlEQUCKM2mEZZnhYIjyjRupz87m8uXL+P1+fvKTnxAOh9VBMJFye65HgAKNRkOh10juxTT6Mt2MJrnRGnSUCllcY1hOwSoLB8cOct1112E2m2lubmZwcFAdzAVBwN3vRwolGABlcA978TkD2Dd6cJbMxPjtu/N8GB06is9koQnFllYZ0mbbrgoRo5fo91x5XkKG+BENQQAEmTSs3dEAACAASURBVKwKGyPnr5AmRTux0eBVNXs6SSDHBW3F8/chBEIqEQAwHnMx87kspHTt/CoAOfIXmrgy2c6syCT5bGIzpMLaNFa3azCEwBhcOOQgyyJHj+5g1+5XkSQ5JkogSQLT0ymcbV4f8xl9io7iLfNTSH8MBEEgPTOI8+I0QdmIoNeBLGMwyVRtS1+UCEBkslJy9MkeDXUXzIRFmZBWJtOUxsy0h8bGRrUEbS5CoRAGgwG73a6WpUW3zi4oKCAcDmO1WlUXzZqaGi5evEg4HOa1117jtddeAyKCNY1Gg91uVyf8yclJDhw4EPfYkiTFrLgzMjIwGAw4HA68Xi+mFCNJFiMz9oXd9+SwjF8/w+joqFrOlpyczPT0NMPDw4TDYfR6PVlZWWrFwzvvvEMgEIiQ5dxcNXrQ2NjI9u3bEQSB6enpmBRDb2+vqtLXarXk5uZSV1eHxWJBq9UyPj7O2bNn8fv9HDp0SI16JCUlzYsiKA3KPgi6urqAyL1z4cIFNmzYEPP+VVddxYkTJ2IIx6c+9akY0uDz+WLSEMq/u7u7Vd0HoOoXrFar6hURPTYqkYz09HSVJChEYffu3Xz3lTfoGLND1HisfHrY6eKfnn+VJ79wB6WlpZSWlnL99der1stdXV3s378fQRAoLi5WdQaLVUQAOCddvPX0u0yN2MjIt7D9zqtJy1rcjffy5ctoNJoFy0//nPCxJAPvJ0UwEwjSOjbfPzsagizz4plm+oJXVvbRE7xiAKTValVvcIPBwMDAABUVFVRVValsWTEbmcuOm5ubefnll/nWt76lhruOHz+OTqdjw4YNdHZ2Mjg4yJYtW7j22msZGxtjeHiYAyNvAbGrq3iwZbhxFc+Gl5VDz/7XlxpkdKWdonOxD010C9loyLKMJ3vhwRYiK/zM/GkmzucQnDUeyBdDrND7yRBj9zeWJsd1CpTNIrJWQJglO4JfJu3/GcT5P4uRMnWg6CMEECQBf08ysv9KJMVXmY6/wIx+1MO8VL8AGr1I8bpMDAl620djdKSIl1+6jcbGMxSX9CMIEAzquNhVy7mza/H7/7hV/1Iw9M4EfYesV6o/ZiMfIQEGwk5W3Fm6aHOpuSp+AI0koA2K+KTIPTI8PExhYWGMA190BYHf71d7Aij5ZsUTQKn3V14LBoPqhDQXdrudvLw86urqIja2VmsM8VRQVlbGrl27GBsb49SpU4yNjSFJkpoHt1gsNDY2Iooi41udtL/YG19XIUSEsxnVqeq1iC5ls1gs5OXlYTKZcDgcDA4OqpNkYWEhZrMZSZLo7e1V+9ibzWaKi4tVgrBp0yZ1UvX5fDEEYXBwUA3ZQ2TsKCwsZO3atZjNZmRZxm63MzExQU9PD6dPn1a3PXv2LFNTUzEkISsrK2F4fHh4mJaWFgoLCxkfH49LBpT0Y19fH6IoUlBQMC96oNTk5+bmxrz+i1/8guLiYvbs2aNGRaMJg8PhULULCjFQ+kgoTaqU1yXgKMmRwSMOwpLM6f5h2oZGWFlUoF6/7OxssrOz2bJlC263m4sXL9LV1cWRI0d44403yMrKUolBUVFRjM5AlmWe/t/7efy//YFwWEKjEQmHJR7+p8f5/L9/hjv/5baEuoS+vj6Kioo+MFH7KPGxJAPvJ0UQXkJ3HUEQSLNYWFNUSFZWFpcvX2Z0dJSvfOUrGAzxldtKj/Bbb711Sf0ebDYbaWlpMQ92Z2cnVVVVDA4Osm/fPhoaGtixY4c6gBQWFuIfDfP2L08nPn8R3I0JJm8R3Dk+AqYQeu+V4ydSjCesUZ+FTiNxS9I0g6lgT5UQBfBOC0hzyswWdKzTifi3pWA44lKrAbRDATK+1It/SwqBNWbQChjqksnyCXR6NZGUgPLwigITn1tB1jNdGPtcEdIggCxFVu0r7izBkPb+jFymJnM49MYNaHUBdLogfp8RSfpoBEM+eyBCBODKRKesumSwX3Iz0eYkZ9XCveSjo0qRj1+ZMWVZJicnh6mpKcbGxubd23Pvh7l5faXFNkRWtzMzM+Tk5CBJUkx56/LlyzEYDJw7dw5ZlhkdHWV6eppPfepTlJWVMTU1peoKlGhBX18fv/zlL0lNTWXHjh2UlJTQ2trKe++9h9vtxm638+677wJQu6sC30iInvcGYgiBIApodRr+8dH7CSX7uHDhghplUGC329XVvCiK5OTkUFRUhF6vZ2Jigv7+fvx+v7oaTEtLi0TKXC6OHj1KMBhEFEXy8/NVclBUVBQjEFSqGJ555hm0Wi2Tk5Mx7dEtFgv5+fk0NDSQk5ODVqvl6aefJi8vD1mWOX/+vOpPIAgCmZmZ8yIJFosFQRB49dVXycvLY/PmzTz77LP09/czPT0d05pdIVThcJju7m5VV7AUOJ1OVq5ciUajwWKxLKj2l2WZmZmZeUJHl8ulEgar109gASIQtSO+98hj1BnEeSkI5b+lpaXU19cjyzK9vb10dXVx9uxZ3nnnHcxmM9XV1dTU1FBRUcHrjxzhkX99St19aLbXQEgK8+i//Q5zWhK3fDl+ubAkSfT19bFp06YlX68/JT52ZOD9pgiS9XoqMzLotdkWFGhLwG0bN7K3cTUAOTk5PPnkkzgcjnlMWUFPTw/Z2dlLbvxks9lUww9ADVlWV1fz9NNPU1FRwd69e+ex2oHpXkwZBnyOQHzrZBEyG9OQMhfJpQowk+FHP7y0W8bo1OFOFB2QQOvSc3BVGJ/+Smlfb66MyQ9XX9KQ4ot8F4tnYULguTML/Uk3eCV1H0JQxnjEhfGIC89fZ+O6WsQF6POcBPqTkCYNqvZDMmkZ/0IdeSMuKi5NIIRlkgtNZCxLmbeCDsnQH9LRG9bhlUWSBIkKbZBSTXBeViIU1BMKvj8i8cdirNme2A9CgNHTUwnJgDKhL5TWGh0dJT8/n8nJSXXSmyva02q1BKUQflHGIGjQySKhUAi/38+aNWtob29nZmaG5ORktVwvPT2dUCiE2+2mo6MDvV7P3r171VWc2+3m8ccfx2KxcPvtt3PjjTeyfft2mpubOXnyJG63W5109+3bhyiKrFq1igceeACbzca5c+dobW2NRBfGx8jdnYKQXcD4WRfTVg86o46SdbmkrTLx7oW3KSkpYfPmzVRWVjIxMUFTUxMjIyMx31WSJFU0CJEcvzLBi6LI2NgYly9fZmZmBkEQyM/PJysrSxXUXbx4kaamJiAiuIwmB4oA89Zbb2X16tWEw2EmJydjogjvvPNOjNfCzMwMtbW1rFmzhoyMDFWcOT4+zvj4OE1NTWq6RqvVYjabcTqdrFu3LqYxUUdHR0x0wGazodVqqayspKura8HKhrlQBKJLWXQJgoDZbMZsNlNQUBB3m27rBC8//ORiO2JN4xo2ZKSo2qyRkRE6OzvnRbySkpJUklBXV4csyzidTnp6ejh79iwCIqd/GD9ipeC3/+NZbvzSTrS6+ePi2NgYfr9/ydfrT42PHRl4v1UEgiBw77q1fOvgG3HfFwWBVFmm+cX9hPsus337dkpLS9Hr9XR1dcUlA7Is09PTw8qVK5d83na7PUYN3NXVhSAINDU1kZWVxac//el55UmdnZ1093Rz/3/czY/veSwywEeP8SLozVru+PatPMNLiU8gHo8QRTIzM9Va6GikD5mZrJwtJ4s3kYvQozHhnyX60ZEEnx6OVYe5vk0zqxkQSPKB1zCfFEh5ehzfLyX3B1aCPVcedilNg+euLHw3xq5E9GUzmP0yk9NGEARMyNQQoKZAQFOwcJ/0gAxHfGac6okK+GQBW0BDj6DjWuMMuj9hFVNYlLEtl5F2ZYEO6AogvOJBmIiaqGUS+htARKei0+kW7GgnyzJbtmwhLy+Pn/70p5jN5hiXPL9W5nxBgL5MiZAGkMPkO2C13UySI0hzczPl5eUMDw+rE3hWVhaTk5M0NDRgsVh4++23CQQCvPTSS+Tn5/P5z3+eI0eOMDg4iN1u51e/+hU5OTncfvvtXH311WzcuJELFy5w4sQJRkdH1Unt3LlznDt3jtzcXG644Qb27NnDpUuXOHv2LN3d3eStzyBvfYRg63Q6qqurueqqq5icnKSzs5PDhw9z8OBB8vPzqa2t5eabb450f2xpoa2tLaZcEiKRkN7eXlX0mJycTEVFBcXFxUiSxMjICJcvX1Y/l5ubS2NjIyaTiUAgwPj4uKoNUNKEw8PDGAwGiouLyc3NJTc3l4aGBvW3sNvtjIyM8NxzzyEIAs3NzaolsyJUzMvLY82aNeTl5WE0GpmYmGBkZISjR49iMploaWlRUxoQ6TI4MTGhRhHGx8exWCxqaqC/v5/S0tKE9xEkLiv8ICjPziQvNZkxl3vhjWQZ3dQ4ObWVbN68OWZxpFgqR6crlP/v6+vD6XTGiLgdA9P4XIl7BzjGnVw4cZFVW+fPJ319fWi12kWryv5c8LEjA+8nRaDgjvqVtIyN8XTreTSCQHh21SQKAhaTiSc//Slc/f0cPXqUtrY21q1bR1lZGV1dXTENQBSMj48zPT1NZWXlko4vyzI2m436+nr1tfb2djQaDUajkbvuumte6ZHf7+f111+nurqalIIkVn2xnP6jVuyXIvbCglYgb3UGxVuzEIMSmoBIWJ8gJSKAyRF7DEmWEERBHXz8Wpn+LJnRNAlZgOSBLHRFdgxi+IoOYVacKIwm49LpFyyZ9OtgIFOmckJAINLW9lhNmJAmihDMOuTlmo1s+Fw53skAVo+P9moILk8C7fydCzKY87zsnA4SliPz5lLm8OaAEZc811Q/8m+HrOFcwMh6Q2KdxH8VPElhWus9BK82Rq6JKMBaI/JnU+G7NoQjV0iSxpA4zBoOhxOmfwD27dvHDTfcwPr16zl16hQbN27k5MmT+LUyb9WGY0mbAGPpcCDNw3WDyaRMBVRRVVVVFd3d3UxOTlJVVcWFCxcwm8186lOf4vTp0/T19TE6OsoTTzzB+vXr2bVrF/v372dycpLx8XF+9rOfUVRUxCc/+Unq6+tZuXIlg4ODnDhxgs7OTpUUWK1WHnvsMQwGA5s3b+Yzn/kMfr+ftrY2mpubsVqtBINB2tvbaW9vJykpibq6Or785S+rjoPvvPMOR44cITMzk9raWj7zmc+QmZlJT08P7733HoODg/MiJG63m7a2Ntra2oCIGLKuro6ioiL8fj+Dg4P09fWpaYesrCwaGhpITU2lo6MDh8PBxYsX1Yk6PT09RnuQm5tLRkaG2qDnmmuuYeXKlfOEip2dnTEdHHNzc1UdwCc+8QnKyspwu92cPHmSU6dO4ff7uXz5Ms3Nzeq9oNVqcTgcmEwmjh8/TmlpKQUFBQlz4R82GdCIIl/avJ5vv34k7vuCLFOmE9AHfPzud78jIyODDRs2sHr1agwGQ0zzqYXg8/lUsnD69XOcZ36TqbnwuuM/9319fZSUlPxJSho/CP7/cZYfEt5vikCBIAh85/rr2L2siqfOtXCqu4e0pCQ+u24td9TXk5FkguxsVq1aRVNTk9oNUAntKU5eCrq7u9FqtUti1xBpGBIIBNQ0gcJk9Xo9n/vc5+J263rrrbeYmZmhsrKS1157jeQCE41fqKakoIS2cxeoa1xBz+VIs6JzzefIqEphosK5oMFMkl2PwRN58EfSJbpzJWzJgDxCdirkOQQuFMqEorsryhpkRyYVQT9JGdPIgkySw4Cl38zpHG1kJk6AEYtE5URk8krzCuxs19CbIzGYETlOihcqJkSKbBHCkJRlwLtKSyh/AaMcIpPUeCqIyGiWRAPAKwsMhnUL2CdHfBH6wzpWyT4MH3F0QBJkztd7COpmtRDK8TUCSDLytzJgKIhwKQgCCVMEChJVvkBkBbx//34g8my0trayfv16fmk9GTd6I8/6KBzLc7NnUqtqByYmJrjlllt47bXX6O7uJjc3F61Wy7PPPsvmzZtZt24dL7/8Mj6fj9OnT9PS0sJNN91EWloazz33HNPT0wwNDfHQQw9RUVHBbbfdRklJCSUlJdhsthhdgdKU6MiRI7z11ltUVFRwww03sGHDBiYnJ2lpaeHcuXNqA6HTp09z+vRp0tPTaWxs5KabbmJwcJCOjg6am5t55513SE1Npba2lm3btlFcXMzU1BTnz5+ntbU1JlqiwGazqZOyohtYu3YtBQUFuN1u+vv76e/vV/UTBoOBiooKsrOz0Wg02Gw2hoeHaW9vR5IkVbSo9D5QfjelgVK0Q6DX61VTGn19fVy8eBGItB8WRZHs7OyYcaqxsZGNGzcyOTnJb3/7W5KTk1XPgGAwyGOPPQYQt6lTZmYmoijidDrVhk4fFu5e38DlKTtPnj6nFDypC7RCo461PhszMwJ33303586d48CBA7z55pusXr2aDRs2LFo5oAghc3JySNGl8Zu/fybh9gAltfNX/uFwmP7+frZsme+f8OcKQV7syQe10YTT6VxyjvvPEa2trbzwwgv8wz/8wwdmq6FQiO985ztqLi8eZmZmOHLkCO+99x46nY6dO3eybt06NYz/xBNPoNFouPvuu5d0zIGBAX7zm9/wwAMPkJmZya9+9SusVit33XVXXEtQq9XKww8/zNq1azlz5gyyLGMwGNi1axcvv/wysiyrAi6AdevWUVpeyo8u/RJ3ru9KaeHsnZFrzObf6x5kvM/Kfzv2OzrzwrG+9VEdAuPOlzJc2xFbn394RQjXIqW+Fjdc2/n++GpbYZjuXHlRAeOtZzSICfsXX8FIWMtx/+J1ydsMHnI1i3ez/DBhzQnQVZvAZCgkw5szaL5vQ2PUsOaBKpIzzPM8LRRs27aNS5cuMTIy8r7OIyTKvLI6jLTIdd/Rn0TBjI6kpCQmJibQ6/XcdtttvPnmm0xOTqLX66mrq6OlpYXs7Gxuvvlmzp07F1PGmJ+fz6233orNZmP//v0xefPly5ezd+9e1a/e5/OpuoLp6Wn0en3Md09NTWXnzp1q1K2vr4/W1lba2trmuSDm5OSwYcMGGhoaGBoaoqOjg87OTlwuF0lJSVRXV7N8+XIqKioIh8P09EQMcAYGBhZ1VNTr9ZSUlFBXV4der+fZZ5+lpqYGp9OpahJSUlIoLS2lqKgIk8mEy+VieHiYgYEB9VnOzMyMiR5kZ2fP0xE98cQTTE9Pc999983TIUT/7hkZGeTm5tLR0UFJSQlDQ0M8+OCDvP7663R0dLBz506mpqZUTYISIdRoNGRlZalNij75yU+Sk5Ojiik/DJwfGeNHLx+k2zrB6uW17K2v5dpl5bz26qucOXMGo9HI/fffj0aj4b333uPMmTPMzMywbNkyNmzYQGVl5ZLO5V92f5uzb7YhhedHy0SNyOrtdXzv4H+b997Q0BCPPPII995775+8rHCp8/fHigz84Q9/wOPxcO+9937gfTgcDn70ox/xuc99btEw/yOPPILL5WJ6epq0tDS2b99OTU0N3//+97n++uu56qqrlnTMc+fOsX//fv71X/+VV199lZaWFjIyMvjqV786b1tZlnn00UeZmZnB5XKpNd8333wz+/bti1sKaDabIy5jyJGqgRpwyE40QZHtuVuo1y3HOjTGKWs3z2fFb7eaCIIMhTaB9ZevaBrOlIUZzFy4t70gQ9mEwOqB+Ep8e5LMUEYkL53sEyiZEjCEBIbTJU5VJQhzz9oJ77ywdJIxGtZwzL+4e9i1Bg85fwQZmLVCYAmFGCo6a2YYzw4m/pAjjPlvplh+RzFJ2f815Y3TBplD9Yt8dxlWDYqs9qYRDAbJzc2lv78fQRC45ZZbVH9/iKxMh4aGsNlsbN++nbKyMl544YWYssL169ezY8cOWltbeeONN2Im3NWrV7Nnzx614kGSJC5cuMDJkyfVPHwgEFBX0xqNhoaGBq677jo1h9/Z2UlLS8s84yNBECgqKmLLli1UVVWpqYTOzk6mpqbQ6/UsW7aM5cuXU1VVpVYatLe309LSoobPF0N9fT11dXXk5eVhtVrVyMHIyIhK6EtLS7FYLLz77rts27YNj8fD0NAQVqtVXQQopkjFxcVMT0+zf/9+7r77bqqqquYd88SJExw8eFD9DaxWawxBSElJUSumGhoauPbaa9VJ3uPxqMRgfHyczs5OvF6veo31en3cpk7xIptLQU9PD08++SRf/vKXYyzfjx07xptvvolGo+ELX/iC6u7a1tZGU1MTY2NjZGVlqcQukbvj6GUrX17/Tdx2T6xuSoCkNBM/P/2/Kaic7xh67Ngxjh8/zoMPPrig1fRHhb+QgTnw+/18//vfZ+fOnX9Uqcfg4CCPPvooDzzwwIKtSRWcOHGCw4cPc8899/D222/T1dVFeno6Dodj3g2cCEeOHOHs2bM0NDRw/PhxtFot11xzjapHGJl00jM0hVGvRXJbef21V9VQ7NyIAEQGM51OF7NCUsKWSoXCxYsXY5Ti6enpnCwN0ql1LlzqlwCGINzYcmUCtifJvLUi8eSxo11D2pwa/5Aoc7oizFj6lQoEWYiQh9UDIsWTcLAySEAPkjn+Q9h4WaRsaulTblCG/d4UpARpBS0yt5im48kUFsUUIhcwMIQWWRBIkcNUE2DZrAPDQhAEgb7VEv3JroTCB5OsZ8PxJPX3n9tRUAn9wpXyv7S0NMxmMyMjI/NW09HHV3sM6GRea1icCG0aMZE3ElTtiaurq2lvbwciOe+cnBxeeOEFJEmisLCQvLw8zpw5Q0lJCbfeeitdXV0cPnxYvS8NBgM33ngjy5cv5/jx4xw7dizmPr/qqqvYsWNHTG57cHCQkydPcuHCBXQ6HYIgxHy/vLw8du/erarAXS4X58+fp6WlRbVOjiYRlZWVbNu2Ta2y6OjooKOjg7GxMfX92tpa1XHQ7/fT29tLc3MzfX19S+rDkJWVpZa8ZWdnMzIyQn9/PwMDAwwNDalGSIrZTkFBAZIkMTw8zNDQEENDQ2olgV6vZ+XKlRQXF1NcXExGRoa6SlYWO4IgsHv3bjIzM3nqqafU6gylUVH0eRuNRvLz88nLy1P/m5mZyeOPP05qairXXXcdVquV8fFxJiYmsFqtTE5Oqr+h2WyO29RpobJsBYFAgO9+97vcdNNNrF27NuY9ZQElCAK33367KhiXZZmBgQFOnTqlVq00Njayfv36mGotBV6vlx985/8yccbNpaN9BH0hDCY9ddctQ7sszN8/+NW488Bvf/tbRFFccvT3vxJ/IQNz8GGkCCAiQHz22Wd58MEHF22dabPZ+PGPf8wdd9zB8uXLGRwc5JlnnsHtdlNSUsL111+/pBDSc889x/DwMHa7ncbGRs6ePcsDDzyApDHyvx47xIm2PnVbnShTkxGm1OzFYNCTn5+vmqYo9qbKT56UlER+fj49PRFXuuhBDlB7v3s8HtxuN6+vCOD5gAvLaDKg1WoJhoIcrw4zmcqclEMk990wIlExMp+xn6oIM2yJowmY3Uf2D0bhrcjKK1hpwPupTPzXpKqmRSUTAmv6xXm9BRbDuYCBiyE9C+VBanV+VukSK/XjYRgtbxO5j1Sr69nfoIAQW/EuSAhEUWQo10t3lW9BMqARRBrM5SS/GslDa7VadRBX7gelxTXAHXfcQTAY5Ny5c/T19S2qHygrK2NkZIRgMMhbNUHsyQtXNooS3NCiIVkTWZWnp6fjdrtpbGzk9OmIF8aKFSvYunUrf/jDH3A4HBgMBq699lpOnjyJ1+tlz549VFRU8NJLL6n3LUBBQQG33HIL6enpvPHGGzFpBVEU2bJlC1u3bo1Zpdntdk6dOkVzczPBYBCz2RxTFWM0Gtm8eTObNm1Sex+MjY3R0tLC+fPnmZmZiSFWRqORmpoatm3bploxKxGDgYEBtcPe8uXLqa2tJTU1FVmWmZiY4MKFC7S2tqpiQgXx/B40Gg35+flq5MHhcPD73/+eTZs2YbVaY4yQiouLKS0tpaSkhJaWFlpaWlixYoU6MUPEIjg6tfD666/j8XhUweOBAweQJImvfvWr6oQ5NTXFT37yE9asWUNqaqqqR1DM1nQ6HZIkkZOTw7p168jLy1M9EQDVEEohCcpfdEfK9PT0eSQhKysr5jf81a9+RVZWFp/4xCfm3W/d3d38/ve/R5IkrrvuOq6++uqY951OJ6dPn6a5uRmv16tWk5SXl6vX/cUXX+TChQv83d/9HaeaTnHmVDP/9M2vI8syv/zlL9Fqtdx3330xJnHhcJjvfe97bNu2bd4x/xT4CxmYgw8jRQBw6tQpDh48yL/9278tKef0s5/9jIKCAm677TYAfvzjH5ORkYHL5WJ8fJza2lp27NiRMErw0EMPYbfb2bhxI8FgkN7eXu76/D18/r8/hc01QziOf0BVWoBay/yyGK1WO88CFK64JMZbpSgk4fCKEC4TS5PfR39egkJ7bJqgO0fifMnC4fx/KTrDSrefI6dWY3NF7jm3QeaNRKHosIy2y4vlmwOzBwZk8N2ZhXFvFhXjIvkOAbcBRi0yIVEm1SuQ7xDQLBLuCMtw0m9iWNJxxQ4xwkCEbD9ZJTNcfVFEn6CL31wEgRdIIQRXjJBmIejDaDL85GqD5AdliqcETHHskEMamaarXIQ1LPi7fEGzhb632ub95mlpabhcLvLy8lS3t+hoUDRxWAg6nY5Nmzbh8/l4ueMk71THt6BGhuoxgVVj+hjVvXJvFRUVMTIygiRJ5Ofnc8cdd/DGG29w4cIFAK6++mrcbjctLS3U1NSwd+9eBgcHeemll2Lqx5XUQSgU4tVXX6Wjo0N9T6vVsn37djZu3BgzePv9fpqbm2lqasLpdJKWlobb7VbPUxAEKisr2bNnjypAC4fD9Pb20tLSQmdnp1oOGN3CuL6+nq1bt2I0GnG73XR1ddHZ2Ulvb68a+aitrWX58uXqfjs6OnjmmWcoKytjeHh4XvMxxfUz+rdUfqfdu3ezYsUKzGYzo6OjalphYGBA1VWkpaWxatUqSktLyc7OZnx8nKGhIQYHfGhlUAAAIABJREFUBxkeHo7RXwCUlpYyOjpKcnLyvLTkvn376O3t5Wtf+5o6yStCxZGREQ4dOkRycrLa6EgRKirRA+UvOgIQDAZjvBGUP6UcUylnVsjB8PAwIyMjfP3rX487Ho+MjPDYY48RDAZZs2YNN99887ztgsEg58+fp6mpifHxcbKzs9mwYQPp6ek89dRT3Hjjjaxfv57XXnuNy5cv8+UvfxmIlH0+8sgjbN++PcaISdF4felLX1rQM+GjxF/IQBQ+rBQBwOHDh2lra+Pv//7vl7z9mTNn+Od//mecTicPPfQQn/nMZ6iurqatrY0jR47gdDpZvXo127Ztmxe16Ovr4/HHHyc3N5f777+fH/7wh9TX19PlMPLkgTNI8YyEAJDZWeTBpJXjri6WCpPJhCAI+Hw+fJtKeNXfg7zQ2i+BgHBbp4YMz6zRjyDzakOYYIK0fYbWyysrX0YOaXh0326mHGkRAlG8wGQThcw7LyJ6YolG499WYcwzcKZcYjgjYm+MHPE30Adh3WWRXFfi1MGlbInWNBFpXA9+EQwSYl4AISWECOQ6YVP30rUI3eg4hXEOEZDRFnrR5kbKlYSoa7p8RKRmVFCjGspE6kgL0bbSExHvKeaKiEhI/HXJbnxvDqj2vPEQTQDMZjN79+5Vu+Y9/PDDWK1W1QRnLpR7S6vVUlRUxHF7D2fLJILaWc40e0pVVoF1U2Z8Xh+ZmZnYbDbV7z/amVCBVqulsbERQRBUy13F6//QoUMIgsDevXspLy/n8OHDnDp1Sv2s0Whkz549rFq1Crvdzv79+xkYGFDf1+v17Nq1izVr1sRMDJIkqWV4g4ODqv1vNNlIT09n+/bt1NfXq5/1+SJuhS0tLWoEAK48bxkZGaxdu5YNGzag1Wrx+XxcvHgx4gPS3U0wGCQ7O5vly5fjcDjo7e3l61//OhApQ+7q6qKlpSVm1axce8XfPxopKSlqU56ysjL0ej2PP/444+PjlJaWMjg4qEY18vPz1dRCUVER09PTdHR0cPTo0Zh96nQ6Kisr1QhCQUEBTqeTn/70p2qZaTScTif/8R//wV133UVZWRlWq5XR0VFVqDg+Pq6ed0ZGxrw0w1wdgdfrnUcQxsfHVT8MrVYbV4+QnJyM3W7n17/+NV6vl4qKCu688864JZGyLNPf309TU5Nqj202m7nnnnuwWCzs27cPm83GPffco37m0KFDnDx5kvvvv19NFxw9epQTJ07w4IMPzrOV/1PgL2QgCh9WigCIe0MkgqIq/eIXv4jVauX111/nwQcfVNlwKBTizJkzvP322/j9fjZs2MA111yDyWTCarXy6KOPEggE+OQnP4nFYlH3dc/3X8a5QH1rBDI16QGWpV8JXRuNRiRJWlBJPhe33XYbb731Fm63m8zMTAbt4xxcEYyt9b9yOCCqCaBwZTJY3S9SPnnloZhIkThes7jN829qDlGfZKNvOJenXt1JV55ER6G0qGYh868uITqiBkgR8tdmMPWV3AVTDMJsxUN6lEYhKMBls4b+JJGQAK60MJqkIBrtwo/M9ec1JPuXFh14DwOX0F9JDwDaPC/aAu/cQIGKhn6Riokr11IUxUiXQMHHSIGfqcwQkiiTNq2jaNRAsiP+YKR093O73Vx99dW888476nv19fV84hOfQBAEXnnlFc6ePUtWVhbj4+NxCaXiSW+1WiODs1bEUWDCGpxGF4KtmcsY6oyE9JUqlvz8fEZHR8nOzmZiYoLi4mIGBwdZsWIFvb2980yPFOKj1WrZsmULQ0NDdHd309jYyO7du7HZbLzwwgtq6BsiqYO9e/eSl5fHyMgI+/bti3nfZDJx4403UldXN2+1ODQ0FKMrSElJwWazzRMc7ty5M6YDnt1up7W1lZaWFux2ewzREgSBvLw8Nm7cqJKJYDBIT08PnZ2ddHV14fP50Ov1rFmzhuXLl1NUVKROKIrW4Pz58yqJiIZGo0EQhHnRHIXIXXvttVx99dVoNBomJyfVyIFiQQwRvURxZSojoZdJKhwATQi/I4Vk71ZmhooYHh6JsVT2+XzMzMxw3333xeTcoyug4uXUlbLraIIwNjamjk0pKSnzCMLcagRZlhkfH+cXv/gF9fX1apfJiYkJ9RqYTCaV2CrXNysriy9+8YsJOxe+/vrrNDU1qam0mpoaPB4PBoMhRgcQCoV4+OGH0ev13HvvvYiiyOOPP47BYODOO+9ccP8fJf5CBqLwYaUIICIMMRqNfPrTn17S9rIs84Mf/ICGhgampqbwer188YtfnLed3+/nxIkTnDhxAkEQWLt2La2trRgMBqamprj//vtpb2/n7Nmz/OM/fp1NX/pRwuMKyJSnS2wsiaQFlLKfuboAQRDIyMhAkiTsdjvFxcXzbFej4TDJnFgWsRAWZyd7WQCzD67q1zFmDjOaLiEJkDUjstpvQRqLVU+PpkmcXLY4GfjpsrfYlBqpXvjRU7dxSTTxbnXizwmOEJlf6FbFhQrMFUn0/ahk4c/JUGAX2NAbSWW4tAKv5emZUX0Trvj8msx+DKY44XN5PvFJhHMY6IgmA4KMscGOsJD4WAZjCHa3aGJ6N0QLAKOh0+nU+vp4UMLLdXV1qoivpqaGrq4u1q9fzw033EBrayv79u0jOTlZzadHpw+U9JIoigQCgZgIgsViwe12EwwGVSc7URQxmUx4PB7Kysro6+tTiUFFRQW9vb1cc8019PX1MTQ0hCzLNDQ0oNFouHDhQgxJMJvNeL1eDAaDWh549uxZDh06FDMhrlu3jp07d2I0Gunu7ubFF1+McQ9MSUnh5ptvZtmyZfNIgdPppKmpiebmZgKBADk5Odjt9hhCnZ+fz65du2JsZ2VZZmhoiJaWFtrb2/H5fDHXTaPRUFJSwjXXXKO2t1XEexUVFYyPj+N2uzGbzdTW1lJbW0t5ebmaL1cmwosXL3Ly5Mm4zaX0+khKJvpZFkVRTU9UVlaqE7Xdbqe/v5++iXfxlTyJIIYRZjtvylKkf0mB4To2F3yb8fEJBgcHGRoaoq+vT72WqampauTA7/fz1ltv8S//8i+LCgGjr5nNZospdRwdHVW/m8lkUlML+fn55Ofnk5GRwc9+9jPKy8u56aabgEiEx+FwzBMtTk1NxYhLS0pKKCwsJDs7G0efG5/djyUnndLGQn796K/ZuHEjW7duVVMIExMTqiC7vr5ejS4MDQ3x88cfIXxVCaflcab8blJFA3dWbuKu8k2k6z+adskL4S9kYBYfZooAUG+8G264YcmfefHFF+nv78ftdrNly5aEjT48Hg9vvvkmzc3NCIJAXV0dbW1tfPOb3+TXv/41JSUl3HLLLVz/1Z/jcCeoL0emNj1AVXr8KIDSHdFqtbJ8+fKY3Go0UlJS0Ov1MSVdpRXlpG2q4aJ/kva2NpJGZyjy6NRa3Lm31Fz1ukcvc3BVYuW5gMwr9S+Rp498x8dfvI7+0RwO1EeISNzogCST9PtJzH+YmrszdKuSGf12UcKogiBH/AdkBJ4v1OPWCjGr9miYU73o9HO+w/skA1OIHBCudH8TUwMYliWwWp3Fto4rKReNRkNycrJarqbT6fjGN75B1//H3nvHx1Weed/fc6bPqGvUe5ds2ZLcGzIuVFeMIeAFskkIm2wqCSQh2d0n+2yeZxOyKW/IkyxkQ1ggFAdTHMDYYHC3bFnNkq1m9d6lGY1GU8/7x3Bua6xi2IdN9n2z1+fjj+2ZM6fc55z7vsrv+v0aGzl+/HiQAJC6eKpCRHO9+iaTicjISHp7e8nPz2fp0qXs3x8gXlHT+deWFRwOB3fddRd+v5+LFy/S3NwctP21xzKbzfj9fqanp8nJyaG5uZnYlETqR3tIT0llorGT9WvWYbPZhJOyatUqbr75Zs6cOcP7778PBOryqrOsWnx8PDExMWIhUM1oNHLzzTcLbpDa2loOHToU5FxERkayc+fOObnkXS4X1dXVlJWVMT4+TkxMDF6vNwjwZzQaWbt2bZAqIQSix6amJmpqarhy5YrIcKgOnE6nIzs7m/j4eD744AMeffRRTCZTEJfB2NgYBoNBcBlkZWWJlrgTJ05QVlbGjh07uHTpEs3NzbOyf7Iso9frcblcQffCYDCQkZERKClkpHBi7K+Y9o0TIBsJNkUBe90aYuWtorQQERHBSy+9RHd3N0uXLhU1fPX5SE1NFcDElJSUj91GqKoYXusgzHze9Xq9AAkmJCQQExMzJ+uf1+tlYGCA119/neHh4UD5s99L7cstTI9dHS+tSUP2Lcl8/vsPkJiYKLotnnjiiUBZ7kMmxmXLlrFy5UpcBolPHf0F44oraH6RkYg3hfPv6x4ixvjJES99XPtvZ+BD+yRLBACPP/4469at+1jMUo2Njbz00ksA1wWVeDwennvuOYaGhkhNTaWpqQlJkrjppps4cuQI9957Lzk5OTz+7GFePX6ZeSEDH2IGYiNDsFgs+Hw+bDbbvFHiXDaTmAgCtb19+/aJTMLBgwe5ePEiMDvjMJ+p0dGpHC/DYXMv6hr8rA3r5xc5J8VnT/7hdgZHIxkzK5zK8+GTZ9ISB1IUuropwr/fjeSZfR7mzyXSuTPsumREOyo19Bo0HI1bSGRIQavzERI+u0yzpU5DuEuecyzmEvV5HzMDaFAkCTnCjSHr+s7ADQ0aYhxzH2PdunXcdNNNQCBC+slPfiLuoaoBoNFoKCwspKamBoDCwkJBmRsRESHQ4dcuKNd2o8y06OhovvzlLwOB+eKpp57C4/HgdrvnfDasVis2m40pr4vewnCqtKOCsMikaMjoUbgnaQVmo0mUMLKzs9m7dy99fX28/PLLuFwujEYjd9xxB01NTVRUVAiJ8PHx8TnPMyYmht27d5OYmIjP5+P8+fNBrYoQIBfatWvXnO+p3++nsbGRsrIyOjs7CQsLIywsTIAfIfAuZGdnc/PNN89iH3U4HNTV1XHx4kV6e3tnpfYlSaKkpISNGzeKuVbNAqgti4ODg2i1WrKzs8nPzxeUwyqOSd2+trY2qPwz0wwGg8ACqRaa2kvSDZVzbh/YsYTstjJycicDA4GMXVhYGHFxcTQ3N3PjjTdSWlqKz+fjwIEDdHd3k5qaSldXl8geREZGBnUuxMbG/ofq6k6nUzgH9fX1dHd3i+9UNcmZWYS4uDiRofD5fLz22mucPVxO7e8CUtZzTV1ZtyeQsDIajUZDTEwMo6OjJCYmsnTpUrq6urh06VIAfFhkpEU7iX8OLJVGkimNzeNnK/Z97Gv8pOy/nYEP7ZMsEajsg7t37xZiIR/FPB4P//zP/4xWq+Wxxx6btwvB7/ezf/9+WltbeeCBB0hOTubFF18UsqgQqIOOjo4y4XBxqtfMtE+akyZ3x5pMHt63hdDQUHw+H93d3VRWVorF+//GPurCr9q1mQEIZAeOF/hwa4MdAg1+InUu/j3/PRL0UygKjIyH8ev92wPfp4zgyh6ikTDaHNF4/Rosbj+a34+i++PobEdABlOUgejHMqjKYX7woQJGD9x6UcO5KB0NoZp5swLqDyKsjqDfx9hhQ9PHY0x0A6cw0y9pkfVeDEtmg/RmmgTcWq3B6JXmLA88/PDD4h3t7e3lN7/5jfjOZDKJXvMNGzZw6tQpINgZyM3N5d5770VRFA4dOkR5eTnh4eHY7XaR3p91Th8+D4sXLyYlJYXo6GgcDgevv/46W7duZXp6mgsXLszCARgsJt5NmWTEMjeOI21Y4q/DS0hOTubQoUNAYDHft28fGo2Gl19+WSwCN954I9nZ2bzxxhuMjo4KiuCuri5qamqCsgcQyCoUFBSQnp6O1WqlpqZGSByrlpSUxM6dO+flE+np6aGsrIxLly6h0+lITk5mYGAgaIwiIyPZuHEjS5YsmbXoDQ0NUVNTw8WLF8ViOfPdCgsLo7i4mPXr1wcR44yOjoqMQXd3N5IkodVqufnmm8nLyxP0vwcOHKCtrY3Pf/7z9Pb2Ul9fT2Nj4ywnT9U4CcmvJCL3iigPzGd7s87gnvbS2dkpuhV6enoABBHS8PAwZrOZT3/600BgDenq6hLlBRXQqtfrSUpKClJsvF7L9rU2NjbGL37xC/bu3Ssc2bmAitHR0UHOwQ/2/JyeSwPz9sKaw0z86Mz3GLeNMTg4SHV1NZIkibnMYDDgDzWwP210QVCzBLyz5VHijH+etfO/nQE++RKB+tDdf//9ZGZmfqzf/vCHP0Sj0fDoo4/O+b2iKLz55ptUVVVx1113YTAYBLL12mheXVynvRKXxkz0Oa4WmSNCTHx2x2puWZFOU1MTdXV19PX1BS3GsiwLVjNJkkStdr62wpiYGGRZZmxs7GNlFq41tTasmlOn0BzvpyvWh1uSMcsedltb+ev4Bqy6aZVygJffKaWpIxl9cRu63H5Rw4Sr9czJE6lU/r0T57DrKpWyAoaSUPQPJuIIkxhUMxHzdDws6pHJ65c5G6WlKVSD/2M6A+lDEkVdchDN8apVqzAajZw4cWLBsRlBphsdPblOXKFzd0xICiSNy9wyZmV8fBxJkoIi2pycHPbtC0QgXq+XX/3qVyKNLUkSGzdu5NixY7P2O7POn56eLiZwRVE4ePAg1dXVyLJMRESEQLTPJCJSn0e1F38mYA4gKyuLmJgYWlpahGQxQHu0n6r0hbtDNjVoWZOcT1FREQcOHBCsevv27SMhIYGjR4+KRTw9PZ3du3dTVlZGWVkZaWlp7N69m4iICPr6+mYBDGea2WwmLi6OqakpEfWqlpGRwfbt2+ckpYEArkDlK5ieniY9PR232x3E3KfValm6dCmbN28WqfLRKScv1NRwsL6e0UkHBucUBX4fyW43JqMxKKVvtVpZuXIly5cvD+qzt9ls/OEPf2BoaEgwKqoiRhcuXJhFm65mDZqbm6mrqwu6VmtRA9GLWq7jDEjclXUW+Rpgi0rGlpuby/T0tOjeMBqNpKamirJCQkICsizj8Xjo7e0VzoHa4aBe68zSgtVqXbCNW1EU0WWlZsVU8/l8DA0NBTkI/f39TI44OP/TheWJAe75XzvI3ZCB2+3m1KlTpKamitKY0+nkimzj/ZTZDvK19qtVD7AuZjZ1/J/C/tsZ4JMvEagI2Y/DHggB9bKf/OQnADzyyCOz6mZTU1McOnSIuro6IiIimJiYQFEUdDqdEFlRJ9jIyEicTqeIsnJzc7lYf4UlK9ZjMRtxjnTT2dEuIkAIeLBJ6alUuHrp1E6h0+uJsikkj0gobu+cYEGVUrWlpWVeOVuDwYDRaMRut8+K/CVJCvKiFzIFhSUFV7htdSVGgxe/EhDem5rW886plVxqSUcTN45x4+X596HA1FsljF/yYeucQpJg7JYwWhZrRVdD4MSYrasARE3ChiYNGkWi1SJzPGbhMoFG6yM0Yvrajz8EIV4lNZrZZ62aLMtkZmZy5cqVWXveuPs2Hmt/k2lNMFWzpIDJHcALGL2SiEJnZgZmRvWvv/46tbW1mEwmpqamiImJITo6moaGBgChW3GtJSYm8vnPf1783+/388wzz9DV1QUEavJDQ0Oznhl1fnj44Yfx+/2MjIzQ3d3NiRMnCA0NFc7kTDuW72XMwrzOgKTAajmelKpxUlNT2bhxI/v37xfP4549e1i0aBGNjY0cOHAAr9eLyWTirrvuEmPgcrm49dZbKSoqQlEUysvLhUzwzNa/tLQ0Jicn6enpmROMB4Eyxfbt2+edS9xuN9XV1Zw7d47R0VESEhIIDQ2d5WgnJiaSv3o1j5w6w6jTiV8FtSkKiiSxPi6WLYqf9rY2ZFnGYDCI91mSJJKSkli3bh35+flIksSBAweYnJzk7rvvprGxkfr6eiFEFBcXR0FBAQUFBbN0CiDQFtna2kp1dTU94+Wk3nxq7ptBwPF29MUwXbeNzMxMsrKySEtLE+n3f/vl01x4rZaJ5inGRyaIy7KyZm8JplQt3T3deL1edDqdEJNKS0sjKSlJOJFjY2NBzoHavWI0GoMolZOSkmaBEl955RUmJiY+UgZYURSqT9XyrY3/dN1t83alkLYuIdCxY7OJspBWq0Wn09Gtn+YFU9t19/Nvaz7LiuiM6273n2H/7QzwyZYIICAb/Morr/Dtb38bo/GjU/HV1NTw+uuvA7Br1y4yMjKCUmxqtKLVarFYLExPTwcBr1Qk9te+9jUiIiLo7+/nySefDIrIZk42auS/aNEi8vLyGNa5+eK5f2fMMxXoWyewBup8UNqqJ8x2dcFeqARw7XHm2zYkJITp6el5CWvm+51W6yUntYcQ0zQ2h5nmzkT8/kAEYlhfjyZhTGQErjXFD57GJDy1aQD0RPo5nzWPI6IeWgKDO6B8mNN/lXjIB/wh2cC0hvkBhKFOdIa5QZClDRqiJz9ae+FcJRSvSUt9tIsOq4JHC5F6M2s0iUhn2jBch9TozjvvZHx8nKNHj6LT6YSztnr1aq5cucLIyAiSJHH33Xfz8ssvB4Zhxv2IjIzkq1/9atA+ZzqzmZmZdHR04PP5ghzX6OhoRkZGWLRoUVCnzenTpzl69CgPPfQQVquVhoYGXn31VVJTU/nXiFamdQtPP3Hj8GjcRsrLy4mLi2Pbtm288sorjI2N4fP52LJlC+vXr2d8fJyXXnpJgAZvvPFGVq5cyZEjR6ipqaGgoIDt27djNpux2Wy8/fbbopdcvQfLly9n06ZNImptbm7m8uXLs9Lq4eHhFBUVkZmZSUJCwixue7/fL1D+HR0dhIWFkZaWRnd3N2NjYyjAQaMZmyzP+3x978aN7M3N4eLFi1y8eFEg2WVZFo6BRqMhIyMDl8uFyWTi3nvvBQLEaIcOHWLLli2i48DlchEVFSVIjpKSAkp7HR0dnDp1ipaWFiIiwknecgqvoYtr23HU13XgRCkaZ+CYk5OTyLJMcnIyhmkzv3/0IG6n+2qbsSyh+BW23l/KN/7tC0H6CioRkkajITk5OYjrQB1Pl8sl6JRVJ0F1BOPi4oJKC1euXOHIkSN85zvfWVBWWTXbiJ29cZ9DmR90BcD/fvu7rLy1BJvNxs9+9rNZ4nAun4et7z2O3Tt/m3e4zsS7W76FXvPnEQn+i3cGPukSAcC5c+d47733+O53v/uR1bcUReHFF19kcHBQAKrURfJaUhO17Ud9MfR6Pb/73e9ISkpCr9ezd+9eGhoaOHLkyJzp+oSEBDZt2kRmZqZIJdo8TnZ88DNsHufs0pgCWh/cXKfB4L3+9agUo2vXriUqKkqAeJqbm/+vygfXml6vR5bloIyEafsFZPPC/Aje3ghcpwIc5B8UeBk3s2AK+oYGmejJqyQ+M21YL3E4To9HvuoQqJGbweTGZJn7XCQFMsa0FAVr22C1Wlm8eDEnT578SNkS1SwhFjZv2szZs2dRFIWRkRGys7PnzCrMtMjIyKA+97vuuksIVYWGhrJx40bhoGZkZNDWdjW6KSkpobS0lIiIq3LHv/zlLxkdHQ3KUs3EIMDVboXHHntMoLl9Ph9PPvkkRqORz3zmM0iSJIRkqtaH0j49tmBmYIk3kqwaO6WlpZw/f56IiAj27t3LH//4Rzo7O1EUheLiYrZv3y5wDpWVleK67rzzTjo6OnjzzTeRZZmdO3eSm5sLBIC9b775psjcSJKEwWBg69atlJSUiBp/e3s7r7/++rwCQzExMSQmJoo/8fHx4vr7+vooKyujrq4OrVZLbm4u9RMT/G50fMH7lxgayvGHHkT+0FHr6+ujpqaGuro6pqamMJvN+Hw+8d7JsszixYtZuXIlL7zwAgUFBezcuRMIlIza2tpoaGigoaGBqakpTCYTsizjcDiIjY1lw4YNLF68GLcywet19yFZBlH8UoA3hADjZv+5pUy0ply9P5JEWFgYOq2Ot797CrfDO2/9/eGnvsDtD16Vjvf7/UHOQUdHB06nE1mWSUxMFHNgSkqKCLwURWF4eDjIOVADKaPRyPT0NMuWLWPJkiUkJSVd1yn4x73/wpk3yudUJAQwRxp5sespzGYTg4OD/PrXv+azn/0sKSlXx2BycpKvHXiCCuvc2SSAr+ffwl9n/fmkjD/q+q35/ve///3r7czlcvHDH/6Qxx577CP3jP657fLly1y+fJkdO3Z8rCh+IVPlStesWTPvNn6/n76+Purq6jhz5gxvv/02AwMDuFwuUStTF1Wfz4fb7cZqtbJnzx62bdvGihUryMzMJCoqSuin2+12nE4nJ06coKmpKQgQs23bNm6++WY0Gg1NTU00NTWh1WpJSEhgYmKCn548wEXP4NwTrgR+CXQ+CesckWxISAjr168nNzcXm80m+p6vXLlCY2MjnZ2dTExMiEVbpUqdaRqN5iOBDVNSUoIY7q4Fxuky+5EM81PjKn5QJiz4uq24NQq1qXOA0oJ+AKEuCevk3KkGsw9yJn3oFHDJEnpFIdGpIEVMo7VcR47W7Sdr0hhUOzcajTQ0NHxk4KW6ELndbpqampiamsLj8WC1Wtm9e3cQ4x4Ej7NGo0HxKgxcHsXWPYXf60fR+xkeHkan0wW02kND6ezsxO/3C6S0+tuJiQlOnz6N3W4nLi4Oo9FIX18f4+PjQdfk8XiCjpuUlMTY2Bgej0co4smyjNVq5eTJk0RERARIbVJS6OjoYGR8jL6QBcZSgiVdMssy8rlw4QI33HADbW1tNDY2snfvXqamphgcHGRgYID29nYWLVrE4sWLiYyMpKmpifHxcaqrqykuLqa0tJS+vj6OHz+O3W4nIyODuLg4VqxYgcfjEUA8n89HU1MTzc3NxMfHExYWRkREBKtXryY2NpbOzs6gTIEkSYKD4eLFi1RWVnL69GkaGxvp7e1FkiQWLVrE+vXrkWWZuro6quyT9F8nSrS73dxXXIRZr0eSJEJDQ8nJyWHNmjUkJibicrnEQqi+dwMDA1RVVeH1eklMTCQlJUVwTURHR5OTk0NoaGigZj45id/vFyqmKlfE2LBxVctXAAAgAElEQVSdEwfGyEveRF/vICmxS5nsTKHj+CIcA5EUFBSg0+kE54TL5aKzoo+B6gWcGwna6zu47cGrglHqNSUnJ1NYWMiaNWuJjkrBYo5Aknw0NQe6Q86cOUNDQwPDw8N4vV5iYmJITU0lLy+PlStXsnr1atLT0wkJCRGlhaqqKnEPVJZCg8EgOihUy1mWwbvPHcfruYae/UNcUe4dybQPtmDEzKlXznPpdCNJCUmk56ciSRJ9fX089dRTWEZcRMRa6ZamkLgqICpJ8OnMDXwhZ9MnJt38H7GPun7//zYz8EmXCABee+01xsfHg0iDPB6P0BTv7Oykq6sLt9uNLMuEhYUJTW+4mmZfsmQJmZmZHD58mLi4OO677z4RSYyPj1NTUyNaiGYqzanlAjU6v+mmm4IeMrvdzgcffEB1dbXQGTiV52coZAGQlgIRjgBQC672hqsgmZlmtVrJysoiISEBn8/He++9h8vl+liR7nx2vQ4F3eJOdAXd85YJAKbP5uDrisGlVXi7+Do8BgoUfAgYvJ6ZzWYhxfpBvpfx69S504dlijvkOcdQtWuj6uvZfMRC6vmp2SVFUeg5M0zXySF8rqv3JSzBQub2eEISTWi1WsLDw3E4HExPT5OZmUlbW5sY/0cffVRMqG63W4jRHD16FLiqbwGBNjxVgU6r1YqF6dqumQMHDtDa2sqXv/xlTCYTExMTPPHUr/kg38uY7J7VliUhsS46i4IKOx63h9TUVOrq6ti6dSvnz59HlmXuv/9+qqurOXnyJBqNhrCwMP7qr/6K6OhoBgcHhdiRoihs2rSJDRs2UFlZyZEjRwgJCeGOO+4QUV5fXx8HDx6kv78fuNoGWlJSwtatWwVbnd/vp7KyUjz7qmm1WtatWycIg3p7e+nt7RWASVmWCQkJQaPRcNY5Tbl8vW4V+N85Wdy+ebPoDrjWnE4nF+pPcKrqCF4nyBOReL2+oHcpIiKC4uJi9Ho958+fZ3x8nOzsbDZs2EBqaqpozauvrxecFBaLhYKCAi5cuMB3vvMdWltbBdeETqfjC1/4AmazmZaWFi5fvsw7vzxG1+lBlOtMA+v/bjHJqckCb6CyK775eiUvPX+GwYHAPBkSYmTnncu5fedienu7ReZAFUGKiYkRmYO0tDQxPi+88ILQaJiJPVAd3ZCQkKC2xoSEBPpbB3nykWc591alGLP0JSlErjJhjNPS/vYAfdUj6kMJCiTlJLDvn3dRVncaRVEoLS0lKSmJfzvwAiOpJiwJ0Qy1dPOje75Mamhwa+mfw/6iywT/GSUCgGeffRaDwcCyZctE3Usl2NDpdEKFzGazCbBMSEgINpuN++67j+TkZH7961+TlJREZ2cnBoOB++67j87OTqqrq+nq6gqaYFQGsYiICP72b/+W559/nra2tiC6WNXGx8eprKykqqqKyclJgfY+nu9jNGThWxw2BVsuB0cq6v1WaWZV/vHu7m4OHTr0HxK20Wg0PPzww/z2t78VYDI1vXc9k4xuTLdWgdY3yyFQ/KA4jDgPF4M/wMn/VrEf7wLiPQAbGmVi7B+9x1mv19MRC2VxUwvud2O9huipQDSWlpY2C6h3rSMwF25AtY8iFpSdnU1fXx8Oh4PO44N0HhuctY0kS0gaKHkoh4IVuQwPD4vo7lpHrLS0lE2bNuFyuTh//jxnzpzB7XaLcywqKhIcBaZwC62mMcYiPfhlSNfHortkZ/eWbaxatUrs026388tf/pKlS5cKprjLly/z/Gv76V0dQ/V0vxhTraRhT8pyHll0G9OOKZ5++mk0Gg1JSUnU1tZyyy23UF5ejsfj4f7776erq4s333xTOCP33HMP6enpuFwuoToHV8sGLpeL1157jZ6eHtavX8+NN96IRqPB7/dTXl4ueAf8fj+yLKPT6di6dSvLli0TGRuPx8OZM2c4efJkEJhSp9NRWFhIaGio4ONXgwFZlpFlmSGfnz+a5yffkYBIv5/tzoAjmZiYyJYtW4LU9IZd7bzb9wQ9zrqrP5w24L6Yiqc9BovFgkajCcq2GY1GVq9eTWlp6Zy9/UeOHOHs2bOCIlods4SEBDHeGo0GrVYrsBc+n4+O9wfoPj20sDMgwa6fb8RoMjI6OorT6USv1zPYE0pd9ezyiyRJLF+ZwQ8e/xQabeBcJyYmgsoKartoVFQUqampuN1umpub+fa3vx3UceFwOIJKCz09PXi9XqH+mJycTLgpgrcOvIMHFw997UGsVitfWPtNhhrGZ5U+JFlC1kmUfCGbvfftYfny5Rw+fJiysjJKS0vJyspakIr5T21/0c7AJ9lFYLfbBdivsrJSvPhGo1H08E9MTODz+TAYDLPaaJ599lnMZjOf+tSnAHjrrbe4cOFC0AulmtFoJDklGWNeIo06O7XNDcgjU9yTux6rIYQjR46QkJAgJDP9fj/Nzc1UVFTQ3NyMRqMRimtut5uQkBAuxDppiHTNy7wnKZA2LFPSEaCJ9Xq9syLQ0NBQwsLCGBkZCVq4ZVkmNzdXsKrNR2EMgZd706ZNFBcX89Of/nQWAc/MBWkgzM+VOD/DoYHzi7FDTr+GWJ0Dw4Z6ZJMHxf9hHV9W8I2bcZ0qQJkKpMAa4/1cTl5gZlIgZBq2XtJcV8pYkiSsViuZmZmcP38eL35O5PuYMM+tz5AyIrG8PdBNIEkSFouFqampORd7ta4/n6mOgOrY5eXlMTU1JZD915pv2k/Zv9Sj+OZ5pWWwFoTxdy99Q1Dk9vb2YjAYZokQpaSkkJOTQ1paGlarlfPnzwvxGtVBdJh9XFziwKO/JqpXoLg9in/53N8FfX727FmOHDkSRLx18OBB6urq2PnAp3j6yGs47HYy5Qge/dLXxII1MjLC7373O0JCQoiNjaWuro7bbruNCxcuMDk5yX333YfD4WD//v2ifLFjxw5KSkpQFIXz589z+PBhJEnCZDKxd+9eUlNTOXXqFMePHyc2NpY77rhDTNw2m41Dhw7R0NAQ1BUTHx/Ptm3bSE5ORlEUJiYmaG9vp7y8PKiNUDWr1UpOTg6JiYmCOleSJJxOJw/84RWqB4fm4PkL2F8nJbDmQ8ClGtmazWZWrVpF/vJUXu75Jh6/E2XGHtRW3CXS3bQf94osh16vR6fTiSyVLMukpKSwfv16EhMTGR8fp6+vj3feeYfo6GjCwsLo6OiYMxOlvqdJSUksWbKEyMhIBppG+J87fzrPlQASRGSGUHhfuvjIYrHg95l594/zP/8A3/mHXWy5uXDO7yYnJ4MAiWqbpMViITMzU8zD0dHRQYGTz+cTUs+qkzATDxIXF0eMIZ5//dzvF7ymG+9fy/eeCQhKPfHEE4yOjvLQQw8RERHB448/zp133klh4dzn/qe0v2hn4D9aIlDbW9SHq7OzU7yIOgxMjk8SHhuKx+fB5/NhNBqD0lXx8fFBHvf09DSPP/44W7duBQLdCDMnDY1GQ2xsLAUFBRQVFSGb9Hyj4kXOj7SikQKLvQLIksTSDol8m4lvfvObOJ1OKisrqaioEFkAlRkuJiaGmJgYdDodNpuNxpEe3spZOJLd1haKfsTJQw89hKIo/OY3v2HlypVCY34+U1sfr32E1Bq50+lEq9USFhbG2NgYjzzyCKdPn55F7jLT1IVcqASD+HdRN+RahpDjJpD0XhSbCW9PNP6BcNQL9MoBRUTfAvz+AFsuyYRNB0dHfklhOFTBrYEQl0T4FKxauYqcnBxeeuklsaB7ZIXaFD9d0YpgzdN6IXtQIr9XntfBMBoDOIKZk+y13AsQEAqqra0N+my+7EFWVhYtLS2Eh4fT+H47V97smefC1R3Bzyr+BxXVFYSEhNDZ2UlISAgDAwNBji4gzlVVJBwbG2Nqagqv14tfUji3yoZbq1wtkqqmBO7Z3yXczY2LruJrfD4fTz31FDqdjs997nNIkoTb7ebJJ58Uwi5PPPEEXq93VlfCwMAAzzzzDDExMURGRlJbW8u2bduoqqpieHiYffv2odfreeGFF3C5XLjdbtavX8+WLVuQJInu7m5efvllpqamUBSFG2+8kRtuuIH+/n5effVVxsbG2LJlC2vWrBELR2NjI2+99RaTk5Mi1e/3+wkJCcHj8YgsnsViISYmBofDMYvHwGKxcMstt1BYWBi0II05nXzmlVepHRhAI0n4FAVZkvArCiUeN0vcVzOEJpMJjUYjgI6GNU1oU0YQrUHXDr9XxvP2OkqWrgg8F42NwoE0GAx4PJ55HfeYmBiioqLo6OggNjaWtWvXYjAYaGtr4+TJACOoz+1D8cGq9StZu3Yt0dHRfHbpV+mu75+LxRiA+392B54QJz09PWK+aGmQ6e+WUOaNVCA5JYS//8EOUlNT56QYnml2u52f//znIkvQ19eHoihYLJageTo2NnZWDd9ut/PMM89gs9nQ6/VcfqONnrKFsx2hUSG8Ovw7nE4njz/+OEajkW9961tIksRPf/pTiouL2bx584Ln/Kewv1hn4OOUCFTQjbrwq/oBEKi1mUwmuqr7ufRmC/buQE1Wa9Sw+o5iPv39T5GWlTZnus3v93PlyhWOHz8+Z8QgyzJLlixh165dQQ/l1y/8nhMDjXPSWgJ80bIMQ3sgVaZ66CoQR6vViowABIhkEhISMJvNvNpVQXWaP1Dy+vBwshIAD34z/xZanz+KRqPhO9/5juiYUG1mxB4eHk5UVBQ9PT0fWfkwNjZW1E3nouOdaaOWACvh/KawPamWcJ1LTISehiQ8tamozsBHFUHafElD+AyFwjarn8tJftwzAMhhU7DTl4ajce4F1q1RmDAryEhETIKWqwDKhdL7czkAM01djGdmYdLS0ujo6ACuOgYqJmHDhg1s2bKF5/7pDzz/T6/g9y58/au+kUeoNYSMjAyGhobQ6XRB3AF33303+/fvZ9u2bSQmJoro68qVK2Kb4UQ/l7Pt8x5D8kPqRChP7/nHoM87Ojp45pln2LFjB8uWLQMCTIm//e1vWbt2LXl5eTz99NMAQkdete7ubp599llB/FJbW8uOHTu4ePEi3d3d3HPPPVitVl544QVGR0fxer0UFBRwxx13oNPpmJqaEtgFCLRJ7tmzB71ez9GjRzl37hzp6els2LCByclJ+vr6BNf+tY6YRqOhuLiYG264ISj7ODQ0xDvvvCOOoVp4eDi33noreXl54p33+f0ca2vjrYZG7C43GVGR3LN0CSmhoYIRcWxsjJCQEEGx7FGmMe8+tyB2BkC+uJTplsggx3NmlkNVu5wpZKSCPRMTE6mpqRGEP36/H7/fz5k/ltNytAd7V2AuNEToSFwdTfKaGFwOD5eeb8fRP40kB9P7Zm9PJHVNvOhEUUswl6pkxq6j46E3wKpSL1qtlrS0NDIzM8nMzCQuLm5OUN4zzzyD2Wzm7rvvxuVy0dXVJZ7fnp4e/H6/COLULK5KhPTcc88xNjYWyKJcUHj3ueMLvkuSRuL3vf+H4eFh9u/fT2FhIXfeeScAzz//PDqdTmSE/5z2F+UMdEyO8mJLJVUj3binpjG0DfLje/+GFGtc0HY+n4/e3t6gyF/t54+OjsZgMDA9PS2kSicapqh9uVX0y6oma2QyClP42cl/whQSoM4cGRmhvLycK1euBEmdqgx/AC0tLXzqU5+ivr6e/v5+vvjFL4p9ttoH2XPiifkvUgkQ42xs1Ir9zgQJqS1NqpqXxWLB7/fz4osv0tLSwojFz1BuGJ26KXx+H9YJyOyXuDF9CRcvXsRisSBJknCG1GMAwum4ljhnLqKhj0NTfK1VpPvoilLm1Q+QUMgLG2CFtTPoc3ddCp7LASBYd6Sf8vn4BWZYab2G6A/Fflpi/VxMnf0bSQHZDxsbgh2H+SwtLQ2NRjNrIZhrXD4qVmKhfWg0GnJycrj77ruRJIn3nj/Bjx5Y4BkCZK3E/3j/6xz94KjgqFDPRXVevvrVr3LixAnq6+v50pe+JABaDQ0NgpugvdhPZ4h9dlZghulcEs8u+/asuulrr71Gc3MzX/7ylwUw79SpUxw9epQHHniAvr4+3n33XWC2lkdraysvvPACubm56HQ6amtr2blzJ5cvX6a1tZU777yTjIwM9u/fL5zmuLg47rnnHkJDQ/H7/Zw8eZJjx46h0WjQ6/UUFxfj8Xhob28PEnaKjIwU75XBYKCiokKwdqoAXZX7YGa7GQQY+WZia1SLiori9ttvJysra8H7BIH37sqVK5SVldHa2kpYWBi5RSnUJ/xm4d/5wVObhqcxad5tPsq7ajAYiIiIQKfTceVYJxd+f/kqadcMiy4II39v4PrHrkwyXD+B36NgjjWQtjYBjSmgvRAfH4/f7xfdUU11MoP90jyqYwFLz4jhB/+yi5aWFlpbW+no6MDr9YpSgApGVJ/Ro0ePUllZySOPPDLLWVDB3qpz0NXVJcpwKSkpTExM4PV6mZiYIFtXyDN//9L8PAQSWGJMrPxKHnFxcfT09ARxEBw+fJimpia+8pWvLDjGfwr7i2kt/ENbNZ858QI1oz30TtkY9EzRFyLxRm89q6KScfQPU11dzfHjxzl06BAVFRV0dXWh0WhERK1qckOgVrpy5UrWr97Av3/9VXxe36yHX1EUJoZs9A8O0DxUz6FDhygrKxMRc2xsLMuXL2dkZITi4mLi4uKoqKhg27ZtLF26VDChFRUVCR7ug91VnB9una9NFyRwGqBg1EBcdAxJSUlkZ2dTWFhIdnY2MTExQg3OZrNRXV3NG2+8QX9/PxaLhbtu3s7OzBXcHb+MexNXssmaR7etj4qRRpwmP7Ldi+L1iwlCBS/ONBUprtPpWLp0KaOjo0HgwZnOgSRJooVy5mcL2eUkP66FiP+QkFDIDhsO+lSOmsTTnAB+GUWCttiFJzlJgcU9Mlq/hFdWOJPjn9sB+bDFyKlTSBm7uoHBYAgaG4PBwI4dO2hra6O7uzuo3W6udksIZG5mgghDQkLmzLY4JIk6nZ5zeiOXdHqGNBpMikKIohASEsIDDzwg0qcJWXEc+Pmb+OaJZiQZ0tcm8cV/eJCTJ0+yfPlyhoeHZ2EaSkpKWLRoERcuXGB4eJjFixcDAQfm7NmzAac508iwNLlg+Un2SxgqJygpKQn6PCUlhXPnzuFwOETPv9puWFlZybZt2xgaGmJ0dJTa2lpWrFghWtIiIyOJjY3l+PHjxMfHExsby8mTJyktLUWSJI4fP47VamXr1q2iFq4qDlosFrq7uxkeHsblcomSR3d3N+PjAZbDxYsXC7bEzMxMtm3bRlZWFklJSSxbtgyz2UxHRweKoqAoCh6PhwsXLjAxMUFKSoogzAkPD2fZsmUkJibS09MjHD+n08nFixdpaGggLi5uQUyTGqQUFRVRUFCAw+GgpuYimtweFnqVJAk87bEoE7NBirIsEx4eTlxcHCkpKWg0GkEepCgKcXFxaDQaXC6XkD73Tvo59cvqeTkEnMMuzFYDlngTCVlxWNL1WBeFE55mQdIinq3JyUnCw8PJy8tjxYoV5OZmcfp4y/wXgoI1wQmyTZQsNm3aREZGBgaDgZ6eHi5cuMDZs2e5fPkyIyMjGAwGmpubWbJkiXA0VdNoNERERJCenk5RURHr168nOztbLJRd7d1Mjk0iaSQUk5emo53zXjNASmkMqYVJAqtw0003ifVxyFFHn+cIemsfXmWKEF0y0vXSOf9J9lHX7/9POwM1oz184fR+lYY+YB9O4C6vlzdaqnEdq2FkcAi9Xk94eLiovTkcDiRJIi0tTcijbtq0iUWLFpGYmMjJ/ec588b5eY+tKNDd2EfI4kDHQH5+Ptu3bxdcASEhIZw+fZqUlBQxWa1fvx4ILARnz54lIiKC5ORkAMpHWqkYbQ8QfCxgBSN6PI5A9qKnp0f0/Dc0NFBfX8/ly5e5dOmSaHGEgEfc0NBAVVUVlZWVfNB0jt9LZTRGjjJi9TIc46EnyYXi9xNmC4Dq5krnq3VTIEimFJiznv1xWg5lWaY92se0jgUWGIUw/TSZocGiM5Ks4B8JQbGbSY6IoVU7iWue/UgKJI5KpI0GrqMnUqEneoExl2DSCIV2CwY5kPq/dmx8Ph9paWns2rWLjo6OIFCgwWAQEbdK1ASBRSEmJoapqSlRO7/WBmQNh0xmBjQaXLKMR5KwSTJXdHoUIMrpZGJigszMzAA9ql5La88VOi7MLk0hgyFEz01fX09h0WJOnDjBmjVrmJqaEtgA1WkZHh4mNjaW5ORkTp48SUJCAlarFb1eT01NTcAZ0HrpNc3vDEgKxE9Z0DTaWbFiRRBLnwpoO3nyJDk5OYSFhYkMmqobv2fPHqqrq5menqahoYGVK1cKZ9JqtRIREcHx48dJT08nMjKSEydOcMMNN2AwGDh27Bhut5vo6Gjsdjs2mw23201DQ4MAuyYnJ5Ofn8/k5KTgcAgJCWHLli2sWLGCmJgYzp8/T0VFhaBylqQADXRRURGjo6NBWYTh4WHOnz+PXq8nMTFRpOSjo6NZuXIlERERdHZ2imfB4XBQVVVFa2sr8fHx87YPqqZSmA8NjDAlDyKFOud1CBSvjLs8G60mMOepaXlAlBwgsDirC5l67x0Oh8BCGAwGtFotTe91MNGxAP++BG67h/hlUbMAxjOdYaPRyNTUFLfddhtZWVmkZyZQW93B4MDsbgJZIxFtDWHfp1cwMjrEhQsXKCsrE6yR2dnZbNq0idWrV5OQkIDX66W5uVl839LSgsvlQqvVEhISMmcgojpGk73TvP+rs5Q9fZGeM8P0lY+i+CE0w8h4y+xnXJIlCtfnc88/7KK17SrVdF1dHTEJodQ4/oFe6WXMsaOMumvpnDxMm+0gVlMxZu2fvrvgv7wz0D01yvNtZ3izu4ba8S6shlCiDB9P6/oHFw7ROjk29/IpgU+SiNOZMY5NCVUwlau7qKiIrKws0aOtaofX1tZSXV3NsZfPMNI+saBn6Pf4+T9v/oQbSm8gPz9fTGoQ6Ghoa2ujq6uLkpISbrnlFvGdVquls7OT4eFhoX447fPwZk/1gtdrNYTyb3/1LUpvKKW0tJSNGzeyceNGSktLSU1NZXh4GLvdTnJyMrfddhsRERH09vaye/dutFot4+PjTBjd1BQ78OiCSXkUGcYjfUgKRExoxbnKskxoWChXQqapTPdRk+KjMc6H3ahgcUkYvVevKSoqak5e9/kyAtdmE9w6iaHQhcmCCsL7sRpnT0ze3iiUiQByP3pSoitamSVKJClgdMOqVg26D7sRhsIUBsOuQ1AkwUZLBuN9weAw9br0ej2tra2MjY2JySgsLAyXyyUmCpUWeOY1T01NCWdh0aJFQeAzD/C2yYIncKCZBwVgQKPF6vfhGR6mtraWlJQUzGYzZZdOk7c8m57GAbxTHxIEyRLR+WEsuTeTxcsKiIuL49y5cyxfvpyBgQEmJyeDFgyfz8e5c+cYHx/HbDZz+fJlli1bhlarpaenh/HxcbwDDvpTvPiUeTgsJNhrWctY2wA2m41FixYFfZ2YmEhjYyMtLS2UlJQI9r/o6GiOHz9OREQEmzdvpry8nKmpKcbGxigoKBC/j4+Px2w2c+zYMeLj45EkifLycoGb6e7upq2tTeBcbDYbJpMJj8cjgIXp6eksX75c0N7abDZqampITEwkNzeXpUuXCn2FyclJ0tPT0Wg0GAwGCgsLSUhIEKh7lbinsbGRxsZGYmNjRdQvSRIJCQmsXr0ao9FIV1eXGGubzUZFRQXd3d2ivDfTfD4ftbW1vPrqq5w/f57o6Gg2FN1Gj1SOz+8LAhGq3QTU5cF4BF6vVyzOWVlZlJSUCI6H/v5+0V2QlpbGokWLKCwspLCwkNHRUYE1cLvd9F0YZWpoYYZRn9vP1s9tQK/XMzk5KcbI5/OxZ88ewcCoKlh2d3cHuhJSDTTUd+CcCn6IFi9N4X/9+F6WFuVTUlLCqlWrSEhIwOPxUF9fT3l5OWVlZQwNDREeHs7y5cvZuHEjhYWFNDQ04Pf7aW1tpby8XHR7TE9PYzabg0jozr1VwWO3/oDeKwPCafF7FUZax/E4vCzdk400rcE+EhgrrUlD0tpolt6VTUhYCJGRkfT39yPLMm63i4nY3+DWdYCkfPiqBvbpU6bptB8mLfRW9JqFHb9P2v7LOgOKovBE43t8q/Jlqsc6aLIPUDPWxUsd5xiYtnFDbC7yHIuHSkVZX19PWVkZ77zzDq/5+/AukHmRUFDcXlLtiriOkZEROjs7aWpqoqGhgZaWFvr6+gRS2u/3B5D43Q566uaXtwTQ6rU88P2751zsDh8+jM1mIzc3lz179swCGrpcLioqKli9enUArW2O5I/d1Ti8rjkPKSHxYHYpy6LTgz7v7e3l4MGDHD9+nNDQUHbt2sXmzQGmr8OHD+Pz+bh06RJjY2MBzvQsB1Mm/7y1XluYj8ReA/KHa7Rf8VOW5KI+MRC1KzL4ZbCboN2qEDEFVsmE3+8PwhvMZ4sWLWLJkiVBJDcAX/rSlxiou0J9yNScKXsJBaPGw5qYNjRzoKg9l5NRpgNsbQYvJI1K+DRgMwVKklofZA5KrGjXCAcGwKlX6Im6flkhrnZcaBfMZWq7EgQcgb/5m7+hrKxMXKMqonNtBkDNMlgsFpGuBGjV6ujQaJkv/JOBaUki3e1Gp9Nx7tw5pqam6OzsJLUgGUMWPPLjr7Htc1vR5vkIydYh6QLp+MjISCorK1m9ejV9fX2Mjo4KkBjA7t27KS4uZnh4WGSYWltbycnJwe12U19fD16F20s2Ue5oDpyiCkxFQgEy2oxkT0cL9b5169YF9X5LkiRS/KGhoQIXEBMTg81m4+zZsyxbtoysrCyhrqdiei5dukRZWRn19fW4XC4hG2w2m3E4HKxcuZKEhAR6e3spKioS5EJ1dXUYjUbq6+txOBxkZ2ej0WhEmU1l96yqqkKSJHJycli6dCkWi4WzZ89SW1tLUlKSqLtarXNG3LYAACAASURBVFaWL18uatEqjkblKxgbGwsqHagtfSooUpVfhoAianl5OQMDA0K8p6KiggMHDlBTU0NycjK7du1i48aNxEenkBW6hiFXG3bvVU4JxanHXZmBq8VKaGgo69evp7e3F6/Xy+joqHjnNm/ezMqVK6mpqRHU5ep82NDQgMvlIiwsjE2bNrFkyRKay9oYahtZcC7UmTVsvG+NYPzTarUsX76cyspKbr31VvR6PS0tLezatYvW1lZsNhuXL1+ms6uDzJxQdt+5Gp3ehc5g4+Fv38GDf3MTlpCra43KnJmfny+AphaLhYGBASoqKjh79iz19fW4P3wfHA4HDz/8MFlZWZhMJvr7+6moqKCsrIza2tpAqcjp4p92/xy30z0nNsDr8LLx9hv4n69+G5JcZG9K4bHffIOCddn4lQBIvL29HQiUryLTbIRkX5qny0MJtIFKkGD+5LhvPor9l2UgfKHtLI9ffnvukwE+m1XKV/JvErS+M8F+TqdTeNmpqak85qjB7psf1S4Dq01xfD1xuVDYu/ZvrVY752Le3dzHZ/K+OnunM3aeujKeH7z6XRISEoK+GhgY4F//9V8JDw/nS1/60pwc2arwxZ49e1iyZAkA9RO9PFj2NE7vVUa2QJVcYV1MNv/PivvQyYEJdXBwkA8++ICGhgZiYmJELa2+vp6amppZyHMAr0bhzDrbwlGwArnNJlZoMwMUq/IoFZnzC/5o/HBbzdVIW7WZAKXExERiY2Oprq4mMzOT9vZ2/H6/yMrodDoefvhhfvzjHzNm8lOWp+DU+IVWiiKDWeNiS0Ij4fpg0J3iB/+4hen3iuY5RQWvDFo/c7b8+SSFQ0U+PPMQFEkKZDqMLG2Y3RkwU/r3WpvJGGgwGIiMjBRyqvPZzHt11mCiRacTinZzmRbY5whkvNTOAlmWCQ0NxeFw8L3vfQ+AH/3oR4I0KCwsjNtvv52XXnqJr33ta5w8eZKGhga8Xm+gZdDvZ/fu3SJjNTIywsGDB+ns7ESSJNLT02lra0Ov17Nu3ToqW+toCB2m22xH1smsiF+E41gHltHAM7Blyxbee+891q1bN0teFuCNN96goaGBr3zlK6LG63K5ePLJJwFYvHgxdXV1gn0OAlmWhIQE4uPjiY+Pp729naqqKoHbuHz5Mnv37mV8fJwjR46wcuVKbrvtNgYHB/n9738vIubMzEz27t0rIkUVFT4yMoLf7xfdBhaLhZGREV577TV6e3vZsGEDGzduDHJu+vr6ePPNN+nt7RUqfLIsC36NVatWzQoIVMbQqqqqWeOidt4sWbKE9evXExcXN2sbgDF3D6++8zzeaYn+hqkgMJ5OpxPCVR988EEQoZmaifnqV7+KyWQSwVZXVxdvvfUWZrNZOPeOThdVv2ue8/iBnUHSWisZN8UDgedYr9fz0EMP8Ytf/IJ77rmHrKwsfvWrXxEZGcnmzZt55pln0Gg0aDQa4uLi6OjoCCK1Ki0tnVcy+lpzOp20trZy5coVmpubRcYjOzubgoICsrOzCQsLY3p6mra2NgFGbDrZRuOB7gX3HRoVwtNXfsbBgwcBuOWWWwSVvM/n47nnnkOSpEA7Y8JbWFJbF5SANmqs7Mo49JGu65Oy/5IAQo/fxzcqXsDpm5tWFaBurAvNuU4Ov32ICxcu0NnZicViYdGiRdxwww1s2xZgNsvOzqZ2rI/2ydF56+wK8NDSUm5evJzY2FiioqIICwvDbDZjMBjQaDTzprDDokMZ6BiitaZj1neyRkbWSmTuiOdifQ2jo6MB5S6DgcnJSZ5++mk8Hg/33nvvvA+0wWCgqakJp9MpUqgxxlBuTVxCfX09Y5ILrVZHVmgMX8rdwtfyb0EnaxgdHeXQoUO89dZbgnozPz+fS5cuiYnV4XAEpd+TkpIoLS0lszCHD6bq5jwf1SQgQxfLN+7+AmvXruVZew3jXue8qWBFArNHIvLDNF94eLjQVbdYLHg8Hj7/+c9z/PhxnE4n4+Pjom9ar9fjcrmIjo7GZDLR2NiI0SORMQBhLhmdTyJyCnJH/KzJvozJ4AoKlBU/4NXAhWK8jqsTrZqiD5xiQI1wvt5/GQmTG3qjlGBpYwKOgNYHK1tltJ7ZgMCFxJlmjr8sy9hsNqF1P5/gzUy/vN9gYFhh3swABJyBQk/AGVa5JiDQkhgeHs7q1atxu90cO3YMi8WC2+3G4/GItPvmzZvp7OwU5DQqKC4zM1Oo2pnNZoqKimhsbBTYhunpaSRJwm63szgrH0dtP/FdWhK79Dx862fxj7uEemBycjJ9fX1iEb32fUtOTubcuXNCdObMmTMcPXoUu90uSJHUmrAa9X39619nxYoVZGVlERcXR25uLna7nRMnTgQBCZctW0ZGRgbHjh1jfHycZcuWUVhYKFT8JiYmqK+vJycnB6PRiNlspri4mImJCQYGBrDb7VRXVwsBouLiYiRJ4tSpUzQ1NYkWRwgQc5WUlGA2m0W0qCLV1Yg7NjY2SPzJYDCQl5fHkiVLGBkZCcKaqB08SUlJ5OXlzVJGVM2kCaO1th+cBibtk6JcoWoO1NXV4Xa7ufXWW7FaraLPX1EUvF4vZ86cESUKFYR89uxZ7rzzTrZtC0gVx6ZZaTh9hanxObpfJNAYZIruyUbWy0H7bm5uDvAiGAzk5uYSGRnJyZMnyc7ORpIkent7ycrKYt++faxatYrugQH6R8cYHR7i3IeZn8nJSUwmk+h2msuuzRqkpKRw8eJFJEmipqZGZA0mJyeJi4tj+fLlrF27lq7KARrOXVlQudDtdNOpNGObtDE+Ps6FCxeoqKigqqqK6upqMc5jY2NYUrowRNgXBHeCxKKov15og0/c/kuWCeonevl9+9kFt/GjkOw3s2nJKm688UZuu+02SkpKyMjIICoqKsgbjzWF8Ie2uevskgJhegM/XLUTvTwfA83Ctvr2ZUwM27hS1fahpy+hKBCbZuUHf/wuucsCnO4DAwOcP38ej8fDsWPHmJycxGw2c+utty6IoLfb7Vy8eJG1a9eKqKHtchP9Jy/yj1sf4Fur7uCutFUUhCfisE/y7rvvcvDgQRwOB6tXryYqKopz585RUVHByMhIELBNr9cTERHBgw8+KLoXaqtq6E5xL9TJAxKEtXmpPlJGc3Mz75n68S+wvQxkx6Vg7rJjMplENKHX69m5cyeXLl2iqqoKu90uMBWq5KrH48Hr9ZKRkUFLSwvT09OByUySKYhMwtI1SfyETJhDg68zBqPJgN9sR9IoKD4JX0csrnO5eMaDJ0qj0fixVBTDnQGCoQmzcpVnQIG4CVjdosE8Yw6UJAmtVsuqVasICQkJApHNGsoP773qGCiKgtPpJDQ0lH379tHX1xdcWtH40KYPoVvchc/ipHU8ev59A6k+Hw9t2Ux3d/csnYPp6Wl8Ph8mk4mqqioiIiJwOBxs3ryZiooKZFlm06ZNdHZ2CpEedWJTe7BnXkdSUhJlZWWsW7cOm82Gx+PBbrczMDCA2+1Gr9fj9/uJiIggJydHKAcODw+zbNky2tvbMZvNIl1cXV3N6dOnef/993G73YyPjzMyMkJkZCR5eXmsXbuWyMhI2tvb2b59O5s2baKiokJQzq5YsUKMr5rSHx4e5uTJk2zZsgWfz8eJEycoKioiPz+f48ePMzg4yNKlSykqKroqJ6woVFVVkZKSIgDGeXl5hIaG0tTUJL5Xwcbp6enk5ORw6dIlTp8+jV6vJykpSQAGVYDh2NgYw8PDQSqP5eXlQYED/y977x0c553m+X3ezo3Y3WjkTOQMggQRGMUcQDEpp9md2dHNzYa58/lsX1256sq+sqt8rrrzXTmUfXu+nZ20ExQoKksUiQw0iEBkEDmHRqOBjkAn/9F6fwOIBCXNetczW36qVJJQjbcbb7/v+3t+3+cbCI8H2traGBkZQalUEhERsWeUJKceer3efZP4JiYm2NzcJCsri5WVFaH4kQ2SrF/ySjweD7W1tczNzYksCY1Gw+rqKhaLhYcPH7K9vc38/Dynv8xEMBqNZGVncf71Z+j8rBv70haSFFamEAJtrJqS17JQx/5WQSN/L9vb22KEMj4+TmpqKj6fj56eHubn58nLy2NsbIwJt5v/bWiYv55fYEijYVyr40BBIVkRegYfPqSjo4OHDx+yubmJRqPZw8160j0XGRnNnbsPWXZEEJNQQFp6FqYYDaMjYa5BR0cHi4uLbMxs8ah96qnjD0mS+K/+j79gzbpGUlISN2/epLq6msPV1fgDflaWl3n++ee5fPkyESYv6zu97H9ABUZtAQdir+3/hn8H9XvZDMy7bbw7/zgk9tX6bu0lThWH3bOeZOojV0pELAaNnsblCZSSQiAEUgiUwRAvuE08U374qcd4WimUCmquHOLy98+SXpBC5TOlPP/PrvKP/+0fkZAeNucoLy9ncXERu93O7OwsLpcLnU4nIKqnHl+j4v3pFrqlGXqcEzi9Lppuf05BfgHHjoUjL91uN1988QVvvfUW6+vrZGdnC3XAV81/kpOTOXv2LA0NDTQ3NxMVFcW9e/eYnZ0lJyeHy5cus6OHCefik9GUECgDUPgokvTUtPAuQb321GZAkiQ0y04SNsMQ8qlTpxgeHiY+Pp7+/n58Ph/x8fE4nU4uXrzI4OCgiNGVORrBYJDV1VXRIOj1euH8KEkSL730EvZ1B9bhEL6RVGLXy4ldrcI2rAJfWFa3W8aoUqn2DfXZr6K9EgfWJFI2FKTZFBQvKjhgVaIJSHuOr1ariYiIYHl5eY+GXI5z/bomJBAICC+LEydOkJ6ezvj4OFKUB/25h6gyrSiivBjMdkbnU/AF9gtYCHE1KpLliQlee+01BgYGCAQCex6Ss7OzTE1N4fV6MZvNBAIBXnzxRXp7e9ne3qaurk6M4nbvJtPS0sjOzt57fqKj2d7eprW1lby8PMHQlxdh+b0dDgenTp1iYGAAj8eDz+dDo9GwsbHB+Pg4FotFoFcmk4ni4mJqa2vF9//666+TnZ2N2WwmKyuL2dlZuru7OXz4MEVFRTx48ACXy8XW1hYFBQV7zn9BQQGLi4u0trZy4cIFfD4fjY2NlJWVUVZWRmNjI/Pz85SVlVFeXh6Wk83NERERIch5sjudTCIcHR3F5/MxOTnJ3Nwcubm5xMXFcfDgQZEkOjs7S1ZWlhg3aLVaSkpKSE5OZmpqSjj+qVQq1tfX6ejowOPx0Nvby507d7Db7Rw9epTnn3+e48ePCzRld/jU/Pw87e3tBAIBUlJS9rjxyejO5cuXsVgsAvWUoezU1FScTifRX5oZyQFM8fHxLC0todfrhUuo7FTo9/tF6iGAVq9h0NZDbG4E5dVl7ES4STsaT86lZNJzUiktLRWOf3IpFAp0Oh1+vx+Hw8HQ0BB2u53t7W10Oh1vvvkmPfZN/u3oGHObm+KJ5AuFGLbbWdFo+B+/+8fkZmcL7pOs8LDZbMJ+fffzfXh8me/9i58ysbjDqm2byTkbD4aWGV/Y4Z/84GVqjxwkMjKS5eVl5lZmWWh/SjOvkKi9eogX/uI6fX19mEwmvJmx/Nvpu/ybiU+5Jy2yGhuisrCEQlMqsdpMxuw/Z/9mIES5+c8waPP2fc+/i/q9bAb0Sg1/PdX6tfK5Py84R6wm4qmvkasiLpVzqQUEQkF2An503gAlLjWHZ3fQ2N3Y7fY9rl+/S0VE68k7dICi2nySD+x1vtLpdFRUVPDo0SOcTidKpZKdnR12dnZISkraAwvurjHHHP985P9iweRmbtvKuGuBpvV+5uPcvFp7lWhlBE1NTfz6179mfn6eqKgoXC4X6+vrexj7CQkJnDx5khdffJGCggKRvb6zs4NOp+PEiRNcv36dsrIyDAYD+dFp3F3pZifo2/M9SEggQeFYBFWpxaysrLCysoInSoVdG9iXZxACiucljuSVcunSJdra2kQITn5+Pmtra8THx6NUKrlw4QLNzc1AeJwgz9t3P7Tsdvse577vfve7fPLJJywtLX1500t4XNts2jf3aPNlVzXBCH6KrPHkyZOCU7G7JMLqiIgd6TEORDAYxGQy4XQ6OXXqFI8ePRLvISsCvg0asbm5ycDAQJjURRD92X4k/TaSIjwZUEiQmbDG5HIiPr/84JeQvoSPT/r9HE1Pw+PxMDw8THJysnhAhkIhYX0ss8nVajXR0dFUVVWxtLTE6uoqLpeLmJgYxsfHxeIiLzZPMsVJT0+nr68Pj8cjnNrKy8vRaDQ4HA78fj9Op5PW1tY916i8EG1vb3P27Fmee+45jh07RklJifCOT05OprGxkaioKDGikCSJ7OxsOjs7WVlZoaamRtjrLi8vYzQaSUpKEu+jUCgoLCxkenqa9vZ2GhoaxIJdUlLCwYMHaWlpYWpqSsQdS5LE6OioIFXKCIDs7FlRUcHq6irr6+s4nU4xNpAjgTMyMuju7qajo4PY2Ng9Vre7CYbz8/OoVCp2dnaQJEmoiQ4fPsyrr74q5KGSJGEymaiuriYuLo75+XlxjYdCIWZmZkRqY3JyMkqlksXFRaanpzl37hy9vb1iTJiTkyPCfDIzM5menkaSJMGzWFtbo7CwUPgvGAwGkYOxuLhIS0sLk5OTxMfHY7Va6e7uJjouiogUDdpEJfo4rfApuHbtGlqtltnZ3xqCyc8scX/t4hH5/X6a29v58ZYTP48vnyHA6najUSq5VFFBfn4+tbW15OTkCMJjZ2cnnZ2drK2tIUkSAdS8+S9/jsu1I44nv593x8/dtjFevX6UvLywsqL+ZB2Tw9MsjC4/foNK4Wbgv/6rP8ecaqKzs5N+g5v/sNjEsmcz/OyUwKuGT5YH8IeCHE0oRac0s+huQkKx668KXw/pUWcpMX3/791v4PeyGdAp1cy7bEw4V57YDiiRqDHn8Gp2/bc6brwuitMp+byae5gyjxbbgyHyM7MF5CUTn/6u6tNPP2V4eJgLFy5gtVrxer0olUosFgurq6skJycLbS/Axo6DP33w73D6PWGPBAmxMAdVcH+tj+m3HzA9MSV2a7sXmtjYWI4ePcqtW7eora3F5XLx2Wef8cEHH7CwsEBERAR6vZ4/+7M/Iy0tbQ+0GKHScSqhEuv2JnPuVfG+uVGp/JPc51i5P8apU6doaGhgcXERz4KVafOX39ZX9bYhMLiheEHB2toa7e3tWK1WsUu+dOkSvb29uN1uSkpKKCgowGKxCOWBfKMmJCSg0Wgec2s7d+4cd+7cYXNzk6SkJEwmkyCSaTQaPB4PlZWVLC8v75FCPs3yGMLucN/UKTEiIkI0J5mZmWxsbOzRi8vMb3nxe/nll0lNTWViYoKamhph+rSffXMoFEKZakOdu/LYrFGn8VGcOUeM3k3IqyHKo+FAKMixHS+lJhNTU1OcO3eO0dFRrFYrGRkZbGxsEBERQXp6ulgIIIwwKZVKqqqqGBkZIRAIMDk5KeyldzcD8hz+qyXvxDo7w/4bGo2G6enpPbkG8NvMCrmCwSCvv/463d3dOBwO6usfv79lMqbFYuHgwYNiRr5bbig3MxsbG6ysrDA6OkpRUdEeOZ5SqaSoqIixsTEsFgvXrl3D6XTS2NhIYWEh1dXVtLe3MzY2RnFxMXl5eRgMBh4+fIjRaAzzdTY2yMvLE4mFpaWlYRe+8XEUCoVoGjIyMjCZTFRWVmKz2bh//z5Wq5Xs7GxxzymVSiFhnpycJBAIiGsvKiqKqakpNjY29owOAOGceOTIESIiIgS0L39HsmxOo9EISeOJEyeEpC4hIYHl5WWys7NF4yQ3h3V1dcKieWhoiOXlZYECWK1WtFotdXV1uN1ulpeX6enpYWBgQPgz7L7f5AVe9h2xWq2kpqbicDhQKpX8yZ/8CQ8fPtxzTci/Oy5JTCmU+/JiQsCj9XW+X31YjGFiY2PJycmhpqaGwsJCtFot09PTdHZ28uuPelnZePJWMxSC7R0/caZISvKSxXV6/EYt64sbjPdOhdMIv9xQqPRKip5Px6myY7fbGVib4X3Dqvhcv/2iwv/qts1Qa86l2FiDWVeB27+Kyx/2+4hSp1Fq+keUx/0ZCul3G1n/ber3shkAOGTK4t7KCPadvTNOKQQRQRX/a+13iNbo9/ntry+tVktnZydHjx5lZGSErKwsent7MZlM+zJy/zbV1tbG/fv3uXjxIrW1tUJ37Ha7iYqKwm6309raitfrJS0tDZVKxVtzjXTaRvZFSHyhACp3iGjnb5UOWq2WQ4cO0dDQwNmzZ4mNjaWrq4t33nmH7u5uNBoNJ06c4OrVq7S0tAjy1JMqUqXjREIF11KP8kzCQV7MOM0rmWeI8WuF/lyGW3V+iaSgnrkoHyEp/D0pCDcwmWoDhwZ86JUaYW0rzykdDgfd3d0izTA2NpaVlRUmJyeFr768QDqdzsdm3nFxcQwMDBAMBikrKxO55MnJyVRWVgpG+40bN1hZWcFut4sY2v1Khvq/SSMQCoXwbuyglyIISkFCBAVBVA5nqq+vJzY2VhjZxMXFcenSJVJSUhgbG2NycpLo6GiysrIEQ/3MmTPExcXtyaxQ5y2hMLie+ExUKkLExzrITV0ivT+R5GAQVTAori95R9g5MoJDqcTt9aLw+3n55ZfJz8/fE3jk9Xrp7+8XKIfBYODRo0cighvCOzaz2UxRURFer5e5uTmh67579+6e8CrZ5/706dNMTU2RlJSEz+cjNTWVl19+mdHRUdHEzs7OimugpKTkMT09hMmEnZ2dbG1tUVhYKH5uNptxOBy0tLRQXFxMZWUlg4ODuN1u+vv7qa6u3gObq1QqioqKGBwcpLe3l5s3b7K1tUVjY6PYYVosFgYHByksLCQzM5P09HR6e3uJiooSHgX5+floNBqx8GdlZYVllYTn9PLYICIiguLiYsxms+DwyGTB4eFh3nnnHXp6ekhISCAvLw+bzYZCocDr9aLX61lfXxe7/dTU1D2wt0KhIC0tjerqahQKhdDny9/V+Pi4sNWtq6sjISFBPG/UajVJSUl4vV7hxJibm0tXVxdarZbjx49z5MgR4uLimJmZYWlpSTiHTk5OYjabOXfuHNvb22JsJ5NfVSqVWOCjo6PFqMjr9VJZWSneb3BwkNTU1D3NnVqtZmdnhxmlCqtK9VSc2OP3893Dh9B+JaRIkiSiosL5GtXV1ZSVlfH23XG2XE8fD/r9QS6dLBH/r1QqqX+2mvPfOUVCupmi2nyu/uMLnP7TOhbtc2RnZzMyMsKDGAf2SPZFSJWSgu2AjzPJJUSp08iOuUKR8Y8oNH6HAsNrxOlL/38Hwq+WTqnmSmoF0Wot864NvEEfZm00DaZikttWiNfF7CEvfdvS6/XCejQtLY2hoSGKiopobW0lMzNzX9j+d6mBgQHu3LnD0aNHRVd+584dDh8+zMWLF4URTWZmJiMjI3R1daFWq3nXbWF958mSNLmCCkhaC7Nwz549y9WrV8nJyWF+fp6PP/6YDz/8kOXlZUpKSmhoaODUqVOkpKQwPz/PgwcPOH/+/Ne6mmmVGuK0MUSrwyOZjY0NHjx4QGZmJu+9956QH6k2t8m1KonwKYgIKjA6Qhyxx5Ax6kIVlMjNzaW6uprx8XEgnLq3tLTEtWvXmJqaIhAIYLPZmJ6e3rMQP20HL+edJyYmMjExgSRJXL58mQMHDvDxxx9TUlIirGAvX75MX1/fvou83AR8U0fE1b4NRn41x9z9NSYbF5hrXcHnCoDBj0IZ3gmVlpZy5coVPvvsMxwOB4mJidhsNmpqalCr1czMzIid2eDgIJcvXyYUCjE1NcUrr7yCJEnMzMyQl5eHO3oaYpxPZyGHwDecvudv3NnZYT4Q4P9eWMKiUtPvDzCs1mBVq1kfG+XiiROC5Cafa6/XKwx4bty4QWdnJ4FAQIwXAoEAHo8Hi8XCZ599Rl9fH3Nzc6hUKtLT0zl8+DA1NTX09/cLSPncuXNijLOxsYHdbufUqVOYzWaGhobE9ykbf01NTXHo0KHHuDwajQadTkdTUxMHDhzYY9Urn8fR0VFhlywTCicmJqiqqtozvlOr1RQWFtLX18fAwICQ2DU2NpKbmxuWRXZ309fXR35+PikpKeTl5dHf3y9cSvv7+zlw4IBoXAwGgzAi2tzcFC6CKSkpGAwGEhIS9hgVycS3+Ph4rl69ypkzZygsLBQOhnJIlNfrJSYmhqGhIYaGhjCbzRiNxj3nRqVSkZ2dTVVVFT6fbw+KJn+3fX19mM1mXC4XGxsbFBYW0t/fz7Vr1xgcHAQQqgJZapiXl0dSUhKHDh0iKSmJgYEB/H6/IOH29vbi8/nY2dl5bAwnxzorFArcbjfb29soFApycnJYXFykpKREWD1vbW0RCoX4/ve/z6lTp0hLS6Pl0SMW4KmKGaUk8aP6OpRfw/uKiIjgnc8GsG95nvq6OGMkDafLHvt5lCGS4rp8Kk6WkFWSjkajFs+WS5cu8R/H7+PW7N+2hAgRCAV5MatG/EwhKVFK6r/ViPr/jfq9bQYANEoVB02ZvJpdx5t5p3j9wFGOpxYR3PbR1NREfn7+1y5k+5UkSSKJ8MaNG/T09Ag5YUdHB4WFhY95Vv8uNTk5yS9/+UvKy8u5dOkSkhSOSe3q6uLs2bNiBytJEv39/WIu2t7ezrjRzo7qKQuTBAkRRv71c/+FeMi1trbyzjvviEbn1KlTXLt2jaKioj3nqr29HYfDwblz5771Rbi2tsbDhw+Znp4WcKbf7yczM5NnTpxkpXuU16vPo562E7CGH+zR0dFUV1cTHR1Nf38/xcXFYjdqMBiElMloNFJfX8/U1BTw9EZAPq7P52Nzc5PU1FTefPNNPB4Pv/nNbygtLeXGjRtCJtbZ2UlUVBTb29uECOGIDuCIDuBXhYgMafD7npweCOzJEQCYb15j4sMl/J7ffr5QEByLHuwTTuLLDeTkHuDFF1+kvb2dhw8fAvC9732P9vZ25ZVBUgAAIABJREFUEhMT2dzc5PPPPycxMZHp6Wlyc3M5f/48cXFxtLS0YDKZGB8fx+VyYbVaCSq3UaXb9v2MoSBgMxLrDO/W5c+7rFDyiU6PMxjc80B1ItG/40MxP8e2zUZCQgJOp5OSkhLhc7C1tcXw8HB43u93M5XiZjDPwVS2lzmTE1OimUtVpzh/5hznz5+nqqqKvLw8kpOTwxn2KyuiAYiLixPcAxkKNpvNFBcXY7FYxM9qampYXV3F6XSKhVy2OZYrKSmJ8fFxxsbG9izwSqVSWHv7fD6Ki4tJTU3l4cOHOJ3OPTkHcsnSva6uLkZHR7l16xY2m42mpiZycnI4duwYDx8+5MGDB+Tm5pKQkEBJSQmjo6O43W5UKhUWi4WUlBSxOGu1WsrLywkEAkxPTwtzIHkW39/fz+jo6B5fh4aGBsFDkI8hEwwnJyeFxwOEmxh5Dp6env7Y81aj0ZCfn09ZWdljkck7OzsMDQ0RCATY2dkhEAiI8YSMvI2MjHDlyhVMJhP37t1jc3OT/Px8saD39vby0ksvoVKphCmSjO7sTi+VPSlkO2eZ/KvRaMjMzGRubo433nhDGAEFg0Hi4+OF+ZTJZEJyu/l0ZZX9SilJnMvL5WpR4b6v2V0jEytMzlrZD/hTKiRO1uRTU5n1tcfS6/W0tLSQmJhIWloaP+u/j0v7dEQxRW/kVsbhb/RZ/z7r97oZ2K+ysrIYGxtjcHCQgwcP7pERfpuSd4w1NTUYjUaam5u5cOEC8/PzPHz4kLKysidKdL5pLS8v85Of/ITMzExu3boldjjd3d2srKwISaFCoRBSJJn9f+TIEWb8Vuwq776QkwIFp1KqiLUq+Oijj/jkk09YW1ujrKyMZ599luPHjwvy0O4KhUK8//77FBQUPHHm+3UlJ7/tXqgPHjzI888/z/vvv4/X6+XRo0fExcXhdDqFvWlLSwvDw8NER0fz2muvkZeXJ2JlZTLbj370I7a2thgZGUGh9hGRtI4m2knQpybkVz32WWSvgsrKSs6dO8fa2hq/+tWvKCgoEI6OGo2G5ORkwUuwGX0MlLmZT99hLcHHcrKPJfM2Oq+CCE/4XH2V8b+7Edje8jH088eJheIzOf0YEwz803/158zMzPDOO+8I1OH06dMCCbJYLGR9aV1rt9tJTU2luLiYmJgYlpaW6OvrY2VlhatXrzI2NobCE0Vk8QaB0JOoVOF1Ptifx9ZS4LcJksDnOj3bkvTknZUkMbW5Sa7fT0xMDA6HQ8jW5IVne3sbe8hNz0Entjg/ARUghc2pZpUbjClWacg+ik71+D0fERFBX1+f8J+vrKzEYrGQlJQkPAEqKiqE/FA2VLpy5Qr9/f1ER0czMTFBa2srNpuNmJgYIRlLSkqiqamJiIgIkd0B4QZRrVZz//590tPTBZlsamqKxcVF4uLiHhsF6vV6cnNz6ejoYHJykueee461tTWamprIzs7m+PHjDA0N0dnZyYEDBzCbzZSVlTE/P8/KygpGo5H29naioqKES6Kco5CcnMzg4CAqlYrx8XFaW1uZmJigsLCQW7duceTIESYnJ2lqaiIYDJKRkbEHDZEJhjs7O8zOzooxVHR0NDabjfb2diHr/CqKotfrKS4upqCggOXlZYG6AGL85vF4yM3NZWZmhtzcXLKyslhYWGBsbIyGhgbi4+OF5LKgoIDJyUkePXrEtWvXKCws5PDhw0Iptbu2t7epra1lfn6eoqIirFaruKYCgUCYr7CyzIkTJ4iPjxemSi6Xi+npaaKionjnnXcYHxxkR6vDKnyUd1UohAS8EBdHqtH4xLHSVys+Lop3P3341Nf8yz+9SGz014+hFQqFGAkVFhbyRfN9FmOfEmeMxCvZdVSafndU+++q/iCbAYVCQWZmJi0tLU/s9L9pyfahycnJlJWVMTExIeKDLRYLk5OTlJWV/U6Sw42NDX784x9jNBp59dVX9zQVn3/+OSkpKSLlTS7ZkGRnZ4f29na0OwrmE/eHs0KhEOY2NyM9g8TGxnL69GmuXbsmLDj3q+XlZVpbWzlz5sxjMOPTymaz8cknn9Da2ip+plAoRIbDb37zGxYXF4mNjeWFF15gbW2NnZ0dXn31VcrLy0lMTGRgYIDt7W06OzsZHBzE5/MJWNHv9+PxeLjf+DnmgwOkHOvBcGCe2OxFTIVTaGJcuJfNhIK/bW4iIiKIjY1lamoq7JHQ349erycvL08YGg0NDfHLX/4SlUrFWpSXgTI3ftXenAG/KsRago8op5IYn/YxbsLuWumyY596uqWyyqfhmTfq+U//6T+J0cXY2BjV1dX4/X66u7vRarWUlZXx4MEDqqqqBBQdHR0tCHgJCQnodDoWFxfRqLVEelMJJi0RDP1WuRH6csOf5Kjnhw3/A5WVlWIHN7u9zaBG+1SI1aVQcMDvY+fLhUKeWc/OznL48GE2Nzfpy7XjivyKPfWXh3T4PKxvb3Es/nFYNTIykpaWFoLBIJubm1y6dAmLxYLJZMJqtbKxsSGacZk06nA4qKurY3R0FIfDwV/8xV8QFRXF8PCwWEjVajXZ2dk4nU46OzuprKzcgxykpaUxNzfHgwcPqKysFKOzjY0NRkZGKC4ufuweiYyMJCsrSxjsPPfcc6yurtLU1ERWVhYnTpzg0aNHtLW1kZGRQVxcHCUlJWxtbTExMUFKSopAMrKzs/fs8F0uFwsLC+HTJklERERw+vRpUlNThYmRJEk0NTUxPj5OZmbmHmRStkPOz89nbm4Oh8OBWq3G7XZjMpkYHBxkcHCQuLi4JxqYRUdHk5ubS3t7OwaD4bFYbNn8yefz8corrzA2Nsb6+jqrq6ucOXOG5ORkmpubmZ2dFT4YdXVhu1yVSsXHH3+8hwwql/w3nz17Vkht7bogA2lB3tXM8jBhhztTD5ifnUO7EQ5BMxgMrK+v09fXh1Kp5MUXX+TVE8e519WFTZJQSJJISI7VavheagrO8XHa2toYGxvD5/NhNBr3NWCKN0Wh06qxPJxB+aUnDCD++5+/eZaayifzqJ5UCwsLrKysUFVVRddH97Cm6gh7w+5t2JWSRKwmgn9Vfh2d8nffZP5d1R9kMwAIJvz9+/eFhOfblkajYXh4mEAgQGFhoZAtmUwm6uvraW5uZn19naKiom8FpbtcLv7qr/4KhULBd77znT0KAbfbzUcffURdXd1j9sSrq6u0tbXx8OFDfD4f2h0FUhDsBr/wcocvLa0lKJ6N4dyBWq5du0Z9fT2JiYnfqHF58OCB0Bt/k9evra3x8ccfc+fOnTBcvUunbzabCYVCNDU1hWU7gQB//ud/jsPh4O7duzQ0NIi/s7m5GZfLhdlsxm63EwgExE5QjvtdXFwg5XgXMdkLKHbZdUoSaGMdRCZb2ZpMQyLcEMizxfT0dAYHB8VMdmRkhO7ubpqbmxkZGQmbGO1sM1TqeSx8KfwG4X85YgIkzaswGU0CdfhqrfTYcK96n2pC4nF6scUsCofJyMhIsdjLBlT5+fl0dXWRk5MjyI/Dw8Oo1Wqhkfb5fMzMzJCSkhIeJ4wso7Nm498OgNZHyKcguGLA15PL5mD4Pbq7u1laWsLr9bKKxLTqcUTlq5Xh9xP3ZWLnn/zJnxAfH09bWxsnT56k8nQNv7A1PUU2GmLWvcKzqUfRKfc+gJVKJSMjI2g0GlwuF0lJSQQCATY2NnC5XIRCIRISEsjJyRFEQlnpIY93VCoVJ0+eFCE0y8vLtLW10d3dLbT2m5ube/w65F15Z2cny8vLlJaWCm7A9vY2AwMDHD58eA+hEMKIkDxmWFtb49atWywvL9PU1ERmZibHjx9nZmaGlpYW8dyR4XM5k2BoaIiVlRUxc3/33XdZX1/nyJEjIrBGq9XS1dUlSIcyOpibm8vAwAAtLS3odDqRbCjXbgfDiYkJEeojGwN1dHSwurpKWlranqAd+Zw0Nzdz6dIlSktLRSjP7pJHCOfOnWNsbIzV1VUkSeLQoUNkZGTQ2trK6uoqiYmJlJeXAzA8PCzGYAqFgry8PNbX10lMTBRmWYODg8THx9PrWqCpIMhWRJjvhARbgW3GlQ62jVrSt1S4nC7UajUxMTFi/JedmUmxXo9/cIBnqquJdrnI2NrkPzx3iyvHjolUws3NTSwWC62trSwuLqJQKDCZTI8958oLU6koSmXT4cW64USrVlFbdYD/5gfnOVnz7fT9drud/v5+6uvraWls5uXKZxgJ2tj0eVAgoZQUBAmRpDfwv9d8h5SIb74B+/usP9hmAMJe9ktLS1gsFioqKvbtBJ9W6+vrPHr0iJqaGqKjo3E4HFgslnDQR1IS9+7dIxgM7su4/2rt7Ozw05/+FJfLxXe+853HcshHR0cZHh7m8uXLaLXhHWhPTw8ffPABX3zxBevr64J0dvbsWfRrAbaGlwnqFHjV4bRAo01F6YyB7xy5Rl1d3bfmNnz00Ucik/1ptbS0xIcffsiHH36I1+slOztb7CAg/KDf2tpCp9Nx5coVxsfHKSoqoqioiL/5m7/BZDJx/vx5YSn64YcfCl+DGzducO7cOTY3N1lbWxMjh6hkG+aKkf0QbVT6bSJVKeSnH2dhYYHS0lJcLhc/+9nPSElJ4bvf/S4HDx6koKBAuBXK5YwMMJu5vX/mggR+dQiTTYXawxN3OgBbc2625t1PbQaUOomkI+Gbvr+/n76+PgAB/UO4+QsGg9hsNoGYeL1exsbGBJNc/gxydrxarcZudeJfiSFmo4SthwYC82Z0ISPb29sUFRWRkZFBRkZGmNQWH0/jU+atcpX4dlD7/ajVaurq6oSlak1NDZPBVe6v9T3194OEqIsrIVH3+INueXmZzc1NPB4P8/PzVFVV0d3dLRrJnZ0dkVwnW9NarVaeffZZLBYLCwsLHDt2DIVCgdlspqKiguLiYrxeL93d3fh8PlZWVvYEGcFeuWFUVBQZGRnk5uby4MEDfD4fU1NTIglxdxkMBpKSkmhsbGRzc5Pr16+LhiAjI4Pjx4+zuLhIU1MT8fHxxMfHk5mZiclkoqurC5PJJHhBm5ubHD9+nJs3b1JQUEBRURFGo5HBwUH0ej1jY2PMz8+Tk5MjXPMOHjyI2+3m/v37zM2FmepflRPKDobr6+usrKwQERHB5uYmRqMRq9VKR0cHwJ7RgUKhoLGxkezsbCorK6muriYqKopHj/bmCXg8HgYGBkhMTMThcDA9PS08JXJycrBYLHi9XsrLy9FqtfzN3/yNQNKUSiVxcXH4fD5++MMfUlFRwYMHD8KGSKtL3C8Miibgt39Q+J8NpQ+VN4DRHY50/sEPfoDH4xGchWPHjjE3MYHats6xAwewLkyTdiCTtIQklEol8fHxlJaWUl1dTWxsLHNzc3R0dNDZ2cnGxoYwTZK/75REA+eOFfHGzRpev1HDmfoCEs3fPlPH7/fT09NDfn4+PT091JRXcS4mn8WOQepKq6g0Z/FHOcf4FyUNmHV/v0mE36b+oJsBufvv6upicXGR0tLSb02GCwaDdHV1UV5ejl6vF7Ilh8PB8ePHUavV3Lt3TzwgnlaBQIBf/epXLC4u8vrrr5OQ8HgmdVtbm9Bo3717l/fee49Hjx6RkpLCmTNnuHr1qpAqDQwMMDo6in/NTcKqmuyFCL6Tc5E/qr6OZ3mT5uZmxsfHMZvNjzUd+5Xdbufzzz/nxIkTT/x8EE5Ju3PnDp9++imBQIBz585RWFhIY2Pjnmhdo9FIQ0MDFy9exG638+DBAxoaGhgbG6O3t5cXX3xRcAXefvttQqEQ58+f5/r16xiNRnp7e+nq6tojN4wrH0Ub+3TGfHJ6LLH+Y4yPj5OQkMB7772H2Wzm1VdfRaPR0N/fz89//nO2t7cJBoMivezh6iNWE7/ecTBuXY32KVMAdaSS5a6N/V8gQfLhOIw5UURERJCdnU1xcTGzs7NoNBrMZrMIDLp+/Trnz5/n6NGjHD9+nM3NTdbX14mKiuLll1+mt7eXiIgIfvSjH3HkyBFqa2sFFB0TEyOshOUddXFxMSdOnBAyuLLsbH7R9xD3zs6+owJjIEBFwCcsoOPj44Fw41JTU8PQ0jhd3omvPW9XU+sxax+/Dt1uNz09PZjNZjY2NkhJSWF6epr09HTW1taEukJGI2Tf+piYGOLi4pienn5soY+MjKSgoIDq6mp0Oh2zs7Mi6lij0RAXFyeaB6fTSUtLC0VFRcTHxwv1gpxrkJub+9hnluH2e/fusb29TUNDA0tLS6IhOHbsGFarlfv372M0GklMTGR7O5y1IHMfNBqNQDV2j+OSkpIoKCgQkLbT6dyjNlAqleTl5ZGeni6MimTEa3ftJhjKpExJknC73SQkJDAwMMDAwID4WyRJoqOjg+TkZDIzM1Eowr4fcpz2V2s3v2B4eJji4mJMJhNNTU0olUoGBgYwGAx7ZKSHDh2iv7+fZ555hrS0NJElkpWVxVZ2NP2h9acGoHkjFGSvSLhcLiwWC0VFRZSUlIhn3fHjx/nNWBsfxazQk7zD+5sjvDffgwIFJYYUIXlMTU0VGRMqlYqRkRFB5PV4PMTGxu5BbP82pdPpaGlpITk5mUePHlFeXs7Y2Bg6V4B/du0N6uPzyI6KR/H/kWTwm9YfdDMAYahfJrhEREQIV7JvWlFRUbS0tGA2h22DNRoNGo1GqBWKi4tFuElGRsa+M/ZQKMR7773HyMgIL730EpmZmY+9ZmVlhY8//hiv10tfXx+SJFFfX8/169epqqrCbDazuLjIvXv3ePfddxkdHSUpKYlz585x+fJlXC4XbW1tbGxscOXKFQoKCnj06BHNzc1YrdbHTIueVL29vUxPT3P16tU9EKnsWnb79m3u3r2LQqHgwoULNDQ0IEkSP/vZz8QYAMIPyx/+8IfCSe2zzz5DqVRSW1vLL3/5S0pKStDpdPziF7/g0aNHSJJEdXU1zzzzDHNzc/ziF7+gr68Po9GIx+MRDUZc4RzqKNcTPzvI65mCZGUDg4ODzM7OYjKZeOONN1CpVHzwwQfcvXsXCI+SXnrpJZKSknj77bcpqSijVzn31PMDkDavRbuz98bV6XScPXuW8fFxNFFq3Gte3NYnOAlK4SzzshcO8Pofv04wGI4wnZycFC85c+aM8OSvrq4mJSVF6Kr9fj9DQ0OkpaUxOTmJQqHA4XBgMBhITk4WznLyXNXv93PmzBkmJycxGAxsbGxQVVUl3kshSfg2NmhdfRwdkAApFOLotpf02BgBN8s57ysrK/T19bEwOsNi2tOzKozqaP5RztUnPvBktn1WVhZ2u52ZmRnhNmmz2QiFQiQmJpKamsrq6ipbW1soFApsNhs3b94UkK88o95darWajIwMcnJy6O7uRqlU0t3dTU9PDz6fD7PZTEFBAYODg4yMjFBZWUlSUhIej4eFhQUWFhZISEgQDdDuSkxMFFbdMu9jcXGR5uZm0tLSRP7CF198wcOHD2lra0Ov11NbW8v6+jqSJKHX62lvbxdNiFxRUVFUVFRgtVpZXl5Gp9NhsVjE2EB2GJQjou/fvy9sxr9Kat5NMJyeniYyMlIgdlqtlvb2dlZWVkhLS2NwcBCj0UhOTg5er5df/OIXZGVlCX+AgoKCPSZUcoVCIXp7e0lISKB9cpCEUxWMOpYZfNCH+ksATavVYjab2dzc5MaNG4K4PDExgcfjwVUQx8DG/FORuW1liAuabFxOl5CDjo+Pk5WVxcbGBr+y9tGT7seJXxzH6ffSvPaIWZeNM0nFezaEcjNeU1NDVlYWXq+Xnp4eWltbmZqaEl4aXx0XfZtSqVT09vYKQ7Ty8nJaW1spLS3lwIEDv/Nx/77rD74ZgPDC5Ha7Rff/TRilcskMX4/HI2Dz5ORkRkZGBIyYm5vL3Nwc7e3t5OfnM941zTv//gOa3+5kbc5KWkEKza3NdHZ2cv369T2zS9lbXB4DBINB8vLyuHXrlph1y9no7733Hs3NzXg8Ho4cOcKNGzc4fPgwZrMZtVpNQUEBKSkpdHd309nZSUZGBpcuXRK77NbWVra3t4Xb3ZPq888/F57pEL7JJyYmuH37No2Njeh0Oi5dusTly5dJSkpiZmaGH//4x0JCKEkS8fHxpKSkiBRFh8PBnTt3OHHiBCMjI0IdYLFYyM7OpqCggLm5OS5fvsznn3/ORx99RGxsLOXl5YyOjqJQKIQRUFSyDU3M1lOQAQWxmhyitmsZGhpCq9Xy/e9/H7fbzY9//GMmJsI72NLSUl555RWioqL467/+a4xGI75ND7PaDXz7TZNCEOFWkDWjRULao7tPT09HoVAIQpSpMBqf249zeS93IDJZR/nrOUTG6WloaKCwsJDa2lq2trZEOMzIyIhY/EOhkPDO9/v9/PrXv0av17O4uMjm5iY3b97E7/czODhIdXU1H3zwgYhzlQNubt68idvtFgS5gwcP7pkXL/T3o3G5sKrVeHaNPlJjYvhhQT7MzYpxiqwLl0cZzzzzDFcvXUGpUzNgn9r3Qf69nMuUxD55lKbX6+no6MBsNguPe0mSsNlsREREoFQq8fv9lJSUoNFo6O3tJRAI4Ha7yc3NDfskzM+Tnp6+b7pnTEwMLpeL+fl5XnnlFfx+PxaLhba2Nra2tqisrKSnp0cY6uTk5Ahr8JGREUpLS584bpP9/e/du4der+f8+fOiIfD7/UxPT+NyufB6vVRUVPDaa6+RmZkppId2u53k5GRaW1vRaDSkpaWJxUqlUlFcXIxer2doaIjo6GhGR0f3jA3UajXFxcXExcXR0dFBd3e3SFbdXbsJhrOzs2xtbREZGYntS8mo1Wqlra0NhUJBTEwMBQUF3L17l7m5OV577TVhghYbG8uLL74ojMB2ewa4FQH+cuchg+khut0LzEbuMBEfZDMiSMKWxJkTp+js7KS+vn7PIjg/Px82z8o20WefeyoyoJIUvJJ0mNnZWWJiYgS6srKyglWxTXv2l8jeE44x7lihMCaZ7KjHGztJkjAYDOJ+jI+PZ21tjc7OTtra2lhdXUWlUmEwGH4nwvj09DSbm5tsbW2Rnp7O8PCwMH37Q6l/EM0AhOWGu7v/b/OFbm5uMjg4SH19vbCzjI+Pp6mpCYPBQEpKCgUFBfR09vF//uCn3P5fPmGsa5Lxnina33/Ab/7d+6y6lrj2cgOHDx8Wu8HdY4Dk5GRSU1NZX1/nzTffJCYmhtnZWb744gtu377N+Pg4aWlpnD9/nkuXLj02J5QrLi5O2Jo2NjaytrZGbW0tdXV1SJJEe3s7Dx48EHK63V2yx+Phgw8+EOTF0dFR3nnnHVpbW4mKiqKhoYHz58+TkJDAxsYGH3zwAZ9++ukeE57nn3+e6elpEhISBLza0dHB3NwclZWVfPzxx8Jd8NatW9TX13P79m1MJhNtbW3YbDbOnDkjOnQI7yhkmVN0hBld6lMy0QlxQPcGH70Vhsrz8/NRqVSCpyG7Dco58r/+9a9ZX18Xeuqbxy7TsjX05ZH2HBYpBEUjEei3w1p1u90uHoYxMTEMDw+LnANJIWHKjyHpkAlTRgzxRQZSjsaReSqR+JSwpLKoqIioqCiWlpb4+OOPUSqVJCQk4PF4BIlyeXmZ9fV1Yfk6OjrKK6+8Ql9fHxqNhqtXrxIfHy+yGnp6ejhx4gQdHR3is7lcLurq6sTDPjo6mvT09PCfFQrxwQcfcKy4mGezMnFPjPODK5f57qFD/GlVJVO9PXsiceXAGAgvVq+99lo4ntiYy6ftX+CMDobdJaUvWdgSvJxxmlcyzz41IW5mZoadnR02NjaorKxkYmICv9/PgQMHsNlsrK+vU1tbS1xcnFiIZKOdixcv0tbWxvLyMtXV1fteGenp6XR1dbGzs8P169c5fPgwWq1WOAzKLpCpqakCMZARhIGBAZLjs3n/Vxbavhhmcc5GSkYcWm0YefD7/dy7d4/o6GhMJhOTk5NMT08TExPDzZs3hfojEAiIe7e8vJyFhQUh2bNYLGxtbZGbmyueT/L8/8CBA8J4aWtra8/YABCEvbm5Oe7fv4/b7Ray1N21m2A4NjaGWq3G5/Ph9XpJTk7GarVis9nQ6/Xcu3ePkydPkp+fTyAQYHR0lPX1derr64mPj2d0dJTU1FS2trYIKOF+YYDNr7rrSeDSwVp0iEJ3JPaNDW7durUHvbBarQwPD5ORlErz9iz7lVJScDqpiAup5cIQrb+/n5qaGs6ePcv7zjFW1PtzfpSShH3HQ0Na5b7vAYhmury8nKqqKiIjI5mcnBSukHIjFRUV9Y3Hzmtrazx69Ai/309ERAQOh+Nr02h/3+ofTDOgVCrJyMgQZiNPClDZryRJoqurS0SSQphEJIduHDp0CK1Wy0//y3dYGF6GEISCIZFvHfQHWR/e4swLJxieHOTdd98VBiPyGODQoUNYLBYh67l9+zatra3s7OwID/Cqqiri4uK+9gKSdwvx8fFYLBa6urqIj4+nurqayspKtra2aG5uZnh4GKPRKHYRQ0NDjIyMkJ+fz+3bt+ns7MRkMvHss89y+vRpAfF98skn3L59W0C4cl28eJGDBw/S2NgoYlpDoRDvvPMOMTExdHZ2IkkSV65coaGhAaPRyP379xkbG8PhcFBZWcnRo0e5e/cuVqsVg8EgFkY5vGlrLYTe6EH9BHQgFJLwrBnpeEuPhEKE/vT29gqS5xtvvCE0562trVgsFsFYf+ONN8hPyqLKmMeEc4n1nU1x7CingsLRCAybYURFnm/Lf7/L5SI6OppAILAn6TDGGI0iFvQJGrTRauGdL5vsmM1mfvKTn2AymYTD4uXLl7l69SoJCQkMDQ2xs7ODxWIRTZbf72d2dpZAIIDRaCQ3N5e1tTX6+vrEYiSjL2fPnqWlpYWEhARUKhV2ux2PxyNGBWtra7S2tnLq1ClGR0YwKpVkRUcz2NHOZ59+KhqB3NxcbDYbfr+f5ORknM5w5r0MoSskieHYhADAAAAgAElEQVR3O0i269FIKoqTcmB8i/++5k0uZtZ97TVrs9kYHR3FbDaj1+vFmEP2xg8GgyQnJ5OQkCBQDr/fj9Vqpa6ujoWFBeFWtx/yJydFylLA+Ph4MjIyqKmpEUiKHPzk9/t3EQq7GW7f5lf/0cJAzwyPBhfobBrl7Z+0ERcfTW5RCikpKczMzPDgwQPGx8fJz89Hp9OxurpKWVmZyEm4d++eQDRUKhWlpaU4HA4GBwfFuGJubo78/Pw9C6aMlC0sLGC1WkVC4u6xgdxg6PV6WltbGRgYIDU1lZiYvaS3rxIMl5aWMBgMrK2tiZCjkZERVCoVFy9eJCIiAqPRSGtrKyqVCoVCIaSdKpWKGzducN85xVik58kLsQReDezMrFGZmitQR7mWlpbCuRiTc1ijQng0PH6cLwU+/13FTbLNybS1tZGWlkZGRgaNjY1UVlbSqbIy636K6RbgC/p5/cDR/S/Er5RWqxWOmYWFhYRCIQYGBmhvbxf3psFg+Nr1zOv10jHUi1sDO24veQdyvjaN9vet/sE0AxCew8lmI0+b7z/p99rb24mNjd1jcSxns/t8Prwrfn76r3+zL4NckiQedvdDgk+oAeQxgFqtZmxsjJaWFux2O9PT02RnZ3Px4kUuXLhAZmbm76SESEhIoKKigpWVFRobG7HZbBQUFFBWVibgwqamJubn54mPj+fu3bt4vV7BRbh27RqnTp3CaDTicDj47LPPePfdd9na2iIlJWVPul1dXR0nT54kFArx+eefCynmp59+KmaCoVCIGzducPDgQZxOJ++//z6dnZ1otVr++I//GJfLxZ07d4iKiiIQCOB0OjEYDFy7do2+vj6CwSCSpOBQ7kvML8ygibUjKb+Mm0ZFRsQVJu8W4NsOCSRhe3sbSZK4dOkSly5dEtfdzMwMb731FhC2PX7hhRcEdJ6gM3IlpZbTiQc5YijE37hI8oQC3bZCjAa+GvokNxtfDUmKiooSEPuRI0fIyclhYmIiPJbw+RgfH2dlZYVbt27R2dlJdHQ0N2/eRJLCjOkHDx4IeNzpdIpwGY1Gg8lkYnh4mEOHDgnznpycHIaGhlAoFOTn53Px4kXcbjeNjY0cOXKEkZERtra2qKqqQqvV0tfXx8zMDJGRkfT29uJwOJifnyc5OZkTJ06ItLuioiJWV1d5/vnnRcBOMBhkbGwsTMLSavjwQTMhSUHqVgTfO3qLibt9HDtc941cQGVvhZycHGZmZnjhhRcEUVelUglpaVFRETExMYINL0kSOp2O2tpaurq6sFqtVFRU7Ps+SUlJTExMMDIyQlVVFQqFQiB9Bw8eFBLUmZkZ2tvbCQaDTPUEmRoMk+VCIQjKTX4gSPu9EbyBdb5o+oiNjQ2MRqOwVj516hTz8/M0NzeTnp5OeXk50dHR3Lt3D7vdLiSHMnplsViEBe/AwAC5ubl7OD4ajYaysrI9CYnDw8N7xgbyQl9cXMzY2BhNTU2EQiExxtpduwmGY2NjQsor3zsajUZ4O2RlZbGysoLb7WZpaYna2lrMZrPgTn2qXWZle39rdCkEQSmEfnxDkK29Xi93797l/v374YY8PoGYRQ/2GAUuTQgpBCpFWHanRuLUUhQv1ZxDpVIxNTWFw+Hg8uXLTE5O0tfXhzsjhmmX9akZBcm6WF7YZfX7TUvOMMjNzaW2tpa0tDRcLhddXV20trYyNzeHJEkYjcbH0Jiu9Sn+5+nPaDFuMZUQYsDgIWjQcSgph8gnGHH9vtY/qGYAwmYjcrZ5ZWXlN3IQVCgUzMzMYLfbhXYWwpBpKBSipaWFxQ4rEz0zAg14rEKwsxngP7z3bwTC4HK56Ojo4N1336WrqwuAo0eP8sILL1BRUYHRaPxbw0gajYaSkhKMRiMdHR2CtZ2VlUVFRQVms5menh7a29vF4vvqq69y7NgxDAYDTqeTu3fv8vbbb2Oz2Thx4oRQaOh0OmHpevXqVSRJwucLW0HLjYA8/46MjCQ5OZmzZ8/S2dnJL3/5S2w2G4FAQIQiyVnfNpuNnJwcbDYb8fHx3Lt3D61WKwiKpaVldN+zsjF6APdKIpuTqVwu/59our3CttfPiRMnwpG+X+7a9Xo9ycnJJCYmit3xX/7lXwrHv/Pnzz/RpVLtk/jo5+/iWgsjBHKyWigUwufzPeYxYLVaxesgjB7tdl1raGggLy+P5uZmJElifX2d5eVl4e1vs9nIyMigrKxMHMdmszE8PMzKygrPPvss0dHRLC4ukp+fL0Jcent7WVtbw+VysbW1hdfrxe/3c/nyZQwGAwcOHGB6epqhoSHh+hgKhZicnKSlpYVAIMDy8jKBQIATJ07w8ssvU15ejtls5vPPPxcoht/v58KFCxQUFPw2PCoY4Ndrffz71RYGjV7G4/yMGndApcA7tkh5Wfk3yvGQVSWZmZlMTEyIFM2FhQVSUlLweDysrq5SV1dHVFSUGCMoFApWV1c5ffo0g4ODLC4ucuTIkX3va0mSSElJoampSez6dpccRDYwMEBeXh6PRmfo+GT/rHqAuelVLt2q5vnnn+fo0aMsLS3R3NxMdnY29fX1oiHIyMgQ8/3Gxkbh2CejlvLcX1YeWCwW0tLS9pw/OTk1LS1N5Do8aWwgGxUBNDU1MTEx8ZhRkVy7CYZyJLfcJKWlpYlchqysLCYmJgTxsrCwUDQug+ZttnxP8fOXQOOHnM2wd8vq6iqffvopc3Nz1NfXMzs7G07EDEnku/SUaOLZ2XJREpfOa4Un+acZzzBy34JOpxMjusHBQY4ePcqBAwdob29Hp9UyoNxfxaNA4tXseg6aHidvf5uSG/Xi4mKOHDmCyWRieXmZ9vZ2Ojo6WF9fR6vVYjAYaFod4087f8zajvO3TYoE875NPlrs50JK2R9MQ/APrhmQs807OjpYW1ujuLj4Gy24cgZ5fX39ng47NTWV/v5+xttn2JjZFLuGJ1UoFOK1//Y5JiYm+Oyzz3j//feZnZ0lNzcXo9GI/8uUuN8FBXhaydasu8NPNjc3sVqtNDY24nK5xHjC7/cTGxuLwWCgsbGRt956i9XVVY4ePcpzzz0HwFtvvUV0dDRut5u0tDRefvllcU7m5+fp7e1ldnZWNDy5ubksLi5y/Phxbt++zcOHDwVsGgwGGR0dxel0CuvlGzduoNVqGR8fx+Fw8Mwzz5Ceni4Y9xkZGUxOThIbY8K7qWF7S8fSQphlnpqaKqB/hUJBREQERUVFQk9st9u5c+cOfr+fa9euUVNT88Tvf2tri//8n/+zYE5fuXKF2dlZfD4fHnWILV2IkATa0N5MAr1eLxIN09LSBAsbYHFxkcOHDzM6OsrGxgaBQIDi4mKio6MF7ClJ0mM72+7ubhITEzl27Bhvv/02R48e5cqVK9TW1mK325mfnxcBLn6/H5VKRVxcHGfPnhXnNCcnh66uLpxOF/8Pe+8dHeWZpnn/3ipVSVUqSaWcc0ZCSCAQIJIAk03GARtjMNjt3J6vz8zXPbv7zc7u9uzMzvS07W67u22Dsw0YaBsLLIRFVEBIQgEFlHMoRZRLUtX7/VGuB4SCcU/P7PRMX+dwdFC9qjc/z/3c93VfV3uLmavftpJzrQ1Dm0xwcBCrUhZRW1sz6fnr7u7mxo0bIijV6XQiDV9RUYHJbCLH10iF6xij5rulEZMCigdauKORWesVg9sDCH6pVCpu3bqFvb09HR0deHt7s2DBArKzszEajYyMjGAymfDz8xMCYqWlpaIU5OvrS2hoKLdu3RJ8jJmg0+kYHh4mJyeHefPmTRmLrCY95eXlhHgnUphTP+uxj43AKz99HL2zo1DcbGhoIDs7m/DwcBYtWkRTUxOZmZn4+/sTGRkppJKtUrzWOnVAQAA3blgmPUdHRzIzM3FycprStuzi4kJsbKywLra3txeyw9aygUKhIDg4mNDQUEpKSsjMzESj0UwRKoK7BMOqqioGBgaQZVnYUru6uqLRaCgtLUWhUKDT6ejp6SEhIQEvLy+uXbvGoLeGbvPIjKtySQb3fgnP7+bqrq4u7OzsePKxfWR9kU/WBzdpy+nmTsMQqGUOP/UETp1j2LcMsW/NVvQOFinsvLw8FixYILwcoqOjcXNzw9HRkZJLOYwGOjEoG6cch1JS4Gxrz9/E7fijqvvZ2NgI/xjrs1RVVWXhZt0s4FfGm4xjmnI8MjBqGqd/bIRVXn8a5YL/cMEAWNJjLi4uXL58+YH0AeBu+1NISMikSF2hUKDX68m6dJ2u8jsz/r0kSbgFudBCLXl5eSiVSpYvX8727duZO3cuFy9eJCQkRDDH/zVga2txL+zu7ubWrVvU1dXh7+/P3r17GRwcZHR0lKioKLKyssjJyaGtrY0lS5awe/duwsLC6Ovr4+OPPxatSXq9noMHDwoiV0ZGBmfPnkWWZVatWoWHhwdNTU309fXh6OgoWgUfe+wxfHx8SE9Px2g0YmNjg9FoZMGCBezcuZPi4mKuXLmCUqnkueeeY86cOaJ1SZIk0XJmNBoJDg6mt7eXsbExVCoV7e3taLVa9u3bR2VlJRMTE0JoqK+vT5QbAgMDWbx48RQVNrDUr48ePcrAwABms5k5c+bw0EMP0c4wp23qKQ6UaXCXqfGU6dCZcBiV0I5biKUrV64UHQv3BgKSJE1qAaysrAQgIiKCK1euMG/ePOzt7enr62PBggXi7yoqKqitrSUqKoqamhoGBgbYvXs3NjY2KJVKIiIiuHHjBiaTiYSEBFFfNxqNdHZ2YjAYKCwsJC0tjcGBEQpzoa1JgXEUxscljKNQU9lP+a02IqL0LFm6WOy7oaGBsrIygoOD6ezsxM/PT3BtMjMz0UT7kaHpmJGwNaiBABsn5vk+GD+ntbUVg8GARqNBlmXmzp1LWVkZ/f39SJKEvb29UAN1cXEhJydHKOsNDg6yatUq8vLyaGtrmxK03w9/f3/y8/Pp7u4WXS/3wupuWFbYRGfL2KwCUgBbHl2Eg6MlpW8NCKqrq8nNzRX6/PcGBGFhYRbHvcxM6urqiI6OFmz1yMhICgsLGR0dJSAgQMg1BwUFTZrE7ezsmDdvHkajkerqatzd3SktLZ1UNgCmCBU1NzdPS0C+c+cOGRkZyLLMhg0bhDKkVW8gJCREZJ6sREcrf6Q2q5Lesx1ov+jGNmsAxmVMvmqw+e54JZjXqEQ7fvf4+zsGee9Hxyi5cJux/nHGhyYY7jZiKOxDMilI3pokOrSsOhLXr18XfhVZWVm4urri5+eHh4cHPd09KCsMqMO8aDf2o8AiTSwDITp33kraj5fmX4+9r9FoCAoKEuXAkvFO8qXOGbeXkakZNLAveCkqxR/mn/NviQedv/99qyVMA6uf+blz5yYN2jPBy8sLjUYzqR/cioiICJIeTsDGTomkmH5klGUZl3laQkJCOHToEM899xyLFi1Co9HQ09NDT0/PtOImfyyMjIxw+fJlXn/9dVHn9fHxoaamhhs3blBRUYGDg4MwTLFmKurq6uju7mZ4eJhPP/0UlUrFnTt3sLOz45lnnkGlUnHjxg3efPNN8vLyRIp77ty5FBQUCHva0dFRtm7dysGDB7GxseGDDz4ALJOko6MjzzzzDHPmzOHIkSPk5+ej0WiIj48XQiq2ro5UepnJD5jg9FglPfYyGq0Gg8Eg0vbWFeGrr76Kv78/arVaMN+rq6uF/aqfnx8Gg4E333yT3//+95Mc2zo6OnjvvfcYGrJoGahUKjZv3szt/jb+cSCHrvsEyHp0cDXSRJfOMlvcy0O5dzKytl2eP3+exsZG8XlBQQE6nY7169djZ2c3WRFxcJArV67g6upKbW0txcXFpKSkTHoRx8fHmZiYQJZlWltbRXBjbUe7fPkyxcXF6PV6zMZgBvutz+fkn+1tI1RXTD43q5qkh4eHUK+793kqUHShnEUoRZLh2zuzdX5Mhp+fHx0dHfj7+4trFBUVhY2Njbh+t2/fxmQyYWtry5w5c1AqlYyNjVFVVUVvby/Lly/HZDJx9erVWfdlZ2fHQw89RGlp6bTvtEqlYteuXWAzPHPp7zvY2tng7DqZtGhra8sTTzwhWleHhoZ47LHHLM51n35KQ0MDISEh7Nu3D4PBwIcffsjw8DAA7u7uHDp0CJ1OR319PfHx8Vy9epWTJ09OIqeCZUW/YcMGdu/ezZ07d3B0dKS1tZXf/va3IuUPlnLh5s2beeKJJ+jo6OCtt94S74MV6enpouV4wYIFvPjiiwQGBtLX14ebmxvNzc2TymkfffQRFRUV9BQOU/e/KtCm9qK+NYI6bwjH19txeakORYfleIM7FfiaNIIDIcsyZccaMPbfJ/L1XWPSl7/6hpqrTTg4OAjNDZ1OR3JyMrm5uQwODuLr6yvO0UpMdlJpWFWt5rPkH/FK1DpeiFjDu4sP8sWKlwi0/+GS9H8IJEnC398frzmhKGbrkwTGzSa6x2b3MflTw59UZsCK4OBgiouLqampEUYgM8EqmWs1nLj/M/9Af8qabtFVegdJIU0ZQOaujeJ/n/gbYmNjJ0leAty6dYuamhq2bNnyLxK3mA5DQ0NiIGloaCA+Pp49e/aQkJDA/PnzsbGxITMzU0ymiYmJ7Nmzh6XLkul0VnCpt4pzt3IoulGAYsgyqSuVSg4fPkx3dzfHjh2jqKiImJgYYVlaVlYmUsnj4+P4+/vzzDPP4Ofnx82bN/nss88YH7co2qWkpLBp0yauX7/O2bNn8fDwYNOmTRQUFLBq1SpcXV35ouEGL+Z9RIeDmX4N9Ghl6j1keu1l9K0jKGRLtmDXrl2kpKSIAau4uJj+/n6MRiPffvstKpUKPz8/nn76aRYtWoRWq6W4uJjMzEw6OjoYGxvj5MmTTExMiEBixYoVhIWF8VcFx2kZ7p0qrPPd/3t0MsEGCW9vb2GvvGDBAjFBW/X0TSYTHR0dQvvCWhpydXWltbWVuro6kpMtbOezZ8/S29vL6tWrKSwsFJ0d9z47WVlZ1NfX4+LiQmdnpwh+rMe+aNEiHBwcqK1pIvNiN/IsykDdnaNs3bkAWztLGjUnJ0esnCsrK0V91Gw2k5GRQb2/km7T7HViBfBk2LIHelYVCgV5eXlERERQXl5OYmIiWq2W/Px8Ic09MTEh9ATs7OyElK2V5b5s2TKys7NpbW0lOTl51nfa09OTuro6QcK8P5Og0+nQOanIuVSN2SRNmx2QJHAPkmntLkej0eDu7i72qVKpiIqKori4mKKiItFV0NjYSGZmppCFDgsLIzc3l7KyMqKiorC1tRVkwba2NsrKykhMTKS0tFR0KtxfSvTw8CA6Oprbt28zNDSETqcjOzt7UtkAmCJU1NPTQ9B3LoTp6ekkJiYKV1QHBwdiY2OFrsrY2BguLi4MDQ1hY2Nj4QedzubCG98Zk8nitlt+DpuxvTlEaKwLy43uvPjii6xcuZKYmBhupN+kNqNlxnsjSdBS1cZDB1ZQWFhIUlISSqUSHx8fbt68SU9PD97e3pSXl4uWb2vK/vLly3jpnNkav4z5LkH4aP/l3Ks/BA1DXWR0lM+6jQQ8G57y79KY6H78h80MgCV637lzJy0tLVy5cuV7tw8JCaGlpWUSi9wKvV7Poo0JxB8OxS3GEaVagaSUcA3UE7snhL87819nVP+rrq6e1nP8X4KBgQHS0tL45S9/yfXr10lMTOTVV19l48aNODo6Mj4+TnZ2NtnZ2eJvzGYzSqWShrE+tlz8Z37efIFC/RDlvmbOhQ6RETSMUWFm/fr1nD9/nk8++QStVsuzzz7Ltm3bcHBwEK1oFy9eRJIkHBwc2L9/P5IkcezYMc6cOfNdV4DEM888g6+vL7/73e8oLCxkw4YNPP3000LgIzg4mCsdt/mft75iQjaDBLLC8g+gRTNGfpAZtVrNa6+9NsVLwTpg5uTkCGGm3bt3CynYxYsX88orr/Dwww/T0tLCmTNnRLnB399fqMW1DPeS31OPecZWEUtKvNceLl++LH5tXcXFxMQwNjYmVrjApNbWe1fzo6OjyLJMY2MjRUVFrFmzRgSI91rXDgwMkJOTw+XLlzGZTJNU4bZv344sy2i1WubMmcP69etZu3r7rIEAgMkkc7vibjeEVVjIun9recyqM69XaZFmW/nIYM+DD3IeHh7CyhmgsbERX19fNBqNEKlRq9Wi3z4oKAi9Xo+DgwO2trbcvHkTs9nMggULBLFyNlhVA7u7uye9B/diydIlpOwIQKGQUSinnqvWCQ6/tgkPDw9Onz7Nb37zG8rLy8V9dnBwYN++fUxMTPDxxx+L4M/X15dPPvmExsZGvLy8OHDgAEajkaNHjwrSqVqt5tFHH2XBggXk5eURGxtLX18f77777iQPECvc3Nw4dOgQc+bMoaurCy8vLy5evCg0NsQxa7Xs3r2bHTt2UFlZydtvv82XX36Jn58fUVFRAJMyVJGRkbz44oskJiZiMBgmaU105N6ZsUwkmUHZOIZ77gg93T3k5+fT1NRksWEv7WA29V1ZhsbyFiJCIjEajeKeq1QqQRbVarUMDw8L4i5AYGAgy5Yt4+LFixYho/+LWOUZNWv6X4HEYrcw9Oof5h3z7x1/ksEAWFKTK1eu5MqVKzQ1WaRoR4eNDA+MTGGLBwcHI8sy9fX14nfd3d2cP3+eX/ziF1RWVqLz0rDqhUV81f8R58eP8+u8/41+jpZbt0qm3b/JZKKuru4H6R7Mhr6+PlJTU3n99de5efMmS5cu5cc//jEPPfQQOp2OiYkJrl+/zhtvvCFaAB0dHYmPj2f16tV8m5fFgczf0TFi4T+YZLNYDXc5QFa4idSzqbS2trJ79272799vcQMbreds8V9SbfO3BDyUiWtMNQr1KFu2bKGlpYU333yT27dvo1KpUKlUxMfHU1BQwEcffYRer+f5558XZL6qqiqCgoJQqVS8W315xlSbLEGri4xbZOCU3nJr/zRYJuOuri527tw5pc3NxsYGjUbD4OAgCoUChULByMgIlZWVREVFoVKpaBuZ7MM+E0bU8iTzoubmZgASEhIIDw8Xk5xCoSA/P19sZ32erN0pRqORc+fO4ePjQ1xcHBcvXsTe3p7W1laysrI4cuQIv/jFLzh//jxms5nk5GSUSqUIfqyW21YVPGDabonpoPiuzGW1FAaEyqI1GLBOLE51A1NsWO/HAml6f4vp963Ax8eHrq4unJ2daWhoEOTHO3fuoNVqGRsbE3LIVrLlyMgIQ0NDDA8PU15eTkpKCpIkcenSpe/dp6enJ4sWLRKk2vshSRKHnn+cRZvsCYlxQm1rCYxc3HWEJWhIWKvlWtYV1q9fz6FDh3BwcOD48eO88847wlTJ2dmZffv2MTAwwCeffILZbJ4SELi5uXHgwAEAjhw5IiY4hULBpk2bWLt2LYWFhWLR8N5771FdXT3leNVqNdu3b2fLli0YDAZcXFymLRtIkkRcXBzPP/88arWavr4+nJycRBfG/QsetVrN+vXrOXz4sNAtUCps6K65MyufQlJAX60lDZ6ens6RI0e+4yXMGFpPQvr5dKGqasW9dudWwap7sWrVKjw9PTl16pRok/y/AUeVhsNhK6f9TPqOz/BCxOp/46P618efbDAAsHz5cvz8/Pj13/yOF5P+Xx7WPck2p6c4FPsa5977VgQFzs7O6PV6ampqKC4u5v333+dXv/oVhYWFzJ07l+eff55t27bR2toqJgJXV1eioqKEwcr9sDLU/6V8ge7ubr788kvefPNNysrKWLlyJT/+8Y9JSUlBq9ViMpnIy8vjzTffJC0tjdDQUF566SUWL14s7F2XL1+Obm0s45I87SpYlqBXBxOBzqJ3vba2lhu1H3Cu6RH67S6hcetF496L27wKwrZforrtCkePHmV4eJiIiAhWrlzJ+Pg4VVVV3Lp1i82bN/PUU0+JevTo6CiNjY2Eh4fTPz5CcV/TzCtyABnq7Sanqmtra3n33XdFarCsrIwVK1ZMG3AVFhZy/PhxYWX6yiuvCLnm/Px83n77bTrrZ05n3gv1fSaGPT09qFQq4WlhNpvFytcqGASIQd2aIbhx4wbt7e1s2LCBq1evCh17g8FARkYGWq1WtBnGxsaKIGJsbAydTse5c+dYvnw5g4ODIuiInOODWj17CUqttiFqjq84dlmWcXBwoL+/HwcHB2xsbGhqahL6DGHjDkRoLIJD90MpSbiM2xBj+v62wnvh5+dHc3MzgYGBYpC3dqNY23pHRkbEZ/Hx8aKs4+DgQF5eHmq1mqioKPr7+0XJZjasWrUKW1tbzp8/P+3nOp2Ox/ftxD1skL9+cwNf5/0Nn174K37286eRmcBkMnH8+HE8PDzYt28f+/fvx8bGhk8//ZT333+f+vp63N3defLJJ+ns7OTYsWMoFAoef/xxvL29+eSTT2hqakKv13PgwAE0Gg1Hjx4VwawkSSQnJ7Nr1y6qqqpEe92nn35Kbm7ulOO1WgofPHhQyEdrNBo++OADoTtghUqlEvX327dvc/LkSWByZuBeeHt789xzz6HX62d07bwfNkrVJKKup6cnP/rpYcEPmAlaD1ua2htpbW2lsbFRvCcKhYJ169ZRd7uBzhsDvPH0Ef5i5X/j/f/6OYamLpRKJTt37qS/v5+0tLQHOsZ/LRwOW8WLEWuwVVjePeub4mHnwK8XPcVcZ/+Z//hPFH+SnAErJEni5ulyzr9xjZ72PhHp9ncPkv1VHt3tvSzevEA4eFVXVwv1vtWrV7N161YiIiKwt7fHw8OD2traSaImTk5OZGVl4eXlNcmMBBC+9FYr3x8Kg8FAWloaqampDA4OsnLlSnbs2EFISIhw+issLOTEiROUlJQQHh7Onj17mD9/PhqNhps3b9Lc3MzmzZtRKpX8vDyVQdM0BjvfQSkpmBMZxaFlD1NdXU1++Tnk0C8s11FhvZ7fGQZJZkbsihhuiGDP7sdYuHAhx48fx2Qy4e/vzwfl29wAACAASURBVBNPPEFISMik866srKS0tJTNmzczpoSP6jJnv3eAvWEUU22nMM45f/68aOFqamrC09OTXbt2Tbm+OTk5pKamCnvT/fv3Cxnn7du3s3jxYgwGA8U5N+hwVWC0mVlDwm4c4poUU9LmwcHBaDQaMjIyRL3dOohatQqsNrZWu+rm5mbc3NwoLS0V3gwhISF0d3ezZs0aNm7ciMFgoKioiG3btpGWloZGo8He3p7NmzcL5zyVSkVRUdF3zn1q+u+MUFE2fepUkmDbrkSWLo8ALJ0EpaWl+Pn5YTabRQB34cIF0f3x/HM/YmvIQhqHuqkbnMyaXuYewfJGOxxttSL1/CAYGxujoKCAuLg4iouLSUpKQq/Xk52dTUREhJjch4aGiIuLE46E4+PjjIyM0Nvby5w5c4iKiiInJ4f29nYSExNn3aeNjQ0ODg5cuXJlRn8DK8cjKyuLOXMs/iYODg44OjpSVlYm9h0VFYWzszPx8fH4+vpSU1PDtWvXhNWw1WGvvb2d2NhYYmNjqa+vJysrS6gixsTEUFVVRXZ2NoGBgUK/3sPDg8DAQK5fv44sy0RERAivktDQ0CnPt4ODA/PmzaO9vZ3Gxkb8/f0pKiqa1G2QlpaGwWDgmWeeEW56Q0NDomtjujHJ2tFTXV1FT9UAY4OzBAUyrHp6Cfbuluyb9d5VNd6mp2qA8aGJGTMLyw4kItvf/e6SkhLa2trw8/Ojs7KXj149jaGil8HOYQyNXZRm3ebLX31DSFwgkQnhaLVaC39gmnH33wqSJLHANYjHgxYT5uDJItcQ9gYv4a9iNuP/b0Ro/GPhP2Rr4f1oKGvi54+9bvnPNA9mVX4tjXdqyb2Vg8lkYmJiggMHDrBy5Uo8PT0nEY+sPf1Xr14VlsdOTk7U1tbS3Nw8RYozPT0df3//HyxN2dbWxrlz5zh37hxGo5HVq1ezfft2AgMDhalPSUkJJ06coLCwkODgYPbs2cPChQsnCY+cP39eaBAA/LbqImPmmV9uWZYxG/oxF7dgMBhwn1eBrb5/2vqfJIFCYWbF0k1Iw958+OGHGI1Gli9fztatW6flUGRlZWEymVi+fDl2ShUnG24wYprFVliCpDFXNCMyZWVlYjXV19dHS0sLsiyj1+tFrzpYUp5XrlwRgjo+Pj7s27cPOzs7Tp8+jUajYePGjej1eubOnUtUVBTDTZ2UWAVNpiERxjcocBpRMDFqoqdqkKH2ESQFJK9aSlpaGiEhISxevJji4mLAkmUaGh6i232CqqAhTndmkdFewPj4OHYDFjlrrVbL6OioqNc2NzcLhb1Tp07h6+uLg4MDRUVFjI2NsWLFCuLi4ujo6KCwsJCNGzeSk5ODVqu1yM8mBFJT1U5zUw8KhcU7wPpz/sJA/p+fPoxSabmR5eXlNDQ0EBQURGVlJX19fZjNZjZt2oS/vz+VlZWsXbsWOxsV63xi2eo3n2gnH0LH7HG90cH/2fUiVWUVwjb5QWFra0t2drZw3PT398fHx4fKykqRUTGZTHR1dQlxIUmSRMuoVakwNjaWmpoa2traZjQZuhceHh7U19dTWlo6LZkQLByFsrIyysvLSUhIQKFQ4O3tzcDAAG1tbXR0dAghI6swzfz58/Hw8OD27dti4k5MTCQ3N5fe3l5iYmKIiYmhrq5OBARubm4iSMjMzMTX11dkkaxmOkVFReIa5OTkCCGq+wnIKpVK2PQWFRXh5eVFV1cXN2/exNbWlkuXLrF27VpCQkKwt7cXnQudnZ3U1tbOKFTk7OxMTk4Orh4uNBdM5S8AIIGds5o9f72FyqpKQT60InxJMG0l3YwNjd99pxSADAk7oll7cDmLFi0SJTKwZECvZmTy0SunMY2bJ43XsixjNpu5djKH1XuXETEnnPb2dnJzc4mLi/u/OueolTaEO3oRq/fD395l2mzav3f8pwgGPv1fp6jKr5m5hUgCs1Hm8H/Zz5o1a8jJySE4OBhPT89pN3dwcGBwcJDc3FwhrmPVCw8LCxM1t8HBQdLT01m6dOmM33U/mpqaSE1NJT09HZPJxLp169i6dSt+fn7CmKasrIyTJ0+Sn5+Pv78/u3btYvHixVPq6gMDA5w/f55ly5YJrYVL7eUYRvtnJgUB3j2gbhlAoVDgPr8Ype0sKwNJwtDRw6VTbdjY2ODh4cHu3bunXXHIsszXX3/NnDlzCA0NRSFJjJknyOuun/arFUhojPDjsIfo6uykr6+P9evXk5KSwsjIiGgZtDovFhUVkZuby7Vr10Sd3tHRUawcGxoauH79Otu2bRPCNmBJEwc7edKQVUyXg5nxe8rvtuOQ0KDAr0ui8WInFccb6Sy5Q3d5P203eii5XI5bmJ79h57i6tWr9Pb2WlKmNgoKInpp9DcyaiczjJFBhZFu1wkGfRT8ZOMhcq5lkZycLCbT8fFxIQJUUFDA1q1buXz5MkqlEpPJxI4dO7CxscHPz0+44Lm4uIjsgFqtYtWaGGLj/JiYMKHT2eHipiQobIL/9Q/PoVLdPbGsrCy6u7vp6OhgYmKC8PBwDhw4gJeXF7W1tUJEygoHlR0Rjl5o+sapuVXBsmXLhDGLtd30QWBra0thYSE6nY7+/n7UarXgDJSWlhIbG0tbW5vwcYiJicHFxUVIOSuVSlpaWkhKSsLX15eCggK6u7tnlSiGu8qE165dw8bGZlqLcatS4LVr1xgdHRWlvdDQUKqrqzEajVRVVU2SOrdKHScmJuLi4kJZWRklJSX4+flRVVXF0NAQUVFRkwKC4OBgXFxciImJoaWlhatXr+Lh4SFWt1qtltjYWKqqqqisrGTFihXcunWL8vJy4Ylw/7kFBAQQGBgoSJU6nY6CggK0Wi27du0SwY9CoeD69evEx8djMBjIysoSCp73vrMqlcrinGnqZXx0goHmETGRW3ZqsepeeDia2pYabG1tSUlJoba2FpPJhFar5bWf/JidL2/GO8STpoZmZBsToQsDWfPiEtzj9FRUVFgssltaRJZTkiRac7rprRmYmavwneDSwvXxhISEkJ+fT3Nzs5By/jP+MPynCAa++MUZWqs7Zt1GZaNi71/twtHRkYqKCiYmJmZNf/r5+Qlt9cjISFxdXbl165YYwMCy+qqoqGDLli2zqg5aSYtnzpzh4sWLord4y5Yt+Pj4iCDAWvO7ceMG3t7ewhVwJm34kpISqqurefjhh0UtO//6DSrVs/e9bh72Yf9jT7Bx40bqh08wIQ/Pcuww1G1HfMCj1NTUsGnTphlTdm1tbeTk5LB69WpBVpur9yO3o4oO48AkYyKlJGGnVJFUAb0NbQwODrJ3715BFvz2229ZvHixGAQOHjxIfHw8nZ2douPB3t4epVIpXOsqKiqQJImuri4aGxsxGAwMDQ1ZfNJPnCDY0YN/2vUSsfbeOHSOoa/sY16TgjB7D4pPVNOa0418Xx10uG+UnrIB/Bd6kV9oaZtrb2+nwruPDo/vVkT3tvxLYFSaKG6+jWe3rRAYAkS5qaOjAw8PD0JCQkQ/fVxcnMgu3SuTvWbNGqHbYF2x+vg6s3xVNBs2z6PNUEJQsCexsbGW4x0e5tKlS2LSsLZHrlixAm9vbwBhvZuUNFXjvauri7KyMpYtW0ZtbS3Dw8NCFvdBYc2AeHl50dbWJhTnbty4wbx586ioqEClUtHR0UF4eDh6vZ7e3l7a29sZGhrCbDbj5OREZGSkSC0vXLjwe6XH7e3tMRqNZGdnixLE/dDpdKjVai5fvoyvry+urq4oFIrvDI3yUalUlJeXExMTM+nvrRnDxMREYUU8NjZGa2srw8PDkwKC7OxsgoKCcHZ2JiYmhs7OTi5fvoyzs7NYNNzbelhQUEBycjKtra3cuHGDwMDAKeZEgMh0NTQ0CKvt8fFxWltbJ4kU5efn4+Pjw86dOxkcHOTy5cu0tLRMESq6ffs2BoMBfagOfZAOeVzGbJKxdVLhk+TKyucSGWFI7KeiooKAgABcXFzEuzUnZg5hCcEMO/ahCpJ56W+eI2XDShISEkhOTmb+/PmEhobi4eFBW1sbkiRRn9HGaO/M2UJZlhkeGGHrC+tRqVR4eHhw+fJlkan9M/4w/IduLbRC66ARLOqZMDI+wi9/+Uv+7u/+jsHBQUpLS7l8+TLl5eV0dnYKxrX4Tq2WlJQUbt68SUtLC5IksWTJEsrLy0UbWHV1Nd7e3jO6rMmyTFVVFUePHuXDDz9kZGSERx55hOeff565c+eKIKCqqop3332XY8eOodVqOXDgAE8++SS+vr6zntPt27cnpQG/+eYbVOUGfHok4RJ292AsPxJaVNA/KqycveyTkJiZqS4BiVHb6erqwsXFhYiIiBm3raysnKIXr1ba8JJuIfGNCoLt3VEplOhVWh4JTOJnuqXohyXUajWHDh0iMDCQwcFBTp48SUhICKtWrQIQNdC0tDQhMBMbG8trr73Gq6++ys9+9jPWrFkDWCY/q0Vzbm4uX3zxBZ9//jkjIyP09/dz/NgxhkoacKy5g2e/Am8PL1qrO+jIn0ET3QwDPUO8/z8+E6I5qBS0+YzNmH0xI1Oj6iZh5aJJL529vT2enp709vaybNkyrl+/LoyQ7rfuTU5OFsFDXFyc0JK4FxMTE7S2thIQEMDY2BhXrlzhjTfeEG54gCgf3Ss4NDw8PGPa3brCtJIl/xA2t5+fH21tbfj7+wv/BV9fX+zs7Ojv70er1YpJ+KuvvhLqiyMjI6jVavR6PXl5ecK1UZblGcmB92PlypVoNJpZiWdJSUmEhYXx5Zdfijq4k5MTe/bsEbLJx48fn3K9wZJdSExM5OWXX2bdunVCtOvIkSOMjY2xd+9ePDw8+Pjjj2lpaRH6GfPmzeP06dPCwwTuth4mJiZy+fJlIiMj0ev1vP/++6IV7344ODjw2GOPiYnfeo3v7Tawil+p1Wq2bNnC3r17aW9v5+233xbf29vba3mWv9veKcieyN3+JL4cQeILkTz6l9vo6u8U/f9gCYiampqE2mZ+fj51dXW09vdT0t9Pm0KJ7T1joVWQzMvLS/AlxsbGUD6AFot8j616WFgYSUlJpKeni3bZP+NfD39cpZx/YyzfvYRrp6eycq2QFBLbnt3IsscT6erqoqamhtraWmExDJYH18XFBTc3N/HP29sbd3d3zp07Jwg6GZfTOV/yIRFzg6gZzCEh9KEp+5NlmYqKCq5evSoIM3v37iUsLEwM0rIsU1dXx8WLF2lubsbf35+nnnqK4ODgBzpno9FIXV0da9euBeD69evcuHEDCYkfOS9kYI4rH1RfxTBuGezchiRSFP688Mhujh07xnvvvcfWrVsJD3uM+oGz0+5DNoNKaY+XzRp+X36UTZs2zSoRW1VVRWho6JQ2uK4OA4lmd15a9ZI49+zsbNK/TQdg7969ODs7YzabOXnyJJIkCX8DsJRjPvvsM1EaSEhIYMuWLZOOJT8/n6ioKDZv3jzpGh05coSBgQGWLVvGyMgI3d3dlJaWCv5BR0cHbTe7LBP7TPxCs0zHzR6e/p+PWlr+6gq40j/9NROQQOGvm/JrK/nQwcGB8vJynJycCAkJwd3dfdJ2VvvZzz77jE2bNlFSUsKNGzdYunSp2KalpQWTyUR/fz9vvPEGo6OjJCYmEhsby3vvvYednd1dTYF7JLhHRkZmDAasz6fZbBbqkz8Ufn5+TExMYG9vjyzLgvBmdXyMjIykpqYGs9mMwWAgOzub5ORk3NzckGWZgYEBent7aWlpISoqCq1Wy61btx5I1MvW1pZ169Zx8uRJqqqqCA8Pn/Yct23bxttvv81XX33F448/jiRJhISEsHr1ajIyMjAYDHz99dds37592tS0SqViyZIlLFiwQCgS/vM//zNLlixh586dnDp1io8++oh9+/bh6+vL1q1bUavVpKamYjQahTCVQqEQ/Jb09HRiYmJwcnLixIkTrF69mmXLlk3Z/7Vr1zCbzWzZsoX09HTs7OzQarV88MEHQuHy3tbC8PBwnn/+eb7++mtOnDhBXFwcw8PDKBQSTiFNuEQ1onLoxzyhZKDBB09pMyUlJSKomJiYwNPTk4mJCbq7uzl9+jTR0dHkV1Rw4MQXNCuUlldHoyXro0/YHhRIssaOToNBZHvgrm6IV5QbPTX9M5Z1FUoFCasnl6bWrl1LXV0dp06d4vDhw390cbc/4y7+pK/s8l1JfPw/fGmpbsM8MTnPq1AqcHR1YNfLW3BycyQiIoLExET+/u//nrVr1zJnzhw6Ozvp6uoS/27dujWlZ/mtt97CKa4fxbprtCgnaOmQUCySKaeWgH4NkY7LMZvNlJWVcfXqVQwGA0FBQTz11FNTNMkbGhq4ePEiDQ0N+Pr68uSTT05h5X8fqqurMZlMgqj1zTffAJCYmMiyZcs4f/48S8tG8AgIoKO1jbmRcygtLcWUYuLgwYOcOXOGkydPsmTJEhIX/Yy8rp8jm0FSWF5QWQbZpESq30neRInQUZ8Jg4ODtLa2TlnhgmXCtXIaJiYm+PrrrykqKrK4ylVViYnq8uXLNDQ08NRTT6HTWSZShUJBe3u7IBclJSWxfv36SdcqPz+fO3fusHfvXvG7iYkJjh07xp07dzhw4IBIzxYWFlJeXo6jo6PoPnjr+vs0S51M0zl69/tGzKxcaek5DleEwc3vvUUo7hMsaWtrE1mljIwMVCqV4ElMh4iICME4j42NJTMzk8TERNHmmJOTA1j4AfHx8axcuRK9Xi9WfK6urvT19aFUKieVmkZGRmZ0IrQGWLIs/8HBgJeXF0qlkoGBAezt7amvryc0NFSsxhctWsTNmzfRaDTo9XouX74s5MUvXrwoatJ5eXn4+fmJ5/natWsiWzQbYmJiKCgo4Ny5cwQHB087ceh0OrZt28Znn31Gbm6uKJksW7aMlpYW0X7s4+MzbTnFCrVazf79+/n6668pKCggJyeHvLw8Fi5ciNls5qOPPuKpp57Cx8eHDRs2YGdnx4ULFzAajUJPQZIkli5dipOTE6dPn8bPz4+lS5eSkZFBd3f3pCCou7ubnJwcli1bxoIFCwgJCeH48eMYDAbCw8NF6+r9QbtWq2XPnj0UFxeTmprK+IQR3+X5OPh1IMuWTiKFjQl9eAOj5t9gbkxmtMORpKQkAgICSEtLY3h4mPDwcGpqarhZXs43WnuGkCbF0EPj43xSWcUthcQjvj4sWLAALy8vvLy80Ov1fPnll1QqqqhKb2TcOD7tO2c2m3Geq2VwcFCMAzY2NuzcuZN33nmHCxcusGHDhu99Dv6MPwx/0sGASq3iHy78N/77zv9DRW41ShsFIGGaMOEd4sl///1f4uR2twanVqvx8/Ojrq6OhQsXYm9vT1BQ0KTvHBsbo7u7m87OTq5du8Ydp1JG3O4RCZEsT/GYPMiZ5v9JTsM6usosk2JoaCibN28mICBg0nc2Nzdz8eJFamtr8fLy4vHHHyc8PPwHBQEN9V10dw6Qf7MIDw8PxsbGOHbsGADz58/HycmJX//61xZ1xh07mTt3Lr/97W9FH/e1a9fYvn07O3fuxMfHh/Pnz1NV5cYoa7EPqsbRt5+x0QlclAspzgDTaC8KRT7Lli2btWZr7SG+fyUmyzLt7e0kJyczODjIsWPHaGtrY8eOHQwODtLY2IhSqaSmpoYrV66QkpIi7sXg4KDoswZYsWIFq1atmnS9jEajMAqyrq5lWeb3v/89jY2NPPnkkyIQaGlp4auvvkKlUvHss89ib2+Pi4sL4XNDKUm7Pet1d/W9m2YPdfTDDhWjzFz3VEoK5jpNzvJcu3YNZ2dn1Go1NTU1uLm5YTQaZy29bNiwQdzP0dFRQUC8ePEiXV1d6HQ69u/fP4nHYTAYkCRJlCT0ev2kazY8PCz4A/fj3jLBHxoM2NjY4OXlRUtLC4GBgcKnwErYM5lMqFQqwU7XarWkpqayfft2vv32W1HSuHXrFuvWrSMpKYmMjAxycnJYuXLl974vkiSxceNGfvOb35CZmSmCuPsRERHBwoULSU9PJygoCE9PTyRJYvv27bzzzjuMjo6SlpaGp6fnlPHh/v1t2bIFk8lESUkJgYGBZGdno1JZ+vOtGQIfHx9SUlJQq9UiINiwYYM4n5iYGBwcHPj8888ZGhpi3bp1fPvtt/T19fHII4+g1Wo5f/680PgHS/nnmWee4dy5cxQUFBAaGkp9fT2NjY00NDRMIlJKkkRMTAwXL15E4V2Jzs9iUnXv5bQsBkx4J+ey0O53hIdFcefOHdauXcv169epqqpCoVBQoVJbAoHp7oUkUSTDP2/YQOB9QWdCQgJFRUX86Nf7eOv5DzGbzJhN34l52ShAhm0/fYjm3kbeeOMNkpKSWLp0KRqNBk9PT9auXUtaWhrh4eF/NKG3P2My/qSDAQA3HxfeyP45ZdmVFFwoxjRhIiY5igUPxU2b2rbaIJvN5mk/V6vVeHt74+3tjX+gL+/WPzX9jiXLKrpdf43RwXmARF1dHf39/aLcYJ3smpqa8PDw4JFHHpmxB3gmlJY08+tfplF1u/3uOXtoqK89glZnIjw8nIaGBm7evElSUpIQYgGLcUpPTw9Lly7l/PnzrFq1Cr1eT0xMDKWlpbS0tKBS6RjMi2GR98OkX04nZMkSgnwtA8rExMSMk4cVVVVV+Pj4TOFP9PX1YTQasbW15Z133sFsNvP000/j5+fHhQsX0Gq1DAwMcOrUKUJDQwXDva+vT5ghgSVNaB0A70VOTg5Go1GsGGVZ5ptvvqGsrIw9e/ZMCizef/99AA4cODDpOFc+toRT/zhz2l+hkNjy7Drxf7XCht0BK/m44cK0vAFJhrVeC3CxvRuAdnd3U1ZWxubNm6msrKSjo4Pu7m5SUlJmLb04OzuTnJxMZmYmfn5+ZGRkYDabCQkJ4c6dOyxatGgKobOzsxNZlnF3d6e+vn4SXwBm5wxMVyawmgz9EPj5+VFZWSlqvePj4+h0OuH9EBoaSldXF319fWzcuJFz585RW1tLeHg4BoOBvr4+FAqFsB2fP38+ubm5FBUVPRCh0d3dnSVLlnDt2jXi4uKmXAMrHnroIRoaGjh16hSHDh0SE/gjjzzCu+++i729PSdOnODZZ58VegEzXbetW7cKB8IdO3ZQW1vLzZs3kSSJo0ePsn//fvz8/EhOTsbW1pbU1FTGxsZ4+OGHxTMQEBDAM888wyeffEJmZiabNm3i22+/5b333mPJkiVUVlayZ8+eSYG5jY0NDz/8MP7+/qSmpqJSqZiYmBBlg3tLDdnZ2fT33yF4Ve2MQtSSAmw0o+SUf8apk1pRctBqtfj4+HDnzh2qzEwfCHwHpSRxurSMHycvnfR7KwFxQj/K0YrXOfP2efLSCjGbzcSnxLL1hfX4R/oyMjJCVlYW169fJy8vj6VLl5KUlERSUhLV1dW8e/r3DEVEkFFXz7jJRLS7O/vnJ7BtTvSfZNvfvyf8SRMIrZAkiZilkez7b3t4+m8fY+H6+BkH2pCQEEZHR2lvb5/283vRp6xFul+ebtJ+Qakf5sDLj/HUU0+xfv16goKC6O/vJzs7m0uXLgmp5JGREfLz80lLSyMvL4/6+noGBwenVTe0orSkmZ+88jE1VZPJM12GEQqyTYwbdVRVVaHT6XjuuedYv379JOKam5sbnZ2dQqjo2rVrFBQU8NZbb9Hf3y/U8KzH5+7uTldXF2vWrGFiYgJbW1vOnDkzrdwrWFZ6NTU109ZnrYSf9PR07O3tOXz4sGAEDw0NodFoOHnyJEqlkh07diBJEp2dnbz33nvCBU6hUEwbCAwNDZGVlcWiRYvEQJ2ZmUlubi6bNm0S7PyJiQl+97vfMTExwfbt26cENl6BHgSsmkF2VwLPEHe2v7Jx0q+fCl7PXIXlPCTrrfvup4dRx8sROydtn5mZib29vdARsOJ+3YrpEBwcjCRJNDY2YjabmT9/PmvXrmV8fHzaFjrr97u5uYnMgBWyLM/KGbi/TCDL8hRy7YPA19eX3t5ePD09MZlMgv0eFhZGTU0NERERdHV1YWdnx8DAAHPnziUtLY3o6Gj6+vpEW6WVSGhNqV+8ePGBj2HFihVotVpRQpsOKpWKnTt30t3dzYULF8TvPT092bp1q8hOHTt2bFpC4b1QKBTs2rWLgIAAvvrqK+bPn89LL71EdHQ0ExMTHDlyhIsXL2I2m0lMTGTnzp0UFRVx8uTJSdfY1dWVZ555Br1ezzfffMOaNWuQJImzZ8/i5eU1o6ZJfHw8hw4dQpIk0S2VkZEhvA3u3Llj8d5QTqDWjcxIgAWQzRJ2zn0kJyezd+9eXnvtNX7yk59w+PBh/uIv/gKjcvYpQ5IkDPdoEtz7+4SEBMrKytB7OXL475/kt4X/yDvFv+DF1w/iH2khTWs0GtasWcMrr7xCXFwcly5dEuRYh7lzOSHDucoqRsbHmTCbKTUY+Mm5b/jLc99gnq3e92d8L/5DBAM/BL6+vqhUqmntT+/HqGnggb5TaWciODiY4OBghoeHaWlpwcHBgc2bN3Pw4EG2b99OXFwcNjY2VFdXc/bsWT744AP+6Z/+iX/4h3/gyJEjfPnll2RlZVFZWUlPTw9ms5m3Xj9vSafNQLgpKTCyY8cO9u/fP63egbu7O8PDw4yPjzNv3jzy8/M5c+YM0dHRvPDCCyQkJBATE4NCoeDChQuMjo7S2dkpJhWz2YyNjQ2ff/75tANiU1PTtOluWZa5fv06YEnJHjhwYFLL1MjICCMjIzQ2NrJr1y4hTnLkyBHGx8cZHx+fdTV29epVJEli2TKLq15hYSHffvstK1asENoDsizz4YcfMjAwwJIlSwS7/l6oVCr8l7uz92+34+5/V59AaaMgJNmP2P1BKNWTXxGlQsn/XvwCCbcccTeo8JlwxL1bzebBOaxo8kWjvBuM9ff3U1RUxOLFi6mtraW/vx9JknBycppVTMdgMPD5xgAVFgAAIABJREFU55/zwQcfiExGaGgo5eXl1NTUCBe4+6+5lZfg6upKb2/vpFWx1UhpJtOt+8sEwB9MIgRLGcfOzk4w3cPDwxkZGcHBwUH08JeVlbFu3TpkWaa2thatVouzszODg4P09vZSW1uLnZ0dERER9Pf3T/IWmQ1WPf7KykrBo5gOnp6ePPTQQ+Tm5lJVddeyee7cuSQlJWE0GjEYDKSmps4atINllf7oo4/i4eHBJ598wsTEBLt37+bgwYPY2tqKjo9bt24RGxvLI488wu3bt6e8W/b29uzfv5/Q0FC+/vprXFxckGVZCFLNdi5WF8Dy8nKio6NFt8HJkycxm834evszaySA5TmImRPH8uXLCQ8Pn+TUqlAocLefSo69F7Is4zlDl1V8fLwoqXwfdDodGzdu5OWXXyY8PJwzaWn8Zfq3yJI0SQ3ZGgCcLivnq/LZnQb/jNnxny4YUCqVBAYGPpD2uV7t873bgIQ8ZMvp06d5++23aW5u5uGHHxbqc/7+/sybN4+1a9fy2GOP8dJLL/HXf/3XvPDCCzzyyCMsWbIEZ2dnOjo6uHTpEp999hlvvvkm/+VnP6eyom3GQAAkhgdlbFVuM6ZyrbX0q1evCq37qKgotm3bJnqpW1tbCQkJYePGjXR1ddHR0cHVq1cJDQ0V1qJdXV2cOXNmyoBYWVmJvb39pBX3+Pg4J0+eFGnq3bt3T+EcdHd309vbS0pKCoGBgdTX14tU/vj4OLt378bV1VVwBu5FX1+fSB9qtVoqKyvFauxektnZs2dpamoiJCSEdevWTfkeQKjgLdoRz+9K/5HEFyNZ8KNIjre/y99/9f9hVpo4e3ZqGcHOzo4N0cuIuq0lPFvBs67riNMEMTY6WQ46JycHlUrFwoULLapvrq7IsixaJu9Hb2+veI46OjrYsWMHL7/8MmFhYXR2dmI0GikuLhYeDPdfF5PJhEKhQKVSMT4+PikYsHYXPGiZAP6wYECv12Nvb09LSwsBAQEiGLC2GDY1NREQECDEh6w18pKSEgICAujv72d0dBQnJyfRjmcljf0Qvfro6GhCQkL45ptvZl3ZL1q0iPDw8EnthmApI/j5+Qlp6Bs3bnzvPtVqNXv37sXR0ZGPPvqI3t5e/P39efXVV3F3d2dgYICTJ0/y29/+FkmSePzxx2loaOCTTz7BaDQiyzLlpS2cOX0TtSKYQP9oqqqq8Pb2JiEhga+++or09PQZAxNrF8dDDz3E7du30ev12Nraiuzkju278dAk3rUPnQYyJnzsl8/4+aNzY2dNx5tlmZ33uZBaodPpiIiI4ObNB2Dhfge9Xs+2bdvwTVnNbI4KCknig4IH/94/Yyr+0wUDYCkVNDY2fq9hh5ddJC7qgBntXiUUaAcDOPL2p9TV1bFx40Zeeukl5s+fP6vbnFVTPzo6mhUrVrBjxw6effZZfvrTn/LjH/+YJ598ktiYBQ90Lp2G/u/d5vr168ydO5clS5ZQU1Mj0vDW9i9/f38WLVrEmjVrkGWZnp4eIiMjSUlJ4fbt26xYsYKSkpIpdrHV1dWTiJD9/f0cPXqUyspKtFot0dHRUwKV/v5+uru70ev1LFu2jMrKSj7++GOUSqWwiZ0zZ46YtO6/R5cuXcLOzk4IE504cYLIyEg2b94s9pWXl0deXh56vZ4nnnhixutiDVLGxsY4e/YsDt5aNJ4q7HS26PV60do33UpmyZIl4homJiaKdiwrRkZGBLu8p6dHOPl5eXlhNBonObYNDAyQmprKr371K2pra9m0aRMvvfQScXFxQqhqaGgIDw8POjs7p9WhsKo2WjsJYKrGAMwcDNxbJrj3uvxQSJI0ybSoqalJBClWxb/IyEja29uxtbWlvLyc+Ph4goKCaGlpYWRkBBcXF9RqNbdv36a/vx+9Xo+vry/t7e2TLJ+/7zg2bdpEf38/165dm3W7bdu2AfDll1+KiVapVLJnzx7hf5CWljbFZW86aDQannzySdRqtchM2dnZcfDgQby8vLC1tUWhUPD5559z6dIl1qxZQ3t7O2/9+ijPH3iXV557n9+8eYG330jn4/cqKSu0oanRotmwZs0asrKyOHHixLQBjjXAj4+P5+mnn2ZgYEC4KFpVQg1FwciYp2Xzy2YJaSAIZ9vIGc/v6QXz8XV0RDlDQPBIZAT++pmzegkJCbS1tQn58QdF4/AwNrNwbMyyTEVn14yf/xnfj/+UwUBwcDATExMiYp4JkiSxwfs1FJIN0n2XSjaDeUzB8A1f1q1bx8svv8zChQv/RX2w1hRyaGgoS5NnN2mxwsV1qkqhLMvk5OTwzjvvoFAoiIyMZMuWLaL+bk3hW1ebVrEgq3yuUqkkLS0NSZLw8PCgqqqKpUuXcuHCBWpqagDLSrSzs1PwBVpaWnjnnXcYGhriiSeeYHh4eErpwqonAJZU7K1bt/j8889Fy9wTTzwhmOfW9Pi9qzWryc/KlSu5c+cOn376qVBcs05mjY2NpKamolarefbZZ2cl6SmVShQKBfX19cJCFxADVVxcHLGxsaSmpooJ1or+/rtBWGlpqQgGrJNJbm4usiyzePFiITLU2dkpRIXKy8sZGRnhwoULIn2ckpLCK6+8wsKFCycFk66urixZsgSDwaIlPzRNTbazs1PcL6tS4/0aA8C/epkALFkAa2bAKpAEd10MAwICMJvNeHl5UVZWJlj5w8PD2Nvbo1Kp6OzsFA6UcDc7cO7cuQc+DldXV5YuXUpmZiY9PT0zbmdvb8+2bduorq6e5Cbo4ODA7t27GRgYQKfTceLEiUn3fSbodDr27dsnWgyHh4exs7PjySefxMXFhb6+PjZv3ozZbOabb75Bp3PmQmo3tTWW+yvLspise7sl2hrcqai4TVVVFTt27KC6upqjR48yMDC5jGkNBkZHR/H39xeKqWDJlNTX11NxY5j2nHkgKyythSiF+Jg86EX1+ehpny8rnOzsOLH3MdaGhU7KEDiq1ayyVaMuyCc1NXVG98Tw8HB0Ot0Pyg4A2D3AuKp+QLvvP2N6/KcMBjw9PdFqtQ/EG/DRzmFv4D8TaD9fEMVkM5iaXbHLX8krh37K4sWLv1cy9YciMNiN0DCPWdnc3r56omMmlzK6uro4evQoaWlpJCQkEBERIQZ1e3t7wc42Go00NzcjSZJYaVonjOjoaOLj40lNTcXJyUl0Q4SGhvLFF1/Q09NDZWWlcOUrKSnh6NGj6PV6Dh8+LI7FqjFgRUZGBk1NTciyTF9fH6dOnRISvFZdBiusxMZ7J+GMjAycnZ0JCwvj448/Fqps1ms/MDDARx99hCRJHDx4cMaJ717Y2NhQWlrKvHnzSEpKQqVSCRtrgM2bNwsjJGvZwqqMZ3XJy8rKwtbWFlmWGR8fZ2xsjOvXr5OQkCCMp5ycnNDpdERHRxMREUFxcTGvv/46ubm5LF68mFdffXXWNs7ly5eLSfr27dtTBltrMODm5kZfXx92dnaTZHW/LzPwxyoTgIU3MDY2ho2NDWq1epKlMVieUQ8PD3HcXV1duLq6smLFCoaGhjAYDKhUKtzc3CgoKMBkMuHn54ezs7OQSn5QLF++XNhDz1b3Dw8PZ9GiRVPU7gIDA1m/fj39/f2YzWaOHz/+QBbAer2effv2MTQ0JMoAGo2Gffv2odfrycjI4OGHH+bRRx+lumKIMaM8w2pdpqGul3lzV9PZ2cmVK1fYvXs3g4ODvPvuu5OI0N3S/8/eeYdHdZ5p/3emaNR7L6g3qhCiCERHSDSbYnq1ARvi2Flvsskmm2Q3ZfOts5vdeJO4gQvNFGPAmGaKwGCBBBa9CUkgkIQaQn1Uppzvj/E5aNDMaESxnbXu6/JlQGdGZ2bOnPd5n+cuTVT5tfNl9SXKa6s4ffq0HDh17do12dug/mYYrWeWUnelP+FumUR7zMS9YiW3DgzFqHPocqH2c3HhzWefIfullax7bhZb5s0h9+XVrHn5B0zKzOTixYv87W9/48qVK53ec4VCQVJSEpcuXeqSmNkRE2Ki0VsYG0pQCgIZsY8XJ/99x/eyGBAEgcjISLt4AwCuxmDcr4+mbW8q2v1JOGdPZrz3a9wvabFrp/Co57jq1XQUCqwWBPMWp5jdxLOzs3nnnXdobm5m2bJlTJo0SW4tSxg+fLgcnCPFBEs3/9zcXBQKhWxnOm3aNG7evImTkxOHDx9m2rRpODs7s2XLFvLz8wkLCyM7O5sdO3bQt29fli5diqurKxUVFSiVSjPp240bN8jOzpYlhJLTmUKhYNmyZZ1a31IxICkZSkpKyM/PZ8SIEWzZsgWAhQsXygu+Xq/nnXfeQa/XM2vWLLsCpKRYYrVazaRJk1AoFPKuVoKjoyMzZsygpKSE7GxTLHNBQQHFxcVkZmYSHR1NU1OTXLS0trZy9uxZWltbGT58OGfOnEGpVFJVVUVycjJ5eXlcunSJ9vZ2oqKiePXVVxk/frxFP/2OcHBwkF+TTqeTuzsSKisrMRqNspLAkqxQrVZb7Vw9rCaARy8GgoODTcE0d+8SFhYm+w1IEsPCwkISEhKoqKjAwcFBtsrt6Ebo7+9PQ0MDTU1NMglQGmN1ZP93BYlMWFhYaJNMCCaegI+PD5988onZQjV06FD69OlDe3s7FRUVdhEKwaTqWLRoETU1NWzevBmdTicXBB4eHmzYsMGUgtngii1in0IhcOWCKa5YFEV2797NtGnTcHFx4f333yf7yhn+4exf+NmtD7ie2MIbdz9l6dnXKeqlJaF3IteuXcPPz08+5379+nG7sJr6/Dj6uv4Tg/x+ytiUJahUajw9PcnLy7PI13kY/q6upEWEMzg0FIevu2xDhw7l5ZdfJjQ0lO3bt/PRRx/JnSoJAwcOpLW1lWvdIPyl9upF34AAi3wFAdM9cnmKfaPVHljG97IYAAgJD+dEZRV/PvElH52/QI2F3UZLSwtHjhzhjTfeIC8vj+Epo5k8ajb3yuvw9PTE1dW10xz9SSIpOYI//Gk+IWHmOe2BQR6kjfPg6nVTml51dTXvv/8+hw8fJiUlhVWrVsnSMz8/P5qamuRdv7u7OwMGDCAnJ4eSkhKZ/d3Q0MDly5fx9/eX57LJycksW7YMhUJBU1MTWVlZzJs3j/r6em7evElzczNffvkl6enpPPvss/JCU1FRgb+/v7zA1NfXs2vXLmJiYuTiycHBAQcHBzOXwI6QWtwNDQ3yAhAQEMDFixdpbGxk0aJFskJBFEU++OADmpubGTlypFl71Bays7MxGo3ExMTIksyQkBCzzgCYdocjRoyQpaKHDh0iMjKSmJgYMjMzqXEV+fPd4xzuo2dl3nrWXssipl+i7OMeGBiIXq/n/Pnz7N+/n7i4OJk5Lzmt2YOGhgbc3d1Rq9WcOnVK7g6IoijPhv38/Kirq+tUDNiSFcKTHRNoNBr8/f1l3oAkjYQHEsPY2Fja2toIDg6WFwWlUskzzzwDIJMLfX19ZSJh7969cXJy4uLFi3btziUkJCQQExPTJZlQpVIxa9Ys7t+/z6FDh+R/l7wEvL29cXR05Pz582ZZA7YQFBTEggULKCsr4+OPP8ZgMODk5MSSJUtwd3dn/fr11NdZb8sDGI0ijY2t+Pj48MILL+Dl5cW2bdsYMWIEQbFh/K5kC5fri80eY1CIlIS1savtDEOGDMHNzQ0HBwf8/f3lsZZUQN++fRtHR0dGjhzJ/fv3qaurk83EHgXu7u7MnTuXuXPnUlVVxZtvvkl2drZMmvX29qZXr14c/DiLnf+7j8/e+pzym7azBxSCwFtTJ+PzdUGjUihkDoGTWs07058l/iFr7x50D9/LYuDTq9d48WQOXzpoePP0GX59+AjD336X//kyG1EUaW1t5dixY7zxxhvk5uYyZMgQfvSjHzF27FgGDRpkupAPHmTw4MFcuHDBbK79pJGcEsn7m17ir2uf59/+8BxvvL2M9dte5ic/ex4HBwfWrFnDO++8Q1tbGy+88AIZGRlmrWZJUdCxO5CWloZWq6WmpkbmC+Tm5qJWq2XmuoTQ0FBWrVqFu7s7Fy5c4OrVq7JM7/79+8yfP1+WNEnoaENsMBjYvn07KpUKZ2dnWR7l6OjI888/bxY5LEFvNHKurp6vHDSsLyzio+xsiu/ckeNX58+fb+bpv3v3bu7evUtsbCzjxo2z630tLy/n2LFjODs7m40TQkNDaWxs7NTxGTNmDIGBgWzZsoV79+7JCoVN985yPMHATedWGp0gX1vJV34trHEu5POz2bLUVBRFgoODWb16NTNmzCAx0bRjs2eHCci+/ampqbL8UrIlrq+vlxdHb2/vTh4DYNtwCMzHBCqVCkEQHrkYgAe8gfDwcNra2uTWe0xMDC0tLYiiiLu7OyqVioqKCnmmHxYWRlxcnGydrFKpuHXrFjU1NbJ9r8FgkLs09kByJmxqapLTIq3B39+fiRMncubMGW7cuCH/uxQuJKk0Dhw4IHc8ukKvXr2YO9eU/rlr1y6MRqNZQYCiBcFG4JpCKRASairuXFxcWLJkCbGxsXzyySeUBLWidxARLQVsCFARpKNabKS4uJi5c+eycuVKBg0aRGtrK97e3nh5ebFu3TpOnDhBSkoK7u7uODo62l3s2EJCQgI/+MEPSElJ4ciRI7z77ruUlJRQWlDOsdfz+Pzfs3nrtQ/5yw/XsiT2h/x29p/QNrZYfb4LOTlMa2/l7cmTWJQ0gNn9+vK79AmcWv0SY6Lsy3bpgXV874qBrKKb/OO+/Wh1OhAEDKLpa6Q3GvlrTi4/3bqNN954g+zsbAYOHMiPfvQjJkyYIN9IpRuLdHNSKBRmpKOnAUEQiE8IZsSoeHr3DUEQBJqamlCpVLS0tODk5MTzzz9vlhoowcfHRzb0keDl5SV3DoKCgmhrayMvL49BgwYREBCAVqs1m8u6urqyatUq1Go1x44dk0ldRqOx02JmMBioqqqSd/tHjhyhrKwMX19fLl68KHcPFi5caNEnv+BeDePXvs8/HjzENZWaYzX3+XXOaT5zceXa3bvMnj3b7HXm5uZy/vx5vL29mT9/vl3vp06nY8eOHfj7++Pl5WW2W5TGFQ93B5RKpUxy8/b2JjAwkIPll/mgyLS4mKm1BKjXt/D/yrIQMWUrPPPMM7IOHUy8jNraWpkU2BWkhadv374MGzYMQO4OSJ+tm5sbSqWS+vp6i50BWxyKjmMCQRAe2ZJYQmhoKFVVVfj4+KBSqWTeQGhoKI6OjrKqoKqqCpVKZdYylkKC2traqKioMFucUlNTUalUnDp1yu5CCkxF0ogRIzh58mSXioTBgwdblBv6+Pgwffp0amtrcXd3Z9u2bXaPCWNiYpg1axZXrlyRxwzSyCAu0cVqeA+A0SAyedoDkyq1Ws1zzz3H0KFDOdl8HdGGdYACgSNVZ5k0aRKRkZEolUr5+pG6L8nJyWRlZbF161ZGjBhBa2srBQUFndr7jwKNRkNGRgYrV65EqVTy9l/e5eWhP6WiyHTNymRJEbJ3neZfp//R4udaVlbG6dOnGTd2LOm9E/nVuLH8Pn0CCwb0x9VGjHwP7Mf3qhgQRZE/ffmlTduNT0tKievTh1dffZWMjAyLMcWBgYEkJyeTnZ1Nv379OHPmzGPdOLsDg8HAsWPHePfdd+WUv/b2dnbu3GlRu65SqfD29jYrBgCZ/FZSUsLZs2fR6XQMHTpU3nFLbWcJTk5O9O3bF0C+kUVHR7Njxw6z566pqcFgMBAYGEh+fj6nTp3Cx8eH27dvo1ar5ffzYStdgPrWVhZs3Ub51yzpjgYjDSIc9/QmuAPJsLi4mAMHDqDRaHjxxRftts49fPgwdXV1zJw5EwcHB7NiwM3NDQ8Pj07FAMDVq1dRKBTcv3+fa9eusf5mNgorV5MRkWaNSEuoG8HBwZ2sdCMiInB0dLR7bnr79m28vb1xdXWVHfZ0Oh2nTp0yUxLU19cjimK3rIjBfEwAyF4Fjwpp/FRZWUloaKhcDDwsMWxoaCAsLMzsfXByciIhIYGWlhaT0Y2fH+fPn0en06FUKklKSqKtrc0u85qOSEtLw83NrUsyoSQ3FASBXbt2mR2bmJjIiBEjqKurQxRFPv74Y7tHFr1792batGmcPXuWw4cPI4oizs7O/OwXywkO60wclS7nBUtGEBFl3gJXKBRkZGRg6GIdFI0iXsG+shkXPPhuL1y4EIVCwcWLFxkxYgTl5eWcOHFCzrSwx1vBXgQFBbFixQpcar3Q1rfKuQQdYTQYOX/0MuePXjb/d6ORPXv2EBgYaDM8qgePh+9VMXCnvp7r1fesJdYCYBAEHGPjzNLeLGHcuHEoFApaW1tpa2vrtlTmUXD37l3WrFnDiRMnSEtLY+XKlfTv35+5c+dy8+ZNi8ZAgGwz3BG1tbW4urqSnZ1NTk4Offv2xd3dXe4kdDxekkBJiXMdz8fJyYmNmzaz6dNcFr32IQv+cTNf3nBm/4kitm3fiZOTE7W1tSgUCoKCghgwYIDFdDWAbZcuU9vSgsHCaxAFgZq2NnZfNS0adXV1bNy4EYVCwfLly81smG2hqKiI06dPM2HCBPz8/CwueqGhoWYkQjC14nNychgxYgQJCQl8+tlurtSXYbRxNSlEuCnWM3jw4E6FilKpJC4uzu5i4M6dO3IAlrTbkiKhKyoq5EXTkqwQTMWArc5AxzEB8NidAV9fXzQaDaWlpbL5kHRtShJDPz8/NBoNjo6OlJWVmSlHxo8fL/+5traW1tZWrly5Api+e4IgkJWV1a1zUqvVZGZmUlRU1OX77uLiwvTp0ykqKupE1hw3bhyRkZEYDAbKy8u7JXccOHAgGRkZnDx5UvY/cHNz5a/v/oC+A53peBmH9vLhn/5lGstWWg5cAvDVWE6hlCFAcox5LHB1dTUODg6Eh4ezYsUKEhISyM7OJiYmBi8vL7mg/Oqrr7rFzegKCoWC60dvWo0MB1CqlBzdbD4COn36NBUVFZ3iy3vwZPG9emeb2uy7uTXZcRN0dnZm7NixXL16laioKHJycuxi4D4K9Ho9R44cYe3atQiCwMqVKxk7dqzcco+KimL69OlcuHCBI0eOdHq8lFEgwWg0UlpaSu/evbl//z4NDQ2yiY5KpcLT01M+vrW1lY8++ojTp08zadIkmZyXmppKYGAg9+7X83leG29u/JLi0hpa2vRo2xVs+PQcX1xV0qQ1LbS9evVi4cKFtLe3W92h7s+/YbNQE4ADNwrQ6XSsWbMGg8HA7NmzzfgDtqDVatm1axdRUVEMGTIEoFNnAEyjgrt375p1Wo4ePYpGo2HEiBFMmzbNpqlUR6jVarmj8jASEhKoqqrqsm3d2tpKZWWlWRpmnz59CAsLQ6fTcevWLQwGgywrhM7FgL0EQmnBftxiQDIfkngDLS0t8jUlSQyLi4uJjY2lpqYGpVJptkD7+PgQHByMKIo0NTURFBQkjwqcnJyIiYmhvr7eLiOgjoiPjycuLo7PP/+8y9cXExPD0KFDOXz4sJmET8oi0Gg0uLm5cfbsWXl0Zg+GDRvG6NGjycrKknffbm6u/PvrLzF5phejJjrwt/cW8t7Gl5g4qb/NjtfU4FSrpmgACAIZQebx4vfu3cPX11ceB82YMYMpU6Zw5coVdDodKSkptDfqKNhfwuzA5UxynM/S2Ff4+L9209Js2T/AXjTVdkGWNBhpqn9wTH19PVlZWQwePNii2VYPnhy+V8VAqIe7TRcrCZHelpPOHoY0Y29oaKCurk6WSD1JlJaW8s4773Dy5EnGjBnDihUrOun3wSQXmjhxItnZ2Z12Mn5+fjQ0NMgpZFVVVeh0OhITE9FoNGayNTAVD/fu3aOmpoa1a9dSVlbGokWLGDJkCFVVVbi7u3Pq1ClmzZpFrSGUxlbTzejhhby1XeDiHRUxMTHMnz8fBwcHm+1qbRdtaRFo1rXz/vvvo9VqGTt2LAkJCV28g18/VhTZu3cver1ebgGDqfix1BnQ6/XyPL+8vJwLFy7IiZDOzs7MnD4D70bbTu9GAdKCEqzK+WJiYlCpVFy/ft3muUvmWA/H0k6dOhV4YMwkyQrd3d3NihVRFLvsDDw8JnjcYgAeKDNCQ0NRKBTywt1RYijxBnr16tVpt56SkiIXJ1LokWQI9SgWxRIkR8fjx493eeyECRPw9fVlx44dnTIE5syZQ2NjI35+frL9tb0YPXo0Q4cOZd++fVy8eBEwbTCWLluKr58ruz/bbpfb4vTQNHo5+6N4+Fb+9ZdxScRE/B3N72dSMSBBEARSUlJ44YUXaGlpIffoGS69d5vSk/douq9F367nblEFa/55I6+N/BXNDfb7PDyMkNhAm2RJQSEQEv3g/rZ//34cHR3tJgb34NHxvSoGPBwdmRIfZ9VKUyEIRHl5MSjYnkwC0w100qRJVFdX4+vry8mTJ7tFarIFnU7HwYMHef/993FwcOCll15i1KhRNnekqamppKamcuDAAbmlCp0VBSUlJSgUCvR6PW1tbbS3t5sxp319famoqGDt2rUArFixgqioKFpaWigpKWHw4MEYDAY+P3SUy0UNWFsSRQSqG1WMHJMhL4i2ioG+Af5WPxswGYs4NTVRUVFBQkICo0aNsnrsw7h48SJXr15l6tSpZqFJarW606IXGBiIQqGgtLRUNhjy9fUlOTlZPiY6OpqpHolWOxmCCG4tMH9IutVzUqvVxMbGdtmyvn37Nq6urp14AP7+/vTr96AF7O7qTvmdSjzcze1gdTodBoPBbjUBPJliIDQ0FK1WS1NTE8HBwWa7+JiYGAoLC4mOjkahUODq6kpJSYmZq17v3r3laOGqqipcXV3lnbS3tzdBQUGUl5fbbVEswcvLi7S0NE6dOtVpfPYwJLlhbW0tBw8eNPtZSEiI/P339PRk27ZtnVwBrUEQBDIyMkhKSmLXrl1yQSipBZydnVm3bl2X5+eicuTPyT9kYmAKKuHBvUGisIVVAAAgAElEQVTTLjDfYySLI8xzOURRlO9XDyM4OJgXX3yRgl1ltDS0dqruRaPIrUt3eP8XH9n1Gi1h6qqJXZAljWQuNy38169fJz8/n8zMzC59OHrw+PheFQMAPxs9Cj8Xl06LjlIQcFAq+a/Jmd3KcA8PD6dfv340NjZSXl7e7balJdy5c4e3337bxJ4dN47ly5fLLPSukJ6eTr9+/di5c6dsqiR98aVioLS0lMDAQM6cOYO/vz+9evXixIkTXzN7RRobG+XW7IoVK2T5X1FREaIo0q9fP0aOHMmJUxfQWyACPYzC2w9uaLaKgYVJAyzyBSQYRBHfykp8fX2ZM2eOXe8HmPgF+/bto3///p08CCyNCdRqNYGBgZSVlckGQ+np6Z3mla+mz2FwnamwUAqmnwkAIjjpYHihigYr8c8SEhISKCsrs8lKl/gClq7L3r1701zZyrWP7zAvcBXrlu9k+6uHefvH62i4b1qYunIfhCc/JgBzZUZ4eHgn3kBLSws1NTVERkZSX1+PQqEwK4w0Go1cEIDpc7l8+bLsryB1B2xFFVtDWloaHh4e7Nu3r8sC3s/Pj4kTJ/LVV191Mi5KTk4mKSmJ+vp62aHQ3uhnQRCYNm0aCQkJbN++XXZElZILnZyc7CoI3NUu/FPiPH7u+AxJ51x41SmTZY1DKfvsoqx0MohGsu4W8Kfzh8lzbUfrZpl5ePdGJdVFtVbn+kaDkc8/OEpLk3UJoC1MWDSKlIykTt0B6dpe9tt5hMSYFE779+8nNjbWanRzD54svnfFQICrK7sWL2TBgP44fb1bVQoCGXGx7Fi4gAEPZd7bgwkTJshmIidPnnzkc2tvb2f//v188MEHODs7s2rVKtLS0rpFmpGY0OHh4WzdupWKigrUajVeXl5mnQFfX19u3LhBamoqI0eOpKysjMLCQvbu3cvly5fl19WxIi8oKMDf3x8PDw+GDRuGi0vXdr8AatWDHYutYmBgcDA/HGZiC3d0GpP+nNzeRpDGgZUrV9pdsBmNRnbuNBEZJ02a1PncrLDmQ0JCzAyGpAyGjlCpVPx7+lLSrzuQIvrR3zOUwGYVE1sCGX9ZSZRXIB999JHN9nFcXJyJWGVlVCB5+3fkC3TExRNXuLC2iJrrDTJDW9eiY+f/7uOVYb+g/l5Dl7kE8HTGBM7Oznh7e8vFgBRNDA8khgUFBcTHx1NSUkJ4eHinLklSUhKNjY14eHhQW1uLwWDgwoULgImH4uHhYRa+ZS9UKhWZmZncunXLrvFeSkoKcXFx7N6922z3LwUi+fn5oVQqu00oVCgUzJw5k4iICLZs2SKrWB4uCLrqfhQWFnL84FEm9knj2WETmf3cbLlL+O6+HYzd+1deyt7K2sLTXPAX+GHBIVac2EyjzpwDUHiua1fWtpZ2ygorujzOEpQqJb/99Kcs/vVsXLwe3Ad6JYbwzxteZeEvZwEmjk5LSwuTJ0/u1uasB4+O710xACZv7X+bMJ6zr7xMzuqXuPDqD/nLtKnE+3VundkDd3d3Ro8eTUtLCwUFBXZrxzuiuLiYt99+m7NnzzJx4kSef/55i608e6BUKpkzZw7e3t5s2rSJuro6mQcg3ZAbGhpwdXWlX79+REdHExAQwI4dOzh37hwZGRkAZjcgo9FIYWEhvXr14uTJk7z//vsoDY2olbZ3VRoHFQMSHxB/upK4vZY2gjefnUZycJDJZhQYGBDA+LZW+hv0rFy5UnbIswcnT57kzp07zJgxw2Kr0VoxEBoayv3797l37x7p6elWb0j+/v48lzaR4K9qWKyNYtg16NviRrBvAMuWLSMwMJCNGzd2UidIcHR0JCoqyuqooKysDIPBYLEYMBqNbP3VHowGER5q0BgNRipuVfHBL7fY1Rl4eEzwuNJCCRKJMCwsDEEQKC4uBjpLDEVRxNPTk9u3b5sF5YSHh+Pl5SV3p9RqNWe+OsNd7T1uN1eSNnYUoihaJM52hbi4OOLj4/n8889lPo01SC6ECoXCLN1QOqc5c+ag0+nw8fEhLy+Ps2fP2n0eKpWKOXPmEBgYyKZNm2SDJmlk4OjoaLMgqK6uZvv27cTExJCeni6f78SJE0lJH8OfG65QoTV1ngyIiF9/1l9W3mRV9jaz1+LgaN9369Lli488ElU7qFn869n8w8fPk/bT/mwueZs1l/6b8QtNVuV3797l9OnTjBkzxqIXSQ+eDr6XxYAEB6USPxcXnJ5AyNCwYcPw8vJCqVR2y6K4ra2NvXv3sm7dOtzd3Vm9ejWpqamPLaHRaDQsWLAAtVrNxo0bZYWAtPO4c+cOQ4cORalUUl1dTVNTE62trWRmZn6963eR25NNTU0cPnwYrVbLV199xdGjR/H09GTOnOdIinHGWk9REOC5SQNxcTbppfR6vU01gYSM2Fi2zp/HjR+/xuVXXmZQWQkheh3z5s2T/RHsQXl5OUePHmX48OFm5LuOsLboSTyLqKgogrroFg0ZMoTo6GhycnIICQmhuLiYwYMHy59BQEAAGzZskNP7HkZCQgK3b9+2uLu9ffs2Go3GomXz+aNXaKhqstnSPbT+GLX3TAqDb3pMAKZiQMqqCAwMNHPtkySGSqWS4OBguQjo2CURBIGkpCRKSkpwc3OjxL2RAxHFLM79Ay+cfp1/q99GcZyOvEvnH0kGl5mZSUtLC1988UWXx3aUG0rujxK8vLyYOXMmVVVVBAUFsW/fPoteFdbg4ODAggUL8PT0ZMOGDbIjo6urK0uXLkWj0VgsCLRaLZs3b8bd3Z1Zs2Z1um+cd27DoFRYNCYyiCKnq+9w5t6DzyR5Qj9UahtKGQE8g9y5UHiOTZs22Uw47Ar1jfUERwfiG+JjVozu2bMHf3//Hk+Bbxjf62LgSUJqO0ptTHuIREVFRbz11ltcuHCBSZMmsXTp0m4tdl3B1dWVRYsWodVqOX3oLBd25rPh37ZTX6hFQMGgQYO4ceMG7733ntzSLSgoAJD/vH79ev77v/+bnJwcFAoFzz77LD/5yU+YM2cO8fHxJIYpCfM2LaYKwdTSF75enSamJfLi/DT5fOzZoXaEALz/3nu0trYyfvx4i616a9DpdOzcuRM/Pz85mtgS1Go1RqOx05xXah3bw9WQ2NhGo5H6+nocHBxky2aNRsPChQvx9fVlw4YNZhI1CQkJCYiiaDFI586dO4SFhVksDkuud73YtLfqqLxdhVKptJms+TTGBGAqBoxGI+Xl5TJvQIIkMSwqKiIhIYHi4mLCw8M7te0HDBiATqfjfqyS64kttDg9aIO0GNopCWzhXN8Gvjhp22rYEjw9PRk5ciS5ubl2dfSio6MZNmwYR44c6fRZxsbGMmbMGMrLy+X8gO5YlUsxx46Ojqxfv17mkTxcEEiFgsFgYNu2bbS1tTF//nyLXhuf3bli0wtDJSg4UPqgK+Xh687UVROtt+ZFWP77RSxevJjy8nI52+BRUFdX12nnf+bMGcrLy5k6dard8t0ePBn0FANPEHFxcURFRSGKIlknT5BdVcCJqhvcbzOvnltbW9m9ezcbN27E29ub1atXM2TIkKcyGxN0Cm5uqyb7jQuUflnNme0XubTpJnl/ucGezQfYvHkzkZGRLF++nOHDh1NQUMAHH3xASUkJ5eXlsoTNz8+P3r17k5SUhEajwWg0sn37diorK0kMbmdkfBszJvZnbGocSbHuTBnixK9fnYxK+eAS624x8PHHH1NdXU2fPn1IS0vr+gEdcOTIEe7fv8/MmTOtSvsAeeTQsTsgGQx5eXl1Sd6ScPHiRVxdXWXiZcdRhkajkbPs169fbxaRC6YdZ3h4eCfegNFopKSkxCpfQFDbd70YBBOfxdb19TTUBGAqplQqlcwbqKurk5MoXV1dCQwMlEcF7e3t+Pn5cevWLbMuiYeHB4ExYeS4fL3oPPQyRESaXA1sv3X0kVrXw4cPx9PTs0tnQgnjx4/H19e3U7ohwKhRo4iNjaWxsRGj0SiHE9kLFxcXFi9eDMCGDRvknberqytLlizBwcFB7hDs3buXkpIS5s6d20lpIkGrt/0Ziog06cxHJC/+52LGzh8BgFKlQKlSolAqEASBZb+bR+bzY4mOjmbVqlV4e3vL2Qbdfe8fLgYaGhrIysoiJSVFdrDswTeHnmLgCSN9UgYXehn4TfspXj6znlfObCD9yB/51flPaNa3UVBQwJtvvsmVK1eYOnUqixcvtvpFflwY9Ab+OeP3FF80tQFFI7Ksp/l+C++9vIV+sf3p27cvn376Kfv27QNMOuTExESUSiULFy4kNjaWqqoqeWcuiiKffvop+fn5CILA9OnT8XZXEePfwm9fm8oPFqWh01ZbbGmCfcXA8ePHuXbtGv7+/syaNatbr1tyjZswYUKXO3tpt9zxpi4ZDPXp00cOGbKFuro6rl+/TmSkKSylpKSkk/2ztOvz8PBg/fr1nX6ekJBAUVGR2ey6srKS9vZ2q8VAxKAQBKVtzXbCkBhULgq73nOFQmFWDOh0usc20pJGAGVlZfLrsCQx9PHxwcvLi9bWVotdEm2MxqYhFcAdP223LYrB1NWbNGkSxcXFMnm2q+NnzZpFXV1dJ58DySLc2dlZdmDsrheCh4cHixcvpqWlhY0bN8rqCTc3N5YuXYparWbNmjWcO3eOadOmWb0+AKLcfKxaZgOIIkS7m3OT1A5qfr7xR7xz/r+Y9do00hePYvGvZ7Ox+E0W/suD76KbmxtLliwhLS2NrKysbo0NpC5ax3vf/v37cXBwMHOf7ME3h55i4AnCKBr53c0D3PIXMXZ4Zw2ikb1lF5iz/3/YuHkTAQEB/OAHP2DQoEFPlSmbu/csNy/exqDvfEMXjSJGnZG97x7hk08+ob6+nvHjxzN+/Hi0Wi0xMTEYDAbq6urk0UFMTAyiKHLgwAEuXryIUqlk/vz5DBgwgDFjxnDu3Dk5PVCtVndq99pbDOTn53P06FGcnJxYvnx5t96jlpYWPv30UyIjI+2aOUrFgLQL7mgwJDnnSW1Za8jNzcXBwYGqqiqio6Px8vJix44dnXaEUjCNq6trJ8lYQkICBoNBfq/BtGgqlUqrzmstei0hqVZIpoKpaFv623ldug/KDxEEM84A8MRIhKWlpTg7O+Pn52dWDMTGxtLS0kJ5eTkJCQncunXLogGRwU2J0IU9ZZvG2G2LYgkxMTEkJiZy8ODBLsmE8EBumJeX16mj4+TkxJw5c2hoaCA4OJgzZ850267cx8eHxYsXU1dXx+bNm+XPwc3NjbS0NNra2mRLYVtYGJNic0wgCAIzIwZY/FlU/3BWvr6IH7/3Axb96jn8wzpfawqFgnHjxrFw4cJujQ2kaHKpM5Cfn8/169d7PAW+RfQUA08Qp6qLyK4usPjVMyJSpmgmYEIyCxYswMPDw8JRTxZf7sxFobT+EYtGaCho4ZVXXmHlypUMHz6cYcOG4ebmRlFREWBiKhcUFBAaGoqzszPHjh3j9OnTKJVKFi9eLM99U1JS8PPz48CBA6hUKuLi4iwWA0ql0qYa4N69e2zbtg2lUtlt5YDkMqjT6eTku67QsTPwsMGQtQTDjpByKeLi4qisrGTYsGEykczSwuTs7GxmKiN1Tzw9PQkKCjJbWO7cuUNISIjVMUd1dTWxGaH0mxKHQiGAYJJuATi5OvKLTf9AysQBXSYWSni4MwA8Md5AQ0MDDQ0NnXgDD6cYSgZFRUVF8o4YwEPj+iC5xwocROUjWRRLyMjIoK2tjWPHjtl1fEpKCvHx8Z3khmAyrpo6daqczbB3716rihJrCAgIYMGCBZSXl8v+BVVVVezfv5/o6GhcXV358MMPbaYLzgjvz9igmE69Aalb8G/Jmfg5unbrvCwhJiaGl156ye6xQccMjfb2dvbt20dsbCy9e/d+7HPpwaOhpxh4gthdelY2n7EEBQJnhXvfmG62pam1yzavqMeMtKhSqUhJHkzWhi+58N5NfjH6P/j4n/ejLdJz/IsTHD9+HJVKxfPPP2+2K1EoFGRmZlJSUsKVK1fo3bu3WU49PJAVWnv9bW1trF27FqPRyIIFC7o9Prl06RJXrlxhypQpZi6DtlBt0FLuYeRs7W2u3bhuZjDk5OSEj4+PzZu4lKbX3t6Ot7c30dHRBAUFMW7cOE6ePCkbP3WEJBnTaDSsX79evjEmJiZy48YN9Ho9oiiahRNZPPfqakREpr42nh9uWUrclDAW/MtMfrruh2wrX8vYeaa5b1dyTgmWioEn1RkA5JyCmpoamVjXUWIYFhaGs7Mzer0eo9Fo5oo5LmAgoo3WgAIFEwIGAY9mUQym9vyoUaPIzc3txOuwBMk0SKlUdko3BBPxMSUlhdLSUry9vdm6dWu3CIUAYWFhzJs3j1u3brFt2zY++ugjvLy8mD17NkuXLkWlUrFu3TqrBYFKoeBvw2fzs/4TCHJ68J0Y5BvGeyPnMy8q2eLjHgXu7u52jw06ZmgcPXoUrVbb4ynwLaOnGHiCqGptwCBaX3yNiFS12pd//iQQ3jvUtkRRAMHVwJYtW+QZdsP9Rja8upPCPXdpLNXSUNVE/Z1mdv/HYf68ZC2CUWD58uUWW9dRUVEkJCRw6NAhIiIiUKvVZrbIthYlURRZs2YNbW1tTJw4kaioqG69VsllsF+/flaDgTriTnMNK3PeZ9ml9eTEGvnFzT28kL+ZukQvudsBD1rclmA0GsnNzSU2NpaCggKzdMLhw4cTERHBzp07ZdOfjpAY4tLNvK6ujsTERHQ6HUVFRXLWvLViQBRFqqqq0Ov1prRCbQ1p8wez5F/nkL54NI7OD5jlXeUSSLA0JngSnQE3Nzfc3d1lEiF05g2UlZXR0tJCXFwcxcXFhIaGmo0Kol1DGOuXZFFGKYgmW97FsZkEBgZSXl7e5WjHGlJTU/H29rbLmRAeyA1v3rxpUVKcmZlJcHAwLS0tGAwGtm/f3i1CITwIIrtx4wbNzc3MnTsXjUaDu7s7S5cuRaFQyNeQJagVSpbHD+OLKa9w5tkfc37GT/lo7BJGBUZ36zzsQVdjA1EUuZx9nS8/OU1bhZGK8gpyc3N7PAW+A+gpBp4gAp08u+wMBDo9/fGAhMkrxpsYQtYgQuBgb/Lz83nzzTf505/+xC9m/p4718o6HQfQWKrFqczbYlCShPT0dJqbmzl9+nSnUYGt2fWWLVuoqamhf//+coKivTAajezatQuNRsPkyZO7PL6ipZ4lJ9/l7H3zdnKrUuSoSzXvFT0IsAkJCaGystLiDvnGjRvU1tbi7OyMUqkkKSlJ/plErNTpdOzZs8fiwiIRwuSbubGVm7EaVhZsZVru3/giQc9lVZ3FAlOr1cptdC8vL7kdbQn2cgae1pgAHhRVbm5ueHt7W5UYxsfHc+/ePcLDwyksLDT7/T/rvYDByqgH3IGv/+/crOBl1wz8HD2ZONHkxf+o3QGlUsnkyZO5c+eOHCDUFaKjo0lNTeXIkSNykFLH55s9ezaiKOLh4UFJSUmnjIOuIIoiRUVFCIKAXq/n9OnT8vXk7u7OsmXLUCgUfPjhh1YLAjBdk54OTrio7B+9PSosjQ3yDl1gaewrvDbyV+z+w2HOvHOV1f1+RuttI8OGDXvq59QD2+gpBp4gngkd2GVnYIxr93a8jwP/Xn788C/LAcy4A9LuddyikfQeHYuLi4spEraqgfwTN2Vb204Q4dhHJ2mut84Y9vb2JjU1lezsbCIiIsxGBc3NzRYXpaNHj3Ljxg2CgoKYPn16t1/nqVOnuH37tlWXwYfxXuEXNOparX5W7xQcleWgHXXyDyMnJ4fQ0FAKCgoYMGBAp9/t4eHB1KlTuXr1qmyh+zCk3d19Bz0Lct7lokczDYIOraij1gV+c3U3/5S3Bb3RfDfZUROv0+nQ6XQWyWT2Gj3B0y8GpFjoh3kDHSWG0dHRMkdCr9ebESrVChW/HLSMoTluxOU7EVPoSNI5F2bV9uPCkVxaW1uJjIzE3d2dgoICix0ZexAVFUWfPn04dOiQGW/BFsaNG4e/v3+ndEMwfcbPPfccFRUVREREcPr0ac6fP2/3+Zw8eZLz588zffp0MjMzycnJMUtctLdD8E2j49hg5/uf8fNJ/05FsbmXQ2tDO2c+uMIX2+w3auvB00FPMfAEMcw3mjEBCRbzxRUIBLU5ULDzC7Kzs59YumFXmLY6g/934Jf0H/2AmNMrMYTX3nmJn334QxYtWoRaraauro7RA8dbdbOT0N6q4+bFOzaPSUtLw9HRkZs3b5qNCiy1q69evcrx48dxcXHh+eef7/bMsKKigqysLFJTU4mIiOjyeINo5LPS8zaLNoMo8vldk0QtICAAlUrViTcghVKFhITQ1NTEkCFDLD5Xnz59SEpKYv/+/VZb127ubpyOFdEpRLO3X3KNO1p5jc3F5rHU1dXVCIKAm5sb5eXlqNVqi06J9uQSSHhaYwIwj4UODw+nqqrKbLGWJIZKpZLo6Gju3LlDUFBQJxKqq6srUQG9CKx0IKbeC89mB0KCQ2hvb+fo0aMAjBkzxuT18YjKAoCJEyeaPWdXsCU3BIiIiGDChAncvHmTyMhI9uzZY9WRsiPy8/M5fPgwaWlp9O/fn6FDhzJ27FiOHTtmFlXu4eHB0qVLAVi3bp3s5fBtQxob1Oe1m4LQrCQWvvOTdRj03Ruf9ODJoqcYeIIQBIH/TJ7L4qjhOCofuL2pFUpm9krh4yk/YfiwVA4fPsyGDRtsJtU9SaRMHMB/Hv5X9rdtZq92E2sv/w+TV05AoVDg5uYmuxRmn8y26/ls5ZGDyWRnwoQJXLt2jZCQEPmG/jBnoKqqiu3bt8vKAVsOeZag1+vZsWMHfn5+dueda/XttBptk+KUgkB1m4kdrlAoCA4O7sQbyM3NxcPDg7KyMiIjI2X7YkvIzMzExcWFnTt3WiR0nqouoryt3qJlLJjqs4+KT5kVkNXV1ajVavz9/bl9+zahoaEWHdu64+3QsTPwsOTycdExFlrqYHS0JpYkhnfv3pWDi6KjoykoKOi005asmaVMg9LSUsaMGSO71w0YMAAHBwfOn380i2J4kDdy5swZi66RluDr60tGRgZ5eXkWsyZSU1NJTEyktLQUHx8ftm7dalOXX1lZyY4dO0hISDC7vkeOHCmHEHXsMHh4eLBs2TIAPvzww+9MQVBaUM6dy2U2Nxr3y+u48EXXgVE9eHroKQaeMNQKFf+YmEnWhJ+xZtgLvDv0eY5M+Bm/7PcMrhon0tPTWbx4Mffu3ePtt9+2mlb3NKBSqywGkfj4+LBgwQJEdx0Kle1LQqlR8MnnW1m3bp1NyV3//v0JCQmhrq6OiooKampq0Gq1uLi4AKYd63vvvYcoirIZT3chuQzOmDHDpstgRzirHMwKNUswiEb8HR8wrx8mETY2NnLp0iUSEhIoLS212hWQoNFomDFjBmVlZWbtXQlX6kttck0AylvqqNc92ElLHgU+Pj42VQdSMdBdaaFSqUSpVD6xYkCKhS4tLcXT0xMPDw85tAjMJYZxcXEIgiDnRhQWFpo9l4ODg9zFEEWRkpISkpOT8fX1Zd++fQiCwLBhw9Dr9Z0yBLqDYcOG4ePjYzeZEGDQoEHEx8fz2WefdSr2pURRDw8P9Ho9er1edii8ef8+e67nc6iwkMa2Npqamti8eTPe3t7MmDHDrGMmCALp6ekMHDiQ3bt3mxUe38UOQV2Vfedg73E9eDroKQaeEpxVGgb7RDLENwp3tfmNOCoqilWrVskxw3v27HkiEq7HQUhICAuWzidgoKdVObcgwOhFw/D286a4uJj33nuPP/7xjxw4cKDTfFYQBDIzM6mtraWx0sh//3QT+ccaObWngHsVdaxZs4b29nYmT55sV3v/Ydy8eZOcnBzGjx9vMcTHGpSCgmdCB9pcfJWCgszgfvLfQ0JCaGhokLXkZ86cQaVS0dzcjIeHB3FxcV3+3rCwMEaPHs3x48c7RRqrFUq7Fhu14sHOv7q6Gp1Oh0ajobW11ar5jPS5dNd0CJ6cJbGEjkVVeHi4WWdAoVAQFRVFYWEhLi4uhIWFUVZWhr+/f6dddn19PW5ubty4cUPmdJSVlTFlyhRKS0s5d+6cHP39OCM5iUxYUlJilfPxMKR0Q2tyQ41Gw5w5c2hqasLf35+rpaVMeWcN6e9/yI/27GXVrt0MffNtVn+4Dp3ewLx58yx6bUg24b1792b79u2yLwiY5HpLly5FFEXWrVv3jXUgrcEv1Meu4/zD7DuuB08HPcXAtwRnZ2fmzJnDlClTuHDhAu+++67d7cinhdjYWF7535V4xphMSKQugfLr/49bMJKfvv0qr7zyCq+99hoDBgzAYDCQm5vLH//4R9566y0uXbok3wC93H24fQKu7G/k3LFi7t3U8fmmsywZ8Vuu51QycOBABg8e3O3zbGlpYdeuXURGRj4SC3l5zGg81c5WC4Ifxqfj6fBg8ZR08qWlpeh0OvLy8ujTpw/Xrl0jJSXF7oTJkSNHEhoayo4dO8xc7kb4xdl0iVMgMMAzDBeVSS6o1Wppbm5GFEXa29tRKBRWvdy1Wi2CINhFrOzYGYCnUwzcv38frVZLr169KC8vN3sfJIlhc3MzCQkJ3Lx5k/j4ePLz883a/bW1tYSEhKDVagkLCwNMHhPh4eH079+fw4cPo9Pp6NevH62trXZZDFtDZGQkffv25dChQ3YTEp2dnZkxYwa3bt3i5MmTnX7u5+fHs88+y7Xi2xx0dqXwoVFBm8HAyZZWyqKjbXbMFAoFM2bMICoqiq1bt5oVmVJBYDQa+fDDD7/VgiAg3I8BY/pYNUATBIGg6AD6jEj4hs+sBx3RUwx8i5DS7l588UWUSiVr167l1KlT3xi50BIGD03hlbUv0HdJBEkZvRmU3p/0JWP485e/52frX5Hn0u7u7kyfPp2f//znLFiwgJCQEKqrq9mxYwd/+MMf2LZtG+bLzcIAACAASURBVL9d/T5VxabdtGgERJMNsmiEW6daCPawP4WwI/bt24dOp+PZZ599JJOSAEd31o94kWG+0WZUT1+NK7/s9wzLos1Dkdzd3XFzc6OsrIxLly6h1WrlxTU52X7TFunmrdVq2b9/v/zvce6BpPrGoLTyWoyILI8ZLf+9Y65BXV0dQUFBVvkWkvugPe/T0y4GJG+KsrIyIiIi5Ba/hIclhnq9HmdnZ9rb27l586Z8XG1tLUFBQQQHB3Pv3j1UKpWsOkhPT8doNHLkyBEmTJgA8FhEQjCRCfV6vd1kQjB1/1JTU8nKyrKoROnduzcNERE0GQyIlj4bQeCzopsUPpTv8TCUSiVz5swhKCiITZs2mW0oPD09WbZsGUaj8VvvEKz+n2WoNepOBYGgEBAUAj96c2WP4dC3jJ5i4DsAPz8/VqxYweDBgzl48CCbNm3qtlPZk0RaWhoT547DZbDAsjdm8+O1q+kzPN7qlzU2NpYVK1bw85//nJEjR+Lo6EjeyctcPFmE0Qp7WKEQ2PZW92/Sly5d4vLly0yePPmxLJ1DnL3425Al7Bv3Y94cspQPU1dyYNxPeK6X5U5FaGgoJSUl5OTkyP4J/fr1szuBUYKXlxeTJ0/mwoULZjvW15Pn0NfDtLtXCgoUCPJ/P+s9hVEB8fKxkpLAwcFBdvWzBnvdB8FUDDzNMYGXlxfOzs6yI5+Li4uZxNDNzU2WGHp7e+Pn50dFRQW+vr4yCbW1tZXW1lY8PT1JSkqisLCQ0NBQtFotdXV1uLq6Mm7cOM6ePUtdXR2RkZHU1dWZjSS6Czc3N8aMGcNXX31lcWG3hvHjx+Pv788nn3xi8X3Ma9ZaLgS+hlIQ2HW1MxHxYajVahYsWIC3tzcbN240CwiTOgQGg+FbLQiiB0TwRvbv6T/K3G44dmAkfzz0awalW85H6ME3h55i4DsClUpFRkYGixYtoqKigrfeesvMjvWbhCAIZGRkkJiYyCeffGL3jVStVjNu3Dh+/OMfEx8yyKaVvNEocim3iFZt16EwEurr69m7dy99+/alX79+XT/ADgQ5eTLcL4Yk716oFNbz0wODgzhXX8J5XSUEuFNfX98lcdAa+vfvT58+fdi7d69M8HJXO/HB8BW8NWQpz4Ymkx7Uh5WxY9g37sfMjzQfhVRXV+Pg4ICXlxdNTU02LYvtzSUA0+f+cGfgSXJZBEGQeQOCIHTyGwBTd6CoqAhRFElISODGjRskJCSQn58vB2eBqbDo27cvCoUCX19TgI7Ukk9JSSEoKIi9e/eSnp4OPLoJkYQhQ4bg5+fH3r177e7cKZVKZs2aRX19vcXfX9eFh4EgCNR0iHK2BSkm28nJifXr15sRB728vFi6dCl6vZ5169Z1ylH4phA9IIL/PPKvbLz1Jv9z4nd8cP0N/nbmdQaM6fOtnE8PzNFTDHzHEB0dzerVqwkJCWHz5s1yS/ybhtTSDg0NZfPmzWYmN/ZA4+BoMyRJgk5nn7ZYFMVuuQw+SWy/c4ZfNh3neKyO0zFGXm/JIXuAgvruNQVkCILAlClTcHBwMJMbKgQFqX4x/Lr/s7yePJfVceMsOlZ27AwANouB7nYGnuaYAEyjAikWOjw8nLKyMrPrOzY2Fq1WK0sMW1pa5GjjW7duyR78Xl5eODk5kZiYSHFxMSqVSiYaKhQKJk+eTEVFBSUlJfj7+3P37t1HtiiGB2TCsrKybiUQ+vr6kpmZydmzZzsRIf1dXWw+1iiKBNuZsQEmrsLixYtRKBRs2LDBrLv4XSkIwMQh6DsigdC44G/tHHrQGT3FwHcQLi4uzJ8/n0mTJnHu3DnWrFljV3DKk4ZKpWLu3Ll4eHiwadOmbrUYY/qGWoxO7gi/YE9c3e3btZ46dYri4mKmT59u9073SeCjW6f4/aXdNBjMd3H31DpeOLWWm43dK5IkODk5MWPGDG7fvm2RZGYLkpJAr9fj7+9v8/2wN5cAnv6YAEzjlra2Ntly2Gg0msk2JYlhQUEBwcHBuLm5UVlZiZeXF9euXaO2tha1Wi0XOElJSdy7d4+AgACamppkPkVoaCjJyclkZWWRlmbigHTXBvhhdCQodsfdMDk5mYSEhE5yw/n9+6Ow0T4TRZGZ3Uzxc3d3Z/HixbS1tbFx40YzB0Vvb2+WLl2KTqf71guCHnz30FMMfEchCAJDhgxh5UoTsWbNmjXk5uZ+4+RCR0dHFi5ciCAIbNy40e6bYMqYRPyCPK0bFAnw7LJRdpGGKisrycrKYtiwYURGRnbn9B8Lzfo2/jf/kMWfGRFpM+p568ajk9MiIiIYMWIER48etcuNDkxt/6amJgwGQ5cjAul4ezsDD48J1Gr1U+kMgEmZIRUyHUcFHSWGgiAQHx/PjRs3SExM5Pr169TW1uLp6SlfN5L9sEZjUlp0LKzGjx+PQqGgoKAAV1dXbty48cgWxRI6EhTthZRuqFKpzOSGiwcmEeXlZZU4+krqMEI87O8MSPD29mbRokXU19fz0Ucf0d7ezq1Lt/nw11vY+rvdBIuRNDdoWbdu3bfKTerBdws9xcB3HP7+/qxcuZJBgwZx4MABNm/ebNO17GlAcilsampiy5Ytdo0tlEoFK38zCYVSpKOCT7qJe4aocA1r67K4kVwGfXx8GD9+/GO9ju7iaMU1Wg3WX6tBNHKk8irNevt5Dw9j7NixBAQEsGPHDrsW3o5KgsbGRpvkQfjudQY0Gg3+/v4yb6BXr16dOCmSxFCr1RIfH09dXR2BgYFotVrKy8vNoq0VCgUDBgyQ7aKvXLkiyxCdnZ1JT0/n0qVL9O3bF1EUu6UIsARXV1fGjh1LXl6ezWjrh2FJbuim0bB1/lxm9O6NqoM81QX49ZhRvDq8e4FdHREQEMCiRYu4W1rO6hE/4cUBP2HLf+xk95sHWPtPmzj+7+e5ffpuT0HQAxk9xcDfAVQqFZMmTWLBggXcvXuXt956q5Mr29OGr68v8+fP5+7du+zYscOirW5H1NbWknP+GJN+kMAzS0bi4e2CQgWhMb689sd5vPL6DHJyc8jKyrJZEGRlZVFTU8PMmTPtdhl8UrjX1mR11ybBKIrUtdtH8rIEpVLJzJkzqa+vt6uN3bEYANt8AaPRSGtr63eKMwCm7kBH86GSkhKzWF9JYlhYWEhkZCQajYaamho8PDyoqanpFHWblJREW1sbHh4e6HQ68vPzzX4WGhpKYWEharWac+fOPbJFsYTBgwcTEBDAvn37uvwedERkZCTDhw8nKytL7gR5Ojnx+qQMTv9gFR8vmMfGZ6cxT9+O5gl8v0NCQtB+JXLnrEkBYdAb0esMIJoyRi5sKuTu1aqegqAHQE8x8HeF2NhYVq1aJWuKDxw48Ng3tu4gLCyM2bNnk5+fb9Oita2tjc2bN6PRaHj+xUWs+tcZrD/1K4Ys8uCVP01l4uwhDB+eysSJE/nyyy85duyYxee5desWp06dYty4cd1yGXxSCHB0x9BF50IlKPByeEQm4deQSGZ5eXld2lNXV1fj6OiIo6MjXl5euNsgmHXHfRAsqwmeRjEQGhpKdXU1bW1thIeHo9frzcYkHSWGSqWSmJgYWVUgyQo7wtvbm/DwcARBQKFQkJeXZ/aapkyZQk1NDSEhIej1erOAn0eBRFC8e/dut8iEgHwtPyw39HB0JDk4mNTYWJ6bOZP8/Hy+/PLLxzrP0oJyzuy5YDkTQDRp/FuumgrG9evX9xQE33P0FAN/Z3B1dWXBggVkZGTw1VdfsXbt2k67xaeJuLg4pk6dSl5eHidOnOj0c6PRyCeffEJDQwMLFiyQFyK1Wo1CoTCb2aampjJ+/HiOHz/eybO/tbWVXbt2ERERQWrqo7dLHwdjAhNwElRWA1aUgoKM4H44f+0M+DhITk4mPj6e3bt32yR2VVdXo1Sa7Ivt4QuAfbkE8M2MCcBUDIiiyN27dwkMDMTBwcGmxDA+Pp7y8nL8/f0BLBbASUlJ1NXVYTQazVQHYApJGjJkiDyaeBKpob169SIpKYkjR47I+Q/2QOoENTY2cuDAAYvHxMXFMWrUKI4ePWpmM9xdnPr0DAoboWJGg5FLX1xn7nPzaGlpYf369d/4CLIH3x30FAN/h5CCWFasWIHRaOTdd9/lzJkz3xi5MDk5mbFjx3L06FHOnj1r9rNDhw5RWFjI7NmzZf23dM5OTk6dCFxpaWnyc3XcCe3bt4+2tjamT5/+rTmTOSrUpN53x0IiNUpBwEWlYXWcfWmJXUEimSmVSj799FOrn6WkJGhra+uyGOhOYiFYHhMYjUazFv6TgJ+fHxqNhtLSUhQKBb169bJYDEgSw9jYWBQKhSxvtVT89u7dG7VaLQcsPXxdjhkzBkdHR9zc3GhpaekUjfwomDBhAkajkcOHD3frcVIn6Ny5c1bPY/To0URFRfHJJ5/I3grdRau2DcEOq2x3V3eWLl1KS0sL69atMysI9EYD7YZvrvvYg28PPcXA3zECAwNZuXIlSUlJ7Nu3j61bt3Zrl/I4GDlyJCkpKezZs0ee0Z49e5acnBwyMzOJjo7u9BgnJyczqZOEUaNGMWrUKI4cOcKpU6e4fPkyly5demyXwcdFSUkJHkUNvBY0ilDnB6Q1ARjiE8WGES8R6uz9xH6fi4sLzz77LEVFRRZb2a2trTQ2Nsq7dXvIg/B4YwJ4cjHGHX+P5DcAyCTCjr87LCwMjUZDQUEBjo6OREREyJbExcXFnYolBwcH+vTpIxed58+fN3s+R0dHJk6cKEv7uqMGsAYXFxfGjRvHuXPnbCZ4WsLAgQNJTEzks88+s5gsqFAomDlzJhqNho8//viRxoGR/Xph0Nsu5BzdHbhbXYaPj49cEKxfv54vy67x8un1DN7/G4Yc+A3Tj73BttunMYj2cyR68PeFnmLg7xxqtZopU6Ywb9487ty5w1tvvWXm4/60IAgCkyZNIiEhge3bt3P69Gn27t1LSkqK1fAhS50BCWPGjCEtLY2DBw/y6aef0qdPnyfmMvioyMnJwcfHhyUDJ/DZmNfYkraaNUOfZ9+4H/PW0GWEuzz5lLWYmBiGDh3K4cOHO3lLSLHFYFrcvL1tFyKPOyaQ8g6eJolQMh9qb28389VXKBRER0fLRNmEhATu3buHRqOhsbHRIpM/KSkJvV5Pc3MzTU1NnRw8+/btS0REBCqVitra2seyKJaQkpJCYGBgt8mEUidIrVaza9cui4+VwswqKyvNsizsxbCpg/AK9LQ6KhAUAtFjwti6dSt//etfKSwsZN68eVxS1fLDcx+RU12I+PWM7HbzPf5w+TP++dw2jD0Fwf9J9BQD/0cQHx/P6tWr8ff3Z8OGDRw8ePCpkwul3Yufnx/79+8nODiYzMxMq219a50BMN0cx44di7u7O3q9nuDg4G81uKSuro7r168zdOhQBEFAEAQSPIIZ7BtFkJNn10/wGJgwYQI+Pj7s2LHD7DPs6AIpEeZsQQpUsjdV0dKYAJ5OMRAaGkpzczN1dXWEhISgUqksjgo6SgxFUcTZ2RkXFxeL7fVevXrh4eGBKIp4e3t3GhUIgsDkyZPl9/RxTYjA9J5NmTKF8vJyM+KiPZCMp4qLi60aTwUFBTFlyhTOnj3LV3l5nKwu5PUre/ndpU/ZfvuMTVmrSq3il1teQ+mgkpNHJQgKgT7D4/mPj37D8uXLCQ4O5tChQ7y7aR05QabvqKEDWUb606HyK+wru9it19mDvw/0FAP/hyD5AaSnp5Obm8t77/3/9u49Lqo6f/z465wZBhjuIHIXREW8g3hJsbyXpqWl2WpeKit3a79trbXffez++raP77f2/m1/u11W+2XrtSxNS1Eyy9uWiqSg5gVCLspFQW4zMFxm5pzfHyNTyAwwCETyef4TMucczhlozvt8Pu/P+72u2dNkV7BYLDQ0NKDRaDAYDK1OU3h4eLRa9CUtLQ2DwUB8fDz79+93+cO1M6WlpeHu7s6oUd3fQEWr1fLggw9SXl7ebD66aSUB0K7iS67UGIDumyaA5m2hNRoNkZGRDoMBsHUx9PX1RafTYbVaiY+P58KFCy2mCiRJsnWRdDeji6kgz3yU/Ovnmm0THBxMcnIyAHnZBXz0xm4+fiOV04fOdTjnJjIyksTERA4cOOByAl7//v3thaec1S1ITExk0OjhrM79hKdPbGBbwQk+uXKKV77ZxczP/8xXpd86Pf7Iu4byVvqfmLbkTnQetpGekJhgnvzjUv702Ut46N2JjIxkwYIFPPfccygJ4bZ22k7iTBmJrQW3thpD6JlEMHCbkSSJiRMn8sQTT2A2m1m7di0nT57skuRCRVHYvn07JpOJZcuWAbQogfp9rU0TlJaW8sUXXzB+/HgWLVrE2LFjSUlJcXnpVmdoaGggIyODpKQk+w2xu4WEhDBjxgzS0tLsQ+XXr1+3jwa0lS8ArlUfBMerCaBrggG9Xk9gYGCzegOXL19u9vO/v8QQbH/bNTU1xMXFUVVV1WxaAcCiNGKMPoH+vq8xDjyK+7hv2V72S7YWvIDB/N2oysQJEynYX8qJ1y6y5tmNvPWLf/HCtN/xWPwvyPq6Y9n7TQWxXE0mhLYLTymqwk7fEgyetvfGoipYbgzV11kbee7rLeQYnZcrjxkWxa/W/5yU2i182riVzblvsXD1fVgUC6WlpeTl5XH27FnOnTtHsbXGWRxgOxdULrXys4Qfr+6t4iJ0m7CwMJ566in27dtHSkoKOTk53HfffS633G3Nvn37yM3NZenSpURHR7N06VLeffddtm7dytKlS1sUCXI2MtBUZTAwMJAZM2bY8xEURWHXrl32KnPdJTMzE7PZ3OGuhJ1l/Pjx5OTksCF1B8rEGD7zycI6RMWvTmK0uYQ5al9kyXk870rHQujekQGwPVE3PQ1HR0dz+PBhysrK7EsIwTY6cOrUKSwWC42NjfZgwdPTk/PnzxMWFgbY6vinFP+RS6ajSHLzwLfIdI7383/J8v5v4an1Zc3zG7lyrNQ+9t10zJLca7w47Xe89fWfXG6i4+XlxfTp09mzZw+jR48mKiqq3fs2dTdcu3YtqampzJs3r9nrx8ou8W3NNYdP6yq2G/SWvGO8NPx+e7nqmpoae+5EbW1ts69ramowmUwt8hS0Wi21/UHydbqaFgAPzQ8TIAtdSwQDtzGdTsd9993HwIED2b17N2vWrOGBBx7olPr+6enpnDhxgjlz5hAbGwvYhmAXL17Mpk2b2LlzJwsWLGg2X+0sZ+DgwYOUlZXx5JNP2gOIpmIxiqLwySefIMtytyQUKopCWloaQ4cObbWgT3eQJImwO0fy2pks1JKzqDc6LFfpVV46s4Pj5Zf4n1EPOg0ITCZTiwI9renOnAGwJRF+8803WCwWIiMjkWWZ/Pz8FsHA0RMHOJWzE8/gMuT6CLKzsxk8eDAXLlxg2rRpSJJESf1FcoxfOfw5Kgo1lutkVqUQXT2N1HccryRQrAqN9Y188OdPWP3Oz1y+ntGjR5ORkcGePXt46qmn2p2rARAUFMTs2bPZtWsXAwcOZNiw79r6Hrp2AY0kO83kt6oKe/JPIX18xuEqCy8vL7y9vfHy8iIiIsL+9c3/1el0pJXn8tO09U7PUyPJ3BM2vN3XJfx4iGCgFxgyZAgRERHs3LmTjRs3kpyczNSpU9FoNB06Xm5uLqmpqYwbN44xY8Y0e61fv34sWLCADz/8kE8//ZTZs2fbh7Y9PT2xWCyYzWZ7pnpT8tSMGTMIDQ1tdqymjGtFUdi5cyeyLDf7kOwK2dnZVFZWsmDBgi79Oe1RZ2nkvy7uQpWbP6mpN54Q9xSdZnyfAdwfmehwf5PJZH9ybo/uXE0AtpEBRVEoKSkhKiqKiIgILl++bB+RMSs1XHVfz6AF+8mTP6PfTMDqxtVLF7gz7tdkZmbaRxLOV3+BjAYFx0vpVFQyylI48bYRWSOhWB0/+1otCgfe+ze//H8/dTmBtaky4TvvvEN6ejrjx493af+EhARycnJISUkhMjLSvqy2QWk7EVjV2ILnm2/yTb/D9hoX1J8R/pGcry5qUX1TRsJN1vBI/4kuHVP4cRA5A71EU2vT6dOnc+zYMd59913Ky8tdPk55eTnbtm0jNjaWe+65x+E28fHxzJkzh/T09GaFhJqGrJumCpqqDEZHRzutMihJEvfffz/Dhw9nx44dbZbrvVXHjx+335h+aKnFZ6i1NDgdspWQeC/vmNP9Xc0ZuHmaQJIk3Nzc2tWYqiNCQkLQarXN8gYKCgpQVRWr0sDBoqcpqNnbfNhfY8Z70HkKNW/j7q6zryqorrve5pK3WnMVGScy2syfaaw3Y27s2EqciIgIRo8ezcGDB10u7ytJEnPnzkWn07Fz50777yLeN6zVa5ORGBYQSVJSEvHx8URGRhIQEOByIAAgSzKvj11GQoAtJ0UjyWhvjDz56/SsGfcoUV6dV1tD6DlEMNCLyLLMpEmTePzxx6mvr2ft2rVkZLT94dikrq6O9957D29vbxYuXNjqMGhSUhKTJ0/mwIEDZGZmoqoql2pruah1Y9vZbyitqSE1NZX6+nrmz5/f6rFkWWb+/PkMGTKEbdu2NWtE05lKSkooKCjgjjvu6JLju+qiocT+QeyIikq24arD35+qqphMJpcTCG+eR+6qksRgmysPCwtrljdQU1NDRUUF+cZUKhsuoNLyJihJcF39kpABCsePH+e1114jK7Og1b9jVQWpTk9wvyDaWiYfEOKHzt31G2mTptbJHUkmbFpuWFBQwFdf2aY95kYmoJO1ThP7FFQWx3Te36y/Ts+6CSvZnLyKlQPuYmn/ifwpcRH7pr9AQmDrVS+FHy8xTdALRUREsGrVKlJTU9m1axc5OTnMnTu3WbKZoioYzPXoZA16rTtWq5Vt27ZRV1fHE088YV/i1prJkydjNBrZsDuF02npFBiNoHPnxLHj/PHYcWLNjbw66552zWvLsswDDzyAoihs27aNhx9+mEGDBt3S+3CztLQ0/Pz8iI+P79TjdpS7rG01kQvATdY4HM5uaLC1h3YlgfDmaQLo2mAAbFMFTU/3UVFRSJJEQUEB5cEfY8uYc/wOqIpEo/cpGhpG0tDQgJQXgi6+2OG2dpcj8IjRIGtlFIvjiEDWyMxddfctXJFtpcSMGTPYvXs3iYmJ7Vr58X0xMTFMmjSJQ4cOERsbS0REBH9MXMQLp7YC2HMHZCQUVB6IGs3dXTCPP9w/kuH+kZ1+XKFnEiMDvZROp2PevHksXLiQ3Nxc1qxZQ0FBAY1WC+/kHObuL/7ClP1/YOK+V3ji2DreSN1KQUEBixYtarPyXRNJkhh9113s13tx+UYZWG7cuBTgkpuODVfa3xO+Ket64MCBfPDBB7fUxOVmRqORs2fPMm7cOJcSv7rSXSHxrZZ/1UgyU0KGOHzN1VLE0HKaALonGKiursZoNOLu7k5oaCgFBQXUWUppLaddklX8gjXIskxgYCCq0RN9iS2f5OYBAlUBpcKb2ov+hEWFMnDOjZUCN8VQkgT9hkSw4Jdzb/m6EhMTiYiIYO/evR3q7TBlyhRCQ0P56KOPaGhoYGroELYkr2JW+Aj0Gh1ukoZh/hH8IeEh/mvED9e/Q7h99IxPPeEHM2zYMH76058SEBDAvzau55HP/s6bWV9wveG7+c6TFfn8i4v4Tx1BTEyMS8f/16kMGgHVwYeVCuzNzuZCafu7Lmo0GhYuXEhsbCxbt24lLy/PpfNxJj09Ha1Wayta00OMCYxhmF8EGgfvXdN3VgxIdrhvR4KB7p4mgObFh+C7vAEPbR+cVr7BNjJgKLeiqioVFRVMmTKFB4a8SOOpAWgavxsNUS0y1kth6DImENo33JZwmODPpKcT8An/7r3RumsIHRvEsxsex8v31pffNlU7LC0tJT093eX9mwLfmpoae3fDeL9wXk1YyNFZL5F+7+/YlLyK2REjRSAgdAoRDAj4+fmxfPlyNBMG8K21yl6PvIkKIMEmYybVja41Qtp57nyLrOTv00gSu11MCtRqtSxatIjo6Gjef//9FpXrXGU2mzl58iQJCQntmv7oLpIk8frYpfT3sHV/1CChkWQkQCdr+cvohxnq5zjR0dW+BPDDBAO+vr74+Pg0Cwaqq6sJ095NWyMDVZci7StiDh06xLp167DmhmHclYDp0wSCzt/L4uC1WM8OwtvDz16kKDQ0FIItTP/1OB5bt4C7X57ApoI3GTA7jCNHD3fatYWHhzNmzBgOHjzYaltqZwIDA5k9ezaZmZmcOJNhqyVwegevnN3Fl6XZokeA0KlEMCAAthvBSW05rT1kmBUrKUWnXTquscF57XSw3fCqnVQsbI1Wq+Xhhx8mMjKSLVu23FLTmbNnz2IymVxeCtYdAt29+W3gXSRnyTwYmcT9kYn8augc9s/4FdNChzrdr6PTBN2dMwDNiw81tWW2lA7GWxOLqjgYUVLBUBBGXVkAs2bNQqPR4Obm9t1wvCqhGvQYiySyz+cQHh5OcbEtn2Do0KHEx8cjSRIGg4H8klw8At3o0zeIqJgY0qqqeHjzFu5dv5GffbyLQ7l5t1S9c9q0aWi1Wvbv39+h/RMSEpBHRPCzgh389fxe9hadZueVk/w8fRM/+fc/uV7vepAhCI6IYECwu2wqbzVhTSPJ5Ne0f0gfILKNFsRWq5Wa4mKuXLni8oeum5sbixcvJjw8nC1btrjcRhZsWffHjx9n8ODB7c6F6G7l168zSA7gt6Pm8fLI+Szufwe+bq0/8ZtMJtzc3FpUgWyNs5GBrlpa2CQyMpLi4mIURUGv19O3b18u5xdTfOhOGkpi+P7HlGKRqc4aSPFXiYBESkoKVqsVs9lMVFQUzz77rH1bHx8f0tLS7IGiRqOx17VISkri6aefxt3dnYqKCranpPCBxcpX7p6cvHqNrOvX+eLSJVbu2MmzKXuwuNCR8Ps8PT2ZMWMGZ8+e8LQLXwAAE3tJREFUJT8/3+X9LxpK+NjjMlbJNk5iVRV7HsmlmlKeSd8oRgiETiGCAcHOs40yoyrgpXV36ZhLRo1stda5JEn0razg3Xff5c033+TLL790aUjVzc2NJUuWEBoayubNm502e3EmNzeXsrKyHrOc0JHr168THBzs0j6u1hgAx8GAm5tbt4wM1JnNnMnLw9jQQHR0NBcvXuRqYSUzBv6NEeobXDk4lisHx2M6/ihXT8YjS1r7+TUZO3Zss9//gAED7Ofu7++P1WrFZDLR2NhIVlYWhw8fJiAgAD8/P14/d55LlVXAd5MTTdNbqVnZrEk70eHrS0hIICwknDf+822eGP48c/RLWBT2JG+/uJGywtZrfWzI/RKQHKZPWFWFLMNVTpR3Tt6M0LuJYECwmxU+Ak0r69qtqsJMF5cwPZIwihGhocg3zT80/es3U6fwm+eeY9myZYSHh3P48GH+9re/sWXLFs6dO9euNsw6nY4lS5YQHBzM5s2bKSkpaff5HT9+nNDQUJeXf3Wn0tJS+vTp49I+rnYshB9mmqC0poZ/nr/AB3pvFuz8hMTX3+SdomKKGhuZMGECOTk5bH8/ldriEAI1oym6bBuZCgsLIyAgALPZjAWJS2Y3nn//U3657QDfKN4YFJmDBw8CtiWuTz75pD1w8Pb2ZujQoRQWFnLlyhUKDQYKNc6XcarA+pOnaOzAqgCAxvpGzmy4xOlt31JwvpDGejOV16r46P/uYdWo1eSfu+J038PXLra5ouTwta4txCX0DiIYEOyW90/GTdYgO3gMkZG4MziOYf6uVebzdHNj86KFPJY0Gu/vdQAc1CeIf8ydw2NJo5EkidjYWB588EFWr17NvffeS11dHdu3b+e1115j7969lJSUtDqN4O7uziOPPEJgYCCbNm1q0dHOkbKyMnJycrjjjjt6bEa22WymsrLyBxsZ6Mpg4FpNDfM3v8dH585jvfH+q8CZ6mpSPfR8dvYshw8ftl9HZWUlM2fOJCkpiYqKCubNm4dBkUmt8+Kk2ZMSq4YrJjMX6iU+rffiW7MbEydOZPLkyej1ens+Ql1dHUlJSSxYsICwsDAMXt5tnmtlfT15FZUdus73Xt3Bt+m5Lb6vWBVqDXW88vBr9r/t2tpa8vLyOH78OLt27aLB0voUjYQtl0cQbpUoOiTYRXv3Ye34R3nh5FbKGoxoJRlFVVFQmRIyhFcSHuzQcb10On4zZTKrJyVTbDDirtUQ5uPj8Abs4eHBmDFjGDNmDGVlZWRmZnLmzBnS09MJCQkhISGBESNG4OXl5XDfZcuWsXHjRjZt2sSKFSuaNb25WVpaGl5eXl3e7+BWNJWMdjUYMJlMeHu3fZP7vu4OBv585N9cr61tsdpERUJFZZ/ZygOqik6no7a2llWrVuHt7U1VVRUZGRmc+PprjjToqW9q1oBk3x8gw+xJQmEZpe+9R21trX3EyGq18tZbb9l/Xr1WC+6ujaK0l7nRzK639qEojgNZxapQcL6Q/33p7+Bvoba2FrAlyAYHBxMapqdEMjkdtbCoCkP8XOuwKAiOiGBAaGZUQD9Sp63my7Jssg1XcZfdmBwymBhv125GjrhrtfQPDGj39sHBwcycOZPp06eTk5NDZmYm+/fvZ//+/cTFxZGQkMCgQYOaFQlqCgg2bNjAxo0bWbFihcMbqclk4vTp00yaNMmlJLvuVlZmGxbvyMiAq/u0Nk2gqmqnjp4Y6utJuZjlfNmpJFEjSfQZMZI+jQ1UVlby2WefUVdXh8lkQpZlPsu8iEl1PvohofLZpRLmBGsddsv08fGhvr6ecJUb9YqdX1+gpyexLvztNrleWEFNVW3rG0lQXVjDtOnJ9O3bl5CQEAIDA5FlmYii0/w2c7uT3ST0Gjdmh3d9N0/h9tdzPwWFH4xW1jAlZIjT6nbdTZZl4uLiiIuLw2QycfbsWTIzM9m6dSteXl6MHDmSxMRE+83P09OT5cuX2wOCRx99lKCgICyKlfzaqyioFGVeQlXVFl0Xe5qysjJ8fHxcrn/gal8CaDkyUJJ3jQPrjpJ9vJC3azdx9/Ip9B/eObXpi43GdmXoH7twgbgbQ+UXLlxAlmV7bYFSRXtjDMHxTVxFosSMvWFQYGAgycnJ9qqAZrMZs9lMkF5PnM6NbxvNDotjATw+Jgm3DnT5dHNv30fs+AnjmTp1aovv3xs+kvTruXxceMpefhhsuQKyJPGXpMXoXUzqFQRHRDAg/Kjo9XrGjx/P+PHjuXr1KhkZGWRmZnLs2DEiIiJISEhg+PDh6PV6li9fzvr161m/YT3+s+PYU36CarPtKU1jlUgYE4mbZ8/+IC0rK3P5Cb+pSZGrCYRNvQkURWHjyx+y5fcfIcu20YId3+xh+193c89jU3l+7So02o61v27i696+912nqmg0GlRVJSwsDL1ej6qqZGdnI2vcoY38UlmW0WptIwPR0dFkZWXZ6xHU++moCtFwvb6RUZX1VOm8KVVVZElCUVU0koRVVbl/SDxPje1Y0BgUHkj/Ef3I/8b50lkJiXGzExy/Jkm8PHI+E4IH8n7+cbIMJbjJWmaEDuWR/hMZ4ON8GkwQXCGCAeFHKzQ0lNmzZzNz5kyys7PJzMxk79697Nu3j/j4eBISEnjkkUd4/sBrXC452Gx5llWjckpTyEtn3uH3I59EI9/aza2rlJWVMXDgQJf2MZvNWK1Wl0cGmqYBdv9zH1te/QgAxWq7gak3nuI/W38IvyAfnvzzMpeOfbNwX19GhIRw7to1B30JbbSqyqR+UZhNJiorKykrK7MP98uyzEBfb7Kv1jm/HlT6arHf/DMyMtDr9SROT+bvRUco96747mdFSURfrWTloOkcLSunwlRHP38/Hh45kon9ojo8RSJJEo/8n4W88vBrDl+XZYmpiyfRt5/zgE+SJO4JH8E9YjpA6EIiGBB+9LRaLUOHDmXo0KEYjUbOnDlDZmYmmzdvxhrqzuU4x33lVVS+rszmSNkZpoYkdvNZt81isVBRUdGhfAFwrRQx3BgZUFTe//1Op9uoqsrHb6Sy5LcP4uXXMonTFavvTOax7Tucvj7C3EjJ5ctERUXZp36OHj3K559/Tnx8PDm5eXigoQHJ4VSBikSsZMJstg0f9O3blytVZfyh4t/UezV/SregcikUivwrefeujiXKOjP5oQlcL1zB2y9uBEm6kZogYbVYGXfvaJ5bu6pTf54gdIRYWijcVnx8fEhOTubpp59m5cqVVPfXILVS2FBGYk/xse47QReUl5ejqmqHVhKAa6WIwRYM1JbWU17S+hK6xnozmQfPuXRsR+6MieH1++bapwyaGjJpgLESPH3HeKxWK/n5+VRXV2MwGDh69CjDhg2jsrKSxvo6pno33nii+e6XLN34ephbPRFaKzqdjn79+mEwGPi2r4V6WUF18qC/88pJco2lt3xtN1vw/Fy2FPyT5b9bxPSldzHvmVm8fvz3/Pcn/4mHvmdPVQm9gxgZEG5LkiQRGRmJW5kXapXz7RRUSuornG/wA+roSoKOBgOSJKFY2lcSurG+c0oUzx4cx7QBsXyec4nC6mr8PT2ZGBrCxrXvcGDDUU7vyaah2ozWXSZzexaRE/pQpCuiqqqKoKAgnlu2jJANm8i4XkuBWYNVhUDZyj2D+5HYP4KDBw8SHBxMZWUl9fX1FASpTgMBsCXm7S0+w88Hz+iU6/u+PhFBPPLbBZ1+XEHoDCIYEG5rATofZGQUJzPT0o1teqKysjK8vb1dHu6/lWkCfR93NG4arObWC9kMTIxx6ditcddqmRM/2P7vupo6cj68SuH5EvsDv9lk5cpXpZScLGfk47EMSYpj1KhR7NixA1NlOYM1MPh7aR/TRg/n1KlThISEMGvWLEpKSjhy5AhmbSuRIba/h8rGNpYCCsJtSAQDwm1tRmgSB0oznL6uAveEju2+E3JBR1YSgG1kQKPRoNO13mviZmazGa2HhqDhPpSdrsJRFVyNVmb4pCFEDXatEqUrNrz8IcUXr7XsYKyCpd7Kxe2X8QzSUVBQQExMDPPmzeOLL76gvN5Iqb9t/v+Dr/ahvVaDhMS6desA28iH3ipTq1Ec1voHUFSVME//Lrs2QeipRM6AcFsbGxjPKP+BTkosy0TrQ5gZ2rNqDRRcKGTnP/Zy7INTWMpVl7s5Ni0rbG8GvKqqnDx5kr179wKw4n8WET00Ckluvr+skfHv68eL/3rGpfNxRUNdA3vf+RzF6mSNgQqmaw3UXbNNUxQVFbFz18d8FVBN6kgrX8dYyYxRSImq5tBwldg7RqLVagkICCA+Pp7oa22fw30Rjpf5CcLtTIwMCLc1WZJ5deRK/p61nS+unbIXbQEYFxTPi/E/waONbo3dxVBh5I9L/0H6p5m2aoCofLPzEl9vOcdL21YT1j+kXcdxpS9BUVERe/fu5fK1IuR4f4qqjSQN9eRPR15m/9uH2PP2fq4XleMb5Musx6cy/z9m4x/celvqW3E1v4w6Y8tqgTdTDTKhCaGUlpZyZoBEvr/aYiCh2l3hH/WnmO/nT1VFFWazmVXJd/P3+pMUmK47rH74s7hphHh23fUJQk8lqe147DAYDPj5+VFdXY2vr293nJcgdLryBgOnqy6hojDEN4Zwz6Af+pTsrBYrv0j+Ld+eymvxVKzRygSEBvD26b/iE9B2v4EdO3ZgNBpZsWKF021MJhMHDhzg5MmTGAbrOB9aSaNqsQ3NS+CpcefpgfO4N7x7WzuX5F1j+YCft7ld0rIhTHpoHHW+Wl41fuV0O0mFuAodzw2awZgxY3Bzc8NgruNvF/aRUpRpb/IT5unPUwOn8EC/pE67FkHoCdp7/xYjA0KvEeTuy7QeWE8A4HjKSbLSLzl8zWpRKC+u4NN1B3johfvbPFZr1QdVVSUjI4PPP/8cRVEImjGII41ffzc/f2NmoM7awP9mfYiHxr1b37PQmL5ExYdTmFWM07YFssTIqUMpKCjgiO4aUhhOVwioEhSHyEyYMMH+PV83T14eOZ9fDplFQe11PDRuxHoHI7fSvlsQbnfir18QeoBDHx5F1jj/31FVVFLXf8G1a9eoqKjAYDBgMpnsTYQASusr2ZL/OUe8csn0u0qhqazZMYqLi1m3bh27d+8mLi6Onz79Mw6qF1s9r3W5e1AcZRJ2EUmSWPrSQ60GArNXTmfJoz/hmWeeYejYBOQ2ciNqLA0O8y583DwY7h/JQJ8QEQgIvZ4YGRCEHsBYUeM8ae6G0sIy1qxZ0+L7KipXYszkR9mWFEq+kCtVkZb2B+KqAxlbGY6h2kB1dTXu7u7ExcXh7u7O9hOpVGkcV2dscrW+gm+NRQz2jer4xblo2uJJlBdV8M6vN9+o2Ge72VstVu5ccAfP/ONx+7b9fIKdtvdtEurp26kdFwXhdiSCAUHoASIHhZF54CxWi+OAQNbIDEqIZeXKlVgsFiwWC2azGYvFwpHac/y77oR92+8PmWf7VtBYbSLG6ElQUBBeXl7U1NRQVVVFgWcVRLd9brUW5/X/u8pDL9zP1MXJfLbhMCW51/AN9GbqkkkMTOjfbLv7IhJ4I+tznA0lSEg81G9cd5yyIPyoiWBAEHqAe5+cwSdvfur0dcWq8OCz9xEZGdns+1bFyn8f+8j5gSUojGrkj/NXE+zXPGEyr6aE9PS/tHlu4Z592tymK/SJCGLJb1rvE9DHw4fnh9zDX8+nItG8NIGMxCCfEH4SM75Lz1MQbgdiokwQeoDYkdH85NcPAHDziLYkwV0L7yB5fsviSDk1xVQ0Glo9tkVSuGRuucC+v3cYg336OazBALY6DEkBcYR6BrbzKn4YS/tP5A8JDxHt9V3Q4qFx4+GY8aybsBK9VtT+F4S2iJEBQeghHn91MRGDwvjgzx9TmFUMQFB4AA/+Yg4Lnp+LLLeM3RuU9vUIcLbd6vhF/OLU6zRYzc1KNmskGb3Gnf+I69wOfl1ldsRIZoWPoKiuknqrmQjPADy1PaN+hCD8GIhgQBB6CEmSmPXYVO55dArlJZUoFitBEYFoNBqn+0Tr+6KRZKxtZPzHeoc5/P4A73DeSnqO9Xn7+HfZaRRUNJLM1L6JrOg/q0fVYmiLJElE6nv2KIYg9FQiGBCEHkaSJPqEt++m5qfzZnJwAodKMx02Y5KRGekfS5S+r9Nj9PMK4b+GL6fO0oDBUouvmxeeGjG0Lgi9icgZEIQfuWcGzSfMM7DF3L+MhL/Oixfjf9Ku43hq3QnxCBSBgCD0QmJkQBB+5Px13ryV9Dw7Co+wp/g45Y0GfN30zA4bz4LIuwh0FyXEBUFonehNIAiCIAi3qfbev8U0gSAIgiD0ciIYEARBEIReTgQDgiAIgtDLiWBAEARBEHo5EQwIgiAIQi8nggFBEARB6OVEMCAIgiAIvZwIBgRBEAShlxPBgCAIgiD0ciIYEARBEIRerl29CZoqFhsMhi49GUEQBEEQOk/TfbutzgPtCgaMRiMAUVFRt3hagiAIgiB0N6PRiJ+fn9PX29WoSFEUiouL8fHxQZKktjYXBEEQBKEHUFUVo9FIeHg4suw8M6BdwYAgCIIgCLcvkUAoCIIgCL2cCAYEQRAEoZcTwYAgCIIg9HIiGBAEQRCEXk4EA4IgCILQy4lgQBAEQRB6OREMCIIgCEIv9/8BrUm80NHjucAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "node_colors = [0] * G0.number_of_nodes()\n", "count = 0\n", @@ -802,7 +1029,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -822,7 +1049,18 @@ "id": "MYtd8B9Atc1Y", "outputId": "bbe6645f-769c-4f94-f734-450871a0c3e4" }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eXhUZ3av++6qUqk0zxISSAjQyDxJIGMwZjYYMLZpbON2224nTrqT0zc5Nzk3SfdJniQ3SaeTnPQ96dODh263J2ywG9uYyQIxgyaEkIRApXkeS2NJqmnv+0dRGwmpSiUhPDTf+zw8xrWH2ruo2t/vW99avyUpiqIgEAgEAoHggUXzVV+AQCAQCASCrxYhBgQCgUAgeMARYkAgEAgEggccIQYEAoFAIHjAEWJAIBAIBIIHHCEGBAKBQCB4wBFiQCAQCASCBxwhBgQCgUAgeMARYkAgEAgEggccIQYEAoFAIHjAEWJAIBAIBIIHHCEGBAKBQCB4wBFiQCAQCASCBxwhBgQCgUAgeMARYkAgEAgEggccIQYEAoFAIHjAEWJAIBAIBIIHHCEGBAKBQCB4wBFiQCAQCASCBxwhBgQCgUAgeMDRfdUXIBAIvhmYrQ6uNfYyZJeZFWIgNToASZImdY7KDjOXa3sYtjuICzHwyLxwAn3FY0gg+KqRFEVRvuqLEAgEX19kReGDohY+LW3D5rjzuJgZ4sufrkskKTJgwnMM2Rz8R04NRU19aCXXeUGnkfjjh2ezbl74/bp8gUDgBUIMCAQCj/w2v5FPS9vHvK6RwEer4V93pjEz1ODxHP96qoqChl7kcZ42EvC325JZGBs0TVcsEAgmi8gZEAgEbjENWvmsbKwQAOfM3uaQOVTc4vEcjT1D5NWPLwQAJAk+Km6910sVCAT3gBADAoHALZdqesBD7FBW4FJNNzaH7Haf/PpeNB5SC2QFSlr6sdjdn0MgENxfROaOQCBwS7/FjkYj4XA3rQccCpw8dYaZ0eFEREQQERGBv7+/ut3qkPEmzXBw2IpvoOflBoFAcH8QYkAgELglOlDvUQgA6HBwq6yYgst96mt+fn5ERkYSERHBkG80DsXX/QkUBZ1jmJ/99N+ZO2cOycnJpKSkEBIS4vYQm0PmTKWJkzc7aOu3EOir45GkcLalRxFi8Jn0fQoEDzoigVAgELhlyObglQMlbkP4Ggl2zI/mO5mzsFqtmEwmurq6Rv3p6OyiOHItdo2vM0HgLiRg2xwDaT7dVFZWUl9fjyzLREdHk5ycTHJyMvHx8Wg0zlVNi13m/z1ZyY22ASTurGJoJAgx+PCPO1KICfIgPgQCwRiEGBAIBB45Y+zivy7UjRp4wTn4RgXq+efH0wg2uA8yKorCtbpO/vVsA3ZZQXEtGtx+9AQMd5LYkYuvj47w8HDCwsIAGBwcpK2tDYvFgsFgICkpieTkZArNwRy9ZWK8J5dGgrkR/vzLzrRpunuB4MFAiAGBQDAh+fU9HLjaQl33EOD0B1g7L4znV8wkxM+7sHxT7zCHCuu5WNONovEhNsSXbamRrIzR0WPqGhNR6O/vV4/18fFBkiSGrXbKZ21B1nh+z3/dmcbcSH+P+9wLZoud0tYBbA6ZORH+zAwRuQ6CbzYiZ0AgEExIRkIoK+ND+D+/eQ9DYDDP7t6Ov147qXPMDDGwNU6m5/xx/vzP/5ygoDu+AtGREWP2t1gsmEwmOjs7VYFQ29k/oRAAqOw03xcx4JAV3ilo4vjNjlEGTAtnBPL9tbOJChTLE4JvJkIMCAQCr5AkCc1wH7ExYZMWAi46OjowGAwEBgZOuK+vry+xsbHExsaqr7X2Wbj8UdmEx+q0nqume4dsfHGrk0u13VjsMonh/mxLi2JRnGfjo59frONspWlMteWNtgH+5vMKfrI7TSQwCr6RCDEgEAi8Znh4GD8/vykf39HRQVRU1KR7GriICdITE6Snrd/qfidFwW+gBUUJH/d9ak2D/N1xI2arQ8076BiwklvXw84F0byQMXPc4+pMQ5ypNI37lrICPUM2jpd3sG9Z3JTuTSD4KhGmQwKBwGuGhoYwGKa+Pt7e3k5UVNSUj5ckiScXz3C/HUjQ9nLy04/41a9+RWVlJSPTohyywj9nVzE4QggAqjviZ2XtXKrpHvfc56pME5onnaromsztCARfG4QYEAgEXuFwOLDZbFOODMiyTGdnJ9HR0fd0HRuSI9i79LYgUJyGRq7mR8tmBfPP+9fz4osv4uPjw7vvvstbb71FQ0MDAAUNvXSZbR6tkd3ZL/cN2ya8tn6LfbK3IxB8LRDLBALB7yEWu8yNtn7aB6zoNBJJEf4khPlNOTwPziUCYMqRge7ubhwOxz1FBsAZHdi3LI6A7hqOlbUwd8Eygv18WDs3XG2rPHv2bF566SWMRiOnT5/mzTffJDU1lZ7Y5Wg14M49WVGgsnMQh6ygvSsMEBmon/DaIvwn3kcg+DoixIBA8HtGZaeZz8rasMmKGtYubOxlRpAvTy+OnXLy39CQs6xwqmKgvd05477XyICLjroK1kb58cyGeeNulySJlJQUkpOTKS0tJScnhxtt15CD54EHg2SJcb2RWJ8UwcFr7hsqScDm1MjJ3YRA8DVBLBMIBL9HtPVbOFzaiu12HFxW7qyHtw1YOHS9halai7giA1NdJujo6MDPz4+AgIApHT+SoaEhGhoaSE5OnnBfSZJYtGgR3//+99mweM4d06Px9kUhNdKAZhw1EBPky1OufIW7PkMJhfgwA1vShBgQfDMRYkAg+D0iv6HH7TZFgdZ+C/U9w1M6971GBu61kmAkrsRAb8SAC61Wy9PrVzIzxBfJTStGBQlbxQXy8vLGFU3PLI8l078bH/lONYNWUggdqOdPVoTi5zO1qItA8FUjxIBA8HuEscPsNjkOnHa9lZ3mKZ17OiID95ov4MJoNDJjxgyCg4MndZxGkvjhlqQ75kCuAV+RAYVnl0SxNjWOY8eO8dZbb2EyjS4l7OnpwVJxiT+ZDz/ZlcY/7UjltX2LWEwjl8/lTMOdCQRfDUIMCAS/Rzi8WAKwT9CF0B3Dw8NoNBp8fCZvquOqJJgOMSDLMpWVlZOKCowkKtCX7yY7mNVVxJIZ/qRH+zHff5DU1rPUnTlIbGwszz//PL29vfz85z/nypUryLIz4/DChQsYDAYyVq5gToQ/KdEBBPvp2bhxI5WVlVRXV9/z/QkEXwUigVAg+D0iKlBPe7/VTRDcmT8Q40VW/Hi4PAamEuY3mUw4HA6io6MZtjk4X91NYUMvdllmXmQAm1IiifLyupqamhgaGpqyGAC4XnSVZVE6vrM9/fYr6ZhMC8nJyeHIkSOEh4ezfv16mpubOXHiBDdu3GD9+vVcu3aNDRs2oNePvtb09HRmzZpFdnY2f/AHfzAtSyECwZeJiAwIBL9HrJgV6lYIAPhoJNJjPFvuuuNe3Ac7OjoAsPmG8Kcf3eCXl+opbOjlWlM/v7veyvcPlXK20jvDnoqKCvz9/Zk5c+aUrqW9vZ36+npWrFgx6vXw8HCeeuopXn31VSIiIjh8+DD19fVs3rwZs9nMO++8g1arHXMcOJMUN23aREtLC6WlpVO6LoHgq0SIAYFgGlEUhcu13fzw81s881YRz799jf/IqaayY2rr9JNlQUwg82MCXRejvq6RnH92LYzBVze1n/29uA+2t7fj6+fPv59vove2eY/r6lwVD/91vs6rz8loNJKUlIRGM7X7KCwsxN/fn/T09HG3z5gxg+eee041Lvriiy/w9XXmGNhsNt5++221THIks2fPJjU1ldOnT2O3C/MhwTcLIQYEgmlCURTezG3k33NquNVuxi4rDNtlrtT18Fef33JrczudSJLEkiAr1psXCdbJzsQ42U56dCAvrJzFvIipl/UNDw/fUyWBIyqZrkHP7n9Hbozv/ueir6+Ptra2KS8R2Gw2rl+/ztKlS9FqPWf+u4yLnn32WXp6elAUhVmzZjE0NMQvf/lLzp07h8PhGHXMxo0b6e3tpaCgYErXJxB8VQgxIBBME4UNvRwrd4bDR453suKcpP/0XC29QxNb2t4rZ86cIQIzr65NZomtmoCb2eyYH0P0PbbXvddlggFDpGobPB6yAkWNfR7PYzQakSSJefPGNxqaiLKyMoaHh8cN9Y+HJEnExsZitVpJT0/HbDbT3d1NREQEZ86c4fXXX6e19Y4RUVRUFMuWLePcuXNq9YVA8E1AiAGBYJo4Wt7huZGNrHDaeH8b2dTW1lJdXc2jjz6KJEkYDIZpG5SmGhlwOBx0dnai9zV4zGcAkCeohjAajcTHx09ZlBQWFjJ37lzCw8O9PubixYv4+Piwa9cuvv/977N9+3bVc6G3t5fXXnuNnJwcNUqwfv16bDYbFy5cmNI1CgRfBaKaQCCYJqq7Bj3W+CNBjWnovr2/oiicPn2auLg4UlNTAaZVDEw1Z8BkMiHLMmkxgZT1DrrdTyNBuivfYRzsdjvV1dWsW7du0tcA0NbWRmNjI3v37vX6mIGBAQoLC1mzZo167xkZGSxZsoTc3Fx1wD9//jw3btxgz549xMXFkZWVxfncAkyhybQOKvhoJTLiQ1g2K2RMzwOB4OuAEAMCwTTho9UADrfbJUDvKU5+j1RWVtLQ0MD+/fvV0jaDwYDdbsdut6PT3dvPfarLBK5Kgi0LZnKstpohm+NuN1/AuUzw+AL3fQtqa2ux2WykpKRM+hrAGRUIDAxUhZI3XLp0Ca1Wy6pVq0a9rtfrWbt2LStXruTixYtcuXKFrq4uXnvtNbKystAnLKY0JpiSkk40koSEs71xQqiBH25NIlw0NBJ8zRDLBALBNLF6duiE/e5Xxofcl/d2RQUSEhJGrae7ZrMWi+Wezi/LMhaLZUqRgY6ODvz9/YkIDeL/2TgPvVYzyg7Y9Zk9uzyWxXHuHQUrKioICQmZknGR1Wr1OnHQhdlsJj8/n8zMTLciyM/Pj02bNvGDH/yAZcuWIUkSpwpv8F+XmlAkCZCQFXDcvt3G3mH+6YuqCZdDBIIvGyEGBIJpYnt6FFqNNG4bHI0EscG+ZCSE3pf3Li8vp7W1lQ0bNowyvHGVxN3rUsG9tC8eaUM8f0YgP90znxSdCV9bP1EBPmQlhvGP21N4akms23MoioLRaCQ5OXlKhj5lZWVYLBavEwfBGRXQaDRkZWVNuG9QUBA7d+7kT/7kTxiOXYIzhXTsdcoK1JqGKGnun8TVCwT3H7FMILgnFOVO5vx4s2JFAbt8Z2YkAVoNaKWxbWJlxdln3rXurpGc+35TllhjQwz89aYk/vnkLayyhFYjIcsyiqQhLsTA32xOui/rxbIsk5OTw7x585g9e/aoba7Be7rEwFSWCdrb20ddV2SgnmjTDQLMZv76D//aq3N0dnbS09Mz5SWCgoICkpKSCA31TowNDg6Sn5/PqlWrJnXP4eHhdGhCx3Q1HIlWclaeLJk5ub4K9wuHrFDeNkDPkI0wfx/SYwLH7doo+P1GiAHBlFAUsI0YuME50Os0zgHctY/lriV0hdviANBr7wgCh+w830gcCjgc4DPinF93UiN9WdiWQ2BKJvroRNpbWxisLeHvn38R/RQ8/b2hpKSEzs5O9uzZM2bbdImBqXYsdDgcdHV1kZGRMer1/v5+wsLCvD6P0WhEp9ORmJg4qfcHaGlpobm5mX379nl9zOXLlwG8igrcjcOL3g+2KfaHmG5y63p480oDXYN3Sl4jA3x4ZXU8K+9TFEvw9eQb8ogVfJ1wDfJ3P88UnAO64/agbnWfS6fu6zrf3UJgJHeLjq8z165dw24Z4jsblvJHa2bzh2sS8RtopqG+/r68n8Ph4OzZs6SlpREXFzdm+1cdGXBVEoxc5+/v78fhcIx7ve4wGo3MmTNnSk2SCgsLCQoK8jqqMDQ0RF5eHhkZGfj7+0/6/eZE+I+Jeo3EocC8yMmfd7rJr+/hJ6erRwkBgC6zjR+fquZqY+9XdGWCrwIhBgSTxu5h4IY7gmDimvI7ywgT4fBin68aWZbJzc1lwYIFhIQ4EwVjYmIIDg7GaDTel/csKiqiu7ubRx99dNztX3XOgMu2Nzr6TpXArVu3ALw2DhoeHqa+vn5KroMWi4WSkhKWLVvm0b64ub2HmsZOrDY7ly9fRlEUHnrooUm/HzgrItyuEigKfjoND8/xPipyP5AVhV/nNo67zXXpb+U1oohExwcGIQYEk0IZkRnticoq71q5vvvee9R5MWv+JkQGKioqMJlMrF69Wn1NkiSSkpLuixiw2+2cO3eORYsWjRpsRzJdxkNDQ0NIkqSKC2/p6OggICBg1Azb1eY3KSnJq3NUVVUhy/KU8gVKS0ux2WwsX7583O2fnC5m9TP/wrytP2T+zr8jYcNf8U+vf8GixUsJCJiadfOaOWGsne30S7i7akJCZqH1FhrFQ9jsS6Cyc5D2Aavb7QrQ1Gu5r74Ygq8XQgwIph2Hw0H/wIBX+9psNhRF+b2YgVy+fJmEhIQx3fRSUlIwmUx0dU2v+2B+fj4DAwOsX7/e437TIQZc7oOTzeQfWUngorW1FZ1O53UI3mg0Eh0drUZbJkNhYSFJSUnjHvuLD87yzH9/jZKKJvW13oEhLpX3868HShm2TN06Oqwxl/TBG6RGB+DnoyHYV8fm1Ej+6uFoHG1VHDx4cExfgy+TPi9tsfuGRcOlBwUhBgTTjkajITlpnlcD/Ivf+Q5zEmd7XGOFr39FQVNTE/X19aOiAi7mzJmDVquloqJi2t7ParVy4cIFli5dOqG17nRFBqZSVtje3j5GDPT19Xk9sCuKQmVl5ZSWCJqbm2lpaWHlypVjtrV19fEXP/kIGGuBrACFNxp47dDU7IRLSkqoqanmhS2r+Mcdabz9/FLefG4xf5CVwPKU2ezbt4/q6mo++eQTr0WwQ1a42thLdkUnBQ292O5x3SwiwDvTo8iA+5P0Kvj6IcSAYFwU5U5r2ZHPK0ma+EsjSRLBgQHoNHh82Ok0zvPJDhs2qw1ZHvuAcx3/da8muHLlCmFhYeO62+n1eubMmTOtSwVXrlzBYrHwyCOPTLjvdEYGJoPD4cBkMo1awujr68PhcDBjxgyvztHc3IzZbJ6SGCgoKCA4OHjc5Yh3PsudwPhH4Vcfnpv0ew4NDXHixAkWLFjg9prnzZvHk08+SUlJCSdOnJhQEFyp7eYPPyjhn76o4hcX6/mX7Cr+8IMSzlZOPdKUGO5HQphh1DLGSDQSzIvwZ1bo1HpACL55fM0fsYIvG0UBm8NZLWC9/cficCb5uZ5ZOi2AMu7gDeCwWZAkyLtyiZLia87XHA5kh8NZd68o5F25RF+PiaGhIX71y1/y4YF3sdts6nbXH4fdTmdb89c6MtDb20tZWRmrV692m6SWnJxMXV3dPTsBgnPAuXTpEitWrPBqhj1dYmCylQRdXV1jKgkqKysBmDt3rlfnqKiowGAwEB8fP6n3tlgslJaWsnz58nH/TaobOtB4+FIpCtQ2T36w/eKLL3A4HGzdutXjfgsWLGD79u3k5uZy8eJFt/sV1Pfwbzk19N4Vru+3OPjf5+u4UG2a9DWCU7A/Ej6MoihjBIEEaCSJ72ZN7jMXfLMRPgMCFUVxDv7jzRXsMsiS0xtAI0FFeRmRMbGEh0eo+9isVi5fukB5WQmbN28mOzsbSZIozM8lfcEiYuNiaWxowNdHR3HRVUqvX8Nms9HT0wNdXfziZz9lybIVJMyeTULCbPQ+Oo58/gkN9fV873vfm1KY+ssgLy8PX19fli5d6naf5ORkjh07RlVVFfPnz7+n97t8+TKyLLN27Vqv9jcYDHR2dt7Te04lMuDqSTBSDFRVVQHeiwGj0UhSUpLHSoDxuH79Ona7nWXLlo27PTTYf8Jyl6CAyd1vXV0dRUVF7Nixg6CgoAn3z8jIwGw2c+rUKfz9/cckOSqKwm/zm5Bwf6lv5zeRlRg2aTOrkpISruV8xo4lWRh1s6noMKvbYg12/tumBSRFTS2BUvDNRIgBgYpD8fx8dC0bDJoHOPLZp9hsNhLnzCU4JASrxUJ4WCiXL10C4NChQwQHB98OC9s5m5PN1q1buXDuDLGxsWzdupX3339fPXdcXBzNzc2UXr/GlUsX+NGPfoRGI7Fl82Z+/vOfc/z4cZ544on7/AlMHovFQmFhIStXrkSvd78OGxYWRmRkJEaj8Z7EgNls5sqVK2RmZhIY6L7D30h8fX2nJWfAW/c+F+3t7WMqCVpbW9FoNF5FNPr7+2lpaRk3D8MTiqJQWFhISkoKwcHju/w9vWUF//GbbLfn0Ggkntue6fV7OhwOjhw5wqxZsyZlefzII49gNps5cuQI/v7+pKWlqdvquodo7vMcSeoatHGr3cz8Gd59FwBu3rzJ7373O5YsWcLu3ZuRJIm2fgvdgzYun/kCe18nSVHe37vg9wOxTCBQ8SYnySFDdna2mgk9aB7g+rUibpbfIDExUZ09KopCX18fPj4+9Pc7fdhjY2PR6/W0trZy+PBh9ZyJiYk0Nzfj4+OjzkBdM8GQkBC2bdtGcXExN2/enOY7vneKioqw2WxkZo59eCqKQkPPEOeruzhb1UV0yhIqjMZ7qpy4cOECGo2GNWvWeH3MV7VM0NHRMSpfQFEUent7CQ4O9qoqwZVj4W0Jooumpiba2to8DsrL0uPZvWHJuLa7GknCRwNpMXavM/4vXrxIV1cXjz/++KQqLiRJ4rHHHiM9PZ1Dhw5RW1urbvM2k3/A4n3Gf1VVFYcOHSI9PZ1du3ap1xoT5EtaTCAr0ufR3NxMX1/fmGM7BqwcutbCLy/V80FRMy1909MaW/D1QIgBgYo3Q9Tg0BDFxcXqgDZygOjv7x9TLjZ79mysVmc9c3h4OGFhYSiKog5OQUFB1NXVAbBs2TLsdvuYWeOSJUtISUnhyJEjDA4OTvX2pp2RJkN3z0D7LXZ+W9DI+0XN5Nb3kN/QQ40uFseCzZTVjG/2MhF9fX3k5+eTlZU1qYH5q6omuLussLe3d1LJg0ajkfj4+Em7ABYWFhISEjKhqdFv/ulFNqxMUP/fNYYnzY7i9b/dQ2tDJW+//faE3zmTycT58+fJysoiJiZmUtcKzuqbPXv2kJCQwIEDB2htbQUgOtA7T4eoQGdEqnPAygdFzfz4VBX/60wNl2q6R1Ud1NXVceDAAebOncuTTz457tJLcnIyGo1GNYYCp4h7v7CZ7x0s5cNrLZyu6OSj4lb+9KMbvHGlQXRg/D1BiAGBykTzGUVRqK+rUwe+gIAANYnQ39+fgoICTCbTqEGjuroaSZLQarW0traq68iKohAZGcnTTz+tCgvXIHF3KZokSezcuRNZljl69Oh03Oq0cPPmTXp6esb41ztkhQ+uNdNudoog1/IKgOTrz4m6IczWyddvnzt3Dr1eP+mwucFgwG73fpZ7Ny7xNhkxYLfb6erqGvVv6Zr1zpkzx6vjq6urJ11FMDw87DFxcCQaSSEr0cb3toTz5JoYXto+n5Ov/YBrH/+Ipx/fwAsvvEBHRwevv/6625wLRVH4/PPPCQwM9Kqywx06nY59+/YRHh7OO++8g8lkYkawL+kxAe5/l4qCv72fvkYj2bc6+d6hUj4qbiW/vpfLtd38x5ka/vxwOZ0DVpqbm3nvvfeYNWsWe/fuddvG2c/Pj9mzZ4+Kwh0r7+Cj660ooLZjdn2fj5V38FFx65TvW/D1QYgBgcpE5XuSJJGfdwW73Y5OpyM9PV2dNel0OlpaWnjsscfUQSMwMFAVC35+fhw4cEANS0qSxP79+8nLy1Nfy8vLAxh3dhUYGMj27dspKyujtLR0Wu53qgzbHLT0DXOhsITZiYnExo5uvVvRMYBp0DauJa0kaXAoGq41jQ3DeqK7u5uioiIefvjhSbsA3mt/AlcFxGSiEV1dXSiKMmqZwFVJ4I0YqK+vx2q1TloMFBcXI8uy28TBkeTm5mKz2Vi9chEr5wXy9MZ01q680yI5ISGBV155BZ1Ox+uvv646J46ktLSU6upqtm/f7jFnxBt8fX3Zv38/vr6+vPPOOwwMDLB/aTSS4hjbBVGRkZDJ9Ovi3WPn+MWlulGi0/Xftn4Lf3/sJm+/8w7R0dE888wzE/Z3SEtLo7a2luHhYeyyMuFg/0lJG8O2r9ZRUXDvCDEgUNFKzujAeGvasixTabxFQ30dg4OD2Gw20tLSMJudWch9fX34+fkRHBxMT08PkiSpZjiKojAwMDDqIeRaPy4rK0NRFNavX6+GR92Z6CxcuJD58+dz9OhRBrx0OJxOhm0OjpW3818Xa3m7sImeWSvpT1xDcXPfqM+sosPsOcoiSdxonZwYOHPmDP7+/mO6/3nDvYqBqXQsHK+SoKWlBUmSiIiIcHeYSkVFBcHBwZMKu7sSB1NTUyfM5rfZbFy44DQV2rhxI0NDQ+OKnbCwMF5++WVmzZrFO++8Q0FBgbrNG0+ByRIQEMC3v/1tbDYbb7/9NnnZn5FuymVhzOilkpkGO/NaL6J0N+GTutZty2RZgeYBO47QeJ577jmvhGRqaiqyLGM0GqnuGhxT1ng3w3aZ8rYv//comF6EGBCoSLdLB01dnaMGN4fDwbWiQg5/dPD2fs6h7uzZs+oAExgYiN1u5/jx4wAsWrSI+rt6DlgsFhwOhzqonDx5Eq1Wy9y5c1m3bh063cTFLTt27ECj0XDkyJEv1cLYYpd592oTpa39o/okDMkSJ251cLmuR33N6pAnzL8YnITVbUdHB9evX2fdunVT6to3FTEwbHPQ3m9h0OqYUsfC9vZ2AgMD1WMURaGnp4egoCCvygRdJYWTScZraGigo6PDq2z+/Px8rFYraWlphISEYLPZ3Iodg8HAc889x8qVK/n88885fvw4siyTnZ2N3W6f0FNgsoSGhvL888/T1dVFTU0N+3dt4e92pPP6M4v4ya40frVvIf+xL4OEUD1dJhMVPQ6Q3H+mkiITvWC11/9+ISEhxMbGcuvWLazedBEDrN40LBF8rRGlhYJR2O023v3tr1m4cBH9AwPMnTeP06eyGR4aIioqio6ODhRFISIiYtTsfMGCBeTm5tLb24vBYGD79u2Ul5djs40e9OLj4wERNQwAACAASURBVAkKCqKiooLm5mYAVq9e7QxJ2p0zkNOnT5OUlDRu2NXf35/HH3+cDz74gOvXr7NkyZL7+Gncoaip1xn6d7P9Qo2JhTOCCDboiAzQU2saci8IFBmNxfvIwJkzZwgNDXXbbGciJiMG2vstHChq5mJNDw5ZQZJgQYQPFp/ASUcGRi4RuFoZu2uoNJKuri5MJhNbtmzx+v3AmTgYFhY2oYeBq8ETwKZNm7zqyKjRaNi+fTuRkZEcP36cpqYmGhsb2b59u1eeApOltbUVh8OBRqOhqKiIpKQkQv18CPW7Iwb37t3LL375S2dQwINm0mg0SNrJPepTU1O5dOkSj259HI00caOw2WHCqfCbjogMCEZRVlbG0NAQM2bEcLP8BjFRkQzfDhObTCZ1ZupaE3ZRVFSk/v3hhx/m2LFjY4SAVquloaEBnU6nDvzh4eEkJSWpSwQ+Pj709fVx7Ngxt9eYlpbG4sWLOXbs2LglUPeDa019Hmf7ElDW6iyhXBIX7DkyIGkYqLnuVUJfS0sLN27c4JFHHnGb9DUR3oqBlr5h/vKzm1yo7sZx++mvKHCj00ZVzFraJtHArqOjg8jISPX/GxoaAO/MhoxGI1qt1qvcAhdDQ0OUlZWxfPnyCaMJBQUFWCwWUlJSiIiImFTkIzMzk2eeeYampiZ0Ot2kyx69obGxkc8++4ylS5fyrW99i1u3bo0bCYuKimLzpk34WXtAcT+DdyiQGj05A6G0tDSsVivdbY0sm+Hn9vwaCRbHBTEjeHJ5LIKvH0IMCFQURSEvL4+kpCQ1ZO/qRw/O5YKRYd6enjuh8ZEP0lu3blFSUjLq3EFBQciyTHh4OGVlZerrixcvRpIkWltb1fXkHTt2cO3atVEC4262bduGXq/n008//VKWC/onyP6XJOgddoqfEF8twT21ztdH7nT7OlNCtVjb69WSSk/k5OQQERHB4sWLp3LZAOo68URi4M0rjQxaHWNmgTIgSxreKGjz6v3sdvuYngQu58GEhAR3h6kYjUYSExMnlZDnKnedKHHQ4XBw9uxZADZv3gzgVWRgJG1tbSiKgp+fH2+88QaNjVMrFR2Pvr4+PvjgA2JjY9mxYwepqans3r2boqIiTp8+PWb/VatWkW7od7tMIKEQbNCxavbkDKOio6MJDQ0lPz8fe/Ex/LCODT4oMv5ahT9eM3tS5xZ8PRFiQKDS2NhIS0sLmZmZmM1mfHx8yMnJGZXQ193dPW6duGuGLkkSDQ0NqjhwPWAzMzPZvHkzJpNp1MzNFWlobW1Fr9cTHh7OkiVLWLp0KUePHh0lRkbi5+fHrl27qKqq4urVq9PzAXjAT+d5Vq4AAXotiqLw2Wef0VF6iYejJWKD7oR1ZXMPa+IM7FqSQFBQ0ISNixoaGjAajaxfv37SdrwjkSRpQq+BLrOVoqY+9+FgSUOtaYiarol9HlxRo5HJg64loYmWCSwWC7W1tZNKyHMlDqanpxMQ4HkGXFRUxPDwMElJSWrkYjIJkiaTiXPnzvHQQw/x6quvEh4ezm9+85sx4ncq2Gw2PvjgAzQaDfv27VMF+ZIlS9i8eTMXLlzgypUro46RJImN6XFE9N+udBg5g1dkJNnBH60Ix2eSnb4kSSIqKoqKigoS46L46d6lfGtZLOH+PkgShBh0LA4YZE5TDnrHJEJGgq8tQgwIVPLy8tSw/eDgIJIkYbfbWb9+PeB8QCiKQktLC+np6aNmea7ZuSRJxMXFqVUGw8PDaDQaCgsLycjIIC4uTl0ikCRJrT1vbW1FURTCwsIA2L59O+Hh4Rw8eFA1LbqbpKQkli9fzokTJ+ju7r4fH4nKwtggjxUCigLzY4LIycmhuLiYJ554gocWzOXRWC1D599juVIHZdnYWoxoNBqSkpI8igFFUTh9+jQxMTEsWLDgnq9/IjHQ2u9dA6WWCexx4U40yTXwy7JMT08PAQEBEyZAVldXI8syKSkpXl0POMsQOzs7J0wclGWZnJwc4E5UALyPDNztKRAQEMALL7zAggUL+Pjjjzlz5syUo1QuEdne3s6+ffvGWE0/9NBDPPTQQ5w4cYLr16+rr1dWVnLy5AkyAnpJbM8lcLgDvWwhOtCH+YY+UlrPkP/FJ2OW7CYiNzdX/X6uW7eO8CB/9i6N5Vf7FnHwxeW88exi/nJ3JoE+EkePHv1Sk3kF9wchBgSA0z3wxo0bZGRkIEkSnZ2dWK1WHnnkEXVW6vrBK4rC5s2biY2NHVMB4OvrS3Nz86gZmkajoaenh8LCQiRJUiMDiqJQVVXF8PAwHR0dWK1WVQz4+Piwd+9eent7PVYObNmyBX9//0n1hp8KK2YGIzmsKG46NS6ODaKm/Drnz59n06ZNLFq0CLhdYqfIREVEkJKSopq5pKSk0NXVRVfX+J3xampqqK2t5dFHH51URr07JhIDAXrv8hG82a+jo4OgoCB1cHV1L/QmebCiooLIyEj1e+ANBQUFhIeHk5iY6HG/4uJiBgcHmTt37qhrGR4eRpKkCZclxvMU0Ol0PPHEE2zYsIGzZ8/y8ccfT3rgBbh06RIlJSXs2rWLuLi4cffZtGkTS5cu5ZNPPsFoNFJfX88HH3xAUlIS/n5+BFs6SOkpYlH7GdbaS/mzx5ZhUKyYTCa++OILr65DURSys7M5fvy46nTpTrS6EoUrKiooLy+f9D0Lvl4IMSAAnA9UrVbL0qVLURSFuro6fHx8WLVqFQUFBWNmTVeuXGFgYGDUACxJEkNDQ6r/QFxcHOHh4eqa9cmTJ2lqasLX1xeNRsPylZm8/Ad/hKzR89/+7C/YvHU7kZF3QsuRkZHs3LmTkpISt0sBvr6+7N69m7q6OtW06H5wvTCPwcKjaId7R72uyA7SQjXMppujR4+SmZnJQw89pG53RSwiIiJIS0ujra0Nk8nE3Llz0Wq14z5oXVGBmTNnTmqG7AmDweCxffLsMD9iJ0gCC/LVetUQ524bYtea+uzZnteWFUWhsrJyUksEg4ODlJeXs2LFCo+iSZZlTp06BTCmSsFltezpeE+eApIksXbtWvbu3cvNmzd56623JuWDYTQayc7O5uGHH1ZF5Hi4nDiTkpL48MMPeffdd5k5cyY+Pj5UVVWxZ88e9Hq9Gt4vKCggMzPTaRaWnz9hbw+Hw8Enn3zCxYsX2bJlC1u2bCE1NXWUNfHdpKWlkZqayrFjx+7Z8lrw1SLEgACHw0FhYSFLlizBYDBQWlrK0NAQ8fHxdHZ2Ultbq+YABAQE8vC69WRmreXxJ57mT/6v/5uNm7cSFRWlCgPXQ2fjxo2YzWZWr17N5s2bVTdCm83GCy+9wqYt2wiPiESj0WDw82PJsuVEx8WPWrdetGgRy5cv59ixY2rFwd3MmTOHzMxMsrOz3c6074Xy8nKys7NRhgfYnRLCy5nxhHdXEtlTid/NU/SWXuDjjw6RlpbG1q1bRw0qriTLwMBANTGzvLwcvV5PYmLiuGKgoqKCpqYmNmzYMC1RAZg4MiBJEvtX3J6RuomwPLM8zqu15/b29lFioKamBpg4ebClpYWBgYFJCaBr164BeGwfDc6WvWazmcTExDFGRt40YfLGU2D+/Pm8+OKL9Pb28vrrr9PWNnHCZWdnJx999BEpKSls2LBhwv01Gg0bNmxAlmWsViu+vr7cuHGDp556ikWLFrFz506amppYsGABly5dIiQkBJ1OR1hYGJ9++qnb6hur1cqBAwe4XlJK2qN7KGUmv7pUz3D4PNo7TW7tmF2NlqxWK9nZp7jROsAbVxr43+dq+fh6K92Dk4+SCL4ahBgQcOPGDcxmM5mZmVgsFk6ePIlerycmJoa8vDx8fX3p7u7Gz8+P5779Illr1hJwe03TYDCwfGUGzzz/InFxM0ed12q1YrFYCA8PH1VmtiprDVHRMaOWDMBZeihJYL3LfXXbtm1ERkZy8OBBt7PbjRs3EhwczOHDh1XRMR00NTXx8ccfExQUREREhDPxLEBPsL0XvbmDBWkpVFdXExMTw549e8Yk+rkevv7+/uj1epKSktSQanJyMrW1taPuSVEUcnJySExM9KoMz1u8aVa0OjGMXbMlNMrtyonbyWgaRWalfw9b06I8HO3EbrfT3d09Kgzf1NQEMGGDIqPRiK+vL/Hx8RO+D4xOHPTUzEhRFDUqMN5gPlHfhfr6eq5evcrGjRsn9BSYOXMmr7zyCn5+frz55ptUVFS43XdoaIgDBw4QFBTEk08+6ZXw6+vr4/333yckJASDwUBFRQWbN29W22KnpqaydOlSjEYjCxYs4OTJkyxYsIDe3l60Wi0ff/zxmN+H2Wzmrbfe4lZTF/XzdnCwyk72rS5OVXRysNLKrZkbOV/s/j5CQkJ4aN2jHGzw4X8eq+DkzQ7OV5t4/2ozr35YwombHRPelwuHrKhlrYIvFyEGBOTl5TFnzhyioqI4d+6cOmjo9XqKi4uxWCyEhoayYfNWQsPCxgx4Go3WuX64c7f6ml6v59ChQ4DT0jUnJ4fo6GgkSSIjc7WH7HjnA3Hk88CVPzAwMMBnn302bm6AXq9n9+7dNDY2cvny5Xv4NO7Q29vLgQMHiIiIoL+/n6ysLPWB7Wq37ErmSkxMHDc5zmw2I0mSui09PZ2mpib6+vpITk5GluVRnvdlZWW0tbV5NUucDL6+vhOKAZvNRkfRadKbTvJoSA8zesr53pp4ssx5LA/zrrFSZ2fnqEoCh8NBT08PBoNhwtm30Whk3rx5Xvsp1NbWYjKZJkwcLCsro7+/n4SEhHEFiScx4HA4OHLkCDNnzmTlypVeXVdISAgvvfQSc+bM4cCBA1y5cuUuR0+Z7l4zHx48hNls5tlnn/XKJnhwcJC3334bcApJV0Tj6tWrozorbtu2DT8/P/r6+oiPj+fGjRv4+fkRFRVFfX0958+fV/ft7u7mzTffpKtvgIaZ6+izOq/ToSi4TAUdWl8+rNOppbPjcWkoErNvxO1jnb9f5fZ/X7vcwNWGXrfHAlyp7eZvjtxi31tF7HuriB8dvUVBfY/HYwTTixADDzjNzc00NjaSmZlJR0cHV65cYc2aNVitVpqamnA4HMTHx2O12pg/f6HbQVyj0RARGcXMWbMA50PUlUR45MgRWltbsVgsBAYGYZjQ3EUZY9oTERHBrl27KCsrG+UPP5KEhAQeeughcnJy3JYkeovFYuG9995Dp9MRFxeHv7//qFp/SZJob29HlmUWLVpEcXHxuCZCg4OD6HQ6VUSkpKSg0WgoLy9XIyau2aMsy5w5c4bk5GSvZ8fe4k1kIDc3l4GBAYL8/ciYFUj0QA2PJkdiHzZ7XYPv+txdYqCjowNZlsd0orwbs9lMU1PTpPIFCgsLiYyM9JiLoCiKmjznLsTvaZng0qVLdHZ2snPnzkkt2ej1er71rW+RlZXFiRMn+Pzzz2lu6+a//+shZqz7C+LW/w++/9NcSjpC6BuaOJJlsVh49913GRoaYv78+eTl5bFp0ya++93vMjg4yHvvvadW3fj6+vLEE0/Q0NDAnDlz8Pf3R5IkampqWLZsGWfPnqW+vp6WlhbeeOMNAFLWP0m/VR63tFRBwoaWY6Ut415bY88QhQ19d3pA34UEfHTdfbOjA1eb+becGio6zOprt9rN/Mupaj72cJxgehFi4AEnLy+P0NBQkpOTOX78OCEhIarFb1VVFXq9nmXLlhESGorGixlbcIjT3MThcKgh8ubmZiRJUvvZT4SijN8sacGCBWRkZHDixAlaWsZ/MD366KOEh4dz+PDhKbfslWWZQ4cO0dvby5NPPklpaSkrV65UZ/cOh4Pa2lrsdjv79+/n4YcfZmBgYNyMaovFMmrWZzAYmDt3rppXkZycTGVlJYqiUFxcTFdXF48++uiUrtsTE4mBwcFBLly4gEajYeXKldjtdjVj3l0Tn/G4u5LAtUQwUfKgK3fCWzFgNpu9Shy8efMmfX19zJo1y22W/tDQ0Lgzc5enQFZW1qQaJrnQaDRs3ryZnTt3cvZiASue/nt++eE5Bgady0IOGT45c4OsZ39MedX432dwLr0cOHCArq4uli5dyuXLl1m3bh1r1qwhIiKC559/no6ODj788EP1O5+YmMjq1as5f/48W7ZswWq14uPjQ3d3N/Hx8Xz44Yf8+te/JiQkhJdffpmSjvHLd0dypryFhoYG2tvb6e3tZXh4GFmWKWzoQ+NBJyk4B3ezZWx0qaLDzKHbXRFH/uJdouS9wmavvC0E944QAw8wZrNZHehu3brF8LCF555/Aa3ej41bthEdE6Ma+/h40UQIwP/2oLFmzZpRUQTX4K7VamhsqPe4ri9JEqXXi8fdtmXLFqKjozl48OC4g5ur1Ku1tVXtSjdZjh8/TlVVFXv37qW+3nmtrm6BiqJw5MgR+vr68Pf3Z8aMGURHR5OYmDimmsFut2O328cMpGlpadTV1TEwMMCcpBRsikRDQyNnz55l/vz5Y1oiTwcGgwGbzeZWIJ09exaHw4Esyyxfvhyr1Yper8dqtaIoiteRgbt7ErhcFmfOnOnuEMApBmbOnDmhaZCLoqIiJEny2JtiZFRg27ZtbvcbLzKgKApHjx4lICCARx55xKtrcsfy5cu52R1Kn9mGwzH6e293yPQPWvjjv39v3GNdwrSxsZGMjAwuXrzI6tWrVe8PgNjYWJ555hlqa2s5fPiw+lvbuHEj4eHhnDlzhqeeegqbzUZNTQ3R0dGYzWb0ej0vvPACAQEBWB0TRCckif7BId58801+/vOf85//+Z/8+Mc/5h/+4R/IzsnxKk/nxz/5N37yk5/ws5/9jLfeeovf/e53/Ob0dY+DkEaCL26Nn7womF6EGHiAuXr1KpIksWjRIhxo+fZLrxAYHIqP3pdly1fy4ndfZV5KGuXl5dTX19HX2+uxlt9ms1FyexC/dOmSKgZGioL+/n4uX3TOQN21Sm5rbeazzz6lsrJyzHadTsfevXsZHBx0a0UcFxfH2rVrOXfunNsIgjtyc3PJz89nx44d6gC/aNEi1QTmzJkzXLt2jdTU1FEz0szMTBoaGka9X3+/s1fB3QNcWloakQkp5Nb1U2sJZMWOFyjv0RA8M4V1j6yf1PV6i6f+BCaTiYKCAnx9fUlLSyM4OFidSU62Y6G7skJPAsfhcFBVVeV1VEBRFK5evcqCBQs8XpfRaKS7u5u4uDiPYmS8nIHS0lKqqqrYsWPHpGyRx6O1s4/T+VVu3R0dDpnc6zXcuCs6oCgKn376KUajkdWrV3Px4kWWL1/Oli1bxkRD5syZo0axjh07hqIo6HQ69uzZQ3t7O42NjaogKigoYPbs2epkAGBehL/H2T2KjL+1h+9+97u8/PLL7N+/n71797Jr1y6y5s/x2DURRcHHMYxOsTE4OKhWKF2/fp26HgueZISsQI1JRAa+DIQYeECRZZmCggIWLVpER1cPScl3yrkkSVKTuBQ0rMpaA8D5czluQ7KKolB6/ZpquKIoijoLvXvWUFdbzbHPP0WWZRRFQZZldZ/amiounjvLvHnzOHTo0LglTWFhYezevZvy8nK33gLr1q0jOjqaw4cPq46HE1FRUcGJEyfIyspixYoV3Lhxg76+PrKysgDnGvW5c+fYuHEj8fHxo8xlUlNTCQ4OJj8/X33NJQbuzkBvHZRIXrUJh3Qn2qLx8WXWggyahvXI98E8yZMYOHXqFAaDAbPZrCbJ2Ww29Hr9pHz7bTYbJpNJFQN2u52enh50Oh3BwcFuj2toaMBisXgtBqqrq+nu7vaYOKgoCidOnADc5wq49rtbDLg8BebPnz+pHAZ3VNa3I3uRIV9efUcMKIrC8ePHKS4uZvXq1Vy6dImFCxeyY8cOt7/B+fPns2PHDvLz89UkwdjYWB555BHOnz8/qodCQkICK1as4Pjx47S3t7MuMcjz907SED5Qy2effYYkSSQlJTF//nyWLVvGlmVJGBSL+2ZJEuzNmMP//NGP+OEPf8hf/uVf8oMf/IA/+qM/Ijo8BDy09ZIA3wmswAXTgxADDyiutdS09HSiZ8S6fcBIkkTmqiy0Wi2l14vJOfUF8u1wsiusrCgKVwvy+eLEMXWmrtfrx8zaQ0JCCAkJweFwMDQ4OO4gHR+fQFt7G4GBgQQFBfH++++r3vEjSU9PZ9WqVaqR0d1otVqeeOIJOjs71cY0nmhtbeXQoUOkpKSwadMmFEXh8uXLzJs3j+joaCoqKvj8889ZuXIla9aswcfHZ5QYcK21l5SUqJndrpyJkJAQdT+zxUF156D62d79WXeZbbR6Yfk7WdyJgYaGBm7cuEF4ePio9r8uMeD67L2JDLiEm2uZwNXQx1VF4o6KigoCAwO9Xh4pLCwkKirKY5JldXU1JpOJGTNmePQ3GG8ZxOUp4GlpYTIE+HkXWQj0u5O3cO7cOfLy8li1ahW5ubmkpKSwe/fuCXtUrFy5kvXr15OTk0NhYSGA6iRYWlrKpk2b8Pf358KFC6xYsYKwsDA++OADjh18m4R+ZyLrqAjB7QE+YaiaAFsf3d3dvPHGGxw4cIC2tjZu3LjB66+9RnLfdTSK467eCM6SgqChdqw3z+NwONBqnZVHJpOJnJwc7A2lnrQACpCVOLkmS4KpIcTAA0peXh4JCQk0NDRN6Bdv8PNj5izngzfvyiVe+8V/ceZ0NkVXC7hw7gy//D//H9knj40a/F0P/5FLBb29vfT29jJ37jx2PvEUPj4+SJKERqNR9/PR+/LyK69SXFxMeno6Q0NDHDx4cNy1bpcl8qFDh8YVDDExMaxfv56LFy967CzX39/Pe++9R2RkJE8++SQajUbNtl69ejVNTU0cOnSI1NRUHnvsMSRJQqfTjYpogHNtWFEUtduiSwyMjAw09w577HEA0Ng9/U5u44kB15p6VFQUzc3No5Lx7l4m8CYy0NHhrCd3RQZczYkmqowwGo0kJSV5la3f39/PzZs3J0wcdEUFJhrQ714GmYyngLcMdNYT7Of5URscaOCRDGd0Ljc3lzNnzrBixQquXr1KYmIiTz31lNcll+vWrSMjI4PPP/+c4uJiDhw4gMViUX+D+/btQ1EU3n33XTIyMjCZTJjNZv5m/xb+dmsyS2cGo1FkNCgEWUwktueS7tNNUFAQNpuNpUuX0tbWxi9+8QsOHjxIdHQ02oEOUtvOEzlQi16xIcl2/Ox9zDRdJ7GzAGPFLQ4cOMDly5f52c9+xttvv01LSwtRlhZ0snXcqIJGggh/H9bNCx/nLgXTjRADDyBtbW3U1dURHx9Pa5t3pTsjB/qenh7ycy9z6uRxLl88T2/P2Hpgl5FOTEyMatbjYs68JLRardtZjq/Bj8d37uL8+fOsXr2auro6jh8/PmY/rVbL008/zfDwsNveBGvWrCEuLo7Dhw+P6xlvtVp5//33kSSJZ599Vl0fvnz5MlFRUYSFhfHee+8xY8YMVSjAnW6LI88ZEBDAwoULKSgoUJvzuF53MWh1eJoIqftMN+OJgZs3b9LQ0EB8fDySJI1q/+tKIJxMR7/29naCg4PVzPyGhgYAt1n84Kxz7+zs9Np1sKioCK1W6zFxsLa2Vk1knKiKYeT9jfQUmMi7wFuMRiOnT5/iu7s9OyT+j1e2YfD14fr16xw/fpzFixdTWlpKbGzsqA6G3uByBUxJSeHw4cM0NDTw7W9/m61bt5Kfn4/NZiM9PR2z2czRo0cJDw/HYrHQ0dHBorgg/npzEhusBXwnupXnU7QEDbfT3NxMWloa4HR9tNlsaj+HhoYGp0C2mXlstg8PDxeysPEYSS3nmB9kRSM5f6vOpkonCQ8PZ/bs2fT19RHsp2du+2XCDE6hI6GowiAmyJe/eywZPx+xTPBlIMTAA0hubi5BQUGUlZXh6+MzYYMfu91OR7vTWlWj0RAaGqr+3YXr7zNnxbP98V08/52XeepbzxIaFkF3d7daS28wGEhNmz9huHPh4iWkp6dz4cIF1qxZQ0FBwaj1eBehoaE88cQT3Lp1a0x7V9d17d69m56enjH94GVZ5uOPP6arq4tnn31WnQl2dXVx69Ytli9fzrvvvoufnx/PPPPMqAiK6+93L3VkZmbS09OD0WhUxcBIdzydRpowMqDzmMk1NVwDtEsMOBwOsrOzmTdvHjU1NcyfP3/UddpsNjUy4OPj49Ws9O5KAlc0xpPzYEVFBRqNxiu3RVmWuXr1KgsXLvQoTlzC0Zsw/8jIh8tT4PHHH7+nltEuRloNr182i82LA9HrnC6bOq0GCdBqJP76Dx/jz17YyK1btzh8+DDp6elUVlYSERHBc889N2HkbjxMJhNtbW1otc622r6+vmRkZDB37lwOHz486vObO3cuaWlpfPLJJ/T2Os2BHA4HOp2OdevWodFo0Ol0XL16Fb1ej0ajUXuPREVF4ePjo/4OtFrtqCidq/zQZrMRFRWFRqOhqqqK9vZ2EhIS6Ovr49t7HuN/7UohsSOPVVES0QM1LB4u56dPzic22LsqFsG9I8TAfcI0aOVybTc5lZ0UNfVisU//bG8qDA0NUVJSQmRkJH19fYSGhlBx66bb0iBZlikrua4+NGVZVsPfIx+Ysiyzedt2nv/Oy8xfuJiZs+KZOy+JXXue4oWXXiEsLJxNmzaRmprq5cNNYs+ePURFRXHt2jWWLVvG8TMX+V1BFR+XtHC0vJ0a0yCKopCamkpWVhbZ2dnjLgdERUWxceNGrly5opa6gXNtuKKigqeeemrUgJWbm4u/vz/Xr1/HarWyf//+MXa3rpna3dEGV+Z6Xl7eKCtiF77y4ASRAYW4kOl/AEqSNMqFsLCwEJPJRFpaGt3d3WPc9UZGBqZSSWCz2eju7kaj0Yyyor4bo9FIYmKiVw58VVVV9Pb2epy119fX09bWRmRkJHPmzJnwnK7PY3h4WPUUmMg22RuGhoZ4//33CQ4OZt68eVy+fJm//uMnqD31z/z0r/bxguqqHgAAIABJREFUZ9/ZxPaV4bz5N1v40R/voK6ujoMHDzJ37lwaGxsJDAxk//79Xn0ud9PU1MSbb76JTqfj1VdfJSYmhnfeeQeTycT27dsZHBykqKiIxMRENBoNBQUFxMfHo9fr+d3vfocsy9jtdrRaLT4+PixYsJBuXRg1YcsoDX+IyqgsEtftoamtg6amJrVSIzo6muvXr49q0mS320lLS0OSJNWASlEUJEmioaGBp556ivT0dGprawgaauMP1yWRqjSj665DM019OQTeIcTANOOQFY6Wt/N6bgMXakwUNvbyRUUnP7tYR2nL+E1CvkyKiopQFIX6+nrS0tK4ePEiOdknMJm6UBRlVJtiRVFob2vldPaJUX0EAgICkCRp1Kx4+cpMlq9w1uK7ZpEusRAVHcNjj+/i1KlTFBcX09LSPGFdskZyzr6feeYZkCRqrH74rtxJRZ9MZecgZa39HCxu4cC1Zix2mY0bNxIXF+c2f2DVqlUkJCRw+PBhrFYrBQUFXL58ma1bt44KUQ8NDVFUVITBYKCrq4v9+/eP2053vGUCF5mZmVRXV48SAw6Hg5ycHN7/9a8Y7G5nvKwpRZZRHHZmhd2f2ZDLeGh4eJizZ8+ydOlSqqqqiI6OHrOuPzIy4G0lQXd3tyoGXCWWERERbmfZVquV2tparzP2CwsLiYmJ8VgmOJmoANxZJjh9+vS0eAqAUxh/9NFHDA4O8vDDD3PixAlWrFjBqlWrCAv25w/2ruXv/3QX+7cvo7ujmebmZt5//31mzpxJZ2cnPj4+fPvb3/bYb8EdlZWVvPXWW4SHh/PSSy8RFRXFc889h5+fH7/97W/58MMP1d/x4sWL0ev1REdHk52dTVZWlmpX7IoMyIpCZUAqtdGr6TFEY9EHYdaH8VmtjVtRa9AFhlJbWwugJge7cFUljezE6O/vz5w5cxgcHCQiIkL9t3d9D4ODg4mOjsZms3nssimYfoQYmGZOGTspbXWWlCnccdKyywpHb3ZQ3WV2f/B9RpZl8vPzCQwMxGAwYDQa1aSit3/9Oqe+OIF5YIBBs5mO9jZOHv+cd3/7azXj2s/Pj1deeUV9yIxk1eqH3C43aDQa4hNmExYe7gw3FuS5HSBcIkR7e1IQFBRE5mNPY4lwhpGl2/XMrndq7Bnm2M12NX/AarWOMl4ZeQ27d+/GbDbz0UcfcfToUTIyMli1atWo/fLz81U//W9961tuM9zdLROAs8QrICBAHWi6u7v51a9+xYULF1i7di3bMlKQzd3qvbquVbYOUpN7Ar3u/vwsXWLg4sWLWK1WMjIyuHXrFitXrhyTjOeKDHjT0Q/cJw/Oum1PPR41NTU4HA6vxEBfXx8VFRUeEwebmppoaWkhPDx8wmUHRVEwmW0MOHSERMVRXV09LZ4CAF988QXV1dVs3bqVY8eOMXv2bDXxdCRz586ltbWVd955h4iICHVG/cILL6i+FpOhuLiY/5+9946OKs/yPD8vnCJC3iKLDEhCAgkJ4b03iU8SmwlJmiIzu7v69HTP7vZ09+xWz8729G5OV3V3ZValTzzCCIT3JMIlCIGQQd5776Xw780fQTwUyEBVZc2e3eJ7DgeQnl68p4j3+33vvd/7vUeOHCEqKopdu3bJZEKv17N8+XJ6e3tpa2tj586dxMfHc/XqVaZNm0ZbWxthYWFkZGQwdepUMjIyMJlMKJVKDtwuJLP+Gbl2eAkIAiBgUbtS4flcu1FfX8+8efMAe+bM3d2d7u5ujh8/LpfgDAYDFRUVzJ8/n56eHg4dOoTRaKS8vJxx48YBz90qHSTjNf7n4DUZ+AnRZ7KS0zBy9C8Ad6s6/+dd0Atw1LG7n5kHWSwWOUK3Wq2kJE+mo62JtOOpHDtyiCePH8mbnYuLCwMDA6SmpvL555/T3/+c1Hh6euHh6TmquluSJMIjItFoNMREj0d4ZjUyOEPg2Bhv37yOyWSUv1bQJTJS/5GE3dK0y2DB09OTjRs3UlJSwr1794Yc6+Pjw8yZMykpKSEoKGhI9Giz2bh79y6SJLF27Vp5cRoOo2UGVCqVPMdAEAT27t2LUqlkz549LFy4EONAPw8vHaP+0VWai7KofHKH3GsnoLmIprpqOjo6RnzdPwRarZbe3l7u37/PrFmzKCkpcbrWwRjcTfD7dBI42j1HEw+WlJTg4+ODr6/vS8+fnZ094rU6MDgrMNpnsbnHxO2yTh7VdGN0DWLioo3MWP8evsGjiw1fBU+ePOH+/fssXryYO3fu4OrqyubNm4fVXDjKJyqVCqvVitlsZteuXXh6etLc3sP//uszRC77O7ym/xWT1v0jv9p/jX7D0GhZkiTu3LlDeno6SUlJbNmyxakUV1hYyIkTJ+T6/o0bN1i+fDlKpZKGhgb0ej16vR5XV1fKy8sJCQnBbDZTVlbOpeIORhK5SAh0Kz0wqD3kaN8xtlmpVMolGEdJcrDRWFhYGDt37qS5uZm9e/fS29sri4wdmbrhTMde44+H12TgJ0R5++j1YAlo7DHRb341E5yfGg8ePEClUqFWq52mnAF89PEnuHv5MTYymp27P+DP/vI/sG7jJjlC8fX1RRAE+vr6kCQJjUaDxsWFuPiJTIif+MrXkJiYyNSpU9EoFSgFkeamRmw2GxaLhcb6OgZ6u3j8KIvU1FSsVis9JitdBisjrkjPUNVpj16io6OZM2cO169fp6amxumYvr4+cnJyUKvV9Pb2yoNdHDh37hxms5np06eTlDS6+nskzYADjkhIkiQWL17Mhx9+KPvbZ2RkoNVqMfX34K4wYW6vw2boobu7G4VCIfv0/9TQarU0NDSg0WiYNWsWjx8/JjExcdi69GCfgVfNDHh6eg7pJBip/i5JEmVlZa+UFRgsHBypht7Y2EhdXR3e3t5OnSsvoqnHRG59Lyarc5lK6aLncU0PnQMjT+Z7Gerq6jh37hyTJ0+mvLycgYEBOUX/Ivr6+jh58qRcbuvr62Pnzp34+PhQUdvKjK3/zC/3XqWprQeTxUp5bSv/8K+nWfLer+jpe14Gc5gTXb9+nQULFjiJHx0k4dixY8TExPDhhx/y9ttv09DQwMWLF1m9ejXl5eXyrIwlS5YwMDAgb9hl9c1YVHpGffYkCV1oLLt27WL9+vXkVjRQ751Aju9c8vwXUOubTOik6UyaNEkm/oIgkJaWho+PD7t27aK9vR147k/hWGuG8w95jT8eXpOBnxAWm/hSpTjA0eNpnDt3jnv37lFUVERzc/OIm8rvC0myD0IxW8FohX6jlTFBIaheMMsBWPnGGjy8/VAOal9SKBTExsax870P0bu60tDQ8DydLYpMSkzi53/1N6zb+BYLFy999pqjOIkJAqEhIdy/f/+ZX7xES1Mj+7//hl99+t/45f/zTxzY9x1VlRXs2LGD+vp60tLShni5j4TBDm+LFy8mLCyMEydOyBkMi8VCamoqoiiyc+dOTCaT3IsO9ij1yZMneHp6vlK9eaQygdls5uLFi1y5cgWwR0iD5zS0t7fz5MkTZs+eTWtrKyEhIcTFxWG1WqmoqCA8PPyPRgYkSaK3t5eFCxdSVVVFb2/vsGN5HWZSjjLBq4jYWltb8fQbw4knjXx8NI+7HnMoCl7C3RZh2AE1zc3N9PT0vFJLYVlZGT09PaOOEHZkBVasWDGqS2Zxc9+w34NnWabm36+M19PTw9GjRwkKCpJ9KrZs2YKPz9AeeaPRyKFDhzCZTOj1egwGA++88468GX7wn/fT1tWH7QXXQlGSyC+t5z//+xnA/tlLS0uT7bMXLlwo37vNZuPMmTNcv36d+fPns2mT3dcjLCyMLVu2UFpaSnFxMcnJyfIEzYcPHzJv3jx5E35V+Z7RYODChQs8rO2heMw8OtzGYlHpMSu1dOtDOFCh5GZVH2vWrGHBggWy6+Nnn32G0WgkICAAhULB4cOH5dKa1SOIQoMrV4vbaO9/+RCl1/jD8erNq6/xUvi5al7aQ66QbLhplNTX15OXl+cUnbq7u8tOcD4+Pk5/fhdVsSSBRcTJC12hVDJvwSJSps3gyIG9dHZ22M8pCMRPep7SdrpWpRI3N3dmzZ7H9avP+/wXLVnGtBmzXnmkq2izYTIZmZKchMVs4tKlS4iiiJubm2w8ZLPZ8PLy4vz582zcuJHNmzeTmpqKVncZF69JmGyj/2Yf3ryMMDGaiRMnotFo2LRpE19++SWnTp1ix44dpKen09zczHvvvUdwcDArV67kzJkzxMXF4ebmxvHjxwFYs2bNK93XcGWCiooKzp49S39/PxMnTuTp06fYbDYqKyvlGnZGRgZubm6EhIQgiiLBwcEEBwdz9+5dwG61nJOTI9fsf0o0NTWhVCqZMmUKhw8fJjQ0dNjI3fGZVKvVr5wZqGvtpNBrGr1PGpEkQFBiUeo4kdvMrYpO/q/VsXjpnqeuS0tL0Wg0L/UBALtwMCgoaMSSQ3NzMzU1NXh6eo5KLjoHLJito3+OeoxWBsw29JpX7223WCwcPXoUhULB+PHjuXnzJuvWrSMiImLYY48cOUJnZycBAQGytsJRiskvred+TuWIr2UTJfafuc8/fLSCC+dOU1dXx5YtW2QPALBPoDx27Bh1dXVs3LhxSGklOjqa9evXc+rUKWbOnCkLgisrK6mqqsLX15f29nYCPPVUWPsxj5YdEASEjhrut1spDFxkP27Q8yM9+3ejTwLe4ROY4qujtraW+vp6DAYDBw4cACAhIYHy8nI+33+MGr8UGjxTQJL48l4NArBgvA97Zo39o+lpXuM1GfhJEe6tw1OrosdoHZ4USCLmhhJ8Ar1Yv24tGo2GgYEBOjo6nP60tLRQVFTkZBDj6uoqE4MXycKLi7VNYshQFEc3gE6nY9OWbXz39RcYjUZmzZk3qqGJQqEgcXISN67Zo+iQ0NARiYDja5IoIigUiKKIIAgMDAyw77uvWbp0CTNmzEChUHDhwgU8PDwYO3YsjY2NmM1mtFotSUlJpKeny0NQTp8+jSrchmpswvCbtCQi9XeisfRz5swZLl26xMSJE0lOTmbDhg0cPnyY/fv3U11dzZYtW+QNJSkpicLCQk6fPg3Y0/4+Pj6j6gQGY3CZwGg0cuXKFblda9euXeTk5MjtfJmZmURFRdHS0kJeXh6rV6+mpaUFhULBmDFjUCqVuLu7YzabMZlM2Gw2KioqnBb4PxSO6Fqn09Hd3U1FRQXr168f9tjBZOBVNANms5lCZTi9NqXz514QkCRo7TPz9Y+1/C+Ln4v6SktLiYqKeql/QXd3N6WlpaxevXrEY14lKwBgegkRkO/HKr4yGZAkibNnz9LS0sKSJUu4fPkys2fPdjJwcsBms3Hs2DEaGhoIDQ2ltraWzZs3c+zYMcrLy/Hx8eFJYe1LX9NosvCvv/keD42ZnTt3Otktt7W1cfjwYUwmE+++++6I7o+JiYkMDAxw+fJlJk+eTE6OfcCYXq/n/fff59NPP6WzowN/9wrqvROGPQeSiKupHRdzD82eMUgvEIEXj/2303dYGmAiPDyc6upqfHx86OnpwWq1kpeXx5jwaH6wjcPWbbKfx7GeABnlHQyYbfyvS17t+XyN3x2vycBPCEEQWBs/htQnDVhtNqdJXpIk4atXExnqwf27t8nJyWHZsmUkJCTg6uo67ENrMBiGEIX29nZKS0udav46nc6JKKRMn4Va4zLswqhUKvHx9SM0bCzVVZWyre5oi7LGxQWdTo/ZbCIwKAT74zlK9CwIdHS009/XR2NDHXNmzSI6ejzp6emYTCamT58OwIULF3Bzc5Nf22AwsHbtWiwWCydOnJBb+qw1+SjcfFH6htjTHoLwvCRhNiKUZ2LQKPjkk08oLCwkOzub7Oxs/Pz88PPzo7q6mpSUFOLi4pzeqyVLlvDll1+iUqmwWCwv3UwGw2Gh3NDQwA8//IDJZGLNmjVMmTIFQRBkwVRwcDAlJSV0dXXxww8/4O3tTXJyMufOnWPMmDEyqYiLiyM7O5vq6mp8fX0pKSn5yciAKIpcuXoVvbc//QMGMh9modVqmThxeK2HI9uhUCiw2WwvzQyU1TXToxu5N1+UILO6i44BMz56OwGuq6tjzZo1L732x48fo1armTRp0rDfb29vp6qqCg8Pj5f+vrTqV4sqXV7xOLBP58zLy2Pp0qX88MMPTJgwgaVLlw45ThRF0tPTqaioICIigqqqKrZs2UJsbCyhoaFUVlYybdo0XFxezWDIZjXz/sfvO3X1VFRUyMr9nTt3DtsSOxgzZ86ksbGRnJwclEoloijS39/P06dP5WN8+qoxqt1pd4uwOwMKCvkZdLH0MbbtMQADGu+RiQCAoKADN8rKnsottw6hrGNy6g9NCmwuymHPI0mQWdNNedsA4/x+95bL13g5XpOBnxjBnlrWj3fj6K1sVAGRoFCiFK1YGooY46thyRurSElK5OrVq5w6dYqsrCxWrVo1bAubTqcjJCRk2L5qo9FIZ2fnELJQX9/ArHmLRr1Gm80mk4GBgf6XmntYrVaMRgOiKKLT6RBFidECOkEQuHH1EuVlZQiCwMzp01i7di1arZaLFy9iNBrl9LBD0AZ2C2NRFPHy8kIURdrb2+1CO5MJ89ObKAMiCEycjVFS0N/TxRiVidrsDESzEYtKxbVr19i2bRvz58+nsrKS27dvy+1JT548ISwsjISEBBQKBRaLhbNnz6LRaDCZTGi12hE3nOHgIGNZWVmMHz+eNWvWOA0k6u3tRZIkxo4dKxOGoqIiNmzYIKu4BxPAuLg4MjMzsVgshIeHU1ZWJpuz/KE4dPMJdxVxmNw9wB2Ka40kj5uFQjn84+/IDDgI18syAwW1baNvBNjpY3WHAR+9Rr63l4kHRVEkOzubhISEEctkFy9eBBh2rO+LaK2rwjygQq1zG/FYb736le1vS0tLuXbtGtOnT+fhw4f4+PiwcePGIeeWJImLFy+Sn5/PuHHjKC8vZ9OmTcTGxgL28cMPHjxAFEUWz4hFrVJiGcWkzNtNzd/+h49kJ1Cwfw4vXLjAuHHj2LRp00vfM8cgrry8PFxdXenv78fT01Oe2Agwfvx4Ojs70RvK8eyro8NtLGaNB0qbCc/+ejwHGlEg4uvrS41CkEnCSLBZLTIRePFacnNzaQ5ZPuooZKUAdys7XpOBPxJek4E/Asrys1HV5qBoyGdgwMCE2BhCx4Vy7do1ZkxNISAggM2bN1NZWcnFixf56quvSElJYfHixa9sNKLVagkKChpCIoyvYNQhCAJ+fn4kJyfTWF9n33RGOFYUbVRWlOHt7W2PFK3Wl1q1mkxGbM+EdZIkUVlZSWxsLMuWLUOr1fLDDz8QFhaGi4sLK1eulFP1JpOJL774gs7OTqZMmUJOTo7TIBlDSyVzfaczYcJ4Dh06hCRJvLluDSdOnEAURXlxXr58OR4eHjQ1NREeHk5kZCS3bt0iPT2d69evk5iYSENDAy0tLWzdupVDhw5hs9kwmUyv5AFfUFDAhQsXEEWRCRMmsGXLliEbQE9PD6Io4u7uTlJSEpmZmfj5+ZGQkIDZbKa1tdXJ42Ds2LHodDo5Ku/t7aWpqemVJ/mNhKOP6jhdDWieD92xKFzI7NXyLzcr+ZuFkShfsD92XIND/f2yzEBfTxfgOeoxAGql/XNTWlpKUFDQSwcBlZSU0NvbO6LjYGdnJ+Xl5bi5uREfHz/k+2aLlbuPy2lp76S5ppjO5ioiYhMISpz7jGg5f44VAsQEuA45z3BobW0lLS2N8ePHU19fj81mc5ptMRg3btwgKytLJgLr1q1zIp7jxo0jIyODxsZGQkJCWDtvPCd/KB7xtX/x8w0yERBFkStXrvDgwQOmT5/OihUrXvp8GgwGTp8+TXFxMXPmzGHhwoWcOHGC0tJSp1bf2bNn4+npyTfffIOruRPXjuHbokVRxHWgmW7NyE6TSBL+ti70ej0rV67E3d1dthDX6XR222LF6FkRCXv79mv8cfBajfETw2KxkJOTQ1JSEjarFaVCoLu7m+nTp+Pl5cWVK1fkiCsyMpKPPvqIlStXkp+fz69//WsePnz4Une+kVBTU8OXX3xB00sc/hQKBfV1tWRnZ2OxWKirrR72OFEUMZstZNy4Tnt7O7NmzSLr4QPZUnSkn8nJfkxTUxMKhQKlUklxsX1hEwSB+fPns3LlSmpra9FqtSQmJjq14el0OjZu3EhhYaHc1ujwOw8JCSEtLY3q6moiIiJkF8WFCxciiiJqtZoff/yR+/fvc/jwYdzc3Ni2bRsLFizg7bffBsDNzY0ff/yRyspKvL29efTokTyF8Ny5c6N2RPT19XHs2DGOHz/O2LFj8fT0lNugXkRvr914Sq/XExwcjCiKsv1rU1MTkiQ5CeIUCgVxcXHy9zUajTzP4fdFfbeR47ktz/436BqfXW9mdRf3h/G9cGQGHG5yL4sylT1NqBjdbluvVhLj74ooiq/cUvjo0SOCg4NHJEQjZQUkSeK3qRlELPs73vj41+z++4P8b18+5Hy+wNOnRRTdPs9Ad7vTubx0KqaFe+GhezkZNBgMpKam4u7ujlqtprm5me3bt+Ph4THk2Hv37nHnzh2ZCKxcuXKIniA4OBiNRkN5eTkZGRmMc29nYbLdrEmlVKB4Vj4XgL/fs5KfbZ4P2MlzamoqmZmZrFq1ilWrVr2UCNTX1/PVV19RXV3N9u3bWbp0KYIg4O3tLWt8HLDZbPj4+AyrLRmcBevs7MSrrxalaBl2+iCShIBIsKURDw8P0tPTyc3NlcWTBoPB3q5s7bdnF0aAKEoUZz/g1KlTPH369HdyKKzpNHC3ooNHtd1D2kpfw47XZOAnRkFBAQaDgalTp2K1WlGpVHR3d6NSqVi+fDnl5eVOZhpKpZIZM2bw85//nLi4OC5cuCA/rK8Km83GjRs32Lt3L5Ik8eDHeyMuCqLNRl1tLVkPM4mOjmbFihUcP3qEwqe5vGjs09LcxLnTJ2lvt8+pz87Otivfb99EEIQhhEMURbq7u/jx3h2MRqOsBSgtLXXaZKdMmSI7H+7du9fJy1yhUHD27Fk8PT0xGo1ERUWhUqkQBIHVq1cTGhrKkSNH5HGqDQ0NzJ8/n4kTJ2KxWHBxceHy5csYDAZ27Nghb2RRUVEsWLCAxsZGRFFkypQp6PV6CgsLEQSBoKAgioqKyMvLG/I7c6Qxf/Ob31BdXc3mzZvZsmULGo1mWAdCq9Uqt0jpdDqysrJwcXGhrs6ehWloaEClUg1xcYyLi8NsNtPe3k5YWNgf3GJ4Mb9x+MX5GRQCXCluG/L135UMtLc2k+wx+sK8PmEMGpWC2tpajEbjS1sKu7q6KCsrGzEr4BgG5ZgUORj//fur/PX/fZzObmcvjaflLXx9uZGqyipyrhxjvJuZ/B9OESx0Mi3i1YjAYKvhqKgoCgsL2bhx47CdDo8fP+bq1atERkZSXl7O4sWLhzhegn0NiIiI4NGjR9y8eZNlS5dw8bu/5UHq37JxYTSTwrQsmOhB4blf8A+f2Ltdurq6+O6776ipqWHHjh2yDmckSJJEZmYm3333Ha6urnz00UfExMTQ2dnJ999/T2ZmJgsWLJCHCRlVbnz7oJ49R/P4L/e6qPZNod/F3iapUChYsWKF8z1IViJb7qMUrfYNfdAfQbIR3voQY2czTU1Ncvmnrq4OnU6Hi4uLXSDdO/qaJwgCS2MDaG5u5sSJE3z66accPHiQhw8fygOWXkRdl4H/dK6Iv04v5FcZVfy3a+V8cCSXtJymlw5o+1PD6zLBT4ysrCyioqLw9vbGarWi0+no7e3FYrEQGxtLZGQkly9fHqKkdnV1Zd26daSkpHDx4kX27t3LpEmTWLZs2bARhwPt7e2cOnWKhoYG3Nzc6O7uJjAwkFs3bzB/4WJEUUTxTNmvUChob2/n6uXzsrlNaWkpfn5+TIqPQ6UUaGltJePWLaIiIzh/7hwAsbGxFBcXU1tbS3BwMD/evUNEeDiu7p74+tk3NKvVSuHTfG7euIrx2UboSDf39fXR0NAgax/q6uoQRZGAgABqa2udnMlqamrQ6XTYbDb0ej3z5s1j3759uLu7k5qayo4dOzh9+jRXrlxBo9FQWVlJWFgYGzdupKOjQ/bEfzHKgefRjFqtZtGiRZSWllJVVUVycrIchaenp9PR0cH06dPR6/X09PRw7tw5SktLSUhIYOXKlXIpRz2MZwM8zwo43p+amhoWLlzIzZs3qa2tpaGhgcDAwCGizcjISJlgOCLF/v5+pxHIvwueVjUCI7ekipI9e/AiHPfk+Hu0MoHZbKa7u5t1C1wxVZjI7dGAJMrdK6IEq+L82ZhoN1xybOCjOROCPSvg4uIyoo7DUdd2RLYONLV28o+/OTvi/ZqsEg9KTfzllmTcdRp6Whtw0716C6fDanjOnDncuXOHRYsWDVuiKCgo4Ny5c4SHh1NZWcncuXNlq94h1yWKDAwM0NPTw7Jly5g9ezaiKFJT+oRx7h28sX0qxcXFhIyxlwbq6upITU1FrVbzwQcfOJFKi02kY8CCWingo3+uxTlz5gwFBQXMmDGDZcuWoVQqyc3N5fz58+j1et577z1CQ0OZOnUq//TtCUrdJ4EJMFsANSZ9ID2uwQR2FuDfW05aWprTPQiCgM7STWzDNbpcQxnQBSBKoDe1491fi0p0fk48PT3lIMlkMtHf34+vUEO3a/BQMeIzLcK700NZM3EKsIiuri6Ki4spLi7m0qVLXLhwgcDAQGJjY4mNjSUwMJDWPjN/f74Eg8U5a2W0ihx53IDRauPtlJHnXPyp4TUZ+AnR1NQk9/06oisXFxd6e3vp6enB19eXFStW8OWXX5KVlTVslBASEsIHH3xATk4O165d47PPPmPevHnMmjXLqZ4tSRLZ2dlcunRJ/rpWq2XZsmV2b/6SEkqKClm8dDmCQsBkMtFQV0doSBAtzc1MnjyZvLx7NQZsAAAgAElEQVQ8RFGkra2NAwcOyP7phU/zmTFtqrzpdXV1ER8fT0FBAS0tLahUKs6eOc2bb77JF58dZuzYsRQXFzl5JgiDFP+CIFBUVERISAiSJMlWwX19fcydO1fusQfkHmej0cgHH3zAvXv38PLyYvfu3ezbt4+jR4+ydetWjh8/jtlspry8nPnz56NUKomKipLJgCAIHDlyhPfffx8XFxfKyso4d+4cCQkJVFRUkJaWRn9/PzExMaxevZpVq1ZRWFhIeno6GRkZ3Lp1i8DAQNra2nBxcWHbtm2y4MuBwaNbB2OwSOrhw4eEhYUxb948cnNzefjwIY2NjcO2MCqVSiZMmEBRUZE8/risrIzJkycPOfZlaGtro7ezDcE1ZFTvi+Fa6MxmM0qlUtZQjKajcNgQ6/V6lEUXiFe50eoSSGRcAqF+niwc7+s0hbG0tJTx48ePKvaz2Ww8efJEHqTzInp6eigqKkKv1zv10JeUlPB//OoItlE8KSQJcqr6mDw52Wl88avAYTU8c+ZMfvzxRxITE4fd4MvLyzl58iQhISFUV1czffp0Fi9ePOK9pqeny0Y/jiE9J0+epLi4mHXr1uHr60txcTHt7e20traSnp5OcHAwW7dulYmi0WLjRE4TV4raGHi2+UX46FgarqX09jn6+/vZvHkz8fHxmEwmzp49S05ODgkJCaxevVoWaFqVLpR7JtqZ0+D36Jm+osk7Hr2pA1dzJz4+PnJHgONZV0o2fPuqCbW14OXlRWNbI56envT39zs9K729vdgEFRUE0OE7FpvSBY1owru/Dr2pkw63sbKGwMXSy7uzo1g+8fl4bC8vL2bMmMGMGTMwGo2UlZXJGoSMjAw8PDxoC5qGwaIf0mbtwOm8ZlbF+cuk6U8dr8nAT4isrCzc3d2JjY2VNwRHVNXd3Y2vry9jxowhOTmZmzdvkpCQMKxgUBAEkpKSmDBhArdu3eLmzZtkZ2ezcuVKYmJiGBgY4OzZsxQVFaHVajEYDMybN4+UlBS+/PJLRFHExcWFjo520k8eRxRFbDYbq1evJjExkba2Nm7fvo1Wq2Xy5MlkZmbS2NjIV199JbebSZLElClTePDgAc3NzfImajQacXV1pa+vj6ysLLq7u8jPtzN8RwbC8fMOSJLEgwcPiI2N5dq1a1RXV+Pl5cWePXvQ6XTk5eXJaT4fHx/a29sRBIErV65QU1MjK/V37drF999/T1paGm+++Sb79++npqaGvr4+KisruXv3LjNnzuTRo0eYTCba2to4deoU8+bN49ixY4wfP54NGzZQU1PD/v37kSSJN954A7CnPidOnIharebIkSPo9XqZWDhsfAMCApzatRwtiYNhtonUd/YhaN2RjHYR4LvvvotCoWDatGlcvXoVURRHjBLj4uLIzc2lsbGRMWPGUFpa+nuRgevXrxOMiS5GHhQkCLBg3FCHvN9lLoGDDDx+/BgXFxes/V0Embr56yWbhpCI7u5uWlpamD9//qjnLC4upq+vb8QSgcPdccmSJSgUCnp6erh06RKFhYXYBA0qpQLrKM6VNhF8AgLpbrf76L+SqdIzq+GJEyeSl5dHcHAwa9euHUJq6urqOHr0KAEBAdTX15OUlDTirASr1crx48cpKyvjrbfe4tKlS5SUlHD79m0aGhrYtm0bMTExcsnp1q1bFBQUkJiYyNq1a+Xfr8kq8o+XSylvG3Da+Ko7Bvimw8AEbSh//fYCfHx8aGhoIC0tjb6+PjZs2EBiYqLTtV3Mb7A7H47iF9DuHolre+eQGRqJiYnk5uYCz0sJe/fupbu7W55dYDAY6OnpwYSKisA5mFXPsl6CgEFQYfCIRWvpIanrR1xcPTAN9GHu7UTRbIWEsS9eDYDcCTRp0iRsNhvV1dUUFhXzY5ML4uhOytyt6GTtpDEjH/QnhNeagZ8IJpOJvLw8uR7uaD1zMPfBNa3Fi+3p+4yMjFHPqdVqWb58OR9//DHe3t4cOXKEr7/+ms8//1zWHXh6erJnzx7mzZvHwYMHMRgMKBQKTCYTcXFxrFixApvNhkKhoKurC4vFQnV1NUqlErPZTHx8PO+9957c7+8Q++Xl5ZGcnIzVamXs2LFkZGSQnJyMQqGgv78fnU5HQUEBYBflDSYCjsVl8LAUi8XCt99+S0dHB4IgMHv2bHQ6HZmZmU6/m9LSUpKSknj77bepra1FqVTKaVgvLy927dolkyFH3fK7774jPT2dyZMns3z5ct5++21Z01BcXMy+ffsICAhg06ZNKBQKIiIinnsYDIpWJEmis7MTQRDo7+9n/fr1fPjhh0RHR3P//n3+/d//nf3795OXlyeP+HX8vMkqcq2kjc/uVHGnU4t2+npcpq0jcNIM2YkuKSlJ1nKMlCYfN26cvMh7enpSVlbmNBb2VVBdXU1RURFvzptMtL8eYZjcgEIAT62KZbH+Q77nmEvwKhMLW1pacHV1paSkRCYtfn5+w2YTSkpKUCgULzV2evToEaGhofIsh8Ho6+ujoKAAnU5HYmIiDx484PPPP5cjcD8v/ahEAECjVuLt7vrKmQGH1XBgYCCtra2o1Wq2bt065B6bm5s5dOgQXl5eNDc3Ex8fPyxhADvhOnz4MBUVFWzfvp34+HhCQ0N5/Pgxra2tvPvuu7KuQq1Wo1QqKSgoYNGiRWzYsMHpta8Ut1LWOjAkAnb0CJWowxG0bty9e5dvv/0WFxcX9uzZw+TJk52uLT8/n+uPikb9XSAoGHDxGaJJUigU8jwKsLfeFhQUyOUim80mZ/wA6n0m250NB5kLOf5tVLtToYnAWwNh/t4I2CcyvkxYLUmSPDvFw9sHURi9RVShEOg2vu5OcOA1GfiJkJubi8ViYcqUKcDzPnS9Xi/X8h1wdXVl/vz5PHz4UI6sRoO/vz/btm0jOjqahoYGBgYGsFqtzJ07l5/97Gf4+/vz7bff0tZmF4O5uLgQHBzMqlWruHHjBu7u7mi1WlpaWjh58iQNDQ3s3LmTsLAwjh49ipubGx9//DGJiYny5vb48WNSU1MJCwujv78fFxcXWfwTHx8vRysODFb2OrICjhTv4IXDZDIhSRKRkZHcuXOHixcvOvVLC4JAVVWV07CVY8eOySUIX19fdu7cSVdXF48fP0apVNLZ2YmLiwtvvPEGgiAQHh7OunXr5HNaLBanlHNLSwsdHR0EBARw6tQpebTr999/z6VLl0hKSsLDw4Pc3Fw5Avybv/kbNmzYgCiKnDx5kl/+8pe0tLTQ19eH2SaSml1Pdn031kErsqB1p9snmgfVdsW+VquVN7iRDGHUajUxMTHykCCTyeS0yL4MkiRx9epVgoKCmJyYyF/OHIObwd5RIIAsKAzx1PJ/rorBQzt00x48vvhlG2VLSwtms5mIiAjZWnqwI95glJaWMnbs2FHP2dHRQUVFxYhZgatXryJJEikpKXz77bdcunQJvV6P2WwmMzOTmCAN6lEsawUBdqyehlptn6qnUCicSOuLcFgNO9wku7q62L59+xAdR2dnJwcPHkSv19PZ2cn48ePZuHHjsEJehw1vfX0977zzDuPHj6elpYWqqipsNhvbtm2TRz/39fWxb98+RFEkNDSU+fPnDyEXV4raRh+QJsGvjl/j2rVrzJw5kw8++MBpUuTAwAAnTpwgLS0NN73upZ4RIA4rHm7v7ELk+XObmZmJUqlEkiRqamrkyYzeweH06saM7CkgKOh2DaW+pYPg0DB6tAHUSN5cyCrGJkrYbDZaW1spLCzk9u3bnDp1iq+//pp//ud/5l//9V85ePAg169cQiGOPu9FFCX8XF+XCBxQ/uIXv/jF/9sX8f91SJLEmTNnCAsLkxex+vp6CgsLiYqKkpX1gx3SgoODycvLo7GxcdSxrGCPOA4ePEhdXR1gj8RtNhsdHR10dnZy6tQp2fFu6dKlFBcXs379eu7evUtHRwdhYWH09fXR3t4u99aPGzeOmJgY8vLyyM/PJzk5mYkTJxIQEEBBQQFqtRoXFxcaGxsxGAxMnjyZp0+fEhAQgCRJzJ49W85O6HQ6rFarU2lAoVA4mdf4+fnJVrtgz5RkZWWxYMECAHlymaNV79GjR3IEdv/+fSorK4mPj0elUuHm5kZkZCR3796Vsx42m42enh5iY2MRBAFfX1+ePHmC2WxGpVJRVlZGVFQUnp6eXL9+nf7+fnbv3k12djY5OTncu2fvwNi6dSszZsxgzJgxZGRkoNfrCQkJQalUEhgYSFJSEgkJdmvkiooKenp6eNpqpFvtyYuujI5Fu6bTQGKQBy4qBU+fPpV96R2DaV6EKIrk5+fT19eHXq9HpVK9sk1yQUEBDx484M0338Tb25v0tBNI9fmsTRlPsJeOnso8ZgdI/N2bs3DXDr8JFhUVMTAwIG+UCQkj2NFib+8zm81s376d7OxsWXz54swDi8XC+fPnSUlJGdEiF+Du3bu0trayfv36IQLLgYEB0tPTUSgUVFdXy10o3t7eTJtmN7ZatGAeZlM/d7KrhpxbEECnUfDZ373FGH8fKioqaGpqYs6cOcNeiyRJnD59murqaqKjoykpKWHbtm1Drr+3t5e9e/fK1xgaGsq2bduGzY709/ezf/9+urq62LVrF2FhYVRXV3Pw4EHc3d3lLoUxY8bQ0tLCvn37MBgMREVF0dfXx7Rp04acc29m3ahkQJBEBGMPH29cwtSpU50ISnFxMYcOHaKjo4P169fjHxxKdn0vI88tFvEeqMfd2Iq3tzdGo5EebQB1Pok0+CbR6hlDtz4YtVJAY+pCGiaab7bq6HZ9iXBPEJBsVu4ZA+hwHUuvPpAnrVZOP6nh/o3L5N67wdOnT2lsbEQQBDw9PXF3d5eHIAmATaEZ1RlRpRD483nhuLyedwC8zgz8JKirq6OlpcUpmnFkBnQ6HV5eXkNaX1QqFcuWLaOsrGzEFjJJkrh//z5ff/21nF5funQpf/VXf8XKlSsxmUw8evRI3nS3b99OYWEhoaGhWCwW8vPzWblyJVqtFovFgtlsZtWqVXL6Ua/Xs337dvr6+jh+/Dg2m434+Hi577itrY2IiAgEQSArKwsfHx+6u7uprq4mJiZG3iRUKtWQvvEXIwdHCtmxwJeUlDB+/HgWLFggZzTAvmls3rwZi8UiW+G+8847cgrWkYEIDAzE19cXSZIQRZHVq1eTk5PD1atXsdlspKWlYTQaCQsLk1s8U1NTaWhoIDc3l+nTp2MwGORoLzAwkI8//lh2RoyKimLq1Klcu3ZtSG3U19eXpUuXkpycjKenJ1bvsaO1RwOQ32TvMGhvb8fDw4PMzMwRj42JiZHLLv7+/q/cYmi1Wrl+/TrR0dFyO1tFRQVubm6smJPCsvFe+PdW4GrqGFXA12m0UaMOIcvoSxkBtPYNPzWutbUVo9HIuHHj8Pf3l0VwwzlmVlVVYbVaR/UXsNlsZGdnk5iY6BStO0pwn332mfx+e3h4sHjxYv7yL/+SPXv2MHfuXLy9vWlqakLdW8KaFA88dM+XNwGIDFDz87XhXLt0ms7OTgwGw6hZCofVcGJiInl5eaxYsWLIeGSDwcDBgwexWCyYTCbGjBkzIhHo7u7m+++/l4locHAwhYWFHDhwgKCgIN5//30CAgKoqKigtLSUb7/9Fq1Wy4cffkhERATt7e3Dpspf6pgoCEydnOBEKI1GI+np6aSmphISEsInn3yCVqvl6ZVjqGymUfwCJHx7qwA7sTGHTKY6YAYDLs+1JyaVG9Wek6j3SXQiKYIg2IeTKV9t22nxjMYiOd+bRVBT7TeFqau388knn7Bo0SIUCgUFBQWUlZXJU0ojIyP5izem4qVVjtheu3NqCO4ur2VzDrz+TfwEyMrKwtvb2+lhc5ABtVqNh4eHbLAxGBMmTCAiIoIrV64MaTXs7e3l5MmTsp1uSEgI69evp6enh++++46GhgaCgoJkkRvYlet1dXW89dZbXLhwgejoaBISEsjOzpZrdS8u1H5+fmzZsoWDBw/KM841Gg2JiYlotVouX76MTqdjYGCA7u5ubDYbgiDw5MkTObvR3t6On58fbm5uTp4Bjvu3WCx4eXkNqX2XlZWxd+9eOSsA9kUqJycHFxcXfH192bdvHzt27GDnzp0cPHiQAwcO8Pbbb3P16lVaWlqYMWMGDx48kBfry5cvU1NTIwuwoqKi+Oqrr2htbUWSJI4cOSK/zldffYWvry/Tpk3j4cOHVFVVOW1Wy5Yto7y8nPT0dHbv3j0k5euo5VrVWoRRyIAgQJfRQn9/P93d3cyaNYsff/yRxsbGYQ11XFxcGDduHFVVVXK3R2dn50u95rOysuQ0ttVq5cwZ+6jb5cuXo1Ao5Pr/iyUeByRJIvVxI6d7Q5+VFCRqjAJ/djyfDQlj2JES7Cw2e2b6M2/ePHp7ezEajahUKvz8hjrRlZSU4OXlNez3HCgsLGRgYICpU6diMpkoKSmhoKCA0tJS+bMjCAI7d+4kMjJyyM/39PRw+PBhVCoVkyP0TApzoWNAwRtrNlCcl4leI7Ft2za+++47Dhw4QEhIyIiaCIeb5aRJk3jy5AlTp04d0stvNps5dOgQPT09MoHesWPHsB0QHR0d7N+/H0EQeO+99/Dx8ZEthOPj42UdQGRkJE+ePCEnJ4fo6Gg2bdqERqPBz88Pm81GV1eX01jk9vZ2vPvr6FeNnHaXEFgU+zwLVV5ezpkzZzCZTKxfv56YmBiuXLlCTk4OKpWKKOMDKvxnYFVqnUyABMlGeFsWLlb7htsrqihRPMuSDH7tZ5+RTrdwPAaa8DDay1SOmr6LYETwsiEpRiExjtcdQlrt/z+e107WhVQE7ORcp9PJGZR58+YRHByMyWQi9tJlyjQRtKv95XP5u2nYlhzEgvG+vMZzvM4M/IEYGBjg6dOnpKSkOC2Ug8mAl5cXPT09Q0wuBEFgxYoVtLW1kZWVJX+9sLBQFkU5VLlLly7l/PnzHDx4EIVCwfr16+no6EChUBAZGcmKFSsoLS1FEATu37+P0Whk9erVlJSUUFVVJbcODadRiIyMZM2aNTx69Ij79+/LwriUlBQ+/vhjuabv5+cnlwnu3LlDY6PdUUylUskK8Bfh0CCUlZXJZGf58uXMnTsXsPsKDCZBZrOZR48eMWPGDN59911CQkI4ePAgAwMD7Nq1i46ODn7729+SnZ3NunXrWLFiBRqNhqqqKpqbm4mIiKC+vp7ExERiYmJQqVS8++676PV6LBaLfI0//vgjc+fOZc+ePaxatYro6GhOnTrllMHRaDSsX7+e2tpa7t+/P+TeHETnZXNtJOwOfA5CmJKS8tLsQFxcHBaLRXZyfJkbodFo5NatWyQnJ+Pv78+9e/fkdlZHr74jCh7Jue1cQQtpuU2AgISAJCjsfwOn8po5k98iH1tZWUllpX3UbnBwsHxvQUFBw3rzl5aWEh0dPWpG4uHDh/j6+nLjxg0+/fRTTp48KZNdx2dk6dKlwxIBk8nE4cOHsdlsGAwGmTz8bOdGpsYH09lax7Rp03Bzc2PXrl1YrVZKS0uH1Qs4rIYjIiIoKysjIiJCbrt1wGq1cvToUVpaWlAqlbi6uvLOO+8Mm2loaWnh+++/R61W89577+Ht7c0PP/zA+fPnmT59Ops2bZIHhnV0dGAymZg8eTJbt26ViYWDRA3OouXn5/PFF1/g1lqAUrKNkNiXmBnuRaSvXVdx7tw5Dh48iJ+fn5wN+M1vfkN+fj5gfy+XTE9kYksGIe1P8DI04mNpI7CrgAkN13A32tcPQRDo94nmRaMy55cWaXePkP9rVupodY+i1WMcrqbWkd0GHTMORvms9OFCYHQCOp2O9vZ2oqOj+eSTT9i6dasszr1y5QqW3g6ie/PZ5t/Cf30jhv++fgKfvzXxNREYBq/JwB+IJ0+eAHal+GA40lVqtRpPT09sNpv8tcEIDAyUWw27u7tJT0/n2LFjmEwmQkJC2LJlCxUVFezbtw+j0cj27dvZtm0bGRkZ2Gw2XF1deeuttwgMDESSJAIDA2Vnr5KSEk6cOIGfn598HS0tLUOuASA5OZnZs2fLdsmOljkfHx8++OADxo4dS3NzMwqFAldXV2w2G7m5uZjNZtk2eDg4CFB+fr6cVZg5cyZz5syR2yqHU8vPmDEDjUbDjh07GDduHKmpqXR0dDB37lx6e3txdXWVN5dx48bJGoGqqiqCgoLIzc2lsLAQQF6oHbDZbEyePJlFixbJ7oYbNmxArVaTlpbmdD3h4eHMnDmTGzduOBEpSZLo7e2lv7+fvqqCUZ3+JAnixrjR0NAgT5icNm0a+fn5TtMnB8PhaWA2mwkICHhpqeD27dtYrVYWLlxIZ2cnt27dAuzZDccmNhoZsNhETuY0jfoaJ3ObsNjsbaoXL17E3d0dLy8v1Go19fX1CIIwrB6gtbWV7u7uYV0HTSYTubm5cptoe3s7vb29TJ06FX9/f7q7u0lMTLTb1Wo0w3pz2Gw2jh8/TmdnJ1qtVn5Px48fz8SJE8nKykKn08ltszq9K97hU7iZ18XZO2XUNjzfYB1Www7Rr5ubG5s3b3bKCjlEpA6SrdFo2LVr17DmUPX19ezduxc3Nzd2796Nm5sbZ8+e5datWyxdulSelGk0Gjl8+DDl5eWyI+bg1/Tw8ECj0dDa2orVauX8+fOkpaVhtVoZH+LPf1oUhpvgKOc88/cAvPpqma5porq6mi+++ILc3FzeeOMNNm7cyNWrVzl69KisaVqzZg1rN++g3ORKhy4YnbmbsLZHLPPpwb+3ArX0XHkfGxtLj6R56aRCo9oDCYE6n0SKg5fQ5BVPq8d4+nSB8nUiic/cCu3PkJtx+DXqRVTUNREXF8fPf/5zNm7c6KTBKS4u5vHjx0yZMoX+/n5mp0xmwhg3Inz0Lx3M9qeK12TgD4AkSTx69Ij4+PghC4Fj49doNLLzncNI5kUsXrwYm83G559/Lo8TnT9/Ph4eHqSmptLe3s6mTZv46KOPiIqK4tixY/T19SGKIlu2bEGv15ORkcGYMWMYGBggMDAQnU7HhQsX0Gg0REdHY7VaCQgIGLV7YenSpcTFxTEwMOB0rQqFgo0bNwLI6WBAXsS6urqGNad50efc1dVVtuM9deoUoijy5ptvDhGKTZw4USYKKpWKzZs3M3HiRNLS0rh+/Trjx49HkiT27dtHf38/4eHhcksg2DMd8fHxpKWlUVVVRU1NjZNjmiAIZGdnO1kP6/V63nrrLerr67lx48aQ98fb25v09HSsVisFBQV88803PH78GFEUWZYYgU6jGnHYU1yAGwFuLjQ0NBAcbE+1Jycny8ZRw0Gv1xMREYFKpUKtVlNVVeVk6jQYXV1dPHjwgNmzZ+Pm5ian74OCgpw2YMesiOHOU9o6QK9p9BbGfrON4pZ+MjMzaWtrw9PTU16Aa2trkSRpWDJQUlKCWq2WWywdBCA1NZVPP/2UU6dOyS17P/vZzwgJCSEzMxOFQsGHH36IWq1GFEXZXGowJEniwoULVFZWkpCQQEdHB1arVd7crFYrT548ITk52W6W9UMukcv+nj/7rye4XdjH+axOJqz5BX/7y5NYrVbZjMoxPGf79u1O0b4kSZw9e1aenaFQKNi1a9ewQ5eqqqrYv38/fn5+vPvuu2g0Go4ePUpOTg4bNmxgzpw5CIJAZ2cn3377rdxdMHbsWDnr4oBjuFh9fT1ff/21nElcsGABixYt4uaZY8Q03WT3BBXvzQjjo9lj+WLLJDbH6Lh54xp79+7F3d2djz76CK1Wy+eff05Rkb2NMCoqig8/+oQ7fT58cvwpV5o11HpOoixoATWhC3lSXCnfu6NTpKKiAo1SMeosAbDbFDd4T6LTdezzaF8uKdgnHXoYmvAcaMS3t5LoxpsEdr2kvfEZPnx7M2vWrBlSPuvv7+fs2bPExMTQ19eHv7//Hzzw608Br8nA7wGDxUanwUJpeQUdHR1MnTp1yDGDywQOMjCcf7Yoijx48ACLxYLFYsHPz4/Y2Fhu375NXV0da9eu5c///M/lVO/Zs2epq6vDarWyfPlyQkNDqa6ulme69/f3s2rVKgwGg7xAZWZmYjKZ8PX1HZUMCILAxo0bUalU8sQ4B7y8vJgwYQI6nU6OWiVJwt3dnSlTpmC1WrFarUOsk2NiJ/Dm5m3s/mAPK1atIXZCPNevX6ekpIQ333yThIQEuR3TgRfH1SqVShYtWiTPXI+IiGD37t0MDAywb98+OcUaHBzMkiVLuHfvHv7+/oSFhXHgwAG+//57mSjMmDEDSZJQKBScPn1aFr0BhIWFyT8/OC2vVqtZvXo1DQ0N/Mu//AvHjx/HxcVFjlKnTZ7E21NC8NM7kyFJFPEwtvJGXIBMghwpTIen/miDqeLi4rBarXR0dGCz2YZsEA7cuHEDnU7H7NmzKS4ulmvsS5YsGZKWH8lC2fyS3nwHuvv6uXnzJikpKfT09ODv748kSXI6fzjxYGlpKeHh4RQUFDgRgP7+fpYsWcJf/MVfYLPZiIyMJDU1lezsbJYtW8aePXvw9/eXO0uGywrcvXuXx48fs2TJEnJzc+X7Xbp0KZ6enuTn52M0Gpk6dSq3s0rZ9h+/pqvX/mw6ukBFCf7twA3e/Y+/pry8nLCwMBoaGti6datTfd7RtvnkyRM527dr1y6n1tjB93zo0CFCQ0N55513EEWR/fv3U1lZyfbt22VBbU1NDV9//TWiKPLhhx8SGRlJZGQklZWVQz4XarWawsJCWltb0el07Ny5E4VCIdt1f/Lxx6yZlcjq+ACWxfph7GqV54Lo9XrWrFnDlStXOHnypNw+umnTJrZt28ZvH7Zyt7LzedL/2e+xW3ClJnQBLm72NcyxfpjNZly7a0YdOYwk4WZoocMtfPgMgiAAEjZBzdj2RwR3FaC19KK19KA1d4+cbZNEwlxhfNDQVL8kSZw7dw5RFFm6dClFReBMzuAAACAASURBVEUkJSX9JKPA//+O1wLC3wGNPUZuV3RQ1flMgCWJuCcuxDtgKOt0RM9qtRqtVotGoxlCBjo7Ozl8+DBtbW0oFAoUCgVtbW0YDAZWrFhBSkqKU7R969YtcnNzUalUxMXFyYKmW7du4e3tTWlpKYsWLeL8+fMAfPjhh2g0Go4fP05FRQW5ubkMDAzIC8FwUKvVBAYG0tjYyJEjR9i9e7d8bEpKCocOHaK9vV2egd7b28u4ceOIi4uTxVRgj+jf2rqD8IhIeS6Cf8AYomMnUFleRnh4hCzWezGqevDgAe7u7syePRtBEOTpbK6urrKLocViYdeuXezbt4/z58/L/gJz587FarVy8+ZNtFotoiii0WjQarUEBwezYsUKrFYrjx49QqVSceTIEfbs2SOTmFmzZlFTU8OpU6f46KOPcHFx4eHDhzx48ACwR7UOEuPILFitVnz0GpI0HZy9cweFmzeINmydjRgtJlqTI9Dr9fT19TmZDU2fPp2cnBxKSkqc2k4diIuL4+LFi/T39+Ph4UFJSckQS+SGhgby8vJYs2YNAJcuXcLFxYUxY8YQFRU15JwO/wCbzeYUZYd5abEvzaOjMvchKpWKOXPmkJWVRUBAAF1dXZjNZnQ6ndN7aTQayc/Pp6amBoVCQVlZGaGhoSxZsoT4+HiZJN+/fx+DwUBJSQkxMTGsWrVK3mBv3ryJzWZj/vz5QzJP+fn5XL9+nfnz58vzLsCeEZk2bRqSJPHw4UOio6Px9vbmv/x2HzByMJt+q5x/+/kMysrKWL9+vdxZ4sCdO3f48ccf8fLywmg0snv3bqd+fQeePn3KyZMniY6O5q233qKvr082BHN0EYDdSOfs2bOEhYWxZcsWWcwYFRXFzZs3aWhoIDQ0FJvNxtWrV+XhZWPHjpXFstXV1cyfP58FCxbIZQWbzUZGRgZ37twhKCiI7du3c+zYMb744gt5U5w0aRIrVqxAr9eT39hLbkPvkPsAQFBgkATqlAH40+0kPvUwNKG19mFU6oeSAklEKVpR2YbPZg0+f7/OH5ugQi3Y/QsEIKQjl4oxs5Ek0fnckoQgibiU3eabbx6xbNkyOePk+J0WFRWxZcsWqqurEUVx1NbY13iO12TgFVHdaeB4ToPzQiIosHqFcOBRPTunhjq1qQwmA44+WAcZkCSJrKwsLl26JM+8H/yQrV69mri4OKfXz8vL4+bNm7i6uqLVamVns9raWioqKnB3dyc4OJjy8nJ6enp4//335Q0uKSmJiooKPD09GRgY4ODBg6xfv37YhQzs7ZDBwcE0NjaSnp7O5s2bqa6ultPPPj4+fPTRR/zTP/0TAMePHx/SB79k2UrCxtoXU8ci5fg7PDKK0NDnEeRwbVjXrl2jra2NN954gxMnTtDd3S0PZXF3d+f69ev09vbKAjCVSk1lVZW97/kZITEajcybN4+8vDzq6upkU6LVq1fT3t4ud2o4Zhg43qv169fz29/+lm+++UauryclJTF9+nROnDjB3bt3Zc8DQHYjLCkpYYybhqamcvvHQxDQ6fXcuHFDzn4MJgPBwcGEhoby8OHDYcmAu/v/YO9No6JK03zf344IiCCYZxAFREVQEZEEcZ7SOQdnS3PSzO7Kzu6zeli9zqd717nf7v1Qa1X16qpT1Vmdk5lp4pjpjKZToigoAorM8zxEMEUQAzHtfT+E8UoIWHXuPV+qK5+1cmESEZsd7977fZ/3ef5DKElJSfT39xMSEiJ2eb4J3bdTjYmJIScnh9u3bzM+Po4sy9NWBcCLGzCbzTgcDj8p7OjgQBbHaqkx2Kfd7akkWBgVQGtVJW+++aYAYsbGxgrwYFJSEhMTEzQ2NlJXV0dra6vAX6xdu1ZQMX0hyzJlZWXcvHkTtVrNvn37yMjIEOftcrkoLy8nICCAVatW+Z1PV1cX58+fZ+nSpSQlJQmMhO/6qVQqenp66O/v58iRIxhGximpbOFVIStQdK+OT45snoIBKi8v5/bt20RERAgw63QKiVVVVVy6dIklS5bw9ttvMzQ0xLfffitMhaKiolAUhdu3b1NSUsKyZct44403/BKzpKQktFqteK5PnTrlxxpaunQp33zzDQEBAXzwwQd+i+HAwADnz5/HaDSyfv16lixZwtWrV/0cKA8dOuTHmrnXNoJaghktHRQY1ScRa/LHrUgopA48oDM2D7s28sVOXlIR4JkgxVjOeFCc9wAzNtGej71Kg+yZEJ4meucYaYP3GYnNZlTtu2cUQiYMZDJAdFyoaBWmp6ezefNmAgMDKSoqIjs7m8zMTD777DPmz58/bQvn55gaP7cJ/oyQFYWr9YNejMuUVyWsLg/FrS/ocS6XC7cqECkoDEn9QlrWZPJm1l9++SVXr15FURTUajV2u52CggL+5V/+hZSUFG7fvu1XIvRNfJGRkTidTg4ePChK6Xfv3hW7Tp+G/uHDh/2czHwL5oEDBwAvHen3v/89N2/enBZM5qPM7du3j/r6ej799FOOHz9OcHAw69evZ2RkxI8O6EPzg1cQSRcURFb2silUPF+oVCokdYDAJfje59sZ+SbZJ0+e8O///u+0trZy8OBB8Z3WrFnDtm3bqKysRBMSzYaDvyRvz98yd80erld10D82wY6dO8nNzaWkpITg4GAkSaK8vBy73Y4kSRw5ckQ4Sw4ODnLhwgUURWFgYICioiIBDoyPj+ef//mf2bVrF7GxsezZswej0UhxcbEYV1+LpLW1VSjHgXeHp9fraW5uFj3mlyemvLw82traZmzfLFq0CEVRRBVmcHBQvOZzXdyyZQvDw8OUlpai0+mYP3/+jCqAvjH2Jau+aG1tRXlWRIBnYkp5ViVBRFAA0X2PmDVrFjk5ORgMBtHH9u1Yx8bG+NWvfsX58+ex2+28/vrrZGRkEB8fz4YNG/wSgZ6eHv74xz8KRUFfAjw5gbl79y5ut3uKSdfw8LBQx9yxYwdFRUXiHlq9erW4fx4/fkxERATz5s3DYp3qzvhySIDDNbU0/ezZM65evUpERAQWi4UjR45M2w4pKyvj4sWLLF++nD179tDd3c2XX35JaGgoH374IVFRUbhcLs6cOUNJSQlbtmzhrbfemoKD8Elm19bW8vvf/56BgQGCgoJE9efSpUukpKTwd3/3dyIRkGWZe/fu8Z//+Z8oisJHH32EXq/n008/FdfHl4i8TO8cn3DPnAgASBJulX8l0ackGSA7mDdYQtpACYnWdmLNraQYH7Gw7xZBLjM61/irWwmASnah8TgICQnxY1zpnSbmDz8io/dHdoUNsKjvFvm0o/dY6O3t5eDBg+zfvx+j0cgf/vAHIbW8fft2jEaj8Ib4Of68+DkZ+DOia9TOuMMzYwlVUaDBYMHh9tBstPJ1RS9BBXvR5b3Ft7Vj3GoeIiQ8ksHBQX7961/T3d0tNLtzc3P5p3/6JzZv3oxer59CNRwZGeHUqVNEREQwOjrKrl27BGirt7eXlpYW7HY7iYmJtLe3s2/fvikLgW/RkiSJiIgIlixZwrp163j4qJzffnuOK4/qaB+2Ij9/EH19ZZ/hkc+o6NixY6xatQqtVivK5j71v8jISFQq1fNSeNKUCe7l0Gg0XC26RktLi+jb+/qzPuVB3/F8CHxfyLJMZ2cncxa9Rvqq7UzIL/5WUFgUaXmbiEhexK5du8jIyKC3t5eFCxdisVgoLCwUO/ljx46h1WpRFIXa2lp++9vf8umnn9LV1cX27dt5/fXX6e3tpaurSxw/ISGBdevWUVJSIio9LpeL9vZ2XC6XACqpVCoWLVrE0NAQsbGxNDU1TUu7W7x4McHBwZSXl087TpmZmSiKgslkEtUH3xjcvHmT1NRU5s+fz9WrV4UexMaNG2cc9+mSgadPn3LixAnULhvbQ/qJNbcSoHhxBSGBat5aEs+R5AlMgy+qK/39/ej1es6cOSPOXZIktmzZwr/8y7/w4Ycfkp+fL9T7fDExMcHVq1f5/PPPUalULFmyBL1eP6WU63a7KSsrQ6PRCBoqeMFhJ06cIDg4mIMHD/LgwQNMJhOyLBMRESFMkGw2GzU1NUJxLyEmHJ12Ztlh8Cb6G1cv5/79+8JJs7m5mR9++IHw8HDMZjOHDh2a0j5QFIXi4mKuX7/OqlWr2LVrF3V1dXz77bckJSXxwQcfEBISIpQKW1paOHTokGiDvRyyLON0OoXUc3JyMgcPHhTP3OLFi/3aCkNDQ3zxxRfcuXOHVatWsW/fPq5fv87Vq1cFjufYsWP87d/+LUFBQXz//fd+jJn4UO2rFwJFIdDtz4RKTU0V97oEzIvS8nZmJCkT7YTZB0UdINRuQOOZeAWNUCba0oWEV4PAlzD6xmViYoIAj4OumnI0Hm/Vz0epfvr0KYsXL+Yf/uEfxPNttVp58OABlZWVBAUFCQCtR1Z41DnGqao+zj0doHNkeq2Nv+b4uU3wZ8So/dUa1+AtMX517QGm4FkveLKAW4bKHhOoErGNV4HHS89ZunQpGzZsmAI+SkxMFFTDBQsWCBEVk8lEbm6un4NdcXExarVaVAR8i9/L4UsGXC4XcXFxjIyMkJi9mmBpDk6PQq0VaqsHCNLAzkVeiqLRaOT06dOkp6ej1Wqpra0lJyeHuXPnkpOTQ0VFBeBF7hsMBsF/fhXN8OWIjo7mxIkTYtcXFhZGb28v4+PjwmgoICAAu93Op59+yrvvvsusWbO4du0a3f1GsrdtBvxZC9LzHWLniJ3Y0EAhb9zc3MzWrVu5efMmp0+f5he/+AXBwcGsXbuWmzdvAl4MR35+Ptu2bUOlUqEoCr29vVy4cIGEhASBWl6zZg2NjY2UlJSIcfWJ6vhK73q9noyMDC5fvkxqairl5eXTCtyo1Wpyc3MpKytj8+bNU8CTkZGRggXiw4WsW7eOJ0+eYDQa2b17NzU1NXR0dBAcHExGRsaMJkjwwjhrYmICRVG4f/8+t27dQq1Wk5SUxJ5d2+j4zW/I1o0yMDjI//U//gc2m43f/e5bsrKyRFXER3X0GWPJssxHH33kd/69vb3Y7XbS09NRFIW6ujquXbuG0+lk27Zt5OTk8G//9m8sX758Sqvo/v37wn9j8v178uRJnE4nH330EVarlfv374vd5FtvvSXe62Np5OTkeK/tiJHlaSGUNoxOuy5JQFx0CP/8twe4e7eYmzdvYrV6mROhoaGYzWYOHDgwRYHQ16opLS1l06ZNrFmzhkePHnHt2jWysrKErPLAwACFhYUoisKxY8dmRLePj49z+vRpIT2+ZMkS5syZw4kTJ4iKiiIyMhK9Xi/K6WVlZdy+fZvw8HCOHj0qKi6+MVm9ejXr168X47tv3z6++OILiouL2bRpE8PDw9ibypCZii95MTgSGUF25ElmZHfv3vV77gYGBpg1a9aUTYCEwpyhSjriCrzn9FL/X+caJ9bkTXDDwsKIjo7GZDIRFRXFxMQEVquVefPmsXr1aj8GkCzL/PTTTwwPDxMdHU1LSwt5eXlotVoePHiALMskJycjSRJNBiu/utPGqM2FWvImfYWVfeQkhfHPG+YSPI2N919j/OxN8FKMO9yM2l0oIDSrx+wumoxTNQJeDsckO86XQ9EEgCwjmwzChKapqYmGhgZaWlro6Oigt7cXg8FAaGgoTU1NPHv2THCAIyMj2fn2XpqHbPSZJzAODXH/zk2hCbB+/fopfVVf2Gw2KioqWLZsGTabjVaThxZ32JTSoMujUD9oob+5BrfVxP79+9m4cSMLFy4UwjuZmZnMnj2bBw8eAF7anU9rQZIk/vEf/xG1WkVUTNyMbQLwTuwaFbjdLqF9kJCQgMFgwO1209DQQHp6OkeOHBEeAE+ePGF4eJiqqipWbtuLRx04I0pYkWVs9glKbxexbNkydDodVVVVbNy4kYqKCpqbm7l//z51dXXExcVhtVqRJImBgQHS09MJDQ0VGgY+kF92drYAes6ZM4cHDx6gKApLly6lpKSEhQsXEhISQn19PREREaxatYqOjg4sFgsmkwmn00l+fv6Uc46Ojqa0tJSQkJBpy892u52Ojg4CAwMxGAwsW7aM77//noULF7J06VIKCwuJiYlhZGSEAwcOTMt390Vvb6/YrVdUVFBSUoJOpyM8PJz33nsPt9vNw4cP0Wq1OB0O8vPzOXXqFKOjoxiNRhoaGggJCWFiYoLly5ezefNmHj16RHh4uN8OHrzug0ajkYKCAs6fP09JSQlpaWlCO6K2tpaamhp2797tlyh5PB4KCwtRqVQcOXJEmN2cO3eOrq4u3nvvPWJjYwWWRFEUsrOzWblyJeBdKM6fP096eroAnF66dInFaXFUt5mxO/0plJIEKhW8syGRNSuySU9PZ2hoiMrKSnQ6HVarlT179ghGjy9kWebKlSuUl5ezfft2Vq5cya1bt8QOfdeuXahUKhoaGvjuu++IjIzkgw8+mBGr49MTGR0dJSgoCI1Gg91u59mzZ+Tm5nLgwAF6enowm80kJydz6tQpKisrycvLY8OGDRQVFfH06VMURSEuLo53332XpUuXTtErUKlUFBcXMzw87G2xuCdImpNMj03y28h4HySFYMcQkQNVREdHzaiLAdDf3z8tU0UjO7EHhOAMCH1xbEVB5zSRYX4CLm+VysecUavVWK1WZs+ezdjYGFlZWeTk5JCZmYnJZPKTZXY6ndTX16MoimBQJSYm0tfXh8lkory2hcKuQOwuGQXEfwAGi4Nmg5X186N+ZhvwczIgYnDcwZV6Azebh3jaZ+Zxt4nuMTu24QGunfsO4heIXefLoSgyyoQFArQz3lSSJKHSh7Nmfjxz584lMjISrVaLLMtYrVaGhobo6uqisbGRpqYmsch7PB6cLjeOhEVUjalpGbbTNmSlxeRBHT0b2WRgVmw0KSkpmEwmrFarcAZUq9XCzri8vNxbVZBUNKviBZbh5XNUAJU+DPVIN7t37xaL38KFC6mtraW6upq8vDyam5ux2WxkZWVRW1srjhEUFMSKFSuorn5GTGzcjGXQJ5UV1NfVCGaCT9vA4/GIyezIkSPo9Xqys7MZHBxkaGgIg8HgFVGKmo1WPzMwSJIkxkwmuusr2b9/Pzk5ObS2tlJdXY1arcZkMgkxok2bNqFWq2lvb0eSJBoaGsjKykKr1aLRaEhOTqakpASbzSZK3sHBwbhcLrq7u9Hr9bS0tLBp0yYsFgvNzc3ExcWRnZ2N0+mksrIS8O7G4+Li/PAc4KVSGo1GGhsbycvLmzJmer2e8vJyUdo3mUwMDg5y6NAh7t27R19fH263m4yMjGlprpNjeHiY5uZmRkdHaWpqIjw8HEmS+OCDDwgNDWV8fJzy8nIURcHtdlNaWsrY2BgRERGsX7+et956i+zsbIqLiykoKGB8fJyGhgYWLFggrKZ9cf36dXQ6HXfv3sXpdLJ79242bNggqgdXr14lOjqagoICv8/dv3+f1tZWVqxYIcq8N27coKqqigMHDpCWlkZNTQ2lpaUoioJOp+Odd94RVYGWlhbKy8vJycnh/PnzdHR0sGnTJqIiwwiRDcQnJtHWMyKoheuWp/I//4+D2Ec6ePbsGQkJCaLi4HQ6ycvLm5LoeDwezp8/T3V1NW+//TY5OTlcvHiR8vJytm7dKgy4SktLuXjxIhkZGfziF7+YtjrkszO/ePEibreblJQUNm3aRF1dHTabjUOHDrFy5UpRYWhsbBSU1AMHDmC32/nhhx+wWCyoVCo2b97M7t27pwXOKYqC2WymqamJwcFB8vPzSUpKou3xHTTuCewBocgq7zhqVQpRphZmjz4D2TMlEQgJCcHpdAp1z+lCQaI9rgCrLs4/yZAk3Got4+pQYhwDKLIsqhm+n06n07tp0GiEmVtycjIVFRVe3JHk9Tqw2+2izdrR0UFrqxfAGxkZSXtgMiYpWNg5+58bGCxOsmeFERPys3vhX2WbQFEU+swOnvWbsTg8qFTQPjzVD7xr1EanrOBU61B3PSNgbs60xwIJxTqKpNXDKzy0pcAgLFYr6QsWEBERIdTbXj7e3bt3+emnn1Cr1Xg8HhJXv8mYKgSByH3+UEn6CLTZWxmpuSnohC+Hz30QvJOvOjoJKWbRtO/1HlpCCo1hQgrgj3/8Izt27CAlJQWdTseRI0f47LPPOH36NDExMRiNRs6ePSvAkQsWLKC4uJjFixczNmKku6vTj1ro+9nZ3sZPt2+IvuWuXbu4cuUKAQEBQhBn69atYmwCAwPJz88XaPqhoSFmKa8WyAEFj8uJWq1maGiIsrIyBgYGhAqiz4+gpaWFWbNmsXbtWoxGI8+ePcNms3Hy5EmOHj1KQEAAs2bNYuvWrRQVFZGSkiKU7PLy8rh//z6PHz8mMDCQlJQUBgYGkCRJtAsyMjIoKioSDI3bt2+TkZExpWqSl5fHV199RVtb2xRmRkxMDJGRkYyOjhIWFkZjYyMFBQXY7XbKy8tJT0+nqamJDRs2/IkxecHcGBwcJCkpCYPBILATVVVVfomLb7INDAzkk08+Eefss1SOjY0V73+5j97Q0CDAjgUFBWzcuNGPzmowGOju7mb//v1+n/N4PJSUlKBWq8X3KS8vp7S0lO3bt5ORkcHExATXrl0Tn9m5c6ffIltWVkZQUBDXrl0jNTWV9957j4GBAW7evMnmDaupqKhg7YeLae/qZ8vmDWzbsgmAnMw5fPnllxw/fhydTieEuqqqqli0aJEA67ndbs6cOUNLSwv79+9n/vz5nDx5kra2Nvbt28eSJUvweDxcuXKFqqoq1q5dy8aNG6dNjK1WK6dPnxa4lHXr1iHLsnjGhoaGBCjVt4j75IpzcnK4evWqqKwlJyfz1ltvzVh5GBwcpKioiM7OTtLS0uju7qaiogK32+1VPXQNENHXweEPPyEoOIT+1nquFzWiKAoajUZIiytIqFSSYJQ4HA7i4uKmVTc1ByVg080g/StJWHUxjAZEE+Z+AYxVAJs2ih7dHJwherrGHCRWd7AxK0Xgqn744QfAex+tW7eOFStW4Ha7MZvNfPrpp6SlpSFJEg/sMa8EMKolKO0YJSP+z29v/leNv7pkQJYVrtQbqDdYkKQ/IaAlqUAFuvQC7BVXQJLQJGchSSoUFCRJBS4HzqYyVCGRqKJnv+JgoHjcPC4v5/EksFhwcLBIDMLDw7Hb7VRVVbFw4UKampqQgiMZU02/A5ZUKiSVlty3jrAhzdtjs9vt2O12bDab+LfJZKKsrIzAwECc0p93yaUA7674q6++YsmSJWzZsoXIyEgOHTrE119/LSb2kJAQ1q1bx6VLl0hNTcVgMHDlyhWCg4M59d03LEhfyGv5BWi1OkymMaqfVtHd2UFSUpKYAH0a/ZMTo5KSEmbPnk1AQAD9/f2cPHkS8CYGLpeLgfZG5kXPmrlNoMBQVzNqtZrvvvsOrVbL6tWrWbJkCWfPnqWppZWCLW8xjI5btf1EhepZ8/pOhoeH6evro6+vj0uXLrFnzx6RPHR1dXHx4kUSExOJiooSSZbT6SQyMlKo+01OBnwyshqNhk2bNvGf//mfPH36VPSyfZGcnEx8fDzl5eVTkgFJkli8eDEPHjwQVZ9Vq1Zx8uRJYmJi6OrqYtmyZX4gy+nCZDJx584dwMtu6e3tFVLLbW1tyLIskPg+RonZbObYsWN+yct0TAJfe8Nut3Pr1i2BKXn//fen9RJ4/PixwDhMjkePHuF0OoUcdVNTE0VFRaxYsUKIDt2+fVtQcdPS0kT53qcr0NbWhkaj4c033yQnJ4ehoSEuXLjAwoULqa+vJygoiNGRYdYULGfr6y/Alr7r5Pse+fn5bNmyhcLCQgoLC3n//feJjY3l5MmTdHd3c/jwYRITEzl+/DhDQ0O88847pKWlYbfbxQK/e/duP5zP5Ojs7BRywEFBQezcuZOHDx/S29vLpk2byM7O5je/+Y3Y6RYVFfn15I8fP44kSWg0GqFLMt3zYLfb+emnnygvLycqKoodO3ZQU1MjdvMqlYp169bR29vrVU61jXL50lmMRiNz5syhu7sbWVGQZi+h2RWJXRvxvH0wTLpmhGWzQv28VSbHSMgcLztlpgVZkbFEziPM7k0GFKA3Zjmj+qQXn1Nk/lAxwunHnSxzNyO7HGJzAV78go9a6gufvbpnzswumWJ8pmGQ/DXGX10yUNIxQr3Bm9H+KdtZwLvgB0ci6cNxd9Xg7m1EHT0bArQoExbkkV5QFBS7iYDU6R968PawPQavglxCQoLoY4+NjTE2NobJZKKrq0uo/jU2NgKgiUtFkeWZWxRA7cA4m+bHoNfr/bjjvnC5XJSVlZGXl0fEnPkUVk11UPQ/qII8YeXoP/4dNTU13Lx5k9/97nesXbuWlStXsnjxYiF+ZDabxcTc3d3Nzp07hTNgYGAgTY0NtDQ3Cd92X/i46TqdTtDqJksgd3Z28vnnn7N69WouXLiAx+MhKyuLnTt30tfXx8lTp3Fk5hKoD52yy5ZlGbfDjqGjHm1AAEFBQTgcDtLT04mJiWHfoSM87jQhBeoIBmRJYsjiZMjqYsX2A9w88wXj4+M8e/aM2NhY1q5diyRJvPnmm/zxj3/kzJkzfPTRR37Jy+joKO3t7TidTqH45h1KRfhSxMbGsmjRIoqLi8nKyvIDzUmSRH5+PpcuXZrWoTAzM5OSkhJBBX3w4AG9vb0sX76cp0+firL0TOGzgPZNoGNjY8LUKiUlhW3btpGZmSnEpmRZxu12s3Tp0insFB+YUaVSMTw8jCRJxMbGUlNTw7Vr1wRQVavVTpsIuFwu0W6avLj5yuUqlYqNGzfS19fH2bNnWbhwIVu3bhX3jY+9oFarhd6G2Wzm6tWrNDY2olKp+OSTT4iKisLhcHDq1CnCwsJwOBzYbDZUKhVJSUm88cYbYvF0OBycOHECq9UqWg91dXXk5eVx6NAhvvnmG7799lvCw8MZHR3l3XffJSwsRhKu/QAAIABJREFUjC+++AKHw8HRo0dJTExkeHiY7777Drvdzvvvvz+lYuK7J0pKSoTsdXJyMllZWVy+fJmgoCCOHTsmZJ1jYmK4ffs2ZrOZpUuXkpmZKSSNAebPn88bb7wxRfnT93eqqqq4desWbrebtWvXYjKZ/JKK6OhoxsbGmDdvHnfv3hUS6HPnzmX37t0kJiby+Rdf8NQZQ79qDgS+cBO0aqOokmIYaKxhJi9Klzro1dRCSYXNo35+SInB0PmMBs0Sr03+OUwIT1yxzB6p9qNeK4Ci1qLTafE4bAQ8b+05HA5aXXZs6uAZPRRkBZLCZ7ax/muK/9LUwnGHm0aDhSajBavTjdMjU9EzVRL4zwlJ97yM5HHhMbTj6W1AHu4h4PmErtjHcfe3THEmBG8igOzB3e3trQ8MDHDt2jUuXrzIw4cPBb1usvyv+LuaP93LmnC/OrOdLI4zO1yH2j0z1UeRZTwjveCa4PLly15f8P/238jNzeWnn37i17/+NdXV1cLZMCAggIaGBrRaLc3Nzeh0OiRJQq1WM3/+fCEh7Cvj+s7Fpx8fHh4+LbJ62bJlmM1mvv/+e2RZZt++fezdu5fAwEAaGxtxOR3UFl/Abh4FQJY9yLK3deCwjVP703ncTgcul0uUTr/++mu6u3toGfWg0QYJeqd3oL0/By1u3vjFUbHQ3759WxgeabVaDhw4gNFo5Nq1a35JyJw5c7hw4QI2m00kA063TJ9hGAXvQtfS0sLGjRsxm83T7qSysrLQ6XTTvpaYmCgmcK1Wy6NHj8jKyqKuro7c3Fw/Dv/LUV9fz2effYbT6RR9X7VazY4dO/jXf/1Xjh49Sn5+PqGhoaJN42vhvP7661OOZzQaiYuLY2hoSNBKT548yblz50hJSeHjjz9mdHR0WmMi8CoHOhyOKTLUjx8/Fr+fmJigsLCQ2NhY9u7dK3aCly5dmiI5/PjxY37/+9/T09MjWko+Tv358+exWCwkJSXR0dFBUFAQWq2WgwcP+j0XhYWFGI1GnE4nubm5/P3f/z1BQUF89dVXjI2N8fbbbwtNij179hAYGMjnn38OwEcffSSovZ999pnwVJguEbDZbHzzzTciEVi7di2RkZFcuXKFBQsW8PHHH4tEoLa2lrGxMcbHx9m7dy96vZ5Tp06J67dv3z4OHz48bSLQ09PDZ599xqVLl0hLSyM/P5/S0lKBxk9KSuKXv/wlH3/8MeHh4Rw/flywd959913ee+89Zs2a5VWqjE2jX+ezKp7c9/fe//0Ri1+Ap1+KQLf9lSZeKDIBHu9mwqNIDIemzWx+JEkMByURHOmlVs+eM4eR4Dk0J26gNmkrFdHrqY9dgyMug9a2Nrq6ukiVhqc/1vNQqSQ2LHh1Re2vJf5LVgYcbg8/Ng7RYLAI5KgkQUqEDtcr1TVmDsU1ve3rZOCMq+UhyG7UielIz6lpkiShTFhwNZR4QYaTQpblKd7yPspQREQEkZGRWPWBmF+FdFUUdCplirzsy8fUaDS4XC4kSSJNNUYzcc+Rwy8WNAkFRXbj6fSyA54+fcrTp0/Jyspi9erVOBwOQdmSZZnIyEjGxsbo6+sTEsanTp0iJiaGsbExrFarWFR8CmqTkyWPx+MnojM5amtrRd/ap30/d+5c4RaXmppKV1cXNbfOEBydQETcbJAkzMY+xga87Yf4+HgMBgOFhYUcOHCAkpISzhfdIGPtmzOPJwoGG7z33vt8+eUXAsX+N3/zNyQkJJCQkMCOHTu4fPkyKSkpQl1y7969/OEPf6Czs5OwuCRsIbMpbh4BIO/tjxgf6KShqYXMzEyys7O5d+8ey5cv9+ujBwQEkJOTQ2VlJRs2bPCrPHR2dgq8g6IoyLKMXq8XO76Xw2az0dDQwMOHD0UvNyoqSvw7NjaWvLy8KZ+bbGIUFRU1LQjNaDSybNkygR3weSccPnyY9PR0WlpacLlcfvoCk6OiooJ58+b5VT8UReHOnTuoVCrWrFkjKKeHDx8W41BRUcHAgNdZMT4+nnnz5nH8+HE6OzvJyclh1qxZXLlyRYAo79+/T0NDA/n5+Tx69IjY2FjMZjMfffSRYFx4PB7Onj0rjJaWLl3Krl27kCSJo0eP8s033/DFF1+g0+nQarXo9XquXLmCw+EgNjaWI0eOEBwcTGVlJVeuXCE1NZUDBw5Ma2Xc09NDYWEhNpuNoKAgNm/eTGlpKWazmbfffpvs7GwkScJms1FUVERNTY0o09+4cUP06IODg0lISJjCbgCwWCzcunWLJ0+eEB8fz8aNG6msrKS2thZFUQgPD2fbtm1kZGQwPj5OUVERIyPe+1Sr1fLJJ58gSRIej4cnT55w7949qgMWQFDoK3b4CiMhKSSO1U15JdLaxbh+qlKjCElFpMUrVy2FJeBR/4nNj6SixyYRqVIxHLeMXgm/jY1DE0I1oSzLTGB5oJHHFZUkpMYwKAejTFJCVEneqsDHq5IJ171af+KvJf7LsQk8skJhVR+do/YpIkFjE+5pP/OqUBQFxWHF3e4FSvn45zOFPNqHu78JxWZCHh3A3VOLu70StexFxfoWRx9darrIyMhg06ZN9PX10d3SQMDsjBmzZQWwt1VRefcmkiQRFxc3bVJQVlZGUlISycnJuK0maktvIwWFoXpe8VAUhXkxegpiJZqrK8UuQZZlDAYDjx8/ZmBggNdee43Vq1eL3Z1erxc2xj4v+Y8++oiIiAi/Ha6vvD1ZTvfl/uaCBQvExOR2u1GpVBw9epTY2FiKi4t59OgRVquVgoICqqurSUpKwmQy4bCOYzL0YjL04LCaxfEKCgrweDyMjY1RW1vLli1bmFAHoQ2NfgWVSMItKySEakhKTBDtmoaGBpYuXUpgYCCJiYmMjIxQWlqKx+MhKSmJ/Px89Ho9PcMWMte+gSypEROPSo0uNBJZF0ZKbCizk2ZRWlqKWq2esnuMiori/v37REREiIqJoiicPXsWrVaLzWYT95DBYCA/P9/rNOn00Ddiob65leLbt7hy+RKNjY1YrVaSkpJ4++23qaysJDk5mbGxsRmNfzo7O0WPOi0tbQpDYGJigtu3bzN37lzu3r2Lx+NhwYIFfPDBB0IM6+HDh1gslmklkQcGBrhz5w5btmzxY1VUVFRQX19PdnY2T58+ZXh4mPfff18kDBaLhZMnT4rvvnjxYi5dugTAwYMHKSgooKioiJiYGAoKCmhtbeXixYvieD4w3qFDh8TOW1EULly4QH19PZIkkZGRIaoQgACPVlRUMDExwe7du4mNjaW+vh6NRiPEhG7cuMGtW7fIzc1l796904KCy8rKOHv2LC6Xi+TkZJYsWcKtW7cICwvj/fffF4C3pqYmTpw4wdDQEDt27MDtdjMwMOA1BgoO5sCBAwQGBtLb2+t3/TweD48ePeL06dOMjIxQUFCA1Wrl6dOnApG/efNm9uzZQ1hYGMXFxXz//feMjY2xbt062tvb8Xg8xMfH09vby5kzZ6iurmb+/Pm0BaYw4XmVVbGEJLuJtPVOeUnrtmANjMKl0U+dwxSFkAkj8eYmUBRcah1D+lfjrgAiHYO4UFMjJYu/P/lcAAYcasbbq9m1aQ0f7lxFUICalv5RXM+L4YsTQvi71ckUpEa+fPi/2vgvVxloMFgYGJ9+F/+/Gr6Fy9lWKX43ncOcTqfzl3d1OfAMtvm9R5Zl1q/fwO2SByTNSqSn3Tvh+lC6vh0feBceX+k9L3sp1V3VqFKW+S2kz08QZXwY9XAnSakp/Pjjj9y9e5f8/HyxOPlisltdTEwMsnkIZ/UNCNSTv2oNj+4Xs+rYByQmzsWzcycXLlwgJCSE1NRUUQ2QJInHjx+Lfn9mZqZQxJusnS7LMq+99hrV1dUMDAyg0Wj8ZI8nU4hUKhVhYWGMjY2JRWjycWpra0lLSxNtCbVaTUlJCZIkibKwT29/8rGDgoK4d+8eH3/8MdevX6epqYmzZ8/y+p53sP4ZlOLPP/sMj8shro/FYuE//uM/WLlyJZGRkSxfvpy2tjacTqco02Yvy8EQkPD8CC/9EUlCqw/lafsgKxbOJjc3lwcPHpCXlydaKB5ZwS4FkbPhDVqMVubZXYQHBVBTU0NfXx/vv/8+33zzjfiOsiyzeGkOd2q6caufo+m1ccRlbyIkcR7VJddYvWoVeXl5fP7550RERHDo0CF+9atfzWiHPFltcbqqgK8aUFxcLMrs27dvFxUORVFobm5mwYIF0yZcFRUVhISE+LUQfFUBSZJwu910dnYKLQFfXL9+Xdy/Pqqlj6XgA5n29PRw6NAhxsbGOHfuHMnJybS0tBAWFobRaGTHjh1CNEhRFK5duyaopnPnzmXfvn1TgJKFhYWEh4ej1Wo5d+4cHo+HjIwMAf4LCQmhtbWV7du3T6shMTExwblz5wSgbdWqVQwODgpq5ubNm9FoNExMTHD9+nWePHnCggULyMrK4scffxRW6OHh4XzyySdotVrMZjMPHz7E7Xaj0Whob2+nqKiIoaEhli5diizLlJSUiO+yfPlyQel89OgR9+7dw+PxsGrVKlatWiXaYHFxcZw5cwZFUcjMzGTbtm1eeuO4CSZrBLwcikLApKJBZGQkoaGhdHV1IQGpQ48YiMhkJDgFRfUcHyB7iLJ0kkEfZrzzYJDkQCW7kVWvWJYUhdSIAJ450/4kMDEieyOrVnmrJ29nxTNYdpHImHjeevMNoSHzc7yIv/hkwOb08GzAzMC4A7UkYbC8OhHwTaTTTVRTFluXA2drOfJQ15T3To6JiQmxaAQGBoqJ9sUCLKGalUGZPRLdir0MAzEp+YzWleI2dPid1+Tw6QMAqG0WAlKyQP9crlP2EGjuZVE4PLDbaG5u5sCBA3R0dHD//n0ePHjA8uXLWblyJeHh4X7JgG+CAcBpI3tBCuXFTvr6+khMTBQ7UofDQU1NDZIkERUVJfwIfGqDvb29rF69muLiYsBbNVGr1Tx9+pRNmzbxxhtv8Omnn04Z66CgINEe0ev1YiGfLtF69OgRjx49IiEhAZ1OJzwQ5syZQ09PD+vWrePWrVtTPme329Hr9dy4cYNDhw5x8eJFnj59Sumd62RvPTTjtVRkGfv4KMFBWtZs2YzNZqOyshKz2YzVauXWrVtTrlV1dTVjY2NEzZ6HNnHhDEf2sj9Mbg2yorBu3TqqqqqERv2Qxcmz3nHcskJQXDJaWeFRh4nIIA2ld++xcOFCBgYGXrSeFAVNoJaKbjOBQSF+4B9JpUIfn8rat99j1cJEvvzySwCOHDmCVqud0cbY4XDQ0tIiKK2TxYsUReHZs2eCwrplyxZu3rxJQECAX7l/eHiY0dHRaVsETqeT6upqVqxY4Ve9evr0KTabjYSEBGpqatizZ4+g8QG0t7dTU1Mj/j8kJIR33nnHT2mxvLycsLAw5s6dy/Hjx9FqtUJlcWxsjLy8POHyCYhKk0ajISkpiYMHD/qdU29vLydOnCA8PJx33nmHu3fv0t/fj0qlIj8/n+XLl1NYWMjg4CAHDx6cVvmzv7+f7777TviGrF27Voh1vfPOOyIxaWtr48KFC0xMTLBt2zb6+/v5/vvvAa91+Ny5c6mtrRUVh5iYGBRFobOzk8rKSurq6pg9ezb5+flUVlaK6sncuXPZtm0b0dHRVFdXc+fOHcbHx8nNzWX9+vXCC8An+2wwGNBoNERFeUV4Tp06hVarJTo4jb6AV5j9SBIh471iDhwdHfWjN6oUmVmjtcSPNeLQRXoxRE4TasXNwucUX7fbjdtiJkrTydBMuAFFJsw+yOhIJ6QuBPergYkjzhfXU1EUhoxGspYs+TkRmCH+opOBZqOVi3WDyJMEAv4UIkCSJBSPC+V59jl5R65YR3F2PkMKCERx2JHH+v88ygEIDu7kHZdOp2Pbtu382GZCFT0HDy/2i1ZZRWDGGtz6cFwdT/2OpdfrCQ8P99tte4wdKMNdKIFBbNm6nchgLacK75J+9ChR4WFcvnyZM2fOsHfvXtatWycW0fLycpYuXYokSWIBKC0tBV7Q9OLi4oiLi6O3t5fc3Fwx6YSEhGAwGNDpdBw4cACz2cyFCxdEMuFDf/tClr0WpA8fPmTFihXExMWTtHQVRkWPNlCHMmHB3d+CbDWKcff1QYEpXOXExEQxBgMDA6jVajQaDUuWLOHJkydIkkRCQsKM7RaPx0NDQwPNzc3s2LEDg8FAf38/JkMvYTGJ0zI0JJWKnroKzGYzJSUl/PKXv2TNmjV8+umnGI1GlOcL+cKFC/nmm29eCEM5ndhdMgGyB5XqFVoTKg2mcSuRYSEUFBRQWlpK1vJ8agyuSfeul8cNMGpzkbB4JUvigzh37ix6vV6AAGNSMtDpp9+xSZKEOyCE7y9fZ2xszM/FMjAw0G/cfeGzCw4KCsJqtQpp6eHhYa5evUpbW5sA5s2dO1eIQ01O9pqamtBoNNOyCJ49e4bT6fQDDiqKws2bN4X648aNG4XAjO8a+hZGYFqXP59K35o1a7h27RpGo5HU1FTa29tRq9WkpaWxfft28f6ysjJhNBUXF+eHSwDo6OigsLCQ+Ph4Dh06xLVr16ipqWHr1q20tLRw4sQJAgICCA4OFlTgBQsWiHPyuZIWFRWhKApz5swhPj6eGzduMG/ePHbv3i0Ee27evEl5eTmpqamideCrMq5evZoNGzYwMDBAVVUVvb29zJkzRyRfhYWF6HQ6VqxYIfAh4GUIbN++nXnz5tHc3MyZM2cwGo0sWrSITZs2ER0djaIo1NfXc/v2beGfsXbtWh4/fkxXVxfDw8MEBgbicDgId7ViCE7Bg2aqeI8iE+i2E+UYxP1caj03N1dUE8GrS2DSJzIWmoJDpSXQbSfS2k24rZ/y8nK/ezp+rAF7QBjWoNgXaojPn2+d28JrWgNGWcZhMYE2esZqhQToJ8kMj46Oirnu55g+/mIxA0aLg5NP+6YIBf2pUGQZz3Avnr4GpEAvolyxm3F3PcPV+hjFNoZiGUWZmMHf+38hnE4n9qBoJqLm+iPXAdFPDo/HY+gAt4PExEQsFguyLGM2m9FqtX6GIoqigNtFa2M9Y6Nes47R0VG2bt1KYmIitbW11NXVERgYyPr160UJ2rdztVqtaLVaysrKAG9pLiwsjJUrVwpu/WuvvYbVaqW8vByHw8H+/fsZHBykrKyM5cuX8/rrrzM0NMTQ0NCMpWaPx8PjqmpqPdGYtNFIOj2qwCAkXQia+LnIujAStB7Gn1cEfNgEH/3ONzH4Fizf2Pn0xt944w0qKiqQZVmU6n2RkZFBQEAAqqAwEtOXEZeaSc/gCCU/3cY42I8kSYz2dxKRmEygTu+lbUqS+Nld+4iBlmdiQXz48CFB4dHkFKxlcGgU2/gYHR0dxMTE0NjYSExMDFqtltHRUQrWbsQma14pbaooMj989XuqKivFrtUTHI9mJjVFSUIXEk7JzSs4bBZiY2MF62R+3iYCAnUz40kUGbNpjJ2b1vi5KVZVVWG1Wlm7dq0oJRsMBuHB4Ha7cTgc5ObmUltby7lz5wSjw2g0EhERgUajobm5mezsbNLSXuja3759m+jo6Gnd4i5fvkxiYqIfcLGmpobq6mrAu9Bv3bpVjN/ExARfffWVwJGkp6ezf//+KVTSiooKWltbmTdvHg8ePCAzM5PGxkb0ej2hoaF+6oRPnjwRAldRUVG89957fmC/5uZm4Yi4b98+fvjhByEutHz5clQqFfX19bjdbnbt2kVOTg53795leHiYjIwMnE4nZ8+eFc9Yfn4+o6OjtLS08Prrr7Nz5060Wi1dXV18++23dHZ2smHDBiYmJnjw4AFut5vY2FjeffddIX8dEhLCw4cPCQ4OxuFwcO7cOaFmGRISQl1dHU6nE51Ox9atW3n77bex2Wx8//333L9/n7i4OPbv309BQQFBQUE0NTVx7tw5cUybzUZiYqLQsfB4PMiyjMfjYdasWex9+02WJYXxsH3Yq06oyIB3oda5LWTZanDbxwkPD8fhcNDf3090dLQX3yKpaY8rYDhsHk61Do9ah1Ojxxw8C4s2moWhHsxjo2L8VRJEWHvRusbxqAOQ8OIO4kzNzBqtwWExe3FcqBgPip+5dQHsXZrAvBhvq7Szs5Pa2lpef/31Kf4fP4c3/mKTgbutIxis0y9GrwpJknC1VSAPdeEZaMHdU49noAXFMvJnVwH+V2IiPgNJq3+FOI5MbHQ0Wclx1NfXExsbKxZBXyIQEhLC/v37kWVZlOjHx8dxOBxeoxG7nSVLlpCRkcGzZ89oa2tjdHSUzMxMkpOTycvLo76+HqvVSl1dnQBByrLMnDlzyMrKwmKx8OTJE5YtW8aZM2ewWCysX7+e1157jSVLltDe3s79+/eFEFB7ezvBwcFiIQ4JCcHtdotdumbhKpzaML8kSPwMCsNisRBgHxWtAR+3OzIyUrgBajQaZFkmLS2N0VHvhGGxWKiqqsJut/OLXxymrasPVaAOj9uFIsu8vmUrmvh0Yudnow+PQR8WiT4ylri0RYSFR5IYFUJfbw+GtnpspmGQJJx2C2MDXQQ7h+hu9O5e3W43iSnzmJv3OkpIPCN2mcikNBIWLEWRZZ6WPyAgIICYmBgCAwOxWq10dHQQP3fRK5MB02AXYRo3qampmEwmzGYzs7PXTlng/O4RWcbtdKB22xgfHxdVqOQlK1BpXt1fjYkKZ1m6P0ixpqYGk8nEihUrCAgIEIwJlUolEPcOh4Pu7m6amppYuXIlBw4cIDY2lps3bzJv3jz6+/sxGo2sWbNGlIQnJiaEQNDLHgt9fX0UFxezdetWYaGrKApff/21ANUdOHBAjEN9fT3ffvutuO5arZYPPvhgWnDe+fPnSUhIoKqqivnz59PQ0EB4eDgej0fILIMXi3Pu3DkCAwMFcG9yK6S2tpYzZ84wf/58du3axcmTJzEYDBw5coT58+dz7949ioqKWLx4MZGRkZSWlpKZmUlmZibFxcUYjUZu3rxJX1+f2LFXVFSg0Wh45513WLRoER6Ph1u3bnHp0iWio6NZsWIF9+7dY3BwEEmS2LRpkwD5+UKSJNrb22loaODJkyckJCTgcDgYGxsTc0VBQQGHDh0iODiYy5cvc+PGDXQ6Hbt372bjxo2EhobS2trK999/T2lpKdHR0axZs4ampiZcLhd2ux1ZlkX1MDAwEL1ez4cffkhvby/XLpwj0tRGUoiKmBAtynAXR1fPY46lBY/Dhs1mw+VyiefYYrF4lV6jshgPSvAu2i/ReF3qIMbsTiE4JL4voHONE2ntId7WRcR4J8GecVBkgTMKdI1j0ifhUWmmJAQqCeJCA/nblXPQqFXi2g4ODs6oBPlz/AW3CVqGra9cu6f0/5//Th7uRh7tn+FT//tDpQ/3ChfNEBISUbPmsGXpLMxmM7W1tej1epKSkoQznMVi4fTp02zcuJGtW7dSWFgoKFbwoq++YMECduzYwY8//kh1dTWjo6McOXIEnU5HVFQUer2erq4uwf336c/LssysWbNQFIWvvvpKLPC+SVSn0/Huu+9y5swZvvvuO9LT00WpOSYmhtHRUTEpqVQqNPowpKikGR86SZLQJS8iJyWCu8U/iaRnYmLCT5hox44dmM1mUdJNTU2lubkZWZaJTc2gyxVC5sa9AHjcLgwdDYyrI5GfC6P4FhbfeYTPXkBbZZ+Qrz137hzDPS9Ai+14wXA3b94kQB9Kcu7mKSV/TUAgqctWI6nV9NZX0NPTgxSgJX3ldkJjZ/7OXu11ma6aR1hGDAJQBqD6E3bPCgqBWh3R0dE0NzcTGxuL0WjEYRtHHTCzWZMkSSRET+VQ+3bCExMT6PV66urq6Ojo4J133uHhw4eiMhMcHMzhw4dFadVut2OxWIiLixO7+cl9e5+K4XR4gYqKCkJDQ/1eq6ysxGazodVqOXz4MGq1GovFwtWrV6mvr/cDwO7cuXNaQa22tjZGRkbETrmjo4Pw8HAsFosfG6G9vZ0zZ86IRe7999/3c9isqqri0qVLLFmyhDVr1nD8+HE8Hg/Hjh0jOjpa+BBs2LBBSAb/8MMPnD59mr1797J06VIhBJSUlERoaCj3799n2bJl7Nixg8DAQPr6+jh//jwjIyOsXbuW/v5+fvzxR/GZ3bt3i0TJF06nk7t379Le3o6iKGRlZdHQ0CAW7fT0dLZs2YJGoxH+DWFhYezZs0fYQre3t3Pnzh16enqYM2cO27dvp7m5WeA/JEkSrYn09HRhgf3ZZ5/xm9/8RiSfO56DJBVF8Vp9V95l+fLl/PBDHfHx8ciyjNFoRJZlrxonakaD57xSN2AsJJnEsQbUylQMS1RUlKgKybJMcHAwK1asoKuri5aWFtIMDxhK3cCQS/VCy0BSMTdKz3/flIYu4MVzZTAYprS0/neFrCiUto9SVG+kc9ROoFrFqrmR7FwUS2LYX46g0V9sMjAN1mxKTFbuU9xO3H2NuDur/z//zcn4guDgYCTphT53bGwsQ0NDU/rXissJAbpXVAYUejs7ONN4n/r6evLy8qirqxOJQF5eHp2dnRgMBm7cuMHDhw/ZuHEjV65cIS0tjYGBAQHAa25uprm5Wex2uru7+eMf/8h7771HQEAAfX19hIaGYrPZyMjIoKGhgba2Nn73u9+JPu3ExAQfffQRf/jDH/xAZgEBARw6dIjz588LMNeKFSvo6elh8eLFREVFUVxc7C0vBkWg/hMPnRsV/WNTnSB9FDCNRuOlVnZ3ExoaSlBQEK2trcyePRslNJ6UrAKvROrzz6k1ASSkLWbEMTUJnDzWcxa9xvKls6d1X5MkiWvXrjFv3jzUsfNQqdQzKj/OWZTHQEsNqFRkbdpHoG766o9gpExYaX54E8uIFxORmJhIRESEl5I5YUGtC3nFoq4ie/FCHt5qQaPRiOrQYFsdc3OmagxM+iCzIqaWRCfbGDudTn788UcWLlyI1WoVCzrX+cNnAAAgAElEQVTAhx9+OAVdD160uNlsJigoyG9n7UtUXrbldjgcPHv2jFWrVonjOZ1Orl69Cngli33eCD/++CMqlYqCggJRak9JSREL28tRXl5OQECAWNACAwMxmUzs3r1bKCf29vZSWFiIRqNBq9Xy3nvv+e28y8rKuH79Orm5uSxbtozjx4+j1+s5evQoGo2Gr7/+mr6+PuE7AF5q8N69e5EkiXPnzvmdk6+NtnfvXrKysvB4PNy5c4d79+4RHx/PunXrKCkpEWyArVu38tprr/ldf0VRqKmp4caNG9hsNubPn09zc7MQDfIZ9Lz55puUlpZSVlZGQECAOJZGo6Gjo4OffvqJzs5OkpKS2LJlCy0tLVy7dm2KDsLixYsFM6OsrEy04Xy+BIsXLxZURkmS2LJlCydOnCA3NxeVSkV0dLRgJXg8Hi/NWBf7avVBQJFUuIJj0LtGcLlcfiBiXyIAXnvqlJQUvvvuO4aHh734DM8E76S4uFxShlXnrdAFWgb4vz/4hymVNoPBMC2O5f9vyIrC/7zXSXHriNAusLtkrjcYudU0xP+5dQGLEv4yfA/+YpOBxDDttFoCk8PVXoUybgQFZJsJddxctDk7kXTBKC4HnoFW3P1N4P7z2g1eR79wFEXBah1nMlzRJ6n7cngM7WhSlzKFavY8JJUKc0cdY6Neup7ZbPbrgUdERLB9+3bq6uq4ceOGAPGFh4fT0tLCsWPH+Oqrr4iPj2dwcFBI3/pidHSU//iP/2DWrFlYLBaWLl1KdXU12dnZwp3PbrcLIGBISIgwp3kZca5Wq9m6dasQMAkJCWFkZIS0tDRiYmJEgvHnxuTdsS98C53b7Rb69oDokxuGx8hd+ZZ37F5aPGdauMXrkkSALphf//vvsY+PTnndl8i1d3SyImfrK48nqVREz5lHUEi4NxF4xXs7q4pxm42YjYPiPObOncumTZt49OgRNQ1PSFm2ZtrPKoqC7HFz6eTXOB0TREZGUlBQwKNHjzC01xGXupDgiNhp/35ylI4Q7dRHfHIycO/ePaxWKxaLhfPnzxMU5MXR2O32KROq0WgU9D9FUfyUI32Uwul0+J89e4bb7RbAQVmW+frrr5FlWZhgffPNN7S3t5Odnc2GDRv47LPPxFjt3r172kTJZDLR2NiITw7Zh2NZs2aNOA+DwcD/82+f0zZgR1Kp+OSDLaJaoCgK9+7dE5bDqampfP3118THx3P48GGsVitfffUVLpeLo0eP+uEuwAus9FEtwSsr3NXVhcPhYMOGDWRlZTE4OMj58+eFJoRPZwG8Og5vvfXWFPXIgYEBioqK6OrqYu7cubhcLrE50Gg07Nq1C51Ox6lTp/jtb3+L2+1m5cqVrFq1Cp1OR3d3N3fu3KH9/2XvPaPjqtN039/elUsq5RytYGXnbNk4AQabpmGgaWhoOs/0mbBmzbp3zVqz7rn3w1nz4a4zt8MMQ9NNk6a7MQY3bWOMAzbGxjZOsiwrRytnqaSSKqd9P2ztv6tckmDOmTkX1rrvF1tVu3be+//83/d5n6e3l6ysLPbu3UtPT48oHWjXHtTn/cc//rG4F5qamjAYDGzatIktW7bw5ptvMjMzE+OGWVJSQlFRERcvXiQzM5O+vj7x/JSVlQlg8GUiHA5FtR5HhqY8aTQa+c1vfoPf7yctLY3nnnuOY8eOcf36NTJNMvNz3ZSUlNAzZWd8fDzq3gwGg0xPT8e4Y/5HxKdd01zsWcheRAxGYQUCYYV/Ot/Dq99ehUH31e9g+NqCgQ35ifTNeBb9TlEUCIcIjXVDKACyHuPqB5Ftam1TkiTQGdCvWIMueyX+O2dQfEv7dIOEvqAGfU45klF9mBSfm+BQG8Fh9aaPi4uLbtlbiOBoF/qcMhSDOfaFrSiE5qeiyhaayA2oQODs2bOMjo7y+OOPU1lZSX19PefPnxd19T/+8Y/U1NTQ3d3N3/3d39HS0sLnn38uvgd1Fqa15LndbiEzqn03OjoqTG6mpqb45S9/GcP0BxXxv/vuuyiKgslkEi19ly5dil7OMbFomSbq0AM+FLcj5rz98Ic/5I033hBtStu2bSM/Px+/34/D4aBrbC7Wc/3fGxEZnsVCZzB+IbBAUTCarWQUVS2/rKJQvXodH7//e9LS0pienkZRFK5fv05HRwd2ux1ZpyMhM4/k7BWgGWChDpoS0HntY6wWMxazib/8y7/k3Llzos2z5cIHFK7eTnZp9T2mdyhAWU4SBcmLpyi19Pjo6ChXrlwB1PvihRde4OOPP2Z+fn5R4arJyUlSU1NFh0ckcXBkZASXyxUjQawoCrdu3aKsrEzMxs+cOcPwsCpQU1BQwCuvvEJcXJxot4vsr3/wwQdjMg1anDp1ClDbTLXyV2VlJXv3qi6ErV39PP7Tf2bY7keSQJYkzv9vb7Gq7Czv/fwndLbUc/XqVfbu3YvNZuPw4cOsXLmSp556iv7+fuHI+b3vfS9mHxobG/nggw8Ih8NkZ2czNzfHwMAAJSUlpKSkcOHCBSYnJ2lvb48CcKFQCKPRyGOPPUZNTU3UM+LxePj000+pq6sjOTmZlStX0tXVhSRJyLJMWlqaUKHUsip5eXk8/vjj2Gw2hoeH+fTTT+np6SEjI4Ndu3Zx9+5dzp8/L0hzXq8XnU7HmjVrqK+vp6amhhMnTgg9hgcffJD169cLkuPMzAxWq5VTp07xwx/+UNwXPp9PSDBrobmXVlRUqGUe3wySEkJZzsk1HMLkscd8brPZsNlsBINBJiYm+OMf/wjAmjVreOyxx9Dr9ezevZvf//73FBUVMT8/T2lpqbApjwQDWsb2P6OT4GTrBBKLd7EpCsz7Qlztm+WBkq++5PHXFgwUp1jJTjAxOueLGngURQEljL/1ogoEAEPRWmRbStSDJ/5vtGAo346/8dyS2zJW7kBOK4ge3IwW9MXrkawJBLquLwoEAAj68N35GGPVLqT4ZBQlDCyQ6mbHCLRfJj4+btFWL824p7m5ma6uLh555BHWr1/P2rVruXr1KhcvXsThcNDU1EQ4HKajo4PNmzezadMm+vr6+Pzzz2Nm393d3eIhlmWZrq4uMjMzeeGFF+ju7ubo0aOsWbOGGzducO3aNYaHhzEajdjtdmZnZ8UguhSSNxgMBPxuQpN96NIL0ckyJp2Mwj0PBUVRCA63g6J2EGh97YAALcFgEJPJRHV1tSBLdnd3Y876Yhey5SIU8BPwxJ7r1NRUMcDKhAmHgsi6ZR4PScLrnMNgWr4mqCgKtqQU1qxZQ1tbG7IsizSqBths8fG0XzlFVkkN2StXY7EloYTD2Ifvwvw4fsckLpeLb37zm7z//vtR2ZdQMMDd+ovMDbZjsNpITEjAOz/DQzUvLrlPGhfk/PnzaA6Imvyx3+8XNd/7Y3JykvT0dDEAaEp+oLYUms3mqM9ABQljY2NigL527ZpwqTSZTFy6dIktW7awd+9ejEYjExMTojygqQkuFqOjo3R0dBAXF8fAwIAgn2ouk5PTMzz8o19idwYWrgOEFu7d1p5Rdj7/f/PdHXF88xsHCAQCfPDBB6xfv56DBw9SV1fH6dOnKS0t5amnnopinweDQY4fPy7S9dXV1fT09GAwGKisrKStrY2srCysVqsQzNI6BQCqqqo4cOBAVHklHA5HGQqVlZUJErC2jQcffJAbN27w+eefc+zYMSorK+nq6qKoqAin08mJEyfo7OwkLS2NHTt20Nvby8WLF8W++3w+DAYDW7duZcuWLQLIX7t2jczMTJ588kmqq6vFddcsmHNzc3nkkUd48803+fTTT6mqqqKuro7m5mZCoZBwWvX7/QIMaPbCOiVIirOf6fiiJXQDFFKc/eiUWGVYr9fLiy++yCeffCLKUw888IDgMwBC6Ep7brOzs5Flmbt3owXftN//R4OBUFihf8a77DI6WaJnyv3/g4H/zPjsrp3ROXVAipmBShIEF1Lcsh5dVumSJD5JltElZSFZElA8czHfyyl56NJjDUe0beqzVxIav0t4blJ8HqmC5/P5sOgUXPUfISekIdvSUZQw4ZlRFM+cqkUeCogHSVtHaWkpvb29grzj8/n44IMPOH78OCUlJWzYsIG//du/5be//a0AEh999JEgaRUVFVFUVMTUzCyHz1xiLiijhEOEp4cYHR0VsztJknj22Wfx+XzioWlpaRHHGZkGvf/4I2fXJpMJn88nfOBDd+tZUVhMaoINeeFc+UNhxl0+xvo6CA7cE5GJbJ/UDFy0Y45MFwOUpH9x3W+prISihPHPjhLwxwKZkpIS8VLxeb1M9HWQWVS56KxfURRCwQAzI70EfB4MJsuS+yJJEgadOsNta2uLOlZNpEoDfWPdTYx1N5GckkLA7xfKdJFtjmNjY1H2rVo4Zu38+TNP09HRwcX2piW9KlwuF/X1qqJmOBzm0UcfjRLj8fv9hEKhRbX1JyYm2LBhg/h95Oyrq6uLkpKSmNJCXV0diYmJlJSU0N7ezpkzZwT4s1qtvPDCCyL9rskDa/dVpDRwZHi9Xt5++21xPFarFZ1OJ/QCvF4v//t/e4Xp+VhSGkAoFGbK4UVOWofdbufGjRvs2rWLnTt3cvr0aaFu+NBDD0Vt3263iw4Hk8nEihUraGlpoby8nMcffxyz2czbb7/NlStXMJvNJCUliYHJYrHwxBNPxGROBgcHOXXqlPDemJ6eFtnBnJwcDhw4gKIoHD16VJBrd+3axe7du3n55Ze5ceMGZ8+eJSUlhW3bttHX18fly5fFQOnz+TCZTOzcuZM1a9bQ0tLCa6+9xuzsLBaLhaeeekpIIUfGtWvXmJyc5Cc/+QlpaWmUl5dz5coVrly5QkJCArW1taxfvx6Hw8Ebb7wBQO/gMEG9FX3Ij05R5cSzZtrw6eNwWjKjLImRZOK9E2TNtt3zj4nYfkVFBUeOHBHvJJvNxrVr1ygtLRWAs6OjQygyauc4MTEximsAqmOnpiL5HxGKojA9PU13dw/SYtoL0Qtj0H09uhe+lmDA7Q9xc3B20e+EOlvhavzN55GsCUjLzfAWQralEloEDOizS5e3EA6H0WWVEp6bjBkgPR4PNpuN+fl5dcY8N0V4bkp8X1lZyYEDB2htbY1S0VMUhfHxcf7mb/4Gu90uZviKoqAoCt3d3XR3d4taqdPpJCkpidnZWQ4dOkRWVhZPP/00TsnC0WY7voxK9Chqdj2/mpBjEn/LBQiqWZVf/OIXUcfk8XiievsXi9TUVOLi4lSv83BYAIH5+XmSkpPJX7+XeFs0Kc4gS+QnWJCNYfq/QB5KG/A0NndnZyfHjx/HPT2EVLo4mUy7HqFgAJ1BfRlqGgJIEv75Ge58dipKJVKL+50Ch1pvkppbhN4YXd7RgEZv/WeEggHG77aSW75u6VKBBKPdLZyur4vyj9fOa+R+1NbWcuXKFbwLM60XX3yRt956S9R3x8bGhPT1/fdafn4+aWlpeDweAoEA4+PjUUx/RVFoaGjg7NmzAmDabLYYsyKtPez+Fj63243L5SIlJQWn00lCQoJYZn5+ntHR0ZhZvNfrpaWlhR07djA6Osof//hHAQSSk5P5q7/6qyjA0tDQIKSut2zZsqibpTYwut1utSvFbCYQCPDCCy8I18W3336bm+1TS6ZvFy4LH15sweg289hjj1FdXc3hw4fp6enh4MGDMTXy5uZmjh07RigUEloM3d3dPProo2zatAmHw8GRI0fo6+sT4lnadZMkiW9961tRBDan08m5c+eEb0Jkyt1ms7F//34yMjL49NNPaWtrIyMjg+985zucO3eOsbExjhw5wtTUlFBE7O/v5+rVqwIE+P1+rFYru3btoqysjPr6el5++WV8Ph/l5eXMzs7y4IMPUlJSEnNuHA6HsNnWzMo0UKooCj/4wQ8YGxvj+PHjdHd349NbGU8sx2HNWRjsFRI8Y2Q6OjCH51kxeYNgUj4junSCOguGkIck1yAh2cDdzO14jElIKMR7Jkif78EWmKW5uVmIW83OzrJy5UrGx8f5wx/+wPPPP09BQQHt7e1UVlYyNjbG2NgYRqORgoIC7ty5E2UDrnUS/M+E2+2mt7eXnp4eenp6mJubQ6fTkZG7gwlsSwKCkKKWtL8O8bUEA11TrmXFhiRJRk7OBp3hy7UdwJI2m5LF9oVEMsmipl0jpWK10Ihvi8m/atKvkiTh9/vRHPCcTidzc3P84he/oKqqitraWp5++mna2to4e/asKEkoiiKQ8+zsrJjFjI2N8fIbv8e84SCiJIEkMnWyLRVjzR78DacXPSYtTWw0GrHZbGIbmie8z+djZmZGkP20ur/28jOn5BKfkhlL8Fv4O7diPeO9bXjnFwd02j7AvezKmTNn1H0P+ZF9DkLGhJj1h8Nhgn4vzZ8eJSWniIyiCgxGC17XHFP97YzdbaVoxQpRilhse4AY8O6cO8KKNbWk5haLe8AzN8NA8zXsw+qLe6SzgfSCMgyWuEVnsUNttxhsvkFKSgq5ubkMDQ0tCrBSUlJoaGggLy+PoaEhampqyM/Px2w2C+lmWZajPDAiFRpHRkZE/Vqn0zE4OCjAwOTkJB999BH9/f2sXr0ag8HArVu3SE2NNmxSFEU4W94/i9IIstq9HakjoJWiNHldLRobGwkGg+Tl5fHWW29FZStefPHFKCDgdrs5fVq9H+Pi4ti3b1/MOQL47LPPhB+GXq/H4/HwzDPPkJ2dTSgU4r333mN4eBhvILws3FSAmTk3zzzzIpmZmbzxxhvMzc3xwgsvRHEhQqEQJ06coKGhQRxjb28vKSkp/OQnPyEjI4P6+no+/vhjzGYza9asEW2XoJYF5ubmOHLkCN///vdJTU3lxo0bXLhwAVmWKSwsFH4Qer2eBx54gJqaGq5cucL7779PQkICTzzxBKtWrcJut4tyYEJCAjk5OYyOjnLjxg0BzPx+Pzabjb1795KTk8P169dFh8b69evZunUrnZ2ddHZ2LiqhrJ3DcDhMY2MjVquV9evXs3HjRpxOJ//2b//GSy+9pPJZJAmfPo7e7AdUAyAt+ypJzFkymTenUzL+OZaAg0T/NAb3oFomC4cZSa7BbitayBJIKEjMWzKYt2SSZ28g2TVEaWkpzz33HL/73e9wu9185zvf4Z133uEPf/gDBw8eZGpqSnBKxsbG6Ovro6amhjt37tDY2MiuXbsAFQws1Y2yVIRCIQYHB+np6eHu3bsCpKanp1NZWUlJSQmFhYXcnfHzf57sXHQdsgTFqVYqMha3d/6qxdcSDHiDoWVRPyyo1ukNKG6HSg5cUBtcLJRwiNDM2OLfBXxLpp1BTT0TiDXh+aKQTHEo6YX8/L2PVWtjnR4lFCQxMZGcnBzGx8eZnp6mtbWV1tZWLBYLBQUF7N69m+npaa5fvx4zc4/8vz63Qs0EyItI1coyuoQ05KRMwrOLWwhrDoSRFstaOk77XgsNnOj1ehRFIads9bL8PiUcJrOokv7Gq0suozMYSckt5vzNFqbHR/AHgmzZsgW3282V44eo2LqXxNzSKB0A18wEXdfP4XU6GOm4zUjHPUnU5ORklHBY9GsvF7Ozs5SXl9PR0UHn1TMYTBZMcQmEAv6YLoSgz0vT+fcpXv8AyTlF4j4JeD0MtdUx2qUODHa7nZmZGQwGg8hMCIAoSWBJorCmmrjEFJLLnbgnh7jy+VVx/iPLSMnJyXi9XkZHR8XnXq+XwcFBCgsLycnJYXBwkA0bNnDp0iUuX75MUlISL774IklJSbz88ssx1xDuAVZFUYR5khYTExPIsizugcgZZVdXF3l5eVE6ABpxMCsri7fffptwOMz69eupr6+nqKgohpD38ccfiyzJk08+GZOZAJWXcOHCBeFtEQwG2bdvH5WVlYTDYd555x1hdpVm0zE+G1xy0iBJUFOWi9Vq5bXXXsNkMvHjH/84qs9/dnaWP/zhD0xPT2MymcjMzKS7u5sNGzawf/9+PB4Phw4doru7m/LyciYnJ4XWwLZt27BarXzyySds3LiRQCDAm2++icViYWZmhvz8fMbGxkTqf926ddTW1nLnzh1eeeUV9Ho9Dz30EJs2bWJubo7jx4/T2Ngoyjc6nU4MUNq1S05O5qGHHiIuLo6rV6/ywQcfEBcXJ8TDtGva2tpKcXFx1PVyOBzU19dz8+ZNPB4PqampPPDAA4LEePTo0aiSodFoVJ0i7UkE51QeVPQJVnlCI2lrKRlVTa0yMzPVyVFGCfbwCrFc5G9QFIZS1hDvnaK7u5s333wTk8nE/Pw8RqNRAILjx48LqWltwnX58mX+4i/+AlAB6q5du/B6vczNzZGZuYyNMvdS/9rMv6+vj0AggNVqpbi4mE2bNlFcXBzVkgpQkWnkbx5YwcuX+wmF1PevhIIiySTKfv7hwVVfG5GjryUYSLEYv9CDQAkFUfxeQCEw0Ixx5ebFl1MUtesguDghLjR+FzkhfdHvQM1CBCd6l/z+/vquNS6eQHYluuwyQFlgxssYSjZiHG3GbAjgdrsxGo3Ex8cLPoDH46GjoyOq22CxQU2KT0WXnIUuo2jZjIYSDqNLzV8SDERGfHy8yBDIskwgEODxxx/n+PHjYhmtLrlixQqaptVMxHJhstoWTdcD5JSvo6BmM5KsU0lGRTUUBXwMt9xgsr+Txx//hiqYcusSiZn5yDo9rplJVVFwidDIWEsBgby8PDG71pTYtOsW8HkI+KI7VyKdKv0eF+1XTpGQnIpktBIOBXFOjy+QRe8tq4HKpKQkwaaXZJmK7Y+SnLNClKMM5jjiUzKZnp/BYLJgNuoFENCkjyVJYsuWLaSmpnLy5El0Oh1dXV0UFhaSn59PQ0MDv/rVr5ibm2PHjh3s3LkTvV7P4cOHiYuLY25uLtppk1hfjciYnJwkJSUlyigKVEDR09NDbW1t1PJdXV0ioyTLMi+++KKY+X/jG9+IWnZwcFAMotqs6/6w2+0cPXpUED0lSWL16tXk5+fz8ccfU19fL0itGRkZfOdAKf/w66XBpqJAtnmWN998k/T0dL73ve9Fkfra2tqES2F6ejoej4eJiQlhStTU1MSpU6dEB0N7ezuKopCamspTTz0lShwmk4mTJ0+SmJgodB3i4+PFwFpQUMD+/fsZGBjg9ddfJxAIsHXrVmpra/F6vZw8eZKGhgasViurVq1iaGgIj8cjeCagdh0dOHCAYDDI1atXGRwcJDU1lW984xusXr1auEuCmqns7+/nm9/8Joqi0NPTQ11dHZ2dnQKA5ebmcvDgQerr6zlx4kRUeau8vByv10tvby9XG1q4m7SdJZ91ScZtSCC7fC3h2VGqq6u5cOECI+EU0ZMf+xt1XYbijSRONOHz+RgaGsJkMuFyuYQQ1s9+9jP8fj+Dg4P4fD6MRiPT09O0tbUJTxVYnjzodru5e/eumP1rqf+CggIeeOABSkpKyMrK+sLB/IGSFAqtIf7pnTOYMwpwzzt4oCyT9stn8M4VkWhZHoh8VeJrCQaKU61YDTrc/uCiLFUlHCY01iNS/6HRTgImK4aCmoX6Maq0tiwTnhog0HMrZh1ahCZ60edVgjm2XKAoYZR5O+FpDTFLIMsQvjfjuj8lHMgsR59dtrDfkniOFFmHP3cNrpkOvv3YY6L9y+Fw8PrrrzM/P48sy0iSFDOjAzDGJSCVbkNOTBcdC18URouVyOJFYWHhgqLY0ajlnE4nTqcTvV6PzWbDbrcLIFBQUMCjjz7KtWvXOH/+PEajkXWPPr98NgWFgE+ti6+4L22fvXI1K9Zsv7fwwjp0eiP5a3ZQu20rbvvoQt07yPRgdLfE/WWaf0+sXbuW27dvC17GcqHV3SNjbmYaiAUkXq8Xs9mM3+8nJyeHvr4+sZ95VRtJylYJquL+kiQkwBKfxLp9T1B3+l0g2u2xoqKC/fv343K5OHnyJIqiCOng4eFh3G43ycnJfOc73xGz3a6uLjo6Onj66ac5duxYDBCLLGXdr/Y3OTkpFP60NjdQNd/9fr8gximKQmNjo7g/JEnixRdfFK54BQUFUS6H4XCYY8eOAWpm6bHHHos5f36/n3fffReDwSBInprG/p07d6JcGHfv3s38/Dy3bt1i60oL17o8i2YRD2xbQX6qE6vVyuTkJO+88w67du2iqKiIM2fOCA6Jph1QWFjIk08+iV6v57333qO9vZ2SkhImJydpa2tDkiR2797Njh07RPkjEAjgcrmQZRmHwyFIthrn4sCBA3i9Xo4cOYLD4WDdunUitX3u3Dlu376N2WymqqqK4eFhYbesneecnBxGRkbIz8/nzJkzTE9PU1BQwLPPPktZWdmiz19rayuSJDE7O8tLL73EzMwMmZmZHDhwgImJCerq6vB6vbz66qviHtW8JnQ6HW1tbQwODiJJEi7FGLP+xaJ9YJxEz7hQJ7SHTISXE91UwK23gcPBj370I65cuUJ7ezsvvfQSe/bsoaysDJ/PR0ZGBu+88w7l5eVYLBZWrFjBxYsXyc3NpaOjA6fTKSYwWlvmUqn/qqoqiouLKSwsFLyLf09MjQyQ4bzL/tqVnDlzm6d+/A/8pu0GH3/8MS+88MLXIjvwtQQDOlliZ56F0z1zRPZlw8IA7XMRGIhWGgz2NRAav4s+qwRMcRDwEpzoRZlfejapuWn57nyMqWIHUnK0yEp4egh/x1UkayL6/Bp0aQVIsqxqEIx0qhoEEcAAgwldTvmiAEZ78Cb0afzsZz8TKffIgV8DFtnZ2ZSXl2M0Gunt7aW75y5SxQNI1oSFdX0JgQtJwmsfFy+ohIQE+vv7iYuLi5r1Rp3DYFAwdbWMx0MPPURWVpbQQL969SrDnU3kVm1gKUAiyzom+9UMRyTzV9bpyK9ePIOjnZ+O8Xmaz51a8rC+LBBIzMgjp6gMp8vF3OQww8PDDA0NfanfJiUlMTfvVK/jl9yez+cjKSmJ/v5+cnJymJ+fx+lykV26dBpRks6RJ64AACAASURBVGX08SkYrTb87nlx/ePi4kQLXXx8vBCcmpyc5KWXXhLr27x5sxi0g8Egp0+fpqioiKqqKk6cOBEDBiL/jpwlgzrDWrduHa2traSmpgp+RFdXFzabjczMTGZnZzlx4oRI1YPaEVBYWMhvfvMbQFWSi4xr166Je+Cxxx6LASEaYXBqaioKWFssFiorK6Nsvrdt20Zzc7PgsuxbnUhBZgJ1vT7uDqsz6aKcZCoyA6zKcLJ9xy6wZDA0PMLsWA+HDh2KsiJPTExkcHCQ3bt3s3PnTjo6Ojhx4gSKolBaWioAY2ZmJk8//XSU50JHRwdnzpzB4XCQmZnJ2NgYPp8PSZLQ6XTIssz58+eZmJigoqJCyIZfvnyZW7duYTAYKC8vZ2RkhJaWFnG+NfLl/Pw8K1euZHR0lKamJiorK3niiSdihJEiz+PQ0BCfffYZoKbUq6ureeKJJwC4cuWK4GJMT09jMBioqakhIyODwcFBLly4QDgcpqSkhKeeeorExER+/fafFt3W/bGmupy+ulE2btzIzZs3kZUQsdOZqL3FYZ8iPS6OxsZGqquraW9vp6KigtOnT3P58mVkWea73/0ux48fp7W1lcTERHbv3s2rr75KYaEKrpubmxkaGsJisfDuu+9Gpf5LSkqWTP3/j0RfXx85OTkkJSWhKAo+n48HH3yQd999l+7u7kUlur9q8bUEAwCukR4CTXfQFaxCtzBIK6EgobEeFQgEYtP+imeOQO/tmM+XCk2y1iSDv/k8mG3Iiaq1ZtgxjuJ1ISdmYly1F5DuzeyMFvQr1iCn5uFvPCsAgS4ld1mxHEmS0CWkgdFC0O8Rn2VkZAhkrrUh5efns2PHDrZt28btgWnO9ixNxos5D5oo00QvoQX1xbm5OQwGA62trWI5g8HA2rVraWhoiCFAagPO4cOH2bhxI+vXrycxMZFHHnmEhsYmhtwujJa4RbIpCrNj/UiyDrMtibm5WVH3TszIQ29cuv1HkiSsCSkYLPEElyEfwj1Z4/vDFJdA5Y6DWBNTCIdDJAL5VRtxz9lpu/QRPldsR4kWOoOJ3Ip1ZBZXYzCZCYeCTPZ3Mtxej9fpWPJ3WmeGw+EQTP35+XlSs3LRG79YuzwhPYcMm4n29jb0er1o/9PSusXFxYyPq+We9PR0nnvuOd544w2GhoaEzPTVq1eZnZ3l2WefVdsdF1rwIiPyGmtaBKByQtxut5iVRmoJdHV1UVpayvXr1zl//rzgtgwMDLBz505qamoYHR1lbGyM/Pz8KJ/7ubk50Uqam5sr9lVRFMbGxujo6OD27duCp6ABwn379rFjxw5u3brFiRMnALW8oIn6gJplSExM5M/3rKPkk0/IX7GdPXv2cPb0CYaHR7jY6uSXp47h86vLy5JEeY6Rh9fEYzHK+P1+XC4X3/ve98jIyODYsWM0NTVRUFCw0Famkn8feughNm/eLJ6HqakpTp8+TU9PD2lpaej1esbGxpAkieLiYnp6etDr9czOzmIymXjxxRfJyMjg8uXL1NXVodPpKC0tZWRkROhSgDoRKCsrY/PmzdTX1zMzM8Ply5dJTEwkPj6eZ555ZtF7R5OCrqurE/dIdXU1u3btElyAyJJDbm4u5eXlOJ1OWltbuX37NhkZGezdu5eamhrsdjtNTU20trZi8HkxBpz4DXEsBfx1IR/jbWqWpbGxEUVRSHSPMJ1QsnRLniRjnRvC5XFx69YtcW5ra2vZvHmzUK88ffo0+/fvZ2xsTJg2rVy5UuhwnDt3Tog0BYPBf1fqH2DOG+R02yQXuqeZ9wXJiDfxcEUae0pTMeqjO4x6e3tZt26dyOg6nU7Ky8spLCwU1tXLmZF9FeJrCwba29tR5qfwN32CbDRjtSXgcswip+RgKFil9vLbRwjPLk4MvD+Ki4tjxCq0EAI7njnMcoTcryRhrNyhpnUjZuPajSbbUtDnV9/zQ/gSLY4A3//hj1E8c3z44YfY7Xbm5+dFf3ZeXp5gEPf19fHss8/S6/AvS6iMEmVaKJP4O67EyDDfP+AHAgHu3LnD2rVrmZ6e5u7du5jNZmFzCups8tKlS1y8eJGKigpSUlJUN7ea1fjTirGlR7S3hcP4PE6SsgoX1PbANTulEgkdDnSGL9cH/EXLGY1GVq1aJWRftZD1Bmr2PIHBrM56I8mH5vgkavY8QcPpdwgFYzs/9EYzq/b+Geb4RAFwZJ2e9BUVpOaXMlB3jrHBaO6IJs+stYQCIjsAsGnjJpaGHveieM12ZKOZzRW1BL0uBlrqaLhzhw3r1/PZZ58JkR5ZljGbzVitVvLz80Vd2uFwcOnSJTZv3kx6usp/MZlMMUJXkZmBSDCgdRJo973WNWC324Wi4u3bt9m0aRNFRUW89957JCcnC4GYDz/8EIjlCnz44YfiPvrmN79JT0+PStrs7BTgNBAIYLFYBACy2WzU1tbS0tIigEBmZqZI1YNKrktNTaW0tJRz586xceNG1q1bx7vvHkZRFFpn07nWFS0fHlYU2kd82N3wfK2NpATV2vfYsWPiftdADqjlgz/7sz8TUsI+n4+LFy9y/fp1rFYrcXFxAoyWlJSwbds2oc/g9XpJS0vDbrfz4Ycf4nQ6kSSJFStWCBAUKaJWU1NDTU0NTU1NvP3225jNZnQ6HZs3b0an00V1L2gxPj5OXV0djY2NBAIBysrKyMnJoaGhAZ/PxyuvvCLuSY27U1NTw9TUFOfPn8dqtVJTUyNknZubm3nttdfU1uGkJOFm+vYndXzuW1p7P2e+E4/LKY47KSkJ/3wf88kr8YeU2HeWEsYYdJPsn0ReyNJomZ/333+fmpoafD4fa9eupbu7m1//+tdYLBYMBgOHDh0CICTpmI0vxGNOBUliXV4S3z6wHZP+yw/G4/M+/uvJThyegOA2DMx4+O3VQT7rtvN/PbJSrG9yUhUFKyoqEhk1p9NJVlYWDz/8ML/97W+pr6+PaVf9qsXXCgwEQ2EmnH7cHg+DI6Ow0AKnI4w7CKZNjyMZzCjhECAh5VURdtrxNX8K/ljp4sj6sgYEItXwFotIpUE5JRfJuJzgjIw+u4xgfxOgoLgdX4hIlVCQt179FVaziaqqKtasWcOVK1ewWCyUlJTgcDhEvXpiYoJ//dd/JX3nUygsP6PWlBml2VG8/U2Yg24WF3OODr1eLxD9c889x4ULF8jKysJutzM8PBxFLuru7iYYDGIwGLBZzVz/9CgFxWX40SPp9ORXb8ZoidYesCakULnzMTo+P7Xs7FqcHyW87Owd1EHt+vXr4m/tZZdRWB6zfS1kWcZoiSd9RblqQHRfFKzaGgUEIn8noSd/zc4YMLCYyEmkTPT5s6dYvf87GM2xbnyRIRnu1TB1JivFG3bRP9DJ9V/9ivn5eXbt2kVDQwOzs7P09vYSCATIz8/nzp07+Hw+zp49i8lkYvfu3WI9ZrMZzcY60jxIi0i9/MnJSWRZFjPLvLw8gsGgkMSVJIkf/OAHmEwmXn/9dQAOHjyIJElMTEwwOjpKbm6uACKgZhS0NHtaWhqvvfYafr+fpKQkKioqyM/P5/Tp01gslqjMQG1tLT09Pbz//vtCZ2B8fFxcY1mWyc7OJjU1lStXrrBnzx4yMjJ46623VPGcNTv4P37/q0XPs6LA+IyPsG0tf/M33+JPf/qT8ASQJImBgQEMBgMHDx5k9erV4rlqamri7NmzeDweEhMTBVk1JSWFffv20dvby6FDh4iPj+fxxx9Hp9MJnsTMzAxxcXExPBVJkli3bh0rVqygvr6ew4cPC5+StWvXcuzYMYaGhtiwYYOwnNbpdLS2tlJXV8fg4CDx8fFs3bqVlStX0t3dzaVLl8R2NGGztLQ0oQjZ2tpKWVkZu3btIjU1ldbWVlGisVqtVFdXs2rVKvLy8sQz9F+e3Mvk63+iN24lQfRCKlwKB8md7yTDO8LzP/gBdXV1dHd343Q6MYaCrPG10mKpwhVQohwHLSEXhRPXCIeChFHJy5rqpaIoQo+lt7cXs9mM2+0W3QQWi4XpsIX+jC0E0aFNj85Py9Qdaea/PlxKceryz5oW/3KxLwoIwL3JVteUi8P1I3xvs1qS6evrQ6fTkZ+fL86LBrRzcnJYvXo1Fy5cYNWqVf9hwkf/GfG1AANhReFq3wx1Qw58C5K25q1PExrrJtjXQFgyYKrZgySrhyNFzPgkaxKmVfvw3fqIyLmzwWDAYDBQUFBAX1+fSJkuBwTuDzkuaVlBIkD1MjAYIeAjPDtO2DOPZI5btK6vKGG1syEcwu12CxKTXq/HaDTS3NxMfn4+3/3udxkcHOTKlSsEAgHsQ33oslcuK4wUtg/jb70oXmABvf5Lke0i3f0+/vhjnE6nsDuurKyktraWy5cv09LSIkCKTqcTg/Fwfw9JSUmklW9CpzfE7KMkyyiKQvGG3dR9+BZuhx2LLWlx5b9wGPuC6t+S53vhmLT9jmTFp+bHstTvj9S80hgwkJqWTsaK8iXPryTLGKw2bKlZzE/fy0RpDPmoY4g4336fj5GO2xSu3r4sSFws65RSUIZ3dowXXlBf3IqicPHiRUKhEL29vRQUFKAoCjdv3qSlpYUnn3wy6kV0v40xRGeGIuuoExMTpKamMjk5icFgwOFw8PbbbzM5OUlSUhI//elP8Xg8vPbaa+h0OuLj40Wv/v1ZAa1d9sKFC2L9RqOR2tpaysvLycjIIBwO82+/+wMpBeUk55ViNFsJB7yMdDWSkpLK4cOHxW89Ho+wupVlmYKCAoxGI42NjXzjG9/A5/Px7rvvUlFRwZNPPsnf//wYep1MMLSErgjw0ZUeMo2/xu12Cy0H7bolJCSg0+lEKePUqVMMDg6SnJyMy+ViZmYGs9nM7t27cblcHDt2DJ1Ox759+1i1ahW3bt3i2rVroi1YkqSoCYZOp2Pjxo2kpqZSV1dHfX09OTk5PP3001RWVgrgVlxczMmTJ4XM80cffURPTw9ut5uioiKeeuopJEni5s2bgicAiBm/3++no6NDAIM9e/ZQUVFBb28vly9fFjLkGlG1qKgoRtHS7/dz9+5dKmxBjH1nmLdkEtBbyElNQJnopKggj85ONaNTVFREc3Mzzz77LO+88w6BiT5WBO/isGbjNaeghENsK82kr+4Cebm5ottGIy8bDAZ14rcwWYsE1TqdDr1ez5w/TG/OFsLo7hG0F8LpC/LfznTx8lPVxC1i3hUZfXY3HZNLyMujdkGc7Zji2fU5mPQyvb295OXlibKd2WyOyrrt3buX1tZWLl++vKR+xlchvvJgQFEUTrZN0DoendKUdHp0OWVIccmEnXYVACxGzJNlpLgk5NQ8ZIfKQtdEcjQ3sH8PAIjat9Di3Qz3h6wohFGRq7f9MqbVD6FIEK1sF0bxzBPob4wZpIPBoLi5BgcH+f3vfx+1/uBYF/rc8iW3L8my6s7IvcFoMTY8qD3s2swmah2SJJjcWh1P28+EhAShFjY+Ph4FIEKhEI55J2W5RUsSGyVJwmi2kpxVQPfNT6je/SQy0edHExTqa7iy5HECxCVnkFlchSUhhZDfy9RgF77ZcdWgRW/8gkFXEsqFkZ95AuHlfQoWwpKYwvz0WEzLZHx8PDqdLuoFpsVIRwPm+CSySqrFLF37d9mOjHCY1IJyUYOvqanh4sWLwm/iwIEDWCwWPv/8cwoKCmJEVzQAEAkGIvc5UmdAayucnJzEarXy5ptvkpWVJayGQ6EQhw4dEi2ZO3bsQJIkpqamGBoaIjU1lcbGRjo7O5mamoq6vzVzosg4ffYcadXbMccniWugmC0Ub9hD09goCvd+X1JSQk9Pj6jJe71ehoaGeOaZZ+jq6qK+vp7a2lr27duH2+2mu3d4SSAA6nRhaGwagyEdSZIYHR3FZDLxxBNPEBcXx8WLF3n//ff56KOP8Hq9xMXFodfrmZmZQZZltmzZQnx8PJ999hl+v58tW7awceNGmpqa+NWvfkUgECAnJ4fJyUnRbqpFbm4uK1eu5NatW4Ig+Oijj1JYWBhzH6xYsQJFUUS7Znt7Oxs2bBDlzhMnTojypk6nIy0tjfHxccxmMzdu3BCy5RpBb2BggAsXLiBJkjBrKi8vj9F78Hg8dHZ20tbWRnd3t1BkLCrMp7+/H51Ox66tewkVq2ZNSUlJ3Llzh61bt6IoirjHDAYDpaWFan3frQ78SQEDpSUlTE1NCVJsQDYxbVvBbFwuYdmIKc3JulT4L4/vRAmHaG9v5+TJk/j9fuwJKyOAQHSEFXD5QlzotnOwenk1wp6p5Uzr1PAGw4zOeSlIMtPX1yfsnUF93iMBXmJiItu2bePq1ats3LgxxqXyqxJfeTAw7PDGAAEtJElGl5SJHJcULV5xXyjhMLq0fAILLYCRF+rLAgGr1Sp6vLUITw9C8Yalt6uE1WzAQm1ebQvz4Ks/ibloDUpKHpKsQwl4CY52ERxsRUeYUISS4WI69JFhMBgwEsDX34ihcDWKEhaDrjaYBEe7opwRl4vFgIC2rvv/HhgYECzxoqIiHnroITIzM+np6eG9994TgMO4RCbk/vUZrfHMjPbT9MkR8qs3k7IAIMKhEJMDnQy23FjWbnrFmlpyytfeG0zDYbV/3++h4dwfcc1OYU1KW5LIEw6Hcc9Gkw41H4IvE+GFmbXFYhGyvqDObpZrV7p76wITfW1kFlVhjk8k4POQmJqJwWpb8jeSLBPWGXn55ZexWCzo9Xoxa7pz5464ZzweD5mZmVy9ehWDwYBer8dgMIiBore3F6/XK2b82n2nnUNJkkRboba+hx9+mMTERI4cOUJJSQnvv/8+drudDRs2cOPGDaqrq2lra1O1IFCzAXfu3BEEOM1tcP369TFAoKGhAachleS4xKgBULt/4lMyKVi1heEWdTuaMmB5eTlTU1O4XC6effZZLl26xODgIJWVlczMzPDP//zPOBwOZqecS/e4L0SCRS/q/atWreLAgQOYzWbC4TAVFRUMDQ2J86e9S8rKyiguLubatWs4HA7Wrl1LbW0t7e3tvPrqq8Llb2pqKka8JxgMotfrGR4eZmRkhNWrV7N9+/ZFe+Pn5+epr68X/AOn04nZbCY3N5e+vj7BHwGVS5Gbm8vMzAy9vb1IkkROTg4PP/wwwWBQcC6am5spLCzk4MGDVFVVxQhOOZ1O2tvbaW9vp7e3l3A4TF5eHnv37qWyspLk5GSmp6f513/9V0IhNau5Y8cOrly5gs1mo7W1lf379wvQpN1HU1NTmM1mFXB7PNy5c0e87xwOBz5DPD0Z2wnJBvF+dxuTuOKU8Hw2wN/vK2HdunWcOXOG2tpajowlsFztUwHqBh2LggGPx8PQ0JCace2dBXnF0itaCINOLZ15vd4oqelIfRgtamtrVd2Gs5+SWLmdGXeAFKuBHcXJJFpiBbb+v4ivPBhoGptftoNLUcKq7PByIUlRpQPthoucoWifxcXFUVVVxc2bN6O+d7vdUTNeAMXrIjR+F11mrNGH+juJ4EBT7D575vC0XkLVJdBBWB00zWYzFRXVdHR0iH7y5YAAqKndQCAArkYUtwN9fjVS/IJDlnce/2CrWnq4LwwGA+Fw+AvB0FJthnAvJa/X6xkaGuLVV18lKSmJwsJC8YILBoME/Ms7e2nrCnjVY3Y77Aw0Xyfo96uAQJYxx9mIT04XMsD3R0ZRJTnlawHEYC8yC3oTxRv30n/nczKLq5bcB1mWGetpifnc55rD5ZjGmpCy5Ew9HAoxM6aSyxbLACwmrhQZzulxnNPjYj9WbttPijm2G0MLRVEIBfzodDpSUlIIBoPYbDZmZ2cJBAL09fWJe6ilpYVQKBQlpKSFNiDcH//4j/+IJEnCZVHTgoiLi6O1tZXZ2Vn0ej2HDh1iZmaGgoICtW1MlvmXf/mXKHLa9u3bSU9Px2AwcObMGRX4GY1s3ryZ+fl5AVAmJiY4d+ESa/Y/t+R5kmSZrJIa0gwB6m6qte6Kigr6+/tRFIWsrCyRpQDo6ekhOzub3Nxc5ubmWFVg4tbd5dkyqwtN4ljT0tKEidepU6cYGxsjPj5egAEtC9TT00NnZydlZWV861vfor+/nzfffBO3201WVhZTU1Mi9Q3q5GLjxo3Mzqo6/H6/XxAmc3JyooCAoij09fVRV1dHe3s7siwLeeKxsTGxfVB5KqWlpYRCIe7evRvlUbF161a8Xi9Hjx4V+79582a2b98eM1t1OBy0tbXR1tbGwMCAIDju37+fysrKKIIpENWR0NHRwb59+9i4cSM3btwgEAjQ2dlJVlYWk5P3PFzuzxJprbLz8/OEFYWxnO2Ewoboid7C83d7aI4PmsZ5oiYdn8/HwMAAzkAJyEtzuAACobBQGxwcHGRwcJChoSFBkpVlGT8GyC1YdoKZHm8kO8HEtZZe9Hp9VEtnXFysC63RaMRYtYejYwrSjSFkWSIcVvi3m0M8szabp9Z8uQ6H/8z4yoOBOW9w2VZuSZJRwsEF3spSF08BkxVj5U4Uv4fgWA+4ZqJmu9r/XS4XeXl5BAIBMetYLgJd1zGazYSTclVgoiBuWMXrRE7KBp+LsHexGpQigACoKVttm8tlBJaq9Ycm+wlN9qvgSJKWnUVH1ocje6bvj6WAACAAldlsFjOk2dlZvEGFnPJ1yDo9njk7mQlmZscHSUzPXXJwC/p9zI6pLPukrAIqdhwAJDGwJ6TlkJiRx2hXI723L8X8Prd83ZJpdUmWScxQr89gax35VRujuB7a/4fbbuG0L67IONh8nYraA0tuQ9bpWLv/24x03lEliBfKJ5ESzl8mNG2L6cEeUnOLl1025JzGsSDMYjAYGBsb4ze/+Y1adjEahYbEd7/7XbKysgBEKr+pqYmPPvqI3bt3U1ZWRjAY5Pr167S2tqLT6Th48CD9/f3CqlcbqEpLS0W9XKfTMTMzg06nEyx7WZbFslpaOJIfoIXf7+fXv/51zOdp+V/cjy3r9LR39wHqS1ZrJZNlmYGBAYxGIzt27KCsrIyUlBQOHTokWmazkgysKjDRNBDbeixJkG7T8f0ntrN6VRXNzc1cunRJdKUYjWqZyel0YrFY2Lp1K729vfT19WEwGISoze9+9zt8Ph+ZmZn4fD7hHwEq52D16tWMjo7y2WefYbPZ2LdvH3l5eRw+fBiDwcCpU6cwm82sXLmSO3fuUFdXx/T0NGlpaYIjcOvWragsnl6vp7y8nKGhIVpaWkhKSmLr1q1kZ2dz9aqqxHj16lWSk5NZu3Yt9fX1rFq1ikcffVSsQ1Pwa2trY2RkBFmWKSkp4fHHH6e8vDxGAyIyNM6G1kXR0NDA1q1buXbtGklJSTQ0NBAXFxfzntHeY1lZWej1en70ox8xNTXF//PGu8wppiW10xQU/ljXS/MHrwJqhsuYkoA7Lg9lqXIkCuHpQf7pnz4QQNlms0VNCMvLy1m1ahXnp8xc6J5ZskPrz1ZnIUsSvb29FBYWRvEp4uPjBdlWi1Ntk3w2LoEkoaDaH6vHD4dvjxJn0vNo5dJKt/8r4isPBuKNui/IDCiEfW501sWFI9SXt4wcnwq2NFAU9LkVBEe7CHTdQCMVRg6u9yvwaSFJEoWFhTidzns97EoYV+OnSJYEDMUb0KXmisFFstiQCqohrxJ/83nCjomY9S1F4LsfCGRlZZGQkMDExEQUCgf1JrZarffQaCg2rS3sk1Ew++ZwTd3TNY8UT/F6vTEzW40fsBg4URRFbFfWGSjdspe0PNXpUUFBlnX4PS4Gm2+QkJYDSxAu+5uuEg6F0OkNlG97BEmSo9PEC7/JXrkax8Qw9uF7baAGsxVLQnLMOqP3M0xiRh6Dzddxz06RU7EOW4oqE+qanWSqt5WRntYlf28f7qW77lOK1+1UszkLYleR4MBoiWfFmlrikzPoun723w0E4B5hc3qoG/fcBszxSbFlDUVBCfoZ7mzE6/XS1NTE+vXryczMFCqFY2NjHDhwgNOnTzMwMCDAgCzLmEymKA1+TTq3ublZaBC0trbS1dVFVlaWkHQ1m81UV1dz+/ZtgsEgwWAQnU5HRUUFDocDt9vNX//1XzM3N8cvf/lL0tPT+elPf0owGMTlcvHKK68QCATIy8tj//79BAIB8d3FixcXdBi+nLGYooRF1kqz2L169SqFhYV861vfwmKx0NDQwK9//euo+9ZgMPC7//7n/OytTzhyrg1fcGEgkKAqz8RfP7ORP3vycUKhEOPj40IkKBQKiexOeno6VquVTz/9lLS0NJ5++mk8Hg8XLlyIKkFGDgjJyclUVlYKgl5GRgZPPPEENTU1YiD5/ve/z+9+9zuMRiNHjx4VRMXKyko2bdpEb28v58+fjxKfcrlc4pp3dXVRVVVFUVERdrud5uZmPvvsM2RZJiUlhSeffJLc3FyOHj2KwWBg3759jI+PCwAwMTGxUMsvFV0Ii1lZLxZ2u52kpCTMZjNGo5GTJ0/yzDPPkJOTw9DQUNQ7y2g0opliaVFSUiIIt2lpaWRXbqB7UlmGkyURkE3Ep2XjnBzhkUceIb2khr//sGPxxRW1jTFfmSJ1xQrm5uYYGRnB6XRSXFzMvn37qKioEMdbEgzj9Ie5OeBQu7BkGQm1vPTUmiweLEslFArR39/PAw88ELWp+8sEgVCYIw3Ll2mPNIzyUHka+kW8ZP5XxVceDFRn2WhZgjMAKnA02vvwzZrQ55TH1MzFchFSrwC6rFIUnxtlWB0Avgx3QEvXVVRUxJQNJIMJXWpu9LZYyFzIYKzejXTnFF63U+zXckz++4GCZtMZGSaTCb/fTzgcjklLifWY4jBW7US2paHJFIclCdPMKL72y1HiTOPj44IN7nK5ovZzuX01xyeSV7mB9BXl4txrDw+AwWRhxbqddN88T17VRqwRA3fA56G/8SoTvW0ApBeWIy90OiwWSjhM9srV2IfvfiGfIvqHiFnG9FAP00M9onSkhEPIVio8AQAAIABJREFUshwl97tYTNxtZXqwm5zydeRXqT3D0XVtaeEYypga6GJmtO/L7dtiuxsO03LhA8q3P0JCWnYU6HDP2VmdG881+zTZ2dncuHGDdevWIUkSlZWVop5cXV1NY2Mjg4ODbN4creyo9UNHDl7avaSBiW9/+9u0t7cLRncwGOTtt98WpLIVK1bw/PPP4/P5+PnPf86DDz6IJElRHQSyLIvBIRAIIMsyDz74IBMTEwwNDUWlaAHmJke+sEMn4HVTkJ1Be/s0VVVVJCYmcuXKFdavX8+BAwcYGhriyJEjUccGapvXI488wqlTp8gzT/IP3yqkc3CGsCLx2EPb6Otup729g3/473/g4ytq6r4o00JVrh6LUaa4uBiXyyUGeavVSkpKCmfOnGF+fl5YSEfek7Isk5+fj8Ph4PPPP6eoqIjnn3+ekpKSqHvH7/czNDQk5JFBfSdVV1fT399PS0uLWJ82E9X0KrRYv349AwMDNDQ0YDQaRbfP8ePH2bt3L3l5efT09NDU1ERpaSmvv/46drsdk8lEWVkZu3fvprS0dFGTqC8Ku91OYmIi8/PzBINBQSrVAI0kSVRXV9Pc3ExCQoIgI4M6CUlLS8PpdDI8PMzdu3eZnLCDtLiaYmQ89ugjHP7dG8zMzDB44RRF7jC91tIFN8SFe2jBGXGLeYqZ3rtMRADS6upqIRQUGUa9zN/vLeY3752g02mgoKic9Hgje1emkp2gAoaRkRECgUAUXwBUMOD1ekWptHPSxbxv+fFlzhukc8JFVdbSmg3/2fGVBwOFyRaKUqz02d2LClRIXiffe2wPNquFC409tEz7CRjjxQ2wHINdn1eJd6gVwiGB/svLyxkeHl5ycAVEWjIydDkVS77EJElG0RnwJ2SjuDrFQK+lc4Wo0ULYbDbcbvcXApT7fxe7UwaMax5CMlrFfoh9SspUWy5vn77X58tC7T6C/KZ9thgY0Ol0mG3J1Ox5ElmnX/pcLwCDxMw8Gk4fIj4lE3N8AkGfF8fksCqEtBBxKRnLsuglWSY+Ra2nCiMhrxuv04EpLtbWOPJ3c5MjUZ8p93lIaL/NyspibGxMcB4iIxTwYzCaovrz749wOExmSfX/FBgA9biaz/+JdVtqmXB42LJlC+ODd2k4f4aUvXspKirC4XBgt9sZHBwUbXVa9PT0kJeXR1tbW8y6NZKYNmBOTU0JEyyTycTGjRu5du1a1IBTWFjI1q1bee+997BarTz//PPo9XrhoLlmzRrm5ubo6ekhNTWV/Px8PB4PjY2NYtYnSRJvvfUWkiQtKgMb8HmY7O+IApaRoSgKfvsQbW2tbNy4kfn5ea5evcr+/fspLi7m1VdfFZmMyNi9ezd6vZ633noLs9ms2kF7XKyvyOGZZ54hPT2dwx9Y+W//+Cf8wXsk0u4xPxdbZP7huxsYHFQtePfs2YPX6+XWrVtCwlc7h1pkZWWRlJREV1cX/f396PV6amtrxX5oMTk5SV1dndCEKC0tpaioiLq6OsLhsAABycnJpKSkMD4+Tn9/P2lpaezYsYO+vj5BSLx+/TplZWU8/fTTlJWVYTAYuHTpEnq9Xhgm3bql+rCMjIxQXl7OI488QnFxcUzb4JeJYDAotP57enrE+8pkMrFq1SqamprYsGEDHo+H9vZ2RkZGhIKmoijinSvLMpcuqaW/1157DYCwPg5y8pfcNoqCOTDHu39QSap1dXXk5uayJdOG1HWZ6YRiXOY0FEUh3jtJ2vxd4hKNrFpQxYz0x1h6EwqOvla+sXkze3YVxXzf29uLyWQSmTUtNKDd19eHy+XiZr8d+H/Ze+/ouM7z3Pe391QMBhhg0Aa9VxJgLyIpkaJEqlBWt+S4qPjKiePkOGf5rtyVk3t97lnr+MRJnMiR47Ki61iiZEW0Gm2rkBQlFrGADQRAohKF6L0MMDMYTNv7/jHYH2YIDEgpseM4510Li8TMYM8u397f873v+zzPzRkE88HPxmr7t4rfeTAgSRIPr87gWOcEV4ddUV3AhclmBs8c5bWOT3jmmWe4Z1MV9xAepOdbezgzsXLKRdIbkRNSUGbGxEBub28XqSKr1crc3NwtrT51SRkrrmZARbalI09cj7KK9fl8pKWlRa2OXC4XGzduJDs7m9bWVjo6OpZMxhaLZbF5MNY+ZRQhmeKXr6NLMpLVji4lh9BEn3hdS/9q9WZtP5eLUChE6da9YSBwE6lNWZZJzS3let0J3FOjMWvzaihEbC3Fhc/ccD0kSWLoWgOF6+6I+Xn39DjuqaWTRGTMzc1hMBjESiEW/dKckLyitKgsy1HZj88S+fn5YvLpaG7EZDJx6fgETz31FBdOHePUqVM8/vjjvP766yQmJnLhwgVSUlKor68XGZP29nZWrVrFuXPnmJ2djZp8tTHu9Xo5efJkFBfd5/PxySefMCcl09g1T4I1HofVz5e2b+f9999HURR27twp/DPq6uqoqqrCbDazf/9+AGGVHDlBSpJEQkKCoPVGlqMkSSI5ORm9Xk/35ZMYzHELKpXhlI4GvubG+mg8fZQdO3bQ2dnJ1NQUDz74II2NjRw5cmTJebRYLDz44IOcOXOG/v5+4uLimJubExmKbdu2EQwGOfjrQ/zRdz4gEFw69gJBhf/1ykX+6f+6m/LiXGpra5mcnCQpKWlZ4JyYmMj4+DiTk5Ns2LCBsrIyGhoaOHPmDFevXhX2xvX19fT09AhHwlAoJCh7N8b09DTz8/NUVVUJ18vTp09HyS9v3bpV8NhDoRCdnZ3U1taiqiqvvfYaJlMYxD744IOsWbPmU8vjqqrK+Pi4MPrp6ekRVG1FUaiurhaZtUceeQSHw8GHH37Ivn37uHr1qiglaOUzbd8jeyqys7PZsmULRUVFvHB6gMuDruUb+SSJDFeneBb86Z/+KQkJCfz4xz/GGnCSNHOFwERAAI7bbruNPXv2fKomvYGBAebn52P6Cmj9Alq2SPvRGkVfe+01AMzJGZCwvOdKZOQm3VpJ5jcVv/NgAMIUjnvK07mjKIUB5zyKqpKVaCbBrMdZ+EX279/P/v37efrpp7HZbOj1ehxZmTBxC1LEyww0rWlupezA0rgVwxp12cl7fHw8PGgVNWx2FJ9Ew+g8dc3Hidcp2O32qLQasITZIEkSer0+ShFQl74UzUbtjaqgSy+IAgNa3Jh10ARrIl9PSHF8qklPp9ffFFhND/fgKFkd831FUaL6BWBBy76zCYstNYqvrz2kfXMu2s8evqV9LC8vF81wsSLkn18xla2qKkH/TbI2K4QkSfT29nLvvffy8ccfC/Gbjo4Ompqa2LlzJx999BE9PT1CpEdb/UuSRFlZGW1tbXR0dLB3714A+vr6WL168bxq16Gnp4fr18MMDW1yCOqT+Jczk/QNt4araqoLFbhw/WXuqQlnFKqqqoQwlia0893vflcAKK3kFFnKiY+Px+FwkJWVRVpaGkePhvsqQqEQcXFxeDweMb6unT3M4196hvb+cXyBEH6vG8U1Tm9nG7t27RJaF9nZ2VEOiZETc2lpKUVFRbz55psYDAZBYcvKyuLzn/88NpuNtrY2Dh8+zJFLIwSCy8jjEr6zFUXiwOEGNuQ3is77yDq45tfQ39/P7OwsqqqSkJAgGAmPPfYY69atC3/XAmhJSkpiw4YNDA4OCoExCNfMTSYTQ0ND4nj0ej35+fk0NTUJmuLu3bspLy/nJz/5CVarlenpadra2mhtbeXatWviOVZeXk5NTQ3vvPMO27ZtY926dbc0DiGcOeru7hZWvy6XC51OR35+Prt27aK4uBiz2cwLL7wgsgHaZL9x40aampo4cuSIyLLd2O8EcNddd7F+/Xqef/55MjMzmZ6eDjMervcRn7oRjzl1IXupia5LbEr0oJucwbswvg4ePMjk5KTIdBUXF3Pt2jW2bdvGqVOn6OrqEvfCrUZnZydxcXGCjREMBpmYmBAl256eHoxGI88//zwQ7kfJyMggJyeHqakp7rzzTnQ6HbW1tVjnx8OZimU6ImUJarISSbP++6oT/ocAA1rEGXSUpkW7qSUlJfH0008LQPDMM8+QmJhIutW0ol4/LOgAeJbn1d9ySBK61LwFud/Y6W2QVvRJUBPTMVfsQDKYQFFQJTAUrsU/0Ye7LSy0s1JNW6fTRa1kFUVBMtxMZEcGvVHU+laaqDXHNS3MZjMWm33FlH7U8anqTWWEAaZH+mKqEIYfjCpD15Yq+0GYrz/Z30lG8SosiXaC/nkm+joY621HuUWtgKampVLEN8ZEfycpuSUrfma879qK78eKSDlsv9/Pnj17+OCDD+jo6KCgoICjR4/yJ3/yJ5w+fZoLFy5w//338+6776LX62lubub+++8nJSWFtrY2/H4/TqeT5ORkUUbQBGM0AKCqKmvXrmX9+vW89957XLs+zMsnuwksKH1GJoUaOp3M+wJ8YUcKL730UpTjpDapa6EoCmlpaWJi2Lx5s+hcV1WVN998E6fTibIgKR4JbmVZ5g/+4A84efxDBgYG0Ol0JCcn43Q6heKl5m8/OzsrGgkjKWp79uyho6ODI0eOYDKZwqJTOh333Xcf69evZ2Jigp///Od0d3ej0+noGvWv+KxQVJXm3lk25NtERkOSJHJzc0W6PCUlhQceeICamhoGBgZobGwUbASNJWI0GiktLWV0dBSn0ynS9mazmZSUFCYnJ5mYmMDhcLB161bcbjdNTU0Eg0Ha29vZvHkzGzduFA2gPp8Pu93O9PQ0LS0tNDc3k5aWxubNm/F6vTQ0NPDoo4/y5ptvYrVahUVyrAgGg/T19YnJX+tTSk9PZ/Xq1RQXF5OXlxfVV6CNpYSEBLxeL2NjY/zgBz/A6XTGzCpGluCuX78u6K+XLl3CbDaj1+vRE+Ib65M4295Dy4xERnY+k30d5KiTKKOzrF8oZQGC/hgXF4fFYuHxxx/nO9/5DklJSVGCabcSWlN0U1MTNpuNX/7yl4yOjgrnTEWSiY9PQCWsQ1FcXExGRgbJycmizHrlyhVqa2vx+XysWbOGhzas429OjeD0BqKaImUJEs16/vC2FUoiv6X4DwUGYoUGCF5++WVefvllAQjK0uJpH4uRZlJVQmM9OFKSqaqqYmRkhO7u7hWpdEtCp8e4ejc622Kde7nJUVUUCPoJjfUsuxnJase46s7FQRLRfCen5GCs2I6/5RO8Xi+SJLF69Wp2797Nyy+/LB5My6W0Vc8Mqtkas5avKgrq3GxUulbrNl8OdETe2FarlcxbdP/SYrhzqebCMl9Cyye/puqOB4WzoESYkqOEQlw7d4S5mdg39szYADNjt2ZF/FljavA67ulx4m0pSwGLouD3ekRD5KcNbULV6XQcO3aMp556isLCQvr6+piamiIQCHD8+HH27NnDu+++y8DAAImJiXg8HmRZFu6W2oq8vr4eo9FIfX09Fy5cEN3xmoZAXFwcDz30EBAGHxc65/AHFZRlVHlUoLXfQ++omZzUxYlfU7jTLLC/9rWvkZiYyGuvvYaqqsTHx3PPPfeIz589ezaqjyESREiSxOc//3mOHTvG8PAwBoOBuLg43G43NTU1nDp1Ck3C12w2Y7Vao0oRycnJbNy4kePHj4uxqa2kN2zYwNzcHC+++GJUM24oFLqpLDdAYKGmq2UkPB4PfX195Obm8uSTT1JeXi6+Mz09ndTUVOLj45mZmREZO7/fH+V3oPUMzc/PMz4+TkVFBQaDgevXr1NbW0t8fDzr1q2ju7sbp9NJe3s7GzdupL6+nra2tqhavSzL/PEf/7HwgPjJT35CRUUFnZ2ddHZ28uSTTy4Rv1op9V9cXMzWrVspKipaoiugndfr16+Ler8mQAbh7KrdbqewsJCkpCQ++ugjAYgg+nk1ODhIZWUlqqpiNpvJzMzk3LlzPPHEE1RWVhIXZ2b24EE2FBpo9vWKZ3RtbS0pKSlMTU2hKGH9AK833FujnRODwYDNZsPpdOL1epcIKgWDQcbHx6PS/JEqqpoGRm5uLvbyTdTNmOh2hq+lyTbHlqIyyivSkBfYVlevXhVU2sTERD7/+c8L4Pbn24I8/6uzOK35hCQdshJkb1UGj67JxG6JLUr224rfCzAAYUDwzDPP8PLLL4uSwZ6yNPonZ/GEbpigVRW8s9y/KosLtWG6zurVq/n617+O0+nkX/7lXwiFQjdt4DMUb0RODF9obfuR3yMeMKEAUscZYWV8Y+hzVy35Wy0kSUaXmofOmkyyWYfH4+Hq1auC/734uWjFQrvdTk6qiQ5W8E2QZYI3CBJp3eQ3i4mJCaZnzrAps3RFqV5tNT87PszIrYABwO/10PDhAZId+SRnFSDrdHimxxnraSe0jDX1bztUVaHl5K8p27qXJEeuoMNJkozHOUH72cOEAiuLDC0XkQ9LCFOw3n77bb74xXApzOVykZeXx6VLl3juueeIj4+noaGBsrIy0fzX3NxMQkICCQkJzMzM0NDQIFZhmpNhTk4ODzzwAC+//DKBQEDQ6DweDy0DvmWBgBayBNcnJR66J2yQ09bWxre+9S2hNvjQQw9hs9lEUxnAF77wBVGC6O7uFmYzy8VDDz3EiRMnGBsbw2g0ChXExMREsYrW9PsbGxujgEBWVhYej4ejR48uKRkMDw8vK7CkfS4nxcDQdGxNE0mCvFSj+PzAwIBY5VdUVJCcnIyiKAwMDHDp0iVaWlqQZZnCwkKSk5OjSk/aNjR6XW5ublhbYnKSK1euoNPpqKqq4v7776ewsBBZlhkfH+eVV17B6XTyox/9CAg7J959990kJydz4MABFEURK/bx8XHGxsbYsWMHhw8fpqysjIqKCmAx9a8BgMjU/5133klxcTHp6elLnkder5euri6am5sZGBhYUkZNT08PewTMzvK1r32NoaEh+vv7hQvj3NwcIcnAdHw2PoMVnRKkMM6Hzj3Ogw8+yJEjR2hqahIlssrKSiGgBYjrD4vaKOnp6QQCATwejwAYjY2NlJeH5dkNBgOVlZXU1tZy/PhxkZXRfiYmJsQ4SU5OxuFwsGnTJrxeLxcuXODP/uzPsFqtHGod581z/cjSYobRp4vjn88P0DbmYW+6l5MnTjA+Pi5AYX5+fhSFt772E7Km2/mve1djjIvn1Zd/xv33fe13AgjA7xEYgKUlg6effpqnNubwo1+8j7WwGlVvwmrSUZUax/n3j3B+QM+zzz5Lc3MzH3/8MT/84Q/Zvn07X/7ylzlw4IBopls2fW4woUsvWkHoKByB7sthBcBQAP1CzTx6exK6lNwVG/BUVUGy5zDRdxVJkrBYLPj9foLBIFarlfLycpqamjCZTEiSxMzMDKFQiJazx5CKN6NLLwxnGjQxpIXsRaC/GdU9FfN7bxahgI+ha41kV6yPmSEI+n0MXWtgqL1hSePfiqGqTA/3/Ks78v+twhgXj95oxjfnJhTwEfTP0/LJr7Ek2rFl5IAk4ZoYidkYGWub5vhEAj4vXpdziaeDJgv88ccfc8899/Duu+/S29tLcnIyhw4d4r777uOtt97i2rVrYsX/61//GlVVo1ZAW7Zs4cyZM4yMjPDAAw9QWlrK4OAgwWAQn8/Hd7/73cXSxDINdDdGQVEZe/bs4Qc/+AGrV69GlmVaW1ux2WyUlpYSCoV4++23gbBngqbONjMzw1tvvRVzu/v27eP06dNMTk5iNpsFNSusPxDer5SUFILBYJTsrhZDQ4tsEVVVSUlJYePGjUiSxOXLl5dlGWjbXVcQx8VO74qlgk0lVmRZpqysDIfDgdPpZHBwUFAptTCZTKSnp+NyuUQWQLNVnp2dJRAIkJIS5qk7nU7BBkhPT8disdDb20tXVxcJCQkMDQ3R0dFBf3+/yCT4/X5SU1P58pe/LJREtYbfiYkJkpKSaG5uxmQyMTg4yNzcHKtWreLo0aN0d3eLrEhGRkbM1D+EQUNHRwctLS1iO1ro9XoyMzMpKSmht7eXUCjE2rVruXTpEh6Ph+9///tAeHWcm5vLnj17eK++h2vmElRktALuuCSTYB6hf2gEn8+Hx+Nhy5YtpKam8stf/pLW1lb8fr/IduXl5dHV1YVer6ewsJDOzk50Op1o/NXMol566SUgDAy0/b548SIXL17EaDSSkZFBfn4+mzdvJiMjg4yMjKisyZtvvkl2djZWq5Vxt5+fnQ9fo2icHH7mnbk+Td/FS2zITOShhx4iOzubV199NQosud1url27htFopLysLMyikCRGRkZET8K/d/xegQEIozutZKABgvIkHcMtH/ONb3xDTFqFTzzOT3/6U95//30efvhhqqqqOHXqFKdPn6a+vp5t27Zx5syZsLCKNRlDThWk5CLJOpR5FybfLIGbdONKkhSebBdEgJbtTpflm3bio6qwsPrWGAjaw9vtdlNXV4dOpxONc9u2bVt0EWw/Szx+5m25SOZwv4U+OI+3u4HQaFfEbizl7BtMccQlJBEKBfE4J5ZVfuprOo+s05NZWrMg7BEW41GUEL2NZ285G/BvGTqDiYzCSuw5xegMBjzT44x0Nn2qiVqLxLQs8qq3kpgapg+pisLEQCe9V2rxz7mZm51ibvbTAaq4hCQK1t5OkmPR8tTjnKD3Si0zo/1R+g7BYJDu7m5yc3MpLS0VaeGBgQFaWlqiVsDa+NJMZr773e+iqipnzpwRq+sTJ04sWSFHZsCS4nVMuWNnxFSgtCCdrq4unE4njz76KO+//z6qqopSwMcff4zX60Wv1wu3wmAwyIEDB2JmnfLz8/nwww8JBAKi0Q+ilTJtNhsejyeqlJecnExiYqIwyQmFQpjNZh577DGysrL4+OOPhe5CrDCZTCTh4+EtyRw8P71w7sPvaT4GD22287l7bmfz5s2CbTIyMsLFixeZnp4mGAySmJjI/Pw8Pp9PTLiRks6ahn0wGBQTaH5+PklJSUxOTjIwMIDBYCAtLU3oEkAYAO3bt49Vq1YhyzIvvfQSo6Oj7N+/n2effRadTkdRURGtra2Mj49TXFzMlStXSEhI4Pz588iyzMGDB2+a+ne5XKIBcXh4OOo8GwwGcnJyhAdDpJZ/f394zA4PD2O1hgHTI488Qk5Ojmi2vDI0S3ubMUKhdXHx4IrL4IWT3SR1XQl/9soVzp8/j91u57bbbqOrqwur1UpBQQGHDx8OM066u3nuuef48Y/DdtR5eXn09fWRmJhIIBAQAlG9vb1YcyvoTU3HbU5DZzBQkW5l7ep01ucsT/dTFIXu7m5hPvTxtYmb9J+pGEq28uVHasQrWkOnFhcuXEBVVcHikGWZ1NTUKCbFv3dI6q0Uy/4DxvT0NC+//DIGg4GdO3fyzjvv8Nxzz5GdnS0+c/XqVd555x3uvfdeceGnpqY4evQobW1tOBwOpgMyUsUdIC1O2pGNSjcLX+OH4AprcMcqO5g2P4JkssQW2lFVAtdqCY12L/u+FLHi10JLOWsyqatWrybRnsbl+nq8M1NRf3NjStVgtlC07g7sOYtOg745F/1NFxjrWaqxAGC0WEnNLUVvNOHzzDLR3/mZUuX/2ohLSGbVnQ9jMIVXxppyoizL9DdfDJsd3WIkZ+ZTsf3+8HYiHSYVhYDPy5WP38I/92kYJ2BOSKLmrseX2DmrSlgXo/3MIaaGFv0XNJCnqiq7du3i1KlTy46jnJwchoaGMBgMwlFQa+xaLlJSUvD5fLjdbrG6CwQC1HV7OXol9jHpdTLdH/4vjh39gKmpKZ599ln+9m//FqvVyre+9S1hWANhcxabzcbs7CxXr15d1rNBC20MRjZQQngF+vjjj5OcnMz+/fujVqc1NTV0dnZGgeOamhr27t3LiRMnqKurW9ILEDnWNdnkyGa28dkgDb1+ro/6CSkhyrKt/NGTt/P5z92F0WgkEAjQ0tLCpUuXGBgYID4+Xjg6apOnwWDAbDbjcrmE6JLP54tiBmRkZFBZWUlxcTGKotDW1kZzc3NUU6bFYsFmswllwK1bt7JlyxYBCEZGRsjPz+epp56itraWjz76iOTkZHw+nzhP2vOvpKRkSep/enqa1tZW2tvbhceBFiaTCYfDQXl5OZmZmczMzIiJX8uwxMXFkZubS2dnJ+vXr2fv3r00NDRw+PBhvv3tb0ed9/9x6BrNI65lu+m1KBs6hinooaqqiu3bt5OZmYkkSXz/+99n9erVVFZWcuDAAXw+3xL6s1aGqqiowG63MzAwQE9PD1PxuQymrAmjO00QLbxkYZPNyzqrR2SAQ6EQwWAQl8tFf3+/OF8NciET+tQV1BAhwaTjpS+uEb8fPXqU1tZWvvnNbxIIBPi7v/s7/H4/X//618nICCufvvPOOzidTr761a/G3O5vM35vwQCEJ/b9+/ej1+vx+XxUVlayb9++qM8cOXKE8+fP8/TTT5Ofny9ev379OocOH8FVuB2M5pgCKCsBAjUUZL72rSj/gcjQBrCcVYG+cN2y21JVFUIBfOffCVsmf8bQtp2ZmcnQ0BCVlZXLitEYTHHU3P15jHHRJjnasV5vOM1wjG7+f00YzBZMlgQCPm8U68BgtpBRVEViWhaoKs7Rfsauty5P3ZMk1t/3ZYwWa0wOdduZD2KaHd24rY0PPI3BvDxIUxSFib4OeutPrqj1cGOUb7sPe1bBstkgVVUJzM9x6b39UVmY5SYwLYxGI3q9XnDnYzFC0tLSmJ6e5stf/jJWq1X4q/v9fsET93q9BEMqb9TO0D8ZiEoEaSvk7/2fD3HfbUW89tprVFVVidp0ampqmPY5FZ0lkWVZCM1oETnhr127ls7OTtxu95L9z83N5Utf+hKNjY0cPnxYnANtErp27VqUwdiWLVtEE9xK+6BN/jcCD01Kd3Z2lszMTLZt20ZVVRWyLDM5OUldXR0NDQ14vV7S09MJBoPieCVJIj4+Hq/XSygUIisrC7PZLHox7Ha7WI07nU56enqiVo6yLJOSkkJZWRlr167yrbEEAAAgAElEQVRldnaWxsZGWlpaCAaDgvGjgYKamhp+/vOfMz09jcFg4Mp1F3XdXsZdIcxGPeWZBtYXmvmzb3yVggW7Y02iuKOjg7GxsahxpFHoysrKhEKgNvlrwCItLY3c3FzxY7fbcblcfP/73+cLX/gC5eXl1NfX8+tf/5pvf/vb4h70BkJ85ec3eWaoKmXKIKbBelJTU9HpdMzPz4tMy2cJvy6O9qyw7kKsiXyt9yopUvj4NOM2j8eD3+8XY2vAvobp+JyVjYvijfzkiUXq7tmzZzlx4gR/+Zd/SV1dHe+99x5paWl84xvfWPKZv/iLv/jUmg+/ifi9KxNEht1uFyUDrdNTs9LUYs+ePYyMjPDmm2/yh3/4h0KYxW63k1G+BrcU25wDWECcyww0VSXONcR8DCAAi1xvZbAN2Z6NbAsr64lV+8L7/rYzqKHgkoelLMuCUngjpjOYLZjjEwn65/G6Fik+Wl11OSAAkF2xfgkQiNyn/JrbGO9p+1fx6CMjLiGZgrXbSHIsera7pkbpbaxFp9dTvm3Bp2BBN8CWkUtO1SZaP3kX12Q0VTM5Mx+zdXmPCgifz6yytbcEBpIdeRjj4mO+L8syqXkl9DWeBm4NDOiNZuzZBSuqYhrj4knKyMU5sthwFgk6rVarsHiFcHe6NslFjo2srCx27tzJ66+/DoRr98ePH+fYsWP09/ej0+lISEjA7/fj8XiEAp1eJ/GXX9nAkUvDHDnfx5w/PG6y7AZuK7Mw2XWWn3eF09eRErmaKY82OX7pS18iPT2dM2fOcOHCYjYm0gWzurqatrY28btGMwyFQmzevJm77rqLt956S9TdIZwBmZ6eFsI8iqIIIZtjx45Fnc9Izw6t7hwKhcR50oCA1l/h9XrJycnh4YcfFhNoe3s7ly5doru7G7PZLNLQ2upYMy/y+XzodDpyc3OZnp5maGgIq9XK6tWrqa6uxuFw0NfXJ0SFXC4XFouFnJwcASKGhoY4c+YMZ86cwWq1kpOTw/bt2/H7/fT19TEzM4Pf7+fkyZOcPHlSjJl3aidpHvAhLXi4+AIBLnYFaOydp7TiIvrgh4yNjUUBn/j4eIqKiigsLMRkMjE6Okp/fz9HjhwRjYg5OTls3LiR3NxcsrOzl3TiA+J62+1hp1St78Dv9zM/Px9maQ2MALHvy3CoOF1uMohWctTGpc1mIykpiYSEBHp6exn1G5iKzyNgiMcsK8Q7r3NHeSYbN6xHr9czNDTE//dJRxhIx/hGCZVBfQah4fPiNYvFgqqq2O12NmzYQGpqKkNBCz88v4JgmaqyzrHYbxBUVPoDFgYsRbx5eYCu2nogLBcdGQ6Hg0AgwNTUVFSj4b9X/F6DAQgP0meeeYaf/exnwjN7w4YN4n1Zlnn88cd58cUXeeONN7j99tupr68PN3sUrEHOSYuJKqMZCgta2AvgIDQ1yHxPHTabDVmW+epXv4pOp6Ozs5MrV66ItKz2t/6rH6PPqUSfVQ4mS1gDYWqA4EALymz45oh82JtMJmFLGxlmq42CtTtIzlycXD3OSfqu1jI9HK1lvlykF1Wu2MMgSTJp+eVhZz7CD1JFUT4Teo9LSKL67sfQ6QxR59KalMaqnQ+GJ0F50bBI+1en01N5x+e4/P4rUaAkMS0LRQkhy8tLq0qyTEJq5rLv3Rim+MSbZn5kWYfOaAbfrdFRjXGWmzacqqqKybKUxqWBucjVJCC41fPz8yiKgs1mw+v14vF4KCkpEdx1bfKYnAzr+WvNb1pEThQ917soT4HS+1KY8ymUlhQzMthLWVkZ1dXVHDp0iIKCAkFZfPjhhykvL+d73/seEAbYubm5HDhwIGqVHsmWKC4uprm5OWpMayUFrYv+Bz/4QZS/QGFh4bKlj8gGQy0SEhJwuVxRGQftM9p3xsXFiSbK6upqtm3bRnp6OrOzs5w8eZLLly/jcrlITk4W5jPz8/NRPhaSJJGWlobX62VycpL5+XkqKyuprq4mJyeH3t5e6urqaG9vZ25ujsTERKqqqqisrCQ3N3fJitDlcjE4OMjAwAB9fX1RKoPaOIjMFNVf99I8oCmFRo4X8AcU/vuLp/jGPXaSbOFGvqysLKSFxjWt0x/Czde5ubnU1NSQm5tLRkbGLa1WNTAQDAa5cuWKcId84YUXBMiLs1gw2HcQkIyxU+2STCJekZ3Jy8sjEAgwPj7O1NQUXq83fJ2BAfsanMl54pnrURUm01J5Z3iKwKXLWE0GJiYm8BrTVtaZQWLenMKDDz5IamoqqampBINBnn/+eXbt2kV1dTUAxYrKB50ueqa83Ei0kVCR1CD9p37JKek2kovX8P2TPczMK5BYwhuNY6jx60mUsiitWBX1t5p52MjIyP8GA7+tsNvtPPvss/z4xz/myJEjlJeXLzGnKC8v5+LFixw4cICMjAzuv/9+/PYCzvTO3FRb0Nd8En16IZgs6ILz2BUXlVl2Su94iq6uLj766CNMJhMGg4Hq6mqqq6tRFIXBwUEhAjM5OUmwv5lgf3PYFU9VYls1sigCFPlgMMUnUn3X4+hvEBuy2JKp2LGPa7VHmBzoirVJZJ0evWFlFSxVUaJWzLdCQ4wV+Wu2I+sMS7MQ8qIb4LJ0S1lGJxlIL6xkqD3CZvoWC17ZFeuJT0pFCQWZGuoJ1+hvONdB//wt9YSY4hNxlFRjMMXhm3Mxer2VeddSlTWAwC2ABkmSCPjmbulzGj1tbm5OrLiDwaDIFkQqAmoToMfjiVrRR3aia69985vf5Be/+AXDw8PY4o3s3LGVAwd62LNnj1B527RpE6+88grx8fFUV1fz1ltviXR2YWEhP/zhD6O6qS0WixgriYmJgnaoHYvWfPfFL36R2dlZfvzjH4txHR8fTzAYjAICkZoekUBAc/JzuVxR5yjyHGjgKRQKsXHjRrZu3UpCQgLd3d0cP36c9vZ2ZFkmISEBWZYFANN6BhRFISEhIdxpPj7O8PAwZWVl7N69m4KCAnp6emhoaOCNN94QokDr1q2jsrJSTMbLhcZ51/T+NUOklJQUIZ4zOzsbJV1+sTP2WFEBj09BZyskNVUSzABZlsnKyqKiokKk/JfTEYi1j2NjYwwPDzMyMiLAxIsvhq2ENZvjrKwsUb6amJjAPnudUVt5zD3VB+cxzw4S0IV1Tvbt24fZbObYsWM0NDTwrW99i0AgwFv1gzQ1L5SiNGC98O+cMYnDA17yJsOZKCk1JXbmdiEMchgIa2NV8+IoKlq0D9fJEv/P3lL+7ng3LSNuZAlQVRQkEgzwULZKw4CXDz65QFdH3KKFsiSLR5LLksE/XRzlL/csnmeLxUJiYiIjIyNR6qD/XvGfAgxA+Ia64447OHHiBC+99BLPPPOMqANqN0hOTg4DAwNs2rSJDRs2MDnn53Rv7KYnVVFQZ0dhehD/ZL94fRAYbIGPPlrkO7/66qvk5uYKBKoZueTm5rJ7926++93voigKxcXFdHd3E4xB8dJSipErHS3yqreGgcCSFH94ci3asJOpoesxKX5KKEgoGECnj+1aJskS/vmbT1Y3C4MpLip7seR7bmEiTsrIjQIDM2ODZFfEllrVXBvzqrcI4JBeWMnc7DQtJ3+N37s4eU0N9ax4LlRFIeCfp+qOzy0KIxEGGgOtdfRdXUp9C8zP4Rztx5aWHTP7EvT7mB5eKoesUcoWj2Xx2uuNZmRTPAbkqJW0oigUFRXR3d0dtY2ioiKcTqcoNfh8PlatWkVzczMGg0Fo6wPCbMdut5OSksKHH36Iw+GgqakJRVG4++67GR4eFgBj3bp1/PSnP12SxYpUCNRUCWVZxmAwCC2BZ555hhMnTogJRtvnG90HdTodFosFl8sltqkdW+Rnb3QH1Vbzer2eu+66iw0bNqAoCg0NDdTV1TE1NUV8fLzYX6fTiU6nEz0GcXFxJCUlMTExwdjYGIWFhdx2220UFRXR29vL1atXOXjwIMFgkIyMDLZu3UpVVRVpaWkx+4HGxsYE37+3t1fQhYuLi9m2bRtFRUVYrVZCoRA9PT1cvXoVn8/HzMwMwZDK5ArMDwj3epyua6fiwTXs3LlTZAciS6WxQmNFaBP/8PCwUOGD8CJLk5LWqJQacOru7iYlJYWMjAzy8vKYO3sOxZ7HeGih1LBwPmQJ9LLMQ9nQNqQSCoWYmZnh+eefZ/369QwPD2M2m/nggw8YHh3lqFIJcgxeviQzY8nC72zFGPKS6B3FFZcR+wBVlbjZfj74oGnJs/Qf/uEfsFqtxMfHY7VasVgs7LJa2VBoZcBvQgF66s+SFxfgwS/9F6rz0/mbQ03EIk+rSFwemKVrYo7i1MXSs2aK9rsQ/2nAAIT51p988gkzMzO88MILhEIhUlJSuPvuu1m7di1xcXG89957HDp0iIyMjLCssSHAmF+/DLoMp7D/YNcG8h7ZwfPPP09GRgaKojA0NCRSZNogGx4ejuo4hjAy1NJDgUCA8vJy9u7di9Vqpb+/n5aWFurr66MG6o0PRqPRGE4jyjpSc4pjTjKSJGEwxZHkyGd66PqyjnwA4z1tpBetip0iVGGir2P59z5FGC3WT6VeeGNIkrSkocc52ofX5cQUn7js/mugSJLkSGYTcVYbVXc8QMORA+I1JRigv/kiBWu2LdlOuPMfwVi4sSyRU7kB/5ybka6l0sZ9V86xevejEMPboPfK2Sg3RS0igYAWZquN/JrbsGcvsj5mxgYZbrvE1MgAiqJw++23MzAwgN/vF+e7t7eXlJQUampqqK+vJzs7m7Vr1wowoNkVQ5iy1dHRQWVlJTMzM3R0dHDvvffy4YcfYrFYqKmp4R/+4R+AMHDQ1Ne00Pwybmxs1Ov1oss+OzubvXv38uqrry7x3Ig87pSUFFJSUrh27RoulwtYZFssd3600DIfCQkJ7N27l9WrVzMyMsLhw4cFqNFWtNr9pTVq6nQ6EhMTBXjKyspiz549FBYWMjg4SEtLC++99x6KopCdnc2uXbuorKwUNfQbw+12R2n9u91u4Tuwe/duioqKRHNid3c3hw8fFn4HWsiyHHbGk2RgYtnvifzs9m238eSTn1vxc263W0z62sSvTeyyLGO327FYLOTl5QmgpJUItLp+SUkJZrOZTz75hGeffZa8vDwg7Cgoo+DoO4nBmsdEfD5+fTxmo47thcnsKUokNDtGW+1iKSkQCHD+/GItf3x8nHlDAsHMmwj0SBKBxEy2Fdu5UFfPqK2MkN68hMUgASajjv/+5APYLY8wNzfH7OwsL730EiUlJeTl5eF2u/F4PMKIqKurC4/HI8o2iYBzHv7n//yfYSph0u0rNhnqJDjXM70EDFy6dOmWZd1/k/GfAgyoqsrQ0JA46YqioNfrsdlsPPPMM6JkEAgEKC0tpb29nZdeein8AJN1JK7bQyA+Ncw1XVhd6nUy91akkZcch6qqeDweysrK2LRpExBG1W1tbbS0tNDZ2SnoK7Do3paYmBjlS97e3k57e7sQKElNTSUvL2+JbzmEMwSaIAuA2ZJwU72CcD16ZUe+gbbLpOSWhn0NltneYNtlAv+KzIBObyCrYh2OourPvA0IT8iz44M3vKjSeuo9Vu16WJQyIqmFsWyHJVnGYkshyZEX1bg31F4PqORWbUJnMIob1u+dC9f/5dhU0OzK9Yx0Ny8pP7inx2g++SuKN94ZZfIUmPfSe7X2lmWMzVYbNXc/jk5vjOpDSEzNJGHHA/Rc/IjRvi5effVV8bDWJuT8/HwKCgpEw11qaqroPTEajVHiPA6Hg/r6ekpLS6mvr8dgCNdjQ6EQd955J7W1tWJidjqdUWwHSZKWHWeyLGM2m3G73UIpTrOuXS5sNhubNm3i7NmzUZbBN7IBbgxtXzRmQF5eHk1NTfzzP/8zIyMjQuFQ6yDXtidJknAs9fl8KIrC9u3bKSwsZHR0lNbWVj788EMgDJb27t1LRUWF4NRHRiAQiNL611L/DoeDmpoaIfijKArXrl3jxIkTS9T9tEwIIHpDNNBSmG6kd9y/pJatRTCkcN/tiyloVVVxOp1LJn7t+4zGsFdJfHy8MI+amZlhYiJMj9ZW+5WVlWRkZPD2229zxx13sGPHDiDc/BfpgAnh55p2LVJmu8nyDaKoKmaTiYnrHl77aBEoamBw2Wt7i5Ol3x8Ia68Af7Erl39qmGXc7QdVQUJClSTijTr+255iUuLD4CI+Pp6JiQkCgQDbt2+PoqBHnjuXy8X4+Djj4+M0NTUxODiI2WxGUVUU6SY20JKENxANijMzM5mbm8Ptdt9yqeY3Fb/XYMDv93P16lXq6urC9U+bjZqaGhobG3nkkUc4dOgQP/vZz6ipqaG/v18IgWjCGRobwWq1Mury0TI8w7mLdZTlOXjgthpM+vDF12yOIy+myWRizZo1rFmzhhMnTnD+/HkefPBBmpubBdKPRPs6nY6ysjLS0tKEpOf4+HhMB735+eiadtA3f1N0Ga5Hr1zj98+5uXrsbUo23hmm82nb9/sYbKtjsK1+5ZO+QugMRlbvfhRLQvItAZfI/b7xPVVVGO1uiXrdnJBEgj2d3qvnMJotJDly0ekNeKYnSCsoX7H8oaoquas2Mzczid+7mH0Zam9gpLOJ5Mx89EYT8+5Z9CYz5bfdE3NbkiRhsiRgSUheVpDINTFM34XD+DGEFQj988yODQpZ41uJgrXbw0BgmX4LVIXMVVsZ6Q133D/wwAMcPHiQQCAgmuaOHTvGjh07OH36NF6vV6yszWZzVE3a4/EIbfZf/epXrFq1isuXL2M2m6moqODv//7vxWfT0tKiXOluvIba7xoQsFgsUSWBG0On03HHHXfQ0dHBRx99FPX6SnLh2vtlZWVs27YNvV7PpUuXePvtt/H5fMK+WTtmDSjGxcURCoXwer0EAgHWrVtHfn4+k5OTtLW1cfLkSSExvG/fPioqKoR3feQx30rqX6/X09rayrlz53j77beXGDWZzWaR8QiFQuJ9jQJYWlpKQUEBd9w7zb6v/3DZ8yBJkJWsp7v5HNND7WLy1/pD4uLihHS12WxmdnYWv9/P+Pg4ZrOZjIwMysvLycjIwOFwkJaWFqVS6Ha7hZqiFhr4q6+v59y5c4yPj0exA2DR+VRZEIgymUzo9XpcLpfInN54bY1GI3p8yCE/im7l7IDFNylUONeW5vGPxSrff+09RpU4EhKTmOpq5Iu71lKeHt031traitlsxuPxcOnSJWZmZpidDXu3aP+PzHBp52J+fp61a9fSNqvgDMR+rimKSvYNNsVaE+Hw8PD/BgO/iRgdHaWuro4rV67g8/koKysTmttzc3O0t7dz/PhxFEVhenqakydPUlhYyF133UVJSQmpqan09/ezf/9+Tp8+zb333ktGgomxnlH8nRe4a9+fCSAAiJVRrIuZm5vLyZMnSUtL4/HHHwfCD6Le3l4OHjwouMmtra2C8qfVLiVJYv369dTV1XH33XfzySefiAdEZAT98zhHeknKyIs50YYCfqaHem56/uZdTpqOHyQuIRmLzU4oGGB2fBDlJl4NN4vcVZtvGQhIkoRzpB9bRk4UyFEXeiXazx4RGQpjXDwlm+8iKWPR+UtVFEZ7WumpP4USCpFeWLnid0qShNWezvp9X6Hj3NGoRkslFIz6PS0/ViPUDdtc4Ti1FOtnUUU0mC0kZxas0G8hE2e1kZCaiWtimIMHDy7+rcFAX18fd9xxB7t27eLMmTNi8oPwRK2poun1eq5fv05xcTHXr18XzpahUIjdu3fzk5/8RGx3w4YNtLa2LmG36PX6KCMgTaNeluUVTcHy8vJISUnh+PHj4rWVQMAi00TH+vXr2bRpE8PDwxw5coS+vj50Op3YB40RoCgKRqMRg8GAx+MhEAhQUVFBfn4+MzMztLe3c+7cOfR6PSUlJYI1oYEJLbTUvwYAbkz9FxcXY7FYaGlpoaGhgUOHDkUdu06nE+U+jfqogX273U5eXh7l5eXk5uYuAR8ZGRn85P/9En/6ndcJhTSPjLAmRIZNz2NbbEKPISUlRTRqulwuvF4v8/PzYrVfU1MjpHkTExNjji/tuXnlSphRdOrUKQ4dOhT2Hli4Ng0NDUv+TpIkYRoECJCjSUdrTZyyLLNp0yZycnJ4++23efLJJzl16hRDQ0Okz/UxYi2OQedWSApM8dRjn+NXv/oVgUAgLGQlgTLUwt1r1lBSksRrV/o5d8bFxOhw1GSvXZPXX39dNLXabDZsNptQU4z8MZlM/OhHP2JycpLCwkIekTN4+cLA8n3MqopeJ3FHcXT5yGazYTabGRkZoaysbNnz/duK3xswEAwGhTJYf38/VquVzZs3s2bNGtxuN52dnZw4cULw7H0+H5s3byY9PZ1jx47h8XioqakRN1teXh733HMPhw4dIisri5qaGpqbm8nOziYpKSnqu28GBnJycpAkib6+PtEjYDQasdvteL1e0tLSeO655+jv7+fatWt0dXVFeXNrBh3nz58nPz8/inctSRJFRUWkpKQwMz2Emp4DyvITUe/VcyifQrjI65rG6/pXWjwvhKzTkVFUdXPpZcKeB6qqhk2AFurzIC0I/Vyjv/miECbSGYysvvNRjJZolC/JMhmFlRjN8bSdfh/31CgJKY6b0CYlQKZs614aj74R0x3RPb0C51g7hmAAbwxWQWTcLNW9XJhusd/CbLXhmhiOWpXPzs4iSRI7duwQUrmauAuEa7baPZKUlMTAwAAPPPAAdXV1ZGZm0tzcjNFopLa2VqxWd+7cydmzZ5cAAVmWl5QJNCrkjSthbcVlMBioqanh6tWrIium7X8sEKC53W3ZsoXS0lJaWlp46aWXhAInINL/kfugmdsUFxeTnZ0tFgqNjY0YjUbKysq4/fbbKSkpidKt11L/2uS/XOo/OTmZ1tZWkVGIpN5qTYkaSNJAgMFgEHr/xcXFOByOZRv9vF6vWOWPjIzgGR7mj/cm09jjZXw2hFEvUZZlpMRhjurZGB8fJycnh8LCQhwOBxkZGUtW+zd+j5adHBoaYmJigtnZ2SU04uHh4bA/gNGIz5zOVMiAXpaIdw9hCi5m2dLT04XUcnV1NZs3b8Zutwv9glAoxN/8zd8I2vTs7CwGg0EY/xw4cIBsbw9z+gRm4zKEkqBWijMF3NyV6hUaDlNTU/zjP/4jgUCA+fl5zp8/L/oQNE8Im80mpL5Pnz7Nzp07WbdunWCS3CxWr17NJ598Ql1dHV/6ylNc7J+heXihsVW7RxdKy9kTDYwNJlNYWBg1fn9Xmgj/w4OBG5XBCgsLue+++1BVlevXr/Piiy/i9/uxWCwUFRWxadMmbDYbr7zyCvn5+YLvu3//fl555RWefvppUZ/btGkTQ0NDvPvuuyQlJdHZ2cnu3buX7IMGBm5E7VpoxiX9/f1RwhOae9uuXbswGo0UFxcLedKf/vSnzM3NUVFRQVdXFxMTE7hcLvFdsKik1tvbS01NDRscDn7+xkGKN92JJXERgQb98/RePcdoV/OnOrcZGRmMjo6uqGx3q2GMs66YpoeFFGt3C8lZBeg1OeGIG1ICkjML6Gk4s7iPRaswxScsT0GUZOxZBSSkZjLccSWq7BErJElCUVUyS2vounR82c94Z6eZGRskMTVzeSVBJVzCUEJBhBJMjPi0QABujaIIEPR5xWSpORZC+Dy/+eab7N69WyjzacBTe4iGFJXusRDt3R5SmscYbG9ndVU5w8NhcKGl2NPS0oSGAUSDm+XGjKIoS5oEtc/l5eXh8Xii3Om0/b0xtONKSkritttuEw6OJ06cQF6gpkK0t4HWSKiqKunp6WRnZzM/P09HRwetra3ExcWJJl4tla99v9ZA1tXVRV9fX1Tqf/v27djtdjo7O7l27RoXL16M+l5NHEw7L9q/mrBQeXk5BQUF2Gy2qHGs1aiHh4ejavzaylqWZaxWKzqdjiSriW3lN9hpqyqVlZWsXr2a7u5uzp07x9DQENu3bxcOhppq5ODgIP39/YyOjjI9PR21yo8853q9HoslrMqp0TMB3LKVvuSN+PWWBf6/BIkVJM4NkzNZz7Nf+RKFhYW43W6ampqorKxcUpfX6XQUFhYyMDAg/B407v+RI0dwOBxs2LABx9Ummib6mYrPw6e3oA/5SPYMkDQ3wLURhY7mRsFSmZmZoaCgALfbzRNPPEFqaionTpygpaWFxx9/XCzOLl++jCRJbNmyZVlxpVhRWVnJyZMn6e3tZdY5zf+9p5hfNg7ydl0fQX0cqCqrMuIx9dcR9Azw2muv8cQTT0RlARwOx4rlst9W/E6BgTG3j4t9Tq5NeAgpKmlWIxtykliVEb0SCoVCXLt2LUoZLD8/H4PBwODgIIcOHUKWZXJzc9mxYwfFxcVC51qLrKwsGhsbqaysJC0tTbgdvvLKKzz11FNiwO/bt4+xsTF+8YtfEAqFqKqqWrLfbreb+Ph40ai1XOTm5kbxpOfm5mhra8NsNlNZGZ3CvnjxIsPDw9x3330MDw9H9RZENmhpq65gMBiVCp5sPk23N4DRkoCkKkwP92E2m1i/fj19fX1Lang3crW10FY8yz3UtQfurapZh4K3ptIn6fQxJYAlWUZvNJFTtZGx6614Z6dJL6xYcXuKEiItv5zuuhMMd1whs7TmFsSEZJIzw9LUmhyyLT384HKODjDW3ULHhY+ovvNRjJZ4IFrvwT09htc1zZq9TxKflIqqKjhH+hlsq1/a9PgZwueZxT01RnxyakwRo4BvHmeE6ZGmOqitkHt7e/mnf/oncR21MabX62kd8HK4wYXXP4EkwcdN76GXYUdPI1tKoh+Ukf0FEBvcGAyGKBARpY+xoIO/XKPsjaH9XVZWFhs2bMDlcnHmzBlmZmbESk5RFHF9NVe/UCiE3W4nKyuLQCBAV1cX169fx2q1UlFRQWVlJfn5+eIedrvdYuUfmfovKChg9+7d2O120RgoTMEWQpulApwAACAASURBVKNKRuob6HQ60tLSKCwspLy8nJycnKhsgyYXHEnlGxkZESBNr9eLSUpbBCiKQiAQwG634/f7SUpKYnx8nOeee0649k1MTFBSUkJubi6JiYkcPXqUX/ziFyuKhWmZC6PRGPUZ7XgSEhJISUlhbGwMVVXZsWcff3dhhmBIWTAiWhyTs3EZjOftpKCgAEA0PGvNlqqqCkEh7RrOzc3R19cnmn//6q/+Smzv/fffx2Kx4AASxxfZBmazmap1a2loaBAKijabDbfbjdPpJD09XTxnN2/eLLLI9957LwCdnZ0xVRZXivT0dJKSknC5XFy+fJk9e/awOs5N89BH2OxpOKcm+fZT/w1FKebgwYO0tbVx4MABHnvsMVatCosQORwOzp07x/z8/JIS1G8zfmfAQNekh4NXR1BZXEiNufx80DpGz+Qc+6rCymCXL1+mrq4Oj8eDzWYjJSWF6elp2tvbSU5Opri4mJKSEgoKCjCZYgvorFmzhsOHD+N2u7FaraSlpfHUU08tAQQGg4EnnniCH/7wh5hMJiFXHBkul+umzR+5ublcunSJubk5LBYLZ86cQVVVtm7dGjUx9fT08OGHH2I0Gjl06JBY+dTU1PDGG28wOjrKY489xtGPj5FfsZbElDQG+3oZ7m7B5wlnDbQVICymnoqLqwiFQkxMTKDT6UhOThag4LPYU3zaTEFgfg7X1CjW5LSYE5iqKsuq790YWWVryCpbg39+Lmz4s2LTpIzBFL7BrtefwjnST/HGXTEBR+TfJTnyqNh+H5FyyIlpWeRUbqDt9Ac0Hv0FjuLVpBdWojeZ8XlcjHY3Y03OoHjDLtEQKEkySRm5JDny6Lp0/JYZAytF75VaqnZ+Liaw6bt6bomehDZRa4I61dXVwp+grS1sQHW+aYCDFxbBpzY0ggqcaPYgAVtKbyLRfUPk5+fT19cXNc60/2dmZjI6OnpTIKBNrqWlpRQXF9PX18e7774btU1tTEY6BVqtVrKzswVPf2hoCJvNxurVq6mqqhIlvEAgQE9PT8zUf3JyMmNjY/T09PDxxx9HgZ4b08mKomA2m3E4HJSWllJaWkpqaqq4TqFQiPHx8SUc/khGh6AML4TmxqjV9LWfhIQEvF4v3/ve96ipqRGiRXFxcbjdboaGhvjOd76z5H7VBKA0QBJJzdRq+3a7XehLaP9arYsLsxdffDHMNnHq8YeU5RkNksy4Gs/xhg6S8QgZ6SNHjuB2u8N6CRFASqfToSLhVo3IkkRRlp3RkRFycnK4//77CQQCvPvuuwwPD7Nr1y5ycnJ4/fXXhYfB1772NV577TVBC0xOTmZqaoqSkhLxHXl54b6qi92jdJ3uxTnnp3/cyF2lt9YLFHV4kkRVVRUnL7dwsMPLr2eb8bhdGJKqqC5JYfbCKdxuN0lJSTzxxBMcP36cU6dO8dZbb+H1etm4cSNJqRlMx+dw4EIPJTnpbMpLwqT/7XsV/E4YFfmCCj8+20MgFHtXkqY7Gb56Ttg/BoNBjEYjhYWFIr0ei9u7XMzNzfH8889z1113cdttt4nXx8bG2L9/PwkJCQIQ+Hw+/vZv/1ZQjO6+++6obR04cABFUfjiF78Y8/ucTicvvPACX/jCFygqKuJ73/seoVCIP//zP0dVVZqbm2lsbGRgYAAIg5X169eTmxu2ub148SIffPABAHse/gIeQzIqErKmsgaMdjXRXX9qxbR0ZMTKCPymIsmRT9UdDyw7gamqynDHFaz2DBJTHbe8zZs5SCqKwkjnlajSgqO0hsK1O1b8G+dIH0kZOUiybpl9VVBCCpc/eHUJzdKeXSicDpfdV1Wl7v1XohgLnzWSM/Mp3ngnxrh4cU6Dfh+9V2s/dUlIKwW9fGKaUWcwppijQQf/5b5UjPqVexa0c5aVlRUle6yFtgJaqYkwct+qq6tJSEgQap3LhZb5iI+PJzs7m2AwKDQWUlNTqayspLKyUnRwj46OisY/jUmUkJBAUVERNptNeAxMT09HTaY33jfa5JmXlycaELVSo9/vZ3R0NGq1Pzo6KrZnMpnQ6XRRzotxcXE4HA7S09Ojavta2cLn8wkANTQ0xNDQUFT2cLmIpSuinducnBwx6a/UPKiFqqr89V//NZs3b+aVYTuewArPEVUhxd1D1nSzUHHUqJiRPwkJiRztdvHGpV6CC8JCZoKkzHTwP57ZR3dXF0eOHCEhIUFYJEMYWJw7d04Amw0bNlBbW4vRaCQtLY3BwUEkSeLee+9l3bp1qJKOb+4/zoScLAy4NGnj3aUp/NG2PHQxaMPLxdsXOni9aRZYdEZEVdDJMjljF/ivf7CP3NzF5ubm5mbefvttVFXFtnYP52fiCASVcEURiTiDzP+xJZddpSnLf+FvKH4nMgOto64VgYCqKkzpw5zs9PR0sTrIyclZMTW/UlgsFsrKymhsbIwCA+np6aJk8Oqrr/KVr3yFrq4uFEURVKysrKyocoHL5RK2lLEiPNgT6O/vZ2ZmhkAgQF5eHu+++y7t7e0oiiK28eijjwpdbICOjg4OHTrEli1bmFMNeIzhQSI8tqWw/l1G8WpCoSB9V2pvaZKPJeeqKRzeGJ+l2S0ynCO9dJz/iKINu5B1OlQtnStJjHY309N4hsK1O7Da02/ZxetmDy1Zlhnrjl6Jj/e0kb96C7JOv2zNX5blBTliedntS5KMLIOjeBX9zRej3nOUVIePa1nRo/C5Ti+sZKDl0q0c3ooxPdzLpff2k5SRKxwfnSO9MVkfK4E/RVFwekKMOFduMA2EoHvUz6o8S8yxoLkE6nS6ZYGA5htwszAajVRVVREMBmlqalr2+yJZAQ6HIwwqh4e5du0aDoeD7du3i1Kgy+UStXNNQEbr+l+7di1ut5vR0VGuXLmy4v2j1+tJS0ujqKiIiooKHA4HOp2Oubk5RkZGqK+vF6t9DbhIkoTRaBQ6J9priYmJUSt9h8MhdE+0Jrf6+npGR0dxOp1RojexzkVkaNe8pKRENBprE/6FCxc4cuQIV65cIT8/P6qxDcJAZmZmBuf/z96bR8dZ32m+n7f2VapNpX2xFlu2ZHk3BoKxMWYPkHRCIIGQuSGdnqYnt+ecO3N6Zs69//TMPdOn+3ZnbvftNGk4aUIChkDALDEELxjbeLcsWbItW/ta2kqqVbW+7/2j/L6uUi2SwRDOIc85dVR633rXqvf3+67PMz+vtAh6vV78fj/hcJhYLMbRo0cJVz2QolDPA5VKxao1bfxkx6Ps37+fvr4+HnvssYzPSJLETw8PcmxgLoNhMCKpGStu5n/sPYdl8AibNm7k3nvvzUixrFu3jhMnTigMrydPnkStVhOLxZTosCRJ7Nu3j8OHDxNecQezqlQRuBLNuDaJH7w6S6lVx5+sW56GyfDcAnu6Axn7kN8nJRh2bWJs1k+aLUBLSwt2u52/e+0gF7wGUkbEdUGlhbjIPx0dwqBVsa3uOhfJ540vhTEwFYxdt9ByQBBUCBY7t956K1arVeEWHxsbw2g0Kq8bNQzWr1/PK6+8gsfjUbwFyDYI5FDjXXfdxdzcHHv37qWkpISSkhIgZQykh6FyX4NAVVUVvb29SlvZ8PAwZWVl7Nq1i6amJl588UWam5szDAGPx8Prr79OU1MTu3fv5ujVWaKimDPULggC5U1tjF06C2IywxMwGFKVxaFQKGe4VkYoFFJoWxfjsxgCMqaHevCO9eOqacJgKSYRizIz0qt0B3j6uilvaruhfeaKDsiGznjP+axef4vdTSQcwFycaXnLpESDHZ/gqs7P5gip+oXi0uosY8BscxXumBDAVHwTLX5JyiBKyoV0oR65KFSSJBw1bez/5CLz8z6qXXos+uVFiaJxMe9vIb1bYDEroEwZvJQhYDabFYKffC1qkiShUqlwu1NKn1NTUwwPD1NVVcXOnTtZvXo1FouF4eFh2tvb6evrU8iUysrKqK6uZmFhAa/Xm6GTkAsWi4Xy8nJWrVpFY2MjRUVF+P1+PB4PV69eVdre5OuSjaH0589oNGaF+EtKShBFkcnJSQYHBzl37hyzs7MZ/fbpkGsRcsFms2Gz2RgcHOS73/0uLpeL3/zmN0xMTFBeXk4oFGLz5s3K9qIosmbNGrRaLfv27ePtt9/m0KFDSpdFenFgrvsvdyBUVlYyqhWZS6rIoPVMgwSscBcpJGm5yJnax/wpQyD7YAAMijZ+9MC3uXdLds1WaWkpWq2W0dFRnnzySTZv3szzzz9PMpmkv78fjUbDtm3bOHbsGJV1jbzp1yAVcCLe6Z7i4dZStOqlHZL3L00rHn3ua1fxyUiIbeszl5eUljFb0gqx/OnWX58d55Za27I6h24GvhTGwLJCMpJId3c3kUgkL/WoVqvNMA4WvwwGQ8b/LpcLk8lEe3s7999/f8a+3G63UkPg8XjYsWMHgiDw8MMP88ILL7Bnzx5+9KMfodfrl2SP8vv9XLhwgZGREYXpy2w289RTTynRgHfffZdYLJZxHoFAgFdeeQW73c6OHTvo6LpETFdWkIhLpVJjK6tlZvhKxvJ4PI7b7aalpQWfz6fkiO12O3a7nZGRESVn+VnEh5aDZCKeRRgkY8HvZaD9CCs23JHXw14MQRCIhAJodXrU2ms50EiIscvtRPxz1KzdBqSoejU6PSu33ZOVSpEkCcQkU1fbmervxlVd2LiTj5t9bQkKaT1JUorq+NPg03Z1pG8TCoWYDyX5zQkfs4GDyI/e6b4FzPrlDTp2S/5hQ55MFkP21Aru127H4XAwNDREV1c2lbMMOR04OzvL5OQkdXV13HvvvTQ3NxMOh+nr6+Pdd9/NIBFzOByUl5fj8/mUcH0uyPU0tbW1rFmzhsrKSqWi3+PxsHfvXsbHx5WiOrU6lUaSJ365n18O75eWluJ2u0kmk4yOjiqefiEvP1dUrLi4GJfLlZXHj8Vi/PznP+ehhx5ienqasbExmpqaFH6ViYkJRFFkZGSEf/7nfyYej2eQTKVD7lbSarVYLBasVis2mw2Xy4Xb7cZut1NUVITRaFR0GJ566ilqBvz8/PhI1v5kCMDOayFvn89HeXm2172/Z6agQ6gSoGfBRC6qL0EQqK6upr+/n/n5eVwuF0VFRTgcDq5evUoikWBkZASz2UzvXBRJW3hMCUaTDHoXaCpJdYdJkkQikWBhYUHhZpDfnxlIIkqFjH+Bi5Mh3n77bSVaplarGYloCMUKyzpP+KMMzS1Q57ixGp1Piy+FMdDoMnN2NL8gkEqA5nIbD+36jwAKS1ihl/yF+Xy+jGW5cOrUKS5evJjTeCgrK2NgYIBz585RUlKCzWbjvvvuY8+ePfz2t7/l619PFXEtNgbkoqyOjg7FOq2trVWMgYceekgxBIaHhzl79iz333+/4nUMDQ3xwQcfKD3gP//5zzEWOdhw3xMF76UkSahz9A0nk0mGh4fxeDxYrValK0Fu4TEYDBla70tBpdFSUtOEvWIFKrWaoHeKyf5upYjxs2Diaidhn5eKVesodqfy9pA/JSCJIoGZCfrOHMJotSGJIqIksvr2BzAW2RGvcf1Xrd50PYqQJeYkIGi0NK3fxqYtt9I3MlrQGJFEEd9Udgh8dqSXipXr8m6nUqmYHetf3o1YhM/a3gkw5wvwyrF5/AupfaUPvuGYVDhCB9gsGqqduYcNWaUuHbIBUyiq5HK5kCSJ2dnZLIlmGXLft8/nY25uTmnpq6ysZGJigr6+Pj7++GMl9O9wOLDZbIRCIYLBYAa9bzoMBgNut5vGxkaamppSNSbXjIWDBw/i8XiUc5d1ENKFj9InfZnWeXR0lPHxcTo6OvJ6+blSNlarVZnw04v2bDZbBt9AMpkkEAgwPz/PiRMnEASBo0ePMjk5STwe56//+q8zfityMaRcPGw0GrHb7UqRYGlpKQ6Hg5MnTyoSxN/61reUnHwueL1eLBYLer2eu1a6ODk0T+d4gFT10jU+h2s8AM9sq8aklpibm8Pr9eJyuTh//jyhUIhwOEw4HObSnBtRym9FixJM+K9PwuFwOOOvHKl4+eWXsVgseL1efD6fch/kAlVf0g8leQ+j4O133sGwMKvMG/l+v+HyHaAtUPQsSSTiKSZc+bcjSRLzpnJwbV7yPMKxzx6NXS6+FAWEkiTxq7NjeILRnLVvKgGe2lRFqbWwvO5SkNtk0o0Gj8fDgQMHaG1tVfLl6Zbf3NxcwYFMDge63W6sViuiKBIIBPB6vYiiiNPppKGhgZUrVxIKhXjzzTfRaDT8l//yX1CpVASDQZ5//nkkSaKsrIyJiYmMMGpdXR319fVUVlZSWlbOieFQ3sFaxoWDvyUwM/GZ7lUhGK12WnY8gtaQslgFQVDIgfpOH2Jq8PJNOY5Gp0eSJEpqVrJi4/aC4bKLH7+jhMvVGi3r7/suOoMpa1Jesq1QgBq7iXhSZHQ+FSHJR4fc/rtfEw1nGj96k5X19z6esx5BFEUW/F46Pnxt2UWeNxsXhiO8dy6/wSYAGnWqeyD9FAUBVILAd24rosa1hFjMMuF0OrOqydMh09TKlMjyhK3X6xkZGaG/v18J/ctFb7LITc5ru5ajr6yspKmpCbPZjNfrZWJigtHRUbxerzJBp0dhZE7+8vJySktLsVgsRKNRpqammJ6eXjKXnw6TyURJSUnGZO9wOLDb7Wi1WiRJUoSApqammJqawuv1KsdYWFjIe7/S76vVasXhcNDT00MoFGL37t18+OGHPP3000qbXy50dHSwd+9eJEli9+7d3HZbDqEuSeL1119nbm6OBx54ICUZHQyx78oc3UEjCU2qOLQo6acqMoTeN5rznHU6HQaDAZ1OR7uhlXnBkl9/QJKwRiapmz6dtUpWv4xGo6hUKoqKivD5fGi1WmKxWIbiZ0xtpKdiV0GdA5WU5LbwGTQklRqPZDKpyIOnf88TtjXMWFfkFyiSJGoW+rh7hQWDwaC85pI6ftZVOFIG8NxjrYp+wueNL4UxACkL6PXOCTyBqBK6FCXQqgS+3lJKoys3oc/NwHPPPYfNZuM73/lOxvJoNMrf/u3fsnPnTqqrq3n55ZcpKirirrvuIplM0tnZqQinlJSUKF62HAoSRTHvg5veEw3X6HAtFoqLi4lEIszMzHDHHXfQ0NCQEanomQwz7o/mrBkQRZFIcJ7z77+SsdxgMGC3pwpRgsFgwZztYqncxRBUKjbe/yRaozkrnCn/lC4ceONT0ezKKG1ooWLleozWVJFPcG4ard6Ye3IXRfwzE3R/9JayrKxxLSs23PGpc221dhMqlUAwEmcqkPLq5ONKooiExJXjHxAJ+ihvWoe9og5BUBGY9TBxtZNkPEbz7fejM5qVqIRKpSbgneTy0d99JqGnz4o3Tvi46ik8CDktaiocWrpHIorh2Vhu4PaVBsrthYmjloIgCJjN5ryeukajQaPREIlE0Ov1NDU1UV5erpBryaF/2VAo5LVpNBpcLheVlZW4XC5isRgTExOMjY1lPAOLdRNkb1+n0xGJRPD7/UrhXK6+/MUwGAwZUuXypG+321GpVPj9fmZmZpicnGRmZob5+XkCgYBSZ5FvSNbpdIqegM1mw263c/ToUbZt28b27ds5dOgQAwMD/Pmf/7myzYkTJ/jggw+455576OjowGQy8f3vfz9jv5IkEY1GFU99fHyc/fv3k0gksNlsVFVVsbCwoCj45SIkkqFSqxF0JuLRCOUljox2ymg0qjBgLr5Gr7mGMUdbwUm61ttOUXA057r0fcoFqnL0U5aAltOfg64tBIzu3BO4JFKyMMo6tSdj8pY1FBYvC4oa/vvRaZI5gnYCoBFEtgbP8B//4s+y1v8fey8xPLeQ07lTCbC+soj/unvpdOXNwpciTQBg0ql5alMlw/MRemdCJEQJt0XHmlLr595zuX79en7/+9/jD4awmq/3n/f09JBMJmlpacFms/GDH/yAX/7ylxw5coRvfetbhEIh+vv7SSQS+Hw+RZioqirFpz8zM8Pw8DAjIyOMjIxkhEDlENv09DR2ux2bzaYYAXJY8ciRIxw5ciTjXDU6Pa13fROjxZYxMUqiiJRM0J+DNU/e7/r16+nv78fhcLBu3ToOHz6MJEnodDpqa2vp7+9fMq/rqKxHb84dFkuRhCSpWLWeK8c/yFinUmtw1TRhcbiRxBQR0vzkcJaH3LDlLtx1zZDW3GYudiKoVCwE5jBar1fXSqLI9PAV+s8eztiHcxn5/kKQxyOTTo1vsItwQqS4tBok8E2OMNF7AVOxk7bdjwGCYhTZy2pwVNQx0n2as+/9EkdFPRanfL1DBGYm0Oj0GK02YpEFkvGlJ5abjVhiads/KUo8uNHK7jYLoaiIQStg1H22Z1AQBIVEJpchIA/cOp2O+vp6LBYLwWCQgYEBurq6FO9PNp6j0WjWxGw0GhWvW6PRKL38ueoDBEHAbrcrdLzRaFSRsR0ZGWFwcLDg9Wi1WpxOJ263W5FWttvtSn+/x+NhenqawcFBOjs7CYVCGe2Di6HRaDAYDNhsNiV8X1JSQmlpKTabTSFBS0dfXx9Hjhxh3bp1GAwG5f7JRD7hcFipr/jkk0+ora2lu7ubX/7yl0CqvVqe3HOloARBUKSbi4uLU5TDWi1Wq5X5+fmcNSxiMgkLAVSkUglyTQVcJ0nLZezYwmPMFNUT1ZizJ2lJxBAPYAnmJ+zKtU9Z8EmWVo7H47S3t7MmOcj5uJmo1iJfqNKZVW6UcIx2YV/VxKOPPlqQq0bGf9YV8XeH+kmIUmo4kyQQwKBV83BZlN7TuVNff/61Wv7P310hlhAzWnlVAph1av63W6pzbvd54UsTGfhDIRJPctXjZ2w+glqjRSVApc1AndPIW2/8hmAwyDPPPAOkrNtTp06xf/9+pfJcFt6w2+3ceeedTE5OKr2/6ZStoigyOzur8FA/8MADHD9+nIWFBWprawkEAszOzmYMcHK0wGw2YzKZSCQSDA8P43CVYC5bQVlDK1q9ETGZYGbkKqMXzxIN+ZdsK5QlUYPBoDJAyzrimZ0EAv64CgGwaJIIAjRs3kFJXTOqAq1EiViUU29dl6QtKqmg+fYHrskApwYPlUpN2Ofl4pF3iIVTk4O9vJbVdzxU8NwvfvwOGp0BJAnf9FhOL7tt92NY7MtIDOaAWafGbU2FOZPJJJc7TnP+ZKYkq0ZvYPNDT+fkIJDR/dFefFPXvRhTsYOatdsUgSFJEpkd7We46ySRZWgY3Cwc7Apyum8hb5ZCEGBluY5vbC1OW/b58FHIraoWi4WKigplApdZDfP1xsvnJAvJ6PV6fD4fXq835+f1er3yObkQTBYmWur8bDabothXXFysGA7z8/PMzMzg8/kIBoMFC5tVKhV6vR6TyaSE710uF6WlpQqRT6FOKFEUlcldnrxDoRCdnZ1MTk7S1NREOBxWiIvyMYNqtVoSiQQqlQqz2Zyhi1AoIiFDo9Eo48VSKRGZxVD+7chFeIXqXpIaA6OuTfh1jutOgiBQpV3gLleYoHeavr4+DAYD27Zto7a2NsNL9/l8/PM//zOtra10dXVhNptZs2YNDzxwnfejq6uLN954A0uxnWlDOVP6csIJFXoxwp31RTy5Yz2DA/288cYb2Gw2Hn/8cSWqWghz4Tj7r8zwUWcfkYUF7Ekf/9e/e4Sh3sv89re/5a/+6q9yGhYj8wv83d5TjCVTKRK1SuBrK+x8Z0M57s+YFr9RfGkiA38ILMSSnBqcJ56UFN58UYLRuQgeX5SRiUlu27qZsbExOjo66OrqYmFhAafTyfz8vFJ0Bykr+M0331TYDJubmxUr3efzKcxbspciEwhZrVbi8ThWq5XJyUnKysq45557cDgcGWIZoVCI5557jpqaGubm5vD0tDPSdQqVWs1tt93GfVvX8f+dPsR9991HW1sbV65c4f333ycSiWQRpKhUqqxUgVz4tbCQmijOea2cni0iEE/9RIp1CbY4fTTkaaFJR/oEqTcXsfqOryttUUKa5rfRaqNl+8Oc/2APkiRS2tCiGFm5IIoitrIaBs8fLXj88PwMpmJn3v3kqxsQAJvxen5OpVIRCmaTubjrVhc0BERRpLypTTEGzPYSWnd+A1XaNoKgwllZj62smgsH3mDBf3MEoZbC+joDp3rzd4tIEmxcYVy07OYbAhaLBafTqZDyXLlyJcvoSJ/YNRoNZrNZSWOlq83JEAQBk8mkPHdy9EDO7+eCzMZYUlKCw+FQhH1kZT+/309fXx+XLl3K6z3LXUxygbGsAuh2uxUDIh2yPkM4HMbr9TIyMpIx0ae/lw2Nxd+BfK/UajX9/amC1KUm9Hg8rjAzBoPBgnTi8jiRXgC6VK2CRqNBpVIRi8UoLS3FZDJlTNZjY2OMj4/z0EMPZYXb5dZnSE2QlzxBuroukJjs5z8/+4xyDK/Xy9tvv83BgwfZtGkTu3fvViZZOcoj076HQqEMsh9ICQvNzMxw+PBhTP55Httq5eTJkxQXFzPyiY8Xek9z33338cwzz7Bnzx7+9V//lW9/+9tZHAyLYTdp+fb6cprVM/z2tynNmcTCXUpheTAYzGkMuI0qSkaO8M0du1izfiNWvQaD9tNx53xWfKWNgUueIPGklMW2JgHxpEjd+js4e/Yo+/fvR6/XY7Va0Wg0CpGI3EKl1WrRarXKwyuHQTUaDcXFxcogYrVa2b17N/v37ycYDNLW1sYjjzyC3+/n+eefx+1284Mf/CA14CVEIgkJvSZV4b13716FklSeyNeuXYsgCHR2dLDjzjtZs2YNx48fZ9OmTbS1tdHU1MR7771Hd/d1NjpJkjI8ovTBQK1Wk0gkObnQwBFPgvRQvS+mZv+Ek+o+P19fkT9knMrhjyv/lze1pQyBXCQ8KhXGIjv2ijq8Y/2YivJP4JAauE1F2Va6zmjGXl6LoNYQnpvG09dVULI4fdKRJ2e1SsBt0aPTqIgmkvgX4oTjSWwNHauJVQAAIABJREFUG1lZVMrElQ4CsylDzuJwXwsF5jYGVCoVVud1EqqGTTtShsDiDgaVCjVa6jdup/ujvXnP92bCYdFw91oz+y+EUv3RsgNG6tu+pdFIbcnnU7AkR7hkb3pxuiD9tyhz48u5ZjkVJ0MOWcsep6wAKE+m6ZC5D4qKihRmQHnCl6ME6ftOhxy+Ly4uVtrV3G63UoFvMBiUyT3daw8EAng8HuX/9Fe+uoP0kLooisvqHskn6SxjcW3S4r/p0Gq16PX6jBolOVcuCALnz58nFospKZzvf//7+Hw+9u7dy6OPPsq6det4+eWXicfjPP3001n7f+utt4jH47S2tha8pmqbkWqbkYqEmze6jyiU8ZBqK3366ac5c+YMH374IVevXuXrX/86jY2NzIXj+Ms3MpAsJunQok1G6QhZqI8lMeuuT7B33nknMzMzXLp0idOnT6PWG/GoHGy490GGLrbz4i9/yermZr71rW9x4MABXnrpJe677z62bNmyZB1SU1OT8pmBgQGlWNPv9+N0ZvOLyKno9WvXUGz5YiMBi/GVNQYW4klmQwXChIKQ4pI/m7KGo9FoluWdrq/e2tqK1+tlaGiI+++/nzVr1mA2m0kkEvz93/89APfeey8tLS0cPHhQqdaNxWKKfvYTTzxBOClwYciHN5w6N5UAqoiPwZExKsvcigf1zW9+k9bWVqampujs7KS7u5uvfe1rPPfcc5y+0IPOkhLPUBksBcOtGo2GDRs2YLFYuHTpEid65zkyJH82/Yefev/rk17u3R5Fp9XlneAn+7pRqdSIYhJnVWHyHkkUcVSuwDvWTzIRK1jtL4kiiXgah7pKTf3G7dfEiq7L04b9c3j6uihraM1oD1zMuJhMxLDoNBSZjZh0qZBmMJpgOnh9sNYajDgq63FVNzLQfoSJq51ZnP+5IA+2pmJnynjIA0Glothdhd5cpBAvfd7Y3GDCadVw8mqYoel4Kldq17C10cSqiptrCBiNRqVCXp4Mc0EOk8sTWyKRyOjdBzI82VyToDyZyZ54PB4nFosRj8dzGgly+L64uBiLxaLUELhcLsxmM4IgKMZC+qTe09Oj6Izk69nPd96FUIjkR96PjHz702g0Su2C/NLr9bS3tys8JnNzc5w4cYJvfOMbVFdXKxP+Uqyf99xzDy+//LISibBYLPzud7+jpqaGtrY24vE4AwMDOZVdgbyEQ/lQU1MDpFqv0xlfBUFgy5YtNDU18c477/DrX/+ahrWbOBStxo8b6dq8H1cb2Ht5jtPjYf77A6uwGjTK9o888gjeuTk6gmamipuQBDW9lwIgNFLc2Ig01cHVF17glltuweFwsG/fPjweDw8++GDBlI7BYKChoUHpdpEJ5PIVbXd3d1NdXX1D9+XzwlfWGAhFl9e/aS52IsWjinhIekWpXq9XaFJ7e3tpa2sjEAiwf/9+IpEIVquV4eFhpTJap9Nx9OhRRYLU6/Vy8OBBZmdnefLJJwmLai4M+jIiFaIESa2VdXd/m479v0GlUvHss88qhUEul4vq6moOHDhA4+q1bHrwKQL6IsSoiKCzY21wstJSxnD7YYL+zNx0RUUFdrud9vZ2kskkarWajjnbdZ3wHIjHk/zbb4/wzLfuRMX19jk5vG9SJbn/kceQJAnP6BAJo4HCwcVUcSHAzPAVatbemvdzKdVCA1sffQaVWk0yEUejM2QZD0ZLMTqDib6zhylraMFsS8mUXg/RX4sGqLUEFiIsTI9Q29iMiHDNELjeKw3XB/UVG+7APz3O3MQQJbUryQdRFPFe4xIwWAoTi8gwfIHGAMAKt44Vbt2S2g6fBunG53IJrAp5t+lerBy6ltUW07kx4vG4EvVKD9/LeXmz2YzZbFZ0ERYWFhSinVAoxOzsLF1dXUuGw5eLG+GFkM9Xr9crY4zJZMJkMikTenpI/dSpU/j9fp588kmlPe9f/uVfqK2tzciRy1Cr1XzyyScIgsDu3bu5evUqFy9epK1t+WyfarWap556iueeew6Px8PPfvYzJEnixz/+MYIgMDAwQCKRoKmpKef2Pp+PioqlZcRlFBUVYbPZsowBGTabjSeffJL29nb+39Negtr4IkpgAUlKkff826lR/sP2OmWVVqvF3LabyYverP36Y3C5aB3fXNnAqVNHMBgMbNiwgY6ODmZmZnjssceUSEUurF69mt7eXgYGBpTvNJcxEIlE6O3tZffu3cu+J58nvrLGwHKFKBob6omX2pWcmfxXrjxOJBIYjUYCgYAijhGPxzl0KLOqPxqN8vLLL2cse+GFF5T3v/i3f2PTQ99Ptc8J2eFkrcFETestePvO88orryhej5xP1BpMaMqbUWtSnl26lV9cUkH91rvp3P+6QmoEKIWOkPLgYrEY3qg2ryEAKdrN84N+2t9/mdKGFpyV9ajUGow6LaVOu5LvEgSB0soaBEFgKhAhHM8zMAoQmksVjE32X6S8aR1avTFnCyGCQFFJhXJtshGRtUuVCrVGi6nITmDGg7HIkdPrke/r1c4+zh7dT936r+GsXZmzbRNSg3tZ41r6zx0mEtqGLl97pSQx0XsBSBVTLgeJ2NKCPZ8HIroifKYKREGDPhHEFhpDLX22yfBmTKa5vGG4Hj5Xq9XodDpMJpMSDZC/C7lIUM7750sB3EzIk3m6w2A0GjGZTJjN5oywe66WNVnieTmQJIm3336bjRs3ZniUcjdBLrS1tfHJJ5/Q3t7Oli1buOOOO3jrrbeyqNiXA61WS21trULkc+bMGR588EGuXLmC3W7PGQ6Xa6du1AOuqalheDg/3bYgCJTWryHYkZvRFFIO1dGBOX5wSxVWfWrMCEYTvHM5d52O3BBwVajgP/zFX7B//37a29txuVzMzMzwr//6rzz++OOUl5czPLfAgSuzTAaiWA0a7qi3s3JlylGQeWzyaXFcvnxZoYX+MuArawwUGzVo1UJBgaR4dAGnRc/mO3OHhgKBAH//93/Po48+itls5qWXXqKkpIRdu3bxq1/9isrKSoaGhhAEgT/7sz/j+PHjXLhwgccee4zXXnuNZDLJ1q1baWhoIJhQMSvktzYFlYqS2pUMnD+KmIgrFqdMVmIsrUetyR+6tzhKsZXVMu/JLRUre3AGtchizzhjX0gY1UliCyFGuk4x0nWKhua1NO+4L2swk703t9XA8Fw4q59WDp/Kkr6JWJSuQ2/SfPsDmIodSjj++jVJyxcwuna/kteqp/NBEkXsZTVMD15GY7TkNQTk67GX1wJw8fBe1tz5MAZz0fW0gSAgJhP0fPK+0iHgn5kgthDKK5ksSRKxcACN9Okoij8tREHNiHMDflN5SrENAIEJWwtV3vPYwuMFt/88IQiCkj9fnEOXve10FtKbdUy5TkH2zuUwu9lsxmKxKAVxufrN0xkCP2/ItQgNDQ0Zy2OxWFaxogy3243JZGJiYoJwOMzatWs5fPgwH3/8cZZokAyZcEcuIJT/zszMKPLuer2es2fP0tfXRywWo7a2loGBgYzPi6JIKBRCFEWmp6c5depUxrrF+0//K5NCvfrqq8D19JD8mWQyyTg20DTkvAYZSVHihT1v4tbGUavVDInFJMQS8o1zogTnx/yoDHX8yZ/8CVu2bOH9999Xfm/Pv/AClk0PccwjKqydKgEOXZ2ltdxKZU0dEyND9Pf35zUGuru7qampoahoedHDzxtfWWNAJQg0uExcnswvJSvOj/P+4fc5cfw4O3bsYO3atRkTi/wFW61WysvLeeqpp3jppZc4cOAA9913H++++y6CICj5tI6ODkX+OJlMUlRUpGgRDHsXmC1wLpDyhHUGE5GgLyMkCrBx0+6CuXlRFHFVN+Q1BmSsKQ4xGs5fyCIhsNqWmXtd2boxb0GdnKO36DX4wrGMtIIgwNWT+4lHrw/okaCP8x+8QlFJJVZXGUgSKrWGqjWbbziUrdbo8ir4pZ3gdS9UTC7JUKgzmtn00NNcOvIu7ft+jaOyHntZDYJKTdA7ydTgZZJpdQ1IEkOdx2m65e6sfcv/D5w/9oV4r+kYdazDb7zmEaYZQBIqRpwb0SSjWKK5pYI/b8hFgTcC2YCQJ/R0HRK5cFFOFSz20mUZ4c96zulpi0ITXaHJL9+69Nfg4CCCINDV1UVnZ6eyPBwO093dzcjISM79yYbUP/3TPyktkpcuXeJ//s//CaDQ5abT5uaDPCnKY5Cc+rx06RKXLl3Ku92ZM2eU70tGoedNPgdZSyUX/MYklBQ2BgA8Y2P44qnnbNpaDzZXQZIjSJHhWfUaampq+NGPfsT58+c5cOAAM8YqOjyZlN7y34ueAImiNWilQfr6+rBarVk02wsLC/T393PvvbnUFv4w+MoaAwBVdgMJUaJvOqz4wpIkIUoi2oVZHrxzK1vXrODQoUO89dZbHDt2jJ07d9Lc3IwgCBnGAKQUvJ588kl+9atfcfp0ijZTkiSqqqp45513KC0tpba2lhdffFFhLJRz9Zplpi3kiSa99UcQBEWgJx8EQVDaJ3NBozNQUreKOoud2mkthzo99I5n5rAFJBz6OKuKMo2WYruzcJGgJLIwO0EgHE+RDkkS3vFBJq6cJ+jN3fLlnx7DP50iGanfuD1VCHgDA7YkSUTCAUJz0zgq6wtGBwKzKbbEuYkhbGU1S+5bqzPQcucjDJw/irOqAYOliHgkTCIey2l8TA/1IKhU1K27XaFYFgSBRCzKQPsRpb7gi0JUY8Jnrsy9UhBAEpkqasIy/cUaA+kTutyhI3vhcs2NTqdDq9UqPezp1fKLJ015mVwE6PF4sibHQq/FE2Ou97D8AsGbjbNnz2YtS+dpyIfFEZVc3Q2LozPpiomRSETheZDHIL/frxgGcueFSqVS2FhDoRDj4+OsXr0anU6XMX7J+07/P335kSNHqK6uZuXKlTk/E5ME/rY9RqJAiUaxXsVP/t130Fy7ps7JCD87Xfg+aVQCxYbrU6QgCGzYsIHm1av5969dgERuB0iUoMevZpXawPDwMFu3bs1KdXzZUgTwFTcGBEFghctEpc2Axx8lmhDp7jxP34UzFFvN3LV5DW63m+985zuMjY1x8OBBXnvtNSoqKti1axeBQEDpbZZRVVXFk08+yS9+8QsgRSH64YcfEovFeOKJJ3j11VdxuVzcfffdvPTSS0xOTlJRUUGJVYfgKUBZL0kQC+G0FzM5maoTkB+2WCxG2OelyFWef1KWJMKB3Dkyd10z9Zt3IAgqJEnkvnqBB25dyemeSf6f35wlGk8CAlWmCF+vnmExIWQiEUe9RJg0OD9L17EDBT+TD2IymS+aVxCTvV0EvJO4qhsRALMulRoSJQjFEsSTImIyydRgypOZHuqhumULGq1+SflitVZH09ZdSreCZLFR7K6ioqmNro/2ZrELzgxfZXa4F1t5DVqDidhCkLmJoWV1Jtxs+I1lBVsjEVSEjCUkBTVq6YsTSpEjAolEIq+o2OeNxV5qeqoi/a8cSZDXp68r9JKNl/QJNv29Ug+T9n/69pIk0dvbi9vtVoqI5WNfunSJyspKHA5HzvORJInOzk5EUWTdunXodDqFJbGtrS1jHMuH/v5+IpEIq1atysj/d3d3K+yLPp8PtVqdUUgo6wZYLJa86bJ8bZIWi4Xp6emctQgy1hgtdIbM5Bso1ujmaD93ncEwKYFecBOVcksvC0is0IbY/8G+rHX+hJpgsrTgmCQBuFaQnLxEIpEgEAhkRAa7u7upq6srWIj4ReMrbQzI0GlU1DiMRKNRXj1xiNbWVjo6OpienqakJMVkV1lZyVNPPcXAwIDSe2qz2TAajVlep9FoVEJyRqMRn8+H2Wzm4MGDSguh0WhErVYzPDxMRUUFWrWKFU4j/TPZOVC5KK3CJLH7xz8mGo0yODhIf38/V69eJRKJ4Onrotidx9sDEASm+rPDd7bSahq37lJ+qOmkQJubSvjrx9fw/ocfU2OOUGLIndce6r1M45p1eb1vlUrNSH9P3lPTGkyUNbRSUrsStVbHwrXWwJmRXrgWRahYtT7v9lnhd1Ek6J3C03cBMZkkMHaV1tZ1GXOfw6wjsBDj6O/fUor8kvEY3YffZs32r6PVG6/dtjy1E/JgKw/u1/6aip00btlJzyfvgyBQ1tBK+cp1GC3FSJLEvGeEsctn8U//4XLyoqCmUF2IDElQw+dgDKRPnvL/i5fnmpSXs32hZenrTHY3juqV6C1FJGMxfBMD+DxDSGLh9r4bQa5t0jsMck18Sx1H9r7TiZQEQVD26/f7CxpScnpAZvKTnYqenp6CMuyQes5kjpXZ2VnlvUwxLbMryuqEp0+fxuFwKCRngiAoRYdLIf0+xONxgsGgUn+VCyVApaaOMbUbIcUJrBRC14vjmGfHWaxq0CwE6dA0ApmGsSBJ6IhTHuxlPJg95oUEI2hKs5YvRkVVFdOTl/D7/UqESmZ67e/vz5Cr/zLgj8ZAGmQCiDvuuIMrV65w/vz5rLaPFStW8MMf/pCenh727t1LJBJhz5493HXXXbjdqX7y48ePK9rVfr8/xWR3TXHsT//0T5WHrqKigpGREbZt2wZAvStlmQ/MplgAJUlEEFToNCpmrpzl1PlT6L/zHUW85cqVK8zPz6PT6YjOeZgZvqrw8l/Pg6c815GuE8Qj2TUJVWs255XqFVQqmhrrCFw5SiTHQyHjUsdp6le1AJosg0AURaY9o0xN5BYYMRbZad35jQxvXOPUU1RSgbOqkZ7j7+OfHiPgncRiK8mpQpiORCyKp6+L0YtnEJNJXKUVtLa2IQjZA63FoGVV8xqOjw8qy8LzM5x77yXa7v42pmJH3mvOB0GlUvQb6tZ9DUfldeYyQRCwlVZhK6um99R+poeu3PD+PysElQq3zcIUhQsx1ckoanFpVbVPg1xhdbmAT04PyHl/uZhPXnYjr/QOg/RjX/IEGZuPKkRLABZXOU2b7mBzTTH6JfTu/5DYt28fV65c4Sc/+UnG79nn8/HTn/6URx55JKuwMB1Xr17l5Zdfxmaz8cMf/hCA06dPs2/fPh5//PGC3vfvfvc75ubmcLvd/PjHP1aWd3Z28uabb/KjH/0Iq9WKJEm88847tLe3Mz8/z/e+9z1OnDhBMpnke9/73g1f89jYGM8//zwPPfRQFqNg1md9ET7u8+JfSOCyaLmzwYnLsinv57smArxybpyeqdTYqFYJ3L7Cwfc2VeA0b8u5TTwpcn7PBUJLyAvftrqWvWevs84GAgFMJpNSU/FlShHAH42BDFy8eJHKykqcTietra1cuHCBXbt2ZQ0ogiDQ3NzM2bNnCQaDTE5O8rOf/Yy2tja2bt1KR0cHoijS2NiYUfgiiiLj4+OUlqasyurqai5cuJDmlQs0lJipcRjZ99FxvHPz3L1zOxUOC1LDLn4T9PLqq69SVlamtATKodWqqio8F08Snp/GXd+CwZIK4QW8k4xdOsfcxCCQilREIhGMRiOl5RUUlRTu+5UkEXtFHRNXOvJ+Juif58A7r7H9vkcxmizXwvqpEKdndIijH76dd9tVt92PelFYXn7vqFxBxcp1jPec5/KR91h9x0NYHG5FCVAQVIjJJFdO/J6gdxKVWkNsIZgRem/ddKvynS2GIAisWNnChdPHCAauF/CJyQRzE0MYrbaC6YJ8EASBylUbcVSuyPZwr3VYNGy+i7mJ4S+0pVBrMNGy4xEMVjv958byt3tKEs7AwKfJzHxqyMyYheSHFxdfLidPLxcUyi9HzUoc9etS+1j02XA0wSc94zhFb4ZBsdjIkOsV/hDo6+ujvr4+6/gy8VG+bgIZK1asQK1WMzo6SigUwmw2s2HDBkUU7dFHH825ncfj4cyZMxQXF+NyuTLWXblyhfLycsXJEQSBhx9+mLq6Ot566y1efPFFLBYLq1at+lTXXF5ejlarZXh4eEljoLLYwBMbl89l0Fpu5X88uApvOEYolsRh0mWwFeaCVq3i3mYXb3ZOZv2GINVVsLLEzPqGSg5YLEpxcCAQoLS0VEkRmM2fnxLvp8EfjYFriEaj9Pb2smvXLiClZHj69Gn6+/tpbMytghcMBqmsrOT+++/n3LlzfPzxx1y4kOovlySJoaEhRZhIrVZjNBp57733KC0tpaKigurqaj755BN8Ph82m03Z7+jwEO1H9/PII49Q6bAwNTXFpUuX8Hg8JJNJxsbG0Gq1tLW1sWrVKoUJzO/34fe3M3q5Ha3egJhMkkzEcblc6PV6otGoUjgUDocZHR2jPL/RfO068vfzp2Nmcpw3X/oXqmobcJSUkkwkGRvqY272eoGgzmimvKkNV3UTaq2WaDiUk144HeVNKWMgHl2gc/9vKHZX4ahcgUqtITQ/w/RQj1JUWV2/kqY16ymyOYhGIwz1XqKiJnvgzLw+iar6lVzuyNRJn+zvLpiaWAq2suqCHRaoVLjrmhm/cv5TH+NG0Xz7Aym1S0Hg7iYX712aRpTS6LivTa6mqJcSf99NOaasNijng5eawPPxC3zaIr1EIqEYzNFolJqy+vwdI4JAQm3gg/0fE/blL54UBKGgsbA4OrHcSMZSbbPz8/PMzs7mZPiTjailjAGNRkNjYyM9PT1cvnyZTZs2odFouP322/nggw/Yvn27UosgQ5Ik9u3bh9PpJBKJZKwXRZG+vj5uueWWrGO1tbVRWVnJCy+8QDAYpL+/XymYvhGoVCqqq6sZHh7m9ttvv6FtlwuHSYdj6ZIJBd9eX07vTJjO8UBGhEkAHCYt//udqYhgc3Oz0kEhk1sNDg7y4IMP3tTzvxn4ozFwDXKKQA7dlJeXU1JSQkdHR15jIBAIYLVaUavVbNmyhZaWFv7hH/5BaYuKRqN4PB5uvfVWmpubeemll1Cr1bz66qv86Z/+qWLljoyMKMZAIpHg3XffxeVyMTg4yP79+xUKV0EQqK2tRaVSMTQ0hEaj4dixY0oeTp7wAeLRCBUVFeh0OsbGxojH40pBklx0mIhFiUXC6Az5nwKVSkVobmZZ91ASRUYGrjIycDVrndnmomXHo6g1WsXbVmsLc3ELgoDeZEGrNyrth76p0Qw1QPlzX9v9MDUNq64zIVqs2J0lS3twkpRzAI0EffSfO0zDph0Z4kn5UiqZuxTRGsxLdFhIGD9FGuLTwuosy9BLKC8y8CdtZZwf99M3EyYpSZi1AtbpbpyBQVTcnMJGURQzqtXVajXl9c2461vQWRyASHBmIhW9mhrLO+HLRoXcSZDOQigfQy4+XMz8JxsiOqMZnWmpvLhIsbtSMQbSIwtyGkOtVmcU9smQScBkYrJEIkEsFlMokZeCTKSU7yV7mGNjY8zNzWWs83pTTHp+v19hJJTv1+JnoKWlhZ6eHjo6Oti0KeUNbNy4UYkOPPLIIxmf7+rqYnh4mMcff5w9e/ZkGAMjIyNEIpG8rINOp5Nnn32Wv/u7v2Nubo6f/vSn/PCHP8xwfpaD6upqTp48uWTr7xcFrVrFf93dyNF+L7+/PJMiHdJr2NHk4O6VLizXyI02bNjAmTNnUKvVBAIBJUWwenV+7ZQ/FP5oDFyDnCKQK2QFQWDdunUcOnSISCSiUJjKkIk00otuuru7M4qC5ElEr9dTVlam8BAEg0Fee+01nn76aZxOZ0qW2OGgt7eX9vZ25aGXBzhBEFi7di07d+5EFEXOnDnD8PAwJ0+ezCA7kY0BWRt+YmKC+vp6tm/fjlar5cyZM8zMzKDX63n88cf56KOPmOrvpnJ17h5+SRSJRULoTWZadn4Drc7AQmCeyf5u5j35WcGyIAisuv1+VGmGgHyPlwNJKjwxrV63her6FOtXerV2atvCg4dKrcbnnVXO89pGAEz2dbPgn6Ni1XpspdWAgH9mgngkhKtmZd57Nj1yFXtZzRIdFhJi4osjGiourcpShLQbtexscLKj3oFEinvjxBv7EG+SIZALlWu2ULV6U5pRpcZSUkWzuwpvbzticJaZmRnm5ubQarW4XC60Wi3BYFDRByjEy28wGJRagUQioaQelpLclSEIAlu2bsWwoZlIJKK8FhYWlMia/L/8Nx8ngkqlwmAwYLValdqHdKMi3ahJ/15kA0c+91gsRiAQYGpqCo1GQ1dXl2JkLDZ89uzZk3UeudIckJrIX3/9dUXpsby8nI6ODhwOBzabTYlWvP/++9TX1yvbpXcRXLlyBbPZXJBmWNaEkKWF//Ef/5HHHntMSRtIksTEtW6usiI9xhyqfbW1tRw+fJjp6WmlNusPDY1KYEejkx2N+essysvLQW9hSlfCxxMSLIxRs6JhWZ0bXzT+aAyQnSKQ0dbWxoEDB+jq6mLz5s0Z62TFtakFNc/+yzH2nhwitBCl1FTORruf1bYFXC4ntbW1HDlyhFOnTnHHHXfwxBNP8PLLLzM8PMxrb71HeettqJ3ldM0JBAU7aouDMqOReDzO7Owszc3N3HnnnXi9Xt566y2GhoYUWVHIpH6VeQ+2bNmCwWDg4MGDrFq1iu7uboaGhqiurubuu+/mwIEDvP7664TDYQTV6DWCn3Igs/BQFJNIokT9ph3KOqPVhrOqnumhK1w9tb9AL+R12EprMJhvnGVLEkVC8zMFKX0FQWBV2+aC6/NBFEVi0QjBaIyWnd9ItWYKAoFZD+M955kd7cM/PZ5d+S8IgEBJ7crrrYXX/gZmPfSfPUxt262U1rcU7LCYHekteP03EylmxfxytcL1fz63cyh2V1G1OuWJphuFsodvb9jAufd+SWwhFQmTDVpIydO2trZis9mIxWLMzMwwOzuLz+cjGo1mtCXmQ2whRCTkR2+yFvhdCDRWlWI1FOjMWQS5FXKx8ZDPmAgEAhnr8hk3chGl/IrFYpSUlFBXV6cskyf38fFxTp48yTe/+U30er1iTMhGQ/orHo/j9XoJh8OMj48rstCyENvBgwezzqW/v18RKHrxxRdRqVTKdlqtlueffz5vekQel8rLy7EyNP8VAAAgAElEQVTZbHzyySfs2bOH1tZWTI1bePeKj8lrBcpatcCOBiff21yheNeQatmWI6JfFmNgKYiSxK/OjNFVuiOlkRCWkCQL3YJAfZ+X7Q1fXGRwORCkPwRbxpcMcjXsX/7lX2ZxZ//6178mEokolbcyxsbG+G8//RV7R8uQJEhco5+SRX7WuyLs+5vvYbVamZ+f5/Dhw3R0dCgPr8lVRePWXSBJaap6qe6B0UtnUQU83HLLLQwODiqKYzJyqRDeeuutStXq97//fUZHR3nxxRdJJBI4HA7a2tqIRCL09/crLUkGgwGbzcbk1BTlja2461sxWopJJuJMD1/BbHNhcZTmnNDUAixMDxOYHmNmcpzZKU/e+1vdsoXK1ZtQqW6c5e3ysX05SXlsZTVY7CVotFq23PI1dIvJD9KQS4xHFJNIEpzvOI+jtjlT3fDa+9GLZxjuOpl3v0XuSkpXrEZvLiYeCTM9dBnv+CBIEgZLMevu+U5O6WJJFAnMeug69OaN3IrPhOLSalrufDjvekmSWPDPcf6DVz63c2i+/X5s5XV5DSRJFBm7fJaJnnYl179cyOF8uO6JqtVqxcMNBAIEg0HKGlup33hn3uMHZj0MnPo9FouF4uJiRbLYbrdTVFREUVHRTaUeliSJWCyWYTzkMiS8Xi99fX243W5FBXI5UYn0lyx4ZDQamZmZoaenB6fTyf333698prOzk48//phnn32WhYUFfvGLX7Bx40ba2to4f/48Fy5c4MEHHyQej+Pz+Th27BhNTU1YrdYMYyPd+AiHwznTJDPWFUzYW7NrayQRk7jA1sQlTLrraZrBwUGMRiPNzc03VKeRLg39ReLls2P8tnMy7/r/uruBjVV/eLVCGX80BkiF1oLBIM8880zWuu7ubl5//XWeffbZjCra9s5udv3fJ0lIqizOfRn/+MPNrCuJ0dfXR19fn0K8odEb2fTg9zOocBdj+NxBRnuzeQFMJhMOhwOTyaSoYmk0GkV8SKvV3vBAmgumIgfr73sia7kgQIlZj1mvyZhkZ6c9HP1gb0ZVvozK1Zuoadm6ZK49RVEsKIPDUOdxxnvaMdlcuOtWoTOYEcVUTldvsiiUxoKgwqhV47boUeVgcpQkibGhPpzucoym1D5GBq7Q23OZ+lsKK4Z5uo8jiAkiC2EmhgeUToblwOosY9Vt96EzmhHFJAICgkrFvGeEq6f2U1K7irKGVvQmC4l4lOnBHsavnFc845uNDfd/D725KO9k3Hv6oKITkQ6t3oijqh6NzkA06Gd2rD9vP34hbP760+iM+UlWUsyUA/QcyyZ6WS4MBgNOp5Pq6mpqa2sZGxvj9OnTiKLILbfcwm233cbAXIIx33V1Svl3nFgI0nvifQLz3oIRBlkN0Wq1YrfbcblcOJ1OhXnParUuW0Njufjoo484efIk/+k//aeMfctRidOnT3PkyBG++93vFoxKLDY48kFOXYiiSGVlpWJARCIRJfI4Pj5OV1cXTzzxBEVFRYrBsbhO4eDBg3R0dPCTn/xEMRamfSH+6sNxpHw8HkisNwdp1c8rRsXk5CShUEiJDsmvpSBHMZZT1Lncgs9cbavpCEYTPLPnguIkZl8f1DtN/M3DzUue/xeFr3yaIF+KQMaqVaswGAx0dHRkfGbv6TFiYn5rU0Div//6GN9v8FBSUkJTUxNOpxODwcBc0gA5+t5liKKIubQOrhkDaq0ed90qbGU118LYkwz1XyQejyNJUkaBVr5CJTkUm8tIMJlMVFdX4/P5lOiCtaQ8Z769zGpAr8nMywPYnSXsfvS7vPfaL4hFMweZuYkhatfm7tmFlEcW9s8RnJtCo9Gm6hIGLhENB2jYvJPS+jWpiT91UOW46Q/jQjyJJxChvChb0lgQBM4d/4jAvBeNVkcymUASReo3bs/Koyv3RKfGadaxYvvdyrJoZIFznxyiv6cr77WkIzDr4ey7v8RRuQKzvSTVsjg+SCToo2XnNzDbnEDqerR6I+VNbZTUNdN18A0WAvNL7r8QBEGFvaIuRf8sisxNDHH56Hup2g+9QTmuHAXx9HblNARq1m6jctUGuMZgp1KpSMSi9J05xOzojXUcLKkTIUlIy8zt599FihhnfHycEydOAKmoQVlZGdFolO7ubkpK3KwtczAdFhmb8hKPLrCxeQVlRS4e2PTvgdRz5Pf78fl8zM7OMj09jdfrxefzEQwGCQQC+P1+xsbGcp6HXq/HbDYr0QWXy4XNZqOoqIji4mJMptzCVfnQ39/PihUrsn6rGo0Gi8WiCCzlK3bOBVmKeOfOnaxcuVIxFDo6Oujp6SGRSNDY2IjJZCISiSiFzOfOncuISixWY10clZBJd373u98puhCdAQMUEAWTEBgUHfy3R65HcS5fvsyrr77KU089pRQgyumhXOmQfCmSxVGL+fn5rHXL0cZY3Laa/hrDTkJ05d1WAvpmw8wEY7gshankvyh85Y2BxV0Ei6HRaGhpaaGzs5OdO3cqD2P3iF9Rq8oFCYGpSOpLTucL12g0rLrtfooKdHGrVCos9lRezOJws2b7w4r2gCAIFJdWUdm8kdHOI7CQGpxkoRAZMmWq/KOWawwEQaChoYHa2lqOHTtGIpHAZrOxbt06Xnvttevb5zg/o1atSBRnn7Mao8lM05p1dLdnhtbD8zPMT45QXFKZl9woMOth9NIZYuGgsry6dSvuFauVe7IUogmRSELMKEASRZHx4X4C86lq60SaiJDJVpJzv3KUYTF0egO33vUAkiQycCW/ZKrBaKa6vgmd3kBgfo7Rwd6MiXPFhjswFzvJJVWt1upo2rabzg9/s+T15oPF4ab59geUiAQIVLdswT89TtfB3+KsqsdVsxK1RkvYN4unt4v5yZGs/VS3bKWyeWMWm59aq2Plrfdy8eO38U3mJpPKhdmxfiqa1uWNEAkqVSrNsgTkrpjFRYFms1mpuk83ejUaDT6fD6/Xy5kzZ5R1RUVFCIJALBajxngvKrebkpISpcDP6XTidDqpr6/POgdJkhTqXbnlTy58lFvIvF4vXq+XgYGBnNcgRxdsNhtOpxO73a5EF4qLi5Wi5UgkwujoaMF2tHg8vmRb4WK0trYyOTlJf38/27dvV5ZXV1fT09NDUVER3/3ud5Xv/R/+4R9oa2tj165dxGIx/uZv/obt27fT0tJSMMUxPz+PSqViYmJCWd5naECy1BY0COYW4oiShOra8WtqUrohw8PDijEgCILSNXEz+/ZFUVzSkChkbPijkcKU39ewkPji6L6XwlfeGLh48SJVVVUFdbbXr1/P2bNnGRwcvD4wiMtoFRJSnrXFYsHtdlNdXY3X6yWaiLMUHayYTKDW6liz/eupdrwMqlUVqCSq1t3B+Q/2KHK56cin/CZzm/f2porX1Go14+PjGYYAwPzUaJbnYtapC1fnXyPxWWwMAFw5/gGr73gIq7MsFTK/VoQnU6mW1q+mtH4Nk/3dDJw7gqBSUbFy/Q3n+oKROEZt+nmmBn53RTVT45kTnpiIZVyPfCSH6brhlXl5Ke94/bYdDF69lJNFb/22O2lu23ztsyIqlZpoZIHjh/YxNtiLSq3BvWJ13glRNgTN9hJCc4WFVHJBb7Ky5s5HUF/jhkiv07A6y1i57R469/+G8Z7zBVNJaq2OyuYNecmaJFGkpuUWLtyAMeDpvUBZQysqyLp+URSJhYPMji5dVCnz2Mvfh2wchEIhxXu1Wq3U1dVhNBpJJBKKFK58zXq9HpVKpYTP33rrLeXa5DqB9JdMq5t+D6xWK1arlaqqqpznGY1G8fl8isGQXvQod0eEw2EmJ3PnldVqNWazGY0mlZKbmZnh/PnzirFQVFSkGACxWEypmVgumpub2b9/P8PDwwSDQYUnXxZACoVCCs2wHCmR2woHBgYQRZHW1taCrIUA/+t//S9aWloUxVaA19rHeb3Dk9eZAlBLCQ5/9BGrVq2ivLwck8lESUkJQ0NDtLW13dC13ijSoxufBl0TAbrez26xTodWLeAyfzmiAvAVNwaWShHIkFkJz58/rxgDzY4E+6T8E5VaBZurdNjtdubn55W6AQBXTQRnVWHJzdIiPV+752FiWn3eARlJoLxxLQPtR5a61LxY3JokIxKYT6n4lVYrA3eufPzic9Lpcz88iViUCwfeoLi0mvLGtdgr6pR16YNsaX1LKnc81l9QZTEXJEkkFFrAlebVq1RqKmpWUFXXyPkThzMMldnRfopLqzFq1RQbtTlbmnJdo8lsoaS8Ksu4WH/Ldlav25LmSaf2p9Mb2H7voxx4ew/BUHhZ12W2uT6VMVDe1IZarckbgbE43NjKavBPjRY0BuzldQXJpgSVCqurDJ3RvOwah2gowKWP36H5aw+i1uqUllGVSk005Ofix+8o7JFqtRq9Xk84HFbeRyKRjN9rumrg4ihBIBBQCMAAbDabkqrT6XQsLCwwNTNLGAM6UxHJRAzfxBCqZAStVsv09DQDAwNKXl2j0eByubKMBDm6kAt6vV75XC6IokggEFCMhbm5OWZnZ/F6vfj9fkKhkFILBChpj3TodP8/ee8dHNed3Xt+bkd0QGqkRs6JIAECIEGQBMUgUiQlcZQojWc08rMnvH1jz7Nfjev5ef22try7tVVTdnnX5Vnb4/GOPfIES5NEjahEZYogEUgi55y6EbvRAR3Q3ffuH817iSYCwZl5Gq11qlgku/uGvvf273d+53yDDrPZTCgUIhwOc+3atZjqgqyDslXIlY+VlRUGBgY4ePAgLpeLjz/+mAMHDtDd3c3169c5e/asYsErJwPDw8NYLJb7JgKiKOJ2uzctto4VWfhJ5/agYySRAo2HtrabXL16lfj4eMUcabf+Br/NqLKayYjXseRd3zLhUQnwULFlV2POJxWf6WTgfi0COQRBYP/+/Xz00UcEg0H0ej1Z+jUKko1MOSOKIcbdzwMIfOs/niHinOTjjz/G7/dTUFCARqNhaXk5SnEymLfW2pdEhOAK+oRMQpEdcAkqFUmZ+XBPMiALo8hWoxqNhlAoRElJCRkZGXR1dREOhyktLcVut7O8vLWo0EjrO1QdfwJTchqSKBKOSLDDPCaKIm7X1s6IcrgWZsgu3x/Dooj5ToKAtbgK78r2KNydImGDJKoc8up4f+NxFufnCPp95BSWotHqMWsgPSHugQGX+jjDpv/LFYF7Q17B7jt4lOb339rV/u/bX98mUnJLdgRqimKElJzi++pEqLXaXQm8qDU6YHMysJH+ujHcy3ZuvvZ9UvNKiU+xIkkiq/ZpHPbJGJpqJBJRWAF3zz26P4vFwtra2pbWu8p5qdUxNsMej4fR0VH6+vqQJImMwkqK6o+TcsepUyWoyK6oI+RZYbz9PVbu/CZkRoLBYEAQBOx2OwMDAwo2Z+OEv/HPbnjkKpWKxMREEhMTlRL4xpAkCb/fzz/8wz+QmZlJcXGxkjCsrq7i8XgIBoOK4BDAe+9tdgbd2I6wWCwxyUJJSQkOh4O+vj4OHjzIlStXiIuL4+GHH8ZgMHD9+nWampqUY1gsFiRJYmRkhKqqqvt+R6/XGwX93pMMZCbGcboshXeHNys9qgRQSSJx9i4effRRzGYzQ0NDDA0NKe3Qf/u3f6OqqorS0lIMBsOmffy2QxAE/vihQv7irWHCohSTEKgESDPr+GL97mWTP4n4TCcDu2kRyCFrDvT19VFXV8fampf/qT6Ov2kOseDXoVELSKJERJLQazT8r5/L5dob/4bb7aampobjx4/HqG55/EFuTbkISdxBmoOgUhNeDzLY/AaeZTsVTY+SnFmw44C8VW9/o8a7rPkuCALTM7OgM5Fbsgeve5W+vv4d0fHh9SDd7/0MS3YRafllrJsTSCzcPGjJoVKpGO3fWV5XrdGSZN1+H/K30hlNCtVytyEIKhLiNiuuySGKEY6evoDJHB+dWDYkJA/ajlhzx7ImcgpLd5yEVSoV1ux8pPA6freTuPikHc/zgUSdNsT9qg4C0crGViE7aXq9XgIe132viRgJE/R7t35vB2tmMRJmcWKAxYkBhT9/r16FTN8Lh8ObEoONk5+M/paV/+S4t1Kw0R43IS2LogMnAdnz4O7qTGO2sPehxylOEgiFQiwuLjI/P4/dbmdpaUlJLlJSUoiPj1fYO9PT03R0dCjfW24NbvyTlpb2QKV8QRDw+/14vV4OHDhAWVnZps+Ew2Hcbjevvvoqfr+fPXv24HA4cDqdrK6uKgZpfr9foRRvFVNTU3z729/G4XBQWlpKd3e3wp766KOPSExMRKvVYjabmZ+fx+PxbKs6uDFkAbWtxtivHc7DoFXz5sBSDOo+L9nAHxzJpuPqDL/4xS84fPgwjzzyCGfPnmVsbIwf/ehHLC8v88orryiqrOXl5ZSXl5OcvLO8+ScZZekmvnWhgu++38egCxBUGLQqHi5L5ZlqK/Fxn67p99N1Np9g7LZFIEdCQgJlVdVMroYRp1bJqTnGqn2Sb/+OFX3WPi63z+D2+lga7+RQjoBzcJzKykqef/55xQZ5Y8Qb9BwrTeGffvAypfvqyczKxqCKEHCuoK8oZnZWj8+5RHJmPtthC0RRxLUURTPLg2IkEtmSMlRVd5i99Y2oVGoFFR4M+Gn98K0t5YPlkESRlZlRRSAndLCJfQeObLYNvkPfmxodjNlepVKTV1xOZm6UX+5YWUZmD257TEkCKVrGT8ku2nKS3WrVmmLSoVHvNCGrlYnwV6V+iaKIy7mCYzm2cqHV6na1ktZodcz036SscWtKoyRJLIz1/coGRj7XCvEp1u0TEwHU9+Bd1Go1kUiEUCikeFe4Fme3rV7BHaXFqeEdVRTlikh8fLwiPLPxdYiC49LS0jAajSwsLCjP7m7Q3PLndiP1uzFyKuuV38BW5xzSGPm3n/2YSGCNnJwccnJy2Lt3LxkZGbjdbiU5mJ+fZ3Z2VjlXGQgo95mDwSBDQ0Mx5f3k5ORNSUJKSsq2pfyxsTFUKhUFBQVbvq/RaLBYLOh0OoxGIydOnIh5X5Ik1tbWFOyC3JJwOBysrq7idrsVep6cZI2OjjIycndMaG9vV6SX//Vf/1WhSDscDiRJUqoMWyU6OyUDapXAf2jI4ekaK11zboJhkfxkA8WpUaZF4dNPk52dzZUrV7Db7Vy8eJGSkpLoWFxWxpEjRxgaGmJ4eJh3332Xt99+m/T0dMrKyqioqCArK+u3Ll2cl2ygOjJOPmt8/gsvYNKpUd+n3frbis9sMrDbFoEcE8s+UquORWlavjCWrEJScoqJU0NDoYWihHXee+895lI86FUmfu+rXyU7e2cVM5vNxsLUCI89fIzcTHM0y9emYYjTk5aWxqrbS0CSojJG25Sf50e6gdhqwL1RVddITUNTzHYQ7WUfO/sk71/+CfOzu+vDdbdfw+tepaq2kYTkaP/Q71tjuOc2fZ2tMeX2hCQLpy48h8mcoKDa80sEJAkWvAEC27jmqVQq/G4nCxP9GBNTMMTfRQ7DZhMbvVogyajDqLv/4/zrDA6iKCKJIm0fvb3pPY/Led8EIxwKEfCtseYZRhdnJL866qgYlamKahAsTQ0x2dX8K5+jfbRnWydKOcnqa78a87q8Yr53Ah5pfTcqVCTGAv4kUSTo8zLds7mHLUdCQoJi3+31eklKSmJtbU2hwyYmJhIMBgkEAiwtLSEIgoJMb21tjVllb4zU1NSYCUx+FmSQ3f1kh1Vq9X0rU5IokpFfhm9hAq/XS2trK1evRq9ZWloaOTk55Obm0tjYSHJyMisrK0pyMD8/z+joqNLCMJvNFBcXx1QRXC4XHR0dioqpSqXaEo+QlJTE2NgYeXl5960orK+vb9makAHMZrN52/FIthuWJIljx44BxCQMsgS0JElMTk4q273++usx+9HpdCQkJCgCTYmJiSwsLKDVavH7/Wg0mi0Fm+L1GpqKNqvxCYJAY2MjVquVn/3sZ/zjP/4jzz33HLl5+bTPeGi9Ps+8O454cx1NT5wkV3AyOTrMrVu3uHbtGmazWUkMCgsLf6NiUbsN+ZodOHCAhE9ZJeDe+MyKDr300kusra1tUhbcKhbcQbrnPNu8K7HudXHzjR+RlZVFamoqQ0ND/Nf/+l9jsn1ZX1zmLrvdbgYGBlhcXCQhIQGfz7dJQEMQBJKseZQfOYcgqJQBWRbnGb/1IQvj21PcILoSfeY//CGabWhHoijiWJrn7V/8EICUjExKKmuIT0wi4PcxOTLA3OTo1voEpni0Oi3+tSjiWKZ0RSIR1BoNn/vC14gzmrb0lJeAuVX/JlEOSRQJrQe49dqLSJKIWqMlo6iK3L0NqNSbrWNzkww7VgPuPe6DJgMbt7HPTNLZehXH0mbgkyAIPPnC14kzGLdMCkRRZKSvk5vX3lVe08YZSS+oQG9KILweYGlqGL/bsWnbB43SQ2dIzStVzks+viAI6H0LfPj6z3fcfmO/35iUSu6eg1iyCxAEFZFwiMWJAWb62wkHt65eyAqZMnhWkiQMBgN+vx+j0Yjf71eep8LCQmZnZ5VEVq1W88gjj1BaWsrly5cVCdyNkZqaSn19PXNzcwwODsYkMSqVSuHwr62tbUoo1Fodh5762o7fXxJF1ubHWRrrZmFhAVEUiYuLIzk5GbVazdramgKoMxgMSvUgNzeX7OxstFotq6urSoIg/y1P/nFxcVitVlJSUpQJ3Ofzsbi4yOLiopJI6HQ6QqEQmZmZ7Nu3T0kSZNT/xvjud79LVlYWjz/++I7fbasYGBhQ2ER/8id/smn/V65c4caNG+zZs4fCwkJef/11Bf/kdDpxuVybEkm1Wq14LGwMg8FAUlKSormwkRmRmJiI2Wze8vfjdrv56U9/is0+z3L+Q8yFTTHUbgFIj9fxfzxaRlKchpmZGQVn4HA40Gq1lJSUUFZWRllZ2SfmDbCwsMB3vvMdfvd3f5fCwsJP5Ji/anwmk4FgMMhf/dVf8fDDD3P48OH7fr51YhV3YOeyZZx7GpM2Srnp7e0lKSmJSCRCMBhUVkMPGjLf2ZyUgiW3DENyBjq9HlXIh1HyoRHXuXLlCqdPn8ZkMnH79m1mZmaUwVwQBIor9nLoxPn7HuuVf/0HquobKauqRRQjqFRqRZBnecHG+5d/SmgLjwDZvW3jiky4QzFsPHl+28lXkiRc/hBO/91qhiSKSEgMXL0c40xoTExh/9nf2XxsAfItu+MWbyVJfL+ITuAdjA50E/D7CPh2Rs1nZOdx8rFnFarbxv143au8/YsfbhJk+h8RKTnFFNQcRW+KgiklSSLgdTHd1czKLnj8RqNxE3hPpdGi1mgx6nV4PG5qa2sVCtpWIZtmybS0ja2rrKwsIpGIQqnTarUUFRUxPDy86XdisVhQq9U4nc5dtw6Uc1apSEpKQq/Xs7q6it/vR6fTUfvoC1HHzB2eBVkGW6azmc1mPB4Pc3NzUQdEnU6xBl9fX2dpaYn19XUEQSAjI0NJDnJzc0lKiuJDPB5PTHIwPz+vJBUajYaMjAwyMjJITk5Go9GwuLhIR0cHKSkprK6uKr8xo9G4qYpw6dIlysrKOHv27ANdI4BLly7R1dWFIAicO3eOhoaGmPddLhd/8zd/Q2lpKVVVVVy6dGlT0hAIBGLaEPK/R0dHFdzHvfdG1orYeM/lSkZSUpKSJGxMFP7542G6/Ylb3juVABUZZv7383exFTIlU04MZmejlOnc3FwFZ3A/RgSAOxCmecKJ07dOskHL0SLLrlb6LS0tvPvuu/y3//bfHlgH4pOOT3fd4n9QPEiLICJK900EJFFkeNrObP9N5bWNIkCyAJBGo1G0wfV6PdPT0xQVFVFSUqJky7LYyL3Z8e3bt7l8+SX+/M//XCl3Xbt2Da1WS0NDA4ODg8zMzNDU1MSJEyeYn59nbm4OX1jY1Yq4bF8tpXv2A3fR9/I5WNKsNJ48z8dvX4rZZqOFbMz1kCSy8ot2FN0QBAG9KkIoGECrj0OSRBy2SWYHbm6i1CVn5m9pHSxK91/tywONnODsNkRRJBxap7+jDd/adlWh2FiYm+bKKz9iX/1hsgtKov3n9XXGBrvpuXn9E0kEssprKag5olD05IgzJ5JWtIcV+9R9zaXuTQQAxHAIKRJmLRytXs3NzZGdnR2jwLexohAMBhVPALnfLN8rme8vvxYKhRgaGtryXJxOJ1arlaqqKkKhEAsLC6ysbEagFxQU8MgjjzA/P09bWxvz8/PRqtedPnhycjK1tbWoVCoWZ4ZJKdq3JRJHkkRCAT/OO0mTz+eLobIlJydjtVoxGAysrq4yMzOjCP5kZ2djMkXlrsfHxxUfe5PJRG5urpIgHD58WJkYAoFATIIwMzOjlOwh+jvJzs6mvr4ek8mEJEk4nU6WlpYYGxujvb1d+WxHRwcrKysxSUJqauqO5fG5uTm6urrIzs5mcXGR/v7+TcmAXLWZnJxEpVKRlZW1qXogc/IzMjJiXv/Od75Dbm4u586dU6qiGxOG1dVVBbsgJwayj4RsUiW/LiEwkP1I1BhlixAl6J/3MrrgoiTjrvtsWloaaWlpNDU14fV6GR4eZmhoiA8++IB33nmH1NRUJTHIycnZhIW61LPASx12RFFCpRIQRYnvt8/x+dpMntqXseP4Mzk5SU5Ozqc+EYDPaDLwICyC3a7oLRYL6XV1pKamMjExgd1u5xvf+AZ6/WYlO7jrEf7EE0+QkHB/Rz+Hw0FiYmLMD3twcJCSkhJmZma4dOkSNTU1nDp1ShlAsrOzWVxx4d6BnghRGlth2d5t31epVOQWlmKKT2Rtg/fATohxlUp9X/UtKRym5dV/ZiaQxKRbTTgSIc8UoCQ+muXLIahU20o0eYNhzPrN7YONsepYZn52ktKq/VEO/rbVChFJlFCp1fjXvHz01iu7TgTkcCzN89Fbr6DR6tBqdQQDvh2v028y9KYEBYewlVW0JauQ1NxSlibTcmUAACAASURBVKeHt93HxqoSxD7/kiSRnp7OysoK8/Pzm57te7/nvX19uVoAd6sP6enpiKIYQ2+trKxEr9fT2RkVRrLb7Xg8Hp555hkKCgpYWVlRcAVytWBycpLvfve7JCQkcOrUKfLy8uju7ubmzZt4vV6cTifXr18HICs7m4y8EiIaQ/S5Ur5rVPK6KFFAdfAA/f39SmlfDqfTqazmVSoV6enp5OTkoNPpWFpaYmpqimAwiFqtVsYYQRBwu9189NFHhEIhVCoVmZmZSnKQk5MTAxCUWQw/+clP0Gg0LC8vx9ijJycnk5mZSU1NDenp6Wg0Gl5++WWsViuSJNHT06PoEwiCQEpKyqZKQnJyMoIg8MYbb2C1Wjly5Ag//elPmZqawuPxxFizywlVJBJhdHRUwRXsJlwuF3v37kWtVpOcnLwt2l+SJHw+3yago9vtVhKG1ZCKiPo+bAxJ4ts/+AWZ4YVNLQj57/z8fPbt24ckSYyPjzM0NERHRwfNzc2YTCbKysooLy+nqKiI98dW+dGtu66lkTt9iYgo8eNbNoxaNecqNwPEIfp7mJyc3FX1+dMQn7lk4EFZBGqVgFGnxre+PTBJUKnYV15ESU70pqenp/PDH/6Q1dXVTZmyHGNjY6Slpe0qEYDoD1IW/ACUkmVZWRkvv/wyRUVFXLhwYVNW++7br1PV+DAmczxbTaeiGME2PU5O4c40IUEQyMjOY3ywZ8fPKee7OE92fvGO9LlZm53vDmXhDWtQ3VEK7HAkkKANczF/gRR9dKD3rixsC85b9Ycw6qLbb3UsSZJIsqSQmJyi5CYb/QiiE5XEyuI8tukJVCqB5cV5bFNjmxLBkCjQt2qix2nGG1YTrw1TnbzGnkQv95omhkPrMdLHn0RkFFbuWI2RRBFryd4dkwF5Qt8uCbbb7WRmZrK8vKxMeveWgDUaDaIoodbpQYwgiRHC4TDBYJC6ujr6+vrw+XyYzWaFrpeUlEQ4HMbr9TIwMIBOp+PChQvKKs7r9fLiiy+SnJzMxYsXefTRRzl58iS3b9+mpaUFr9erTLqXLl1CpVJRXV3N17/+dRwOB52dnXR3dxMKhbDNzWG/9CLWkipyK+rQxJkACd/SLMO3rnHd4yQvL48jR45QXFzM0tISra2t2Gy2mO8qiqJS7odoj1+e4FUqFfPz80xMTEStwgWBzMxMUlNTFUDd8PAwra1REayEhISY5EAGYD7xxBPs37+fSCTC8vJyTBWhubk5RmvB5/NRUVFBXV0dFotFAWfKWITW1laFLaLRaDCZTLhcLg4cOBBjTDQwMBBTHXA4HGg0GoqLixkaGtqW2XBvyADR3Sy6BEHAZDJhMpnIytoaADu94uWbv9z+2b2zI+rq6ijRexVsls1mY3BwcFPFy2g0KklCVVVU7MzlcjE2NkZHRwcqtYbB7DPsNE3+tNPO6fJUNFswBObn5wkGg7u+Xr/t+MwlAw/KIhAEgXyLgYH5rfnUSBJBn4cf/eQHVFdXc/LkSfLz89HpdAwNDW2ZDEiSxNjYGHv3br8avzecTmcMGnhoaAhBEGhtbSU1NZVnn312Ez1pcHCQkZER6g42IopmQNrUyw74fFh2YZSxVTlepVKRkpKicKE3xuhgN3u3oCDe3VbN//3WFGvh6DmLGxIVT0jNy5MZfKXEhl4tsbowQ8DrivrQ35MUhEUJm8tHPEGSku8mSxtlaiF2flxZtJOSnhnlca95Geq5xWD3rR01FwIRFS9NZLAUlMt9At6wGrtfT5fDzHMFC+jVvz34jUrWb9hJk0KlwhC/Mw9brVaj1Wq3dbSTJImmpiasVit/93d/h8lkilHJ0+jiyK06SHphJWqNNtr+mZtkebwH56KN27dvU1hYyNzcnDKBp6amsry8TE1NDcnJyVy9epX19XVee+01MjMz+d3f/V0++OADZmZmcDqd/NM//RPp6elcvHiRo0eP0tjYSH9/Pzdu3MButyuTWmdnJ52dnWRkZHD+/HnOnTvHyMgIHR0djI6OYh/pwT4STW61Wi1lZWV84dmnWF5eZnBwkPfee48rV66QmZlJRUUFjz/+OJIk0dXVRW9vbwxdEqKVkPHxcQX0aDabKSoqIjc3N+qRYbMxMTGhbJeRkUFtbS0Gg4H19XUWFxd59913iUQiynM7NzeHXq8nNzdXwRTU1NQo98LpdGKz2fj5z3+OIAjcvn1bkWSWgYpWq5W6ujqsVitxcXEsLS1hs9n46KOPMBgMdHV1KS0NiLoMLi0tKVWExcVFkpOTldbA1NQU+fn5Oz5HsDOt8FeJ7GQTKSYtK2s7UEkliaBtiPRDtRw5ciRm7JEllTe2K+T/T05O4nK5YkDcHk0CwftMka5AmOFFL3us8Zvem5ycRKPR3JdV9mmJzxyA8EFYBHJIksTAvJe51WDMa4IgoFML1ObGM9zXzUcffYTP5+PAgQOsrq7i9Xr52tc2I5dlhOmXvvQliot3liWWj/Wtb32L48ePc+TIEQBefPFFZmdnSUhI4Mtf/vImk45gMMjf//3fY7VaycrKort3gH0Hjyqr9Ug4zORIP51tH7OnsoLCfYeJM+yMsH3t3/5f3Kt30e6CICiDhSRJ6OMMFFfsI7ugBJVKRSDgJyu3kGgScmfSv9O7v/xBG//Lz8fZ3p9B4mGrk7qU6MBpTEyh6sSTaLQ6JSGQcQTLM6MMt1whPjGZ3IISag+f2PY7iKLI/OwUH731C9RqNaFdWKACXJ5NYdBl2qQ2CVGHyr1JXs5l//pMgF8lDAnJVB1/Am1c9P7t1DIJeF3cfuOHO+5vow7AVqHT6Th//jwLCwu0tbXR0NBAS0sLGn0c1Q9f3JS0SXeUACfa3mFpLqppr1arKSwsVDwySkpKmJqawmQycebMGdrb22NobAcPHqS6uppXX301pqWQk5PD008/TXJyMpIkMTMzw40bNxgcHNykgqjX6zly5AhHjx4lGAzS29vL7du3N3kDGI1GqqqqaGxsVBQHR0ZGWF9fJyUlhYqKCiorK0lJSWFsbIybN28yMzNzX1qjxWKhrKyMnJwcgsEgMzMzTE1NKW2H1NRU8vLySEhIYGBggNXVVfR6vZJsJSUlxWAPMjIyFH+Fb33rWzzzzDPs3bt3E1DRbrcrGCYZqBgKhVhZWeHzn/88BQUFeL1eWlpaaGtrA6KiSk6nU7l+Go1GUTMNh8M8//zzZGVl7dgLHxkZ4cc//jH/5b/8l99YQvBm/yLfa93GD0MSSQk7qGcSu92OxWKhoaGB/fv3b9uuvTcCgYCSLHTMufnJxP0Bx39+upi63M3f78c//jGRSIQXXnhhV8f+bcdnqjLwoC0COQRBoNJqJj1ez4zTz9yigzidluJMC9lJceg0Kg4cOEB1dTWtra2KG6Bc2pOVvOQYHR1Fo9HsKruGqGHI+vq60iaQM1mdTseXvvSlLd26PvzwQ3w+H8XFxbz5ZtQf/sZ7lykrr2BiYpLc3GwGB6KWtbdv3SIsxLH3wJEtJxJRFFmwTSuJgCW7kKyy/VE5WSQsC7P4FmdoOHocrU7HRgMiQRBYmreRkJgc5dHbZxnsucXffbwO7FyRGPEYlGTA51qh68pLWEv2kZpXilqjw+92MD/Wy/LMKEgSnlUHWp1uR7CgSqUiM7cgSmHcpeSvN6TaNhGAqENln8vM8YxVDJpPBh8gh6BSs+ehz6HVG+4LEpWFgu4X91sfrK+v8+qrr0aPLwh0d3dz8OBBVkTjltUbQaUCSSSn+iiLs+MKdmBpaYnPfe5zvPnmm4yOjpKRkYFGo+GnP/0pR44c4cCBA1y+fJlAIEB7eztdXV089thjJCYm8vOf/xyPx8Ps7Cx/+7d/S1FREU8++SR5eXnk5eXhcDhicAXypPnBBx/w4YcfUlRUxPnz52loaGB5eZmuri46OzsVA6H29nba29tJSkqitraWxx57jJmZGQYGBrh9+zbNzc0kJCRQUVHB8ePHyc3NZWVlhZ6eHrq7u2OqJXI4HA5FgEjGDdTX15OVlYXX62VqaoqpqSkl2dHr9RQVFZGWloZarcbhcDA3N0dfXx+iKCqgRdn7QL5vsoHSRoVAv9+vtDQmJycZHo4+Bz/+8Y9RqVSkpaXFjFO1tbU0NjayvLzMD37wA8xms6IZEAqF+P73vw+wpalTSkoKKpUKlyuqYrkRf/DrxrnKNGzuIG8OLCHcUeiQKYbJqiAZ8+34Ekw8//zzdHZ28vbbb/P++++zf/9+Ghoa7ssckIGQ6enpJFqD/GSi777nlJ202Y8lEokwNTVFU1PTFlt8OkP9F3/xF3/x2z6JTyr6+/vp7+/nwoULD+xGJQhR7ECaScPL3/t/qCvLo7IoN0ZNSq1Wk5+fT11dHYFAAJvNRmdnJzqdjszMTKX09+GHH2KxWNi/f/+ujj0/P09nZycPPfQQcXFxvPjii6ytrfH5z39+yxLUwsICr776KnV1dXz8cdS3QK/Xc/bsWZqvXWN9PYjP51NQwgcOHKC0KB/b/BKJySnKJC4PLjq1iqpCKznZWXgEM0V1x9EZTAgqFYKgwmBKYO+eyjurB5UyKckocqM5nnd/+RK3mt9nanSQNY+LWyvx+CI75aICRk2E6uS7dL5IOIRrcRb7SDe2oQ4WJwfxuWJX45m5haRlZO0oDSwIAr23buwaHDrji2PAtbWErxwSAgXmAEm6B6O//bqRllcadUHcRSIQXg8yevN9NCph21Xs8ePHCYVCm0rgO0UoFGJ+YZGyxkdQbaOkJwgCGp2edY+DcNBHUlKSYu/71FNPsbCwwNLSEsFgkOrqam7dusXy8jIXL15U7G8jkQiDg4MsLCzw7LPPUlRUxOjoKJFIBKfTyY0bN1hcXKSoqIiEhARKS0s5ePAgBoOBhYUFxdlP/nxbWxsdHR2kpaXR2NjI4cOHyc/PRxAElpeXo220QIDJyUmam5tZXFyksrKSp556SjEsGxwcpK2tjZs3b+L3+ykuLubcuXMcPXqUzMxMAoEAHo9nS8aNx+NhfHycrq4uxsbGiIuLo76+nurqavr7+ykpKWFlZYXu7m5GR0dxu91YrVZqa2vZt28fVqsVv9/PyMgIoVCIgYEBent7sdvtrK2todFoFM0FrVZLcnIyOTk53L59G7VazR/90R9RUVFBZmam8p3l+z4+Pk5vby/Ly8vYbDZSUlLweDx885vfVACZZ8+exWAw4Ha7GR0dpauri/b2dpqbm+nv71fUGTMyMhSzqV9XEVAQBOpyEqnLTcBmsxHwuqkvzuSL9Vl87Vgpfq+biYkJRkZGePbZZzly5AgqlYquri6am5ux2WwYDAYFQLlTmPQahha9LHnX2WqkUAmwLyuex/ZsNqKy2WzcvHmTU6dO7RoX9tuOz1Qy8MEHH2AwGH4tdKfb7aa1tZWDBw/GAPo2htx/HBsbQxRF+vv76e7uxmg0kpSUxJtvvsnBgwe3tT69NyYmJhgaGuLMmTO8/vrrjI2NYbFYOH9+s36AJEm8/PLLaDQapqamEEURvV7P448/zmuvvaZ8ZqNaocvlorOzk6mxQZzLCyRbLNH+2qoDHUHWXYt0dtxmeMpGVlUjEFuKjo/TYtKpd0Tpa7W6GNnjeb+epYCW7doEAhLF8QGK4/1bvm9Js1JRc4C8ojLikyx4XE4i4TBanZ6C0u3xIJIksupYZri3Y9vP3BuudQ3990kGAPYle0nU/Xr+5A86WGaV78eQYLnvdn63k4GPLxP0eXYsZ8to8gcNvSmerPKdk1tJklhdshH2ufD7/WRnZ+NwOOjv7+fMmTMYjUbm5uaYn59n//79uFwubty4QWVlJadOnWJqakrBp9y8eROj0cgXvvAFEhISmJycVFgJzc3NuFwuCgsLiYuLIzc3l0OHDpGWlobT6cTj8aDX6xFFkWAwyODgINeuXcPtdlNdXc3evXtpbGwkLS2N9fV1pYy/trbG8PAw165dY2Vlhf379/Poo49SVlaGRqNhfHyctrY2WltblYrgsWPHOHHiBHv27MFoNLK6urqlwVIkEsHhcDA0NER/f1RILCsri4aGBk6fPk1hYSF6vV5ZGAwMDLCwsEBSUhKFhYXMzMxw/PhxTCYTNpuNjo4O2tvbaWlpYXJyEofDQSQSYXp6mtbWVp5++mnFdTErK4vy8nLq6+vR6/WKu2pFRQUrKyuKs6KMl1Cr1SwvL2M0GmlqaqKhoYGjR49y8OBBSkpKsFqtqNVq7HY7wWCQnp4eWltbuXHjBsPDw8zNzbG6ukooFEKn0z2w9TJEbcbz4taZvv46X32sidKsFFSCQFlZGWq1mpGREW7evElFRQX79+/n0KFDWCwWxsfHuXHjBn19fQrtcDspaIjqFnw4vEQoIsbicSSROJXE/3ymDLN+86Kmq6uLubk5zp079ytLn3/S8ZlJBoLBIJcvX+bQoUPk5ub+yvtZWlqio6ODo0ePblmev/eYQ0NDfOUrX2FlZYVr167R29uL3+/nkUceue/2cgwMDOBwOAgGg7S3t6PRaGhoaFDaDKGISCAkEhYleru7uHmzHVEUCYVC6PV6HnnkEV599VXFxU0QBGWFBCh0p6ysLOZmphDCfq5/+A6TI/30dt2mv7+ftbU1sioPoNYbN008iQYtOrVq2wlJEFTEGUwMdLUrr5m1Ebqd8aTEx/FMUxGnqrMpzkxkdtlLYD0qXXwuewXTPWV3tUbDQ2efpP7ISVLSrSSnZpCVV0BF9UH8a16mxoYorqxGrdmaQigIAp2tV3Eub2/acm8YNRFurcTHgBzvDZ1K5KTVuR0FesewpFmpbzrF0Ycfp7qhiYLSSoAtlQ43hiAI5JTuRWfc3kYXoiuYm699n1AwmljJ+hByaLVaZeWq1+uJRCIkJiYqq8GNz8q9x1f+rVKTXV573/P1LEyzbJ/BbDbjcDiorKxkcXGRoaEhZSU/NDSE3W4nOTmZkpISmpubWV5e5tlnnyUpKYnJyUkkSVJWX5WVlTz55JMIgsD0dNTgSUbbBwIB8vPz0Wg0pKenU1dXR3FxMT6fj6WlJbRardIHt9vtNDc3K8Df8vJyampqqKurU0SHZGaAy+Wit7eX5uZmPB4PBw8e5NSpU1RVVWEwGJienqatrY0bN25gs9nQ6/XU1NRw7NgxDh8+TFZWFsFgELfbvS31dHFxkd7eXlpaWpifnyclJYVDhw5x5swZCgsLMRqNLC8vMzAwoFAw4+LiKCsro6mpiX379pGUlITH41HaG0NDQ+h0uqjkt9+PVqtVHBkh2mJobW1FEARqamrYs2cPPT09qFQqampqyMvLw+fz4Xa7sdvttLa20trayvj4OE6nUwE71tTUMDIyQm5uLl/84hcpLCwkNTVVOc/e3l46Ozu5fv06N2/ejAI67XZFb0Cv199XPthsNtPc3ExGRkYMAyE/P5+kpCQGBgbo7OwkLS2NjIwMrFYr9fX1FBYWsrq6yo0bN2hra2NtbQ2LxbKl+6FaDDH80auYE5JwS3pEojixClOQxMmrNFZXbDmOX716laSkJAXs+f+H+MwkA79Oi2BjzM3N0d/fz6lTp+4rJGEymWhpaaGkpISTJ09SXFxMT08P6+vrLCws7JpaKCOEh4eHqa2txWazcf78eXRxBubd6yx7w3iDETyBCILejFqlwjYzqbQnZFCQTqdTEoJIJILRaCQvLw+n04kkSQojQBZ1sVgsJCUloVKp8Hg8ZJTVoo3b/IMx6TQ7JgMQ1eWXkwGNRoNJHeLxE/X8b793gsOVmewrsHBkTyYvnConIkpYAuOUmDcr/h19+DFyCkrvtCBUigKiIAjkFpZSVL4Xkzk+RuQG7srxjg1EBYAeJDQqCETU2PxRPMRW0ZDqptD84KJC2fnFPPz4cyQmpyoldp1OT1Z+EZY0K9PjQ9uKBKlUKlBrdnS2FACzRmS0++61lyd2+XnYCLR75plnKCsrw+VyMTsbBWrtVEkoKCjA5/MRXg+SmJGD3mhmW2OtSIThtnfR3JH0TUhIwG63U19fj81mY3p6GkEQePrppxkdHWVpaQmHw8Hp06cZGxujpaWFiooKzp07x9LSEk6nU2kdjI2N0dTUxOnTp/H7/YpgzezsLM3NzYiiSF5enmIbXFVVRU1NjTI5iaKI2WxmfX0dr9dLV1cXra1Rr42ioiIKCgo4cOAA5eXligyv7Aa6vLzM7du3aW1txefz0dDQQFNTE/v37yc+Pl4RQrpx4waTk5NEIhGKioo4ePAgx44dY8+ePQor414Wh/xs+3w+ZmZm6OzspKWlhZWVFTIzMzl06BDFxcX09vbS0NCAx+Ohu7ubjo4OJUmQaZKCILCwsEBFRQV2u53bt2/T1tZGW1sb09PTCmBRpkp6vVGZ8fHxcURR5Nlnn6Wqqorq6mqqqqpoa2tTkiu5nSJXJG7cuKF4UxgMBiwWC+Xl5VRVVXHgwAElWcnPz1d8KmZmZujq6qKjo4Nr167R1dXFxMQEi4uLCkPCYDAoK221Ws3w8DChUIjKysqY62a1WsnJyaG3t5e+vj60Wi15eXkIgkBSUhJVVVVKm7azs5Pm5mbsdjsmk0lRjAR48803WZm38ScvPIl1bQL11E3+6j8+wUMVWQz39Shj8sbfXyQS4Y033mD//v1bWlN/WuMzwyb4VVgEW0VbWxtXrlzhv//3/76rku7f//3fk5WVxZNPPgnAt7/9bSwWC263m8XFRSoqKjh16tSWzoZy/O3f/i1Op5PGxkZCoRDj4+N8/Q+/wawzSGQbvFp/RysdLR9tel2eDO697bJK4laSr/LEWvPI5zEmpmz63vF6DSkm3faaApEIU2NDXH/vsvJaeXU9B45uD+QURZGZiWG6Wj/G44qWac0JSTzx/H/cdhuIpUDK/w6F1llesDHc28HsxEiUdVBYikarw+VYZmZiZEdaIUBEhNdmUxnxmFCrBCKipPx9/kAef3K+gA9e/+kDqQxqNFqevuMbce+1C0VEvMEw9tlpFmYnWJoaIhTYrAyo1mipv/B7dyohW5cjda5pPrpyedM9T0xMVPrQ8uS5UTdAXjHvFFqtlsOHDxMIBBiatLHn+OeiqcA930eSJOYGbzPX375JulqSJHJycrDZbIiiSGZmJs899xzvvPOOUjI/evSoMkmXl5dz4cIFZmZmeO2112L44/IKPRwO88YbbzBwByQrf5+TJ0/S2NgYU7oNBoPKZO5yuUhMTMTr9SrnKQiCggWQAWiRSETp9w8ODip0wI0Wxvv27VNwPl6vl6GhIQYHB5XJNTs7O4aZAHd9AgoKCpibm9tkPiZXdTbeS/k+nT17Vkks7Ha7Akicnp5WWhOJiYlUV1eTn59PWloai4uLzM7OMjMzw9zc3KYWRn5+Pna7HbPZzH/+z/855r1Lly4xPj7OH/3RHymreBmoaLPZePfddzGbzYrRkQxUzMzMVCiPVqs1BukfCoVitBHkP3LrSqYzy2DFubk5bDYb3/zmN7ccf2w2G9///vcJhULU1dXx+OOPb/6thUJKK2NxcZG0tDQaGhpISkriRz/6EY8++igHDx7kzTffZGJigj/4gz8AogvD733ve5w8eTJGiGl6epp/+Zd/4Wtf+9q2mgmfxvhMVAZ+Uy0CiAKGXC4XjY2Nu/q82+2mt7eXw4cPs7q6yocffsiZM2c4e/YsKSkp9Pb2cu3aNVwul8ID3hiTk5O0tLSQkZHBc889x+XLl6mqqsKSmY9/fXvkeqo1m7HBHkJ39NI3rpC3i63eMxgMaLVaIpEIZRV7kHRG7l35hSIiCXFaBLbpeQsCrR+9jX/trkvbifPPoNFsX1kRBIGEJAtF5XuZnRghGPBTWF5FZs72q2B5u3v/rVarufrmL1hZnOfIw49x6MRZMrLzSLNmU1BaSWnVfpzLi3jdq9vtFpUAn2uq4KnTjQhAaoKB+pI0/uzZOr54ogyD0USSJZWp0YFt93FvFJbvJa+obJNQlMO3zpJ3nUBYRGs0k5ieo/Tj3Ut31dCijI0InpV5UnNLo86Hyr6imo0FFh23Pn5HGZA3hjzwbzQOMhqNPPPMM5w6dYozZ84wODiorOK36nVLksT09DSLi4tkpCYzNzlGkjUPlVpzVxJZkrANd7I02qXQ8wKBAPHx8QSDQfR6vVKdguiK9NatW+Tl5SlJwvT0NDqdjhMnTtDZ2cnNmzcpLy/n3LlzrK+vK7LINpuNW7dukZKSwqlTp6iurmZ+fh6Xy6XIBLe0tGA0GhXgnEajITc3l4aGBjIyMlhaWmJ1dRWTyaSg5x0OB21tbXR1dWE0GhWjoT179tDQ0IDFYsHv9ysI+lAoxMzMDM3NzfT09KBWq6mvr1f61+np6Xg8Hjo6OmhpaVHUDmdnZ1lbW+M//af/xLFjx6isrCQ+Ph632x1zn+T7vzF5k6snHR0dBINBRfr4oYceYnJykmAwSE5ODoODg9y6dYu2tjZWVlaIj4+nqqqKM2fOUF1djclkUiSYXS4XkUhUNMpms+F2u5EkCZPJREZGBs3NzTGOiDJQMTExkZaWFi5evMiFCxcoKyvDarUq1Ymenh6lAtDT08PMzAwOhwNRFBWKZXFxMdXV1Rw+fJhDhw5RWlpKZmYmWq0Wp9PJ0NCQAgyV2zuzs7M4nU7W19fRarWkpKSwd+9e5RgzMzPs2bMnBiegVqvJzMzkwIEDFBQUKKyPnp4ezGYzDz/8MAaDgb6+PkKhELW10XZYQkICoVCI5uZmKirutgs6Ozux2+2cPXv21wZMfpLxmagMdHd388orr/xG+K6XLl3C4XDw5S9/eVefn52d5Xvf+x6///u/z8LCAm+99RZ/+qd/qmTD4XCYW7ducfXqVYLBIA0NDRw7dkxBQP/zP/8z6+vrCpda3lfYkIa4w50TRZHu9mv03b5rMxsXF4coipvcEbeLJ598kg8//BCv1xs1S3F7qX7kd1BrdZtAMVoVZCYaUG1gwBgN5gAAIABJREFUEsil+baPrjA60KV8NiMrj9NPbDYe2u57LMxN8/7ln7Cn9hA1DcceGJAjGw7FGUzkFpVt2l5unbz9ix/EYAlUag2peaVYsotQazRkZmaTbDag02wPOPrlj/9JqWTcL+qPnqK0qjZmYFr1rceYN90bY7c+ZGHsLt1JpVJFWRwaPdaSvSRnFaJSq/GuLLAw1otrQ/KwMWR3P6/Xy9GjR2luvmubvG/fPp566ikEQeD111+no6OD1NRURU/i3pA16RcWFggEAmi0OnJKqwhJKiLrQZLiBAb7ouI+sgxxZmYmdrudtLQ0lpaWyM3NVQbq8fHxLcvlkiSh0WhoampidnaW0dFRamtrOXv2LA6Hg1deeYWlpbu+FllZWVy4cAGr1YrNZuPSpUsx7xsMBh599FGqqqo2Ddqzs7PKJK3VaomPj8fhcCjfX61WU1NTw8MPPxzjgOd0Ounu7qarqwun0xkzWQuCgNVqpbGxkX379ilJw9jYGIODgwwNDREIBNDpdNTV1VFZWUlOTo7yvAaDQcbHx+np6WF0dHRT1UCtjoJ4763myGqGJ06c4OjRowoAUK4cbASNWq1WLNmFfDTtY0WfQQQVcetu9idHsAQWsNnmYiSVA4EAPp+Pr371qzGAanl1/PWvf12hPm4MmXZtt9tjjJvksSk+Pl6pIMh/y9LOckiSxOLiIt/5znfYt28farVaYaXI18BgMCh20PL1TU1N5fd///d3dC586623aG1tVZwjy8vLWVtbQ6/X8/zzzyufC4fD/OM//iM6nY6vfOUrqFQqXnzxRfR6Pb/zO7sb4z4t8ZmoDPwmWARytLe3YzKZqKqq2tXn4+PjuXnzJhqNhrm5OYxGIwcOHFDeV6lU5OTkKJKgMhrZ7/fzzjvvKJavx44dY2BggJWVFc6ePYvTt3NZWxRF1twuPM4lNBoNoVCIcDi8afUva5fHxcURCATIzc1VVpGDg4MEAoHovtbWotS+hRlSsotQa3XRld+dUvyae5Vb77+Gz+NCo9ER9K8xOzXKwO3rTIzErpaTLKk7Iv7vPb/4xCTGBruj/dvy3as2btwHQFZe4bagQoiKJk2PR/nXceZEqs88S1p+OYb4ROLMiYQkAU8wjFoloN8iIZAkiVXHEs7lhU3vbRXpWTmkZ2Yr5X1RkljwbF59b9y/OTkd20hXzGsqlYr1oB/Xwizzoz3YR7pZmR1DDAWUqs5W+xJFEVEUSUhIUCbJ8vJy+vv78fl8lJSU4Pf7GRgYQBAEZaCOyg2LG65dFGkfDAZJSEjA7/exujSPJhLAtWRncd5Oenp69Bm6g1VxOBwUFBRgs9nIzMxkbm5OcS48fPiwQr0DqKmpISsrS1nxyeh4k8nE7OwsN2/eJC0tjfPnz2M2mxVmgcfj4datW6ytrVFVVcXhw4fJyclhcnKS9fV1wuGwAqxLSUnBYrnLykhISGDPnj3s378fURSZmpoiEokogj0y4PD69esMDw+TkpJCUlISBoOBgoICGhoaKC6OCnzJjosajQa3262wFyYnJ0lOTqa0tJSKigr27t1La2sr+fn5TExM0NbWxq1bt3A4HDHl8aqqKpqamqisrCQhIYGFhQXFGXXj71tG6cuJlUyRHBsbQ6VSKTiIw4cPU11djdVqZT6o5jVHCh5NIqJKiySoCanjmAmbseQW8ydfukBlRQVpaWmKcNHa2ppC05ybm8PtdrO8vMzk5CSnT5/eEgioUqkwm81YrVZKS0upra1VcAR5eXmYTCY8Hg/Dw8N0dnbS2tpKW1sbY2NjLCws4PP5UKvVpKam0tfXR2pqKhcuXKC+vp6mpiZqamooKCggOTlZuVfy8+Tz+bhx4wYTExMsLS3h8XgYWQky6lzH6Q+jCnq5/NovOXLkCF/4whdITExkZGREoWwajUZSU1NRq9UK8PqD5hZurur5lw4H3eupTEkpBCOQn2xAf69W+ac0/t0nA7/JFgGgoFc3CnrsFDLAaGxsjMXFRfbv37+l2JBGo6GgoIC6ujrlxxUKhSgqKmJxcZHTp09z5coViouLqaysZNUX3pL7ujFmJoaZnRrftIKAaO8wKSkJr9dLQUEBMzMzAEoZUA5ZwETWNA8FfMRFPNRUlWM2xjEzPsRE13Vmelrwe90szc8xNtDNaH8XtqlxXKvOTeh1SRSpqD7Ag8TsxCiLtmkKy/ZGVQgfoPwmOxDq9HE7Mh4SkizRSoogsO/0RXQGswJQ3Bj+UIQ4rRqtevOP3DY9jmNpd8lAaH2dsqq7CHx/KIJ3Jw8MQUCt1eG0T7LujwKq1Go1JpNJKeFrtVr+7M/+jPT0dObn52NogiaTScGLyJUbIGa1LJsHySXYrKws+vr6WF9fV5gGGzUo5GM//fTTVFZWsra2phjbSJKk2PrKADBJktBqtcrqtLS0lKmpKXLzCljx+Cgpq+T2zTb27NmjJCkLCwvk5ubywgsvoNFomJiYAKLMB7PZjNvtVih/Xq9X+X3Jx5RbByaTiT179nD48GEsFguTk5OEw2HW19fp7e2lu7ubjIwMkpKSlOsRFxdHcXExBw8exGw2MzU1xdraGmlpaej1egKBQAzgUBRFsrKyUKvVJCYmUlZWRmNjI1arNYamqFarWVlZoauri+vXrysTzeTkJF/96ld56KGHKC4uVmhy8iJhcTFauUpMTFRMd2Q76Keffhq4W9rfiA1SqVTo9XrC4TAul0txVWxpacFms6HRaMgrKOT7QxJBkViBrTvP/6wrSFfbNQT3AikpKezfv5+TJ09it9vx+/3s3btXEXCS79H09DTLy8uEQiEMBsOONEJBEBR75qKiIqqrqzly5Ah1dXUUFhaSmJhIIBBgYmKCzs5OBagoVwhkNoDRaMRkMpGWlkZBQYHSyjl69Cjl5eVMT08rjIhJj8Rri/Fcnw9zc8bNtXEnbw8toxNEju4tQqfTKWDP7u5uNBqNYoDl9/tJSUlBY07iJ3MmJtbUBCJRb5CQJDC46KV5wsnRwmQM2t07pv624t99m+A32SIA+Mu//EuOHDnyQMpSQ0NDvPTSSwD3BZWEQiF+8IMfsLS0RF5eHsPDwwiCwJkzZ7hy5Qpf+MIXKC0tZWbRRZDtJ0VJFHnlh99BoxKUScDtdm/Z990u7vW1t1gsfPGLX8RisSCKIr/85S/p7u4G7i9hK4cMdjr1+HNkZOftuuT/+sv/wqpjCUualdOf+zxqjfYes6GdOfqzk6Nk5hbuyCkGeOmf/i8S0nOobHpsx88ZtGqsCZtZKa+99D08q44tr8VWpj4br8NaMMyi9/73p/eDV/As27c8xpEjRzhz5gwQTYL++q//WrmHsgeAWq1m7969dHVFKwx79+6lt7cXiEreJiQkxJRs5ZBLplsdNyUlhW984xtANKH87ne/SygUUpKBe7dJTU3F7XYTjojsP/4o2qRM1HdWkGI4xMzALazG6GQstzBKSkq4ePEidrudl19+mWAwSFxcHE899RTDw8PcunVLsQhfXV3d8jzT0tJ48sknycrKIhKJ0NbWxnvvvRdzX9LT03niiSe2/J2KosjQ0BAtLS1MT0+TkJBAQkKCAn6E6HNYUlLCI488skl9dG1tTUk8bDbbptK+IAjU1tZy/PhxhWkkT3YDAwMMDAywuLiIRqOhpKSEiooK5ufnGRwc5I//+I9jPt/T0xPT/tkYsgDQxnaMy5DJdNrOSXqSOswB310J54SEBDIyMhgZGeHEiRM89NBDRCIRfv7znzM7O0teXh4zMzNKUpqcnBwjqZyenv4r8fBlxsj8/DwDAwMK8wXuuknKAMXMzEwyMjKU1mwkEuGVV16hfWSO8YyjSNsAb7Mc3aR4p1Cr1aSlpeFwOMjKyqK6upqZmRkFQ7BUcIKFiJmt0FgqAQ7kJvKnD99fdv63Hf/uKwO/yRZBOBzm/fffp6amBqvVuuvtEhMTuXbtGlqtlvPnz2+PuhdFfvaznzEzM8MLL7zA0aNHsdvtigc3RCVN3333XXo6b5NfUrHtKjnic3LqoSOcOHGC2tparFar4ge/27i3ouD3+2lra+Pq1atcvXp11/vaWBmQB8xF+yyFpXtQ7WApDNGBzb3qoLv9GhAtrSdaUjEY74oAycBEYYtVvCiKuFcdjA/2kltYuoMwkoR/zUt/ZxuZJfswJadui86HqEFSsvHuKkcURebnphjsurntNltNTrOTI1jSrcQnJiNJETzB+4gWSRJT3TeIhEMx+gByXLx4URn0ZB74xuOHw2EkSaK0tFTh5Mv+EgB5eXm88MILNDU14fP5sNlsJCYmKpoVW+FNZOqbrGAnSRK5ubn09fVx+vRpsrKyWFxcjOll+3w+4gwGyo4+itGSGaNcKKjUJKZns+x0g99FfX09o6OjOJ1OhoeHaWho4NChQ0xPT+NwOOjp6aGsrIzTp08zMTHB6uqqMjGlpKQo4Dv5uLdv3+bWrVsKaPfYsWPodDqlOra2tsbt27cZHR0lJycnhkcuC9XU1tZSWlqKx+NhbGwMrVZLfn4+6+vrrK+v43A4aG9vp7u7W5G3lfU9cnJyqK+vp6qqCq1Wi8PhUK6rIAjY7XYFCBgIBMjOziYxMZGCggLFo8FsNmOz2Whra2Nubo5IJILBYCA+Pl6pmHR0dLC2tsYf/uEfKrTK1dVVpWog3w+1Wo3RaGQpLpM1beKOZlcBScX/+eXHONzYSG5uLjqdTrnvk5OTtLe3Y7fbWVlZITExkS9+8YscPnyY2tpasrOz0Wg0inCSXJmYmJhgZWWFcDiM0Wi8L2Ub7gIVc3NzKSwspLW1lYsXLypVGEABKt6+fVvReJmensblclFSUsJVTzLeyPZW6+GETP7g/EGyMq2oVCoFQDk4OMj8/DwajQZtQgpDmgKk7cYVwOYK8nBZCkbdp7s68O86GfhNtwhcLpeiPridL/dWoVaruXHjBhqNhqNHj275GUmSeP311+nr6+OZZ56JiuN0dtLX1xezmpelTcOhENOjQyT+f9y9eXBc93Xn+7m9d6MBNPZ93wgQIHaCJLiBlERKpESZsiRbsf3sLHImzjhOnEV5k5pMval6NeOM47zy1KRsTxxlcyzHlmPZEheJIkGQBEHs+77ve6MX9N73/dG8P6JJAHJSntjxqUIVidu4e/9+53fOd4mJJTL6kbSmSoI4sxaTRmZoaJCrV69y5coVOjs7xeStgH+Uvlt+fr5AWz8ekhQyI4qMjMTn832kGcte1waQkpIitAx8Xg9TY4OoVCpi4nZfHSjl7JZbV7FZN6iuP0PVsQb0BpMo38tyEJ3eQH/HfYymCAxGE8Fg4KGTr8Tm2gqri3PEJ6dijgwNdLsmBLLMQGcLq0vzxKRkYY5N3DcZAMKSAYDF2SmW5qbCJn2ld6ygsx+PYCDA1MgA89Pj+L0eNAYz7JEgycEgG/MT+G0r4p3YeayCggKBR/H7/fzN3/yNWPlJkkR9fb0w/1ESAQj1lJX9RUZGUlFRIVa3W1tbTE9PI0kSZrNZTKo7hYiUZG9zc5Px8XFBt5MkicnJSXQ6HXl5eXi93rBKU0xaHsn5ZbtKR0uShDk2keHuVgJeN2fPnhU2tN3d3RQWFnLixAn8fj+zs7MCR/DKK68gyzJNTU1YrVZOnTrFyZMnw8rDEPJXWFhYYGBggLa2NtbX10lPT0ev14v2gt1up62tjZmZGTIyMp4QpdmJK5BlmZGREVwuF9nZ2ZhMJux2O263m6GhIe7du8fW1hbp6emiVO7yyvzk3hT/cGOKO4N2Rua30evUxEaEuPnb29tMT09z584d+vtDoNHk5GQiIiLIzMykqqqKqqoqZmdncblcDA0N0dzczMTEhJBCf+6558jOziYhIYHi4mKBNYiOjmZ7e1vgg3w+Hw5dLNv62P2dL4GXK1LQ6bTEx8eTl5cntAY6OzvJyckRq3ZlvJydncXr9ZKcnExFRQU1NTXCHtpiseB0OhkaGhKeD/39/SwuLrK9vR0mqbxXGAwGOjo6MJlMIulQFBXr6+sFEFNJvPr7+2ntGWTaXLTvtfqDMuaAgyiVD7VaLd6D1NRUTCZTqNUVNLCm/+iFYUVaFMlRP51Z0s8rfqmTgZ+V0JASq6urdHV1cfz48Z9aPRBCVKmmpiZ8Ph+1tbVP9M22t7f58Y9/THd3NxaLhY6ODrq7u1lYWMDnC72IyqCvuLP5/f5QH1wV4MHdW2SnpyD5t+lqaeTGtfcEUEhRkCsoLCQtu4DCg5XkHSglEJRx2Kz4/T6hw74zdDodBw4cEA5eO3nXSigrkN1Kx5IkPYEVeNzm2O/zsjg7SV9HM163i4SUNNRqDbIcYiF4PW7u37zK7MQIyenZHD75tNj3o+OEJpLE1Ayuvv33zE2N4bDZWJ6fxmbdID0nn5j4JKIssSHq48Nz2qlFgCyzurxAa9MHyHIQjVZPfOZ+mBAZvUZNpOHRCkaSJGITkoiKiWdmfFj8fmtrSzjzKaFSqcjLyxO9dQDXtoPl+RlqDxVh9apQqcLlneVgEM+2neHmazjtNtLS0tje3g57bvHx8ZSVlSHLMu+88w4zMzOYTCZ8Ph8JCQlCrhegurpaaAvsTDZNJhPV1dXimgoLC5mcnGRrKyQhrOjh71zly7JMdHQ0LpeLL33pS4IGFhsby8zMDH6/n/X1dSFmpURu9Sl0hoh9K2WJiQn0td3D6XTywgsvMDw8jMfjEcpyR44cISUlheHhYYHkP3nyJOXl5QJ4Zjabyc/Pp6amBpPJJBQMlYiNjSUvLw+/3y/62zvDarWKFXhWVtYTY4mCKzh8+LAQ6VlZWSElJYXU1FS2trbCAIejo6PY3PDcb32Dq3f6Wdt04PL4sbmCDMy5MVqSOVychPUh3sZgMAj9/6amJsbGxjAajcTHx2MwGJicnESv1/P6668THx+P1Wqlt7dXnLsCelMmVbPZTGZmJjU1NRw5coTU1FR8Ph9bG2tsmPcxT5ODmN0rLLZeZ319PQRoNZvRaDRER0fTPzLNWzeG+VHLBjd7NlnZ1lGYn0uE1if67M3NzYK9YLFYKCkpEdiAQ4cOkZqaikqlYn5+XggYtbS0CHfHYDCIyWQKAyVKksT8/DwrKytUVVWFnfJeQMWEzHwap/awpRfXK+OaG2JrZkj4Zihjh4LVUUfEMOX/aOG4s4VxJJp/sZOBX2rMwM9KaEiJ/v5+vv/97/NHf/RH/6Lkoru7m3/+538G4NKlS+Tk5DAzMyMEQRQAl0ajISIiQqzUlF6rUsb9nd/5HSwWC0tLS3zjG98QIiePi8OoVCqSk5MpKSmhqKgIc3QMC1YvQZmwvqbX4+b21R+ysvio37Zf7//x4+z1WbPZjNvt3lOwZq+/U2s0pGXmYTBFsO2wsTAzIc735PmPkZaVu6cbYTAYZLDrAV0ttwHIzC3ixLlLu352J8bA5XQw0tfJYHcrgcDDvq1KRfWFz4ScAPfoZyZG6onQ7S6Xev2H/8Dq0vyu2x6Px212AUzmKBJyS0nMLUarM6BVS0jOde5cfRu/d39MwUsvvYTVauXGjRtotVoMBgN2u526ujrGxsZYX19HkiReeeUV3nrrLXEfdiabX/ziF8P26XA4+OpXvwpAbm6uQNZbLBahWR8XF8f6+jolJSW8/PLL4m/v3r3LjRs3xEQ1NDTE22+/TWZmJonlZ4Tt8l6xsTBFnGyltbWVpKQkLly4wPe//32hPnj27Fnq6+uxWq1897vfFe2O06dPU1tby/Xr1+nu7qa4uJiLFy9iMpmw2Wy89957DA8Phz2D6upqGhoa8Pl8LCwsMDo6ysDAwBOtkejoaMrLy8nNzSUlJeWJ5D4YDDIyMsL9+/eZnp4mKiqKrKwswYGXZZn//eEmG47AruKSEvDfvnyZz75QQ09PDz09PayurqLX64WMMCBsoD0eD0ajkU9+8pNASBjtypUrnD17lpWVFUZGRvB4PMTGxgqRI0UXQKk8jI+PE22xMJZwlGWP+kmHzocnWmRtJ0XnxePx4HA4BBvKq4rmj//yNm6vX1yTSpIIyjK/cvEwf/mfP8ny8vITQkhqtZr09HSysrLIysoKq5x4PB7m5+eFKNLc3JyodCUlJQncQXp6OmNjY1y/fp033njjp2oz2N1+fvW7PXuJe4r4T0/nUZkeEuf62te+xmuvvRYGHvf6g/zGW7049wH+mvVqvvVq2a6A41+k+KWtDPysWwQQMgyampqioaHhp0azy7LMhx9+SCAQQK1Wi5Lh4OAgNpsNr9cbthJJSEigpKSEEydOUF1dTVdXFxaLRaz6ent7+cEPfhCGFFYmk5SUFF544QVeeOEFampqyMzMRG8wPlQqDArxIeVHpVKTmVvI+FAvAf/e3HYlFLBTfX29kNo0mUwCvayE1+vdV9xoz3sVDLK1uY7duo7LaQ+7L5VHT6PXPymFrIQkSaHWw0Ma49GzFzAYdy8vKtd/7Yf/QPvdD1lZnEOWd5yvLLO1Mkd8ZmEYDkHRTYg2aIg27o6KDgYDqNQq5ibDqwHx8fHU1tYyOzsbzqzYZTTyeT1sLc+yMNTJ5vQgB9Ji6GhuRK/T4XK5yM/PD6sq7IzBwUEmJyeJiYkRVD5Zljl27Bjd3d1CjlcRnwGEVjs88nNPSkoSCa9Op6Ovr09s28mbV56Ry+UiIiKCpaUl6uvrRdsnLS1NnFNVVRVJSUmoVCq6urooKK8jIO/RtiH0Pqj9Lloar1NfX8/o6ChTU1O88sorLC0tYbPZmJiYYGtri7KyMsHEWVxcZGoq5Gl/8eJF0tLShLNgfHw8qamplJaWkpKSImiGEPIz6OjoICYmhrKyMoqLizlx4gTZ2dlCtAdCY8v09DRdXV3cuXOHgYEBQalTBHkSExOpqKigqKgIh8NBf38/gUCA4uJiFrfgRuf+3hjDk0v83ufOkZWVRU1NDYWFhUCoOunz+cQqf3V1FZvNxubmJuvr65jNZn784x9TVlbG008/TXFxMUce9vf9fj99fX1Cgvj+/fu0trai1Wo5d+4cz1+8yPHCJBr7Z3CjATnIQ9YtIJO20YPZMY/L5RLA0KioKAJBmT/9dhsuTyCM4aT8u3dknozkOE7VHSQzM5OysjKOHTvGgQMHiIuLw+l0MjAwQHt7O/fu3WNsbIyNjQ0kSSI9PV2ID9XX13Pw4EFSUlKQZZnZ2VkhqTw3N4fP5xNaABEREfuChfUaFdMbLhZt7t1ZWbKMURXgc7VpaLUatra2aGtro7a2NgyI7tp20vrgAVbt3m3jVytTKUn+2dk4/5+KX9pk4GfdIoCQ+qDNZttXfTAYDAojjnv37vHee++xvLyMx+NBpVLh8z0CfgUCAbxeL/Hx8Vy+fJkLFy5QU1NDbm4usbGxwj/dbrfjcrm4ffs2IyMjYjCOi4vjwoULPPPMM0Kne2RkBI1GQ0pKSshMZWQSvdmya/9bKeX7vB5Wd1QHlDCbzdTX11NYWIjNZsPhcBAREcHY2BjDw8MCjKNk64+3BYCwFsd+kZGREeYB/3ipNr+kHINx71VkMBjEur7KzMQwWp2e2uNP7ZuwBYNBHFube67gfe5tViYHCfh9aHQGAj4vW8uzpCfGEmPebzUrse2wszgzHjZpGgwGhoaGfqp7AYjJ1Ov1MjIyIiyn4+PjefHFF4XfhBI777NarUat0RIRl4LJkoBKpcaxtcna2hparVZgQGZmZggGgwIprfzt1taWMOBRkoLFxUUBPlOu6fEWVlpamtDsz8/PF9cRHx9PU1MTFouF5ORkMjIymJ6eZstmIyoxjT2dKyWJqa47ZGek0tbWxokTJ4SD58c//nG2t7dZWVlheXmZqakpSkpKOHjwIDExMYyMjGC1Wunq6qKiooKTJ0+yuLhIY2MjdrudnJwckpKSqKmpwefzMTc3hySFrJ1HRkYYHR0lOTmZqKgoLBaLUA2cmZkJqxQoZXeHw0FPT4/oew8PD7OwsIAkSZSUlIgEqa+vj3t9S8ys+falBtscbl5/5QRmUwj1HxkZSUFBgSjrezweUVFUvnfLy8t0dnbi9/tJTU0lIyMDrVYrNAoKCgqEV4LD4RBiW8FgUHDmbZvrzN77MUeLs1hZWqA4M5kY9xJJiy2Y3OsUFxej1WpFy8/j8dA5uknPzN4y3BIwODHHr37sqFi1K9eUnp4uXCIjYlLQGqPQqGRGR0dEcjA0NMTa2hp+v5+EhAQyMzMpKiqitraWuro6srOzMZvNzM7OsrKyQmdnp3gGKysruN1u9Hr9ExbKuXFGGsc2CATl8Gfx8H1OX+tgoqcVU3wKLbMOhla3Sc/MIjM+SgA9v/nNb6K2LxGbkMyaXw/IjxIoSeJSaSIvV6T8u1Ai/KVtE/ysWwQAP/zhD7FarXzuc58Tv/P5fMzPzzMzM8PMzIwAy6hUKqKiokJo9oeTnFJmLysrIzc3l2vXrpGUlMSnPvUp0QOzWq10d3cLCtFOnrDSLggGgxw9epSnn3467CWz2+3cvHmTrq4u4TPw9KVPkpCSvi+Kfn1liWtv/x0QwgF4PB4iIiIEkEoJBTCUkpJCIBDggw8+wOPx/KuqAI/HR1ETD9Ue52DVkV2Bhkrcef/HTI8NojcY+fjn/uOen4PdFRr3CkX4SZZlzl3+FHGJyXuCC4PBIOODPTy4fX3Xe6iE0WgU5d6fJhRZ3L3ObycwL7WokoyDtah3yD17HFaGmq/jfChCFR0djdPpxO12k5uby+TkpLj/f/AHfyAGVK/XS1VVFVFRUdy4cQMINztKTExkbW2NQCCARqMRE9Mf//Efh71zP/jBD5iYmOC3f/u3MRqNbG1t8c1v/W/Kzn4ctd60K5ArxqCi5b1/xOv1kpmZSV9fH0899RQPHjxApVLx6U9/mq6uLpqamlCr1URFRfErv/IrxMXFsbKywne/+11BMWxoaOD48eN0dHRw/fp1zGYzH/vYx0TVcHFxkXfeeUeY9CiWlQBJAAAgAElEQVQ00MrKSp566imhVhcMBuno6BDvvhIajYZjx44JXZCFhQUWFhZYXV0VwlBmsxm1Ws377Uvc6LF9pE7It//4DBeffZrIyN1XlS6Xi2s3m/nRlVtopCCZiQaCj+lAWCwWKioq0Ol0PHjwAKvVSn5+PsePHyczM1NQ8wYHBwWeJCIiguLiYtra2njjjTeYmJjge9/7HhB6D3/zN38Tk8nE+Pg4AwMD/OUP2mkZceyriArwh5cSyEhPIzc3l7y8PKGu+K1/usP/+OvrzC6FNBgskUY+/+pJPv9SHUuL86K1oFSvEhISRFshKytL3J/vfOc7wqNBaSsoMscQWtzspDWmpKSw4vTzNw/m6Jh79DwyIjUYZ1rQOpZZSqxiXZcUymgeTvApUXpezAxy98oPkWWZkydPkpaWxt9870d4EwuJTkpncXKUP/nsC6RY9m+D/SLFL2Vl4P9EiwBC6oNGoxG9Xk9nZye3bt3i6tWrQnlLlmXBxVboOwaDAZ/Px2c+8xmee+45+vv7iYqKoru7m4iICD7xiU8wMTHB+++/z3vvhYB/U1NTOJ1O0TuLjY3ly1/+MoODg2xublJWVsaFCxfCBlur1Up7e7sQiFEG7IKSCiIi9wa4SJKEx+NitL8LeORQZzKZ8Hg8JCUl4XQ6efbZZ3nxxRcxGAzcunWL9vZ2/H5/WDVgpzLdbqFWq8V1KNUEg8HwkWY4ADbrBvklh/akD9q3rLTd+QBZlgn4/Rw4VI1Krd4zCZIkib72Zpz2rY88tjIJ63Q6tFotyfv4I0iSRGvTddzbIT3/4uJiAdRT4vFEYLeKihLKPd3vvmZlZeHxePD5fKSX1JB16OgT2AqNVk9CVhHWhSlSkhKEHS/wBCdfo9Fw8uRJampq0Gq1tLe3Mz4+Lj5TVlb2aNLU6ohKziK9pIa49HyS07NYXZrDoNOKvjSEKj/3799ne3ubwsJCDAYDMRYLH773NtkFBwhIjxgUEpBu0VOWFk1x8QG6urpwOp3k5+dz//59Tp8+LVz3nn76aZKTkxkeHsbv99PZ2Ul6ejppaWlUVFSwsbHB6uoqU1NTzM7OcvLkSSorKxkfH+f27dv4/X6ysrKIioqiqqoKk8nE9PS0WDWvrKzQ1taGwWAgOTlZKM7V1dWhVqtF20dRKezv78dkMoXK5w8rfwrwzOfzhaR8CdI5tc9KWoIki4ZMs43m5mZGR0eJiYkJc9MbGF/kM2+8ydf+4R59My56Ztx0T7kw6VUkRIXAbUrSNTU1xfj4OBAyfLp48SIxMTFidZ6Tk8Phw4fxer3Mzc1hsVgE6FUZ15aWlkSbrLOzU0gur6ysMLPqZW5j/0qHBFyqz0Sr1TA+Pi5ohV/9uyb+51v3sTke3Q+3109z5wR94yt88bMXKCkp4ciRI1RWVooWwdTUFO3t7TQ3N9Pb2yvex6mpKZ555hnS09M5cOAAdXV11NbWkpmZidFoZH19nZ6eHlF1WJqdpCgywJn8WGzDLVg2BvkPz1TwzPHDfH8iyKYu8WGiKomE1enx077kIdo5z6UL5zl27BhtbW0szk7yVFUhDSXpjN7/gMNV5f8ioPnPO34pk4GfZYvAbrczNjZGW1sbQ0MhVGlvby+rq6uo1Wp0Op2QNlUc1xRlrvPnzzM0NERycjLHjx9HpVKxtrZGV1eXUHK7desWAwMDbGxsoNVqycnJof7MOcrrn0ZljkOtj6C4IJelhXna29tJSUnhtddeE6CnkZERrl+/znvvvcf8/LwQGPJ6vZjNZqJj47DEJe6D2A4wPz3B/PS48DUPBoNi1eN0OomMjMRqtfLBBx/Q2toqSoQqlYrCwkKsVqsose4VkiRx+vRpkpKSuHnzpigv7xRbUSIlI5vaE09Td/ocpVVHiU9MwWbdZHywh/ScArQKrU2WkVQqrBtr3Hz3e8Ix8GBlHWnZ+fui1G3WDTqbb33k81d45WVlZczOzrK2skRKZg4G45MoeFmWmRzpZ6SvEwit3Gw2m+D2K6Fcc0xMDG63+yMBmwqNr6ioSADgdsbGxgY+nw+dwUhR/XO7Vy0kCQkJtd5A1YEQ6ExRllQSPyWmp6eFP0BWVhYNDQ1oNJoweqTT6cQYFUPxyUvEZxZijLJgjIxBGxlDSmE5IwM9VB96JNmt+NM3NTVRWFhIZGQkCQkJWDc2aG/6gKePVdPVeo+FsT7Wx7t49vRRoZpXUFBAW1ubUORsbm6moaGB1dVVHjx4QH19PQcOHBD0u87OTqKiokhPT6ekpASj0cj4+DhbW1t0dXWRl5fH6dOnUalU3Llzh+HhYTIzMzGbzaSnp1NeXs7m5qZYKSvfs5GREdE6UKlUWCwWYTikiOoEg0GWlpYEHVOZkM6ePcu5c+c4efIkZ04e5XbrMAurtj0BbK9fOsTJujKcTicrKyv09PTQ2tqK3+9n26+h4XNfY3J+Pezd8fhlRhY9nKo/TIwxINgbOp0Og8GAy+USgMHJyUkiIiIwGAysrq4yMjJCY2MjCQkJREdHCwqz1WpldnY2LBn1+/3ExcVx9OhRamtrKSrK561rXbtfSOjVIztRS158SGLa7/cTERHBdtDA376/O+VWBibm1ijITqKsIJRUKh4YRUVFHD58mJqaGtLS0gT7QJGhbm9vZ2lpie3tbXQ6HdHR0cTHx5Obm0tFRYVQIoyPj8fr9TI+Pk5/dyeSx4EmGNJiWfVpeWCP3IN6KCEjUVRUxEsnQwqiV65cweVyCQO6u3fvkpWVtasvwy9q/FK2Cf61LQKFK62gXRVREwD0kWw5XCRE6gj4PGLVv7NcpawclHC73XzlK1/hqaeeAkJshIWFR8YxarWaxMREiouLKS8vxxRhpmvOzua2D4lw5P94RyPWuTG+/OUv43K5hHCKw+EIU4ZLSEggISEBrVaLzWbD7nTxzOVP79uzuvmTt1iYneb1119HlmW+9a1vUVtbS2tr6773S6vVPjHRKeerDD4ajYaoqCg2Nzf5/d//fe7evcu9e/f23OfByjoqjpwiGAyKexkMBlCp1HTcu0nA7yc5PQudwcDWxjqzkyMszT0aUNQaLS/9X19Au4fsqSyH7F/ffevb2KzhIDyVSkViagY6vQH7lpXNtWVqa2spKCjgu9/9rngeGq2O6mMN5BSVCpCS1+NhqKeNvvZ7e07uBoOBQCAQVu5XDHt2hgIUffzcdqsO5OXlhZDg0dEY4tLJrT61v4hTMEimxkrL/WbMZjMzMzOYzWaWl5dFMqck0Mq5ajQa0tPT2dzcZHt7G7/fj6RSU/Xcp3ZlXCh0zTStnYOFj5TXAoEA3/zmN9Fqtfzar/0ait/BN77xDWHs8vWvfx2/3/8EK2F5eZk333yThIQEYmJi6O3t5cKFC3R2drK2tsZrr72GTqfjO9/5Dh6PB6/XS319PWfPnkWSJObm5njrrbfY3t5GlmVOnz7NiRMnWFpa4u2332Zzc5OzZ89y5MgRcf+Gh4d59913cTgcotQfDAYFnVZJoBTpW6fTGSbtrGw7d+4cpaWlYc9l3erghS/8LzoGZlCrVQQCQWGJfaokgqOFj8rLRqMRtVotNAF+1GpjeMGzZ1leq5b4vReSqKutJjo6muHhYSGopNfr99ULSUhIIDY2lunpaRITEzl69Ch6vZ7JyUmampoA8PplgkGZY0dCvgZxcXFUX/4vDE2v75ncfOW3T2NiS1QaAN7vcdA56drzOiQJirNi+aevfpbMzMxdPQ52ht1u5y/+4i/IzMzE6/WyuLgoAJ07x2lFAOrxv33zzTex2WzodDom9DmsmrNhH60Rs17Nm6+V43K5+MpXvoLBYOAP//APkSSJP//zP6eiooIzZ87se86/SPFLlwx4PB7+7M/+jLNnz36k6qACulEm/unpabHqVUxHepcCXBtXseAKcUT1apkXKuL4v1+pIi8rddcedjAYZGxsjMbGxrDJXwmVSkVZWRmXLl0Keym7Zm2sOvZ2FNTb55gY6BKrDoXzGhkZiUajweFwCHBTVFQUKSkpIfETd5DDp55BloOifCwHg0gqFbEmFV//6n9DrVbzxhtv0NLSwgcffCCOubP/GB0dTWxsLPPz8z+182FiYqLom+4mx7sz4hKTOf/SZ/bcvpM9obgjDuygEwKkZeVx+rmXPvK8FHljJfJLyik/fCIMpLi5tsL8eD/dHbsnRTq9gZi4RGQ5yPrK0kOxo0ctk73aH7slADtDmYx3SsVmZWWJlbkyKSmYhOPHj3P27FnGVhxMrrvYC5CnROs7f41KDpCTk8Pq6iparZbV1VXxbF555RW+973vceHCBVJTU0XPdmxsTHwmJe8gOdWn9zxGMBjEvjTJx8/Whf1+enqaN998k+eff15wwhcWFvirv/orjh49SlFREd/+9rcBhI+8EnNzc/zt3/6tMLLp7e3l+eefp6enh7m5OT7xiU8QHx/Pd77zHTY2NvD7/RQXF/Oxj30MrVbL9va2wC5AiCZ5+fJldDodN27coKWlhezsbI4fP47D4WBxcZH5+fkwqWEl1Go1FRUVnDhxIgxdvrq6ytWrV8UxlIiOjub8+fMUFRWJ73wgEOTqnX6+f70Dm8NFQVYiv3q5npy0WOFZsLm5idlsFhLLjm0Pf/He3pOuEq+cSKIoWR2WeCosGiXRVlqJO8WjFLZFd3c3GRkZxMfHizbVu4093OrdZH4j9F5Hm1TU5BqpLYjA6Q7w1j0rK1sBVBKPzk+C8+VmagujUalU4njBYJB/arYyvrw/i8lsUPPb52PRaDRkZWWRm5tLbm4uSUlJuya9b775JiaTiVdeeQWPx8Ps7Kx4f+fn5wkGg2IRl5mZSVZWFikpKahUKv7u7/6Ozc3NEMC79DyN45v74iAkOcj/ej6LtbU1vve971FaWspLL4XGnr//+79Hq9Xy6quv7v+gfoHil6JNsGhz83b3Ev/Utcj1/nm2tr1cbDhKZEQ4FS0QCDA/P09vby937tzhvffeo6WlhfHxcTG46nQ63G43brebrlUd/zgcgSPwKCMNyBLDy27ujFj55Kk8YWe7vr7O7du3uXr1KteuXaO3txe73Y4kSeTl5REbG8vm5iavvvoqKpWKpaWlsIHO4fEzvLw72AxCk/emY5vRrhDgbecXwWg0kpKSQklJCceOHRPlyJKSklC/d3SIpbkpEhKTMJoiCAaCLM1N8eD2ddYWZ1leXsZkMtHS0iLoZo8fQ9ExVxDlu/W5d/ty7gTQfVTeWX74BJbYvWWAH1EiVeLfiSnpyHJQaCXEJiSRmVe073EAJkf62XaGSruFpVUcPvkMmsf4yXqDkbjkDOanxnC7tp/YRyDgx2nfwumwIctBsrKyiIuLE+IoO897Zzgcjn2xEn6//4ltO1sDO5OioqIiLl68GMJ++IOs2PcfXIMBPyXpMYyOjAiamsJsUc757NmzeDweHjx4wPHjx8nLy6O0tJTExERRis85VIfOFLUvdkKl0WNRe8P6phaLhc3NTdra2qisrBT2wGq1msbGRsrKykhMTGRiYoLR0VHRUoBQgpuWlkZTUxMxMTGkpKTQ1NTEqVOn8Pv9NDU1kZGRQUNDA3Nzc9hsNjY2NhgbG6OwsBCz2UxZWRkqlYqpqSlsNhsdHR1CE0NRJezp6RFqh0qLqLi4GJvNhtPpFO/g/Pw8k5OTJCUliYQgIiKC8vJy8vLyBGofQouU/v5+ent7iY+PJzY2FpVKojA7iRfPVvDqszU8dbSYOEsIZJiamsrhw4cFQ2N+fh6z2Ux2fgnv3Jl48oaH3XtINEOKZXdnTSV20pOVbU6nU/Tf3W63qIBcfzDLPzYu4nA9eq89PpnJFR+rNh+lmQYqso2kxGhQqSRizWoOpOv5+LEEMhN0ggmjVMf8fj+TK15W7fsrmhZkJfO1P32d6OhoNjc3hUFRW1sbS0tLAuysSHCvr68zNDTEsWPH0Gg0xMbGkpubS2VlpQB4KnbU3d3dArswPT2NzWYjGAyysbFB7qHD9C3tJ0okYwy6mb79NhsbG9jtdp566ini4uKAECB1ZmaGurq6ffbxixX/7pOBGyNr/NfrY4yuOllz+rB6ZRyGBJpmHBTHG9hamaerq4vGxkauXLlCe3s7s7OzqNVqsaJWPLkhBHSqra2l7vhp/uiHC/gDT05gsgxrNjcry4ssD9zhypUr3L9/X6yYExMTqa6uZn19nYqKCpKSkmhvb+fChQscOnQIWZZpbW2lvLxcSJwubLnZcO49kEuShN4UydrkAHGxsaSlpZGfn09paSn5+fkkJCRgMpkEe6Grq4sf/ehHLC0tERERQcPpkyRYzOhkDwaVD706iMPpwukJYI6yYN1YD1MS3Ck3q4SSAGi1Wg4dOsTGxob4zOPgQUmSntDO/yh6TXndyTDPgZ824hJTGO5pDwGckCgsrdz388FgkO6W2wT8fjQaLQ0XX96VkyxJIdCQyRzJ9NijJElx79v5/+eff57JyUnm5ubC6HZ7gQNDVr+PQIRms3nXaospIpKDVUeoPfE0xRW1JCSl4XY5cTpsmM1mPvOZz4jyqUmnZnLN+RD0vLucsX15iqePH6apqYnq6mrW1taeUDKsrKykpKSEtrY21tbWhF23wWCgubkZvV5PdkklaPd2gQzd5wCdt69RWRn+PDIyMmhpacHpdAr+vEI37Ojo4MKFC6yurgrfAQXICCGcRWJiIo2NjSQnJ5OYmEhTUxMnT55EkiQaGxuJj4/nqaeewmq1sri4KBQLFcvjtbU1PB6PaHnMzc1htVrJzMzk4MGDqFQqNjc3yc3N5cKFC+Tl5ZGWlhYGMFTaTT6fj7a2Nra2toRWP4QqAVVVVaSmpjI/Py+qPC6XSyQbO5OI3UKSQvbi5eXlwhGyt6eb+yPOj2QilGUaSIze3To4OjqapKQkMjIyUKvVQjxIlmWSkpJQq9V4PKFWqNPpxOmFb7w3tecx1+0BYiM1JEVryE2PJzNG5kCansx4HRrVI1tlh8NBdHQ0RUVF1NTUcKAonx/e6N1jr6GoyFQRpXWLlkVDQwM5OTno9Xrm5+eFquHAwADr6+vo9XpGR0cpKysTDBAl1Go1FouF7OxsysvLqa+vJz8/n+joaLa2tphdXMbp8SPJAQK2VaZVSexZZZMhcWuEtAhJyLw//fTTIikZWbZxb3abTY0Ft18mOUovqpm/qPHvOhkYXXXy329MIMOOFzU0gHv9QRpHlpm/9w5rK8sCSKL03pQMPysri8OHD/PMM8/Q0NBASUkJqampvP1ggXdbZ/Y8tgyMLtgp1M5hNps5cOAAFy9eFFoBZrOZu3fvkpGRIQYrxZcgKiqK5uZmLBYL6enpAGxs+7Buf7Twz+pEP06HnY2NDebn5wXnf2hoiMHBQQYGBujv7xcURwih4YeGhujs7KSjo4PpuUUSs0vILDhIRk4BWfkHKDpUTTAYFLz73cr5St8UQqXdnZ/ZrZ/9L6EcqlQqcotKMZr2lqfdK9RqNesri9isG5gjTFjikzDssZ9gMMjM+DCTI6EVbmZeEdkFJXvuW5IkoiyxzIwNIhFatT9+bwKBAFlZWVy6dEnIpiqh2MZCiBWiJAAul4uEhAS2t7dF7/zxSEhO49xLnyIxNQOD0YRObyDKEkN+cTkAs1NjbG1tkZubG6L1SRI9nW3ooxPDJJeV6w76PHgWhynMz+P27dscOXKE7e1tgQ1Qkpa1tTUSExNJT0+nqamJlJQU4uPj0el0dHd3h8CAeiMGy97AVDkYZNu6wmj3A2pqasJU+hRWRlNTEwUFBURFhSoMubm5tLS0sLq6yuXLl+nq6hLa/rW1teJY8fHxWCwWGhsbyX7oWX/79m1OnDiBXq/n1q1beL1e4uLisNvtQtxraGiIsbExZFkWaHOHwyE0HMxmM2fPnqWmpoaEhAQePHhAe3s7CQkJxMXFCRGc8vJyNjY2BMBQuWcPHjxAp9ORmpoqKldxcXHU1tZisViENDOEKmadnZ1MTEyQnJy8J31QCaW6srmxxuSilXXH3itqrRqerYxCr9MSHR0dVvVRWg4QmpyViUx59k6nU2AhFNDnze5VZtb2WagADneA8ixjWGtLpVKFJcMGg4Ht7W2effbZkBV7Xhp3OsaYWXxSQEutVpGWGMV//o2zbG6siRW8ohqZn59PQ0MDdXV1pKSk4Pf7GR0dFdvHx8fxeDxoNBrMZvOu76mSGLkNcTQ7oukmnbWofNbNOchIGLZmcRgTQ6u/nVVS4EBSBJcKIpgYHxPPtK+vj+iEZP5nyyrXp7049bGMrLm4M7nJh6PrFCeZiY3Y28L55x0/t2Rg2e7h3YEVGsc3GF1xEmPSEm34aBnJnfFX9yZZtO1BaZEkZJWaGJ2EvPXI1z0pKUkA9vLy8gRHe25ujsHBQXp7e+nq6uIH96aY2eJJWc4d4ZNV/PB//BYnTxznwIEDYlCDkHXy5OQks7OzVFZWcu7cObFNo9EIn+/y8tDAHgjKLNr2l5rVaSQ+8VwI+HTy5ElOnToljFgyMzOFe1h6ejrPPvssFouFhYUFXnzxRTQaDVarlUhLLM+8+CvoDcawL4harSYlPVuU3JVtil5CVHI2+bVnyK44QUphBcaoGNwOGz6PS1xTbGxsGN/90aPY/R4+Xk0wmiJISsn4Vwl0zE+PY91YZXt7m9WleXILDz5BQwwGg7icDu5cfwe/LzT5Jqdnk5yete8xJUnCt73F3OzME7+H0OQ2MTHB5uamGIyioqLweDxioFBkgXde8/b2tkgWSkpKwsBnao2W8y99Go1WF4ZLUVooSWmZrK8sMD05Tm9vLxkZGZhMJt75wVvEmA340KA1hAZ9WZbZmJ9gvPUGmWkhO9eWlhaqq6tZXl4WvhPKeQUCAVpaWrBarZhMJgYGBqiqqkKj0TA/P4/VamVlYYa0ogpk5F3vnSRJRAWsTI2NYLPZKCkJT7hSU1MZHh5mfHycysrKUOVLrycuLo7GxkYsFgtnzpyhtbWV7e1tNjc3KS4uFn+fnJyMyWTi1q1bJCcnhyidD5kuCkVucnJS4FxsNhtGoxGfzyeAhdnZ2VRXVwvZW5vNRnd3N6mpqRQWFnLo0CHm5ua4ffs2DoeD7Oxs1Go1er1eKBhOT0+LVotarWZ4eJjh4WESExPFql+SJFJSUqirq8NgMISh8202G+3t7czNzZGSkvIEFS0QCNDb28vbb7/NgwcPiIuL4+Xnz/CT28P4ArvLGV+oiSUzIfReKZNzXl4elZWVgm64tLQkWnhZWVmUlJRQWlpKaWmpYKdASPSqc9LN2keU871+mc8+X4lOp8PhcIh7FAgEuHz5Mn19faIK29bWxtzcHLIsU54bRVf/xBPJzbGKXH749d+iuqKEyspKDh8+TEpKCj6fj8HBQVpbW7l//z6rq6tER0dTXV3NqVOnKC0tZWhoiGAwyMTEBK2trbS2trKwsIDb7cZkMoUxzNpnt/iv10dZsnvEWC+r1FglM361nnzfDOrIWJz+0DZ1wEu8fZx89yhmo4GYmBiWlpZQqVR4vF7eWTaz6FahLEqVx+PxB2ma3OREbsyeMuY/7/g3TwZkWeY7HQt89eYkQ8sOZjZcDK04uTq4xvq2l6r06F3LKbIss7a2xuDgIPfv3+fq1au0uuIIqva5sbJMwOsh2vXIkGV9fZ2ZmRlGRkYYGhpifHycxcVFgZQOBoNotVoWnFoGVgL7luN0GhX/6ZXKXQfDa9euYbPZKCws5PLly08ADT0eD+3t7dTV1aHRaDBqVSxsefDvg1jJiTMR81hmubCwwDvvvENjYyORkZFcunSJM2fOoNVquXbtGoFAgP7+ftHHrj3xFFExcXuK9yQkpzHS2yF0+mVZJqvyJBkHa9HqjajUalRqNcaoWJLySnBuroI/JDz0uBHRblFSUkJZWVmYyA3AF77wBTraHpCaXShkj/8l0dd+D/d2qNrjcW0zPTaERqMlOjYOlUqN1+thtK+Lezffw+16hGMwRpjJLijeZ8+hJOLWtXcIBvceEAOBQJjH++c//3nu378vrtHv92M0Gp+oAChVhoiICFGuBMgtPEhW/oE9n5MsB9EbIpgY7kOr1dLS0sL29naIHaDXMNB6mwsN9WQlRHL/2ttM9rfj87jJyMggJiaGjo4O6urqWFxcZGNjI0zL4MUXX6SiooK1tTVRYZqYmKCgoACv18vg4CB+n4+q0gM4go8U5R6eGEgS0z3NeDaXRB/+2LFjYa0YSZJEiT8yMpLU1FQghGa32UL8esUNr6+vj+XlZfR6PW63m/7+fu7fv8/g4CAej4fl5WVhxuN0OqmtrSUlJYWFhQXKy8uFuFBfXx8Gg4HBwUGhW6C4diYkJAh1z87OTiRJoqCggEOHDhERESH47GlpaURFhXQ74uPjqa6uFsJjCrAzGAzS2trK5uZmWOtApVKJNiSEAJFKbG5u0trayvLysrD6bW9v5wc/+AHd3d2kp6dz6dIlTp06RW5WGhdOldE3Mi+EegAiDSqeOWSmNENHZGQk9fX1LCws4Pf72djYEN+5M2fOUFtbS3d3N7m5uUK9dGhoiKGhITweD1FRUTQ0NFBWVsaD/gWmFvcXSTLpVXzyXJlQ/NNoNFRXV9PR0cH58+fR6XSMj49z6dIlJiYmsNlsDAwMMDc7w+HiBD7/iQaiDUESIzz8f3/yaf70P36MaPMjzJeinHngwAEBNI2IiGB5eVnoDQwODuL1etFqtTidTn73d3+XvLw8jEYjS0tLtLe3c//+fXp7e0OtIn+Ar7Ws4QvIT16bJOFX6TlRVcIb5w7gGWkmM7jC712sIT9GQ9DvZ2xsTLiAxsTE4I1OZ06fwW6tBRkIyjISEhVpH21s9POIf/Nk4L3BVf6xIzQ5yzt+ACbXXQRlmbLUkHLfwsICfX193L17lytXrtDc3MzY2Jj4Avd7ovDvU4mWJMiOi+DFIwc4dOgQVTDK6vIAACAASURBVFVV1NbWcuzYMU6cOEFDQwOnT5/m+PHj1NXVUVNTQ0VFRShDLsjkL68M7r1vZCoT/ZyvTH2ixLe8vMyHH35IdHQ0n/3sZ3elxERGRtLc3ExSUpJAxsYYtSzZPA8nkPAXKi5Cy4HkR+WulZUVfvKTn3D9+nU0Gg0XL17k1KlTzM/Pc+3aNa5duxZmcxsMBlFrtBw98+y+Kn6SJGG3WYkwhGRMzYmZZBw8LLbt/BxIxKbmMjvUQeAxwNvOz6ampgpAVWRkJF1dXciyLBz1tFotJ0+e5Nq1qyzOTpGVV4RGoyX4EOD0uNPgzggGg2ysLtPXHk5X9Hk9zE+PM9DZwkBXK31t91icm3rCg8Fhs1J4sGrPBCQYDLI0O8nEcN8T25TV/+OYAI/HQ2trq5jo9Xq9oHvuVjmBkPCP3W4X+zpQVk1MfMK+AD2jyUx/x328Xq9w41OpVKKV8ey5pzFo1bx//ZoQ0bHZbGRlZdHX18eJEyeYm5tjdXVVbJdlmYKCApG0KQJDc3NztLS0EAgE2NzcRKfTkRgbzcxQdwirodaCHCTJYqL9/R+yMj3MxsYGJ06cYHw8JM2cl5cXdg1K8tPa2kpVVZXABWRnZ9Pb20tvby96vR6bzYbb7WZ8fFwIzBiNRnJycqitrcVoNLK4uCgmnZ6eHo4fP05aWho3b95ke3ubw4cPU1hYSF9fnxALmpubo7CwEI1GIyi+4+PjuFwuUdXLz88nOzubkpISxsbGuH37NoFAgMzMTFQqlRiLCgsLmZ+fFxVISZJYX1/nwYMHaLVa0TqAUEUsNzeXqqoq3G63AOxBqN3Q0tLCvXv3GBkZEYuJI0eOhOELEmIj+cylo3zi2Rq03iWOH4zjcA4kWbTiHZybm+Py5cukp6czOzsrMAB9fX2i3fO5z31OWP0ePHiQ5ORkRkZGhHTy4OAgwYCf7qnd39vQtUJFtgGtdxWXyyXuy9mzZ2lpaSEjI4NDhw7R29uLzWbjxRdfpLOzE61WK74bwwO9GFXbJFu0xEQaSExMfMIyeue7HxkZSVZW1hNVg4GBARYXF3G73SwsLBAREUFpaSlHjx6lrq6OtLQ0ZFlmYmKCm4OLrOlT9rwuJIk5q4vTWUaG+3vREiAvLxez2UxKSgpFRUX09vaiVqtJSkpi0BONU23e0xZZBlYdHl4oTdr7mD/H+DdNBvxBmT+7MYFnnxl8dMWBrecmV997V3iJR0RECPOeCxcucPjwYfLz8xlf38doAgCJy9VZHC/LJzExkdjYWKKiojCZTOj1+n1XoLGRemZWHfROP9nPUqlAI8EzSUsMdreysbEhvNAdDgff/va38fl8fPKTnyQ2NnbX/ev1euF/rpRQ9VoVSVE6BgcGUekMaLRazHo1eQkRFCRFoJIkNjY2uHLlCu+++66Q3lQEV370ox8xNDSE0+kMK7+npaWFbF0rKlEbLXveLXiYOPjcXLr4LEePHsVlSMAv717qlyQJSaXC63KEKgSEBniv1yv4vT6fj9/4jd+gsbERl8uF1WoVvGmdTofH4yEuLg6j0cjw8DDubSdDPe3YtzbxeNxsrC0x2t9NTFwiGq3uibK/3+el5ea7OB128Xtlkn70ub1X9LIss+20k5lXtGuf3ef1cPeDH+Nxux4++0c90J3HeDx23n+VSiUmtOzsbLH63+1clMjMKyJ6H2aFcl2KnLKiNQEhFHh0dDR1dXV4vV5u3bpFRESEMMVSyu5nzpxhZmZGTEZKMpCbmyvUA00mE+Xl5QwPDwtsg9vtDiWNdjt5Odn0td1jbqiT+eEunjt9DOv6qnAPTE9PZ3FxkYWFBY4fP/7Ee5Senk5LS4tISu7du8eNGzew2+1iQFd6wsqq70tf+hI1NTXk5eWRlJREYWEhdrud27dvhwEJq6qqyMnJ4datW1itVqqqqigtLRUufltbWwwODlJQUIDBYMBkMlFRUcHW1hbLy8vY7Xa6urpITU0lNTWViooKJEnizp07jIyMCIojhJL7yspKkZQBQjBKWXEnJiZisTz6/un1eoqKiigrK2N9fT0Ma6K8i2lpaRQVFT3hjKhErCWCrdVZokxqnA/9BhQAazAYpK+vD6/Xy/nz54mPjxc8f0Xw6969e6JFoYCQm5ubeemll7hw4QK5ublkJsfQ3DOD1fkkrkWSQKeW+Hh9IjoNYfseHR1FlmX0ej2FhYXExMTQ1NREfn5IEGxhYYG8vDxee+01Dh8+zOz8EgvL62xuhBKiwcFBHA4HRqORiIi9sUSPVw0yMjLo6elBkiS6u7tF1cDhcJCUlER1dTVHjx5lWYphbN21byvYG5AZff8fsW2uY7VaaWtro729nc7OTrGoCQaDbG5usmFIxqON2jMZUO7X5UPJe27/eca/aTIwsbbNuwOr+34miES82s3xyhJOnz7Ns88+S2VlJTk5OcTGxoaVGmNNWj4cXd99R7KMSafmCyey/9XWkecq01mzu+me3ECWQ5acMpAZb+b7f/w0FbkJTE5Osry8zIMHD/D5fNy6dQuHw4HJZOL8+fP7lrvtdjs9PT0cPXpUrNYH+nppvP4TGmoPUl2YTnqMkSijBrvdzvvvv88777yD0+mkrq6O2NhYWlpaaG9vZ319PQzYptPpsFgs/Pqv/7pgL3R0dFBScfgjKwN97S28++MfMTo6ijnjwL4TErJMUnws08M9GI1G0SrQ6XS88MIL9Pf309nZid1uF5gKxXLV5/Ph9/vJyclhfHwct9stJlGTQctQbycL0xNsri0zNTqA0WQiIjIatUZDwO9ncqSPezfeY3M9/J0yGAz7TtSPh3Vjlc21ZWLik4TOgCzLLM5O0nT9R2HiRJIkodFoOHz4MGazOQxEttu9hEeJgSzLuFwuIiMjee2111hcXAxrrag1GnIKD1JWU0+UJRZTxN6gsmAwyPzMOMX52czNzT3hc+B2uwkEAhiNRjo7O7FYLDidTs6cOUN7ezsqlYqGhgZmZmaESY8ysCkc7J3XkZaWxv379zl27Bg2mw2fz4fdbmd5eRmv14tOpyMYDGKxWCgoKKCjowMIrXSrqqqYmprCZDKJcnFXVxd3797lww8/xOv1YrVaWV9fJyYmhqKiIo4ePUpMTAxTU1NcvHiRhoYG2tvb8Xq9jI6OUlNTI+6vUtJfW1ujqamJs2fPEggEuH37NuXl5Rw4cIDGxkZWVlY4dOgQ5eXlYXbCnZ2dZGRkCIBxUVERkZGRjIyMiO0K2Dg7O5uCggL6+/u5e/cuOp2OtLQ0ARh8XMFQ4dZDSM5858IBQu2B5uZmhoaGUKvVmEymsFbS4uIi9+/fx+12k5aWtqs9r6KumJ2dzfLysmD8KAJJa2tr9Pb24nK5OHLkiKgSaDQadDodKysrtLa20tPTIyoKZ86cITIykpiYGHJysnnt+WN8eLeHpXUnkkRISwCIMqp49ZiFKKMsklnluSgS2QrQOS0tDZ/PR2dnJ3NzcxQUFDAyMsLg1Ab/71838fXvd/FgzEX3tI/s3EIKMy309/XS0tJCT08PW1tb6HS6MGzWbt+5iCgLHw6vYIstJLHsGBnZuUSp/Qw9xBq0tLSwsLCADROTjv3bkRLwxWcrWV1ZJjk5mcuXL1NbW0tNbS0Bf4ClpSVefvllnnvuOQJGC4Or+1dQcmJNnC2M3/eYP6/4N00Gluxebo7tMXnviFdPVXDsUCHR0dH7TlwJZh1mvZrOeZt4OQGQZVRygFp5nGMVJfvuY79QqyTOV2XwubOFFKRGc6o0md95vpT//tnDpMebSU1N5dChQywsLGC1WpmZmcHpdGIwGMjPzw8DPO0WklrL334wwJV+Bx/2rbDlcNF26z0OFBVy/PhxIAQyu3nzJm+//Tbr6+vk5OQIdsDj4j8pKSk89dRTXLx4kTt37mA2m7l16xYzMzPk5eVx/vx5zFEWvP7daymyLOPzemi5fY201NQQ2CYh6wmd+7BrABanRtlcnCY7O5vTp08zODhIQkICvb29+Hw+EhIScDgcnD9/nv7+fmRZJjIyUmA0gsEgKysrIkEwGo1C+VGSJD7xiU+wvrbGQE8HA50trM5PsDg1Sn93u5Ag3klj1Gg0e5r67BU26wYjfZ3MTgwzNTZIT+sdxga6n9i/VqvFZDKxtLQUJhwkSdITFYndIhAI4Ha72djY4OTJk2RkZDA2NkZkdAznP/4ZcgoPEhkdgynC/MTguvM5SZLEWG8rfb3dfOpTn6Kvr09IXCsxMzPD5OQkbreb+Ph4AoEAr776Kl1dXXg8Ho4ePcri4iLT09Nhq8n09HRycnLCjhkZGYnH4+HevXsUFBQIhL4yCSvHttvtnD59mr6+PlwuV0gmWadjc3OTsbExWltbRfUqNjZW6M4rz//Tn/40OTk5xMfHk52dzczMDB0dHdTU1FBcXEx7eztOpxObzUZR0SM9CUkKycMuLCxw7949zp07h8/n4/bt26Ldcfv2bebm5igrK+PQoUMhOtnsLCaTSYDzFHU6BUQ4PDyMz+djYmJCtA3i4uKorKwUTqIzMzNkZ2cLYJperxdWu5OTk0LxT6PRsL6+TktLCy6Xi66uLn7yk59gtVqpr6/n5Zdf5sSJE6KaorSUZFlmbm6O+/fvEwgESE1NDWs9KtWd5557jtbWVlH1VAR+0tLScDgcREZG0t3dLQyYEhISWFxcxGg0CpVQRanQ7/cL10MAo17L6ngzuQlqaipKMMhbHCkw8nS5mbysFEpLS4XinxIqlUroadjtdgYGBrBarXg8HgwGA6+//jrNfQv8yTeamJp/JKTk9QXoGV1iei3AX/w/XyQ/L1dgnxSGx8bGBmq1+ok5YmzVyRs/HmZBimHTp2Fmy8PApsy8Kp7/8PFzHK4oFVbbMyP9rJlz9lzJS8jUZFh4sTaf7u7u0GI0uZD/n7v3DI7rTPP9fqcjGmgA3Y1u5JxzIhGYQIpJDKCYlChptN7ZCbtzN3jL/mJ7yy6X635w3bI/uOrWvXbVJq12dkYjjTgURYmiSJHIQIMgQOScc2qg0QFAB39onVeAQFDUeH1Xc59PEtg46D7n9Hmf9//8wz8/XeG9J8t0OEPZ0FkozMkkNTKMOEMwt7sXnsutePtgHEmm/aPY/y3rv2gzEKRScLt7/js1sm8diCVU+2KMywxLCOVJ4fh8sO31odjaIHprjqg5K771BWw22y7Xr9+n9Do1JakRlGdGkhIVuutYQUFBFBUVMTg4yMbGBkqlkq2tLba2toiOjt4FC+6sJyNLnP/3D+lY1NA/s8HT8RVuNk/SvhTEn73+Eia9htraWj788EOmpgLyRYfDwfLy8q65c2RkJMePH+eNN94gKyuLsbExbt68ydbWFkFBQVRVVXHlyhUKCgowGAwEqRTYNz3PZCFLkkTTV58RGWFkfn6e+fl5Qk2WryOQ9zl/ksTY00bSkxM5f/48jY2NLC0tsbGxQWZmJouLi1gsFpRKJS+//DJ1dXVAYJwgG+nsfGjZbLZdhjs//vGP+eKLL5idnRVfesfGBjabbZc2X3ZV22nIs18dP358l8/+znK7nDg31oXaQC6fz4fJZGJjY4MTJ04wODgo/oasCPg+aMTa2hpdXV2Mjo4CcO76jwgOCRWGSoFTu/ucy+5xEmCtvYda8uJyuejt7SUmJkY8IP1+vzB3kdnksrlPaWkps7OzLCws4HAEwpSGhobE4iIvNt+e70PAC6CjowOXyyWc2goLC9FoNMJzfmNjg4aGhl33qLwQbW5ucvr0aV599VWOHj1KXl6eMGqKiYmhpqYGvV4vRhSSJJGSkkJLSwvz8/NUVFQIe925uTmMRiPR0d9ArgqFguzsbMbGxmhqaqK6ulos2Hl5eZSUlFBfX8/o6KiIO5Ykif7+fkGqlBEAeS5dVFTEwsICy8vLbGxsiLGBHAmcmJhIW1sbzc3NhIeH77K63UkwnJqaQqVSsbW1hSRJQk108OBB3n77bSEPlSQJk8lEWVkZERERTE1NiXvc7/czPj4uUhtjYmJQKpXMzMwwNjbGmTNnRKiTz+cjLS1N5BMkJSUxNjaGJElER0czNjbG4uIi2dnZwn/BYDCIrJWZmRnq6+sZGRnBYrGwtLREW1sbEeE6osMhUu/FpFcJn4LLly+j1WqZmPhGcSM/s3bevzsJtbV1DfyfHw2w7fHveR75/bCwYkejVnHlbAWZmZlUVlaSlpYmCI8tLS20tLSwuLgYOLYmmP/pziDO7a+J3zvY/FseH41jNq4eSCEjNYWSkhIOlZUyNr/MnHMvRwt/IIr4L6qSMYUEEh+nNHH8us/JsmNLHH9bGUTDmA2vz09ZkgFjsJrWybVdm1P5yIeSDbxeHPOD9Rv4L9oMaFUK5tY3mbS5ntkQKCQoiA2lOu/7ESwMOjUHE8M5l2Mh1jPPRHsdackJAvKSJInk5OR/lc/wrLp37x69vb28/PLLLC0t4Xa7USqVWK1WFhYWiImJ2UWGWVhzceJ//JQ1xxZ+v8w0Dfzbtl/BzaZxnH33mBgbEbu1nQtNeHg4R44c4fr161RWVuJwOPjyyy9FWFFwcDA6nY4///M/Jz4+fhe0qFBIhGpVeHw+tnYYKmlUEiadgs9v3+TEiRNUV1czMzPD1NgwUWm5gLR3h+rz4VhdZKIzIPFpampiaWlJ7JLPnz9Pe3s7TqeTvLw8srKysFqtQnkgPxgiIyPRaDR7LHrPnDnD7du3WVtbIzo6GpPJJGJMNRoNLpeL4uJi5ubmdkkhn2d5DIikuRep4OBg0ZwkJSWxurq6Sy8uM7/lxe/GjRvExcUxPDxMRUWFMH3az77Z7/eTkJJBRt6zVSnyA9TtcrA0P8PU2CCND+7g33YzOjrKmTNn6O/vZ2lpicTERFZXVwkODiYhIUEsBBBAmJRKJaWlpfT19eH1ehkZGRH20jubAXkO/+2Sd2ItLS1A4BqMjY3tyjWAbzIr5PL5fPzoRz+ira0Nu93O4cOH9xw7LCyM9fV1rFYrJSUlYka+U24oNzOrq6vMz8/T399PTk7OLjmeUqkkJyeHgYEBrFYrly9fZmNjg5qaGrKzsykrK6OpqYmBgQFyc3PJyMjAYDDw9OlTjEajSAbNyMhAoVCgVqvJz89HrVYzNDSEQqEQTUNiYiImk0mkIz569IilpSVSUlLEd06pVAoJ88jIyC7XP71ez+joKKurq7tGB/J1j4qKory8nODgYAHty9dIls1pNBohaayqqhKSusjISObm5khJSRGNk9wcHjp0SFg09/T0MDc3J1CApaUltFothw4dwul0Mjc3x5MnT+jq6hL+DDu/b/L9KfuOLC0tERcXh91uR6lU8pOf/ISnT5/uuifk3+0ad9IztX96o98PvSNz/PW7p8QYJjw8nLS0NCoqKsjOzkar1TI2NkZLSwuf9a+wqjI+kwPgJ9AQGIPVZFhCxH16KD2KVaeH0RUXEqAIiGVR+rZIXGrFNtKJzWZjYHaVNilVHGvHhQKgd36DwthQypMMZEWGsOzcZuFra/noUC1vlMTw9sE4lIofZiMA/wZqgtxoPa0Ta9g3v2XF6vejZZu/eTmLkBdEBZ5VWq1WJJn19fWRnJxMe3s7JpOJqKh/fRZnY2Mjjx494ty5c1RWVgrdsdPpRK/XY7PZaGhowO12Ex8fj0ql4j/e6eFe+wy+ZyxIfsC97UMnbRETvCW+OFqtlgMHDlBdXc3p06cJDw+ntbWVmzdv0tbWhkajoaqqikuXLlFfXy/IU88qhUJCH6QiXKciVKvEGKLCFKLG7dwQ+nMZbt3edOF1bxAWmfA1q98HXxMKVb4t2r/8CKUisGOVNfR6vR673U5bWxt+vx+v10t4eDjz8/OMjIwI62d5gdzY2Ngz846IiKCrqwufzycSA1dWVkQq5OjoKBqNhqtXrzI/P4/NZkOpVD4XEZCh/hdtBPRhBqKiY3G7nHg824IgKoczHT58mPDwcGFkExERwfnz54mNjWVgYICRkRFCQ0NJTk5meXkZn8/HqVOniIiI2JVZkVV4AGNE5J7AH7lkJ8Tbv/o7FmYm2fzaMVOv14sd4eTUDAaTGbfbjcvp5MaNG2RmZu4KPHK73XR2dgqUw2AwMDg4iNfrFYuXx+PBbDaTk5OD2+1mcnJS6LofPHiwK7xKRipOnjzJ6Ogo0dHRbG9vExcXx40bN+jv7xdN7MTEhLgH8vLynhntGh8fT0tLC+vr62RnZ4ufm81m7HY79fX15ObmUlxcTHd3N06nk87OTsrKynbB5iqVipycHLq7u2lvb+fatWusr69TU1MjdphWq5Xu7m6ys7NJSkoiISGB9vZ29Hq98CjIzMxEo9GIhT85OZne3oDCaHh4WIwNgoODyc3NxWw2Cw6PTBbs7e3l5s2bPHnyhMjISDIyMlhZWUGhUOB2u0Wsrrzbl1P45FIoFMTHx1NWVoZCoRD6fPlaDQ0NMTk5icfj4dChQ0RGRornjVqtJjo6GrfbLZwY09PTaW1tRavVcuzYMcrLy4mIiGB8fJzZ2Vlk59CRkRHMZjNnzpxhc3NTjO1k8qtKpRILfGhoqBgVud1uiouLxd/r7u4mLi5uV3OnVqsDEtXpTWZWt5+bs+B0b/GX75xEq9nNlZAkCb1eLxQlBQUF3J+VAn4Az9l5e3x+TqRHiP9XKiTKEg2cSDdh1mvIitTzcraFw3obk30dpKSk0NfXx6gqDpcmfN9jKyTY8vqoTDYSHablRHoEVwujuFIQxSv5kWRE6n+wiIBc/8WbAa1KQVWaiWCNknn7JpseHwadmqPxGpRdn2MM1uwiL33f0ul0wno0Pj6enp4ecnJyaGhoICkpaV/Y/veprq4ubt++zZEjR0RXfvv2bQ4ePMi5c+eEEU1SUhJ9fX20traiVqv5v+5NM7vqeu6xfX6JfGMg+/306dNcunSJtLQ0pqamuHv3Lp999hlzc3Pk5eVRXV3NiRMniI2NZWpqisePH3P27NnvdDVTSBIqpSS61dXVVR4/fkxSUhKffPKJMIKxLc4xP9LFtsuBd2uTtcUZlkc66Wn8Eq9nm/T0dMrKykQGekFBAbOzs1y+fJnR0VG8Xi8rKyuMjY3t8Ubfr1wuFxqNhqioKIaHh5EkiQsXLpCamsrdu3fJy8sTVrAXLlygo6Nj30VebgJe1BExJTOXY2cvU1R+lIS0bNLzitEGBTMy2Cfkjvn5+Vy8eJEvv/wSu91OVFQUKysrVFRUoFarGR8fFzuz7u5uLly4gN/vZ3R0lLfeegtJkhgfHw848JkiA8qB53Fb/H662hp3fcatrS0MEZHEpOVTVFFFXEomOUVlRMclYW1uoLzsoCC5yefa7XYLA56rV6/S0tKC1+sV4wWvNzB6sFqtfPnll3R0dDA5OYlKpSIhIYGDBw9SUVFBZ2engJTPnDkjxjirq6vYbDZOnDiB2Wymp6dHXE9Zdjc6OsqBAwf2cHnkqN3a2lpSU1N3Senk89jf3y/skmVC4fDwMKWlpbuQFbVaTXZ2Nh0dHXR1dXH9+nVsNhs1NTWkp6dz+PBh2tra6OjoIDMzk9jYWDIyMoRUzOFw0NnZSWpqqmhcDAaDMCJaW1sTLoKxsbEizninUZFMfLNYLFy6dIlTp06RnZ0tHAzlkCi3201YWJiIXjebzRiNxl3nRqVSkZKSQmlpKdvb27tQNPnadnR0YDabcTgcrK6ukp2dTWdnJ5cvXxaZErKq4KuvvmJzc5OMjAyio6M5cOAA0dHRdHV14fF4BAm3vb2d7e1ttra29ozhfD6fSGp1Op1sbm6iUChIS0tjZmaGvLw8YfW8vr6O3+/npz/9KSdOnCA+Pp6HTV2MzO2PDAAoFQr+5k8vovwOEnhwcDD3Bm2sbz4fFTQGq59J4AvRqsiK1JMXHUqCUYdarRLPlvPnz/PR0zm2lPvP+v2Azwfnciw73ruEWql4JuL3Q6x/EwdCtVJBTpSei3mRvFocw6X8KA6mWPBuuXflnf8+JUmSSCK8evWqyDaXg3iys7P3eFb/PjUyMsIHH3xAYWEh58+fR5ICMamtra2cPn1a7GAlSaKzs1PMRZuamqibUuHYft7NLRFvCeP//pv/RjzkGhoauHnzpmh0Tpw4weXLl8nJydl1rpqamrDb7Zw5c+Z734SLi4s8ffqUsbExAWd6PB6SkpKoOnaU1sYaDuZlMNLTzuJswLY4NDSUsrIyQkND6ezsJDc3V+xGDQaDkDIZjUYOHz4sZuTfBeWHhoayvb3N2toacXFx/OxnP8PlcvHRRx+Rn5/P1atXhUyspaUFvV4vdqERkTGYI2PQaIPY3nI/l0y4M0cAILe4nPKqs2i03/juK5VKIiKjiU1IZnSgm+SkJN544w2ampp4+vQpAH/yJ39CU1MTUVFRrK2tcf/+faKiohgbGyM9PZ2zZ8+KnHOTycTQ0BAOh4OlpSWUavVzw5V8Ph/L8zOsL8/hdrvF+42KTeTUpdfR6oJ3XetgvZ7oxDQeN9czOz1FZGQkGxsb5OXlCZfD9fV1ent70Wg0gWz2woOUnzhHcUUVCanZRMfEUJCXw8mXXuLs2bOUlpaSkZFBTEwMRmOAUyI3ABEREYJ7IEPBZrOZ3NxcrFar+FlFRQULCwtsbGyIhVy2OZYrOjqaoaEhBgYGdi3wSqVSWHtvb2+Tm5tLXFwcT58+ZWNjY1fOgVyydK+1tZX+/n6uX7/OysoKtbW1pKWlcfToUZ4+fcrjx49JTw/Ij/Py8ujv78fpdKJSqbBarcTGxorFWavVUlhYiNfrZWxsTJgDybP4zs5O+vv72drawufzERYWRnV1teAhyMeQCYYjIyO7gqnUarWYgyckJOwaHUCgYcrMzKSgoGBPZPLW1hY9PT14vV62trbwer1iPCEjb319fVy8eBGTycTDhw9ZW1sjMzNTLOjt7e28+eabqFQqYYq0068EAmNKj8cjxn1Op1OQfzUa5ofNyQAAIABJREFUDUlJSUxOTvLuu+8KIyCfz4fFYhHmUyaTCaVvi5uPBve975VKBa+cLOT1cwf3fc3OGl5yMLH67BE0BHbvlcnGFzL90el01NfXExUVRXx8PLesg2yqdDwvETQyVMPprB+mUuBF6geVTZCcnMzAwADd3d2UlJQ8MzzmRUreMVZUVGA0Gqmrq+Pll19mamqKp0+fUlBQ8EyJzovW3Nwc77//PklJSVy/fl3scNra2pifnxeSQoVCIaRIMvu/vLycnmknM/ZnkFa+LqVC4urhNJKCHXz++ed88cUXLC4uUlBQwCuvvMKxY8cEeWhn+f1+Pv30U7Kysp458/2u6unpEXNNuUpKSnjttdf49NNPcbvdDA4OEhERwcbGhrA3ra+vp7e3l9DQUN555x0yMjJErKxMZvurv/or1tfX6evrQ63REh2XSGi4ie2tTTyevYu17FVQXFzMmTNnWFxc5De/+Q1ZWVnC0VGj0RATEyN4CTEJybx08TXySitISs8hPaeQpPQcNtZt2NcCGu5vM/53NgK6ED0vXbgu5pM7Szb50arVXK4+z/j4ODdv3hSow8mTJwUSZLVaSf7autZmsxEXF0dubi5hYWHMzs7S0dHB/Pw8ly5dCnhNbKyTV1K+7/0gSRLtTY+YmZrY5YVwsvo1tEG6PTts+f37UDLS30VYWBh2u13I1uSFZ3NzE4VSzblXf0RsYipabVBgTq7REhxmJDg8gihTGMpnIBbBwcF0dHQI//ni4mKsVivR0dHCE6CoqEjID2V3vosXL9LZ2UloaCjDw8M0NDSwsrISsLz+WjIWHR1NbW0twcHBIrsDAg2iWq3m0aNHJCQkCDLZ6OgoMzMzRERE7BkF6nQ60tPTaW5uZmRkhFdffZXFxUVqa2tJSUnh2LFj9PT00NLSQmpqKmazmYKCAqamppifn8doNNLU1IRerxcuiZIUyFGIiYmhu7sblUrF0NAQDQ0NDA8Pk52dzfXr1ykvL2dkZITa2lp8Pp8wKpJLJhhubW0xMTEhxlByql5TU5OQdX77Gut0OnJzc8nKymJu7hu7dfm7AwE0Jj09nfHxcWGeND09zcDAANXV1VgsFiG5zMrKEkmRly9fJjs7m4MHDwql1M7a3NyksrKSqakpcnJyWFpaEveU1+sVfIWqqiosFgtPnjwBArkHY2Nj6PV6bt68ychQL85tJXOrz/AvACTJz88uZZMYa37mWOnbZQpRc6//+Wq1Pz+WRGjQd4+hFQqFGAllZ2fzsLae9aBI9v2OAhdzI8mO+v5Baz+U+kE1AwqFgqSkJOrr65/Z6b9oyfahMTExFBQUMDw8zPDwMG+88QZWq5WRkRERZfp9a3V1lffeew+j0cjbb7+9q6m4f/8+sbGxIuVNLtmQZGtri6amJkLVXtqW9kcn/H4oD+pnuLeD8PBwTp48yeXLl4UF5341NzdHQ0MDp06d2gMzPq9WVlb44osvaGj4xsVPoVCIDIePPvqImZkZwsPDef3111lcXGRra4u3336bwsJCoqKi6OrqErG33d3dbG9vC1jR4/F8zequpeTQcY6eeYXU7AJSMnPJLjxImMHI3PQ4vh1NSHBwMOHh4YyOjmK1Wuns7ESn05GRkSEMjXp6evjggw9QqVSYo+I4efE1tNrdSXpqjZbkjByWF+ZwOex7uAk7K6+kHEtM/HMRleiYOKRtB3/3d38nRhcDAwOUlZXh8Xhoa2tDq9VSUFDA48ePKS0tFVB0aGioIOBFRkYSFBTEzMwMKpUK18YasYlpuxZ7n8+LJCmwzU9y4fRxiouLxQ4uONRAXmnlc/XW+tBwRvu7WF4OeCHIM+uJiQkOHjzI2toalS9dwBBh+Vb+wdd/3w9erw/9Mx6eISEh1NfX4/P5WFtb4/z581itVkwmE0tLS6yuropmXCaN2u12Dh06RH9/P3a7nb/8y79Er9fT29srFlK1Wk1KSgobGxu0tLRQXFy8CzmQ3fQeP35McXGxGJ2trq7S19dHbm7unu9ISEgIycnJwmDn1VdfZWFhgdraWpKTk6mqqmJwcJDGxkYSExOJiIggLy+P9fV1hoeHiY2NFUhGSkrKrh2+w+FgenpanLfg4GBOnjxJXFycMDGSJIna2lqGhoZISkrahUzudDCcnJzEbrcLp0qTyUR3dzfd3d1EREQ808AsNDSU9PR0mpqaMBgMu4KCAGH+tL29zVtvvcXAwADLy8ssLCxw6tQpYmJiqKurY2JiQvhgHDp0CAiMJu7evfvMqG35M58+fVpIbedt2zzo2uA/3erlQec6/3K7kampScK1Hvz+gAfF8vIyHR0dKJVK3njjDf7kjZe5X9PE/Oo2CoWERAByN4YG8d+/VcLW2hSNjY0MDAywvb2N0Wjc34ApWINWpeDpjH0Xm1/+758dSqA4fv+UyGd9xvn5eUpLS2m8dxu3OQOPX9qDPCgkCA1S8YsjSWhVv5+M/YdQP6hmABBM+EePHgkJz/ctjUZDb28vXq+X7OxsIVsymUwcPnyYuro6lpeXycnJ+V5QusPh4B//8R9RKBT80R/90S6FgNPp5PPPP+fQoUPExOy2uFxYWKCxsZGnT58G0tHUXpT4GHcE7b5pv2ayXkiy89qJPC5fvszhw4eJiop6ocbl8ePHQm/8Iq9fXFzk7t273L59m6WlpV06fbPZjN/vp7a2FkmS8Hq9/MVf/AV2u50HDx5QXV0tPmddXR0OhwOz2YzNZsPr9YqdoBz3OzMzw7GXL5OSmYviWx714UYzMQkpjAx8Y/krzxYTEhLo7u4WM9m+vj7a2tqoq6ujr69PuOKduPhqAC5/xi4Z/ERExtL3tDXgIf416vDtSs7I/doCeH8inw94/2//k3CYDAkJEYu9bECVmZlJa2sraWlpgvzY29uLWq0WGunt7W3Gx8eJjY0NWJn2dLEwPcam24U2KJjtrU3mpsZprbtPZ1szHR0dtLW1CavViMiY544W5JocGcSzvUl4eDg/+clPsFgsNDY2cvz4cc6eu4BPE/rc78CW10+4TrWH/KRUKunr60Oj0eBwOIiOjhZWxQ6HA7/fT2RkJGlpaYJIKCs95PGOSqXi+PHjwk52bm6OxsZG2trahNZ+bW1tl1+HvCtvaWlhbm6O/Px8wQ3Y3Nykq6uLgwcP7rEADwsLE2OGxcVFrl+/ztzcHLW1tSQlJXHs2DHGx8epr68Xzx0ZPpczCXp6epifnxcz99/97ncsLy9TXl4uAmu0Wi2tra2CdCijg+np6cJaPSgoaJc9Mex2MBweHhahPrIxUHNzMwsLC8THx+8K2pHPSV1dHefPnyc/P1+E8uy6jl+PEM6cOcPAwAALCwtIksSBAwdITEykoaGBhYUFoqKiKCwsBKC3t1eMwRQKBRkZGSwvLxMVFSXMsrq7u7FYLNS3j/PLOhuLdi8yNWfV7qZ9aIX1TRW5CcE4HQ7UajVhYWFi/JeSkkxpRgQa9zinjx8iIthDTjS89x9+zuXz36QSyrbVDQ0NzMzMoFAoMJlMe55z2VF6sqNCsLs9rDq3USslSuPD+bMjiVQkv/gGCQIW4Z2dnYE1o7aGSxXZTLo1bGx5UeBHoZDw+8EcouF/fjkdS6j2uw/6A64fXDMAAS/72dlZrFYrRUVF+3aCz6vl5WUGBwepqKggNDQUu92O1Wrl+PHjREdH8/DhQ3w+376M+2/X1tYW//zP/4zD4eCP/uiP9uSQ9/f309vby4ULF9BqtbhcLp48ecKdO3f46quvWF5eFqSz06dPY1HZ8a+OsOnXsL4loZT8JIe6eSVlg79+8wSHDh363tyGzz//XGSyP69mZ2f57LPP+Oyzz3C73aSkpIgdBAQe9Ovr6wQFBXHx4kWGhobIyckhJyeHX//615hMJs6ePYtsKfrZZ58JX4OrV69y5swZ1tbWWFxcFCOHmIRkisqP7Suf0wWHoFJKJMRGMT09TX5+Pg6Hg1/+8pfExsby4x//mJKSErKysoRboVwGk4WCg4efu0vWBumYmRhmw77+zJ0OQGR0HObo2H2bAQCX00Hn40YAOjs76ejoABDQPwSaP5/Px8rKikBM3G43AwMDgkkuvwc5O16tVrO0uMjs1DjLs+M8aa5jYmQAv3ebzc1NcnJySExMJDExkdTUVOLjE9Hqv/vh1vOkGadjIyCjOnRIWKpWVFSg0YWy8R2EK4AQjeKZLp5zc3Osra3hcrmYmpqitLSUtrY20UhubW2J5DrZmnZpaYlXXnkFq9XK9PQ0R48eRaFQYDabKSoqIjc3F7fbTVtbG9vb2wGvix1BRrBbbqjX60lMTCQ9PZ3Hjx+zvb3N6OioSELcWQaDgejoaGpqalhbW+PKlSuiIUhMTOTYsWPMzMxQW1uLxWLBYrGQlJSEyWSitbUVk8kkeEFra2scO3aMa9eukZWVRU5ODkajke7ubnQ6HQMDA0xNTZGWliZc80pKSnA6nTx69IjJyUlSUlL2yAllB8Pl5WXm5+cJDg5mbW0No9EocguAXaMDhUJBTU0NKSkpFBcXU1ZWhl6vZ3Bw9zze5XLR1dVFVFQUdrudsbEx4SmRlpaG1WrF7XZTWFiIVqvl17/+tUDSlEolERERbG9v84tf/IKioiIeP36M3+9ncmqWf6qx7ZsTM7/qJkjlI8aoJiIigj/90z/F5XIJzsLRo0eZnhglROHgZGUuKwvTxMYlkhAfGIVaLBby8/MpKysjPDycyclJmpubaWlpYXV1VZgmydc7KlTLsTQT14qiuVYYzZEUI2b9919DPB4PT548ITMzkydPnlBWlE95lJLRtnrKinLJiQ7nSkEUPzmUgCH49x87/1DqB9kMyN1/a2srMzMz5Ofnf28ynM/no7W1lcLCQnQ6nZAt2e12jh07hlqt5uHDh+IB8bzyer385je/YWZmhh/96EdERkbueU1jY6PQaD948IBPPvmEwcFBYmNjOXXqFJcuXRJSpa6uLvr7+1FtrpIb7uBI9Ab/w+ul/Hc3TuBzLFFXV8fQ0BBms3lP07Ff2Ww27t+/T1VV1TPfHwRS0m7fvs29e/fwer2cOXOG7OxsampqdkXrGo1GqqurOXfuHDabjcePH1NdXc3AwADt7e288cYbgivw8ccf4/f7OXv2LFeuXMFoNNLe3k5ra+suuWHhwSOEmyKes9D6SUhIwuNaZ2hoiMjISD755BPMZjNvv/02Go2Gzs5O/uVf/oXNzUBKopxetrK2QWrW8xsggKnxYWzL+9thb7pcZOaX7vvvPp+Pwe525qbGCQ4OJiUlhdzcXCYmJtBoNJjNgdmmw+HgypUrnD17liNHjnDs2DHW1tZYXl5Gr9dz48YN2tvbCQ4O5q/+6q8oLy+nsrJSQNFhYWHCSljeUefm5lJVVSVkcNGRZtZc2/j2yY3w+/2sLi/Q86QZ2QLaYgkwnTs6OqioqGBxeQWF9rtnseE6FSrl3r/hdDp58uQJZrOZ1dVVYmNjGRsbIyEhgcXFRaGukNEI2bc+LCyMiIgIxsbG9iz0ISEhZGVlUVZWRlBQEBMTEyLqWKPREBERIZqHjY0N6uvrycnJwWKxCPWCnGuQnp6+5z3LcPvDhw/Z3Nykurqa2dlZ0RAcPXqUpaUlHj16hNFoJCoqis3NTRYWFgT3QaPRCFRj5zguOjqarKwsAWlvbGzsUhsolUoyMjJISEgQRkUy4rWzdhIMZVKmJEk4nU4iIyPp6uqiq6tLfBZJkmhubiYmJoakpCQUCgWLi4siTvvbtZNf0NvbS25uLiaTidraWpRKJV1dXRgMhl0y0gMHDtDZ2clLL71EfHy8yBJJTk5mcl1Dfefss/6UqHW3n9KUIBwOB1arlZycHPLy8sSz7tixY/z9R4/4+89HuNu+xj992s77nzSjUEgcyEsUkse4uDiRMaFSqejr6xNEXpfLRXh4+L4BR9+3goKCqK+vJyYmhsHBQQoLCxkYGEDpXuPPXj1HcVwYcYagH7xk8EXrB9kMQADqlwkuwcHBwpXsRUuv11NfX4/ZbCY2NhaNRoNGoxFqhdzcXBFukpiYuO+M3e/388knn9DX18ebb75JUlLSntfMz89z9+5d3G43HR0dSJLE4cOHuXLlCqWlpZjNZmZmZnj48CG/+93v6O/vJzo6mjNnznDhwgUcDgeNjY2srq5y8eJFsrKyGBwcpK6ujqWlpT2mRc+q9vZ2xsbGuHTp0i6IVHYtu3XrFg8ePEChUPDyyy9TXV2NJEn88pe/FGMACDwsf/GLXwgntS+//BKlUkllZSUffPABeXl5BAUF8atf/YrBwUEkSaKsrIyXXnqJyclJfvWrX9HR0YHRaMTlcokGI7voIPqw/WWdgQVNQul10d3dzcTEBCaTiXfffReVSsWdO3d48OABEBglvfnmm0RHR/Pxxx9TVFyMwfLd90dPewtup2PXz4KCgjh9+jRDQ0O4XQ7CjCbCjRF7Flifz8fWppu2uvu8/tqr+Hw+hoaGGBkZEa85deqU8OQvKysjNjZW6Ko9Hg89PT3Ex8czMjKCQqHAbrdjMBiIiYkRznLyXNXj8XDq1ClGRkYwGAysrq5SWvpNoyJJErPTU6h0oQQGTTver98Pfj+N9++gUiDgZjnnfX5+no6ODnq6u8gpPPjckZJSArNe/cyGQ2bbJycnY7PZGB8fF26TKysr+P1+oqKiiIuLY2FhgfX1dRQKBSsrK1y7dk1AvvKMemep1WoSExNJS0ujra0NpVJJW1sbT548YXt7G7PZTFZWFt3d3fT19VFcXEx0dDQul4vp6Wmmp6eJjIwUDdDOioqKElbdMu9jZmaGuro64uPjRf7CV199xdOnT2lsbESn01FZWcny8nIAydLpaGpqEk2IXHq9nqKiIpaWlpibmyMoKAir1SrGBrLDoBwR/ejRI2Ez/m1S806C4djYGCEhIQKx02q1NDU1MT8/T3x8PN3d3RiNRtLS0nC73fzqV78iOTlZ+ANkZWXtMqH65lbx097eTmRkJDVNTwmOyuHpwBS93R0Eqb/hRpjNZtbW1rh69aogLssJj7NOPY+7xp7rLOvc9PHW2VwcDoeQgw4NDZGcnMzq6ir/+TdNfN6+zvqOMKT1DRdf1PcwPLnI5ZNFuxUzXzfjFRUVJCcn43a7efLkCQ0NDYyOjgovjWclxr5oqVQq2tvbhSFaYWEhDQ0N5Ofnk5qa+nsf94daP9hmAAILk9PpFN3/izBK5ZIZvi6XS8DmMTExAQOJr2HE9PR0JicnaWpqIjMzkzG7jzs9izSP21h2bBEbFkRdzUNaWlq4cuXKrtml7C0ujwF8Ph8ZGRlcv35dzLrlbPRPPvmEuro6XC4X5eXlXL16lYMHD2I2m1Gr1WRlZREbG0tbWxstLS0kJgasfeVddkNDA5ubm8Lt7ll1//594ZkOgS/58PAwt27doqamhqCgIM6fP8+FCxeIjo5mfHyc9957T0gIJUnCYrEQGxsrUhTtdju3b9+mqqqKvr4+oQ6wWq2kpKSQlZXF5OQkFy5c4P79+3z++eeEh4dTWFhIf3+/iDL1+XzExCcTZjQ9F4LXqBRs2lfo6elBq9Xy05/+FKfTyXvvvcfw8DAA+fn5vPXWW+j1ev7pn/4Jo9HI6vIS4RHRBAU/O9nM7/OxtrrMU2vACnmn7j4hIQGFQiEIUdNjQ2iDgjGao3Yda2VpntrPP8bt3KC6uprs7GwqKytZX18X4TB9fX1i8ff7/cI73+Px8OGHH6LT6ZiZmWFtbY1r167h8Xjo7u6mrKyMO3fuiChUOeDm2rVrOJ1OQZArKSnZNS+ur33E/Ow00bGJu8xQVEoF9oUJHjfXi3GKrAuXRxkvvfQS58+dQxccjGvbty/yFqFXo9M8W9Wj0+lobm7GbDYLj3tJCiRrBgcHo1Qq8Xg85OXlodFoaG9vx+v14nQ6SU9PZ2tri6mpKRISEvZN9wwLC8PhcDA1NcVbb72Fx+PBarXS2NjI+vo6xcXFPHnyRBjqpKWlCWvwvr4+8vPznzluk/39Hz58iE6n4+zZs6Ih8Hg8jI2N4XA4cLvdFBUV8c4775CUlCSkhzabjZiYGBoaGtBoNMTHf0M8ValU5ObmotPp6OnpITQ0lP7+/l1jA7VaTW5uLhERETQ3N9PW1iaSVXfWToLhxMQE6+vrhISEsLKyQmRkJEtLSzQ2NqJQKAgLCyMrK4sHDx4wOTnJO++8I0zQwsPDeeONN4QR2E7PgHWnh//t7xr5qttBTdsYPRMOWoddzNs8pEZqOH3qJVpaWjh8+PCuRXBqaoqZmRmchNH8dPS5zYBapeAvbhxlYmKCsLAwga7Mz88zs+Tko2bbvr/bNTRDUVYCWSl7TeMkScJgMIjvo8ViYXFxkZaWFhobG1lYWEClUmEwGH4vwvjY2Bhra2usr6+TkJBAb2+vMH37r61+0M0ABOSGO7v/73NB19bW6O7u5vDhw0JuZbFYqK2txWAwEBsbS1ZWFh09A7w/6OXuiIPhJQejy05aJ9e53TXH3GAn1S8d5uDBg2I3uHMMEBMTQ1xcHMvLy/zsZz8jLCyMiYkJvvrqK27dusXQ0BDx8fGcPXuW8+fP75kTyhURESFsTWtqalhcXKSyspJDhw4hSRJNTU08fvxYyOl2PrxdLhd37twR5MX+/n5u3rxJQ0MDer2e6upqzp49S2RkJKurq9y5c4d79+7tMuF57bXXGBsbIzIyUsCrzc3NTE5OUlxczN27d4W74PXr1zl8+DC3bt3CZDLR2NjIysoKp06dEh06BHYUsswpOEhLXMrz1SFB0ha//fDXbG1tiZx5machuw0eP34cpVLJhx9+yPLystBTV5YdwKvYe179Ph9+oP7eJzjsayQkJGCz2cTDMCwsjN7eXpFz4Pf7mZkYYainHdfGGgvTEzxprqWztR5dUED6lZOTg16vZ3Z2lrt376JUKomMjMTlcgkS5dzcHMvLy8Lytb+/n7feeouOjg40Gg2XLl3CYrGIrIYnT55QVVVFc3OzeG8Oh4NDhw6Jh31oaCgJCQmBz+X3c+fOHeJjo/G61mhuqKWspBBjiBq110VdzcNdkbhyYAwEFqt33nknQNbVKLC2tmGyRO9KV5QkMASrMQarnsvFGB8fZ2tri9XVVYqLixkeHsbj8ZCamsrKygrLy8tUVlYSEREhFiLZaOfcuXM0NjYyNzdHWVnZvvdFQkICra2tbG1tceXKFQ4ePIhWqxUOg7ILZFxcnEAMZAShq6uLuKxCvuhfoWVijTn7JjFhWjQqBYmJiXg8Hh4+fEhoaCgmk4mRkRHGxsYICwvj2rVrQv3h9XrFd7ewsJDp6Wkh2bNarayvr5Oeni6eT/L8PzU1VRgvra+v7xobAIKwNzk5yaNHj3A6nUKWurN2EgwHBgZQq9Vsb2/jdruJiYlhaWmJlZUVdDodDx8+5Pjx42RmZuL1eunv72d5eZnDhw9jsVjo7+8nLi4ukD7phX+qWWV+bS+PZtXhZXxxm/JsAzabjevXr+9CL5aWlujt7SUlKZ7bdUP7Xj+VUsErJ4t49eUDwhCts7OTiooKTp8+zXufdjC+sH/an1KpYGVtg7culu/7msDrlOJ8lpaWEhISwsjIiHCFlBspvV7/wmPnxcVFBgcH8Xg8BAcHY7fbvzON9g+1fvDNgFKpJDExUZiNPCtAZb+SJInW1lYRSQoBEpEcunHgwAG0Wi03Z3XMuRUi2ELucH1+WA+J43hOHN1tzfzud78TBiPyGODAgQNYrVYh67l16xYNDQ1sbW0JD/DS0lIiIvZCz98uebdgsViwWq20trZisVgoKyujuLiY9fV16urq6O3txWg0il1ET08PfX19ZGZmcuvWLVpaWjCZTLzyyiucPHlSQHxffPEFt27dEhCuXOfOnaOkpISamhoR0+r3+7l58yZhYWG0tLQgSRIXL16kuroao9HIo0ePGBgYwG63U1xczJEjR3jw4AFLS0sYDAaxMMrhTYsLcxjNFsIMpj3nwe/3sTg3zW9/+fcAIvSnvb1dkDzfffddoTlvaGjAarUKxvq7776LOcKITqNgy+PDu4PItLI0T8OXn7AwG0hjk+fb8ud3OByEhobi9Xp3mRNptRpmpyZYnJvB5dwQ3vmyyY7ZbOb999/HZDIJh8ULFy5w6dIlIiMj6enpYWtrC6vVKposj8fDxMQEXq8Xo9FIeno6i4uLdHR0iMVIRl9Onz5NfX09kZGRqFQqbDYbLpdLjAoWFxdpaGjgxIkT9PX1sely4Pds8dX9L7l3755oBNLT01lZWcHj8RATE8PG15n3MoQuSRK/ev8fmB4fBr8Ps8lI5xMr6XFmIo3f/dBcWVmhv78fs9mMTqcTYw5Za+7z+YiJiSEyMlKgHB6Ph6WlJQ4dOsT09LRwq9sP+ZOTImUpoMViITExkYqKCoGkyMFPHo/nG0Lhk3ZGQ/O4Neahd36D4WUnbZNrfNqzgFGnJjUimNjYWMbHx3n8+DFDQ0NkZmYSFBTEwsICBQUFIifh4cOHAtFQqVTk5+djt9vp7u4W44rJyUkyMzN3LZgyUjY9Pc3S0pJISNw5NpAbDJ1OR0NDQ6CBiYsjLGy3Oc63CYazs7MYDAYWFxdFyFFfXx8qlYpz584RHByM0WikoaEBlUqFQqEQ0k6VSsXVq1e59aiP1sG1fa/vhtuHtLVKRXGWQB3lmp2dDaAki9NMLm+z7no2g1CS4P/5X98hIyWOxsZG4uPjSUxMpKamJrDRaJlmeHJ/Lo/f72dr28NfvnNy39d8u7RarXDMzM7Oxu/309XVRVNTk/huGgyGZ27Mdpbb7aa1s49tpY5Nl5P01JTvTKP9Q60ffDMAgTmcbDbyvPn+s36vqamJ8PDwXRbHcjb79vY2ntBoPny68GzPaUlC8kNn3wDbk11CDSCPAdRqNQMDA9TX12Oz2RgbGyMlJYVz587x8ssvk5Ryyi6dAAAgAElEQVSU9HspISIjIykqKmJ+fp6amhpWVlbIysqioKBAwIW1tbVMTU1hsVh48OABbrdbcBEuX77MiRMnMBqN2O12vvzyS373u9+xvr5ObGzsrnS7Q4cOcfz4cfx+P/fv3xdSzHv37omZoN/v5+rVq5SUlLCxscGnn35KS0sLWq2WP/7jP8bhcHD79m30ej1er5eNjQ0MBgOXL1+mo6MjkLQnSaQnxTE9PU24yfLNzsfvJ1gt8eDTD9nc3BRIwubmJpIkcf78ec6fPy++tOPj4/z2t78FArbHr7/+uoDO1UoF4ToVeq0SjcLHp7/9FU+aanBsrIvRwLdDn+Rm49shSXq9XkDs5eXlpKWlMTw8jNFoZHt7m6GhIebn57l+/TotLS2EhoZy7do1JEkiIiKCx48fC3h8Y2NDhMtoNBpMJhO9vb0cOHBAmPekpaXR09ODQqEgMzOTc+fO4XQ6qampoby8nL6+PtbX1yktLUWr1dLR0cH4+DghISG0t7djt9uZmpoiJiaGqqoqkXaXk5PDwsICr732mgjY8fl8DAwMBAJ4tEHcb+7Ase1jbW6CA4U5fPbJTUpLil/IBVT2VkhLS2N8fJzXX39dEHVVKpWQlubk5BAWFibY8JIkERQURGVlJa2trSwtLVFUVLTv34mOjmZ4eJi+vj5KS0tFuqPFYqGkpERIUMfHx2lqasLn8zFjLGAS0zdN/tf9r88PrZNrOGaGePDJh6yurgrJ6ZkzZzhx4gRTU1PU1dWRkJBAYWEhoaGhPHz4EJvNJiSHMnpltVqFBW9XVxfp6em7OD4ajYaCggIk6ZuExN7e3l1jA3mhz83NZWBggNra2kCI1ddjrJ21k2A4MDAgpLzyd0ej0Qhvh+TkZObn53E6nczOzlJZWYnZbBbcqX/+coSZ+f0hekkCr89PpM4hyNZut5sHDx7w6NEj0ZDHhXmYW/Nhc3hRSKBUKfD5/GjVCm4cj+bHb55HpVIxOjqK3W7nwoULjIyM0NHRwYJLx+DY/HMzCuKjjfz89arvuBuf9f4DGQbp6elUVlYSHx+Pw+GgtbWVhoYGJicnkSQJo9G4B43pnrPz3lMbA+pkVkJTmNLEodCbyE8woVP/foZ4P+T6g2gGIGA2ImebFxcXv5CDoEKhYHx8HJvNJrSzEIBM/X4/9fX1LIUkM27b2n/eJUl4tWH8h59fEQiDw+GguTmAFLS2tgJw5MgRXn/9dYqKijAajf+fYSSNRkNeXh5Go5Hm5mbB2k5OTqaoqAiz2cyTJ09oamoSi+/bb7/N0aNHMRgMbGxs8ODBAz7++GNWVlaoqqoSCo2goCBh6Xrp0iUkSWJ7e5va2lrRCMjz75CQEGJiYjh9+jQtLS188MEHrKys4PV6RSiSnPW9srJCWloaKysrWCwWHj58iFarFQTF/Px8Ht6/S39XG/NTY4z0dVGYlcStj36N2+WiqqqK0dFRsWvX6XTExMQQFRUldsd/+7d/Kxz/zp49+0yXyk23i/ff+wfmZme+voSSYLJvb2/v8RhYWloSr4MAerTTda26upqMjAzq6uqQJInl5WXm5uaEt//KygqJiYkUFBSI46ysrNDb28v8/DyvvPIKoaGhzMzMkJmZKUJc2tvbWVxcxOFwsL6+jtvtxuPxcOHCBQwGA6mpqYyNjdHT0yNcH/1+PyMjI9TX1+P1epmbm8Pr9VJVVcWNGzcoLCzEbDZz//59gWJ4PB5efvllsrKyvgmP8vm4P+7ig8FtprUJLAYnMKeNQ1KqsY10Uvh15PV3lawqSUpKYnh4WKRoTk9PExsbi8vlYmFhgUOHDqHX68UYQaFQsLCwwMmTJ+nu7mZmZoby8vJ9v9eSJBEbG0ttba3Y9e0sOYisq6uLjIwMhqbm6ZCSYD+Oit/PtM3JmSwLr732GkeOHGF2dpa6ujpSUlI4fPiwaAgSExPFfL+mpkY49smopTz3l5UHVquV+Pj4XedPkiSSk5OJj48XuQ7PGhvIRkUAtbW1DA8P7zEqkmsnwVCO5JabpPj4eJHLkJyczPDwsCBeZmdni8altmeNlfX9IXoAnVZBaVrAHGphYYF79+4xOTnJ4cOHmZiYCFg3KyUOZoRTnhuHZ8tJaV4K/+6dM/zv/+1FRvvaCAoKEiO67u5ujhw5QmpqKk1NTQQFaWnsnt/37ysUEn/+9kscKXlxVPhZJTfqubm5lJeXYzKZmJubo6mpiebmZpaXl9FqtRgMBh5PrfPv7w2x6vbuPAALLj91I6scSTX+V9cQ/ME0A5IkkZKSQnNzM4uLi+Tm5r7QgitnkB8+fHhXhx0XF0dnZydjLjVrhDyX/OIHXisO7Ey+/PJLPv30UyYmJkhPT8doNOLxeLhx48bvhQI8r2Rr1p3hJ2traywtLVFTU4PD4RDjCY/HQ3h4OAaDgZqaGn7729+ysLDAkSNHePXVVwH47W9/S2hoKE6nk/j4eG7cuCHOydTUFO3t7UxMTIiGJz09PWAWdOwYt27d4unTpwI29fl89Pf3s7GxgWy9fPXqVbRaLUNDQ9jtdl566SUSEhIE4z4xMZGRkRHCwkJZs62wvrbK9NQU6+vrxMXFCehfoVAQHBxMTk6O0BPbbDZu376Nx+Ph8uXLVFRUPPP6r6+v8w//8A+COX3x4kUmJibY3t5GF6InzGBEISnwenY3BTqdTiQaxsfHCxY2wMzMDAcPHqS/v5/V1VW8Xi+5ubmEhoYK2FOSpD0727a2NqKiojh69Cgff/wxR44c4eLFi1RWVmKz2Zj6+rPLLo0qlYqIiAhOnz4tzmlaWhqtra24XG7iUzKJTsrCEJVAbFIaSYlJ5GRmMDQ0uOv+W15exmq1iqZUr9cLGL6vrw+vz8doaB5zukQ2d8RY+yUlg8ubuNWhVCaFY34Bwy+1Wk1XVxchISHMz88TExPDgQMHaGxsZHNzE5fLhdfrJT4+XhiIdXd3i1FQXFwcaWlpdHV1CT7GfqXX63E6nTQ1NVFUVLQH4pVDenp7e8l66Qpdi8+OjQZEFv2fXazEoA8Wjpvj4+M0NjaSkZFBeXk5k5OT1NfXk5CQQFZWlrBKlq145Tl1YmIiVquVoKAgwsLCqK+vJzw8fI9s2WQykZ+fL6KLQ0JChO2wPDZQKBSkpKSQlpZGZ2cn9fX16HS6PUZF8A3BcHBwELvdjt/vF7HUERER6HQ6uru7USgU6PV6VlZWKCkpITo6mrq6OuY21Mwtb+y7K1dIkGTWkBYVaNKWlpYICgrixtvv8vFXPbx/b5DWYTeTS9uoFV7++k9vEBPuJypki5/+6CpGQzh2u53W1lYOHDggshxycnIwm82EhYUx0Gll0aXDtrG5p1FXKhVYjKH85//lLYKD/vWeryqVSuTHyPfS4OBggJv1pJ2bc3o8/mdHIW96fGxseilL/NcLvfsh1B9MMwABeMxkMvHo0aMX8geAb+RPqampuzp1hUKBwWCgqb2LNd3+x5EAk9rLyMMPaW1tRalUcuzYMa5cuUJBQQFfffUVqampgjn+/0dptVoyMzNZXl6mq6uL0dFREhISeOutt9jY2MDtdpOdnU1DQwNNTU3Mzs5y6NAhXn31VdLT07HZbLz//vtCmmQwGPjxj38siFwPHjzgzp07+P1+Tpw4QWRkJJOTk9hsNsLCwoRU8M033yQ2NpZ79+6xubmJSqVic3OTAwcOcO3aNZ4+fUpNTQ1KpZKf//zn5ObmCumSJElCcra5uUlKSgqrq6tsbW2hVquZm5sjODiYH/3oRwwMDODxeITRkM1mE+OGpKQkKisr97iwQWB+/fd///fY7XZ8Ph+5ubmcOXMGbbCehMwiyqvOkJ5bRHbRQaLiEllfXcbpsCNJEsePHxeKhZ2NgCRJuySAAwMDAGRmZlJTU0NRUREhISHYbDYOHDggfq+vr4+RkRGys7MZHh7Gbrfz6quvolKpUCqVZGZmYrVa8Xq9lJSUiPn65uYmi4uLLCws0N7ezt27d9ne9nD8wnVyig4SrA8jSBdMsD6M8IgovJIK+/I85eXfEPDGx8fp6ekhJSWFxcVF4uPjBdemvr4eU3oxTz2R+8axbqpDiQrykZv4YpHfMzMzLCwsoNPp8Pv9FBQU0NPTw/r6OpIkERISItxATSYTTU1NwllvY2ODEydO0Nrayuzs7J6m/duVkJDA48ePWV5eFqqXnSXSDRedrCi++2F9LseC/uvIdLkhGBoaoqWlRfjz72wI0tPTiY+Pp76+ntHRUXJycgRbPSsri/b2dtxuN4mJicKuOTk5edciHhQURFFREZubmwwNDWGxWOju7t41NgD2GBVNTU09k4C8trbGgwcP8Pv9nDt3TjhDyn4DqampAnmSiY4yf6RvcJSBmf2TA/3A2SI9YbpvdsELqy7+4v+4x4PWcewuH85NHysbXjonNvGipvqlYqHQkn0kmpubRV5FQ0MDERERxMfHExkZycrKCgblKn6tmck5GwqFJEi0OanRfPIf/x3x0d/PPfD7lE6nIzk5WYwDRzYUDLr3V675gUmbm+q8SFTfkab4h1R/UM0AgMViYW1tjcbGRvLy8r5Tf6/X62lpaUGn0+1xG4yIiGBhtI9hr+G5cKJlpYeStBiqq6uF6YZarWZlZYVHjx5RVVW1S2v8r1kul4uGhgY++ugjFhYWyMvLQ6VSMTExgSRJ9PT0YDQaGRsbC1j7hofjdDrx+XxCPvWP//iPSJIkNMo///nPCQoKovX/Ze89w6M803zP31tJqlIqpZKEcs5CEgIEAmGCAZExGBxwG9tjT2+72560Z87MnOtcu33OmWt2dvs6E3qm29M9ttuhmzbGGGOMRQYhoZwzyrGUY0kqhXr3Q/l9jFCAnp6eXZ/2/4sNqFRvvVX1PPdz3/9QXMxHH31EV1cXCQkJIjwnOzsbsJNnFB12VlYWMzMzvPvuu8IExcPDg2eeeQZPT0/OnDlDW1ub8OVXyEYOjnpGLLOExSTiYHDFap1Gkm1MT08L8yBltn369Gk8PDwoKSlh+quxQW1trWDcBwQEMDg4SF5eHiMjI3h6egrSWV9fH++++65wTNNoNHznO9/Bhpo5nRGDi+uiBVnv5ExYdAL9PV1MTY6zbt06wfp+UHYFX7PmFSmUssgaDAZOnjxJd3c3ZrOZjRs3AvZu1NmzZzEajQwPD9Pe3s6ePXsWtbZnZ2dFq1+JDp6fn8fJyYmenh7a2tro7+/Hy8uLvUdP4uLuLRQxyjUBaLUOeHh6scb0tSRNmZ3Hx8fT2NhIYmKi8Om4desWZtcohudUK3fDZBsz8zK74vxW+olFULpv0dHRdHR0sGHDBiYmJujp6RGW1AMDA2zatAmtVsvQ0JAoBBWugOKYp3QAV4JGo8HJyUmYBD3MH1Ja93mFxQwbAlb4LXboVDInk33RPDBq0mg0xMbGUltbS0lJCQkJCaSmptLR0UFubi5BQUGEhoYSEhJCfn4+jY2NxMbGotVqcXJyIiEhgYaGBnp7e0lMTKSwsJDBwUEiIyMXjbRUKhURERF4e3tTWVmJk5MTY2NjS8YGSuEYEBBASUkJBQUFuLu7LzIq+vzzz4UN+MmTJ0lJSWFgYICuri68vLwYGBgQVtDwtYXwneoRfn7xawvw5ZASqmdTrLvwypBlmV/eHWV0ajFZUPksFVe3kxQXhm1qQKiCdDodsiyTl5dHcnKyXY44NUV8fLwwmKuprmRDjAd/9eYpQgO8yVwXwV+8msV/f/Mwnsb/mPAfZf00y85U9Uys2i22ybAzyksUkv8r4BtXDIC9+q+srKS5uVkEgawExTJXCZx4+N8C/ddQlXudMSd7C058AL7aDGKM8H88t52E+PhFlpcA1dXVNDc3c+DAgd/K3GI5WCwWcnJyOHfuHO3t7SQnJ/P000+TkpJCamoqGo2G3Nxc4XSWlpbG008/zeaMDNqnnblYYub8zTKqy4vR2qaZmZlBrVbz6quvMjQ0xK9//WsqKiqIj48XkaW1tbWilTw3N0dgYCCvvPIKAQEBlJWV8atf/Yq5uTkkSWL79u3s27ePgoICvvjiC0wmE/v27aO0tJQnnngCT09PxqbnMU8s4OMfhLuXNx7evkTGJ+NpWkNDTQWyzYZarebYsWNs375dLJaVlZWMj49jtVq5fv06Wq2WgIAATp8+zYYNGzAYDFRWVpKbm0tfXx+zs7OcO3eO+fl5dDod8/PzZGZmEhERgXl8lnmbvOQzIkn2UBQvX38aq0vx8/MT8crr1q2jp6cHR0dHsYguLCzQ19cnvC+U0ZCnpyc9PT20traSkZEBwBdffMHIyAg7duygvLxcKDsevIa8vDza2trw8PBgYGBAyP6Ua9+wYQMuLi709Q8QmbRxxdOyJEk4GJwxGr7OD8jPzxcn58bGRjEftdls3LhxgzHPWMZXTnX+ijgrczBpzSo/9DVUKhXFxcVERUVRV1dHWloaBoOBkpISYc09Pz8v/AQcHR2Fla3Cct+yZQv37t2jp6eHjIyMVb/TPj4+tLa2ChLmw/fG2dkZJ2meErMVm3qF1rIs4z7eQkfJTfR6vVBWgH30ERMTQ2VlJRUVFaK4fbAgUBQLhYWF1NbWEhMTg4ODgyAL9vb2UltbS1paGjU1NUKp8PAo0WQyERsbS0NDAxaLBWdnZ+7du7dobAAsMSoaHh4m5KsUwqtXr5KWliZSUV1cXEhISBC+KrOzs3h4eGCxWNBoNMzNzXHheik/+bRm5fdUgu3xBo5sCeL7r7/Otm3biI+P53peNberVyccNncM8p2DaZSXl7Nx40bUajVr1qyhrKyM4eFh/Pz8qKurE5JvpWV/+/ZtAnw9OXnoCTJSIwhe82gF1u8CvWNWCjpWVlgoeHqt3zc6mOhhfCNfiYODA0899RTd3d3cuXPnkT8fFhZGd3f3Iha5AqPRSGqgG+HmO7hOdKCyzSMhY1RbCbPU818PJKFfpiUN0NTUtGzm+G+DiYkJsrOz+bu/+zsKCgpIS0vjzTffJCsrC1dXV+bm5rh37x737t0Tj7F9tak2mqdI/ME5vv9uDTc7teT2G3mrxoP3G41MzUns2bOHK1eu8OGHH2IwGHjttdc4fPgwLi4uQop28+ZNJEnCxcWFF198EUmS+PWvf83FixeFKuCVV17B39+ff/mXf6G8vJy9e/dy+vRpYfARGhqKxbrAwIR9x7HH3KpFQJGnzxo27chCp9Pxx3/8x0uyFJQFMz8/XxgzHT9+XFjBpqen88Ybb3Dw4EG6u7u5ePGiGDcEBgYKt7i5BRszcysYpgOSSoWbuyeeJl9u374t/l6RGMbHxzM7O4tGoxGdggelrcqoQq/XMzMzgyzLdHR0UFFRwc6dO0WB+GB07cTEBPn5+dy+fZuFhYVFrnBHjhxBlmUMBgNxcXHs2bOHl1/97iOjvCVJWvQ6FWMh5fmVU6bSNXFxUK2Syg7IMo6qle/bwzCZTCLKGaCjowN/f3/0er0wqdHpdKLzEhISgtFoxMXFBQcHB8rKyrDZbKxbt04QKx/1evft28fQ0NCi78GD2LQpnU2OfUjyPKpFL9buzug4N853NoVhMpk4f/48P/3pT6mrqxPvs4uLCy+88ALz8/N88MEHovjz9/fnww8/pKOjA19fX1566SWsVivvvPOOIJ3qdDpOnjzJunXrKC4uJiEhgdHRUX7+858vygBR4OXlxR/8wR8QFxfH4OAgvr6+3Lx5U3hsKDAYDBw/fpyjR4/S2NjIT37yEy5cuEBAQAAxMTEAizI7oqOjef3110lLS6O/v3+R10Rp2/xKUyLAfvI1GbWMDA9TUlJCZ2cn9fX11LaPPHQ/F0OWob7VTFhkLFarVbznWq1WkEUNBgNTU1OCuAsQHBzMli1buHnzJj09PSs/wX8A1ge5oVnlRaokWLvG5bGikL9J+EZ2BgChwb1z5w5hYWG4ublhnbcxt2BDo1qcR+/o6EhBQQEBAQGinT80NMTdu3f59NNPMZvN6OQ5YowqfvidvTybFkhGoIHy219iNLot8k5XsLCwwOeff05ycvKyFsW/KZRsgU8//VSwr48fP05MTIw47RYVFXH27FkhC5uamiI2Npa4uDi+uHmPPz3Xy+jUHLJs/zLLXy3543MaOqcccBwox2qd4fDhwzz55JO4uLjQ2D3Cn/7zFX6c3Ur1iBNTCxqMulmeefoppqenefvttzGbzWi1WtRqNUlJSZjNZrKzs/H19eXUqVNEREQgSRI3btwQJ5j+8dkVg0skScLo4YVqYYaE+MVz36GhIbFRxsfH097ezsmTJ5fwQ1QqFaOjo5SXl39VbNilVUNDQyQlJRETE8PsvMzEzKODeHo72xh5ILNAiVzev38/ExMTwpdBpVLR29srNgxvb2/8/f0ZHra7Jqanp/Pxxx/j6urKnj17+Pjjj1GpVFitVubm5rh69SrZ2dm0tLQgyzIZGRn09PSg1WpZWFhg+/btWK1WKisrWb9+vT3QyPZ4r8FVr0artidFXr16FUAQy3bv3i3uV3FxMdhsDGhXH2uluU2zIebxPteSJAm2+sLCgmhtm81m0b6emZlhbGyMTZs2oVKpmJmZoaWlRdwbb29v0tLSyM3NFZyX1eDs7Mz09DT5+fkkJSUtm+QXHx5Ey91LODq5MKXSsyCDu16LaaKFoPEauttbOHHiBImJicJ9sLGxEVdXVzw8PNDr9URERFBQUEBTUxNJSUkkJibS3t5OXl4ewcHB+Pn5ERsbS0VFBSUlJURGRmIwGJAkicjISLRaLXl5eYSHh4tC3s/Pb1mnwZiYGFxcXARHZ2RkZMnYQJIkfHx8SExMpKamhpGREQIDAwkODqa0tJS1a9cu8id40MGwtbUVi8WCWq3hs6IRVoNKAmdHFSHeOlpaWigrK6O1tZXOwVnaB1drK9kR5TmNq4udVKqMDE0mEw0NDQwODjI5OYnJZFq0tgYHB9PY2Eh1dTXJycmPLIJ/V9Bp7CO0GvPkkn+TsN+bH2wLxdPp35cw/v81vrHFAHzNTr9e00W2WcvP87s4X9lHXusoOrVEqIde6JmVzIDp6WkuX77M1atXxcZx6NAhAgIChM2uu7s7BoOBvr4+GhoaWL9+/ZJ2VXt7O2VlZWJT/bdiaGiIq1evcvHiRUZGRtiyZQvHjh0TC8nCwgKlpaWcPXuW2tpaYmNjOXHiBGvWrOHu3bts376d1NRUvmy0Udg8gm0ZBixITM5rSPA3oLaOMDg4iIeHBx/cbOTkj+5S1zvNxLyGiXk1HRZHKkfdCDRMc+/mF8zNzREVFcXatWtpampicnKS3t5e9u7dS1ZWluBszMzMcPnyZTZs2ICv3xoGJ5dPBlQgyzLYFghc8zVJraWlhQ8++ABJkoQxTWZm5pLxDtizGD755BPUajUeHh689tprdHZ2Cm96uw2sG1qnR5PIGmvKsEyMiz/PzMyg1WrZt2+fiHtV3gtZlnF3dxd8isTERMbHx6mqqsLBwYGqqiqefvppysrKhDxzZGSE9vZ2fHx8hIQtMjISo9FIa2sr8/PzODs709PTI8yGDAYDAQEBqCWJ0anV76UEeH+VHzA0NCR8D5QNJSMjg87OTj777DN73LCrAwvugUzMystmsxts02xymyQ6MvKR907B4OAg9+/fJzQ0lK6uLtLS0pibm6OoqIh169YJs6GQkBDc3d0xGo3cu3cPnU6HwWBgZGSEtLQ0+vr66O7uJjg4+JF+IgEBAZSWljI4OLhsUqdOp8PPy0jj3UucSg/jjX3rOJLoS6K/kdJie15AS0sLW7ZsISUlhZCQEBFj3Nrairu7+1cxu6Hk5eXR0dFBUlISCQkJtLW1kZeXR0hICD4+PsTFxVFXV0dhYSFhYWG4uLiIVr+Xlxd5eXl4eHjg7u7OnTt30Ov1S/JWFPlkREQENTU19rhzZ2fy8vJQqVSLxgY2m42cnBxhLa4keSqhQw/DxcWFdevWUVlZiWVqityG1eWEkgTBJgNRAc6im+Dj48ORw4f48PPiVR/r5aImymuWiYkJxsbGCAgIEIFKHh4eZF+7Q00vvP9lLR9fraC1a4jwIG+MrgaCg4PJy8tjYmLid0rKfhTifJxRSxINAxZsD3xJPA1a/nRHGHG+//Y1//+v+EYXA5IkUTtrJGfUhdHpOZSwlknrPEWdY4xMzbEu0E0keDU1NQn3vh07dnDo0CGioqJwcnLCZDLR0tKyyNTEzc2NvLw8fH19lxAElVx6Jcr3N0V/fz/Z2dlcunSJyclJtm3bxtGjRwkLCxNJf+Xl5Zw9e5aqqioiIyN5+umnSU1NRa/XU1ZWRldXF/v370etVvPmvxYxPr1yxa5RScTHxvDmsztoamri/PUi/ufdma82A+X67WFBNlkmp2mSDX6zPHfyadavX89HH33EwsICgYGBPP/884SFhS163Y2NjdTU1LB//350OkdGpx9dDHS0NFJdUSqCc65cuSIkXJ2dnfj4+HDs2LEl9zc/P59Lly6JeNMXX3xR2DgfOXKE9PR0+vv7yb17h5CIGHSO+mXfI1mWmZ6apDT3xpJ/Cw0NRa/Xi26HzWYTi6LiVaDE2Cpx1Qphq6amRmQzhIWFMTQ0xM6dO8nKyqK/v5+KigoOHz5MdnY2er0eJycn9u/fL0hxWq2WiooK1q9fj0ajZsEmY51fns4kyzJuBg3OX7Us29vbqampISAgAJvNxtzcHPfv3+fatWtC/fHdP/xDdsT50ztmpXtsMZM8JcCVyLFynB11ovX8OJidnaW0tJSkpCQqKyvZuHGj2PCVUynYuTDKSV6RfE5PTzMyMkJcXBwxMTHk5+djNptJS0tb9Tk1Gg0uLi7cuXNnxXwDheORl5dLXGwMTk5OuLi44OrqSm1trXjumJgY3N3dSU5Oxt/fn+bmZu7evSuihpWEPbPZTEJCwpKCwNvbm/j4eO7fv8+9e/cIDg4W/vUmk4ng4GAKCnZQugQAACAASURBVAqQZZmoqCiRVRIeHr7ks+ni4sLatWsxm810dHQQGBhIRUXFIrVBdnY2/f39vPLKKyJNz2KxCNXGcp93RdHT1HSfJvMclpmVR0EycGpfEl6uWiYnJ8V7195cS5N5limrbUWC3Qt7ozGovv5cVVVV0dvbS0BAAE09k/zZj+/Q2GVhcGyGzt4R8sqb+emvb5MY6U9yXCgGg4Hbt28vu+7+R0GSJOJ8XdgXayLIXU+inwv74ky8vDEQP9flx8bfdHyji4HO0Wn+Lqfzqz8t/fC3DE3TWnqX/BuXBVv7pZdeYtu2bfj4+CwiHima/pycHBF57ObmRktLC11dXUusOK9evUpgYOBvbE3Z29vL5cuXuXz5MlarlR07dnDkyBGCg4NFqE9VVRVnz56lvLyc0NBQnn7aviE/aDxy5coV4UEA8DfnKpiZW7mdLMsyqpkhDGMN9Pf3k9NvZGBaK0YJiyGxIKs4vGcbYR5q3nvvPaxWK1u3buXQoUPLKjjy8vJYWFhg69atSBKMT8+vysaVJAlzexNjo/YWu+IAODo6Snd3N7IsYzQahVYd7Ce9O3fuCEOdNWvW8MILL+Do6Mj58+fR6/VkZWVhNBpJTEy0y/qaGvEwrRHP+cANQZIkCm5fYXR4AK1Ox5qgMNy9fJBlmbWJCWRnZxMWFkZ6ejqVlZUAIo0xKDyalPQnmJUcGJ+as/vzDw2wsLCAwWBgZmZGzGu7uroEa/6TTz7B399ftINnZ2fJzMwkKSmJvr4+ysvLycrKIj8/X3QHDDrVVyOwBzwBvrp+nWTDz91RvLa6ujra29sJCQmhsbGR0dFRbDYb+/btIzAwkMbGRnbt2oWDRs3mUHe2R3oQ5mnAVxpHrrvOfzmVRWNdjYhNflw4ODhw7949kbgZGBjImjVraGxsxGazCRLm4OCgMBeSJElIRhWnwoSEBJqbm+nt7V0xZOhBmEwm2traqKmpWZZMCHaOQm1tLXV1daSkpKBSqfDz82NiYoLe3l76+vqEkZFiTJOamira2srGnZaWRmFhISMjI8THxxMfH09ra6soCLy8vESRkJubi7+/v+huKGE6FRUV4h7k5+cLI6qHCcharVbE9FZUVODr68vg4CBlZWU4ODhw69Ytdu3aRVhYGE5OTiQnJ5OTk8PAwAAtLS0rGhW5u7uTn5+Pycud8pblSXKSBEYnNX/+Uib3GxsF+VDBxnh/atonmbIufH2M+Op/Dm4O5sWD69iwYYNQxoC9A3rjzj3+9B/vMD+/uCNlH2vKnL9WzsmsNOKiwzGbzRQWFpKUlPTvysn6TaFVqwj20BPh7YSvq8P/MnHFy+EbXQx8UmGmeXBqVYmUTa3l9O4N7Ny5k/z8fEJDQ/HxWV4/7eLiwuTkJIWFhcJcR/ELj4iIELO4yclJrl69yubNm1f8XQ+js7OTS5cucfXqVRYWFti9e7cYTyhSttraWs6dO0dJSQmBgYEcO3aM9PT0JZ7tExMTXLlyhS1btohZ+udF7fQMW1iuKAL7RhjpPInbfD8qlYrsLiNW28ozOZUEI0MDWJpy0Gg0mEwmjh8/vuIJ+/PPPycuLk6cdGRgehXy3sT4KG4Odo/90dFR9uzZw/bt25menmZgYED83ubmZioqKigsLOTu3bu0tbUBds6IcnJsb2+noKCAw4cPC2MbsM+VDY46bl67grdfAFrd14vKzMw0Bbez6WiuJyV9G1t2HyYsKp6g8GiiE1KZs6kYHujl6ePHycnJYWRkBEdHR7RaHZt3HSA+JR0nFzdUag1anQMBoZGERcfxRMZGcu7cISMjQ2ymSrvc3d2d0tJSDh06xO3bt1Gr1SwsLHD06FE0Gg0BAQEiBc/Dw0N0B9RqNc4OavQ6++dEJcHY8ADFuTfYumHtog0wLy+PoaEh+vr6mJ+fJzIykpdeeglfX19aWlqEiZQCJ52GEA8DqslB7tdUsmXLFhHMojgqPg4cHBwoLy/H2dmZ8XG7/XN4eLgIC0tISKC3t1fkOMTHx+Ph4SFGGmq1mu7ubjZu3Ii/vz+lpaUMDQ2talEMX7fW7969i0ajWZa/o8gN7969y8zMjAjiCg8Pp6mpCavVyv379xdJFRWr47S0NDw8PKitraWqqoqAgADu37+PxWIhJiZmUUEQGhqKh4cH8fHxdHd3k5OTg8lkEqdbg8FAQkIC9+/fp7GxkczMTKqrq6mrqxOZCA+/tqCgIIKDgwWp0tnZmdLSUgwGA8eOHRPvvUqloqCgwM7X6e8nLy9POHg++J3VarX09PQwb+lnZtZGz8hiIqEEOOokTu/0pavtPg4ODmzfvp2WlhZR6P7Zn7zB957bQWiAF+2dXWiYZ12ML68djich0IH6+noqKiro7u4WXU5Jkihunqa1b2W3V8Vw6cnNcYSFhVFSUkJXV5ewcv4Wv1t8o4uBi9X9mCdWdxnTOjhyfF0wrq6u1NfXMz8/v2r7MyAgQHirR0dH4+npSXV1tVjAwH76qq+v58CBA6u6DsqyTFtbGxcvXuTmzZuo1Wr27t3LgQMHWLNmjSgCGhoaOHfuHEVFRfj5+YlUwJW4CFVVVTQ1NXHw4EHB4i4tLqSsd+WzuITMy+s0vPTCs2RlZfEvV5uYnFm5lS8j46qa5tUD62hubmbfvn0rtux6e3vJz89nx44dgujkqFUxZpnGxlfM9UVfZpnrn31Ec1Mjk5OTPPfcc8THxzM4OMj169dJT08Xi8DLL79McnIyAwMDQvHg5OSEWq0WqXX19fVIksTg4CAdHR309/djsVgYGRnh7NmzOOo07NiyAZVtjvaWRgrv3qDo7jU0ko2EtC1EJ65bQlbSOToSHpOAuaOF3Ny7ghAXs3YDIZFxSzT/kiSh1TnQNzBEZ2ujMBgCxLipr68Pk8lEWFgYOTk5ACQlJYnu0oM22Tt37qSkpAS9Xi9OrFq1CmdHDa56DV98dg4nvQMJCQkATE1NcevWLbFpKPLIzMxM/PzsfgFK9K7ih/AgBgcHqa2tZcuWLbS0tDA1NSVscR8XSgfE19eX3t5e4ThXVFTE2rVrqa+vR6vV0tfXJzgTIyMjmM1mLBYLNpsNNzc3oqOjRWt5/fr1j7Qed3Jywmq1cu/evWXJhGDfRHU6Hbdv38bf3x9PT0+h9S8pKUGr1VJXV0d8fPyixysdw7S0NBFFPDs7K7TyDxYE9+7dE5yI+Ph4BgYGuH37Nu7u7uLQ8KD0sLS0VJBIi4qKCA4OXhJOBIhOV3t7u4janpubo6enZ5FJUUlJCWvWrOGpp55icnKS27dv093dvcSoqKHB3h0MNWkJ9tYxv2DPH3A1qEgLN/DKvijk2XHxPPX19QQFBeHh4SG+W/FxsSTHBOK0YCbQZYr/+ien2bNzKykpKWRkZJCamkp4eDgmk4ne3l4kSeJ2zfgSf4IHIcsyE5YZ/vBEJlqtFpPJxO3bt0Wn9lv8bvGNLgYKO0bpGVsqFxSQZZge4/61X4s2tuL0prSeFS25Aq1Wi06nIycnh8jISFxdXVGr1eTl5ZGYmIjBYCA3Nxe1Wr0i41mWZZqamrhw4QI5OTk4OjoK4x4fHx/hld/U1MQnn3xib9uZTBw9epStW7cuuyA8iJs3b+Lq6ipiXy9fvsxQew1DVi1DVt2i3oD9jC6x23+MMNc5EhMTcXZ2prpjhLrO0UXkmMWQeONIKlpLNwsLC2RlZa1YnZeUlGA2m8nKyloU4dp2v5aK8nJCwsKRZXu3wVWvpqe5huqKMpydnTl9+jS+vr5MTk7y/vvvExgYyP79+7l79y5ubm7ExMSIuGiAhIQEXnrpJTZt2kRGRgY6nY7W1lbS0tLQ6/UMDw/T1NQkfNmVOX9rayvDQwPUVlcw0NeLj8nEgiyx8Ynl40glSYWMREtzM+budgYHB9HpHMh48iDqFTwlJEnCQe+Ev8lIYMDX5DCdTkd9fT2Dg4Ps379fmCpNTU1x5MiRRZ0fxbt+cHCQoKCgRd0BBfPz81y+fFm0snNzc/n4449F4iHYkyjLy8vZtGmTmF1XV1czNze3LCFzaGhIxH0reR4POio+DsbHx6msrCQ1NZWysjLS09MxGo0UFhbi5eXF4OAg7u7uTE1N0dnZSWpqqjAF0+l0uLq60t/fz7p163B1daWmpkacwB8FxQujv79fFEgPw9/fHpRVXFxMUlISOp0OR0dH1qxZQ0lJCSqVipaWFpKSkpYUh8pYSvmcdXR00NnZKVwmk5OTaWlp4d69e4SGhuLm5kZsbCxjY2PcunULZ2dnwZxXq9XEx8d/xWXIY+3atcKEysvLC29v7yXX7uDgQExMjHCtDAwMpL+/n9LSUqE2qKioEDbeUVFR+Pv7U1JSQmFhIe7u7nh7ezMyMsKXX36JzWbD0dERZweZGH8H0sL1pEU48/SBTJoa64X+XznVT0xMkJmZSWdnJ+3t7QQHBzMxI3Pu8l3MQ5Ps2ZWJs5N9LCFJkvBckGWZqakp+vr6qO+ZZ+QRxGJPoxPfPbkNsHsrzMzMcPfuXaKjo3F2/o8xH/p9xTe6GJBlyG9fzQBD4mCCL3s2xGMymYT0rKenh8rKSoqKisjJyaGqqoqWlhbMZjPj4+OYTCa6urpobW0lJSUFb29vysormFXr0bl4UlldR3hIIGFhi53SZFmmvr6e8+fPc+/ePVxdXTlw4ABPPvmkMDWRZZnW1lbOnz9Pbm4uRqORI0eO8MQTT4hFezVYrVYuXbrEhg0bCAgIoKCggDt37iBJ8OwTMWxISaCmY0jI0QKcZjm9Xs//9ebT1NfXk5eXh7u7O+viwvjXaw3L3zdkXPQ6fvRiCtevfMmOHTuWMJ8fxNWrV1mzZs2SRbi8vJyezjZ2P5GBh5MWo0FDRUkhV7K/BOCVV14R5LwzZ84wPT3NqVOnBIHI0dGRuro6mpubkWWZlJQUDh8+LBZqm83GhQsXCAkJ4ejRo8TExJCSkkJaWpqYVW/fvh1PT09BpJuYmADsZKiohBS8fP1XLHIkScLFzR2T0cDBgwfxCwjCwWUpSe3hxwSu8cHhoRCT/Px8pqen2bx5M9nZ2RgM9vjchwtKlUqFu7s7OTk5rFu3TigSHnQv7OzspKysDJPJxGeffUZzczOpqans3r2b0lJ7KExERATV1dVs375dnArLy8vRaDTLtv+VYmDTpk3CXnjDhtXz45dDSUkJycnJ1NTUEBISgqenJ2azmZ6eHoKDg+nv72dmZgaLxYJWqyU+Pp6amhphTTw2NkZERARhYWEUFRU9lkUxfE0mzMnJESf/h6G43Sm/NyEhAUn6OrGuqamJ6elpRkdHVyThqdVqAgMD2bhxI52dnXR0dFBQUIDNZmPnzp10dHQsKgiio6OZnp7m1q1baLVakZ4qSRIRERGCB6MEHinjoweVAwpu3bpFV1cX+/btE+oVJycncnNzUalUjI+PCwdFsJMnlbHB7du3GRkZoba2ltHRMcpbp/iidJyrlRMUNU8zPrVARlo8Xe3Ndknr/Dw2mw0fHx8cHBywWCzU19cTERFBa2cf/+OdPH741lWKG0eo7rTyr+fu0Ws2w3Q/+fn3uHLlCrdv36aqqorx8XE7Z0vS09JrWXFMoFarOPZkKnu3fK0MCQkJoa6ubhHf41v8bvCNLgb8XB3IbxvBMruwrETK1VHDG9sjWOPjLch+eXl57N69m8OHDxMZGYm/vz+Ojo5MTk7S1tZGRUUFZWVlTE1Nibzy0TkNPgkZqF28GZqcxT0gHLWLCYODBmcHe/VcU1PDJ598Ik5Bhw4dEhuR8qVub2/n008/5c6dO7i4uHD48GF27Njx2JHMYG/xKaz9rq4uzp8/D0BaWhqZmVsx1+fjO13PoSRXEg3dPJcRxHBnA2lpaaSnpwsdv4eTmsz1CVwu7UKFLIiEEjIaSeZPtzmhmh5geHiYI0eOrKj5nZyc5MqVK2zevHmJF0Bubi4eHh7ExcUxPz/PxYsXycvLIzIyUigxVCoVt27dorKykmeffVbYrObk5GCxWAQBbuPGjezbt2/RYlBUVERNTQ0nTpwQp+v5+XnOnDnD4OAgp0+fJjY2lrCwMObm5qiursbV1ZXXXnuNyMhIdE5GHPTOSKssMBqNhtT4SPR6PS6ubkxYH23G4+KoQfeAM5mShgf20/PExAQWi4Xdu3cvO3rx9PQUDnZRUVGLugM2m40rV64wODhIZ2cn8fHxnDhxQszkq6ur8fHxwc3NjdbWVhF6pNwvFxeXZUmvw8PDVFdXs2nTJvr6+ujq6nqk1v9hGAwG8vLyCAgIoLe3V5gOzc7OUlxcTHp6OhUVFcLxr7a2VpDklBGewWDAarUSGxuLSqWiqakJlUpFSEjII5/f29ubjo4OqqurVyQT6nQ6vL29l7Sfg4KCMJvNjIyMiGtfrTWtVqtZu3atsF3u6emhtLSUuLg4Zmdnyc/PJywsDFdXVyIiIpBlmZs3by7KKpAkicDAQLy9vbl79y56vZ74+Hju3LnD6OgoERER4jUMDQ3x6aefsmXLFjZv3iyspgcGBoiIiKC4uJi5uTl0Ot0inoVWqyUuLg53d3fy8vLo7x/g4/wRCu5PMzm9gE2G+QUwj81zvaQLf3cVjpoFNm7cyObNm6mvr2dycpLw8HBGR0fp6O7jvTtj9I7OLVpzZ+cWKK7tobPbTFqsH5GRkWzcuJGdO3eya9cuRkdHUS9MUtg4wYJtpe+QzHd2hRAd8XX0uyKpfJjv8S3+/fGNLgbUKomNwUZqzZMMT82hkuxFgAz4ujrwX3ZH4O389axMrVbT0tKCxWIhJSUFo9EodL1JSUmkp6ezefNm4uLiCAoKYmhoCK3RF4/w5K83DEXnK0PfuJWK4nwuX/xUMH6PHDnCtm3bFsUYd3V1ceHCBW7etFufHjx4kF27dgnt7eOgvmuUqrZh8otKcXW0Z6m/9957yLJMamoqRqORjz/+GIvFwoED+zmwbw+N9XUYjUYsFgsTExPEx8cTGxuLg4MDt2/fRjNlJlw/xoLNhkqjw0k9y8G1Hmx2bkE91YfZbGbTpk2LXPceRm1tLQ0NDRw8eHARf0KWZbKzs4mNjcXT05MPP/yQlpYWjhw5gsFgoLu7m8zMTJqbm7l48SLbt28Xi9jk5CR5eXkiRTAzM3PRpgb2DslHH31EfHy8aHvLssz58+dpbm7mueeeE4t5d3c3Z86cQavV8vrrr+Pm5oaHhwfWeRs2lXbF90CWZTRqCXeDfWatUasYmrCuWjwAeDlrUT3gYPbll1+KVMmuri48PDzQaDTs27dvxedWwnACAwPp7OzEwcFBZB50dHTg7OzMq6++Smpqqphx19XV0dbWRkREBLOzs0xNTS3iB+Tl5WEymZZdUEdGRqiqqhIFo6K//02gUqlEyJSrqysDAwOkpKQIi93IyEhaW1vx8vKyx95qNHR3d7Nt2zbu3buHu7s7Go2Gzs5O0tLSCAkJIS8v77EsiuFrMqFyUl6pgFDkhrm5uaL9rJzUa2pqkCSJ+vp6goODV41xliSJqKgoRkdH6evrIywsjMrKSqxWK46OjpSWloqCIDQ0FK1Wy61bt5ienhZGXWBXRISEhFBQUMDExARbtmyhoKCAtrY2oqKi0Gq1XLhwgbm5OY4dO4ZarUav15OcnMzExATV1dWEh4czNDTE2NjYkuuWJElEnufVjVLcPL3s67HZoNk8y//9l6dJT9+ITqfDy8uL0dFRkX2S12ChuW92xZTDzkErf/3nL5G6Nh5vb2/0erusV6/XU1ZSyDNHd3PlXiMgiZGWRq1CkuA/vZDO3FgH+fn5zM7O4ufnh1arXcT3WElC+i1+e3yjiwEAvVbNzihP1q5xxctZR7TJmafW+nJ6QwBu+qXEo7GxMaqrq4Uv9sNQq9W4uLjg4+NDZFQU4zpvVOqlM2L7Y2XmJR2ddaXidyvjhb6+Pjo6Orhx44ZoEe7fv589e/bg5eX12EVAfkM/z/4/N/jhmTJ+daeZ601zNIw50lqVj5NqhsjISMxmM7W1taxfv54TJ07g729vfbe3tzM2NkZKSoqYTer1etzc3Ojs7KSvrw9nHQQbLPzlqUyME7Xs3xSNXmufES4sLJCenr6q1jcnJwetVkt6evqivx8dHSUvL4+YmBg+/fRTMQKIjIwURLa4uDjef/99goKCOHDgAJIkMTo6yjvvvCNsVXft2kVmZuaS+5Wbm0tLSwsnT54UxLsvv/ySiooKjh8/TuRXhjmTk5O89dZbyLIsxhIKZqYmmUO36pjA3aBBr1OLP9tkmZk52wqqChuuejvBT8HQ0BCXLl1i586dTE5OMjQ0xMzMDBkZGas6V+r1ehYWFigsLBTZ9DU1NYJfsXnz5iUn/JKSEvr6+oRLpIODg5CeAty+fZvQ0NBln3dkZET4A4yNjVFfX7/sfX8U+vv7aW1tJT4+XnAW9Ho9jY2NWK1WjEajcHXcsWMHRUVF+Pj4YLPZRCdIkiQMBgNBQUFYLBY6OjoeO6XUyclJOP0lJiauGGQWEhJCfX09dXV1wu1Oo9EQEhJCUVERBoNBqCCWIyQqUAqCvr4+mpubhTKkvb0dm81GRUWFKAiCgoJwdnbm1q1bjI2NERUVJe6vwo+pqKigra2N3bt3U11dTVVVFWq1mvz8fA4dOrToHqhUKqKjozEajRQVFaHVapFlmbKysiUmRbm5udTX13OheBzr3MpE49l5GWlmiIqi2+Tm5lJXV8fCwgLe3t4sLCzwyb0hZlfwvAB7q9/VWc+29VGL/t7NzY2qqiq83Rz44Z99B61WzeSUFW93Z47tXsfPfvgCx7I2s27dOmRZpqCgQESa+/n5ERQUZI9xL2+geMrIP93t4KOyHoo7xtCpJYLcl/cS+RaPj298MQBfVb7OOuJ9XUjwc8HX1WHFD4YSqhIdHf1I58DJeRX9lpW1+5IkoXM0cGBHBnExUfj5+aHT6RgcHBQRtuPj4+J5x8fH6e3tZXR0VHjeK3rr5ZDf0M++//NLeoenF7XkxmcWqBrWE2XSMjPchclk4plnnmHt2rWL9MoDAwPcv3+fo0ePCtLa5OQkZ86cYX5+nr1799LX12fXzQcFMT09jc1mIzMzk6KiIpHxvdKCqFgyr127dskpTDG/aWtrw2g08uKLLwpiVFVVFbOzszQ0NGC1Wjl16hQ6nY6BgQHeffddZmZmWFhYQKVScerUqSXPa7FY+Pjjj1m/fr1QeOTm5nL37l32798vOgzz8/P88z//MzMzMxw9enTJiXhu1kpBfgG+AUs3R5vNhiQv4Gd0XPT+GHRqesz9aB0Mglyl/Hd8eIBw/8XdnmvXrjExMcGhQ4e4efMmVqsVlUrFU0899UiWvCRJVFVVMTIyIjpAW7ZsoaioaFmOya1bt7BYLKSnp1NTU4OPjw9RUfZFWZZlrl+/Tlxc3LL22mNjY1RUVLBx40YsFgt1dXVs2bLlN57RKgZMGRkZlJWViehwRWK4YcMGysrKcHR0xMvLCzc3N4qKisQIQafTYTQaRehOYGCg6A487tgiICCA8vJyzGbzivLIh+WGSvHo7OyMu7s7FRUVqNVqmpublyUUPghJkoiJiaGzs5OioiL27t1LRkYGk5OTwjtCid9W+Ay3bt1iYGCAmJgYcY8V6aFCgN29ezddXV1UVlbi6+vL3r3Lk119fX2Jjo4WvhWxsbEUFRUJk6Lp6Wk++ugjrHM2btVYljz+QahUsMbbheNZm9m0aRO7du1i+/btrFu3jvT0dP7bTy+v2BWw31eJ8EBv9m9bfN8lSWJubo7i4mKe3LmNPVsSePXprbx2IpM9GXEimVCr1RIWFkZKSgpWq5W8vDxKS0vRaDQYQtby+YALXWNW5m32DvDo9BwFHWP0T8yyPsjt24Lgt8DvHRvD398frVZLS0vLI392buHxwlp0jgZCQ0MJDQ1lamqK7u5uXFxc2L9/Py+//DJHjhwhKSkJjUZDU1MTX3zxBb/4xS/40Y9+xN/+7d/y9ttvc+HCBfLy8mhsbGR4eBibzcZ/ereA+QUZ20PfPmW+/1mzA0ePHuXFF19c1u/A29ubqakp5ubmWLt2LSUlJVy8eJHY2Fi+973vkZKSQnx8PCqVimvXrjEzM8PAwIAIurHZbGg0Gs6cOSPCex5EZ2cnVqtVbDji+r6q7AGioqJ46aWXFikkpqenmZ6epqOjg2PHjglzkrfffpu5uTnm5uZWJVPm5OQgSZJoY5eXl3P9+nUyMzOF94Asy7z33ntMTEywadOmRSdkBVqtlurSe9imhnkwfEyWbfR3t5H9yQfMzi5Wq0iSRGSAFzc+/4i2+7VYxkfoartPa00xJTlXFpmSjI+PU1FRQXp6uigMJckek7qamU5/fz9nzpzhF7/4heBChIeHCzKlkgL38D1XQo88PT0ZGRlZxEVRgpRWOikrG5LNZhPjntnZVWS7K0AZzSit8vb2dgAiIyOZnp4WNr0KZ2D37t3IskxLSwsGgwF3d3cmJycZGRmhpaUFR0dHoqKiGB8fFx4Tj4JOp2PPnj00NjbS0LA8SRbs9rpPPvkkhYWFQq0CkJiYyMaNG7FarfT393Pp0qVFkdbLQaPRcPLkSUwmEx9++CHz8/McP36cl19+GQcHB+7cucM//MM/UF1dTUJCAidOnKChoWHJd8vJyYkXX3yR8PBwPv/8czw8PJBlWRQVq70WpdtZV1dHbGwsvb29vPXWW5w7dw6bzUZgoD+P2islSUVyUiJbt24Vaiplg1WpVPh4rq50kmXw817+u5ucnMzCwgJVVVWrXwT2oiwrK4sf/OAHREZG8sWV6/xzfg+yJC0ySlPeldvNw9xtGX7k7/0WK+P3rhhQq9UEBwcLe9TVYNA9XlDGjGWc8+fP85Of/ISuri4OHjwo3OcCAwNZu3Ytu3bt4plnnuH73/8+f/VXf8X3vvc9Tpw4waZNm3B3d6evr49bt27xq1/9qXsisgAAIABJREFUin/8x3/kT//r31LaPLSkEFAgIzE0o2HOsGbFalg5iefk5FBSUgJATEwMhw8fFif9np4ewsLCyMrKYnBwkL6+PnJycggPDxfRooODg1y8eHHJgtjY2IiTk5PQsYNdl3zu3Dna2tpwd3fn+PHjS07ASp799u3bCQ4Opq2tjXfffVc8/vjx43h6eooUvAehhO1s3rwZg8FAY2Mjn332GampqTzxxBPi57744gs6OzsJCwtj9+7dy94f5brmLKN462W+PPce1z87Q6iXnoRwfybGx/jiiy+WPM7R0ZGwIH/u3fiCC7/8OUwNIy1YmZlZPIvNz89Hq9Wyfv168vPz8fT0RJZlYRv7MEZGRsTnqK+vj6NHj/KDH/yAiIgIBgYGRIiRv7//Esc6JRBIpVKh1WqZm5tbVAwoUtqVipAHPe9/m2LAaDTi5OREd3c3QUFBohhQiLqdnZ0EBQUJ8yGFSFlVVUVQUBDj4+PMzMzg5uZmD1XCLpMEyM7OfuzrUIijX3755bKFrIINGzYQGRnJhQsXhO0uwJNPPklAQICwhi4qKnrkc+p0Op577jlcXV15//33RYjQm2++ibe3NxMTE5w7d4633noLSZJ49tlnaW9v58MPP8RqtSLLMo0DFrIbR3BJeILQxDTu37+Pn58fKSkpfPbZZ1y9enXFwsTJyQlZlnnyySdpaGjAaDTi4OBAZ6fdpfXE8WM8sT5qEZ/lYSws2Ni3bWWzqZee2ox6lcfbbDZOHVzqYwH2DT4qKoqysrIVH/8wjEYjhw8fJnHvM9gkFSubqsEXtQPL/tu3eDz83hUDYI807ujoEBr0leDqqMHpEQXB/OQw//KTf6K1tZWsrCy+//3vk5qaumpbUfHUj42NJTMzk6NHj/Laa6/xF3/xF/zRH/0Rp06dIirp8WRd3cOrt/0ACgoKSExMZNOmTTQ3NzM1ZQ8pkWWZrq4uAgMD2bDB7tIoyzLDw8NER0ezfft2GhoayMzMpKqqaklcbFNTE5GRkWIjGR8f55133qGxsVHonR8uVMbHxxkaGsJoNLJlyxYaGxv54IMPUKvVIiY2Li5ObFoPv0e3bt3C0dFRGBOdPXuW6Oho9u/fL56ruLiY4uJijEYjzz///Ir3RSkGZmdnuXTpc8ZHhjB3d2BbmMdoNAoJ13InGaVlLcsyaWlpODo6LoqPnZ6epri4mPXr1zM8PEx7ezsqlQpfX1+sVqvYJMHuKHnp0iV+/OMf09LSwr59+/j+978v2tN79+7FYrFgMpkYGBhYVuapuDZ6enqKKN0HiwHlPV+pGFA6A7IsL7ovvykkSSIgIICuri6Cg4Pp7OwURYri+BcdHS04DcrMPiQkhO7ubqanp/Hw8ECn09HQ0MD4+DhGoxF/f3/MZvOiyOdHXce+ffsYHx8XSo6Vfu7w4cMAXLhwQWy0arWap59+WkgWs7OzF71nK0Gv14uxl9KZcnR05OWXX8bX1xcHBwdUKhVnzpzh1q1b7Ny5E7PZzE/fO8P/fqGWv/y8gV8UdvFOYTcXRn1pN22kyzyI1Wpl586d5OXlcfbs2WULHKXAT05O5vTp00xMTIiYYMUldEO4A7YVzEUkCRJC3VkbvbKK4vXnthO0xhONevmt4+UjGwjxX5ljlJKSQm9vr7Aff1wMzKpRr9LWkGVoG16eGPktHg+/l8VAaGgo8/PzomJeCZIkEefnvGx+t2yzMTc7w/2im+zevZsf/OAHXwXL/NszrpUWcnh4ONs2pTz6AYCvcWnbV5Zl8vPz+dnPfiZIRgcOHCAjIwNAtPCV06aiYVfsc9VqNdnZ2UiShMlk4v79+2zevJlr167R3NwM2E+iAwMDYtba3d3Nz372MywWC88//zxTU1NLRhc2m41z584B9lZsdXU1Z86cQafTYbPZeP7558VcX2mPP3haU0J+tm3bxtjYGL/85S+F45qymXV0dHDp0iV0Oh2vvfbaqjNvtVqNSqWira2Nuro6tm/fDiAWKiWh7tKlS2KDVaBwQQBqampEMaBsJoWFhciyTHp6OgUFBTg7OzMwMEBGRgZubm7U1dUxPT3NtWvXRPt4+/btvPHGG0tMhjw9Pdm0aRP9/f0Ai3ziFQwMDIj3S3FqfJBRrnQGftdjAvja3CcoKIj5+XnhTx8REUFPTw9BQUHYbDZ8fX2pra1FkiQOHDjA1NQUTk5OaLVaBgYG0Gg0oqOldAcuX7782Nfh6enJ5s2byc3NZXh45Rayk5MThw8fpqmpicLCQvH3Li4uHD9+nImJCZydnTl79uyi930lODs788ILL2Cz2Xj//feZmprC0dGRU6dO4eHhwejoKPv378dms/Hll1/i4mkiX4qk/avNTObr9veEo4nxmCzqGxoE/6epqYl33nlHeGYoUIqBmZkZAgMDFyU5xsbG2hUB02b2pbigVklI2Al/ysYe7ufM7gTtsp8vBe6uBm688ycc2Ja0qMNgdHHk8CY/vGwtXLp0aVFh/CAiIyNxdnb+jboDALoVio8HoVV/yxf4bfB7WQz4+PhgMBgeizdgNGhZH2zE00krFnrZZmOoq5mukmt89w9eIj09/ZFksN8UsQFGEoPdly1EwN4sC/VxYX3kYreywcFB3nnnHbKzs0lJSSEqKkos6k5OTqSmplJYWIjVaqWrqwtJksRJU9kwYmNjSU5O5tKlS0J5YDKZCA8P5+OPP2Z4eJjGxkaRyldVVcU777yD0Wjk1VdfFdfyMPv7xo0bdHZ2Issyo6OjfPLJJ0IJ8J3vfGcRCVEhdz64Cd+4cQN3d3ciIiL44IMPcHFx4ZlnnhH3fmJigvfffx9Jknj55ZdX3PgehEajoaamhrVr17Jx40a0Wi1dXV3i3/fv3y+CkJSxhSzLXLlyRSgT8vLycHBwQJZl5ubsoUUFBQWkpKSI4Ck3NzecnZ2FO1xlZSV///d/T2FhIenp6bz55pts2bJlxc/R1q1bxSbd0NCwZLFVigFFCubo6LiI9PmozsC/15gA7LwBhSCr0+nEiVop9AYHB4WfxMDAAIODg3h6epKZmYnFYhGR0V5eXpSWlrKwsEBAQADu7u7CKvlxsXXrVpydnbl8+fKqc//IyEg2bNjA1atXBWcGIDg4mD179jA+Po7NZuOjjz56ZEcR7IXYCy+8gMViEWMAvV7PCy+8gNFo5MaNGxw8eJCTJ0/SIXswp3JAlpYuxzLQZZFJyzrJwMAAd+7c4fjx40xOTvLzn/8cs9ksfrazf4Larhku3Kigq6efwsJCEThVV1cnvA2Sgh3561eS2JVs5Nl963nl+Bb++rsZPLPZBb1O9ciN2tfLlV/96A9o+vK/8/lPXufqv/4R7df/hl/++C/IysqisrKSf/qnf6KmpmbJPVepVCQnJ1NVVbXq+OZhrA9yY2EV2oZKgo3Bj44r/xYr4/eyGJAkidDQ0MfiDQCobVYG6wsou/QeZZc/pCX3AhEeGno72x/rpPBvvca/eXGDPbxjuc4EMv/5UMSiRTw3N5e33noLi8XC6dOnycrKEq1lBZs3bxbBOUpMsLL4FxQUoFKp0Ol0HDhwgIMHD9LS0oJer+fatWscPHgQg8HAmTNnaGhoIDAwkNzcXD755BMSEhJ48cUXcXZ2xmw2o1arF0kSGxsbyc3NFSE5VVVVwgr69OnTS1rfSjEwNmZPVuvs7KShoYGMjAzOnDkDwPPPPy82/Pn5ed566y3m5+c5duzYYwVIKbHEWq1WWCkrp1oFjo6OHD16lM7OTnJzcwG4f/8+bW1t7N27l/DwcCYnJ0XRMjMzQ2lpKTMzM2zevJmioiLUajX9/f2kpqZSUlIi1BRhYWG88cYb7Ny5c1X5Gtjn0cprmpubE90dBX19fdhsNry8vJaQB8FeDGi12hU7Vw+OCX7bYmDNGjuPpaenh8DAQDo6OgD7idnPz4+mpiZiYmIwm83odDpqa2sByMjIwMvLC1mWMZlMjI+PMzk5KUiAyhjr2rVrj30tCpmwqalpVTIh2HkCnp6enDt3btFGtXHjRuLj45mdncVsNj8WoRDAy8uLU6dOMTQ0xK9+9Svm5uZEQeDm5sb777+Pu7s7s95RD2V3LIZKgoYJNa+88gqyLPPZZ59x8OBBnJycePvtt7l+p5BdL/9P9nz3X/iseILv/Y9zxB36b9yoGicmJpa6ujq8vb3FNScmJjIy0ENGjAt/9+dP8Xf/+QT/24tH0Wq1GI1GSkpKluXrPAw/bzd2pseyJTUCnVaDSqVi48aNvP766wQEBPDxxx/zy1/+UnSqFKSkpDAzM0NdXd0jn0NBgp8LYZ6GZTcsia/cZuMfLzTuWyyP38tiACAwJIyaUYkzxZ1k1w8wNrO0Sp2enub69ev8/d//PSUlJWxIS2VHZgZ9vT0YjUZhpvK7wrYEPz79qycJ91vM4A0xOfMHyQv0VlxlZGSEgYEB3n77ba5du0ZaWhrf/e53hZbc29ubyclJcep3dXVl7dq15Ofn09nZKdjf4+PjVFdXYzKZxFw2NTWV06dPo1KpmJyc5MaNGzzzzDOMjY0J86a7d+/y5JNPcvjwYbHRmM1mTCaT2GDGxsb49NNPiYiIEMWTTqdDp9Px0ksvLbtxKy3u8fFxsQH4+PhQWVnJxMQEp06dEgoFWZZ55513sFgsbN26dVF7dDXk5uZis9mIiIgQlr3+/v6LOgNgPx1mZGRw69YtOjs7uXr1KqGhoURERNjn+Tp3ztRP0ei7jR9ea+fj0k6i4tfi5ORESUkJvr6+zM/PU15ezuXLl4mKihLM+d/Eb318fBxXV1e0Wi337t0T3QFZlsVs2Nvbm9HR0SXFwPT09KoKhn/PMcH/y957xzdx5/n/z1Gx3Ivce7dl02xTTQsdU5JQQoeQbCBl77Zf299eyffudu9277d77XubAimUhEAIIYQWauhgwPTiBu4V44osWWW+fygzWFiSZVqyF78ejzwgaCzNjMYz78/7/SoajUa29I6Pj6eiokJ+uKSkpFBaWkpqaipGo5GoqCj5oaBUKnnuuecAZHJhSEiITCTMzMzEy8uLy5cvu7U6l6DT6UhJSemVTKhSqZg/fz53795l//798r8LgsBzzz2HVqvF09OTixcvyvvUGyIjI1m6dCnV1dV8+umnWCwWvLy8ePHFF/H392f9+vW0dbo+z1YR7nVZCA4O5gc/+AFBQUFs2bKFMWPGEBwey6K/2sCpS/ZdTpNF5HRxJ7//6BQjRozAz88PDw8PwsLC5LGWVECXl5fj6enJuHHjuHv3Li0tLZSUlLh1fI7g7+/PokWLWLRoEQ0NDfzxj3/kxIkTMmlWq9USFxfPwYJCdl1v4KubjdS3u8iYARSCwF88E4uX2Xb/UAq2/wA0KgV/PTmJeG3vncB+OMf/Cp+BvuJo6V3eutDKXU04Nxv1FFS2sfNaAxaryIAIX4xGI8ePH+ezzz6jqqqKESNGsGDBAtLSbF4Ct2/f5ubNm2RnZ5Ofn09OTo7L9MJHQWK4H69N1zFjaCzTsqP5s5mZ/PPyYYwfquPy5cvk5+eTn5+PWq1m8eLFPciLoihy7tw50tLSZLmeFG4jOdSFh4dz9OhR6uvrGTRoEKWlpTK/wN/fn8GDB3Pt2jUqKirw8fEhKCiImpoaDAYDixcvJisry44oePToUVn7bLFY+PjjjzGZTISFhXHp0iXANrJ4+eWXHbqJmS1W9l+u49PTNdxshLaOe5TfOI82KIja2lqWL19up2DYsWMHxcXFpKamyg+T3lBbW8u2bdvw8vIiKipK5j50dXVRUFBATk6OXdJbfHw8xcXFnDt3jtbWVhYtWoSvry+f32jhlD6Ye4IXFpUnLUYLLaogKgnC914dtwuv0dHRgSiKJCYmsmDBAoYNG0ZzczPFxcWMGDHCLW10e3s7hw8fZsKECRQXF2O1WlEqlSQkJNDa2ioXpdOmTePYsWPExsbaOUdeu3YNg8HgNHyos7NTThcMCgri6NGjJCUlOfQkcPf8VldXM3z4cM6dO4dOp5Ojis+ePUt2djalpaX4+flRUVHB4MGDZUOs2tpa6uvrCQwMxMPDQ06w9Pb2lmOtpWN3BxKp8cSJE/L34Aw+Pj54enpy5MgRoqKi5IwDpVIp5xpIIUpS/kBvCAgIICoqiqNHj9LU1IROp8PDw4MBAwZw8+ZNqro86VI6f5ApBMiO8Sc7JkBOPWxoaODYsWNcr1dzsajRqeqovtXC6IERVFfYXDknTZqEXq+noqKCkJAQ/Pz8OHr0KAqFghEjRnD58mUEQeDevXt9irB2hJCQEHJycujq6uLYsWPcvHmTiIgI9Gj4pEzBDZOWS9VtnK9qY/f1RiqaO8mO8UfthB9w9PBBukrPsnzGOAJ9vYjTejMlLZg/H59AXFB/IfCo+N51Bs5VtvJfR8swmEUQBKyibS5nEWHrpTr+sOMM//mf/8mJEyfIzs7mJz/5CVOmTJFXVYIgMGPGDJqampDyt7uTjp4EBEEgJzmEZ0fEMyItDEEQ6OjoQKVS0dnZiZeXFy+//LJdmI0EKRuh+6ggKChI7hxERkZiNBo5f/48Q4cOJTw8HL1ebzeX9fX15fXXX5ftVCVSl2QX3B0Wi4WGhgZ5tX/w4EGqq6sJCQnh8uXLcvdg2bJlDq1eb1S1MOTH2/jB/5ymoMmP3df1/Hj9DT64FcPVW/UsWLDA7jjPnDnDxYsX0Wq1LFmyxK3zaTKZ2LZtG2FhYQQFBdmtFqVxxYPdAaVSKZPctFotERERnCprYfuVb+bL8rxXAEHgXpeVD6/rEb85T88995ysQwcbL6O5uVkmBfYGqdU+cOBA2e1R6g5I3630sG1tbXXYGXDFoeg+JhAEAQ8Pj4fuDICNN9DQ0EBwcLDsyCf9u6enp6wqaGhoQKVS2bWM58yZgyAIGI1G6urq8PT0lFfiubm5qFQqTp065VarXoJWq2XMmDGcPHmyV0XC8OHDHcoNg4ODmTNnDs3Nzfj7+7Nlyxa3x4QpKSnMnz+fa9euyWMGaWQQLzQ5De8BW2dgStr9kZtareaFF15g5MiRbD983WkhADbL9s17zjFjxgwSExNRKpXy9SN1X3Jycjh06BCbN29mzJgxGAwGiouLe7T3HwYajYbp06ezevVqlEol7364kb/8/AqN31Beuu95fkULvz1Q6vB7ra6uJj8/n0kTJzIqNZKXR8by2ug4pulC8VK7JwHvh2t8r4oBURTZdL7GiVLVhtN3FOgGDObHP/4x06dPt4uXlRAREUFOTg4nTpxg0KBBnD179pFunH2BxWLh66+/5t1330UQBObOnUtXVxeff/65Q+26SqVCq9XaFQOAvCKvrKykoKAAk8nEyJEjZW8Cqe0swcvLS04llG5kycnJbNu2ze69m5qasFgsREREUFhYyKlTpwgODqa8vBy1Wi2fT0cWx80dRma8uZeqJhub2Yogk4aaDQq218UTGXt/VVdWVsbevXvRaDS8+uqrbruPHThwgJaWFubNm4eHh4ddMeDn5ydnCDyI69evo1AouHv3Ljdu3GDH1Xqno14r0KXyQQhLJioqiqysLLvXExIS5FRGd1BeXo5Wq8XX15fx48fj7e0t2+52VxK0trYiiqJDzoC7YwJA9ip4WEjjp/r6emJiYuRi4EGJYVtbG7GxsXbnwcvLC51OR2dnJwqFgtDQUC5evIjJZEKpVJKVlYXRaHTLvKY7xo4di5+fX69kQkluKAgC27dvt9s2IyODMWPG0NLSgiiKfPrpp26PLDIzM3n22WcpKCjgwIEDiKKIt7c3v1g6m1DLXR609pMurfmDI4h9YOWrUCiYPn06xl4+WhRFfAKCZTMuuP+7vWzZMhQKBZcvX2bMmDHU1tZy7NgxAgMDEQTBLW8FdxEZGcmqVasIypqCwapwGJ1uFeFqXQdXazvs/91qZefOnURERNhlbfTj8eJ7VQzUt3dR3tzpsgoXFSrCBo7q1ap40qRJKBQKDAYDRqOxz1KZh0FNTQ1r1qzh2LFjjB07ltWrVzN48GAWLVrErVu3HBoDgW2O/ODDvbm5GV9fX06cOMHp06cZOHAg/v7+cieh+/aSBOrChQt2q8uamhq8vLxY/9En/OcXlxj+8+0M+sVe1hZHse54DZu2bsfLy4vm5mYUCgWRkZEMGTIEb29vh5K/9YeKaWo3YHFwpxARaGw3sfnYfWnjxo0bUSgUvPLKK3YtfVcoLS0lPz+fKVOmEBoa6vChFxMTY0ciBBvv4fTp04wZMwadTscXX+6k5I7epTWrIFqpM9pMhx4sVJRKJWlpaW4XAxUVFXL8rbTaEkWRU6dOUVdXJz80HckKwVYMuOoMdCeiAo/cGQgJCUGj0VBVVSWbD0nXpiQxDA0NRaPR4OnpSXV1tZ1yZPLkyfLfm5ubMRgMXLt2DbD97gmCwKFDh/q0T2q1mry8PEpLS3s97z4+PsyZM4fS0tIeZM1JkyaRmJiIxWKhtra2T3LH7Oxspk+fzsmTJ2X/A19fH363OJcUSxVq6/3ZeVSAhj8fG8/inEhnb0dUuGsGvQjkDrN332xsbMTDw4P4+HhWrVqFTqfjxIkTpKSkEBQUJBeU586d6xM3ozcoFApKjV4uyZJKAY7ftpeB5ufnU1dXx+zZs/sjjJ8gvldnVm9ynjNgt11X79t5e3szceJErl+/TlJSEqdPn3aLgfswMJvNHDx4kLVr1yIIAqtXr2bixIlyyz0pKYk5c+Zw6dIlDh482OPnQ0JC7FbvVquVqqoqMjMzuXv3Lm1tbbKJjkqlIjAwUN7eYDDw8ccfk5+fz4wZM2RyXm5uLhEREdTfbeN/Cjz51UcXuFnVwj2jleYuFf/2xU3W3tDSrLedy7i4OJYtW0ZXV5fTFernp8tcP1wF+OJMOSaTiTVr1mCxWFiwYIHczegNer2e7du3k5SUxIgRNlOnBzsDYBsV1NTU2HVaDh8+jEajYcyYMTz77LOoXJhKdd9hlVotd1QehE6no6Ghode2tcFgoL6+Xi4GAAYMGEBsbCwmk4nbt29jsVhkWSH0LAbcJRBKD+xHLQakOX11dTXx8fF0dnbK15QkMSwrKyM1NZWmpiaUSqXdAzo4OJioqChEUaSjo4PIyEh5VODl5UVKSgqtra1uGQF1R3p6OmlpaXz11Ve9Hl9KSgojR47kwIEDdhI+hULB/Pnz0Wg0+Pn5UVBQII/O3MGoUaN45plnOHTokLz69vP14e+XTWVc10Wym0/wL1Oi+I+5mUxIDXbZ8Vo1f6xLR0EQWP6cfYjYnTt35LA0Dw8P5s6dy6xZs7h27Romk4lhw4bRYbCw/2Iz8ZP/hoARP2HAc2/y7+sPcK/TNdGvN9wzur63SmRJCa2trRw6dIjhw4c7NNvqx+PD96oYCPP1wB1fiugA1zIvCdKMva2tjZaWFlki9ThRVVXFO++8w8mTJ5kwYQKrVq1ymN42aNAgpk2bxokTJ3qsZEJDQ2lra8NotP0iNzQ0YDKZ5Djj7rI1sBUPd+7coampibVr11JdXc3y5csZMWIEDQ0N+Pv7c+rUKebPn89VSzqNBltRcv85bvMPb+1SsbsygJSUFJYsWYKHh4fLdvW9XnqeoggdBjPvv/8+er2eiRMnotPp3DqPoiiya9cuzGaz3AIGW/HjqDNgNpvleX5tbS2XLl1iwoQJaDQavL29mTvnebwNTQgu+kwiAkPjg53K+VJSUlCpVNy8edPlvkvmWN3TBiWjHrhvzCTJCv39/XuQSHvrDDw4JnjUYgDuKzNiYmJQKBTyg7u7xFDiDcTFxfVYrQ8bNkwuTiwWC9XV1bIh1MNYFEuQHB2PHj3a67ZTpkwhJCSEbdu29cgQWLhwIe3t7YSGhsr21+7imWeeYeTIkezevZvLly8DtgXGyhdfROul4ovNG91yW3x90XjSE8JROiHd/e1rM4mNsB8ZScWABEEQGDZsGD/4wQ/o7Ozk65MFbDjWwZmSTu62GegyWbhVeYe//Y8vmPzyv9PW8fBOfxH+GpdjWkGASL/7Xb49e/bg6enJpEmTHvoz++EevlfFgK9GxehE50Y+CgGi/DWkh/XkCTjcXqFgxowZNDY2EhISwsmTJ/tEanIFk8nEvn37eP/99/Hw8OC1115j/PjxLm2Oc3Nzyc3NZe/evXJLFe5nFEgrs8rKShQKBWazGaPRSFdXF0VFRfL2ISEh1NXVsXbtWgBWrVpFUlISnZ2dVFZWMnz4cCwWC7v3H+H4LaNdcEh3iAiUtnszcsIM+YHoqhjISgxG5WKVo1II+FlbqKurQ6fTMX78eKfbPojLly9z/fp1Zs+ebReapFarezz0IiIiUCgUVFVVyQZDEjNaQnJyMmMiVU6PHdGKpqud58cOcbpParWa1NTUXlvW5eXlcpped4SFhdkxvv2DtNTfbSMg0H47k8mExWJx2Rl43GMCsBVVer2ejo4OoqKi7FbxKSkplJSUkJycjEKhwNfXl8rKSjtXvczMTNRqNZ6enjQ0NODr6yuvpLVaLZGRkdTW1rptUSwhKCiIsWPHcurUqR7jswchyQ2bm5vZt2+f3WvR0dHy739gYCBbtmzp4QroDIIgMH36dLKysti+fbtcEPr4+PDiiy/i7e3NunXret0/f18vDrz/M5bNHoFHNyKdv5eCv101gV++mme3vSiK8v3qQURFRfHqq6+yq6CDNn1Xjy6dVRS5WlzN3//fL906RkeYrgvtlSw5Kc2m4Lh58yaFhYXk5eX16sPRj0fH96oYAFgxPJogL3WPgkAh2B42Pxqf0KcYzPj4eAYNGkR7ezu1tbV9bls6QkVFBW+//baNPTtpEq+88orMQu8NU6dOZdCgQXz++eeyqZL0iy8VA1VVVURERHD27FnCwsKIi4vj2LFjiKKIKIq0t7fLrdlVq1bJ8qrSUhvTd9AgW6rZvlNX3Up2vFJxfxbsqhhYPS0dsxPfdADWQwopAAAgAElEQVSzVSSWckJCQli4cKFb5wNs/ILdu3czePDgHh4EjsYEarWaiIgIqqurZYOhqVOn9phXvjJ7HMlm22rw/vUkgiiithpJuHOWtm9Mk5xBp9NRXV3tkpUu8QUcXZeZmZkY1H6UB+fw2rZitnXEs5+BrMuvov2bTktv7oPw+McEYK/MiI+P78Eb6OzspKmpicTERFpbW1EoFHaFkUajkQsC+CZl8upV2V9B6g7s3bu3z/s2duxYAgIC2L17d68FfGhoKNOmTePcuXM9jItycnLIysqitbVVdih0ROR1BEEQePbZZ9HpdGzdulV2RJWSC728vNwqCLQBPrzz5nI+++0LvDg+kPf/7ln+66djMd+5JiudLFaRc5WtbMwvp1ITi9Un2OF7FVc0cau2w+m4zmIVWb/9FB36hxsXjE/WkhXt36OElv5/cXYkkf6eGI1G9uzZQ2pqKhkZGQ/1Wf3oG753xYDW24N/fVbHtPRQNN/k1kpWlv/6rI7UUPe6At0xZcoU2Uzk5MmTD71vXV1d7Nmzhw8++ABvb29ef/31PmfKS0zo+Ph4Nm/eTF1dHWq1mqCgILvOQEhICEVFReTm5jJu3Diqq6spKSlh165dXL16VT6u7hV5cXExYWFhBAQEMGrUKHx93KvWPbrlA7sqBkakhfHX820r6e7JaNLfx4c1ExeoZPXq1W4XbFarlc8//xwvLy9mzJjR43VnrPno6Gg7gyHJh6A7VCoVv3g+l/SG46R56kkL9SbA1EyWqo60msPEhfjx8ccfu2wfp6WloVAonI4KJG//7nyB7rhW00pJ+DjavCNlhrYJBbuuN/DLLwtpM5h7zSWAJzMm8Pb2RqvVysWAFE0M9yWGxcXFpKenU1lZSXx8fI8uSVZWFu3t7QQEBNDc3IzFYpG9KuLi4ggICLAL33IXKpWKvLw8bt++7dZ4b9iwYaSlpbFjxw671b8UiBQaGopSqewzoVChUDBv3jwSEhL45JNPZBXLgwVBb92PkpISTh47zLyZ41gybzoLFyyQu4QbvzzID7de5V8PlPLljbvUB6Tz35cM/Hpfid18HuBSYU8VzYPoNJoorXy4hEClQuCvJyexMDsS727Ts+hAT348PoEXsmxkycOHD9PZ2cnMmTP7tDjrx8Pje1cMAAR5q1mVG8uHSwezZtEgNizP4hcTkx7auMLf359nnnmGzs5OiouL3daOd0dZWRlvv/02BQUFTJs2jZdfftlhK88dKJVKFi5ciFar5aOPPqKlpUXmAUg35La2Nnx9fRk0aBDJycmEh4ezbds2Lly4wPTp0wHsbkBWq5WSkhLi4uI4efIk77//Pr6WZjyVrldBXh5KRuvu8xF6k7j93aJsPv6LiYxIC0XAVqiNSNHyQnwjueEdrF69uk8GTydPnqSiooK5c+c6bDU6KwZiYmK4e/cud+7cYerUqU5vSGFhYTw3YSTqwoNM1FQSV3uCOJqICA3mpZdeIiIigo0bN/ZQJ0jw9PQkKSnJ6aiguroai8XisBiwiiJfVgo2T/sHfO2tIjR0GNlUUONWZ+DBMcGjSgslSCTC2NhYBEGgrKwM6CkxFEWRwMBAysvL7YJy4uPjCQoKkrtTarWas2fPUXlXT2lDB2PHT0QURYfE2d6QlpZGeno6X331lcyncQbJhVChUNilG0r7tHDhQkwmE8HBwZw/f56CggK390OlUrFw4UIiIiL46KOP5GwEaWTg6enpsiBobGxk69atpKSkMHXqVHl/p02bxujJM9jR4Mvde7bCzioiXyuXatr47UF7Xb/Gw72gtatXLj30SFStVLAgK5IfxHUwpOk47ywcyL/PyWB8sk3uXFNTQ35+PhMmTHDoRdKPJ4PvZTEgQa1UEOStljsEj4JRo0YRFBSEUqnsk0Wx0Whk165drFu3Dn9/f9544w1yc3MfWUKj0WhYunQparWajRs3ygoBaeVRUVHByJEjUSqVNDY20tHRgcFgIC8vj1GjRuHj4yO3Jzs6Ojhw4AB6vZ5z585x+PBhAgMDWbzwBaYlK8DJFFAQ4PW8DPy9bQ9vs9nsUk0g4bkR8ez/x5m0frKShnVLmOJ3nURfPYsXL3boWOgMtbW1HD58mNGjR9uR77rD2UNP4lkkJSXZuR06wogRI0hOTub06dNER0dTVlbG8OHD5e8gPDycDRs2yOl9D0Kn01FeXu5wdVteXo5Go3Fo2Xy1tp0Oq8qpVMsqwtclTbS02x6uT3tMALZiQMqqiIiIkM2T4L7EUKlUEhUVJRcB3bskgiCQlZVFZWUlfn5+FHf68lFdDDP+cILn/+sUP9zZxBWSOXfxykPJ4PLy8ujs7OTIkSO9bttdbnj69Gm714KCgpg3bx4NDQ1ERkaye/duh14VzuDh4cHSpUsJDAxkw4YNcsqir68vK1euRKPROCwI9Ho9mzZtwt/fn/nz5/e4b1Spo0ChdshtsYpwva6DG/X3df2TRupQq5zzkgQBIrTeFF89y0cffeQy4bA3tLY0ExHgRbCPh10xunPnTsLCwvo9BZ4yvtfFwOOE1HaU2pjuEIlKS0t56623uHTpEjNmzGDlypV9etj1Bl9fX5YvX45e38mhgtvsLBL59dYr3Nb7ISiUDB06lKKiIt577z25pVtcXAwg/339+vX84Q9/4PTp0ygUCp5//nn+4i/+goULF5Kens74WBPZWtuxKgXbSl7xTXGwaGwS/7DkPunOnRVqdwgCvP/+exgMBiZPnuywVe8MJpOJzz//nNDQUDma2BHUajVWq7XHnFdqHbvD1ZDY2FarldbWVjw8PBg82Kbt1mg0LFu2jJCQEDZs2GAnUZOg0+kQRdFhkE5FRQWxsbEOi8PqFkMPo5oHYbKINLQbUCqVLpM1n8SYAGzFgNVqpba2VuYNSJAkhqWlpeh0OsrKyoiPj+/Rth8yZAgmk4kqTTJnLOm0c7+Dp++yUGgK55AxgyPH+z6iCwwMZNy4cZw5c8atjl5ycjKjRo3i4MGDPb7L1NRUJkyYQG1trZwf0N3BsDdIMceenp62zIJveCQPFgRSoWCxWNiyZQtGo5ElS5Y49No4fusurlg9SgFOld3n9IQE+bJ6wVinnTBRhP/z47msWLGC2tpaOdvgYdDS0tJj5X/27Flqa2uZPXu2S7J0Px4/+ouBx4i0tDSSkpIQRZGvT5zmQlUrBZWtPUKQDAYDO3bsYOPGjWi1Wt544w23Per7CpPCix13Unj7sg+nGwP44koHW29rWVMcw+a9J9m0aROJiYm88sorjB49muLiYj744AMqKyupra2VJWyhoaFkZmaSlZWFRqPBarWydetWGurrmBLZzKr0elZPS2VubgKTUz342fAu1v5ovJyVDn0vBj799FMaGxsZMGAAY8eO7dNxHzx4kLt37zJv3jyn0j5AHjl07w5IBkNBQUG9krckXL58GV9fX5l42X2UodFo5Cz79evX20Xkgm3FGR8f34M3YLVaqaysdMoXEKwmlwYuEixGmxWxq+vrSagJwFZMqVQqmTfQ0tIiJ1H6+voSEREhjwq6uroIDQ3l9u3bdl2SgIAAQuNS2F8rFQH2xyECzfiw7phjK9veMHr0aAIDA3t1JpQwefJkQkJCeqQbAowfP57U1FTa29uxWq1yOJG78PHxYcWKFQBs2LBBXnn7+vry4osv4uHhIXcIdu3aRWVlJYsWLeqhNJFgMLsm+Ir09FX5l5/NZVGeLcNCpVSgUipQKmzxx2/+2WxefD6X5ORkXn/9dbRaLevWrZMJyH3Bg8VAW1sbhw4dYtiwYbKDZT+eHvqLgceMaXkzqAkayPqaQH69v5TfHCjl1U+u8H+PldFpslBcXMwf//hHrl27xuzZs1mxYoXTX+RHhdli5flf7+NKhW2FISJgFW030uZOKz/fXE7a4JEMHDiQL774gt27dwM2HXJGRgZKpZJly5aRmppKQ0ODvDIXRZEvvviCwsJCBEFgzpw5RPkJjA9tYt1PJ/DrZdmo9D0lX30pBo4ePcqNGzcICwtj/vz5fTpuyTVuypQpva7spdVy95u6ZDA0YMAAqqure73JtbS0cPPmTTkAp7Kysof9s7TqCwgIYP369T1e1+l0lJaW2s2u6+vr6erqcloMRKs7EUTnN3sBSAnxRtF1z61zrlAo7IoBk8n0yEZa0gigurpaPg5HEsPg4GCCgoIwGAwOuyR3fZJcStIACo3BfbYoBltXb8aMGZSVlcnk2d62nz9/Pi0tLT18DiSLcG9vb9mBsa9eCAEBAaxYsYLOzk42btwoqyf8/PxYuXIlarWaNWvWcOHCBZ599lmn1wdAdIBrXb8IxATac2k81Co++M1L5G/+JT9eMYlls0fyq9dmUrj7H/nrVfelin5+frz44ouMHTuWQ4cO9WlsIHXRut/79uzZg4eHh537ZD+eHvqLgccIqyiy9kILTX4JiML9FpdFtCUl/nRTPhs/3kR4eDg//OEPGTp06BNlyu4tqOJqebNDe1+rCCarwAcHi/nss89obW1l8uTJTJ48Gb1eT0pKChaLhZaWFnl0kJKSgiiK7N27l8uXL6NUKlmyZAlDhgxhwoQJXLhwgZqaGlJTU1Gr1T3ave4WA4WFhRw+fBgvLy9eeeWVPp2jzs5OvvjiCxITE92aOUrFgLQK7m4wJDnnSW1ZZzhz5gweHh40NDSQnJxMUFAQ27Zt67EilIJpfH19e0jGdDodFotFPtdge2gqlUqnzmv6liZC2m85HRWIwOKcqF7dByUIgmDHGQAeG4mwqqoKb29vQkND7YqB1NRUOjs7qa2tRafTcfv2bYcGRF0qP5cGTyCgx7PPFsUSUlJSyMjIYN++fb2SCeG+3PD8+fM9OjpeXl4sXLiQtrY2oqKiOHv2bJ/tyoODg1mxYgUtLS1s2rRJ/h78/PwYO3YsRqNRthR2hd50/QIwIcWxzHBQWjS//skc3n5zGb98dUYP8yKwFZCTJk1i2bJlfRobSNHkUmegsLCQmzdv9nsKfIvoLwYeIy5Vt3Ghuo0H25hge/g2WTSkjHuWpUuXuhV9+qjYcabcTqL3IEQESg1B/OhHP2L16tWMHj2aUaNsuQylpbYMgMbGRoqLi4mJicHb25uvv/6a/Px8lEolK1askOe+w4YNIzQ0lL1796JSqUhLS3NYDCiVSpdqgDt37rBlyxaUSmWflQOSy6DJZJKT73pD987AgwZDzhIMu0PKpUhLS6O+vp5Ro0bJRDJHDyZvb287UxmpexIYGEhkZKTdg6WiooLo6GinY47GxkZi9aWkqVttV5woyg6bnmoFP30mgaxo/14TCyU82BkAHhtvoK2tjba2th68gQdTDCWDotLSUnlFDBDko0FwucYFT4X4UBbFEqZPn47RaOTrr792a/thw4aRnp7eQ24INuOq2bNny9kMu3btcqoocYbw8HCWLl1KbW2t7F/Q0NDAnj17SE5OxtfXlw8//NBluuCElGCGxvTU9Uu3hdW5cQR5O+eSuIuUlBRee+01t8cG3TM0urq62L17N6mpqWRmZj7yvvTj4dBfDDxGHC5pcupuCLYSocTo89R0sx0GM1YXJj4AFpR2pEWVSkXO8FFsOlHJxtuR5P32LP+wt5VycwRHjp3g6NGjqFQqXn75ZbtViUKhIC8vj8rKSq5du0ZmZiZ1dXV2q2pJVujs+I1GI2vXrsVqtbJ06dI+j0+uXLnCtWvXmDVrlp3LoCu0dAm0eYZxo/4eNwqL7AyGvLy8CA4OdnkTl9L0urq60Gq1JCcnExkZyaRJkzh58qRs/NQdkmRMo9Gwfv16+caYkZFBUVERZrMZURTtwokcobGxEdFqZUo0rIxtJ66jkPlDIvjRuHjeWzyYsUm277U3OacER8XA4+oMAHJOQVNTk0ys6y4xjI2NxdvbG7PZjNVqtXPFnDE4AquLYkApCDybZVNcPIxFMdja8+PHj+fMmTM9eB2OIJkGKZXKHumGYCM+Dhs2jKqqKrRaLZs3b+4ToRAgNjaWxYsXc/v2bbZs2cLHH39MUFAQCxYsYOXKlahUKtatW+e0IFAqBP5ycjIrhkcT7HP/oZ8e5suvpiYzNf3h5MuO4O/v7/bYoHuGxuHDh9Hr9f2eAt8y+ouBx4i790wOozkliECT/tFvru4iIzbQZYiJgIi3pZVPPvlEnmHf7TDyV9sb2FcTRK1eTWOHmep7av5wsJFX117BKqh55ZVXHLauk5KS0Ol07N+/n4SEBNRqtZ0tsquHkiiKrFmzBqPRyLRp00hKSurTsUoug4MGDXIaDNQdtW0G3txTxD98XUd52Ej+p6CVfzrZAvFD5W4H3G9xO4LVauXMmTOkpqZSXFxsl044evRoEhIS+Pzzz2XTn+6QGOLSzbylpYWMjAxMJhOlpaVy1ryzYkAURRoaGjCbzYSGhnK3ppzhoQILs6N4JiXYTi7bWy6BBEdjgsfRGfDz88Pf318mEUJP3kB1dTWdnZ2kpaVRVlZGTEyM3ahAF+nHjEHhOJKxCoj4eqp4dbKOiIgIamtrex3tOENubi5ardYtZ0K4Lze8deuWQ0lxXl4eUVG2UY3FYmHr1q19IhTC/SCyoqIi7t27x6JFi9BoNPj7+7Ny5UoUCoV8DTmCSiHw3MBw3l4wkA+WDmbD8iH808w0smMef3eyt7GBKIrcrO8gv6oDS1AsdfUNnDlzpt9T4DuA/mLgMSLE18NlZ0AhQIiP+23vR8VLk1NdKs9EBLK1bRQWFvLHP/6R3//+9yz+5+0UVrdi62MI8nYANZ0aGoNzHQYlSZg6dSr37t0jPz+/x6jA1ez6k08+oampicGDB8sJiu7CarWyfft2NBoNM2fO7HX7Ox1d/GpnIdfr7VdpJkHNFTGKz6/cXxVGR0dTX1/vcIVcVFREc3Mz3t7eKJVKsrKy5NckYqXJZGLnzp0OHywSIUy6mXeYBVojc/j16VZ+vKuckvAxlJv9HHI+9Hq93EYPCgqS29GO4C5n4EmNCeB+UeXn54dWq3UqMUxPT+fOnTvEx8dTUlJi9/m/mT+Q8XHqbtwB25/+6PnbZwKICPBk2rRpwMN3B5RKJTNnzqSiokIOEOoNycnJ5ObmcvDgQTlIqfv7LViwAFEUCQgIoLKyskfGQW8QRZHS0lIEQcBsNpOfny9fT/7+/rz00ksoFAo+/PBDpwUB2K5JP40KL/WTl+w5Ghtcqm7lzz+7xt/uLmL/HR+u+2XxV19VYglPZ9SoUb2/aT+eKPqLgceIiSnBLjsDVhGGhj69Ux4b4svvX7GR6LpzB6RO3OKxCYxN8cfHx4eUlBQa27s4dUvv8OEDtqJgy8kqWvXOHxBarZbc3FxOnDhBQkKC3ajg3j3HrPbDhw9TVFREZGQkc+bM6fNxnjp1ivLycqcugw9i2+U6OrosTr+rLRdqZTlod538gzh9+jQxMTEUFxczZMiQHp8dEBDA7NmzuX79umyh+yCk1V2Hwoe/2V1CpToKvVWF0QKdHkG8fbqG3x++1eM76a6JN5lMmEwmh2Qyd42e4MkXA1Is9IO8ge4Sw+TkZJkjYTab7QiVapWC3y0dzmzVOYYri8lR3GKS8jKvprZx7fRBDAYDiYmJ+Pv7U1xc7LAj4w6SkpIYMGAA+/fvt+MtuMKkSZMICwvrkW4Itu/4hRdeoK6ujoSEBPLz87l48aLb+3Py5EkuXrzInDlzyMvL4/Tp03aJi+52CJ42uo8Ndpy4xD/vK6Gh3f566kLFNY9UTpW7zvDox5NHfzHwGDE4yo/hcQEOJ5sCEGht58LuTZw4ceKxpRv2htXTdHzxq6mMzby/mk+PDuC/Xx3Nu3/+DMuXL0OtVtPS0sLQyfOdp/B9A4PJwtVy54QlsIXAeHp6cuvWLbtRgaN29fXr1zl69Cg+Pj68/PLLfZ4Z1tXVcejQIXJzc0lISOh1e4tV5OuSpl6LthO3bMcYHh6OSqXqwRuQQqmio6Pp6OhgxIgRDt9rwIABZGVlsWfPHqetaz9/fyrDRmDmgRTEb87F2YpWdt+wN8RpbGy0rfT8/KitrUWtVjt0SnQnl+D+xz2ZMQHYx0LHx8fT0NBg97CWJIZKpZLk5GQqKiqIjIzsQUL19fUlJTacBEUjg/zaCVXpiY6Ooquri8OHDwMwYcIERFF8aGUBwLRp0+zesze4khsCJCQkMGXKFG7dukViYiI7d+506kjZHYWFhRw4cICxY8cyePBgRo4cycSJE/n666/tosoDAgJYuXIlAOvWrZO9HL5tSGODruSxiKKDIc831/i6/Cqni5B+PB30FwOPEYIg8PMJiTw7MMxuZqtSCExJD+E/l+WSO2okBw4cYMOGDS6T6h4nJg+JZtffT6f54xe5s3E55/4wl5enpKFQ2B4mNpdCPSdPHHfr/VyNQsBmsjNlyhRu3LhBdHS0fEN/kDPQ0NDA1q1bZeWAK4c8RzCbzWzbto3Q0FC3884NZitdFtc3HYUCmjtN3/xdQVRUVA/ewJkzZwgICKC6uprExETZvtgR8vLy8PHx4fPPP3eo279U3cYdvdmpgZAI7L7WaFdANjY2olarCQsLo7y8nJiYGIeObX3xdujeGXhQcvmo6B4LLXUwulsTSxLDmpoaObgoOTmZ4uLiHittyZpZyjSoqqpiwoQJsnvdkCFD8PDw4OLFiw9lUQz380bOnj3r0DXSEUJCQpg+fTrnz593mDWRm5tLRkYGVVVVBAcHs3nzZpe6/Pr6erZt24ZOp7O7vseNGyeHEHXvMAQEBPDSSy8B8OGHH35nCoLaVgPVHVaXBlnNnWau1bkX/9yPJ4P+YuAxQ61U8OLwGNYuHsSbean8w/RU3ls8iNdGx+Hj6cHUqVNZsWIFd+7c4e2333aaVvdE9k2lwNNBEElwcDBLly7Ft6seZS9XhEZhZe/md1m3bp1Lyd3gwYOJjo6mpaWFuro6mpqa0Ov1+PjYUiE7Ozt57733EEVRNuPpKySXwblz57p0GewOT5Wi1ywKq9WWbinhQRJhe3s7V65cQafTUVVV5bQrIEGj0TB37lyqq6vt2rsSSu7oey2wGu910WG8TzyTPAqCg4Ndqg6kYqCv0kKlUolSqXxsxYAUC11VVUVgYCABAQFyaBHYSwzT0tIQBEHOjSgpKbF7Lw8PD7mLIYoilZWV5OTkEBISwu7duxEEgVGjRmE2m3tkCPQFo0aNIjg42G0yIcDQoUNJT0/nyy+/7FHsS4miAQEBmM1mzGaz7FBYVFbPp1+d58vDl2nr6KSjo4NNmzah1WqZO3euXcdMEASmTp1KdnY2O3bssCs8vosdglaDewVZm5vb9ePJoL8YeELwUisZGOnHoCg/fDT2D6qkpCRef/11OWZ4586dj0XC9SiIjo7mxSUvMDiw3emgQAAWjQwjRBtIWVkZ7733Hr/73e/Yu3dvj/msIAjk5eXR3NxCVac3P/yfr9lRHsiW863UNHWwZs0aurq6mDlzplvt/Qdx69YtTp8+zeTJkx2G+DiDUiEwIUXrmuipEBibeF/WGB0dTVtbm6wlP3v2LCqVinv37hEQEEBaWlqvnxsbG8szzzzD0aNHe0Qaq3qrBKTtlPe3a2xsxGQyodFoMBgMTs1npO+lr6ZD8PgsiSV0L6ri4+PtOgMKhYKkpCRKSkrw8fEhNjaW6upqwsLCeqyyW1tb8fPzo6ioSOZ0VFdXM2vWLKqqqrhw4YIc/f0oIzmJTFhZWemU8/EgpHRDZ3JDjUbDwoUL6ejoICwsjCs3yxi54B8ZMvefePFvPmDhz98lfsovWfbTf8dkMrN48WKHXhuSTXhmZiZbt26VfUHAJtdbuXIloiiybt26p9aBdIbukkbX2z09cnU/eqK/GPiW4O3tzcKFC5k1axaXLl3i3Xffdbsd+aSQmprK/79qDIm+ttWkRDqUHlaLxiXx3z+ZyY9+9CN+9rOfMWTIECwWC2fOnOF3v/sdb731FleuXJFvgH7aML5sTGLTrVD2XGvjRqsP735dje6HW/m61ER2djbDhw/v8352dnayfft2EhMTH4qFPG9wBH4aldOCYGlOFH6e9ws4SSdfVVWFyWTi/PnzDBgwgBs3bjBs2DC3EybHjRtHTEwM27Zts3O5y47xd8lhEID0UB+ZBa7X67l37x6iKNLV1YVCoXDq5a7X6xEEwS1iZffOADyZYuDu3bvo9Xri4uKora21Ow+SxPDevXvodDpu3bpFeno6hYWFdu3+5uZmoqOj0ev1xMbGAjaPifj4eAYPHsyBAwcwmUwMGjQIg8HglsWwMyQmJjJw4ED279/vNiHR29ubuXPncvv2bU6e7BmeFBoayvPPP8+1m7f4+EQb18vsbbsNRjP7ztdzrSnQZcdMoVAwd+5ckpKS2Lx5s12RKRUEVquVDz/88FstCEJ9NQyI8HX6+yYA4X4e6MJ8nup+9cMe/cXAtwgp7e7VV19FqVSydu1aTp069dTIhY4wclgO//PyIBbG1zMlM4DJg6NYNiGFA/80kzV/Pg7lNw8+f39/5syZwy9/+UuWLl1KdHQ0jY2NbNu2jd/85jds2bKFZf+2n5Im28PFKgrfZCPYbJv31QbjFZvjalecYvfu3ZhMJp5//vmHMikJ9vHgN7PTGRJlb0wU5KXitdFxPD/IvtPg7++Pn58f1dXVXLlyBb1eLz9cc3LcPwbp5q3X69mzZ4/87wlab4ZE+Tm9WYrA3CH3CaDdcw1aWlqIjIx0yreQ3AfdOU9PuhiQvCmqq6tJSEiQW/wSHpQYms1mvL296erq4tatW/J2zc3NREZGEhUVxZ07d1CpVLLqYOrUqVitVg4ePMiUKVMAHolICDYyodlsdptMCLbuX25uLocOHXKoRMnMzKTWqKX1XpdT+e/mry5y85brBYJSqWThwoVERkby0Ucf2S0oAgMDeemll7Bard96h+DlkTGolYoe17iAjUrwam5cvyUeJ0oAACAASURBVOHQtwzlm2+++ea3vRPfd/j4+JCVlYXRaOTIkSNUVVWRlJTUJyvex4m4uDg0lnYsNRf46YLRrMzLISbEuXNicHAwOTk5jB49GrDNsy/damR7odLJjU5AqRCobLrH8gnuxxKDbQV45MgRnnvuOZfufL3BV6NifLKWianBZMf4My09hJUjYkgJdbw6qays5M6dO7IhTllZGenp6QwaNKhPn+vl5YW/vz9HjhwhJCREDlIaGhvA9boOmvQmm6XwN3HQCPCDkTE8080/vqSkhJKSEjw8PNDr9aSnp5OcnOzw827evEl7e3uvvAaAgoIC/P395UCqS5cu4enpSXp6ep+O0Rk8PT05e/Ysvr6+ZGRkcO7cOby8vGSDKY1GQ2FhIUajkZycHK5fv44gCFgsFoxGIzqdDoPBwJEjR8jOziYkJIT8/Hzi4uJobGwkKysLf39/PDw8OHbsGJmZmTJnJSkp6aEtwDUaDSqViuPHj5OWloafn59bP5eQkEBhYSFXr14lKyurB8Hz5//2BR0uZLpKpQI/Hw0TR7g+/0qlkszMTIqKijh79izp6enyWEj6/i5cuMDly5fJyMhwGHX8pBHopWZorD/VLQYaOu4fc3KwNz8en8DgKPccQ/vx5NDfGfiOQKVSMX36dJYvX05dXR1vvfWWnR3r04QgCEyfPp2MjAw+++wzu9muK6jVaiZNmsQvfvELQgdMdDmXt1hFjl+v557Bfa5Ea2sru3btYuDAgX1+CDtDqK8HWdH+6MJ9XeY4RERFc7PRQEmHEk1IDK2trW49YB1h8ODBDBgwgF27dt2P89Wo+KdZafzdtBQmpgaTmxDE/CERvPXCQGZm2icvNjY24uHhQVBQEB0dHS6LIndzCcD2vT/YGXicXBZBEGTegCAIPfwGwNYdKC21RRHrdDqKiorQ6XQUFhbKwVlgM1oaOHAgCoWCkBCbpa7Ukh82bBiRkZHs2rWLqVOnAg9vQiRhxIgRhIaGsmvXLrc7d0qlkvnz59Pa2urw85taXSf8CQI03nXPvliKyfby8mL9+vV2xMGgoCBWrlyJ2Wxm3bp1PXIUnhYStN68OSONtxYM4J9npvFf8zL57XM6Bka6V1z148mivxj4jiE5OZk33niD6OhoNm3aJLfEnzaklnZMTAybNm2yM7lxB2qNl0srZAldveStSxBFsU8ug48T+wvv8F6ZN6WhI6kIHc7HVT5UxE7G4PFwK01BEJg1axYeHh52ckOFIDAk2p/Xx8Tz8wmJLMqOIsS3Z3dI8hiQOkeuigF3cwngyY8JwDYqkGKh4+Pjqa6utru+U1NT0ev1ssSws7NTjja+ffu27MEfFBSEl5cXGRkZlJWVoVKpZKKhQqFg5syZ1NXVUVlZSVhYGDU1NQ9tUQz3yYTV1dV9SiAMCQkhLy+PgoKCHkTIqFDX149oFR0mBTqDt7c3K1asQKFQsGHDBrschO9KQQA2DoEu3JeogP50wu8S+ouB7yB8fHxYsmQJM2bM4MKFC6xZs8at4JTHDZVKxaJFiwgICOCjjz7q08wxOykYcy96/tgQHwLdZBCfOnWKsrIy5syZ4/ZK93Fg1/UG3jlZwT2T/bG0Cd783e4iqloezuXOy8uLuXPnUl5e7pBk5gqSksBsNhMWFubyfLibSwC2h+iTVBOAjURoNBply2Gr1Won25QkhsXFxURFReHn50d9fT1BQUHcuHGD5uZm1Gq1XOBkZWVx584dwsPD6ejokPkUMTEx5OTkcOjQIcaOHQvQZxvgB9GdoNgXd8OcnBx0Ol0PueEr88e6LJitIiyd3XsMd3f4+/uzYsUKjEYjGzdutHNQ1Gq1rFy5EpPJ9K0XBP347qG/GPiOQhAERowYwerVqxEEgTVr1nDmzJmnTi709PRk2bJlCILAxo0b3b4JTsuOJibY2yWD+I0ZGW6Rhurr6zl06BCjRo0iMTGxD3v/aOg0Wfj4vGOXOBHosljZfKEnOcxdJCQkMGbMGA4fPuyWGx3Y2v4dHR1YLJZeRwTS9u52Bh4cE6jV6ifSGQCbMkMqZLqPCrpLDAVBID09naKiIjIyMrh58ybNzc0EBgbK141kPyzNwbsXVpMnT0ahUFBcXIyvry9FRUUPbVEsoTtB0V1I6YYqlcpObvj6ovGkxYejdGLu8f+9mkd8lNbha66g1WpZvnw5ra2tfPzxx3R1dVF+t5NPCmr4olhPwjPz0HdZbHkYfUxR7Mf/XvQXA99xhIWFsXr1aoYOHcrevXvZtGmTS9eyJwHJpbCjo4NPPvnErbGFUqHg31dkohKsdgWB9OxP8tWT5lHTa3EjuQwGBwczefLkRzmMPiO/vAWjizGGVYQz5S10mvqWQtcdEydOJDw8nG3btrn14O2uJGhvb3fqLyDhu9YZ0Gg0hIWFybyBuLi4HpwUSWIokSNbWlqIiIhAr9dTW1trF22tUCgYMmSIbBd97do1WYbo7e3N1KlTuXLlCgMHDkQUxT4pAhzB19eXiRMncv78eZfR1g/CkdzQ39eLgx/8jKWzRqBW3ScX+nur+P1fzuNXrz38OCw8PJzly5dTW9/ILz46yS++uMG2y3XsvdnAR5eauBAynhoxoL8g6IeM/mLgTwAqlYoZM2awdOlSampqeOutt3q4sj1phISEsGTJEmpqati2bZtDW93uaG5u5uqJPfxqvILX83SE+GlQC1Yyonx4640xvLU6hzOnT3Ho0CGXBcGhQ4doampi3rx5brsMPi60dJp7dQa0itD+CM5pSqWSefPm0dra6lYbu3sxAK75AlarFYPB8J3iDICtO9DdfKiystIu1leSGJaUlJCYmIhGo6GpqYmAgACampp6RN1KSpyAgABMJhOFhYV2r8XExFBSUoJarebChQsPbVEsYfjw4YSHh7N79+5efw+6IzExkdGjR3Po0CG5E6QN8OHd/7Oc8oP/wuEPf85Xb7/BT2aFo1X0jaPjCNHR0VgHzaRWtBH0rCJYvtldk0Wk2HcADRbP/oKgH0B/MfAnhdTUVF5//XVZU7x3795HvrH1BbGxsSxYsIDCwkKXFq1Go5FNmzah0Wh446WF/O7lURS9NZ+fZlby3g90rJiYyujcUUybNo3jx4/z9ddfO3yf27dvc+rUKSZNmtQnl8HHhWAftUszIAClgJ1B0cNAIpmdP3++V3vqxsZGPD098fT0JCgoCH9/55KsvrgPgmM1wZMoBmJiYmhsbMRoNBIfH4/ZbLYbk/j5+ckphkqlkpSUFFlVYDAYehQDWq2W+Ph4BEFAoVBw/vx5u2OaNWsWTU1NREdHYzab7QJ+HgYSQbGmpqZPZEJAvpY/++wzu3Mb5O/NqCFJjB85gBdemE9hYSHHj7uXFeIMta0GLjWanGYCCAJYk3IxGAysX7++vyD4nqO/GPgTg6+vL0uXLmX69OmcO3eOtWvX9lgtPkmkpaUxe/Zszp8/z7Fjx3q8brVa+eyzz2hra2Pp0qXyg0itVqNQKOxmtrm5uUyePJmjR4/28Ow3GAxs376dhIQEcnNzn+xBOcHwuEA0CnDmCqMQYExS0GPJh8/JySE9PZ0dO3a4JHY1NjaiVCoRRdEtvgC4l0sAT2dMALZiQBRFampqiIiIwMPDw6XEMD09ndraWtmTwVEBnJWVRUtLC1ar1U51ALaQpBEjRsijiceRGhoXF0dWVhYHDx6U8x/cgdQJam9vZ+/evQ63SUtLY/z48Rw+fNjOZrivyK9odZUNhFWEG40GFi9bQWdnJ+vXr3/qI8h+fHfQXwz8CUIKYlm1ahVWq5V3332Xs2fPPjVyYU5ODhMnTuTw4cMUFBTYvbZ//35KSkpYsGCBrP+W9tnLy6sHgWvs2LHye3VfCe3evRuj0cicOXO+NWcyD6VAqqnM4cpKIYC3Wsmi7KjH8lkSyUypVPLFF184/S4lJYHRaOy1GOhLYiE4HhNYrVa7Fv7jQGhoKBqNhqqqKhQKBXFxcQ6LAUlimJqaikKhkOWtjorfzMxM1Gq1HLD04HU5YcIEPD098fPzo7Ozs0c08sNgypQpWK1WDhw40KefkzpBFy5ccLofzzzzDElJSXz22Weyt0Jf0WWxunWD9w+0qQw6OztZt26dXUFgsYqYLO6PQvrxp4v+YuBPGBEREaxevZqsrCx2797N5s2b+7RKeRSMGzeOYcOGsXPnTnlGW1BQwOnTp8nLy3PoiOfl5WUndZIwfvx4xo8fz8GDBzl16hRXr17lypUrzJw586Fd4x4HKisrEaqvsCTdk3A/ewnkoEg//mV2OuF+j8/NzcfHh+eff57S0lKHrWyDwUB7e7u8WneHPAiPNiaAxxdj3P1zJL8BQCYRdv/s2NhYNBoNxcXFeHp6kpCQIFsSl5WV9SiWPDw8GDBggFx0Xrx40e79PD09mTZtmizt64sawBl8fHyYNGkSFy5ccJng6QjZ2dlkZGTw5ZdfOkwWVCgUzJs3D41Gw6effvpQ48C4IC96UfeiwUx1eSnBwcFyQbB+/XrO327k1/tKWLzuAkvWX+THn13jq5uNWHqbm/XjTxb9dsR/4lAqlaSlpREZGUl+fj7nz58nIiLCjnH9JCAIAikpKTQ0NHD8+HE8PT3Zs2cPQ4cOZcKECQ5X81evXkWtVqPT6Xq8lpCQgMVi4fDhwxQXF5ORkeH0fZ4WvvrqK0RRZOW8mczMDGN4XCBjEoNYlB3FjMywR+YKOIJWq8VgMHD8+HHS09Px9fWVX6urq5Nn1J6enkyZMsXl+amsrKSwsJDJkye7dR5v3LiB2Wxm8ODBgM3x8cqVKwwfPtytoKO+oKmpicLCQnJzcxEEgfPnz5Oeni5b/QqCQG1tLbW1teTk5NDV1cXly5fRaDTo9XpSUlJ68CW8vLwoKCjAZDLR1dVFZGSkXXcqLCyM8vJyOjo60Ov1j2RRLCEyMpKioiJKSkrIzs52+3oVBIGkpCQKCgqoqKhg8ODBPX5WrVYTHx/PsWPHaG9v77MtdIS/hgNFdzA6WdkLQIKllsJT+7ly5QpeXl6MGTOGr67WsKPGg4aOLqRHf7vRQkFVG9WtBkYlBH6rv5f9eDLo7wz8L0F6ejpvvPEGYWFhbNiwgX379j1xcqG0egkNDWXPnj1ERUWRl5fn9EbhrDMAtpvjxIkT8ff3x2w2ExUV9a3ecFpaWrh58yYjR45EEATbzTvYm4GRfoQ6cAV8nJgyZQrBwcFs27bN7jvs7gIpEeZcQQpUcjdV0dGYAB5/ZwBsvIF79+7R0tJCdHQ0KpXK4aigu8RQFEW8vb3x8fFx2F6Pi4sjICAAURTRarU9RgWCIDBz5kz5nD6qCRHYztmsWbOora21Iy66A8l4qqyszKnxVGRkJLNmzaKgoIDz5wu4WN3Ge6creedEBftuNrqUtaoUAj+fkIhKITgMCEoP8+HNlTN55ZVXiIqKYv/+/by38RNu+2UAOCTPnipr4Vjpwzs59uO7i/5i4H8RJD+AqVOncubMGd577z3u3LnzRD/TbDZjNBpRKpW0tbW5HFN4enq6NH05c+YMbW1t6HQ69u/f3+eb6+PEmTNn0Gg0DBky5Kl/tkqlYt68eTQ1NdnNoyUlAeCW+VJfPAbg6Y0JwD4WWqlUEhMT47AYAFuKoRRAZLFY0Ol03Lhxo8eoQBAEcnJyMIoqqoUwDhS2cOmB1L/Q0FDGjBlje9+qBjYeLeLj0xXk37r70JybmJgYsrOzOXToUJ8JeImJibLxlDPfguzsbHRZw/iPc638874S9t1s5FDxHd49VcnqT65woarnmEFCZoQfv3tWx7gkLWqlrSII9fVg+bBo/n56Kp5q27mfP38+P/3pT/FJH2UrApwpEIA9N54eYbkfTw/9xcD/MgiCwOjRo1m1ahUmk4l33nmH8+fPPxFyodVqZevWrej1elasWAHQwwK1OxwRCCU0NDRw8OBBRo4cycKFCxk+fDg7d+7ss3TrccBoNHLhwgWGDh36rSVHhoeHM2XKFM6cOSN7Sty5c0fuBvTGF4C+uQ+CYzUBPJliwNvbG61Wa+c3UFFRYff53SWGYLu2Ozo6SEtLk9MIu6PLbGVfQwBfmoexs05LviWVZe9f4aW1Z6ntZhudO2YsV0hhp3kY/7qvnH/ZWcgP3j/P7P84wdVq5w9WV5AMsfpKJoTejaesosgZMRGD2jYWsYjIXACj2cpvD96istl5kR0b5MWPxifw8YosNq/M5q0FA3luYBjmLgMNDQ3cvn2bK1eucO3aNZqMCpcKBBGobHH8+92PP208XReXfjw1REZG8uqrr/LVV1+xc+dOSkpKePbZZ/v0cOgNX331Fbdu3WL58uXEx8ezfPly3n//fT755BOWL1/ewyTIWWdAchnUarXyHHzGjBlYrVZ27Nghu8w9LVy8eBGTyfTQqYSPCyNHjqSkpIRNO/fjPwROGlOxhqTh1dXGzXYVYeEiChd37r4kFsLT7QyAbUUtrYbj4+M5cuQIjY2NsoQQbN2BgoICzGYzXV1dcrHg5eXF9evXiYyMBGxBVn+55TKHbjQiPrDGuVDRyoo1Z9n6Z6MI9Pbgd3tvUWgKk+fh0p+Vdzv5wXvn2fLDkSSEOI6ydgYfHx8mT57Mrl27yMnJITY21u2fldIN33nnHfbs2cPzzz9v9/ql6jYqmg0OV+sitmJh57UGXhsdK9tVd3R0cO/ePfnP7n+XOBMPGiapVCraQ4aAOuL/tXfncVHe96LHP88zC8MyICAwLAICIoJRVFwhVaMmEk1Mok1qctS22dOe3Jym5/aevk57TnvvOT299za5bU9ac5ukcWtMjJqYBBONaxKXoIKiIaKyKPsAwzozMMtz/hgZRWaAQXDj93698ooyMw8zDM7zfX6/7+J1ZQDATy2uIe9EIhi4g2m1Wh544AFSUlL46KOPWLt2LQ8//PCQ9PfPz8/n66+/ZsmSJe559BEREaxcuZINGzawfft2li9f3mO/2lvOwL59+zAajTz99NPuAKK7WYzT6eTDDz9EluUhG1vcF6fTydGjR0lPT++zoc+NIEkSyTMX8uEXlVDegiK5fjZm7Sj+88uLnKpp58d3J3gNCMxmc68GPX25kTkD4OqQd/r0aex2O3FxcciyTHl5ea9gYM8XR9h6sIg6h564IIWSkhLGjx9PcXEx99xzD5IkcaqyhT3feF6+djgV6ls7efdoJbmTDGw97nk53qm4rrTf+qKcXz+c4fPrmTp1KgUFBXzyySc888wzA87VAAgPDyc3N5cdO3aQkpJCRsaV759/sQWVhNfKAKcC+8/WYty7zmOVRWBgIEFBQQQGBhIbG+v+87X/12q1FNW08evPvHc3lSXIHju8ycnCzSGCgRFgwoQJxMbGsn37dtavX092djbz589HpRpcs5zS0lJ27tzJjBkzyMrK6nFbfHw8y5cv57333uPTTz8lNzfXvbTt7++P3W7HZrOh0WgA3MlTCxcuxGAw9DhWd+290+lk+/btyLLc40NyOJSUlGAymVi+fPmwfp+BsNoc/OloLUgyPT7iL/88D15oYlK0nnnjwj0+3mw2u6+cB+LabYLu92g4VwacTic1NTWMGTOG2NhYLl686F6Rabfa+cuxNj62Z7FjbwMwEW2bQlGhkV+syKKwsNC9kvBxYS0qWfJa+uZU4L2jFTQ0NiBLnpPjwBU4fHyyll89lO5zAmt3Z8I33niD/Px8Zs70beJgZmYm58+f5+OPPyYuLs5d6TCQOn9JpWbJkiW9TvLd7+FATYzWMy4igAsN5l4/IwnQqGSWpEd6fKxwexPrPSNE92jTBQsWcPjwYd566y0aGxt9Pk5jYyNbtmwhKSmJ++67z+N90tLSWLJkCfn5+T0aCXUvWXdvFXR3GUxISPDaZVCSJB588EEmTpzItm3b+m3Xe72OHDniPjHdbF+WmbDYnHjL9pBwjVj2xtecgWu3CSRJQqPRDGgw1WBERUWhVqt75A1UVFSgKAqdNgdPvnWMHYU1XN06p8spccoawWuHTWi1fu6qgrrmdpz91MA3tls5fuobFKXvk2uX3YmtvwJ9L2JjY5k6dSr79u3zub2vJEksXboUrVbL9u3b3e9FYnhAn22xZQmSI4KYNm0aaWlpxMXFERoa6nMg4DqWxM8XppAWFeQ+tupyUBSsU/OLe1MwBA9dbw3h1iGCgRFElmVycnL44Q9/iNVq5fXXX6egoGDAyYUWi4W//e1vBAUFsWLFij6XQadNm8bcuXPZu3cvhYWFKIpCcW0nBU1BrN93jlqTmZ07d2K1WnnooYf6PJYsyzz00ENMmDCBLVu29BhEM5RqamqoqKhg1qxZw3J8X5U1mlH1k8xVbrJ4fP8URcFsNvucQHjtPvJwtSQG1155dHR0j7yB9vZ2mpqa+OhkDWeq27ycBCX2X2jDHhzLkSNHeOWVV6g6dxq8hk0ACnqVjWi9BoW+r/jDg7Ror2NfvHt08mCSCbvLDSsqKvjqq68AmJd8pRLAE6cC90+IGPTzvZZep+bXuan8x9LxPDLJwNKMSH4ybyxrH53oDhKEO48IBkag2NhYnn32WTIyMtixYwfvv/9+r8Q+p6LQZrW765gdDgdbtmzBYrGwcuXKATWhmTt3LlOnTuWt93aS+ffv8fgfj/F5TRj/Y1MRqc+9x//ZWcmCRfcNaF9blmUefvhhxo8fz5YtWzh37tzgXnwfjh49SkhIiMemSDeD1suc+6tpZMnjcnZnZyeKoviUQHjtNgEMbzAArq2C7pWBMWPGIEkSFRUVbD1W1WdWu4STr2tdr7OtrY2xcl2/J/lUbSOjOspQoeAtcJAleHR63GBfDuCqlFi4cCEnT57sVS45EImJieTk5LB//36qqqoI9FPz0tyxyBIex4HfMy6cOcOwj58SEcj3psawanosc8aGohnA76Nw+xLv7gil1WpZtmwZK1asoLS0lLVr11JRUYHN4WTryVqefbeIH7xzilUbT/IvO0t488M9VFRU8OijjxIWFjag7yFJEpNnzmNzRTSl9d39B1yfYE4Fipr1/PHgwEu5urOuU1JSePfdd69riMu12traKCoqYsaMGT4lfg2naWNC+mwnK0uuYUqe+NqKGHpvE8CNCQZaWlpoa2vDz88Pg8FARUUFdS2d3uZDAaAgIweGIcsyYWFh6CUrs8La3bdeTUIhjHZibZeIjQxjqroM1+9h7/slRwaxJrv/ss3+TJkyhdjYWPLy8gY122HevHkYDAa2bt1KZ2cnMxJG8R8PpJGTFIpOLaOWJVJGB/DS3ESez44XHQGF63ZrfOoJN01GRgbPPfccoaGh/HXden76bj6bT1RjslzpfPdNbRu7msOJn72ExMREn47/Wl4xnQ7J41WbAmw7XE5R+cA7mqlUKlasWEFSUhKbN2+mrKzMp+fjTX5+Pmq1mqlTpw7J8YZChiGIlNEBvbrHXe3BiZ5HOw8mGLjR2wTQs/kQXMkbiAj26/M6X8KJ09yMoig0NTUxb948/ufKWUxVlxGkunLyVeEgRVXLA+GVxEZHYTQaSZTqeCCijjD5SoMsjaSQLNfwrwvCCRqCNtPd3Q7r6+vJz8/3+fHdgW97e7t7umFSeAAvfmcsG1dlsnnNFH6zNI2cpDARCAhDQgQDAiEhIaxevZrwKQupsqp7LaAqSCDBp1USbZ2+tTh+5+CFPoebqGWJLV+V+nRMtVrNo48+SkJCAu+8886glmKvZrPZOH78OJmZmUPeg/96SJLEPy1MJlbvOjm5krlc17RalcRP5yeRPNrzyd7X8cVwc4KB4OBg9Hp9j2CgpaWF3PTQfjIAZBKlOndFzP79+3nzzTcZp6pjsfQ196oL+H5iIx8+N5ks7SVGBfm7mxQZDAZ0zRd4LKqKn2VaeCLqIrv+YSZTVOV8uW/3kL22mJgYsrKy2LdvX59jqb0JCwsjNzeXwsJCjp08zSdn6vnPL8p5/dBFTlS24LxBU0qFkUEEAwLgOhGcswX30WxEwu5UOHjet77kreZ+TiQSmDp8P9mo1Woee+wx4uLi2LRpExcvXvT5GN2Kioowm80+l4LdCCH+GtYkOxlbd5iF48KYlxLOD2bG8ZfH7mJGgvdci8FuE9zonAHo2Xyoeyxzht5MSoQ/kseQQCFOaiBcamPx4sWoVCo0Go17OV6SIESyoDXXU1pSTExMDNXV1YBr1HFaWhqSJNHa2sqlktMEYSYiLIQxCWM5Vi+xeu0hHv7jYf7bpkK+KGm4ru6d99xzD2q1mt27BxdkZGZmEpw6nd8et/D215UcvNDE3pIG/n33Bf7xw28xmYen0kMYeUQwILjVtnb2ebssQVWLb61I4yP6zj52OJxYGyu5dOmSzx+6Go2GlStXEhMTw6ZNm3weIwuurPsjR44wfvz4AedC3GgNDQ3E6mw8k53I8zkJ3J8eSaBf30vZZrMZjUbTqwtkX7ytDAxXaWG3uLg4qqurcTqdBAQEEBkZSfWlChbqzpLs19pjm0SFgwnqWmaqziFJ8PHHH+NwOLDZbIwZM4YXX3zRfV+9Xs/Ro0fdgaJKpXL3tZg2bRovvPACfn5+NDU1sfWjT/mgeSz5jnEUVLZzrq6d/WeNPL++gJ++ewr7AGr9PfH392fhwoUUFRVRXl7u8+PLGi0c7jSgIF/uNnil+dClZgv/tvu8WCEQhoQIBgS3gbQZ9df41qjoqXvH950VLknEq2p46623eO211/jyyy99WlLVaDQ8/vjjGAwGNm7c6HXYizelpaUYjcZbppzQk4aGBiIifCsd87XHAHgOBjQazQ1ZGbB2OSi6UEm71U5CQgLffvstpvpqXvvhbN74bhw5qmK+o/6GZxOqmSiVob5cand1Lf306dN7vP/Jycnu5z5q1CgcDgdms5muri7Onj3LgQMHCA0NJSQkhNfzWylrcG2tdOe3dJ//d52u582D5YN+fZmZmUTHjeH/f3acl7adYeX68s3lTgAAEYFJREFUAp7afIr1+ZU09rMq9uHpOtcfPPwjcipQ3mThdI3vWxCCcC0RDAhuOWPD+kxWcygwe+zA29sCPHVvGlOTR6O65sDdn22/WT2df/7HF1m1ahUxMTEcOHCAV199lU2bNnHmzJkBjWHWarU8/vjjREREsHHjRmpqagb8/I4cOYLBYBjQ4J+bpb6+ntGjR/v0GF8nFsLN2SYwtnXy5rFWPrDP4Il1Z5n9b/tYX6KhxqJi9uzZnD9/nk8/2EK0bCIrXk9DjWv1Jzo6mtDQUGw2G3ZUXHBE8Q9bvuXl7WWckVJoU3Ts27cPcJW4Pv300+7AISgoiPT0dCorXStSVc1Wqp2hXksTFWDD4YvY7INbHehyKFwIn0GJJpHKFis2h0Kzxc7HZ+p5+YPiPocMHbvU0mfDIZUExy4ObriSIFxNBAOC2wMTI9GoZI8BgSzB1LhgUnwc4BLgp+aTX97Hj+5PR+9/5SpuQtwo1r00lx8tyUCSJJKSknjkkUd4+eWXuf/++7FYLLz//vu88sor5OXlUVNT0+c2gp+fH0888QRhYWFs2LCh10Q7T4xGI+fPn2fWrFm3bEa2zWbDZDLdtJWB4QwG6lutPPbno3xQWOvuMqgocKZBYa/9Lj4vKOXAgQPu12EymVi0aBHTpk2jqamJZcuW0abo2GnL5IQziVpnCJcsWoq7IvjUPoXzDgNz5sxh7ty5BAQEuPMRLBYL06ZNY/ny5URHR9Ph57ki42rNZhvljd7Hc/dl28laSpu7LkfAV37PnAqYbQ5+t7/M/bvd0dFBWVkZR44cYceOHXTZ+g+Gbf10XhSEgRCzCQS3mBAdv7wvhf+7rwyT2YZKwr1POT0+hB/fnTio4wbpNPz76un88ntTuNTQgU6rIi480OMJWKfTkZWVRVZWFkajkcLCQk6dOkV+fj5RUVFkZmZy1113ERjYOyjR6XSsWrWK9evXs2HDBtasWdNj6M21jh49SmBg4LDPO7ge3S2jfQ0GzGYzQUG+dYu70cHAK5+do7G9q1e1iXI5bXBfSzS56hq0Wi0dHR08++yzBAUF0dzcTEFBAV8fO85BezqdaLn6JNt9hV/gTGJytZn6v/2Njo4O94qRw+HgT3/6k/v+FufQde+7ls3h5NNvjV57JjgVqGy28vsN27DXl9HR0QG4EmQjIiII00XQ5NB6XbVwKK6SQ0G4XiIYEHoYHxnE2u9O5ERlC+VNFrQqmaz4EGJDrr/kTqdVMy4mZMD3j4iIYNGiRSxYsIDz589TWFjI7t272b17N6mpqWRmZjJu3LgeTYK6A4J169axfv161qxZ4/FEajabOXnyJDk5OT4l2d1oRqNrEt9gVgZ8fUxf2wSKogzp6kmrxcanRXV9lJ1KdKAjMn02Yc4mTCYTu3btwmKxYDabkWWZXaeqMOO9W6SEk92lNu4Pa/A4LVOv12O1WjE4Oi5n5Xl/faGBGhK9lHH2pclso6Orn6ZDikK7HET2tGlERkYSFRVFWJirodLBC038wUu+ggToNDI5SWKKoHD9bt1PQeGmUckS0+NHee1ud6PJskxqaiqpqamYzWaKioooLCxk8+bNBAYGMmnSJKZMmeI++fn7+7N69Wp3QPD973+f8PBwbHYnxZUmnE5ovHgGRVF6TV281RiNRvR6vc/9D3ydSwC9Vwbq2jo5ZFRRGTaZ9V9fYn5qBPGhvuUheFPTYsU+gOXto2cukCS7hjEVFxcjy7K7t0C9EoKEE8XLbqeCTI1D7x4YFBYWRnZ2trsroM1mw2azERagIVllodTs7/UKfPWchEG141X3lYTTTZKYkTWV+Wm9g7e7k0I5XdPG3nONPaYtuloTS7w8P8nnpF5B8EQEA8JtJSAggJkzZzJz5kxqa2spKCigsLCQw4cPExsbS2ZmJhMnTiQgIIDVq1fz9ttv89e312GJzuaNPaU0trnKJ7Wywn1pKai1t06TIU+MRqPPV/jdQ4p8TSDsnk3gdDp5t7CWrSdrXU17A+P4pLiBj75pYP64MJ6bk9ArIdRXwQPs8qfBgUqlQlEUoqOjCQgIQFEUSkpKUMkq6CenT5Zl1Go1VquVhIQEzp496+5HYNWOoknlj7HLygT7WVrUE2iw69wn3e6RyEsmG/jhILfIwgI0xIfquGSy9jl9ckqc5xUzSZJ4PjueyTF68oqNlDdZ0MgSMxNHsTQjkjGjhiY4EwQRDAi3LYPBQG5uLosWLaKkpITCwkLy8vL47LPPSEtLIzMzkyeeeIJlv9jC8aPfcPUycJdT4pNiK4/+dg9b/2kh6lt0CIvRaCQlJcWnx9hsNhwOh88rA93bAJ9928DWk64ETAVAkt1XpPvPNRHsp2bVdQ7ziR7lT0ZsMMXVrV6z5VU4mJ0Uis2ixmQyYTQa3cv9siyTHCxTYvT+vkkoRMgd7pN/QUEBAQEBZGYv5NUDdTQ06t33VUsKSVSzZu5Uvq6209TRxZjwAFZkxTLzOlr+SpLEisnRvLLfc9tsSYKcsaFEBGn7PEZ2UhjZSbdmHwzhziCCAeG2p1arSU9PJz09nba2Nk6dOkVhYSEbN26kWQrleF2wx8c5FdhzqpoPjlawYs7YG/ys+2e322lqahpUvgD41ooYLq8MANtOea/EUIC8YiOPTI4mUHt9y9MvLkzhuXUnvN4+QVVFzaUaxowZ4976OXToEJ9//jlpaWmcLy1HRzCdeB5LrCCRrFxyN02KjIzkkrGF/3WwFavSM7nSrkiUEEN5u5o/r5l0Xa/rWnPGhtJo7mJ9fpX7WUq40hSmxQXz3BAMRhKE63VrXg4JwiDp9Xqys7N54YUXePLJJzlvjbjcu80zlSzx18/P3sBnOHCNjY0oijKoSgLwrRUxuIIBqya4x5AqT2wOhTND0Ogme1w4v/veJPeWQffWg0pSmOJfxzNzx+JwOCgvL6elpYXW1lYOHTpERkYGJpOJLquZebpzqHHAVWOJpct7BxnyRWJUzWi1WuLj42ltbeWs3YDVqfKSGyCx9XgVF+rbPdx2fR7IiGLtdyfy2JRo5iaHsXhCJL9ZOp6fLUgeULMvQRhuYmVAuCNJkkRcXBxOXShOvF/pOpwK5cPw4T8UBltJMNhgQJIkFGlgJ6auQbbnvda9E6OYlxbB3uJ6qkwWQgI0zBoTwNtv/YWPivUctk3BjB+aegdfvLqDVLVCVVUVzc3NhIeH89KqVUSte4eCJi0XHaE4FJlQqZ37UgOZkjCOffsqiYiIwGQyYbVaKXNGek0SBFdA8snJWl5c5NvWzECEB2pZPjl6yI8rCENBBAPCHS0yxN+dCOaJJEHkEJRNDgej0UhQUJDPy/3Xs03gZ2tHJV3pf+/N2CGsbdeqZRbfZXD/3dxp52vtdEprulcoJDqR+dYexQV7OPPtp7krMYHJkyezbds2zKY6xkswXn3JfYx7Mh/hxIkTREVFsXjxYmpqajh48CA2U98feRKDG5wlCLc7EQwId7Tv3Z3Mlq88J2+Bq+Pd380bdwOf0cANppIAXCsDKpUKrdZ7UponNpsNlWInuK0CU2C8x374sgQTooKGpO+EN6/tvUB5s4Nr6/4VJGyoOGJPRV9+koqKChITE1m2bBl79uyhsc1KHWHYFYnNnx1C016LJMGbb74JuFY+AmU77U51r2N3cyoK0SJDXxiBRDAg3NEWZcZyd4aBr4rrcF6zOqCSJcbFhLDyO8k36dl5Vtls4WR1GydMaiYYon1u+NNdVjjQxyiKwokTJ9i1axcAj941mjyTP5XNPcvhZMk1UvnHdw9fwpvV5mBLfpXXCgMFmRYCaVWNIsTZTFVVFaVlFZx0JHJBiXL3HDjeDKGygaen+HPpm3z0ej0Gg4FvztRwhjF9ZJHAg1PEUr4w8ohgQLijybLE+z9bwEtvHOG9L0vd2wUSrkDhzy/kENDPOOAbpa3Tzu8PlFNY1eqq79ckcL5J4sxH3/Ly/CSi9H4DOo4vcwmqqqrIy8vjUk0dfvGTMDa1ooxO4l9mRrL/fCO7zzbQ2GEjWKfmnnHh5KZHEKLT9H/gQaoyWTD317EPha6ACAxBOurr6ymQxlOmhPU6wTc7/Xn1uJ3loSE0Nzdhs9l4/t4cfnfMTkWDBYeHHsE/WpCM4RbdNhKE4SQpvg6RF4TbVK3JzBff1KIoMH1cBGOj9P0/6AZxOBV+/slZyhrNva6KZQlC/TX87qEJBA0gcNm2bRttbW2sWbPG633MZjN79+7l+PHjdEZPoswvAZsTUJwgyeg0Mj+YEceCVN+mJV6vyiYLi1/5st/7LQitZ9H4ECzqEH71Ze9Ww90kFNK0Dfxk0ViysrLQaDS0WGy88mkJOwprsF1OjogZpePZeUksz4odstciCLeTW+OSSBBuAENoAN/NTrrZT8Oj45dauNDgeSqeU3H1uN9T0siyu/qfsNdX90FFUSgoKODzzz/H6XQSPTOXXTXqK538LlcTWG1O/vzVRfzUMjk3sNlNbKiOsaMDKG8we13KlyWYnhBERUUF++v8kYjtoyWxRKUczezZs91fC/HX8KuHM/hpbirlDWZ0GhXJEYHI19lVURBuZyIYEIRbwFdlph6956+lAHu+rWNWJGg0GtRqtfs/jUaDJEk0tHdx4EITx6yjCVfrqGmxEn3Vknd1dTV5eXlUVVUxefJk5t2zgJ98UgZ47yuw6Xg1c8aGIt+gEc+SJPH8/CT++5bTXm6HR6bF8ncPpQNQv62IkoLaPqsf2jvtHvMu9DoNd3lpAywII40IBgThFtDeafcaCHQzNreydu32Xl9XgIZR46nVX66KkEdTaYa/3/YNCYqRDKma1pYWWlpa8PPzIzU1FT8/Pz44cIxWa98nQ2N7F6WNZlJG9x4ZPVzunxxNXVsnr352DrjSJtnhVFiUEcnPl16ZVJgQoUfpo48EgCFYN6QTFwXhTiSCAUG4BcSE6CiqafMaEMgSJEeF8mTuk9jtdux2OzabDbvdztFaG6crr773lRNfBaOxtjZjaKskPDycwMBA2tvbaW5upkYJBv/+r4z7T+gbej/ISeT+SQY+PFFDpclMiL+GJZOjSYvumefxYGY0v9993lUj6oEswWMzrm+OgiCMBCIYEIRbwILUcHYWG73e7lRg6aQY4uJ6zq53OBX+cKYIr0v9kkRjcDK/WpPL6FE9ZzRcNFn4yQfF/T43wwCrGIZaVLCOZ+b1PTNitN6Pny4ex2/zSlwVGFfdJkswLiqIx2eNGdbnKQh3AtEUWxBuAYlhATw8yZUc6GlBe1biKGYkjOr19bImc7+zBOzIVLT1vnKOD/UnZXQA3vLmZAkmxeiJvEnBwECtmpPA//7uRBJHXymn1GlkvjdzDOuemn7LlI4Kwq1M/CsRhFvE41NjiA7W8cGpWqpbOwEIDdCwND2SpRmRHpP4uuwDqwz2Nkvguex4/jmvhC67s8cWhSxBgEbFU7fJVfX9k6PJnWSg0mSh0+YkJtSfgOucqigII4noMyAItxhFUTBZbDicEBagcU/z86TVauepzaf6TT78wyPpxHhpplPVbGVzQTVHK5pxKqCSIDsplMemxAy40ZEgCLc3EQwIwm3u/x0o41CZyWNAIEuQHhXEv+am9nsci81Be6cdvZ8anUZcVQvCSCJyBgThNveDmXFE6f16zRWSJQjWqXkhZ2CzBPw1KiKC/EQgIAgjkFgZEIQ7QEennbxiI7vPNmAy29BfniWwJD2S0IDhmyUgCMKdQQQDgiAIgjDCiW0CQRAEQRjhRDAgCIIgCCOcCAYEQRAEYYQTwYAgCIIgjHAiGBAEQRCEEU4EA4IgCIIwwolgQBAEQRBGOBEMCIIgCMIIJ4IBQRAEQRjhRDAgCIIgCCOcCAYEQRAEYYQTwYAgCIIgjHAiGBAEQRCEEU4EA4IgCIIwwolgQBAEQRBGOBEMCIIgCMIIJ4IBQRAEQRjhRDAgCIIgCCOcCAYEQRAEYYQTwYAgCIIgjHAiGBAEQRCEEe6/ADZ2RFXf3bevAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "parts = community.best_partition(G0)\n", "values = [parts.get(node) for node in G0.nodes()]\n", @@ -833,7 +1071,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -852,7 +1090,18 @@ "id": "1fRxbnx9t958", "outputId": "218dbef6-4e29-4f14-b603-6bcdce7c8878" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "24" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# community found does not reflect the circles\n", "set(parts.values())\n", @@ -861,11 +1110,96 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": { "id": "qOho3z8Ew1yb" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "54 present in circle0 found in circle11\n", + "298 present in circle0 found in circle11\n", + "97 present in circle0 found in circle11\n", + "183 present in circle0 found in circle15\n", + "173 present in circle1 found in circle16\n", + "125 present in circle4 found in circle15\n", + "55 present in circle4 found in circle15\n", + "122 present in circle4 found in circle15\n", + "280 present in circle4 found in circle15\n", + "236 present in circle4 found in circle15\n", + "69 present in circle4 found in circle15\n", + "258 present in circle4 found in circle16\n", + "23 present in circle5 found in circle15\n", + "52 present in circle6 found in circle17\n", + "93 present in circle6 found in circle19\n", + "17 present in circle6 found in circle19\n", + "137 present in circle6 found in circle19\n", + "343 present in circle6 found in circle19\n", + "326 present in circle6 found in circle19\n", + "214 present in circle6 found in circle19\n", + "115 present in circle6 found in circle19\n", + "312 present in circle6 found in circle19\n", + "41 present in circle6 found in circle19\n", + "20 present in circle6 found in circle19\n", + "282 present in circle8 found in circle20\n", + "146 present in circle9 found in circle15\n", + "54 present in circle11 found in circle0\n", + "298 present in circle11 found in circle0\n", + "97 present in circle11 found in circle0\n", + "308 present in circle11 found in circle15\n", + "183 present in circle15 found in circle0\n", + "125 present in circle15 found in circle4\n", + "55 present in circle15 found in circle4\n", + "122 present in circle15 found in circle4\n", + "280 present in circle15 found in circle4\n", + "236 present in circle15 found in circle4\n", + "69 present in circle15 found in circle4\n", + "23 present in circle15 found in circle5\n", + "146 present in circle15 found in circle9\n", + "308 present in circle15 found in circle11\n", + "251 present in circle15 found in circle16\n", + "281 present in circle15 found in circle16\n", + "135 present in circle15 found in circle16\n", + "197 present in circle15 found in circle16\n", + "36 present in circle15 found in circle16\n", + "9 present in circle15 found in circle16\n", + "309 present in circle15 found in circle16\n", + "139 present in circle15 found in circle16\n", + "127 present in circle15 found in circle16\n", + "172 present in circle15 found in circle17\n", + "294 present in circle15 found in circle17\n", + "105 present in circle15 found in circle17\n", + "173 present in circle16 found in circle1\n", + "258 present in circle16 found in circle4\n", + "251 present in circle16 found in circle15\n", + "281 present in circle16 found in circle15\n", + "135 present in circle16 found in circle15\n", + "197 present in circle16 found in circle15\n", + "36 present in circle16 found in circle15\n", + "9 present in circle16 found in circle15\n", + "309 present in circle16 found in circle15\n", + "139 present in circle16 found in circle15\n", + "127 present in circle16 found in circle15\n", + "52 present in circle17 found in circle6\n", + "172 present in circle17 found in circle15\n", + "294 present in circle17 found in circle15\n", + "105 present in circle17 found in circle15\n", + "93 present in circle19 found in circle6\n", + "17 present in circle19 found in circle6\n", + "137 present in circle19 found in circle6\n", + "343 present in circle19 found in circle6\n", + "326 present in circle19 found in circle6\n", + "214 present in circle19 found in circle6\n", + "115 present in circle19 found in circle6\n", + "312 present in circle19 found in circle6\n", + "41 present in circle19 found in circle6\n", + "20 present in circle19 found in circle6\n", + "282 present in circle20 found in circle8\n" + ] + } + ], "source": [ "# a node can be present in more than one list??\n", "for i in circles:\n", @@ -875,17 +1209,28 @@ " for n2 in circles[j]:\n", " if n1 == n2:\n", " print(n1, 'present in ',i,'found in', j)\n", - " assert(False)" + " # assert(False)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": { "cellView": "form", "id": "oo535vsIy684" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0.7368407345348218" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#@title \n", "nx.average_shortest_path_length(G0)\n", @@ -933,7 +1278,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": { "id": "baistC-ZdaRf" }, @@ -1046,7 +1391,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": { "id": "2C3TwPVTdgeM" }, @@ -1059,7 +1404,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1078,7 +1423,18 @@ "id": "oZIj_NqvVzmU", "outputId": "990227b3-7f01-4ef6-d036-9346c7ae5eca" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "{'features': array([1., 1., 1., ..., 0., 0., 0.])}" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# check features has been correctly assigned\n", "G.nodes[0]" @@ -1098,36 +1454,7 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "executionInfo": { - "elapsed": 14891, - "status": "ok", - "timestamp": 1616871410804, - "user": { - "displayName": "Aldo Marzullo", - "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GjBD_mZewcZ8LCqkD20Nku4DR5OCGFqYkxawoUjgg=s64", - "userId": "17245895923239449231" - }, - "user_tz": -60 - }, - "id": "Li-IypwmIW9V", - "outputId": "580084bf-ff08-406d-b335-7f791b93e9fe" - }, - "outputs": [], - "source": [ - "!pip install stellargraph\n", - "!pip install node2vec==0.3.3\n", - "!pip install git+https://github.com/palash1992/GEM.git" - ] - }, - { - "cell_type": "code", - "execution_count": null, + "execution_count": 33, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1146,7 +1473,29 @@ "id": "WsOOcDbfQifV", "outputId": "62d42e17-456d-4155-d91d-2bd39b79cde9" }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-06-25 20:21:13.886590: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n", + "2024-06-25 20:21:13.886605: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n", + "2024-06-25 20:21:14.774001: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory\n", + "2024-06-25 20:21:14.774018: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)\n", + "2024-06-25 20:21:14.774029: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (pelican): /proc/driver/nvidia/version does not exist\n", + "2024-06-25 20:21:14.774220: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA\n", + "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "** Sampled 8823 positive and 8823 negative edges. **\n", + "** Sampled 7941 positive and 7941 negative edges. **\n" + ] + } + ], "source": [ "from sklearn.model_selection import train_test_split\n", "from stellargraph.data import EdgeSplitter\n", @@ -1182,7 +1531,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 34, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1201,7 +1550,16 @@ "id": "47_TddSbY0RN", "outputId": "d0eb3606-649c-417c-93a3-1bdf188006c6" }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Computing transition probabilities: 100%|███████████████████████████| 4039/4039 [00:27<00:00, 145.58it/s]\n", + "Generating walks (CPU: 1): 100%|█████████████████████████████████████████| 10/10 [01:22<00:00, 8.26s/it]\n" + ] + } + ], "source": [ "from node2vec import Node2Vec\n", "from node2vec.edges import HadamardEmbedder \n", @@ -1218,7 +1576,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 35, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1237,7 +1595,17 @@ "id": "HRq-PlbKcNvq", "outputId": "61f7c1e0-ed5d-49bf-e0b3-d0092f66beff" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Precision: 0.9639303482587065\n", + "Recall: 0.9662246401450754\n", + "F1-Score: 0.9650761306390445\n" + ] + } + ], "source": [ "from sklearn.ensemble import RandomForestClassifier \n", "from sklearn import metrics \n", @@ -1251,72 +1619,35 @@ "print('F1-Score:', metrics.f1_score(labels_test, y_pred)) " ] }, - { - "cell_type": "markdown", - "metadata": { - "id": "ogTjZBNOwJ5y" - }, - "source": [ - "##### graphSAGE" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "R4Vk5GnxcWF2" - }, - "outputs": [], - "source": [ - "# graphSAGE no feats" - ] - }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": { "id": "xK_GZyC5x6eE" }, "outputs": [], "source": [ "eye = np.eye(graph_train.number_of_nodes())\n", - "fake_features = {n:eye[n] for n in G.nodes()}\n", - "nx.set_node_attributes(graph_train, fake_features, \"fake\")\n", + "features = {n: {\"fake\": eye[n], \"features\": G.nodes[n][\"features\"]} for n in G.nodes()}\n", + "nx.set_node_attributes(graph_train, features)\n", "\n", "eye = np.eye(graph_test.number_of_nodes())\n", - "fake_features = {n:eye[n] for n in G.nodes()}\n", - "nx.set_node_attributes(graph_test, fake_features, \"fake\")" + "features = {n: {\"fake\": eye[n], \"features\": G.nodes[n][\"features\"]} for n in G.nodes()}\n", + "nx.set_node_attributes(graph_test, features)" ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "executionInfo": { - "elapsed": 808, - "status": "ok", - "timestamp": 1616266963123, - "user": { - "displayName": "Aldo Marzullo", - "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GjBD_mZewcZ8LCqkD20Nku4DR5OCGFqYkxawoUjgg=s64", - "userId": "17245895923239449231" - }, - "user_tz": -60 - }, - "id": "Ntt0Mcpwy-G0", - "outputId": "be140ce5-81f3-4ba7-df33-61a1a1b1e15a" + "id": "ogTjZBNOwJ5y" }, - "outputs": [], "source": [ - "graph_train.nodes[0]" + "##### graphSAGE" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": { "id": "RGn0XYjexmy9" }, @@ -1339,7 +1670,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1358,7 +1689,23 @@ "id": "Fv96b9CTwNaP", "outputId": "f39489eb-87c5-427c-b0a5-3d93aa25d0c4" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "link_classification: using 'ip' method to combine node embeddings into edge embeddings\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/keras/optimizer_v2/adam.py:105: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", + " super(Adam, self).__init__(name, **kwargs)\n" + ] + } + ], "source": [ "from stellargraph.layer import GraphSAGE, link_classification\n", "from tensorflow import keras\n", @@ -1385,7 +1732,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 39, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1404,7 +1751,34 @@ "id": "e-7QmsWQ3AVB", "outputId": "cf9996ad-ca77-4dbb-e6cd-1c8fa78d3d26" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n", + "249/249 [==============================] - 26s 101ms/step - loss: 0.2307 - acc: 0.6123 - val_loss: 0.1914 - val_acc: 0.7301\n", + "Epoch 2/10\n", + "249/249 [==============================] - 28s 111ms/step - loss: 0.1943 - acc: 0.7320 - val_loss: 0.1823 - val_acc: 0.7474\n", + "Epoch 3/10\n", + "249/249 [==============================] - 18s 73ms/step - loss: 0.1840 - acc: 0.7549 - val_loss: 0.1781 - val_acc: 0.7605\n", + "Epoch 4/10\n", + "249/249 [==============================] - 18s 73ms/step - loss: 0.1793 - acc: 0.7669 - val_loss: 0.1760 - val_acc: 0.7640\n", + "Epoch 5/10\n", + "249/249 [==============================] - 28s 112ms/step - loss: 0.1756 - acc: 0.7791 - val_loss: 0.1737 - val_acc: 0.7777\n", + "Epoch 6/10\n", + "249/249 [==============================] - 27s 108ms/step - loss: 0.1734 - acc: 0.7866 - val_loss: 0.1730 - val_acc: 0.7832\n", + "Epoch 7/10\n", + "249/249 [==============================] - 18s 73ms/step - loss: 0.1706 - acc: 0.7950 - val_loss: 0.1723 - val_acc: 0.7834\n", + "Epoch 8/10\n", + "249/249 [==============================] - 26s 103ms/step - loss: 0.1701 - acc: 0.7971 - val_loss: 0.1721 - val_acc: 0.7877\n", + "Epoch 9/10\n", + "249/249 [==============================] - 28s 111ms/step - loss: 0.1684 - acc: 0.8024 - val_loss: 0.1721 - val_acc: 0.7904\n", + "Epoch 10/10\n", + "249/249 [==============================] - 18s 71ms/step - loss: 0.1681 - acc: 0.8020 - val_loss: 0.1715 - val_acc: 0.7922\n" + ] + } + ], "source": [ "epochs = 10\n", "history = model.fit(train_flow, epochs=epochs, validation_data=test_flow)" @@ -1412,7 +1786,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 40, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1431,7 +1805,17 @@ "id": "KIFkkB2K2HpW", "outputId": "1c60f2ab-6ce2-402d-877e-00486598e2e7" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Precision: 0.5011997046880767\n", + "Recall: 0.6839189019015237\n", + "F1-Score: 0.5784736645896575\n" + ] + } + ], "source": [ "from sklearn import metrics \n", "y_pred = np.round(model.predict(train_flow)).flatten()\n", @@ -1442,7 +1826,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1461,7 +1845,17 @@ "id": "UwClat8v0avH", "outputId": "8ff471d3-301e-42ae-f4ef-35945e7d12c7" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Precision: 0.7080003229191895\n", + "Recall: 0.9939929729117081\n", + "F1-Score: 0.8269684111268271\n" + ] + } + ], "source": [ "y_pred = np.round(model.predict(test_flow)).flatten()\n", "print('Precision:', metrics.precision_score(labels_test, y_pred)) \n", @@ -1470,19 +1864,17 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": { "id": "7J8aSb7MfkQ1" }, - "outputs": [], "source": [ - "# graphSAGE + feats" + "##### graphSAGE + feats" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 42, "metadata": { "id": "16lpkK-98W39" }, @@ -1500,7 +1892,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 43, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1519,7 +1911,49 @@ "id": "9HFwHmGq8dCD", "outputId": "d3a73f88-c4eb-44a2-e303-e7b3530b4d58" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "link_classification: using 'ip' method to combine node embeddings into edge embeddings\n", + "Epoch 1/10\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/keras/optimizer_v2/adam.py:105: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", + " super(Adam, self).__init__(name, **kwargs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "249/249 [==============================] - 17s 64ms/step - loss: 0.1756 - acc: 0.8207 - val_loss: 0.1676 - val_acc: 0.8508\n", + "Epoch 2/10\n", + "249/249 [==============================] - 15s 59ms/step - loss: 0.1714 - acc: 0.8435 - val_loss: 0.1668 - val_acc: 0.8494\n", + "Epoch 3/10\n", + "249/249 [==============================] - 10s 39ms/step - loss: 0.1692 - acc: 0.8593 - val_loss: 0.1668 - val_acc: 0.8665\n", + "Epoch 4/10\n", + "249/249 [==============================] - 10s 42ms/step - loss: 0.1683 - acc: 0.8665 - val_loss: 0.1668 - val_acc: 0.8759\n", + "Epoch 5/10\n", + "249/249 [==============================] - 10s 40ms/step - loss: 0.1673 - acc: 0.8761 - val_loss: 0.1668 - val_acc: 0.8826\n", + "Epoch 6/10\n", + "249/249 [==============================] - 10s 40ms/step - loss: 0.1670 - acc: 0.8802 - val_loss: 0.1670 - val_acc: 0.8846\n", + "Epoch 7/10\n", + "249/249 [==============================] - 14s 56ms/step - loss: 0.1666 - acc: 0.8826 - val_loss: 0.1669 - val_acc: 0.8841\n", + "Epoch 8/10\n", + "249/249 [==============================] - 16s 66ms/step - loss: 0.1664 - acc: 0.8852 - val_loss: 0.1669 - val_acc: 0.8850\n", + "Epoch 9/10\n", + "249/249 [==============================] - 16s 63ms/step - loss: 0.1661 - acc: 0.8836 - val_loss: 0.1667 - val_acc: 0.8854\n", + "Epoch 10/10\n", + "249/249 [==============================] - 10s 40ms/step - loss: 0.1660 - acc: 0.8829 - val_loss: 0.1667 - val_acc: 0.8847\n" + ] + } + ], "source": [ "layer_sizes = [20, 20]\n", "graphsage = GraphSAGE(\n", @@ -1546,7 +1980,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 44, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1565,7 +1999,17 @@ "id": "ypxwoPvL83Rr", "outputId": "76fe25d5-e08e-4d25-aae1-9a30c382455a" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Precision: 0.5021852237252862\n", + "Recall: 0.6077320236746002\n", + "F1-Score: 0.54994017434904\n" + ] + } + ], "source": [ "from sklearn import metrics \n", "y_pred = np.round(model.predict(train_flow)).flatten()\n", @@ -1576,7 +2020,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 45, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1595,7 +2039,17 @@ "id": "X8ZcWyByNvO7", "outputId": "0b75eda5-1d3c-4d22-e0f7-e777e1d63c58" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Precision: 0.8138243730915148\n", + "Recall: 0.996826476255242\n", + "F1-Score: 0.8960774325012736\n" + ] + } + ], "source": [ "y_pred = np.round(model.predict(test_flow)).flatten()\n", "print('Precision:', metrics.precision_score(labels_test, y_pred)) \n", @@ -1614,7 +2068,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 46, "metadata": { "executionInfo": { "elapsed": 10866, @@ -1674,7 +2128,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 47, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1693,7 +2147,17 @@ "id": "E5XIoZ53q4_q", "outputId": "d0184893-a242-45dd-e9d8-38e6d4b1f3e6" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Precision: 0.964245810055866\n", + "Recall: 0.9781253541879179\n", + "F1-Score: 0.9711359927980644\n" + ] + } + ], "source": [ "from sklearn.ensemble import RandomForestClassifier \n", "from sklearn import metrics \n", @@ -1726,9 +2190,9 @@ "provenance": [] }, "kernelspec": { - "display_name": "Python 3", + "display_name": "chap6", "language": "python", - "name": "python3" + "name": "chap6" }, "language_info": { "codemirror_mode": { @@ -1740,9 +2204,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.0" + "version": "3.8.14" } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 4 } diff --git a/Chapter06/poetry.lock b/Chapter06/poetry.lock new file mode 100644 index 0000000..c1d6ed4 --- /dev/null +++ b/Chapter06/poetry.lock @@ -0,0 +1,2316 @@ +# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. + +[[package]] +name = "absl-py" +version = "2.1.0" +description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py." +optional = false +python-versions = ">=3.7" +files = [ + {file = "absl-py-2.1.0.tar.gz", hash = "sha256:7820790efbb316739cde8b4e19357243fc3608a152024288513dd968d7d959ff"}, + {file = "absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308"}, +] + +[[package]] +name = "appnope" +version = "0.1.4" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = ">=3.6" +files = [ + {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, + {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, +] + +[[package]] +name = "asttokens" +version = "2.4.1" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = "*" +files = [ + {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, + {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, +] + +[package.dependencies] +six = ">=1.12.0" + +[package.extras] +astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] +test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] + +[[package]] +name = "astunparse" +version = "1.6.3" +description = "An AST unparser for Python" +optional = false +python-versions = "*" +files = [ + {file = "astunparse-1.6.3-py2.py3-none-any.whl", hash = "sha256:c2652417f2c8b5bb325c885ae329bdf3f86424075c4fd1a128674bc6fba4b8e8"}, + {file = "astunparse-1.6.3.tar.gz", hash = "sha256:5ad93a8456f0d084c3456d059fd9a92cce667963232cbf763eac3bc5b7940872"}, +] + +[package.dependencies] +six = ">=1.6.1,<2.0" +wheel = ">=0.23.0,<1.0" + +[[package]] +name = "backcall" +version = "0.2.0" +description = "Specifications for callback functions passed in to an API" +optional = false +python-versions = "*" +files = [ + {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, + {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, +] + +[[package]] +name = "cachetools" +version = "5.3.3" +description = "Extensible memoizing collections and decorators" +optional = false +python-versions = ">=3.7" +files = [ + {file = "cachetools-5.3.3-py3-none-any.whl", hash = "sha256:0abad1021d3f8325b2fc1d2e9c8b9c9d57b04c3932657a72465447332c24d945"}, + {file = "cachetools-5.3.3.tar.gz", hash = "sha256:ba29e2dfa0b8b556606f097407ed1aa62080ee108ab0dc5ec9d6a723a007d105"}, +] + +[[package]] +name = "certifi" +version = "2024.6.2" +description = "Python package for providing Mozilla's CA Bundle." +optional = false +python-versions = ">=3.6" +files = [ + {file = "certifi-2024.6.2-py3-none-any.whl", hash = "sha256:ddc6c8ce995e6987e7faf5e3f1b02b302836a0e5d98ece18392cb1a36c72ad56"}, + {file = "certifi-2024.6.2.tar.gz", hash = "sha256:3cd43f1c6fa7dedc5899d69d3ad0398fd018ad1a17fba83ddaf78aa46c747516"}, +] + +[[package]] +name = "cffi" +version = "1.16.0" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088"}, + {file = "cffi-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614"}, + {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743"}, + {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d"}, + {file = "cffi-1.16.0-cp310-cp310-win32.whl", hash = "sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a"}, + {file = "cffi-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1"}, + {file = "cffi-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404"}, + {file = "cffi-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e"}, + {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc"}, + {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb"}, + {file = "cffi-1.16.0-cp311-cp311-win32.whl", hash = "sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab"}, + {file = "cffi-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba"}, + {file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"}, + {file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"}, + {file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"}, + {file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"}, + {file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"}, + {file = "cffi-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324"}, + {file = "cffi-1.16.0-cp38-cp38-win32.whl", hash = "sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a"}, + {file = "cffi-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36"}, + {file = "cffi-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed"}, + {file = "cffi-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098"}, + {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000"}, + {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe"}, + {file = "cffi-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4"}, + {file = "cffi-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8"}, + {file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"}, +] + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "chardet" +version = "5.2.0" +description = "Universal encoding detector for Python 3" +optional = false +python-versions = ">=3.7" +files = [ + {file = "chardet-5.2.0-py3-none-any.whl", hash = "sha256:e1cf59446890a00105fe7b7912492ea04b6e6f06d4b742b2c788469e34c82970"}, + {file = "chardet-5.2.0.tar.gz", hash = "sha256:1b3b6ff479a8c414bc3fa2c0852995695c4a026dcd6d0633b2dd092ca39c1cf7"}, +] + +[[package]] +name = "charset-normalizer" +version = "3.3.2" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, + {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, +] + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "comm" +version = "0.2.2" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +files = [ + {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, + {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "cycler" +version = "0.12.1" +description = "Composable style cycles" +optional = false +python-versions = ">=3.8" +files = [ + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, +] + +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "cython" +version = "0.29.14" +description = "The Cython compiler for writing C extensions for the Python language." +optional = false +python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "Cython-0.29.14-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:47e5e1502d52ef03387cf9d3b3241007961a84a466e58a3b74028e1dd4957f8c"}, + {file = "Cython-0.29.14-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:1dcdaa319558eb924294a554dcf6c12383ec947acc7e779e8d3622409a7f7d28"}, + {file = "Cython-0.29.14-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:7bc18fc5a170f2c1cef5387a3d997c28942918bbee0f700e73fd2178ee8d474d"}, + {file = "Cython-0.29.14-cp27-cp27m-win32.whl", hash = "sha256:89458b49976b1dee5d89ab4ac943da3717b4292bf624367e862e4ee172fcce99"}, + {file = "Cython-0.29.14-cp27-cp27m-win_amd64.whl", hash = "sha256:c0b24bfe3431b3cb7ced323bca813dbd13aca973a1475b512d3331fd0de8ec60"}, + {file = "Cython-0.29.14-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7f89eff20e4a7a64b55210dac17aea711ed8a3f2e78f2ff784c0e984302583dd"}, + {file = "Cython-0.29.14-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:6c53338c1811f8c6d7f8cb7abd874810b15045e719e8207f957035c9177b4213"}, + {file = "Cython-0.29.14-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:521340844cf388d109ceb61397f3fd5250ccb622a1a8e93559e8de76c80940a9"}, + {file = "Cython-0.29.14-cp34-cp34m-manylinux1_i686.whl", hash = "sha256:75c2dda47dcc3c77449712b1417bb6b89ec3b7b02e18c64262494dceffdf455e"}, + {file = "Cython-0.29.14-cp34-cp34m-manylinux1_x86_64.whl", hash = "sha256:05eb79efc8029d487251c8a2702a909a8ba33c332e06d2f3980866541bd81253"}, + {file = "Cython-0.29.14-cp34-cp34m-win32.whl", hash = "sha256:1fc5bdda28f25fec44e4721677458aa509d743cd350862270309d61aa148d6ff"}, + {file = "Cython-0.29.14-cp34-cp34m-win_amd64.whl", hash = "sha256:0c70e842e52e2f50cc43bad43b5e5bc515f30821a374e544abb0e0746f2350ff"}, + {file = "Cython-0.29.14-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:094d28a34c3fa992ae02aea1edbe6ff89b3cc5870b6ee38b5baeb805dc57b013"}, + {file = "Cython-0.29.14-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:280573a01d9348d44a42d6a9c651d9f7eb1fe9217df72555b2a118f902996a10"}, + {file = "Cython-0.29.14-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:773c5a98e463b52f7e8197254b39b703a5ea1972aef3a94b3b921515d77dd041"}, + {file = "Cython-0.29.14-cp35-cp35m-win32.whl", hash = "sha256:986f871c0fa649b293061236b93782d25c293a8dd8117c7ba05f8a61bdc261ae"}, + {file = "Cython-0.29.14-cp35-cp35m-win_amd64.whl", hash = "sha256:78c3068dcba300d473fef57cdf523e34b37de522f5a494ef9ee1ac9b4b8bbe3f"}, + {file = "Cython-0.29.14-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:f3818e578e687cdb21dc4aa4a3bc6278c656c9c393e9eda14dd04943f478863d"}, + {file = "Cython-0.29.14-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:bb487881608ebd293592553c618f0c83316f4f13a64cb18605b1d2fb9fd3da3e"}, + {file = "Cython-0.29.14-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:03f6bbb380ad0acb744fb06e42996ea217e9d00016ca0ff6f2e7d60f580d0360"}, + {file = "Cython-0.29.14-cp36-cp36m-win32.whl", hash = "sha256:b8ab3ab38afc47d8f4fe629b836243544351cef681b6bdb1dc869028d6fdcbfb"}, + {file = "Cython-0.29.14-cp36-cp36m-win_amd64.whl", hash = "sha256:298ceca7b0f0da4205fcb0b7c9ac9e120e2dafffd5019ba1618e84ef89434b5a"}, + {file = "Cython-0.29.14-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:fe666645493d72712c46e4fbe8bec094b06aec3c337400479e9704439c9d9586"}, + {file = "Cython-0.29.14-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:4074a8bff0040035673cc6dd365a762476d6bff4d03d8ce6904e3e53f9a25dc8"}, + {file = "Cython-0.29.14-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:a14aa436586c41633339415de82a41164691d02d3e661038da533be5d40794a5"}, + {file = "Cython-0.29.14-cp37-cp37m-win32.whl", hash = "sha256:41e7068e95fbf9ec94b41437f989caf9674135e770a39cdb9c00de459bafd1bc"}, + {file = "Cython-0.29.14-cp37-cp37m-win_amd64.whl", hash = "sha256:05e8cfd3a3a6087aec49a1ae08a89171db991956209406d1e5576f9db70ece52"}, + {file = "Cython-0.29.14-cp38-cp38-manylinux1_i686.whl", hash = "sha256:e8fab9911fd2fa8e5af407057cb8bdf87762f983cba483fa3234be20a9a0af77"}, + {file = "Cython-0.29.14-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:d4039bb7f234ad32267c55e72fd49fb56078ea102f9d9d8559f6ec34d4887630"}, + {file = "Cython-0.29.14-cp38-cp38-win32.whl", hash = "sha256:c7894c06205166d360ab2915ae306d1f7403e9ce3d3aaeff4095eaf98e42ce66"}, + {file = "Cython-0.29.14-cp38-cp38-win_amd64.whl", hash = "sha256:a0f495a4fe5278aab278feee35e6102efecde5176a8a74dd28c28e3fc5c8d7c7"}, + {file = "Cython-0.29.14.tar.gz", hash = "sha256:e4d6bb8703d0319eb04b7319b12ea41580df44fd84d83ccda13ea463c6801414"}, +] + +[[package]] +name = "debugpy" +version = "1.8.1" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "debugpy-1.8.1-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:3bda0f1e943d386cc7a0e71bfa59f4137909e2ed947fb3946c506e113000f741"}, + {file = "debugpy-1.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dda73bf69ea479c8577a0448f8c707691152e6c4de7f0c4dec5a4bc11dee516e"}, + {file = "debugpy-1.8.1-cp310-cp310-win32.whl", hash = "sha256:3a79c6f62adef994b2dbe9fc2cc9cc3864a23575b6e387339ab739873bea53d0"}, + {file = "debugpy-1.8.1-cp310-cp310-win_amd64.whl", hash = "sha256:7eb7bd2b56ea3bedb009616d9e2f64aab8fc7000d481faec3cd26c98a964bcdd"}, + {file = "debugpy-1.8.1-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:016a9fcfc2c6b57f939673c874310d8581d51a0fe0858e7fac4e240c5eb743cb"}, + {file = "debugpy-1.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd97ed11a4c7f6d042d320ce03d83b20c3fb40da892f994bc041bbc415d7a099"}, + {file = "debugpy-1.8.1-cp311-cp311-win32.whl", hash = "sha256:0de56aba8249c28a300bdb0672a9b94785074eb82eb672db66c8144fff673146"}, + {file = "debugpy-1.8.1-cp311-cp311-win_amd64.whl", hash = "sha256:1a9fe0829c2b854757b4fd0a338d93bc17249a3bf69ecf765c61d4c522bb92a8"}, + {file = "debugpy-1.8.1-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:3ebb70ba1a6524d19fa7bb122f44b74170c447d5746a503e36adc244a20ac539"}, + {file = "debugpy-1.8.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2e658a9630f27534e63922ebf655a6ab60c370f4d2fc5c02a5b19baf4410ace"}, + {file = "debugpy-1.8.1-cp312-cp312-win32.whl", hash = "sha256:caad2846e21188797a1f17fc09c31b84c7c3c23baf2516fed5b40b378515bbf0"}, + {file = "debugpy-1.8.1-cp312-cp312-win_amd64.whl", hash = "sha256:edcc9f58ec0fd121a25bc950d4578df47428d72e1a0d66c07403b04eb93bcf98"}, + {file = "debugpy-1.8.1-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:7a3afa222f6fd3d9dfecd52729bc2e12c93e22a7491405a0ecbf9e1d32d45b39"}, + {file = "debugpy-1.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d915a18f0597ef685e88bb35e5d7ab968964b7befefe1aaea1eb5b2640b586c7"}, + {file = "debugpy-1.8.1-cp38-cp38-win32.whl", hash = "sha256:92116039b5500633cc8d44ecc187abe2dfa9b90f7a82bbf81d079fcdd506bae9"}, + {file = "debugpy-1.8.1-cp38-cp38-win_amd64.whl", hash = "sha256:e38beb7992b5afd9d5244e96ad5fa9135e94993b0c551ceebf3fe1a5d9beb234"}, + {file = "debugpy-1.8.1-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:bfb20cb57486c8e4793d41996652e5a6a885b4d9175dd369045dad59eaacea42"}, + {file = "debugpy-1.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efd3fdd3f67a7e576dd869c184c5dd71d9aaa36ded271939da352880c012e703"}, + {file = "debugpy-1.8.1-cp39-cp39-win32.whl", hash = "sha256:58911e8521ca0c785ac7a0539f1e77e0ce2df753f786188f382229278b4cdf23"}, + {file = "debugpy-1.8.1-cp39-cp39-win_amd64.whl", hash = "sha256:6df9aa9599eb05ca179fb0b810282255202a66835c6efb1d112d21ecb830ddd3"}, + {file = "debugpy-1.8.1-py2.py3-none-any.whl", hash = "sha256:28acbe2241222b87e255260c76741e1fbf04fdc3b6d094fcf57b6c6f75ce1242"}, + {file = "debugpy-1.8.1.zip", hash = "sha256:f696d6be15be87aef621917585f9bb94b1dc9e8aced570db1b8a6fc14e8f9b42"}, +] + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +optional = false +python-versions = ">=3.5" +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] + +[[package]] +name = "executing" +version = "2.0.1" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.5" +files = [ + {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, + {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + +[[package]] +name = "flatbuffers" +version = "2.0.7" +description = "The FlatBuffers serialization format for Python" +optional = false +python-versions = "*" +files = [ + {file = "flatbuffers-2.0.7-py2.py3-none-any.whl", hash = "sha256:71e135d533be527192819aaab757c5e3d109cb10fbb01e687f6bdb7a61ad39d1"}, + {file = "flatbuffers-2.0.7.tar.gz", hash = "sha256:0ae7d69c5b82bf41962ca5fde9cc43033bc9501311d975fd5a25e8a7d29c1245"}, +] + +[[package]] +name = "gast" +version = "0.4.0" +description = "Python AST that abstracts the underlying Python version" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "gast-0.4.0-py3-none-any.whl", hash = "sha256:b7adcdd5adbebf1adf17378da5ba3f543684dbec47b1cda1f3997e573cd542c4"}, + {file = "gast-0.4.0.tar.gz", hash = "sha256:40feb7b8b8434785585ab224d1568b857edb18297e5a3047f1ba012bc83b42c1"}, +] + +[[package]] +name = "gensim" +version = "3.8.3" +description = "Python framework for fast Vector Space Modelling" +optional = false +python-versions = "*" +files = [ + {file = "gensim-3.8.3-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:61eed1d6b5fbe6dda0586ea447ebc2dc7890a7f70c2ed953d5abc3fe3cfb94bb"}, + {file = "gensim-3.8.3-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:3af62709369331c85552fd26caa21504baa64accc426dc094172f5c688750013"}, + {file = "gensim-3.8.3-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:8ff471921b3b10ffb3ae6cbb598dd9c07d9dc030dee5aa167e7682b549c42f87"}, + {file = "gensim-3.8.3-cp27-cp27m-win32.whl", hash = "sha256:440700e29b494bc2e1d52e14b69a821f46ab09ecf85cf36c8988f18e1d6c7a8b"}, + {file = "gensim-3.8.3-cp27-cp27m-win_amd64.whl", hash = "sha256:f8ea67bf8c47ee55cb1b32c97fa1474b7d6d22959dd8097c019a5d9c9df34f5f"}, + {file = "gensim-3.8.3-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7a90549dfc8ee3822fcad6da957de07d927e4e90ef42b3699543dee35ab2da13"}, + {file = "gensim-3.8.3-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:7629b33cf35f672efdd5269381f7e301958ee2638f27dfc63b80c5bfeaa827d3"}, + {file = "gensim-3.8.3-cp35-cp35m-macosx_10_9_intel.whl", hash = "sha256:6711b6d3a0007530ee7de7adc30a4c48a1d26ec6312ac50e1d1e0a1d54f9de5b"}, + {file = "gensim-3.8.3-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:ef2ddeceff482aee17c1e185f63bf027c8de8f595fdd9fd2d2503de96008f3b7"}, + {file = "gensim-3.8.3-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:41dcf6ecdc9acc657157967c791b8cbaba90ee6391f64efd28339b72f5e0c327"}, + {file = "gensim-3.8.3-cp35-cp35m-win32.whl", hash = "sha256:685a7657278161628821c8f873c5d7d2ffc0c28866648e39f76b450e4c7d5390"}, + {file = "gensim-3.8.3-cp35-cp35m-win_amd64.whl", hash = "sha256:b61a7c841a752c84b685674aa0d610289faad38795b325176481abe19b487e98"}, + {file = "gensim-3.8.3-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a61179df454a0d4b06a111c4ede0536f61c8121b4c0d0d02d23560a2fd4b3aff"}, + {file = "gensim-3.8.3-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:cc387d0d8bddbf3609ab95b3453296e4c9ff92c35e9799a17d86b1571d77a5fc"}, + {file = "gensim-3.8.3-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:b36e6330471061cfd78aad751e24c6b4f56d575697af0fbab42655128927d296"}, + {file = "gensim-3.8.3-cp36-cp36m-win32.whl", hash = "sha256:1e3d66c2eec494376fc599701d9c2868549aed6e93e47177e39217f0188e2d88"}, + {file = "gensim-3.8.3-cp36-cp36m-win_amd64.whl", hash = "sha256:91fa62d61b21f1878f140b10520f9de4a26a52672fbe407edfc7e09ca2eff235"}, + {file = "gensim-3.8.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:637fc5969f3cef4b7c8fd3e78e31ef09565c5566d5ceabf076b4170eb6444a80"}, + {file = "gensim-3.8.3-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:22f45fd239cacd0e3715ac447a2c8a5eea02e730ec1f701c55b359e9298e63a8"}, + {file = "gensim-3.8.3-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:d79370f78e9013b9d1e867c85ecc678d46a7ae0f01a8ca29e8f4291e5373b170"}, + {file = "gensim-3.8.3-cp37-cp37m-win32.whl", hash = "sha256:9c214b341f5304b906c79844e2787c13b46505df9dc70afca79a9a7dc0894478"}, + {file = "gensim-3.8.3-cp37-cp37m-win_amd64.whl", hash = "sha256:fe98277a7b3b4987b40c928056bbaae1d0715022cf27bba89d05cd0d4fe51a84"}, + {file = "gensim-3.8.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a47903d104469a7a8b6f22ad5ef74681b19c4f4b71ff2c2893271b53161a43e4"}, + {file = "gensim-3.8.3-cp38-cp38-manylinux1_i686.whl", hash = "sha256:05bfc02e102a34c9c795095b688b1b4aaa2529c624821368c9c3ea6a16536f77"}, + {file = "gensim-3.8.3-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:a8807ebf324dd11e1298a91a92d6e57c7bdabb91d0d5240bf1efa0c0eacd86f0"}, + {file = "gensim-3.8.3-cp38-cp38-win32.whl", hash = "sha256:90115d12ee545c21cc75521ef1bb3dd66aae8a378e9c2eb029c9f22df173c125"}, + {file = "gensim-3.8.3-cp38-cp38-win_amd64.whl", hash = "sha256:4e34cf2e50f3eab3e303da46089ea4972567bf216e28f7535ada155770784ac8"}, + {file = "gensim-3.8.3.tar.gz", hash = "sha256:786adb0571f75114e9c5f7a31dd2e6eb39a9791f22c8757621545e2ded3ea367"}, +] + +[package.dependencies] +Cython = "0.29.14" +numpy = ">=1.11.3" +scipy = ">=0.18.1" +six = ">=1.5.0" +smart-open = ">=1.8.1" + +[package.extras] +distributed = ["Pyro4 (>=4.27)"] +docs = ["Morfessor (==2.0.2a4)", "Pyro4", "Pyro4 (>=4.27)", "annoy", "cython", "matplotlib", "memory-profiler", "mock", "nltk", "nmslib", "pandas", "plotly", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "sphinx (<=2.4.4)", "sphinx-gallery", "sphinxcontrib-napoleon", "sphinxcontrib.programoutput", "statsmodels", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test-win = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] + +[[package]] +name = "google-auth" +version = "2.30.0" +description = "Google Authentication Library" +optional = false +python-versions = ">=3.7" +files = [ + {file = "google-auth-2.30.0.tar.gz", hash = "sha256:ab630a1320f6720909ad76a7dbdb6841cdf5c66b328d690027e4867bdfb16688"}, + {file = "google_auth-2.30.0-py2.py3-none-any.whl", hash = "sha256:8df7da660f62757388b8a7f249df13549b3373f24388cb5d2f1dd91cc18180b5"}, +] + +[package.dependencies] +cachetools = ">=2.0.0,<6.0" +pyasn1-modules = ">=0.2.1" +rsa = ">=3.1.4,<5" + +[package.extras] +aiohttp = ["aiohttp (>=3.6.2,<4.0.0.dev0)", "requests (>=2.20.0,<3.0.0.dev0)"] +enterprise-cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"] +pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] +reauth = ["pyu2f (>=0.1.5)"] +requests = ["requests (>=2.20.0,<3.0.0.dev0)"] + +[[package]] +name = "google-auth-oauthlib" +version = "1.0.0" +description = "Google Authentication Library" +optional = false +python-versions = ">=3.6" +files = [ + {file = "google-auth-oauthlib-1.0.0.tar.gz", hash = "sha256:e375064964820b47221a7e1b7ee1fd77051b6323c3f9e3e19785f78ab67ecfc5"}, + {file = "google_auth_oauthlib-1.0.0-py2.py3-none-any.whl", hash = "sha256:95880ca704928c300f48194d1770cf5b1462835b6e49db61445a520f793fd5fb"}, +] + +[package.dependencies] +google-auth = ">=2.15.0" +requests-oauthlib = ">=0.7.0" + +[package.extras] +tool = ["click (>=6.0.0)"] + +[[package]] +name = "google-pasta" +version = "0.2.0" +description = "pasta is an AST-based Python refactoring library" +optional = false +python-versions = "*" +files = [ + {file = "google-pasta-0.2.0.tar.gz", hash = "sha256:c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e"}, + {file = "google_pasta-0.2.0-py2-none-any.whl", hash = "sha256:4612951da876b1a10fe3960d7226f0c7682cf901e16ac06e473b267a5afa8954"}, + {file = "google_pasta-0.2.0-py3-none-any.whl", hash = "sha256:b32482794a366b5366a32c92a9a9201b107821889935a02b3e51f6b432ea84ed"}, +] + +[package.dependencies] +six = "*" + +[[package]] +name = "grpcio" +version = "1.64.1" +description = "HTTP/2-based RPC framework" +optional = false +python-versions = ">=3.8" +files = [ + {file = "grpcio-1.64.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:55697ecec192bc3f2f3cc13a295ab670f51de29884ca9ae6cd6247df55df2502"}, + {file = "grpcio-1.64.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:3b64ae304c175671efdaa7ec9ae2cc36996b681eb63ca39c464958396697daff"}, + {file = "grpcio-1.64.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:bac71b4b28bc9af61efcdc7630b166440bbfbaa80940c9a697271b5e1dabbc61"}, + {file = "grpcio-1.64.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6c024ffc22d6dc59000faf8ad781696d81e8e38f4078cb0f2630b4a3cf231a90"}, + {file = "grpcio-1.64.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7cd5c1325f6808b8ae31657d281aadb2a51ac11ab081ae335f4f7fc44c1721d"}, + {file = "grpcio-1.64.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:0a2813093ddb27418a4c99f9b1c223fab0b053157176a64cc9db0f4557b69bd9"}, + {file = "grpcio-1.64.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2981c7365a9353f9b5c864595c510c983251b1ab403e05b1ccc70a3d9541a73b"}, + {file = "grpcio-1.64.1-cp310-cp310-win32.whl", hash = "sha256:1262402af5a511c245c3ae918167eca57342c72320dffae5d9b51840c4b2f86d"}, + {file = "grpcio-1.64.1-cp310-cp310-win_amd64.whl", hash = "sha256:19264fc964576ddb065368cae953f8d0514ecc6cb3da8903766d9fb9d4554c33"}, + {file = "grpcio-1.64.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:58b1041e7c870bb30ee41d3090cbd6f0851f30ae4eb68228955d973d3efa2e61"}, + {file = "grpcio-1.64.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:bbc5b1d78a7822b0a84c6f8917faa986c1a744e65d762ef6d8be9d75677af2ca"}, + {file = "grpcio-1.64.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:5841dd1f284bd1b3d8a6eca3a7f062b06f1eec09b184397e1d1d43447e89a7ae"}, + {file = "grpcio-1.64.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8caee47e970b92b3dd948371230fcceb80d3f2277b3bf7fbd7c0564e7d39068e"}, + {file = "grpcio-1.64.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:73819689c169417a4f978e562d24f2def2be75739c4bed1992435d007819da1b"}, + {file = "grpcio-1.64.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6503b64c8b2dfad299749cad1b595c650c91e5b2c8a1b775380fcf8d2cbba1e9"}, + {file = "grpcio-1.64.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1de403fc1305fd96cfa75e83be3dee8538f2413a6b1685b8452301c7ba33c294"}, + {file = "grpcio-1.64.1-cp311-cp311-win32.whl", hash = "sha256:d4d29cc612e1332237877dfa7fe687157973aab1d63bd0f84cf06692f04c0367"}, + {file = "grpcio-1.64.1-cp311-cp311-win_amd64.whl", hash = "sha256:5e56462b05a6f860b72f0fa50dca06d5b26543a4e88d0396259a07dc30f4e5aa"}, + {file = "grpcio-1.64.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:4657d24c8063e6095f850b68f2d1ba3b39f2b287a38242dcabc166453e950c59"}, + {file = "grpcio-1.64.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:62b4e6eb7bf901719fce0ca83e3ed474ae5022bb3827b0a501e056458c51c0a1"}, + {file = "grpcio-1.64.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:ee73a2f5ca4ba44fa33b4d7d2c71e2c8a9e9f78d53f6507ad68e7d2ad5f64a22"}, + {file = "grpcio-1.64.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:198908f9b22e2672a998870355e226a725aeab327ac4e6ff3a1399792ece4762"}, + {file = "grpcio-1.64.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39b9d0acaa8d835a6566c640f48b50054f422d03e77e49716d4c4e8e279665a1"}, + {file = "grpcio-1.64.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:5e42634a989c3aa6049f132266faf6b949ec2a6f7d302dbb5c15395b77d757eb"}, + {file = "grpcio-1.64.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b1a82e0b9b3022799c336e1fc0f6210adc019ae84efb7321d668129d28ee1efb"}, + {file = "grpcio-1.64.1-cp312-cp312-win32.whl", hash = "sha256:55260032b95c49bee69a423c2f5365baa9369d2f7d233e933564d8a47b893027"}, + {file = "grpcio-1.64.1-cp312-cp312-win_amd64.whl", hash = "sha256:c1a786ac592b47573a5bb7e35665c08064a5d77ab88a076eec11f8ae86b3e3f6"}, + {file = "grpcio-1.64.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:a011ac6c03cfe162ff2b727bcb530567826cec85eb8d4ad2bfb4bd023287a52d"}, + {file = "grpcio-1.64.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:4d6dab6124225496010bd22690f2d9bd35c7cbb267b3f14e7a3eb05c911325d4"}, + {file = "grpcio-1.64.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:a5e771d0252e871ce194d0fdcafd13971f1aae0ddacc5f25615030d5df55c3a2"}, + {file = "grpcio-1.64.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2c3c1b90ab93fed424e454e93c0ed0b9d552bdf1b0929712b094f5ecfe7a23ad"}, + {file = "grpcio-1.64.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20405cb8b13fd779135df23fabadc53b86522d0f1cba8cca0e87968587f50650"}, + {file = "grpcio-1.64.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:0cc79c982ccb2feec8aad0e8fb0d168bcbca85bc77b080d0d3c5f2f15c24ea8f"}, + {file = "grpcio-1.64.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:a3a035c37ce7565b8f4f35ff683a4db34d24e53dc487e47438e434eb3f701b2a"}, + {file = "grpcio-1.64.1-cp38-cp38-win32.whl", hash = "sha256:1257b76748612aca0f89beec7fa0615727fd6f2a1ad580a9638816a4b2eb18fd"}, + {file = "grpcio-1.64.1-cp38-cp38-win_amd64.whl", hash = "sha256:0a12ddb1678ebc6a84ec6b0487feac020ee2b1659cbe69b80f06dbffdb249122"}, + {file = "grpcio-1.64.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:75dbbf415026d2862192fe1b28d71f209e2fd87079d98470db90bebe57b33179"}, + {file = "grpcio-1.64.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e3d9f8d1221baa0ced7ec7322a981e28deb23749c76eeeb3d33e18b72935ab62"}, + {file = "grpcio-1.64.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:5f8b75f64d5d324c565b263c67dbe4f0af595635bbdd93bb1a88189fc62ed2e5"}, + {file = "grpcio-1.64.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c84ad903d0d94311a2b7eea608da163dace97c5fe9412ea311e72c3684925602"}, + {file = "grpcio-1.64.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:940e3ec884520155f68a3b712d045e077d61c520a195d1a5932c531f11883489"}, + {file = "grpcio-1.64.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f10193c69fc9d3d726e83bbf0f3d316f1847c3071c8c93d8090cf5f326b14309"}, + {file = "grpcio-1.64.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ac15b6c2c80a4d1338b04d42a02d376a53395ddf0ec9ab157cbaf44191f3ffdd"}, + {file = "grpcio-1.64.1-cp39-cp39-win32.whl", hash = "sha256:03b43d0ccf99c557ec671c7dede64f023c7da9bb632ac65dbc57f166e4970040"}, + {file = "grpcio-1.64.1-cp39-cp39-win_amd64.whl", hash = "sha256:ed6091fa0adcc7e4ff944090cf203a52da35c37a130efa564ded02b7aff63bcd"}, + {file = "grpcio-1.64.1.tar.gz", hash = "sha256:8d51dd1c59d5fa0f34266b80a3805ec29a1f26425c2a54736133f6d87fc4968a"}, +] + +[package.extras] +protobuf = ["grpcio-tools (>=1.64.1)"] + +[[package]] +name = "h5py" +version = "3.11.0" +description = "Read and write HDF5 files from Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "h5py-3.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1625fd24ad6cfc9c1ccd44a66dac2396e7ee74940776792772819fc69f3a3731"}, + {file = "h5py-3.11.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c072655ad1d5fe9ef462445d3e77a8166cbfa5e599045f8aa3c19b75315f10e5"}, + {file = "h5py-3.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77b19a40788e3e362b54af4dcf9e6fde59ca016db2c61360aa30b47c7b7cef00"}, + {file = "h5py-3.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:ef4e2f338fc763f50a8113890f455e1a70acd42a4d083370ceb80c463d803972"}, + {file = "h5py-3.11.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bbd732a08187a9e2a6ecf9e8af713f1d68256ee0f7c8b652a32795670fb481ba"}, + {file = "h5py-3.11.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75bd7b3d93fbeee40860fd70cdc88df4464e06b70a5ad9ce1446f5f32eb84007"}, + {file = "h5py-3.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52c416f8eb0daae39dabe71415cb531f95dce2d81e1f61a74537a50c63b28ab3"}, + {file = "h5py-3.11.0-cp311-cp311-win_amd64.whl", hash = "sha256:083e0329ae534a264940d6513f47f5ada617da536d8dccbafc3026aefc33c90e"}, + {file = "h5py-3.11.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a76cae64080210389a571c7d13c94a1a6cf8cb75153044fd1f822a962c97aeab"}, + {file = "h5py-3.11.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f3736fe21da2b7d8a13fe8fe415f1272d2a1ccdeff4849c1421d2fb30fd533bc"}, + {file = "h5py-3.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa6ae84a14103e8dc19266ef4c3e5d7c00b68f21d07f2966f0ca7bdb6c2761fb"}, + {file = "h5py-3.11.0-cp312-cp312-win_amd64.whl", hash = "sha256:21dbdc5343f53b2e25404673c4f00a3335aef25521bd5fa8c707ec3833934892"}, + {file = "h5py-3.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:754c0c2e373d13d6309f408325343b642eb0f40f1a6ad21779cfa9502209e150"}, + {file = "h5py-3.11.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:731839240c59ba219d4cb3bc5880d438248533366f102402cfa0621b71796b62"}, + {file = "h5py-3.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ec9df3dd2018904c4cc06331951e274f3f3fd091e6d6cc350aaa90fa9b42a76"}, + {file = "h5py-3.11.0-cp38-cp38-win_amd64.whl", hash = "sha256:55106b04e2c83dfb73dc8732e9abad69d83a436b5b82b773481d95d17b9685e1"}, + {file = "h5py-3.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f4e025e852754ca833401777c25888acb96889ee2c27e7e629a19aee288833f0"}, + {file = "h5py-3.11.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6c4b760082626120031d7902cd983d8c1f424cdba2809f1067511ef283629d4b"}, + {file = "h5py-3.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67462d0669f8f5459529de179f7771bd697389fcb3faab54d63bf788599a48ea"}, + {file = "h5py-3.11.0-cp39-cp39-win_amd64.whl", hash = "sha256:d9c944d364688f827dc889cf83f1fca311caf4fa50b19f009d1f2b525edd33a3"}, + {file = "h5py-3.11.0.tar.gz", hash = "sha256:7b7e8f78072a2edec87c9836f25f34203fd492a4475709a18b417a33cfb21fa9"}, +] + +[package.dependencies] +numpy = ">=1.17.3" + +[[package]] +name = "idna" +version = "3.7" +description = "Internationalized Domain Names in Applications (IDNA)" +optional = false +python-versions = ">=3.5" +files = [ + {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, + {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, +] + +[[package]] +name = "importlib-metadata" +version = "7.2.1" +description = "Read metadata from Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "importlib_metadata-7.2.1-py3-none-any.whl", hash = "sha256:ffef94b0b66046dd8ea2d619b701fe978d9264d38f3998bc4c27ec3b146a87c8"}, + {file = "importlib_metadata-7.2.1.tar.gz", hash = "sha256:509ecb2ab77071db5137c655e24ceb3eee66e7bbc6574165d0d114d9fc4bbe68"}, +] + +[package.dependencies] +zipp = ">=0.5" + +[package.extras] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +perf = ["ipython"] +test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] + +[[package]] +name = "ipykernel" +version = "6.29.4" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipykernel-6.29.4-py3-none-any.whl", hash = "sha256:1181e653d95c6808039c509ef8e67c4126b3b3af7781496c7cbfb5ed938a27da"}, + {file = "ipykernel-6.29.4.tar.gz", hash = "sha256:3d44070060f9475ac2092b760123fadf105d2e2493c24848b6691a7c4f42af5c"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=24" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.12.3" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, + {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "sys_platform == \"darwin\""} +backcall = "*" +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} +pickleshare = "*" +prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" +pygments = ">=2.4.0" +stack-data = "*" +traitlets = ">=5" +typing-extensions = {version = "*", markers = "python_version < \"3.10\""} + +[package.extras] +all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +black = ["black"] +doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +kernel = ["ipykernel"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] + +[[package]] +name = "jedi" +version = "0.19.1" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +files = [ + {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, + {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, +] + +[package.dependencies] +parso = ">=0.8.3,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] + +[[package]] +name = "joblib" +version = "1.4.2" +description = "Lightweight pipelining with Python functions" +optional = false +python-versions = ">=3.8" +files = [ + {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, + {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, +] + +[[package]] +name = "jupyter-client" +version = "8.6.2" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"}, + {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-core" +version = "5.7.2" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, + {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "keras" +version = "2.7.0" +description = "Deep learning for humans." +optional = false +python-versions = "*" +files = [ + {file = "keras-2.7.0-py2.py3-none-any.whl", hash = "sha256:0c33ae1f728064ca0d35dfba999e9c316f03623bf5688c82fb83cc74a80ea248"}, +] + +[[package]] +name = "keras-preprocessing" +version = "1.1.2" +description = "Easy data preprocessing and data augmentation for deep learning models" +optional = false +python-versions = "*" +files = [ + {file = "Keras_Preprocessing-1.1.2-py2.py3-none-any.whl", hash = "sha256:7b82029b130ff61cc99b55f3bd27427df4838576838c5b2f65940e4fcec99a7b"}, + {file = "Keras_Preprocessing-1.1.2.tar.gz", hash = "sha256:add82567c50c8bc648c14195bf544a5ce7c1f76761536956c3d2978970179ef3"}, +] + +[package.dependencies] +numpy = ">=1.9.1" +six = ">=1.9.0" + +[package.extras] +image = ["Pillow (>=5.2.0)", "scipy (>=0.14)"] +pep8 = ["flake8"] +tests = ["Pillow", "keras", "pandas", "pytest", "pytest-cov", "pytest-xdist", "tensorflow"] + +[[package]] +name = "kiwisolver" +version = "1.4.5" +description = "A fast implementation of the Cassowary constraint solver" +optional = false +python-versions = ">=3.7" +files = [ + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, + {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, +] + +[[package]] +name = "libclang" +version = "18.1.1" +description = "Clang Python Bindings, mirrored from the official LLVM repo: https://github.com/llvm/llvm-project/tree/main/clang/bindings/python, to make the installation process easier." +optional = false +python-versions = "*" +files = [ + {file = "libclang-18.1.1-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:6f14c3f194704e5d09769108f03185fce7acaf1d1ae4bbb2f30a72c2400cb7c5"}, + {file = "libclang-18.1.1-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:83ce5045d101b669ac38e6da8e58765f12da2d3aafb3b9b98d88b286a60964d8"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2010_x86_64.whl", hash = "sha256:c533091d8a3bbf7460a00cb6c1a71da93bffe148f172c7d03b1c31fbf8aa2a0b"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2014_aarch64.whl", hash = "sha256:54dda940a4a0491a9d1532bf071ea3ef26e6dbaf03b5000ed94dd7174e8f9592"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2014_armv7l.whl", hash = "sha256:cf4a99b05376513717ab5d82a0db832c56ccea4fd61a69dbb7bccf2dfb207dbe"}, + {file = "libclang-18.1.1-py2.py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:69f8eb8f65c279e765ffd28aaa7e9e364c776c17618af8bff22a8df58677ff4f"}, + {file = "libclang-18.1.1-py2.py3-none-win_amd64.whl", hash = "sha256:4dd2d3b82fab35e2bf9ca717d7b63ac990a3519c7e312f19fa8e86dcc712f7fb"}, + {file = "libclang-18.1.1-py2.py3-none-win_arm64.whl", hash = "sha256:3f0e1f49f04d3cd198985fea0511576b0aee16f9ff0e0f0cad7f9c57ec3c20e8"}, + {file = "libclang-18.1.1.tar.gz", hash = "sha256:a1214966d08d73d971287fc3ead8dfaf82eb07fb197680d8b3859dbbbbf78250"}, +] + +[[package]] +name = "markdown" +version = "3.6" +description = "Python implementation of John Gruber's Markdown." +optional = false +python-versions = ">=3.8" +files = [ + {file = "Markdown-3.6-py3-none-any.whl", hash = "sha256:48f276f4d8cfb8ce6527c8f79e2ee29708508bf4d40aa410fbc3b4ee832c850f"}, + {file = "Markdown-3.6.tar.gz", hash = "sha256:ed4f41f6daecbeeb96e576ce414c41d2d876daa9a16cb35fa8ed8c2ddfad0224"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.4", markers = "python_version < \"3.10\""} + +[package.extras] +docs = ["mdx-gh-links (>=0.2)", "mkdocs (>=1.5)", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-nature (>=0.6)", "mkdocs-section-index", "mkdocstrings[python]"] +testing = ["coverage", "pyyaml"] + +[[package]] +name = "markupsafe" +version = "2.1.5" +description = "Safely add untrusted strings to HTML/XML markup." +optional = false +python-versions = ">=3.7" +files = [ + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl", hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl", hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl", hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5"}, + {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, +] + +[[package]] +name = "matplotlib" +version = "3.2.2" +description = "Python plotting package" +optional = false +python-versions = ">=3.6" +files = [ + {file = "matplotlib-3.2.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a47abc48c7b81fe6e636dde8a58e49b13d87d140e0f448213a4879f4a3f73345"}, + {file = "matplotlib-3.2.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:20bcd11efe194cd302bd0653cb025b8d16bcd80442359bfca8d49dc805f35ec8"}, + {file = "matplotlib-3.2.2-cp36-cp36m-win32.whl", hash = "sha256:2a6d64336b547e25730b6221e7aadfb01a391a065d43b5f51f0b9d7f673d2dd2"}, + {file = "matplotlib-3.2.2-cp36-cp36m-win_amd64.whl", hash = "sha256:4416825ebc9c1f135027a30e8d8aea0edcf45078ce767c7f7386737413cfb98f"}, + {file = "matplotlib-3.2.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:465c752278d27895e23f1379d6fcfa3a2990643b803c25e3bc16a10641d2346a"}, + {file = "matplotlib-3.2.2-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:81de040403a33bf3c68e9d4a40e26c8d24da00f7e3fadd845003b7e106785da7"}, + {file = "matplotlib-3.2.2-cp37-cp37m-win32.whl", hash = "sha256:006413f08ba5db1f5b1e0d6fbdc2ac9058b062ccf552f57182563a78579c34b4"}, + {file = "matplotlib-3.2.2-cp37-cp37m-win_amd64.whl", hash = "sha256:da06fa530591a141ffbe1712bbeec784734c3436b40c942d21652f305199b5d9"}, + {file = "matplotlib-3.2.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:894dd47c0a6ce38dc19bc87d1f7e2b0608310b2a18d1572291157450b05ce874"}, + {file = "matplotlib-3.2.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:1ab264770e7cf2cf4feb99f22c737066aef21ddf1ec402dc255450ac15eacb7b"}, + {file = "matplotlib-3.2.2-cp38-cp38-win32.whl", hash = "sha256:91c153f4318e3c67c035fd1185f5ea2613f15008b73b66985033033f6fe54bbd"}, + {file = "matplotlib-3.2.2-cp38-cp38-win_amd64.whl", hash = "sha256:a68e42e22f7fd190a532e4215e142276970c2d54040a0c46842fcb3db8b6ec5b"}, + {file = "matplotlib-3.2.2-cp39-cp39-win32.whl", hash = "sha256:647cf232ccf6265d2ba1ac4103e8c8b6ac7b03a40da3421234ffb03dda217f59"}, + {file = "matplotlib-3.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:31d32c83bb2b617377c6156f75e88b9ec2ded289e47ad4ff0f263dc1019d88b1"}, + {file = "matplotlib-3.2.2-pp36-pypy36_pp73-win32.whl", hash = "sha256:67065d938df34478451af62fbd0670d2b51c4d859fb66673064eb5de8660dd7c"}, + {file = "matplotlib-3.2.2.tar.gz", hash = "sha256:3d77a6630d093d74cbbfebaa0571d00790966be1ed204e4a8239f5cbd6835c5d"}, +] + +[package.dependencies] +cycler = ">=0.10" +kiwisolver = ">=1.0.1" +numpy = ">=1.11" +pyparsing = ">=2.0.1,<2.0.4 || >2.0.4,<2.1.2 || >2.1.2,<2.1.6 || >2.1.6" +python-dateutil = ">=2.1" + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +files = [ + {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, + {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, +] + +[[package]] +name = "networkx" +version = "2.5" +description = "Python package for creating and manipulating graphs and networks" +optional = false +python-versions = ">=3.6" +files = [ + {file = "networkx-2.5-py3-none-any.whl", hash = "sha256:8c5812e9f798d37c50570d15c4a69d5710a18d77bafc903ee9c5fba7454c616c"}, + {file = "networkx-2.5.tar.gz", hash = "sha256:7978955423fbc9639c10498878be59caf99b44dc304c2286162fd24b458c1602"}, +] + +[package.dependencies] +decorator = ">=4.3.0" + +[package.extras] +all = ["lxml", "matplotlib", "numpy", "pandas", "pydot", "pygraphviz", "pytest", "pyyaml", "scipy"] +gdal = ["gdal"] +lxml = ["lxml"] +matplotlib = ["matplotlib"] +numpy = ["numpy"] +pandas = ["pandas"] +pydot = ["pydot"] +pygraphviz = ["pygraphviz"] +pytest = ["pytest"] +pyyaml = ["pyyaml"] +scipy = ["scipy"] + +[[package]] +name = "node2vec" +version = "0.3.3" +description = "Implementation of the node2vec algorithm." +optional = false +python-versions = "*" +files = [ + {file = "node2vec-0.3.3.tar.gz", hash = "sha256:a122796952137bc91df5e9a51525180d510e1f4e4208eb4a21329137c38354d8"}, +] + +[package.dependencies] +gensim = "*" +joblib = ">=0.13.2" +networkx = "*" +numpy = "*" +tqdm = "*" + +[[package]] +name = "numpy" +version = "1.24.4" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, + {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, + {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, + {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, + {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, + {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, + {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, + {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, + {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, + {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, + {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, + {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, + {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, + {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, + {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, + {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, + {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, + {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, + {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, + {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, + {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, + {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, + {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, + {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, + {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, +] + +[[package]] +name = "nxt_gem" +version = "2.0.1" +description = "nxt_gem: A Python module for Graph Embedding Methods" +optional = false +python-versions = "*" +files = [] +develop = false + +[package.dependencies] +matplotlib = ">=2.0.0" +networkx = ">=2.4" +numpy = ">=1.12.0" +scikit-learn = ">=0.21.2" +scipy = ">=0.19.0" +theano = ">=0.9.0" + +[package.source] +type = "git" +url = "https://github.com/palash1992/GEM.git" +reference = "master" +resolved_reference = "ae8e92d34213f5785757b4a0943bd7d8d337adb3" + +[[package]] +name = "oauthlib" +version = "3.2.2" +description = "A generic, spec-compliant, thorough implementation of the OAuth request-signing logic" +optional = false +python-versions = ">=3.6" +files = [ + {file = "oauthlib-3.2.2-py3-none-any.whl", hash = "sha256:8139f29aac13e25d502680e9e19963e83f16838d48a0d71c287fe40e7067fbca"}, + {file = "oauthlib-3.2.2.tar.gz", hash = "sha256:9859c40929662bec5d64f34d01c99e093149682a3f38915dc0655d5a633dd918"}, +] + +[package.extras] +rsa = ["cryptography (>=3.0.0)"] +signals = ["blinker (>=1.4.0)"] +signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] + +[[package]] +name = "opt-einsum" +version = "3.3.0" +description = "Optimizing numpys einsum function" +optional = false +python-versions = ">=3.5" +files = [ + {file = "opt_einsum-3.3.0-py3-none-any.whl", hash = "sha256:2455e59e3947d3c275477df7f5205b30635e266fe6dc300e3d9f9646bfcea147"}, + {file = "opt_einsum-3.3.0.tar.gz", hash = "sha256:59f6475f77bbc37dcf7cd748519c0ec60722e91e63ca114e68821c0c54a46549"}, +] + +[package.dependencies] +numpy = ">=1.7" + +[package.extras] +docs = ["numpydoc", "sphinx (==1.2.3)", "sphinx-rtd-theme", "sphinxcontrib-napoleon"] +tests = ["pytest", "pytest-cov", "pytest-pep8"] + +[[package]] +name = "packaging" +version = "24.1" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, + {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, +] + +[[package]] +name = "pandas" +version = "2.0.3" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pandas-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8"}, + {file = "pandas-2.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f"}, + {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183"}, + {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0"}, + {file = "pandas-2.0.3-cp310-cp310-win32.whl", hash = "sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210"}, + {file = "pandas-2.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e"}, + {file = "pandas-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8"}, + {file = "pandas-2.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26"}, + {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d"}, + {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df"}, + {file = "pandas-2.0.3-cp311-cp311-win32.whl", hash = "sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd"}, + {file = "pandas-2.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b"}, + {file = "pandas-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061"}, + {file = "pandas-2.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5"}, + {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089"}, + {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0"}, + {file = "pandas-2.0.3-cp38-cp38-win32.whl", hash = "sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02"}, + {file = "pandas-2.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78"}, + {file = "pandas-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b"}, + {file = "pandas-2.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e"}, + {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b"}, + {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641"}, + {file = "pandas-2.0.3-cp39-cp39-win32.whl", hash = "sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682"}, + {file = "pandas-2.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc"}, + {file = "pandas-2.0.3.tar.gz", hash = "sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c"}, +] + +[package.dependencies] +numpy = {version = ">=1.20.3", markers = "python_version < \"3.10\""} +python-dateutil = ">=2.8.2" +pytz = ">=2020.1" +tzdata = ">=2022.1" + +[package.extras] +all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] +aws = ["s3fs (>=2021.08.0)"] +clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] +compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] +computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] +feather = ["pyarrow (>=7.0.0)"] +fss = ["fsspec (>=2021.07.0)"] +gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] +hdf5 = ["tables (>=3.6.1)"] +html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] +mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] +parquet = ["pyarrow (>=7.0.0)"] +performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] +plot = ["matplotlib (>=3.6.1)"] +postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] +spss = ["pyreadstat (>=1.1.2)"] +sql-other = ["SQLAlchemy (>=1.4.16)"] +test = ["hypothesis (>=6.34.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.6.3)"] + +[[package]] +name = "parso" +version = "0.8.4" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +files = [ + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, +] + +[package.extras] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["docopt", "pytest"] + +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pickleshare" +version = "0.7.5" +description = "Tiny 'shelve'-like database with concurrency support" +optional = false +python-versions = "*" +files = [ + {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, + {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, +] + +[[package]] +name = "platformdirs" +version = "4.2.2" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." +optional = false +python-versions = ">=3.8" +files = [ + {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, + {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, +] + +[package.extras] +docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] +type = ["mypy (>=1.8)"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.47" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "prompt_toolkit-3.0.47-py3-none-any.whl", hash = "sha256:0d7bfa67001d5e39d02c224b663abc33687405033a8c422d0d675a5a13361d10"}, + {file = "prompt_toolkit-3.0.47.tar.gz", hash = "sha256:1e1b29cb58080b1e69f207c893a1a7bf16d127a5c30c9d17a25a5d77792e5360"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "protobuf" +version = "3.20.3" +description = "Protocol Buffers" +optional = false +python-versions = ">=3.7" +files = [ + {file = "protobuf-3.20.3-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:f4bd856d702e5b0d96a00ec6b307b0f51c1982c2bf9c0052cf9019e9a544ba99"}, + {file = "protobuf-3.20.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9aae4406ea63d825636cc11ffb34ad3379335803216ee3a856787bcf5ccc751e"}, + {file = "protobuf-3.20.3-cp310-cp310-win32.whl", hash = "sha256:28545383d61f55b57cf4df63eebd9827754fd2dc25f80c5253f9184235db242c"}, + {file = "protobuf-3.20.3-cp310-cp310-win_amd64.whl", hash = "sha256:67a3598f0a2dcbc58d02dd1928544e7d88f764b47d4a286202913f0b2801c2e7"}, + {file = "protobuf-3.20.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:899dc660cd599d7352d6f10d83c95df430a38b410c1b66b407a6b29265d66469"}, + {file = "protobuf-3.20.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e64857f395505ebf3d2569935506ae0dfc4a15cb80dc25261176c784662cdcc4"}, + {file = "protobuf-3.20.3-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:d9e4432ff660d67d775c66ac42a67cf2453c27cb4d738fc22cb53b5d84c135d4"}, + {file = "protobuf-3.20.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:74480f79a023f90dc6e18febbf7b8bac7508420f2006fabd512013c0c238f454"}, + {file = "protobuf-3.20.3-cp37-cp37m-win32.whl", hash = "sha256:b6cc7ba72a8850621bfec987cb72623e703b7fe2b9127a161ce61e61558ad905"}, + {file = "protobuf-3.20.3-cp37-cp37m-win_amd64.whl", hash = "sha256:8c0c984a1b8fef4086329ff8dd19ac77576b384079247c770f29cc8ce3afa06c"}, + {file = "protobuf-3.20.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:de78575669dddf6099a8a0f46a27e82a1783c557ccc38ee620ed8cc96d3be7d7"}, + {file = "protobuf-3.20.3-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:f4c42102bc82a51108e449cbb32b19b180022941c727bac0cfd50170341f16ee"}, + {file = "protobuf-3.20.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:44246bab5dd4b7fbd3c0c80b6f16686808fab0e4aca819ade6e8d294a29c7050"}, + {file = "protobuf-3.20.3-cp38-cp38-win32.whl", hash = "sha256:c02ce36ec760252242a33967d51c289fd0e1c0e6e5cc9397e2279177716add86"}, + {file = "protobuf-3.20.3-cp38-cp38-win_amd64.whl", hash = "sha256:447d43819997825d4e71bf5769d869b968ce96848b6479397e29fc24c4a5dfe9"}, + {file = "protobuf-3.20.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:398a9e0c3eaceb34ec1aee71894ca3299605fa8e761544934378bbc6c97de23b"}, + {file = "protobuf-3.20.3-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:bf01b5720be110540be4286e791db73f84a2b721072a3711efff6c324cdf074b"}, + {file = "protobuf-3.20.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:daa564862dd0d39c00f8086f88700fdbe8bc717e993a21e90711acfed02f2402"}, + {file = "protobuf-3.20.3-cp39-cp39-win32.whl", hash = "sha256:819559cafa1a373b7096a482b504ae8a857c89593cf3a25af743ac9ecbd23480"}, + {file = "protobuf-3.20.3-cp39-cp39-win_amd64.whl", hash = "sha256:03038ac1cfbc41aa21f6afcbcd357281d7521b4157926f30ebecc8d4ea59dcb7"}, + {file = "protobuf-3.20.3-py2.py3-none-any.whl", hash = "sha256:a7ca6d488aa8ff7f329d4c545b2dbad8ac31464f1d8b1c87ad1346717731e4db"}, + {file = "protobuf-3.20.3.tar.gz", hash = "sha256:2e3427429c9cffebf259491be0af70189607f365c2f41c7c3764af6f337105f2"}, +] + +[[package]] +name = "psutil" +version = "6.0.0" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "psutil-6.0.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a021da3e881cd935e64a3d0a20983bda0bb4cf80e4f74fa9bfcb1bc5785360c6"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:1287c2b95f1c0a364d23bc6f2ea2365a8d4d9b726a3be7294296ff7ba97c17f0"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:a9a3dbfb4de4f18174528d87cc352d1f788b7496991cca33c6996f40c9e3c92c"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:6ec7588fb3ddaec7344a825afe298db83fe01bfaaab39155fa84cf1c0d6b13c3"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:1e7c870afcb7d91fdea2b37c24aeb08f98b6d67257a5cb0a8bc3ac68d0f1a68c"}, + {file = "psutil-6.0.0-cp27-none-win32.whl", hash = "sha256:02b69001f44cc73c1c5279d02b30a817e339ceb258ad75997325e0e6169d8b35"}, + {file = "psutil-6.0.0-cp27-none-win_amd64.whl", hash = "sha256:21f1fb635deccd510f69f485b87433460a603919b45e2a324ad65b0cc74f8fb1"}, + {file = "psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c588a7e9b1173b6e866756dde596fd4cad94f9399daf99ad8c3258b3cb2b47a0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ed2440ada7ef7d0d608f20ad89a04ec47d2d3ab7190896cd62ca5fc4fe08bf0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd9a97c8e94059b0ef54a7d4baf13b405011176c3b6ff257c247cae0d560ecd"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e8d0054fc88153ca0544f5c4d554d42e33df2e009c4ff42284ac9ebdef4132"}, + {file = "psutil-6.0.0-cp36-cp36m-win32.whl", hash = "sha256:fc8c9510cde0146432bbdb433322861ee8c3efbf8589865c8bf8d21cb30c4d14"}, + {file = "psutil-6.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:34859b8d8f423b86e4385ff3665d3f4d94be3cdf48221fbe476e883514fdb71c"}, + {file = "psutil-6.0.0-cp37-abi3-win32.whl", hash = "sha256:a495580d6bae27291324fe60cea0b5a7c23fa36a7cd35035a16d93bdcf076b9d"}, + {file = "psutil-6.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:33ea5e1c975250a720b3a6609c490db40dae5d83a4eb315170c4fe0d8b1f34b3"}, + {file = "psutil-6.0.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:ffe7fc9b6b36beadc8c322f84e1caff51e8703b88eee1da46d1e3a6ae11b4fd0"}, + {file = "psutil-6.0.0.tar.gz", hash = "sha256:8faae4f310b6d969fa26ca0545338b21f73c6b15db7c4a8d934a5482faa818f2"}, +] + +[package.extras] +test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.2" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +files = [ + {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, + {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "pyasn1" +version = "0.6.0" +description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyasn1-0.6.0-py2.py3-none-any.whl", hash = "sha256:cca4bb0f2df5504f02f6f8a775b6e416ff9b0b3b16f7ee80b5a3153d9b804473"}, + {file = "pyasn1-0.6.0.tar.gz", hash = "sha256:3a35ab2c4b5ef98e17dfdec8ab074046fbda76e281c5a706ccd82328cfc8f64c"}, +] + +[[package]] +name = "pyasn1-modules" +version = "0.4.0" +description = "A collection of ASN.1-based protocols modules" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyasn1_modules-0.4.0-py3-none-any.whl", hash = "sha256:be04f15b66c206eed667e0bb5ab27e2b1855ea54a842e5037738099e8ca4ae0b"}, + {file = "pyasn1_modules-0.4.0.tar.gz", hash = "sha256:831dbcea1b177b28c9baddf4c6d1013c24c3accd14a1873fffaa6a2e905f17b6"}, +] + +[package.dependencies] +pyasn1 = ">=0.4.6,<0.7.0" + +[[package]] +name = "pycparser" +version = "2.22" +description = "C parser in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, +] + +[[package]] +name = "pygments" +version = "2.18.0" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, + {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, +] + +[package.extras] +windows-terminal = ["colorama (>=0.4.6)"] + +[[package]] +name = "pyparsing" +version = "3.1.2" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.6.8" +files = [ + {file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"}, + {file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"}, +] + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, + {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "python-louvain" +version = "0.16" +description = "Louvain algorithm for community detection" +optional = false +python-versions = "*" +files = [ + {file = "python-louvain-0.16.tar.gz", hash = "sha256:b7ba2df5002fd28d3ee789a49532baad11fe648e4f2117cf0798e7520a1da56b"}, +] + +[package.dependencies] +networkx = "*" +numpy = "*" + +[[package]] +name = "pytz" +version = "2024.1" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ + {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, + {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, +] + +[[package]] +name = "pywin32" +version = "306" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ + {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, + {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, + {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, + {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, + {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, + {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, + {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, + {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, + {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, + {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, + {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, + {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, + {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, + {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, +] + +[[package]] +name = "pyzmq" +version = "26.0.3" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pyzmq-26.0.3-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:44dd6fc3034f1eaa72ece33588867df9e006a7303725a12d64c3dff92330f625"}, + {file = "pyzmq-26.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:acb704195a71ac5ea5ecf2811c9ee19ecdc62b91878528302dd0be1b9451cc90"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dbb9c997932473a27afa93954bb77a9f9b786b4ccf718d903f35da3232317de"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6bcb34f869d431799c3ee7d516554797f7760cb2198ecaa89c3f176f72d062be"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38ece17ec5f20d7d9b442e5174ae9f020365d01ba7c112205a4d59cf19dc38ee"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:ba6e5e6588e49139a0979d03a7deb9c734bde647b9a8808f26acf9c547cab1bf"}, + {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3bf8b000a4e2967e6dfdd8656cd0757d18c7e5ce3d16339e550bd462f4857e59"}, + {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:2136f64fbb86451dbbf70223635a468272dd20075f988a102bf8a3f194a411dc"}, + {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e8918973fbd34e7814f59143c5f600ecd38b8038161239fd1a3d33d5817a38b8"}, + {file = "pyzmq-26.0.3-cp310-cp310-win32.whl", hash = "sha256:0aaf982e68a7ac284377d051c742610220fd06d330dcd4c4dbb4cdd77c22a537"}, + {file = "pyzmq-26.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:f1a9b7d00fdf60b4039f4455afd031fe85ee8305b019334b72dcf73c567edc47"}, + {file = "pyzmq-26.0.3-cp310-cp310-win_arm64.whl", hash = "sha256:80b12f25d805a919d53efc0a5ad7c0c0326f13b4eae981a5d7b7cc343318ebb7"}, + {file = "pyzmq-26.0.3-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:a72a84570f84c374b4c287183debc776dc319d3e8ce6b6a0041ce2e400de3f32"}, + {file = "pyzmq-26.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7ca684ee649b55fd8f378127ac8462fb6c85f251c2fb027eb3c887e8ee347bcd"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e222562dc0f38571c8b1ffdae9d7adb866363134299264a1958d077800b193b7"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f17cde1db0754c35a91ac00b22b25c11da6eec5746431d6e5092f0cd31a3fea9"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b7c0c0b3244bb2275abe255d4a30c050d541c6cb18b870975553f1fb6f37527"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:ac97a21de3712afe6a6c071abfad40a6224fd14fa6ff0ff8d0c6e6cd4e2f807a"}, + {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:88b88282e55fa39dd556d7fc04160bcf39dea015f78e0cecec8ff4f06c1fc2b5"}, + {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:72b67f966b57dbd18dcc7efbc1c7fc9f5f983e572db1877081f075004614fcdd"}, + {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f4b6cecbbf3b7380f3b61de3a7b93cb721125dc125c854c14ddc91225ba52f83"}, + {file = "pyzmq-26.0.3-cp311-cp311-win32.whl", hash = "sha256:eed56b6a39216d31ff8cd2f1d048b5bf1700e4b32a01b14379c3b6dde9ce3aa3"}, + {file = "pyzmq-26.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:3191d312c73e3cfd0f0afdf51df8405aafeb0bad71e7ed8f68b24b63c4f36500"}, + {file = "pyzmq-26.0.3-cp311-cp311-win_arm64.whl", hash = "sha256:b6907da3017ef55139cf0e417c5123a84c7332520e73a6902ff1f79046cd3b94"}, + {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:068ca17214038ae986d68f4a7021f97e187ed278ab6dccb79f837d765a54d753"}, + {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:7821d44fe07335bea256b9f1f41474a642ca55fa671dfd9f00af8d68a920c2d4"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eeb438a26d87c123bb318e5f2b3d86a36060b01f22fbdffd8cf247d52f7c9a2b"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:69ea9d6d9baa25a4dc9cef5e2b77b8537827b122214f210dd925132e34ae9b12"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7daa3e1369355766dea11f1d8ef829905c3b9da886ea3152788dc25ee6079e02"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:6ca7a9a06b52d0e38ccf6bca1aeff7be178917893f3883f37b75589d42c4ac20"}, + {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1b7d0e124948daa4d9686d421ef5087c0516bc6179fdcf8828b8444f8e461a77"}, + {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:e746524418b70f38550f2190eeee834db8850088c834d4c8406fbb9bc1ae10b2"}, + {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:6b3146f9ae6af82c47a5282ac8803523d381b3b21caeae0327ed2f7ecb718798"}, + {file = "pyzmq-26.0.3-cp312-cp312-win32.whl", hash = "sha256:2b291d1230845871c00c8462c50565a9cd6026fe1228e77ca934470bb7d70ea0"}, + {file = "pyzmq-26.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:926838a535c2c1ea21c903f909a9a54e675c2126728c21381a94ddf37c3cbddf"}, + {file = "pyzmq-26.0.3-cp312-cp312-win_arm64.whl", hash = "sha256:5bf6c237f8c681dfb91b17f8435b2735951f0d1fad10cc5dfd96db110243370b"}, + {file = "pyzmq-26.0.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0c0991f5a96a8e620f7691e61178cd8f457b49e17b7d9cfa2067e2a0a89fc1d5"}, + {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dbf012d8fcb9f2cf0643b65df3b355fdd74fc0035d70bb5c845e9e30a3a4654b"}, + {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:01fbfbeb8249a68d257f601deb50c70c929dc2dfe683b754659569e502fbd3aa"}, + {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c8eb19abe87029c18f226d42b8a2c9efdd139d08f8bf6e085dd9075446db450"}, + {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:5344b896e79800af86ad643408ca9aa303a017f6ebff8cee5a3163c1e9aec987"}, + {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:204e0f176fd1d067671157d049466869b3ae1fc51e354708b0dc41cf94e23a3a"}, + {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a42db008d58530efa3b881eeee4991146de0b790e095f7ae43ba5cc612decbc5"}, + {file = "pyzmq-26.0.3-cp37-cp37m-win32.whl", hash = "sha256:8d7a498671ca87e32b54cb47c82a92b40130a26c5197d392720a1bce1b3c77cf"}, + {file = "pyzmq-26.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:3b4032a96410bdc760061b14ed6a33613ffb7f702181ba999df5d16fb96ba16a"}, + {file = "pyzmq-26.0.3-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2cc4e280098c1b192c42a849de8de2c8e0f3a84086a76ec5b07bfee29bda7d18"}, + {file = "pyzmq-26.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5bde86a2ed3ce587fa2b207424ce15b9a83a9fa14422dcc1c5356a13aed3df9d"}, + {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:34106f68e20e6ff253c9f596ea50397dbd8699828d55e8fa18bd4323d8d966e6"}, + {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ebbbd0e728af5db9b04e56389e2299a57ea8b9dd15c9759153ee2455b32be6ad"}, + {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6b1d1c631e5940cac5a0b22c5379c86e8df6a4ec277c7a856b714021ab6cfad"}, + {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e891ce81edd463b3b4c3b885c5603c00141151dd9c6936d98a680c8c72fe5c67"}, + {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:9b273ecfbc590a1b98f014ae41e5cf723932f3b53ba9367cfb676f838038b32c"}, + {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b32bff85fb02a75ea0b68f21e2412255b5731f3f389ed9aecc13a6752f58ac97"}, + {file = "pyzmq-26.0.3-cp38-cp38-win32.whl", hash = "sha256:f6c21c00478a7bea93caaaef9e7629145d4153b15a8653e8bb4609d4bc70dbfc"}, + {file = "pyzmq-26.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:3401613148d93ef0fd9aabdbddb212de3db7a4475367f49f590c837355343972"}, + {file = "pyzmq-26.0.3-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:2ed8357f4c6e0daa4f3baf31832df8a33334e0fe5b020a61bc8b345a3db7a606"}, + {file = "pyzmq-26.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c1c8f2a2ca45292084c75bb6d3a25545cff0ed931ed228d3a1810ae3758f975f"}, + {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:b63731993cdddcc8e087c64e9cf003f909262b359110070183d7f3025d1c56b5"}, + {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b3cd31f859b662ac5d7f4226ec7d8bd60384fa037fc02aee6ff0b53ba29a3ba8"}, + {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:115f8359402fa527cf47708d6f8a0f8234f0e9ca0cab7c18c9c189c194dbf620"}, + {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:715bdf952b9533ba13dfcf1f431a8f49e63cecc31d91d007bc1deb914f47d0e4"}, + {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:e1258c639e00bf5e8a522fec6c3eaa3e30cf1c23a2f21a586be7e04d50c9acab"}, + {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:15c59e780be8f30a60816a9adab900c12a58d79c1ac742b4a8df044ab2a6d920"}, + {file = "pyzmq-26.0.3-cp39-cp39-win32.whl", hash = "sha256:d0cdde3c78d8ab5b46595054e5def32a755fc028685add5ddc7403e9f6de9879"}, + {file = "pyzmq-26.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:ce828058d482ef860746bf532822842e0ff484e27f540ef5c813d516dd8896d2"}, + {file = "pyzmq-26.0.3-cp39-cp39-win_arm64.whl", hash = "sha256:788f15721c64109cf720791714dc14afd0f449d63f3a5487724f024345067381"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2c18645ef6294d99b256806e34653e86236eb266278c8ec8112622b61db255de"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7e6bc96ebe49604df3ec2c6389cc3876cabe475e6bfc84ced1bf4e630662cb35"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:971e8990c5cc4ddcff26e149398fc7b0f6a042306e82500f5e8db3b10ce69f84"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8416c23161abd94cc7da80c734ad7c9f5dbebdadfdaa77dad78244457448223"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:082a2988364b60bb5de809373098361cf1dbb239623e39e46cb18bc035ed9c0c"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d57dfbf9737763b3a60d26e6800e02e04284926329aee8fb01049635e957fe81"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:77a85dca4c2430ac04dc2a2185c2deb3858a34fe7f403d0a946fa56970cf60a1"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4c82a6d952a1d555bf4be42b6532927d2a5686dd3c3e280e5f63225ab47ac1f5"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4496b1282c70c442809fc1b151977c3d967bfb33e4e17cedbf226d97de18f709"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:e4946d6bdb7ba972dfda282f9127e5756d4f299028b1566d1245fa0d438847e6"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:03c0ae165e700364b266876d712acb1ac02693acd920afa67da2ebb91a0b3c09"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:3e3070e680f79887d60feeda051a58d0ac36622e1759f305a41059eff62c6da7"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6ca08b840fe95d1c2bd9ab92dac5685f949fc6f9ae820ec16193e5ddf603c3b2"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e76654e9dbfb835b3518f9938e565c7806976c07b37c33526b574cc1a1050480"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:871587bdadd1075b112e697173e946a07d722459d20716ceb3d1bd6c64bd08ce"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d0a2d1bd63a4ad79483049b26514e70fa618ce6115220da9efdff63688808b17"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0270b49b6847f0d106d64b5086e9ad5dc8a902413b5dbbb15d12b60f9c1747a4"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:703c60b9910488d3d0954ca585c34f541e506a091a41930e663a098d3b794c67"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74423631b6be371edfbf7eabb02ab995c2563fee60a80a30829176842e71722a"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:4adfbb5451196842a88fda3612e2c0414134874bffb1c2ce83ab4242ec9e027d"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3516119f4f9b8671083a70b6afaa0a070f5683e431ab3dc26e9215620d7ca1ad"}, + {file = "pyzmq-26.0.3.tar.gz", hash = "sha256:dba7d9f2e047dfa2bca3b01f4f84aa5246725203d6284e3790f2ca15fba6b40a"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "requests" +version = "2.32.3" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.8" +files = [ + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + +[[package]] +name = "requests-oauthlib" +version = "2.0.0" +description = "OAuthlib authentication support for Requests." +optional = false +python-versions = ">=3.4" +files = [ + {file = "requests-oauthlib-2.0.0.tar.gz", hash = "sha256:b3dffaebd884d8cd778494369603a9e7b58d29111bf6b41bdc2dcd87203af4e9"}, + {file = "requests_oauthlib-2.0.0-py2.py3-none-any.whl", hash = "sha256:7dd8a5c40426b779b0868c404bdef9768deccf22749cde15852df527e6269b36"}, +] + +[package.dependencies] +oauthlib = ">=3.0.0" +requests = ">=2.0.0" + +[package.extras] +rsa = ["oauthlib[signedtoken] (>=3.0.0)"] + +[[package]] +name = "rsa" +version = "4.9" +description = "Pure-Python RSA implementation" +optional = false +python-versions = ">=3.6,<4" +files = [ + {file = "rsa-4.9-py3-none-any.whl", hash = "sha256:90260d9058e514786967344d0ef75fa8727eed8a7d2e43ce9f4bcf1b536174f7"}, + {file = "rsa-4.9.tar.gz", hash = "sha256:e38464a49c6c85d7f1351b0126661487a7e0a14a50f1675ec50eb34d4f20ef21"}, +] + +[package.dependencies] +pyasn1 = ">=0.1.3" + +[[package]] +name = "scikit-learn" +version = "0.24.0" +description = "A set of python modules for machine learning and data mining" +optional = false +python-versions = ">=3.6" +files = [ + {file = "scikit-learn-0.24.0.tar.gz", hash = "sha256:076369634ee72b5a5941440661e2f306ff4ac30903802dc52031c7e9199ac640"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:890d7d588f65acb0c4f6c083347c9076916bda5e6bd8400f06244b1afc1009af"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:e534f5f3796db6781c87e9835dcd51b7854c8c5a379c9210b93605965c1941fd"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:d7fe05fcb44eadd6d6c874c768f085f5de1239db3a3b7be4d3d23d12e4120589"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:7f654befc5ad413690cc58f3f34a3e906caf825195ce0fda00a8e9565e1403e6"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-win32.whl", hash = "sha256:afeb06dc69847927634e58579b9cdc72e1390b79497336b2324b1b173f33bd47"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-win_amd64.whl", hash = "sha256:26f66b3726b54dfb76ea51c5d9c2431ed17ebc066cb4527662b9e851a3e7ba61"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c08b27cb78ee8d2dc781a7affed09859441f5b624f9f92da59ac0791c8774dfc"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:905d8934d1e27a686698864a5863ff2c0e13a2ae1adb78a8a848aacc8a49927d"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:d819d625832fb2969911a243e009cfa135cb8ef1e150866e417d6e9d75290087"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:18f7131e62265bf2691ed1d0303c640313894ccfe4278427478c6b2f45094b53"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-win32.whl", hash = "sha256:b0d13fd56d26cf3de0314a4fd48037108c638fe126d813f5c1222bb0f08b6a76"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-win_amd64.whl", hash = "sha256:c912247e42114f389858ae05d63f4359d4e667ea72aaabee191aee9ad3f9774a"}, + {file = "scikit_learn-0.24.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:758619e49cd7c17282e6cc60d5cc73c02c072b47c9a10010bb3bb47e0d976e50"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:66f27bf21202a850bcd7b6303916e4907f6e22ec59a14974ede4955aed5c7ed0"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:5e6e3c042cea83f2e20a45e563b8eabc1f8f72446251fe23ebefdf111a173a33"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:2a5348585aa793bc8cc5a72f8e9067c9380834b0aadbd55f924843b071f13282"}, + {file = "scikit_learn-0.24.0-cp38-cp38-win32.whl", hash = "sha256:743b6edd98c98991be46c08e6b21df3861d5ae915f91d59f988384d93f7263e7"}, + {file = "scikit_learn-0.24.0-cp38-cp38-win_amd64.whl", hash = "sha256:2951f87d35e72f007701c6e028aa230f6df6212a3194677c0c950486066a454d"}, + {file = "scikit_learn-0.24.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:44e452ea8491225c5783d49577aad0f36202dfd52aec7f82c0fdfe5fbd5f7400"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:800aaf63f8838c00e85db2267dd226f89858594843fd03932a9eda95746d2c40"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:3eeff086f7329521d27249a082ea3c48c085cedb110db5f65968ab55c3ba2e09"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:4395e91b3548005f4a645018435b5a94f8cce232b5b70753020e606c6a750656"}, + {file = "scikit_learn-0.24.0-cp39-cp39-win32.whl", hash = "sha256:80ca024154b84b6ac4cfc86930ba13fdc348a209753bf2c16129db6f9eb8a80b"}, + {file = "scikit_learn-0.24.0-cp39-cp39-win_amd64.whl", hash = "sha256:490436b44b3a1957cb625e871764b0aa330b34cc416aea4abc6c38ca63d0d682"}, +] + +[package.dependencies] +joblib = ">=0.11" +numpy = ">=1.13.3" +scipy = ">=0.19.1" +threadpoolctl = ">=2.0.0" + +[package.extras] +benchmark = ["matplotlib (>=2.1.1)", "memory-profiler (>=0.57.0)", "pandas (>=0.25.0)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=2.1.1)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.0.0)", "pandas (>=0.25.0)", "scikit-image (>=0.13)", "seaborn (>=0.9.0)", "sphinx (>=3.2.0)", "sphinx-gallery (>=0.7.0)", "sphinx-prompt (>=1.3.0)"] +examples = ["matplotlib (>=2.1.1)", "pandas (>=0.25.0)", "scikit-image (>=0.13)", "seaborn (>=0.9.0)"] +tests = ["flake8 (>=3.8.2)", "matplotlib (>=2.1.1)", "mypy (>=0.770)", "pandas (>=0.25.0)", "pyamg (>=4.0.0)", "pytest (>=5.0.1)", "pytest-cov (>=2.9.0)", "scikit-image (>=0.13)"] + +[[package]] +name = "scipy" +version = "1.10.1" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = "<3.12,>=3.8" +files = [ + {file = "scipy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e7354fd7527a4b0377ce55f286805b34e8c54b91be865bac273f527e1b839019"}, + {file = "scipy-1.10.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4b3f429188c66603a1a5c549fb414e4d3bdc2a24792e061ffbd607d3d75fd84e"}, + {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1553b5dcddd64ba9a0d95355e63fe6c3fc303a8fd77c7bc91e77d61363f7433f"}, + {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c0ff64b06b10e35215abce517252b375e580a6125fd5fdf6421b98efbefb2d2"}, + {file = "scipy-1.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:fae8a7b898c42dffe3f7361c40d5952b6bf32d10c4569098d276b4c547905ee1"}, + {file = "scipy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f1564ea217e82c1bbe75ddf7285ba0709ecd503f048cb1236ae9995f64217bd"}, + {file = "scipy-1.10.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d925fa1c81b772882aa55bcc10bf88324dadb66ff85d548c71515f6689c6dac5"}, + {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaea0a6be54462ec027de54fca511540980d1e9eea68b2d5c1dbfe084797be35"}, + {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15a35c4242ec5f292c3dd364a7c71a61be87a3d4ddcc693372813c0b73c9af1d"}, + {file = "scipy-1.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:43b8e0bcb877faf0abfb613d51026cd5cc78918e9530e375727bf0625c82788f"}, + {file = "scipy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5678f88c68ea866ed9ebe3a989091088553ba12c6090244fdae3e467b1139c35"}, + {file = "scipy-1.10.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:39becb03541f9e58243f4197584286e339029e8908c46f7221abeea4b749fa88"}, + {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bce5869c8d68cf383ce240e44c1d9ae7c06078a9396df68ce88a1230f93a30c1"}, + {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07c3457ce0b3ad5124f98a86533106b643dd811dd61b548e78cf4c8786652f6f"}, + {file = "scipy-1.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:049a8bbf0ad95277ffba9b3b7d23e5369cc39e66406d60422c8cfef40ccc8415"}, + {file = "scipy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cd9f1027ff30d90618914a64ca9b1a77a431159df0e2a195d8a9e8a04c78abf9"}, + {file = "scipy-1.10.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:79c8e5a6c6ffaf3a2262ef1be1e108a035cf4f05c14df56057b64acc5bebffb6"}, + {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51af417a000d2dbe1ec6c372dfe688e041a7084da4fdd350aeb139bd3fb55353"}, + {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b4735d6c28aad3cdcf52117e0e91d6b39acd4272f3f5cd9907c24ee931ad601"}, + {file = "scipy-1.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ff7f37b1bf4417baca958d254e8e2875d0cc23aaadbe65b3d5b3077b0eb23ea"}, + {file = "scipy-1.10.1.tar.gz", hash = "sha256:2cf9dfb80a7b4589ba4c40ce7588986d6d5cebc5457cad2c2880f6bc2d42f3a5"}, +] + +[package.dependencies] +numpy = ">=1.19.5,<1.27.0" + +[package.extras] +dev = ["click", "doit (>=0.36.0)", "flake8", "mypy", "pycodestyle", "pydevtool", "rich-click", "typing_extensions"] +doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] +test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "setuptools" +version = "70.1.1" +description = "Easily download, build, install, upgrade, and uninstall Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "setuptools-70.1.1-py3-none-any.whl", hash = "sha256:a58a8fde0541dab0419750bcc521fbdf8585f6e5cb41909df3a472ef7b81ca95"}, + {file = "setuptools-70.1.1.tar.gz", hash = "sha256:937a48c7cdb7a21eb53cd7f9b59e525503aa8abaf3584c730dc5f7a5bec3a650"}, +] + +[package.extras] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] +testing = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.10.0)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.1)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] + +[[package]] +name = "six" +version = "1.16.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, + {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, +] + +[[package]] +name = "smart-open" +version = "7.0.4" +description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)" +optional = false +python-versions = "<4.0,>=3.7" +files = [ + {file = "smart_open-7.0.4-py3-none-any.whl", hash = "sha256:4e98489932b3372595cddc075e6033194775165702887216b65eba760dfd8d47"}, + {file = "smart_open-7.0.4.tar.gz", hash = "sha256:62b65852bdd1d1d516839fcb1f6bc50cd0f16e05b4ec44b52f43d38bcb838524"}, +] + +[package.dependencies] +wrapt = "*" + +[package.extras] +all = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "paramiko", "requests", "zstandard"] +azure = ["azure-common", "azure-core", "azure-storage-blob"] +gcs = ["google-cloud-storage (>=2.6.0)"] +http = ["requests"] +s3 = ["boto3"] +ssh = ["paramiko"] +test = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "paramiko", "pytest", "pytest-rerunfailures", "requests", "responses", "zstandard"] +webhdfs = ["requests"] +zst = ["zstandard"] + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "stellargraph" +version = "1.2.1" +description = "Python library for machine learning on graphs" +optional = false +python-versions = ">=3.6.0, <3.9.0" +files = [ + {file = "stellargraph-1.2.1-py3-none-any.whl", hash = "sha256:984a839de4645c9703b8f34a065307498feef38e5160a8f9d7764318a3d4621d"}, + {file = "stellargraph-1.2.1.tar.gz", hash = "sha256:804200a7992465bb5f10da95a3b7748014b0a159f1e79a95517c12a9ff2faed2"}, +] + +[package.dependencies] +gensim = ">=3.4.0" +matplotlib = ">=2.2" +networkx = ">=2.2" +numpy = ">=1.14" +pandas = ">=0.24" +scikit-learn = ">=0.20" +scipy = ">=1.1.0" +tensorflow = ">=2.1.0" + +[package.extras] +demos = ["jupyter", "mplleaflet (==0.0.5)", "numba", "rdflib", "seaborn"] +igraph = ["python-igraph"] +neo4j = ["py2neo"] +test = ["black (>=19.3b0)", "commonmark (==0.9.1)", "coverage (>=4.4,<5.0)", "nbconvert (>=5.5.0)", "papermill (>=2.0.0)", "pytest (==5.3.1)", "pytest-benchmark (>=3.1)", "pytest-cov (>=2.6.0)", "rdflib", "treon (>=0.1.2)"] + +[[package]] +name = "tensorboard" +version = "2.14.0" +description = "TensorBoard lets you watch Tensors Flow" +optional = false +python-versions = ">=3.8" +files = [ + {file = "tensorboard-2.14.0-py3-none-any.whl", hash = "sha256:3667f9745d99280836ad673022362c840f60ed8fefd5a3e30bf071f5a8fd0017"}, +] + +[package.dependencies] +absl-py = ">=0.4" +google-auth = ">=1.6.3,<3" +google-auth-oauthlib = ">=0.5,<1.1" +grpcio = ">=1.48.2" +markdown = ">=2.6.8" +numpy = ">=1.12.0" +protobuf = ">=3.19.6" +requests = ">=2.21.0,<3" +setuptools = ">=41.0.0" +tensorboard-data-server = ">=0.7.0,<0.8.0" +werkzeug = ">=1.0.1" +wheel = ">=0.26" + +[[package]] +name = "tensorboard-data-server" +version = "0.7.2" +description = "Fast data loading for TensorBoard" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tensorboard_data_server-0.7.2-py3-none-any.whl", hash = "sha256:7e0610d205889588983836ec05dc098e80f97b7e7bbff7e994ebb78f578d0ddb"}, + {file = "tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:9fe5d24221b29625dbc7328b0436ca7fc1c23de4acf4d272f1180856e32f9f60"}, + {file = "tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl", hash = "sha256:ef687163c24185ae9754ed5650eb5bc4d84ff257aabdc33f0cc6f74d8ba54530"}, +] + +[[package]] +name = "tensorflow" +version = "2.7.2" +description = "TensorFlow is an open source machine learning framework for everyone." +optional = false +python-versions = "*" +files = [ + {file = "tensorflow-2.7.2-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:050c2ef8d432eb60f2cb6fc75d751fcb3008af6a86ad1147faea30cb59c275b1"}, + {file = "tensorflow-2.7.2-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:3c72b8653a539789ef36f8c1ad8266b9e676dff2293f0f7a68d9b26fc77a37f3"}, + {file = "tensorflow-2.7.2-cp37-cp37m-win_amd64.whl", hash = "sha256:1db663f9f59ba54a294b1f6530f131e90c7a0e6ea49fda5b2c6900e57b0c306a"}, + {file = "tensorflow-2.7.2-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:cb66d4a998af1ca979d6da33e925281596f52e5a9ba67b2295c53677f8379eee"}, + {file = "tensorflow-2.7.2-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:d4dbfab1568564b30bab876424fafd74c8a8715238b76284b5dd1cfe86c7881b"}, + {file = "tensorflow-2.7.2-cp38-cp38-win_amd64.whl", hash = "sha256:b9a7f344b93b953cab4c3f6ec3b6c1799eb538b6a1978d3a4b579d7a81ee7439"}, + {file = "tensorflow-2.7.2-cp39-cp39-macosx_10_11_x86_64.whl", hash = "sha256:99a85258505130b1f3ce203f11b3bb3c95442edefec96c0b221ce0d6541a92c8"}, + {file = "tensorflow-2.7.2-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:bb2115796e2e7738de1844aead493bc1f1122ff1fae65fc691bb1ce5a0fdd2aa"}, + {file = "tensorflow-2.7.2-cp39-cp39-win_amd64.whl", hash = "sha256:3e35d046d0be677239b5e832854bcb291ca79388fa406d9d7547bc3377a7efbb"}, +] + +[package.dependencies] +absl-py = ">=0.4.0" +astunparse = ">=1.6.0" +flatbuffers = ">=1.12,<3.0" +gast = ">=0.2.1,<0.5.0" +google-pasta = ">=0.1.1" +grpcio = ">=1.24.3,<2.0" +h5py = ">=2.9.0" +keras = ">=2.7.0rc0,<2.8" +keras-preprocessing = ">=1.1.1" +libclang = ">=9.0.1" +numpy = ">=1.14.5" +opt-einsum = ">=2.3.2" +protobuf = ">=3.9.2" +six = ">=1.12.0" +tensorboard = ">=2.6,<3.0" +tensorflow-estimator = ">=2.7.0rc0,<2.8" +tensorflow-io-gcs-filesystem = ">=0.21.0" +termcolor = ">=1.1.0" +typing-extensions = ">=3.6.6" +wheel = ">=0.32.0,<1.0" +wrapt = ">=1.11.0" + +[[package]] +name = "tensorflow-estimator" +version = "2.7.0" +description = "TensorFlow Estimator." +optional = false +python-versions = "*" +files = [ + {file = "tensorflow_estimator-2.7.0-py2.py3-none-any.whl", hash = "sha256:325b5a224864379242b7b76c6987ca544239be82579d33e68ec7c2bda57abc9d"}, +] + +[[package]] +name = "tensorflow-io-gcs-filesystem" +version = "0.21.0" +description = "TensorFlow IO" +optional = false +python-versions = ">=3.6, <3.10" +files = [ + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:db8659cce2b45a6689cf041c7745b60338d8158fc394627f916029980aa04e0d"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d5ce0de3c91fb3a47bd91e25081bcd3b3491d515ee45e6d2c63e899ab5e7739e"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-win_amd64.whl", hash = "sha256:8fc48d4a6f06a97b8a866d849844189ecd1d830de9b152276ea579d9772c0533"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:c28ca0dd37d1bb2110a62e9e7f7b0bbdf295add83b38fbe507082fd89f0ebc61"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7c54f1f334076a5514b9f7f537afe4c36fce4233f792ce6ada76651bfad9f2eb"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-win_amd64.whl", hash = "sha256:e22fcc4e6e924842fefc570f7fd0f6fd33e458154be8891b5a7bfd8380c6aa8c"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:95555c647c8330daf712a38d2b158f7a21d5ad77e8fd438360060b37cb8ca1fb"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b12f9d66c8433bb4a67d9cc6cdb14cf11c42d9fe65bdbe09128b6579a80f80e8"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-win_amd64.whl", hash = "sha256:e447d9c03dd7396292ba10dd39a3c6a2cfcb9332b67457592119c5e5d3e38cfe"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:020581f962e7156054c790d649ecc80518d7874e0def5b2f58f965a1998d45e3"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:603f73d61670954833b6ed87199a4a919e2a5dc015f34b20fdd235a611f37e81"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-win_amd64.whl", hash = "sha256:8c95c0ef2de4611a528ef210c233481dd7628c57ff3ef7f08c0f9708125d3ff8"}, +] + +[[package]] +name = "termcolor" +version = "2.4.0" +description = "ANSI color formatting for output in terminal" +optional = false +python-versions = ">=3.8" +files = [ + {file = "termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63"}, + {file = "termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a"}, +] + +[package.extras] +tests = ["pytest", "pytest-cov"] + +[[package]] +name = "theano" +version = "1.0.5" +description = "Optimizing compiler for evaluating mathematical expressions on CPUs and GPUs." +optional = false +python-versions = "*" +files = [ + {file = "Theano-1.0.5.tar.gz", hash = "sha256:6e9439dd53ba995fcae27bf20626074bfc2fff446899dc5c53cb28c1f9202e89"}, +] + +[package.dependencies] +numpy = ">=1.9.1" +scipy = ">=0.14" +six = ">=1.9.0" + +[package.extras] +doc = ["Sphinx (>=0.5.1)", "pygments"] +test = ["flake8", "nose (>=1.3.0)", "parameterized"] + +[[package]] +name = "threadpoolctl" +version = "3.5.0" +description = "threadpoolctl" +optional = false +python-versions = ">=3.8" +files = [ + {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, + {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, +] + +[[package]] +name = "tornado" +version = "6.4.1" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">=3.8" +files = [ + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8"}, + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698"}, + {file = "tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d"}, + {file = "tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7"}, + {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"}, +] + +[[package]] +name = "tqdm" +version = "4.66.4" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tqdm-4.66.4-py3-none-any.whl", hash = "sha256:b75ca56b413b030bc3f00af51fd2c1a1a5eac6a0c1cca83cbb37a5c52abce644"}, + {file = "tqdm-4.66.4.tar.gz", hash = "sha256:e4d936c9de8727928f3be6079590e97d9abfe8d39a590be678eb5919ffc186bb"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + +[[package]] +name = "traitlets" +version = "5.14.3" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +files = [ + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "typing-extensions" +version = "4.12.2" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, +] + +[[package]] +name = "tzdata" +version = "2024.1" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, + {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, +] + +[[package]] +name = "urllib3" +version = "2.2.2" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=3.8" +files = [ + {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, + {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, +] + +[package.extras] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +h2 = ["h2 (>=4,<5)"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "wcwidth" +version = "0.2.13" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +files = [ + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, +] + +[[package]] +name = "werkzeug" +version = "3.0.3" +description = "The comprehensive WSGI web application library." +optional = false +python-versions = ">=3.8" +files = [ + {file = "werkzeug-3.0.3-py3-none-any.whl", hash = "sha256:fc9645dc43e03e4d630d23143a04a7f947a9a3b5727cd535fdfe155a17cc48c8"}, + {file = "werkzeug-3.0.3.tar.gz", hash = "sha256:097e5bfda9f0aba8da6b8545146def481d06aa7d3266e7448e2cccf67dd8bd18"}, +] + +[package.dependencies] +MarkupSafe = ">=2.1.1" + +[package.extras] +watchdog = ["watchdog (>=2.3)"] + +[[package]] +name = "wheel" +version = "0.43.0" +description = "A built-package format for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "wheel-0.43.0-py3-none-any.whl", hash = "sha256:55c570405f142630c6b9f72fe09d9b67cf1477fcf543ae5b8dcb1f5b7377da81"}, + {file = "wheel-0.43.0.tar.gz", hash = "sha256:465ef92c69fa5c5da2d1cf8ac40559a8c940886afcef87dcf14b9470862f1d85"}, +] + +[package.extras] +test = ["pytest (>=6.0.0)", "setuptools (>=65)"] + +[[package]] +name = "wrapt" +version = "1.16.0" +description = "Module for decorators, wrappers and monkey patching." +optional = false +python-versions = ">=3.6" +files = [ + {file = "wrapt-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ffa565331890b90056c01db69c0fe634a776f8019c143a5ae265f9c6bc4bd6d4"}, + {file = "wrapt-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e4fdb9275308292e880dcbeb12546df7f3e0f96c6b41197e0cf37d2826359020"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb2dee3874a500de01c93d5c71415fcaef1d858370d405824783e7a8ef5db440"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a88e6010048489cda82b1326889ec075a8c856c2e6a256072b28eaee3ccf487"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac83a914ebaf589b69f7d0a1277602ff494e21f4c2f743313414378f8f50a4cf"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:73aa7d98215d39b8455f103de64391cb79dfcad601701a3aa0dddacf74911d72"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:807cc8543a477ab7422f1120a217054f958a66ef7314f76dd9e77d3f02cdccd0"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bf5703fdeb350e36885f2875d853ce13172ae281c56e509f4e6eca049bdfb136"}, + {file = "wrapt-1.16.0-cp310-cp310-win32.whl", hash = "sha256:f6b2d0c6703c988d334f297aa5df18c45e97b0af3679bb75059e0e0bd8b1069d"}, + {file = "wrapt-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:decbfa2f618fa8ed81c95ee18a387ff973143c656ef800c9f24fb7e9c16054e2"}, + {file = "wrapt-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1a5db485fe2de4403f13fafdc231b0dbae5eca4359232d2efc79025527375b09"}, + {file = "wrapt-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75ea7d0ee2a15733684badb16de6794894ed9c55aa5e9903260922f0482e687d"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a452f9ca3e3267cd4d0fcf2edd0d035b1934ac2bd7e0e57ac91ad6b95c0c6389"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:43aa59eadec7890d9958748db829df269f0368521ba6dc68cc172d5d03ed8060"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72554a23c78a8e7aa02abbd699d129eead8b147a23c56e08d08dfc29cfdddca1"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d2efee35b4b0a347e0d99d28e884dfd82797852d62fcd7ebdeee26f3ceb72cf3"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6dcfcffe73710be01d90cae08c3e548d90932d37b39ef83969ae135d36ef3956"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:eb6e651000a19c96f452c85132811d25e9264d836951022d6e81df2fff38337d"}, + {file = "wrapt-1.16.0-cp311-cp311-win32.whl", hash = "sha256:66027d667efe95cc4fa945af59f92c5a02c6f5bb6012bff9e60542c74c75c362"}, + {file = "wrapt-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:aefbc4cb0a54f91af643660a0a150ce2c090d3652cf4052a5397fb2de549cd89"}, + {file = "wrapt-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5eb404d89131ec9b4f748fa5cfb5346802e5ee8836f57d516576e61f304f3b7b"}, + {file = "wrapt-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9090c9e676d5236a6948330e83cb89969f433b1943a558968f659ead07cb3b36"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94265b00870aa407bd0cbcfd536f17ecde43b94fb8d228560a1e9d3041462d73"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2058f813d4f2b5e3a9eb2eb3faf8f1d99b81c3e51aeda4b168406443e8ba809"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98b5e1f498a8ca1858a1cdbffb023bfd954da4e3fa2c0cb5853d40014557248b"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:14d7dc606219cdd7405133c713f2c218d4252f2a469003f8c46bb92d5d095d81"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:49aac49dc4782cb04f58986e81ea0b4768e4ff197b57324dcbd7699c5dfb40b9"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:418abb18146475c310d7a6dc71143d6f7adec5b004ac9ce08dc7a34e2babdc5c"}, + {file = "wrapt-1.16.0-cp312-cp312-win32.whl", hash = "sha256:685f568fa5e627e93f3b52fda002c7ed2fa1800b50ce51f6ed1d572d8ab3e7fc"}, + {file = "wrapt-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:dcdba5c86e368442528f7060039eda390cc4091bfd1dca41e8046af7c910dda8"}, + {file = "wrapt-1.16.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:d462f28826f4657968ae51d2181a074dfe03c200d6131690b7d65d55b0f360f8"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a33a747400b94b6d6b8a165e4480264a64a78c8a4c734b62136062e9a248dd39"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b3646eefa23daeba62643a58aac816945cadc0afaf21800a1421eeba5f6cfb9c"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ebf019be5c09d400cf7b024aa52b1f3aeebeff51550d007e92c3c1c4afc2a40"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:0d2691979e93d06a95a26257adb7bfd0c93818e89b1406f5a28f36e0d8c1e1fc"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:1acd723ee2a8826f3d53910255643e33673e1d11db84ce5880675954183ec47e"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:bc57efac2da352a51cc4658878a68d2b1b67dbe9d33c36cb826ca449d80a8465"}, + {file = "wrapt-1.16.0-cp36-cp36m-win32.whl", hash = "sha256:da4813f751142436b075ed7aa012a8778aa43a99f7b36afe9b742d3ed8bdc95e"}, + {file = "wrapt-1.16.0-cp36-cp36m-win_amd64.whl", hash = "sha256:6f6eac2360f2d543cc875a0e5efd413b6cbd483cb3ad7ebf888884a6e0d2e966"}, + {file = "wrapt-1.16.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a0ea261ce52b5952bf669684a251a66df239ec6d441ccb59ec7afa882265d593"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bd2d7ff69a2cac767fbf7a2b206add2e9a210e57947dd7ce03e25d03d2de292"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9159485323798c8dc530a224bd3ffcf76659319ccc7bbd52e01e73bd0241a0c5"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a86373cf37cd7764f2201b76496aba58a52e76dedfaa698ef9e9688bfd9e41cf"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:73870c364c11f03ed072dda68ff7aea6d2a3a5c3fe250d917a429c7432e15228"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b935ae30c6e7400022b50f8d359c03ed233d45b725cfdd299462f41ee5ffba6f"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:db98ad84a55eb09b3c32a96c576476777e87c520a34e2519d3e59c44710c002c"}, + {file = "wrapt-1.16.0-cp37-cp37m-win32.whl", hash = "sha256:9153ed35fc5e4fa3b2fe97bddaa7cbec0ed22412b85bcdaf54aeba92ea37428c"}, + {file = "wrapt-1.16.0-cp37-cp37m-win_amd64.whl", hash = "sha256:66dfbaa7cfa3eb707bbfcd46dab2bc6207b005cbc9caa2199bcbc81d95071a00"}, + {file = "wrapt-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1dd50a2696ff89f57bd8847647a1c363b687d3d796dc30d4dd4a9d1689a706f0"}, + {file = "wrapt-1.16.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:44a2754372e32ab315734c6c73b24351d06e77ffff6ae27d2ecf14cf3d229202"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e9723528b9f787dc59168369e42ae1c3b0d3fadb2f1a71de14531d321ee05b0"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbed418ba5c3dce92619656802cc5355cb679e58d0d89b50f116e4a9d5a9603e"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:941988b89b4fd6b41c3f0bfb20e92bd23746579736b7343283297c4c8cbae68f"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6a42cd0cfa8ffc1915aef79cb4284f6383d8a3e9dcca70c445dcfdd639d51267"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1ca9b6085e4f866bd584fb135a041bfc32cab916e69f714a7d1d397f8c4891ca"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d5e49454f19ef621089e204f862388d29e6e8d8b162efce05208913dde5b9ad6"}, + {file = "wrapt-1.16.0-cp38-cp38-win32.whl", hash = "sha256:c31f72b1b6624c9d863fc095da460802f43a7c6868c5dda140f51da24fd47d7b"}, + {file = "wrapt-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:490b0ee15c1a55be9c1bd8609b8cecd60e325f0575fc98f50058eae366e01f41"}, + {file = "wrapt-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9b201ae332c3637a42f02d1045e1d0cccfdc41f1f2f801dafbaa7e9b4797bfc2"}, + {file = "wrapt-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2076fad65c6736184e77d7d4729b63a6d1ae0b70da4868adeec40989858eb3fb"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5cd603b575ebceca7da5a3a251e69561bec509e0b46e4993e1cac402b7247b8"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b47cfad9e9bbbed2339081f4e346c93ecd7ab504299403320bf85f7f85c7d46c"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8212564d49c50eb4565e502814f694e240c55551a5f1bc841d4fcaabb0a9b8a"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5f15814a33e42b04e3de432e573aa557f9f0f56458745c2074952f564c50e664"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db2e408d983b0e61e238cf579c09ef7020560441906ca990fe8412153e3b291f"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:edfad1d29c73f9b863ebe7082ae9321374ccb10879eeabc84ba3b69f2579d537"}, + {file = "wrapt-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed867c42c268f876097248e05b6117a65bcd1e63b779e916fe2e33cd6fd0d3c3"}, + {file = "wrapt-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:eb1b046be06b0fce7249f1d025cd359b4b80fc1c3e24ad9eca33e0dcdb2e4a35"}, + {file = "wrapt-1.16.0-py3-none-any.whl", hash = "sha256:6906c4100a8fcbf2fa735f6059214bb13b97f75b1a61777fcf6432121ef12ef1"}, + {file = "wrapt-1.16.0.tar.gz", hash = "sha256:5f370f952971e7d17c7d1ead40e49f32345a7f7a5373571ef44d800d06b1899d"}, +] + +[[package]] +name = "zipp" +version = "3.19.2" +description = "Backport of pathlib-compatible object wrapper for zip files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "zipp-3.19.2-py3-none-any.whl", hash = "sha256:f091755f667055f2d02b32c53771a7a6c8b47e1fdbc4b72a8b9072b3eef8015c"}, + {file = "zipp-3.19.2.tar.gz", hash = "sha256:bf1dcf6450f873a13e952a29504887c89e6de7506209e5b1bcc3460135d4de19"}, +] + +[package.extras] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] + +[metadata] +lock-version = "2.0" +python-versions = "~3.8" +content-hash = "22709a13a9a841c80093d21804a5254349fe8074ccd255b63d287efbe16d4e0f" diff --git a/Chapter06/pyproject.toml b/Chapter06/pyproject.toml new file mode 100644 index 0000000..2c337f5 --- /dev/null +++ b/Chapter06/pyproject.toml @@ -0,0 +1,31 @@ +[tool.poetry] +name = "Graph Machine Learning - Chapter 6" +version = "1.0.0" +description = "" +authors = ["Enrico Deusebio "] +packages = [] + +[tool.setuptools] +py-modules = [] + +[tool.poetry.dependencies] +python = "~3.8" +ipykernel = ">=6.0.0" +matplotlib = "==3.2.2" +networkx = "==2.5" +scikit-learn = "==0.24.0" +gensim = "==3.8.3" +node2vec = "==0.3.3" +chardet = "==5.2.0" +tensorflow = "^2.6.0" +tensorflow-io-gcs-filesystem = "==0.21.0" # This needs pinning - see https://stackoverflow.com/a/76477590 +protobuf= "^3.20" +python-louvain = "==0.16" +# communities = "==2.2.0" +nxt-gem = { git="https://github.com/palash1992/GEM.git", branch="master" } +# This is what is holding us back to python 3.8 +stellargraph = "^1.2.1" + +[build-system] +requires = ["poetry-core"] +build-backend = "poetry.core.masonry.api" diff --git a/Chapter06/requirements.txt b/Chapter06/requirements.txt new file mode 100644 index 0000000..394c2c3 --- /dev/null +++ b/Chapter06/requirements.txt @@ -0,0 +1,98 @@ +absl-py==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +appnope==0.1.4 ; python_version >= "3.8" and python_version < "3.9" and (platform_system == "Darwin" or sys_platform == "darwin") +asttokens==2.4.1 ; python_version >= "3.8" and python_version < "3.9" +astunparse==1.6.3 ; python_version >= "3.8" and python_version < "3.9" +backcall==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +cachetools==5.3.3 ; python_version >= "3.8" and python_version < "3.9" +certifi==2024.6.2 ; python_version >= "3.8" and python_version < "3.9" +cffi==1.16.0 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +chardet==5.2.0 ; python_version >= "3.8" and python_version < "3.9" +charset-normalizer==3.3.2 ; python_version >= "3.8" and python_version < "3.9" +colorama==0.4.6 ; python_version >= "3.8" and python_version < "3.9" and (sys_platform == "win32" or platform_system == "Windows") +comm==0.2.2 ; python_version >= "3.8" and python_version < "3.9" +cycler==0.12.1 ; python_version >= "3.8" and python_version < "3.9" +cython==0.29.14 ; python_version >= "3.8" and python_version < "3.9" +debugpy==1.8.1 ; python_version >= "3.8" and python_version < "3.9" +decorator==5.1.1 ; python_version >= "3.8" and python_version < "3.9" +executing==2.0.1 ; python_version >= "3.8" and python_version < "3.9" +flatbuffers==2.0.7 ; python_version >= "3.8" and python_version < "3.9" +gast==0.4.0 ; python_version >= "3.8" and python_version < "3.9" +gensim==3.8.3 ; python_version >= "3.8" and python_version < "3.9" +google-auth-oauthlib==1.0.0 ; python_version >= "3.8" and python_version < "3.9" +google-auth==2.30.0 ; python_version >= "3.8" and python_version < "3.9" +google-pasta==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +grpcio==1.64.1 ; python_version >= "3.8" and python_version < "3.9" +h5py==3.11.0 ; python_version >= "3.8" and python_version < "3.9" +idna==3.7 ; python_version >= "3.8" and python_version < "3.9" +importlib-metadata==7.2.1 ; python_version >= "3.8" and python_version < "3.9" +ipykernel==6.29.4 ; python_version >= "3.8" and python_version < "3.9" +ipython==8.12.3 ; python_version >= "3.8" and python_version < "3.9" +jedi==0.19.1 ; python_version >= "3.8" and python_version < "3.9" +joblib==1.4.2 ; python_version >= "3.8" and python_version < "3.9" +jupyter-client==8.6.2 ; python_version >= "3.8" and python_version < "3.9" +jupyter-core==5.7.2 ; python_version >= "3.8" and python_version < "3.9" +keras-preprocessing==1.1.2 ; python_version >= "3.8" and python_version < "3.9" +keras==2.7.0 ; python_version >= "3.8" and python_version < "3.9" +kiwisolver==1.4.5 ; python_version >= "3.8" and python_version < "3.9" +libclang==18.1.1 ; python_version >= "3.8" and python_version < "3.9" +markdown==3.6 ; python_version >= "3.8" and python_version < "3.9" +markupsafe==2.1.5 ; python_version >= "3.8" and python_version < "3.9" +matplotlib-inline==0.1.7 ; python_version >= "3.8" and python_version < "3.9" +matplotlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" +nest-asyncio==1.6.0 ; python_version >= "3.8" and python_version < "3.9" +networkx==2.5 ; python_version >= "3.8" and python_version < "3.9" +node2vec==0.3.3 ; python_version >= "3.8" and python_version < "3.9" +numpy==1.24.4 ; python_version >= "3.8" and python_version < "3.9" +nxt-gem @ git+https://github.com/palash1992/GEM.git@ae8e92d34213f5785757b4a0943bd7d8d337adb3 ; python_version >= "3.8" and python_version < "3.9" +oauthlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" +opt-einsum==3.3.0 ; python_version >= "3.8" and python_version < "3.9" +packaging==24.1 ; python_version >= "3.8" and python_version < "3.9" +pandas==2.0.3 ; python_version >= "3.8" and python_version < "3.9" +parso==0.8.4 ; python_version >= "3.8" and python_version < "3.9" +pexpect==4.9.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" +pickleshare==0.7.5 ; python_version >= "3.8" and python_version < "3.9" +platformdirs==4.2.2 ; python_version >= "3.8" and python_version < "3.9" +prompt-toolkit==3.0.47 ; python_version >= "3.8" and python_version < "3.9" +protobuf==3.20.3 ; python_version >= "3.8" and python_version < "3.9" +psutil==6.0.0 ; python_version >= "3.8" and python_version < "3.9" +ptyprocess==0.7.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" +pure-eval==0.2.2 ; python_version >= "3.8" and python_version < "3.9" +pyasn1-modules==0.4.0 ; python_version >= "3.8" and python_version < "3.9" +pyasn1==0.6.0 ; python_version >= "3.8" and python_version < "3.9" +pycparser==2.22 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +pygments==2.18.0 ; python_version >= "3.8" and python_version < "3.9" +pyparsing==3.1.2 ; python_version >= "3.8" and python_version < "3.9" +python-dateutil==2.9.0.post0 ; python_version >= "3.8" and python_version < "3.9" +python-louvain==0.16 ; python_version >= "3.8" and python_version < "3.9" +pytz==2024.1 ; python_version >= "3.8" and python_version < "3.9" +pywin32==306 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" +pyzmq==26.0.3 ; python_version >= "3.8" and python_version < "3.9" +requests-oauthlib==2.0.0 ; python_version >= "3.8" and python_version < "3.9" +requests==2.32.3 ; python_version >= "3.8" and python_version < "3.9" +rsa==4.9 ; python_version >= "3.8" and python_version < "3.9" +scikit-learn==0.24.0 ; python_version >= "3.8" and python_version < "3.9" +scipy==1.10.1 ; python_version >= "3.8" and python_version < "3.9" +setuptools==70.1.1 ; python_version >= "3.8" and python_version < "3.9" +six==1.16.0 ; python_version >= "3.8" and python_version < "3.9" +smart-open==7.0.4 ; python_version >= "3.8" and python_version < "3.9" +stack-data==0.6.3 ; python_version >= "3.8" and python_version < "3.9" +stellargraph==1.2.1 ; python_version >= "3.8" and python_version < "3.9" +tensorboard-data-server==0.7.2 ; python_version >= "3.8" and python_version < "3.9" +tensorboard==2.14.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow-estimator==2.7.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow-io-gcs-filesystem==0.21.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow==2.7.2 ; python_version >= "3.8" and python_version < "3.9" +termcolor==2.4.0 ; python_version >= "3.8" and python_version < "3.9" +theano==1.0.5 ; python_version >= "3.8" and python_version < "3.9" +threadpoolctl==3.5.0 ; python_version >= "3.8" and python_version < "3.9" +tornado==6.4.1 ; python_version >= "3.8" and python_version < "3.9" +tqdm==4.66.4 ; python_version >= "3.8" and python_version < "3.9" +traitlets==5.14.3 ; python_version >= "3.8" and python_version < "3.9" +typing-extensions==4.12.2 ; python_version >= "3.8" and python_version < "3.9" +tzdata==2024.1 ; python_version >= "3.8" and python_version < "3.9" +urllib3==2.2.2 ; python_version >= "3.8" and python_version < "3.9" +wcwidth==0.2.13 ; python_version >= "3.8" and python_version < "3.9" +werkzeug==3.0.3 ; python_version >= "3.8" and python_version < "3.9" +wheel==0.43.0 ; python_version >= "3.8" and python_version < "3.9" +wrapt==1.16.0 ; python_version >= "3.8" and python_version < "3.9" +zipp==3.19.2 ; python_version >= "3.8" and python_version < "3.9" diff --git a/docker/Dockerfile b/docker/Dockerfile index fd6312e..c360fe6 100644 --- a/docker/Dockerfile +++ b/docker/Dockerfile @@ -21,7 +21,7 @@ WORKDIR /home/${user}/Graph-Machine-Learning RUN ln -s /data data -RUN git checkout chap1 +RUN git checkout chap6 RUN conda create -n chap1 python=3.9 RUN conda run -n chap1 pip install -r Chapter01/requirements.txt @@ -35,6 +35,10 @@ RUN conda create -n chap3 python=3.8 RUN conda run -n chap3 pip install -r Chapter03/requirements.txt RUN conda run -n chap3 python -m ipykernel install --name chap3 --user +RUN conda create -n chap6 python=3.8 +RUN conda run -n chap6 pip install -r Chapter06/requirements.txt +RUN conda run -n chap6 python -m ipykernel install --name chap6 --user + EXPOSE 8888 ENTRYPOINT jupyter notebook --no-browser --port 8888 --NotebookApp.token='' --NotebookApp.password='' \ No newline at end of file From 62041d9ad743268e33b3e7b0e2f164b95244e77b Mon Sep 17 00:00:00 2001 From: Enrico Deusebio Date: Wed, 26 Jun 2024 18:15:25 +0200 Subject: [PATCH 08/31] [2nd Edition][Chapter 3] (fix) broken dataset download --- Chapter03/04_Graph_Neural_Network.ipynb | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/Chapter03/04_Graph_Neural_Network.ipynb b/Chapter03/04_Graph_Neural_Network.ipynb index a983132..a9aa713 100644 --- a/Chapter03/04_Graph_Neural_Network.ipynb +++ b/Chapter03/04_Graph_Neural_Network.ipynb @@ -217,7 +217,7 @@ "id": "VHU1UGiHfw1e" }, "source": [ - "In this demo, we will be using the PROTEINS dataset, already integrated in StellarGraph" + "In this demo, we will be using the PROTEINS dataset, already integrated in StellarGraph (although we need to override the url, given that the original data was removed)" ] }, { @@ -246,6 +246,7 @@ } ], "source": [ + "sg.datasets.PROTEINS.url = 'https://www.chrsmrrs.com/graphkerneldatasets/PROTEINS.zip'\n", "dataset = sg.datasets.PROTEINS()\n", "display(HTML(dataset.description))\n", "graphs, graph_labels = dataset.load()" From f7d70061c1cf865cd93465ab5f7c0100b062ec8f Mon Sep 17 00:00:00 2001 From: Enrico Deusebio Date: Fri, 16 Aug 2024 12:22:41 +0200 Subject: [PATCH 09/31] [2nd Edition][Chapter 5] Introduce Poetry --- Chapter05/01_link_prediction.ipynb | 152 +- .../02_community_detection_algorithms.ipynb | 26 +- Chapter05/poetry.lock | 2413 +++++++++++++++++ Chapter05/pyproject.toml | 28 + 4 files changed, 2545 insertions(+), 74 deletions(-) create mode 100644 Chapter05/poetry.lock create mode 100644 Chapter05/pyproject.toml diff --git a/Chapter05/01_link_prediction.ipynb b/Chapter05/01_link_prediction.ipynb index dfb7cf5..f05c729 100644 --- a/Chapter05/01_link_prediction.ipynb +++ b/Chapter05/01_link_prediction.ipynb @@ -14,6 +14,18 @@ "## Index Based" ] }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import sys\n", + "sys.path.append(f\"{os.getcwd()}/..\") \n", + "from Chapter01.utils import draw_graph, DATA_DIR" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -23,7 +35,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -35,9 +47,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAiw0lEQVR4nO3da3BU553n8d853a3WBYSEwECQQBIXY+4tgVFA4PUIX5I1nkxsM971JZMdkdjebLGZSdVOtra2amv3hadmMhMyMySZIamdGM8sY5zaiZ1x4oySOIu42KAWFwnERSBoAhiEANNI6ss5+8IWZWPUakl9Pef7qXKVsc85PGpj/fSc5/k/f8O2bVsAALiEme0BAACQSQQfAMBVCD4AgKsQfAAAVyH4AACuQvABAFyF4AMAuArBBwBwFYIPAOAqBB8AwFUIPgCAqxB8AABXIfgAAK5C8AEAXIXgAwC4CsEHAHAVgg8A4CoEHwDAVQg+AICrEHwAAFch+AAArkLwAQBcheADALgKwQcAcBWCDwDgKgQfAMBVCD4AgKsQfAAAVyH4AACuQvABAFyF4AMAuArBBwBwFYIPAOAqBB8AwFUIPgCAq3izPQAAQPrF4pZCff0ajFnye01VlhfJ63Hn3IfgAwCH6gtHtGP/Oe1sC6mnNyyfx5RpGLJsW9G4pdkVJXqyrlJPr6xSWXFBtoebMYZt23a2BwEASJ1IzNKWluPatuu0DEMaiFrDXlvoM2XbUnNjjTY3zVeB1/mzQIIPABzk/LV+PbNtry7dGFB/gsC7U5HP1LTSQr3a3KCZZUVpHGH2EXwA4BDnr/Vrw1/v0vVbUcXH8K3dYxiaVOzTG19rdHT4OX9OCwAuEIlZembb3jGHniTFbVvXb0X17La9isaTny3mG4IPABxgS8txXboxMObQGxK3bV28MagtLSdSNLLcw6tOAMhzfeGIGl5u0WDs7rO0s9968hO/tmMRTQx8XpMffmHYZ/q9pvZ9s8mRuz0pZwCAPLdj/zkZxvD/ftYf77z991akX6G/ek7FCxoTPtMwPnzuV9fNSdUwcwavOgEgz+1sCyUsWfi4W1275SmeJH/VooTXDUQt7TwQSsXwcg7BBwB5LBa31NMbTvr6m4dbVLL4d2QkmiJ+5ExvWDEHbnIh+AAgj4X6+uVL8uix2PX3NXjuiEqWNCV1vc9jKtTXP57h5SSCDwDy2GDMkpnE7E2Sbh75pfyVC+Urm57U9aZhDLthJp8RfACQx/xeU1aSm/PDR36pCYt/J+lnW7YtvwOPMHPeVwQALlJZXpRUsflA6KjiN3tH3M35cdG4pcpy553gQvABQB7zekzNrigZ8brwkRYVz18t01+c9LOrK0oc2brIeV8RALjMk3WVKvQl/nZe8ejXNGXDHyf9zEKfqafqK8c7tJxE8AFAnnt6ZZVSfQaXbUsbV1Sl9qE5guADgDxXVlyg5sYaFY0w60tWkc+jTWtrHXlcmUTwAYAjbG6ar2mlhfIkWdowHI9haHqpX5ub5qVoZLmH4AMAByjwmnq1uUGTin1jDr+hfnzbmxuSLorPR3RnAAAHGXsHdo+ml/q1nQ7sAIB8E4lZ2tJyXH/7m1OSpET5V+QzZdnSprW12tw0z9EzvSEEHwA4kGVZevkvviP/wgf1s65rOtMbls9jyjQMWbataNxSdUWJnqqv1MYVVY7dyHI39OMDAAfq7u7W1Ekl2vT5Zfrjz3/YxSHU16/BmCW/11RleZEji9OTQfABgAO1t7dr+fLlt3/t9ZiqnjLyCS9u4M64BwAH6+/v18mTJ7V48eJsDyUnEXwA4DAdHR2aM2eOioqcvTtzrAg+AHCYO19z4pMIPgBwkMuXL+v69euaM2dOtoeSswg+AHCQgwcPaunSpTJNvr0Ph08GABzCsiwdOnRIy5Yty/ZQchrBBwAO0d3drYkTJ+qee+7J9lByGsEHAA7BppbkEHwA4ADU7iWP4AMAB6B2L3kEHwA4AK85k0fwAUCeo3ZvdAg+AMhz1O6NDp8SAOQxavdGj+ADgDxG7d7oEXwAkMfY1DJ6BB8A5Clq98aG4AOAPEXt3tgQfACQp3jNOTYEHwDkIWr3xo7gA4A8RO3e2PGJAUCeGard4zXn2BB8AJBnuru7VVpaqqlTp2Z7KHmJ4AOAPNPe3s5JLeNA8AFAHqF2b/wIPgDIIx0dHZo7dy61e+NA8AFAHuE15/gRfACQJ6jdSw2CDwDyBLV7qcGnBwB5gNq91CH4ACAPULuXOgQfAOQBNrWkDsEHADmO2r3UIvgAIMcdOXKE2r0UIvgAIMcdPHiQ15wpRPABQA6jdi/1CD4AyGHt7e3U7qUYnyQA5Chq99KD4AOAHHXq1ClNmjSJ2r0UI/gAIEexqSU9CD4AyEHU7qUPwQcAOYjavfQh+AAgB/GaM30IPgDIMdTupRfBBwA5htq99OJTBYAcQu1e+hF8AJBDqN1LP4IPAHIIm1rSj+ADgBxB7V5mEHwAkCOo3csMgg8AcgSvOTOD4AOAHEDtXuYQfACQA6jdyxw+YQDIMmr3MovgA4Aso3Yvswg+AMgyNrVkFsEHAFlE7V7mEXwAkEXU7mUewQcAWcRrzswj+AAgS6jdyw6CDwCyhNq97ODTBoAsoHYvewg+AMgCaveyh+ADgCxgU0v2EHwAkGHU7mUXwQcAGUbtXnYRfACQYbzmzC6CDwAyiNq97CP4ACCDqN3LPj55AMgQavdyA8EHABlC7V5uIPgAIEPY1JIbCD4AyABq93IHwQcAGUDtXu4g+AAgAw4ePMimlhxB8AFAml2+fFk3btxQbW1ttocCEXwAkHbU7uUW/isAQBoN1e6xmzN3EHwAkEbU7uUegg8A0ohNLbmH4AOANBmq3Vu0aFG2h4KP8WZ7AADgBLG4pVBfvwZjlvxeU5XlRdTu5SiCDwDGqC8c0Y7957SzLaSe3rB8HlOmYciybUXjliaZEf3e8ipduxVRWXFBtoeLjxi2bdvZHgQA5JNIzNKWluPatuu0DEMaiFrDXlvoM2XbUnNjjTY3zVeBlxWmbCP4AGAUzl/r1zPb9urSjQH1Jwi8OxX5TE0rLdSrzQ2aWcarz2wi+AAgSeev9WvDX+/S9VtRxcfwrdNjGJpU7NMbX2sk/LKIOTcAJCESs/TMtr1jDj1Jitu2rt+K6tltexWNJz9bRGoRfACQhC0tx3XpxsCYQ29I3LZ18cagtrScSNHIMFq86gSAEfSFI2p4uUWDseFnaRdf/RMN/rZLhumRJHkmVmjmV74/7PV+r6l932xit2cWUM4AACPYsf+cDGPk6yY//IImLnskqWcaxofP/eq6OeMcHUaLV50AMIKdbaGEJQtjMRC1tPNAKKXPRHKY8QFAArG4pZ7ecFLXXvv13+var/9evskzVbbuORXOXprw+jO9YcXilrwe5iCZRPABQAKhvn75PKai8XjC68of/LJ8FVUyPD6Fj/5G77/+PzXjy9+Rr3zGsPf4PKZCff2qnlKS6mEjAX7MAIAEBmOWzCQW+PyfuVemv1iG16cJS5rkn3mf+k/tT3iPaRgJN8wgPQg+AEjA7zVljWXzu2FISnyfZdvyc4RZxvGJA0ACleVFIxabWwM31d99QHYsItuK62bHrzR47oiKausT3heNW6os5wSXTGONDwDuor+/X8eOHVNnZ6cm2IXqU+Gw19pWXNd+s13RqyHJMOWrqNTUL/43+SbPTPh7VFeUsLElCyhgB4CP9Pf3q6urS52dnTp79qxqa2u1cOFCvfO+T3/16+6UljQU+kz90fr5+gp1fBnHjA+Aqw0MDNye2Z09e1Y1NTVaunSpnnjiCfn9fklS5a2IvvOr7pT+vrYtbVxRldJnIjkEHwDXGRgYUFdXlzo6Om6H3ZIlSz4Rdh9XVlyg5sYa/bD19KhaEQ2nyOfRHzbWcFxZlvCqE4ArDIVdZ2enenp6VF1drUWLFmn+/Pl3Dbs7RWKWHv72Ozp3tX9cB1V7DEOzJhfp7a8/IB/re1lB8AFwrMHBwdszu6GwW7hwoe69996kwu5O9ONzBoIPgKMMhV1nZ6fOnDmj2bNn357ZFRYOvzMzWWPtwO73SJ8pK9Z2OrBnHcEHIO8NDg7q+PHj6ujouB12QzO7VITdnSIxS1tajmvbrtMyDCXc7Vnk+7AAfrH3kv7mxcc0/Z6pKR8PRofgA5CXhsKus7NTp0+fTnvY3c21WxHt2H9OOw+EdKY3LJ/HlGkYsmxb0bil6ooSPVVfqY0rqnTsUJuOHTumL33pSzKS6XGEtCH4AOSNO8Nu1qxZWrhwoRYsWJCxsBtOLG4p1NevwZglv9dUZXnRJ4rTLcvSD3/4QwUCAdXXJz7RBelF8AG4q5G+kWdKJBK5HXbd3d23w+7ee+9VUVF+rZVdunRJP/rRj/TCCy9o4sSJ2R6OaxF8AG7rC3/06q4tpJ67vLqbXVGiJ+sq9fTKqrTWoN0ZdlVVVVq0aFFeht2dfvnLX+ry5cvauHEjrzyzhOADMKrNGoU+U7YtNTfWaHPTfBWkqLtAJBLRiRMn1NHRcTvshl5j5nvYfVwsFtP3v/99Pfjgg1q4cGG2h+NKBB/gcmPdnl/kMzWttFCvjmN7/lDYdXZ26tSpU6qsrNSiRYscF3Z3Onv2rF577TW99NJLjv46cxXBB7hYNgqyo9Ho7ZndUNgNzeyKi4tHPYZ89dOf/lTxeFyPP/54tofiOgQf4FKZPIJrKOw6Ozt18uRJ14bdxw0ODmrr1q36whe+oJqammwPx1UIPsCl/uznx1J+6PI3Hr739j+LRqM6efKkOjo6dPLkSc2cOVMLFy7Ufffd59qwu9Px48f1s5/9TC+++KJ8Pl+2h+MaBB/gQn3hiBpebtFgbOTQi149r9/+4GsqWbBGUzZ8Y9jr/F5Tu77xgK78tkednZ06ceIEYZeEnTt3atKkSXrooYeyPRTXoC0R4EI79p9Tsjvpr779PflnzBvxOise13/6y3/Q52sLtGjRIj366KMqKSkZ50id73Of+5y++93vavHixZoxY0a2h+MK9MQAXGhnWyipbuLhzndkFpaocPayEa+N2oYuT5yj559/XvX19YRekkpKSrR+/Xr95Cc/UTwez/ZwXIHgA1wmFrfU0xse8Tpr8Jau/b9XVf47zUk/+2xfv2Lx8a8Zus2yZctUXFysPXv2ZHsorkDwAS4T6utPqgHqtd+8ognLHpa3dErSz/Z5TIX6+sczPFcyDEOPPfaYdu/erd7e3mwPx/EIPsBlBmOWzBEW+CKXujXQc1ClK393VM82DSOpDTP4tPLycq1du1Zvvvmm2HOYXmxuAVzG7/2wP1wiA2cPK3b9kkJbvyxJsiMDkm3pwpXNmvHlLcPeZ9m2/Ck6wsyNVq1apSNHjigYDKquri7bw3Esgg9wmcryIkVHWIebsPwRldy37vavb7z7Y8WuX9LkR/5jwvuicUuV5RzBNVamaerxxx/Xj370I82bN48ODmnCj2aAy3g9pqpGCCfTVyjPhPLbfxm+QhneAnmKJyW8r7qiJCuti5xk2rRpqq+v11tvvZXtoTgWf0IBl7AsSydOnNA//dM/6Z4PTslnJL+OVLb2mYTF69KHXRueqq8c7zAhad26dXr//fd19OjRbA/FkXjVCThcX1+fgsGgDh48qAkTJigQCOjbD92rB/5il5TCjSi2LW1cUZWy57mZ1+vVhg0b9Prrr6umpibr3eWdhiPLAAeKxWI6evSogsGgLl26pMWLF6uurk7Tpk27fU26z+rE+NHBIT0IPsBBLl68qGAwqMOHD2vGjBkKBAJasGCBvN5Pv9zJZHcGjA0dHNKD4APy3MDAgI4cOaK2tjaFw2EtX75cgUBAZWVlI96bjX58GJ2uri69/fbbeuGFF+jgkCIEH5CHbNtWT0+PgsGgurq6NGfOHAUCAdXW1so0RzfrGnsHdo+ml/q1fRwd2JGcnTt3qqysTOvXr8/2UByB4APyyAcffKCDBw8qGAzK4/EoEAho6dKl4z4QOhKztKXluLbtOi3DUMIDrIt8pixb2rS2Vpub5vF6MwNu3ryp7373u3r22Wfp4JACBB+Q44bKEILBoHp6enTfffeprq5OM2fOlJFsb6EkXbsV0Y7957TzQEhnesPyeUyZhiHLthWNW6quKNFT9ZXauKJKZcUFKf29kVh7e7v27dunTZs2jXpWj08i+IAc1dvbe7sMoby8XIFAQIsWLVJBQWYCJxa3FOrr12DMkt9rqrK8iOL0LLJtW9u3b1dtba3WrFmT7eHkNYIPyCHRaFSdnZ0KBoO6cuWKli5dqkAgoKlTp2Z7aMgBfX19+ru/+zs1Nzdr8uTJ2R5O3iL4gCyzbVsXLlxQW1ubOjo6VFVVpUAgoPnz58vj8WR7eMgxe/bs0fHjx/X888+n/FW3WxB8QJb09/fr0KFDCgaDGhwcVCAQ0PLly1VaWprtoSGHWZalH/zgB6qvr6eDwxgRfEAG2bat06dPKxgM6sSJE5o3b54CgYBqamr46R1Ju3jxol555RW98MILdHAYA4IPrpTpjRvXr19Xe3u72tvb5ff7VVdXpyVLlqioiPo3jE1LS4t6e3u1cePGbA8l7xB8cI2+8Edb9dtC6rnLVv3ZFSV6sq5ST69MzVb9eDyurq4uBYNBhUIhLV68WIFAQDNmzGB2h3GLxWL63ve+p6amJt13333ZHk5eIfjgeKMpzi70mbJtqbmxRpub5qtgDN3EL1++rLa2Nh0+fFhTpkxRIBDQwoULOW4KKdfT06PXX39dL730Eh0cRoHgg6ON/TguU9NKC/VqksdxRSIRHTlyRMFgUNeuXdOyZcsUCARUUVExnuEDI3rzzTdl27Y2bNiQ7aHkDYIPjpXuA5ht21YoFFIwGNTRo0c1e/ZsBQIBzZs3j5M1kDEDAwPaunWrvvjFL6q6ujrbw8kLBB8cKZ0td8LhsA4dOqS2tjZZlqVAIKBly5axuw5Zc+zYMf3iF7+gg0OSCD44UqqbrP6HNdX6Qq1HwWBQ3d3dWrBggQKBgGbNmsVGFeSE1157TeXl5XRwSALBB8fpC0fU8HKLBmN3Dz07FlXv21s1cKZd1sBNecumq/yBL6lozophn+mRpc2zL2n1iuVavHgxGwmQc+jgkDwWIuA4O/afU6JJmG3F5Z04RdP//cuq+voOla17Tpf/+U8Vu3Zp2Hu8Xo/8Cx/UihUrCD3kpAkTJmj9+vV64403ZFnjf9PhZAQfHGdnWyhhyYJZUKiytc/IWzZNhmGqeO798k6apsGLJ4e9ZzBma+eBUDqGC6TM8uXLVVhYqD179mR7KDmN4IOjxOKWenrDo7onHu5T9Op5FUydlfC6M71hxeL8JI3cZRiGHnvsMbW2turq1avZHk7OIvjgKKG+/lF1BLfjMV35yZ9rwpIm+SqqEl7r85gK9fWPd4hAWk2ePFmNjY236/vwaQQfHGUwZslMcpelbVu68ua3JI9Xkx96YcTrTcMYdsMMkEsaGho0MDCg9vb2bA8lJxF8cBS/15SVxE+5tm2r91++o3j4mqb+3n+V4fGOeI9l2/KP4QgzINNM09Tjjz+uf/3Xf9XNmzezPZycw//FcJTK8iJFk1iHu/rzv1G095zuefK/y/T5k3p2NG6pspxuCsgP06dPV11dnd56661sDyXnEHxwFI9p6DMTE59cEbv+vm62/0yRS90K/dVzOvutJ3X2W0/qZsevEt5XXVGS1tZFQKqtW7dOFy9e1LFjx7I9lJwy8vsdIA/EYjEdPnxYe/fuVbU1QRc8kxWJ3/1a76R7NPtP3hzV8wt9pp6qr0zBSIHM8fl82rBhg3784x+rurqaGtSPcHIL8toHH3yg/fv368CBA5oxY4YaGho0eXqlGl7+ZUo3ovi9pvZ9syklffqATHvjjTdulzqAGR/y1IULF7R3714dP35cixcv1h/8wR9oypQpt/99c2NNSs/q/MPGGkIPeeuhhx7S1q1bdebMGTo4iBkf8ohlWerq6tK+ffvU19en+++/X3V1dSoq+vSGk3R2ZwDy0VAHhxdffFFer7vnPAQfct7AwICCwaDeffddTZgwQQ0NDVqwYIE8Hk/C+9Ldjw/IN6+99pomT56spqambA8lqwg+5KyrV69q3759OnTokObOnatVq1apsnJ0G0zG3oHdo+mlfm1PsgM7kA+GOjg899xzmj59eraHkzUEH3KKbds6c+aM9u7dq1AopLq6Oq1cuVKlpaVjfmYkZmlLy3Ft23VahqGEB1gX+UxZtrRpba02N83j9SYcJxgM6r333lNzc7NM051/vgk+5ISPlyNYlqWGhgYtXbo0pd2kr92KaMf+c9p5IKQzvWH5PKZMw5Bl24rGLVVXlOip+kptXFHFRhY4lm3beuWVVzR37lytXr0628PJCoIPWXW3coTa2tq0dzWPxS2F+vo1GLPk95qqLC+iOB2ucfXqVW3btk3Nzc2aPHlytoeTcQQfsuLOcoRVq1Z9ohwBQHq1trbq1KlTeu655z7xg6Ybfigk+JAxoylHAJBelmVp27ZtWrlyparnL/pwGaAtpJ67LAPMrijRk3WVenqlM5YBCD6k3VjLEQCk17nzv9XmbW+rIzZtxI1fhT5Ttv3h4RCbm+arII87lRB8SJtUlCMASI+hUp/f9t1SZBQHHBX5TE0rLdSreVzqQ/AhpdJRjgAgtdx+uAPB5wKZWKzORDkCgPHjOD8OqXasvnAkI4vVd5YjPPzwwxkpRwAwNltajuvSjYFxhZ4kxW1bF28MakvLCX3j4XtTNLrMYMbnMKM5pWQ8i9WUIwD5py8cUcPLLUm17Ap3vqNrrf+o+I3L8pSUq+Lf/mcVVi3+1HX52LKLGZ+DfPxcymT+YA+F4g9bT+unhy+MuFh9t3KERx99lHIEIE/s2H9OybyM6T8dVN+v/7em/u5/UcFn5it+8+qw1xrGh8/96ro5KRxpejHjc4h0LlZTjgA4w/q/fEcn37854nUXX/mGSpY+rInLHk7qufPumaBffP2B8Q4vY5jxOUAkZumZbXvHHHrSh+/rr9+K6tlte28vVt9ZjvDEE09QjgDkqVjcUk9veMTrbCuuwQsnVTR3lc5/b5PseETF8xpU9uB/kOnz3/WeM71hxeJW3pzwQvA5QGoXqwf0P15/T4ut0zp37pzq6ur04osvUo4A5LlQX798HlPReDzhdfHwNcmK6VZXq6Y9+6cyTI8uv/6/dH33DpU/8Pxd7/F5TIX6+lU9pSQNI089gi/P9YUj2rbrdMI1vStv/LkGzhyUFR2Qp6RcpQ1PaOKyR+56bX/U0j8G39cPHp+jJ554gnIEwCEGY5bMJBb4jI9mdRPrN8g74cMDrCeu/ELC4DMNI6l9BbmC4MtzySxWlzY8pYrPbZbh9Snae04X/+GbKpg2R/7pc+96vc/nVVd0sv4NoQc4ht9rykrirZCncII8Ez+5Q3uk8iTLtuXPoyPM8mekuKudbaGEJQuSVDB1tgzvUIgZMmQo1ndh2OsHopZ2HgilcJQAsq2yvEjReHKzsglL1uuDA28qHr6m+MBN3Xjv/6p47sphr4/GLVWW58/ubmZ8eSzZxWpJ6v35VoUPt8iODapg2hwVzVmR8Pp8W6wGkJjXY2p2RUlSuzonrXla8f4bOv+3X5Xh9alkwVpNWv37w15fXVGSV98rCL48luxitSRVPPKSJj/0VQ2eP6aBs4dleBK/xsy3xWoAI3uyrlLfbjk+4lsiw+NVxSMvqeKRl0Z8ZqHP1FP1+bXbO38iGp+S7GL1EMP0qLBqkeIfXNEHwX9JeG2+LVYDGNnTK6uU6spt25Y2rqhK7UPTjODLY8kuVn+KZSVc45Pyb7EawMjKigvU3FijIl9q/t8u8nm0aW1tXh1XJhF8eS2Zxep4+JrCne/IivTLtuLq7z6g8NF3VFi9POF9+bZYDSA5m5vma1ppoTzjPEjeYxiaXurX5qZ5KRpZ5rDGl8eSWqw2DH0QfEu9P98q2Za8k+5RedMmFc9blfDZ+bZYDSA5BV5TrzY3pOSIw+3NDXnXkkjirM68Zdu2Tp48qT/9yQH9+kqJYimcvBf6TP3R+vn6Sh4dOgtgdD5+qH3/CJtdPq7I59H0Ur+204EdmWJZljo6OtTa2irbtrVs5Wf15X++kNKNKPnYZgTA6I2mjVmRz5RlS5vW1mpz07y8nOkNIfjyRDQaVXt7u3bv3q3S0lI1NjZq7ty5MgxDf/bzY/ph6+lR/dQ2nCKfR3/YWJN3jSUBjN21Wx81rj4Q0pm7NK6urijRU/WV2rhifI2rcwXBl+MGBgb03nvvad++fZo5c6bWrFmjWbNmfeKaSMzSw99+R+eu9o/roGqPYWjW5KLb3RkAuE8sbinU16/BmCW/11RleZHj1vsJvhx18+ZN7d27V21tbZo3b55Wr16tadOmDXt9OvvxAYCTEHw55urVq9q9e7c6Ojq0ZMkSrV69WmVlZUnd6+bFagBIFsGXIy5cuKDW1lZ1d3drxYoVWrVqlUpKRn9cmFsXqwEgWQRfFtm2rZ6eHrW2turSpUtqaGhQfX29/P67dzkeDbctVgNAsgi+LLBtW11dXWptbdWtW7e0Zs0aLV26VF5ves4TcMNiNQAki+DLoHg8rsOHD6u1tVU+n0+NjY1asGCBTJMQAoBMIfgyIBKJqK2tTXv27FFFRYUaGxtVU1MzYldjAEDquTb4MvH679atW3r33Xf13nvvafbs2VqzZo1mzpyZ0t8DADA6rgq+vvBHGz7aQuq5y4aP2RUlerKuUk+vHN+Gjxs3bmjPnj1qb2/XggULtGbNGk2ZMiWFXwkAYKxcEXyj2eJf6DNl21JzY402N81XwSh60l25ckWtra06duyYli9frs9+9rMqLS1NxZcAAEgRxwff2Iu6TU0rLdSrSRR1nz9/Xrt27dLZs2d1//336/7771dREYXgAJCLHB186TzGy7ZtdXd3q7W1Vb29vVq9erUCgYAKCqiJA4Bc5tjgS9fBzZZl6ejRo2ptbVUsFtOaNWu0ePFieTyeFI4eAJAuju3AvqXluC7dGBhX6ElS3LZ18cag/vIXXWqaeku7d+9WcXGxHnjgAc2fP5+SBADIM46c8fWFI2p4uSVhc9YbB95Q+HCLIpfPqOS+BzTlsa8nfKZHlv5kwQd66IHVmj17NoEHAHnKkTO+HfvPaaRc8k6o0KTVv6/+022yo5ERn+n1emTVrFJ1dXVqBgkAyApHnpW1sy2UsGRBkorvXa3i+Z+VWZRcucFgzNbOA6FUDA8AkEWOC75Y3FJPbzgtzz7TG1YsnnxJBAAg9zgu+EJ9/WnrK+fzmAr19afl2QCAzHBc8A3GLJlp2nhiGkbCDTMAgNznuODze01Zadqoatm2/KM4wgwAkHsct6uzsrxI0STW4WwrLg39ZVuyYxHJ9Mgwhy9Ej8YtVZZzFBkA5DPHBZ/XY2p2RYlOvn8z4XXXW/+Prrf+4+1fhzt+pUlr/p3K1j4z7D3VFSV0LgeAPOfIAvbvvXNK3245PmJJw2gU+kz90fr5+sq6OSl7JgAg8xw5fXl6ZZVSHee2LW1cUZXahwIAMs6RwVdWXKDmxhoV+VLz5RX5PNq0tnZczWkBALnBkcEnSZub5mtaaaE84yxt8BiGppf6tblpXopGBgDIJscGX4HX1KvNDZpU7Btz+A3149ve3JC2ongAQGY5cnPLx429A7tH00v92p5EB3YAQP5wfPBJHzal3dJyXNt2nZZhKOFuzyKfKcuWNq2t1eamecz0AMBhXBF8Q67dimjH/nPaeSCkM71h+TymTMOQZduKxi1VV5ToqfpKbVxRxUYWAHAoVwXfx8XilkJ9/RqMWfJ7TVWWF1GcDgAu4NrgAwC4E1McAICrEHwAAFch+AAArkLwAQBcheADALgKwQcAcBWCDwDgKgQfAMBVCD4AgKsQfAAAVyH4AACuQvABAFyF4AMAuArBBwBwFYIPAOAqBB8AwFUIPgCAqxB8AABXIfgAAK5C8AEAXIXgAwC4CsEHAHCV/w91IVTHiHZc2wAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXBU953++6db+4bYJQQS+yYDwuwCCWNsCJgdDAaEHePg4WaWTKUmk6q5v5k4Gd+azJ1UppJJqm5CsMuLwAaxCbAxm7EtCcRiQEKIHQQSSAIh0L52n/uHh45lMCC11KeX96uKqhZ9uvVgoP3wPed8PxbDMAwBAAAAbWQ1OwAAAAA8G4USAAAATqFQAgAAwCkUSgAAADiFQgkAAACnUCgBAADgFAolAAAAnEKhBAAAgFMolAAAAHAKhRIAAABOoVACAADAKRRKAAAAOIVCCQAAAKdQKAEAAOAUCiUAAACcQqEEAACAUyiUAAAAcAqFEgAAAE6hUAIAAMApFEoAAAA4hUIJAAAAp1AoAQAA4BQKJQAAAJxCoQQAAIBTKJQAAABwCoUSAAAATqFQAgAAwCkUSgAAADiFQgkAAACnUCgBAADgFAolAAAAnEKhBAAAgFMolAAAAHAKhRLwcq+//rosFkurfixcuNDs2AAAD0KhBPCQqKgosyMAADyIv9kBALjGuXPnnnjMrFmzdP36db3++usdHwgA4DUolICPGDZs2GOfP3z4sK5fv66RI0cqMTHRRakAAN6AU96AlxsyZIimTJnyxOPWrVsnSfqbv/mbjo4EAPAyFsMwDLNDADBXRUWFevXqJYvFolu3bikyMtLsSAAAD8IKJQB9+OGHqqur0yuvvEKZBAC0GoUSgP7yl79I4nQ3AKBtKJSAj8vOzlZubq5GjRqlSZMmmR0HAOCBKJSAj+NmHACAs7gpB/BhlZWV6tWrlyRxMw4AoM1YoQR8WGpqqmpra7kZBwDgFAol4MMenO5eu3atyUkAAJ6MQgn4qKNHjyonJ0cJCQmaOHGi2XEAAB6MQgn4KG7GAQC0F27KAXxQZWWlYmJiJH1zM06nTp1MTgQA8GT+ZgcA4HobNmxQTU2N3njjDcokAI+Xn5+vd999V3v37lVRUZEaGhoUHR2tfv36aerUqZo9ezaX9nQwVigBHzRmzBidOnVKR48e1YQJE8yOAwBtYhiG3nrrLf36179W7969tWzZMg0ePFjV1dX64osvtGvXLhmGobFjx+rEiRNmx/VqFErAxxw/flwTJkxQQkKCTp8+bXYcAGizn/70p/rd736nV199VevWrVNwcHCL59etW6e1a9dSKF2Am3IAH8NWQQC8we7du/W73/1Oo0aN0rvvvvtQmZSkN998U/Hx8ercubMJCX0LK5SAD6mqqlJMTIwMw+BmHAAeyzAMDRkyRJcvX9bGjRu1YsUKsyP5PAolAADwKF988YWef/55Wa1W3bt3j38cuwFOeQMAAI+yZcsWSVLfvn1blEm73a6qqiqzYvk0CiXgg+qbbLpT1aD6JpvZUQCg1R7cYBMXFyebzaZ169ZpwoQJCgwMVKdOnRQUFKSpU6fq/fffl91uNzmtb+CUN+BDjheUa33mVe3PL5XdkKwWaUZ8lN5MGqBx/bqaHQ8Ankp4eLhqamqUnJwsf39/ZWRkaM2aNZoxY4asVqsOHjyoP//5z2pqatLs2bO1ZcsWhYaGmh3bq1EoAR/xYfZ1/SI9T1arRTb7X//a+1ktstsNvb1whFZN7GtiQgB4straWoWFhbX4uR07dmjBggUtfm7Pnj2aM2eODMPQa6+9pvfff9+VMX0OhRLwAccLyrXsz0f0uL/sFklpaxNZqQTg1kpLSxUdHe34es6cOdq9e/cjj33llVe0efNmSdKpU6c0evRol2T0RVxDCfiA9ZlXZbVaHnuM1WrR+sxrLkoEAG3T3Nzc4uuXX375e49dvny54/GGDRs6LBMolIDXq2+yaX9+aYvT3I9isxval1/CjToA3Fp4eHiLr0eMGPG9x357RfLYsWMdlgkUSsDrVdU36wld0sFufHM8ALiriIgIBQYGOr5+3BScbt26OR7fvn27Q3P5Ogol4OUigv31hLPdDhYZKr5xVVxaDcBdWa1WDRs2zPH1d0+Bf9u3P8v8/Pw6NJevo1ACXi44wE8z4qPk94RW6WeRhoU1aPuWzfrTn/6kM2fOsH8bALc0YcIEx+PS0tLvPe7OnTuOxzExMR2ayddRKAEfsCZpgOxPOO9tN6S3Vz2v119/XZ06ddK2bdv0xz/+UV9//fVjVwAAwNWWLFniePxgk/NHOXnypOPx1KlTOzSTr2PbIMBHpB69rn/b8fT7UBYXFyszM1P5+fmKiIhQYmKixo4d2+LaJQAwg81m0+jRo5WXl6fRo0fr5MmTslgePgszb9487d69W0FBQbpy5Yp69+5tQlrfQKEEfMiJgnKtz7ymffkljkk5M+OjtSap//fuP1lWVqasrCzl5uYqKChIEydO1IQJExQSEuLi9ADwVxkZGXrhhRfU1NSk//iP/9C//Mu/tHh+48aNSklJkST95je/0c9+9jMzYvoMCiXgg+qbbKqqb1ZEsL+CA57uQvX79+/r8OHDOnXqlKxWq8aNG6fExMSHtvAAAFdJS0vTG2+8oerqas2aNUtz586Vn5+fDh06pLS0NFksFv3yl7/Uv/3bv5kd1etRKAG0SnV1tbKzs3X8+HHZbDY9++yzmjJlymO37gCAjnL9+nX9/ve/1549e1RYWCi73a4+ffro+eef1z/8wz88dp9KtB8KJYA2qa+v17Fjx5Sdna36+nqNGjVKU6ZMUY8ePcyOBgBwMQolAKc0Njbq5MmTOnz4sKqqqjR8+HAlJSWxRQcA+BAKJYB20dzcrNzcXGVlZam8vFwDBw5UcnKy4uLiHnn3JQC0p7ZcG472Q6EE0K7sdrvy8/OVmZmp0tJSxcbGKjk5WYMGDaJYAmh3xwvKtT7zqvbnlzp2r5gRH6U3kwZ87+4VaH8USgAdwjAMXbp0SRkZGSoqKlJUVJSSk5M1fPhwWa3MVADgvA+zr+sX6U+/vy46DoUSQIcyDEPXr19XZmamrly5oq5du2rKlClKSEhgti6ANjteUK5lfz6ix5UYi6S0tYmsVLoAhRKAy9y6dUsZGRk6f/68OnXqpMTERI0ZM4bpOwBabW3qCR04d7vFyuR3+VktmjE8Sn9aNdaFyXwThRKAy925c0eZmZk6c+aMQkJCHNN3goODzY4GwAPUN9kU/9ZnekyXdLBapPxfzeJGnQ5GoQRgmnv37jmm7/j7+2v8+PGaNGmSwsLCzI4GwM00NDSoqKhIhYWFOnetSP/vxS5P/drj//eL6hER1IHpQKEEYLqqqiplZ2frxIkTstvtGjNmjCZPnqzIyEizowEwgWEYun//vgoLCx0/bt++LcMwFBISoujesXorr9Njr598gBVK16BQAnAbdXV1OnbsmI4ePaqGhgbH9J3u3bubHQ1AB7LZbCouLm5RIKurqyVJ3bt3V2xsrONHt27dZLFYuIbSzVAoAbidxsZGff311zpy5IiqqqoUHx+vpKQk9erVy+xoANpBbW1ti/J469YtNTc3y9/fX71793aUxz59+ig0NPSR78Fd3u6FQgnAbTU3NysnJ0dZWVm6d++eBg0a5Ji+A8AzGIahsrKyFgXy7t27kqTw8HDFxcU5CmR0dHSrthNLPXpd/7aDfSjdAYUSgNuz2+06e/asMjMzdfv2bcXFxSk5OVkDBw5k+g7gZpqamnTz5k1HeSwqKlJdXZ0sFouioqJanL6OjIx0+u/wiYJyrc+8pn35JY5JOTPjo7UmqT8rky5EoQTgMQzD0MWLF5WRkaGbN28qOjpaycnJGjZsGNN3AJNUVla2WH0sKSmR3W5XUFCQ+vTp4yiPvXv3VlBQx91pzSxvc1EoAXgcwzBUUFCgjIwMXbt2Td26dVNSUpJGjhzJ9B2gA9ntdpWWlrYokBUVFZKkLl26tFh97NGjB//Q8yEUSgAeraioSJmZmbpw4YIiIyM1efJkPfvsswoICDA7GuDx6uvrHXs/FhYW6ubNm2psbJTValVMTEyLAhkeHm52XJiIQgnAK9y+fVuZmZnKy8tTaGioJk2apHHjxjF9B3hKhmHo3r17D+39KEmhoaEtymNMTIz8/f1NTgx3QqEE4FXu3bunrKwsnT59Wv7+/powYYImTpzI9B3gO5qbmx/a+7GmpkaS1KNHjxYFsmvXrtwAh8eiUALwSlVVVTpy5IhOnDghwzA0duxYJSYmMn0HPqumpuahvR9tNpsCAgIe2vsxJCTE7LjwMBRKAF6ttrbWMX2nsbFRCQkJmjJlirp162Z2NKDDGIahO3futCiQ5eXlkqROnTq1WH2MioriZjY4jUIJwCc0NDQ4pu/U1NQ4pu9ER0ebHa1dTZs2TV9++eUTjwsLC3OMtoPna2xs1M2bN3Xjxg3HTTQNDQ2yWCyKjo5+aO9HoL1RKAH4lObmZp0+fVpZWVm6f/++Bg8erOTkZMXGxpodrV1QKH1DRUWFCgsLHQWypKREhmEoODj4ob0fAwMDzY4LH0ChBOCT7Ha78vLylJmZqTt37qhv375KTk7WgAEDPPrmg2nTpqlLly769a9//djjrFarhgwZ4qJUcIbNZlNpaWmL1cfKykpJUteuXR/a+9GT//zCc1EoAfg0wzB04cIFZWRk6NatW+rVq5dj+o4n/o952rRp6tevn9577z2zo6CN6urqVFRU5CiQN2/eVFNTk/z8/B7a+5HdC+Au2EQKgE+zWCwaNmyYhg4dqmvXrikjI0ObN29W9+7dlZSUpBEjRnDDAjqMYRgqLy/XjRs3HDfPlJWVSfrmsoTY2FhNmzZNsbGx6tWrF3s/wm2xQgkA31FYWKjMzExdvHhRkZGRmjJlikaPHu0R03dYoXRvTU1NKi4ubnH6ura2VpLUs2dPx8pjXFycOnfu7JGr5PBNFEoA+B6lpaXKzMzU2bNnFRoaqsTERI0bN05BQUFmR/te3y2UjY2NqqurU6dOnSgnJqiurm6x+lhcXCy73a6AgIAWN8/06dOHqU7waBRKAHiC8vJyx/SdwMBAx/Sd0NBQs6M9ZNq0aercubPGjx+v9957T1euXJFhGPLz81N8fLzmzZunf/zHf1TPnj3Njup17Ha7bt++rcLCQsc1kPfv35ckRUZGKi4uzlEio6KiZLVaTU4MtB8KJQA8pcrKSh05ckRff/21JDmm73Tq1MnkZH/1YNug8PBwrVmzRpMnT1ZISIjOnz+vdevW6dKlS+rcubM2btyo2bNnmx3XozU0NDhOWz8okY2NjbJarQ/t/ehOf0aAjkChBIBWqq2t1dGjR3Xs2DE1NjZq9OjRmjJlirp27Wp2NE2bNk3Xr1/X559/rv79+7d4rr6+XvPmzdOBAwcUFBSkr776ShMmTDApqWcxDEP3799vMXnm9u3bMgxDISEhjtPWD/Z+9ITrbYH2RKEEgDZqaGjQiRMndOTIEdXW1uqZZ55RUlKSoqKiTMtUUlKi0NDQ710Ru3XrlgYMGKCGhgaNHz9ex44dc3FCz2Cz2VRcXNyiQD7YCL5bt24tbp7p1q0b16fC51EoAcBJTU1Njuk7FRUVGjJkiJKTk9WnTx+zoz3SwoULlZ6eLkk6ffq0EhISTE5kvtra2hbl8datW2pubpa/v7969+6tPn36OK6BdMdrZwGzsaEVADgpICBA48eP15gxYxzTd9555x3169dPycnJ6t+/v1utYI0bN85RKLOysnyuUBqGobKyshYF8u7du5Kk8PBwxcXFafr06YqLi1N0dDT7kAJPgUIJAO3Ez89PCQkJGjVqlM6fP6+MjAx9+OGHiomJUXJysoYOHeoWxfLbd3gXFxebmMQ1mpqadPPmzRY3z9TV1clisSgqKkr9+/fXc889p9jYWEVGRrrF7xHgaSiUANDOLBaLhg8frmHDhunq1avKyMjQpk2b1KNHD8f0HTO3jLHb7Y7H3rj6VllZ2WL1saSkRHa7XYGBgYqNjdWECRMUFxen3r17u/WeooAnoVACQAexWCwaOHCgBg4cqBs3bigzM1Pbt2/XoUOHHNN32nOU3q5du5STk6P/83/+z2NX2UpKShyPe/Xq1W7f3wx2u12lpaUtCmRFRYUkqUuXLoqNjdWzzz6r2NhY9ejRg70fgQ7CTTkA4EIlJSWO6Tvh4eFKTEzU2LFj22Wl7PXXX9f777+v4uJiRUdHf+9xs2bN0t69eyVJeXl5euaZZ5z+3q5SX1/fYu/HmzdvOvZ+jImJaXHzTEREhNlxAZ9BoQQAE9y9e1dZWVnKyclRYGCgJk6cqAkTJjh1B/GDQvnuu+9q9erVjzzm0qVLGj58uGw2myZPnqysrKw2f7+OZhiG7t2799Dej5IUGhraYuPwXr16sfcjYCIKJQCYqKKiwjF9x2KxaNy4cUpMTGzT6tqDQhkVFaWvvvpKQ4YMafF8eXm5Zs6cqa+//lqhoaHKysrS6NGj2+uX4rTm5uaH9n6sqamRJPXo0cOx+hgbG6uuXbty8wzgRiiUAOAGampqlJ2drePHj6u5udkxfadLly5P/R7/9V//pX/9139VU1OTQkJCtHz5co0fP16BgYE6d+6cPvjgA925c0dRUVHatGmTnnvuuQ78FT1ZTU3NQ3s/2mw2+fv7O6bOPJhAExISYmpWAI9HoQQAN1JfX++YvlNXV6cRI0YoKSmpxVY/j1NSUqJt27Zp//79OnPmjIqLi9XU1KQuXbpo5MiRmjt3rn70ox+5/PpCwzB0586dFgWyvLxckhQREeFYeYyNjVVUVJRX3n0OeDMKJQC4oaamJp06dUpZWVmqrKzUsGHDlJSUpN69e5sd7ak0Nja22PuxsLBQDQ0Nslgsio6ObnH9Y2RkpNlxATiJQgkAbsxms+nMmTPKzMzU3bt3NWDAACUlJalfv35udQ1hRUWFCgsLdePGDRUVFamkpESGYSgoKKhFeezdu7cCAwPNjgugnVEoAcAD2O12x/SdkpIS9enTR0lJSRoyZMgTi2V9k01V9c2KCPZXcIDzp5JtNttDez9WVlZKkrp27dqiQPbo0cOtii+AjkGhBAAPYhiGrly5ooyMDN24cUM9e/ZUUlKSnnnmmYc27T5eUK71mVe1P79UdkOyWqQZ8VF6M2mAxvXr+tTfs66uTkVFRY7Vx5s3b6qpqUl+fn6KiYlpUSDDwsLa+5cMwANQKAHAQ12/fl2ZmZm6fPmyunTpoilTpighIUH+/v76MPu6fpGeJ6vVIpv9rx/zflaL7HZDby8coVUT+z70noZhqLy8vMXp6zt37kiSwsLCHtr7sT0n/QDwXBRKAPBwxcXFyszMVH5+viIiItRlyDj9e1aVHvfhbpGUtjZRCb0jVFxc7CiPhYWFqq2tlST17NmzRYHs0qULp68BPBKFEgC8RFlZmbKysvTfx6p0w95Zhr6//Fkt0pDQek0x8mW32xUQEPDQ3o/BwcEuTA/Ak1EoAcCL1DfZFP/WZ7I/xSe7RYY+nN9DA/vFKSoq6qFrMAHgaXHxCwB4kar65qcqk5JkyKKhI0arR0RQx4YC4PX45ygAeJGIYH9Zn/IyR6vlm+MBwFkUSgDwIsEBfpoRHyW/J7RKP6tFM+Oj22VfSgCgUAKAl1mTNEA2u/2xx9jthtYk9XdRIgDejkIJAF4mvK5Uif43JOmhlUo/q0UWSW8vHNGqzc0B4HEolADgRSoqKrRz504tHtVDaWsnacbwKMc1lVaLNGN4lNLWJj5yU3MAaCuuxgYAL2G327Vt2zYFBQVp7ty5CgkJ0fh+3dp9ljcAfBcrlADgJb766isVFhZq8eLFCgkJcfx8cICfekQEUSYBdBgKJQB4gevXr+urr77Sc889p7i4OLPjAPAxFEoA8HB1dXXatm2b4uLilJycbHYcAD6IQgkAHswwDO3atUuNjY1atGgR4xMBmIJPHgDwYF9//bXOnTun+fPnKzIy0uw4AHwUhRIAPNTt27e1d+9ejRs3TsOHDzc7DgAfRqEEAA/U1NSkrVu3qkuXLpo5c6bZcQD4OAolAHigffv2qby8XC+//LICAgLMjgPAx1EoAcDDnD9/XidOnNAPfvAD9ezZ0+w4AEChBABPUlFRofT0dA0bNkxjx441Ow4ASKJQAoDHsNvt2r59uwIDAzV//nxZLBazIwGAJAolAHiMjIwM3bhx46HRigBgNgolAHiAGzdu6Msvv9TUqVPVt29fs+MAQAsUSgBwcw9GK/bp00dTp041Ow4APIRCCQBuzDAM7d69Ww0NDVq8eDGjFQG4JT6ZAMCNnTp1Svn5+Zo3b546d+5sdhwAeCQKJQC4qTt37mjPnj0aM2aM4uPjzY4DAN+LQgkAbqi5uVlbt25V586dNWvWLLPjAMBjUSgBwA3t379fZWVljFYE4BEolADgZi5cuKBjx45p5syZioqKMjsOADwRhRIA3EhlZaXS09M1dOhQjR8/3uw4APBUKJQA4CYejFb09/dntCIAj0KhBAA3kZWVpYKCAi1evFihoaFmxwGAp0ahBAA3UFhYqEOHDik5OVn9+vUzOw4AtAqFEgBMVl9fr61bt6p3796aNm2a2XEAoNUolABgogejFevr67VkyRJGKwLwSHxyAYCJTp8+rbNnzzJaEYBHo1ACgEnKysq0Z88ePfvss3rmmWfMjgMAbUahBAATNDc3a8uWLYqMjGS0IgCPR6EEABMcOHBAZWVlWrJkiQIDA82OAwBOoVACgItdvHhRR48e1YwZMxQdHW12HABwGoUSAFyoqqpK6enpGjx4sCZMmGB2HABoFxRKAHARwzC0fft2Wa1WLViwgNGKALwGhRIAXCQrK0vXrl3TokWLFBYWZnYcAGg3FEoAcIGioiIdOnRISUlJGjBggNlxAKBdUSgBoIM9GK3Yq1cvRisC8EoUSgDoQIZh6JNPPlFdXZ2WLFkiPz8/syMBQLujUAJAB8rJyVFeXp7mzJmjLl26mB0HADoEhRIAOsjdu3f16aefavTo0Ro5cqTZcQCgw1AoAaADPBit2KlTJ82ePdvsOADQoSiUANABDh48qDt37jBaEYBPoFACQDu7dOmSsrOz9eKLL6pXr15mxwGADkehBIB2VF1drR07dmjQoEGaOHGi2XEAwCUolADQTh6MVrRYLFq4cCGjFQH4DAolALSTw4cP6+rVq4xWBOBzKJQA0A5u3rypzz//XJMnT9bAgQPNjgMALkWhBAAnNTQ0aOvWrYqOjtb06dPNjgMALkehBAAnffrpp6qpqWG0IgCfRaEEACfk5OQoNzdXc+bMUdeuXc2OAwCmoFAC8Dk///nPZbFYZLFY9Mtf/rLN71NeXq5PP/1UCQkJGjVqVPsFBAAPQ6EE4FNOnjyp//7v/3b6fWw2m7Zu3arw8HBGKwLweRRKAD6jublZa9askc1mc/q9Pv/8c5WUlGjJkiUKCgpqh3QA4LkolAB8xm9/+1udOnVKCxYscOp9rly5osOHD+uFF15QTExMO6UDAM9FoQTgEy5fvqxf/epXGj9+vH7yk5+0+X2qq6u1fft2DRw4UImJie2YEAA8F4USgE9Yu3atmpqa9Je//EVWa9s++gzDUHp6uiQxWhEAvoVCCcDrvfPOO/r888/1T//0T0pISGjz+2RnZ+vy5ctauHChwsPD2zEhAHg2CiUAr1ZSUqJ//ud/1sCBA/XWW2+1+X1u3bqlAwcOKDExUYMGDWrHhADg+fzNDgAAHenv//7vde/ePaWlpSkkJKRN7/FgtGJUVJReeOGFdk4IAJ6PFUoAXis9PV1bt27V66+/7lQR3LNnj6qqqhitCADfg0IJwCtVVlbqb//2b9WzZ0/99re/bfP75ObmKicnR3PmzFG3bt3aMSEAeA9OeQPwSj//+c9169Ytbdy4sc0ztsvLy/XJJ59o5MiRjFYEgMdghRKA18nIyNC6des0e/ZsrVixok3v8WC0YlhYmObMmcMWQQDwGKxQAvAqjY2NevPNNxUYGKh///d/V1lZ2UPHVFRUOB7X1ta2OCYyMlIBAQE6dOiQSkpK9MYbbzBaEQCewGIYhmF2CABoLwUFBerfv3+bX3/o0CHFxsYqNTVVL774oqZMmdKO6QDAO7FCCcCrREdHa//+/Y89JicnRz/72c8kSa+++qpee+01x3ODBg3Spk2bNGDAAE2ePLlDswKAt6BQAvAqwcHBevHFFx97jL//Xz/6BgwY4DjeMAxt3LhRdrud0YoA0ArclAMA/+vo0aOO0YoRERFmxwEAj0GhBABJxcXFOnDggCZNmqTBgwebHQcAPAqnvAH4hNzcXOXm5kqSzp071+Ln33vvPR06dEidO3dmtCIAtAF3eQPwCb/85S/1q1/96rHHTJ48WVlZWS5KBADeg0IJwKfl5eVp69atWrBggUaPHm12HADwSFxDCcBn3bt3T7t379aIESOUkJBgdhwA8FhcQwnAZ9Q32VRV36yIYH8FWKVt27YpJCSE0YoA4CQKJQCvd7ygXOszr2p/fqnshmS1SKO7W9Wr4r7+5c1XFBwcbHZEAPBoFEoAXu3D7Ov6RXqerFaL7P97xbjdkE7dadZJDVPiTZtW9TE3IwB4Om7KAeC1jheUa9mfj+hxH3IWSWlrEzWuX1dXxQIAr8NNOQC81vrMq7JaH39tpNVq0frMay5KBADeiUIJwCvVN9m0P79UNvvjT8LY7Ib25ZeovsnmomQA4H0olAC8UlV9s57QJR3sxjfHAwDahkIJwCtFBPvrCWe7HayWb44HALQNhRKAVwoO8NOM+Cj5PaFU+lktmhkfreAAP9cEAwAvRKEE4LVSxvaS7QkbWdjthtYk9XdRIgDwThRKAF6poaFB5zM+0fPhpbLom5XIb/OzWmSR9PbCEWwZBABO4qIhAF7HZrMpLS1Nd+/e1a9/tFpF9YFan3lN+/JLHJNyZgyP0pqk/pRJAGgHbGwOwKsYhqH09HSdOXNGKSkpGjBggOO5b8/y5ppJAGg/rFAC8CqHDh1STk6OFi1a1KJMSt/cqEORBID2xzWUALzGiRMnlFvsWU4AAB0wSURBVJGRoRdffFGjRo0yOw4A+AwKJQCvcOHCBX366acaP368Jk+ebHYcAPApFEoAHq+oqEhbtmzR0KFDNWvWLFksT7mjOQCgXVAoAXi0u3fv6qOPPlKvXr20ePFiWa18rAGAq/HJC8BjVVdXa8OGDQoJCdHy5csVEBBgdiQA8EkUSgAeqbGxUR999JGampq0atUqhYaGmh0JAHwWhRKAx7Hb7dqyZYvKysqUkpKizp07mx0JAHwahRKARzEMQ7t379aVK1e0bNkyRUdHmx0JAHwehRKAR/nyyy916tQpzZ8/XwMHDjQ7DgBAFEoAHuTkyZP68ssvNX36dCUkJJgdBwDwvyiUADzCpUuXtHv3bo0dO1ZJSUlmxwEAfAuFEoDbu3nzptLS0jRkyBC99NJLbFwOAG6GQgnArZWXl2vjxo2KiorSkiVL2LgcANwQn8wA3FZNTY02bNig4OBgrVixgo3LAcBNUSgBuKWmpiZ99NFHamhoYONyAHBzFEoAbufBxuW3b9/WypUr1aVLF7MjAQAeg0IJwK0YhqFPPvlEly5d0tKlSxUTE2N2JADAE1AoAbiVjIwMnTx5UvPmzdPgwYPNjgMAeAoUSgBu4/Tp0zp06JCmTZumZ5991uw4AICnRKEE4BYuX76sXbt2acyYMZo6darZcQAArUChBGC64uJibd68WYMGDdKcOXPYuBwAPAyFEoCp7t27pw0bNqhnz55sXA4AHopPbgCmqa2t1YYNGxQYGKgVK1YoMDDQ7EgAgDagUAIwxYONy+vq6rRq1SqFhYWZHQkA0EYUSgAuZ7fbtW3bNpWWlmrlypXq2rWr2ZEAAE6gUAJwKcMwtGfPHl24cEEvv/yyevfubXYkAICTKJQAXCorK0snTpzQ3LlzNWTIELPjAADaAYUSgMvk5OTo4MGDmjp1qsaMGWN2HABAO6FQAnCJK1euaOfOnRo9erSmTZtmdhwAQDuiUALocCUlJdq8ebMGDBiguXPnsnE5AHgZCiWADnX//n1t2LBB3bp109KlS+Xn52d2JABAO6NQAugwdXV12rBhgwICArRy5Uo2LgcAL0WhBNAhmpub9fHHH6umpkYpKSkKDw83OxIAoINQKAG0uwcbl9+6dUsrV65Ut27dzI4EAOhAFEoA7cowDO3du1fnz5/Xyy+/rD59+pgdCQDQwSiUANrV4cOHdezYMb300ksaOnSo2XEAAC5AoQTQbs6cOaMDBw4oOTlZ48aNMzsOAMBFKJQA2sW1a9e0Y8cOJSQk6Pnnnzc7DgDAhSiUAJxWWlqqTZs2qX///po3bx4blwOAj6FQAnBKRUWFNmzYoC5durBxOQD4KAolgDZ7sHG51WrVypUrFRQUZHYkAIAJKJQA2qS5uVmbNm1SdXW1Vq1apYiICLMjAQBMQqEE0GqGYWjHjh26efOmVqxYoe7du5sdCQBgIgolgFbbt2+fzp49q8WLFys2NtbsOAAAk1EoAbTKkSNHlJ2drdmzZ2v48OFmxwEAuAEKJeChSktL9cc//lHz589XbGysgoKCFB4ersGDB+u1117ToUOH2v175uXlad++fZoyZYomTJjQ7u8PAPBMFsMwDLNDAGidtWvX6r333lNjY6NiY2P1yiuvaNCgQaqvr9eePXu0d+9eSdLy5cv13nvvtcvd1wUFBUpNTVV8fLwWLVrEXpMAAAcKJeCBgoOD1dDQoHnz5unjjz9WaGhoi+f/9Kc/6cc//rEkacWKFdq4caNT3+/27dt69913FRMTo5SUFPaaBAC0QKEEPFBwcLD8/f117do19ejR45HHzJ49W5999pkkKTs7WxMnTmzT96qsrNQ777yjkJAQrV69mr0mAQAP4RpKwEMlJiZ+b5mUpCVLljge79y5s03fo76+Xhs2bJDFYlFKSgplEgDwSP5mBwDQetu3b3/idj1xcXGOxzdu3Gj193iwcXllZaXeeOMNNi4HAHwvCiXggWbPnv3EYyoqKhyPw8LCWvX+hmEoPT1dhYWFevXVVx+7EgoAAKe8AS917do1x+Pk5ORWvXb//v3Ky8vT4sWL1bdv3/aOBgDwMhRKwEvt2LFDkhQVFaXFixc/9euOHj2qI0eOaNasWYqPj++oeAAAL0KhBLxQXl6ejhw5Ikl6++23FRIS8lSvy8/P12effabExMQ23xUOAPA9FErAyxiGoZ/85CeSvrnWcs2aNU/1uuvXr2vbtm0aMWKEZsyY0ZERAQBehkIJeJn//M//1KFDhzRkyBClpqY+1USbO3fu6OOPP1ZsbKwWLFjAFBwAQKuwsTngRbZu3aply5YpOjpaGRkZGjBgwBNfU1VVpXfeeUdBQUFavXq1goODXZAUAOBNWKEEvMS+ffuUkpKinj176uDBg09VJhsaGrRhwwYZhqGUlBTKJACgTSiUgBc4ePCgFi5cqMjISH3++ecaNmzYE19js9m0adMm3b9/XykpKerUqZMLkgIAvBGFEvBwX375pebPn6+wsDAdPHhQw4cPf+JrDMPQzp07dePGDS1fvlw9e/Z0QVIAgLeiUAIeLCsrS3PnzlVISIgOHjyoESNGPHTM2rVrNX/+/BY/d/DgQeXm5mrhwoXq16+fi9ICALwVoxcBD5Wdna3Zs2crICBA+/fv16hRox553IULF1RQUOD4+vjx48rKytLMmTMfWUABAGgtCiXggU6cOKFZs2apurpav/nNb1RRUaEvvvjikcfev3/f8fjcuXP69NNPNXHiRCUmJrooLQDA27FtEOBhysvLNWjQIN27d++pX9O3b19lZGTogw8+0JAhQ/Tyyy+z1yQAoN1wDSXgYSorK1tVJiXJbrfro48+Uu/evbVo0SLKJACgXbFCCXi56upqvfPOOwoICNDq1aufeq43AABPixVKwIs92LjcZrMpJSWFMgkA6BAUSsBL1DfZdKeqQfVNNknfbFyelpame/fuKSUlRZGRkSYnBAB4K+7yBjzc8YJyrc+8qv35pbIbktUizRgepaG6qZqCa1q1apWioqLMjgkA8GJcQwl4sA+zr+sX6XmyWi2y2f/6V9lqkeyGob8d31U/XzzZxIQAAF/AKW/AQx0vKNcv0vNkSC3KpCR986VF/9/xezpRUG5GPACAD6FQAh5qfeZVWa2P3/7HarVofeY1FyUCAPgqCiXggeqbbNqfX/rQyuR32eyG9uWXOG7UAQCgI1AoAQ9UVd+sJ3RJB7vxzfEAAHQUCiXggSKC/fWEs90OVss3xwMA0FEolIAHCg7w04zhUU8slX5Wi2bGRys4wM81wQAAPolCCXggwzA0KrBM9ifs+mW3G1qT1N9FqQAAvopCCXgYm82mHTt2qOz8Ua0ZHSGLvlmJ/DY/q0UWSW8vHKFx/bqakhMA4DvY2BzwII2NjUpLS9PVq1e1ePFiPfPMMzpRUK71mde0L7/EMSlnZny01iT1p0wCAFyCQgl4iNraWm3cuFF37tzRK6+8ogEDBrR4vr7Jpqr6ZkUE+3PNJADApSiUgAeoqKhQamqqamtrlZKSopiYGLMjAQDgQKEE3Nzt27eVmpoqPz8/rVq1St26dTM7EgAALbA5HeDGCgsLtXHjRkVGRiolJUURERFmRwIA4CEUSsBNXbx4UWlpaerdu7eWL1+u4OBgsyMBAPBIFErADZ0+fVo7d+7U0KFDtWTJEvn781cVAOC++L8U4GaysrJ04MABjRkzRnPmzJHVynaxAAD3RqEE3IRhGNq/f7+OHDmi5ORkPf/887JYnnJgNwAAJqJQAm7AZrNp586dys3N1axZszRx4kSzIwEA8NTYNggw2ben3yxatEgjRowwOxIAAK1CoQRMVFtbq48++ki3b99+5PQbAAA8AYUSMAnTbwAA3oJCCZjgzp07Sk1NldVqZfoNAMDjcVMO4GIPpt906tRJq1atYvoNAMDjUSgBF3ow/SYmJkYrVqxg+g0AwCtQKAEXycnJUXp6uoYOHarFixcrICDA7EgAALQLCiXgAocPH9b+/fv17LPPau7cuUy/AQB4FQol0IGYfgMA8AUUSqCD2Gw27dq1Szk5OUy/AQB4NbYNAjpAY2OjtmzZoitXrjD9BgDg9SiUQDt7MP2mtLRUr7zyigYOHGh2JAAAOhSFEmhH355+s3LlSvXu3dvsSAAAdDgKJdBOHky/sVgsevXVV5l+AwDwGdyUA7SDoqIibdy4UREREUy/AQD4HAol4KRLly5p8+bNTL8BAPgsCiXghJycHO3cuVODBw/WkiVLmH4DAPBJFEqgjR5Mvxk9erTmzZvH9BsAgM+iUAKtZBiGDhw4oMOHDyspKUnTp09n+g0AwKdRKIFWYPoNAAAPY9sg4Ck1NTUpLS1NV65c0cKFCzVy5EizIwEA4BYolMBTqKur08aNG5l+AwDAI1AogSeorKxUamqqampqmH4DAMAjUCiBx/j29JtVq1ape/fuZkcCAMDtcFMO8D2+Pf0mJSVFnTp1MjsSAABuiUIJPMKlS5eUlpam6OhorVixQiEhIWZHAgDAbVEoge/Izc1Venq6Bg0apJdffpnpNwAAPAGFEviWI0eOaN++fUy/AQCgFSiUgFpOv5kyZYpeeOEFpt8AAPCUKJTweXa7Xbt27dLp06f1gx/8QJMmTTI7EgAAHoVtg+DTmpqatGXLFl2+fJnpNwAAtBGFEj6rrq5OH330kUpKSrRs2TINGjTI7EgAAHgkCiVc5v79+/rkk0908OBBnTp1SteuXVN1dbXCw8M1ePBgzZgxQz/+8Y8VGxvb4VkeTL+prq5WSkoK028AAHAChRIucfjwYU2fPl0NDQ2yWCxauHChJk2apE6dOunSpUv64IMPVFZWprCwML3//vtasmRJh2UpKytTamqqJDH9BgCAdkChhEt89tlnmj17tqxWqz755BPNmjWrxfPl5eWaOnWqzp49q8DAQOXk5GjYsGHtnuPB9Jvw8HCtWrWK6TcAALQDNtmDS73++usPlUlJ6tq1q37zm99IkhobG/WXv/yl3b/35cuX9cEHH6h79+5avXo1ZRIAgHbCtkFwicjISI0dO/axp7LHjRvneJyfn9+u35/pNwAAdBwKJVwiMTFRJ06ceOwxYWFhjsftOTs7Oztbe/fuZfoNAAAdhEIJt/H11187Hj///PNOv59hGDp48KCysrKYfgMAQAfiphy4hcbGRs2YMUNfffWVRo4cqaNHjzq1Svnt6TczZ85UYmJiO6YFAADfxgolTNHQ0KD79+/r7t27ys7O1u9//3vl5uZq2bJlWrdunVNl8tvTbxYtWqRRo0a1Y3IAAPBdFEqY4qOPPtLq1asdX8fFxWnjxo1avny5U6elvz39ZsWKFUy/AQDABTjlDVMUFxfr7Nmzqqmp0cWLF5Wamqrc3FwNGTJEf/jDHzRz5sxWv+e3p9+sXLlSffr06YDkAADguyiUcAt2u10//elP9T//8z+yWq3asGGDli9f/tSvfzD9xjAMvfrqq0y/AQDAhSiUcBt2u12jRo3S2bNnFRERoYKCAnXt2vWJr7t586Y2bNjA9BsAAEzChnxwG1arVStXrpQkVVVVacuWLU98zeXLl/X+++8z/QYAABNxUw7cytChQx2P8/LyHnvsmTNntGPHDg0cOFBLly5l+g0AACahUMIl9uzZo9DQUD333HOPPc7f/69/JJubm7/3uAfTbxISEjRv3jz5+fm1W1YAANA6FEq4xI9//GOFh4c/cdXx0qVLjsdxcXEPPW8Yhj7//HNlZmZq8uTJevHFF5l+AwCAybiGEi5z7tw5FRQUfO/zdrtdH374oePrOXPmPPT8zp07lZmZqZkzZ2rGjBmUSQAA3ACFEi5jt9v16quvqqSk5KHnbDab/u7v/k65ubmSpNWrV2vkyJGO55uamrR582bl5uZq0aJFjFIEAMCNsG0QXGLBggXauXOnJCk0NFQrVqzQ0KFD1a1bNxUUFGjTpk26ePGipG/K5J///GfHTTZ1dXX6+OOPVVxcrKVLl2rw4MGm/ToAAMDDKJRwmby8PG3fvl1fffWVLly4oLKyMjU1NSkiIkIDBgzQ5MmT9dprr2ncuHGO11RVVSk1NVVVVVVMvwEAwE1RKOG2vj39ZtWqVerRo4fZkQAAwCNwlzfc0s2bN7Vx40aFhYUpJSVFkZGRZkcCAADfg0IJU9U32VRV36yIYH8FB3yzl+SVK1e0adMmRUVFaeXKlQoJCTE5JQAAeBwKJUxxvKBc6zOvan9+qeyGZLVIM+KjND1Gupi1h+k3AAB4EK6hhMt9mH1dv0jPk9Vqkc3+1z9+VotkNwwt7WfXf66Zw/QbAAA8BPtQwqWOF5TrF+l5MqQWZVKSvvnSoi0FfjpVWGFGPAAA0AYUSrjU+syrslofP93GarVofeY1FyUCAADOolDCZeqbbNqfX/rQyuR32eyG9uWXqL7J5qJkAADAGRRKuExVfbOe0CUd7MY3xwMAAPdHoYTLRAT76wlnux2slm+OBwAA7o9CCZfxk13PdLbLIvvjj7NaNDM+2rEvJQAAcG8USrjE3bt3tX79evWvvyrjCX/s7HZDa5L6uygZAABwFoUSHe7cuXNat26dbDab/vX/WqH/Z+EIWfTNSuS3+Vktskh6e+EIjevX1ZSsAACg9djYHB3GZrPp4MGDOnLkiOLj4zV//nwFBQVJkk4UlGt95jXtyy9xTMqZGR+tNUn9KZMAAHgYCiU6RFVVlbZs2aKioiLNmDFDEydOlMXy8B05j5rlDQAAPAuFEu2uoKBAW7ZskcVi0dKlSxUXF2d2JAAA0IHYlwXtxjAMHT58WAcPHlTfvn21ZMkShYeHmx0LAAB0MAol2kV9fb3S09N1/vx5TZkyRdOnT5fVyj1fAAD4Ak55w2mlpaXavHmzampqtGjRIg0dOtTsSAAAwIUolHBKTk6Odu/erW7dumnZsmXq2pU7tAEA8DWc8kabNDc3a8+ePTp58qRGjx6tl156SQEBAWbHAgAAJmCFEq12//59bd68Wbdv39ZLL72kMWPGmB0JAACYiEKJVrl06ZK2bdum4OBgLVu2TL169TI7EgAAMBmnvPFU7Ha7vvzyS3311VcaMmSIFi5cqJCQELNjAQAAN0ChxBPV1tZq69atunbtmqZPn66kpKRHTr0BAAC+iVPeeKyioiKlpaWpublZS5Ys0YABA8yOBAAA3AwrlHgkwzB0/Phx7d27VzExMVq6dKk6depkdiwAAOCGKJR4SGNjo3bt2qW8vDxNmDBBM2fOlJ+fn9mxAACAm+KUN1ooKyvT5s2bdf/+fc2fP18jRowwOxIAAHBzFEo4nD17Vjt37lSnTp20bNky9ejRw+xIAADAA3DKG7LZbNq/f7+OHj2qZ555RvPnz1dgYKDZsQAAgIdghdLHVVZWasuWLbp586ZmzpypCRMmsCUQAABoFQqlD7t27Zq2bt0qq9WqpUuXKjY21uxIAADAA3HK2wcZhqGsrCx9/vnn6tevn5YsWaKwsDCzYwEAAA9FofQxdXV12rFjhy5evKjk5GRNmzZNVqvV7FgAAMCDccrbh5SUlGjz5s2qq6vTokWLNGTIELMjAQAAL0Ch9BGnTp3Sp59+qh49emjp0qXq0qWL2ZEAAICX4JS3l2tqatKePXt06tQpjRkzRrNnz5a/P7/tAACg/bBC6cXu3bunzZs3q6ysTC+99JKeffZZsyMBAAAvRKH0UhcuXNCOHTsUEhKiZcuWKTo62uxIAADAS3Hu08vY7XYdOnRImZmZGjp0qBYuXKjg4GCzYwEAAC/GfjFtZBiG/vCHPyg8PFwWi0VffPGF2ZFUU1Oj1NRUZWVl6YUXXtArr7xCmQQAAB2OFco2uHr1qt544w19+eWXZkdxKCwsVFpamux2u1599VX179/f7EgAAMBHsELZCg9WJUeNGqVTp05p0qRJZkeSYRg6evSo3nvvPXXu3Flr166lTAIAAJeiULbCr371K/3kJz9RUlKS8vLy9IMf/MDUPA0NDdq6das+++wzTZgwQT/84Q8VERFhaiYAAOB7OOXdSuvXr9ePfvQjs2Pozp072rx5syorK7V06VLFx8ebHQkAAPgoCmUrvPXWW7JYLGbH0JkzZ7Rr1y517txZb775prp37252JAAA4MMolK1gdpm02Wzau3evjh8/rpEjR2ru3LkKDAw0NRMAAACF0kNUVFRoy5YtunXrll566SWNGzfO9IILAAAgUSg9wtWrV7V161b5+/tr9erV6tOnj9mRAAAAHCiUbswwDGVkZOjQoUMaOHCgFi9erNDQULNjAQAAtEChdFN1dXXavn27Ll26pKlTp+q5556T1couTwAAwP1QKN3QrVu3lJaWpoaGBq1cuVKDBw82OxIAAMD3olC6EcMwdPLkSe3Zs0dRUVH64Q9/qM6dO5sdCwAA4LEolG6iqalJn3zyiXJycjR27FjNmjVL/v789gAAAPdHY3ED5eXl2rx5s+7evauFCxcqISHB7EgAAABPjUJpsvPnz2vHjh0KCwvTmjVrFBUVZXYkAACAVqFQmsRut+vgwYM6fPiwhg0bpgULFig4ONjsWAAAAK1GoTRBdXW1tm7dquvXr2vGjBlKTExk6g0AAPBYFEoXu3HjhtLS0iRJP/zhD9W3b1+TEwEAADiHQtlKqampjse5ubmOx/v371dRUZEkKSoqSjNmzGjxOsMwlJ2drf379ysuLk5LlixRRESEa0IDAAB0IIthGIbZITzJ05yafu655/TFF184vm5oaFB6errOnTunyZMn64UXXmDqDQAA8BoUyg52+/Ztbd68WdXV1VqwYIGGDx9udiQAAIB2RaHsQLm5udq9e7e6dOmiZcuWqVu3bmZHAgAAaHdcQ+mE+iabquqbFRHsr+AAP8fPNzc3a+/evTpx4oQSEhI0Z84cBQQEmJgUAACg47BC2QbHC8q1PvOq9ueXym5IVos0Iz5KbyYN0KDOVqWlpam0tFSzZ8/WmDFj2BIIAAB4NQplK32YfV2/SM+T1WqRzf7X/3R+//v11NBbGhNRo2XLlikmJsbEpAAAAK5BoWyF4wXlWvbnI3r8fzBDqa+PUdJQyiQAAPAN7F3TCuszr8pqffzpaz+rVanHi12UCAAAwHwUyqdU32TT/vzSFqe5H8VmN7Qvv0T1TTYXJQMAADAXhfIpVdU36wld0sFufHM8AACAL6BQPqWIYH894Wy3g9XyzfEAAAC+gEL5lIID/DQjPkp+T7yG0qKZ8dEt9qUEAADwZhTKVliTNED2J5z3ttsNrUnq76JEAAAA5qNQtsL4fl319sIRskgPrVT6WS2ySHp74QiN69fVlHwAAABmYB/KNjhRUK71mde0L7/EMSlnZny01iT1p0wCAACfQ6F0wvfN8gYAAPAlFEoAAAA4hWsoAQAA4BQKJQAAAJxCoQQAAIBTKJQAAABwCoUSAAAATqFQAgAAwCkUSgAAADiFQgkAAACnUCgBAADgFAolAAAAnEKhBAAAgFMolAAAAHAKhRIAAABOoVACAADAKRRKAAAAOIVCCQAAAKdQKAEAAOAUCiUAAACcQqEEAACAUyiUAAAAcAqFEgAAAE6hUAIAAMApFEoAAAA4hUIJAAAAp1AoAQAA4BQKJQAAAJxCoQQAAIBTKJQAAABwCoUSAAAATqFQAgAAwCkUSgAAADiFQgkAAACnUCgBAADgFAolAAAAnEKhBAAAgFMolAAAAHAKhRIAAABOoVACAADAKRRKAAAAOIVCCQAAAKdQKAEAAOAUCiUAAACcQqEEAACAUyiUAAAAcAqFEgAAAE6hUAIAAMApFEoAAAA4hUIJAAAAp1AoAQAA4BQKJQAAAJxCoQQAAIBTKJQAAABwCoUSAAAATqFQAgAAwCkUSgAAADiFQgkAAACnUCgBAADgFAolAAAAnEKhBAAAgFMolAAAAHAKhRIAAABOoVACAADAKRRKAAAAOIVCCQAAAKdQKAEAAOCU/x9zO5OeA3fnLgAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -62,7 +74,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -74,9 +86,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkw0lEQVR4nO3da3BUZ37n8d853a3ulkAXJCwwLe7IYPBluNjYgD1YGIMxYEByyDKzqdnAODXxLpnE2WRSW5sX+8a7O6mYiTOZTahUUmsnQ9FobMDcguzB4AmMAc/YrG3ki5BpjAUIXVCrpb6csy8YGIPVrVarpVZ3fz9VrrLsc079pZL00/Oc5/k/hm3btgAAyBNmpgsAAGA4EXwAgLxC8AEA8grBBwDIKwQfACCvEHwAgLxC8AEA8grBBwDIKwQfACCvEHwAgLxC8AEA8grBBwDIKwQfACCvEHwAgLxC8AEA8grBBwDIKwQfACCvEHwAgLxC8AEA8grBBwDIKwQfACCvEHwAgLxC8AEA8grBBwDIKwQfACCvEHwAgLxC8AEA8grBBwDIKwQfACCvEHwAgLzizHQBAIDMisYsBdpC6o1acjtN+cq8cjpyd1xE8AFAHmoLhrXj5Hn5TwfU3BqUy2HKNAxZtq1IzNKk8iLVzvVp44IqlRYWZLrctDJs27YzXQQAYHiEo5a2NTRq+7EmGYbUE7HiXutxmbJtafPiKdpaU60CZ26MAgk+AMgTF9pD2rT9uFo6exRKEHi387pMVRZ79MrmhZpQ6h3CCocHwQcAeeBCe0irXzqmju6IYin82ncYhkoKXdrz3OKsD7/cGLcCAOIKRy1t2n485dCTpJhtq6M7om9tP65ILPnR4khE8AFAjtvW0KiWzp6UQ++GmG3ry85ebWv4OE2VZQZTnQCQw9qCYS18oUG90b5HaZ2n9ij4foPCl8+paNajqnjq+/0+0+00deIHNVm72pMRHwDksB0nz8sw4v9/56hylTz8Oxp17+NJP9Mwrj83WxF8AJDD/KcDCbcsFN71sAqrH5LpLU76mT0RS/5TgXSUlxEEHwDkqGjMUnNrcEiefa41qGiWLnIh+AAgRwXaQnINUesxl8NUoC00JM8eagQfAOSo3qglM9ELvkEwDSPugpmRjuADgBzldpqyhmjhvmXbcmdpCzOaVANAjvKVefvdbG5bMenGP7YlOxqWTIcM05HwvkjMkq8sOzu4EHwAkKOcDlOTyov0yaWuuNd0vP1Tdbz9rzc/Dv6/N1Wy6HdVumRTwmdPLi/K2qOL2MAOADnsJ0c+1YsNjQm3NAyUx2Xqj5dV67uPTEvbM4dTdsY1ACApGxdUKd3DG9uWnplfld6HDiOCDwByWGlhgeruKZdT6RnxeV0ObVkyNWvblUkEHwDkLNu29fbbb2t081uqLHbLMcitDQ7D0Lhit7bWzEhThZnBOz4AyEGhUEivvvqquru7VVtbqy67gPP4foPgA4AcEwgE5Pf7NWvWLC1btkwOx/WtCamfwO7QuGK3XuYEdgDASGLbtk6cOKGjR49q9erVmjlz5teuCUctbWto1PZjTTIMJVzt6XWZsmxpy5Kp2lozY8janw03gg8AckBPT49ee+01dXR0qK6uTmVlZQmvb+8Oa8fJ8/KfCuhca1AuhynTMGTZtiIxS5PLi1Q3z6dn5ldl9UKWvhB8AJDlvvjiC+3cuVMzZszQ8uXL5XQOrDdJNGYp0BZSb9SS22nKV+bN2s3pySD4ACBL2batd955R0eOHNGTTz6p2bNnZ7qkrEDwAUAW6u3t1e7du3X16lXV1taqvLw80yVlDYIPALLMl19+qZ07d2rKlClasWLFgKc28x1fLQDIErZt6/Tp03rjjTe0YsUK3XPPPZkuKSsx4gOALBAOh7V37161tLSorq5OFRUVmS4paxF8ADDCXbp0STt37pTP59OTTz4pl8uV6ZKyGlOdADCCvfvuuzp8+LAef/xx3X///ZkuJycw4gOAESgSiWjfvn0KBAKqq6vTHXfckemScgbBBwAjzOXLl7Vz506NHz9eq1atUkFBbnVOyTSmOgFgBHnvvfd08OBB1dTU6Bvf+IaMQR4lhK9jxAcAI0AkEtGBAwfU3Nysuro6VVZWZrqknEXwAUCGtba2aufOnRo7dqyeeuopud3uTJeU05jqBIBBGGyD5zNnzmj//v365je/qfnz5zO1OQwY8QHAALUFf3Okz+mAmvs40mdSeZFq5/q0cUH8I32i0agOHjyoTz/9VHV1dRo/fvwwfxb5i+ADgCQN5BBXj8uUbUubF0/R1ppqFTh/Owq8evWq/H6/SktLtWbNGnk8nuEoH79B8AFAEi60h7Rp+3G1dPYolCDwbud1maos9uiVzQs1odSrDz/8UHv37tUjjzyiBx54gKnNDCD4AKAfF9pDWv3SMXV0RxRL4VemwzBUUujS83OiunTurOrq6jRhwoQhqBTJIPgAIIFw1NLyF4/o/NVQSqF3gyFbYwosvfmnNSoeVZTGCjFQuXu2PACkwbaGRrV09gwq9CTJlqFu26W//0UgTZUhVYz4ACCOtmBYC19oUG80/ju9K3t+qJ5zv5YV6ZGjqEzFCzdo9H1PxL3e7TR14gc1cVd7Yuixjw8A4thx8rz6W3tSvLBO5Su3ynC6FGk9ry//5QcqqJwm97jpfV5vGNef++wj04agYiSDqU4AiMN/OpBwy4IkFYydJMN543w8Q4YMRdsuxr2+J2LJf4rpzkxixAcAfYjGLDW3BpO6tvXgjxV8v0F2tFcFldPknTY/4fXnWoOKxqwBdXhB+hB8ANCHQFtILoepSCzW77XlT3xPYx5/Vr0XPlLP5+/LcCQ+Id3lMBVoC2lyBas7M4E/NwCgD71RS+YANpcbpkOeqtmKXbuia+/uS3itaRgJF8xgaBF8ANAHt9OUlcqid8tK+I5PkizbltvJr99M4SsPAH3wlXkViSUelcWC7Qp+cERWOCTbiin02SkFPzwiz+T7E94XiVnylXnTWC0Ggnd8ANAHp8PUpPIifXKpK/5FhqFr7+5X68EfS7YlZ8kdKqvZosIZDyZ89uTyIha2ZBDBBwBx1M716cWGxrhbGhyFJRq36YUBPdPjMlU3z5eO8pAi/uQAgDg2LqhSuntb2bb0zPyq9D4UA0LwAUAcpYUFenpWsZxKzwpMr8uhLUum0q4swwg+AOhDLBbTgQMHdEfLOxpX4pFjkOfmOQxD44rd2lozI00VIlU0qQaA27S1tcnv92v06NFau3atrvYqLefx7XlusSaUspoz0wg+APiKDz74QK+//rqWLFmiBx988OYJ6amfwO7QuGK3Xv7NCezIPIIPACRFo1EdOnRIH3/8sWpra/s8IT0ctbStoVHbjzXJMJSwgbXXZcqypS1LpmprzQy52L4wYhB8APLe1atXtXPnTpWVlWnNmjXyeDwJr2/vDmvHyfPynwroXGtQLocp0zBk2bYiMUuTy4tUN8+nZ+ZXsZBlBCL4AOS1M2fOaP/+/Xr00Ue1YMGCm1ObyYrGLAXaQuqNWnI7TfnKvGxOH+EIPgB5KRKJ6ODBg2pqalJtba3Gjx+f6ZIwTAg+AHnnypUr8vv9qqio0OrVq+V2uzNdEoYRLcsA5JX33ntPBw8e1GOPPaa5c+cOeGoT2Y8RH4C8EIlEtG/fPp0/f151dXWqrKzMdEnIEIIPQM67fPmydu7cqfHjx2vVqlUqKGClZT5jqhNAzrJtW7/61a90+PBhLVu2TPfffz9Tm2DEByA3hcNhvf7667p48aJqa2t1xx13ZLokjBAEH4Cc09LSIr/fL5/Pp5UrVzK1iVsw1QkgZ9i2rdOnT+uNN97Q8uXLdd9992W6JIxAjPgA5ITe3l7t3btXly5dUl1dnSoqKjJdEkYogg9A1rt48aL8fr8mT56sFStWyOVyZbokjGBMdQLIWrZt6+TJk/r5z3+ulStXas6cOZkuCVmAER+ArNTT06M9e/bo6tWrqq2tVXl5eaZLQpYg+ABknS+++EJ+v1/Tp0/X8uXL5XQyeYXk8d0CIGvYtq0TJ07o6NGjWrVqle6+++5Ml4QsxIgPQFYIhULavXu3Ojs7VVtbq7KyskyXhCxF8AEY8QKBgPx+v2bOnKlly5YxtYlB4bsHwIhl27b+/d//Xb/4xS/01FNPaebMmZkuCTmAER+AEam7u1uvvvqquru7VVtbq9LS0kyXhBzBiA/AkIjGLAXaQuqNWnI7TfnKvHI6zKTu/fzzz7Vr1y7Nnj1bNTU1cjgcQ1wt8gnBByBt2oJh7Th5Xv7TATW3BuVymDINQ5ZtKxKzNKm8SLVzfdq4oEqlhV9vHG3btt5++20dP35ca9asUXV1dQY+C+Q6pjoBDFo4amlbQ6O2H2uSYUg9ESvutR6XKduWNi+eoq011SpwXh8FBoNB/exnP1M4HNaGDRtUUlIyXOUjzxB8AAblQntIm7YfV0tnj0IJAu92XpepymKPXtm8UJH2FtXX1+u+++7T0qVLZZrJTYkCqSD4AKTsQntIq186po7uiGIp/CpxGFKhS9pQ9Im+tX6Vpk+fPgRVArfizyoAKQlHLW3afjzl0JOkmC11hW29qTmaNGVqmisE+kbwAUjJtoZGtXT2pBx6N9gydKkrom0NH6epMiAxpjoBDFhbMKyFLzSoN9r3Oz07GlHroR+r59yvZPV0yVk6TmWP/p680+bHfabbaerED2r6XO0JpBMjPgADtuPkeRlG/P9vWzE5R1do3H94QVXf36HSR76ty6/9T0XbW+LeYxjXnwsMNYIPwID5TwcSblkwCzwqXbJJztJKGYapwukPyFlSqd4vP4l7T0/Ekv9UYCjKBW5B8AEYkGjMUnNrcED3xIJtily9oIKxExNed641qGgs+S0RQCoIPgADEmgLyZVk6zFJsmNRXdn9Q426p0au8qqE17ocpgJtocGWCCRE8AEYkN6oJTPRC76vsG1LV/b+leRwaszjf9Dv9aZhxF0wA6QLwQdgQNxOU1YSi8Ft21brvh8pFmzX2HV/IcPRf2tgy7bldvJrCUOL7zAAA+Ir8yqSxHu4qwf/VpHW87qj9r/LdLmTenYkZslX5h1siUBCnM4AYECcDlOTyov0yaWuuNdEOy6p61cHJIdLgb/59s3/PmbFH2rU7KVx75tcXpT00UVAqgg+AANWO9enFxsa425pcJbcoUl/vndAz/S4TNXN86WjPCAh/rQCMGAbF1TJstLb9Mm2pWfmJ171CaQDwQdgQGzb1kfvndYc1yW5Hcmt7uyP1+XQliVTaVeGYUHwAUhad3e3fvrTn+rMmTP6yR+u1vhSrxxJbm2Ix2EYGlfs1taaGWmqEkiMJtUAknLu3Dn97Gc/0z333KOlS5fK4XCk4Tw+QyWFLu15brEmlLKaE8OD4AOQkGVZOnLkiE6fPq21a9d+7bDY1E9gd2hcsVsvb15I6GFYEXwA4uro6FB9fb2cTqfWrVunUaNG9XldOGppW0Ojth9rkmEoYQNrr8uUZUtblkzV1poZA2p/BqQDwQegT2fPntWePXu0cOFCLVq0SEYS7/Lau8PacfK8/KcCOtcalMthyjQMWbatSMzS5PIi1c3z6Zn5VSxkQcYQfABuEY1G9W//9m9qbGzU+vXrVVWV2haDaMxSoC2k3qglt9OUr8zL5nSMCAQfgJuuXLmiXbt2qaysTGvWrJHH48l0SUDa0bkFgCTp17/+tQ4dOqSlS5dq3rx5SU1tAtmIER+Q53p7e7Vv3z598cUXqq2tVWVlZaZLAoYUwQfksYsXL8rv92vy5MlasWKFXC5XpksChhxTnUAesm1bJ06c0NGjR7Vy5UrNmTMn0yUBw4YRH5Bnuru79dprrykYDGrDhg0qKyvLdEnAsCL4gDxyo+3YnDlz9Nhjj8nhcGS6JGDYMdUJ5AHLsvTWW2/p1KlTfbYdA/IJIz4gx3V2dqq+vl6maWrdunUaPXp0pksCMooRH5DDbrQde/DBB7Vo0SKZJp1TAEZ8QA6KRqM6fPiwPvroI23YsCHltmNALiL4gBzT2toqv9+vsrIyrV69Wl4vR/4AX8VUJ5BDbrQd++Y3v6n58+fTdgzoAyM+IAeEw2Ht27dPFy5coO0Y0A+CD8hyFy9e1K5duzRx4kStWLFCBQWccwckwlQnkKVs29Yvf/lLvfXWW7QdAwaAER+Qhbq7u7V7925du3ZNGzZs0JgxYzJdEpA1CD4gyzQ3N6u+vl6zZ89WTU0NbceAAWKqE8gSlmXp6NGjOnnypNasWaMZM2ZkuiQgKzHiA7IAbceA9GHEB4xwjY2N2r17tx544AEtXryYtmPAIDHiA4ZQNGYp0BZSb9SS22nKV+aV05FccH217dj69es1ceLEIa4WyA8EH5BmbcGwdpw8L//pgJpbg3I5TJmGIcu2FYlZmlRepNq5Pm1cUKXSwr733LW2tmrXrl0qKSnRmjVraDsGpBHBB6RJOGppW0Ojth9rkmFIPREr7rUelynbljYvnqKtNdUqcP52FPjee+/p4MGDtB0DhgjBB6TBhfaQNm0/rpbOHoUSBN7tvC5TlcUevbJ5ocYWOrRv3z4FAgHV1tZq3LhxQ1gxkL8IPmCQLrSHtPqlY+rojiiWwo+TwzA02uPQM8WfafaUO7Vy5UrajgFDiOADBiEctbT8xSM6fzWUUujdYMjS+NEFOvJnj8uV5OIXAKnhJwwYhG0NjWrp7BlU6EmSLVNtPba2NXycpsoAxEPwASlqC4a1/VhTUu/0IlcvqPl/r9OVPT+Me00oEtM/HP1M7d3hdJYJ4DYEH5CiHSfPK9kFl1cP/UTu8f23GDOM688FMHQIPiBF/tOBhFsWbgh+cESmp0ieSff1e21PxJL/VCAd5QGIg+ADUhCNWWpuDfZ7ndXbrfajr6jssc1JP/tca1DRWPJbIgAMDMEHpCDQFkpq9WX7W/9Xo+5bLmdxRdLPdjlMBdpCgykPQAIEH5CC3qgls58XfOGWz9TT/GsVL1g7oGebhqHeKCM+YKhwOgOQArfTlNXPFoaez99XtKNFgR9/R5Jkh3sk29LFK1s1/jvb4t5n2bbcTv4mBYYKwQekwFfmVaSf93Cj7n9CRbMeuflx5y/rFe1o0Zgn/jDhfZGYJV8ZTamBoULwASlwOkxNKi/SJ5e64l5jujySy3PzY8PlkeEskKOwJOGzJ5cXJX10EYCB46cLSFHtXJ88ruR/hEqXbFLF6ucTXuNxmaqb5xtsaQASIPiAFG1cUKV0d7q1bemZ+VXpfSiAWxB8QIpazjdpjvOSCtL0U+R1ObRlydS4h9MCSA+CDxigaDSq/fv3a//+/fpf//FR3VlWKMcgD4t1GIbGFbu1tab/tmYABodjiYABuHz5snbt2qUxY8Zo9erV8nq9aTmPr6TQpT3PLdaEUlZzAkON4AOSYNu23n33XR0+fFg1NTWaO3eujK+M8lI/gd2hccVuvbx5IaEHDBOCD+hHT0+P9uzZoytXrqi2tlZjx47t87pw1NK2hkZtP9Ykw1DCBtZelynLlrYsmaqtNTM4fBYYRgQfkMDnn3+u+vp6VVdXa/ny5XI6+9/62t4d1o6T5+U/FdC51qBcDlOmYciybUViliaXF6lunk/PzK9iIQuQAQQf0AfLsnT06FG98847Wr16te66666UnhONWQq0hdQbteR2mvKVedmcDmQYwQfcprOzU/X19TIMQ+vWrVNxcXGmSwKQRrQsA77io48+0t69e/Xggw9q0aJFMk1GZ0CuYcQHSIpEIjp06JA++eQTrV+/XlVVdE8BchXBh7x36dIl7dq1S2PHjtVTTz0lj8fT/00AshZTnchbtm3r1KlTevPNN7Vs2TLdf//9t+zNA5CbGPEhL4VCIe3evVvt7e3asGGDKioqMl0SgGFC8CHvNDc3q76+XrNmzdKyZcuS2psHIHfwE4+8YVmWjhw5olOnTmnNmjWqrq7OdEkAMoARH/JCe3u76uvr5XQ6tW7dOo0ePTrTJQHIEEZ8yHkffPCBXn/9dT300ENatGgRC1iAPMeIDzkrEonowIEDampq0oYNGzRhwoRMlwRgBCD4kJNaWlrk9/s1fvx4rVq1Sm63O9MlARghmOpETrFtW++8846OHDmi5cuX695772VqE8AtGPEhZ3R3d2v37t3q7OzUhg0bVF5enumSAIxABB9yQlNTk1599VXNnj1bNTU1cjgcmS4JwAjFVCeyWiwW05EjR/Tuu+9q7dq1mj59eqZLAjDCMeJD1mpvb9euXbvkdrv19NNPa9SoUZkuCUAWYMSHrHTmzBnt379fixYt0kMPPcQCFgBJY8SHrBIOh7V//359/vnn2rBhg+68885MlwQgyxB8yBoXL17Url275PP5tHLlSvbmAUgJU50Y8Wzb1okTJ3T06FE98cQTuvfeezNdEoAsxogPI1owGNRrr72m7u5urV+/XmPGjMl0SQCyHCM+DJlozFKgLaTeqCW305SvzCunw0z6/s8++0yvvvqq7r33Xi1dupS9eQDSguBDWrUFw9px8rz8pwNqbg3K5TBlGoYs21YkZmlSeZFq5/q0cUGVSgsL+nxGLBbTm2++qffee09PP/20pk6dOsyfBYBcxlQn0iIctbStoVHbjzXJMKSeiBX3Wo/LlG1LmxdP0daaahU4fzsKvHr1qurr61VYWKi1a9eqqKhoOMoHkEcIPgzahfaQNm0/rpbOHoUSBN7tvC5TlcUevbJ5oSaUevX+++/rwIEDWrJkiR588EH25gEYEgQfBuVCe0irXzqmju6IYil8KzkMQyVep/5zdbeClwOqra3VuHHjhqBSALiO4EPKwlFLy188ovNXQymF3g2GbFV4pJ//12Uq8nrSWCEAfF3yS+yA22xraFRLZ8+gQk+SbBnqijn1d0eb01QZAMTHiA8paQuGtfCFBvVG47/T+/KVP1fvF2dlmNe3IThGl2vCd/9P3OvdTlMnflATd7UnAKQD2xmQkh0nzyuZtSdjlv+BRt/3RFLPNIzrz332kWmDrA4A4mOqEynxnw4k3LKQip6IJf+pQFqfCQC3Y8SHAYvGLDW3BpO6tv3n/6z2n/+zXGMmqPSRb8szKXGfzXOtQUVj1oA6vADAQORV8A22hRauC7SF5HKYisRiCa8rW/oducqrZDhcCn74li7t+h8a/50fyVU2Pu49LoepQFtIkyvYuA5gaOR88KWjhRauC4fDam9v19mmFtlW/9Oc7jvvuvnvo+6pUfCDIwp9elKu+avj3mMaRsIFMwAwWDkbfPFaaN0+SvnkUpdebGjUXx9u7LOFVj7p6elRR0eH2tvbb/7z1Y8jkYhKS0sV9ZQpZhVLGmBnFcOQlHgRsWXbcufp1x/A8MjJ4PtqC61kRg83QvEf327S6+9fvNlCK5fYtq2enp6vBdpXgy0Wi6m0tFSlpaUqKSlRaWmpfD7fzf9WWFgowzAUjVl66S8PKFGIWT1d6v3irDwT75FMh4IfvqXe82c0Ztl3E9YZiVnyleXW1x7AyJJzwTeYFlqhiKXzV6/fv+e5xVkVfrZtKxQK3TJauz3YJKmsrOxmqJWUlGjixIk3g83r9SbVH9PpMDWpvEifXOqKX48VU/tbLytyNSAZplzlPo1d/9/kGjMh4bMnlxfx3hXAkMqpDezpaqHlMAxNHOPVoe8/KtcI+SVs27aCweDXwuyr/+5wOL42Yvvqxx6PJ22Nn39y5FO92NCY1i0NHpepP15Wre+yjw/AEMqpEV+6WmjFbFtfdvZqW8PHen75Xf3fkAa2baurqyvuaK2jo0MFBQW3BFpFRYWmT59+82O32z0stUrSxgVV+uvDjWl9pm1Lz8yvSuszAeB2ORN8bcGwth9rivtO7/O/qr3lYzsa1uhvPKkxy/+gz+tDkZj+4ehn2rx4SlpWe1qWpWvXrsVdPNLR0SGPx3PLCK2yslJ33XXXzbArKBg5q05LCwu0efEU/ePbTQM6iiger8uh30/T1xoAEsmZ4OuvhdbEP/Hf/HcrHFLgb76twpmLEz5zIC20LMtSZ2dn3FDr7OyU1+u9JdjuvPNO3X333Tc/drlcSX++I8HWmmq9/v7FtEwtjyt2a2vNjDRWBwB9y5ngG0gLre6zv5CjsETuqtkJr7vRQuvZR6YpFoupo6Mj7vu1rq4uFRUV3RJsVVVVmjNnzs2Pnc6c+XJLkgqcpl7ZvHDw5/EVuvTy5oUj5n0qgNyWE4tbojFLs/7ygCKx5D6VL//lL+Spmq3SJZv6vdYhW98b+7FC3UGNGjUq7uKR4uJiORyOwX4qWSn1E9gdGlfs1ss5uH0EwMiVE0OQZFtoSVK045J6z59R+ZP/Jalnu5ymHl+3UXMmVco0GZH0ZUKpV4f+6NE+Gwb0xeM0ZUv6/cVTtLVmBiM9AMMqJ4KvN2rJTHKZfteZN+T23S1X6bikrnc6HHJ7RxF6/ShwmvrTJ2Zqy5Kp11vEnQroXB8t4soLLNVMcetPNyxmIQuAjMiJ4HM7TVlJztgGz7yhkoW1/V/4G7TQGpjSwgI9+8g0PfvItD6bgjd99qmOHj2q0sLHMl0qgDyVE7/RfWVeRWJJtCYLfKhYV2u/qzm/ihZaqXM6TE2uKNJd40ZrcsX1jixTpkzR5cuXde3atUyXByBP5UTw3Wih1Z/gmQYVVj8s012Y9LNpoZVeTqdTM2bM0EcffZTpUgDkqZz5jV471yePK/GnU77iOVWs/pOkn+lxmaqb5xtsabjNrFmzCD4AGZMzwbdxQZXSvTGDFlpDY9q0abpw4YJCoVCmSwGQh3Im+G600PL2M+pLltfl0JYlU1l5OAQKCgo0ZcoUnT17NtOlAMhDORN80vUWWpXFHjkGeQIBLbSGHtOdADIlp4LvRgutkkJXyuFHC63hUV1draamJoXD4UyXAiDP5Nxv9gmlXu15brGqxngHPO3pdTk0cYw36w6hzUYej0dVVVX6+OOPM10KgDyTc8En/baF1n9aNEVup9nvak+vy5Tbaer3F0/Roe8/SugNE6Y7AWRCTjSpTqS9O5ywhdbk8iLVzfPpmflVLGQZZl1dXXrppZf0/PPP59zJFQBGrpwPvq/qq4UWm9Mz65/+6Z/08MMPq7q6OtOlAMgTefVn9o0WWhg5Zs6cqQ8//JDgAzBsGO4go2bNmqWzZ8/KspI/xw8ABoPgQ0aVlJSorKxMzc3NmS4FQJ4g+JBxN6Y7AWA4EHzIuBvbGvJonRWADCL4kHEVFRXyeDy6cOFCpksBkAcIPowIM2fO1AcffJDpMgDkAYIPI8Ldd9/NdCeAYUHwYUSorKyUbdtqaWnJdCkAchzBhxHBMAzNmjXr5urOaMzSuStBnf3yms5dCSoaY58fgPTIq5ZlGNnOfNykH+56WwF3lZr76Ks6qbxItXN92riAvqoAUkfwIePCUUvbGhq1/ViTYtGoogkmIjwuU7YtbV48RVtrqlXgZNICwMAQfMioC+0hbdp+XC2dPQpFkp/O9LpMVRZ79MrmhRwjBWBACD5kzIX2kFa/dEwd3RHFUvg2dBiGSgpdHBwMYECYJ0JGhKOWNm0/nnLoSVLMttXRHdG3th9XhMUvAJKUV8cSYeTY1tCols6ehKEX/OCI2t/+V8U6L8tRVKbyVX8kT9WcW66J2ba+7OzVtoaP9fzyu4a6bAA5gKlODLu2YFgLX2hQbzT+KC3U9K5a9/9IY9f+mQrurFas66okyTm6os/r3U5TJ35Qw2pPAP1iqhPDbsfJ8zKMxNd0HHtFJYt+V+4JM2UYppyjK+KGniQZxvXnAkB/CD4MO//pgHoSrOC0rZh6L34iq7tDF36yRYG//T1dPfR3siK9ce/piVjynwoMRbkAcgzBh2EVjVlqbg0mvCYWbJesqLrPvq3Kb/1Pjf/OjxRu+Uwdv9iR8L5zrXR4AdA/gg/DKtAWksuR+NvOcLklSaPnrZZz1Bg5Cks0esHTCn16MuF9LoepQFsobbUCyE0EH4ZVb9SS2c8LPodnlBy3vc8z+nspKMk0jIQLZgBAIvgwzNxOU1YSC4lH3bNM107tVSzYrlhPlzrfeVWF0xckvMeybblpYQagH+zjw7DylXmT2mxesmijYqFOXfj7Z2U4XSqauUQlD/9OwnsiMUu+Mjq4AEiM4MOwcjpMTSov0ieXuhJeZzicKn/ieyp/4ntJP3tyeZGc/bw/BAB+S2DY1c71yeNK77eex2Wqbp4vrc8EkJsIPgy7jQuqlO5+QbYtPTO/Kr0PBZCTCD4Mu9LCAm1ePEXeNI36vC6HtiyZSrsyAEkh+JARW2uqVVnskSOJbQqJOAxD44rd2lozI02VAch1BB8yosBp6pXNC1VS6Eo5/G6cx/fy5oX9booHgBs4nQEZlfoJ7A6NK3brZU5gBzBABB8yLhy1tK2hUduPNckwlLCBtddlyrKlLUumamvNDEZ6AAaM4MOI0d4d1o6T5+U/FdC51qBcDlOmYciybUViliaXF6lunk/PzK9iIQuAlBF8GJGiMUuBtpB6o5bcTlO+Mi+b0wGkBcEHAMgr/AkNAMgrBB8AIK8QfACAvELwAQDyCsEHAMgrBB8AIK8QfACAvELwAQDyCsEHAMgrBB8AIK8QfACAvELwAQDyCsEHAMgrBB8AIK8QfACAvELwAQDyCsEHAMgrBB8AIK8QfACAvELwAQDyCsEHAMgrBB8AIK8QfACAvELwAQDyCsEHAMgrBB8AIK/8fwZ9fBed4QAgAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXBU553G+6e7tQISO2IzIHbLbDZiERECYbQBwgLZgJPYsR2M45lMqjKTSU2mbuJknCmnKpNUMpnMjQnxjeNlAljGSIBAAiSwALHYgAzCgAGxGcSiFYmWWt3n/kFQwIAQtLpPL99PFVUt6aB+7BD0+Pee874WwzAMAQAAAA/JanYAAAAA+DcKJQAAANxCoQQAAIBbKJQAAABwC4USAAAAbqFQAgAAwC0USgAAALiFQgkAAAC3UCgBAADgFgolAAAA3EKhBAAAgFsolAAAAHALhRIAAABuoVACAADALRRKAAAAuIVCCQAAALdQKAEAAOAWCiUAAADcQqEEAACAWyiUAAAAcAuFEgAAAG6hUAIAAMAtFEoAAAC4hUIJAAAAt1AoAQAA4BYKJQAAANxCoQQAAIBbKJQAAABwC4USAAAAbqFQAgAAwC0USgAAALiFQgkAAAC3UCgBAADgFgolAAAA3EKhBADABC+88IIsFssD/crKyjI7NnBXFEoAAPxETEyM2RGAuwoxOwAAAMHsyJEj970mPT1dp0+f1gsvvOD5QMBDoFACAGCi0aNHt/n1nTt36vTp0xo7dqwSEhK8lAp4MCx5AwBggpEjR+prX/vafa9bvny5JGnZsmWejgQ8NIthGIbZIQAAwJ1qa2vVr18/WSwWffnll+ratavZkYC7YkIJAICPeuedd3T9+nUtXryYMgmfRqEEAMBH/fGPf5TEcjd8H4USAAAfVFpaqrKyMo0bN05Tp041Ow7QJgolAAA+iIdx4E94KAcAAB9TV1enfv36SRIP48AvMKEEAMDHvPvuu2psbORhHPgNCiUAAD7m5nL3K6+8YnISoH0olAAA+JDdu3fr4MGDGj9+vKZMmWJ2HKBdKJQAAPgQHsaBP+KhHAAAfERdXZ369+8v6cbDONHR0SYnAtqHCSUAAD7ivffeU0NDgxYvXkyZhF+hUAIA4CNunozDwzjwNxRKAAB8wN69e7V//36NHz9ekydPNjsO8EAolAAA+AC2CoI/46EcAABMVl9fr/79+8swDB7GgV+iUAIAAMAtLHkDAADALRRKAAAAuIVCCQAAALdQKAEAAOAWCiUAAADcQqEEAMBH2B1OXa5vkt3hNDsK8EBCzA4AAECw21tRpRUlJ1VYXimXIVktUkpcjF5OHKr4IT3MjgfcF/tQAgBgondKT+snaw/JarXI6fr7j2Sb1SKXy9DrWWP0zSmDTUwI3B+FEgAAk+ytqNKiN3eprR/EFkmrX0lgUgmfxj2UAACYZEXJSVmtljavsVotWlFyykuJgIdDoQQAwAR2h1OF5ZW3LXPfjdNlqKD8Ig/qwKdRKAEAMEG9vUX36ZKtXMaN6wFfRaEEAMAEUREhus9qdyur5cb1gK+iUAIAYIKIUJtS4mJku0+rtFktSo3rq4hQm5eSAQ+OQgkAgEmWJg6V6z7r3i6XoaWJsV5KBDwcCiUAACaZNKSHXs8aI4t0x6TSZrXIIun1rDFsGQSfxz6UAACYbF9Flf7foqPaeuyqDFlktUipcX21NDGWMgm/QKEEAMAHnDp1Sm+9/Y6ee+llDerXh3sm4Vd4ZAwAAB9QU1OjEIuhof17KySEMgn/wj2UAAD4gOrqakVFRSkkhFkP/A+FEgAAH1BbW6tu3bqZHQN4KBRKAAB8QE1NDYUSfotCCQCAD6BQwp9RKAEAMFlLS4vq6uoolPBbFEoAAExWV1cnSRRK+C0KJQAAJqupqZFEoYT/olACAGCym4Wya9euJicBHg6FEgAAk9XU1Cg6Olo2Gxuawz9RKAEAMBlPeMPfUSgBADAZhRL+jkIJAIDJKJTwdxRKAABM1NLSovr6egol/BqFEgAAE9XW1kpiyyD4NwolAAAmYg9KBAIKJQAAJqqpqZHFYlF0dLTZUYCHRqEEAMBE7EGJQEChBADARDzhjUBAoQQAwEQUSgQCCiUAACaiUCIQUCgBADCJw+HQtWvXKJTwexRKAABMwh6UCBQUSgAATMIelAgUFEoAAEzCHpQIFBRKAABMUlNTo65du8pq5ccx/Bt/ggEAMAlPeCNQUCgBADAJhRKBgkIJAIBJKJQIFBRKAABM4HA41NDQQKFEQKBQAgBgArYMQiChUAIAYAIKJQIJhRIAABPU1NTIarUqKirK7CiA2yiUAACYgD0oEUj4UwwAgAl4whuBhEIJAIAJbk4ogUBAoQQAwARMKBFIKJQAAHhZc3OzGhsb1b17d7OjAB2CQgkAgJexZRACDYUSAAAvo1Ai0FAoAQDwspt7UHbp0sXsKECHoFACAOBlNx/IYQ9KBAr+JAMA4GU84Y1AQ6EEAMDL2IMSgYZCCQCAlzGhRKChUAIA4EVNTU26fv06hRIBhUIJAIAX1dbWShKbmiOgUCgBAPCi6upqSexBicBCoQQAwItqampks9nYgxIBhUIJAIAX3XzC22KxmB0F6DAUSgAAvKi2tpblbgQcCiUAAF5UXV1NoUTAoVACAOBF7EGJQEShBADAS+x2u+x2O4USAYdCCQCAl9zcg5JCiUBDoQQAwEtqamoksak5Ag+FEgAAL6murlZISIg6d+5sdhSgQ1EoAQDwEvagRKCiUAIA4CXsQYlARaEEAMBL2DIIgSrE7AAAAASCmTNnatu2bfe9LjIyUo2NjV5IBHgPE0oAAAC4hQklAAAdJCsrS2+88cZdv3b58mWtXLlSixYt8nIqwPMolAAAdJCuXbtq9OjR9/x679699cQTT3gxEeAdFEoAALygpqaGPSh9QHl5ud566y1t2rRJ586dU1NTk/r27ashQ4YoKSlJGRkZmjJlitkx/Q6FEgAAL6iurla3bt3Yg9IkhmHotdde0xtvvKEBAwZo0aJFGjFihK5du6bi4mLl5eWpqKhI69at0759+8yO63colAAAeEBzc7OuX7+u6OhoWSwW9qA02T//8z/rN7/5jZ577jktX75cERERrV/7/ve/r+XLl+uVV14xMaF/4ylvAAA6SE1Njf7zP/9TI0aMUEREhLp166bQ0FCNGzdOb7/9ttnxgta6dev0m9/8RuPGjdNbb711W5m86eWXX1ZcXByl/yFZDMMwzA4BAIC/u7kPZZcuXbR06VJNmzZNkZGR+vzzz7V8+XIdP35cXbp00apVq5SRkWF23KBhGIZGjhypL774Qu+//76effZZsyMFJAolAAAdYObMmTp9+rS2bt2q2NjY275WXV2t+Ph4nTx5UuHh4dq+fbsmT55sUtLgUlxcrOTkZFmtVlVXVys6OtrsSAGJJW8AADrAX//6Vx08ePCOMilJdrtdWVlZCg8PV1NTk7773e+akDA4ffDBB5KkwYMH31YmXS6X6uvrzYoVcCiUAAB0gL59+95z+lVTU6Po6GilpKRIkvbu3auDBw96M17QuvnE9qBBg+R0OrV8+XJNnjxZYWFhio6OVnh4uJKSkvT222/L5XKZnNZ/USgBAPCwmpoahYaG3rbMvWPHDhMTBY9Dhw5JujGRTElJ0T/+4z9q4sSJWrVqldasWaNly5aptLRUL7zwgubNm8c56w+JbYMAAPCwmpoadevWTSEhf/+xe+HCBRMTBYfGxkY1NDRIkj7++GNJ0kcffaSnnnqq9ZqsrCzNmTNHc+fOVX5+vl599VWeyH8ITCgBAPCwm4Xy1iVVm81mYqLg8NV7JOfOnXtbmbwpIyNDzzzzjCTpL3/5iw4cOOCVfIGEQgkAgJvy8vL085//XPfaOOVmobx48WLr5/r16+eteEGrpaXlto+ffvrpe167ZMmS1tfvvfeexzIFKgolAABuysnJ0Y9//GNVVlbe8TXDMFoLZWlpaevnExMTvRkxKHXp0uW2j8eMGXPPaydMmND6es+ePR7LFKgolAAAdJD8/Pw7Pnf9+nU1NzertrZWmzdvliRNmzZNjz32mLfjBZ2oqCiFhYW1ftzWKTg9e/ZsfX3p0iWP5gpEFEoAADrIj370Ix07duy2z9XU1KixsVH/9m//JqfTqU6dOun3v/+9SQmDi9Vq1ejRo1s//uoS+K1uvV2B+1sfHE95AwDgpri4OIWGhqqyslITJkzQkiVLNGnSJIWFhamkpESrVq1SY2OjYmJitHLlytuWV+FZkydPVllZmSSpsrLytoJ5q8uXL7e+7t+/v1eyBRImlAAAuOmHP/yhzpw5o9///vdKS0vT9u3b9YMf/ECvvvqq1q5dq379+unXv/61jh8/rhkzZpgdN6hkZ2e3vr65yfndfPrpp62vk5KSPJopEHGWNwAAHrRhwwadPn1ar776qtlRgpLT6dSECRN06NAhTZgwQZ9++qksFssd12VmZmrdunUKDw/XiRMnNGDAABPS+i8mlAAAeNDNJ7xhDpvNpv/93/9VaGioDhw4oF/84hd3XPP+++9r3bp1kqSf//znlMmHwD2UAAB4UE1NjWJjY82OEdSmT5+u9957Ty+99JL+/d//Xdu3b9e8efNks9lUVFSk1atXy2q16qc//al+8IMfmB3XL7HkDQCAhxiGoTfeeEPJyclKSEgwO07QO336tH77298qPz9fZ8+elcvl0sCBA5WcnKx/+qd/anOfSrSNQgkAgIc0NDTov/7rv7Ro0SI9+uijZscBPIZ7KAEA8JCamhpJbW+oDQQCCiUAAB5SeaVK140QRXSOMjsK4FEseQMA0MH2VlRpRclJFRyulCHJapFS4mL0cuJQxQ/pYXY8oMNRKAEA6EDvlJ7WT9YektVqkdN1y3F+VotcLkOvZ43RN6cMNjEh0PEolAAAdJC9FVVa9OYutfWD1SJp9SsJTCoRULiHEgCADrKi5KSs1jtPYbmV1WrRipJTXkqEu7E7nLpc3yS7w2l2lIDBhBIAgA5gdzgV99pGudrxU9UiQ/89PUSdI8IUFham0NDQO37d6/M2m+2uRwfi/m7e21pYXimXwb2tHYmTcgAA6AD19pZ2lUlJMmTRkS9OKczVpObmZjkcDrW0tLTr91oslnYVz/YW1Lt9zWazufFvwjfdem/rzf+dXIa0+cglFRyu5N5WN1EoAQDoAFERIbJa1K5SabVI33t1mSJC/17cDMOQw+G456+bxfNeX2tpaZHD4ZDdbld9ff1dr2tvabVarQ9cSh+0vFqt3rvrbm9FlX6y9pAM6bYHpXTLxz/+6JBGx0QxqXxIFEoAADqA0dKs0VEOHamzyWjjEQWb1aKUR2NuK5PSjcljWNiNJXBPcblcrcXzfgW1rXJ7/fp11dXV3fU6p7N99yVardb7Fs+QkJAHnq7e+utmab15b+tXy+TteW7c20qhfDgUSgAA3HTx4kWtWrVKowyryhXb5rUul6GliW1f4yk3S1xYWJg6d+7skfdwuVztLqhtFdeGhoZ7XudyudqVxWazyRISpoLaOBlq+75Tp8tQQflF2R3OO8o+7o9CCQCAG8rKypSXl6devXrptecXa+LRWv34o7b3oQzkKZjValV4eLjCw8M99h5Op7PdBfXKtSYZhXXt+r4u48a9sBTKB0ehBADgITidThUUFGjPnj2aMGGC5syZo9DQUH1zSjeNjonSipJTKii/+PeniR+N0dLE2IAuk95is9lks9kUERFx32vtDqesm9v39L3VcuNeWDw4/q0BAPCA6uvrtXr1ap0/f15z587VxIkTb9vKJ35ID8UP6SG7w6l6e4uiIkKYepkkItSmlLgYbT5yqc17KO91byvah0IJAMADOHPmjFavXi2LxaIXX3xRAwcOvOe1EaE2CooPWJo4VAWHK9u8xsx7WwMBJ+UAANAOhmFo9+7devvtt9WzZ08tW7aszTIJ3zFpSA+9njVGFt2YRN7KZrXIIgX8va2exkk5AADch8PhUF5enj777DNNnTpVs2fPDsjNvwPdvoqqO+5tTY3ry72tHYBCCQBAG6qqqrRq1SpVVVVp/vz5GjNmjNmR4Cbube14FEoAAO7h+PHj+vDDD9WpUyctXrxYffr0MTsS4JN4KAcAgK8wDEPbtm3Ttm3bNGrUKGVlZbVrixogWFEoAQC4xfXr17VmzRodP35cycnJmj59+m1bAgG4E0veAAD8TWVlpVauXKnr168rOztbw4cPNzsS4BcolAAASPrss8+Um5urXr16adGiRerevbvZkQC/wZI3ACCo3XqE4vjx4zV37lyFhoaaHQvwK0woAQBBq76+Xh988IHOnTun9PR0xcfHc78k8BAolACAoHT27FmtWrVKkrRo0SI98sgjJicC/BdL3gCAoGIYhvbu3atNmzZp4MCBeuaZZ9SlSxezYwF+jUIJAAgaDodD69atU1lZmaZMmaKUlBSOUAQ6AEveAICgUF1drZUrV6qqqkqZmZkaO3as2ZGAgEGhBAAEvJtHKEZGRmrx4sWKiYkxOxIQUFjyBgAELMMwtH37dhUXF2vkyJFasGABRygCHkChBAAEJLvdrjVr1ujYsWOaOXOmkpKS2BII8BCWvAEAAaeyslKrVq1SY2OjFi5cqBEjRpgdCQhoFEoAQED57LPPlJeXpx49emjRokXq0aOH2ZGAgMeSNwAgIDidThUWFmr37t0aN26c5s2bxxGKgJcwoQQA+L1r167pgw8+0NmzZ5WWlqZJkyZxvyTgRRRKAIBfO3v2rFavXi3DMPTMM89o0KBBZkcCgg5L3gAAv2QYhvbt26eNGzdq4MCBevrppxUVFWV2LCAoUSgBAH7H4XBo/fr1OnjwoCZPnqzU1FSOUARMxJI3AMCvVFdXa9WqVbpy5YoyMzM1btw4syMBQY9CCQDwG1988YVycnI4QhHwMSx5AwB8nmEY+vjjj1VUVKQRI0ZowYIFioyMNDsWgL+hUAIAfJrdbtdHH32ko0ePasaMGZoxYwZbAgE+hiVvAIDPunTpklauXKnGxkYtWLBAI0eONDsSgLugUAIAfNKhQ4eUm5vLEYqAH2DJGwDgU5xOpzZv3qzS0lKNHTtWmZmZHKEI+DgmlAAAn3HrEYqpqamaPHky90sCfoBCCQDwCefOndOqVas4QhHwQyx5AwBMdesRigMGDNAzzzzDEYqAn6FQAgBM43A4tGHDBh04cECTJk1SWloaRygCfoglbwCAKWpqarRq1SpdvnyZIxQBP0ehBAB43YkTJ5STk6Pw8HAtXrxYffv2NTsSADew5A0A8BrDMFRSUqKtW7dq+PDhWrhwIUcoAgHAanYAAEDH++EPfyiLxSKLxaKf/vSnZseRdOMIxZUrV2rr1q1KSkrS17/+dcokECCYUAJAgPn000/161//2uwYt7l8+bJWrlypa9euacmSJRo1apTZkQB0IAolAASQlpYWLV26VE6n0+worQ4fPqy1a9eqe/fuWrZsGUcoAgGIJW8ACCC/+tWvtH//fj311FNmR5HL5VJBQYE++OADjRo1St/+9rcpk0CAolACQID44osv9LOf/UyTJk3S9773PVOzNDQ06J133lFpaanS0tK0cOFChYWFmZoJgOew5A0AAeKVV16Rw+HQH//4R1VXV5uW49y5c1q9erWcTqe+9a1vafDgwaZlAeAdTCgBIAD86U9/0tatW/Uv//IvGj9+vCkZDMPQJ598oj//+c+Kjo7WsmXLKJNAkGBCCQB+7uLFi/rXf/1XDRs2TK+99popGVpaWrR+/XodOHBA8fHxSk9P5whFIIhQKAHAz333u99VdXW1Vq9ebcq+jrceoZiVlWXahBSAeSiUAODH1q5dq5ycHL3wwgt68sknvf7+tx6h+NJLL6lfv35ezwDAfBRKAPBTdXV1+od/+Af16dNHv/rVr7z63oZhaMeOHdq6dauGDh2q7OxsTr0BghiFEgD81A9/+EN9+eWXev/99726v2NTU5M++ugjff7555o+fbpmzpwpq5VnPIFgRqEEAD/08ccfa/ny5crIyNCzzz7rtfflCEUAd0OhBAA/09zcrJdffllhYWH6j//4D125cuWOa2pra1tfNzY23nZN165dFRoa+sDvW15errVr16pr1656+eWX1bNnz4f7BwAQcCyGYRhmhwAAtF9FRYViY2Mf+vcXFRVp5syZ7b7e5XJpy5Yt2rlzpx577DHNnz+fU28A3IZCCQB+xm63q6SkpM1rDh48qB/84AeSpOeee07PP/9869cmTpyo7t27t+u9GhoalJOTo4qKCqWkpGjq1KmyWCwPHx5AQGLJGwD8TEREhGbPnt3mNSEhf//rfejQofe9/m7Onz+vVatWyel06vnnn9eQIUMe+HsACA4USgDAHT755BPl5+erX79+euaZZxQdHW12JAA+jEIJAGjV0tKiDRs2aP/+/YqPj1daWtpt004AuBv+lgCAAFFWVqaysjJJ0pEjR277/LvvvitJiomJUUpKyl1/f21trVatWqXKyko99dRTmjBhgudDAwgIPJQDAAHipz/9qX72s5+1ec2MGTNUXFx8x+dPnjypnJwchYaGavHixRyhCOCBUCgBIIjdeoRibGyssrOz1alTJ7NjAfAzLHkDQJBqamrS2rVrdeTIESUmJio5OZkjFAE8FCaUABCErly5opUrV6qurk4LFizQ6NGjzY4EwI9RKAEgyNx6hOKiRYvUq1cvsyMB8HMseQNAkHC5XNq6dat27NihuLg4PfXUUxyhCKBDUCgBIIDYHU7V21sUFRGiiFBb6+e/eoRiQkICRygC6DAseQNAANhbUaUVJSdVWF4plyFZLVJKXIxeThyqfqHXtWrVKrW0tOjpp59WbGys2XEBBBgKJQD4uXdKT+snaw/JarXI6fr7X+m2v338tbAzSn4kVIsWLeIIRQAewf4QAODH9lZU6SdrD8mQbiuTuuXjHc2PaGzyU5RJAB5DoQQAP7ai5KSs1rbvhbRZrfr/dp3xUiIAwYhCCQB+yu5wqrC88o7J5Fc5XYYKyi/K7nB6KRmAYEOhBAA/VW9v0X26ZCuXceN6APAECiUA+KmoiBDdZ7W7ldVy43oA8AQKJQD4qYhQm6YMjJRFbY8pbVaLUuP63rYvJQB0JAolAPihpqYmrV27Vt0r99+nTkoul6Gliew9CcBzWP8AAD/z5ZdfKicnR/X19Vq2YI6m2bvpx2sP33UfSpfL0OtZYxQ/pIeJiQEEOjY2BwA/YRiGdu7cqa1bt6pv375auHChevbsKUnaV1GlFSWnVFB+sfWknNS4vlqaGEuZBOBxFEoA8AP19fX66KOPdPLkSU2bNk2zZs2SzXbnPZH3OssbADyJQgkAPu7o0aPKzc2V1WrVggULNHToULMjAcBtuIcSAHyUw+FQYWGh9u7dq5EjR2r+/Pnq3Lmz2bEA4A5MKAHAB126dEk5OTm6evWqUlNTNWnSJFks7dx0EgC8jEIJAD7EMAzt27dPBQUF6t69u7KzsxUTE2N2LABoE0veAOAjGhsblZubq6NHjyo+Pl6pqakKDQ01OxYA3BcTSgDwAadOndKaNWvU0tKi+fPna/To0WZHAoB2Y0IJACZyOp0qKirSjh07FBsbq6ysLEVHR5sdCwAeCBNKADBJVVWVcnJydPHiRSUnJ2vatGmyWjkRF4D/oVACgAkOHjyoDRs2qHPnzsrOztaAAQPMjgQAD40lbwDwoqamJq1fv16fffaZxo8fr4yMDIWHh5sdCwDcwoQSALzk3LlzysnJUWNjo+bNm6exY8eaHQkAOgSFEgA8zOVyqaSkRMXFxerfv7+ys7PVvXt3s2MBQIdhyRsAPKiurk5r1qxRRUWFpk+frhkzZshms5kdCwA6FBNKAPCQI0eOKDc3V2FhYVqwYIGGDBlidiQA8AgmlADQwRwOhzZt2qRPPvlEo0eP1vz58xUZGWl2LADwGCaUANCBLl68qJycHNXU1Cg9PV1PPPGELBaL2bEAwKMolADQAQzD0J49e1RYWKhevXopOztbvXv3NjsWAHgFS94A4KaGhgatXbtWx48f15QpUzR79myFhPDXK4DgwYQSANxw4sQJrVmzRoZhKCsrSyNGjDA7EgB4Hf8JDQAPwel0asuWLdq1a5eGDRumrKwsdenSxexYAGAKJpQA8ICuXLmiDz/8UJWVlZo9e7amTp3KgzcAghqFEgDayTAMHThwQPn5+YqOjlZ2drb69etndiwAMB1L3gDQDna7XevWrdPhw4f1+OOPKz09XWFhYWbHAgCfwIQSAO7jzJkz+vDDD2W325WZmanHHnvM7EgA4FMolABwDy6XS9u3b9f27ds1cOBALVy4UN26dTM7FgD4HJa8AeAuampq9OGHH+rcuXNKSkpSUlKSrFar2bEAwCcxoQSArzh8+LDy8vIUERGhhQsXatCgQWZHAgCfxoQSAP6mublZ+fn5OnDggB577DHNmzdPERERZscCAJ/HhBIAJF24cEE5OTmqq6tTRkaGJkyYwN6SANBOFEoAQc0wDO3atUtbtmxRTEyMsrOz1bNnT7NjAYBfYckbQNC6du2aPvroI504cUIJCQl68sknZbPZzI4FAH6HCSWAoHTs2DGtXbtWFotFCxYs0LBhw8yOBAB+iwklgKDS0tKiwsJC7dmzRyNGjNBTTz2lzp07mx0LAPwaE0oAD6SyslKrV69WQUGB9u/fr0uXLik0NFT9+vVTQkKCXnzxRSUnJ5sd864uX76snJwcXblyRSkpKZo8eTIP3gBAB6BQAmi3V155RX/+85/V3NysRx55RIsXL9bw4cNlt9uVn5+vTZs2SZKWLFmiP//5zwoPDzc58Q2GYeiTTz7Rpk2b1K1bNz399NOKiYkxOxYABAwKJYB2i4iIUFNTkzIzM/XXv/5VnTp1uu3rf/jDH/Tqq69Kkp599lm9//77ZsS8TWNjo/Ly8vT5559r4sSJSktLU2hoqNmxACCgUCgBtFtERIRCQkJ06tQp9e7d+67XZGRkaOPGjZKk0tJSTZkyxZsRb1NRUaEPP/xQLS0tyszM1KOPPmpaFgAIZBxMCzdbaEcAABhcSURBVOCBJCQk3LNMSlJ2dnbr69zcXG9EuoPT6dSWLVv09ttvq2fPnvrOd75DmQQAD+IpbwDttmbNGj3yyCNtXnPruddnzpzxdKQ7VFdXKycnR19++aVmzZqlr33ta7Ja+W9nAPAkCiWAdsvIyLjvNbW1ta2vvb0dT1lZmdavX69OnTrppZde0sCBA736/gAQrCiUADrUqVOnWl9Pnz7dK+/Z1NSkDRs2qKysTGPHjtXcuXN95glzAAgGPJQDoENNmzZNu3btUkxMjE6dOqXIyEiPvt/58+eVk5OjhoYGzZ07V+PGjfPo+wEA7sSEEkCHOXTokHbt2iVJev311z1aJl0ul3bs2KHi4mL169dP3/zmN9WjRw+PvR8A4N6YUALoEIZh6Mknn1RRUZEyMjK0fv16j51CU1dXpzVr1qiiokKJiYmaOXOmbDabR94LAHB/TCgBdIhf/OIXKioq0siRI/Xuu+96rEx+/vnnys3NVUhIiJ5//nnFxsZ65H0AAO3HhBKA23JycrRo0SL17dtXH3/8sYYOHdrh7+FwOFRQUKB9+/Zp1KhRmj9//h0n9QAAzEGhBOCWgoICzZ8/X927d1dRUZFGjx7d4e9RWVmpnJwcVVdXKy0tTRMnTvTYBBQA8OAolAAe2pYtW5SZmamoqCgVFxd3+Gk0hmFo7969KigoUM+ePZWdna0+ffp06HsAANxHoQTwULZt26Y5c+aoU6dOKioq0pgxYzr0+zc0NCg3N1fHjh3T5MmTlZKSopAQbvsGAF9EoQTwwHbs2KH09HSFh4dr69atd9378ZVXXtGFCxce6jzvkydPas2aNXK5XHrqqac0cuTIjogNAPAQ/nMfwAMpLS1VRkaGQkNDVVhYeM+NxI8ePaqKiooH+t5Op1Nbt27Vzp07NXToUGVlZSkqKqoDUgMAPIlCCaDd9u3bp/T0dF27dk2//OUvVVtbq+Li4rteW1NT80Df++rVq8rJyVFlZaVSUlKUkJDAgzcA4CdY8gbQLlVVVRo+fLiqq6vb/XsGDx583ymlYRg6ePCgNmzYoKioKGVnZ6t///5upgUAeBMTSgDtUldX90Blsj3sdrvWr1+vQ4cOacKECcrIyFBYWFiHvgcAwPOYUAIwxdmzZ5WTkyO73a558+Z1+FPiAADvoVAC8CqXy6WPP/5Y27Zt08CBA7Vw4UJ169bN7FgAADew5A3Aa2pra/Xhhx/q7NmzSkpKUlJSkqxWq9mxAABuYkIJwCvKy8uVl5ensLAwLVy4UIMHDzY7EgCggzChBOBRzc3N2rhxo/bv36+4uDjNmzdPkZGRZscCAHQgJpQAPObChQvKyclRXV2d0tPT9fjjj7O3JAAEIAolALfYHU7V21sUFRGiiFCbpBt7S5aWlmrLli3q3bu3srOz1atXL5OTAgA8hSVvAA9lb0WVVpScVGF5pVyGZLVIKXEx+sbEfjr7abG++OILJSQkaNasWQoJ4a8aAAhkTCgBPLB3Sk/rJ2sPyWq1yOn6+18hNovkNAzN7HxR/8+SmRo+fLiJKQEA3sJ+HQAeyN6KKv1k7SEZ0m1lUpKchiRZtK2hn2pCepgRDwBgAgolgAeyouSkrNa2H6yxWi1aUXLKS4kAAGajUAJoN7vDqcLyyjsmk1/ldBkqKL8ou8PppWQAADNRKAG0W729Rffpkq1cxo3rAQCBj0IJoN0iQ6T27iJptUhRETzdDQDBgL/tAbTL2bNnlZubq0HWrjprdG9zUmmzWpTyaEzrvpQAgMDGhBJAm5qbm5Wfn6+33npLYWFh+vfsqbrfZmMul6GlibHeCQgAMB0TSgD39MUXX2jdunVqaGhQamqqpkyZIqvVqtcdofrxR3fZh9Jqkctl6PWsMYofwrZBABAs2NgcwB0aGxtVUFCggwcPKjY2VpmZmerevftt1+yrqNKKklMqKL/YelJOalxfLU2MpUwCQJChUAJoZRiGysvLlZ+fL6fTqdTUVE2YMEEWy70fxbnbWd4AgOBCoQQgSaqrq9OGDRt09OhRPfroo8rIyFBUVJTZsQAAfoBCCQQ5wzD06aefqrCwUKGhoZozZ44effRRs2MBAPwID+UAQayqqkp5eXmqqKjQhAkTlJqaqsjISLNjAQD8DBNKIAi5XC7t2rVLxcXF6tKlizIzMzV06FCzYwEA/BQTSiDIXLx4Ubm5ubp48aKmTJmi5ORkhYWFmR0LAODHmFACQaKlpUXbtm3Tjh071Lt3b82fP18DBgwwOxYAIAAwoQSCwJkzZ5Sbm6vq6mrNmDFDiYmJstnY4gcA0DGYUAIBrKmpSZs3b9a+ffs0cOBAzZ8/X7179zY7FgAgwFAogQB1/PhxrVu3TtevX9eTTz6pSZMmyWq1mh0LABCAWPIGAkxjY6M2btyozz77TMOGDdO8efPUrVs3s2MBAAIYE0ogQBiGoUOHDmnjxo1yuVxKT0/XuHHj2jw2EQCAjsCEEggAtbW1Wr9+vY4fP67HHntM6enp6tKli9mxAABBggkl4McMw9C+ffu0efNmhYeHa+7cuRo1apTZsQAAQYYJJeCnrly5ory8PJ05c0ZPPPGEUlJSFBERYXYsAEAQYkIJ+Bmn06mdO3dq27Zt6tq1qzIzMzVkyBCzYwEAghgTSsCPXLhwQbm5uaqsrFRCQoJmzpyp0NBQs2MBAIIcE0rADzgcDhUXF2vXrl3q06eP5s+fr/79+5sdCwAASRRKwOdVVFQoLy9PtbW1mjFjhqZNm8axiQAAn0KhBHyU3W5XYWGhPv30Uw0aNEiZmZnq1auX2bEAALgDhRLwQUePHtX69evV1NSk2bNnKz4+ng3KAQA+i4dyAB/S0NCg/Px8HT58WCNGjNDcuXPVtWtXs2MBANAmJpSADzAMQ2VlZdq0aZMkKSMjQ2PGjGEqCQDwC0woAZPV1NRo3bp1OnHihMaOHau0tDR17tzZ7FgAALQbE0r4hZqaGq1fv15btmzR/v37derUKV27dk1dunTRiBEjlJKSoldffVWPPPKI2VHbzTAM7dmzR1u2bFFkZKTmzp2rkSNHmh0LAIAHRqGEz9u5c6dmzZqlpqYmWSwWZWVlaerUqYqOjtbx48f1l7/8RVeuXFHnzp319ttvKzs72+zI93X58mXl5eXp7Nmzio+P1+zZsxUeHm52LAAAHgqFEj5v48aNysjIkNVq1fr165Wenn7b16uqqpSUlKTDhw8rLCxMBw8e1OjRo01K2zan06mSkhJ9/PHH6tatmzIzMzV48GCzYwEA4Bar2QGA9nrhhRfuKJOS1KNHD/3yl7+UJDU3N+uPf/yjt6O1y/nz57V8+XJt27ZNCQkJ+s53vkOZBAAEBB7Kgc/r2rWrJk6c2OZSdnx8fOvr8vJyb8RqN4fDoaKiIpWWlqpv375atmyZ+vbta3YsAAA6DIUSPi8hIUH79u1r85pbn4qOjIz0dKR2O3XqlPLy8lRfX68nn3xSCQkJslpZGAAABBYKJQLCJ5980vo6OTnZxCQ32O12FRQUaP/+/Ro8eLC+8Y1vqGfPnmbHAgDAI3goB36vublZKSkp2r59u8aOHavdu3ebOqU8cuSINmzYIIfDodmzZ2vixIlsUA4ACGhMKOF3mpqaVFNTo6tXr6q0tFS//e1vVVZWpkWLFmn58uWmlclr164pPz9f5eXlGjVqlObMmaPo6GhTsgAA4E0USvid//u//9OLL77Y+vGgQYP0/vvva8mSJaZMAg3D0MGDB7Vp0yZZrVY9/fTTiouLYyoJAAgaLHnD71y4cEGHDx9WQ0ODjh07pnfffVdlZWUaOXKkfve73yk1NdVrWaqrq7Vu3TqdPHlS48ePV2pqqjp16uS19wcAwBdQKOH3XC6Xvv/97+u///u/ZbVa9d5772nJkiUef8/du3erqKhInTp10rx58zR8+HCPvicAAL6KQomA4HK5NG7cOB0+fFhRUVGqqKhQjx49PPJely5dUm5urs6fP6/Jkydr1qxZHJsIAAhqbIiHgGC1WvX1r39dklRfX68PPvigw9+jpaVFxcXFevPNN9XU1KSXXnpJGRkZlEkAQNDjoRwEjFGjRrW+PnToUId+73Pnzik3N1dXr15VYmKipk+frpAQ/u8DAIBEoYQfyM/PV6dOnTRjxow2r7u14LW0tHTIezc3N2vr1q3avXu3+vfvr2XLlikmJqZDvjcAAIGCQgmf9+qrr6pLly73nToeP3689fWgQYPcft8TJ05o3bp1unbtmlJTUzVlyhSOTQQA4C4olPALR44cUUVFhYYMGXLXr7tcLr3zzjutH8+dO/eh3+v69evatGmTDh48qNjYWD333HMee8AHAIBAQKGEX3C5XHruuee0evVq9e3b97avOZ1Offe731VZWZkk6cUXX9TYsWMf+D0Mw1B5ebny8/PV0tKizMxMPf7442xQDgDAfVAo4fPGjx+v06dPq6SkRMOGDdOzzz6rUaNGqWfPnqqoqNDKlSt17NgxSTfK5JtvvvnA71FfX68NGzbo888/1+jRozVnzhxFRUV19D8KAAABiX0o4RcOHTqkNWvWaPv27Tp69KiuXLkih8OhqKgoDR06VNOmTdPzzz+v+Pj4B/q+hmFo//79KigoUEhIiObMmaO4uDgP/VMAABCYKJQIWlVVVcrLy1NFRYUmTJig1NRURUZGmh0LAAC/Q6FE0HG5XCotLVVRUZG6dOmizMxMDR061OxYAAD4Le6hRFCprKxUbm6uLly4oClTpig5OVlhYWFmxwIAwK8xoURQaGlp0fbt27Vjxw717NlT8+fP18CBA82OBQBAQGBCiYB35swZ5eXlqaqqSklJSUpMTJTNZjM7FgAAAYMJJQJWU1OTtmzZor1792rgwIHKzMxUnz59zI4FAEDAoVDCb9kdTtXbWxQVEaKI0NsnjsePH9e6det0/fp1zZo1S5MnT+bYRAAAPIQlb/idvRVVWlFyUoXllXIZktUipcTF6OXEoYrrE6FNmzaprKxMw4YN07x589StWzezIwMAENCYUMKvvFN6Wj9Ze0hWq0VO19//6Nr+9vGMThcUF3ZVaWlpGj9+PMcmAgDgBRRK+I29FVVa9OYutf0H1tBfnn9cSY8O8FIqAADATWXwGytKTspqbXviaLNa9f4nF72UCAAASBRK+Am7w6nC8srblrnvxukyVFB+UXaH00vJAAAAhRJ+od7eovt0yVYu48b1AADAOyiU8Atdwm1q7+M1VosUFcEGBgAAeAs/deHzzp07p/z8fA2yRuqsq5tcbVRLm9WilEdj7tiXEgAAeA4TSvisa9euae3atfrTn/4kl8ulf50/UcZ95pQul6GlibFeSggAACQmlPBBTqdTe/bs0bZt22S1WjV37lw98cQTslqtqlEn/fiju+9D6XIZej1rjOKH9DAxPQAAwYd9KOFTTp48qfz8fF29elUTJ07UrFmzFBkZeds1+yqqtKLklArKL7aelJMa11dLE2MpkwAAmIBCCZ9QU1OjgoICHTlyRIMGDVJGRob69u3b5u9p6yxvAADgPRRKmMrhcGjHjh3asWOHIiMjlZKSojFjxnBkIgAAfoR7KGEKwzB05MgRFRQU6Nq1a5o6daqSkpIUFhZmdjQAAPCAmFDC6y5fvqz8/HydOnVKI0aMUFpamnr27Gl2LAAA8JAolPAau92u4uJi7dmzR927d1daWppGjhxpdiwAAOAmCiU8zjAMHThwQFu2bFFzc7OSkpI0depUhYRwxwUAAIGAn+jwqPPnzys/P1/nz5/X2LFjNXv2bEVHR5sdCwAAdCAmlPCIa9euacuWLTpw4IBiYmKUkZGhwYMHmx0LAAB4AIUSHcrpdGrv3r0qLi6W1WpVcnKyJk6cKKuVUz4BAAhULHmjw5w8eVIbN27UlStXNHHiRCUnJ6tTp05mxwIAAB7GhBJu++opN+np6erXr5/ZsQAAgJewDulhhmHod7/7nbp06SKLxaLi4mKzI3UYh8Ohbdu26fe//73OnTunhQsX6oUXXqBMAgAQZFjy9qCTJ0/qpZde0rZt28yO0qEMw9Dnn3+ugoIC1dXVKSEhQdOnT1d4eLjZ0QAAgAkolB5gGIb+53/+Rz/60Y9ks9k0depUlZaWmh2rQ1y+fFkbN27UyZMnNXz4cH3zm9/klBsAAIIcS94e8LOf/Uzf+973lJiYqEOHDiktLc3sSG5ramrSpk2b9Ic//EHV1dV69tln9fWvf50yCQAAmFB6yooVK/Ttb3/b7BhuMwxDBw8e1ObNm9Xc3KyZM2cqISGBU24AAEArWoEHvPbaa7JYLGbHcNuXX36p/Px8nTt3TmPGjFFKSgqn3AAAgDtQKD3A38tkQ0ODtmzZov3796tPnz761re+pSFDhpgdCwAA+CgKJVq5XC7t3btXRUVFslgsysjIUHx8PKfcAACANlEoIUk6deqU8vPzdfnyZU2cOFGzZs3ilBsAANAuFMogV1tbq4KCApWXl+uRRx7RsmXL2JgcAAA8EAplkGppadGOHTtUUlKiiIgILViwQGPHjvX7+z8BAID3USiDjGEYOnr0qDZt2qS6ujpNnTpVSUlJnHIDAAAeGoUyiFy5ckUbN27UiRMnNHz4cH3jG99Qr169zI4FAAD8HIUyCDQ1NWnbtm3avXu3unbtqiVLlmjkyJEsbwMAgA5BoQxghmGorKxMmzdvlt1u14wZMzRt2jROuQEAAB2KZhGgbj3l5rHHHlNKSoq6du1qdiwAABCAKJQBpqGhQVu3btWnn37KKTcAAMArKJQB4uYpN8XFxZKk9PR0TZo0iVNuAACAx1EoA0BFRYXy8/N16dIlPfHEE5o1a5Y6d+5sdiwAABAkKJQe8u6777a+Lisra31dWFioc+fOSZJiYmKUkpLy0O9RW1urwsJCHT58WAMHDtTLL7+s/v37P3xoAACAh2AxDMMwO0Qgas+WPDNmzGhdon4QLS0t2rlzp0pKShQWFqaUlBSNGzeObYAAAIApmFB6iCd6umEYOnbsmDZt2qTa2lpNmTJFM2bM4JQbAABgKiaUfuLq1avauHGjvvjiCw0bNkzp6emccgMAAHwChdLHNTU1afv27SotLVV0dLTS0tI0atQolrcBAIDPoFD6KMMw9Nlnn6mwsFB2u12JiYmaNm2aQkNDzY4GAABwG+6h9EEXLlxQfn6+zp49q7i4OKWkpKhbt25mxwIAALgrJpQ+pLGxUVu3btUnn3yi3r17KyMjQ7GxsWbHAgAAaBOF0kvsDqfq7S2KighRRKjttq+5XC7t27dPRUVFMgxDycnJio+Pl81mu8d3AwAA8B0seXvY3ooqrSg5qcLySrkMyWqRUuJi9HLiUMUP6aHTp08rPz9flZWVevzxx/Xkk09yyg0AAPArTCg96J3S0/rJ2kOyWi1yuv7+r9lmtcjlMrRwkEPRlw5qwIABysjI0IABA0xMCwAA8HAolB6yt6JKi97cpbb/5Rp6Y1ZvLZk9mW2AAACA37KaHSBQrSg5Kau17ZJos1q1rTKEMgkAAPwahdID7A6nCssrb1vmvhuny1BB+UXZHU4vJQMAAOh4FEoPqLe36D5dspXLuHE9AACAv6JQekBURIjus9rdymq5cT0AAIC/olB6QESoTSlxMbLd9x5Ki1Lj+t6xLyUAAIA/oVB6yNLEoXLdZ93b5TK0NJGTcAAAgH+jUHrIpCE99HrWGFmkOyaVNqtFFkmvZ41R/JAepuQDAADoKOxD6WH7Kqq0ouSUCsovtp6UkxrXV0sTYymTAAAgIFAovaSts7wBAAD8GYUSAAAAbuEeSgAAALiFQgkAAAC3UCgBAADgFgolAAAA3EKhBAAAgFsolAAAAHALhRIAAABuoVACAADALRRKAAAAuIVCCQAAALdQKAEAAOAWCiUAAADcQqEEAACAWyiUAAAAcAuFEgAAAG6hUAIAAMAtFEoAAAC4hUIJAAAAt1AoAQAA4BYKJQAAANxCoQQAAIBbKJQAAABwC4USAAAAbqFQAgAAwC0USgAAALiFQgkAAAC3UCgBAADgFgolAAAA3EKhBAAAgFsolAAAAHALhRIAAABuoVACAADALRRKAAAAuIVCCQAAALdQKAEAAOAWCiUAAADcQqEEAACAWyiUAAAAcAuFEgAAAG6hUAIAAMAtFEoAAAC4hUIJAAAAt1AoAQAA4BYKJQAAANxCoQQAAIBbKJQAAABwC4USAAAAbqFQAgAAwC0USgAAALiFQgkAAAC3UCgBAADgFgolAAAA3EKhBAAAgFsolAAAAHALhRIAAABuoVACAADALRRKAAAAuIVCCQAAALdQKAEAAOCW/x8HXKSr1P8AoQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -108,7 +120,7 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -120,9 +132,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkHklEQVR4nO3da3BUZ37n8d853a1W6y6EjTASiPsY7HHMxcY2kkcXA5bWlUyCHWed2a1JYGYycS3xVLaS2dra2qp941SyFTOZncym2NRm154sVSS7Mx4JBIiLkS8wXMwANuaO1TIIEC1ArVbfztkXHghjS62WaNHd53w/VVNj4Dln/hrk/uk55/k/j2Hbti0AAFzCzHYBAADcTwQfAMBVCD4AgKsQfAAAVyH4AACuQvABAFyF4AMAuArBBwBwFYIPAOAqBB8AwFUIPgCAqxB8AABXIfgAAK5C8AEAXIXgAwC4CsEHAHAVgg8A4CoEHwDAVQg+AICrEHwAAFch+AAArkLwAQBcheADALgKwQcAcBWCDwDgKgQfAMBVCD4AgKsQfAAAV/FmuwAAwP2VSFoKhiKKJiz5vaZqKgPyetwzDyL4AMAFQuGYNh/s0ZbDQV3sD8vnMWUahizbVjxpaVZVsdYuqdHLy2tVUVSQ7XInlWHbtp3tIgAAkyOWsLSx65Q2dZ+XYUjDcWvUsYU+U7YtrVs5WxuaF6jA68xZIMEHAA7VOxDRK5s+UN/NYUVSBN4XBXymppUV6q11KzSjIjCJFWYHwQcADtQ7ENELP+zWjaG4khP4mPcYhsqLfHr71ZWOCz9nzmMBwMViCUuvbPpgwqEnSUnb1o2huH5/0weKJ9OfLeYDgg8AHGZj1yn13RyecOjdlrRtXb4Z1cau0xmqLDfwqBMAHCQUjmnF612KJkafpd089LbCx7oUu3pBxQ8/q6n/6rWU9/R7Te3/frNjVnsy4wMAB9l8sEeGkXqMt6RK5U//rkq++lxa9zSMz+/rFAQfADjIlsPBlC0LklS08GkVLXhKZqAsrXsOxy1tORTMRHk5geADAIdIJC1d7A9Pyr0v9IeVcMgiF4IPABwiGIrIN0lbj/k8poKhyKTc+34j+ADAIaIJS+ZYL/gmyDSMlAtm8gnBBwAO4feasiZpob5l2/I7ZAszNqkGAIeoqQyk1WxuW0np9n9sS3YiJpkeGaZn1GviSUs1lc7YwYXgAwCH8HpMzaoq1pkrgynH3Xj3/+jGu/9459fhE7tV/szvqaL+lVGvqasqdszRRTSwA4CD/HjvWb3RdWrMlobxKPSZ+l7LAn2rYW7G7plNzohvAIAk6XeX1SiZ4bYD25ZeWlab0XtmE8EHAA7x2WefactP/peeLB9UYYYWogR8Hq2vn+OY7cokgg8A8l4kEtHPf/5z/eQnP9Hy5cv1P15bq+ryQnnusbXBYxiqLvNrQ/P8DFWaG3jHBwB5yrZtHTlyRLt27dKiRYvU2NioQODzlZecxzc6gg8A8tClS5fU0dEh27bV1tam6dOnf2nMxE9g96i6zK83OYEdAJBtw8PD2rVrlz766CM1NTXp8ccfl5HikWYsYWlj1ylt6j4vw1DK1Z4BnynLltbXz9GG5vmTtv1ZthF8AJAHbNvW0aNH1dXVpYULF6qpqUlFRUVpXz8wFNPmgz3aciioC/1h+TymTMOQZduKJy3VVRXrxaU1emlZraMWsoyE4AOAHHf58mV1dHQomUyqtbVVM2bMuKf7JZKWgqGIoglLfq+pmsqAY5rT00HwAUCOGh4e1p49e3Ts2DE1NjZqyZIlMk33BNRkIfgAIMfYtq1jx45px44dmj9/vlpaWsb1WBOpEXwAkEOuXLmijo4ORaNRtbW1qaamJtslOQ6bVANADohGo9qzZ49++ctf6mtf+5qWLl3KY81JwowPALLItm2dOHFC27dv19y5c9XS0qLi4uJsl+VoBB8AZMnVq1fV0dGhSCSi1tZWzZw5M9sluQKPOgHgPovFYtq7d68+/PBDNTQ0aPny5TzWvI+Y8QHAfWLbtj766CNt375ddXV1eu6551RSUpLtslyH4AOAUWSy0fvatWvaunWrBgcH1draqlmzZmW4WqSLR50AcJdQ+Fdbex0O6uIIW3vNqirW2iU1enl5elt7xWIx7du3T4cOHVJ9fb2eeOIJeTye+/CVYDTM+ABA49vMudBnyraldStna0PzAhWMcOirbds6efKkOjs7NXPmTD333HMqLS2dzC8BaSL4ALjexI/vMTWtrFBvfeH4nv7+fm3btk0DAwNqbW3V7NmzJ6NsTBDBB8DVMnlg64PFXu3bt08HDx7UypUr9eSTT/JYMwcRfABcK5awtOqNveq5HplQ6N3mMQxVl3r1O4GPNbNmhlatWqWysrIMVopMYnELANfa2HVKfTeH7yn0JClp2+q7GdX1OU/qe2tXZKg6TBZmfABcKRSOacXrXYomRn+nd+3tv9LwhaOy4sPyFFeqbMXvqPSx1aOO93tN7f9+s+MPcs13zPgAuNLmgz0yjNRjyla8qKrnN8jw+hTv79Hln3xfBdPmyl89b8TxhvH5fb/dMHcSKkamsEcOAFfacjiYsmVBkgoemCXD6/vVrwwZMpQIXRp1/HDc0pZDwQxWicnAjA+A6ySSli72h9Ma29/5I4WPdclORFUwba4Cc5elHH+hP6xE0prwDi+YfAQfANcJhiLyeUzFk8kxx1at/q6mPPdtRXtPavjTYzI8vpTjfR5TwVBEdVM5WihX8SMJANeJJiyZY73gu4thelRYu1jJW9d060hHyrGmYaRcMIPsI/gAuI7fa8qayIJ2y0r5jk+SLNuWf4QtzJA7+NsB4Do1lQHFk6lnZcnwgMIf7ZUVi8i2koqcO6Twx3tVWPcbKa+LJy3VVAZSjkF28Y4PgOt4PaZmVRXrzJXB0QcZhm4d2ar+zh9JtiVv+YOqbF6vovlPprx3XVUxC1tyHMEHwJXWLqnRG12nRm1p8BSVq/qV18d1z0KfqReX1mSiPEwifiwB4Er1D5lKxMde1Tketi29tKw2o/dE5hF8AFwlHA7rpz/9qTrf/r/6+uJyBXyZ+RgM+DxaXz+H7cryAHt1AnAFy7J0+PBh7d69W48++qgaGxtleHwZO51h5pSAtr/2rHy838t5BB8Ax/vss8/U3t4uj8ejtrY2TZs27c6fZfI8vrsPo0XuIvgAOFYkEtGuXbv08ccfq6WlRY899piMERrXJ34Cu0fVZX69+YUT2JHbCD4AjmPbto4ePaqdO3fq4YcfVlNTkwKB1MEUS1ja2HVKm7rPyzCUcgPrgM+UZUvr6+doQ/N8Hm/mGYIPgKP09fWpvb1dyWRSbW1teuihh8Z1/cBQTJsP9mjLoaAu9Ifl85gyDUOWbSuetFRXVawXl9bopWW1LGTJUwQfAEeIRqPavXu3jh07psbGRi1ZskSmeW8zsUTSUjAUUTRhye81VVMZoDndAQg+AHnNtm0dP35cO3bs0Ny5c9XS0qLiYk5GwOgIPgB56+rVq9q6dauGhobU1tam2lqaxzE2tiwDkHdisZjeeecdHT58WA0NDXriiSfu+bEm3IMZH4C8Ydu2Tp48qc7OTs2cOVPPPfecSktLs10W8gzBByAvXL9+XVu3btXAwIBaW1s1e/bsbJeEPMWjTgA5LR6P691339WBAwf0zDPPaMWKFfJ4PNkuC3mMGR+AnHX69Glt3bpV1dXVWr16tcrLy7NdEhyAGR+AnDMwMKDOzk5duXJFra2tmjdvXrZLgoMw4wOQM5LJpN577z29//77evLJJ/XMM8/I6+Xnc2QWwQcgJ5w7d04dHR2qqqrSmjVrVFlZme2S4FD8KAUgq27duqXOzk4Fg0E9//zzWrhwYbZLgsMx4wOQFclkUgcOHNC+ffu0dOlSNTQ0yOfzZbssuADBB+C++/TTT9Xe3q6SkhK1traqqqoq2yXBRXjUCeC+CYfD2rFjh86dO6fVq1dr0aJFIx4MC0wmZnwAJp1lWTp06JD27Nmjxx57TM8++6z8fn+2y4JLEXwAviST59D19vaqvb1dPp9PbW1tevDBBzNcLTA+POoEIEkKhX918vjhoC6OcPL4rKpirV1So5eXp3fy+NDQkLq6unTq1Cm1tLToq1/9Ko81kROY8QEuF0tY2th1Spu6z8swpOG4NerYQp8p25bWrZytDc0LVOD98izQtm0dOXJEu3bt0qJFi9TU1KTCwsLJ/BKAcSH4ABfrHYjolU0fqO/msCIpAu+LAj5T08oK9da6FZpREbjz+5cvX1Z7e7ts21ZbW5umT58+GWUD94TgA1yqdyCiF37YrRtDcSUn8DHgMQyVF/n09qsrVVVoaPfu3Tpx4oSampr0+OOP81gTOYvgA1wolrC06o296rkemVDo3eYxDE0r9ui3/Mf18MIFam5uVlFRUQYrBTKPxS2AC23sOqW+m8P3FHqSlLRtXQnHFF7YoBdeWJ6h6oDJxYwPcJlQOKYVr3cpmhj5nZ6diKt/+480fOFDWcOD8lZUq/LZf6vA3GWj3tPvNbX/+81prfYEsm1ijTkA8tbmgz1K9frNtpLylk5V9b9+XbWvbVZFwzd09ad/ocRA36jXGMbn9wXyAcEHuMyWw8GULQtmQaEq6l+Rt2KaDMNU0bwn5C2fpujlM6NeMxy3tOVQcDLKBTKO4ANcJJG0dLE/PK5rkuGQ4td7VfDAzJTjLvSHlUim3xIBZAvBB7hIMBSRbxxbj9nJhK797K9U8mizfFW1Kcf6PKaCoci9lghMOoIPcJFowpKZZn+dbVu69vP/Knm8mvLcd8YcbxrGqAtmgFxC8AEu4veastJYyG3btvo7fqBkeEAPfP0/yPCM3flk2bb8I2xhBuQavksBF6mpDCiexnu4653/TfH+Hj249j/J9KV3fFA8aammMjD2QCDLaGAHXMTrMTWrqlhnrgyOOiZx44oGP9wmeXwK/s037vz+lDV/rJLFjaNeV1dVPOGji4D7ieADXGbtkhq90XVq1JYGb/mDmvXnPx/XPQt9pl5cWpOJ8oBJx49ngMs0zPAokUhm9J62Lb20LPWqTyBXEHyASwwNDelnP/uZtv3sn/X1h8sU8GXmX/+Az6P19XPYrgx5g706AYe7+2DYxYsXq7GxUaa3IGOnM8ycEtD2154dV38gkE0EH+Bgtw+GlaTW1tZfOxg2k+fx3X0YLZDrCD7AgaLRqHbv3q3jx4+nPBh24iewe1Rd5tebXziBHcgHBB/gILZt68SJE9q+fbvmzZunlpaWMQ+GjSUsbew6pU3d52UYSrmBdcBnyrKl9fVztKF5Po83kZcIPsAhrl27po6ODg0NDamtrU21teNbZTkwFNPmgz3aciioC/1h+TymTMOQZduKJy3VVRXrxaU1emlZLQtZkNcIPiDPxeNxvfPOOzp06JAaGhr0xBNPyDTvbSaWSFoKhiKKJiz5vaZqKgM0p8MxCD4gj33yySfatm2bampqtGrVKpWWlma7JCDnEXxAHhoYGNDWrVvV39+v1tZWzZkzJ9slAXmD4APySCKR0Pvvv6/3339fTz31lJ566il5vew8CIwHwQfkiXPnzqmjo0NVVVV6/vnnVVFRke2SgLzEj4pAjrt165a2b9+uYDCoNWvWaOHChdkuCchrzPiAHGVZlg4cOKB9+/ZpyZIlamhokM/ny3ZZQN4j+IAc1NPTo/b2dhUVFam1tVVTp07NdkmAY/CoE8ghQ0ND2rlzp86cOaNVq1Zp8eLFI241BmDimPEBOeDuExQeeeQRfe1rX1NhYWG2ywIcieADsuzSpUvq6OiQJLW1tam6ujrLFQHOxqNOIEuGh4e1e/dunThxIuUJCgAyixkfcJ/Ztq3jx49rx44daZ+gACBzCD7gPrp69ao6Ojo0PDys1tbWcZ+gAODe8agTuA9isZj27dunw4cPq6GhQcuXL7/nExQATAwzPmCSnTx5Utu2bVNtbS0nKAA5gOADJkkoFNK2bdvU39+vtrY2zZ49O9slARDBB2RcIpHQe++9pw8++EBPPfWUnn76aXk8nmyXBeBXCD64XiZPGz979qy2bt2qqVOnas2aNZygAOQgFrfAlULhmDYf7NGWw0Fd7A/L5zFlGoYs21Y8aWlWVbHWLqnRy8trVVFUMOb9bt26pc7OTvX29nKCApDjmPHBVWIJSxu7TmlT93kZhjQct0YdW+gzZdvSupWztaF5gQq8X54FWpal/fv3q7u7W0uXLlV9fT0nKAA5juCDa/QORPTKpg/Ud3NYkRSB90UBn6lpZYV6a90KzagI3Pn9Tz/9VB0dHZygAOQZgg+u0DsQ0Qs/7NaNobiSE/iW9xiGyot8evvVlarwWdq5c6fOnj3LCQpAHiL44HixhKVVb+xVz/XIhELvNo9h6MFiU7/pO6bf+OqjamxslN/vz2ClAO4HFrfA8TZ2nVLfzeF7Cj1JStq2roXjGl7WpDVrlmaoOgD3G3smwdFC4Zg2dZ9P651e/HqvLv7l13Xt7b8afYxt6h+PXNHAUCyTZQK4jwg+ONrmgz1K9/Xb9e0/ln/6/DHHGcbn9wWQnwg+ONqWw8GULQu3hT/aK7OwWIWzHhtz7HDc0pZDwUyUByALCD44ViJp6WJ/eMxxVnRIA/veUmXTurTvfaE/rEQy/ZYIALmD4INjBUMR+dLYemzgnf+tksdWyVuWfh+ez2MqGIrcS3kAsoTgg2NFE5bMMV7wxfrOafjiUZUt/81x3ds0DEUTzPiAfEQ7AxzL7zVljdHCMPzpMSVu9Cn4o29KkuzYsGRbunRtg6Z/c+Oo11m2Lf8IW5gByH0EHxyrpjKg+Bjv4Up+Y7WKH2648+ubB/5ZiRt9mrL6j1NeF09aqqkMpBwDIDcRfHAsr8fUrKpinbkyOOoY01co+Qrv/NrwFcrwFshTVJ7y3nVVxRM+ughAdvFvLhxt7ZIaFfrS/zavqH9FU1/405RjCn2mXlxac6+lAcgSgg+O1jDDo0QimdF72rb00rLajN4TwP1D8MGRIpGI3n77bW396T/p6w+XKTCOWV8qAZ9H6+vnpHU4LYDcxOkMcBTbtnX06FHt3LlTixYtUlNTk0xvQcZOZ5g5JaDtrz2bVn8ggNxE8MEx+vr61NHRoUQioba2Nj300EN3/iyT5/HdfRgtgPxD8CHvxWIx7dmzR0ePHlVjY6OWLFki0/zyjGziJ7B7VF3m15tfOIEdQH4i+JC3bNvWxx9/rM7OTs2ePVstLS0qKSlJeU0sYWlj1ylt6j4vw1DKDawDPlOWLa2vn6MNzfN5vAk4BMGHvHT9+nVt3bpVN27cUGtrq+rq6sZ1/cBQTJsP9mjLoaAu9Ifl85gyDUOWbSuetFRXVawXl9bopWW1LGQBHIbgQ15JJBJ69913tX//fj3zzDNasWKFPB7Pvd0zaSkYiiiasOT3mqqpDNCcDjgYwYe8cfbsWXV0dOjBBx/UmjVrVF6eencVABgJW5Yh5926dUudnZ3q7e3V888/rwULFmS7JAB5jBkfcpZlWTpw4IDeeecdLVu2TPX19fL5fNkuC0CeI/iQk3p6etTe3q6ioiK1trZq6tT0D4kFgFR41ImcMjQ0pJ07d+rMmTNatWqVFi9eLGOMw2QBYDyY8SEn2LatDz/8UF1dXVq8eLEaGxtVWFg49oUAME4EH7Kur69P7e3tsixLbW1tmj59erZLAuBgPOpE1kSjUe3Zs0e//OUv1dTUpCVLlvBYE8CkY8aH++7urcbmzJmjlpYWFRcXZ7ssAC5B8OG+un79ujo6OnTr1i21trZq1qxZ2S4JgMs4+lEnW1HljkQioe7ubh04cEArV67Uk08+ec9bjQHARDhuxhcK/2rz4cNBXRxh8+FZVcVau6RGLy9n8+H75cyZM+ro6FB1dbVWr17NVmMAssoxwTee42YKfaZsW1q3crY2NC9QgZdZ4GS4efOmOjs7denSJT3//POaP39+tksCAGcE38QPGDU1raxQb3HAaEZZlqX9+/dr3759Wr58uVauXMlWYwByRt4HX+9ARC/8sFs3huJKTuBL8RiGyot8evvVlYRfBnz66afq6OhQcXGxWltbVVVVle2SAODX5HXwxRKWVr2xVz3XIxMKvds8hqGZUwLa/tqznLI9QUNDQ9qxY4fOnj2r1atXa9GiRfTkAchJeR18f9l5Un//7vkRH29++l/X/tqv7URMpY+3asqq74x4r4DPoz9cOVt/umrhpNTqVLZt68iRI9q1a5ceeeQRNTY2yu/3Z7ssABhV3gZfKBzTite7FE2M/U7PikUU/Jtv6MEX/7MKZz4y6ji/19T+7zez2jNNly9fVnt7uySpra1N1dXVWa4IAMaWt318mw/2KN0naUOfvCdPUbn8tYtTjjOMz+/77Ya5Gagwt2SypzEajWr37t06fvy4mpqa9Pjjj/NYE0DeyNvg23I4mLJl4W6Dx7pU/EjTmB/Ow3FLWw4FHRN8me5ptG1bH330kTo7OzV37lx997vfVVFR0X34SgAgc/Iy+BJJSxf7w+mNvXFF0Z7jqmr9d2mNv9AfViJp5fUOL6P1NMaTyV8bd+bKoN7oOqW/3nlqzJ7G/v5+dXR0aHBwUGvXrtXMmTMn/esAgMmQl8EXDEXk85hf+iAfyeDxXfLXLJKvIr33Tz6PqWAoorqp+blp8t09jem8/7wdin//7nm1H7v0pZ7GeDyu7u5u/eIXv1B9fb2eeOIJthoDkNfycloTTVgy03ynFD6+SyWPNKV9b9tK6uTpM+rr61M0Gp1oiVlxu6ex53pkXI38khSJW+q5/vn1vQMRSdLp06f1t3/7t7p27Zq+853v6KmnniL0AOS9vJzx+b2mrDQWow4HP1ZysF9FX1mZ9r2TlnT65Mc6d+RdhUIhFRQUqKKiQpWVlXf++/Y/l5eX50wQxBKWXtn0wYQb+SUpadu6MRTX7/3de/qjWf262ndZra2tmjdvXoarBYDsycvgq6kMKJ4ce0YTPt6logVPy/SnvwDDNgz90b95SV6PKdu2FQ6HFQqFFAqFNDAwoGAwqOPHjysUCmlwcFAlJSUjhmJlZaWKi4vv22rHjV2n1Hdz+J4a+aXPw++zUFjvVVbor7/72/J68/JbBABGlZefal6PqVlVxTpzZTDluKo1r4773nVVxXcWthiGoZKSEpWUlKi2tvZLY5PJpG7cuHEnFEOhkD755JM7QZlIJEadLVZWVqqgIDP9gqFwTJu6z6d8p3f5rT9X9LNPZJifz1A9pVWa8a3/PuLYhDza/mlSgzFLFXn5HQIAo8vbj7W1S2r0RteptFsa0lHoM/Xi0pq0x3s8Hk2ZMkVTpkwZ8c+j0eivheL169d17ty5O79XUFDwa2F4dziWlZWl/Rg13Z7GKau+o9LHVqd1Tyf3NAJwt7wNvpeX1+qvd57K6D1tW3pp2ZdndhPl9/tVXV094o4mtm1rcHDwTiiGQiEFg0EdO3ZMAwMDGhwcVGlp6YihWFlZqaKiojuPUcfT05gup/U0AsBteRt8FUUFWrdy9qh7dY7X7b0679d2ZYZhqLS0VKWlpWM+Rr09Qzx58uSdoEwkEqqsrFRpeYXOXy1L639zYM8/aGDPP8g3ZYYqGr6hwllfTTneCT2NAPBFeRt8krSheYHaj13KyOkM1WV+bWjOnYNSx3qMOjw8rIGBAZ24eEXej3o0VktjZeM35auqleHxKfzxO7ryT/9F07/5A/kqp496Tb73NALASPL6R/kCr6m31q1QeZFPngmunrx9Ht+b61bk1ZFEhYWFqq6uVs2s2fKlsfLS/9BCmf4iGV6fSh5tln/Gw4qcPZjyGtMw0mqCB4B8kj+f9KOYURHQ26+uVO2UgAK+8X05AZ9HM6cE8voQ2nR7Gr/EMCSlvs6ybflH2cIMAPKVIz7VZlQEtP1PntUfPDNbfq+pwjECMOAz5fea+sOVs7X9tWfzNvSk9HoareFBRc4dkp2IybaSGjyxW9Ge4wrMWZryunjSUk1l/v5/AwAjyet3fHcr8Jr696u/ovX1cz4/keBQUBdGOJGgrqpYLy6t0UvL0juRINel09NoW0kNvPOm4teDkmHKV1WjB377P8o3ZUbKe9/d0wgATpG3B9GmI5Nn0OWyH+89Oyk9jd9rWaBv0c4AwGGclwJ38XpM1U0t1sLqUtVNde7s5eXltcr0jy+Z7mkEgFzhzCRwmds9jeNd3DOagM+j9fVzHPEoGAC+iOBziA3NCzStrHDCbR235WJPIwBkEsHnEG7uaQSA8XD04hY3uvsE9vFs5RbweVRd5tebXziBHQCchuBzoFjC0sauU9rUfV62ZSmWIv8CPlOWLa2vn6MNzfOZ6QFwPILPwQaGYvqzv/upPh4u16XBhON7GgEgHY5pYMeXFXmlusgZ/eB735PH63NFTyMAjIXgc7ALFy7ooYcekt/vlyROWQAAsarT0U6fPq158+ZluwwAyCkEn0PZtq0zZ85o/nz68QDgbgSfQ/X398uyLD3wwAPZLgUAcgrB51C3H3Ma97iTCwA4DcHnUKdPn+YxJwCMgOBzoFgspt7eXs2ePTvbpQBAziH4HOjcuXOaMWPGnTYGAMC/IPgciNWcADA6gs9hbNumfw8AUiD4HObq1asyTVNTp07NdikAkJMIPoehjQEAUiP4HIb3ewCQGsHnINFoVJ999pnq6uqyXQoA5CyCz0HOnTun2tpaFRRwth4AjIbgcxBWcwLA2Ag+h+A0BgBID8HnEFeuXJHX69WUKVOyXQoA5DSCzyFoYwCA9BB8DsFjTgBID8HnAMPDw7p06RJtDACQBoLPAc6ePauZM2fK5/NluxQAyHkEnwOcOXOGNgYASBPBl+doYwCA8SH48tzly5fl9/tpYwCANBF8eY7dWgBgfAi+PMdjTgAYH4Ivj0UiEfX19WnWrFnZLgUA8gbBl8fOnj2ruro6eb3ebJcCAHmD4MtjtDEAwPgRfHnqdhsDwQcA40Pw5alLly4pEAiosrIy26UAQF4h+PIUbQwAMDEEX56ijQEAJobgy0NDQ0O6evWqZs6cme1SACDvsA4+DySSloKhiKIJS36vqVDwDG0MADBBfHLmqFA4ps0He7TlcFAX+8PyeUyZhiHLthWNJzS9pEIDe8/q5eW1qigqyHa5AJA3DNu27WwXgX8RS1ja2HVKm7rPyzCk4bg16thCnynbltatnK0NzQtU4OXJNQCMheDLIb0DEb2y6QP13RxWJEXgfVHAZ2paWaHeWrdCMyoCk1ghAOQ/gi9H9A5E9MIPu3VjKK7kBP5KPIah8iKf3n51JeEHACnwbCwHxBKWXtn0wYRDT5KStq0bQ3H9/qYPFE+mP1sEALch+HLAxq5T6rs5POHQuy1p27p8M6qNXaczVBkAOA+POrMsFI5pxetdiiZSz9LCH+3VwLv/qOTNq/IUV6qq7U9UWPvIiGP9XlP7v9/Mak8AGAHtDFm2+WCPDCP1mMj5Iwrt+Z964Df/TAUPLVBy8HrK8Ybx+X2/3TA3g5UCgDPwqDPLthwOpmxZkKQb3W+p/Jnfk3/GV2QYprylU+UtnTrq+OG4pS2HgpkuFQAcgRlfFiWSli72h1OOsa2kopfOKDDvSfX+eL3sZExF81eoovEPZPr8o153oT+sRNKS18PPNgBwNz4VsygYisg3RjAlwwOSldDQJ+9q2u//haZ/8weK9Z3Tjfc2p7zO5zEVDEUyWC0AOAPBl0XRhCVzjBd8xq9mdaVLX5C3ZIo8ReUqXf5bipw9mPI60zDGXDADAG5E8GWR32vKGmNRraewRJ4vvM8zxloNI8mybfnZwgwAvoRPxiyqqQyk1Wxe8miLbh36uZLhASWHB3XzF/9PRfOWp7wmnrRUU8kOLgDwRSxuySKvx9SsqmKduTKYclz5My8rGbmp3r/7tgyvT8VfqVf507+b8pq6qmIWtgDACGhgz7If7z2rN7pOjdnSMB6FPlPfa1mgb9HHBwBfwpQgy15eXqtM/+hh29JLy2oze1MAcAiCL8sqigq0buVsBXyZ+asI+DxaXz+H7coAYBQEXw7Y0LxA08oK5UljtWYqHsNQdZlfG5rnZ6gyAHAegi8HFHhNvbVuhcqLfBMOv9vn8b25bsWYTfEA4GYsbskhEz+B3aPqMr/e5AR2ABgTwZdjYglLG7tOaVP3eRmGUq72DPhMWba0vn6ONjTPZ6YHAGkg+HLUwFBMmw/2aMuhoC70h+XzmDINQ5ZtK560VFdVrBeX1uilZbUsZAGAcSD48kAiaSkYiiiasOT3mqqpDNCcDgATRPABAFyFaQMAwFUIPgCAqxB8AABXIfgAAK5C8AEAXIXgAwC4CsEHAHAVgg8A4CoEHwDAVQg+AICrEHwAAFch+AAArkLwAQBcheADALgKwQcAcBWCDwDgKgQfAMBVCD4AgKsQfAAAVyH4AACuQvABAFyF4AMAuArBBwBwFYIPAOAqBB8AwFUIPgCAqxB8AABXIfgAAK5C8AEAXOX/A/hyc3EyYnnPAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3BV953//9e96gghIUCiGAyiSZgiQscY4SKKBViAaBvb64LNpP4ms9nMZHdSvN7d7EwmO7ub7G6CideJSzBCAmEMmF6EAYPBYKxCkQSYIiTUUb/3/P4g3C9YQgjdcm55PmaYuaCjqxeJLb18zvvz+VgMwzAEAAAAdJHV7AAAAADwbRRKAAAAOIVCCQAAAKdQKAEAAOAUCiUAAACcQqEEAACAUyiUAAAAcAqFEgAAAE6hUAIAAMApFEoAAAA4hUIJAAAAp1AoAQAA4BQKJQAAAJxCoQQAAIBTKJQAAABwCoUSAAAATqFQAgAAwCkUSgAAADiFQgkAAACnUCgBAADgFAolAAAAnEKhBAAAgFMolAAAAHAKhRIAAABOoVACAADAKRRKAAAAOIVCCQAAAKdQKAEAAOAUCiUAAACcQqEEAACAUyiUAAAAcAqFEgAAAE6hUAIAAMApFEoAAAA4hUIJAAAAp1AoAQAA4BQKJQAAAJxCoQQAAIBTKJQAAABwCoUSAAAATqFQAgAAwCkUSgAAADiFQgkAANABwzD029/+Vt27d5fFYtG+ffvMjuR1gs0OAAAA4K2Kior0yiuvaP/+/WZH8WrcoQQAAPiGO3clx44dq5MnT2rq1KlmR/JqFEoAAIBveOONN/TDH/5QM2bM0JkzZzRnzhyzI3k1HnkDAAC0Y+3atXr11VfNjuETKJQAAADf8Itf/EIWi8XsGD6DR94AAADfQJl8OBRKAAAAOIVCCQAAAKdQKAEAAOAUCiUAAACcQqEEAACAUyiUAAAAcAqFEgAAAE6hUAIAAMApFEoAAAA4hUIJAAAAp1AoAQAA4BQKJQAAAJwSbHYAAAAAb/Tee+85Xp8+fdrxeufOnfr6668lSfHx8UpNTfV4Nm9jMQzDMDsEAACAt7FYLA+8JiUlRfv27XN/GC/HHUoAAIB2cM+t85ihBAAAgFMolAAAAA/Q2GJTWW2TGltsZkfxSjzyBgAAuI9jJRVam1uknXmlshuS1SKljorXazMSNHFwrNnxvAaLcgAAANrx7pGL+nnOGVmtFtns/68uBVktstsNvZk+Ws9PedTEhN6DQgkAAPANx0oqtOwPh9VRSbJIylw9jTuVYoYSAACgjbW5RbJaO942yGq1aG1usYcSeTcKJQAAwF0aW2zamVd6z2Pu9tjshnbkXWehjiiUAAAA96htbNUDuqSD3bh9faCjUAIAANwlKjxYD3ja7WC13L4+0FEoAQAA7hIeEqTUUfEKekCrDLJaNHtUX4WHBHkomfeiUAIAAHzDqhkJD5yhtNsNrZoxxEOJvBuFEgAA4Bv6qEbTQy5JUps7lUFWiyyS3kwfzZZBf0WhBAAAuEtVVZUyMzM1d1ik1r8+ValJ8Y6ZSqtFSk2KV+bqaWxqfhc2NgcAAPir5uZmvf3222pqatJrr72mbt26Sbq9lVBtY6uiwoOZmWwHy5IAAAAkGYahnJwcVVRU6NVXX3WUSen2Qh2K5P3xyBsAAEBSbm6u8vLytGjRIsXHx5sdx6dQKAEAQMArLCzUnj17lJKSoqSkJLPj+BwKJQAACGhlZWXKzs5WYmKiUlJSzI7jkyiUAAAgYDU0NGjdunWKiYlRenq6LJZOHpGDe1AoAQBAQLLb7crKylJDQ4NWrFihsLAwsyP5LAolAAAISLt371ZRUZEyMjLUs2dPs+P4NAolAAAIOKdPn9ann36q2bNnKyEhwew4Po9CCQAAAsrVq1f10UcfKTk5WVOmTDE7jl+gUAIAgIBRV1enDz/8UPHx8UpLS2MRjotQKAEAQEBobW3V+vXrZbfbtXz5cgUHc2Cgq1AoAQCA3zMMQ1u3btXVq1e1fPlyRUVFmR3Jr1AoAQCA3zt27JhOnjyp+fPn65FHHjE7jt+hUAIAAL9WUlKi7du3a8qUKUpOTjY7jl+iUAIAAL9VVVWl9evXa/DgwZo9e7bZcfwWhRIAAPil5uZmrVu3TuHh4crIyJDVSu1xF/6XBQAAfscwDOXk5KiiokIrVqxQt27dzI7k1yiUAADA7xw8eFB5eXlatGiR4uLizI7j9yiUAADArxQWFmrv3r1KSUlRUlKS2XECAoUSAAD4jbKyMmVnZyspKUkpKSlmxwkYFEoAAOAXGhoatG7dOsXExCg9PZ1jFT2IQgkAAHye3W5XVlaWGhoatGLFCoWGhpodKaBQKAEAgM/btWuXioqKlJGRoZ49e5odJ+BQKAEAgE87ffq0Dh8+rDlz5ighIcHsOAGJQgkAAHzW1atXtXnzZiUnJ2vy5MlmxwlYFEoAAOCT6urqtG7dOvXr109paWkswjERhRIAAPic1tZWffjhh5KkZcuWKTg42OREgY1CCQAAfIphGNq6dauuXbum5cuXKyoqyuxIAY9CCQAAfMqxY8d08uRJLViwQAMGDDA7DkShBAAATqqqqtL777+vV155RePHj1dMTIyCg4MVExOjSZMm6R/+4R90+fJll3yt4uJibd++XVOnTtW4ceNc8p5wnsUwDMPsEAAAwDd9+umneuqpp9TU1CSLxaL09HRNnTpVPXr00Llz5/TnP/9Z5eXlioyM1J/+9CctWbKky1+rsrJSb731lvr166dvf/vbslq5L+YtKJQAAKDLtm/frnnz5slqterjjz/W3Llz7/l4RUWFZs6cqa+++kqhoaE6deqUEhMTH/rrNDc36+2331Zzc7Nee+01RUREuOqvABeg2gMAAKe99NJLbcqkJMXGxurXv/61pNul8K233nro9zYMQ5s2bVJlZaVWrFhBmfRCFEoAANBl0dHRmjBhQoePsidOnOh4nZeX99Bf4+DBg8rPz9eiRYsUFxfXpZxwLzZtAgAAXTZt2jQdP368w2siIyMdrx/27mJBQYH27t2rWbNmdelROTyDO5QAAMCtPv/8c8frJ598stOfd+PGDW3cuFFJSUmaOXOmO6LBRViUAwAA3Ka5uVmpqak6cOCAxowZo6NHj3bqLmVDQ4PeeusthYSE6NVXX1VoaKgH0qKruEMJAABcpqmpSaWlpcrLy9Pbb7+tSZMm6cCBA1q2bJkOHjzYqTJpt9u1YcMGNTY2asWKFZRJH8AMJQAAcJm//OUvevnllx2/HzRokD744AOtWLFCFoulU++xa9cuFRcX64UXXlDPnj3dFRUuxCNvAADgMteuXdNXX32lW7du6ezZs3rvvfd0+vRpjRgxQr/97W81e/bsDj//1KlT2rRpk+bOnaspU6Z4KDWcRaEEAABuY7fb9aMf/Uj/9V//JavVqvfff18rVqxo99orV67o//7v/zRmzBgtXLiw03c0YT4KJQAAcCu73a6xY8fqq6++UlRUlEpKShQbG3vPNbW1tXrrrbcUHR2tv/3bv1VwMFN5voRFOQAAwK2sVqv+5m/+RtLt4rhhw4Z7Pt7a2qr169dLkpYtW0aZ9EEUSgAA4HYjR450vD5z5ozjtWEY+vjjj3Xt2jUtX75cUVFRZsSDkyiUAACgy7Zt26b9+/c/8Lq77zq2trY6Xn/22Wf64osvtGDBAg0YMMAtGeF+3FMGAABd9p3vfEfdu3e/565je86dO+d4PWjQIElScXGxPvnkE02dOlXjxo1za064F3coAQCAU/Lz81VSUnLfj9vtdr377ruO36elpamyslKZmZkaMmSIUlNTPZAS7kShBAAATrHb7XrhhRd0/fr1Nh+z2Wz63ve+p9OnT0uSXn75ZY0cOVLr1q1TeHi4MjIyZLVSR3wdj7wBAECXjRs3ThcvXlRubq6GDh2qlStXauTIkerVq5dKSkr04Ycf6uzZs5Jul8nf//732rRpk6qqqvTqq6926ihGeD/2oQQAAE45c+aMNm7cqAMHDqiwsFDl5eVqaWlRVFSUEhISNH36dL344ouaOHGi9u/fr3379mn58uVKTEw0OzpchEIJAAA8oqCgQB9++KFmzZqllJQUs+PAhRhaAAAAbnfjxg1t3LhRSUlJmjlzptlx4GLMUAIAAJdrbLGptrFVUeHBMlqbtW7dOsXExCg9PZ0zuv0QhRIAALjMsZIKrc0t0s68UtkNyWqRRnZvVqIs+vl3Vig0NNTsiHADCiUAAHCJd49c1M9zzshqtcj+1xUadkMqqA1WvhI04WyNnp/S09yQcAsW5QAAAKcdK6nQsj8cVkelwiIpc/U0TRwc66lY8BAW5QAAAKetzS2S1drxbKTVatHa3GIPJYInUSgBAIBTGlts2plXKpu944eeNruhHXnX1dhi81AyeAqFEgAAOKW2sVUP6JIOduP29fAvFEoAAOCUqPBgPeBpt4PVcvt6+BcKJQAAcEp4SJBSR8Ur6AGlMshq0exRfRUeEuSZYPAYCiUAAHDa4lExsj1g4xi73dCqGUM8lAieRKEEAABOaWxs1NlD2zQntlIW3b4Tebcgq0UWSW+mj2bLID/FEAMAAOgywzC0ceNG1dfX61evfVuv1Uhrc4u1I++646Sc1KR4rZoxhDLpxyiUAACgyw4ePKizZ89q5cqVio2NVWysNHFw7D1neTMz6f8olAAAoEvOnz+vvXv3KiUlRSNGjLjnY+EhQRTJAMIMJQAAeGiVlZXKysrS8OHDlZKSYnYcmIxCCQAAHkpLS4vWr1+viIgILVq0SBZLJzehhN+iUAIAgE4zDEMff/yxysvLtWzZMkVERJgdCV6AQgkAADrt+PHjOnXqlBYsWKC+ffuaHQdegkIJAAA65fLly9q+fbsmTZqksWPHmh0HXoRCCQAAHqiurk6ZmZkaMGCA5syZY3YceBkKJQAA6JDdbteGDRtkGIaWLl2qoCC2A8K9KJQAAKBDu3bt0uXLl5WRkaGoqCiz48ALUSgBAMB9ffXVVzp8+LBSU1P16KOPmh0HXopCCQAA2nXjxg3l5ORozJgxmjJlitlx4MUolAAAoI3GxkatX79ePXv21Pz589m8HB2iUAIAgHsYhqGcnBzV1dVp+fLlCg0NNTsSvByFEgAA3CM3N1cFBQVatGiRYmNjzY4DH0ChBAAADhcuXNDevXv1xBNPaOTIkWbHgY+gUAIAAElSVVWVsrKylJCQoFmzZpkdBz6EQgkAANTa2qr169crLCxMS5YskdVKRUDn8U8LAAABzjAMffzxxyorK9OyZcsUERFhdiT4GAolAAAB7sSJE/riiy+Ulpamfv36mR0HPohCCQBAALty5Yq2bdumiRMnKjk52ew48FEUSgAAAtStW7e0fv169evXT3PnzjU7DnwYhRIAgABkt9u1YcMG2Ww2LV26VEFBQWZHgg+jUAIAEIB2796tixcvKiMjQz169DA7DnwchRIAgACTl5enTz/9VKmpqRo8eLDZceAHKJQAAASQsrIy5eTk6LHHHtPUqVPNjgM/QaEEACBANDU16cMPP1R0dLQWLlwoi8VidiT4CQolAAABwDAM5eTkqK6uTsuXL1doaKjZkeBHKJQAAASAQ4cOKT8/X+np6erVq5fZceBnKJQAAPi5oqIi7dmzRzNmzFBiYqLZceCHKJQAAPix6upqZWVlKSEhQU8++aTZceCnKJQAAPip1tZWrV+/XiEhIVq8eLGsVn7swz34JwsAAD+1bds2lZaWavny5erWrZvZceDHKJQAAPihEydO6MSJE0pLS1O/fv3MjgM/R6EEAMDPXL16VVu3btWECRM0fvx4s+MgAFAoAQDwI/X19Vq/fr369u2ruXPnmh0HAYJCCQCAn7Db7crKylJLS4uWLl2q4OBgsyMhQFAoAQDwE3v27FFxcbEyMjIUHR1tdhwEEAolAAB+ID8/X4cOHdLTTz+tIUOGmB0HAYZCCQCAjysvL9emTZs0atQoTZ8+3ew4CEAUSgAAfFhTU5M+/PBD9ejRQwsXLpTFYjE7EgIQhRIAAB9lGIY2b96smpoaLV++XGFhYWZHQoCiUAIA4GKlpaX63e9+p4ULF2rgwIEKCwtT9+7dNXz4cL344ovau3evS77O4cOHlZeXp/T0dPXu3dsl7wl0hcUwDMPsEAAA+IvVq1frnXfeUXNzswYOHKjly5dr2LBhamxs1LZt2/TJJ59IklasWKF33nmny3cVi4uL9e6772r69Ol65plnXPlXAB4ahRIAABcKDw9XU1OTFixYoHXr1rU5Q/v3v/+9vvOd70iSVq5cqQ8++OChv0Z1dbXWrFmj+Ph4Pf/887JaeeAIc1EoAQBwofDwcAUHB6u4uFh9+vRp95p58+Zp+/btkqQjR45oypQpnX7/1tZWvfPOO6qtrdXrr7+uyMhIl+QGnMF/0gAA4GLTpk27b5mUpCVLljheb968+aHee/v27bp+/bqWLVtGmYTX4EwmAABcaOPGjRo4cGCH1wwaNMjx+tKlS51+75MnT+rzzz/XggULNGDAgC5nBFyNQgkAgAvNmzfvgddUV1c7Xnf2LuPVq1f18ccfa/z48frWt77V5XyAO/DIGwAADysuLna8fuKJJx54fX19vdavX6/4+Hg9++yz7owGdAmFEgAAD9u0aZMkKT4+XosXL+7wWrvdrqysLLW0tGjZsmUKDubhIrwPhRIAAA86c+aMDh8+LEl68803FRER0eH1e/fuVXFxsZYsWaLo6GhPRAQeGoUSAAAPMQxDP/zhDyXdnrVctWpVh9cXFBQoNzdXTz31lBISEjwREegSCiUAAB7yb//2b9q7d69GjBih9957TxaL5b7X3rx5U5s2bVJSUpIef/xxD6YEHh4bmwMA4AFZWVlatmyZ+vbtq4MHD3Z4x7G5uVlr166VYRhatWpVl49nBDyFO5QAALjZjh079O1vf1txcXHavXt3h2XSMAxt3rxZ1dXVWrZsGWUSPoFCCQCAG+3evVvp6emKjo7Wnj17lJiY2OH1R44c0VdffaWFCxd2eNoO4E0olAAAuMn+/fu1cOFCRUZGavfu3UpKSurw+pKSEu3cuVPTpk3TY4895qGUgPMolAAAuMGhQ4c0f/58RUREaPfu3Ro9enSba1avXq2FCxdKkmpqarRhwwY9+uijeuaZZzwdF3AKu6MCAOBiR44c0bx58xQSEqKdO3dq7Nix7V5XWFiokpIS2Ww2ZWZmKigoSBkZGbJaud8D30KhBADAhY4fP665c+eqrq5Ov/71r1VdXa19+/a1e21VVZUkafv27bp27ZpeeumlTp/tDXgTtg0CAMBFKioqNGzYMFVWVnb6c/r166fVq1crLS1NEydOdGM6wH24pw4AgIvU1NQ8VJmUpIaGBiUnJ2vChAluSgW4H3coAQAwQUNDg9asWaOIiAi9/PLLCgkJMTsS0GXcoQQAwMPsdruys7PV1NSkZcuWUSbh8yiUAAC4WWOLTWW1TWpssUm6vT/l+fPntWTJEsXExJicDnAeq7wBAHCTYyUVWptbpJ15pbIbktUiTRsYqejrJ7Tymac0dOhQsyMCLkGhBADADd49clE/zzkjq9Ui+19XK9gN6dNLdTI0UtNDBuoJcyMCLsOiHAAAXOxYSYWW/eGwOvoBa5GUuXqaJg6O9VQswG2YoQQAwMXW5hbJarV0eI3VatHa3GIPJQLci0IJAIALNbbYtDOvVDZ7xw8AbXZDO/KuOxbqAL6MQgkAgAvVNrbqAV3SwW7cvh7wdRRKAABcKCo8WA942u1gtdy+HvB1FEoAAFwoPCRIqaPiFfSAVhlktWj2qL4KDwnyUDLAfSiUAAC42KoZCQ+cobTbDa2aMcRDiQD3olACAOBi8dY6TQ+5KElt7lQGWS2ySHozfTRbBsFvUCgBAHChW7duacOGDUodEqH1r09ValK8Y6bSapFSk+KVuXqanp/yqLlBARdiEhgAABex2+3auHGjbDabMjIyFBUVpclDeqmxxabaxlZFhQczMwm/RKEEAMBFDh48qAsXLuiFF15QVFSU48/DQ4IokvBrPPIGAMAFioqKtG/fPqWkpCghIcHsOIBHUSgBAHBSbW2tsrOzlZCQoJkzZ5odB/A4CiUAAE6w2+3KysqSxWLR4sWLZbXyoxWBh3/qAQBwwt69e3Xp0iVlZGQoMjLS7DiAKSiUAAB00blz55Sbm6unnnpKjz7KNkAIXBRKAAC6oLq6Whs3btTw4cP1+OOPmx0HMBWFEgCAh2Sz2bRhwwaFhoYqPT1dFkvH53YD/o5CCQDAQ9q1a5euXr2qjIwMdevWzew4gOkolAAAPIT8/HwdOXJEqampeuSRR8yOA3gFCiUAAJ1UWVmpnJwcJSUlacqUKWbHAbwGhRIAgE5obW1VZmamunXrpoULFzI3CdyFQgkAQCd88sknunHjhpYuXarw8HCz4wBehUIJAMADnDlzRsePH9fcuXPVr18/s+MAXodCCQBAB8rLy7V582aNGTNGEyZMMDsO4JUolAAA3EdLS4syMzMVHR2t+fPnMzcJ3AeFEgCA+9i6dasqKiq0dOlShYaGmh0H8FoUSgAA2nHy5El98cUXSktLU1xcnNlxAK9GoQQA4BtKS0u1detWJScnKzk52ew4gNejUAIAcJempiZlZmYqNjZWzz77rNlxAJ9AoQQA4K8Mw9CWLVtUW1urpUuXKiQkxOxIgE+gUAIA8Feff/65zpw5owULFqh3795mxwF8BoUSAABJ165d0/bt2zVx4kSNHj3a7DiAT6FQAgACXmNjozIzMxUXF6c5c+aYHQfwORRKAEBAMwxDOTk5qq+v19KlSxUcHGx2JMDnUCgBAAHt6NGjKigoUHp6unr27Gl2HMAnUSgBAAHr66+/1s6dOzVt2jQlJiaaHQfwWRRKAEBAqq+vV2Zmpvr376+nn37a7DiAT6NQAgACjmEY2rRpk1paWpSRkaGgoCCzIwE+jUIJAAg4hw4d0rlz57R48WJFR0ebHQfweRRKAEBAKSkp0Z49e/TEE09o2LBhZscB/AKFEgAQMOrq6pSVlaVHH31Us2bNMjsO4DcolACAgGC325WdnS3DMLR48WJZrfwIBFyFf5sAAAHhwIEDKikp0ZIlSxQVFWV2HMCvUCgBAH7vwoUL2r9/v2bNmqUhQ4aYHQfwOxRKAIBfq6mpUXZ2toYOHaonnnjC7DiAX6JQAgD8lt1uV1ZWloKCgrRo0SJZLBazIwF+iUIJAPBbe/bs0eXLl5WRkaHIyEiz4wB+i0IJAPBLZ8+e1aFDh/TMM89o0KBBZscB/BqFEgDgd6qqqrRx40aNGDFC06ZNMzsO4PcolAAAv2Kz2bRhwwaFh4crPT2duUnAAyiUAAC/smPHDl27dk0ZGRmKiIgwOw4QECiUAAC/kZeXp88++0xz5szRgAEDzI4DBAwKJQDAL1RUVCgnJ0ejRo3SpEmTzI4DBBQKJQDA57W0tCgzM1Pdu3fXwoULmZsEPIxCCQAwxU9+8hNZLBZZLBb98pe/dOq9tm/frrKyMi1dulRhYWGuCQig0yiUAACPO3HihP793//dJe91+vRpnThxQs8++6z69u3rkvcE8HAolAAAj2ptbdWqVatks9mcfq+ysjJt2bJFY8eO1fjx412QDkBXUCgBAB71m9/8RidPntRzzz3n1Ps0NzcrMzNTMTExSktLY24SMBGFEgDgMefPn9cbb7yhSZMm6Yc//GGX38cwDH388ceqqqrS0qVLFRoa6sKUAB4WhRIA4DGrV69WS0uL3nrrLVmtXf8RdPLkSZ0+fVrz589Xnz59XJgQQFdQKAEAHvHHP/5Re/bs0d/93d9p3LhxXX6f69eva9u2bfrWt76lsWPHujAhgK6iUAIA3O769ev6+7//ew0dOlS/+MUvuvw+TU1NyszMVK9evTR37lwXJgTgjGCzAwAA/N/3v/99VVZWKjMzs8vnaxuGoc2bN6uurk6vv/66QkJCXJwSQFdxhxIA4FY5OTnKysrSSy+9pKeffrrL73Ps2DHl5eVp4cKF6tWrlwsTAnAWhRIA4DY1NTX67ne/q7i4OP3mN7/p8vtcuXJFn3zyiSZPnqzHHnvMhQkBuAKPvAEAbvOTn/xEV69e1QcffKDY2NguvUdDQ4M2bNigvn37KjU11cUJAbgCdygBAG5x8OBBrVmzRvPmzdPKlSu79B6GYSgnJ0eNjY1aunSpgoO5DwJ4I/7NBAC4XHNzs1577TWFhobqn/7pn1ReXt7mmurqasfr+vr6e66Jjo5WSEiIDh8+rMLCQq1YsUIxMTEeyQ7g4VkMwzDMDgEA8C8lJSUaMmRIlz9/7969SkhI0DvvvKNp06bxqBvwctyhBAC4XN++fbVz584Orzl16pR+/OMfS5JeeOEFvfjii46PDRs2TOvXr9cjjzyip556yq1ZATiPQgkAcLnw8HA988wzHV5z9zxkQkKC43rDMPT+++/LZrMpIyNDQUFBbs0KwHksygEAeJWDBw/qwoULWrx4sXr06GF2HACdQKEEAHiN4uJi7du3TzNnztTQoUPNjgOgk3jkDQDwmNOnT+v06dOSpPz8/Hv+fO3atdq9e7ceeeQRpaSkmBURQBewyhsA4DG//OUv9cYbb3R4zYwZM3Tw4EEPJQLgChRKAIDp9uzZo9zcXL344osaPHiw2XEAPCRmKAEApjp//rwOHjyoJ598kjIJ+ChmKAEAHtXYYlNtY6uiwoPVVF+n7OxsDRs2TDNmzDA7GoAuolACADziWEmF1uYWaWdeqeyGZLVII7o1akxIlL6/aJEsFovZEQF0EYUSAOB27x65qJ/nnJHVapH9r5P7dkMqvBWqAg3SuC/L9PyUR80NCaDLWJQDAHCrYyUVWvaHw+roh41FUubqaZo4ONZTsQC4EItyAAButTa3SFZrx4+zrVaL1uYWeygRAFejUAIA3KaxxaadeaWy2Tt+GGazG9qRd12NLTYPJQPgShRKAIDb1Da26gFd0sFu3L4egO+hUAIA3CYqPFgPeNrtYLXcvh6A76FQAgDcJjwkSKmj4hX0gFYZZLVo9qi+Cg8J8lAyAO6p4+oAABwXSURBVK5EoQQAuNWrjw+RzW7v8Bq73dCqGUM8lAiAq1EoAQBuFVJ1SdOCL0lSmzuVQVaLLJLeTB/NlkGAD6NQAgDc5ubNm9q2bZtWTBygDaunKTUp3jFTabVIqUnxylw9jU3NAR/H9DMAwC1sNpuys7MVFRWlefPmKTQ0VBMHx95zljczk4B/4A4lAMAt9u/fr2vXrmnx4sUKDQ11/Hl4SJD6RIVRJgE/QqEEALjcxYsXlZubq1mzZmnAgAFmxwHgZhRKAIBLNTY2auPGjRo4cKBmzJhhdhwAHkChBAC41NatW9XY2KhFixbJauXHDBAI+DcdAOAyp0+f1pdffqm0tDTFxMSYHQeAh1AoAQAuUVVVpa1bt2rMmDEaM2aM2XEAeBCFEgDgNLvdruzsbIWHh+vZZ581Ow4AD6NQAgCclpubq6+//lqLFy9WeHi42XEAeBiFEgDglK+//lr79u3TjBkzNGjQILPjADABhRIA0GVNTU3Kzs5W//79lZKSYnYcACahUAIAumz79u2qq6vT4sWLFRTEyTdAoKJQAgC6JC8vT1988YXmzZun2NhYs+MAMBGFEgDw0GpqavTRRx9p1KhRSk5ONjsOAJNRKAEAD8UwDG3cuFEhISGaP3++LBaL2ZEAmIxCCQB4KJ9++qlKSkq0aNEiRUREmB0HgBegUAIAOu3atWvas2ePpk+friFDhpgdB4CXoFACADqlpaVF2dnZiouL05NPPml2HABehEIJAOiUHTt2qKqqSosXL1ZwcLDZcQB4EQolAOCBCgsLdfz4cc2ZM0d9+vQxOw4AL0OhBAB0qK6uTps3b9aIESM0YcIEs+MA8EIUSgDAfRmGoU2bNslisWjhwoVsEQSgXRRKAMB9ffbZZ7pw4YLS09MVGRlpdhwAXopCCQBo140bN7Rz505NnjxZw4YNMzsOAC9GoQQAtNHa2qqsrCz16tVLqampZscB4OUolACANnbt2qWbN2+yRRCATqFQAgDucf78eR09elTPPPOM4uPjzY4DwAdQKAEADrdu3VJOTo6GDh2qKVOmmB0HgI+gUAIAJN3eIuijjz6SzWbTc889xxZBADqNQgkAkCSdOHFChYWFWrhwoaKiosyOA8CHUCgBACovL9f27ds1YcIEJSYmmh0HgI+hUAJAgLPZbMrOzlZ0dLRmz55tdhwAPohCCQABbu/evSotLdXixYsVGhpqdhwAPohCCQABrKSkRIcOHdKTTz6p/v37mx0HgI+iUAJAgGpoaNDGjRs1ePBgTZ8+3ew4AHwYhRIAApBhGNqyZYuam5uVnp4uq5UfBwC6ju8gABCATp06pby8PM2fP1/R0dFmxwHg4yiUABBgKioqtG3bNo0bN06PPfaY2XEA+AEKJQAEELvdro0bNyoyMlLz5s0zOw4AP0GhBIAAcuDAAV25ckWLFi1SWFiY2XEA+AkKJQAEiMuXL+vAgQNKSUnRwIEDzY4DwI9QKAEgADQ1NSk7O1uPPPKInnjiCbPjAPAzFEoACABbt25VfX29Fi1axBZBAFyO7yoA4OfOnDmj06dP69lnn1XPnj3NjgPAD1EoAcCPVVdXa8uWLRo9erTGjh1rdhwAfopCCQB+6s4WQeHh4UpLS5PFYjE7EgA/RaEEAD916NAhXbx4UYsWLVJ4eLjZcQD4MQolAPihK1euaN++fZoxY4YeffRRs+MA8HMUSgDwM83NzcrOzlbfvn01a9Yss+MACAAUSgDwsFmzZslisTzwV/fu3bv0/tu3b1dtba0WL16soKAgF6cHgLYolADgR/Lz83Xy5EnNnTtXvXr1MjsOgAARbHYAAAhE6enp+tWvftXhNQ+7AXltba0++ugjJSYmavz48c7EA4CHQqEEABNER0crMTHRZe9nGIY2bdqkoKAgLViwgC2CAHgUj7wBwA8cOXJERUVFSk9PV7du3cyOAyDAUCgBwMddv35du3fv1tSpUzV06FCz4wAIQBRKADBZc3OzqqurZRjGQ39uS0uLsrOz1bt3bz399NNuSAcAD0ahBAATVFVV6V/+5V80fPhwhYeHKyYmRiEhIRo7dqz+8R//UTdu3OjU++zcuVOVlZVavHixgoMZiwdgDovRlf8kBgB02axZs7R//351795dq1at0vTp0xUREaGCggKtWbNG586dU0xMjD744APNmzfvvu9z7tw5xzWTJ0/24N8AAO5FoQQAD5s1a5YuXryoPXv2aMiQIfd8rLGxUQsWLNCuXbsUFhamAwcOtFsW6+rq9Pvf/179+/fXypUrWdUNwFQUSgDwsOvXr6tbt27q0aNHux+/evWqEhIS1NTUpEmTJumzzz675+OGYegvf/mLrly5ou985ztdPlEHAFyFGUoA8LC+ffvet0xKUv/+/TV37lxJ0rFjx3Tq1Kl7Pn78+HGdO3dOzz33HGUSgFegUAKAF5o4caLj9aFDhxyvy8rKtGPHDk2aNEkjRowwIxoAtEGhBAAvFBcX53h97do1SVJra6uysrIUExOj1NRUs6IBQBsUSgDwQna73fE6KChIkrRnzx6VlZVpyZIlCgkJMSsaALRBoQQAD/roo4/0z//8zw/cxPz69euO1/369VNRUZEOHz6sp59+Wn379nV3TAB4KBRKAPCgrKws/exnP1NpaWmH1x05csTxesKECdq0aZOGDBmiadOmuTsiADw0CiUAmGDbtm33/di5c+e0a9cuSdL06dN14cIFtba2Kj09nf0mAXglCiUAmOCnP/2pzp492+bPKyoqtHLlStlsNnXr1k3f//73VVBQoAULFnS41RAAmImDXwHAg0aNGqWQkBCVlpYqOTlZK1as0KRJkxQaGqr8/Hz9+c9/VllZmeLj47VmzRqdOXNG48ePV1JSktnRAeC+OCkHADzs+vXrys7O1s6dO/Xll1/q2rVramlpUc+ePTVmzBjNnz9fL730kjIzM9XY2KjVq1crNDTU7NgAcF8USgDwQrt379ann36qV155RQMGDDA7DgB0iBlKAPAyFy9eVG5urmbNmkWZBOATmKEEAJM1tthU29iqqPBgydaijRs3atCgQXr88cfNjgYAnUKhBACTHCup0NrcIu3MK5XdkKwW6bFomxJarHrjpUWyWnmIBMA3UCgBwATvHrmon+eckdVqkf2vk+x2QzpTZdGXGqpJhdV6fkqMuSEBoJNYlAMAHnaspELL/nBYHX3ztUjKXD1NEwfHeioWAHQZz1MAwMPW5hbJau34xBur1aK1ucUeSgQAzqFQAoAHNbbYtDOvVDZ7xw+HbHZDO/Kuq7HF5qFkANB1zFACgBs1Nzfrxo0bjl9FV8tkNzr3GNtuSLWNrQoPCXJzSgBwDoUSAFzAZrPp5s2bKi0t1Y0bN1RWVqbS0lJVVVU5romNjVVsn3hZpA7nJ++wyNDOrZs1OmmkRowYofDwcLflBwBnsCgHAB6CYRiqqqq6567jjRs3VF5eLrvdLkmKiopSXFyc41d8fLx69+6tkJAQSdLq945rV/6NDh97B1mk8XFBmhN5WVevXpXVatXgwYOVmJiokSNHqkePHh75+wJAZ1AoAeA+6urq2hTHGzduqKWlRZIUHh5+T3G88ysiIqLD933YVd7V1dUqLCxUQUGBSkpKZBiGBgwYoMTERCUmJqp3796u+0sDQBdQKAEEvKampnaLY319vSQpODhYffr0aVMco6KiZLF0vFr7ft47elE/23R7H8q771QGWS2y2w29mT5az095tM3nNTQ06OzZsyooKND58+fV2tqq3r17a+TIkUpKSlL//v27nAkAuopCCSBgtLa2tjvnWF1dLUmyWCzq1auX4uLi1KdPH8XHxysuLk49e/Z0y6k1x0sqtDa3WDvyrjtOypk9qq9WzRjSqf0nW1padOHCBRUWFqqwsFANDQ2KiorSyJEjlZiYqMGDBysoiAU9ANyPQgnA7xiGocrKyjZ3HG/evOmYc+zRo0e7c47BwZ5fq3j3Wd5dXdFtt9t16dIlFRQUqKCgQNXV1QoLC9OIESOUmJioYcOGKTQ01MXJAeA2CiUAn2UYRrtzjmVlZY45x4iIiHbnHP15xbRhGLp+/bqjXN64cUNBQUEaOnSoEhMTNWLECEVGRpodE4AfoVAC8AmNjY3tzjk2NDRIuj3n2F5x7N69e8DPFFZUVKigoECFhYW6dOmSLBaLBg0a5Hg03rNnT7MjAvBxFEoAXqW1tVXl5eWOOcc7v2pqaiTdnnPs3bt3mznHmJgYt8w5+pu6ujrHop6ioiLZbDbFx8c7VozHx8cHfAEH8PAolABMYbfbHXOOpaWljgUyFRUVuvNtKTo6us2cY69evUyZc/RHTU1NOn/+vAoKCnTu3Dk1NTUpJibGUS4HDhxISQfQKRRKAG5lGIZqa2vbnXNsbW2VJHXr1q3dx9VhYWEmpw8cNptNxcXFjkfjdXV16tatm0aMGKGkpCQlJCRQ5AHcF4USgMs0NDS0O+fY2NgoSQoJCWm3OEZGRvKY1YsYhqErV64oPz9fBQUFqqioUEhIiIYPH66RIzkGEkBbFEoAD62lpUVlZWVtimNtba0kyWq13nfOkeLoWwzDUHl5uWPFOMdAAmgPhdJLvPTSS/rTn/70UJ/z3HPPadOmTW5KBNyec6yoqGgz51hZWemYc4yJiWl3zpENtf0Tx0ACaA8DMT4sPj7e7AjwE4ZhqKampt05R5vNJkmKjIxUXFychg8ffk+BZLPswBIdHa3Jkydr8uTJjmMgCwsLdeDAAe3evZtjIIEARaH0Mvn5+Q+8Zu7cubp48aJeeukl9weC36mvr293zrGpqUmSFBoaqri4OPXv31/Jycn3zDkCd4uIiNC4ceM0btw4tbS0qKioSAUFBTpx4oQOHTrEMZBAAKFQepnExMQOP/7pp5/q4sWLGjNmjKZNm+ahVPBFzc3N7c451tXVSbo959inTx/HXcc7c47R0dHcVcJDCwkJ0ciRIzVy5Mg2x0AeP36cYyABP0eh9BIjRozQ448//sDr1qxZI0l6/fXX3R0JPsJms913zvGOnj17Ki4uTuPHj3fMOcbGxnLHCG5xZ9HO4MGDNWfOnHuOgfzyyy85BhLwQyzK8SHV1dXq16+fLBaLrl69qujoaLMjwYMMw1B1dXWbO47l5eWOOcfu3bu32ZKnT58+3A2C16ioqHAs6rlzDOTAgQMdi3o4BhLwTRRKH/K73/1OP/jBD/Tyyy/r7bffNjsO3OjWrVvtzjk2NzdLksLCwtrdz7Fbt24mJwc679atW45yyTGQgG+jUPqQcePG6fTp0zp8+LCmTp1qdhy4QHNzc7vF8datW5KkoKAgx5zj3b969OjBD1r4lTvHQBYWFurs2bMcAwn4GAqljzhy5IimTZumsWPH6tSpU2bHwUOy2Wy6efOmSktLHdvxlJaWqqqqynFNbGys4uPjHQXyzpwjP0QRaGw2m0pKSpSfn9/mGMjExEQlJCQoJCTE7JgA7sKiHB/BYhzfYBiGqqqq2p1ztNvtkqSoqCjFxcUpKSnpnjlHfkACt91ZtDN06FClpaXpypUrjkU9X3zxhUJCQjRs2DDHoh6OgQTMxx1KH1BTU6N+/fpJEotxvEhdXV27j6tbWlok3Z5zvLMVz92/IiIiTE4O+K6ysjKOgQS8EIXSB/zP//yPvve977EYxyRNTU3tFsf6+npJUnBwsOMx9d3nVkdFRTHnCLhRTU2NCgoKVFhYqJKSEtntdg0YMMBxUg/HQAKeQ6H0AcnJyTp16pSOHDmiKVOmmB3Hb7W2trY751hdXS1Jslgsio2NbXNudc+ePZlzBEzW0NCgc+fOqaCgQOfPn1dLS4t69erlWNQzYMAA/gMPcCMKpZc7evSopk6dqnHjxumLL74wO45fMAxDlZWVbe443rx50zHn2KNHj3b3cwwOZuwY8HZ3HwNZWFiohoYGjoEE3Iyfjl6OxThdZxhGu3OOZWVljjnH8PBwxcfHa/DgwZo8ebKjPDLkD/gujoE0V15ent5++2198skn+vrrr9XU1KS+fftq8ODBmjlzpubNm8fTNj/EHUovVlNTo/79+0u6vRiHYfP7a2xsbHfOsaGhQdLtOcf2NgLv3r07j8GAAGEYhkpLSx3lsrS01LGi/E4B5RjIrjMMQ7/4xS/0q1/9SgMGDNCyZcs0fPhw1dXVad++ffroo49kGIYmTJig48ePmx0XLkah9GL/+7//q+9+97t65ZVX9Mc//tHsOF6htbVV5eXljjnHO79qamok3Z5z7NWrV5v9HGNiYphzBHCPyspKR7nkGEjn/ehHP9J//Md/6IUXXtCaNWvaPOlZs2aNVq9eTaH0UxRKL/atb31LJ0+e1NGjRzV58mSz43iU3W53zDmWlpY6FshUVFTozj+y0dHRbe449u7dmzlHAA/tzjGQhYWFunDhAsdAPqQtW7ZowYIFGjt2rD7//PN2vw8bhqHRo0erX79+2rVrlwkp4U4USi917NgxTZ482e8X4xiGodra2nbnHFtbWyVJERER7e7nGBYWZnJ6AP6oqalJFy5cUEFBwT3HQN7ZjohjIO9lGIZGjBih8+fP64MPPtDKlSvNjgQTcCvHS91ZjLN69WqTk7hOQ0NDu3OOjY2Nkm4P0t95RD127FhHcYyMjOTOAACPCQsL06hRozRq1CjHMZAFBQX66quvdPToUY6B/Ib9+/fr/PnzslqtSktLMzsOTMIdSi9UW1ur/v37yzAMn1yM09LSorKysjbFsba2VpJktVrvO+dIcQTgrQzDuOcYyJs3b95zDOTw4cMD8iSs73//+/rv//5vDRkyREVFRY4/t9vtunXrlqKiokxMB0+hUKLL7Ha7Kioq2sw5VlZWOuYcY2Ji2p1zZA84AL6uvLxc+fn5Kiws1JUrVwL2GMipU6fq6NGjSklJ0e7du/XHP/5Ra9eu1YkTJ2Sz2RQaGqopU6bo1Vdf1QsvvMC4gJ+iUOKBDMNQTU1Nu3OONptNkhQZGdnuRuDMOQIIBDU1NSosLFRBQUGbYyATExPVp08fsyO6Tffu3XXr1i098cQTCg4O1sGDB7Vq1SqlpqbKarVq9+7d+sMf/qCWlhbNmzdPGzZsULdu3cyODRejUOIe9fX17c45NjU1SZJCQ0PbnFl9Z84RABBYx0DW19e3+f6/adMmPffcc/f82bZt25SWlibDMPTiiy/qT3/6kydjwgMolF6sscWm2sZWRYUHKzzEtY+Im5ub251zrKurk3R7zrF3795t5hyjo6P95hshALjb3cdAnj17VvX19X51DGRpaan69u3r+H1aWpq2bNnS7rXLly/X+vXrJUknT55UcnKyRzLCM1jl7YWOlVRobW6RduaVym5IVouUOiper81I0MTBsQ/1Xjab7b5zjnf07NlTcXFxGj9+vOOOY69evXz6mxwAeINvHgN5+fLldo+BHDlypIYPH+5zx0De2d7tjoyMjPteu2LFCkehfP/99ymUfoY7lF7m3SMX9fOcM7JaLbLZ/9//NUFWi+x2Q2+mj9bzUx5t83mGYai6urrNHcfy8nLHnGP37t3bnXP0tW9gAODr7ncMZEJCgmNRjy+MElVXVysmJsbx+2PHjmnixIntXltcXKyEhARJ0syZM7V//36PZIRnUCi9yLGSCi37w2F19H+IRdKf/3a8HglralMem5ubJd3eQ629OUeGoAHAO919DOTly5clySeOgbTb7YqIiHD8/Dl37pyGDRvW7rU1NTWKjo6WJCUmJio/P99jOeF+FEovsvq949qVf+OeO5PfZJGhQdZKPRVapKCgoHbnHHv06MGcIwD4qFu3buns2bMqKCi45xjIOyf1eNsxkOPGjdPp06clSfn5+UpMTGz3urvvZj722GM6c+aMxzLC/Zih9BKNLTbHzGRHDFl0yR6rV16brQF9+7CfFwD4mcjISI0fP17jx49Xc3Ozzp8/r4KCAh09elQHDhxwHAOZmJioQYMGmf5zYPLkyY5CWVpaet9CWVZW5njdv39/j2SD51AovURtY+sDy+QdhqTwqBjTv4kAANwrNDS03WMg8/LyvOYYyCVLlmjt2rWSpOPHjyslJaXd606cOOF4PXPmTI9kg+fwyNtLNLbYNOoX2ztVKq0WKe+NuS7fSggA4BvuHM1756Se8vJy046BtNlsSk5O1pkzZ5ScnKwTJ060+0h+wYIF2rJli8LCwnThwgUNGDDAI/ngGRRKL9KZGcogq0WpSfH6/fMTPJgMAODNysvLHYt67j4G8s6jcXcfA3nw4EE9/fTTamlp0b/+67/qpz/96T0f/+CDD/Ttb39bkvTrX/9aP/7xj92aB55HofQinV3lnbl62kPvRwkACAztHQPZv39/x4pxdx0DmZmZqVdeeUV1dXWaO3eu5s+fr6CgIO3du1eZmZmyWCz65S9/qZ/97Gdu+fowF4XSy7x39KJ+tunh96EEAOCbGhsbdfbsWRUWFurcuXNuPwby4sWL+s///E9t27ZNly9flt1u1yOPPKInn3xSP/jBDzR69GiXfS14FwqlFzpeUqG1ucXakXfdcVLO7FF9tWrGEO5MAgC6pKWlRcXFxSooKFBhYaHq6+vVvXt3x3ZEvn4MJMxFofRi7jzLGwAQuL55DGRVVdU9x0AOGzZMYWFhZseED6FQAgAQwNxxDCQ3RAIPhRIAADhUVlY6FvVcunRJhmFo0KBBnToG8lhJhdbmFjkO6rBapNRR8XptRgIjW36OQgkAANr1MMdAvnvkon6ew6LSQEWhBAAAD3TnGMjCwkKdPXtWjY2Nio6OVmJiopqjB+r/21zCtncBjEIJAAAeis1m08WLFx0n9eTcjNMle4wM3X8LIg7m8G8USgAA0GUNza167JefcHRwgLOaHQAAAPiuuiZbp8qkJNkNqbax1b2BYAoKJQAA6LKo8GBZO3nYjtVy+3r4HwolAADosvCQIKWOilfQA1plkNWi2aP68rjbT1EoAQCAU1bNSJD9Ac+97XZDq2YM8VAieBqFEgAAOGXS4Fi9mT5aFqnNncogq0UWSW+mj2bLID/GKm8AAOASx0sqtDa3WDvyrjtOypk9qq9WzRhCmfRzFEoAAOBSnOUdeCiUAAAAcAozlAAAAHAKhRIAAABOoVACAADAKRRKAAAAOIVCCQAAAKdQKAEAAOAUCiUAAACcQqEEAACAUyiUAAAAcAqFEgAAAE6hUAIAAMApFEoAAAA4hUIJAAAAp1AoAQAA4BQKJQAAAJxCoQQAAIBTKJQAAABwCoUSAAAATqFQAgAAwCkUSgAAADiFQgkAAACnUCgBAADgFAolAAAAnEKhBAAAgFMolAAAAHAKhRIAAABOoVACAADAKRRKAAAAOIVCCQAAAKdQKAEAAOAUCiUAAACcQqEEAACAUyiUAAAAcAqFEgAAAE6hUAIAAMApFEoAAAA4hUIJAAAAp1AoAQAA4BQKJQAAAJxCoQQAAIBTKJQAAABwCoUSAAAATqFQAgAAwCkUSgAAADiFQgkAAACnUCgBAADgFAolAAAAnEKhBAAAgFMolAAAAHAKhRIAAABOoVACAADAKRRKAAAAOIVCCQAAAKdQKAEAAOAUCiUAAACc8v8DKAR7BwlL1qMAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -156,7 +168,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -168,9 +180,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjpklEQVR4nO3da3BUZ37n8d853UfdLYEuiIsACQQMjO8XbsZcbcRdEpPsYMeJM5XMLMxkk6klyWZrM1upfbMv1qkkFTOZOLMTNlup2MlSxaY2SIABC48AA8aAPcYGLGMjpJbNTeiCWt2t7j5nX2A8wKDWhZb6cr6fKqqQ6+njv4zpn55+Ln/DcRxHAAC4hJnuAgAAGE0EHwDAVQg+AICrEHwAAFch+AAArkLwAQBcheADALgKwQcAcBWCDwDgKgQfAMBVCD4AgKsQfAAAVyH4AACuQvABAFyF4AMAuArBBwBwFYIPAOAqBB8AwFUIPgCAqxB8AABXIfgAAK5C8AEAXIXgAwC4CsEHAHAVgg8A4CoEHwDAVQg+AICrEHwAAFch+AAAruJNdwEAkKniCVvBjrCicVs+r6nykoC8HuYL2Y7gA4A7dIT6tONkq3aeDupSe0iWx5RpGLIdR7GEremlBdo0t1wvLahQcX5eusvFMBiO4zjpLgIA0q0vbmtbQ5O2H7kow5AiMbvfsX7LlONIm5fO0NaqOcrzMgvMJgQfANdr6wzr5e3HdaU7onCSwLtXwDI1qdCvNzYv0tTiwAhWiFQi+AC4WltnWLU/OaKu3pgSw3g79BiGivIt1f1wKeGXJZifA3Ctvritl7cfH3boSVLCcdTVG9Nvbz+uWGLws0WkD5tbALjWtoYmXemOJA290NlGdb7zL0p0X5OnoESl1X8of8Vjd41JOI4ud0e1reFT/cmab4502XhAfNQJwJU6Qn1a9EqDovH+Z2nhi++rfe+PNeFb/0V5U+Yo0XNDkuQdO/6+431eU+/+qIrdnhmOjzoBuNKOk60yjORjuo68oaIlvynf1IdkGKa8Y8f3G3qSZBi3novMRvABcKWdp4NJjyw4dkLRLy/I7u1S20+3KPi3v6Mb+/9Odiza72siMVs7TwVHolykEMEHwHXiCVuX2kNJxyRCnZIdV+8n72jSb/+5Jn/3x+q78rm6ju5I+rrm9pDibHLJaAQfANcJdoRlDXD1mGH5JElj59XKO2acPPlFGrvg1xT+7GTS11keU8GOcMpqReoRfABcJxq3ZQ6wwOfxj5HnnvU8Y6BFQUmmYSTdMIP0I/gAuI7Pa8oexIb2MY+v0s1T9UqEOpWI9Kj7vf+n/G8sSPoa23Hk4wqzjMY5PgCuU14SGNRh86IlLykR7lbbz34gw2up4KFlKlr8G0lfE0vYKi/hBpdMRvABcB2vx9T00gJduNqTdJzh8ap07e+rdO3vD/rZlaUFtC7KcPzpAHClTXPL5bdS+xbot0y9MK88pc9E6hF8AFzppQUVSvW9VY4jvTi/IrUPRcoRfABcqTg/T5uXzlAgRbO+gOXRlmUzua4sCxB8AFxra9UcTSr0yzOIYwrJeAxDZYU+ba2anaLKMJIIPgCulec19cbmRSrKt4Ydfrf78b2+edGAh+KRGejOAMD1ht+B3aOyQp9epwN7ViH4AEC3mtJua2jS9iMXJSnp7SsBy5TtSFuWzdTWqtnM9LIMwQcAd+js7dNf73pXb37SqRsxjyyPKdMwZDuOYglblaUFemFeuV6cX8FGlizFAXYAuENxfp7m5Xeoen2Z5s6br2BHWNG4LZ/XVHlJgMPpOYDgA4B7tLS0aOHChfJ6TFWOL0h3OUgxfnQBgDuEQiH19PRo4sSJ6S4FI4TgA4A7tLS0qKKiQqbJ22Ou4k8WAO7Q0tKiadOmpbsMjCCCDwDuQPDlPoIPAL7S19ena9euaerUqekuBSOI4AOArwSDQZWVlcnrZcN7LiP4AOArfMzpDgQfAHyF4HMHgg8AJCUSCbW1tamigkayuY7gAwBJly9fVnFxsQIBuizkOoIPAMTHnG5C8AGACD43IfgAuJ7jOASfixB8AFzvxo0bsixLRUVF6S4Fo4DgA+B6ly5dYrbnIgQfANdrbW0l+FyE4APgesz43IXgA+BqN2/eVDgc1oQJE9JdCkYJwQfA1W5/zGkYRrpLwSgh+AC42qVLl7imzGUIPgCu1traqunTp6e7DIwigg+Aa0WjUV2/fl2TJ09OdykYRQQfANcKBoOaMmUKjWddhuAD4FotLS2s77kQwQfAtbif050IPgCuRONZ9yL4ALjSl19+qXHjxsnv96e7FIwygg+AK/Exp3sRfABcieBzL4IPgCvEE7aar4f0yeWbuni9R82XCD63MhzHcdJdBACMhI5Qn3acbNXO00Fdag/J8pgyDUMJ21Y0ltDMiWO1aW65XlpQoeL8vHSXi1FC8AHIOX1xW9samrT9yEUZhhSJ2f2O9VumHEfavHSGtlbNUZ6XD8JyHcEHIKe0dYb18vbjutIdUThJ4N0rYJmaVOjXG5sXaWpxYAQrRLoRfAByRltnWLU/OaKu3pgSw3hr8xiGivIt1f1wqevCL56wFewIKxq35fOaKi8JyOvJzdkvwQcgJ/TFba15tVGtN8LDCr3bPIahaeMC2v9HK2Tl6Bv/bf2tgdqOo1jC1vTSgpxcAyX4AOSEv9h3Xv/wzsUhfbzZn4Dl0b9fOkN/suabKags87h9DZTgA5D1OkJ9WvRKg6Lx/t/AL7/xp4p+8YkM0yNJ8owt1dTv/89+x/u8pt79UVVOzXQk1kAliV4cALLejpOtMoyBx41b83sa++TaQT3TMG499wfLZz1gdZnjQdZAwzFbrTduvT7b10Czf84KwPV2ng4m/bhuOCIxWztPBVP6zHTqi9t6efvxYW/8kaSE46irN6bf3n5csURq/3uPJoIPQFaLJ2xdag8Namznz/9Rrdt+S5f/6T8rcunDAcc3t4cUz+I3+Dtta2jSle7IA238kW6F3+XuqLY1fJqiykYfH3UCyGrBjrAsj6lYIpF0XMnz35VVWiHDYyl07pCu/t//rsnf/bGsksn9vsbymAp2hFU5viDVZY+qjlCfth+52O8aaMtfbbrrayfep7FPb9C4Nb933/HhWEJ/f/hzbV46IyvXQAk+AFktGrdlDmKBzzfllzs0xzxepdDZRoU/Oylrfm2/r0nE49p74C3NKPHJ5/PJ7/d//et+X3s8npR8T6k20BrotP+08+vf231hBf/mO8p/aGnSZ2bzGijBByCr+bym7OF8fGcYkpK/zjBNTZ86SUVWXJFIRF1dXbpy5Yqi0agikYgikchdv/d6vfcNxMGEpt/vV15enozB7NIZoqGsgfZ+clSe/CL5Kh5NOu72GijBBwCjrLwkMOBGCzvSo+gXn8g/7XHJ9Ch07pCirR9p3KrvJ31dwpHWLJk3qBtMHMdRLBa7byDe+XVXV9fXv793TDwevysU7/f7ZCHq8/nk9d79tj6UNVBJ6jnToILHVg4qgG+vgWbbDS8EH4Cs5vWYml5aoAtXe/od49gJdR56XbEbQckwZZWWa8K/+zNZ46YmfXZlacGg39QNw1BeXp7y8vJUWFg4pO/hNtu2+w3M279u3rypa9eu9TvrNE3zrkAMGfkynEJJAwdZvOuqoq0fqXTDfxxUvdm6BkrwAch6m+aW69WGpn4/zvPkF2ny7/71kJ7pt0y9MK88FeUNmmmaCgQCCgSGd0bOcRzF4/G7AvHcF13yNF+S7IE/Du756KB85Y/IKi4bXL2GkfTSgEyVXfNTALiP6oeKFY8n39U5VI4jvTi/IqXPHGmGYciyLI0dO1YTJkxQeXm5Zs+slGEO7q0+9NFBjXls5aD/fbbjyJeFV5hlX8UA8BXbtnX8+HH9yz/+L62ttBSwUvOWFrA82rJsZlZu1b/XYNZAJSkSPKdET/uAuznvFEvYKi/Jvhtc+KgTQFb64osvVF9fL5/Pp+9973sqLB6Xsu4MZYU+ba2ancJq02cwa6CSFPqoQflzFsv05Q/62UNZA80kXFINIKtEo1EdPHhQH3/8sVavXq0nnnji6x2I9OO7v582fpZ0DXQ4/JapP141R9/PwuMMBB+ArOA4js6ePat9+/bpG9/4hlatWqX8/F+dnQy/+4BHZYU+vZ4D3Qfu1dnbp2f+R/LuFUOVzd0rCD4AGa+jo0N79uxRV1eXqqurNX369KTjh9JvLmCZsh1py7KZ2lo1O2ebz9Kv8JcIPgAZK5FI6NixYzp69KieffZZLV68eEjXgnX2ftVh/FRQzffpMF5ZWqAX5pXrxfm51WH8fuhQ/0sEH4CM1NLSovr6ehUVFWnDhg0qKSl5oOfFE7aCHWFF47Z8XlPlJYGs3JjxIFgDvYXgA5BRwuGwDhw4oAsXLmjt2rV65JFHRuT+SrdiDZTgA5AhHMfRhx9+qAMHDuiRRx7RypUr5ff7011WTnL7GijBByDtrl+/rt27dysSiaimpkZTpya/QxOp4dY1UIIPQNrE43EdPnxY7733npYvX66FCxfKHOT1WkgtN62BEnwA0uLzzz/X7t27NWnSJK1bt27YHQ2AoeLKMgCjqqenR/v371dLS4s2bNigOXPmpLskuAwzPgCjwnEcnTp1Sm+//baeeuoprVixQnl5ubNuhOxB8AEYcVeuXFF9fb0kqaamRpMmTUpzRXAzPuoEMGL6+vrU2NioDz74QCtXrtTcuXM5k4e0Y8YHYEQ0NTVpz549mjZtmtasWaMxY8akuyRAEsEHIMW6u7u1d+9eXb16VdXV1Zo5c2a6SwLuQvABSAnbtnXixAkdOnRICxYs0LJly+T1spqCzEPwAXhgbW1tqq+vl9/vV3V1tcaPH5/ukoB+8eMYgGGLRCI6ePCgzp07p1WrVt3VDR3IVMz4AAzZvd3QV69erUAgu2/sh3sQfACG5HY39O7ublVXV2vatGnpLgkYEj7qBDAoiURCR48e1bFjx7R48WI9++yzQ+qGDmQKZnwABnS7G3pxcbHWr1//wN3QgXRixgegX729vXrrrbd04cIFrVu3Tg8//DCbV5D1mPEBOSYVfdXu7Ib+6KOPauXKlfL5fCNUMTC6CD4gB3SEvuqkfTqoS/fppD29tECb5pbrpQUDd9K+3Q09Go2qpqZGU6ZMGaXvAhgdBB+QxfritrY1NGn7kYsyDCkSs/sd67dMOY60eekMba2aozzv3bPA293QT548qeXLl2vBggV0Q0dOIviALNXWGdbL24/rSndE4SSBd6+AZWpSoV9vbF6kqcW3zt599tln2rNnD93Q4QoEH5CF2jrDqv3JEXX1xpQYxl9hj2GoKN/Sju8+rQ+PNyoYDGr9+vV0Q4crEHxAlumL21rzaqNab4SHFXq3mYY01ojqz1eM1crn6IYO9+ADfCDLbGto0pXuyAOFniTZjhQ1A/pI0wg9uArBB2SRjlCfth+5OKg1vdiNNl36i1/X9bq/7HdMJG7r7w9/rs7evlSWCWQ0gg/IIjtOtmqw58dv7P+pfJNnDzjOMG49F3ALgg/IIjtPB5MeWbgtdLZRpr9A/ulPDjg2ErO181QwFeUBWYHgA7JEPGHrUntowHF2tFedh99QycrNg352c3tI8cTgj0QA2YzgA7JEsCMsaxBXj3Ue+ieNeXKNvIWD74JueUwFO8IPUh6QNQg+IEtE47bMARb4+q58rsilX6hwwbeG9GzTMBSNM+ODO9CdAcgSPq8pe4AjDJGWM4p3XVHwte9Kkpy+iOTY+vL6Vk3+7rZ+X2c7jnxefg6GOxB8QJYoLwkoNsA63Jin1qrg4eVff9194l8V77qicWv/IOnrYglb5SWBlNQJZDqCD8gSXo+p6aUFunC1p98xpuWXLP/XXxuWX4Y3T578oqTPriwtGHLrIiBb8X86kEU2zS2XfwgfSRYve1nja/8k6Ri/ZeqFeeUPWhqQNQg+IEskEglNiwUVi8dT+lzHkV6cX5HSZwKZjOADskBra6t+9rOfqeNKUL+7qEIBKzV/dQOWR1uWzRywOS2QS1jjAzJYNBpVQ0ODzp07p7Vr1+rRRx9VLOGo4dOOB+7O4DEMlRX6tLVq4GvNgFxCWyIgQ50/f1579+7VrFmztHr1agUCv9x1map+fHU/XPp1M1rALQg+IMPcvHlTe/fu1dWrV1VTU6PKysr7jht+B3aPygp9ev2ODuyAmxB8QIZwHEcnT57Uz3/+c82bN0/Lly+X15t8NaIvbmtbQ5O2H7kow1DSC6wDlinbkbYsm6mtVbMHdf0ZkIsIPiADXL16VfX19XIcR7W1tZo4ceKQXt/Z26cdJ1u181RQze0hWR5TpmHIdhzFErYqSwv0wrxyvTi/go0scD2CD0ijeDyuw4cP67333tPzzz+v+fPnyxhsw73+npmwFewIKxq35fOaKi8JcDgduAPBB6TJpUuXVFdXpwkTJmj9+vUqLCxMd0mAK3CcARhl4XBYBw4c0IULF7R+/Xo9/PDD6S4JcBVmfMAocRxHZ8+e1ZtvvqmHHnpIVVVV8vv9A78QQEoRfMAo6Orq0u7du9XZ2amamhpNmzYt3SUBrkXwASPItm2dOHFChw4d0qJFi7RkyRJ5PJ50lwW4GsEHjJDLly+rrq5OlmWppqZG48ePT3dJAMTmFiDlYrGYGhsb9f7776uqqkpPP/30Ax9RAJA6zPiAFPr8889VX1+vKVOmaN26dRozZky6SwJwD2Z8QAr09vZq//79am5u1oYNGzRnzpx0lwSgH8z4gAfgOI7OnDmj/fv367HHHtPKlSuVl8eVYEAmI/iAYero6FB9fb1CoZBqa2s1derUdJcEYBD4qBMYItu2dezYMb3zzjtasmSJFi1axBEFIIsw4wOG4IsvvlBdXZ3y8/NVXV2tcePGpbskAEPEjA8YhL6+Ph08eFAfffSRVq9erSeeeIIjCkCWYsYHDODTTz/V7t27NX36dK1Zs0YFBQXpLgnAAyD4gH709PRo3759amtrU3V1tWbNmpXukgCkAMEH3MNxHL3//vtqaGjQ008/rRUrVsiyrHSXBSBFCD7gDu3t7aqrq1MsFlNtba3KysrSXRKAFGNzC7JaPGEr2BFWNG7L5zVVXhKQ12MO+TmJRELvvPOOjh8/ruXLl2vhwoUyzaE/B0DmY8aHrNMR6tOOk63aeTqoS+0hWR5TpmHIdhzFEramlxZo09xyvbSgQsX5A9+i0traqrq6OhUXF2vDhg0qLi4e+W8CQNoQfMgafXFb2xqatP3IRRmGFInZ/Y71W6YcR9q8dIa2Vs1RnvdXZ2+RSEQNDQ06f/681q1bp0ceeYQjCoALEHzICm2dYb28/biudEcUThJ49wpYpiYV+vXG5kWaWhz4+p+fP39ee/fu1axZs7R69WoFAoEkTwGQSwg+ZLy2zrBqf3JEXb0xJYbxv6vHMFSUb6nuh0s11oxp7969unbtmmpqalRZWZn6ggFkNIIPGa0vbmvNq41qvREeVujd5jEMTSww9S3rjJ5ZMF/Lli2T18veLsCN+JuPjLatoUlXuiMPFHqSlHAcXQ/FFF1Qpeefn5ui6gBkI2Z8yFgdoT4teqVB0Xj/a3pOPKb2/a8p0vyB7EiPvMVlKlnxOwrMmn/f8T6vqXd/VDWo3Z4AchMHlZCxdpxs1UCbLB07Ie/Y8Sr7rVdU8Uc7VLz8O7r2b3+ueOeV+443jFvPBeBeBB8y1s7TwaRHFiTJzPOreNnL8hZPkmGYyv/GQnmLJil6+cJ9x0ditnaeCo5EuQCyBMGHjBRP2LrUHhry6xKhDsVutClvwrR+xzS3hxRPDP5IBIDcQvAhIwU7wrKGePWYk4jr+q6/1JjHq2SVVvQ7zvKYCnaEH7REAFmK4ENGisZtmUO4RcVxbF2v/yvJ49W41b+XdKxpGEk3zADIbQQfMpLPa8oe5IZjx3HUvufHSoQ6NeHX/6sMT/JTOrbjyHefK8wAuAN/+5GRyksCig1yHe7Gvr9VrL1VEzf9N5mWb8DxsYSt8hKuKAPcigPsyEhej6nppQW6cLUn6bh411X1fPCm5LEU/JvvfP3Px637A4159Pn7vqaytGBYrYsA5AaCDxlr09xyvdrQlPRIg7dooqb/af2gn+m3TL0wrzwV5QHIUvzYi4z10oIK2XZqLxZyHOnF+f3v+ASQ+wg+ZKRwOKzGA3v1pK9dPm9qeuQFLI+2LJvJdWWAyxF8yCiO4+jjjz/Wa6+9Jsuy9A9/vEmTiwLyPGCDWI9hqKzQp61Vs1NUKYBsxSXVyBg3b97U7t271d7ero0bN6qi4tZHkqnsx3dnM1oA7kTwIe0cx9Hp06d18OBBzZ9//155w+/A7lFZoU+v39OBHYB7EXxIq/b2dtXV1Skej6u2tlaTJk3qd2xf3Na2hiZtP3JRhqGkuz0DlinbkbYsm6mtVbOHfP0ZgNxF8CEtbNvW0aNHdfToUS1fvlwLFy6UaQ4unDp7+7TjZKt2ngqquT0ky2PKNAzZjqNYwlZlaYFemFeuF+dXsJEFwK8g+DDqvvzyS+3atUv5+fmqqalRSUnJsJ8VT9gKdoQVjdvyeU2VlwQ4nA4gKYIPoyYWi6mxsVEffPCBVq1apSeffFLGA+7WBIChIvgwKpqbm1VXV6eysjKtX79eY8aMSXdJAFyKK8swoiKRiA4cOKALFy5o/fr1euihh9JdEgCXY8aHEXP+/Hnt2bNHc+bM0apVq+T3+9NdEgAQfEi9np4e7d27V5cvX1Ztba0qKyvTXRIAfI3gQ8o4jqNf/OIXeuutt/TUU09pxYoVsiwr3WUBwF0IPqRER0eH6uvrFQ6HVVtbq8mTJ6e7JAC4Lza34IHYtq13331Xhw8f1pIlS/Tss88O+iA6AKQDMz4M25UrV7Rr1y7l5eWppqZGpaWl6S4JAAbEjA9DFo/HdejQIZ06dUorV67U3LlzOYgOIGsw48OQtLS0qK6uTuPHj9eGDRs0duzYdJcEAEPCjA+DEo1G1dDQoHPnzmn9+vV6+OGHmeUByErM+DCgTz/9VLt379aMGTO0Zs0aBQL0tQOQvQg+9CsUCmnfvn0KBoOqqanRzJkz010SADwwgg+/wnEcnTlzRvv379fjjz+u559/Xnl59LUDkBsIPtylq6tL9fX16u7u1saNGzV16tR0lwQAKcXmlhyQimasjuPovffeU2Njo5555hktWbJEHo9nhCoGgPRhxpelOkJ92nGyVTtPB3WpPSTLY8o0DNmOo1jC1vTSAm2aW66XFlSoOD/5x5TXrl3Trl27ZBiGNm7cqPHjx4/SdwEAo4/gyzJ9cVvbGpq0/chFGYYUidn9jvVbphxH2rx0hrZWzVGe9+5ZYCKR0JEjR3TixAk999xzmj9/PkcUAOQ8gi+LtHWG9fL247rSHVE4SeDdK2CZmlTo1xubF2lq8a2jCMFgUHV1dSoqKlJ1dbWKiopGqmwAyCgEX5Zo6wyr9idH1NUbU2IYf2Qew1BRvqV//f5CnT99TB999JHWrl2rxx57jFkeAFch+LJAX9zWmlcb1XojPKzQu800pEKzT3/2tLRh/Vrl5+ensEoAyA7s6swC2xqadKU78kChJ0m2I4UNn5rHziL0ALgWM74M1xHq06JXGhSN97+md73uLxVp/oXsWESeghIVLvq2xj65tt/xPq+pd39UNeBuTwDIRcz4MtyOk60aaAmucNELKl2/VYbXUqy9VZf/+UfKmzRLvrJv3He8Ydx67g+WzxqBigEgs9EqO8PtPB1MemRBkvImTJfhtb76ypAhQ/GOL/sdH4nZ2nkqmMIqASB7MOPLYPGErUvtoUGNbd/3mkJnGuTEo8qbNEuBWfOTjm9uDymesId8wwsAZDuCL4MFO8KyPKZiicSAY0vX/r7Grf6Bom3nFWk5I8NjJR1veUwFO8KqHF+QqnIBICvw434Gi8ZtmUM4Y2eYHvkrHlXi5nXdfH9P0rGmYSTdMAMAuYrgy2A+ryl7OJtubTvpGp8k2Y4jn5c/fgDuwztfBisvCSiWSD4rS4Q6FTrbKLsvLMdOKPz5KYXONcpf+VTS18UStspL6KQOwH1Y48tgXo+p6aUFunC1p/9BhqGb7+9V+77XJMeWt2iiSqq2KH/2M0mfXVlawMYWAK5E8GW4TXPL9WpDU79HGjz5RSp7+ZUhPdNvmXphXnkqygOArMOP/Bnu156YqHh84F2dQ+E40ovzK1L6TADIFgRfBvvkk0/0z//771U11VDASs0fVcDyaMuymVxXBsC1+KgzA4VCIe3du1dffvmlvv3tb2vy1IqUdGfwGIbKCn3aWjU7hdUCQHbhkuoM4jiOzpw5o/379+vJJ5/Uc889J8u6dRA9Vf346n649OtmtADgRgRfhuju7lZ9fb26urq0ceNGTZ069VfGDL8Du0dlhT69fkcHdgBwK4IvzRzH0enTp3Xw4EEtXLhQS5culcfj6Xd8X9zWtoYmbT9yUYahpBdYByxTtiNtWTZTW6tmy+L4AgAQfOl048YN1dXVKRaLaePGjZo4ceKgX9vZ26cdJ1u181RQze0hWR5TpmHIdhzFErYqSwv0wrxyvTi/go0sAHAHgi8NbNvW8ePHdeTIES1btkzPPPOMTHP4s7F4wlawI6xo3JbPa6q8JMDhdADoB8E3yq5evapdu3bJsizV1tZq3Lhx6S4JAFyF4wyjJJFI6PDhw3rvvfe0cuVKzZ07V8YQOi8AAFKDGd8oaGtr065du1RcXKzq6moVFhamuyQAcC1mfCMoFovp7bff1ocffqi1a9fqscceY5YHAGnGjG+ENDc3q66uTlOmTNG6detUUECncwDIBMz4UiwajerAgQNqampSdXW1vvnNb6a7JADAHZjxpdCnn36q3bt3a+bMmVqzZo38fn+6SwIA3IMZXwr09vZq3759amlp0caNGzVz5sx0lwQA6AczvgfgOI7Onj2rN998U48++qhWrlypvDxuSQGATEbwDdPNmze1Z88eXb9+XRs3blRFBY1dASAbuCr4UnG1l+M4+uCDD/TWW29p3rx5Wr58ubxePjEGgGyR88HXEfrqMufTQV26z2XO00sLtGluuV5aMPBlzp2dnaqrq1M4HNbGjRtVVlY2St8FACBVcjb4htK+x2+Zchxp89IZ2lo1R3neu2eBjuPoxIkTamxs1OLFi7V48eIHulQaAJA+ORl8w2/YampSoV9v3NGw9fr169q1a5cMw1Btba3Gjx8/UmUDAEZBzgVfW2dYtT85oq7emBLD+NY8hqGifEv/9h+eVfPZ93Xs2DE999xzWrBgAdeNAUAOyKng64vbWvNqo1pvhIcVereZhlTkiekP5/ToW7U1Ki4uTl2RAIC0yqmFqm0NTbrSHXmg0JMk25F6HUvXJs4n9AAgx+TMjK8j1KdFrzQoGu9/Ta/7VJ1CZxrUd61ZBQ+v0PiaP0r6TJ/X1Ls/qhpwtycAIHvkzIxvx8lWDbQE5x1TqqLFv6ExT6we1DMN49ZzAQC5I2eCb+fpYNIjC5KU/83Fyp/zrMzA4BrBRmK2dp4KpqI8AECGyIngiydsXWoPjcizm9tDiicGfyQCAJDZciL4gh1hWUO8emywLI+pYEd4RJ4NABh9ORF80bgtc4TO2JmGkXTDDAAgu+RE8Pm8puwR2pxqO4583pz4zwQAUI40oi0vCSg2iHU4x05It385tpx4n2R6ZJiefl8TS9gqLwmkslwAQBrlRPB5PaamlxbowtWepOO63vk/6nrnX77+OvTx2ypa8psqXvZyv6+pLC0YcusiAEDmypkD7D9t/EyvNjQNeKRhKPyWqT9eNUffXz4rZc8EAKRXzkxlXlpQoVRHuONIL86nszoA5JKcCb7i/DxtXjpDASs131LA8mjLsplcVwYAOSZngk+StlbN0aRCvzwPeLTBYxgqK/Rpa9XsFFUGAMgUORV8eV5Tb2xepKJ8a9jhd7sf3+ubF43YoXgAQPrkzOaWOw2/A7tHZYU+vX5HB3YAQG7JyeCTbjWl3dbQpO1HLsowlHS3Z8AyZTvSlmUztbVqNjM9AMhhORt8t3X29mnHyVbtPBVUc3tIlseUaRiyHUexhK3K0gK9MK9cL86vYCMLALhAzgffneIJW8GOsKJxWz6vqfKSAIfTAcBlXBV8AAAw3QEAuArBBwBwFYIPAOAqBB8AwFUIPgCAqxB8AABXIfgAAK5C8AEAXIXgAwC4CsEHAHAVgg8A4CoEHwDAVQg+AICrEHwAAFch+AAArkLwAQBcheADALgKwQcAcBWCDwDgKgQfAMBVCD4AgKsQfAAAVyH4AACuQvABAFyF4AMAuArBBwBwFYIPAOAqBB8AwFX+P4+LftTdudwlAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVjV553//9c57IqouOAKCiqcE0VUCGpQFkG2ZJKm0yxtkzGNqU2T6UyvmekfM9Np8+1cV3tNr85Mp0nbGNtJ0iS/dNKmTRoOiOxicF+IoqgIuIFREQGR7Zzz+yMTJqkLKHA+Z3k+rqvXdQy3+tIr1Vfu9+e+Pyan0+kUAAAAcJfMRgcAAACAZ6NQAgAAYEQolAAAABgRCiUAAABGhEIJAACAEaFQAgAAYEQolAAAABgRCiUAAABGhEIJAACAEaFQAgAAYEQolAAAABgRCiUAAABGhEIJAACAEaFQAgAAYEQolAAAABgRCiUAAABGhEIJAACAEaFQAgAAYEQolAAAABgRCqWLOJ1O/exnP1NoaKhMJpMqKiqMjgQAADAq/I0O4AtOnTqlr33ta6qsrDQ6CgAAwKhjh3IMfborGR8frwMHDmjlypVGRwIAABh1FMox9MILL+hb3/qWUlJSdPjwYWVnZxsdCQAAYNQx8h5jW7Zs0dNPP210DAAAgDFDoRxD3/ve92QymYyOAQAAMKYYeY8hyiQAAPAFFEoAAACMCIUSAAAAI0KhBAAAwIhQKAEAADAiFEoAAACMCIUSAAAAI0KhBAAAwIhQKAEAADAiFEoAAACMCIUSAAAAI0KhBAAAwIhQKAEAADAi/kYH8HZvvPHG4Ofa2trBz9u2bdPZs2clSREREcrKynJ5NgAAgNFgcjqdTqNDeDOTyTTkmtTUVFVUVIx9GAAAgDHADuUYo68DAABvxzOUAAAAGBEKJQAAAEaEQgkAAIARoVACAABgRCiUAAAAGBEKJQAAAEaEQgkAAIARoVACAABgRCiUAAAAGBEKJQAAAEaEQgkAAIARoVACAABgRCiUAAAAGBEKJQAAAEaEQgkAAIARoVC6WE+/XRc7e9XTbzc6CgAAwKjwNzqAr9jT1KYt1ae0re6CHE7JbJKyrBF6JiVaifPCjY4HAABw10xOp9NpdAhv95udzfqX9w7LbDbJ7vi/324/s0kOh1M/eGixvpocZWBCAACAu0ehHGN7mtr0yMs1ut1vsknSO5tWsVMJAAA8Es9QjrEt1adkNptuu8ZsNmlLdaOLEgEAAIwuCuUY6um3a1vdhc+NuW/G7nCquK6VgzoAAMAjUSjHUGfPgIbokoMczk/WAwAAeBoK5RiaEOyvIabdg8ymT9YDAAB4GgrlGAoO8FOWNUJ+Qz1DKacyFk1VcICfi5IBAACMHgrlGNuYEi3HEHNvh6TxZ3Zq586dcjgcrgkGAAAwSrg2yAXe2NWs7/7x1vdQ/kterKZ31Gvv3r2aPn268vLyFBXFvZQAAMAzUChdZG9Tm7ZUN6q4rnXwTTnrrTO0MWX+4P2T58+fl81m07lz5xQfH6+srCyFhoYanBwAAOD2KJQu1tNvV2fPgCYE+9/0mUmn06kDBw6opKREDodD6enpSkpKktnM0wkAAMA9USjdVHd3t8rKyrRv3z5FREQoLy9PkZGRRscyVHt7uwoKClRaWqoDBw6osbFRXV1dCg0N1cKFC5WVlaVnn31Wc+fONToqAAA+hULp5s6dOyebzabz588rISFBmZmZGj9+vNGxXO7DDz9URkaGent7ZTKZ9NBDD2nlypUKCwvTiRMn9Prrr+vSpUsaP368XnvtNX3xi180OjIAAD6DQukBHA6HDhw4oNLSUjkcDmVkZCgxMdGnxuBFRUXKzc2V2WxWQUGBcnJyPvf1trY2rV27VkeOHFFgYKAOHTqkuLg4g9ICAOBbfKeReDCz2awVK1bo+eef1z333KPCwkK98sorOnPmjNHRXG7Dhg03lElJCg8P149//GNJUl9fn1555RVXRwMAwGdRKD3IuHHj9MADD+jpp5+WyWTSr3/9a7333nu6du2a0dHG3MSJE7VixYrbjrITExMHP9fV1bkiFgAAECNvj+VwOLR//36VlpZKkjIyMrRixQqfGoP/ue7u7sHnS7/whS/o3XffNTgRAAC+gZdHeyiz2azExERZLBaVlJTIZrPpwIEDys/P1+zZs42OZ4h9+/YNfk5PTzcwCQAAvoUdSi9x5swZ2Ww2tba2avny5Vq3bp3GjRtndCyX6evrU1ZWlqqqqrRkyRLt2rVLISEhRscCAMAnUCi9iMPh0N69e1VWViaz2ax169Zp2bJlXjkG7+3tVXt7uy5fvqydO3fqpz/9qWpra/XII49o8+bNmjhxotERAQDwGRRKL3Tt2jWVlJTo4MGDmjVrlvLy8rxuDP7qq6/qqaeeGvx2ZGSkfvSjH+mxxx6TyWQyMBkAAL6HQunFTp8+LZvNpgsXLmjFihXKyMjwmjF4S0uLjhw5omvXrun48eN64403VFtbq0WLFulnP/uZ1q9fb3REAAB8BoXSyzkcDu3Zs0fl5eUym83KzMzUsmXLvG4Xz+Fw6Nvf/rb+67/+S2azWW+++aYee+wxo2MBAOATKJQ+oqurS9u2bVNtba1mz56tvLw8zZo1y+hYo8rhcCg+Pl5HjhzRhAkT1NTUpPDwcKNjAQDg9bzvtAZuKjQ0VF/4whe0YcMG9ff365VXXlFBQYGuX79udLRRYzab9eUvf1mS1NnZqd/97ncGJwIAwDdQKH1MVFSUNm3apOzsbNXW1urFF1/UgQMH5C0b1bGxsYOfDx8+bGASAAB8B4XSB5nNZq1cuVLPP/+8YmJi9P777+vXv/61WlpajI52S4WFhaqsrBxynb///93VPzAwMJaRAADA/6JQ+rAJEybo4Ycf1l/91V+pt7dXr7zyimw2m3p6eoyOdoNnn31Wzz333JDrTpw4Mfg5MjJyLCMBAID/xaEcSJLsdrt2796tiooKBQQEKDMzU0uXLnWb0+Dz5s3TmTNn1NDQoHnz5t10jcPh0LJly1RbWytJqq2t1ZIlS1yYEgAA38QOJSRJfn5+WrVqlZ5//nnNnz9f7733nv77v/9bra2tRkcb5HA49MQTT9w0k91u13PPPTdYJp966inKJAAALsIOJW6qsbFRNptNly9fVlJSktLT0xUcHGxYngcffFDvv/++JGncuHF6/PHHFRsbqylTpqipqUm//e1vdfz4cUmflMmXX35ZAQEBhuUFAMCXUChxS3a7Xbt27VJFRYUCAwOVlZWl+Ph4w8bghw8f1h/+8AdVVVWpvr5ely5dUn9/vyZMmKDo6GitXr1aTz75pBITEw3JBwCAr6JQYkgdHR0qLi7WkSNHFBkZqby8PEVERBgdCwAAuAkKJYbt1KlTstlsamtrU3JystLS0hQUFGR0LAAAYDAKJe6I3W5XTU2NqqqqFBQUpPXr12vx4sVucxocAAC4HoUSd+Xq1asqLi5WXV2doqKilJeXp+nTpxsdCwAAGIBCiRFpaGhQYWGhrly5ouTkZKWmpjIGBwDAx1AoMWIDAwODY/CQkBCtX79e99xzD2NwAAB8BIUSo6a9vV1bt27VsWPHNG/ePOXl5WnatGlGxwIAAGOMQolRd+LECRUVFam9vV0rV65UamqqAgMDjY4FAADGCIUSY2JgYEAffvihtm/frpCQEGVnZ8tqtTIGBwDAC1EoMaba29tVVFSk+vp6RUdHKzc3V1OnTjU6FgAAGEUUSrjE8ePHVVRUpKtXr2rVqlVau3YtY3AAALwEhRIuMzAwoB07dqi6ulrjxo1Tdna2LBYLY3AAADwchRIud+XKFRUVFen48eOKiYlRbm6upkyZYnQsAABwlyiUMEx9fb2KiorU2dk5OAYPCAgwOhYAALhDFEoYqr+/X9XV1dqxY4dCQ0OVnZ2tuLg4xuAAAHgQCiXcQltbmwoLC3Xy5EktWLBAubm5Cg8PNzoWAAAYBgol3IbT6Rwcg3d1dem+++5TSkoKY3AAANwchRJup7+/X9u3b9eHH36oCRMmKCcnR4sWLbrpGLyn367OngFNCPZXcICfAWkBAACFEm7r8uXLKiwsVENDgxYuXKicnJzBMfiepjZtqT6lbXUX5HBKZpOUZY3QMynRSpzHqBwAAFeiUMKtOZ1OHTt2TEVFRbp27ZpSUlLUFBCpFz44KrPZJLvj//719TOb5HA49YOHFuuryVEGpgYAwLdQKOER+vr6tH37dr27/ZAKehdJuvUpcJOkdzatYqcSAAAXMRsdABiOwMBArVu3Tt1zVw75L63ZbNKW6kaX5AIAABRKeJCefrsqG67IcZvdSUmyO5wqrmtVT7/dRckAAPBtFEp4jM6eATmG+YCGw/nJegAAMPYolPAYE4L9ZR7mC3TMpk/WAwCAsUehhMcIDvBTljVCfkO0SpOcWhHhrwD+7QYAwCX4KxceZWNKtBxDzL2dMml622H98pe/VFNTk2uCAQDgw7g2CB7njV3N+u4fD9/2HsrMqCDZbDadOXNGS5Ys0fr16xUaGmpgagAAvBeFEh5pb1ObtlQ3qriudfBNOeutM7QxZf7g/ZNOp1MHDx5USUmJ7Ha70tPTlZSUJLOZjXkAAEYThRIebTjv8r5+/bpKS0u1b98+zZgxQ3l5eZo7d66LkwIA4L0olPAZ586dU0FBgVpaWpSQkKCsrCyNGzfO6FgAAHg8CiV8isPh0L59+1RWViaTyaR169Zp+fLlMpmGeR8RAAC4AYUSPunatWvatm2bDh06pNmzZysvL0+zZs0yOhYAAB6JQgmfdvr0aRUUFOjjjz9WYmKiMjIyFBISYnQsAAA8CoUSPs9ut2v37t2qqKiQv7+/1q9fr/j4eMbgAAAME4US+F8dHR0qLi7WkSNHFBkZqfz8fE2fPt3oWAAAuD0KJfBnTp06JZvNpra2NiUnJystLU1BQUFGxwIAwG1RKIGbGBgYUE1NjaqqqhQSEqLs7GxZrVbG4AAA3ASFEriN9vZ2bd26VceOHVN0dLRyc3M1depUo2MBAOBWKJTAMBw/flyFhYXq6OjQ6tWrtXbtWgUEBBgdy1AXLlzQO++8o+LiYh04cEAff/yxAgICNHPmTK1atUpPPfWU0tPTjY4JAHABCiUwTP39/aqurtaOHTsUGhqq3NxcxcbGGh3LEJs2bdKrr76qvr4+zZ07V48++qgWLFignp4eFRYWauvWrZKkxx57TK+++irPoAKAl6NQAneora1NhYWFOnnypBYtWqScnBxNnjzZ6FguFRwcrN7eXj3wwAN6++23b3iF5S9/+Us9++yzkqTHH39cb731lhExAQAuQqEE7oLT6dSxY8dUVFSk7u5upaSk6L777pO/v7/R0VwiODhY/v7+amxs1LRp0266Jjc3V0VFRZKknTt3Kjk52ZURAQAuZDY6AOCJTCaTLBaLnnvuOd17772qqqrSL37xC508edLoaC6zatWqW5ZJSfriF784+Pn99993RSQAgEF8YzsFGCOBgYHKyspSQkKCbDab3nzzTVmtVmVnZyssLMzoeGPmD3/4g+bOnXvbNZGRkYOfT58+PdaRAAAGYocSGAXTpk3Tk08+qYcffljNzc168cUXtWPHDtntdqOjjYnc3FwtXrz4tmuuXr06+Hn8+PFjHQkAYCB2KIFRYjKZtGTJEi1cuFDl5eUqLS3VoUOHlJeXp3nz5hkdz+UaGxsHP69Zs8bAJACAscahHGCMtLa2qqCgQGfPnlV8fLyysrIUGhpqdCyXWb16tWpqahQREaHGxkaFhIQYHQkAMEYolMAYcjqdOnjwoLZt2yaHw6H09HQlJSXJbPbup00OHz6sJUuWSJI2b96sZ555xuBEAICxRKEEXKC7u1tlZWXat2+fZsyYofz8fM2ZM8foWGPC6XRq3bp1Ki8vV25urgoKCngHOgB4OQol4ELnzp1TQUGBWlpatGzZMmVmZt5wKbin++EPf6h//Md/1KJFi1RTU6Pw8HCjIwEAxhiFEnAxh8Ohffv2qbS0VGazWevWrdPy5cu9Yhfv97//vR555BHNmDFD27dvV3R0tNGRAAAuQKEEDHLt2jVt27ZNhw4d0uzZs5Wfn6+ZM2caHeuuFRcX6y/+4i80efJklZeXKy4uzuhIAAAXoVACBmtubpbNZtPFixeVmJiojIwMBQcHGx3rjpSWluqBBx7QhAkTVFFRIYvFYnQkAIALUSgBN2C327V7925VVFQoICBAWVlZio+P94gxeGVlpfLy8jRu3DiVl5cPeeE5AMD7UCgBN9LR0aHi4mIdOXJEUVFRysvL0/Tp042OdUs7duxQTk6OgoKCVFZWpvj4+BvWbNq0SS0tLbzPGwC8GIUScEOnTp2SzWZTW1ubVq5cqdTUVAUFBRkd63N27typ9evXy9/fX6WlpVq2bNlN16WlpampqUlNTU2uDQgAcBkKJeCmBgYGVFNTo6qqKoWEhCg7O1tWq9UtxuB79+5VZmamOjo69OMf/1grVqy45dq//du/VXt7O4USALwYhRJwc+3t7SoqKlJ9fb2io6OVl5enKVOmGJanra1NCxYs0JUrV4b9faKioiiUAODFKJSAhzh+/LgKCwvV2dmp1atXa82aNQoICHB5jqamJs2fP/+Ovg+FEgC8G4US8CD9/f2qrq7Wjh07FBoaqtzcXMXGxhodCwDg4yiUgAe6fPmyCgsL1dDQoEWLFiknJ0eTJ082OhYAwEdRKAEP5XQ6dfToUW3dulXd3d1as2aNVq9eLX9/f6OjAQB8DIUS8HB9fX2qrKzUzp07NWnSJOXl5SkmJsboWAAAH0KhBLzExx9/LJvNpubmZlmtVmVnZyssLMzoWAAAH0ChBLyI0+nURx99pOLiYvX19Sk1NVUrV66Un5+f0dEAAF6MQgl4oZ6eHpWXl2vPnj2aOnWq8vLyNG/ePKNjAQC8FIUS8GItLS2y2Ww6e/as4uPjlZWVpdDQUKNjAQC8DIUS8HJOp1MHDhxQSUmJHA6H0tPTlZSUJLPZbHQ0AICXoFACPqK7u1ulpaXav3+/ZsyYofz8fM2ZM8foWAAAL0ChBHzM2bNnZbPZ1NLSomXLlikzM1Pjxo0zOhYAwINRKAEf5HA4tHfvXpWVlclsNmvdunVavny5TCaT0dEAAB6IQgn4sK6uLpWUlOjQoUOaPXu28vPzNXPmTKNjAQA8DIUSgJqbm2Wz2XTx4kUlJiYqIyNDwcHBRscCAHgICiUASZLdbteuXbtUWVmpgIAAZWVlKT4+njE4AGBIFEoAn9PR0aHi4mIdOXJEUVFRysvL0/Tp042OBQBwYxRKADfV0NCgwsJCXblyRcnJyUpLS1NgYKDRsQAAbohCCeCWBgYGVFNTo6qqKoWEhCg7O1tWq/WmY/Cefrs6ewY0IdhfwQG8OxwAfAmFEsCQ2tvbVVRUpPr6ekVHRysvL09TpkyRJO1patOW6lPaVndBDqdkNklZ1gg9kxKtxHnhBicHALgChRLAsB0/flyFhYXq7OzU6tWrdTponl744KjMZpPsjv/7o8TPbJLD4dQPHlqsryZHGZgYAOAKFEoAd6S/v1/V1dX6fdVBfdCzUNKtT4GbJL2zaRU7lQDg5cxGBwDgWQICApSenq5rc5KH/APEbDZpS3WjS3IBAIxDoQRwx3r67apsuCLHbXYnJcnucKq4rlU9/XYXJQMAGIFCCeCOdfYMyDHMh2Uczk/WAwC8F4USwB2bEOwv8zBfoGM2fbIeAOC9KJQA7lhwgJ+yrBHyG6JVmuRU4oxABfrx+kYA8GYUSgB3ZWNKtBxDzL2dkqZertUrr7yis2fPuiYYAMDluDYIwF17Y1ezvvvHw7e9hzJ9jr8KCgrU0tKi5cuXKzMzUyEhIQamBgCMNgolgBHZ29SmLdWNKq5rHXxTznrrDG1MmT94/6TD4dDevXtVVlYmPz8/ZWZmKiEh4aavcAQAeB4KJYBRMZx3eXd1dWnbtm2qra3V3LlzlZ+fr4iICBcnBQCMNgolAJdrbGyUzWbT5cuXtXLlSqWmpiooKMjoWACAu0ShBGAIu92umpoaVVZWKiQkRDk5ObJYLIzBAcADUSgBGKq9vV1FRUWqr69XTEyM8vLyFB7Ou78BwJNQKAG4hfr6ehUVFamzs1MpKSlKSUmRvz8XogOAJ6BQAnAb/f392r59u3bs2KGJEycqLy9PCxYsMDoWAGAIFEoAbufSpUuy2WxqbGyU1WpVdna2wsLCjI4FALgFCiUAt+R0OnX48GEVFxert7dXaWlpSk5Olp/fza8kAgAYh0IJwK319PSovLxce/bs0bRp05Sfn6/IyEijYwEAPoNCCcAjtLS0qKCgQOfOnVNCQoIyMzM1fvx4o2MBAEShBOBBnE6n9u/fr5KSEklSZmamli9fzt2VAGAwCiUAj3Pt2jWVlJTo4MGDmj17tvLz8zVz5kyjYwGAz6JQAvBYp0+fVkFBgS5evKikpCSlp6crODjY6FgA4HMolAA8mt1u1+7du1VRUaGAgABlZ2dr8eLFjMEBwIXMRgcAgJHw8/PTqlWr9NxzzykqKkrvvvuuXn/9dV26dMnoaG7rO9/5jkwmk0wmk77//e8bHQeAF6BQAvAKYWFh+tKXvqSvfOUr6ujo0C9+8QuVlpaqv7/f6GhuZf/+/fr3f/93o2MA8DIUSgBeZcGCBXr22We1du1a1dTU6KWXXlJ9fb3RsdzCwMCANm7cKLvdbnQUAF6GQgnA6/j7+ys1NVXf/OY3NW3aNL399tt6++231d7ebnQ0Q/3kJz/RgQMH9OCDDxodBYCXoVAC8Frh4eH68pe/rEceeUQtLS166aWXtH37dp/coTt58qReeOEFJSUl6Vvf+pbRcQB4GX+jAwDAWDKZTLJYLIqJiVFFRYXKy8tVW1urvLw8zZ8/3+h4LrNp0yb19/frlVde0ZUrV4yOA8DLsEMJwCcEBgZq/fr12rRpk8aNG6fXX39d7777rrq6uoyONuZ+9atfqaysTH/3d3+npUuXGh0HgBeiUALwKREREdqwYYMefPBBNTQ06MUXX9Tu3bvlcDiMjjYmWltb9Q//8A+KiYnR9773PaPjAPBSjLwB+ByTyaSEhATFxsaqtLRUhYWFOnDggPLz8zVnzhyj442q559/XleuXNE777yjkJAQo+MA8FLsUALwWSEhIbr//vv19NNPS/pkNPzBBx/o+vXrBicbHe+9955+//vfa8OGDVq3bp3RcQB4MQolAJ83Z84cPfPMM8rNzdXhw4f14osv6uDBg/LkN9N2dHTom9/8pqZPn66f/OQnRscB4OUYeQOAJLPZrHvvvVdWq1XFxcV67733dODAAeXl5SkiIsLoeHfsO9/5js6fP6+33npL4eHhRscB4OXYoQSAzwgNDdXDDz+sJ598Ut3d3Xr55ZdVXFysvr4+o6MN2/bt27V582bl5ubq8ccfNzoOAB/ADiUA3MT8+fP1jW98QzU1NaqsrNThw4eVk5Mji8Uik8lkdLxb6uvr0zPPPKPAwED9v//3/3Tp0qUb1ly9enXwc3d39+fWTJw4UQEBAS7JCsB7mJye/JAQALhAe3u7ioqKVF9frwULFig3N9dtx8hNTU0jurC9vLxcaWlpoxcIgE+gUALAMNXX16uwsFBdXV1KSUlRSkqK/P3da9DT09Oj6urq2645dOiQ/v7v/16S9MQTT+jJJ58c/NqKFSs0efLkMc0IwPu415+EAODGYmNjFR0draqqKm3fvn3wFY4LFiwwOtqg4OBgZWZm3nbNZ0twdHT0kOsBYCgcygGAOxAQEKB169bp2Wef1aRJk/Tmm2/qnXfeUUdHh9HRAMAwFEoAuAtTp07VE088oYcfflinT5/WSy+9pJqaGtntdqOjAYDLMfIGgLtkMpm0ZMkSLVy4UOXl5dq2bZsOHjyo/Px8RUZGGh3vc2pra1VbWytJOnr06Of++RtvvCHpk/ecZ2VlGZIPgGfjUA4AjJKWlhYVFBTo3LlzSkhIUGZmpsaPH290LEnS97//fb3wwgu3XZOamqqKigrXBAIMVldXp1//+tfaunWrzp49q97eXs2YMUPz5s3T2rVrlZubq+TkZKNjegwKJQCMIqfTqf3796ukpESSlJmZqeXLl7v13ZWAL3E6nfre976nH/7wh5o9e7YeeeQRLVy4UF1dXaqoqNCf/vQnOZ1OrVixQnv37jU6rsegUALAGLh27ZpKSkp08OBBzZ49W/n5+Zo5c6bRsQCf9+1vf1v/+Z//qSeeeEKbN29WcHDw576+efNmbdq0iUJ5hyiUADCGTp8+rYKCAl28eFFJSUlKT0+/4S8wAK7xwQcf6IEHHlB8fLz27dt303tknU6nFi9erJkzZw5OGjA0CiUAjDG73a5du3apoqJCQUFBWr9+vRYvXswYHHAhp9OpRYsW6eTJk3rrrbd4z/0oo1ACgIt0dHRo69atqqur0/z585WXl6epU6caHQvwCRUVFUpPT5fZbNaVK1cUFhZmdCSvwj2UAOAiYWFh+tKXvqSvfOUram9v1y9+8QuVlpaqv7/f6GiA1/vd734nSYqKivpcmXQ4HOrs7DQqltegUAKAiy1YsEDf/OY3tWbNGtXU1OjnP/+5jh8/bnQswKt9esAmMjJSdrtdmzdv1r333qvAwECFhYUpKChIa9eu1WuvvSaHw2FwWs/DyBsADNTW1iabzaaGhgbFxsYqJydHkyZNMjoW4HVCQ0N17do1rVmzRv7+/tq+fbs2btyorKwsmc1mlZaW6uWXX1Z/f79yc3P1u9/9TuPGjTM6tsegUAKAwZxOp44ePaqioiJdv35dqampWrVqlfz8/IyOBniF7u7uG14y8Mc//lEPPvjg5/5ZYWGh8vPz5XQ69eSTT+q1115zZUyPRqEEADfR29uryspK7dy5U1OmTFFeXp7mz59vdCzA4124cEEzZswY/HZ+fr4++OCDm6599NFH9T//8z+SpAMHDighIcElGT0dz1ACgJv49EqhTZs2KSQkRK+//rreffdddXV1GR0N8GgDAwOf+/Zf/uVf3nLtY489Nvj5zTffHLNM3nEAXrIAAB62SURBVIZCCQBuJiIiQk899ZQefPBBNTQ06MUXX9Tu3bs5KADcpdDQ0M99e/Hixbdc+9kdyd27d49ZJm/DyBsA3Nj169dVWlqqffv2aebMmcrPz9fs2bONjgV4FIfDoZCQEPX19UmSTpw4oQULFtx0bUdHhyZOnChJiouL09GjR12W05OxQwkAbiwkJET333+/nn76aTmdTm3ZskUffPCBrl+/bnQ0wGOYzWbFxcUNfvvPR+Cf9dl9Ng7GDR+FEgA8wJw5c/TMM88oJydHhw8f1osvvqiDBw+KIRMwPPfee+/g5wsXLtxy3cWLFwc/z5o1a0wzeRMKJQB4CLPZrOTkZD333HOKiYnRe++9p1dffVUff/yx0dEAt/fFL35x8POnl5zfzP79+wc/r127dkwzeROeoQQAD9XY2KiCggJduXJFK1euVGpqqgIDA42OBbglu92uhIQEHT58WAkJCdq/f79MJtMN6x544AF98MEHCgoKUkNDA88sDxM7lADgoebPn69vfOMbSktL0+7du/XSSy/p6NGjNx2D9/TbdbGzVz39dgOSAsbz8/PTz3/+cwUEBOjgwYP60Y9+dMOat956a/B+yn/913+lTN4BdigBwAu0t7ersLBQx48f14IFC5Sbm6vw8HDtaWrTlupT2lZ3QQ6nZDZJWdYIPZMSrcR54UbHBlzunXfe0de+9jV1dXUpJydH999/v/z8/FReXq533nlHJpNJ3//+9/Xd737X6KgehUIJAF6kvr5ehYWF6urqUl/USv2mrldms0l2x2dOrppNcjic+sFDi/XV5CgD0wLGaG5u1k9/+lMVFhbqzJkzcjgcmjNnjtLT0/XXf/3Xt72nEjdHoQQAL9PX16df/6lSP9rbK+nGZ8Q+ZZL0zqZV7FQCGDGeoQQALxMYGKgD1yfL7yYHDj7LbDZpS3Wji1IB8GYUSgDwMj39dm2ruyD7EPMnu8Op4rpWDuoAGDEKJQB4mc6eATmG+TCTw/nJegAYCQolAHiZCcH+Mt9+2j3IbPpkPQCMBIUSALxMcICfsqwR8huiVZrk1Dy/q/ro4H45HA4XpQPgjSiUAOCFNqZEyzHk3Nukv4gNlc1m05YtW3Tu3DmXZAPgfbg2CAC81Bu7mvXdPx4e8h7KM2fOyGazqbW1VStWrNC6desUEhJiYHIAnoZCCQBebG9Tm7ZUN6q4rnXwTTnrrTO0MWX+5+6fdDgc2rNnj8rLy+Xn56fMzEwlJCTc9F3HAPDnKJQA4AN6+u3q7BnQhGB/BQf43XJdV1eXiouL9dFHH2nu3LnKy8vTjBkzXJgUgCeiUAIAbtDU1CSbzaZLly7p3nvvVXp6uoKCgoyOBcBNUSgBADdlt9u1c+dOVVZWKigoSOvXr9fixYsZgwO4AYUSAHBbV69e1datW3X06FHNnz9fubm5mjZtmtGxALgRCiUAYFhOnjwpm82mq1evatWqVVq7dq0CAwONjgXADVAoAQDDNjAwoB07dmj79u0KDQ1VTk6OYmNjGYMDPo5CCQC4Y21tbSoqKtKJEye0cOFC5ebmavLkyUbHAmAQCiUA4K44nU7V19erqKhIXV1dWrNmje677z75+/NucMDXUCgBACPS19enqqoq1dTUaOLEicrLy9OCBQuMjgXc1nDvZsXwUCgBAKPi0qVLstlsamxslMViUXZ2tiZOnGh0LOBz9jS1aUv1KW2ruzD49qgsa4SeSYn+3NujcGcolACAUeN0OnXkyBFt3bpVvb29Sk1N1cqVK+Xnxw4QjPebnc36l/eGfr897hyFEgAw6np7e1VeXq7du3drypQpys/P17x584yOBR+2p6lNj7xco9uVHpOkdzatYqfyLpiNDgAA8D5BQUHKycnR17/+dYWEhOi1117Tu+++q66uLqOjwUdtqT4ls/n211uZzSZtqW50USLvwg4lAGBMOZ1OHTx4UCUlJbLb7UpPT1dSUpLMZvY04Bo9/XZZv1ckxzAaj9kk1b2Qw0GdO8TdDgCAMWUymbRs2TLFxcWptLRURUVFOnjwoPLz8zVnzhyj48EHdPYMDKtMSpLD+cl6CuWd4T8PAQAuERISovvvv18bN26UyWTSr371K73//vvq7u42Ohq8XLCfU8N9l5PZJE0IZr/tTjHyBgC4nMPh0L59+1RaWiqz2ax169Zp+fLlPv0Kx7S0NFVWVg65bvz48TyLOkx2u1379+/X9u3b9d7l6TrjmCTHbaqln9mkLEuEfvnVFS5M6R2o4AAAlzObzUpKSpLFYlFJSYk++OADHThwQPn5+Zo5c6bR8eDhHA6HamtrVVlZqfb2di1ZskT/krlcG/+/I0N8P6c2psx3UUrvwg4lAMBwzc3NstlsunjxohITE5WRkaHg4GCjY7lUWlqaJk+erB/+8Ie3XWc2m7Vo0SIXpfIsTqdTdXV1qqio0KVLlxQXF6f09HRNnz5dkvTGrmZ994/cQzkWKJQAALdgt9u1a9cuVVZWKiAgQOvXr9eSJUt8ZgyelpamefPm6dVXXzU6isdxOp06ceKEysvL1draqpiYGGVkZGjWrFk3rN3b1KYt1Y0qrmsdfFPOeusMbUyZz/2TI0ChBAC4lY6ODhUXF+vIkSOKiopSXl7e4A6TN6NQ3p2mpiaVlZXpzJkzioyMVEZGhqKiht5l5F3eo4tCCQBwSw0NDbLZbGpvb1dycrLS0tIUGBhodKwxQ6G8M+fOnVNZWZlOnTqlmTNnKiMjQzExMT6zo+1uOJQDAHBLMTExevbZZ/Xhhx9q+/btOnLkiLKzs2WxWHyiNPT19en69esKCwvziV/vcF24cEHl5eWqr6/XtGnT9MgjjyguLo7fI4OxQwkAcHtXrlxRUVGRjh8/rpiYGOXm5mrKlClGxxpVaWlpmjRpkpKSkvTqq6+qoaFBTqdTfn5+slqteuCBB/Q3f/M3PjH+v5nLly+roqJChw8f1uTJk5WWlqbFixfzxiU3QaEEAHiM+vp6FRUVqbOzU/fdd59SUlIUEBBgdKxR8ek9lKGhodq4caNWr16tkJAQHTt2TJs3b9aJEyc0adIkvfXWW8rNzTU6rsu0t7ersrJShw4dUmhoqFJTU5WQkCA/P557dCcUSgCAR+nv79f27dv14YcfasKECcrNzfWKa3TS0tLU3NyssrIyzZ//+bsQe3p69MADD6ikpERBQUGqqqrSvffea1BS1+jq6lJVVZX279+voKAgrVmzRomJifL352k9d0ShBAB4pMuXL8tms+nUqVOKjY1VTk6OJk2aZHSsu9ba2qpx48YpLCzspl8/f/68oqOj1dvbq6SkJO3evdvFCV3j+vXr2rFjh3bt2iU/Pz+tXr1aK1eu9OoDWd6AQgkA8FifXmS9detWXb9+XWvXrtWqVau8dhfroYce0nvvvSdJOnjwoJYuXWpwotHT29urnTt3qqamRg6HQ8nJyYNjf7g/7/x/HADAJ5hMJt1zzz1asGCBKisrVV5erkOHDikvL0/R0dFGxxt1iYmJg4Vyx44dXlEo+/v7tWfPHlVXV6uvr0+JiYlas2aNxo8fb3Q03AEKJQDA4wUFBWn9+vVaunSpbDabfvOb3+iee+5Rdna2JkyYYHS8UfPZE94tLS0GJhk5u92u/fv3q6qqSt3d3UpISNDatWs1ceJEo6PhLlAoAQBeIyIiQhs2bFBtba22bdumF198UWlpaUpOTvaK62UcDsfgZ0895exwOFRbW6vKykq1t7crPj5eqampCg/ntYeejEIJAPAqJpNJS5cuVWxsrMrKylRcXKyDBw8qPz9fkZGRRse7qT/96U86dOiQ/umf/um2F3S3trYOfp45c6Yroo2aT593raio0KVLlxQXF6fHH3/cZ+/V9DYcygEAeLXz58/LZrPp3LlzSkhIUGZmpts9n7dhwwa99tpramlp0YwZM265LicnR1u3bpUkHT58WPfcc4+rIt41p9OpEydOqLy8XK2trYqJiVFGRoZmzZpldDSMInYoAQBebdasWXr66ae1f/9+lZSU6NixY8rIyNCKFSvcbgxeWFiop5566qZfO3HihEpKSiRJq1ev9ogy2djYqPLycp05c0aRkZHasGGDoqKijI6FMcAOJQDAZ1y7dk0lJSU6ePCgZs2apfz8fLfYKft0hzIiIkJVVVU3XNTe1tam9evXa9++fRo3bpx27NihhIQEg9IO7ezZsyorK1NjY6NmzpypjIwMxcTE8L5tL0ahBAD4nDNnzqigoEAXLlxQYmKiMjIyDL3v8N/+7d/0z//8z+rv71dISIgee+wxJSUlKTAwUEePHtXrr7+uixcvKiIiQr/97W+VmppqWNbbuXDhgsrLy1VfX69p06YpPT1dcXFxFEkfQKEEAPgkh8Oh3bt3q7y8XP7+/srKytLSpUsNKz+tra169913tW3bNn300UdqaWlRf3+/Jk+erCVLluj+++/X008/7ZbXIF2+fFkVFRU6fPiwJk+erLS0NC1evNjtHinA2KFQAgB8Wmdn52CJi4yMVF5eniIiIoyO5RHa29tVWVmpQ4cOKTQ0VKmpqUpISPDYK41w9yiUAADokwMkNptNly9fVnJystLS0hQUFGR0LLfU1dWlqqoq7d+/X0FBQVqzZo0SExO99pWXGBqFEgCA/2W321VTU6OqqioFBwdr/fr1uueee3gG8H91d3drx44d2r17t/z9/bV69WolJycrMDDQ6GgwGIUSAIA/c/XqVRUVFenYsWOKjo5Wbm6upk6danQsw/T29mrnzp2qqamRw+FQcnKyVq9ebehBJrgXCiUAALdw4sQJFRYW6urVq1q9erXWrl2rgIAAo2O5TH9/v/bs2aPq6mr19fUpMTFRa9ascbuL4WE8CiUAALfR39+vHTt2qLq6WqGhocrNzVVsbKzRscaU3W7X/v37VVVVpe7ubiUkJCg1NVVhYWFGR4ObolACADAMbW1tKiws1MmTJ7Vo0SLl5ORo8uTJRscaVQ6HQ7W1taqsrFR7e7vi4+OVmpqq8PBwo6PBzVEoAQAYJqfTqWPHjqmoqEjd3d1KSUnRfffd5/Gnm51Op+rq6lRRUaFLly7JYrEoLS1N06dPNzoaPASFEgCAO9TX16fKykrt3LlTkyZNUl5enmJiYoyOdcecTqdOnDih8vJytba2KiYmRhkZGW7xOkp4FgolAAB36eLFiyooKFBzc7OsVquys7M95jnDxsZGlZWV6ezZs4qMjFRGRoaioqKMjgUPRaEEAGAEnE6nPvroIxUXF6uvr09paWlKTk5227fFnD17VmVlZWpsbNTMmTOVkZGhmJgY7trEiFAoAQAYBT09PSovL9eePXs0depU5efnu9WO34ULF1RWVqbjx49r2rRpSk9PV1xcHEUSo4JCCQDAKGppaZHNZtPZs2cVHx+vrKwshYaGGpbn8uXLqqio0OHDhzV58mSlpaVp8eLFMpvNhmWC96FQAgAwypxOpw4cOKCSkhI5HA5lZGQoMTHRpSWuvb1dlZWVOnTokCZMmKC1a9cqISHBbUfx8GwUSgAAxkh3d7dKS0u1f/9+zZw5U3l5eZozZ86Y/pxdXV2qqqrSvn37FBwcrDVr1igxMdHjrzaCe6NQAgAwxs6ePauCggK1trZq+fLlWrduncaNGzeqP0d3d7d27Nih3bt3y9/fX6tXr1ZycrICAwNH9ecBboZCCQCACzgcDu3du1dlZWUym83KzMzUsmXLRnwopre3VzU1Ndq5c6ccDodWrlyp1atXKzg4eJSSA0OjUAIA4EJdXV3atm2bamtrNWfOHOXn52vGjBk3rOvpt6uzZ0ATgv0VHHDjc4/9/f3as2ePqqur1dfXp6SkJKWkpGj8+PGu+GUAn0OhBADAAE1NTbLZbLp06ZKSkpKUnp6u4OBg7Wlq05bqU9pWd0EOp2Q2SVnWCD2TEq3EeeGy2+3av3+/qqqq1N3drYSEBKWmpnrMherwThRKAAAMYrfbtWvXLlVUVCgoKEj981bp5b1XZDabZHf831/PfmaTHA6nNq2YpJBze9Xe3q74+HilpqYqPDzcwF8B8AkKJQAABuvo6NAvf79NPz8eJOl2z1Q69c2FPdpw/1pNnz7dVfGAIXGrKQAABgsLC1NDQJT8hjig42cy6VTgfMok3A6FEgAAg/X027Wt7oLsQ8wM7U6puK5VPf121wQDholCCQCAwTp7BuQY5gNoDucn6wF3QqEEAMBgE4L9ZR7mdZRm0yfrAXdCoQQAwGDBAX7KskbIb4hW6Wc2ab11xk3vpQSMRKEEAMANbEyJlmOIubfD4dTGlPkuSgQMH4USAAA3kDQvXD94aLFM0g07lWbTJ5cJ/eChxUqcx72TcD/cQwkAgBvZ29SmLdWNKq5rlcMpmeRU7Phe/etX0ymTcFs81QsAgBtJnBeuxHnhg+/ybjpxVLY/vadF4VlGRwNuiZE3AABuKDjAT9MmBGmJNU5ms1lHjx41OhJwSxRKAADcWHBwsGJiYlRXV2d0FOCWKJQAALg5i8Wi06dPq6ury+gowE1RKAEAcHNxcYy94d4olAAAuLmQkBDNmzePQgm3RaEEAMADWK1WNTU16dq1a0ZHAW5AoQQAwAPExcVJkurr6w1OAtyIQgkAgAcYP368oqKiGHvDLVEoAQDwEBaLRadOndL169eNjgJ8DoUSAAAPYbFY5HA4GHvD7VAoAQDwEBMmTNDcuXMZe8PtUCgBAPAgFotFDQ0N6u3tNToKMIhCCQCAB7FarbLb7Tp+/LjRUYBBFEoAADzIxIkTNWvWLMbecCsUSgAAPIzVatWJEyfU19dndBRAEoUSAACPY7FYNDAwoJMnTxodBZBEoQQAwOOEh4drxowZqqurMzoKIIlCCQCAR7JYLDpx4oT6+/uNjgJQKAEA8ERWq1V9fX1qaGgwOgpAoQQAwBNNnTpV06ZN47Q33AKFEgAAD2WxWFRfXy+73W50FPg4CiUAAB7KarWqt7dXp06dMjoKfByFEgAADzV9+nSFh4dz2huGo1ACAOChTCaTrFYrY28YjkIJAIAHs1qtun79upqbm42OAh9GoQQAwIPNmDFDkyZNYuwNQ1EoAQDwYCaTSRaLRceOHZPD4TA6DnwUhRIAAA9ntVp17do1nT592ugo8FEUSgAAPNzs2bMVFhbGJecwDIUSAAAPZzKZFBcXp6NHj8rpdBodBz6IQgkAgBewWq3q7OzU2bNnjY4CH0ShBADAC8ydO1ehoaGc9oYhKJQAAHgBs9nM2BuGoVACAOAlrFarrl69qpaWFqOjwMdQKAEA8BJRUVEKCQlh7A2Xo1ACAOAlGHvDKBRKAAC8iNVqVVtbmy5cuGB0FPgQCiUAAF5k/vz5Cg4O5pJzuBSFEgAAL+Ln56fY2Fieo4RLUSgBAPAyFotFly5d0sWLF42OAh9BoQQAwMvExMQoMDCQXUq4DIUSAAAv4+/vr0WLFvEcJVyGQgkAgBeyWq26cOGCLl++bHQU+AAKJQAAXmjBggUKCAhglxIuQaEEAMALBQQEaOHChRRKuASFEgAAL2WxWHT+/Hm1t7cbHQVejkIJAICXWrhwofz8/NilxJijUAIA4KWCgoK0YMECrg/CmKNQAgDgxSwWi86ePauOjg6jo8CLUSgBAPBisbGxMpvNjL0xpiiUAAB4seDgYEVHR1MoMaYolAAAeDmr1arm5mZ1dXUZHQVeikIJAICXi42Nlclk0rFjx4yOAi9FoQQAwMuNGzdO8+fPZ+yNMUOhBADAB1gsFjU2Nqq7u9voKPBCFEoAAHxAXFycnE6n6uvrjY4CL0ShBADAB4SGhioqKopLzjEmKJQAAPgIi8WiU6dOqaenx+go8DIUSgAAfITFYpHD4WDsjVFHoQQAwEeEhYVpzpw5nPbGqKNQAgDgQ6xWq06ePKne3l6jo8CLUCgBAPAhFotFdrtdJ06cMDoKvAiFEgAAHzJp0iTNmjWLsTdGFYUSAAAfY7FYdOLECfX19RkdBV6CQgkAgI+xWCzq7+/XyZMnjY4CL0GhBADAx0yZMkURERGMvTFqKJQAAPggi8Wi48ePa2BgwOgo8AIUSgAAfJDValVfX58aGhqMjgIvQKEEAMAHTZs2TVOnTmXsjVFBoQQAwEdZrVbV19fLbrcbHQUejkIJAICPslgs6unpUWNjo9FR4OEolAAA+KiIiAiFh4errq7O6CjwcBRKAAB8lMlkksVi0bFjx+RwOG65bsOGDTKZTHf0v4ceesiFvxIYjUIJAIAPs1qtun79upqamkb1x42IiBjVHw/uzd/oAAAAwDgzZ87UxIkTdfToUUVHR9927XBOhOfk5Ki5uVkbNmwYpYTwBBRKAAB82Kdj748++ki5ubkym289vIyLi7vtj/Xhhx+qublZS5Ys0apVq0Y7KtwYI28AAHyc1WrVtWvXdObMmZt+fdGiRbrvvvuG/HE2b94sSfr6178+qvng/kxOp9NpdAgAAGAcp9Op//iP/5DFYlFubu5d/RhXr17VzJkzZTKZdP78eU2cOHGUU8KdsUMJAICP++xp77vdZ/rNb36j69ev69FHH6VM+iAKJQAAkMViUUdHh86dO3dX3/+VV16RxLjbV1EoAQCAIiMjNX78+Lu65Hznzp2qra1VfHy8Vq5cOQbp4O4olAAAQGazWXFxcTp69Ogdj705jAMKJQAAkPTJae/29na1tLQM+/t0dHTot7/9rcaNG6evfvWrY5gO7oxCCQAAJElRUVEKCQkZ1gXmn3rjjTfU3d3NYRwfR6EEAACSJD8/P8XGxqqurm7YY+9Px92bNm0ay2hwcxRKAAAwyGq1qq2tTR9//PGQa3ft2qVDhw5p6dKlSk5OdkE6uCsKJQAAGBQdHa2goKBhnfbmMA4+RaEEAACDPh17D/Uc5aeHccaPH89hHFAoAQDA51ksFl28eFEXL1685Zo333xT165d06OPPqqwsDAXpoM7olACAIDPiYmJUWBg4G13KT99Mw6HcSBRKAEAwJ8JCAjQokWLblko9+zZowMHDmjp0qW69957XZwO7ohCCQAAbmCxWNTa2qq2trYbvsZVQfhzFEoAAHCDBQsWyN/f/4Zdys7OTr399tsaP368vvKVrxiUDu6GQgkAAG4QGBiohQsX3nB90IQJE9TZ2amuri4O42AQhRIAANyUxWLR+fPn1d7ebnQUuDkKJQAAuKlFixbJz8/vjt7tDd9EoQQAADcVFBSkmJgYCiWGRKEEAAC3ZLVadebMGXV0dBgdBW6MQgkAAG5p0aJFMpvNOnbsmNFR4MYolAAA4JZCQkIUHR3N2Bu3RaEEAAC3ZbFY1NzcrGvXrhkdBW6KQgkAAG4rLi5Okhh745YolAAA4LbGjRunefPm3XDJOfApCiUAABiSxWJRY2Ojuru7jY4CN0ShBAAAQ7JYLHI6naqvrzc6CtwQhRIAAAwpNDRUkZGRnPbGTVEoAQDAsFitVjU0NKinp8foKHAzFEoAADAsFotFDodDx48fNzoK3AyFEgAADEtYWJjmzJnD2Bs3oFACAIBhs1gsOnnypPr6+oyOAjdCoQQAAMNmsVg0MDCgw0frdbGzVz39dqMjwQ34Gx0AAAB4jpNXndphvkevvt0sp07LbJKyrBF6JiVaifPCjY4Hg5icTqfT6BAAAMD9/WZns/7lvcMymSTHZ9qDn9kkh8OpHzy0WF9NjjIuIAxDoQQAAEPa09SmR16u0e1Kg0nSO5tWsVPpg3iGEgAADGlL9SmZzabbrjGbTdpS3eiiRHAnFEoAAHBbPf12bau7ILvj9kNNu8Op4rpWDur4IAolAAC4rc6eAQ3RJQc5nJ+sh2+hUAIAgNuaEOyvIabdg8ymT9bDt1AoAQDAbQUH+CnLGiG/IVqln9mk9dYZCg7wc1EyuAsKJQAAGNLGlGg5hph7OxxObUyZ76JEcCcUSgAAMKSkeeH6wUOLZZJu2Kn0M5tkkvT/t3OHtgmGARRFP4HA1GNrSUeoRjNEN+kaTIJGVtcWicJg/qQtIFgAciXnTHHFy/tcv7kMelJ+KAGAu33tj2Oz+xnb78M4X26bydVyMT7eX8XkExOUAMDDpt//cZr+xst8ZjOJoAQAoLGhBAAgEZQAACSCEgCARFACAJAISgAAEkEJAEAiKAEASAQlAACJoAQAIBGUAAAkghIAgERQAgCQCEoAABJBCQBAIigBAEgEJQAAiaAEACARlAAAJIISAIBEUAIAkAhKAAASQQkAQCIoAQBIBCUAAImgBAAgEZQAACSCEgCARFACAJAISgAAEkEJAEAiKAEASAQlAACJoAQAIBGUAAAkghIAgERQAgCQCEoAABJBCQBAIigBAEgEJQAAiaAEACARlAAAJIISAIBEUAIAkAhKAAASQQkAQCIoAQBIBCUAAImgBAAgEZQAACSCEgCARFACAJAISgAAEkEJAEAiKAEASAQlAACJoAQAIBGUAAAkghIAgERQAgCQCEoAABJBCQBAIigBAEgEJQAAyRVfL4x7ts6MIQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -204,40 +216,71 @@ }, { "cell_type": "code", - "execution_count": 133, + "execution_count": 6, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddZgV1f/HXzNz+24323R3Skgjohh0KUqoYCBiwE8UVFQUFVS+KIKKSokiiiiiNEooSnfusgvbezdvz/n9MbsXVsBAVIT7ep77wE6cOXMm3nPO+YQkhBD48ePHjx8/1wjyv10BP378+PHj55/EL3x+/Pjx4+eawi98fvz48ePnmsIvfH78+PHj55rCL3x+/Pjx4+eawi98fvz48ePnmsIvfH78+PHj55rCL3x+/Pjx4+eawi98fvz48ePnmsIvfH78+PHj55rCL3x+/Pjx4+eawi98fvz48ePnmsIvfH78+PHj55rCL3x+/Pjx4+eawi98fvz48ePnmsIvfH78+PHj55rCL3x+/Pjx4+eawi98fvz48ePnmsIvfH78+PHj55rCL3x+/Pjx4+eawi98fvz48ePnmsIvfH78+PHj55rCL3x+/Pjx4+eawi98fvz48ePnmsIvfH78+PHj55rCL3x+/Pjx4+eawi98fvz48ePnmsIvfH78+PHj55rCL3x+/Pjx4+eaQvdvV8CPHz9/Dx6vSlq+HadHxaiTiQ81o1P837p+/PiFz881z9UkEPklLj7efopPf0njZE4xOkVGQkIg8HhVkiMC6NMkngHNEwixGP7t6vrx868gCSHEv10JP37+ac4ViJTcEvSKjCxJqELg9qokhVv/UwLh8qi8vuYwczYdxysEXvXi2yoyKJLEyHZVGNO5Bgbdf1Pk/fi5VPzC5+eaolwg5n5/AkkCh/viCmHSywgBI9pWvqIFIt1mZ9CcLaTl2/H+iadZkSA+1MzCkdcRF2L++yrox88Vhl/4/FwzpNvsDJ67lcxCB/bfELxfY9LLxASZWDCi1RUnEOk2Oz3e2ESB3X3JZQSb9Xz9ULvfPberaUjYz7WNX/j8XBOk2+z0nPk9BaVuvJdwy0tAqNXAlw+0vWLEz+VR6fTqOtJsjr9cVkKIibWPdkT/KyH7rw4J+0Xaz2/hFz4/Vz0uj0q3GRs4lWe/JNE7l4RQM2vHdThPIP4Npq48wOyNx7lcD/Dg5gk8c2s9dIr8nxwS/q+KtJ9/Hr/w+bnqmbbqIO/9cOJPDW/+FkOvS+KZW+pdlrJmzpzJvHnz2LNnDwMHDmTevHkAuFwuBg0axPbt20lJSWHdunV06NDBt9/zL01j8tRX8ZYWIhvMWGq1I7TTMCRZ8W1T+NMXFG5fjlpqQwmKJKr3U+jD4gAo2bee/A0foNoLMSU3JrzHGBRzIDoZ4kItFNrd2DJSODn7fqy12hDR81FfuRfb16yXif4XhoT/iyLt59/FL3x+/nM4nU5Gjx7N6tWrycvLo2rVqrz44ovceOON7N+/nzvvvJNjx44B0LBRY07W7A+h8QAUbFtKyZ41eAqzkc1BBDbpQXDL3r6yXZnHyfvubVzZJ5ENZgIadSekzUDfetXtwLb2PfQp2/B43DRs2JCNGzcCIIRg/PjxzJ07F4ARI0YwdepUJEm66Ll89tlnyLLMqlWrmDt3Lkaj0beutLSU22+/nc2bNzN9+nQGDhyI1WrV6unxYm7Sk9D2Q/Hai8he9iKWas2x1u/C6XfuRTZZkXRGIm59HEln4PTbI5D0RkACoSKESnT/KRhiqpL95au4zxxGeFxIeiPBrfsT2LgHmYufQnic6IKjiOj5KMV71pD71XRQ9ET3fw5DTFVyv5kJQiXy1icAzVo02KL/x4aEL3Xe9t8SaT9XBv7PHT//OTweDwkJCWzYsIGCggKmTJlCv379OHnyJLGxsXz66afk5eWRk5NDVP22nFk29ezOQhB+8yMkPLyY6H7PUPTzCkr2b/Ctzlk+DWNCPRLGLCJ60FSKf/ma0iPbfOvzvpmJ11FE+yc/Ii8vj+nTp/vWvfPOO3z++efs2rWL3bt38+WXXzJ79uzfPJdevXpx2223ER4ezuDBgykuLqa4uJiMjAwsFgtjxoxBUc724mw2G3m2QuIf+ZTQ9kPLTwpJknDnn8G2/n304fF4CrMJ7TwCQ0QiEprwJoxdQuK4TwlsfiuWmm0wJdZDNphRS/LxFucTe887RPWZhG3Dh+Rv/AjZZMWU1BAAr6OYgi2fIJuDMERV9u0b0m4IpYe2oDpLte2EoKDUzZC5W3H/lk/FZaB83jY1t/RP9+btbpVTedr+6Tb731RDP1cqfuHz859h5syZNGvWjLCwME6ePElycjKyLNOtWzdkWaZ58+aEhoZy8uRJJElCCMGu9EJcuelkLJxA6vR+FP3yNcaYakiygj48Hkv1VuStfY9Trw8i9bW+uHPTUKyh2vrQShjj61Cybz1ps+4m5ZXbKTmwiZD2d7EjW6XI6SU8PJwePXoQGhrKgw8+SGxsLDExMcTFxTFu3Djf0OWHH36IJEm+3uDvsXTpUqKiomjXrt1566Z/dwhVaEOOqa/1Je31QbiyTmCsVANXdgrm6i3B68GdnULa/+7izAKtNyaEJg7u7FQMUZUBUF12XKcPgc6ApzALQ3QVzNVaUrR9OaGdRviOaVs/j6BmPUEIlMAI33J9aCUkRYc7/7RvmVcIMgqdvL7myJ+7wL/C41U5mVPCoYwiTuaU4DlHSF0elUFztpBX4uJS5fWfFGk/Vxb+yC1+/jPExsYyceJEVq1ahd1+9is9MzOT0tJSZs2axaOPanNRISEhFBcX4/WqBDS6AWN8HYSnPQWbl/j2E0LgOLWPgAZdCGk7CElWyFkxnfy172ri4XHhOLUP1WUnut8zuPPSyF/3PllLnkK1F1P34xiiQ6w0aNCAM2fOEBUVRWpqKrNmzeKhhx6iYcOG7Nu3j/z8fF544QXq1q0LXHxeT1VV+vTp45vXGzp06HnDpCaTCa/Xi6QzYKnbiYSHF+OxZVC8ZzV5372FEEITMqDgh8XE3TcHV1YKmQuf4NQrvaFM/FxZJwhoeINvTlAymMj69DnU4lztQIoeJTAcAG9pIe6cvZQe/wXVUYT98Gby1r1PWMe7tXZUvWR89JivLOH1oA+PY454ixFtK/sMSTZs2ECHDh148sknmTJlCqANW48fP56PP/4Yu91Orz79aDJgLMt2Z5KSW4JOlpAkCVUVeFTNQKVv0wRO5BSTmvfXe2rnivSj3Wr+5fL8/Dfw9/j8/Gc4d1iwHLfbzd13382wYcMYPHiwb1jQZrOx+9hpom8cjblaSwLqdUIXElOhvILvF4JQCWk9wPfSNsbXBtXD6bdHcHrOfejCYrHUaIUpsR5qaSHCWYIn7wyxI98motsodu7cSatWrTCZTJSUlNC+fXv27dsHQHBwMMXFxYwfP56HHnqIiAitp1Qu4MOGDTvvHNu2bcsrr7wCwA033OBbHhwczLJly3hx6RYSHvwIU3IjSg99T9H25ejD4vAW5iAZrUTc9Ajm2lovUXWWoHpcGGKqYKlzPQiV4HZ3ABJqqY28b2chGy3aR0FpAaq9iJCOwwAJvG5s3y9ACBVn+kG8pQVE3PQwSBIoeop/+QqhegGQFB0xd0wjcdynJI77FGNcLSw12yJJ8PH2U77rNGbMGFq2bOk7p5kzZ1K5cmVef/112l1/PQ+9/RULV27gqUmT2DL7/zjx5t0cfK4HeUd24PCoeFQ4ll3ChGeeZ/p9t5DyWl/S3hpOwbalFdrQkXaAMx+MJfW1vpx+9wEcp/ZVWF/eg099tTdZS6dQXGhjzqbjZOYXMXz4cJKSkggMDKRRo0asXLnSt5/L5aJPnz4kJycjSRLr16+/+M3q54rG3+Pz859FVVXuuOMODAYDM2fOPG+9YjQT3rwHB18egHHkWxXWFf78JcV71xIz+CUknZ6sT57BfmIHqB70EUnE3D0DtaSA0+/ej2IOAkDSGUDWgazgKcyiJLY6devW5d133+XOO+/EarWyfv16Xn31Ve0YhYVYLBZ+/vln3nrrLZYs0XqbvXr1AmD79u2kpaUBsG/fPtauXcvSpUsxGo3odDoqVarEkiVLyMzMpFevXlSuXBm55SDkmMaEdLiLM3NHU7RnLQVbl6KW2gAo2bsGc7UW2A9sAqGS++WrONL2g9cNSBT8sAgQCI+L0gObSDmwCcrmAPG6sK1772wb/bC4QptlffwUCAGqF+F1kzpjALLBgvC4yP3qdTz5p9GFxODOSSXiprE43CpP3juIcaf24Xa7EULg9Xo5fvw4U6ZMITY2FovFQrsOndhw1MauvTYCmvQkb937BLfsRWCzW8n5fCrnUTZPa4iqjCf/DJkfP4UuMAJrnfaaoc+nzxLW/X4sNa6jZP9Gsj99lthR76KYAnBlp5C76n9E9ZnkM87J+3YW1j4T+PjHk76548TERL7++mv69evHnj17SE5OBrQPk4cffpi+ffv+0dvUzxWIv8fn5z+JEILhw4eTmZnJ0qVL0ev1521j1Ml4vCrC48RblOtbXrzrWwq3fkr0wOfRBWm9sKi+k4gePBVJbyKgQRdkRY8uKALFEoTHdgYAfVQyALLRgnCWolNkAoJDycjIICgoiKKiImJiYrjtttsA2LFjB5IkMXPmTGT5wo+aqqosX/4lq9esoUHTFmw/cJLg4GAsFgunT59m4MCBCCFwu91ERkWx78PJpLzahzNzRwPgyT7hEz0A+7GfyFv1P9/fjpRd4PVof0gyxsR6SOZA33olIhHKPAElvYlK985BNgeCrswCVDqn3kJof5cNl+JxoxbngSQTUL8zCQ8vLtNQQfrc0aS+2oe8Y7t55505JCUlkZeXR2RkJLVr1wa0DwBrYBC7MhyUOD04PAKBQC3OJaB+F0wJdeEC7Rbcqs9587TOtAMAONMPoASEYq3VFklWCKjXEdkSTOmhzQCU7F+PuVqL84xzSouL+XJ/HpMnT/bNHd98881UrlyZn3/+GQCDwcDDDz9M27ZtKxgc+fnv4Rc+P/9Jtm7dyoEDB/jyyy8xm8+aozscDo4cOYLX6yVIcZO56h1kUwD6iARAc0fI3/gh0f2noP/V0KchIhFkheI9ayg5vBVvcT7e0iLksh6fKaEeuqBIVEcR6I04Tu1j2+bv6d27NyUlJUybNo09e/YwevRoTp8+zVNPPUWDBg1o1arVefXPL3Hxc0o+y9Zs5tZbb6G4qIjv162mTlIUJ1NP4UDHyPtGo6oqXq8Xr9fLxg0bQGci6vbxKAFhWkFlc4CyNQxznQ4AhHQaXiZcZZsYy9pHkvEUZoPbiRIUCZKENyfVt50QgtL9GzSB8zjh167xQj0repKsHVuWwesmoOnNSDo93hIbSApRvf6PxHGfUmvCMt7/aAHPPfccOTk5ZGVlUb9+fUAzULGF16E47SClx7eTMu12cle8BsCZeWN8dSret04bmnytL9lfvOSzIC1f7zi1DyU4ilOvDyJ/3fta/QHhdZO97AU8BZnkrXwDR8ruCoY9jpTd5K58A1QP6e/cy8ncigY0K1asYO/evdx55500aNCA77///rzr6Oe/iV/4/PznKCgo4PDhw+zcuZOYmBgCAgIICAhgwYIFCCF47rnnCA4OpmaN6ijFWUT1e0YbpgSEoxjVXqTNAb3ah9RX+2i+aGg9ucjb/w9PQSY5X7zE6fcfRBcciWwJBrS5rNBu94HXQ9bC/+PM8hkIIXjmmWcwGo2MGzeOLl26MGfOHOrVq0dAQAD79+8nJiaGmJgYNm/ezLhx42hzy2BavriarcdzUUOTQNYR0n4oupBKSHojupAYPCoE3fwY5sR6DJ30P27ueQsGoxFcJeR8NQNTUkOC2w1BMpgBidBOw/AWZKAEhqOYAkF4QVaQLcGEdhyuNZzqxpuXrvnr6QyAhCG2lk888TixH/uJqP7P+Xp65qrNfesjej+FIbYmSAqSoiP8pjFIit7Xro5T+1CdpUgGE+7sFACKD22lqKiI/v378+GHHxIVFUVISAgAr685jLFZbxRrKGppIbLBRMj1d4CsI/bed7RyPU4cJ3YQM+Rl4h/4EOF2kffd22fvhbJ5WndOKvrwBGSDGU9xHiX7NyC8HlD0oHqRyj4EhNuObLRo11NvJKBBVySjBRDoFZm0fM1gJjMzk9tvv53OnTtTWFjIuEcf5aabe/LjwVRO5pRcxrvZz7+Bf47vKuZqi1fo8XjweDwEBAQwZMgQ5syZg06nQ6fT4XQ6EULwxBNPMHfuXK6//nqMRiNvrT/GS6sOIDwu8HpQAsOJu2c2SBKSosedewqPLRPV7USSFbzFeQiPm5g7X8EYUw1XdgoZHz2K49ReDNHVKN23DkvtdkTe+gR6RcK78AHeeustHn30UYqLiwHo168fCxcuxGaz4XCcjaN58y23kR/dmNPVOiK8AhW0eqkeSg/9QPSQl5BkheylU7R6IGOu24kPXxiH8DiRJZnIPpOwVGsOQNHu1QiPBxDkrngNyWDGlFiPgAZdyP3mTVC9yAYzed+cnf+Mf2ghp997AF14Ap68dPQRibhOHwYExuRGxAzQrC21np2EMakh9qOaH2PO0ufKSpEQHi+5yzUjHF1IDIo1BNvGDzHEVMN1+hD5Gz8if917yOYg8hRBTEwMWVlZCCF4/vnnmTN3LoFD3sCjt2Kq0hRPYTZKQDi27xeCBKX7N2Kt2wHhcWOu1Q5dUGRZtbyU7F1LYIvbcZ7aS/HetUg6IyV71oCigOpFCQin8MfPyfv2LfRRVbT9PE4yl0zS2sQcRGDjHhhja2KMrUnuNzORdEZkScLpUVFVlb59+2I0Grlt/Jvc8Mb3pORG4FCs3P74dIIb30BGoYNxn+xkpJTgD4H2H8QvfFcZV3O8wilTpvDMM8/4/p4/fz6TJk1i8uTJ1KxZk5QUrZdRbg154sQJBrVM5Nk5n5C56P98+6W+0gtjQj1iBk8FAbbvF+LOPQWSjD40lshbH8cYUw0AQ2QS4TfcT86Xr2ohupIaEX7TwwAkh1uZ9tlnPPzww7z00ksoikKnTp18Tu3lPRvQnK0PZtsxRugJ0JvA49J6ImWdrYAmN6ELCEN43AQ2vZmcFa/hPH2Iwm1LiRr4AqVHtuI69iO5X89A1/85UHTkr5kDqgfJEkJo+zsp3rUKx8mdeIrzocziUh9VmZi7XidtRn8Aspc9DwKcKbuQTQG4bZmACrIO1+lDuPLSKd71rbZvTLUyYxiN8FseRR9RmcyPNCEO6TScgo0fIelNqG4nJQe/J6zbKPJtZ1BLC0GSUO1FtOvenR49buShhx6idevWFBQUcPDQYbKmD8IQXRVjbE1UZymqo1irtySR8+UrFO38Rhu2LBtxdZzahztHu8YZ72tDoWE3jyX/m/8R0OQmin9ZoR3TUYzqKCaoVW+MsbXIOrX37E0kSZQe2kzKS7dgrtKU0K73gteDpOhQhcCgSNx99zAOn8rAZQrlzQ0nfCHQVKFSdOYE+rpa26bn25mx5jDTVx/2h0D7j+EPWXaV4I9XeHEGztnCluN5l7VMk17mkS41uOf6qr+77a+zKNg2LaggKADm6q2I6j2RtFnD8BZmVVgXd9+7FO3+ltL9G/EUZWtO5AHhCJcd1VUKQkXSmxFuu29+qwJ6I7idF6ybZLQiXHZ0kcngtuPJP3POSq1XLDwu39/IOkAg6YxE3j6BnOXTUB3FBLcdTPHOlcSNeo/UGf0xRCRhTm6E58R2nFknqFy5Mm63G1mWMZlMWLo+yPbX7ye4490U/LAQXHYwmJEMFkJa9SZ/zbsowVF4C7NQLCFE9X+WjE8mI0ps4HUjGSxE9p6IM3UPRTtXEdisJwUbPsAYV5uwrvehj0wqszadQenRH1GswUTcPA7ZEkzGR48i6U2EtB2MM20vnqIcPLYsKj/4Pi3Sl/Ll2i2E9nycU3MfIPyG0VhqtqFk/wZyv5pBQIOuhHW7j/TZIwnvMQZTQj1Q9FgMij8E2n8Iv/BdBVxqvEKdLBEbYmbRyKv7Yc0uctD8hTWXtUyjTmbbhM5/qNf8e1kUbBvnYz/+M1F9J4GiI/vTZzEl1seU3IjsZS8SPWAKJYd+wJV5Alf6ASJufQxz5Sbkb/gQx8mduAsyCes6ipI93+E4sYPYe94m54uXUR3FGBPqE9JmAOlvDwe9CUNEArI1DMfxX0B1a2JW9gowV29JUMs+ZM5/TKuY3ogkK4gyY5KIW8djTKhD3qpZSIqegPqdyflmJmpxHta6HQnv/gCFPy/HtuFDYu95m5I9awnK2s2ZE4dQVZVevXqxatUqTqak0vLVzRx98RZfz7QcQ1wtKt3xCikv33reOpCw1GpL6cFNZf6EBq3nDCArWu/XYMYQUx1X5lGtvOiqOE/tB1RkSwjW2teDoqNo22dIOgOm5EZY63cmf81cmj0wg20vDAJFr523qoLqRtIZMVdrgWovwnnmMMJZcY4v7r530YVE/+NxSv1cOn7h+4/zV/PMgRawd+VD15McYb3MtbtyePqLPXy4NfX3N/wDmPUKw9tWJj5vB8888wypqanExMQwb9482rVrx5IlS5g0aRJpaWnExsVjq9cbc/XrACjes4ai7ctx559GNlqw1mlPcNvB5K99VzPIcDu1+TVFjyRJ2tyT0YynMAdJ0WGu1hxn+kFUeyHGhPoolmBK9q1FUgxIeiNCqEhCIISKAC2MWcZR7WWt6EGWkSQFZBnhKD7/5BQ9usBwPLYMrTxVLfMBROuRSRK64BjcWccr7CbpjZqAyjostdsgyXqKd36jBQgICaG0tJQBAwbwyy+/0KJNez748CO8zhKCW/fHlNSA7M+nEtVnEvmr3yHitvFkLp6ItzCbgIbdCGpxOxkLJuAtysZatyMle1YjWYIxxlTDkbIbWW8CCVR7ka8+purXEXHjA6CqeB1FZC1+ipCOd1O8YyXeUhvG2FpE3DwWAPvJneStfIP4Ue9d9ONEqF7S3x5BePcHMFdpetF7Q5EkEsPMfDu2/RWRusrPhfHP8f2HcXlUBs/d+pdED7SAvV2mb2DNI+1JCr86xW/iTXVZezDrLydtVSSJmCAjddWT3PHAAwQEBADg9XrJzs4mPT2dQYMGERsbC0BWXgG2ZS8Rf/88FGsIjtS9eEsL0AxEXBTv+hZJZyT8htGEdR5J2lt3g9eLUD3oQmLQRyRqLgaAUD2UHthUZskJjhM/nzXd9zgRHieWGq0Jv2kMZ+Y9jCc/A1f6ASSdgcCWvQjpcPcFM0VkLBiPtV5HAhvecN46R8pucla8Svz9H2h/p+4h77vZSAaz5kcXmUxIuyGYEuvhyjxO5uInKT38I3gc6IxmEipFMXToULZv305mZiZ79+6l/Q03U/2R+Rx8qQ+FWz9FCYpGtZegC4xADgwn/X9lwbf1JgKb9iT36zcJbHoztrVzKT2gZcKI6vM0+avf0bJnXNcP1W2n6JevcabtA1nBW5BBzpevENX7aWSTFSRQLEEEt+5H1pJJhN9wvxa71OsBrwchBKrH5RveBXBlHPMNmdo2zUcXGPGbogf+EGj/Ffw9vv8wlzvPnEkvs+aRDlftME26zc7Nb24iv9R9SfufO5TVtXVTMjMz+eqrr2jRogVnzmhzY7/88gu33HILX3/9Nd27d6f6nc9zbP5TPmtMT2E2ks6AYglGddnJXDAer6OI+FHvobocnJ47ioDGPQhu1Rv7se3kLJ9G7LCZ6EKiyV4+jdJDm6l01wz0YbHkfDWD0v0bSBi7BNloIX3OfYR1Go4r8zj247/gyjyGtW4Hwrs/cDmb8aIU/vQFto0f+oTZhBvV68VqtdK4cWPy8vLYs2cP+1Oz6TZlKSfeuhdTUgMMlWpSuHmRzzfQEFUZSW8G4UV1lmoGLeWvKUUPXjeyOQhrnQ44Tu0ldtgbABTvXk3x7m+RDGaMcbUp2DS/wlDuuUh6kxZyzVvxXig3enJmHCXr46dR7YUA6KOqEN3/WYTHxemy4AHlCLeD0I7DCGqpReQp2bce24YPMHhK6Nq1K++99x5hYWEV9jly5Aj169enT58+zJ8//683vp8/hb/H9x/g1w/JunXruP+BBzl07KQWjSOhLmHd7kNXFjW/5MAmirZ/gSvzBIZK1TXrxXMQqhfb9wsp2f0dqsuOLqQSMYNewEEAne6ZxNGlr1ZwCl+xYkWFJKhXAuWuGqUuD3klLsKsRiwG5TddNuJCzKx4sB2D524lo8COw/PHv/nMeoWYICPzR7QiJtDAwYMHuf322xkyZAgOh4PbbruNadOmER4ejl6vx+1243J7KCx1aL2IMj/CcrP8crylBUiK9hjKBhO64GiKflxG0Y/L0IfFoZiDcWYcRRcSjev0IQzRVTFEJgEQ2nEYpfs3YE/ZjbVGK4Ka3UrRzlW4c08R3Lo/uV+/jrlyk0tp3ksioNEN2hwa0K9ZPNKeFZw8eRKTyQTADz/8gBCCUINK9vqPsNS8DuF2opgDsNRuh/34z4Tf8ABKUARZn0wmqu8zZM5/jEoj3kIxBXBm3hiCWvUlf/Vsovo8jbsgE0fqbuzHf8aUWB9rvY6gKOR9M5Pg1gMo2DSfiFsnYKxUDdXtIHPBeFSvG31IDLHD3vTVu3j3ago2Lyb23jlIkoS3tICsJZMI7TISa822CK8bb1EuijUEgMRxn/r2ddsyOD37Hiw12wD4QqLFD5jMuIHd2fbhVEaPHs3ixRXDv91///00b97877wcfn4Df4/vP0C3bt2w2+0kJSUxf/58MjMzef/7Y8zbVYDd7sS26SPcuWlE9Xka0OYsVHsR7tw0HCm7zhO+/I0f4Uw7QMRND6MEReLOSUEfGoukM1C6dzXWExs5sffnf+NUf5NyV42Pt58iJbcEQcWPeQntAz8p3Er/Zhf3r/ozFrBmvYwqoE7eZlK3rWTvnj3ccsstfPrpp8TFxaHT6cjMzMTlcqGqKqtXr2b06NGkpKTgdrtRBYAAnRHFaMFSqx3mGq3IXvqcz2hEMloBgSEiCWuDrlq4LUVP0c6V5K9+B8kSAh4nwuNGH55A7HDtpZ2/Zg6FP30BsqJZXwoVSZK1ecLy2Sqd0Te8KdwOIm6bgLVWm796KS6Kt8SGNecAW956nOmvvsL333/Ptm3bWLRoETabjeHDhyNJEkHVmyHXvYGcL16i0tDXkC0hnHnvIbzFucgBoYRefyfeolyKfllB/AMfAmeNgFwZR4i5azr5q+dgqFSD0oM/4C3KAQSSOYjwG+6n9OD3eEryEI4S3DmpPr9EEFS6+w0M0VVwpOzG9sMinKf2IRnMJI79WGvXDR/gLcwhoHEP8te8gzs3DV1wNGHdRmlh1MrPtbSAzEX/hzvnFLLBjKlqM3TBUXgKspBkHaUHNmAy6LHb7VgsFgoLC1EUhcWLF/PZZ59Rp04dli1bxu7du/nuu+/o0qXL33Zd/FTEP/t6hVCea85oNHLXXXf5ls+fP5/9+/ezZ88eFixYwPr164mOjmZ1qhuHW6Vw+3KKdn6D/ehPpM28k7zVc7Sv39rtUALD8BRkcvrd+0l56RZsmxbgdRRT9NMXhN/4oGZBuPQ5sj5+mtRXemmO3CpkFDiwlbpIT0/n1ltvJSwsjPj4eN5+++0KdZYkCavV6oucMmLECP4OXB6VaasO0mrqGl759hAnckpQxfkjWAJQBZzIKWHaqoO0eGE101YdxOWpKGwGncxjN9Ri24TOjO1Sg+pRAegVCYtBIcCow2JQ0CsS1aMCGNulBtsmdOaOzo15qiyjgtutDY/p9Xo2bNjAk08+SXx8PJIksXPnTtLT07XYnGUhvSSDhUpDXqbS8P/hyjqBO+MoETeNRTJZMcTWIrLP0ySMWYS1fmds6+dp+0kSJXvXARBQvxMJY5egBIbjzj6BM+MYqtuJK60sC0TbQSQ8sgRZb0IJCCPx0c+I6D0RFD1BTW8icdynRPV5Gslg/t05qr+CBIRYDYSkbKByUiIzZswgOzubGTNmcMstt3DnnXeyc+dOmjZtStHxndjWvkvETWPRhyegmAOpNOx1LLXbgddD3up3sB/fTmSvJ33lB7cZgKFSdSSjlaxPnsEQXZXQ9ncS1mUkgc1vRTKYEY5i8r97G0nREXnzo8gGs2bxCcjmAAyxtTBEa07tkt6IpVpLEAJJb/Idx5l+CElvJHPBE7hz0zEm1MPaoCvZnz6L9xyDoKylU/AUZhPW5V7iH1pAcIteFUKihbTqTWFRMVarlY0bN6IoCoWFhTz99NO89tpr5OXlkZKSQqVKlf62a+LnwviHOq8QLpRrrrCwkGeeeYYRI0aQmprKokWa75fHq3L0+AlS5zyg9RpkmfAeYzBXb0n2shcp2r6coBa3AyDpjIR2uJuiHVp6FXfWSZAVSg/9QOGPywCw1utI0Y+f++rizDxGfGwMqstBw4YNSU9P5/Dhw3Ts2JGaNWvSsWNH37a7du2iWrVqf1u7lLtqZBQ4cHr++FymV4DXK5j7/XG+2nPmgv5VIRYD915flXuvr/q7UW7Ozahgs9kA6Nq1K0lJSUycOJGCggJeeeUV1q9fj8vlYvPmzdgscdzx8mIy5j9B0Z41hLTpjyRJ2FN249ryCdH9ngUhyPv2LSrd/TqBjbqTv/ZdXLmnKPpxmTYHZTCjC4xAkiQsNVtT9OMyspe9gHA7qVq1KkfOQGBcdTyF2aj2QqL6PYuk06MYLMh6E/Zj2wntOIzivWux1GyDbDDxd2DSy1QKMjF/RCfiXrx45oK6deuyZcsWbKUumk75Du85Hy+KOYjIWx676L6SoiP8htGE31Bxjs1SszWWmq2R9Ea8hTk+a02AmDumIVQvaW/egblaC998pwQEJNTCfuIX9JFJFeJ/eotycJ05hBIUSdzIt8hf9z72g9/7gl0HNuyG/cQvms+jqmKt3wlJ0WGIqVohJJosSaTl2wkODqaoSLM4feqppxg+fDjx8fF8/fXXNG7cmBMnTvzhdvZzefD3+K4QLpRr7qmnnmLEiBFMnjyZxMRE35BVWr4dS1gMiWM/Jn7MQkKuvwN9eDwgkCQJ9zlOyIo1BHPVZshlgYq9RTkIZwnuvHTiRr2n+YjtWevb3phYj0rD/0ezxz/CbreTl5fHjBkzaNiwIX369OG9986mrfm7KXfVSM0rxfEnRO9cnB5Bam4pPWd+T7rt4olLdYpMcoSVmjGBJEdYfzO0m9FoJCgoiO+++46srCzy8/NZsWIFsiz7sjDodDoSQi2a64DqpfiXFaS9PgjnmSM40/YRefv/YYytiVC9uMuyPzhS9yLcToq2LcNbnE9AwxvA5UAJCEOoXiRZB5JE+E1jibtvLu4SGwA5y18ha5HWM8pcOJ5Tbw4h+7PnUR1FuPPP4MpOpfTQDwTU63RJbfhbmPUyRp3MiLZV+HZs+z9sGBViMXBX6+TLXp8LIckKkk6Pai+kaMfXyBKEWg0IISjZuxZT5cYVt9cZMMTWQtYZkHQGgtsOxJl+ACG8vhikzvRDSLKCYgkmfdYwzswbiyN1D5Le7BNR2/YVNKoeT0ZGBj/++CM7d+5k9erVjB07lk8++QRFUYiLi/tH2sBPRfw9viuU8odkx44d561zelTkMhFUzIHIejMZH2mZx2VzEKGdhl+03HIji5A2A5H1RgxRlbHUbkfxL18B+DIWnCoL1vvII4/wzjvvMGHCBIQQ7N27t0J5119/Paqq0rp1a1577TVf3rK/Srmrhq3UVTZPdumogK3ExZC5Wy+bf9UDDzzAnDlzqFatGiaTCZ1Oh8VioWPHjqxZs4aePXuSn2/DIRmQFD2RvZ9EFxzNmY8eQ9iLyPpkMkII8LqQzcGozlJyV81E0ukpPfQ96M0Ijxtr/c7kLJ+mDccZrQQ07kHOl6+g2gsJtJgZMWIEb7/9NqvWrqdPr95gDMRRnIsktGudPHwGxaePYAwIpmOH9vycakOStA+CiyEBsgQDWyQSF2Lmsx3pnLxA+LvkcCt9m8bTr9mlhb97onttPvk5jUKH5y9ciT+OUFUozCQpzMLUXg3o/9w8vMV5GBPqUXrwB992hqjKCKHiyjhKyf4NGBMbAOC1ZSI8WgQcT0Em3uJcAlvcTmj7oZQe+oGspVMIqN8ZV9YJglrcTmz3e3i7T01uaNuMZ599lvT0dE6e1HL+5ebmYjQaSU1NRVUvj1W2nz+OX/iuUNavX8/JkydJTEwEoLi4GLvdzj333MO3m3egnjPBZa7eEr57i5g7X8N+dBuKNfSi5erL5h9+D6MlgGYtrmPZsmWoqsovv/zC0qVLiYw8a5W4YcMGWrVqRWlpKRMnTuTmm29m586d6HR//bZ6fc1hMgsdf1n0ylHhsvpXTZ48mfz8fBYuXIgsy/Tp04elS5fSqFEjpk6dyowZMxCApOgJaTfYZ11piq+D/cQvgEAxB2Cu0oygNgPJ+vRZDFGVKc1N05zXhYor6ziuM4cJ6Xg3QS1uo/TQZnK+eBlJ0SEbLQy4cxhvzXgZRVHo0bUzTz85np9++omPl3zCpytW8fCoEaydcifD+99K2wfu4Zl7WmMrLYvl+nMaJ3NL0MkSkiShqgKPqolZv2YJFcRsVIdqf0vAc4NOZvkDben06vrLdp3L8ZbYcKTswlytBZLOgPC4cKbsYsCdw3hnbHuOZ5dQuHsNlhqtkfXGCvta63chZ9kLhHYaRsG2Zbi/moFsDsIQXRUlUBuR8RbngiQT2nGYNtddpz0FW5agC6lE8e7vCGx8I15Jx9w3XqZ3796EhIQghODYsWNMnjyZwMBAhBCcPHmSbdu2Xd6T9/O7+IXvCuWee+5hwIABvr9feeUV/ve///Hyyy/z0/qVlGTlQXAlVHsR+WvnlgX7rYHHdoacVf8j6tbHtZBPQsu2LcryqOlDK2GMr0vBliWEdbkXjy2D0oNn84zZj23HEFMV2RjJ/Y9O4MFhg1BVlVGjRjFkyBD27dvn2/b66zXTdYPBwOuvv05QUBAHDhzw5Vv7PRRFOe9r94EHHuDZqa/y8svTyFn/IagekBWMsbUI634/hohE3DmnyP1mJs7TB32GCUHNbyWk3WAACn9eQf53s9HMXSRQdOB1E9pxGHNEH3YveonFC+bjdrsxmUwMGDCAN954g8DAwPMreRH0ej2zZs1i1qxZvmWfffaZ7xweeOABTuaU0GX6es4dpbXUbIPHlkHscC1jgvC4yVr6LEpgOBE9xyHd+oRv27xv3wJZR3CZf5i1VlsKNn9McOv+BNdpy/+N7VAhIaokSQgh0CkyA269kQG3pnPq1Ck2bFjPO+/MBv7cvOa5lA8FX26Sw618cl9r+r69+ZLFT6Is/qxZR34xWAwKqkdH3s6VWng1BHhc3H//A7w5aZS2k8dFwb6NRNw+4bzyzMkNCWk/lIJNCxBuJ+bkRoR2vZfMhRMIanGbtntRrubEXyEggIQuKNIX1DzbUUS97t14//33efLJJ9HpdMTExLB161bS0tJwOBx4vV5cLhf9+vXjiSee4IknnjivPn4uP/45visUi8Xiy+NWnnNOkiRCQkLIOHOGrCWTOPVaX06/ez9Iks/6Tagq7owjpL7Si7xVs3Cm7SP1lV64Th/ylR1x62N4CrI49fpAsj6ZTHDbQb51jpRdnH73Qfa/cCtPP/YQY8eOxWazsW3bNnJycmjRosVF61z+4v2jtGvXjjlz5iCEoKioCKvVSt++fZn+yRpyNy0k4uZHiB+7BEvNNqhuOzlfvIxQvWQtfQ7hcWGu1pLIPk+B6qF493cU7/4OT1EO+WvmEtV3EolPfElkn6fLXk4SlpptKD3+M5988glvvvkmaWlpNG3alA0bNvDYYxc3qgAtJVL5i8rr9eJwOPB4tCE6p9PpSz/kcrlwOBwIIYgPNVO4c5WWnBVw5aRSuPUTTMkNtWvl9ZC97AUknZGImx9Bkio+joZKNbAf+wm3LQMhBPYTO/Dknfb58f2y6Vvy8/MRQvDjjz/yxhtvcOutt1Yo46OPPqJ169ZUrXp+MO0/M6/5d9I0MZS1j3Qg2Pznv8PNepnEECMrRrdiUPMEetaPYdnI5iwd0419P2+lMC+bYlsulWKi6XnTjb5rU7VSKJXHLcYUX6csQ33ZB2KZQ3tgkx5E9ZlE/EMLiLjlMYq2L68QuSVm8EtIaCHohOql5OD3eItyMMbXxlq3A9FdRzL9i20sW7aM7du3M3/+fG655RYA1qxZw969ezl69CgnTpwgNjaW2bNnc//991+uJvXzO/h7fFcI5bnmzn2xnptrbvz48cydOxeXy8XIkSPR1b+R19ceIXv7SizVWqJYQ3wvVkuttoR1HgloL1eESs7Xr2vxGz0uFGso0f2f1dZ7XAhVJf/btxBeNyHX30Fop+HoFYnPBiSRnJSIEIL58+fz7bffcuDAAQD27duH2+2mfv362O12Jk6cSFxcHLVr176k81+6dClRUVG0a9eOO5+9A3P1lljraD3K4LaDODN3NMg63Lmn8Bbn4bUXEXbDKIyVamCMr4soEz99RCKyyYq5ajOAstx1Evroylr0k40fEtPqVu69914AnnnmGfr06cMPP/xwsaoBl5YSKTk5GV32EU6v/0iz9jMHY63VlpDrhwDgTD+A/dhPSDojp6b395Ud1W8ypoR6WOt1wpN/hsyFE1AdxSiB4YR1vx99eAKVIwL4ZMnbjBwxAqfTSXx8PE888QRDhw6tUO8PP/zwd0X9SiA5wspP/9eVl745wAdbUvCq4qJxM+FshpHhbatQ8P1CqlXq6lu3cMEC37VJTk6+6LUJth3ll1lnLUArpKsCCrYtxX58OwDmyk0ruFYo5kAi+zxF3rdvaXn/wuOJ7D0RpSxpcf6PXzDxu5lMFILKlSszZ84cXxCIcw3YQBv5CA0N9YW/8/P343dgv0KYPHlyhRcrcMGHt5xd+w/Rd+Ex0r94Dfux7ee9WMuNWHJWTKdkb8XMBOE9HiaggeYsmzL15vPqkjR+BdWjArhJ2sHzzz9PaWkpjRs3ZsaMGTRrpgnK2rVrGTVqFGlpaVitVlq3bs20adOoXr36Hz7nDh06sG/fPoQQuN1ubr/9dua++x4htVujj6tNcKs+pE7vj3DZQagENLqRwKY3kfHho6Doie43GWNsTS2gcVEu3uI84scsJHPRkwS1uB1z1WaUHtlGzudTCes6isAmN3L63QcIa9uftE9eQKfI5OTkEBkZyW233cayZcv+cN3/KG9vOMb01Yd+05jkz2LUSYzrWvMPpUT6L1I+D/nJ9rPzkLIsIQS+eci/YlRTztsbjjFjzeHfDGBwKehliXvbV/XH6ryC8Qvff5hpqw4ye+NxPJfZMuDP5Jr7K2zbto06depw5swZatWqhcVi4at1W+jR7w5MNdsQ2LgHAKrLQdr/hhLUsg/BLW/n9Dv3IpmsKEGRBNbvQvbnU7U0MkIl6bHPKdr1Lfmr39HyyJU5LyeMWYhsMJP+9ggq9bifja+PJTnCysqVK+nRowdr1qyhU6fLb+5vK3XR8sU1f8oH8ff4MymR/uv8HUY15fwd1wYgMczCmkf82RmuZPxX5j/MmM41iP0bAkoLAf2aJVz2cn9Ny5YtCQwMZMmSJbRr1462bdvy3bffoBjNFRyKZYMJhErh1k9QHcVE9p6IpDPgOP4z2V+8hKQ3oguLQxcYgf3kTmzr3id60IskPv455spNkCTJl2BV0psQLu1FunXrVoYM0YYdGzZs+LecY4jFwIi2lTHrL8+jZtYrjGxX5ZoQvXI8qkq6rZTjOSWczC3B4708QnW5rw1oc46LRrbyi94Vjn+O7z+MQac9ZF1eW3/ZMjSU55r7J1+sH374IePHj9eceiUwRCRhzzobzcJty0B4tKSp3qJcDDFVqXTHK771GR89imS0IBsTcGUex5hQF2Ol6qhuJ45Te9BHV8V+cieG6CroI5OwZxzj6P493D3gNsaOHcvMmTPPm3e5nIzpXIOv9pzhVJ79L6WPKk+JNKbzHx9O/i+SX+Ji3pYTzN+aSm6J64LbhFsNDGmZxN1tkv/SvXq5rg1oiZ2/GXP9VZvd5GrC/1nyHycuxMzKh65HJ5+fZ+3P8k++WG02G6tWrWLdunWkpaWhqiobN26k/+09sdRtj/3wVop3fYvXUYJt/Tx0wVEo5kD0EQm4sk7gyk7FXZhNwdZPcedn4Dx9hODW/TFWqo4zbb+WmufwFiSdEU9uGoaoZAAC6nUi/+evubNvT6ZOncratWsrxEb9OzDoZBaMaEWwRY9ygXx4f4TylEjzR1y9vQmXR2XqygM0e2E1r685elHRA8gtcfH62iM0ee47pq48cF481j/K5bg2UJ7S6+rNZ3m14Z/ju0o4mVtC9xkbLzm017m55v6JL9bs7Gx69OjBrl27AGjSpAnPPfccXbt2pcv0DWxb8CrFO77WfBFlHabEeoR2Go4hqjL5a9+jaMdXWhYCSUIXGkdYl5E+U/PCn7+k6KfleAoykQxmQlr39+VKA8hbMI6iU5p7h06nw2AwkJycXMFH8e+gPO5oZqHjT/XQz02JdLX2JtJtdvq/s4X0fPtvWnNejLhgI0vua3PJ7XOp10YnS8QGm1h0z3VX7bW5GvEL31VEus3OgHe2cKbAzp/Rvyvtxfp3WdvBP2e4czFcHpXpqw/x7vcny0KH/X5KpJHtqjCmc/WrtqeXbrNz0xubsNkvLUFwOYFGHd88fOlDjX8mXZVJJyGQrvprc7XiF76rjHMfXhC/aUZ/pb5Y/y5rO/j3LCLLcwl++ksaKWUm+l5V4PaK8vgy6BUZRZYuq8n+lY7Lo9J1xgZSckt/f+M/QHywkXWPdfpL9/Kvw7pd7hilfv59/MJ3lfJff3inrTrIez+cuGxGO3DWcOef9K/6M70Ig04CAcPbVGZs15oYdFfGh8jfyd/hkjOqfVWe6F7rspT1d7pT+Pn38AvfNcB/8eF1eVS6zdhAal7pZQlgLANJ4ZbLlp3hj3Dpc3oy0UGmC+YQvFKZOXMm8+bNY/fu3SQlJeFyucjLy6NKlSoEBgaSlpZGSkoKTz/9NEuWLCEtLY3YuHjOGONwnD6CpzAbyRSIPjQGT24aqtuBIaoKqtuJtyAT4XUjGwPKcu5lY6hUnaCWvSnc+gmu7BQknR5jbC08BZl48k7ToF4dBg0cwOeff87OnTsxmUy4XGeNZVwuF263G4vF4ou3OWDAAObOnXveuf0Xnx8/v41f+PxcsZTn4/urqYlktMzg/5ThDpyte0Gp+5LM5GVJ8zP7J+v8V/jss8+QZZkVK1awfft2br/9dpYvX87u3btRVZXFixdz//33k5+fz/Lly+nevTstu93GT6uXE9x+KMEte1G0/Uvy172LPjwRT1EOCC+S3kT8/R8gyQqF278kf807yEYrqqOYgEbdsdS4DmNCXVSXg/T/DQVJBkWHQZGQhcqbb77J6dOnWbt2LW+99Rb3338/P//8sy+m6pEjRy6YSDm/xMWiH1NZvP0Up22l6BQZRZIQgNurkhRupU+TeAY0vzJHTPz8Nv7PFj9XLHEhZr58oC2JYRZMlzjsZ9TJJIVb/lEBKc8leKmiB6AK7eU7eO5W3JfJYfvvpDyRckxMDI0aNaJ+/fq+RMrBwcG+BL0BAQHceOONHD9+nH179wASst6oRd5RPUiKHiSZhIcWEN5jLGqJDecpzdrWGFsDkDBVboKkN2GMrYW5SlNkvQl31nEkvQklOIqkRz6h9rhFyLLMl19+SWxsLEIIbr31Vm6++WZ++eUXX+/v19nPMwsdDJyzhSZTvuPlbw+RmleKR9WGqEtcXkpdXtxewdGsYmasOUzLF9cwbdXB89wpPF6Vo1lFrD2YxdqDmRzNKrpsjvd+/jp+B3Y/VzRxIWa+fbi9b57Mowq8f6D7p5NBlv4dq7vyXIJ/1SFaACm5pUz5aj/P3FLv8lTuH6JXL819ZP369RQUFFC3bl30ej2VKlVi+fLlTJv+OvoqLSAzBV1Z8mNT1ebY1s/DVEXLiO46cwglKIqcL1/Fay8ErxtT5SaYkhpgP7a9wvHc2anIRivG6CoA5JW6CAkN5fDhwwCUlpZy+vRpxo4dy3PPPUe7du3YsGEDvXr1wmq10uq660i88T6+POH5w+4U5fO17/1wgq/2nGHWoCas2pfJ/G0pv+l4f0erRO5q/c8GifBTEf9Qp5//DOUGOx//dIqTuSUIQYWXlARIkpbjbUDzhMtquDNkyBDWrFlDSUkJMTExPP7444wYMQKXy8WgQYPYvn07KSkpLP/6Wx7d7PFZpBZsW0rJnjV4CrORzUEENulBcMve55XvSN2j5Xtr3Z/Q6+/wLS/88XMKtn2KWfLSr28f3nrrLYxGLXHq5s2befjhhzlw4ACVK1dm1qxZtG3b9rKc76UyceJE0tLSmDdvHm63mxo1amAwGDh06BDx8fF0796dd999FwBJZ0TSmzBXa44jZRfewly0lMGAJKMERWKIqowjVesZIrzoQisRUL8rto0fEdblHor3rsGdnYLqLAHVS2Cz2yje8y3CWYqiKAwcOJD27dsze/ZsDhw4QFFREdWrV2fixInMnDmTuLg4XnzjbToPHEXukR1UGvYmkqxc9PwuhgR/yv9QkSVGtq3MI9eIEdOVhr/H5+c/w4WSqJa6POSVuAizGrEYlL/N8GDChAm8++67GI1GDh48SIcOHWjcuDH169enbdu2PPzww/Tt25d1h7KQpLCzOwpB+M2PYIiqrKUY+vgpdIERWOu0P7uJ10Pe6ncwxFa0NrUf/5mCrZ8SPfB5wiOjOLZ5JpMmTWLq1Knk5eXRs2dP3n77bXr16sWiRYvo2bMnx48fJzQ09LKf/59FVVXuuOMOFEWhZcuWADgcDubNm4ei06NPbkxImwFkfDCO0mPbCWp6E4XbliHcDpTgKGKHvUnBts8o/GERKAYSHpoPQpD+9giKd63yHSesyz2oLjtZHz+FEhpL8e5VxN4zG4SK9NWzxMXFAWA2m4mKimL06NFkZGQQGhrK7t27CQgOZciHezG0G4Znez/cOad8UX7+DH+29+BVBbM3HmfFnjN87Hd+/8fx9/j8+PmTHDp0iA4dOvD666/Tr18/3/L4+Hiib32U3KCLh3zL+242CEFYt/t8ywq2fILqKMJbUoASFOHr8WUvn4YuOIrQ9lqOvXaWM3z3v4lkZGSwYsUKnnjiiQrRZmrUqMETTzzB8OHDL/cpX5ByS849e/YwcOBA5s2bx8SJE0lJSWHTpk1kZGTgdDqRZRmz2UxJScnZnWUFSWfQUk7pDGXJYMuDiJdqWTWEAKGC3ow5sR6OU3u1aD2yDF6vto3qBcQ5/9fKQJKQvC4iwsN5/vnnmT9/PnfddRd33303gC9zvdfrJfK2CZhrtOLU9P7E3DENQ1Tlf6T9ygmx6PnqwXZ+8fsH8ff4/Pj5g4wePZp58+Zht9tp3LgxPXr0YPHixTzzzDOkpqbidDpxHjmALsaLbdN8XBlHQZIxJdYntOu9KNZQHKf2Edi4O86Mo+SvnoMz4yh43YRcfyfekgKEo4TUV/sAaC95RUfhlk8I7TiM9fU7k5mZyaFDh5g2bRoHDx4kNDSUHj16sGDBAoQQ7N279x9rj9jYWJo0aUJqaioffPABH3/8MaqqIoQgICCAZs2asXnzZlRVxWKxaMInSWWCJhBuLWs9nrL5MEnRRA8wJNTDk3UC1V4Ibjv2Yz+BpGhC6FU1YVN0CFUTzHLRAwhqM4DSvetw56SQlZXFyJFaUubatWsTFBREYWEhBoMBu90OQPbyl5EUHcg6dKGxvnIcaQfIX/MO7tw0dMHRhHUbhSmhrm99yb715G/4ANVeiCm5MeE9xqCYAwHw2ovI/fp1HCd3IJuDCG0/FGvdDgAIISjcsoSind+gOorJrtqMXuqjrJ/QA7PB/0r+J/D3+Pz4+RN4vV62bNnC+vXradq0Kffddx8ff/wxLVq0IKZSLPp2w/HIBlS3A3PlJiDL5H37Nt7iPIyxNSk9vIWovpM5M28MoZ1HULp/I5aabTDG1qRg66cVenzpb48gqPUA8la+Qdy9c1ACw0mddhtNmjalRfPmLFy4kJkzZ1KzZk0OHDjA3XffzciRI5k9e/Y/1h6fffYZixYt4rvvvqOgoKDCOlmWUdWLWTJKyIFhqEW55+ygVBAw2RSA6ij+YxWRdVAughco69d10uv1uN1aiDTZEowhpjqqowhrrbYEtbidjPlP4EzbR/gtj2Ot1YaiHd9orhTmIITHiS44BndeOtH9nsEQU5Xcb2aCUIm89QlyvppByZ7VmKo0I/K2J3BlHidz4QSQZSRZh1C9IARx981BNgWQs/wVZJOVqJ6PUCUywO8m8Q/gn1X14+dPoCgKbdu2JS0tjdGjR/P000/TqlUrZFlGVhQMAcGYqzbDWqststGCrDcR2PRmHKl7KN67lqi+kyna8RXmyk2QDRZUt5OABl3QR5yf/1DSm7Af+wljQl10IdGoZb2hXYdTOFytL8OffYvpM16ne/fufPPNN3Tp0oX4+Ph/tD169epFzZo1SUxMZOjQoQghOHjwIFar9TzRCwgIQB9dBWNCPYxxtRDn5FxEVpBkHYZKNXyL9OEJYDCX+eZpbg4XQg4IJ+KWx0Bv8i0rN1AJCwvTjqvXExsb63NWj69RD2QFJTCChIcWENHzESRJpmDbMlJe6okzTRtCdqTuxp2XTunhzaB6UUvyEc5SrbcqvBhiqiIbzLhzTlF6YBMpU2+mZM9q376ywaz1EoUKXo+2n9cNqofCrUuRDWZ0YbGU7F3LiRdvZs0jHRjVsQahViNjZi5l4aLFtG7dGovFwvXXX0/t2rX/8Wt8NeLvV/vxcwm43W5SU1PJzs4mMjKSgoICLRLIxkVE9p9SYdvCbZ+B6sVbkIk7Lw1n+iEMkUnkfjMTtSSflKk3A5LWI1D0uLNOEtXnKSSDGfuhzaDoOD1nFJba1yPpTegjEvhh+gOsPX0QkDBZrMiywoEDBxg3bty/0h4AW7duxWKx+IaCN27cSK1atbDZbHg8HkpKSxHFx5F0RkAgW0LwejQRQPUiVK82PKwzgurBefqQJhiAYgrGay9EDoxCLcwi8bFleApzOD17JLLRgjv/DLgdvp5f/zFPs/jViTRo0IDc3Fz27dtHo0aNOH36NDt37uTU8SOgqniLckh5pTd4nCDrkAwWJL2JwCY3U7j1E0oPb0XWm7DWaY876zjG+Lq4Th/CU5gNSLjz0lFLC/AW54GiRxcYAbKCJy8Nc5VmABTtWqUNowZHEXvPbDI/fgpn6h4stTQLXMeJHQBED35J6/lvXkLJvrWsyjSzfvcJ+g0cTrO2x1n28QKSExMpKir6Ny7vVYW/x+fHz++QlZXF4sWLKS4uxuv1smrVKhYtWoSqqnz66ac899xzzJo1C1mWceWdQXhclM8gFGxZQumBjcjWUJQAzdrTW5RD8d61mBLro4+phqVuR3ThCdp8YHIjwm96GE9RDq70Q4AgevBLBLUZRMEPC9EFR+E4sQNz9VZE9n2G8Jsexun28NmqdbjcHm644YZ/rZ1atWpFUVERmzZtolevXj63C5PJxMKFCzGbLegjEghs0gNz1WZUums6IR3vBkmPHBRJaJd7tYI8TpBkwm8aC0YLSDLeknwkRY9s0Hp17pxTmgsD4Mk9RcGGeYAEqhclMJxv3nsVs9mM2Wz2GQBt3LiR0tJS1q5dhy6qMubqLZF0RvQh0VQa8RaS0YzwOLHWboeltiZKkqygukq1f+3FKNYQlKAordcmVPQhlSjeu5aAhl2RFB36qGSs9TsDYKl5HUKoFHy/CMUajKcgk7Q3BuPOOgFCoARFUHJoM+7802XHkpEUHY5Te7DW64TDIygIr82c0zEs+vk06aczOBbXhZxiJ29vOIat9OL5Cv38Nn7h8+Pnd5Akibfeeov4+HhCQ0N59NFHeeGFFwB48MEHmTp1KiNHjkRVVTwFmaS+0gtvQRbu/NPYNs4HQNgL8Rbnk/3ps6j2Qiw1rsN5ai+h7e8krMtIPLmp6EMr4c5LRzEH4i3KBUXBEFON7E+fJe+bN7ReQ1g8SnA0wa16U7JnNXnfvY1wO3DZSyi1xJBus/+bTVVhKPitt94CtPYLCwvD6bBjrdYcSW9C0hlQLMFaT0kGtTCb/PXv+1w6Aup3oWj7cvCcTVUkPC7Nb6BsuLJox9cVD67Tg6KjeoPmFBYUYLfbWblyJaC5V3Tt2pX4+HiMYZVwpOzFmX6QsO4P4CnIBNWLMa4OeN14XXa8ZXOLaomN0v0bsR//GVNyI5TAcLwOrcdlSmqIbLLizk5BCQxHuBwENrsF1aEJsi40Fm9hDt6iHHTBMYAEehOibAg4Y/7j5H41HV1QJACZSyZz+t0HcJ7ai7VepwqnVrBnPUpwNKqsx6OK34waA/7IMb+HX/j8+PkdIiMj2bBhAzabjcLCQvbs2cPDDz9MfHw8kiRx8uRJhBD07t0bS2AwNSZ+DZJE5qKJWBt0xVytJYmPLUMJiiSyz9OYqzZHeD14i/PKTOe1F3lgy15IZaG9dOEJoHoxV29F/AMfEHHzIyiWIExJDSnPEx7Y5CbtP0KgOksIaNGbIf9giDOPx4PD4cDr9SKEwOv14vFoBiZOp5NDhw75tt2xYwderxdjQn3NgKfTCAAMEQllolMLfWgshshkAGSTlZihrxI9YIpvuDPshvux1m4HAty5aXgKcwBNYCS9kaAmN4PXzeGt3/HYY4/hcDjIycmhUqVK6PV6CgoKaNGiBR+8NwdJZyCoWU+sda4HJITw4s48BpKE/cAmshc9CYClTjsSHvmEiJ7jcOeloQSE480/jWQKRC6z4BRuByW7vgNJwhhdFWf6Aa19ck/jKTPe8dgyCGzSg8ie4xCOInQhMQS36ou19vV48tKRjFbiH/wIfVgcICEbzro2lB7aDEJFsQT5ljncKk6Pyns/nKDbjA2k2+zkl7iY/t1hmk75jmoTV9Jl+kaGffATwz7YTpfpG6k2cSVNp3zHjNWHrvneot+q04+fS+Tpp59m5cqVfPXVV+j1eho2bEhQcAilHR/l1EdPYK3fhZK9a4juPwVdSDRps4YR3uMhQCJ72fMIZykJY5dg27QAV8YRgtsMJHflm8SPfo+SfevJWz0b1e0CrxtJ0RNx23iMcbU4/fYIQrvcg7VuB0oPbyF35ZsENLyBwEY3EBSd+I+lXpo8eTLPPPNMhWUTJkygbdu23Hzzzfz61WI0Gql557Mc3fwNpYe3gvAi680oQRG4s0+WeYELjAl18ZbY8BTlIOkM4HEjXHYkgwlDdFWsdTtSsO0zvLYzIFQMiQ2QTYHgdeE49hOgDa+CZoUrSRIejwer1coHH3xAv/79MSY2wFClOa6sEzhP7SXshgfIWjQB0IyKJEWP6igCScZcvRW6oAgcaftwZ57QhLjMtSKw5e3Yj23Hk3vKV38fso6gVn0p3LwIFD36yGTtPL0eJFMAIW0G4DxzhNKDmwhpOxj7yR04U/eCJBHcZiAhbQeiuhycef9BdKGxOE7u1IyAkEh4eDGSTq8dBtArEoUnd5Ox4PzoPxfiWo8c4xc+P37+JOem4KlSpQoZGRmYTCbi4uJJP5NBdp5Nm3+SZO3nM7OXyvzYVG25UMFgRi5zuFaL8wAJyWgB1YPwejFUqoY76yQIVRvqKytH28arlSfJmrVg2RBaWLuBHPvmfUIsBrKzsxkzZgwrVqzA4XD4fOzKff/+KhcSv8jISJ5//nmef/55UlJSLrifpWYbHKf2aX56QoAsowTHENT0JoKa3UL2Fy9jP14Wj1MIgtsOJrjFbb79NYOgi6PT6ZAkyeeycC6BgYEUO1y+IUdJkpBMgajFWu8sduRsVFcJGR884tvHVK0FzpQ9yOYAlIAwAhvdiNdegG39PEBCNgcRdF0fvAXZ2I9v9/XihMcNXhfG5MZYa7cjf/08hKMEhBcUvXbtEejC4lCCInEc/QnJHIBqLyZ+9Ht4i3I5M+9h7V6RFc3B31mCpDcSO3wWupBorYm8Hs58MBZJZ8CU3Oh3hQ+0cYa4UPM1GTnGL3z/ATxelZO5JaTm2QFBYpiF5HDrfyon2NWU06w8Bc+qVasoKCrh+pGT+PSXNH7+ZCalJ3cR2mkEOZ9PRdKbNAEsG75USwoojzIScevj5Hz+EgGNbkQfFos+MpnsT5/FUKkG0YNeIPerGZTsX0/io58hyQr24z+TtfQ5FEsI1rodcaYfwBhXC2ud9ugjErFtWkDhj8tA9RLa4lZefHka915flXbt2tG8eXO2bNlCixYt6N27N9dddx179+6lcePG/3jb2UpdNJny3WXJsfhrdLLE4zfUpEVQEQ8//DC7du1CURQ6derEm2++yTfffMNdd92FxWLB6VF9dYgdMQtdcBTpbw3HW2JDMllRi/MBgRwQhimuNq7sk3jy0s8eTFY0lwnFQGDjGyneuRIltBLuM0fLPmq8oDeSNG4pmUsm4zi+/bz6hnYchrVBV9LfGo5w20ExgNcFkow+MpnARjdgrd+F7M9fQjhLUR1FuHNSNetfg4WEBz8CSaZwyxIKtn2GcDtRAsOw1mxLaKdhf7jdrsXIMX7hu0LJL3Exb/PJ34z0HmzSced1SQxvW+WKdHbNLynLAv9LGim5JShagnG8qkBVIS7UxMDmSQxqmXjF1f9C4biA84JSW6o0IX7gMzicbmzfL8R+Ygd4XLhzTyFbgglsdKNvLi5t1l2+qCWS3lhmrKES3G4I1lptOD1nFFAWtsvrAdVDYMvehHW8m8yPny4zexdIOqMWsUQIkp5Yjqcgi+wvXsKTd1obngNaP7mIextamPDIg4yd/BLTJz/Oxu17SYoI+Nc/OJ5bsY93fzh52cs16mS2Tej8h+6ltzccY8aaw74MCwCuzONkL3tBM3YRAiQJc9XmmJIbkb/6nQuWowuNJaBRdwq3LkW1lznw64yEtBtM6cHvtSHS04dRi3I0QZQVLeKMy0HsfXMo3rGSwu1f+EK2KSGV0AVH4S3MQh+RhCvzGN7C7IoHLR8tAM2/0esGJEI7j6Dwx2XIJiseW2aFXYTHRWDjHr5QefaTO7XACoXZGGJr0GjIBDY92/8fzWLyb+IXvisMl0flte8O8c6m43/qq7hhXBBzhzYnMtD0+xv/zbg8qi+NkBAqrvMDaJxH4/hgZt/RjKigf7/+ULFXZ7fbKwjfi6++zmenjOyZ+wTGuDoY42pS8MOiigXoTYR3G4Vt40eoLrsWk1KoZRkabiKk3WBKDv5AzucvXuDoMqCiC4vHk3/67EsOUALCiH/gQ/JWz6Fo+xfn7SmZAhCOYuLue5cz8x8rGz71rUUymAiISuSuMRP47r2XOXL4EF6vl44dO/L5558TFBR0XpmXG5dHpdnz31Lo+AM3xh9EJ0vc177qH57btJW6aPniGl8WjV+Tv/EjvIU5RNw89rx1af8bSniPsUg6PY7UPXhsGThP7cVTkIlsKQsQ7nUR2nE4tu8XoDpLEC4HhugqBDS5ify172KIroJiDqL0yFbt+grNoCe43RDMVZpyevY9IMtYalynOc8LQKhYarUDWaJ0/0YtOg2AEBgT6hHVeyLZX7yE48QOYke9h23tu9q8IKA6S4js8zSWqs3wlhaQPnsk4Tc+hKVaC2wb5+NM28eU97/4R+aGrwSuDXn/j5Bus9Pp1XXM3vjnRA9gV3ohzV9Yw/iluy9o3vxPkW6z023GBuZuOobT88dED2BHWgEtXlzD+M/+nfrPnDmTZs2aYTQaueuuu3yJVUNCQli+fDlGoxFJkuja/SYW2etREFwVJAlH+n4KtiwBQNIbkS3B6EIqoZis2E/8grcoB+Es8YmXai9EqB48BVnkfPHS+RVRdCQ++ilBrfvjyUvT5vAUvW+1tzgfgKDmt1bYTbIEg6xoc0qA12U/K3rlEU/K3AD0dbvw5viRHD6ZxqAJrxEdHY3T6eTBBx+8bO35Wxh0MssfaOezTr0cxIeaGdP54sHBf02IxcCItpUx6y/tFSjJMqaEuniLckCSCO00HH1UFYTqRS21EdrlHiw1ryNm8EskjF2CHBCKMa42th8WI1x2Aup1xnn6IIo1VBM1RYdsCaFw29Iyq1ABqpfSg98jGa1I5iAkvYnSo9s00QNtjleomlWv6iVjwROa0AmV07PupvTgD+hCY7DW7wJCJXvpc6S+2oe0N+9AOO3krXyTvDVzkQxmnKcP8/jNDUlKTmbatGkcOXIEk8nEkCFD2Lx5My1atCAwMJA6derQtWtXgoODCQ0NZfDgwZfUfv82fuG7Qki32enxxibSbI4/neLkXBZvP0Wbl9b8K/5c6TY7PWd+T0puKc5L/Jhf/NMpWk/95+sfGxvLxIkTGTbs/LmR8PBwX3qbjevXcnhqL9Lf0ZytZcVASIe7QdEjvF7U0gI8tjN4i/NxZp7wic25FG75BE9pgZZF4Nd4PZx6fRBFPy47Z9m5BhqC1Fd6kz5bC7xcLorCWaq9CD1OADLef8i33troRm2uKqmh5j9nDUVS9JirNudHqpPv8HLjrX34+OOPKS09J4zY30hyuJVPR7W+LOIXYtGzYESrPz1MN6ZzDaKDTCgXuEZ/GFVF1puw1LgOJAnhKEIyWgmo1wnZFIAuJNoXJk0zYMot67m1wWsvIrDpzciWIM3SU2/EW5SLbeNHlLu4oBhAUnzBD8xVW5w1mpJ1ZR81Anf6Ac0xvjw+qQSWWm0Ivq4fRT8vB8AQW5Oglr1QrCFY63ci9t53cGUew3lqL7qQaCJvGsuwKXOYOXMmvXv3pnnz5jidTnr27Mljjz2GzWbD6/WyadMmdu/eTVZWFo8++uilt92/iF/4rgBcHpVBc7ZQYD/fAu1SyC52cUOZb88/hcujMnjuVvJLXH9JuAFySly0f3ktJ3NLfn/jy0R5Dy88PLzCckVRaNOmDdGx8aDoMSU1InHcp8TdowWCNsRUw354Mz5LS1MA6EzIliAUoxnZEowxqQH68lQ3kowuJAbhdiLKRKoCkoS14Q0ogRHa36pXe7npjL5NhKJDNgUA+P49N6uAtqIsGqHXTcnub1HtRaj2Il+PsKwkHB4Vryp4e8MxnE4nR44cuaT2uxSaJoayblwHAo1/PvEraNKQEGq+ZMMMg05mwYhWBFv0f0j8vCU2SvZvQAiBUFXsx3+m5MAGTMmN8BTl4M5O0Xr9hop1SZ3eH7U4j6Kfv0QJikTSGzXDGI9bE8NSzejJnZMKQsVctTk+twivC1Fqw5N1HH1MNXQhUdqQuTWMSsPeIO7B+VgadPWNKJTfZ+Za12M/8bMWWq1MDE0J9bAf/VELgmANRbEEE9S0pxY0wRqK1+Xg+2wDtWvXxm6307lzZ7Kzs4mJiaFv376sWbMGp9NJYmIiq1evRq/X/ysGUpcD/xzfFcC0VQd5e8MxvJf5SiSFmlg9ruM/MmE9bdVBbXjz8k3bALB67PVUiwq8vIX+inNTCxkMBlq1auWL+DFx4kS+/HIFu3fvAlnBlNgQ4XVpcSS9FT9UdOGJmj+XT/ol9FHJ2pe4zwgBkGTNuMX1Bz9MzjVmuNDff3S/sjqF3fgg+d/NRjYHog+Px3Fyl8/NYv6ChQweNPCP1esy4fKovPD1fuZtubDrw4VQZIl721VhbNcaf/n+TrfZGTx3K5mFDjK3fkHJnjW4Mo+jC44m7r45lOzfgO37hXjyz5xtT1mPPjyWwKY98RbnU/D9r11DNCGVDCaUgPCyfc9/OCSdQXNH8Xq09UKcte78VVkXTHcrKxiTGuA8sePsfrIOJSAMb2FWhU0Va6gW79QUiCm5EZG3PErxvnXkfvkquvAEQtoNIbBqY07PvINJkybhdDpZv349WVlZ7N+/n2effZYffviBLVu24HK5qF+/Pq+88grt27c/v15XOsLPX+bNN98UTZs2FQaDQQwdOtS33Ol0ihYtWgidTicAERsbKzZu3Ci2bNkiunTpIkwmkwAEkizQGYWkN4nY++aKpPErRMxdM4Qxvq6Q9CYhGSwCEGE3PiiSxq8QSlCUkHQGgaxo+8uKCGrZWyQ+8aWIuOUxoQuLE8g6rVwQs2bNqlDX5ORkIUmS0Ol0Ii4uTjz22GPC7Xb/5nn07t1bJCUlCUCsW7euwvk/PmGiQFa0upb9ys/j3F/4TWMrnEfS+BUiuM3Ai+4be89sYa7WUoSEhYvQ0FDRrVs3cfDgwQteg06dOglAuN3uP3Xtvv32W5GYmCi2bNkivF6veOihh0Tfvn1966NjKmltfFl/8jn/l/6G8st+iuGCy3WhsSJq0AvC2qCbkEyBAiRhbdRdACK8UsKfar/LSX6JU0z/7pBo8ty359075b+mU74VM1YfEvklzst6bKfbK17+5oCo1GuCqNR7vNBHVRGyJVjIgeECEIo1VFgb3SjCb3lcACK0492ido+7tHXB0dq2YXECndH33ElGqwjr8bCIufNVAQhDYgPfckCgM4igNgOEPqqKAIQcFHWBe0QSkt4klIAwoYtM9pWNJImw7g+IwCY3V7iXJJ1BmKo0E/roqtoyc5Cw1u0ozNVaCHPN1iKwxe1CMliEpDOIuNHzhKFSDd+9EjvyLWGMrSEio6KFw+EQkyZNEn369BHBwcFi4cKFYvjw4Vr9JUmMGDFCLFq0SAQHB4vs7OzLei3+CfzCdxlYunSpWLZsmbjvvvvE0KFDfQKiKIowGAyiQ4cOvptTkiQREBCgPQiGc15Mil4ENr9d6IKjBXqTQJKELiJZSAaTbxt9eIIwJta/8EtOkkXYDaNF3Oj3hWS0nLdekiRhMpmE0Wj01UuWtYfIarWKF198USxdulTUr6+Vf8cddwiHwyGGDh0qrFarrwxAKIoizGaz7+8KL3GdQUh609kH9IIvZL0ASSghlTSBPnedzqj9fl1u2f8VRRF169YVlSpVEjqdTkiSJMxms6hZs+afEr727dsLo9EoZFkWBoNB1KhRQwghxJNPPin69+8v+vfvLwICArXzNpiFZAkRSLKQAiMr1ic46uLnCUI2B//meskcJMo/Xi678J13ffCdT8ydr/rEBKXiNejS7QaRkJAgTCaTsFqtwmq1iq5du4rDhw8Lo9EoWrVqJWRZ9q2zWq3nfQz9VdwerziSWSjWHMgUaw5kiCOZhcLt8V7WY1yIJ/5v4nntFVC9pagy5kOhlIlgxXtZJ4LbDRayJeT8djYFCcloFdEDXxAoeiFbtHtBF5EkTFWaCnP1lgJZEdbGPSreU2HxIvz2//M910iy0IWWPStlz4tsDRWSzigwmM8RQ1kYYqqLoNb9BTqDQNELSW8UurA4EXHrE0LSm0TCuKXCUr9LWf0CRXC7wQJJEvpKNURQyz4CWRHfbt0thBBi0qRJYvDgwWL9+vWiWbNmwmg0+u6FZ599VgghRL169cTnn3/+t1+Xy41f+C4jTz75pBg6dKhPCKOjo0ViYqJQFEWEhISIlStXirFjx4o5c+aIgIAAUadOHRFRv62IGjBF+1ozBoiEhxeLoOv6ClPlJtoNbgkRIR2HC0NsTSFbgkVg81uFEhRZ9rKURfxDC0TS+BUi7MaHhCG2pgjvOU4YYrSvuPiHFwvZHFT2wChi8DPvCKfbKwYMGCBq164tYmJiRIMGDYQsy6J9+/Zi/vz5ol27dj7hKy4uFhMmTBBjxowRx44dE1988YX24Op0YteuXWLXrl3i+PHjIqnLEKGPriqUgDChj0wWSeNXCGNCPSHpjcJat4NIGr9CBDTqLsK6jRLGhHoitPsDQjJahWwOFHJguDBVaylihs0UMUOni8RHPxPBbQYIQFQa9j+R+PgXIqBxDyGbAsSAgQMFILp16yaqVq0q+vXrJ3766Seh0+mE0Wj808I3e/ZsodfrxYsvvujrfZeLeXkv/Wr8ydZQIZsCRPTQ10RYjzE+gVQikoRiDRHNO/cUFotFfPfddxXarGvXrqJt27aiVatWok2bNn/HI3TFEBcXJ1q2aiX0er145P8mi6TkKiIuLk7cf//9IjY2VjRv3lwkdRok0BmEpU7780VPZxSh3UaXfeRVXGeIrytMVZqK0Bvu9wkboIkViJCOw0T04JcqiGH5NpYGmmjpoyqXrZN8YhjS4W5hrddZBLXuL3RhcULSGYSl9vVCFxIjTJWbCGNcLZE0foVIfPwLIekMQgmK0kZbDGYR0uEurSeqM4iIyCgRHR0trFarMJlMonHjxkIIIebOnSuSk5NFQkKC+Oabb4QQQtSvX98vfNc65cInhBAej0fIsixkWRYBAQFClmVx2223idLSUiGE9mDdccedQjZayoYttZs3afwKYUxs4Ps6BEmYqjbXbnRJFgljl2g3bNkDoQuPF5XufkPEDJ0uJL1J6EJjRdgN9//qYZMEik5EDZgiWj37pdDr9aJLly4iKSlJTJo0SVgsFtGsWTNRvXp1sWXLFp/wlfPrnh8goqKixNdffy127d5zttdS/sUaHC0kvVkogRFCH5l0/sv3nAfd2vimX/V2tF6jEhQpAhp1v2BPqLynt2bNGhEVVbHHtXjx4j90rdq3by+mTZum1Vc5/xgBoRFn63MFiNUF2+9v+IV2vke0/r8FAhBffPGFr70WLVok+vbtKyZNmnTVC1/5s1uvXj1NZPR6cdddd4nU1FTRunVrYTKZRIsWLYU+NFbIAeHCWrfjee1ojK8rQrveVyZskkBWhC48QciWIBHQ+CYh6Y3CkNyooiDG1tKOF5Es4ka9L0xJDc+55hXvUUNC3fPvT0UnjEkNhLlmG6ELqSR04YnauwWEPrqqqDTiLVFp5NvC2qCb0IXFiejBLwklMEIEtewtZGuIiLlrhkge85E4lZYuzpw5I8aNGyd69+4t1qxZI1wulzhx4oQwGAyiWrVqwuPxiE8++USEhob6hzqvdc4VvvT0dN8Nee5QZ2RkpMjNzRVxcXFi2ptvi/jBzwvZFCD0kdoXXGCTm351M5/zxWgMEEnjV4joIS+fJ2zB198pABHScbiIu+9dbbn+7DCpZA4SsiXEN78QGBgk+vTpI2655Rah1+tFfHy8eO2118SJEyfOE77i4mJx6623iuDg3x620+p7zvDtr0XLN+8onfM752FOaijQW3zl6EJjtWHbC7zoFUWpMNR6rnhNnjz5gtenWrVqvn3OH6b1/8p/sYOm+OaAz11uMpl8wmexWER4eLioXr26ePbZZ//03OqVTPmzGxoaKgDx5ptvitatW4v/+7//Ex999JEARMcuN4iI9kOEEhQlogZM8f1bPnwccctjQgmKFEpwlNBHVxUJY5eI2JFvCSRZWOt1EhG3PCYk/a+H9LWfpU6HC1+bC92zsiJkc5AwVW0uglr2OmfeXycko1UbYek0QusB6o2+Xh2KXujC4kR4z3FCCY72zbMrBm14+9577/UNdQ4YMEAEBQWJoKAg0bFjR1GrVi1htVpF06ZNxcaNG//ty3VJ+DOw/02YzWdNmn/88UeioqLo168fs2bNomfPngAISSFj+WtY6nSg+JcVmKu1wFucjz4ySYviDoR2uBtzteacnj0SnFqOMFN8HVAMmKu3BMBx9EcKNn4IQFDzW/CWpWtJHPsxp17rhxBewrrei6V6K5xp+8j65BmKS0o5k5HBjl9+ITExkYyMDB588EHS0tLOO5fNmzezY8cOqlWrxs8//4zRaCQ6OpqioiIKCgsJ6ziM3A0fIdwOjIn1cJ74RdtRoEWXkGQtJJPqRQoIR5TkUcHaUNGBpOBK2QVlpuBKYJgWtaTcZ6ks2LNObyAhPo60tDS8Xi+yLBMfH09ERAS//PILUVFRTJ06leuvv56OHTtWOA+j0cioUaNQVZUlS5aQl5dXYb1er79gUONrjYzPXkIIgdVq5Y477mDVqlUcP34ch8PhC0htNBqZNm0azZo1o3///uh0OiZMmPAv1/zyUP7s1qlTh5SUFIKCgnjkkUeYMmUKe/bsQZZljh09TH7mFryOYnI+n4rqLCXn86kEtepDcKs+FO9dh7coF11YHNEDnkM2WpCNFoxxtbAf/xn70Z8IaNANR8ouAprejG3te8Tc+Spn3r0fU0JdHCd3Ej1gCoaoZFKm9SpzB5WIf2gBp2b0B1khtN0QCn/5Cm9RDo7U3bgyjpTFD9VjSmpIVJ+nfOcUdE6A718TUFd7Tspjnd5zfdW/sXWvDPx+fH8ToaGhWK1WAAYNGoRerycyMpLw8HB++uknMjMzefyBkcgGC8U7viKgUXeM8XXwFOXgKThrhpy/7l3OfDTO93fK1J6kvtoHVDf2g5uwH96MUpbIEkVH+tsjSH93NADFe9ZovmICirZ9BggKti4F1YtQPfzw/fcMHDiQM2fO0KBBA5588kkaNWoEwC+//OJLKzNp0iSioqI4fVrLFH333XeTkZFBSUkJTZq2QJLLsgOAT/SUoEhQFCRZV2bGr32IiuKciqKnMwDSWVN/lx0kBeEsJW70PKKHTteyG5RlNFACwqhdu7ZPoFRVJTU1lV27dgGQl5dHSEgI77333nnXJCIigsaNGxMeHu67Hopy1ofsmhc9SUa2hqAP0nwZvV4voaGh6HQ6VFVFlmWefPJJmjZtSnR0NIMHD6Z+/fo8/fTTfPrpp/9y5S8PHo8Hs9lMYGAgQgjuuOMO3njjDQoLC3G73axZswZVVcnPzUUACIEQKpKiI6TD3QQ2uYncVbNwnPgFyWAiZuALKOYghNeD8LhQgiIJaNQdS71OlKbsxp2TSuEPizFXbY4uWMu0kPftW6iqypn3HqBk/wYknR7ZGopQvbhtZ7RoL6qX/HXva4l8JZnoPpOJvftNQEJ4XNhP7iT11T5kLj4rfq7sk2R+/BSnXh90XnYL4XGT/dXrPDekE4GBgTRq1Mjn0nNV8i/3OK8K3G63sNvtYvz48WLIkCHCbrcLt9st2rZtKwAxcOBAUalSJVG3bl2fSwDgM8iw1L5eRA956fyJ8LKhSmvdjmetH2W9kC0hIrTrvQIkIQeECdkU8KshEKnC/3UhlbQhkF+XL8nCYjnfApSyocAxY8YIu90uJEmqMDRoNpt9Vn0JCQkioH5nIVtDKw6LVW0hUHTCXOM6zb0C6Zyhz9+fo1JCY0Wl4bPEhebYyoc1b7nllvPW6fV6ERsbKxo1anTedWrfvr2IiIgQZrNZ6PV6ER4e7rNs9f/OacOIRO2+K7PYPHdducGDXq8XK1euFEIIsXjxYp8BxH+dSZMmndcejRo1Om9o3XcvWkNFxG3jzw4jysrZ+1zRab+/Oqwu68oMUXRlZf+qvLLjRdw2QUh6k7DUaS+CWvcXSkCYkIwWYUyoJyoN/5+IHfm2CLvxIRFx23jtGTeYhWwNEaGdhovKjy4VXYfcL06cOCEWLVok4uPjBSCqVq0qli1b9m9flsuOX/guAxd6WJ588knx2GOPXfBGLp87qPiThBIaJzBYhGINFfqoqmdfRLE1faJliK0p4BxLMCTf/00124iAxj181mHn/RS9sDa84YLrDAaD6NKly3nLq1evftEH8qabbhKAMIZGX3C9ZLQIyWARYTeOqTD3J5kDL26gUebPiM4gQrvcc/56SSeCgkO0ciTpvDonJydXcE84l61bt4rCwkIxZswYn+BbrVafW4l/3q/iT5ZlERERUWFutNwlJjY2Vjz//PPiwIEDom7duhedV/2v4nK5xKhRo0RwcLCIjo4WDz74oLDb7RW26fza+vPm9rTnTOfzSUXRC0udDiKg8Y3CWq+zMMbX0QTHFCAMsbWEpXZ7IekMInrgC5qrkiSX7ad96OqjKou4++cJfXiCCOk4TOhCYwWSLJSgSBHR81Ftzn/gC0IymEXCI58KJShKBF2niV7sfXNF4uNfiKBWfYQhuqqvjgFlPpvxDy8WsSPeErI1RNQfPlW4PF6RlpYm9Hq9+Prrr0X9+vXFhAkThNlsFpmZmf/Slfh78Edu+Ru4UHJOAFmWURTlt4fUZAVUL7IlBGTZF2hYtgQTdsMDFHy/wDf/V45ksCDcDhIeXoxstJC76i2Kd3ylrbMEl6U8kbRgyYqu7G8Bih5Fp8dq1OF2u1m3bh3R0dFUrlyZLVu20Llz59+M3Xj+nJiklVuWnVp7f2rLJXOQltW6WEvPooTE4M0/fc6uEkgKuvB4LRCz6kGSZVR7kZamp2woVbaGEm41kp2VUbabREBAADExMRw5cgRJkujQoQOSJLFmzZoL1nvs2LG8//77FBcXo9frUVUVl8tFmzZt+OGHHy5+ba52zon0Isuyr22Li4uJjo6muLiY6667jqNHj3L8+HEkSSIpKYkhQ4bw1FNPodfrf+cAVxcXSm10MS6W7SF/40cU/fg5UX0nYUpq4Fue8dGjuHJOEdXrSUxJDSja9S3Fu1Yh6YwYIpNwZRzBnX8GY6UaoDMiG0xE3PQwabOG+QKhmxLqE9rxbpAVzsx7mKTHlgFw6o3BqKUFJI1fAYB9y0Jahbn44rNP2LZtGz179mTPnj0kJSWxc+dO2rVrx/Lly7nuuusuY+v9u/jn+P4GJk+erMXz+9XP6/XicrkQQvDkk09Sv359Bg6+g+pPfkXS+BUkjV9B2A33A2VR/B0lRPaZRNL4FSQ8tABrzesI7TwCJSgKU1IDgtsMJGn8CiJuehhdWCyy0QJAWJeRKIHh6CMSSXxoAfrQSpirNAEEwa36EHbTGECLMB9316s0atQYu91O9+7dGTx4MOvWrSM8PJzS0lJ69uxJcHAwHTt2JCoqCr1ej06no0aNGrhcLp5++mli4+KQ9Cb0sTUIaNQdSadDsYagBIajC6lEeM9xxN3zNuE9ygIn602Y4mtjiK2JMb4uksFMuWh6sk8i7AUIjxNdUBRJ41egBIYjmbV0OVVHzeaL7zYAEBwczIMPPsjp06d58803kWUZi8VCZGQkLVq0uOj1sVqt3HbbbXTt2pUnnniChIQEgGtb9ADO+QaOjo6mevXq2Gw2OnXqRElJCYqi0KNHD44ePUrr1q0xmUwcP36cZ5999poTPYABzRP4u7oNrpxUJOWs7aEhqjLunFS8RTkU711LaJd7iB/9PkpgBPbDmwmo1wmAiFsepdJdM9CHJ6CPTCLz46cp3rkSc5WmAHgdxWWxQc/GOn327ps4fuQgAM2aNaNmzZp069aNO++8k4MHD2I0GmnQoAFXE9ec8Hm8Kkezilh7MIu1BzM5mlWEx/v3p8HxeFVO5pRwKKOIkzklqGV5hww6mZHtqiCjJYe0rXsf2RJMVP9niR78Inkr38CVebxCWUL14kjdi7V+ZwBUtwPZqBnSCKGSs+JVJEWPPlqzzjJVaYrz9EGQFQIa3kDxL18DYIyrjfPkTh7+v8kEBQXx5Zdfcs8999CzZ0/2799PQEAAJSUlNG7cmHXr1pGVlYXb7cbj8XD48GGMRiPvvPMOBTYbwu3AffoQxTu/RR9VhdAuI1EdpXgKMsldMZ201weSveRpkBUCG3bFfuxnzNWaE37TGHQRyVpPQ/WCwYwpuRGG6KqEdrsPR9o+PPlnEI4i9JHJeDweXnvuSRITE7FarSxZsoTAwEC6d++OwWDg0UcfZc2aNTzyyCMV2sxms/H1119js9lwu90cPHiQdevW4fV6SUn54zEir27OvsXPnDnDoUOHaNSoEY0bN6awsJCCggI6duyI2+3m6NGjyPI19/qogBDQJDHksqZX8pXtclTI7CEbLQiXHUlnwFLjOoyVaiDpDOijkkGo6KOrAJrFty4kGlNCPYp++hy11EbJge8J7TyirNyz8WH7NYtn7bgOVImNpKhIS2AsSRJOp5N9+/bx7rvvMmjQIGbPnu0z1LtauCbcGf5INvNwq4E7WiVyV+vKly0b+K8zkOsVGQnwCkHmhmO4skuwZBTy8nXJrNh9mt3bjmNMqKuZJUsyxko1MMTWxH5yJ4ayGxvQ3AbiaqMPiQFA1psQzlKEEOR+/QbeEhum5MaaaTMQfF0/3FknsRdkkTH/cQIbd8eVeRxJZ0BCok7DptStW5cDBw4wcuRIFi1axMcff0zdunUJCAigVatW1K5dm4ULF2IymcjKysJisfiEsaTk3CwKKq6s49jWf0BI24FIehMFmxejOksRZQk37ce2E9jiNuyHNlO4dSlIMoaY6gRf1xdLzdbYNi3Afuwncpa/glpqQ9IbQai480+T/u79tOjRjY0bN/Lee+8xa9YsrFYrHo8HSZJYvXo133zzDZGRkRWuhdvtZuTIkT7L1HKmTJlyWa71VYGkA6FlAi/PP3jgwAGfxawQggYNGtCoUSNsNhv9+/f/N2v7r+HyqEz/7hBzNh3H8zf0+CRANpgq9MBVlx3JYMZQnuWjjPLcfNI58mv7YTGujCPEjZ5H5uKJmCs3JnPRk8SO+F/Z6IrGqPbV0CsyhYWFPivWG2+8kR07drB+/Xpat27Nzz//zC233MLKlSt9Ft9XA1e18P2ZbOa5JS5mrDnKm+uOMbJtZR7pWhOD7tK+aM/NQC5J+OYA3F4tOrtQvXhVL26Pl71pNpo/t5LGSWGEJNQkdeunvi89V8YxnKf2EdikR4XyhdtBQFlvD9D8/mwZ5H79Ou7cU0QPmELWkslY67YHQNYbibx9AqfnjMJavxOSMQBdaCUcqXuo1G0ERp3MnXfeyWuvvUaPHj1wOp2sW7eOSZMmkZqayt69e1mwYAGzZs3i+PHj1KpVizNnzhAYWDFrwvNf72fOphPntcev619OSKs+F17ebjAh7c5PcGnUyYzrWsPnZ/TMM89ccC71QkRGRpKSeoq0fDtnMrK4744+HDtyCEVRsFqt1KlThxUrVjBo0CB+2nuItCP7tR0lCV1EEmqJDdVRdDbf2dWI8JTNz3oxBYZyY9dOLFq4gKVLl3Lvvff6TPr37dtH7969mTlz5r9d43+U/BIXc74/zuyNx/irg0RC9Wr3kuoFBMLrRqhe9Dodr9xem4EfJeDMSUOomhuEK+MY+ohErPW7kLPsBVzNbtESyKbtwxBTDdlkxVOQhacoB1fGUczVr6PkwAZUeyHBbQdSvHctruxUjFHJyJZg1NICIsxa727Xrl3UrVuXUaNGcfDgQbp3707btm0BaN68OS1btmT16tV+4fsvkG6z03/2ZtL/ZGJXryqYvfE4K/ac4eN7rvvTeb7OTXHivEAmcaF6sW1aQNFWze/JnZNCyb51FLQZSPB1/Qhv25/s1e+S9clkZGsoQdf1xVy5idZb8np8ySbN1VsivG5tSDMsDn14AiV7VoOi59Trg8DrxpV5FMlgxpRYH5CI6PUkucun4c5JQQmKJOKmsQhzMPt/3MjQoUM5evQoNWvWpKSkhOHDh3Pvvfeyf/9+rrvuOjZt2kSTJk14+umn6dWr13miB3B/h2rM23wS9+XOr3QO/Zol/KntL9TrliUJ9ZbnMaz7iPxNCyksLOTMmTOYzWbatGlD66aNWHL8iOZbKLR5x6ubMqMkQBcagycvnaKSUk7W7Ee6zc6uXbvo0qULixcv/ner+S9R/iE75/sTuC7wTP8WFQROqAiPC2SFgh8WU/DDIt92WUsmUbP7nfz8+Vzq1qyOI10bfs/6+GlAy7cY1OI2zMkNCWk/lKxPJqM6ipFNAUT2ehLQeoV5q2bhzj2F4+ROjLE1iew7Cfux7aB6kBUdqa/08h0zMMBKbGwsqqoydepU7rrrLvR6PampqVgsFmRZZsKECWzatInRo0f/1Wa8orgqrTrLs5n/1cSuIRb9n0pyWZ6BvKDUjfcizWrbtKDCDQ8Q3GYgIe0GkzZr2Hk5tOLuexddSDSOlN1kLvq/CuuMCfWIGTwVAI8tk5yvpuM6cxglKJKwbqMwJzcCwJG6l5wVr6GWFqAERRDcZoAvWkOSxUPp8ikcPHgQRVGoVasWzz33HF27dvUdZ+HChYwfP57c3Fy6dOnC+++/T1hY2AXPb9qqg5f0gvg9zHqZ4W2r8Gi3mn9o+4v1ui+ESS+TvX4+eZsWVlxRZmF7LRHYqq/2USbLmKu3JL7L3RR8OpEP5s2je/fu/3b1/nHO/ZC1/wHrzV/zZ5/3EydOkJycTOfX1rN9yZsU7/oWgICG3QjpcPfZbO5A+jv3EdSyF4ENu1UoQ3hc5K19F/uhzahuB/rQWELa3+kzcBEeN1G7P+LQlu8wm8088cQTFebEZ86cyYwZM8jMzCQyMpL777+fcePGcTVx1Qmfy6PSdfp6UvIuT/bx5HAL341t/7vJLl0elW4zNnAqz35R0fszhJj16GWJ7IvMSV4OTHqZR7rUuKwhisrbITWv9HeHl/8osgRJYRa+/QPXAS79ZWXWy0QHmVgwohUzX57CrMVfUXzmOKqjGKSypLKZx5GMVkxJDfDYMrQe+NWCJIMkYa7RGlf6QbxF2ciWEBI6DODI8v/9IwmNryT+yIfsX6VJYgifjWpz3vI/4ypxKSSGWVjzyB97nq5GrnjhczqdjB49mtWrV5OXl0fVqlV58cUXufHGGyts9+yzzzJp0iRGvvAua4qi8QrIWTFdC/lzjllwwtiPfUYfRbtWUbjlU7wl+Rjj6xDeYwy6QC1ck23TAgq2LNGGEhUZvSKxe/duqlTRjEwkScJisfi+wOq07U5Ri+GX9FV4ISQ00Z17ZzOGvv8jaTbHZSn3XIw6mW0TOl82Y55yyl8YtlLXXxY/WYIQi4EvH2j7h3rel+NlZTEoXF+whp0/beVQgYy9MBdvUQ6WOh0o+vFzUPTI5kCiev0fZ957ECUoEm9RDn+Pbbvky45+Keijq+HOOn7x/c+Jg1ruxydbgsusf78iYezHANx7fRUm3Fj7Uk/iimHmzJnMmzePPXv2MHDgQObNmweAy+WiWrVqnD59Gq/Xq/moelQC6nUg/KaxCCGwrZ9H0c9fIjwudOGJeHJTiRowBX1YPGfmjSlzE5BQAsNRnaUYopKJGfIyxXvXk/ft/85aVMoK5motCOs2CseJHVQ6tY6jhw/idDoRQiBJEs1btCS75WhUS9hvvqcuFbNeYXjbyn94BOVq44oXvpKSEqZNm8Zdd91FYmIiX3/9NQMHDuTRRx/lyy+/ZM+ePdx8880cPnyYnJxcnJXbYNuuOWaK8viPqpeYu2ZgjKmG8LjJWz2b0gObUJ2lGBPqEn7Tw+SseA135nGEx4mkMyC8XmSDkfCbxmLft47Q0jROpaZw/fXXk5KSQkpKCvPnzycrK4vX33iDU6czkQxmLLXaEdppmE9cbRs/ovTIVtw5pwhu3f+CRhsAOV/NoGTPamLvfQd9aCwA9p1fYTi2kayUI4TW74ip64MX3Nf2/SIKvl9A1IApvuHN3+PvvvH/6hARaD2wmCAT80e0+kOidzl73flr38O5ZxXrtv5C99v6UJqfjaVOe+xHtuHOScWYWB9r7evJ++ZNTNVa4kzbh3BoQcQxWsBZimS0avFOXeVBAGTg121xoWXncnb+7ZI4b7j2bHmWOh1wnTmsBQM/F4MZS3JjJL2R8JsfoXDLEop2foNFOOjRowfvvPMOQUFBFXbJy8ujZs2a1KxZk++///7S6/s3MnPmTKZPn05qaipVqlThuuuuY968ebhcLpo3b86ePXu40OswoMnNePLScZzcUXGFJBHScQSFPy5FLbGd93Ghi0xGkhXcmcfOK1MyWtFHVcaVtv+8/RRFITIykoyMjArL9VFVMMRWx5ObjjG2BoXbvyyLcSshW4IJ7/4AlhqtAFC9HrIWT8RZVr5ktBI7bCa64EiK96whf937qKUFSBIEBATw2GOP8dRTWlzPkydPMmTIELZu3YrX6yUyMpKvv/6aZs2a/ckWv3K54oXvQjRo0IAbbriBNm3asGrVKpYvX86cOXO4Y9g9GDqNwpjUCNB6fF5HEZ6cVGLvnYMkSRRs/ZSSfesxxtfWbnK3E9XtwFylGXnfvIkuIglDWBy6iEScaXtxnjlKyP+zd9ZhVlT/H39N3N7du91JhyApDQIGNiIoKgoogs3XBBP82Y0NNooKUiKIIhKiICAoKN0sC2z37Ttzfn/M3QtLKEqqvJ9nHtjpOXfmfM75xPt9Vm8610/k64/fQJKkMGHzhAkTaN++PTPWV/LUCy9R8v0ETIk5RJzRg6izLkfzVFH4+SgCJbsQwQCm2DSSr3s+XGie/+kDBIp2IgI+kCREwFvL8FX/NhfX79+h5W8CJCIadyLqQsPXHqwqpnTOW3h3/Y4I+JBMFhIuf/CIDJ8iSWTG2o7Ydfh3sX+cDThkss+hYFElQOKmLnUY3rP+Ed/j83M28P7i7Uc1665JRsifcD8InbPufIMdHz1A3rb1hr0I+gEBsmr8ewij4mh5Ea5VX4dmgP+4z+uIYLfb6dSpE8uXL6eioqLWNqvVSpMmTXjvvfdOaibggbO7Sy+9FFmWmT17NpMmTULTNFwuF99++y2fffYZPp+Pzz//nGAwaPy+ulHaEdn2cqp+mRVKUDngN5UVJJMVc2pD/Hs37Rv8gEH6HZWIXpGPtX57fHnrEZ7abSVZ7AhfbXYkp9OJy+Uy7kMxY8s+E8/WnzGnNsKa05LKxZ+ReNXjSGYblpT6aK4yCiaMIOgqI+3md1EjYimc8n94d6wm8eonMMVnUTTlcZTIWBIuvY+qX2YjmW3ENDqLG9un8eljt1BQUMBbb71Fnz596NWrFz/++COPPvooV111FR06dMDr9ZKfn4/ZfGy9QycL/7iszoKCAjZt2sTnn39Oo0aN+Pjjj8OMEm5/EPWAfsa7bSWSrJD/4f+I6nAlwYoCg8VECPSAD1vjrpTNf5fYc4cBYI5LRzJZkSTJKBwP+qn8ZTbf/CqIjY1l4sSJNGzYkPT0dO68807DJeLMoLJ4L7IjGpAIlO0FjNmebHGQftt4Sr5+Fd/ezZT/+AmxPW8CIPacoaixaeR/dC9RZ11OyawX0VzltQyfOaU+lpQG1I3Q+L+HRvD0Ci95ZR6KZ76IOTEHc9CPvf5ZlM19G3/Btj81fIok4bSbmDCk/XH375tVmfvOb8RNXeoYmZUr89hRYtT8BTWxH6EZKLJhNHLiI+jXOp0r22QQbTcf1jUF4Ha7uffee/n888/xBwIEnRkkXvssAJXLv6Bq5Uw0TyXyATNxzVVO6Xdv49u1xij+t0YiKSaCFfmYYjMIFO2L2/34UG2XehihTrE2jCdyheji/klQYtPQSncfcpslqzm6phHIWwcIZFmmefPmLFu2jOrqamJiYqisrETXddLS0tiyZQvjxo3jsssuY/PmzSets0xNTeXhhx9mzpw5eDwe+vQxMhqXLVuGw+HgzDPPZNWqVZhMprCax+TJk42D9WDIxSzw7V4HWiBEneerfREhED4XwbI9CF/tvAJzSv2Q0oqEKSYV2eLAveYAGj1NAyQURUYLlTtVVlbSokULfv31V2wN2iObrIARXtEqCozLBnzYclruO48kgRZEqyxCUs1GrWy7y7GmGe7p6G7XU/DZg+gBb7i8KADMyw1y+eWX8/LLL7NlyxYA1q1bh8Vi4b777kOSJK699lreeust5s+f/69JcPpHGb5AIMC1117LwIEDadSoEVVVVSxYsIAePXoQ1HSCBwSU7I064Vo7n5Qb3iJYtpuiGc8R03MIrt++I6LNJZTOeYtgRQHW7BZULJ4ISAhdQwLsjbtga9CB/I/uQbZGoLnKCQaDyLJMWloaCQkJfPLJJ7Rs1ZqkjGx0j8F8IAJ+4i/6HwDBigLsDdojW+xIioopLp1AcW74/syJOVQsm4o1oymmWMPYaa4yADzbfyFYWUzSNU9T/uOnbCku4flffEy4sR1j567l2Wd+x9G0O8HyAqJaX0L5wvF4tq3E2a4Ph4PNpJAcZTli1+GxQrTdzLCudRnWtS5BTSevzIMvqFNjdzXdiDemx9hQDzDGB3Ze+2Po0KEEg0HWr1/P5N/LeO6zb8LbbPXbEdH8HOO381RRNP1pqlZ8SdRZl6MHvFhS6hv0b3Ynpd+OxbVuIY6m3UHXsTfsSMXSychmO3rACyGeUBRT2LVkGLn93JD7zRBMSXUNthn/gTynR+m2PCr88bW10GAtDNUcmt2Cf8+mUIdvHK/rOkuXLg3vWlZWRkpKCvn5+WRlZWGxWLjzzjt54YUXTmpnWWPoVqxYUUtnUlEU4uPjSUpKqiVLBcZsNRAMItujjZidLIeZkxRHDMHy2u1krd8e76YlaBWF+1yWIfeyJCtGfoGqUrV82iHuUDJkwyBs9MAgCtiy1XCPejcvC+/jL85FjogJH1fx02TKF30cvq4l4wzMKfXx7VoHkkSgcAe7XhuAbLZjq3cWaAGCpXvCZBgVP01m3pJJfBfw4nQ6ueaaawBo164dS5YswePxUFZWxtdff02jRo1Yu3btacN3oqHrOtdddx1mszlcODt69GiaNWtGREQEeWUHZ3H6C7ZiSTeMiik2FUeTbvjzt6FExVMy4zmQJLw7VyPt3YzzrN5IFhtyiNnAFJNK4eejcJzRA9fv87BnN6ds+6/069ePq666yuAmlBWGPvMBlrTGxnlMVmzZLQy9LCCy1UVU/fIV9ibdEFqAQMkuotpcFr6/YGURFT98ihA6VStnGtdNyALAt3sjprg0Sr56GffGJUgmC5tWLafPW0E+G3gmzwLenycT23cf84hWUTs1ugY2k4wu4MbOOX/JdXg8oCoy2fFHTn90uM5rw4YNfPnll+Tl5REVFcW01esgfl92qikmZb+zGAkDNTNxU3QyprMuD2+N63UbrnULw39LZgummFQjllfnLPy7VhuJCTUx47AB2c+Q7DcDPFRM56D9Tzj+5NoHJr8E92UT1xCE748DCcr37jXatrBw3zvYvHnzf2hnKRkxeqEbBf2h3z1YXVprQACE3ZSyNQLd70E22xFBL0LX0P1eNHcl6DqWrBb4dq4KzyIBJGsEwlt1yDuoqqwEwNHyfBRrFBU/TED43Zhi0/BabCiRcTiadCOqfV/8ezdTuWIG5vhMJEk2Eq10DV/eelKufxHNUxUuhaoxogDODv2wRsUQ+OkTBg8aiNPpBCAlJQWPx0NUVBSapjFw4ED8fn+Y1uzfgH+E4RNCcOONN1JQUMDs2bPDhLjz5s1j06ZNLF++nK9mf02wsriWCrJrzXycHa7cd6KQoTPFpZM+/DNkk5WKZVPwbPkZe8NOVCyZhOwwRnrFs14ERcXZ8Spcq+fgL9qJ2WTm3Xff5bnnnqOispK7P13Gxumvk3DlaPa+fyeSrKA4Eyn59k0S+zyEOakuaEHyxlwNCFRnUi0Wk7Lv3iH2/FtxNOmGd8cqCiePRpIMo6RVFePd/iuxF9yJHJmAP28d+VMex3zzO9w8aS2pqamkp6cz48m+vDJlAc8EfQgtgNUko0gSAghoOtlxjlquw38Kalycq1evxul0UlZWRk5ODn6/n2uuuYaFCxdSVVVFcnIyHo8HNTqJ6LNvQKssCrs4hRYMd1qSaiayw5UUzXjOcHF6XYAwYnqyAkE/vt0bkc1WPNtWGDN4oePburT2jR3Q8e0PU0oDAns3HeeWOTVwoMJIjYrD5s2b+ezLuXTo2JHIqKh/XGeph4ySHvAAEuj7DQiCvoP29+1cZezvdRnhE29l2LAZpS4CNSaVYEku1qwWeHevD59HdSYQ2M/w2e32sBpKfEIixUWFuH6bR/xl9xs7CIFv9wbQNUwJ2YDh/rSkNsCckE3Vr19jSshGUo3vPKLZORR8PgqEhiW1Ab68dSiR8eHruTf9ROn8D5k282vWLVvIqFGjeOGFF5gwYQLx8fHs3buX6upqbrjhBtasWUPr1q2PtnlPGfwjijhuueUW1q9fz8yZM7HZ9rno5s2bx9ChQ7n00kuZveAn1MhYYnvdTmSri/DmrSNYWYy1TmuE0PFs/wXX2oUIzU9Es3OQTRYCZbuJbHUx/r2bKJ71MpFtLkVSTPjy1hMoyiXuwuHhGaAe8GKz23A6nZx70WW43B62Lf4KW6POVK00FASQFYQuCIZmFsUznkWNTSPj7snYG3VGtkZSPPPF8P17dq6mbMEH5L05iOLZYwDY+8FwXGsXIqlmFGcSkWeehyTLqNHJqFHxuHetI7/SR0Cx8euvv5IaH80Lt/UFIZA85fRmBdNu6cTsO7qw/rFezL2rG0O71v1HGT3Y5+Ls0aNHmB+yBp07d6Z3794AdOvWjfiERJxtLqHkq5cxxWeSMvgVYrrfgBIZjzmtMRGtLkIIQdHU/8O9aQlCMlzaEa0uRlJMIZkmCJbk4s/fQlTb3si2KBRnsmEUaxAykFIoOelA/FeMnoHa1MzV1fv4Wq/tewkXvLKQL3/eyie/FjL2+62Uu49fPepfQTAYJBgMhtVSav4tLCzk448/NsjjhQjF6/5CcpLQAP2AkhaBHJNKsGwP1pxW+PI3h/sTAAnZeKckCUmSwqTfkiQRn5AIkoyjcVdcaxaEj/Ht2URkm0tRrBG1L69riICXYNleTCE+z6izepN+6/uk3zYe2RaJZLIa/RTg2baSkq9fI6P/aJo3a0YwGGTr1q2UlpZSVlZGdXU1ZrOZuLg4Bg8ezK5du2jatOlfbe5TFydA8++osGPHDgGGWnmNIrTD4RDjx4+vpXpeVe0SSlRCWBQy4szzhWx3hsRQbcKUkC3iL71POJqdI+wNOoq0W94XanyWoV4sSSKyXR+RcfdkYUrMEbItSljrdxCSJcIQhZQUEdGkq0hLSxPTZ3wp0s/uX1u0M6wsjkCShSmp7j6hVdUsrA06GqrWqqGojskmUC37FkPELnS8UvtvxSQks80QopUkITtihBIRJySTVSQkJIqbbrpJPPLIIwIMZfIBAwYIr9d7sn+2Y4aHHnpIDBw4UHTq1EnUrVs3vP6ll14SgPjsi6+EKSpeJF39lLDVbStiet4kskbOEpa0RiK6x43CmnWmiGh5obA17CSwOETWyFkiquOVAkUVSQOeE0iy8R5IsgBJSGa7iD57kLA36iwi211R67dQ49IFsiIks/3wQrr/kUVJyD5g3T4RX1vjriJr5Czje7zyMdHwkdmiwcOzxXPfrBe+gHbS3qFAICAeeuihg55l4MCBYvv27WFB4kMuJqswpTSo/byyaggshwRnDzxGjkoQWBx/3Jbh77/2YrFYhCW9qbA17iokS0R4vTmpnsi4b7pwdr5GxF82QqTfPUUkDXjOUH+XZJE8aIzIGjkrJHLbVWTcM03EX/GIQJJFZNvLRNbIWSKx/+NCMllEQt9Rou6Ds8TiJT+J5ORk8corrwghhMjOzhZOp1O8+OKLIj8/XzRv3lzY7Xbh8/lO+G93vPCPLGeAQ4u95pw3EL1VP0TQz67XriPh8gcOynLUPJWUzh2Hd8cqhBbEnJBFTI8b8WxdcRC1ELKCpJgMnszDuLeAWgKetnpn4S/djVZZhGyyIlsjDqqTMiXWQXUmENniAswZZ7Dn3Vux57SievU3xPd5iOJpTxLV+Roqf5q8X1zJgJpYBwJe0q96lJu6N+azx29j8+bNBAIB3nvvPT788EPat2/PM88889ca9BTFww8/TF5eHlu2bCE/Pz+ceTZv3jzOOeeccFKJpJpBkonueh1aVTGVy6eHziBhq98OU1wmlcsmkzViJns/ugf/no1/cNWTmYTyz4RkcRhCx0BCv9EEy/dSuWwaacPeNmbV1GbGORHJVTWzu8cee4y8vDyysrJ48skna+0TGRnJlClT6NevH5WhuNqBiOxwJQT9VK/6pla805RUF9kaiX/3epBlRDAI+tHRJNZAsTvRA96Ds0iBzBFfUvDJSMPtKXSQJBRHLDHnDMXRyGCB8e5aQ+Hno0KlUjL2Bh1IuPwBwCij8uX+Hj6fJEnUq1ePjRs3IkkSq1atYsiQIaxatQpN04iOjmby5MnG9/YvwT/W8B0KY7/fyvPfbjhi5vTKlTNx/T4Pf9EOHI27EX/xXeS+aCgGiKCffTU7ErKioGv7EhgkezTCXQ6KCdWZiL1RFyqXTj6Y23E/owgSqKZ9pLX7BbqRZGRrJHpNnY8kU6tmSDJq2w7MHAOw2WwsWrSINm3aMG/ePK699tqDil//qXjwwQfZtWsX27ZtIz8/n7Vr16KqKtuLq2mQEoM5rTH+oh1IkhzueC3pTfHlrSWqw5VUr52PXlm874RhBfrTOJ4wJ9Ul7oI7MSfXxbV2IWXfj0f3VGLLbkndvvfy9f0X/qHx2z/793AZv3+GQw2OR40axejRo8nOzj5Ih7GGJ7P1bWP45c3aSun78+IWzXgOz7YVANhyWhN77jAURzRQQ0Qxz5DSCkF1JpI65E0Aqn/7jpJQWKMGjjN6hpXZg1XFlMx+1YjH2Z1Ete9LZMvDlNQcJY4HZeE/Bf8qw1fu9nPWU9/hP0J1APfGJSBJeLb/YpQhhF4+oQWo+mU2alyGIZ6qqDisFoKawOf1GBMCSUa2RoAkGZlcWrAW4ayakE2wZBeSaglRFQnMaU3wF2xBtjjQXWX7pccbs8BA2R7jb10zssn2ixlkjZxlFORXFeHL3wpCD1MgPfPMM4wYMQKA4uJiEhISKC4uJi7u6GiNTgV07dqVH374oda6W+8eydeWzmx/9jJkWxS6qwzJbEeNTkYEfVhSGxlZmpK834x53yzOlFT3DzIvT2MfDpj5hgdxB9OoybYoJNVM3AV3hMmQAfxFO8n/+F4S+47CnFyXkm9eB6HTevBjzLu7GxKEDZw3oLF4SzHTVu2uraQhBAFNJyvOQd9W6fRve3wTtY43T+apguNFWfhPwL/K8IHB3jH2+638FWWcskUfo1UWhw1fDap/n0fJ7FcY9sz7jL1/IGc/8zXfP3wZaEEcrS7EvWY+9kZdUKOTqVj0EQCSyWK4F8x2wz2qB1Fi09FK85BCrk/dW73PZSKryHYnksWOXlmECHhxdhmA4oihdO5Yo4MJ+kn/3yR2vzEQSTURe+7NOJp0o+DjexDFO3n//ffCNTiBQACz2Rwevf7TMGDAAObNm4fL5SI5OZn69euTkJCAJEl8880cKqpd+DSwZjbDvXkZyPJh3dByZBzC60YEDih1OXA2fRrHECFjub83A0CSkVQTprhM/IXbyRj+KXZHBJoQmBSZgKYfkZyV1SQjBAzpnMPwng3+tmbmH6Hc7afd0/OOmGnon4j/OlfnP6Kc4a9geM8GzPptzzFRZ6j+fR6y2ULf1hkENZ31S+aGRrkCa2pDXKu+wdGwI6XfvR0+RlJDhi/gw8j0AmtOK1yleYBAqy4JzeYw1JB1HTQ/WkmJcQLVgrPjVeieSkq/eQ17s3Nx/z6XiqVTEFqAqPZ9cTTpRrCiEO+ezSQkJjJmzJiw4auJUxxKL++fgAceeID33nsPRVFYu3YtHTt2pEuXLsgmKy5rHIlXvUBQh7L57wKCyJYXUrV6LpKqItwVYLaj2KNA19CqSjgkOfPfJHw+jSNByHgdOJ62OhCeKnRdQ1JU9rx3m8EyYrah2KMRQkN3V2JOzCam1x2418w/QJJnEJIkhWdh7y/ezle/7z0u8cJou5khnXOOmv7uVIUiSSRHWRjes/7JvpWThn9EOcNfgVmV+fSmDjhtpqM6T7CiEN+uNcQ6I1EVmbwyDxUrvwrH1QLFu0DXKJz+VK3kFd1TCSZrWEUdwP3bXCRHDJasloTdRIDwe5AsNlKHvo1kcxqSMNktkCQpVGcG1qzmAFSv+BJzSgOiO/U3/l4zD2tGU9IzMmvFKlavXk1SUtIp7eZ8/fXXadOmDRaLhXbt2oX/36VLF9q3b4/VasVkMtGiRQvcbjdz5szh61kzqNqxhp2vXMvu167FvXYB6BpVP38Bfpdh9AD8brTyfLTKotMG7lRCiNkoWLgNEfAavw/GNxAs34tWUYi1blt8ezeT/95tVC6bikAQfc4wPFuWU73q69qnC+jsKjWUOHaXHxsJsv0xvGcDkqKsKJL05zv/g3AiKQtPZfzrXJ01+CsK7Ae6OiVA/2UqKdWbydu5nQkTJqA7Euh51hkoEXHoAQ/mlAb4dq4GIQwOv6DPyDAUeijx+IAkF0UN8fLV3I3hElLjMkGWCRbt5FCuN3Nqw3AGor3J2Xg2Lw0RWvtA6CQnJ1NRUcHVV1/NZ599hsfjQZIkrr/++lq8lqcSpk2bhizLzJkzhw0bNjB8+HAefvhh1q9fjxCCyMjIw2bYnca/GCYLUW17U7lkEkp0CmpkLL49m4g9dxjVv80l5foXDzrkeBKu7y9xVfDl83h3rA5TCh506/FZaK4y9KDf+LJDnhzJbDNoEEPEFDWE9DXZmJI10thfCyDbItHdlUYYRJJRY9NRbBEEy/PRqktDNaVSaPAtQnFVE3pICQQkI3dAaAZhQ6uLwzNlOHmUhaci/rUmPy3axvx7ujOsax3kvzBoU2SJW7rVxbz9R4beODi8/qtpkwAJ3edCBHz48jaE3DkSIhgw/l+TmCI0I/a0PzTDRWpAwpSUAyYrstlKsGgHKCqS2Wa8zCHKMzB4EmvgXr8IEfQbSS2h2Uzd1l3o1asX48ePR9d1OnbsiNPpZOPGP0rXP7no06cPvXv3Ji4ujqysLHr37s3evXuJj48nPj6e6urqPz/JafyLYHygsi2ayiWG/p9Wvhdf3nrQAqhRibU4bveHJgT5lT5embf5b115f+/DoEGDwuv9fj/Dh1xH0dtD2Pb0RUTWaUnaLe+TNXIWqTe9hWyNMEqLQpAdTlJveov0W94juscQlIgYkORwdnjilY+RPPAlY19rBKaUhqBaEJ4q1Nh00m5+D93vRQT9OLtehxwZR7AkF9/u9cRdbKijW9IaISkKtvrtUGJS0T2V6N5q0m7/COGtRneVojiiSbjiEYQA94Yfa82UB3bI4p3r2lDtDbKj2EXwSNPf/4X41xo+MNyeIy9ozC8Pn8v/etYnzlE7e0nomvFi6hoWBW7vmsmyEWfTOaqUPbt3c8kllwDGRzDp4/dBVkgZ/CrRXa9DiYwxRmCq+eDZnSQTe+4tyNZIbA07gSQT0fKCsItTjU4mse8o0IL4iww3pSWtsWHUgj5ietwIkoS9UVcIkehKiomM/00k877pxnnrtgVAb34Z+fn5vPnmm3i9XhYvXkynTp3C9W6nAg7XuWiaxsKFC8nOzqa0tBRZlnG73WEGi/r1G5ykOz6NEwtjQKhXFhywWkeNTUMymRF+Dztf6sfOZy5m5/O9yX2xL7kv9mXnMxdT8ONk3vlhG7O+mYssy0RERISX8ePH/+GVaxiCbrjhhoO2de7cmc8+/YTk5GQu69wCq9WC1SRTE65QbJGgGmULCZc/hGJ3otiduDcsQndXIlkcRJx5PghB0ZT/o2z+e4DAcUYPYrpcQ8adE4jqeCWBklyKZ71kmH9JRrY4iO1+Q5ghaB97lA9TfCa27BbEnX8rpsQ6iIAPrTwfEfAimaxYUhtgr3cW5vhMrNktqP59nxrEuEXbuPiNH+n95mJ6vbqIRo9+zTkvf39KMeucMJykwvmThkBQE5sLKsW89QXi+tvuOYgxYdSoUWLo0KHC4TiYcSGuSQeRNXKWyBwxU0S161Nrmyk+y2BkOYiZwVqL1YIDWC7Ci2QwyBy43hRiyFDj0kVk60uEFGJ6iOp0tQBE6rC3hWKxi2EvfiaWby8R24uqxaBBg4Wqqie7qcOYOnWqmD59urj55pvFwIEDw+tHjhwp2rZtK4YMGRJ+3rp16x4TZpHTyz99kYQlu6WQLA4hRyUKkISkmsPfiCWtsUgeNEYgySLt5vdEw0dmiwuvv02oqirsdruoU6eOWLRo0RG/ozXsLodCWlqaWLBggbjhpqHCZDHYl8xJdYUlo6nB4oMkIttcJmRblFCi4oUak7rftywJZ5cBQo1JNb5dSRJKdLJQHDHC0fRsEdXhSrF/fyCpZpF4zVMi+boXBGqISaaGuUW1CCRZKM4kEXPuzUKOiBUoqrE+xBwT3f1GkXzd80K2RhqMRCDU2PQwo1XWyFkiokUvIZms4QVFFZLZdtKYdU4G/nOG7+9g6NChYsCAAeKthVtEw0dmh1+grJGzROb9M0TStc8KZ5cBQnLECkAoUYlCMln2vdCSLGR7tHCc0UOo0cki8crHRNxFdxnbaujOFJNAtYjUYe+IxH6j9r30+y8mq1Cjk0VC31HGC4th+JBkkXrTWyJr5CyRPXKWiGp5gQDEmws2izLXqUMzdGDnUvP3+PHjBSCcTqewWq0iKirqFOh4Ty8nfDHXHjhaMs4Q4W9INajB4i66W0iqWch2pzDFZwpLZjODhuuqx4U5IkYkJCQITdNEXl6eyMvL+9vv5v6oMXxCCBEMBsWChd8LZ7vLxf4Gy9npapE+/FOhRMQJZFWozmQhRyaIiNaXiIS+o4Qak2LsK0nhbx2z1aA9A6E4kw3jaIkQqBahJuQIZFVIZrtIv2uSAISaXF84O19dq42sDdqLzHunC9kRvW+9JAnFmSQczXoKQMRdNlJIFodIv/MTYc1qLgCRef+McB9m0DLKQjJZhWy2iq7dex7FV/7PwL/a1XmsMG7cOD7++GP6t804KEtbkhWsGU3RqoqJamO4RnVPJUnXPEPmiBk4uw0EScKa1dwQuDVZ0X1uIpr1xJSQRWyv2wFIv308WfdOxRSTgq1uWyLO6EFk295Yc1rhaHYuyCq2nJY4O12NvV5brJnN9t2D2TgnGG++pgVBVnhl/mbaPT2P5+dswH8K1yRdf/31SJKEoij4fL7TiS3/UchmO7LNGf5bSArGGw2mmDTs9dsR0awHamw6IugnUJyLo1EXACp+/ATbGd0pLy8nJSWFzp0788ILL+ByuQ51qb8NRVHIbtoa3661yFZHSB8PnJ36U7HkcyJa9MKa1cyQMAr6sOW0onjGs2HienNKA2w5rZAtNkNgNiRnZUltSLCiEHN8BnEX3oHuKQehI9uiwkK0waLtVK2YhSmpnhFmkWV8O36jaNZL6K5yUEwosWlEtr4MraIAU2wGktlGROPOmBOyKFvwAUKrHZbR/QYtWnT3wWTeM4WMu6dQfvb9xyVT9lTCacP3F1BT32MzHaLZdB29uhTJYkeNTcOSUh9JkjHHphm1fXqQQOF2TAlZ+Au3o/u9BMvykQDZEY1ii6p9PilUCKxrSKpRbund+RtlCz5g12sD8OxYBUD+R/ei2J34C7fvuxVXObLFgTeg4wvqvL94O+eN+f6UeZmDwSBerxdN0wgEApSXlyPLMqWlpYh/Z5LxaRwB9OqSfZR9gD93dfj/mrcKc1wGvvwthtp5iLTAlJCJ0DV8e7egqiYSEpMwmUx06dKF5cuXc/fddx/z+/QFdfwleYigH0tak/B6787VVK2ciTd3jVGS5KmkaMpjiIAP2eZEMlmw1WlDYt9HyLhjAtFdrwdAtkfj3rIU9CD+8nwqfvgUS0ojELqhCxiCpFoRCGK6DgAhQFIQAS+eDT8gmW2GHp+uI/QgkjUC7/ZfMMVnGu0Ul4F700/EdB9c61ncGxeDJIVljgAqPAH6j1tC4F+c/HLa8P1FDO/ZgBjZg3v99+h+D0LX8GxbiWv991izW2Cv155A4XY8O1ajeaspX/wZ6EEcjbrgL96J6kyievW3lM4dhxqfQfWaBUQ0OwfXhh/x5W/BveVn3JuXUb1mAZJixrtrLRHNzkGNSiCiRS9SBo0httcdYbmcxL6PEtn6Eip//oJARQGBsr349mwM0Xf5jfs7zjVPfxVPPPEENpuNZ555hk8//ZSYmJhaCtSncRr7YHRRus9NxdIplM55E2t2CxDCICbXdTRXOehBXFt/YeJX81m1ahVbt26lfv36TJ069ajvQNM05s+fT3V1NZqm8fE7b6L73AghsDfpBpJCxU+fk3jV/xHR+hKQJBL6jUKOiMVapzWy3YnuqcCa05qqVd/gy9+CN3ctpd8YgtqSyWIksskqwlWGCPqNrG9ASBK+vZtD+5kN2bS9m0HoRha50Im76C5E0E+wupRgdQnBikKE30ugNI+IZj0B8OVvwRSTGhbJroFrzTwkk5WSmS+y65VrKJj4CP6CbeSVe3lp7r9YZutk+1r/iVi9eaeIyG4mZIsjJHmUJWJ73W7E/O77QpjTm4T9/5LZLqK7DQzJgTwh1FhD2gZZEZLJKhzNzhGZ904XlvQmhryJJAkkSUiqRZiT64uEyx8UWSNniZQb3xDm1IZCMlmEKS5DJFz+oAAjxhdOtjmENIqz09VhX36dB74SZz8/X/iDJyeA/UdxlMjIyJMfYzq9nNzlgPfX1rCTUKKN2JjiTBLRZw8KS+6AkQiSPGiMSP/fRAGIlMvuFtuLqoUQQkyZMkU0aNBAxMTE/OE7GQgEasmbeTweEQgEhBBCeL1e4fF4RHJysmjWrJlwOp0iMjJSxMTECNnuFPYm3URiv9FCdsQIc0oDIZksQomIE0pEbDgRx5xUT5jTGgkUVWSOmGnIY7Ev8aXmuWti9n99kcIxugO3RZ51ucgcMVMkD3xZyLYoYU5vIpTIeAGhhJernxJIsojq2F+Y4jMNCTfVLFBMImXIm6LOA7NEmcsnJk2aJDp06CBsNpvo1q3bQW0ICLvdHpaMu/HGG4+qnzgR+NdRlp0INK+XyYZfl3Htu0vJr/Di3S9+JikqKQOeO+gYEQxQsWQSwfK9Rq2frOLsdDXO9lcA4GjWk0BxLnrAiym5HolXPIIaGUewqpjCKY/jy1uLpFqQzDZ0vxt7w45kjZyFe/My8sffHVYUd3a5juhOV4WvW/37PPZ+MNxwhQqdsvZ9eKlpIiMu2Ccq+eijj/L444+jqiqZmZl8+OGHdOnS5Zi1V408jKZpaJqG1+tFVVVUVcXn8yGEICoqirS0NDZs2HDMrnsa/yCoZpTIOINmLuTG9Gz5mZoiXN3nxl+wjeo1C/DnbwHFhNB1TDGpyBY7SmQ8nsJctMpCRFw2JSUl7Nmzh759+/7hZZ944olaCg4TJkwIKzg0bNgwzIpUo3ZyoIKDe933APhdZYdUcAiU78GW05rEPg8jSRKJlz9A8ayXca2ZV4vPVHUmEtnyQsoWfYQIxesPgqygOGKMIvqwCoxABLwoMaloZXswpTTAmtaEqhVf4N2xmrxXrkb3e5FMFrTyfOIuvIvCzx/BlJhN8fSnQego9kgSr3ocNTIOEQyw6/XrKJ7xHGpUAsljrsRiUunWrRsjR45k/vz5nH322SxduhRV3Wc+Vq9eTb169f7CD35y8a9lbjkR8Ad1Xpm3iXd/3E5A09H/oCXdm5dRPOtF4i/8H4HKIqpWzECrKMTeoCORrS+mcPpTKLYohN+DKbkegaKdaJWFmBJzsGY2I6b7Dex57zaCpbsBDLaYUAwgovl5qHEZlM19y4gJmu1YUuoTc+4wfLlrCFaX4Nm8lEDRTkBCttopKSkl2m7m66+/5rLLLgNA13UsFqMuqVOnTnz77bfHpJ3+qjxMfHw8n3/+OT169gRkJEU1mHFO418LyR6DcJfVXhnS8dtfk1KNSSVYUYASEYclrSEJlxmqJOWLJuBdN49oi0xFRQW6rnPmmWcyb96848Jb+3cVHIQQlMx+hWBFAYn9RlP502Q821aS2G8UKCpFU/4Pa2YzghWFuNYuQHEmEnFGDyp+moxsM55Dd1VgTOogvveDWDOasHf83QgtgCkmhYjm51HyzevIFjspg8aw+61QjaLJgqxa0D2VSGYbkmJCMlmJ7nwNEc0NrT0RDJD72nXgdxPTfTCZnS5l6YPnsWnTJpYvX86ECRMAg0x+yJAhgKHnt3nz5n+U4Tsd4zsKmFWZ+85vxLIHejKiVyNy4uyH3bdy6WRiegzB3rAjpqgEYnvehGyNRPNU4dn6M7LZRuw5N4FiwprdAq2yEMkWRaBwO86OVxGsKkZzlaFEJyOpZjLvmUJM98FYM5oSe85NRDTubASoZYWEy0diq9+O4hnP4WjSDff6H4hsYxg3W4MOiGCASSt2AXDzzTfTo0cPzGYzV111FS6XC5fLdcyMHhiGTxilM+Fl9OjRAOzYsYNRo0bV2r+4uJgePXoYo2GhnTZ6/wEcZPTAMHhaYB+TkWIyPCaAOTGH2PNuDe+adPY1tO92Ll6vF6fTybBhw1i0aNFxI2s/VIb3kaB0zhsESnaR2PdRZJMFZ6f+mFPqs/vtoewZdxOmpDo4mvYwlEcArbKIiqVTjMGf30Pq4NeQrRHI1kiiuw2k7Lux7Hl7GLIt0ih0FwLN5zLEmc029rxzM0pUAgCmmFRDmQSw1m2DHvAi2yIIlO0hULaH3JevJPeFy8FXjepMJOqsyykPKKgmM82bN//D5+ratSvJycn06dOHHTt2/PWGOcE4bfiOAaLtZoZ1rcuCe7uz5YkL+PLWTgw4K4Moq+EKqMk6090V7B57E6XfjcO9eRm6txrZ6iBQutsgqA6xsbh+n1v7AkJQNncc5qS6SEiI/cRuaybssjXCCPYD/qJcJEkmWLaXskUfEdnyQmxZZwIYadayypSVeWzbto3c3Fw6dOiA2+1m+vTp3H777Xg8JzYBpsYwPv7442RmZtKtWzcmTZpEXFw8AKlD3iLj3mkn9J5O4zjAbAckYkIGy5LVPPzOIitk3jud9OGfosSkAxB73q2k/28i+D2gmsm8dxpZI2aSdf8MEvs+YjCn1EBW+eLTDygvLyc/P59XX30Vq9V63B7lDzO8D4NgRSHVq74xkkdeu47cF/uya0x/LOmNSb/lfZSIOFy/zSX/0xGYEjJxnNEDS3pTZLMdSbVgTqxDoGSX4SKVJJwd+pF++0dk3DUJ3VVOsGwPvt3rKZ/3DgAx3QaSee804i+937h+eT5JVz0OQCB/K7HnDAWMBJe979+BJClY0pugxmWgxqRS8Pkodr1yDZ26duP333+v9SwPPPAA8fHxdOrUiTFjxrBjxw42bNhAamoqF198McHgqS32fNrVeZwR1HSWrd1C5zMbYk2pT0LfR9B12PPuzUiqGWvmmfh2rUEP+Ei+9mkKPnsIJBndXYFsi0RxRKNEJSB0HUlR8W79GTAUru1n9KRi0XgS+47Ckt6Y3eOGhljvjbiIo0Uv/Hs2kDJoDFplMbvH3ohkjUA2Wcm5czw5y8cwd+5cWrduzfr16wGDni0jI4Pp06dz5plnnrh2CgZp3Lgx9evXZ9euXaxZs6bWdlNaIwK7T8f//rEIxbMke7RRiuB3o0TEIlkjCBbnYkrMIfWG1wDY/e5tBIt37tNNlAAhkXHXRGTLwV6Vk6Ut5w/qnDfme3aVetCOcTdaQ5wf2epCTHEZSIoJ1/pFlM4di2SykHDp/WHlFs/2Xyn+4hmSB76EZ/svVC7/AsUWhSW1ITE9bsC9cQnFM19AiYwn/bYPAahcNg1v3jp0TyURzc8LuzoB8j8ZiW/XGhL6PootpyW9xK/Mnfox999/PxMnTuTZZ5+lSZMmmM1mJk6cyO23386qVauoW7cumqYRFRXF0qVLadas2aEe7ZTA6RnfcYaqyDTJMFwNTz9yHznpqVQueBfVmQwC/IXbiWjRi5iuAyic9gS6pxJL5hlIFhvIMpFteuPbtYZA/ma0igJjVqioRHcdQMUPHxPVvh+lc8eS99r1oGsoEXHE9rrdiO/tXE3sOUORZAXP9l8AiO5yPUgy3i3LKa8yinvvuOMOunXrxu2338748ePxer2cf/75lJeXn7B2GjZsGFu2bOHrr78+yOgBp43ePx0hwyDc5eA3kje06lKCIfLpYGURwaoSguX5htHD4Ke15rQ0ynfQ8e5ef9BpT6a2nFmV+WRIe5x203GTL7KkNkS22JFUExHNeoY5fWvg272B4i+fJ/7yB/DtWkvl0ikkXf0kCZc/QLCigLw3BlH58xcGt6jdue/Ef3C/Uii2aklrjKSYuPKGWygpKWHvXsPN3K5dOyIjI7FYLAwcOJBOnToxe/bs/U4tnfL1uKcN3wlATEwM6enpxNjNZK/9mATVS1zHvkgS6K5SqlbOpHzJRPTqckDCu/0XRMCHJKtGjEsLgqKieSrxbP8VtCDFs1/BVu8sdG81qUPeJON/n6FEJaB5KrFmNMHRpCvBsj0UffEMu8b0p3TOmwBU/PARIujHvWM169b8jizLDB8+nAULFvDGG28wZswYkpKSiI6O5ocffjhhbaSqKgMGDAjHABcvXoyiKFx11VWkZ2SesPs4jRMHJSIOe+OuWDLOQHir2f3GQHaPNRImkGQsGU2IPWcokWeeB7KC/4DBz6mgLZcWbWPm7Z3JiLX9Jbfn4bA/cT5CD9fiAvtUYAChB/Ht3kDh1MeJu3A4mquMskUfkXTVE5iik1GdiST2G0XG8E9JGTQGJSoB3edC97kJVhZTtWoOtnpnAeDP30KgJA8hdDR3BcGqYiSTNexKTnMaCW+apqHrOl6vl0DASDhau3YtVVVVaJpGdXU199xzD2lpaTRu3Pio2+J44nQ5wwnC4MGDue+++8jIyGDhrC+4sv/VOOrUpUqJwtxhAIHyAkq+fYtgSR7C7zUMXXUpZQs+ILLNZUS1vgT3lmWUfz8eyRRB6uDXKP/xE0MDLOBF91QRLNuDOTEb1ZmEDqCYiDzrcip/mkzs+bdSOucNYs67lbIFHxB/9nVMeO9FPnvvdebPn09WVhapqan8+uuvXHzxxUyZMuWEjtqaNWvGhx9+iMViQdeNTDlN05g0adIJu4fTOAGQFdB1TKkNCezZgHvDj6HZhxTWqVOiUxC+aiTVzJ737zRKGnStFruIzaSw/fVB7PZU0PAZg8yhY8eOxzQp60iRFm3j2/91C2d4SxKHzfYMlhdQ8u2bhhFXTTgadiIm5JVxb15GyexXDDHrEFxrFxDV4UqcHa5k1ytXhzNcCyc9CkDMOcOw129H3puD0V0V7Hn3FuNAWcXR9Gziet2Ga/2P6K4KBIJdL18Jsoq9STccTbrh+m0unp2/UfXLrP3uUgJFxbNjFdbMZoy6+xYqKyt58sknAbDZbAwYMIAPPviATz75hJ9++olffvmFp556io4dOzJr1ixMpqMTAj/uOPGlg/9NbN68uVZxqaqqQlVV0alTJ7Erb7do0LhJmL3dWq+dSLv1Q6FExgvHGT2FbIsUkski1Nh0Ed3jJiFHxIrEq/7PKJ6Pzzpk8aqtQQehRMQKc0ZTY7sSIr2WVYFqFnVGTBcut0f4/X4xYMCAMKv9LbfcIp588kkRHx8viouLT1j7TJ06VTRt2lTIshy+F1mWRXx8/MFFu6pFwMHPfHr5Zy/m1IZCjU4WEe2uEGp8ppDtTgEI2WaQG2Tc9blo9Mhs0eDh2eL5ORtEVlaWmDt37gl7R48EZS6fGPv9FnHOSwtFvYe+Eo0f/Vo0HfWNaPzo16LeQ1+JuEbtRPvzLxfLN+8VNptdSJIkTGazsFgNgu7zLrpUeLw+0eGi/kZBf823LRmF6vG9HxDpd34iJNvBhA+SySYy7p4skq591ji2hgA/RJiRPGiMyBwxU0S2ueyQ7Z909VNhsouEyx8UanSKkMw20b5TF7FmzRohhBCFhYWiTZs2IiIiQjidTtGuXTvx7bffnuRW/+s4PeM7BghqOnllHtx+jVKXj1iHGbtZJT3GhhpywdSrVy88g9q/rm3x4sVkpKcxatQokrtfV7s2SJJxnNE9rAyfP+F+KhZ/AkJQNv994nrdjqNJNwBcG36kfNEEtKpiI1NOC5B45WOYEw3qI+/O3yj47EGDFFeHbc9ezoVLu7Fw4UJGjhzJ6tWr2bp1K5MmTaJFixZ8/fXXxMXFnbA27NOnD6+++iq9evUiLi6O4cOH06FDB+rXr4/VaiXljA78/M1kY+dgAPj38gj+2yFZIhB+Nwid1GFv49uz0aDvEoZWnb1hJ1y/ziaqfV+qVs7EHJ+Jb89GGmYk0q91Ole2ySDabub1k/0gh0BNhvewrnXD/YIvqGNRZdJjbDSbeg+P3Pkobesl43a7uO+++6isrKRBgwaMGDGCh+6/B6vFTEFMUxBTiO/zILbsFux+czBKZDyORp0AsGW3xL1xsZGsIinkvXotlrSGyGYb1oymKI4YJNVMyqCXqVw+nYrFE426PUnCmtOSqhUzSLv9I9SIWMp/+IRg+d5wsgyAvWFH7A07AmCNs9OgkeG6TEhI4Oeffz7h7XqscTqr82+izOVn0opdTFqxi50lLqPkbL/tkmQko2XHObiyTQb92xof6x+h3O2n3dPz8B1nJQWrSebucxowtGvd43qdP8Prr7/Ohx9+yO+//47D4aCsrAz4ZwTHT+MYQZIxJeYQ1bY3JV+9TOqwtzFFJ1O5YiZl894BWcacVA+tuhhvaUF4IAmQnZ2Nx+NB13VatmzJ888/f0Izkf8Oxo0bx+LFixk7dixlZWWcf/75PP7440ybNo2pU6ficrnQdEHdB2eR+2JfYs4eRFTby9j9zs1o5YVk3meU9eR/9hC+navJ+N8kguX57P3oHtToJNKGjkP3e9n18pVY0puSfO3T6D43u9+6AVvdtsRd9D9Kv3uX6lWzybzvCyRJovyHT6hcMQNJklEiYolsdTGRrS4M37PVJDOkc50TnjV7PHHa8P1F1LC1vPPDNjRdoB1B66myhCJLDOmcw/CeDTCrhw+CPz9nA+8t3v6XGSH+CiyqzLIHev6pIT7emDZtGrIsM2fOHL766is8Hg/FxcUAWK1WvF4vAPaoGNxuV5jK6jT++VCcyWgV+cbsz1dtrJRVMu6cgNA1Cj4ZiaPp2Tg7XoVnxypKv36VzVu2kR3vCJ/j+0U/kJTTGG9A49P3x/LRu2+xYcMGoqOjDznbAg5ap57gpJj169czYMAAVq9ejaZpDBw4kA8++IAOHTqwcuVK5s6dS2K9ZrQ+uxferStAklGiEtGqi0ELojiTkM02o55P14hocxmejYvRqopRIuOwN+hkxOtETf8hIZmM71wEDkMEIStIsoq9cRcQAtfa+UiKCXNKA2J63kTxzOcRfg99L7mAaZMnYTabw3JPDofxe/Tv35/zzjuPUaNGkZeXR0ZGBk899RS9e/c+zi3693Da8P0F7C73cO27S9lb4cEX/OvNZlVlkp1WPhnSnrRo2yH3qakN2lni5nj8MCej5mn/md3VV1/Nhx9+CBg1g9dccw1z586lsrKSN954gxEjRuB2uxk8eDDvvffeoU9oskLAe8Lu/zROABQTRsaiCPFQSiE3/914dqyiZPardHz4My45I5W9lW5+3FpCcZUfVQFVURBCsPWNoaT1uomohu1w+YKYFBlZkvAFdYIhPkGTImFWZAQQ0HSy4hz0bZV+RB6Zo4Wu6+Tk5DB06FDuvfdeqqurueGGG0hOTubdd9/l1Vdf5a233iI3bw+BuLoEinagxqaCruMv3I41qzneXWsRniqs9drg3VLjcjQkzCJaXYxn00+Y4jPw7dmI4oghse8jeHatpXzBBwi/m8iz+qBGJ1O2cDz4qlEi41GdSZjiM7BmnUnZvHewNzmbYNleTHFpuH6fjxqTQrAin6i6LbmuZyteeeHZg2jKdu/eTU5ODjNmzKBXr17Mnj2bfv36sWPHDhITE49ru/4dnC5nOELsLjdkfXJL3H/L6AF4gzq5pe4/lAeqqQ2KcRz7j/Bk1Tylpqby8MMPc8MNNxy0rXPnzvTu3Rur1UqTJk2QJAlZlnn66adr77ifLtlp/AuhBw3DJwSOFr2Iu/guXGvms3f83RROfBh0jdxSD28s2sq0VXsprPKjA34N3H5DektI4PIFqfAECergCei4/FrY6AEENIHLr+H2awQ0wZbCasbM23RCBJtLS0vJzc3l9ttvx2KxEBcXx+DBg/niiy/o3Lkzt912G2vWrOGLpetJuPRedG81ij0a/95NxJ47jMQ+D5Ey4DkURzSB4jwA1Nh00u/81KjNzf0NzV2OHgwgAj6DHjEug2DhdswJ2cg2J6rdSVTLCzA5jdpiraoYZ8crcW9cQrCiAEt6ExR7FEhgyWyG5irF2aEfAP6gYNKKXYfsu/Ly8oiOjuaCCy5AkiQuuugiHA4HW7duPW7teTQ4PeM7AtTMwnJL3MckpUKWICvWzrd3dTts/dHucg9Xvf0TeWXHhj6spuZp5u2dDzvb/Dvw+oOs2FmGy6fhsCi0yYpBVeRDupQefvhh8vLyaNOmTa0ZYHp6Oi+99BKTJ0+md+/eteiOkrIbUGlLwb97XYiV5jT+7ZBMFkBC7DerVyJiSbv5XZAkJMVEsKKQYFUxlpT6IASVK2dSuXQqqUPHHizqfISwmWSSov7YI/N3sL/Hw2w289BDD3Hvvfeyd+9eGjVqhNttFPSnp6fz1ltvkVCnKd37DMC783eEt8o4SSgxRQT9qLFpYbL6MBQzaH5kayS632MMJCQZFMONKfweUEwk9HkI3eem5MvnCWclSDJIEon9n6L0m9cIVhUf4FExZpTWum3x716PLEkEPVXExMRgNpvp2LEjzz//PDfccAP33HMPF110ETNnzuT2229n48aNYXfoqYTThu8I8PycDby/eDueYxh3OxKXoz+o88RX6/h46c6jcnvaTArJURYmHKMPentRNY/NWsfircUEDhPklACLatRmBTVBdpwd06+TiRFV9O3TGwFMnzkbl9tDWloa4157+ZD8fpKs1OImPY3/Nmqkf/xFOyn+8nmC5XuRFDPmpByizx5sGMKjwPEYIO4fy969ezeVlZWsXr0aKcSeUl1dTUxMDFarldzcXKKiogiktcC7dQWyNQKtugRMFtA0CBO2G8bIktOKiGY9KZn5AmHWbElGsjsxRacQLMk1SCF8rv0e0oQSnYJWkR+Km8scMktaMZFy/UsUfPYAurcaVDOW1Eak9b6HRq7f+H7iWPr378/06dMpLy8nOjo6LNZrNpuZPHkyF1100TFpw2ON/4zhO1Sc6fXXX+eDDz5g1apV2Gw2XC4XCxYswGq18sgjj7By5Uq8Xh8ejxtUS/hFje11O9Wr5+APKSFLJisIHXNKfaLa96Noyv8BGB22FgQEksmKvWFHYs4ZRvUvs6ha9Q26p4q46Eh8Xi+JiYk8//zzLF68mBkzZpCfn09aWhoPPvggazdu4bmnHiep/xOG+vQRwmqSEQJu6lKH4T3rHzW7RbU3yPUfLOOX3PK/dXwN/2Cdvvfi9mvh8gslMp6SpdOwxSThKcoDBCaTidbtOrBy/TbsTXtQseijo7r30/iHITSDQVJA7Bv4KM5E0m95//heWpLIjLX9oUfm76DG41ET4waDqs/tdrNgwQImTJjAnXfeyahRo7jjjRnsXfBxqOA/9PyyQtrQt6lYOpnq3+bup8lHiNdUR41ORrI4CFYUGLO8/faJOfdmIs88jz3j7yZYtKPWvUWedQVVK75AiUwwDKKsGOcMMcggyWTeO5XS797Gu2M1EgJRVURkZCQTJkygT58+mEwmHA4Hbdu2ZdGiRVRVVXH99dfzwQcfhPvOUwX/mTq+mjjTnDlzwuoDqampjBw5kjFjxhAVFcWqVasAKCsrY+jQoZx//vlcdesIvvvqC9SYVJKuMgyab89GIpqfSyC1IdWr55A6dByy2UbF4s8onfMmmfdMAQz+Qc1VTv5H95B8/YtU/PQ5xV88TbCymKRrnqZg4sMo9gh69+rFoEGDuOSSSxg8eDAzZ86kQYMG/Pzzz5x33nnEx8eTkpLCm9e2Ym9EfSb+vIu8shDf4X7DFlkCJSTcmR3nqFXzdLRYmVvGlWOXHFEW65+h0mt8jH5Nw1uwA23LSgj6a80eA4EAy35eifC5Thu9/yK0UAavqD3b1yoK2fnsZUa9kB7EVq8diX0foXrtAkq/eWPfjkIggj6SB43BklwP787fKF/8Gf6CrciWCNJvrW08yxd9jHvzUgLFu3B2vApzj+t5Zd5m7j2vIV999RVPP/00a9aswWq1cvHFF/Pyyy8fE8mjcePGAYabs7S0lE2bNtG0aVPuf/AMxrS7irJFH1O5bBqyxUHGnYYWHroekhfSkB0xpN8+nsIp/4d36wqCVSVENe5K5c9f4OzUn6pfv0avLgMElrRG6EE/elUxSBJpt37I7jcGAhAo2w1CYG/YgaoVM0EPItsj0N0VofbUyXtzMM6O/an+9WvS+v8fOdVrqcxdzzPPPIMQgrZtDXWZH3/8kbVr1zJkyBC+/vprxo0bx80333zUbXUs8Z8xfH369AFgxYoV5OXl1Vq3evVq8vLyUBQjgeKCCy4IH7exyIMam4Yvb114nSW1IZbUhnh2rMK1blGY0y6ybW8qlkxC81Si2KJQoxKo/m0uloymqM5EJEnGX7SDqLMuRwS86K5ypIvv5vPPH2Hs2LF06tSJmJgYGjVqBBhksBaLhe7du/Pdd98RYTVxy9n1uOXserXStWsGpZrOcUnTXplbxhVvLTlm56uBb9c6Avlbwn8HS/Nqba/lnjmN/zxkRyySqqJVl4cNo2fLMnY+czEAyYPGICkqhdOeQivbA0D+R/eSNuxtJJOFiObnIoLdqPjxM/In3I8vbx2Saiah76OoMalEtLqY8oUfULFkEhWLJ3KfJPFpy5b0v+pKHn74Ybp27YrP5+Oaa67hvvvuY+zYscfs2YQQPPnkkwwcOJBGjRoRn+pmzLfr0H0u0HV0XUcP+vHl/o5r3feYE3Pw792E7nVR8dNUvFsNEnrZGolksqLGplG5bLoRJzVbwe9Bc1dS+s3rCKGjxqajVZeGr+/L/R3Z6sCzY5URHzTb9xk9DOHr6C4D8OYZROEV65ewZP1CPnz3ba6//npSUlJYvXo1brebPn36UFRUxM8//8zAgQP58MMPTxu+fxKCmk65J4B352+ga+x599aDijv3h2/XGhRHTDi4LoSgetU3aN5qdr3UD8lkwZxUd58vPrSPz+dj3YaNCCFqKRN88sknVFZW0rdvX7777rta11IVuVZN0/FCtTfIlWOPzugJXTNcJvsR7yIrWDPPQI1KJP7CO8h94QrUuHRSB79C+ZLPqVwy8eAThaRtTuO/Cd21r6Ouce3tj/yP7sGcVBetPJ+aGBh6MKxALpmsyI5otOpSI24GiKCfwokPIzuTwO82iKAxEmwkRWXztu1MnDiR++83NO3sdjs33XTTQeLJR/Vcuk5ZWRkZGRm8/rrBR/P6S8+x8/nH9u3krWTXy1diik0D1YR/7yZjveanYtH48G5qZKzhIdm/fUKJKkWfPxraSyLo20X++Lv3nV+SSLzqCcrmvUMQwO/BlJhDsKIQ4XMhgj6qf5+Hf49BFF79+1yQZO66y2CVeuSRR/jyyy/55ptvmD59Oj/99BMPPvgg3bp145133jlmbXWscLqc4Q+QV+bBnlIHSTWT2P8JYnvdQcXiz3Ct+/6gfYOVxZR++xYxPYeE1/ny1qL73GTc+Qlpt31I1Fl9sNZpTfXqb5EUE7ItkpJvjBf9/96ZzPfffx/O8KqqquKWW26hXbt2nH/++SfmgQ+Ba9/76ajdmxWLJ5L7Qh8ql07BtXYBuS/0oWKxYdg8m38i94U+gCBYsovcF/pQvXqOUdelHuCi3S94j3KKk+CexnGFEmmIFJszDM03yRpJ5j1Tke1RoQ4/9K6Y94nRRrS6GNkaGdom4Wh5IbI9GslsQ68qDiuVy45oYrobxtJVXcW6dfu8PQCLFi2iadOmx+Q5hBDceOONaJrGY489FiZ3Hj16NJvyK8keOQvZFoVsjybrvi9IueE1bDktsdZpTcZdk7HmtMTWuAtKVKKhzlJdStzFdxu1rrJqLKHvRrJGEnfh/4jq0He/djAGBKbYdKNsRDHmQmpcBjHnDDUGqaEBZ7BsL45mPQEjz6Hh/ZM576JLkSSJZcuWsWHDBmRZ5pdffmHbtm3cc889OJ1OqqurTzkmpv/0jK8m4eXXX38lJycnvL6msPqHxUsozN8LsrIvYSXgo+TbsVQsmUSgPB+0ALmvXI3wVKM4E7GkNSZYXkDx7DH4dq1FMlnxbP+V0m9eR4mIRUgSsiOGPe/cUmvEOmfaZ/S88DIsJoUrr7ySadOmoes6tqhY1uzID++3Y8cOBg8ezLJly8jMzOT111/nnHP2iUgeCv369WP27Nm43W7q1q3Lli2Ge/HKK69k6tSpYTWE5ORkvF4vFosFh8NBfn6BwZhSC0YMMbLVRbi3LDtkiYGzy7XIJitl8w8oQJdkTMn1CORvCRm+Q38MAkIs9PsFxE021OhkgiW7DFeMdpqr878MrbIQgGBFAbBvhqZGGPyyalyG8a4E/OHZj1ZVhDm5HoH8zciOaGSTFSUihkDRThACS0pDtIpC9OpSSr81ZLys6U04r1W98HXnzp3L+PHjWbZs2RHfazAYJBgMomkamqbh9XpRVRVVVRk6dChr164lLi4OSZLC358kSSQ7ZITfRQ2PtOapovS7t9Fc5cT0GELR9KcQiglRZcxgZVsU0Z2vxtG4K641C9CDPoJlewAJ3VVGUr9RmBJzKPnqZXRvFUnXvUjBx/cYgwgtQPqdE5BkhZ0v9EWrLqFw0qPI1ghksw3d5yLjzgkESnfjWrOQyiWTqPh+PBfeORyr1cpXX33FsmXLaNmyJZWV+9QlKisriYiIOOWSW/5z6gwPPfSQGDhwoBDCUASYPn26aNWqlahbt65IS0sTCxYsED6fTzzyyCMiITFJSBZ7mLU84+7JAlkVijNJJA8aI+IuGxFiTpeFtW4bEXVWH2FObSjMqQ1FROuLhWS2i6hOVwtkVZhTGwpTQraQVLNQImJFyk1jRXSPG4Uls7kARGL/J4Q1rbGwZpwhFGeyQDEJyRIhJEUVkskikGSh2iJFTGKKuPX2O4Xb7RZTpkwRTqdTFBYW/uEz33fffeKcc84RqqoabPeyLAYOHCimTJkiZFkWUVFRtVjarVarAIQlMkaAdBg2fSnMnn+oRYlNO+ls/6eXf/Eiq7X+liwOkXbze8KSdaYAhCXjjIOOib/8QSFHGmofSlRirXNIJquIPf9WIduihDmlQXi94ogWi1YYygQ//fSTiI+PF999991f6nNGjRp10L2MGjVK7Nix45DP9vLLLwshhEhKSjpom2Syioy7Jwtnp6sP2SZJ1z4jkq55unY7SYZKQ8wFd4rM+74Qsj36kNeNaH2piO5+g1Ai44Ulp5Wx3mQVktkmojpfI9JueV9YMs4QUR36iayRs0TjR78WD4x+UgDip59+EkII0aFDB/H222+Hn/29994T7dq1+0vtdSLwnzF8gUBAeDweMXLkSDFgwADh8XjCS/v27UVOTo5ITU0Vs2fPFlu2bBF16tQRzz77nJCtkSLhikdE5oiZhhGTZBFzwXCRee80EdGilwCEGp8pIlpcKDLunhKWA4m94E4h26JEXO8HhGS2CVuDDkIy24UamyasdVqLzBEzRfzlDwo1Otl46VpcIBRnklBiUoRsd4qUIW+K9Ns/FtFdrxeWjDOEEhkvYs4ZKpAVUe++KeK5b9YLX0ATnTt3Fm+99dafPv/UqVNFWlqasNlsokGDBmLgwIHi3HPPFZ06dTrI8EVGRoqIiIh96yRZIKmH/FiOz3I4Y3t6Ob3ULLJA2u89MduFGpNqfH9IQo6I3bdNMRn/1uwvySJpwHMiqmN/AZLAbBPIiog5Z6iQVItQIuNE3CX3CSUqQUgmq0hJSxeLFy8WCQkJ4ssvvzx2fVJQE5sLKsW89QXi27V7xcKNBWLt7gqxvahaBIKaEEKItxZuEQ0fmS3Sbnk//CySySokk1UgK0KNThFRHfoJYN961SJAEtHdbxBZI2eJ9OGfCnuTbkK2O4VkcQjZ7hSWzGYi43+TROZ9XwhLehMBhuyRtU5rkdD3UZF57zSRcc8U4exybVjKTHZEi8izLhfJg18VmSNmiqzbPxAWi0VIkiQcDodwOBzCbDaL6OhokZeXJ3bv3i2aNGlyRP3TicZ/po5vfymgGnTr1o3vvz84XlcDh8MRJmMFkFQLloymONv3NSR+DoBksiICXiS7E0tSHXS/J1TrJ0BWkK0OYs+/neIZzxpOPEU1iGOFjjmlAfGX3suecUOpRSwbDGCt04pAUS4RzXri2vADaTeNDbNMZG+cRKTVxGuvvfanbdC5c2fWrVtnqMHHxJCUlMT27dtZsWJFeB+TycSZZ57JunXr8dvjCRbv/NPznsZpHA/I1kj0GuYSAIsDQpm+amw6WlXxPnYXWxR4qpDsUQh3Bab4TALFubV4XZX4TLTiXYAAswP8oW9bVkCSMKU0ILBnE9bMM4hqexklc95Ed1dgNSnYbDbefPNNrrrqqqN6pjKXnw+X7GDCsp2UuA5Pui4B2fEOLm2eythFWw9SbAlWFBpJO4oJaT86v9hetxEs20vFj58a9cX7oabMSvNUUjp3HN4dqxBaEHNCFjE9bsSSapBplM1/n+rVcxC6hiWjKbHnDsMUkwqA7q0m/5ORBMv3YrLaufu2YTzxxBPhjHghBCNGjODdd98FYMiQITz77LOnnKvzP2P4/giHKiytQUxCMpEX3IUekcjusUPCsikAxbNfIViSh+73kDLwZSTVxO5xQxFCJ/3md6lc/gWBst3I1ki8ub8jSRJJVz9J2fz3qVo5M8S8noAI+km49D6sWc0JVpVQMuslI5MUsGafSWK/UUiKieo186n65StSrn8RMAptXYsn0DVN4fNPP/7T56wxfCkpKeTl5bF27VreffddZs+efZDG1pltO7Kh0IVv5+qDOyA4ZFZdrc3WCITP/Yf7nMZpHBqhjMwDsX8xt2o2WEfC/1qMuLCsGqUOiimsVn7Yq5hsiMAfUAIqJiTVjBz0ous6drs9vCkrK4u1a9ce8RP5gzovzd3I2z9sQ/8LPa4cagpZlmpxjp5snCrSZn8Xp7M6/wR2s4oQUL1mPpb0JmGjBxAs24u/aAeJ/UYjqUY2ltACEAwQrCqhcuVMortej/C5kUMZiuWLJ+LP30zarR+Sed90ojtdje6uQA/VJRXPeBY1No2MuyeTcffnqNHJFM80DJ1sshrGJARNCDyuKpbkVhP4C8keBQUF1KtXj/T0dJYvX87GjRtrbe/evTuFPplA4XYAw+gpaqhoNoQ/MWjC50axRx/xPZ3GaezDAR28rCBZ7KBrqLEZxroaiapQaYxstqJEJ5N0zTPG+kMYPVujzkR3HwyAZLEjQgbSnGkIsJrTmxpMMTVJVVoAa1Qs06dPR9d1qqurw8tfMXq7yz30eHEB4xb9NaMHoAuDTOxUMnpgOLGubJNxsm/jb+M/ndV5JJAkuKhZCu/PfpWodn3D66tXf4tv7yYkJHaPG4KjcTdiz7sF3VWO0HWKpj2BVlFA3itXG9x5iorQdXx7N2HNaU3BJyPQPJXIZhsInUCZkZ3my9+KZLKy5+2h6AEvqjOJQIlBSGtKyCJQno/ucyNb7BR/NQbX799h6jYgzDKxPzVbixYt0DQtTNMGBiOK2+2mrKwMWZYRQoTdFACKorBx02b27t5NrQ5IF39t9iZ0tP3rrk7jNI4YNW6x0Puna8aAT5JAaAfP5nTNKLZ2V1Dw6QhjpmayILwhnb8Q7Zl36wr8uwyDtW8AqeHP/Y2oDldiikml0ltNYD/3vqdoFy+++CKXXHLJ33qS3eUeLnz1Byo8fzz7/Cehhmf4ZOt5Hg3+04bvj9KMfT5fuPaknlKMVlWCrWEnAKrXLqBs0UdEtLiA6hUzkB0xIHRKZr9ifJwI/AXbMKfUx1+yC3SdqI5X4d70EyLox7t1ObI1EmeHK0G1UD7vbTzrF1Gx8APQ/Hh3/IqkmEI1NDIIDfeWn6lcPg10jbw3BpHQ5yH8e4yZmimrJU8/Ppr37/qdjRvW069fP9q2bcuGDRsYPnw4s2fPDpPHut1udF1HlmVsNhtutxtN20cLJYTAGpMEe3YDoYLxGncSHFxE/icuz9P4j0JWjPdkv3dDiUogqs2leHPX4NmyHDUuDUlWCVYUGHEqxYQ5IZuk/o+HjwmU7mbPe7eTcecnyBbD1Zg/YQSOpt2IbHloIomjQUTzfaVBRyvY7A/qXPPOT/8qo3eypM2ONf7TMb5DJbyMGjWK0aNHk52dzc6dtRM71OgUNFcpQtunHVZrVhQyCglXPELFsqn489Yb2xUTstmKpJpRoxJR4zLwbF6K7qnkQCRe8wxVy6bi2f7rPmkRoYNiIqptb2SzjfIfP621zZRUl8gGZ3HNxeeQu3gGLVu2JBgMhuOWWVlZ5Obm1rpOTEwM9erVOyi2dxqncXSQQokm++iuamo3U4aOQ1ZMFE5+jGB1CZn/28fOowd85L1+HQmXP4Qt+8xaZ9z70T1Y05sQ3fU6PFtXUDz7FdKGvY1idx63pzgWgs3Pz9nA2O+3HhN+21MBx0va7GTgPz3jGz16NKNHj67lHtyxYwdgFIrXFLL/+OOPFBQUcNE1Q1gV2ZZgdSnuTUupXj3HoPTxu5EUE5b0pgTK9mCrdxbmxDrkfzoCraIQEOh+LzISzs5XY8tphWttc4pnvmDciKIaKg5mG+b4DBL7jSJv7FC06mIjzB/0E3vuzUS2ON/g0lPNmOPqoETE4tm8lEDJLkqX7GTNhdeRdgji3Ouuu45Zs2axevXq8LqysjJ+/vlnVFVFkiQCgX/gqNQaCQcm3ZzGCYccnYxeXkC40mA/owcQ3elqiqY+zt73bke2OJBtkTiadq+1j2fzUmSLA2tW84POn3Dp/RR/9TK7xvRHiUog4fIHjqvRO9yspl+/fsyYMSP8rdTwUP7www9cdtlllJWVAUZmdPee57K5wdXo9hiEEJR89TKuNQupkf+RTDaiuw4gqu1lVP76NWXz3tnnVVFMODteSXSnq3Fv+ZmKJZNC2eEhz4wkY0lrTPKAZ8l7fWCYfq0GkslG6tC3UCPjca3/gfIfP0GrKkGNjCe62/XYG3T4y21yrKXNTjZOJ7fw5wrh8fHxOJ1OhlzSBbOqIJvtVK34kthzbyGyRS9McZnY6rXHt3cTamQ8u8b0Z/dbgw1WE4sNZ5cBSKoF3VOJGp0CgDmlvhGUj4hFccQY62LTcG9cTLCiEK18D5JiQolOIqLF+ZQteA9/0U40VzkEfCDJqNFJAKQMGgOSwpbNm9APM4Fv0aIFTz75JGDMan0+HwsXLkTTNN555x0eeughBg4cyPaiaqLbHKyhZWvQEfk4djZ/C6eN3ikBvTyfWp6PkN6bGkqBt2acYazXAuieSiTFRHTna2qdw9GkG+m3Hlq+Ro1OIvnaZ8i8dxppQ8dh+wvSXH8VNbOaCUPaHyRJlJOTw8UXX0x6ejpRUfvEbsvKymjVqhUPPvggCQkJnH322SxfsZL8WS8DULl8Oq41C5BMZqJ73IgSk0pkqwux5bRCaEHKvn0TSZKJbN+XuN4jQQtQuWwa7s3LED4XkmpGiYjBWqcN5sxmWOudRcw5NwFgzW6BJas5poRs0u/4GHN6E9ToZErnjiNYVUzxzBeJ7TGEjLs+J7r7DRR/+YLRhxwhbCYZiypzY+ccvr2r27/C6MF/fMZXg0MpNwCYzWbuuOMO7r//fmw2G8NuHITLr+GVbTjO6IE1owneHb8CoAc8CJ8LJSqBzAHPonmqqF49h8rl05AkGdlsQfNVo7vKISaFQNFOZHs0uruC6C7XUv79eEyx6QSKcglWhQh0fS6CQT9eTUN1JuJaMw9f3gYkkwWtupSY7jdQ9fMMgmV7QejY49Nxb/vpsM9ps9kwmUw8/PDDqKpKt27dsFgs/Pzzz0RHRwPgC+qkXXQHcnwOrt/nkXzd81T8NBnf7g0IvxdTYh2E303aze9StuhjqlfNIbrbdZQtHI84hOv2NP6D0IJo5XtDGZKwa8y+2jc1MQd7g/YUfj6KlIEvAZDqtFLm9h9Toee/gz+b1Tz33HOAMRjeP6vz0ksv5dJLLwVg/Pjx9O3bl3kLFyEqK9n5fO+QJieIgI/yBR9gyTwDT+7veHN/M2ZygAh4qfp5hpG0Y7KBJFM86yVDUy8UJ7U36YY1tSFl34+n4JORCF3fJ98ElM5/H//uDcScPZjyHz9hz3u3gx6kaMazSJKMtW4bJJOFYPleZIuD4tljcK/7HmSF2O6DSOrUF1mSqNr6C3u/fhOtsoh6TVsw+bOPad7onx3TOxCnZ3x/goKCAgKBAB6Ph1dffZXJn31CoGxvuP7HX7SDQEku3q0/g6zgbGcYUcUWScQZPdE9VaDriFACSc2sSQ94QQsgW2xhwl3JbEP3e3D9Ng+QsNY7i4x7JpNw+YNo1WW4Ny/HV7gN4XejuUrJfdHIMi2a+jiWtEaYbBHof5D23Lz5wW4kIJzco2kaBP1oWhB7gw74i3fi2rAYdI1AyS5MidmozkQ0TxW5L/Wj6ucv0D0VlH33DsLnwpzSAEtaI6zZLZBUczgZqBZkNdwhHhLKHyQSSJJRr1VzntM4RRF6Bw/Q0pMjEwgWbKVi8ef4925i9zs3c2u3uiy8tzs3dMrBospYTSe+SzrWs5pVq1Yj2aIwxWeScOn9gGQkiCkqCB1f7hoCezdjy2lN0rXPgiQjO6KxZp5h9A+hvsWS2hBzUl0kRzRIMlXLplI0/Sm0ymJizr0Z2WTBknFGmMzdvXYBsjMZ7+51mFPqo4b6FWeX60i7/SPMyfWQVBOmhBzKf/wE787VmFMbYUrIpnzpVPonl/Buv4aUzXiGj954AVdlOZee04Whg647qvY4FfGfMnxBTWdHsYt1eyr5cXMR6/ZUsKPYRfAPauBsNuMjiIiIIC4ujrVrfkeVBJXLv2DXawPwbv+VmvRra3ZL5BpJomAAPeABYZDL6t4qJLONYEUBVavnoLnK0b1VmJLqUrl0snGM34vucxs+e0Uhsc9DyLKKOTEbe/12aFXFxF/4PySTBbQg0Z2vBcCUVA9/wVb8rnIkCGeqBgIBysvLCQQCaJrGWWedRWZmJk8//TQul4v58+fj9XoZO3YszzzzDBMmTKBRRjy7pj0HskJ87wcom/8e5T9MAEki4dL7ib/of6Tc8Jox89M0I8FHMWFKaYAam469cTd8+VsRGKKWalw6IGFOaYAak4qt3lkocemHaOma2qlDsFnIqsGcL6vIJsPwyfYYDIYbK5bMZvv2VS37znUaJwVKbO36LjXW+L2VqDiQFCSTCSSJnK5XcNe5DTCrMved34hlD/TkrnMaUD8xApMiYVWlY/5LqjI4zAp2s4JJkaifGMFd5zRg2QM9ufe8hketuB4IBPjwww8Q3mpiug/G3rAjIIz4nRZEiYgNDQgFnp2rsWY0RTJZ0V3leLf/GtbAi2pzKf78LZhT6iNc5SD0kKKChBA6pd+8jmyNIKbnECJb9No3oC7fQ6BoJ5GtLkYPlWyUf/8hu17qR8WiCcSefzuy2Ur16m+RLRFEtjgf2WQh8szzef61t1nx/deccUZT+l91FVarldGjR7N69Wo2bNhwVO1yquFfn9VZ5vIzacUuJq3Yxc4Sl5GMud92SQrRA8U5sKyaTIyo4tMJtRW/MzIycLlcTJs2jbPOOovPPvuMJ599geKYRlQt/6LWvoozibSb3yHvjRvQq4trbYtocQGBkl0okXG41/8IQkOyRRHZ7Bwql0/DnFwPEQyE64j2pxwypzXCv2cjCZeNoGjGs8jWCEyxaXh3rCJl6FiKpz1FbNdriN84i7Vr13A43HLLLfz6668sW7bsIKmQ7du3k52dTXKrnhSt/xmhBVAi44lsdSFRbS4N71f+wydULP6s1rHmdENs17Pzd8QBz33EsNhhvwL9MBRTyF30r35V/zWQVDOSLcpQ+gbU+EyCxfuyik2x6Qi/m48//oj+vQ+OJwO1hJaLq7y88+N2Fm8p4s+8oSZFwqzI6AICmk5qtI0Lz0hmSKjurOacRyPYXOPqvOyyy2qxPW3ZsoUGDRpgsztwnnMz5sZnU7lyJmVzx4UaRsbZ8SosGWdQOPGh8Lr9Sz5iLxhO6devcmjmGnXfvgeUECkRcYawrCwbCu37Hy8rmBKykUwW/HnrwnWN4WOjEojpcSMlX72MCAZQZCms2NKtWzf27NnDU089xRVXXPGX2+pUxb/WX+QP6rwybxPv/LANTReHTSmuMYTbil1UbCtBry7h+TkbGN7TGIkCDB48mGeeeYaysjJ8Ph8ffvghF11yKfMiurPHZMO1biGW1EYIwL3+B0N01mzD2qCjMVpTFAJle4k5exAlc8fh2fyT8eJJEgR9VK+Zb9xz/hZQDEXooqlPkNj/caxpjQmU7GLvh3chAl4KJ48GQPN7EAEvmffPQJIVglWlFEx7hoL9nu2DDz5g0KBBf7ntRr/8NmPmbcJ7mF4musu1RHe5lsqVM6lcOhWtqhh/3loCRTsOq5ou26KMxAbVghIRS/DAhAjYz+gdQFlVU6wsyci2yFrK0EcKJToVrXzPXz7uNP46RNCPqNo3+Nnf6AEEq4pR0Fj/63I4jOHbX2i5YXIkneobWnlef5AVO8uo9ARxB4I0SIwgymYmPcbwzPyZYTte4s07d+7k7LPPBqD/dQNZnNADb0BHjYhDMtsQfi8IHUeznng2Lw8fZ6nTGt/WfSVF3p2/IdujDv2OC21fDa2sGAZOwvAq1WR26hoHeTx0jUDBNkCE64IB1KQ6BAt3oFUWUfzFs8Z2JLSQB2zUqFG8/PLLVFZWMmDAAIYMGYKiKJx//vnUqVOH8ePHU15ezoUXXsjbb79dK+HnVMe/csa3u9zDte8uZW+FB1/wzx+vRiG8/MdP0apKSL1kOCnRDj4d1ol4m4zf7yclJQUhBBEREVx55ZU8/cyz1LnyAcxZLdjz/h3E9LiRqp+/wJrTktieNyG0IPmfjAwrFtfAknEGydc+g+YqJ1hRSOl34/AXbAMtQMw5w4g48zxkk4Xdbw8jWFEIkoRicaB5q0m+/kUsSXVwb15G0dTHQ0KTijH60wLc+tQ43nhg6FG3X7nbT7un5x1EjHsg3BuXULF8Ov7d62utj+pwJbI1gorFnxnB+f23teuLa838P2Z1OazSulTrw621xWxH+A8xW9z/2NMzxhOIfe0tWRwg9PC78NzzL/DiC89TUVHBL7/8QuPGjU/ifR45vF4v1dXVXHTRRWzcuJHzzz+fcePGUVFRQZcuXXC5XASDQSZOnMRtCz1okglJkij97m2qVnwJQELfURTPfBHhd6NGJxHf+wHyP7gTADUuHclkI5C/2SDXFgLZ6kCvrvlWJGPgF0oii2jbm+qfvyDc1iEuU9kRg+4qC39HUZ2uoern6YbxVU37yiYAR/Nz8Wz6CWQF3VttZJ27SqibnYnZbOb999+nbdu25OTkMH/+fGJiYujYsSN79+5l9erVxMTEcO211xIdHc348fuU4E91/OsM3+5yD5e8/iPlLj9HmiN2KNdddOeryTl/MEVvDyFvV+0Ra41LMPWsCyhYuxQR8CDbnDgadSa66wAk1Yw393cKPn0ASbWE2FwMJF45el96937Y+czFBgF2KAVc81RRMvsVvDt+RbZFEdNtII6mZ4f39+5aQ+m3bxEsL8AUl07ieUP5/a3hx4xG6Pk5G3h/8fbDZtpVrpyJ6/d5+It2YArFcMxJdYm74HaKv3we394taJWF4ZhnQu+RlMx+xXDZ7t1CsGx3+FyKMwlkE1p1Eabk+gR2raWm0zRnnIF/1xpM6U0I5K076D4MYyhhSqlPYM/GQ2w/jVMJsiwzfPhwpk2bRnJyMldffTXDhw8/2bd1RDj77LMPqeZyOJUXSbWQee9UhBDkPnfpAYM5iaj2V+DesJhg+d4Dj8RxRg/cW5YdluhdtkUR0eICKn+aVJu8+xCQI+LDYRc1JtXwtoiaekJDUQZZNUgxQudSFIVnn32Wm2++mYiICPr27cvkyUYuQsuWLXG73WGO3yVLltCjRw9KS0trEXmfyvhXGT5/UOe8Md+TW+I+YqP3R5AlyIq18+1d3Q4Z9B77/dY/dAmeKBwLlokDUdOWu0o9aId4Rdwbl4Ak4dn+C748Y8ZnTqpL7LnDKJj4MMGKQnR3ucFTarKQeMUjyNYIir54JqQKfRgoJsypjfDv+r32M9Zvj2fz0r/3MKoFgr6/d+xpHHNERkbicrnCbrOZM2ee7Fs65hj7/Vae/3YDwaCGb9daCiY+hByZQPrQsQRd5ex56wZMSXVJuPwB9owdgmSyoCZkEdiziehuA6lcbmRMW+u0xtH8XEq+eAZklZTBr5D/yQhURwxBVxkiGAoDBH2ARNyFwymd9w5CNYPLKKhPvOYZCj8dyeG8HrI9GoSO7qnEnNY47MExm82YTCbcbjcJCQmsW7cOWZZp2LAh7dq1C/9uixcvpnPnzqxatYozzzzzoPOfivhXZXW+Mm8TBZXeY2L0wOBlzq/08cq8zYfc3r9txqE9cicQx4s7z6zKfDKkPU67CeWAouLKlTOp+OlzimY8GzZ6AAid4lkvEijJQ3eXI1kjjRGl34NWXYburTaKZ2tKERQT4XiEbKhboAUOMnrmtMZ4tv0S+uuv5/lZs1seXEIh/ate/X8Uqqqq0HWdQCDAvHnzeOutt072LR1z9G+bgSJJVCyeaGh3CoFeWUjuC32o+uUrALTKIvaMHQIYNX6BPZsAcG9cHGaw8W5baRg9QI1JxpyQhYThERLeaiNBTlFQohIwJWRhq9Pa0PgMGT0gZPTA1rATtoadQ9+d8V2hmNDd5VjSmwCgu8vDGaJ+v5+kpCQyMjIoLy8nISGBuLg44uPj2bBhAzt27KCiooJnn33WuG/3H4UaTi38I2Z8EydO5LHHHmPbtm1hNYGEhARsNht79+7F7XYjSRK6bMacUp+Yc4fh3fYLVStnEqwuNdwAkoxii8TeuCsxPW5AqyymePYYfLs3IklGirDqTCL2vJvR3RWU//gpwcoiI5tQkoiLieGiiy7ktdde46OPPuLDDz/kt99+wxEdT0V56SHdkccbJ4I7ryZeWlDpDbs9DzXbAzAn5mBOroc5uR7FXzxjxE4xxCudnfpjq9Oa/E8fQHHEoFUUHMCyv99o9KAZmmTIyPhcf0qKbck8E19uDTWbDOinibRPIdSIO8uyzEMPPUQgEODZZ5/F7XZjtVr//AT/IOzP1Vm26GO0ymLiL74LEQyw65X+Rs2qHkQE/dgbdcG7Y185Q9gFGYaEbHcScUZ3Kpd/QfhbCQnRyrZITPFZeLet5KBZnSQj26Mwx2fjy99cKwHNkt0Sa3pjfHnrw2Qc4W0WC48//jgjR46kefPmpKen89lnn3HPPffw448/hmOa99xzD3fffTe5ublkZPwzpIpO+WHv3LlzGTFiBLfccgvJyclMmTKFTZs28c033zB+/Hh27tzJxo0b6X3zSBRnArb67Sie8Ry2+u1IGfwKqUPeJHXY21jSmxDR6iL8hdupWvElRV8+hzmpDubEbCxZzQ0S6PZXUDT9adS4dJIHPEfa0HGk3vwOkU260KTTuQSDQR5++OEwxVlWVhZOu5lOo6aRdOl9lHz7Jv6iE6NYbjMpZMbajjthbFq0jd6mNVRNvI/c53tTNnsM9oYdsTfogGRxEKwoJFCyi0DRDjRXBVFtL8Oa0RRCkkd6wMhmq1g21TCYQX+IZV8KCYeGZmImM0psOkgypoSc8PUj210BiH0fqyQhWSMOe7++3N/2+2u/1O9TTAH6vwq3243ZbKaqqorCwkJeeeUVhBB06nQIsoN/OIb3bEBalNlQWdE1I8En6EcP+jEn1UNSVOSoBNA13OsWGkQWodmYvJ/upxwRB4DuqUQP+ve9/5IMWgBTUl10nxtLaiMwWUCqnaxvSsgmotk5hgqGpXYMzrfjV0Ot3Rz6Jk02arwqfr+fb7/9FoCePXuiqioRERHccsstbNmyhZ07d/Lhhx/StGlT0tLSSEtLOw6teHxwyhu+UaNG8eijjzJx4kQeffRRLr30UjIyMmjSpAnt27cnJiaGrKwsfttTRaB0L5IkEyzbiykmxah1i0lBttiRJIlgeT6SJOHL34K/YCuOpt3xF24j4dL7sCRmgxbAnJCFf89GFLsTNSoBxRaFLiTWbtiMoihs2bKFPn36cO6557Jt2zZatmzJxNu6k9SwBY567XCtXXBc2+NkcOdlZqTx+nNPMGjwYJqkRoULjFVJhBQn4kGSsaqC/3VNZ9rQdsQ5zMiaPyQUqhJ77i1Ub1wCYIiJhtydSlQiAJKiopXtAaEb5wvBvXVl7ZvRtX06a4fE/vVL+3UAQvAPeN3/tVBV47cQQtC8eXMiIyMZN24cHo+HBg0a8Pbbb5/kOzz2MKsybcoXkvtCHyqXTsG1doHh6vz5C5KufhLd50Lbr9QjULAVJSIWAK1oR3i9Xl0CqgklPhNJNRuuTECOjAMk/LvXY6/Xlurf50LAa2Q9y/tc+4GyPQgBQXcF5qQ61A4XGP8P1JT6BDwGh7CiIIRg/vz5NGzYkPfee4/zzjsPj8fDk08+iSzLJCcns3PnTu6++24effRRZPmf832d0q5OTdOw2WyMHj2ahx56KFwnEhERweWXX87zzz9PSkpKWGuu5kd0drmW6E79ca1dSMmcN2ql1Mu2KJwd+lG1eg4xXa+nbNFHpN00ltJv32Kfu03C3rgLhVMeq6V4brfbmT59Oueddx6//vorZ511Ftdeey0ffvghu8s9dB1wFwWbfiX+ikf/9jPLEmGVZlWWsKgyAqMYNzvOQb/W6VzZJuOkiEA+/PDDYamjoKbTsXMXfl665KD9Ro0axRNPPFFL5y8MSUaJTjaM3OHwB67JqE5XU7l4In+pNMEWDZ7yI9//NI4JjBCCOGjdF198wYABA1izZg3PP/88Xq+Xd9555yTd5fHH7nIPV41bwu5y7yHf2j3j7yGw92gykiWQFWw5LfEXbseS2RzPFoPgOhxOUEzh30O22Ik7/zbKFn1MsGQXAObUxvj3GGEL2RZFm2aNcDgcLFq0CKvVSlpaGsXFxQghEEJgsVgoLCwkISGBESNGcPfddx/F/Z94nNIF7DU8mRMnGrpdOTk5mEwmOnfuzPLly3niiScoLy9n3c5Cetzyf2iWKHR3eXgW4Wh6No6mZxMo3Y1rzXysddrg3bbCoL6yONADXmSLUdAqWRxoVSUokXFoVSVYM5qSedfnBKuKqV41B2e9llyeWEZ2djYA1dXVWCyW8L2mRdu49+KWvPDmL6iqjCRxRNmesgQ5cQ7ObZJEz8ZJJERYjrgY96RC6PTo1gVPdSUtWrRg/vz5fPTRR/Ts2ROv18tzzz2Hx+MhuvtgolpfAoqJPW8PI1i254+NXujctRBKtZasEZjiMg/a3da4K571iw55Kmv9juhBL/7tvxxy+4G1UbWvq4CkGNIxy6aFZo2nY4VHiuSUFPbuqf1bt2rVivLycrKysnj55Zf5+OOPqaio4KOPPiIhIYFhw4bxyCOPnJD7q2GHcfs1Sl0+Yh1m7Gb1mH9radE25t/TnZfmbuTtH7axP52u0ILo7nLUmFTShr2N7vcQKMnDFJ/JnreHoVWXYU7KIbrb9RRO/j+sWc3w7t5A3DnD8O5cTbCqGAH4d60lsd8oAHz5W7CkNaRy2VTsTc6m6qfPSbr6SazpTfDsWEXxjOfwF+0wmF5MVgj4iGpzMUJcRMnXr3HtmFn0tGzj9ttvp127diQmJjJ9+nQAJk+ezIQJE5gxYwbZ2dm8++67nHPOOYd46lMbp1BPejBqeDJvvvlmAO666y5GjhzJwoULufvuu5k9ezYAisVGXNuLKP3mdWwNOlAy66Va0hum2DRM8ZlULp+GKT4T19oFCJ8b2WQNz+iEz41stoX/rYEaGY+tTmsK54yjQ7ee9O/fHzBmnT5f7RR5t6uaJllJB3EO2s0KERY1zA+YHWdnSOccvry1E5sev4B595zNyAsa0zIjGoCtRS7yyjykx9homBxJdrzj1DJ6wBNPPMGzzz7LmjVrmDBhAnv27OHjjz8GICEhAY/HmGWXL/iA3Bf6oFUUEn/JPQBY67YNnUXCVu8s0u6YQNxFd2Fr1CW8Ppx1qZhJuvopAISuUzLrBQ6c7R3O6AF4Ny9Bryg47HYQhzZ6kmLUF2p+qn6dbVBBnTZ6f4L9fjc4yOgB/PLLL7z77rusWbMGp9NJSkoKkiShaRrvvfceb775Jl9++eVxu8Myl5+x32+l+4sLafDI13R/cSEXvvYDA95fzoWv/Rhe3+PFhYz9fivl7kNwx/4NmFWZkRc05peHz+V/PesT5zAjQlnQkiRjTjVKkWSzDUtKfWSTxTBkksHoVLF0Co7GnY04YMCHN28NgeJcEq94hJiu14HQ0bxGHNySXA/PxiXY63fA/ft3WLPONOLrgC27BfYGHahYPBHh92JJbYBksaFExuFo1BnVEY1z23dcc801NGzYkKVLl4azNauqqnjwwQd55ZVXjkmbnEyc0jO+mJgY0tPTiYiIID09HUmSwnpd++t2WVQZXdcRQR9aZbHxb1UJiiM6vI/QdYJlexG6ju5zE6woQHEmEijPR/e58Rdux9G0G6613+No2q3WfQhdw1+2F1nobN26FYAGDRqg6zqVlfs6zdWrV9O0aVOi7WaGda3LsK51a3EOHmrmVsMlOmXlLnaUuFEVCTn0bAFNJyvOQd9W6fRve3Lcm4dCMBhk5MiR+Hw+8vLyeOedd6hXrx6DBg1i06ZNVFfvi8FJqhkkGe/udZhi05BMVqJaXUQgFMOIbHkhqiMaR5NulH77FpbMZiRe9X/seftmZLOV1BvfIFgeMlxCIMkqCf1G4du9gYrFE5HMNmx1WhMozkWJjCNQuB3d5zYy4hQTij0KR9PuVPwwgcizrsC9/nu0qmJAQo1Nw5yYTfzF9xCsKmbPO7eElO0los+9CVNEHKXfjiX2/Fsp/moMIpyBGsKfFA7/9yBqFWlbY5PxluYDkJiYSCAQwGQysXr1ahRF4dZbb+Xxxx9HCEHHjh3ZsGFDmAezRubnWOGIKQwxHmFbsYtnvtnAC3M2cGPnHO45r1GYwvBoEG03879zGjC8Z30GDR7MxhjI7ngFJUUFNGyezLdrCw1jF9QxJ+YYVH+uMhIvf4jCyaNwnNET19oF+HLXkDzwJWSLHT0U86vpEYOVRXhzfydYUUhkq4sIVhVTM1j0bFuJe9NPJFz+IEXTn8LZ4UqKpj5ucHkqKglXPMyHk95mwtuvo8gSLVu2JD3dIKgYPXo01113Xdjr9U/GKR3jA3j00Uf5+uuv6dq1KwsWLMBkMtGlSxfmzJlD+/btueKKK7Da7Fx2z/NUb1iMvUEHPJuXEtXxKhwNO+Hesgw1Np2yOW9gSq5LIH8r1pyW+HZvwJreBO+uNSiOWDy5vxN37lBKv3vHUCmu2xZv3lpUZzLl349HNplpkxZBfHwcn3/+OcFgkFatWuF2u1m5ciVr1qzh0ksvZcmSJTRt2vRPn8sf1Hnmm/V89NNONF38YcTKGorzDemcU4tD9ESjJsaXnZ3NY489VmtbZGQkX375JYMGDWLnztqZrWk3v4canUTZ/PepXD6t1rYaCrcappswDVuonEG2RoAko3sqka0RSBYHursCU1w6MT2HYM04A6Fr5L54BcgKkiSjOpNQo5ORLQ7iL74Lz/ZfKJr6JOKAInZLelPU6GS8ub+jVRbWflhJRlJMODteRfmi2qTlWCMxJ2Ti37WWQ0GyRiG8/2FtwkMMCGRZJi0tjT179hiDVCGQJAmz2UyXLl2wWCw0b96cjz76iOnTp9O2bdvDnPyv469SGB4OHerE8kyf5mTFHT3f580338yqVav47rvveGj040xauJqYC4dTvnM9ssWBGpuKb9c6Cj5/FFNMKo4zelD1y1dEND+XiiUTiWx9KTHdB6F7qymcNIpAaR6ZdxvMKoXTn8KzdSWRrS/Gln0mRdOfJvGKRxBCUPzF00T3GIJWVYxn8zIkkwVLemOc7a7At2cj1sxmSLKCfdcyds4YQ4MGDbj55psZNmwYLVq0IC8vL5yoVFRUhNPpZMSIEYwYMeKo2+RE4pQ3fIFAgOHDh/PJJ5+E5XViYmJo2bIlW7duJTc315Dh0Y2grSWtkcF88PMMPFtXhNxYBjmrEhGLo1EXorsOQKsuo/irl/Ht2RjitKup47sF787fcK2ZZ7hLhQBJwhwRzcCr+vD000/z2muvHdTxR0VF8dZbb3HNNdcc8jn2x45iF5e9+SMVnuBfagubSSYpysonhxHKPF4IBoMEg0Eee+yx8AxPVVVUVcXn8yGEoF69erz//vt07doVi8WCpgtSL76Tsp9nkNT/CUCicNIjRLa+mMiWFxrCtrqGJbUBQtepWjmTiiWTSL1pLEpErCHYW3P9qiLyx99N2m0fotidSIoJf/5WTAlZiKCf8h8m4N+7meTrngeM4t7yRR8jAl6i2vel+ItniGxzKZEtegGQ98ZA4i++B8/O1eHaKgDPjlUUTX0SyWwl/fbx+PO3UDTlcSLb9aFqxcyDjeM/GftRVEkmq6H0bXGEykakUOzHg/3M8/Fu/wW9sih8aPS5t+D67VsCBVsPYvoHiGh7GbLJSvUvs9C9tUnLo6Oj2blzJ61atWLgwIF069aNa665ht27DQq7Rx999KBv62jwdygM/wytMqP5aHA7Iqx/z2G2c+dOsrOzsVgsKIqK2xMSm5UVLKmNCFYVo7vKETVyRiHEXnw3pbNeOiSXrWS2EdH8PJyd+pP3yjUh2RnZ+FcP4uzYH++uNfh2rQ0dW3O8hGyNwJzaEK2qxGBVUhRk1YKieQn4vKSnp4eNXyBgeD3WrFnDhRdeiCRJNGnShA8++IAWLVr8rfY4GTjlDd+R4njSh1lNMnef04ChXese9blW5pbRb+wS/kAv9g8hS4a75HjX7+2P0aNHH9QZjRo1itGjR5OdnX3QDK+Gy7TnSwtZ8flrVK82aoEizjyP6LMHI0kS3tzfKZ07zqgtCsmmRHcZgDXzYB7TYHkBu8feGFaiACia8RyebSsAsOW0JvbcYWHXdqB0N3s/uhfhc6FExhHV5lKizrocRZKItCqseeHaQxq+imXTcG/6Ca2qhPRb3wegcOoT+PO3hNyjRwbFmYxWkX/47X9DKUKNzySy1cWULfwADiD+PqY4bEathGSyhF3IHOj2hXANGloAVAuS0MPu4U6dOrFx40Z8Ph/btm2joKCAQYMGsWLFClJSUnj11Vdp3749ffv25frrr+fWW2896kc51hSG+0OVJSYN60DrzJi/fY5HHh3FE4//X611psQcUm94jbw3bzh4oKWYUCPjiL3wf3i3Lqfq12+MQXl8Jr7d6zEl5mCKy8C9fpHxW2nB8MxbMlmJu3A4jsZd8O1eT/5nD5E6+FV8ezZS8tXLWHNaIikmTLHpVP06O+QdkUhJSebn5cs577zzePzxx+ncuTN33HEHU6dORdM0GjduTK9evZg6dSqbN2/GbD41wjF/hn+N4TtSRYG/A4sqs+yBnkcdY9tR4qLHiwv/ttGrwZ9xiJ4qOBlcpgcqbcRdcAfICnaLmUS7xPuDzqJDy6bQ+SbDxVldRvyFdyIkCV/u7xRNfxrZZCXtlvfwF2yncPJoYi+8E2tqIzw7V+HLXYNn+6/onkqE0DHFppF09VMUTn/K0DrTNeJ6j6SkRubFGgXeSmpKZdTEOgRL80CAmlyP4O51SKqFqHZXULH4U+MhJJnYi++l/IeP0cv3IpltWNIa4z1cZuohjJUhheMxlBFCHg3hc4dnC5LNieJwEizehRKdTFTri6le9Q2OpmfjK9iKd9svZNz9ObvfvAER8KJ7q8Os/5n3zyBYns+et4cR0eoiJFlF91ajRMVTtXIWkqwQ3flaSufWpiJLTU0lNjaWJ554gssuu4wVK1Zw7rnnUla2j15rzJgxfPfdd8yaNeuo34U/I1o/WkjAlFs6/m3jd+D97c/uUgPP9l8p+fpVRNBH/KX3YwqJONeoqwfK9lI07Qk0dwWKIxZLWiPizr8Vf3EuBZ8+QPxFd1G9dj5KRDyRLS/AFJMSPrfmrSb/o3uRJAnFmYhWUUjqTW/h27ORQOluVBEgsHIav61YRq9evbjuuuvo27cvzz77LDNmzCAvL4/333+fBx98EKvVyrvvvkuvXr3+ZmueWPxrDB8cnxf9WBFA+4M6bZ6cS6X3r7k3D39fMjd2rnNMiamPNY7nYOSw1zyE0kZsl2t44OFHeX3o+QfNTmvgOKMHrpAuYhiKiZiu1xHVrg8AZfPfo/KX2Ub8UbUiyZLByqFawX9oHcIjQXT3G3C268OuN29AP5Q7VZJRnEmYYlIOafwkS4TBlKMF4UBpJkk2ZgqxqQQLt9feZI9GNpmJatubqlVzsNdri+OMHux9/06smc1I6D2CXWOuRrJHIdwV4didZHcS3eVayhd8QOy5N1OxZBKJV/0fqjOJ3Jf6QjBA6pA3CO5Zj1j+GbIss2DBAho3bkzz5s15/PHHueyyy6isrCQzM5M333yT/v37U1hYyOWXX0737t156qmnjqjtzj77bJYuXUogEEDXdSRJwm7///bOO0xq8mvDd5Lps7uzvRd6kd5BqoAoiIAUFcSCIogVe0PFhh0UULHjh1IsoFRpAtJEepMibXvvO30m+f7I7MBSFBX9qeS+Li7dSSaTZJI5ec97zvNYCLPZKBXDceUdVVO6CIgmK5Z6HYjoNRpB0lO8/G3sBzeoDw0BCyBbhyGEtb8G54ldlKyYga8sH0EUAQVDYkOir7qfgi8n4isvUEez1SMqQUAURUaOHMmVV17Js88+S0ZGBoIgEBISQn5+PsuWLWPhwoV88cUXeLxeXKIFRVHwV1cVy34U2Y8UGk1I08vwluQE5QHx+xAMZhDAEJ1GRK/R+EpzKVoypcZ8anUxmeJ1q2lsSaeO3hTVtkgKiSS0dX8cB9fjKTgRODcqUf3GE9L8ZGtC0dK3sO9ZCaitZD/88APJyclMmTKFFStWsGzZMkCd5mnRogWDBg3iwQcfPK/v7X/NP3e48Ae4r1cD4sJMF+ygRIHfFICePn06bdu2xWg0nmH6+sUXX9C4cWNCQ0NJrlOfvD3rayyv+OkbMqeNJGPyMLVq0HcyfZQ3+3Ey3xpBxuRh5Hx0N47DNZ0JinZ9z+PDumK1Whk0aBAlJSf97X5tn/5Owi0GRnepjVl/4S8zAZAENeV0qhpZZLcbqPfkEuo9uYTek9fy3rojHP3uEx7q05ATJ04EG3AVRaHS6WXwOxtIe2wx0f0fIO2xxTX/PbwgGPQAInreRlj7Qaqkms+lCiPIfvDYsXUejhQahXhKJXE1sde/QNpji0m+bzbmeu3V/TdaMcTVBUmPMb4eit+LpW4bdZnOgGgOw1SnLXE3vUHqI98QO/hJfAGbJ1OdNphqtwZU5+3kcR9ibdj5zKAHoCiEd78p6IZ+KiGNumCIq0f5xjn4y3Kp3L6I/DlPAgrRVz+IYLSSfPf/YU5tpr4h8AOrOMrxZB9EFx6HaA7D0vBS8j9/jIzXB4PXjalee/RRKTTu2Jvi4mKKiopo164dJpOJvXv3BnvCwsLCmD9/PlOmTCEiIoKWLVvStGlTJkyYcMa+nuuaVhSFJk2aBBvlq3tr7S4v0V2vJ6TFFQh6M8g+ZEc59gPrKVn1PmUbPsdXmkNos96IOiP4vcj2MkrX/R/2n3+gcMEkwtoOAMWP4nOj+Dy4sw9S8OVEEke/Q+qDXxF7/SSEgJxYtYbwzp07efTRR/n444956KGHkCSJ8vJyTCYTr7zyCiUlJRw4cICXF2wlpvftJIx6i9QHviSs3SAEoxV9TG3irn1WnR4QRFAUQltfBSgoHgeWhl2wXNKN/HlPU7T0LQwJDYgZNlG9FsJiSLrjI1If/AqdLRZbxyHowuOC5yp6wMNEX/0Q5ZvmYmnaE31MGikPL0CyxSEYLMHRZDXWS7qjs8Xy09Zt3Hjjjdhsqnh1VVVV8P937dqFx+MhPj6eysrKM6+/fyj/qREfXLjJ7LPNpU2fPp2ZM2eyd+9ehg8fzsyZM5k/fz5+v59HH32UgoIC7HY7a9asoX79+tSuXZtvv/0WjywybNRYvIXpiCHRpNw9E+ex7RQtnkLc8BdB9pM3+3EUjwtdRAKRfe5AstjQR6ciiBL2Q5so+uZl0BkQdQbM9drjOLSRxKFPkVz0E3s3rMDj8dCkSRNeeuklnE4noiiyfPlyDhw4QH5+PllZWaSkpDBp0iQGDRp0Qc71+fBb9ka/F0mAlAgzn9/eibhQY7BVpDrj65f53Q3/6cV2nvxmLxuOFP/mumdLR1VTXTRTrawPkDHlWuKuex5joE/LnXeE/NmPByvw7Ac3UL5hNv6qUqxNeuBK301Yx6GENO15xvYL5k/CebimUo5kiyfp9nfIem8scmVhjWWCwYw+OhWdLQ7X8Z3IrkoQddi63oC1QUfyZz+hNjhvXYCgNwJC4OFLIemOD9HZYoPbqty5lIotC/CV5ZI47mMKv5yIpWFnnMe24y3OREFAH5GA4nUT1n4QUa1680CfS2gi5XHnnXdy/PhxGjVqxJQpU+jatSu/l/nz5wevaafTSdu2bZk5cyY7duwgLS2NwsJC/H4/CxcupG/fvgEXcSWYBjYkN0G2l9bwoqv2cpTCYpBddnUEdxb7KtEaieKqRLCEIVcWB7cpGEMCo0WZx558ipcmPnny3AsCRqORHTt2kJKSQlRUFH6/n5KSEr755htuvvlmIvveQ2iLKwDwOyvInXk/gqQjacx7lKx8D9njxL53FYb4evgqi1HcdnQRiZjrtVcFFUSRpNHv4ivPJ3+u+tmmuu2IG/o06a8OQgqJJGbIBNXoVhAxN+pC7MBHKFz4Oq70XcQOnoAhoT4579+hPlSZQkm++9PgPLrzxC5Kl03l8JFjzP1wGgUFBUyePJkpU6awcuVK5s6dS+fOnRkxYgSbNm2iR48e2ojvf0VSuCrcnBplwaj7Y8LEJp1IWqTljAKSanHqW2+9Nfja4MGDGThwIPXq1aNr167Ex6visllZWYSHh9O3b182Z9qxdRiCoDcFn5qr9n1PSIvLMcSkUbz8bUy1WiCaQwnvdiOFC15CColEECUUv5fSlTNAEIgd+gzJd80EQW38FuMbUICNpUuXIggCTzzxBNdeey2tW7dm0KBBGAwGfvjhByZPnkxFRQWvvfYaI0aMoKDg76tO/DV7o9+LXoRxPeqx8oEeJIWrga1WtJWG8aHUi1X//ZGG/7QoK5/d1pG7etS94DeEIToVzykpRm/+MfTRJ9VnrI26kDj6HVLGzyG86w34ygswJpw9w2Bt3AVDXF1snYcHX/OX55Hx+mBCm/cmoudtGJIao4tMBlFC8fuIGfAIMQMfIWX8HPTRaRhTLqFi8xfkff44YR0GE9nrNtIeW0zqg1+Tct9sBIMpkLaMrfHZIS37YmnYCdEUQt4n92Ku2xZblxEk3DyZ1Ae+xBhXB2/+UXwlWZR8N51fXhpEsusEXbt2Ze/evVRVVbFt27Y/FPRAvc8GDRpEVJQ6wqq+F+Pj48nNzcVut+NyuRg0aJAaaPqMQbJGoItMUPs5reEY4usihsYEtylaw1UfOkc51oaXAooqCC1IWFteGRR0DmneG11EAua66mjdXE9ttVDcVYimEBS/t0bQe+aZZzAajbhcLvr164ckSWqls9/Pgw8+yK233hqoTD6Cff9aMiYPI+utEcj2MnQRSSiKgitzP/qYNABC21ytztHKMqHtr8FxcCPIPoyJDU+O6BS1h9J1bDslqz4AnZ6Q5r0RAg+b4aXI5QAAbP1JREFU+tjauI+pureK14Ug6sj/4hkyXrsGX1kuptTmyI4yZPeZWQO3T8bn8wV7mJs0acLu3bu5+uqr6dixI48//jh79uw5rzaufwr/6Ab2P0pSuJkV47ufV8PqqehEAUkUGN21Dvf1qn9G4cjgwWraa9u2bWRlZQVfNxgMtG/fnqysLCRJfVpq27YtjRs3ZuHChfxUZUMwmNX8u6Secm9hOpb6HfCWZOPJP0rigIfJmTEaU1ozDDFpOA5txHlkK87jO0D2Y6rdGlNqEwRBRHZUYExujGgwIbW7ls5dumIwGKhbty61a9dm+/bt1KpVi4qKCgwGA3379gXgqquuwmq1cvToUWJja/6w/ZVUP4ycbm90vuglgTFd63B71zp/aRP/fb0asHhvLunFZ9781UUzp6rsI0rqw0lglKSup9rMVGsjWpv2pGLrN5jrtgUEKrZ+Q2ib/sHtuvOOYIitjeyqomTFu5jrd0AfpVq7OI9uwxBfF8kagbc4k/KNc7E06kJ4lxGEd72BokVvILuqiB7wMLLbQf7cCYR1GExoiz74nZXkzBiNK3Mf1rBotVq1qpi4EZOQAn5rpyPoDKTeP+/sywSBiMtuJeKyW8+6PP6Gl4P/Xz0v3v8vnH+uvhe//fZbPB4P+/fvZ/fu3TgcDrw+mZLvP0EwWvCX5SMazLiO7ySi9+04Dm2mutCoOtmleN2YG3Wmav8aDHF1cB3dhmQKQTBYUNwOdBEJCAYz3oJjqsWPNTK4H7Kzgthrn0NvMJD9fw8DsHjxYnr27MmBAwfIyMiooVu7ceNGnnzuJV6Z+i5Ve1YR1mYAKePn4i3OpPi76QiSjrIfZoEiE9a6P5Vbv0F2O5BdVVibXAayjK+iAEQd7qwDZE69oYYeqmSLw5N3BFFvBEXBExDB1kUk4CvLQ5H9+Mrz8VcVI5pCwRyK4qzAlb4b0RyGZA5FUWSqdi1HtIajAAf27ODtt9/m8ccfB6BTp06UlJRgt9uZOnUq06dPB6BnzzOzFP9U/pOBD9SRxsNXNOL2rnWYty2TeVszOVFsVx+MTllPIFAlGWXl+nYpF0wAWpIkbrrpJkaMGIHd4USQ9IRdei1Vu5YD6lOXaLTiLUxHFx4frNJS3E4MsbXxFmYQO+wZChdPxl9RhK+8gKypI9FHp6IErX1AJ4pklTqx2Wykp6dz+PDh4JNXQkIC4eHhLFy4kKuuuopFixYFG4X/bk59GPlww/Hf1DI16kQURW3av//yBn9L9apBJzJ7dEeumraeMkfNcv3yjXNrFM3Y96/B1nk44V1vIPv9scHS84J5qkB5w/tmYoiIR2nZF19ZHrkf3Q2oLR0hLfsGt1O66n08BcfVpuFGXYjoOTq4zJW+W5379TqRLOFYm1yGrdO1weWRfcZR/N00st6+GdFoJaTFFdxww01syyojXxCIG/YURcvfpWTFu+ijkokZMuGcQe9C8VcZI5+LpKQksrKyeO+997jmmmtITEwksVZdsud/BV43+H3IHhcRl91K6eoPAgU6akGH4igDwHJJNxSPK1DEAgio6j+BtpGSpapElxQWiyDV/MkUzaGY0prXEMK/55578Hq9rFq1CoPBwKJFi/B41H48WZa5/pYxvP7+LPSRSTiP70A+8EONa8sJhLYdiKDT43c5KF31HgD2vauw712FPioFyRaLr7IYf1WJ2mISkIqLuuJORL2J/LkTqPhpQdDTz3lwg7qNfWuwNOyM3edB9rpRnNUVxxA9SA1siiJjP7gRT85BFK+Lh+68jXHjxgWPa8SIEXTs2JHy8nIiIyNp3Lgx33zzzb+mlQH+w4GvmrPJh/3VorQAq1at4pFHHmH2N8t4eG0FFVmH1R/FQK+ToDepN5ffqwpmBwoTBKM5KJgNIFeV4s7ajyGmFuHd78JXlkf5+tnITlUWTBDUVERFRQUvv/wyN998M40aNQJUtYy6desyYsQIXC4XBoOBL7/8Eqv1zytP/BFOfxj5ansWJ4rt6CURURCQFeV/7kKRFG5myT1due79zWSXOoMPSeFdbyC86w1nfU91zx+oPyHJ4Sbmjr0UgB6vr/n1kdLIV8+5LxE9byOi523nXC4aLcQMPKmYMWNkG65soqbafX6Zn3MvZUhaM7znk+64AFQbI382uuPf3mbToUMHRFFEkiRatW7L0qXf4Q+k7SyXdKd8/WegKET0vI2ytZ+oLRg+D/jc6EJj8BYcR9CZ8NtLgmnI6mb+xDs/Jvf9sZjqtMa+6zt0ESd95ywNO6tSikYLkk6HPyD24Ha78Xg8iKLIwYMHMRqN+Hw+Jk2ahNmgU6+rQOq/+toqWjoV+77VJI55D314PIrPiympIb7yAnxVpSB70dniiL9lCuWb5iGaQoi5TR1tZU6/WXVST2iAtzgTQdIR2uZqygNOJuZ6HYjqfz+SKYSiRW9gadCJiB63AJD72aN4cg4iBR6mPZk/407fFTzGo0eP8v333/P000+zadMmFi9ejNlsDp7v02UK/w385wPfqVTPCf0d7Nq1i27dutGwaUuk9RsxJjRAF5WCt0i1AdHHpKkWIvH1UNwOPPnHEa3hSOawGkLZgs6AMfkSBEHEX15IWPvBlP0wC1fWfmyALCvkZhzH4XAQHh4eTDuA2ki+bds2Nm7cSOvWrdm+fTsDBgxg2bJl/1OVhd+jZfq/ICnczPcP9GDyykN8sOE4/vNsvJQEGNOtLg+cMkId36sBU1Ydxvdnmzd/hYQwE9+N74rNfPIhQSeJNE8OZ0zXOn9pL1s1Zr1EfJiRz/5GVaGysjKOHj2KLMssXboUu93O7t27GTJkKH5XZbCE33lwPQgi0Vc/pMrdRaeis8XiCIyCKrZ8FdiigOwsRzCH4cn9JfCaQunK99DFpCEERlXGhHrBfRD0JmS/D0/OQfw+dSQ5ZswYAPr168fGjRsZN24cU6dOBdTfhb79rsLvsuMtysAQr46My3/8CvveVVia9FCDnt9H4YJJCHoTCbdOU4vbRImYax5HECWsl/Qgb9ZDuDL3Ibtd6rywpEN22yldOxNz/Y6Yarem4qf5mGq3QZB0CKIOV9bPOA5vIqrf/SiyH8XrxhhXB39ZLvpoNcVuSmtO2mOLzyrc0b179zOspv6NXFSB76+gWs7L7/fj9/vVvhy/n3bt2vHyyy9z9MA+/H4/nryjeAtPqPN8QEjTnhQtmYIxuTHe0lzKN84mpJnaQ+PKPogxqSGy140+OhXHLz/iK80l/LJR6oeKOtyZ+3Bl7kOIr8etw68hKiqKb7/9Fr1eH9yn3NxcYmNjadq0KbIs065dOzp06MCqVav+MfJCf+fDyO+hWk3/ju51mbn5BJ/9mE5R1dmV+qOsBm7qmMbNl9Y6Y4R6Q4dUpn7/y18S+OrGWHnz2pY0Sw4/5zr39WrAkr25F6yq9nTMehFZgdu61D7rvPiF4vT7zOVy4XQ6WbduHQUFBXz11VfIsozJZOK992YQ9NYM9MYBFH79AgCSNZzwzsNxHvkJxesFZFV6LVAFqguNwi/pVNk8RcZ5dBsIAr7ibNVwOblxcL8qNs2jYvOXNWTbZFlGr9ezevVqFEXh5ZdPzn8+//zzPP/88+ofgkjBvAkgnKymdR7aRMahTcF5ZEFnJPPN4eBXr73MycOCac2wdoMoWvSGai8kiAiCQF72QSwNOhHe7UZK13yMpcGlRPQeQ/HSt8iadgOiOQxr8z6Urf+M4qVvqg/WiQ2IvfbZ4G9TNYoC17ZNuZBf4z8GLfD9Ds52802aNOnkhRxg5syZvPrm21w24k6uGToEb1WZesE16orzxE4UnwdTWnNsHYZQvOQttbLMWYmt4zAchzbhLckGFLKmjQRA8biwdRmOIbY2lVu/Va1DOg9XixuqSrCFhbJ79+6gjdMLL7xQQ2LMbDbzzDPPMHDgQNavX39B5KAuFsItBsb3asD4Xg3w+WVOFNvJKHEAAqmRZmpF/XoFaXUv44UadelFGNW5Nk/0u+S81q+uqr16+gbKHd4/FfxMehGdKP5PUtKnX9OfffYZTz75JDfffDNTp04NWue4XC6OHTvGFSPuYPnsGRhSmuHJ3Bt4l2oyjaRHUWQEUwjWJu2w7/seRRDB51ELPEJj8JXlE33N41RuW4Q7cx/IMkh6Ivs/ENQftTTpiTN9N0pVMQgCXbp04dDBg0yZMoWcnBwee+wxDAYDqampjBkzhn5DRzB21jZyy90ULngRS8POhDTvg2j64w9+4d1GnnNZ1JV3B/8/dsiZvZG/RnWB0j/FEeZC85/r4/sr+b2aldWuBK70PeTPeaLGsmpXAlC1KIuWTMGTexgpLIbIPuMw12oZXNdxaBOlaz7B7yjDEFeXyD7jMMSk4S8vIOvdWzEajUHFdID33nuPG25Q56OmT5/Om2++SX5+PjExMdx1113/ml6b/woXqpdREtRg+0ek6qodCn5vVa1eFEgINzPrtvYoMv+YlPQfvRfPpuyjj6tH4qg3azqEyD5Vb1QQiL12IqYUVUM2/eX+nE5Uv/FEtrqciJXP8tNPPwHq/LrRaKR27drs37+f7DIn/aaup9ypFk3lff4Y1qaXBfv4/kn8mevs34IW+C4g1T8ueeUuXH+DTJcowJoHe1wQmxSNv5ZqYYU/OuqqLhz5M+Lk1Z5051NVa9KrVbW3n6O159/Aa8sP8uGG43+LZF7PhjF8fEv7sy7z+GQun7KW9JK/UFz8AnEhrrN/A1rgu0AEFWMcnj8tQv17kAS45dJaPHpl4/+ZT5/G+fFHR10XunCkzOH5x1bVXkiqR9onztKXeaFZ99C5H0BfW36QGeuOnlcv8Z/BpBMZ1bk2dreX//sx43e//39RoPS/Qgt8F4ALLcv1Rwgz6Vh4dxdqaaO/fzS/Z9RVXTjyV466/olVtReS7DIn/aetp/S0vszfS8X2Rdj3rsZTeAJr4+5E97+fokWv4zyxG8VZgSQK+Hw+1qxZQ48ePfjiiy945plnOHbsGB6/6ukpWSMIbd0PW4chwe3mzXoId/ZBkAzobLFE9rkjOM0RTL3qjQiCiKVhZ4xJjanauRRvqWprJUh6ZGcl4Z2vp+Wg23n/mjTuu+duNm3ajN3lDppcW+q1I+rKe4L9v6fyd1xn/zS0wPc7mDt3blB1PT4+npkzZ6LX67npzgc4emCvWvGV2oyIy8eiC1HVHRSfl5JV76ki07IPY1JjIq+8K9iwXo23JJucj+7G2qgz0Vc/BBCYG3wyoKOoEtlnHCHNeqnvKcqkeMW7ePKPIJltRPYcxdIpD/0pj7Bq/us/iP9rLpZR1z+B7DInQ2dsIrfc9Ye3Ue2S4Dy+A8XrIbr//XgK0zGFx3JHfDpJCfHcdNNNvPPOO/Tv3z+o0/v+N2tYf7yMkjWfEnv9CxQtfI2IHrdgvaQ7VfvXULL8HRSPk+T7v8AVsCBKGvs+otFKzgd34KsoJKTZ5YRfdguFX7+AIOmxdb4OY2JDKnYspWr7YgRJR1Tz7myb/z63jxhCbGwsnTt35pVXXkGQJJpeNoj16zfglswkDXrwf1ag9E9Cq+r8FU4NdDabDb/fz4svvsjcuXPZtm0bgwYNon7DRpTHtyWpx/0gihR/9w55nz4QMIH0BfQAIfG2aYhGK8XLplGy8j0ietxSI9CVrJiBPiIR+/61J50YFBnBZCF1vCoj5SvLp3jFO5Sueh90ehSfB1un64i7/nlcGfso/Po5BkWnsWHSDX9o3q/UHvgx3pFF+ll+jNOirAxtncz17S6um+Sv4J/ey/hfIinczLqHLuOxBXuYvyP7D23D0lAVJHDnHcHvVZ0ujDFpfBnw4zt06BAAOTk5NXR63zhoISSyitIN81TLpPodcWcdwFynLWU/zFLl7QBRb8TaqDOV277FcWijWjkq6dBHJSNabUimEGydr6do0evBQhtbu4HoBYXyn75hePtUksLNHD9+nLvvvpuPP/6YsWPHUlBQQEVFGQs/eI2ePXuyYPQcRIPpor/OLs6jPg9WrlzJo48+yieffEJlZSUJCQk8/PDDJCUlMXbsWDIyMsjMzEQMT6Tq8CZEowVRb0I0WfFXFZN42zSS7/4/tQxakZGsEQg6A5bG3fAWZVCyYkZQjNj+8zpEkxVDfF1VL/HBr1Tbk2ETEfWm4D4Vr3gHyRJO8j2ziB7wCIrbGWhMlTDXaoEx6RIq933PgLc34vWf/xySxyfz2vKDdHx5NW+uPsyRgiq8fgWHx0+V24fD48frVzhSUMWbqw/T4aXVvLb8IJ6/0Wfvv8ypYtu/V2Bb4/ww6EQmD2vJxkcuIync9Ntv+A10osBX4y7lo5efxGKx0KhRIyRJomPHjkGd3gXffMPxgnIchzcj6PToomsFxKdTKf3h/zClNkcKi6mxXUNsbdxZB6nas1LVBTWF1lgm28tO+vcBMfbj1E2OJcykKkKNHz+euXPn4vP5KCsrY9myZVx55ZUoiqKqyZTmaNcZ2ojvnDzzzDM8/fTTdOzYEb/fz969exk2bBj33HNPUAX+tddew9e4D87V952cA8g7AjoDklVNN4a0vJKytZ+okkJVxZjSmqMLj0c0mNFHNcJxeDP2AxuC4tWnmkoC+O3lZE4dCYKAbC/F3PBSBJ0ByRIGokjV3tVUbPka2esCBBRFptzp5ZXvDlKxbiZz5syhvLyciIgIxo4dyxNPqG0V69evp2/fviiAy+tXNUy9LqIHPY61UedznpfqOamPNx7n2105vHRNM1IiLRf106PGv4ekCAsbH+1FerGdpxfuY8PhIvy//bYaRIcY2PNMHywGHW3eeYdp06axefNm+vXrh16vD+r0jrxhJA6nqtMbPegxKn+aD4qMPqY2lTuXEdp2IJ78YzU+XzBacf2yhYiet1K27v9qaIOKRjWLo7idYA7DtW8l7hMH6Hxpp+A63bp14/3332fXrl18++23DBkyhMsuu4ybbroJINjveLGjBb6z4Pf72bZtGwMGDKBevXrY7Xa8Xi9ffPEF69evR6/XM3DgQJ577nmO7y1SJZBCorA26aEKDkt6fJXFiCYr7uwDiKZQ5CpVe9NTko1cWYy5QUcAfGW5gKLqTHg9gEz6y/2RwmIw125N7LXPUrljCc7DmwFw/vITvqpS1VxTUVSNQaNFTa36PHiyDwAwc9MJZg8fidls5pNPPqGkpIRXXnmF1NRURo4cSdeuXdl3Ip8r3voBt0/Glb6Hgq+fx1ynzXmdI6dXJqvMyY2f/IRJL+KXlX9MKlRLHWr8FmlRVj4d1QEAl8fHkr25fLLpBAfzKs+qsmOQBLrUi8bqSaWyuACL4eRPpyRJdOnSBb/fz7fffgvAI488wqdfL2HCRjvlmYfInzMBwWAi/sbXKfrmJSJ7j0F2VtYQtwbw5h8HRcHauBvlm75Q7+sAp+r5Og5vpmTNp8xftIwvPlJlCmVZ5sorr2TMmDFs2LCBp59+mrfffpuUlBSee+45Fi1aRHJyTbPZixUt8J2F/Px8vF4vX331FevXr8dut1O/fn2SkpJISEgA4IEHHuCRxx6nJCtXVb0PiaRk5QyMaS3xlWSS/fbNaqrCaMGQ2Ijoqx8k56O7UFxVIOoQ9Sb89lIQJVLHz0WQ9JSs/pCq3SsQ9CbiRrxE8eIplKycAbKP0Db9ceUewZtzgOzpNwEKuqgUfJUlCIKIMaUJsseFJ/sAvqoShJBI3vlyOT/On8fGjRuD5p1Tpkxh5MiR/HisiOs/2BI85qp932Np2BnR8PvTQNWjwOpU6JRVhxndpTb39Wrwt7VYVM9Pfrk9k/RiOzpRRBRRLalkdZ7nurYpjOiQqs1PatTAZNAxpE0KQ9qo8lwuj49t6aXY3X6sRom2aRGYAoFuwoSF/JrPeE5OTlCnt23btrDpB7wFJ1BkL6FNr0IyWvDkHqHw21dAlpEDacust28mZtBjeAqO4ndWkjltpDrPJ8t48o7gLThBaNsBiNZwPLm/ULxsGsnDn6V5s2Z8EfjskpISMjIyuPvuuzGbzbz22mt07tyZCRMm0KRJE5KSkkhKSjr3zl9EaIHvLFRLf91zzz3BQBcZGcmePXuC6+Tl5ZFx4jgJ/cdDWCx5nz+GrfP1VG5fArJC8n1zEPUmst65BV9pDpI5FNnjVI0hA55tfkcFisdF1juqBqficQVMIkX04fFEXDaKvM8fRTSGYOs2ksppN4IgYExrTszARyn69lVkZyXxI19BZ4sja7qazvBXFKILiWTpksW0rVOHxo0bY7fbSUhIYN++/dz20XpWHzk5TyB7XDgObSR2yFN/+tydmgpdsjeXz//iniCPT+aV7w4wc9MJ5FMsp3xyzfnH9BIHr644xGsrDtGxTiRTr29FTOifn+vR+O9hMujoUr/m3NvpcoUZGRmsX7+egQMHIooiq1evxul00rx5c1q0aMHLL79MUfohSnevpmTNxwiSAVNaMwSjVZ37D5A390l8RRnEj3wNT94R/B4XCbe8iWQOw5m+m+Klb2FpeCm2LiMoXjoVU2pziha+TszgJ9HH1iHaLCDLqlFsSEgItWvX5t133+XWW28lOzubTz/9lLS0NB544AGefvppRFHLfIDWznBOUlJSePHFF4O58WHDhrFkyRJOnDhBXl4e7du3p1OXbmQ1u4kTMx8mpFU/bB0Gk/nWCPQxtYgfMQmAwoWv4fh5HfGjppH3yT2qwKwiI+j0IEgosh99ZCJx171A3pwn8RVnkDB6BoboZCq3L6Fk1XvootOI7DOWgs8fA52RiO43EdZuIOVb5lOx+Qtk10lLECkyEQERf2UhIHD7qJuZMeNddu3axcuvT+GL2bMAiL3+hWC/UMWOJZQFbk4EAVPtVkRdcVew56fsh1k4fvkRb1Emtkuvq2HP4ziylYofv8RTmI6g02Op256IXqMRjRYkQUA+uomo46v4ed8e2rdvz9q1ay/Yd3Si2M6A6RuocPl+e+WzcFPHVCZc1URr/Nf4Tc4mkZaWlkZZWRkVFRVnOBZMnDiRWbNmcfToMUABURecr7M26RHU0XRl7Cd/9qMg6QN9fDXlCnNn3o+nKANBVPv4fGV5uLN+VgWl/d6gAHc1zz77LN9//z07d+6kqqoKQRCIj4/ngQce4IEHHrjwJ+Zfihb4zsHTTz/NsmXLWLJkCXq9nquvvhqXy8Xhw4dxOBx07NiR75avIK3vGErWf44QqL5UvG5AIWX8PAS9kbINs6nc+o26zOdBF5mMPq4u+D3ow+PxlecTecVd2A/8QOmqDxAt4STf/Sn+yiJyP31AVYgXUKXSIfDE+Cn4fWTNGI3iqkLQGTEmXwIouE7sJnb4i5hSm+LY9g2mX75n/bo1OAUTLVu1xlOai2gOI3rgI8EbLGv6zQg6PQmjpoKiULhgEvrYWkT2uh2Aqr2rkSw2KncuwxBXp0bgs+9fi2gOxZjSBMXvo2jha+jCYoI3tvvELiJ1HobWFVm3ds0FC3zbM0oZNmPTn1bJSQ43MW/spf95pQqN/w0z1h3ltRUH+R1F1ueFThR45IqGNSyDNM4fLfCdA6/Xy3333cfs2bMxmUxce+21vPrqq7zyyitMnDgxaObq8vqRFUh9UPX0Kl79Ic7Dm1G8LhS/D0NMGiEt+1Lx45f4XVXEXP0Qroy9+Mpy0YUn4CvLxZTanNL1nyE7KhCNFhSvG9EcimgOxVtwAnR6BIMZxWUPukdXjxz1sXWwdRxC2cY5qm0Kirqux0nKjS9xdUwZn380g/LyctUE168qWAgmK5LZhs9eBh4H+pg0zHXa4Dy2HW9hBoLRgi4susYor2jR6+o+VxRi37sKMSQSxW3HmNoC0WjBnbUfv6McFIWwtgNwHNkSSLtG0LhZK37ZuhZQTUNnzpxJWlraH/puThTZ6Tl57QWThouw6Fl8T1ct+GlccMocHtpPWqWqt1xAjDqRLY/30uar/yBa4PuTzFh3lDdXH8bp9oLsp2zDbPyVxUT1vQdECUGUKN8yn/L1n6P4PYhGq1qppcjoo1IIbT+I0u8/IqzdNVTuWELSuI8QAs7MsttB1vQbiRnyFIboNEpWvQ+ihOPQBmIGPkr5pnl4S3NBEBD0ZuTKQnWnAmkQKSSStNgIjh09EthbAQxmJJMV2etCcVaefF2UMCQ2IKzN1ZSseBfZ4woESQUxNJrkOz+hePEbIOqw711V4xyIIVGIJitxQ5+hYus3VO37PuBejapmU7sVrvQ91Ktdi1atWrJ06VJcLhcdOnRg8uTJdOigVtctWbKEl156iX379mEymejfvz9TpkwhNPRkL5PHJ9Nu0krKnX8svXkuakdZ/tNq9Bp/jj9TKXyhtTp1osAd3evyUJ+GF2aDFyFa4PuTlDk8dHhpNflrZp1hd2LrPJzwrjeQ+faok0EpgKlOG6L7P0Dupw/gryxSU5mCgCDpa8wB5M1+HEN0GlJ4HBWb5iG7qhAtYaTcO5vipVOp2rsKlJp5lMj+D1K25mN17s9fU6PQmNYCX2kOfkeF+j6/F4xWqA5UCOqIUfYRdcXdlK79BNltxxBXB0/2QQRzGEqgEs2Q2gxPxl410Po8hF16PZXbF6K4HQgGC7rIJPwVhciOMkRzKKm16nDP6JsYOHAgTZs2pWfPnixfvhxRFElJSaG4uBiPx0NCQgIhISEcPnwYl8uFyWRCkiQAPF4/Xo8LfXw9fKU5oIDicyNI+pPH3288lT99jbc4C9EchiBK+O2lSOYwwjoNw9KgEyWr3lcVcvxeVUfRHEqbrr3pUD+BZcuWkZeXhyiK2O12TKZAGltRaNGiBYcOHcLv99O4cWNef/11Onc+d9/jX4XWsvHXc6GUjC60O0OtKAsrtYe0P4UW+C4Ary0/+LuMRsvWf46vLDeoyemrLCL7nVtJHKPKlp2KtyyP0pXv4cpQzTRFUwiGhPrEDn6S4mXTqdr9HUG3aUCyxZE4+h1y3h+DLbEOJYe2BrdlSGoc7PMDQBCCc4fq3xIJo98m9+N7EE0hJI/7mMy3hqN4T2oc6mNq4S08UfOAJEPQIdpUtx2uo1s5GzpLGF57OQBNmzalb9++vPXWW3i9Xho1asTx48cZOnQojzzyCB07dsRms5GXl0dERASDBw/m6Rdeoe3tL1Cydham+h1wH9+BrywP0WIj5d7PAfA7K8l5bwyRV96FuW47MqdcC7Kf8F63Y0puTP7sJ5DCExBQ8JXng6JgiK1NZN97KF/zEfXDZK6+6iqWLVvGzp07AbXZ/9JLL8XlcpGenk79+vURBIFvv/2WW2+9lYKCghp+iBea6iBXWOlm1YF8Vh3MJ6PEUeOH2OOTSQw30bdpArd3qU20VrH6h/k9QuLGQGHU6e07J02LnYCCUS8y7rMdf7gQq5pwi54lWlr+T6MFvgvA3+nOUPrDLPwVRUT3v5/iFTOo2rEYKSQKJAl/eQGC3khIq6tw/LwWyefEr4AiGZEdZYF5QQVQEHSGYMoVAEFCDI3EGFsb59FtIAiEtb+Giq3fBj5ZAb8PY+02uI9vr7FPkVfeS8nyaYhmGxgsyGU5aprXaMEQUxt3xh5AQB+VhCM/HZ0k0rlzZ7p168Yrr7xCZGQkPp+PqKgoysrKqKxUU7AtWrRg3759fP7559x5552UVVTidjqwNu2FtelluDL2UrFlPoLOoI5I848iSHoki43E0e/gLc4i54M7gscn6PTB4iPRGkHirVOp3PndyZG6KKlzqIrCp59+yosvvkhubi6NGjXi4MGDWCwWHnnkER544AFkWWbJkiUMGDCA/Px8YmNjL+z3fNpoAwW8v2NSM9QkcV2bVO7oUYfoEC0Ini9/1DpKAMLMOq5qlsDy/fkU2z1nXU8U+ENz0wKQHGFm7phOWtC7AGhj5QuAQSfy+eiO2Cx6pMD83N9CdaGLJBF/4+ugN6H4/VTtXYXfZcfn8RDSrBeG+EDllyKrBS6SHikkEvSn3kAKstuBtyQbFBnRHIp93/cIooRgMENAQcJXmoMhsebcQsny6SDqkJ2VyFWqgG9Yh6Gk3PUpvsri4PZ15jCO5pbi9XopKytj2rRpXH311YFDkBAEgbKyMrxeLyaTiSNHjhAWFkZoaCj9+vUDYwgA5tqtMNdqiSm1GSCgeBx4cg8j6k1qYAs8fFRs/QZ9fD0QJYypTYm7/nm1jQQQDSZyPrgT55GfCO92I7qIBEJb9cUalxaUeDIYDFRWVrJjxw7q1KnD448/zquvvkrt2rUxmUwMGDCA0aNHX9Cgdy7d1N8T9AAqXX4+3Hicti+uptXzK3h7zRHKHGf/MdZQqfbUzCxx/q6gB2q+pdzpY/ZPmecMevDHgp4kCozrXpfvH+yhBb0LhNbAfoFICjez6O4uf+hp8Y8iGNSbwFSrJbqQSFUoW2fAV5anriCKVP68AcUbmFvQGZAs4ciOcnxleRgSGqjaoqJOTVW67fgDwdSQ0BDXkS0giAjiycvEX5aLvyy35o4oMmq9tgA+PyCgj0yk7IfPwHcyTerM+plGKdFcd911HDhwAJvNxqeffkpMTAwtWrSgf//+/PLLL5SWlrJixQqWLFnCbbfdRrHDh1c0IevNIOnUoF19DiQd+rg6xI98hcodSyhd/QHe8gLKNs7Fk/sLxuRL8OYdwZ2+m7zP9iKFRKk9jgrEj3oLd/oeir+bhqlWK6r2rkY0mBhxw0gAXC4XoiiycOFCAK677jqGDBmCy+Vi5syZLFiwAI/nwgWT6tFGXrkTt+/CZQ5KHV5eX3GIt77/hdv/ZkWdfwsen8wNH/5IucP7t3pq/toIMDrEwI0d07i5Uy2tevMCowW+C0hSuJkV47uf9/xANREWPUPbJPPh+uOczy2nKDKKz4MgSiBKOI/vCoysFGS/D501HNxVGIwmXLKM4gsUuCgySDpEcyj+Sg/e4izQ6Ykd9ATFy6biryomdthEChe8hBwodhEMFlUQ2xaDr+A4giWcmIGPUDDnCULbD1aFdyFYWWqu0wZvSRalaz9FNFqIuvoRCmY/CoJI0tDHWfrSnQzs3RlRFFmyZAnPPPMMISEhGAzqjV1aWsradesICY/m3hlLyKtwce/0ryneMA/BYK7hTQioKdWAQ4U+OhXBYEEfk0bF5i9RQNVO1ZswpjUnoscocj+8E/QmDAn1yHn3VjX9K4q4MvcT3vUGytd/xqSDNp6/7HpKi0qRZZk2bdoQFxfHDTfcQHZ2NidOnMBkMjF8+HAaN25My5YtadGixXldI+fi59wKhry78S97YFJQf9w/2vD3KOr823hr9WHyK1x/u5G0rEC4Wc/bI1oFHnYUUiMt1Iq6uN0T/mq0wHeBMehEHr6iEbd3rXNWo1G/rFaEJYab6dc0ntGnFCJc2TThvJqyvQUnyHh9cPBvuaKA7HdvU1OfgWIHAJ8voOhisKi9epFJairT7zvpBuF1U/DNS2p6UNKrjs+AJ3MfAIq7Cp/7pDKM4qzAk30QgKp9q0/ulKKgeBw4fvkxWEkquyopmPckALZuIylYPZNWDV7CbDYzaNAgLBYLq1atCrYr5Obls3LVaoy12+AoTCc38wSK30vR+jnYutxA+Q//h2D8bZ9Bxe3A0rgr5rpt1ZaP4iz04fHIznK1oMfnQfF5Sb5vDr6SHPJmPYRoDsNblI6lYWdKNn+N49BmzLXawq7lfPRTHg/1jUEQhGD6M/hdeL0cO3bsDwc+j09m8spDzPjh2B96/+/F5ZPJKHFw9fQNLLq7y0UV/EaOHMnq1aux2+3Ex8fzyCOPMHr0aErtHqa8/ymF6z7DX1mMLjSa8O43YWmguh4Ufzcd+/61we0osg9B0pP6wJcAZLwxtMbnKD4Poa36EdnnDvX6Xfga7twj+CsKiBs+CVNa8xrrlzm9PPnNPq1S829EK275G/g9pecniuwMfGfDGX1qiuw/a58gikLJihk4Dv6A7HHSp+9VzPt8FjabjWeemcjzzz935ocIIiCAUlPuyFy/E85fNpN492cUzn0Cb1HGGW/Vx9VF9jjxl+acdf9Txs8j883rznjd2qwXDTpdyc73H0YURWT5bCObk9WpgJqClX3YuozAV1GI4vfhzthDVP8HMCU1xpW+h8JvXkYfU4u4EZOo2r2C0lXvo4tIxG8vRRBF5ECvojpyteG3l6J43YS2uRpr897kz34s6GyB3oS1cTfcmXuJv+FVir6bhuvIT9S9/zMsldn88vlERgwfzpYtW9i6dStTp07lhRde4NChQyQmJp7leH6d7DInIz78kfRiVXW/2mjYk30QdHqsDTsT0XsMgiiR/nL/wGhXnUO2Nu5GVL97AZBdVZSseh/nMbXoKLRVvxrqOtW4MvaSP/txwi69jujuN5Eaab6oehf3799PvXr1MBqNHDx4kB49erBkyRJWHnfx+HU9iB0yAVOdNjiPbqPom5dJGvcRkjX8jO0ULZ4CgkD0VePPWCZ7nGRNu5HYYRMxpTZF8Xup3LEUQ3w9ir55megBD58R+EDrzfvbUTT+cbi9fuW5RfuUuk8sUWo9tlhJe2yxYus8XM2DnPLP1nm40vCppYrOFnvGsuPHjyuKoijxbS5XRHOYIugMihQarRji6ynm+h2V5Hs/V2KueUIx1+94xnuj+o1X0h5brIR1HKoYU5oqyePnKom3v6sASmTfe5W0xxYrMYOfVNeX9IqgNyoIooIgKlFXP6ikBfZZCo06636VlpYqubm5yr333nvGchAUwRyqIEpn7lf/BxUpNEqJ6Dn6rO8TQ6IUwRiimBtcqmAwKxjMij6unoLOoCDqFECxNOqqmOq0VgSDRQFRfW/ws4STf+uMJ7ctiIo+ppYS1+MGJTomVtHpdEpERITSrVs3Zd26dWf9DqdNm6a0adNGMRgMys0331xj2bx585R6DRoqosGsiNZwRRceryDpFCkkSrE27aWE9xiliKbQM47REF9PsV163VmPHQRFF52ihHUYcvI4AsdiTGqsxI18VREM5jPfKwjKwIEDleLi4uD+de/eXTEajYrValWsVqvSoEGDv+pS/0s417l3u93KkCFDlLS0NPVasFiUOnXqKIKkU5D0Suqji5SQlleece3FXve8kvbYYiWkxRWKLiLx5DJJr0ghkUpo24FK7HXPK8bUZuq1Vr3cYFak0CjF1vUGJbLf+BrfiS4yWb0vjRZFH1NLEYyW4PcWFhamWK1WJS0tLbjv27dvV7p27aqYzWZFp9MpBoNBadasmbJ+/fq//wT/B9BGfP9gyhwBq51tarpUJwqIooCiqO4DtaKsDGuTzLVtz91AW60sUz3XeGoPYcW2RVRs/QbZUYZgMGNKbUZEj1HobGqVouLzUrz8bRyHNiLojNg6DiGs/TWA6hpfuu7/1OZ0gwVTrZZEXHYrUkhE8LPLN3+B8+g24ke+ek6JJY9PJrZha3QNu+EtL8RXmoPOFovj4AZ8Zfk15vR0YTHIHgdR/e7DV15AyXfTa2zLlNYCb2kOSWPeC4oBAOR9/hj6iEScJ3aRNO4jZFclJSvfw3ViV1BWTvH7MNduTXi3kZSt//wMMYLQDkOwtbicgjlP8PWcWfS/qt+vfnfz589HFEWWLl3KggULqKiowOPxYLPZKC8vV1srFGoKDAgCIa2uwr5/DYrfAz7vaVsVCOt0LRWb56lzmzoD5jqtcRzcRLBFxecJytmdjrFOWzzZB1A8rhqjfUEQsFgsDBo0iNWrV1NQUIAsyxgMBvR69RwuXryYHj16/Oox/1OoPvfLly/H6XQyc+ZMADweDz179mTbtm243W4SEhJ47bXXGffGLOyHfsTS8FKq9q7GEFsLT2E6osGC7CgltNVVRPa5g8rti/GU5FC1fSGCJZyI7jdiaXAphQtewhBbC0N8PUrXfIJsLwUg5aH5+CuLyZv1MLJDlQyMGTKBsnWf4s0/SkSfOwlteUVAAD4Da62W5Mx6mEGDBrF161Z0Oh0nTpygqKiISy65hOeff57HH3+cN998k9atW7Nr1y7uuecejh07RkRExK+cEY3T0QLfv4Q/qtRRrSzj9v31Vabn4tfSOE9/u49ZP6ajwFkDTrX6TdY7t+KvKKixLOmOj9CFx+FK30P+nCdqLDOmNCX+hpeDf+fPewpjQgPCu914xj78moDA6cE/uvMwHn7owd9MSU2fPp2PP/6YnTt3IghCUIZOURRVyT8w76r2Dv5eD3DU4CaIJ1taTl1UHQDPB1FCUGQURSE5ORmdTkd6ejp6vZ7Q0FCWL19OmzbnZ078T2PChAlkZWUFA181fr+f+Ph4ruh7FclX38u7b76KK30PnpyD6ly3qCNm8JP47aWULJuGuW5bYoc9A0DW9JuQvR4kq42wDoOxNOhE0TevoItMIrRVP3I/vjv4OamPfIsgSuTOehhP9gFEi42Iy0ZRsvI9FEVWjaYHPxlcX5H9ZLw6kGeffZZJkyYRHx/PiRMneOKJJ8jMzOS6667j0UcfZf/+/cH3NGjQgEcffZTbbrvtrz2Z/zEujuT+fwCdJFIr2krD+FBqRZ9/xVe4xcDoLrUx6/++r7pi+yJyZ44n/bVBFC2eQqLNxH296uPxeBg6dCi1atVCEARmfr2E/wsEvSCihKA3Bf9Zm/UCIPnOjwlpcQW6yCRAIKrfeNw5B8n+4A4KvnoWXXg8lqY9ES02ANxZP5Px+mAy3hhK2cY5RA94BG9JDplvDifzrREULJhE5lvDyfvsEXSh0aQ9uhBBUOfSMt4YGvxXvuUroq8aT+oDXxJ5+VjKf17PI1e1oG69erRt2xaj0cgtt9wCwKJFi2jSpAk6nY7777+fnTt3EhkZSVJSEhMmTKBv377BAEjATbumcs5v9YCeslyRzwx6gWM/76AHIPtJ7KT2Uubn51NaWkpsbCwej4fi4mI6dOjA1KlTz397/wL8ioAXiW9+PMj777+HrywPT+4voDMQ2mEwplotKV76FnJA7MCQ0AAAx+Ef8VeVoI+IQ3Y7KFkxg6y3RuApOE5oyyspXjYV0RoB1U4tfh/e4ix8JVkIRguKz42nMAPJGgFeD86jW8n56C7sBzcCkPnWCEC1NBo+fHhwf3/88UciIyN5+OGHOXToEFdffTUZGer8u6Io7Nu37288e/8NtKrOi4Bx3esx68f0v6W3EEAXEoXt0utwHt+B6PcyZ0wn9JKIxw9dunRh/PjxDBs2jBcW74f4JjXea23cNSjldjqG2NpYGnelbO1MPIXpQbFuQ2IDVYFlw2yiBz1OwezHCG0/CPeJ3SSMeguA4uXvILuqSBr3ESgKOR+OU/0Hz0LK/fPUVpHTEM2hhLYdqCrCHNrA5beMpnmrHcheD1arFYfDEdQVre7vKykpwev10q1bN95+++0zi3pOTUlWB8HTpeROrnDW/Q3iKP/15XDWNGjBoR2AqpSzbds21ckjgNVq5aGHHuKKK66gYcN/f+FFda+k3e1D5/fjK83Fby9DsobjryrBlNIU94ndyI4yyla9B4Ah+RIU2U/JinfQx9ZG0BkRjRbCu43ElNIU+77v8VeV4ik4Rkjrq7DvXYPidZH5xlBAUdt+di4Fn5vKnxZQ/T1am/QkpOllFHz5LIboVFLum03GqwO5/5EniQw1sWbNGgCysrLYsWMHX375JUOHDsXr9XL99dczduxYjh49isPh+B+dzX8vWuD7j1NdJfpnNQJ/D5aGlwLgzTtCr1RdsGTeYDAwfvx4AJw+BcXt53zEtCq2L8K+dzWewhNYG3dH0Blw/vIjtk7XUvHT/GCpuDGlKfow1TnbekkPKn/6hux3b8PvrEDx+zAmNUbQG3HnHAZJj+xx4sk7SvorA7Bdeh0hzXoHP7N80xeUb/7i5E4oaj9k8r2fIXsceOzlvPfMPQCIgoKAgNliQQDi4+PJycnB4/EgCAKVlZX07t0bi8Vyfifwr5x9OMvcn7c4C4Bt27YBkJqaSkJCAlu2bKGiQhUkv/POO1m9evUZ7/1fM336dGbOnMnevXsZPnw47733HnfeeSerVq0iK0s9rk8//ZT58+eTWVDK029+iD3nKL7KYnyVxbh1RhQBkFUBhsKvXzg58g5UFRd/+zLWpr1UYXcEvAXHQWeibM1MFL8HKTJZlfZTFOz7vkdxVZ58vyie7HU9DfueFYQ06YEptRnO4zsIjVTT7FdeM4whl3fBZlNH8GazmWuuuYbLL7+chQsXMn78eHbt2kVCQgK9e/cmOTn5LzzD/020wPcf5kKZtZ6L0wNSdP/7AVD8XkoXvQ45e/l6UwVrx46uURhRUuWmoqKCiq+eR5B0hLToQ3iPWwBwHN5M+sv9qbZKEiQditdFaPshGBLq4zqxW3VlAEpWzjg5P6Yz4K0somjF2wDkfaKW+kthMcTfPBnniV2UrphBwbevqYo0fp8q3WYJwxBX08wz+51RIAhYGnUh4rJRSBYbZes/x5W5H8liw3Vit9omofhBlJD96j44HT7QGcnMK8QfGPGdOoX+b3kyj4yMZPt2tTUiOjqaoqKiYFD8p5GYmMiECROChSw+n4+UlBRWrlzJXXfdRUlJCTt37iQnL5+nXnubyozDaqAD9PENCG3Zh9LvP0Yfm6amO1EQLOEYIlPwFhxDdqvfbeX2RSD78VerIPlcyIJCyCU9cOcfOynk7j0lzSxA7OAnKfji6bPvvBCYfjgtxa0XwO124w9cV82bNw+myLt3787q1auJiori/fffp1WrVjz44IN/+jxebGhzfP9RThTb/9KgBydTmiHNLw++phcFUiIsPHjTQK4ZNCho6XMq9zzzGorXTVS/e0m4bRrOIz9RtWsZlsZdSRzzPqmPfEvcyFeRAqlFwWAmvMtwRHMYxqTGGBLqA2rq09ywC5bG3UCWEQQR97EdgIAYFkN4z9twZ/1M4fxJ6GNqoSgyrkMbwO/FlNaCkJZX4K8sRghYHomWMOJvnkLSnZ+QcMubKB4HRYteRwk8yYcE5htFUwiCwYRki0M0WgFB1UAFBFFEDI2lxnzc2TjFRumfQvWP665du7jyyiux2WzY7aqCj9vt/l/u2jkZPHgwgwYNIioqClBTsw8//DCTJk3ip59+Ys+ePSiKwodfLCZx5Ksk3/sZ5tqtAfDmHcZvLwNAH5lERO/b1WpgWcadcyigXqSgj6kFkp7oIU8RN/SZ4GcLOiO66FTkwAjPVLs1hsRGJ3fO78WVcygw8tMFdXKDKDKl6z/HeWIXkjVc9cAEZkx5CavVik6nw+VyMXLkSBYsWMCuXbv46aefePbZZ+nUqRPPP/88KSkpXHHFFX/Z+f2volV1/gfx+GTavrjygqY3JVFVnTkbpT/Mgqpi4gc8wO1d63Bfr/roJZEJEyYwZcoUlixZUmPEF167KRW5J4gd/CSmtOZU7l5B1e7lJNz0Ro3tlm/+ksqdSzGltSD6qvFBZwpvSRaenENEXnE3pWs+Inbo0+R/8QwoCkljP0AKicC+bw1lG+cgez0oDrW8XK2glEkc9xEVm7/Ak3cUT8ExTGnNMSY2OqPp219VqhoBD3uWom9eIvmeWYgGM5W7l1O2bhayx6GOHBUZwWg9ab77WwiSGhf/SDXnX4ggCMERqk6nw+fzER4eTllZGQaD4X8e/E5Pa57aptCiRQsyMzOx2+2MGDGC2bNnn/F+QW9SC3/Oku49L87RJnLO10+uQM35WQF0evB5EC3hhDS9jIqfFpzz3d27d+e6667jhRdeoLCwEEVRMJlM9OvXj2nTpl1wZ5CLAS3V+S/i1278ESNGsG3bNtLT0xk16WMqXGfeDIrfS87H96B4nCTf9WnwdccvWyhb9ym+8gIMsbWI7HsvhujU4HJvWR6FK9/DnbUPRdQT3rIPCX1GBw05jRXZVB7fTdbkobw7O54OM2fStWvXsx6Dzy9TmXu8hnGsIbb2WVViFL8Pf2UxIU171nhdECVEUwievF+QzGEYU5qC7Ec0WtGFRQMQ0rw3JaveP5mCkvQYk5vgTt9N7sf3IAhi8EndlbEvWLlX84PU/9h/XoOlYWdEw0l5Lyk0CktqD6p2LQev82TQ0xkQRAnF8yumo4qfYL7tH0RISEhQjs3n853RhgH/WwPc09Oap5KSkkKtWrXYtWsXt99+O59//jler5e+ffvyw/oNKCYb4T1vw5TWnMIFL+HJP4Ig6gjrOJSytTOJve45zLVaBrdXtv5zHIc3gyjhLThBWKehmOu2I3/WQ6AzYkprRtywiWRMvhZz/fY4Dm5ANIYQ2ecOrI26AJD+xhDwukm84wP04fHq+SsvIHvGaMK7jqRs7UyiBzyMuVYLInrehk4UeOSKhozpVjP1Xs24ceP+mhN7EaIFvn8g5wpwsbGx6PV6DAYDn376KbfccktwJNWlSxdiY2N5//0P+OTpO5CsEYS27oetw5DgdjOnjkRxOwCFjDeGYkxqTGSfOyha9Dqhba7GeXQb7rwj5H50N6HtBhDRYxQoMgVzJ6gbkH2YJAHHziXYC3ax5sddHNy2geum7aFOWgp2u538/HzuvPNO3nzzTfx+P4qi4PF48Pl86HQ6juaVIbudiFYDiuxTxbYNZhSPE/vhzZhSmyEarXhyD1Ox9RsEUwi+qlKyP7gDX2kugqRHZ4tDF5VC1Z6VIEpqGbisfpbj6FbcWQeo3LUcpbplQNJjTGqE4lPL0xW3vWZ9pN+Hff86jAkNqNj6Le7sg6pbhSCAIODYv5aInrfhzj1C8bK31OIGUP8beNIXdEZ1+z7PeQmN/2aF5t+M1WqlquqkJmtcXByyLAdfC4mIpveUdZwoqkIniQgIKCj4/DK1okPOy4n8zzJ4sKpPu23btmDhSkiIalXl8XhQFAWfz8fUqVPp1q0bgwcPPlmQ4ymgePFkQtterQZz2Y/s91Hx41egyBQveZPwbjcS0qwXFdsXUbXve6KHTiT/o3EgiFRuW4hj/1oEaziKowLZ66H0h1koXieOn39Qi58CXo5BAvN9eZ/ejz4qhfiRr1K173uMyZfgPLoNQW882d6CmlW5tm3KX3b+NE6iBb5/IOd6sh00aBA5OTk0aNCAL744WXFYXS356quvYgm1YbnyfqTQaPLnPYUuNBrrJd3xluWheF3Yut1I1c4lwRFfxfZFmFKaoAuNJvLyMRgS6pM55Xqch7cgmW2I5lDVBkgQqdNnJD/Pe63Gvo547lmaNm3Kli1b2LJlC61bt6Z///707n2yQvKKK67gmWeeYeLEifTs2ApQkO1lFMxTJ/2jhzyFYDBTvnEuRQteUlOHBguSNRxDYgPK1s1EFx6PrzgbRXbhLUoPblsQdEH1E8VVSeGXz9bYP9EcBoKE4vPgyTmkvigZQFDtnFxHtyHoTfgriyic/2KgMRw1LYpASKu+OH/ZgrF2K/I+urvGtk9Nb6lB9S9C0p+i8HKWtNlvBlEhkI47LbUqGcDvwWwJISTEisfjwev1IggC5eXl2Gw2WvW6hk2LZ+MKS+FIgRoEfae1ZBwpqOK1FQeZvPJQINX999keVQfmCRMmcPz4cebMmUO3bt247bbbKCwsVFcSdeijU/GV5VLx41eI5jA17elxYm3Wm8qfFiB7XBQvmULZ+s9RfG7iR7xM7iy1rSb8slsJazdQTb3vXoGilOEtzsZfkoVojVBVWRRQXHbKN87BlNYcX2ke1d+L7Hbgzv2FklUf4DiyhdCWfSlb9ymiJSx4HDpR4PaudTT7ob8JrbjlH8jpE/bVVAe4lJQURPHMr+6RRx7Bo6g/cvqoZCz1O+LOOgBA6cr3EI0hCNKZzzqKohDauh+mlKZB7z19TCrurJ9xZx9EZ4vDU3iCgwum0717D/bu3QuoChjVfV+KojBw4EDuuecePv1UDao5OTkkJSWxZs0aJk6cCMDGnT9jTm5M5JV3k/bYYtIeW4ziKEcfnUr4pdcRc83jhLTqi7l2K3xleXiLMgnrMBRznbZYLumOIBmIvfZZbF1vwJjchJTx84i/abIa4HQGEu+ciWAJRwqPx1S7NfroVGR3JbrIRESz6gIh6PSIRiuuo9tAb0Ky2jA36HCyKVyWQZExJjXCcXADIU17Uvztq1RXmiIIGOLrgWREn3gJQsAg9y/jVFmzM4Lc+YwclVOCnkDiHR8hhsaASd3v4cOv46GHHgqmM8PCwli6ZiP17v6II4ZaAIS0uPJXG+P9Mnj8Cu+uPcrlU9aSXfYrqd4LiM/nw+Vy4ff7OX78OKIosnLlSg4cOMDbb78dXC+8+42k3Ps58bdOJ6RFH0BEDPTjCeYwku74AH1MLfxVJaDI5H/1PIrbjqVJD5yHNiI7K5DMochVqrGyYi9BF5GAIb4Bki0WfVJDQMFbnEX2B+PIn/N48LMjrrgTQ0warow9+CsKkJ1VGJMaqSnxQNYjKVwVedD4e9BGfP8hfH4ZX6AARVEUXJn7CW11JY5Dm1AUGUFvpHzTPBS3g/y5TxFx2SjMtVpStnYmrvQ9GJMbU/7jV+D34S3JwVK/A568o7gy9qCLTEa2l7B160+0a9eORYsW0bBhQ7xeL4WFhYSFhfHuu+8yadIkbrjhBpo3b054eDigpqFcLhdGo5HkCDMhTXtSuvUbzHXbAgIVW78htE3/YP+fO+8I7pzDGBIb4ck9jOPwJtzpu4PHWfDFMwimUCIvG0X2+2NrSJnlvHMLAH4H+Mvzg6knx741wXUUt/3knJzHgc/jwFd6irmuIoMo4Q5YM5Vv/uLk6C5QkOLJOwKAN+fnP//F/RGqJc/OoDp1dq6AqJAzo6a81ccffQSAyWTC5/Mx9p776NPncnyVJcF1Cr9WXT7SHlv8q7slA+klTvq+9QPL7uv2l9sevfDCCzz7bM1R/tKlSzEajbRt2zawU75gJkC0RgS1NAHK138GQNZbAaUUIeDoEXD1cOxfByhkTb3htCIWBXemKh2mi07DGF8fwefHU5SO4nYgWiNQnBXowuMRBVVXVTKH4S3OomLr/OB1VJ31mLf7wEXjkvFPQAt8/yGySp3Bn73yDbNBkbE07ErerAeIHTYRv6Mc2eOkZOlbmNKakf/F0yTdPoOoq+6nZOUM/FWlWJv0QAqJwG8vJaz9NRQvnYox+RIietxCWEItvryjKx0vSWPgwIHceKOqe1lQoAaeAQMGACBJErGxscGG7epy6+PHj1OrVi2aXT6UbaW55AZShyEt+hDSsm+NY/GV5mLrfD2e7J9R3HaS7v4/BFEia/rNmNKa4c76GUujLoS06EPFT99Quu5T9cck+MN0dvUTS7PLcexdeebJC6ilCEYrCGLNCs1TUpqWxt3wFBzHV5z5u76b8yJgLMxZR1YCushEFJ8Hf0VhzaCnM4LPHfivhxpBr/rHWtQF2jYE9W9BwBBfn75jn2TBk9cHV/f4ZHq+sYaku9r/qUOpcPkY+u5Gfnik51/6gz5x4kQmTpxIeno6derUISYmhrlz5zJ37ly2b9/OQ0+9wMStPqrKSylZ8S6yx4m18U2qOLuriqh+92FKaUrxd9Px28uwNOlByZI3sTa5DPu+1Vib9yby8jvwleaQP+dJEEQEQSBxzAyKFr6G8+g2fMWZOL0uogc8RNm6/8NSvyO+snyq9qwgstdt+AMPELZOw3Cl7wZFJvm+OUhGC8kRZuaO6XRR+SL+E9AC33+IaiFq++HNOI/8RPwNr+CvLMRXXkDe54+qK/l9yG4HFdsWIuhMuDL3Y23UJViJVrVvDZXbFxEzeAKSxYYhthaurAMYExsi6ERCrWb0ej1NmjShadOmJCcnc/nll7N+/XqWLFnCnj17ePTRR6mqqiI7O/usPnXD2qSQXTYa12W3nvNYLA06EdKiD2VrPia0zdXoQiIBEA0mfKV5pD74NQDe0hwqfppPVN978JZk4y3MwBCTit/jxJ2+B29RJqCoxrs+D/6KfHV+R5ERDWZkRzmixabO08DJgCdIiKHRCIqCaLHhLVCNYhWfh7jrnyf77VsQLDbCOwyhbMNstXpUlDCmNlcdELwu1Lk1zhKA1Xm5+JvfJH/O4ygeJzGDJ1C06HWS75pJzsf3YmnQkYiet1G5YwlVu1cgWWyY67YjrP0gSgMVuDEDHlbPQVkeOe/fQco9sxCNZ6rD5H/xDOY6bQhrO+CMZW/e0aPG35NXHiKrzHXO7+X3kFvh5tlF+3lhULMLsj2fz4fP58Pv9+P3+3G5XOh0OnQ6HZ988gmXXnopx48fJzMzk/feew+DwcBtI4Zgd7lBkIi4bBSlK2fgOrE7+DBTPeLSR6cSN3wS2R/cAYqM/ed1ANj3r0Pxe4nu/6CqsHJ0G1JEPJlvDgdRIrTjUMIvvQ77gfUUfDERxW0PTC8ohLbujz4yGV9lMYrPS+namUghkRgTGqA3WxnbtQ73X95AG+n9D9DO+L+IU+czTq2WhECDsc+D7HXj+HktscMmIoVGoY9JI/nOmSSOmkbiqGlE9b0XyRpO4qhpEGjcducdQZH92H/+geJlb2Gq1QpLg44AWJtchifnEM4Tu/D6fHz9f+8THR1NaGgoiqIwatQolixZQs+ePYmJieGtt95ixIgRJCQksGnTprMex/XtUs5LlUsyhSCFRp/7fJQXkD9nArbO1wdbHkSjBX10Kq5j21Xz3uq5rUD1nDtjn2o8K/uDbu6yQ5XlQtQR1vl6DAkNEC2hyPZSFL8XffTJSjvnLz+S/fYtgIDiceF3VgQVOAyJjXCf2Ini8yIYQwEFU4NLz7Ln6sEXfPE06I0giJSs+gB9TBqOX7bgryjEW5KtiiQrqqSYK3M/xtSm6ndySQ+cR37ClbkP2eOifP1nWBp2QjRaKPvxK7Lfu530VwdSuOgNqvavwZ25L1DGP4msd24l/eX+uNL30DYtgrQo9RysWbOGrt168MQ1bcl6p+YDid9eRuG3r5I1/SYyplxL3qyHcVcXCgG+qhIKvnqOrOk3kf5yf3xl+cFln23JIKuonFtvvZWwsDDi4+OZPHlyje07HA7uvPNOoqOjsdlsdOvW7azf9wsvvIDZbObll1/ms88+w2w288ILLwDw4osvsmHDBrKzs7npppsAOHToEFVVVSS07o1oMFO65mMAQltdRepD80l7bDEhrfqCpFcfHj4YhzGuDvE3TyHx9ncBiO7/AO7Mn8l8YyjOE7swpjQh8ba3Mddpg63z9bhP7CZr+k2Ufv8RisdJxOV3EDPoURBEqvasIHvGbZQsfQtP3i94cg7TZNxUXnxrBtuf7M0jVzbSgt7/CG3E9w/kXE+2p89nXHHFFTz55JM8//zzNGzYkPT0k9WOuR+OC9r2SCER+MoL8FUWIQR60ar2f4/irMSY3JjCr1/Ak3cExefBXK890QMeCW5HH5VM5JV3Ubx4MsVeF4s6tGXMmDE899xzTJs2jdq1a7Nx40Y+/PBD5s+fz/XXX0/Hjh154403aNq06VmPr9ox4uONx39TODukWW8qty/GXKcNSDpkrwtz3Xb4KovIn/MEoW36E9qqpjee4vfhd1Si+NyIZhuys1ytvkBECo1CNFnxFmbgL8tHMIWqLQg+NygyvrJ8/M4KZKddLXn3BMrVT0fSgc+tlsMH8GTtr94BRJMVWfZgiErGBYiWcMz12uM6vgN/ZRGCKRRDXF1cJ3YB4K8qQnZX4jy2HWNSI1zHdpA15Vr1o0KiiLx8LMb4egAYYtKIuuIuiha9geyswJTWkqiAG7jOYgtmOh0H1uPO2o8UEkXuzPEYYmsTffWDFH3zMoqjjK/HdSbkoUDwl2XqtelCxGW3Ur7pZMWw31lJzgd3IBitxN/yJpLFRtWeleTPfUoVdq4sxhBXB1OdNtg6DSNv1sOUb56HK2OvKv4cEkX7xanUDRdJT0/nwIED9OjRg4kTJyKKIo0bNyY0NJTIyEgOHDhAZGQku3ap5+T0nsEJTz0dLJI6lU2bNmEwGCgpKSE0NDT4+pYtW3C73Ux4ZSqTF28nd+k7+B1lRPYZC6hzt64Tu0ge93ENH8lqjMlNcKXvImmM6uCQN/sxwjqoLRWGhPq4jm0ndtjTiBYb9v1rKVn+NiFNemA0mVlz6DAVTh/ZpS7WLPuGDd99w5JFC0lOOjMDovH3oym3/AOZOHHiGRP21e0AtWrVqhHg4OTcWe3atUnPyKwhi2Rt0oOoK+/GU5hO0cLX8JXlIkgGDHG1Ce8xCmNA/itv9uO4M/cj6E6WUxtTmhB37bP4HeUUfDERoTwHk0FHo0aNeP7557n8clWqTFEUnnnmGWbOnElpaSnJyck88cQTwTnAs+HxyfR5cx2ZJU78gUtQkf0g+ynbMBt/ZTFRfe9BURRKv/8I+89rESQDitdF9MCH8eQcpnzTPDVtKfsRRBHF78dcpw3u7APIzoqzfOq5S/+tzfvgPLIlmPKsXlcKjQrM0SgYky/BnX8cvCcrFvWxtYN9fadv31y/A/qYWlRsmkfi2PdxZeylau/3eLJ/BkEk9cGvyZp+I7LbgSmtOXHXPY8i+8meMZqoK+/GmNwE+77VSGGxWOq1O+e5PJWgfmr+MXS2OCIuG4Xz2DYch39Edlao58vr4tZ7HuLjaa+rx2614vV68Xi8IIqgKIS2uZqInrdSsvxtPIXpaitIwPxWFxajGqe26IM7cz++sjwQRERLGHJlseo712s01ku64zqxm4J5T5GWVovDhw/RvHlzTpw4gd/vx2g0Bj5XndOMjo7G5XIRHp9CnVGvkuMQkUQBURCQFQW/XyEt2npGz+DYsWNxOBzMmjWrxrmYM2cOTzzxBAUFBbhFI6a0mmbJ6S/3B0kXrGQGsHW6Ftul6gOHr7KI4qVTcWf9jGSxEdZxKKGt1Lloxeeh5PuPcB7ahOx1oY9IJLz7TUQ2bM9tXWrX8GucOXMmH374IRs2bDiv71Djr0cLfP8xZqw7ypRVh3D7LuzXqhMFtj3Z+4L2GWWXObl6+gbKHV78ivK7jWiT7/iImKQUcr59g8KftyC7KoMN7n63A1NKE2IGPISvLJ/s6kpGQVT90gLFIcHGc0mnzsUpMoLBjCDpEc1hyG6HGkT9XoxpzZGsEUT1GUfmWyNUz0BBUDUdBREQCO9xCxWb5yG7qkgc+wFVe1dRsWkecTe9jrcwncqdy/AVZYCkV9VjvC4MsbXRRacQ1XssZes/w5P7C/E3qv2SiiKT9dYNJN7+LpI1/DfPqePQJhAEyjbORXE7SLrjAxyHNlG5fw2ezJ8xJtTDfWJnMFMA4PV6OXrsOJe/uwN33hGKlryJPiIRfXQqnrxfECQdnryjGGJrE3/jaxQteRP73lUIehNRV41HMJgp/OIZdBEJalFS15FUbltI8j2zKF76FvZ93xMRm8CD997F8uXL2b9/P4mJiezevZsHH3yQN998E0mS0JksyOYIwlr0wdqqX42HsFPRiQKSKDC6S+3z7hl8bflB3vvhKH+lH7MkCKRGmllxf3cthfkPR0t1/se4vl0KU1Yd5kIrg9xyaa0L3lybFG5m0d1duOHDH8mvcEHXG87Qy6wm+c6Pa/xt1kvEhxn5bHRHvumUypurDlCw9vOAU7oea61LkZ0VyC672iis06OPrkXMoEeQvR7yP70fRAlTWks8uYfRRSXjztgDCCheN4rPiyJI4HEQM+QpCr94Gm9xFp68o2RNvwkUGVunYVTtXYVki8VbcAJLo86Etb2assBcUt6sh4PSZfn/93BQCQZFIe76SRjj65D93u3qdgtP4Dy0GXOdNsSc4sqNoqD43Pgri88r8FW3hJT/tCCg0qO+5s4/isFewNWdL2HOiZ013pOWlkbHbpehxAZSxgoggOPAD4RfNoqKTfMCIgYCstuB47A6d6sLj8PaqAv2Az+ApMdXrjaMWxpcSvn6z3Ac3YYnMBp2+gU+++wzJk+ezE033cShQ4cwmUx4vWqPojmxPrEjXsaeeYCCL5/FWLtNjbnVU/HJCj5Z4b0fjrF4by6zR3f8zarI+3o1YOHuHDJL/5r+QkkQsFn0fDa6oxb0/gVoge8/RvX82UcbjuG6QKM+m1nPo1c2+u0V/wBJ4WZWjO/OW6sP8+GG4wgCuH5l3s+sF5EVuK1L7aAYdub3n3Hk5RdqrFfdZ2fff7J/z5v3Czkzbkcwh4EgootOxZWxF8Vdhd9VGai+VALPDH4Uewno9BQtmKTaD1UF+toEEWNaCwwJ9fFtnIM+Og1QcBxcT8bB9eo6BjOyo+yUPVICI0r1r/y5T6otCKeQeMe7eEtz8FcWI5pDUbxuyn6YhWgKOWcQOB9EAZolhlFeYUEXED6wWq18++23DBw4EFmWWbzga7x8g+Lzgt+Dx12FsXZrqrYvVkv7f16HpzCdzCnXAQqCwYwxqbH6ndRpixBIg8rOChwHN6CLqU35hs+RLOF4AXdVOc+/NxWz2YwsyzRs2JCtW7fSvWcvftq8CSGhMSem34JosKCzxeI8vuM3j9knK6QXO7hq2nqW3NP1V4OfQScyd0wner2xFtcFHvad+hCmtSX8O9AC33+Q+3o1YMneXDKKHfzZW1wUYOFdnf/Sp1iDTuThKxpxe9c6zNuWyVfbszhRbEcvicH5Ha9fplaUlWFtkrm2bU1NyJdffJ6objecNdifLX0a1vqqYPpUcQf0KQO9c9UFQVnv3qYWoQhq5asg6bE2v5yoK+/GW5RJ0ZIpFM5/EUHSIwAx1zwRHG2dTvrL/Ukc+z76iEQEwL5+JsXbl6EIAsaUJkRePhZ9hFr04M77hZKV76mfrTNgTGxA7LXPnpH2M+rEYPvKbyErcDCvAleRncYetcrVaDTSs2dPtm7dSsuWLXll7kom3NgPfWwdfFUl4Peij0hEsdrQ2eKC5f/mxl1QvG48OYcQA8ovgsGMoDcFA33l9oVYm/bClbFHTRPrDCD7adv9Sk7s24rX66VJkyaIOgMH8gKi2KU5JN3xEb7SHHJn3h80xz0fyhxern9/M98/2ONXr9OkcDPfje9G78nrgkIPfwYB0EtCjYcwjX8HWuD7D2LQiXw+uiNXT99Amd3zh4OfKMCXd1waLHn/qwm3GBjbrS5ju9X93S4A5wr24b8jfVpj2biPzrlMH51Cws2Tz7n8dE5VO+lUN4rXHv2/YHr39KrWU3sqT0cSTiawzxX0qguE1EClqDJjooRXBo/Pz6qfVYUar9eLTqejTZs25JS7+HKfWgzkLTiGYApFcTup3PIVgiVM7WXzOACB6Kvux77ve1zHdwTTmJU7liA7ypDCYvBXFBLWcRhlaz9BssUTd8Mkct9XXQUKiorJyMjAbrdzyy23MHnlIRwFaoBTFAVB0iF7nIH9/n3ap1mlTqasPMwjv5GZqBVlZdX93ek79YffrCj+NSQB7uheV9PX/JeiFbf8h8kuc3LDhz+SV+783WlPm1nHwru6/G1B70JQXSzzZ4L9X83WJ3oRE2rC45PPO71r0ovIsoLZoKPS5f1Vc+GzjnA7XQuKrHq+neYB+MO2vdz19SF++fxZXBl7z9ieaLGheFw1A1FA3FowWkm5Zxa5sx7Cm3/s7DsknF1Bx2g0Yu05hpLl74DsRxedir88HykkCl95AZIljOS7/+/M49swh/INnxN7/QtBGyG/s5KS5e/gSt9FuMXAlVdcwbvvvktYmCoCfdlll7Fv3z7cbje1a9fmueeeo233Pgz/4Edyypy/a/Rn0onE20x8rqU1/9Voge8/zqk/sKD8arWngDrKG9W5No/+S5tr/0yw/6sZ0DyBBy5vWGP0WubwnFd6N7/CxeyfMn5zlHJ6S4gUFkPF5i9qrqQ3EdamH1V71iC7qxCNVqSwaCRzGIrfS2SfcRQueAljyiVEdBlJxbaFVO1ZiS4shphrnsCVuY/iJVPUgCYEhLv9XgRTCIaYWkGN01PbOwS9idSkeIYOGaJaVsnyyYAo6jDE1yV+xMsULXodxy8/IoVGI1lUbUudLY7IPuOQQiIpnP8CsrMSa9Ne2H9ei+ysQLSEo7PFEjvkKcZ1r8PqaY/SvHlzxo0bR7NmzejVqxfffvstOp2OLVu20KNHD6KioigtLaV2i064Lh2DzhJ6XnPLpxota/x70QLfRcLpP7A6UTUZlWUFn6z+wF7bNuWM+bN/I7832P9dN4Bz5xLK96zEXXCChNa9ePq1t7m+XQoWHTWMhD/9egndunUPBsgXX3mNZ1+ejM9RjmgwY2nUlYietyKI6vxj2Q+zcPzyI96iTLXXMBh4VERTaNB093Sk0Gj8jnLVSb46SJnDCG3Wm9C2Ayj69hU8RRlBH0f0JgxRKdg6DUMwWihaPAXZUY4g6VAUGfw+RIuN8O43obgdGOLrUfDVs4jAS89PpF27dowcORJXfAuKty8levCTiKYQCuY9o6rsCCLm+h1xHtpE9MCHsTTohP3nHyhdOQN9fD1s7QdRvGwaflcVcdc+hyG+LtnvjUEKiSRx1FtEhxgYFX6YhQsXoigKTqeTtLQ0PvtMFaOeO3cuw4cPZ8aMGdxwww2MGTMGl9fHFfe89LvnljX+vWiB7yLkf+mi/XdyvsG+QXwot87c+qspxAtBdY+d8/gOFK+HuAH3IwkCozomoz+0mo4d2jFs2DDmzJkTNBgGeH7293y6swifzorfWUnhgpew1GtHWPtrAKjauxrJYqNy5zKcx7bXsJ5SfG6MyU2I6HEzebMexlSnDd6iTPwVBcQNn4RoDSd/9uNEX6W2d5RvnIOn4DiiKZSkMTPwlRegi0wEBCp+/IqyH2apTezh8UT2GYcppQkAJev+D9fRbXiLM1UbJUmHIbYOET1uoWjxG9SpU4fRI4YyevRoGjZsSLkQgrfwBAmjpmKIq0Pxihk4DvxA7HXPYd/3PVW7lpP60NfB48icdqMqtXfrNDKmXIshrh7xIyYBULnrO0q+e5ukcR8hGC3U2/UeKSnJuFwuLrnkEo4cOUJZWRmrVq3C7XYTHx9PdnY2oihy9OhRGjduTHFxMaGhoRfNvXGxoxW3XIToJJFa0f+eubs/yu8plvn+wR4MmL6eCpf/V7b45zjVdsnvLcIvgx+FDzdlkhzRguFN2yAF9FNPZV2+hE9X/X0pCIKA9xQbJdnjoHL7Ijz5R9HH1CLx1mkA+J0VZE0dibc4i7xZqqC1Mb4+tk7XUvTNy9gPbsC+73sU2UfxsqkYk5sS0qIPit9H+aYvEHQG9FHJuDL2kj/7cRB1oMgkjnmfqn2ryJ/zBILBguKqxFSvPb6yPGIGPYohvgFFC1/FU3CM/DlPgCBSNzmODz/8kB07dmANtVF0/CgAeQGzV8XnQR9XB2N8Pez7vufUcXi1iIC5TsBmyO9DFx4fXG6u2w4Egex3VZGCpM5d2Lx5M2vWrOHDDz8EYPHixXi9Xrp27Up0dHTQz7Ju3boYDAYOHz5MmzZtLpp742JHC3waFwW/9YNWK8rKtif78Mp3B/hk04m/fPRXjf3ndZRtnMPxikLqvBRJiFjTkmjixGdZ/exEwjoOo3LHYrUhXmdAKskhY/8wpJAoTLVaYrv0OkrXfAKo7ROC3ojiV6s7DfH18OQfRbaXYmnYmYqtC/A7yqja9z0IIrYOQ7Af2ojj8CacR38CQRXgzvnobmydh1O0SJU2Q/YR0qIPutBIrA0upXLrQiyNOlO1Ywm+khx0EYlY6ndEkf34yvJQvG4MqS3w5B5k1YoVDLi6PwsWLMBgMiPZ4vCX55M45j2Kl07FdWInMUOeAUAXkYDi92H/eR2Whp0p/OZlVVQ88FCgKAqiwRg8R0XfvoIg6Ym55nGMKU3IX/QUoWYzycnJNc6lXq/HarVy/PhxFi5cGLTRstlsVFaePRWs8d9EC3waGgEMOpGn+jfhnp71mbctky+3ZXK8yI4kCQiB2UCfXyHcYkAQoNzpDc4H2d2+3z1X6Dy+k9K1M4kZ+CiGxAb4q0oo+PR+fH61yOLo0aPM/eILpJBITLVaENHjZrwl2RQvnUp495swJjfGk/sLBfOeRpAkfBWFQbf20PbXULn1WxSPH9exbcHPzJ15H4LeCAjgVe2HyjfNU/VdFT+K14cYGo3iceEtzaXom5dUObeAA4U7+yCZb40ARUZ226nauQwAX4nalpD+cn+1by/QF+nJUA2EfcD8+fMZP348eVV+5n44DcFgxn54M66MPSCI5H4wNiAWrp7JokVvICx/R91xUcK+fy2OX34Ev5eqXcuRQqKwdRyKJ/8YCiBaw/GV5uJzOinMObtfYkhICB6Ph6NHjwZfq6ioqCFurfHfRwt8Ghqncb4p0upl76w9whfbz7/hupryDZ9j6zwcY5Lae6YLjUYWRJ6Z+gmPPfoIO3bsoEOXbpBTBIDi91K27lM8xZnkf/4occMnYUprjjGlCbKzCkFnQJF9oChUbFsIHiemeu1xHfkJKSQSf0B5RgkEJUFvRqkW3PZ7Ec1hmOt1wB4w6hWtNuTyAkx12uD6ZQsA3qIMAIypLXBn7EYwmAKybKeUCfk8J9sYRCmogQqwd+9edu7aDQhItli14lSRsXUZSeX2RcQOfxF31gEqtnyNZA4jcfTb+Oyl5H4ynojLRmFOa0H2+2PQx9YmtPVVAOhj0vDkHEYKjca+dzWVudmIokB8fDwVFRX4fD727dvH1q1bURSFY8eO0b17dwCOHTuG2+2mQYMGv/v70/j3ogU+DQ1g+vTpzJw5k7179zJ8+HBmzpwJgOz38dAdNwcrLtesWRMsPNFJIu9OfpnXXnkJ4RRHjITbpqM/ZQ4K1AKU4iVTiOx7D6Cm69y5v+CrKqVk2TQQBEJb9UVRFA6UKgxs0YodO3awddNG/H4fBV88o/bgCaJqLSUIFC19C7+9LCB9JoCoLlPcDgS/HwVwHdkKEAx6gs5A7PXPUzB3wsmgB+jj6mBKvgRHIMAByOWqKHh10ENvCowSBdyBkVy1FqkuJg1f4YmTB1xdM2exgcsBPnV0uWZNQEJO0uEvyyek+eV4Co4jSBKm1KaYEhviK8pENFpVT0K3g4rNX6K3xRLSRD3vosGMJ+8InvyjGOLqIVnDEUMiyP1gHKDQtUsXJk16kTp16vD444/z7bffcuTIEWJiYkhOTsZgMGC327Hb7Tz99NMMHjxYG/FdZGhVnRoaqGk4URRZvnw5TqczGPj2799Py5Ytueyyy9i7dy9z5swhJyeHxx9/nKKiIqyRcditicRc8zgAvrJ8ile8gyf7IOj0WBt2JqzLCPI/exQEAVPtljh+Xq9KeSkyoimUsI5DKd+6EL0tGk/+sUDBSAXRUVFc0rwV6zdsAEEMuMMLgT1WQNCBoKCPSsaQ0hT7ru9AUTCmNsdXnqf6CbodJ13lAdEagS4sBk/uLwTVqKtHaoIEil8Nnh4ngs6IqW47nIdUOx3RYkN2VhAz5GnKNs3FV3AcxeeDs8kF6I3gPVN9RRCqK2tPeY+kQxAkBL2R+BtfQ2eLI+fju/GV5iLojZhrtyHy8rE1RLrt+9dSuu7TGn6EkjmUKKuB7RMuD643ceJEjhw5EmxnAJg9ezaPPfYYxcXF9O7dm08++YTIyMjzu1A0/hNogU9D4xQmTJhAVlZWMPD16dMn2Au2du1ann/+ee69916WLFlC69atianbDK/LTvKdamFJ/hfPIFnCibryLmSXnfx5ExAMZkKaXEbZ5q+QKwtrfqAgENHnTkpXvBtMB1bTrVs3fvxxCx5vIHUoywh6I6GtrqLq57VIIZH4ijMx122Po1ocuxpJhy4iGSQdvvwj5zxeMTRG7fELzPcBWJr2xrFvFWftchREQlpeiePwZmR7GSFtrqZq+8KT2wuLRa4sUoOUohDS6krKN5xUkhEEkeuvv46FS75DTrgE17FtJN89C0Gnp/T7j6ncvggEESkshrjhL54xcv4t7u9Vn/t6a2lLjV9Ha1DR0DgHc+fOJTw8nF69egVfW7VqFVdffTXdunXDZLagS26Kv6KQjCnXkfPhnXjyj2Jt3AVBZ0AKiUAfUxtfSQ4hrfqiC40CIOXBr0h7bLGqThIWi7+iACk0mtB2gxB0RvSxtRHNYWzbtg2PJ1DsIcvB+TLF50Z2O/AVZ6H4fGrQE0RMddqCpEe0RqCPTAIUfOUFgICgNwEgGC01jlGuLAzOMVajBj0ARW1hCCDozQg6A1W7liHbSwGlRtCTwmJUBwtFRgqLwdb9Jip3rUDQGUHSo09sxPjHn6Zu3bqYjTp8ZblYGlyKaLRQtnEunrxfSLpzJqkPLyC883Dy5zyJfEpA/i0kAW6+tNZ5r69x8aIFPg2Ns1BRUcHTTz/N5Mk1xahPnDhBixYt1P8vthPauh+Czkjcdc8ReeU9KF4P5Zu/RPa68JYX4Dy8ibD21yAIIoKkw5DQAPueVSiyH1Otlvgri5BCo1EUGXf2QQSjhYgeo0gYNZWmLVrVmHuyNrscRZSo3LEUvC6k0CjCOlxDaIchoMhq9abfi2wvxVteqLq2uysBBSUQQKo9+k7Fnb7n5B+SHkNKM0Cd90P2qS+HxyGaQ9TmeMnAyZTrqQikPrwARAlPziFKlr6FXFWM4vdgTGmCryidT2ZMY9KkSVSUl+PNPxbsR/TmH8PSqCu6sGgEUSKkeW9kVxXeorNXZ575yTCmW11NWUXjvNCKWzQ0zsJTTz3FbbfddkYvmNPpxGazAZBR4sQQnYposqJ43ZjSmhPS/HKq9q4ic7IqDK0LTyCs49Dg+w0JDSjbOJeSVe+r83EpTShb8wmKz4OhQUfMddpQ8NWzoCgUGgz06N6NFStWoItKJazdAMK7DCf77ZsB8JVkU7FlPoLOQFiHIVTtXYXsdqgtDX4vFVu+RrRGgOxHtNgQdUY1KOUdUeXBAlWXYR2GnNTz9HvxZKpi1UHhaZ2BpLEfonic5M99El1YDI7DPxLZ506sTXuS+cYQQEB2VpA55Vq1CEfSIxot6CIS8eQcJLL3WCRTCJP7p3Ltld3p27cvqWm12BLenXwPGBLq4zi0Eesl3RAtNuz714LsQx+RcF7fV3K4iQcu11KcGueHFvg0NE6jpKSErVu3snPnzjOWmc1mKioqAn+p81+yx4lgtKAosurIHhJJ4qipFMx/AdeJXWRMHopoMCM7KnFn7sNcrz0xQybgK8mh4KtnCes0jKpdyzHE1qbix69IuHUaOlssdfb/H+vWLAcEQuu3xRCdiuLzEj3gEYoWv6Ea4RZnkXzfHEpXf4jsKD+5o4F+vmrz3OAySQ+mEKg2yZX9NUSsQ9oNQnZW4ti3+pRt+ch4fXAg5eoLFMZAyeoPKVn5XqDS1IIhoR7udDVoinojIc164zy2HdGkypPp0poz8503adWqFeHh4YSFhjD//ivpN3U9Sseh+B3l5H58L7LXhT4ikZhrngh6/v0aNrOeuWMv1YSjNc4bLfBpaAA+nw+fz4ff7ycnJ4cTJ06QmpoKQFVVFX6/H7/fT5cuXdixYweKopAaaaFy5zIUnwddeAKu4ztR3HZCu9+MoNMTM+BhHIc3U/7jV8SPeJm82Y+ieFxE938QQRDRRSZirt1arQBFwZN7BHOdtjgOrKd84xxOTfJV7FuLtd1gcmaOR65U+/rU90HFlvlq83qgGEXQm1AUJeCYYCXhpjdwHtlK+ca5yLIPwefBkNoMT94RInqMourntUG7oqheowFI37da3Z4gENZhCJXbFwXTpYLRSniPWwhp0oPK3SsoW/0BirsKd84hJFsM/vICInqPwdrkMmSPi6qdSyhaMhnJaKXTVX1YsGABaWlpwWNbem9XRnywGd0V4/D3GXfe35lOFEgON/H57Z00iyCN34VW1amhgVr2/uyzz9Z47cEHH+Shhx6iYcOGp4zyVObNm8cVV/YlKqUe/qoSBEmHFBqN7CwnrP1gwjoMRvE4KVryJoLeSMyAh8n99H48BSeIHTYRU1pz7PvXUrz4jRrbFXQGEka/g84Wx3s99Fx1VT9uu+029uVW8uPyBQh6E5bGXQGRqh2LaxReGhLqEzPgEXThcfjKC8h+91aQ9AiipDa2y36i+j+ApW478j5/DG9JdjDgGZMvIfqq+9GFxwGqlFrx8ncwxKQRP/LV4P55izIpmP8ivtLsgC2RiD4yicgr7sKU2hRFUShf/zlV+1Yju6qQQqOwdbqWkKY9qRNt5fsHe5z1/Fc7anyw/hh+RcH/K+5LOhFEQWBMt7qaRZDGH0ILfBoav8HpvWCn9oHpU1sQesW9SGa1CMWTf4ySVe/jLTgOooQprXmgBy0CAHtgNOerKEQ0WrBe0oPwHjcjCGKNoKG4qmhQJ40nnniCG2+8EY9PJrldb4oPbkPxe9Uq0Nb9CGs74H92Xn4Pkijw6BUNGdOt7q+ud6qjxvGiKnSSiICAgoLPL1M7OkSzCNL402iBT0PjT/DmqkO8ufrcfXJ/lPt71+e+XjWLNaod5ssdXvz/stvWqBPZ8niv3xWsNIsgjb8K7SrS0PgT3HJpbSTxbKX9fxxJFLi5U60zXk8KN7Po7i6kRJox6/89t65JJ3J71zq/e4RW7ajRMD6UWtFWLehpXDC0K0lD408QbjFwe5faZ+1q+yMIwNhfCRJJ4WZWjO/OrZ1rY9SJmP7hAVAUIMFm4r5e9f/Xu6KhEURLdWpo/Ek8Ppmek9eSVer87ZV/g5QIM98/2OO8CjZOd5ivtkjyyTIu769Uh/xNiIL6YLDo7i5a1aXGPwot8GloXACyy5xcNW09ZQ7vH95GuEXPknu6/qEgcfp8mCDCTR//RHapE9/f5ap7Cma9RHyYkc9Gd9SCnsY/Di3waWhcILLLnIz48MffHWx0okByhJnPL3CQqG4R+HDDcfyy8qv7JAogKyCJ/GorwW9h1ovICtzetY7WaqDxj0ULfBoaF5DfE2x0ooAkCn95kDg9JSqJAqIgICsKflmhVpSVYW2SuaJJPN/tzzsjdSorCl6/TEqEhbQoC+nFDjJLHWcsr96O1mqg8U9HC3waGn8B5xts/u4gcb4tAr+1ntZqoPFvRgt8Ghp/MVqQ0ND4Z6EFPg0NDQ2NiwrtsVNDQ0ND46JCC3waGhoaGhcVWuDT0NDQ0Lio0AKfhoaGhsZFhRb4NDQ0NDQuKrTAp6GhoaFxUaEFPg0NDQ2Niwot8GloaGhoXFRogU9DQ0ND46JCC3waGhoaGhcVWuDT0NDQ0Lio0AKfhoaGhsZFhRb4NDQ0NDQuKrTAp6GhoaFxUaEFPg0NDQ2Niwot8GloaGhoXFRogU9DQ0ND46JCC3waGhoaGhcVWuDT0NDQ0Lio0AKfhoaGhsZFhRb4NDQ0NDQuKrTAp6GhoaFxUaEFPg0NDQ2Niwot8GloaGhoXFRogU9DQ0ND46JCC3waGhoaGhcVWuDT0NDQ0Lio0AKfhoaGhsZFxf8Dg8gcJ9VPHfMAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], + "source": [ + "import requests\n", + "from zipfile import ZipFile\n", + "from io import BytesIO\n", + "import shutil\n", + "import tarfile\n", + "\n", + "url = 'https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz'\n", + "\n", + "tmp_file = DATA_DIR / os.path.basename(url)\n", + "\n", + "with open(tmp_file, \"wb\") as fid:\n", + " r = requests.get(url, allow_redirects=True)\n", + " fid.write(r.content)\n", + "\n", + "with tarfile.open(tmp_file, \"r:gz\") as tar:\n", + " tar.extractall(DATA_DIR)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], "source": [ "import networkx as nx\n", "import pandas as pd\n", "\n", - "edgelist = pd.read_csv(\"cora.cites\", sep='\\t', header=None, names=[\"target\", \"source\"])\n", - "G = nx.from_pandas_edgelist(edgelist)\n", - "draw_graph(G)" + "edgelist = pd.read_csv(os.path.join(DATA_DIR, \"cora\", \"cora.cites\"), sep='\\t', header=None, names=[\"target\", \"source\"])\n", + "G = nx.from_pandas_edgelist(edgelist)" ] }, { "cell_type": "code", - "execution_count": 134, + "execution_count": 8, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-08-16 09:27:09.398363: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n", + "2024-08-16 09:27:09.398381: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ "** Sampled 527 positive and 527 negative edges. **\n" ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-08-16 09:27:15.201749: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory\n", + "2024-08-16 09:27:15.201776: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)\n", + "2024-08-16 09:27:15.201791: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (pelican): /proc/driver/nvidia/version does not exist\n", + "2024-08-16 09:27:15.202117: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA\n", + "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" + ] } ], "source": [ @@ -251,7 +294,7 @@ }, { "cell_type": "code", - "execution_count": 135, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -271,15 +314,15 @@ }, { "cell_type": "code", - "execution_count": 136, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Computing transition probabilities: 100%|██████████| 2708/2708 [00:00<00:00, 4284.35it/s]\n", - "Generating walks (CPU: 1): 100%|██████████| 10/10 [01:24<00:00, 8.43s/it]\n" + "Computing transition probabilities: 100%|█████████████████████████| 2708/2708 [00:00<00:00, 12569.61it/s]\n", + "Generating walks (CPU: 1): 100%|█████████████████████████████████████████| 10/10 [01:10<00:00, 7.04s/it]\n" ] } ], @@ -295,7 +338,7 @@ }, { "cell_type": "code", - "execution_count": 137, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -304,7 +347,7 @@ }, { "cell_type": "code", - "execution_count": 138, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -315,16 +358,16 @@ }, { "cell_type": "code", - "execution_count": 139, + "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Precision: 0.8557114228456913\n", - "Recall: 0.8102466793168881\n", - "F1-Score: 0.8323586744639375\n" + "Precision: 0.8640167364016736\n", + "Recall: 0.7836812144212524\n", + "F1-Score: 0.8218905472636816\n" ] } ], @@ -337,38 +380,13 @@ "print('Recall:', metrics.recall_score(labels_test, y_pred))\n", "print('F1-Score:', metrics.f1_score(labels_test, y_pred))" ] - }, - { - "cell_type": "code", - "execution_count": 110, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "def draw_graph(G, node_names={}, node_size=500):\n", - " pos_nodes = nx.spring_layout(G)\n", - " nx.draw(G, pos_nodes, with_labels=True, node_size=node_size, edge_color='gray', arrowsize=30)\n", - " \n", - " pos_attrs = {}\n", - " for node, coords in pos_nodes.items():\n", - " pos_attrs[node] = (coords[0], coords[1] + 0.08)\n", - " \n", - " #nx.draw_networkx_labels(G, pos_attrs, font_family='serif', font_size=20)\n", - " \n", - " plt.axis('off')\n", - " axis = plt.gca()\n", - " axis.set_xlim([1.2*x for x in axis.get_xlim()])\n", - " axis.set_ylim([1.2*y for y in axis.get_ylim()])\n", - " plt.show()" - ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "graph-machine-learning", "language": "python", - "name": "python3" + "name": "graph-machine-learning" }, "language_info": { "codemirror_mode": { @@ -380,7 +398,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.8.14" } }, "nbformat": 4, diff --git a/Chapter05/02_community_detection_algorithms.ipynb b/Chapter05/02_community_detection_algorithms.ipynb index e773004..8d67ec1 100644 --- a/Chapter05/02_community_detection_algorithms.ipynb +++ b/Chapter05/02_community_detection_algorithms.ipynb @@ -60,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -80,7 +80,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -89,9 +89,21 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'embeddings' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[5], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m tsne \u001b[38;5;241m=\u001b[39m TSNE(n_components\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m) \n\u001b[0;32m----> 3\u001b[0m emb2d \u001b[38;5;241m=\u001b[39m tsne\u001b[38;5;241m.\u001b[39mfit_transform(\u001b[43membeddings\u001b[49m)\n", + "\u001b[0;31mNameError\u001b[0m: name 'embeddings' is not defined" + ] + } + ], "source": [ "tsne = TSNE(n_components=2) \n", "\n", @@ -524,9 +536,9 @@ ], "metadata": { "kernelspec": { - "display_name": "ml-book-5", + "display_name": "graph-machine-learning", "language": "python", - "name": "ml-book-5" + "name": "graph-machine-learning" }, "language_info": { "codemirror_mode": { @@ -538,7 +550,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.6" + "version": "3.8.14" } }, "nbformat": 4, diff --git a/Chapter05/poetry.lock b/Chapter05/poetry.lock new file mode 100644 index 0000000..3eda7a1 --- /dev/null +++ b/Chapter05/poetry.lock @@ -0,0 +1,2413 @@ +# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. + +[[package]] +name = "absl-py" +version = "2.1.0" +description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py." +optional = false +python-versions = ">=3.7" +files = [ + {file = "absl-py-2.1.0.tar.gz", hash = "sha256:7820790efbb316739cde8b4e19357243fc3608a152024288513dd968d7d959ff"}, + {file = "absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308"}, +] + +[[package]] +name = "appnope" +version = "0.1.4" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = ">=3.6" +files = [ + {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, + {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, +] + +[[package]] +name = "asttokens" +version = "2.4.1" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = "*" +files = [ + {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, + {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, +] + +[package.dependencies] +six = ">=1.12.0" + +[package.extras] +astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] +test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] + +[[package]] +name = "astunparse" +version = "1.6.3" +description = "An AST unparser for Python" +optional = false +python-versions = "*" +files = [ + {file = "astunparse-1.6.3-py2.py3-none-any.whl", hash = "sha256:c2652417f2c8b5bb325c885ae329bdf3f86424075c4fd1a128674bc6fba4b8e8"}, + {file = "astunparse-1.6.3.tar.gz", hash = "sha256:5ad93a8456f0d084c3456d059fd9a92cce667963232cbf763eac3bc5b7940872"}, +] + +[package.dependencies] +six = ">=1.6.1,<2.0" +wheel = ">=0.23.0,<1.0" + +[[package]] +name = "backcall" +version = "0.2.0" +description = "Specifications for callback functions passed in to an API" +optional = false +python-versions = "*" +files = [ + {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, + {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, +] + +[[package]] +name = "cachetools" +version = "5.4.0" +description = "Extensible memoizing collections and decorators" +optional = false +python-versions = ">=3.7" +files = [ + {file = "cachetools-5.4.0-py3-none-any.whl", hash = "sha256:3ae3b49a3d5e28a77a0be2b37dbcb89005058959cb2323858c2657c4a8cab474"}, + {file = "cachetools-5.4.0.tar.gz", hash = "sha256:b8adc2e7c07f105ced7bc56dbb6dfbe7c4a00acce20e2227b3f355be89bc6827"}, +] + +[[package]] +name = "certifi" +version = "2024.7.4" +description = "Python package for providing Mozilla's CA Bundle." +optional = false +python-versions = ">=3.6" +files = [ + {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, + {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, +] + +[[package]] +name = "cffi" +version = "1.17.0" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cffi-1.17.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f9338cc05451f1942d0d8203ec2c346c830f8e86469903d5126c1f0a13a2bcbb"}, + {file = "cffi-1.17.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0ce71725cacc9ebf839630772b07eeec220cbb5f03be1399e0457a1464f8e1a"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c815270206f983309915a6844fe994b2fa47e5d05c4c4cef267c3b30e34dbe42"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6bdcd415ba87846fd317bee0774e412e8792832e7805938987e4ede1d13046d"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a98748ed1a1df4ee1d6f927e151ed6c1a09d5ec21684de879c7ea6aa96f58f2"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0a048d4f6630113e54bb4b77e315e1ba32a5a31512c31a273807d0027a7e69ab"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24aa705a5f5bd3a8bcfa4d123f03413de5d86e497435693b638cbffb7d5d8a1b"}, + {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:856bf0924d24e7f93b8aee12a3a1095c34085600aa805693fb7f5d1962393206"}, + {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:4304d4416ff032ed50ad6bb87416d802e67139e31c0bde4628f36a47a3164bfa"}, + {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:331ad15c39c9fe9186ceaf87203a9ecf5ae0ba2538c9e898e3a6967e8ad3db6f"}, + {file = "cffi-1.17.0-cp310-cp310-win32.whl", hash = "sha256:669b29a9eca6146465cc574659058ed949748f0809a2582d1f1a324eb91054dc"}, + {file = "cffi-1.17.0-cp310-cp310-win_amd64.whl", hash = "sha256:48b389b1fd5144603d61d752afd7167dfd205973a43151ae5045b35793232aa2"}, + {file = "cffi-1.17.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c5d97162c196ce54af6700949ddf9409e9833ef1003b4741c2b39ef46f1d9720"}, + {file = "cffi-1.17.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ba5c243f4004c750836f81606a9fcb7841f8874ad8f3bf204ff5e56332b72b9"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bb9333f58fc3a2296fb1d54576138d4cf5d496a2cc118422bd77835e6ae0b9cb"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:435a22d00ec7d7ea533db494da8581b05977f9c37338c80bc86314bec2619424"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d1df34588123fcc88c872f5acb6f74ae59e9d182a2707097f9e28275ec26a12d"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:df8bb0010fdd0a743b7542589223a2816bdde4d94bb5ad67884348fa2c1c67e8"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b5b9712783415695663bd463990e2f00c6750562e6ad1d28e072a611c5f2a6"}, + {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ffef8fd58a36fb5f1196919638f73dd3ae0db1a878982b27a9a5a176ede4ba91"}, + {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e67d26532bfd8b7f7c05d5a766d6f437b362c1bf203a3a5ce3593a645e870b8"}, + {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:45f7cd36186db767d803b1473b3c659d57a23b5fa491ad83c6d40f2af58e4dbb"}, + {file = "cffi-1.17.0-cp311-cp311-win32.whl", hash = "sha256:a9015f5b8af1bb6837a3fcb0cdf3b874fe3385ff6274e8b7925d81ccaec3c5c9"}, + {file = "cffi-1.17.0-cp311-cp311-win_amd64.whl", hash = "sha256:b50aaac7d05c2c26dfd50c3321199f019ba76bb650e346a6ef3616306eed67b0"}, + {file = "cffi-1.17.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aec510255ce690d240f7cb23d7114f6b351c733a74c279a84def763660a2c3bc"}, + {file = "cffi-1.17.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2770bb0d5e3cc0e31e7318db06efcbcdb7b31bcb1a70086d3177692a02256f59"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:db9a30ec064129d605d0f1aedc93e00894b9334ec74ba9c6bdd08147434b33eb"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a47eef975d2b8b721775a0fa286f50eab535b9d56c70a6e62842134cf7841195"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f3e0992f23bbb0be00a921eae5363329253c3b86287db27092461c887b791e5e"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6107e445faf057c118d5050560695e46d272e5301feffda3c41849641222a828"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb862356ee9391dc5a0b3cbc00f416b48c1b9a52d252d898e5b7696a5f9fe150"}, + {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:c1c13185b90bbd3f8b5963cd8ce7ad4ff441924c31e23c975cb150e27c2bf67a"}, + {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:17c6d6d3260c7f2d94f657e6872591fe8733872a86ed1345bda872cfc8c74885"}, + {file = "cffi-1.17.0-cp312-cp312-win32.whl", hash = "sha256:c3b8bd3133cd50f6b637bb4322822c94c5ce4bf0d724ed5ae70afce62187c492"}, + {file = "cffi-1.17.0-cp312-cp312-win_amd64.whl", hash = "sha256:dca802c8db0720ce1c49cce1149ff7b06e91ba15fa84b1d59144fef1a1bc7ac2"}, + {file = "cffi-1.17.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:6ce01337d23884b21c03869d2f68c5523d43174d4fc405490eb0091057943118"}, + {file = "cffi-1.17.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cab2eba3830bf4f6d91e2d6718e0e1c14a2f5ad1af68a89d24ace0c6b17cced7"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:14b9cbc8f7ac98a739558eb86fabc283d4d564dafed50216e7f7ee62d0d25377"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b00e7bcd71caa0282cbe3c90966f738e2db91e64092a877c3ff7f19a1628fdcb"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:41f4915e09218744d8bae14759f983e466ab69b178de38066f7579892ff2a555"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4760a68cab57bfaa628938e9c2971137e05ce48e762a9cb53b76c9b569f1204"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:011aff3524d578a9412c8b3cfaa50f2c0bd78e03eb7af7aa5e0df59b158efb2f"}, + {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:a003ac9edc22d99ae1286b0875c460351f4e101f8c9d9d2576e78d7e048f64e0"}, + {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ef9528915df81b8f4c7612b19b8628214c65c9b7f74db2e34a646a0a2a0da2d4"}, + {file = "cffi-1.17.0-cp313-cp313-win32.whl", hash = "sha256:70d2aa9fb00cf52034feac4b913181a6e10356019b18ef89bc7c12a283bf5f5a"}, + {file = "cffi-1.17.0-cp313-cp313-win_amd64.whl", hash = "sha256:b7b6ea9e36d32582cda3465f54c4b454f62f23cb083ebc7a94e2ca6ef011c3a7"}, + {file = "cffi-1.17.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:964823b2fc77b55355999ade496c54dde161c621cb1f6eac61dc30ed1b63cd4c"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:516a405f174fd3b88829eabfe4bb296ac602d6a0f68e0d64d5ac9456194a5b7e"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dec6b307ce928e8e112a6bb9921a1cb00a0e14979bf28b98e084a4b8a742bd9b"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4094c7b464cf0a858e75cd14b03509e84789abf7b79f8537e6a72152109c76e"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2404f3de742f47cb62d023f0ba7c5a916c9c653d5b368cc966382ae4e57da401"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3aa9d43b02a0c681f0bfbc12d476d47b2b2b6a3f9287f11ee42989a268a1833c"}, + {file = "cffi-1.17.0-cp38-cp38-win32.whl", hash = "sha256:0bb15e7acf8ab35ca8b24b90af52c8b391690ef5c4aec3d31f38f0d37d2cc499"}, + {file = "cffi-1.17.0-cp38-cp38-win_amd64.whl", hash = "sha256:93a7350f6706b31f457c1457d3a3259ff9071a66f312ae64dc024f049055f72c"}, + {file = "cffi-1.17.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1a2ddbac59dc3716bc79f27906c010406155031a1c801410f1bafff17ea304d2"}, + {file = "cffi-1.17.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6327b572f5770293fc062a7ec04160e89741e8552bf1c358d1a23eba68166759"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbc183e7bef690c9abe5ea67b7b60fdbca81aa8da43468287dae7b5c046107d4"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bdc0f1f610d067c70aa3737ed06e2726fd9d6f7bfee4a351f4c40b6831f4e82"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6d872186c1617d143969defeadac5a904e6e374183e07977eedef9c07c8953bf"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0d46ee4764b88b91f16661a8befc6bfb24806d885e27436fdc292ed7e6f6d058"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f76a90c345796c01d85e6332e81cab6d70de83b829cf1d9762d0a3da59c7932"}, + {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0e60821d312f99d3e1569202518dddf10ae547e799d75aef3bca3a2d9e8ee693"}, + {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:eb09b82377233b902d4c3fbeeb7ad731cdab579c6c6fda1f763cd779139e47c3"}, + {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:24658baf6224d8f280e827f0a50c46ad819ec8ba380a42448e24459daf809cf4"}, + {file = "cffi-1.17.0-cp39-cp39-win32.whl", hash = "sha256:0fdacad9e0d9fc23e519efd5ea24a70348305e8d7d85ecbb1a5fa66dc834e7fb"}, + {file = "cffi-1.17.0-cp39-cp39-win_amd64.whl", hash = "sha256:7cbc78dc018596315d4e7841c8c3a7ae31cc4d638c9b627f87d52e8abaaf2d29"}, + {file = "cffi-1.17.0.tar.gz", hash = "sha256:f3157624b7558b914cb039fd1af735e5e8049a87c817cc215109ad1c8779df76"}, +] + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "chardet" +version = "5.2.0" +description = "Universal encoding detector for Python 3" +optional = false +python-versions = ">=3.7" +files = [ + {file = "chardet-5.2.0-py3-none-any.whl", hash = "sha256:e1cf59446890a00105fe7b7912492ea04b6e6f06d4b742b2c788469e34c82970"}, + {file = "chardet-5.2.0.tar.gz", hash = "sha256:1b3b6ff479a8c414bc3fa2c0852995695c4a026dcd6d0633b2dd092ca39c1cf7"}, +] + +[[package]] +name = "charset-normalizer" +version = "3.3.2" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, + {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, +] + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "comm" +version = "0.2.2" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +files = [ + {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, + {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "communities" +version = "2.2.0" +description = "Library for detecting community structure in graphs" +optional = false +python-versions = ">=3" +files = [ + {file = "communities-2.2.0.tar.gz", hash = "sha256:4e4c9dca36046c256309c2d42039afd45c52c6ddbeb9bd86ff69fa1fe3c7e2bd"}, +] + +[package.dependencies] +networkx = "*" +numpy = "*" + +[[package]] +name = "cycler" +version = "0.12.1" +description = "Composable style cycles" +optional = false +python-versions = ">=3.8" +files = [ + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, +] + +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "cython" +version = "0.29.14" +description = "The Cython compiler for writing C extensions for the Python language." +optional = false +python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "Cython-0.29.14-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:47e5e1502d52ef03387cf9d3b3241007961a84a466e58a3b74028e1dd4957f8c"}, + {file = "Cython-0.29.14-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:1dcdaa319558eb924294a554dcf6c12383ec947acc7e779e8d3622409a7f7d28"}, + {file = "Cython-0.29.14-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:7bc18fc5a170f2c1cef5387a3d997c28942918bbee0f700e73fd2178ee8d474d"}, + {file = "Cython-0.29.14-cp27-cp27m-win32.whl", hash = "sha256:89458b49976b1dee5d89ab4ac943da3717b4292bf624367e862e4ee172fcce99"}, + {file = "Cython-0.29.14-cp27-cp27m-win_amd64.whl", hash = "sha256:c0b24bfe3431b3cb7ced323bca813dbd13aca973a1475b512d3331fd0de8ec60"}, + {file = "Cython-0.29.14-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7f89eff20e4a7a64b55210dac17aea711ed8a3f2e78f2ff784c0e984302583dd"}, + {file = "Cython-0.29.14-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:6c53338c1811f8c6d7f8cb7abd874810b15045e719e8207f957035c9177b4213"}, + {file = "Cython-0.29.14-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:521340844cf388d109ceb61397f3fd5250ccb622a1a8e93559e8de76c80940a9"}, + {file = "Cython-0.29.14-cp34-cp34m-manylinux1_i686.whl", hash = "sha256:75c2dda47dcc3c77449712b1417bb6b89ec3b7b02e18c64262494dceffdf455e"}, + {file = "Cython-0.29.14-cp34-cp34m-manylinux1_x86_64.whl", hash = "sha256:05eb79efc8029d487251c8a2702a909a8ba33c332e06d2f3980866541bd81253"}, + {file = "Cython-0.29.14-cp34-cp34m-win32.whl", hash = "sha256:1fc5bdda28f25fec44e4721677458aa509d743cd350862270309d61aa148d6ff"}, + {file = "Cython-0.29.14-cp34-cp34m-win_amd64.whl", hash = "sha256:0c70e842e52e2f50cc43bad43b5e5bc515f30821a374e544abb0e0746f2350ff"}, + {file = "Cython-0.29.14-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:094d28a34c3fa992ae02aea1edbe6ff89b3cc5870b6ee38b5baeb805dc57b013"}, + {file = "Cython-0.29.14-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:280573a01d9348d44a42d6a9c651d9f7eb1fe9217df72555b2a118f902996a10"}, + {file = "Cython-0.29.14-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:773c5a98e463b52f7e8197254b39b703a5ea1972aef3a94b3b921515d77dd041"}, + {file = "Cython-0.29.14-cp35-cp35m-win32.whl", hash = "sha256:986f871c0fa649b293061236b93782d25c293a8dd8117c7ba05f8a61bdc261ae"}, + {file = "Cython-0.29.14-cp35-cp35m-win_amd64.whl", hash = "sha256:78c3068dcba300d473fef57cdf523e34b37de522f5a494ef9ee1ac9b4b8bbe3f"}, + {file = "Cython-0.29.14-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:f3818e578e687cdb21dc4aa4a3bc6278c656c9c393e9eda14dd04943f478863d"}, + {file = "Cython-0.29.14-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:bb487881608ebd293592553c618f0c83316f4f13a64cb18605b1d2fb9fd3da3e"}, + {file = "Cython-0.29.14-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:03f6bbb380ad0acb744fb06e42996ea217e9d00016ca0ff6f2e7d60f580d0360"}, + {file = "Cython-0.29.14-cp36-cp36m-win32.whl", hash = "sha256:b8ab3ab38afc47d8f4fe629b836243544351cef681b6bdb1dc869028d6fdcbfb"}, + {file = "Cython-0.29.14-cp36-cp36m-win_amd64.whl", hash = "sha256:298ceca7b0f0da4205fcb0b7c9ac9e120e2dafffd5019ba1618e84ef89434b5a"}, + {file = "Cython-0.29.14-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:fe666645493d72712c46e4fbe8bec094b06aec3c337400479e9704439c9d9586"}, + {file = "Cython-0.29.14-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:4074a8bff0040035673cc6dd365a762476d6bff4d03d8ce6904e3e53f9a25dc8"}, + {file = "Cython-0.29.14-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:a14aa436586c41633339415de82a41164691d02d3e661038da533be5d40794a5"}, + {file = "Cython-0.29.14-cp37-cp37m-win32.whl", hash = "sha256:41e7068e95fbf9ec94b41437f989caf9674135e770a39cdb9c00de459bafd1bc"}, + {file = "Cython-0.29.14-cp37-cp37m-win_amd64.whl", hash = "sha256:05e8cfd3a3a6087aec49a1ae08a89171db991956209406d1e5576f9db70ece52"}, + {file = "Cython-0.29.14-cp38-cp38-manylinux1_i686.whl", hash = "sha256:e8fab9911fd2fa8e5af407057cb8bdf87762f983cba483fa3234be20a9a0af77"}, + {file = "Cython-0.29.14-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:d4039bb7f234ad32267c55e72fd49fb56078ea102f9d9d8559f6ec34d4887630"}, + {file = "Cython-0.29.14-cp38-cp38-win32.whl", hash = "sha256:c7894c06205166d360ab2915ae306d1f7403e9ce3d3aaeff4095eaf98e42ce66"}, + {file = "Cython-0.29.14-cp38-cp38-win_amd64.whl", hash = "sha256:a0f495a4fe5278aab278feee35e6102efecde5176a8a74dd28c28e3fc5c8d7c7"}, + {file = "Cython-0.29.14.tar.gz", hash = "sha256:e4d6bb8703d0319eb04b7319b12ea41580df44fd84d83ccda13ea463c6801414"}, +] + +[[package]] +name = "debugpy" +version = "1.8.5" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "debugpy-1.8.5-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:7e4d594367d6407a120b76bdaa03886e9eb652c05ba7f87e37418426ad2079f7"}, + {file = "debugpy-1.8.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4413b7a3ede757dc33a273a17d685ea2b0c09dbd312cc03f5534a0fd4d40750a"}, + {file = "debugpy-1.8.5-cp310-cp310-win32.whl", hash = "sha256:dd3811bd63632bb25eda6bd73bea8e0521794cda02be41fa3160eb26fc29e7ed"}, + {file = "debugpy-1.8.5-cp310-cp310-win_amd64.whl", hash = "sha256:b78c1250441ce893cb5035dd6f5fc12db968cc07f91cc06996b2087f7cefdd8e"}, + {file = "debugpy-1.8.5-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:606bccba19f7188b6ea9579c8a4f5a5364ecd0bf5a0659c8a5d0e10dcee3032a"}, + {file = "debugpy-1.8.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db9fb642938a7a609a6c865c32ecd0d795d56c1aaa7a7a5722d77855d5e77f2b"}, + {file = "debugpy-1.8.5-cp311-cp311-win32.whl", hash = "sha256:4fbb3b39ae1aa3e5ad578f37a48a7a303dad9a3d018d369bc9ec629c1cfa7408"}, + {file = "debugpy-1.8.5-cp311-cp311-win_amd64.whl", hash = "sha256:345d6a0206e81eb68b1493ce2fbffd57c3088e2ce4b46592077a943d2b968ca3"}, + {file = "debugpy-1.8.5-cp312-cp312-macosx_12_0_universal2.whl", hash = "sha256:5b5c770977c8ec6c40c60d6f58cacc7f7fe5a45960363d6974ddb9b62dbee156"}, + {file = "debugpy-1.8.5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0a65b00b7cdd2ee0c2cf4c7335fef31e15f1b7056c7fdbce9e90193e1a8c8cb"}, + {file = "debugpy-1.8.5-cp312-cp312-win32.whl", hash = "sha256:c9f7c15ea1da18d2fcc2709e9f3d6de98b69a5b0fff1807fb80bc55f906691f7"}, + {file = "debugpy-1.8.5-cp312-cp312-win_amd64.whl", hash = "sha256:28ced650c974aaf179231668a293ecd5c63c0a671ae6d56b8795ecc5d2f48d3c"}, + {file = "debugpy-1.8.5-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:3df6692351172a42af7558daa5019651f898fc67450bf091335aa8a18fbf6f3a"}, + {file = "debugpy-1.8.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cd04a73eb2769eb0bfe43f5bfde1215c5923d6924b9b90f94d15f207a402226"}, + {file = "debugpy-1.8.5-cp38-cp38-win32.whl", hash = "sha256:8f913ee8e9fcf9d38a751f56e6de12a297ae7832749d35de26d960f14280750a"}, + {file = "debugpy-1.8.5-cp38-cp38-win_amd64.whl", hash = "sha256:a697beca97dad3780b89a7fb525d5e79f33821a8bc0c06faf1f1289e549743cf"}, + {file = "debugpy-1.8.5-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:0a1029a2869d01cb777216af8c53cda0476875ef02a2b6ff8b2f2c9a4b04176c"}, + {file = "debugpy-1.8.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e84c276489e141ed0b93b0af648eef891546143d6a48f610945416453a8ad406"}, + {file = "debugpy-1.8.5-cp39-cp39-win32.whl", hash = "sha256:ad84b7cde7fd96cf6eea34ff6c4a1b7887e0fe2ea46e099e53234856f9d99a34"}, + {file = "debugpy-1.8.5-cp39-cp39-win_amd64.whl", hash = "sha256:7b0fe36ed9d26cb6836b0a51453653f8f2e347ba7348f2bbfe76bfeb670bfb1c"}, + {file = "debugpy-1.8.5-py2.py3-none-any.whl", hash = "sha256:55919dce65b471eff25901acf82d328bbd5b833526b6c1364bd5133754777a44"}, + {file = "debugpy-1.8.5.zip", hash = "sha256:b2112cfeb34b4507399d298fe7023a16656fc553ed5246536060ca7bd0e668d0"}, +] + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +optional = false +python-versions = ">=3.5" +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] + +[[package]] +name = "executing" +version = "2.0.1" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.5" +files = [ + {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, + {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + +[[package]] +name = "flatbuffers" +version = "2.0.7" +description = "The FlatBuffers serialization format for Python" +optional = false +python-versions = "*" +files = [ + {file = "flatbuffers-2.0.7-py2.py3-none-any.whl", hash = "sha256:71e135d533be527192819aaab757c5e3d109cb10fbb01e687f6bdb7a61ad39d1"}, + {file = "flatbuffers-2.0.7.tar.gz", hash = "sha256:0ae7d69c5b82bf41962ca5fde9cc43033bc9501311d975fd5a25e8a7d29c1245"}, +] + +[[package]] +name = "gast" +version = "0.4.0" +description = "Python AST that abstracts the underlying Python version" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "gast-0.4.0-py3-none-any.whl", hash = "sha256:b7adcdd5adbebf1adf17378da5ba3f543684dbec47b1cda1f3997e573cd542c4"}, + {file = "gast-0.4.0.tar.gz", hash = "sha256:40feb7b8b8434785585ab224d1568b857edb18297e5a3047f1ba012bc83b42c1"}, +] + +[[package]] +name = "gensim" +version = "3.8.3" +description = "Python framework for fast Vector Space Modelling" +optional = false +python-versions = "*" +files = [ + {file = "gensim-3.8.3-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:61eed1d6b5fbe6dda0586ea447ebc2dc7890a7f70c2ed953d5abc3fe3cfb94bb"}, + {file = "gensim-3.8.3-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:3af62709369331c85552fd26caa21504baa64accc426dc094172f5c688750013"}, + {file = "gensim-3.8.3-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:8ff471921b3b10ffb3ae6cbb598dd9c07d9dc030dee5aa167e7682b549c42f87"}, + {file = "gensim-3.8.3-cp27-cp27m-win32.whl", hash = "sha256:440700e29b494bc2e1d52e14b69a821f46ab09ecf85cf36c8988f18e1d6c7a8b"}, + {file = "gensim-3.8.3-cp27-cp27m-win_amd64.whl", hash = "sha256:f8ea67bf8c47ee55cb1b32c97fa1474b7d6d22959dd8097c019a5d9c9df34f5f"}, + {file = "gensim-3.8.3-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7a90549dfc8ee3822fcad6da957de07d927e4e90ef42b3699543dee35ab2da13"}, + {file = "gensim-3.8.3-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:7629b33cf35f672efdd5269381f7e301958ee2638f27dfc63b80c5bfeaa827d3"}, + {file = "gensim-3.8.3-cp35-cp35m-macosx_10_9_intel.whl", hash = "sha256:6711b6d3a0007530ee7de7adc30a4c48a1d26ec6312ac50e1d1e0a1d54f9de5b"}, + {file = "gensim-3.8.3-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:ef2ddeceff482aee17c1e185f63bf027c8de8f595fdd9fd2d2503de96008f3b7"}, + {file = "gensim-3.8.3-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:41dcf6ecdc9acc657157967c791b8cbaba90ee6391f64efd28339b72f5e0c327"}, + {file = "gensim-3.8.3-cp35-cp35m-win32.whl", hash = "sha256:685a7657278161628821c8f873c5d7d2ffc0c28866648e39f76b450e4c7d5390"}, + {file = "gensim-3.8.3-cp35-cp35m-win_amd64.whl", hash = "sha256:b61a7c841a752c84b685674aa0d610289faad38795b325176481abe19b487e98"}, + {file = "gensim-3.8.3-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a61179df454a0d4b06a111c4ede0536f61c8121b4c0d0d02d23560a2fd4b3aff"}, + {file = "gensim-3.8.3-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:cc387d0d8bddbf3609ab95b3453296e4c9ff92c35e9799a17d86b1571d77a5fc"}, + {file = "gensim-3.8.3-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:b36e6330471061cfd78aad751e24c6b4f56d575697af0fbab42655128927d296"}, + {file = "gensim-3.8.3-cp36-cp36m-win32.whl", hash = "sha256:1e3d66c2eec494376fc599701d9c2868549aed6e93e47177e39217f0188e2d88"}, + {file = "gensim-3.8.3-cp36-cp36m-win_amd64.whl", hash = "sha256:91fa62d61b21f1878f140b10520f9de4a26a52672fbe407edfc7e09ca2eff235"}, + {file = "gensim-3.8.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:637fc5969f3cef4b7c8fd3e78e31ef09565c5566d5ceabf076b4170eb6444a80"}, + {file = "gensim-3.8.3-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:22f45fd239cacd0e3715ac447a2c8a5eea02e730ec1f701c55b359e9298e63a8"}, + {file = "gensim-3.8.3-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:d79370f78e9013b9d1e867c85ecc678d46a7ae0f01a8ca29e8f4291e5373b170"}, + {file = "gensim-3.8.3-cp37-cp37m-win32.whl", hash = "sha256:9c214b341f5304b906c79844e2787c13b46505df9dc70afca79a9a7dc0894478"}, + {file = "gensim-3.8.3-cp37-cp37m-win_amd64.whl", hash = "sha256:fe98277a7b3b4987b40c928056bbaae1d0715022cf27bba89d05cd0d4fe51a84"}, + {file = "gensim-3.8.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a47903d104469a7a8b6f22ad5ef74681b19c4f4b71ff2c2893271b53161a43e4"}, + {file = "gensim-3.8.3-cp38-cp38-manylinux1_i686.whl", hash = "sha256:05bfc02e102a34c9c795095b688b1b4aaa2529c624821368c9c3ea6a16536f77"}, + {file = "gensim-3.8.3-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:a8807ebf324dd11e1298a91a92d6e57c7bdabb91d0d5240bf1efa0c0eacd86f0"}, + {file = "gensim-3.8.3-cp38-cp38-win32.whl", hash = "sha256:90115d12ee545c21cc75521ef1bb3dd66aae8a378e9c2eb029c9f22df173c125"}, + {file = "gensim-3.8.3-cp38-cp38-win_amd64.whl", hash = "sha256:4e34cf2e50f3eab3e303da46089ea4972567bf216e28f7535ada155770784ac8"}, + {file = "gensim-3.8.3.tar.gz", hash = "sha256:786adb0571f75114e9c5f7a31dd2e6eb39a9791f22c8757621545e2ded3ea367"}, +] + +[package.dependencies] +Cython = "0.29.14" +numpy = ">=1.11.3" +scipy = ">=0.18.1" +six = ">=1.5.0" +smart-open = ">=1.8.1" + +[package.extras] +distributed = ["Pyro4 (>=4.27)"] +docs = ["Morfessor (==2.0.2a4)", "Pyro4", "Pyro4 (>=4.27)", "annoy", "cython", "matplotlib", "memory-profiler", "mock", "nltk", "nmslib", "pandas", "plotly", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "sphinx (<=2.4.4)", "sphinx-gallery", "sphinxcontrib-napoleon", "sphinxcontrib.programoutput", "statsmodels", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test-win = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] + +[[package]] +name = "google-auth" +version = "2.33.0" +description = "Google Authentication Library" +optional = false +python-versions = ">=3.7" +files = [ + {file = "google_auth-2.33.0-py2.py3-none-any.whl", hash = "sha256:8eff47d0d4a34ab6265c50a106a3362de6a9975bb08998700e389f857e4d39df"}, + {file = "google_auth-2.33.0.tar.gz", hash = "sha256:d6a52342160d7290e334b4d47ba390767e4438ad0d45b7630774533e82655b95"}, +] + +[package.dependencies] +cachetools = ">=2.0.0,<6.0" +pyasn1-modules = ">=0.2.1" +rsa = ">=3.1.4,<5" + +[package.extras] +aiohttp = ["aiohttp (>=3.6.2,<4.0.0.dev0)", "requests (>=2.20.0,<3.0.0.dev0)"] +enterprise-cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"] +pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] +reauth = ["pyu2f (>=0.1.5)"] +requests = ["requests (>=2.20.0,<3.0.0.dev0)"] + +[[package]] +name = "google-auth-oauthlib" +version = "1.0.0" +description = "Google Authentication Library" +optional = false +python-versions = ">=3.6" +files = [ + {file = "google-auth-oauthlib-1.0.0.tar.gz", hash = "sha256:e375064964820b47221a7e1b7ee1fd77051b6323c3f9e3e19785f78ab67ecfc5"}, + {file = "google_auth_oauthlib-1.0.0-py2.py3-none-any.whl", hash = "sha256:95880ca704928c300f48194d1770cf5b1462835b6e49db61445a520f793fd5fb"}, +] + +[package.dependencies] +google-auth = ">=2.15.0" +requests-oauthlib = ">=0.7.0" + +[package.extras] +tool = ["click (>=6.0.0)"] + +[[package]] +name = "google-pasta" +version = "0.2.0" +description = "pasta is an AST-based Python refactoring library" +optional = false +python-versions = "*" +files = [ + {file = "google-pasta-0.2.0.tar.gz", hash = "sha256:c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e"}, + {file = "google_pasta-0.2.0-py2-none-any.whl", hash = "sha256:4612951da876b1a10fe3960d7226f0c7682cf901e16ac06e473b267a5afa8954"}, + {file = "google_pasta-0.2.0-py3-none-any.whl", hash = "sha256:b32482794a366b5366a32c92a9a9201b107821889935a02b3e51f6b432ea84ed"}, +] + +[package.dependencies] +six = "*" + +[[package]] +name = "grpcio" +version = "1.65.4" +description = "HTTP/2-based RPC framework" +optional = false +python-versions = ">=3.8" +files = [ + {file = "grpcio-1.65.4-cp310-cp310-linux_armv7l.whl", hash = "sha256:0e85c8766cf7f004ab01aff6a0393935a30d84388fa3c58d77849fcf27f3e98c"}, + {file = "grpcio-1.65.4-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:e4a795c02405c7dfa8affd98c14d980f4acea16ea3b539e7404c645329460e5a"}, + {file = "grpcio-1.65.4-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:d7b984a8dd975d949c2042b9b5ebcf297d6d5af57dcd47f946849ee15d3c2fb8"}, + {file = "grpcio-1.65.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:644a783ce604a7d7c91412bd51cf9418b942cf71896344b6dc8d55713c71ce82"}, + {file = "grpcio-1.65.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5764237d751d3031a36fafd57eb7d36fd2c10c658d2b4057c516ccf114849a3e"}, + {file = "grpcio-1.65.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:ee40d058cf20e1dd4cacec9c39e9bce13fedd38ce32f9ba00f639464fcb757de"}, + {file = "grpcio-1.65.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4482a44ce7cf577a1f8082e807a5b909236bce35b3e3897f839f2fbd9ae6982d"}, + {file = "grpcio-1.65.4-cp310-cp310-win32.whl", hash = "sha256:66bb051881c84aa82e4f22d8ebc9d1704b2e35d7867757f0740c6ef7b902f9b1"}, + {file = "grpcio-1.65.4-cp310-cp310-win_amd64.whl", hash = "sha256:870370524eff3144304da4d1bbe901d39bdd24f858ce849b7197e530c8c8f2ec"}, + {file = "grpcio-1.65.4-cp311-cp311-linux_armv7l.whl", hash = "sha256:85e9c69378af02e483bc626fc19a218451b24a402bdf44c7531e4c9253fb49ef"}, + {file = "grpcio-1.65.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2bd672e005afab8bf0d6aad5ad659e72a06dd713020554182a66d7c0c8f47e18"}, + {file = "grpcio-1.65.4-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:abccc5d73f5988e8f512eb29341ed9ced923b586bb72e785f265131c160231d8"}, + {file = "grpcio-1.65.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:886b45b29f3793b0c2576201947258782d7e54a218fe15d4a0468d9a6e00ce17"}, + {file = "grpcio-1.65.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be952436571dacc93ccc7796db06b7daf37b3b56bb97e3420e6503dccfe2f1b4"}, + {file = "grpcio-1.65.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:8dc9ddc4603ec43f6238a5c95400c9a901b6d079feb824e890623da7194ff11e"}, + {file = "grpcio-1.65.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:ade1256c98cba5a333ef54636095f2c09e6882c35f76acb04412f3b1aa3c29a5"}, + {file = "grpcio-1.65.4-cp311-cp311-win32.whl", hash = "sha256:280e93356fba6058cbbfc6f91a18e958062ef1bdaf5b1caf46c615ba1ae71b5b"}, + {file = "grpcio-1.65.4-cp311-cp311-win_amd64.whl", hash = "sha256:d2b819f9ee27ed4e3e737a4f3920e337e00bc53f9e254377dd26fc7027c4d558"}, + {file = "grpcio-1.65.4-cp312-cp312-linux_armv7l.whl", hash = "sha256:926a0750a5e6fb002542e80f7fa6cab8b1a2ce5513a1c24641da33e088ca4c56"}, + {file = "grpcio-1.65.4-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:2a1d4c84d9e657f72bfbab8bedf31bdfc6bfc4a1efb10b8f2d28241efabfaaf2"}, + {file = "grpcio-1.65.4-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:17de4fda50967679677712eec0a5c13e8904b76ec90ac845d83386b65da0ae1e"}, + {file = "grpcio-1.65.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3dee50c1b69754a4228e933696408ea87f7e896e8d9797a3ed2aeed8dbd04b74"}, + {file = "grpcio-1.65.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74c34fc7562bdd169b77966068434a93040bfca990e235f7a67cdf26e1bd5c63"}, + {file = "grpcio-1.65.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:24a2246e80a059b9eb981e4c2a6d8111b1b5e03a44421adbf2736cc1d4988a8a"}, + {file = "grpcio-1.65.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:18c10f0d054d2dce34dd15855fcca7cc44ec3b811139437543226776730c0f28"}, + {file = "grpcio-1.65.4-cp312-cp312-win32.whl", hash = "sha256:d72962788b6c22ddbcdb70b10c11fbb37d60ae598c51eb47ec019db66ccfdff0"}, + {file = "grpcio-1.65.4-cp312-cp312-win_amd64.whl", hash = "sha256:7656376821fed8c89e68206a522522317787a3d9ed66fb5110b1dff736a5e416"}, + {file = "grpcio-1.65.4-cp38-cp38-linux_armv7l.whl", hash = "sha256:4934077b33aa6fe0b451de8b71dabde96bf2d9b4cb2b3187be86e5adebcba021"}, + {file = "grpcio-1.65.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:0cef8c919a3359847c357cb4314e50ed1f0cca070f828ee8f878d362fd744d52"}, + {file = "grpcio-1.65.4-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:a925446e6aa12ca37114840d8550f308e29026cdc423a73da3043fd1603a6385"}, + {file = "grpcio-1.65.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cf53e6247f1e2af93657e62e240e4f12e11ee0b9cef4ddcb37eab03d501ca864"}, + {file = "grpcio-1.65.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdb34278e4ceb224c89704cd23db0d902e5e3c1c9687ec9d7c5bb4c150f86816"}, + {file = "grpcio-1.65.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:e6cbdd107e56bde55c565da5fd16f08e1b4e9b0674851d7749e7f32d8645f524"}, + {file = "grpcio-1.65.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:626319a156b1f19513156a3b0dbfe977f5f93db63ca673a0703238ebd40670d7"}, + {file = "grpcio-1.65.4-cp38-cp38-win32.whl", hash = "sha256:3d1bbf7e1dd1096378bd83c83f554d3b93819b91161deaf63e03b7022a85224a"}, + {file = "grpcio-1.65.4-cp38-cp38-win_amd64.whl", hash = "sha256:a99e6dffefd3027b438116f33ed1261c8d360f0dd4f943cb44541a2782eba72f"}, + {file = "grpcio-1.65.4-cp39-cp39-linux_armv7l.whl", hash = "sha256:874acd010e60a2ec1e30d5e505b0651ab12eb968157cd244f852b27c6dbed733"}, + {file = "grpcio-1.65.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b07f36faf01fca5427d4aa23645e2d492157d56c91fab7e06fe5697d7e171ad4"}, + {file = "grpcio-1.65.4-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:b81711bf4ec08a3710b534e8054c7dcf90f2edc22bebe11c1775a23f145595fe"}, + {file = "grpcio-1.65.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88fcabc332a4aef8bcefadc34a02e9ab9407ab975d2c7d981a8e12c1aed92aa1"}, + {file = "grpcio-1.65.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9ba3e63108a8749994f02c7c0e156afb39ba5bdf755337de8e75eb685be244b"}, + {file = "grpcio-1.65.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:8eb485801957a486bf5de15f2c792d9f9c897a86f2f18db8f3f6795a094b4bb2"}, + {file = "grpcio-1.65.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:075f3903bc1749ace93f2b0664f72964ee5f2da5c15d4b47e0ab68e4f442c257"}, + {file = "grpcio-1.65.4-cp39-cp39-win32.whl", hash = "sha256:0a0720299bdb2cc7306737295d56e41ce8827d5669d4a3cd870af832e3b17c4d"}, + {file = "grpcio-1.65.4-cp39-cp39-win_amd64.whl", hash = "sha256:a146bc40fa78769f22e1e9ff4f110ef36ad271b79707577bf2a31e3e931141b9"}, + {file = "grpcio-1.65.4.tar.gz", hash = "sha256:2a4f476209acffec056360d3e647ae0e14ae13dcf3dfb130c227ae1c594cbe39"}, +] + +[package.extras] +protobuf = ["grpcio-tools (>=1.65.4)"] + +[[package]] +name = "h5py" +version = "3.11.0" +description = "Read and write HDF5 files from Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "h5py-3.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1625fd24ad6cfc9c1ccd44a66dac2396e7ee74940776792772819fc69f3a3731"}, + {file = "h5py-3.11.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c072655ad1d5fe9ef462445d3e77a8166cbfa5e599045f8aa3c19b75315f10e5"}, + {file = "h5py-3.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77b19a40788e3e362b54af4dcf9e6fde59ca016db2c61360aa30b47c7b7cef00"}, + {file = "h5py-3.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:ef4e2f338fc763f50a8113890f455e1a70acd42a4d083370ceb80c463d803972"}, + {file = "h5py-3.11.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bbd732a08187a9e2a6ecf9e8af713f1d68256ee0f7c8b652a32795670fb481ba"}, + {file = "h5py-3.11.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75bd7b3d93fbeee40860fd70cdc88df4464e06b70a5ad9ce1446f5f32eb84007"}, + {file = "h5py-3.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52c416f8eb0daae39dabe71415cb531f95dce2d81e1f61a74537a50c63b28ab3"}, + {file = "h5py-3.11.0-cp311-cp311-win_amd64.whl", hash = "sha256:083e0329ae534a264940d6513f47f5ada617da536d8dccbafc3026aefc33c90e"}, + {file = "h5py-3.11.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a76cae64080210389a571c7d13c94a1a6cf8cb75153044fd1f822a962c97aeab"}, + {file = "h5py-3.11.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f3736fe21da2b7d8a13fe8fe415f1272d2a1ccdeff4849c1421d2fb30fd533bc"}, + {file = "h5py-3.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa6ae84a14103e8dc19266ef4c3e5d7c00b68f21d07f2966f0ca7bdb6c2761fb"}, + {file = "h5py-3.11.0-cp312-cp312-win_amd64.whl", hash = "sha256:21dbdc5343f53b2e25404673c4f00a3335aef25521bd5fa8c707ec3833934892"}, + {file = "h5py-3.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:754c0c2e373d13d6309f408325343b642eb0f40f1a6ad21779cfa9502209e150"}, + {file = "h5py-3.11.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:731839240c59ba219d4cb3bc5880d438248533366f102402cfa0621b71796b62"}, + {file = "h5py-3.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ec9df3dd2018904c4cc06331951e274f3f3fd091e6d6cc350aaa90fa9b42a76"}, + {file = "h5py-3.11.0-cp38-cp38-win_amd64.whl", hash = "sha256:55106b04e2c83dfb73dc8732e9abad69d83a436b5b82b773481d95d17b9685e1"}, + {file = "h5py-3.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f4e025e852754ca833401777c25888acb96889ee2c27e7e629a19aee288833f0"}, + {file = "h5py-3.11.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6c4b760082626120031d7902cd983d8c1f424cdba2809f1067511ef283629d4b"}, + {file = "h5py-3.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67462d0669f8f5459529de179f7771bd697389fcb3faab54d63bf788599a48ea"}, + {file = "h5py-3.11.0-cp39-cp39-win_amd64.whl", hash = "sha256:d9c944d364688f827dc889cf83f1fca311caf4fa50b19f009d1f2b525edd33a3"}, + {file = "h5py-3.11.0.tar.gz", hash = "sha256:7b7e8f78072a2edec87c9836f25f34203fd492a4475709a18b417a33cfb21fa9"}, +] + +[package.dependencies] +numpy = ">=1.17.3" + +[[package]] +name = "idna" +version = "3.7" +description = "Internationalized Domain Names in Applications (IDNA)" +optional = false +python-versions = ">=3.5" +files = [ + {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, + {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, +] + +[[package]] +name = "importlib-metadata" +version = "8.2.0" +description = "Read metadata from Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "importlib_metadata-8.2.0-py3-none-any.whl", hash = "sha256:11901fa0c2f97919b288679932bb64febaeacf289d18ac84dd68cb2e74213369"}, + {file = "importlib_metadata-8.2.0.tar.gz", hash = "sha256:72e8d4399996132204f9a16dcc751af254a48f8d1b20b9ff0f98d4a8f901e73d"}, +] + +[package.dependencies] +zipp = ">=0.5" + +[package.extras] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +perf = ["ipython"] +test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] + +[[package]] +name = "ipykernel" +version = "6.29.5" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, + {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=24" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.12.3" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, + {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "sys_platform == \"darwin\""} +backcall = "*" +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} +pickleshare = "*" +prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" +pygments = ">=2.4.0" +stack-data = "*" +traitlets = ">=5" +typing-extensions = {version = "*", markers = "python_version < \"3.10\""} + +[package.extras] +all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +black = ["black"] +doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +kernel = ["ipykernel"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] + +[[package]] +name = "jedi" +version = "0.19.1" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +files = [ + {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, + {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, +] + +[package.dependencies] +parso = ">=0.8.3,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] + +[[package]] +name = "joblib" +version = "1.4.2" +description = "Lightweight pipelining with Python functions" +optional = false +python-versions = ">=3.8" +files = [ + {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, + {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, +] + +[[package]] +name = "jupyter-client" +version = "8.6.2" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"}, + {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-core" +version = "5.7.2" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, + {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "karateclub" +version = "1.0.19" +description = "A general purpose library for community detection, network embedding, and graph mining research." +optional = false +python-versions = "*" +files = [ + {file = "karateclub-1.0.19.tar.gz", hash = "sha256:0e43f9072f028f471f935a47746c71d24df0472eb5fafd77be9f5619a1e0f804"}, +] + +[package.dependencies] +gensim = "*" +networkx = "*" +numpy = "*" +pandas = "*" +pygsp = "*" +python-louvain = "*" +scikit-learn = "*" +scipy = "*" +six = "*" +tqdm = "*" + +[[package]] +name = "keras" +version = "2.7.0" +description = "Deep learning for humans." +optional = false +python-versions = "*" +files = [ + {file = "keras-2.7.0-py2.py3-none-any.whl", hash = "sha256:0c33ae1f728064ca0d35dfba999e9c316f03623bf5688c82fb83cc74a80ea248"}, +] + +[[package]] +name = "keras-preprocessing" +version = "1.1.2" +description = "Easy data preprocessing and data augmentation for deep learning models" +optional = false +python-versions = "*" +files = [ + {file = "Keras_Preprocessing-1.1.2-py2.py3-none-any.whl", hash = "sha256:7b82029b130ff61cc99b55f3bd27427df4838576838c5b2f65940e4fcec99a7b"}, + {file = "Keras_Preprocessing-1.1.2.tar.gz", hash = "sha256:add82567c50c8bc648c14195bf544a5ce7c1f76761536956c3d2978970179ef3"}, +] + +[package.dependencies] +numpy = ">=1.9.1" +six = ">=1.9.0" + +[package.extras] +image = ["Pillow (>=5.2.0)", "scipy (>=0.14)"] +pep8 = ["flake8"] +tests = ["Pillow", "keras", "pandas", "pytest", "pytest-cov", "pytest-xdist", "tensorflow"] + +[[package]] +name = "kiwisolver" +version = "1.4.5" +description = "A fast implementation of the Cassowary constraint solver" +optional = false +python-versions = ">=3.7" +files = [ + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, + {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, +] + +[[package]] +name = "libclang" +version = "18.1.1" +description = "Clang Python Bindings, mirrored from the official LLVM repo: https://github.com/llvm/llvm-project/tree/main/clang/bindings/python, to make the installation process easier." +optional = false +python-versions = "*" +files = [ + {file = "libclang-18.1.1-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:6f14c3f194704e5d09769108f03185fce7acaf1d1ae4bbb2f30a72c2400cb7c5"}, + {file = "libclang-18.1.1-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:83ce5045d101b669ac38e6da8e58765f12da2d3aafb3b9b98d88b286a60964d8"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2010_x86_64.whl", hash = "sha256:c533091d8a3bbf7460a00cb6c1a71da93bffe148f172c7d03b1c31fbf8aa2a0b"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2014_aarch64.whl", hash = "sha256:54dda940a4a0491a9d1532bf071ea3ef26e6dbaf03b5000ed94dd7174e8f9592"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2014_armv7l.whl", hash = "sha256:cf4a99b05376513717ab5d82a0db832c56ccea4fd61a69dbb7bccf2dfb207dbe"}, + {file = "libclang-18.1.1-py2.py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:69f8eb8f65c279e765ffd28aaa7e9e364c776c17618af8bff22a8df58677ff4f"}, + {file = "libclang-18.1.1-py2.py3-none-win_amd64.whl", hash = "sha256:4dd2d3b82fab35e2bf9ca717d7b63ac990a3519c7e312f19fa8e86dcc712f7fb"}, + {file = "libclang-18.1.1-py2.py3-none-win_arm64.whl", hash = "sha256:3f0e1f49f04d3cd198985fea0511576b0aee16f9ff0e0f0cad7f9c57ec3c20e8"}, + {file = "libclang-18.1.1.tar.gz", hash = "sha256:a1214966d08d73d971287fc3ead8dfaf82eb07fb197680d8b3859dbbbbf78250"}, +] + +[[package]] +name = "markdown" +version = "3.6" +description = "Python implementation of John Gruber's Markdown." +optional = false +python-versions = ">=3.8" +files = [ + {file = "Markdown-3.6-py3-none-any.whl", hash = "sha256:48f276f4d8cfb8ce6527c8f79e2ee29708508bf4d40aa410fbc3b4ee832c850f"}, + {file = "Markdown-3.6.tar.gz", hash = "sha256:ed4f41f6daecbeeb96e576ce414c41d2d876daa9a16cb35fa8ed8c2ddfad0224"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.4", markers = "python_version < \"3.10\""} + +[package.extras] +docs = ["mdx-gh-links (>=0.2)", "mkdocs (>=1.5)", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-nature (>=0.6)", "mkdocs-section-index", "mkdocstrings[python]"] +testing = ["coverage", "pyyaml"] + +[[package]] +name = "markupsafe" +version = "2.1.5" +description = "Safely add untrusted strings to HTML/XML markup." +optional = false +python-versions = ">=3.7" +files = [ + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl", hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl", hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl", hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5"}, + {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, +] + +[[package]] +name = "matplotlib" +version = "3.2.2" +description = "Python plotting package" +optional = false +python-versions = ">=3.6" +files = [ + {file = "matplotlib-3.2.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a47abc48c7b81fe6e636dde8a58e49b13d87d140e0f448213a4879f4a3f73345"}, + {file = "matplotlib-3.2.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:20bcd11efe194cd302bd0653cb025b8d16bcd80442359bfca8d49dc805f35ec8"}, + {file = "matplotlib-3.2.2-cp36-cp36m-win32.whl", hash = "sha256:2a6d64336b547e25730b6221e7aadfb01a391a065d43b5f51f0b9d7f673d2dd2"}, + {file = "matplotlib-3.2.2-cp36-cp36m-win_amd64.whl", hash = "sha256:4416825ebc9c1f135027a30e8d8aea0edcf45078ce767c7f7386737413cfb98f"}, + {file = "matplotlib-3.2.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:465c752278d27895e23f1379d6fcfa3a2990643b803c25e3bc16a10641d2346a"}, + {file = "matplotlib-3.2.2-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:81de040403a33bf3c68e9d4a40e26c8d24da00f7e3fadd845003b7e106785da7"}, + {file = "matplotlib-3.2.2-cp37-cp37m-win32.whl", hash = "sha256:006413f08ba5db1f5b1e0d6fbdc2ac9058b062ccf552f57182563a78579c34b4"}, + {file = "matplotlib-3.2.2-cp37-cp37m-win_amd64.whl", hash = "sha256:da06fa530591a141ffbe1712bbeec784734c3436b40c942d21652f305199b5d9"}, + {file = "matplotlib-3.2.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:894dd47c0a6ce38dc19bc87d1f7e2b0608310b2a18d1572291157450b05ce874"}, + {file = "matplotlib-3.2.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:1ab264770e7cf2cf4feb99f22c737066aef21ddf1ec402dc255450ac15eacb7b"}, + {file = "matplotlib-3.2.2-cp38-cp38-win32.whl", hash = "sha256:91c153f4318e3c67c035fd1185f5ea2613f15008b73b66985033033f6fe54bbd"}, + {file = "matplotlib-3.2.2-cp38-cp38-win_amd64.whl", hash = "sha256:a68e42e22f7fd190a532e4215e142276970c2d54040a0c46842fcb3db8b6ec5b"}, + {file = "matplotlib-3.2.2-cp39-cp39-win32.whl", hash = "sha256:647cf232ccf6265d2ba1ac4103e8c8b6ac7b03a40da3421234ffb03dda217f59"}, + {file = "matplotlib-3.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:31d32c83bb2b617377c6156f75e88b9ec2ded289e47ad4ff0f263dc1019d88b1"}, + {file = "matplotlib-3.2.2-pp36-pypy36_pp73-win32.whl", hash = "sha256:67065d938df34478451af62fbd0670d2b51c4d859fb66673064eb5de8660dd7c"}, + {file = "matplotlib-3.2.2.tar.gz", hash = "sha256:3d77a6630d093d74cbbfebaa0571d00790966be1ed204e4a8239f5cbd6835c5d"}, +] + +[package.dependencies] +cycler = ">=0.10" +kiwisolver = ">=1.0.1" +numpy = ">=1.11" +pyparsing = ">=2.0.1,<2.0.4 || >2.0.4,<2.1.2 || >2.1.2,<2.1.6 || >2.1.6" +python-dateutil = ">=2.1" + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +files = [ + {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, + {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, +] + +[[package]] +name = "networkx" +version = "2.5" +description = "Python package for creating and manipulating graphs and networks" +optional = false +python-versions = ">=3.6" +files = [ + {file = "networkx-2.5-py3-none-any.whl", hash = "sha256:8c5812e9f798d37c50570d15c4a69d5710a18d77bafc903ee9c5fba7454c616c"}, + {file = "networkx-2.5.tar.gz", hash = "sha256:7978955423fbc9639c10498878be59caf99b44dc304c2286162fd24b458c1602"}, +] + +[package.dependencies] +decorator = ">=4.3.0" + +[package.extras] +all = ["lxml", "matplotlib", "numpy", "pandas", "pydot", "pygraphviz", "pytest", "pyyaml", "scipy"] +gdal = ["gdal"] +lxml = ["lxml"] +matplotlib = ["matplotlib"] +numpy = ["numpy"] +pandas = ["pandas"] +pydot = ["pydot"] +pygraphviz = ["pygraphviz"] +pytest = ["pytest"] +pyyaml = ["pyyaml"] +scipy = ["scipy"] + +[[package]] +name = "node2vec" +version = "0.3.3" +description = "Implementation of the node2vec algorithm." +optional = false +python-versions = "*" +files = [ + {file = "node2vec-0.3.3.tar.gz", hash = "sha256:a122796952137bc91df5e9a51525180d510e1f4e4208eb4a21329137c38354d8"}, +] + +[package.dependencies] +gensim = "*" +joblib = ">=0.13.2" +networkx = "*" +numpy = "*" +tqdm = "*" + +[[package]] +name = "numpy" +version = "1.24.4" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, + {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, + {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, + {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, + {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, + {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, + {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, + {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, + {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, + {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, + {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, + {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, + {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, + {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, + {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, + {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, + {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, + {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, + {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, + {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, + {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, + {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, + {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, + {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, + {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, +] + +[[package]] +name = "nxt_gem" +version = "2.0.1" +description = "nxt_gem: A Python module for Graph Embedding Methods" +optional = false +python-versions = "*" +files = [] +develop = false + +[package.dependencies] +matplotlib = ">=2.0.0" +networkx = ">=2.4" +numpy = ">=1.12.0" +scikit-learn = ">=0.21.2" +scipy = ">=0.19.0" +theano = ">=0.9.0" + +[package.source] +type = "git" +url = "https://github.com/palash1992/GEM.git" +reference = "master" +resolved_reference = "ae8e92d34213f5785757b4a0943bd7d8d337adb3" + +[[package]] +name = "oauthlib" +version = "3.2.2" +description = "A generic, spec-compliant, thorough implementation of the OAuth request-signing logic" +optional = false +python-versions = ">=3.6" +files = [ + {file = "oauthlib-3.2.2-py3-none-any.whl", hash = "sha256:8139f29aac13e25d502680e9e19963e83f16838d48a0d71c287fe40e7067fbca"}, + {file = "oauthlib-3.2.2.tar.gz", hash = "sha256:9859c40929662bec5d64f34d01c99e093149682a3f38915dc0655d5a633dd918"}, +] + +[package.extras] +rsa = ["cryptography (>=3.0.0)"] +signals = ["blinker (>=1.4.0)"] +signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] + +[[package]] +name = "opt-einsum" +version = "3.3.0" +description = "Optimizing numpys einsum function" +optional = false +python-versions = ">=3.5" +files = [ + {file = "opt_einsum-3.3.0-py3-none-any.whl", hash = "sha256:2455e59e3947d3c275477df7f5205b30635e266fe6dc300e3d9f9646bfcea147"}, + {file = "opt_einsum-3.3.0.tar.gz", hash = "sha256:59f6475f77bbc37dcf7cd748519c0ec60722e91e63ca114e68821c0c54a46549"}, +] + +[package.dependencies] +numpy = ">=1.7" + +[package.extras] +docs = ["numpydoc", "sphinx (==1.2.3)", "sphinx-rtd-theme", "sphinxcontrib-napoleon"] +tests = ["pytest", "pytest-cov", "pytest-pep8"] + +[[package]] +name = "packaging" +version = "24.1" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, + {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, +] + +[[package]] +name = "pandas" +version = "2.0.3" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pandas-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8"}, + {file = "pandas-2.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f"}, + {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183"}, + {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0"}, + {file = "pandas-2.0.3-cp310-cp310-win32.whl", hash = "sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210"}, + {file = "pandas-2.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e"}, + {file = "pandas-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8"}, + {file = "pandas-2.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26"}, + {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d"}, + {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df"}, + {file = "pandas-2.0.3-cp311-cp311-win32.whl", hash = "sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd"}, + {file = "pandas-2.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b"}, + {file = "pandas-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061"}, + {file = "pandas-2.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5"}, + {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089"}, + {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0"}, + {file = "pandas-2.0.3-cp38-cp38-win32.whl", hash = "sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02"}, + {file = "pandas-2.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78"}, + {file = "pandas-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b"}, + {file = "pandas-2.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e"}, + {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b"}, + {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641"}, + {file = "pandas-2.0.3-cp39-cp39-win32.whl", hash = "sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682"}, + {file = "pandas-2.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc"}, + {file = "pandas-2.0.3.tar.gz", hash = "sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c"}, +] + +[package.dependencies] +numpy = {version = ">=1.20.3", markers = "python_version < \"3.10\""} +python-dateutil = ">=2.8.2" +pytz = ">=2020.1" +tzdata = ">=2022.1" + +[package.extras] +all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] +aws = ["s3fs (>=2021.08.0)"] +clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] +compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] +computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] +feather = ["pyarrow (>=7.0.0)"] +fss = ["fsspec (>=2021.07.0)"] +gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] +hdf5 = ["tables (>=3.6.1)"] +html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] +mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] +parquet = ["pyarrow (>=7.0.0)"] +performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] +plot = ["matplotlib (>=3.6.1)"] +postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] +spss = ["pyreadstat (>=1.1.2)"] +sql-other = ["SQLAlchemy (>=1.4.16)"] +test = ["hypothesis (>=6.34.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.6.3)"] + +[[package]] +name = "parso" +version = "0.8.4" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +files = [ + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, +] + +[package.extras] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["docopt", "pytest"] + +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pickleshare" +version = "0.7.5" +description = "Tiny 'shelve'-like database with concurrency support" +optional = false +python-versions = "*" +files = [ + {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, + {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, +] + +[[package]] +name = "platformdirs" +version = "4.2.2" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." +optional = false +python-versions = ">=3.8" +files = [ + {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, + {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, +] + +[package.extras] +docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] +type = ["mypy (>=1.8)"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.47" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "prompt_toolkit-3.0.47-py3-none-any.whl", hash = "sha256:0d7bfa67001d5e39d02c224b663abc33687405033a8c422d0d675a5a13361d10"}, + {file = "prompt_toolkit-3.0.47.tar.gz", hash = "sha256:1e1b29cb58080b1e69f207c893a1a7bf16d127a5c30c9d17a25a5d77792e5360"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "protobuf" +version = "3.20.3" +description = "Protocol Buffers" +optional = false +python-versions = ">=3.7" +files = [ + {file = "protobuf-3.20.3-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:f4bd856d702e5b0d96a00ec6b307b0f51c1982c2bf9c0052cf9019e9a544ba99"}, + {file = "protobuf-3.20.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9aae4406ea63d825636cc11ffb34ad3379335803216ee3a856787bcf5ccc751e"}, + {file = "protobuf-3.20.3-cp310-cp310-win32.whl", hash = "sha256:28545383d61f55b57cf4df63eebd9827754fd2dc25f80c5253f9184235db242c"}, + {file = "protobuf-3.20.3-cp310-cp310-win_amd64.whl", hash = "sha256:67a3598f0a2dcbc58d02dd1928544e7d88f764b47d4a286202913f0b2801c2e7"}, + {file = "protobuf-3.20.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:899dc660cd599d7352d6f10d83c95df430a38b410c1b66b407a6b29265d66469"}, + {file = "protobuf-3.20.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e64857f395505ebf3d2569935506ae0dfc4a15cb80dc25261176c784662cdcc4"}, + {file = "protobuf-3.20.3-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:d9e4432ff660d67d775c66ac42a67cf2453c27cb4d738fc22cb53b5d84c135d4"}, + {file = "protobuf-3.20.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:74480f79a023f90dc6e18febbf7b8bac7508420f2006fabd512013c0c238f454"}, + {file = "protobuf-3.20.3-cp37-cp37m-win32.whl", hash = "sha256:b6cc7ba72a8850621bfec987cb72623e703b7fe2b9127a161ce61e61558ad905"}, + {file = "protobuf-3.20.3-cp37-cp37m-win_amd64.whl", hash = "sha256:8c0c984a1b8fef4086329ff8dd19ac77576b384079247c770f29cc8ce3afa06c"}, + {file = "protobuf-3.20.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:de78575669dddf6099a8a0f46a27e82a1783c557ccc38ee620ed8cc96d3be7d7"}, + {file = "protobuf-3.20.3-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:f4c42102bc82a51108e449cbb32b19b180022941c727bac0cfd50170341f16ee"}, + {file = "protobuf-3.20.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:44246bab5dd4b7fbd3c0c80b6f16686808fab0e4aca819ade6e8d294a29c7050"}, + {file = "protobuf-3.20.3-cp38-cp38-win32.whl", hash = "sha256:c02ce36ec760252242a33967d51c289fd0e1c0e6e5cc9397e2279177716add86"}, + {file = "protobuf-3.20.3-cp38-cp38-win_amd64.whl", hash = "sha256:447d43819997825d4e71bf5769d869b968ce96848b6479397e29fc24c4a5dfe9"}, + {file = "protobuf-3.20.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:398a9e0c3eaceb34ec1aee71894ca3299605fa8e761544934378bbc6c97de23b"}, + {file = "protobuf-3.20.3-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:bf01b5720be110540be4286e791db73f84a2b721072a3711efff6c324cdf074b"}, + {file = "protobuf-3.20.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:daa564862dd0d39c00f8086f88700fdbe8bc717e993a21e90711acfed02f2402"}, + {file = "protobuf-3.20.3-cp39-cp39-win32.whl", hash = "sha256:819559cafa1a373b7096a482b504ae8a857c89593cf3a25af743ac9ecbd23480"}, + {file = "protobuf-3.20.3-cp39-cp39-win_amd64.whl", hash = "sha256:03038ac1cfbc41aa21f6afcbcd357281d7521b4157926f30ebecc8d4ea59dcb7"}, + {file = "protobuf-3.20.3-py2.py3-none-any.whl", hash = "sha256:a7ca6d488aa8ff7f329d4c545b2dbad8ac31464f1d8b1c87ad1346717731e4db"}, + {file = "protobuf-3.20.3.tar.gz", hash = "sha256:2e3427429c9cffebf259491be0af70189607f365c2f41c7c3764af6f337105f2"}, +] + +[[package]] +name = "psutil" +version = "6.0.0" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "psutil-6.0.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a021da3e881cd935e64a3d0a20983bda0bb4cf80e4f74fa9bfcb1bc5785360c6"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:1287c2b95f1c0a364d23bc6f2ea2365a8d4d9b726a3be7294296ff7ba97c17f0"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:a9a3dbfb4de4f18174528d87cc352d1f788b7496991cca33c6996f40c9e3c92c"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:6ec7588fb3ddaec7344a825afe298db83fe01bfaaab39155fa84cf1c0d6b13c3"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:1e7c870afcb7d91fdea2b37c24aeb08f98b6d67257a5cb0a8bc3ac68d0f1a68c"}, + {file = "psutil-6.0.0-cp27-none-win32.whl", hash = "sha256:02b69001f44cc73c1c5279d02b30a817e339ceb258ad75997325e0e6169d8b35"}, + {file = "psutil-6.0.0-cp27-none-win_amd64.whl", hash = "sha256:21f1fb635deccd510f69f485b87433460a603919b45e2a324ad65b0cc74f8fb1"}, + {file = "psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c588a7e9b1173b6e866756dde596fd4cad94f9399daf99ad8c3258b3cb2b47a0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ed2440ada7ef7d0d608f20ad89a04ec47d2d3ab7190896cd62ca5fc4fe08bf0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd9a97c8e94059b0ef54a7d4baf13b405011176c3b6ff257c247cae0d560ecd"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e8d0054fc88153ca0544f5c4d554d42e33df2e009c4ff42284ac9ebdef4132"}, + {file = "psutil-6.0.0-cp36-cp36m-win32.whl", hash = "sha256:fc8c9510cde0146432bbdb433322861ee8c3efbf8589865c8bf8d21cb30c4d14"}, + {file = "psutil-6.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:34859b8d8f423b86e4385ff3665d3f4d94be3cdf48221fbe476e883514fdb71c"}, + {file = "psutil-6.0.0-cp37-abi3-win32.whl", hash = "sha256:a495580d6bae27291324fe60cea0b5a7c23fa36a7cd35035a16d93bdcf076b9d"}, + {file = "psutil-6.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:33ea5e1c975250a720b3a6609c490db40dae5d83a4eb315170c4fe0d8b1f34b3"}, + {file = "psutil-6.0.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:ffe7fc9b6b36beadc8c322f84e1caff51e8703b88eee1da46d1e3a6ae11b4fd0"}, + {file = "psutil-6.0.0.tar.gz", hash = "sha256:8faae4f310b6d969fa26ca0545338b21f73c6b15db7c4a8d934a5482faa818f2"}, +] + +[package.extras] +test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +files = [ + {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, + {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "pyasn1" +version = "0.6.0" +description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyasn1-0.6.0-py2.py3-none-any.whl", hash = "sha256:cca4bb0f2df5504f02f6f8a775b6e416ff9b0b3b16f7ee80b5a3153d9b804473"}, + {file = "pyasn1-0.6.0.tar.gz", hash = "sha256:3a35ab2c4b5ef98e17dfdec8ab074046fbda76e281c5a706ccd82328cfc8f64c"}, +] + +[[package]] +name = "pyasn1-modules" +version = "0.4.0" +description = "A collection of ASN.1-based protocols modules" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyasn1_modules-0.4.0-py3-none-any.whl", hash = "sha256:be04f15b66c206eed667e0bb5ab27e2b1855ea54a842e5037738099e8ca4ae0b"}, + {file = "pyasn1_modules-0.4.0.tar.gz", hash = "sha256:831dbcea1b177b28c9baddf4c6d1013c24c3accd14a1873fffaa6a2e905f17b6"}, +] + +[package.dependencies] +pyasn1 = ">=0.4.6,<0.7.0" + +[[package]] +name = "pycparser" +version = "2.22" +description = "C parser in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, +] + +[[package]] +name = "pygments" +version = "2.18.0" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, + {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, +] + +[package.extras] +windows-terminal = ["colorama (>=0.4.6)"] + +[[package]] +name = "pygsp" +version = "0.5.1" +description = "Graph Signal Processing in Python" +optional = false +python-versions = "*" +files = [ + {file = "PyGSP-0.5.1-py2.py3-none-any.whl", hash = "sha256:884765260256f143a92053c420797053fda0f4eba1573471526fb4e62a4c4cde"}, + {file = "PyGSP-0.5.1.tar.gz", hash = "sha256:4874ad88793d622d4f578b40c6617a99b1f02bc6c6c4077f0e48cd71c7275800"}, +] + +[package.dependencies] +numpy = "*" +scipy = "*" + +[package.extras] +alldeps = ["PyOpenGL", "PyQt5", "PySide", "matplotlib", "pyflann", "pyflann3", "pyqtgraph", "pyunlocbox", "scikit-image"] +doc = ["numpydoc", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-bibtex"] +pkg = ["twine", "wheel"] +test = ["coverage", "coveralls", "flake8"] + +[[package]] +name = "pyparsing" +version = "3.1.2" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.6.8" +files = [ + {file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"}, + {file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"}, +] + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, + {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "python-louvain" +version = "0.16" +description = "Louvain algorithm for community detection" +optional = false +python-versions = "*" +files = [ + {file = "python-louvain-0.16.tar.gz", hash = "sha256:b7ba2df5002fd28d3ee789a49532baad11fe648e4f2117cf0798e7520a1da56b"}, +] + +[package.dependencies] +networkx = "*" +numpy = "*" + +[[package]] +name = "pytz" +version = "2024.1" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ + {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, + {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, +] + +[[package]] +name = "pywin32" +version = "306" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ + {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, + {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, + {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, + {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, + {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, + {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, + {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, + {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, + {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, + {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, + {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, + {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, + {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, + {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, +] + +[[package]] +name = "pyzmq" +version = "26.1.0" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pyzmq-26.1.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:263cf1e36862310bf5becfbc488e18d5d698941858860c5a8c079d1511b3b18e"}, + {file = "pyzmq-26.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d5c8b17f6e8f29138678834cf8518049e740385eb2dbf736e8f07fc6587ec682"}, + {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:75a95c2358fcfdef3374cb8baf57f1064d73246d55e41683aaffb6cfe6862917"}, + {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f99de52b8fbdb2a8f5301ae5fc0f9e6b3ba30d1d5fc0421956967edcc6914242"}, + {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7bcbfbab4e1895d58ab7da1b5ce9a327764f0366911ba5b95406c9104bceacb0"}, + {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:77ce6a332c7e362cb59b63f5edf730e83590d0ab4e59c2aa5bd79419a42e3449"}, + {file = "pyzmq-26.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:ba0a31d00e8616149a5ab440d058ec2da621e05d744914774c4dde6837e1f545"}, + {file = "pyzmq-26.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8b88641384e84a258b740801cd4dbc45c75f148ee674bec3149999adda4a8598"}, + {file = "pyzmq-26.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2fa76ebcebe555cce90f16246edc3ad83ab65bb7b3d4ce408cf6bc67740c4f88"}, + {file = "pyzmq-26.1.0-cp310-cp310-win32.whl", hash = "sha256:fbf558551cf415586e91160d69ca6416f3fce0b86175b64e4293644a7416b81b"}, + {file = "pyzmq-26.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:a7b8aab50e5a288c9724d260feae25eda69582be84e97c012c80e1a5e7e03fb2"}, + {file = "pyzmq-26.1.0-cp310-cp310-win_arm64.whl", hash = "sha256:08f74904cb066e1178c1ec706dfdb5c6c680cd7a8ed9efebeac923d84c1f13b1"}, + {file = "pyzmq-26.1.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:46d6800b45015f96b9d92ece229d92f2aef137d82906577d55fadeb9cf5fcb71"}, + {file = "pyzmq-26.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5bc2431167adc50ba42ea3e5e5f5cd70d93e18ab7b2f95e724dd8e1bd2c38120"}, + {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b3bb34bebaa1b78e562931a1687ff663d298013f78f972a534f36c523311a84d"}, + {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3f6329340cef1c7ba9611bd038f2d523cea79f09f9c8f6b0553caba59ec562"}, + {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:471880c4c14e5a056a96cd224f5e71211997d40b4bf5e9fdded55dafab1f98f2"}, + {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:ce6f2b66799971cbae5d6547acefa7231458289e0ad481d0be0740535da38d8b"}, + {file = "pyzmq-26.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0a1f6ea5b1d6cdbb8cfa0536f0d470f12b4b41ad83625012e575f0e3ecfe97f0"}, + {file = "pyzmq-26.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:b45e6445ac95ecb7d728604bae6538f40ccf4449b132b5428c09918523abc96d"}, + {file = "pyzmq-26.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:94c4262626424683feea0f3c34951d39d49d354722db2745c42aa6bb50ecd93b"}, + {file = "pyzmq-26.1.0-cp311-cp311-win32.whl", hash = "sha256:a0f0ab9df66eb34d58205913f4540e2ad17a175b05d81b0b7197bc57d000e829"}, + {file = "pyzmq-26.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:8efb782f5a6c450589dbab4cb0f66f3a9026286333fe8f3a084399149af52f29"}, + {file = "pyzmq-26.1.0-cp311-cp311-win_arm64.whl", hash = "sha256:f133d05aaf623519f45e16ab77526e1e70d4e1308e084c2fb4cedb1a0c764bbb"}, + {file = "pyzmq-26.1.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:3d3146b1c3dcc8a1539e7cc094700b2be1e605a76f7c8f0979b6d3bde5ad4072"}, + {file = "pyzmq-26.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d9270fbf038bf34ffca4855bcda6e082e2c7f906b9eb8d9a8ce82691166060f7"}, + {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:995301f6740a421afc863a713fe62c0aaf564708d4aa057dfdf0f0f56525294b"}, + {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e7eca8b89e56fb8c6c26dd3e09bd41b24789022acf1cf13358e96f1cafd8cae3"}, + {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d4feb2e83dfe9ace6374a847e98ee9d1246ebadcc0cb765482e272c34e5820"}, + {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:d4fafc2eb5d83f4647331267808c7e0c5722c25a729a614dc2b90479cafa78bd"}, + {file = "pyzmq-26.1.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:58c33dc0e185dd97a9ac0288b3188d1be12b756eda67490e6ed6a75cf9491d79"}, + {file = "pyzmq-26.1.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:68a0a1d83d33d8367ddddb3e6bb4afbb0f92bd1dac2c72cd5e5ddc86bdafd3eb"}, + {file = "pyzmq-26.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2ae7c57e22ad881af78075e0cea10a4c778e67234adc65c404391b417a4dda83"}, + {file = "pyzmq-26.1.0-cp312-cp312-win32.whl", hash = "sha256:347e84fc88cc4cb646597f6d3a7ea0998f887ee8dc31c08587e9c3fd7b5ccef3"}, + {file = "pyzmq-26.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:9f136a6e964830230912f75b5a116a21fe8e34128dcfd82285aa0ef07cb2c7bd"}, + {file = "pyzmq-26.1.0-cp312-cp312-win_arm64.whl", hash = "sha256:a4b7a989c8f5a72ab1b2bbfa58105578753ae77b71ba33e7383a31ff75a504c4"}, + {file = "pyzmq-26.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:d416f2088ac8f12daacffbc2e8918ef4d6be8568e9d7155c83b7cebed49d2322"}, + {file = "pyzmq-26.1.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:ecb6c88d7946166d783a635efc89f9a1ff11c33d680a20df9657b6902a1d133b"}, + {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:471312a7375571857a089342beccc1a63584315188560c7c0da7e0a23afd8a5c"}, + {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0e6cea102ffa16b737d11932c426f1dc14b5938cf7bc12e17269559c458ac334"}, + {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec7248673ffc7104b54e4957cee38b2f3075a13442348c8d651777bf41aa45ee"}, + {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:0614aed6f87d550b5cecb03d795f4ddbb1544b78d02a4bd5eecf644ec98a39f6"}, + {file = "pyzmq-26.1.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:e8746ce968be22a8a1801bf4a23e565f9687088580c3ed07af5846580dd97f76"}, + {file = "pyzmq-26.1.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:7688653574392d2eaeef75ddcd0b2de5b232d8730af29af56c5adf1df9ef8d6f"}, + {file = "pyzmq-26.1.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:8d4dac7d97f15c653a5fedcafa82626bd6cee1450ccdaf84ffed7ea14f2b07a4"}, + {file = "pyzmq-26.1.0-cp313-cp313-win32.whl", hash = "sha256:ccb42ca0a4a46232d716779421bbebbcad23c08d37c980f02cc3a6bd115ad277"}, + {file = "pyzmq-26.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e1e5d0a25aea8b691a00d6b54b28ac514c8cc0d8646d05f7ca6cb64b97358250"}, + {file = "pyzmq-26.1.0-cp313-cp313-win_arm64.whl", hash = "sha256:fc82269d24860cfa859b676d18850cbb8e312dcd7eada09e7d5b007e2f3d9eb1"}, + {file = "pyzmq-26.1.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:416ac51cabd54f587995c2b05421324700b22e98d3d0aa2cfaec985524d16f1d"}, + {file = "pyzmq-26.1.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:ff832cce719edd11266ca32bc74a626b814fff236824aa1aeaad399b69fe6eae"}, + {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:393daac1bcf81b2a23e696b7b638eedc965e9e3d2112961a072b6cd8179ad2eb"}, + {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9869fa984c8670c8ab899a719eb7b516860a29bc26300a84d24d8c1b71eae3ec"}, + {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b3b8e36fd4c32c0825b4461372949ecd1585d326802b1321f8b6dc1d7e9318c"}, + {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:3ee647d84b83509b7271457bb428cc347037f437ead4b0b6e43b5eba35fec0aa"}, + {file = "pyzmq-26.1.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:45cb1a70eb00405ce3893041099655265fabcd9c4e1e50c330026e82257892c1"}, + {file = "pyzmq-26.1.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:5cca7b4adb86d7470e0fc96037771981d740f0b4cb99776d5cb59cd0e6684a73"}, + {file = "pyzmq-26.1.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:91d1a20bdaf3b25f3173ff44e54b1cfbc05f94c9e8133314eb2962a89e05d6e3"}, + {file = "pyzmq-26.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c0665d85535192098420428c779361b8823d3d7ec4848c6af3abb93bc5c915bf"}, + {file = "pyzmq-26.1.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:96d7c1d35ee4a495df56c50c83df7af1c9688cce2e9e0edffdbf50889c167595"}, + {file = "pyzmq-26.1.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b281b5ff5fcc9dcbfe941ac5c7fcd4b6c065adad12d850f95c9d6f23c2652384"}, + {file = "pyzmq-26.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5384c527a9a004445c5074f1e20db83086c8ff1682a626676229aafd9cf9f7d1"}, + {file = "pyzmq-26.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:754c99a9840839375ee251b38ac5964c0f369306eddb56804a073b6efdc0cd88"}, + {file = "pyzmq-26.1.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:9bdfcb74b469b592972ed881bad57d22e2c0acc89f5e8c146782d0d90fb9f4bf"}, + {file = "pyzmq-26.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:bd13f0231f4788db619347b971ca5f319c5b7ebee151afc7c14632068c6261d3"}, + {file = "pyzmq-26.1.0-cp37-cp37m-win32.whl", hash = "sha256:c5668dac86a869349828db5fc928ee3f58d450dce2c85607067d581f745e4fb1"}, + {file = "pyzmq-26.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:ad875277844cfaeca7fe299ddf8c8d8bfe271c3dc1caf14d454faa5cdbf2fa7a"}, + {file = "pyzmq-26.1.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:65c6e03cc0222eaf6aad57ff4ecc0a070451e23232bb48db4322cc45602cede0"}, + {file = "pyzmq-26.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:038ae4ffb63e3991f386e7fda85a9baab7d6617fe85b74a8f9cab190d73adb2b"}, + {file = "pyzmq-26.1.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:bdeb2c61611293f64ac1073f4bf6723b67d291905308a7de9bb2ca87464e3273"}, + {file = "pyzmq-26.1.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:61dfa5ee9d7df297c859ac82b1226d8fefaf9c5113dc25c2c00ecad6feeeb04f"}, + {file = "pyzmq-26.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3292d384537b9918010769b82ab3e79fca8b23d74f56fc69a679106a3e2c2cf"}, + {file = "pyzmq-26.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f9499c70c19ff0fbe1007043acb5ad15c1dec7d8e84ab429bca8c87138e8f85c"}, + {file = "pyzmq-26.1.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d3dd5523ed258ad58fed7e364c92a9360d1af8a9371e0822bd0146bdf017ef4c"}, + {file = "pyzmq-26.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:baba2fd199b098c5544ef2536b2499d2e2155392973ad32687024bd8572a7d1c"}, + {file = "pyzmq-26.1.0-cp38-cp38-win32.whl", hash = "sha256:ddbb2b386128d8eca92bd9ca74e80f73fe263bcca7aa419f5b4cbc1661e19741"}, + {file = "pyzmq-26.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:79e45a4096ec8388cdeb04a9fa5e9371583bcb826964d55b8b66cbffe7b33c86"}, + {file = "pyzmq-26.1.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:add52c78a12196bc0fda2de087ba6c876ea677cbda2e3eba63546b26e8bf177b"}, + {file = "pyzmq-26.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:98c03bd7f3339ff47de7ea9ac94a2b34580a8d4df69b50128bb6669e1191a895"}, + {file = "pyzmq-26.1.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dcc37d9d708784726fafc9c5e1232de655a009dbf97946f117aefa38d5985a0f"}, + {file = "pyzmq-26.1.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5a6ed52f0b9bf8dcc64cc82cce0607a3dfed1dbb7e8c6f282adfccc7be9781de"}, + {file = "pyzmq-26.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:451e16ae8bea3d95649317b463c9f95cd9022641ec884e3d63fc67841ae86dfe"}, + {file = "pyzmq-26.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:906e532c814e1d579138177a00ae835cd6becbf104d45ed9093a3aaf658f6a6a"}, + {file = "pyzmq-26.1.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:05bacc4f94af468cc82808ae3293390278d5f3375bb20fef21e2034bb9a505b6"}, + {file = "pyzmq-26.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:57bb2acba798dc3740e913ffadd56b1fcef96f111e66f09e2a8db3050f1f12c8"}, + {file = "pyzmq-26.1.0-cp39-cp39-win32.whl", hash = "sha256:f774841bb0e8588505002962c02da420bcfb4c5056e87a139c6e45e745c0e2e2"}, + {file = "pyzmq-26.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:359c533bedc62c56415a1f5fcfd8279bc93453afdb0803307375ecf81c962402"}, + {file = "pyzmq-26.1.0-cp39-cp39-win_arm64.whl", hash = "sha256:7907419d150b19962138ecec81a17d4892ea440c184949dc29b358bc730caf69"}, + {file = "pyzmq-26.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:b24079a14c9596846bf7516fe75d1e2188d4a528364494859106a33d8b48be38"}, + {file = "pyzmq-26.1.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59d0acd2976e1064f1b398a00e2c3e77ed0a157529779e23087d4c2fb8aaa416"}, + {file = "pyzmq-26.1.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:911c43a4117915203c4cc8755e0f888e16c4676a82f61caee2f21b0c00e5b894"}, + {file = "pyzmq-26.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b10163e586cc609f5f85c9b233195554d77b1e9a0801388907441aaeb22841c5"}, + {file = "pyzmq-26.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:28a8b2abb76042f5fd7bd720f7fea48c0fd3e82e9de0a1bf2c0de3812ce44a42"}, + {file = "pyzmq-26.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bef24d3e4ae2c985034439f449e3f9e06bf579974ce0e53d8a507a1577d5b2ab"}, + {file = "pyzmq-26.1.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:2cd0f4d314f4a2518e8970b6f299ae18cff7c44d4a1fc06fc713f791c3a9e3ea"}, + {file = "pyzmq-26.1.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:fa25a620eed2a419acc2cf10135b995f8f0ce78ad00534d729aa761e4adcef8a"}, + {file = "pyzmq-26.1.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef3b048822dca6d231d8a8ba21069844ae38f5d83889b9b690bf17d2acc7d099"}, + {file = "pyzmq-26.1.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:9a6847c92d9851b59b9f33f968c68e9e441f9a0f8fc972c5580c5cd7cbc6ee24"}, + {file = "pyzmq-26.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c9b9305004d7e4e6a824f4f19b6d8f32b3578aad6f19fc1122aaf320cbe3dc83"}, + {file = "pyzmq-26.1.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:63c1d3a65acb2f9c92dce03c4e1758cc552f1ae5c78d79a44e3bb88d2fa71f3a"}, + {file = "pyzmq-26.1.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d36b8fffe8b248a1b961c86fbdfa0129dfce878731d169ede7fa2631447331be"}, + {file = "pyzmq-26.1.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:67976d12ebfd61a3bc7d77b71a9589b4d61d0422282596cf58c62c3866916544"}, + {file = "pyzmq-26.1.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:998444debc8816b5d8d15f966e42751032d0f4c55300c48cc337f2b3e4f17d03"}, + {file = "pyzmq-26.1.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e5c88b2f13bcf55fee78ea83567b9fe079ba1a4bef8b35c376043440040f7edb"}, + {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d906d43e1592be4b25a587b7d96527cb67277542a5611e8ea9e996182fae410"}, + {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:80b0c9942430d731c786545da6be96d824a41a51742e3e374fedd9018ea43106"}, + {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:314d11564c00b77f6224d12eb3ddebe926c301e86b648a1835c5b28176c83eab"}, + {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:093a1a3cae2496233f14b57f4b485da01b4ff764582c854c0f42c6dd2be37f3d"}, + {file = "pyzmq-26.1.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3c397b1b450f749a7e974d74c06d69bd22dd362142f370ef2bd32a684d6b480c"}, + {file = "pyzmq-26.1.0.tar.gz", hash = "sha256:6c5aeea71f018ebd3b9115c7cb13863dd850e98ca6b9258509de1246461a7e7f"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "requests" +version = "2.32.3" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.8" +files = [ + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + +[[package]] +name = "requests-oauthlib" +version = "2.0.0" +description = "OAuthlib authentication support for Requests." +optional = false +python-versions = ">=3.4" +files = [ + {file = "requests-oauthlib-2.0.0.tar.gz", hash = "sha256:b3dffaebd884d8cd778494369603a9e7b58d29111bf6b41bdc2dcd87203af4e9"}, + {file = "requests_oauthlib-2.0.0-py2.py3-none-any.whl", hash = "sha256:7dd8a5c40426b779b0868c404bdef9768deccf22749cde15852df527e6269b36"}, +] + +[package.dependencies] +oauthlib = ">=3.0.0" +requests = ">=2.0.0" + +[package.extras] +rsa = ["oauthlib[signedtoken] (>=3.0.0)"] + +[[package]] +name = "rsa" +version = "4.9" +description = "Pure-Python RSA implementation" +optional = false +python-versions = ">=3.6,<4" +files = [ + {file = "rsa-4.9-py3-none-any.whl", hash = "sha256:90260d9058e514786967344d0ef75fa8727eed8a7d2e43ce9f4bcf1b536174f7"}, + {file = "rsa-4.9.tar.gz", hash = "sha256:e38464a49c6c85d7f1351b0126661487a7e0a14a50f1675ec50eb34d4f20ef21"}, +] + +[package.dependencies] +pyasn1 = ">=0.1.3" + +[[package]] +name = "scikit-learn" +version = "0.24.0" +description = "A set of python modules for machine learning and data mining" +optional = false +python-versions = ">=3.6" +files = [ + {file = "scikit-learn-0.24.0.tar.gz", hash = "sha256:076369634ee72b5a5941440661e2f306ff4ac30903802dc52031c7e9199ac640"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:890d7d588f65acb0c4f6c083347c9076916bda5e6bd8400f06244b1afc1009af"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:e534f5f3796db6781c87e9835dcd51b7854c8c5a379c9210b93605965c1941fd"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:d7fe05fcb44eadd6d6c874c768f085f5de1239db3a3b7be4d3d23d12e4120589"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:7f654befc5ad413690cc58f3f34a3e906caf825195ce0fda00a8e9565e1403e6"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-win32.whl", hash = "sha256:afeb06dc69847927634e58579b9cdc72e1390b79497336b2324b1b173f33bd47"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-win_amd64.whl", hash = "sha256:26f66b3726b54dfb76ea51c5d9c2431ed17ebc066cb4527662b9e851a3e7ba61"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c08b27cb78ee8d2dc781a7affed09859441f5b624f9f92da59ac0791c8774dfc"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:905d8934d1e27a686698864a5863ff2c0e13a2ae1adb78a8a848aacc8a49927d"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:d819d625832fb2969911a243e009cfa135cb8ef1e150866e417d6e9d75290087"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:18f7131e62265bf2691ed1d0303c640313894ccfe4278427478c6b2f45094b53"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-win32.whl", hash = "sha256:b0d13fd56d26cf3de0314a4fd48037108c638fe126d813f5c1222bb0f08b6a76"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-win_amd64.whl", hash = "sha256:c912247e42114f389858ae05d63f4359d4e667ea72aaabee191aee9ad3f9774a"}, + {file = "scikit_learn-0.24.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:758619e49cd7c17282e6cc60d5cc73c02c072b47c9a10010bb3bb47e0d976e50"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:66f27bf21202a850bcd7b6303916e4907f6e22ec59a14974ede4955aed5c7ed0"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:5e6e3c042cea83f2e20a45e563b8eabc1f8f72446251fe23ebefdf111a173a33"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:2a5348585aa793bc8cc5a72f8e9067c9380834b0aadbd55f924843b071f13282"}, + {file = "scikit_learn-0.24.0-cp38-cp38-win32.whl", hash = "sha256:743b6edd98c98991be46c08e6b21df3861d5ae915f91d59f988384d93f7263e7"}, + {file = "scikit_learn-0.24.0-cp38-cp38-win_amd64.whl", hash = "sha256:2951f87d35e72f007701c6e028aa230f6df6212a3194677c0c950486066a454d"}, + {file = "scikit_learn-0.24.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:44e452ea8491225c5783d49577aad0f36202dfd52aec7f82c0fdfe5fbd5f7400"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:800aaf63f8838c00e85db2267dd226f89858594843fd03932a9eda95746d2c40"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:3eeff086f7329521d27249a082ea3c48c085cedb110db5f65968ab55c3ba2e09"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:4395e91b3548005f4a645018435b5a94f8cce232b5b70753020e606c6a750656"}, + {file = "scikit_learn-0.24.0-cp39-cp39-win32.whl", hash = "sha256:80ca024154b84b6ac4cfc86930ba13fdc348a209753bf2c16129db6f9eb8a80b"}, + {file = "scikit_learn-0.24.0-cp39-cp39-win_amd64.whl", hash = "sha256:490436b44b3a1957cb625e871764b0aa330b34cc416aea4abc6c38ca63d0d682"}, +] + +[package.dependencies] +joblib = ">=0.11" +numpy = ">=1.13.3" +scipy = ">=0.19.1" +threadpoolctl = ">=2.0.0" + +[package.extras] +benchmark = ["matplotlib (>=2.1.1)", "memory-profiler (>=0.57.0)", "pandas (>=0.25.0)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=2.1.1)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.0.0)", "pandas (>=0.25.0)", "scikit-image (>=0.13)", "seaborn (>=0.9.0)", "sphinx (>=3.2.0)", "sphinx-gallery (>=0.7.0)", "sphinx-prompt (>=1.3.0)"] +examples = ["matplotlib (>=2.1.1)", "pandas (>=0.25.0)", "scikit-image (>=0.13)", "seaborn (>=0.9.0)"] +tests = ["flake8 (>=3.8.2)", "matplotlib (>=2.1.1)", "mypy (>=0.770)", "pandas (>=0.25.0)", "pyamg (>=4.0.0)", "pytest (>=5.0.1)", "pytest-cov (>=2.9.0)", "scikit-image (>=0.13)"] + +[[package]] +name = "scipy" +version = "1.10.1" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = "<3.12,>=3.8" +files = [ + {file = "scipy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e7354fd7527a4b0377ce55f286805b34e8c54b91be865bac273f527e1b839019"}, + {file = "scipy-1.10.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4b3f429188c66603a1a5c549fb414e4d3bdc2a24792e061ffbd607d3d75fd84e"}, + {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1553b5dcddd64ba9a0d95355e63fe6c3fc303a8fd77c7bc91e77d61363f7433f"}, + {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c0ff64b06b10e35215abce517252b375e580a6125fd5fdf6421b98efbefb2d2"}, + {file = "scipy-1.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:fae8a7b898c42dffe3f7361c40d5952b6bf32d10c4569098d276b4c547905ee1"}, + {file = "scipy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f1564ea217e82c1bbe75ddf7285ba0709ecd503f048cb1236ae9995f64217bd"}, + {file = "scipy-1.10.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d925fa1c81b772882aa55bcc10bf88324dadb66ff85d548c71515f6689c6dac5"}, + {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaea0a6be54462ec027de54fca511540980d1e9eea68b2d5c1dbfe084797be35"}, + {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15a35c4242ec5f292c3dd364a7c71a61be87a3d4ddcc693372813c0b73c9af1d"}, + {file = "scipy-1.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:43b8e0bcb877faf0abfb613d51026cd5cc78918e9530e375727bf0625c82788f"}, + {file = "scipy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5678f88c68ea866ed9ebe3a989091088553ba12c6090244fdae3e467b1139c35"}, + {file = "scipy-1.10.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:39becb03541f9e58243f4197584286e339029e8908c46f7221abeea4b749fa88"}, + {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bce5869c8d68cf383ce240e44c1d9ae7c06078a9396df68ce88a1230f93a30c1"}, + {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07c3457ce0b3ad5124f98a86533106b643dd811dd61b548e78cf4c8786652f6f"}, + {file = "scipy-1.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:049a8bbf0ad95277ffba9b3b7d23e5369cc39e66406d60422c8cfef40ccc8415"}, + {file = "scipy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cd9f1027ff30d90618914a64ca9b1a77a431159df0e2a195d8a9e8a04c78abf9"}, + {file = "scipy-1.10.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:79c8e5a6c6ffaf3a2262ef1be1e108a035cf4f05c14df56057b64acc5bebffb6"}, + {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51af417a000d2dbe1ec6c372dfe688e041a7084da4fdd350aeb139bd3fb55353"}, + {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b4735d6c28aad3cdcf52117e0e91d6b39acd4272f3f5cd9907c24ee931ad601"}, + {file = "scipy-1.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ff7f37b1bf4417baca958d254e8e2875d0cc23aaadbe65b3d5b3077b0eb23ea"}, + {file = "scipy-1.10.1.tar.gz", hash = "sha256:2cf9dfb80a7b4589ba4c40ce7588986d6d5cebc5457cad2c2880f6bc2d42f3a5"}, +] + +[package.dependencies] +numpy = ">=1.19.5,<1.27.0" + +[package.extras] +dev = ["click", "doit (>=0.36.0)", "flake8", "mypy", "pycodestyle", "pydevtool", "rich-click", "typing_extensions"] +doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] +test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "setuptools" +version = "72.2.0" +description = "Easily download, build, install, upgrade, and uninstall Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "setuptools-72.2.0-py3-none-any.whl", hash = "sha256:f11dd94b7bae3a156a95ec151f24e4637fb4fa19c878e4d191bfb8b2d82728c4"}, + {file = "setuptools-72.2.0.tar.gz", hash = "sha256:80aacbf633704e9c8bfa1d99fa5dd4dc59573efcf9e4042c13d3bcef91ac2ef9"}, +] + +[package.extras] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "ordered-set (>=3.1.1)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.11.*)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (<0.4)", "pytest-ruff (>=0.2.1)", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] + +[[package]] +name = "six" +version = "1.16.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, + {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, +] + +[[package]] +name = "smart-open" +version = "7.0.4" +description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)" +optional = false +python-versions = "<4.0,>=3.7" +files = [ + {file = "smart_open-7.0.4-py3-none-any.whl", hash = "sha256:4e98489932b3372595cddc075e6033194775165702887216b65eba760dfd8d47"}, + {file = "smart_open-7.0.4.tar.gz", hash = "sha256:62b65852bdd1d1d516839fcb1f6bc50cd0f16e05b4ec44b52f43d38bcb838524"}, +] + +[package.dependencies] +wrapt = "*" + +[package.extras] +all = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "paramiko", "requests", "zstandard"] +azure = ["azure-common", "azure-core", "azure-storage-blob"] +gcs = ["google-cloud-storage (>=2.6.0)"] +http = ["requests"] +s3 = ["boto3"] +ssh = ["paramiko"] +test = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "paramiko", "pytest", "pytest-rerunfailures", "requests", "responses", "zstandard"] +webhdfs = ["requests"] +zst = ["zstandard"] + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "stellargraph" +version = "1.3.0b0" +description = "Python library for machine learning on graphs" +optional = false +python-versions = ">=3.6.0, <3.9.0" +files = [] +develop = false + +[package.dependencies] +matplotlib = ">=2.2" +networkx = ">=2.2" +numpy = ">=1.14" +pandas = ">=0.24" +scikit_learn = ">=0.20" +scipy = ">=1.1.0" +tensorflow = ">=2.1.0" + +[package.extras] +demos = ["gensim (>=4.0.0)", "jupyter", "mplleaflet (==0.0.5)", "numba", "rdflib", "seaborn"] +igraph = ["python-igraph"] +neo4j = ["py2neo"] +test = ["black (>=19.3b0)", "commonmark (==0.9.1)", "coverage (>=4.4,<5.0)", "nbconvert (>=5.5.0)", "papermill (>=2.0.0)", "pytest (==5.3.1)", "pytest-benchmark (>=3.1)", "pytest-cov (>=2.6.0)", "rdflib", "treon (>=0.1.2)"] + +[package.source] +type = "git" +url = "https://github.com/stellargraph/stellargraph.git" +reference = "develop" +resolved_reference = "3c2c8c18ab4c5c16660f350d8e23d7dc39e738de" + +[[package]] +name = "tensorboard" +version = "2.14.0" +description = "TensorBoard lets you watch Tensors Flow" +optional = false +python-versions = ">=3.8" +files = [ + {file = "tensorboard-2.14.0-py3-none-any.whl", hash = "sha256:3667f9745d99280836ad673022362c840f60ed8fefd5a3e30bf071f5a8fd0017"}, +] + +[package.dependencies] +absl-py = ">=0.4" +google-auth = ">=1.6.3,<3" +google-auth-oauthlib = ">=0.5,<1.1" +grpcio = ">=1.48.2" +markdown = ">=2.6.8" +numpy = ">=1.12.0" +protobuf = ">=3.19.6" +requests = ">=2.21.0,<3" +setuptools = ">=41.0.0" +tensorboard-data-server = ">=0.7.0,<0.8.0" +werkzeug = ">=1.0.1" +wheel = ">=0.26" + +[[package]] +name = "tensorboard-data-server" +version = "0.7.2" +description = "Fast data loading for TensorBoard" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tensorboard_data_server-0.7.2-py3-none-any.whl", hash = "sha256:7e0610d205889588983836ec05dc098e80f97b7e7bbff7e994ebb78f578d0ddb"}, + {file = "tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:9fe5d24221b29625dbc7328b0436ca7fc1c23de4acf4d272f1180856e32f9f60"}, + {file = "tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl", hash = "sha256:ef687163c24185ae9754ed5650eb5bc4d84ff257aabdc33f0cc6f74d8ba54530"}, +] + +[[package]] +name = "tensorflow" +version = "2.7.2" +description = "TensorFlow is an open source machine learning framework for everyone." +optional = false +python-versions = "*" +files = [ + {file = "tensorflow-2.7.2-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:050c2ef8d432eb60f2cb6fc75d751fcb3008af6a86ad1147faea30cb59c275b1"}, + {file = "tensorflow-2.7.2-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:3c72b8653a539789ef36f8c1ad8266b9e676dff2293f0f7a68d9b26fc77a37f3"}, + {file = "tensorflow-2.7.2-cp37-cp37m-win_amd64.whl", hash = "sha256:1db663f9f59ba54a294b1f6530f131e90c7a0e6ea49fda5b2c6900e57b0c306a"}, + {file = "tensorflow-2.7.2-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:cb66d4a998af1ca979d6da33e925281596f52e5a9ba67b2295c53677f8379eee"}, + {file = "tensorflow-2.7.2-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:d4dbfab1568564b30bab876424fafd74c8a8715238b76284b5dd1cfe86c7881b"}, + {file = "tensorflow-2.7.2-cp38-cp38-win_amd64.whl", hash = "sha256:b9a7f344b93b953cab4c3f6ec3b6c1799eb538b6a1978d3a4b579d7a81ee7439"}, + {file = "tensorflow-2.7.2-cp39-cp39-macosx_10_11_x86_64.whl", hash = "sha256:99a85258505130b1f3ce203f11b3bb3c95442edefec96c0b221ce0d6541a92c8"}, + {file = "tensorflow-2.7.2-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:bb2115796e2e7738de1844aead493bc1f1122ff1fae65fc691bb1ce5a0fdd2aa"}, + {file = "tensorflow-2.7.2-cp39-cp39-win_amd64.whl", hash = "sha256:3e35d046d0be677239b5e832854bcb291ca79388fa406d9d7547bc3377a7efbb"}, +] + +[package.dependencies] +absl-py = ">=0.4.0" +astunparse = ">=1.6.0" +flatbuffers = ">=1.12,<3.0" +gast = ">=0.2.1,<0.5.0" +google-pasta = ">=0.1.1" +grpcio = ">=1.24.3,<2.0" +h5py = ">=2.9.0" +keras = ">=2.7.0rc0,<2.8" +keras-preprocessing = ">=1.1.1" +libclang = ">=9.0.1" +numpy = ">=1.14.5" +opt-einsum = ">=2.3.2" +protobuf = ">=3.9.2" +six = ">=1.12.0" +tensorboard = ">=2.6,<3.0" +tensorflow-estimator = ">=2.7.0rc0,<2.8" +tensorflow-io-gcs-filesystem = ">=0.21.0" +termcolor = ">=1.1.0" +typing-extensions = ">=3.6.6" +wheel = ">=0.32.0,<1.0" +wrapt = ">=1.11.0" + +[[package]] +name = "tensorflow-estimator" +version = "2.7.0" +description = "TensorFlow Estimator." +optional = false +python-versions = "*" +files = [ + {file = "tensorflow_estimator-2.7.0-py2.py3-none-any.whl", hash = "sha256:325b5a224864379242b7b76c6987ca544239be82579d33e68ec7c2bda57abc9d"}, +] + +[[package]] +name = "tensorflow-io-gcs-filesystem" +version = "0.21.0" +description = "TensorFlow IO" +optional = false +python-versions = ">=3.6, <3.10" +files = [ + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:db8659cce2b45a6689cf041c7745b60338d8158fc394627f916029980aa04e0d"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d5ce0de3c91fb3a47bd91e25081bcd3b3491d515ee45e6d2c63e899ab5e7739e"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-win_amd64.whl", hash = "sha256:8fc48d4a6f06a97b8a866d849844189ecd1d830de9b152276ea579d9772c0533"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:c28ca0dd37d1bb2110a62e9e7f7b0bbdf295add83b38fbe507082fd89f0ebc61"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7c54f1f334076a5514b9f7f537afe4c36fce4233f792ce6ada76651bfad9f2eb"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-win_amd64.whl", hash = "sha256:e22fcc4e6e924842fefc570f7fd0f6fd33e458154be8891b5a7bfd8380c6aa8c"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:95555c647c8330daf712a38d2b158f7a21d5ad77e8fd438360060b37cb8ca1fb"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b12f9d66c8433bb4a67d9cc6cdb14cf11c42d9fe65bdbe09128b6579a80f80e8"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-win_amd64.whl", hash = "sha256:e447d9c03dd7396292ba10dd39a3c6a2cfcb9332b67457592119c5e5d3e38cfe"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:020581f962e7156054c790d649ecc80518d7874e0def5b2f58f965a1998d45e3"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:603f73d61670954833b6ed87199a4a919e2a5dc015f34b20fdd235a611f37e81"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-win_amd64.whl", hash = "sha256:8c95c0ef2de4611a528ef210c233481dd7628c57ff3ef7f08c0f9708125d3ff8"}, +] + +[[package]] +name = "termcolor" +version = "2.4.0" +description = "ANSI color formatting for output in terminal" +optional = false +python-versions = ">=3.8" +files = [ + {file = "termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63"}, + {file = "termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a"}, +] + +[package.extras] +tests = ["pytest", "pytest-cov"] + +[[package]] +name = "theano" +version = "1.0.5" +description = "Optimizing compiler for evaluating mathematical expressions on CPUs and GPUs." +optional = false +python-versions = "*" +files = [ + {file = "Theano-1.0.5.tar.gz", hash = "sha256:6e9439dd53ba995fcae27bf20626074bfc2fff446899dc5c53cb28c1f9202e89"}, +] + +[package.dependencies] +numpy = ">=1.9.1" +scipy = ">=0.14" +six = ">=1.9.0" + +[package.extras] +doc = ["Sphinx (>=0.5.1)", "pygments"] +test = ["flake8", "nose (>=1.3.0)", "parameterized"] + +[[package]] +name = "threadpoolctl" +version = "3.5.0" +description = "threadpoolctl" +optional = false +python-versions = ">=3.8" +files = [ + {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, + {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, +] + +[[package]] +name = "tornado" +version = "6.4.1" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">=3.8" +files = [ + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8"}, + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698"}, + {file = "tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d"}, + {file = "tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7"}, + {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"}, +] + +[[package]] +name = "tqdm" +version = "4.66.5" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, + {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + +[[package]] +name = "traitlets" +version = "5.14.3" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +files = [ + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "typing-extensions" +version = "4.12.2" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, +] + +[[package]] +name = "tzdata" +version = "2024.1" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, + {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, +] + +[[package]] +name = "urllib3" +version = "2.2.2" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=3.8" +files = [ + {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, + {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, +] + +[package.extras] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +h2 = ["h2 (>=4,<5)"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "wcwidth" +version = "0.2.13" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +files = [ + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, +] + +[[package]] +name = "werkzeug" +version = "3.0.3" +description = "The comprehensive WSGI web application library." +optional = false +python-versions = ">=3.8" +files = [ + {file = "werkzeug-3.0.3-py3-none-any.whl", hash = "sha256:fc9645dc43e03e4d630d23143a04a7f947a9a3b5727cd535fdfe155a17cc48c8"}, + {file = "werkzeug-3.0.3.tar.gz", hash = "sha256:097e5bfda9f0aba8da6b8545146def481d06aa7d3266e7448e2cccf67dd8bd18"}, +] + +[package.dependencies] +MarkupSafe = ">=2.1.1" + +[package.extras] +watchdog = ["watchdog (>=2.3)"] + +[[package]] +name = "wheel" +version = "0.44.0" +description = "A built-package format for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "wheel-0.44.0-py3-none-any.whl", hash = "sha256:2376a90c98cc337d18623527a97c31797bd02bad0033d41547043a1cbfbe448f"}, + {file = "wheel-0.44.0.tar.gz", hash = "sha256:a29c3f2817e95ab89aa4660681ad547c0e9547f20e75b0562fe7723c9a2a9d49"}, +] + +[package.extras] +test = ["pytest (>=6.0.0)", "setuptools (>=65)"] + +[[package]] +name = "wrapt" +version = "1.16.0" +description = "Module for decorators, wrappers and monkey patching." +optional = false +python-versions = ">=3.6" +files = [ + {file = "wrapt-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ffa565331890b90056c01db69c0fe634a776f8019c143a5ae265f9c6bc4bd6d4"}, + {file = "wrapt-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e4fdb9275308292e880dcbeb12546df7f3e0f96c6b41197e0cf37d2826359020"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb2dee3874a500de01c93d5c71415fcaef1d858370d405824783e7a8ef5db440"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a88e6010048489cda82b1326889ec075a8c856c2e6a256072b28eaee3ccf487"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac83a914ebaf589b69f7d0a1277602ff494e21f4c2f743313414378f8f50a4cf"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:73aa7d98215d39b8455f103de64391cb79dfcad601701a3aa0dddacf74911d72"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:807cc8543a477ab7422f1120a217054f958a66ef7314f76dd9e77d3f02cdccd0"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bf5703fdeb350e36885f2875d853ce13172ae281c56e509f4e6eca049bdfb136"}, + {file = "wrapt-1.16.0-cp310-cp310-win32.whl", hash = "sha256:f6b2d0c6703c988d334f297aa5df18c45e97b0af3679bb75059e0e0bd8b1069d"}, + {file = "wrapt-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:decbfa2f618fa8ed81c95ee18a387ff973143c656ef800c9f24fb7e9c16054e2"}, + {file = "wrapt-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1a5db485fe2de4403f13fafdc231b0dbae5eca4359232d2efc79025527375b09"}, + {file = "wrapt-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75ea7d0ee2a15733684badb16de6794894ed9c55aa5e9903260922f0482e687d"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a452f9ca3e3267cd4d0fcf2edd0d035b1934ac2bd7e0e57ac91ad6b95c0c6389"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:43aa59eadec7890d9958748db829df269f0368521ba6dc68cc172d5d03ed8060"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72554a23c78a8e7aa02abbd699d129eead8b147a23c56e08d08dfc29cfdddca1"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d2efee35b4b0a347e0d99d28e884dfd82797852d62fcd7ebdeee26f3ceb72cf3"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6dcfcffe73710be01d90cae08c3e548d90932d37b39ef83969ae135d36ef3956"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:eb6e651000a19c96f452c85132811d25e9264d836951022d6e81df2fff38337d"}, + {file = "wrapt-1.16.0-cp311-cp311-win32.whl", hash = "sha256:66027d667efe95cc4fa945af59f92c5a02c6f5bb6012bff9e60542c74c75c362"}, + {file = "wrapt-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:aefbc4cb0a54f91af643660a0a150ce2c090d3652cf4052a5397fb2de549cd89"}, + {file = "wrapt-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5eb404d89131ec9b4f748fa5cfb5346802e5ee8836f57d516576e61f304f3b7b"}, + {file = "wrapt-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9090c9e676d5236a6948330e83cb89969f433b1943a558968f659ead07cb3b36"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94265b00870aa407bd0cbcfd536f17ecde43b94fb8d228560a1e9d3041462d73"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2058f813d4f2b5e3a9eb2eb3faf8f1d99b81c3e51aeda4b168406443e8ba809"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98b5e1f498a8ca1858a1cdbffb023bfd954da4e3fa2c0cb5853d40014557248b"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:14d7dc606219cdd7405133c713f2c218d4252f2a469003f8c46bb92d5d095d81"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:49aac49dc4782cb04f58986e81ea0b4768e4ff197b57324dcbd7699c5dfb40b9"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:418abb18146475c310d7a6dc71143d6f7adec5b004ac9ce08dc7a34e2babdc5c"}, + {file = "wrapt-1.16.0-cp312-cp312-win32.whl", hash = "sha256:685f568fa5e627e93f3b52fda002c7ed2fa1800b50ce51f6ed1d572d8ab3e7fc"}, + {file = "wrapt-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:dcdba5c86e368442528f7060039eda390cc4091bfd1dca41e8046af7c910dda8"}, + {file = "wrapt-1.16.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:d462f28826f4657968ae51d2181a074dfe03c200d6131690b7d65d55b0f360f8"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a33a747400b94b6d6b8a165e4480264a64a78c8a4c734b62136062e9a248dd39"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b3646eefa23daeba62643a58aac816945cadc0afaf21800a1421eeba5f6cfb9c"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ebf019be5c09d400cf7b024aa52b1f3aeebeff51550d007e92c3c1c4afc2a40"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:0d2691979e93d06a95a26257adb7bfd0c93818e89b1406f5a28f36e0d8c1e1fc"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:1acd723ee2a8826f3d53910255643e33673e1d11db84ce5880675954183ec47e"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:bc57efac2da352a51cc4658878a68d2b1b67dbe9d33c36cb826ca449d80a8465"}, + {file = "wrapt-1.16.0-cp36-cp36m-win32.whl", hash = "sha256:da4813f751142436b075ed7aa012a8778aa43a99f7b36afe9b742d3ed8bdc95e"}, + {file = "wrapt-1.16.0-cp36-cp36m-win_amd64.whl", hash = "sha256:6f6eac2360f2d543cc875a0e5efd413b6cbd483cb3ad7ebf888884a6e0d2e966"}, + {file = "wrapt-1.16.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a0ea261ce52b5952bf669684a251a66df239ec6d441ccb59ec7afa882265d593"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bd2d7ff69a2cac767fbf7a2b206add2e9a210e57947dd7ce03e25d03d2de292"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9159485323798c8dc530a224bd3ffcf76659319ccc7bbd52e01e73bd0241a0c5"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a86373cf37cd7764f2201b76496aba58a52e76dedfaa698ef9e9688bfd9e41cf"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:73870c364c11f03ed072dda68ff7aea6d2a3a5c3fe250d917a429c7432e15228"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b935ae30c6e7400022b50f8d359c03ed233d45b725cfdd299462f41ee5ffba6f"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:db98ad84a55eb09b3c32a96c576476777e87c520a34e2519d3e59c44710c002c"}, + {file = "wrapt-1.16.0-cp37-cp37m-win32.whl", hash = "sha256:9153ed35fc5e4fa3b2fe97bddaa7cbec0ed22412b85bcdaf54aeba92ea37428c"}, + {file = "wrapt-1.16.0-cp37-cp37m-win_amd64.whl", hash = "sha256:66dfbaa7cfa3eb707bbfcd46dab2bc6207b005cbc9caa2199bcbc81d95071a00"}, + {file = "wrapt-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1dd50a2696ff89f57bd8847647a1c363b687d3d796dc30d4dd4a9d1689a706f0"}, + {file = "wrapt-1.16.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:44a2754372e32ab315734c6c73b24351d06e77ffff6ae27d2ecf14cf3d229202"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e9723528b9f787dc59168369e42ae1c3b0d3fadb2f1a71de14531d321ee05b0"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbed418ba5c3dce92619656802cc5355cb679e58d0d89b50f116e4a9d5a9603e"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:941988b89b4fd6b41c3f0bfb20e92bd23746579736b7343283297c4c8cbae68f"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6a42cd0cfa8ffc1915aef79cb4284f6383d8a3e9dcca70c445dcfdd639d51267"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1ca9b6085e4f866bd584fb135a041bfc32cab916e69f714a7d1d397f8c4891ca"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d5e49454f19ef621089e204f862388d29e6e8d8b162efce05208913dde5b9ad6"}, + {file = "wrapt-1.16.0-cp38-cp38-win32.whl", hash = "sha256:c31f72b1b6624c9d863fc095da460802f43a7c6868c5dda140f51da24fd47d7b"}, + {file = "wrapt-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:490b0ee15c1a55be9c1bd8609b8cecd60e325f0575fc98f50058eae366e01f41"}, + {file = "wrapt-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9b201ae332c3637a42f02d1045e1d0cccfdc41f1f2f801dafbaa7e9b4797bfc2"}, + {file = "wrapt-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2076fad65c6736184e77d7d4729b63a6d1ae0b70da4868adeec40989858eb3fb"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5cd603b575ebceca7da5a3a251e69561bec509e0b46e4993e1cac402b7247b8"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b47cfad9e9bbbed2339081f4e346c93ecd7ab504299403320bf85f7f85c7d46c"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8212564d49c50eb4565e502814f694e240c55551a5f1bc841d4fcaabb0a9b8a"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5f15814a33e42b04e3de432e573aa557f9f0f56458745c2074952f564c50e664"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db2e408d983b0e61e238cf579c09ef7020560441906ca990fe8412153e3b291f"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:edfad1d29c73f9b863ebe7082ae9321374ccb10879eeabc84ba3b69f2579d537"}, + {file = "wrapt-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed867c42c268f876097248e05b6117a65bcd1e63b779e916fe2e33cd6fd0d3c3"}, + {file = "wrapt-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:eb1b046be06b0fce7249f1d025cd359b4b80fc1c3e24ad9eca33e0dcdb2e4a35"}, + {file = "wrapt-1.16.0-py3-none-any.whl", hash = "sha256:6906c4100a8fcbf2fa735f6059214bb13b97f75b1a61777fcf6432121ef12ef1"}, + {file = "wrapt-1.16.0.tar.gz", hash = "sha256:5f370f952971e7d17c7d1ead40e49f32345a7f7a5373571ef44d800d06b1899d"}, +] + +[[package]] +name = "zipp" +version = "3.20.0" +description = "Backport of pathlib-compatible object wrapper for zip files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "zipp-3.20.0-py3-none-any.whl", hash = "sha256:58da6168be89f0be59beb194da1250516fdaa062ccebd30127ac65d30045e10d"}, + {file = "zipp-3.20.0.tar.gz", hash = "sha256:0145e43d89664cfe1a2e533adc75adafed82fe2da404b4bbb6b026c0157bdb31"}, +] + +[package.extras] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] + +[metadata] +lock-version = "2.0" +python-versions = "~3.8" +content-hash = "b805b28040247e202be1de83ad9f1b46bc862e2a0676c296d8d5475e9c766d9a" diff --git a/Chapter05/pyproject.toml b/Chapter05/pyproject.toml new file mode 100644 index 0000000..503e223 --- /dev/null +++ b/Chapter05/pyproject.toml @@ -0,0 +1,28 @@ +[tool.poetry] +name = "Graph Machine Learning - Chapter 5" +version = "1.0.0" +description = "" +authors = ["Enrico Deusebio "] +packages = [] + +[tool.poetry.dependencies] +python = "~3.8" +ipykernel = ">=6.0.0" +networkx = "==2.5" +matplotlib = "==3.2.2" +node2vec = "==0.3.3" +karateclub = "==1.0.19" +gensim = "==3.8.3" +communities = "==2.2.0" +scikit-learn = "==0.24.0" +chardet = "==5.2.0" +tensorflow = "^2.6.0" +tensorflow-io-gcs-filesystem = "==0.21.0" # This needs pinning - see https://stackoverflow.com/a/76477590 +protobuf= "^3.20" +nxt-gem = { git="https://github.com/palash1992/GEM.git", branch="master" } +# This is what is holding us back to python 3.8 +stellargraph = { git="https://github.com/stellargraph/stellargraph.git", branch="develop" } + +[build-system] +requires = ["poetry-core"] +build-backend = "poetry.core.masonry.api" \ No newline at end of file From 77bea648300a254134adb2c2c59f043ddebc157b Mon Sep 17 00:00:00 2001 From: deusebio Date: Tue, 1 Oct 2024 22:26:42 +0200 Subject: [PATCH 10/31] [MISC] Split images (#7) --- .github/workflows/ci.yaml | 28 ++- Chapter01/01_Introduction_Networkx.ipynb | 5 + Chapter01/02_Graph_metrics.ipynb | 5 + Chapter01/03_Graphs_Benchmarks.ipynb | 5 + Chapter02/01_embedding_examples.ipynb | 2 +- Chapter03/01_Shallow_Embeddings.ipynb | 2 +- ...03_Structural_deep_neural_embeddings.ipynb | 2 +- Chapter03/04_Graph_Neural_Network.ipynb | 2 +- .../02_community_detection_algorithms.ipynb | 161 ++++++++++-------- docker/Dockerfile | 20 ++- Chapter01/utils.py => utils.py | 0 11 files changed, 149 insertions(+), 83 deletions(-) rename Chapter01/utils.py => utils.py (100%) diff --git a/.github/workflows/ci.yaml b/.github/workflows/ci.yaml index 18dd20b..46b0c88 100644 --- a/.github/workflows/ci.yaml +++ b/.github/workflows/ci.yaml @@ -10,16 +10,37 @@ on: jobs: build: + strategy: + fail-fast: false + max-parallel: 5 + matrix: + chapter: + - name: chap1 + folder: Chapter01 + - name: chap2 + folder: Chapter02 + - name: chap3 + folder: Chapter03 + - name: chap6 + folder: Chapter06 runs-on: ubuntu-latest + name: Image ${{ matrix.chapter.name }} steps: - name: Checkout repository uses: actions/checkout@v3 + - name: Extract branch name + shell: bash + run: echo "branch=${GITHUB_HEAD_REF:-${GITHUB_REF#refs/heads/}}" >> $GITHUB_OUTPUT + id: extract_branch + - name: Build Image id: build run: | cd docker - docker build . -t graph-machine-learning:latest --no-cache + docker build . --target ${{ matrix.chapter.name }} \ + --build-arg branch=${{ steps.extract_branch.outputs.branch }} \ + -t graph-machine-learning:latest --no-cache - name: Test Image id: tests @@ -32,10 +53,7 @@ jobs: --name graph-machine-learning-box \ graph-machine-learning:latest - # Run the tests only for chapters managed by poetry - CHAPTERS=$(find Ch* -name poetry.lock -print0 | sed -e 's/\/poetry.lock//g' | xargs -0) - # Run tests cd docker - ./tests.sh $CHAPTERS \ No newline at end of file + ./tests.sh ${{ matrix.chapter.folder }} \ No newline at end of file diff --git a/Chapter01/01_Introduction_Networkx.ipynb b/Chapter01/01_Introduction_Networkx.ipynb index adf86d8..62e72bf 100644 --- a/Chapter01/01_Introduction_Networkx.ipynb +++ b/Chapter01/01_Introduction_Networkx.ipynb @@ -19,6 +19,11 @@ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "\n", + "import os\n", + "import sys\n", + "\n", + "sys.path.append(f\"{os.getcwd()}/..\")\n", + "\n", "from utils import draw_graph" ] }, diff --git a/Chapter01/02_Graph_metrics.ipynb b/Chapter01/02_Graph_metrics.ipynb index d331bc1..9be3d4b 100644 --- a/Chapter01/02_Graph_metrics.ipynb +++ b/Chapter01/02_Graph_metrics.ipynb @@ -23,6 +23,11 @@ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "\n", + "import os\n", + "import sys\n", + "\n", + "sys.path.append(f\"{os.getcwd()}/..\")\n", + "\n", "from utils import draw_graph, draw_enhanced_path" ] }, diff --git a/Chapter01/03_Graphs_Benchmarks.ipynb b/Chapter01/03_Graphs_Benchmarks.ipynb index a01b63e..0d644af 100644 --- a/Chapter01/03_Graphs_Benchmarks.ipynb +++ b/Chapter01/03_Graphs_Benchmarks.ipynb @@ -19,6 +19,11 @@ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "\n", + "import os\n", + "import sys\n", + "\n", + "sys.path.append(f\"{os.getcwd()}/..\")\n", + "\n", "from utils import draw_graph, FIGURES_DIR, DATA_DIR" ] }, diff --git a/Chapter02/01_embedding_examples.ipynb b/Chapter02/01_embedding_examples.ipynb index fd79ec8..7c3e93c 100644 --- a/Chapter02/01_embedding_examples.ipynb +++ b/Chapter02/01_embedding_examples.ipynb @@ -18,7 +18,7 @@ "\n", "sys.path.append(f\"{os.getcwd()}/..\")\n", "\n", - "from Chapter01.utils import draw_graph" + "from utils import draw_graph" ] }, { diff --git a/Chapter03/01_Shallow_Embeddings.ipynb b/Chapter03/01_Shallow_Embeddings.ipynb index 70731fb..78d3554 100644 --- a/Chapter03/01_Shallow_Embeddings.ipynb +++ b/Chapter03/01_Shallow_Embeddings.ipynb @@ -18,7 +18,7 @@ "\n", "sys.path.append(f\"{os.getcwd()}/..\")\n", "\n", - "from Chapter01.utils import draw_graph" + "from utils import draw_graph" ] }, { diff --git a/Chapter03/03_Structural_deep_neural_embeddings.ipynb b/Chapter03/03_Structural_deep_neural_embeddings.ipynb index 7cea7e5..7be79cb 100644 --- a/Chapter03/03_Structural_deep_neural_embeddings.ipynb +++ b/Chapter03/03_Structural_deep_neural_embeddings.ipynb @@ -18,7 +18,7 @@ "\n", "sys.path.append(f\"{os.getcwd()}/..\")\n", "\n", - "from Chapter01.utils import DATA_DIR" + "from utils import DATA_DIR" ] }, { diff --git a/Chapter03/04_Graph_Neural_Network.ipynb b/Chapter03/04_Graph_Neural_Network.ipynb index a9aa713..4f1183f 100644 --- a/Chapter03/04_Graph_Neural_Network.ipynb +++ b/Chapter03/04_Graph_Neural_Network.ipynb @@ -31,7 +31,7 @@ "\n", "sys.path.append(f\"{os.getcwd()}/..\")\n", "\n", - "from Chapter01.utils import draw_graph, FIGURES_DIR\n", + "from utils import draw_graph, FIGURES_DIR\n", "\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt" diff --git a/Chapter05/02_community_detection_algorithms.ipynb b/Chapter05/02_community_detection_algorithms.ipynb index 8d67ec1..1bce05d 100644 --- a/Chapter05/02_community_detection_algorithms.ipynb +++ b/Chapter05/02_community_detection_algorithms.ipynb @@ -80,7 +80,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -89,21 +89,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 8, "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'embeddings' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[5], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m tsne \u001b[38;5;241m=\u001b[39m TSNE(n_components\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m) \n\u001b[0;32m----> 3\u001b[0m emb2d \u001b[38;5;241m=\u001b[39m tsne\u001b[38;5;241m.\u001b[39mfit_transform(\u001b[43membeddings\u001b[49m)\n", - "\u001b[0;31mNameError\u001b[0m: name 'embeddings' is not defined" - ] - } - ], + "outputs": [], "source": [ "tsne = TSNE(n_components=2) \n", "\n", @@ -112,29 +100,27 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 7, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUqElEQVR4nO3df5Dc9X3f8efLOhCiniIszqmRwJILpiNCCukGj6d26praiGQSEcw0ktNEbWmpJ+GP1GMSMW47hGbGxrQh7ZhOrCnMMKQNsilhbgZ3NI1p6iZlKCvAAdlVfAhnJOG2h/jRIcgG4Xf/uC9kWa+4Pd2ubu+r52Nm577fz+e9t+9dnV77ve/3u/dNVSFJaq93LHcDkqTxMuglqeUMeklqOYNeklrOoJeklpta7gb6nXPOObVx48blbkOSVpS9e/c+V1XTg+YmLug3btxIt9td7jYkaUVJ8mfHm3PXjSS1nEEvSS1n0EtSyxn0ktRyBr0ktdzEnXVzoh54/DC37dnPsy8e5dy1a7jxyou4+rL1y92WJC1o3PnViqB/4PHD3HT/kxx97XUADr94lJvufxLAsJc00U5GfrVi181te/a/+SK94ehrr/Oru59YnoYkaQibdj7Ir+5+YmB+3bZn/8geZ6igT7Ilyf4ks0l2DphfnWR3M/9Iko3N+C8keaLn9oMkl46s+8azLx497tymnQ+O+uEkack27XyQt7sayNvl2mItGPRJVgF3AFcBm4HtSTb3lV0HvFBVFwC3A7cCVNV/qKpLq+pS4BeBZ6rqiZF13zh37ZrjznlZFUmTaKFsertcW6xhtugvB2ar6kBVvQrcC2ztq9kK3N0s3wdckSR9Ndub+47cjVdeNI5vK0nLYs1pq0aaa8ME/XrgYM/6oWZsYE1VHQNeAtb11fw88HuDHiDJ9Um6Sbpzc3PD9P0WHnCV1Cafu+aSkebaSTkYm+QDwCtV9dSg+araVVWdqupMTw/842sLP8YixyVpOb1dZo1643WYoD8MnNezvqEZG1iTZAo4CzjSM7+N42zNj8ozn//pH3rh0oxL0qQ5mZk1zHn0jwIXJtnEfKBvAz7ZVzMD7AAeBq4FHqqqAkjyDuDvAh8eVdPHY6hLWklOVmYtGPRVdSzJDcAeYBVwV1XtS3IL0K2qGeBO4J4ks8DzzL8ZvOEngYNVdWD07UuSFpJmw3tidDqd8sIjkrQ4SfZWVWfQXCs+GStJOj6DXpJazqCXpJYz6CWp5Qx6SWo5g16SWs6gl6SWM+glqeUMeklqOYNeklrOoJekljPoJanlDHpJajmDXpJazqCXpJYz6CWp5Qx6SWo5g16SWs6gl6SWGyrok2xJsj/JbJKdA+ZXJ9ndzD+SZGPP3I8leTjJviRPJjljhP1LkhawYNAnWQXcAVwFbAa2J9ncV3Yd8EJVXQDcDtza3HcK+F3gU1V1MfAR4LWRdS9JWtAwW/SXA7NVdaCqXgXuBbb21WwF7m6W7wOuSBLg48CfVNU3AKrqSFW9PprWJUnDGCbo1wMHe9YPNWMDa6rqGPASsA54P1BJ9iR5LMmvDXqAJNcn6Sbpzs3NLfY5SJLexrgPxk4BHwJ+ofn6c0mu6C+qql1V1amqzvT09JhbkqRTyzBBfxg4r2d9QzM2sKbZL38WcIT5rf+vV9VzVfUK8FXgx5fatCRpeMME/aPAhUk2JTkd2AbM9NXMADua5WuBh6qqgD3AJUnObN4A/hbwzdG0LkkaxtRCBVV1LMkNzIf2KuCuqtqX5BagW1UzwJ3APUlmgeeZfzOgql5I8lvMv1kU8NWqenBMz0WSNEDmN7wnR6fTqW63u9xtSNKKkmRvVXUGzfnJWElqOYNeklrOoJekljPoJanlDHpJajmDXpJazqCXpJYz6CWp5Qx6SWo5g16SWs6gl6SWM+glqeUMeklqOYNeklrOoJekljPoJanlDHpJajmDXpJazqCXpJYbKuiTbEmyP8lskp0D5lcn2d3MP5JkYzO+McnRJE80t98Zcf+SpAVMLVSQZBVwB/Ax4BDwaJKZqvpmT9l1wAtVdUGSbcCtwM83c09X1aWjbVuSNKxhtugvB2ar6kBVvQrcC2ztq9kK3N0s3wdckSSja1OSdKKGCfr1wMGe9UPN2MCaqjoGvASsa+Y2JXk8yX9L8uEl9itJWqQFd90s0XeB86vqSJK/ATyQ5OKq+n+9RUmuB64HOP/888fckiSdWobZoj8MnNezvqEZG1iTZAo4CzhSVd+vqiMAVbUXeBp4f/8DVNWuqupUVWd6enrxz0KSdFzDBP2jwIVJNiU5HdgGzPTVzAA7muVrgYeqqpJMNwdzSfI+4ELgwGhalyQNY8FdN1V1LMkNwB5gFXBXVe1LcgvQraoZ4E7gniSzwPPMvxkA/CRwS5LXgB8An6qq58fxRCRJg6WqlruHt+h0OtXtdpe7DUlaUZLsrarOoDk/GStJLWfQS1LLGfSS1HIGvSS1nEEvSS1n0EtSyxn0ktRyBr0ktZxBL0ktZ9BLUssZ9JLUcga9JLWcQS9JLWfQS1LLGfSS1HIGvSS1nEEvSS1n0EtSyxn0ktRyBr0ktdxQQZ9kS5L9SWaT7BwwvzrJ7mb+kSQb++bPT/Jyks+MqG9J0pAWDPokq4A7gKuAzcD2JJv7yq4DXqiqC4DbgVv75n8L+M9Lb1eStFjDbNFfDsxW1YGqehW4F9jaV7MVuLtZvg+4IkkAklwNPAPsG0nHkqRFGSbo1wMHe9YPNWMDa6rqGPASsC7JO4FfB37j7R4gyfVJukm6c3Nzw/YuSRrCuA/G3gzcXlUvv11RVe2qqk5Vdaanp8fckiSdWqaGqDkMnNezvqEZG1RzKMkUcBZwBPgAcG2SLwBrgR8k+V5VfXGpjUuShjNM0D8KXJhkE/OBvg34ZF/NDLADeBi4Fnioqgr48BsFSW4GXjbkJenkWjDoq+pYkhuAPcAq4K6q2pfkFqBbVTPAncA9SWaB55l/M5AkTYDMb3hPjk6nU91ud7nbkKQVJcnequoMmvOTsZLUcga9JLWcQS9JLWfQS1LLGfSS1HIGvSS1nEEvSS1n0EtSyxn0ktRyBr0ktZxBL0ktZ9BLUssZ9JLUcga9JLWcQS9JLWfQS1LLGfSS1HIGvSS1nEEvSS03VNAn2ZJkf5LZJDsHzK9OsruZfyTJxmb88iRPNLdvJPm5EfcvSVrAgkGfZBVwB3AVsBnYnmRzX9l1wAtVdQFwO3BrM/4U0KmqS4EtwJeSTI2od0nSEIbZor8cmK2qA1X1KnAvsLWvZitwd7N8H3BFklTVK1V1rBk/A6hRNC1JGt4wQb8eONizfqgZG1jTBPtLwDqAJB9Isg94EvhUT/C/Kcn1SbpJunNzc4t/FpKk4xr7wdiqeqSqLgZ+ArgpyRkDanZVVaeqOtPT0+NuSZJOKcME/WHgvJ71Dc3YwJpmH/xZwJHegqr6FvAy8KMn2qwkafGGCfpHgQuTbEpyOrANmOmrmQF2NMvXAg9VVTX3mQJI8l7grwHfGUnnkqShLHgGTFUdS3IDsAdYBdxVVfuS3AJ0q2oGuBO4J8ks8DzzbwYAHwJ2JnkN+AHwy1X13DieiCRpsFRN1okwnU6nut3ucrchSStKkr1V1Rk05ydjJanlDHpJajmDXpJazqCXpJYz6CWp5Qx6SWo5g16SWs6gl6SWM+glqeUMeklqOYNeklrOoJekljPoJanlDHpJajmDXpJazqCXpJYz6CWp5Qx6SWo5g16SWm6ooE+yJcn+JLNJdg6YX51kdzP/SJKNzfjHkuxN8mTz9aMj7l+StIAFgz7JKuAO4CpgM7A9yea+suuAF6rqAuB24NZm/DngZ6rqEmAHcM+oGpckDWeYLfrLgdmqOlBVrwL3Alv7arYCdzfL9wFXJElVPV5Vzzbj+4A1SVaPonFJ0nCGCfr1wMGe9UPN2MCaqjoGvASs66v5BPBYVX2//wGSXJ+km6Q7Nzc3bO+SpCGclIOxSS5mfnfOPxk0X1W7qqpTVZ3p6emT0ZIknTKGCfrDwHk96xuasYE1SaaAs4AjzfoG4PeBX6qqp5fasCRpcYYJ+keBC5NsSnI6sA2Y6auZYf5gK8C1wENVVUnWAg8CO6vqj0fUsyRpERYM+maf+w3AHuBbwJeral+SW5L8bFN2J7AuySzwaeCNUzBvAC4A/kWSJ5rbu0f+LCRJx5WqWu4e3qLT6VS3213uNiRpRUmyt6o6g+b8ZKwktZxBL0ktZ9BLUssZ9JLUcga9JLWcQS9JLWfQS1LLGfSS1HIGvSS1nEEvSS1n0EtSyxn0ktRyBr0ktZxBL0ktZ9BLUssZ9JLUcga9JLWcQS9JLWfQS1LLDRX0SbYk2Z9kNsnOAfOrk+xu5h9JsrEZX5fkvyZ5OckXR9y7JGkICwZ9klXAHcBVwGZge5LNfWXXAS9U1QXA7cCtzfj3gH8OfGZkHUuSFmWYLfrLgdmqOlBVrwL3Alv7arYCdzfL9wFXJElV/XlV/RHzgS9JWgbDBP164GDP+qFmbGBNVR0DXgLWjaJBSdLSTMTB2CTXJ+km6c7NzS13O5LUKsME/WHgvJ71Dc3YwJokU8BZwJFhm6iqXVXVqarO9PT0sHeTJA1haoiaR4ELk2xiPtC3AZ/sq5kBdgAPA9cCD1VVjbJR6UQ98Phhbtuzn2dfPMq5a9dw45UXcfVl/XsfT50+dOpZMOir6liSG4A9wCrgrqral+QWoFtVM8CdwD1JZoHnmX8zACDJd4C/DJye5Grg41X1zZE/E2mABx4/zE33P8nR114H4PCLR7np/icBTmrITkofOjVl0ja8O51Odbvd5W5DLfE3P/8Qh188+kPj69eu4Y93fvSU60PtlWRvVXUGzU3EwVhpXJ4dEK5vN972PnRqMujVaueuXbOo8bb3oVOTQa9Wu/HKi1hz2qq3jK05bRU3XnnRKdmHTk3DnHUjrVhvHOhc7rNdJqUPnZo8GCtJLeDBWEk6hRn0ktRyBr0ktZxBL0ktZ9BLUssZ9JLUcga9JLWcQS9JLWfQS1LLGfSS1HIGvSS1nEEvSS3nX6+U3kbvdV7XnnkaVfDS0df865NaUQx66Tj6r/P6wiuvvTnnNV+1krjrRjqO2/bsfzPkBzn62uvctmf/SexIOjFDBX2SLUn2J5lNsnPA/Ooku5v5R5Js7Jm7qRnfn+TKEfYujdUw13P1mq9aCRYM+iSrgDuAq4DNwPYkm/vKrgNeqKoLgNuBW5v7bga2ARcDW4B/13w/aeINcz1Xr/mqlWCYLfrLgdmqOlBVrwL3Alv7arYCdzfL9wFXJEkzfm9Vfb+qngFmm+8nTbxB13nt5TVftVIME/TrgYM964easYE1VXUMeAlYN+R9SXJ9km6S7tzc3PDdS2N09WXr+dw1l7B+7RoCnH3maaxdcxoB1q9dw+euucQDsVoRJuKsm6raBeyC+WvGLnM70puuvmy9Ya4Vb5gt+sPAeT3rG5qxgTVJpoCzgCND3leSNEbDBP2jwIVJNiU5nfmDqzN9NTPAjmb5WuChqqpmfFtzVs4m4ELgf46mdUnSMBbcdVNVx5LcAOwBVgF3VdW+JLcA3aqaAe4E7kkyCzzP/JsBTd2XgW8Cx4Bfqarjn5gsSRq5zG94T45Op1Pdbne525CkFSXJ3qrqDJrzk7GS1HITt0WfZA74s+Xu4zjOAZ5b7iaGZK/jYa+jt1L6hMnu9b1VNT1oYuKCfpIl6R7vV6NJY6/jYa+jt1L6hJXVay933UhSyxn0ktRyBv3i7FruBhbBXsfDXkdvpfQJK6vXN7mPXpJazi16SWo5g16SWs6g75PkXUn+S5JvN1/PPk7djqbm20l29IyfnmRXkj9N8r+SfGJSe+2Zn0ny1Lj6XGqvSc5M8mDzeu5L8vkx9LdirqJ2or0m+ViSvUmebL5+dFJ77Zk/P8nLST4zyb0m+bEkDzc/n08mOWPc/S5KVXnruQFfAHY2yzuBWwfUvAs40Hw9u1k+u5n7DeA3m+V3AOdMaq/N/DXAfwSemtTXFTgT+NtNzenAfweuGmFvq4Cngfc13/8bwOa+ml8GfqdZ3gbsbpY3N/WrgU3N91k1xtdxKb1eBpzbLP8ocHjM/+Yn3GvP/H3AV4DPTGqvzP/NsD8B/nqzvm6cPwMn9PyWu4FJuwH7gfc0y+8B9g+o2Q58qWf9S8D2Zvkg8JdWSK/vBP6oCatxB/2Seu2r+zfAPx5hbx8E9vSs3wTc1FezB/hgszzF/Kcj01/bWzem1/GEe+2rCfN/gHD1pPYKXA3cBtx8EoJ+KT8DPwX87jj7W+rNXTc/7Eeq6rvN8v8GfmRAzcArZyVZ26z/yySPJflKkkH3H5UT7vWNPoF/Dbwytg7/wlJ7BaB5jX8G+NoIexv7VdRGaCm99voE8FhVfX9Mfb6lj8bQvSZ5J/DrzP+GfDIs5XV9P1BJ9jT/73/tJPS7KBNxhamTLckfAH9lwNRne1eqqpIs5vzTKeYvrvI/qurTST4N/CvgFyet1ySXAn+1qv5p/37REzXG1/WN7z8F/B7wb6vqwIl1qSQXA7cCH1/uXt7GzcDtVfVykuXuZSFTwIeAn2B+o+lrzV+SHOXGyJKckkFfVX/neHNJ/k+S91TVd5O8B/i/A8oOAx/pWd8A/CHzV9V6Bbi/Gf8KcN2E9vpBoJPkO8z/HLw7yR9W1Uc4QWPs9Q27gG9X1W+faI/HsZirqB3K8l5FbSm9kmQD8PvAL1XV02Psc6m9fgC4NskXgLXAD5J8r6q+OIG9HgK+XlXPAST5KvDjjPa3zqVZ7n1Hk3Zjfp9g70HDLwyoeRfwDPMHCs9ult/VzN0LfLRZ/vvAVya1156ajYx/H/1SX9ffBP4T8I4x9DbF/IHfTfzFgbiL+2p+hbceiPtys3wxbz0Ye4DxHoxdSq9rm/prxvlvPYpe+2puZvz76Jfyup4NPMb8SQNTwB8AP30yXuOhn99yNzBpN+b3uX0N+HbzD/ZG0HSAf99T9w+B2eb2D3rG3wt8nfmj8F8Dzp/UXnvmNzL+oD/hXpnfuirgW8ATze0fjbi/nwL+lPkzLz7bjN0C/GyzfAbzv6HNMn85zPf13Pezzf32M8KzgUbdK/DPgD/veQ2fAN49ib32fY+bGXPQj+Bn4O8B+4CnGLARs9w3/wSCJLWcZ91IUssZ9JLUcga9JLWcQS9JLWfQS1LLGfSS1HIGvSS13P8HFfnj/Ipb7c8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGdCAYAAAAfTAk2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3xU9Z3/8fcMuaE4Mw0kGQKJSrWbxHuDSabbXXdN2iBaQcJDZYMVzMKqBHeBuob1QnG30ta2KFZk3eryYCVqcV1dlKZFoKg4DRgXyyVJRWm5TqLGzICQZGDO7w9/TB1zIcGcXL55PR+P86DzPd/vme+HRM673znnjMOyLEsAAAAGcfb3BAAAAHobAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYJy4/p5Af4hEIjp06JDOOeccORyO/p4OAADoBsuydOTIEaWnp8vp7HqNZkgGnEOHDikjI6O/pwEAAM7A/v37NXbs2C77DMmAc84550j67C/I5XL182wAAEB3hEIhZWRkRM/jXRmSAefUx1Iul4uAAwDAINOdy0u4yBgAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHH6JOA8/vjjOu+885SUlKT8/Hxt3bq1y/5r1qxRVlaWkpKSdMkll2jdunUx+y3L0gMPPKDRo0dr+PDhKioq0nvvvWdnCQAAYBCxPeA8//zzmj9/vhYtWqR33nlHl112mYqLi9XY2Nhh/7feekvTpk1TWVmZ/u///k+TJ0/W5MmTtXPnzmifH//4x1q2bJlWrFih6upqnX322SouLlZLS4vd5QAAgEHAYVmWZecb5Ofn68orr9TPf/5zSZ99TUJGRobmzp2rioqKdv1vuukmffrpp3rllVeibQUFBbr88su1YsUKWZal9PR0LViwQN/73vckScFgUGlpaVq5cqVuvvnm084pFArJ7XYrGAzyHBwAAAaJnpy/bV3BaWtrU01NjYqKiv78hk6nioqK5Pf7Oxzj9/tj+ktScXFxtP/evXsVCARi+rjdbuXn53d6zNbWVoVCoZgNgDlORiz53/9YL28/KP/7H+tkxOqwDcDQYeuTjD/66COdPHlSaWlpMe1paWmqq6vrcEwgEOiwfyAQiO4/1dZZny9asmSJFi9efEY1ABjYqnYe1uK1u3U4+OePqD1nxUuSmo+Fo22j3Ula9J0cTbh4dJ/PEUDfGxJ3US1cuFDBYDC67d+/v7+nBKAXVO08rDueeScm3EifBZvPhxtJCgRbdMcz76hq5+G+nCKAfmJrwBk1apSGDRumhoaGmPaGhgZ5vd4Ox3i93i77n/qzJ8dMTEyMfu8U3z8FmOFkxNLitbvV3Q+eTvVbvHY3H1cBQ4CtASchIUG5ubnasGFDtC0SiWjDhg3y+XwdjvH5fDH9JWn9+vXR/ueff768Xm9Mn1AopOrq6k6PCcA8W/c2tVu5OR1L0uFgi7bubbJnUgAGDNu/TXz+/Pm69dZbNX78eOXl5emRRx7Rp59+qpkzZ0qSvvvd72rMmDFasmSJJOkf//EfddVVV+mnP/2prr32Wj333HN6++239eSTT0r67BtE/+mf/kn/9m//pgsvvFDnn3++7r//fqWnp2vy5Ml2lwNggGg8cuaPhfgyYwEMDrYHnJtuukkffvihHnjgAQUCAV1++eWqqqqKXiS8b98+OZ1/Xkj6xje+ocrKSt133336l3/5F1144YV66aWXdPHFF0f7/PM//7M+/fRTzZ49W83NzfrmN7+pqqoqJSUl2V0OgAEi9Zwz/+/9y4wFMDjY/hycgYjn4ACD38mIpW/+aKMCwZZuX4fjkOR1J+nNe67WMKfDzukBsMGAeQ4OANhlmNOhRd/JkfRZcDmdU30WfSeHcAMMAQQcAIPWhItH64npX5fXHfuRk+es+OizcE7xupP0xPSv8xwcYIiw/RocALDThItH61s5Xm3d26TGIy1KPSdJeecnS1K7NlZugKGDgANg0BvmdMj31ZHt2jtqAzA08BEVAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAceL6ewIAhoaTEUtb9zap8UiLUs9JUt75yRrmdPT3tHrMlDoA0xFwANiuaudhLV67W4eDLdG20e4kLfpOjiZcPLofZ9YzptQBDAV8RAXAVlU7D+uOZ96JCQWSFAi26I5n3lHVzsP9NLOeMaUOYKgg4ACwzcmIpcVrd8vqYN+ptsVrd+tkpKMeA4cpdQBDCQEHgG227m1qt+LxeZakw8EWbd3b1HeTOgOm1AEMJQQcALZpPNJ5KDiTfv3FlDqAoYSAA8A2qeck9Wq//mJKHcBQQsABYJu885M12p2kzm6iduizu5Dyzk/uy2n1mCl1AEMJAQeAbYY5HVr0nRxJahcOTr1e9J2cAf8cGVPqAIYSAg4AW024eLSemP51ed2xH9943Ul6YvrXB83zY0ypAxgqHJZl2XJfY1NTk+bOnau1a9fK6XSqpKREjz76qEaMGNHpmJaWFi1YsEDPPfecWltbVVxcrOXLlystLS3a56677tKWLVu0c+dOZWdna/v27T2eWygUktvtVjAYlMvlOqP6APSMKU8ANqUOYDDqyfnbticZl5aW6vDhw1q/fr3C4bBmzpyp2bNnq7KystMx8+bN06uvvqo1a9bI7XarvLxcU6ZM0ZYtW2L63Xbbbaqurtbvf/97u6YPoJcNczrk++rI/p7Gl2ZKHYDpbFnBqa2tVU5OjrZt26bx48dLkqqqqjRx4kQdOHBA6enp7cYEg0GlpKSosrJSU6dOlSTV1dUpOztbfr9fBQUFMf2///3v66WXXmIFBwCAIaIn529brsHx+/3yeDzRcCNJRUVFcjqdqq6u7nBMTU2NwuGwioqKom1ZWVnKzMyU3++3Y5oAAMBQtnxEFQgElJqaGvtGcXFKTk5WIBDodExCQoI8Hk9Me1paWqdjuqu1tVWtra3R16FQ6EsdDwAADGw9WsGpqKiQw+Hocqurq7NrrmdsyZIlcrvd0S0jI6O/pwQAAGzUoxWcBQsWaMaMGV32GTdunLxerxobG2PaT5w4oaamJnm93g7Heb1etbW1qbm5OWYVp6GhodMx3bVw4ULNnz8/+joUChFyAAAwWI8CTkpKilJSUk7bz+fzqbm5WTU1NcrNzZUkbdy4UZFIRPn5+R2Oyc3NVXx8vDZs2KCSkhJJUn19vfbt2yefz9eTabaTmJioxMTEL3UMAAAweNhykXF2drYmTJigWbNmaevWrdqyZYvKy8t18803R++gOnjwoLKysrR161ZJktvtVllZmebPn69NmzappqZGM2fOlM/ni7mDas+ePdq+fbsCgYCOHz+u7du3a/v27Wpra7OjFAAAMAjZ9hyc1atXq7y8XIWFhdEH/S1btiy6PxwOq76+XseOHYu2LV26NNr38w/6+7y///u/1+bNm6Ovr7jiCknS3r17dd5559lVDgAAGERse5LxQMZzcAAAGHz6/Tk4AAAA/YmAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxbA04TU1NKi0tlcvlksfjUVlZmY4ePdrlmJaWFs2ZM0cjR47UiBEjVFJSooaGhuj+d999V9OmTVNGRoaGDx+u7OxsPfroo3aWAQAABhlbA05paal27dql9evX65VXXtHrr7+u2bNndzlm3rx5Wrt2rdasWaPNmzfr0KFDmjJlSnR/TU2NUlNT9cwzz2jXrl269957tXDhQv385z+3sxQAADCIOCzLsuw4cG1trXJycrRt2zaNHz9eklRVVaWJEyfqwIEDSk9PbzcmGAwqJSVFlZWVmjp1qiSprq5O2dnZ8vv9Kigo6PC95syZo9raWm3cuLFbcwuFQnK73QoGg3K5XGdYIQAA6Es9OX/btoLj9/vl8Xii4UaSioqK5HQ6VV1d3eGYmpoahcNhFRUVRduysrKUmZkpv9/f6XsFg0ElJyf33uQBAMCgFmfXgQOBgFJTU2PfLC5OycnJCgQCnY5JSEiQx+OJaU9LS+t0zFtvvaXnn39er776aqdzaW1tVWtra/R1KBTqbhkAAGAQ6vEKTkVFhRwOR5dbXV2dHXNtZ+fOnZo0aZIWLVqkb3/72532W7Jkidxud3TLyMjok/kBAID+0eMVnAULFmjGjBld9hk3bpy8Xq8aGxtj2k+cOKGmpiZ5vd4Ox3m9XrW1tam5uTlmFaehoaHdmN27d6uwsFCzZ8/Wfffd1+V8Fi5cqPnz50dfh0IhQg4AAAbrccBJSUlRSkrKafv5fD41NzerpqZGubm5kqSNGzcqEokoPz+/wzG5ubmKj4/Xhg0bVFJSIkmqr6/Xvn375PP5ov127dqlq6++Wrfeeqt+8IMfnHYuiYmJSkxM7E55AADAALbdRSVJ11xzjRoaGrRixQqFw2HNnDlT48ePV2VlpSTp4MGDKiws1KpVq5SXlydJuuOOO7Ru3TqtXLlSLpdLc+fOlfTZtTbSZx9LXX311SouLtbDDz8cfa9hw4Z1K3hJ3EUFAMBg1JPzt20XGUvS6tWrVV5ersLCQjmdTpWUlGjZsmXR/eFwWPX19Tp27Fi0benSpdG+ra2tKi4u1vLly6P7X3jhBX344Yd65pln9Mwzz0Tbzz33XP3xj3+0sxwAADBI2LqCM1CxggMAwOAzIJ6DAwAA0F8IOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYx9aA09TUpNLSUrlcLnk8HpWVleno0aNdjmlpadGcOXM0cuRIjRgxQiUlJWpoaIju//jjjzVhwgSlp6crMTFRGRkZKi8vVygUsrMUAAAwiNgacEpLS7Vr1y6tX79er7zyil5//XXNnj27yzHz5s3T2rVrtWbNGm3evFmHDh3SlClT/jxhp1OTJk3S//7v/+oPf/iDVq5cqddee0233367naUAAIBBxGFZlmXHgWtra5WTk6Nt27Zp/PjxkqSqqipNnDhRBw4cUHp6ersxwWBQKSkpqqys1NSpUyVJdXV1ys7Olt/vV0FBQYfvtWzZMj388MPav39/t+YWCoXkdrsVDAblcrnOsEIAANCXenL+tm0Fx+/3y+PxRMONJBUVFcnpdKq6urrDMTU1NQqHwyoqKoq2ZWVlKTMzU36/v8Mxhw4d0osvvqirrrqqdwsAAACDlm0BJxAIKDU1NaYtLi5OycnJCgQCnY5JSEiQx+OJaU9LS2s3Ztq0aTrrrLM0ZswYuVwu/eIXv+h0Lq2trQqFQjEbAAAwV48DTkVFhRwOR5dbXV2dHXONsXTpUr3zzjt6+eWX9f7772v+/Pmd9l2yZIncbnd0y8jIsH1+AACg/8T1dMCCBQs0Y8aMLvuMGzdOXq9XjY2NMe0nTpxQU1OTvF5vh+O8Xq/a2trU3Nwcs4rT0NDQbozX65XX61VWVpaSk5P1V3/1V7r//vs1evTodsdduHBhTAAKhUKEHAAADNbjgJOSkqKUlJTT9vP5fGpublZNTY1yc3MlSRs3blQkElF+fn6HY3JzcxUfH68NGzaopKREklRfX699+/bJ5/N1+l6RSETSZx9FdSQxMVGJiYmnnTMAADCDbXdRSdI111yjhoYGrVixQuFwWDNnztT48eNVWVkpSTp48KAKCwu1atUq5eXlSZLuuOMOrVu3TitXrpTL5dLcuXMlSW+99ZYkad26dWpoaNCVV16pESNGaNeuXbr77ruVnJysN998s1vz4i4qAAAGn56cv3u8gtMTq1evVnl5uQoLC+V0OlVSUqJly5ZF94fDYdXX1+vYsWPRtqVLl0b7tra2qri4WMuXL4/uHz58uP7jP/5D8+bNU2trqzIyMjRlyhRVVFTYWQoAABhEbF3BGahYwQEAYPAZEM/BAQAA6C8EHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMY2vAaWpqUmlpqVwulzwej8rKynT06NEux7S0tGjOnDkaOXKkRowYoZKSEjU0NHTY9+OPP9bYsWPlcDjU3NxsRwkAAGAQsjXglJaWateuXVq/fr1eeeUVvf7665o9e3aXY+bNm6e1a9dqzZo12rx5sw4dOqQpU6Z02LesrEyXXnqpHVMHAACDmMOyLMuOA9fW1ionJ0fbtm3T+PHjJUlVVVWaOHGiDhw4oPT09HZjgsGgUlJSVFlZqalTp0qS6urqlJ2dLb/fr4KCgmjfJ554Qs8//7weeOABFRYW6pNPPpHH4+nW3EKhkNxut4LBoFwuVy9UCwAA7NaT87dtKzh+v18ejycabiSpqKhITqdT1dXVHY6pqalROBxWUVFRtC0rK0uZmZny+/3Rtt27d+vBBx/UqlWr5HRyGREAAIgVZ9eBA4GAUlNTY98sLk7JyckKBAKdjklISGi3EpOWlhYd09raqmnTpunhhx9WZmamPvjgg9POpbW1Va2trdHXoVCop+UAAIBBpMfLHxUVFXI4HF1udXV1dsxVkrRw4UJlZ2dr+vTp3R6zZMkSud3u6JaRkWHb/AAAQP/r8QrOggULNGPGjC77jBs3Tl6vV42NjTHtJ06cUFNTk7xeb4fjvF6v2tra1NzcHLOK09DQEB2zceNG7dixQy+88IIk6dQlRKNGjdK9996rxYsXtzvuwoULNX/+/OjrUChEyAEAwGA9DjgpKSlKSUk5bT+fz6fm5mbV1NQoNzdX0mfhJBKJKD8/v8Mxubm5io+P14YNG1RSUiJJqq+v1759++Tz+SRJ//3f/63jx49Hx2zbtk233Xab3njjDX31q1/t8LiJiYlKTEzsUZ0AAGDwsu0anOzsbE2YMEGzZs3SihUrFA6HVV5erptvvjl6B9XBgwdVWFioVatWKS8vT263W2VlZZo/f76Sk5Plcrk0d+5c+Xy+6B1UXwwxH330UfT9unsXFQAAMJttAUeSVq9erfLychUWFsrpdKqkpETLli2L7g+Hw6qvr9exY8eibUuXLo32bW1tVXFxsZYvX27nNAEAgGFsew7OQMZzcAAAGHwGxHNwAAAA+gsBBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADj2BpwmpqaVFpaKpfLJY/Ho7KyMh09erTLMS0tLZozZ45GjhypESNGqKSkRA0NDTF9HA5Hu+25556zsxQAADCI2BpwSktLtWvXLq1fv16vvPKKXn/9dc2ePbvLMfPmzdPatWu1Zs0abd68WYcOHdKUKVPa9fvP//xPHT58OLpNnjzZrjIAAMAg47Asy7LjwLW1tcrJydG2bds0fvx4SVJVVZUmTpyoAwcOKD09vd2YYDColJQUVVZWaurUqZKkuro6ZWdny+/3q6Cg4LNJOxz6n//5nzMONaFQSG63W8FgUC6X6wwrBAAAfakn52/bVnD8fr88Hk803EhSUVGRnE6nqqurOxxTU1OjcDisoqKiaFtWVpYyMzPl9/tj+s6ZM0ejRo1SXl6enn76admU0wAAwCAUZ9eBA4GAUlNTY98sLk7JyckKBAKdjklISJDH44lpT0tLixnz4IMP6uqrr9ZZZ52l3/zmN7rzzjt19OhR3XXXXR0et7W1Va2trdHXoVDoTMsCAACDQI8DTkVFhX70ox912ae2tvaMJ9Qd999/f/R/X3HFFfr000/18MMPdxpwlixZosWLF9s6JwAAMHD0OOAsWLBAM2bM6LLPuHHj5PV61djYGNN+4sQJNTU1yev1djjO6/Wqra1Nzc3NMas4DQ0NnY6RpPz8fP3rv/6rWltblZiY2G7/woULNX/+/OjrUCikjIyMLmsAAACDV48DTkpKilJSUk7bz+fzqbm5WTU1NcrNzZUkbdy4UZFIRPn5+R2Oyc3NVXx8vDZs2KCSkhJJUn19vfbt2yefz9fpe23fvl1f+cpXOgw3kpSYmNjpPgAAYB7brsHJzs7WhAkTNGvWLK1YsULhcFjl5eW6+eabo3dQHTx4UIWFhVq1apXy8vLkdrtVVlam+fPnKzk5WS6XS3PnzpXP54veQbV27Vo1NDSooKBASUlJWr9+vR566CF973vfs6sUAAAwyNgWcCRp9erVKi8vV2FhoZxOp0pKSrRs2bLo/nA4rPr6eh07dizatnTp0mjf1tZWFRcXa/ny5dH98fHxevzxxzVv3jxZlqULLrhAP/vZzzRr1iw7SwEAAIOIbc/BGch4Dg4AAIPPgHgODgAAQH8h4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHNsCTlNTk0pLS+VyueTxeFRWVqajR492OaalpUVz5szRyJEjNWLECJWUlKihoaFdv5UrV+rSSy9VUlKSUlNTNWfOHLvKAAAAg5BtAae0tFS7du3S+vXr9corr+j111/X7Nmzuxwzb948rV27VmvWrNHmzZt16NAhTZkyJabPz372M917772qqKjQrl279Nprr6m4uNiuMgAAwCDksCzL6u2D1tbWKicnR9u2bdP48eMlSVVVVZo4caIOHDig9PT0dmOCwaBSUlJUWVmpqVOnSpLq6uqUnZ0tv9+vgoICffLJJxozZozWrl2rwsLCM55fKBSS2+1WMBiUy+U64+MAAIC+05Pzty0rOH6/Xx6PJxpuJKmoqEhOp1PV1dUdjqmpqVE4HFZRUVG0LSsrS5mZmfL7/ZKk9evXKxKJ6ODBg8rOztbYsWN14403av/+/XaUAQAABilbAk4gEFBqampMW1xcnJKTkxUIBDodk5CQII/HE9OelpYWHfPBBx8oEonooYce0iOPPKIXXnhBTU1N+ta3vqW2trZO59Pa2qpQKBSzAQAAc/Uo4FRUVMjhcHS51dXV2TVXRSIRhcNhLVu2TMXFxSooKNCzzz6r9957T5s2bep03JIlS+R2u6NbRkaGbXMEAAD9L64nnRcsWKAZM2Z02WfcuHHyer1qbGyMaT9x4oSamprk9Xo7HOf1etXW1qbm5uaYVZyGhobomNGjR0uScnJyovtTUlI0atQo7du3r9M5LVy4UPPnz4++DoVChBwAAAzWo4CTkpKilJSU0/bz+Xxqbm5WTU2NcnNzJUkbN25UJBJRfn5+h2Nyc3MVHx+vDRs2qKSkRJJUX1+vffv2yefzSZL+8i//Mto+duxYSZ/djv7RRx/p3HPP7XQ+iYmJSkxM7H6hAABgULPlLipJuuaaa9TQ0KAVK1YoHA5r5syZGj9+vCorKyVJBw8eVGFhoVatWqW8vDxJ0h133KF169Zp5cqVcrlcmjt3riTprbfeih538uTJ2rNnj5588km5XC4tXLhQH3zwgbZv3674+PhuzY27qAAAGHz6/S4qSVq9erWysrJUWFioiRMn6pvf/KaefPLJ6P5wOKz6+nodO3Ys2rZ06VJdd911Kikp0V//9V/L6/XqxRdfjDnuqlWrlJ+fr2uvvVZXXXWV4uPjVVVV1e1wAwAAzGfbCs5AxgoOAACDz4BYwQEAAOgvBBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgAAAA4xBwAACAcQg4AADAOAQcAABgHAIOAAAwDgEHAAAYh4ADAACMQ8ABAADGIeAAAADjEHAAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjGNrwGlqalJpaalcLpc8Ho/Kysp09OjRLse0tJc9cVEAABAJSURBVLRozpw5GjlypEaMGKGSkhI1NDRE969cuVIOh6PDrbGx0c5yAADAIOGwLMuy6+DXXHONDh8+rH//939XOBzWzJkzdeWVV6qysrLTMXfccYdeffVVrVy5Um63W+Xl5XI6ndqyZYsk6fjx4woGgzFjZsyYoZaWFv32t7/t1rxCoZDcbreCwaBcLtcZ19eZg03Hdc2yzfq09aTOThymX911lcYkD+/19wEAYCDoq/NeT87ftgWc2tpa5eTkaNu2bRo/frwkqaqqShMnTtSBAweUnp7ebkwwGFRKSooqKys1depUSVJdXZ2ys7Pl9/tVUFDQbsyHH36oMWPG6KmnntItt9zSrbnZGXC+du86tZ1s/1eaMMyhP/xgYq++FwAA/a0vz3s9OX/b9hGV3++Xx+OJhhtJKioqktPpVHV1dYdjampqFA6HVVRUFG3LyspSZmam/H5/h2NWrVqls846KxqIOtLa2qpQKBSz2aGzH7IktZ209LV719nyvgAA9IeBfN6zLeAEAgGlpqbGtMXFxSk5OVmBQKDTMQkJCfJ4PDHtaWlpnY556qmn9Hd/93caPrzzpbAlS5bI7XZHt4yMjB5Wc3oHm453+kM+pe2kpYNNx3v9vQEA6GvdPe/t++hYH80oVo8DTkVFRacX+Z7a6urq7JhrO36/X7W1tSorK+uy38KFCxUMBqPb/v37e30uRUt/261+1yzb3OvvDQBAX+vu+eyvf7JJVTsP2zyb9uJ6OmDBggWaMWNGl33GjRsnr9fb7q6mEydOqKmpSV6vt8NxXq9XbW1tam5ujlnFaWho6HDML37xC11++eXKzc3tcj6JiYlKTEzsss+XUbXzsI6HI93q+2nrSdvmAQBAX+nJ+eyOZ97RE9O/rgkXj7ZxRrF6HHBSUlKUkpJy2n4+n0/Nzc2qqamJBpCNGzcqEokoPz+/wzG5ubmKj4/Xhg0bVFJSIkmqr6/Xvn375PP5YvoePXpUv/zlL7VkyZKeltCrTkYsLV67u9v9z04cZuNsAADoG2cnDlOopfshZ/Ha3fpWjlfDnA4bZ/Vntl2Dk52drQkTJmjWrFnaunWrtmzZovLyct18883RO6gOHjyorKwsbd26VZLkdrtVVlam+fPna9OmTaqpqdHMmTPl8/na3UH1/PPP68SJE5o+fbpdJXTL1r1NOhxs6Xb/X911lY2zAQCgb/TkfGZJOhxs0da9TfZN6At6vILTE6tXr1Z5ebkKCwvldDpVUlKiZcuWRfeHw2HV19fr2LE/X4C0dOnSaN/W1lYVFxdr+fLl7Y791FNPacqUKe0uSO5rjUe6H24Shjl4Hg4AwAhjkocrYZjjtBcaf15Pzplflq0P+huoevM5OP73P9a0//jdafvFOaU9D137pd4LAICBpqtbxb/o2VkF8n115Bm/14B4Ds5QkXd+ska7k9TVJ4qp5ySq/t94yB8AwDx/+MFEvf69v+2yj0PSaHeS8s5P7ptJiYDzpQ1zOrToOzmS1C7kOP7/9uCki/rsoioAAPpa5qiztGL616Pnvc879XrRd3L69FxIwOkFEy4erSemf11ed1JMu9ed1Oe3xQEA0B8G2rmQa3B68buoTkYsbd3bpMYjLUo957OlOFZuAABDiZ3nwp6cv229i2qoGeZ0fKmLpwAAGOwGyrmQj6gAAIBxCDgAAMA4BBwAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHGG5JOMT307RSgU6ueZAACA7jp13u7Ot0wNyYBz5MgRSVJGRkY/zwQAAPTUkSNH5Ha7u+wzJL9sMxKJ6NChQzrnnHPkcJj7ZZihUEgZGRnav39/r36p6GAwlGuXhnb9Q7l2aWjXP5Rrl4ZG/ZZl6ciRI0pPT5fT2fVVNkNyBcfpdGrs2LH9PY0+43K5jP1lP52hXLs0tOsfyrVLQ7v+oVy7ZH79p1u5OYWLjAEAgHEIOAAAwDjDvv/973+/vycB+wwbNkx/8zd/o7i4ofdp5FCuXRra9Q/l2qWhXf9Qrl2i/s8bkhcZAwAAs/ERFQAAMA4BBwAAGIeAAwAAjEPAAQAAxiHgDGJNTU0qLS2Vy+WSx+NRWVmZjh492uWYlpYWzZkzRyNHjtSIESNUUlKihoaGdv1WrlypSy+9VElJSUpNTdWcOXPsKuOM2Fm7JH388ccaO3asHA6Hmpub7SjhS7Gj/nfffVfTpk1TRkaGhg8fruzsbD366KN2l9Itjz/+uM477zwlJSUpPz9fW7du7bL/mjVrlJWVpaSkJF1yySVat25dzH7LsvTAAw9o9OjRGj58uIqKivTee+/ZWcIZ683aw+Gw7rnnHl1yySU6++yzlZ6eru9+97s6dOiQ3WWcsd7+2X/e7bffLofDoUceeaS3p90r7Ki9trZW119/vdxut84++2xdeeWV2rdvn10l9C8Lg9aECROsyy67zPrd735nvfHGG9YFF1xgTZs2rcsxt99+u5WRkWFt2LDBevvtt62CggLrG9/4Rkyfn/70p1Z6erq1evVqa8+ePda7775rvfzyy3aW0mN21X7KpEmTrGuuucaSZH3yySd2lPCl2FH/U089Zd11113Wb3/7W+v999+3/uu//ssaPny49dhjj9ldTpeee+45KyEhwXr66aetXbt2WbNmzbI8Ho/V0NDQYf8tW7ZYw4YNs3784x9bu3fvtu677z4rPj7e2rFjR7TPD3/4Q8vtdlsvvfSS9e6771rXX3+9df7551vHjx/vq7K6pbdrb25utoqKiqznn3/eqqurs/x+v5WXl2fl5ub2ZVndZsfP/pQXX3zRuuyyy6z09HRr6dKldpfSY3bUvmfPHis5Odm6++67rXfeecfas2eP9fLLL3d6zMGOgDNI7d6925Jkbdu2Ldr2q1/9ynI4HNbBgwc7HNPc3GzFx8dba9asibbV1tZakiy/329ZlmU1NTVZw4cPt1577TV7C/gS7Kr9lOXLl1tXXXWVtWHDhgEZcOyu//PuvPNO62//9m97b/JnIC8vz5ozZ0709cmTJ6309HRryZIlHfa/8cYbrWuvvTamLT8/3/qHf/gHy7IsKxKJWF6v13r44Yej+5ubm63ExETr2WeftaGCM9fbtXdk69atliTrT3/6U+9MuhfZVf+BAwesMWPGWDt37rTOPffcARlw7Kj9pptusqZPn27PhAcgPqIapPx+vzwej8aPHx9tKyoqktPpVHV1dYdjampqFA6HVVRUFG3LyspSZmam/H6/JGn9+vWKRCI6ePCgsrOzNXbsWN14443av3+/vQX1gF21S9Lu3bv14IMPatWqVaf9Irf+Ymf9XxQMBpWcnNx7k++htrY21dTUxMzb6XSqqKio03n7/f6Y/pJUXFwc7b93714FAoGYPm63W/n5+V3+XfQ1O2rvSDAYlMPhkMfj6Z2J9xK76o9EIrrlllt0991366KLLrJn8l+SHbVHIhG9+uqr+trXvqbi4mKlpqYqPz9fL730kn2F9LOB+S84TisQCCg1NTWmLS4uTsnJyQoEAp2OSUhIaPcPWVpaWnTMBx98oEgkooceekiPPPKIXnjhBTU1Nelb3/qW2tra7Cmmh+yqvbW1VdOmTdPDDz+szMxMeybfC+yq/4veeustPf/885o9e3bvTPwMfPTRRzp58qTS0tJi2ruadyAQ6LL/qT97csz+YEftX9TS0qJ77rlH06ZNG3BfzmhX/T/60Y8UFxenu+66q/cn3UvsqL2xsVFHjx7VD3/4Q02YMEG/+c1vdMMNN2jKlCnavHmzPYX0MwLOAFNRUSGHw9HlVldXZ9v7RyIRhcNhLVu2TMXFxSooKNCzzz6r9957T5s2bbLtfaX+r33hwoXKzs7W9OnTbXuPrvR3/Z+3c+dOTZo0SYsWLdK3v/3tPnlP9K1wOKwbb7xRlmXpiSee6O/p9Imamho9+uijWrlypRwOR39Pp09FIhFJ0qRJkzRv3jxdfvnlqqio0HXXXacVK1b08+zswZdVDDALFizQjBkzuuwzbtw4eb1eNTY2xrSfOHFCTU1N8nq9HY7zer1qa2tTc3NzzP+Tb2hoiI4ZPXq0JCknJye6PyUlRaNGjbL9Svv+rn3jxo3asWOHXnjhBUmf3WkjSaNGjdK9996rxYsXn2lp3dLf9Z+ye/duFRYWavbs2brvvvvOrJheMmrUKA0bNqzd3W4dzfsUr9fbZf9TfzY0NER/30+9vvzyy3tz+l+KHbWfcirc/OlPf9LGjRsH3OqNZE/9b7zxhhobG2NWaE+ePKkFCxbokUce0R//+MfeLeIM2VH7qFGjFBcXF/NvuyRlZ2frzTff7MXZDyD9fREQzsypC03ffvvtaNuvf/3rbl1o+sILL0Tb6urqYi40ra+vtyTFXGT88ccfW06n0/r1r39tUzU9Y1fte/bssXbs2BHdnn76aUuS9dZbbw2ouwzsqt+yLGvnzp1Wamqqdffdd9tXQA/l5eVZ5eXl0dcnT560xowZ0+XFltddd11Mm8/na3eR8U9+8pPo/mAwOGAvMu7N2i3Lstra2qzJkydbF110kdXY2GjPxHtJb9f/0Ucfxfw3vmPHDis9Pd265557rLq6OvsKOQN2/Ox9Pl+7i4wnT5582jswBysCziA2YcIE64orrrCqq6utN99807rwwgtjflEPHDhg/cVf/IVVXV0dbbv99tutzMxMa+PGjdbbb79t+Xw+y+fzxRx30qRJ1kUXXWRt2bLF2rFjh3XddddZOTk5VltbW5/Vdjp21f55mzZtGpB3UVmWPfXv2LHDSklJsaZPn24dPnw4uvX3SfC5556zEhMTrZUrV1q7d++2Zs+ebXk8HisQCFiWZVm33HKLVVFREe2/ZcsWKy4uzvrJT35i1dbWWosWLerwNnGPx2O9/PLL1u9//3tr0qRJA/Y28d6sva2tzbr++uutsWPHWtu3b4/5Obe2tvZLjV2x42f/RQP1Lio7an/xxRet+Ph468knn7Tee+8967HHHrOGDRtmvfHGG31eX18g4AxiH3/8sTVt2jRrxIgRlsvlsmbOnGkdOXIkun/v3r2WJGvTpk3RtuPHj1t33nmn9ZWvfMU666yzrBtuuME6fPhwzHGDwaB12223WR6Px0pOTrZuuOEGa9++fX1VVrfYVfvnDeSAY0f9ixYtsiS1284999w+rKxjjz32mJWZmWklJCRYeXl51u9+97vovquuusq69dZbY/r/8pe/tL72ta9ZCQkJ1kUXXWS9+uqrMfsjkYh1//33W2lpaVZiYqJVWFho1dfX90UpPdabtZ/6veho+/zvykDS2z/7LxqoAcey7Kn9qaeesi644AIrKSnJuuyyy6yXXnrJ7jL6jcOy/v+FBgAAAIbgLioAAGAcAg4AADAOAQcAABiHgAMAAIxDwAEAAMYh4AAAAOMQcAAAgHEIOAAAwDgEHAAAYBwCDgAAMA4BBwAAGIeAAwAAjPP/AGq/L7+t2lZeAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -151,7 +137,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -160,7 +146,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -169,7 +155,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -178,7 +164,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -187,14 +173,14 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA+CElEQVR4nO3deXiU1f3+8fdsSWaSEBJI2AlhFQKCsoOAFdRC+wVBwQUUxV1EBUSq1VqXnxYVV1xbq9hWkUpBVERFNEEIIYDInsgSCATCkkD2ZJbn98doFFmSzEwygdyv65pLmpnnPJ/Rq9w55zmLyTAMAxERkXrCHOwCREREapOCT0RE6hUFn4iI1CsKPhERqVcUfCIiUq8o+EREpF5R8ImISL2i4BMRkXpFwSciIvWKNdgFiIiIjw4fhsxMKCiABg0gIQEaNQp2VXWegk9E5GxiGLB8OTz7LHz7LYSF/fLzsjK49FKYMQMGDQKTKail1lUm7dUpInKWyMyEyy6DAwegsPDUnzGZwOGANm3giy+gRYvarPCsoOATETkbbN8OAwbA8ePg8VT+easVGjaENWu8Q6DV5XbD55/DggVw8KA3UJs2hXHjvOFrPnuniCj4RETquiNHoGtXOHTIO6RZVWYztGwJGzdCVFTVrsnPh1degRdf9A6dFhSc+H5kpLdHOW0aTJ4M4eFVr6eOUPCJiNSU0lJYuNDbW8vNhZgY6NgRxowBu73q7fz5zzB7tjeIqstuh7/+FR54oPLPZmXBkCHeodTS0srbbd0avvkGmjWrfl1BpOATEQm0zExvj+ntt73/+9fP4yIivL22m26C++6Ddu3O3JbTCXFxcOyY7/U0aQLZ2Wcenjx0CHr08P7T7a5au1YrNG8OGzZAdLTv9dWys3eQVkSkLlq8GBIT4bXXvIH320kohYVQVARvvgnnnw8ffXTm9hYtqnoQnU5xsXeiy5lccYV3SLU693K5vM//rr7ar/Jqm4JPRCRQPv4YrrnGGzRO55k/63R6P3fDDfDhh6f/3GefnfycrboKCmDp0tO/v2mTt9dWWc2nUl4OK1bAzp0+l1fbFHwiIoGwfTtcdx2UlFTvupISmDTJGz6ncuiQ/7UB5OSc/r0XXvAGmK/cbnj5Zd+vr2V6xiciEgiTJsF77/k2LGk2e4cL33//5PdGjoRPPvG7vKTWrVk0ZgwtWrQ44dU8JgZ7ixbVD+zfCg/3LrWwWPyutaZp5xYREX/l58O8eb4/i/N4vLM/8/JwN2jA9u3bWbt2LWvXruXi1FRG49/wnGE2E9ujBy1btmT//v2kpaWxf/9+9u/fjzU7mw3l5fi9KMHlgrw8aNzY35ZqnIJPRMRf//mP3wu6y1wu3urZk4cOH6ZZs2b06tWL3r170/7hh+FPf/I+D/S1bZOJHzp1Ijo6GpvNRmxsLB06dKCwsJAGWVmYFi/2Bpc/rFbvs0QFn4hIPbBunXemph9CXS6GREby/IMPYhgGRUVFHDp0iMnJyfy7uJg2frS9x2zmxpdeIiYmhm7dunH++ecTFRVFo0aNaBwXhzUAQ6m4XN6Nss8CCj4REX/l5gakmfIDB1i+fDkA27ZtIz09na5du7Lx8stp8c032HyZgBIeTqfXXyd/3Dg+/vhj3njjDd566y06d+6M2Wzmxy1buNLlIsTf4kNCvMshNm3yLn6PioLOnb3bptUxCj4REX+UlXm38QoAU4MG7Nu3j02bNjFp0iSWLFlC8+bNobwcz0UXUb52LSHVmI/oCQ2lqHNn3s/PZ9Vtt7F69WoOHDhAt27dMJvNbNu2jVbt2rHVZqN7Who2Xwu3Wr3Bd8EF3n/+rKwMrrzSu73ZhRf62nrAaVaniEh1lJbCf/8LzzzjXcLg8VRt0+hKlAHP22z8p2NHnE4ne/bsoUWLFpx33nl07NiRtcuW8e6uXSS43ZirsHWZE9gI3NyuHRcMGkT//v3p168fiYmJWH6aebl+/XpuuOEGnFu28D3g8PtbnILFAqGh0K+fdzF+gH5J8IeCT0SkKgwDnn7a+4LTHwvko1KTie/ff5/+11wDgNPpZNeuXWzevJlHH32U48eP071xY97bsIFooLKT9jwmEwUOB7d26MDcVauw/2pv0BUrVnDfffexceNGmjRpwvPPP8+oV17BkpKC1d9dYk4nLAzi4yE1teobZtcQLWAXEamMxwPjx8NTT516G7IA2GC3c9H48bRs2ZJXX30VwzBo164d8+fPJz4+nu+WLuWDw4eJNJsrDT0As2EQWVzMP7Zs4e5Ro3C5XHzyySd07tyZYcOGcfToUT788EOysrIYN24cu599lgOAu6bW4ZWWevcwHT48ID1kf6jHJyJSmSlT4J//9GtJwZk4Q0KwLVlCRqtWTJs2jS+++AKz2UxERAQWiwW73c5LBw4w3O0mtJqh4QLSgW6A6ac2x48fzzXXXEPnzp1p3LgxP/zwA8OHD+flhx9m7Ouvw+7dNfZdiYiA+fO9ARgkCj4RkTNZtw4GD66xIPCEhfFaaChLBgygY8eOrFmzhg0bNuDxeCgvL8dkMnHxeefx5Y8/YvFlL02gEPiDxULoJZcwdOhQ0tPT2b59O9u2bcPj8VBSUsKgQYMYPnw4iW3b0mvTJhr/85+Yjh7FU1RUMTToAUoBO5UPtZ7RxRd7jzMKEgWfiMiZXHeddxPpGhieKwb+GRHBX0NCMFssREZG8uyzz7Jo0SL27NnD4sWLWbx4MUfvuYfbjx2jGif4ncBjMlE6bBgdt27lpZde4sorrwTgm2++YezYscyYMYOoqCi2b99eEYiHcnK4ukULzs/MpF14OOeffz6O9u2JKizEtmgRFn+eBYaFwbZt0KaN7234wxARkVPLzTWMsDDD8E5t8enl+c3/LgejxGQydsfGGjc3aWI8+eSThsfjMVwulzFjxgwjMjLS6NGjh1FQUPBLHY0b+1WDAYYRGmr88O23RmxsrLFy5Urj888/Nxo3bmx8/fXXp/zqhYWFxqpVqwyz2Wz06dPHGDt2rNG1a1djq8nkfy0REYYxd24t/Uc8mdbxiYiczuefg81W+WnkZ2AC8oGS5s0JjY0lvF8/wu69lzadOzNt61aGDBnChAkTaN26NcXFxTRp0oSsrCy++OILb8/M6YSjR/3+Kk6zmQNr1jBx4kQuvfRSACZNmkRqairJyck4nU7Ky8spKyvD6XRSVlbGoUOHsFqtFBYWUlJSQsuWLYnNyPDvJAfwfqe8PL+/k68UfCIip3P4sHcRtp+OAqMaNcLtdOL65htcX32F2+3G5XJRWlpKhw4dMJvNuFwuHA4HTqeTsWPHYjabiTaZ2GcYhPpZQ1FJCbMefpjvDAOn04nJZGLu3LnYbDbMZjMWi+XEl9lMSWkpHo+H/Px8srOzsVqt+Lmjp5fZ7F30HiQKPhGR03G7vYNzfrKazXTo0IGQkBBsNhshISGEhoYSEhKC1WrljTfewGw289BDDxEdHU1oaChlZWW89tprREdGErJ2rd91RIaHc9f06aT/4x98+eWXzJs3j6+++orly5fjcDi833XJEu/C/PXroaQEt9nMEcNga3w8KT16kPTjjxx0u2nq978QK8TF+duKzzS5RUTkdN55x7uUwc8NqLeZTNwxaBCJiYkkJibSpUsXEhMTiY2N5eGHH2bBggUcOXKEtWvX0uZXEz7Ky8u55557eOIf/yDWz4XlpSYTvVu2ZOHy5bRv3x7DMJg4cSIFBQUsGD4c00MP4SkpwXKK2atlJhMWs5mjPXrAoEFEv/YaIf4Md9rtcPBg0Da1VvCJiJzO7t3QpYtfz/gMfppV2bIlqwYN4uOwMDakp7NlyxbKfwqPq6++mtzcXLKysvj888+J+6k3VFZWxnvvvce+u+9mZnm5z1uKuYGPAPvHHzNy5Ejcbjfp6emkrl6N8957mVBUhKMKUeAymcgFokymaq8nrGC1wvXXe9dFBomCT0TkTIYMgeTkwLQVEeH959tv80R6OnPnzuXpp58mOzubTZs28eGHH+J2uwkPDycyMpL9+/djGAZd4uJIO3gQm4+9vkLgEmCDzUanTp3YvXs3zZo14/GwMK5MTyekGusDDZMJT0gI7rIy3050sNu925Z16+bL1QGhZ3wiImfywAPeZ16B2KbspzacEyZAw4as+OEHmjVrVvH2TTfdxNChQzl+/DjHjh2jXbt2dOrUicOHDzM/J4fRVH8j6XJgd0gI1p49caemsmXLFtq0acOcqVO5bPp0TNVcFG8yDDxlZZhDQ72zM6vT8wsPh8mTgxp6oB6fiMiZud3enVvWrQvIDM+fecLCML//Poweze7du5k+fTqffvophmEQFxfHqlWriI+Pr/i8UVKCs08fLOnpVd7BxQmYY2OxbN4McXG89957PP/880RGRjLuu++4HXw/hy80FBo2xMjNrVp4OhzezQDeegtMfu374jdtUi0iciYWi3c9X0KCd8eRADGXlpJ/3XX0692bDh06kJSUxOOPP87Ro0dp1aoVn332WcVni4qKSP32WxYMH87eBg2oylSbImAvMLxxY+79f/+Pt956i/j4eEpKSnjk/vuZ7HD4d/isxQJ33822Fi1w/nz00KlERnoPo33qqToReqAen4hI1RQWeg9V/e47b88vAMf35APjTSZcl1/Oq6++Stu2bcnPz2fRokXcddddXD50KM3Xr2fC/v1cAHisVsxmM5SVYTGb8RgGZsPg5/MUDKDUYqHIaqXBY4/xeYsWTLz7bu68805ycnLYunUrGzdu5NLycv5jGET4uQ1bWYcOtMjNZduyZcR+9BH8/e/exfZut/eXhMREmDkTrrjCuxFAHaHgExGpjo0b4YUXYN48bwD6+VfozhYtuLl9e1JSUggNDcXpdNKjRw965efzeHo6DUJDT7nEAMBps2F1u9lmtVLQujVZ5eVsiY/nwa++IuSnHticOXN46623SElJwWKx8MEHH7D6ttuY7XIR4VflkBcayhuPPsqDDz74yw8Nw/vcr6aONwoABZ+IiC82bID+/f1a6gDepQZtmjfn+okTKS4uZt68eUxu0oQHt2/HWsW1cmVWKx96PNxus3HZ5ZcDUFJSQnFxMUVFRezYsYPS0lJcLhdms5lbPB6eB8L9qhxyzWbshYUnHHJ7NlDwiYj4Ys0auOwyOH7cr2bKgXi7nYMlJQBcYrPxidNZ7dmbJWYzi9q04d6CAh588EHOO+88Nm3axOLFi9m8eTNWq5Xrr7+eJ554AsvChbhvvNHvoc7C2FgiDh3yq41g0HIGERFfmAMzN9BmtbJ52zZKrVaefeYZpsyZ49NCdbvHw7XZ2RiPP85tjzyCw+GgdevWTJ48mTFjxvD1118zceJEkpKSKExPZ5OffR4nED56tF9tBItmdYqI+KJxY/9PKQAMj4e9R4/StGlTXrzuOhJONzuyCsrLy8l+5BEuvvhiPB4PUVFRzJ8/n1atWvHEE09w2WWXsWfPHhalpRF62WX4098zh4ZimjbNjxaCR0OdIiK+MAxo3x527fK5CQ+w1Gzm2ogI3G43n0dGMjAnB7Mffy0XWq20jYigYWwsRUVFNGvWjPnz59O2bVsA/va3v7Fw4UJW/PWvWK68EstPQ6zV1qePdweWs5B6fCIivjCZvLu6hPs+RcQcHk6vefN46qmn6NWrFz0OHvQr9ABCbDa2vv8+GRkZZGZm0q9fP0aMGEFGRgYAM2fOpGXLlkxZuBBLr16U+zBk6wkLgxdf9KvOYFKPT0TEV4WF0KQJnGa5QaVat4bMTG+IGgaGxYLJ37+So6Lgww/hp9mdAH//+9/585//zNy5cxk+fDgFBQX06dOHP02ezNUvvAC7dlHVpfnlVish//43XH21f3UGkXp8IiK+ioiA117zbrxcXQ4H/PvfJ+xkYgrAriZFRUVsT08/4We33norCxcu5Oabb+aZZ54hIiKCRYsWMePxx9n89tv82KQJ5VbrGXdVcYeFUQiUvf/+WR16oOATEfHPxInw6KPVCz+7Hd57DwYN+uVnJpNfw6Y/s1ksTH/6aS655BK+/PJLfh7UGzhwIKmpqcyfP5/x48fTqlUr3nrrLcZcfz2OG2/kmNuNcbphT5OJYpeL1DFjiLzqKr9rDDYFn4iIv2bOhLffhuho796UpxMRAa1awRdfeLc/+63/+z+/dzwpB6bPncvEiROZNm0aPXv2ZP78+bjdblq1asWKFSswm81cdNFFXNi9Ox9HR9P82WeJMwxMp9uGzTCIdLm4ZOlSuPHGgGzXFkx6xiciEiguF3zyCcya5V3gHhLinf3pdnsXu8+YARdffPohxfXrvb1AH58ZlgCvRUXx3E+9zwkTJtCyZUvmz59PTk4OM2bMYOLEiYSGhjL7uedo9uijXOPxYKnOqRMOB4wfD2++WSc2nPaFgk9EpCa43XDsmLcH16BB1Re8JybC1q0+3dIIDSXp3Xf574oVLFiwAKfTicvlIiYmhmHDhrFz5062bdvGfffdx93x8YTedBNWX7ZcCw/37lX6xz/6VGewKfhEROqStDRvr7C6vT6HAx5+GH7aMNowDNavX8+iRYv44IMPyM7OxjAMmjZtSkxMDK//8AN9/BmyHDAAVq70/fogUvCJiNQ1n30G48ZVPfwcDrj5ZnjppdMOP+7evZuFCxfy7rvv4ty6lXVut09bo1UIC4NNm7yL+M8yCj4RkbooJcUbfseOedcLnkpEhPcZ4pNPwn33VbnpkmnTCHn5ZSz+9PhsNu+kniee8L2NINGsThGRuqh/f9i7FxYt8k6MsVq9vSyHw/vnjh29PbxDh6oVegD27Gz/Qg/A6fRru7Zg0ukMIiJ1lckEQ4d6X2VlkJfnDZzoaG9vz1e+7jTzW6fridZxCj4RkbNBaCg0bRqYtho1Ckw7sbGBaaeWaahTRKS+GTTIvx4jeK8fMCAw9dQyTW4REalviou9vTV/hjzDw73PFx1+zQ0NCvX4RETqG4fDu8eo1cenXTabd+uyszD0QD0+EZH6KTMTunXzbYJKZCRs3Aht2gS6qlqhHp+ISH3Upo13X9Hq9tocDli8+KwNPVCPT0Skflu5EkaM8G6wfYZnfu7QUCyhobBkCQwcWIsFBp6CT0SkvsvLg3fegeeeg4IC8Hi8QWi1gtlMkcXCh61aMSk52buG8Cyn4BMRES+PB5KT4ccfvQEYGQkdOlDUsyfxCQmkpqbSrl27YFfpNwWfiIhU6sEHH6SoqIiXX3452KX4TcEnIiKV2r9/P926dWPXrl00bNgw2OX4RbM6RUSkUi1atGDEiBH8/e9/D3YpflOPT0REqmTdunWMHj2anTt3YrPZgl2Oz9TjExGRKunZsycJCQksWLAg2KX4RcEnIiJVNm3aNJ5//nnO5sFCBZ+IiFTZH//4R3Jzc1m1alWwS/GZgk9ERKrMYrFw33338cILLwS7FJ9pcouIiFRLYWEhbdq0IS0tjYSEhGCXU23q8YmISLVERERw8803n7WL2dXjExGRasvKyqJ79+7s3r2bqKioYJdTLerxiYhItbVq1Yrf//73vP3228EupdrU4xMREZ+kpaVx1VVXsXPnTqy+nuYeBOrxiYiIT3r37k3r1q1ZuHBhsEupFgWfiIj4bOrUqTz//PPBLqNaFHwiIuKzUaNGkZOTQ0pKSrBLqTIFn4iI+MxisXDvvfeeVQvaNblFRET8UlBQQJs2bVi3bh1t2rQJdjmVUo9PRET8EhkZyU033cQrr7wS7FKqRD0+ERHx2549e7jwwgvZvXs3DRo0CHY5Z6Qen4iI+C0+Pp5hw4bxz3/+M9ilVEo9PhERCYjU1FSuueYaduzYgcViCXY5p6Uen4iIBETfvn1p1qwZixYtCnYpZ6TgExGRgJk2bVqdX9qg4BMRkYC54oor2LdvH2vWrAl2Kael4BMRkYCxWq11fkG7JreIiEhA5efn06ZNGzZs2EDr1q2DXc5J1OMTEZGAatCgATfeeCNz5swJdimnpB6fiIgEXGZmJj179mTPnj1EREQEu5wTqMcnIiIB16ZNGy655BLeeeedYJdyEvX4RESkRqSkpDBhwgQyMjLq1IJ29fhERKRG9O/fn9jYWD755JNgl3ICBZ+IiNSYadOm1bkT2hV8IiJSY8aMGcOePXtYu3ZtsEupoOATEZEaY7Vaueeee+rUgnZNbhERkRp1/PhxEhIS2LhxIy1btgx2OerxiYhIzYqKiuKGG26oMwva1eMTEZEat2vXLvr06UNmZmbQF7SrxyciIjWubdu2DBkyhLlz5wa7FPX4RESkdnz33XfcdNNNpKenYzYHr9+lHp+IiNSKgQMHEh0dzaeffhrUOhR8IiJSK0wmE1OnTg360gYNdYqISK1xOp20bduWxYsXc8EFFwSlBvX4RESk1thsNqZMmRLUXp96fCIiUqvy8vJo164daWmbSEtrwdatcPQoREVB+/YwdixERtbc/RV8IiJSq/buhVGjlrN160BCQ0MpKPjlvfBw8Hjg2mth+nTo0iXw91fwiYhIrfniC7jqKigr8+B0nv5pm8UCoaEwZw7cdFNga1DwiYhIrfjiCxgzBoqLq36NwwEvvgi33hq4OhR8IiJS4zIzoWtXKCqq/rV2O3zzDfTtG5haNKtTRERq3AsvQHm5b9eWlsLjjweuFvX4RESkRpWUQFwcFBb63kZoKOzaBc2b+1+PenwiIlKjFiwITDtvvRWYdhR8IiJSo374wb/eHkBZGaxdG5h6FHwiIlKjjh4NTDvHjgWmHQWfiIjUqKiowLQTqPNrFXwiIlKjOnb0rsfzh9UKnTsHph7N6hQRkRqVl+edjVla6nsbdjt8/z106uR/PerxiYhIjYqOhtGjwZ9D17t1C0zogYJPRERqwYwZ3rV4vggPh4cfDlwtCj4REalxF1wAs2ZV/1mfwwG33Qb/93+Bq0XBJyIitWLKFHjyyaqHn8Ph3Zz6uecCW4cmt4iISK1KSoLHHoOUFCgvd+HxWCves1ggJMQ7g/ORR+CKKwJ/fwWfiIgERWYmDBkyj5iYYVitjYmM9AbeXXdBYmLN3VfBJyIiQWEYBjExMaSnpxMXF1dr99UzPhERCYqdO3cSGRlZq6EHCj4REQmSdevW0atXr1q/r4JPRESCYu3atfTs2bPW76vgExGRoFi3bl1Qgk+TW0REpNZ5PB6io6PZsWMHsbGxtXpv9fhERKTW7dy5k4YNG9Z66IGCT0REgiBYE1tAwSciIkEQrIktoOATEZEgCNbEFtDkFhERqWU/T2zZuXMnjRs3rvX7q8cnIiK1aseOHURHRwcl9EDBJyIitSyYE1tAwSciIrUsmBNbQMEnIiK1LJgTW0CTW0REpBZ5PB4aNmzI7t27adSoUVBqUI9PRERqzY8//kijRo2CFnqg4BMRkVoU7IktoOATEZFaFOyJLaDgExGRWlQXenya3CIiIrXi54ktmZmZxMTEBK0O9fhERKRWZGRk0Lhx46CGHij4RESklqxduzbow5yg4BMRkVoS7IXrP1PwiYhIragLE1tAk1tERKQWuN1uGjZsyN69e4mOjg5qLerxiYhIjcvIyCAuLi7ooQcKPhERqQV1ZWILKPhERKQW1JWJLaDgExGRWlBXJraAJreIiEgN+3liS1ZWFg0bNgx2OerxiYhIzUpPT6dp06Z1IvRAwSciIjWsLpzI8GsKPhERqVF1aWILKPhERKSG1aWJLaDJLSIiUoPcbjdRUVHs37+fqKioYJcDqMcnIiI1aPv27TRv3rzOhB6ANdgFiIjIuWXvXsjOhrIySE7eSffu/YJd0gk01CkiIn4rL4f//Q9mzYLt2yE01Pvz4uISTCYLt9wSwr33QseOwa0TFHwiIuKn5GQYNQrcbigoOPVnbDawWmHECPj3vyEsrHZr/DUFn4iI+OzTT2HcOCgpqdrn7XZITPSGpd1es7WdjoJPRER8sm4dDB4MxcXVu85uh4svhs8+A5OpRko7I83qFBERn9xzT/VDD7y9w+RkWLUq8DVVhYJPRESqbccOWL/e9+uLi+G55wJXT3Uo+EREpNpeesk7mcVXhgFLl0JOTuBqqioFn4iIVNtnn4HT6V8bNht8911g6qkOBZ+IiFRbfr7/bbjdkJfnfzvVpeATEZFqMwcgPUwm79q+2qbgExGRaouJ8b8NiwUaN/a/nepS8ImISLVNnOj/AnSXCy65JDD1VIeCT0REqu3WW8Hj8X3/E5vNG54ORwCLqiIFn4iIVIthGHz55fuYTJ9hMvm2psFqhXvvDXBhVaTgExGRKtu+fTvDhg3j2Wef5cMPm9GokaXabYSHw9Sp0KlTDRRYBQo+ERGpVHFxMX/+858ZNGgQo0aNIi0tjZEje/Ltt96JLpYq5p/DAddeC08+WaPlnpGCT0REzuiTTz4hMTGR3bt3s3HjRu655x6sP61DSEyE77+Hfv28Rw3ZbKduIyICIiO9gffWW8HZnPpnOp1BREROKTMzk3vvvZf09HReffVVhg4desbP//gjvPwyzJ0LhYXeXqBhQNeuMHMmjBnzywG1waTgExGRE5SXlzN79mxmz57NtGnTmD59OqHVTCyXy3squ90e3N7dqQRhzbyIiNRVy5cvZ/LkybRv3560tDQSEhJ8asdqDc6uLFVRR8sSEZHadPDgQaZPn87KlSt5+eWXGTlyZLBLqjGa3CIiUo+53W7mzJlDt27daN26NVu2bDmnQw/U4xMRqbdSU1O58847iYqKIikpiS5dugS7pFqhHp+ISD2Tm5vLHXfcwejRo5k+fTrLly+vN6EHCj4RkXrD4/Hw7rvv0qVLF2w2G1u3bmX8+PGY6tq0yxqmoU4RkXpg06ZN3HXXXZSVlfHZZ5/Rs2fPYJcUNOrxiYicwwoKCrj//vsZOnQoEyZMICUlpV6HHij4RETOSYZh8NFHH9GlSxeOHj3K5s2buf3227FUdVPNc5iGOkVEzjE7duzg7rvvZt++fbz//vsMGjQo2CXVKerxiYicI0pLS/nrX/9Kv379GDZsGN9//71C7xTU4xMROQcsXbqUu+++mx49evD999/TqlWrYJdUZyn4RETOYvv27WPq1KmsX7+eOXPmMHz48GCXVOdpqFNE5CzkdDqZPXs2PXr0IDExkc2bNyv0qkg9PhGRs8x3333HnXfeSfPmzUlJSaFDhw7BLumsouATETlLHD58mAceeIBly5bxwgsvcOWVV9a7XVcCQUOdIiJ1nMfj4c033yQxMZGYmBi2bt3KVVddpdDzkXp8IiJ12Pr167nzzjuxWq0sW7aM888/P9glnfXU4xMRqYOOHz/OlClTGDFiBHfccQcrVqxQ6AWIgk9EpA4xDIP333+fzp07U15ezpYtW7jpppswm/XXdaBoqFNEpI7Ytm0bkydPJi8vj//973/069cv2CWdk/QrhIhIkBUXF/PQQw8xePBgRo8eTVpamkKvBqnHJyLih+xs2LsXioqgQQPo0AEaNqz69YsXL+aee+5h4MCBbNy4kWbNmtVYreKl4BMRqSa3G5YsgVmzYN06CA395b2yMhg5Eu6/H3r3Pn0bmZmZ3HPPPWRkZPD2228zdOjQmi9cADAZhmEEuwgRkbPF5s1w+eVQUOB9nYrZDHY7dOsGn30GMTG/vFdWVsbs2bN5/vnnmTZtGtOnTyf018kpNU49PhGRKlqzBoYO9Q5rnqnL4PF4P7N+PfToAWvXQlwcfP3110yePJkOHTqQlpZGQkJCrdUuv1CPT0SkCvbsge7d4fjx6l1ns0Hbtk66d7+Z1NRkXn75ZUaOHFkzRUqVqMcnIlIFf/0rFBZW/zqnE9LTy+jQ4f/YsuV1wsPDA16bVI96fCIilcjPhyZNoLTU9za6dIEtWwJXk/hO6/hERCrx3ntgsfjXRmamdwaoBJ+CT0SkEosWeSer+MPphK+/Dkg54icFn4hIJY4e9b8NpxOOHPG/HfGfgk9EpBL+DnP+zGYLTDviHwWfiMhpuFwu1qxZQ0nJDr/bCgvzTpCR4NNyBhGRn5SXl5OWlkZSUhLJycmkpKQQHx9P69b3sGtXPKWl/nXZrrgiMHWKf7ScQUTqrZKSElJTU0lKSiIpKYm0tDQ6derE4MGDGTJkCIMGDSImJgan07vzyrFjvt9r6FBYtixgpYsfFHwiUm8UFhayatUqkpOTSUpK4vvvv6dbt24MGTKEwYMHM3DgQKKiok557SOPwHPP+baWLzwcFizw7vEpwafgE5Fz1rFjx1i5cmVFj27Lli1ceOGFDBkyhCFDhtC/f/8q76RSWAi9esHOneByVb0Gu917WsMHH4DJ5OMXkYBS8InIOePIkSOsWLGi4hndjz/+SN++fSuGLvv27UtYWJjP7R88CAMGeM/gKyur/PMOBwweDIsXa0ZnXaLgE5Gz1sGDByuGLZOSksjKymLAgAEVQ5e9evUiJCQkoPc8fhwmTfIeN2QynXroMzzce3rD3XfDU08FbjmEBIaCT0TOGllZWRW9uaSkJA4fPsxFF11UMXTZo0cPrNbamax+8CC8+Sa89pp3YfrPw5ht28KMGXDddd4AlLpHwScidZJhGOzevbuiN5ecnExhYWHFsOXgwYPp1q0bZnPwlyMbhnfoMzRUz/HOBgo+EakTDMMgPT39hKFLj8dT0ZsbMmQI5513HiYli/hJwSciQeHxeNiyZUtFby45OZmwsLCK3tyQIUNo166dgk4CTsEnIrXC7XazYcOGih7dihUriImJqejNDR48mPj4+GCXKfWAgk9EaoTT6WTdunUVPbqVK1fSokWLE57RNW/ePNhlSj1UL4PPMAxS96fy4uoX2ZSziYLyAsJt4XRq3Il7+97LxW0u1vCKSDWVlpayZs2aih7d6tWradeuXUXIDRo0iLi4uGCXKVL/gm/e5nk88s0jHCg4QImrBI/hqXjPhInwkHCiw6L58+A/c9uFtykApc5wuaCkxDtFvg5MZKS4uJiUlJSKHt3atWvp3LlzxdDlRRddRHR0dLDLFDlJnQu+tP1pJO9JJrckl1BrKE3CmzC682jiwv37TdEwDO774j7+sf4fFDuLK/28w+ZgVKdRvDf6PaxmHWIhwbFvH7z6Krz1FuTleRdCezzQujXcfz/ccANERtZOLfn5+axatapixuXGjRvp3r17xdDlgAEDaNCgQe0UI+KHOhF8Jc4S5m2ex6yVs9iXvw+nx0m5uxwTJuw2Ox6Ph8vaX8YDAx5gYOuBPt1j5lczmZM2p0qh9zOHzcFVna/i3SveVc9PalVeHlx//S+7+Z9qe6zwcG8I3nUXzJoV+N1B8vLyWLFiRcXQ5bZt2+jVq1fF0GX//v1xOByBvalILQh68O3P38/v5v6O7IJsipxFp/3czyF4Y/cbeWXEK5hNVR/r+TbzW/7w/h+qFXo/C7eF886odxibOLba14r4Yv9+736QBw9CeXnln3c4YOBA+PRT8Gd3rsOHD1eEXHJyMjt37qRfv34VQ5e9e/f2a59LkboiqMF3sPAgPd7owdGSo7g8Vdvu3GFzMOa8Mbw3+r0q98KG/3s4S3cu9bnOC5pewPrb1/t8vUhV5edDz56weze43VW/zm6HP/wB5s+v+s4h2dnZJywWz87OZuDAgRVDlz179sSmnZXlHBS04DMMg/PfOJ/0I+k4Pc5qXRtuC+fx3z3OtP7TKv3s/vz9tH+5PaVuHw7R+ondamfNrWvoGtfV5zZEquLBB+GFF6q28/9vhYfDRx/B739/6vf37NlzwvZfubm5DBo0qKJH1717dyzaTVnqgaAF39e7vuaKD6+gsLzQp+ujw6LJuT8Hm+XMv5E+s/IZ/vLNXyhz+/A3yU8sJguT+0zmpd+/5HMbIpUpL/ee8n38uO9tXHIJfP219xfLHTt2nNCjKy0tPWFXlMTExDqxz6VIbQvadMVnVz3rc+gBuDwuPsn4hDGdx5zxc7vydvkVegBuw83O3J1+tSFSmUWLqje8eSrJyS5GjpzK2rULMJvNFb25hx56iE6dOmmSlghBCr7sgmySMpP8aqOgvIBnVj5zQvAZhkF+fj6HDh2qeH2f8b2/5QL4NDFGpDree897yrc/DMNDZOR4vvtuKgkJCQo6kVMISvBtO7yNUGuoX8/dANZnrWfEiBEnBJ3NZiMuLq7iVdyxGCL8rznafuqFuB7DQ0FZAW7DTVRoFBaznpGIbw4c8L8NtzuEdu360bat/22JnKuCEnzHy45j4P+jRbfZzeTJkytCLjY29qR1Rf/54T/cuvhWSjwlPt/H4rZgy7Zx+PBhYmNjMQyDFXtX8OyqZ1m6YylmkxkTJpxuJ71a9GLmwJmM7DRSC9/llH4emThw4MAJr6ysa4AWfrdflSUQIvVZUP5mdtgcmPB/CMZsmHG73cTFxdG6deuKYZ0yVxnvJL3D4m8WsyptFaV9Sv36pmarmdLVpbR/tD0JgxLI6pNFqaWUElfJSQG+Zv8ablx0I1azlVdGvML4buP9+YpyFvF4PBw9evSkQDvVy2w206xZsxNeDRo4OXzYvxpsNmjcODDfR+RcFZTgi4+Kr/YShlPxHPcwevRoLBYLhmHQuH1jynuUk9c2D8MwsNqsWC6yYDPZKHf7+GuwB36f8HsW/WUR/9v8P65beB1lnjI4w7LDgvICAG775Db2HNvDQ4Me8u3eUie4XC5ycnIqDbOcnBwiIyNPCrSEhAQGDBhwws8iT7HPWIcOMHMmFJ1+H4dK2WwwbJgfX1akHqjR5Qxuj5ulO5ayPHM5OYU5hFhCaB3VmqsTr+bK+Vey7cg2n9t22Bw8dclT3NDpBt58801eSnmJg90OgomAxnkIIdj/bWf8zeN5x/0OJa7qDZk6bA5eGf4Kky6Y5FcdHsPDsl3L+Mf6f5B1PIsydxnRYdFc2u5SbrnwFho79Gt+dZWUlFQaZgcPHiQ3N5fGjRufFGi/fTVt2pTQ0FCf68nPh6ZNvRtR+6pbN9i40ffrReqDGgm+vJI8Xl/7Oi+ufpESV8kJyxasZis2s40mEU04WHiQUpePE1xc8MftfyTlmxQi/xhJdttsyo3APtywW+3MHzufLtYudH2rKyV23/5GslvtHLz/IA1Cq7+Br9Pt5JU1r/DcqucoKC84aQmI3WrHwOAPHf7A4797nC6xXXyq8Vxxuudnp3qVlJTQtGnTSgMtLi6u1hZ2T5rknd3py7KG8HB4800Yr9F1kTMKePBlHM3g4ncvJq80z/dQq4wLzFvMGIsM2v1fO/b13uf3DNHfto8HrvJcxdU9r6a8STm3rbjtjHuJnonFY2FCkwm8NP4loqKiqnxdQVkBI/4zgvUH11e6nMJsMmO32vlo3Ef8vv1ptu44i3k8Ho4cOVLRCztToFkslir1zmJiYurcdP+9e6F7dzh2rHrXhYTAeedBWpp/+3WK1AcBDb7MY5lc+OaFHCs9VvVZmwZUZ56L2TDTOqI1m6ZsImlZEiOXj8TTwFP5hadhcpvADBYsGG4Dj9ND2A9hOLY6oAjatWvH5sTNFLcqBj82uQgrC8M6x8pFAy/iiiuuYNSoUTRt2vS0ny93lzP4ncFsOLihWgvwHVYHS8YvYUibIb4XW4ucTmeVnp8dOnTolM/PTvWKiAjA+pUgWrvWuwNLYSFU5f+dISHQvLk39DSxRaRyAQs+t8dNxzkdyTyWecLhrgHlhPYx7Um5I4XGjsas2LOC4f8Z7nNPDCA0P5Tb+t5GpzadaBfTjmEJw9i/bz8pKSncfffdxMfHs/4P68HPkS6HzcF3E77jx9U/snDhQpYuXUqXLl244oorGD16NO3btz/h8zO+msGra16t9jNFgAYhDdg3bR+RobV0UNspVOX52YEDB8jLyyM2Nvak3lign5+dbbZu9e65eewYFBSc+jMWC4SGeje1XrwYGjaszQpFzl4BC74lPy7h6o+u9nkbMovJgskw4XK64Dfbb0aGRGKz2LB9b4MVkLU7C5vNxqgPRvFJxif+rQl0wbqJ67iw/YUnvbV69WpGXTmKI7cf8TvM7SY7rw14jbH9xxIeHk5ZWRnffPMNCxcu5OOPPyY2NrYiBM/reh5NZjfx+d9luC2cZy59hrt63+VXzb9lGAbHjx8/40SQn/9cWlpapednsbGx2hj5NDwe+PJLeOYZWLXKG3Imk7cXWF4OY8fC1KlwwQXBrlTk7BKw4Lv43YtJ2uP7NmRmp5nQ70KJbBRJy0taUmYqw2ax0SKyBbdceAt/7PhHcg7kkJCQwM0338zrr79Ok+eacKjokH+Fl8Lvjv2OyOxIcnNzyc/Pp6CggKKiIkpKSigqL8Iz0+PXMOfP3y/2i1jyNubRpEkTunXrRmJiIl26dOG8886jsLCQL774goULF5IXn0fBRQU4zb4v+YiPimf3vbur9Azr18/PKntZrdYqDTdGR0fXuednZ7OcHO9p7EVFEBUFCQmgw85FfBOQif9Zx7NI3ZfqVxsemwdLXwsvXfAS11xzzSk/ExcXx/3338+sWbNo0aIFx9zH/LonACZYs3ENUZlRhIeHExERQXx8PNHR0cTGxhLTKIa/8Te/b2OxWujariu57lwyMzNZtmwZqamp2Gw2ysvLyc/PJzIyknbt2nGk1xG/Qg/gaMlRVu9dTUtzy0onhBw6dIgGDRqcFF7t27dn0KBBJww3nu3Pz85WTZp4XyLiv4D0+JbvXs6YD8dwvMyP81QAyqHr4q4UFxdTVFREaWkpZWVlOJ1O3Kea3/0nwN8DocthlDGKNsVtKC0trbjnz38+dOgQGy/YiKtV1Q7KPR2b08aw74cRFhpGWFgYFosFp9NZcZ/CwkJyc3PJzc0lZ2IOOCpv84zKwPypmSZHmlTaO2vSpEm9en4mIvVbQHp8+WX5Adl7Eyts2bLlhB/9NpdNJtMvPyvE/+Az4LMPP8O8z3xC2263G4/H+1zPVGCCqwBfs8EJrIbk1cm/3PZX3+ukPwfgv4oj3MEr777CpAv9WzgvInKuCcgplJEhkQHZe9NmtlX0uMrKyigvL8fpdOJyuU54ZWRkEBsbC2sh1OxfTyXMEkbpj6WsXr2aqVOn0rJlS+Lj43nwwQf54YcfWLp0Kd3Cu2Ezznzg7RnvYQ9j38f7KCwsrHgVFRVVvIqLizl48CDLli3j6aefJsTk/0Isq8VKQ3tDv9sRETnXBKTH1za6re97Yf6K66iLfv360b9/fwYMGED//v1POlPsq6++YsKECfzlL39h9quzySzP9P1blEP5inJatWyF3W5n3LhxLFiwgO7du/PDDz9w//33s3v3bp5++mlsiTbG/Xecd5/OanDYHMwYMIO48DjAu24tIyODTZs2sWHDBlatWsWWLVvIz8/HarXicrmwTrJCcx+/00+cbidd47r614iIyDkoIMGXEJ1AtybdWLN/je+NlMOdF9zJ+GvGs3r1ahYuXMgDDzyAy+ViwIAB9OvXj6ysLD766CP++9//0r9/f3bs2MFLm17CdL4Jw+LDUKsJHNsdHMo9RPv27RkzZgzR0dFMnDiRr776ikceeYRbb70Vm83b23v+8ueZ8ukUPJaqLW2wW+0MaDCAsNVhTPjHBNatW8euXbtwOByYzWYKCgpo2rQpv/vd7xg6dCj9+/cnMTGRuSvncsfXd+C2+n4cd9e4rnRs1NHn60VEzlUB28555sCZ3LjoxoqTCarLbDbzzUvf8K3zW6ZMmcLcuXNxOBzs3buXpKQknn76afbs2YNhGNxxxx0cOnSIVq1aMbLbSBa7Fld7gXmoOZQLcy5kyktTaNWqFTfeeCN9+/bFYrFw5513kpGRcdIO+nF744hJjiH3olxsITbKjNP0/gzAA57VHnZm7GSHZweHDx8mPDyc4cOH079/f/r27UvPnj1PuMeaNWsYMGAA69avwzTD5PN/nciQSGYOnOnbxSIi57iAPOMDGNlpJBEhEb4963NDSHoI/S7sx1NPPcXSpUuJj49n5syZHDhwgFdeeYXu3buTnp7ONddcw5EjR7j88stp1LYRn8Z+Wu3Qs1vtzPnDHEJ+DCEmJobU1FSOHz/OsGHDiImJ4bXXXuOWW24hLy+v4prt27dz55138sodr/BYxGO4Vrm8250ZcNK8HhPgAlcvF02ua8Ks2bPIyMggJyeHRYsWMXPmTC6++GIiIyMxDIMlS5Zw3nnn0b9/f4qKilj21TJevepVHLbqT+00m8zE2GMY2Wlkta8VEakPAhZ8VrOVZTcsIyLEh3VeJjC6Gaxqsopbp9/K2LFjSU1NJSsriwEDBlBcXExCQgK9e/cmMjKSHTt28PLfXyZ9YDqmqOr1jEyYmHXpLCb1mERGRgaTJk1ixYoVJCcn8+WXX3LgwAHmzJnDkiVLiI2NZeDAgYwZM4YePXpw7NgxHnvsMeZtmYent8c7vGri1HuNhoLb6mZD2Ab+dvhv2KPtJ7ztdrv517/+RevWrRk5ciTh4eGkpKSwdetWLrnkEm7veTvXdb2uWuFnNpmJCo3im4nfYLP4PhlHRORcFvDTGb4/8D1D3xtKYXlhtQ+btZgshFvDabq0KdajVg4ePMijjz7KnDlz2Lt3L61bt+ZPf/oT1157LdcsuoalO5f6NKnGYXLQ/uP2bPlhC//5z39o1qwZmzZtYtOmTWzcuJEtW7YQHh6Ow+Fg9+7dGIZBo0aNSExMZE3xGkovL8WwVv1fW4g5hC5xXUi5OQVc8MYbb/DEE0+Qn59P//79mTNnDueff/5J13kMD/d/eT9vrnuTEufJp72f8J1sDhqGNSTpxiTax7Q/7edEROq7GjmPL7sgm2dXPsvf1//dpw2kQzwhhP87nJLsEsxmM0888QRTpkxh+fLlvPzyy6zatIr8m/LxmH3cP7MM+BTYBDabjXbt2tGnTx/OP/98rFYrubm5bNmyhdTUVI4ePVqxjCK8aThlt5fhpPq7qoRZwujh7MHm5zdTVlbG0KFDefHFF+nUqVOl167cu5JnVz3L0h1LMZvMFRtXW0wW7DY70WHRzBgwg4k9Jvp05p+ISH1Soyewd32tK1sPb63+4nYP2PJtDMsYRmlJKYcPH66Y3DJ//nxSHamU9yqvVq/rt5qZm1E8u5iBAweyYcMGDh48iGEYNG7cmG7dunHZZZfRqlUrpk6dyurVq4mKiqL/g/3JiM04aRPtKiuD0TtGM3vWbBISEqp9eU5hDgu2LSC7IJsSZwmNHY3p17IfF7e5WPtiiohUUY0F39rstQx5d0ilB6ieTpg5jIWjF5L5XSZz5sxh69attG/fnscee4z79t3HoWI/N6d2QsjbIVx7+bX06dOHnj17YrVaSUtLIyUlheTkZPbs2UOPHj0YOXIkffv35brvr+NY2TGfbxluC+f1P7zO9d2v9692ERHxWY0F33ULruPDLR/6fpyPB6w7rFzluYpRo0bRsGFDZs2axZq0NRRP9+9QWAC72U6PbT1Y9f6qk95zOp0MGzaMPn36MGjQIFJSUvhs22ds6rLJ923LftK7eW/W3OrHekcREfFLjQRfubucBk83qNbJ4adi9phJmJ/Avt37aN26Na1atQITLL9oebVObT+lUgj7NIwEdwJ2u52wsLCKf2ZkZFBUVMSIESNwOByEhYWxLWwbS01LcZr8OzWhRWQL9k3b52fxIiLiq4AtYP+1o8VHMZv8XynhcXnYdXAXDquDgoICsrKyCA8Px+TxcaeWX7OCubWZ0gOllOaV4nQ6cTqdFftnhoWF8a9//QuXy4XH48HoacDl+P587ydlLv9+GRAREf/USPAVO4sDEnwWi4VL/3gpsaZYbDZbxWs/+znMYT8bB2dvJ/st++ke051bE28l3hnPtddcy4IFC+jVq9cJ9/xw64fc8ekdPu9M87OIUJ1nJyISTDUSfFFhUbg8/p1fB2ALtfHO6+/QNKLpCT8fuHkgt31ym38hZMK7LMEDaUfS2LZqG+4Dbv729N+47LLLTvr4BU0vwOn2b5jTbDLTp0Ufv9oQERH/BGznll+Lscf4toPLb5QVlXH/Xffzr3/9iwMHDlT8fEznMQGfvl/oLKQspoxXy1+loOzEQN21axeP3PkIZVn+DVParXbu73+/X22IiIh/aiT4zCYz9/a9F7vVXvmHTyPMGsZdve5i0MBBfPzxxyQmJtK1a1emTp3Ksi+WMbPvTMJt4QGsGjxmD3uP72XkPO8+lz9vGt2xY0eWLVvGVc2vIsLme6C3bNCS3i16B6pcERHxQY0tZ8gpzKHNi20odZf6dH2oJZRd9+6ieaT3YDq32826dev46quv+Oqrr1i7bi0R4yPIbZbr004qZ7y3KZTYz2LJXptNmzZtePLJJxk3bhwePHR+tTOZxzJxG9U7MshutTPvqnnaPFpEJMhqdOeWWxbfwgebP6j2Ina71c7YxLHMvWLuaT9TWFjIt0nf8peVf2GDZQOG2Qhc/9UDjXMas+TmJfTufWIPLet4Fhe+dSF5JXlVDj+HzcHDgx7mwUEPBqhAERHxVY0Gn9Pt5JL3LmFd9rqK/SUrY7fa6d6kO0k3JRFiCanSNesPrOfJr5/k012fYrgNXLj8DsEwaxjZ07KJtkef9F7W8SyGvDuEw8WHKSwvPG0bNrMNq9nKrEtnMaXPFP8KEhGRgKjR4AModZVy9X+v5uvdX1e6YXW4LZzB8YNZMG4Bdlv1nw/mleSx5Mcl3PjxjX7PKo0KjWLJ+CUMaDXglO+Xucr4aOtHzFo5i515OwFv0FvMFmxmGx7Dw6QLJnFP33t0WoKISB1S48EHYBgGy3cv55lVz5CUmYTFbPEeJ2RAiDUEt8fNoPhBPDDgAYa2HerXGkDDMLA8bqn+xti/ERUaxftXvs+IDiMq/ewPB38gLTuNY6XHCLOG0TyyOcPbD/cpvEVEpGbVSvD92r78fSzdsZSjxUcBaORoxOXtLqdVVKuA3cP2hC0gPb6FVy/kdwm/C1BVIiJSF9TIAvYzadmgJbdceEuN3qORvRE5RTl+teH0OCtmlIqIyLmjRtbxBdttPW8j1OLfMQrxUfF0alz5IbEiInJ2OSeD745ed/i1s0tESAQzB84MYEUiIlJXnJPB1zyyOcPaDsNm9u0oBbPJzLjEcQGuSkRE6oJzMvgA/jnyn8SGx1Z7hqjdamfR1Ys0I1NE5Bx1zgZfbHgsKyetpHlk8yr3/Bw2B/OumqeZnCIi57BzNvgA2jRsw4bbN3B99+uxW+2n3NQ6xBJCmDWMIfFDSL4xWXtpioic42p9HV+wFJQV8K+N/+Lt79/mcNFhXB4XUWFRDG8/nCl9ppAQnRDsEkVEpBbUm+ATERGBc3yoU0RE5LcUfCIiUq8o+EREpF5R8ImISL2i4BMRkXpFwSciIvWKgk9EROoVBZ+IiNQrCj4REalXFHwiIlKv/H8zTP6A1PFB2QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3RU1d7G8e+ZmTRKQg8kdEFQuvSiSI9ISRREpIgoduzKxRf7tTcUvaiAci8oIEhCCwEUadKRgHRQCD1AgISQPnPeP46MIAkCmUkhz2etWYnJmX12iuGZXX7bME3TRERERETkKtnyuwMiIiIiUrgpUIqIiIhIrihQioiIiEiuKFCKiIiISK4oUIqIiIhIrihQioiIiEiuKFCKiIiISK4oUIqIiIhIrihQioiIiEiuKFCKiIiISK4oUIqIiIhIrihQioiIiEiuKFCKiIiISK4oUIqIiIhIrihQioiIiEiuKFCKiIiISK4oUIqIiIhIrjjyuwMFVloazJoFv/wCa9bA/v2QlQUlS0KTJtCsGYSHww035HdPRURERPKVYZqmmd+dKFDOnIG334axY+H0afDxgczMC6+x2cAwwOmEW26BV16Bjh3zp7/nmCb8/DPExMDatbB1qxWKfX3h+uuhRQurj7ffDg69jhARERHPUaA8308/weDBEB9vhcXLYbdb1w4bBh9+aI1g5iWXC77+Gt55B37/3QqLWVkXX3cuGAcHw1NPwTPPWGFTREREJJcUKM8ZOxYee8waeXS5rvz5djvUqQOLF1uhLS/s3Qv33gvLl1/Z8wwD6taFb7+1pu9FREREckGBEmDiRLjvvty343BA7dqwahUEBeW+vUvZsAE6d4bk5OxHJP+J3W49Zs60psFFRERErpIC5c6d0LAhZGR4pj27HQYOtEKqt2zfDq1bW2Hycqfms2MYVn8XLoQOHTzXPxERESlSinagdLmsYPbrr1c3yncp0dFw222ebROsdZBNm8K2bbkLk+fYbFCuHOzYAaVL5749ERERKXKKdh3KH3+0dkR7OkzabPDyy55t85z33oMtWzwTJsEK1QkJ8PTTnmlPREREipyiPULZs6dVZsfTgfKcDRvgpps8197Zs1CxojXV7WmGAX/8AdWre75tERERuaYV3RHK1FRrWtpbYdLhgBkzPNvm1KneCZNgjap+9ZV32hYREZFrWtENlJs2XV15oMvldMK6dZ5tc/p0K/h5g9NpBVYRERGRK1S0A6VheK9907Q2+3iyvbVrvRuC9+6FpCTvtS8iIiLXpKJ7Bl9iojXa56nNLdnIPH2aJx55BF9fX3x8fLJ9e7mfC0hMpNGpU17rq9tvv0Hbtt6/j4iIiFwzim6gtNu9fguXabJ27VoyMjLIzMzM9u259/9JLWC313uMRihFRETkihXOQHnqFKxcae2i3r0b0tPB3986TrBpU2jT5p/P1A4N9eroJIBftWps2LDhH68zTZOsrKyLQub5b/njD+jd26v9BazNRCIiIiJXoHClh40b4ZNP4LvvrALfDoe1ttA0/1oP6XRCQIB1xvUTT8ANN2TflifL+WTDCewKCiJz82YaNGiAcYn1moZh4OPjg4+PD8WKFbvgcwkJCcTGxvLbli3cSB4seq1c2dt3EBERkWtM4ahDmZICo0bB6NHWVPXllPo5FzZfeglGjgRf3ws/73JB2bJw+rRXuuwCnnc4+Cgri0qVKhEWFka3bt3o0qULZcqUueh60zTZt28fsbGxbNy4kdjYWGJjYzlw4AAAxYoVY6vLRfW0NK/0F7BGeZOT82Q5gIiIiFw7Cn6gPHgQOne2pravZoezYVjT4DExVoA83wsvYH70EYYXpr4zgBCgZPXqVK9enfj4eLZv347NZqN58+bcdNNNlCtXjsTERDZt2kRsbCyJiYkAlC9fniZNmtCkSRMaN25MkyZNqFWrFqf69aP0zJnYvfAjM+12jJtvhp9/9njbIiIicm0r2FPeR49Cu3Zw6NDVl8sxTWuqvH17WLECSpUC4OzZs0zIyOBxpxNPFw9y2Ww4Bgzg2wED+OKLL5g7dy6maVK5cmXS09NZu3Yta9asAcBmsxEaGkqnTp2IiIigY8eOVKpUyT1FfubMGaZOncqgQYMw163Dw5Ut3Qynk5UNG9LS6cSuEUoRERG5AgV3hNLlgltvhVWrPHOajd0O4eE4p03jm2++4eWXXyYhIYEFjRrRfv16DA99G1zAWaBL5coc8/Fh7969gBUcfX19SUtLIygoiJ49e9KpUyd+//13YmJiWL9+PQCNGzemW7du1KhRg3Xr1jFt2jRSUlK47bbbGDZsGL1efRXjt988uqHINAySHA7KZ2ZSvXZtXnjhBQYNGoSfn5/H7iEiIiLXMLOg+uyzc9ttPPp4pkoVEzDvuecec+/evaaZmmomh4SYGR68xzAfH9Nut5vFixc3n3rqKXPTpk1menq66XK5zLVr15oPP/ywGRgYaALmrbfeak6aNMnct2+f+dVXX5nNmzc3HQ6HCZiGYZh169Y133rrLXPfvn3W92X1atM0DM9/b6ZONdeuXWtGRESYgBkaGmp++OGH5pkzZ/L110BEREQKvoI5QpmSAhUrwpkzHm3WBST4+hK3bBnNWrYEYNKkSbx5332ssdsJdDpzvZ7y9LBhBH3xBQcPHeKhhx5i/vz5DBw4kNGjR1P2vDWcKSkpzJw5k/Hjx7N06VJ8fHwwTRPTNOnRowcdOnQgKSmJhQsXsmrVKpxOJ3Xr1rU29vz0E7dt2eK5Hd8+PtapPvXrA7B9+3beffddvv32WwIDA3niiScYPnx4tpuJRERERArm0YtTpng8TIL1xZbPyKDZsWMAfPjhhwwePJi2995L8U2bcFWujHkVxzG6DMPa/PPyy5T68ksMm40qVaowb948Jk6cyNy5c6lXrx4zZ850PyctLY2EhAROnDgBWLu4ixUrhtPpdE+TP/rooyxfvpwTJ04wY8YM2rRpw7hx4+i9ZQtzAI+9EnC5oGNH+PP7csMNNzBx4kT27NnDPffcwzvvvEPVqlV59tlnOXTokKfuKiIiIteK/B0gzUHbtt6Z1gXTtNtNV0SEOWzYMBMw27VrZ/bs2dOsUqWKGQDmR2A6wcy8jLay/nwbZxjmqdmzc/xyDh8+bPbu3ds9xX3nnXeafn5+po+Pj9m3b19z4cKFptPpNLOysszo6GjzzjvvNH18fExfX1+zb9++ZkxMjHn8+HGzQ4cOpo+Pjzlo0CDzAzBdHv6+mHfckW3/4+PjzRdffNEMCgoyfX19zWHDhpm7d+/21k9fRERECpmCN+XtdEKJEuDFeotHsEr6wF8les6V52ncuDG1MzKwf/UVqf/5DwHniqafO0HGNN2bhH4FKr75Jk3eeYd+Q4bw6aefZnu/48ePM3HiREaPHs3hw4ex2Wz069ePjz/+mODg4ByfM3nyZCZMmMDWrVtxOBw4HA5GjBjBvLffZk1GhneGl+fMgR49sv1UYmIiX3zxBR999BEnTpygb9++jBw5kkaNGnmjJyIiIlJIFLxAuW0b1Kvn9du8/vjjPDBy5AUles536NAhalauzOx//5tu5crBgQPW6TyBgdCgAQnVqxN8002MGTOGpKQkRo0axdatW7n++usBcLlcLF68mHHjxhEZGYlhGPTp04c+ffowZcoUpk+fTu/evRk7diyVKlXKsZ8rV67k9ttvx+VykZmZSWpqKv/z9WVAVha2qy2llBO73SrTtGTJJS9LTU3lm2++4f3332ffvn10796dkSNH0q5dO8/2R0RERAqH/B0gzcbPP3tnqvtvj/TY2Et2Y/z48abNZjNPnDiR4zVhYWHmzTffbKampprVqlUze/fubR45csR86623zJo1a5qAeeONN5off/zxRe388MMPZnBwsFmqVCnzm2++MV0u10XtT5s2zfTz8zPbtWtnrl271qxQoYLZoGpVM91bywHOPXbsuKwfVUZGhjlp0iTzxhtvdC8fiI6OzvZrERERkWtXwRuh/Plna4OIl9UDdjkcBAYGUqJEiQseJUuW5NdffyUjI4OBAwe6P/b365YvX85rr73GihUrmDZtGmPGjMFut+Pr68tdd93FsGHDaNOmTY7neCckJPD0008zadIkwsLC+Oqrr6hSpQqmafLuu+8ycuRI7rnnHt566y06duyIw+FgzeuvU+ruu733jTEM+M9/4OGHL/spLpeLOXPm8Pbbb7NmzRoaN27Mv/71L/r06aMi6SIiIkVAwQuUmzdDHqzJqwQcBXdYLF68OH5+fvj4+GAYBps2baJ8+fIEBQVx9uxZzpw5Q3JyMq7LmGYOCgoiKCgoxyD694/t3r2bb775hrS0NB5//HH27NnDzJkzef7553nuuefo2rUrx48fZ+XKlVT79lt4+WWPFjY/XyawsWFDUj75hDZt2uD79zPQL8E0TZYsWcLbb7/NokWLqFWrFi+88AKDBw9WkXQREZFrWMELlBkZULy4Z07HyekWJUuyfOZMDhw8yP79+zlw4MAFb8+ePeu+1sfHh8qVK1O1alWqVKlCcHAwJ06cIDY2lt9++w2wQumLL75IUlISb731FnfddRfXX389ycnJ7iB6/uPvH7uckBoYGEipUqX4JCmJHqdPe/XMzDUOB62ysihRogSdOnUiLCyMsLAwqlevftltrF+/nrfffpvIyEgqVarEs88+y4MPPkiJEiU819Fjx6yTlDZsgLg463emeHGrnmazZtC8uVVjU0RERLyq4AVKgKZNrfO3vdC1LCAGeKRyZbp3787tt99Ox44d3UHHNE2eeuopJk+ezNdff82hQ4fYv38/27ZtIzY2lsOHD+PMZnSwVq1a1K5dmx07dpCQkMCHH35IrVq1qFq1KpUrV85xpM80TdLS0ti6dSv33HMPBw8exN/fn5SUFCpUqMDRo0cZPnw4FSpUIDk5mYjvv6fR7t3YvfhjM2+6iY3jxhETE0NMTAwrV67E6XRSp04dd7hs3749AQEB/9jW9u3bee+995g8eTKBgYEMHz6c4cOHX1Dk/YotXQqffAKzZlk1NB2Ov35XbDYrWJomlCsHjzxiPS6x8UlERERyp2AGyk8/haee8kqgBNg8ciTfpKYSHR3Nrl278PX1pX379u6A2adPHxo3bsz48eOZPXs248aNY+HChZQsWZIBAwYwdOhQKlasyP79+/n999958MEHadCgASEhIezevZtt27ZdcD/DMAgODqZq1arukc7z3544cYL77ruP4sWLM2/ePEJCQmjZsiU7duygXr16REZGUrt2bQDM++6DSZNyfaLPJbVrB8uXu/8zMTGRn376yR0wDxw4gL+/P+3bt3cHzDp16uS4VhRg//79fPDBB4wfPx6bzcZDDz3EM888Q2ho6OX3KyEBhg+3Ct87HJc3im23Q0CA9Ts1ZIi1RlREREQ8qmAGypMnISQE0tM92qwJpPj7kxkXR6kKFQDYs2cP0dHRREdHs2TJEtL/vGeNGjU4deoUp0+fpnXr1gwbNoy77rqL4sWLX9TukCFDWLVqFTt27MAwDJ555hnGjRvH/PnzSUtLu2A6/fz3U1NT3W0YhkG1atWoXr06x44dY9u2bYSFhbFu3ToSExNp1aoV/v7+3LJqFSPPnvXalHcGEB0czOK77qJZs2Y0bdqUunXrujfXmKbJ9u3b3eFy2bJlpKenU61aNXe47NixI4GBgdm2f+zYMT799FM+++wzUlNTGTx4MC+88II7MOdo82bo3Nn63bjSMG0Y1ouTu+6CSZPgCtaFioiIyGXI833lOdm82TSffdY0W7UyTX9/r5XEGe7jY5YtW9b87LPPzIyMDPft09LSzG+++casXLmyCZiGYZiA6e/vb/bs2dMcO3asGRcXl23XY2JiTMDcsGGDaZqmmZCQYJYuXdp88MEHc/xynU6n+eqrr5qGYZjt2rUz33zzTfPuu+82Q0JCTMC02WwmVga+4BFRsqRXSwa5wPyqeXOzdu3a7nsWK1bMbNOmjTl8+HBz4sSJ5m+//WZmZmaapmmaZ8+eNaOjo83hw4e7n+NwOMz27dubb7/9trlx48ZsywglJiaa77zzjhkcHGzabDazX79+5saNG7P/Zv32m2kGBVmn+eTm67PZTLNXL9P8s+8iIiLiGfk/QrlmDTz9tLW54nKnMa+Cy2ZjOTCsZk1urFeP2bNnc/311/Pkk0+ye/du/ve//5GQkEC5cuUoXbo0sbGx/PHHH+7RyxUrVuB0Oqlfv757arx169b4+PiQlZVFSEgI9957L++//z4Ao0eP5tlnn2XTpk3Ur1//r364XOzZs4fHH3+cRYsWUbt2bTIyMoiLi3NfU6lSJbp37079+vUJDQ2lRIkSrF27ls8//5y0EyeIB+sEH28wDPj9d6hRg8TERDZu3MiGDRvcj127dgEQEBBA48aNadq0qftxww03sH//fhYsWEBMTAw//fQTZ8+epWLFinTr1o2wsDC6dOlywfrJ1NRUJk6cyHvvvce+ffu47bbbGDlyJDfffLN1wdmzVqH7gwc9s7P9zzPXefXV3LclIiIiQH5OeWdmwksvwXvvWRspvLkm0OGAihXZPXkyfZ98km3bttG5c2dWrlxJYmIiPj4+9O/fn+eee462bdvywgsvMGrUqAuaOH36NIsWLXIHzGPHjhEUFETXrl3p3r07y5YtY9GiRcTFxWEzTTJ27iSia1dKlStHl/vvZ/3OnWzatIlNmzZx5swZwNq53apVKxo1akRWVhajR4/mgQce4Msvv8x2PWJaWhqvvvoqVd99l2GAp/cvm3Y7zltvxfHjjzlek5SUlG3INE2TgIAAGjVq5A6YDRo0cH/fYmJi2Lx5M4Zh0KJFC/f0ePPmzbHb7WRlZTF16lTeeecdtm7dSrt27Rg5ciS3xcRgfP65tfnGU+x2WL8eGjf2XJsiIiJFWP4EyrQ0uOMOiInx2sYbN7sdqlaFn3/mt6QkvvjiCyZMmEB6ejply5alX79+LFq0iD179hAWFsb8+fNZv349TZs2zbFJl8vFr7/+SnR0NPPmzWPt2rWUBYYCA4sVo25aGr7nBSAXcMjHhx2VKvFRcjLLUlOZ+N//0rdvXwCWLl1Kt27d6NmzJ1OnTs2xGHhiYiKPPPIIv06ZwhbwyjrKzsDGMmUu2jh0/vshISE4HH/d/cyZMxeFzJ07d2KaJv7+/u6QWbNmTZKTk9myZQs//vgjp0+fpnTp0nTt2pWwsDC6detGcHAwc+fO5a233uLYmjXsAc+fWW63Q4cOsGiRp1sWEREpkvI+UJom3HnnXyVfvMVuB6eTzCFDmNqsGZ9PmsSaNWsIDg7mvvvuo3bt2rz44ouYpsm4cePYv38/zz//POnp6bzyyis8//zzFCtW7KJmMzMz2XneaOOO9evpuWoV96alYccKPzntI87EGlVMvfFGAv73P2jalI0bN3LrrbfSokUL5s6dm20B8HN9+uijj8jMzCQ0NJSfO3Sg1uTJOd7rSpk2G/Fdu/LTwIHZbiI6ffq0+1qbzUZISEiOgbNKlSr4+vqyadOmC0Lmjh07ME0TPz8/GjZsSOXKlcnKyuKPP/5g69atADRq1MgdLquPHUvV6dPx2lk7u3bBP20GEhERkX+U94FywgR44AGvNG36+FhT6UBSu3ZMKFOGV3/+meTkZLp168aDDz5Ijx498Pmz2PWxY8e47777iI6O5sknn2ThwoXYbDZ27dpFhQoVGDVqFHXr1mXz5s1s2rSJ2NhYtm7d6t4JfkdwMF8mJlImPR3bFXwbTbsdwzQ5+cgj3Pj991SpVo3FixdTsmTJC65zuVx8+eWXjBgxgjNnzlCiRAk++OADHnzwQYysLGjbFuf69bmuSZkF2KtUwdi8GYKCrOLyWVng728Fc6xRyOx2qp97/8CBA2RkZLjbDAgIuChwli9fnoyMDI4fP87evXutQL5jBy6XCz8/P0JDQ3E4HBw5coQzZ85wAshFtcpLs9vhxRfh9de9dQcREZEiI28D5ZEj1ojQeSfReEyTJmQ0bcp7ixcz6dAhdqWnExoaytChQ7n//vupVq1atk8zTZMxY8bw3HPPkZmZSefOnQFYuXIlKSkpgHVaToMGDWjcuDGNGjWiUaNG3BQfT8mBA621n1c50uoC5pQsSZtduyhfseIFn5s7dy4PPfQQhw8fxuFw8MQTT/Dmm2/i7+//10UnT/J71apUT0m56lBp2u0cdTpJDg+ndloarFtn1XsEa21r7drQqhX07g09e1rrUbP7Wlwujh8/flHgPD94Hj169ILnlCtXjpCQEAIDAzEMg5SUFOLj4zl8+DBVXC72XdVXdJkMAzp10rS3iIiIB+RtoHzlFXjzTY9vwHHZ7cSGhnLziROkpqZimiZff/01gwYNumCtH1i7irds2eKeso6NjWXz5s0kJSW5r6lbty633347xYoVY+bMmWzdupWIiAjeffddq17ihg3Qpo01GprLb58LiKpShbinn+b2228nMTGRBx54gM2bNwMQHh7Ol19+SYU/62aeLy0tjWpBQayoW5famzdjGgbGZfbHxJqazypVCuPP6Wz7uXqNf3du933Fitao3mOPWWHzCqWnp7tPHsoucO7fv9+9YSkCmHnFd7hCQUFw3lS+iIiIXJ28C5SZmVax8hMnvNK8Cxjz7LN0vu8+GjVqxGeffUZ4eDixsbEXhMedO3ficrmw2Wxcf/317lHHOXPmkJ6eTosWLRg7diy9evViwoQJlClThilTpjBy5EiOHj3Kkw89xDvz52Pft8+jwTjM4WDBeSWTatWqxdSpUy+5Oejnn3+mY8eObNq0iYY7d5L+6KP4nTiB0zByHrG02cDlwixWjMyUFGxcxeae1q1h8mSoWfOyn2KaJllZWaSnp5ORkZHj24SEBA4dOkTI7Nn0iI722BrRHDmdVxWORURE5C95FyhXr7aCiJeYwNr77+eHMmUYP348Z8+eda/pK1myJA0bNrxgyrp+/fruTTcZGRmUK1eOESNG8H//93/Mnj2boUOH4uvry6RJk+jUqROpqal8/PHHmK+9xsiMDI/uPHYaBkdMk5qAT7FiFCtWjBMnThAQEECnTp3o3r073bt3v2ja/qWXXuKLL74gPj4em83GPf36UXL5cj5r1gzzl1/wPXnyguuzSpbkzI03kmW3U37lSvco5dX0N8XhYESLFuz08/vHkHju7ZX8qj0MfI4Xdnj/zdnERIrncKqPiIiIXJ68C5Sff26dw+yl22UAXwNvV61KiRIl2LVrF5MmTaJ58+bUqFED2yVGoZYsWUKHDh3YsGEDN910EwCHDx/m3nvv5aeffuL555/njTfewNflwhUcjO286XFPerVOHeJatyYzM5MTJ05w4MABjhw5wqlTpwDw9/enZMmS+Pv743A4OHToEAB+54W685X/82EDTgKHgeeB9zzQVydw1seHJ1q35mhAAE6nE5fLRWZmJllZWe4gmZaWRmpqKqmpqZw9e9a9oenvAgICCAoKonTp0gQGBtL11Cle/7OIurckAyWx1nJWrVqVatWqZfsoU6bMJc8pFxERKeryLlA+9hiMG+fehe0N8TVqMPf//o99+/bx73//m6FDh1K9enV3uMlp5Gzz5s0cPnyYZs2aXXTtyZMnSUpKwmazMcgwmOilAuxO4LfixXm4fn38/Pzw9fV1vzUMg4SEBI4cOcKBAwdITU3F19eXjIwMGjduTO/evfn111+ZP38+o0ePpkyZMvj5+bmfn5CQwPvvv4/566+sx3OjfpnAaqA91ggxQFBQEGXKlMn2UbZs2Ys+ZpomcXFxrF27liVLlrBlyxZOnDjB9cBOD/UzOyaQ1KABs59/nri4OPbv309cXJz7kZaW5r62ePHi2QbOcx8LCQnJsXaoiIhIUZB3gXLIEGvdnRdPxPkNaIhVJ9E0TXx8fChduvRFAe3vb5cvX07ZsmW55ZZbsr3m+PHjfP/993x04gT9IddlenJks0FSEhQvnuMlLpeLjRs3Mnr0aCZPnuz+uI+PD7Vq1WLEiBEEBweTmJjIyZMn/3ocP86o77+nanq6x0/YiX/1VeyPPUapUqUu2gR1jmma7Nu3z10AfdmyZWzZsuWC+pZgjbZed9111Kxene8XLCDAW78vDgc8+SR88EG2fT1+/Lg7XP49bMbFxblHja2mHFSuXDnbsHnu/Qt254uIiFxj8i5QDhsGEyd67axugA1As2w+bhgGdrvdHRADAgIoXrw4gYGB+Pn5sXLlSjp27EirVq0IDg6mUqVKhISEUKlSJfcUbGpqKsmhoVT00nT3OUnR0RyrXfvCMJjNY+PGjcTHx1OqVClOnjyZ7fpEm83mHhnsCby/00tjflWqwN697pqVmZmZbNu2jdjYWH799VdWr17Nb7/9Rmpq6kX9q1GjBq1ataJz584EBgbyyy+/8P3333Pw4EEmFS9O/1yURPpHGzbAn0scrtSZM2dyDJtxcXEcOXLkgp9JcHBwtmHz3KNUqVKe+qpERETyXN4FyjfftMoGeWnEybTbOdmhA0sfeYQjR46wYsUKpk6dSrdu3XA6nSQmJpKUlMTZs2dJSUlxT2lnXuYUvM0wyDBN753a8qehwDd/+5iPj89F08UrV66kfPnyDBw4kClTppCSksJ//vMfDh06xPr161m+fDlbtmzBZrPRunVr/hcfT429ezG89P2f89BDRGVmsm7dOrZv307Wny8cbDYbrj/rdIaEhNCyZUtuvfVWWrZsSaNGjdi7dy9Tpkxh6tSp7N69m/Lly9O3b1/69+9Pm+LFsV1l4Lskm80KkuvWeb7tP2VkZHDw4MFsw+a5Eknnr3kNDAzMMWxWq1aN4ODgS64DFhERyU95FyhjYuC227zWvMswyHz9dfxGjQKsepNly5bl9ddf57nnnsvxeRERERw7doyZM2cSHx/PoUOHOHz4MPHx8cTHx5OQkMDJkyc5c+oUy1ev9lr/wSp99F3r1uy97TZq1apFrVq1qFGjBmXLlr1gU8ipU6coV64cX331FR06dKBWrVqMHz+eoUOHXtDeoUOHmD9/Potmz+a7OXO8FoYzgQnAk3+u6wRrLWWLFi1o27YtLdiSR6QAACAASURBVFq0oEWLFpQta517s3fvXqZNm8aUKVPYvHkzQUFB3HHHHdx999107Njxwmnzfv3ghx88/0Jk0SL4s4h9fnC5XMTHx2cbNs+9f35tVF9fX6pUqZJt2Dz/uEsREZH8kHeB8tQpqFDBq1Pet/j6UrZ7d/r06UOPHj0YMGAAZ8+e5eeff872+oyMDMqWLcvIkSN58cUXL924aVrr7rx5/jjwAFY4O59hGDgcDnx9fQkICMAwDI4fP07Tpk05ffo0+/fv5/HHH6dy5cqEhIS4jzsMDg62QsaaNdZpN160s1gxxg4bRosWLWjZsiU1a9a8IAQfOXKE6dOnM2XKFFavXk1AQAC9evXi7rvvJiwsLOc1hsePQ506kJjome+93Q733w9ffpn7trzs9OnTOYbNuLg44uPj3dcahkGlSpVy3DhUrVq1i472FBER8ZS8PSln4ECYNs3zodIwyKhVi0+HDeOHmTNZvXo1vr6+XH/99Wzbto0//vgj26MXzxUG//XXX2nSpMk/3ialUiWK/e34QE9b8eab/Fa6NEePHiU+Pp4TJ06QkJBwwZT9yZMnycjIuGA6OSeGYXC/YTDOy0EYPz84b2c0wMmTJ5k5cyZTpkxhyZIl2O12wsLC6N+/Pz179qREiRKX1/bixRAWlqtjLgErTDZpAj//DJd77wIsLS3NHTKzW8t58OBB99IDgNKlS+cYNqtVq0b58uVVHklERK5K3gbKtWuhZUvvtD1hAvw55XvgwAFmzpzJt99+y7p167Db7XTp1ImBXbtyW8eOlAkNhfLleWHECCZNmsThw4f/8R/SsWPHEvTYY/TDi7u8DcMaifuHkaSGDRvSrFkzOnbsyKBBg1i/fj0lS5Z0H2V45MgRjh07xrFjxzh58iRdduzg6bg4rxcJx+Ui+exZZs2axdSpU1mwYAFOp5MOHTrQv39/IiIiKFOmzNW1vWABhIdbL0au5gWJYUDz5tbSi9Klr64PhYzT6eTIkSPZruM89zh3Xj1YtUDPhczs1nKGhobmuItfRESKtrwNlAAPPQTjx3ts6ti02zGaN4cVK9y7jN0OHuTTxo1pn55OnZQU/M+7Z7q/PxtsNg7Uq0e/+fPhz/V9f+dyuXjhhRf48MMP+a5zZ+7+8UevHAdoGgZG06b/uFHk+PHjVKhQgUmTJjF27FgCAgL48ccfL2zLNDlw4AAbN24kNjaWCjNn8tDmzV4NlKZhcHffvsyZM4fU1FRat25N//796du3LxUrVvTMTXbuhMGDrRcmOZ07/nfnlimMHAkvvWSNpApg/Z6cPHkyx41DcXFxnDjvqFS73U5oaGiOG4eqVq3qPn1KRESKlrwPlGfOQL16cPhwrjdaOIFMw+D4jz9SpWPHvz5x5Ag89RTMmIHLNDFMM9sQeC5emnY7aQMHUvzTT+G8Y/hSUlIYOHAgs2bNYvTo0Qy//34IDobk5Fz1OyfmxIkY9957yWumT5/OXXfdxcKFC+natSvff/89N9xwA7Gxse4AuXHjRnedRD8/P7rbbMz8W8keT4sDwhs35u6776Zfv35Ur17dOzdyOq3yUx9/DFu3Wju2DePC3yUfH6uAvsMBffvCCy9A48be6c817uzZsxdNp5//34cOHbpg2UW5cuVyDJs6dUhE5NqV94ESYPduaNPG2qhztaHSZsO027m3fHkWOp3MmzePpk2bwtSp8OCDkJp6RVOjWcBpHx+WPPAALf71L3x9fenVqxfbtm1j6tSp9OjRg3379rHi5pvpf/CgR3dMm4bBcdPkl2+/JeKee/76hNMJv/9uFTu32zlbujSDnnmGX375hTJlyvD7778DuEsf+fv743K53Dut/f39qV+/Pm1q1+aTKVM82OMLuQyD5G7dCJw/32v3uIhpwvr1sHy59fb3360QWbKkFR6bNrXWXVaokHd9KoIyMzM5dOhQjus49+/ff9GpQ5faOFSpUiWdOpQHjhyxJnXWr7dKyGZkQLFicMMN1v86N9/8jytvREQukD+BEqwA0LMn7Nhx5ed72+1Qpgz88APH69alR48ebN26lfV3303dCRMufzr0b5xYR/INAKJ8ffH392fy5Ml06tSJF154gbFjx+LvcrHT4SDU5cLw4EaXV2+6icmJiWz75Rd8v/uOzG+/xbZ5M/a/1ck8CiwDxgE//dlfwzCoVasWjRs3pkGDBjRo0ID69etTs2bNv2oX1q5tfc+98eM2DBgzxjpeU+Q8pmly7NixHAvAx8XFXXBaksPhcJdHym5qvUqVKjp1KBeWLrUG9+fMsVaCnFsR4nJdONgfEGAdbvbUU3D99fndaxEpDPIvUIL1svjf/4a33/7rr9qlOBzWqOOgQfDJJ+7NFWfPnmVc27Y8tWlTrrtkYgXLO4sXZ0FWFunp6e7d1MWLF2fMmDHce9112Dp1sv7y5vLbZxoGZ+68k4nNm5M6YgRPGQY+f7aZ05rHLMABnC5blhNvvEHl++77539kP/4Y89lnMbzx4/b3t4Y8dNqLXIWkpKQcA+f+/fsvOnWoYsWKOa7jrFatGkFBQfn41RRMp05ZJ41OmvTXn9F/cm7/1euvw/PP//XfIiLZyd9Aec7Ro9ZGnXHjYP/+7K8pW9YKko88cvFL5r17MW+8EdLSPLJhxgk4y5ShRWAgm/btcx/dmJWVRYMGDejTpw/3lSxJleeft0LwVX4LXcBc4A3gO6AmXNlUus1m3X/YMGuEMIcNJydOnOD9F1/klXHjCADPbiqy2+GBB+CLLzzZqohbenp6tqcOnV8y6fwTr86dOpTTWs6idurQ9u3QqRMcO3Z1K4wMA9q2hblzQVldRHJSMALl+U6cgI0bIT7eCkulS1u1A0NDrb9s2enUCZYt82h9yyysAuOR3boxceJEAgMDWbBgATNmzGDOnDmcOXOGB6pUYfSJExRLT7+i6e9zI4yfAj8A0YA/Vxgmz2ezQfv2MG+eNVf1p7S0ND799FPefPNNAKZ36kTXyMirvcvFDMP6+ezaleMueRFvc7lcHD169JJF4M+cOeO+3s/PL9tTh86NelauXPmaOXVo927rTIPExNztgbTbrdNKFy++Jkq4iogXFLxAeaU2brT+0nmBy27HduQIlC9/wcfT0tJYtGgRP/zwA8siI3ktKYkBWNPllwqFmYAPcMDPj0Hp6ZRv1Iipu3dDSkruN/nYbNC7N/zwAy7TZNq0aYwcOZKDBw/yyCOP8PLLL1O+XDno3Blz6VLPnekdGWnVhxQpoEzTdJ86lNPU+rFjx9zXG4ZBSEjIJYvAX3ZR/nyUkWG9Ft+50zMnl9rt1rrK8eNz35aIXHsK/6qYsWMvf1HQFbKZJnz9NYwYAViFonfu3MmSJUtYsmQJmzZt4nB6OoOBUcBDwJ1ALS4OlmaZMvjceis8/DBVOnVi1KJFlO7ZE1dmJj6e6KzLBZGR7HzpJQYtXMi6devo3bs3CxYsoE6dOiQnJ/Ptd98xy+Hg/5xO6uGBH/7HHytMSoFnGAalS5emdOnSNM6hfFRqaioHDhzINmyuXLmSgwcP4jwvlZUpUybHjUPVqlWjXLly+V4e6d//tqa7PTVk4HRa50f07QvdunmmTRG5dhT+EcqKFa3pcS8wgX2hoQy57jp27tzJ8ePHL6i5Z7fbCQ4O5oYbbqB169a0adOG5ORklsfEsH3mTDJOn6ZshQo07NmTzvfeS5u2bf9au/Wf/2A+9phH1zO6gGQgonFjXh49mpYtWzJ//nymTJnC3LlzSU1NpU2bNgzu1Ysh0dH4LVt25TdxOKzR0M8/t9ZOihQBTqeTw4cP57iO81KnDmX3CAkJ8eqpQ8eOWauEPP0622aDOnWsErAqJyoi5yvcgfLYMavQuBedBUoCJQMDqVGjBk2aNKFDhw60adPmwrI8f+N0OlmxYgUzZszghx9+4MiRI1SqVIk77riDPnfcQfuhQzH27/d4GR/TMNhx//28m5lJZGQkSUlJNM6u4LhpWsMNTz0F5/4hvFRfzo0Ct2oF//2vaomInMc0TRISEi65jjMhIcF9/blTh3LaOJTbU4fefhtGjfLYgWQXWb4c2rXzTtsiUjgV7kC5dCnceqvXb5O2axf+tWtf9fNdLherVq1ixowZzJgxg7oHD7LIg/274F7AfqBb7dr0v+ce+vXrxw033JDzE5KSYPJk+M9/rGGH7Pj7Q69e8Pjj1r8iGpoQuWLJyckX7Ez/+2jn4cOHL5gBKV++/CWLwJcuXTrHafXatWHPHu98HQ4H3HcffPWVd9oXkcKpcAfKmBi47Tav32bVN9/g26ABpUuXplSpUgQFBV31aR4ul4ujgwcTPGUKdm8NHwDm779j1Kx5ZU9KTLQ2OcXFWaORJUpAgwbWHJdOLxHxqszMTA4ePHjJmpzp6enu60uUKJFt0CxbtibdurX0al9vvDHn158iUjQV7kC5eLFVMsjLagD7/vaxwMBASpUq5Q6ZV/I24LbbMK5m/eKVmD4d+vTx7j1EJM+4XC6OHz+eY9j869Shm7HO0/Iem81aKZND6VsRKYIK9y7vKx2Buwqmw8HiLVs4dfYsp0+f5tSpU9m+PX36NDt37rzgY+efYXy+o4BXV346HFatEBG5ZthsNoKDgwkODqZFixbZXpOUlMT48ad49lnv9sXlsiY0KlTw7n1EpPAo3IGyWjUIDLTWAXqJUb8+NerUocZVPDctLe2i0Hnq1ClKPfAApKZ6vK9uhgE5hFkRuXYFBgZStWpgntzLiyt2RKQQKtyB0jCsKe85c7xShxK7Hbp0ueqn+/v7U7FiRSpWrHjhJ55+2ruB0jStjTQiUuTkxaFVNpuOYRSRCxX+A20ffdQ7YRKsSr4PPuj5duvU8Xyb58vKUlkfkSIqh9rtHlW7tnn+Ka8iItdAoOzY0Tu7kB0O6N4datXybLsALVuCj0fOx8lZ06bebV9ECqTSpeFcuVnvyGT//mk8+uijLFq0iIyMDG/eTEQKicIfKG02mDjR8wt6HA7rNBhv6NwZMjO90zZAlSpQ42pWfYrItWDIEG9W+vKhe/cE5s+fT9euXalQoQIDBgxgxowZJCcne+umIlLAFf5ACdbpLSNGeLbg9qefeu9lfpcuULWqd9q22WD4cBUfFynChg3z+CFcgPVn5brrYPr0x/jjjz+IjY3lqaeeYuvWrfTt25dy5crRo0cPJkyYwLFjxzzfAREpsAp3HcrzuVxw773w7be5/0s6ahS88YZn+pWTMWPgiSc8327x4rBvH5Qr5/m2RaTQeO45+Phjz0/eREZCePjFH9+7dy9RUVFERUWxYsUKTNOkbdu2hIeHExERQc08KPMmIvnn2gmUYP3lfPFFeO89a6TO6bz85zoc1svvDz7wTtD7O6fTGlmNjfXspqKvv7bORRORIi01FerXtw6+upI/hTmx2+Guu+C77/752uPHjzNnzhyioqJYuHAh6enpNGjQwB0uGzdunOOxkSJSOF1bgfKclSutRUS7d1t/BS/119ThsAJd8+bw3//Cpc699rQdO6zNM2lpuR9GsNng9tth1ixNd4sIAL/9Bm3bWqfa5CZU2u1Qty6sWAGlSl3Zc5OTk1m4cCGRkZHMnTuX06dPU7VqVXe4bNeuHQ5H4a5gJyLXaqAEK6AtXGhtrPn5Zzh79uJrSpWydnI/9hi0bp0/QWzpUggLszbpXO1ffJvN+lcjJgaKFfNs/0SkUNu40doHmJR0dZMhNhs0bGj9OS1fPnd9yczMZNmyZURGRhIVFcWhQ4coU6YMPXv2JCIigi5dulBMf8NECqVrN1Cez+WC33+HPXsgPR0CAqyRyCpVCsZo3rp11lzS/v1XNlJps/21dnTsWFQYTkSyc/SoVVJ3zpx/nrQ5x+GwrhsxAl55xfNnJZimyYYNG9zhctu2bQQEBNCtWzciIiK4/fbbKZsXVdpFxCOKRqAsDFJSrM1AY8ZYIfFSwfLcvwhVqsAXX1ijrCIil2CaVqD8+GNYssT6mI/PhRXMzv23w2G9xn3uOWjSJG/6t2vXLvemnlWrVmG327nlllsIDw8nPDycqt6qjCEiHqFAWdAcPw7ffANTp8KWLRfXqyxbFtq1s4YbunXzZrE5EblG7d4Ny5bB+vV/TdyUKAH16lnLujt1yv30dm4cOXKE2bNnExUVxU8//URmZiY33XSTe91lvXr1tKlHpIBRoCzIMjNh1y5ITLSGDEJDISSkYEzTi4jkgcTERObPn09UVBTR0dGcOXOG6667zh0uW7VqhV0vrEXynQKliIgUCunp6SxevJioqChmzZpFfHw8FSpUoFevXkRERNCxY0f8Pb3YU0QuiwKliIgUOi6Xi9WrVxMVFUVkZCR79uyhRIkSdO/enfDwcLp3705QUFB+d1OkyFCgFBGRQs00TbZt2+be1LN+/Xp8fHzo2LEj4eHh9OrVi5CQkPzupsg1TYFSRESuKQcOHGDWrFlERUWxZMkSnE4nLVu2JCIigvDwcOrUqZPfXRS55ihQiojINevkyZPMmzePqKgoYmJiSElJoW7duu5w2axZM2w2W353U6TQU6AUEZEiITU1lUWLFhEVFcXs2bNJSEggNDSU3r17Ex4eTvv27fH19c3vbooUSgqUIiJS5GRlZfHLL7+4N/XExcURFBREjx49CA8PJywsjBIlSuR3N0UKDQVKEREp0kzTZNOmTe5NPZs2bcLPz48uXboQHh5Oz549qVChQn53U6RAU6AUERE5zx9//OHe1LNixQpM06Rt27budZc1a9bM7y6KFDgKlCIiIjk4fvw4c+bMISoqioULF5Kenk6DBg3c4bJx48Y6BlIEBUoREZHLkpyczIIFC4iKimLu3LmcPn2aatWqER4eTnh4OO3atcPhcOR3N0XyhQKliIjIFcrMzGTp0qXudZeHDh2ibNmy9OzZk/DwcLp27UpAQEB+d1MkzyhQioiI5ILL5WLDhg3uHePbt2+nWLFidOvWjfDwcHr06EGZMmXyu5siXqVAKSIi4kE7d+5k1qxZREZGsnr1aux2O+3btyc8PJzevXtTtWrV/O6iiMcpUIqIiHjJkSNHmD17NpGRkSxevJjMzEyaNm3qXndZr149beqRa4ICpYiISB5ITExk/vz5REVFER0dzZkzZ6hVq5Y7XLZq1Qq73Z7f3RS5KgqUIiIieSw9PZ3FixcTFRXFrFmziI+PJzg4mF69ehEeHk6nTp3w8/PL726KXDYFShERkXzkdDpZs2aNe1PPnj17KFGiBN27dyc8PJzu3bsTFBSU390UuSQFShERkQLCNE22bdvmDpcbNmzAx8eHjh07Eh4eTq9evQgJCcnvbopcRIFSRESkgDpw4IB7x/jSpUtxOp20atXKve6yTp06+d1FEUCBUkREpFA4efIk8+bNIyoqipiYGFJSUrjhhhvc4bJZs2bYbLb87qYUUQqUIiIihUxKSgo//vgjUVFRzJ49m4SEBEJDQ+nduzfh4eHceuut+Pj45Hc3pQhRoBQRESnEsrKy+OWXX9zrLuPi4ihVqhS33347ERERdOvWjRIlSuR3NwHIyIDt2+HUKTAMqFABrr8eVC2p8FOgFBERuUaYpsmmTZvc4XLz5s34+fnRpUsX96ae8uXL52mfTp2C//4XJk2CzZshK+vCz/v7Q/PmMHQo9OsHOgK9cFKgFBERuUb98ccf7k09v/zyCwBt27Z1r7usWbOm1+6dkQFvvgnvvmu9f6m0YbOBywVBQfDOO/DQQ9YIphQeCpQiIiJFwLFjx5g7dy6RkZEsWrSI9PR0GjZsSHh4OBERETRq1Mhjx0Du2AF33mlNb19Nyrj1Vpg2zZoSl8JBgVJERKSISU5OZsGCBURGRjJ37lwSExOpVq2aO1y2bdsWh8NxVW3/9hu0bw9JSeB0Xl3/HA6oWhVWrIBKla6uDclbCpQiIiJFWGZmJkuXLiUyMpKoqCgOHz5M2bJl6dmzJxEREXTp0oWAy1zYePQoNGhgrZu82jB5jsNhbdjZsMFaZykFmwKliIiIAOByudiwYYM7XG7fvp1ixYrRrVs3wsPD6dGjB2XKlMn2uaYJ4eEwb17uw+Q5Nhs8/7y1rlIKNgVKERERydbOnTuJiooiKiqK1atXY7fbad++vXtTT5UqVdzXzpplBUpPMwzYtMka+ZSCS4FSRERE/tGRI0eYNWsWUVFRLF68mMzMTJo2beped/nwwzeyapXhsdHJcxwOq6TQl196tl3xLAVKERERuSKJiYnMnz+fyMhIoqOjSU6uDGz32v38/SE+HgIDvXYLySUFShEREblq6enpPP30HsaOvQHw3lniCxdCly5ea15ySafIi4iIyFXz8/MjNbUeDof3IoXdbu32loJLgVJERERyZfv2i49U9CTDgF27vNe+5J4CpYiIiORKWpp32zdN6/hGKbgUKEVERCRXihf3bvuGoeLmBZ0CpYiIiOTKjTda5X28xeWCunW9177kngKliIiI5ErTpp47HSc7Lpd1Dym4VDZIREREcuX336FWLe+1X7y4VYfS21PrcvU0QikiIiK5ct110LmzVd7H0xwOuP9+hcmCTiOUIiIikmuLFkHXrp5v1+GAbdugdm3Pty2eoxFKERERybUuXWDQIM+OUhoGvPaawmRhoBFKERER8YhTp6BRIzhyxBOFzp00a2ayapXDqzvIxTM0QikiIiIeUbo0LFkCFSrkroyQzWZit2/D6exGcvJpj/VPvEeBUkRERDymZk1YvRpatrzy5xqG9bZPH4Off3axb99GwsLCSEpK8mwnxeMUKEVERMSjqlSBZctgzBgoVcr6mO0SiePcusvQUJgxA6ZNg5tvbsSiRYvYuXOnQmUhoDWUIiIi4jXp6VZInDwZ1q6Fkycv/HylStCmDdx3H4SFXbypZ926dXTp0oV69eoRExNDyZIl867zctkUKEVERCRPmKa1YefkSWvEskIFKFfun5+3du1aunTpQsOGDZk/fz4lSpTwfmfliihQioiISIG3evVqunbtSpMmTYiOjqa4Kp0XKFpDKSIiIgVeq1atiImJ4ddff6VHjx6kpKTkd5fkPAqUIiIiUii0adOG+fPns27dOnr27KlQWYAoUIqIiEih0a5dO6Kjo1m9ejW9e/cmNTU1v7skKFCKiIhIIXPLLbcwb948fvnlF8LDw0lLS8vvLhV5CpQiIiJS6Nx6663MnTuXZcuWERERoVCZzxQoRUREpFDq2LEjc+bMYcmSJdx5552kp6fnd5eKLAVKERERKbQ6d+7MrFmz+Omnn+jbty8ZGRn53aUiSYFSRERECrWuXbsSFRXFggULuOuuuxQq84ECpYiIiBR6YWFhREZGMn/+fO6++24yMzPzu0tFigKliIiIXBO6d+/ODz/8wNy5c+nfv79CZR5SoBQREZFrRo8ePZgxYwazZ89mwIABZGVl5XeXigQFShEREbmm9OrVi++//57IyEgGDRqkUJkHFChFRETkmhMeHs7UqVOZPn069957L06nM7+7dE1ToBQREZFr0p133smUKVOYNm0aQ4YMUaj0Ikd+d0BERETEW/r27YvL5eKee+7BbrczYcIE7HZ7fnfrmqNAKSIiIte0fv364XK5GDhwIDabjfHjx2OzaZLWkxQoRURE5JrXv39/XC4XgwcPxmaz8dVXXylUepACpYiIiBQJAwYMwOVyce+992K32xk7dqxCpYcoUIqIiEiRMWjQIJxOJ0OHDsVut/P5559jGEZ+d6vQU6AUERGRImXIkCG4XC7uv/9+bDYbY8aMUajMJQVKERERKXKGDh2K0+nkwQcfxGaz8cknnyhU5oICpYiIiBRJw4YNw+Vy8fDDD2O32/noo48UKq+SAqWIiIgUWQ899BBOp5PHHnsMu93O+++/r1B5FRQoRUREpEh79NFHcblcDB8+HJvNxrvvvqtQeYUUKEVERKTIe/zxx3E6nTz11FPY7XbeeusthcoroEApIiIiAjz55JO4XC6eeeYZ7HY7b7zxhkLlZVKgFBEREfnT008/jdPp5Pnnn8dut/Paa6/ld5cKBQVKERERkfM899xzOJ1O/vWvf2Gz2XjllVfyu0sFngKliIiIyN+MGDECl8vFiy++iN1uZ9SoUfndpQJNgVJEREQkGyNHjsTpdPLSSy9ht9sZOXJkfnepwFKgFBEREcnBqFGjcDqdvPjii9hsNkaMGJHfXSqQFChFRERELuGVV15xr6m02+0899xz+d2lAkeBUkREROQfvPbaa7hcLvfu76effjq/u1SgKFCKiIiI/APDMHjjjTdwOp0888wz2Gw2nnzyyfzuVoGhQCkiIiJyGQzD4K233rrgRJ3HH388v7tVIChQioiIiFwmwzB49913cTqd7rO/H3300fzuVr5ToBQRERG5AoZh8MEHH+ByuXjsscew2+089NBD+d2tfKVAKSIiInKFDMPgo48+wuVy8fDDD2Oz2Rg2bFh+dyvfKFCKiIiIXAXDMBg9ejROp5MHH3wQu93O0KFD87tb+UKBUkREROQqGYbBmDFjcLlcPPDAA9hsNoYMGZLf3cpzCpQiIiIiuWAYBp999hlOp5OhQ4dis9kYPHhwfncrTylQioiIiOSSzWZj7NixuFwuhgwZgt1uZ8CAAfndrTyjQCkiIiLiATabjS+//BKn08ngwYOx2Wz0798/v7uVJxQoRURERDzEZrMxbtw4XC4XAwcOxGaz0a9fv/zultcpUIqIiIh4kN1uZ8KECbhcLgYMGIDNZqNv37753S2vUqAUERER8TC73c4333yD0+mkf//+2O127rjjjvzultcYpmma+d0JERERkWtRVlYWgwYNYsaMGUyfPp3w8PD87pJXKFCKiIiIeFFWVhb33HMPkZGR/PDDD/Tq1Su/u+RxCpQiIiIiXpaZmUn//v2ZPXs2M2fOpEePHvndJY9SoBQRERHJA5mZmfTr14958+YREiYMxAAAIABJREFUGRlJ9+7d87tLHqNAKSIiIpJHMjIyuOuuu4iJiSEqKoqwsLAcr83MhG3bIDYWTp0Cw4DgYGjaFK67Dmy2POz4P1CgFBEREclDGRkZ9OnTh4ULFzJ79my6du3q/pxpwpo18PnnMH06pKdbHz8XHl0u621QEAwdCg8/DNdfn8dfQDYUKEVERETyWHp6OnfeeSc//fQTc+bMoXPnzhw+DMOGQXQ0OByQlXXpNux2cDrhkUfgvfegRIm86Xt2FChFRERE8kFaWhoREREsXbqUUaNW8c47jUhN/ecg+Xc2G4SGwrx50KCBd/r6TxQoRURERPJJWloarVu/Q2zsKAzDjmkaV9WO3Q7Fi8OyZdCokYc7eRkUKEVERETyyebN0LSpSVaWCeRul43dDmXKwI4d1tu8VID2B4mIiIgUHZmZMHAggIEnIpnTCSdPwhP/396dx0Vd7X8cf31nBhQQ91QEtHLfFVQ0t8wtyyW1XFMrK8mferW0bsutbtc2bfFqZqmtLpmWmmlpae4KKq6RgfuCgQuyyCLM8vuDK0lqIswwgO9nDx7J8J3z/Qz/+PZ8z/mcsfke6qYpUIqIiIi4wccfw6+/3vyayb9js8H8+bBpk/PGzA0FShEREZEC5nDA1KmuGdtigenTXTP29WgNpYiIiEgB27QJ2rd33fhmM8TGQsWKrrvHlTRDKSIiIlLANm/OCn2uYrPB9u2uG/+vFChFRERECtiOHVmPvV3FbIaICNeN/1cKlCIiIiIF7OjRP49RdAXDgBMnXDf+XylQioiIiBQwZ+7svp7MTNff4zIFShEREZECVrq0a8c3DPD1de09rqRAKSIiIlLAmjQBDw/XjW+1Fuy53gqUIiIiIgWseXPXPpJ2OCA42HXj/5X6UIqIiIgUsNhYCAjIau/jClWrZm3KcWVroitphlJERESkgFWpAv36ZZ1q42wmE4weXXBhEjRDKSIiIuIWu3dnPfp2Zvsgw4CyZeHgQahQwXnj3ohmKEVERETcoFkz+Oc/s0Kgszgc8NFHBRsmQTOUIiIiIm5z6RJ06AA7d+Z/PaVhwKOPwiefOKe2m6EZShERERE3KVECVq2CoKCstY/5MXAgfPyxc+q6WQqUIiIiIm5UtiysWwehoVnf30ywtFiy+llOngzz5rlmk09uKFCKiIiIuJmPD8yYAb/8AiEhWa+ZzXbg6h07JlPWDm7DgO7dYe9emDgx/zOc+aE1lCIiIiKFzL59MG7cNjZsSKd06btJSjIwmbI227RsCa1awdChEBjo7kqzKFCKiIiIFEL9+vUjPj6edevWubuUG9IjbxEREZFCKCwsjFatWrm7jFxRoBQREREpZE6dOsXp06cJubygspBToBQREREpZMLCwgAUKEVEREQkb8LCwqhevTp+fn7uLiVXFChFRERECpnw8PAiMzsJCpQiIiIihUpmZiY7d+4sMhtyQIFSREREpFDZv38/6enpmqEUERERkbwJCwvDw8ODZs2aubuUXFOgFBERESlEwsPDadq0KV5eXu4uJdcUKEVEREQKkbCwsCL1uBsUKEVEREQKjfj4eKKjo4vUhhxQoBQREREpNLZv3w4UnYbmlylQioiIiBQSYWFhVKhQgRo1ari7lJuiQCkiIiJSSISHh9OqVSsMw3B3KTdFgVJERESkELDb7UXuhJzLFChFRERECoGDBw9y4cKFIrchBxQoRURERAqF8PBwAFq0aOHmSm6eAqWIiIhIIRAWFka9evUoW7asu0u5aQqUIiIiIoVAUV0/CQqUIiIiIm6XmprK3r17i+T6SVCgFBEREXG7iIgIbDabAqWIiIiI5E14eDje3t40aNDA3aXkiQKliIiIiJuFhYXRokULLBaLu0vJEwVKERERETcryhtyQIFSRERExK1iYmI4depUkV0/CQqUIiIiIm51uaG5ZihFREREJE/CwsIIDAykatWq7i4lzxQoRURERNwoLCysSD/uBgVKEREREbexWq3s3LmzSD/uBgVKEREREbfZv38/aWlpmqEUERERkbwJDw/HYrEQFBTk7lLyRYFSRERExE3CwsJo0qQJXl5e7i4lXxQoRURERNykOGzIAQVKEREREbe4cOECUVFRRX5DDihQioiIiLjF9u3bATRDKSIiIiJ5Ex4eTvny5alZs6a7S8k3BUoRERERNwgLCyMkJATDMNxdSr4pUIqIiIgUMIfDQXh4eLF43A0KlCIiIiIF7tChQ8THxxeLDTmgQCkiIiJS4MLCwgBo2bKlmytxDgVKERERkQIWHh5OnTp1KFeunLtLcQoFShEREZECVlwaml+mQCkiIiJSgNLS0ti7d68CpYiIiIjkza5du7BarcVmQw4oUIqIiIgUqLCwMLy8vGjUqJG7S3EaBUoRERGRAhQeHk7z5s2xWCzuLsVpFChFREREClBx25ADCpQiIiIiBeb06dOcPHlSgVJERERE8iY8PBygWG3IAQVKERERkQITFhZGQEAA/v7+7i7FqRQoRURERApIeHh4sZudBAVKERERkQJhtVrZsWNHsVs/CQqUIiIiIgUiMjKS1NRUBUoRERERyZuwsDDMZjNBQUHuLsXpFChFRERECkB4eDhNmjTB29vb3aU4nQKliIiISAEICwsrlhtyQIFSRERExOUSEhI4cOBAsVw/CQqUIiIiIi63Y8cOoPg1NL9MgVJERETExcLCwihXrhy1atVydykuoUApIiIi4mKXG5qbTMUzehXPTyUiIiJSSDgcjmK9IQcUKEVERERc6vDhw5w/f77YbsgBBUoRERERlwoPDwegZcuWbq7EdRQoRURERFwoLCyM2rVrU758eXeX4jIKlCIiIiIuFB4eXqwfd4MCpYiIiIjLpKens2fPnmK9IQfA4u4CRERERIq6yEj45hvYsQN27YLkZDCZoEwZB5mZs4iJuYeEBChb1t2VuobhcDgc7i5CREREpChatw5efhk2bwazGRwOsNv/elUmhmGhRAmDoUPhtdegShV3VOs6CpQiIiIiN+niRZgwAT7+OCtI2my5e5/FAj4+8OGHMHiwa2ssSAqUIiIiIjfh3Dno3Bl+/TX3QfJKhpE1k/nii/Cf/2R9X9QpUIqIiIjkUkoKtGmT9zD5V5MmZQXLok6BUkRERCSXxozJelx99TrJvDGMrPWXd93lnPHcRYFSREREJBc2bYL27Z07ptkM1atn7RIvWdK5Yxck9aEUERERyYXXXssKgM5ks8GRI7BokXPHLWiaoRQRERG5gYMHoXZt14xtMkFQUFYPy6JKM5QiIiIiN7BsmfNnJy+z22HnToiJcc34BUGBUkREROQGdu50/T0iIlx/D1dRoBQRERG5gYgI57QJuh6LBfbvd934rqZAKSIiInIDycmuHd8wICnJtfdwJQVKERERkRtw1frJK1ksrr+HqyhQioiIiNxAYKBrx7dawd/ftfdwJQVKERERkRsICQEPD9eN73BAcLDrxnc1BUoRERGRG2jTBjIzXTd+yZLQuLHrxnc1BUoRERGRG+jdG8qUcc3YFgsMHw5eXq4ZvyAoUIqIiIjcQMmSEBrqms05ViuMGuX8cQuSjl4UERERyYXERKhbF86cyTrdxhlMJhg5Ej780DnjuYsCpYiIiEgurV4N997rnLHMZqhaFX77DUqVcs6Y7qJH3iIiIiK51K0b/Pe/+R/HbIbSpeGnn4p+mAQFShEREZGbNA14EpPJnqdm5CYTBATA1q1Zj9CLAwVKERERkVxasWIF48eP55lnSrNvnym71U9uNutcDp+jR0NkZPEJk6A1lCIiIiK5snv3btq1a0fXrl355ptvMJlM2Gzwww/wwQfw889ZDcpNpqwvyNrBDeDjAyNGZO0Ur1fPfZ/BVRQoRURERG7g1KlThISEULVqVTZs2IC3t/dV1yQlwe7dsHdv1o7wy5tugoOzQmRRPqv7RhQoRURERP7GxYsXadeuHfHx8YSHh1OlShV3l1ToFOOsLCIiIpI/NpuNgQMHcvjwYbZu3aoweR0KlCIiIiLXMX78eFatWsXKlStp2LChu8sptBQoRURERK5h2rRpTJ8+nY8++ohu3bq5u5xCTWsoRURERP5ixYoV9O7dm/Hjx/POO++4u5xCT4FSRERE5ArXag8kf0+BUkREROR/ctMeSK6mQCkiIiLCn+2Bzp8/T3h4OH5+fu4uqcjQphwRERG55V3ZHmjLli0KkzdJgVJERERueVe2B2rUqJG7yylyFChFRETklqb2QPmnNZQiIiJyy1J7IOdQoBQREZFb0uX2QF26dOGbb77BbDa7u6QiS4FSREREbjlXtgdav349Pj4+7i6pSFOgFBERkVuK2gM5nzbliIiIyC1D7YFcQ4FSREREbhlqD+QaCpQiIiJyS5g+fTrTp09n5syZag/kZFpDKSIiIsWe2gO5lgKliIiIFGtqD+R6CpQiIiJSbKk9UMFQoBQREZFiSe2BCo425YiIiEixY7PZGDRokNoDFRAFShERESl2nn76aX788Ue1ByogCpQiIiJSrEyfPp1p06apPVAB0hpKERERKTbUHsg9FChFRESkWFB7IPdRoBQREZEiT+2B3EuBUkRERIo0tQdyP23KERERkSJL7YEKBwVKERERKbLUHqhwUKAUERGRIkntgQoPraEUERGRIkftgQoXBUoREREpUtQeqPBRoBQREZEiIyYmhpYtW+Ln58eGDRvUHqiQUKAUERGRIkHtgQovbcoRERGRQk/tgQo3BUoREREp9NQeqHBToBQREZFCTe2BCj+toRQREZFCa+XKlfTq1Ytx48bx7rvvurscuQ4FShERESmU9uzZQ9u2bdUeqAhQoBQREZFCR+2BihYFShERESlU1B6o6NGmHBERESk01B6oaFKgFBERkULjcnugFStWqD1QEaJAKSIiIoXC5fZAH374Iffee6+7y5GboDWUIiIi4nZqD1S0KVCKiIiIW6k9UNGnQCkiIiJuo/ZAxYMCpYiIiLjFxYsXad++PefOnVN7oCJOm3JERESkwF1uD3To0CG1ByoGFChFRESkwKk9UPGiQCkiIiIFSu2Bih+toRQREZECo/ZAxZMCpYiIiBQItQcqvhQoRURExOXUHqh4U6AUERERl1J7oOJPm3JERETEZa5sD7R582aFyWJKgVJERERc5sr2QI0bN3Z3OeIiCpQiIiLiEmoPdOvQGkoRERFxOrUHurUoUIqIiIhTXW4P1LlzZ7799lu1B7oFKFCKiIiI08TExBASEkKVKlXUHugWokApIiIiTqH2QLcubcoRERGRfFN7oFubAqWIiIjkm9oD3doUKEVERCRfPvjgA7UHusVpDaWIiIjkmdoDCShQioiISB6pPZBcpkApIiIiN03tgeRKCpQiIiJyU9QeSP5Km3JERERucWmZaVxIv4CBQTmvcpS0lLzutTabjcGDB6s9kOSgQCkiInKLsTvsrD2ylvn757Pl5BYOxx/GQdYDS5Nholb5WrSt1pahjYfSvnp7DMPIfu8zzzzDDz/8oPZAkoMeeYuIiNxClhxYwoSfJnA04SgWkwWr3XrN6y7/rE6FOrzf7X261+rOBx98wJgxY/jwww956qmnCrhyKcwUKEVERG4BCekJhK4I5evIrzEwsmckb8RkmLA77HSq0IlfJvzC+P8br/ZAchUFShERkWLubMpZ7v7ibqLORWFz2PI2iB3KppXl8CuHKe9T3rkFSpFncncBIiIi4jrp1nS6zO1C9LnovIdJABMkl0qm19e9rvuYXG5dCpQiIiLF2CvrXmH/mf1YHfkPgTaHja0ntzJ5y2QnVCbFiR55i4iIFFO7/thF81nNc71eMrcsJgu/PvUrdSrWceq4UnRphlJERKSYenfbu5hNrjkOcVr4NJeMK0WTZihFRESKobMpZ6n6XlWXrXf0sngRNyEO3xK+LhlfihbNUIqIiBRDa4+udenmmTRrGptPbHbZ+FK0KFCKiIgUQxGnI/AwebhsfLNhJuKPCJeNL0WLAqWIiEgxFHk2kkx7pkvv8dvZ31w6vhQdCpQiIiLFUEpmikvHtzlspGamuvQeUnQoUIqIiBRDnmZPl45vMkwuv4cUHRZ3FyAiIiLOER8fz+7du9m1axdHY45CGVw2dWQyTNQoV8M1g0uRo0ApIiJFlt1hJ/p8NJFnIknJTMHD5EH1stVpWqUp3h7e7i7Ppc6cOcOuXbuIiIhg165d7Nq1i2PHjgHg4+OD3/1+UNZ197farQRXDXbdDaRIUR9KEREpUhwOB5tPbGbGjhksj1pOmjXtqmtMhommVZoyqvkoBjUaVOjCZXxaPBGnIzh84TAZtgy8PbypV7EeTas0xcfTJ8e1DoeD06dPXxUeY2JiAChTpgxBQUHZX8HBwdSsWZOjiUepNb2Wyz6DyTBxavwp/Hz9XHYPKToUKEVEpMiIOhfFI989QtipMCwmy9/2WTQZJuwOO+VKlmPGfTMY2HAghmEUYLU5JV1KYt6+eczYMSPH7ujLdV7+c/NKzWnn2Q7LYQt7d+1l165dnDlzBoAKFSoQHBycHRyDgoK44447rvpcu3btYsSIEexpsgeq4/TH3haThR61e7B0wFLnDixFlgKliIgUCbMiZjHmxzHYHfabathtYODAQZ+6fZjbZ+5VM4Cu5nA4mLdvHqN/HE3ypeSs1/7ubG07YAJzkpmWMS3pUqdL9uxjQEDAdUOxw+FgyZIljB8/npMnTwJgrm/G1t/m7I8EwPrh6+lweweXjC1Fj3Z5i4hIoTdlyxRGrhhJhi3jpk9/uRzelkctp8vcLqRkuLadzpVSM1Pp83Ufhi0bRvKlZBz/++9vXf6buQyE1QvD2t5Kr169CAwMvGaYtFqtvP3225QtW5YHH3yQkydP4uXlxeuvv87FiIv0qtMLs+G887zNhplhTYYpTEoOmqEUEZFCbXHkYvp/098pY5kNc/ajWlc9/s7MzCQyMpJtO7fx2rHXiLXEQj5v9VTzp5hx34wcNScmJjJx4kS++OILMjIyAChbtixvv/02jz32GBZL1r7b/Uf20+yTZtgstnxPI5kNM5V8KhE5KpJyXuXyN5gUKwqUIiJSaMVdjKPujLokpifeeGbvJszrM48hjYfke5z09HT279+fvVFm165d7Nu3Lyvg9QMa4LRnge92fZenWz/NoUOHGDNmDKtXr+byX+F+fn68//77PPTQQ5hMf94wOjqabt26keKbQuqAVNKsadix5+n+ZsNM2ZJl2fzYZupWrOuUzyTFhwKliIgUWo9+9yhz987F5nDeOkADg9IlShPzdMxNradMSUlh7969OcJjZGQkVqsVs9lMgwYNstc6Jvkn8dL+l5xWM4DFsFDjpxpEbYnKfq1WrVq899573H///VfNuIaFhdGjRw8qVarEqlWr+D3+d7p/0R17GftNz5gaGNS7rR7fDfyOmuVrOuPjSDGjQCkiIoXSudRz+L3rd9NrJnNrVo9ZPBH8xDV/lpiYyJ49e7KDY0REBFFRUdjtdjw9PWnUqFGOVj2NGjXCy8sLgEvWSwS8H8D51PNOnVXFBhwD5kJwcDBTpkzh7rvvvuaj+xUrVtC/f3+CgoJYvnw5pUuXpkOHDpyMPUnvqb2ZuXsmNlsuHoE7wISJlzq8xIvtX9TJOHJdamwuIiKF0hd7vshup+NsBgYzdszgieAnOH/+fPbpMpf7PB46dAgALy8vmjRpQseOHXnmmWcICgqiQYMGeHpeP1gtObCEc6nnnF+0GagBC39eyIDOA6572Zw5cxg5ciS9e/dm/vz5eHl58corrxAWFsbGjRtp06YNPvt8eHfju/jf78/xpONXD+KA6r7VuTPxTrZ/tJ2nxz+tMCl/S4FSREQKpQ3HN7hsbAcO9sbupVrNapw8nNVip1SpUjRr1oz7778/u89jnTp1sje35NbMnTNz9JZ0JovJQoQjggFcHSgdDgf/+c9/eOWVVxg1ahTTpk3DbDazceNGJk2axKuvvkqbNm2w2+0s+mQRQ9oP4fPxn5OQnsDe2L2cTzuPgYE33tzb7F5e/vBlug/uTvW3qjNnzhyeeeYZp38eKT70yFtERAqlyu9U5kzKGZfeY2DqQHo17ZV9usyVG1rywmq34vOGDxm2DCdVeLUWVVuw/YntOe9rtTJq1Chmz57N66+/zvPPP49hGMTHx9OkSRPuvPNOfvnlF8xmM2vWrKFLly5s3ryZNm3aXPMeDRs2pF27dsycOZPhw4ezfv16Dh8+fNPhWm4d6kMpIiKFToYtw+VhEuCu+++ie/fu+Pv7Y7Vaye8cy29nf3NpmATYF7cvx7rS1NRU+vXrx6effspnn33GCy+8gGEYOBwOHn/8cVJSUpg3bx5mc1YvylmzZlGvXj3uuuuu696jRYsWbN+eFVrHjx/PiRMnWLJkiUs/lxRt+qeGiIgUOpm2zAK5z9jxYxm7a2yO1ywWCx4eHtlfnp6euf7+XPlzcIdra75ku8TZlLP4+fpx/vx5evbsyb59+/j+++/p3r179nWzZs1i6dKlLFmyhMDAQADOnj3LsmXLePvtt/+2D2fLli2ZN28e6enpNG3alI4dO/Lee+/Rv79z+oFK8aNAKSIihU5JS0mXrUO80qB+g+g2thuenp5kZmaSmZlJRkZG9p9v9vv0jHSX1nuZ1W7l2LFj3HvvvcTHx7Nu3TpatGiR/fPIyEjGjRtHaGgoffr0yX79iy++wDAMhg4d+rfjt2zZEqvVyp49e2jVqhVPP/00PXv2ZNu2bbRu3dpln0uKLq2hFBGRQqn29NocjD/o2pvMBOLA39+fBg0a0KBBA+rXr5/9/zJlytzUcD8f/pmu87q6ptYrbOi+gQG9B+Dt7c3q1aupWfPP3pBpaWmEhIRgt9vZsWNHdjsjh8NBvXr1aNasGV999dXfjp+RkYGvry9Tpkxh7Nix2O126tWrR+PGjVm8eLFLP5sUTZqhFBGRQqlVQCuOXDji1KbmV/I0e7Llhy1EHYgiMjKS3377je+//56pU6dmr6W8HDQvh8wbBc2GlRq6pNYrlfUoS4/OPahTpw4rVqygcuXKOX4+ceJEoqOjc4RJgE2bNhEVFcWHH354w3t4enrSrFmz7HWUJpOJcePGMXr0aI4cPcI5z3PsiNnBntg9XEi/gGEYVPapTJBfEK0CWlH/tvrO/dBS6GmGUkRECqVFkYsY8M31+y3miw2qZVRjyUNLCA4OzvGjtLQ0oqL+DJmRkZFERkZy+PDhHEHzryGzQYMGeHl5UeHtCly0X3RN3XbgINSOqM1XX31FUFBQjh8vX76c3r17M2PGDEaNGpXjZ0OHDiUsLIyoqKhc7WYfO3Ysq1evJioq62Se2Aux3PnQnVjaWEg2JWNgYDaZsdmzAr/FZCHTnrX2tWmVpoxtOZaHGz+Mh9nDCR9cCjsFShERKZQybBn4v+fvmibhgMdXHmRGZdK8eXNCQ0MZOHAgPj7XP4rxWkHzt99+4/Dhw9jtWWs9DcPAcZ8DgshqRO5sDii3qRzp29JJS0ujdu3a9OrVi169elGtWjWCgoJo164dS5cuzbHp5sKFC1StWpVXX32V5557Lle3mjt3LsOGDSM+Pp6d8Tt55LtH+CPpj6zTf25wdOPl9a9NKjdhbp+5NKrcKD+fWooABUoRESm0pmyZwnNrnnPuEYZknZRT7mA54n+Mp5yjHAkJCfj6+jJ06FBGjhxJo0a5C0BHjhzhhRdeYNGiRX+2HKoMPOXUcrN5OjyJfyEew2qwdu1ali9fzvfff09cXBweHh5YLBZmzJjBgw8+iK+vb/b7pk+fztNPP82pU6euekR+PVFRUdStW5eH5zzMvFPz8rRJymLKWln3xQNfMLjR4Jt6rxQtCpQiIlJoWe1WQmaHsDdur9PXUlpMFux2O1Wjq3Jq4SmqVKpCeno6CQkJtGnThtDQUB588EFKlix51Xu3bNnC888/z6ZNm3K8Xrt2bd566y3mpM5h9eHVTq/533f/m5c7vJzjNbvdzv/93//x0Ucfceedd3LkyBE8PT3p2LEjvXr1okePHtx///3Url2bb7/9Ntf3stvteN/vzaVWl/Jdt4HB/L7zGdRoUL7HksJJjc1FRKTQspgszOs7D28Pb8yGc58hW+1W7NiJqR1Dncl1qNGwBgkJCQQEBJCYmMjQoUPx9/fnmWeeITo6GqvVytdff02NGjVo27Ztdpg0mUzce++9HDx4kKioKPr06cOsnrPw8vDCuNGz4dyyQ5lLZRjfYvxVP9q+fTuzZ8/mxRdf5PDhwxw5coQpU6Zgs9n4xz/+QfXq1fn1118pWbIkERERuW7evuLgCqeEScg66nLYsmH8dvY3p4wnhY9mKEVEpNALOxVG17ldSclIwY7ze1OaDTN1Ktbh3QbvMn3ydH744QcCAwOpV68eO3fuJD4+HrPZjM3254yjt7c3o0aN4j//+c81ZzG/+e0b+i/un//H9XbACswBjwsehISEEBwcTP369alevTpPPPEE/v7+bNy4EQ+PnBtgEhMTeeCBB9i+fTuenp4kJCTg7+9Pz5496dmzJ/fcc881a49Pi6fOB3U4l3Luhuslc8tistC4cmPCHw/PfhQuxYcCpYiIFAmrd63mvjn3Ya9kd1rIuZLZMHNfrfv4buB37N69m5deeokff/zxqutMJhO9evXi/fff5/bbb//bMT/b/Rkjlo/AYXfk6Zmg2TDjZfHig1YfcGrbKSZPnkx6ejqVK1cmJiYmezNQpUqVaNy48VV9NM1mM35+fjz33HM8//zzbN68me+//57vvvuOI0eO4OPjQ9euXenVqxf3338/t912GwAvrH2ByVsmu6Rl04K+C/TouxhSoBQRkULPZrPRsWNHTsac5LHZjzF151Ti0+Jdcq9JzSaxeeZmVq1aleN1Dw8PBg0ahJeXF1999RXJycnce++9hIaGct+WDje/AAAgAElEQVR992GxXD3rtnv3bkIGheDR34NLlks3HdCC/YKZ22cu9W6rB2QdnThw4EA2bNhA3759Wbx4MWPGjKF06dLZO88PHTqUHTTLlClDYmIijz32GCEhIdlBs2zZshw4cIDly5ezfPlywsLCALjrrrvo3qM7k+2TScpMysuv72+ZDBMh/iFsHbHV6WOLeylQiohIoffuu+8yceJE1q1bR4cOHUjJSKHqe1VJuuTk0OMAUoF3AXtWg+9HH32UMWPGMG3aND777DNKlSpFaGgofn5+zJ07lx07dhAQEMATTzzBiBEj8Pf3ByApKYng4GB8fX1ZtW4Vb4W9xccRH5OWmYbJMF07XNoBU9bj4cDSgbQObE2Lqi1oW60twX7BGIaB1Wpl5MiRfPrpp9x5553s27cvR7uj9PR0oqOjiYyM5OmnnwagdOnSOYKmn59fjj6afn5+HD9+nLVr1/LDkR/I6Jvh3N/rXxwee5g7y93p0ntIwVKgFBGRQu23334jKCiIUaNG8d577wGw5MAS+i3q57J7+v7oy9Qnp/Loo4/m6Od46tQp3nnnHWbNmoXZbOapp56ic+fOfPvtt8yfP5/09HR69uyZHfhWrVrFrl27so9GvJhxka/2f8X64+sJOxXGsQvHcq4J/V+gvMxiWLBjx+6w07BSQ8aFjGNQvUG0bdOW2NhYkpKSqFGjBkuWLKFGjRo5PsPu3bsJCgriu+++o1evXly6dOmafTQPHTqUvTbUz88Pz3s9OVHtBA7DdfFgYb+FDGjooqb14hYKlCIiUmhlZmbSunVrUlJS2LVrV/ZRgj0W9GDVoVUuWeNnwkSXGl1Y9fCq615z5swZpk6dygcffEBmZiaPP/44oaGhbNy4kZkzZ7J//34ABg8ezPvvv0+lSpVyvN9qtzJlyxReXv8ydpsdu3HjjUYGBg4cVLZW5vyc84SvDMfT05M+ffpw7tw5FixYQPfu3bOvHzVqFN999x3Hjx+/5uP4yy4Hzcshc1bqLM74nnHJOlUAD5MH41qNY3KXya65gbiF2gaJiEih9eabb7Jnzx6+/PLL7DDpcDjYdmqby874tmNn28ltf9tep1KlSrzxxhscP36cF154gQULFtCsWTMiIiJ47bXXsFgs1KlThyVLlhAQEMCgQYPYsGEDDoeDixkX6Tq3Ky/+8mJW66JchEkge7d4nBGHI9TBH6X+oGHDhuzYsYM2bdpw//33M2nSJOx2O0lJScydO5fBgweTkJDA6dOnOXbsGFFRUezfv5+IiAi2bdvGhg0b2LhxIydPnqREiRI0bNiQkhVLuixMXv4crjr9SNxHM5QiIlKg4tPi2Re3j4T0BAwMqpSqQuPKjfHy8MpxXUREBK1ateL555/ntddey349JimGgPcDXF7n7uG7aXp70+zvHQ4HVquVjIyMq74uXLjAggUL+OKLL4iPj8fX15c33niD8uXL8/PPP7N69Wr++OMPKvtXxjbIxnmf8/l7pOzI+qq8tjKWYxYyMjJISkri0qVLWcc/5uev9lCgSt7ffiMWk4UhjYbw+QOfu+4mUuDUCEpERFzuROIJPt75MfP2z+NE4omrfm4yTDSq1Igngp5gaJOheDo8GT58OI0aNeKll17KcW3sxdgCqTm4fTClk0vnCJG5lZyczJgxY656Pa5+HHiT/xnA/70/oXMCo43RVPCsgKenJ9HR0Xz55ZdYrVZuv/123njjDTw9PfH09MRut5OQkMD58+c5f/48Z86c4cyZM/zxxx/88ccfnD59OuszppAVWF00S2lgUMGrgmsGF7dRoBQREZdJupTEhJ8mMGfXnOvvbAbsDjv74vYx5scxTPx5Iq1SWhF9MJqInRF4enrmuNbZ53pfj08pH2wJNkJDQ7njjjuyg9n1vpYtW8aUKVP473//S9euXVm5ciUzZszg6NGjdO7cmQdGP8CYPWOcV78BNsPGwdoHmdx/MnFxcZw4cYLy5cvz1ltvcfToUd555x2sVisnTpzg3Lk/HzMbhoGfnx9+fn54e3tTtWpVfHx8OHXqFIl/JMLtgHMPJsqWac8kyC/INYOL2+iRt4iIuETYqTD6LepH7MVY7I6bP92mulGdbeO34efrl+P1w/GHqTm9prPKvK7eJ3sTsTqC8+fPM2vWLAYNGoTZfO2UFRERwV133UVoaCj//e9/s1+32WwsXryYN954g/1B+6E6Ltm9YP7MjO14zrDu6+tLcnIyTZs2pW/fvlSuXJnU1FRiY2M5ePAgERERHD9+HIDy5cvTvHlzmjVrRpQ5imWey5xf5BWiRkdRu0Jtl95DCpYCpYiION2GYxu4d/69ZNgy8hQmIatlTkCZALY8toWqvlWzX7c77Pi+6UtqZqqzyr1aJpT5sAwpySlYrVYgq7F53bp1qVu3LnXq1Mn+c6VKlejQoQMVK1Zk06ZNlChR4qrhZi+dzZP7nnRJqSaHiRYlW/BigxepXLky3bp1Y/jw4fTv35+3336b5cuX4+PjQ2pqKg6HAx8fH4KDg2nRogUtWrQgODiYkydPsmDBAr755hsSUhIwPWvC7uH8Iy5NhonGlRuze+Rup48t7qVAKSIiTnXw/EGaftyUdGt6nsPkZRaThdoVahPxZAQlLX+eOd3u03ZsPrk5v6Vek4FBFWsVqq+pTkREBJmZmdnnePv7+1OhQgXi4uKIi4v78z2GQevWrWnatGmOwBkQEMAnn3zCyIUjcbTN2/GLueFh8uC/lf7LooWLWL9+PRaLBavViqenJ3feeSdHjx7F19eXmTNn0qdPH0wmE3v27GHBggV89dVXxMTEcMcddzB48GAGDx7MnJNzmBY+zSU76T/p9QmPNXvM6eOKeylQioiI09jsNtp+1padp3ditVudMqaBwT/b/pM3Or1BQkICY8eOZd7v83Dc53DJxhEDgw/u+4BRLUaRlpZGREQEmzdv5tNPP+XgwYNZ1xgG9evXx2QysX//fkJCQrDZbNlrFS+fSJNtCFADlzbrM80y4ZXoha+vL6+88gotWrSgUaNGeHp6cvz4cfr27UtkZCQ9evQgMjKS33//nYoVKzJgwACGDBlCq1atspu4/5H8B3Vn1CX5UrLT1nyaDTM1y9dkb+heSliunsWVok2BUkREnGbOrjk88f0TTh/XwKDuL3U5sPFA1gueZD2WtTj/sayXxYvYCbH4evqSmJjIiRMnsr+WLVvGzz//jI+PDzabjfT09Bzv9fDwoGLFivj5+XHu3DlOnDjB7bffzslBJ7GVcE3fzMtebfYqr/Z+lXnz5jFkyJDs18+cOcPXX3/NvHnz2L59OwB16tThnXfeoVu3bnh4eFxzvDdXvskLO19wWn0mw0T44+E0r9rcaWNK4aFAKSIiTuFwOKj/YX2izkU5fye2DYgAzzWeDBs2jKlTpzJ993ReWPuCc+/lgNIRpal6qCoxMTEkJydn/8hisRAYGIi3tzcHDhzAMAz8/f158803SUxM5MiRI+zYsYPt27eTlpYGQI0aNejbty/v+byHDdcFSrNhpl16O/Z+tJfTp0+TmZnJsmXLmD9/PmvWrMEwDLp3786gQYOIi4tj4sSJtG7dmkWLFlGlytVNJ1euXMmAgQMo2bck5+8875QaZ9w3g1EtRjllLCl8FChFRMQptp7cSptP27hsfE/Dk/h/xuPj6QNkHV8YMjuEfWf2Oefxuh08Lnhg/9hOCUsJ+vfvT/fu3alWrRqBgYGULl2a5ORkLly4wJAhQ9i7dy9VqlRh9OjRGIZBQkICZ86cYeXKlZw/f54KFSqQnp5Oamoq9hftLmvDk137Og/aebTjtttuY/ny5aSlpdGuXTuGDBnCgw8+SIUKf/Z+3Lp1K/369cNkMvHNN9/QunVrIOsfBVOnTmXChAn07NmTL+d+yfh14/l096d5KstsmLE77EzrPo3RLUc75aNK4aRAKSIiTvH6xtd5Zf0rLjsSEWDTo5toW60tGRkZnDp1im1R2wjdGUqKPSVfM5UGBiUcJeh1phepJ1MJCwvj3LlzlCpVihIlSpCUlERmZuZ131++fHnKlClDbGwsmZmZtG/fnho1alC2bFnKlCnDW9a3uMjFPNeXK0uAfVntgvr27csrr7zCHXfccd3L//jjDx566CG2b9/O9OnTeeSRRxgzZgyzZ8/m2Wef5bVJrzF562QmbZpEpi3zpn+/JsNEtTLV+PKBL2lXvV0+P5wUdgqUIiLiFH0W9mF59PJ87+y+LgcE/BrApY2XOHfu3J/HC94GPAJ4kbdNLzYwMgwC1gZQmcqULVuWsmXLcv78ecLCwgB46KGH6NKlC2fOnOHZZ5/l4Ycf5o033iAtLY2+ffty7NgxSpQogZeXF6tWraJevXo5btHrq16sPLjSdb8boOLXFRk9YDTff/89ERERBAYG8uSTTzJixAj8/Pyu+Z6MjAyefvppZsyYkb3uc9asWbTv3Z4HFj7Ar2d+zVNQt5gsjG05lv/c8x+8Pbzz+9GkCFCgFBERp6g/oz4Hzh1w3Q1swE7gx5wvm0wmylQtQ0aXDFKqp+T62ECTYcLusNO7Tm8+7vExlUtVvuqas2fPMm7cOBYsWECnTp34/fffCQwMZOPGjdmbWVatWkXPnj2x2WzMnDmTkSNHXjXOG5ve4OV1L7tu9jYDqnxehUeGPULv3r0xmUzMnj2bBQsWcOnSJXr37k1oaCidOnXCZMqZuqOjo2nfvj1xcXHUrVuXjxd/zIM/PsiFtAtYHXlbSmA2zJTyLMX6R9bTtErTG79BijwXNjAQEZFbSYYt92dd54VhMmjQuAGTJk3i008/5aeffiI6OpqLFy8SfzKei59eZNmAZbSplrWO02SYMBt/Wbhog8sTbiH+ISzpv4SlA5ZeM0wC3HbbbcyfP5/ly5ezZcsWYmJiuO+++7JPzFmyZAkPPPAAbdq04aGHHuKpp55i2rRpV40zpNEQl81OGg4D869mOt/TmTlz5tC6dWt69+6NYRh89tlnvPPOO0RHR9O1a1dq167NlClTOHv2LABr164lJCSE8uXLs2zZMi5mXqTj5x2JT43Pc5gEsDlsXMy4SOcvOxN3Me7Gb5AiT2d5i4iIU7j60abD7iBybyQvrXrp6nt7e1O+fHkqVKhA+fLl6eLXhYuVL5JUKokEjwTsJjsmu4mYvTHwB3z1+lf0bdv3qnPCr+fgwYOkp6fTvXt3Xn75ZVavXk3Hjh15/fXXGTBgAJ9//jkeHh7cfvvt/OMf/+DUqVO89dZbmEwmUlJSWDBzAeYjZqy3W50+leMwHPj85oNXRy8mT55MiRIliIiIYPny5cyePRsfHx+6du3KAw88QHR0NP/617946aWXaNKkCREREXTq1InFixdTpkwZFl1axILfFjilLpvDRkJ6AiNXjGTpgKXZPS6leNIjbxERcYqHlzzMwl8XunRTzgfdPmBgrYHEx8dz/vz5a/7/Wq8lJiZec7xSpUrlCKJX/vny/8+ePcvzzz/P8OHDefPNN9m3bx/9+/fnwoULtGnThrVr1+Y4bnHatGmMGzeOAQMG0KJFCyZPnkx8fDz9nurHNxW+ydfM31+ZMGHfbaePqQ/R0dFERkYCWTOrd911FzVr1uTixYtERESwc+dOzGYzISEhxMbGcuTIEQDq1atHaGgotTrV4r5v7nNabVdaPnA5Pev0dMnYUjgoUIqIiFO8v+19Jvw8waUbT0p+UZJ76t1Dp06d6Ny5M40aNcrVzJfVaiU+Pp6Hnn2ITWc2UaZBGdJ808hwZGA4DHzsPpS9WBbvs954RnmSdCaJ+Pj4HH0or6qlZEnS09MpVaoUbdq0oUaNGpQvX56yZcuycuVK1q1bB0CPHj3497//TePGjZm8bTIv/fKSU3pnmg0z5gwzdX+uy97wvQBcuHCBsLAwtm7dypYtWwgPDyc1NRVPT08aNWpE6dKliYiIICkpCYA77riDkiVLEh0djeMhB446DhyGc2OB2TDTvnp7fhn+i1PHlcJFgVJERJzi93O/U29GvRtfmEflPMoxwTSBdWvXsXnzZtLT06lUqVJ2uOzcuTPVqlW76n0Oh4P5++fz2obXOBh/MGsdpYmrNu5c7plYwlyC4U2H8+8O/+axgY+xbds2Fi9ejM1m45///Cf79u1jwIABVK9enaioKNauXUtiYiKVKlXCarVy4cIFrvdXa5lyZcjomUHaHWn5OjbSbJjxMHlw6eNLfPjih4SGhl7zOqvVyt69e9m6dSs//fQTq1evzm5/VLlyZby9vYmLiyPVSIVncOnOiujR0dSqUMt1NxC30hpKERFxiroV69Khegc2n9js/MfedsjYkgFtYPHixZQsWZKtW7eyZs0a1qxZw8KFC3E4HNSqVSs7XHbs2JF0Szojlo/gx0M/YlxOcNdpMH655nRbOnN2zeHLiC9JO5rGynkradSoEffffz+HDh1i9erVdOrUKft9GRkZPPbYYyxYsACHw0Hr1q15//33CQwMZPv27Tz55JPYbDaCg4PZt28fifMSMfU1YW9oz/WO9CsZDgOTzUSN7TWIjsvalLRgwYKrHtWXKVMGi8VCcHAw6enpvPbaa1SrVo1Zs2Zx9uxZtmzZwtatWzlx4gTUxuXbdDcc36BAWYxphlJERJxm1aFVdJ/f3enjepm9eOiPh/j6k6/x8PAgNDSU8ePHU7VqVQDi4+NZv359dsA8ePAgVACPJzywlrDm7TGuHTDBhKYTWPrMUlJSUvjxxx9p2jSrDY7D4WDt2rW8+OKLbN++nZYtW5KWlsb+/ft56qmnmDhxIqtWreLTTz9l586dAHTu3Jl//OMfdOnShYUHFjL6x9GkZablKoAbDgOH4aBKYhWq76vOro27sFgsWK3WazZdN5vNlCtXDovFQlxcHOXKlaNLly74+fnlWDPq7e3NzOiZ/HTxJ+yGa5YreJg8GNFsBDN7zHTJ+OJ+CpQiIuJUrticM7vnbB4PepzY2FimTZvGjBkzSE9PZ+jQoUycOJE6derkuH77ge10/aYrSbYkp6wJrLSzEuHTw7n99tuBrKMLX3zxRdavX09ISAivv/46nTp1Ijk5mTFjxjBv3jxsNhsmk4lu3brxwAMPMHfuXHbu3MlXX33FAw88AEDsxVg+3PEhH+74kPNp5zEZpuz+mHb7/2Yw/zdzWLNcTfrU68NjTR/jaMRR7ut+H9u2bSMkJITU1NSrNiKdPXuWRYsWsWHDBmrWrEndunW5cOFCjmus1v9tEHoQqI9LZyk73dGJNcPWuO4G4lYKlCIi4lTxafE0+7gZp5NO53tHs8kw0aNWD5YNXJZj801SUhIff/wx7733HnFxcfTp04fnnnuOli1b4nA4uG/+ffx85GenhVqLycLukbuxnrby0ksvsXLlSho3bsykSZPo1q0ba9asYf78+SxbtozU1FSCgoJIS0vjwIEDDB48mKlTp+Lr68uwYcP49ttv+eCDD3jqqaeyx8+wZRB+Kpx1x9ax7Pdl/Hb2Ny7ZLmX9DsgKmRhkn1nuleFF6ajS7P9iP7f53HZVvSkpKQwbNoylS5fy9ttvM2HChKs2LzkcDpKTkzl9+jSPrnqUsMQwp/yurqdtYFs2PbbJpfcQ91GgFBERpzt64SjtP29P7MXY7BB0s0yGiXtuv4fvB39PSUvJa16Tnp7O3LlzmTJlCgcPHqRjx440H9GcKYem5Kf8q5gNM76pviRMTqBWzVq8+uqrBAYGsnDhQhYtWsS5c+eoX78+Q4YMYdCgQdxxxx04HA7mzp3LuHHjMJvNTJs2jf79+zNhwgSmTp3KCy+8wKRJkzAMA7vDzoztM3h2zbNk2jJvHIQdYBgGpTxLMb37dIY1GZYdGGNiYujVqxe///47r7/+OnXr1iU2Nva6X4mJidAXaIhLZyi71ejGqodXue4G4lYKlCIi4hKnk08zbOkw1h5de1Pvu7zbemzIWN7u/DYlLCVu+B6bzcbSpUt586032dVmF5QjX7uor+dhHsY/zZ+FCxdy/PhxAgICGDx4MIMHD6Zx48bXbGEUFxfHmDFjWLx4MT169GDmzJl8/fXXTJgwgeHDh/PuB+/y0LcPse7YujzXVS2lGrX31+b44eMcPnw463H5X5QvX54qVapc82tt5lrmnZrnsh6iHiYPxrQcw7vd3nXJ+OJ+CpQiIuIyDoeDT3Z/wr/W/YvYi7GYDfN1Q4vFZMFqt9KkchOmd59Ou+rtbvp+aw6vocu8Lvkt+9pswGHw/d6XAQMGMHToUNq2bXvV2djXs3TpUkaNGkVKSgpTpkyhVKlSPDLyEbxCvUgpnZK//p0OKH2+NCmzU6hSsQrjxo2jTp062YGxUqVKOZqvX+nSpUu89e1bvHrw1bzfPxfm953P4EaDXXoPcR8FShERcTmr3cqK6BUs/HUhYafCOJ54PPtnZsNM3Yp1aVetHY82e5QWVVvk+Zi+sT+OZebOmXl+zH5DduANKO1dmo4dO2b3wKxbt26Omq1WK2fPnr3q8fKxY8f4+eefOXr0KF5eXlzqfQl7bbtzHjXboWZiTfa9uQ8vL6+/vTQlJYVVq1bx7bffsmLFCpIvJWM8a+CwuCYSWEwWTo0/dd0z06XoU6AUEZECl3wpmcRLiZgMExW8KuTqsXZutJzdkh2ndzhlrOuZVG0SRzYfISwsjKioKGw2G15eXpQtWxaLxUJqairx8fFXNTevUKFC9owhwLbEbaT2SHV6fWuHreWeO+656vWEhARWrFjBt99+y6pVq0hPT6dJkyb07duXvn37MuP4DObsmuP0MG4xWehXrx8LH1zo1HGlcFGgFBGRYsP7dW/SrGmuu4EDWA7szvr2cpA0DIOUlJTsM8P9/Pxo3rw5d999N927d6dGjRp4enpmD5Npy8T/PX/Oppx16lpPk2GiZvma/P5/v2MYBmfOnOG7775jyZIlrF27lszMTEJCQujXrx99+vShZs2a2e+NOhdFw5kNnR4oDQzCHw+nhX8Lp44rhYsCpYiIFAsOhwPTa6497sXAYEytMYxpOYYqVapQqlSpHD8/e/Ysv/zyC2vXruXnn3/m2LFjmM1mQkJC6Ny5M506daJVq1Z8d/A7+n/T32V1ji41mv3f72fTpqw2Pe3bt6dv37706dOHgICA677v9Y2v8691/3LKWeOQFXDHtxrPO13fccp4UngpUIqISLFhec3isp3KADjgroS76FK2C/7+/gQEBODv74+/vz/ly5e/au3nkSNHsk/vWbt2LfHx8fj4+FDyiZLEl413WnDLwQbGbwb3pt5L37596d27N7fddnWvymvJtGXS4fMObI/Znu/fo8VkoW7Fumx/fDteHn+/plOKPgVKEREpNgLfD+RU0imX3qPm9pqk7E4hNjY2xzrJkiVLZofLv4bNgIAA/Pz8iIuLY926dbyY8iI2s+uCb4BvACefPpmn9yakJ9D5y87sid2T51BpNszUqlCL9cPXayPOLUKBUkREio2HFj/EkgNL8teC5wZino6hqm9VMjMziY2NJSYmJvvr1KlTV/05PT09+72GYVChVgXODT7nsvoui382nnJe5fL03uRLyYz+cTRf7v0y+yjI3DAwcOCgT90+zOk1h/Je5fN0fyl6LO4uQERExFnaBrZlyYElLhs/sHQgVX2rAuDh4UFgYCCBgYHXvd7hcHDhwoUcAXNLzBY+53OX1XhZ7MXYPAdK3xK+fPHAF/Sv359xq8dxKP5Qdp/Qa7ncXzSwTCBTukyhfwPXrQ+VwkkzlCIiUmycTz2P37t+ZNoznT62yTAxqeMknm/3fL7GWXd0Hfd8eXVbH2fb/9R+GlZqmO9xHA4HG45v4Iu9X7DlxBYOXzicY8byznJ3clfgXQxpNISuNbpmnTsutxzNUIqISLFRwbsCQxoPYe7euU7fnGMxWRgRNCLf45QpWcYJ1dxY6RKlnTKOYRjcffvd3H373QCkZqZyIe0Cdoedcl7lKOVZ6u8HkFuC/hkhIiLFypud3qSUZykMJx/m/fo9r1PJp1K+x6lXsR5mw+yEiq7P19OXwNLXfxSfH94e3viX9iewTKDCpGRToBQRkWKlSqkqzLx/ptNa8lhMFkL8QxjfarxTxvPy8KJuxbpOGetaDAyaV22e5+MrRfJCgVJERIqdQY0G8e+7/53vcSwmC9XLVGf5oOWYTc6bVRzYcKBL1xoOaDDAZWOLXIs25YiISLH1/rb3mfjzRAzDyNORgi2rtuT7wd875VH3lWIvxhL4fqDTjzkE8PHwIXZCrB5HS4HSDKWIiBRb41uPZ+eTO6lToQ5ArtYumgwTHiYPpnSZwtYRW50eJiHrsXxo81Cnz1IaGDzb5lmFSSlwmqEUEZFiz2a38cPBH5i+fTprj67NbntjNsw4cGR/X9W3KqOaj2JE0AiqlKri0pouZlyk/oz6nE4+7ZQd6WbDTL3b6rHryV14mD2cUKFI7ilQiojILSUlI4W9cXv59cyvJF9KxsPsQbUy1Qj2CyagdECBbmbZHrOdDp93IMOWka/TfcyGmVKepdg2Yhv1bqvnxApFckeBUkRExI02HNtA9/ndybBl5Gmm0mKy4Ovpy5phawjyC3JBhSI3pjWUIiIibtTh9g7sHrk7Owzmtn/m5evaVWuX4/0i7qAZShERkULAZrfx0c6PeGfbOxxLOIbFZMFmt+Xop2lgYDaZsdqt1K1Yl+faPMfwJsPVc1LcToFSRESkELE77Pxy9BfWHlnLjtM7+P3c71yyXaKkpSQNbmtAi6ot6FqjK22rtVWQlEJDgVJERERE8kVrKEVEREQkXxQoRURERCRfFChFREREJF8UKEVEREQkXxQoRURERCRfFChFREREJF8UKEVEREQkXxQoRURERCRfFChFREREJF8UKEVEREQkXxQoRURERCRfFChFREREJF8UKEVEREQkXxQoRURERCRfFChFREREJF8UKEVEREQkX3Hi/REAAAAWSURBVBQoRURERCRfFChFREREJF/+H2MXJNAv0JRwAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -221,7 +207,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -230,7 +216,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -248,14 +234,14 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 17, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABGoAAAEuCAYAAADWRvTbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACvhUlEQVR4nOzdd3hT5f/G8XfSpLtlbyp77yF7CjKUISgOwAmyFAeKA0FUEEWQrwxFAVEEwQWCgAoie++995IN3TM5vz+O9CfKaJO06bhf19WrtM158kmBnOQ+z/N5LIZhGIiIiIiIiIiIiNdZvV2AiIiIiIiIiIiYFNSIiIiIiIiIiGQQCmpERERERERERDIIBTUiIiIiIiIiIhmEghoRERERERERkQxCQY2IiIiIiIiISAahoEayhREjRtCzZ09vlyEiIhmUzhMiInI7Ok9IelJQI/8xc+ZMateuTXBwMIUKFaJt27asXr3a22W5ZdCgQUyZMgWA48ePY7FYSEpKcnm8mTNnUqxYMYKCgnjggQe4cuWKp0oVEcnwdJ64vb/++osOHTpQuHBhLBYLx48f92ClIiIZn84Tt7dw4UIaNWpEzpw5KViwID179iQyMtKT5Uomp6BGbjBmzBheeuklBg0axPnz5zl58iT9+vVj3rx53i4tw9izZw+9e/dm+vTpnD9/nsDAQPr16+ftskRE0oXOE3dmtVpp06YNs2fP9nYpIiLpTueJOwsPD2fw4MGcPXuWffv2cebMGQYOHOjtsiQjMUT+du3aNSMoKMj44YcfbnmbuLg448UXXzQKFSpkFCpUyHjxxReNuLg4wzAMY9myZUaRIkWMkSNHGvny5TMKFixo/Pzzz8bChQuNMmXKGLly5TLef//95LGGDh1qPPTQQ0a3bt2M4OBgo3LlysaBAweMESNGGPny5TOKFi1qLFq0KPn2xYoVM/74448bju/WrZthGIZx7NgxAzC+/vprIywszMiTJ48xfPjwm942LCzMAIygoCAjKCjIWL58uZErVy5j586dybc/f/68ERAQYFy4cOE/v4M333zTeOyxx5K/Pnz4sGG3242IiIgU/65FRDIjnSdSdp64LjEx0QCMY8eOpfA3LCKSuek8kbrzxHWzZ882KleufMfbSfahGTWSbN26dcTFxdGpU6db3ub9999n/fr1bN++nR07drBx40aGDx+e/PNz584RFxfHmTNneO+993j22WeZMWMGW7ZsYdWqVQwbNoxjx44l337+/Pk8/vjjXL16lRo1atC6dWucTidnzpzh7bffpnfv3ql6DKtXr+bAgQP8+eefvPfee+zbt+8/t1m5ciUA165dIyoqiqZNm/Loo48yY8aM5NvMmjWLFi1akC9fvv8cv2fPHqpVq5b8dalSpfD19eXgwYOpqlVEJLPReSJl5wkRkexK5wnXzhMrV66kUqVKqapTsjYFNZLs8uXL5M2bF5vNdsvbfPvtt7z99tvkz5+ffPnyMXToUKZPn578c7vdzltvvYXdbufRRx/l0qVLvPjii4SEhFCpUiUqVqzIjh07km/fuHFjWrdujc1mo0uXLly8eJE33ngj+fjjx49z7dq1FD+GoUOHEhAQQLVq1ahWrdoN93U7Tz75JLNmzcIwDACmT5/O448/ftPbRkVFkSNHjhu+lyNHDq0rFZEsT+eJlJ0nRESyK50nUn+e+OOPP5g2bRrvvfdeimuUrE9BjSTLkycPly5dum1TrLNnz1KsWLHkr4sVK8bZs2dvGMPHxweAgIAAAAoUKJD884CAAKKiopK//vfP8ubN+5/j/3n7OylYsGDynwMDA1N8bN26dQkMDGT58uXs37+fw4cP06FDh5veNjg4mIiIiBu+FxERQUhISIrrFBHJjHSeSNl5QkQku9J5InXnifXr19O1a1d++uknypYtm+IaJetTUCPJ6tevj5+fH3Pnzr3lbQoXLsyJEyeSvz558iSFCxdOh+ogKCiImJiY5K/PnTvn0jgWi+Wm33/yySeZMWMG06dP56GHHsLf3/+mt6tUqdINyfrRo0eJj4/Xk6uIZHk6T6TsPCEikl3pPJHy88S2bdvo0KEDU6dOpUWLFi7VIVmXghpJliNHDt577z2ee+455s6dS0xMDImJifz222+89tprADz22GMMHz6cixcvcunSJd577z26d++eLvVVr16d7777jsTERDZv3sxPP/3k0jj58uXDarVy9OjRG77fvXt3fv75Z2bMmMETTzxxy+O7devG/PnzWbVqFdHR0bz99tt07txZM2pEJMvTeSJl5wmAuLg44uPjAYiPjycuLs6lWkREMhOdJ1J2nti9ezdt2rRh/PjxtG/f3qUaJGtTUCM3eOWVVxgzZgzDhw8nX758hIWFMWHCBB544AEABg8eTO3atalatSpVqlShZs2aDB48OF1qGzZsGEeOHCFXrlwMHTqUrl27ujROYGAgb731Fg0bNiRnzpysX78egLCwMGrWrInFYqFx48a3PL5SpUp8/vnndOvWjfz58xMZGclnn33mUi0iIpmNzhN3Pk+AOd0+ODgYgPLlyydPvxcRyep0nrjzeeLjjz/m4sWL9OjRg+DgYIKDg9VMWG5gMa53OxIRnnnmGQoXLnxD53kREZHrdJ4QEZHb0XlCPEFBjcjfjh8/TvXq1dm2bRslSpTwdjkiIpLB6DwhIiK3o/OEeIqWPokAQ4YMoXLlygwcOFBPqiIi8h86T4iIyO3oPCGepBk1IiIiIiIiIiIZhGbUiIiIiIiIiIhkEApqREREREREREQyCAU1IiIiIiIiIiIZhIIaEREREREREZEMQkGNiIiIiIiIiEgGYfN2AZI5bdoE48bBnj0QFQXBwVC1KrzwAtSs6e3qREREJKM5dw6++AJ++w2uXQO7HQoVgmefhQceML8WERFJUxcvwuTJMH8+XL0KNhsULAg9ekDnzuDn5+0KAW3PLan03Xfwzjtw+jTExoLT+f8/8/Ex/12XKAHvvgsPPui1MkVERCSD2L0b3nwT/vgDLBaIi7vx5yEh5muI556DQYMgMNA7dYqISBZ24IB5kvn1V/NkFBt748+Dg8Fqhd69YcgQ8+TkRQpqJEWcTnj+eZg2DWJi7nz7wEDo0wdGjzb/H4iIiEjGc/QonDgB0dEQGgrly0P+/J4b//ff4aGHzNcOd3rF6e8PpUvD0qWQL5/nahARkSzm8mUzcLlwAZKSIHduaNYMypS5+e2XL4f27c2T3Z1ORn5+cNddsGKFOe3TSxTUSIq88AJ8+WXKQprrAgOhf3/48MO0q0tERERSJyEB5s6FkSNh3z7w9f3/n8XFwb33wquvQpMm7l1sWbkS2rZN3WsHux1KlTKXWAcHu37fIiKSBW3aZM4E+OUXc8lSQoI5o8DX1wxgqleH11+Hdu3MqZoAGzdC8+apOxnZbBAWBlu3Qs6cafFI7khBjdzRr79Cly6p+7d9XWCgufzvnns8X5eIiIikzrZt0Lq1GchERt78NhYLBAWZgcmiRVCgQOrvJyYGCheG8PDUH+vnB48+Cl9/nfpj/+36q1zN7hURycScTnPmwFdfmSewf/bf+LfgYKhY0TyBBQaaJ6PLl1N/n35+ZuDz00+u1+0G7fokd/T++66FNGAe98EHnq1HREREUm/NGmjc2OyjeKuQBsxwIyoK9u6FGjXg7NnU39esWeBwuFZnfDx8/73ZcNgVe/ZAz57mRVC73bwwGhxsvt5eseLOs95FRCQDMQzo3t0MaWJibh/SgHkC274d6tSBGTPMWTeuiI+HhQvN5VVeoBk1cluHD0OVKv9t/Jcafn5w6JA5e0xERETS35Ej5q6MERGpO85mMzcJ2LEDAgJSdoxhQNmy5msIVwUGwogR8OKLKT9mzx548kkzYEpMNNsW/JPFYo6bJ4+5+1SbNq7XJyIi6eSDD2D48NTPHPDzM9P6qCjX79vfH956CwYPdn0MFymokdsaNMhcBpiY6PoYfn5m4+y33vJcXWnh9Glzy9BLl8yvc+eGVq3MF6giIiKZWffu5iyXO12IvJmgIBg3Dp55JmW337UL6tc3eza6o1SplIc9K1fC/fenrE8kmKHTJ59Ar15ulSgiImkpPt7sLn+7aaBprVAh16aWusmW7vcomcrBg+6FNGD+/3LnqlpaMgz480/46CPzRZ6Pj1kvmAGT0wl168Jrr5lX3qxaLCgiIpnMtWswe7ZrIQ2Y4ceHH8LTT6es18vJk+ZMHHedO5ey2+3ebYY0qbloGhsLL71kvv7v1Mml8kREJK399JP316teuABDh5pd+K9dM98Q5s0LTz0Fjz9ubpmYBhTUyG25ezXsutROtU4P8fHwyCOwZMnNH+f12XUrVsCWLVCvnvn/MygoXcsUERFxy9dfu3+h4exZc+OMunX/+zPDMLh69SoXLlzg/Pnz/PmnL/HxNQE/t+4zpW0FHnvMtdcrsbHma+wLF8wlUSIiksF89JF7S5c8weEw6/hnL5Djx81tEwcONLvff/gh5M/v0bvV0ie5rW7dYOZM98cJCPiGWrUmU7p0aUqXLk2pUqWSP+fKlcv9O0ilxERo2dLc4S02NmXH+PubDcTXrDH/LCIikhm0bGnOHnWHj4+DVq1WU6nSguRA5vrnixcvEhgYSIECBcifPz/Qio0bXyEhwb30w9c3lk8//ZZq1apRqVIlAm+SpmzdajZIdnXTg+BgGDs25cu6REQkHdnt/204ltHY7eYMmxUroEwZjw2roEZua8IEcyt6V18AAQQFGQwdepW7797J4cOHOXz4MEeOHEn+bLfb/xPeXP9coEABLGmwp2afPjB9euofV0AAdOgA333n8ZJERETSRI0a5gYY7ipTZh4tWy6iYMGCFCpUiLCwMIoWLUrx4sUJDg5Ovt3Zs1CypEF8vHvn7+LFz9CkySB27NjBgQMHKFasGFWrVqVatWpUq1aNqlWrMmhQGN99Z3F5hynzccGBA9rCW0QkQ0lIMK+OZ4a4wmIxw5odO8yeNp4YUkGN3E54OBQs6N6uT4GB5rTimy0ZMgyDixcv/ie8uf45Li6OUqVK/SfEKV26NEWKFMHHxyfV9Vy6ZO5A5epj8vc3X9DddZdrx4uIiKSnu++GzZvdHcVJ8eIzKVjwU2JiYoiOjiY6Ojr5z1arlcDAQPz8/IiKiiImZg5wL+DamiuLJZJixYbw0ksleOKJJwgODmb//v3s3LmTHTt2sGPHDnbu3Mm5c0eBFG5HdQsBAWafm5Il3RpGREQ8yTDMhmeuNli7PgyQLjm8zQYNGpgzazxAQY3c0RNPmMufXLlaZbNBz54wcaJr9x0eHp4c3Pw7xLl06RIlSpS4Iby5/udixYrh6+t70zE/+ACGDUv5kqd/8/U1GxCOHOna8SIiIunpgQdg3jx3R4nF13cItWqtpXr16lSvXp1q1apRpUoVfH19GTNmDOPGjePMmTOEhYXRqNE7zJ37BLGxrrVDtFqvEhpalqioayQlJWG1WgkKCiJHjhwEBgYSFBREQEAO1q79E1fDoOty5IDffzd70YmISAaSL9//b8nronQLasC8or97t7ltoZsU1Mgd7d8PtWu71qgvKMicAeaBf6v/ERMTw7Fjx24a4pw+fZoiRYr8J8QpVao0LVpU4uJF9/67hoaazxl2u4cejIiISBpwOs0tqKdOdW/2uMUSz5gxv1CjRn527NjB9u3bWb9+PQcOHMDpdGK1WqlYsSKvvPIKbdq0IX/+glSvbr6GSO3ukTZbPKNH23nxRTOAOXfuHFOnTmXq1KlYLBY6d+7MvffeS2yshQceaI7T6X5QM3++2etGREQykLfewvj4YyzXt+V1QbzNBklJbra3TyG7Hfr2NZufuUlBjaTI/Pnw0ENJJCSk/MpYQIC5S1KrVmlX160kJiZy4sSJ/4Q4Bw+e5+DB1cDNZ9ukVGCg+eIzLMwz9YqIiHhaXBx06QJLl7rXaw4McubcQGRkI/z8/ChXrhznzp3jr7/+okSJEnTv3p1SpUqxc+dOtm/fzvbt27Hb7VSo0Iz16ycSFxdEys+7BiEh+2jQYBg//TQZp9PJkSNHOHLkCIcOHWLNmjVs3ryZCxcu/B08JeDuJqZBQdCjh/l7unLF/F7OnObvrk8fcwm4iIikUEKC+Sbwf/+DY8fMZQyBgVCpErzyCrRunaKtCA3D4PcpU7ind2/8XIwsIoFxJUvyRnw81gsXsKT2yoErQkI8suWxghpJkRUrVtChw0QSE2fidFq5Xajp728ueZo7F1q0SLcSU+TkSahQwSAmxv0ZNWvWQOXKHipMRETEg5xO6NjR3O3J1aW+1wUGOvnsszN8910vFi9ejPPvfgFhYWG88sor9OvXD/s/ppgahsGZM2eYP38+r7wyGlhGXFweDOMmzepuwscnDofDidXaDT+/RcmbC9hsNqKiojh79ix//fUXhQsX5uTJ70hKutu9B4j52uXfveuu97Bs2dJ8v+HBzTxEJKP46y/44gtYvRquXjUDhZIlzZS2Xj11GU8Nh8PsL/HJJ+ZJKDLyv7cJDjbT8SFDoF+/W/5+ly1bxhtvvEF8XBzL4uPJefAgFhdiiwi7ncq5c3Nfw4a88ccfFIyLw/82YY1HlklZLBAf7/bSC/fmikq2cOjQIR555BFmz+7JoUNWXn3VvNIUEvL///7sdvPr3LnhjTfg0KGMF9KA+dzrcLj/hOt0mmOJiIhkRJMmwbJl7oc0VmscMTHTeeqpuzh48CATJkzA4XCwe/duatSowWuvvUZgYCCtWrVi48aNAFgsFux2O6NGjWLixLe5ciWMESOS8PFxYr4Mvj2Hwx8IBGaRkPAIJ06c4NixY+TNm5dHH32UH374gX379lGnTh3gI8D9K5c322AgLs58rf3rr+YS8LVr3b4bEckotmyBdu2gRAmz8eSff8LWrWZgM3063Huvmc5++aXbzWyzhdhYc6bMqFHmbjQ3C2kAoqLg/Hl47TV4+un/NEHdsmULrVu3pnfPnnxaoQJbL10i+Ngxl9buJvn5EbpqFXsPH+aCYVA+KoqfWrfGUaUKTj8/YgHDYgEfHxLsdpKsVnO2gbtsNvdPvmhGjdzBlStXqF+/PgMGDKB3797J309MNF+4HD5szuzKkQPKloU2bTzz7zutJCWZQa4byxwB8PMze9T8YzdSERGRDMEwzPceJ064O1I0FssSatb8gGPHDjF58mQ6d+58wy0cDgdfffUVo0aN4uDBg4SGhlK7dm127dpF3rx5sdlsHD58jMTE1TgcFTCM1C09tlji8PfvwMcfd6Jnz578+uuvDB48mD179lCoUCFefPEVRo58mStX0v6qd3AwrFun2bQimd5335nrHWNj7xwABAaaAcSsWeYbAPkvh8MMvZYvT922uoGB8OST8NlnHDx4kCFDhrBq1Sreee01Hvr2W4K2b8cvKSnV5TiBGGDlgAHc9/HHnD17lho1ajB16lS+//57fv/9d+6/6y5Ct26lXcOGXAoPZ+/Fi6w6f55fDIPQVN/jv1it5pvlFCzvuh0FNXJLiYmJtG7dmurVqzNmzBhvl+MxTz0FM2a4tosVmLPZOnQwl3aJiIhkNMuXO2ndOomEBHf6sRm0arWFhQtrYrNZ2bx5M507d+aBBx6gdevWHD169IY+cMePHydXrlwAnD9/HsMwKFGiBH379uWuu/rSs2cwUVGuVRISspfIyErJXxcoUIBu3brRsWNHqlWrxi+/5KB3b4PY2LQPa4oVM1suaDWESCY1dy507Zq6GQ8BAWbTzTlz3H7znSVNmWJuievCzjPOgADG3nMPIzZsoEePHgT6+tLy44+pGRuLfypjinjAarXibNGC3teuMXP7dvr06cO8efOw22zUSUig3F9/UdhuJyI+njOGQWSrVliKFePUqVOs/P13LmLO53RLmTJw8KC7oyiokZszDINevXpx7tw55s6di4+Pj7dL8pgdO8wt7l1trBgUBIsWQcOGnq1LRETEXadPn6Z27YOcP98Md1a4+/sn0aHDn+TOPfeGHRWtVis5c+akffv2VKhQIXl3xZIlS+Lv78/zzz/PwYMHef755xk+fDhbt27FMJZjGO5sqRRDYGBj7PYjtGjRgpYtWyY3Lt61axf58uXj0qV+REc/j2EEuHE/dxYcDL/8As2bp+ndiEhaOHPGXALgypuAwED44AN44QXP15WZGYYZTBw54tLhTmBn3ry8Wq0aW7duZUqpUnTcvRuf1MzM+VsCcG+uXGyMjaVYsWKcOHECv8RE+gUFMdjPD7/oaKyxscm9bq5HdZt8fTn20EPMOH+eTw2DsitXmsswXBEcbPbo6dHDteP/QZGg3NSYMWPYuHEjM2fOzFIhDUC1alChArjysCwWKFLEDHpEREQyku+++46aNWtis5XD3Zd4cXFWTp50UqlSJV555RUWLVpEVFQU165do3Xr1mzevJmHHnqIjh07UqlSJQICAhgyZAgLFiygfPnyfPTRR+zdu5eSJVsA7jX79fHx5/HHt3Ds2DGuXLnC4sWLGT16NOvWrePKlStUrlyZ0qVn0rLlr1it8ZiT3m8lZX1ybiUqymzBICKZ0MSJrk+pj4mBDz9Uv5p/W78ezp1z+XArUOHKFfq1b8/p48fpfOyYSyENmM/uX7RtS3R0NPv37+fXiRPZ5nAwOCKCwIsX8YmJuaEhccDfH40TEnho5kwG7NzJ5zYbSe5MmYyONmddudtnA82okZuYN28e/fr1Y/369YRl0f2nT52C6tXN5u4p/x9gEBpqYcsWKF06DYsTERFJhWvXrvHcc8+xZcsWZsyYwdNP12b3bk+MPApf38H4+Phgs9mw2WzY7XZsNhuxsbFERESQM2dOnE4nEREROBwO8uXLR5EiRShatCjFixfn7NlmLFzYjvh493o7lCpl9sVLSEigV69e7Nmzh3nz5jF06FCOHDnCwoULCQgI4PJlmDoVRo92EBlpYBhJJCYm4XBcf3MVBLh3AcrXFy5eNHeAFJFMIjER8ueHa9dcHyM42Fz+dO+9Hisr0+vZ03zSdSNScNhsLGvRgr2JifRYsYIgV8M0INrfn+mjR7Pt998ZvmABuYCUtk+N9/FhocOBHbjXYkn10qtkwcGQLx+sWAFuvJfOwG1fxRu2bdtGz549WbhwYZYNacD8P7N6NTRrBleu3Hl2m8XixGqNZMmSQEqXdm+rNRERkX8yDNi0CfbsMRv0BwWZu8M2a3bndgjLli3jqaeeol27dmzdupXAwEBy5vREVYnUq1eWdu3eJmfOnJw9e5YDBw5w9OhRTp8+TUREBP7+/ly9epUcOXIAUKpUKQAuXrzImTNnWLlyJbGxNhIT27pdzZEj5wkIKJ4cGsXHx1OkSBFsNhuFChWiatWqyUGSr68vJUr4kphYAcPIQ2KiwaFDG2nevCyLF3+K0+l+UHPhgoIakUxl0SLXZ9NcFxUFY8dmi6DGMAwcDgcOh4OkpKQbPv/zz/n27SPQzXkfPklJBFy8yIPR0W6FNACOuDii5s5lyIYNqQppAPwcDloBX+bMybGoKMpYLNhus5X3LUVFmT2QatY0dxJz8T21ghpJdvbsWTp06MDEiRP/3vIya6tQwexXM3gwzJxpvhj+dw+swEBzhmOXLhb++utlZs7Mwd13/887BYuISJYSHQ3ffgsfffT/M8eTkszdE61Ws3/lyy+bFyzz5r3x2Pj4eAYPHsy3337LlClTuO+++5J/1rAhbNzoJCHB9eVPFks8ly8vYdSo6YSHh2Oz2ShcuDDVqlXj6aef5qGHHqJQoUL89ttvtG/fng4dOvDDDz9g+3vrx8uXL3Po0CEmTTKYMcOGK691/yk0NJDXXhtMXFwc8fHxLF26lIMHDxIfH0+ZMmXImzcvCQkJJCQkkJiYSGJiIhbLXmJjY0lIiCU+/iBbtkThdCYC7jRZNv9uPLDzqoikp+PHcfuJCIjdvZuta9bcNMC4WZCR2s8Z5Rin04nVasVms+Hj45Mckv/780/nz7u5uNV05tAhSiYkuD2OD9A9b16CIyNdCjqCgT5xcWz9+Wc2PfggVf7+Xqo5HObSjWbNYN8+M+FPJS19EgCio6Np2rQpnTt3ZtCgQd4uJ91FRpovlmfMMLfdNgzInRsee8zcNS5HDnOr8po1a/K///2PTp06ebtkERHJxHbtgnvuMd/w326jjIAAs6fa7NnmpiPmsbvo3r07JUuWZNKkSeTLlw8Ap9PJ5MmTGTFiOidPLgH83agwkoCAGCyWXFgsNgIDkyhf/ihFi/7E8eO/snPnTvLkycPFixcpX748586dw+l0UrRoUY4dO0ZSUhJly5YlMPAR1q9/noQEd2qBGjVg82YnV69e5d1332XBggW89dZb7Nq1iylTplCzZk1y587NhQsXuHDhAufPnychIYGQkPokJPQjMrIOkAPICbi3ZVNgIOzf79aMdhFJbyNHmldnXW0S+7e/fH15sFatm4YWtws0bvfZlWPS+v58fHywpKRXS8eOZod1N42y2Xg8KYmCbo4TD5yx2SiRlOTyM32Mjw+X3n+f2qNGMblLF1p+/jlBrhYUHAxffgkPP5zqQxXUCE6nky5duhAcHMzXX3+dsv+U2dSGDRto3749GzZsoESJEt4uR0REMqHt26FxY1K1XXVAAMya5eTIkU/44IMPGDlyJE8//TQWi4UTJ07w6quvMn/+fJxOJ61ateLy5e9Yv96l64CYzXaTgBuX+lqtDiyWJPz9j2O3v0R4+CJCQkIoUKAAcXFxnD17FoB69erRokULatWqRYUKNalSpQDx8e4sG44iIGAIiYkTsNvtJCUlUatWLYoWLUr+/PmxWq3MnDmT0qVLU7VqVc6fP8/u3Xk4fvwloCyGYceTk8hz5jR71Ng0L10k85g4EWPAACwuNqpNVqkSHmoCljWMGwdvvun6drpAgp8fcV9+ScjQoVhc3D3qumjMM5d78yZhf0AAq8eNo2fNmhiNG2Nx4/FRsyZs2ZLqwxTUCG+++SarV69myZIl+Pm51+wvO/jkk0/49ttvWb16tX5fIiKSKpcuQblyZn+01LJa46hSpSdz5rxH8eLF+eqrrxg5ciSHDh0iLCyMF154gZdffhkfHx/Wr4d77jGIjU3txReDlMw4sVrjaNRoEsuX90++wGMYBiNHjmTEiBHUqVOHHTt2cOnSJeAToA/g2jnTYonFMPLj75+EzWbjvffeIzo6mr1797Jnzx4OHTpE/vz5iYyMJG/evDRoMIlZsxoTH+/5zU39/GDgQBg2zONDi4iHXbt2jZUrV7J8+XIiFizgf4cOEeLOgD4+0LUrfPONp0rM/MLDoWBBcCMAi/D1pZifH78EB9Pw3DmsbsQTsZiXGdz6ewZirFb8ExOxPvkkzJrlXn+jgADYvBkqVkzVYQpqsrmvvvqK4cOHs2HDBvL+ewG83JRhGHTu3JmwsDDGjRvn7XJERCQTGT4c3n/ftde0FouTtm1jCQnpwbx580hKSqJly5aMGjWKypUrc/HiRTZs2MD69etZt24da9aUJiHhEwwjwPMPBLDZEmjefAw+Pis4f/48Fy5cSF4CZRgGVquVsmXLUrp0a3777SMcjtRf4/TxSaJYseXExj7BX3/9hcViwTAMChQoQNeuXenatSsVKlQgKCiI+Ph4WreeyKpVfXA63VtqdSv+/nDkCBQunCbDi4gbwsPDWbVqFcuWLWP58uUcPHiQevXq0bx5c5o1bUr9Rx/Fcvq063cQGAirVpkzJOT/PfGE2fDThTAj3molbsAArG+/zeqPP6bZsGEEuLEFekzOnCReu0YOl0cwJQG+FguHgZLuxiXBwebW8N27p+owz19qkExjxYoVvP766yxcuFAhTSpYLBamTp3KggULmD17trfLERGRTMLhMDcMcfXCo2FY+fVXKytW7GbIkCGsXr2adu3aMXLkSEqXLk2ZMmX46KOPOHHiBBUqVODpp63UqDEWiyUWuNOdpv6FaFKSLytXvsAzz/SlXr16xMXF4XQ6qVmzJt9++y1Vq1albt26/Pjjh3z4oS+Bgam+B4KDw7nnnt9JTExk27ZtOBwOfv/9d4oVK8bYsWNp0aIFr7zyCpcvXyY21o9Nm15Ms5AmMNDsXaeQRiRjCA8PZ+HChQwcOJDatWtTtGhRPvnkE3LlysW4ceO4fPkyf/zxB4MGDaJBw4ZYXnvN3FbPVSVKKKS5mSFDzFkjqeQEogyDGpMm8d1339Hm7bcJ+Hv3QFdEAX/kyYPVx72d/QASgaZNm5LjTlsvpkRSkkvbwmtGTTZ16NAhGjduzIwZM2jZsqW3y8mUNm3axP3338+6deuStyQVERG5lfnzoVs3s4G9q3x84ilceDKXLr1G7ty5yZMnDz4+PkRERHD69GlCQ0MpWLAgefLkISgoCF9fX6Kjc3Po0L2cPHkfTicYhg2wY7EkYrHwd7Dhan+6SKAXNttPdOnShU8++YT8+fMD5kYFTz/9NCdPnuTDDz9k3Lj8zJ9fhqSklPSrMbBYovDxqQacol27drRs2ZIaNWpQrVo1goKCiIiIYNiwYXz11VdcvnyZHDmGEhHxGoaR6kTojgICoFYtWLoU7O602xERl0VERLB69WqWL1/O8uXL2bdvH3Xq1KFZs2Y0b96cu++++/ZtCSIizLDFlbWngYHmziMPPOBy/Vna0qXQvn3Ke9VYLBAczKK33+axESMIDQ2ldOnSzOzcmfwDB6a6540TMPLl45tu3Xjkk09w9yxw1GIhX3g4IRUrgjuzsMAMB8eOhR49UnWYgpps6OrVq9SrV48BAwbQu3dvb5eTqY0bN45p06axZs0a/P3T5gqeiIhkDW+/7ZneJhbL7+TM2RVfX1+cTiexsbHExsaSK1cuChYsSIECBcifP3/y5+t/zpWrAHv23EVERC4SE33JkQN+/x1+/dW95fd5856hadMXWb58Oe3bt6dWrVpcvHiRPXv2sGfPHg4fPgxApUr92b37IxyOlHXh9fNLAhYyceI14uNj2bp1K9u2bWPPnj0UL16cmjVrUqhQIY4dO8bixX8QFbUPw/DsdBeLxXx/1qqV2aZArelE0k9kZOQNwcyePXuSg5lmzZpRt27d1PeLdKWbe2AgDBig5lR3smYN3HefeUK53XaGwcFmeLFsGVSowL59+3jwwQcJCgri6NGjLKpVi1qrV2OJjU3R3RqAw98f29atUKECEaVKEXr0qOuPIyiI/+XPz5nOnek7fTqlLlxwfSyA0FD4/nto0yZVhymoyWYSExNp06YN1apVY8yYMd4uJ9MzDIMuXbpQsGBBJkyY4O1yREQkA+vbFz7/3P1xfH23UqJEV4KCgggKCiJHjhyEhIQQFBSEv78/gYGBBAQEEBgYiK+vL3a7HZvNht1uv+HPNpuNxx5rR1yce9sXWa3xlCjRllOn1hAcHExUVBSlSpXi4YcfpnPnzpQrV47PPlvFgAH1IZWbnPr7O3j2WR/+2RLu2rVrjB07lunTp3Pu3Dly5crFxYvFSUj4HcNwY1lD8n2as2YSE82AZuBAaNjQDG1EJO1ERUWxZs2a5B4zu3fvpnbt2maPmb+DGY9cGN26FVq2hNjY269FtVrNJ4TBg+GNN/QkkBKRkTB9OowaZXbPt1jM4MbHx/xcsqT5u3zooRuS76ioKHr27MnOnTspYrUyZ/9+gh2OFM31NIC4HDkwNm8mPk8eprVpwzMbNxLq4kOIs1h4xGbjWV9fmvj6EnLtGhZ3IpOcOeHChVRPx1RQk40YhkGvXr04d+4cc+fOxccD6/fEXB9bs2ZNPvjgAx5++GFvlyMiIhnUwIEwerQnRlqGj8+92Gw2rFYr1r/X0BuGgdPpxOl04nA4cDgcWK3W5FDGZrPh4+ODj48PVqsVi8WXc+eO437LwmtYLG2w27cl1+RwOIiPj8dqtRISEkJ09CISEmq5dF9Wazz33vsaTuc+jh8/zokTJyhQoADly5enZMmS+Pr6cvRoFRYv7kZionsT3v38zL+jPHngnnugQAG3hhOR24iOjmbNmjUsX76cZcuWsWvXLmrVqpW8lKlu3boEuND7JEUuXYIvvoBPPoH4eHOGzfW3xYGB4HRCx47mE3etWmlTQ1ZmGLBpExw9av5uQ0OhQgWoUuU2hxh8PmYMLV5/nZJOJ7ZUxBSJwHGLhbo2GwnASYeDXE5nqhf1OqxWDH9/LIaBJTbW/Ya+fn7w6qvmTgKppKAmG/n444/55ptvWL16NSEh7m5aJv+0ZcsW2rRpw9q1aylTpoy3yxERkQzk/PnzrFy5knHjYM2a9hiG61eELRZ46imDMWPCuXDhQoo+wsPDyZkzJ7ly5SJHjhyEhoYSHByMr28uZs/+EsNw78KNj08U1aoNJkeOnTeERU6nkytXrnD6tD9RUWsBV99wJWC1TsVq7U9wcDBBQUH4+Pgk35dhGMTEtOPatdG4uymrn59bu8yKZDwxMea6vT//NMMJf38oXhyeeirdG+NGR0ezdu3a5KVMO3bsoGbNmsnBTL169dIumLkVhwN++82cZXPpkrks56674OGHIXfu9K1FYOxYHK+/jk98fKoPjQFGBwfzQ7Fi5Dp2jEWxsQSmIupwYHZr8+huSwEBcOgQFCmS6kMV1GQT8+bNo1+/fqxfv56wsDBvl5Mlffrpp0yZMoV169apX42ISDZ25swZVqxYwYoVK1i5ciXnzp2jUaNG1KjRlg8/7ENiousvA4OCYMkSqFcv5cckJiZy+fLl/wQ4589fYOTI4RiGuy9LIyhc+GGqVIGyZctSrly55M9FixblxRetfP65k6Qk1+/Hzy+JCxcs+Ps7OHr0KAcPHuTQoUMcOnSIgwcPsmtXYS5dmgDkdOuR5MrlWp9RkQznxAkYORK++cZMeP/Zk+X6kp4SJcxlKF27mt/zsJiYGNatW5e8lGn79u3UqFEjucdM/fr1CUz9dnCSVRmGGZK50bzXKFAAy9mzfP/jj0x+6inmxMURCNxpga/h44PhcHg2pAkMNNc7P/64S4crqMkGtm3bRqtWrVi4cCF16tTxdjlZlmEYPPLII+TJk4eJEyd6uxwREUknx48fvyGYuXbtGk2aNKFp06Y0bdqUKlWqJC837tjR3P3J1VdfpUvDwYOea5VQo4bZW9M9kdx1V22CgsxlVQ6Hg5iYGK5evUpcXBwOxwkcjoJu3YPNFkXevP24evUHwsLCKFOmDGXLlk3+nCtXORo1CiM+3r1fTOvWZoNlkUxt7Vpo29bswZKYePvbBgWZ/Vq+/97tbtmxsbE3BDPbtm2jWrVqyT1m6tevT5A722NL1rZsGXTokLpGz/8S4+PDq8WL8825c+RLSGB83brUPXWK3CdPkmQY/PtfeCRg8/XF3+nEkpTkVvk3CAgw19H26+fyEApqsrizZ89Sr149Pv74Y7p06eLtcrK88PBwatWqxbBhw3jssce8XY6IiHiYYRgcPnz4hmAmPj4+OZRp2rQpFSpUSO4b829r1pgNalO58yhgvp8aNw6eecbNB/EP330HvXq5vmW43W7Qo0c8L7104qbLrs6cOcP8+TNxOt27ah4QkMiIERd57rl82G/RkNHdECw4GObOhRYtXK9TxOs2b4amTVP3JBMQAE2awMKFZtPXFIqNjWX9+vXJPWa2bt1K1apVk5cyNWjQQMGMpNyLL8L48a4/iWNu032uZk0K5s1L0pIlWOx27A4HhmGQ4HBgB+Lsdo4nJbEbSHr8cZrPm0eh8HD367fZzIbBFSvCRx+Zjc7coKAmC4uOjqZp06Z06tSJt956y9vlZBvXZzCtWbOGsmXLerscERFxg2EY7Nu374ZgxsfH54ZgpkyZMlhSMcXljTdgwoTb7176b/7+ZsDz88+eXaGQkAD58kFEhGvH+/vDnj3mRh63EhLi1gXS5DEmT4ZHHrn1bVavNnc/Tc3v9Z+KFIFTp7Sxi2RiMTFQtChcvZr6YwMDzSenIUNueZO4uLjkYGb58uVs3ryZKlWqJC9latiwIcHBwW48AMnWHnkEfvjB7WGSAB+4ZSNhA4i1WjlUpAjfFCnCe+vXp3I/wpsoU8YMSF9+2QxqPEBBTRbldDrp0qULwcHBfP3116l6ASnu+/zzz5k4cSLr169P/6ZoIiLiMqfTya5du5KDmVWrVhEcHHxDMFO8eHG3zquGYV44/PLLlF30Dgw0X//NmWMGI542YQK8/nrqZ/kEBEDnzjBjxu1vV6QInD3ren1gbhjy009w7723vo1hQOPG5oSC1PahDAw0g6CuXd2rU8SrvvzSfHJxNa381zbC8fHxbNiwIXkp06ZNm6hcufINwYw2KBGP8VBQk1JGQACWkBCcFy9idScSCQyEMWOgd2/PFYeCmizrzTffZPXq1SxZsgQ/N9ebSuoZhsFjjz1GaGgokyZN8nY5IiJyC0lJSWzfvj05mFm9ejX58uVLDmWaNGmSZk34Z8wwL15fvGiGJP9+RRYSYraMGDjQ3N0zDXp9Jnv+efjqq5SHNQEB5oYxS5eCr+/tb9u/v7kL7p1aZdxOYKD5e7pT39HwcKhdG06eNGcLpXTsV1+Fd991vT4RrzMMKFsWDh92fYjgYPYPHMiPwPLly9m4cSMVK1ZM7jHTsGFDQkNDPVezyD+99JK5vjcd4wkH5uwbt73xBnzwgSdGSqagJgv6+uuvGTZsGBs2bCBv3rzeLifbioiIoHbt2gwdOpRu3bp5uxwREcHcAWnz5s3JwczatWsJCwtLDmYaN25MoUKF0q0ewzD71nz8MezaZfaKCQyEUqXMC+P33ZeqlhFu1TF8OIwYAU7nrUOO65vFtG0L336bst6jhw9DlSqub3ttt0PPnvDZZym7/bVrZn27d99+yZWvr/l4PvjAfH8gkqlt22ZOKXN1Ns3fdgUF8U3fvjRv3pxGjRopmJH0s2IFtGvn/lpZb+jXDz791KNDKqjJYlasWEGXLl1YsWIFFSpU8HY52d6OHTto2bIlq1atonz58t4uR0Qk24mLi2Pjxo3JwcyGDRsoXbp0cjDTqFEj8uXL5+0yM4xjx8xejlOmmL1aDMP8sFrN8KZTJ3jlFahVK3XjNmxobkTjioAA8z1ouXIpP8bphD//NPs5rl5thj0Oh/k4rFbzMfXuDc89B8WLu1aXSIby449moulqw6nr8ueH8+c9U5NIahiG+YR88qS3K0m9t9/2+LRMBTVZyKFDh2jcuDEzZsygZcuW3i5H/jZp0iTGjx/Phg0bCLzTnG0REXFLTEwM69atSw5mtmzZQsWKFZODmYYNG5IrVy5vl5nhxcXBqlVw6ZIZcOTKBQ0amJ9dsWsX1K+f+ov9QUHw9NNmeOSqU6dg/Xqzv6qvLxQoYG7GoZXhkqV89ZW5ztDNGTUEB7u+DZyIu1xtmuZNISEwbZp5JcODFNRkEVevXqVevXoMGDCA3h5uZCTuMQyD7t27ExAQwJQpU7xdjohIlhIZGcmaNWuSg5mdO3dSrVq15GCmQYMGanaZQSxdCu3bp/z1d2CgufTr++/Ttj+PSJbw00/Qo4dm1EjmFhsLdevC/v3uNTZLT7lymU24bTaPDqugJgtITEykTZs2VKtWjTFjxni7HLmJqKgoateuzVtvvcXjjz/u7XJERDKtq1evsnr16uStsvfu3Uvt2rWTG//Wr19fsxczsC1bzIuOV6/eug1BYKC5dOnll+H997VdtkiK7NoF9eq5PxOhUSNzOp2It1y8aE7BPH069Vv4pTc/P3jtNXjvPY8PraAmkzMMg169enHu3Dnmzp2LT3p0HBSX7Ny5kxYtWrBixQoqVqzo7XJERDKFS5cusXLlyuQZM0eOHKFevXrJwUydOnXwT4s9qyXNGAYsW2b2j1m61OwfY7WaF0/z5DF3YHr6aXOnYBFJhcqVYc8e148PCYHp06FjR8/VJOKK8HB47DHzZHGrDvf/PHk4nelfI0COHObsn4IFPT60gppM7uOPP+abb75h9erVmtqdCXz55ZeMGTOGjRs3EhQU5O1yREQynHPnziWHMitWrOD06dM0bNgwOZipVasWvnfaD1oyjZgYuHzZvGiaM6cZ1GgGjYiLpk83d59xddecPHng3DmPL+EQcdmxY+aW3VOmmIGMzQZJSebnHj2gTx+oXv3WWxWmlM1mfqRme8LAQFiyxJz9kwYU1GRi8+bNo1+/fqxbt4677rrL2+VIChiGwZNPPomPjw9fffWVt8sREfG6U6dOJYcyK1eu5OLFizRu3Dg5mKlevTo2vWkQEbmzuDgcYWFYLl0i1W2dgoLgnXfMKW0iGY3DYa6ZjYgwZ37lyvX/gWLXrmYzM1dn1Vit5prcLl3gmWfMIOh2wU9AgNmZftEis59OGlFQk0lt27aNVq1asXDhQurUqePtciQVoqKiuPvuu3n99dd56qmnvF2OiEi6MQyDY8eO3TBjJjo6miZNmiQHM1WqVMGqzrEiIqm2fft2Xm3Thl+vXsWekECKJ6cFBkLbtuYW35rSJpnN5s3QtKnr/ZmCguCPP8yZMcePmztPTZpk/iw21gxufH3NfjQBATBgAPTsac5AS0MKajKhs2fPUq9ePT7++GO6dOni7XLEBbt376Z58+YsX76cSpUqebscEZE0YRgGBw8evGHGjMPhSA5lmjZtSoUKFbDojYGIiFvmz5/PM888w2effUaXMmWgRQtzq+47NWMNCoLOnWHqVC15ksyrShXYuzf1s2qsVihTBvbtuzGkjI+H+fPNpVfR0RAaCpUqwb33pts2hApqMpmYmBiaNGlCp06deOutt7xdjrjh66+/5qOPPmLjxo0EBwd7uxwREbc5nU727t17QzDj5+d3QzBTunRpBTMiIh5iGAZjx47lo48+Ys6cOdSrV8/8wfnzMH48fPqpuWwkMvL/D7LbwccHataE11+H9u01k0Yyt6NHoVYtuHYtdcflyGHOyCldOk3KcoeCmkzE6XTSpUsXgoKCmDZtml7oZgFPPfUUTqdTf58ikik5HA527tyZHMysWrWKnDlz3hDMFC9e3NtliohkSUlJSbz44ossX76chQsX3vz5NjER5s0zt9y+cMFculGsmNnXo0yZdK9ZJM3s2gXNm5thjcNx+9v6+JizZJYuNZsRZ0AKajKRN998k9WrV7NkyRL8/Py8XY54QHR0NHXq1OGVV17hmWee8XY5IiK3lZSUxNatW5ODmTVr1lCwYMEbgpkiRYp4u0wRkSwvIiKCRx55BIfDwY8//kiOHDm8XZKI9505A2++afZbslr/27cmMNBcHvXgg/DBBxAW5p06U0BBTSbx9ddfM2zYMDZs2EDevHm9XY540N69e2natClLly6lSpUq3i5HRLzIMGDdOvj6azhxwtwlMk8eaNUKuneH9F4lmZCQwKZNm5KDmXXr1lG8ePEbmv8WKFAgfYsSEcnmTpw4Qbt27WjYsCHjx4/Hbrd7uySRjCU8HKZNg2+/hcuXze/lzg2PPQZPPWXuGpXBKajJBFasWEGXLl1YsWIFFSpU8HY5kga++eYbRowYwebNm9WvRiQbcjjMPo4jR8K5c+YFoH+enYOCzAtA3bvDoEGQVquJYmNj2bBhQ3Iws2nTJsqWLZsczDRu3Jg8abzLgYiI3NqmTZt44IEHePXVV3nppZe0dF4ki1JQk8EdPnyYRo0aMWPGDFq2bOntciQN9ejRg/j4eKZPn66Trkg2EhMDHTuaM2mio29/W5vNnLW7cCE0auT+fUdHR7N27drkYGbbtm1Urlw5OZhp1KiRptOLiGQQs2fPpk+fPkyZMoWOHTt6uxwRSUMKarzkzBlYvBiuXDG/zpMH2rSBggX//zZXr16lfv36vPTSS/Tp08c7hUq6iYmJoW7durzwwgs8++yz3i5HRNJBYqK5g+qmTeYyp5QKCoLly6F27dTdX3h4OGvWrEkOZnbv3k2NGjWSg5kGDRpoVp+ISAZjGAajRo1i3Lhx/PLLL9SsWdPbJYlIGlNQk44MA5Ytg48+ghUrzGbTCQnmbni+vuYL9nvvhYEDoV69RNq2bUPVqlX53//+5+3SJZ3s37+fxo0bs2TJEqpVq+btckQkjb3xBowbB7GxqT82d244fdrcwONWrly5wqpVq5KDmQMHDlCnTp3kYKZevXoE3G4AERHxqsTERPr27cvmzZtZsGABRYsW9XZJIpIOFNSkk7g46NLFDGpuN7XdYoHAQIP8+bdQvvxw5s+fjY+PT/oVKl737bff8t5777F582ZCQkK8XY6IpJG4OMiXD6KiXDs+OBjGjzd74l134cIFVq5cmRzMHD9+nHr16tG0aVOaNm3K3XffrV0DRUQyiatXr/LQQw8RGBjIrFmzNONRJBtRUJMOEhKgWTPYvj3lV00tllgaN7bz5582bLa0rE4yol69ehEZGcnMmTPVr0Yki5o+Hfr1cz2oAShdOpH33vuJFStWsHLlSs6ePUvDhg2Tg5maNWtqNxARkUzoyJEj3H///bRt25bRo0frwq1INqOgJh08+aS5lXtqp7YHBppXSj/9NE3KkgwsNjaWevXq0a9fP3r37u3tckQkDdSsCdu2uTtKNM2aDaJDh+I0bdqUatWq6cW8iEgmt2bNGh566CGGDBlCv379vF2OiHiBgpo0duYMlCoF8fGuHe/vD6dOQd68nq1LMr6DBw/SsGFDFi9eTI0aNbxdjoh4WO7ccPWqe2OEhhpMm2bhgQc8UpKIiHjZzJkzeemll/jmm29o06aNt8sRES+xeruArG7iRPeOt1jgyy89U4tkLmXLlmX8+PE8/PDDREREeLscEfGw1OzydCtOp4XISPfHERER7zIMg/fee49Bgwbx559/KqQRyeY0oyYNJSWZjSKvXXNvnPz54dw5M7SR7Kdv375cuXKF7777Tv1qRLKQvHnh8mX3xggNhW++gY4dPVOTiIikv/j4eHr27MmBAwf45ZdfKFiwoLdLEhEv04yaNHT+vOtLnv7p2jX3wx7JvP73v/9x8OBBJro7PUtEMpRy5dwfIzERypd3fxwREfGOS5cu0bJlS2JjY1m+fLlCGhEBFNSkqfBwPLJjk91ujiXZk7+/Pz/++CPvvPMOW7Zs8XY5IuIhr7wCwcHuTWqtWNEzgY+IiKS/AwcOUL9+fRo2bMgPP/xAYGCgt0sSkQxCQU0aCggAp9P9cRwOcyzJvkqXLs2ECRN4+OGHCVdqJ5LpxcXFcfjwGKKjr7k8RkgIvP6652oSEZH0s3z5cpo0acIbb7zBhx9+iNWqt2Ui8v/0jJCG8uc3p6W7yzDM3UEke3v44Ydp06YNPXr0QK2lRDInh8PBV199RdmyZVm7diUvvxxPUFDqx7FYzP402u1JRCTz+eqrr3jkkUeYNWsWPXr08HY5IpIBKahJQ0FB0KaNe02AfXzgwQfN5U8iY8aM4dixY0yYMMHbpYhIKhiGwS+//EK1atWYOnUqs2bNYu7cuYweXZC2bSE1s90tFnM2zbJlOjeIiGQmTqeTQYMGMXz4cFasWME999zj7ZJEJIPSrk9pbNUqaNsWoqNdOz4w0ByjZk3P1iWZ15EjR6hfvz6//vortWvX9nY5InIHq1ev5o033iA8PJwPPviA+++//4Yd3JKSoEcPmD37zucKf39zJs2yZWZ/GhERyRxiY2N58sknOXPmDHPnziVfvnzeLklEMjDNqEljjRpB4cKuzaqxWqF0aYU0cqNSpUoxceJEHn74Ya79vR3Ypk3w6KPmcrvAQPNq+113weDBcOaMd+sVya52795N+/bt6datG88++yzbt2+nXbt2N4Q0YDad//pr+OEHaNLEDGP+PVMmJMTcznvwYNi7VyGNiEhmcv78eZo3b47NZuPPP/9USCMid6QZNengwAGoUwciIlJ3XM6csHUrlCiRJmVJJvfCCy+wdWtuLl0ayunTFmJj/9u82s/P/Ny8OUyaBGFh6V+nSHZz4sQJhg4dyq+//sqbb75J37598ff3T/Hxx47Bd9/BqVMQG2sGsI0bm7MzfXzSsHAREfG4PXv20K5dO5544gneeeed/4T1IiI3o6AmnWzeDPfea4Y1d9oJysfHDGmWLoWqVdOlPMmEPv88kX79HBjGnd8A+vhAjhywfDlUqZL2tYlkR5cuXWLEiBFMmzaNvn37MnDgQHLkyOHtskRExEsWL15M9+7dGTNmDN27d/d2OSKSiWjpUzqpXRu2bYNOnZKAOPz9/5vWBAaaU94ffRS2b1dII7c2dy4MGGBPUUgD5hbvV65As2Zw8mSaliaS7URHR/P+++9Tvnx54uLi2L17N8OHD1dIIyKSjX3xxRc88cQTzJ49WyGNiKSazdsFZCfFi0Pr1l8RFbWcFi2+5fvvzTfPAHnyQLdu8NRT5mwakVuJjDT/rcTGpv7Y8HB48kmzEamIuCcxMZEpU6YwbNgwmjRpwvr16yldurS3yxIREQ8zjP9v9h4UdPvekw6Hg9dee40FCxawevVqnRdExCUKatKRYRiMHTuWsWPH0qIFDBzo7YokM5o+3fUt3x0OWL/e7IGh3kcirnE6nfz000+89dZbFC9enPnz51OrVi1vlyUiIh7kdMKff8JHH5kXuP752uvee83X8c2a3fj9qKgounXrRkREBOvWrSN37tzpXreIZA1a+pSO/vzzTywWC/fcc4+3S5FMyjBg1CjXt3sH84XHhAmeq0kkO1myZAl16tTho48+YuLEifzxxx8KaUREspjffzc3YOjcGZYsMS90JSX9/8fvv0OHDlCs2P/PUj5z5gxNmjQhd+7cLFq0SCGNiLhFzYTTUfv27enYsSM9e/b0dimSSe3eDfXquRfUgLnU7tIlz9Qkkh1s3bqVN954g2PHjjF8+HC6dOmC1aprHSIiWc2XX0L//ilfYh4QAG+/fZxPP21Mv379eOONN7Szk4i4TUFNOjl8+DANGjTgxIkTBAQEeLscyaSWLIGHHjJ7zbjDxwcSE11fQiWSXRw+fJjBgwezcuVKhgwZQs+ePbHb7d4uS0RE0sCCBfDww670AYxlyJCNvPde07QoS0SyIV0OTCfjx4+nZ8+eCmnELQkJnhnH6TSXUYnIzZ07d47nnnuOevXqUblyZQ4ePEjfvn0V0oiIZFGJifD4465t1gABfPFFUxwOT1clItmVgpp0EBERwfTp0+nXr5+3S5FMLlcuzwQs/v6gVRsi/xUREcGQIUOoVKkSfn5+7N+/n8GDBxMcHOzt0kREJA3NnWv2n3FVTAwsWuSxckQkm9NbtXQwdepUWrVqRdGiRb1dimRyVaqYV3zcVbeu+2OIZCXx8fF88sknlClThpMnT7J161bGjBlD3rx5vV2aiIikg5EjISrK9eOjoswdokREPEFBTRpzOByMHz+eF1980dulSBYQHAxdu5o9ZtwZ47XXPFeTSGbmcDj45ptvKFeuHH/++SdLlixh2rRpFCtWzNuliYhIOrlyBXbtcn+c1ashLs79cUREFNSksYULF5I3b17q1avn7VIki3j5ZfD1df34wEBo3dpz9YhkRoZhsHDhQqpXr87nn3/O9OnTmT9/PlWqVPF2aSIiks4uXXLvtdV1vr5m6CMi4i6btwvI6saOHcuLL76obfrEYypVgrZt4bffUt/wLjAQPv5Y/Wkke1u3bh2vv/46ly9fZsSIEXTo0EHP0SIi2ZjT6ZmdMC0W1FBYRDxCb9fS0K5du9i/fz8PPfSQt0uRLObbb81+NanZRCwwEAYOhO7d064ukYxs7969PPDAAzzyyCM8/fTT7Ny5k44dOyqkERHJ5nLl8szOmgkJ5lgiIu5SUJOGxo0bR9++ffH1xFxKkX/w94cVK6BVKzOAud0MGZstEX9/+PBDeOeddCtRJMM4deoUPXr0oFmzZjRq1IgDBw7w9NNP4+NOsycREcky8ueHwoXdH6d8ebMXoIiIuxTUpJFLly7x008/0bt3b2+XIlmUv7+5leTKlfDoo+bXOXJASAiEhl7/cODnN479+xPo39/bFYukrytXrjBw4ECqV69OgQIFOHjwIK+++ioBqZmKJiIiWZ7FYm60EBTk+hjBwfD6656rSUSyN4thGIa3i8iKRowYweHDh5k6daq3S5Fs4upV2LjR/Gy3m1eH6teHNm1a8vTTT9OtWzdvlyiSLmJiYhg3bhyjR4/mwQcfZOjQoRT2xKVSERHJsqKioEABiIlx7fiQELhwwbxwJiLiLgU1aSAxMZESJUqwcOFCqlWr5u1yJJubN28eH3zwAevXr/d2KSJpKikpialTp/Lee+9Rv359hg8fTrly5bxdloiIZBJjx8KgQakPawIDzWN79kybukQk+9HSpzQwe/ZsypQpo5BGMoR27dpx/vx5Nm3a5O1SRNKEYRjMnj2bSpUq8d133zFnzhx+/PFHhTQiIpIqL74IvXqZwUtKBQbCgAEKaUTEszSjJg3Ur1+f119/nQceeMDbpYgAMGrUKHbt2sU333zj7VJEPGrZsmW88cYbJCQk8OGHH9KqVSvt4iQiIm75+GMYPBisVoOYmJufU4KCzG29R4+Gfv3SuUARyfIU1HjYhg0beOyxxzh06JB2FJEM48qVK5QqVYoDBw6QP39+b5cj2dj58/DHH3D5svl1njxw771mX4DU2L59O2+88QaHDh1i+PDhPPLII1hvt/2ZiIhIKly9Cm++eYCpU3Njt+fDbgfDgKQk89w1cCA88YS5kYOIiKcpqPGwrl27Urt2bQYMGODtUkRu8Oyzz1KsWDEGDx7s7VIkmzEMWLMGRo2CxYvBZoPERPNndrv5ordVK/NFb8OG5u4bt3L06FGGDBnC0qVLeeutt+jVqxe+vr7p80BERCRb6devH0WL3sXDD7/BlSvm9/LkgZIlb3+uEhFxl4IaDzpz5gxVqlTh6NGj5MyZ09vliNxg586d3HfffRw7dgy73e7tciSbSEiA7t3h11/N5oy3OuNYLOY6/7Zt4dtv4d/Zy4ULFxg2bBgzZ87kxRdf5OWXXyYkJCTtH4CIiGRLTqeTIkWKsGLFCsqWLevtckQkm9E8cQ+aOHEi3bp1U0gjGVLVqlUpVaoUP//8s7dLkWwiKQnatIEFCyA6+tYhDZg/i46GhQuhdWvzWIDIyEjeeecdKlSogNVqZd++fbz99tsKaUREJE2tXbuWvHnzKqQREa9QUOMhcXFxTJ48mf79+3u7FJFb6t+/P+PHj/d2GZJN9O8PGzZAbGzKj4mNhY0boU+fJMaNG0eZMmU4cuQImzdvZuzYseqxJCIi6WLOnDk8+OCD3i5DRLIpLX3ykKlTpzJ79mwWLlzo7VJEbikpKYkSJUowf/58qlev7u1yJAu7cAGKFYO4OFdHiOeee55izJg3qFatmidLExERuS3DMJJfL1WpUsXb5YhINqQZNR5gGAaffPIJL774ordLEbktm81Gnz59NKtG0tykSe4d7+tro3nzWQppREQk3W3duhW73U7lypW9XYqIZFOaUeMBy5Yt47nnnmPPnj1Y1AJeMrgLFy5QtmxZjhw5Qp48ebxdjmRBTqe53falS+6NkzevuZ23dt0WEZH0NGjQIJxOJx9++KG3SxGRbEovfz1g7NixvPDCCwppJFPInz8/HTt2ZMqUKd4uRbKoy5chMtL9caKizLFERETSi2EYzJ49W/1pRMSrFNS46ejRo6xZs4bHH3/c26WIpFj//v357LPPSLq+tY6IB4WHgyd2gLfZ4No198cRERFJqb179xIbG0vt2rW9XYqIZGMKatw0YcIEnnnmGYKCgrxdikiK1a5dm8KFCzN//nxvlyJZkL+/ufzJXU4nBAS4P46IiEhKzZ49m86dO2umvIh4lYIaN0RGRjJt2jSee+45b5cikmraqlvSSt684InJWklJoDZKIiKSnubMmUPnzp29XYaIZHMKatzw9ddfc88993DXXXd5uxSRVHvooYfYt28fu3fv9nYpksX4+0O7du41AbZazTE0o0ZERNLLkSNHOHfuHA0bNvR2KSKSzSmocZHT6WT8+PHaklsyLV9fX3r37s2ECRO8XYpkQa++6l7IEhBgjiEiIpJeZs+ezQMPPICPj4+3SxGRbE5BjYt+++03QkJClLhLpta7d2++//57rl696u1SJIupVw+KFgVXlvhbLOax9ep5vi4REZFb0bInEckoFNS4aOzYsbz00ktqNCaZWqFChWjbti1fffWVt0uRLMZigXnzICQk9ceGhJjH6ulVRETSy+nTpzl06BDNmzf3dikiIgpqXLFnzx527drFww8/7O1SRNzWv39/Pv30UxwOh7dLkSymXDlYuhRy5kxZvxqr1bztn3+ax4qIiKSXn3/+mXbt2mG3271dioiIghpXjBs3jj59+uDn5+ftUkTcVq9ePXLlysXvv//u7VIkC6pVC7Ztg86dwc/v5n1rrNZ4/PzM22zbBrVrp3+dIiKSvc2ePZsHH3zQ22WIiABgMQzD8HYRmcmVK1coVaoU+/fvp0CBAt4uR8Qjpk2bxqxZsxTWSJq6dAm+/BJmzYIrV8zvhYQkcvToCI4de4uCBW3eLVBERLKlCxcuULZsWc6dO4e/v7+3yxER0Yya1Jo8eTIdOnRQSCNZyiOPPMK2bds4cOCAt0uRLCxvXnj9ddi+HU6eND/27LFTrtzPHDmywdvliYhINjVv3jxat26tkEZEMgwFNamQlJTEp59+qi25Jcvx9/enZ8+efPrpp94uRbKh1q1bs3jxYm+XISIi2ZSWPYlIRqOgJhV+/vlnihcvTs2aNb1diojH9e3blxkzZhAZGentUiSbad26NYsWLfJ2GSIikg1du3aNtWvX0rZtW2+XIiKSTEFNKowdO1azaSTLKlq0KC1atGDatGneLkWymYYNG7J3716uXG9cIyIikk7mz59P8+bNCQkJ8XYpIiLJFNSk0ObNmzl16hQdO3b0dikiaaZ///5MmDABp9Pp7VIkG/Hz86Nx48YsWbLE26WIiEg2o2VPIpIRKahJobFjx/L8889js2lXEsm6GjdujJ+fn94wS7pTnxoREUlvUVFRLF26lPbt23u7FBGRGyioSYG//vqLBQsW0LNnT2+XIpKmLBYL/fv3Z/z48d4uRbKZ631qDMPwdikiIpJN/Pbbb9SvX59cuXJ5uxQRkRsoqEmBzz//nMcee0xP4pItdO3alfXr13P06FFvlyLZSNmyZbFarezbt8/bpYiISDYxZ84cOnfu7O0yRET+w2Lo8uVtxcXFUbx4cZYvX0758uW9XY5IunjttddwOBx8/PHH3i5FspFevXpRoUIFXn75ZW+XIiIiWVxcXBwFCxbkwIEDFChQwNvliIjcQDNq7uC7776jevXqCmkkW+nXrx/Tpk0jOjra26VINqI+NSIikl7++OMPqlWrppBGRDIkBTW3YRiGtuSWbKl48eI0atSIGTNmeLsUyUZatGjB6tWriYuL83YpIiKSxWnZk4hkZApqbmPVqlXExMTQunVrb5ciku6uNxXW6khJLzlz5qRKlSqsWrXK26WIiEgWlpiYyC+//KKgRkQyLAU1tzF27FheeOEFrFb9miT7ueeeezAMg+XLl3u7FMlGru/+JCIiklaWL19OqVKlCAsL83YpIiI3pQTiFo4fP86KFSt48sknvV2KiFdYLBaef/55bdUt6Up9akREJK3NmTOHBx980NtliIjcknZ9uoWBAwdiGAajR4/2dikiXhMVFUWxYsXYunUrxYoV83Y5kg04HA7y5cvH7t27KVy4sLfLERGRLMbhcFCkSBFWrVpFmTJlvF2OiMhNaUbNTURFRfHVV1/x/PPPe7sUEa8KDg7miSeeYOLEid4uRbIJHx8fWrRooVk1IiKSJtatW0f+/PkV0ohIhqag5ia++eYbmjRpQvHixb1diojXPffcc0ydOpXY2FhvlyLZhPrUiIhIWpk9e7aWPYlIhqeg5l+cTifjxo3TltwifytdujR33303s2bN8nYpkk20bt2aJUuW4HQ6vV2KiIhkIYZhaFtuEckUFNT8y+LFi/H396dJkybeLkUkw7jeVFgtrSQ9hIWFkS9fPrZu3ertUkREJAvZsmULfn5+VK5c2duliIjcloKafxk7diwvvfQSFovF26WIZBitW7cmOjqaNWvWeLsUySZatWql5U8iIuJR15c96XW+iGR0Cmr+Yf/+/Wzbto1HH33U26WIZChWq5XnnntOW3VLulGfGhER8STDMJg9e7aWPYlIpqDtuf+hX79+5M2bl/fee8/bpYhkOOHh4RQvXpzdu3dTpEgRb5cjWVxMTAz58+fn7NmzhIaGerscERHJ5Hbv3s19993HiRMnNKNGRDI8BTV/u3r1KiVLlmTv3r0UKlTI2+WIZEjPPfccuXPnZtiwYd4uRbKBli1b0r9/fzp27OjtUkREJBOJiIClS+HSJXA6IXdu2LhxFAkJZ/jkk0+8XZ6IyB0pqPnb6NGj2b59OzNmzPB2KSIZ1r59+2jevDknTpzAz8/P2+VIFjdq1CiOHTvGZ5995u1SREQkE9i5E/73P/juO/D1haQk8/s+PhAVFU+TJhF8+GE+6tYFTaoRkYxMQQ2QlJRE6dKl+fHHH7n77ru9XY5Ihnbvvffy5JNP0r17d2+XIlnczp076dSpE0eOHPF2KSIikoE5ndC/P3z1FSQkgMNx89tZrQYBARZatYJZs0DXnEQko1IzYeCXX36hSJEiCmlEUqB///5qKizpokqVKsTExCioERGRWzIMePRR+PpriI29dUgD4HRaiI6G33+Hli0hMTHdyhQRSRUFNcAnn3zCiy++6O0yRDKF+++/nwsXLrBx40ZvlyJZnMVi0TbdIiJyW++8AwsXQkxMyo+JjYWtW+HZZ9OsLBERt2T7pU/btm2jQ4cOHD16FLvd7u1yRDKF0aNHs2PHDqZPn+7tUiSLmzlzJhsmTWLs44/DtWvg7w9Fi0Lr1uafRUQk24qKgvz5zeDFFf7+cOiQeVoREclIsn1Q89RTT1G+fHneeOMNb5cikmlcuXKFUqVKsX//fgoUKODtciQrio+HH38k6f33Sdi/n4DAQCyJiWZHSLvdnOvesye88AKUKOHtakVExAs+/xxefRWio1073s8PXn4ZPvjAs3WJiLgrWwc158+fp3z58hw+fJg8efJ4uxyRTKVXr16EhYUxZMgQb5ciWc3Jk9C0qbmvalTUrW/n62sGN598Ar16pVt5IiKSMZQsCceOuTdGjhxw8aJ5DUBEJKPI1j1qvvjiC7p06aKQRsQF/fv35/PPPydRnfjEk06ehJo14dSp24c0YG7tERtrXg4dPTp96hMRkQwhPh5OnHB/nKQk89QjIpKRZNugJj4+nokTJ6qJsIiLqlSpQpkyZZgzZ463S5GsIiEBmjUze9HcbtuOf4uJgbffht9+S6vKREQkg7l2zZxY6S4fH3MsEZGMJNsGNT/88AOVK1emUqVK3i5FJNPSVt3iUbNnm/PPUxPSXBcbC6+/7vmaREQkQ/L3B6fT/XEMQ73pRSTjyZZBjWEYjB07VrNpRNzUsWNHTp48ybZt27xdimQFI0feebnT7Rw5Atu3e6wcERHJuEJDwWJxf5yEBChY0P1xREQ8KVsGNWvXriU8PJz77rvP26WIZGo2m42+fftqVo24b9cuc49Ud8THw5gxnqlHREQyNIsFHn7YXLrkjnr1QO0qRSSjyZZBzdixY+nfvz9Wa7Z8+CIe9eyzz/Lzzz9z6dIlb5cimdnWre5fGnU4YP16z9QjIiIZ3oAB5hbbrgoJgdde81w9IiKeku2SipMnT7JkyRKeeuopb5cikiXkzZuXBx54gClTpni7FMnMwsPNrTfcFRHh/hgiIpIpVK8OZcuCq9deg4KgdWuPliQi4hHZLqj59NNPefLJJwkNDfV2KSJZRv/+/fnss89I8sQbbcme/P3dn79+fRwREck2fvrJnBmTWoGBMH++Z049IiKelq2CmujoaKZOnUr//v29XYpIllKzZk3CwsL45ZdfvF2KZFZFi4LN5v44RYq4P4aIiGQapUrBsmWQK1fKQ5egIDOkqV07bWsTEXFVtgpqZsyYQYMGDShZsqS3SxHJcrRVt7ilZUv3e9SEhMDzz3umHhERyTRq1IBt26B9e3Ni5c0mV/r6mt9v0cJsZ3bPPelfp4hISlkMwzC8XUR6MAyDypUrM378eO7RM7OIxyUmJlK8eHF+//13qlSp4u1yJDN680343//M3ZtcEOvrS9yJE+TSPqsiItnWhQsweTJMnw6XLiVx7Vo4JUrkoXNneO45uOsub1coInJn2WZGzZIlS7BarTRv3tzbpYhkSXa7nd69ezNhwgRvlyKZ1XPPudwR0vD3Z3mFCpSrWpWxY8eSkJDg4eJERCQzyJ8f3noL9u+Hbdv+omDBahw6BCNHKqQRkcwj2wQ1Y8eO5cUXX8Ti7tR6EbmlXr168cMPP3D16lVvlyKZUdGiMHGi2eExNXx9sVSqRNsNG1i6dCm///47FStWZPbs2WSTSaMiInITAQEBxMXFebsMEZFUyxZLnw4ePEijRo04ceIEAQEB3i5HJEvr3r07NWrU4JVXXvF2KZJZffYZvPoqxMbe+bYBAVCxIvzxh9lJ8m+LFy/m1VdfJTQ0lI8//pi6deumYcEiIpIRRUVFUaBAAaKjo71diohIqmStoObSJbPt+5UrZlPKPHmgRQv6DxlCaGgo77//vrcrFMnyNmzYwGOPPcahQ4fw0Z6X4qo//4TXX4e9eyExEf699XtIiLlM6rnn4O23wc/vP0M4HA6mTZvGkCFDaNKkCSNGjKBEiRLp9ABERMTbHA4Hdrsdh8OhWfUikqlk/qDGMGDDBhg9GhYsMFu6JyWZQY2PD0ZiIj84HDSfP5/8rVt7u1qRbKFOnToMGTKE9u3be7sUyez27oVPPoHVqyEiwgxkihY1A5oHHjCf8+8gKiqKjz/+mHHjxtGjRw8GDRpEzpw507pyERHJAHx9fYmMjMTvJoG+iEhGlbmDmoQE6N4dFi6EuDhwOm96M4fFgk9AAHTrZvY/0FV+kTQ1ffp0pk+fzuLFi71dikiys2fP8vbbbzN//nwGDx5Mnz59sNvt3i5LRETSUI4cOThx4oQCehHJVDJvM+HERGjVypxFExNzy5AGwMcwzNt8+y08+OBtbysi7nv44YfZuXMn+/fv93YpIskKFy7MlClT+OOPP1iwYAGVKlVi7ty5ajgsIpKF+fv7q6GwiGQ6mTeo6dcPNm1KWbPJ62JizIaTgwalXV0igp+fH88++6y26pYMqWrVqixatIjx48czZMgQmjVrxqZNm7xdloiIpIGAgABiU/N+QUQkA8icS5/OnoWSJSE+3rXj/f3h3DnIkcOzdYlIstOnT1O1alWOHz9OaGiot8sRuSmHw8FXX33F22+/TfPmzRkxYgTFihXzdlkiIuIhFSpUYPbs2VSsWNHbpYiIpFjmnFHz+edms2BX+fjAN994rh4R+Y+iRYvSsmVLpk2b5u1SRG7Jx8eHnj17cvDgQUqXLk3NmjV54403CA8P93ZpIiLiAZpRIyKZUeYLapKSYMIEs3mwq6KjYdQoc8coEUkz/fv3Z8KECTjVF0oyuODgYN5991127tzJhQsXKFu2LBMmTCAxMdHbpYmIiBsCAgLUo0ZEMp3MF9ScPev6kqd/+usvM7ARkTTTqFEjAgIC+OOPP7xdikiKFClShKlTp7J48WLmzZtH5cqVmTdvnhoOi4hkUv7+/ppRIyKZTuYLasLDwWZzfxxfX7h2zf1xROSWLBYL/fv3Z/z48d4uRSRVqlWrxuLFi/nkk08YNGgQzZs3Z/Pmzd4uS0REUklLn0QkM8p8QY2fn2e213Y4zKbCIpKmunbtyoYNGzhy5Ii3SxFJFYvFQtu2bdmxYwddu3alffv2PP7445w8edLbpYmISAopqBGRzCjzBTUFCkBCgvvjGAbkzOn+OCJyWwEBATzzzDN8+umn3i5FxCU2m41evXpx8OBBihcvTo0aNRg0aBARERHeLk1ERO5APWpEJDPyflATHg7jxkH79tCwIdxzDzzzDKxeffNmvzlyQJMm7t2n1QoPPuiZJVQickf9+vVj2rRpREVFebsUEZeFhIQwbNgwduzYwV9//UXZsmWZOHEiSUlJ3i5NRERuQTNqRCQz8l5Qc/gwPPEEFCwIb74JCxbA2rWwbBl8/TW0aQOlSsEXX5jLlP7ptddwBgW5ft/+/vDKK26VLyIpV6xYMZo0acKMGTO8XYqI24oWLcpXX33Fb7/9xk8//USVKlVYsGCBGg6LiGRAaiYsIpmRd4KaZcugRg2YOdPcZjsm5safG4a5I9OxYzBggBna/H0bh8PBJ7t2cSY6Gpc61VgsUKIE1Krl9sMQkZS7vlW33sxKVlGjRg2WLFnC6NGjee2112jRogVbt271dlkiIvIPmlEjIplR+gc1a9dCu3YQFfXfmTI3ExNjLoO67z727tzJ3XffzdvvvMOQqlUhICD19x8SAj//nPrjRMQtzZs3B2D27NV88AE88gi0bg0PPwzvvgunT3u5QBEXWCwW7r//fnbu3MnDDz/MfffdxxNPPMGpU6e8XZqIiKCgRkQyp/QNaqKi4L77/juD5k7i4khYu5YFd9/NoUOHePvtt5m6bRvW338nwc8vZTNrrFazefDSpVCmjAvFi4g7Nm+24OOzgEceqct778EPP8DixfDjj/DBB+Z/y9atYeVKb1cqkno2m40+ffpw8OBBwsLCqF69Om+99RaRkZHeLk1EJFtTM2ERyYzSN6j59ltwsemib2IifRMTWbF4Ma+++ipWq5UdOXLQNCCAuMaNSbBauelTsL+/+dGuHWzdqiVPIl7wxRfQrBns2lUMp9OXf79eio83V0EuXgxt28KHH968l7hIRhcaGsr777/P9u3bOXXqFGXLluXzzz9Xw2ERES9RjxoRyYzSL6gxDBg50uw946LgoCBqHj8OQGxsLF27dqXv2LHEzZ1LBZuN74sU4bDVygUgOjgYypWDt96C48dh3jyzN42IpKvJk81WUzExYBiWO94+JgaGDYOPPkqH4kTSSFhYGN988w0LFy7k+++/p2rVqixcuFA9mkRE0pmWPolIZpR+Qc3WrXDhgltDWKKiYMwYAF5//XWqVKnC448/zvTp0zlns/F5WBidK1WiZFAQk957D/bvh8GDoUABTzwCEUml7dvhpZdSv9oxJgbee0/LoCTzq1mzJkuXLmXkyJG88sor3HvvvWzfvt3bZYmIZBsKakQkM0q/oOboUfDxcX+c48f57bffmDdvHhMnTgRg3Lhx5MmTh5MnT1K5cmX8/Pzcvx8RcdtHH/GfZU4pFRMDw4d7th4Rb7BYLLRv355du3bRuXNn2rRpw9NPP82ZM2e8XZqISJanHjUikhmlXVCzfz+MHg2vvWZ+/PgjJCa6PawzNpYePXowbdo0cuXKxYYNG7h8+TJPP/0058+f5+6778bX1xeL5c5LLEQk7Vy9am6w5kxRt++bW7VKu0FJ1mG32+nXrx8HDhygUKFCVK1albffflsNh0VE0pBm1IhIZuTZoMbhgDlzoE4dqFnT7A8zapT5MWcOeOBJMjwxkSeeeIJmzZoBMGnSJAzDoF69ejgcDsqUKYOvr6/b9yMi7pkxA9zNSw0DJk3yTD0iGUWOHDkYMWIE27Zt49ixY5QrV47Jkyer4bCISBpQM2ERyYw8F9RERcG998ITT8CmTWYok5Dw/z93ODxyN0d8fXnvvfcAiIiI4Mcff6RQoULs3LmT0NBQoqOjNaNGJAPYu9f9bDY+Hnbv9kw9IhnNXXfdxfTp0/nll1+YMWMG1atX57ffflPDYRERD9KMGhHJjDwT1MTFmXvvrlvn1q5OdxIJFBg1KnnGzKxZs8ifPz/du3dn+fLllCpVivDwcAU1IhnAtWueGSc83DPjiGRUtWvXZvny5bz//vu89NJLtGrVih07dni7LBGRLEFBjYhkRp4Janr2NC+fp3GjLltwMGHPPpv89eTJk7ly5QqPPPIIu3fvpk6dOslBjYh4V65cnhknZ87U3X7XLrM91htvwKBB8MknZi9zkYzMYrHQsWNHdu/eTceOHWnVqhXPPPMMZ8+eTf1gTidcvAiHDsHJk6nfdk1EJAtRM2ERyYzcD2r++gt++skj/WduJ87HB//hw5N3jtq2bRunTp2iePHilClThnPnznHfffcRHh6On5+fZtSIeFnVqhAY6N4Y/v5Qvfqdb5eYCLNmmbetV89sjzVyJHzwgRnYVKoETZrAggXuNTcWSWt2u53nn3+egwcPki9fPqpUqcLQoUOJioq688GXL5tbrRUpAmFhZq+4ChXM1LR9e3O/ey2rEpFsRjNqRCQzcj+omTjR/Y6hdxADGA88gOWFF5K/N2XKFMLCwnj00Uc5duwYSUlJtGrVivDwcOx2e5rWIyJ39thj7ociCQmJ1K17+yY1V69Cgwbw7LOwY4c5eeCf7bHi483JfqtWwaOPQseOaT75T8RtOXLkYOTIkWzZsoVDhw5RtmxZpkyZguNm/d6cThgwAIoWhXfegXPnzH/4UVH//x9i4UK4/34oXdqcdiYikk2ombCIZEbuBTVOJ0yYkGbvepxAtMXCd76+nBo2LDkQit26lZpffsnE7dt5ecoUApo25VubDf+dOwm/dk0zakQygBw5oEuX5ElwqWaxGJQufYIePdrStGlTZs+e/Z9dcSIjoW5d2LkzZe2xoqPhzz/NvueJia7VJZKeihcvzsyZM5k7dy7ffPMN1atXZ9GiRf9/g6Qk6NABvvjCPBff6s2IYZjBzdGjZrK5enX6PAARES/TjBoRyYzcC2quXfNI82Dj74/r4gGnry9LrVb+16QJSePH88CDDxI9Zw7cfTf2evV4Mj6eux0OfA8fpuCpUzySlAT33MMHP/9Mq4sXNb1bJAN4/XXw83PtWH9/+Prr0hw9epR+/foxZswYSpcuzahRo7h69SoADz1ktuD45wyaO4mNha1boX9/1+oS8YY6deqwYsUKhg0bRv/+/WnTpg27du2CXr1g2bLU9aGJioL77oMDB9KuYBGRDEI9akQkM7IY7uwDevw4VK7sdljj9PdnptVKxQoVWL9jBzkqV2Z7uXJMX76cBg0aMGf2bObVqUPrbdvwT8E233E+Phy9+24qrl7t+uV8EfGImTPNZUmpeR/p4xNPWNgEtmx5mty5cyd/f9OmTYwbN44FCxbQuvVLzJ07hPh41/Jmf384cwb+MbxIppCQkMAXX3zBz0OH8ltkJH7/mmmWIhaLObXsn7NzRESyKLvdTkxMjNojiEim4d6MmqAgSEFwcidO4LcaNdjYsycvWSwcfuABxs+dy9y5c1m9ejXnBw6kw969KQppAPwdDsps2QJ9+2pmjYiXde0KkyaZjYXvnJs6sNkS+OQTOw8++BdNmjThzJkzyT+9++67mT59Onv37uXw4fuIj3f9+cdigS+/dPlwEa/x9fWlf//+/N6qFTZXz8GGAStWwOnTni1ORCQD0vInEcls3AtqcuXySCNhZ0IC1gIFyJkzJ0lJScyZM4fQ0FDq1avHBw8+SM5PPsGSyu1F7YmJ5qX82bPdrk9E3NOtG2zYYDYY9vf/725QPj7xQBz58q3Gam3O/fefYNSoUTz++OM0atSIgwcP3nD7nDkLsW/f3YDrV8ZiY+F//3P5cBHvunYN33nz8HH3YsSnn3qmHhGRDEwNhUUks3EvqLHZzMvlNpvLQzitVv4MCWHx6tX07dsXwzBISEggLi6Oixcv8vjZs65fMYyOhvffd7k2EfGcypVh+nT46y9z6+xevcDX9xeCgmbSosUySpduTv36Y7DZtvP0008D8PrrrzN48GCaNm3Kli1bksc6eRKs7u9Zx/nz5uY4IpnOihXg6+veGPHx8OOPnqlHRCQDU58aEcls3H+r8/LL4MZ6T6u/P/NKl2bGjBm8+OKLAOTMmZOYmBgeaNQI66+/4laXmQMHtBWpSAaSMyc8/7y5SU3u3L0JCxvG/fcf5Ny53axYsYLnn3+erVu3MmfOHACeeqoHffr8SLNm3/Lcc4eYOtXcsMYT7ad8fSE83P1xRNLd5cseWXrMtWvujyEiksFp6ZOIZDauT4W5rlIlqF4dNm9O9X63ho8PltKlmf/XX7xQpAhTpkzBz8+PsWPHMn/+fIotWIDT3WndCQlmg4zx490bR0Q8zm634+/vz5kzZ2jQoAGJiYmEhoYSEBBA795vsXt3Oz77zI/Y2EYkJtbns8+S8PNLwmq14YkLY0lJZqstERERyboU1IhIZuOBxQPAnDlmv5pUrEVwAFFWK1enT+fatWuMHj2au+++G7vdztWrV2nWrBnB58/j6+4VQ4dDW5CKZFA2mw1fX1+OHj1Ku3btCAwM5Ouvv+aJJ2Zw+fJmhg+3cOECREZCfLwP4Ed8vI3YWM/0Cffz+2+/HJFMIU8ez0wry5nT/TFERDI49agRkczGM0FNwYKwbh0ULpyiNfMJFgvW/Pl5pX59Hnr5ZfLly8fKlSsZOnQohmFw9epV6tatS/yFCx4pz93tw0Ukbfj6+uLj48ORI0e4//772bx5MwkJrRg//h4gmKQkN3tw3IbdDj17eqQfukj6a9rUnDHqhjhgZmIiEyZM4LR2fxKRLEwzakQks/FMUANQsiRs3w4vvAAhIRAc/J+bJPr7EwX8kDs3ll27GL94MefPn+fUqVN8/fXX5MuXLzmoCQ4Oxsib1zO15crlmXFExKPsdjsWi4UjR45QokQJgoLqcPbs//6ePZO2fHygf/80vxuRtJEzJ3Tp4tasGj8/P3IPGcKmTZuoVq0adevWZeTIkf/ZZU1EJLNTM2ERyWw8F9SAORV71Ci4eBE+/5w9xYtzpnBhttlsHClbli+rVaN87tw8efUqx6KjsdvtREVFkStXLkaPHo2Pjw8Oh4OrV6+a49WoQby7u1r4+0Pduu4/NhHxOD8/PxISErBYLFy5cgW7/T0cjrQPaex2qF8fSpVK87sSSTsDBpjr91xhsWBp2pQ2PXsybdo0zp07x/vvv8+JEydo1qwZlStXZsiQIWzbtg3DE+sMRUS8SDNqRCSz8WxQc52fH3TrxpAaNVg2ciQN7Xb++vJL3j56lD4vv0zhwoV59tln+d///kdUVBSjRo3CYrHQo0cPkpKSkoOa4O7dcTid7tfz7LPujyEiHufr60tcXBylSpVi69YTHDtWBcNI26DGxwfy5YPvv0/TuxFJe9WrwyOPuNZoKTgYxo1L/tJut9OyZUs+++wzTp8+zeTJk4mPj6dLly6ULFmSAQMGsGrVKhye2GlKRCSdKagRkcwmbYKav504cYLSpUsTFxdHiRIluHjxIl27duXjjz9m2bJlDB8+nHz58lGtWjV++OEH/P39cTgcXLx4EYD6zZoxxceHeFcLsFigVSuzh46IZDh+fn7ExsZSqlQpvv7ags2Wpk9J+PpC0aKwdq0Z1ohkepMmQfPmqQtrgoPht9+gXLmb/thqtVK/fn0++ugjDh06xC+//EKOHDno378/RYoUoVevXvz+++8kuNkjR0QkvaiZsIhkNmn6rujkyZMUL16coKAgZs2aRe7cuTl16hTt2rXDYrFQpEgRTpw4QdmyZbHb7Xz33XdYLBZ+++034uLi2LZtG6Pi40l0tdunvz+8/bZnH5SIeIy/vz9xcXGULFmSLVuCiIlxv7Ovj89/Z+EFBTmBCHr1imP7dihWzO27EckYbDb45Rfo08c85wUE3Px2FosZ0JQsaTb/b9gwRcNbLBaqVKnC0KFD2b59O2vXrqVcuXIMGzaMAgUK0K1bN3766SeioqI8+KBERDxLPWpEJLNJs6AmOjqaqKgo8ufPT1BQEJMnT+aee+5h7dq1vP7669SqVYv9+/cTEhJC8N+Nh+12O8HBwSQlJVGyZEn69+/PRT8/ZjzyCDGpvP8kux2++AJq1fL8gxMRj/Dz80te+nT1qqe2X9qI1fongYEHKVHiMnb7H0yaZOHRR1/grrvGazdiyXqsVvj4Yzh9Gt5915xF6udnBjOBgeZUsnbt4Ndf4fBhqFzZ5bsqWbIkr7zyCmvWrGHv3r00btyYyZMnU7hwYTp27Mi0adO4cuWKBx+ciIj7tPRJRDKbNAtqTp48SVhYGFarFR8fH5KSknjkkUeYO3cuv/zyC7/++ivBwcEkJibecJzFYiE8PJzQ0FBy5MhB/vz5mXnmDMMaNMAICeFOT7FJPj7E22yseOYZePzxtHp4IuIB/v7+xMfHU6pUKRISwj0yZuHCZ3A6W1K+/GNMnrydkJBHadnyIq++2p9x48aRmJjI0aOwaBH89BP8/rv53lUk08uTBwYOhDNnzNBm2zbYvx+uXTNn3TRu7NH96AsVKkSfPn1YtGgRJ06coEuXLsybN48SJUok97s5e/asx+5PRMRVCmpEJLOxeXS0q1fNK3YXL2LZvZteNhscOUJMTAzdu3enXLlybNq0iT///JM8efLQpk0bfvjhBw4dOkRISAjPPfccMTEx5MqVi927d1OiRAnsdjtbtmyh96RJvDBvHgXnzWNQcDBRV6/iZxj4Ak6rlWinE5vNxpHmzfkmRw7K3X23Rx+aiHje9anIJUuWJCFhNVZrbdzpH+7vDxbLSXLmzMnOnTvZs2cPFStWZM+ePTRu3JzQ0KeoUCGcM2fy4ucHhmG+b01IgIoV4fXX4YEHzF2hRDItqxXy5jU/0kmuXLno3r073bt3JyYmhkWLFvHzzz8zePBgypUrR6dOnejUqRNlypRJt5pERK4LCAjQbD8RyVQ8M6Nm82Z47DEoXNhcJ//665T5+mueP3QIo1Il5l+7xsMBAQx+801CQ0MpVKgQADlz5iQgIIAHH3yQatWqUb58ecqWLUtcXBwXL14kMjKSqlWrEhMTQ9GiRZk4Zw75xo/Hcv48j1ssfJInD1MLFmR/1658UqkSrWvU4GCfPlwMDsbiwauGIpI2/Pz8SEpKonDhwiQmTsTf391tgA0uXhxPzZo1KVOmDG+//TaBgYEsW3aGEiXg2LG3OXIkL3FxEB4OERHm59hY2LIFevSAu+6CvXs98vBEsqXAwEA6derEN998w7lz53j33Xc5duwYTZo0uaHfjbb9FpH0ombCIpLZuBfUOJ3Qvz80bQo//ABxcRAVBQkJ+Dgc+CclYYmPpxFQacQIhi1fzoMtW7JmzRoAdu3aRZ48edi1axefT5zI+y1bMuLiRX6IiiKmcWN+y5uXF/LnJ8TPj/vvv598+fLx7LPPcuqvv5jndFL8s88YEBvLrnbtcHbpwonz58mRIweAghqRTMBut+Pr60t8fDzFi1+kQAF3dpFxYrevwGq9QMWKFQkICGDcuHGsWRPOiBGdOHMGYmNvP1UmMhLOn4d69WD7djdKEREAfH19adWqFRMnTuTMmTN88cUXREdH8+CDD1KqVKnkfjdOd6bSiYjcgsMBf/wBmzbVYOPGRnz5Jaxfb86oFRHJyFwPagzD7AEzdSrExHCn9Qr+iYlUTkxk9KpVbFm+nC+++IL169fzcMeODPT3p1G3btChA+0vXqQtUOrIEeofOUK9qVP5y+FgcHQ0ZXLmJCYmhrlz5xIUFESXLl2wWCxs2rSJpk2bcvnyZXLkyKGrdCKZxPWgJioqilKlStGx4z6CglwbKzDQQps2u0hISOCXX37hypUrFC1aA4tlOQ5HQIpflBmGGdi0aAF//eVaLSLyX1arlQYNGjB69GgOHz7Mzz//TEhICH379qVw4cLJ/W607beIuOvCBRg+3Oyt/uCD8OOPDdi0qRMvvAAtW0KpUjBxonm+FxHJiFwPakaOhLlzzZAmpXeWkEDo1as8NHMmkyZNooCvL6PWr+d9h4N8f8/G+XdBgQ4HQUlJvATMP36cvs2a8fvvv1O8eHEsFgvVq1dn7ty51KlTh5iYGOx/N5fQjBqRjM9ms+Hr60t0dDQlS5akWLGVtGp16x2GbyUw0OD55y0UL36KsLAwunXrxtmzZ3n00bXExdlw5akuKgrGjEn1YSKSAhaLhWrVqvHOO++wc+dOVq9eTalSpXj33XcpWLAg3bt3Z86cOURHR3u7VBHJZH77DUqWhPffh0uXzDAmIcGG02knJgaio+HYMbP3esmSsHOntysWEfkv14Ka+HgYMSJVIc11PomJ1HU6+fSJJ1hhGFh27sT+r52fbsYfCI2PZ+LOnRxZsoTq1asDUL58eSLCw9k/dSqzgQoNGzJl+nS69+oFhQrBa6/ByZOprlNE0p7dbsdutxMdHU2pUqU4duwIs2bBvfeCn19Sisaw2eJ55hkLH34IW7ZsITIykp49exIWVpKoqCdJSnKtZ3pCAnzxhfl0JyJpq3Tp0gwcOJC1a9eye/duGjZsyMSJEylUqFByv5urV696u0wRyeDmzjVn0ERHmx0Zbic62gxyGjY0N8kTEclIXAtqfvrJrcWdfhYLpYcO5a7ERPPdUApZDIPApCTmJySwedMmIiMjqX7uHDtjY6nw0kt0MAx8o6OxOZ3YEhPh3DkYOxbKlTPXMZw44XLNIuJ5NpsNm82WvPTpyJEj+PnBzz9DvXoLgfP4+98syHUAUcAxBg06yfjxAAZbt24lPDycu+66i/Dwplitvm7VZxgwe7ZbQ4hIKhUuXJi+ffvyxx9/cPz4cTp16sScOXMoVqwY9957LxMnTuQvrUsUkX/ZuRO6dTM3CEiNqChzOdTFi2lTl4iIK1wLaj76yHxWc5HNMMgTHo6fC80DLU4nBYGeJUsysXp1nl6wgILR0QQ4HPjc7ICEBDNSX7ECatRQh1CRDMIwIDw8Hw5Hfdas8SU+viKHDp0C4MSJY+za9QzNmnUFHiE0dD0+Piew2y+TJ88VLJZfqFfvHQIDq3Dx4v8AOHr0KH5+fpQoUQKbzUZMTH2io93rlx4VBYsXu/tIRcRVuXPn5oknnmDu3Ln89ddf9OnThzVr1lCxYkUaNGjAqFGjOHz4sLfLFJEM4N13Ux/SXBcTY86iFRHJKCyGK5137XZIStmyhFsxAFe7yDgBS9WqJO7Zg6/DkbqDc+Y05zcWL+7ivYuIO2Ji4LvvzDZXx44l4nDE4u/vj4+PncjIKF54IZhDh/pTp05eZs2axYULF3j33XdZv34969atY/LkyTz44IOEhoYSGxtLQkIC27dvZ8uWLYwePZr8+fMzf/58/Px+ISGhg9v13ncfLFzogQcuIh6TkJDAsmXLmDNnDvPmzSN//vx07tyZTp06UbVqVfWpE8lmLl6Eu+6683Kn28mb15yM73PTK78iIukr9ZebExLuuMNTSrjzEsoKWHbuTH1IAxARAU884ca9i4ir5s+HAgXgxRfh4EFITLTjdIYSE+NLZKQFCOGzz5z89ttovvuuDYUK3UVERARNmjShXr16nDlzhuLFiycHNKNHjyZHjhy88847bNmyhRw5clC2bFkADMMzzWX8/DwyjIh4kK+vL61bt+aLL77gzJkzfPbZZ0RGRvLAAw9QunRpXn31VdauXattv0WyicmTwd18Nj4efv3VM/WIiLgr9UGNzbXGnBmG0wmbNsGRI96uRCRbmTYNHnnEXE50u5WTSUk+gD8HD1YlOvpnLBZfwsPD8fPzIywsjEWLFgEQFBTE448/Tq5cuZg3bx4rV67EYrFQpkwZIiIicDqPY7G4EOb+g9VqXqETkYzLx8eHRo0a8fHHH3P06FFmz55NYGAgvXv3pkiRIvTt25fFixeTmIKNC0Qkc1q50vVlT9dFRsLmzZ6pR0TEXa4tfcqbFy5fToNy0ondDv36wSefeLsSkWxh6VJo1y71L6J8fZPw9/+d3r1XUrRoUZYuXcrevXs58Xdj8IiICFavXk2XLl2IjIykYMGChIaGcvLkSaKjS2KzbSYx0e5y3YGB5ou/WrVcHkJEvOjQoUP8/PPPzJkzh4MHD9KuXTs6depE69atCQwM9HZ5IuIhdevCxo3uj9OnD0yc6P44IiLucq3TZs+emXs9QGIizJjh7SpEso1+/Vy70pWQYCMmphWzZ+8nLi6O0qVLc/78ecqXL09oaCgDBw5kzJgxhIeHk5SUxOXLl3nrrbe4cOECFstuKlZ0bwZgsWIKaUQyszJlyvDaa6+xfv16du3aRd26dfn0008pVKgQnTt3ZsaMGVy7ds3bZYqImwICPDNOSIhnxhERcZdrQc1zz7l1p65v7O1B4eHerkAkW9i0CU6fdv14w7Bz9uwjHDx4kF27dhEdHc3evXu5du0aGzZs4Omnn+bdd9/Fx8eH+Ph4Hn30Ufz8/HA6nbzxBgQFuXa/QUHw+uuu1y0iGUuRIkV47rnnWLJkCUePHqVjx478+OOP3HXXXbRu3ZrPP/+cc+fOebtMEXFByZLmcmV3BARAWJhn6hERcZdrT2lhYdC8ubmEyAUJPj4kungseCjocTjM/YFFJE2NHu3eunGHw0JcXCemTZvDjh07qF69Ov7+/uTOnZu8efPy0EMPER0dTZkyZQBYs2YNSUlJ2Gw2Hn7Ywj33OLFaU9dY2N8fGjWC7t1dr1tEMq48efLw5JNPMm/ePM6ePcuzzz7LypUrqVChAg0bNkzudyMimcOzz7o/q8YwzF56IiIZgevZ8zffQL58qY6v46xWBlWqhNXbW2cGBLjfHl5E7mjJEvc3ivP3t5I7d2vi4+P54osvaNWqFVevXmXNmjU4HA62bNlCy5YtsVgsDBgwgISEBOx2O+AkNLQXVus6fHxStmdnYCDUqQNz5miLTpHsIDg4mIceeoiZM2dy7tw5Bg8ezIEDB6hfvz7Vq1fn3XffZdeuXbjS0k9E0ke9elCokOvHWyzQti3kz++5mkRE3OF6UJMvH6xZA4ULp2hmjRMwgoL4uEkTPj1wgPAHHnBpVk2SxeKZGTX16nliFBG5g+ho98ew2/24dCmJnDlzUqtWLXr37o2PTy0SEydz111JLFkyi6++eh9//73s2lWPuXP/wG638/zzz7Ns2W80bvw+ffrEAZH4+t58dk1wsPnRrx/8+acZ2IhI9uLn50fbtm2ZNGkSZ8+eZfz48Vy7do327dtTtmzZ5H432vZbJGOxWODNN11f7myxJFGpUiIREZ6tS0TEVa7t+vRPly/DW2/B9Onms+S/3pU57HYcDgd/Am137uRakSLkzZuX5g0b8tPFi/jt24d/Cu8qCXDmzMkSq5X7IiIgKcm1moOD4aefoHVr144XkRQLCIC4lE1muaXQUIiJeYh77onk1VcXMWCAwe7dsYAv8O+GwVFYLFas1hkULToeuz2OTZs2ERUVRVhYGUaOPMqQIdewWEqRkGAlKMhG8eLwyivmlGdPNSQUkazDMAy2bduWvIPU1atX6dSpE506daJp06Z/z+ATEW9yOqFTJ/j110SSklLzf9IAHFitcdjtgTz2mJUBA6BKlbSqVETkztwPaq6LjoZvv4WvvoILF8Dh4Fx8PLuLFydgwAAaPfwwCQkJ7Nq1i6eeeopatWpx+sABXl+3jia+vvgmJNx2+ES7nbNJSRTYt48G1auz0eHAlpjoWq2FCpndTd3tOiYid1SoELjbnzMw0EFCwj0UK9aBs2dfSWHPmzh8fM6wcqWVBg1KMHDgQGbMmMEXX3zB448/zmeffcaCBQuYNWuWe8WJSLZz4MABfv75Z37++WcOHz5Mu3bt6Ny5M61atSIgLdJepxP++APWrYOLF81EuWhR6NIFihTx/P1lBE6nOXP7+HGIiTET+6pVoVIlb1cmGdikSdN46aWiQHNiY117nW+1OvDz82HAABg2TJ0SRMQ7PBfU3MQff/zBsGHDWLlyJVarla+//hq73c6cOXP4/vvv6dKlC/PmzGFAkSI8feEC5e12iIvD8o8pxY7AQM7HxDCrUCFm587NonXrKFWqFJMjI2lnGPjEp65JKIGB8OWX8OijHn60InIzr74K48fDHbLY2/L1jSJ37mGcOzcUSPmaJB8fJyVLWvnzz2tUr16Ke++9l7x587Jv3z66du3K2rVr+fLLL10vTESyvdOnTzN37lzmzJnDli1buPfee+nUqRP3338/OXPmdG/wa9dg8mQYMwaiosyLYtdftvn7m39u3hxee838nBVcuQJTp/7/YzYMM7Tx8TE3gihb1tySr3Nn8PX1drWSgSxYsICePXuybNkKfv21HCNGJHL1ajyGEezSeIGBBs88Y2H8eA8XKiKSAmk6paROnTps3bqVpKQkgoOD+fDDD9m/fz/lypXDarVSuHBhcubJw6gzZzjwww9Y1q4lol8/vvX1ZfXfaxF8fv6ZTrVr8/qFC+QpUYJq1apRsGBBtg8YgE+tWjj9/FJeUGAgDBqkkEYkHT3/vLuT12JJSprEhQvvkZqQBsDhsHLyJHTufIz777+funXrsnHjRurWrUtsbGzaXPkWkWylaNGiPP/88yxdupQjR45w//338/3333PXXXfRpk0bJk2axPnz51M/8P79UL48DB1qTku8HlpcFxcH8fGwaBG0awf9+7vfud3bFi2CYsXMx/zXXxAZaT7umBjzzzExsH079OoFpUvDkSPerlgyiPXr1/P0008zd+5cKlQoxyuvwEMPvUiHDjPx9V2OzeYgtfvGxsRY+PJLJ5Mm3fznW7eau0MWKwZ58kDBglCtGnz+ufnPVkTEHWk6owagYsWKfPvtt3Ts2JHg4GDy5cvHs88+y4MPPkhYWBjBwcGcOXOGGjVqsHjxYpKSkihRogTt27dn5syZAKxcuZKmTZsSFBTEzJkzcTgcTJ48mV9//pmIDh2wLV6MHbjlatSAAPPFzdix5sldRNJV8+awcqWr7yFi8fObQnx8T8DVYCWW9euPce3aKbp27crUqVM5cOAAly5d4qOPPnJxTBGRW4uMjOT3339nzpw5/Pbbb1SpUiW5r02JEiVuf/Dhw1C7NkRE3BjO3E5goLkU6quvMudajblzoWtXUri21bwCEBoKGzdCmTJpWppkbPv376dZs2Z8+eWX3H///QBER0cTFhbG0KFDmTPnChs2DCY+3rVeUqGhcVy54p+8E+SiRWZfu2PHzKzU4bjx9kFB5uudxx+HUaPMf6YiIqmV5k1a6tWrx4YNGwgODqZHjx5s3ryZsmXLMnv2bEqXLs3Jkyfx9fWlQYMGtGjRgtjYWBISEpK3wdyzZw99+/YFoEiRInTo0IEGDRqwbt06nHY7G159lQYWCz/6+uLw9SXi+ok7NBRCQszdqd56C06cUEgj4iVffmn+d0ytwECDgID3cTiewPWQxpwxv3Vrxf9r777joyqzx49/7tRk0kgHAgkBAkuERToCEqUrEnBXXNEVBVlFULHhoi66ig2UYocvNlRUZHV1f4oVRQXpHZLQQgKhBEiAlMn0+/vjEUQFTeZOEpTzfr3mJZqZe5/ByZ3nnuc855CZmcnRo0fp2rUrTqdTMmqEELUmKiqK4cOH8/bbb1NcXMy9995Lbm4u3bp1o0OHDkyZMoUtW7b8su23x6Oi2+Xl1Q/SgMo2+c9/4IUXQvtG6sKGDXDNNdUP0oC6Ey4rg6ws9Xclzkn79+9n0KBBPP744yeDNAALFy6kR48e5Obmcvjw9bjd5qDPUV7uY+jQF3G73Tz3nCpYvHWr+pX7eZAG1A7FqiqYNw86dVLJYUIIUVO1Hqi5oFMnjn3wAUPdboaUl9Pb6eTY7t3MnTuXffv20bFjR1JSUhg9ejR9+vQhOzsbj8dDIBBg1qxZXHTRRWRmZmK329m1axfr1q0jOTmZhIQEtm7dyqxZs8iPjGQUsPDZZ5nes6daTXrzTVV478ABFahJSqrttyqEOIPmzeHLLyEmpvrboMLDdS6+eCPt2vlwOIwtR/n94bz4IlT9cBNgs9moqqrCIT24hRB1wG63c+mllzJ37lwOHDjA008/TUlJCYMHD6Z169b885//ZOXKlart9wcfqNo0waQgVlbCww/XzhaoLVvghhvUHg+bTT3i4tTej/XrjR178uSaBWlOOBGsmTfP2PnF79KxY8cYNGgQN910E6NGjfrJz+bOncuYMWNYsiSPXbvSMHLLo+uRrFzZm9atH2HixEC1P6put6qF3bs30vZbCFFjtReoKSqCe+9l9KRJjP/iC/5VWEj61Km8A2SNGMEty5eTVFTEm2++Sc+ePVm+fDnTpk3jkksuAWDx4sW8++67rFixAqfTSevWrWnSpAkTJkwAoFevXsyfP59169ZhsVjQdZ2Nu3dj6ttXFZgbMgS6deNknqIQol517gxr1qh/hoeD5eddtX9gMlUCR7j33iL27r2Oiy66hkDAeBr/wYOwatUqYmNjycnJwel0SqBGCFHnzGYzvXv3ZtasWRQUFPD2229jsVgYNWoUTZs2Zc/48cYKXFRVqb0ZobJ+PXTsCF27qoBIaSl4vepx9Ci88w706gVt26quVDV18KCK5Ae7E7+yUu0vqd2d/KKOlJerpLCBA9V8oXt3Na3/4APw+X58nsvlYtiwYWRlZTFp0qSfHGPr1q3s3r2bHj16UFgYQ3i48TmE253J/v0P4nLV7NbJ54O9e+HOOw0PQQhxjqmdQM1TT6n9wjNnYq6oICoQIMLvx+pyEQPYdZ3LvV6Wmkz86b776NWlC99//z2apnHeD20Xy8vLWbhwIS1atGDz5s10796dJ598kuXLl1NQUECPHj147bXXmDRpEh6Ph5iYGDZv3kz79u1r5S0JIYxr2RJWroS1a2H0aIiI8AMBNC2A2ewnIWEHNtsNxMe35fvvb8Tr9ZKR0TYk82+3W2fVqlW0aNGCrVu3SjFhIUS90zSNTp068eijj5KTk8N3c+fS6PhxYwctL1eBi1D4/HMVhFm/XgWATrfPw+9Xe0C2boV+/eC//63ZOWbPNj7O0lJVCE38bu3ZoxK2kpNVE7PPP1dzhZUr1Udq5Ej1s4cegrIyP9deey1JSUnMmjUL7Wc1mV566SWuv/561qxZQ4sWHdF144GaykoNs/kMK0y/we2Gt96SHXpCiJoJfTHhSZNUL16ns3rPDw/H2aoVHY4do+MFF7Bx40aKiopo1KgRJpOJr776itTUVN577z2GDBlCw4YN6datG0OHDmXs2LEcPXqUuLg4UlNT8Xg8LFmyhObNm4f0LQkhakdubi49elzIvfdO5tJL+3LJJZeQlJRERkYGCxcuZNq0aaSl3cUNNxhPG3Y4SklNvRe3+2ZKSxvj8ViIjrbSpUsUt98Offr8PutvCiH+QN57T0WxjV7wkpNVpooRq1fDRRdVfz53Qng4fPqp2u9RHb17w3ff1Xh4P2GxwGOPwcSJ6t/37IE5c1Ttm+PHVZG0du1g7Fi1F1ecVdasgf79VSLZqVkzpxMWphMefpA2bcazePFbhIWFAWoX3Gefwf/+5+OVVz6mf/8+HDmygaioClavvgSj8U/VMSr4SUJEBEybBuPGGR2HEOJcEVxo+ExefrlmQRqAqirseXk87HbzZf/+rF27lvT0dNLT0+nduzc9evTA5/MxcOBANE1jypQpjBs3joKCApLsdqq+/JL+Xi+NAwE2lpTQLC0tpG9JCFF7LBYLgYAXh8NMZmYmR44cITs7m8jISDRNIz8/nyuuULU1jQngdNrJy5uOpkWcXF2rqoKPPoIlS1T9nPvvV/N4CdgIIepFWdnps1ZqqOLQIVqnpJzMNNA07Vf//Iuf6TpLCgtJ+a275tOpqqK0Tx/6t22L/kNRsjOeB5i/eTMtDb1b1N19SYnKqnnoIfj+e3XnfuqXx+LFao7apYuqidO/v9GzihDYulUtlFQ328Tl0nC5Ejh4cCEejxmPB158EWbOVLvgKioswFA+/higJ1ZrAJ/PWJBFMXaMyko1TgnUCCGqK3SBGp9P5SrWdOUFMLvdDNU04tq3Jzw8HLvdjs/n47777mPZsmUUFhZy6NAhmjZtypgxY3htwgRu37aNoT4f2jXXMB8wFxZiAUytWqlxXHMNREaG7O0JIULParUSCASw2WyYTCbCw8OJj49n7dq1pKWlsWDBAu688066d2/BkiVGzqQBEcDpyxhUVKjH3Xeref4bb5y5ho4QQtSaiIiQ1NZz6jrFxcVERUXRqFEjmjVrRvPmzWnSpAnJyckkJyeTlJREgwYNTgZMdF0/2YEqbMUKGo4d+9vpDWcQY7fz7vXXc7x375PHPXHsE3/2er3s3bsXx8SJsG+fsTesabBu3a8vFp6oq/PddzBsmMq+efBBiczXI79f1aKpeUkmK/v2wYgRKtBTXAwu1+meZ8LrNV7lwWoN4PV6gDBDxykuNjwUIcQ5JHS3Ih99pL4Ag2TVNCJefhluuQWbzYbvh8mBrus0atSIrKwsvv7oI5recQdfulzY+GHwTic2+LHDQX4+3HWXerz7Llx6qcE3JoSoLRaLBb/fj91up6qqioqKCkpLS1m6dCmNGzfm9ttv5/7772fixHdYsqQcCKLHN1DdVTCnE/73P7VP/rXXZP4uhKhj6ekh6dh0NCqKts2bU1RUxPbt28nLy0PXdcxmMzabDbPZjNfrxefzkZSURJMmTUhLS6Nx48akpKRw9VtvYQqmC9MPzE4nLf7zH7j9dpxOJ3l5eeTm5pKTk0Nubi65ubns3r2btLQ0Xg0EaIjBoolWK3zzTfXTL51OVcfHbFbZNaJefPKJSiILpgiD2w2LFqlOkrXR5OxUgQCYzZrhZDfj2cFCiHNJ6GrUXHABrFhh6BBVJhPh5eWc16ULsbGxLF26lKZNm3LZZZfRvkULsu67j5a6jrW6Kzzh4Wo71ogRhsYlhKgdxcXFaqL+6qskJSVx66234vF4aN++PZ999hkHDx6kdevWTJ36FNdemwm0ARWarVUREfD666rThBBC1BldVzVUCgqCPkQ5MMFu5x2TiYEDB3LFFVfQuXNnioqKWLlyJWvWrGHbtm0UFRVRWVmJxWLB5/NhMpmIiooiLjKS3D17DK/keTWNzk2asP3wYTIyMsjMzKRNmza0adOGzMxM/H4/H374IUWvvMKMPXuINDAdDXpTisOhFhovvjjoc4vgGS9PFIotTb/FRXR0HpWVLfH7jWXqp6SoprhCCFEdocuoWbvW8CE8gQCmDRuw2+34fwhbHzx4kMsGD2bwzJn4dB1LTdJwq6rU0njTpqprgRDirFFaCps2heHzXczu3Q1ZvnwVgwYNYtasWbz66qt8++23VFZWMnbsWEaPvg6IweHIw+uNw+ut3YlZZaWqSymBGiFEndI0tX174kR1IQrqEBrJ48YxID+fzz77jOXLl1NWVka3bt0YNmwY06dPJz09HYDKykq2bdtGbm4u69atY/369RzNy8OL8Qmi12Ri+MUXk9SzJ02bNiUlJYWKigq++OILpkyZQmlpKVdccQXXvfEGEVdeGXTx4xPJFEF9Kzid8OijEqipB/v3q3rVxtR2kMYLFFFVNRowthhtMkHPniEZlBDiHBGajBqvF+z24HIXT1FuNrNnxgzGvP02Pp+PBQsW0KJFCzxffol16NCgJy106qRKygsh6pWuw/Ll8NRTKmXZbg9QVlaGwxFBVVWA1NRiDhy4g2+/vZfbbhvP3XffzYQJEzh06BB+v5/i4gD9+mnk5weorDxzorzZ7MPvN2NkEhceri4bmZlBH0IIIWquvByaNAmu85PDQUF2Nn/Lz8ftdjN58mTKysqYN28ea9eupXHjxidr/g0dOpTs7Gw6deqEyXTK9bSoCL11a7Qgag6eqsJk4rqMDDYHApSWlnL8+HH8fj+aphEfH096ejppaWmkpKTQ5dtvGbZuHY4gzmM4pyIsDLZtg9TUn/53jweOHFFzz+hoSEgISf0goaxYAYMGEYJuTLXDZAoQGeln3DiNqqoveO65SPz+C4M+XkQEfPUVdO0awkEKIf7QQhOoCQTU/mCDm0QrrVb+c911vLpjB2VlZVx11VU8+uijqhjdxx+jBTtUueMSot4dOqRKRuXlqUXMM/06m81OIiMDdOw4ifXr56NpGoMHD2b+/Pl4PB40zcIDD6zghRciOXasBRERNlwuH7ruR9N0zGaNZs3K2LEjHl23Bj1eiwUmTFBBJSGEqFNLl6oqqzUIlrhNJqwXXIDp66/RLRY+/PBD7rvvPhITE3n88cdp2rQpb731Fq+//jqlpaWkp6dTXFyMy+ViyJAhZGdn06dPH8J8PoiNDbqQ8AlVwJ8sFg5oGsnJyTRu3JioqCiOHz/OoUOHKCkpwel0YjabMfn9LAY663qNyrXqNhtaIGBsrDYbTJqkukUBbNwIM2aoOoeapoIzPp9akBw7FsaPV5nawpDFi+Gvf63PQI0OuPllgeATkxMV/rNYAui6i0DAi66HAfagztaqlZr/SO07IUR1GS+FDiqfLyrYIp8/Mvt8HHvpJUYtXcq9mzeT9Oij3Gy1Evj88+CDNKAyfmbMMDw+IURw9u+H88+HTZvU4uSv/Tr7/Q6OH3fw9ddPUFHRmlmzZjF9+nTMZjOvvfYaZjOYTB9zxRVPEx7elVGjVpCd/Q2pqU9hNl/Nhg0HSEg4bihIA2penp9v6BBCCBGcXr3gww/VMrzpt6dqeng4ebGx3JSaim6xoGkaw4YNY/PmzYwaNYoRI0Zwyy23MHjwYLZs2cKiRYvo3r07TqeT+Ph4Dh48yJQpU0hOTuav111HWVyc4bfgNpmYaLPxfz4fkw8eZOCmTRR88w3bt28nPj6erKws4uLi6Nu3L9eNGcP1iYkcbd4cr7V61+5KYKvHYzighMejWgft2wedO0OPHjB/vmojVFWlWhK5XCqiMGsWZGTAlVeqn4mgRUcbTsQ3zGx+kbZt/cTHg6bpqI10GqfmaPl8Jvx+B7oeg6bZ+DGQUzNxcSqjuL7fsxDi9yN0xYRvvRXmzDHU+UnXNLy6/pNSoVWoWLfhAHRqKhQWGj2KEKKGqqpUkCY/v+bzaYulnPz8KDStiA4dOmCz2di+fTtXXnklSUlJ7N69m5SUFEaOHMnIkSOx2+3s2bOHTp12sm5dS8NjHzAAPvvM8GGEECI427bBww/D+++rgM2pGTaaBhERlOg6y3r2pO+77zJgwACuaNeOO667Tj0/IQFatcLldjN79mwef/xxBg0axEMPPUSzZs3w+Xx8+eWXvPHGG3z88cd07dqVjIwM/rR0Kddv2hR0n70A4NM0bKdMMf0WCzqQFxfHQy4X75WVYTKbMZlMeL1eIiMjad28OQ/qOgN37CDg9xP28zmlpqE7HAQaNGB6bCw9S0vpuX9/kKM8RY8esH07HDtWvS+q8HAVsFm6NCQLleeio0ehUSPVvak+WCwBzj9/AKNHf8ndd9coeY1gNtxpmqpd3aiR+nVu165GLxdCnINCk1EDcNtthvfuaj8L0gCEE6JSYeXloTiKEKKG3nhDdTkIZtHT5wvnkUfA7XYTFRXFhRdeyIwZM1i7di0FBQVcffXVfPrpp2RkZHD48GFsNhsLFiyguHhrSMaekBCSwwghRHBat1bZHfv3w5QpcMkl0K2bapdzzTXw0Uc4c3K4Z9UqAo88wnc7dvCPV17BPWAADB4MHTtCWhphc+dy+6hR7Nixg/T0dDp16sRtt91GSUkJgwYNYv78+ezdu5cRI0awZMkS7tu8GbOBPRom+EmQBlTWtMXno+2hQ7xeWUn51Vdz05gxpKam8tRTTzFixAhMdjuj9u8nxu3mBp+PFcABTeO4ycSR8HBy0tN5ffhwJl97Lav/9CdygyxA/Avr1kFJSfW/qKqqVBBt8GDjGT3nqNhYuOyyaiWM1QqfT6N166u4666aBmlA3ZnUbJ1b11VG8c6dqlGusW5XQohzQegyakCl6i5fbrhWTa1ISIDDh+t7FEKcU3RdLTru2hX8McLD4Ztvchk58i989NFHdO7cGU3TcLlcPPzww0ydOhWbzcb+/fsxmUwMGzaMHTu6kZNzC35/MKUplYgImDYNxo0LfuxCCFGrdB0eeADv44+jA7YfOmb+gsOhnvvss3DDDRw6dIjHHnuMN954g/Hjx3PXXXfx9ddf869//YsGDRpwxx13EPfKK3T75BMctbRXw22x8FVMDN22bSMuPh5d1zly5Ag7d+5k/fr1TJgwgY4dO1JQUEBJSQmBQABd19E0DV3XMZvN3BQIMFXXMdI0WTeZ0DQNzvR392siIuC11+CKKwyM4Ny1YgX06xd8rxBjijGbd+D3B9cV1mqFqKjjlJY6UD3SahbYjIqClSuhTZugTi+EOAeENlBTUKBWb44eDdkhQ6Z1a1XFSwhRZ5Yvh/79jU3CwsMDXHbZ1yxdei29evVi0aJFVFZW4nA4GDFiBEVFRSxfvpz09HS2b9/Ovn37eO65l5gy5Va83pqUpfz5eaG4WLLahRBnKV2HUaNg4cLqpwQ4HHDffXD//QAUFBQwduxYFi9eTGJiIs8//zzDhg1D0zRyc3KoHDmSzHXrajVY83a7djxnMrFz505MJhMZGRmEhYWxZ88epkyZQlpaGsePH2fNmjV8/fXXrFq1iuTkZNxuN+7Dhyny+4PqFnWC4a5RnTuHos/0OUnXVYLYxo2qVFANX03w/+eqgOeB8ajc/eDYbBX4/WH4/TVvZq9pcOGF8M03QZ9eCPEHF9qEw2bN4OuvVT7j2dTCMDwcbrihvkchxDnnq6+M11usqjLx2Wcq4DJs2DCGDx+O2WxmxIgRvPTSS/Tt2xePx0P//v1p0KABu3btAlx06LAW28/3UlaT2QwjRkiQRghxFvv3v2sWpAH13McegzffZM2aNdx4443s3LmTRx55hC5dujBu3Dguv/xy2rZtS7/+/XmjRw8OjxqFHhaG+1e2QgUbxrH7fPwlN5cZTz5Jfn4+paWlLFu2jNjYWNq0acO8efO49NJL+fe//83evXtJSUmhUaNG2O12xo4dy4qcHOwjRxJsdURd09CN7r3ZuhVyc40d4xylabBoESQmqgyV6jMaXtMAB0ZvgzweGxDc/Y6uw6pVsHu3oSEIIf7AQr8ztH17WL9eLaPb7erxi7PW8YZUXYfRo+v2nEIIiotDsxOyceN2ZGRkcPXVV3P48GHi4uLYtm0buq7z/vvvY7fbady4MSaTiV27duH1eunZcxVhYcHdPoSFqW6tQghxVjpyRO3NrHlxDXA6KR89mr9mZ/OXv/yF999/H7fbTX5+Pj6fj9WrV1NeXs7TTz/NrKefJu3ll/n25ZeZl5CAHhMD0dHo0dG4w8KoMJnwY+yW2eL18nx2NsOHD6dPnz7ExcWxaNEiEhMTueqqq7jnnnsIBAJ8+umnNGrUiIULF5KXl8eDDz5Iq1atME+ahBZkVN6v65iMfkn5fPDxx8aOcQ5LSIA1a6BFC7WTrHqC/8RpmouUlJWkpg4h2FbbP7Li9wc/lkBA7UYUQojTqZ2ISVoafPKJKkwxcaLquBQdra7AyckQH18rpz0tiwWys+v2nEIIgKAzWn7OZPJj/yHou2bNGiorK8nPz2f27NkcOXKEYcOGceTIEZxOJ7t27cLn8xEf76Rfv5moJq7V53CojgwZGaEZuxBChNzLL6t0hCBZgSd69uT555/nkksuoaSkhBdffJHi4mKKioqYM2cOjz76KB06dGDmzJnc/MgjfNilC1f16cO1iYkMd7sZY7czvXlzvAYX3xx+P7f7fBw+fJhVq1bx5z//mYiICAoLC5k4cSKFhYVMnz6dPXv2MH36dDp16qRqyvxgwaZN3Giz4bHUbPuJz2ajIjbW0NgB1e300CHjxzmHNWyo1nifeUZ990ZEGPp4n5HJ5MViKSQs7FYsllDcFxgbpMejkuKEEOJ0QlujprqSk+vmS03TIClJbX5NTq798wkhfmL6dFUOoeZ7z3+qR4/9xMXdxJw5c2jTpg3nn38+o0aN4s477+Sxxx4jMTGRuXPn8tVXXzFixAgSExNZtmwZZWVluFztKSl5C5fLh9t95ol8eLiK6/6//wdZWcbGK4QQtSYQUD1+Dc6jCpOSKFy4kLS0NPLz89m5cyc7duxg586dJx82m42qqip8Ph9jxoyhb9++tGzZkpYtWxIdHa3uMseMgbIyQ2Opio5mwt/+xtKlS8nLy0PTNCIjIznvvPNo2LAhbrcbl8tFVVUVLpcLl8uF2+2mpKSE8vJyIiMjyfZ4mO1yYYVfdBA9lR9wA+PNZm4JBOgUimnwxIkqw0kYpuswdSpMnhzqhlqVdOkSwdChLzB58i1kZpazdWu1U3jOwHCFIyIjpTGtEOL0al79KhSCSdWtKYsF4uLg228lSCNEPbn8cvjXv4wdw2x20qvXLvLzw1i7di2xsbH069ePDh06UF5eTlxcHP3792fUqFE0bdqUTZs24fV6qaysZNy4cezYsYOpU3Xat3+ayspxeDzhBAJqEdRqVfVoIiLgzjvVDklJvhNCnNV27w5Jm5ymhw6ROXAgMbGxNGvWjJSUFJKTk2nbti0XXHABDocDj8fDq6++itPp5M033+TTTz8lIyMDs9mM0+mk/9693FVejtHbXW9ZGS+99BI2mw2TyUR0dDQWi4UNGzbg9XpJTEykSZMmxMTEkJCQQFhYGBs3bsRqtTJu3DgaNWpEZGQkH5SUEJg6lRFeL+ZA4LS30CbAajIx0W6n0uVSkQEjrFa1KChCZs6cUAVpAmhaFYmJGmVlD/LOO3fw9NPbSExMJCfnA+Aqgq0xI4QQta1+AjXh4VBRUTvHtttVJs1FF8Grr6p8SiFEvWjeHLp0ge++C/4Yuu4iM7OQffvsrF27lqqqKvr168f06dP5+9//zuTJk7n88svp2rUrTqeTtWvXkpCQwJ133sn69eu5+OKL2bTpW8LC5pCffzvLlsH27WoBOCoKWrZUl4u6Lp0lhBBBOXpULUYZ5AVsLhcHDhzgwIED/Bmo0DT2axoVZjN5VivHzGYqKipITk4mMTERp9PJkiVLiI+Pp2XLlthiY9H37jUc7LBFR3P7DTfw3//+l8LCQq666iouv/xysrKy2LlzJ8888wwLFixgyJAhjB49mkceeYSMjAzeeecdIiNPac5dVsax//wHb07OGSe4GmANBMh0OvGZzbgxWKnEYoHBg40cQZxi2TJVgil4Og0aeMnKsrJ8+fs0a7aCjRufx+Nx07nzK0RFRdG9e3fS0iw8+6wLDIcZjYmOrtfTCyHOYvUTqGneHA4fNnYMux0yM2HbNtVWxmJR3aZuuAHGjYMmTUIzViGEIf/8J6xbF+wCsJNAYAYlJXHY7XaWL19+8qbh448/ZufOnQwfPpyXX36Ziy/O5rHHCvF4bicQOI/XXotk794Ehg3ryZNP3s7dd9+NxWImK0u2NgkhfsfMZuNZIKjMkv49e3Kpz0d2Xh6RP8ylTJqGZjJh8nrZ3LQpX/z5z9y1YMHJoiFHjx5l2rRpzJ49m+SoKLQQjGVLZSXbtm2jc+fOxMbG0rBhQx544AHy8vIYOHAg2dnZ3HPPPcydO5cBAwYQHx/PtGnTyM3NZdu2bWzevJm8TZuY/NVXtPV4CKvmeS1+v/F8ivPOgzZtjB5F/ODJJ40mjGmUlcGSJZlo2kFcrlTGjlVbpwOBACUlJURFRbFv30Ks1h54vcEFajQtgMmk4fcHP1KrFYYNC/71Qog/tvqpUbNgAfzjH8Y2ZWZkqCCNpqkJS21UHRNCGKbrMHy4asFZk1bdViuYTEfweJajabHExIRTUZFL27ZrufBCHZvNypNPPsn//reFv/1tIx7PXwkEfMApq6v4CAsz4fVuY+7cFlx/vU0uFUKI37eiIjUHcrkMHcYP+C0WMJmwnaGQmB9waxp5UVHMyMoipmlTGjZsSElJCa+//joJ8fF8tmsX6UamkmYzvvR0iuPieLmggIVhYeQfOUK7du04//zz0TSNLVu2sHr1anw+H8nJyfj9fg4fPozJZKJNmzZcdtlljNy9m1YffIApiL+XoCuNRETAa6/BFVcE82pxGqEoY2k2l5Oa+i8OHy6mouIyrNY0fL4AsbE+SktfonnzDdx6600UF1/GzJnNfrV+3ZmYTB7M5kX4fJeh68Gte4eHw4YN0KpVUC8XQvzB1U+gxuNR+3mPHw/u9ZGRMGuWyp4RQpz1PB647DKV0lydElWaFgBMWCwevN5Ty0IGsFq9+P2HeOihKLp1a8Bf/qJTUeFD9TE5s4gIGDQI3nordN2ohBCiXmRmQm5u0C/XUUGY6t5e+m02nPHxzBs/ntc//JCcnBzOO+88Dh8+zICCAp7S9Z+EyINVCditVnLatWNWZCSf7dxJcXExgUAAXddJTEwkNjaW4uJimjZtSrdu3SguLmb5t99S6HIREWTl+qACNXY7dO0KX30Vkq1oQomIMF7K0mLxY7Op/6tOp/lnP6vCYjEBs7nlFjfff38N33/fgJptgdIxmQJkZurs2GHB7Q5unN27w/Llwb1WCPHHVz+BGoCHHlIV8oO5GsfGqhUlhyP04xJC1Aq/H+69F55/XiXAnS612W4Ht1tHTZt/vWiM3a7j9UIgUP3pdXg49O0LH34oNWmEEL9j8+bBLbcEXe8vmMBEwGZjg9nM1MGDubhvX2bOnElSUhL3T5hAn+uuwxbCRhF+TcNvs7Fj+nTeLy1lzpw5zJgxg9LSUpYtW8bSpUspKSkhKSmJsrIyLq2q4jmnk8hAIPiTapr6YqjOXpawMJUGsXSpKnYmQqZBg+DXcX/0259wq1VH00rweLJISnqB8vILqaqq2cTAZAKzWcfnc6Pr1d1wpzgc6uPToUONXiaEOIfUX6DG74dLL1VVRmuyH8LhgG++gc6da29sQohaU1kJ8+fDU0+p5iUn5tVxcWpy5vXW7vkdDnjgAVU7RwghfpeqqlRmcm01ZjgDp9nM2MREdqanM3jwYLZu3cqiRYu44bzzmLpmDZYgM1rOpBIYZLHgOv980tLSaNiw4cmHzWajsLCQJUuW8MA335BlpFgIqGzthg1h/35wu08fsDnRsGLIEBUsCw83dk7xCxkZsHNnXZ3Nj9lcQVLSIFJTx5CXdx3Hj5upaRhT0/zY7SZcruq9zuGA99+HgQODGLIQ4pxRf4EaUPurr7xSpY3+VuUwi0Vd2RYtgp4962Z8Qohad2Jen5oKxcV1c874eHUus3TlFEL8Xr33Hlx7bc0WuwwKAF9rGgM0jfj4eAYMGMCtt95Kp06dOPD22zS88UZMbjfmEE4tfZGRrFi4kP1lZRw8eJB9+/axbt06cnJyKC4uxmw2k+Px0MLoicLD1QpCz54wYwa8+64KypjNqle03Q4336waVjRtGoq3Jk7jqafgwQeNb3+qLrNZp1WrAFlZDzN79iSg5sE3k0mnUSONkhL1kTnTr2RkpHp88AF062Zo2EKIc0D9BmpALae/+SY88QQUFqrgzampqxERqhrpyJFqCbxZs3obqhCidixcqEpOGakvXhNRUeqyk51dN+cTQoha8eKLcNdd1Q/WWCxqjmVgi5DXbOb/7r6bJbt2sW7dOvbu3YvP58PhcNA7JYX7gO4FBZjMZkwhCCJ57XaWXX45b0dHs3r1anJzc2nQoAGpqakkJCTg9Xp5c8kSkoymY1qt8NhjcPfd6t/dbigpUQuJ0dGQkCDR/TpQWgopKYZrZddIeLifJk2+YceO7kBwZRXCwtQmgc8/h5kz1cfGalW/ah4P9OgB99yjsmhk67UQojrqP1BzqrVrVfX8EwGb+Hjo0weuvloFbIQQf0idO6tf/7qUlQVLltTtOYUQIuQ++ghuvFFFuk+3FcpkUtkiKSnq5/v3GzpdOTC9dWt2d+tGs2bNaNy4Mbqus2XLFjZu3EheXh6migpujoqiTyBAM5eLFKfTUJbNbuCCpCT+3L49Xbp0ISYmhmPHjnHkyBEOHjzI059/TnqwFV1PcDjg6adhzBhjxxGGXX21ShgL8U66X+FH0/zoevCdBmw2GD9eJWP5/XDwIBw9qhKxEhNV7R0hhKiJsytQI4Q45+zaBe3a1Wn2PqDuWYqK6vacQghRKwIBWLxYNWn45ht1p6jr6u5xyBCVJdK1q6prc+SIoVM5gQcjIngvKYmoqCiio6OJjIz8yQOguLiYffv28czq1XQymO3itlqZmZ3NJ4cPk5OTg8/n47zzziMzM5PMzEyu+PRTUr78Es1InRqHQ6VEdOxoaKzCuKNH4fzzYd++6tV2Do2gm7SflJRUd1u4hRB/fNJPUAhRr3bvVvcSdR2oqav970IIUetMJujfXz1AZSWbTOrieqpQtJE2mbBFRlJVVUVxcTFut/tkwCYmJobo6OiTj7Zt29JqwwbDVeIDQPuoKLrcfDOZmZk0bNgQTTvlprpvX1X0w8gXSVqaBGnOErGxKmbWuzccOFCXmTXGGO9WJYQQP5JAjRCiXlVUqIXfuia7KYUQf1hhZ2gVnJio9mQY4IiM5NG5c3l0yBAAfD4fZWVlP3kcP3785J9t8+YZOh9AuM3GJb16qYDM6bRrB61bw4YNwZ0gMlJaAZ5lUlNh/Xq44w5YsEDFHX++wGI2q1iky1U/84ifM9IdXgghfk62Pgkh6tXixfDXv9b9StSAAfDZZ3V7TiGEqFfPPguTJhlLKYyMhEOHqt+aumFD4/tBoqPhpZdg+PAzP+fzz2HYsJpn1ZhM0LgxbN8u7bbPUsePw+uvw5w5cPiwyrCJioKLLlJNuHr2PDuCJA0aqG1bQggRClJ3XAhRr1q3Vs016lJkpGqUIoQQ55SRI43d0VqtMGpUzQIamZnBn+8Enw/atPn15wwYoLo2OWrQtcdkgpgYVddHgjRnrZgYuPVW2LJFxfyOHoU9e1Twpnt31ZCrvmmaChwJIUSoSKBGCFGvmjRRE626FBkJ/frV7TmFEKLexcTAlVeqgEswLBa47baaveauu1T6gxEtW0Lbtr/9vNtvV52bwsN/+z1GRqpMmjVroHlzY+MT9WrCBGNxNrMZMjKMlXByOGDixOBfL4QQPyeBGiFEvbvnHjVnrgsOB0yerBZShRDinDNjBiQn1/wieOLi2bJlzV43aNCZa+ZUR1RUzerHjBmjUi/Gj1dfLFFR6vwWi3oPERHwpz+pbWDbt0uQ5g/gH/8wVqPGbocnngg+fgnqV+qCC4J/vRBC/JzUqBFC1LtAAFq1goKC2m3F6XCoejjz5qk0ZSGEOCft3g29eqmCH9XpyORwqGIg06YFd/F85hm47z6orKzZ6zRN3QEXFKi76ZpyueCTT6CoSNWuadBAdXbq3LnmxxJnteuvh3ffrXmJIpsNunSBpUvh6qvhww9rXsIpPBzef1/FJIUQIlQkUCOEOCsUFqr587Fj1S+hYLerwI7Z/Nt1biIi4Jpr4IUX1POFEOKcduSIyj45UVXd5frlc6Ki1F3oE0+o2jTB0nW49lr4739rdhccFQUrV/52fRpxznO5VOxxy5bq172zWlWt6w0bIC5OFSkeMABWrap+wCc8HGbOhJtuCnroQghxWpL8L4Q4K6SlqclRo0bV22seEQHZ2bBrF9x5pyq98PPtU1arynjPyoKFC2H2bAnSCCEEoCqwfvCByq65915ISVEXTLNZXUyzsuCdd2D/fmNBGlCZMfPmwd//ri7evyUsTI1v2TIJ0ohqCQuDJUtUzbvqfMQcDrWLb/VqFaQBlV3zxRcq8zYs7Ne3QkVEqGO8/roEaYQQtUMyaoQQZ5Xjx+H//k+VUaioUI8TrFZ1D9Gxo6prk539Yxa+16vuOZYtU9n8Dgekp8OIEeqfQggh6pmuqzvhqVPh++9V+qTH8+PPo6JUquRtt8HNN58d7XzE74rPp7ZATZsGO3ao7JoTW6o1Tc0NEhNV2aPrrjvzwtCOHWrH3quvqnnHibmGz/fj66+5xnidbCGEOBMJ1AghzkqBgJrPL1mi2nHa7apD1JVXqu4MQgghfscKC1XGzp49ajtUUhL07AmDB0vqowiJTZvUbrv9+1WwJjkZLr0UevSofqklpxO2blUtwW029TFt00bq3Akhap8EaoQQQgghhBBCCCHOElKjRgghhBBCCCGEEOIsIYEaIYQQQgghhBBCiLOEBGqEEEIIIYQQQgghzhISqBFCCCGEEEIIIYQ4S0igRgghhBBCCCGEEOIsIYEaIYQQQgghhBBCiLOEBGqEEEIIIYQQQgghzhISqBFCCCGEEEIIIYQ4S0igRgghhBBCCCGEEOIs8f8B9/QvZDYID2EAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABiIAAAGrCAYAAABNOo8lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeZyNdf/H8dd1zhkzYwYzGOEexlbZl4yllO3OTkQLIUvcokSp3JVQkUqKiJQlCbdfImuWyq6yK5R9iSxjHcuYmXPO9fvjMlOTFjNzrjmzvJ+Phweuc873+sy4POZ7XZ/v9/MxTNM0ERERERERERERERERsYHD3wGIiIiIiIiIiIiIiEj2pUSEiIiIiIiIiIiIiIjYRokIERERERERERERERGxjRIRIiIiIiIiIiIiIiJiGyUiRERERERERERERETENkpEiIiIiIiIiIiIiIiIbZSIEBERERERERERERER2ygRISIiIiIiIiIiIiIitlEiQkREREREREREREREbKNEhIiwatUqDMNg1apV/g5FREREciDNRURERMSfNBcRsZ8SEZLtHThwgF69elGqVCmCgoLImzcvderUYcyYMcTFxfk7vExr5syZjB492paxFyxYwB133EFQUBDFixdnyJAhuN1uW84lIiLib5qLpI1dc5HZs2fTqVMnbr31VgzDoH79+j4/h4iISGaiuUja2DEXOXv2LCNHjqRu3bpEREQQFhZG7dq1mT17tk/PI5IZGaZpmv4OQsQuixcv5sEHHyQwMJBHH32UihUrkpCQwLp16/j888/p2rUrH374ob/D9Duv10tCQgK5cuXC4bDyky1btmTnzp0cPnzYp+f68ssvadGiBfXr16dDhw78+OOPvP/++/znP/9hwoQJPj2XiIiIv2kucnMyci5Sv359tmzZQo0aNdi+fTuVK1fW6kcREcm2NBe5ORk1F1m0aBFt27alefPmNGjQAJfLxeeff87KlSsZPHgwr7zyis/OJZLZKBEh2dahQ4eoXLkykZGRfPPNNxQpUiTF6/v372fx4sX069fPTxFmbnbd/FeoUIGAgAA2b96My+UCYNCgQbz++uvs3r2bsmXL+vR8IiIi/qK5SPrYNRf55Zdf+Ne//oXD4aBixYoULFhQiQgREcmWNBdJHzvmIocOHcLhcBAVFZV8zDRN7r33XtavX8/Zs2cJCQnx2flEMhOVZpJs66233uLy5ctMnjz5hh+2AGXKlEnxw9btdvPaa69RunRpAgMDKVGiBC+++CLx8fEpPleiRAlatmzJqlWriI6OJjg4mEqVKiXfwM6dO5dKlSoRFBRE9erV2bZtW4rPd+3aldDQUI4ePUrLli0JDQ3lX//6F++//z4AP/74Iw0bNiQkJISoqChmzpyZ4vNDhw7FMIwbvp6PP/4YwzBS/IBMinXdunXUrFmToKAgSpUqxSeffJLis3+shVi/fn0WL17MkSNHMAwDwzAoUaIEly9fJiQk5E8nKceOHcPpdDJixIgbXkuye/dudu/ezX/+85/kJARAnz59ME2TOXPm/OVnRUREshrNRTLfXASgWLFiySsdRUREsjPNRTLfXKRkyZIpkhAAhmHQpk0b4uPjOXjw4F9+ViSr0wxcsq2FCxdSqlQp7rrrrpt6f48ePRg8eDB33HEH7777LvXq1WPEiBG0b9/+hvfu37+fRx55hFatWjFixAjOnz9Pq1atmDFjBk8//TSdOnXilVde4cCBAzz00EN4vd4Un/d4PDRr1oxixYrx1ltvUaJECZ588kk+/vhjmjZtSnR0NG+++SZ58uTh0Ucf5dChQ2n+Puzfv58HHniARo0aMWrUKMLDw+natSu7du36y8+89NJLVK1alYIFCzJ9+nSmT5/O6NGjCQ0N5f7772f27Nl4PJ4Un5k1axamadKxY8e/HDdp8hEdHZ3ieNGiRYmMjLxhciIiIpKVaS7yW6yZZS4iIiKSk2gu8lusmX0ucvLkSQAKFiyY6s+KZBmmSDZ08eJFEzBbt259U+/fvn27CZg9evRIcfzZZ581AfObb75JPhYVFWUC5oYNG5KPLVu2zATM4OBg88iRI8nHJ06caALmypUrk4916dLFBMzXX389+dj58+fN4OBg0zAM83//+1/y8Z9//tkEzCFDhiQfGzJkiPln/3WnTp1qAuahQ4duiHXNmjXJx06fPm0GBgaaAwYMSD62cuXKG+Js0aKFGRUVdcN5kr7WL7/8MsXxypUrm/Xq1bvh/b83cuRIEzCPHj16w2s1atQwa9eu/befFxERySo0F0kZa2aZi/xRhQoVUv0ZERGRrEBzkZSxZta5iGma5tmzZ81ChQqZ99xzT6o/K5KVaEeEZEuxsbEA5MmT56bev2TJEgCeeeaZFMcHDBgAWM2dfq98+fLceeedyX+vVasWAA0bNqR48eI3HP+zrXU9evRI/nNYWBi33347ISEhPPTQQ8nHb7/9dsLCwtK1Na98+fLcc889yX+PiIjg9ttvT/OY9957L0WLFmXGjBnJx3bu3MkPP/xAp06d/vazcXFxAAQGBt7wWlBQUPLrIiIiWZ3mIiljzSxzERERkZxCc5GUsWbWuYjX66Vjx45cuHCBsWPHpikekaxCiQjJlvLmzQvApUuXbur9R44cweFwUKZMmRTHCxcuTFhYGEeOHElx/Pc/VAHy5csHWDWH/+z4+fPnUxwPCgoiIiLihvdGRkbeUOcwX758N3w+Nf4YK0B4eHiax3Q4HHTs2JEvvviCq1evAjBjxgyCgoJ48MEH//azwcHBADfUlwS4du1a8usiIiJZneYifx0r+G8uIiIiklNoLvLXsULmmYv07duXpUuXMmnSJKpUqZKmeESyCiUiJFvKmzcvRYsWZefOnan63J81O/ozTqczVcdN0/TZ5/8qxj/WJkxtTKnx6KOPcvnyZb744gtM02TmzJm0bNkyeYLxV5KaY504ceKG106cOEHRokXTHJOIiEhmorlI6mNKjbTORURERHIKzUVSH1Nq+GIu8sorrzB+/HjeeOMNOnfunOZYRLIKJSIk22rZsiUHDhzg22+//cf3RkVF4fV62bdvX4rjp06d4sKFC0RFRdkVZqqFh4cDcOHChRTH/7g6Ib3+bvJRsWJFqlWrxowZM1i7di1Hjx69qR+aVatWBWDz5s0pjv/6668cO3Ys+XUREZHsQHOR9LFjLiIiIpKTaC6SPnbORd5//32GDh1K//79GThwoC/CFcn0lIiQbOv5558nJCSEHj16cOrUqRteP3DgAGPGjAGgefPmAIwePTrFe9555x0AWrRoYXO0N6906dIArFmzJvnYlStXmDZtmk/PExISwsWLF//y9c6dO7N8+XJGjx5NgQIFaNas2T+OWaFCBcqWLcuHH36YYqXChAkTMAyDBx54wCexi4iIZAaai6SPHXMRERGRnERzkfSxay4ye/ZsnnrqKTp27Jj8/RXJCVz+DkDELqVLl2bmzJk8/PDDlCtXjkcffZSKFSuSkJDAhg0b+Oyzz+jatSsAVapUoUuXLnz44YdcuHCBevXqsXHjRqZNm0abNm1o0KCBf7+Y32ncuDHFixfnscce47nnnsPpdDJlyhQiIiI4evSoz85TvXp1Zs+ezTPPPEONGjUIDQ2lVatWya8/8sgjPP/888ybN4/evXsTEBBwU+OOHDmS++67j8aNG9O+fXt27tzJuHHj6NGjB+XKlfNZ/CIiIv6muUj62DUXWbNmTfKDi5iYGK5cucKwYcMAqFu3LnXr1vXZ1yAiIuJPmoukjx1zkY0bN/Loo49SoEAB/v3vf6doeA1w1113UapUKZ99DSKZiRIRkq3dd999/PDDD4wcOZL58+czYcIEAgMDqVy5MqNGjaJnz57J7500aRKlSpXi448/Zt68eRQuXJgXXniBIUOG+PEruFFAQADz5s2jT58+vPzyyxQuXJj+/fsTHh5Ot27dfHaePn36sH37dqZOncq7775LVFRUih+4t9xyC40bN2bJkiWp2n7YsmVL5s6dyyuvvELfvn2JiIjgxRdfZPDgwT6LXUREJLPQXCTt7JqLfPPNN7zyyispjr388ssADBkyRIkIERHJVjQXSTs75iK7d+8mISGBmJgYunfvfsPrU6dOVSJCsi3DTE9nFhHJ0e6//35+/PFH9u/f7+9QREREJAfSXERERET8SXMRkZunHhEikiYnTpxg8eLFagwpIiIifqG5iIiIiPiT5iIiqaPSTCKSKocOHWL9+vVMmjSJgIAAevXq5e+QREREJAfRXERERET8SXMRkbTRjggRSZXVq1fTuXNnDh06xLRp0yhcuLC/QxIREZEcRHMRERER8SfNRUTSRj0iRERERERERERERETENtoRISIiIiIiIiIiIiIitlEiQkREREREREREREREbKNEhIiIiIiIiIiIiIiI2EaJCBERERERERERERERsY0SESIiIiIiIiIiIiIiYhslIkRERERERERERERExDZKRIiIiIiIiIiIiIiIiG1c/g5AJDO6dg327YOrVyEgAEqWhPBwf0clIiIiIiIZxu22bgpiY8HphMhIKFzY31GJ/K3EROuyvXTJumyLF4dChfwdlYiIiBIRIsmOHIEPP4QvvoA9e8DjSfl6sWLw73/D449DzZpgGP6JU0REREREbHLmDEydCrNnw48/QkJCytcjIqBuXejZExo1AoeKDIj/xcTA5Mnw2WfWZZuYmPL1QoWgfn3rsm3YUJetiIj4h2GapunvIET8KSYGnnrKutdwOG5MQPyey2UtjKpeHSZNgqpVMy5OERERERGxydWrMGgQjBtn3RB4vX/93qSbgpIl4YMPoHHjjItT5HcuX4YXXrAuQ6/35i7bMmVg4kQrISEiIpKRlIiQHG3hQujSxdpt/XcJiD9yOq3fhwyx7le0O0JEREREJIvavBkefBCOHv37J7l/5HBY7+/RA8aOhaAg+2IU+YPvvoOHHoLjx9N22fbuDaNHQ65c9sUoIiLye0pESI41fbqVhABIz/+CHj2sFSXa3ioiIiIi4mdeL8THWyuHAgL+ecXQmjXQtKlVgik1K5N+z+GAevVg8WIIDk7bGCKp8PXX0KKFVYIpNUmI33M4rOpi8+dDYKBv4xMREfkzSkRIjrR8uXW/4aur/6WXYNgw34wlIiIiIiI3yTRh5UqrOP5338GuXb8VyM+XD2rUgDp1rBVIJUum/OxPP0F0NFy7lvanuUkcDmjdGj7/XNulxVY//mj1LExI8M1l+9BDMGuWb2ITERH5O0pESI5z4QLcfrvVhy69E7ckhgEbNkDt2r4ZT0RERERE/oZpWk3eBg2CAwd+K4D/R4bxWy2aZs1g1CgoW9Z6b+3asGPHn38urT75BDp39t14Ir+TmGj1K/zpJ99etrNnWwkJEREROykRITlO797w0Udp33n9Z5xOKFUKfv5ZJZpERERERGx1+jT07AkLFliJhpu9pXW5rPe//rr152ee8d0WabDGDg2FI0cgPNx344pcN3IkDBzo+8s2LAwOH4a8eX03roiIyB8pESE5yrlzUKSItY3VDkuWWAutRERERETEBkePWv0Yjh1L35Lw3Lnh6lXfxZXEMKxdF08/7fuxJUdzuyEyEk6d8v3YhgHjxkGfPr4fW0REJInWbkuOMm3abyVjfc3ptCZvIiIiIiJig/PnoX799CchwJ4kRJKxY327ZF0EWLTIniREkvfes29sERERAJe/AxDJSMuW2Te2xwPffGP97nTadx4RERERkRzpqaesHRG+rLHqa6YJhw5ZcUZF+TsayUZWrPjrVijpZZqwZw+8+y7s3w8HD1pVBEJDoUIFqy9Fw4aqOCYiIumj0kySY5gmFCxolWey065dUL68vecQEREREclRliyBFi38HcXN+/xzaNvW31FIFuPxwN69Vg/12FhrgVvRolYioHlz2LLF/hgCAn6rImAYVgxuNwQGwiOPwIABVnJCREQktbQjQnKM2Fj7kxBgrSRRIkJERERExIeGDweHA7xef0fyz1wu66ZA5CaYJnz/PYwfD3PmQFzcn7/PMDImnt+XMjbN33ZgxMfD9OnwyScweDC88IKVtBAREblZ6hEhOUZ8fPY6j4iIiIhIjvDjj7BhQ9ZIQoD1xFg3BXITjh6Fxo3hzjth1qy/TkJA5mg74nZbuzaGDrV6xl+44O+IREQkK1EiQnKMwMDsdR4RERERkRxh0aKs1YTNNHVTIP9ozhwoVw5WrbL+bkfvB7uYJmzcCI0aweXL/o5GRESyCpVmkhwjb17In9/+8kwzZgzm1KmiREdHU6lSJQKz2U2I1wv79ln1SQ8etLbuBgdb5aiio60apiIiIiIiPrNpU+ZYDn6z3G64/XZ/RyGZ2PTp0KWL9eesdGn/nscD27ZB//4waZK/oxERkaxAzaolR2naFJYvt2+y53QmULHineza9QNut5uAgAAqV65MdHQ01atXJzo6mooVKxKQBYtp/vorfPSRVbv09GnrmMtl7Tz3eq2JKFgJiaeego4dITTUf/GKiIiISDZRurS1AiYr2bsX9u+3kijbtkFMjDVxLlIEqlWDWrWs2jZZaaeH+MS6ddY/fVapNHYzli6FJk38HYWIiGR2SkRIjvLuuzBggD2JCKfTmnwtXgxxcXH88MMPbNmyhc2bN7N582Z27dqF1+slMDCQKlWqJCcmoqOjKV++PC5X5tyg5PHA6NHw4ovW4q5/mjAnNVGLiIApU6BFC/tjFBEREZFsrHBhOHXK31HcvHz5rJuDc+eslTte72+TaIfDmjB7PNZW4ieegL59IU8e/8YsGeLqVahQAX755beFXFmdw2EtRvvhh4xrqC0iIlmTEhGSo5w7Zy1CSkiwZ/wlS6BZsz9/7erVq+zYsSM5MbF582Z++uknTNMkKCiIqlWrJicmoqOjKVu2LE4/r5A6dw5atbJ6A6aWw2Hdb/XuDWPHarGXiIiIiKRRZCQcP+7vKG6eYdz8yieHw0pITJsGDRvaG5f43dCh8Npr2Ws3RJING6ym2yIiIn9FiQjJcXr3tkoM+XIFitMJpUrBzz9b9xI36/Lly2zfvj1FcmLv3r2Ypknu3LmpVq1aiuTEbbfdhiM1J0iH8+fh7rthz570fa8MAzp0sOqgZlDoIiIiIpKd1K0La9f6Owr7JK3geesteO45f0cjNklIsHJOZ8/6OxLfc7ngP/+B99/3dyQiIpKZKREhOc6FC1C2rFWm1VcrUQzDWgFSu3b6x4qNjWXbtm3JiYktW7awb98+AEJDQ7njjjtS9JwoU6aMz5MTpgmNG8PKlb5J2BgGvPoqDBqU/rFEREREJBtLTITdu63+CgkJEBwM8+fDp59adUKzu7fftmrJSrbz+efwwAP+jsI+1arB1q3+jkJERDIzJSIkR1q+HJo2NbEu//Q/xH/pJRg2LP1x/ZULFy6wdevW5MTE5s2bOXi9YV/evHmpXr16ip4TpUqVwkhHgc5Jk6BnT19Fb3G5YMsWqFzZt+OKiIiISBbndsOCBTB+PKxZYyUjMpAJZJrS9oZhfQ/uvtvfkYiP9esHEyZk+OWdYQICrB4YmbT1oYiIZAJKREiO5Ha7ufPO8Wze/CSGYWCaab/16NEDJk7M+LJD586dY8uWLSkaYh85cgSAsLCwFLsmoqOjiYqKuqnkxOXL1pbhS5d8G6/TCXXqwOrVvh1XRERERLKwb76Bbt3g6FFrwpjRHXydTkzA6/XizAy3xk4nFC8OO3dC7tz+jkZ86M474bvv/B2FvS5csHq1i4iI/BklIiTHMU2THj16MG3aNF58cT3jxtUiNjZ19zxJjZeHDrV2Q6Rj84FPnTlzJkViYvPmzRw7dgyAAgUKpEhMREdHExkZeUNy4sMP4fHHb76/Xmrt2gXly9sztoiIiIhkEW43PPMMjB3rnwREEsPgyKhRmM88Q3HDwJGKSbBtOykMw/q+PPGEHaOLnxQuDKdO+TsKe128CHnz+jsKERHJrJSIkBzFNE2ef/553n77baZPn06nTp2IibG2yf7vf9auhr+7B3K5rHum6tWt8kVVq2Zc7Gl16tSpG5ITJ06cACAiIiJFYiI6OppWrYqybZs9iQiXC556CkaN8v3YIiIiIpJFuN3QoYNVNN+ft6OGgXvAAKovX05AYiLfNmqEc/x4TLcbB3+dZHADLsCLL4q8/nlc3Hor/Pxz5lnxJOlWoACcO2fnGZL+L/nnmlFpJhER+SdKREiO8sYbb/DCCy/w3nvv0bdv3xSvHT1qlViaP9+a8/8xIVG8OPz739ZugZo1MzBoG/z66683JCdOnz4NBAKXsW6t7FGjBmzcaNvwIiIiIpLZDRgA777r1ySEG3CXLMngVq0Y88EHbNy4kSpVqvBir17kmjmTwbffjmfbNgK83hSfiw8LY2d4OIuPHWOw3cX+t23LGiuf5KYULw6//GLnGbwEBJwBCv1JH4rTQCE7T84dd1g9AUVERP6KEhGSY0ycOJHHH3+coUOHMmTIkL9977VrsG+ftaIjIABKlYKwsAwK1A9M0+T48ePMnLmfgQPr23quwECrD4VWyoiIiIjkQGvXQr16fk1CJAJnXC4a5MrFnqtXefvttxkwYADxP/3Eq9HRtIuK4g7g1IEDJCYkEBAZydJjxyjRvTv1Jk4El4uLAwaQ+513CLAz0I8+shrSSbZw332weDH8IbflU4888n98/PFDlCrVhFOnrvLtt2t5662+zJs3kcDA01y+bM9NrctlLdgbO9aW4UVEJJvI4Pa6Iv4xe/ZsevfuzVNPPcXgwYP/8f1BQVCpEtSqZa3syM5JCADDMIiMjKRMmfq2nys+Hs6ft/00IiIiIpLZeL3QvbtVD9VPTMPgUEgIjUNDOZiYiNPppL7TCU2bkqt8eV69epVqe/fCTz9xS0ICkUChY8d4BKg3ZQpERsKwYeT7+WecdgYaEABbt9p5Bslg0dH2V9rq2rUSAQGQmLiDwMDtVK8ONWuWwOv1ki/fvOReh77mdkPnzvaMLSIi2YcSEZLtLV26lE6dOtGpUyfefffdG5ozy28yqkeg250x5xERERGRTGTFCti/3y+Nqb1AomHAa68Rvm8fhxITCXS7mRURQfWnn8a7YgUG4ASMP8RnwG87H06dgiFD4Ouv7b2Z9njg7Fk7zyAZrFUrOy99LwEBP3PvvWUBiIuLIzAwEIDKlSvj8Xg4efJV7CiI4XBAlSpWCV4REZG/o0SEZGvr16+nbdu2NG/enMmTJ+Pw4+qrrCBv3ow5T548GXMeEREREclEJkzAtiXZfycqigPduvEv02RFjRosXraM4CtX2AC0O3kSAEdq6uV4vZjx8fbE+nu6d8lWqlWzHtbb889qULfu9uRFd/Hx8QQFBQFWIgLA4zlMmzZHsNJyvuP1wjvvqK+6iIj8M81sJNvasWMHLVq0oFatWsyePZuAAFsruGYL1+eotipeHEJD7T+PiIiIiGQipgkrV9q6G2Kvw8Hsdu3oAUy5+26aGQaJx4/D4cOUnjSJYnfcwXPPPcfA3r35PiSE8qT9htgAbO1y4XRCRISdZxA/ePllO3pEeIBfad36CmD1/0tISCB37twA3HLLLRQqVAiXy8Xq1fdgGIdxOHwThMNh9YZo2NAnw4mISDanRIRkS/v27aNJkyaUKVOG+fPnJ68Gkb9XpAgUKmTf+E4n1K5t3/giIiIikkkdOQKxsbaeoqTXy0KHg8nAuxcusNQ0qd60KVFRUYSEhLB161Z++OEHRly7RvErV3Cms0yNrQvAExOtZnWSrbRqBe3b+3pjkBOH4zH69/8PzzzzDCdPnsQ0zeREhGmahIeH43a7SUi4yMKFDkJDHemOwem0eiqOGuWDL0FERHIEJSIk2zl+/DiNGjUiPDycL7/8krwZVW8om3j4YXC57Bnb44EHHrBnbBERERHJxA4etP0UAcDWBQsAuHTpEgBRUVF06tSJN954g7Zt29IY6A7YNN31rZo1/R2B2GDcOChWzHf3XAULTqN9+wK88cYbfPDBB0RHRwMQGhrKuXPnaNu2LXv27CEwMBDDMGjatBhr1kB4OBhG2nYoGQbcfTcsWwbX8x0iIiL/SIkIyVbOnj1L48aN8Xq9LF++nAhtZ0613r3tayZdsCC0aWPP2CIiIiKSiSUmZshpVq1YAcDw4cMB6NChA8OHD6dWrVrMnz+f98PCyPhW2amU1P23XDl/RyI2KFAAVq2CokXTvzOiQ4dYzpzpRps2bXjuuefYtWsXJUuWBGD37t1UrlyZ1atX07dvXxISEoiNjWXnzp1UqQKLFx/CNOcC4HTe3O4gl8v6NWIEfPWVev+JiEjqKBEh2calS5do3rw5MTExrFixgmLFivk7pCypXDlo29aePoIvvwxq1SEiIiKSA2XQsukTFy8CkCdPHvLly8fRo0e5dOkSHTt2pGO5cpS5cAE/tMtOHa8XnnpK3X+zsago2LgRmje3/p66f+pEDCOeUaPc1Kw5lVy5AmjatCkAJUuW5LXXXgPg/PnznDx5kv79+9O5c2dM08TpdLJu3TpM06R37weAhxgwYAWNGhn81sQ6IfnPhuFNTlIEBCTyn//Arl0wcKB9u+hFRCT7MkwznYUxRTKBa9eu0aJFCzZv3szKlSu5Q/VU0+XUKShbFi5etPoKppfLBTVqwLp11gIvEREREclhzp61tsfa6DKQF6uJ9O23387p06cpX748ISEhrF27lmOdOpF/6lT7tv/6gtNpTcS3boVcufwdjdjMNOF//7MWbB04AJCIVWTsj5L28RjAQgzjOYYP78aKFSsIDAzkyy+/BODkyZM0bdqUHTt2ULlyZWrVqsVHH31EdHQ0W7ZsoWTJktSsWZMmTZrQrVs3KlWqxI4dOzh8+DClStXjqac+Y8WKc/z00zUggDp1qtG48b9YsuRVHI71bNiwLCO+LSIikk3pkaBkeW63mw4dOrBhwwYWLlyoJIQP3HILzJhhJQ3SuxDL6YSwsN/GExEREZEcqEABqxaNTUzADAriu0ceIQKIjIzE4/GwYcMGli9fTlxcHLumTMGbmZMQST79VEmIHMIwoEMH2LcP5s27BEymePGzWLsSktiZ8tYAACAASURBVJwlJGQD3bv/ApSgYcP3CAk5wauvvsrq1atp3bo1AMuXL6dKlSocPnwYgBYtWvDhhx+yfv164uLiME2Ty5cvs3LlSp588kkMw2DGjBkYhsHChQsJCDjJa6+VY926WgQEPAy0on//bxk8GB56KIrvvitBly7xVKtm9bgoVgyio6FPH5g2zfZe9CIikg3osaBkaV6vl549e7Jo0SLmzJlD3bp1/R1SttG8OcyebSUS0l6myU14uJdVq+B6qVIRERERyanatLGtnosBhFy7Ro1ZszgOTDdNuv/73xiGQePGjZk3bx41AgIy/w3wRx9B1ar+jkIymLX462ugN6tXX8LlCmX06A/o2bMPLldhoqNfZtKkKMqUCSQ0NJSrV6/icDjwer00bdqU//73vzRp0oRq1arx/PPPA5A3b14A7rrrLrZu3UqlSpWIiYnh1KlTXLlyhe7du1OpUiUAFi1aRP369cmbNy/58+enRIkSACxc+BOPPgoDBz6KaU5gxowAtm+HY8esX1u2wKRJ0LWrtZitd284fjzDv30iIpJFZPp5mMhfMU2TZ599lmnTpjFt2jRatGjh75CynXbtrHJKJUumbjdD0i4Kp3MlDRoMoEIFe+ITERERkSykd29byyI5AMM0CQAKrVzJ8C++oIfXy8wZM2jTpg1BGbAbwvvPb7lR0sqfKVOgWzdfhySZjGlaZZjmzoWpU+GTT2DFCli8+DtKlSpFWFgYbnciV6+eZ9KkD2jQoAH79+/HMAy6d+/O8uXL6dChAwkJ1q6Jpk2bMmrUKN58802WLFmC12tdhSEhIcnnzJUrFw8//DBBQUHJx86ePcuJEyeIjY1l1apVtGrVKvm1kJA8wFN88snzzJxp4nYbgAOP58abwqQ+9NeuWUmJsmXh4499U+JXRESyF/WIkCxr+PDhDBo0iHHjxvHEE0/4O5xs7do1GDkS3nsPzpyxGk4nTTiTGIZ1/+R2Ww2vX3wR3O5pdOvWlVmzZtG+fXv/BC8iIiIimUfTpvD11xnSp8GLlZzY36QJJRYswBUaeuMk1pccDtyhoTiu16j5x3U8DofVmLpCBasck3ZCZGs7dsD48VZPiL8qY5QnTwy9ehm8/XY5brstP7lz5+bpp5+mS5cunD9/nqtXr1KsWDEGDx7M0KFDMQwDw3AwceIGEhNrsmULfPXVTxw5cozo6DK0bl2S6GioXx8WL/6cBx54ALB6qJw7d474+HgeeughJk2axMGDBylZsiSJiVCw4JfExjZL09dpGFYSok8fGDtW5XlFROQ3SkRIljRhwgT69OnDa6+9xqBBg/wdTo6RmAgLF8KqVfD999ZKnsRECA6GSpWshtTNm0OdOkkTUJNHHnmEL7/8kh07dhAVFeXvL0FERERE/OnoUWvVytWrGXraD0JD6WAY5Lt0ydbzXPvgA17o04cnvF7KgDUpdrkw3W68ponhcuFISsJUqgT9+kHnzuoJkY2dPAm9esGCBVZlsr/PwZnX76MSgSGsWXMfefIEU61aNdavX89dd91F8+bN2bBhAxcvXsYwugJPYZqVUywMAzAMLw6HA48H8uWDUqVWsG1bF0JDL1GsWDHWrVvHwIEDmTRpEsHBwXz//fdUrFiJTp1g5sykNF769O8P776b7mFERCSbUCJCspxZs2bRsWNH+vXrxzvvvIOR3m7KYqsLFy5QtWpVIiMjWbVqFS6b6gKLiIiISBYxcyZ07Jjhp/3W4aCG14uds9HpgwfTddgwvF4vU/v2pWvRovD11yQePMjxgweJKFqUkDJl4O67oVUrayVP2huySSa3eLF1qV+5kpZNQCZ33GHwf/93jdtuC+GDDz7g7rvvpnnz5hw+nBuHYwZebxWsVu03kzRwA3GULz+B3bsHcubMGcLCwihQoAAul4uLFy9y772zWbq0bWoD/VtffAHX+2mLiEgOp0SEZClLliyhdevWdOzYkSlTpuDQPs8sYf369dStW5chQ4YwePBgf4cjIiIiIv42fjw88cRvdVzs5nDgzZ0bLl+2rVGiGR7OreHhOJ1ObjtwgMFhYdQ4fx5ME9PlwuN243A4cCQtWzdNKFrU+j706gUFCtgUmfjD3Lnw4IPWP3NaL3GXCwoXBqfzHm67LZj169cTHv4Yx4+/jZV8SG1aLWmnw3Tmzg3jllsKUKdOHVatWsWiRTt4++3HgGB81U7U4YD8+WHPHut3ERHJ2ZSIkCxj7dq1NG7cmCZNmjBnzhytrM9ihg4dymuvvcaaNWuoU6eOv8MREREREX+bP99qzhwbCx6P7adLaiRtRyLCdDjY17o19efNY1pAAI0SE3Fzk4+JHQ6rds5HH0G7djZEJxltyxaoXdu6rNP7xMXpNDGM/bjdlbj33rf5+usnsB7jpOdK9lKu3Hbuu28Okyd/xMmTJxkwwMm4cSYej28rDjgcMGwYvPCCT4cVEZEsSIkIyRK2bdtG/fr1qV69OkuWLCEoKMjfIUkqud1u6tWrx/Hjx9mxYwf58uXzd0giIiIi4m9nzsBzz1nNmr1e65dNvEBiQADOxESfl2fyAgOLF2fIsWMEer0EpHaApJ0hvXrB+++rXFMWFh8PVarA/v2+zK95yZVrCk5nD+LiTMA3yYLChV+nceM9jB8/jcKF4fJlnwx7g6JFrfYwuqxFRHI2JSIk09u7dy933303JUqU4OuvvyZPnjz+DknS6PDhw1SpUoUWLVowY8YM9fcQEREREcvp0/DxxzB1Kvz8s62nugYE4qtHuVYSYkmePPz70iVyAel61moY0KULTJli/VmynLfegv/+146KYyYOB3i9vrwu4hg7dhXFijWjTRsfDvsnNmyAO++09xwiIpK5qcC+ZGrHjh2jUaNGFCxYkCVLligJkcWVKFGCiRMnMmvWLD799FN/hyMiIiIimUWhQvD889aTSptLsC4MDfVdEsLp5LjTyZ2XLhFAOpMQYD29/vhjq4eGZDkeD4webVfbE8PHSQgAF2vX/pvNm+39b2cYsHmzfeOLiEjWoESEZFpnzpyhUaNGGIbB8uXLKViwoL9DEh9o3749Xbp0oU+fPhw4cMDf4YiIiIhIZrJli9XI2SYJQNEqVeDxx9M/mMuFI18+8tSqRT5S3zb4bz37LBw86MsRJQMsWwYnTvg7itQIYO7cXGzcaG+bFqcTduywb3wREckalIiQTOnSpUs0a9aMc+fOsWLFCiIjI/0dkvjQ2LFjueWWW3jkkUdITEz0dzgiIiIiklnExtp+isqlSll9GJ55BoC0PH/1ADEBAWx7/HHCNmzwec8J3G4YNMjXo4rN1qyBgFQ3CPEvj8dk9+54m3ZxJJ0DLl60b3wREckalIiQTOfatWu0bt2avXv3smzZMm699VZ/hyQ+lidPHmbOnMnWrVsZOnSov8MRERERkczC5qe4BnD4+HGWf/UVK1u25P6gIC4HB4NhYN5ET4akJTS76tShZYkSbH/9dWxZVuN2w2efWb0zJMvYtAmy2jor03Rz7Nh5W89hGGpULSIiSkRIJuN2u2nfvj3fffcdixcvpmrVqv4OSWxSs2ZNXn31VUaMGMHq1av9HY6IiIiIZAZRUbY2aXYA01eupEmTJjRs2JAvrl2jakgIbxYvzi/BwcnvSwS8LhdmQADe68c8LhcfAxdXrqTyunV8t2ULnR0ObEudeL0we7Zdo4sN9u/3dwRpEQAEAfaVRHM6oXBh24YXEZEswt4uYCKp4PV66dGjB4sXL2b+/Pncfffd/g5JbPb888+zfPlyOnXqxI4dO8ifP7+/QxIRERERf6pRA1atsq1PhBPoM2kShc6d47nnnqN///6Eh4ez5/Bh7l6xglxXr1IdqATkcbtxAycDAvg2MZGAatVYtWkTh1esIPr8eW67eJEKXu/fnzA9DAO+/x769rXvHOJTWW03RJLcufNy7ZqBXZdzYiJER9sztoiIZB2GadpZCVDk5pimydNPP817773HjBkz6NChg79Dkgxy7NgxKleuTIMGDZgzZw6GjSvgRERERCSTW7IEWrSwbfhE4NawMM55PLRu3Zrp06cDsGjRItq0aYNhGLivJ0GGDx9OiRIl2LhxI2PGjKFChQrs2rWLwMBA4uPj+Q8wAZvLDJQunVWX2edIt90G+/b5O4rUy58fzp2z9xz79kGZMvaeQ0REMjeVZpJMYdiwYYwZM4b3339fSYgcJjIyko8++oi5c+cyefJkf4cjIiIiIv7UuLFtNVxMpxPPAw9wyeHg0qVLNGnSBIAlS5bQrl07ihYtSuHChYmIiKBBgwZ8/vnndOjQgVGjRhESEkKbNm0AmDdvHidPnqRiRESaGl2nypkzdp9BfKhq1azZC6FIEZPSpe2piuZ0Qp06SkKIiIgSEZIJjBs3jsGDBzN8+HB69+7t73DED9q1a0fPnj3p168fe/bs8Xc4IiIiIuIvLpdVisjh+1tVw+NhfdWqnDt3jlq1atGlSxf69u1L27ZtadasGUWKFMHpdFKxYkVeeukltm7dyrJly3BevkyfEiWoOHcunwIVBw/G0bEjFWNicNoQZwp2ln4Sn6te3d8RpEUC5ctfpl8/e0b3eFRdTERELCrNJH41Y8YMOnXqxIABAxg5cqTK8uRgV65coXr16uTOnZtvv/2WwMBAf4ckIiIiIv4QFwcVK8KRI9ZTTB/wANOBxwMDuffee5k/fz4PPPAAX3zxBaVLl2bnzp1ERkbicDho3749Y8aMoVOVKrQ/fZpWFy5AfHxyK18nJDewtn3xe/Hi1vdBsoRdu6xLN2vx0rXr97z/fk2ios5z5kwYvmon6nJBzZqwdq0tuUUREcli9KNA/GbRokV06dKF7t27KwkhhISEMGvWLHbu3MmgQYP8HY6IiIiI+EtwMEyf7rPdACZWwqBeUBDl4uNZv349L774IkuWLKFs2bIcOHCARx99lLNnz3L27Fkq3347xqBBfLpzJ01PnYL4eMB6NOsCjOvj2Z6EcDis5t2SZVSoYJUhsqc8k11rSD3Exk6lWbOGnD3bHOsxUfr/7xmGlYiYNk1JCBERsTiHDh061N9BSM6zZs0a7rvvPlq2bMknn3yCMysW0hSfK1KkCLlz52bo0KHUqVOH0qVL+zskEREREfGHYsUgKgrmz0/3UEnLnULdbh43DPJERTFowQLCwsJYunQpdevWZcSIEXi9XgqaJpP27iXXggUYpml/suHvOBzw6KPWk23JMooUgU8/9fWoXuxYR+pweClceCVbtgzA7XazcOFEgoJ+ZfPmyOvvSNtiQcOwLt9586B2bd/FKyIiWZtKM0mG27p1Kw0aNKBGjRosWrSIoKAgf4ckmYjX66Vp06b8+OOP/PDDD0RERPg7JBERERHxl1mzoHt3cLutXz7ybtGijHa5iImJYejQoVy8eJEJr7/OOqCc04nho5JQ6WIYcOiQlZCRLKVzZ+vS9eVlVKjQCU6fLggE+GhEE8OIxzTLAYfZt28fZcqUYcqUKTz22NcYxsdYT4tSdz6XC3Llgs8+g+bNfRSqiIhkC9ogJxlqz549NG3alLJlyzJv3jwlIeQGDoeDadOm4Xa7eeyxx1CuVERERCQH69ABdu6E6GifDvv0r7+yZ9QoevfuzQsvvMDUKVOYZhjcBpkjCeF0Wk9xlYTIkt57z2rv4fJJqwUv9957gE2bihAU5MTqeOILBvAsb7zxOAC7du0C4Nq1azidswkMrInT+cP19/7zOZO+1nr14KeflIQQEZEbKREhGeaXX36hUaNGREREsGTJEvLkyePvkCSTKlKkCFOnTmXhwoVMmDDB3+GIiIiIiD+VLg1Vqvi20LzDQVCfPowaNIjvv/+elrGxtDJNH7Xo9QHThFdf9XcUkkbh4bBqFURGpjcZYWIY/+OzzwpRvDjMmZP0fyC9PRy8BAb+j6JFFzBw4ECKFSvGN998z3ffwfbthTHNxrjdDm69tQeTJ58DVv3us24cDjcBAb/1wjAMaNYMli6FFSusJIyIiMgfqTSTZIiYmBjuuece4uPjWbduHf/617/8HZJkAU8++SSTJ09m06ZNVKxY0d/hiIiIiIg//PCDlYjwNacT+veHN97gTHAw+d3uzLFSzzBg0CAlIrKB06ehZ09YsMD6Z73Zpy8Ohxev10PevG9z551rWbp0SfJrd945gu++ewZrXWlqyzQl9ZqYQqdOa/n006W89NJh3nvvLJcuFebGtaqJFC8ew6+/vsrWrW/xyy95adduGNHRTahVqwYFC0L16tav/PlTGYqIiOQ4mWKeJdlbbGwsTZs25cKFC6xYsUJJCLlpI0eOpHTp0nTo0IG4uDh/hyMiIiIi/jB+vK9q3KTk8ZA4fjyj7ryTgpklCeFwwL33WokIyfIKFYIvvoCZM6FECevYX1/KJmD1QQkP306/fh8TG/si5crd/ocxvwMq43TuAMDhuNm1pW7gEiEhPSlUaBj/93+1gF8YMSIXly4V5c8fDwVw9OgtuN0TqFMnLwcPJnLt2sv06LGbt9+G//4XGjVSEkJERG5OpphrSfYVFxfHfffdx8GDB1m+fDllypTxd0iShQQHBzNr1iz27dvHwIED/R2OiIiIiGS0a9dg2jSfNqr+vYC4OJrt2oU9o6dBo0bWk+tcufwdifiIYVitTvbvt8oWdesGlSunTEjkyhVPrVrXgDfp2fMtzp6tTkTEaQDmzJlDbGwsYFUaWLZsGbCXyZN/Zto0qFbNuD6KCSRc/x3Ag9OZ9OezOBwj2b49jrfe6sHp09+QkNATcOH1Jn3+rzgBg0uXoG/fAOArgoKKpfv7IiIiOY9KM4ltEhMTadeuHV999RVfffUVd911l79Dkixq3Lhx9O3bl0WLFtGiRQt/hyMiIiIiGWXjRqhVy7bhTZcLr9OJMz7etnP8I5fLelr9+uvw9NO/Fd6XbM3jgbg4qFu3DtHRFenR4zFq1arFxo0badeuHQ6Hg7x583Lo0CE6dOjAhx9+SLt27Zg7dy4Aq1atol69egDs2gVLl17k2Wdn4nIVx+MxMM3z5Mt3mEuXVuP1rqZjxwfp0+dTGjWCuDgvppnWdamJFCvmZdOmQG65xUffDBERyRG0I0Js4fV6eeyxx1i6dClz585VEkLS5YknnqBFixZ069aNkydP+jscEREREckoW7daD+ltYrjdGZOE+GOj7YDrtf0DA6FLF9i5E559VkmIHMTphNBQKFQoD2fPniEmJgaAokWL8uSTT3LkyBGaNGnCO++8w0cffcTw4cOZO3cuefPmxeVysXv37uSxKlSAli1PAn0oW/a/vPTSt0AnLl4cRFTUfiCBsLBqNGlibTJKexICIIBff81F48aQkJCe74CIiOQ0SkSIz5mmSf/+/fn000+ZPn06TZs29XdIksUZhsGUKVNwOBx06dIFr9fr75BEREREJCMcO2ZPf4iMVr++tbOjenWrB0S/fjBrFpw8CZMmwW23+TtC8ZOIiAhiYmKSExERERHJJY1jYmLo0aMHjRo1YvDgwQB88skn3HbbbezatSvFOBcuXADg1KlTDBs2jJIlSxIVFcXVq1cBgylT6hEXZ+KLWymPx+DHH2H48PSPJSIiOYcSEeJzr776KmPHjmXChAk8/PDD/g5HsolChQoxbdo0li9fzpgxY/wdjoiIiIhkBI/H3xH4xuDB8N13sHmz1Shg5Eho3x7CwvwdmfjR1auQkFCdgwfvYMWK/OTOfT9nz+ZixYoV5MuXj7lz5xIbG0vRokXxer1ERkbSunVrKlSocEMiYvXq1QBcvHiRzz//nHHjxnHkyBGioqIIDn6cuLhoPB7f7S4yTSsRsXevz4YUEZFsTj0ixKfee+89+vXrx4gRI/jvf//r73AkGxowYADjxo3j+++/p2rVqv4OR0RERETsNGIEvPxy1k9I/PgjVKzo7ygkE4iNhenT4cMPrYpcf7ZDweE4Q9my29m792mefPJexowZQ65cuYiPj2fu3Lns2LGD8ePHc/r0aRITExk6dCgjRozANE169erFBx98gMfjoVixYpw8eYr8+X/h7NlbsBpP+47LBU88AaNH+3RYERHJprQjQnxm+vTp9OvXj+eee46BAwf6OxzJpl5//XXKly9Phw4drm8zFhEREZFsq3Jle5MQTie2d4gIDISyZe0+i2RyXi+8/z4UKQJ9+1q5qb8qk+T1FmTPnoa43T8yenRtTDM/M2fOpE2bNvTq1YtixYoRExPDpk2buOeee3jzzTdp1aoVAGWvX2tOp5M777wT04zm7Nmi+DoJAeB2w+TJVtNtERGRf6JEhPjEggUL6NatG4899hhvvvkmho0N5SRnCwwMZObMmRw5coRnnnnG3+GIiIiIiJ2qV7d1eBM4CNiW6jAMqFIle/S5kDSLibHahDz5pFWOyTStX3/H40l6XNMOp/MAoaFt+eCDD/B6vcyePRuA+vXrExMTw/r164mOjgaskrYpNcThsK/H3uXLsG2bbcOLiEg2okSEpNuqVat46KGHuP/++5k4caKSEGK7cuXKMXr0aCZOnMi8efP8HY6IiIiI2KVwYahdGxz23LoaHg8fYsda8d/p0sXO0SWTO3UK7roLvv02rSO48Hjy0KKFyfff38I777zDihUrAKhQoQLbtm2jVq1anDhxArCaXQN4PB7WrFlDcPA9eL32VeQ2DNiyxbbhRUQkG1EiQtJly5Yt3HfffdStW5dPP/0Up9PWKbxIsp49e3L//ffTo0cPjh8/7u9wRERERMQuffv+dQ2b9HA6OVGhAuOBS7ly+X58gKAg6NTJnrEl00tMhObN4dAhq4xR2jnweKBtWy8vvPAZLpcLwzAoV64cefPmBeDUqVPAb4mIjRs3cubMGUJCorEz1eZywb59tg0vIiLZiBIRwsWLsHIljBoFzz0HAwbAsGGwcCFcX1Txp37++WeaNm1KhQoVmDt3LoGBgRkXtOR4hmHw0UcfERwcTOfOnfFk9QaGIiIiIvLnHngAbr0VfL3oyePhyxo1SDQM1jdr5tuxwVoq/vLLcP1BseQ8b75plS3yxa2KaRp4PF7OnXuPtWu/JzAwkEWLFmFer/F05swZ4LdExMKFCylQoAB58hRM/8n/QUKC7acQEZFsQImIHMo0YfVqeOghKFAAGjaE55+HMWNg7Fh45RW47z4oWhTuvhtmz7ZWcyQ5evQojRo1onDhwixevJjQ0FD/fTGSYxUoUIDp06ezatUq3n77bX+HIyIiIiJ2yJULPv3Ut7siHA7o25dFFy9imiaJ3btDvXq+6+XgckHVqtZKL8mRDh+27qv/qRdE6riIjy/B2rV30LZtW86dO8fUqVMBOH/+PAAFC1qJh4ULF9K8eXNCQux/7BMcbPspREQkG1AiIgc6dQratrWaZc2b99vqDK/XSjYkJqbcNvrdd9C+vdUnbscOOH36NI0aNSIgIIBly5aRP39+v3wdIgANGjRg4MCBDBo0iE2bNvk7HBERERGxQ82a8MYbPhnKdDqtBtIjRrB7924AKlaqBDNnQpEieNLb887lgvBwmDNHTapzsA8+8HUSwmKaBqNHQ+vWbQHo168fR44c4eLFiwQEBACwYMECdu7cya+//srx40uAxL8ZMX3cbihXzrbhRUQkGzFM044fjZJZrV1r7XS4dCn120OtndAmRYu+TmLiONatW0fp0qXtCFMkVRITE6lTpw7nz59n27Zt2qEjIiIikl29+ioMGWKVPUrDrawHuFSyJGGbNkGBAoSEhOB2u4mLi8PhcHBq0yYu16xJScPAkZZbZacTChWyat/efnvqPy/ZQmKidRlcuGDfOSZM+IXevYsTHh5OoUKFOHToEG63G6fTSeL1cgYVKlQgJORlNm16ENO0bx3q5s3WwkUREZG/ox0ROcjatdCoEcTGpq1GpccDHo/BL7+8RNeuW5SEkEwjICCAmTNncuLECZ566il/hyMiIiIidhk8GD77DMLCUtUzwnt9l8NEh4NZffpAgQKcP3+eq1evUrx4cRwO69Z47Pz53BMSwg81agDXd0/cjKT3Pfww7NypJEQOt3u3vUkIh8PNkCHfAFZJpj179pCQkEBQUBCjR4+mVq1aNGzYkJ07dzJlysO2JiEKFoTKlW0bXkREshElInKIEyegZUtrZYYvSqu+8UZRvvkm/eOI+EqZMmUYN24cU6dOZfbs2f4OR0RERETs8sADsGcPPP445M5t7Y74sxJIDgdJFWc3BwfDqlWMKlGCQ6dPA7Bv3z7AWjUOcOXKFSZMmECrjh1psHcvI1u14ucyZUi+fbpe9oY//t0w4N57YdkymDEDVLo2x9uyxd7xvV4HiYkNCQ19kyJFvuWWW/YBazCMOZw69RhbtoTTokVrACpUgMKF9wPuvx0zLZxO6N37xv8aIiIif0YFK3MA04SePeHqVd/1d3M4oEsX+OknUBUcySy6dOnC0qVL6dWrF7Vr1yYqKsrfIYmIiIiIHSIiYNw4GDHC6sWwYYPV3O7XX62bnjx5oHp1vo+P57Evv2TP1ascLF6c4sWLc/LgQTh/ngM7dwJQu3ZtAD755BMuXLhAbGwsAMUeeYQKjzzCOwMG0L9yZevp8u7dEBcHQUFQtqxVj6Z+fShZ0l/fCcmEDh60Hs4n2taawcH588UwjAFcvgzgBMpw5YqbYcMceL1f8sYbbq5ehSpVVnPy5Ehgkc+jyJXLygeKiIjcjP9n777DoyrzNo5/p4SWYEKRXgSkJEhHiqioLyBERUUQlzKBKCIQQ3bVRSwrrmXXCgEEIopIUQQERFFRQIotOIDSxJUACkISkBYCKTNz3j8OBFEUCDM5k8n9uS6uhSTznDsrxuTc53l+mhFRAnz6KXTr5v917XZzZ/QTT/h/bZHCOnz4MC1atKBOnTp89tlnODUgUERERKTEOnbsGHUjI+nv85HUtCmVt2/nktzcgvfvAxxXXUXl/v1pw+yy6gAAIABJREFU8/LLVK5Xj+XLlzNmzBiSk5Np3749H3zwQcHRTSLnY9QoGDs2kEXE+bHbDWy2TGJiXqBJkxd4910Dn89/f5cnTTJ3RIiIiJwPFRElQM+e8NFH4PH/TkyqVIE9e7QVU4LL559/TufOnRkzZgyPP/641XFERERExAqHD8Ojj5I3eTJOw8DAfG789wy7HXw+TgDzKlfmlUsvxQgPZ//+/axfv56KOmpJLtCTT8LTTwfmZ/AL5wUc/P3vJ5gwIQuPpwJwcT/A2+3mw45Llpi/FxEROR8qIkLc/v1Qtap5PFOgvP++OX9CJJiMGTOGp59+mtWrV3PVVVdZHUdEREREitInn4DLBQcOgNd73i/zAgfLlqVvfj7Pf/UVbdu2DVxGCVnz5sGdd1qd4o/KlJmEzdaPEyfCKWwZYbdDp07mw47h4f7NJyIioU3ddYhbuzawJYTTaR7FKhJsHnvsMdq3b0///v05cuSI1XFEREREpKjMmAHdu5tPZV1ACQHmjokKJ06wzOej7c8/ByafhLw2baxOcHY5OcN57rlcIPXkWy7kZoG5veOee8y57CohRETkQqmICHHr15tlQaB4vfDNN4FbX6SwnE4ns2bN4uDBgwwbNgxt/hIREREpARYvhkGDzKexfL5CLeEEbIYBffvC8uV+jSclQ716cPnlYLNZneRMdju88EJVrr32OS677CXgYMHb//w1p/492s6TT35JSgqULRvwqCIiEoJURIS4vXsD+82PYZgzIkSCUb169ZgyZQpvv/02s2bNsjqOiIiIiARSRgbExfllKdupIqN/f3PWhMgFsNng/vutTvFHPp/583udOk+ya9eDXHnlrTRv/h9uvhkuvfT3u4cMYDudO//MtGlpQDQ33ni2KSsiIiLnR0VEiLvAnchBew2Rwvrb3/6Gy+VixIgRpKWlWR1HRERERAIlIQGysvx3Nq3PZ86YeOgh/6wnJUpcHFSoEHy7IgA+/7wlkZEViIoqx9at/2L69ENkZjqoUqUpw4eP5cYbh9O58y1AQ4YM+YqaNc2fo6pVq2ZtcBERKdZURIS4qKjQuIbIxZg4cSKXXnop/fv3Jz8/3+o4IiIiIuJvaWnw7rv+f0rK64Xp0yE93b/rSsiLjISpUwM7s7EwDAN27bLTtetoNm7ciMfj4YMPPgCgZcta7Nmzknr1DA4fNo8+yM/PJ/3k3/+qVatalltERIo/FREhrkULCOR917AwaNs2cOuL+EP58uV56623cLvdPPnkk1bHERERERF/S0n564PuL4bPB6+9Fpi1JaT16gXx8cG3K8Jmg8svv4uMjAwaN27Mu+++C0Dz5s3ZtGkTVatWJTMzEzhdRERFRVGmTBkrY4uISDGnIiLEBbokyM+HNm0Cew0Rf2jfvj3//ve/efbZZ1m1apXVcURERETEnxYuDNyZsT4fvPdeYNaWkJeSAr17B1cZ4XDAgQO1admyJU6nk6VLl3Ls2DGaN2/Ozp07KV++PPv378fhcBQUETqWSURELpaKiBDXqBFERwfum56wMLjllsCsLeJvo0aN4tprr2XAgAEcOnTI6jgiIiIi4g/HjplHMwXSpk3g8QT2GhKSnE54+23417/MAsARBPOevV749Ve4++672bZtGzk5OXz00Uc0a9YMgJycHDweD2FhYeTl5amIEBERv1AREeJsNkhMDMzaTifcdRdUrhyY9UX8zeFwMHPmTLKzs7n33nsxgu3AVhERERG5cNu2Bf4g/txc2LkzsNeQkOVwwJgx8M030LGj+Tan09JI2GzQv39/nE4nNWrUYMGCBURHR+NwODh48CCAdkSIiIhfqYgoAQYOhFq1AvPkxejR/l9TJJBq167Nq6++yvz585k2bZrVcURERETkYmVnh9Z1JGS1agVr1sDmzeYDg1deCaVKnfkx9epB3bqBG3kCZgly6aVQoUIFevXqRV5eHu+//z6GYdCkSRP27dsHqIgQERH/UhFRAoSHw4wZ/j0y1WaDp582j30SKW569+7NPffcQ2JiIj/88IPVcURERETkYoSFhdZ1JOQ1bQovvQRr15r91oEDkJFh/n7HDhgxIrDXz883aN3a/H18fDwHDhwgOzubTz/9tGBOBIDdblcRISIifqMiooS47jp48kn/rGW3w403wgMP+Gc9ESuMGzeOWrVq0a9fP/Ly8qyOIyIiIiKFVa9e4K9hs5mPqYv4mdMJlSpBlSpQrpz5tvbtzRnpgWMjOjoLgBtuuIHLLruMyMhIFixYQLNmzdiyZQthYWHYbDaOHz/OoUOHVESIiMhFUxFRgjz+ODz6qPn7wg6vttmgWzdYsMD6My1FLkZ4eDhvv/02mzZt4rHHHrM6joiIiIgUVvXq5jkzgdSgAUREBPYaIid16gS1awdmbZvNwG7/ntdfN4dJ2u12Bg8ezPHjx1m0aBExMTFkZWVRqVIlAI4cOQKgIkJERC6aiogS5NRxSvPmQVQUOBznP9DN6TR/PfUULF4MZcsGMKhIEWndujXPPvssL7zwAsuWLbM6joiIiIgU1g03BO5JKacT/u//ArO2yFk4HJCQEKg5ETb69z/Em29O5/333wdg0KBBeDweDh8+TPbJWSjh4eEYhsHhw4cBFREiInLxVESUQL17ww8/QJMmy7DZjgFnP+7U6TTLC4cDevWCDRvMHRU6GlVCyT/+8Q+6dOmCy+Vi//79VscRERERkcK47z7weAKztscD994bmLVF/sTw4VCzpn/LCIcDGjWCV1/tyM0338yQIUP49ddfqVOnDl27dqV06dKsXr2aqKgo7HY7Pp+Po0ePAioiRETk4tkMwzj/x+IlZOzfv5/atWszevTTXH75g3z9NaSmQnq6eRZlVBS0awdt25olhL7nkFC2b98+mjdvTseOHXnvvfewFfbsMhERERGxhmGYE4D/9z/wev23rsMBV14JX33lvzVFztPKlXD99f5azcBmM0hNtXHllTb27dtH06ZN6datG3PmzGHu3Ln07Xsv4eF3Ex7ehUOHGpKfXxmHw4nXe4iePWvRrp2NPn3MMkNERORCqYgooZ5++mmeeeYZ9uzZU3D2o0hJ9v7779OzZ08mTZrEsGHDrI4jIiIiIhfqq6/Mw/X9+SOu0wnr10OzZv5bU+QCvPQSPPjgxa5iADZgCCNHhvPyyy9jt9uZM2cOf/vb35gy5T3Wrr2JadM8QBg2mw/DOPOoM7vdPDHB6zXLkaeeMv91ExEROV8qIkqgvLw86tatS8+ePUlJSbE6jkjQGDFiBNOmTcPtdtO0aVOr44iIiIjIhXr4YXj+ef+VEc88A4884p+1RArp5ZfNMsJuv/ANPw4HGIZBo0Zj+d//HsLn89GnTx9mzpxJWFgpOnSYyDffDMLhiMDrPb+d4Q6HeZLCyJHmvyLlyhXikxIRkRJHRUQJNGvWLAYOHMiWLVuIiYmxOo5I0Dhx4gRt27bF4XCwdu1aypQpY3UkEREREbkQXi8MGADvvHPxZcSQIZCSYj4GLmKxzz8Hlwt27TL/fK6/3jab+TFNmsDMmdCypYeHH36Yl156CbvdzlVXdaJNm09JTi4N+CjMCFG73TzOeelS83hnERGRv6IiooQxDIO2bdtSuXJlli5danUckaCzceNG2rVrx9ChQ0lOTrY6joiIiIhcKK8XHngAkpPNO6U+3/m/9tSj3o88Yp49oxJCgsjx4zBtGkyYYI5DsdnM08NO7ZJwOCA/3/x906aQmAhxcVC69Ok13nrrLeLj48nLexTDePyiMzkcZhmxciXoOS4REfkrKiJKmM8//5xrrrmGjz76iO7du1sdRyQoTZgwgcTERJYsWUJsbKzVcURERESkMD77DAYNgp9/Nu+W/tWZNqfef/nlMGMGdOxYZDFFLpRhwLffwjffwIYN8OuvZilRuTK0bg3t2sEVV/x5j/baa9sZMuRyv+Wx282jo557zm9LiohICFIRUcL07t2bLVu2sGXLFuz2C996KVISGIbBzTffjNvtZuPGjVStWtXqSCIiIiJSGPn58P77MHEinpUrcZ7tx99SpczpuwkJ0KOHWUqIhKjjx83jmn75xcDn89+OH5sNvv7aLEFERETORkVECbJr1y4aNGjAK6+8wn333Wd1HJGglpmZSfPmzWnVqhVLlixRcSciIiJSzF3RqBGuNm345223QW6ueY5MkyYQHQ1hYVbHEykSU6fCvff6f12HA2JjYfFi/68tIlIiGQZ88QW89x6sXQubNpltssMBtWtDhw5wzTVw551QvrzVac+LiogS5MEHH2TatGns3r2b8PBwq+OIBL2PP/6YHj16MHbsWJKSkqyOIyIiIiKFdOTIEaKiopgxYwYDBw60Oo6IJQwDmjeHLVsufpb72dhs5jDtOnX8v7aISLGUn28O9Tl82DzHrnp1qFv3r2dQGQa88w78+9/w/ffmMCCP548fd2pIUNmycM89MGYMVKgQsE/FH/SIbwmRlZXFa6+9xr333qsSQuQ8de/enb///e+MGjWKb7/99g/vNwxIS4MPP4R334UPPoBt2y5sHqKIiIiIBN769esBaNu2rcVJRKyzcyds3hyYEgLM+2rvvReYtUVEio2DB+Hll6FtWwgPN4f2XH01XHUV1KsHUVHmUZDz55tFxW9lZMCtt8Lf/mbeYIKzlxCn3m4Y5i6JV16Bxo3NG1NBTEVECfHmm29y7NgxRowYYXUUkWLlP//5D9HR0fTr14/jx49jGLB6NfTtC5GR5jzDm26C3r3hllvMnf0REXDzzWZBoVJCRERExHput5uIiAgaNWpkdRQRy7jdgV3fbod16wJ7DRGRoJWbC488Yu56ePBB8wvi74sGgKNH4dNPoU8fqFUL5s413759O7RpY95Mggtrjb1e+PVX88ZUcvLFfy4BoqOZSgCfz0fjxo1p06YNc+bMsTqOSLHz/fff06ZNG26+eTTbtz/Ohg1/vjPuFIfD/O/A5ZfD9OnQqVORxRURERGR3+nbty/p6emsWrXK6igilnnsMXjuub/+OeZiNW1q7roQESlRNm0yn1D98ccLKxBsNvPje/SAb7+F/fv980V66lTzuKYgox0RJcCHH37I9u3bdca9SCE1aRJNjx7LmTfvYb77ztzicK7/Lni95v/u3GnODho1SrsjRERERKzidrt1LJOUeFlZf30suT8cPRrY9UVEgs4335hPn6alXfjZd6c+/qOPYN8+/zXFI0bADz/4Zy0/UhFRAowbN4727dvToUMHq6OIFDuGAaNHw4IFHYEwfL4L+7Lp9ZprvPACxMWpjBAREREpagcPHmTHjh0qIqTEczhC4xoiIkHjp5+ga1dzTsOpJ1KDgc8HLlfghgIVkoqIELdp0yaWL1+u3RAihTR5srl9+WIZBsyebW6HFhEREZGis+7kofUqIqSkq1kz8PfJ6tYN7PoiIkHDMGDwYMjODq4SAsydFWvXwooVVic5g4qIEJecnEzNmjW54447rI4iUuxs3w7/+If/1jMM+O9/4euv/bemiIiIiPw1t9tNZGQkDRo0sDqKiKXatg3sDu2wMGjXLnDri4gElZkz4bPPAjt452I4nTBhgtUpzqAiIoTt37+fWbNmkZCQQFhYmNVxRIqd4cP9X2rb7RAfH3S740RERERCltvtpk2bNtjt+vFXSrbWrc2yIFDy8+GqqwK3vohI0Dh1BnegB+9cDI8HPvwQ8vKsTlJA34mFsJSUFOx2O0OGDLE6ikixs20bfPqp/4ttrxe+/x5WrvTvuiIiIiJydhpULWIqXx7uust8SDYQKleG2NjArC0iElRSU2Hz5uB/yjQ/38wZJFREhKi8vDxeeeUVXC4XlSpVsjqOSLHz6quB+wbd6TRnT4iIiIhIYGVmZvLzzz+riBA5KSEhMKeIOBwwbBiUKuX/tUVEgs6yZeYXvuJg0yarExRQERGi5s6dS3p6OomJiVZHESmWArEb4hSPB5YvD/7iXERERKS406BqkTO1awcul3/vn9ntUL06/POf/ltTRCSoud3F46aOzQZZWVanKKAiIgQZhsHYsWO58cYbiYmJsTqOSLGTm2sezRRIBw/CL78E9hoiIiIiJZ3b7aZixYpcdtllVkcRCRrJyeYxSv4qIwwD3nwTIiL8s56ISNDbuhV8PqtTnJthBO64j0JQERGCvvjiC9avX09SUpLVUUSKpd27A7cb4rfS0gJ/DREREZGS7NR8CFswD5MUKWJRUfDJJxAe7p8y4pVX4IYbLn4dEZFiIyfH6gTnr1YtqxMUUBERgsaNG0eTJk3o1q2b1VFEiqW8vNC6joiIiEhJpUHVImfXvDmsWQNVqxaujHA6ISwMXn/dnA0hIlKilC1rdYLz16aN1QkKqIgIMbt27WLhwoWMHDkSu13/eEUKo1y5orlOcfrvloiIiEhxs3fvXvbu3asiQuRPNG8O338P8fHmn8/v9A5z63iLFvDdd6dfKyJSojRtag7ICXa1a5tDfIJEMfh/TC7ExIkTiYyMZODAgVZHESm2ateGMmUCfx2NcBEREREJHA2qFjm3Sy6BV1+FjRthyJAzH5Y6tevh9L02A1jG+PE7SE2F6GgLAouIBIO2bc1B0MHMbg+6LWvBM61CLlpWVhZTp05l2LBhhIeHWx1HpNhyOKBVK/jqq8Bdo1YtqFgxcOuLiIiIlHRut5sqVapQK4jORhYJVs2awaRJMG4cbNkC69ZBejp4vRAZCS1bwhVXeIiJcbFr10AcjpesjiwiYp1u3eDRR61O8dccDrj7bqtTnEFFRAiZPn062dnZjBgxwuooIsXezTdDair4fP5f2+mEnj39v66IiIiInKZB1SIXrlQp86GsVq3O9t4w+vXrx+zZs3nuuedwnt9ZTiIioadtW7Oh3bgxMDeO/OHZZ6FKFatTnEFHM4UIn89HcnIyvXv3pnbt2lbHESn27r47cMf9eTxBtztOREREJKQYhqFB1SIB4HK5yMjI4NNPP7U6ioiItf75z+AsIZxOaNcO/v53q5P8gYqIELFkyRLS0tJISkqyOopISKhaFQYNMney+ZPTae7gu+IK/64rIiIiIqft2bOHzMxMFREiftaqVSuaNm3KjBkzrI4iImKtu+6C7t3NGz3BwumEOnVg8WL/39DyAxURIWLcuHG0b9+eDh06WB1FJGS88AJUquTfnRGlSsHUqf5bT0RERET+yO12A9CmTRuLk4iEFpvNhsvlYtGiRRw5csTqOCIiRe/IEfjpJ9i9GyZMgEsu8ctNfw+QU7Mm2GwYhVnPZoPmzeHLL82na4OQiogQsHHjRlasWKHdECJ+FhUFs2aZX8v9dbRwSopZTouIiIhI4LjdbmrUqEGNGjWsjiIScvr3709ubi7z58+3OoqISOB5PLBgAfTpA7VrmzeLLrsM6taFxo2hfHmziLiIMsILfF+uHA2PHWPz669zqGJF89Ln8VqfzWbuhHj2WXPYaZCWEAA2wzAMq0PIxbn77rtZunQpO3fuJCwszOo4IiFn7lzo1w8Mo3DH/9ls5muTkyEx0f/5RERERORMN954I2XKlOG9996zOopISOratSt5eXmsWrXK6igiIoFhGPDGG/DII5CRYRYNXu/ZP/bk+wzggp5jtdvB52Ne2bKMb9IEb5kybN68mdJ2Ow80bEhHt5vOJz/Ud+rjDQP7ydv5x5xOvilblutGj8ZWowbExJi7IkqXLvSnHUjaEVHMZWZmMnv2bBISElRCiATInXfCJ5+YpfKFFtwOB0RGwrx5KiFEREREioIGVYsEnsvlYvXq1ezatcvqKCIi/peeDjfeCHffbZYQ8OclxG/ed8bT/n9xtIb31Ptq1YLFi6m7ciVrt2yhYcOGVKlShQNHjrA8KopupUrRp1s3fpw6lURg7913k9asGT+dXCfC4+H6rCyzLBk0yBxSHRFhZn///b/ObAEVEcVcSkoKdrudIUOGWB1FJKTdcANs2wZDh5pzHs51XJPN5gM89Ox5nB9+gN69iyyqiIiISIm2a9cuDh48qCJCJIBuv/12wsPDmTVrltVRRET866efoH17+OyzC35pwY12mw2jfHmyz/IxR8uVI719e3oAW5csgVtuoV27dkyZMoUZM2aQnp5OzZo1WbZsGXl5efzf7beTVrMmh4Aac+Zw+caN1PrdmmfcnvJ4YPly6NkTmjaFb7654M8jUFREFGO5ublMmjQJl8tFpUqVrI4jEvIuuQReeQX27YOXXoIuXcyjAX8rIgI6d4ZHHsmlbNnGNG/+PFWqWJNXREREpCTSoGqRwIuIiOCOO+5gxowZ6MRvEQkZhw/D9dfD3r3mDf3CMgw4dow1QAPgv3feSeann1IV6N2pE5euWoW7cmXeePPNgpcMHjyYq6++muzsbPr27Vvw9nAg+tFHmQ3Yjh3DBpzzsI5TOyG2b4cOHeCZZ8xMFtOMiGJs5syZuFwutmzZQkxMjNVxREokw4CDB+HECfMIvsqVT++UGD58OAsWLODnn3+mVKlS1gYVERERKSFGjRrFnDlz+Omnn879wSJSaMuXL6dLly589dVXdOjQweo4IiIXLz4eZszw65FGb111Ff2++ALDMChdujS1atVix44dJCUl8fbbb7Nnzx7CwsLIzs6mXr16OJ1ODh48SKlSpSgHLMjKooPNVjAXotAeeABeeOGvj/cIMO2IKKYMw2Ds2LHceOONKiFELGSzQaVK5rF+l1565tfzhIQEMjIymDdvnnUBRUREREoYzYcQKRrXXXcdtWrVYsaMGVZHERG5eMuXm8Op/VhCGMBdbjfs3o3NZqNSpUqkp6cD5g6IzMxMPvroIwAmT57MoUOHePvtt8nNzSU7O5uPq1WjvT9KCDCP9khJufh1LoKKiGLq888/Z8OGDSQlJVkdRUT+RExMDF26dGH8+PFWRxEREREpEXw+H+vWrVMRIVIEHA4HAwYMYM6cOeTm5lodR0Tk4vz3v+A456FHF8QG2LxemDIFgLp163LixAkOHTpEixYtaNWqFW+88QbZ2dk8//zzDB48uGBH5x0+Hy1//BGHPw8z+vvfYedO/613gVREFFPjxo2jSZMmdOvWzeooIvIXEhMTWbt2LampqVZHEREREQl527dv58iRIyoiRIrIwIEDOXToEEuWLLE6iohI4W3fDsuW+XU3xCk2rxcmT4a8PKKjowH44YcfAIiPj+eDDz7ghRde4NChQzzyyCPMnj2bhrVrMxnw+TuMxwMjR/p71fOmIqIY2rlzJ4sWLWLkyJHY7fpHKBLMYmNjqV+/PhMmTLA6ioiIiEjI06BqkaIVExND27ZtdTyTiBRvS5cGdnbCoUOwfn3B9yebN28GoF+/ftjtdl588UXi4+MpU6YMy5Yt46bsbCoRgBv3Hg988AHs2uXvlc+L7mIXQxMnTiQyMpKBAwdaHUVEzsHhcJCQkMDcuXPZt2+f1XFEREREQprb7aZ+/fpUrFjR6igiJYbL5WLJkiUcOHDA6igiIoWzbp3fj2U6g80G69YV7IhYu3YtABUrVqRJkyZkZ2czevRo5syZg8PhoM/Bg/gCVYzY7fD664FZ+1yXtuSqUmhZWVm89tpr3HvvvYSHh1sdR0TOw+DBgwkLCyPF4qFAIiIiIqFOg6pFit5dd90FwJw5cyxOIiJSSJs2mbsFAsXphK1badCgwcnLbQIgOzubXSd3Jxw4cIBZs2bRMjqaK8E/A6rPxuuFVasCs/Y5qIgoZqZPn052djYjRoywOoqInKeoqCji4uKYMmUKeXl5VscRERERCUler5f169eriBApYpdeeimxsbE6nklEiq/jxwO6vNfjYcOXXzJv3jxsNhtbt25l8eLFPPDAAxw7doxKlSrxzDPPsG7dOqI9HsICmgZYvx58fp9AcU42wwhUvSL+5vP5aNSoEVdeeSVvv/221XFE5AJs3bqVpk2bMmvWLPr37291HBEREZGQc+r7rRUrVnD99ddbHUekRHn33Xfp3bs3W7duLTh6RESk2GjVCr79NmDL5wNzypUjwenk6NGjf/mxvYB3A5bkNw4cgEqViuJKBbQjohhZsmQJaWlpJCUlWR1FRC5QTEwMXbp0Yfz48VZHEREREQlJpwZVt27d2uIkIiXPzTffTFRUFDNnzrQ6iojIhWvSJKAzIsLsdgaOGcORI0e48sorARg2bBhOp5MPP/yQ2bNnA1CnTh2cAUvxO4E8iupPqIgoRsaNG0eHDh1o37691VFEpBASExNZu3YtqampVkcRERERCTlut5tGjRoRGRlpdRSREqd06dL07duXWbNm4bPguA8RkYvSpg0E8tAgnw9OHh3ZtGlTAGbPnk18fDw9evSgXr16AOTk5FC2qHYpWDB7WEVEMbFx40ZWrFih3RAixVhsbCz169dnwoQJVkcRERERCTkaVC1iLZfLxe7du1ll0RBUEZFCu+66wM5MKFOmoIi44oorADh27BiPPPIIYJYSUVFRZGZmEtmpU+BynFKzJkREBP46v6MiophITk6mVq1a9OrVy+ooIlJIDoeDhIQE5s6dS3p6utVxREREREKGx+Nhw4YNKiJELNSxY0caNGigodUiUvy0aQMtWoDd/7fK84HFFSrw8RdfYPh8NDUM4oCpERHUfeIJfIMG0XDaNP7dvDm1gV8jIiCQuzvtdrDotB0VEcVAZmYms2fPJiEhgbCwgM9NF5EAGjx4MGFhYaSkpFgdRURERCRkbN26lZycHBURIhay2Wy4XC7mz59Pdna21XFERM6fzQYPPhiQXRFOm40FFSqwuEcPdpUrR/eHHmI6MPDoUZg9G2bNYtiJE9y/ejU/AyMWLMBo1QqcAZoW4fNBz56BWfscVEQUAykpKdjtdoYMGWJ1FBG5SFFRUcTFxTF58mTy8vKsjiMiIiISEtxuNzabjVatWlkdRaREGzBgAMeOHWPRokVWRxERuTD9+8P11/u3ALB9ELtRAAAgAElEQVTbsfXtyxvZ2bwC1M3NLXhXGIDHg93rpdRvXnJlTg62lSsDN0w6MhL69g3M2uegIiLI5ebmMmnSJOLi4qhYsaLVcUTEDxISEsjIyGDevHlWRxEREREJCW63m+joaCIsOO9YRE6rX78+11xzjY5nEpHix2aDN96AsmX9ckSTB/BERsKcOdj27MHG+d2ID9A+CJPNBg89ZM6ssICKiCB36iz5xMREq6OIiJ/ExMTQpUsXxo8fb3UUERERkZCgQdUiwcPlcrFs2TJ++eUXq6OIiFyYunVh6VLzRr3DUehl8oHjdjvOQ4fMN3i9hVrHOPnLL+x2qFEDLrkEZs6EDRugiE/qUBERxAzDYOzYsXTv3p3o6Gir44iIHyUmJrJ27VpSU1OtjiIiIiJSrOXl5fHdd9+piBAJEn369CEsLIy33nrL6igiIheuY0dYvRpq1iz0zojtwCV+mDdhO/nLL3w++OUXGDkSXC5o3RoiIuC222DZsoDMx/g9FRFB7PPPP2fDhg0kJSVZHUVE/Cw2Npb69eszYcIEq6OIiIiIFGubN28mLy9PRYRIkIiMjOS2227jzTffxDD89iyviEjRadMGtm6FhASzjDjH7ggD8AF5TiejgRqlS1O4PRB/fQ2/vO63X5fz82HJEujaFdq3h++/L+RVzo+KiCA2btw4oqOj6datm9VRRMTPHA4HI0aMKDh+TUREREQKx+1243A4aNGihdVRROQkl8vFli1b+Pbbb62OIiJSOOHhkJwMP/8Mjz8O9euf/eMcDjxNm5Jkt3N1gwZcAlySn0/hD3Y6OxsUqtw4546KU0Oxv/0WWrSAlJRCXOX8qIgIUjt37mTRokWMHDkSm81vm3BEJIjEx8cTFhZGSgC/yIuIiIiEOrfbTdOmTSlXrpzVUUTkpG7dulGlShUNrRaR4q9mTXjiCUhLgyNH+N/rr3ML8HjLlgxv2xaOHSNs82bS77iDLdu3MxSwBeCYIw9wICwMo3RpDJsNz598XKH3oXk85g6J++6DF18s7Cp/SUVEkJo4cSKRkZEMHDjQ6igiEiBRUVHExcUxefJk8op4QJCIiIhIqNCgapHg43Q66d+/P2+99Rb5+flWxxER8Y9LLuHX6Gg+AHY2bcqanBxzsDUwaNAgunm9VAzQpZ1A1fx8YqtV491rr2UhcCgiouD9pwoIvzzO/tBDsHChP1Y6g4qIIJSVlcVrr73G0KFD9VSPSIhLSEggIyODefPmWR1FREREpNjJyclh06ZNKiJEgpDL5SIzM5NPPvnE6igiIn6Tk5MDQJUqVcjIyCh4e7Vq1WgPBPox02urVaPPqlXcZbcztEcP7MDyHj38N9QawGaDe+6BAwf8uaqKiGA0ffp0srOzGTFihNVRRCTAYmJi6NKlC+PHj7c6ioiIiEixs3HjRjwej4oIkSDUokULrrjiCh3PJCIh5VQRUb16dQ4cOIDXa05u2LJlC20xdy4EjNPJ6G7daNmyJXXr1mXBggVUAq75+GP/Xscw4MgRePRRvy6rIiLI+Hw+kpOT6dOnD7Vq1bI6jogUgcTERNauXUtqaqrVUURERESKFbfbTVhYGM2bN7c6ioj8js1mw+Vy8d5773H48GGr44iI+MVviwjDMDhwctfAxo0bqUGAb7bbbOTv3cvmzZt58MEHWblyJfGAwyj0ZIg/5/XCjBngx6/fKiKCzJIlS0hLSyMpKcnqKCJSRGJjY6lfvz4TJkywOoqIiIhIseJ2u2nWrBmlS5e2OoqInEX//v3Jz89n/vz5VkcREfGLU0XEqQfIMzMzAVi3bp1/j0c6G8Ngf3o6Ho+Ha665hnbt2jGcAN7gz82Ft97y23IqIoLMuHHj6NChA+3bt7c6iogUEYfDwYgRI5g7dy7p6elWxxEREREpNjSoWiS41ahRgy5duuh4JhEJGeHff88TQNsxY/gZaNKpE1StynNr1nAJp4dGB0K+x8PiNWsoXbo0S5cuZdXbb1MXPw2oPhu7Hdas8d9yfltJLtrGjRtZsWKFdkOIlEDx8fGEhYWRkpJidRQRERGRYuH48ePmecwqIkSCmsvlYs2aNezYscPqKCIihWMYsGABtG5Nz6ee4lEgfPVqagNhWVmQmUlbj4dqBLAUAMKADUDp0qV54oknGD9oUACvhnk801df+W05FRFBJDk5mVq1atGrVy+ro4hIEYuKiiIuLo7JkyeTl5dndRwRERGRoPftt9/i8/lURIgEudtuu42IiAhmzZpldRQRkQuXmQl33GH++u47wCwEbL+by2ADHEUQ54vcXP71r39x7NgxZj71FL5AX/CXX/y2lIqIIJGZmcns2bNJSEggLCzM6jgiYoGEhAQyMjKYN2+e1VFEREREgp7b7aZ06dI0bdrU6igi8hfCw8Pp3bs3M2bMwAjEQFURkUBJS4PWrWHxYvPPvoDf9v9TXiCrYUO25OZy7bXXYrPZiIqIAFuAJ1N4vX5bSkVEkEhJScFutzNkyBCro4iIRWJiYujSpYuGVouIiIicB7fbTYsWLShVqpTVUUTkHFwuF2lpaXzlxyM+REQC6pdf4NprIT3drzfjC8sOvF25MuHh4bRq1cp8Y3j4H3Zm+F2ZMn5bSkVEEMjNzWXSpEnExcVRsWJFq+OIiIUSExNJTU0lNTXV6igiIiIiQU2DqkWKj86dO1O7dm0NrRaR4sEwYNAg81imICghcDj4uXRpntq+nauuuopNmzYxefJknlq4MKAzKQC44gq/LaUiIgjMnTuX9PR0EhMTrY4iIhaLjY2lfv362hUhIiIi8heysrLYtm2bigiRYsJutzNw4EDeeecdcnJyrI4jIvLX3ngDli0Dj8fqJAAYPh/PN2/Onv37+eyzz2jdujWJiYksTU8P7IwIpxPat/fbcioiLGYYBmPHjqV79+5ER0dbHUdELOZwOBgxYkRBQSkiIiIif7RhwwYMw1ARIVKMDBw4kMOHD/PBBx9YHUVE5M95vfCvf1md4gwjDYN5u3YB0LZtWz7//HOOHj3K5+vX47vhBgJWl3g80LOn35ZTEWGxNWvWsGHDBpKSkqyOIiJBIj4+nrCwMFJSUqyOIiIiIhKU3G43ZcuW1cNcIsVIkyZNaNeunY5nEpHg9vHH5nwIi50qFzbGxTFqzx4ee+wx7HY7hw4d4qqrrqJs2bIAOJOScAYqRP368H//57flVERYbNy4cURHR9OtWzero4hIkIiKiiIuLo7JkyeTl5dndRwRERGRoON2u2nVqhVOZ8B+9BaRAHC5XHz00UdkZmZaHUVE5OzmzzePJLKQYbeTDtxz2WU0nz6dmjVrsnr1amJiYvjhhx9Yu3bt6Q+OjSWtTJnA7Ip47DGw+68+UBFhoR07drBo0SJGjhyJzRbw0SIiUowkJCSQkZHBvHnzrI4iIiIiEnQ0qFqkeOrbty8Ac+bMsTiJiMif+OqrgM+G8ADGb/7sBXwnb/inA5906ECnChWY9tNPrF+/HsMwWL16Nbfccgu1a9fmjTfeOP1ih4MpnTr5d2i10wldupgDu/1IRYSFJk6cSFRUFAMHDrQ6iogEmZiYGLp06aKh1SIiIiK/c/jwYX788UcVESLFUOXKlbnpppuYOXOm1VFERP4oPx9+/DHgl3Hedhu266/HaN6cDcBHgPfhh+Gjj3jnxRfp/uWXZBw/TvXq1YmPj2fz5s3s37+f6667jri4ON5++22OHz9esJ6nWTMecTj8E87hgIoVzYHdfn5wXkWERY4ePcprr73G0KFDKVeunNVxRCQIJSYmkpqaSmpqqtVRRERERILG+vXrAVREiBRTLpcLt9vN1q1brY4iInKm7Gzw+QJ/nV69YMUKZj34IK2BW4Cf4+Ohe3cS//EPevfuTW5uLr1792bz5s089thjOBwOOnbsyKBBgzh69CgLFy4EICcnh+XLl/O818uTJ5cv9GfgdEKlSrByJdSqddGf5u+piLDI9OnTOX78OCNGjLA6iogEqdjYWOrVq6ddESIiIiK/4Xa7iYiIoFGjRlZHEZFCuOmmm6hQoYJ2RYhI8PHXroLzuM6xY8cYNWoU1atXB2D37t0A2Gw2HnvsMQDeffddRo4cyfvvv090dDTly5enQYMGXHvttbzxxhscPXqU2NhYtm3bBsAY4KnGjcm22TAK87l07gxuN0RH++Oz/AMVERbwer2MHz+ePn36UCsA7ZKIhAaHw0FCQgJz584lPT3d6jgiIiIiQcHtdtO6dWscRXWzQET8qnTp0tx1113MmjULr9drdRwRkdMiIiA8PPDXqVGDZ599lkOHDnHbbbcB8PPPPxe8++jRowAcOXKEH374AYfDwYEDBwq+Zg4ePJgVK1bQqVMn1q9fT0pKSsFr//XDD3z3zjvY+vUDpxMf5gyKszo1lLtOHZg6FT79FGrX9vdnW0BFhAWWLFlCWloaSUlJVkcRkSAXHx9PWFjYGf9RERERESnJNKhapPhzuVzs2bOHlStXWh1FROQ0mw1atw74ZXZWqMBLL73EQw89RPv27QFIS0sreP+ph1GnTp3KkiVL8Hg8pKenk5ycDFDwmp07d7Jq1Spuv/32gtcOHDiQq/v0gRkz8O7ezZhy5fihUSOoVu10gLAwaNkS7r4bPvoIdu6Ee+7x+0yI31MRYYFx48bRoUOHgr80IiJ/Jioqiri4OCZPnkxeXp7VcUREREQs9euvv7Jz504VESLFXPv27WnYsCEzZsywOoqIyJmuvvr0TgE/8wF7IiL4x5gxVKlShVGjRtGgQQOAM+bmpKenU7p0afr27VuwY6JHjx48+uijfPzxx3Tr1o3w8HAqVKhAs2bNKFOmDHa7eZt/wIABBeu4f/qJp44f59C0abBvnzn/Ii/P/LVhA0yZAt27g71oKgIVEUXsu+++47PPPtNuCBE5bwkJCWRkZDBv3jyro4iIiIhYat26dYAGVYsUdzabDZfLxbvvvsuxY8esjiMictrgweDxBGz5l7KzWbRoEc8//zzh4eEFRcSOHTsKPiY9PZ1q1aphs9moVKkSERERfPXVV0RGRnLLLbcQGRnJzJkz2bNnD6tWrWL06NHg81EF8O3aBZmZYBh8+OGHREVFnX4Y3mYzd0NYREVEEUtOTqZWrVr06tXL6igiUkzExMTQpUsXDa0WERGREs/tdhMZGVnwQ7uIFF8DBgwgOzubhQsXWh1FROS0hg2hS5eA7IrIA6YbBhEREXTs2BGAatWq4XQ6+eWXXwo+7lQRAbBmzRr69u1L2bJlyczMxOPxEB8fz6233krHevXYec893DZuHEdtNjKA7kOHQtWqEBlJz7FjmVi7Ns6DB/3+uRSGiogilJmZyezZs0lISCDMwvZJRIqfxMREUlNTSU1NtTqKiIiIiGXcbjdt2rQpOH5ARIqvyy67jM6dO+t4JhEJPidnMfjblz17chg4fvw4jRo1YujQofz0009UqlSJg78pC04VEenp6fzvf/8jMjKS/fv3Y7PZaNCgARP+9S+y+/Th8127iNuxg2uBcMM482JZWbTKyqLf5s1Qs6Y5A8LiQkLfvRWhKVOm4HQ6GTJkiNVRRKSYiY2NpV69etoVISIiIiWaBlWLhBaXy8Xy5cvZs2eP1VFERE6LiYGnn/bfeg4H+W3b0mf1am655RZ8Ph8ul4sFCxbQsGFDvF4v+fn5HDlyBDhdRKxZswaAsWPH0rt3b6ZNm8YVaWmsP36csgsWYDcMHMCfjZi2AzbDMI+amj4dGjeGDz/03+d1gVREFJHc3FwmTZpEXFwcFStWtDqOiBQzDoeDhIQE5s6dS3p6utVxRERERIpcRkYGu3fvVhEhEkJ69+5N6dKlmT17ttVRRETO9NBDEBdnzlW4CF67HerW5bErrsDj8zF16lSaNWvGwYMH2bVrF//5z3/IysoCYPDgwezYsaOgiBg3bhwAw4YNY9asWcSdOMEiINIwcPx+B8Q5g3jNHRE332yWEhZQEVFE3nnnHTIyMkhMTLQ6iogUU/Hx8YSFhZGSkmJ1FBEREZEip0HVIqHnkksu4fbbb2fGjBkYF3pTTUQkkOx2eP11GDHi9J8vkAF85/MxdfBgXpwxgyeeeIKqVasydOhQFi9ezJEjR3jwwQf55z//CcCKFSto2LAh+/btY9myZXz55Ze0bNmSiRMn4nj3XRg2zIxS2M/J5wPDgPh4WLy4sKsUmoqIImAYBuPGjaNHjx40adLE6jgiUkxFRUURFxfH5MmTycvLszqOiIiISJFyu91UrFiRyy67zOooIuJHAwcOZOvWrWzYsMHqKCIiZ3I4YMIE8zijSy/FALzn8TIP4LXZMP79b57t2ZNhY8ZQt25dEhISABgwYAClSpXijTfeAKBdu3YAJCUl8fjjj2MYBl988QUAd911F7Z9+8wZDxe5O+MMgwbB/v3+W+88qIgoAmvWrGHDhg0kJSVZHUVEirmEhAQyMjKYN2+e1VFEREREitSp+RA2f/4QLiKW69q1K1WrVtXQahEJXj16wPbt/PrMM2z7zZvzAZ/DAWFhBW87BLwAbJg7F/vjj3P7nXfi9XrxeDzk5OQAEBkZyV133cXUqVPxer00vuwyWgPlly3DPn8+sUBs06YAjB49GneHDhjHj5u7GfzBMODoUSjik3tshva+BVyvXr3Ytm0bW7Zs0TfNInLRunbtSlZWFl9//bXVUURERESKTI0aNRg8eDDPPPOM1VFExM8eeOABZs6cyS+//ELYb27oiYgEk23bthEdHU3q/PnMGDmSyF9+4R/33kul6tUxLruM2Mcf5webjYioKL777jtycnKIiYmhTp06fPvtt1x//fUsWLAAu93O2tWrmdC5M+Ojo4n68UdsHs8frnfEZiOzWTMabtwYmE/IZoNdu6BOncCs/zvaERFgO3bsYNGiRSQlJamEEBG/SExMJDU1ldTUVKujiIiIiBSJvXv3sm/fPs2HEAlRLpeL/fv3s3TpUqujiIj8qVM7Gux16zL98GGecziIfOUVGDOGtdHRfLxnD7v27GHYsGHYbDZefvll9uzZw9SpU5k9ezaLFy/m6aefhnnzuLJXL2YCl3z//VlLCDCHUjfctClwn5DdDq++Grj1f3+5IrtSCTVx4kQqVKjAgAEDrI4iIiEiNjaWevXqMWHCBKujiIiIiBQJt9sNaFC1SKhq0aIFzZs31/FMIhLUThUR+fn5ZGdnU61aNZxOJwCzZs0iIiKCcuXKMWDAAPbs2cOzzz7LyJEjadSoETfffDPPPPoojZ94Au68E9vBgwA4znXRQB5m5PXC++8Hbv3fURERQEePHuW1115j6NChlCtXzuo4IhIiHA4HCQkJzJ07l/T0dKvjiIiIiASc2+2mSpUq1KpVy+ooIhIgLpeLxYsXc+jQIaujiIic1akiIjMzE4BGjRoBZjHxzjvvYBgGAwcOpHz58jz88MNERETw+OOPmy8+fpyHV6yg96nFgmVawtatkJtbJJdSERFA06dP58SJEwwfPtzqKCISYuLj4wkLCyMlJcXqKCIiIiIBp0HVIqGvX79+5OfnM2/ePKujiIicVe7JG/b79u0DoHXr1gAsW7aM/fv3k52dzX333ceXX37J7NmzefbZZ4mMjDRLhwEDsH399bl3QBQ1jwfS0orkUioiAsTr9TJ+/Hj69Omjp3ZExO+ioqJwuVxMmTKFvLw8q+OIiIiIBIxhGAVFhIiErurVq9OtWzcdzyQiQevUjoi0kzfuW7VqBZjHMoWHh9OhQweaNWtGYmIibdq0YfDgweYL33oLFi4En8+S3Od04kSRXEZFRIAsWbKEtLQ0kpKSrI4iIiHq/vvvJz09nfnz51sdRURERCRgdu/ezf79+1VEiJQALpeLL774ouAmn4hIMDlVRGzduhWAmJgYjh07xsKFC8nOzmb48OFMnz6ddevWkZycjN1uh2PHYMQICOZdnaVKFcllVEQEyLhx4+jYsSPt2rWzOoqIhKiYmBi6dOnC+PHjrY4iIiIiEjCnBlW3adPG4iQiEmi33nor5cuXZ+bMmVZHERH5g9/viGjcuDGLFi3ixIkTREVFceONNzJ69Gj69etHp06dzBfNng1HjwbPTIjfs9mgXr0iuZSKiAD47rvv+Oyzz7QbQkQCLjExkdTUVFJTU62OIiIiIhIQbrebGjVqUKNGDaujiEiAlStXjj59+jBjxgyMYL1pJyIlVk5ODg6Hg7179xIZGUm5cuWYMWMGTqeTe+65hxdeeIFjx47x3HPPnX7RK69YF/h81K8PERFFcikVEQGQnJxM7dq16dWrl9VRRCTExcbGUq9ePSZMmGB1FBEREZGA0HwIkZLF5XKxc+dOvvjiC6ujiIicIScnh9KlS5OVlUXt2rXJyMhg+fLleDweunXrRnJyMqNHjz49L/jwYdi0KXh3Qzid0K1bkV1ORYSfZWZmMnv2bBISEnA6nVbHEZEQ53A4SEhIYO7cuaSnp1sdR0RERMSvNKhapOS55pprqFu3roZWi4j18vNh1Sp46SVwuYhNSeGd/HwmAsPLlOHT5GQMw+C6664jOTmZmjVr8sADDxS83PvNN9ZlPx8eDwwdWmSXUxHhZ1OmTCnYjiMiUhTi4+MJCwsjJSXF6igiIiIifrVz504OHTqkIkKkBLHb7QwYMIC5c+cWnMcuIlKkDhyAMWOgZk247jr45z/hrbe4/Pvvic3PZwhwn9vNgP/8h1TDYMQll/DRkiW8+OKLlC1bFjB3T0wZNcrKz+KvORxw9dXQokWRXVJFhB/l5uYyadIk4uLiqFixotVxRKSEiIqKwuVyMWXKFPLy8qyOIyIiIuI3GlQtUjINHDiQI0eO8P7771sdRURKmnnzoFEjePpp2L/ffJvPB14vNsyb6aUA28kPbwX0XryYzeXL06tpUwCysrK46aab+GHTJoL0UCaw2+HVV4v2kkV6tRD3zjvvkJGRQWJiotVRRKSEuf/++0lPT2f+/PlWRxERERHxG7fbTZ06dahSpYrVUUSkCDVu3Jj27dvreCYRKTpeLwwfDnfeac528HrP62WnDuZvcvw4thYtODJjBjfccANut5sRDz1UUFgEnf/+F6Kji/SSNsMI1mkZxYthGLRp04Zq1arx4YcfWh1HREqgrl27kpWVxddff211FBEREZELk5UF33wD69bB9u2QlwflyjH+00/ZV6MG//nkEyhVyuqUIlKEJk2aRGJiInv37lUZKSKBZRjmrITXXruowdKGzYbPMBgUFcUDn31Gy7w8aN/ej0H9JCkJXn4ZbEVbk6iI8JPVq1fTuXNnli5dSrcinDYuInLK4sWLufXWW0lNTaVdu3ZWxxERERE5t40bYcIEmDULcnLMYwIcDjAMDJsNIz/f3MZfoQLcdx8MGwa1a1udWkSKwK+//kr16tV54YUXGDlypNVxRCSUvfYaDBnil6V8AGXKYP/+e6hWDSIiznt3RUA5nWbJ8tRT8PDDRV5CgIoIv+nVqxfbtm1jy5Yt2Cz4Byki4vV6adiwIZ06dWLmzJlWxxERERH5cydOwOOPm0/jORzg8Zz7NQ4HhIXBiy+ahYRdJw2LhLpevXrx008/sW7dOqujiEio2r0bmjSB48f9t6bTCVdfjbF8OXubN6fqli0FRzj5nd1uzrD4qyweDzRvDm++CS1bBirJOek7Nz/YsWMHixYtIikpSSWEiFjG4XCQkJDAO++8Q3p6utVxRERERM5u925o1QrGjjWfzDufEgLMpwlzciAhAXr0gOzswOYUEcu5XC7Wr1/P5s2brY4iIqHqySfNIyH9yeOBlSu5Izyc+wJZQkRGwi23QPnyZ39/+fJw++2wciV8+62lJQSoiPCLiRMnUqFCBQYMGGB1FBEp4eLj4wkLCyMlJcXqKCIiIiJ/tHcvXH01pKX99dN757JsGXTvbu6sEJGQFRsbS8WKFbXjW0QC4/Bh83jI830o4gLkA0M9HpqPGoWvUSNzZ6c/2Wzw2GOwaBEcOWLO2PrwQ1i40PzfHTvMt8+dC507W3IU0x8i62imi3P06FFq1apFQkICzz77rNVxREQYNmwYixYt4qeffqKUhjqKiIhIsPB6zRLC7fbPD/x2O9x7L0yefPFriUjQSkhIYOHChfz88884/H0jT0RKtmnT4J57LmpA9V+y2WD/frMUaN/ef9dxOKBFC0hNNY9eKia0I+IiTZ8+nRMnTjB8+HCro4iIAHD//feTnp7O/PnzrY4iIiIictr48fD11/576tDngylTYMUK/6wnIkHJ5XKxd+9eVujfdRHxt7Vr/b9T4bcMA9atgyuvhH//2z9r2u1Qtqy5k6MYlRCgHREXxev10rhxY9q1a8dbb71ldRwRkQJdu3YlKyuLr7/+2uooIiIiIubRANWr+/8oJbsdGjeGLVuC4sgBEfE/wzCIjo7myiuv1BFNIuJfbdrA+vWBW9/hgKefhocfNkuJBx+El1++uPXK/j979x1e4/3/cfx5n3MSMwhRI1bUKGoUVVVaq/hVh1GjitqtEUoV1X61X91Rau9dm7a6vq3RolWExqoKLbUrViSEJHLG74+blE7knNwnyetxXS5yxud+Je11cs79vj/vdw5YvRruv997OdOJdkSkwRdffMHBgwd5/vnnrY4iInKD8PBwIiMj2bp1q9VRREREROCDD8xB097mdkN0NGza5P21RcQvGIZB586d+eijj7h48aLVcUQkMzl1yrfr22xw9qz5b8OA996DyZMhe/Zb381gGFChAmzenCGLEKAdEX8rMdHcORMVBT//DMnJkC0blCtnFstq1IDmzRuSlJTEJr3pFRE/43K5KFu2LA888ICuGhIRERHrVasGu3f7pgezwwHPPAMzZ3p/bRHxC0ePHqVkyZLMnTuXZ555xuo4IpJZFCsGJ074bv2AAAgPh9Gjb7z9119hwAD44guzWOFy/fXzbTbzoou8ec3dFEOHmuLZO+oAACAASURBVGtmUCpE/MHBgzBpkvke9uJF87+33W6+XzYM8/8Ltxty5nRx+fI4xo0rT//+za2OLSLyJ2PGjGHYsGEcPXqUwoULWx1HREREsqqkJMid++8/ZHtD+fKwb5/v1hcRyzVs2BCbzcbatWutjiIimcU998DOnb5b3243Z0MMH/7X9x86BLNmwYYNZouoy5d/v69oUXPA9RNPQNu2ZkumDE6FiKucToiIgFdfNYsON/ce2YnDYWfkSIMXX8xw80FEJJOLi4sjNDSUIUOG8Oqrr1odR0RERLKqbdugVi3fHsNmM68ky5nTt8cREcvMmTOH7t27c+TIEYoXL251HBHJDHr1gjlzzBPDvvLll9Cs2b8/zu2G2FgzS65cEBTku0wW0YwIzP/GdevCK6+Y/61v/kIdB06nwcsvm8+PjfVlShGRW5MvXz46d+7M1KlTuXLlitVxREREJKuKifH9MdxuOHfO98cREcu0bt2a7Nmzs3DhQqujiEhmce+9vt2xCWZ//5ths0FICBQunCmLEKBCBPHxUL8+/PDD7bcr9XjM59evD3Fx3kwnIpI24eHhxMTEsGLFCqujiIiISFaVXpvwtdlfJFPLkycPLVu2ZP78+ai5h4h4RatWvpu5YLdDkyZQsKBv1s+AsnQhwuOBLl1g7960F79cLnOdrl31/ldE/EfFihVp3Lgx48ePtzqKiIiIZFXBwelznHz50uc4ImKZzp07Ex0dTVRUlNVRRCQzKFAAOnTwTb99lwv69fP+uhlYli5ELF0KK1d6bweOy2Wut2yZd9YTEfGG8PBwIiMj2bp1q9VRREREJCuqUsX3xyheHPLk8f1xRMRSjRo1okiRIsyfP9/qKCKSWYwY4f1ChMMBdepA8+beXTeDy7KFiJQUeP55MAzvrmsYMGCAub6IiD9o3rw5YWFhTJgwweooIiIikhXlzQulS/tufbsd7r/fd+uLiN9wOBw8/fTTLF68WHPwRMQ7wsLgvfe8t55hmO9N5s0z5z5Iqiz70/j0Uzh1yvttlDwec93PPvPuuiIit8tut9OvXz+WLl1KTHoMixQRERH5o06dfPdh3OWCp57yzdoi4nc6d+7M2bNn+eqrr6yOIiKZRe/e8PTTab9i/drzP/gAypRJe65MJssWImbPNotTvmC3w6xZvllbROR2dOvWjYCAAKZNm2Z1FBEREcmKevb03dqFC8Ojj/pufRHxK5UrV6ZatWpqzyQi3mOzwdy55oUTgPt21rDbzT+LFkGbNt5Ml2lkyUKExwObNnlvNsQfuVywebOGVouI/8iXLx+dO3dm6tSp2sIsIiIi6S801BzY6ItdEW++6ZshkyLitzp37sxnn31GbGys1VFEJLNwOIgfN46BwcEk2e14bvYKdsMw/1SsCFFR0L69b3NmYFmyEHH8OMTF+fYY58+bxxER8Rfh4eHExMSwYsUKq6OIiIhIVvTWW1CsmPe2pjsc0KQJdO3qnfVEJMN46qmncLlcLFu2zOooIpKJvDhkCDNTUojdtAlj0CBzzhWY712uv5jC4fi9DVP58jB5slmEqFIl/UNnIIbHk/Wu2//hB7j3Xt8fZ9s2qFnT98cREblZDz/8MBcvXmTLli1WRxEREZGsKCoKHnwQkpLAfVuND0wOBxQtClu2QJEi3ssnIhlG8+bNOX/+PJs2bbI6iohkAqtXr6Zp06ZMmTKF5557zrwxMRHWrTPfv+zaBbGxZlEiNBRq1IDatc2Tv2mdLZFFZMlCxNatcN99vj9OZCTUquX744iI3KxPP/2UJ554gsjISGrpBUpERESssHkzNG1qfrh3Om/9+XY7lChhnhgoWdL7+UQkQ1i6dCnt27fn559/pmzZslbHEZEM7OLFi9x9992UKVOGNWvWYPNFK0nJmq2ZgoMz13FERG5W8+bNCQsLY8KECVZHERERkazq/vth92544AEAbnp037WWTp07w44dKkKIZHGPP/44efLkYcGCBVZHEZEMbsiQIZw7d46ZM2eqCOFDWfInW7o0ZM/u22PkyAF33unbY4iI3Cq73U6/fv1YunQpMTExVscRERGRrKpUKVi3jml167IvIMC8zWb78/yI63swN2wIa9fC7Nm/92wWkSwrR44ctGnThvnz5+NOS6s3EcnSvv76a6ZOncq7775LWFiY1XEytSzZmgmgbl3YtAl88d0bBtSpAxs3en9tEZG0iouLIzQ0lCFDhvDqq69aHUdERESyqGPHjlG6dGkiIiIY+OCDsH69OdBv3z64cgVy5jSHPtaoYQ6lLlPG6sgi4me+/fZbHnroIb799lvq1atndRwRyWASEhKoXLkyJUuW5JtvvtFuCB9zWB3AKk8/bRYifKVjR9+tLSKSFvny5aNz585MnTqVl156icDAQKsjiYiISBY0duxYcufOTY8ePSAoyCw4iIjcgrp161KqVCnmz5+vQoSI3LJhw4Zx+vRp1q5dqyJEOvDvn7DHY24rePVVaN4cwsKgaFHz7+bNzds3brytbQ0dO0Jg4E13I70lOXKYhQ4REX8VHh5OTEwMK1assDqKiIiIZEHnz59n+vTp9O3bl6CgIKvjiEgGZbPZ6NSpE8uWLSMxMdHqOCKSgaxfv55Jkybx9ttvc6f666cL/2zN5HbDvHkQEWFuy3U4wOW6seBgGGb/UKcT7roLXnwRunQx+4r+i9OnTzN8+HBmzSoEvAEYXotuGPD66/Dyy15bUkTEJxo3bkxCQgJbtmyxOoqIiIhkMW+99RYjR47kyJEjFCpUyOo4IpKB/fLLL5QrV44lS5bQrl07q+OISAZw6dIlqlSpQmhoKOvXr9duiHTifz/lw4ehQQPo1g327zdvczr/vOvB4zFvB/Nx3bubzzt06G+XdjqdjB8/nnLlyvHRRx8xfnxxqlT58zy022W3my1MhwzxznoiIr7Uv39/IiMj2bp1q9VRREREJAtJSkpi3LhxdOnSRUUIEUmzsmXLcv/99zN//nyro4hIBjF8+HBOnjzJrFmzVIRIR/71k962DapV+314w81u1rj2uE2bzOf/xUm19evXc8899/D888/Tvn17fv75Z8LDn2PFCoOgIDfgTFN0ux3y5IFlyyAgIE1LiYiki+bNmxMWFsaECROsjiIiIiJZyLx58zhz5gwvvPCC1VFEJJPo3Lkzq1atIiYmxuooIuLnvv32W8aPH89bb71F2bJlrY6TpfhPIeLHH6FRI0hI+H2nw61yOuHSJXOd3bsBOH78OO3bt6dBgwYEBQWxbds2pk6dSkhICACFC1+kSJH22Gxx2O2316XKbofgYPj2WyhX7vaii4ikN7vdTr9+/Vi6dKnesIuIiEi6cLlcvPfee7Ru3Vof/kXEa9q2bYvdbmfx4sVWRxERP3b58mW6detGnTp1CA8PtzpOluMfhYjkZGjTBi5fNmdBpIXLBYmJuJ98koiRIylfvjzr169n3rx5bNy4kRo1aqQ+9MqVK7Ru3ZoTJ1axevUpmje/Nivi5goh13buNG9u1lHuvjtt0UVE0lu3bt0ICAhg2rRpVkcRERGRLGDlypUcOHCAIepnKyJelD9/fh577DG1ZxKRf/TKK69w4sQJZs+ejd1bvfrlpvnHsOpXXoG33rr5Vkw3wQ1EGAZnBg5kxIgR5M2b98b73W6eeeYZli1bxldffUWDBg3weOC++95h27YHgTqAC/AAjtTn2e0ePB4Dtxvuvx8GD4aWLc0h1SIiGVHv3r1ZuXIlR44cITAw0Oo4IiIikkl5PB7uu+8+cuXKxbp166yOIyKZzKeffsoTTzzBrl27qFKlitVxRMTPfP/999SrV49Ro0apPaRFrC9ExMVBkSKQlOT1pd2BgdhOnYJ8+f5039ChQ4mIiGDJkiW0a9cOgJiYGEJDQwkODubJJ//L9OkH8Xiqc+edT3Dw4HEgiXbtKnPffQ4aN4bKlb0eWUQk3e3du5dKlSqxcOFCOnToYHUcERERyaTWr19PgwYN+PLLL2nWrJnVcUQkk7ly5QqhoaF06dKFUaNGARAfD4mJ5izP/Pl1EalIVpWYmEi1atXInz8/Gzdu1G4Ii1jfmmn+fLM1kw/YUlJg3rw/3T5u3DgiIiIYO3ZsahEC4PXXX8ftdjNkyBD27FmMYYzDZnuG1avPABWB6owefYqBA1WEEJHMo2LFijRq1Ijx48dbHUVEREQysYiICCpXrkzTpk2tjiIimVBgYCCtW3dh+nQbjz7q4Y47zOtSixSBkBDIkwceeghGjoQTJ6xOKyLpacSIERw5ckQtmSxm/Y6I+++HLVt8t36tWhAZmfrlsmXLaN++PYMHDyYiIiL19vj4eO644w4Mw+Dw4cMUK1YMl8tFiRIl2Lx5M6GhoQDs3r2byqpCiEgmc20bc2RkJLVq1bI6joiIiGQyu3fvpmrVqnzwwQd07NjR6jgikskkJsJ//wvjxrlISjIwDAOP56+3P9jtZmfw1q3h/ffh6ukeEcmkNm/eTN26dXn77bc1o8pi1u6IcLlg507fHmPXLnCaw6fXrVtHp06d6NChA++8884ND5swYQJXrlzhmWeeYfv27biuDs2uUqUKNtvvP6bz58/7Nq+IiAWaN29OWFgYEyZMsDqKiIiIZEKjRo2iRIkSN+xIFxHxhq1b4e67YdQoSEqyA7a/LUKAeSrK7YaPP4YKFWDBgvTLKiLpKykpiW7dulGjRg0GDRpkdZwsz9pCxIEDPpkNcYPkZPjlF3bv3k2LFi146KGHmD179g3FhaSkJEaNGoVhGAwbNoy1a9eSO3du7HY71apVw7iuiaAKESKSGdntdvr27cvSpUuJiYmxOo6IiIhkIkeOHGHx4sUMGjSIgIAAq+OISCayahXUqwdHjpjFhVvhdEJCAnTqBG+/7Zt8ImKt1157jV9//ZU5c+bgcDisjpPlWVuIiI9Pl8Oc3L+fZs2aUaZMGT788EMCAwNvuH/evHlcuHCBxo0bExYWxtq1a8mWLRsul4uKFSveULSIjY1Nl8wiIumtW7duBAQEMH36dKujiIiISCYyduxY8uTJQ/fu3a2OIiKZSGQkPP44pKSYuxxux7Vm5cOHw5Qp3ssmItbbunUro0aN4rXXXqNSpUpWxxGsnhERFQU1a/r8ME+WLMl2m41NmzZRuHDhG+67Ngfit99+Y8OGDZQvX57ChQtjt9txuVzs3LmTYsWKERISQvbs2XnzzTe1lUdEMq3evXuzcuVKjhw58qeirYiIiMitio2NpUSJEgwaNIiRI0daHUdEMonERKhUCY4evf0ixB8FBsLu3VC+vHfWExHrJCcnU716dXLkyMGWLVu0G8JPWLsjomjRdDnM/gsXWLVq1Z+KEAAfffQRv/32G+XKlaNevXp88803gFmgsNlslCtXLrU1U+7cubUjQkQytfDwcGJiYlixYoXVUURERCQTmDx5Mi6Xi379+lkdRUQykf/+12zH5K0iBJitnbp2/X2XhIhkXCNHjuSXX35RSyY/Y20hokgRCAnx6SHOAbO+/JKyZcv+6T6Px8Nrr70GwPDhwzEMg7Vr11L0aoEkLCyMHDlypLZmypUrl2ZEiEimVrFiRRo1asT48eOtjiIiIiIZXGJiIuPHj6dr167ccccdVscRkUzi4kWYMOHWZ0L8G6cTNm+GLVu8u66IpK8ffviBd999lxEjRlC5cmWr48h1rC1EADzwANjtPlnaCThr16bWfffdeEdyMmzZwv7wcJ7du5c5gYE8vXUrnvHjif3iC4oEB5MrV67U/mEqRIhIVtK/f38iIyPZunWr1VFEREQkA5s7dy7nzp3jhRdesDqKiGQiCxearZl8weGAiRN9s7aI+F5ycjJdu3alSpUqDB061Oo48gfW703p0QM++cQnSzuAQsOH/37D4cMweTJMnw7x8ZQDSgN2pxP7jBl4nE4+9ni4ePo0s+12kq/ujFBrJhHJSpo3b05YWBgTJkzggw8+sDqOiIiIZEAul4v33nuPJ598kjvvvNPqOCKSiXz+ORiGb1ooOZ3m+h6PeQwRyVjefPNN9u3bxw8//EBAQIDVceQPrN8R8X//B8WLg827UdyGAaGh8MgjZtPAUaOgXDkYMwbi4wHzmw8E7G43pKRgXP0tFuTx0NfpZPCMGfD229iu7vfLmTOndkSISKZnt9vp27cvS5cuJSYmxuo4IiIikgF99NFH/Prrr7z44otWRxGRTCYy0vttma534YJ5HauIZCzbt2/nrbfe4pVXXqFq1apWx5G/YHg8fjCG57PP4PHHvb/uJ5/Agw/CY4/Bxo23t4Zh4KpZk4LbtlGneXN+/vlnfv75Z+/mFBHxM+fPn6dYsWIMHTqUESNGWB1HREREMhCPx8O9995L3rx5+frrr62OIyKZSFwcBAf7/jiffw7Nm/v+OCLiHVeuXOHee+8FYNu2bQQGBlqcSP6K9TsiwCwUdOzotVkRLmAh8N8NG/A0bGhOG7pdHg+27dtZBxQMCFBrJhHJEoKDg+ncuTNTpkzhypUrVscRERGRDGTdunVERUWpN7OIeJ2vZkP80eXL6XMcEfGOt99+m59++om5c+eqCOHH/KMQATB1Ktx7b5qLEW7DwHbffZx+/XUqjBmDe8cOszVTGhguF5WA8KgozsfG4vblHkARET8RHh5OTEwMK1assDqKiIiIZCARERFUrVqVhx9+2OooIpLJpFfLd7WWF8k4du3axRtvvMHw4cO55557rI4j/8A/WjNdk5AArVrBmjW3/FQPYABrgPMzZ9I2b15o08bbCWkPTIuLI2/evF5fW0TE3zRu3JiEhARWr97C1q0QFQUHDsCVK5AjB1SoADVrmn+yZbM6rYiIiFht165dVKtWjYULF9KhQwer44hIJuN2Q548cOmSb4+zezdUruzbY4hI2qWkpFCrVi2cTidRUVHaDeHnHFYHuEHu3PDVVzBtGp5Bg3AnJXEz+yNcgJEtG4wezcLISFb07UuLoCACDQO8WGfxAOOA86dPqxAhIlnC44+/woABvxAS4iYlxYbdDtdeWm02c8OZ2w1580KvXtC3L5QsaXVqERERsUpERAQlS5akbdu2VkcRkUzIZoPq1eG773x3jGzZzAuuRMT/vfvuu/z4449s2bJFRYgMwH9aM11js0Hv3sz9z3943TBwFSiQetcVwO1wcH238lPAtEKFsB06hNG3L1OnT6d3iRIEnj3r1SIEmDsuCgGelSu9uq6IiL9JTITBg+H55x8CupKSYv66cLnA6TT/TkkxixAA8fEwZgyULw/jxv1+u4iIiGQdhw8fZunSpbzwwgs4HP51zZuIZB6NGnltxOif2O1Qpw7oJUzE//3444+MHDmSoUOHUrNmTavjyE3wr9ZMV7ndbsqXL0/16tVZumgR7NvHrN69sR04QPNGjZixYAEHDINtHg93P/kkS1esYM+ePVSqVAmApGbNcKxa5ZPtHk4g/t57KbB1qw9WFxGx3vHj0Lgx/PLL7RcUGjaETz4xN7qJiIhI1jBgwAAWLFjA0aNHyZUrl9VxRCSTOn7c3IXtq4ufVqyA1q19s7aIeIfT6aR27dokJiayfft2sqlXdIbgfzsigM8//5wDBw4wcOBAsxxdqRJLs2fnizp1SH7rLV4B5no8nC1UiHwFClCwYEFmzZqV+vzsUVE+6znlAIJ++snruy1ERPzByZPwwANw8GDa3thv2ABNmsDly97LJiIiIv7r3LlzzJw5k379+qkIISI+VawYtGzp/V0LNhsULQqPP+7ddUXE+0aNGsWOHTuYM2eOihAZiF8WIt5//33uv/9+ateunXrb8ePHKVasGAsWLEi9rVatWmzcuJHOnTszf/58kpOTzbNoZ8/6NF/g5ctw5IhPjyEikt7cbvPKn99+M9svpYXLBZGRMGCAd7KJiIiIf5s0aRIej4d+/fpZHUVEsoCxYyF7du+u6XbD7NkQEODddUXEu3766Sdee+01XnzxRWrVqmV1HLkFfleI2LFjB+vXrzd3Q1zl8Xg4duwYZ86cYfjw4an9RkNDQ/npp59o1aoV586d49NPPzULEenh1Kn0OY6ISDqZMAE2b057EeIatxtmzoTVq72znoiIiPiny5cvM2HCBLp160bBggWtjiMiWUCxYjBpkvfWMwzo2ROaNvXemiLifU6nk65du1K6dGlee+01q+PILfK7QsT7779PyZIladmyZept8fHxJCQksHTpUp555hmKFi1Krly5yJEjBwAxMTHUqVPHbM+UXi2TNIlVRDKRixdh+HDvr2uzQf/+6mYnIiKSmc2ZM4fY2FgGDRpkdRQRyUI6d4bXX0/7OoYBjzzi3cKGiPjGmDFjiIqKYs6cOWT39rYo8Tm/KkScPHmSJUuW0L9//9RdDwBr1qwB4N5772XGjBkULFiQ3Llzc/bsWcLCwtiwYQPdu3dn9erVnLh0KX3C5suXPscREUkHH3wAiYneX9fthv374dtvvb+2iIiIWM/pdDJ69Gjatm1L6dKlrY4jIlnMK6+YBYSAgNuZGWFeYPr005f5+GO1ZBLxd9HR0YwYMYJBgwbd0M5fMg7D40mn61QvXoRvvoGoKNizB+LjzVf5kiWhRg2oW5dXFi1i3LhxHD9+nLx58wJw6NAhqlevTlxcHNHR0dx11100a9aM6OhoQkNDKV++PDt27GDjxo0UKVKEwYMG8ep77/l0QuoVm43A5GTvT0YSEbFIjRqwY4dvdi44HNCxI8yZ4/21RURExFpLly6lffv2REVFUb16davjiEgWtW8fdOlizqlzOP653azdbs60K1zYRWJiBxo1crJixQoMw0i3vCJya1wuF3Xr1iU2NpadO3emdsmRjMX3Z9IPHIAxY2DuXPNyW4fDfMW/drbL4YDp0wF4wm6n7MMPkzcoCIAzZ87QtGlTAgICsNlslClTBoCQkBAMw+DgwYP06tWLefPmkZKSQvv27Zk9dy4jqleH77/H8MEZNTdwIHduKqoIISKZRHIy7N7tu/ZJTids3OibtUVERMQ6Ho+HiIgIGjdurCKEiFjqrrvMeXebNpk7JD7/3Lwe9o8CA+GBB6BvX3j8cTuffNKGNm3asHz5ctq2bZv+wUXkpowdO5bIyEg2btyoIkQG5ruz6S4XjBsHL71k9ua4Vo7+Y1n6uq/vcbm496uvoGFDLk+ezKNduxIfH0+7du34+OOPU9s1hYSE4HQ6OX36NDVq1MDj8fDdd9/RvXt3Zs6cyexChejmozNqBvBZnjxU9MnqIiLpb88e7w2o/jsHD0JCAuTO7dvjiIiISPr5+uuv2b59e2orXRERKxmGWWR44AHzIqtDh2DvXrNhRmAglC4NFSve2NziySefpE2bNvTt25f69etzxx13WPcNiMhf2r9/P6+88grPP/88derUsTqOpIFvChGXL0PLlrB69W2F8Xz/PbYqVcgfEMDkjRuZOHEixYsXT31cwYIFuXy19ZLL5aJ48eIsXryYa12mXti+nY4OB9l8cGbN6XCw0GZjqNdXFhGxxqlTvj+GxwPnzqkQISIikplERERwzz330KhRI6ujiIjcwDDMwsPNjK6ZOHEilSpVol+/fixbtsz34UTkprlcLrp160axYsV44403rI4jaeT9YdXJyfDYY7B27W0vYTidBLhcfO5yUePyZY4dO3ZDISIkJIQLFy4AMGvWLC5dusSSJUuIioqiRYsWXLbZONWt29WxQ97jAbY1aMCRuDgvrywiYp10mhSE+yZflD0eOHwYPv4YZsyAmTNh5Uo4ejT9soqIiMg/27FjB2vWrGHIkCHqqy4iGdodd9zBpEmTWL58OcuXL7c6johcZ8KECWzevJnZs2eTM2dOq+NIGnl/R8SIEbB+/c2fcfobdjDbO7VsSUJwMFWqVDHvSEykXGQkM10uagNhEycyDkgGAgIDcQYF0dntpmNUFJPtdsq7XASkKYnJCZwvVIj9rVtzYc0aXC4XdrvdCyuLiFgrODh9jpMv3z/f//PPMHWqOVLo/Pm/fkyBAuYQuueeg6tjg0RERMQCERERhIWF8eSTT1odRUQkzdq0acOyZctSWzQVLFjQ6kgiWd4vv/zC8OHDCQ8Pp169elbHES8wPB4vXl8aGQn33+/VS1Y9djvLgFNvvEHLvXvJv3gxuZxOUuCvCwwOBzidnAI+yZePdhcuEATY0lIYsduJd7tZPnAgBerWpVWrVpw9e5YCBQrc/poiIn4iIQHy5PHtboPQUDh+/K/vi4+HF16AWbPAbjdr0P/k2mOefRZGjYKgIO/nFRERkb936NAhypQpw/jx4+nbt6/VcUREvOLUqVNUqlSJRo0asXTpUqvjiGRpbreb+vXrc+LECXbv3k2uXLmsjiRe4N3WTEOHgs27SxouF+1cLtq+8gpFP/iAXFfnPvztLoer9xcCesTF4SpQgDi3G9ftbhe22yFvXlrky8eZkBCCr146HBsbe3vriYj4mdy5oWxZ361vt0Pt2n9939atcNdd5i4I+PcixPWPmTEDKlSA7du9ElNERERu0pgxYwgODqZr165WRxER8ZpChQoxceJEli1bxooVK6yOI5KlTZo0ie+++45Zs2apCJGJeK9qEB0NGzbc3FmkW+QB7nC5uNVGSDYgz5kz5DAMnNWrA9x0QSL1u2jSBHbvZm9AAG63m/z58wNw/u/6hoiIZEAdO3q9jpzK5YIOHf58+6ZNUL8+nDlze7863G6IiYEHH4Rt29IcU0RERG7CmTNnmDVrFuHh4erVLCKZTrt27WjZsiV9+vTh7NmzVscRyZIOHjzIsGHDUlulSebhvdNOixebl736gMHtB3UA2Q0D265dDLPbcVatCoDHZsP5h8c6r94OcD4sjLZA1MiREBqKzWbD4/Gk7ohQIUJEMpOePcE3cybdQAwffNCGXbt2pd56/Dg0awbJyWmrX7tckJQETZvCyZNpTysiIiL/bNKkSRiGqcaftgAAIABJREFUQb9+/ayOIiLidYZhMHnyZFwuF+Hh4VbHEcly3G433bt354477uCdd96xOo54mfcKEVu2pHlAta8YbjeG08ngPHnItnkz7NzJlpYtWQbsBk7kzEl0QADLgddz5eLcmjXk+/lndpcvz39GjADAZhgEnTtHyLff8hIQOm0avPkmLF8Ov/7q2+bqIiI+VrgwDBjgi10RNmrX/oJdu6KoVq0arVq1YseOnXTvDomJ3vm14XLBhQvmzAi9FIuIiPjOpUuXmDhxIt27d9e8PBHJtAoXLsyECRNYsmQJH330kdVxRLKUqVOnsmHDBmbNmkXu3LmtjiNe5r1h1fnzg5/vEvAYBsbQofD22/Tt25cVK1Zw5swZXn75Zd555x2cTif58uWjUqVKfPPNN3z88cc8174928PDsU+eTImrl+2mADa7HbthpM6koEQJ6NcPunUDvSkXkQzo8mW4+244etQ7Xfbsdg+FC0dz4kQlGjRoQLNmzZg2bRq//loV8M0b+s8+g0cf9cnSIiIiWd6ECRMYOHAgBw4coFSpUlbHERHxGY/HQ8uWLdm8eTN79+5V8VUkHRw6dIjKlSvTqVMnpkyZYnUc8QHvXfsaH++1pXzF8Hhg7Fi4cCF14rrH46Fo0aI4nU4CAgLo1q0b27Zto0/v3rRJSuKYzUbJCRModt1ZuQDA7nL9XoQA88zdsGFQsiTMnq3LckUkw8mZEz76CLJnT3unPYcDQkMNtm2ryOrVqzl48CAjR45kwIABlC07mesm8XiN3Q7jxnl9WREREQGcTiejR4+mXbt2KkKISKZnGAZTpkwhJSWF/v37Wx1HJNPzeDz06NGDAgUKEBERYXUc8REfjSb1Y8nJeObN48cff8R1tbiQLVs2AMLCwkhOTmbmxIk0mz0bW5cu5HK7sXGTPyi3Gy5dgu7d4YknzMuLRUQykGrV4JtvIHdus5hwe5wUKeLk22+hSBF4+OGH2bNnD506dWLAgIn88kthwPszhVwuWLsWDh3y+tIiIiJZ3vLlyzly5Agvvvii1VFERNJFkSJFGD9+PIsWLWLlypVWxxHJ1KZPn84333zDzJkzCQoKsjqO+Ij3ChFXhzhnBMlLlhAfH8/ly5fJkSMHJ0+eJDg4mEqVKvFrdDSdli2j1dWprbc9u/WLL8xJrImJXsstIpIeatWC3buhfn3z65ufG2HuEsuZcwUlS7agWLHfdz0EBQUxZcoUXnjhE8C3O8a+/96ny4uIiGQ5Ho+HiIgImjRpQrVq1ayOIyKSbp5++mkee+wxnnvuOWJjY62OI5IpHTlyhMGDB9OzZ08efvhhq+OID3mvEFGjBhi3fdo+/Xg82HfsACAhIYHQ0FD27t1LxYoVueuuu3gqMhK++QZbWlsrud3m2bA+fbwQWkQkfZUoAatXw6JFcM895m0221+1bEoB3IAbw1hHixYT+eKLwnz//f/+cjvlpUsVCAjwXe6AAIiK8t36IiIiWdGaNWvYuXMnQ4cOtTqKiEi6MgyDqVOnkpyczIABA6yOI5LpeDweevbsSXBwMO+9957VccTHvFeIqF37Vi6btVRAYiJ3BQWRlJREmTJlUgsR9Z1OOl26ZBYRvMHthrlz4X//8856IiLpyDDgqafghx9gxw547z1o3x5q1PAAPxIQsJ0CBT4nd+5hlCz5MLlyteKrr16kUqVKvPTSS/znP/8hMjLyhjUPH4aUFN8VrVNSzGOIiIiI90RERFCjRg0aNGhgdRQRkXRXtGhRxo0bx4IFC/j000+tjiOSqcyaNYs1a9YwY8YM8uTJY3Uc8THvVQ46djQbdGcQFYoVA6By5crs27ePShUqUG/xYpz/8rxbZrPBc89lqJ+NiMgfVasGAwfCggXwww8Gdvs95MjRgJYt/0euXPM5d24rCQkJeDwexo8fz2uvvUaNGjXo0KEDFy9eTF0nJcX3WdPjGCIiIllFVFQUX3/9NUOGDMHICDvgRUR8oFOnTjRv3pxnn31WLZpEvOTo0aMMGjSIbt260bRpU6vjSDrwXiGibFlo1Oiv+nb4JUf27ACUKlWKpKQk6l65Qo7jx7nt2ax/x+2GY8fgq6+8vbKIiGXsdjuJiYnUqFGDM2fOkJCQQLly5ShevDgTJ04kMTGRRYsWcfr0afr165f6vKAg33bxs9nMQdsiIiLiHREREZQuXZpWrVpZHUVExDKGYTBt2jQSExMZOHCg1XFEMjyPx0OvXr3IkycPo0ePtjqOpBPv9lJ6911I62yFdOACPr86J2Lp0qUA3Ll+PTi8XoYw2e0wfbpv1hYRsYDD4SAlJYWqVavidrvJmzcvpUqV4vDhwyQkJDBt2jTuvPNOJk+ezPz581m0aBEAlSr5vl7tdsPgwfDoo2Z9vHlzGDQIFi6EEyd8e2wREZHM5ODBg6xYsYLBgwfj8NVnJRGRDCI0NJSxY8cyf/58Pv/8c6vjiGRoc+fOZdWqVUyfPp18+fJZHUfSieHxeLly8Mor8NZbfl2QiAYqGQbXf+sngKK+PGiBAnDmTMYY6C0i8i+Cg4OJi4vjt99+o2TJklStWpUrV66wb98+qlWrxtGjRzl06BDZsmWjY8eOfP755+zcuZNdu8Jo2dL3+QICbmzRdO1rw4DHHzcLEw8+6PscIiIiGVnfvn1Zvnw5R44cIUeOHFbHERGxnMfjoXnz5uzatYs9e/YQHBxsdSSRDOf48ePcfffdtGjRgrlz51odR9KR96dLv/oqNG2a5sHVvipjOIH1mFfz2u12GjZsSKVChXxbhAA4dw5++83XRxERSRcBAQEAJCUlcffdd5MjRw52797N//3f/xEbG0tMTAzz5s3DMAwmT55M/vz5efrpp6lXz8nVzng+9cc5Ede+9njgiy/goYegRw+Ij/d9FpHrnT4NX34J48ZBRIT595dfmreLiPiT06dPM3v2bMLDw1WEEBG5yjAMpk+fTkJCAoMGDbI6jkiG4/F4ePbZZ8mZMyfvv/++1XEknXm/EBEQAB9/bPbCuE0emw1f7RtwACtDQkhJSSEkJIQLFy7wZO3aPjraHxw/nj7HERHxscDAQADi4+OpUaMG586dA6Bs2bIcOHCAhg0bEhERgdPpJG/evCxatIitW7cyfvzrdO7su054N8PpNP+eOxeqVIFff7Uui2QNCQkwdarZmqxQIXjkEXNXzssvm38/8oh5e6VK5uOum+8uImKZiRMnYrPZ6Nu3r9VRRET8SrFixXj//feZO3cu//vf/6yOI5KhfPDBB/zvf/9j2rRp2lGUBXm/EAGQPTusXAkTJ5r/vsmG4J6rjzMaNSKlQAFcXo7lsduJBH7Klg2AEiVKEB0dzZ1hYV4+0t+4dvZLRCSDy3b1dTQ+Pp6aNWuyf/9+qlevztGjRylevDj58uXj119/ZcWKFQDcf//9vPrqq7zxxhs8+OAPVkZP5XKZMyPq1oWjR61OI/7s0iVYvBiefx4eeABKl4awMKhVC/r0gTlz4Pz5v37uhx9CyZLm46Kjf7/d7TbfFrjdv98WHW0+rmRJWL7ct9+TiMg/SUhIYOLEifTs2ZP8+fNbHUdExO907dqVpk2b0qtXL+Li4qyOI5Ih/PbbbwwYMICOHTvy2GOPWR1HLOCbQgSYrZn69oV9+2DAAMiTx7zdbk8tTHiAK9c95eSdd5q7KVatwjF3Lt6eZ2oA/QMCiI2NJWfOnAQHB3Pp0iVKVKrk5SP9jWs/AxGRDC771f5K13ZEuFwuqlatytq1a+ncuTNr1qyhUaNGvPPOO6nzeIYPH84DDzzASy+14qWXEv1iZI7LZY7vadvW/LfI9U6dMosPhQtDhw4weTJs2gSHDsHhw7BtG8ycCd26QZEi5t/XdthcuQIdO8KTT5pFCo/n38dnXXtMXJz5/+TTT0Nyss+/TRGRP5k9ezYXLlxg4MCBVkcREfFLhmEwY8YMLly4wAsvvGB1HBG/5/F4eO6558iWLRvjxo2zOo5YxHeFiGtKloTRo+HkSfjqKxg5Etq0gUcfhSeeYIbdzlcdOtCpTh06Fy8OLVqAYXCmVi3mAO5/PcDNuzRwIFtTUkhMTMRut6f2OC/VsCE+b1rucED58r49hohIOrm+EFG5cmUCAgIIDg4mNjaWe+65h4sXL1KrVi127drFl19+CYDdbmfBggVcuHCB6OhuPPig52Y3zPmU0wmRkWavfpFrli6Fu+4yN3cmJJi3/XH2yPW3JSfDBx+Y7ZXGjjXfzixebN73bwWIP7r2+CVLoGVLs6ghIpJeUlJSGD16NE899RQlS5a0Oo6IiN8qXrw4Y8aMYfbs2Xz11VdWxxHxa4sWLeKzzz5j2rRp2m2Zhfm+EHFNzpzmEOvhw81P5p99hrFyJbOqVOHDnDl5qGtX1q1bx6lTpwA4duwYvYGEmjVxp/WyWcOAp58msmnT1JuSkpJISUkhV65cFC9VCu65J23H+Dd33w1Xe6qLiGR02bJlw2azER8fT7Zs2bj77rs5d+4cwcHB7N69mwYNGrB582Zq167N22+/nfq8EiVKMH36dFasWELbtguoXRsM4xbP0vrIq6+aLXgka/N4YMgQaN/eHGZ+KztlnE5ISoKBA80B1O40Xk3hdsOqVeYcCRGR9LJs2TKOHj3Kiy++aHUUERG/1717dx5++GF69uxJfHy81XFE/FJMTAzh4eE89dRTPPHEE1bHEQulXyHib1SoUIHo6GhatWqFzWZL7Sd+/PhxkoHE5cuhVSvg1ndHpJ476NcP5s1j9549qX3NU1JSiI+Pp0KFCthsNrMHgq/6hNhs5hkNEZFMIjAwkICAgNQ32zVr1mTHjh00adKEL7/8km7durF+/Xq6dOnCxo0b2bhxY+pz27ZtS9euXRkypDejR+8mb94FV++xtjdSQsLvV7BL1vXyyzBqlPnvW93J4AtuN0yaBOvWWZ1ERLICj8dDREQEzZo1o0qVKlbHERHxe4ZhMHPmTOLj4xk8eLDVcUT8jsfjoXfv3gQEBDB+/Hir44jF/KIQsXfvXoKDg2nSpAlLliwBzB0RgYGBFCxRAtvy5STNmUOC3Y6bfy9IXDuVdQpomy8fjB8Pdjs//vgjhQsXTn3c4cOHqVixovnFM8/4bseCzWY2jhYRyST+WIioUaMGP/30E2XLtmHbthZMm9YawzhL377dMYxEmjQpS/v25svx2bMwfvx4ihYtyuOPP0xSUi/atJkERAFgGE7MKUJ/5Pmb273DZoO5c322vGQAq1bBdRt4/IbNBr16+UdhREQyt1WrVrF7926GDh1qdRQRkQyjRIkSvPfee8ycOZPVq1dbHUfEryxdupSVK1cyZcoUQkJCrI4jFrO8EFGxYkXOnz/P6dOnad++PRs3buT48eMcO3aM0NBQc7eCYZC9Sxcu7d1LuM1G9HXPd2MWHq7/bP5jYCCzGzTgxdatWR4Xx+effw7A7t27yZYtG2XKlAHgzJkzqYUIT758/NiwoVdnUgC/D+0uWNDbK4uIWCYwMBCHw5FaiEhJaYDL9T1vvNEaeJGNG7Pj8RTA5XLg8WQnMbEQy5d7GDgQihaFPn1y07nzcE6fPs19993HN9+8Su/ec9m2zUlAwBRKlDhGQMD1jfEvUb16IoGBvjsT63ZDVJSGVmdVFy5Aly7mr21/43bDgQPwzTdWJxGRzC4iIoJ7772Xhx56yOooIiIZSs+ePWncuDE9evTgwoULVscR8QunTp2iX79+tG3bllZXu91I1mb5x+0KFSoAEB0dzRNPPEG2bNlYtmwZx48fp3jx4jc89lhcHJPdbu4GigYE0AQIB6aXLcuMatXMvgVxcXw4ZAgDo6Lo8uyzAPTu3ZtLly6xZ88eLl26RFhYGABut5u8efNy9OhRmjVrRq0vv+RMUBBub52FsNuheHF4803vrCci4icCAgKw2WycPXuFHj0gPLwcUOPavcCfW9253QZutzncd9EiDyNGtKFgwSFs2LCBCxcuMHz4cFyuKK5c6c+SJSd49tnBhIaWvrpebgYN2saVK779tZWUBL/84tNDiJ+aORNOn077XAdfcThg+nSrU4hIZrZt2zbWrVvHkCFDMHzVslZEJJMyDIMZM2Zw/vx5zdgRuapv374YhsHEiROtjiJ+wvJCRJkyZXA4HERHR5MnTx4eeeQRlixZwrFjx/5UiJg9ezY5c+YkJCSEGKeTNcBkYEXx4nxUqBDUrw958/LMM89w4cIFTp48SWBgIL/99hsvv/wySUlJnDx5kjvuuCN1zYULF1KpUiX27t3Lh198QaENGzCyZUt7p3KbDQICYNkyyJUrrauJiPiVwMBADOMOVq8ecV07I8dNP9/lMvB4cnDmzLsYxhgCAgLJnj07a9euJSgoiHvvvZf4+DiCgrIBTgzDYP/+cz74Tv7sXPocRvyI2222DfPXIgSYg7A3bLA6hYhkZhEREZQpU4aWLVtaHUVEJEMqVaoUo0aNYvr06axdu9bqOCKWWr58OR9++CGTJ0+moLrEyFWWFyICAgIoW7Yse/fuBaBdu3Zs27aNQ4cOUaxYsdTHXb58mUWLFpGUlETPnj2x2+2p90VFRd2w9a1MmTLUq1ePBQsWUKdOHUqXLs2UKVMAcxdEUFAQOXPmBGDjxo20a9eOPXv28Mgjj8A992CsWUMSkHK735TDAdmywZdfQq1at7uKiIjfMowg4uM/JCGheBpaGZm/gjyegbjdr9GjRw/Wrl1L/fr1cTgcnD9/nqCgIAAKFy5MTMxJ74T/F7oINOvZsQOOHLE6xb87dcr8IyLibQcOHODDDz9k8ODBN3zOEhGRW9OrVy8aNmxI9+7duXjxotVxRCxx5swZ+vTpQ+vWrWnTpo3VccSPWF6IALM9U3S0Ofnh0UcfJUeOHJw8efKGHREffvghFy9eJCAggMOHDxMcHEyPHj0AuHjxInv27CEpKSn18V26dGHt2rVUq1aNc+fOkS1bNhwOBw6Hg927d3P58mUcDkfqMfPmzZv6XFft2jyYOzc7DAMP/z4c+waGAVWrwg8/mDs0REQyoV27OuB0ludWdkH8k6SkwXzySRzfffcdjRs3BuD8+fPkyZMHgKJFixIb+7NXjvVvChRIl8OIH/nhh4xTgDp2zOoEIpIZjR49moIFC9K5c2ero4iIZGg2m42ZM2dy7tw5hgwZYnUcEUv069cPj8fDpEmTrI4ifsbvChG5cuWiSZMmuFyuGwoRM2fOJDAwkMcff5wlS5bw2muvMXbsWAA8Hg8XL17kqaeewul0AtCmTRty5MjBxYsXOX/+PMWLF8fpdGK329m0aROBgYG0bNmSmjVrMmvWrBvyvPPOO2xPSKBDyZL0t9m4GBwMgPNqYeJPAgLMv4sXh/ffhy1b4OoQbBGRzGbDBti3ryHgvSsm7XbInn05LlcgpUqVAiAuLi61SFykSBGOHNlMzpxJ/7BK2uXIAWXL+vQQ4od27jQ3M2YEV9/miIh4zalTp5gzZw79+/cnR44cVscREcnwwsLCiIiIYOrUqXz99ddWxxFJVx9++CHLli1j4sSJFCpUyOo44mf8ohBRsWJFfvvtN+Lj4wF44IEHAEhJMZsjHTx4kG+//ZYrV65w8uRJypQpQ8+ePcmVKxe5cuUiT548GIbBZ599Ro8ePVLbL7Vu3ZoDa9cy0GZj+P797AF+Tk7maEAAq1JSeD4mhtdr1WL1F19w4sQJADZv3syrr75Ko0aNOHL8OMsLFiTg6FGGVqvGl+XLE1upEqcBd1AQhIRA3brQvz/8739w6BAMGJBxzmaIiNyGN94Aw0jzJJ0buFyQlBSCzfY0//nPf0hKSuLcuXOpbfc2bNjADz9s4/LldZD2KT5/yTCgZk1zxI9kLfHx/j0f4npXu5WJiHjNhAkTcDgc9OnTx+ooIiKZxnPPPUf9+vXVokmylLNnz9KnTx9atGhBu3btrI4jfsgvzphXqFABgOjoaGrXrk2JEiUAiIyMpHXr1syePRubzUbVqlXZuHEjK1asIODqLoSQkBCKFSvG5s2bKVy4MPPmzSNfvny836YNY/bvJ/+RI6ntlQKuHTAlhVCATZuwffcdx4DoLl3IPX8+HTp0oFatWrRo0YKvv/6afv36kTN3braHhHA4f35ON2lCz549uRIbi00FBxHJYn75Bcy5a77oH+0me/ah7NlzF2XKlCEmJoaYmBjAnP2za9cupk+vR48evuld7fFAly4+WVr8XEYqPjVrZu7cuesus3DWqBHUqZNxWkuJiAXi42HPHoiLM7cghoZChQrgcJCQkMCkSZPo1asXwVd3gYuISNrZbDZmzZpF5cqVGTZsmFrUSJbQv39/UlJSmDJlCoY+oMhf8IuP3uXLl8cwDPb9+CPExRF75Ah2m41PP/0Up9PJjBkzcLvdXLhwgdq1a9OqVavU5xYsWBCPx4PD4eDSpUtUK1eOkuPGQd26BG/bhg3zdFnAH45pA2xXJ6zeAdRdu5bksmUpd/o0Cxcu5IsvvgCgRo0a5uNtNtxuNzExMRQoUCB1voSISFbyySfmOQzfsHP5chkcjrDUXWoDBw4EoGPHjrjdburXP09IiG+OHhQE7dv7Zm3xb4ULZ5xixPHjZkHwiy9g5EhzY2bFijBrVsbZ1SEi6eDoUXj5ZShdGvLlM18sHn0U/u//oEoVyJUL6tbl+169cF68mPr7VkREvKd06dK8++67TJ48mXXr1lkdR8SnVq5cyeLFi5kwYQKFCxe2Oo74KWs/drtc8Nln5OzThwN2O5179YLgYHoPHUq8x8O0/fvZ9eijBJ05Q4ECBTh48CCjRo26oaoWEhJCUlISV65cYeWsWcz++Wf6AwZg9/zlRIe/ZAfyX7rEV4mJ2ObN46uvvsJut/Prr78CZiHC4/Fw6tQp9TgTkSzrhx98f4wPPthLw4YNAVLfwOTPnx+AkyeP8O67vjnum29Czpy+WVv8W40acLUbZIbhdptvowD274cePeDBB+HgQWtziYjF4uPNF4RSpeDdd83WsX/lyhU8mzfTdPFiYmw2in/zjbk1UEREvKpPnz48+OCDdO/enYSEBKvjiPhEbGwszz33HI899hgdOnSwOo74MWsKER4PzJwJJUvC44/DwoWUdjpvCJPL4+FBoOqqVRwElsbH07dRI+rWrXvDUiEhIVy+fJncQJ0RI6hiGLfdMMQBGB4PJf77XwYWKkS5cuXYv38/AIZh4Ha7VYgQkSxt+/bfT376gsMB0dEBvP766wAsXrwYILVdxJEjR+jaFapUiQG8M7XX4YAHHoC+fb2ynPi5K1fMnT0vvQQPP2zuJnjlFatTpc21c4eRkVC1Knz/vbV5RMQi331n9m2bO9d8YfiXX9jG1W1UOZ1Oszfho4+a7ZtERMRrbDYbs2fPJiYmhmHDhlkdR8QnBgwYQHJyMlOnTlVLJvlH6V+IOH7c/OTfsydcbb2B869PJhn8PsTiQaeTCRs2wKhRN1ytExISQkJCAqMA208/3dIuiL/jAUbFxvJQsWKphYjrd0Roi5GIZFW+nrNmGJCQYL7mAuzcuRMwv86fPz+HDx8mIuJddu+uTO7cZ7Hb0/aa73CYbXmWLs04rXnk9sTFmQWHIkWgRQt47z34+muIjoarmx8zPKcTEhPNt1npsXtJRPzI6tXQuDGcPn3LVwwY1z4/rVoF9epBbKwPAoqIZF133nkn77zzDpMmTWL9+vVWxxHxqs8++4wFCxYwbtw4ihYtanUc8XPpe9rll1+gVi3YsOGWnxoAGE4nDBkC3bunNkLOly8fd586xXN4b3SqDbB5PAzdu5d90dHmbVdnRGhHhIhkZekxHsduh/PnzwPQqVMnAPbt20eJEiVYsGABw4YNY8SIPuzfX4hy5Qzg9hrj22zmxrzvvzfndkrm9eWX5kXC77zz+/k1pzNzdiFxu81dH08+CZcuWZ1GRNLFnj3wxBPmC1tahsW4XGZ19rHHfLv9UUQkC+rXrx/16tWjW7duXNKbNPF3yckQFQUrVsDixfDpp2YP2D98gDp//jzPPvssjzzySOpnd5F/kn6FiFOn4KGHzKt0/mYHxE2bMwcGDuT7779n8uTJ/CclxUsNOn5nOJ2UOnGCO48d4/Lly6mtmWJiYlSIEJEsq0QJ367vdEKxYhB3tTXEW2+9BcCYMWM4fvw4+/fvZ968efz3v/+laFGDqCho3vwXzGLEzTX5v1ZMee452LnT99+TWOudd+CRR+DMmaxzXs3lgmPHzDm1IpLJpaRAx45pL0Jc43LBpk0wdmza1xIRkVQ2m41Zs2YRExPDSy+9ZHUckT9LToaFC6FuXcidG2rWhDZtoEMH84KHMmUgb17zfcfmzeDxMHDgQC5fvsz06dPVkkluSvoUIjwe6PX/7N13fI1nG8Dx33POyUQSI1at2puImrFLqJaWWuWlVlFUa1WVGlUt+lKjihq1V0u1FLH3SohVIVaMIEYiW3LOed4/Hom2L0VynpyM6/v5+FTi5L6vk56cPM993fd1fZCio8LPNGMGX/r4UNPFhTo8KeFkS1ajkf5AcHAwBoMBs9lMRESEJCKEEFlWzZrg4KDf+KqqXe+Eh4djMpmSS+HduXOHBw8eUKRIEbp27Zr8eGdnlbi4DzEYaqEoazAYtN8xWsmmpN83VgwG6+PPQ9u22nXT999r11ci8/rvf7VeEGCb9bmXoz7+Y+utEi/GatVe47dv22V6IURamT0bTp1K/Uavfxo5UiupK4QQwmZKlSrFxIkTmTlzJntSUClECN2sXw+FCz9JMjzruiIqSqtrXKcODypU4MDixUybNo1XpMSAeEFpk4j4+WftGI8NtyJagJ9z5GBmrVovuAf25RksFloDwadOYTAYiI+PB5BEhBAiy6pbV9t8qRdnZ63ZbkREBB4eHhw/fhyAbNmyJZ9KU/9yHHTTpk3s3LkTg+EEitIVb++38Pb+ivfeuw6sp0GDaJzS6LOcAAAgAElEQVSc/qBOnYOsXau1Jlq1CmrV0u85iPTh0CEYNsxes6tona4mkC3bdRTFPjWgrFZYsMAuUwsh0oLVqmVc9agzZ7HAvHm2H1cIIbK4gQMHUrduXXr27CklmoT9xcdryYc2beDePe1zz9vB9ThJ4XbuHGcVhfdtvRlCZGr6JyJUFb78UutAakNGIHtUFPn8/W3WG+JpTMDDfftQFEUSEUKILO/NNyFXLn3GNpmgWzdwcXlyIqJhw4YYDAY+/fRTatSowaNHjzh9+jQAiYmJDB06lOLFi2MwGDCZTAQEbKV7dw/eftsfaMe6dQmUL/8FFSos4913Qd6+s4b4ePjPf+zVgNwMWChY8AtcXL7GYqlKjx4XyZZNu9FUlLS7ULdatdPVQohMats2rQ6bHiwW7bSFLC4IIYRNGY1GFi5cyM2bN/lc6mgKe4qPhxYttB4Q8NIbG0yAo6qifPABfPut7eMTmZL+t+hHj8Lp0/rs1DEYcLp6VdcnoQLqyZMYDAYePXoEkFwqRAghshonJ/jwQzAYbP+ebjZrY6uqyp49e7h9+zatWrXCzc0NR0dHvvrqKwB69uyJxWJh7ty5XLhwgfDwcHr27Mlrr72G1WqlefPmhIWFYTQa8fDw4JVXXiE0NNTm8Yr0a/lyrZdaWvaEMD7eFVGy5COgGmFhX7Nr1y4aNarLkiUVcHEpBbThjTdu4uUFTk5mIAHtSkM/589DXJyuUwgh7GXnzieNj/Rw/z4EBek3vhBCZFGlS5fmq6++YsaMGezbt8/e4Yisqnt32LvXNjVshw2DtWtTP47I9PRPRGzcqN8FstWKovMqg1VRiLlxAwfAEhsLgKenp65zCiFEevbpp5AzZzy2rX1voWjRTZQrl0jfvn05duwYr776KitWrMDZ2ZlHjx5RuXJlAPz9/Rk/fjxjx46ldu3aPHz4kMGDB+Pm5gbAgwcPCAsLw9PTE4PBQMGCBSURkYWoKkyfrudpCBVIwGi0oihPrkGqVzezciV8/vmvwGksFgsWi4Vff/2VunXrcu/eLZyc/mDdugIcPw6LFq0FiqCVcNKP1Qpnzug6hRDCXo4e1f/EQkCAvuMLIUQWNWjQIGrXrk2PHj2IfbzWJESa+eUXrWaxrRrpKYrWG/jOHduMJzIt/RMRx46l7ZZEGzOoKh+EhrJ87VpOnj9PPOBQpw4MHAj79+tz0kMIIdKx7Nlh+PAzaL9CUv8eqCgWFOUmISEd8Pb2ZuHChZQtW5YaNWpgMBhwcnLi0aNHeHp64uLiQpMmTZgwYQIxMTHcvHmTtm3bUqJECc6cOUO2bNlYtGgRYWFh5M2bF0ASEVnMxYvaQUz9mlMrwG58fa/SsmUgitIGKMSIERupUuUc/ft/QJcuXahVqxadO3cmLi6O4sWLoygKjx49YsmSJQBYLBbAXa8g/yYiIk2mEUKktQsX9B3fwUF7UxVCCGFzSSWabty4wahRo+wdjshK4uKgTx/bltBXVYiOhuHDbTemyJT0T0ScOqXrYr3eaQAFcPnLx04A/v4wZw7UqwcVKmiNuIUQIgt57bVooB/au2Rq3okTcXNTWbYsDIjh9OnT9OzZE2dnZzw8PACSExGKolCkSBEKFSqEqqqYTCZCQkIYPnw4QUFBXL9+nTfffJOVK1dy+/bt5NNrBQsW5M6dO5ilznWW4O+v7/gmkwoE8dFHwXz+eSKqup7ChQ1s2LCBd955hwIFCtCtWze6d+/O7du3adiwIUuXLkVVVQoUKEDv3r0pWrQoQ4YMAXTLlvyNUc9mWkII+0lIyBxzCCFEFlWmTBkmTJjAd999x4EDB+wdjsgq1qzRyi/aeq3WbIYVKyAszLbjikxF/0SE3kfMFCWNbuP/IWlBKygIWreGzp1ly6EQIstwdHQE5lGr1hwUJTGFFfgswDW6dp3DkCFvkTNnThRFYe7cuQQFORIc3ITevSE0dAGrVvXi3XfBbB7Jxo1WPD2LEhsbS/78+alevTqbN2/G2dmZzz//nIiICM6dO/e3ExFWq5UwuSDKEgIDtU28ejGbFaA6n332Gb179wYgNDSUn376ifPnz3Pp0iWaNm3KBx98QHx8PIGBgSQmJqIoCqVKlaJ06dJcu3YNd3d3IG2OLktrKyEyKReX5z8mNVRV/zmEECKL+/jjj6lZsybdu3cnThp7ibTw/ff61bG1WmHxYn3GFpmC/okIPRuoAYqi6Fxd+TmSMoirV0Pt2nD7tj2jEUKINOHweKW3YsUA8udvhre39vm/1sx/NjOgkjfvSqAiM2cOJG/evBw+fAxn5764uV0kPv4IO3e2ZdEilehoH27cKMP69XD5cmfu319CRMQ5rNbJ3L5tYtWqVWzevJmGDRtSqVIlfHx8CAkJ+VsiApDyTFlE2uwJyIWnpycNGjTAw8OD/I9X+rt168b+/fv5888/uX37No8ePSJfvnwA+Pr6smfPHs6fP89XX31FcHAwEEWxYvqe7XR2hjJldJ1CCGEvlSrZtqzCP5nNUK6cfuMLIYTAaDSyaNEirl27xujRo+0djsjs4uK0/k961bFVVdi9W5+xRaagfyKiRAl9x7daUfW8AH9RFotWQ7VJE60umhBCZGLaiQhwcXEhNjaQgwdh0yYzJpMfipJ0UWMFzBiNTxZa3d2hePHfKVnyDe7e7QrEYzKZePiwAJ06FSUubjaRkcUeP9qAxfLk/d1qBVXVaswkJDgDgzAaL9KjxyF2795D8+bNAejRowcxMTHJMUoiImtJm0sCK//973+ZNWsW1apV49atWxgMBqpVq0bdunUpV64c+fLl49atW9x53LDt8uXLyeXBRo4cSbt27QBwdDzyuNyT7RkM8NprUppJiEyrenX9f8CTdhoIIYTQTdmyZfnyyy+ZOnUqBw8etHc4IjM7eVLPZnpaIuLIEemnK55J/0REzZr61kgAdjo5kajrDC/IbNZKNY0YYe9IhBBCV39NRERGRgJWFGUbiYlvsGrVHyhKXaA/MIrx4xNxc/uQDz+cwYMHMG+eGxcvbkFVVerVq4fF0oKQkA2cOJG0gvyiiyomLBZH4uKmYzYvpUGDpgC0adMGgPPnzwPg6emJ0WiUREQWkT+/3te9KhCKi4sLUVHRnDhxH3iHYsVmM2tWLqZM0VpH3bwJixcvwdHREQcHB4KDg5k4cWLyKA0aNMBoNHLhwmePyz3ZntUKj6tHCSEyo+bNn5SL1UOxYvpvKhNCCAHA4MGDqVGjBj169JASTUI/ly/rP8f9+9rJCyGeQv9ERP36kKhfmiDO1ZXJhQqRiP6Nq1+I1arVW9u3z96RCCGETUVGalXohg2DXr2KAf4sXToQVV3L2LEJfPddIGXKlGPDhpUUKHAVmANMolGjAKpWPcv9+weJiYni22+/BcBkMvHRR5tR1XWAQ/Jph5eTtID7Lp06aYfTHj16BMCRI0ewWq0YDAYKFCjAzZs3U/stEBlAtWr6rstpJ3xOs2RJHgoUiCM8PBCr9WeuXOlNcHAHPvtMpXVrKFQIJkzojJPTEBo1as3o0aMZP348hw4dAsBiseDg4MDKlX2B82gly2xHUSBnTnh88EIIkRnVqgUVK+pzFExRYODAtDpmJoQQWV5SiaarV68yZswYe4cjMisd12ftMo/IcBRV1fm8TEICFCyoZcRszWiEESNYXKoUB99/n7m2nyFljEZo1gz++MPekQghRKpdvgyTJ2s9p+LjtUNuiYkqT5IAZoxGIxaLQvbsD4iO/poRI3LwzTdjMJlMTJ06lTNnzrBv3z4cHBy4evUqjo6O3LvnhItLCHFxCrbJi1vp1+8aH34YTaVKlQBP+vc/SFhYSTZsuI3ZnBuj0YEcOcDLC2rU0BZpvbxsMLVIN27f1i479L26iUNRnNEuof7ttasde3Z1TWT+fBMzZvhw584dAgMDWbBgAaNGjaJXr17MmPEnsM3mUS5aBO+/b/NhhRDpyYoV0LmzbcdUFHBz0y4AcuWy7dhCCCH+1aRJkxg5ciQHDhygVq1a9g5HZDZr10L79vrPEx8PTk76zyMyHP0TEQDjxsH48bavQ2YywaVLbDp9mjfffJNVnp50uHvXtnOklKLApUvw6qv2jkQIIVLEaoVZs2D4cO2kwYvtMtfe5wsUiOfWrcZUrBiDt7c3uXLlYtq0aRQtWpTFixfTsGFDTKbtWCwNU3gS4lkSGT/+GF98cQXoABgwGg1Y/tFDW1G0nLHZrNXQ//JL8PW1YRjCrlq0gG3b+L//77Zj5WWSZ4qioqoKrVpFsXNnMd55pyWqqrJ8+XIMBgMWi4V8+dZz585bvHhpsmczGqFpU20/hGxmFiJzuxYSQmjVqnhHRGDTYrgrVkCnTrYcUQghxAswm83UqVOHqKgoTpw4gbOzs71DEpnJ2bPaaUo9FS0KV6/qO4fIsPQvzQRaHY+iRW3aTE0FLcFRpAh58uQBYEzOnNpcgG5rDy9j0yZ7RyCEECny6BG0bQuDBml/f/FSNwbAwJ07zsBB3N0/YdeuXcyePRuAtWvXPu7VUB+zuYmNkxAACl98URNoD5jQGl7//6NU9clzCgjQymz36KGVnxIZ34ABeiUhkvZuvNzlk6pq2YCNG3NQqNBRli5dybJly1BVFVdXV5YtW8aVK62pVCmS1JZoMhqhdGlYvlySEEJkdr/99htVvbz4yNUVPDxsc69lMEDHjtofIYQQac5kMrFo0SIuX77M2LFj7R2OyGzKlgU9k1tGI9Surd/4IsNLm0SEqyssW2az4awGAycUhci+fQGtESlAdEwMTJ6MdfNm7qDtV9SxF/y/Mxq11S0hhMhgLBbo0EFruJtSVqsBUDhwoAfXrjXAx8cHgPDwcLZv346b28jHtfZtTUs+8BL7QpMO6y1ZAnXrQno5WCdS7o03oEkT7eCk7fy1HFnKWK0QFPQqiqL1STEajZw9e5bOnTvj4qJw+HBOnJ33Jj36pcdXFK1Hxt69Uk1FiMwsISGBTz75hNatW9OgQQO2nD6Nw7594O6eumSEomhHyhYvlkymEELYUYUKFRg7dixTpkzh6NGj9g5HZCZGo7YLz7Y3Sk9YLNrNmBDPkDaJCIA6dWDpUu2iNjUXtkYjliJFaK6qbHh84iDpRERsbCwAl0uWpDTw3+LFueLomPylCYDFYNAKnOt9cW02w4kT+s4hhBA6+O9/YcMGW1TTU9AWb+fTtevXODo6cu7cOfz8DhAV1RSLRa/34ZSNa7FAUJC2gB0dbeOQRJpSFFi4EBwdtc29NhrVRuMYUNWBODo2QVEUChQo8ORfDPE4Og5HURaine18sR9CRbEAZsaMSeDgQXh8WSSEyIQuXbpE3bp1mT17NjNmzGDdunXkypVLK7Nw9KiWjXxZRqP2xjl4MKxfr715CiGEsKthw4bh5eVF9+7diY+Pt3c4IjMZMOBlSh68HA8PrRGjEM+QdokI0OqMrlsH2bO/dPYtad+sWqsWDkePUsbHh1WrVgGQI0cODAYDcXFxAAQGBhIDXGjcmJIJCeycO5efmjdnhpMTib16aT90tWrZtFTUU0VF6Tu+EELY2LlzMGqULUdUAIVRo4pQsmQZjh07xo0buVHVtP3186LMZq1s5qef2jsSkVpFimjraQaDLZMRtmEwKLi4LMFsNvPNN9/w6JHWWLpIkXtERvqjqj0wGk1oVz9/PzmU1N/kiYe8885VTKYKODtP021zkxDC/tasWUO1atUIDw/n4MGDDBw4EOWvm6tKlIBDh2DKFG0hAP79DTDpDaNiRdi/H779VtuwJYQQwu5MJhM//fQTwcHBjB8/3t7hiMykcWOoWhWrrW+SFAWGDNG39JPI8NL+1vztt7Utp0ldQZ93x/z4BIXV0ZGPgAVdu4KnJx07dsTPz4/79++jKArZs2cnISEBgN27dwMQHx+Pm5sbRRo3ps/OnTwaPRrnuXNh6lTw9tZ/ZUJ2EwkhMpgvv9T6J9iWA9ev58PNrTP+/v4oSnUURY+yTLZhtcLs2Vp5G5GxNWsGGzdq18IpW6DXp+OU1arw8GFBXFyaMWbMJkqXjqNHD5W7d5+cjtBODBl52kkMiwVKlYK1axMpX74RISEd6NWrMZMmTSIiIkKXmIUQ9hMXF0e/fv3o0KEDLVq04Pjx43h7ez/9wUYjDB0Kt25pp9FbtoTHZWyTGQxajegePeDIEe0Ud506+j8RIYQQL6VixYqMGTOGSZMmcezYMXuHIzKJyKgoRhQsiCX1JRCeMBqhfHkYPtx2Y4pMSVFV2y85vbATJ+CHH2D16md3CC1XDvr2ha5def/jj9mwYQNBQUEAtChQgIUtWlA1IYHwHTvIpqo4ODlxR1XZm5DARU9PbjZoQGLOnKxfv57Lly+TI0cObdxvv9W2vNryB++vDAatLtrvv+szvhBC2NidO1CokF6nNM0ULRrCnTsVyZNnFnfu9CQxUY95bMNo1DaK+PnZOxJhC9euaettO3Zo/2+f18haUayoqgGTKQGz2YDWe8S2FMWCyXSaxMTKaCWYXm4Ok0nbuDxhwnmGDi3H6NGjmTJlCoMHD2bChAk2j1cIYR9BQUF06NCBCxcuMGPGDHr16vX3UxAv6t497X7LaNQSE66utg9WCCGEzSUmJlKrVi0ePXpEQEAATk5O9g5JZGBHjhzhvffe4+7du+xs3ZrqtujnazCAkxMcPgyVK6d+PJGp2TcRkURV4epVOHlSu0A2maBgQa3GqZtb8sPu3btH2bJlGVqlCiNiYuDIEcyKot26/+NpmHlcEMRgYJXVSsznn9P7rzfmu3Zpq0x6MRph9GgYM0a/OYQQwoZ++AH699fjRMRf5aVu3eUcPfo6iYnpvxFmcDCULGnvKIQtqCr88QfMnKklmFQVDAYVq9WCwWDEYFCSk3Dly5v55BMTgwerREWl39epomjX/S1b/si2bYPo2rUry5Yt49KlS+TLl8/e4QkhUmnp0qX069ePwoULs2bNGipVqmTvkIQQQtjBqVOnqF69OsOHD5cNJyJFrFYrkydPZvTo0VSrVo0VK1ZQokQJbc0yNaW/jEatGsyWLVC/vu0CFplW+qiarCjw6qta2aauXeG996Bhw78lIQDyODlxsEIFRuzcifr4WJpJVZ+6amZCK2hgsFppD/SaNg3mzXvy2OrV9S2dZLFAvXr6jS+EEDZ27Jj+rXPAmzNn9pCYaP8c+PMYDPDbb/aOQtiCqmobdFau1EpuJV0KWK0KYMJq1ZIQBsNdYDIbN8bx+uuk6yQEaM/DaoWtW3uRM6c3QUFBGI1GvvrqK3uHJoRIhZiYGLp3707Xrl1599138ff3lySEEEJkYZUrV2b06NF88803BAQE2DsckcGEhobStGlTRo4cydChQ9m/f7+WhAAYNw4WLoRs2V6+lq2iQOnSWn8qSUKIF5Q+TkS8iHv3oHFj1D//RHleTYV/M2AAzJih/cB07466bBmKreuQKAoUKwYXL6a/DplCCPEMlSrBmTN6zmAGvsDLK5ITJ2bpOZFNGI3QoQMsX27vSERqXL0K3bvD7t3atfW//8q3AioODtCtWyLz52eMRmsmE5QpE87Zs7lp27YNv/32G8HBwRQtWtTeoQkhXtLp06dp3749165dY/bs2XTr1s3eIQkhhEgHEhMTqVGjBmazmYCAABylJ6l4Ab///jvdu3fH0dGRpUuX0qRJk6c/8Pp1+OQTWL9eW9N81rqrwaDthHJzg8GD4bPPpD+ueCkZY5U8JgZefx1Sm4QAmDULRowA4Prbb9s+CZHk448lCSGEyFAePNB7BiuQGyencxgM+jQBtiWLBWTDUca2apXWM23/fu3j5//KNwBGEhONzJ+fcervms1w9mxOGjT4jp07d+Lu7s7YsWPtHZYQ4iWoqsqPP/5IjRo1cHBwICAgQJIQQgghkjk4OPDTTz8RFBQk5ZnEc8XHxzNw4EBatWpFnTp1OHXq1LOTEACFC8PPP0NIiFZmvkEDSOqxm6RgQWjdWjtBcfu2VtZJkhDiJWWMExEffQTff2/TxtKLu3Shz9q1zHNw4D8xMSi2+jaYTFqD7YAArYukEEJkEK+8AqGhes6QgMEwE2fnL7BaVxAf/waQvt8nCxaEmzftHYVIiYULoWdPe0eRdoxGqF07gaCgVyhcuDAnT57k9OnTlC9f3t6hCSGeIzIykj59+rBq1Sr69OnDtGnTcHFxsXdYQggh0qFx48bx5ZdfcvToUapVq2bvcEQ69Oeff9KxY0cuXLjAt99+S//+/VGUFJScVVWIiIDERHB1hezZbR+syHLSfyJi/36b91qwALeB+cOGMWzoUFxr1NBWmlJ7OkJRtETEsWNQpYotQhVCiDTj7Q3Hj+s5g5ny5ZdhMk1j1qyTGaKMZOHCcO2avaMQL2vnTu0gZTq/wtHF9Om/MmjQO3h6elK/fn3mz/+ZFStg3z6tfOvNm9ppH2dn7bRIrVrQqpX2/ZKDnEKkvYCAADp06EBYWBg//vgjHTp0sHdIQggh0rGEhARq1KiBqqocO3YsuUSTqmrXef7+EBwMjx6BiwuUKaPd5xUoYOfAhe5UVWXevHl88sknFCtWjFWrVlG5cmV7hyXE36T/W84JE2zePdUIFATGlCiBa968sH075MyZunkURbuDX7tWkhBCiAypRg29D3KZKF06igsXLlCnjpWWLV++H1Zae/VVe0cgXlZUFHTtqv1azooKFGhNixYtSEjIwS+/NCZfPisDBmiXJyEh2p4LVYW4OO3w5ty54OsLxYvD/PlZM3kjhD2oqsqMGTOoXbs2Hh4enDhxQpIQQgghnsvR0ZGffvqJP//8k4kTJxIeDtOmQcmS2iaqd97RyvaPGweffgpvvaWd8i5fHn74QbtWFpnPgwcPePfdd+nbty9du3bF399fkhAiXUrfiYjLl8HP79lNUlJBURSYPl274y5ZEg4fhlKlUrZyYTSCuzts2qTVSxNCiAyoZk3t1KV+LHh4XCY+Pp7r168xb562S8dgSJ8rnw4OWnJGZCwTJ8KtWzat5phhGAwWAgKgTZvFPHx4FPiAhAQDqvrsS6mkw6AhIdC7NzRpIqeAhNDbgwcPaNOmDYMGDaJ///4cOHCAEiVK2DssIYQQGUTVqlX57LORfPnlNQoVsjBkCFy58uTfLRbtGu+v139BQdC/PxQrBuvWpXnIQkd79+6lSpUq7Nq1i19++YU5c+bg6upq77CEeKr0nYjYsEG/LY2qCufOPXm3Ll4cAgPh88+1xMKL1CdI2sr71lvau7qvrz6xCiFEGmjTRksM6CMRV9dtREZqK5xBQUEULAi//AJaE+v017w6MRHq1rV3FOJlxMVpO72yYhICwGq1snDhFXr39gRyAS9/5GjfPu34/tmzNg9PCAEcOnQILy8v9uzZw6+//sq0adNwcnKyd1hCCCEykNhYOHFiDFbrQmJjFVT1+adakx4THg5t20K3bnpvQhN6M5vNfPHFFzRq1IjixYtz8uRJ2rRpY++whPhX6TsR4e+vf22FgIAnf3dygi+/fNIlvmDBZ39dtmzQvbtWUH39esiXT984hRBCZ25u8P77epVLcqBWrQDOnz+Pk5MT58+fB8DL6x7Ozu0wGq1ASvr06HeaIk8eaNlSt+GFDtavh4cP7R2F/SiKkbt3iyd9lKIxzGbtBrVhQ+1ySAhhG1arlcmTJ1OvXj1eeeUVAgMDaS0nqYUQQrykuDho3hz++CNpOe/llvWSEhZLl2oJCUlGZExXr16lQYMGTJw4kbFjx7Jz504KFy5s77CEeK70nYg4flyXskzJTCY4der/P//KKzB2rNbpJzQUfv9dK5w8dy6sWQMXLkBkJMybB15e+sUnhBBpbNQo7VSELXPAimLBxWUXnTrl59y5c5QsWZKgoCAAxo0bh8m0gz59ZgKHH3/FiyYkzJhMKUlePJ/BAAMG6N0zQ9ja3r3pv++InskzVbXNZZ3FAhERWq+NrHq6RAhbunv3Li1btuTTTz9l2LBh7NmzhyJFitg7LCGEEBlQ375w4EDqr9FUFTZu1PpJiIxlzZo1VK1alRs3brBnzx5Gjx6N0ca9dYXQS/pORERH6zu+ojy/U0+BAvDmm9CzJ3zwAbRrp/WSeJHSTUIIkcEULAizZtmyYa0FiKNNm81Ur+6N1WrF09OT8+fPExQUxA8//ECfPn1YsGAkQ4b8RrduW1CUpJNqKpBA0sKt1ktCSzzkzAm5cy+ka9fxtGhxBVuWdjIatUZvQ4fabEiRRo4cedLzIH1Kn/1QnsZs1hI7P/5o70iEyNj27NlD1apVCQgIYPPmzXz99dc4SJZbCCFECmzcCEuW2G6jiKrC1Klw8KBtxhP6iomJoVevXnTo0AFfX19OnjxJXaklLDKY9L2anhYZvfS/dVIIIdLUf/4DgwalfhwtcWBFVVtTqlQ2KlSogJOTE46OjgQFBTFs2DCKFCnCgQMHKFy4MOPHj6V48aPky/c2585BhQrTgB8xmf6gRIkgypY9iYPDONzd3yU0VMXb+xd2717B5s2VcHG5j9Fom0Veq1W7wM+WzSbDiTR09areM6ikNOmlKBacnRVSWjLJXiZM0PdwqhCZlcViYfz48TRu3JjSpUsTGBhI8+bN7R2WEEKIDMps1k5D2HpPrMGg7bm13UY0oYcTJ07g7e3NypUrWbBgAatWrcLDw8PeYQnx0tJ3IqJoUX3Ht1hAjkULIcTfKApMmwbDhmkfp+Ri12Cw4uysMGjQVmAn33zzDZs3b6Zy5crExsZy69YtNm7cSMOGDTl48CDz58/H1dWViIgIPDw8KFsWypU7hNE4iCpVxhAX1wQHh/epV+8gDx/+wp49fgQEBHDlyhVmzvyG48c9cXdXSFmfib+bPx/q10/1MMIO9D4NoShW4C5aQuJF79asgErFigns369nQ3h97h5v3IDNm3UZWohM69atWzRt2pSxY8fyxYnX940AACAASURBVBdfsH37dgr+W+85IYQQ4jk2bdKqh9u6bKbFAmfPyqmI9EpVVb777jtq1aqFi4sLx48fp0ePHih699MVQifpOxFRs6a+BbqtVvD21m98IYTIoBQFJk/WLnjz5HmZnhHaSnDFig/4808ID19LlSpVaNmyJW3atCF79uzcuHEDgDJlyrB69Wr69u1LgwYNAAgPDydnzpwAXLp0iXLlyhEcHExoaCgnT56kU6dOALRu3RpFUciRIwcDBgygbFmFnTvjgBBSsmPdZAJnZ1i2DHr0eOkvF+mEq6u+42s7xaYCw4Hbjz/7pHzYXx6JoiR1/rsBDKJYsfc4fvxH6te/9Lg5u63pczNiMsGvv+oytBCZkp+fH1WqVCEoKIgdO3YwZswYqdsshBAi1ebN069oiMkk5TjTo7CwMFq2bMknn3xC//79OXz4MGXKlLF3WEKkSvpORNStC4mJz39cSjk5QdWq+o0vhBAZ3BtvwIULMGXKk0NqiqLliI1G7eSDthCrKVLkCvA2Y8fup0gRle3bt9OsWTNWr15Nz5492bVrF1cf189JTEwkd+7cTJo0Kfnrw8PD8fDwwGq1EhQURKtWrYiKikpOTmzbtg2AQoUKMWnSJCIjI4l63OvHwyMMqAhMQ1HUF7pQT6rOV7MmnDkDnTun4psl7K5yZds2Wv9/RuAU27b5EhbmzNtvL0JR5mIwHMNgeAjE4OwcS4ECVyhYcB3QHIOhBM7OP7Jlyyb69OnD1q2NsVjiySj9IsxmrfeGEOLfmc1mRo4cia+vL9WqVSMwMJBGjRrZOywhhBCZgKrCvn36lcs0m2HPHn3GFinj5+dH5cqV8ff3548//mDq1Kk4OTnZOywhUi19JyLeeAM8PfUZ22SCLl2kCLgQQjyHuzsMGQKXL0NAAMyZA717Q8eO0KLFA2Aq7u69GTjwW6ZPPwtsYP36dQQFBREaGkqTJk0wGo3MmTOHrl27AqAoCpcvX2bOnDm4ubklzxUREUHOnDm5fv06cXFx+Pj40LZtW6KjowHYtGkTzZo1Q1VVSpcuDcC1a9cAOHXqFBBP+/bHCA5W6NcvFghPHtto/PsuIqMR3noLduzQLuxLlNDzuyjSQo0aadFeKoBs2bLh6ZmT6OgVZM/+OR07TickJAp391do164vR486EhvbjyZNzFitZtq1a4ejoyOxsbHcv3+Cd989REbqFXHunNQNFuLfXL9+nYYNGzJ58mS++eYb/vjjD/LmzWvvsIQQQmQSV6/C471Xus7x8KG+c4jnS0hIYNiwYfj6+lKlShVOnTpFixYt7B2WEDaTvjs1OzjAgAEwbpztC+GZzdC/v23HFEKITMxggGrVtD9J7t9XyJPnM9zcCgMuREZqCy+rV6+mbNmyODo64uPjA2jJh8KFCwNarcts2bLRrFmzv80RHh5OxYoVOXfuHABly5alYMGCJD4+HTdo0CC8vLxo165d8o6QkJAQypcvz4QJEwAYN24cJUpAzZrrmDWrKwcO3OHaNU9u3dJ2Ebm7a4fhKlXSyjGJzOOtt2DiRH3GNhigTJkYzp27h4uLC/Hx8ezdu5eEhATatGlDoUKFmDFjBt26dSMwMBAXFxdWr15Ns2bNuH79OjExMezfv58dO3bw88+TcHb+mfj4t0nve0JA+7l59Eh+XoR4mt9//53333+fbNmysXfvXurUqWPvkIQQQmQyjyvb6i40VLtXEvYRHBxMp06dOHXqFFOmTGHw4MEYbN2dXAg7S/+v6CFDoHBh225xNBqhTx/w8rLdmEIIkQXlypULNzc3DAYDDx8+5M6dO+TIkQMnJycWLVpE7dq1yfb45NmNGzeYOnUqzs7OKIpCTEwM7du3Jz4+Pnm8pGbV586dw9nZmY8++ogZM2YA4OHhwe+//56c2Lh48SImk4mQkBDWrVvH0aNHAShevDgAGzdu5LXXqlOnjicdO8Inn8DQodppjtdek0XVzKhmTS3BpEd5JqsV2rTR7gJdXFw4dOgQCQkJODs707x5cwD+85//UL58eU6fPs3MmTPJnTs3PXr0YO/eveTOnZs+ffowefJkpkyZTM2aP1CkSMq7Aibdk7Runeqn9kJM6XvrihBpLiEhgcGDB9OqVSt8fHwIDAyUJIQQQghdmM2Zax7xd6qqsnjxYry8vIiMjOTQoUMMHTpUkhAiU0r/r+ps2WDpUtudiDAaoUABreC5EEKIVFEUheLFi2O1WomMjCQsLIx8+fLRr18/Ll68SN26dZMf+/nnn+Pg4EB8fDzu7u6YTCY2b97MG2+8QWRkJPCkWfXOnTuxWCwcOnSIDh06kD17diIiIjh9+jQ3btygVKlSHDhwgEKFCnHhwgUGDhxIuXLl8PDwwNHRkcTERLZs2cKbb75pr2+NsANFgdGj9SgjZAUsTJ5cHIiiUaMS9OuXF4PhU+rX75KcbDt58iTBwcE4OzuzatUqADp16oTRaCQ6OpqQkBD++OMPhg4dCiRSt+4cvv8enJ1V4MV7YhmNkDs3/PabdnBUb56ekogQ4q8uX76Mj48Ps2bN4rvvvuPXX38lV65c9g5LCCFEJvWXSra6ypEjbeYRTzx8+JDOnTvz/vvv065dO44fP463t7e9wxJCN+k/EQFQrx7Mn5/6cUwm7ZzZtm3yDiuEEDZSvHhxEhISkk9E5MuXj4YNGwJw7949AAICAliyZAmqqibv9DCbzfz0008cP36cxo0bExoaSlRUFHv37mXjxo14eHgQGBjIpUuXeOONNyhSpAiurq4sXLiQevXqsW/fPooWLcrGjRuJioqiXr16yTW59+/fz8OHDyURkQW9+652SsC2vSIMgJHERAcgO7dumTh/vixW6wS2bZtH69bg7x/He++9R4UKFZg/fz5r165l9erVHDp0CACzuQoWy3gmTGhInjywd68fa9YsYOpUqFAhFDgMxAFaZcq/SmoQD5AzJwwfDufPQ+3a97h0aa0tn+hTWHB0PMHy5csJCwvTeS4h0r+ff/4ZLy8v7t+/z8GDBxk0aBCKHsewhBBCiMfKlXtyGlYv2bJBkSL6ziH+7vDhw3h5ebFp0yZWrFjBokWLyJ49u73DEkJXGSMRAdCjByxfrtXSSMm2PINBK/F08CCULWv7+IQQIguyWsHDoyaRkc25dKkxx497YbU2Z8+e8zg6OvLzzz8THR3NkCFDcHd3x2AwMHnyZKyPT7m5ubmxZ88ebty4kVzSYuPGjbi6uvLhhx/i6OiIv78/LVu25OOPPyYuLo7ly5dTs2ZNTp8+jclk4uLFi0yYMIG4uLjkRMTGjRspWLAgXlKCL8tRFJg7F/Ln13sXvxEwoaoKmzZBjRqOBAe/y+LFy+ncuTPt2rWje/fuvPnmbBwdT2GxHAGGsX+/I/fvg6o6YrE4cekSHD+eH6gLGKhfX6VbN6hbV7tcKV8eGjfWKlX+8ouFDRuO4ug4lubNa5I3b1769m2Pk9NVtFMbtqcoClbrHrp06UK+fPnw9vZm5MiR7Nmzh4SEBF3mFCI9io+P58MPP6Rdu3b4+vpy/Phxqlevbu+whBBCZAGurlCqlJ4zqJQuHYWi2PxYsXgKi8XCxIkT8fHxIV++fAQGBtKpUyd7hyVEmsg4iQiA996DM2egVi3t4xdZYTAatVWJQYO0ry1TRt8YhRAiCwgI0PLDbm6wcOFw4uJ+4tq1UZw9+wmHDo1i0qSPUZQbREQMpHfvL9izZw8PHz5k2rRpNGjQACcnJ0wmE0FBQVSpUoUvv/yS69evAzBgwABiY2OpUKECfn5+APj6+tKzZ09cXV2JjIwkOjoaVVXx9/fHwcGBAQMGcPfuXTw9PQEtEdGyZUvZpZpF5csHu3dD3rxpU1LIYgFVNWI2j2PMmPKEh8cQE+NAXNwcYBNxcUnXHg7A/78mVdWIdknmxIEDCmvWwIcfwrlzsHv3Xd5/fxnXrnXmgw/yUb9+TaZPn07RokVZsGABoaGhfPCBPkkIAKPRwPHjH3Pr1i2WLFlCuXLlmD9/Pg0bNiR37ty0atWK77//nosXL+oWgxD2dv78eWrVqsXChQuZM2cOq1evxl26eQohhEhDHTvqeSpC5cSJzylXrhwTJkzg8uXLek2U5d28eZOmTZsyatQoPv30U/bu3curr75q77CESDOKqtq+krLuVBV27YJZs7QCyRaLlmxIele2WLT/urtDr17Qty+ULGm/eIUQIpO4dQs++AA2btQWeP+9oZmKoqioqgWj8RsaNjzEtm2bUBSFmjVrcuHCBd59912yZcvG9OnTqVmzJkeOHCFbtmzExMRw+vRpvv76a4KCgggICABgyJAhTJ8+nbp1ffD3jyI2thxQlR49PuG339ZTrJgjvXt706dPVTZsWECrVq3S4tsi0qnQUC1htnVr2s2pKCo5cuwlMjI/ilIKVX35O0bt50ahQIEF3LrVG1CpVq0aLVq0oEWLFtSsWROj0ciePXsYP348u3adQFFCUVVnnpboSCmTCdq1gxUr/v55q9VKYGAgfn5+bN26lQMHDpCYmEjx4sVp1qwZvr6+NG7cGLe0KmgshI6WLVtG3759KVSoEKtXr6ZKlSr2DkkIIUQWdPOmVjrJVu1T/8rZWWXFil2sX/8T69atIyYmhjp16tC5c2fat29Pnjx5bD9pFrRhwwZ69OiBs7Mzy5Yto1GjRvYOSYg0lzETEX8VHw+nTsHJkxAR8aQZtbe3lnyQLvNCCGETmzZBp04QF/e8BMTTWCld2oyfnyNFi0L//v1ZvHgxiqKQkJDAlClTKFu2LL6+vhQtWpSQkBB+/fVXevbsSZ8+ffjqq68AOHfuGuXLfwMMBMo9HjsBk8kBs9mMohge7y630rKllY8/NtGkiZarFlmTqsKSJTB2LFy9+iIJNNtISiak1rvvBjBz5ivkz58fAFVV2bFjB+PHj2ffvn14eXnxxRdfcPNmKwYMsN01j6JotYKDguCVV/79sVFRUezevZutW7fi5+dHcHAwJpOJ2rVrJycmvL29Mcg1mchAYmJiGDhwIIsWLeI///kPs2fPlrrNQggh7Kp3b1i06MneW1swGODTT2HiRO3jmJgYfvvtN5YvX86WLVtQFIXmzZvTuXNnWrVqhaurq+0mzyLi4uIYOnQos2fPplWrVixYsECSOyLLyviJCCGEELr75Rdo315b1E3pbw2TSSVPHoVDh+Crr3ozf/58jEYjR48epVq1aqxZs4YOHTrQu3dvli9fTkJCAmazmX379uHj48OuXdC1K9y4oQIqz6sumLTg3KrVk54BIuuyWmH7du21fOQInD2rZ0JCxVYnExRFa29Vs6aKn58f48eP5+DBg1SvXp0xY8YklyCzWqFJE9i3z3Y3pz/9BN26vfzXXblyha1bt7J161Z27NhBVFQUuXPnpmnTpvj6+tKsWTMKFixomyCF0MGZM2do3749ISEhzJ49m24p+UEQQgghbOzhQ62HWFiYbU5GGI1QooS2r9fZ+f///e7du6xZs4Zly5Zx+PBhsmfPTps2bejSpQuNGzfGaDSmPohM7uzZs3Ts2JHg4GCmTp1Kv379pHywyNIkESGEEOJfBQRorXm0OvipG8toVHF1DSMq6lUgDoCIiAjc3d2ZN28effv2pVmzZphMJm7cuMHJkyeZPn0G9+8PZPx4bcfOy150m0zazu5Nm7QGwEKA9lp+9EjbAfb997bdWWZLRqNK3ryxvPJKM/z9D1KzZk3GjBlD8+bN/+8mJjwcfHzg/PnUP59Ro+DLL1M3BkBiYiJHjhxJTkz4+/ujqioVK1bE19cXX19f6tWrh/PT7n6FeBGqCqdPw7Fj2krKw4faL4v8+bUT0jVrQuHCLziUyoIFCxg4cCAlS5ZkzZo1lCtX7vlfKIQQQqSRvXvh9de1DTWpuTczGLTkw4EDULXq8x9/8eJFVqxYwfLly7lw4QIFChSgY8eOdOnSBS8vL1lc/wdVVZkzZw6DBw+mRIkSrFy5kkqVKtk7LCHsThIRQgghnunRI+3CNDjYlgu1Fpo1O8fu3d4kJCRw5MgRatSowaRJk5g0aRLu7u60b9+ePXv28ODBA4KDewAjUjWj0QgODtqOeElGiCSxsVpj6+hoe0fyfKVLj2XWrLq8/vrr/3qj9+ABvPOOdpP6soxG7Yb2669h2DB9Sprdu3eP7du3J/eXCA0NxdnZmQYNGiQnJsqVKyc3s+L5oqNh4UKYOROSmqU7ODxZlVEUSEzU/t6oEXz0kXZE7hklwiIjI+nbty8rV67kgw8+4LvvvsPFxSUNnogQQgjxcjZvhrff1u7PUnKPZjRqSYitW1/+3khVVfz9/Vm+fDkrV64kLCyMsmXL0qVLF9577z1pvAzcv3+fXr168euvv9KvXz/++9//yjWFEI9JsV4hhBDPNGMGXLhg693iRrZtq0ipUu8AEBQUBEB4eDju7u6EhIRQqFAhjh07RsOGc0htEgK0+BMS4K234O7dVA8nMolduzJGEsJgsJIr1xiaNm363AX6XLm05zVzpnaD+SJtGZJO1ZcqBUePwvDh+vVVyZMnDx07dmThwoXcuHGD06dPM2HCBKxWK5999hkVKlSgSJEi9OrVi7Vr1/LgwQN9AhEZ244dWm2Kjz+GS5eefD4xUdsiajY/SUKAlpl75x1o3FhrFvMPx48fx9vbm40bN7Jy5Urmzp0rCwZCCCHSrRYttFKjZcqk7JqtWjXw90/ZBi1FUXjttdf47rvvuHnzJlu2bKF69ep8/fXXFC9eHB8fH3744Qfu37//8oNnArt376ZKlSrs3buX9evXM3v2bLmmEOIvJBEhhBDiqSwWmD7dNvVH/0lb+PwQk8nE+fPnAa1Ek7OzM6qqEhERgdWah9WrG9psQdRqhchI6NfPNuOJjC8g4MkifHpmtRo4fFh54SSawQADBsD16/DNN1Cs2JN/U5S/JycMBm2z+IYNcOaMVskmrSiKQsWKFRkyZAh+fn6Eh4ezZcsW2rVrx6FDh2jfvj2enp7UqlWLMWPGcPDgQcxp0WlcpF+qCmPGaDUpbt168cZFSdn0AwegfHltCyjars5Zs2ZRu3Zt3NzcOH78OB07dtTxCQghhBC2UbUqnDihNZnOm1f7nIPD0x+b9PlChbSNZocOafn81DKZTPj6+rJ06VLu3LnDihUrcHd3Z+DAgeTPn59WrVqxevVq4uLiUj9ZOpeYmMioUaNo3LgxJUuW5OTJk7z99tv2DkuIdEdKMwkhhHiqLVu03TZ6cXAwk5joRqtWTdmwYQMdOnTg7NmznD17lk6dOrF161s8fNhJl9r9+/dLiSYB7drBunX6JNv0sHkzNG+esq+9fVtLvFy9qm0Uz5YNKlWCypXB1dWmYdrM9evX2bZtG1u3bmXbtm3Jp6aaNGmSXMapaNGi9g5TpKWRI7XaYalhMIDBQNTKlXRbsYL169fz0UcfMXnyZJycnGwTpxBCCJGGEhNh40btwOCRI9qJ9sREcHKCcuWgRg1o1gx8fdNmE05YWFhyk+sjR46QI0cO2rZtS+fOnWnUqFGma3J99epV3nvvPY4ePcq4ceMYMWJEpnuOQtiKJCKEEEI81ciRMGWKVuFCP3UoVEhl/fpD9O8/kHv3LhIdfRJVdSE8/Bxms6PNZzSZtAXoFStsPrTIYJo21fqGZARGo7bjbfhwe0diHxaLBX9/f7Zu3Yqfnx+HDx/GYrFQpkwZfH19adasGQ0bNiRbtmz2DvXZVBVCQ7Wd/FYruLtDyZIZ41hOerB2LbRvb5OhVEUhFqiZIwcTFi+WHYtCCCGETi5evMjy5ctZvnw5wcHBFChQgE6dOtG5c2e7Nbm2WuHyZa23mqJoJ0qKFElZmatVq1bRp08fcuXKxYoVK6hdu7btAxYiE5FEhBBCiKdq2lTbVaPfbwkViAX+vnCoKPGo6nWgJKDPhanJpF145sihy/Aig3jjDe2UQUbg4AAjRsD48faOJH2IiIhg586dbN26la1btxISEoKjoyM+Pj7JiYkqVarYv+m12QybNsGCBVpZoH/2vHB2Bi8v6NQJunbVkhPi/929qxXCjoiw2S8lM5Do44PL3r36NUURQgghBPCkyfWyZctYtWoVYWFhlCtXjs6dO6dJk+vYWFi5EpYs0U4Jx8T8/d/d3KBWLXj/fWjbFhyfsx8uOjqajz76iEWLFtGxY0fmzJmDu1zHCfFckogQQgjxVMWLw5Ur9po96VeTfotDe/ZA/fq6DS8ygD59YOFCvU/92IaDA3z+uVYeX/ydqqoEBwcnJyV27dpFbGws+fLlo1mzZvj6+tK0aVPyJhVQTiu//AIffaSdgjAaeWaduaRFcCcnGDYMRo16/t1vVjN4sFbUWo9afampeSaEEEKIl2Y2m9m+fTvLly9n3bp1xMbGUrduXbp06UK7du3InTu3zeZK6ns4dixERWmXXc9aBTUYtNMSuXJplQG6d3/6XoXjx4/TqVMnbt68yaxZs+jWrZv9N78IkUFIIkIIIcRTFSmiNbvNjAwG+PZb+OQTe0ci7GnePC0ZkVEsWAA9etg7ivTv0aNHHDhwAD8/P7Zu3UpgYCAA1apVS05M1KlTB0e9FvujoqB3b1i9+t/vdp9GUbTukT//rDVVFtoWxvz5te+rrRmNWjOk33+3/dhCCCGEeK6YmBg2bNjAsmXL8PPzw2Aw0KJFC7p06cKbb76Ji4tLiscOCYEOHbS+GSnh6wvLlkGePNrHVquV7777jhEjRlCpUiVWrlxJ6dKlUxyfEFmRJCKEEEI8VfnycO6cvaPQh4ODtsH2m2/sHYmwp7NnoWJFe0fx4gIDoUoVe0eR8dy+fTu56bWfnx93794le/bsNGrUKDkxUbJkSdvsZHv4EJo00f5npXT3vtEI2bPDzp1QrVrqY8roVq3SSlfpRVEgLOzJKoMQQggh7CIsLIzVq1ezfPnyvzW57tKlCw0bNnypBtAXL4KPD9y/n/LTz0YjvPoq7NsHinKHbt26sXXrVoYMGcJXX32Fk5NTygYWIguTRIQQQoineu89WLNGn0oY9ubgAB9/DJMn2zsSYW81amh1Yq1We0fy77Jn19oLODjYO5KMzWq1cvLkyeQyTgcOHCAxMZFXX30VX19ffH19ady4MW5ubi8/uMUCjRtrvSBS+8ZpNGrFik+ehMKFUzdWRvfJJ/D995CYqN8cUp5JCCGESFeCg4NZsWIFy5Yt4+LFixQsWDC5yXXVqlX/dQNJeDhUrgy3b6e+BKvJBIUKRRETUwFFecSSJUvw9fVN3aBCZGEGewcghBAiffL21rNRtX1ZreDhYe8oRHowaFD6T0KYTNCrlyQhbMFgMODl5cWIESPYtWsXDx484Pfff6dly5bs2LGDd955h1y5clGvXj0mTJjAsWPHsLxoUmHGDNi71zbZW4tFK0XUs2fmfSN+UceO6ZuEMBq1bKQQQggh0o1SpUoxZswYLly4wJEjR2jbti1LliyhWrVqVKxYkYkTJ3L16tWnfu2gQXDrlm36wJnNcPWqK9mzT+HUqVOShBAileREhBBCiKe6cAHKlLF3FPr54w+tNLjI2qxWqFcPjh5Nv02rFUUrk5aZfx7TiytXriSXcNqxYweRkZHkzp2b119/HV9fX5o1a8Yrr7zy/194/TqULAkJCbYPatky6NzZ9uNmFMWLw5Ur+o3v4AD9+mmdLIUQQgiRbiUmJiY3uV6/fj2xsbH4+PgkN7nOlSsX27dD06a2n1tRVAIDFSpXtv3YQmQlkogQQgjxTI0aaTUxM2N5pjt3IG9ee0ch0oOLF7Xj248epb/TEQaD1s9kyhR7R5L1JCYmcuTIkeTExLFjx1BVlYoVKyYnJerXr4+zszN8/jlMmmT7N0uDQWtkEhioZaQyMFVViY6OJiIigoiICB4+fJj897/++efn1wUGUljPLKGDg9a1fuZM/eYQQgghhE1FR0cnN7netm0bBoOBN954g6tX53DmTD4sFtteN5lM0K0bzJ9v02GFyHIkESGEEOKZduyA11+3dxS2ZTRqjct277Z3JCI92boV3nxTS0SkNBlhMGh/bLVmajJBsWJw6hS4uNhmTJFy9+/fZ/v27cn9JUJDQ3F2dqZxvXr8fOAALrGx+k1+5IjW0MSOrFYrkZGRL5VE+Ofnrc/44XJ0dMTDw+P//ri7u/PFb79R6M4d/Z6YyQQjR8K4cfrNIYQQQgjd3Llzh9WrV7Nw4U5OnlyHXlXonZy0zWzu7roML0SWIIkIIYQQ/6pXL/jpp8x1KuLnn6FtW3tHIdKbHTu010V09Mu/3o1GyJED1q3TEgcff5y6WEwmyJULDh3SKtOI9EVVVc6ePYufnx+X1q7l+8OH9ZvMaITx47XF8lQwm808fPgwxUmEyMhInnXb4Orqiru7+1MTCc9KMPz1Y2dn52cH3q8fLFigb5+I9evh7bf1G18IIYQQups/H3r3VgH9TpFKeV8hUsdk7wCEEEKkb1OnauWZLl9OvzX0X5TJBBUqQOvW9o5EpEdNmkBQkFal5bfftNfL817zSY9p1QrmzNHKfTVqpJ1g6N9f6zP8skkNg0FLPmzZAq++mvLnI/SjKAoVK1akYsWKkD076pEjKHrt7VFV8PcnISEhxUmEiIgIoqOjnzlFjhw5/i85UKRIESpVqvTcRIK7uzuOjo76PHeA6tVh7lz9xk+aQwghhBAZWkAAODgouu1dMBq1OSQRIUTKyYkIIYQQzxUaCg0aaP1CM/LJCJMJjh+HSpX+197dhVhZrXEA/++9hxRqZswK1LQCzY+i0obICKQPoa61i5IygggLKggTQgwvgoqIosxuLDj2QSpeRPQBfUOZoWIiSR8X3kVdTIZg2OTMnIt1Yk6eoznj+85sZ34/2BezN7P2Ypi95p33v55njfVMaGeDg8nOncnGjcmWLWUjdqNR/vlIymdgcLC0lr/99hI4XHvtkJZsyAAABhZJREFU/47z7bfJypXld67V+ufPTqtV2kKtWZOsX5+cbJM4bWT16uSFF2rdsf9Do5F5J7hkbzQa6e7uPuXqg+Of6+rqSkdHG+9N6u1Npk+v5+fbapWWVzt2VD82ADCqbrgh+fzz+sZvtZI77khee62+94Dxro3/6wCgXcyYUW7MPvBAsnVruSl7JsbYGzcKIfhnjUZy3XXlsWlTsn9/CRN6e8trU6cmPT3lDOFJk048zuWXJ7t2lcqGDRvKORQDA0Ohxn9XS0yZktx3X7JqlSqIM84ff9T+FtOmTMm/nn/+/wYJnZ2daTbr6YXcFs47L1mxInnjjerL8vr7kwcfrHZMAGBMHD1a7/gDA6Ny2QfjmooIAIZl+/Zk7drk++9PrXXNWPtrl/mGDSVIgbFy5EjyzTfJvn3J4cPl8zNjRukKM2dOacnEGWgUKiIyd25ZdCeqH38syV9fX3VjtlrJ/PnJ3r2lvAkAOKOpiID2pyICgGFZvjxZtqycG7F1a6mU2L9/6P5Qd3fpovHdd2M7z6Tc2L3wwmTz5tJaCsbS2Wcn119fHowjc+fWm8g2m6W8ZiK79NLkqaeSRx6pdtzXXxdCAMA4sWBB6bZY596QefPqGxsmAnvvABi2RiNZsqRUGezeXcpgjx4tF32//VZu/I+G4+8fNRpll3lSDg1evz45cEAIAdSop6feXnWNhsOUk+Shh0oSXlXp0EsvJQsXVjMWADDmenrqDSH6+8t7ACOnNRMAlevrS6ZNSw4dqu891q0rPfv37CnhR6uVzJqVXHNNsnhxcsstQ6EEQG3+/LMseL/+Wt97fP11OVR5ouvrS+68M9m2bWTf/1evvhdfLKfMAwDjxsGDyezZ9e0PmTQp+eWX0gEAGBlBBAC1eOyx5Jlnhg7jrUqzmVx1VTk8GKAtrF2bPP10PQveFVeUcwwajWrHPlMNDCQvv1zO5jh27NTbYjWbycyZpbHzkiX1zhEAGBO33pp89FH1l2QdHcnddyebNlU7Lkw0WjMBUIv77y+bT6s2MJA8+mj14wKM2KpV9S54QoghzWapZjhwILn33mTy5PL88b36ms2hsrgZM5InnijfI4QAgHFr9erqQ4ikjPnww9WPCxONiggAavPss+VisCodHcnSpcl777kvB7SZ556r9jDljo7kppuSDz6w4J3M4cPlj8KePaVUrre3hEIzZ5azNRYvLj/HOoIiAKDtrFyZvPlmdYFEs5msWZM8+WQ148FEJogAoDb9/cmNNyY7dpz+hWCrVfpx7ttX7i8BtJX+/uTmm5MvvqhmwevqKgverFnVzA8AYAI4dCi58srk559PvYPjiXR0JPPnJ7t2DRVhAiOnNRMAtWm1knfeKWc6nM5m1FYr6exMPv5YCAG0qVYrefvtZNGi01/wzjmnNDgWQgAADMu55yaffpqcf/5Ql8aRaLWSSy5JPvxQCAFVEUQAUKvu7uSzz5Lly8vXw+0w0miUXSg7diQLF1Y+PYDqdHcnn3yS3HZb+XokC968eWXBu/rq6ucHADABzJmT7NyZ9PSMfIylS5OvvkqmTatuXjDRCSIAqF1nZ7JlS7Jt29CF3Mk2DDca5TF5cvL446Xt94IFozNXgNPS2Zm89VayfXsyfXp57lQXvHXrkr17k8suG525AgCMUxdfnHz5ZTm3sLOzPHeyPSLN/9whnTo1efXV5P33S1UFUB1nRAAwqo4dS959N3nllbLpt7f3769Pnlw2Aq9Ykdx1V2mTDnBGOnasHKS8adOJF7xFi4YWvO7usZknAMA49vvvZZ/I5s3J7t3JkSN/f72rK1m8OLnnnmTZsuSss8ZmnjDeCSIAGDODg8lPP5WDxPr7kylTktmzT6+9OkBbsuABAIy5gYHk4MGyP6TZTC64ILnoouF31ASGTxABAAAAAADUxhkRAAAAAABAbQQRAAAAAABAbQQRAAAAAABAbQQRAAAAAABAbQQRAAAAAABAbQQRAAAAAABAbQQRAAAAAABAbQQRAAAAAABAbQQRAAAAAABAbQQRAAAAAABAbQQRAAAAAABAbQQRAAAAAABAbQQRAAAAAABAbf4Nns/91jrE8zkAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -281,18 +267,18 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[{14, 15, 16, 17, 18, 19, 20, 21, 22, 23},\n", - " {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},\n", - " {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}]" + "[{15, 16, 17, 18, 19, 20, 21, 22, 23},\n", + " {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},\n", + " {13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}]" ] }, - "execution_count": 16, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -317,7 +303,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -326,7 +312,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -335,14 +321,14 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/Users/deusebio/.pyenv/versions/3.8.6/envs/ml-book-5/lib/python3.8/site-packages/sklearn/decomposition/_nmf.py:312: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).\n", + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/sklearn/decomposition/_nmf.py:312: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).\n", " warnings.warn((\"The 'init' value, when 'init=None' and \"\n" ] } @@ -353,29 +339,27 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 20, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAO6klEQVR4nO3df6jdd33H8efLpNUMqx3mCjOJpmNpMegg7lIc/mE3HU0rJEU3l0DZHKUBt8pACaQ4OqkM68LcD+im2SZOQbsoJVwwkj+0IoiR3hJtl5RIllab20Gvtek/Rvtj7/1xT7rjzb33fJOce+85nzwfEDjne7453zcfbp588z3n3JOqQpI0/l612gNIkobDoEtSIwy6JDXCoEtSIwy6JDVi7WodeP369bV58+bVOrwkjaVHHnnkp1U1sdBjqxb0zZs3Mz09vVqHl6SxlOTHiz3mJRdJaoRBl6RGGHRJaoRBl6RGGHRJasSqvcvlUhw6NsP+Iyd5+uw53nTtOvbefAO3bduw2mNJ0kgYm6AfOjbD3Q8+xrkXXwZg5uw57n7wMQCjLkmM0SWX/UdOvhLz8869+DL7j5xcpYkkabSMTdBnzp67qO2SdKUZm6BLkpZm0CWpEQZdkhoxNkHPRW6XpCvN2AT9ifved0G809suSRqj96GD8ZakpYzNGbokaWkGXZIaYdAlqREDg57k80meSfJfizyeJP+U5FSSR5O8Y/hjSpIG6XKG/gVg+xKP3wJs6f3ZA/zL5Y8lSbpYA4NeVd8BfrbELjuBL9aco8C1SX5jWANKkroZxjX0DcBTfffP9LZdIMmeJNNJpmdnZ4dwaEnSeSv6omhVHaiqyaqanJiYWMlDS1LzhhH0GWBT3/2NvW2SpBU0jKBPAX/Se7fLO4Hnq+p/hvC8kqSLMPCj/0m+AtwErE9yBvhr4CqAqvoscBi4FTgF/Bz4s+UaVpK0uIFBr6rdAx4v4C+GNpEk6ZL4SVFJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGdAp6ku1JTiY5lWTfAo+/OclDSY4leTTJrcMfVZK0lIFBT7IGuB+4BdgK7E6ydd5ufwUcrKptwC7gn4c9qCRpaV3O0G8ETlXV6ap6AXgA2DlvnwJe17v9euDp4Y0oSeqiS9A3AE/13T/T29bvE8DtSc4Ah4GPLPRESfYkmU4yPTs7ewnjSpIWM6wXRXcDX6iqjcCtwJeSXPDcVXWgqiaranJiYmJIh5YkQbegzwCb+u5v7G3rdwdwEKCqvge8Blg/jAElSd10CfrDwJYk1yW5mrkXPafm7fMT4D0ASd7KXNC9piJJK2hg0KvqJeAu4AjwOHPvZjme5N4kO3q7fQy4M8kPga8AH6qqWq6hJUkXWttlp6o6zNyLnf3b7um7fQJ413BHkyRdDD8pKkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1IhOQU+yPcnJJKeS7Ftknw8mOZHkeJIvD3dMSdIgawftkGQNcD/wB8AZ4OEkU1V1om+fLcDdwLuq6rkkb1yugSVJC+tyhn4jcKqqTlfVC8ADwM55+9wJ3F9VzwFU1TPDHVOSNEiXoG8Anuq7f6a3rd/1wPVJvpvkaJLtCz1Rkj1JppNMz87OXtrEkqQFDetF0bXAFuAmYDfwr0munb9TVR2oqsmqmpyYmBjSoSVJ0C3oM8Cmvvsbe9v6nQGmqurFqnoC+BFzgZckrZAuQX8Y2JLkuiRXA7uAqXn7HGLu7Jwk65m7BHN6eGNKkgYZGPSqegm4CzgCPA4crKrjSe5NsqO32xHg2SQngIeAvVX17HINLUm6UKpqVQ48OTlZ09PTq3JsSRpXSR6pqsmFHvOTopLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY3oFPQk25OcTHIqyb4l9vtAkkoyObwRJUldDAx6kjXA/cAtwFZgd5KtC+x3DfCXwPeHPaQkabAuZ+g3Aqeq6nRVvQA8AOxcYL9PAp8GfjHE+SRJHXUJ+gbgqb77Z3rbXpHkHcCmqvr6Uk+UZE+S6STTs7OzFz2sJGlxl/2iaJJXAZ8BPjZo36o6UFWTVTU5MTFxuYeWJPXpEvQZYFPf/Y29beddA7wN+HaSJ4F3AlO+MCpJK6tL0B8GtiS5LsnVwC5g6vyDVfV8Va2vqs1VtRk4CuyoqullmViStKCBQa+ql4C7gCPA48DBqjqe5N4kO5Z7QElSN2u77FRVh4HD87bds8i+N13+WJKki+UnRSWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhrRKehJtic5meRUkn0LPP7RJCeSPJrkm0neMvxRJUlLGRj0JGuA+4FbgK3A7iRb5+12DJisqt8Gvgb87bAHlSQtrcsZ+o3Aqao6XVUvAA8AO/t3qKqHqurnvbtHgY3DHVOSNEiXoG8Anuq7f6a3bTF3AN9Y6IEke5JMJ5menZ3tPqUkaaChviia5HZgEti/0ONVdaCqJqtqcmJiYpiHlqQr3toO+8wAm/rub+xt+xVJ3gt8HHh3Vf1yOONJkrrqcob+MLAlyXVJrgZ2AVP9OyTZBnwO2FFVzwx/TEnSIAODXlUvAXcBR4DHgYNVdTzJvUl29HbbD7wW+GqSHySZWuTpJEnLpMslF6rqMHB43rZ7+m6/d8hzSZIukp8UlaRGGHRJaoRBl6RGGHRJaoRBl6RGGHRJakSnty2OikPHZth/5CRPnz3Hm65dx96bb+C2bUv9WhlJunKMTdAPHZvh7gcf49yLLwMwc/Ycdz/4GIBRlyTG6JLL/iMnX4n5eedefJn9R06u0kSSNFrGJuhPnz13Udsl6UozNkF/07XrLmq7JF1pxiboe2++gXVXrfmVbeuuWsPem29YpYkkabSMzYui51/49F0ukrSwsQk6zEXdgEvSwsbmkoskaWkGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqRFj9btcwK+hk6TFjFXQ/Ro6SVrcWF1y8WvoJGlxnc7Qk2wH/hFYA/xbVd037/FXA18Efgd4FvjjqnpyuKMu/nVzM2fP8a77vrVil1+87COpi+v2fZ2at23DteuWrR0Dz9CTrAHuB24BtgK7k2ydt9sdwHNV9VvA3wOfHtqEfZb6urnzl18OHZtZjkO/4vxln5mz56gVPK6k8bJQzIFlbUeXSy43Aqeq6nRVvQA8AOyct89O4D96t78GvCdJhjZlz0JfQ9dvJS6/eNlHUhcLxXy+YbejS9A3AE/13T/T27bgPlX1EvA88Ib5T5RkT5LpJNOzs7MXPext2zbwqfe/nQ1LnKkvdllmWBZ7/uU+rqQ2DbMdK/qiaFUdqKrJqpqcmJi4pOe4bdsGvrvv9xeN+lKXZYZhsedf7uNKatMw29El6DPApr77G3vbFtwnyVrg9cy9OLpsFrr8su6qNey9+YblPOyqHVfSeOlyzXnY7egS9IeBLUmuS3I1sAuYmrfPFPCnvdt/CHyrqrpcQrpk/Zdfwtwrx596/9uX/d0mq3VcSePlifvet2DUl7Md6dLdJLcC/8Dc2xY/X1V/k+ReYLqqppK8BvgSsA34GbCrqk4v9ZyTk5M1PT19ufNL0hUlySNVNbnQY53eh15Vh4HD87bd03f7F8AfXc6QkqTLM1afFJUkLc6gS1IjDLokNcKgS1IjOr3LZVkOnMwCP77Ev74e+OkQx2mRazSYazSYazTYSq/RW6pqwU9mrlrQL0eS6cXetqM5rtFgrtFgrtFgo7RGXnKRpEYYdElqxLgG/cBqDzAGXKPBXKPBXKPBRmaNxvIauiTpQuN6hi5JmsegS1IjRjroSbYnOZnkVJJ9Czz+6iT/2Xv8+0k2r8KYq6rDGn00yYkkjyb5ZpK3rMacq2nQGvXt94EklWQk3oK2krqsUZIP9n6Wjif58krPuNo6/Ft7c5KHkhzr/Xu7dcWHrKqR/MPcr+r9b+A3gauBHwJb5+3z58Bne7d3Af+52nOP4Br9HvBrvdsfdo0uXKPeftcA3wGOApOrPfeorRGwBTgG/Hrv/htXe+4RXKMDwId7t7cCT670nKN8hj4yX049wgauUVU9VFU/7909ytw3Tl1JuvwcAXwS+DTwi5UcbkR0WaM7gfur6jmAqnpmhWdcbV3WqIDX9W6/Hnh6BecDRvuSy9C+nLphXdao3x3AN5Z1otEzcI2SvAPYVFVfX8nBRkiXn6PrgeuTfDfJ0STbV2y60dBljT4B3J7kDHPfH/GRlRnt/3X6gguNvyS3A5PAu1d7llGS5FXAZ4APrfIoo24tc5ddbmLuf3nfSfL2qjq7mkONmN3AF6rq75L8LvClJG+rqv9dqQFG+Qx9JL+cesR0WSOSvBf4OLCjqn65QrONikFrdA3wNuDbSZ4E3glMXWEvjHb5OToDTFXVi1X1BPAj5gJ/peiyRncABwGq6nvAa5j7xV0rZpSDPpJfTj1iBq5Rkm3A55iL+ZV23RMGrFFVPV9V66tqc1VtZu51hh1VdSV94W2Xf2uHmDs7J8l65i7BLPm9wY3pskY/Ad4DkOStzAV9diWHHNmg966J3wUcAR4HDlbV8ST3JtnR2+3fgTckOQV8FFj0LWkt6rhG+4HXAl9N8oMk838Im9Zxja5oHdfoCPBskhPAQ8Deqrpi/jfccY0+BtyZ5IfAV4APrfQJph/9l6RGjOwZuiTp4hh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRvwflchCXFUpv+IAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAf/0lEQVR4nO3dbXBU9d3/8U+ykF2syQJXmk2I2waxqBQFDCaNyKidrVG8YnnQkRFLaMabitFaMp1C5CYgShDFMko0Y9TRGbWgjnZUaJTG0g6aTsbEzF/K3SChpMouZKi7aZAEds//ARerkQRyQrK/bPb9mtkHHH4n+13P4L7nnLObJMuyLAEAABiSbHoAAACQ2IgRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGDXC9AB9EYlE9OWXXyo1NVVJSUmmxwEAAH1gWZba29s1btw4JSf3fv4jLmLkyy+/lNfrNT0GAADoh9bWVl100UW9/n1cxEhqaqqkUy8mLS3N8DQAAKAvQqGQvF5v9H28N3ERI6cvzaSlpREjAADEmXPdYsENrAAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEbFxZeeDYZwxFJDy1Edbj+ujFSX8saPlSOZ33sDAECsJWSM1O44pJXv7tSh4PHotiy3SxVFk3TT5CyDkwEAkHgS7jJN7Y5DWvBKU7cQkSR/8LgWvNKk2h2HDE0GAEBiSqgYCUcsrXx3p6we/u70tpXv7lQ40tMKAAAwGBIqRhpajp5xRuTbLEmHgsfV0HI0dkMBAJDgEipGDrf3HiL9WQcAAM5fQsVIRqprQNcBAIDzl1Axku0eNaDrAADA+UuoGPnfDX8f0HUAAOD8JVSMdHSGB3QdAAA4fwkVI99zOgZ0HQAAOH8JFSN//s11A7oOAACcv4SKkeyxo5TiOPvvn0lxJCl7LDewAgAQKwkVI5K099FZvQZJiiNJex+dFeOJAABIbAn5i/L2PjpLXxz9Wjc/9Td1dIb1PadDf/7NdZwRAQDAgISMEenUJZv/t+Im02MAAJDwEu4yDQAAGFqIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAo2zHy97//XUVFRRo3bpySkpL0pz/96Zz7bNu2TVdddZWcTqcuueQSvfTSS/2ZFQAADEO2Y6Sjo0NTpkxRVVVVn9a3tLTolltu0Q033KDm5mb99re/1V133aX333/f9rAAAGD4sf0NrDfffLNuvvnmPq+vrq7W+PHjtW7dOknS5Zdfru3bt+sPf/iDCgsL7T49AAAYZgb9npH6+nr5fL5u2woLC1VfX9/rPp2dnQqFQt0eAABgeBr0GPH7/fJ4PN22eTwehUIhff311z3uU1lZKbfbHX14vd7BHhMAABgyJD9NU15ermAwGH20traaHgkAAAySQf+tvZmZmQoEAt22BQIBpaWladSoUT3u43Q65XQ6B3s0AAAwBAz6mZGCggLV1dV127Z161YVFBQM9lMDAIA4YDtG/vvf/6q5uVnNzc2STn10t7m5WQcPHpR06hJLcXFxdP29996r/fv36/e//712796tZ555Rq+//roWLlw4QC8BAADEM9sx8sknn2jatGmaNm2aJKmsrEzTpk3T8uXLJUmHDh2KhokkjR8/Xps3b9bWrVs1ZcoUrVu3Ts8//zwf6wUAAJKkJMuyLNNDnEsoFJLb7VYwGFRaWprpcQAAQB/09f17SH6aBgAAJA5iBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgVL9ipKqqSjk5OXK5XMrPz1dDQ8NZ169fv16XXnqpRo0aJa/Xq4ULF+r48eP9GhgAAAwvtmNk06ZNKisrU0VFhZqamjRlyhQVFhbq8OHDPa5/7bXXtHjxYlVUVGjXrl164YUXtGnTJj300EPnPTwAAIh/tmPkySef1N13362SkhJNmjRJ1dXVuuCCC/Tiiy/2uP7jjz/WjBkzNHfuXOXk5OjGG2/U7bfffs6zKQAAIDHYipGuri41NjbK5/N98wOSk+Xz+VRfX9/jPtdcc40aGxuj8bF//35t2bJFs2bN6vV5Ojs7FQqFuj0AAMDwNMLO4ra2NoXDYXk8nm7bPR6Pdu/e3eM+c+fOVVtbm6699lpZlqWTJ0/q3nvvPetlmsrKSq1cudLOaAAAIE4N+qdptm3bptWrV+uZZ55RU1OT3nrrLW3evFmrVq3qdZ/y8nIFg8Hoo7W1dbDHBAAAhtg6M5Keni6Hw6FAINBteyAQUGZmZo/7LFu2TPPmzdNdd90lSbriiivU0dGhe+65R0uWLFFy8pk95HQ65XQ67YwGAADilK0zIykpKcrNzVVdXV10WyQSUV1dnQoKCnrc59ixY2cEh8PhkCRZlmV3XgAAMMzYOjMiSWVlZZo/f76mT5+uvLw8rV+/Xh0dHSopKZEkFRcXKzs7W5WVlZKkoqIiPfnkk5o2bZry8/O1b98+LVu2TEVFRdEoAQAAict2jMyZM0dHjhzR8uXL5ff7NXXqVNXW1kZvaj148GC3MyFLly5VUlKSli5dqi+++ELf//73VVRUpEcffXTgXgUAAIhbSVYcXCsJhUJyu90KBoNKS0szPQ4AAOiDvr5/87tpAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMCofsVIVVWVcnJy5HK5lJ+fr4aGhrOu/+qrr1RaWqqsrCw5nU5NnDhRW7Zs6dfAAABgeBlhd4dNmzaprKxM1dXVys/P1/r161VYWKg9e/YoIyPjjPVdXV362c9+poyMDL355pvKzs7Wv/71L40ePXpAXgAAAIhvSZZlWXZ2yM/P19VXX60NGzZIkiKRiLxerx544AEtXrz4jPXV1dV6/PHHtXv3bo0cObJfQ4ZCIbndbgWDQaWlpfXrZwAAgNjq6/u3rcs0XV1damxslM/n++YHJCfL5/Opvr6+x33eeecdFRQUqLS0VB6PR5MnT9bq1asVDod7fZ7Ozk6FQqFuDwAAMDzZipG2tjaFw2F5PJ5u2z0ej/x+f4/77N+/X2+++abC4bC2bNmiZcuWad26dXrkkUd6fZ7Kykq53e7ow+v12hkTAADEkUH/NE0kElFGRoaee+455ebmas6cOVqyZImqq6t73ae8vFzBYDD6aG1tHewxAQCAIbZuYE1PT5fD4VAgEOi2PRAIKDMzs8d9srKyNHLkSDkcjui2yy+/XH6/X11dXUpJSTljH6fTKafTaWc0AAAQp2ydGUlJSVFubq7q6uqi2yKRiOrq6lRQUNDjPjNmzNC+ffsUiUSi2/bu3ausrKweQwQAACQW25dpysrKVFNTo5dfflm7du3SggUL1NHRoZKSEklScXGxysvLo+sXLFigo0eP6sEHH9TevXu1efNmrV69WqWlpQP3KgAAQNyy/T0jc+bM0ZEjR7R8+XL5/X5NnTpVtbW10ZtaDx48qOTkbxrH6/Xq/fff18KFC3XllVcqOztbDz74oBYtWjRwrwIAAMQt298zYgLfMwIAQPwZlO8ZAQAAGGjECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAqH7FSFVVlXJycuRyuZSfn6+GhoY+7bdx40YlJSVp9uzZ/XlaAAAwDNmOkU2bNqmsrEwVFRVqamrSlClTVFhYqMOHD591vwMHDuh3v/udZs6c2e9hAQDA8GM7Rp588kndfffdKikp0aRJk1RdXa0LLrhAL774Yq/7hMNh3XHHHVq5cqUuvvji8xoYAAAML7ZipKurS42NjfL5fN/8gORk+Xw+1dfX97rfww8/rIyMDN155519ep7Ozk6FQqFuDwAAMDzZipG2tjaFw2F5PJ5u2z0ej/x+f4/7bN++XS+88IJqamr6/DyVlZVyu93Rh9frtTMmAACII4P6aZr29nbNmzdPNTU1Sk9P7/N+5eXlCgaD0Udra+sgTgkAAEwaYWdxenq6HA6HAoFAt+2BQECZmZlnrP/888914MABFRUVRbdFIpFTTzxihPbs2aMJEyacsZ/T6ZTT6bQzGgAAiFO2zoykpKQoNzdXdXV10W2RSER1dXUqKCg4Y/1ll12mzz77TM3NzdHHrbfeqhtuuEHNzc1cfgEAAPbOjEhSWVmZ5s+fr+nTpysvL0/r169XR0eHSkpKJEnFxcXKzs5WZWWlXC6XJk+e3G3/0aNHS9IZ2wEAQGKyHSNz5szRkSNHtHz5cvn9fk2dOlW1tbXRm1oPHjyo5GS+2BUAAPRNkmVZlukhziUUCsntdisYDCotLc30OAAAoA/6+v7NKQwAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFH9ipGqqirl5OTI5XIpPz9fDQ0Nva6tqanRzJkzNWbMGI0ZM0Y+n++s6wEAQGKxHSObNm1SWVmZKioq1NTUpClTpqiwsFCHDx/ucf22bdt0++23669//avq6+vl9Xp144036osvvjjv4QEAQPxLsizLsrNDfn6+rr76am3YsEGSFIlE5PV69cADD2jx4sXn3D8cDmvMmDHasGGDiouL+/ScoVBIbrdbwWBQaWlpdsYFAACG9PX929aZka6uLjU2Nsrn833zA5KT5fP5VF9f36efcezYMZ04cUJjx46189QAAGCYGmFncVtbm8LhsDweT7ftHo9Hu3fv7tPPWLRokcaNG9ctaL6rs7NTnZ2d0T+HQiE7YwIAgDgS00/TrFmzRhs3btTbb78tl8vV67rKykq53e7ow+v1xnBKAAAQS7ZiJD09XQ6HQ4FAoNv2QCCgzMzMs+77xBNPaM2aNfrggw905ZVXnnVteXm5gsFg9NHa2mpnTAAAEEdsxUhKSopyc3NVV1cX3RaJRFRXV6eCgoJe91u7dq1WrVql2tpaTZ8+/ZzP43Q6lZaW1u0BAACGJ1v3jEhSWVmZ5s+fr+nTpysvL0/r169XR0eHSkpKJEnFxcXKzs5WZWWlJOmxxx7T8uXL9dprryknJ0d+v1+SdOGFF+rCCy8cwJcCAADike0YmTNnjo4cOaLly5fL7/dr6tSpqq2tjd7UevDgQSUnf3PC5dlnn1VXV5d+8YtfdPs5FRUVWrFixflNDwAA4p7t7xkxge8ZAQAg/gzK94wAAAAMNGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFEjTA9gSjhiqaHlqA63H1dGqkt548fKkZxkeiwAABJOQsZI7Y5DWvnuTh0KHo9uy3K7VFE0STdNzjI4GQAAiSfhLtPU7jikBa80dQsRSfIHj2vBK02q3XHI0GQAACSmhIqRcMTSynd3yurh705vW/nuToUjPa0AAACDIaFipKHl6BlnRL7NknQoeFwNLUdjNxQAAAkuoWLkcHvvIdKfdQAA4PwlVIxkpLoGdB0AADh/CRUjeePHKsvtUm8f4E3SqU/V5I0fG8uxAABIaAkVI47kJFUUTZKkM4Lk9J8riibxfSMAAMRQQsWIJN00OUvP/vIqZbq7X4rJdLv07C+v4ntGAACIsYT80rObJmfpZ5My+QZWAACGgISMEenUJZuCCf9jegwAABJewl2mAQAAQwsxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGjTA9gEnhiKWGlqM63H5cGaku5Y0fK0dykumxAABIKAkbI7U7Dmnluzt1KHg8ui3L7VJF0STdNDnL4GQAACSWhLxMU7vjkBa80tQtRCTJHzyuBa80qXbHIUOTAQCQeBIuRsIRSyvf3Smrh787vW3luzsVjvS0AgAADLSEu0zT0HL0jDMi32ZJOhQ8rj9s3aMZl3w/Lu4j4d4XAMC5fHH0a9381N/U0RnW95wO/fk31ylztGtIvH/0K0aqqqr0+OOPy+/3a8qUKXr66aeVl5fX6/o33nhDy5Yt04EDB/SjH/1Ijz32mGbNmtXvoc/H4fbeQ+TbNvz1c2346+dD/j4S7n0BAJzLxCVb1BX+5ox/6HhYM9Z+eMY6U+8fti/TbNq0SWVlZaqoqFBTU5OmTJmiwsJCHT58uMf1H3/8sW6//Xbdeeed+vTTTzV79mzNnj1bO3bsOO/h+yMj1WVr/VC+j4R7XwAA5/LdEDkbU+8fSZZl2bo5Ij8/X1dffbU2bNggSYpEIvJ6vXrggQe0ePHiM9bPmTNHHR0deu+996LbfvKTn2jq1Kmqrq7u03OGQiG53W4Fg0GlpaXZGfcM4Yilax/7UP7g8R7vG+lJkqRMt0vbF/10yFz+OP06ervkNBRnBgDE1hdHv+7xDMjZDOT7R1/fv22dGenq6lJjY6N8Pt83PyA5WT6fT/X19T3uU19f3229JBUWFva6XpI6OzsVCoW6PQaKIzlJFUWTJJ36D94Xp+8jaWg5OmBznK++3vsylGYGAMTWzU/9zfY+Jt4/bMVIW1ubwuGwPB5Pt+0ej0d+v7/Hffx+v631klRZWSm32x19eL1eO2Oe002Ts/TsL69SptveJZu+3m8SC32dZSjNDACIrY7OcL/3jeX7x5D8aG95ebmCwWD00draOuDPcdPkLG1f9FP98e6f6P4bLunTPnbvNxlMfZ1lKM0MAIit7zkd/d43lu8ftmIkPT1dDodDgUCg2/ZAIKDMzMwe98nMzLS1XpKcTqfS0tK6PQaDIzlJBRP+Rwt/NlFZblevl22SdOoO47zxYwdljv7IGz827mYGAMTWn39zne19TLx/2IqRlJQU5ebmqq6uLrotEomorq5OBQUFPe5TUFDQbb0kbd26tdf1JpztPpLTf64omjSkbgSNx5kBALGVPXaUUhx9fx8w9f5h+zJNWVmZampq9PLLL2vXrl1asGCBOjo6VFJSIkkqLi5WeXl5dP2DDz6o2tparVu3Trt379aKFSv0ySef6P777x+4VzEAeruPJNPt0rO/vGpIfmdHPM4MAIitvY/O6nOQmHr/sP3RXknasGFD9EvPpk6dqqeeekr5+fmSpOuvv145OTl66aWXouvfeOMNLV26NPqlZ2vXrrX1pWcD+dHec4nHbzONx5kBALFl4htY+/r+3a8YibVYxggAABgYg/I9IwAAAAONGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADBqhOkB+uL0l8SGQiHDkwAAgL46/b59ri97j4sYaW9vlyR5vV7DkwAAALva29vldrt7/fu4+N00kUhEX375pVJTU5WUNLC/wMfr9aq1tZXfeRMHOF7xh2MWXzhe8SUejpdlWWpvb9e4ceOUnNz7nSFxcWYkOTlZF1100aD9/LS0tCF7IHEmjlf84ZjFF45XfBnqx+tsZ0RO4wZWAABgFDECAACMcqxYsWKF6SFMcjgcuv766zViRFxcsUp4HK/4wzGLLxyv+DJcjldc3MAKAACGLy7TAAAAo4gRAABgFDECAACMIkYAAIBRwz5GqqqqlJOTI5fLpfz8fDU0NJx1/RtvvKHLLrtMLpdLV1xxhbZs2RKjSSHZO141NTWaOXOmxowZozFjxsjn853z+GJg2f33ddrGjRuVlJSk2bNnD/KE+C67x+yrr75SaWmpsrKy5HQ6NXHiRP6/GEN2j9f69et16aWXatSoUfJ6vVq4cKGOHz8eo2nPgzWMbdy40UpJSbFefPFF65///Kd19913W6NHj7YCgUCP6z/66CPL4XBYa9eutXbu3GktXbrUGjlypPXZZ5/FePLEZPd4zZ0716qqqrI+/fRTa9euXdavfvUry+12W//+979jPHlisnu8TmtpabGys7OtmTNnWj//+c9jNC0sy/4x6+zstKZPn27NmjXL2r59u9XS0mJt27bNam5ujvHkicnu8Xr11Vctp9Npvfrqq1ZLS4v1/vvvW1lZWdbChQtjPLl9wzpG8vLyrNLS0uifw+GwNW7cOKuysrLH9bfddpt1yy23dNuWn59v/frXvx7UOXGK3eP1XSdPnrRSU1Otl19+ebBGxLf053idPHnSuuaaa6znn3/emj9/PjESY3aP2bPPPmtdfPHFVldXV6xGxLfYPV6lpaXWT3/6027bysrKrBkzZgzqnANh2F6m6erqUmNjo3w+X3RbcnKyfD6f6uvre9ynvr6+23pJKiws7HU9Bk5/jtd3HTt2TCdOnNDYsWMHa0z8n/4er4cfflgZGRm68847YzEmvqU/x+ydd95RQUGBSktL5fF4NHnyZK1evVrhcDhWYyes/hyva665Ro2NjdFLOfv379eWLVs0a9asmMx8PuL7K9vOoq2tTeFwWB6Pp9t2j8ej3bt397iP3+/vcb3f7x+0OXFKf47Xdy1atEjjxo07Iygx8PpzvLZv364XXnhBzc3NsRgR39GfY7Z//359+OGHuuOOO7Rlyxbt27dP9913n06cOKGKiopYjJ2w+nO85s6dq7a2Nl177bWyLEsnT57Uvffeq4ceeigWI5+XYXtmBIllzZo12rhxo95++225XC7T4+A72tvbNW/ePNXU1Cg9Pd30OOijSCSijIwMPffcc8rNzdWcOXO0ZMkSVVdXmx4NPdi2bZtWr16tZ555Rk1NTXrrrbe0efNmrVq1yvRo5zRsz4ykp6fL4XAoEAh02x4IBJSZmdnjPpmZmbbWY+D053id9sQTT2jNmjX6y1/+oiuvvHIwx8T/sXu8Pv/8cx04cEBFRUXRbZFIRJI0YsQI7dmzRxMmTBjcoRNcf/6NZWVlaeTIkXI4HNFtl19+ufx+v7q6upSSkjKoMyey/hyvZcuWad68ebrrrrskSVdccYU6Ojp0zz33aMmSJUpOHrrnH4buZOcpJSVFubm5qquri26LRCKqq6tTQUFBj/sUFBR0Wy9JW7du7XU9Bk5/jpckrV27VqtWrVJtba2mT58ei1Eh+8frsssu02effabm5ubo49Zbb9UNN9yg5uZmeb3eWI6fkPrzb2zGjBnat29fNBwlae/evcrKyiJEBll/jtexY8fOCI7TIWkN9V9DZ/oO2sG0ceNGy+l0Wi+99JK1c+dO65577rFGjx5t+f1+y7Isa968edbixYuj6z/66CNrxIgR1hNPPGHt2rXLqqio4KO9MWT3eK1Zs8ZKSUmx3nzzTevQoUPRR3t7u6mXkFDsHq/v4tM0sWf3mB08eNBKTU217r//fmvPnj3We++9Z2VkZFiPPPKIqZeQUOwer4qKCis1NdX64x//aO3fv9/64IMPrAkTJli33XabqZfQZ8M6RizLsp5++mnrBz/4gZWSkmLl5eVZ//jHP6J/d91111nz58/vtv7111+3Jk6caKWkpFg//vGPrc2bN8d44sRm53j98Ic/tCSd8aioqIj94AnK7r+vbyNGzLB7zD7++GMrPz/fcjqd1sUXX2w9+uij1smTJ2M8deKyc7xOnDhhrVixwpowYYLlcrksr9dr3XfffdZ//vMfA5Pbk2RZQ/3cDQAAGM6G7T0jAAAgPhAjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACj/j9wbzTMl1qC2gAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -392,7 +376,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -401,14 +385,14 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 24, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuAAAAEuCAYAAADP1KdQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABqEUlEQVR4nO3dd3iTZRfH8W9G0zZtmWXvjeypIAgKCigCKigyRFkCKoIDBURQceFCBAVFeB0oIjIUZSh7iyBb2XuUDd0jyfP+8QiKMtokbTp+n+vq5Vua535OfSU5uXPucyyGYRiIiIiIiEiGsAY6ABERERGRnEQJuIiIiIhIBlICLiIiIiKSgZSAi4iIiIhkICXgIiIiIiIZSAm4iIiIiEgGUgIuOcLrr79Or169Ah2GiIhkUnqdkIykBFz+4+uvv6ZevXqEh4dTpEgR7rzzTlauXBnosHwydOhQPv30UwAOHDiAxWLB5XJ5vd7XX39NqVKlCAsL45577uHs2bP+ClVEJNPT68S1HT9+nLZt21K0aFEsFgsHDhzwY6SSHSgBl8u89957DBw4kKFDh3LixAkOHTrEY489xvfffx/o0DKN7du306dPH7788ktOnDiB0+nkscceC3RYIiIZQq8T12e1WmnVqhUzZswIdCiSWRkifzl//rwRFhZmfPvtt1d9TGJiojFgwACjSJEiRpEiRYwBAwYYiYmJhmEYxpIlS4xixYoZo0aNMgoUKGAULlzYmDVrlvHTTz8ZFSpUMPLmzWu89tprl9YaMWKE0aFDB6NLly5GeHi4Ua1aNWPnzp3G66+/bhQoUMAoXry4sWDBgkuPL1WqlPHLL79cdn2XLl0MwzCM/fv3G4Dx2WefGSVKlDDy589vvPrqq1d8bIkSJQzACAsLM8LCwoylS5caefPmNbZs2XLp8SdOnDBCQ0ONkydP/uffwZAhQ4xOnTpd+n7Pnj1GUFCQER0dnep/1yIiWZFeJ1L3OnFRSkqKARj79+9P5b9hySm0Ay6XrFmzhsTERO69996rPua1115j7dq1bNq0ic2bN7Nu3TpeffXVSz+PiooiMTGRo0eP8sorr9C7d2+mTJnChg0bWLFiBSNHjmT//v2XHj9nzhweeughzp07R+3atWnZsiUej4ejR48yfPhw+vTpk6bfYeXKlezcuZNFixbxyiuv8Oeff/7nMcuXLwfg/PnzxMbG0rRpUx588EGmTJly6TFTp06lefPmFChQ4D/Xb9++nZo1a176vly5cjgcDnbt2pWmWEVEshq9TqTudULkepSAyyVnzpwhMjISu91+1cd89dVXDB8+nIIFC1KgQAFGjBjBl19+eennQUFBvPDCCwQFBfHggw9y+vRpBgwYQEREBFWrVqVKlSps3rz50uNvueUWWrZsid1u5/777+fUqVMMHjz40vUHDhzg/Pnzqf4dRowYQWhoKDVr1qRmzZqX3etaHn74YaZOnYphGAB8+eWXPPTQQ1d8bGxsLLlz577sz3Lnzk1MTEyq4xQRyYr0OpG61wmR61ECLpfkz5+f06dPX/PQybFjxyhVqtSl70uVKsWxY8cuW8NmswEQGhoKQKFChS79PDQ0lNjY2Evf//tnkZGR/7n+n4+/nsKFC1/6306nM9XX3nTTTTidTpYuXcqOHTvYs2cPbdu2veJjw8PDiY6OvuzPoqOjiYiISHWcIiJZkV4nUvc6IXI9SsDlkoYNGxIcHMzs2bOv+piiRYty8ODBS98fOnSIokWLZkB0EBYWRnx8/KXvo6KivFrHYrFc8c8ffvhhpkyZwpdffkmHDh0ICQm54uOqVq162Y7Jvn37SEpKomLFil7FIyKSVeh1InWvEyLXowRcLsmdOzevvPIKjz/+OLNnzyY+Pp6UlBTmzZvHc889B0CnTp149dVXOXXqFKdPn+aVV16ha9euGRJfrVq1+Oabb0hJSWH9+vV89913Xq1ToEABrFYr+/btu+zPu3btyqxZs5gyZQrdunW76vVdunRhzpw5rFixgri4OIYPH859992nHXARyfb0OpG61wmAxMREkpKSAEhKSiIxMdGrWCR7UgIul3nmmWd47733ePXVVylQoAAlSpRg3Lhx3HPPPQAMGzaMevXqUaNGDapXr06dOnUYNmxYhsQ2cuRI9u7dS968eRkxYgSdO3f2ah2n08kLL7xAo0aNyJMnD2vXrgWgRIkS1KlTB4vFwi233HLV66tWrcqECRPo0qULBQsWJCYmho8++sirWEREshq9Tlz/dQLM8pjw8HAAKleufKlcRgTAYlw8TSAi9OjRg6JFi152Yl9EROQivU6IPygBF/nLgQMHqFWrFhs3bqRMmTKBDkdERDIZvU6Iv6gERQR48cUXqVatGoMGDdKTqoiI/IdeJ8SftAMuIiIiIpKBtAMuIiIiIpKBlICLiIiIiGQgJeAiIiIiIhlICbiIiIiISAZSAi4iIiIikoHsgQ5AMoELF+CLL2DaNDh7FiwWiIyErl2hc2cICwt0hCIiV7VtG4wdC+vXQ0yM+ZRVqRL07w8332w+pYmIZCZqQ5iTHTkCw4aZibfVCvHxl/88PBw8HujWDV5+GQoWDEycIiJXMHeu+RS2YwckJ4Pb/ffPLBZwOqFAAfMxPXooEReRzEMJeE61aRM0awbR0Ze/al1JUBDkzw/LlkHFihkSnojkTIYBa9fCuHFmYh0XBxERUKeOuaNdrZr5mFdfhTff/O++wZU4nXDvvfDZZ2DX574ikgkoAc+Jdu+GevXM5Du1LBbIlw82b4ZixdIvNhHJkQwDvvwSRo6E48chIcH8AO4imw0cDqhcGWrWhG+/TV3yfZHTCe3bw+efaydcRAJPCXhOYxhmceSePeb/Tgu73dyG+vXX9IlNRHIktxt69Up7Up1WYWHwySfm0RYRkUBSF5ScZuVKOHYs7ck3gMsFW7fC9u3+j0tEciTDgN690z/5BrOc5fXX0/ceIiKpoQQ8p3n7bd9e5VJSYPRo/8UjIjnad99lTPJ90f798PvvGXMvEZGrUQlKThITY7YXTE72bZ3QUHMtm80/cYlIjlWrlnm0JKPYbNCzJ3z8ccbdU0Tk37QDnlMYBixc6J/TRx6P2TtcRMQHW7aYZ8Izktud8fcUEfk3JeDZXXw8TJpkHrzs0gWSknxf02a78ufFhmHWmN9/P1StCqVKmf984AFYtcq7unMRybYmTvTPU1JaZVS5i4jI1agjana2ZQs0bw6JiRAb6791U1Igd+6/vzcMc5LmSy/BqVPmq9s/k+0//zQnZhQsaD7moYfUB0xE2Lnz+mMI0kOePBl/TxGRf1ICnl1t2AC33urfxPuivHnNKZlglqP06QNff331bSXDMNsP7N8P/fqZu+Hjx5vTN0Ukx4qLy/h7hoRAw4bm05L2AUQkUJQBZUcnTsAdd6RL8p1st3OhZ8+/X7n697928v1v8fEwZQoMGOD32EQka8mbN+PvmZhotiK02czhPDVrwldfBaYURkRyLiXgWc2xY/DTT2bSO3OmORTnn+PiAMaOTbciR4thUPejj3jsscc4MXmyOVYurfeKj4f//Q/mzUuXGEUka2jY0GyqlNGSk80d8IQEs1Kvb18oUABefvm/T6ciIulBbQizAsOAJUvgrbdg2TIIDjZfJSwW82cREfDMM9C9u1kaUrAgnD/v9zDigYNNmpB/+nRGjx5Nu7ffpoEvBZxNmpi/j4jkSCdOQOnS5q50ZhAWZn54OH26OfhXRCS9KAHP7M6cgVatYMeOa5eUOJ3mP594Aj76yP/lJ6GhxFetSoPYWG5s1IgPn3oKR716WHx55QwJMadqli3rvzhFJEtp1w7mzMk8TZKcTujQAT77TDXiIpJ+VIKSmZ0+DXXrmp+RXi+hjo83v957z6/Jtwdwh4bCHXfgXLmSVevWER0dzZe33+57+wK323yVE5Eca8QIX8pQDCDBj9GYT6MzZsCiRX5dVkTkMvqQLbNyu83PQo8fT9vkSpfLL7d3AYbNxtY8eRgbHEzFm27CMW4cDoeDZs2accPatVhSUny7SUoK7N3rl3hFJOtxu81JmBMnQq9eZk12ajmdBs2aTeT06ULs3duWU6disNvDcbksQArmy5t3e0xxcWbF3+23e3W5iMh1aQc8s5o7F/bs8X1svJf2BgUx+L77mNO/P7Pi4tj+xx8cO3aMnTt3snr1aoL81TIgEH3IRCQgLs7qatfOLPUICjJrrR99FGrXhuBgA7j2c0tIiIHVGku7duNZs2YoP/xwMx988B02WydGjbIQGvo2BQr8jN3u2yd0y5fDkSM+LSEiclXaAc+sRo1Knx7eqeCxWtlbvDh/xsZSLS6OypUr8+OPP5IvXz6OHj1KREQE7f3VKiB/fv+sIyKZ2uLF5i73yZP/ndUVFwdr14LVmoLDkYLFYic5OQGr1YnbbcVqdeHxxBMUZPDCC7m5885z3HzzU/Tq1YsCBQowffo3lC+/l6eftvDGG28THPwjLleQT/FaLGajqSef9PEXFxG5Au2AZ0Z795qDdAIkwePh7TNn2LBhA7lz56Zfv36EhYXx8ssvc/78eU6dOkWNPn1ICvLtBQ6rFf74A9atyzwnsETE76ZMgbvvNmdxxcVd+a+7xwMul4Pk5HA8Hg8VKiwgOHgk4eGjeestO5GRT2K1FmXoUA/R0XvImzcv33//PadOnWLNmjXcdtttl9Zyuwv7HHNiIkRF+byMiMgVKQHPjNasCWgPrOBKlWjRpw+tz5zB/cYb5P3oIz6uUYPvX36ZF198kTJlytBu2jQMXw9hejxm8n3bbVC5sjkNQ4m4SLayYIFZYpKW+u6UlCB27WpFjx4VqVz5a555Bu6/34nLlcSaNWt45pln+OCDD+jcuTNdunQhKiqKbt26XbrebvdPc/HM0h5RRLIftSHMjMaNg0GDAvPsHxICtWtjbNxIXGIioVYreDwkYfYbOOJw8EPlyrx76BDTChWiyd69WPx08JOwMLj/fvj0U3NMnYhkaSkpUKgQnDvn3fUFCyZRunRTfv11LevXr6d+/fo0b96c+Ph4Vq1ahcvlokaNGuzcuZOYmBi2bt3KHXfcgcOxhLNn6/kUu80GI0fCkCE+LSMickWqAc+MHA6zPMNHBpCWNrYpgC05GX79FavHQzhcGgv3V5dxKiUn03fLFjo4HKy49VZcBw4Q5K8EPC4Ovv3W/N0//VRNeEWyuO+/960xU0yMjbi4+gDUqVMHm83GkiVL+Pnnn1m5ciW///47sbGxGIZB/vz5qVq1Ki6XiwYNoli4MA4I8/reISHQtKn3sYuIXItKUDKjwoX9UoISFxxMYip3kl2YybrV48F6nQOWEUApt5u7Jk+mS1ISfh16Hx8P06aZo+hEJEsbNQpiYry/PiHBxtGjnVm8eDHvvfceQUFBeDwe7r77bp599ll27txJXFwcDRo0IF++fMydO5fw8HDGjauPry9vhQtDw4Y+LSEiclUqQcmMEhLMcfI+dEGJt9l4ISQEG/BsfDy5rVZC3O7/7IjHWiwYhkEw4EjjPVKAPXY7C+++m14//ojhcl3aKfdZjRqwebO/VhORDHb6NBQr5o9Oqik0bHgHZcpU5ZtvQvB4HsNuL4FhOAgJMYiL28Dw4SEkJ09n3bqVbN26lW3btlG+/Gri4trh8aT9k7SwMHOm2aOP+hq7iMiVaQc8MwoNhR49zCa5XrK73WwtU4ZxLheVwsIYWKIES4KCOBkSQkxQEEeAdaGhzGnfntC8edOcfAMEAWWtVvo//jihx45hGzGCxFy5iLda8fld3Z495gRQEcmSTp2C4GDf17FYPJQsuZRp00Zjtb4OlMPlcuB2Q1ycBajHe+9V5aOPXmL//geIjTVnC1So8BUeT9q33+12c/e7a1ffYxcRuRrtgAdCfLzZ9PbsWfP7/PnNzzpDQv5+zN69UK2a1wcxDbudRLebjw2DtyIjqVKzJtu2bQMgV65c7NmzhxtvvJHnq1alzdSp2NPSouAfPMAyu53natWiXLlylC9ThnZLllDz11+9SuovsdnM7aePPvJlFREJkK1boXFjiI72dSUPDgckJ19/vyg01ENCwjSefPI3xo0bQ2RkO+LiZvw17+v6O+FBQZAvH6xfD8WL+xq3iMjVaQc8I+3aBU88YZaX3Huvucvdsyfccw8UKAADB/49mr1cOU4NHEi8lwcRLS4XoYZBb2BmTAwnDx7E5XLRr18/Vq9eTcOGDWnevDklv/3W6+QbzP+AbrXZ+GT4cNq0aYMjNJQDx4/7lnyDOaN6925fVxGRAMmb11+DfC2pSr4BEhKsQFs++KASVapUpWvXMqxYYSFPHhdw9d1wiwXCw6FSJdi0Scm3iKQ/JeAZweMxx6nVrAmffGJ2+4iONk8nRUebX7Gx5m5vtWowaBDbt26l9pdfsq5RI6+TcDB7ADSwWNhSoQIrli3jyJEjlC9fnu3bt/Pee+9R2Q+vkCk2G8d/+YUjR46QmJiIw1/tEwM0CVREfFesmLmb7Lu0Pv+FYbV2IyamJvv27aNWLYOaNVtzyy2fExy8Hbs9BaczBbhARISb4GC4806YM8eseivs+wwfEZHrUhvC9ObxQMeOMG/e9ctJUlIgJQX3uHH8MW4cLR58kHYzZ/KA08kowyCvy4XFm4Q5MRGWL8c5dy4JCQlYLBacTifJyck4/NBCMDEhgemffsrXLheOlBRyAe18XhVzC01EsiSLBZ55Bl580ay6y0iGEcKFC4+yZs39zJ8/n6ioQyxd2oFixYrx5Zer2b07iTfe+ICPPnqP228vqaRbRDKcdsDT2wsvmMm3WYSYKrbERO5OTqb81KnkypWLjrNnky8mBkvu3N7HERfH+aFDqVatGqtXr6Z9+/bUqVOHFO9XvCQIeNNqJcHl4oLNxnPg+yHMkBC48UbfgxORgOne/dIogQxlGBbi4xtx4oSFfv368eabb5KcnIzNZsPhOEzFikcJDl5IjRoXlHyLSEDoEGZ6OnvW/BzWy5KMZLudlMOHCS1YkD8++ojyTz9NSIr3KXOCxUJDu51df/UYT0pK4k+Ph4per2hK68CfVAkOhv37oUgRf68sIhnolVfMfuAZvQseGmqQlPQkNtvH7Nmzh7lz5/HBB78RE/Mop0/XJjHRitVqJSLCwr33wtNPQ/XqGRujiORcSsDT0zvvwIgRXr/yuENCmNmgAU/t3s37cXHcd/68Tx9ZpACvA2/Y7TQ2DIq63dxjt3OXy0XI9S7OSBYL3HUX/PhjoCMRER8ZhnnWfNq01D8VWiweDMPXD2gNLJZXad9+C3/8UZgDB4bickX+daDz8gFldrvZAaViRfj8c/O4johIelICnl48HvMo/fHjPi1zPndufvv2W2oNHUqBDRt8DutE8eLkiYnBlpJCYnw8YaGhkJDg/x1sX4SGwrJlUL9+oCMRET8wDHMv4q23zPfXV/tQMDjYTVJSChbLOQzD90+/wsLG0b17fT76qCYeT+q2GcLC4PvvoXlzn28vInJVSsDTy4kTULq01+UnFyUDhSwWvjMM/PF6YNhsWNxuP6yUTpxO+PBDeOSRQEciIn52/DhMmABjx4LLBbGxF4iIiCA2NgGrNZFXX83Pjh2DmDKlHS5XYx/vlkz58ms4ePBmUlLSNtQsLAxWrIDatX0MQUTkKnQIM72cP+/TJMuL3FYrPe+7j6I1avgeE2Te5DsoyEy+J01S8i2STRUpAi+/DCdPmh9y2WwdmTbNRaVKvWjS5EGefx7uv/82XK7vsVi8n08AYLV6OHSoYZqTbzDPzD/wgLlzLyKSHpSAp5egIP8c/zcMFq1YwTs7dlxjjEQWc7Gvuc0GERHmBIx+/cwmvA8+GNjYRCTd2e1QtWoysIiWLYOIjl5BbGw0Ho+Hl156iYcecuHry5PHc47k5CSvrz9+HH791acQRESuSn3A00uBAn4ZA2c3DA7FxhJRsyb2TZvMXuEBkozZctDnevE8eaBvXzP5LlMG2rUz675FJNtLSIC1a+HgwWQcjs5Mn36auDgPf/75J19//TUAkye/zU8/LeHs2Wb8+8BkagQFJZE/fyRRUd5/Chkfb56j/+47r5cQEbkq1YCnp2bNYMkS76//qxvI+SlT2LJlC+EvvUT1ZcsIysDGuknAUYuFs8ARw+B2INzXRfPkgXPnfF1FRLKQvXvhgw9g8mSwWsHj8RAXF0dISDDJyW7Cw7/F4ZjAzJlv07hxY2bN2s5995UEItJ4pxSKFYPTp4NI8n4DHDB36pOSzHhFRPxJTyvpaOMddxDnyzN3WBgMGkSePHlo0qQJdb7+mqAMng4ZHBZGmdWrKXXiBFVffBFHcLDvi2bWOnQR8TuPx5yIWa0ajB8PsbEQHQ2xsVYMI4KEBAdudygXLnTi9OklzJrVGLfbYNasUUBbIPVtXC2WFCyWs7z7bgz+eKqyWCAm29T+iUhmogQ8Hfz222/cfvvtPDh5MtZcubxfKH9+aNLk7+8LF4bFiyFXrgzbkkmMj2dQ06ZUqlSJD7/+mhR/JM8Rad3REpGsyDCga1ez80li4vUq6BwYRggTJhgULryQr7+eyr335iUk5E7Cw5OxWGKvca0HqzUeh+MA+fPfTp48/vmU0GoNaNWfiGRjSsD9aMeOHXTo0IF7772XBx54gG1//EHovHlmd4+0CguDmTP/PrB4UY0asH49lChx7UTWYvnvtV4IBkY++yxnz57l/d9+I8zu47EBux1at/Y5LhHJ/EaMMHtqp2UWWXy8hdOnb+aRRw5SvXp1WrTIQ6VKtzFw4E7s9h1AHBERHnLlgty5wWJJwmJZiGG044svNmEYx1myZCbx8T7Wn2Ae48mTx+dlRET+Qwm4Hxw+fJiePXtyyy23cNNNN7F7924effRRgoKCoEEDmDHDTKhTKywMfvgB6tS58s8rVDALKr/5Bpo2hZAQ85Xo4ldwMLRqBaVK+fy7WWw2Qi++AuXNC/fe69vue1AQPPWUz3GJSOZ24QK8/ba3g4DD+OqrosTFBVGvXj0cDoMbbvidm2/ug9V6I99+a2HSJA9jxhymbdunMIyWWCyL6dbtIc6fP8/evYsIDvZ9F7xGDXPPQETE35SA++D06dM888wz1KpVi8KFC7N7924GDRpE6L87erRqZU51qF/f7PZxpWf0oCDzZw0awJo15gHOa7HZzHHtS5fCnj0wd64563nePDh0yPy+cmXff8mQELN570XPPGP+mbeqVoUbbvA9LhHJ1D77zLf36lYrbNpUE7vdzocffsiQIUM4ceIEVusuBg68gd698zN8eGNSUg4CULhwYe677z4iIyMZO3YMgweHAN73Eo+IgMGDvY9fRORa1AXFC7GxsYwePZoxY8bQsWNHhg0bRpEiqRyb/OefMGYMzJ799+meXLmgfXt48kmoWNF/gX7/PTz0kG+niEJDISrKjPGiDh3MBD8hjS9uoaFmV5ibbvI+HhHJ9AwDSpaEI0d8W8fhOEm5crdx/vw5zp07R3JyMrVr12b37t3MmDGD22+/nZEjR/Laa6/h8RiEhRXEbs/HqlU/ExV1gaZNS2EW0qVdrlxw6hQ4HL79DiIiV6IEPA2SkpL45JNPeO2112jevDmvvPIK5cqVC3RYV+dymQc3z5zx7nqbDbp1M/uG/VNSEtx+O/z+e+o/Xw4NhS+/NN9oiEi2duYMFC3q+ygEiyWZ++8fyJtvDsJut1OyZEm++eYbDMPgxRdfZP78+dSrdydFiw7njz9aAPmAZIKCQrFYUoiIiOL8+UK43WlLwp1OGD0aHn3Ut/hFRK5GJSip4Ha7+fLLL6lcuTLz589n/vz5fPXVV5k7+Qaz1GXgQO+H3DgcV67XDg6GRYvMevCQkGtvEUVEmKeYfvxRybdIDnH+vH92ju12DxUr3kSZMmVYunQpdrudt99+m/vvv58mTW6ndu2NxMRsZ+/eTkBBzNlyTlJSLCQnOzhzpghutx1IffcmpxOeeELJt4ikLyXg12AYBj/88AM1a9bk448/5osvvuCnn36iVq1agQ4t9Z57zjxJlNZXw7AwGD4cqle/8s8dDpgyBbZvh8ceM8fJR0SYh0Bz5TIT85o14eOPzRKW69W0i0i2ERRk9v/2lWFYCA42uznNmDGDChUqEBISwvjxn7Fu3TvExNyJ2x1EUtLVpmUGYU7SNADjmk+DoaHm09arr8KoUb7HLiJyLSpBuYrly5czePBgYmJieOONN2jdujUWP7T1C4gLF8ySke3bU1e37XSaO+evvpr6VoaJieZh0PPnzR3yQoXMIlARyXHi480PvnztoW21uhg9+nOefLInxYoVo127dvTq1YcGDc7hdjfE40l9aYnF4iE83PpXfLG43S5y586Nx2MhJMR8yuvdGwoU8C1mEZHUUIOlf9m0aRNDhw7lzz//ZOTIkXTq1Amb7Wq7K1lE7tywciUMG2buSBuGOY7unywWM/EuVAhefx06dkzbPUJCzFF3IpLjOZ1w663wyy++rOLBYlnG3LnTufHGqhw/fpyuXbty6FBNPJ6ENCXfAIZhJTkZHn8c5szpx6FDMXz77WwiI80P67L607yIZC3aAf/Lnj17ePHFF1m6dCkvvPACjz76KI7sePw9MRG++w7GjjVbFCQmmuUjdeuaLQZvvtkvA3xEJGdbuNA8JvLv9/qpFR5uUK3acCIjN/H7779z7NgxBg0axLx5w9m2LdzruHLnhoIFqxEdfZqoqCiv1xER8UWO3wE/duwYI0eOZPr06Tz11FNMnDiR8HDvn9wzvZAQczZ0166BjkREsrFmzcwyFG8T8Fy5DMqWPcCdd3YkX758LFy4kOjowmzb5ttWtdsN587dSu7c831aR0TEFzn2EOa5c+cYMmQI1atXJzw8nJ07d/LCCy9k7+RbRCSDWK0wc6ZZjpJ2CdSsuZ/ff+/A99/XZN68otx8812ULTsA81Cl92JjITq6LRERET6tIyLiixxXghIfH8/YsWN55513uOeeexg+fDglSpQIdFgiItnSL7+YpShxcal5tAewYLEkYRg2zC4mBhCHwxFK3rwXOHEin88x2WwbuPnmp1i+fLnPa4mIeCPH7ICnpKQwYcIEKlSowPr161mxYgUTJ05U8i0iko7uuMM8A37jjWYFnP0KhY/mAUjjry8LhhGCmXwDWIBwkpNtnDiRxy8xGYaFXP+c7isiksGyfQ24x+Ph22+/5cUXX6RMmTJ8//331KtXL9BhiYjkGLVqwa+/wo4dMGYMzJoFMTHmz0JDIToaPB7LX7ve1+KvPaOT5M6d209riYikXbZNwA3DYMGCBQwZMoSgoCAmTJhA8+bNAx2WiEiOVbkyjB9vfoE5lqBsWXC5zO6oGSEsDBISvlMCLiIBlS0T8DVr1jBkyBBOnDjBa6+9xr333pt1h+iIiGRT335rHorM6JNIHs9U8uQZkLE3FRH5h2xVA759+3buueceOnbsSLdu3di6dSv33Xefkm8RkUxo1Cjv2xR6w2p18fDDHiBeO+AiElDZIgE/cOAADz/8MM2aNaNJkybs2rWLHj16YL/SaR8REQm4jRvh4MGMvKMHuz2OZ59Nwmaz6RCmiARUlk7AT548yYABA6hbty6lS5dm9+7dPP3004SEhAQ6NBERuYYtWzJu6K7VahAe7qF8+d7ky5eMxWJRH3ARCagsmYBHR0czYsQIbrjhBgD+/PNPXn75Ze1oiIhkEdHR5uFL3xkEBV3tZ24glsjIsyxefJ6oqEUkJ5sJuF4vRCSQMiYBd7th82ZYtMj82rjRq2fexMRE3nvvPSpUqMCBAwfYsGEDY8aMoWDBgukQtIiIpBen82L/b984HGfp3j2FsDAIDzdH2Nts8djtLqpX30dERAfy529CvXr5SUpK4syZM0rARSTg0rdI+tQp+OQTeP99SEoyZxMDeDwQFAT9+0PfvlC48DWXcblcfPHFF7z00kvUqVOHRYsWUa1atXQNXURE0k+pUv5JwPPkOcX27e3YvXsOCQl5uXDBwrFjR+nW7Q6mT19AnTor2LXLTLxLly7Nvn37AFSCIiIBlT474IYBb70FJUvCa6/B6dPm1IULF8yvmBg4e9Y8Al+mDLz00hX7UBmGwcyZM6levTqff/4506ZNY/bs2Uq+RUSyuNtug+Bg39aIiIAPP6xI/fr1admyKaGhx6ldG1q3rkD37h144403aN++PYZhMGXKFMqUKcP+/fsxDEM74CISUBbDSIcOrE89Ze58x8en7vFOJ3TubF7z16mcxYsXM2TIEJKTk3njjTdo2bKl2gmKiGQjr75q7tEkJnp3fURECmfPBmGzGbz++utMnjyZX375hbJlyxITE8MNN9zAyy+/zOOPP06JErdSqFAfkpLysn79ZgYP7kG7dhHcdFPGHQYVEbnI/wn42LEweHDqk++LwsJg6FDWt2jB0KFD2bdvH6+++ioPPPAAVmuWPCsqIiLXcPKkOQkzLi7t1zocLkJDx9C69e+88847FClShAkTJjBy5EjmzZtHjRo1mDr1G4YOXU1U1EMkJlbDZgvC7TYrL202g5AQC0WKwPPPQ5cuEBrq519QROQq/JuAx8dDwYLePZsCSVYrNQsWZOCIEfTs2ZOgqx9tFxGRbGDOHOjY0RxLn1ohIdCgAcyeHccbb4xk0qRJDBs2jMcff5yZM2fSv39/vvlmFh980JAffkjE47l2Zh0WBiVKwJIl1z2SJCLiF/5NwP/3P3jySa9HmyU7HPD66zieecZvIYmISOb27bfQvXvqPjh1Os3k+4cfzMQZzFa0jz/+OGfPnmX8+PGcOxfDPfcEY7E0Jjk5dSc9g4LM/aNNmyAy0vvfRUQkNfybgFeuDDt3+rZGiRLmeDQV5YmI5BgbNsCLL8Lixeb3SUmX/9xsMQiDBsETT8C/Bx0bhsE333zDs88+S968k9mzpzlJSWlr9OVwQO3asHatD7+IiEgq+C8Bj42FvHl9n6wQEgL79+tzQBGRHOjoUZgwAZYtg3PnzJeE0qXNjrXNml1/b+bIkQuUKROKy+Xw6v5hYeabgBtv9OpyEZFU8V8f8LNnze0DXxPwoCDzWVcJuIhIjlOsGIwc6f31P/yQm+Bg71+KEhLg3Xdh2jTvYxARuR7/tRcJCrpiL+80M4z/frYoIiKSCu++63UfAMCcE/fDD+Y+kIhIevFfAp4vH6Sk+L5OcrJOwIiISJoZBhw44Ps6Dgf8NTBTRCRd+C8BDw6GW2/1fZ06dcxachERkTRISPDP+X2LBaKjfV9HRORq/Dvh5rnnzKPq3oqIMCciiIiIpFFIiH8qIeHvFociIunBv20IPR6zjeCxY95dny8fnDihGnAREfFKoULmhE1fqBmXiKQ3/+6AW63m0XGnM+3Xhoaa1yr5FhERLz32mJlA+6JBAyXfIpK+/JuAAzRuDF9/nbYkPDQUJk2C22/3ezgiIpJz9OnjWxlKeLhZTSkikp78n4ADtGsHCxdCpUpmIZ31CrexWMyflS0Lc+dCp07pEoqIiOQchQvD3XebfQHSymIxewC0bOn/uERE/sm/NeBX8ttv8M47JM2cicPlwmKxmJ8PtmoFzz4LDRtq7LyIiPhNdLTZUOvQobR1x42IgHXroHLl9ItNRPxs926z/2hcHOTKZW7+FisW6KiuK/0T8L+0adOGnt27c0+7dmCzZcQtRUQkhzpxwhxdv28fJCZe+7F2u5l8L1xoJu4iksklJ8OMGTBqFOzaZTbvNwxzQzcx0SyHfu45s7T5SlUYmUCGRXXgwAHKlCun5FtERNJdoULmbvbQoZA/v5lg/1twcAo2WyI9e8KWLUq+RbKEjRvNHe4+fWDzZnMAwIUL5kdfFy5AUhIsWgTt20PVqnD0qHndmTPw1ltQowYUL26uUa0avPQSREVl+K+RITvghmGQK1cuDh8+TJ48edL7diIiIpe43fDTT/D55+brrMtlJuWtWiUyfHg5/vxzPUWKFAl0mCJyPatXQ4sWZrlJatjtZllKgwaweLG5Q56QcPljLg4QuOMOeO89qFDB/3FfQYYk4KdPn6ZChQqcO3cuvW8lIiKSar169aJ8+fIMHjw40KGIyLXs3w+1aqXfmFqLxfyobN48uPnm9LnHP2RICcqBAwcoU6ZMRtxKREQk1Xr27MnkyZPJoONQIuKtV15J/c63NwzDTO5btoStW9PvPn/JsAS8dOnSGXErERGRVGvQoAF2u52VK1cGOhQRuZroaPjmG7OeLL3Fxpq9TNP5TbkScBERybEsFgs9e/Zk0qRJgQ5FRK7miy8ytonH2bOwZEm63iJDEvD9+/crARcRkUzpoYceYvbs2USnV22piPjmp5/St/zk32JjzY4p6Ug14CIikqMVLFiQZs2aMW3atECHIiJXcuZMxt9zyRKzrWE6UQmKiIjkeCpDEcnEHI7A3PPkyXRbPt0TcMMwlICLiEim1rJlSw4fPsz27dsDHYqIgJn8TpwIr70G589n/P2t1v/2DPcje7qt/JdTp04RGhpKxJXGkImIiGQCdrudhx9+mMmTJ/Puu+8GOhyRnGvVKnj7bViwwEyCExPB48n4OFwuSMfhkem+A67dbxERyQp69OjBl19+SXJycqBDEcl53G5zvHyLFvDDD2biHR8fmOQbzBKUokXTbfl0T8DVAUVERLKC8uXLc8MNN/Djjz8GOhSRnMUwoHNnmDLFTLoDPRgrOBgef9wcZZ9OMmQHXB1QREQkK9BhTJEAeOMN+PFHM/nODCwW6NcvXW+hEhQREZG/dOjQgTVr1nD06NFAhyKSMyQlwZtvZp7k2+mEjh2hWLF0vY0ScBERkb84nU7uv/9+Pvvss0CHIpIzzJjh95KThKAgoi0WkkqWJCUoKPUXhoZC7drw2GMwezZ89RXMmQP79vk1PgCLYaRvoU3lypWZMWMGVatWTc/biIiI+MW6devo1KkTu3fvxmrNkHEZIjlXrVqwebNPSxiABzBCQthrtfKezUbFwYP5cd48+vz2Gw/81U3FepWU17BYiDcMgqtWxR4fb7ZAtNnMA6BWKyQnQ5068Nxz0Lq1X2rD0/WZxTAMDh48qB1wERHJMurXr4/T6WT58uWBDkUk+9uxw+cl3GFhPFq5MtFHj1LPamXTDTdQpHRpVqxZw+4XXsC6dCkLc+cmEUgOCSEBSACSHA6SrVYsN9+MzW7HtWMH7N9vjr2PjjZH0kdHmx1ZVq+Grl2hUiU4dMjnmNM1AT9x4gQRERGEhYWl521ERET8xmKx0KNHDx3GFElvHo9ZA+4HuQyDfPnyUaRIEZo2bcpzzz1HixYtmDt3LuutVnqEhVG7QAE29evHO4UKMa1uXQYEB9PDasX4/XdCXC5C3O5r3yQ2Fg4eNMtU9u/3Kd50TcDVglBERLKihx56iDlz5nDhwoVAhyKSfVmtfinn8Hg8JNlsANx4441s2bKFEydO8M0335CYmMiQIUOoXbs2DVq3ZmOlSvxQogS7WrTghRkzmOByYUnLxEu325zM2bSpmZB7KV0TcLUgFBGRrCgyMpI77riDqVOnBjoUkeytYEGfl3AnJPDzn3/SuHFjtmzZwpIlS6hWrRoLFy5k+PDhLF68mNjYWO666y6ioqIIDw/HYrFQYuJEnBZL2m/o8cCZM/DFF17HnO4JuHbARUQkK1JPcJEM8NhjEBLi0xKu8uUp0qgRTzzxBHv37sXhcHD48GE6duzI4MGDCQ4OZuXKlZQvX/5SAh4aHw9z5lz1YOZ1xcfDW2953cFFJSgiIiJXcMcddxAVFcWWLVsCHYpI9tW7t0+XG+Hh7Lv/fhwOB++//z5Dhw7F7XazceNGQkNDcblcVK9eHbfbTZs2bZg0aRLr1q0j78yZuHwdc3/mDKxY4dWlKkERERG5ApvNxiOPPMLkyZMDHYpI9lWwILRpY45/90ZwMMcbNGDPnj0UKVKEoUOHUqVKFQ4fPky1atWIiYmhfv361KxZk169elGrVi1q165NwwsXsCcn+xZ7QgKsWuXVpSpBERERuYru3bvz1VdfkeSnTg0icgUTJ0LRomk+kBkHPFulCguWLOH06dN89tlnWCwWbrzxRtatW0dQUBD58+dn3rx5vP7664wdO5ZTp05xww03UMTHshfAPJB5+rRXl6ZbAu7xeDh06BClSpVKr1uIiIikq7Jly1K9enV++OGHQIcikn3lzm3uJJctm6qdcMNqJcFu5/3mzRm7di0ffPABtWvXJnfu3IDZCWXVqlVs3ryZw4cPExkTQ6u4OD6sW5fGhw5R9cwZXP4ashUa6tVl6ZaAHz9+nDx58hDqZWAiIiKZgQ5jimSAIkVg/XoYMABy5YKIiP88JB5IsljYV6MGHcuWpdGwYRQoUACLxcLGjRs5cOAAYCbgK5Yu5fmqVVlmGCw/cwZLz548sGoVH3o8dP3mG4qcPOl7zKGhZtxe8O8o+pMnYc4cOHWKg3v38u3ChQz66SeoUsVvtxAREclICQkJFC9enI0bN1KyZMlAhyOS/SUnw8yZMHkyW3/5hbIlSuAoXJjhv/1G/QkTGPjaa5w+fZo777yTyMhIIiMjGTVqFHny5GH+/PnUKlyYnSVKUDEkhKDExKvexgC8aEL4t+BgOHAAChdO86W+74Abhvmxwb33QqlS5juXYcMoOWkSTx4+DPXqmV/Tp0NKis+3ExERyUihoaF07NiRzz77LNChiOQMLhfkywePPMKbwOkXXmDxc8/xYUQEEWXLEhkZSUhICAcPHmTMmDFUq1aNJk2akJKSQqfbbiOxShUqwDWTb/Ax+bZYoEULr5Jv8HUH3O2Gvn1h6lSzH+K1lgoPhwoVYOFC81+qiIhIFrFhwwY6dOjA3r17sfqrdlRELrdrF7z/Pnz+OdjtGIZBTEwMERERJMfHs7hIEf5o0YJV584xe/Zs9uzZQ9myZZkyZQrz5s3jqSeeIFfjxpT2eHCkd6xOJ8yfD7fc4tXl3s//NAzo2BHmzTOT7+uJjYXt26F+ffj9d7PgXkREJAuoU6cOuXPnZsmSJTRv3jzQ4YhkLx4PPPssjB9vbu7+VTFhAXIBxMQQDLQ8dozb/vc/8litrMqXj61bt1K2bFncbjc2m416R4/iDg7GlpbR8t5wOqFnT6+Tb/ClBOWVV1KffF+UnAxHj0Lbtl7fVkREJKNZLBZ69Oihw5gi/mYY0KULfPwxJCZes1zZ6vEQYhh0crtZUaAAb77+OoZhXErAGTUq/ZPvsDC4/35zp94H3pWgJCSYjdNjY727q9MJy5dD3breXS8iIpLBzpw5Q7ly5di/fz958+YNdDgi2cNLL8Hbb6dtQxcwnE7+53BQZuZM9uzZw5+zZvHmL7/gcLm8DsUAXEDQlX4YEWEeuhwxAh5/3KwB94F3Cfjnn8MTT3ifgNtsZvnKV195d72IiEgAPPjgg9xyyy08/vjjgQ5FJOuLjjYPMXq5a+0KCqLlDTdwGrjpjz8YYxiEut0+hRQFxDudlA0OJvHCBaxhYThq14ZBg+DOO80c1g+8K0F56y3vk28w63tmzoQLF7xfQ0REJIOpJ7iIH335JfhwqDnF5eKmbdsoXLgwt9erh90fnbWtVkY+8ACcPcsDrVsz94svYNkyuPtuvyXf4G0CvmuX73d2OGD3bt/XERERySDNmzfnzJkzbNy4MdChiGRthmGWnsTFeb1EqGHwQmgoB/fvJ+rcOVI8Hp/DSrFYcP1VxhIWFkZ8GktjUivtCXhSknla1VcWi3bARUQkS7FarXTv3p3JkycHOhSRrC0mBo4d83kZS1wcsXv28NuRI7j90CL0qMfDjh07ADMBj/PhDcK1pD1Shx87Kzqd/ltLREQkA3Tv3p2pU6eSeJ0hHyJyDefP+yWnDI2IoOVNNzEnJYVQH9dLDg5mUcWK7Nixg3PnzmWyBNxigfz5fb9zUhIUL+77OiIiIhmoVKlS1K5dm9mzZwc6FJGsy+HwS0WFxTCILFaM6JQU4h54ACPoij1MUiUlORmjQwcaNWrEkiVLMlkCDtCnj9mKxRc1akCJEr6tISIiEgA6jCnio3z5zJHzPjKSkli9ezfFixfnA8DwsgzFCA5mIlCoSBEeL1CAmo8/zuBx43jq1VehZElo0waWLr321Pc08K4N4bFjUK6c2TDdGxER8NlncN993l0vIiISQImJiRQvXpz169dTunTpQIcjkjW1awdz5viU1C612WhuGDRt2pSNGzfyVf36NF+yhOA0JPcpgKViRd7dvZvHrVZCg4Ox/fvwpcViDuHJmxdGjoSHH/Y6ZvB2B7xoUbj9dq9rd4yQEPOdhIiISBYUEhJCp06d+OyzzwIdikjWNWiQT+cB4202TnTrRuHChTl69ChxcXG0X7GCRXXr4k5lpYbLZmO/xcK2I0d40mIh3O3+b/IN5puE2Fg4fBgeewyefNKnNw7eHxf9/HMoVCjNPRETrFZeuukmkv20hS8iIhIIPXv25H//+x9uHwd/iORYjRqZuaSX4t1ujv34IxNz5WJywYLs6NuXgomJjMuXj45JSey3WEiw2bjS39DkoCBwOrH37ImzbFkqxccTmtqa9Ph4mDQJXnjB69i9T8Dz5YNVq8y6mNTshFutZunJ3Llsttlo1aoV58+f9/r2IiIigVSrVi0iIyNZtGhRoEMRyZosFpg1yyztSCPDYiEceOLUKe7asYNGK1dSasIEdgKvrV1Los3Ga488QitgDhBls5EYHMxpi4WoggX5uWVLOHECqlen+PHjhKY1gPh4GDMG1q5Nc+zgSwIO5iHKjRvNrfjwcPPr30JDISQE7r0X1q8ntGVLZsyYQc2aNbn55ps5cOCATyGIiIgESo8ePXQYU8QXNWrAvHlmDmmxXPfhxl9fFsMgBPhnzxNbSgohQO1z55gO3DllCn9GRLDjjTfo2KgR/Tp1ooBhUNtqZUxiIruPHYNRo8xk2hsJCfDOO15d6t0hzCtJTITp02HyZDh50jzZmjcvtG0Ljz4KkZH/uWTcuHG8/vrrzJ49mxtvvNEvYYiIiGSUc+fOUaZMGfbu3Ut+f7ToFcmp/vwT+vWDX3812xMmJ1/2Y5fFgu2vlPX6abopHoipW5ezn3/O3W3bsnfvXvLly0ezZs04dOgQJfbs4YsLFwjzpR1iSIhZF36FPPda/JeAe2nOnDn07NmTjz/+mHvvvTeQoYiIiKRZly5duOmmm3jyyScDHYpI1rd/P4wdC9OnE33kCOFOJ9Y8eTh74gR5AGtaz1w4nXgGDCDvhx+yd+9eGjVqRLNmzShatCjDtm+HadNSndBfbX3efRf69k3TZb7P7PRRmzZtmDdvHv3792f06NEE+P2AiIhImlwsQ9Hrl4gflCkD772H5+BBcgPxJ06Q8tVXONzutCffAPHxWD/4gEa1a/Pbb79RoECBS8N1LAcP+pZ8/7U+R4+m+bKAJ+AAdevWZfXq1UyePJn+/fvj8kNjdhERkYxw2223ERMTw++//x7oUESyjbNnzwKY0yhffjnthyT/yWKhh9PJunXriIyMJCEhwfxzb+fZ/JsX0zIzRQIOULJkSVauXMmuXbu49957iY2NDXRIIiIi12W1WunevbsOY4r40fHjx7FYLFjOniV85UrS1vT6X2JjabZhA99//z1Hjhxh9erVfPLJJ6zYts33QK3WNNd/QyZKwAFy587NTz/9ROHChWnSpAnHjh0LdEgiIiLX9cgjjzBt2rS/d9ZExCfHjx/HZrPB7t0kezle/p8iTp5k+/btBAUFERERQatWraj9zDMk2+2+Lex0gheNRDJVAg4QFBTEJ598wv3330/Dhg3ZunVroEMSERG5phIlSlC/fn1mzpwZ6FBEsoWoqCiCgoIgOhq3H0qTgywWCuXPT/PmzcmVKxelSpUi/OmnMXwdpJUrFzRrlubLMl0CDmCxWBgyZAijRo2iefPm/Pzzz4EOSURE5Jp69uypMhQRPzl16hQOh4MUhwO3L20CL7JaqXvjjZw/f574v/p+/3H6NPMM44qTMlMlNBSeecYsQ0lrON7eMyM8+OCDzJw5k27dujFx4sRAhyMiInJVbdu2ZevWrezduzfQoYhkeadPnyYkJISdCQmEpGJAz/Uk58vHHRUrUm3VKrodPUqh//2P8XXqML1AAaxOZ9oXtFjMCe89engVj4+FL+mvcePGrFixgrvuuot9+/bx2muvYfVDLZCIiIg/BQcH06VLFz777DNGjhwZ6HBEsrSzZ88SGhrK2qNHCc6fnwqnT3u9lstq5VxcHH3GjCEpJQWHYcD587jtdqxnz2KpUQNj+3Ys/xr+c1UXk++lSyFPHq9iyhKZbIUKFVizZg0rVqygc+fOJPqrbYyIiIgf9ezZk88++wy3r3WlIjnc2bNnCQsLY8OGDexo2xZPeLjXa9k8HgrFx2NLTsZpGNgxd6CDXS6C3G7YuBGXx4MLMEKv0/AwPByKFIHffoMbbvA6piyRgANERkaycOFCLBYLzZs357QP74RERETSQ/Xq1SlSpIjOLon46MKFC0RERLBhwwbyPvQQ8RYL3lSCG6RudH2Qy4U1JARLkSJQuLC5wx0ebtZ5R0SY3U6qVYPx42HfPqhY0Yto/hbwUfRp5fF4GDZsGNOnT2fu3LlUqFAh0CGJiIhcMmHCBBYuXMh3330X6FBEsqyGDRsSHh7O6tWriYqKokuNGsw6cQJbGlp9pjb5vozTCQ89BJ07w8GD5pCdXLmgalWoWTOtq11VlkvAL/r0008ZNmwY3333HY0bNw50OCIiIoC5c1eqVCl2795NgQIFAh2OSJZUrVo1ihQpwtGjRxk/fjz9+vVj5bvvYrvrLpxA0HWu9yr5vigkBA4f9mrATmplmRKUf+vVqxdffvkl9913H1OnTg10OCIiIoA5VK5t27ZMmTIl0KGIZB1JSTB1KjRoAEWKsOqPP/hq+XK+io5m5ciRPNq7N10++IA6NhtLS5Qwa7XDwv6zTILdTgJg+NKww2KBdG4pmmV3wC/aunUrd999N3369GHIkCFY/NCqRkRExBdLly7liSeeYOvWrXpdErmWlBR46SUYNw48HoiNvezHBhAHWPLl4/Fz55hfsCC7du0iF8AXX8CcOXhOnybq9Gl+P36cM3feSbclS7DExPgWV8GCEBVlJuPpIMsn4ADHjh2jTZs21K5dm/Hjx5uTk0RERALEMAwqVKjA119/zY1ejKkWyRFiY6FlS9i4EVJR2x0HxHfqRIGvvrqUGP/8888MGDCA0qVL8/7771MpNNTsTvLXsB2vBQXB6dNm/Xc6yLIlKP9UtGhRli1bxsmTJ7nrrru4cOFCoEMSEZEczGKx0KNHD03GFLkalwtat4YNG1KVfAOEAQV++AFefJF9+/Zxzz338Nhjj/HWW28xd+5cKlWqBBcugN0PY26Cgsy10km2SMABwsPDmTVrFjfccAONGjXi4MGDgQ5JRERysIcffpjp06cTFxcX6FBEMp8PPoD1683a77SIiyP5rbfoU7s2N954I9u2baNNmzZ/l3o5nWYpi6/cbnOtdJItSlD+bcyYMbz99tt8//331K1bN9DhiIhIDtW6dWs6duxIt27dAh2KSObh8UDx4nD8uFeXu4Gku+/GOWcOYJZ87du3jxUrVrBu8WLenzLFnHbpi+BgswWhzebbOleRbXbA/2nAgAGMGzeOO++8kzl//Z8jIiKS0Xr27KkyFJF/W7QIfDgkaQNCfv6ZiW++yQMPPECxYsVo0qQJ8+fPp+pNN5HQtCmGL4cnbTbo1Cndkm/IpjvgF/3222/cc889DB48mP79+wc6HBERyWGSk5MpUaIEK1eu1OA4kYvuvx98HFQVb7HwXaNG0Ls3t9xyC6VLl/67DGXlSmjVytzB9kZoKKxdCzVq+BTjtWTLHfCL6tevz6pVq5gwYQIDBw7E7XYHOiQREclBHA4HXbt25X//+1+gQxHJPPxwTs9pGHRr3pxu3bpRpkyZy9t9NmoERYt610LQZoMqVdI1+YZsnoADlC5dmlWrVrF161bat2+vwzAiIpKhevbsyeeff47L5Qp0KCKZQ2Kif9a5WqtBiwV+/BEiItK2nsUCuXPDrFm+x3Yd2T4BB8iTJw/z5s0jb9683HrrrURFRQU6JBERySGqVKlCyZIlmT9/fqBDEckc8ub1fQ27HfLnv/rPK1aEpUvNe6WmlttuhwIFzPKVEiV8j+86ckQCDubHgJMnT6Zdu3Y0bNiQ7du3BzokERHJIXr06MHkyZMDHYZI5tC8OYSE+LZGSAjcdNO1H1O7NmzaZB6oDAm5clvBsDCz5rtbN9i82RzikwGy9SHMq/nqq694+umn+frrr2nevHmgwxERkWwuOjqaUqVKsWPHDgoVKhTocEQCKyoKSpdOew/wfypRwqwlT22d9/nz8NlnMG0anDljXhcZCV27ml9pLVfxUY5MwAGWL1/OAw88wBtvvEH37t0DHY6IiGRz3bt3p2rVqjz77LOBDkUk8Nq2Neu0vUlDnU54803Iwh3ucmwCDrBz505at25Np06deOWVVy4/QSsiIuJHK1as4NFHH+WPP/7Q643I5s1w881XP0h5NRYLFC4MO3ZArlzpE1sGyDE14FdSqVIl1qxZw8KFC+natStJV/goxO2GuXOhfXuz1Kh2bbN06e23zU8wREREUqNx48Z4PB7Wrl0b6FBEAq9mTfj6a7P+OrWsVrNLydKlWTr5hhy+A35RQkIC3bp148SJE8yaNYv8+fOTlATvvw/vvWe+OYuNvfya0FDzU5O2beGVV6BSpYCELiIiWcioUaPYvXs3n376aaBDEckUNr/9NuWff57QkBCsCQlXf2BExN/Jd7lyGRZfelEC/hePx8OQIUOYPXs2U6fOo2/fsmzbBtf6bwHMN2NOJ8yebe6Mi4iIXM3x48epUqUKhw8fJjw8nJQUcLnStgkokl1cuHCBmjVrMvGtt7jjyBF45x1zx9MwwOMx2we6XOYu5/PPw333gcMR6LD9Qgn4v4wd+ylPP30TFktVUlJSX6HjdMIvv5jlTCIiIldz661P4nL1Z9OmCsTHmxs5FgvUr2/mGK1bmy2JRbK7Rx55hJCQECZMmGD+gccDq1fDgQPmGPncuaF6dahaNaBxpgcl4P/y2GMwaZKb5ORUNG3/lzx54OjRK7eZFBGRnO3PP6FzZ/jjDxfJyQD/zbIjIswNvtGj4aGHMjxEkQwza9YsBg0axKZNmwgPDw90OBlOCfg/xMZCwYLXLzu5mvBwGDMGevTwb1wiIpK1rV4NrVr9/en69TidMGgQvPRSuocmkuGioqKoVasWs2bNomHDhoEOJyBydBeUf5syxfwo0FuxsfDWW/6LR0REsr4dO8zkOyYm9S2P4+PNblsffZS+sYlkNMMw6N27N7169cqxyTdoB/wyN9xgPlH6IiwM1qwxS5ZEREQaNIB167ybNxISAocOQYEC/o9LJBAmTpzI+PHjWbt2LY5scqDSG9oB/4djx3xfw2YzJ6OKiIjs3GnOG/F2q8tiAXUslOxi7969DB06lClTpuTo5BuUgF/mCnN40swwzIO7IiIiY8aYXdS8lZBgzqRwu/0WkkhAuN1uHn74YYYOHUqVKlUCHU7AKQH/B3/0YbVas/xwJhER8ZNp03xLwMFMwjdu9E88IoHy9ttv43A4GDBgQKBDyRTUafQfbrjBrN/2RVIS6I2diIgAREf7vobVCqdP+76OSKBs2rSJ9957j/Xr12P1pdtFNqJ/C/8waJDZg9UXBQseICTkhH8CEhGRLM1fbQ583UUXCZTExES6du3Ku+++S8mSJQMdTqahBPwf2rSBoCDvr3c63VSpMofKlSvTo0cPtmzZ4r/gREQkywkL830Nw4C8eX1fRyQQhg0bRuXKlenatWugQ8lUlID/g90Ow4Z5N8nSZoNixWz8+GN/du/eTbly5WjVqhXNmzfnxx9/xOPx+D9gERHJ1G67zexk4guPB+rU8U88Ihlp2bJlTJ06lQkTJmDx9S9CNqM+4P9iGNCtG8ycaQ5CSA2bzdyd2LgRihf/+8+Tk5OZNm0ao0ePJi4ujgEDBvDwww8T5o8tERERyfRWrYKWLb3vjhUUBH36wNix/o1LJL1duHCBmjVr8uGHH9K6detAh5PpKAG/ArcbnnwSPv/cTMKv9W/I6TQHJCxbBqVKXfkxhmGwYsUKRo8ezYoVK+jVqxdPPPEExf+ZrYuISLZjGFCuHOzf7931ISGwdSuUL+/fuETS2yOPPEJISAgTJkwIdCiZkkpQrsBmgw8/hLlzoXVrCA6+vEWh3W7W9ZUuDe+8A9u2XT35BrBYLDRp0oRZs2bx66+/kpCQQI0aNejUqRPr1q1L999HREQCw2KBCRO8a3PrdEKXLkq+JeuZNWsWK1eu5J133gl0KJmWdsBTISoKZsyA48fNNoORkdCokfnlbUnThQsXmDRpEh988AHFihXjqaee4p577sFuV2dIEZHsZuJEGDDA7OmdGqGhHpo2tTJnjrnpI5JVREVFUatWLWbNmkXDhg0DHU6mpQQ8wFwuF7Nnz2b06NEcPXqU/v3706tXL3Lnzh3o0ERExI9mz4auXc2Nm9jYKz/G4QC3O4XixReyZ08r7HYdXJOswzAM2rZtS40aNXjttdcCHU6mphKUALPb7XTo0IFVq1bx7bffsmHDBsqUKcOAAQPYu3dvoMMTERE/ueceOHnSHE9foYJZYpI7t/kVEWFOUR44EP7800NExHNMm/Z1oEMWSZNJkyZx9OhRRowYEehQMj3tgGdCR44cYdy4cXz66afccsstDBw4kCZNmqiFj4hINmEYsG+fmZAnJ5udtCpXNnfAATZs2MBdd93F5s2bKVy4cGCDFUmFvXv30qBBA5YuXUrVqlUDHU6mpwQ8E4uLi+Pzzz9nzJgxhIWF8dRTT9GxY0ccF5+hRUQk2xo2bBjbtm1j1qxZ2oCRTM3tdtO0aVPat2/PU089FehwsgQl4FmAx+Nh3rx5jB49mj/++IPHH3+cPn36EBkZGejQREQknSQlJVGvXj0GDx5Mly5dAh2OyFW9+eab/PzzzyxcuBCrVdXNqaEEPIvZsmUL77//PrNmzeKBBx5gwIABVKlSJdBhiYhIOli/fj2tW7dWKYpkWps2baJFixasX7+ekiVLBjqcLENvU7KYGjVqMHnyZHbs2EHRokVp1qwZrVq1YsGCBei9lIhI9lKvXj169epF37599RwvmU5iYiIPPfQQ77zzjpLvNNIOeBaXmJjI1KlTGT16NG63m4EDB9K1a1dCvZn6ICIimc7FUpQhQ4bQuXPnQIcjcsmzzz7LgQMHmD59us4ppJES8GzCMAyWLFnC6NGj+fXXX3n00Ud5/PHHKVKkSKBDExERH6kURTKbZcuW0blzZzZv3qwzaV5QCUo2YbFYaNasGXPmzGHlypWcO3eOKlWq0K1bNzZu3Bjo8ERExAcqRZHMJDo6mocffphPPvlEybeXtAOejZ09e5ZPP/2UsWPHUrZsWZ566inatGmDzWYLdGgiIpJGSUlJ1K1bl6FDh6oURQKqe/fuOBwOPv7440CHkmUpAc8BUlJSmDFjBqNHj+bMmTM8+eSTdO/enYiIiECHJiIiaaBSFAm0WbNmMWjQIDZt2kR4eHigw8mylIDnIIZhsGbNGt5//30WLVrEI488Qv/+/SldunSgQxMRkVR64YUX+OOPP5g5c6YOvkmGioqKolatWsycOZObb7450OFkaaoBz0EsFgs333wz3377Lb///jsWi4W6dety//33s3r1atUViohkAcOHD2f37t1MnTo10KFIDmIYBr1796Znz55Kvv1AO+A5XExMDP/73/8YM2YMkZGRPPXUU7Rv356goKBAhyYiIlehUhTJaJ9++ikfffQRa9euxeFwBDqcLE8JuADgdrv58ccfGT16NHv37uWJJ57g0UcfJW/evIEOTURErkClKJJR9u3bx0033cTSpUupWrVqoMPJFlSCIgDYbDbatWvH0qVL+f7779m+fTtly5bl8ccfZ9euXX67T2IiREeD3vaJiPjmYinKN998E+hQJBtzu91069aNIUOGKPn2IyXg8h916tThiy++YPv27eTNm5fGjRvTpk0bFi1a5FWd+ObN0K0bhIZCeDhERoLdDrVrwzffQHJyOvwSIiLZXHBwMJ999hkDBw4kKioq0OFINvX222/jcDgYOHBgoEPJVlSCIteVkJDAlClTeP/997Hb7QwcOJBOnToREhJyzet27IAHH4Rdu8wk2+3+72MiIsBigTffhH790ukXEBHJxoYOHcqff/6pUhTxu02bNtGiRQvWr19PyZIlAx1OtqIEXFLNMAx+/vlnRo8ezaZNm+jXrx99+/alUKFC/3nsr7/CHXdAbGzqyk2cTnj0UXjvPTMhFxGR1ElKSqJOnToMGzaMTp06BTocySYSExOpX78+gwYNolu3boEOJ9tRCYqkmsVioWXLlsyfP5/Fixdz7NgxKleuTI8ePdi6deulx+3eDS1aQExM6mu94+Phk0/MnXAREUk9laJIenjxxRepWLEiDz30UKBDyZa0Ay4+OX36NB9//DEffvghVapU4amnnuKtt+5ixQqLVwctQ0LMBL54cf/HKiKSnakURfxl2bJldOrUiS1bthAZGRnocLIlJeDiF8nJyXz77be8+eY0/vhjOoZx7frwqwkOhmeegdde83OAIiLZnEpRxB+io6OpUaMGH374Ia1btw50ONmWEnDxq6efNhg71sDl8r66KU8eOHkSNAtIRCRtfvvtN+6++262bNlyxfM5ItfTvXt3HA4HH3/8caBDydZUAy5+9c03Fp+SbwCPB9au9VNAIiI5SP369enZsyf9+vXzqm2s5GyzZ89mxYoVvPvuu4EOJdtTAi5+df68f9Y5fdo/64iI5DQjRoxg586dTJs2LdChSBZy4sQJ+vXrxxdffEF4eHigw8n2lICLX/lrw+VKPcNFROT6LnZFGTBgACdOnAh0OJIFGIZB79696d69OzfffHOgw8kRlICLX/njTbNheMib1/d1RERyqvr169OjRw+VokiqTJo0icOHD/PSSy8FOpQcQwm4+FWrVmCz+bZGTEwiAwc2ZPDgwSxdupRkzaoXEUmzl156SaUocl379u1jyJAhTJkyBYfDEehwcgx1QRG/2rQJGjUyB+t4w26Hhx/20KPHWubPn8/8+fPZtWsXt912G61ataJly5aULl3anyGLiGRb69ato02bNuqKIlfkdrtp2rQp9913H08//XSgw8lRlICL31WvDtu2eXdtaCisXw9Vqvz9Z6dOneKXX35h/vz5LFiwgHz58tGqVStatWpFkyZNCA0N9U/gIiLZ0JAhQ9i5cyczZszQgB65zKhRo5g/fz6LFi3CalVRREZSAi5+t3KlOYo+ISFt1zmd0KEDfP751R/j8XjYuHHjpd3xTZs20bhxY1q1asWdd95JhQoV9AIjIvIPFwf0vPjiizz44IOBDkcyic2bN3P77bezfv16SpUqFehwchwl4JIupk2D7t1Tn4Q7nWbpyty5ZhlKap0/f55FixZdSsiDgoIu7Y7fdtttREREePcLiIhkIypFkX9KTEykfv36DBo0iG7dugU6nBxJCbikm19+gfvvN1sKxsZe+THBwWCxwEMPwUcfpS35/jfDMPjjjz+YP38+8+bN49dff6V+/fqXEvLq1atrd1xEcqwhQ4awa9cuvvvuOz0X5nCDBg1i3759+m8hgJSAS7pKSoIZM2DUKNi1CxwOM+F2u81uKf36wWOPQYkS/r93bGwsS5cuvZSQJyYmXkrGb7/9dvKq16GI5CCJiYnUrVuX4cOH07Fjx0CHIwGybNkyOnXqxJYtW4iMjAx0ODmWEnDJMIcPw4kTkJwMefNCuXJmQp5R9uzZc6lUZfny5VSvXv1SQl63bl0dQBGRbG/dunW0bduWzZs3qxQlB4qOjqZmzZqMGzeO1q1bBzqcHE0JuORIiYmJrFix4lJCfurUKVq0aEGrVq1o0aIFBQsWDHSIIiLpYvDgwezevVvlB9mVYZgfM1+hprNHjx7Y7XY++eSTAAQm/6QEXAQ4dOgQCxYsuNSOqXz58pd2xxs0aIDdl+J0EZFMJDExkTp16jBixAiVomQXR4/C+PEwcSKcOQMej5mAV6kCzz0H7dsze948nn32WTZt2kS4P8ZWi0+UgIv8S0pKCmvWrLm0O75//36aN29+KSEvXrx4oEPMMaKi4OOP4euv4fx58zUld2647z544gkoWTLQEYpkTSpFySbOnIGHH4aFC83vk5L++5iICDyGwetAs/nzublRowwNUa5MCbjIdURFRfHzzz8zf/58fv75Z4oUKXIpGW/cuDHBwcGBDjHb2b8fnnzS7KRjsUBi4uU/v3iYt3Fj+OCDywc3iUjqqBQlizt0yOzfe+IEpKRc9+FJQUEEP/AAfPEF6MxTwCkBF0kDt9vNhg0bLnVW2b59O02bNr2UkJcrVy7QIWZ5GzbA7bdDdLS5430tFguEhcEPP8Btt2VMfCLZhUpRsrBz56B2bThyxKz3Ti2nE3r0gLFj0y82SRUl4CI+OHPmDAsXLrxUrhIeHs6dd95Jq1atuPXWW3E6nYEOMUvZtQvq1zeT77RwOmHFCqhTJ33iEsmuLpaibNmyRYfPs5InnjDrvZOT036t0wlLl5pPthIwSsBF/MQwDLZs2XIpGV+/fj0NGza8tDt+ww036GPe66heHbZvNw/xp1XRomarS32yKpI2gwcPZs+ePUyfPl3PUVlBfDwULAhxcd5db7XCAw/A1Kn+jUvSRAm4SDqJjo5m8eLFl8pVDMO4bBBQrly5Ah1iprJ+PTRtar62eCMiAqZPh5Yt/RuXSHZ3sRTlpZde4oEHHgh0OHI9kyfDgAFXHzGdGiEhZueUfPn8F5ekiRJwkQxgGAY7d+68tDu+atUq6tSpcykhr1mzZoYOAoqPh1OnzAPzuXNDgQKB3znu3BmmTbt+3fe1NGsGixb5LyaRnOLXX3+lXbt2KkXJCho3hlWrfFsjPBw++ggeesg/MUmaKQEXCYD4+HiWL1/OvHnzmD9/PhcuXKBly5a0atWKO+64I13GAxuGWSf99tvw888QFGQeYnS5IFcuGDgQevcGf9z6+HGzJe2/2we2a2d2Nylb9vLHu91mWaI35Yz/5HCYrQvz5vVtHZGc6Pnnn2fv3r0qRcnsKlSAPXt8W8PhgDfegKef9k9MkmZKwEUygX379l0aBLR06VIqV6586TBn/fr1sdlsPq2/bZuZ/J48aZYNXulvfWio+ee9e8Po0eDNLffvN88GLVp05faBQUHmuvXqwbhxULOm+ednzkCxYlduYZsW4eFmKUulSr6tI5ITJSYmUrt2bV5++WWVomRmZcuaT7a+sNvhtdfMIT0SEErARTKZ5ORkVq1adal2/OjRo9xxxx20atWKli1bUqRIkTStt3q1WRed2nJBpxNuuQXmzDET5tRKS/vAi/eZOdOM7dgxKF/eICHBt123XLlg+fK/E3sRSRuVomQBderAxo2+reF0wvvvmzsuEhBKwEUyuaNHj17aHV+4cCElS5a8tDvesGFDHA7HVa/dtcvcbY6JSds9nU5o396c15Aau3eb90lr+8CgoBTuuOMNTp1awm+//QLY07bAvzid8McfUKrU1R9z9ChMmgSbN5vlMblzm91XevWCEiV8ur1ItvD888+zb98+pk+fHuhQ5EqGDzdrCf/9EWNahISYT4IVK/ovLkkTJeAiWYjL5WLdunWXDnPu2rWL22677dJhzlL/yjzvvBMWLPCurZ/TCcuWmYn19dSsCVu3enefiIgEfvhhA127NuDoUd8S8Dx5zMOl9isss3o1jBwJS5aY3/+z3OXiMNMmTWDYMPOfIjnV1UpRXC7zTavbbf5d0xDgADl+HMqU8a1mr0EDWLPGfzFJmikBF8nCTp06xc8//8z8+fNZsGAB+fPnv5SMly/flGrVQrzeJLFaoWNH8yDl1SQlJfHjj0fp3LkkycneJc9Op5tmzSaxePFeEhNfwuMJ9S5gDFq3jufHH8P+85MxY2DoUEhIuP6bBKcTRoyAQYPMOnaRnOhiKcrmzVvYtq0gb71lnu2w282/F8nJ5hvv55+He+81z/RJxjAMgyO1a1Ns82a8al4VHg5ffgn33OPnyCQtlICLZBMej4eNGzde2h3/9dc2uN0D8Hi836YyW8UapKScZOfOnezYsYOdO3de+t9HjhzB4fiG2Ng2GIb3B0VLlDjITz/BTTeV9LEOPIHatVcwe/YNlCxp1pOMHQuDB6etv7jTCS+9ZCbhIjlV587jmT37AWy2/Fc9QxIRYb5ZHzMGHn44Y+PLiQ4dOkSfPn1w7t/Pt4cOYUtISNsCwcFmzd2aNVf+qFAyjBJwkWyqfHk3e/f61j3Fao0lJKQfISFzqVSpEpUrV77sn2XKlCV3bofP3UuCg2HLlnPcffcv7N17Nx6P0+u1goKSsNnep3v3g9x11wg6dizk1XAfp9Ms32nc2OtQRLKsmTOha9fUH4x2Os2GGiNGpHNgOZTH4+Hjjz9m+PDhDBw4kOeee46gZcvM9lapfYILDjYPuqxbp16tmYAScJFsqmBBsx7aF3Z7Em3aLKJFi0NYrVZsNttl/0xKCqZPn/a43b5N8XE6XeTOfRcdO1bn4MG3WLDA5vVETIDQUIP77pvAt9+WICXlLvDig1qLBVq1grlzvY9DJCtaudLsTpTWv4NOp9nC9NFH0yeunGr37t306tWL5ORkJk2aRJUqVf7+4dq10Lo1pKRc/bS91Wp+nFm/Pnz/vXnyXAJOCbhINuWPBBxigaewWCZhs9mw2+0EBQXhcDhwOBzYbEU4enQVhhHi430ucNdd79K+fWny5SvAF1/UZ9asAoB3O/gWi9kScflyg6Qk70tagoNh3z4oWtTrJUSyFMOAcuW8bzMdGmoOw8qVy79x5UQul4v333+fN998k2HDhtG/f/8rz4RIToZZs2DUKNix4/KC/KQks6XV00+b7Qsl01ACLpJNVaxotgf0RXBwEo8+uoaiRddy5MgRjh49SlRUFKdOneLMmTNERyfi8cTibaL8t1giI28nLCwKm83GmTOFuHBhMeB9Ym+3m0N/fCmPCQ6GF16AF1/0fg2RrGTlSrN7UmrnBvxbWJg5YLF/f//GldNs27aNHj16EBERwcSJEyn77/HBV7N/Pxw5Yp44z53bnEqWJ0+6xire8e1zYxHJtDp29L1NWHKywRdfdGfDhg3Url2bsWPHsmbNGvbs2cO5c+dITo6lTBnf38Pb7VCsmBuXy8Xhw4e5cKEDvib1LpfL59r0pCTYvt23NUSykrffNqfleisuzlxDW3veSU5O5uWXX+a2226jd+/eLFy4MPXJN5jtCW+5BVq0gJtuUvKdiSkBF8mm+vXztY2eC6dzAcWKOQkNDWXu3LnUrFmTatWq8eyzz/LLL7+QkpLCkCF2wsN9uU8ihQvPJG/ecCIiIv76iLUikIYxnFfknxP+Fy74ZRmRLGH+fN+T5zNnYM8e/8STk/z222/Uq1eP9evXs3HjRnr37o1FvVCzLSXgItlU0aJw223eJ+E2mwunczytW7cmLi6OxYsXc++99zJo0CBy5crFiBEjKFiwIN99dx9JSSlexxkUFESePFM5efIkPXv2xOl0ctNNzb1ez9/ULEByisREc8iOr4KCzCRcUichIYHnnnuONm3aMHjwYH744QeKFy8e6LAknSkBF8nGPvjA7NObdnHcfXci338/ghUrVnDgwAEmTZpEkSKVeOqpvbz11j3s3TuPyMgz7N//CYUK/YHFkva2JU4ndO1qY8uWuYwePZpRo0bhdhskJBzzJugr8P6NAZgHymrV8k8kIpmdx5M518rOli9fTo0aNTh06BBbtmyhc+fO2vXOIXQIUySbW7PGbCkWG5u6j5ZDQz24XIsIDn6An3+eS4MGDRg//nueey6FxMS2OBx2EhIur88OCXGTnGwFDDye1L6vj6dJkxDmz7eyYAEMHXqOHTtC/uqo4gEs+LJHEBrqJjHRwDC8L0UJDobDh6FAAa+XEMkyDMNsoOFy+bZOWBisXw+VK/snruwoJiaGwYMHM3v2bD766CPatWsX6JAkg2kHXCSba9jQTMLLlTNfGK+2uRIaaraK7dPHypYtpQkOttGiRQvGj1/BiBH3kJTUAbc7+D/JN0Biog2Px/LXrpfBlTplXWSxeAgN9WCzzeXUqQ8pUQK6dvXw5595MYxQzMTbhq9PTwkJ8URE/AJ4l01YLHDXXUq+JeewWKBpU9/XCQ11U6GC7+tkV/Pnz6datWokJiaybds2Jd85lBJwkRygalXYtcuc7Ni2rbnLFRpqJuQOBxQuDC+/bHavGj0aKleuwKpVqwgKqsDjj1fn9GkDlys1H4te3AVPARJwOBKw2RIICXERHu4mKMhF0aIrsViaER4ew59/9uDMGYiL8+9TkcWSDHzC3XdvITTUu24qoaEwdKhfwxLJ9J57Dp8OVdtsycTGvkrHjh1YuHAhHtWiXHL27FkeeeQR+vXrx6effsqkSZPIq0MmOZZKUERyoMRE85BUYqLZpSpfvivvjFeunMjOnXbS3lHEjcWyhypVPuPCBRvt23fgtttqUajQLhYv/o5x43Jx/Hh3IMz3X+YKbLYEHn10DKtW7SY2diL79lkwd9ZTx+mEMWOgV690CU8k0/J4oHhxOH7cu+tDQuCPP2KYP38K48ePJyEhgT59+vDII48QGRnp32CzkBkzZtC/f386dOjA66+/TrhvraMkG1ACLiJXtGEDNGmS9nHUF4WFGQwZsog337wXl8uF0+kkKCiIOnXu5+ef38Xtdlx/ES/Y7cnkyvUgQ4e+wXPPlcLjSf0wn4sTm8eOhR490iU8kUzvp5/g/vvNWS5p4XTCkCEwbJj5vWEYrF27lgkTJvD999/Tpk0b+vbty80335xjDhpGRUXxxBNPsG3bNiZNmkSjRo0CHZJkEipBEZEreu89c4fcW/HxBq++mkhSUhIlSpTAZrNx4sQJfvnlhnTpkGAm3gaLFzt45pmnePbZEmlKvsGcnPnNN0q+JWdr3dosRQsNTf01Tic89JA5OfYii8VCw4YN+fzzz9m7dy+1a9eme/fu1KhRgw8//JAL2bjJvmEYfPHFF9SsWZOKFSuyadMmJd9yGe2Ai8h/JCdDrly+jXE3JREWVpyuXdtz7733UrFiTW64IT9JSb4M2TEAN+b+QQrBwRaCgtyEhIynRIkFDB36GH36tOXs2bTvsFmtULMm/P67D+GJZBOzZ8PDD5tlKVcbTe90mj8fPhwGD77+3AHDMFiyZAkTJkzgl19+oUOHDvTt25e6dev6Pf5AOXToEH379uXYsWNMnjyZOnXqBDokyYSUgIvIfxw/bnZNSetH0P9mscQTGdmE5cunULlyZX76CTp3huhoXyOMwmr9hKCgBMqXT6Zjx/y0aNGcQ4cO8fzz6zhwYASG4V2NpdMJa9dC9eq+xiiS9SUlwYwZMGoU7NxpHtq2WCAlxTw7MmiQmaR7M/E8KiqKyZMn88knn1CwYEH69u1Lx44dCQtLn7Mh6c3j8fDxxx8zfPhwBg4cyHPPPUdQkK8TfSW7UgIuIv+xb5+5E3y1Xa/UiwHqExS0j4IFC2Kx9ODYscF4PE6fVg0OPk+lSk1Zu3Yty5cvZ/78+SxYsIDTp0/jdq/h7NlyXq9ts0G3bjB5sk8himQ7J07A6dPmtMy8ec3Dmv4o5Xa73SxYsIDx48ezevVqunTpQp8+fahatarvi2eQ3bt307t3b5KSkpg0aRJVqlQJdEiSySkBF5H/OHMGihXzvQTFbk/Bbq9ErVqF2LRpE0FBjxEbOxLD8C0Bt1jOkS9fBfr370+JEiUoVaoUhQoV4tgxD61bV8Hl8n74DpgHMePj/ZNciEjqHTx4kE8//ZRPP/2UChUq0LdvX9q3b09wcHCgQ7sil8vF+++/z5tvvsmwYcPo378/tmsNQhD5ixJwEfkPjwcKFTJ3u3xhsxkYxk7q1SvPLbd42LFjAT/91BTI5WOEB7DbKxAcHExiYiJutxubzYbHUwPDWALk9ml1ux0uXDDLUUQk46WkpPDDDz8wYcIENm/eTPfu3Xn00UcpV877T7f8bdu2bfTo0YOIiAgmTpxI2bJlAx2SZCFKwEXkikaOhNdf96UTisE/e29f3MBKSvLgWwMmA5stCqfzOHfcUYfWraF9+xRSUi6weHE8nTvnw+32rceuwwFRUebH7CISWLt37+bjjz/m888/p06dOvTt25c2bdpgt/vwSde5c/DZZ7BsGZw9a7Z8KVsWeveG6xyaTE5O5o033mDcuHG8/vrr9OrVK8e0VRT/UQIuIld04gSULu1bK8Iru/iU4+0L1uWJfXg4GAZ06+YhKmoss2f3wjB8O8R18ZCZPkkWyTwSExP57rvvmDBhAvv376dXr1706tWLEiVKpH6RP/+EV1+FmTPNtkf/HHRwcRBA6dJmQ/MuXf5Th/bbb7/Rs2dPSpUqxfjx4ylevLh/fjnJcZSAi8hV9eoFX3/tezeUjJEMxGGzheB2p6GB8RVUqQLbt/snKhHxv61bt/Lxxx/z9ddfc8stt9C3b19atmyJ1XqNT9fmzYMOHcxdhesNIwgLgzvvhK++AoeDhIQERowYwRdffMF7771Hp06dtOstPlECLiJXlZICt91m9sXOGkk4BAWZvYZdLu9eHMPD4cMPzU4oIpK5xcbGMnXqVMaPH8+5c+fo06cP3bt3p1ChQpc/cNEiaNs2baN9Q0OhRQuWDxxIz969qVu3Lh988AEFCxb07y8hOZIScBG5psREcyz1kiUQF+fv1S8vJ/EHi8XAfFbzPgE/dcr8JFpEsgbDMFi/fj0TJkxgxowZtGrVir59+9K0aVMsZ8+aZSVe9FVNstt53emkzhdf0K5dO/8HLjmWEnARuS7DMDeQ3noLli83a6OTk81PcX0fK2/8lTT7cjDzclarG7vdSnJy2pJwpxNeeskcLiIiWdP58+f58ssvmTBhAm63m4kVKtB40SIsXn6M5ylQAGtUlFkjLuInSsBFJE0OH4b5881e4RMnmkN7fBOL07mZpKT6BAUZWCwWkpLA4wnCl93xiAhwuVJfOuN0QqdO5u+k0k6RrM8wDFYuX071Vq3I48tp8vBw+PZbsyZcxE/0dk5E0qRECbNT1+DB/tj9BqczjPffb8SZMw4WLw5mxgwHhQo58LU0xeUy69edzmtvXAUFmeUmTz6p5FskO7FYLNzidpPH13HwsbHw/vt+iUnkIt/GxYlIjuaPg5kJCcmMHTuFFSuWERERQXh4OKdOvQr49qLpcMCzz8Irr8B775ldxxyOv980WK3mSO3u3WHAAChf3vffRUQymX37zL/ovtqzx/c1RP5BCbiIeC0iwuwX7ovgYBtNmtSkXj0bsbGxxMTE+DxK/qKYGHMX/KuvzLkbq1aZMzdsNoiMhCZNzEYHIpJNxcb6JwH3/wl0yeGUgIuI1+rWNTeYfClFsdns9OhRjzp16l36s1de8c8AoFz/mHifNy/cfbfva4pIFhIRAXY7JCX5tk64b9N1Rf5NNeAi4rWnn/Z9B7lkyf9Ofi5Xzrc1wXy9rVjR93VEJAurUsX3gx0WC1Sv7p94RP6iBFxEvFa/PhQr5v314eHw/PP//fNnn/V9w6lxYyha1Lc1RCSLa9DArDfzhdNp7jaI+JEScBHxmsUCb7xhvj55c21EBDzwwH9/1rGjb3GFh8Nzz/m2hohkAxaL+WQQFub9GgUKmO/oRfxICbiI+OS+++Cpp9L2+nYx+V669MolLKGh0L+/d4m9zWbufDdvnvZrRSQb6toVgoO9u/bidC71JxU/UwIuIj4bORKGDTMTZ5vt2o91OqFgQfj112vXaI8caW46paXG3GqFPHlg4UINrRORv0REmE8Kad0Fdzrh4YfNLxE/00uUiPjMYjEH86xZA507m4NtwsL+ToKDgsyykBIl4M03YdcuqFz52mvabPDDD+bwudS8boaGmjvf69aZ9xERuaR2bfMjtzx5Urcb7nTCY4/BuHHpHZnkUBpFLyJ+d+ECzJoFx46Z7XPz5TNbFjZtmvZPcg0Dvv8eRo2CzZshJcWccnlReLi5wfXMM9CrF+TO7d/fRUSykago+PBDM7F2u81hARcFB5tPULfeap4Ov/XWQEUpOYAScBHJMnbtgunT4cgRs81goULmoJ3bb1fJiYikQUqK+RHbr7/CyZPmO/kyZeDBB31r7SSSSkrARUREREQykPaMREREREQykBJwEREREZEMpARcRERERCQDKQEXEREREclASsBFRERERDKQEnARERERkQykBFxEREREJAMpARcRERERyUBKwEVEREREMtD/AUK9Yf2ojRbNAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/4AAAGrCAYAAAB5QEygAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3gU1RrH8e/sbkhIAqGIFKUjTZrSsSAWLBQLgnRRkSIgCgqKSFFEBREUEEGkNxUBERAR6YJUuXRpEVSqUgTSd+f+MQSJ1CQz2WTz+zxPniSzu+e84bnXmfeU9ximaZqIiIiIiIiISEBy+TsAEREREREREXGOEn8RERERERGRAKbEX0RERERERCSAKfEXERERERERCWBK/EVEREREREQCmBJ/ERERERERkQCmxF9EREREREQkgCnxFxEREREREQlgSvxFREREREREApgSfxFh2bJlGIbBsmXL/B2KiIiIZEJ6FhFxlhJ/CXj79u2jffv2FCtWjJCQELJnz84dd9zBRx99RHR0tL/DS7emTZvGsGHDHGl77ty53H777YSEhFCoUCH69u1LQkKCI32JiIj4m55FUsapZ5EvvviCli1bcsstt2AYBvfcc4/tfYikN4Zpmqa/gxBxyvz582ncuDHBwcG0bt2acuXKERcXx6pVq/j6669p06YNY8aM8XeYfufz+YiLiyNLliy4XNZ4YP369dm2bRu//fabrX1999131KtXj3vuuYdmzZqxdetWRo4cSbt27Rg1apStfYmIiPibnkWuT1o+i9xzzz1s3LiRqlWrsnnzZipUqKCVBhLwPP4OQMQpkZGRNG3alMKFC7NkyRLy589/4bVOnTqxd+9e5s+f78cI0w+Xy0VISEia9PXKK69QoUIFFi1ahMdj/Scoe/bsDBw4kK5du1K6dOk0iUNERMRpeha5fmn5LDJ58mRuuukmXC4X5cqVS5M+RfxNS/0lYA0aNIizZ8/y+eefJ7nRJipRogRdu3a98HtCQgJvv/02xYsXJzg4mCJFitCrVy9iY2OTfK5IkSLUr1+fZcuWUaVKFbJmzUr58uUvjBTPmjWL8uXLExISQuXKlfnll1+SfL5NmzaEh4dz8OBB6tevT3h4ODfddBMjR44EYOvWrdx7772EhYVRuHBhpk2bluTz/fr1wzCMS/6eCRMmYBhGklHxxFhXrVpFtWrVCAkJoVixYkyaNCnJZ/+7r+6ee+5h/vz5HDhwAMMwMAyDIkWKcPbsWcLCwpL8uyX6448/cLvdvPvuu5e8lmjHjh3s2LGDdu3aXUj6AV544QVM02TmzJlX/KyIiEhGo2eR9PcsAlCwYMELqwpEMgv9L14C1rfffkuxYsWoVavWdb2/bdu29OnTh9tvv52hQ4dSu3Zt3n33XZo2bXrJe/fu3Uvz5s1p0KAB7777LidPnqRBgwZMnTqVl19+mZYtW9K/f3/27dtHkyZN8Pl8ST7v9Xp5+OGHKViwIIMGDaJIkSJ07tyZCRMm8NBDD1GlShXef/99smXLRuvWrYmMjEzxv8PevXt58skneeCBBxgyZAg5c+akTZs2bN++/YqfeeONN6hUqRI33HADkydPZvLkyQwbNozw8HAef/xxvvjiC7xeb5LPTJ8+HdM0adGixRXbTXzwqFKlSpLrBQoU4Oabb77kwURERCQj07PIv7Gml2cRkUzLFAlAp0+fNgHz0Ucfva73b9682QTMtm3bJrn+yiuvmIC5ZMmSC9cKFy5sAubq1asvXPv+++9NwMyaNat54MCBC9dHjx5tAubSpUsvXHv66adNwBw4cOCFaydPnjSzZs1qGoZhzpgx48L1Xbt2mYDZt2/fC9f69u1rXu7/uuPHjzcBMzIy8pJYV6xYceHasWPHzODgYLN79+4Xri1duvSSOOvVq2cWLlz4kn4S/9bvvvsuyfUKFSqYtWvXvuT9Fxs8eLAJmAcPHrzktapVq5o1atS46udFREQyCj2LJI01vTyL/Nett96a7M+IZESa8ZeA9M8//wCQLVu263r/ggULAOjWrVuS6927dwe4ZP9d2bJlqVmz5oXfq1evDsC9995LoUKFLrm+f//+S/ps27bthZ9z5MhBqVKlCAsLo0mTJheulypVihw5clz289erbNmy3HXXXRd+z5MnD6VKlUpxm/fffz8FChRg6tSpF65t27aNLVu20LJly6t+NrFycXBw8CWvhYSEqLKxiIgEDD2LJI01vTyLiGRWSvwlIGXPnh2AM2fOXNf7Dxw4gMvlokSJEkmu58uXjxw5cnDgwIEk1y++oQJEREQA1p6xy10/efJkkushISHkyZPnkvfefPPNl+yZi4iIuOTzyfHfWAFy5syZ4jZdLhctWrRgzpw5REVFATB16lRCQkJo3LjxVT+bNWtWgEv2KgLExMRceF1ERCSj07PIlWMF/z2LiGRWSvwlIGXPnp0CBQqwbdu2ZH3ucoVqLsftdifruvmfUzNT8/krxfjffW7JjSk5WrduzdmzZ5kzZw6maTJt2jTq169/4eHiShILGx0+fPiS1w4fPkyBAgVSHJOIiEh6omeR5MeUHCl9FhHJrJT4S8CqX78++/btY82aNdd8b+HChfH5fOzZsyfJ9aNHj3Lq1CkKFy7sVJjJljNnTgBOnTqV5Pp/ZwJS62oPHuXKleO2225j6tSprFy5koMHD9KqVatrtlmpUiUANmzYkOT6oUOH+OOPPy68LiIiEgj0LJI6TjyLiGRWSvwlYPXo0YOwsDDatm3L0aNHL3l93759fPTRRwA88sgjAAwbNizJez788EMA6tWr53C016948eIArFix4sK1c+fOMXHiRFv7CQsL4/Tp01d8vVWrVixatIhhw4aRO3duHn744Wu2eeutt1K6dGnGjBmTZFZg1KhRGIbBk08+aUvsIiIi6YGeRVLHiWcRkczKc+23iGRMxYsXZ9q0aTz11FOUKVOG1q1bU65cOeLi4li9ejVfffUVbdq0AaBixYo8/fTTjBkzhlOnTlG7dm3WrVvHxIkTeeyxx6hTp45//5iL1K1bl0KFCvHcc8/x6quv4na7GTduHHny5OHgwYO29VO5cmW++OILunXrRtWqVQkPD6dBgwYXXm/evDk9evRg9uzZdOzYkaCgoOtqd/DgwTRs2JC6devStGlTtm3bxogRI2jbti1lypSxLX4RERF/07NI6jj1LLJixYoLgxbHjx/n3LlzDBgwAIC7776bu+++27a/QSS9UOIvAa1hw4Zs2bKFwYMH88033zBq1CiCg4OpUKECQ4YM4fnnn7/w3rFjx1KsWDEmTJjA7NmzyZcvH6+//jp9+/b1419wqaCgIGbPns0LL7zAm2++Sb58+XjppZfImTMnzzzzjG39vPDCC2zevJnx48czdOhQChcunORmmzdvXurWrcuCBQuStbSufv36zJo1i/79+9OlSxfy5MlDr1696NOnj22xi4iIpBd6Fkk5p55FlixZQv/+/ZNce/PNNwHo27evEn8JSIaZmqoaIpKpPf7442zdupW9e/f6OxQRERHJhPQsInJ9tMdfRFLk8OHDzJ8/X4V0RERExC/0LCJy/bTUX0SSJTIykp9++omxY8cSFBRE+/bt/R2SiIiIZCJ6FhFJPs34i0iyLF++nFatWhEZGcnEiRPJly+fv0MSERGRTETPIiLJpz3+IiIiIiIiIgFMM/4iIiIiIiIiAUyJv4iIiIiIiEgAU+IvIiIiIiIiEsCU+IuIiIiIiIgEMCX+IiIiIiIiIgFMib+IiIiIiIhIAFPiLyIiIiIiIhLAPP4OQEREApRpwoEDcPy49XPu3FC0KLg05iwiIiLW48Gff8KRI+DzQY4cULw4uN3+jizwKPEXERH7xMbC11/D+PGwbh3880/S18PCoEoVaN0amjaF0FD/xCkiIiJ+kZAA8+bB55/D6tVw4kTS10NC4LbboHlzaNUKIiL8E2egMUzTNP0dhIiIZHCmad3Be/a07uAulzV0fzmJr2XLBv37w4svamhfREQkE5g507rtHz5s3fq93su/zzCs78HB1qNFr16QJUvaxRmIlPiLiEjqHDsGLVrA4sUp+3yNGvDFF1CokL1xiYiISLJFR8PJk9aYfo4c1mK91DpzBp57Dr76ykrqk5OBGgaULWt9tkyZ1MeSWSnxFxGRlDt8GO66C3777crD9tfi8UCePLBypbWxT0RERNKMacKqVTBpkvV99+6ki/aKFoVatayl9w8+mPxFeqdPw733wv/+l/JHBbfbWii4dClUqpSyNjI7Jf4iIpIy0dHWfv3du60Ne6nh8UD+/LBlizW9ICIiIo774Qfo2hV27rRuxVe6nSe+VrAgvPceNGv273L8q/F6oU4day9/SpP+RG63td9/yxa46abUtZUZqbSyiIikTN++sGtX6pN+sNo4dAhefjn1bYmIiMhVRUXB889D3brw66/WtavdzhNf++MPa3ffY4/BX39du59hw6wFfalN+sFq459/oG3b5G0VEItm/EVEJPk2b4bbb3fmzrtkiTU9ICIiIrY7c8Zasr927ZXr8F6L221tAVixwlqwdzkHD8Itt0BcXMpjvZLp063Dga5mzx5rRcPGjbB9u7VQMSTEqhdQuTLcd1/mqhmgxF9ERJLvmWdgyhR7Zvsv5vFYTyPz5tnbroiIiOD1wgMPWAl7amfhPR4oUQI2bLh8AcDXX4fBg+2Z7b+YywUVK8KmTZd/feFCGDTIqgdgGNYgxcWPKx6PFZNpWmWKXnkFGjS4vq0LGZkSfxGRzOTgQZgxA9atg/XrraP3DANuuAGqV7e+mjaFfPmu3MbJk9brTgzhgxVPZCQULnz51+PjYf58WL7c+jv27rXu6KGhUKECVK0K9epZ30VEROSCDz+E7t3ta8/lgk6d4OOPk16Pi4O8eeHUKfv6+q/1661SQ4n+/hu6dLFWA1ztqMCLJb7v8cfh00/hxhudi9fflPiLiGQGW7bAG29YCbNhWF//vSO63dbwt2HAE0/AO+9Ya/T+69tvoWFDZ+MdPx7atEl6LSYGhgyxni6OHYOgIGsQ4GIXD+1XqmT9zY0aBf4wvoiIyDVERkLp0s6M2//0k1X5P9H69VCtmv39JHK7YcAAeO016/c9e+Cee+Do0ZStMHC7IVcua5XArbfaGmq6oeJ+IiKBLD4e3nrL2o//3XdWYu/zXf6u6PX++9rs2VCuHAwdeukGwI0brXVyTgkKsvq42Lp11mx+nz5W0g+XJv1g/X2J6/m2bIHGja1BjKNHnYtXREQkAxg+3P5l92A9EgwenPTaxo3Oj7lv2GB9P3DAWrKf0qQfrM+dOAF3320NIgQiJf4iIoEqJgYefRT69bPuaMm5GyYkWFMC3bpBq1ZJN8ft3u1sOd34eOtcoUQzZ8Idd8D+/cmrQpT43m+/tQY+AvVOLiIicg3R0TB2rDOJf0ICzJ1rVfxPtHu3s3MEXi/s2GF9f+opa5l/av+2xFMDGje+/NxCRqfEX0QkEPl80KQJfP996pP06dOTnp0TG5vyMsDXKybG+j5/vnVHT+7AxcW8Xmsa4O67kz6ViIiIZBI//2xV83eKzweLF//7e2ysc30lio62dv+tXWtfreGEBGvB4Pvv29NeeqLEX0QkEI0YYc1025GgmyZMnGgNAAAEB1vVfJwUEmIl6y1aWP2ndvDC67UOHH76aR3+KyIimc7Gjc7eut1uL6NHb6RTp040bNiQr76aQny8Q0WAzwsOthY12s00YeBAa/Y/kCjxFxEJNPv3Q48e9rZpGNCxo5WMlyzp7Ma9oCDrYN0OHeDsWfsS9YQEWLLEWusoIiKSiezc6Wzi7/W62bAhhlWrVuH1eilVygCCHOvP5TIJC/M5lpzHxMDkyc607S9K/EVEAs2QIfZv4jNNOHcORo7k7yJF7FtTd7mu4uOJz5UL5sxxZjNi377OtCsiIpJORUU5v0uvcOGyfPzxxwwcOJAePe4DnJsk8Pm8/PJLJODcHzVpkmNN+4WO8xMRCSRnzlgH50ZHO9L8KY+HUgkJHASCHenBuoXPcLt5yufD7dQt6ptvnD+SUEREJJ14+mmYOtXpce9VwF3nfw4CjgC5HOstKCiO+PgsjrUfHGwtPHSySGFa0oy/iEgg+eEHx5J+gBwJCUx8/XVo1syZO6HHQ1Tt2jweFORc0u/xwFdfOdO2iIhIOlSsmLPtezwmTZrczieffELNmjWBeDyezwEnRhq85Mz5p6NJP1gFCnfvdrSLNBUg4xciIgJY1Xs8HueW4rtcPJQnj3ViwIwZ9refkEB4hw6wfLn9bV/UBz//7Fz7IiIiaejUKfjxR+sRYNs2qyhdlixQtChUrmydcV+5srOz/QkJJjNnLufLLwsQGjqaokXzUqhQLlatcjvQr5uoqM+AfnY3fImTJx3vIs0o8RcRCST/+5+zd3aXyzrn5uWX4ZVXrHoCdm0adLuhVSsID7envavZt88ayg92asOCiIiIs3buhA8+sJbwx8Za4/5e7781cT0eGDPG+rlqVes269wjgguf7wHAICrKTWQkREb6MAwfdi4y93hMbr31EH/+uTpNjgx0spZxWtNSfxGRQHLqlKPH1fkSEpg3fTp58+al8IQJ/GoYxNvQbjzwh2lS+rvv6NyqlQ0tXoNpWhv3REREMpiEBHjnHahQwSpAl5gAJyQkfQS4ePHfpk1W0u9sIusB3Bf97sI07Us33W6T0FAvzzyzhscfr2lbu1fvM3BOAdaMv4hIIHG6Ao1hULJIESaVKEH+P/8kIiYG48wZTFJeu9drGPxlmjTOnZvHn3mGKnv3wsyZdkZ9eW73td8jIiKSjvzzD9SvD6tWJS8hTZzpz7hJbAJe71n++eceXnrpfxQpUoSgoG7Ex0c42muNGpArF1SrBk88Ac2bQ1iYo106RjP+IiKBpFAhRxNaF1By924e/O47ym3dSr4zZ/CQugN73NWrc2rhQvb4fCxevJi6zzxjU7RXkTUrZM/ufD8iIiI2iYqChx6C1atTm8BntOzfR+7cx3nrrcUsXTqMKVOmcOedd2KaPwHOHS+c6MQJWLQI2re3Dk7q25c02WZgNyX+IiKBpHJlZ4fzTdP68vlwpXCjoBfrkSM2OJjuLhe7xo6lzIMPsnjxYvbt20eDPn0wnd5Ud9ttVr0CERGRDOLVV2HtWjv26Ruk/+TfB/hwuWLJlWs4gwb9yObN03nkkUdo2bIlGzZsoHjxFaTVAnafz3r8OXcO3n4bKlWySh5lJIZpZtwFHyIi8h8bNlgVfNIpMzyc1XFxHLznHh6fPp2yVapQpkwZ5s+fD8CmTZu47777WB8dTbHYWGdGpz0e6NYN3n/fidZFRERst2wZ1Knj7yjslpiGJh3sN4wYTHMjMI3Q0FlERR0BoHr16lSpUoX9+/ezaNEiwsIi8HojiYrKhmmmbRU+txtCQqyVALVqpWnXKabpDhGRQFK5Mtx6a/osQ/vssxinTzPl2Wd5Y88egnPmZPDgwSxYsICFCxdy7tw51q9fT2hoKB85uYYuIQGefda59kVERGzWo0cgLlQzcLmsg4I2bIC5c4/yxhuTuOuuRzCMu4BPMIwzuM7/4Rs2bGDkyJFs2rSJAQMG8OefB/j88+xpnvSDteoiOhrq1rVOV8gINOMvIhJoxo6F55/3dxSXN28ei4KCePDBB9m8eTMVKlSgWrVq7Nmzh+joaOLi4gCocsstLN+zh6ykrn7AJdxuuPtuWLLEzlZFREQcs2mTNa7vjMR9A4l326uNLqSmlO+VhYWdo3Tp+9m48WeCgoJ44IEHeOKJJ5g+fTp79uwhPj6ew4cPExERQa5cuYiMjMQwDCpXrkzdug+yaFE7NmwogD/q1ns8ULEi/Pyz8/WVUyvgxo1ERDK9Nm3g9tvTX9V6lwuefZZ7KlUiIiKCPn36UL58eTZs2MDp06fxer280qgRJ9q3Z33WrGQ1DPsfLwwDPv7Y7lZFREQcM3Wqk0mlm4gIFw8++AOG8SuGcbU5YWdm1s+dCyM09GGmTZvG8ePH+eijj9i8eTOrVq3i4MGD1KxZkxYtWuDz+Vi7di2HDx9mwoQJ3HLLLYwYMZwNGyoAOzGMVBc/SLaEBGtgJiM8WmjGX0QkEO3YYVWe+e+hvn5mGgaza9Sgybp1eM9XJ8qXLx+V8+en/dat1Pd6MVwuOyoXXd4770CvXs60LSIi4oBatWDNGmf7MIyimOZvQChZs9agYMHKFCpUhDJl8hAdXYnPPy/h2JJ6t9vk7behRo1lDB06lHnz5nHDDTfQtm1bPvroI3r16kX79u0pXrw4bdq0YcCAj5gxA6ZM+Z0VKxKAgliz/T6swYm0X/qfLx/8/nv6nvVX4i8iEqjmzIFGjf6txJ8O+IDfgaJYCwY/++wzng0Nhfbt8Z0969wiPcOwDt+dNCkQN0mKiEiAMk3r3PjoaKd7epyePUvRoUMHChUqdGFfPVhlcSZPtuYSnGAYPrJn/4HTpx/i1ltv5eWXX6ZFixaEhITQsmVLNm3axPbt2+nb90PeeSeI4ODOREcbWNsULvfk4MyWhGuZPRseeyzNu71uSvxFRALZ/Pnw1FPWgbNO3bFTYPvEiVRu147vHnqIOt98YyXmTtyOXC7rDJ6OHWH48PS3/UFEROQqYmOt6vHOe54KFdbh8XhwuVxJvnbtepcTJ+7CyWQ6LGwdM2Yc45FHHkky6LBgwQLq1avHJ5/spX//ohw9agLXey9PHAAwgQSsQQJn/gaPB557Dj791JHmbZGOFyOIiEiq3XcfjBhhHTq7f/91fcSH8wVgbo2JYcCtt1pJP9ie9F9Y7HfDDTBuHNSrZ2v7IiIiaSHtDunxseWKB9P/jdOz6OfO/UODBg1wuVxky5aNsLAwsmXLRnh4OG53O154oej5dyZnAD8xXh8ulxufz7n4ExJg7VrHmreFEn8RkUB05Ah8+CGMGQOnT1tD0f+ZVb94HJzzPxMUxBmPh+zR0Y7d3n1uN8aqVXTdvt2xQYbdwB+NGnH/+PGQLZsDPYiIiDgvKAhCQyEqytl+ihTJRsOGL1K4cGFuvvlm8ufPD0B0dDRDhpTkxx+dK78D8cBRAHw+H6dPn+b06dPnX3sKGE3qBh7c+HzeVLZxbbt2Oda0LZT4i4gEEtOEadPghRfg3Ll/79KXWeaf5NZnGFZlmsmTiWndmggHNxP6vF6OT5tGXtO0N+l3uaBCBfjmG97s1o1fd+/mf+HhftjlJyIiYg/DsA7qWbXK2X5uvPEPvvpqNYcPHz7fr0HhwoUpU6YMPt+zeL2FHevb5fLQu3d9mjbdwaeffsqYMWMICQmhUaOXmTKlF7GxdiTsbv6d6nBGbKyjzaea9viLiAQKr9dK+MeMSdmeebcb0+vlIODc7f3fXXaO2bGDefv20aBBA3756ScqAWzcCIcPW/9GERHWobtVqkDevE5GIiIikmo9esDQoc6V6nG5Ytm9O5jixeHUqVPs2rWLnTt3snPnTnbs2MHy5ac5e3alM52f9+yz4+nZ8w5KlizJn3/+yWuvvcaUKS2B+8goc9VBQRAX5+8orkyJv4hIIDBNaN8exo61Zb+8aRgYDt0ezPMbFh1p3+OBjh1JaNaMr+rUoXF8PB6fzxoISTxjx+f7dyXEHXdAly7wxBPWHVtERCSd2bLFGq92jolhGLRubQ0w5MxpXY2Li+PZZ59l6tRp3HjjMY4fz+3AkX4mYWF/AcU5d+4Mt99+O02bNqVs2ZbUr5/f5r6cVbIk/Pqrv6O4MiX+IiKBYOJEaNPGtub8cxCOTcLD4exZvIaB+1q3uMSq/2XKwJQp1npKERGRdKZWLVi3zsl99uB2m+TObfDll3Dbbf/QqFEjVqxYweTJk/n778a88ALY/XTgcsGgQfDCC9EsWLCAGTNmMG/ePGJihgNPAxljUN7jsU4NnjjR35FcmRJ/EZGM7tAhKFXK2tOv/6SnjNtt/dsNG2atABAREUlHVq+GO+90/jZvGCYeDxQs2IW//57CnDlzKFKkCB06dOX779/HMG7BNO06GjcBj+cI99//EuXLF6NMmTKUKVOGFStW0rNnWyCnTf2kjfHjbZ2DsZ0SfxGRjK5rVxg50tlpAJuYLheGz+fvMK5u8GB45RV/RyEiIpJE9+7W+LTzt1EvkMCMGfs4cGAe/fr144YbbqBr18n06HH3+f7tmPk3adJkJGfOLGDnzp389ttv568XAg7Y0H7ayZbNOlApNNTfkVyZ00c1i4iIk86dg88/dyTpd2JUON0n/QCvvgoLFvg7ChERkSQGDoTata3l8c5yAy6aN/fy2mtv0qFDBz7//HPWrBmOabYj6WHAKffggwupXdtFkSJFuOmmmwi6UGunXKrbTksuF3TsmL6TftCMv4hIxvbll/DUU/6O4rokAJuzZKFKei55C9Yd/IYbrAo9OXL4OxoREZELoqKserTff58WvfmA7uTIMYFTp05RqlQpXnrpJXy+Z3jxxWBMMyWrDxKrCK0AHsHliqZ06dKcOnWKI0eO0LlzZ4oX70XXrhnj1B2XC266CXbssEoMpWea8RcRycjWr3e8Gr0do8NeIMHjYWWbNg6fomsDnw/+/hvefdffkYiIiCQRGmotShs2DIKD/z2wxjkvEx1tDdiXLVuWO+64gxdeCGbBgpT2ff5kH+NOYDOmWZDo6GhOnDhB586dyZkzJ3PnzrIt+rQwaVL6T/pBM/4iIhnbvffC0qWONZ+AdXquj5SPFHsBV1AQxvffQ5061nk3e/bYFqNjIiKsDXshIf6ORERE5BKRkdYAwMcfO9uPx9OARx5xsWXLFg4cOMD99zfnl19GcuJEOD5fagr9xQOHgRrAYQzDIF++fOTI8QA7dzpbHt/lsgolpjQTPn8yMZMnQ4sW9sXlJM34i4hkZMePO9q8YRgcLFqUBMMgIQWfN10uzgAjGjSwkn7gRLVqxNsapUNOn4a5c/0dhYiIyGUVLQrPPedsH263j5tuasG8efP4888/cbnc/PBDa/76KzSVST9YR/UVAGbgdgfx888/c+jQITZtmojbroMDrqB6dWjaNPG35NVJcrshe3aYMyfjJP2gxF9EJGMz7D1P9798pmJbCwcAACAASURBVMmiyEjKmyYbz1+7ngGAhPNxbcyfn/fbtOHFWbMYMGAA69ato8mPP2aMU3mDgmDNGn9HISIickUbNjjbvtcLBw7kJWvWrJimidfbGqgLtt3JPcDd+HztuOuuu9ixYwd//fUHuXP/RnIT8uvldltzES1azAceI3v2+AvXrxrp+a0NDRtaZYAaNnQkPMdoqb+ISEZWty4sXuzYwb4+t5v9jz/OhkaN6Nu7N3edPcvLHg+3/vknYN2SE2/L7vNfCcA3bjcfeb2svEK7i4B7sO+xwTG1asFPP/k7ChERkcvq3RsGDYJ4B5fSBQUdo0GDjuTLV5ixY98iLi4Uu+ePs2aNJzo6AsOIwUpPnwYm2NpHIsOArVujqV+/LCVLlmTu3IV8843Bp59a4/0xMZd+pkABePJJq3p/6dKOhOU4zfiLiGRkVapce4g6FVxeLyWaNKFp06a8N3gwk48e5afixfneMDhlGLiBLOe/XMDxkBA8bdrQaNUqlsTF0bFjRwD69+9PtmzZAOjRowev5ciBF2eODLTV77/7OwIREZErSouDcnLkuJGvv/6aO+/8kLi4cJxIIaOjg4AmmKaJy+Vi+PC7yJHDtH1ho8cDDz8MU6a8xeHDhxk5ciTBwQZNmsCSJXD2LGzfDt99Z+32W7rU2lX555/w0UcZN+kHa22FiIhkVNWrQ0JKdt8nQ7Vq4PXyaGQkR10ucqxYcaHo38UMIE9MDEyZAhMm4ClfnpEjRxIfH0/fvn0xDIPs2bMzduxYomJi6AqMdjby1Ev+OUUiIiJpJmtWxxb9XRAUFI/X62LiRDcul1O3Ri9FivTntddq0qFDB3r37s577zWmY8fstvbidkPnznto2PAD+vTpQ4kSJS55vWxZ6yvQaMZfRCQje+ghx86aTwD25M3Lvj174M47cXXvTo7zd/urjhonDkTs2IFRuzad9+8nCKtQYM2aNTlx4gQxMTEUGjCAnY0bOxK7bSIi/B2BiIjIFZUp4/T4v5dDhxYSFhbO4sVnHBwPd3PsWGGef749o0aN4vTp07zxRjHq1Yu3dWHjoEE+Bg58luLFi9OjRw/7Gs4AlPiLiGRkwcHQoYMjy/09wJRz58j+wAMkrF2b/Aa8XjBNyi1ZwuaCBalSvjzff/89Lpd164mJieH2b7/ls9tuw0zBYcSmy+FbmMdjbaUQERFJpypXdroHkxIlTvPYY53xerM52lNUFOzbBx06dOCDDz7gxIm/WbeuFJUqeW15zOnSBcLCJrBq1SpGjRpFcHBw6hvNQFTcT0Qko/v7byhVCk6etG39XTzwV9685DVN+OsvXKls1zQMZpomTQ2D4JAQatasyZIlS6hYsSI///wzIb//Dm3bwooVJBgGnqvcmhK3GawHqqYqqmtwuWDoUHjxRSd7ERERSTHThGLF4MAB55b8FyzYiN9/3w/84kwHF1m9GmrWtH5+66236Nu3LwUKlKR8+R18/33ys3+Xy/p3efNN6Nz5L0qXLkW9evWYNGmSzZGnf5rxFxHJ6HLnhrFjbUv6TcPAZRjsPHoU37FjqU76AQzTpDGwt18/ypcvz7Jly8iSJQvHjh3jn3/+gVtugeXLYeNG9t55J39coZ0jwBdZsjCocWMOf/MNCZUqWXd1J5gmPP64M22LiIjYwDCsmWwnuFxQsSIcPPg1X38925lO/uPiwYs+ffrQs2dPDh3azZ49pfjsMy/h4dd7krF5ob0GDazbec+ePTBNkw8++MCR2NM7Jf4iIoHgscfgjTdS345hYADurl25F3srwJpAkcGDCY+NxeVyERYWRlxcHI0bNyY+Ph7TNNnmdvNLwYL8D4i6TBv5gCZBQfQIDqbhjTfieeklZ6oMud3Wk0LBgva3LSIiYqNnnrHK/dhdAd/ng169rJ+rVClib+NXcMMNSX9/77336NSpE/v372Po0AocOOClXz8IDb1WS9Y/hmnCggVw220wfnwd+vQZxo033uhE6OmelvqLiAQK04R+/eCtt0hJ2V3T7cYwDKsq//vvw//+Z3tS7QP6BgVRe8ECunbtytGjRzlx4gQlS5ak7PHjfHDiBMXgsqcGJOHxQEICf5UoQfT+/eT3+ew9psblgrVrtcdfREQyhC+/hKeesq+9xGPvvvnGGlAwTWtw4Z9/7Ovjv4KC4jl1yktoaMglrz3zzDNMmDCBEiVe5MiRYcTEGCkoauglTx4X335rUL26LSFnKJrxFxEJFIYB/fvDDz9AvnzW79cx/G+ef098mTKweTMULw6//OLITLoBvJI1K9/Nn4/P5+Pvv//GME3a//ors06coOj5ZfvXTOLP3+0j9u4lv2lia2lDw4CePZX0i4hIhtG4MbRoYc/uN7fb2kU4evS/jxGGATVqOLe7DnzEx//MLbcU55NPPiE2NjbJq+PHj6dWrUHs3TuEs2fNFJ5k4Obvvw3q1IE1a2wJOkNR4i8iEmjuvx927YIhQ6BwYeuaYVjD9y4XuFzEXzQgcLZUKVoBkTNmwK23wvffO3JKAFiJf8Q//7Bp+nRq1qzJx0OHMjskhK6JrydzsCEI8Jgmtq1udLuhVi3o29euFkVERBxnGDBuHNSrl7ol/x4P5MoFS5dC/vxJX2vd2pnddRaDwoWXUaxYMTp16kTJkiX57LPPiI+PB2DbNli//lWs9DXlKazPB7Gx1mqGw4ftiTyj0FJ/EZFA5vPBxo2wYYM1m3/yJBgGP2zdyk/R0fT77js2RUVRuXJlNm7cyO23327VC/j2Wyfv7piTJmG0agXdumEOG4Zh560ocU1icrlcVinhBQsge3b74hEREUkjCQnQuzcMGmTd1rze5H2+Vi2YOhWKFLn0tdhYazDg5ElbQk0iODieatUasnLlQnLnzk3evHnZsWMHRYsW5Y03+jJ8eGu2b0/J8v7Lc7ut5H/uXPtrI6RXmvEXEQlkLhdUrQodO1pr9r78Er74gq1t2zLo6FF8JUsSFhYGwLlz56zPbN3qbNLv8WDs3GlV8R861Lak3wQIDraS9uSsWHC7rbt+jx6weLGSfhERybA8HnjvPfj5Z6hU6d9rV5J4u8yVCz76CFauvHzSD9Yt9t13bQ33gri4nhhGFK+88goPPfQQv//+Oy6Xi5iYGNq2Xc3//odtST9YAyLz5sHChfa1md4p8RcRyYTKlStHdHQ0+/fvvzTxj452tO/4hARmT5tGVLNmmDZuKTDAupPfcQd07gzh4dYLQUGXvtnttgZFDAMeesgq5PfuuxByaUEhERGRjKZaNWux34YN0K4dlCt36Zh4gQLQsCHMmGEte3/xxWvv4W/XDu655+qDCcnh8UDlynF88klpsmfPzogRI5g6dSp58+bl3nvvJTg4BHiJxOP57OR2w/Dhtjebbmmpv4hIJnT48GEKFCjA7NmzqV27Nrly5WLmzJk0atTIGuo/cMCxvr1uNz+Gh1P39GlnOjAMiIy0zgSaNcua9li7Fg4dsgYGcuSwCvdVrgxPPHHlqQ0REZEAEhsLf/1l3QqzZ7duhylx5IhV6O+PP5K/leBiHg/ceKN1m048PTcqKorFixfz7bff8u2333L0aGFgbco7uQbDgIMH4eabHesi3bD19CMREckY8uXLR65cudi6dSuPPPIIcNGMf6lS1l3QoXFhl9dL7bx58Z05g8uJLQUuF4wdC2+/Da1aWV8iIiKZXHAw3HRT6tvJl8/aEnDvvbB/f8p2B7rdVixLl/6b9AOEhobSsGFDGjZsiM/n4+WX/2D4cB+m6cxCddO0Bh6efNKR5tMVLfUXEcmEDMOgfPnybNu2jSxZsuDxeP5N/KtWdayqP1hL8n27dzuT9IM1/bB4sTNti4iICAULWif/tm9v/X69S/8T3/fss7BlCxQteuX3ulwujh8vhMu5MwQJCrK2Q2QGSvxFRDKpcuXKsXXrVgDCwsL+Tfzr1LG3gs5/+LJlI6tjrZ+3eXPq1h+KiIjIVYWHwyefwOrV8Pjj/84Z/Le0TuLvLhfUrw8rVsCYMddXS/e335y9nft81paFzEBL/UVEMqny5cvz6aefEhsbS1hYGGfPnrVeqFPHGoL/7Tf7l/u73bgeegi++sredv8rJgaOHrUqF4mIiIhjata0vo4cgWXLrFOEd+60bsUhIdYOwsqVoXbt5G81cHAeArAec5zuI71Q4i8ikkmVK1cOr9fLrl27ks74u1zQvbtVGd9uhgH33+984g8QF+d8HyIiIgJYe/+bNrW+7BIRYV9bl+NyQbZszvaRXmipv4hIJlWuXDkAtm3bljTxB+jQgbiKFYm3s0PDwNe/P7M3b7az1SvL6viGAhEREXFQxYqXP5XXLl4vVKjgXPvpiRJ/EZFMKiIigoIFC7J169ZLE3+3m2+eeIJ4wJYSfG4358qWpdasWbw4apQdLV5d9uzWGUEiIiKSYVWpAvG2zkIkZZrWNoTMQIm/iEgmlljZ/5LEH/j4hx9oANZQeyoq6ppuN0cjIii2cydRcXF8+dNPkCtX6gK/GsOwTiYwDOf6EBEREcc9+KB1DKFTbrwRqlVzrv30RIm/iEgmlljZ/7+Jf1xcHGvXruWXnDkxli7FzJePlBbVXRkUxO1RUXQbOJCNGzdSs1YtzPr18Tl4ZCD16jnXtoiIiKSJnDmhefPrPy4wOVwu6NTJmbbTIyX+IiKZWPny5Tl48CA5TJOsJ07AsWPg87F8+XLi4+OpV68exh13MLprV8YCpmFwzeK3LhcmEOXx8Cww8O67Wbl9Oz179sTtdjN37lzabtqEy6nzebJkgTZtnGlbRERE0lSPHvYv4jMMq6hfhw72tpueKfEXEcmMzpyBUaNo8OmnHAPGzZnDrHXrIG9eyJaNgs2b0w948bHHOHbsGK8NHMiypk0pGxrKJxER7L9Cs2ZQEEcKFaJTSAhlc+ak7vTpfLdwIQULFmTSpEmUL1+eRx99lN0REZwoWxbT7mF2lwuef96aIhAREZEMr3RpePtte5N/04RRozJXOSDDNO0+pFlERNKtqCh46y34+GOIicE0DAzfpeX7TMALuA2DTYUK8fSpU3DzzRw+fJgTJ07w5Zdf0vjBB2HrVjh1Ctxudp85wzODB7N6/Xqef/553n//fYKDgxk7dixDhgzh4MGD1K9fn549e3LnnXfCnj1QvjzExtrzt7lckD+/dXhwZjmbR0REJBNISICHH4alS61K/KlhGPD00zBuXOYqB6TEX0Qks1i7Fpo1gwMH4DLJ/pXEAwkuF50Ng3FeL0OGDKFbt24XXo+KiuKtt95iyJAhlCxZktGjR1O2bFlGjhzJxx9/zMmTJ2nWrBk9evSgfPnySRsfPdqedXaGAW43LF4MtWunvj0RERFJV86dg/r1Yflya8Y+pZo1g0mTMs/e/kRK/EVEMoOFC+HRR61h8hQMlfuw9oZ9V706D61Zg3F+iHzhwoV07NiRw4cP8+abb9K8eXNGjBjB6NGj8Xq9tG3blu7du1OkSJErN/7ee/D661bynpJbkstlfX35JTz+ePI/LyIiIhlCbCz06wfvv2/d+q//kSaBLFncDBxo8PLLqTqsKMPKhH+yiEgms26dlfTHx6d4fVzizeLhtWsxRozgyJEjNGvWjIcffpjixYszd+5cIiMjKVWqFOPGjeOll17iwIEDDB8+/OpJP8Brr8HkyRAWlvzh98Tl/YsXK+kXEREJcMHB8O678PPPUKeOdc3tvnwin3jd5TKBb+jefRLdu2fOpB804y8iEtiio6FcOWt5v01V9L1uN7VCQ9kfHEyXLl3YsmULs2bNIl++fHTr1o127dqRPXv25Df855/QtSvMmnX1YfzEDXlZskC7dvDOO9rTLyIikgnt3QszZsD69dbXyZPWI0Tu3FC9uvXVvDm8+eZzzJ8/n/379xMaGurvsP1Cib+ISCB7/XUYNChZe/qvJR7Ynz077SpWZMXKldxyyy306NGDVq1aERwcnPoOfv8dxo6FH3+ETZuswYtEOXJA1arwyCNWZR5V7xcREZFriIyMpGTJkrz33nt0797d3+H4hRJ/EZFAdfasdTxfVJQjzT9XsiQPDRjAE088gdvtdqQPfD44dgzi4iBrVrjhhsxVgldERERs0b59e2bPns3+/fsJDw/3dzhpLpPucBARyQSmTk06W24jn9vN2Ntuo3Hjxs4l/WCt18uXDwoVgjx5lPSLiIhIirzxxhucOnWKkSNH+jsUv9CMv4hIoGrYEObPt3WZfxLZssHp00rGRUREJEPo1KkTM2bMIDIyMmX1iDIwzfiLiASqtWudS/oBzpyB/fuda19ERETERq+//jpnz55l+PDh/g4lzSnxFxEJRGfOWHvjnbZ9u/N9iIiIiNjg5ptvpn379nzwwQecPn3a3+GkKSX+IiKByKGCfpdwqIaAiIiIiBNee+01YmJiGDZsmL9DSVNK/EVEAlGWLGnTT1BQ2vQjIiIiYoMCBQrQsWNHPvzwQ06ePOnvcNKMEn8RkUCUI4dVfM9pxYs734eIiIiIjXr27El8fDwffvihv0NJM0r8RUQCkWFA5crO9pElC5Qt62wfIiIiIjbLmzcvnTt3ZtiwYfz999/+DidNKPEXEQlU990HLof+M+92Q61aWuovIiIiGdKrr76KaZp88MEH/g4lTSjxFxEJVM8+61zbXi906uRc+yIiIiIOypMnDy+++CLDhw/nWFqchORnSvxFRAJVgQLQpAl4PPa263JZbT/6qL3tioiIiKSh7t2743K5GDx4sL9DcZwSfxGRQPbhhxAaau35t4vPB+PGaZm/iIiIZGi5c+fmpZdeYuTIkRw5csTf4ThKib+ISCDLnx8+/RRM0572DAOefx4efNCe9kRERET86OWXXyZLliy8//77/g7FUUr8RUQCXbNm8N57qW/HMOCRR2DkyNS3JSIiIpIO5MyZk27dujFq1CgOHTrk73Aco8RfRCQz6NkTRo+G4GB8ya30n/j+55+H2bO1xF9EREQCSteuXQkNDeXdd9/1dyiOUeIvIpJZtGtH3MaNbEpM3K9V9M/ttr7nzw/ff28NHCjpFxERkQATERHBK6+8wpgxY/j999/9HY4jlPiLiGQiY5cvp1psLPunToWmTSEi4vJvDA6G2rVh5kyIjIS6ddM2UBEREZE01KVLF7Jly8bAgQP9HYojDNO0q+KTiIikZ+fOnaNEiRLUrVuXiRMnWhdNEw4ehO3bISoKsmSBYsWgdGn7jwEUERERSccGDRpE79692bNnD4ULF/Z3OLZS4i8ikkm899579OnTh19//ZWiRYv6OxwRERGRdOXcuXMULVqUxx57jDFjxvg7HFtpqb+ISCZw8uRJ3n//fdq1a6ekX0REROQywsLCeO211xg/fjz79+/3dzi2UuIvIpIJfPDBB8TGxtK7d29/hyIiIiKSbnXo0IEbbriBAQMG+DsUWynxFxEJcEeOHGHYsGF07dqVfPny+TscERERkXQrNDSU1157jUmTJrFnzx5/h2Mb7fEXEQlwXbp0YcqUKezfv5+cOXP6OxwRERGRdC06OpoSJUpw3333MWnSJH+HYwvN+IuIBLDffvuN0aNH06NHDyX9IiIiItcha9as9OrVi6lTp7Jr1y5/h2MLzfiLiASwNm3asHDhQvbt20dYWJi/wxERERHJEGJjYylRogR33XUX06ZN83c4qaYZfxGRALVjxw4mT55M7969lfSLiIiIJENwcDC9e/dmxowZbN++3d/hpJpm/EVEAlSjRo3YtGkTv/76K1myZPF3OCIiIiIZSlxcHCVLlqRatWp8+eWX/g4nVTTjLyISgNavX8+sWbPo16+fkn4RERGRFMiSJQtvvvkmX331FVu2bPF3OKmiGX8RkQD0wAMPcOjQIbZs2YLb7fZ3OCIiIiIZUnx8PKVLl6ZixYrMmjXL3+GkmGb8RUQCzJIlS1i8eDEDBgxQ0i8iIiKSCkFBQfTp04fZs2ezadMmf4eTYprxFxEJIKZpUrNmTXw+H2vXrsUwDH+HJCIiIpKhJSQkULZsWUqXLs3cuXP9HU6KaMZfRCSAzJ07l7Vr1zJw4EAl/SIiIiI28Hg89O3bl2+//Zb169f7O5wU0Yy/iEiA8Hq9VKpUiRtvvJEff/zR3+GIiIiIBAyv10u5cuUoWrQoCxYs8Hc4yaYZfxGRADF9+nS2bdvGwIED/R2KiIiISEBxu93069eP7777jjVr1vg7nGTTjL+ISACIi4ujdOnSVKhQgTlz5vg7HBEREZGA4/P5qFChAgUKFGDRokX+DidZNOMvIhIAPv/8c3777TcGDBjg71BEREREApLL5aJ///788MMPrFq1yt/hJItm/EVEMrioqChKlCjB/fffz6RJk/wdjoiIiEjA8vl83H777eTOnTtD1VTSjL+ISAY3fPhwjh8/Tr9+/fwdioiIiEhAS5z1X7JkCcuWLfN3ONdNM/4iIhnYqVOnKFasGM2aNWPkyJH+DkdEREQk4JmmSZUqVQgPD2fZsmUZ4ghlzfiLiGRgH3zwATExMfTu3dvfoYiIiIhkCoZh8NZbb7FixQqWLFni73Cui2b8RUQyqKNHj1K8eHE6d+7Me++95+9wRERERDIN0zSpUaMGHo+HVatWpftZf834i4hkUO+88w4ej4eePXv6OxQRERGRTMUwDPr378/q1aszxNF+mvEXEcmADhw4wC233EK/fv3o1auXv8MRERERyXRM0+SOO+7A6/Xy888/p+tZfyX+IiIZ0DPPPMOCBQvYt28f4eHh/g5HREREJFNavHgxDzzwAPPmzaNevXr+DueKlPiLiGQwO3bsoHz58gwbNowuXbr4OxwRERGRTMs0TWrXrs25c+fYsGFDup31V+IvIpLBPPnkk2zYsIFff/2V4OBgf4cjIiIikqktW7aMOnXqMGfOHB599FF/h3NZSvxFRDKQDRs2ULVqVSZMmMDTTz/t73BEREREBLj33ns5ceIEmzZtwuVKfzX0lfiLiGQgdevW5Y8//mDr1q243W5/hyMiIiIiwMqVK7n77ruZOXMmjRo18nc4l1DiLyKSQSxdupR7772Xr7/+mieeeMLf4YiIiIjIRerWrcuhQ4fYsmVLupv1V+IvIpIBmKZJrVq1SEhIYN26dem2cIyIiIhIZrVmzRpq1arFjBkzeOqpp/wdThJK/EVEMoC5c+fy6KOPsmjRIh544AF/hyMiIiIil/HII48QGRnJtm3b0tW2TCX+IiLpnM/no2LFiuTJk4cff/xRs/0iIiIi6dT69eupVq0aU6ZMoUWLFheux8bCsWOQkADZs0Pu3GkblxJ/EZF0burUqbRs2ZI1a9ZQo0YNf4cjIiIiIlfRsGFDdu3axdSpO5g40cPy5bBzJ3i9/74nTx6oXh0aN4YmTSAkxNmYlPiLiKRjcXFxlClThnLlyvHNN9/4OxwRERERuYapU3fRsuUpoAYejzXLfzkuF/h8EBEBr78O3buDx+NMTOmr1KCIiCQxbtw4IiMjeeedd/wdioiIiIhchdcLffpA69alMYyqwJWTfrCSfoDTp63Ev3p12L3bmdg04y8ikk5FRUVRokQJ7rvvPiZPnuzvcERERETkChISoHlzmDkTUpphezwQHg5LlsBtt9kbn2b8RUTSqREjRnD8+HH69evn71BERERE5Co6dkxd0g/W4MGZM3DffXDggH2xgWb8RUTSpVOnTlGsWDGaNm3KJ5984u9wREREROQK5s6FRx+1rz2PB+6805r5t+swJ834i4ikQ0OGDCEmJoY333zT36GIiIiIyBWcPQvPPWcV6rNLQgIsWwbjx9vXphJ/EZF05ujRowwdOpQuXbqQP39+f4cjIiIiIlcwZQr8/fe/hfrsYhjw7rup2zpwMSX+IiLpzMCBA/F4PPTs2dPfoYiIiIjIVXz8sTPtmibs3WvN/NtBib+ISDpy4MABPv30U1599VVy5crl73BERERE5AoOHYKdO+2blf8vjwcWLrSnLSX+IiLpSP/+/cmRIwddu3b1dygiIiIichUbNzrbfkICrF1rT1see5oREZHU2rlzJxMnTmTo0KGEh4f7OxwRERERuYqdO8HtBq/XuT62b7enHc34i4ikE3369KFgwYK0b9/e36GIiIiIyDVERdlbzf9yYmLsaUcz/iIi6cDGjRuZOXMm48ePJzg42N/hiIiIiMg1ZMni3P7+REFB9rSjGX8RkXSgV69elC5dmpYtW/o7FBERERG5DiVKWPvwne7DDprxFxHxs2XLlrFo0SJmzpyJx6P/LIuIiIhkBJUrO9t+UBDUqGFPW4ZpOr04QURErsQ0Te644w7i4uJYv349hmH4OyQRERERuQ6mCTfdBIcPO9fH11/DE0+kvh0t9RcR8aN58+axZs0aBg4cqKRfREREJAMxDOjUybkCfzfeCA0a2NOWZvxFRPzE5/NRqVIlcufOzZIlS5T4i4iIiGQwR49CkSL2Vd9PZBjw9tvwxhv2tKcZfxERP5kxYwZbt27VbL+IiIhIBpU3LwwebG+bbjeULAmvvGJfm5rxFxHxg/j4eMqUKUPZsmWZO3euv8MRERERkRTy+eC++2DlSvB6U9eWYViJ/5o1UKWKPfGBZvxFRPxi3Lhx7N+/n3feecffoYiIiIhIKrhcMGcOVKhgJe0plZj0z5xpb9IPmvEXEUlz0dHRlChRgjp16jBlyhR/hyMiIiIiNvjnH2jVCubOtZL45GTabjfkyAHTp8MDD9gfm2b8RUTS2IgRIzh27Bj9+/f3dygiIiIiYpPs2a2Z/6lTIWdO69q1Kv4nrhB46in49Vdnkn7QjL+ISJo6ffo0xYoVo0mTJowaNcrf4YiIiIiIA2Ji4KuvYPRoWL8e4uIufc/NN0PTptC+PZQo4Ww8SvxFRNJQnz59GDx4MPv27aNAgQL+DkdEREREHBYfDzt3wttvj2flytV88cVnlC8PuXKlXQxaJJ8cFAAAIABJREFU6i8ikkaOHTvGhx9+SJcuXZT0i4iIiGQSQUFW4b9ixXaRLdsyatdO26QflPiLiKSZgQMH4na76dmzp79DEREREZE05vP5MAzDL30r8RcRSQMHDx5k1KhRvPrqq+TOndvf4YiIiIhIGjNNU4m/iEgg69+/PxEREXTt2tXfoYiIiIiIH/gz8ff4pVcRkUxk165dTJgwgQ8//JBs2bL5OxwRERER8QPN+IuIBLA+ffpw880306FDB3+HIiIiIiJ+ohl/EZEAtWnTJr766ivGjRtHcHCwv8MRERERET/RjL+ISIDq1asXpUuXplWrVv4ORURERET8SDP+IiIBaPny5fyfvTuPs6n+4zj+usss9p1kyT6VUoYoEtkliRlJiiilLJFSaUUoVPYUfqRkmyEiZC+yq8iWJTuNfRtj5t57fn+cRpvKcs6cO3fez8djHjVz73zPZ8YY932+3+/nO2/ePKZOnYrXq1+3IiIiIhmZZvxFREKMYRj06NGDChUqEBMT43Q5IiIiIuIwzfiLiISY2bNn89133zF37lzHfsGLiIiISPDQjL+ISAgJBAK8+uqrVK9enbp16zpdjoiIiIgEAc34i4iEkMmTJ7NhwwaWL1+u2X4RERERATTjLyISMlJSUnj99de5//77qVKlitPliIiIiEiQ0Iy/iEiIGDt2LLt27WLatGlOlyIiIiIiQUQz/iIiIeD8+fP07NmTFi1aUK5cOafLEREREZEgouAvIhIChg8fTkJCAj179nS6FBEREREJMgr+IiLp3KlTp+jXrx9PPPEEpUqVcrocEREREQkyCv4iIunc+++/T2JiIq+//rrTpYiIiIhIEFLwFxFJx44cOcL7779Px44dKVSokNPliIiIiEgQUvAXEUnH+vbti9vt5uWXX3a6FBEREREJUgr+IiLp1N69exkxYgQvvPACefLkcbocEREREQlSCv4iIulUr169yJEjB126dHG6FBEREREJYk4Gf68jVxURCQHbtm1j7NixvPfee2TLls3pckREREQkiGnGX0QkHXrjjTcoVKgQ7du3d7oUEREREQlyhmHgdjsTwTXjLyJyFdavX8+UKVMYM2YMkZGRTpcjIiIiIkEuEAhoqb+IiOMMA1auhDlzYO1a2LgRzp+H8HAoVQoqV4YaNaB+fV599VWioqJo1aqV01WLiIiISDqgPf4iIk4yDJg0Cfr2hZ9+Aq8X/H7z46kOHTJvCgwcyIW8eSl79ChPfP45Xq9+jYqIiIjIf1PwFxFxysGD0K4dfPUVpO658vku/dyUFADCjx6lP+Dq2xduvhluuy1tahURERGRdEvN/UREnLBpE9x+O8ybZ74fCFzWp7kwf3m6tmyBSpVg9mzbShQRERGR0KDgLyKS1n75BapXh+PHzWX9V8PvN1cBPPggLF5sbX0iIiIiElIU/EVE0pLfD488AqdOXX3oT2UY5kqB5s3hxAlr6hMRERGRkKPgLyKSloYONRv1/dNe/isVCJgrB7p0sWY8EREREQk5Cv4iImnlwgXo1cv6cf1++PRT2LnT+rFFREREJN1T8BcRSSvTptm3JN/tho8+smdsEREREUnXFPxFRNLKlCm/H9tnNb8fPv/cnrFFREREJF1T8BcRSSsrV172sX1X5cABOHbMvvFFREREJF1S8BcRSQsnT8Lhw/ZfZ+NG+68hIiIiIumKgr+ISFo4dSq0riMiIiIi6YaCv4hIWvB4Qus6IiIiIpJuKPiLiKSFfPnSJpRff7391xARERGRdEXBX0QkLUREwE032XsNrxduucXea4iIiIhIuqPgLyKSVu65xwzndnC7oXx5CA+3Z3wRERERSbcU/EVE0soTT4DPZ8/YgQA8/bQ9Y4uIiIhIuqbgLyKSVqKj4Y477Nnrnz07tGhh/bgiIiIiku4p+IuIpKXhw83ZeasNGgSZM1s/roiIiIikewr+IiJp6Y474OWXwapfvB4P1KsHjz9uzXgiIiIiElKOHoWzZ6/n7NmCnDqV9td3GYZhpP1lRUQc5vNBbCzGzJm4ruXXoMcDUVGwbBnkymVdfSIiIiKSbiUnw/TpMHEirFgBCQl/frxoUbj7bmjdGmrXNntE2ylDBP9AABYtgqVLYc0a2L4dUlLMFbm33w4VKkDDhnDzzU5XKiJpKXDhAotKlKD2wYMYLtfV3QC46y748kvIk8f6AkVEREQkXTEMGDUKXn3VnOX3eMDvv/RzUx8rXhyGDIH777evrpAO/ikpMGIEfPAB7NljnuDl95t/GKk8HvP9QACqVYNXXoEGDZyrWUTSTu/evXnzzTf5/tVXuW34cDh50nzgv34tejzmbdm+faFrV3saBYqIiIhIunLwIDz6KCxefGWf53abefSxx8z8mjWr9bWFbPDfuNH8pm/c+N+v4VOlfsMffRQGD4bcue2tUUScM3/+fOrVq8ebb77Jm2++aYb+8ePN2607d5pP8np/7wOQkmL+N08eePZZeOopKFzYmeJFREREJKjs3m1OJB8+fPUnR3s8UL48LFgAOXJYWl5oBv+vvoImTczZ/X9aVvFvPB4oUgSWLIEbbrC8PBFx2P79+ylfvjzR0dF89dVXeP44Y28Y5m/udetg82ZITITwcChVytwXdOONmuEXERERkYtOnjQD+/79Vx/6U3k8UKWKuWrAypecIRf8Fy0ym2v/dUn/lfJ64frrYdUquO466+oTEWclJydTo0YN9u3bx/fff0/evHmdLklERERE0rE2beDTT69u0vmf9O8PL75o3XghFfyPHYMyZcw7LlYc0e31Qp06MHu2dad+iYizunTpwogRI/jmm2+48847nS5HRERERNKxhQvNrvxWCwuDrVuhRAlrxvNaM4x1DAM2bIDVq2H9ejPMu1yQN6+5fKJSJbj11ksH8Y4d4dQpa0I/mMs05swx7960amXNmCLinKlTpzJ48GCGDBmi0C8iIiIi12zAgH/v3H+1AgEYPhzee8+a8YJmxv/8eRg71uyrtW2b+bGwsN+/gR7P7721ypaFzp3NMw8jIsyPbd0KN91kT21Fiphbfu0+W1FE7LNt2zYqVqxIw4YNmThxIi4t4xERERGRa7Brl9kGyq5EnS0b/PorZMp07WMFRZT97ju45RZzxv7nn3//eEqKeacjEPg99IPZb6t9eyhXDtasMT82cqS5NN8O+/bBvHn2jC0i9jt37hwxMTEULlyYUaNGKfSLiIiIyDWbP9/e8c+c+T3vXivHg//gwXD33bBnj3mn5HLulqQ+b+dOuPNOM/RPmHDtHRT/idcLkyf/+WPbt0Pv3tCoERQsaN6FyZzZPAXgoYfMJRmHDtlTj4hcPsMwaN++Pb/88gtxcXFky5bN6ZJEREREJASsXWvvYU9ut3kNKzi61H/QIOja1amrX5kyZcwtCKtWwauvmk0cPB7zBsRfewqkftzlgqZNoW9fcwmIiKS9jz76iPbt2zNhwgQeeeQRp8sRERERkRBRpQqsWGHf+F4vPP44jBp17WM5NuP/zTfw/PNOXf3Kbd8O3brBXXfBkiXmx/z+SzcSTP243w/Tp5vbGAYPtq7poIhcnrVr19K5c2eeeeYZhX4RERERsdS5c/aObxiQlGTNWI7M+J87Zzbo27/f+u6HdnK5rq1xQ6tW8L//2bscRERMx48fJzo6mnz58rFs2TIiUjuBioiIiIhYoHJl8zQ6u3i9ZoYcM+bax3Jkxn/kSNi7N32Ffrj2bo2ffgrPPmtNLSLyzwKBAK1ateL06dNMnTpVoV9ERERELHfjjfY1mAczf5Yubc1YaR78AwEYOtS+Iw+CmWHAxx9DXJzTlYiEtnfffZfZs2fz2WefUaxYMafLEREREZEQVKGCvdu5/X7zGlZI86X+y5ebXfwzKpcLcuY0ewbkyeN0NSKhZ/HixdSuXZsePXrQu3dvp8sRERERkRD1009w6632jR8RAQkJkD37tY+V5jP+q1aZxxJkVIYBp06ZM/8iYq0DBw7w8MMPc++99/LWW285XY6IiIiIhLBbbjGPl7cj33q98Oij1oR+cCD4r19vznpnZIEADBuW/nociASzlJQUHn74YcLCwvj888/xqIumiIiIiNisWzd7lvv7/dCpk3XjpXnw//VXBV6AgwfNmyAiYo1XXnmFlStXMnnyZPLnz+90OSIiIiKSAcTEQIMG1p7c5nabNxRuu83CMa0b6vLY31EgfXQNdLlg3TqnqxAJDdOmTeO9996jf//+VK1a1elyRERERCSDcLlg9GjIksUH+K55PK8XypSBXr2uvbY/SvPgnzev3efYG4BVay3su4ng9cKGDbYNL5JhbN++nTZt2hATE0OXLl2cLkdEREREMpj9+1cTCNTE40nC47n6DOn1QqFCsGABZMpkYYE4EPzLl7d3fJfLRa5cbgvOUzQA+5oRBAJw5oxtw4tkCImJicTGxlKgQAH+97//4croDUREREREJE2tXLmSOnXqUK6cn+XLoWRJ11U3+7vzTli50gz/Vkvz4H/HHfbu8TcMF2PHQunSV9dEMPVzcuWyd8uAy4UFNydEMraOHTuyfft24uPjyW5Vy1MRERERkcuwfPly6tatS7ly5Zg7dy6VK2flxx+he3cIC/vvbv9ut5kLs2aFoUNh6VK47jp7ak3T4G8YULgw5Mhh1xUCZMp0hDx5vmPdOoPu3VOX/V/OXgvzudmyBZg0CWrWdON22xv+Cxe2dXiRkDZmzBjGjh3LyJEjudXOA1RFRERERP7i22+/pV69ekRHRzNnzhyyZcsGQGQk9OtnNnN/5x3zyL9L3QAID4eKFeGjj+DwYejY0d5j79NkznnNGhgxAqZNg9On7buOy+UiS5axVKv2EnfccQd16tQB4rn//jksXlycc+cADDweF36/D3Mpv9lw4PrrAyQkvEb79jkpXvxeTp06QyBQ4+LjVvP5zD9oEbly33//PR06dKBdu3a0atXK6XJEREREJANZsmQJDRs2pHLlynz55ZdkyZLlb8/JmxdefNF8O38efvoJTpwww32+fHDzzeaqgLTiMgz7+uzv2QNt28KiReaydt+1Nzn8R263wXXXudi8OcDy5XMZNGgQ8+fPJywsjOeee49jx5ozdmwYkOu3z0htAOi++H7mzN+QmDgAmEPmzHVJTJxrW70ul3kXyK6lHCKh6uTJk1SoUIGcOXOyfPlyIiMjnS5JRERERDKIhQsX0qhRI6pWrcqMGTPInDmz0yVdFttm/D//HJ58ElJSzPftDP0AgYCL555bT44c0dx3331EREQwf/4SihQZy8CBzX971h+/3L+uo3CTmHg3UIN8+fYzb14BmjWDXbusP4LQ6zXPelToF7kyhmHw+OOPc/z4cRYsWKDQLyIiIiJp5uuvv6Zx48ZUr16d6dOnk8nq1vs2smUXwUcfQcuW5pIGuwN/qvDwt3nllTsYNmwYgUCAl18eQWTkFn755RHMwH859zjM5xw5ch2VKnmpUMGeWn0+6NTJnrFFQtmAAQOYMWMG48ePp3jx4k6XIyIiIiIZxNy5c3nggQeoWbMmX3zxRboK/WDDUv+5c+G++6yfJb8Ut9s8Fu+ZZw4zdWo5DCPAsWPHqFGjFUuW9MXtvo5A4Nr26OfIkcipU+FYtTjC5TL3cwwZAvfco87+Ipdr6dKl1KpVixdffJF+/fo5XY6IiIiIZBCzZ8+madOm1KtXj6lTpxIREeF0SVfM0uB/8iRERcHRo2Ygt5ePPHkMPvssjPr1YevWrVSvXp2zZ1NITFwGlAas6pbgx1wcYc0Z4ak3LK67Djp0MDs45sxpydAiIenQoUNER0dz4403Mn/+fLy6YyYiIiIiaWDmzJnExsbSsGFDJk+eTHh4uNMlXRVLl/q/+SYcO2ZX6Pfh8Zj3KAoUMMidezjlyj3E6dNTaNu2LbVq1SIhIYHExOeBG7Ey9GfNCm63C5c1uf/i9+fwYfN7FhUFX31lzdgiocbn89GiRQtcLhcTJ05U6BcRERGRNDF9+nRiYmJ44IEHmDJlSroN/WDhjP+ZM1CggLmv33oG8COdOhWgVKmTHD06lYkTP2XHjh0AlC1blnr16nHbbQ/SunUVrD6Cz+Mxm/EtXmxw7pwfq3sipq4AePVV6N0by24wiISCl19+mYEDB7Jo0SLuuecep8sRERERkQwgLi6OFi1a0LRpUz777DPC0vLsPRtYlmAnToSkJKtG+ysDyMLYsWU4e/YsOXLkoHbt2pw/f54bbriB5cuXA9C8+S+/Pddafj8sWmTQtu1whg2LAuoAKVi1qiB1BUCfPuZ/337bkmFF0r2ZM2fy7rvv0r9/f4V+EREREUkTkydPpmXLljz00EOMHz8+JFacWjbj37IlTJ5shmS71Kr1CL16daRSpUp4vV6++OILmjRpwsKFC7nnnnuJjDyD35/dpqsHcLna8cgjyUyZcogbbxzCli03/3ZqgYFV+/8BvvwS7r/fsuFE0qVdu3YRHR3Nvffey7Rp03BpKYyIiIiI2Ozzzz/nscceo2XLlowdOxaPx9rV5E6xLPiXLGmeeW+nZs3GMmVKm4vvG4ZBpUqVCAsLo02b/jz11N02Xj0FGA88icfjYdKkSdSsGcOtt7o4dMi6UwzcbsiTB7Ztg1y5rBlTJL1JSkqiSpUqnD59mrVr15JT3S9FRERExGbjx4+nTZs2tGrVitGjR4dM6AcLm/vt3WvVSP8k8LcbCy6Xi7fffpsVK1bwxhszbb5+GIULx5A9e3Zy5sxJs2bNKFu2LwcPGpYeXRgIwPHjMHiwdWOKpDedOnViy5YtxMXFKfSLiIiIiO3Gjh3L448/Ttu2bRkzZkxIhX6wcI+/ueTdTgbr1v1IZGQk4eHhREREkClTJiIiIoiIiODwYQ/gw+rGe3907Fhmzp8/zdatWzl8+FcaNiyF1cv8wdwu8eGHZrO/dN5DQuSKjRs3jtGjRzNmzBhuv/12p8sRERERkRA3atQonnrqKZ5++mlGjBiB223p4XdBwbKUHBlpZ3M/MBcnJHLhwgUuXLjAmTNnzI+63Zi7FbzY0djvj5KSfNx///1ERUWRmBjFuXP2XSshARYvhrp17buGSLDZsGEDzzzzDG3btqVt27ZOlyMiIiIiIW7kyJE888wzdOjQgaFDh4ZsXynLgv9NN8H331s12qW4gG3s3LmTU6dOcezYMY4ePcq3337LiBEjyJIFzp2z986MYZzh9OnTvPTSS+zf3xCohtWz/ak8HlizRsFfMo5Tp04RExNDVFQUw4YNc7ocEREREQlxw4cPp2PHjnTu3JlBgwaFbOgHC4P/nXfCxo12L/lfyu23+6lUyUOVKvDYYwaDBg2iSpUqtGjRkk6d7NyH4QfWs3btWlavXk1SUnHgTiDclqsZBqxfb8vQIkHHMAzatm1LQkIC69atI1OmTE6XJCIiIiIhbPDgwXTp0oWuXbvy3nvvhXToBwu7+s+enXZH0LlcZvd78+jAeXz0UTaaNatC7tx2XjWFsLD3ad/+AMePH2f+/KdJSKiKhf0R/+buu+Hbb20bXiRovP/++3Tr1o1p06bRpEkTp8sRERERkRCW+trzxRdf5N133w350A8Wptb69aFwYatG+3eGkRr6AWrRocNdjBgB5cufw2zwZ4cwUlKmUKNGDT777DPuuacaLpe9WwsywM+fCMuWLaN79+688MILCv0iIiIiYqv+/fvTrVs3XnnllQwT+sHC4O/xwCuvWDXalfDi87l4/XWIjMyCPV39/RQqdIjq1bPRv39/DMMgb14Djydgw7VMbjcUKGDb8CJBISEhgebNm1OlShX69u3rdDkiIiIiEsL69u3LSy+9xOuvv06fPn0yTOgHi9ept28PVaqA174T9f6RYcDKlRAenoT1s/4e3nzTRa1atVi1ahWVK1fmk0+ew+ez7wfF5YLoaNuGF3Gc3++nRYsW+P1+Jk2aRJjOrhQRERERm/Tq1YtXX32Vnj170qtXrwwV+sHi6XG3G8aPh4oV4cyZPy7HTxuGAcnJkYCVM/E+wsKm89RTDwHg8XjYs2cPbdu2Y/hw+35Y/H6oVMm24UUc9+abb7JkyRIWLlzI9ddf73Q5IiIiIhKCDMPgrbfeolevXrz99tu8+uqrTpfkCMs3qZcsCQsXQrZszsz8Q4CwMKvuOKQAu2nYcC7jxo1j27ZtjBkzhoSEBNq3r8JNN9m3D79gQahe3Z6xRZw2e/Zs+vTpQ58+fahRo4bT5YiIiIhICDIMg9dff51evXrxzjvvZNjQDxZ29f+rn3+Gli1h7Vo7Rv8vflyuJRhGLVwuA8O4mnTuA/Zw3XUPc/Dg6otLQZKTkylRogR16tShcuWxPPusudLASm439OwJr71m7bgiwWD37t1ER0dTtWpVZsyYgdttb5NMEREREcl4DMO42MBvwIABvPDCC06X5CjbXnGXKWPuuR84EPLkMT/m8dh1tb9yYxhRwCMYxmlcrstfAeB2myne6/0CqMThw2t56aWXLj4eHh5O165dmTBhAnXq7Kd48d8/x5LK3ZA/P3TqZNmQIkHjwoULNGvWjBw5cjB+/HiFfhERERGxnGEYF4/q++CDDzJ86Ac7D6HHDPrdusHBgzBpEjRrBsWK2XnFVC6gMJky7QSiMIyxwAUg8A83AQzMZf1QtqyL6dPhrruG4PWeJl++fAwYMIABAwZcfPYTT7QjLCyWmjXPs2sXBALWrfcPBGDcOMiRw7IhRYJGly5d2LBhA3FxceTKlcvpckREREQkxBiGQdeuXXnvvfcYOnQoXbp0cbqkoJAm023h4dC8OUycCL/8AomJ8PDDdq8AMChbtjWRkado1uxrPJ4iREa+iGFMJlOmQ4SH+4FkwsLOER6+ghIlZrJihcGPP8KNN27l22+/5e233yYyMpKcOXPSvXt3xo0bx+7d8OCD2UlM/Jy9e4tbXnWvXlCvnuXDijjus88+Y+TIkQwdOpQKFSo4XY6IiIiIhBjDMOjUqRODBw9mxIgRdOzY0emSgoZte/z/S/ny8MMPdl4hheefDyNr1jfp168fKSkp7Nixg5UrV/L++++zfv16APLnz8/p06fZsmULxX5bjtC+fXtmzJjB7t27OXz4MLVr1+bQoUMkJlYnLGwGgYAXn4UnBrrd5kz/229Djx72NQwUccqmTZuoVKkSsbGxjBs3LsMdnyIiIiIi9goEAnTo0IGRI0fy8ccf065dO6dLCiqOBf9SpWDnTvvGd7l8tGvnpX//U+TNm5cCBQqwZ89+Fi2CZcsMvv76OCtXHgI8uN1nKV8eWrYsQ716PipUKMyrr77Ka7911zt06BB33vkWe/cOw1wkYd1SBbcbrr8ePvkEata0bFiRoHHmzBnuuOMOwsLCWLVqFZkzZ3a6JBEREREJIYFAgPbt2zN69GhGjx5N27ZtnS4p6Dhy4B5AWJi947vdLsLC4MSJE/h8Hg4efJTChX0cPuzF63Xh9+cGzK6DgQCsW5fMunVhgB+3exzVqtW9OFZyckGOHBkJBLAy9N9wA3TsCE8/bR5/KBJqDMPgySef5ODBg6xdu1ahX0REREQs5ff7adeuHePGjWPs2LG0bt3a6ZKCkmPBv1Qp88i/QMCe8f1+2LNnKZ06LcPl+gnDKM7hw2ZLA3OZ/l+XGof/9l8vgUBTatRw07LlDkaPLkmbNi5SUsCq0O9yQfbs5lGHefNaMqRIUBo6dChTpkxh6tSplClTxulyRERERCSE+P1+2rZty2effcb48eN59NFHnS4paDm21L9nT+jd2wzodvF6B+LzdcXs2n819zgChIfvJDm5tMWVmY0NX3gB3nnH8qFFgsKKFSu455576NixIx988IHT5YiIiIhICPH5fLRu3ZrJkyfz2Wef8fDDDztdUlBzLPgvXmz3nnYf5gy9wbUdXmBYMMal5cwJhw5BZKTlQ4s46siRI0RHR1O0aFGWLFlCmN17e0REREQkw/D5fDz66KPExcUxceJEmjVr5nRJQS9NjvO7lOrVoVgxuzrY+zCX8lsR2F0WjHFpJ0/CV1/ZMrSIY/x+Py1btiQpKYnJkycr9IuIiIiIZVJSUmjRogXx8fFMmTJFof8yORb83W7o0sWu0b2/HRfm2Jd3WbxeWLXK6SpErNW7d28WLFjAxIkTKVy4sNPliIiIiEiISE5Opnnz5syYMYO4uDiaNm3qdEnphmNL/QFSUqBCBdi82cq9/n6s7Lxvtxo1zG0PIqFg7ty53HffffTq1evicZgiIiIiIhcFArBjh7nn2TDM/c833QQREf/6aRcuXOChhx5i7ty5xMfHc//996dRwaHB0eAPsGEDVKxodtq/1kpcLj+GcQGPJxN+vy17CCwXFQVbtzpdhci127t3L+XLl6dy5crMmjULtzu4V9yIiIiISBq5cAHi4mD0aFi9GhIT//y41wtly0LLltCmzd+OPktKSiI2NpYFCxYwffp0GjRokIbFhwbHgz/AjBkQE2Pe/LnaarxegJP4fNkJ9iX+f1S6tHmsoUh6lpycTLVq1Th8+DDr168nT548TpckIiIiIk4zDBg/Hrp2hRMnzP3e/3aeu9ttHn/2/PPw1lsQGUlSUhJNmjRhyZIlfPHFF9SrVy/Nyg8lQZGQGzeGWbPMs+09V7FK3+WCkiUNwsO7ESRf0mX7y80skXSpW7dufP/998TFxSn0i4iIiAgcPw4NG8Ljj5tdzeHfQ3/q4ykpMGAAlCtH0urVPPDAAyxdupQvv/xSof8aBE1Krl8ftm2DRo3M980Z/H/n8Zg3hV55BaZO3U5iYiZcLscXMFy2sDCzx4FIejZp0iSGDRvGoEGDuOOOO5wuR0REREScdvQo3H03fP21+f6VLusOBDB27SJQpQrnv/mG2bNnU7t2bevrzECCJvgDFCgA06fD+vXmjaGsWf/46F9/WA7xyisB9u6FPn1g/foVQG7c7vRccxdrAAAgAElEQVQT/FNSzP4GIunVli1bePLJJ3nkkUd45plnnC5HRERERJyWkgL33Qfbt19TB3eX30+4389ir5d7S5a0sMCMKaiCf6ry5WHUKDh1ylwF0Lr1V7jdzzJgwElefPFb4Hrgep566gCFCpmfs2rVKvLly0MQtCy4bBER8MADTlchcnXOnj1LTEwMN9xwAx999NFvR2iKiIiISIb27ruwdq3Zvf0aeQHvhQvQtu21d4LP4IIy+Kdyu6FMGRg0qAoREZ+QlDSMdu2uAw4DpfjyyxN8+y1s2gQrVqyhdOnsBAJB/SVd5PWaTStz5XK6EpErZxgGTz31FHv37iUuLo6sf16eIyIiIiIZ0Y4d0LOntSHd54OFC2HCBOvGzICCoqv/5Wjb9hlmzPBSrtxgliw5D2T5yzMukDv3cY4fL+hEeVcsMhJ++gm0akXSoxEjRtChQwcmTpzIww8/7HQ5IiIiIhIMnn8ehgy5piX+l+R2w623wg8/WDtuBhL0wd8wYOxY6NrVx+nTXlyuAIbxT7P6AcD121twGzIEOnVyugqRK7d69Wruvvtunn76aYYOHep0OSIiIiISDJKSIH9+OHPGvmusWaMmaVcpqNfFHz0KDRrAE0/A6dNmm/9/Dv1gfjnBHfpdLmjWDDp0cLoSkSt37NgxmjVrRnR0NO+9957T5YiIiIhIsFi/3t7Q7/HAggX2jR/igjb4//orVK0aPH+2Xu/vR++5r+G71qwZfPbZtY0h4oRAIMBjjz3GuXPnmDJlCuHh4U6XJCIiIiLBYt06c5bTTmvX2jt+CAvK+JmcDHXrws6d1m8PuVrh4TBtmnkjomDBKwvuXq+5p3/4cJg40RxLJL3p06cPc+fOZcKECRQtWtTpckREREQkmOzYYQYfu/j9sGWLfeOHuKAM/r17w8aNwRP6AT74AIoWhVq1zJ+3N94wt7CA+fP915tbYWHmfyMjza0KmzfDs89qpl/SpwULFvDmm2/yxhtvUK9ePafLEREREZFgc+GC/ddISrL/GiEq6Jr7bdkCt9wCgYDTlfzumWfM2fq/hvuUFJg/H1atMledHDhg3qzIk8fcFlCxItx3H+TI4UzdIlbYv38/5cuXJzo6mq+++gqPx+N0SSIiIiISbLp0gREjzJBkl7JlzaPR5IrZuBbj6gwdas6KOx38U2vo2hUGDrz0dpWwMDPY33df2tcnkhZSUlJ46KGHiIyMZMKECQr9IiIiInJpUVHg89k3vsdjHuknVyWogv/ZszBunL0/L/8lNeDnzWseI6hQLyEjORlWrzYbr2zaBOfOmXevihUzl6jcdZf5g/8H3bt3Z82aNXz77bfk/ctjIiIiIiKp9ubLR1E7F5Mbxu/d1uWKBVXwX70azp+39xoul/kz4/GYs/qGYX4sdUVK8eLQuTM8/riW6EuIOHDAXHY1ciQcP27+4KcuaUltOuHzmX8pYmLMvwBVqzJ16lQGDRrE4MGDufPOO539GkREREQk6GzevJm4uDji4uLYunEjh4Hcdl0sEAD1mrpqQbXHf8AAePll+5b5e71mrmnd2pz03L/fzDvZs0O5cuYNpLJl1YBPQoRhwKhR5n6VCxcur1um1ws+HyebNuWWefOo2rAhkyZNwmX30SwiIiIiEvQMw2DDhg3ExcURHx/Pli1byJYtG40aNSI2Npb7v/uOsA8+sL5Lu9sNlSrBihXWjpuBBFXwb9fO/qX+d9xhriwQCWlJSfDwwzBjxlV9uh846vGQdeVKslSsaG1tIiIiIpJuGIbBunXrLob9HTt2kDNnTho3bkxsbCy1a9cmMjLSfPK+fVC6tD0d/qdNgyZNrB83gwiqpf4XLpiTlHbSCRAS8pKT4cEHzSMnrpIHyA+46tUz76yWKWNZeSIiIiIS3AKBAKtWrboY9vfs2UOePHlo0qQJQ4cOpWbNmoSHh//9E4sUgf794bnnrCvG64VGjczXt3LVgir4R0Zeunu+lTJlsnd8Ece9/jp8/fU130Vz+f1w6pT5i/bHH82/oCIiIiISkvx+P8uXLyc+Pp74+HgOHDhAgQIFaNq0KTExMVSvXh2v9zLiY8eO5qrTpUuvfcm/x2Oelf7hh/YHxRAXVME/KsreY/y8XrjlFvvGF3HcypVmswyrls74/bB9O/TsCf36WTOmiIiIiAQFn8/H0qVLiY+PZ9q0afz6668UKlSImJgYYmJiqFq16pUf5+x2wxdfQJ06sGbN1Qc8jwdy5YLFi6FAgasbQy4Kqj3+S5dCjRr2je9ywbBh8Oyz9l1DxFFVq8KqVfY0VNm7FwoVsnZcEREREUlTycnJLFq0iPj4eKZPn86xY8e44YYbiImJITY2lsqVK+O2otv5uXNm8Bo//vcTpa7EHXfApElQosS11yLBFfwTE82bOWfP2neNbdu0XVlC1MaN5vEUdnC7zS0Eb71lz/giIiIiYpukpCTmz59PfHw8M2bM4OTJk5QsWZLY2FhiY2OpUKGCfac4zZ5tLv/fvfviCVKXlHpzIHt283Vn167mrL9YIqiCP5h9IEaMsL6zv8cD1aqZK0VEQtKLL8KgQfYdi1G4sNmpVURERESCXmJiIvPmzSMuLo4vv/ySM2fOcOONN14M++XKlUu7I5sDAViwAP73P1i2DA4c+PPjOXOaM/yPPALNm6sxmw2CLvjv2AE33WRPdvnqK2jQwPpxRYJC1arw3Xf2XiMhAfLls/caIiIiInJVzp49y1dffUVcXByzZ88mMTGRW2+99WLYv/nmm50u0XTsGPz6q3lDIFcuuP56Ne+zWdAFf4A+fczVHVZV5vHAQw/B559bM55I0AkEIGtWOH/e3uvMmQP169t7DRERERG5bKdOnWLWrFnExcUxd+5ckpKSiI6OJjY2lpiYGMpon7MQpMHf54O774a1a605AaJAAdiwwTwJQiQknTtnBn+7ffIJtGpl/3VERERE5B8dP36cmTNnEh8fz9dff01ycjKVK1e+GPaLFy/udIkSZILqOL9UXq+5LP/ee2HTpqsP/16vGfYXL1bolxCXVvfv7DxvU0RERET+0ZEjR/jiiy+Ij49n4cKF+P1+qlatSv/+/WnatClFihRxukQJYkEZ/AFy54ZvvoEnn4S4OHPLx5Vmm4oVzRMgbrjBnhpFgkamTBAWBikp9l4nd257xxcRERGRiw4dOsT06dOJj49nyZIlAFSvXp3BgwfTpEkTChYs6GyBkm4E5VL/v4qLM7v9HzxoLt3/5xUAfsBD9uzmqWOdO+sECMlAoqPh++/tvcbevaC7ySIiIiK22bdvH9OmTSM+Pp5ly5bhdrupVasWsbGxNG7cmPz58ztdoqRD6SL4g7nv/6uvYOxYWL4cjhz58+MRERdISVnOyJHVePTRMJ0AIRlPhw7w8cf2HeeXOzccPaqOqyIiIiIW2717N/Hx8cTFxbFy5UrCwsKoW7cusbGxPPDAA+TWqku5Rukm+P/V4cPmyWKGYZ4AcezYD0RHl2fx4sXUqFHD6fJE0t6yZVCtmj1je73QsSN88IE944uIiIhkMNu3b78Y9tetW0dERAQNGjQgJiaGRo0akSNHDqdLlBCSboP/XwUCAQoUKMDTTz/N22+/7XQ5ImnPMKBsWYxt23DZ0YRv61aIirJ+XBEREZEMYvPmzRfD/oYNG8icOTMNGzYkJiaG++67j2zZsjldooSokAn+AM2bN2fPnj2sXLnS6VJEHPHz++9Tpls3awf1eKBlS/MoPxERERG5bIZhsHHjRuLi4oiLi2PLli1ky5aNRo0aERMTQ/369cmcObPTZUoGEFLBf9SoUbRv357jx49raYxkKMnJyfTq1Yt+/frxZc6cNDh50ppZf7cb8uaFbdsgZ85rH09EREQkxBmGwfr16y+G/R07dpAzZ04eeOABYmNjqVOnDpGRkU6XKRlM0B7ndzVq165NIBBgyZIlNG7c2OlyRNLEjz/+SKtWrdi8eTNvvfUWdZ55BlfNmrBly7U1+nO7zSMCp01T6BcREZHgYBhw5gwkJ5vHGWfJ4nRFgLntePXq1cTFxREfH8/u3bvJkycPDz74IEOHDqVmzZqEh4c7XaZkYCEV/IsXL06JEiVYsGCBgr+EPJ/Px7vvvkvPnj2Jiopi9erVlC9f3nxw0SKoUwc2bICrmfn3es3QP3s2VK1qbeEiIiIiVyIhAcaNg4ULYfVqOHny98euuw7uvBMaNIBHHoGsWdOsLL/fz3fffXcx7B84cIACBQrQpEkTYmNjqV69Ol5vSMUtScdCaqk/wFNPPcW3337Lli1bnC5FxDZbt26lVatWrFu3ju7du/PWW28RERHx5yedPw9vvAHvvWfu07+c2X+327xRULWquae/ZEl7vgARERGR/5KQAN27w4QJ5usTwzDf/srtNj+eOTN06mS+/rHpbG+fz8c333xDXFwc06dP5/DhwxQqVIimTZsSGxtL1apV8Xg8tlxb5FqEXPCfMmUKzZs3Z//+/RQqVMjpckQsFQgEGDx4MD169KBo0aJ88skn3Hnnnf/+SWvWQP/+MH06+P3mTH5Kyu+PezzmP5aBAJQrB88/D489Zv4jKiIiIuKEadPgySfNZf1XsnXR7YZixeDzz6FyZUtKSUlJYdGiRcTHxzN9+nSOHj1K0aJFiY2NJTY2lsqVK+PW6yYJciEX/I8ePUq+fPn45JNPaNWqldPliFhm165dtGnThm+++YbnnnuOvn37XlkX2IMH4euvYd06cwvA6dMQEQGlSkGFCnDPPRAdDS6XfV+EiIiIyH8ZMgSee858TXI1UcXjMd+++MLcAnAVLly4wPz584mPj2fGjBmcOHGCkiVLEhsbS0xMDBUrVsSl10ySjoRc8AeIjo7mlltuYfz48U6XInLNDMPgo48+4oUXXiBfvnyMHTuWGjVqOF2WiIiIiPXGj4fWra99HJfLXOW4ZAncdddlfcr58+eZN28ecXFxfPnll5w+fZqoqCiaNWtGTEwMt912m8K+pFshGfxffPFFJkyYwIEDB/SXU9K1ffv28cQTTzB//nyeeuopBg4cSLZs2ZwuS0RE0sLJk7B+PezZYy51zpoVbrkFbrrJbMIqEmp274abbzb7FFnB7YYiRWDTpn/s/n/27FnmzJlDXFwcs2fP5ty5c9x6663ExMQQGxvLzTffrDwhISEkg/+8efOoX78+mzdv5qabbnK6HJErZhgG48ePp3PnzmTNmpUxY8ZQv359p8sSERG7nTplznh++KF5LOulRERAw4bQoQPce6+2aEnoqF0bli69tuOI/8rthi5dzGbHvzl9+jSzZs0iLi6OOXPmkJSURHR0NDExMcTExBAVFWXd9UWCREgG/3PnzpE7d24GDhxIp06dnC5H5IocPnyYp59+mpkzZ/Loo48yZMgQcuXK5XRZIiJiJ8OA0aOha1dITPz9Y//E6zXDUaVK5iksN96YNnWK2OX7781eQ3aIjOTE1q3MXLKEuLg4vv76a5KTk6lcufLFsF+iRAl7ri0SJEIy+APce++9ZM+enRkzZjhdishlmzp1Ks888wxut5uPPvqIJk2aOF2SiIjY7eRJaNYMFiy48s/1es0Z/6FD4emnra9NJK20awfjxlk72/+bANDN7WawYVC1alViYmJo2rQpRYsWtfxaIsEqZIP/22+/zYABAzh27Bhe7YOTIHfs2DE6dOjA5MmTiYmJ4cMPPyRfvnxOlyUiInY7eRKqVzf3IPv91zbWgAHwwgvW1CWS1vLnhyNHbBk6AByIisKzaBHXX3+9LdcQCXYhe+Bk7dq1OX36NGvXrnW6FJF/9eWXX3LLLbfw9ddf8/nnnzN16lSFfhGRjMAwIDbWmtAP8OKLEB9/7eOIpLVDh2wL/WAGniKHD3N9wYK2XUMk2IVs8K9YsSLZs2dnwdUsmxNJA6dOnaJNmzY88MADREdH89NPP9GiRQt1jhURyShGjYKFC60J/WAu+W/XztYAJWKLzZvtv8apU5CQYP91RIJUyAZ/r9fLvffeq+AvQWnBggXceuutxMfHM3r0aGbNmqWlZyIiGcmJE2YjPysZBpw+DT16WDuuiN3OnUub66Q2zhTJgEI2+APUqlWL7777jnNp9ctE5D+cPXuWDh06UKdOHUqVKsXGjRt54oknNMsvIpLRfPKJdWeV/5Hfbx4HeOKE9WOL2CAQCHDk5Mm0uVhYWNpcRyQIhXTXu9q1a5OSksKyZcuoV6+e0+VIBrds2TIef/xxDh48yNChQ3n22Wdxu0P63puISMZlGHDwoLm82OOBggUhe/bfHx8xwr5rp6TAp59C5872XUPkCp0+fZqff/6Zbdu2XXz7+eef+fnnnymcmMg2uwuIiIDrrrP7KiJBK6SD/4033sj111/PggULFPzFMUlJSbz22mu8//773HXXXcyZM4fSpUs7XZaISMZlGLBvH/z4o9lV3+02A0F0NOTKdfXjJibCxIkweTKsXm2G/j8qVgzuuQeaNoXt26/pS/hXLhd8842Cv6S5lJQUdu/e/bdwv23bNg4fPnzxeQULFiQqKorKlSvz2GOPEVW6NIGHHsKdlGRfcbfeah5/KZJBhfRPv8vlonbt2trnL45Zs2YNrVu3ZufOnbz77rs8//zzeDwep8sSEcmYtmyBDz+ECRPg+PFLP6dkSbNBXtu2cLknrPh85lF6ffvC2bNm8L7Uacm7d8P+/eZSfDsFArBypb3XkAzLMAyOHDlyyXC/c+dOfD4fAFmyZKFMmTKUKVOG6tWrExUVRVRUFKVLlyb7H1e/pKpRA+bPt67Z5R95PFCrlvXjiqQjLsO41L9MoWP8+PG0bt2ahIQEHZEmaSY5OZnevXvTr18/brvtNsaPH0/ZsmWdLktEJGM6dgw6doRJk8wZv9+CyT9yu82g8NZb0L37v88S/vwzPPQQbNhw6bDvFJfLDFDqISNX6fz582zfvv1PwT71/0/+tiff5XJRrFixi6E+9a1MmTIUKlToynoYzZwJjRvb9NUAO3aYN/ZEMqiQD/4HDhygcOHCTJ48mYceesjpciQD2LBhA61atWLTpk289tpr9OjRgzA1kxERccaiRdCsmbns/kpnEl0uuO02mDEDihb9++M//gj33mt20rdjlvJa+XxmA8H162HtWrPngN9v9hooVw4qVoQbbnC6SnFQIBBg3759lwz3e/fuJTUm5M6d+2/BPioqipIlSxIZGWlNMX4/lChhrooJBKwZE8wbd3XrwuzZ1o0pkg6FfPAHuPnmm7n77rv5+OOPnS5FQpjP52PAgAG8+eablClThvHjxxMdHe10WSIiGdecOfDAA2aIuNog4fWaS/5XrPhzSN63D26//epuKKQFrxceftjsN5CS8vsqBjBXJqSuerj9drMXQIsWYFWAk6Bz8uTJSzbW2759O+d/O10iPDycUqVK/SnYp77lyZMnbQpdsADq1LF2zMhI2LTJvKkgkoFliODfuXNnZs2axa5du5wuRULU1q1bad26NWvXruXFF1+kZ8+eREREOF2WiEjGtWkTVKgAycnXvgTf6zUb823YAJkymePVqweLF//3tgEnXe62hkAAihc3TwKoWjVtahPLpaSksGvXrkvuvU9ISLj4vEKFCv0t3JcpU4ZixYoFRx+iZ5+FkSOt2zrz4YfQvr01Y4mkYxki+M+cOZPGjRuzc+dOSuhun1goEAgwZMgQXnnlFYoUKcInn3zCXXfd5XRZIiIZm88HlSrBxo3WBXO3G7p2hYED4bPP4LHHrBnXBgZwxTv7PR7zBkDv3tCjh329Afx++OWX3485LFTo8psoCoZh8Ouvv14y3O/atQv/b6tPsmbN+rdZ+9RGe1mzZnX4q/gPKSkQEwOzZl17+H/pJejXT70uRMggwf/UqVPkzp2bkSNH0q5dO6fLkRDxyy+/0KZNG5YuXUrnzp3p168fmTNndrosEREZNsxcvm71SxyXC374wVwWv2VLcDXzs9Lrr0OvXtaNd+oUfPKJue3g++/NvgN/VKCAeczhk09C7drmTZYM7ty5c//YWO/06dMAuN1uihcv/rd991FRURQsWPDKGusFm5QUsyHnxx//virlcqWuWujXD154QaFf5DcZIvgD3HXXXRQtWpTJkyc7XYqkc4ZhMGrUKJ5//nny5s3L2LFjuffee50uS0REwAwIpUqZR+dZ/RLH64X774cvvrB23GA0ebJ5WsG1uHDBXEHw3nvm/8M//5mkbksoXtxcml2v3rVdOx3w+/3s3bv3kuF+3759F5+XN2/eS4b7kiVLEh4e7uBXkAbmzTOP1jx40Az0/9ZPI/VnqFw588jM225LuzpF0oEME/xff/11PvzwQxISEnDrTrJcpf379/Pkk08yb9482rVrx8CBAy99Fq2IiDhj8WKoWdO24Q2PByMQwB3KL59cLsiRA7Ztg/z5r26MjRvN0xR+/vnKbsCkzu4+8QQMHWr2VEjnjh8//o+N9S78dkMkIiKC0qVLX3J5fu7cuR3+ChyWkmLebBs+HJYvv/T2nUyZzJtFHTuaf/81yy/yNxkm+C9dupQaNWqwfv16ypcv73Q5ks4YhsGnn35K586dyZw5M2PGjKFBgwZOlyUiIn/Vs6c5y2xjp30/EAQt0Ozl8ZgN0YYNu/LPXb0aatUyl/Rf7Z+D2w13322ezJAOttFduHDhHxvrHT169OLzihQpcslwX7Ro0eBorBfskpPNxp07dpj/nzkz3HQTlC79+xJ/EbmkDBP8L1y4QK5cuejVqxcvvPCC0+VIOvLrr7/y9NNPM2PGDFq2bMmQIUN0911EJFg1agRffWXtOeB/cFWN89KplPBwjm7cSMEyZS7/k3btgvLl4dy5a7/54nbDfffBzJlBMYNrGAaHDh36W7Dftm0bv/zyC4HffuayZct2yTPvS5cuTZYsWRz+KkQko8owwR+gfv36AMydO9fhSiS9iIuLo3379rhcLkaOHElMTIzTJYmIyL+58UZzibpNMlLwDwBPAJvuuIPGjRvTuHFjypYt+89N4wIBqF4dVqywdsXFmDHmPu80cvbs2Yuh/q9778+ePQuAx+OhRIkSl9x7X6BAgfTdWE9EQlKGCv4DBw7kjTfe4MSJEzpjXf7V8ePH6dixIxMnTqRp06Z8+OGH5L/afY4iIpJ2SpQwj4uzid3BP5huLBheL9urVePVPHmYO3cuZ8+epUSJEhdvAlStWhWv1/v7J4weDXacnpQli/lnauGxf36/n927d19y7/2BAwcuPi9//vx/C/ZRUVEUL1489BvriUhIyVDB/4cffqB8+fIsXryYGjVqOF2OBKnZs2fz5JNPkpSUxLBhw3jkkUd0515EJL249Vb46Sfbhg9gBnM7/1X441z5pXYtpwBhwCkgG2Bry+Jy5eDHH0lKSmLx4sXMmDGDmTNncujQIfLkyUPDhg1p3LgxdevUIWuFCubea6tfWrrd0LeveSb7FTp69Oglw/2OHTtITk4GIDIyktKlS19yeX7OnDmt/VpERBySoYJ/IBCgQIECtG/fnt69eztdjgSZU6dO8fzzz/O///2PBg0aMGrUKAoVKuR0WSIiciUeewwmTrS1ud8Vnyt+hWoAlYB7XC4qGwap89x+YBuwEpgBVAReAmydd86XDxIS/vShQCDA2rVrmTFjBjNmzGDTpk3UDgtjfkqKfXUUKgR795rf+79ISkpi586dl2ysd/z48YvPK1q06CWX5hcpUkQnPolIyMtQwR+gefPm7N27lxUrVjhdigSRhQsX0qZNG06cOMEHH3zAE088oVl+EZH0aNAg6NbN1mBup/NZs3Jrnjy4wsKoW7cuJ06c4PSxY5w5cYLVP/6I4XLh9/vx+Xy8DbyIvcH/bEQEg157jaioKMqWLUupUqX+tsR9586dHH36aSosWoTXxpeVh5cuZVNKyt/23u/Zs+diY70cOXJcMtyXKlWKzOngdAAREbtkuOA/atQo2rdvz/Hjx8mRI4fT5YjDzp07x0svvcTw4cOpUaMGY8eOpVixYk6XJSIiV2v7driSLvRXwAAOuVycNwyKY/0S+4DLxckOHcgzbBjjxo2jdevWf3r84Ycf5tdff2XRokUkJibi69uX7O+8g8vGmxy7gJJ/+ZjL5SIiIoIsWbKQK1cuChYsyPDt2yl7+LCt2w5aAJMAr9dLyZIl/xbuy5QpQ/78+XXjXkTkErz//ZTQUrt2bQKBAEuWLKFx48ZOlyMOWr58Oa1bt+bgwYMMHjyYjh07aqmfiEh6V7q0eYb8kiWWL/c3XC7y9ezJjoQEXFdzvv1/SDEM7h4/Ho/HQ8OGDf/2eLFixVi1ahW7d+9m2bJlHP/+e56zMfT7gV/y5KFUrlwcP36cM2fOkJKSgmEYJCUlkZSUxLFjx9ixYwe5sLfXgN/tpmfz5vR86y2KFy9OWFiYjVcTEQk9GS7lFC9enOLFi7Nw4UKnSxGHJCUl0b17d6pVq0a+fPn44Ycf6Ny5s0K/iEioeOUVy0N/ADhtGNSeNInp+fPzvceD1Tva3fnz80JyMnf4/dSoXp1Zs2aRkpLC+vXrGTJkCPPnz2f37t2UKFGCVq1aMWXnTosr+DOPx0Ot7t3Zvn07x44dIzk5mZSUFI4cOcL27dtZvXo18+bNY9KkSeSx+Xx6j8dDmaJFKVOmjEK/iMhVyHAz/mDO+i9YsMDpMsQBa9eupXXr1uzYsYN33nmHbt264fFcqmeyiIikW7VqwRNPwP/+Z1mHeTfwTtGibE5I4Js33mCC280awONy4bboGmEJCTwGtAW2bt9Ox0aNeNDjwe/3Ex4eTqlSpQAYM2YMDz74ILlz54YaNWDZMnuaGQYCEBNz8V2fz8ehQ4fYt2/f395qJieTyfoK/kxHMYuIXLUMG/xHjRrFgQMH1LU9g0hOTqZPnz706dOHcuXKsW7dOm655RanyxIREbuULGndsXIuFzsqVWLgmlrHIsEAABOFSURBVDX4f1tavzMsjPt9PuYBLsOwbJ996lx26ZQUFgCfhofT/vx56t53H+3ataNhw4aULl3aDP3A2TZtyLp0qSXX/qOA283PRYrwZo8eF8P9wYMHLzbRA8icOTM5cuTA6/WyGaiGjUtJU1Js690gIpIRZMi1zTVr1gTQcv8MYuPGjdx555306dOH1157jVWrVin0i4iEstmzoUcPS4YygAthYUSvWgUuF16vOWfSqlUr7nntNeqEhXEAszGflVLXoj2anMzuEiXYvnYtjRo1AuCHH37A5/MxfPhwinfpwgawfNsBgQCv+/0cPXqUkiVLUrduXVq0aEGDBg24+eabCQ8PJzExkcOHD5M1a1YOFS5s+ffgbypWtHd8EZEQluG6+qcqX7485cqV45NPPnG6FLGJz+dj4MCBvPHGG5QuXZrx48dToUIFp8sSERE7nTgBUVFw7JhlR/oFgH7Aj82aMXjwYGbMmEHXrl0pXbo0Q4YMYdLo0ZSdMIFnAbfbbX2XfY+HQKVKDH7wQbq9/DJut5tcuXJx7NgxwsLCqBQZydIzZyzbcgDg83r5+qabGJqSwoIdO/D5fHg8HsqWLUt0dDS33XYbXq+XjRs3MmvWLG48eBBbp1MKFoT9+0H9eERErkqG/e2Zus8/g973CHk///wz1apVo0ePHnTt2pV169Yp9IuIZAS9esHx45aFfjBfLPVwuZjyzjsULFiQ9u3bs2bNGvx+P/fddx/R99zDXWvW8EB0NK8HAmzGvFlgGb8f14oV3D5/PuHh4fh/m4k3DAOfz8ey06fpYPHrGa/PR72NG5m1bRvLGzRg9fLlHDt2jP79+xMWFkbfvn3p1KkTc+bMoVmzZry1ZAn+G26w9utO5XZDhw4K/SIi1yDDzvjPmzeP+vXrs3nzZm666SanyxGLBAIBhg4dyiuvvEKhQoUYN24cVatWdbosERFJC+fO/b+9uw+Oqrr/OP6+u5sHkibABhPMQoWh0EgJTwGhyhScSnWkCC1of4K280OiQcGhKf4oDlWLtUXpxI5pFSMF24KogDwMAqMMxBFEMEBTURAsIgWEkEQIaSDJPvz+OIYHhZCEe0my9/Oa2dnN7ubcE/jjnu853/M9kJZmnu3m9UJuLjzzDACRSITdu3czefJkNm7cSHJyMhUVFQBcD/wL+wsp1QKZwCdAbGwsaWlpHDp0iNTUVB588EEmh0L4Z80yAbKNEx8R4GD79gwPhdhXUUG3bt0YM2YMY8aMYeDAgQSDQfLy8jg0cybPBYPYnvDfpg189pn5vxURkSZxZXE/gCFDhhAbG8v69esV+EeJzz77jAkTJlBYWMjkyZOZPXs2iQ4fLyQiIi3I0qXOBP0AoRDBF15gbiDAu++9x6ZNmzhy5AgAgUCA48eP4/f76d69OzP278eycatBHQuYCkxPTubgwYO0bduWXbt2MWPGDB5//HFWZWUxb/ZsMvPy8JSW2rblwAICX37JlvbtObphAz2HDcOyLCKRCMuXL2fSpEmUlJQQ5/Pxf4EAnY4dwwoGbbk2AHl5CvpFRK6Qa1f8AYYNG0a7du1YsWJFc3dFrkAkEmHevHnk5ubi9/tZsGDB2QKOIiLiItnZ8PLLYGfQ+TV9YmJIHDCAvn370rVrV1JSUjhx4gQfffQRK1euJFhWxlEg3qHrnwYCHg8rCwu58cYbOXr0KDt27OCNN95gxYoVnDhxgmRgOpAD+DEr9raswvt8cMMN8O67fLB9Ow888AA7d+4E4Pbbb6egoIBAVRX06wenT1/5xIfXa45mXLcOnC4cKCIS5Vwd+P/ud79jzpw5lJWVna3SK63L4cOHmThxIuvWreO+++4jLy+P5OTk5u6WiIg0h8xM2LXL0UtM9fv5S0UFwfMmFxISEujcuTNJSUkEiopwejlhJLAaU0iw7ng9v99PVlYWiYmJbN26lS+++IK+wA4Hig3O79OH+4qLAejSpQsvv/wyQ4cOPfeFzZth+HCoqYFQqGkX8Xhg0CB46y341rds6LWIiLu5ukrKLbfcQkVFBUVFRc3dFWmkSCTCwoUL6dWrF8XFxaxevZp58+Yp6BcRcbNDhxxtPmRZjMjMJD8/n9WrV1NcXEx5eTmVlZXs2bOHUaNGcWNsLGGv9/KNNVEtkAX06tWLAQMG4Pf7AYiPjycjI4Pc3Fz2799PamoqcyyLoN0nDAD/U1xMx/h4nn32Wfbt23dh0A9w002waRN8+9uNL8hX9/2774a331bQLyJiE1ev+AeDQVJSUnjkkUeYOXNmc3dHGqikpIScnByWL1/OuHHjyM/PPzvwERERF0tKgspKx5qvAebExPBscjJt2rQhMTGRpKQkkpOTadeuHZs3b+Zvp04xvKrKsZWViGWxNBKhdtEixo0bRzgcZsuWLSxZsoSlS5dy+PBh/H4/KeXl7HWoD2Gg8sknSb7c2KmqCh57DJ57zqz81zcJ4fWa7wQC8PzzcMcdtvZZRMTtXB34A4waNYqTJ09SWFjY3F2JOuEwfPopbN9uFmGCQUhONpmY/fqZ8VljLVu2jJycHABeeOEFxo4da3OvRUSk1erYEY4dc6z5EDAzLo45wSChS6SwvwUMd6wHxts+H0WzZjFjxowL3g+Hw7z//vtMmDCB/927l9xIhBgnOmBZkJEBH3/csO+XlsKCBbB4sdmKUVt74eft25ssgexsGDHCTAKIiIitXB/45+fnM23aNMrLy1UB3iYHDsDcuVBQAF9+ad7zes04IRSCSMS8/uEPYcqUht3jy8vLmTJlCq+88gqjR49m7ty5pKnCr4iInO+228yecCeHNvPnE/F6CW7bRs2RI1SfOUNlfDxbqqt5Ys0alnbpQs8DB+w/0u4rEWCN18vUrl0ZO3YsgUCAQCBAeno6lZWVrF27lry8PN6JRBiCTUX9LuXkSTOj3xi1tfDJJ1BRYW7+114LnTureJ+IiMNcH/jv3r2bnj17sm7dOm699dbm7k6rVl0NTz4Jf/jDuSC/PnVZfZmZsHAh9O598e+tWbOGiRMnUlVVRX5+Pvfccw+WBggiIvJ1jz1mbkIOVvU/KybmXOq6x3N2FTuSkoJ14kTTi9pdRg3wFyCXC4v7nc8CKoEER3pwnsJC+Pr+fhERaZFcXdwPICMjg/T0dNavX8/x4yYtfetW+Oijb2aiyaV9/rlJ3//97804qCHjnbrv7N4NWVnw5z9f+HlFRQXZ2dmMGDGC3r17s2vXLu69914F/SIicnGjRzsa9F+wUlJba25kodAFAwarvNyxoB8gFqj8znfoHx/PzQkJ9AfSfT7S0tIIBAJ4vV7aejzOB/0AR45cjauIiIgNXB34RyKwcaNFTMwy/vSn6aSmwoABMHgw9OoFCQnQv78JZh3cMtjqff45fP/7sG9f07Irg0HzmDIFnnnGvLdhwwYyMzN59dVXKSgoYO3atXTq1MnejouISHTp39/MJDe2knwDNWja2eFEyggw/dNP2X7mDOsrK9kOHA4GOQrs7NGDoaEQK5ctc7QPZzk4wSEiIvZybar/O+/A/ffD3r3g8YQJhy89SPB4zCM7G55+umlF6aJVdTX07WuK+Nm1yHL77S+xZs39DB06lAULFtC1a1d7GhYRkei3ejWMHNncvXBE3YDtUhMQIcvCG4kQ6dYN/v1vZ/f3A6xcqer7IiKthOsC/9pamDbNnCxTt8e8oTweU4Pm1VdhyBDn+tiaPPoozJ5t5wJHGCjnqaeW8etfZ+NxaNVGRESi2Pjx8Nprrl2RDgK+q3GhAwfguuuuxpVEROQKuSrwr6mBMWPgzTebHqh6PODzwapV4PZagPv3Q/fu9R/L2xReb4RJkyzy8+1tV0REXKK8HG64wexFuxqF/lqoCA5W9W/b1hzdo7o7IiKtgquWU7OzYc2aK1udDodN1sCoUbBzp319a41efNGZ+30oZDF/Ppw6ZX/bIiLiAn6/qTh/3XWuPhPesZDc54O771bQLyLSirgm8F++HP7+d3tWpyMRs4AwfrzJInCjUAgKCpzLojx9Gl5/3Zm2RUTEBTp1Msf03Hmn+Vlbx+wTDMKkSc3dCxERaQRX3AX/+1+z2m/nxHQoBHv2wJw59rXZmuzdCydOONe+1wubNzvXvoiIuEBKCixebGb/v/c9857vErvfvV6tYDeE12sK+vXu3dw9ERGRRnDFHv+XXjIV/J3QoQMcPgyxsc6031ItXAj33uvsNa6/Hj7+2NlriIiIS0QisG0bLFtmnouLzcpAXeXewYPNrP6SJc514atHq111sSxztNEnn0DHjs3dGxERaYSrUvS1ueXnm3uVE1McpaWwYgXcdZf9bbdk//kP+HwRgkHnVkcOHXKsaRERcRvLgkGDzONSsrNNRoBDBQHDwKnOnUmsqSHm2DFHruEYyzKPRYsU9IuItEJRH/iXlcGHHzrXvs8H69e3nMA/EolQW1tLVVUVVVVVnD59+qKv6/usIb9z6tTDhEIzgRjH/haXnsIkIiLNpaTE0VMAvEC7jAx46y04fhx27DADFcsCv5/I4sWwcCFWS7sB1m2DeOUV+PGPm7s3IiLSBFEf+G/f7mz7waCpHXQ54XCYM2fOOBKEf/11uIEVDD0eDwkJCbRp04aEhISzj/N/btu27UU/27p1MG+84XMki6JOYqJzbYuIiHzDVdj9+K9//pPnc3JISUmhQ4cOZ587tG9Pnw8+IO5qBP0eT8OrHXs80LWr2eNXX7aEiIi0aFEf+O/d61yaf51du2oYOXJMvQH5mTNnGtxebGzsNwLw818nJSWRlpZ20c8u9fpin8XGxmI1sZDRhg1mm6RTLAv69XOufRERkW/w+x1N9Q8B5V4vRUVFlJaWUlZWRmVl5dnPK4A4R678FY8HfvELU99gxw7zt4bD35wEiIkxZxenpsKUKTBtGsTHO9kzERFxWNQH/tXV5j7n5AR6OOzFsiyuueaaJgXg579u06YNvktVHG5B+vd3tn2vFwYOdPYaIiIiF+jbF/7xD8ea93q9DJs6laLp08++V11dTVlZGaWlpSRmZTm61QCPB777XZg/H4qKYPVq81xcDFVVJuDv1s2s7P/gBzBihHlPRERavZYfYV6huLiGZ7M1VXy8l1WrVjl7kRamXTsYOhQ2bXJmUiUYhJ/8xP52RURELmngQGcHDaEQDBhwwVtxcXGkp6eTnp5uVtXPywCwXTh8buV+wIBv9EVERKJXqz1RpqF69HB+y16PHs6231JNmeJM0O/xQFaWeYiIiFw1gwdDIOBc+6mpZiX9Urp3d+7aYAJ/tw5aRERcLuoDf6eDR5/PvbVu7rgDMjJMWr6dwmF44gl72xQREbksr9fManscGB55vfDQQ/Wnzg8aZAYWTtKsuoiIK0V94J+SApmZplicE4JBuOUWZ9pu6WJiTJFfOzMqvF4YP16nBYmISDPJyTEr83YG/x6P2SM3eXL93xs+3Lk9/pYF119v/jYREXGdqA/8wUzeO5Xu36EDjB7tTNutQVYWzJljT1s+nzkxKD/fnvZEREQarW1bWLDA3r3+4TD89a/m1ID6jBzpbGD+8MPOtS0iIi2aKwL/cePMyr/dq/6WBVOnQmysve22Nrm5MGuWed3Uf2OvF7p0gY0boX1727omIiLSeLfdBr/5jX3tPfIIjBp1+e/FxJibqhMDlnbtTEqdiIi4kisC/8REmDfP/pT0jAxzLxczPnr9dTOuaMye/7pMyp/9DLZuhU6dnOmfiIhIo/z2t/Doo+Z1U9L+64L3X/0Knn664b/3y19Cz572FtCJROCllyApyb42RUSkVXFF4A8mHf/nP7dny57HY9LSFy3Sav/57rwT9uyBiRPNaUGWdfFxi2Wdq13Upw+sXGn+LS+XASkiInLVWBY89RSsWGFS0RoTiHu9ZiZ8yRL44x8bt4IfG2tuijEx9g1axo2DMWOuvC0REWm1rEjE6cPuWo6aGnPfe/PNpq/+1wX9q1bBrbfa279ocvIkLF4M770H778PR46Yo/8SE6FvX3NU8k9/ap5FRERatPJyyMuDuXOhrMwMBEKhc4OJupnuYNAE/Dk5JmX/mmuafs233zZ7/mtrm15vwLLMtoXlyyEurul9ERGRVs9VgT+Y++e0afDcc+Ye3Zhz6D0euPZaeO01uOkm5/ooIiIiLVBNjQnIt22D7duhpMQE/6mpptrtwIHwox/ZF2Rv2QJ33WVmzxsT/Hs85vsPPWQmLJSeKCLieq4L/Ou88w7cfz/s3Wsm7us7PcfjMY/sbLNNT1vkRERE5KqorIQZM0y2QThc/wRA3YCme3d48UW4+ear108REWnRXBv4g5mkLyyEggLzfPTohZ/HxECvXjB2rNm3rqNvRUREpFmUlJgjAZcuhQ8/NCmM5+vYEYYONasaN99s/8kAIiLSqrk68P+648fh4EEzWZ6UZCbMY2Kau1ciIiIi56mthX37TDaA1wudO2t1QkRE6qXAX0RERERERCSKueY4PxERERERERE3UuAvIiIiIiIiEsUU+IuIiIiIiIhEMQX+IiIiIiIiIlFMgb+IiIiIiIhIFFPgLyIiIiIiIhLFFPiLiIiIiIiIRDEF/iIiIiIiIiJRTIG/iIiIiIiISBRT4C8iIiIiIiISxRT4i4iIiIiIiEQxBf4iIiIiIiIiUUyBv4iIiIiIiEgU+38ecWfav7HdWgAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -450,7 +434,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -460,14 +444,14 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA+/ElEQVR4nO3deViU5f7H8ffsMIAogkvumimaleWS5pKVZpnmUpadcqlMLbXMzKxftp7K1GNplqWt2mKm1LGTe5pmWpqa+5Jb5g64AAMMwzy/P560TE1mBhyQz+u6uIJhnnu+w5V8uO/nXiyGYRiIiIgUE9ZwFyAiInI+KfhERKRYUfCJiEixouATEZFiRcEnIiLFioJPRESKFQWfiIgUKwo+EREpVhR8IiJSrNjDXYCIiBQeO3bAgQPg9ULJklCrFkRGhruq/KXgExEp5jIz4fPPYcQI2LULnE7zccMAvx/uvRcGDoQaNcJaZr6xaK9OEZGiKzMTvv8ekpPNkCpdGpo2hRIl8nb97NnQtasZcunpZ36OwwE2G3TpAu+992cwFlUKPhGRImj7dhg71gwiq9UMLgCLxRymvPNOePRRqFfv7G188gncf78ZnnkRGQlXXQXz54PLFfp7CBcFn4hIEWIY8OST8NprkJsLOTlnfp7NZvbMbr8d3n0X7H+7sbVkCdx4Y95D74TISGjXDqZNC6r8QkHBJyJSRBiG2UP77DPwePJ2jdsN11wD33xzavhddhmsWxdcHW63Obxav35w14ebljOIiBQRr74aWOiB+dylS2HAgD8fW7PGHCoNVnY2jBlz7ucZBvz0E9x3H7RsCY0aQZs28OKLcPBg8K8fKvX4RESKAI8HypSBjIzgrne5zKUKF10E3bub9/dyc4OvJyIC9u83lzz8nWHARx/BSy/B779DVpY58eav1xqGOdT63HNwxRXB1xEM9fhERIqAqVPNiSvBslhgwgTz87lzQws9MIP0xx9Pf9zrNe8rPvggbN1qBvZfQw/MIMzOhpkzzWHY832/UMEnIlIEjBhx9uUGeZGVBePGgc8HaWmh1+P3w5Ejpz92xx3m/cS8DMcahvm8nj3hv/8Nvaa8UvCJiBRyXi9s2xZ6O+np2XTsOJDs7ABuEv6Dv88UHT/e7E0GOlPU44Fu3WDfvnwp65wUfCIihdzRo/mzaNxuhyZNbiIuLvRf/V5vNqmpW/H/MY7p98PLLwc28eav/P4/h2ILmia3iIgUcseOmRNbvN5QWzrORRfdBvyL/fvvxDCCX4XudGZSrVpjDh/eS6tWrbjooh68997NZGTYgm6zVClztqfDEXQTeaIen4hIIWQY5r24I0cgKip/2nQ6Y+jevS0Wy1uE0udxOHK5/fbDfPXVNJYsWUKHDh1ISqpIRkYIs28w7z/OnRtSE3miTapFRAoJwzBnSo4aZU72MAxzOzKfD2JjzV1aQhmj8/l+Ys2aeUyZ8govv+xi/nwDvz/wsPL5fGzZ8gi33LKOgwcP4vV6yc1dT6h9qZwcc5PsgqYen4hIIbBqFdSuDTfcAElJZgj4fObw5okZlKGEnt3uoUGDb1m2bBlvvfUWd9yxEJst8EWBkZF+KlV6l7i4DJYsWcLx48c5cuQICQlVgy/uDz5faDNX80rBJyISZgsWQPPm5rq3jIzT173lB6s1h6Sk+9i1axeNGjVi4MAO2GxtcLkysVrzlqhuNzz4oJV16+6hatWqJCYm0rNnT/r168fRo3tCrtHhMHu2BU3BJyISRmvWwK23Bj8bMi9cLh+33/4pV111OUlJSUyePJlevXqxePHrdOnyEhbLz1gsWcBZdrzGwGrNoVy5D/nii6qUKZPA4sWLqVu3LjNmzGDv3r00aRKR5wA9G5sN6tQJqYk80axOEZEwuvxyWLu24NqPiMjF6byHpKT7OXz4MHfffTf16tVj4cKFlChRguTkZNasWUP79t+Snf00EAmcft/PYsnF4YDatXP49FM7deqYU0RSU1Pp3r07P/7oIyVlBobhDrrWSpVg9+7QdqjJC01uEREJk19+gV9/DaUFA8jl77/K7XawWnOBdSxYUIfjx7vTsWNHANq2bcuWLVsoU6YMLpcLq9WKwzH8j9A7e2gZhg2vF9ats9GkCcybBzbbz4wfP56lS5eSkJBAcvJuIDGodxIVBUOGFHzogXp8IiJh06MHfPxxaPtmRkb6KV3ayvHjBjk5uWRnJ3P11YeoXDmJ+fPfwOfzkZGRQW5uLlarlbvuuouWLVuSkpLC6NGjqVdvLAsXdiA3NyKg17XZ0ilTph0dO9Zl9erVpKen06TJSCZObME/BejZlCoFO3een3t8Cj4RkTApUSL0fTNttkwqV+7Gvn2zKVOmDHv37uWBBx4gMTGRiIgIBg8ejMvlYvr06Rw7dozevXszb948LrvsMrZuTSExMRq/P/CF7BaLn7i4rURE3MBzzz1Hp06duPvuu9mw4R727euMz5f3Nm02qFULypaFunWhb1/zvwXGEBGR8y431zCsVsMwFykE/+F2ZxsTJ243PB6PYRiGUa1aNWPr1q2GYRjGG2+8YbjdbuOee+45+bpTp041ypcvb2zcuNEYMcIwHI7soF/bYsk0pkxZbmzbts1ITEw0HnroISM722s8/7xhuFw5BvjO0Yb/tMfsdsOIjDSMK680jC+/LJifvXp8IiJh4Peb9+JC/Q1ss6XRvPk4mjfPonbt2rz++uvcd9997Nixg+nTpzNlyhRuvvlmVqxYQfXq1QH46KOPGDbsKbKzd5KSEvxUD6vVR0TEB3i9/ejUqRNvv/02pUqVAmD5cj833DCbjIxWWCxgGJEBt+92wwMPwOjR5kL+/KLgExEJk6io0JcxWK0ZlC17J2lpi8jIyMBisWAYBoZhYLfbiYuLw2KxYLVa6dKlCxUqVKB8+fLMmnWQqVMfBKJDen2LJYVXXnmX1atXM2vWLG655RZ69+7N8ePHGTp0KKmpVho2HMWCBb9SteodbNuWgM+X9/bdbujTB/7zn5DKPLVmBZ+ISHi0bw//+19ovb7YWDh0yDy9IS0tjUaNGpGcnMwzzzzDnj172Lx5M9u3b2fjxo1YLBaio6OJjIzE672OI0feBEqG9B7sdoOcHHMqZkpKCpMnT2bixIns3LmTiy++mIYNG/Luu+/y4Ydr6dWrZtA9v88+M39e+UHBJyISJosXw803m7u1BCeb+vUX8cUXNSldujS33norhmFgtVpZuHDhKc989913+eCDD3j//ffZvXs3Eyb8zhdfdARCm0Zpsxn4fKeuQfj555+5+eab8fl8ZGdn06ZNG1JT32DJkvJB7Q0K0KjRmU98D4Z2bhERCZPmzSE+PvjrXS4nTZuuoUGDBlStWpVy5crx3nvvsX379tOe27NnT44ePcqUKVMYO3Ys//3vh1jz4cZZbm4a1apVo127dvzf//0fn3zyCcOHD+eee+7BZrOxZ88emjfvwOLFpYMOPYB162Dz5pDLBdTjExEJq7lzoVOnwO/1ORxeBgxw0q/fr7Ru3ZpatWqxdu1a6tWrx6JFi0hNTSXqj/OMjhw5wgcffMCoUaNITk5mxIgRPPfcKNLSfg14/d6p/JQvv4qEhPv47bffSEtLw+Vy4fF4sFgsOBwOEhMTsdsHsHZtd3Jygj9oz26H/v1hzJgQyv2DenwiImHUpg2MGweugJbSmffVdu8eSYsWLRg2bBizZ89m586ddO3aFYDGjRszevRo7r//fqpXr86PP/7Iww8/TOnSpRk6dCh+fxpXX70Vuz34vk9UlJWpUxvwyy+/cOTIEdLS0ujWrRsdO3akSpUqXHfddcTExLBliz+k0APz5Ab1+ERELhDJyeYC7tTUQK9M48Ybn2XWrFFY/tjrKzs7m2uuuYb9+/dz+PBhIiIiuOSSS9i+fTuXXnopTZo04bXXXuOtt96iWbP7qF8fMjODq7tqVdix489txtLS0qhatSozZ86kffv2HDhwgOzsbHr08DFjRsngXuQvrrkGvv8+5GbU4xMRCbe77w52B5coFix4jGHDnmL37t089dRTVK5cmd9++w2Xy4Xb7aZKlSp4PB5cLhcdOnSgW7duWK1Wtm7dSq1acPvt5qzJQEVGGjzzzCF+/HE506dPZ9y4cXTq1Ino6Gh69uyJz+ejdOnSlClThm+/nRbMmztNyZL50oyCT0QknHbvhu++Mw+eDZwVuz2eceM2U7NmTWbMmEFWVhaxsbEkJCSwYcMG1q1bx8aNG5k9ezarV6+madOmJCYmMnHiRPbs2cOkSVC79hEgkJuMXjIzV9K373puvjmDYcMMli07zKpVq+jevTsRERG89NJL/Pbbb2RkZPDKK3fhcgX1Bk9yuaBBg5CaOElDnSIiYTRkCIwda560HiyLZRFu9y3Ur1+fTz/9lJ07dzJ06FB++OGHU56XkpJCjRo1aNiwId999x2xsbE0b96c//1vLpGRH3Hs2M2YRxKd7YZjDmDHYvFiGH8+x+EAyCUiYgNvvVWJhx6qxtatW5kzZw5Tp07lu+9+IjNzN7m5ga/hOyEiArZvh4suCrqJkxR8IiJhVKoUHD0aWhsOh58FC7bRv39XEhISuPbaa3nppZe4/fbb2bt3L/v27WPv3r1kZmZit9tp0KABJUqUYM6cOfh8PqpVq8aTTz7Jxo3ZTJhgxzDuw+m0Y7EYpKWl4fc7ARcWi4Fh/PNAod2ehcv1MRbLo1x7bQvuuOMO2rZtS6dOu/n++3qAM+D3Z7HATTeZi/3zg87jExEJk5wcOHYsP9pJo1On/lSubGPNmjXs3r0Xn68uJUrcSr16lahRoyQtWsTTocMtDBkyhI4dO5KTk8Oll16Kx+Ohb9++DBo0CL/fz1tvvUnXrjY2bIAjRyzMnHmcceNKAxYM49zr8Hy+COBuunf/F+++G8Hs2bNp1qwZZctejdv9XlBbtEVEwPDhgV93NurxiYiEybFjkJAQ7P29P9ls6fTsOY0XXujFuHFeRo7MwuezEBUVid1ux+eDiIgccnJeYdu2YSQk2HjggQfYv38/mzdvpmTJksTGxtK5c2fGjx+P2+1m6NChXH11ZxITrWRkBL7wPDLST2Lifzh+/G3GjBlDu3btmDPHQufOgc0idbvhtdegd++ASzgrBZ+ISJjk1wkNcBz4FIulJ1arhdzcMw8nOhxebDYnbdvOZ+fOx/joo49o164dHo+Hffv24XK58Pv9zJw5kxEjRrBp079IT++Dzxfc4GB8fAq//x6N6y+LFIcMmc/o0U1wONx4vWcPVJvNnNDyxhvQq1dQL39WCj4RkTCqVg127QqtDavVwG734fXmdZF4BldfvZxt2+7g6aefZvr06fTo0YP77rvv5DO8XoPSpX2kpwe/8NzthkWLoGFD8+vNmzfTvHlzJk9ezLx5iUycaD7+16UcUVHmHwTdusHgwVCnTtAvf1YKPhGRMBo/HoYODX6jaovFwGazBHTUjymDkiWfITPzDaKjo0lLS6Nz587UrFmTnJwcvv02hp9+GgDEBFcY5hl6d90FkyeDx+OhcePGDBw4kN5/jFtmZUFSEmzaZC7iL1kSLr7YXFsYE/zLnpOCT0QkjI4fh3Llgt89BQzMJQiBK1ECDh70c+jQ73Tq1IkjR45w6NAhnE4nhjGYo0eHEMwszL+qXx9WrYLevXvj8XiYMmXKyV1mwkUL2EVEwqhECXjwweB2T7HZDMAf9Gvn5OTSufPHXHPNNaSlpXHgwAFmz55NamoqDz/8FKGGHkB6Onz88ccsXryYCRMmhD30QD0+EZGwy801z+X7/vu8n9LgcJj3wnJzQ3vtMmUOMHfuQaKiohg6dCgHDhzgqquuYu7cemzZ0oNQw69OnSwOHarE/Pnzufzyy0MrNp+oxyciEmY2G8ycCbfcYk7uOJeoKKhd2zx1PVSHDiXQqFEzWrduTWpqKqtWrSIyMpKuXS8nKsoWUts2m8H+/XN48cUXC03ogXp8IiKFhmHA/PkwciQsWWLuWJKVZT7ucpmTRRITzckw1arBDTeY9whD4XL52bYth0qVzCUHY8aMYcGCBXz55deULRvMiRF/stuzue66Z5k9+6VCMcR5goJPRKQQ2rPH7AUePmwOZ8bFQevWULeu+f31681jekINPqfTYP9+C3Fx5tfZ2dkkJiby7rvv8t13rRgxwgzfYDgcW0lOLkeJEiVCKzKfKfhERIqggwehShXIzg61JR87duyjWrXKJx+ZOnUqr776KjNnrqBWLSvp6cG0m8HIkQd57LHqoRaY73SPT0SkCCpb1rzPFwqLBerU+Y3rrmvJzp07Tz7etWtXHA4H3377CV99BZEBHqpgsXi47rpthTL0QMEnIlJkDR0a2kLvqCiDN9+szpAhQ2jZsiXbtm0DwGKxMGrUKJ566imaNMnkyy/B7TaAc5+dZLdnU6vWXObNKzyTWf5OwSciUkR17mz22oLl8x3kkksO8OCDD/LMM8/QqlUrNm7cCECzZs246qqrGDt2LG3awNq1FqzWD3E4coiMPPUOmctlftSrd4CEhPv48cfrsFoLz2SWv9OxRCIiRZTLBR9/DF27Br7zi8ORg2HcQc2aPzN+/HjuvfdenE4nN9xwA7Nnz+ayyy7jlVdeoUmTptSu3YeJE0vi9/fEYjH+2B7Nj92eTcWKKXTvXpEbbthF584NmTNnTqGbzPJ3mtwiIlLEffCBuftLXsPP7YZp0+Dyy/dyzz33sHTpUho2bMj06dP57rvvGDhwIN988w25uVdy/fUpZGVF4fNFnPEUCbfbj8ViITZ2NE8+GclDDz2Ur++tICj4REQuAPPmwf33m+vuMjJOP+rIajUnqVSqBB9+CI0a/fm9GTNm0LNnT3Jycnj99ddJSEigV69Pyc7+lKysvC1it9my6NvXxbhxlpCGX88HBZ+IyAXCMMyF7yNHmgvhTyx1iIyEDh3g0Uf/PCLo79LS0njggQeYNm0al1xyBzt2fEB2dmBHErnd8OST8NRTIb6RAqbgExG5QPl85uQXWwA7j/3www+0bBmDz1cvqNeMiIAdO6B8+aAuPy80q1NE5AJltwcWegAxMU1xOC4N6XUnTAjp8gKnHp+IiJx0773w0UehnfpQqhQcOmQGb2GkHp+IiJyUlBT6UUc+n3n4bGGl4BMRkZOC25fzVFYrpKSE3k5BUfCJiMhJ+XXzyx/8wfAFTsEnIiInRUeH3oZhQOnSobdTUBR8IiJyUtu25lBlqOrXD72NgqLgExGRkx57LPBjiP7K6YQ+fcx9RAsrLWcQEZFTJCbC5s3BXRsRYV5bpUr+1pSf1OMTEZFTTJwYXK8vKgr69y/coQcKPhER+ZtmzcxF7IGEn9sN7dvDiBEFV1d+UfCJiMhpbrsNvv7anJ35T6e8R0aaw5uDBsEnn+TPxJiCpnt8IiJyVj6fGYAjRpi7sbhckJnpwWp1EhdnZ/Bgc5uzuLhwV5p3Cj4REcmTlBRITob/+7/nuPLK6gwdek+R6OH9XSHdQlRERAqb0qXNj0su8eLz7SqSoQe6xyciIgGKj48nOTk53GUETcEnIiIBUfCJiEixouATEZFiJSEhQcEnIiLFh3p8IiJSrMTHx3P48OFwlxE0BZ+IiAQkKioKv9+Px+MJdylBUfCJiEhALBZLkR7uVPCJiEjAivIEFwWfiIgETD0+EREpVhR8IiJSrBTlmZ0KPhERCZh6fCIiUqxocouIiBQr6vGJiEixouATEZFiRcEnIiLFSlGe1WkxDMMIdxEiIlK0ZGdnEx0djdfrxWKxhLucgKjHJyIiAXO5XLjdbo4dOxbuUgKm4BMRkaAU1ft8Cj4REQmKgk9ERIqVojrBRcEnIiJBUY9PRESKlaK6bZmCT0REgqIen4iIFCsKPhERKVYUfCIiUqxoVqeIiBQrmtwiIiLFSlEd6tQm1SIiEpTc3FxcLhdZWVnY7fZwl5Nn6vGJiEhQbDYbpUqVIjU1NdylBETBJyIiQSuKw50KPhERCVpRnNmp4BMRkaAVxZmdCj4REQmahjpFRKRYUfCJiEixouATEZFiRcEnIiLFSkJCgmZ1iohI8aEen4iIFCsKPhERKVYUfCIiUqxER0eTk5NDZmZmuEvJMwWfiIgEzWKxFLndWxR8IiISkqI23KngExGRkCj4RESkWFHwiYhIsaLgExGRYkXBJyIixUpR27ZMwSciIiFRj09ERIoVBZ+IiBQrCj4RESlWilrwWQzDMMJdhIiIFF3Z2dnExMSQnZ2NxWIJdznnpOATEZGgpHhSeHf1u7zz8ztsP7CdyKhIop3RXF3xaoY0HUKzys0KZRAq+EREJCCpmak89L+H+HLzl1gsFjJ9p57MYMGC2+EmwZ3A6BtH0zmxc5gqPTMFn4iI5Nnuo7tp/n5zDmYcxJvrPefz3Q43T7d4mieaPXEeqssbBZ+IiORJamYqV0y4gn1p+8g1cvN8ndvh5j9t/kOfBn0KsLq806xOERHJk4dnP8yB9AMBhR6AJ8fDI3MeYe/xvQVUWWAUfCIick5Hs47yxcYvyPHnBHW9YRi8tfKtfK4qOAo+ERE5pw/WfIDVEnxkZOdmM37FeHJygwvO/KTgExGRc3r757fx5HhCasPv9/Pd7u/yqaLgKfhEROScDmeEfvqCHz8H0w/mQzWhUfCJiMg5+fy+kNswDIPs3Ox8qCY0Cj4RETmnaGd0yG3YrDZKRpQMvZgQKfhEROScWlZpic1iC6kNr89L4wqN86mi4Cn4RETknAY3HYzL7gqpjZZVW1KhRIV8qih4Cj4RETmnK8tfSdXYqkFfH+2MZkjTIflXUAgUfCIikievtX2NSHtkwNc5bU4uLXMp11W7rgCqCpyCT0RE8qR1jdaMvnE0boc7z9e4bC4qx1Zm1r9mFZojirRJtYiIBOSz9Z9x71f34vf7yfafeXmCBQtRzijqlanHrH/NIjYi9jxXeXYKPhERCViyJ5kbHr+B7WW2Y3FYsFgsGIaB1WIly5dF6xqtGdJ0CM0rNy80Pb0T7OEuQEREiiAP7Jqyi107drElYwv70/aTnZtNyYiSXFn+SspFlwt3hWel4BMRkYB98MEHdOzYkdJxpWka1zTc5QREQ50iIhIQv99PrVq1+Oijj2jSpEm4ywmYZnWKiEhAFi5cSGRkJFdffXW4SwmKgk9ERALy9ttv07dv30I3aSWvNNQpIiJ5duDAARITE9m1axexsYVniUIg1OMTEZE8e//997ntttuKbOiBenwiIpJHfr+fGjVqMG3aNBo0aBDucoKmHp+IiOTJ3LlziYuLK9KhBwo+ERHJoxOTWoo6DXWKiMg57d27l3r16vHbb78RHR36aezhpB6fiIic07vvvsudd95Z5EMP1OMTEZFz8Pl8VKtWja+//prLL7883OWETD0+ERH5R7NmzaJChQoXROiBgk9ERM5hwoQJF8SklhM01CkiIme1e/durrzySvbs2YPbnfeT1wsz9fhEROSsJk2axN13333BhB6oxyciImeRk5NDlSpVmD9/PnXq1Al3OflGPT4RETmjmTNnUqNGjQsq9EDBJyIiZ3GhTWo5QUOdIiJymu3bt3P11VezZ88eIiIiwl1OvlKPT0RETjNx4kR69OhxwYUeqMcnIiJ/4/V6qVSpEkuWLOGSSy4Jdzn5Tj0+ERE5RVJSEnXr1r0gQw8UfCIi8jcX6qSWEzTUKSIiJ23ZsoWWLVvy22+/4XQ6w11OgVCPT0RETnrnnXfo1avXBRt6oB6fiIj8ISsri0qVKvHjjz9SvXr1cJdTYNTjExERAL744guuvPLKCzr0QMEnIiJ/uNAntZygoU4REWH9+vW0adOG3bt343A4wl1OgVKPT0REePvtt7n//vsv+NAD9fhERIo9j8dDpUqVWL16NZUrVw53OQVOPT4RkWJu6tSpNGnSpFiEHij4RESKveIyqeUEBZ+ISDG2evVq9u/fz0033RTuUs4bBZ+ISDH29ttv07t3b2w2W7hLOW80uUVEpJhKS0ujcuXKbNiwgYsuuijc5Zw36vGJiBRTn376Kddee22xCj1Q8ImIFEuGYRS7SS0nKPhERIqhlStXcvToUVq3bh3uUs47BZ+ISDE0YcIEHnjgAazW4hcDmtwiIlLMHDt2jKpVq7J582bKli0b7nLOu+IX9SIixdyUKVNo3bp1sQw9UPCJiBQrxXlSywkKPhGRYmTZsmVkZ2fTqlWrcJcSNgo+EZFiZMKECfTp0weLxRLuUsJGk1tERC5AK/auYPHuxaRmpuKyuygbVZZry11L40sb8+uvvxIfHx/uEsPGHu4CREQkf2TmZPLZ+s8YsXQEvx//nRx/Dt5cLxYsRDoi8eZ4KXd/ObZ4thBP8Q0+9fhERC4Ae4/vpeUHLTmQfoCMnIyzPu9ECPa6ohdjbxqL1VL87ngp+EREirgD6Qe4YsIVpGSm4PP78nSN2+GmS2IXPuz4YbG731f8ol5E5ALiN/zc8NENAYUegCfHw/RN0xmzfEwBVlc4KfhERIqwBTsWsPvY7oBC7wRPjocXF79ITm5OAVRWeCn4RESKsFd/eJV0b3rQ1/v8PmZunZmPFRV+Cj4RkSJq7/G9LNm9JKQ20rxpvLr01XyqqGhQ8ImIFFEbD28kwh4RcjubkjflQzVFh4JPRKSIOpZ9DIPQJ+Z7cjz5UE3RoeATESmi3A43FkJfiuC0OfOhmqJDwSciUkRVia1Cjj/0GZnlo8vnQzVFh4JPRKSIqlumLpVLVA6pDbfDzcDGA/OpoqJBwSciUoQNvGogDsMR9PV+w0+Py3vkY0WFn4JPRKQIMgyDTz75hBfueAGLP7j7fBH2CLpd2o3YiNh8rq5w0+kMIiJFzIYNG3jooYc4duwY06dOx6ho0Hpy64BmZzqsDqqXqs4bN79RgJUWTurxiYgUEWlpaTz22GNce+213H777axcuZImTZrQtFJTvrrzK6IcUXma5RlhjyAxIZHven6H2+E+D5UXLgo+EZFCzjAMPvvsMxITE0lJSTnZ47PZbCefc0P1G1jRewWdEzvjsrmItEee1k6MM4a4yDieuOYJlt+3nHh38TyTT8cSiYgUYhs3bqR///6kpqYyfvx4rrnmmnNeczjjMBNXTWTWtlkcyTqC0+bkopiLuP/K+7nlkluwW4v3XS4Fn4hIIZSens4LL7zAe++9x/Dhw+nXrx92e/EOrPyioU4RkULEMAymTZtGYmIi+/fvZ926dQwYMEChl4/0kxQRKSQ2b97MgAEDOHjwIB9//DEtWrQId0kXJPX4RETCLCMjg2HDhtGsWTPatWvHqlWrFHoFSMEnIhImhmEwffp0EhMT2bNnD+vWreORRx7RsGYB009XRCQMtm7dyoABA9i7dy+TJ0+mZcuW4S6p2FCPT0TkPMrIyOCpp56iadOm3HjjjaxevVqhd54p+EREzgPDMEhKSqJOnTrs3LmTtWvX8uijj+JwBL/BtATnwhnqzMqClBTweqFUKYiNBUvoBzSKiIRq27ZtDBw4kN27d/PBBx/QqlWrcJdUrBXtHp9hwLffQtu2EBMDl1wC9epBmTJQrRqMHw/Hj4e7ShEppjweD08//TRNmjTh+uuvZ82aNQq9QqDo7tyyYgV06QJHjkB6+pmfExUFfj8MGwb/93/qAYrIeWEYBv/973955JFHaNy4MaNGjaJixYrhLkv+UDSDb9486NgRPHk8gsPtNkPyww8VfiJSoLZv387AgQPZsWMHb7zxBtdff324S5K/KXpDnWvWQKdOeQ89MJ87Y4bZ8xMRKQCZmZk8++yzNG7cmBYtWvDLL78o9Aqpohd8vXtDRkbg12VkwOuvw65dwb3uihVw111w8cVQtixUrQotWsDnn5sTakSk2Pr666+pW7cuGzZsYPXq1QwdOhSn0xnusuQsitZQ56ZNcNVVkJkZ3PVOJwwYAKNG5f2ar76CoUPh99/N1/X7T/1+TAxYrTBwoHkfUf+zixQbO3fu5OGHH2bLli2MGzeONm3ahLskyYOi1eN77TXIyQn+eq8X3nkHsrPz9vwXXjB7eVu2mD3Gv4ceQFoaHDtmhmmrVubXInJBy8rK4vnnn6dhw4Y0adKEtWvXKvSKkKIVfElJ4POF1obFAj/+eO7n/ec/8Moreb+XmJkJP/8MN98cWjiLSKH2zTffULduXX755RdWrVrFsGHDcLlc4S5LAlC0gi+/1uSlpPzz9zdtMoctA5lAA2ZPctWqwIZSRaRI2LVrFx07duThhx9m/PjxTJ8+ncqVK4e7LAlC+ILPMMw1eLt2wYED522CiN8wOOdtzTFjgu+1eTxmbzE3N7jrRaRQycrK4sUXX6RBgwY0bNiQdevW0bZt23CXJSE4/5NbUlPhvffMcEhJAYfDvHeWmwvt28Njj0Hjxmdeb5eQAMnJIb38cYuFblFRHLv8curWrUudOnWoW7cudevWpVy5clgyMsydX4KdQAPmhJdPPoFbbgmpVhEJr9mzZzNgwAAuvfRSxowZQ9WqVcNdkuSD8xd8ubkwZAi89ZY5C/JMw4hWK0RGQsWK8OWXULv2qd+//3744IPQelPR0RzeuJEN27ezYcOGUz78fj8PJyQwdOdOIkK9T3fTTfDNN6G1ISJhsXv3bgYNGsTatWsZO3YsN998c7hLknx0foLP54Nbb4VFi/J238xigehoWLAAGjY8+fD++fOJa9sWV5DBl2OxkNqtG2U//vi07xmGwaFDh0gbPpxqkyZhO9MMzkDUrQvr14fWhoicV9nZ2YwePZrRo0fzyCOPMGTIECIiIsJdluSz83OPr3fvvIcemPf/0tKgdWvYsYP9+/czYMAA6nbtSnJ8fNBlWOx2bp03j9tvv53Nmzef+j2LhbJly1IxIQFrfvwtkJUVehsict7MnTuXevXqsXz5clasWMHTTz+t0LtAFfyxRD//bO5uEugMScBIS2NjmzY0T02lZ8+ebN68mTJ79mC0aIElwPb8Viv2G2/k64kTeXnkSBo3bkydOnW47LLLSElJYefOnezatYueaWn8Gwj5f/eSJUNtQUTy4HDGYdYfWs+x7GNE2COoVKISdRLqYMnjvrx79uxh0KBBrFq1itdff5327dsXcMUSbgUffKNHB937sfj9XLJrFxtWrKB8/foA+OLiGFG/PoOXLycigCFPq99P2tdfYy1fnqpxcTS74goOpKczefJkWrZseXLWVvy2bVjatAluW7QTnE5zOzMRKRCGYfDDnh8Y+cNI5myfg8vmwsDAgoUcfw4VYiow9JqhdKvXDbfDfcY2vF4vY8aMYeTIkfTv35/JkycTGRl5nt+JhEPB3uM7cgQuuii0Yb+ICHNz6eHD8fv99OrVi507dzKyc2fqPfsstsxMXIEuhYiIgMqVYdEiDlqtvPzyy0yePJm+fftyTdOmXN6lCxXyurvL2drfuNE8E1BE8tWRzCPc9PFNrD+0Hk+OB4Mz/wqLdkZjtVj58o4vaVXt1DPw5s+fT//+/alRowZjx46lRo0a56N0KSQKNvi++ALuvTfkbbz2x8byryuvZOXKlaSnp1OuXDlq1KhBtSpVuMHv58blyymzcycAeT50yG43Z4+uXk1OVBTjx49n+PDhpKWlMdDlYpRh4Ah2bWGLFvDdd8FdKyJnleJJocE7DdiXvg9vbt7+fbrtbj697VM61OrA77//zuDBg/npp59ODmvmdUhULhwFO9SZkhL6FmNArN9PfHw8VapUYcGCBZQpU+bPb/r95FSpgh+wBdKoz4exbx/brr6aqw8dwuv1Ur58eV566SWWzp3LoZkzKRdom4Df5cL60ksBXiUi5+Lz+7hh8g3sS9uH15/3P0o9Pg/dvujG/fb7+Xjkxzz44IO8//77uN1nHgKVC1+R2LLMbxhs2rSJRYsWnRp6YC55SE4OOKAALF4vlbdsoUH58nzxxRds3bqVDh06sG3fPv6vWTM8NhuBLJzwOZ087HSyJNSlECJymplbZvJr6q8Bhd4JnhwPUw5OYdmyZTz//PMKvWKuYIMvLs4cUgzR7+npWK1Wnn/+eaZMmcK6devwnhiGfPVVbCHcQ3Q4HMzp2JG2bdvy3Xff0bhxY+68805e/9//6Fq9Osejo/FYz/FjioiAyEjsU6bQYfp0OnfuzMyZM4OuSURON2LpCNK96cFdbAFPaQ+uMtpMWgr6Hl9ysnkfLYSJIpnAu6VKMTo2lr179+J2u7FYLGRkZNCwalUWbd+OI8QeVm7Jkox/7jleeuklJk+ezPXXX0/nzp0pU6YMb7/+OnzxBelPP411924MwGWzYXe5sNhsZrAPGAB9+0L58gD89NNPdOjQgREjRtCjR4+QahMR2JqylSsmXEGmL/itBJ02Jw83fphXW7+aj5VJUVSw9/ji4839N2fMOPNZdnngdDigb19KzZ6Nx+OhefPmlC1bln379nF80SI8fj+xIZZpOXqUSRMmsGzZMqpVq8bw4cNJSUnh888/x+J0wj33YL/tNlrFxdGqVCkcHg8xZcvSrm9f6gwYcFqvtlGjRixcuJC2bduSnJzM4MGDQ6xQpHhbvHsxVktoA1TeXC+zf52t4JPzcI9vyBBzKDAIfosFW+vW9H/pJVatWsXSpUtp0KABy5Yt44cffuDmli2JyId1N7mAG4iNjWXatGl8+OGHTJ8+HedfTlNfuXIl/nr1+DI2ls6LFhH3+OO0HTOGDp07s3bt2tPaTExM5Pvvv2fSpEk88cQT5z4RQkTO6mjW0TzP4jxXOyIFH3wNG0KHDubm0wHKANb26nXy64svvpgnnnjiZAiWqlIFbz5sDWa3WGjZrh3NmjWjX79+JCUl/TmJZudOePRRLu7Wjf9t3cr0rVup8/jj3FeuHFs3beL666+nTZs2/Otf/+LXX389pd1KlSqxZMkSFi5cSO/evfHlwwxXkeImLS2N/b/vx/CH/sejw+bIh4qkqDs/m1R7vdCuHfzwQ562LvMDuN18P3w4t40ezdixY7nzzjtPe17a3r04K1fGFeI9vj1WKw+0acPChQspW7Ysa9euJXbDBnjiCVixwjwN4u+nNcTEmD3ZRx8l7YEHeP3NN3nttdfo0qULw4cPp0KFCiefmp6eTufOnYmKiuLTTz89ff8/nw++/hoWLoSDB812K1WCu+6CxMSQ3ptIUXH48GE2btzIpk2bTvlITU0loVUCe6/ci88W2h+PTSs2Zel9S/OpYimqCj741q2DxYvNNX2zZsHPP+MzDOxn6P34Aa/DQXZ0NA9VrswHK1eyceNGOnTowD333MNzzz2H1Wpl165dvP7660yaNIl3PB5u9/uDvlnpsVp5ymLhLbud6OhoPB4Pd2Zl8ZbVmrdTICIjoUED+N//SM3JYcSIEUyaNIlevXrxxBNPEP/HptrZ2dl0796dQ4cO8dVXX1GiRAlz8s8bb8C4cWaw/nWhv91unlVYt64ZwJ07n/mMQpEixO/3s2fPntPCbdOmTeTm5pKYmEhiYiJ16tQ5+XmVKlVIz0mn3KhyIU1uiXZGM+6mcfS8omf+vSEpkgom+Lxec0LLiBGwZYt52oLXa56353Ti83iwOhxY//g61+cjNzOTnRdfzCiLhQkbN3Jzu3Y0atSIF154gUOHDtGpUyecTicul4vFixdjt9u5+OKLKbVzJzOPHcMd5NvIBJrVqIG1VCm6du0Kn3/OQytXEtAqH5fLHNL99ltwONi3bx8vvvgiU6dOZeDAgQwaNIgSJUqQm5vLgAEDWL58OXPHjCH+ttsgPf3cW7pFRUHbtubhtn+57yhSWOXk5PDrr7+eFm5btmwhNjb2ZKj99aNs2bL/uItKry97MXntZHKN4I4li3ZEc2jIISId2o+zuMv/4Dt0CK67DnbvNn+pn4VhsWCJiOBYmzbc+MMPDB4xgs7du1OzZk0+++wzKleuzJVXXslHH33EwYMHee6559ixYwd+v5+uXbsybPBgqtasyUUVKjAvM5MmDgeWALcYy3W5+KVhQ27cvJnc3Fz6d+7Mc598giWY09cjI+Hxx+HZZ08+tGPHDp599lnmzJnD0KFD6devHxEREYwbOJBeb75JtGFgyeuPPzISrr3WHBI917pCkfMkIyODLVu2nAy2E0OVO3fupFKlSqeFW+3atYmNDW4e9tqDa2kyqQkeX+AnvThtTh646gHG3TQuqNeWC0v+Bl9KCtSvDwcOnH5P7Cw8Fgt7mjSh1vffg8XCyJEjWb9+PWPGjKF///589tlnuFwuqpYpw/jmzblszhxKJidj++MvwxSbjc8jI3kwNhbj4EEseXzdHLudnx0OWmRlcdudd3LbbbcR+fLLtFq5MugjibLdbvavWUPVmjVPeXz9+vU8/fTTrFy5kuFPPsn9//43xr59gZ/753abs2T/Eq4i50NKSsoZhycPHjxIzZo1TxuerFmzZoGcZffUgqd47cfX8OTkPfxsFhtVS1ZlVZ9VlHCVyPeapOjJv+AzDGjUCNauNYc1A+F2w7//DY88wrJly2jRosXJIY/KFSvydE4O3Y8cMR87Qy8y22LB6XCQ6fdjA1znmD3psVoxrr+eumvX8szLL3PgwAGSPv+cOb/8QqkQfhzHgd52O/NiYmjcuDFdunShbdu2VKxYETAXts/q3ZvB69YRHezrlChh9qpd2oGiMNiSvIXXf3ydqRumcjz7OIZh4Ha4ub7a9TzW9DGaVmpaZDZBNgyD33///YwBl52dfcbhyWrVqmGzBbNhYPA1Pvi/B/lo7Ud5Cj+nzUn56PIsvXcpFUpUOOfzpXjIv+BbsgRuuinoc+y80dE0qlyZ9Vu2YLPZaNGiBVOnTCH23nvxzp5NZB5mbmYDjvh4Dng8lMzMxAXYTrw9pxPDamW1zcYYh4Of4uPp068fjz76qPn92bPx33Yb1lDO4QMOJyYypFEjFi1axO+//47FYiEqKooGDRpw66230ue993CuWRP8C8TEwNtvQ7duIdUpodl0eBO9vurF2oNryfHn4POf+seWBQtuh5uyUWV565a3aFOjTZgqPZ3P52PHjh2nhdvmzZuJioo6Y8CVL1++UAX4Wyve4umFT+PN9ZLmPf30l0h7JH7DT4daHXin/TuUjCh5/ouUQiv/gq9DB/P+U5DNHQdeqF6d6954g7i4OLrdeSe/Nm2KNSkJArjn5rda2er3s6xHD3pecgmW5GRzhmTZstCxI9NWraJnz54kJCSwc+fOP/8xT5wIjzwS1Enxp6ha1Vz7B2RmZrJixQpmzJjBggUL8G3Zws85OYFNnDmT+vVh1apQW5EgLf1tKTd9fBPp3vSzngX3V5H2SMbdNI77rrzvPFT3p8zMzFPuv5342L59O+XLlz9laPLE/bdSpUqd1xpD4fP7+GbbN4xYOoK1B9eSmZOJw+YgwZ1Avwb96H1Vb+Ld8eEuUwqh/Am+Q4egSpXQDpwFaNwYli83hzNq1WLcnj3Yg2gz22IhvU8fdt1/P+np6Sc/0tLSmDFjBvPmzQPg7rvvxjAM0tPTuWH9enpt3YorxB9HqtNJzxtvJDo6+rSPxF27aP3ee0SEcsgtmMOdx46F1oYEZePhjTSe1DjgzZIj7ZF82uVTbq19a77XdPTo0dMml2zatIn9+/dTo0aN03pvtWrV0knjUqzlT/AtWgQdO4b8y9gXEcGszz/n+PHj1BsyhEv37w96a5ljFgtXV6+OLSKCiIgInE4naWlpbNu2jRo1arBjxw4qVqzIRRddRFpaGjf8/jvDDx8mOqR3AL+5XNxyySV4vV6ysrLwer14vV58Ph+3ZmUxLjubUG+v+6xWBj34IFFRUURFReF2u//x878+5nK5CtWQVVFzxYQrWHtwbZ56en8X7Yzm4GMHcTsC7/MbhsH+/fvPeP8tIyOD2rVrnxZw1atXx54Pp6OIXGjy51/F0aNBD3H+lSUriw4dOlAB2EZo+6k5rFb+FR3NDxddRFZWFsnJyWzatIn4+Hj27t1LVlYWv/76Kzk5OcTHx5NRsyaO1FRzl5Yg+YCfDIMtW7aQm5tLTEwMMTExlC5dmhIlSlDV68X+yy95nvF6Nn6nk5o1a5KRkUFGRgZHjhw5+bnH4/nHz30+3xkDMb8+v5CD9ZcDv7AtdVtQoQeAAVPXT6VX/V5nfUpubi47d+484/03p9N5yuzJjh07kpiYSIUKFS7Yn7lIQcifHt/cudC1a8g9vmyLhV533smdKSncvHAh9hADYmFUFDfn5lK+fHkOHDjAVVddRePGjSlZsiQrVqxg/vz5NG/enDJlynDkyBHGLlhAtWDW8P3BHxHBoS++ILplS6Kiok77ZXRk+XJiWrQI+X1Rr545ezYIPp/vjIF4rsDM6+dnCtb8DNiIiIiw/ZLv8WUPPl77cdALqAFqla7F5v6byc7OZuvWracF3LZt2yhTpswZJ5iULl06H9+NSPGVPz2+ypVD7sUA5MbH07ZtW2Lfew9bPrRXIiODHJuNvXv3EhUVRW5uLps2baJUqVKUL1+e3Nxc1q1bx7///W9KlSrF/goVKDtxIu4g9/60VqtGuXbtTnls9+7dfPnllyQlJbF69WpWRURQI5T3Fh0NIRxzZLfbKVGihLllWgH4a7DmNTT37t2b5+fm5OTgdrsDCs1AnvtPwfrFxi9CCj2AbYe2UbV+VQ5uPki1atVOhlr79u15/PHHqVWrFlFRUSG9hoj8s/wJvtq1zcktmzYF3US2zcYrx4+z5P33Gel0kh9/0yeUKkVJq5U6derw7bffnna/o2LFirz88svUrl2befPmMWHaNDbHxGCkpWEJNPzcbnj5ZQzDYMOGDSQlJZGUlMSePXto3779yYNtX5k1izecTlyBrnX8q65dg7+2gJ2vYA2kJ7pv375zPufEf71e7xkDMTI6Ek9zD6H+jxnhiOCVca/QpXEXHA6dFCASDvm3nOHDD6F//3/cpuwfRUSQuW0bc3/+mYwXXqDLzz8T6hLt/bVrc1lyMlarlenTp9OsWbNTvn/06FHKli2Ly+WiVatWjBs3jspeLzRsiHH8eJ7Dz3C7+e2uu3ijZEmSkpLIycmhU6dOdOrUCb/fz6hRo1i9ejWDBg2iT69elKhb15wJG6jISPNn/KoO0iwoPp+PzMzM04Ix5XgKHZZ1wE9oJ4HEumL5b7f/0qJKi3yqWEQClX9Tvrp2hYcfDurSHJsN+623ElmxIrdWrAiVK2M0axbSmrrciAjG79nD4hUr+O233+jcuTOvvvoqPXv2BMwtmIYMGYLT6STL42HyXXdR4uGH4bffID4eIz0dn9/PP/1N7rfZ8AEvWq0kLV9Op06d+Pzzz7niiiv45ptveOqppzhw4ACPP/4406dP/3MLp/nzoWnTwP5IiIgwT4F46aVgfySSB3a7/eSkpL8yDAPrj1b8IR6B5Tf8lIooOmvlRC5E+Rd8kZHmAvYbbwwosAy7nYM2G8MyM5mQkWHe36hfH0u1arBhQ9DleLOyuPydd07eQ1m8eDHt27dn3bp11KtXjyeeeIK7br+dnf36kTtyJK7u3U/Zas2KeUySH7DYbFhsNoycHPxWK16LBcPnY158PMl33033vn15/uKL8fl8TJ06lR49emCz2Rg2bBhdunQ5fUp5vXrm2XutW5s73Zzrnl9UFFxzDSQlmYvx5byzWCw0uKgBy39fHlI7VouVWvG18qkqEQlG/p/OMGcOdOliht+5mna5oGpVsufMoe+zz7JmzRq++uorKleuDJMnQ79+QW2BlgvMKV2aewyDPn368OijjxIfH89PP/3EjTfeiN/v5+tPPqH5Sy/B6tXn3BnGD+RaLHxps3GsRg2qXXMNlz75JGVr1ADMHTLee+89Ro0aRZUqVXjiiSe48cYbzz37cO9eGDUKJk0yv/5rD9BqNf+YqFgRhg6F7t3hPO6JKKf7cvOX3JN0T8CL109w2pwMunoQr9zwSj5XJiKBKJjz+Navh2HDYN488/DUv+++Eh1t/mLv0weefhpiYjAMg9dee42RI0cybdo0rmnQAK66CrZuDXjGaIbNhmvjRva6XLz88st8/vnn1K1bl40bN/Lkk0+yfdMm+n78MZf6/VgDmGRiREZi+eors6eGeY/wzTffZOzYsTRu3JgnnniCJk2aBFQrYP58Pv/cXBZy+PCfJ7D36GGe8yeFgs/vo+yosqRmpgZ1fYQ9gq39t1IptlI+VyYigSjYE9gPHIAJE+Cbb+DIEfNE8fLl4b77zF7hGU4YmD17Nt27d+eVV17h3ltugcRESM3bLxoD82DZPjVqMDctjY4dO3LxxRczYcIE/H4/R44coU+fPgz3eHC+/TaOYJYVREdzcMUK/vP++0yaNIl27drx+OOPc+mllwbelhQ5H635iH7f9AvoWBwAt8NN98u689YtbxVQZSKSVwUbfEHavHkzHTp04MVKlbh92bI8HwxrAEZMDNa1a1mZnEy/fv1Yu3YtTqeTzp0706JFC35eupQR779PzDlbO7Nsu53nHA7S7ruPwYMHU7Vq1SBbkqLqmYXPMGrZqDyHn9vhpmWVlszsNhObVcPVIuFWKIMPIO2//8XRqRMRAc6iM6xWMkqWpK7dTue77uL555/n2LFjJCUlMW3aNGr+9BOve73Bn4cH5JYrh23fPnMYV4qlN356gyHzhmDBQqbvzH+YOawObFYbd192NxPaTVDoiRQShTb4aNQIVqwI6tIMq5VDw4dT7ZlnOHbsGLNmzSIpKYk5c+bwQ04OdUI9eigmBmbNMmdaSrF1OOMwk1ZNYszyMWT5srBazN1lDQxy/bncW/9eBjYeyMVxF4e5UhH5q8IZfJs2mRNbQtg3M7V8ef51+eUsXbqU5s2b06lTJ9q3b0/Zyy4LbvH4X8XEmPcu77ortHbkgpDrz2XNgTUc9hzG5/cRFxlH/XL1iXTo6B+RwqhwLgobOzbkvT+jDh1iUMuWTJ06lRIlSuDxeNi/fz+lMzJCf9O5uUGfNC8XHpvVxlUXXRXuMkQkj0I5+afgLFkCPl/IzWz48EOaNGlCqVKliIuLo3Xr1hwJZY/ME+x2iI0NvR0RETnvCmfwpaWF3IQdaHfNNUydOpXt27eTmZnJjh07SPhjDV5IcnLgsstCb0dERM67whl8Z1jfFyib3c4ll1/OpZdeSlxc3J+7qAwebC6gD0WdOuaJFCIiUuQUzuCrlA87WzidUKHC6Y+3ahXaMGVMjLmFmIiIFEmFM/gefNAMmFAYBtx88+mPWyzw4ovm+XmBslohLg46dgytNhERCZvCGXwdOoS2IbPDYW6LduIYoL/r2RPuvz+w8LNazZ7iwoVm+yIiUiQVzuBzOGDgQPN0gmDY7TBgwD8/57XXYNAgM/ys5/gxREWZe4yuWAHVqgVXk4iIFAqFM/gAnnrKnDkZ6EQXtxv+8x/448igszox5Pndd3D77WbvMCrqz23IHA7z66pVYeRI2Lz53G2KiEihVzh3bjnh2DHzCKD16/O2i0tkJDz3HAwZEvhrpabCjBmwf7/5WnFxcPXV5rZk2pNTROSCUbiDDyA7G55/HsaPB7//9DV+NpvZK6xeHUaMOPOEFhERkT8U/uA7weuFpCQzAPfsMQ9vjYkxe2WDBkH9+uGuUEREioCiE3wiIiL5oPBObhERESkACj4RESlWFHwiIlKsKPhERKRYUfCJiEixouATEZFiRcEnIiLFioJPRESKFQWfiIgUKwo+EREpVv4faQ6DL5ACV0cAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdZ3jUVd7G8e9/ShIIhN4JndBrqAITkCIWLIuwFoooCNiAXXZVWJV11WUtiD6g2BVZG+AqKqwiK5gE6SV0AelVQktCSDIz53kxEHpL5p8J5P5c11zgZOac34x5cXOqZYwxiIiIiIjkkCPUBYiIiIjI1U2BUkRERERyRYFSRERERHJFgVJEREREckWBUkRERERyRYFSRERERHJFgVJEREREckWBUkRERERyRYFSRERERHJFgVJEREREckWBUkRERERyRYFSRERERHJFgVJEREREckWBUkRERERyRYFSRERERHJFgVJEREREckWBUkRERERyxRXqAkRERETypQMHYOpUWLQo8DhwAIyB0qWhVavAo1cvKFMm1JWGnGWMMaEuQkRERCTf2LwZxoyBzz4Dnw+cTvB6z3yNy3XqZ717w9//DrVqhaTc/ECBUkRERPKP5GT47TfIzITChSEmBiIj86Zvvx8mToS//jUQIM8OkRficgWC5b/+BY8+Co6Ct6JQgVJERERCx5jAdPKkSTB7NuzadebPHQ6oWRNuuw2GDAn83Q5eLwwYAFOm5K6du++GyZMDIbMAUaAUERGR0Fi5Eh54AJYuDQSwi40IOp2BKeY77giMIlaoELw6jIH774ePPgr8PTcsC/r0CbRlWcGp7ypQ8MZkRUREJLSMgeefh9hYWLEi8Nylppd9vsCfM2ZA3bowbVrw6pkyBT78MPdhEgJtfPxxYJSyANEIpYiIiOQdY2DoUHjrrZy3cXLk7623YNCg3NWzd29gnWZqanACJQTqi4yEDRugYsXgtJnPaYRSRERE8s7f/567MAmB4GcMDB4cGLHMjf/7Pzh2LHhhEgJtpafD668Hr818TiOUIiIikjcWL4bWrYM7EliiBPz6K5QqdeXvz8gIrMU8dCg49ZyteHHYswciIuxpPx/RCKWIiIjYz++H/v2De6SOMXDkCIwcmbP3x8fbFyYBDh+GefPsaz8fUaAUERER+/3vf7Bu3anNNcHi8wU21ezff+XvXbIksHvcLk5nYAd7AaBAKSIiIvabONG+sxn9fnjvvSt/38qVwa/ldMbY30c+oUApIiIi9vL74ccfL//mmZy0P3v2Fb/NHDkS/BHT0/n9gWnvAqBgHeMuIiIieW/z5sCxPDYyixezeeNGkg8e5OB5HsnJyec890FyMj1srQp7p9TzEQVKERERsdfGjbZ3YaWm0jYmhgOnPRcWFkapUqUoWbJk9p8NGjSgZMmSlCxZkpqzZuGfPx+HXaOULhdUqmRP2/mMAqWIiIjYKyMjT7qZ8fnnRNatmx0YCxUqhHWB6w8PHDjAps2bseLj7SvI5wvcBlQAKFCKiIiIvcLD86Sbtp06QZky5/2Zz+djyZIlzJo1i1mzZrF48WLqGcMaOwsyBtq2zfn7d+8O7ERfvjywFtOyoFw5aN4cWrQInMGZT+hgcxEREbHXpk1Qu7atXaQ6HAzr35/YFi2IjY2lSZMmHD16lO+//55Zs2bxww8/kJycTPHixenWrRvdu3ene/fuVLjllsB94n5/UOvxWxY0aoRjxYpTV0Vejqws+PLLwA0+iYmB51yuU234/YGRT4cDbr0VHnkErr/+yvqwgQKliIiIXNjKlTBzZmCkbNWqwJWCbnfg/uuWLaFTJ+jY8eIHlhsDUVG2bcwxwPoKFbinXDlWrVqF76w1kdHR0XTu3Jm+ffvi8XhwnX580eTJgQPXbajpr6VK0WjcOO69916cl7M5JykJ+vQJfM9O56V3oLtcgZ3zN90E77wT0nvDFShFRETkXF99Bf/8JyxadGqn8ukBx7ICz3u9UKMG/OlPgbu1L3TWZM+egXu3bTg6yFgWnzZqxCM7dnDo0CGioqKIiYkhMjKS5ORk1q9fj9frxel00qBBA2JjY7MfB/bto1Lv3jTMzMQdrIJcLtLr1KFv7dpM/+orGjRowPPPP8+tt956wTWdvPMOPPRQIHxf6SYhlwsKFQr8P7v++tzXnwMKlCIiInLK/v0wdGhg2tXhuLyp4JMhKTY2MOJXr965r/nf/6Bz5+DWekIWcHPTprTp0YMbb7yRVq1anTEimJGRwapVq1i6dClLly5lyZIlrFq1Cu+JcNu0UCEWZWTg9Ptzf0C3ZQUC3sqVUK8eixYtYtSoUcyZM4c2bdrwwgsv0KlTpzPf88Yb8PDDuevX4QgE/FmzbPueL0aBUkRERAI2bgxMX+/bl7MDv12uwOObb6BLlzN+9PO8eZS/4QaqZ2QEbyQQ8AIzSpak0syZtG7d+rLeM3fuXO677z727dvH7bffTuHChUn//HMmp6VhATk+OdKyAo9p0+COO8740Y8//siTTz7JkiVL6NatGy+88AKxsbGBu747dQqMTOaWwxEYqVy3DqKjc9/elXSdp72JiIhI/rR9O3g8OQ+TEJjOzsyEm2+GhAQAdu/ezb333ktcx448HxOD62JrLa+QHzgIPJqeTps2bRgwYAD79u274OuPHTvGsGHD6NSpE1WqVGH16tV8/PHHpKamMjUjg18efxwiIvDnoMYswBcWBv/5zzlhEqBLly4sWrSI6dOns337dlq0aEGfO+4g6+67L77+9Er4/YEjmu6/PzgB9UoYERERKdh8PmM6dDDG5TImEEVy93A4jL9cOfPas8+aIkWKmDJlypgPPvjA+Hw+Y557Ljh9gDGWZdaNG2diYmKMy+UyhQsXNlFRUeaVV14xmZmZZ3zExMREU6tWLRMREWFeffVV4/P5TFZWlundu7dxuVzmP1OnGrNqlTGTJxvTtGmg/cv4PrJO/Dm/UCHTokwZs3fv3kt+3VlZWeb99983/ypWzHiD9V2c/fjmG7t+W85LgVJERKSge+ONoAcaL5h3wDz22GPm0KFDp/ry+4159NFcB0ljWcZ88IExxphjx46Z4cOHG8BUqFDBOBwOU7duXfPDDz+Y9PR0M3LkSGNZlmnTpo1Zv369MSYQ6u7t2dP0dzjMgXr1jAkPP29f/tNCss/pNBlg/A5H4GeWZZZXrWoerl3buF0uQ2Bzt6lfv77p27evGT9+vImPjzcpKSnnfudZWcZfvvyp9oP5cDqNueGGPPjFOUVrKEVERAqyrKzAcTMHDlz6tVfIWBbWb79BtWoAbN++nf/+97/MmjmTut99x7NeLxZXdsuKD3CUKIH14YeBcxhPM3fuXAYMGMDevXuJjo5m48aNFClShMzMTP7xj3/w5z//GafTiTcrizfbt+feRYsoCZfcfGQsC8sYUmrU4J3ffqPfE09QumvXwAHjxYsDkJmZyVNPPcWLL75Ijx492Lt3L0lJSWRkZGBZFnXr1qXFiTMyY2NjiT1wgELnmRoPGsuCnTvz7Cgh3ZQjIiJSkH31lS1hEgCHg62jRjGhYkVmzZrF2rVrcTqdtGjRgh8jItgZE8PkiAiYP//UmYoX4LcsMIbPgWLjxnHzWWESoGPHjiQlJTFixAjee+89AI4fP45lWaSmppKRkUFYejorGzbk0b17yR5Ru8ROduvE2FuRrVu5Gzhaty6lzzqeJywsjH/+85/88ssvrFmzhqSkJMLCwlizZk327vKlS5fyxRdfkJGRwRhgNDYGMWMCRz7dfrtdPZxBI5QiIiIF2Z13BkJlTjfiXMJ2oE2FCnTv3p0bb7yRzp07M2TIEObMmcPq1aupUKFC4GrBt96C2bNhy5ZAGDrJ5YL69TnetSvNJ03ieNmyOJ1O1qxZQ1hY2Dn9LV++nP79+7Nu3ToKFSoEBILm999/T+3SpfnP4cNUP3Ysx0HOB1huN45vv4Vu3c75+aZNm2jcuDGDBg3itddeO+fnWVlZrF27lhL9+lE5Kcm+3dEuFzzxBPzjH3b1cGZ3edKLiIiI5E8LFtgWJgGqALtWr8YqWRKATz/9lKlTp/LZZ58FwiRAs2YwaVLg7ykp3BkbS6umTfnrmDFQsyaEhxMBdPf7ee+990hJSWHSpEk89thj2f1kZWXxwgsv8Nxzz9GgQQOWLFlClSpVeOyxx5gyZQpdr7+eZ+PjqZ6Vlavw4wSM14u59VaOzZ1LRkwMWVlZeL1esrKyABg2bBhjx46lUaNGNGrU6Iyfn/yz6pEj9h+1s2eP3T1kU6AUEREpqI4cgV27bO/maHw8x1q1YufOnQwdOpSbbrqJhg0bsmLFivOGrfmpqfi9XqauWUPWihXZz5cqVYqUlBSqVq3KE088we+//47b7WbXrl18/fXX7N+/n5YtW9K0aVMmTpyYHfDatm1Lo59+orUxBOPGa8sYsjIy2Ni2LS0JnIV5PoMGDbpgG0lA8SDUclE2/kPhbJryFhERKai2b4eqVW3v5jZgRhDacTqdmMAJNRhjiIiIwO12k5KSgtvtpmLFihQtWhS3243L5cLtduN0Ojmydi2LkpMJD0INpzPAqvvuY9sf/nBGny6Xiz179tCnTx969+7NqFGjsn/mdruxLIvIG2+k6MqVQQm45+V2B27fefVVu3o4g0YoRURECipnju+EuSLNYmPZ53KxcOFC+vfvj8fjoXz58pQuXZrw8PBzwlijRo0YPnw4I0aMyH7O5XLhcDhYuHAhbdq04aabbmLWrFlkZmby+OOPM2bMGCIiIs7oNysri3vuuYduiYm4L/cayStgAY3nzKHxu++e97vctm0bf/nLX4iLi8Pv97N8+XKWLVtGUlISz6en8zBw7irQIMnKgiZN7Gr9HBqhFBERKagyMiAy0vap0TurVmX6tm3nPO90OilfvjwVKlTIflSsWJHnnnuOBx54gIEDB1KhQgXKlSuHyxUYA/P5fNSsWZPt27fjcDjo2LEjP/744zltnwyT33z1FUcKFyb86FH7PuDMmXDjjaSkpLBixQqWL1/O8uXLWbp0KatWrQLAsixiYmIoWbIkBw4coO1vv/GR3VPSSUnQqJG9fZygQCkiIlKQNWwIa9bY1rwXqFa6NMeN4bvvvqNChQrs3buXPXv2sHv3bvbs2ZP92L17N7t37z7n+kTLsihbtiwlS5Zk7969HDp0CICuXbsye/Zs3n33Xbp27Ur58uUJCwsjKyuLu+++mxkzZvDfceO4/tFHbft8PoeD72JiGOnzsWnTJowxhIWF0bhxY5o2bYplWbz33nsUK1Ysu26ASpGRbElPxx3kUVMgcAZlrVqwYUPg73lAgVJERKQge+gheOedi54BmVPGsvg1MpK6qak4HA78fj8VKlSgY8eO2Y/atWtjnRZ6UlJSiIqK4s0336RVq1bs3r07e9PN7NmzCQsLIzo6mk2bNuH3+zk7xpQsWRKv10tKSgodO3ZkSGQkvb/9Nuif7SQ/sLJYMT7s35/mzZsTExPDzp07mTlzJjNmzODgwYPZr42KiuLuu++mX79+tGnTBseDD8JHHwX/u7cseP11eOSR4LZ7EbbvWBcREZF8bMAAW8IkAMbw+vHjjBgxgkOHDjFz5kz69u3L5s2beeihh6hTpw6VKlXinnvu4e233+bXX38lNTUVgEqVKtG8eXMaNGjAZ599xqxZsxg8eDD79+9n/fr1jBs3DofDwcSJEwEYPXo0b7/9NhUqVCA1NZXWrVtz/Phx9sTHk2nPpwMCQapRWBjVq1fno48+wuPx0Lt3byZPnszBgwepXLkyI0eOpH79+lSoUIHx48dz3XXX4XA4AudEBnsdq8MBlSrBffcFt91L0AiliIhIQde8eWC9XRDX9Bkg3eHAU7s28cuXZx8yflJKSgqJiYnMnTuXuXPnsmTJEnw+H6VLl+bAgQMMGzaMEiVK8PLLL1OyZEnef/99OnfunP3+1NRUKleuzKBBg1izZg0bNmygSZMmfPvtt0ybNo1bT96k88QTmHHjsE4cIWSHA0A5R2CMzu/3ExMTwz333EPPnj1p0KABlmWxZs0amjdvzogRIxg7dmz2e5f27UvslCnBLWjOHDjrJh/b5enN4SIiIpL/JCYaY1nGBO6oCdpjqGWZxYsXX1YJR48eNbNmzTL333+/IZBHDWAKFSpkevbsaSZNmmTWr19v/H5/9nv++te/mqioKJOYmGgA43Q6zddff31mw2PGGONyBf2znf7YAaZZs2bmn//8p/n1118v+Bmff/5543A4zMKFC43X6zUjR440DjBLKlc2focjOPU8/XSOfgVySyOUIiIiAiNHwrhxZ157mENZQAJwo9vNx//+N7169bqs9xljePrpp3nuuecoU6YMw4YNIyUl5YwRzPLly2evv6xbty6dO3emQYMGrF69mkKFCrFjxw5KlChxqtEvvoA//jHXn+lC/EBGXByF5s695Gu9Xi9t2rQhNTWV6OhofvrpJ15++WWGDRmC9cc/wowcntZ54p5znngCXnghzzbinFGCAqWIiIiQlQW33Qbff5+r8xqN08lmv582xpAaHk5GRgYDBw7ktddeo3Dhwue+Ye9emDaNY/PmkTxrFuFpaRggqmZNCsXFQatW0KsXKW438+fPz54iX7x4MT6fL3uzT58+fZg+fTpDhw7llVdeOdX+5s2BHc828VkWmX/+M4VeeumyXv/ll1/Ss2dPIiIi+Pbbb09N4/t8MG4cZvRofFdyPaTTCVFRgasre/fO0WcIBgVKERERCcjIgL59YerUU6NeV8Ky2Fm6NG2PHOHG/v155513CA8Px7IsqlevzmeffUbjxo0Dr12/HsaMwUyfDj4fXmNwn92eyxUIWm433HMPPPMMVKsGwMGDB+nRowcLFizA7/dnB0uAm2++mfbt23Po0CF++P57pq9cSTXs24l8Y1QUt7/4IgMHDsR5kU02X375Jf369SMyMpLk5GQWLlxIbGzsGa/5/tlncTzzDF0cDiy/Hy/nuYXG7Q78A6BIEbj/fhg9GsqWDfrnuiIhmWgXERGR/MnvN2byZGOKFjXmctf1OZ3GuFzmt/vvN24wL730kjHGmI8++sg4HA7jdDpNtWrVTHh4uJn4+uvG/69/GeN2G7/TeflrA10uYwoVMubNN01mRoa54447jNvtNjNmzDBxcXGmZcuW5pNPPjHh4eHG5XJlr8F0u93mifBw47Nh7aQXzNaiRc1tt95qOLGOMiEh4Zyv1OfzmaeeesoAplevXubQoUOmadOmpmHDhiYjI8OYbduMGTXK+KOjz9uPH4xxu40pUcKY2FhjHn3UmClTjElNzevfjgtSoBQREZFz/f67MWPHGlO5cnawyQDjd7sD4ebkJp6oKGNGjjQpK1aYatWqmQ4dOhiv15vdTGJiogkPDzeAiWvb1kw7GZBy8fihalUT7nKZb775xhw/ftw8+eST2eHRsiwDmB49epiqVasawFQsVMgcBFtC5bBSpYxlWaZLly6mQYMGBjB9+vQxu3btMsYYc+TIEdOjRw9jWZZ54YUXsjcVrVixwhR3Os3C5s0D3+WlwrVlBR6FChnz8svGnPYd5wea8hYREZEL8/th/Xq+ePxxDvz8Mw8NGABhYVCzJsTGQuPGEBbGoEGD+PTTT0lKSqJGjRpnNLF9+3aaN23Km4cO0ZPcTz37gRWtWvFm48ZMmzaNw4cPEx4eTkxMDP3792fUqFFkZmZSpUqV7P7vcTj4dzBvpXG54PrryZwxgw8+/JDnn3+eHTt20KpVKzZu3EhWVhZDhgxhxowZ7N27l08++YSbb7751PsXLuRo165EpqSQo5MoW7eGL7+EihWD9YlyRYFSREREzs8YOHQI0tN5aPhwVu/Zw88JCee87LvvvuOWW25h0qRJDB48+LxNZb72GmHDhwe1vIfKlKHEoEH07NmTZ599lq+//hoI3BHu8/koVqwYbdu2xbIsVixfzst793IXuQ+0XsBVqhSsWAGVKwOQkZHB+++/zwsvvMCuXbuoWLEiu3btwu12M3HiRAYNGnSqgfh46NYNk5mJldOQ63IFwmRiYnYNoaRAKSIiIqccOQIffwzffQeLF0NycvaPjjudRFx3HXTpAg88AJUqkZycTMOGDWnatCkzZ8484xrF7CaTkijUvDlun49gHWhjLAtvZCR3NW/OjPnz8Z647adUqVLcdNNN/PDDD+zfvx9jDJUrV+YPf/gDd956K+3HjcOaNSvHxyP5LItUh4Niy5YFRmfPcvz4cXr37s0333wDQNmyZdm/fz+33HILr776KrUsC5o0gfT0XO2mBwKhsmZNWL4czjo4Pq8pUIqIiAikpcHTT8MbbwR2e8OFQ9eJW2Ho1Yuh6el8Hh/PqlWrqFSp0jkvnTVrFrt69eK+tLTLPwrnMvmAZ4B/V6tGXFwcixYtYt26dQBER0ezY8cOhg0bln1NIxDYHf3kk4EzNx2OK7odyA+ssCwGREQw+OWX6dixI/Xq1csO0WlpaQwYMICpU6fy5JNPUq5cOcaOHcv+/fspVKgQWRkZbChfnqp79mAF61YihwP+/Gd48cXgtJdTIVu9KSIiIvlDQoIxVapc/q7uEw+fw2GOgEl85JFzmjx8+LB54IEHTCSYY1eym/sKHn4wyeHhplhkpAFM7dq1jcPhMMOHDzd+v98MHjzYlChRwiQnJ5/7mRMTjWnSxBgwWRe5JejkDTb+qCizYeBAE9eunXG73dk7ycuUKWN69epl/v73v5uYmBgTGRlppk+fnt3NsWPHzPjx4025cuXMABu+g+wNO6tW2fkbckkKlCIiIgXZjBmBI3lyGPqyd07/61/ZTc6ePdtER0ebIkWKmO+HDrUnRJ32+HDgQLN27VpjjDH33XefqVy5ssnMzDR79+41RYoUMSNGjDj/Z/f7jVm40LzrcpmNLtc5gXofmGPXX2/MRx8Zk55ujDFm7NixpkSJEiY1NdXMnj3bjB49Ont3N2BKlChh7rzzTjNhwgSzevXq7F3dx9LSzIFy5YzXju/A5TJmyBB7f08uwa4zPkVERCS/S0iAP/whMO2bwynY7CDx+OMcnzCBoUOH0rVrV2rXrs3q1avpVrJkYK2fXRwO+jdsSL169QAYMWIEO3fuZNq0aZQrV44nnniCCRMmsHnz5nPfa1msK1qUgV4vL/TtCykpsGULbNrEtsWLKQf89Oc/Q79+EBEBQKFChUhPTycyMpLOnTtTunRp1q9fT+fOnZk+fToPPfQQe/bsYcSIETRs2JBy5crRq1cvvnv6aUrt25ezHd2X4vXChx9CaqodrV+ekMZZERERCY2UlMAZk1c4zX2xx3EwDSMizIQJE4zP5wv0c8stp86stGt0bsCAMz5a165dTWxsrPH7/SYtLc1UqlTJ3Hnnnef9Gh555BEDmEWLFp3xvN/vN1FRUeaFF1444/m3337bACYtLc3069fPAGbkyJEmKyvrjNedPoLZrl07M8rhMFk2j9SauXNz+UuRczb+k0FERETyrb/9DXbvzv1O49M4gUWNGlHo4YcB2LdvH741a6hoTND6OJvf62XlvHlMHjGCsLAwwsPDqVChArNnz+axxx6jXr16dOvWjQ8++IBnn32WRo0aERYWlv34z3/+g9vtJjw8nA0bNhAeHp79s/r167Ns2bLsqx0hMEIJ0KFDB9auXcuUKVO49957z6krMjKSLl260KVLFwC8d9yBc8aMoH7fZ3A4YMkSiIuzp/1L0C5vERGRgubwYShf/tRu7iCbOWYMr82fz48//sj//H7sjDg+4MfixflTxYpkZGSQmZlJZmYmv//+O5Zl4XA4yMrKynU/TqeTsLAwjDEcP34cp9NJ+fLlKVq0aHYAPT2Mnv14bsYMKh86lPsPfCFuNwwaBBMn2tfHRWiEUkREpKD56CPIzLSl6Sxg75gxzA0Lw+/3s8vhwOv32xY4nG43N9x3H2teffWM59977z0GDRrEunXrqFWqFEveeoupo0bR54YbqFG9OllFi/JzaioPvPkm9zz6KPfee292GD0ZTGfNmsU777zDG2+8gdfrZc6cOdmHp992221ERERw7Ngx0tPTSU9P5/jx46Smpma/PyMjg6ysLLKyshh1+LBN38AJxtj2//RyaIRSRESkoOnaFebMCYQQGyQDMSVKcPDQIYYDL4M9m1FO+vhj6NMHYwyZmZmkpaVx4PffebJFC54oWpQWe/diGYOPwIim0+nE8vtxnPj8SRUqMKtmTRKiokhJSyM1NZW0tDQOHjzI/v37cblc2QenX0xERARFihShSJEiREZGnvHn+Ph4qts9QjlkCLz+un19XIQCpYiISEFiDJQoEbgRx0ZP9OlD3c6diYuIoPrdd9vaV7ty5Vhz/DhpaWl4vV6igfeArgRGTN2XeL+XwJTt+hIleKdDB1LLl6dIkSKEh4fzz3/+kzJlynDw4EEefPBBateuzZ/+9CemTp1KkyZNskNjZGQkTudFYvN992H+/W+sywimOWJZgUPphwyxp/1L0JS3iIhIQfL777aHSYDCW7fy+eef815KCh+Hh1MlIyPXd2ifzQsscblo3qsXt1epQpEiRYjZvJm4CRNweL3g810yTMKpMFQ3JYVXvv8eJk+G3r1ZvHgxL730EseOHSM+Pp62bduyYsUKAKpWrUrt2rUvXaPXS2JiIge3b+c2rzdoV0+ewxho0cKu1i9J51CKiIgUJOnpedKNPzWVwoULU6NmTX5p1cqWIOUCPi5Zkg8++IAyZcowJDqazuPH48rMxJGTczW93sA6xLvu4uehQ+nQoQNRUVE0bNiQtm3bAqd2eR8/fvyCzRw9epSpU6fSt29fypYtS8eOHXl59Wp7Q1fp0oE7wkNEI5QiIiIFiftyxuxy75nnn8e66abAf2RmQvPmsH59jg9QP5vf4WCx2817hw5Rp149nhswgHscDtzGYOVmNZ8xGOC6SZN44rbbsJo149VXX8UYg2VZRJw44Dz9rGC+Y8cOvvnmG77++mt++uknsrKyaNy4MY888gi33norzZs3JyMuDmdCQvDDl9MJDz2UZ/9vz0eBUkREpCApVy5w68tFRtiCoXmvXoQ1bEiDBv/1KXkAACAASURBVA1o0KABrYcMod3w4WBZuQt8BDbWZPr9OCZP5vE1a3hx7FjmuVxYQZpStgCHw8EzmzYxs39/jhw5wvbt26latWr2COWxY8dYtmwZM2bMYMaMGSxfvhyXy0XHjh155ZVX6NGjB9WqVTuj3ckVKzIoCPWdIywMBg+2o+XLpk05IiIiBU3r1rBokW3Ne8PDGTdmDGvWrWPt2rWsXbuWY8eO8UfgkxOvyfH0r8OB37K4xRh+sCw++eQT4vbsodzw4cEp/nSWxaF//IOSf/sbX3/9NTfccAPfffcdPXv2pGTJkhw8eJDixYtz0003ceutt9K9e3eKFSt23qaSk5OpVq0ac6tXJ3bt2qCN1ALw1lvw4IPBay8HFChFREQKmr/9DcaODW6oOcHvcGC6dMH5/fennvP72bZtG2vXriXr00+56bPPcPh8Vz5N6nRC4cIwfTrLSpWiffv2pKens71yZaKDfOsPAJaFt2ZNiu3aRfUaNdi2bRupJ+7L7tKlC6NGjaJ9+/a4L2Oq+ZlnnuGll15ie1ISpbt1gx07Ams2c8PhgJtughkzAru8Q0ibckRERAqagQNtuwLQ4ffTd8ECnnrqKfbs2RN4zuGgevXq3Hzzzdw+ZQphGzbgat8eAHOxo3ZOOBm7fqtVizkTJ7K1dm2aNm3Kb7/9RttSpYjeudOez2MMrk2baJiezp49e3jyySdZtWoVTqeTP/zhD3Tq1OmywuTRo0d5/fXXGTx4MKVr1YKffoKKFfE7chHDHA7o1Am++CLkYRIUKEVERAqeatXg1lvBFeStFA4HWZUqUaZvX8aPH0/VqlXp27cvS5cuPfN1NWvCvHkwcyZW9+6nApHTCW43xu3GnAhbfstiedWqDKlTh8Y7dtClXz+qV69OVFQUPXr0oH9MTHA/w1mMZTGiTRtKlSrFqFGjaNiwIYUKFTpnU87FvPHGGxw7doyRI0cGnqhalY1TpjAnJwU5HIHv65FH4Lvv4MSazlDTlLeIiEhBtH071KsHx44Ft92ffoKOHTly5Ajvv/8+r7/+Olu3bqVdu3YMHz6c22+/HdfZQfbwYVi2LPBITg6EptKlITYWmjWDokWBwNT5jh07WLt2LWvWrGHNmjV0nzWLO/btIyy4n+IUl4tNLVsSs2ABKSkpREZGUrZsWYYNG8bo0aMv+fa0tDSqVavGnXfeyZtvvglAZmYmbdu2JS01lZV/+hPhzz4Lu3cHAvWFliG4XIEp8saNYcIE6NAhmJ8y94yIiIgUTO+/b0zgSOzcPyzLmEcfPacLr9drvvzyS+PxeAxgqlSpYl566SVz8ODB4HyGO+80fssK3uc4z+NIbKwBzC+//GKMMaZKlSpm9OjRl1Xeq6++apxOp9myZUv2c48//rhxuVxmyZIlJ78kY77+2pi77zamWrUz+3c6jWnY0JjBg41ZsMAYvz8431uQacpbRESkoBowAMaMyX07lgV33AHjxp3zI6fTyR133MG8efNYtmwZnTp1YvTo0VSuXJmHH36YDRs25K5vny/XxxBdSmREBE6nk5UrVwJc9pR3RkYGL730En379s0+Qmju3Lm8+OKL/OMf/yA2NjbwQqczsAThk09gyxZITYVdu2DPHkhLg1WrYNKkwO78fLBe8nwUKEVERAqyZ56B118PHIp9pWsqT24qefhh+PzzS76/WbNmfPjhh2zbto2//OUvTJs2jbp163LzzTcze/ZsTE6CYbFiwV8LejrLwlmqFHXq1LniQPnhhx+yZ88ennjiCQAOHTpEv3796NChA3/5y18u/MbISKhYEcqXh/DwoHwMuylQioiIFHSPPgorVgTWK8KlA9rJndmVK8OcOfB//3dFoa58+fKMGTOG7du38+GHH7J79266detGw4YNefvttzl2Jes6mzSxbcc6EPisTZvSpEmT7EAZERFx0asXAbKyshg7diy9e/emTp06GGMYOnQoR48e5eOPP8Z5GbvbryYKlCIiIgL168PChZCQAL16QVTU+V8XEQHXXw9ffQWbNwf+nkPh4eH079+fZcuWMXfuXGJiYhgyZAjR0dGMGjWKnTt3XrqRFi3sDZReL8TG0qRJE5KSkvD7/Zc1QvnJJ5+wdetWRo0aBcCUKVP4/PPPmTRpElWqVLGv3hDRLm8RERE5lzGwdSusWxfYCR4WBrVqQZ06p0YobfDbb78xYcIE3n33XdLT07nzzjsZPnw4rVu3Pv8bvN7ASOm+ffYUVLQo7N3Lf3/+mRtvvJFNmzbx2GOP4Xa7+eqrr877Fp/PR4MGDahbty5fffUVW7ZsoUmTJtx22218/PHH9tQZYhqhFBERkXNZFlSvHriJ5c47A5tG6te3NUwC1KhRg3HjxrFz505eeeUVFi9eTJs2bWjbti2ff/45WVlZZ77B5Qqs4czNIeEX4nIFDoEvXJgmTZoAkJSUdMkRyunTp7NhwwZGjx6N1+ulb9++lCxZkgkTJgS/xnxCgVJERETynaioKB577DE2bNjAjBkzKFy4MHfddRfVq1dn7NixJCcnn3rxQw8FNucEcQe0HzDh4fCnPwGBdZ9lypRh5cqVFw2Ufr+f5557jm7dutGyZUvGjh3LL7/8wpQpUy54z/e1QIFSRERE8i2n00mPHj2YM2cOK1eu5IYbbmDMmDFER0czZMgQ1q5dC6VKwTvvBKbpg8QB/Ld798B0OmBZVvbGnIiIiAsGym+//ZZVq1bxt7/9jUWLFjFmzJjsO7+vZQqUIiIiclVo3Lgx7733Hjt27GDUqFF8/fXXNGjQgO7duzOrcGHM0KFBGaU0lsWS2rW564cfOHDgwBn9nxyhPN8ub2MMzz//PB6Ph2bNmnHvvfcSGxvL008/neua8jttyhEREZGrUmZmJl988QXjx49n6dKl1I2JYVqZMjRITMxVu0n16lFxzhxq1q1Lv379+L/x42HmTNa/9hqpc+bQyOXC6fXiiogIrDNt0wY6dWJOiRJ06dGD77//ni+++ILPPvuM5cuXU7t27SB94vxLgVJERESuasYY5s+fz/jx4/ly+nQejojgJa+XML8f60J3Y5/FCzjDwvhf9+50nTGDTz/7jO1btrB79GheLF0a9/79+J1OHOdr78Q926lOJ1PLlqXkyy9z+7338s477zBw4MDgfth8SoFSRERErhnbtm1jwoQJzHzrLUakpNDf4cDl94PbjXW+HeI+H17gU2N4rVgxvkxKYtSoUayaNo3EGjWIXLcOgMudSDeWxQ7LYtJ11/H8zz9j5dOrEoNNgVJERESuOampqUyePJn3x42jyebN3FSmDJ0KF6ZEVlYgHJYqBa1aQcuW0LMnr3z0ESNHjiQ8PJz548ZR59FHCff7ycmljl4Cm4msKVPgrruC+8HyKQVKERERuWb5/X7++9//Mn78eGbPnk2FChV4+OGHefDBBylTpswZr/3mm2946o47iPf5iLQsHLmJSJYVeHz9NdxySy4/Rf6nQCkiIiIFwpo1a3j99deZPHkyxhj69OnDsGHDaNSoUeAFmZkcr18f1+bNORqZPIdlBc7H3LABypYNRov5lgKliIiIFCjJycm8/fbbTJw4kV27dtG5c2eGDRvGzcuW4fj734N6niVOJ9x+O0ybFrw28yEFShERESmQsrKymD59Oq+++iqrFy1iv2URaVcsWr8+cA/6NUoHm4uIiEiB5Ha7ueuuu1i4cCFJTz5JYbvCpMsFb75pT9v5hAKliIiIFHg1V6zActgUi7xemDrVnrbzCU15i4iISMFmDJQpA8nJ9vZz4EDguKJrkEYoRUREpGBLTrY/TAKsWmV/HyGiQCkiIiIFW0rKtdVPCChQioiISMHmCsqpk/mnnxBQoBQREZGCrVy5vAl70dH29xEiCpQiIiJSsIWFQf369vYREQH16tnbRwgpUIqIiIh07GjfKKXDAW3aBG7NuUYpUIqIiIgMHBg4L9IOfj8MGWJP2/mEzqEUERERAejQAX75BXy+4LVpWVC6NOzcGZhav0ZphFJEREQEYOLEQAAMJmMC1y5ew2ESFChFREREAho3hjFjgteewwF//CP07Bm8NvMpTXmLiIiInOT3w/33w+TJgdHFnHI6oXVrmD0bChcOXn35lEYoRURERE5yOOD99+Gxx07995U4OWV+443www8FIkyCAqWIiIjImRwOGD8+MLpYvvyp5y7CWFYgTEZGwgcfwIwZgb8XEAqUIiIiIufTpQts3gwffwyxsaeet6zAlPZpITOrSpVACN2xA+67L/ibe/I5raEUERERuRyHD8Py5bB2LaSnQ1gYxypWpNYf/8gzb7zB4MGDQ11hyChQioiIiORCq1atqF27Nv/+979DXUrIaMpbREREJBc8Hg/z5s2jII/RKVCKiIiI5EJcXBy7du1i69atoS4lZBQoRURERHKhffv2WJbFzz//HOpSQkaBUkRERCQXSpQoQaNGjZg3b16oSwkZBUoRERGRXPJ4PBqhFBEREZGc83g8bN68mV27doW6lJBQoBQRERHJJY/HA0B8fHyIKwkNBUoRERGRXCpXrhx16tQpsNPeCpQiIiIiQXDyPMqCSIFSREREJAg8Hg9r167l999/D3UpeU6BUkRERCQITq6jTEhICHEleU+BUkRERCQIqlSpQrVq1QrkOkoFShEREZEgKajnUSpQioiIiASJx+NhxYoVHDlyJNSl5CkFShEREZEg8Xg8+P1+EhMTQ11KnlKgFBEREQmSWrVqUb58+QI37a1AKSIiIhIklmURFxenQCkiIiIiOefxeFi8eDHHjh0LdSl5RoFSREREJIg8Hg9er5dffvkl1KXkGQVKERERkSCqX78+JUuWLFDT3gqUIiIiIkHkcDjo0KGDAqWIiIiI5FxcXBwLFiwgIyMj1KXkCQVKERERkSDzeDwcP36cJUuWhLqUPKFAKSIiIhJkTZo0oWjRosybNy/UpeQJBUoRERGRIHO5XLRr167ArKNUoBQRERGxgcfjITExEa/XG+pSbKdAKSIiImKDuLg4UlNTWbFiRahLsZ0CpYiIiIgNWrRoQURERIGY9lagFBEREbFBWFgYbdu2LRAbcxQoRURERGzi8XiIj4/H7/eHuhRbKVCKiIiI2MTj8XDo0CHWrFkT6lJspUApIiIiYpM2bdrgdruv+XWUCpQiIiIiNilcuDAtW7ZUoBQRERGRnPN4PMybNw9jTKhLsY0CpYiIiIiNPB4P+/btY+PGjaEuxTYKlCIiIiI2ateuHQ6H45qe9lagFBEREbFRVFQUzZo1U6AUERERkZzzeDwKlCIiIiKScx6Ph23btrFt27ZQl2ILBUoRERERm7Vv3x7gmh2lVKAUERERsVnp0qVp0KCBAqWIiIiI5Ny1vI5SgVJEREQkD8TFxfHrr7+yd+/eUJcSdAqUIiIiInmgQ4cOAMTHx4e4kuBToBQRERHJAxUrVqRWrVrMmzcv1KUEnQKliIiISB65VtdRKlCKiIiI5BGPx8OqVas4ePBgqEsJKgVKERERkTwSFxcHQEJCQogrCS4FShEREZE8UrVqVaKjo6+5aW8FShEREZE8YlkWHo/nmtuYo0ApIiIikoc8Hg/Lli0jJSUl1KUEjQKliIiISB7yeDz4/X7mz58f6lKCRoFSREREJA/VqVOHsmXLXlPrKBUoRURERPLQyXWUCpQiIiIikmMej4dFixaRnp4e6lKCQoFSREREJI95PB4yMzNZuHBhqEsJCgVKERERkTzWsGFDihcvfs1MeytQioiIiOQxp9NJhw4dFChFREREJOc8Hg/z588nMzMz1KXkmgKliIiISAh4PB7S09NZunRpqEvJNQVKERERkRBo1qwZkZGR18S0twKliIiISAi43W6uu+46BUoRERERybm4uDgSEhLw+XyhLiVXFChFREREQsTj8XD06FGSkpJCXUquKFCKiIiIhEjLli0JDw9n3rx5oS4lVxQoRUREREIkIiKC1q1bX/XrKBUoRURERELI4/Hw888/Y4wJdSk5pkApIiIiEkJxcXEkJyezbt26UJeSYwqUIiIiIiHUtm1bXC7XVT3trUApIiIiEkKRkZHExsZe1RtzFChFREREQuxqX0epQCkiIiISYh6Ph927d/Pbb7+FupQcUaAUERERCbH27dtjWdZVu45SgVJEREQkxIoXL06TJk0UKEVEREQk5zwez1W7MUeBUkRERCQf8Hg8bNmyhR07doS6lCumQCkiIiKSD3To0AGA+Pj4EFdy5RQoRURERPKBsmXLUq9evatyHaUCpYiIiEg+cfI8yquNAqWIiIhIPuHxeFi3bh379+8PdSlXRIFSREREJJ+4WtdRKlCKiIiI5BPR0dFUr179qpv2VqAUERERyUfi4uIUKEVEREQk5zweDytXruTw4cOhLuWyKVCKiIiI5CMejwdjDAkJCaEu5bIpUIqIiIjkIzVq1KBixYpX1bS3AqWIiIhIPmJZ1lV3HqUCpYiIiEg+ExcXx9KlS0lNTQ11KZdFgVJEREQkn/F4PHi9XhYsWBDqUi6LK9QFiIiIiMiZUqNSKdSjEAPjB5KyLIW0zDQcloOKRSvSpnIb2kW34+5Gd1M8onioSwXAMsaYUBchIiIiIjBjwwyemfsMK/auwDIWBgPWma9xWk78xk+4M5w+TfrwXKfnKFekXGgKPkGBUkRERCTEDqYf5JGZj/Dp6k9xWA78xn9Z73NaToqGFWXSLZP4Y8M/2lzlhSlQioiIiITQrqO7iPswjq2Ht+Izvit+v0VgJPPvHf/O03FP21DhZdSgQCkiIiISGgfTD9L63dZsPbwVr9+b6/Ze6voSI68bGYTKrox2eYuIiIiEyKMzH2XLoS1BCZMAj//4OEt2LwlKW1dCgVJEREQkBL799Vs+Wf1Jjqa5L8TCos+XfcjyZQWtzcuhQCkiIiISAmPmjsFhBTeK+YyPDckbmLFhRlDbvRQFShEREZE8tmzPMpbuWXrZu7mvhNNy8vqi14Pe7sUoUIqIiIjksf+s+w8uhz33y/iMj5+3/czh44dtaf98FChFRERE8tiiXYvw+YO3dvJ8lu1ZZmv7p1OgFBEREcljy/cuD9yCYxOH5SBpX5Jt7Z/TX571JCIiIiIAHMs6Zmv7TstJamaqrX2cToFSREREJI85HU5b2zcYnJa9fZxOgVJEREQkj1UqWsnW9r1+L9HFom3t43QKlCIiIiJ5rE3lNrbt8j4ptkKsre2fToFSREREJI+1r9Le1l3excOLE1Mqxrb2z6ZAKSIiIpLHetXvRSF3IVvadlpOHox90PZ1mqdToBQRERHJY0XDi/JAswds2ThjMAxuMTjo7V6MAqWIiIhICDwT9wzFI4rjCGIcs7B4ot0T1ChRI2htXg4FShEREZEQKFW4FO/d+h5+gnOft8tyUad0HZ6Oezoo7V0JBUoRERGRELmt7m282OXFXLfjslyUiSzDf+/9L+Gu8CBUdmUUKEVERERC6C/t/sKEGyfgcrhytKbSwqJ2qdosGLiAqsWr2lDhZdRgjLHvIkkRERERuSxJ+5Lo959+rNy3EqflxGcufqyQ03JiMDzZ/kme8jwVkpHJkxQoRURERPIJn9/HrE2zmLBoAt9v+h6swAik0+HEGJMdMksWKsng2ME8GPsg1YpXC23RKFCKiIiI5Ds+n4/iZYtz94i7aXpDU45mHMXlcFE5qjItKragRokaOKz8s3LR3jt/REREROSKrVq1itSDqfSN60uHlh1CXc4l5Z9oKyIiIiIAxMfHExYWRsuWLUNdymVRoBQRERHJZxISEmjZsiURERGhLuWyKFCKiIiI5CPGGOLj42nfvn2oS7lsCpQiIiIi+ciWLVvYs2cPHTrk/7WTJylQioiIiOQj8fHxAFx33XUhruTyKVCKiIiI5CMJCQk0bNiQEiVKhLqUy6ZAKSIiIpKPxMfHX1XT3aBAKSIiIpJv/P7772zYsOGq2pADCpQiIiIi+UZCQgKARihFREREJGcSEhKoUqUK0dHRoS7liihQioiIiOQTV+P6SVCgFBEREckX0tLSWLZs2VW3fhIUKEVERETyhYULF+Lz+TRCKSIiIiI5Ex8fT4kSJahXr16oS7liCpQiIiIi+UBCQgLt27fH4bj64tnVV7GIiIjINcbr9fLLL79clesnQYFSREREJORWrFhBWlqaAqWIiIiI5Ex8fDwRERHExsaGupQcUaAUERERCbGEhARatWpFeHh4qEvJEQVKERERkRAyxly1B5qfpEApIiIiEkIbN27k999/v2rXT4ICpYiIiEhIxcfH43A4uO6660JdSo4pUIqIiIiEUEJCAo0bNyYqKirUpeSYAqWIiIhICF3t6ydBgVJEREQkZPbs2cPmzZuv6vWToEApIiIiEjKJiYkACpQiIiIikjPx8fHUqFGDihUrhrqUXFGgFBEREQmRhISEq379JChQioiIiITE0aNHWbFixVU/3Q0KlCIiIiIhsWDBAvx+vwKliIiIiORMfHw8pUuXpk6dOqEuJdcUKEVERERCICEhgfbt22NZVqhLyTUFShEREZE8lpmZyYIFC66JDTmgQCkiIiKS55YtW8bx48evifWToEApIiIikufi4+MpXLgwzZo1C3UpQaFAKSIiIpLHEhISaNOmDW63O9SlBIUCpYiIiEge8vv9JCYmXjPrJ0GBUkRERCRPrV+/nuTk5Gtm/SQoUIqIiIjkqYSEBJxOJ23atAl1KUGjQCkiIiKSh+Lj42nWrBlFihQJdSlBo0ApIiIikodOHmh+LVGgFBEREckjO3fuZOvWrdfUhhxQoBQRERHJMwkJCQC0a9cuxJUElwKliIiISB6Jj48nJiaGcuXKhbqUoFKgFBEREckj1+L6SVCgFBEREckThw8fZtWqVdfc+klQoBQRERHJE/Pnz8cYoxFKEREREcmZ+Ph4ypcvT82aNUNdStApUIqIiIjkgZPrJy3LCnUpQadAKSIiImKz48ePs2jRomty/SQoUIqIiIjYbsmSJWRmZl6T6ydBgVJERETEdgkJCRQtWpTGjRuHuhRbKFCKiIiI2Cw+Pp62bdvicrlCXYotFChFREREbOT3+0lMTLxmp7tBgVJERETEVqtXr+bIkSPX7IYcUKAUERERsVVCQgJut5tWrVqFuhTbKFCKiIiI2Cg+Pp7Y2FgKFy4c6lJso0ApIiIiYhNjDPHx8df0+klQoBQRERGxzbZt29i1a9c1vX4SFChFREREbJOQkABAu3btQlyJvRQoRURERGySkJBA/fr1KVWqVKhLsZUCpYiIiIhNCsL6SVCgFBEREbFFcnIya9euvebXT4ICpYiIiIgtEhMTATRCKSIiIiI5k5CQQOXKlalatWqoS7GdAqWIiIiIDU6un7QsK9Sl2E6BUkRERCTIjh07xtKlSwvEdDcoUIqIiIgE3aJFi8jKyioQG3JAgVJEREQk6BISEihWrBgNGjQIdSl5QoFSREREJMji4+Np164dTqcz1KXkCQVKERERkSDyer3Mnz+/wKyfBAVKERERkaBKSkoiNTW1wKyfBAVKERERkaBKSEggLCyMFi1ahLqUPKNAKSIiIhJECQkJtGrVioiIiFCXkmcUKEVERESCxBiTfaB5QeIKdQEiIiIiV5uD6Qf5actPLNm9hLW/ryUtK40wZxilHKXYW34vtVrWCnWJecoyxphQFyEiIiJyNVi1bxXjFozjk1WfkOnLxOVw4fP7MATilBMnPuMDCzpX78zwNsO5ufbN1/z1iwqUIiIiIpeQ6cvkuZ+f4/n453FYDrx+7yXf47QC4fL2urcz6eZJlCtSLg8qDQ0FShEREZGLOJh+kO5TurNk95Lskcgr4bScFIsoxo99f6RZhWY2VBh6CpQiIiIiF3A04ygdP+xI0r6kwFR2DjktJ5FhkSQMSKBRuUZBrDB/0C5vERERkQt4ZOYjuQ6TAD7jIy0zjds/v530rPQgVZd/KFCKiIiInMe3v37Lx0kf5zpMnuQzPrYe3srf/ve3oLSXn2jKW0REROQsxhjqTazHxoMb8Rt/UNt2WA62D99OpahKQW03lDRCKSIiInKW+O3xbEjeEPQwedK7y961pd1QUaAUEREROcuUpCm4HPbc/+I3ft5f8b4tbYeKAqWIiIjIWRJ3JF7WWZM5tf3Idg6mH7St/bymQCkiIiJymkxfJhsObLC9n+V7ltveR15RoBQRERE5zZHjR4K2s/tiktOTbe8jryhQioiIiJwmr+7dtrh27vdWoBQRERE5TVR4FE7LaXs/pQqXsr2PvKJAKSIiInKaMGcYdUvXtb2fZuWvnXu9FShFREREztIuup1txwYBVCtejRKFStjWfl5ToBQRERE5S98mfW07NshhObi/6f22tB0qCpQiIiIiZ2kX3Y56pevhsIIflSwsBjYfGPR2Q0mBUkREROQslmUx7oZxQb960cL6//buO77G8//j+Os+52RZETOR2KW2kBhRszVqdaARo0Wpmi1tFP1Vx7cLpVbRapWi9qjdUntEImLWik3ESBCyc865fn/cpFJbzsmQz/PxOA9Jzn2u+zpBvF3jc/Gh34d45PWwabuZTQKlEEIIIcR9uES44HzEGWyUKY2akecKPMcXTb6wTYNZiARKIYQQQoi7KKUYO3YsL730ErWiauFd1DvdZYSMmpG8TnlZHrAcZ5OzjXqadUigFEIIIYS47datW/j7+xMYGEhgYCAb/9zI5rc3U8ezzlMXIjdqRgq4FGBbj21ULFzRxj3OGjSllMrsTgghhBBCZLbDhw/Trl07IiMj+e2333jttddSn0uxpDB6x2g+3/I5wGPtADdqRizKQsfKHfmh1Q8UylXIXl3PdBIohRBCCJHjLVy4kLfffpvSpUuzZMkSypcvf9/rjkYdZcKuCczcP5NEcyImgwmrsmJVVjQ0TAYTKdYUNDRaPteSQXUH0axsswx+q0NToQAAIABJREFUNxlPAqUQQgghcqyUlBQ++ugjxo8fT+fOnZk2bRq5c+d+5OtuJt1k69mt7Lm4h3+u/kN8SjwORgfKupXFx8OH+iXqU9y1eAa8g6xBAqUQQgghcqTIyEj8/f3ZtWsX48aNo3///mja062TzOnsd6aQEEIIIUQWtW3bNvz9/TEYDGzZsoV69epldpeyNdnlLYQQQogcQynFuHHjaNKkCRUqVCAsLEzCpA1IoBRCCCFEjnDr1i0CAgL44IMP+OCDD1i/fj1FixbN7G49E2TKWwghhBDPvCNHjtC+fXsuXLjA4sWLad++fWZ36ZkiI5RCCCGEeKYtXryY2rVro2kau3fvljBpBxIohRBCCPFMMpvNBAYG8sYbb9CmTRuCg4N5/vnnM7tbzySZ8hZCCCHEM+fSpUt07NiRnTt3MmHCBAYOHCglgexIAqUQQgghninbt2/H398fgM2bN/PCCy9kco+efTLlLYQQQohnglKKCRMm0KRJE8qVK0dYWJiEyQwigVIIIYQQ2V5sbCydOnVi0KBBvP/++/z999+4u7tndrdyDJnyFkIIIUS2duzYMdq1a8e5c+dYtGgRHTp0yOwu5TgyQimEEEKIbGvJkiXUqlULpRS7d++WMJlJJFAKIYQQItsxm80MGTKEDh068PLLLxMcHEyFChUyu1s5lkx5CyGEECJbuXz5MgEBAWzbto3vv/+eQYMGSUmgTCaBUgghhBDZxs6dO3njjTewWq1s2rSJBg0aZHaXBDLlLYQQQohsQCnFpEmTaNSoEWXLliUsLEzCZBYigVIIIYQQWVpcXBxdunThvffeY+DAgWzYsAEPD4/M7pa4i0x5CyGEECLLOn78OO3atePMmTMsWLAg9QQckbXICKUQQgghsqRly5bh6+uLxWIhJCREwmQWJoFSCCGEEFmK2Wxm2LBhtGvXjhYtWhASEkKlSpUyu1viIWTKWwghhBBZxpUrVwgICGDr1q2MHTuWwYMHS0mgbEACpRBCCCGyhKCgIN544w3MZjMbNmygUaNGmd0l8ZhkylsIIYQQmUopxeTJk2nUqBGlSpUiLCxMwmQ2I4FSCCGEEJkmLi6Ot956iwEDBtCvXz82bdpEsWLFMrtb4gnJlLcQQgghMkV4eDjt27fn5MmTzJs3j4CAgMzuknhKMkIphBBCiAy3fPlyfH19SUpKIiQkRMJkNieBUgghhBAZxmw2M3z4cF577TWaNm3K7t27qVy5cmZ3S6STTHkLIYQQIkNcvXqVTp06sWnTJkaPHk1gYKCUBHpGSKAUQgghhN0FBwfToUMHkpOT+fvvv2nSpElmd0nYkEx5CyGEEMJulFJMnTqVBg0aULx4ccLCwiRMPoMkUAohhBDCLuLj4+nWrRv9+vWjT58+bN68GU9Pz8zulrADmfIWQgghhM2dPHmSdu3aceLECX7//Xc6d+6c2V0SdiQjlEIIIYSwqZUrV+Lj40NCQgLBwcESJnMACZRCCCGEsAmLxcInn3zCK6+8QpMmTdi9ezdVqlTJ7G6JDCBT3kIIIYRIt6ioKDp37syGDRsYOXIkH330kZQEykEkUAohhBAiXUJCQujQoQOJiYmsX7+eF198MbO7JDKYTHkLIYQQ4qkopfjpp59o0KABnp6ehIWFSZjMoSRQCiGEEOKJJSQk0KNHD/r06cM777zDli1b8PLyyuxuiUwiU95CCCGEeCKnTp2iffv2HDt2jNmzZ9O1a9fM7pLIZDJCKYQQQojHtmrVKnx8fIiNjWXXrl0SJgUggVIIIYQQj8FisfDpp5/Stm1bGjVqxO7du6lWrVpmd0tkETLlLYQQQoiHio6OpnPnzvz999988803DB06FINBxqTEvyRQCiGEEOKBQkNDad++PfHx8fz11180bdo0s7sksiD574UQQggh7qGU4ueff+aFF17A3d2dsLAwCZPigSRQCiGEECKNhIQEevXqRe/evenZsydbt26lePHimd0tkYXJlLcQQgghUp0+fZr27dtz9OhRZs2axZtvvpnZXRLZgARKIYQQQgCwZs0aunbtipubG0FBQVSvXj2zuySyCZnyFkIIIXI4i8XCZ599Rps2bXjhhRcIDQ2VMCmeiIxQCiGEENnUtYRrHLpyiFtJtzAZTHjl86JCoQoYDcbHb+PaNbp06cJff/3Fl19+yfDhw6UkkHhiEiiFEEKIbOTEtRP8GPojC/9ZyPmb5+953tnkTF2vurzr8y7tKrbD0ej4wLbCwsJo3749t27d4q+//qJZs2b27Lp4hmlKKZXZnRBCCCHEw12Nu8p7a99j/j/zMWpGLMrywGsNmgGrslI4V2GmtJ5Ch0od7rlm+vTp9O/fn6pVq7JkyRJKlChhz+6LZ5wESiGEECKL+/PEn3Re0pmbSTcfGiT/S0NDofCv5M+vr/5KbsfcJCYmMmDAAKZPn867777LhAkTcHJysmPvRU4ggVIIIYTIwpYcXkLHxR2xKiuKp/sn26AZqO1Zm18a/kK3Tt34559/mDp1Kt27d7dtZ0WOJYEym4iOhiNHICEBHB2hbFnw9ARNy+yeCSGEsJeg80E0nNkQi9Xy1GHyDgMGjKeNeG71ZNnSZXh7e9uol0LIppws7dAhmDIFVqyAiIh7ny9QAJo2hb59oVEjCZdCCPEsSUhJoOuyriil0h0mAaxYsZa28kGvDyRMCpuTEcos6OxZ6N0b1q0DkwnM5gdfe+f5SpVgxgyoXTvj+imEEMJ+Ptv0GV9t+wqrstq03dwOuTk3+BwFXArYtF2Rsz2ThaaUgrg4iImBlJTM7s2TmTULKlaEjRv1zx8WJu9+/tgxqFsXPvkErLb92SOEECKDJZmTmBQyyeZhEiA+JZ7f9v1m83ZFzvbMBMozZ+Dzz+HFF8HVFfLkgfz5wdkZypeHbt3gjz8eHdAy04QJej8TEp68nxaLHqS//hrefltCpRBCZGfLji7jeuJ1u7U/KWQSMkEpbCnbB8qTJ6FtWyhTBr76CjZtglu3/n3eaoXwcJg7F15/HYoXh6lTs17gWrgQBg2yTVu//aaPVAohhMieNp7eiMlgn20OCsXpG6e5eOuiXdoXOVO2DZRKwQ8/QJUq8Oef+ueWh5TmujPid+kS9OsHTZroaxWzgkuX9DWTttxUM3IkBAXZrj0hhBAZJ/hCMGarfafU9kTusWv7ImfJloFSKRg4UH8kJj7dNPbOnVCrFhw+bPv+PanBg/U1n7acfTAY9OnzrDYSK4QQ4tFOXj9p1/aNmpET107Y9R4iZ8mWgfKTT2Dy5PS1YTbDtWvQuDFcuGCTbj2ViAh9utvWazstFn2qf/1627YrhBDC/lKs9t1RqmkayZZku95D5CzZLlBu3QrffGObtiwWuH4deva07ejgk5g+3X71I00mvY6lEEKI7MXJaN+jEK3KiovJxa73EDlLtgqUSUnw1ltgNNquTbNZr/c4e7bt2nwS69c/fO1nepjNevkhmfYWQojs4cKFCyxatIjc8bnteh+rslKxcEW73kPkLNmqsPncudCli+3b1TQoVw6OHs3Y02asVsibF+Lj7Xuf48f19yeEECLrSE5OZu/evezcuZOgoCCCgoK4cHsNVl7/vMRWjEVp9vsnOmpIFAVzFbRb+yJnyVZHL06apG82sfWIm1J66NqyRV9TmVGuXrV/mAR9LaUESiGEyFwXL15MDY5BQUHs2bOHpKQknJycqFWrFp06dcLPzw8/Pz/CboXRem5ru/TDoBmoVrSahElhU9kmUF6/Drt22a99kwlWrXryQKmUXvbnxg19dNPdXS+orj+niI+PJyYmhhs3bhATE5Pm4zNnLEA/W7+VeyTLumshhMhQKSkp7Nu3LzU87ty5k3PnzgFQokQJ/Pz88Pf3x8/PD29vbxwdHdO8vkWRFhTPV5zzN8/bvG9WZeW92u/ZvF2Rs2WbQLnHzuWyzGYICUn7tZSUlDQB8M6vUVGxbNlShJCQspw/X4ykpLRrXYzGixiNOzGbf8FqXQfcO2VhMBjIm7csGREonZ3tfgshhMjRLl++nBocg4KCCA0NJTExEUdHR3x8fOjQoQP16tXDz8+PYsWKPbI9o8HI0BeGMmDtAJv206AZKJK7CB2rdLRpu0JkmzWUEybABx/Yd4OJ0XiTcuXqpIbHhISE/1xhAAYCnwFugAW4/w4hg8GC1WqkSJFb9O17hGbNUnB1dSV//vy4urqSJ08eQMPVNe3JPvZw+jSUKmXfewghRE5hNps5cOBAmrWPp0+fBsDT0zM1OPr5+VGjRg2cnJ5ux7bFaqH+jPqERoRiVrarLbe2y1pefu5lm7UnBGSjEcq4OPusn0zLmZYtW6YJfnc+josrzIgRz7Fv393DfQ/ebm616s9FReXliy9qc+aMXjsz93827vn4WNm8WQPssxvI1RVKlrRL00IIkSNcvXo1zdrH3bt3Ex8fj4ODAzVr1uTVV19NDZDFixe32X2NBiOzXpuF78++xCXHYVHpKwmiodG3Vl8Jk8Iuss0I5XffwfDh9iuxA5Anz/1HC48fhwYN9ELoT1uA3GjUT+ZZtw7y5FEEBQUxZ84cZs4sRELCZzwsnD4tkwk6dIB582zetBBCPJPMZjOHDh1Ks/bx5En91BoPD4/U4FivXj1q1qyJcwasKQq+EEyz2c2IT4l/6lCpodGpSidmvT4Lo8H2/94IkW1GKEuXtm+YhPuP5F29qm/UiY5O3/0tFggJUVSrdgpNa8Hp0yfx8vLi9dfbMW+eFaVs/xfcbIb+/W3erBBCPDOio6PZtWtX6vR1SEgIcXFxmEwmvL29ad26dWqILFGiBFpG1pa7rY5XHYJ6BtFxcUcOXz2Mus+6/Acxavq/LZ80/IRPG32KQctW5adFNpJtRihPn4YyZex5hxT8/I6zdGlB3N3dU7/q7w9Ll9o2zNatO48+fZJZvXo1ixYtIm/e2cTGdkYp2/1F1zQL1asrwsJMGVpbUwghsiqLxcI///yTZvr6+PHjABQtWjQ1OPr5+eHj40OuXLkyucdpJVuSGbl9JN/t/I7Y5FgMmgGruv86MJPBhNlqpq5nXaa0nkINjxoZ3FuR02SbQKkUeHpCZKTd7gB0A2ZTunRpunTpQqFCPRg0yNYpVmEwmLFay1KihMaIESMoX74WL75YDIulALab+k6hSJEWzJ49jObNm9uoTSGEyD6uX7/Orl27UsNjcHAwt27dwmg0Ur169TQBsnTp0pky+vg04pLjmHdoHkuOLCEkIoRrCddSnzNqRioUqkDjUo3pVbMX3u7emdhTkZNkm0AJ8NVX8Nln9tmY4+iYSIEClbl06dRdX90G1MX2KwPMtGhxgOXLK/P7778zYMAAihbtwrlz07BabfMD7dNPrxMU1JH169fTt29fRo8efXtnuRBCPHusVitHjhxJU7rn6NGjABQqVCh13aOfnx++vr7k/u8OyWxKKcXV+KvEJsdi1IwUzVMUZ5PUihMZL1sFykuX9HWOti7UbTTqJYlGj4bw8HAmT57MjBkh3Ly507Y3ukv+/IqWLXswb95v9OrViwkTJrBiRS66dNF/MKbnmPXhw+HrrwEUU6dOZciQIXh4eDBz5kzq169vq7cghBCZ5saNGwQHB6cZfYyJicFgMFCtWrU0o49ly5bNNqOPQmRX2SpQAnz/PXz4oe3aMxgUHh4aR47o52r/ex9FYCAoZb8fQs7Ojfjll950ueuA8tGj9zF0aDE0reATbdQxGhUODhrffw99+6Z97sSJE3Tr1o2goCACAwP53//+lyE7E4UQwhasVivHjh1Ls/bx8OHDKKUoUKBAmvBYq1Yt8t79w1wIkSGyXaC0WKBhQwgOtsVGGQUoli6N5fXX86V5pmtXmD/fnjvLrXz66VW++KJo6ldu3LhBtWrV8PKqyt69nUlKCkDTjA+d4jcaFRaLhrv7AbZvr0bZsve/zmKxMHbsWEaMGEG5cuWYNWsWNWvWtPF7EkKI9Lt58yYhISGp09fBwcFcv34dTdOoUqVKmtI95cqVk9FHIbKALFc2KCUFjhyBy5f1jThublClCri46M8bjbBihV4X8vhxPUw9HSugkSfPYD755G9q1foLLy+v1GcPHrRvmSIHB43r14um+dqAAQOIiYmha9fq7N7dnaCg+vz9d0lWrYJ9+yAx8d9rjUZFpUoazZpp5M79O19//RZKHQOe4+ZN2LsXwsMhKUn/3j3/vJH+/T+iZcuWvPXWW9SpU4cRI0YwfPhwHBwc7PdGhRDiIZRShIeHpzl15tChQyilyJ8/P3Xr1mXw4MH4+flRu3Zt8uXL9+hGhRAZT2UBsbFKTZumVJ06Sjk6KqVHyX8fBoNSlSop9e23Sl25or/m9OkY5ey88/Y11nte87CHwWBREKu6d1+rjh49qkqUKKGKFy+ujhw5oiwWi9q6datydb30RG0+6cNkUuqdd/79HsyfP18Batq0aapAgQKqT58+ab5HZrNSp08rNW/efgVlVUjI/tTn4uPjVZEiJVWjRr8qHx+lNO3f+9z9scGgVL16Ss2enaKGD/9MGY1G5evrqw4fPpwBv8tCCKHUrVu31IYNG9RXX32lWrdurQoWLKhPFYGqXLmy6tWrl5o+fbo6fPiwslgsmd1dIcRjytQpb6sVpk6FYcMgNhY0TY8+D2Iw6I/BgxUnTnRhw4a1DBkSzrffFkI/dls9Ys2jGTDRtCl4eX3G3LkjCQoKokiRIjRu3JiLFy+SP39+IiMjcXA4TEpKRdu+4bsYjVbeeUcxdaqRiIgIqlatStOmTalYsSKjR4/mxIkTeHp63vO68PBwypcvz6ZNm2jcuDGgj9h27hxHXFxuNO3h3wOjUR959fSE4cOPMmnSa5w5c4ZvvvmGQYMGYTBI0VshhG0opTh58mSaU2cOHjyI1WolX7581K1bN3X6uk6dOuTPnz+zuyyEeEqZFigvX4Y33oBt2578tXpoOsGYMaf58MPmxMTA7Nnw1VfRXL5c8L6vcXJKISnpd1atakXr1kVISkqiVq1aREZG4uXlxb59+zAajWiaxqhRo9i1a/Dtgub2WptjwdFxOK1ahRMeHk5UVBTbtm3Dx8eH3r17M2bMmPu+KioqisKFC7N06VJat36dPn1gxgx9c9GTlBy6cy56//5mjMaPmDhxHA0bNmTmzJmULl3aVm9SCJGDxMXFERoamjp9vWvXLq5evQpAhQoV0pTuqVixovwHVohnSKYEyosXoX59OHfu6dcpapqFPHmMbNoEPj7619q1a8flywl8881aLlzQjx7MmxeqVYOCBWPw8CjKZ599RvHixZkzZw7r16/HarXi5eXFhAkTqFu3Lq+99hp79uwhX76vuHFjCPZcZurk9BIODiHExsYC+jmx0dHRrF+/ngYNGtx3obnZbMbBwYEff5zOypVvs3Zt+upyahp06QI9emzm7be7Ex0dzffff0+vXr1kobsQ4oGUUpw+fTrNzuv9+/djsVjIkyfPPaOPBQoUyOwuCyHsKMMDZWKiHgCPH9cDX3oYjXpgPHgQihWzUrhwYQYMGMAXX3yR5jqz2czff/9N7969iYiIwGq10rBhQ7p06UJERAT/+9//qFSpEqdOnSIxMRFnZ2cSEysDoenr4EPdAooA+k4bk8mE2WzGaDRisVgoWbIkbdq0oW3btjRu3BgnJ6fUV7q6ulK16iZ27qz50CUCj0vTYMQI+PDDm3zwwQdMnz6dli1b8ssvv1CsWLH030CIHEIpxfZz29lxfge7L+7m9PXTmK1m8jnlw9vdG99ivrR8riVF8xR9dGNZTEJCAqGhoWkC5OXLlwEoX758mtI9lStXxmi01alfQojsIMMD5bBh8N13tjvtxmSCl16CUaMO4O1dnY0bN9KkSROUUuzZs4c5c+Ywb948rly5gqenJxEREQwbNowLFy6wfv16Ll++jNFoRCnF4MGD6datG5UqVSIwMJDx499E07xtesb2nT6/+66ZDRuqcvHiRaxWa+ooJYCmabi5uWG1Wrlx4wZ58uShefPmtG3bllatWlGt2vtcvjzPpn0yGGD3bqhZE1avXk2vXr1ISkpi8uTJBAQEyGilEA+RYklh2p5pjA8ez4lrJzBqepiyqH+nYBwMDqRYUzAZTHSo2IFh9YdR3b16ZnX5oZRSnDt3Ls2pM/v27cNsNpM7d25q166dOn1dt25dCha8/1IjIUTOkaGB8tAhffrZHnfs3n0tc+e+xr59+1iyZAlz5szh2LFjFC1alHr16pErVy7CwsI4cuQIADVq1KB58+Y0a9aMmjVr0rBhQ8xmM6GhoeTOnRulFAEBK1m48BWb99VohN69x/Pzz0MICgqiYMGClC9fnvr163Ps2DEi/3NguYuLC3ny5CEqKgqlNDQtHKVKYrtzv/U+eXtD6O1B2ejoaPr378+CBQt44403mDJlCoUKFbLZ/YR4Vhy4fICuS7ty6MohABSP/gFnMpiwKiv/1+D/+KThJzgaHe3dzYdKTExkz549aUYf7/wcKlu2bOq6Rz8/P6pUqYLJlOUqzgkhMlmGBsp334Vff03/VPd/GQwKZ+dDmEz1uXnzJi4uLlSoUAGr1crhw4dJSUnB09OT5s2bEx4ezuXLlzl27FiaUbcjR47g6+uLv78/M2bMAPTgW6lSBEePFgFsU6tR06BHj/PMnFmKzz//nBEjRtCjRw/Wrl3LyZMnyZ07NxEREfz+++/8+uuvHDt27D8ttAD+tElf7ickBGrV+vfzBQsW0K9fPxwcHPj5559p27at3e4tRHaz7Mgy/Bf7gwKzevIfbBoadb3qsrbLWlydXe3Qw/s7f/58mvAYFhZGSkoKuXLlolatWqnhsW7duhQpUiTD+iWEyL4yLFDeugVFiqQtzm1rLi5+GI2HiI2NJXfu3DRu3JhmzZrRvHlzKlSogKZprFmzhtatW7N37168vb3TvP63336je/fu/Pbbb7z11lsA7Np1kXr18qBULtK7QcdkgkqVLMTGVqFwYVe2b9/OiRMnqFy5MuPHj2fgwIH3vObGjRssWLCAn3/+mb1792K1LgLaYquA+9/+9egB06al/XpkZCTvvPMOq1evpkePHowfP16KC4scb/Xx1bwy/xWUUo81KvkgRs2IbzFfNnbbSC6HXDbsoS4pKYm9e/emKd0TEREBQOnSpdOcOlO1alU56EAI8VQyLFBu2ABNm9rzDhYKFx7FO+/E0bx5c/z8/HB0vHcaKSUlBQ8PD3r27MmoUaPueb579+4sXryY0NBQrFYrLVq0ICXFmxs3lpKUpPG0odJoVJQtq1GnTiBLlkxl3759lCtXDn9/f4KDgzl+/HiajTf3k5CQSOHCGnFxD78uPcqWhRMn7v26Uopff/2VQYMGUaBAAWbMmMGLL7742O2eOgWLFukjoKGhEBOjj9YWKQJ16+oPf3+QpVgiO4i4GUGFyRWIS45LV5i8w6AZGFBrABNaTkh3WxcvXkxz6kxYWBhJSUk4Ozvj6+ubOn1dt25d3N3d030/IYSADAyUo0fDxx/b8zjDFAICNObNe3Tg69OnD2vXruX06dP31EGLjY2lVq1amM1moqKi8PLy4s8//yQ62pM2bRI5f94ReJJNOgrQKFLkAN9/H0nXri/z008/0bt3b/bu3UvNmjX55Zdf6Nmz5yNbOn8eSpR4gls/BU3Tw17evPd//syZM/To0YPNmzczcOBARo4cSa5cDx5V2b0bPv0U/vpL3/ij1L0bskwm/c+FgwN07gxffGH/9ynE01JK0WZuG/46+VeaTTe2sKX7FhqWbPjY1ycnJ7Nv374009fnzp0DoGTJkml2XlevXv2+/8kWQghbyLBA2bu3XoDb1usn7/bcczFMmhTEnbf031/vfHzw4EE+/vhjRo4cScWKFe+5ZuXKlUyfPh03NzcmTpxIrly5iI2NZeLEn9mzpw3wAXqoNAD33/2saVaUMpArVzJ16y5m48YuuLi48PzzzxMYGAjAmDFjuHTpEiNHjkzdaX6//t759fjxInz7bStbfKse6p9/oFKlBz9vtVqZNGkSw4YNo0SJEvz222/UrVs3zTVJSfD55zBqlB4kH/c/EiYTODrChAnQs6cecIXISoLOB1Hv13o2b9eoGanrVZftb29/4DWXLl1KEx5DQ0NJTEzEyckJHx+fNAFSSn4JITJShgXK7t1hzhx7jlACHASq2fMGtxUCegBdgUrcOw2eAOwGfgEWcafWZPo1AjbbqK0H279f343/KEePHqVbt26EhoYybNgwPvvsMxwdHYmNhdat9VOQ0vOnq18/mDRJD6RCZBVdl3ZlwT8LMFvt87/jg30PUqVIFVJSUjhw4ECa6eszZ84A4OXllebUGW9v70cumRFCCHvKsEDZty9Mnw4pKfa8SwhQJ/Uzk8lEgQIF7vsICQnhwIED/PjjjxQpUgQ3NzcWLFjAmDFjeOuttxg1ahR9+/ZlzZo1WCwWatSowS+//ELx4sUBjcOH4+jZcyrHjzvj5FQOsxn69XuNOnWsNGtmxsVFH1rTNI1Zs2bRv39/3NzcqFq1KqtWraJNmzZcv36doKAgDAZD6o7z//5698d79mj4+dm/XEenTiN4++1GNGzY8JFTZGazmVGjRvH5559TqVIlfv11NoGB1di2zTb/efjwQ3jAKZRCZLhkSzJ5v81LsiXZLu0bMFAnpQ4O2xzYvXs3CQkJODg43DP66OXlZZf7CyHE08qwQDl+vB4ObFXQ/L9MJkWHDvEMH36SqKioBz6io6OJioriypUrJN5ny7nJZMLd3Z38+fMTGRlJdHQ0Li4utzejlOLwYR/Wr6/AhQu5b78iBbCiT33r4St/fn2Kv08fUOoU1atX54033qBLly40bdqUPn368OOPP7J8+XJeeeXx61zGxkK+fPap4/mvBCAPYMXJyYmGDRvSuXNn2rRp89A6lPv27ePNN9/k8OGakoCdAAAcQklEQVT2WK2f8aClAE9j9WpoZf+ZfiEeaW/kXmpOq2m/GyhwjHCk7fW2qeGxZs2aODs72++eQghhAxkWKLdvhwYN7HkHRb9+hxk3rtxjLTxXSvHcc8/h7e3NrVu3+Pvvv+nRowfe3t7s3buXRYsWkZycTMmSJTlx4gSOjh1ISpoM3NmG/PB5WE2zoGng6joRk2kMM2f+TMmSJRk/fjzTp0+natWq7Nu377FPoDl27BgrVqxgxAh/kpJKPtZrnpxC04JRyg+j0YjVak2znrN8+fL4+/vTqVMnKlaseE/fw8KS8fU1opTtCq4bDFCoEISH62FaiMw0Y+8M3l7xtl3vUcC5ANFDo+16DyGEsLUMC5SJieDuru8gtp/ncHWNok2bNrRv354WLVo8dAfysGHDGDNmDEajkXnz5vHaa68xduxYhg8fTp06dZg/fz7FihWnYcOD7NxZFU1TKPWkI29WYB/QEriS+lWDwUDp0qUpXLgwhQoVuufh5ubGpUuX2LNnDxs2bODs2bNomoZSXwNDSG9NzPsxGOCrr8w0bBjMli1b2LhxIzt27CAxMfH2vf/9o+Lq6kqzZs3o1asXTZo0wdHRkS5dYOFC22+80jQYNw7ef9+27YqcRSlFcnIySUlJqY+7P3+cj9fdWseq5FU2KRX0ICaDiZQRdl0bJIQQNpehJ+UMGaIHA1tvzNE0CybTNlJSmlCqVCmsVivnzp0jV65ctGzZkvbt29O6des0xbgvXbrEiy++yJEjR/jyyy/p06cP3bp1Y82aNQwdOpQvv/wSo9GBN9+EefOeJkj+y2hUeHqmMHnyPgYM8EfTNM6dO0etWrWoXLly6nT8lStXuHTpUppzve/m4OCAm1sNrlwJ4slKFz0eBweIjExbCzIlJYU9e/awZcsW1q1bx44dO0hKSvrP+zNSsWIjDh9eh9Vqu9HJOzQNSpfW62PKru+sz2KxPHFQe5pw96SvSUnnAm4nJyfwg6SGSfb465fKweBA8gj7rNEUQgh7ydBAeeYMPP88JNvhZ+WqVcncvLmEyZMns2PHDooUKUK1atW4evUq+/fvx9HRkebNm9OuXTuqVKlCQEAACQkJ5MuXj2LFinH8+HESExOZNWsWrW4v2Pv6axgxwjZrFk0mKFPmKsePF2Xnzh1s2bKFjz/+mCVLlhAVFcXy5ctZv349ycnJ5MuXj7i4OKxWK97e3vj5+VG+fHni4+OJiopi2bL2nD5dG1uOUhoMit69U5gyxeGh0/Bms5m9e/eyadMmVq5cSUhICMnJyUB34FdsuXbyvw4cgKpV7dZ8tqKUwmKxZLnQlpSUhCUd/2PUNA0nJ6fUh6Oj4wM/f9DHj3vdk7zGwUH/ezH34Fy6LO1iw9/Je7nncSfyw0i73kMIIWwtQwMlwNixcLsMo41YeOstI7/99u9X9u/fz5QpU5gzZw7Jycm0aNGCUqVKceDAAbZv345Sily5cjF06FA2b97Mpk2b8PPzY+HCham7Jw8cAB8f20/fVq78E/Pnv8Aff/zBqFGjiI2NRdM0PDw8uHHjBvHx8VSrVo2uXbvSqVOn++7mjI6GwoWjUSo/YIsRQTNwEaiEk5P5vlPwD3q4ublx7Ngx+vVTBAdXwx5HQt4xY4ZefiojKaVISUnJEkHtv5+n56+u0Wi0S0hL73Umk/2rGKTH0aijVJxc0W7tGzQDbcq1YXmn5Xa7hxBC2EOGB0qLBV56Sd+kk/6p7xTy5r3F2bMFcHO799mYmBh+++03pkyZwrFjxyhVqhQXL17E3d2dYsWKsWvXrtRrO3XqxLfffkvJkvqGlxdfhK1bbT09r9BrUrrj4pJCsWLFOHnyJADFixenc+fOdOnShaqPGIZbvXo1bdpMAlajaYZ0TcdrmsJkUnz33R6KFn34DvmrV6/eHo1MK3fu3JjNW0hK8nnqfjyKyWTl9dcj6d37iM2D2qNenx4ODg5ZZpTt7o+NRtsvTcgJrMpK/pH5uZV8yy7tGzUjXzb5kuENhtulfSGEsJcMD5QAN29Cs2awZ8/TBzaDwYrVepFixQLYt28ZhQsXfuC1SilGjBjBN998A4CzszMGgwEHBwfefvttZsyYwY0bN1BK4evrS4MG7zBuXO+n69gjWSlU6Guioj7F1dWVatWqsW3bNhYvXkz79u0f+kqlFJMmTWLw4MG4urpSter/2LFjAPB030ejUZ+KX74cWrR49PVKKeLi4lLD5cWLFzl//jwXL15kypQBxMTY82SOFGAW0Ou+z2bGKNujXuPo6HjP0Z4i+3t/7ftM3j3Z5scugj5CeXbQWbzySZ1JIUT2kimBEvSaiv37w6xZ+u7iJ61PWa5cBKdO1aNgwUTc3d3ZuHEjBe/eTXKXiRMn8v7779OlSxfc3d35/vvvMZlMpKSk0KhRI8qWLcvMmTP58ccfWbduHX/84YfZPBD7TN9ayZs3gpkzd9OqVSucnJxo164d27dv5+DBg7i7u9/3VWazmffff58pU6YQGBjIgQMHyJMnD4MGLaFrV7hw4cm+h5qmKF06ha+/Poun5yVu3rxJTEwMMTExqR8/7Gs3b978zyaHA4D9FjiaTFbatYth5Mgb9wS4O+vbhMgI9pr2NhlMtCrXiuUBMt0thMh+Mi1Q3rF6Nbz3Hpw6pY+WPXjNouLOhg8XF8iT5yBOTmFMmfICPXvWw8vLiw0bNuB219y3Uir1zO6+ffsSHh7Ohg0b+L//+z+GDx/OypUrmTJlClu3bgWgVatWTJs2jXbt3AkJefA53emlaXr5pLx59c+vXr1KlSpV8PX1ZdWqVfeEo5s3b9KxY0fWrVvH+PHj6dChA++88w6RkZGMHDmSy5djmTu3LBs2VCA52QGwcP8NO+bbX78OjAdGAmmndI1GI/ny5cPV1ZXcuXOnjrLdWUuYmJhIbGwsN27cICEh4a5XrkQvjWSfqVSTSd8g9emndmleiCfSZ1Uffgn7xaajlA4GBw70PUCFQhVs1qYQQmSUTA+UoI+sbdwIM2fqayvPnv3vFf+GybtehcGgsFqN+PjEEh7ejuefv8H69etxdXXFbDbTu3dvZsyYQZ8+fVi+fDkWi4Xff/+dpk2bpmnp4MGDtGrVisjISJQyALewWu17Lu7EifsoVep86ghgSEgIs2bNomHDhnh5eaWOBF69epWTJ09iNpvRNA3rQ4Yhc+UqjNXagcTEF3ByakRSUjHAgKZZcXWNomTJi1SpEkmDBpdxc8uF2WwmLi6OmJgYoqOjuXLlChEREZw7d46zZ88SHx+f2raLiwslS5a876NUqVL8/HMxvv5aw2Kx30jhqlX6GeFCZLZbSbeoNKUSkbcibRYqv2v2HYH1bLpjUQghMkyWCJR3JCfDZ5/BqFH6KN7jTuEajWC1KhwdJ1KjxjL++GMBvXr1Yu3atbz66qv88ccfNGrUiN9//x0PD4/7tjFz5kx69OjBxx+P5ptvhtjwXT1IR2AhoB/36OrqSnJyMrGxsdSqVQt3d3eSk5PZsmULjo6O9OzZk3LlyqWOHi5YsIB169axa9cuXF1dyZs3LyaTiSZNmpAvXz4WLlzIuXPnOX36HOfPn+HcubOcPfvv4/z585jvGg52c3N7YGAsWbIkhQoVuu+08s2bN1mxYgWTJh0lJOQru323DAa4dAkeslRWiAy1/9J+GsxoQHxKfLpCpYZGpyqdmN1uNgZN1twKIbKnLFOjIyEBXnkFNmzQ6z4+SczVN6RoJCe/x+7d1XnuuWpYLLeoWrUqy5Yt49NPP2XEiBEP3dn6+uuv06dPH5ycHnyyjm0Z+eSTTxg+fDguLi5omkZsbCze3t5omkanTp3o0aMHNWvW5I8//rhn09GBAwdYvHgxhw8f5syZM5w9e5ZTp06xZcsW8ubNi4uLS5qyMh4eHqnhsHbt2vcExrx35t8fQ3x8PKtWrWLBggWsXr2apKQkypWrgMHQH6vVHVsvFTCZoE0bCZMia6nuXp0t3bfQfE5zridcf+JQqaGhUHT37s60ttMkTAohsrUsMUJptULbtvDnn0++OedeFmA9RuOrFCyYn3nz5vHiiy8+Rh+svPTSSxw5corLl09j16MwgICAOcyf/yYffvgho0ePTt0NvHPnTl544QUAXn75Zbp160ZkZGSa0cWzZ89y7dq11LZMJhNeXl7ky5ePAwcO0LdvX3x9fVPDYvHixfVTPtIhKSmJP//8kwULFrBixQri4uKoUaMGxYsXJzQ0lIsXL1Ku3DROnOiVrjJGD7Jhg17KSYisJjo+mgFrBjD/n/mYNBNm9ejitQbNQD6nfPzU5if8K/tnQC+FEMK+skSgnDjR1uc0KzTtAxo23Muff/6Js7Pzfa9KTExk48aNLF++nJUrVxIZqZ9O4eBwhpSUkrbs0D2CgyOZP/87xo0bR40aNfD19eXs2bMEBwcT858Dz++3fjEqKopx48YRFhZGtWrVMBqNfPTRR8yZM4eIiAib7HpOSUlhw4YNLFiwgGXLlhETE0PVqlVp1aoV169fZ8GCBcTFxdGpUyc+/PBDypevTtWq+olItqrfaTTCq6/CkiW2aU8Ie9lyZguTQiax7OgyrMqKyXB7AkjpJwCZrWYUimJ5izGg1gDe8XmHQrkKZW6nhRDCRjI9UJ4+DRUrwn+Oh043BwcrmlaFZs3KsHTpUhwdHQGIiopi9erVrFixgj///JP4+HgKFiyIq6srly5dIj4+HoNhNkoFoJS9VgREA2n/IcmbNy+Ojo5cv34df39/QkJCsFgsbNmyhRIlStwTELdu3UqjRo04evQozz//PAA+Pj5UrlyZWbNmPXXPLBYLW7duZf78+SxZsoTo6GjKly9PQEAANWrU4I8//mDu3Lm4uLjw7rvv8t5776U5zWfXLnjhBVuMNOthMl8+OHoUihRJf3tCZISrcVcJjggm9GIo52POY1Zm8jjkoVrRavgU86GGew2MBiksL4R4xqhM9v77SplMd1ZN2u5hMin1yitnlaOjo2ratKkaOXKkql+/vtI0TQHKzc1NOTs7K0A5Ozurl156SX311VeqRYsWytOzj837c+ehaWbVsOEBtWrVKnXw4EEVExOjfv31V6VpmjKZTGrNmjVKKaWOHDminJ2dVf/+/VO/V1arUiEhSn33nVIvv3xdQagqUyZO1amj1JtvJih4V40Zs+iJfw8sFovasWOHGjhwoHJ3d1eAKlmypBo6dKgKCwtT69evVy1atFCA8vLyUmPGjFE3btx4YHszZyqlaen7PhmNSrm4KLVr15P/mRJCCCFExsrUQBkbq1SePPYJbnqoTFKFC5dR6HWHlIODgwKUk5OTaty4sfriiy/Uli1bVGJiYmqfVq9ercCg3NziFFjt0q8//ghPvd/mzZtVgQIFVMmSJZWrq6uqUqWKioiIUEopNWnSJAWo1avXqhkzlKpaVX+9waCU0Zi2b0ajRYFFaZpVtW6t1NatD//eW61WFRoaqgIDA1Xx4sUVoIoVK6YGDRqkdu3apZKSktScOXOUt7e3AlT16tXVnDlzVHJy8mP93v7+u1JOTk/3nwWjUanChZUKDn7iP1JCCCGEyASZOuW9Zk1G1BVsi8GwBqvVSpUqVRgzZgxlypThypUr92x0OXv2LOfOnSMuLg7oCfxi054YDFacndeRmNiaHj16ULlyZYYOHUqDBg1YvHgxly5donnz5hiNRtatW8dzzz1Ho0ZvExzcl5SUOo99opDRqK9h7NsXRo+GPHn+fe7QoUPMnz+f+fPnc/LkSQoXLkyHDh0ICAigfv36xMbG8vPPPzN+/HguXLhAixYtCAwM5KWXXnridZnh4dCtGwQFPapove7ONV27woQJUKDAE91OCCGEEJkkUwPll1/CF1/YbgPHf2mamapVV1Kt2lL27t3LP//8g8FgSFMc/H71F//66y/27dtP+fJn2bXLEbPZFruWLTg7J7N58yWCgpbz8ccfk5CQQPXq1fn7778pVEhfU3n+/HmaN29OdHQ0X3+9jfffL0dCgpWnqfBkMEC5cvDzzyfZvHku8+fP5/Dhw+TPn5/27dvTsWNHmjRpgslk4sKFC0ycOJGffvqJhIQEOnfuzAcffEC1atXS9a6tVli3Dn74Adau1T83GPTQC3qAVAqcnKBLF+jXD3x80nVLIYQQQmSwTA2U/v767l1bbOC4PwtOTmvx9v6KkiVLEhcXx5o1a2jWrBnfffcdpUqVIl++fPe86s6Gl2XLQujXrxZXrz56dO1hbi/bxNn5DRITl+Hh4UFkZCSNGzcmKCiI3LlzM2LECPr27YujoyPR0dE0bPgRhw9PxmBwwmpNT6A1A6fJnbsZr7/egI4dO9K8efPUTUr79+9n7NixzJs3j1y5ctGnTx/ee+89PD0903HP+7t5E/btg7174fp1PVgWLaoHyKpV9VAphBBCiGwoM+fbW7a03/rJO4+mTdPec+bMmUrTNNWvXz9ltVrv2y+LxaK8vLxUv379VHi4Up6e+rq+p91cYjIptWSJUidPnlSlS5dO3RhUrlw59emnn6o333xTGQwGVaZMGTVv3jx17ZpFubtbFJht8j0wGCyqbVuzuvN2rVarWrdunWrevLkCVPHixdX333+vYmJi7Pw7LoQQQohnUaaOUL76KqxYYd97uLvvoWPH2RQrVgxPT088PT3ZsWMHn3zyCe+//z7jxo2779rAwMBAZs2axcWLF7l2zUTfvrB0KY+9jhH04yPLl4c5c8DZ+RBt2rQhOTmZ5cuXk5yczJQpU1i0aBEmk4mXX36Z6Ohotm7dSqFCS7l27bV0jkzea/ZsM0rNY8yYMRw4cIAaNWowZMgQOnTogIODg03vJYQQQoicI1MD5cCB8NNPkJJin/Y1zYyn5xry5h1GREQEN2/evOeaggULUrNmTby8vFIDp6enJzdv3qRr164sWLAeN7em7NsHO3dCUJDi8mUN/UQejbQn6igcHDRSUsDdXS/WPngwbNr0J/7+/pQpU4aVK1dSvHjx1FdcvnyZ6dOn8+OPP3L+/HnKlm3KyZN/YfuTehRG43ksllK0bPkygYGBNGnSxCYF0IUQQgiRs2VqoJw5E3r0sO89fvkFevbUP46NjeXixYtEREQQERHBggULWLVqFc8//zz58+cnIiKCyMhILBYr0BIYALRAD3cWNE2hadweOTSir4tUpKTEo2kJ+PkVonZtjUaNoGVLfdfylClTGDhwIC1btmTevHkPPDPbbDazevVqBg1K4syZdtjrmPWffjpD796l7NK2EEIIIXKmTA2UJ07ou5Dt6ehRuH2QzH2NGTOGIUOG8L///Y8RI0Zw7JiFrl0thIY6omkWlHrUiRYpgAMGw58899woSpVyxNPTEw8PD4KCgti0aROdOnXiu+++w8PDI/XM7gcpVgxunwBpcyaTXpJnxgz7tC+EEEKInCnTj15s1Ah27LBH6SAzLi77mThxL127dn3ged4A33zzDf/3f/9Hp07LWLr0NSyWJ9/VbTBYMBpTqFNnFImJqzh06BCJiYlprjGZTHh4eKSZWr/74eRUgnr1yjzNm31szz+vh2whhBBCCFvJ9EC5dCm0b2+ftmvX/o7du4dSuHBhBg4cSN++fSlYsOB9r23ffglLl76Ovi7y6dYVGgxgMChKlOjL1atzmTdvHjVr1kydYv/v4870e0xMzO0WmgN/PdW9n6SP8fFSokcIIYQQtpPpgVIpePll2LgxfbUe72Yy6SOf69fDiRPhjBs3jhkzZqBpGm+//TaDBw+mbNmyqdfv3Qu1aqnbo6Tp3aRiQdOSWbv2HC1aPHiu3WKxsH37dubPn8+iRYuIjo7Gza0P169PTef9H+3KFShc2O63EUIIIUQOkemBEuDCBahUCeLi0l/k3GCAXLngn3+gRIl/v3716lWmTp3KDz/8QFRUFO3atSMwMJCaNetSowYcO2a7aXejUVG/vsamTXrpoDuUUgQHBzN//nwWLlxIZGQkJUqUoGPHjgQEBBAeXoOAAPvvuo6KggcM1AohhBBCPLEsEShBX0fZtKleQuhpg53BAI6O+lF/DRrc/5qEhARmz57N2LFjOX78OGXKjOXUqcGkf2TyXosXQ7t2ir1797JgwQIWLFjA2bNn8fDw4I033iAgIIA6depgMBiIi4tjxoxTDBxY1eb9uJuDgx7cpeykEEIIIWwlywRKgF279GLn0dFPHiqNRihQAP74A+rVe/T1VquVlStXERBQk8TEYti67qPBoPDyOoOTUwvCw8MpWLAgHTp0ICAggBo1anDw4EH27NmT+jh69ChWax4g5pFtp0eNGhAWZtdbCCGEECKHyVKBEvQzngcNglmz9LWQj1pXeeearl1h4kRwc3v8ewUFPV74TI9XX/2ABg080TSNffv2ERoaytGjR1FK4eTkRPXq1fHx8Ul9+PtXJzzcPtPeJhP06QOTJtmleSGEEELkUFkuUN7xzz8wdaoeLG/d0r+madwuLK5/nicPvPUW9O0LVao8+T3GjoWPPkr/us2H6wLMvSc8+vr6UqlSpXuOPBw9GoYPt1+fQkPBx8c+bQshhBAiZ8qygfIOq1UvgB4Wpk+FK6VvKKlZUy+K/og64Q/VuTMsXGiPGpg6g8FM06ZHGT3act/weD9RUXpxc1sfR2k0QvXqsGePbdsVQgghhLDP+X42ZDBA+fL6w9bOn7dfmNSZKFCgCtWrP/4rChWCTz/VH7aM+larviRACCGEEMLWbLsTJZuxVd3Lh3mawDp0KFSrpq95tAWDQV+X+sILtmlPCCGEEOJuOTpQurmlrRNpawYDuLo++escHGD5cn20Mr2h0mCAF1+Eb79NXztCCCGEEA+SowOlt7e+ttBeLBaeaLr7biVL6rU5vbzSt060VStYsUKOWhRCCCGE/eToQOnra99pb6XSt6O6TBk4eBD69dM/f9zRSqMRXFzgxx/1MOni8vR9EEIIIYR4lCy/y9uebt0Cd3eIj7dP+x4ecO6cbdZC7tkDP/wAc+dCcrIeGu9M12uaHozv7IDv21evN+npmf77CiGEEEI8So4OlAADB+ojebYeqTQY4Msv4eOPbdtuTAyEhOj1JE+d0ssL5cqln4Xu66uXU3J0tO09hRBCCCEeJscHyjNnoGJFSEy0XZuapm/4CQ/Xj4MUQgghhHiW5eg1lAClSsGYMbZtUyn45RcJk0IIIYTIGXJ8oAR9zWG7dunbTX23/v3h9ddt05YQQgghRFYngRI9SM6dC6+8kv66lO+8IyfSCCGEECJnkUB5m5MTLF4Mo0bphcWfZGe2yaRvjJk2DX76yXYjnUIIIYQQ2YFEn7sYjTBkCOzfr0+B3ynNc79waTLpzzk6wptvwpEj+uikPU/eEUIIIYTIinL8Lu+HuXRJH7XcvVsv1XPtmh4YCxeGOnWgdm3o0EE23wghhBAiZ5NAKYQQQggh0kWmvIUQQgghRLpIoBRCCCGEEOkigVIIIYQQQqSLBEohhBBCCJEuEiiFEEIIIUS6SKAUQgghhBDpIoFSCCGEEEKkiwRKIYQQQgiRLhIohRBCCCFEukigFEIIIYQQ6SKBUgghhBBCpIsESiGEEEIIkS4SKIUQQgghRLpIoBRCCCGEEOkigVIIIYQQQqSLBEohhBBCCJEuEiiFEEIIIUS6SKAUQgghhBDp8v8Iy7kauGHRcAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -481,9 +465,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "[{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},\n", + " {10, 11, 12, 13},\n", + " {14, 15, 16, 17, 18, 19, 20, 21, 22, 23}]" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "communities" ] @@ -506,7 +503,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -516,9 +513,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3RUdf7G8fedmQxJgNBLAigISO8d0SAC0jM0BQVUUGmCu6uo6CqoYAFXQUQFVBQs/KRIL6FJ6JEmIEhEeohAQmghdeb+/hgSiaACmckk8Xmdk0My9873fmZ2z9lnv9UwTdNEREREROQWWXxdgIiIiIjkbgqUIiIiIpIlCpQiIiIikiUKlCIiIiKSJQqUIiIiIpIlCpQiIiIikiUKlCIiIiKSJQqUIiIiIpIlCpQiIiIikiUKlCIiIiKSJQqUIiIiIpIlCpQiIiIikiUKlCIiIiKSJQqUIiIiIpIlCpQiIiIikiUKlCIiIiKSJQqUIiIiIpIlNl8XkNvFx8PcubB1q/vn1CkwTShaFBo1cv/06AEhIb6uVERERMQ7DNM0TV8X4W1nz8LChfDDD7BtG8TFgcXiDnmNGkGTJtCpE/j733ibJ07AqFHw1VeQkgJWK6SlZb7HZgOXy/17167w6qtQo4bnPpeIiIhITpCnA+Wvv8KYMfD11+7Q5+cHqamZ70l/rVAhePJJeOEFd+/inzFN+PxzGD4ckpKuDZF/xnalL/jVV+G5537/W0RERCS3y5OB0uWCSZPg+efB6bzx0Ge1QuHC8OmnEBZ2/XaHDYMPP7z12gwDOnSAOXNurkdUREREJKfKc4tyUlLgwQfhX/+C5OQbD5PgDp/x8eBwwOjR7t7Iq40YkbUwCe42ly2DBx5wP09EREQkt8tTPZQuF/Tq5V4kkz53MSvGjIGXXnL/vmgRdOmS9Tav9t577uArIiIikpvlqUD5wQfuIWlPWrcOateGO+90L+bxRFBNly8f7N0LlSp5rk0RERGR7JZnhrwPHXIPSXuS1Qp9+7qHuT0dJsE95D1+vGfbFBEREclueaaHcuBA+Oyzm5szeSMMw71QJz7es+2m8/eHmBj3M0RERERyozzRQ3n+PMyY4fkwmc5bYRLcWw8tX+699kVERES8LU8EysWL3cHMG7zdf+vnB9u3e/cZIiIiIt6UJwLltm3uYJYbpabCzp2+rkJERETk1uWJQLljx7Un4HiWd7spz571avMiIiIiXpUnAmVuD2Q6hlFERERyszwRKC25+FNYLFCunK+rEBEREbl1uTiK/a5sWff2Pt7jvcYNAxo29FrzIiIiIl6XJwJlgwbuTchzI6cTmjXzdRUiIiIity5PzN5r2tR7e1CmMwwXpun5/H377XDPPb//7XRCVJR7K6GjR92fK39+qFnTHZxLlPB4CSIiIiJZkicCZZs2ULIknD7tjdadwG5Ms57HW7ZYYPhw979Hj8KUKe6f9EVGNpt7SNzlcgdNgEaN3OeV9+zpPmVHRERExNfyxJC3nx8MHeqtxTlWypf/gjJlfgI81w1qtZpUqgRPPgmvvQaVKsG4cZlXrKelubdDSg+T4O657NcPqlaFiAiPlSMiIiJyy/LMWd4XL0K1au5zsV0uT7WaRs2aZ/nxxxKcPGlQrZpJQgKYZlYX6ZgYhsnChSb//a+V3btv/kQeq9UdNF96CV5/3duLkkRERET+XJ4JlABr1sB993mmLcNw4e9vsH+/we23u19buxbuvx/S0jwxn/JpAgNfJDm5JE5n1tLg00/De+8pVIqIiIhv5Ikh73StWsFzz/3mgZacmKaLL7+8nBEmAe69F955ZzemeQHDcP752/+EzQZ2O8ycCZUqjeby5aJZDpMAEye6516KiIiI+EKO7aFMTob9++H8effcyNKloWLFv54neeTIEVq0aIHLNYRTp0ZiGEam+Yc3wmYDm82F1dqT+vXPsGLFCgICAgA4deoU9erV4/bbG1Oy5DwWLrTgnlf5d2ub3Pc0aQIzZsD8+fDCCzc/zP1XAgJg3z4oX95zbYqIiIjciBzVQxkb616YUqcOFCgA9epBy5bubXXuvBOCgqB1a5g1C1JSMr/3t99+o3Xr1vj7+7N9+2Ns3WpQuXL61RtJle7DwFu2hAMHLISHP8P27dt54IEHSE1Nxel00rt3b1wuF/PmfcTLL+8E7qFatZ8y3muxuMMopFz1TBewCn//BwgLG0dy8in++1/PhklwL94ZMcKzbYqIiIjciBzRQ5mYCK+8AhMmuBfU/NWiGovFfb1YMfdQ70MPwblz8bRs2ZLY2Fg2bNhAhQoVAHfo/M9/tjJ5sgE0vtJCKpD+kS24exdN8udfR716m4mIGJkxF3HFihV07tyZBx54gNtvv5233nqLVatWce+999KzZ0927txJ69atWb58IzNm7GbHDoM9e07x2WefAfEsXfoGDRtaeO21p5k8eTJ2u52UlP9gmmPwRpa3WOD4cQgJ8XjTIiIiIn/K54Fy1y7o3h2OHLm51dmG4e7l69gxjdOn2/PrrzuIiIigRo0ame67//77iYmJIV++KmzbZlKuXBeOH79E5cqVOHZsGzVqJBEUdIAePe7h6aef5vDhw5S76nDtb7/9ll69emGaJmPHjuXFF18kKiqKqlWr8uGHHzJmzBh69uzJe++9B0BUVBRVqlQB4MSJE5QpU4bz589TpkwZhg0bxtSpIzl7tiDeOM7RanWv+B450uNNi4iIiPwpnw55b9kCLVq4N/W+2a1+0mPwkiUG27e/x6xZ4deEyZUrVxIeHs6ePXtISzvI8uVPsH17e2AoHTsuIzn5JcLCbGzbtpSHHnqI/Pnz89FHH2Vqo0mTJhlzKJOTkwEYN24cpUuXplatWkRHRxMWFpZxf/q9ADExMQAUKlSIPn36MH36Us6eDcJbZ4ObJmzY4JWmRURERP6UzwLl4cPQti0kJXHTC2cyswLVGT26QUY7R48e5dFHH6Vt27YYhsFnn33G9u3buf/++0m7ckZjyZIlAahSpQqXLl3i4MGD9O/fn6lTp5KYmAi4A2TPnj0pUaIEL7/8Mq+99hqvvfYaM2bM4N///jfLli2jaNGitGjRIqOa6wVKgMGDB3PqVJmsfNC/5XJBZKRXHyEiIiJyDZ8cvehywaOPuudOZi1MprdnYdMmeP31BC5ceJnJkydTqFAhihYtSlhYGI899ljGvamp7gU0wcHBABQpUoTAwEDWrVvH0KFDmThxIt988w39+/fnmWee4ccff2Tjxo00aNCApKQkRo0aRWBgIAMHDuSuu+6iU6dO2Gy/f43pgdIwjEyBsk6dOlSsGMqvv2b98/6V2Fj39+udU4NEREREruWT2PHFF+5jA9M8d5IhAK++6sfUqeG8/PLLfPLJJ5w9e5Ynnngi0z0pV5aHly5dGoDTp0/TrFkz1q1bR6VKlejYsSMTJ07k66+/ZvLkyUyYMIGGDRtiGAbPP/88NpuNxMREvvnmG/bu3ZtpuBt+D5QFCxbMCJTJyckcOXKEqlVr4F717V2eCOkiIiIiNyrbeyhNE8aP/31RjScZhpX+/SP5738D6dWrF9WqVaNp06aZ7knvoSxYsCCFCxcmOjqa0NBQ/ve//+F0Ohk+fDht27ZlwIABPPTQQwwaNCjjvZMnT8bPz4927doxdOhQ7HY7lSpVYv369cTExBATE8PJkyexWCwkJyczceJE3n//fc5mHND9ENDJsx/6D+x299nmIiIiItkl2wPl5s3uDcu9wTStzJwZyMiRcXz33Xe88cYbGH84jzC9h9Jut1OmTBmio6Pp0aMHr7zyCrt376ZJkybY7XasVisPP/ww33zzDTExMRw9epQpU6ZQokQJDhw4gNPpxOl0UqdOnYy2/f39CQ4OxjAM7HY7hQsX5oknniA4OJiQkBAuXixPjx7e+ezpatb0bvsiIiIif5TtgXL1avf2Nt4alj13Dt59NxyXy0Xfvn0zXjdNk7Nnz/Lzzz8DsHz5clJSUli6dCnR0dEYhkGbNm04d+4cTqeTlJQUOnbsCECBAgXw9/cnJSWF+vXrU6ZMGQ4ePEjx4sVJSUnhq6++4q677qJQoUIYhpERIK1WKyOv2sMnLQ3sdpOUFO+s8rbZoEkTrzQtIiIi8qeyfQ7ltm2eH+rOzGTq1B3cdtttDBo0iGbNmlG+fHkCAgIoXrw4vXr1AuCVV17h6NGjREdHc+7cOUqUKIHVasXpdDJw4EDy58/PE088wcWLF4mLiyMgIIC+ffuycOFCmlxJbevWraNs2bIMHjyYCxcuZPSGBgQE4O/vn2lRDrgDX7duBobh4cmjV6Sluff0FBEREclO2R4o9++/+T0nb04qFy6Uwul0kpCQQNWqVXnooYcYP348s2fPZtKkSQDs3r2b5557juLFi7N69Wo6d+7M6dOnGTx4MB9//DGDBg1izpw5WCwWvv76a44fP87zzz8PwIIFC2jWrBnVqlUjPDwcq9VKmzZtOH36NOAOlPny5eO3337D9YcPO3QomKbnO4YNw33WeatWHm9aRERE5C9l+5B3UpJ327dYLAQEFOPXX3/FarVec33VqlUABAUFUaZMGWJiYjhz5gyLFi0C4PHHHwdg6NChvPvuu8ycOZMJEybQpUsXatSoweXLl1mxYgWjR48GICQkhJUrV9KiRQvat2/P2rVrCQgIwM/Pj7S0NOLi4ihRogQAiYmJLF06BrgfaAZ4bvWMacLo0WB4ZzRdRERE5E9lew/lVft+e4XL5aJWrUrXDZPw+6IcPz8/ypQpg9Pp5KGHHiIlJQU/Pz82b94MQIUKFejSpQtjx47l559/zpgLuWrVKhITE3E4HBltVqpUifDwcA4dOkSXLl3Ily9fxvPTh70XL15MxYoVefPNN7BYBmCxuPDUFkI2G3TsCA8/7JHmRERERG5KtgfKGjW8vem2H2FhVf/0avq2QemBEtwh8auvvqJRo0ZERERk3Dts2DCOHz9O7dq1M7YfWrBgAVWrVuXOO+/M1G7t2rVZvHgxkZGRREVFZby+c+dOOnToQOfOnYmJiaFevXrs27eYDz9Mxf31Z21Cqc0GpUvDJ5+od1JERER8I9sDZcOG3g4+Bu3alfjTq1dvG3TkyBEAevToQYcOHQgNDWXdunWYf1g1lD9/fgCcTieLFi26ZjPzdHfddRfz5s0jLi6OH3/8EYABAwYQHh5Ovnz5eP/999m2bRtVqlRh4MACNG/+Oe5AeWuLdKxWCA6GdevcoVJERETEF7I9UN5/v7dPcjnN+PGPEB4ejvM6D0rvoTxxIo7HH/8EGEJCwrOMHg3x8X05daoyO3f+AsBbb71FuXLl2LJlC4cPH2bz5s2cOXPmTwMlQLt27ahSpQonT54E3CH07rvvZv/+/QwbNgzLVd2z775bDWiDxXIGi+XGeyrTm+jSxb1q/o47bvitIiIiIh6X7YGyQQOoV89bw95OQkP3sX37Vu6//35uu+02nnvuOfbu3Ztxx/79hYAvqFWrHPHxS4FJrFjRkDfegKlTqwLradiwEi1bxrNqlcmYMWMpXLgwkydPZsGCBZQqVSpj26A/Onz4MGFhYRl7XYJ7LuaaNWuoUKHCNfd///33wBrq1XuIESMMChVKv5Jyzb2G4R7eBqhVC+bMgXnzoGTJW/meRERERDzHMP84vpsN/u//4Mp2kB5kYrGkcPx4PoKDTbZt28aMGTP45ptviIuLo2bNVlgsH7N7d2Uglb9bYW0YTkzTSmioSdWqbzNr1lsUK1aM++67j6lTp2a6NykpifHjx2eczJOYmEhQUBBFixblyJEjvP/++wwbNizTe3bs2EHTpk1p06YNS5cu5eDBg4SEVOStt6J47bXVQFPy569BQkIyxYsHUr++lUaN3L2SjRt79psTERERyRLTB1wu0+zQwTRtNtN0b3jjqZ9BZt++fc24uLiMZyUnJ5tjx0aYfn4XTUi96TZtNtPMl89pGkZ3EzAXL16c6bMsXbrUrFixomm1Wk1/f3+zaNGiZvv27c2qVauaffv2NUNCQkzAnDlzZsZ7EhISzKpVq5r16tUzz507ZxYtWtR89tlnTdM0zXHjxpk2m82sUqWKuWLFChMwjx49mj3/wYiIiIjcgmwf8gb38O20aVC4sHthSdal4ee3hk8+aczChQupUaMGCxcuBGDzZjuvvno3TmcBbmXbzbQ0SEmxYJrfAg/Q6srO4UeOHKFr16506NAh47jGsLAw9u/fT7169UhMTCQ4OBh/f3/69+/Po48+mrHX5fPPP8+RI0f48ssvKVSoEP379+ezzz4jMTGRjRs3UrBgQWrUqJGx9dAfN0cXERERyUl8EigBQkJgzRoICspaqHQvZtlKamoX1q9fx48//kiDBg0ICwujW7fhdOxokpaWtdN5fp8U8CWffLKNsWPHUr16db7//nsCAgKw2Wx89913zJo1i5IlSxIQEJARKGNiYvj4448JCwvjgQceYNy4cXzwwQeMHz+e6tWrAzBo0CDOnj3LrFmz2LRpE2lpaVSrVi1jAc/1FheJiIiI5BTZflLO1WrVgq1b4cEHYdeumz3j2wlYqV9/D7t3d+SDD95jyJAhnDt3jtmzZzN79hwGDChDWpoTz3xMC+Di6aeLYrGMoUyZkhw7doxHH32Ud999lyJFimTceXWgTExM5PLly3z99de0bduWF154gWbNmjF06NCM+ytWrEi7du147733OHPmDADVq1fPCJTqoRQREZGczGc9lOkqV4bISHjjDShQwP3aX+9T6d72x2aLplGjV7h48QG6d+/AE088wYIFCwgPD6djx47Y7d1JS2uFZzOzDdOsBjwJwPLly5k+fXqmMAmZAyW4T8ux2+0ULFgQq9VKVFRUps3PAYYMGcKePXuABsBLTJvWgd69GwPRtGx5O+3awcsvw9q1Nxu8RURERLzLJ6u8/0xCAsyaBd98Az/8ABcuZL5epgykpKzmtttW8eyz9ejd+0HAfdLNfffdB8CGDRvo1KkTLtcKLl9ujNPp6V3UXdjtxzlzpihBQQWve8f06dPp378/+/bto3r16qxZs4bDhw8zYMAAPv/8c8aNG8fFixfZuHEj5cqVwzTh//7PxcMP78HlqgOkYbFYcbl+r90w3FMD0tKgYkX4z39g4EBPzUEVERERuXU+76G8Wv78MGAArFoF587Bc899QOHC9/DTTxAbCydOwKuvRrFr13hatWpJ8eLFsdvthIaGZrTRokULZs3axMWLTbwQJgEspKTczn/+M5sTJ05c946AKweWFy5cGIBdu3bx9NNP079/fx55xL3pusVioW3btuzdG0fnztC7twWXq+aVFmyZwiS4eyXTrhyoc+gQDB0KzZrBVVteioiIiPhEjgqUV3Nv5B1D4cLHqV4dihVzv969e3cAvv76axISEkhJSWHOnDmZ3nvhQnUvV+dk+vSfue2222jdujUzZszg0qVLGVfTA6XNZqNAgQJMnDiRkiVLMmHCBADKlCnDqlWrOHOmBPXqGSxfnt5JfGPdjel9yjt3Qv367mFwEREREV/JsYES4OLFixQsmHlYuWTJktx333189NFHJCUl0aZNG1588UWSk5Mz7tm+HaxW762MNgwIDLyHadOm4XQ6eeSRRyhVqhT9+vVj1apV2O12ABITE8mXLx9Hjx7lyy+/zPRZLJZKOJ1rSEsLuuWe1LQ0SE6GDh1gyxaPfDQRERGRm5ajA+WlS5cokL5S5yoPPvggUVFRtGzZkvfff59jx47x4YcfZlzftSsWp9N7U0NN08qlS0UoW7Ysa9eu5fDhw7z44ots2bKFNm3a0K9fPwDmzJlz5ZSemjRr1izj/U4n9O4Nly7ZyOqiIZcLUlKgRw+4eDFLTYmIiIjckhwdKC9evHjdQFmtWjUAbr/9dqpWrcrjjz/O66+/Tnx8PHFxcaxfvwnwxvzJ3wUGFmLixIkAlC9fnpdeeokDBw6wZcsWWrZsCcAzzzyD1WolKSmJ06dPZ7x3wgT3yvb0OZFZ5XJBTAw895xn2hMRERG5GTk6UF66dOmaIW9w9/zZ7Xb27dsHwOjRo0lJSeGNN96gT58+uFznsNm8+dFMihQxWLZsGXv37s141TAMmjRpwujRowH3HMqQkBAOHjxImTJl6NKlC199NZfXX/d876nLBVOnQnS0x5sWERER+Us5PlD+sYcyJSWFGTNmcN999xEZGcmRI0coXbo0I0aM4L333mPFihUMGNDISyu806URHb0YgNq1a1OtWjV69uzJq6++yty5c5k3bx4Aw4YN46mnniIoKIgJEyZw6tQp+vSZz/nz3qtt2jSvNS0iIiJyXTk6UF5vUc6iRYuIjY3l1VdfJSAggG+//RaA+vXr43Q6qVWrFn37VvPy5t9+TJ8+jEceeSRj26K4uDg++OADevTowSuvvALAggULWLhwIRcuXCAkJITZs2cTGvohhuGdk29cLvjqK680LSIiIvKncnSgvF4P5aeffkqTJk1o1KgRHTt2ZNasWURHRzNgwACqVavG7t27sVp3cuWQGq/w94euXQMZO3YsTqczY/Py06dP07p1a4KCggCoUKECZ8+eBaBbt27cfvvtREQkY5re+9p//RWu2sFIRERExOtydKD846KcEydOXBnSHgBAr1692LlzJ126dMFut7N69WqqVq3KyJEjGDLExOKFT2ezwSOPQKFC7v0ke/TowaRJk3C5XEydOpVVq1bx+eefA/DII48we/ZswD3v86uvwjHN4p4v6iqmCXv2ePURIiIiIpnk6ED5x0U5n3/+Of7+/jz4oPvIxQ4dOuDn58euXbv49ttvCQ4O5u2332b16tVUqbKWoCAX4NnhZYsFnn3297+HDx/OwYMH+eSTT/j3v//NoEGDcDgcGIZBYmIipUuXBsA0TRo1auPRWv7M+fPZ8hgRERERIKubIHpQYiIsWeLeoPuHH+DkSZPLl3cxYUIhoqKgQQMX06bN4YEHHsgYUl62bBmpqamUKlUqY5/Hzp07c8899/DCC09gsbQGpni0zrfegkqVfv+7adOmNGjQgBEjRlC2bFneeecdDMMgICCAxMREihYtit1uJyYmhvr1PVrKn9L53iIiIpKdfB4o4+Lg7bfdW96cPw9+fpCaCu59JCtz5Ih75fKHHxrAFk6fPsfBgwAHeeyxx2jevDmbNm1i79691KpVC5fLRZUqVYiIiCB//q+AusAgsrovpWG4aN/ewvDhf3zdoEyZMmzfvp1p06aRP39+gIxAaRgGpUuX5tChQ+zduxpoleVa/o4354+KiIiI/JFhmt5dD/1XvvsOHn/cHSSdN3hSos1mYrVCsWLjCQz8lM2bN1K5cmWGDBnCoEGD6NOnD+vXr8cwDEzTZObMr1m9uhfTp2elUhd2+1qio5tSvHj+TFc2bdpEixYtCAwM5JFHHmHy5MnExcVRtWpVateuTZEiRVi0aBEpKSkAGMZBTLNiVor5S/nyuRfl2Hz+fxVERETkn8IncyhNE0aNgm7dID7+xsMkQFqaQXKywcmTz1G+/FaCgorTvXt3Pv30U2rXrs3WrVsxTZOwsDBsNhvHjh3m009h8mT36my48eNprFYTmw3uvPNrUlM78MQTfXC5fp+TefHiRXr37k3VqlVp1KgRU6ZMoVy5chQvXpzY2FjWr19PbGws5cqVo3bt2vz88888+ugdXgt7Fgs0bKgwKSIiItnLJ4Fy7Fh47TX371npH12zpjC9ezs5deoMp06d4sKFCxQrVoylS5cyb948hgwZwptvvkls7BmGDIF9+6BAgcVYLE4MAyyW6y3YcV75cWEYy/j00x959tlEIJUFCxbw4IMPMmbMGLp27UpwcDDHjh1j//79bN++HZfLRaVKlfjmm2+oUqUKTz75JN9//z1t27YFoEqVKgwYYHjsyMU/crngySe907aIiIjIn8n2Ie916+DKUdce9BQwmdq1a7N+/fqMRTtxcXFUrFiRfv368f777wPu87+7dx/EHXeM5PPP97Fjh41ChSoDBoULuzh+fB5FivxKSMh6nM4jREVFUaNGDXbt2pXxtICAACpWrMjevXsZNGgQzzzzDHfccQf9+vVj8+bNREVF0bx5c2rVqsUnn3zC66+/zqRJkzh9+jSmCbVqwf797gDoKYbh3sooJia9J1ZEREQke2RrD2VCAvTr5+lVyCbwDq1bP8nZs2cz7VtZrFgxRo4cyUcffcRB90oeUlJSKFIkjaeegkaNJlGrVk/27z/Fl18u4a67+uF09iQ5eSy7dy/hp59+AmDXrl3ky5ePLl260Lt3b1JTUzl69CjdunXjww8/pFKlSlgsFoYPH86hQ4dYunRpxqIcgODgYM6cOUNqaiqGAe+/7/RomAR3T+977ylMioiISPbL1kD5xRdw/PjNzZn8ewY2Wz7y5x/NiRMn2LRpU6arw4cPJzg4mJEjRwKQnJzMwYMHGT16NLNnzyYqKorg4GA6derE7NmzCQgI4JFHHsFisTBmzBguXbpEnz59SE5OZu/evUyfPp1ChQpx6dIlnnvuOQzj9xXbjRs3pkmTJrz//vvXBEqAU6dOERMTw+uvtwYm4R5azzqrFdq1c2+4LiIiIpLdsi1QmiZcGXX2uLQ0gxUrShMcXIVZs2ZdeZ5JdHQ0K1eupH79+syZM4fixYsTHx/PjBkz+OCDD0hISKBevXrMmTOHX3/9laJFizJkyBAmTZpEy5YtiYiIwG6388UXXxAaGsqhQ4dwOBzExcVRrlw5+vbtm3G0Yrrhw4ezatUqUlNTrwmU8+fPp27duhw4cIDJkwOB1VgsWZtxYLVClSrw9dfuYW8RERGR7JZtgfKnn+DAgawtwvkrSUkGwcGPM336dDp06EBwcDBly5YlLCyMjRs3UrBgQQICArDb7YwePZqjR4+SlJTEk08+Sffu3Tl9+jS//fYbDocDcJ+9vWbNGuLj47FYLHzwwQcALF++nHr16mVc69atW8aWQAA9evSgdOnSHD16NCNQlihRAoBhw4ZRt25ddu3ahdN5GT+/HnTqlD72ffNj4IbhXtUdEQFFimThyxMRERHJgmwLlNu2efsJKezYYXD58mViY2N5/PHHmTdvHl/MsuMAACAASURBVEePHuX06dPMmTOHEydOkJaWlrHROEDlypUBWLBgASVKlMg4cadr166kpaWxaNGijPusViv58+dn586djB07ljlz5rB582YGDRpE+tomu93O4MGDOXz4MBcvXiQ6OpqHH34YgLCwMJYtW0bJkiXZuHEjDRvWZO5csFoHYBiXcYfKv0/cVqt7a6A334QNG6BYMQ9/lSIiIiI3IdsC5Y8/uk/B8R4/mjYdSvny5alTp07G1j633XYbhmHQtm1b2rRpg8vlwmKxEBUVBcCdd94JuIejO3XqhPXKiqGQkBCaNWvG3LlzARg1alTGKTxffvklM2fOZMKECXz88cdMnz6dcePGZVQycOBATNPk0KHzVK36Dtu3D8Rq3cvq1TMoW9ZCnTqweHEYBQr8h127juF0foZpVuDJJ48SEnLVJ/L7/SddkSLw3HNw8CA8/7z2nBQRERHfy7Y4cu6c94a73QwSEvzp3bs3H3/8MZMnT8Zut2e6Y+zYsaxcuZJNmzZRpUoVChUqRPHixYmKiuLnn3/m7bffznR/9+7deemll1i2bBnjxo2jc+fOrFixgu7du1O4cGF69OjBhQsXGDFiBC+88AKVK1emW7duXLhQDD+/Lzl3rhtgx2YDp9Pg0iX3KTYxMQDdWbnSj7VrXcBnNG68gilTKrB581aaN3+UUaMWk5JSkaQksNvd54c3bAg1ang7mIuIiIjcnGzbh3LAAJgxA69t6g1Qty588cVu6tSpw5IlS+jQoUOm65cuXaJgwYIEBQXRpUsXDhw4QGRkJOPHj2fUqFHExsYSGBiYcf/hw4e54447KFasGDVq1ODdd9+lYcOGfP/994SGhrJ+/Xo6depE5cqVKVu2LCtWrOSxx7YyZUplXC4LcKPJL5V8+az8738WLl0az2uvjebcuXP4KTmKiIhILpBtQ96lS3t3FbJhuLDbz1C2bFmqVauWsdr7aumLZy5fvsy6desyzZ9s27ZtpjAJUKFCBYoUKcL58+eZMWMGdevWpXDhwqxbtw6Au+++m3Xr1nH8+HH27YvCZpvJRx/VxOWyc+NhEsCP5GQLTz0FkyY1oGnTFgqTIiIikmtkW6CsXx9SU73Xvmk6iYycTLFixTh16hTffPMN48aNY8OGDSQkJACQeqWAsLAwjh8/TnBwMKdOnWLTpk0Zq7uvNmvWLOLj47HZbJQqVQqr1crdd99NRERExj1169ZlzZq1HDkykkuX0tu49eQcHd2S+Pi3vDw9QERERMRzsi1QNmni7Sf4MW3aAGbOnEnHjh1JS0vj5Zdf5u677yYoKIjatWszfPhwAGrXrg3Ajh07WLx4MYZh0KlTp0ytHT9+nMGDB9O+fXuSkpIIDw8HIDQ0lE2bNmX0dh47doyuXWeTmtoXz3ydFnburMfXX3ugKREREZFskK1nebduDd9/7+mTctxKlYITJ35f9VyvXj0qVqzIf//7X3744QciIyPZsGEDP//8c6b3lSlThvz58/Pdd99RpUoVrFYrLpeL1q1b88svv7B7927uuusuGjduzOeff862bdto1KgRGzdu5OzZs/TtO4Lz5yOBApimZ8b0DcOkYEGDAwfcUwVEREREcrJsPXpx2DDvhEmLBYYOzbyFTq9evVi6dCmVKlXiiSeeYNq0aXz33XcAPPbYYwAEBgYSHR1NVFQUNWrUoHDhwrRs2ZJWrVqxdu1a3nrrLQoXLkz37t1ZuHAhqamp1K1bl4IFC/L888/TuXNnihd/FYvFc2ESwDQNEhK8d7KQiIiIiCdla6Ds0gVCQz27d6LFAiEh8O9/Z379wQcfJDExMWNjcvh9DqXVaqVkyZIMHjwYgKlTp7Jq1SpeeuklbDZbxqKbPn36ULJkyYxTcd5880127tyJxWJh48aNvP32BM6e7YnT6fnVRk4nfPwxJCd7vGkRERERj8rWIW+AI0egenV3UHLd/GmD17V6NbRqde3rTZs2xd+/CQ88MJHt2+Gnny6wdet2SpbMh91+gMqVL7B58xhq1izP1q1bSUlJoVGjRhiGweLFi9m9e3fGcHl4eDiuKwUbhoHFYqFv3y/4/POHPfMh/sSKFdC2rVcfISIiIpIl2R4oAZYvh86d3YEyq6HSan2W77930KJFi4zXnE748kt46aXTREeXxDBMrFbjqj0wXRiGiWlasVqTcTqnMnFieY4cWcuHH37IDz/8QK1atTLaS0lJoVmzZuzYsYMGDRpQoUIF5syZg5/fy6SmvoK39oe3WuH112HkSK80LyIiIuIRPgmU4A6V3btDSsrNb3ZutYJpmrRs+R1r1nTHz8+PJUuW0KZNG6KioF8/2LoVLBYTl+vvh6MNw4lppgIjeOedO3jmmd/Hzw8fPkyvXr3Yvn07TqeTdevW0bRpU4oUKULlytvYs6fqDT3jVlgs0LMnXGdLTREREZEcI1vnUF6tXTvYv989pxLcIfHvWK5UW7kyREYarFrVlWHDhpGamkr79u155ZXN1K4N27e777vRoGeaViAfMInvv/8XSUnu17/77jvq1avH6dOn2bhxIyEhIcybNw+73U6zZs04eTLBa2HSXb/7yEoRERGRnMxngRLgtttg5UpYssQ9TzD9JB2bzX1edfpPugYNYOZM+PFH9++GYTBx4kQGDhyI09mK119vSEqKeYvHO7ofvnQpOBxOnnrq33Tr1o377ruPnTt30qRJE7p27cq8efMwTZPQ0FDi42Oz/B38nRsJ2iIiIiK+5LMh7+s5fRp++AF27IBTp9w9dEWKQL160LAhlC9//fdFR7uoUCGZ1FQ74IkE5sJqHcN77xXhqaeewriSdNeuXUurVq2IjIwkMTGR0NCfsdkeJy3NO7ncZoNHH4Vp07zSvIiIiIhHeGc1yS0qWRI6dnT/3CjThEGDLJimP1k58jAzC6b5MnffbWQ6f/zuu++mWLFizJ07lxEjRmCxzCItzXtD3k6nO0iLiIiI5GQ+HfL2hC1bYPFiPB7sDMPgpZcyv3b48GEqV67MpEmTCAkJweVaj+dC7LVME5o29VrzIiIiIh6Ro3oob8UHH7iHhm9t3uSfczph2TKTL76IYMeOeSxdupSDBw9is9lIS0tjxIgRJCQkMGXKbkyzlscX51gsUKsWXDl2XERERCTHytU9lMnJMHu258NkOtN08uijy5g/fz6tW7dm4cKF/PbbbwQFBREYGEi3bt1wOt/12AbtV3O5YPhwMg25i4iIiOREOWpRzs364Qdo3Nh77RuGk1atEli5smDGwhxwH8m4e/dutmzZQqFCxQgOPkpMTEmPBVubDerUcQ/ne/KYShERERFvyNU9lDt3ercHzzSt7N+fOUwCdOvWjT179hAdHU3jxvWpXv0tDMMztaS3M2OGwqSIiIjkDrk6UMbFeX+fxthY5zWvtWvXjsDAQObOncs999zDrl1fM2uWmeVQmf7+WbPc552LiIiI5Aa5OlBmx/zC1NRkEhMTM70WGBhI+/btmTdvHqGhoZw6dYoaNaKYNw/8/W+tZ9Fmc7933jzo1s1DxYuIiIhkg1wdKIsX996CnHSmeZYJEyZc83q3bt344YcfuO2227BarURERBAWBvv2wV13pd91I8W577nrLvd7w8I8VrqIiIhItsjVgbJ+fe+2b7VCpUpxvPnmm5w5cybTtU6dOmG321m5ciX169dn3bp1gPs0n7Vr3Uc4Fiu2DXCveTIMF5CKn5/J70HTRZkye1i61P2ePzsJSERERCQny9WBsmZNyJfPe+2bJjz8cGUMw2DMmDGZrgUFBdG6dWvmzp1LaGgo69atI33BvGFA+/bQrNlY2rXrw8qVULv2LMqVm8MDD8QAL/Lee3swjJKMGrWN9u21PZCIiIjkXrk6UNrt0Lu3d1dDP/54fl588UU+/PBDDh48mOla9+7d2bBhA7Vq1eLEiRMcPnw40/WAgACczjO0bg0lS35O48ZzadVqOYbxDhUqHMI047jnnnu8V7yIiIhINsjVgRJgyBDvzKO02aBTJyhbFoYPH07p0qV58cUXM93TpUsXLBYLcXFxGIaRMeydLiAgIGNBT1xcHMWKFWP//v1UqFCByMhISpYsyZ133un54kVERESyUa4PlI0aQc+e3tk+6M033f8GBAQwZswYZs+ezZYtWzKuFy9enNDQUJYtW0adOnWIiIjI9P4/BsrixYuzb98+qlevTkREBPfcc881e1yKiIiI5Da5PlACTJ4MQUHu8689wTBgzJjMe0H26dOHOnXqMGLECK4+XKh79+6sXbuWJk2a/GUPZWxsLMWKFWPfvn1UqlSJyMhIDXeLiIhInpAnAmWJErBggXuYOuuh0kXbtgk8+2zmV61WK+PGjWPDhg0sXLgw43WHw0FaWhp2u53Dhw9z/PjxjGvpgTI5OZmEhAQKFCjAkSNHyJcvHykpKQqUIiIikifkiUAJcPfdsGIFBATc6iIdd6+jxTKbqKj6xMaeuuaOtm3b0rZtW55//nlSU1MBCAkJoXnz5kRFRQFk6qVMD5RxcXEAXL58GYD4+HgKFy5MzZo1b6VQERERkRwlzwRKgJYt4aef3OESbnxepdUKBQoYjBp1lMDAJzhx4jD3338/58+fv+bet99+m6ioKD799NOM17p37873339P1apV/zJQnjt3DoBffvmFFi1aYPX2uZEiIiIi2SBPBUqA22+H1athzpyrT6wBP7/f93q0Wn8fGi9SBJ57Dg4cgNGjb2fNmtXY7XZ++uknOnXqRFJSUqb269atS9++fRk1ahQXL14EoGvXriQnJ1OuXLlMC3P8/f1JTEwkNjYWgN9++42yZcuydetWDXeLiIhInpHnAiW4g2P37rBuHRw8CDNmwODB0LUrdOkCvXq5V3CvWgUxMfDGGxAS4n5vo0aNCA8Px2azsWnTJnr27EnaH/YlGjNmDOfPn+edd94BoEKFCtSvX5+LFy8SFRVFTEwM4O6hTElJyThl59ixY4SEhHD58mVCQ0Oz7wsRERER8aI8GSivVrEi9O0LEyfC3LnuxTtffunulbzvvuuftNO8eXOWL1+OzWZjyZIlDBgwINPK7nLlyvGvf/2Ld955JyM8duvWjd27dwNk9FIGBAQA7p5Ji8XCL7/8gt1uJ3/+/NSrV8/Ln1xEREQke+T5QHmrQkNDWbJkCVarlRkzZvDsH5Z9v/DCCwQEBDBq1CjAPY/y8uXLhISEZMyjTA+Up06domjRohw6dIgLFy7QvHlz/Pz8svcDiYiIiHiJAuVfaN26NQsWLMBisfDuu+/y1ltvZVwrXLgwL7/8Mp9++in79u2jatWqVK9encDAwGt6KE+fPk2BAgVwuVwcOnRI8ydFREQkT1Gg/BsdOnRg3rx5GIbByJEjmTZtWsa1wYMHU758eV544QXAPex98uRJfvrpJ2JjYzMCZWxsLHa7HYBLly4pUIqIiEieokB5A8LCwpg1axYAAwcOZO7cuQDY7XbefPNNFi1axLp16zKGvcE9jzI9UKZvG1SwYEHsdjuNGzf2wacQERER8Q7DvHq1ifylmTNn0q9fPywWCytXrqRVq1aYpkmTJk0wTZMtW7ZQuXJlzpxJpm3b56lYsQfjx39KiRIlcDp/w+XaRvXqKWzcGO7rjyIiIiLiMQqUN2nq1KkMHDgQPz8/Nm3aRMOGDYmIiCA0NJSRI9fw7bcl+PXX6oAFi8XE5Uq98k4rYMVicdKjh5WhQ90bsKfvjSkiIiKSWylQ3oKJEyfyr3/9i8DAQHbs2IG/fxUaNNhNXFxtrFYXTudfzySw2SAtDTp1gqlTITg4mwoXERER8QIFylv0xhtv8NJLLxEY2BuX60tSUw2czpvrbrRaIX9+mDfPvSemiIiISG6kQJkF3bp9xXff9QIMbnV9k8Xi/lm6FNq08Wh5IiIiItlCgfIW7dkD9etDWpqLrC6Wt1jcJ/b89BNUqOCZ+kRERESyi7YNugWpqe7jHN2y/hW6XO42H33U/buIiIhIbqJAeQumT4fdu90LazwlLQ0iItznjYuIiIjkJhryvkmmCTVrwv797t89yWqFZs1g/XrPtisiIiLiTQqUN2nbNmjUyLvP+OUXqFTJu88QERER8RQNed+kjRvdi2i8afNm77YvIiIi4kkKlDdp+3bvnm7j5+d+hoiIiEhuoUB5k44dA6fTe+2npUF0tPfaFxEREfE0Bcqb5M0wmZ3PEBEREfEUBcqbVKSId4e8rVYICvJe+yIiIiKepkB5k+rUcYc+b3G53M8QERERyS0UKG9Sw4ae3dD8j1wuaNDAe+2LiIiIeJr2obxJCQlQqpT7X28oUcK9KMfPzzvti4iIiHiaeihvUv780L8/2Gyeb9tqhSFDFCZFREQkd1EP5S04ehSqVoWkJM+1aRhQqBAcOAAlS3quXRERERFvUw/lLbj9dvjf/zzbpmnCRx8pTIqIiEjuox7KW+RyQc+eMH+++/esMAz3MPq0ad7dkkhERETEG9RDeYssFvj6a+jcOeshsG9fmDJFYVJERERyJwXKLMiXD+bMgTffdC/SuZmFOjYb+PvDpEkwfbp397YUERER8SYFyiyy2eD55+HHHyEszB0MLZbrB0Sr1QW4sFpdPPgg7N0LTz3lvl9EREQkt9IcSg87eRJmz4YffoDISIiLcw9lFy8OTZqYzJ//Eg89ZOOjj17zdakiIiIiHqFAmc0GDx5MeHg4Bw8exNCkSREREckDNNiazRwOB4cOHWLPnj2+LkVERETEIxQos9m9995LUFAQ8+fP93UpIiIiIh6hQJnN7HY7HTt2VKAUERGRPEOB0gccDgc7d+7kyJEjvi5FREREJMsUKH2gXbt22O12FixY4OtSRERERLJMq7x9pGPHjly+fJm1a9f6uhQRERGRLFEPpY84HA4iIiKIjY31dSkiIiIiWaJA6SNdunTBNE0WL17s61JEREREskSB0kdKlSpF8+bNtdpbREREcj0FSh9yOBysWLGChIQEX5ciIiIicssUKH3I4XCQlJREeHi4r0sRERERuWUKlD5UqVIlatasqWFvERERydUUKH3M4XCwaNEiUlNTfV2KiIiIyC1RoPQxh8NBfHw869ev93UpIiIiIrdEgdLH6tevT7ly5TTsLSIiIrmWAqWPGYaBw+Fg/vz56NAiERERyY0UKHMAh8PB8ePH2bFjh69LEREREblpCpQ5wD333EORIkU07C0iIiK5kgJlDmCz2ejcubMCpYiIiORKCpQ5hMPhYO/evRw8eNDXpYiIiIjcFAXKHKJt27b4+/url1JERERyHcPU0uIcw+FwEBsby4YNG3xdioiIiMgNUw9lDuJwONi0aROnTp3ydSkiIiIiN0yBMgfp1KkThmGwcOFCX5ciIiIicsM05J3D3HvvvQQGBrJkyRJflyIiIiJyQ9RDmcM4HA5WrVrFhQsXfF2KiIiIyA1RoMxhwsLCSElJYfny5b4uRUREROSGKFDmMOXLl6devXraPkhERERyDQXKHMjhcLBkyRJSUlJ8XYqIiIjI31KgzIEcDgcXLlxg7dq1vi5FRERE5G8pUOZAtWrV4o477tCwt4iIiOQKCpQ5kGEYOBwOFixYgMvl8nU5IiIiIn9JgTKHcjgcxMTEEBkZ6etSRERERP6SAmUO1bx5c0qUKKFhbxEREcnxFChzKKvVSpcuXRQoRUREJMdToMzBHA4HBw4cYP/+/b4uRURERORPKVDmYK1btyZ//vzqpRQREZEcTYEyB/P396d9+/YKlCIiIpKjKVDmcA6Hg8jISKKjo31dioiIiMh1KVDmcB06dMBms7FgwQJflyIiIiJyXYZpmqavi5C/1rZtWwDCw8N9XImIiIjItdRDmQs4HA7Wrl1LfHy8r0sRERERuYYCZS4QFhZGWloaS5cu9XUpIiIiItdQoMwFypQpQ+PGjbXaW0RERHIkBcpcwuFwsGzZMpKSknxdioiIiEgmCpS5hMPhICEhgVWrVvm6FBEREZFMFChziWrVqlGlShUNe4uIiEiOo0CZizgcDhYuXIjT6fR1KSIiIiIZFChzEYfDwZkzZ9i0aZOvSxERERHJoECZizRu3Jjg4GANe4uIiEiOokCZi1gsFsLCwpg/fz464EhERERyCgXKXMbhcHDo0CH27Nnj61JEREREAAXKXOfee+8lKChIw94iIiKSYyhQ5jJ2u52OHTsqUIqIiEiOoUCZCzkcDnbu3MmRI0d8XYqIiIiIAmVu1K5dO+x2OwsWLPB1KSIiIiIYppYL50odO3bk8uXLrF271teliIiIyD+ceihzKYfDQUREBLGxsb4uRURERP7hFChzqS5dumCaJosXL/Z1KSIiIvIPp0CZS5UqVYrmzZtrtbeIiIj4nAJlLuZwOAgPD+fy5cu+LkVERET+wRQoc7GwsDASExNZsWKFr0sRERGRfzAFylyscuXK1KhRQ8PeIiIi4lMKlLlc165dWbRoEWlpab4uRURERP6hFChzOYfDQXx8PBEREb4uRURERP6hFChzufr161OuXDkNe4uIiIjPKFDmcoZh4HA4mD9/Pjr0SERERHxBgTIPcDgcHD9+nB07dvi6FBEREfkHUqDMA+6++26KFCmiYW8RERHxCQXKPMDPz4/OnTsrUIqIiIhPKFDmEQ6Hg71793Lw4EFflyIiIiL/MAqUeUTbtm3x9/dXL6WIiIhkO8PU0uA8w+FwEBsby4YNG3xdioiIiPyD2HxdgHiOw+Ggf//+nDp1ilKlSvm6HBERkVzhXNI5dsTsYM+pPVxMuYjNYqNsUFkahjTkzmJ3YjE0oPt31EOZh8TGxlKqVCk+/vhjnnjiCV+XIyIikmOlOlNZeGAhkyInse7oOgAshiUjPKa53EcaF/YvzJP1n2Rgw4HcUeQOn9Wb0ylQ5jH33nsvgYGBLFmyxNeliIiI5EjbT26nz3d9+Dn2Z6yGFafp/Mv7rYYVE5MX7nqBV0JfIZ8tXzZVmnuoDzePcTgcrFq1iosXL/q6FBERkRznf5v+R+NPGvNL3C8Afxsm0+9xmS7e3PAmdafU5ei5o94uM9dRoMxjwsLCSElJYdmyZb4uRUREJEd5bd1rPLvyWVym64aC5B+ZmByMO0jzz5pz7PwxL1SYeylQ5jHly5enbt262j5IRETkKrN/ms2o70dluZ00M43Tl07T7st2pDhTPFBZ3qBAmQd17dqVJUuWkJKi/6KLiIicTjjNk4ufxMDwSHtpZho/x/7M6+te90h7eYECZR7kcDi4cOECa9eu9XUpIiIiPvfympe5lHIJE8+tQzYxeWPDG5pPeYUCZR5Uq1YtKlSooGFvERH5xzuXdI4vfvwiYxsgTzIwmLJ9isfbzY0UKPMgwzDo2rUrCxYswOVy+bocERERn5m1d5bX5jo6TSdTtk/BZep/axUo8yiHw0FMTAyRkZG+LkVERMRnNh7f6NWTbs4mnuXXs7/e8P1Ol5ODZw+yI2YHP/72I3GX47xWW3bS0Yt5VPPmzSlRogTz58+nadOmvi5HRETEJ7ac2HJLWwTdjO0x26lcrPKfXo9PjOeLH79g9k+z2fHbDpLSkjJdDykYwj2338Pj9R6nVYVWGIZnFg9lJ/VQ5lFWq5UuXbpoHqWIiPyjnbx40qvtWw0rJy6cuO61pLQkXlj1AsH/C+Y/K/7DphObrgmT6TXO2TeH1jNbU+WDKqw5vMarNXuDAmUe5nA4OHDgAPv37/d1KSIiIj7hdHm3d9IwjOsu+Nn12y5qfVSL8ZvGk+xM/tsV5ult/Br/K/fNuI8hS4aQnJbslZq9QYEyD2vdujX58+dXL6WIiPxj5bfn92r7TpeTgvaCmV7beGwjd312F4fjD9/0gp30+6dsn0Knbzpdt0czJ1KgzMP8/f1p3769AqWIiPxj1S1V12Mbml+PiUmd0nUy/o6Ki6LdV+1ISkvK0txNl+lizeE19PuuH6bpuf0zvUWBMo9zOBxERkYSHR3t61JEREQ8xjTNGwpajcs0xmqxeq0OA4O6pesC7t7Kvt/1JSktySNbCblMF7P3zeabvd9kuS1vU6DM4zp06IDNZmPBggW+LkVEROSWHTt/jLERY+n4VUdKjC+B9TUrltcsFHyzIC0+a8EzK54hMvrarfK6VevmlU3NAXBCvuh8TBw/kZMnT/Lxto+JjI706PMMDIYsGUJ8YrzH2vQGw8wN/aiSJW3btgUgPDzcx5WIiIjcnJ9jf+a5lc+xOGoxFsOCy3Rdd4GLzWIjzZVGnVJ1eOO+N+hQuUPGtXpT6rH71G6vbEDe+nTr/2fvvuNrvN8/jr/uczJlo0EqdozYYq8YUVSQNIoatWlRtEatllat4kut1qYtSqNGY6sdVSRGxQpBYiZIkJ1zzv37I3V+TdEa5ziRXM9/6LnP/bmvcx4qb5/JoeWHSE1LxXaELSm2KSZ/hoLC/5r/jyG1h5i8bVORHspcICAggD179pCQkGDpUoQQQohnYlANzDg0g0rfVmJr5FZUVPSq/qmrpR/1Cv4Z+yetVrWi+4bu3E+9D8AXjb4weZjUKloquldk25xt3Lhxg/7T+5slTD4y58icbD2XUgJlLtCmTRt0Oh2bN2+2dClCCCHEf9Ib9PTY2INhO4eRYchApz77EPKj4PjjqR+pv6w+cUlxVLCugNs1NzBhplQUhZXvrESr0eLi4oJNORusNOY5L0ZFJSo+iuj70WZp3xQkUOYChQsXpkaNGrLaWwghxGthwJYB/HDyh5dqQ6/qORd3jhpza1C1ZlVcQl0o7FjYZKFvZvOZVCxQ0fjfR26Ydu7kk4TdDDNr+y9DAmUuERgYyNatW0lNfT32sxJCCJE7bTi3gQVhC/5zI/BnoVN1XE2+yhsd3+DE7yf4vd/vFHUpilZ5sVXfxu2HdkDagaybjp+7c+5ly/1XVhorzt85b9ZnvAwJlLlEQEAASUlJ7Nq1y9KlCCGEEE+Ur8oXwAAAIABJREFUkJpA7029TbtvpAYuvXGJ0/dPU9i5MEf6HKFD+Q6Z155jCFxBIa99XjZ02MAo31EMGzaMRYsWGa+b+1QbBSVbb3JunsF+ke2ULVuW0qVLs2HDBvz9/S1djhBCCPGYpceXci/lnkl6J/9Oq2iZdGASmztvJq99XlYGrUQ9rbL61mrwACvF6okLfhRVAQW0qharU1aELwynSP4itJnYhtjYWPr27cuZM2fw8PAgIzXDrN10Kip2Vnbme8BLkm2DcpGRI0eydOlSbt68iVZrvk1ehRBCiOdlUA2UnF2SqwlXTR4oIbOHL2pwFMVci/HgwQOKFStGRkYGfl39KN+uPEevH2XPuT0YtAby2Ofh4fWHOD9wpnvT7jhecWTyF5OpUKECWq2Wy5cvc//+fWPb9vb2KL0VkvMmY8ZDefj53Z9p593OfA94CTLknYsEBAQQFxfHoUOHLF2KEEIIkcXZuLNcSbhiljAJmauyQy6EADB//nwePHhAYmIizSs1p+TVktSKrIXzAmfyLciH4xxHmAcPfnjA7O6zmTZxGk5OTpw/f57q1aszatQo1q5dy++//87bb7+NXq+nZaWWWGutzVL7Iz6FfMza/suQHspcxGAwULhwYd577z1mzJhh6XKEEEIIo+9Pfk+3Dd3M1r4GDaWSS/Hm0TfZt28fBkPWCZQeHh7Ex8dTvHhx2rVrxw8//MDly5eJiIigTJkyXLx4kXLlyjF//nw++OAD431paWm0bt2aA7cOkBpkvjmORVyKcGXwFRTFjF2gL0F6KHMRjUZD27Zt2bBhQ7beHFUIIUTuczr2NNYa8/XwGTAQkxHD3bt3jT8DBwwYwLlz50hJSeH69es4OjrSqVMnvvjiC+Mpc/Hx8Wi1WsqUKUP79u2ZOnUqGRkZxnZtbW1Zv349VZ2qojw0T9jTKBo+qvlRtg2TIIEy1wkICCAqKorTp09buhQhhBDCKDE90ezPKFCkAHFxcVSpUoU8efIwceJEypQpg52dHaqqkpCQgKurKwANGjQAyDJNbPTo0Vy5coVVq1ZladfBwYEtm7dQ6EohzDFin8c6Dz2q9DB9wyYkgTKXady4Mc7Ozqxfv97SpQghhBBG5jpl5u+SE5O5ffs2t27d4r333sPFxcV4LSUlhYyMDGOgrFgxc9Py0NBQ43sqVapE69atmTx5Mnq9Pkvbrq6uHJ17FKs7VpD10kub03IO+fLkM22jJiaBMpexsbGhVatWcmqOEEKIbKWoS1H0qomT2N9o0PDgygMaNGjAzZs36du3b5brCQkJALi5uQFQunRpFEXhzz//zPK+MWPGcP78edatW5fl9bS0NCZ8MQHdWl3m/pYmOOZRo2hoXbo13Sqbb26pqUigzIUCAgI4fvw4V69etXQpQgghBAA+Hj7Gc7jNJfVSKhqNhsqVK1OjRo0s1+Lj4wGMPZR2dnbkzZuX6OjoLAt4atWqhZ+fHxMnTjTOxYyOjqZhw4YsXbqUhRMXsqL5ipcOlRpFQz3PevzU7qdsPXfyEQmUuVCLFi2wsbGRXkohhBDZhk8hH2y0NmZr34CBKnmrsH//fvr27ftYSHvUQ/koUAKUKlUKnU5HVFRUlveOHTuWU6dOERISws6dO6lWrRq3bt0iNDSUPn368F7t9yhzqAw84LlDpUbJjGZdK3Vle5ft5LHO8/wf1gIkUOZCzs7ONG3aVAKlEEKIbMPJ1olOFTuZZy6lCtyHE+tPAJlbBP1z26AnBUofn8x9H0+dOpXlvQ0bNqRu3br079+f5s2bU716dcLDw6levTqQuXjn4r6LFN9aHI4A+r9O3fkXj657OHoQ8l4IywOWY29t/8If+VWTQJlLBQYGsn//fu7evWvpUoQQQggABtYYiM6gM0vbXve8cHN1w8nJicDAQLy8vJgyZQq3b98GHp9DCRgD4rFjx7K0lZCQgF6v59q1a3Tp0oXNmzeTL1/mopn169czffp0goKCuHz+Mv5W/vA/KBVTikruldA8IXo5WTnR6M1GsAqmFJxCq9KtzPEVmJUEylyqdevWqKrKr7/+aulShBBCCCBzHmVfn77GYV9TUFQF7kCfSn2Ij49n69atHDx4kPr16/PFF1/g6elJ+/btOXz4MDY2NtjZ/f952d7e3gD8/vvvxtdOnDhB9erVOX/+PKVKlSImJsZ4nHFkZCTdu3endevW7Nq1i86dOxMeHk6zus24/P1lKh2qRNforpTbW44DPQ5woPsBrGZbMdl1Mrv77Ma3kC+LFy022Wd/lSRQ5lIFCxakTp06MuwthBAiW5nebDpvOr1pmqFvFVSDSoHQAoTuD6VSpUrUqlWLevXqsWLFCq5fv860adM4ffo0c+fORa/XM23aNGJjYwEoW7YsABEREQCsWLGCOnXq4OLiQnh4OFOnTmXv3r2EhoaSnJxMu3btKFiwIM7OzqiqSs2aNblx4wbffPMNP/74IytXrmTX9l1UeKMC9YvUp37R+pRyL0VkZCQAffv2Ze/evZw/f/7lP/srJoEyFwsMDGTHjh0kJydbuhQhhBACyJxLubPrTpxtndEq2hduR0HJnDu5DmJPxrJx40a6du2aZTFO3rx5GTx4MBEREXTo0AEHBwc+//xzChcuTMeOHQkPD8fV1ZW4uDh69uxJ9+7d6dSpE6GhoRQvXpyAgAC8vb2ZOHEiAwYMIDIyklGjRrFy5UomT57MwoUL8ff3p1y5cnTo0IGFCxdy/fp1oqOjjTWULl2aCxcuABAUFES+fPlYuHDhC39uS5FAmYu1bduWlJQUtm/fbulShBBCCKMy+cvwe6/fKe5W/IWGv600VjjYOFD0j6JYR1rj7OwMwJIlSx5bsQ2gKAqOjo6UK1eO69evM3XqVE6cOEGTJk2MnS4//vgjixYtYsmSJdjbZy6W0Wg0jB49mq1bt7J8+XLmzZvH9OnTqV27Nm+++SYREREMHz7c+Jzu3buj0Wj4448/mDJlCpA1UNra2tK9e3eWL19Oaqr5zgU3BwmUuZiXlxfly5eXYW8hhBDZTul8pTn1wSmG1hmKgvJMvZWPVkr7evqysOJCrm6/yty5c0lMTMTJyYnU1FRq1qzJ/v37H7s3Pj4eV1dX8uXLx8cff8zZs2eZPn06Ol3mIiG9Xs/u3bvZt2+fcf9JyPxZClC8eHHi4uI4e/Ys3377LTNmzKBmzZrGIxwBYmJiMBgMdOnShVGjRjF//nxKly7N5cuXSU9PBzKHve/du/fYxumqqmZ5bnYjgTKXCwwM5NdffzX+DyOEEEJkF/bW9nzd7GsuD77Mp/U+JX+e/P9/Uf1rWPuRDGhTvA3Wy61pfL0x3037jho1alCkSBH0ej02NjbY2NhQpkwZ/Pz8WLJkSZZn/f0cb4PBwMSJExn26TDebPImNAXH/o4EFwymUXAj8gzKQ71J9Zi6YyrvdnuXokWLcvnyZcaPH8+gQYPQ6XTs3buX4cOHZxliv3z5MgCfffYZQ4YMYcCAAVy5cgWDwWDsOS1dujSNGzdmxqoZjNg5gobLGuI82RnNlxo0X2rI/3V+WvzYgi/3fcnl+Mvm+eJfgKJm57grzC4sLIzq1avz22+/0aRJE0uXI4QQQjzV5cuXKVG1BH7v+7EvbB//m/k/XO1cyZeRj7drvs36devZtm0ba9asISEhgY0bN7JixQoiIyNZs2YNTZo0wc3NjRo1avD999/zySef8PXXX6PVavHx8aFmzZpMmjSJjt06siNpB/YN7ElRUjLP5tbA3/Or8TUD1Hetz5HpR7C6b8WtW7fo3bs3YWFhnD9/3rgCHGDx4sX07duXlJQUbGxs6N27N8uXL8dgMLBx40batGnDrqhd9F3bl8tpl9Eq2iceR6mgoFE0GFQDLUq14OtmX1PBvYKZv/1/Jz2UuVy1atXw9PSUYW8hhBDZXnh4ONyHStaVcL/qzsCaA+lSqQstfVpSsnhJdu7cyfDhw0lISMDDw4Pq1auzceNG+vbtS7ly5dizZw/x8fEcPXqUr776ilmzZtGmTRsePHhAQkICaWlpeLf2ZmeZnWgaajLDJICWrGHy769p4WDCQdJ7pZNcJZmdv+0kODiYTz75JEuYhMxAXLhwYWxtbVEUhYULF/LOO+8AsH7zevr+2pdmPzTjanrm0chPO9tcRUWv6lFR2XFpB1UXVGXSgUnoDeY7C/2/SKDM5RRFISAggA0bNmTruRlCCCFEWFgYHh4eZGRkZNmAHKBZs2bs3LmTO3fuAJCens6SJUuwtramS5cuQOY2QHv37iU+Pp5Vq1axcuVKQkNDqVu3Ljdu3GBF5ApuNbuF4qRgeJ4zE7WAFdAMgtYGYWVnRenSpR/7uRoVFUXx4sX//zatlpUrV+Lk7sRyZTlLwjOH4Z/nTHO9qkdn0DF291g6retEhj7j2es2IQmUgoCAAGJiYjh+/LilSxFCCCGeKiwsDB8fH+7du0fevHmzXGvWrBmRkZGMHj2aYsWKcefOHWbPnk2HDh2yHKdYpkwZ9u7dy71795gwYQLr1q0jJiaG1MqpGPwyg9zzBLosFMALDEEGmr3VjAoVKjB79mzi4+OBv4bsS5TIcotBY8CquxUU4PlC7D+oqPx85md6b+ptkQ4iCZSCBg0a4Obmxvr16y1dihBCCPFEqqoaA2V8fPxjPZRNmjRBo9Gwe/duJkyYQK1atbhz5w59+vR5rK1HoTIuLg5/f3+SXZOhuYkK1YCuhI6+y/ri7e3N0KFD8fDwoFu3bly4cIFixYplefv4veOJt483SSJTUfn+1PesiVjz8o09JwmUAmtra1q3bi3zKIUQQmRb0dHR3L17l2rVqj0xULq6uuLq6oqDgwMdO3Y07hX56NSbf7p69Srp6emkG9LhHTI3QTcVBZZFL2PCtxOIiYnh888/Z9++fcTHx7No0SLmzp1LQkICYTfC+Dr068fnZ77UoxU+CPmAuKQ40zX6DCRQCiBz2Pv06dNcvHjR0qUIIYQQjwkPDwd46pD3mTNnuHfvHqqqcvv2bQ4ePEjJkiWZMmVKliFgg8HAhAkTaNGiBXXq1OGz1Z+hc9VlzoM0IZ1ex8QDEylYsCCjRo1i06ZNAJQqVYohQ4bg4eFB0Kwgk55bDpm9lA/TH7Iw7NWetiOBUgDw1ltvYWdnJ72UQgghsh2dQcfWsK24NHAhOCaY64Wvc83lGhfvXTSGxUmTJuHu7k5ycjKTJk3CysqKyZMnc+TIEfbs2QNkbl7epk0bxo0bx+eff87mzZvZcndL1v0sTURVVH46/RN3kjMXCV29mrlye9WqVcTExDBo9CCu2l996krul2FQDcw7Og+d4dXtMS2BUgDg4ODAW2+9JYFSCCFEtnHsxjF6bOyB82RnFlkv4n7T+3y8/WMS6yWyVl2L1xwv3Ka60XNNT1ZtX8WYMWNwdHRk9erVtG/fnnbt2lG1alUmTZrE8ePH8fHx4dChQ2zevJnx48cT8yCGozeOopp0vPv/6Qw6NpzL/LkaFRWFra0tBQsWpFChQni97WXWFHYz8SYnbp0w3wP+QQKlMAoMDOTQoUPcvn3b0qUIIYTIxW4l3qLtT22psagGP576kRRdivGaQTVkSS/30+6z/Oxy1IEqEUUjKFe5HPHx8fTt2xdFURg5ciS//fYbtWvXxs3NjbCwMFq2bAlkBlaz0sPvV38HMld4Fy9eHI0ms/iwm2FYa6zN9mgFhbAbYWZr/58kUAojf39/FEUxzvMQQgghXrXtF7dTdm5ZtlzYAvBMw7aqktnDuPjkYk7UOwEFoFKlSqSmprJjxw4AChUqRGhoaJZ9IE/cOoGVxsoMn+IvWtj+53bg/wPl35+dYTDfnpFWGitOx542W/v/JIFSGOXPn58GDRrIsLcQQgiLCLkQgv9qfx6mPUSnPv/8P4NqIMMuA3rCzNUzqV+/Pj/++CPvv/8+V69eNZ6l/UhCaoJZ5k/+3fV71ylcuDBbtmxh3759FCxYkAIFCnDk5BGzPvfR4pxXRQKlyCIwMJBdu3bx8OGr+0MohBBCnIk7Q9DaIPQG/Utt8I0GsIZxF8cRmxhLaGgoCxcuxMPDg6lTp2Z5q6KYN0wCoEKFChVQFIX69evz4Ycf0rlzZ1wcXcz+aHMOqf+TBEqRRdu2bUlPT2fr1q2WLkUIIUQuoTPo6PpLV/QGvWkWyGgAe6jxeQ18fHywtbVl2LBhrFy5kujoaOPbCjoWfPFTcZ6Rg+rAgQMHyMjI4OTJk0yYMIGZM2dy79I9XiY3/xdVVSnqWtR8D/gHCZQii2LFilGlShUZ9hZCCPHKLAlfwvFbx027hY4Gfon8hX1X9gHQp08fnJ2dmT59Oqqqcvr0aa4eNs+2PUZ6SL2YSnJyMgDNmzdn3rx57Ny5k+FdhqPVmnjzy78/WtXjU8jHbO3/kwRK8ZjAwEA2b95Menq6pUsRQgiRw6mqyszDM83StgYNc47MAeDhw4f4+voyf/58ChYsSMWKFVk+ablpT8j5Jy2smraKGjVqAPC///2Pfv364efnR5vKbcwaZq00VtR8s6bZ2v8nCZTiMQEBATx48IC9e/dauhQhhBA53OFrhzl/97xZ9oI0YOCXM79Qrno5PDw8WL9+PaqqUqJECbZv386d6Dv4efqZbejZxdaFNmXaULNmZrDbvn278Vo9z3p45fUyy6IgK40VQeWCyJcnn8nbfhoJlOIxFStWpHjx4qxfv97SpQghhMjhDkQfMPnxg3+nKiquFVwZOnQoX375JRUrVuTYsWN8+OGH5M2bl12TdpklDWkVLX19+mJnZUdaWhrOzs5MmjQJgyEzvSqKwpDaQ0z/YDLnpH5U8yOztP00EijFYxRFITAwkI0bNxr/4AshhBDmEHYjzLxb9+jh8NXDzJgxg8mTJ5OSkoJer8fDw4NvvvmGbfO3oVxUwKTTNzW42bsxsv5IIHMPymrVqhEREcHGjRuN78t3JR+aOI1Je0i1ipb3K79PvSL1TNfoM5BAKZ4oICCAmzdvcvToUUuXIoQQIgeLio8y61xCRaPQomMLrl27RmJiIufPn6dXr15ERkbSo0cPEhISUDeqWGFlsp5SAwaWtFlCXvu8QOaxizVq1MDX15eJEydy7949unTpQsf2HfG56pM5j9MEI/5aRUv+PPmZ1XzWyzf2nCRQiieqW7cu+fPnl2FvIYQQZmXO02Igc4Pv/O75efPNN43HHo4YMYK4uDimTp1K79694SGMLTkWDabpLfyy0Ze0KdMGAJ1OR3R0NCVKlGDs2LGEhYVRunRpQkJCGDp0KBF7IigVVgqtRvtSPbVaRYujjSO73t+Fm73by3+I5ySBUjyRVqulTZs2sn2QEEIIs3K2dTbvAwxgr7HP8pKXlxcBAQFMmjSJ/PnzA1CMYtgF26E1aLFSnv84Rq2iBRWUXQo1UmoYX7927Rp6vZ6CBQsSHBwMZIbMESNGMGvWLJo0acKJtScI6RSCk63TCwVajaKhsHNhQnuGUsG9wvM3YAISKMVTBQYGcv78ec6dO2fpUoQQQuRQlQtUNu+JLhqwe2CX5SVVVUlLSyMjIwN/f38Axo4di6fOk1P9TuFXwg/4KyT+BwUFVNA80LC+9Xpaubaiffv2/Pnnn0DmcDfAoEGD+P777+nTpw/3799nzJgxfPjhh6xfvx4HBwdalGrB+YHncbzpmNnwM8wC0CqZvZof1fyIMwPOUN69/LN+KyYngVI8VdOmTXFwcGD9+vUYDHDpEoSHw8mTEBtr6eqEEELkBNU9qpt32FuBexH3sry0cOFCNm/eTOXKlfn1118BSElJYfPmzXgX9mZL5y1s7byVMtoyxrmNWkULelAMWRfwlHcvz8TaE3nj5zf4tNOnzJw5k5IlS9KqVSuuXLnCtGnTAPDw8ODo0aM8ePAAgNKlSzN79uwsm5sXdCxI09imWC21onRqaeyt/tazqpJlSDyvfV6G1hnKxUEXmdViFnms85jyW3tuiqqq5tzSU7zGHjwAX9/FXLxYHYOhCn9t9G9UoAA0bAi9ekGzZqCRf54IIYR4TrcTb1N4ZmF0Bp1Z2tckayi6riiR5yPRarUcO3aMevXq0atXLzp06ECjRo0A2LFjB82aNctyb4MGDbDLZ8eQr4cweu5oomKjqFy1MqG7QqlZtCY/TP0hcy9JReHixYs0atQIBwcHVq1aRcuWLUlMTCQ1NRVnZ2ciIyMJCgri6NGj9O/fn//973/88ccfxj0qH2nbti2bNm3izz//pJx3Oc7fPU+Tzk0oX708QYFBuDu441PIh2KuxV7NWeTPSAKleEx6OkycCF9/Dampj5aePTktWlmBTgfFisH8+dCy5ausVAghRE7wXvB7BJ8NNnmoVFBwDnfm/qb7eHp60qNHD5YuXUqhQoU4cOAAX3zxBZMnTwYgIyMDK6v/nzt548YNChcuzLJly2jSpAklSpRg2rRpVKtWDV9fX8qVK8eZM2eyPO/ixYs0btyY1NRU7t27h6qquLu74+npycOHD7lz5w6//vorNWvWpHz58pQpUybLNkIApUqV4tKlS6SkpGBnlzlU7+rqyujRoxkxYoRJvx9Tkj4lkUVEBFSpAhMmQGoqgMK//THR/fX/fnQ0vP029OwJKSmvolIhhBA5xaf1P8WgmnbfYwUFJ1sn9v9vPwBFixblq6++4tq1a7z55puMGzeOyZMnU716dQBCQ0Oz3P/LL79gZWVFmzZtmDVrFo6OjvTu3Zty5coBmXtL/rNPTq/Xky9fPu7cuYOrqysLFizg9u3bHD9+HL1ez++//06dOnXQarWMHDmSTZs2cerUKeP9R48e5dKlSwDGX9PT07l//z5vvPGGSb8fU5NAKYzCwqBuXbhwAZ633/rR/ucrVsBbb0FSkunrE0IIkTNVKViF0fVHm3SDcxWV+W/Pp1LJSlSsWJGkpCQMBgO9e/fmyJEjTJ06lXz58pEvXz6sra2NPZWPBAcH4+fnh6IoLFy4kA8//BBHR0feeOMNnJycSE1N5fbt2wAYDAZmz55N1apVSUpKYu3ateTJk4fx48cDmUHzww8/xMvLy9h+586dKVq0KJMmTTK+NmfOHDw9PQG4cOECAHfu3AHA3d3dZN+NOUigFABcvQp+fplBUP8S+8saDPD77/Duu88fSoUQQuRen/l+Ru3CtZ9pZfV/UVDoUrELnSp2AqBMmTIcP36csWPHMnjwYB4+fEj16tWpV68e27dvR6fTsX37dtasWQPArVu32L9/P+3ateO7774jPT2djz76/6MMS5UqBUBkZCTR0dE0a9aMwYMH07NnT06cOMG7775Ljx49uHHjBgB16tRhxIgR7Ny509iGtbU1n376KWvXruXChQvcunWLn376iUGDBuHi4mIMlLF/rYKVHkqR7akqdO8OiYkvFyYf0eth61ZYtOjl2xJCCJE72Ght2NJ5Cz4ePi93Yo0KbrfcmPfWPBRF4fr168Yg17hxY1q1akXx4sXZvXs3GzduJCAgAE9PT7RaLR07dqRhw4aMHj0arVZLy5Yt+eabb+jatSuFChUyPqJKlSoALFu2jIoVK3LhwgV27tzJ3LlzsbOz4+OPP2bChAkEBQUBmXtRNmjQgHbt2hEREWFsp0ePHhQsWJApU6awcOFCrK2t6dWrF6VLlzYGyri4OEACpXgNrFgBe/f+/3xIUxkyBP4aDRBCCCH+k6udK7vf3003724AzzUErkEDevDV+ZL8fTK9e/YmLS2N9u3b4+DggI2NDd26dUOn07F582acnJyAzDmKVatWZc6cOSiKQlpaGsuWLUOj0dC7d29u3brF0KFDszyrePHiQGagDAgI4M8//8TPz4/k5GTeffddZs+ezdy5c+nevTuQuZF5TEwMHh4etGrVyjhUbmdnx7Bhw/jhhx+YO3cu77//Pm5ubhIoxetHVTNXc5tj54G0NFi82PTtCiGEyLkcbBxol6cdLIcq+TN7Ap+2ybeCYtzcu0WpFgTGBRI+O5w538whODiY+vXrc/ToUdauXYuzszM3b94kJCSEwoULG9tISEjAzc2Nnj17UrBgQUqWLIlGo6Fu3bps27YNyDyqcevWrRgMBtatW8f06dMBqFq1KitWrMDV1ZXY2FiaNGnC9u3b2bBhAwMGDCAqKgpbW1v27dtHeno6aWlpJCcn07ZtW1L+WsHar18/7OzsiIuLMw6rPwqUOoOOm7E3sbO3w8HBwTxfuIlIoMzlDh2Cs2fNM9/RYIB580wzjC6EECL3CAsLw+2+G2H9wxhiOwSrI1b4FvHFDjvjBt/58+SnpVdLxvmOI2pwFJs7b2bp5KU4OTmxYcMGunTpwrFjxwgKCiI4OJi7d+9ibW1N+fJZT5OJj4/H1dUVW1tbPvnkE9auXQtAnz59MBgMjBgxguvXr/P222/j4uJCu3btqFatmvFeyFxAU6dOHa5cucK+ffto3bo1kLkSvFixYnh5ebFnzx50Oh329vacPHmSbt26YTAYcHBwwNXVFY1GQ5JVEl/u+5Jg+2Bie8RiPcGaYfeHkTosleqLqjNg8wD2Xtn72Ory7ED2oczlxo2DSZNMP9z9dxER4O1tvvaFEELkLAEBASQlJbFz504aNmyIq6srGzdupGzZslTzqcbqVaufeu+mTZto27Yttra2FClShEuXLmEwGPj000+ZOnUqe/fuxdfX1/h+Dw8P+vXrx7hx43j48CF58+alUKFCFC9enPT0dA4dOsTOnTvp0qULCQkJxvv0ej0ajYbdu3cTEBBAgQIF2LJlC8WKFcvyOdLS0ti6dSuQuRVQ48aN0el03Lx5k1GjRtG2bVtqt6qNpqUGQ0kDWo0Wg2pA5fF4ZqWxQmfQ4ZXXi6+afMW73u9mm83NpYcylzt2zPw9iGFh5m1fCCFEzhIWFka1atW4e/cuoaGhtG7dmv3793PhwgX69e33r/c2bdoUZ2dndDodQ4cOxWCLrya+AAAgAElEQVQwYGNjQ8eOHcmfP3+WldaQOeTt6uoKQFpaGnq93rjK+6OPPmLgwIE0b96cSpUqcfHiRW7evMmkSZPQaDTodDoaNmxIvnz52L59e5YwCZnneJcoUcL43yVLlmTPnj1YWVmRP39+Jk+eTIdZHaA/qCVVUECv6p8YJgHjxu8X712kQ3AHgtYGEZcU97xfr1lIoMzlIiLMu72PtTWcP2++9oUQQuQssbGxXLt2DR8fH+O8xVatWrFw4UK8vLyy9C7+k6qqfPDBB+h0OvLkycOAAQNo3bo15cuXp3Xr1tStWzdLoExLSyMlJQU3NzcANmzYAGTuK+nk5MTnn3/OsmXLmDNnDjt27KBIkSLky5ePoUOHGrcOyp8/P5cuXaJ8+fIMHDjQuIpbVVUuX75sXMDzSMmSJdm7dy929nZYBVlxtexV0IKqPPsP40eBc9P5TdReUptrD649873mIoEyl8s8Def1f4YQQoicIeyvYS0fHx9CQkLw8fHB1taW4OBg+vbt+69DvAsWLODHH39k6tSpaLVa9Ho9Xbp0ISQkBIATJ05wJOwIu8/tZtnxZUzbPw1qwlnOEn0/mp+Df6ZGjRro9Xrj8PeJEycYOHAgGk1mZNLpdAwYMIBz584B8NVXX3HlyhUGDx5McHAwFSpUwNfXl0WLFpGYmPhYoAQoUaIETb9uiq7Cy80306t6ou9H02h5IxJSE/77BjOSQJnL2drmjGcIIYTIGcLCwnB1dcXT05Nt27bRunVrVqxYAUC3bt2eet+xY8cYPHgwffr0YeHChTg7O+Pn58eQIUOwt7dn3PJxXK9/HUZD0zVN6bmpJ+MOjYOWMOXyFIrOKsqOijsIdwkHJ9BoNLRr147SpUsbn5GYmEhAQIDx5ByAU6dO4enpyYQJE4iOjmbNmjVoNBr69cscmt+yZQtXr17NUuuWyC2sOL8CUxwMpDPouJJwhSHbhrx8Yy9BFuXkci1awI4d5h32Xr4c/uXvACGEEMIoMDCQBw8eMHbsWJo0acLRo0fp0qULVatWZfXqJy/GuXv3Lj4+Pri7u+Pm5sYff/xBaGgoLi4ulK1bFocuDsTaxqJFi/5pexA9YgBFUah8vzK3fr7FlUtXsLW15ebNm/j7+3PhwgWCg4MpWrQo5cqVo169ehw8ePCxZmbMmMGwYcNwcnIiKSmJVq1a0b9/f+o2qkvpuaWJTYp96lzJF7W181ZalGph0jaflfRQ5nI1aoD25U+5+lc+PuZtXwghRM4RHh6Oj48Pv/76Kx4eHiQlJXH+/Hn69u37xPcbDAa6du1KYmIiXl5e7N69m+DgYMqXL8/uu7tJ65VGrFXm8YX/GSYBNJnzGU+6nuRWm1vMXDqTiIgIateuza1btzhw4ADNmzenZMmSKIpCVFTUE5tJT0/Hzc2NGzdu8N133xETE0PLli0pGViS20m3TR4mtYqWiQcmmrTN5yGBMpfz8zPvlkHu7lCunPnaF0IIkXPcuXOH6Oho4/zJVq1asWjRIkqVKkWjRo2eeM+kSZPYtm0bgYGBrFq1igULFuDn58eCYwvotqEbOnTwAh0nKiqKu8KYqDHUbl4bFxcXDh8+bDx20draGnd3d2JjYzEYDI/d/2hBjqOjI3369CE8PJxDhw6RXi0dE2dJIHM+5cHog0TERvz3m81AAmUu17AheHmZ56QcjQb69zd/D6gQQoic4dGCHDc3NyIjI/H19f3XxTg7d+7k888/p127dixevJjRo0fTs2dPdkXt4sPNH750PaqiYrA3kNEhg117duHp6ZnlesmSJdHr9Vy79vgq63+u8FYUhYJlC/LA5oFJ5k4+iVbR8uuFX83T+H+QQJnLKQoMH26eOZQ2NtCnj+nbFUIIkTOFhYXh4uLCyZMnsbOz4/r16xgMhicuxomJiaFTp07UrFmTTZs20bFjRyZMmMCDtAd029DNdBt+ayHNKY1ZJ2Y9dulRb2VkZORj1/65ByXAsRvHTFPTU6ioZn/G00igFPTqBXXrmr4ncdo08PAwbZtCCCFyrkcbmm/evJmmTZuybNky3nnnHdzd3bO8Lz09nfbt22Ntbc3FixepXr06y5YtQ6PRMOnAJG4n3sagPj4M/cIUmHJwCpfuXcrycq1atYDMld5/p9friY6OfmzLoIi4CDSq+aKXQTVw4tYJs7X/byRQCjQa+P57sLfP/P3L0mqhSZPM4W4hhBDiWYWFheHt7c3BgwcpW7Ys586de+JinOHDhxMWFoaNjQ1ubm5s2LABOzs7UjJS+O7Yd+hV0x8BpxpUvjv2XZbXKlasCMDRo0ezvH7t2jV0Ot1jgfJByoMnzrc0pcT0RLO2/zRWFnmqyHZKlszcPsjPD9LSXvw4Rq0WqlWDDRtME06FEELkDnfv3uXq1asoioJerycqKuqJi3HWrFnD7Nmz8fLy4u7duxw+fJj8+fMDsOHcBu6n3TdPgRr49si3TPabjJUmMz6VKVMGgLNnz2Z566OV37a2thw8eJCYmBhiYmJYf2E9mHnkzlpjbd4HPIUESmFUpw4cPAjt2sGVK/B8/4gyABr8/BIIDnbF0dE8NQohhMiZHi3IuXLlCpUqVWLLli18+eWXxhNqAM6dO0fv3r0pVqwYV65c4bfffsPLy8t4/UD0Aaw11mQYMsxSY5I+ibNxZyn/RnliY2OJjo7G3t6eCxcuMHToUGNwfHSKTpMmTYz3Ojs7k+ydDIXNUppRibwl/vtNZiB9SCKLqlXh9Gn45JPMc7j/q5fx0bzLggUVPD2HcPduM+zszLgPkRBCiBwpLCwMR0dHDh48SMGCBTEYDHTv3t14PTExkaCgIOzt7bly5QrLly+nQYMGWdr44/ofZguTAKjQsGND7OzsKFSoELVq1SIlJYXk5GQ2bdrE3bt3KVOmDBUqVMDV1ZWtW7eyf/9+VqxYQdOmTdFF68y2whsyeydretQ03wP+hQRK8Rh7+8wFNTdvwtSpmSHT+gk96C4u0Lw5rF8PMTEKP//8HuHh4cycOfPVFy2EEOK1FhYWRsmSJUlISCAyMpKAgADjYhxVVenXrx+XLl0iLi6OCRMm0KlTp8fauHTn0mOvmZQBrPJZMXPmTDZu3Eh4eDitWrUCYMeOHfz222/MmDEDRVHIkycPw4cPp2HDhnTr1o2dO3filOKErWK+84gzDBk0KNrgv99oBnL0ongmGRlw/jzcv5/ZK1moEBQp8vj+lUOHDmX+/PmcPHkyy/mnQgghxL8pXrw4+fLl4/Lly9y7d49du3bRtGlTAObPn8+AAQPQarV07dqVpUuXZtkWKD09nfHjxzPZMBnszVejFi36/XoiF0RSqlQpAD777DO++uor2rRpw9WrVzl16hSqquLo6EiHDh1o3LgxpUuXpk6dOsycOZOLpS4y/9h8dAbTj+a5O7hz/ZPrxjmer5IESmFSycnJVKxYkcKFC7Nnz54sc1+EEELkbun6dLZEbuFQzCGOXD9CzIMY9AY9jlaOROyMwDnJmbyxedEma7lw4QIajYYjR45Qv359NBoN9erVY+vWrdjY2BjbPHXqFO+//z4RERHYj7XnIQ/NVr9W0WJ3yI761Kd8+fLs2bOH48ePA5lzJN955x0aN27MsGHDGDBgAOPGjQNg7NixzJ49m2vXrnEz/Sbl5pUz+dGLGkXDl42+ZEzDMSZt95mfb5GnihwrT548LF68mP3797NgwQJLlyOEECIbeJD2gM92f0ahGYUIXBPIrMOz2Hd1H1HxUVy9f5WIuxFQGR7Uf8CVwCvYd7PnVOwp7t69S1BQEBqNhuLFi7Nu3TpjmNTr9UyZMoXq1auj1+s5cuQIDbwaoJhxkqJe1ZMUlcT27dv56aefqFixIrNnzwagXr16LFu2jHbt2hEXF2fcMig1NZUFCxbQo0cPnJ2dKZO/DMPrDkejmC6CaRUtJdxKMLTuUJO1+bwkUAqTa9y4MX379mXEiBFER0dbuhwhhBAWtCtqF+XmlWPSwUncS7kH8OSFM1oyF6xo4Kx6luoLq1Pz05rcjL2Jo6MjW7duxdXVFcg8maZBgwaMHj2ajz/+mGPHjlG1alVqetREq5j3vN+JAyfi5OREx44dWbFiBQMHDsQ6nzUnk0+y8tRK5u2fB8XgDc83APjpp5+4c+cOAwcONLbxReMv8MrrhcYEMexRgP4h8AfsrOxeur0XrkOGvIU53L9/n/Lly1OpUiU2b95suiOwhBBCvDZm/zGbwdsGo1E0L3ZyjQpKtMJvvX+jcd3GqKrKt99+y/DhwylYsCArVqygfv36xrev3rOaTvsfX6xjCoqq4OPhw9G+RxkzZgwzf5hJl2+68EvkL9xNufvEe0rlLUXy/mS8073ZuXFnlmsjJ49k6p2paJw1GHixzc4fhcmV76zkvYrvvVAbpiI9lMIsXFxc+O6779i6dSs//vijpcsRQgjxii04toDB2wYDvPgxiAooRRXGXxjPpauXaN68OQMGDOD999/n5MmT1K9fn4yMDNauXUv9+vXp1KQTNnE2Zhn2VhWVCskVuJN8hzPeZ0jplcKSU0ueGiYBLt67yA3vG+z12cuUg1OMC3FmzJjB1NFTGeI0hAoFKrxQvVaKFQ42Dqxrv87iYRKkh1KYWefOndm2bRtnzpyhQIECli5HCCHEK3Dq9il8FvqYbCWzgoLNHzbkO5mPJUuW0KJFC+Li4li0aBHz58/n+vXrNGrUiEGDBqEpqyFgbYBJnvuIVtGSR5eHxJ8ScezmSLI++bmPd1RQqFaoGq2TWjP+k/GMHj2ar776Cp1Bx9TQqXyx7wsMquE/w7eVxgqdQUeLki1Y1GYRhZ3NvFP6M5JAKcwqLi4Ob29vGjduzNq1ay1djhBCCDPTGXT4LPThTOwZdKoJt8ZR4beOv5E3NS+zZ89m1apVKIpCly5d+Oijj6hUqRIAaWlp+C/z57fbv5luJbUKI3xGMC1sGqqqvvD4rgYNhvsGPrD5gPmT52eZDnYr8RZLwpewIGwBMQ9inni/vZU9Hcp3oH+N/tR4s8aLFWEmEiiF2f3000+89957/PLLLwQGBlq6HCGEEGa07sw62v3czuTtatDgGufKvXn38PT0ZMCAAfTu3RsnJyeOHj3Knj172Lt3L4cOHSKFFDT9NKguKqry8jHH8ZwjiV6JKFrlpUOqoip45ffiRL8T2Fs/edPM24m3Cb8Zzo2HN9CrelxsXahcsDKl85U26epwU5JAKcxOVVXatm3L0aNHOXPmDG5ubpYuSQghhJn4LvclNDr0uYeEn4kKc0vNpXKxyhw4cIA9e/YQGhpKcnIyzs7ONGzYkEaNGtG4cWPyFstL0x+bcjXh6kvV8nHtj9l+YTtn75xF1ZgmMmkUDUPrDOXrZl+bpL3sQAKleCWuX7+Ot7c3QUFBLF261NLlCCGEMIO4pDjcp7ub7wEq2Oy1IX1fOo6OjjRo0IDGjRvTqFEjqlatipVV1hNi7iTfof/m/vx85mcUnr13UatosbOy45sW35CUnsSQ7UNMvhG5gsLp/qfxfsPbpO1aigRK8cosXryYPn36sGPHDpo1a2bpcoQQQpjYtovbaLmypfkeoEJlbWUWvLUAHx+fxwLk06w7s47P937OmbgzxkUt//RoKFmjaGjv3Z4pflN40/lNSs0uxZWEKyYPlFYaK/r59GPu23NN2q6lSKAUr4yqqvj5+XHp0iVOnz6No6OjpUsSQghhQlMPTmXM7jHmGe7+S6m8pYj8KPK571NVlUMxhwg+E8yR60c4FXuKpPQkNIqGAo4FqPVmLep51qNLpS4UcMzclWT35d00/b6pqT+Ckb2VPXdG3CGPdR6zPeNVefWnh4tcS1EUFi1aRIUKFRg9erTxuCohhBA5Q0JqAhpFY9ZAeefhHcLDw3FycsLR0RFHR0ccHBzQaP59sYqiKNQrUo96ReoZX1NV9V8P3th3Zd9TezRNIUWXwolbJ6jrWdcs7b9KEijFK1WiRAkmTpzI0KFD6dChA/Xq1fvvm4QQQrwWXsUK5IR7Cfj4+Dz2uoODA46OjlmC5pN+/1/XH/3ezs6OozeOojeYLxwrKITdCJNAKcSLGDRoEGvXrqVXr16cOHECOzvLnT0qhBDCdAo5FTJbb94j5TzL8cOxH0hMTCQxMZGHDx9m+fWfv4+PjycmJuax6+np6f/6HI1Gg/qRiupmvpmBVhorouKjzNb+qySBUrxyWq2WJUuWULVqVSZMmMDEiRMtXZIQQggTqFaomskXr/ydtcYa35K+T+yhfF7p6ekkJSU9MYg++nVU7CgS1AQTVP50GYYMs7b/qkigFBbh7e3N2LFj+eKLL2jXrh1Vq1a1dElCCCFeUpWCVbDWWJstJOkMOmoXrm2StmxsbLCxsfnXvZHnzJ9DQpx5A6WDtYNZ239Vsud26yJXGDlyJOXLl6dnz55kZOSMf6EJIURulsc6Dx0rdMRKY57+Kntre94p945Z2n6SygUqo1W0Zms/w5BBeffyZmv/VZJAKSzG2tqapUuXcurUKaZPn27pcoQQQpjAwJoDzTKPUqto6VmlJ062TiZv+2mqe1Q36xA+gE+hlx++zw4kUAqL8vHxYdiwYXzxxRecO3fO0uUIIYR4STXfrEnnip1N2rOnoOBs68xnvp+ZrM1n8bbX2xhUg9na93T2pNwb5czW/qskgVJY3Pjx4ylSpAi9evXCYDDf/7hCCCFejY9KfYSaooKJ/kpXUfnO/zvcHcx4rOMTlM1fFt+ivmYZ9tYoGgbWHPhKtlp6FXLGpxCvNXt7exYvXsyhQ4eYN2+epcsRQgjxEnbt2kUL3xYU2V8Ee2t7k4SxMQ3G0L58exNU9/xGNxht8o3aFRScbZzpVbWXSdu1JAmUIlto2LAh/fv3Z9SoUVy5csXS5QghhHgB3333HS1atKBWrVqc2HKCfT324Wrn+kKhUqtoUVD4stGXTGg8wQzVPpu3Sr5Ft8rdTNpLqaLyrf+35MuTz2RtWpqc5S2yjYcPH1K+fHnKli3L9u3b//U4LCGEENmHTqfjk08+Yc6cOQwaNIgZM2ZgZZW50vtO8h0GbhnImog1z3SMoQYNBgwUdSnKD4E/0KBog1fxEf5VQmoCPgt9iL4f/dILjhQUOlfszPeB3+eon3MSKEW2sm3bNlq2bMnSpUvp0aOHpcsRQgjxH+7fv0+HDh3YtWsXc+fO5YMPPnji+w5GH2TukbmsO7sOnUGHVtFmmT/4aO/Kiu4VGVRrEJ0qdiKPdZ5X8hmeRfT9aHyX+3Lt/jV06ouFSgWFtmXbsrbdWqy11iau0LIkUIpsp1u3bmzatIkzZ85QqFAhS5cjhBDiKaKiovD39+fmzZv8/PPP+Pn5/ec9CakJhN0II+xmGDce3kBv0ONs60zlgpXxKeRDCbcS2bbnLjYpll4bexESGfJc92kVLSoqYxqM4XPfz822T6clSaAU2c7du3fx9vamXr16rFu3Ltv+xSKEELnZ/v37eeedd3BzcyMkJIQyZcpYuqRXQlVVVv25ijG7x3D1/tV/HcZ/dK1BkQbMajGLaoWqveJqXx0JlCJbCg4O5t1332Xt2rW8++67li5HCCHE3yxbtox+/fpRv359goODyZs3r6VLeuUMqoGdl3ayJmINh68d5vzd88Y9K+2s7KhasCr1POvRvUr3HHMazr+RQCmyraCgIA4ePMiZM2fIly/nrIQTQojXlV6vZ9SoUUybNo0+ffowb948rK1z1lzAF5WuTycpPQmtRouDtQNajfmObMyOJFCKbOvmzZt4e3vTunVrvv/+e0uXI4QQuVpiYiKdO3cmJCSEGTNmMHjwYJmSJIwkUIpsbfny5fTo0YPNmzfz9ttvW7ocIYTIlaKjo2nTpg1RUVGsXr2aVq1aWbokkc1IoBTZmqqqtGjRgrNnz3L69GmcnZ0tXZIQQuQqhw8fJiAgADs7O0JCQqhQoYKlSxLZkJyUI7I1RVFYsGAB9+7dY+TIkZYuRwghcpXVq1fTqFEjSpYsyZEjRyRMiqeSQCmyvWLFijFlyhS+/fZb9u/fb+lyhBAixzMYDIwbN45OnTrRvn17du/ejbu7u6XLEtmYDHmL14LBYKBhw4bExsZy8uRJ7O3tLV2SEELkSMnJyfTo0YO1a9cyadIkRo4cKYtvxH+SHkrxWtBoNCxZsoTo6GjGjRtn6XKEECJHunHjBr6+voSEhLBu3TpGjRolYVI8EwmU4rVRpkwZxo8fz4wZMzh27JilyxFCiBwlPDycmjVrcvPmTQ4cOMA777xj6ZLEa0SGvMVrJSMjg1q1aqHT6Th27Bg2NjaWLkkIIV57v/zyC127dsXb25uNGzfi4eFh6ZLEa0Z6KMVrxdramqVLl3LmzBmmTp1q6XKEEOK1pqoqkydPJigoCH9/f/bt2ydhUrwQCZTitVOlShU+/fRTJkyYQEREhKXLEUKI11JaWhrdunVj9OjRfP7556xevZo8efJYuizxmpIhb/FaSk1NpWrVqri4uBAaGopWm7vOTBVCiJcRGxtLYGAgYWFhLFu2jPfee8/SJYnXnPRQiteSnZ0dS5Ys4ciRI8yePdvS5QghxGvj9OnT1KpVi0uXLrFv3z4Jk8IkJFCK11bdunX56KOPGDNmDJcuXbJ0OUIIke1t2bKFunXr4uLiwpEjR6hVq5alSxI5hAx5i9daYmIiFStWpHjx4vz222+yX5oQQjyBqqrMmjWLYcOG4e/vz8qVK3F0dLR0WSIHkR5K8VpzdHRk0aJF7Nmzh8WLF1u6HCGEyHbS09Pp168fn3zyCUOHDuWXX36RMClMTnooRY7Qq1cvgoODiYiIoHDhwpYuRwghsoV79+4RFBREaGgoCxYsoEePHpYuSeRQEihFjpCQkIC3tzc+Pj5s2rRJhr6FELne+fPn8ff3Jz4+nvXr19OgQQNLlyRyMBnyFjmCq6sr8+fPJyQkhJ9++snS5QghhEXt2rWL2rVrY21tzZEjRyRMCrOTHkqRo3To0IHdu3dz5swZ3njjDUuXI4QQr9y3337LRx99hJ+fH2vWrMHFxcXSJYlcQHooRY4yZ84cDAYDgwcPtnQpQgjxSul0OgYNGkT//v0ZMGAAISEhEibFKyOBUuQo7u7ufPPNN6xevZpff/3V0uUIIcQrcf/+ffz9/Zk/fz7ffvst33zzDVZWVpYuS+QiMuQtchxVVfH39+fEiROcOXNG/oUuhMjRoqKi8Pf35+bNm/z888/4+flZuiSRC0kPpchxFEXhu+++4+HDhwwfPtzS5QghhNns37+fmjVrkpGRweHDhyVMCouRQClyJE9PT77++msWLVrE7t27LV2OEEKY3LJly/Dz86NSpUr88ccflClTxtIliVxMhrxFjmUwGGjSpAkxMTGcOnUKBwcHS5ckhBAvTa/XM2rUKKZNm0afPn2YN28e1tbWli5L5HLSQylyLI1Gw6JFi7hx4wafffaZpcsRQoiXlpiYyDvvvMOMGTOYOXMmCxYskDApsgXpoRQ53vTp0xkxYgSHDh2idu3ali5HCCFeSHR0NG3atCEqKorVq1fTqlUrS5ckhJEESpHj6XQ66tatS1JSEuHh4dja2lq6JCGEeC6HDx8mICAAOzs7QkJCqFChgqVLEiILGfIWOZ6VlRVLliwhMjKSiRMnWrocIYR4LqtXr6ZRo0aULFmSI0eOSJgU2ZIESpErVKxYkdGjRzN58mROnTpl6XKEEOI/GQwGxo0bR6dOnWjfvj27d+/G3d3d0mUJ8UQy5C1yjfT0dKpVq4adnR2HDx+WUySEENlWcnIyPXr0YO3atUyaNImRI0eiKIqlyxLiqaSHUuQaNjY2LF26lOPHjzNz5kxLlyOEEE9048YNfH19CQkJYd26dYwaNUrCpMj2pIdS5DrDhg1j3rx5nDx5ktKlS1u6HCGEMAoPD6dNmzYAbNq0iWrVqlm4IiGejQRKkeskJydTqVIlPDw82Lt3LxqNdNQLISzvl19+oWvXrnh7e7Nx40Y8PDwsXZIQz0x+kopcJ0+ePCxatIgDBw6wYMECS5cjhMjlVFVl8uTJBAUF4e/vz759+yRMiteO9FCKXKtfv36sWrWKiIiI/2vvzqOjrPI0jn+rKoGALGENOwoKTMSALAaaTRBcWAMRkteFBrsxFRR72pbT4qg4nJl2ptEGp8FUAIkI9psFEnZohBYRFMISbDZREA4QwAiEJBCyVb3zR2xaW1GSVFFZns85+SOnKr/7q2znqXvve1/atWvn73ZEpAYqLCxkypQpLF26lFdffZWZM2dq1USqJAVKqbFycnK4++67CQsLY926ddr0LiK3VFZWFmPHjmXv3r0kJCRgGIa/WxIpN70NkhqrYcOGxMfHs2HDBpYtW+bvdkSkBjl48CDh4eEcP36cjz76SGFSqjzNUEqN9/jjj7Nx40YOHz5MSEiIv9sRkWpu/fr1REdH06FDB1avXq0tN1ItaIZSary33noLh8PBtGnT/N2KiFRjlmUxZ84cRo0axeDBg9m+fbvCpFQbCpRS4zVt2pQ///nPpKSkkJaW5u92RKQaKioqIiYmhueff57f/e53pKamUq9ePX+3JeI1WvIWoXTmICIigvT0dA4fPkyjRo383ZKIVBOXLl0iMjKSHTt2EB8fz+TJk/3dkojXKVCKfOvs2bOEhoYybtw4Fi9e7O92RKQaOHr0KCNHjiQ7O5u0tDQGDBjg75ZEfEJL3iLfatWqFW+88QYJCQls2rTJ3+2ISBW3efNm+vTpQ2BgIOnp6QqTUq1phlLkOyzLYtiwYRw7doyDBw9qj5OIlEtcXBzTpk1j6NChJCUl0bBhQ3+3JOJTmqEU+Q6bzcaCBQv45ptveOmll/zdjohUMSUlJTz33HNMnTqVZ555hrVr1ypMSo2gGUqRHzF37lyef/55Pv74Y/r16+fvdkSkCsjJySEqKorNmzczb948nNTXpxQAABS+SURBVE6nv1sSuWUUKEV+hNvtpn///mRnZ7N//36CgoL83ZKIVGLHjx9n1KhRnDt3jpSUFIYOHervlkRuKS15i/wIh8PBO++8w4kTJ5g1a5a/2xGRSmzbtm2Eh4dTXFzMzp07FSalRlKgFLmB0NBQXnnlFf74xz+SkZHh73ZEpBJKSEhg6NChhIWFsWvXLjp37uzvlkT8QkveIj+huLiYXr16YbfbSU9PJzAw0N8tiUgl4Ha7mTFjBrNnz2bKlCnMnz9f/x+kRtMMpchPCAwMZPHixRw4cIDZs2f7ux0RqQSuXLnCuHHjePPNN5kzZw7x8fEKk1LjaYZS5Ca8+OKLzJkzh88++4wuXbr4ux0R8ZNTp04xevRovvrqK0zTZMSIEf5uSaRSUKAUuQnXrl2je/fuNG3alG3btuFwOPzdkojcYjt37iQiIoKgoCDWrl1L165d/d2SSKWhJW+Rm1CnTh0WLVrEJ598wttvv+3vdkTkFjNNk/vvv5+OHTuSnp6uMCnyLxQoRW7SgAEDeOaZZ5gxYwYnT570dzsicgt4PB5mzpzJY489xoQJE/jb3/5G8+bN/d2WSKWjJW+RMsjLy6Nr16506tSJTZs2YbPZ/N2SiPhIfn4+kydPJjk5mT/84Q+8+OKL+psXuQHNUIqUQf369VmwYAGbN2/m3Xff9Xc7IuIjZ8+eZdCgQaxdu5YVK1YwY8YMhUmRn6AZSpFymDRpEqtWreLw4cO0bNnS3+2IiBft27eP0aNHA7B69Wp69Ojh545EKj/NUIqUw5/+9Cdq167N1KlT0XsykeojNTWVAQMG0LJlS9LT0xUmRW6SAqVIOTRu3Jj58+ezcuVKli9ffsPnFRdDUREoc4pUbpZl8frrrxMZGcnIkSP56KOPaNWqlb/bEqkytOQtUgGRkZFs376dw4cP06RJE774At57Dz75BPbsgby80ucFBUG3btCnDxgG3HcfaDuWSOVQWFjIlClTWLp0Ka+++iozZ87Ebtd8i0hZKFCKVMD58+cJDQ3lF7+YSn7+f/HhhxAQACUlP/78fzwWFgb/+7/w8MO3tl8R+b6srCzGjh3L3r17SUhIwDAMf7ckUiUpUIpUQEkJjB+/n5Uru2K32/F4bm5Ww24HjwcmTYK33oIGDXzbp4j80MGDBxk1ahTXrl1j1apVhIeH+7slkSpLgVKknIqKYMIEWL3awrLKt37tcEDXrrBlCzRp4uUGRaoht8dNemY6u8/uZv/5/WQXZGPDRshtIfRo2YM+bfrQtXnXnz3iZ926dURHR9OxY0dWr15Nu3btbtErEKmeFChFysGy4LHHIDm5dKaxIhyO0v2VO3aU7rUUkR/KKcjBtcfFvN3zOJN7Bhs2HHYHJZ4SbNgIsAdQ7CkGICwkjOfue46J3SYS6Aj8Xh3Lspg7dy4vvPACI0eO5P3336devXr+eEki1YoCpUg5LF0KEyd6r57dDi+8ULqvUkS+b+OxjUxeNZmsq1l4rJ9/B2e32fFYHu5pfg/Lxi0jLCQMgKKiIp599lkWLlzI9OnTef3113E4HL5uX6RGUKAUKaOsLLjzTrhyxbvHAdlssGsX9O7tvZoiVZllWbzy4Sv898f/fT0kloXD5sBms/HumHd5pM0jREZGsmPHDuLj45k8ebKPuhapmRQoRcpo1qzSD7fbu3UDAmDMGPiJYy1FapQZm2fwPzv+p8J1bNhovr05JRklpKWlMWDAAC90JyLfpUApUgYlJdC6dekspS/Y7XDqVOkYIjVZ6pFUIpMjvVPMKv3YMGYDD/fQWV0ivqCTW0XKYN8+34VJKL3AZ+NG39UXqQou5l9kypop2PDS6f82cDgc/Mfu/6DEc4NDYkWkQhQoRcpg717f3uEmMLB0DJGabPYns8kpyMHCewtobsvNvvP7SD6U7LWaIvJPCpQiZXDwYOleR18pLobPPvNdfZHKrqCkgPi98bgtL29SpvTq73np87xeV0QUKEXK5OrVip87+XNyc31bX6Qy23hsI5cLLvuktsfy8OmZT/kq+yuf1BepyRQoRcogIMC3S95QuuwtUlOlZ6YTaPftH8HuzN0+rS9SEylQipRB+/bePXvyXzkccNddvqsvUtntPbvXpxfOBNoD2XtOG5VFvE2BUqQMevXy/vmT32VZ0LOn7+qLVHbnr5736sU4/8rC4mL+RZ/VF6mpFChFyiA83LcX5Xg80LNnvu8GEKnkbsXRyL4MrCI1lQKlSBk0bgyPPuqrUOkBjhAR0YKpU6dy4MABXwwiUqmF1AvxaX0bNhrXaezTMURqIgVKkTKaNq30jjneZ+f115vz29/+O2lpaYSFhdGvXz+WLVtGQUGBLwYUqXR6tOjh04tyij3F9GjZw2f1RWoqBUqRMvrFL2DSpNILaLwlIAB694bp05swa9YsTp06xfLly6lTpw5PPvkkbdq0Yfr06Rw7dsx7g4pUMhcvXuTy4csUe4p9Ok7vVr19Wl+kJtK9vEXK4fJlCA0tvQ1jRS/SsdtLjwravx+6dPnh41988QXx8fEkJCSQnZ3NsGHDcDqdjB49mgBfbugUuQXy8vJYuXIlpmnywQcf4HF4sE234Q7wzcHm3Vt0Z+/TuspbxNs0QylSDsHBsHkzNGhQsZlKu730Iy3tx8MkQKdOnXjzzTfJzMxkyZIl5OXlERkZSfv27Xnttdc4c+ZM+RsQ8YOCggJSU1MZP348zZs3Z+LEieTm5jJ37lzOnTrHc/2fw2Hz4hLAtzyWh2n3TfN6XRHRDKVIhXz+OYwcCSdOlP0OOg5HaSBdvhyGDCnb1+7fvx+Xy3V9f+WoUaNwOp0MGzYMu13vE6XyKSkpYcuWLZimSVpaGrm5uXTv3h3DMIiKiqJ9+/bXn3v+ynk6z+tMXmGe167IdtgcdG7amYyYDGo5anmlpoj8kwKlSAVduwYzZ8Ibb5TONv7cEnhAQOlFPRMmwPz50LRp+cfOzc3l/fffJy4ujgMHDtChQwdiYmKYPHkyzZo1K39hES/weDzs2LED0zRJSUnhwoULdOrUCcMwiI6OpsuNpuWB9//+Pk+kPeG1Xuw2O3um7OHelvd6raaI/JMCpYiXnDoFCxbAwoWleyt/TL168MQTEBsLYWHeG9uyLD799FNcLhfJyclYlsX48eNxOp3069cPm6/vFynyLcuyyMjIwDRNkpKSOH36NG3atCE6OhrDMLj33ntv6vfRsiye3fAsb+9+2yt9xY+M5+meT3ulloj8kAKliJdZFmRmwr598PXXpZ83agTdu0PHjqWzmL504cIF3n33XVwuF8ePH6dr1644nU6efPJJGjRo4NvBpcY6evQopmlimiZffPEFzZo1Y/z48URHR9OvX79ybcXwWB5+s/E3zEufhw1bmZe/HTYHHsvD/OHzie0dW+bxReTmKVCKVFMej4ctW7bgcrlYtWoVQUFBPPbYY8TGxnLvvVr2k4o7deoUSUlJmKZJRkYGDRo0YOzYsRiGwQMPPOC1UwhSDqUQszaG3MJc3NbPX/1to3QG9I5Gd7Bs7DL6tu3rlT5E5MYUKEVqgMzMTN555x0WLFhAZmYm4eHhOJ1OoqKiqFOnjr/bkyokKyuLlJQUTNNkx44dBAUFMXLkSAzDYPjw4QQFBflk3G+ufsNbu94ibk8cl65dwmFzYGHhsUqvhvvu53cE38G0+6bh7OWkTqB+v0VuBQVKkRqkpKSEdevWERcXx1//+leCg4OZNGkSTqeTzp07+7s9qaRycnJIS0vDNE22bNmCzWbjwQcfxDAMxowZQ/369W9ZL0XuIj488SF7zu4h43wGF/Iv4LA5aFG/BT1b9iS8dTh92/bFbtNpByK3kgKlSA11/PhxFixYwOLFi7lw4QKDBw8mNjaWMWPGUKuWjlWp6fLz81m7di2JiYmsX7+eoqIiBg4ciGEYREZG0rQixxOISLWjQClSwxUWFrJixQri4uLYvn07ISEh/PrXv2bKlCnfOxtQqr/i4mI2bdqEaZqsWrWKK1eu0Lt3b6Kjo4mKiqJ169b+blFEKikFShG57uDBg7hcLt577z2uXr3K8OHDcTqdPPzwwzi8efNyqTTcbjcff/wxpmmyfPlyLl26RGho6PWzIu+8805/tygiVYACpYj8wJUrVzBNk7i4ODIyMmjfvj0xMTE89dRThISE+Ls9qSDLsti9ezeJiYkkJSVx9uxZbr/99utnRd5zzz06u1REykSBUkRu6B/BIy4ujsTERNxuN+PGjcPpdDJo0CCFjirm0KFDmKZJYmIix48fJyQkhAkTJmAYBn369NHPU0TKTYFSRG5KdnY2S5YsweVycfToUbp06YLT6eSXv/wlwcHB/m5PbuDEiRMkJiZimiYHDhwgODiYyMhIDMPg/vvv11YGEfEKBUoRKRPLsti6dSsul4vU1FQCAwOJjo4mNjaW3r17+7s9Ac6dO0dycjKJiYns3LmTunXrMnr0aAzD4KGHHqJ27dr+blFEqhkFShEpt/Pnz7N48WLi4+M5deoUPXv2xOl0YhgGt912m7/bq1Gys7NZsWIFpmmydetWHA4HjzzyCNHR0YwePVo/DxHxKQVKEakwt9vNhg0bcLlcrF+/nvr16zNx4kScTid33323v9urtq5evcrq1asxTZONGzfidrsZPHgwhmEwbtw4GjVq5O8WRaSGUKAUEa86efIkCxcuZNGiRWRlZTFw4ECcTifjxo3TUqsXFBYWsnHjRhITE1m9ejX5+fn06dMHwzCYMGECLVq08HeLIlIDKVCKiE8UFRWxcuVK4uLi2Lp1K82aNeOpp54iJiaGO+64w9/tVSlut5sPP/wQ0zRJTU3l8uXLhIWFYRgGUVFR+n6KiN8pUIqIz33++ee4XC6WLFlCTk4ODz30ELGxsQwfPpyAgAB/t1cpWZbFzp07MU2T5ORkvv76azp27IhhGBiGQWhoqL9bFBG5ToFSRG6Z/Px8kpKScLlcpKen06ZNG55++ml+9atf0apVK3+353eWZfH3v/+dxMREEhMTOXnyJK1btyYqKoro6Gh69eqlsyJFpFJSoBQRv9i7dy8ul4u//OUvFBYWEhERgdPpZMiQIdjtdp+Ne7XoKvvP72ffuX2cu3IOj+UhOCiYbiHd6NmqJ81va+6zsW/k2LFjmKaJaZocOXKEJk2a8Oijj2IYBgMGDPDp90NExBsUKEXEr3Jycli6dCkul4tDhw5x1113ERMTw6RJk2jSpInXxtl1Zhfzd88n8WAixZ5ibNgIsJcut3ssD27LDcDA9gOZdt80IrpEXH/cFzIzM0lKSsI0Tfbs2UO9evWIiIjAMAyGDRtGYGCgz8YWEfE2BUoRqRQsy2L79u24XC6WL1+OzWYjKioKp9NZodsCXsy/yLQN0zAPmgTYAyjxlPzk8x02B27LTVhIGMvGLuOekHvKNe6PuXDhAsuXLycxMZFt27ZRq1YtRowYQXR0NCNGjKBu3bpeG0tE5FZSoBSRSicrK4uEhATi4+M5ceIE3bp1w+l08vjjj1O/fv2brpOemc6Iv4wg+1r29RnIm+WwObDZbMx7ZB4xvWLK+hKuy8vLY+XKlZimyQcffIBlWQwdOhTDMIiIiKBhw4blri0iUlkoUIpIpeXxeNi0aRMul4s1a9ZQt25dnnjiCWJjYwkLC/vJr911ZheDlwymyF1U5jD5r/7v4f9jWvi0m35+QUEB69evxzRN1q5dS0FBAf3798cwDB599FGaN7/1+zRFRHxJgVJEqoTTp0+zaNEiFi5cyLlz5+jbty+xsbGMHz+eoKCg7z33m6vf0GV+F3IKciocJv9h85ObeaDDAzd8vLi4mC1btpCYmEhaWhq5ubn06NHj+lmRbdu29UofIiKVkQKliFQpxcXFrFmzhri4ODZv3kzjxo2ZPHkyMTEx3HXXXQBMSJlA6pFUr4VJu81Oy3otOfLMEerX/ueSu8fjYceOHZimSUpKChcuXKBz584YhkF0dDSdO3f2yvgiIpWdAqWIVFlffvkl8fHxJCQkcOnSJYYOHcrAiQN59atXvT6W3Wbn5QEv89r9r5GRkYFpmiQlJXH69Gnatm1LdHQ0hmHQvXt3nRUpIjWOAqWIVHkFBQWkpKQQFxfHp20+hX8DfHB0Y12rLq2TWvPl51/SrFkzJkyYgGEY9O3bV2dFikiNpkApItVG9rVsms5uisfy+GyMIV8P4fcRv2fIkCG6baSIyLf031BEqo09Z/f4NEwG2APoPa43Dw590GdjiIhURVqjEZFqY9+5fThsDp/VL/GUkJ6Z7rP6IiJVlQKliFQbmXmZ2G2+/bd2Ove0T+uLiFRFCpQiUm24Pd45JsjfY4iIVDUKlCJSbTQM8v1tDIODgn0+hohIVaNAKSLVRreQbhR7in1WP8AeQM+WPX1WX0SkqlKgFJFqo1erXj6t7/a4fT6GiEhVpEApItVGh0YduLvZ3djwzZ1q7DY7ozuP9kltEZGqTIFSRKoNm83Gb8J/45PaAfYAIv8tkpb1W/qkvohIVaZAKSLVyuNhj9O2YVuvn0dpWRYvDXjJqzVFRKoLBUoRqVbqBtblvYj3cFveO97Hho2XB75MtxbdvFZTRKQ6UaAUkWpn0O2D+M/7/9MrtRw2B4NuH6TZSRGRn6BAKSLV0isDX+Gl/qUhsLwX6diw0b9df9YYa6jlqOXN9kREqhWbZVmWv5sQEfGV5EPJxKyN4UrRFUo8JTf1NQH2ADyWh5f6v8TLA1+mdkBtH3cpIlK1KVCKSLWXdTWLWR/NImF/AvnF+QTaA39wALrD5sDCwrIsRnYaycxBM+nZSoeYi4jcDAVKEakx8grzSD2Sys4zO9mVuYtzV87h9rgJDgqmd+ve9GrZi8jQSNo1bOfvVkVEqhQFShERERGpEF2UIyIiIiIVokApIiIiIhWiQCkiIiIiFaJAKSIiIiIVokApIiIiIhWiQCkiIiIiFaJAKSIiIiIVokApIiIiIhWiQCkiIiIiFaJAKSIiIiIVokApIiIiIhWiQCkiIiIiFaJAKSIiIiIVokApIiIiIhWiQCkiIiIiFaJAKSIiIiIVokApIiIiIhWiQCkiIiIiFfL/4xb3cJxvufUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "c = pd.Series({node: colors[ith] for ith, nodes in enumerate(communities) for node in nodes}).values\n", "nx.draw_spring(G, node_color=c)" @@ -526,12 +534,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "[{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},\n", + " {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}]" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "communities" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/docker/Dockerfile b/docker/Dockerfile index c360fe6..28f7f20 100644 --- a/docker/Dockerfile +++ b/docker/Dockerfile @@ -1,6 +1,7 @@ -FROM jupyter/scipy-notebook +FROM jupyter/scipy-notebook as base ARG user=euler +ARG branch=chap6 USER root @@ -16,29 +17,34 @@ ENV NB_USER=${user} ENV XDG_CACHE_HOME=/home/${user}/.cache/ RUN git clone https://github.com/deusebio/Graph-Machine-Learning.git /home/${user}/Graph-Machine-Learning - WORKDIR /home/${user}/Graph-Machine-Learning +RUN git checkout ${branch} RUN ln -s /data data +EXPOSE 8888 -RUN git checkout chap6 +ENTRYPOINT jupyter notebook --no-browser --port 8888 --NotebookApp.token='' --NotebookApp.password='' +FROM base as chap1 +RUN ls -d -1 */ | grep -v -e Chapter01 | xargs rm -rf RUN conda create -n chap1 python=3.9 RUN conda run -n chap1 pip install -r Chapter01/requirements.txt RUN conda run -n chap1 python -m ipykernel install --name chap1 --user +FROM base as chap2 +RUN ls -d -1 */ | grep -v -e Chapter02 | xargs rm -rf RUN conda create -n chap2 python=3.11 RUN conda run -n chap2 pip install -r Chapter02/requirements.txt RUN conda run -n chap2 python -m ipykernel install --name chap2 --user +FROM base as chap3 +RUN ls -d -1 */ | grep -v -e Chapter03 | xargs rm -rf RUN conda create -n chap3 python=3.8 RUN conda run -n chap3 pip install -r Chapter03/requirements.txt RUN conda run -n chap3 python -m ipykernel install --name chap3 --user +FROM base as chap6 +RUN ls -d -1 */ | grep -v -e Chapter06 | xargs rm -rf RUN conda create -n chap6 python=3.8 RUN conda run -n chap6 pip install -r Chapter06/requirements.txt RUN conda run -n chap6 python -m ipykernel install --name chap6 --user - -EXPOSE 8888 - -ENTRYPOINT jupyter notebook --no-browser --port 8888 --NotebookApp.token='' --NotebookApp.password='' \ No newline at end of file diff --git a/Chapter01/utils.py b/utils.py similarity index 100% rename from Chapter01/utils.py rename to utils.py From 56fcc7ed4ddaa00d089a804c6affbf1566ba5920 Mon Sep 17 00:00:00 2001 From: Enrico Deusebio Date: Tue, 1 Oct 2024 22:48:25 +0200 Subject: [PATCH 11/31] [2nd Edition][Chapter 5] (fix) Various stability fixes --- .github/workflows/ci.yaml | 2 + Chapter05/01_link_prediction.ipynb | 6 +- .../02_community_detection_algorithms.ipynb | 4 +- Chapter05/requirements.txt | 101 ++++++++++++++++++ docker/Dockerfile | 6 ++ 5 files changed, 114 insertions(+), 5 deletions(-) create mode 100644 Chapter05/requirements.txt diff --git a/.github/workflows/ci.yaml b/.github/workflows/ci.yaml index 46b0c88..f3c7458 100644 --- a/.github/workflows/ci.yaml +++ b/.github/workflows/ci.yaml @@ -21,6 +21,8 @@ jobs: folder: Chapter02 - name: chap3 folder: Chapter03 + - name: chap5 + folder: Chapter05 - name: chap6 folder: Chapter06 runs-on: ubuntu-latest diff --git a/Chapter05/01_link_prediction.ipynb b/Chapter05/01_link_prediction.ipynb index f05c729..f725c17 100644 --- a/Chapter05/01_link_prediction.ipynb +++ b/Chapter05/01_link_prediction.ipynb @@ -23,7 +23,7 @@ "import os\n", "import sys\n", "sys.path.append(f\"{os.getcwd()}/..\") \n", - "from Chapter01.utils import draw_graph, DATA_DIR" + "from utils import draw_graph, DATA_DIR" ] }, { @@ -384,9 +384,9 @@ ], "metadata": { "kernelspec": { - "display_name": "graph-machine-learning", + "display_name": "chap5", "language": "python", - "name": "graph-machine-learning" + "name": "chap5" }, "language_info": { "codemirror_mode": { diff --git a/Chapter05/02_community_detection_algorithms.ipynb b/Chapter05/02_community_detection_algorithms.ipynb index 1bce05d..006aeb5 100644 --- a/Chapter05/02_community_detection_algorithms.ipynb +++ b/Chapter05/02_community_detection_algorithms.ipynb @@ -563,9 +563,9 @@ ], "metadata": { "kernelspec": { - "display_name": "graph-machine-learning", + "display_name": "chap5", "language": "python", - "name": "graph-machine-learning" + "name": "chap5" }, "language_info": { "codemirror_mode": { diff --git a/Chapter05/requirements.txt b/Chapter05/requirements.txt new file mode 100644 index 0000000..797e6cf --- /dev/null +++ b/Chapter05/requirements.txt @@ -0,0 +1,101 @@ +absl-py==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +appnope==0.1.4 ; python_version >= "3.8" and python_version < "3.9" and (platform_system == "Darwin" or sys_platform == "darwin") +asttokens==2.4.1 ; python_version >= "3.8" and python_version < "3.9" +astunparse==1.6.3 ; python_version >= "3.8" and python_version < "3.9" +backcall==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +cachetools==5.4.0 ; python_version >= "3.8" and python_version < "3.9" +certifi==2024.7.4 ; python_version >= "3.8" and python_version < "3.9" +cffi==1.17.0 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +chardet==5.2.0 ; python_version >= "3.8" and python_version < "3.9" +charset-normalizer==3.3.2 ; python_version >= "3.8" and python_version < "3.9" +colorama==0.4.6 ; python_version >= "3.8" and python_version < "3.9" and (sys_platform == "win32" or platform_system == "Windows") +comm==0.2.2 ; python_version >= "3.8" and python_version < "3.9" +communities==2.2.0 ; python_version >= "3.8" and python_version < "3.9" +cycler==0.12.1 ; python_version >= "3.8" and python_version < "3.9" +cython==0.29.14 ; python_version >= "3.8" and python_version < "3.9" +debugpy==1.8.5 ; python_version >= "3.8" and python_version < "3.9" +decorator==5.1.1 ; python_version >= "3.8" and python_version < "3.9" +executing==2.0.1 ; python_version >= "3.8" and python_version < "3.9" +flatbuffers==2.0.7 ; python_version >= "3.8" and python_version < "3.9" +gast==0.4.0 ; python_version >= "3.8" and python_version < "3.9" +gensim==3.8.3 ; python_version >= "3.8" and python_version < "3.9" +google-auth-oauthlib==1.0.0 ; python_version >= "3.8" and python_version < "3.9" +google-auth==2.33.0 ; python_version >= "3.8" and python_version < "3.9" +google-pasta==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +grpcio==1.65.4 ; python_version >= "3.8" and python_version < "3.9" +h5py==3.11.0 ; python_version >= "3.8" and python_version < "3.9" +idna==3.7 ; python_version >= "3.8" and python_version < "3.9" +importlib-metadata==8.2.0 ; python_version >= "3.8" and python_version < "3.9" +ipykernel==6.29.5 ; python_version >= "3.8" and python_version < "3.9" +ipython==8.12.3 ; python_version >= "3.8" and python_version < "3.9" +jedi==0.19.1 ; python_version >= "3.8" and python_version < "3.9" +joblib==1.4.2 ; python_version >= "3.8" and python_version < "3.9" +jupyter-client==8.6.2 ; python_version >= "3.8" and python_version < "3.9" +jupyter-core==5.7.2 ; python_version >= "3.8" and python_version < "3.9" +karateclub==1.0.19 ; python_version >= "3.8" and python_version < "3.9" +keras-preprocessing==1.1.2 ; python_version >= "3.8" and python_version < "3.9" +keras==2.7.0 ; python_version >= "3.8" and python_version < "3.9" +kiwisolver==1.4.5 ; python_version >= "3.8" and python_version < "3.9" +libclang==18.1.1 ; python_version >= "3.8" and python_version < "3.9" +markdown==3.6 ; python_version >= "3.8" and python_version < "3.9" +markupsafe==2.1.5 ; python_version >= "3.8" and python_version < "3.9" +matplotlib-inline==0.1.7 ; python_version >= "3.8" and python_version < "3.9" +matplotlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" +nest-asyncio==1.6.0 ; python_version >= "3.8" and python_version < "3.9" +networkx==2.5 ; python_version >= "3.8" and python_version < "3.9" +node2vec==0.3.3 ; python_version >= "3.8" and python_version < "3.9" +numpy==1.24.4 ; python_version >= "3.8" and python_version < "3.9" +nxt-gem @ git+https://github.com/palash1992/GEM.git@ae8e92d34213f5785757b4a0943bd7d8d337adb3 ; python_version >= "3.8" and python_version < "3.9" +oauthlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" +opt-einsum==3.3.0 ; python_version >= "3.8" and python_version < "3.9" +packaging==24.1 ; python_version >= "3.8" and python_version < "3.9" +pandas==2.0.3 ; python_version >= "3.8" and python_version < "3.9" +parso==0.8.4 ; python_version >= "3.8" and python_version < "3.9" +pexpect==4.9.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" +pickleshare==0.7.5 ; python_version >= "3.8" and python_version < "3.9" +platformdirs==4.2.2 ; python_version >= "3.8" and python_version < "3.9" +prompt-toolkit==3.0.47 ; python_version >= "3.8" and python_version < "3.9" +protobuf==3.20.3 ; python_version >= "3.8" and python_version < "3.9" +psutil==6.0.0 ; python_version >= "3.8" and python_version < "3.9" +ptyprocess==0.7.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" +pure-eval==0.2.3 ; python_version >= "3.8" and python_version < "3.9" +pyasn1-modules==0.4.0 ; python_version >= "3.8" and python_version < "3.9" +pyasn1==0.6.0 ; python_version >= "3.8" and python_version < "3.9" +pycparser==2.22 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +pygments==2.18.0 ; python_version >= "3.8" and python_version < "3.9" +pygsp==0.5.1 ; python_version >= "3.8" and python_version < "3.9" +pyparsing==3.1.2 ; python_version >= "3.8" and python_version < "3.9" +python-dateutil==2.9.0.post0 ; python_version >= "3.8" and python_version < "3.9" +python-louvain==0.16 ; python_version >= "3.8" and python_version < "3.9" +pytz==2024.1 ; python_version >= "3.8" and python_version < "3.9" +pywin32==306 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" +pyzmq==26.1.0 ; python_version >= "3.8" and python_version < "3.9" +requests-oauthlib==2.0.0 ; python_version >= "3.8" and python_version < "3.9" +requests==2.32.3 ; python_version >= "3.8" and python_version < "3.9" +rsa==4.9 ; python_version >= "3.8" and python_version < "3.9" +scikit-learn==0.24.0 ; python_version >= "3.8" and python_version < "3.9" +scipy==1.10.1 ; python_version >= "3.8" and python_version < "3.9" +setuptools==72.2.0 ; python_version >= "3.8" and python_version < "3.9" +six==1.16.0 ; python_version >= "3.8" and python_version < "3.9" +smart-open==7.0.4 ; python_version >= "3.8" and python_version < "3.9" +stack-data==0.6.3 ; python_version >= "3.8" and python_version < "3.9" +stellargraph @ git+https://github.com/stellargraph/stellargraph.git@3c2c8c18ab4c5c16660f350d8e23d7dc39e738de ; python_version >= "3.8" and python_version < "3.9" +tensorboard-data-server==0.7.2 ; python_version >= "3.8" and python_version < "3.9" +tensorboard==2.14.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow-estimator==2.7.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow-io-gcs-filesystem==0.21.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow==2.7.2 ; python_version >= "3.8" and python_version < "3.9" +termcolor==2.4.0 ; python_version >= "3.8" and python_version < "3.9" +theano==1.0.5 ; python_version >= "3.8" and python_version < "3.9" +threadpoolctl==3.5.0 ; python_version >= "3.8" and python_version < "3.9" +tornado==6.4.1 ; python_version >= "3.8" and python_version < "3.9" +tqdm==4.66.5 ; python_version >= "3.8" and python_version < "3.9" +traitlets==5.14.3 ; python_version >= "3.8" and python_version < "3.9" +typing-extensions==4.12.2 ; python_version >= "3.8" and python_version < "3.9" +tzdata==2024.1 ; python_version >= "3.8" and python_version < "3.9" +urllib3==2.2.2 ; python_version >= "3.8" and python_version < "3.9" +wcwidth==0.2.13 ; python_version >= "3.8" and python_version < "3.9" +werkzeug==3.0.3 ; python_version >= "3.8" and python_version < "3.9" +wheel==0.44.0 ; python_version >= "3.8" and python_version < "3.9" +wrapt==1.16.0 ; python_version >= "3.8" and python_version < "3.9" +zipp==3.20.0 ; python_version >= "3.8" and python_version < "3.9" diff --git a/docker/Dockerfile b/docker/Dockerfile index 28f7f20..c39533c 100644 --- a/docker/Dockerfile +++ b/docker/Dockerfile @@ -43,6 +43,12 @@ RUN conda create -n chap3 python=3.8 RUN conda run -n chap3 pip install -r Chapter03/requirements.txt RUN conda run -n chap3 python -m ipykernel install --name chap3 --user +FROM base as chap5 +RUN ls -d -1 */ | grep -v -e Chapter05 | xargs rm -rf +RUN conda create -n chap5 python=3.8 +RUN conda run -n chap5 pip install -r Chapter05/requirements.txt +RUN conda run -n chap5 python -m ipykernel install --name chap5 --user + FROM base as chap6 RUN ls -d -1 */ | grep -v -e Chapter06 | xargs rm -rf RUN conda create -n chap6 python=3.8 From 269e73d7f150e9fd72e38818c97bbf724b871ca6 Mon Sep 17 00:00:00 2001 From: deusebio Date: Thu, 3 Oct 2024 09:14:38 +0200 Subject: [PATCH 12/31] [2nd Edition][New Chapter] Introduction on Neural Networks] Introduce (#2) --- .github/workflows/ci.yaml | 2 + .../01_ImageClassification_TensorFlow.ipynb | 237 ++ .../02_ImageClassification_Pytorch.ipynb | 248 ++ ChapterNN/03_Autoencoders.ipynb | 627 ++++ .../04_GraphAutoEncoder_PyGeometric.ipynb | 188 + .../05_GraphAutoEncoder_StellarGraph.ipynb | 211 ++ ChapterNN/poetry.lock | 3256 +++++++++++++++++ ChapterNN/pyproject.toml | 27 + ChapterNN/requirements.txt | 125 + docker/Dockerfile | 8 +- 10 files changed, 4928 insertions(+), 1 deletion(-) create mode 100644 ChapterNN/01_ImageClassification_TensorFlow.ipynb create mode 100644 ChapterNN/02_ImageClassification_Pytorch.ipynb create mode 100644 ChapterNN/03_Autoencoders.ipynb create mode 100644 ChapterNN/04_GraphAutoEncoder_PyGeometric.ipynb create mode 100644 ChapterNN/05_GraphAutoEncoder_StellarGraph.ipynb create mode 100644 ChapterNN/poetry.lock create mode 100644 ChapterNN/pyproject.toml create mode 100644 ChapterNN/requirements.txt diff --git a/.github/workflows/ci.yaml b/.github/workflows/ci.yaml index f3c7458..9446af9 100644 --- a/.github/workflows/ci.yaml +++ b/.github/workflows/ci.yaml @@ -21,6 +21,8 @@ jobs: folder: Chapter02 - name: chap3 folder: Chapter03 + - name: chap-nn + folder: ChapterNN - name: chap5 folder: Chapter05 - name: chap6 diff --git a/ChapterNN/01_ImageClassification_TensorFlow.ipynb b/ChapterNN/01_ImageClassification_TensorFlow.ipynb new file mode 100644 index 0000000..a81dd61 --- /dev/null +++ b/ChapterNN/01_ImageClassification_TensorFlow.ipynb @@ -0,0 +1,237 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "8c4e9e09-b0c6-4671-86a0-ca6bc73056b6", + "metadata": {}, + "source": [ + "# Image Classification with TensorFlow" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "012237ce-0396-4c88-8b13-994c7a830421", + "metadata": {}, + "outputs": [], + "source": [ + "import tensorflow as tf\n", + "from tensorflow.keras.datasets import fashion_mnist\n", + "from matplotlib import pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "id": "6080305f-eaac-49d2-a4cb-658a907186ac", + "metadata": {}, + "source": [ + "### Load and re-scale input data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1135c9e8-1765-48cc-beb8-25fd6ff363d4", + "metadata": {}, + "outputs": [], + "source": [ + "(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ee2989f4-9b32-48f6-b669-8255aa9e9c79", + "metadata": {}, + "outputs": [], + "source": [ + "x_train = x_train.astype('float32') / 255.\n", + "x_test = x_test.astype('float32') / 255.\n", + "\n", + "print (x_train.shape)\n", + "print (x_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0525097f-4b57-4e9c-b850-966540589a30", + "metadata": {}, + "outputs": [], + "source": [ + "classes = {\n", + " 0: \"T-shirt\",\n", + " 1: \"Trouser\",\n", + " 2: \"Pullover\",\n", + " 3: \"Dress\",\n", + " 4: \"Coat\",\n", + " 5: \"Sandal\",\n", + " 6: \"Shirt\",\n", + " 7: \"Sneaker\",\n", + " 8: \"Bag\",\n", + " 9: \"Ankle boot\", \n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a0e2bc95-ee33-4024-99d2-4ba7cb4fd0c6", + "metadata": {}, + "outputs": [], + "source": [ + "n = 6\n", + "plt.figure(figsize=(20, 4))\n", + "for i in range(n):\n", + " # display original\n", + " ax = plt.subplot(1, n, i + 1)\n", + " plt.imshow(x_test[i])\n", + " plt.title(classes[y_test[i]])\n", + " plt.gray()\n", + " ax.get_xaxis().set_visible(False)\n", + " ax.get_yaxis().set_visible(False)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "c7ace701-0cd8-4173-982c-8682a860dd26", + "metadata": {}, + "source": [ + "### Build model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a2d549c8-a410-4caa-95a4-b0bb20a05236", + "metadata": {}, + "outputs": [], + "source": [ + "model = tf.keras.models.Sequential([\n", + " tf.keras.layers.Flatten(input_shape=(28, 28)),\n", + " tf.keras.layers.Dense(128, activation='relu'),\n", + " tf.keras.layers.Dropout(0.2),\n", + " tf.keras.layers.Dense(10)\n", + "])\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f20ef704-3435-4f12-b41b-db42fcfb3b43", + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "id": "9af979aa-9ccb-4b92-b0fd-ef39fcf6f317", + "metadata": {}, + "source": [ + "### Train the network" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "53f02c48-3d8f-4e41-a9d4-703016a0dc19", + "metadata": {}, + "outputs": [], + "source": [ + "loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)\n", + "optimizer = tf.keras.optimizers.Adam()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6427e500-41d2-43f1-b235-622d1d59572e", + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(optimizer=optimizer,\n", + " loss=loss_fn,\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ef1fea96-97cc-4c84-bb0c-78417a571575", + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(\n", + " x_train, \n", + " y_train, \n", + " validation_data=(x_test, y_test), \n", + " epochs=20, \n", + " batch_size=128,\n", + " shuffle=True\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "a8c64c99-cbab-4503-8a1d-84f80c6f2af7", + "metadata": {}, + "source": [ + "### More advanced model" + ] + }, + { + "cell_type": "markdown", + "id": "c4649c36-1157-438b-bff0-01e980aa7da3", + "metadata": {}, + "source": [ + "For a slightly more complex and deeper network, try to train the model below" + ] + }, + { + "cell_type": "raw", + "id": "e9af3bfc-7b19-4441-9dc4-46df1b3739cc", + "metadata": {}, + "source": [ + "input_img = tf.keras.layers.Input(shape=(28, 28, 1))\n", + "\n", + "x = tf.keras.layers.Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)\n", + "x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x)\n", + "x = tf.keras.layers.Conv2D(8, (3, 3), activation='relu', padding='same')(x)\n", + "x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x)\n", + "x = tf.keras.layers.Conv2D(8, (3, 3), activation='relu', padding='same')(x)\n", + "x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x)\n", + "x = tf.keras.layers.Flatten(input_shape=(26, 26))(x)\n", + "x = tf.keras.layers.Dense(128, activation='relu')(x)\n", + "x = tf.keras.layers.Dropout(0.2)(x)\n", + "x = tf.keras.layers.Dense(10)(x)\n", + "\n", + "model = tf.keras.Model(input_img, x)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "chap-nn", + "language": "python", + "name": "chap-nn" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/ChapterNN/02_ImageClassification_Pytorch.ipynb b/ChapterNN/02_ImageClassification_Pytorch.ipynb new file mode 100644 index 0000000..0c3b17a --- /dev/null +++ b/ChapterNN/02_ImageClassification_Pytorch.ipynb @@ -0,0 +1,248 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "cfe91160-02ad-48cc-810b-1031f21397ff", + "metadata": {}, + "source": [ + "# Image Classification with PyTorch" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "60ea01e6-2184-4d88-a9e3-c05f70953f0a", + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "from torchvision import datasets, transforms" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "83163df1-5732-459b-948a-b88d07d692cf", + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "from matplotlib import pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "id": "4067288c-39ac-4f51-a5b3-f3a043f0c3a9", + "metadata": {}, + "source": [ + "### Load and re-scale input data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "55daa661-47bb-4499-b8a4-dce7f5cadc22", + "metadata": {}, + "outputs": [], + "source": [ + "transformer=transforms.Compose([\n", + " transforms.ToTensor(),\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3cf93aa8-eaa0-4143-84fc-2c617d402bd2", + "metadata": {}, + "outputs": [], + "source": [ + "train_dataset = datasets.FashionMNIST('./data', train=True, download=True, transform=transformer)\n", + "test_dataset = datasets.FashionMNIST('./data', train=False, transform=transformer)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fa2574d6-659d-4ef5-92a5-ffbe7036dc5b", + "metadata": {}, + "outputs": [], + "source": [ + "trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True)\n", + "testloader = torch.utils.data.DataLoader(test_dataset, batch_size=test_dataset.data.shape[0])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "be30236f-5707-4517-9b6e-3eeb0601500f", + "metadata": {}, + "outputs": [], + "source": [ + "classes = {v: k for k, v in train_dataset.class_to_idx.items()}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b7b7f58e-291e-4084-933e-4e3357fe42fb", + "metadata": {}, + "outputs": [], + "source": [ + "n = 6\n", + "plt.figure(figsize=(20, 4))\n", + "for i in range(n):\n", + " # display original\n", + " ax = plt.subplot(1, n, i + 1)\n", + " plt.imshow(test_dataset[i][0][0])\n", + " plt.title(classes[test_dataset[i][1]])\n", + " plt.gray()\n", + " ax.get_xaxis().set_visible(False)\n", + " ax.get_yaxis().set_visible(False)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "ef148e96-02d9-45d2-825d-01951a45f047", + "metadata": {}, + "source": [ + "### Build model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "60570c8d-b61d-4558-8d3d-e831279e898f", + "metadata": {}, + "outputs": [], + "source": [ + "import torch.nn as nn\n", + "import torch.nn.functional as F" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3cbed0a8-9d1c-49b1-9e41-59d15b2e134d", + "metadata": {}, + "outputs": [], + "source": [ + "class Model(nn.Module):\n", + " def __init__(self):\n", + " super().__init__()\n", + " self.flatten = nn.Flatten()\n", + " self.fc1 = nn.Linear(28*28, 128)\n", + " self.dropout = nn.Dropout(0.2)\n", + " self.fc2 = nn.Linear(128,10)\n", + "\n", + " def forward(self, x):\n", + " x = self.flatten(x)\n", + " x = F.relu(self.fc1(x))\n", + " x = self.dropout(x)\n", + " x = self.fc2(x)\n", + " return F.log_softmax(x, dim=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0fa2d6f1-9db7-43d7-b00c-b44e5eba8a55", + "metadata": {}, + "outputs": [], + "source": [ + "model = Model()" + ] + }, + { + "cell_type": "markdown", + "id": "6bc8880f-47a3-4b0f-8fee-be0f4b8a0b85", + "metadata": {}, + "source": [ + "### Train the network " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d0c04fcb-4769-4022-ab84-89ee2412febc", + "metadata": {}, + "outputs": [], + "source": [ + "import torch.optim as optim\n", + "\n", + "criterion = nn.CrossEntropyLoss()\n", + "optimizer = optim.Adam(model.parameters())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "679b9446-9820-416a-8bd2-96b8712c33b6", + "metadata": {}, + "outputs": [], + "source": [ + "from torchmetrics.classification import MulticlassAccuracy\n", + "\n", + "accuracy = MulticlassAccuracy(num_classes=len(train_dataset.classes))\n", + "\n", + "for epoch in range(20): # loop over the dataset multiple times\n", + "\n", + " running_loss = 0.0\n", + " for i, data in enumerate(trainloader, 0):\n", + " # get the inputs; data is a list of [inputs, labels]\n", + " inputs, labels = data\n", + "\n", + " # zero the parameter gradients\n", + " optimizer.zero_grad()\n", + "\n", + " # forward + backward + optimize\n", + " outputs = model(inputs)\n", + " loss = criterion(outputs, labels)\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " # print statistics\n", + " running_loss += loss.item()\n", + " if i % 200 == 199: # print every 2000 mini-batches\n", + " print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}') \n", + " running_loss = 0.0\n", + "\n", + " # Evaluate accuracy\n", + " for inputs, labels in testloader:\n", + " preds = model(inputs)\n", + " print(f\"Accuracy on validation set: {float(accuracy(preds, labels))}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4e53fcbf-19c3-46f2-b4bb-90dc307c24e4", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "chap-nn", + "language": "python", + "name": "chap-nn" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/ChapterNN/03_Autoencoders.ipynb b/ChapterNN/03_Autoencoders.ipynb new file mode 100644 index 0000000..af8b3e0 --- /dev/null +++ b/ChapterNN/03_Autoencoders.ipynb @@ -0,0 +1,627 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# AutoEncoder " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the following we will show you how to create, train and use a simple autoencoder. We will then show you how to make an auto-encoder more robust against noise. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import tensorflow as tf" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.datasets import fashion_mnist" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "x_train = x_train.astype('float32') / 255.\n", + "x_test = x_test.astype('float32') / 255.\n", + "\n", + "print (x_train.shape)\n", + "print (x_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from matplotlib import pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "classes = {\n", + " 0:\"T-shirt/top\",\n", + " 1: \"Trouser\",\n", + " 2: \"Pullover\",\n", + " 3: \"Dress\",\n", + " 4: \"Coat\",\n", + " 5: \"Sandal\",\n", + " 6: \"Shirt\",\n", + " 7: \"Sneaker\",\n", + " 8: \"Bag\",\n", + " 9: \"Ankle boot\", \n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "n = 6\n", + "plt.figure(figsize=(20, 4))\n", + "for i in range(n):\n", + " # display original\n", + " ax = plt.subplot(1, n, i + 1)\n", + " plt.imshow(x_test[i])\n", + " plt.title(classes[y_test[i]])\n", + " plt.gray()\n", + " ax.get_xaxis().set_visible(False)\n", + " ax.get_yaxis().set_visible(False)\n", + "\n", + "plt.show()\n", + "# plt.savefig(\"TrainingSet.png\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create Autoencoder" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import Flatten, Conv2D, Dropout, MaxPooling2D, UpSampling2D, Input" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras import Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "input_img = Input(shape=(28, 28, 1))\n", + "\n", + "x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)\n", + "x = MaxPooling2D((2, 2), padding='same')(x)\n", + "x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)\n", + "x = MaxPooling2D((2, 2), padding='same')(x)\n", + "x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)\n", + "encoded = MaxPooling2D((2, 2), padding='same')(x)\n", + "\n", + "# at this point the representation is (4, 4, 8) i.e. 128-dimensional\n", + "\n", + "x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)\n", + "x = UpSampling2D((2, 2))(x)\n", + "x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)\n", + "x = UpSampling2D((2, 2))(x)\n", + "x = Conv2D(16, (3, 3), activation='relu')(x)\n", + "x = UpSampling2D((2, 2))(x)\n", + "decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)\n", + "\n", + "autoencoder = Model(input_img, decoded)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Model(input_img, encoded).summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "autoencoder.compile(optimizer='adam', loss='binary_crossentropy')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.callbacks import TensorBoard" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "autoencoder.fit(x_train, x_train,\n", + " epochs=50,\n", + " batch_size=128,\n", + " shuffle=True,\n", + " validation_data=(x_test, x_test),\n", + " callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "autoencoder.save(\"./data/Batch50.p\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import load_model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "autoencoder_first = load_model(\"./data/Batch50.p\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "decoded_imgs = autoencoder_first.predict(x_test)\n", + "\n", + "n = 6\n", + "plt.figure(figsize=(20, 7))\n", + "for i in range(1, n + 1):\n", + " # Display original\n", + " ax = plt.subplot(2, n, i)\n", + " plt.imshow(x_test[i].reshape(28, 28))\n", + " plt.gray()\n", + " ax.get_xaxis().set_visible(False)\n", + " ax.get_yaxis().set_visible(False)\n", + "\n", + " # Display reconstruction\n", + " ax = plt.subplot(2, n, i + n)\n", + " plt.imshow(decoded_imgs[i].reshape(28, 28))\n", + " plt.gray()\n", + " ax.get_xaxis().set_visible(False)\n", + " ax.get_yaxis().set_visible(False)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.optimizers import Adam" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "autoencoder.compile(optimizer=Adam(learning_rate=0.0005), loss='binary_crossentropy')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "autoencoder.fit(x_train, x_train,\n", + " epochs=50,\n", + " batch_size=128,\n", + " shuffle=True,\n", + " validation_data=(x_test, x_test),\n", + " callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "autoencoder.save(\"./data/Batch100.p\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "decoded_imgs = autoencoder.predict(x_test)\n", + "\n", + "n = 10\n", + "plt.figure(figsize=(20, 4))\n", + "for i in range(1, n + 1):\n", + " # Display original\n", + " ax = plt.subplot(2, n, i)\n", + " plt.imshow(x_test[i].reshape(28, 28))\n", + " plt.gray()\n", + " ax.get_xaxis().set_visible(False)\n", + " ax.get_yaxis().set_visible(False)\n", + "\n", + " # Display reconstruction\n", + " ax = plt.subplot(2, n, i + n)\n", + " plt.imshow(decoded_imgs[i].reshape(28, 28))\n", + " plt.gray()\n", + " ax.get_xaxis().set_visible(False)\n", + " ax.get_yaxis().set_visible(False)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Embeddings" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We use the trained layers in order to get the core representation in the middle layer of the autoencoder, and we represent them with the TSNE" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "embeddings = Model(input_img, Flatten()(encoded)).predict(x_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.manifold import TSNE\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "tsne = TSNE(n_components=2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "emb2d = tsne.fit_transform(embeddings)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "x,y = np.squeeze(emb2d[:, 0]), np.squeeze(emb2d[:, 1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from matplotlib.cm import tab10" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "summary = pd.DataFrame({\"x\": x, \"y\": y, \"target\": y_test, \"size\": 10})\n", + "\n", + "plt.figure(figsize=(10,8))\n", + "\n", + "for key, sel in summary.groupby(\"target\"):\n", + " plt.scatter(sel[\"x\"], sel[\"y\"], s=10, color=tab10.colors[key], label=classes[key])\n", + " \n", + "plt.legend()\n", + "plt.axis(\"off\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Denoising" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Introducing noise in order to train more robust auto-encoders" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import GaussianNoise" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "input_img = Input(shape=(28, 28, 1))\n", + "\n", + "noisy_input = GaussianNoise(0.1)(input_img)\n", + "\n", + "x = Conv2D(16, (3, 3), activation='relu', padding='same')(noisy_input)\n", + "x = MaxPooling2D((2, 2), padding='same')(x)\n", + "x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)\n", + "x = MaxPooling2D((2, 2), padding='same')(x)\n", + "x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)\n", + "encoded = MaxPooling2D((2, 2), padding='same')(x)\n", + "\n", + "# at this point the representation is (4, 4, 8) i.e. 128-dimensional\n", + "\n", + "x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)\n", + "x = UpSampling2D((2, 2))(x)\n", + "x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)\n", + "x = UpSampling2D((2, 2))(x)\n", + "x = Conv2D(16, (3, 3), activation='relu')(x)\n", + "x = UpSampling2D((2, 2))(x)\n", + "decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)\n", + "\n", + "noisy_autoencoder = Model(input_img, decoded)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "noisy_autoencoder.compile(optimizer='adam', loss='binary_crossentropy')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "noisy_autoencoder.fit(x_train, x_train,\n", + " epochs=50,\n", + " batch_size=128,\n", + " shuffle=True,\n", + " validation_data=(x_test, x_test),\n", + " callbacks=[TensorBoard(log_dir='/tmp/noisy_autoencoder')])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "autoencoder.save(\"./data/DenoisingAutoencoder.p\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "noise_factor = 0.1\n", + "x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape) \n", + "x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape) \n", + "\n", + "x_train_noisy = np.clip(x_train_noisy, 0., 1.)\n", + "x_test_noisy = np.clip(x_test_noisy, 0., 1.)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "decoded_imgs = autoencoder.predict(x_test_noisy)\n", + "\n", + "decoded_imgs_denoised = noisy_autoencoder.predict(x_test_noisy)\n", + "\n", + "n = 6\n", + "plt.figure(figsize=(20, 10))\n", + "for i in range(1, n + 1):\n", + " # Display original\n", + " ax = plt.subplot(3, n, i)\n", + " plt.imshow(x_test_noisy[i].reshape(28, 28))\n", + " plt.gray()\n", + " ax.get_xaxis().set_visible(False)\n", + " if i==0:\n", + " plt.ylabel(\"Original\")\n", + " else:\n", + " ax.get_yaxis().set_visible(False)\n", + " \n", + " # Display reconstruction\n", + " ax = plt.subplot(3, n, i + n)\n", + " plt.imshow(decoded_imgs[i].reshape(28, 28))\n", + " plt.gray()\n", + " ax.get_xaxis().set_visible(False)\n", + " if i==0:\n", + " plt.ylabel(\"Vanilla Autoencoder\")\n", + " else:\n", + " ax.get_yaxis().set_visible(False)\n", + " \n", + " ax = plt.subplot(3, n, i + 2*n)\n", + " plt.imshow(decoded_imgs_denoised[i].reshape(28, 28))\n", + " plt.gray()\n", + " ax.get_xaxis().set_visible(False)\n", + " if i==0:\n", + " plt.ylabel(\"Denoising Autoencoder\")\n", + " else:\n", + " ax.get_yaxis().set_visible(False)\n", + " \n", + " \n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "decoded_imgs = noisy_autoencoder.predict(x_test_noisy)\n", + "\n", + "n = 10\n", + "plt.figure(figsize=(20, 4))\n", + "for i in range(1, n + 1):\n", + " # Display original\n", + " ax = plt.subplot(2, n, i)\n", + " plt.imshow(x_test_noisy[i].reshape(28, 28))\n", + " plt.gray()\n", + " ax.get_xaxis().set_visible(False)\n", + " ax.get_yaxis().set_visible(False)\n", + "\n", + " # Display reconstruction\n", + " ax = plt.subplot(2, n, i + n)\n", + " plt.imshow(decoded_imgs[i].reshape(28, 28))\n", + " plt.gray()\n", + " ax.get_xaxis().set_visible(False)\n", + " ax.get_yaxis().set_visible(False)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "chap-nn", + "language": "python", + "name": "chap-nn" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.18" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/ChapterNN/04_GraphAutoEncoder_PyGeometric.ipynb b/ChapterNN/04_GraphAutoEncoder_PyGeometric.ipynb new file mode 100644 index 0000000..5de12fb --- /dev/null +++ b/ChapterNN/04_GraphAutoEncoder_PyGeometric.ipynb @@ -0,0 +1,188 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "f5d647f0-6d7b-4e4b-b5cd-c674dba76a22", + "metadata": {}, + "source": [ + "# Graph Auto Encoder with PyG" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9403ccd6-3353-4edd-9ba2-beaab617afa3", + "metadata": {}, + "outputs": [], + "source": [ + "import argparse\n", + "import os\n", + "import time\n", + "\n", + "import torch\n", + "\n", + "import torch_geometric.transforms as T\n", + "from torch_geometric.datasets import Planetoid\n", + "\n", + "from torch_geometric.nn import GAE, GCNConv" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c80d137d-313f-4b8b-8473-c787a59c97ba", + "metadata": {}, + "outputs": [], + "source": [ + "device = torch.device('cpu')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2694e0b8-7ad2-4ab0-bd66-ec9e9615c9cc", + "metadata": {}, + "outputs": [], + "source": [ + "DATASET_NAME=\"Cora\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "409d5939-8d16-4db9-a17f-c5cab6a2d4aa", + "metadata": {}, + "outputs": [], + "source": [ + "transform = T.Compose([\n", + " T.NormalizeFeatures(),\n", + " T.RandomLinkSplit(num_val=0., num_test=0.1, is_undirected=True,\n", + " split_labels=True, add_negative_train_samples=False),\n", + "])\n", + "# path = os.path.join(\"/home/deusebio/Personal/graph_machine_learning/data\", 'data')\n", + "path = os.path.join(os.getcwd(), 'data')\n", + "dataset = Planetoid(path, DATASET_NAME, transform=transform)\n", + "train_data, val_data, test_data = dataset[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4fe46bed-054c-4f52-a4da-ed3728a3f41c", + "metadata": {}, + "outputs": [], + "source": [ + "print(f\"Train edges (positive): {train_data.pos_edge_label_index.shape[1]}\")\n", + "print(f\"Test edges (positive): {test_data.pos_edge_label_index.shape[1]}\")\n", + "print(f\"Test edges (negative): {test_data.neg_edge_label_index.shape[1]}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dedf968d-6e87-451a-aaa2-972ce21f4aca", + "metadata": {}, + "outputs": [], + "source": [ + "class GCNEncoder(torch.nn.Module):\n", + " def __init__(self, num_node_features, num_embedding):\n", + " super().__init__()\n", + " self.conv1 = GCNConv(num_node_features, 2 * num_embedding)\n", + " self.conv2 = GCNConv(2 * num_embedding, num_embedding)\n", + "\n", + " def forward(self, x, edge_index):\n", + " x = self.conv1(x, edge_index).relu()\n", + " return self.conv2(x, edge_index)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "40de5839-fdf8-4935-b2d8-f46adb5ab4eb", + "metadata": {}, + "outputs": [], + "source": [ + "n_features = dataset.num_features\n", + "n_embeddings = 20" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b9240419-00b2-4f01-885a-169814989d21", + "metadata": {}, + "outputs": [], + "source": [ + "model = GAE(GCNEncoder(n_features, n_embeddings))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "baa87287-e068-463f-9cb5-be032a2273ac", + "metadata": {}, + "outputs": [], + "source": [ + "model = model.to(device)\n", + "optimizer = torch.optim.Adam(model.parameters(), lr=0.01)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "da9b26c1-c070-4e98-a0a1-26783b0ed7d7", + "metadata": {}, + "outputs": [], + "source": [ + "for epoch in range(20): # loop over the dataset multiple times\n", + "\n", + " model.train()\n", + "\n", + " # zero the parameter gradients\n", + " optimizer.zero_grad()\n", + "\n", + " z = model.encode(train_data.x, train_data.edge_index)\n", + " loss = model.recon_loss(z, train_data.pos_edge_label_index)\n", + "\n", + " loss.backward()\n", + " optimizer.step()\n", + " \n", + " # Test/Evaluate\n", + " model.eval()\n", + " z = model.encode(test_data.x, test_data.edge_index)\n", + " auc, ap = model.test(z, test_data.pos_edge_label_index, test_data.neg_edge_label_index)\n", + " \n", + " print(f\"Performance on validation set => AUC: {auc} AP: {ap}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "43533588-03f7-45c9-8d97-1e618148a9c5", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "chap-nn", + "language": "python", + "name": "chap-nn" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/ChapterNN/05_GraphAutoEncoder_StellarGraph.ipynb b/ChapterNN/05_GraphAutoEncoder_StellarGraph.ipynb new file mode 100644 index 0000000..887b9a8 --- /dev/null +++ b/ChapterNN/05_GraphAutoEncoder_StellarGraph.ipynb @@ -0,0 +1,211 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "393d1f8c-162d-43c6-9d3a-3e795bf6467a", + "metadata": {}, + "source": [ + "# Graph AutoEncoder with StellarGraph" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "65a6d0fb-bb0f-4af0-8ba9-6a0c902cec49", + "metadata": {}, + "outputs": [], + "source": [ + "from stellargraph.data import EdgeSplitter\n", + "from stellargraph.mapper import FullBatchLinkGenerator\n", + "from stellargraph.layer import GCN, LinkEmbedding\n", + "\n", + "\n", + "from tensorflow import keras\n", + "from stellargraph import datasets" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1d27bd90-c522-48e2-9929-7417b3ce904b", + "metadata": {}, + "outputs": [], + "source": [ + "dataset = datasets.Cora()\n", + "G, _ = dataset.load()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4e59277b-12b7-4e8f-9cdc-eaf4c96d1771", + "metadata": {}, + "outputs": [], + "source": [ + "print(G.info())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4ab4de94-e416-49b2-8e02-5217d5f410e5", + "metadata": {}, + "outputs": [], + "source": [ + "edge_splitter_test = EdgeSplitter(G)\n", + "\n", + "G_test, edge_ids_test, edge_labels_test = edge_splitter_test.train_test_split(\n", + " p=0.1, method=\"global\", keep_connected=True\n", + ")\n", + "\n", + "edge_splitter_train = EdgeSplitter(G_test)\n", + "\n", + "G_train, edge_ids_train, edge_labels_train = edge_splitter_test.train_test_split(\n", + " p=0.1, method=\"global\", keep_connected=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "261e8cdd-455d-4607-a95c-c26ec6aaf109", + "metadata": {}, + "outputs": [], + "source": [ + "train_gen = FullBatchLinkGenerator(G, method=\"gcn\")\n", + "train_flow = train_gen.flow(edge_ids_train, edge_labels_train)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5820186d-1728-494b-9e2c-6a906d7ff3f5", + "metadata": {}, + "outputs": [], + "source": [ + "test_gen = FullBatchLinkGenerator(G, method=\"gcn\")\n", + "test_flow = train_gen.flow(edge_ids_test, edge_labels_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7897bc20-a2eb-4887-8bde-3ca5756cd62d", + "metadata": {}, + "outputs": [], + "source": [ + "gcn = GCN(\n", + " layer_sizes=[16, 16], activations=[\"relu\", \"relu\"], generator=train_gen, dropout=0.3\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c27562a4-9f93-4c23-87b1-ad3a0f46c19a", + "metadata": {}, + "outputs": [], + "source": [ + "x_inp, x_out = gcn.in_out_tensors()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "be2d54a1-9561-410a-9c8f-54b805450dc3", + "metadata": {}, + "outputs": [], + "source": [ + "prediction = LinkEmbedding(activation=\"relu\", method=\"ip\")(x_out)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "38cd0093-ef71-4110-8f59-43e510b86edc", + "metadata": {}, + "outputs": [], + "source": [ + "prediction = keras.layers.Reshape((-1,))(prediction)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "33ccc882-df0c-40ad-a401-725b3a64aac3", + "metadata": {}, + "outputs": [], + "source": [ + "model = keras.Model(inputs=x_inp, outputs=prediction)\n", + "\n", + "model.compile(\n", + " optimizer=keras.optimizers.Adam(lr=0.01),\n", + " loss=keras.losses.binary_crossentropy,\n", + " metrics=[\"binary_accuracy\"],\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1dbc5d61-4e11-4ec8-bb06-8b206beb698d", + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d5760e12-f39a-4ce8-8c9d-9ba8ae61d4ab", + "metadata": {}, + "outputs": [], + "source": [ + "history = model.fit(train_flow, validation_data=test_flow, epochs=50)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4d6f0caf-529a-4609-ade3-61715426e4b3", + "metadata": {}, + "outputs": [], + "source": [ + "from stellargraph.utils import plot_history\n", + "\n", + "plot_history(history)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9e2130e3-6710-4d60-afa2-c0c7254921a5", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + + "metadata": { + "kernelspec": { + "display_name": "chap-nn", + "language": "python", + "name": "chap-nn" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/ChapterNN/poetry.lock b/ChapterNN/poetry.lock new file mode 100644 index 0000000..d4e663c --- /dev/null +++ b/ChapterNN/poetry.lock @@ -0,0 +1,3256 @@ +# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. + +[[package]] +name = "absl-py" +version = "2.1.0" +description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py." +optional = false +python-versions = ">=3.7" +files = [ + {file = "absl-py-2.1.0.tar.gz", hash = "sha256:7820790efbb316739cde8b4e19357243fc3608a152024288513dd968d7d959ff"}, + {file = "absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308"}, +] + +[[package]] +name = "aiohappyeyeballs" +version = "2.4.3" +description = "Happy Eyeballs for asyncio" +optional = false +python-versions = ">=3.8" +files = [ + {file = "aiohappyeyeballs-2.4.3-py3-none-any.whl", hash = "sha256:8a7a83727b2756f394ab2895ea0765a0a8c475e3c71e98d43d76f22b4b435572"}, + {file = "aiohappyeyeballs-2.4.3.tar.gz", hash = "sha256:75cf88a15106a5002a8eb1dab212525c00d1f4c0fa96e551c9fbe6f09a621586"}, +] + +[[package]] +name = "aiohttp" +version = "3.10.8" +description = "Async http client/server framework (asyncio)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "aiohttp-3.10.8-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a1ba7bc139592339ddeb62c06486d0fa0f4ca61216e14137a40d626c81faf10c"}, + {file = "aiohttp-3.10.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:85e4d7bd05d18e4b348441e7584c681eff646e3bf38f68b2626807f3add21aa2"}, + {file = "aiohttp-3.10.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:69de056022e7abf69cb9fec795515973cc3eeaff51e3ea8d72a77aa933a91c52"}, + {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee3587506898d4a404b33bd19689286ccf226c3d44d7a73670c8498cd688e42c"}, + {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fe285a697c851734285369614443451462ce78aac2b77db23567507484b1dc6f"}, + {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:10c7932337285a6bfa3a5fe1fd4da90b66ebfd9d0cbd1544402e1202eb9a8c3e"}, + {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cd9716ef0224fe0d0336997eb242f40619f9f8c5c57e66b525a1ebf9f1d8cebe"}, + {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ceacea31f8a55cdba02bc72c93eb2e1b77160e91f8abd605969c168502fd71eb"}, + {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:9721554bfa9e15f6e462da304374c2f1baede3cb06008c36c47fa37ea32f1dc4"}, + {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:22cdeb684d8552490dd2697a5138c4ecb46f844892df437aaf94f7eea99af879"}, + {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:e56bb7e31c4bc79956b866163170bc89fd619e0581ce813330d4ea46921a4881"}, + {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:3a95d2686bc4794d66bd8de654e41b5339fab542b2bca9238aa63ed5f4f2ce82"}, + {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d82404a0e7b10e0d7f022cf44031b78af8a4f99bd01561ac68f7c24772fed021"}, + {file = "aiohttp-3.10.8-cp310-cp310-win32.whl", hash = "sha256:4e10b04542d27e21538e670156e88766543692a0a883f243ba8fad9ddea82e53"}, + {file = "aiohttp-3.10.8-cp310-cp310-win_amd64.whl", hash = "sha256:680dbcff5adc7f696ccf8bf671d38366a1f620b5616a1d333d0cb33956065395"}, + {file = "aiohttp-3.10.8-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:33a68011a38020ed4ff41ae0dbf4a96a202562ecf2024bdd8f65385f1d07f6ef"}, + {file = "aiohttp-3.10.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6c7efa6616a95e3bd73b8a69691012d2ef1f95f9ea0189e42f338fae080c2fc6"}, + {file = "aiohttp-3.10.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ddb9b9764cfb4459acf01c02d2a59d3e5066b06a846a364fd1749aa168efa2be"}, + {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c7f270f4ca92760f98a42c45a58674fff488e23b144ec80b1cc6fa2effed377"}, + {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6984dda9d79064361ab58d03f6c1e793ea845c6cfa89ffe1a7b9bb400dfd56bd"}, + {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3f6d47e392c27206701565c8df4cac6ebed28fdf6dcaea5b1eea7a4631d8e6db"}, + {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a72f89aea712c619b2ca32c6f4335c77125ede27530ad9705f4f349357833695"}, + {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c36074b26f3263879ba8e4dbd33db2b79874a3392f403a70b772701363148b9f"}, + {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e32148b4a745e70a255a1d44b5664de1f2e24fcefb98a75b60c83b9e260ddb5b"}, + {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:5aa1a073514cf59c81ad49a4ed9b5d72b2433638cd53160fd2f3a9cfa94718db"}, + {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:d3a79200a9d5e621c4623081ddb25380b713c8cf5233cd11c1aabad990bb9381"}, + {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:e45fdfcb2d5bcad83373e4808825b7512953146d147488114575780640665027"}, + {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f78e2a78432c537ae876a93013b7bc0027ba5b93ad7b3463624c4b6906489332"}, + {file = "aiohttp-3.10.8-cp311-cp311-win32.whl", hash = "sha256:f8179855a4e4f3b931cb1764ec87673d3fbdcca2af496c8d30567d7b034a13db"}, + {file = "aiohttp-3.10.8-cp311-cp311-win_amd64.whl", hash = "sha256:ef9b484604af05ca745b6108ca1aaa22ae1919037ae4f93aaf9a37ba42e0b835"}, + {file = "aiohttp-3.10.8-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:ab2d6523575fc98896c80f49ac99e849c0b0e69cc80bf864eed6af2ae728a52b"}, + {file = "aiohttp-3.10.8-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f5d5d5401744dda50b943d8764508d0e60cc2d3305ac1e6420935861a9d544bc"}, + {file = "aiohttp-3.10.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:de23085cf90911600ace512e909114385026b16324fa203cc74c81f21fd3276a"}, + {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4618f0d2bf523043866a9ff8458900d8eb0a6d4018f251dae98e5f1fb699f3a8"}, + {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:21c1925541ca84f7b5e0df361c0a813a7d6a56d3b0030ebd4b220b8d232015f9"}, + {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:497a7d20caea8855c5429db3cdb829385467217d7feb86952a6107e033e031b9"}, + {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c887019dbcb4af58a091a45ccf376fffe800b5531b45c1efccda4bedf87747ea"}, + {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40d2d719c3c36a7a65ed26400e2b45b2d9ed7edf498f4df38b2ae130f25a0d01"}, + {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:57359785f27394a8bcab0da6dcd46706d087dfebf59a8d0ad2e64a4bc2f6f94f"}, + {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:a961ee6f2cdd1a2be4735333ab284691180d40bad48f97bb598841bfcbfb94ec"}, + {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:fe3d79d6af839ffa46fdc5d2cf34295390894471e9875050eafa584cb781508d"}, + {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:9a281cba03bdaa341c70b7551b2256a88d45eead149f48b75a96d41128c240b3"}, + {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c6769d71bfb1ed60321363a9bc05e94dcf05e38295ef41d46ac08919e5b00d19"}, + {file = "aiohttp-3.10.8-cp312-cp312-win32.whl", hash = "sha256:a3081246bab4d419697ee45e555cef5cd1def7ac193dff6f50be761d2e44f194"}, + {file = "aiohttp-3.10.8-cp312-cp312-win_amd64.whl", hash = "sha256:ab1546fc8e00676febc81c548a876c7bde32f881b8334b77f84719ab2c7d28dc"}, + {file = "aiohttp-3.10.8-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:b1a012677b8e0a39e181e218de47d6741c5922202e3b0b65e412e2ce47c39337"}, + {file = "aiohttp-3.10.8-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:2df786c96c57cd6b87156ba4c5f166af7b88f3fc05f9d592252fdc83d8615a3c"}, + {file = "aiohttp-3.10.8-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8885ca09d3a9317219c0831276bfe26984b17b2c37b7bf70dd478d17092a4772"}, + {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4dbf252ac19860e0ab56cd480d2805498f47c5a2d04f5995d8d8a6effd04b48c"}, + {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3b2036479b6b94afaaca7d07b8a68dc0e67b0caf5f6293bb6a5a1825f5923000"}, + {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:365783e1b7c40b59ed4ce2b5a7491bae48f41cd2c30d52647a5b1ee8604c68ad"}, + {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:270e653b5a4b557476a1ed40e6b6ce82f331aab669620d7c95c658ef976c9c5e"}, + {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8960fabc20bfe4fafb941067cda8e23c8c17c98c121aa31c7bf0cdab11b07842"}, + {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f21e8f2abed9a44afc3d15bba22e0dfc71e5fa859bea916e42354c16102b036f"}, + {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:fecd55e7418fabd297fd836e65cbd6371aa4035a264998a091bbf13f94d9c44d"}, + {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:badb51d851358cd7535b647bb67af4854b64f3c85f0d089c737f75504d5910ec"}, + {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:e860985f30f3a015979e63e7ba1a391526cdac1b22b7b332579df7867848e255"}, + {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:71462f8eeca477cbc0c9700a9464e3f75f59068aed5e9d4a521a103692da72dc"}, + {file = "aiohttp-3.10.8-cp313-cp313-win32.whl", hash = "sha256:177126e971782769b34933e94fddd1089cef0fe6b82fee8a885e539f5b0f0c6a"}, + {file = "aiohttp-3.10.8-cp313-cp313-win_amd64.whl", hash = "sha256:98a4eb60e27033dee9593814ca320ee8c199489fbc6b2699d0f710584db7feb7"}, + {file = "aiohttp-3.10.8-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ffef3d763e4c8fc97e740da5b4d0f080b78630a3914f4e772a122bbfa608c1db"}, + {file = "aiohttp-3.10.8-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:597128cb7bc5f068181b49a732961f46cb89f85686206289d6ccb5e27cb5fbe2"}, + {file = "aiohttp-3.10.8-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f23a6c1d09de5de89a33c9e9b229106cb70dcfdd55e81a3a3580eaadaa32bc92"}, + {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da57af0c54a302b7c655fa1ccd5b1817a53739afa39924ef1816e7b7c8a07ccb"}, + {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e7a6af57091056a79a35104d6ec29d98ec7f1fb7270ad9c6fff871b678d1ff8"}, + {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:32710d6b3b6c09c60c794d84ca887a3a2890131c0b02b3cefdcc6709a2260a7c"}, + {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b91f4f62ad39a8a42d511d66269b46cb2fb7dea9564c21ab6c56a642d28bff5"}, + {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:471a8c47344b9cc309558b3fcc469bd2c12b49322b4b31eb386c4a2b2d44e44a"}, + {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:fc0e7f91705445d79beafba9bb3057dd50830e40fe5417017a76a214af54e122"}, + {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:85431c9131a9a0f65260dc7a65c800ca5eae78c4c9931618f18c8e0933a0e0c1"}, + {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:b91557ee0893da52794b25660d4f57bb519bcad8b7df301acd3898f7197c5d81"}, + {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:4954e6b06dd0be97e1a5751fc606be1f9edbdc553c5d9b57d72406a8fbd17f9d"}, + {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:a087c84b4992160ffef7afd98ef24177c8bd4ad61c53607145a8377457385100"}, + {file = "aiohttp-3.10.8-cp38-cp38-win32.whl", hash = "sha256:e1f0f7b27171b2956a27bd8f899751d0866ddabdd05cbddf3520f945130a908c"}, + {file = "aiohttp-3.10.8-cp38-cp38-win_amd64.whl", hash = "sha256:c4916070e12ae140110aa598031876c1bf8676a36a750716ea0aa5bd694aa2e7"}, + {file = "aiohttp-3.10.8-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5284997e3d88d0dfb874c43e51ae8f4a6f4ca5b90dcf22995035187253d430db"}, + {file = "aiohttp-3.10.8-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9443d9ebc5167ce1fbb552faf2d666fb22ef5716a8750be67efd140a7733738c"}, + {file = "aiohttp-3.10.8-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b667e2a03407d79a76c618dc30cedebd48f082d85880d0c9c4ec2faa3e10f43e"}, + {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98fae99d5c2146f254b7806001498e6f9ffb0e330de55a35e72feb7cb2fa399b"}, + {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8296edd99d0dd9d0eb8b9e25b3b3506eef55c1854e9cc230f0b3f885f680410b"}, + {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1ce46dfb49cfbf9e92818be4b761d4042230b1f0e05ffec0aad15b3eb162b905"}, + {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c38cfd355fd86c39b2d54651bd6ed7d63d4fe3b5553f364bae3306e2445f847"}, + {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:713dff3f87ceec3bde4f3f484861464e722cf7533f9fa6b824ec82bb5a9010a7"}, + {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:21a72f4a9c69a8567a0aca12042f12bba25d3139fd5dd8eeb9931f4d9e8599cd"}, + {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:6d1ad868624f6cea77341ef2877ad4e71f7116834a6cd7ec36ec5c32f94ee6ae"}, + {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:a78ba86d5a08207d1d1ad10b97aed6ea48b374b3f6831d02d0b06545ac0f181e"}, + {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:aff048793d05e1ce05b62e49dccf81fe52719a13f4861530706619506224992b"}, + {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d088ca05381fd409793571d8e34eca06daf41c8c50a05aeed358d2d340c7af81"}, + {file = "aiohttp-3.10.8-cp39-cp39-win32.whl", hash = "sha256:ee97c4e54f457c366e1f76fbbf3e8effee9de57dae671084a161c00f481106ce"}, + {file = "aiohttp-3.10.8-cp39-cp39-win_amd64.whl", hash = "sha256:d95ae4420669c871667aad92ba8cce6251d61d79c1a38504621094143f94a8b4"}, + {file = "aiohttp-3.10.8.tar.gz", hash = "sha256:21f8225f7dc187018e8433c9326be01477fb2810721e048b33ac49091b19fb4a"}, +] + +[package.dependencies] +aiohappyeyeballs = ">=2.3.0" +aiosignal = ">=1.1.2" +async-timeout = {version = ">=4.0,<5.0", markers = "python_version < \"3.11\""} +attrs = ">=17.3.0" +frozenlist = ">=1.1.1" +multidict = ">=4.5,<7.0" +yarl = ">=1.12.0,<2.0" + +[package.extras] +speedups = ["Brotli", "aiodns (>=3.2.0)", "brotlicffi"] + +[[package]] +name = "aiosignal" +version = "1.3.1" +description = "aiosignal: a list of registered asynchronous callbacks" +optional = false +python-versions = ">=3.7" +files = [ + {file = "aiosignal-1.3.1-py3-none-any.whl", hash = "sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17"}, + {file = "aiosignal-1.3.1.tar.gz", hash = "sha256:54cd96e15e1649b75d6c87526a6ff0b6c1b0dd3459f43d9ca11d48c339b68cfc"}, +] + +[package.dependencies] +frozenlist = ">=1.1.0" + +[[package]] +name = "appnope" +version = "0.1.4" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = ">=3.6" +files = [ + {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, + {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, +] + +[[package]] +name = "asttokens" +version = "2.4.1" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = "*" +files = [ + {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, + {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, +] + +[package.dependencies] +six = ">=1.12.0" + +[package.extras] +astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] +test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] + +[[package]] +name = "astunparse" +version = "1.6.3" +description = "An AST unparser for Python" +optional = false +python-versions = "*" +files = [ + {file = "astunparse-1.6.3-py2.py3-none-any.whl", hash = "sha256:c2652417f2c8b5bb325c885ae329bdf3f86424075c4fd1a128674bc6fba4b8e8"}, + {file = "astunparse-1.6.3.tar.gz", hash = "sha256:5ad93a8456f0d084c3456d059fd9a92cce667963232cbf763eac3bc5b7940872"}, +] + +[package.dependencies] +six = ">=1.6.1,<2.0" +wheel = ">=0.23.0,<1.0" + +[[package]] +name = "async-timeout" +version = "4.0.3" +description = "Timeout context manager for asyncio programs" +optional = false +python-versions = ">=3.7" +files = [ + {file = "async-timeout-4.0.3.tar.gz", hash = "sha256:4640d96be84d82d02ed59ea2b7105a0f7b33abe8703703cd0ab0bf87c427522f"}, + {file = "async_timeout-4.0.3-py3-none-any.whl", hash = "sha256:7405140ff1230c310e51dc27b3145b9092d659ce68ff733fb0cefe3ee42be028"}, +] + +[[package]] +name = "attrs" +version = "24.2.0" +description = "Classes Without Boilerplate" +optional = false +python-versions = ">=3.7" +files = [ + {file = "attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2"}, + {file = "attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346"}, +] + +[package.extras] +benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] + +[[package]] +name = "backcall" +version = "0.2.0" +description = "Specifications for callback functions passed in to an API" +optional = false +python-versions = "*" +files = [ + {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, + {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, +] + +[[package]] +name = "cachetools" +version = "5.5.0" +description = "Extensible memoizing collections and decorators" +optional = false +python-versions = ">=3.7" +files = [ + {file = "cachetools-5.5.0-py3-none-any.whl", hash = "sha256:02134e8439cdc2ffb62023ce1debca2944c3f289d66bb17ead3ab3dede74b292"}, + {file = "cachetools-5.5.0.tar.gz", hash = "sha256:2cc24fb4cbe39633fb7badd9db9ca6295d766d9c2995f245725a46715d050f2a"}, +] + +[[package]] +name = "certifi" +version = "2024.8.30" +description = "Python package for providing Mozilla's CA Bundle." +optional = false +python-versions = ">=3.6" +files = [ + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, +] + +[[package]] +name = "cffi" +version = "1.17.1" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, +] + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "chardet" +version = "5.2.0" +description = "Universal encoding detector for Python 3" +optional = false +python-versions = ">=3.7" +files = [ + {file = "chardet-5.2.0-py3-none-any.whl", hash = "sha256:e1cf59446890a00105fe7b7912492ea04b6e6f06d4b742b2c788469e34c82970"}, + {file = "chardet-5.2.0.tar.gz", hash = "sha256:1b3b6ff479a8c414bc3fa2c0852995695c4a026dcd6d0633b2dd092ca39c1cf7"}, +] + +[[package]] +name = "charset-normalizer" +version = "3.3.2" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, + {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, +] + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "comm" +version = "0.2.2" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +files = [ + {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, + {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "cycler" +version = "0.12.1" +description = "Composable style cycles" +optional = false +python-versions = ">=3.8" +files = [ + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, +] + +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "debugpy" +version = "1.8.6" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "debugpy-1.8.6-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:30f467c5345d9dfdcc0afdb10e018e47f092e383447500f125b4e013236bf14b"}, + {file = "debugpy-1.8.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d73d8c52614432f4215d0fe79a7e595d0dd162b5c15233762565be2f014803b"}, + {file = "debugpy-1.8.6-cp310-cp310-win32.whl", hash = "sha256:e3e182cd98eac20ee23a00653503315085b29ab44ed66269482349d307b08df9"}, + {file = "debugpy-1.8.6-cp310-cp310-win_amd64.whl", hash = "sha256:e3a82da039cfe717b6fb1886cbbe5c4a3f15d7df4765af857f4307585121c2dd"}, + {file = "debugpy-1.8.6-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:67479a94cf5fd2c2d88f9615e087fcb4fec169ec780464a3f2ba4a9a2bb79955"}, + {file = "debugpy-1.8.6-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fb8653f6cbf1dd0a305ac1aa66ec246002145074ea57933978346ea5afdf70b"}, + {file = "debugpy-1.8.6-cp311-cp311-win32.whl", hash = "sha256:cdaf0b9691879da2d13fa39b61c01887c34558d1ff6e5c30e2eb698f5384cd43"}, + {file = "debugpy-1.8.6-cp311-cp311-win_amd64.whl", hash = "sha256:43996632bee7435583952155c06881074b9a742a86cee74e701d87ca532fe833"}, + {file = "debugpy-1.8.6-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:db891b141fc6ee4b5fc6d1cc8035ec329cabc64bdd2ae672b4550c87d4ecb128"}, + {file = "debugpy-1.8.6-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:567419081ff67da766c898ccf21e79f1adad0e321381b0dfc7a9c8f7a9347972"}, + {file = "debugpy-1.8.6-cp312-cp312-win32.whl", hash = "sha256:c9834dfd701a1f6bf0f7f0b8b1573970ae99ebbeee68314116e0ccc5c78eea3c"}, + {file = "debugpy-1.8.6-cp312-cp312-win_amd64.whl", hash = "sha256:e4ce0570aa4aca87137890d23b86faeadf184924ad892d20c54237bcaab75d8f"}, + {file = "debugpy-1.8.6-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:df5dc9eb4ca050273b8e374a4cd967c43be1327eeb42bfe2f58b3cdfe7c68dcb"}, + {file = "debugpy-1.8.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0a85707c6a84b0c5b3db92a2df685b5230dd8fb8c108298ba4f11dba157a615a"}, + {file = "debugpy-1.8.6-cp38-cp38-win32.whl", hash = "sha256:538c6cdcdcdad310bbefd96d7850be1cd46e703079cc9e67d42a9ca776cdc8a8"}, + {file = "debugpy-1.8.6-cp38-cp38-win_amd64.whl", hash = "sha256:22140bc02c66cda6053b6eb56dfe01bbe22a4447846581ba1dd6df2c9f97982d"}, + {file = "debugpy-1.8.6-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:c1cef65cffbc96e7b392d9178dbfd524ab0750da6c0023c027ddcac968fd1caa"}, + {file = "debugpy-1.8.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1e60bd06bb3cc5c0e957df748d1fab501e01416c43a7bdc756d2a992ea1b881"}, + {file = "debugpy-1.8.6-cp39-cp39-win32.whl", hash = "sha256:f7158252803d0752ed5398d291dee4c553bb12d14547c0e1843ab74ee9c31123"}, + {file = "debugpy-1.8.6-cp39-cp39-win_amd64.whl", hash = "sha256:3358aa619a073b620cd0d51d8a6176590af24abcc3fe2e479929a154bf591b51"}, + {file = "debugpy-1.8.6-py2.py3-none-any.whl", hash = "sha256:b48892df4d810eff21d3ef37274f4c60d32cdcafc462ad5647239036b0f0649f"}, + {file = "debugpy-1.8.6.zip", hash = "sha256:c931a9371a86784cee25dec8d65bc2dc7a21f3f1552e3833d9ef8f919d22280a"}, +] + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +optional = false +python-versions = ">=3.5" +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] + +[[package]] +name = "executing" +version = "2.1.0" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.8" +files = [ + {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, + {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + +[[package]] +name = "filelock" +version = "3.16.1" +description = "A platform independent file lock." +optional = false +python-versions = ">=3.8" +files = [ + {file = "filelock-3.16.1-py3-none-any.whl", hash = "sha256:2082e5703d51fbf98ea75855d9d5527e33d8ff23099bec374a134febee6946b0"}, + {file = "filelock-3.16.1.tar.gz", hash = "sha256:c249fbfcd5db47e5e2d6d62198e565475ee65e4831e2561c8e313fa7eb961435"}, +] + +[package.extras] +docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4.1)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.2)", "pytest (>=8.3.3)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.4)"] +typing = ["typing-extensions (>=4.12.2)"] + +[[package]] +name = "flatbuffers" +version = "2.0.7" +description = "The FlatBuffers serialization format for Python" +optional = false +python-versions = "*" +files = [ + {file = "flatbuffers-2.0.7-py2.py3-none-any.whl", hash = "sha256:71e135d533be527192819aaab757c5e3d109cb10fbb01e687f6bdb7a61ad39d1"}, + {file = "flatbuffers-2.0.7.tar.gz", hash = "sha256:0ae7d69c5b82bf41962ca5fde9cc43033bc9501311d975fd5a25e8a7d29c1245"}, +] + +[[package]] +name = "frozenlist" +version = "1.4.1" +description = "A list-like structure which implements collections.abc.MutableSequence" +optional = false +python-versions = ">=3.8" +files = [ + {file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:f9aa1878d1083b276b0196f2dfbe00c9b7e752475ed3b682025ff20c1c1f51ac"}, + {file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:29acab3f66f0f24674b7dc4736477bcd4bc3ad4b896f5f45379a67bce8b96868"}, + {file = "frozenlist-1.4.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:74fb4bee6880b529a0c6560885fce4dc95936920f9f20f53d99a213f7bf66776"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:590344787a90ae57d62511dd7c736ed56b428f04cd8c161fcc5e7232c130c69a"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:068b63f23b17df8569b7fdca5517edef76171cf3897eb68beb01341131fbd2ad"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c849d495bf5154cd8da18a9eb15db127d4dba2968d88831aff6f0331ea9bd4c"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9750cc7fe1ae3b1611bb8cfc3f9ec11d532244235d75901fb6b8e42ce9229dfe"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9b2de4cf0cdd5bd2dee4c4f63a653c61d2408055ab77b151c1957f221cabf2a"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0633c8d5337cb5c77acbccc6357ac49a1770b8c487e5b3505c57b949b4b82e98"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:27657df69e8801be6c3638054e202a135c7f299267f1a55ed3a598934f6c0d75"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:f9a3ea26252bd92f570600098783d1371354d89d5f6b7dfd87359d669f2109b5"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:4f57dab5fe3407b6c0c1cc907ac98e8a189f9e418f3b6e54d65a718aaafe3950"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e02a0e11cf6597299b9f3bbd3f93d79217cb90cfd1411aec33848b13f5c656cc"}, + {file = "frozenlist-1.4.1-cp310-cp310-win32.whl", hash = "sha256:a828c57f00f729620a442881cc60e57cfcec6842ba38e1b19fd3e47ac0ff8dc1"}, + {file = "frozenlist-1.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:f56e2333dda1fe0f909e7cc59f021eba0d2307bc6f012a1ccf2beca6ba362439"}, + {file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a0cb6f11204443f27a1628b0e460f37fb30f624be6051d490fa7d7e26d4af3d0"}, + {file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b46c8ae3a8f1f41a0d2ef350c0b6e65822d80772fe46b653ab6b6274f61d4a49"}, + {file = "frozenlist-1.4.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fde5bd59ab5357e3853313127f4d3565fc7dad314a74d7b5d43c22c6a5ed2ced"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:722e1124aec435320ae01ee3ac7bec11a5d47f25d0ed6328f2273d287bc3abb0"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2471c201b70d58a0f0c1f91261542a03d9a5e088ed3dc6c160d614c01649c106"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c757a9dd70d72b076d6f68efdbb9bc943665ae954dad2801b874c8c69e185068"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f146e0911cb2f1da549fc58fc7bcd2b836a44b79ef871980d605ec392ff6b0d2"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f9c515e7914626b2a2e1e311794b4c35720a0be87af52b79ff8e1429fc25f19"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c302220494f5c1ebeb0912ea782bcd5e2f8308037b3c7553fad0e48ebad6ad82"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:442acde1e068288a4ba7acfe05f5f343e19fac87bfc96d89eb886b0363e977ec"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:1b280e6507ea8a4fa0c0a7150b4e526a8d113989e28eaaef946cc77ffd7efc0a"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:fe1a06da377e3a1062ae5fe0926e12b84eceb8a50b350ddca72dc85015873f74"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:db9e724bebd621d9beca794f2a4ff1d26eed5965b004a97f1f1685a173b869c2"}, + {file = "frozenlist-1.4.1-cp311-cp311-win32.whl", hash = "sha256:e774d53b1a477a67838a904131c4b0eef6b3d8a651f8b138b04f748fccfefe17"}, + {file = "frozenlist-1.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:fb3c2db03683b5767dedb5769b8a40ebb47d6f7f45b1b3e3b4b51ec8ad9d9825"}, + {file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1979bc0aeb89b33b588c51c54ab0161791149f2461ea7c7c946d95d5f93b56ae"}, + {file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cc7b01b3754ea68a62bd77ce6020afaffb44a590c2289089289363472d13aedb"}, + {file = "frozenlist-1.4.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c9c92be9fd329ac801cc420e08452b70e7aeab94ea4233a4804f0915c14eba9b"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c3894db91f5a489fc8fa6a9991820f368f0b3cbdb9cd8849547ccfab3392d86"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba60bb19387e13597fb059f32cd4d59445d7b18b69a745b8f8e5db0346f33480"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8aefbba5f69d42246543407ed2461db31006b0f76c4e32dfd6f42215a2c41d09"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:780d3a35680ced9ce682fbcf4cb9c2bad3136eeff760ab33707b71db84664e3a"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9acbb16f06fe7f52f441bb6f413ebae6c37baa6ef9edd49cdd567216da8600cd"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:23b701e65c7b36e4bf15546a89279bd4d8675faabc287d06bbcfac7d3c33e1e6"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:3e0153a805a98f5ada7e09826255ba99fb4f7524bb81bf6b47fb702666484ae1"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:dd9b1baec094d91bf36ec729445f7769d0d0cf6b64d04d86e45baf89e2b9059b"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:1a4471094e146b6790f61b98616ab8e44f72661879cc63fa1049d13ef711e71e"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5667ed53d68d91920defdf4035d1cdaa3c3121dc0b113255124bcfada1cfa1b8"}, + {file = "frozenlist-1.4.1-cp312-cp312-win32.whl", hash = "sha256:beee944ae828747fd7cb216a70f120767fc9f4f00bacae8543c14a6831673f89"}, + {file = "frozenlist-1.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:64536573d0a2cb6e625cf309984e2d873979709f2cf22839bf2d61790b448ad5"}, + {file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:20b51fa3f588ff2fe658663db52a41a4f7aa6c04f6201449c6c7c476bd255c0d"}, + {file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:410478a0c562d1a5bcc2f7ea448359fcb050ed48b3c6f6f4f18c313a9bdb1826"}, + {file = "frozenlist-1.4.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c6321c9efe29975232da3bd0af0ad216800a47e93d763ce64f291917a381b8eb"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48f6a4533887e189dae092f1cf981f2e3885175f7a0f33c91fb5b7b682b6bab6"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6eb73fa5426ea69ee0e012fb59cdc76a15b1283d6e32e4f8dc4482ec67d1194d"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbeb989b5cc29e8daf7f976b421c220f1b8c731cbf22b9130d8815418ea45887"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:32453c1de775c889eb4e22f1197fe3bdfe457d16476ea407472b9442e6295f7a"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693945278a31f2086d9bf3df0fe8254bbeaef1fe71e1351c3bd730aa7d31c41b"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:1d0ce09d36d53bbbe566fe296965b23b961764c0bcf3ce2fa45f463745c04701"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3a670dc61eb0d0eb7080890c13de3066790f9049b47b0de04007090807c776b0"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:dca69045298ce5c11fd539682cff879cc1e664c245d1c64da929813e54241d11"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:a06339f38e9ed3a64e4c4e43aec7f59084033647f908e4259d279a52d3757d09"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b7f2f9f912dca3934c1baec2e4585a674ef16fe00218d833856408c48d5beee7"}, + {file = "frozenlist-1.4.1-cp38-cp38-win32.whl", hash = "sha256:e7004be74cbb7d9f34553a5ce5fb08be14fb33bc86f332fb71cbe5216362a497"}, + {file = "frozenlist-1.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:5a7d70357e7cee13f470c7883a063aae5fe209a493c57d86eb7f5a6f910fae09"}, + {file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:bfa4a17e17ce9abf47a74ae02f32d014c5e9404b6d9ac7f729e01562bbee601e"}, + {file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b7e3ed87d4138356775346e6845cccbe66cd9e207f3cd11d2f0b9fd13681359d"}, + {file = "frozenlist-1.4.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c99169d4ff810155ca50b4da3b075cbde79752443117d89429595c2e8e37fed8"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edb678da49d9f72c9f6c609fbe41a5dfb9a9282f9e6a2253d5a91e0fc382d7c0"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6db4667b187a6742b33afbbaf05a7bc551ffcf1ced0000a571aedbb4aa42fc7b"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55fdc093b5a3cb41d420884cdaf37a1e74c3c37a31f46e66286d9145d2063bd0"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82e8211d69a4f4bc360ea22cd6555f8e61a1bd211d1d5d39d3d228b48c83a897"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89aa2c2eeb20957be2d950b85974b30a01a762f3308cd02bb15e1ad632e22dc7"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9d3e0c25a2350080e9319724dede4f31f43a6c9779be48021a7f4ebde8b2d742"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7268252af60904bf52c26173cbadc3a071cece75f873705419c8681f24d3edea"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:0c250a29735d4f15321007fb02865f0e6b6a41a6b88f1f523ca1596ab5f50bd5"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:96ec70beabbd3b10e8bfe52616a13561e58fe84c0101dd031dc78f250d5128b9"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:23b2d7679b73fe0e5a4560b672a39f98dfc6f60df63823b0a9970525325b95f6"}, + {file = "frozenlist-1.4.1-cp39-cp39-win32.whl", hash = "sha256:a7496bfe1da7fb1a4e1cc23bb67c58fab69311cc7d32b5a99c2007b4b2a0e932"}, + {file = "frozenlist-1.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:e6a20a581f9ce92d389a8c7d7c3dd47c81fd5d6e655c8dddf341e14aa48659d0"}, + {file = "frozenlist-1.4.1-py3-none-any.whl", hash = "sha256:04ced3e6a46b4cfffe20f9ae482818e34eba9b5fb0ce4056e4cc9b6e212d09b7"}, + {file = "frozenlist-1.4.1.tar.gz", hash = "sha256:c037a86e8513059a2613aaba4d817bb90b9d9b6b69aace3ce9c877e8c8ed402b"}, +] + +[[package]] +name = "fsspec" +version = "2024.9.0" +description = "File-system specification" +optional = false +python-versions = ">=3.8" +files = [ + {file = "fsspec-2024.9.0-py3-none-any.whl", hash = "sha256:a0947d552d8a6efa72cc2c730b12c41d043509156966cca4fb157b0f2a0c574b"}, + {file = "fsspec-2024.9.0.tar.gz", hash = "sha256:4b0afb90c2f21832df142f292649035d80b421f60a9e1c027802e5a0da2b04e8"}, +] + +[package.extras] +abfs = ["adlfs"] +adl = ["adlfs"] +arrow = ["pyarrow (>=1)"] +dask = ["dask", "distributed"] +dev = ["pre-commit", "ruff"] +doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] +dropbox = ["dropbox", "dropboxdrivefs", "requests"] +full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] +fuse = ["fusepy"] +gcs = ["gcsfs"] +git = ["pygit2"] +github = ["requests"] +gs = ["gcsfs"] +gui = ["panel"] +hdfs = ["pyarrow (>=1)"] +http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)"] +libarchive = ["libarchive-c"] +oci = ["ocifs"] +s3 = ["s3fs"] +sftp = ["paramiko"] +smb = ["smbprotocol"] +ssh = ["paramiko"] +test = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "numpy", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "requests"] +test-downstream = ["aiobotocore (>=2.5.4,<3.0.0)", "dask-expr", "dask[dataframe,test]", "moto[server] (>4,<5)", "pytest-timeout", "xarray"] +test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"] +tqdm = ["tqdm"] + +[[package]] +name = "gast" +version = "0.4.0" +description = "Python AST that abstracts the underlying Python version" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "gast-0.4.0-py3-none-any.whl", hash = "sha256:b7adcdd5adbebf1adf17378da5ba3f543684dbec47b1cda1f3997e573cd542c4"}, + {file = "gast-0.4.0.tar.gz", hash = "sha256:40feb7b8b8434785585ab224d1568b857edb18297e5a3047f1ba012bc83b42c1"}, +] + +[[package]] +name = "gensim" +version = "4.3.3" +description = "Python framework for fast Vector Space Modelling" +optional = false +python-versions = ">=3.8" +files = [ + {file = "gensim-4.3.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4e72840adfbea35c5804fd559bc0cb6bc9f439926220a37d852b7ce76eb325c1"}, + {file = "gensim-4.3.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4019263c9d9afae7c669f880c17e09461e77a71afce04ed4d79cf71a4cad2848"}, + {file = "gensim-4.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dea62d3e2ada547687bde6cbba37efa50b534db77e9d44fd5802676bb072c9d9"}, + {file = "gensim-4.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fac93ef5e44982defef9d3c1e4cd00245506b8a29cec19ec5e00f0221b8144c"}, + {file = "gensim-4.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:7c3409f755fb8d62da99cea65e7a40a99d21f8fd86443a3aaf2d90eb68995021"}, + {file = "gensim-4.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:99e7b70352aecc6c1674dde82b75f453e7a5d1cc71ac1cfbc460bf1fe20501b7"}, + {file = "gensim-4.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:32a4cac3f3c38af2069eab9524609fc92ebaeb2692b7280cfda365a3517a280a"}, + {file = "gensim-4.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c071b4329ed1be02446eb7ef637b94c68cf0080c15c57fbcde667fce2e49c3fe"}, + {file = "gensim-4.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d662bf96e3d741b6ab61a54be842a7cbf5e45193008b2f4225c758cafd7f9cdc"}, + {file = "gensim-4.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:a54bd53a0e6f991abb837f126663353657270e75be53287e8a568ada0b35b1b0"}, + {file = "gensim-4.3.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9a65ed1a8c1fc83890b4eb2a45ae2b32e82a0209c970c8c74694d0374c2415cb"}, + {file = "gensim-4.3.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4db485e08a0287e0fd6a029d89b90913d1df38f1dcd34cd2ab758873ba9255f3"}, + {file = "gensim-4.3.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7198987116373ab99f034b292a04ac841531d12b56345851c98b40a3fcd93a85"}, + {file = "gensim-4.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6237a50de4da7a037b19b2b6c430b6537243dcdedebf94afeb089e951953e601"}, + {file = "gensim-4.3.3-cp312-cp312-win_amd64.whl", hash = "sha256:c910c2d5a71f532273166a3a82762959973f0513b221a495fa5a2a07652ee66d"}, + {file = "gensim-4.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d7efa5e35d3f0ec02e6e8343b623c2c863be99e8c26866cf0bebd24fb10198c"}, + {file = "gensim-4.3.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2e8eaf5ef576f4d45e98cf87e7edda9afb469dff954a923402dc1ffc35195901"}, + {file = "gensim-4.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9161e52a6ec2a0580df66e9fac4ff7fc43efdc40674fbd4dd9e914796cc68bc3"}, + {file = "gensim-4.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a200d6ac522cdf91e6048e1a368318c6b1b6e0c79009dfd408345ea2b9d3c096"}, + {file = "gensim-4.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:065547124a93948926b88cb854e1c09750e9a4c7be92f55858159aa8a23359c3"}, + {file = "gensim-4.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688a13b9bba839fedc7f3da6806d5701a756ed940839702ba6d7f494e917baef"}, + {file = "gensim-4.3.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c560d28133cca58078221d60fce346f98f2c5e93d2ad42942f32c0d60903f65b"}, + {file = "gensim-4.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:832311f0c420c0841c98b9e6cc4d83ea362add6db917bf2d646de4bed48a29f7"}, + {file = "gensim-4.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1049f5bc2a84b21a1cb9976741826c0ebf25cfdff4a888361db4b4a697d99f0d"}, + {file = "gensim-4.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:e99b236b6638a30d7f878e2e21a94dab2f6d4b4fd3c242f44dca1341940cb0cb"}, + {file = "gensim-4.3.3.tar.gz", hash = "sha256:84852076a6a3d88d7dac5be245e24c21c3b819b565e14c1b61fa3e5ee76dcf57"}, +] + +[package.dependencies] +numpy = ">=1.18.5,<2.0" +scipy = ">=1.7.0,<1.14.0" +smart-open = ">=1.8.1" + +[package.extras] +distributed = ["Pyro4 (>=4.27)"] +docs = ["POT", "Pyro4", "Pyro4 (>=4.27)", "annoy", "matplotlib", "memory-profiler", "nltk", "pandas", "pytest", "pytest-cov", "scikit-learn", "sphinx (==5.1.1)", "sphinx-gallery (==0.11.1)", "sphinxcontrib-napoleon (==0.7)", "sphinxcontrib.programoutput (==0.17)", "statsmodels", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test = ["POT", "pytest", "pytest-cov", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test-win = ["POT", "pytest", "pytest-cov", "testfixtures"] + +[[package]] +name = "google-auth" +version = "2.35.0" +description = "Google Authentication Library" +optional = false +python-versions = ">=3.7" +files = [ + {file = "google_auth-2.35.0-py2.py3-none-any.whl", hash = "sha256:25df55f327ef021de8be50bad0dfd4a916ad0de96da86cd05661c9297723ad3f"}, + {file = "google_auth-2.35.0.tar.gz", hash = "sha256:f4c64ed4e01e8e8b646ef34c018f8bf3338df0c8e37d8b3bba40e7f574a3278a"}, +] + +[package.dependencies] +cachetools = ">=2.0.0,<6.0" +pyasn1-modules = ">=0.2.1" +rsa = ">=3.1.4,<5" + +[package.extras] +aiohttp = ["aiohttp (>=3.6.2,<4.0.0.dev0)", "requests (>=2.20.0,<3.0.0.dev0)"] +enterprise-cert = ["cryptography", "pyopenssl"] +pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] +reauth = ["pyu2f (>=0.1.5)"] +requests = ["requests (>=2.20.0,<3.0.0.dev0)"] + +[[package]] +name = "google-auth-oauthlib" +version = "1.0.0" +description = "Google Authentication Library" +optional = false +python-versions = ">=3.6" +files = [ + {file = "google-auth-oauthlib-1.0.0.tar.gz", hash = "sha256:e375064964820b47221a7e1b7ee1fd77051b6323c3f9e3e19785f78ab67ecfc5"}, + {file = "google_auth_oauthlib-1.0.0-py2.py3-none-any.whl", hash = "sha256:95880ca704928c300f48194d1770cf5b1462835b6e49db61445a520f793fd5fb"}, +] + +[package.dependencies] +google-auth = ">=2.15.0" +requests-oauthlib = ">=0.7.0" + +[package.extras] +tool = ["click (>=6.0.0)"] + +[[package]] +name = "google-pasta" +version = "0.2.0" +description = "pasta is an AST-based Python refactoring library" +optional = false +python-versions = "*" +files = [ + {file = "google-pasta-0.2.0.tar.gz", hash = "sha256:c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e"}, + {file = "google_pasta-0.2.0-py2-none-any.whl", hash = "sha256:4612951da876b1a10fe3960d7226f0c7682cf901e16ac06e473b267a5afa8954"}, + {file = "google_pasta-0.2.0-py3-none-any.whl", hash = "sha256:b32482794a366b5366a32c92a9a9201b107821889935a02b3e51f6b432ea84ed"}, +] + +[package.dependencies] +six = "*" + +[[package]] +name = "grpcio" +version = "1.66.2" +description = "HTTP/2-based RPC framework" +optional = false +python-versions = ">=3.8" +files = [ + {file = "grpcio-1.66.2-cp310-cp310-linux_armv7l.whl", hash = "sha256:fe96281713168a3270878255983d2cb1a97e034325c8c2c25169a69289d3ecfa"}, + {file = "grpcio-1.66.2-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:73fc8f8b9b5c4a03e802b3cd0c18b2b06b410d3c1dcbef989fdeb943bd44aff7"}, + {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:03b0b307ba26fae695e067b94cbb014e27390f8bc5ac7a3a39b7723fed085604"}, + {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d69ce1f324dc2d71e40c9261d3fdbe7d4c9d60f332069ff9b2a4d8a257c7b2b"}, + {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05bc2ceadc2529ab0b227b1310d249d95d9001cd106aa4d31e8871ad3c428d73"}, + {file = "grpcio-1.66.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8ac475e8da31484efa25abb774674d837b343afb78bb3bcdef10f81a93e3d6bf"}, + {file = "grpcio-1.66.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0be4e0490c28da5377283861bed2941d1d20ec017ca397a5df4394d1c31a9b50"}, + {file = "grpcio-1.66.2-cp310-cp310-win32.whl", hash = "sha256:4e504572433f4e72b12394977679161d495c4c9581ba34a88d843eaf0f2fbd39"}, + {file = "grpcio-1.66.2-cp310-cp310-win_amd64.whl", hash = "sha256:2018b053aa15782db2541ca01a7edb56a0bf18c77efed975392583725974b249"}, + {file = "grpcio-1.66.2-cp311-cp311-linux_armv7l.whl", hash = "sha256:2335c58560a9e92ac58ff2bc5649952f9b37d0735608242973c7a8b94a6437d8"}, + {file = "grpcio-1.66.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:45a3d462826f4868b442a6b8fdbe8b87b45eb4f5b5308168c156b21eca43f61c"}, + {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:a9539f01cb04950fd4b5ab458e64a15f84c2acc273670072abe49a3f29bbad54"}, + {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ce89f5876662f146d4c1f695dda29d4433a5d01c8681fbd2539afff535da14d4"}, + {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d25a14af966438cddf498b2e338f88d1c9706f3493b1d73b93f695c99c5f0e2a"}, + {file = "grpcio-1.66.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6001e575b8bbd89eee11960bb640b6da6ae110cf08113a075f1e2051cc596cae"}, + {file = "grpcio-1.66.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4ea1d062c9230278793820146c95d038dc0f468cbdd172eec3363e42ff1c7d01"}, + {file = "grpcio-1.66.2-cp311-cp311-win32.whl", hash = "sha256:38b68498ff579a3b1ee8f93a05eb48dc2595795f2f62716e797dc24774c1aaa8"}, + {file = "grpcio-1.66.2-cp311-cp311-win_amd64.whl", hash = "sha256:6851de821249340bdb100df5eacfecfc4e6075fa85c6df7ee0eb213170ec8e5d"}, + {file = "grpcio-1.66.2-cp312-cp312-linux_armv7l.whl", hash = "sha256:802d84fd3d50614170649853d121baaaa305de7b65b3e01759247e768d691ddf"}, + {file = "grpcio-1.66.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:80fd702ba7e432994df208f27514280b4b5c6843e12a48759c9255679ad38db8"}, + {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:12fda97ffae55e6526825daf25ad0fa37483685952b5d0f910d6405c87e3adb6"}, + {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:950da58d7d80abd0ea68757769c9db0a95b31163e53e5bb60438d263f4bed7b7"}, + {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e636ce23273683b00410f1971d209bf3689238cf5538d960adc3cdfe80dd0dbd"}, + {file = "grpcio-1.66.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:a917d26e0fe980b0ac7bfcc1a3c4ad6a9a4612c911d33efb55ed7833c749b0ee"}, + {file = "grpcio-1.66.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:49f0ca7ae850f59f828a723a9064cadbed90f1ece179d375966546499b8a2c9c"}, + {file = "grpcio-1.66.2-cp312-cp312-win32.whl", hash = "sha256:31fd163105464797a72d901a06472860845ac157389e10f12631025b3e4d0453"}, + {file = "grpcio-1.66.2-cp312-cp312-win_amd64.whl", hash = "sha256:ff1f7882e56c40b0d33c4922c15dfa30612f05fb785074a012f7cda74d1c3679"}, + {file = "grpcio-1.66.2-cp313-cp313-linux_armv7l.whl", hash = "sha256:3b00efc473b20d8bf83e0e1ae661b98951ca56111feb9b9611df8efc4fe5d55d"}, + {file = "grpcio-1.66.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1caa38fb22a8578ab8393da99d4b8641e3a80abc8fd52646f1ecc92bcb8dee34"}, + {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_aarch64.whl", hash = "sha256:c408f5ef75cfffa113cacd8b0c0e3611cbfd47701ca3cdc090594109b9fcbaed"}, + {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c806852deaedee9ce8280fe98955c9103f62912a5b2d5ee7e3eaa284a6d8d8e7"}, + {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f145cc21836c332c67baa6fc81099d1d27e266401565bf481948010d6ea32d46"}, + {file = "grpcio-1.66.2-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:73e3b425c1e155730273f73e419de3074aa5c5e936771ee0e4af0814631fb30a"}, + {file = "grpcio-1.66.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:9c509a4f78114cbc5f0740eb3d7a74985fd2eff022971bc9bc31f8bc93e66a3b"}, + {file = "grpcio-1.66.2-cp313-cp313-win32.whl", hash = "sha256:20657d6b8cfed7db5e11b62ff7dfe2e12064ea78e93f1434d61888834bc86d75"}, + {file = "grpcio-1.66.2-cp313-cp313-win_amd64.whl", hash = "sha256:fb70487c95786e345af5e854ffec8cb8cc781bcc5df7930c4fbb7feaa72e1cdf"}, + {file = "grpcio-1.66.2-cp38-cp38-linux_armv7l.whl", hash = "sha256:a18e20d8321c6400185b4263e27982488cb5cdd62da69147087a76a24ef4e7e3"}, + {file = "grpcio-1.66.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:02697eb4a5cbe5a9639f57323b4c37bcb3ab2d48cec5da3dc2f13334d72790dd"}, + {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:99a641995a6bc4287a6315989ee591ff58507aa1cbe4c2e70d88411c4dcc0839"}, + {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ed71e81782966ffead60268bbda31ea3f725ebf8aa73634d5dda44f2cf3fb9c"}, + {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbd27c24a4cc5e195a7f56cfd9312e366d5d61b86e36d46bbe538457ea6eb8dd"}, + {file = "grpcio-1.66.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d9a9724a156c8ec6a379869b23ba3323b7ea3600851c91489b871e375f710bc8"}, + {file = "grpcio-1.66.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d8d4732cc5052e92cea2f78b233c2e2a52998ac40cd651f40e398893ad0d06ec"}, + {file = "grpcio-1.66.2-cp38-cp38-win32.whl", hash = "sha256:7b2c86457145ce14c38e5bf6bdc19ef88e66c5fee2c3d83285c5aef026ba93b3"}, + {file = "grpcio-1.66.2-cp38-cp38-win_amd64.whl", hash = "sha256:e88264caad6d8d00e7913996030bac8ad5f26b7411495848cc218bd3a9040b6c"}, + {file = "grpcio-1.66.2-cp39-cp39-linux_armv7l.whl", hash = "sha256:c400ba5675b67025c8a9f48aa846f12a39cf0c44df5cd060e23fda5b30e9359d"}, + {file = "grpcio-1.66.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:66a0cd8ba6512b401d7ed46bb03f4ee455839957f28b8d61e7708056a806ba6a"}, + {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:06de8ec0bd71be123eec15b0e0d457474931c2c407869b6c349bd9bed4adbac3"}, + {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb57870449dfcfac428afbb5a877829fcb0d6db9d9baa1148705739e9083880e"}, + {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b672abf90a964bfde2d0ecbce30f2329a47498ba75ce6f4da35a2f4532b7acbc"}, + {file = "grpcio-1.66.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:ad2efdbe90c73b0434cbe64ed372e12414ad03c06262279b104a029d1889d13e"}, + {file = "grpcio-1.66.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9c3a99c519f4638e700e9e3f83952e27e2ea10873eecd7935823dab0c1c9250e"}, + {file = "grpcio-1.66.2-cp39-cp39-win32.whl", hash = "sha256:78fa51ebc2d9242c0fc5db0feecc57a9943303b46664ad89921f5079e2e4ada7"}, + {file = "grpcio-1.66.2-cp39-cp39-win_amd64.whl", hash = "sha256:728bdf36a186e7f51da73be7f8d09457a03061be848718d0edf000e709418987"}, + {file = "grpcio-1.66.2.tar.gz", hash = "sha256:563588c587b75c34b928bc428548e5b00ea38c46972181a4d8b75ba7e3f24231"}, +] + +[package.extras] +protobuf = ["grpcio-tools (>=1.66.2)"] + +[[package]] +name = "h5py" +version = "3.11.0" +description = "Read and write HDF5 files from Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "h5py-3.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1625fd24ad6cfc9c1ccd44a66dac2396e7ee74940776792772819fc69f3a3731"}, + {file = "h5py-3.11.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c072655ad1d5fe9ef462445d3e77a8166cbfa5e599045f8aa3c19b75315f10e5"}, + {file = "h5py-3.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77b19a40788e3e362b54af4dcf9e6fde59ca016db2c61360aa30b47c7b7cef00"}, + {file = "h5py-3.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:ef4e2f338fc763f50a8113890f455e1a70acd42a4d083370ceb80c463d803972"}, + {file = "h5py-3.11.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bbd732a08187a9e2a6ecf9e8af713f1d68256ee0f7c8b652a32795670fb481ba"}, + {file = "h5py-3.11.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75bd7b3d93fbeee40860fd70cdc88df4464e06b70a5ad9ce1446f5f32eb84007"}, + {file = "h5py-3.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52c416f8eb0daae39dabe71415cb531f95dce2d81e1f61a74537a50c63b28ab3"}, + {file = "h5py-3.11.0-cp311-cp311-win_amd64.whl", hash = "sha256:083e0329ae534a264940d6513f47f5ada617da536d8dccbafc3026aefc33c90e"}, + {file = "h5py-3.11.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a76cae64080210389a571c7d13c94a1a6cf8cb75153044fd1f822a962c97aeab"}, + {file = "h5py-3.11.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f3736fe21da2b7d8a13fe8fe415f1272d2a1ccdeff4849c1421d2fb30fd533bc"}, + {file = "h5py-3.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa6ae84a14103e8dc19266ef4c3e5d7c00b68f21d07f2966f0ca7bdb6c2761fb"}, + {file = "h5py-3.11.0-cp312-cp312-win_amd64.whl", hash = "sha256:21dbdc5343f53b2e25404673c4f00a3335aef25521bd5fa8c707ec3833934892"}, + {file = "h5py-3.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:754c0c2e373d13d6309f408325343b642eb0f40f1a6ad21779cfa9502209e150"}, + {file = "h5py-3.11.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:731839240c59ba219d4cb3bc5880d438248533366f102402cfa0621b71796b62"}, + {file = "h5py-3.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ec9df3dd2018904c4cc06331951e274f3f3fd091e6d6cc350aaa90fa9b42a76"}, + {file = "h5py-3.11.0-cp38-cp38-win_amd64.whl", hash = "sha256:55106b04e2c83dfb73dc8732e9abad69d83a436b5b82b773481d95d17b9685e1"}, + {file = "h5py-3.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f4e025e852754ca833401777c25888acb96889ee2c27e7e629a19aee288833f0"}, + {file = "h5py-3.11.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6c4b760082626120031d7902cd983d8c1f424cdba2809f1067511ef283629d4b"}, + {file = "h5py-3.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67462d0669f8f5459529de179f7771bd697389fcb3faab54d63bf788599a48ea"}, + {file = "h5py-3.11.0-cp39-cp39-win_amd64.whl", hash = "sha256:d9c944d364688f827dc889cf83f1fca311caf4fa50b19f009d1f2b525edd33a3"}, + {file = "h5py-3.11.0.tar.gz", hash = "sha256:7b7e8f78072a2edec87c9836f25f34203fd492a4475709a18b417a33cfb21fa9"}, +] + +[package.dependencies] +numpy = ">=1.17.3" + +[[package]] +name = "idna" +version = "3.10" +description = "Internationalized Domain Names in Applications (IDNA)" +optional = false +python-versions = ">=3.6" +files = [ + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, +] + +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + +[[package]] +name = "importlib-metadata" +version = "8.5.0" +description = "Read metadata from Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "importlib_metadata-8.5.0-py3-none-any.whl", hash = "sha256:45e54197d28b7a7f1559e60b95e7c567032b602131fbd588f1497f47880aa68b"}, + {file = "importlib_metadata-8.5.0.tar.gz", hash = "sha256:71522656f0abace1d072b9e5481a48f07c138e00f079c38c8f883823f9c26bd7"}, +] + +[package.dependencies] +zipp = ">=3.20" + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +enabler = ["pytest-enabler (>=2.2)"] +perf = ["ipython"] +test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-perf (>=0.9.2)"] +type = ["pytest-mypy"] + +[[package]] +name = "ipykernel" +version = "6.29.5" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, + {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=24" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.12.3" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, + {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "sys_platform == \"darwin\""} +backcall = "*" +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} +pickleshare = "*" +prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" +pygments = ">=2.4.0" +stack-data = "*" +traitlets = ">=5" +typing-extensions = {version = "*", markers = "python_version < \"3.10\""} + +[package.extras] +all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +black = ["black"] +doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +kernel = ["ipykernel"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] + +[[package]] +name = "jedi" +version = "0.19.1" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +files = [ + {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, + {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, +] + +[package.dependencies] +parso = ">=0.8.3,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] + +[[package]] +name = "jinja2" +version = "3.1.4" +description = "A very fast and expressive template engine." +optional = false +python-versions = ">=3.7" +files = [ + {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, + {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, +] + +[package.dependencies] +MarkupSafe = ">=2.0" + +[package.extras] +i18n = ["Babel (>=2.7)"] + +[[package]] +name = "joblib" +version = "1.4.2" +description = "Lightweight pipelining with Python functions" +optional = false +python-versions = ">=3.8" +files = [ + {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, + {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, +] + +[[package]] +name = "jupyter-client" +version = "8.6.3" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-core" +version = "5.7.2" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, + {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "keras" +version = "2.7.0" +description = "Deep learning for humans." +optional = false +python-versions = "*" +files = [ + {file = "keras-2.7.0-py2.py3-none-any.whl", hash = "sha256:0c33ae1f728064ca0d35dfba999e9c316f03623bf5688c82fb83cc74a80ea248"}, +] + +[[package]] +name = "keras-preprocessing" +version = "1.1.2" +description = "Easy data preprocessing and data augmentation for deep learning models" +optional = false +python-versions = "*" +files = [ + {file = "Keras_Preprocessing-1.1.2-py2.py3-none-any.whl", hash = "sha256:7b82029b130ff61cc99b55f3bd27427df4838576838c5b2f65940e4fcec99a7b"}, + {file = "Keras_Preprocessing-1.1.2.tar.gz", hash = "sha256:add82567c50c8bc648c14195bf544a5ce7c1f76761536956c3d2978970179ef3"}, +] + +[package.dependencies] +numpy = ">=1.9.1" +six = ">=1.9.0" + +[package.extras] +image = ["Pillow (>=5.2.0)", "scipy (>=0.14)"] +pep8 = ["flake8"] +tests = ["Pillow", "keras", "pandas", "pytest", "pytest-cov", "pytest-xdist", "tensorflow"] + +[[package]] +name = "kiwisolver" +version = "1.4.7" +description = "A fast implementation of the Cassowary constraint solver" +optional = false +python-versions = ">=3.8" +files = [ + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8a9c83f75223d5e48b0bc9cb1bf2776cf01563e00ade8775ffe13b0b6e1af3a6"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:58370b1ffbd35407444d57057b57da5d6549d2d854fa30249771775c63b5fe17"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa0abdf853e09aff551db11fce173e2177d00786c688203f52c87ad7fcd91ef9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8d53103597a252fb3ab8b5845af04c7a26d5e7ea8122303dd7a021176a87e8b9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:88f17c5ffa8e9462fb79f62746428dd57b46eb931698e42e990ad63103f35e6c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88a9ca9c710d598fd75ee5de59d5bda2684d9db36a9f50b6125eaea3969c2599"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4d742cb7af1c28303a51b7a27aaee540e71bb8e24f68c736f6f2ffc82f2bf05"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28c7fea2196bf4c2f8d46a0415c77a1c480cc0724722f23d7410ffe9842c407"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e968b84db54f9d42046cf154e02911e39c0435c9801681e3fc9ce8a3c4130278"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0c18ec74c0472de033e1bebb2911c3c310eef5649133dd0bedf2a169a1b269e5"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8f0ea6da6d393d8b2e187e6a5e3fb81f5862010a40c3945e2c6d12ae45cfb2ad"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:f106407dda69ae456dd1227966bf445b157ccc80ba0dff3802bb63f30b74e895"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84ec80df401cfee1457063732d90022f93951944b5b58975d34ab56bb150dfb3"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win32.whl", hash = "sha256:71bb308552200fb2c195e35ef05de12f0c878c07fc91c270eb3d6e41698c3bcc"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_amd64.whl", hash = "sha256:44756f9fd339de0fb6ee4f8c1696cfd19b2422e0d70b4cefc1cc7f1f64045a8c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_arm64.whl", hash = "sha256:78a42513018c41c2ffd262eb676442315cbfe3c44eed82385c2ed043bc63210a"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d2b0e12a42fb4e72d509fc994713d099cbb15ebf1103545e8a45f14da2dfca54"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a8781ac3edc42ea4b90bc23e7d37b665d89423818e26eb6df90698aa2287c95"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46707a10836894b559e04b0fd143e343945c97fd170d69a2d26d640b4e297935"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef97b8df011141c9b0f6caf23b29379f87dd13183c978a30a3c546d2c47314cb"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab58c12a2cd0fc769089e6d38466c46d7f76aced0a1f54c77652446733d2d02"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:803b8e1459341c1bb56d1c5c010406d5edec8a0713a0945851290a7930679b51"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9a9e8a507420fe35992ee9ecb302dab68550dedc0da9e2880dd88071c5fb052"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18077b53dc3bb490e330669a99920c5e6a496889ae8c63b58fbc57c3d7f33a18"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6af936f79086a89b3680a280c47ea90b4df7047b5bdf3aa5c524bbedddb9e545"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3abc5b19d24af4b77d1598a585b8a719beb8569a71568b66f4ebe1fb0449460b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:933d4de052939d90afbe6e9d5273ae05fb836cc86c15b686edd4b3560cc0ee36"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:65e720d2ab2b53f1f72fb5da5fb477455905ce2c88aaa671ff0a447c2c80e8e3"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3bf1ed55088f214ba6427484c59553123fdd9b218a42bbc8c6496d6754b1e523"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win32.whl", hash = "sha256:4c00336b9dd5ad96d0a558fd18a8b6f711b7449acce4c157e7343ba92dd0cf3d"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_amd64.whl", hash = "sha256:929e294c1ac1e9f615c62a4e4313ca1823ba37326c164ec720a803287c4c499b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_arm64.whl", hash = "sha256:e33e8fbd440c917106b237ef1a2f1449dfbb9b6f6e1ce17c94cd6a1e0d438376"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:5360cc32706dab3931f738d3079652d20982511f7c0ac5711483e6eab08efff2"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:942216596dc64ddb25adb215c3c783215b23626f8d84e8eff8d6d45c3f29f75a"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:48b571ecd8bae15702e4f22d3ff6a0f13e54d3d00cd25216d5e7f658242065ee"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad42ba922c67c5f219097b28fae965e10045ddf145d2928bfac2eb2e17673640"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:612a10bdae23404a72941a0fc8fa2660c6ea1217c4ce0dbcab8a8f6543ea9e7f"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9e838bba3a3bac0fe06d849d29772eb1afb9745a59710762e4ba3f4cb8424483"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:22f499f6157236c19f4bbbd472fa55b063db77a16cd74d49afe28992dff8c258"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693902d433cf585133699972b6d7c42a8b9f8f826ebcaf0132ff55200afc599e"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4e77f2126c3e0b0d055f44513ed349038ac180371ed9b52fe96a32aa071a5107"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:657a05857bda581c3656bfc3b20e353c232e9193eb167766ad2dc58b56504948"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4bfa75a048c056a411f9705856abfc872558e33c055d80af6a380e3658766038"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:34ea1de54beef1c104422d210c47c7d2a4999bdecf42c7b5718fbe59a4cac383"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:90da3b5f694b85231cf93586dad5e90e2d71b9428f9aad96952c99055582f520"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win32.whl", hash = "sha256:18e0cca3e008e17fe9b164b55735a325140a5a35faad8de92dd80265cd5eb80b"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_amd64.whl", hash = "sha256:58cb20602b18f86f83a5c87d3ee1c766a79c0d452f8def86d925e6c60fbf7bfb"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_arm64.whl", hash = "sha256:f5a8b53bdc0b3961f8b6125e198617c40aeed638b387913bf1ce78afb1b0be2a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:2e6039dcbe79a8e0f044f1c39db1986a1b8071051efba3ee4d74f5b365f5226e"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a1ecf0ac1c518487d9d23b1cd7139a6a65bc460cd101ab01f1be82ecf09794b6"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7ab9ccab2b5bd5702ab0803676a580fffa2aa178c2badc5557a84cc943fcf750"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f816dd2277f8d63d79f9c8473a79fe54047bc0467754962840782c575522224d"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf8bcc23ceb5a1b624572a1623b9f79d2c3b337c8c455405ef231933a10da379"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dea0bf229319828467d7fca8c7c189780aa9ff679c94539eed7532ebe33ed37c"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c06a4c7cf15ec739ce0e5971b26c93638730090add60e183530d70848ebdd34"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5337ec7809bcd0f424c6b705ecf97941c46279cf5ed92311782c7c9c2026f07f"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4c26ed10c4f6fa6ddb329a5120ba3b6db349ca192ae211e882970bfc9d91420b"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c619b101e6de2222c1fcb0531e1b17bbffbe54294bfba43ea0d411d428618c27"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:073a36c8273647592ea332e816e75ef8da5c303236ec0167196793eb1e34657a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3ce6b2b0231bda412463e152fc18335ba32faf4e8c23a754ad50ffa70e4091ee"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win32.whl", hash = "sha256:f4c9aee212bc89d4e13f58be11a56cc8036cabad119259d12ace14b34476fd07"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_amd64.whl", hash = "sha256:8a3ec5aa8e38fc4c8af308917ce12c536f1c88452ce554027e55b22cbbfbff76"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_arm64.whl", hash = "sha256:76c8094ac20ec259471ac53e774623eb62e6e1f56cd8690c67ce6ce4fcb05650"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5d5abf8f8ec1f4e22882273c423e16cae834c36856cac348cfbfa68e01c40f3a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:aeb3531b196ef6f11776c21674dba836aeea9d5bd1cf630f869e3d90b16cfade"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b7d755065e4e866a8086c9bdada157133ff466476a2ad7861828e17b6026e22c"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08471d4d86cbaec61f86b217dd938a83d85e03785f51121e791a6e6689a3be95"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7bbfcb7165ce3d54a3dfbe731e470f65739c4c1f85bb1018ee912bae139e263b"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d34eb8494bea691a1a450141ebb5385e4b69d38bb8403b5146ad279f4b30fa3"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9242795d174daa40105c1d86aba618e8eab7bf96ba8c3ee614da8302a9f95503"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a0f64a48bb81af7450e641e3fe0b0394d7381e342805479178b3d335d60ca7cf"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8e045731a5416357638d1700927529e2b8ab304811671f665b225f8bf8d8f933"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4322872d5772cae7369f8351da1edf255a604ea7087fe295411397d0cfd9655e"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e1631290ee9271dffe3062d2634c3ecac02c83890ada077d225e081aca8aab89"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:edcfc407e4eb17e037bca59be0e85a2031a2ac87e4fed26d3e9df88b4165f92d"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:4d05d81ecb47d11e7f8932bd8b61b720bf0b41199358f3f5e36d38e28f0532c5"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win32.whl", hash = "sha256:b38ac83d5f04b15e515fd86f312479d950d05ce2368d5413d46c088dda7de90a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win_amd64.whl", hash = "sha256:d83db7cde68459fc803052a55ace60bea2bae361fc3b7a6d5da07e11954e4b09"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3f9362ecfca44c863569d3d3c033dbe8ba452ff8eed6f6b5806382741a1334bd"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e8df2eb9b2bac43ef8b082e06f750350fbbaf2887534a5be97f6cf07b19d9583"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f32d6edbc638cde7652bd690c3e728b25332acbadd7cad670cc4a02558d9c417"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e2e6c39bd7b9372b0be21456caab138e8e69cc0fc1190a9dfa92bd45a1e6e904"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dda56c24d869b1193fcc763f1284b9126550eaf84b88bbc7256e15028f19188a"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79849239c39b5e1fd906556c474d9b0439ea6792b637511f3fe3a41158d89ca8"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5e3bc157fed2a4c02ec468de4ecd12a6e22818d4f09cde2c31ee3226ffbefab2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3da53da805b71e41053dc670f9a820d1157aae77b6b944e08024d17bcd51ef88"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:8705f17dfeb43139a692298cb6637ee2e59c0194538153e83e9ee0c75c2eddde"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:82a5c2f4b87c26bb1a0ef3d16b5c4753434633b83d365cc0ddf2770c93829e3c"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce8be0466f4c0d585cdb6c1e2ed07232221df101a4c6f28821d2aa754ca2d9e2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:409afdfe1e2e90e6ee7fc896f3df9a7fec8e793e58bfa0d052c8a82f99c37abb"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5b9c3f4ee0b9a439d2415012bd1b1cc2df59e4d6a9939f4d669241d30b414327"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win32.whl", hash = "sha256:a79ae34384df2b615eefca647a2873842ac3b596418032bef9a7283675962644"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_amd64.whl", hash = "sha256:cf0438b42121a66a3a667de17e779330fc0f20b0d97d59d2f2121e182b0505e4"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_arm64.whl", hash = "sha256:764202cc7e70f767dab49e8df52c7455e8de0df5d858fa801a11aa0d882ccf3f"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:94252291e3fe68001b1dd747b4c0b3be12582839b95ad4d1b641924d68fd4643"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:5b7dfa3b546da08a9f622bb6becdb14b3e24aaa30adba66749d38f3cc7ea9706"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3de6481f4ed8b734da5df134cd5a6a64fe32124fe83dde1e5b5f29fe30b1e6"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a91b5f9f1205845d488c928e8570dcb62b893372f63b8b6e98b863ebd2368ff2"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40fa14dbd66b8b8f470d5fc79c089a66185619d31645f9b0773b88b19f7223c4"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:eb542fe7933aa09d8d8f9d9097ef37532a7df6497819d16efe4359890a2f417a"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bfa1acfa0c54932d5607e19a2c24646fb4c1ae2694437789129cf099789a3b00"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:eee3ea935c3d227d49b4eb85660ff631556841f6e567f0f7bda972df6c2c9935"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f3160309af4396e0ed04db259c3ccbfdc3621b5559b5453075e5de555e1f3a1b"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a17f6a29cf8935e587cc8a4dbfc8368c55edc645283db0ce9801016f83526c2d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10849fb2c1ecbfae45a693c070e0320a91b35dd4bcf58172c023b994283a124d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:ac542bf38a8a4be2dc6b15248d36315ccc65f0743f7b1a76688ffb6b5129a5c2"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8b01aac285f91ca889c800042c35ad3b239e704b150cfd3382adfc9dcc780e39"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:48be928f59a1f5c8207154f935334d374e79f2b5d212826307d072595ad76a2e"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f37cfe618a117e50d8c240555331160d73d0411422b59b5ee217843d7b693608"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:599b5c873c63a1f6ed7eead644a8a380cfbdf5db91dcb6f85707aaab213b1674"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:801fa7802e5cfabe3ab0c81a34c323a319b097dfb5004be950482d882f3d7225"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0c6c43471bc764fad4bc99c5c2d6d16a676b1abf844ca7c8702bdae92df01ee0"}, + {file = "kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60"}, +] + +[[package]] +name = "libclang" +version = "18.1.1" +description = "Clang Python Bindings, mirrored from the official LLVM repo: https://github.com/llvm/llvm-project/tree/main/clang/bindings/python, to make the installation process easier." +optional = false +python-versions = "*" +files = [ + {file = "libclang-18.1.1-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:6f14c3f194704e5d09769108f03185fce7acaf1d1ae4bbb2f30a72c2400cb7c5"}, + {file = "libclang-18.1.1-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:83ce5045d101b669ac38e6da8e58765f12da2d3aafb3b9b98d88b286a60964d8"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2010_x86_64.whl", hash = "sha256:c533091d8a3bbf7460a00cb6c1a71da93bffe148f172c7d03b1c31fbf8aa2a0b"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2014_aarch64.whl", hash = "sha256:54dda940a4a0491a9d1532bf071ea3ef26e6dbaf03b5000ed94dd7174e8f9592"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2014_armv7l.whl", hash = "sha256:cf4a99b05376513717ab5d82a0db832c56ccea4fd61a69dbb7bccf2dfb207dbe"}, + {file = "libclang-18.1.1-py2.py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:69f8eb8f65c279e765ffd28aaa7e9e364c776c17618af8bff22a8df58677ff4f"}, + {file = "libclang-18.1.1-py2.py3-none-win_amd64.whl", hash = "sha256:4dd2d3b82fab35e2bf9ca717d7b63ac990a3519c7e312f19fa8e86dcc712f7fb"}, + {file = "libclang-18.1.1-py2.py3-none-win_arm64.whl", hash = "sha256:3f0e1f49f04d3cd198985fea0511576b0aee16f9ff0e0f0cad7f9c57ec3c20e8"}, + {file = "libclang-18.1.1.tar.gz", hash = "sha256:a1214966d08d73d971287fc3ead8dfaf82eb07fb197680d8b3859dbbbbf78250"}, +] + +[[package]] +name = "lightning-utilities" +version = "0.11.7" +description = "Lightning toolbox for across the our ecosystem." +optional = false +python-versions = ">=3.8" +files = [ + {file = "lightning_utilities-0.11.7-py3-none-any.whl", hash = "sha256:84eebbc700edbfaa6c005458fc911a7fe7f99f02970b00cb322b4d2767deba98"}, + {file = "lightning_utilities-0.11.7.tar.gz", hash = "sha256:7e8458a9f0bfb51ffe6c5ab3957aa37b2792fe8281dd9f1b66aa513a558ec4ce"}, +] + +[package.dependencies] +packaging = ">=17.1" +setuptools = "*" +typing-extensions = "*" + +[package.extras] +cli = ["fire"] +docs = ["requests (>=2.0.0)"] +typing = ["mypy (>=1.0.0)", "types-setuptools"] + +[[package]] +name = "markdown" +version = "3.7" +description = "Python implementation of John Gruber's Markdown." +optional = false +python-versions = ">=3.8" +files = [ + {file = "Markdown-3.7-py3-none-any.whl", hash = "sha256:7eb6df5690b81a1d7942992c97fad2938e956e79df20cbc6186e9c3a77b1c803"}, + {file = "markdown-3.7.tar.gz", hash = "sha256:2ae2471477cfd02dbbf038d5d9bc226d40def84b4fe2986e49b59b6b472bbed2"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.4", markers = "python_version < \"3.10\""} + +[package.extras] +docs = ["mdx-gh-links (>=0.2)", "mkdocs (>=1.5)", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-nature (>=0.6)", "mkdocs-section-index", "mkdocstrings[python]"] +testing = ["coverage", "pyyaml"] + +[[package]] +name = "markupsafe" +version = "2.1.5" +description = "Safely add untrusted strings to HTML/XML markup." +optional = false +python-versions = ">=3.7" +files = [ + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl", hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl", hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl", hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5"}, + {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, +] + +[[package]] +name = "matplotlib" +version = "3.2.2" +description = "Python plotting package" +optional = false +python-versions = ">=3.6" +files = [ + {file = "matplotlib-3.2.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a47abc48c7b81fe6e636dde8a58e49b13d87d140e0f448213a4879f4a3f73345"}, + {file = "matplotlib-3.2.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:20bcd11efe194cd302bd0653cb025b8d16bcd80442359bfca8d49dc805f35ec8"}, + {file = "matplotlib-3.2.2-cp36-cp36m-win32.whl", hash = "sha256:2a6d64336b547e25730b6221e7aadfb01a391a065d43b5f51f0b9d7f673d2dd2"}, + {file = "matplotlib-3.2.2-cp36-cp36m-win_amd64.whl", hash = "sha256:4416825ebc9c1f135027a30e8d8aea0edcf45078ce767c7f7386737413cfb98f"}, + {file = "matplotlib-3.2.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:465c752278d27895e23f1379d6fcfa3a2990643b803c25e3bc16a10641d2346a"}, + {file = "matplotlib-3.2.2-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:81de040403a33bf3c68e9d4a40e26c8d24da00f7e3fadd845003b7e106785da7"}, + {file = "matplotlib-3.2.2-cp37-cp37m-win32.whl", hash = "sha256:006413f08ba5db1f5b1e0d6fbdc2ac9058b062ccf552f57182563a78579c34b4"}, + {file = "matplotlib-3.2.2-cp37-cp37m-win_amd64.whl", hash = "sha256:da06fa530591a141ffbe1712bbeec784734c3436b40c942d21652f305199b5d9"}, + {file = "matplotlib-3.2.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:894dd47c0a6ce38dc19bc87d1f7e2b0608310b2a18d1572291157450b05ce874"}, + {file = "matplotlib-3.2.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:1ab264770e7cf2cf4feb99f22c737066aef21ddf1ec402dc255450ac15eacb7b"}, + {file = "matplotlib-3.2.2-cp38-cp38-win32.whl", hash = "sha256:91c153f4318e3c67c035fd1185f5ea2613f15008b73b66985033033f6fe54bbd"}, + {file = "matplotlib-3.2.2-cp38-cp38-win_amd64.whl", hash = "sha256:a68e42e22f7fd190a532e4215e142276970c2d54040a0c46842fcb3db8b6ec5b"}, + {file = "matplotlib-3.2.2-cp39-cp39-win32.whl", hash = "sha256:647cf232ccf6265d2ba1ac4103e8c8b6ac7b03a40da3421234ffb03dda217f59"}, + {file = "matplotlib-3.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:31d32c83bb2b617377c6156f75e88b9ec2ded289e47ad4ff0f263dc1019d88b1"}, + {file = "matplotlib-3.2.2-pp36-pypy36_pp73-win32.whl", hash = "sha256:67065d938df34478451af62fbd0670d2b51c4d859fb66673064eb5de8660dd7c"}, + {file = "matplotlib-3.2.2.tar.gz", hash = "sha256:3d77a6630d093d74cbbfebaa0571d00790966be1ed204e4a8239f5cbd6835c5d"}, +] + +[package.dependencies] +cycler = ">=0.10" +kiwisolver = ">=1.0.1" +numpy = ">=1.11" +pyparsing = ">=2.0.1,<2.0.4 || >2.0.4,<2.1.2 || >2.1.2,<2.1.6 || >2.1.6" +python-dateutil = ">=2.1" + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "mpmath" +version = "1.3.0" +description = "Python library for arbitrary-precision floating-point arithmetic" +optional = false +python-versions = "*" +files = [ + {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, + {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, +] + +[package.extras] +develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"] +docs = ["sphinx"] +gmpy = ["gmpy2 (>=2.1.0a4)"] +tests = ["pytest (>=4.6)"] + +[[package]] +name = "multidict" +version = "6.1.0" +description = "multidict implementation" +optional = false +python-versions = ">=3.8" +files = [ + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +files = [ + {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, + {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, +] + +[[package]] +name = "networkx" +version = "3.1" +description = "Python package for creating and manipulating graphs and networks" +optional = false +python-versions = ">=3.8" +files = [ + {file = "networkx-3.1-py3-none-any.whl", hash = "sha256:4f33f68cb2afcf86f28a45f43efc27a9386b535d567d2127f8f61d51dec58d36"}, + {file = "networkx-3.1.tar.gz", hash = "sha256:de346335408f84de0eada6ff9fafafff9bcda11f0a0dfaa931133debb146ab61"}, +] + +[package.extras] +default = ["matplotlib (>=3.4)", "numpy (>=1.20)", "pandas (>=1.3)", "scipy (>=1.8)"] +developer = ["mypy (>=1.1)", "pre-commit (>=3.2)"] +doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.13)", "sphinx (>=6.1)", "sphinx-gallery (>=0.12)", "texext (>=0.6.7)"] +extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.10)", "sympy (>=1.10)"] +test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"] + +[[package]] +name = "numpy" +version = "1.24.4" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, + {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, + {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, + {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, + {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, + {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, + {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, + {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, + {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, + {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, + {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, + {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, + {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, + {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, + {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, + {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, + {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, + {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, + {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, + {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, + {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, + {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, + {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, + {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, + {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, +] + +[[package]] +name = "nvidia-cublas-cu12" +version = "12.1.3.1" +description = "CUBLAS native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728"}, + {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-win_amd64.whl", hash = "sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906"}, +] + +[[package]] +name = "nvidia-cuda-cupti-cu12" +version = "12.1.105" +description = "CUDA profiling tools runtime libs." +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e"}, + {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4"}, +] + +[[package]] +name = "nvidia-cuda-nvrtc-cu12" +version = "12.1.105" +description = "NVRTC native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2"}, + {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed"}, +] + +[[package]] +name = "nvidia-cuda-runtime-cu12" +version = "12.1.105" +description = "CUDA Runtime native Libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40"}, + {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344"}, +] + +[[package]] +name = "nvidia-cudnn-cu12" +version = "8.9.2.26" +description = "cuDNN runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl", hash = "sha256:5ccb288774fdfb07a7e7025ffec286971c06d8d7b4fb162525334616d7629ff9"}, +] + +[package.dependencies] +nvidia-cublas-cu12 = "*" + +[[package]] +name = "nvidia-cufft-cu12" +version = "11.0.2.54" +description = "CUFFT native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl", hash = "sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56"}, + {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-win_amd64.whl", hash = "sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253"}, +] + +[[package]] +name = "nvidia-curand-cu12" +version = "10.3.2.106" +description = "CURAND native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0"}, + {file = "nvidia_curand_cu12-10.3.2.106-py3-none-win_amd64.whl", hash = "sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a"}, +] + +[[package]] +name = "nvidia-cusolver-cu12" +version = "11.4.5.107" +description = "CUDA solver native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd"}, + {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-win_amd64.whl", hash = "sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5"}, +] + +[package.dependencies] +nvidia-cublas-cu12 = "*" +nvidia-cusparse-cu12 = "*" +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-cusparse-cu12" +version = "12.1.0.106" +description = "CUSPARSE native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c"}, + {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-win_amd64.whl", hash = "sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a"}, +] + +[package.dependencies] +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-nccl-cu12" +version = "2.18.1" +description = "NVIDIA Collective Communication Library (NCCL) Runtime" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nccl_cu12-2.18.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:1a6c4acefcbebfa6de320f412bf7866de856e786e0462326ba1bac40de0b5e71"}, +] + +[[package]] +name = "nvidia-nvjitlink-cu12" +version = "12.6.77" +description = "Nvidia JIT LTO Library" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-manylinux2014_aarch64.whl", hash = "sha256:3bf10d85bb1801e9c894c6e197e44dd137d2a0a9e43f8450e9ad13f2df0dd52d"}, + {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-manylinux2014_x86_64.whl", hash = "sha256:9ae346d16203ae4ea513be416495167a0101d33d2d14935aa9c1829a3fb45142"}, + {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-win_amd64.whl", hash = "sha256:410718cd44962bed862a31dd0318620f6f9a8b28a6291967bcfcb446a6516771"}, +] + +[[package]] +name = "nvidia-nvtx-cu12" +version = "12.1.105" +description = "NVIDIA Tools Extension" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5"}, + {file = "nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82"}, +] + +[[package]] +name = "oauthlib" +version = "3.2.2" +description = "A generic, spec-compliant, thorough implementation of the OAuth request-signing logic" +optional = false +python-versions = ">=3.6" +files = [ + {file = "oauthlib-3.2.2-py3-none-any.whl", hash = "sha256:8139f29aac13e25d502680e9e19963e83f16838d48a0d71c287fe40e7067fbca"}, + {file = "oauthlib-3.2.2.tar.gz", hash = "sha256:9859c40929662bec5d64f34d01c99e093149682a3f38915dc0655d5a633dd918"}, +] + +[package.extras] +rsa = ["cryptography (>=3.0.0)"] +signals = ["blinker (>=1.4.0)"] +signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] + +[[package]] +name = "opt-einsum" +version = "3.4.0" +description = "Path optimization of einsum functions." +optional = false +python-versions = ">=3.8" +files = [ + {file = "opt_einsum-3.4.0-py3-none-any.whl", hash = "sha256:69bb92469f86a1565195ece4ac0323943e83477171b91d24c35afe028a90d7cd"}, + {file = "opt_einsum-3.4.0.tar.gz", hash = "sha256:96ca72f1b886d148241348783498194c577fa30a8faac108586b14f1ba4473ac"}, +] + +[[package]] +name = "packaging" +version = "24.1" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, + {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, +] + +[[package]] +name = "pandas" +version = "2.0.3" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pandas-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8"}, + {file = "pandas-2.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f"}, + {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183"}, + {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0"}, + {file = "pandas-2.0.3-cp310-cp310-win32.whl", hash = "sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210"}, + {file = "pandas-2.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e"}, + {file = "pandas-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8"}, + {file = "pandas-2.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26"}, + {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d"}, + {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df"}, + {file = "pandas-2.0.3-cp311-cp311-win32.whl", hash = "sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd"}, + {file = "pandas-2.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b"}, + {file = "pandas-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061"}, + {file = "pandas-2.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5"}, + {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089"}, + {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0"}, + {file = "pandas-2.0.3-cp38-cp38-win32.whl", hash = "sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02"}, + {file = "pandas-2.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78"}, + {file = "pandas-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b"}, + {file = "pandas-2.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e"}, + {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b"}, + {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641"}, + {file = "pandas-2.0.3-cp39-cp39-win32.whl", hash = "sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682"}, + {file = "pandas-2.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc"}, + {file = "pandas-2.0.3.tar.gz", hash = "sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c"}, +] + +[package.dependencies] +numpy = {version = ">=1.20.3", markers = "python_version < \"3.10\""} +python-dateutil = ">=2.8.2" +pytz = ">=2020.1" +tzdata = ">=2022.1" + +[package.extras] +all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] +aws = ["s3fs (>=2021.08.0)"] +clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] +compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] +computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] +feather = ["pyarrow (>=7.0.0)"] +fss = ["fsspec (>=2021.07.0)"] +gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] +hdf5 = ["tables (>=3.6.1)"] +html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] +mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] +parquet = ["pyarrow (>=7.0.0)"] +performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] +plot = ["matplotlib (>=3.6.1)"] +postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] +spss = ["pyreadstat (>=1.1.2)"] +sql-other = ["SQLAlchemy (>=1.4.16)"] +test = ["hypothesis (>=6.34.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.6.3)"] + +[[package]] +name = "parso" +version = "0.8.4" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +files = [ + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, +] + +[package.extras] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["docopt", "pytest"] + +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pickleshare" +version = "0.7.5" +description = "Tiny 'shelve'-like database with concurrency support" +optional = false +python-versions = "*" +files = [ + {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, + {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, +] + +[[package]] +name = "pillow" +version = "10.4.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"}, + {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"}, + {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"}, + {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"}, + {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"}, + {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"}, + {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"}, + {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"}, + {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"}, + {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"}, + {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"}, + {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"}, + {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"}, + {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"}, + {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"}, + {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"}, + {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"}, + {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"}, + {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"}, + {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] +fpx = ["olefile"] +mic = ["olefile"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] +typing = ["typing-extensions"] +xmp = ["defusedxml"] + +[[package]] +name = "platformdirs" +version = "4.3.6" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." +optional = false +python-versions = ">=3.8" +files = [ + {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, + {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, +] + +[package.extras] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.48" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, + {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "protobuf" +version = "3.20.3" +description = "Protocol Buffers" +optional = false +python-versions = ">=3.7" +files = [ + {file = "protobuf-3.20.3-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:f4bd856d702e5b0d96a00ec6b307b0f51c1982c2bf9c0052cf9019e9a544ba99"}, + {file = "protobuf-3.20.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9aae4406ea63d825636cc11ffb34ad3379335803216ee3a856787bcf5ccc751e"}, + {file = "protobuf-3.20.3-cp310-cp310-win32.whl", hash = "sha256:28545383d61f55b57cf4df63eebd9827754fd2dc25f80c5253f9184235db242c"}, + {file = "protobuf-3.20.3-cp310-cp310-win_amd64.whl", hash = "sha256:67a3598f0a2dcbc58d02dd1928544e7d88f764b47d4a286202913f0b2801c2e7"}, + {file = "protobuf-3.20.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:899dc660cd599d7352d6f10d83c95df430a38b410c1b66b407a6b29265d66469"}, + {file = "protobuf-3.20.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e64857f395505ebf3d2569935506ae0dfc4a15cb80dc25261176c784662cdcc4"}, + {file = "protobuf-3.20.3-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:d9e4432ff660d67d775c66ac42a67cf2453c27cb4d738fc22cb53b5d84c135d4"}, + {file = "protobuf-3.20.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:74480f79a023f90dc6e18febbf7b8bac7508420f2006fabd512013c0c238f454"}, + {file = "protobuf-3.20.3-cp37-cp37m-win32.whl", hash = "sha256:b6cc7ba72a8850621bfec987cb72623e703b7fe2b9127a161ce61e61558ad905"}, + {file = "protobuf-3.20.3-cp37-cp37m-win_amd64.whl", hash = "sha256:8c0c984a1b8fef4086329ff8dd19ac77576b384079247c770f29cc8ce3afa06c"}, + {file = "protobuf-3.20.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:de78575669dddf6099a8a0f46a27e82a1783c557ccc38ee620ed8cc96d3be7d7"}, + {file = "protobuf-3.20.3-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:f4c42102bc82a51108e449cbb32b19b180022941c727bac0cfd50170341f16ee"}, + {file = "protobuf-3.20.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:44246bab5dd4b7fbd3c0c80b6f16686808fab0e4aca819ade6e8d294a29c7050"}, + {file = "protobuf-3.20.3-cp38-cp38-win32.whl", hash = "sha256:c02ce36ec760252242a33967d51c289fd0e1c0e6e5cc9397e2279177716add86"}, + {file = "protobuf-3.20.3-cp38-cp38-win_amd64.whl", hash = "sha256:447d43819997825d4e71bf5769d869b968ce96848b6479397e29fc24c4a5dfe9"}, + {file = "protobuf-3.20.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:398a9e0c3eaceb34ec1aee71894ca3299605fa8e761544934378bbc6c97de23b"}, + {file = "protobuf-3.20.3-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:bf01b5720be110540be4286e791db73f84a2b721072a3711efff6c324cdf074b"}, + {file = "protobuf-3.20.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:daa564862dd0d39c00f8086f88700fdbe8bc717e993a21e90711acfed02f2402"}, + {file = "protobuf-3.20.3-cp39-cp39-win32.whl", hash = "sha256:819559cafa1a373b7096a482b504ae8a857c89593cf3a25af743ac9ecbd23480"}, + {file = "protobuf-3.20.3-cp39-cp39-win_amd64.whl", hash = "sha256:03038ac1cfbc41aa21f6afcbcd357281d7521b4157926f30ebecc8d4ea59dcb7"}, + {file = "protobuf-3.20.3-py2.py3-none-any.whl", hash = "sha256:a7ca6d488aa8ff7f329d4c545b2dbad8ac31464f1d8b1c87ad1346717731e4db"}, + {file = "protobuf-3.20.3.tar.gz", hash = "sha256:2e3427429c9cffebf259491be0af70189607f365c2f41c7c3764af6f337105f2"}, +] + +[[package]] +name = "psutil" +version = "6.0.0" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "psutil-6.0.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a021da3e881cd935e64a3d0a20983bda0bb4cf80e4f74fa9bfcb1bc5785360c6"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:1287c2b95f1c0a364d23bc6f2ea2365a8d4d9b726a3be7294296ff7ba97c17f0"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:a9a3dbfb4de4f18174528d87cc352d1f788b7496991cca33c6996f40c9e3c92c"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:6ec7588fb3ddaec7344a825afe298db83fe01bfaaab39155fa84cf1c0d6b13c3"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:1e7c870afcb7d91fdea2b37c24aeb08f98b6d67257a5cb0a8bc3ac68d0f1a68c"}, + {file = "psutil-6.0.0-cp27-none-win32.whl", hash = "sha256:02b69001f44cc73c1c5279d02b30a817e339ceb258ad75997325e0e6169d8b35"}, + {file = "psutil-6.0.0-cp27-none-win_amd64.whl", hash = "sha256:21f1fb635deccd510f69f485b87433460a603919b45e2a324ad65b0cc74f8fb1"}, + {file = "psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c588a7e9b1173b6e866756dde596fd4cad94f9399daf99ad8c3258b3cb2b47a0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ed2440ada7ef7d0d608f20ad89a04ec47d2d3ab7190896cd62ca5fc4fe08bf0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd9a97c8e94059b0ef54a7d4baf13b405011176c3b6ff257c247cae0d560ecd"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e8d0054fc88153ca0544f5c4d554d42e33df2e009c4ff42284ac9ebdef4132"}, + {file = "psutil-6.0.0-cp36-cp36m-win32.whl", hash = "sha256:fc8c9510cde0146432bbdb433322861ee8c3efbf8589865c8bf8d21cb30c4d14"}, + {file = "psutil-6.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:34859b8d8f423b86e4385ff3665d3f4d94be3cdf48221fbe476e883514fdb71c"}, + {file = "psutil-6.0.0-cp37-abi3-win32.whl", hash = "sha256:a495580d6bae27291324fe60cea0b5a7c23fa36a7cd35035a16d93bdcf076b9d"}, + {file = "psutil-6.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:33ea5e1c975250a720b3a6609c490db40dae5d83a4eb315170c4fe0d8b1f34b3"}, + {file = "psutil-6.0.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:ffe7fc9b6b36beadc8c322f84e1caff51e8703b88eee1da46d1e3a6ae11b4fd0"}, + {file = "psutil-6.0.0.tar.gz", hash = "sha256:8faae4f310b6d969fa26ca0545338b21f73c6b15db7c4a8d934a5482faa818f2"}, +] + +[package.extras] +test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +files = [ + {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, + {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "pyasn1" +version = "0.6.1" +description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyasn1-0.6.1-py3-none-any.whl", hash = "sha256:0d632f46f2ba09143da3a8afe9e33fb6f92fa2320ab7e886e2d0f7672af84629"}, + {file = "pyasn1-0.6.1.tar.gz", hash = "sha256:6f580d2bdd84365380830acf45550f2511469f673cb4a5ae3857a3170128b034"}, +] + +[[package]] +name = "pyasn1-modules" +version = "0.4.1" +description = "A collection of ASN.1-based protocols modules" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyasn1_modules-0.4.1-py3-none-any.whl", hash = "sha256:49bfa96b45a292b711e986f222502c1c9a5e1f4e568fc30e2574a6c7d07838fd"}, + {file = "pyasn1_modules-0.4.1.tar.gz", hash = "sha256:c28e2dbf9c06ad61c71a075c7e0f9fd0f1b0bb2d2ad4377f240d33ac2ab60a7c"}, +] + +[package.dependencies] +pyasn1 = ">=0.4.6,<0.7.0" + +[[package]] +name = "pycparser" +version = "2.22" +description = "C parser in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, +] + +[[package]] +name = "pygments" +version = "2.18.0" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, + {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, +] + +[package.extras] +windows-terminal = ["colorama (>=0.4.6)"] + +[[package]] +name = "pyparsing" +version = "3.1.4" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.6.8" +files = [ + {file = "pyparsing-3.1.4-py3-none-any.whl", hash = "sha256:a6a7ee4235a3f944aa1fa2249307708f893fe5717dc603503c6c7969c070fb7c"}, + {file = "pyparsing-3.1.4.tar.gz", hash = "sha256:f86ec8d1a83f11977c9a6ea7598e8c27fc5cddfa5b07ea2241edbbde1d7bc032"}, +] + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, + {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "pytz" +version = "2024.2" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ + {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, + {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, +] + +[[package]] +name = "pywin32" +version = "306" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ + {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, + {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, + {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, + {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, + {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, + {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, + {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, + {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, + {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, + {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, + {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, + {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, + {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, + {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, +] + +[[package]] +name = "pyzmq" +version = "26.2.0" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea"}, + {file = "pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6"}, + {file = "pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b"}, + {file = "pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e"}, + {file = "pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0"}, + {file = "pyzmq-26.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3b55a4229ce5da9497dd0452b914556ae58e96a4381bb6f59f1305dfd7e53fc8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cb3a6460cdea8fe8194a76de8895707e61ded10ad0be97188cc8463ffa7e3a8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ab5cad923cc95c87bffee098a27856c859bd5d0af31bd346035aa816b081fe1"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ed69074a610fad1c2fda66180e7b2edd4d31c53f2d1872bc2d1211563904cd9"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cccba051221b916a4f5e538997c45d7d136a5646442b1231b916d0164067ea27"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0eaa83fc4c1e271c24eaf8fb083cbccef8fde77ec8cd45f3c35a9a123e6da097"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9edda2df81daa129b25a39b86cb57dfdfe16f7ec15b42b19bfac503360d27a93"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win32.whl", hash = "sha256:ea0eb6af8a17fa272f7b98d7bebfab7836a0d62738e16ba380f440fceca2d951"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:4ff9dc6bc1664bb9eec25cd17506ef6672d506115095411e237d571e92a58231"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2eb7735ee73ca1b0d71e0e67c3739c689067f055c764f73aac4cc8ecf958ee3f"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a534f43bc738181aa7cbbaf48e3eca62c76453a40a746ab95d4b27b1111a7d2"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:aedd5dd8692635813368e558a05266b995d3d020b23e49581ddd5bbe197a8ab6"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8be4700cd8bb02cc454f630dcdf7cfa99de96788b80c51b60fe2fe1dac480289"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fcc03fa4997c447dce58264e93b5aa2d57714fbe0f06c07b7785ae131512732"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:402b190912935d3db15b03e8f7485812db350d271b284ded2b80d2e5704be780"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8685fa9c25ff00f550c1fec650430c4b71e4e48e8d852f7ddcf2e48308038640"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:76589c020680778f06b7e0b193f4b6dd66d470234a16e1df90329f5e14a171cd"}, + {file = "pyzmq-26.2.0-cp38-cp38-win32.whl", hash = "sha256:8423c1877d72c041f2c263b1ec6e34360448decfb323fa8b94e85883043ef988"}, + {file = "pyzmq-26.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:76589f2cd6b77b5bdea4fca5992dc1c23389d68b18ccc26a53680ba2dc80ff2f"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b1d464cb8d72bfc1a3adc53305a63a8e0cac6bc8c5a07e8ca190ab8d3faa43c2"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4da04c48873a6abdd71811c5e163bd656ee1b957971db7f35140a2d573f6949c"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d049df610ac811dcffdc147153b414147428567fbbc8be43bb8885f04db39d98"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c811cfcd6a9bf680236c40c6f617187515269ab2912f3d7e8c0174898e2519db"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6835dd60355593de10350394242b5757fbbd88b25287314316f266e24c61d073"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc6bee759a6bddea5db78d7dcd609397449cb2d2d6587f48f3ca613b19410cfc"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c530e1eecd036ecc83c3407f77bb86feb79916d4a33d11394b8234f3bd35b940"}, + {file = "pyzmq-26.2.0-cp39-cp39-win32.whl", hash = "sha256:367b4f689786fca726ef7a6c5ba606958b145b9340a5e4808132cc65759abd44"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e6fa2e3e683f34aea77de8112f6483803c96a44fd726d7358b9888ae5bb394ec"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:7445be39143a8aa4faec43b076e06944b8f9d0701b669df4af200531b21e40bb"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2ea4ad4e6a12e454de05f2949d4beddb52460f3de7c8b9d5c46fbb7d7222e02c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fc4f7a173a5609631bb0c42c23d12c49df3966f89f496a51d3eb0ec81f4519d6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:878206a45202247781472a2d99df12a176fef806ca175799e1c6ad263510d57c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17c412bad2eb9468e876f556eb4ee910e62d721d2c7a53c7fa31e643d35352e6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0d987a3ae5a71c6226b203cfd298720e0086c7fe7c74f35fa8edddfbd6597eed"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:39887ac397ff35b7b775db7201095fc6310a35fdbae85bac4523f7eb3b840e20"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fdb5b3e311d4d4b0eb8b3e8b4d1b0a512713ad7e6a68791d0923d1aec433d919"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:226af7dcb51fdb0109f0016449b357e182ea0ceb6b47dfb5999d569e5db161d5"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bed0e799e6120b9c32756203fb9dfe8ca2fb8467fed830c34c877e25638c3fc"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:29c7947c594e105cb9e6c466bace8532dc1ca02d498684128b339799f5248277"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cdeabcff45d1c219636ee2e54d852262e5c2e085d6cb476d938aee8d921356b3"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35cffef589bcdc587d06f9149f8d5e9e8859920a071df5a2671de2213bef592a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18c8dc3b7468d8b4bdf60ce9d7141897da103c7a4690157b32b60acb45e333e6"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7133d0a1677aec369d67dd78520d3fa96dd7f3dcec99d66c1762870e5ea1a50a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a96179a24b14fa6428cbfc08641c779a53f8fcec43644030328f44034c7f1f4"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4f78c88905461a9203eac9faac157a2a0dbba84a0fd09fd29315db27be40af9f"}, + {file = "pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "requests" +version = "2.32.3" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.8" +files = [ + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + +[[package]] +name = "requests-oauthlib" +version = "2.0.0" +description = "OAuthlib authentication support for Requests." +optional = false +python-versions = ">=3.4" +files = [ + {file = "requests-oauthlib-2.0.0.tar.gz", hash = "sha256:b3dffaebd884d8cd778494369603a9e7b58d29111bf6b41bdc2dcd87203af4e9"}, + {file = "requests_oauthlib-2.0.0-py2.py3-none-any.whl", hash = "sha256:7dd8a5c40426b779b0868c404bdef9768deccf22749cde15852df527e6269b36"}, +] + +[package.dependencies] +oauthlib = ">=3.0.0" +requests = ">=2.0.0" + +[package.extras] +rsa = ["oauthlib[signedtoken] (>=3.0.0)"] + +[[package]] +name = "rsa" +version = "4.9" +description = "Pure-Python RSA implementation" +optional = false +python-versions = ">=3.6,<4" +files = [ + {file = "rsa-4.9-py3-none-any.whl", hash = "sha256:90260d9058e514786967344d0ef75fa8727eed8a7d2e43ce9f4bcf1b536174f7"}, + {file = "rsa-4.9.tar.gz", hash = "sha256:e38464a49c6c85d7f1351b0126661487a7e0a14a50f1675ec50eb34d4f20ef21"}, +] + +[package.dependencies] +pyasn1 = ">=0.1.3" + +[[package]] +name = "scikit-learn" +version = "1.3.2" +description = "A set of python modules for machine learning and data mining" +optional = false +python-versions = ">=3.8" +files = [ + {file = "scikit-learn-1.3.2.tar.gz", hash = "sha256:a2f54c76accc15a34bfb9066e6c7a56c1e7235dda5762b990792330b52ccfb05"}, + {file = "scikit_learn-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e326c0eb5cf4d6ba40f93776a20e9a7a69524c4db0757e7ce24ba222471ee8a1"}, + {file = "scikit_learn-1.3.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:535805c2a01ccb40ca4ab7d081d771aea67e535153e35a1fd99418fcedd1648a"}, + {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1215e5e58e9880b554b01187b8c9390bf4dc4692eedeaf542d3273f4785e342c"}, + {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ee107923a623b9f517754ea2f69ea3b62fc898a3641766cb7deb2f2ce450161"}, + {file = "scikit_learn-1.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:35a22e8015048c628ad099da9df5ab3004cdbf81edc75b396fd0cff8699ac58c"}, + {file = "scikit_learn-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6fb6bc98f234fda43163ddbe36df8bcde1d13ee176c6dc9b92bb7d3fc842eb66"}, + {file = "scikit_learn-1.3.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:18424efee518a1cde7b0b53a422cde2f6625197de6af36da0b57ec502f126157"}, + {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3271552a5eb16f208a6f7f617b8cc6d1f137b52c8a1ef8edf547db0259b2c9fb"}, + {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc4144a5004a676d5022b798d9e573b05139e77f271253a4703eed295bde0433"}, + {file = "scikit_learn-1.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:67f37d708f042a9b8d59551cf94d30431e01374e00dc2645fa186059c6c5d78b"}, + {file = "scikit_learn-1.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:8db94cd8a2e038b37a80a04df8783e09caac77cbe052146432e67800e430c028"}, + {file = "scikit_learn-1.3.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:61a6efd384258789aa89415a410dcdb39a50e19d3d8410bd29be365bcdd512d5"}, + {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb06f8dce3f5ddc5dee1715a9b9f19f20d295bed8e3cd4fa51e1d050347de525"}, + {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b2de18d86f630d68fe1f87af690d451388bb186480afc719e5f770590c2ef6c"}, + {file = "scikit_learn-1.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:0402638c9a7c219ee52c94cbebc8fcb5eb9fe9c773717965c1f4185588ad3107"}, + {file = "scikit_learn-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a19f90f95ba93c1a7f7924906d0576a84da7f3b2282ac3bfb7a08a32801add93"}, + {file = "scikit_learn-1.3.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:b8692e395a03a60cd927125eef3a8e3424d86dde9b2370d544f0ea35f78a8073"}, + {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15e1e94cc23d04d39da797ee34236ce2375ddea158b10bee3c343647d615581d"}, + {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:785a2213086b7b1abf037aeadbbd6d67159feb3e30263434139c98425e3dcfcf"}, + {file = "scikit_learn-1.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:64381066f8aa63c2710e6b56edc9f0894cc7bf59bd71b8ce5613a4559b6145e0"}, + {file = "scikit_learn-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c43290337f7a4b969d207e620658372ba3c1ffb611f8bc2b6f031dc5c6d1d03"}, + {file = "scikit_learn-1.3.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:dc9002fc200bed597d5d34e90c752b74df516d592db162f756cc52836b38fe0e"}, + {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d08ada33e955c54355d909b9c06a4789a729977f165b8bae6f225ff0a60ec4a"}, + {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:763f0ae4b79b0ff9cca0bf3716bcc9915bdacff3cebea15ec79652d1cc4fa5c9"}, + {file = "scikit_learn-1.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:ed932ea780517b00dae7431e031faae6b49b20eb6950918eb83bd043237950e0"}, +] + +[package.dependencies] +joblib = ">=1.1.1" +numpy = ">=1.17.3,<2.0" +scipy = ">=1.5.0" +threadpoolctl = ">=2.0.0" + +[package.extras] +benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.10.1)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] +examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"] +tests = ["black (>=23.3.0)", "matplotlib (>=3.1.3)", "mypy (>=1.3)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.0.272)", "scikit-image (>=0.16.2)"] + +[[package]] +name = "scipy" +version = "1.10.1" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = "<3.12,>=3.8" +files = [ + {file = "scipy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e7354fd7527a4b0377ce55f286805b34e8c54b91be865bac273f527e1b839019"}, + {file = "scipy-1.10.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4b3f429188c66603a1a5c549fb414e4d3bdc2a24792e061ffbd607d3d75fd84e"}, + {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1553b5dcddd64ba9a0d95355e63fe6c3fc303a8fd77c7bc91e77d61363f7433f"}, + {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c0ff64b06b10e35215abce517252b375e580a6125fd5fdf6421b98efbefb2d2"}, + {file = "scipy-1.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:fae8a7b898c42dffe3f7361c40d5952b6bf32d10c4569098d276b4c547905ee1"}, + {file = "scipy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f1564ea217e82c1bbe75ddf7285ba0709ecd503f048cb1236ae9995f64217bd"}, + {file = "scipy-1.10.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d925fa1c81b772882aa55bcc10bf88324dadb66ff85d548c71515f6689c6dac5"}, + {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaea0a6be54462ec027de54fca511540980d1e9eea68b2d5c1dbfe084797be35"}, + {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15a35c4242ec5f292c3dd364a7c71a61be87a3d4ddcc693372813c0b73c9af1d"}, + {file = "scipy-1.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:43b8e0bcb877faf0abfb613d51026cd5cc78918e9530e375727bf0625c82788f"}, + {file = "scipy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5678f88c68ea866ed9ebe3a989091088553ba12c6090244fdae3e467b1139c35"}, + {file = "scipy-1.10.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:39becb03541f9e58243f4197584286e339029e8908c46f7221abeea4b749fa88"}, + {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bce5869c8d68cf383ce240e44c1d9ae7c06078a9396df68ce88a1230f93a30c1"}, + {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07c3457ce0b3ad5124f98a86533106b643dd811dd61b548e78cf4c8786652f6f"}, + {file = "scipy-1.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:049a8bbf0ad95277ffba9b3b7d23e5369cc39e66406d60422c8cfef40ccc8415"}, + {file = "scipy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cd9f1027ff30d90618914a64ca9b1a77a431159df0e2a195d8a9e8a04c78abf9"}, + {file = "scipy-1.10.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:79c8e5a6c6ffaf3a2262ef1be1e108a035cf4f05c14df56057b64acc5bebffb6"}, + {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51af417a000d2dbe1ec6c372dfe688e041a7084da4fdd350aeb139bd3fb55353"}, + {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b4735d6c28aad3cdcf52117e0e91d6b39acd4272f3f5cd9907c24ee931ad601"}, + {file = "scipy-1.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ff7f37b1bf4417baca958d254e8e2875d0cc23aaadbe65b3d5b3077b0eb23ea"}, + {file = "scipy-1.10.1.tar.gz", hash = "sha256:2cf9dfb80a7b4589ba4c40ce7588986d6d5cebc5457cad2c2880f6bc2d42f3a5"}, +] + +[package.dependencies] +numpy = ">=1.19.5,<1.27.0" + +[package.extras] +dev = ["click", "doit (>=0.36.0)", "flake8", "mypy", "pycodestyle", "pydevtool", "rich-click", "typing_extensions"] +doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] +test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "setuptools" +version = "75.1.0" +description = "Easily download, build, install, upgrade, and uninstall Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "setuptools-75.1.0-py3-none-any.whl", hash = "sha256:35ab7fd3bcd95e6b7fd704e4a1539513edad446c097797f2985e0e4b960772f2"}, + {file = "setuptools-75.1.0.tar.gz", hash = "sha256:d59a21b17a275fb872a9c3dae73963160ae079f1049ed956880cd7c09b120538"}, +] + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.collections", "jaraco.functools", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] + +[[package]] +name = "six" +version = "1.16.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, + {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, +] + +[[package]] +name = "smart-open" +version = "7.0.4" +description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)" +optional = false +python-versions = "<4.0,>=3.7" +files = [ + {file = "smart_open-7.0.4-py3-none-any.whl", hash = "sha256:4e98489932b3372595cddc075e6033194775165702887216b65eba760dfd8d47"}, + {file = "smart_open-7.0.4.tar.gz", hash = "sha256:62b65852bdd1d1d516839fcb1f6bc50cd0f16e05b4ec44b52f43d38bcb838524"}, +] + +[package.dependencies] +wrapt = "*" + +[package.extras] +all = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "paramiko", "requests", "zstandard"] +azure = ["azure-common", "azure-core", "azure-storage-blob"] +gcs = ["google-cloud-storage (>=2.6.0)"] +http = ["requests"] +s3 = ["boto3"] +ssh = ["paramiko"] +test = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "paramiko", "pytest", "pytest-rerunfailures", "requests", "responses", "zstandard"] +webhdfs = ["requests"] +zst = ["zstandard"] + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "stellargraph" +version = "1.2.1" +description = "Python library for machine learning on graphs" +optional = false +python-versions = ">=3.6.0, <3.9.0" +files = [ + {file = "stellargraph-1.2.1-py3-none-any.whl", hash = "sha256:984a839de4645c9703b8f34a065307498feef38e5160a8f9d7764318a3d4621d"}, + {file = "stellargraph-1.2.1.tar.gz", hash = "sha256:804200a7992465bb5f10da95a3b7748014b0a159f1e79a95517c12a9ff2faed2"}, +] + +[package.dependencies] +gensim = ">=3.4.0" +matplotlib = ">=2.2" +networkx = ">=2.2" +numpy = ">=1.14" +pandas = ">=0.24" +scikit-learn = ">=0.20" +scipy = ">=1.1.0" +tensorflow = ">=2.1.0" + +[package.extras] +demos = ["jupyter", "mplleaflet (==0.0.5)", "numba", "rdflib", "seaborn"] +igraph = ["python-igraph"] +neo4j = ["py2neo"] +test = ["black (>=19.3b0)", "commonmark (==0.9.1)", "coverage (>=4.4,<5.0)", "nbconvert (>=5.5.0)", "papermill (>=2.0.0)", "pytest (==5.3.1)", "pytest-benchmark (>=3.1)", "pytest-cov (>=2.6.0)", "rdflib", "treon (>=0.1.2)"] + +[[package]] +name = "sympy" +version = "1.13.3" +description = "Computer algebra system (CAS) in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "sympy-1.13.3-py3-none-any.whl", hash = "sha256:54612cf55a62755ee71824ce692986f23c88ffa77207b30c1368eda4a7060f73"}, + {file = "sympy-1.13.3.tar.gz", hash = "sha256:b27fd2c6530e0ab39e275fc9b683895367e51d5da91baa8d3d64db2565fec4d9"}, +] + +[package.dependencies] +mpmath = ">=1.1.0,<1.4" + +[package.extras] +dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] + +[[package]] +name = "tensorboard" +version = "2.14.0" +description = "TensorBoard lets you watch Tensors Flow" +optional = false +python-versions = ">=3.8" +files = [ + {file = "tensorboard-2.14.0-py3-none-any.whl", hash = "sha256:3667f9745d99280836ad673022362c840f60ed8fefd5a3e30bf071f5a8fd0017"}, +] + +[package.dependencies] +absl-py = ">=0.4" +google-auth = ">=1.6.3,<3" +google-auth-oauthlib = ">=0.5,<1.1" +grpcio = ">=1.48.2" +markdown = ">=2.6.8" +numpy = ">=1.12.0" +protobuf = ">=3.19.6" +requests = ">=2.21.0,<3" +setuptools = ">=41.0.0" +tensorboard-data-server = ">=0.7.0,<0.8.0" +werkzeug = ">=1.0.1" +wheel = ">=0.26" + +[[package]] +name = "tensorboard-data-server" +version = "0.7.2" +description = "Fast data loading for TensorBoard" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tensorboard_data_server-0.7.2-py3-none-any.whl", hash = "sha256:7e0610d205889588983836ec05dc098e80f97b7e7bbff7e994ebb78f578d0ddb"}, + {file = "tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:9fe5d24221b29625dbc7328b0436ca7fc1c23de4acf4d272f1180856e32f9f60"}, + {file = "tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl", hash = "sha256:ef687163c24185ae9754ed5650eb5bc4d84ff257aabdc33f0cc6f74d8ba54530"}, +] + +[[package]] +name = "tensorflow" +version = "2.7.2" +description = "TensorFlow is an open source machine learning framework for everyone." +optional = false +python-versions = "*" +files = [ + {file = "tensorflow-2.7.2-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:050c2ef8d432eb60f2cb6fc75d751fcb3008af6a86ad1147faea30cb59c275b1"}, + {file = "tensorflow-2.7.2-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:3c72b8653a539789ef36f8c1ad8266b9e676dff2293f0f7a68d9b26fc77a37f3"}, + {file = "tensorflow-2.7.2-cp37-cp37m-win_amd64.whl", hash = "sha256:1db663f9f59ba54a294b1f6530f131e90c7a0e6ea49fda5b2c6900e57b0c306a"}, + {file = "tensorflow-2.7.2-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:cb66d4a998af1ca979d6da33e925281596f52e5a9ba67b2295c53677f8379eee"}, + {file = "tensorflow-2.7.2-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:d4dbfab1568564b30bab876424fafd74c8a8715238b76284b5dd1cfe86c7881b"}, + {file = "tensorflow-2.7.2-cp38-cp38-win_amd64.whl", hash = "sha256:b9a7f344b93b953cab4c3f6ec3b6c1799eb538b6a1978d3a4b579d7a81ee7439"}, + {file = "tensorflow-2.7.2-cp39-cp39-macosx_10_11_x86_64.whl", hash = "sha256:99a85258505130b1f3ce203f11b3bb3c95442edefec96c0b221ce0d6541a92c8"}, + {file = "tensorflow-2.7.2-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:bb2115796e2e7738de1844aead493bc1f1122ff1fae65fc691bb1ce5a0fdd2aa"}, + {file = "tensorflow-2.7.2-cp39-cp39-win_amd64.whl", hash = "sha256:3e35d046d0be677239b5e832854bcb291ca79388fa406d9d7547bc3377a7efbb"}, +] + +[package.dependencies] +absl-py = ">=0.4.0" +astunparse = ">=1.6.0" +flatbuffers = ">=1.12,<3.0" +gast = ">=0.2.1,<0.5.0" +google-pasta = ">=0.1.1" +grpcio = ">=1.24.3,<2.0" +h5py = ">=2.9.0" +keras = ">=2.7.0rc0,<2.8" +keras-preprocessing = ">=1.1.1" +libclang = ">=9.0.1" +numpy = ">=1.14.5" +opt-einsum = ">=2.3.2" +protobuf = ">=3.9.2" +six = ">=1.12.0" +tensorboard = ">=2.6,<3.0" +tensorflow-estimator = ">=2.7.0rc0,<2.8" +tensorflow-io-gcs-filesystem = ">=0.21.0" +termcolor = ">=1.1.0" +typing-extensions = ">=3.6.6" +wheel = ">=0.32.0,<1.0" +wrapt = ">=1.11.0" + +[[package]] +name = "tensorflow-estimator" +version = "2.7.0" +description = "TensorFlow Estimator." +optional = false +python-versions = "*" +files = [ + {file = "tensorflow_estimator-2.7.0-py2.py3-none-any.whl", hash = "sha256:325b5a224864379242b7b76c6987ca544239be82579d33e68ec7c2bda57abc9d"}, +] + +[[package]] +name = "tensorflow-io-gcs-filesystem" +version = "0.21.0" +description = "TensorFlow IO" +optional = false +python-versions = ">=3.6, <3.10" +files = [ + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:db8659cce2b45a6689cf041c7745b60338d8158fc394627f916029980aa04e0d"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d5ce0de3c91fb3a47bd91e25081bcd3b3491d515ee45e6d2c63e899ab5e7739e"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-win_amd64.whl", hash = "sha256:8fc48d4a6f06a97b8a866d849844189ecd1d830de9b152276ea579d9772c0533"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:c28ca0dd37d1bb2110a62e9e7f7b0bbdf295add83b38fbe507082fd89f0ebc61"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7c54f1f334076a5514b9f7f537afe4c36fce4233f792ce6ada76651bfad9f2eb"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-win_amd64.whl", hash = "sha256:e22fcc4e6e924842fefc570f7fd0f6fd33e458154be8891b5a7bfd8380c6aa8c"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:95555c647c8330daf712a38d2b158f7a21d5ad77e8fd438360060b37cb8ca1fb"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b12f9d66c8433bb4a67d9cc6cdb14cf11c42d9fe65bdbe09128b6579a80f80e8"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-win_amd64.whl", hash = "sha256:e447d9c03dd7396292ba10dd39a3c6a2cfcb9332b67457592119c5e5d3e38cfe"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:020581f962e7156054c790d649ecc80518d7874e0def5b2f58f965a1998d45e3"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:603f73d61670954833b6ed87199a4a919e2a5dc015f34b20fdd235a611f37e81"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-win_amd64.whl", hash = "sha256:8c95c0ef2de4611a528ef210c233481dd7628c57ff3ef7f08c0f9708125d3ff8"}, +] + +[[package]] +name = "termcolor" +version = "2.4.0" +description = "ANSI color formatting for output in terminal" +optional = false +python-versions = ">=3.8" +files = [ + {file = "termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63"}, + {file = "termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a"}, +] + +[package.extras] +tests = ["pytest", "pytest-cov"] + +[[package]] +name = "threadpoolctl" +version = "3.5.0" +description = "threadpoolctl" +optional = false +python-versions = ">=3.8" +files = [ + {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, + {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, +] + +[[package]] +name = "torch" +version = "2.1.2" +description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "torch-2.1.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:3a871edd6c02dae77ad810335c0833391c1a4ce49af21ea8cf0f6a5d2096eea8"}, + {file = "torch-2.1.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:bef6996c27d8f6e92ea4e13a772d89611da0e103b48790de78131e308cf73076"}, + {file = "torch-2.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:0e13034fd5fb323cbbc29e56d0637a3791e50dd589616f40c79adfa36a5a35a1"}, + {file = "torch-2.1.2-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:d9b535cad0df3d13997dbe8bd68ac33e0e3ae5377639c9881948e40794a61403"}, + {file = "torch-2.1.2-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:f9a55d55af02826ebfbadf4e9b682f0f27766bc33df8236b48d28d705587868f"}, + {file = "torch-2.1.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:a6ebbe517097ef289cc7952783588c72de071d4b15ce0f8b285093f0916b1162"}, + {file = "torch-2.1.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:8f32ce591616a30304f37a7d5ea80b69ca9e1b94bba7f308184bf616fdaea155"}, + {file = "torch-2.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:e0ee6cf90c8970e05760f898d58f9ac65821c37ffe8b04269ec787aa70962b69"}, + {file = "torch-2.1.2-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:76d37967c31c99548ad2c4d3f2cf191db48476f2e69b35a0937137116da356a1"}, + {file = "torch-2.1.2-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:e2d83f07b4aac983453ea5bf8f9aa9dacf2278a8d31247f5d9037f37befc60e4"}, + {file = "torch-2.1.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:f41fe0c7ecbf903a568c73486139a75cfab287a0f6c17ed0698fdea7a1e8641d"}, + {file = "torch-2.1.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:e3225f47d50bb66f756fe9196a768055d1c26b02154eb1f770ce47a2578d3aa7"}, + {file = "torch-2.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:33d59cd03cb60106857f6c26b36457793637512998666ee3ce17311f217afe2b"}, + {file = "torch-2.1.2-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:8e221deccd0def6c2badff6be403e0c53491805ed9915e2c029adbcdb87ab6b5"}, + {file = "torch-2.1.2-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:05b18594f60a911a0c4f023f38a8bda77131fba5fd741bda626e97dcf5a3dd0a"}, + {file = "torch-2.1.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:9ca96253b761e9aaf8e06fb30a66ee301aecbf15bb5a303097de1969077620b6"}, + {file = "torch-2.1.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:d93ba70f67b08c2ae5598ee711cbc546a1bc8102cef938904b8c85c2089a51a0"}, + {file = "torch-2.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:255b50bc0608db177e6a3cc118961d77de7e5105f07816585fa6f191f33a9ff3"}, + {file = "torch-2.1.2-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6984cd5057c0c977b3c9757254e989d3f1124f4ce9d07caa6cb637783c71d42a"}, + {file = "torch-2.1.2-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:bc195d7927feabc0eb7c110e457c955ed2ab616f3c7c28439dd4188cf589699f"}, +] + +[package.dependencies] +filelock = "*" +fsspec = "*" +jinja2 = "*" +networkx = "*" +nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cudnn-cu12 = {version = "8.9.2.26", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nccl-cu12 = {version = "2.18.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +sympy = "*" +triton = {version = "2.1.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +typing-extensions = "*" + +[package.extras] +dynamo = ["jinja2"] +opt-einsum = ["opt-einsum (>=3.3)"] + +[[package]] +name = "torch-geometric" +version = "2.6.1" +description = "Graph Neural Network Library for PyTorch" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torch_geometric-2.6.1-py3-none-any.whl", hash = "sha256:8faeb353f9655f7dbec44c5e0b44c721773bdfb279994da96b9b8b12fd30f427"}, + {file = "torch_geometric-2.6.1.tar.gz", hash = "sha256:1f18f9d0fc4d2239d526221e4f22606a4a3895b5d965a9856d27610a3df662c6"}, +] + +[package.dependencies] +aiohttp = "*" +fsspec = "*" +jinja2 = "*" +numpy = "*" +psutil = ">=5.8.0" +pyparsing = "*" +requests = "*" +tqdm = "*" + +[package.extras] +benchmark = ["matplotlib", "networkx", "pandas", "protobuf (<4.21)", "wandb"] +dev = ["ipython", "matplotlib-inline", "pre-commit", "torch_geometric[test]"] +full = ["ase", "captum (<0.7.0)", "graphviz", "h5py", "matplotlib", "networkx", "numba (<0.60.0)", "opt_einsum", "pandas", "pgmpy", "pynndescent", "pytorch-memlab", "rdflib", "rdkit", "scikit-image", "scikit-learn", "scipy", "statsmodels", "sympy", "tabulate", "torch_geometric[graphgym,modelhub]", "torchmetrics", "trimesh"] +graphgym = ["protobuf (<4.21)", "pytorch-lightning (<2.3.0)", "yacs"] +modelhub = ["huggingface_hub"] +test = ["onnx", "onnxruntime", "pytest", "pytest-cov"] + +[[package]] +name = "torchmetrics" +version = "1.4.2" +description = "PyTorch native Metrics" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torchmetrics-1.4.2-py3-none-any.whl", hash = "sha256:87b9eca51ff6f93985a0f9db509f646cb45425b016f4d2f383d8c28d40dde5b6"}, + {file = "torchmetrics-1.4.2.tar.gz", hash = "sha256:7a40cbec85e5645090812b87601696b4adf158294ec8c407ae58a71710938b87"}, +] + +[package.dependencies] +lightning-utilities = ">=0.8.0" +numpy = ">1.20.0" +packaging = ">17.1" +torch = ">=1.10.0" +typing-extensions = {version = "*", markers = "python_version < \"3.9\""} + +[package.extras] +all = ["SciencePlots (>=2.0.0)", "gammatone (>1.0.0)", "ipadic (>=1.0.0)", "matplotlib (>=3.6.0)", "mecab-python3 (>=1.0.6)", "mypy (==1.11.2)", "nltk (>=3.8.2)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "regex (>=2021.9.24)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "torch (==2.4.1)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +audio = ["gammatone (>1.0.0)", "pesq (>=0.0.4)", "pystoi (>=0.3.0)", "torchaudio (>=0.10.0)"] +detection = ["pycocotools (>2.0.0)", "torchvision (>=0.8)"] +dev = ["SciencePlots (>=2.0.0)", "bert-score (==0.3.13)", "dython (>=0.7.6,<0.8.0)", "fairlearn", "fast-bss-eval (>=0.1.0)", "faster-coco-eval (==1.5.*)", "gammatone (>1.0.0)", "huggingface-hub (<0.25)", "ipadic (>=1.0.0)", "jiwer (>=2.3.0)", "kornia (>=0.6.7)", "lpips (<=0.1.4)", "matplotlib (>=3.6.0)", "mecab-ko (>=1.0.0)", "mecab-ko-dic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "mir-eval (>=0.6)", "monai (==1.3.2)", "mypy (==1.11.2)", "netcal (>1.0.0)", "nltk (>=3.8.2)", "numpy (<2.2.0)", "pandas (>1.4.0)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "pytorch-msssim (==1.0.0)", "regex (>=2021.9.24)", "rouge-score (>0.1.0)", "sacrebleu (>=2.3.0)", "scikit-image (>=0.19.0)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "sewar (>=0.4.4)", "statsmodels (>0.13.5)", "torch (==2.4.1)", "torch-complex (<0.5.0)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +image = ["scipy (>1.0.0)", "torch-fidelity (<=0.4.0)", "torchvision (>=0.8)"] +multimodal = ["piq (<=0.8.0)", "transformers (>=4.42.3)"] +text = ["ipadic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "nltk (>=3.8.2)", "regex (>=2021.9.24)", "sentencepiece (>=0.2.0)", "tqdm (>=4.41.0)", "transformers (>4.4.0)"] +typing = ["mypy (==1.11.2)", "torch (==2.4.1)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +visual = ["SciencePlots (>=2.0.0)", "matplotlib (>=3.6.0)"] + +[[package]] +name = "torchvision" +version = "0.16.2" +description = "image and video datasets and models for torch deep learning" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torchvision-0.16.2-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:bc86f2800cb2c0c1a09c581409cdd6bff66e62f103dc83fc63f73346264c3756"}, + {file = "torchvision-0.16.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b024bd412df6d3a007dcebf311a894eb3c5c21e1af80d12be382bbcb097a7c3a"}, + {file = "torchvision-0.16.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:e89f10f3c8351972b6e3fda95bc3e479ea8dbfc9dfcfd2c32902dbad4ba5cfc5"}, + {file = "torchvision-0.16.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:96c7583700112a410bdc4e1e4f118c429dab49c29c9a31a2cc3579bc9b08b19d"}, + {file = "torchvision-0.16.2-cp310-cp310-win_amd64.whl", hash = "sha256:9f4032ebb3277fb07ff6a9b818d50a547fb8fcd89d958cfd9e773322454bb688"}, + {file = "torchvision-0.16.2-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:67b1aaf8b8cb02ce75dd445f291a27c8036a502f8c0aa76e28c37a0faac2e153"}, + {file = "torchvision-0.16.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bef30d03e1d1c629761f4dca51d3b7d8a0dc0acce6f4068ab2a1634e8e7b64e0"}, + {file = "torchvision-0.16.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:e59cc7b2bd1ab5c0ce4ae382e4e37be8f1c174e8b5de2f6a23c170de9ae28495"}, + {file = "torchvision-0.16.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:e130b08cc9b3cc73a6c59d6edf032394a322f9579bfd21d14bc2e1d0999aa758"}, + {file = "torchvision-0.16.2-cp311-cp311-win_amd64.whl", hash = "sha256:8692ab1e48807e9604046a6f4beeb67b523294cee1b00828654bb0df2cfce2b2"}, + {file = "torchvision-0.16.2-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:b82732dcf876a37c852772342aa6ee3480c03bb3e2a802ae109fc5f7e28d26e9"}, + {file = "torchvision-0.16.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4b065143d1a720fe8a9077fd4be35d491f98819ec80b3dbbc3ec64d0b707a906"}, + {file = "torchvision-0.16.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:bc5f274e4ecd1b86062063cdf4fd385a1d39d147a3a2685fbbde9ff08bb720b8"}, + {file = "torchvision-0.16.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:335959c43b371c0474af34c1ef2a52efdc7603c45700d29e4475eeb02984170c"}, + {file = "torchvision-0.16.2-cp38-cp38-win_amd64.whl", hash = "sha256:7fd22d86e08eba321af70cad291020c2cdeac069b00ce88b923ca52e06174769"}, + {file = "torchvision-0.16.2-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:56115268b37f0b75364e3654e47ad9abc66ac34c1f9e5e3dfa89a22d6a40017a"}, + {file = "torchvision-0.16.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:82805f8445b094f9d1e770390ee6cc86855e89955e08ce34af2e2274fc0e5c45"}, + {file = "torchvision-0.16.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:3f4bd5fcbc361476e2e78016636ac7d5509e59d9962521f06eb98e6803898182"}, + {file = "torchvision-0.16.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:8199acdf8ab066a28b84a5b6f4d97b58976d9e164b1acc3a9d14fccfaf74bb3a"}, + {file = "torchvision-0.16.2-cp39-cp39-win_amd64.whl", hash = "sha256:41dd4fa9f176d563fe9f1b9adef3b7e582cdfb60ce8c9bc51b094a025be687c9"}, +] + +[package.dependencies] +numpy = "*" +pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" +requests = "*" +torch = "2.1.2" + +[package.extras] +scipy = ["scipy"] + +[[package]] +name = "tornado" +version = "6.4.1" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">=3.8" +files = [ + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8"}, + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698"}, + {file = "tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d"}, + {file = "tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7"}, + {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"}, +] + +[[package]] +name = "tqdm" +version = "4.66.5" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, + {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + +[[package]] +name = "traitlets" +version = "5.14.3" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +files = [ + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "triton" +version = "2.1.0" +description = "A language and compiler for custom Deep Learning operations" +optional = false +python-versions = "*" +files = [ + {file = "triton-2.1.0-0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:66439923a30d5d48399b08a9eae10370f6c261a5ec864a64983bae63152d39d7"}, + {file = "triton-2.1.0-0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:919b06453f0033ea52c13eaf7833de0e57db3178d23d4e04f9fc71c4f2c32bf8"}, + {file = "triton-2.1.0-0-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ae4bb8a91de790e1866405211c4d618379781188f40d5c4c399766914e84cd94"}, + {file = "triton-2.1.0-0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:39f6fb6bdccb3e98f3152e3fbea724f1aeae7d749412bbb1fa9c441d474eba26"}, + {file = "triton-2.1.0-0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:21544e522c02005a626c8ad63d39bdff2f31d41069592919ef281e964ed26446"}, + {file = "triton-2.1.0-0-pp37-pypy37_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:143582ca31dd89cd982bd3bf53666bab1c7527d41e185f9e3d8a3051ce1b663b"}, + {file = "triton-2.1.0-0-pp38-pypy38_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:82fc5aeeedf6e36be4e4530cbdcba81a09d65c18e02f52dc298696d45721f3bd"}, + {file = "triton-2.1.0-0-pp39-pypy39_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:81a96d110a738ff63339fc892ded095b31bd0d205e3aace262af8400d40b6fa8"}, +] + +[package.dependencies] +filelock = "*" + +[package.extras] +build = ["cmake (>=3.18)", "lit"] +tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)"] +tutorials = ["matplotlib", "pandas", "tabulate"] + +[[package]] +name = "typing-extensions" +version = "4.12.2" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, +] + +[[package]] +name = "tzdata" +version = "2024.2" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"}, + {file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"}, +] + +[[package]] +name = "urllib3" +version = "2.2.3" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=3.8" +files = [ + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, +] + +[package.extras] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +h2 = ["h2 (>=4,<5)"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "wcwidth" +version = "0.2.13" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +files = [ + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, +] + +[[package]] +name = "werkzeug" +version = "3.0.4" +description = "The comprehensive WSGI web application library." +optional = false +python-versions = ">=3.8" +files = [ + {file = "werkzeug-3.0.4-py3-none-any.whl", hash = "sha256:02c9eb92b7d6c06f31a782811505d2157837cea66aaede3e217c7c27c039476c"}, + {file = "werkzeug-3.0.4.tar.gz", hash = "sha256:34f2371506b250df4d4f84bfe7b0921e4762525762bbd936614909fe25cd7306"}, +] + +[package.dependencies] +MarkupSafe = ">=2.1.1" + +[package.extras] +watchdog = ["watchdog (>=2.3)"] + +[[package]] +name = "wheel" +version = "0.44.0" +description = "A built-package format for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "wheel-0.44.0-py3-none-any.whl", hash = "sha256:2376a90c98cc337d18623527a97c31797bd02bad0033d41547043a1cbfbe448f"}, + {file = "wheel-0.44.0.tar.gz", hash = "sha256:a29c3f2817e95ab89aa4660681ad547c0e9547f20e75b0562fe7723c9a2a9d49"}, +] + +[package.extras] +test = ["pytest (>=6.0.0)", "setuptools (>=65)"] + +[[package]] +name = "wrapt" +version = "1.16.0" +description = "Module for decorators, wrappers and monkey patching." +optional = false +python-versions = ">=3.6" +files = [ + {file = "wrapt-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ffa565331890b90056c01db69c0fe634a776f8019c143a5ae265f9c6bc4bd6d4"}, + {file = "wrapt-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e4fdb9275308292e880dcbeb12546df7f3e0f96c6b41197e0cf37d2826359020"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb2dee3874a500de01c93d5c71415fcaef1d858370d405824783e7a8ef5db440"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a88e6010048489cda82b1326889ec075a8c856c2e6a256072b28eaee3ccf487"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac83a914ebaf589b69f7d0a1277602ff494e21f4c2f743313414378f8f50a4cf"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:73aa7d98215d39b8455f103de64391cb79dfcad601701a3aa0dddacf74911d72"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:807cc8543a477ab7422f1120a217054f958a66ef7314f76dd9e77d3f02cdccd0"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bf5703fdeb350e36885f2875d853ce13172ae281c56e509f4e6eca049bdfb136"}, + {file = "wrapt-1.16.0-cp310-cp310-win32.whl", hash = "sha256:f6b2d0c6703c988d334f297aa5df18c45e97b0af3679bb75059e0e0bd8b1069d"}, + {file = "wrapt-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:decbfa2f618fa8ed81c95ee18a387ff973143c656ef800c9f24fb7e9c16054e2"}, + {file = "wrapt-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1a5db485fe2de4403f13fafdc231b0dbae5eca4359232d2efc79025527375b09"}, + {file = "wrapt-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75ea7d0ee2a15733684badb16de6794894ed9c55aa5e9903260922f0482e687d"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a452f9ca3e3267cd4d0fcf2edd0d035b1934ac2bd7e0e57ac91ad6b95c0c6389"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:43aa59eadec7890d9958748db829df269f0368521ba6dc68cc172d5d03ed8060"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72554a23c78a8e7aa02abbd699d129eead8b147a23c56e08d08dfc29cfdddca1"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d2efee35b4b0a347e0d99d28e884dfd82797852d62fcd7ebdeee26f3ceb72cf3"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6dcfcffe73710be01d90cae08c3e548d90932d37b39ef83969ae135d36ef3956"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:eb6e651000a19c96f452c85132811d25e9264d836951022d6e81df2fff38337d"}, + {file = "wrapt-1.16.0-cp311-cp311-win32.whl", hash = "sha256:66027d667efe95cc4fa945af59f92c5a02c6f5bb6012bff9e60542c74c75c362"}, + {file = "wrapt-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:aefbc4cb0a54f91af643660a0a150ce2c090d3652cf4052a5397fb2de549cd89"}, + {file = "wrapt-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5eb404d89131ec9b4f748fa5cfb5346802e5ee8836f57d516576e61f304f3b7b"}, + {file = "wrapt-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9090c9e676d5236a6948330e83cb89969f433b1943a558968f659ead07cb3b36"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94265b00870aa407bd0cbcfd536f17ecde43b94fb8d228560a1e9d3041462d73"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2058f813d4f2b5e3a9eb2eb3faf8f1d99b81c3e51aeda4b168406443e8ba809"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98b5e1f498a8ca1858a1cdbffb023bfd954da4e3fa2c0cb5853d40014557248b"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:14d7dc606219cdd7405133c713f2c218d4252f2a469003f8c46bb92d5d095d81"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:49aac49dc4782cb04f58986e81ea0b4768e4ff197b57324dcbd7699c5dfb40b9"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:418abb18146475c310d7a6dc71143d6f7adec5b004ac9ce08dc7a34e2babdc5c"}, + {file = "wrapt-1.16.0-cp312-cp312-win32.whl", hash = "sha256:685f568fa5e627e93f3b52fda002c7ed2fa1800b50ce51f6ed1d572d8ab3e7fc"}, + {file = "wrapt-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:dcdba5c86e368442528f7060039eda390cc4091bfd1dca41e8046af7c910dda8"}, + {file = "wrapt-1.16.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:d462f28826f4657968ae51d2181a074dfe03c200d6131690b7d65d55b0f360f8"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a33a747400b94b6d6b8a165e4480264a64a78c8a4c734b62136062e9a248dd39"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b3646eefa23daeba62643a58aac816945cadc0afaf21800a1421eeba5f6cfb9c"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ebf019be5c09d400cf7b024aa52b1f3aeebeff51550d007e92c3c1c4afc2a40"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:0d2691979e93d06a95a26257adb7bfd0c93818e89b1406f5a28f36e0d8c1e1fc"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:1acd723ee2a8826f3d53910255643e33673e1d11db84ce5880675954183ec47e"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:bc57efac2da352a51cc4658878a68d2b1b67dbe9d33c36cb826ca449d80a8465"}, + {file = "wrapt-1.16.0-cp36-cp36m-win32.whl", hash = "sha256:da4813f751142436b075ed7aa012a8778aa43a99f7b36afe9b742d3ed8bdc95e"}, + {file = "wrapt-1.16.0-cp36-cp36m-win_amd64.whl", hash = "sha256:6f6eac2360f2d543cc875a0e5efd413b6cbd483cb3ad7ebf888884a6e0d2e966"}, + {file = "wrapt-1.16.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a0ea261ce52b5952bf669684a251a66df239ec6d441ccb59ec7afa882265d593"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bd2d7ff69a2cac767fbf7a2b206add2e9a210e57947dd7ce03e25d03d2de292"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9159485323798c8dc530a224bd3ffcf76659319ccc7bbd52e01e73bd0241a0c5"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a86373cf37cd7764f2201b76496aba58a52e76dedfaa698ef9e9688bfd9e41cf"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:73870c364c11f03ed072dda68ff7aea6d2a3a5c3fe250d917a429c7432e15228"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b935ae30c6e7400022b50f8d359c03ed233d45b725cfdd299462f41ee5ffba6f"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:db98ad84a55eb09b3c32a96c576476777e87c520a34e2519d3e59c44710c002c"}, + {file = "wrapt-1.16.0-cp37-cp37m-win32.whl", hash = "sha256:9153ed35fc5e4fa3b2fe97bddaa7cbec0ed22412b85bcdaf54aeba92ea37428c"}, + {file = "wrapt-1.16.0-cp37-cp37m-win_amd64.whl", hash = "sha256:66dfbaa7cfa3eb707bbfcd46dab2bc6207b005cbc9caa2199bcbc81d95071a00"}, + {file = "wrapt-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1dd50a2696ff89f57bd8847647a1c363b687d3d796dc30d4dd4a9d1689a706f0"}, + {file = "wrapt-1.16.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:44a2754372e32ab315734c6c73b24351d06e77ffff6ae27d2ecf14cf3d229202"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e9723528b9f787dc59168369e42ae1c3b0d3fadb2f1a71de14531d321ee05b0"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbed418ba5c3dce92619656802cc5355cb679e58d0d89b50f116e4a9d5a9603e"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:941988b89b4fd6b41c3f0bfb20e92bd23746579736b7343283297c4c8cbae68f"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6a42cd0cfa8ffc1915aef79cb4284f6383d8a3e9dcca70c445dcfdd639d51267"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1ca9b6085e4f866bd584fb135a041bfc32cab916e69f714a7d1d397f8c4891ca"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d5e49454f19ef621089e204f862388d29e6e8d8b162efce05208913dde5b9ad6"}, + {file = "wrapt-1.16.0-cp38-cp38-win32.whl", hash = "sha256:c31f72b1b6624c9d863fc095da460802f43a7c6868c5dda140f51da24fd47d7b"}, + {file = "wrapt-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:490b0ee15c1a55be9c1bd8609b8cecd60e325f0575fc98f50058eae366e01f41"}, + {file = "wrapt-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9b201ae332c3637a42f02d1045e1d0cccfdc41f1f2f801dafbaa7e9b4797bfc2"}, + {file = "wrapt-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2076fad65c6736184e77d7d4729b63a6d1ae0b70da4868adeec40989858eb3fb"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5cd603b575ebceca7da5a3a251e69561bec509e0b46e4993e1cac402b7247b8"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b47cfad9e9bbbed2339081f4e346c93ecd7ab504299403320bf85f7f85c7d46c"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8212564d49c50eb4565e502814f694e240c55551a5f1bc841d4fcaabb0a9b8a"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5f15814a33e42b04e3de432e573aa557f9f0f56458745c2074952f564c50e664"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db2e408d983b0e61e238cf579c09ef7020560441906ca990fe8412153e3b291f"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:edfad1d29c73f9b863ebe7082ae9321374ccb10879eeabc84ba3b69f2579d537"}, + {file = "wrapt-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed867c42c268f876097248e05b6117a65bcd1e63b779e916fe2e33cd6fd0d3c3"}, + {file = "wrapt-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:eb1b046be06b0fce7249f1d025cd359b4b80fc1c3e24ad9eca33e0dcdb2e4a35"}, + {file = "wrapt-1.16.0-py3-none-any.whl", hash = "sha256:6906c4100a8fcbf2fa735f6059214bb13b97f75b1a61777fcf6432121ef12ef1"}, + {file = "wrapt-1.16.0.tar.gz", hash = "sha256:5f370f952971e7d17c7d1ead40e49f32345a7f7a5373571ef44d800d06b1899d"}, +] + +[[package]] +name = "yarl" +version = "1.13.1" +description = "Yet another URL library" +optional = false +python-versions = ">=3.8" +files = [ + {file = "yarl-1.13.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:82e692fb325013a18a5b73a4fed5a1edaa7c58144dc67ad9ef3d604eccd451ad"}, + {file = "yarl-1.13.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df4e82e68f43a07735ae70a2d84c0353e58e20add20ec0af611f32cd5ba43fb4"}, + {file = "yarl-1.13.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ec9dd328016d8d25702a24ee274932aebf6be9787ed1c28d021945d264235b3c"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5820bd4178e6a639b3ef1db8b18500a82ceab6d8b89309e121a6859f56585b05"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86c438ce920e089c8c2388c7dcc8ab30dfe13c09b8af3d306bcabb46a053d6f7"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3de86547c820e4f4da4606d1c8ab5765dd633189791f15247706a2eeabc783ae"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ca53632007c69ddcdefe1e8cbc3920dd88825e618153795b57e6ebcc92e752a"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d4ee1d240b84e2f213565f0ec08caef27a0e657d4c42859809155cf3a29d1735"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c49f3e379177f4477f929097f7ed4b0622a586b0aa40c07ac8c0f8e40659a1ac"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:5c5e32fef09ce101fe14acd0f498232b5710effe13abac14cd95de9c274e689e"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:ab9524e45ee809a083338a749af3b53cc7efec458c3ad084361c1dbf7aaf82a2"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:b1481c048fe787f65e34cb06f7d6824376d5d99f1231eae4778bbe5c3831076d"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:31497aefd68036d8e31bfbacef915826ca2e741dbb97a8d6c7eac66deda3b606"}, + {file = "yarl-1.13.1-cp310-cp310-win32.whl", hash = "sha256:1fa56f34b2236f5192cb5fceba7bbb09620e5337e0b6dfe2ea0ddbd19dd5b154"}, + {file = "yarl-1.13.1-cp310-cp310-win_amd64.whl", hash = "sha256:1bbb418f46c7f7355084833051701b2301092e4611d9e392360c3ba2e3e69f88"}, + {file = "yarl-1.13.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:216a6785f296169ed52cd7dcdc2612f82c20f8c9634bf7446327f50398732a51"}, + {file = "yarl-1.13.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:40c6e73c03a6befb85b72da213638b8aaa80fe4136ec8691560cf98b11b8ae6e"}, + {file = "yarl-1.13.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2430cf996113abe5aee387d39ee19529327205cda975d2b82c0e7e96e5fdabdc"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fb4134cc6e005b99fa29dbc86f1ea0a298440ab6b07c6b3ee09232a3b48f495"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:309c104ecf67626c033845b860d31594a41343766a46fa58c3309c538a1e22b2"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f90575e9fe3aae2c1e686393a9689c724cd00045275407f71771ae5d690ccf38"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d2e1626be8712333a9f71270366f4a132f476ffbe83b689dd6dc0d114796c74"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5b66c87da3c6da8f8e8b648878903ca54589038a0b1e08dde2c86d9cd92d4ac9"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:cf1ad338620249f8dd6d4b6a91a69d1f265387df3697ad5dc996305cf6c26fb2"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:9915300fe5a0aa663c01363db37e4ae8e7c15996ebe2c6cce995e7033ff6457f"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:703b0f584fcf157ef87816a3c0ff868e8c9f3c370009a8b23b56255885528f10"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:1d8e3ca29f643dd121f264a7c89f329f0fcb2e4461833f02de6e39fef80f89da"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:7055bbade838d68af73aea13f8c86588e4bcc00c2235b4b6d6edb0dbd174e246"}, + {file = "yarl-1.13.1-cp311-cp311-win32.whl", hash = "sha256:a3442c31c11088e462d44a644a454d48110f0588de830921fd201060ff19612a"}, + {file = "yarl-1.13.1-cp311-cp311-win_amd64.whl", hash = "sha256:81bad32c8f8b5897c909bf3468bf601f1b855d12f53b6af0271963ee67fff0d2"}, + {file = "yarl-1.13.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:f452cc1436151387d3d50533523291d5f77c6bc7913c116eb985304abdbd9ec9"}, + {file = "yarl-1.13.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:9cec42a20eae8bebf81e9ce23fb0d0c729fc54cf00643eb251ce7c0215ad49fe"}, + {file = "yarl-1.13.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d959fe96e5c2712c1876d69af0507d98f0b0e8d81bee14cfb3f6737470205419"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b8c837ab90c455f3ea8e68bee143472ee87828bff19ba19776e16ff961425b57"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:94a993f976cdcb2dc1b855d8b89b792893220db8862d1a619efa7451817c836b"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2b2442a415a5f4c55ced0fade7b72123210d579f7d950e0b5527fc598866e62c"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3fdbf0418489525231723cdb6c79e7738b3cbacbaed2b750cb033e4ea208f220"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b7f6e699304717fdc265a7e1922561b02a93ceffdaefdc877acaf9b9f3080b8"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:bcd5bf4132e6a8d3eb54b8d56885f3d3a38ecd7ecae8426ecf7d9673b270de43"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:2a93a4557f7fc74a38ca5a404abb443a242217b91cd0c4840b1ebedaad8919d4"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:22b739f99c7e4787922903f27a892744189482125cc7b95b747f04dd5c83aa9f"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:2db874dd1d22d4c2c657807562411ffdfabec38ce4c5ce48b4c654be552759dc"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4feaaa4742517eaceafcbe74595ed335a494c84634d33961214b278126ec1485"}, + {file = "yarl-1.13.1-cp312-cp312-win32.whl", hash = "sha256:bbf9c2a589be7414ac4a534d54e4517d03f1cbb142c0041191b729c2fa23f320"}, + {file = "yarl-1.13.1-cp312-cp312-win_amd64.whl", hash = "sha256:d07b52c8c450f9366c34aa205754355e933922c79135125541daae6cbf31c799"}, + {file = "yarl-1.13.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:95c6737f28069153c399d875317f226bbdea939fd48a6349a3b03da6829fb550"}, + {file = "yarl-1.13.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:cd66152561632ed4b2a9192e7f8e5a1d41e28f58120b4761622e0355f0fe034c"}, + {file = "yarl-1.13.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6a2acde25be0cf9be23a8f6cbd31734536a264723fca860af3ae5e89d771cd71"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a18595e6a2ee0826bf7dfdee823b6ab55c9b70e8f80f8b77c37e694288f5de1"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a31d21089894942f7d9a8df166b495101b7258ff11ae0abec58e32daf8088813"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:45f209fb4bbfe8630e3d2e2052535ca5b53d4ce2d2026bed4d0637b0416830da"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f722f30366474a99745533cc4015b1781ee54b08de73260b2bbe13316079851"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3bf60444269345d712838bb11cc4eadaf51ff1a364ae39ce87a5ca8ad3bb2c8"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:942c80a832a79c3707cca46bd12ab8aa58fddb34b1626d42b05aa8f0bcefc206"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:44b07e1690f010c3c01d353b5790ec73b2f59b4eae5b0000593199766b3f7a5c"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:396e59b8de7e4d59ff5507fb4322d2329865b909f29a7ed7ca37e63ade7f835c"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:3bb83a0f12701c0b91112a11148b5217617982e1e466069d0555be9b372f2734"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:c92b89bffc660f1274779cb6fbb290ec1f90d6dfe14492523a0667f10170de26"}, + {file = "yarl-1.13.1-cp313-cp313-win32.whl", hash = "sha256:269c201bbc01d2cbba5b86997a1e0f73ba5e2f471cfa6e226bcaa7fd664b598d"}, + {file = "yarl-1.13.1-cp313-cp313-win_amd64.whl", hash = "sha256:1d0828e17fa701b557c6eaed5edbd9098eb62d8838344486248489ff233998b8"}, + {file = "yarl-1.13.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8be8cdfe20787e6a5fcbd010f8066227e2bb9058331a4eccddec6c0db2bb85b2"}, + {file = "yarl-1.13.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:08d7148ff11cb8e886d86dadbfd2e466a76d5dd38c7ea8ebd9b0e07946e76e4b"}, + {file = "yarl-1.13.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4afdf84610ca44dcffe8b6c22c68f309aff96be55f5ea2fa31c0c225d6b83e23"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0d12fe78dcf60efa205e9a63f395b5d343e801cf31e5e1dda0d2c1fb618073d"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:298c1eecfd3257aa16c0cb0bdffb54411e3e831351cd69e6b0739be16b1bdaa8"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c14c16831b565707149c742d87a6203eb5597f4329278446d5c0ae7a1a43928e"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a9bacedbb99685a75ad033fd4de37129449e69808e50e08034034c0bf063f99"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:658e8449b84b92a4373f99305de042b6bd0d19bf2080c093881e0516557474a5"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:373f16f38721c680316a6a00ae21cc178e3a8ef43c0227f88356a24c5193abd6"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:45d23c4668d4925688e2ea251b53f36a498e9ea860913ce43b52d9605d3d8177"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:f7917697bcaa3bc3e83db91aa3a0e448bf5cde43c84b7fc1ae2427d2417c0224"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:5989a38ba1281e43e4663931a53fbf356f78a0325251fd6af09dd03b1d676a09"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:11b3ca8b42a024513adce810385fcabdd682772411d95bbbda3b9ed1a4257644"}, + {file = "yarl-1.13.1-cp38-cp38-win32.whl", hash = "sha256:dcaef817e13eafa547cdfdc5284fe77970b891f731266545aae08d6cce52161e"}, + {file = "yarl-1.13.1-cp38-cp38-win_amd64.whl", hash = "sha256:7addd26594e588503bdef03908fc207206adac5bd90b6d4bc3e3cf33a829f57d"}, + {file = "yarl-1.13.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a0ae6637b173d0c40b9c1462e12a7a2000a71a3258fa88756a34c7d38926911c"}, + {file = "yarl-1.13.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:576365c9f7469e1f6124d67b001639b77113cfd05e85ce0310f5f318fd02fe85"}, + {file = "yarl-1.13.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:78f271722423b2d4851cf1f4fa1a1c4833a128d020062721ba35e1a87154a049"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d74f3c335cfe9c21ea78988e67f18eb9822f5d31f88b41aec3a1ec5ecd32da5"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1891d69a6ba16e89473909665cd355d783a8a31bc84720902c5911dbb6373465"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fb382fd7b4377363cc9f13ba7c819c3c78ed97c36a82f16f3f92f108c787cbbf"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c8854b9f80693d20cec797d8e48a848c2fb273eb6f2587b57763ccba3f3bd4b"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bbf2c3f04ff50f16404ce70f822cdc59760e5e2d7965905f0e700270feb2bbfc"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:fb9f59f3848edf186a76446eb8bcf4c900fe147cb756fbbd730ef43b2e67c6a7"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ef9b85fa1bc91c4db24407e7c4da93a5822a73dd4513d67b454ca7064e8dc6a3"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:098b870c18f1341786f290b4d699504e18f1cd050ed179af8123fd8232513424"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:8c723c91c94a3bc8033dd2696a0f53e5d5f8496186013167bddc3fb5d9df46a3"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:44a4c40a6f84e4d5955b63462a0e2a988f8982fba245cf885ce3be7618f6aa7d"}, + {file = "yarl-1.13.1-cp39-cp39-win32.whl", hash = "sha256:84bbcdcf393139f0abc9f642bf03f00cac31010f3034faa03224a9ef0bb74323"}, + {file = "yarl-1.13.1-cp39-cp39-win_amd64.whl", hash = "sha256:fc2931ac9ce9c61c9968989ec831d3a5e6fcaaff9474e7cfa8de80b7aff5a093"}, + {file = "yarl-1.13.1-py3-none-any.whl", hash = "sha256:6a5185ad722ab4dd52d5fb1f30dcc73282eb1ed494906a92d1a228d3f89607b0"}, + {file = "yarl-1.13.1.tar.gz", hash = "sha256:ec8cfe2295f3e5e44c51f57272afbd69414ae629ec7c6b27f5a410efc78b70a0"}, +] + +[package.dependencies] +idna = ">=2.0" +multidict = ">=4.0" + +[[package]] +name = "zipp" +version = "3.20.2" +description = "Backport of pathlib-compatible object wrapper for zip files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, + {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, +] + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-ignore-flaky"] +type = ["pytest-mypy"] + +[metadata] +lock-version = "2.0" +python-versions = "~3.8" +content-hash = "96067e895d3606373b258e77ec97a4a18d7269ec92ebd9bc00c244ff19239192" diff --git a/ChapterNN/pyproject.toml b/ChapterNN/pyproject.toml new file mode 100644 index 0000000..ff6ee97 --- /dev/null +++ b/ChapterNN/pyproject.toml @@ -0,0 +1,27 @@ +[tool.poetry] +name = "Graph Machine Learning - Chapter NN" +version = "1.0.0" +description = "" +authors = ["Enrico Deusebio "] +packages = [] + +[tool.setuptools] +py-modules = [] + +[tool.poetry.dependencies] +python = "~3.8" +ipykernel = ">=6.0.0" +matplotlib = "==3.2.2" +tensorflow = "^2.6.0" +tensorflow-io-gcs-filesystem = "==0.21.0" # This needs pinning - see https://stackoverflow.com/a/76477590 +stellargraph= "^1.2.1" +protobuf= "^3.20" +torch = "^2.1.0" +chardet = "==5.2.0" +torch_geometric = "^2.5.2" +torchvision = "^0.16.0" +torchmetrics="^1.3.0" + +[build-system] +requires = ["poetry-core"] +build-backend = "poetry.core.masonry.api" diff --git a/ChapterNN/requirements.txt b/ChapterNN/requirements.txt new file mode 100644 index 0000000..15027ec --- /dev/null +++ b/ChapterNN/requirements.txt @@ -0,0 +1,125 @@ +absl-py==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +aiohappyeyeballs==2.4.3 ; python_version >= "3.8" and python_version < "3.9" +aiohttp==3.10.8 ; python_version >= "3.8" and python_version < "3.9" +aiosignal==1.3.1 ; python_version >= "3.8" and python_version < "3.9" +appnope==0.1.4 ; python_version >= "3.8" and python_version < "3.9" and (platform_system == "Darwin" or sys_platform == "darwin") +asttokens==2.4.1 ; python_version >= "3.8" and python_version < "3.9" +astunparse==1.6.3 ; python_version >= "3.8" and python_version < "3.9" +async-timeout==4.0.3 ; python_version >= "3.8" and python_version < "3.9" +attrs==24.2.0 ; python_version >= "3.8" and python_version < "3.9" +backcall==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +cachetools==5.5.0 ; python_version >= "3.8" and python_version < "3.9" +certifi==2024.8.30 ; python_version >= "3.8" and python_version < "3.9" +cffi==1.17.1 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +chardet==5.2.0 ; python_version >= "3.8" and python_version < "3.9" +charset-normalizer==3.3.2 ; python_version >= "3.8" and python_version < "3.9" +colorama==0.4.6 ; python_version >= "3.8" and python_version < "3.9" and (sys_platform == "win32" or platform_system == "Windows") +comm==0.2.2 ; python_version >= "3.8" and python_version < "3.9" +cycler==0.12.1 ; python_version >= "3.8" and python_version < "3.9" +debugpy==1.8.6 ; python_version >= "3.8" and python_version < "3.9" +decorator==5.1.1 ; python_version >= "3.8" and python_version < "3.9" +executing==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +filelock==3.16.1 ; python_version >= "3.8" and python_version < "3.9" +flatbuffers==2.0.7 ; python_version >= "3.8" and python_version < "3.9" +frozenlist==1.4.1 ; python_version >= "3.8" and python_version < "3.9" +fsspec==2024.9.0 ; python_version >= "3.8" and python_version < "3.9" +gast==0.4.0 ; python_version >= "3.8" and python_version < "3.9" +gensim==4.3.3 ; python_version >= "3.8" and python_version < "3.9" +google-auth-oauthlib==1.0.0 ; python_version >= "3.8" and python_version < "3.9" +google-auth==2.35.0 ; python_version >= "3.8" and python_version < "3.9" +google-pasta==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +grpcio==1.66.2 ; python_version >= "3.8" and python_version < "3.9" +h5py==3.11.0 ; python_version >= "3.8" and python_version < "3.9" +idna==3.10 ; python_version >= "3.8" and python_version < "3.9" +importlib-metadata==8.5.0 ; python_version >= "3.8" and python_version < "3.9" +ipykernel==6.29.5 ; python_version >= "3.8" and python_version < "3.9" +ipython==8.12.3 ; python_version >= "3.8" and python_version < "3.9" +jedi==0.19.1 ; python_version >= "3.8" and python_version < "3.9" +jinja2==3.1.4 ; python_version >= "3.8" and python_version < "3.9" +joblib==1.4.2 ; python_version >= "3.8" and python_version < "3.9" +jupyter-client==8.6.3 ; python_version >= "3.8" and python_version < "3.9" +jupyter-core==5.7.2 ; python_version >= "3.8" and python_version < "3.9" +keras-preprocessing==1.1.2 ; python_version >= "3.8" and python_version < "3.9" +keras==2.7.0 ; python_version >= "3.8" and python_version < "3.9" +kiwisolver==1.4.7 ; python_version >= "3.8" and python_version < "3.9" +libclang==18.1.1 ; python_version >= "3.8" and python_version < "3.9" +lightning-utilities==0.11.7 ; python_version >= "3.8" and python_version < "3.9" +markdown==3.7 ; python_version >= "3.8" and python_version < "3.9" +markupsafe==2.1.5 ; python_version >= "3.8" and python_version < "3.9" +matplotlib-inline==0.1.7 ; python_version >= "3.8" and python_version < "3.9" +matplotlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" +mpmath==1.3.0 ; python_version >= "3.8" and python_version < "3.9" +multidict==6.1.0 ; python_version >= "3.8" and python_version < "3.9" +nest-asyncio==1.6.0 ; python_version >= "3.8" and python_version < "3.9" +networkx==3.1 ; python_version >= "3.8" and python_version < "3.9" +numpy==1.24.4 ; python_version >= "3.8" and python_version < "3.9" +nvidia-cublas-cu12==12.1.3.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-cupti-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-nvrtc-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-runtime-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cudnn-cu12==8.9.2.26 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cufft-cu12==11.0.2.54 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-curand-cu12==10.3.2.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cusolver-cu12==11.4.5.107 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cusparse-cu12==12.1.0.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nccl-cu12==2.18.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nvjitlink-cu12==12.6.77 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nvtx-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +oauthlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" +opt-einsum==3.4.0 ; python_version >= "3.8" and python_version < "3.9" +packaging==24.1 ; python_version >= "3.8" and python_version < "3.9" +pandas==2.0.3 ; python_version >= "3.8" and python_version < "3.9" +parso==0.8.4 ; python_version >= "3.8" and python_version < "3.9" +pexpect==4.9.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" +pickleshare==0.7.5 ; python_version >= "3.8" and python_version < "3.9" +pillow==10.4.0 ; python_version >= "3.8" and python_version < "3.9" +platformdirs==4.3.6 ; python_version >= "3.8" and python_version < "3.9" +prompt-toolkit==3.0.48 ; python_version >= "3.8" and python_version < "3.9" +protobuf==3.20.3 ; python_version >= "3.8" and python_version < "3.9" +psutil==6.0.0 ; python_version >= "3.8" and python_version < "3.9" +ptyprocess==0.7.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" +pure-eval==0.2.3 ; python_version >= "3.8" and python_version < "3.9" +pyasn1-modules==0.4.1 ; python_version >= "3.8" and python_version < "3.9" +pyasn1==0.6.1 ; python_version >= "3.8" and python_version < "3.9" +pycparser==2.22 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +pygments==2.18.0 ; python_version >= "3.8" and python_version < "3.9" +pyparsing==3.1.4 ; python_version >= "3.8" and python_version < "3.9" +python-dateutil==2.9.0.post0 ; python_version >= "3.8" and python_version < "3.9" +pytz==2024.2 ; python_version >= "3.8" and python_version < "3.9" +pywin32==306 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" +pyzmq==26.2.0 ; python_version >= "3.8" and python_version < "3.9" +requests-oauthlib==2.0.0 ; python_version >= "3.8" and python_version < "3.9" +requests==2.32.3 ; python_version >= "3.8" and python_version < "3.9" +rsa==4.9 ; python_version >= "3.8" and python_version < "3.9" +scikit-learn==1.3.2 ; python_version >= "3.8" and python_version < "3.9" +scipy==1.10.1 ; python_version >= "3.8" and python_version < "3.9" +setuptools==75.1.0 ; python_version >= "3.8" and python_version < "3.9" +six==1.16.0 ; python_version >= "3.8" and python_version < "3.9" +smart-open==7.0.4 ; python_version >= "3.8" and python_version < "3.9" +stack-data==0.6.3 ; python_version >= "3.8" and python_version < "3.9" +stellargraph==1.2.1 ; python_version >= "3.8" and python_version < "3.9" +sympy==1.13.3 ; python_version >= "3.8" and python_version < "3.9" +tensorboard-data-server==0.7.2 ; python_version >= "3.8" and python_version < "3.9" +tensorboard==2.14.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow-estimator==2.7.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow-io-gcs-filesystem==0.21.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow==2.7.2 ; python_version >= "3.8" and python_version < "3.9" +termcolor==2.4.0 ; python_version >= "3.8" and python_version < "3.9" +threadpoolctl==3.5.0 ; python_version >= "3.8" and python_version < "3.9" +torch-geometric==2.6.1 ; python_version >= "3.8" and python_version < "3.9" +torch==2.1.2 ; python_version >= "3.8" and python_version < "3.9" +torchmetrics==1.4.2 ; python_version >= "3.8" and python_version < "3.9" +torchvision==0.16.2 ; python_version >= "3.8" and python_version < "3.9" +tornado==6.4.1 ; python_version >= "3.8" and python_version < "3.9" +tqdm==4.66.5 ; python_version >= "3.8" and python_version < "3.9" +traitlets==5.14.3 ; python_version >= "3.8" and python_version < "3.9" +triton==2.1.0 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +typing-extensions==4.12.2 ; python_version >= "3.8" and python_version < "3.9" +tzdata==2024.2 ; python_version >= "3.8" and python_version < "3.9" +urllib3==2.2.3 ; python_version >= "3.8" and python_version < "3.9" +wcwidth==0.2.13 ; python_version >= "3.8" and python_version < "3.9" +werkzeug==3.0.4 ; python_version >= "3.8" and python_version < "3.9" +wheel==0.44.0 ; python_version >= "3.8" and python_version < "3.9" +wrapt==1.16.0 ; python_version >= "3.8" and python_version < "3.9" +yarl==1.13.1 ; python_version >= "3.8" and python_version < "3.9" +zipp==3.20.2 ; python_version >= "3.8" and python_version < "3.9" diff --git a/docker/Dockerfile b/docker/Dockerfile index c39533c..d4e495a 100644 --- a/docker/Dockerfile +++ b/docker/Dockerfile @@ -1,7 +1,7 @@ FROM jupyter/scipy-notebook as base ARG user=euler -ARG branch=chap6 +ARG branch=main USER root @@ -49,6 +49,12 @@ RUN conda create -n chap5 python=3.8 RUN conda run -n chap5 pip install -r Chapter05/requirements.txt RUN conda run -n chap5 python -m ipykernel install --name chap5 --user +FROM base as chap-nn +RUN ls -d -1 */ | grep -v -e ChapterNN | xargs rm -rf +RUN conda create -n chap-nn python=3.8 +RUN conda run -n chap-nn pip install -r ChapterNN/requirements.txt +RUN conda run -n chap-nn python -m ipykernel install --name chap-nn --user + FROM base as chap6 RUN ls -d -1 */ | grep -v -e Chapter06 | xargs rm -rf RUN conda create -n chap6 python=3.8 From 5ab62e52620dd909335390ea6b852a4a9b376222 Mon Sep 17 00:00:00 2001 From: deusebio Date: Fri, 11 Oct 2024 16:15:42 +0200 Subject: [PATCH 13/31] [2nd Edition][Chapter 4] Introduce Poetry (#8) --------- Co-authored-by: MARZULLO Aldo ICH --- .github/workflows/ci.yaml | 2 + Chapter04/01_Feature_based_methods.ipynb | 10 +- Chapter04/02_Shallow_embeddings.ipynb | 6 +- ...regularization_graph_neural_training.ipynb | 6 +- Chapter04/04_Graph_Neural_Networks.ipynb | 240 +- Chapter04/poetry.lock | 3640 +++++++++++++++++ Chapter04/pyproject.toml | 33 + Chapter04/requirements.txt | 132 + docker/Dockerfile | 6 + 9 files changed, 4060 insertions(+), 15 deletions(-) create mode 100644 Chapter04/poetry.lock create mode 100644 Chapter04/pyproject.toml create mode 100644 Chapter04/requirements.txt diff --git a/.github/workflows/ci.yaml b/.github/workflows/ci.yaml index 9446af9..9a564c1 100644 --- a/.github/workflows/ci.yaml +++ b/.github/workflows/ci.yaml @@ -21,6 +21,8 @@ jobs: folder: Chapter02 - name: chap3 folder: Chapter03 + - name: chap4 + folder: Chapter04 - name: chap-nn folder: ChapterNN - name: chap5 diff --git a/Chapter04/01_Feature_based_methods.ipynb b/Chapter04/01_Feature_based_methods.ipynb index 47cfa80..72d5b63 100644 --- a/Chapter04/01_Feature_based_methods.ipynb +++ b/Chapter04/01_Feature_based_methods.ipynb @@ -56,6 +56,8 @@ "from stellargraph import datasets\n", "from IPython.display import display, HTML\n", "\n", + "datasets.PROTEINS.url = 'https://www.chrsmrrs.com/graphkerneldatasets/PROTEINS.zip'\n", + "\n", "dataset = datasets.PROTEINS()\n", "display(HTML(dataset.description))\n", "graphs, graph_labels = dataset.load()" @@ -211,9 +213,9 @@ "provenance": [] }, "kernelspec": { - "display_name": "Python 3", + "display_name": "chap4", "language": "python", - "name": "python3" + "name": "chap4" }, "language_info": { "codemirror_mode": { @@ -225,9 +227,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.8.14" } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 4 } diff --git a/Chapter04/02_Shallow_embeddings.ipynb b/Chapter04/02_Shallow_embeddings.ipynb index 4d72379..2143123 100644 --- a/Chapter04/02_Shallow_embeddings.ipynb +++ b/Chapter04/02_Shallow_embeddings.ipynb @@ -429,9 +429,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "chap4", "language": "python", - "name": "python3" + "name": "chap4" }, "language_info": { "codemirror_mode": { @@ -443,7 +443,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.8.14" } }, "nbformat": 4, diff --git a/Chapter04/03_Graph_regularization_graph_neural_training.ipynb b/Chapter04/03_Graph_regularization_graph_neural_training.ipynb index 8f0fa92..8570922 100644 --- a/Chapter04/03_Graph_regularization_graph_neural_training.ipynb +++ b/Chapter04/03_Graph_regularization_graph_neural_training.ipynb @@ -1486,9 +1486,9 @@ ], "metadata": { "kernelspec": { - "display_name": "ml-book-4", + "display_name": "chap4", "language": "python", - "name": "ml-book-4" + "name": "chap4" }, "language_info": { "codemirror_mode": { @@ -1500,7 +1500,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.6" + "version": "3.8.8" } }, "nbformat": 4, diff --git a/Chapter04/04_Graph_Neural_Networks.ipynb b/Chapter04/04_Graph_Neural_Networks.ipynb index 81d3fe7..beda937 100644 --- a/Chapter04/04_Graph_Neural_Networks.ipynb +++ b/Chapter04/04_Graph_Neural_Networks.ipynb @@ -66,6 +66,8 @@ "from stellargraph import datasets\n", "from IPython.display import display, HTML\n", "\n", + "datasets.PROTEINS.url = 'https://www.chrsmrrs.com/graphkerneldatasets/PROTEINS.zip'\n", + "\n", "dataset = datasets.PROTEINS()\n", "display(HTML(dataset.description))\n", "graphs, graph_labels = dataset.load()" @@ -834,7 +836,7 @@ "source": [ "from tensorflow.keras.losses import categorical_crossentropy\n", "from keras.models import Model\n", - "from keras.optimizers import Adam\n", + "from tensorflow.keras.optimizers import Adam\n", "\n", "model = Model(inputs=gnn_inp, outputs=outputs)\n", "model.compile(optimizer=Adam(lr=0.003), loss=categorical_crossentropy, metrics=[\"acc\"],)" @@ -898,6 +900,234 @@ }, "outputs": [], "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the rest of the notebook, we will be performing a similar example as above using other two popular graph-dl frameworks: PyTorch Geometric (PyG) and Deep Graph Library (DGL)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Graph Classification using PyG" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#!pip install fsspec==2024.3.1 # needed for PROTEINS download torch geometric\n", + "#!pip install torch_geometric\n", + "\n", + "import torch\n", + "from torch_geometric.datasets import TUDataset\n", + "from torch_geometric.data import DataLoader\n", + "from torch_geometric.nn import GCNConv, global_mean_pool\n", + "from torch.nn import Linear\n", + "import torch.nn.functional as F\n", + "\n", + "# Load the PROTEINS dataset\n", + "dataset = TUDataset(root='data/PROTEINS', name='PROTEINS')\n", + "\n", + "# Set random seed for reproducibility\n", + "torch.manual_seed(42)\n", + "\n", + "# Shuffle and split the dataset into training and test sets\n", + "dataset = dataset.shuffle()\n", + "split_idx = int(0.8 * len(dataset)) # 80/20 train/test split\n", + "train_dataset = dataset[:split_idx]\n", + "test_dataset = dataset[split_idx:]\n", + "\n", + "# Print dataset statistics\n", + "print(f'Training graphs: {len(train_dataset)}, Test graphs: {len(test_dataset)}')\n", + "\n", + "# Create DataLoader for batching\n", + "train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)\n", + "test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)\n", + "\n", + "# Define the GCN model\n", + "class GCN(torch.nn.Module):\n", + " def __init__(self, input_dim, hidden_dim, output_dim):\n", + " super(GCN, self).__init__()\n", + " self.conv1 = GCNConv(input_dim, hidden_dim)\n", + " self.conv2 = GCNConv(hidden_dim, hidden_dim)\n", + " self.conv3 = GCNConv(hidden_dim, hidden_dim)\n", + " self.lin = Linear(hidden_dim, output_dim)\n", + " \n", + " def forward(self, x, edge_index, batch):\n", + " # Graph convolution layers with ReLU activations\n", + " x = F.relu(self.conv1(x, edge_index))\n", + " x = F.relu(self.conv2(x, edge_index))\n", + " x = self.conv3(x, edge_index)\n", + " \n", + " # Global pooling to obtain graph-level representation\n", + " x = global_mean_pool(x, batch)\n", + " \n", + " # Apply dropout and final linear layer\n", + " x = F.dropout(x, p=0.5, training=self.training)\n", + " x = self.lin(x)\n", + " return x\n", + "\n", + "# Instantiate the model\n", + "print(dataset.num_node_features)\n", + "model = GCN(input_dim=dataset.num_node_features, hidden_dim=64, output_dim=dataset.num_classes)\n", + "print(model)\n", + "\n", + "# Define optimizer and loss function\n", + "optimizer = torch.optim.Adam(model.parameters(), lr=0.01)\n", + "criterion = torch.nn.CrossEntropyLoss()\n", + "scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5) # Learning rate decay\n", + "\n", + "# Training function\n", + "def train():\n", + " model.train()\n", + " total_loss = 0\n", + " for data in train_loader:\n", + " optimizer.zero_grad()\n", + " out = model(data.x, data.edge_index, data.batch)\n", + " loss = criterion(out, data.y)\n", + " loss.backward()\n", + " optimizer.step()\n", + " total_loss += loss.item()\n", + " return total_loss / len(train_loader)\n", + "\n", + "# Evaluation function\n", + "def evaluate(loader):\n", + " model.eval()\n", + " correct = 0\n", + " for data in loader:\n", + " with torch.no_grad():\n", + " out = model(data.x, data.edge_index, data.batch)\n", + " pred = out.argmax(dim=1)\n", + " correct += int((pred == data.y).sum())\n", + " return correct / len(loader.dataset)\n", + "\n", + "# Training loop\n", + "num_epochs = 200\n", + "for epoch in range(1, num_epochs + 1):\n", + " loss = train()\n", + " train_acc = evaluate(train_loader)\n", + " test_acc = evaluate(test_loader)\n", + " scheduler.step() # Adjust learning rate\n", + "\n", + " print(f'Epoch {epoch:03d}, Loss: {loss:.4f}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Graph Classification using DGL" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#!pip install torch==2.1.1 # needed for dgl\n", + "#!pip install dgl -f https://data.dgl.ai/wheels/torch-2.1/repo.html\n", + "\n", + "import dgl\n", + "import torch\n", + "import torch.nn.functional as F\n", + "from torch.nn import Linear\n", + "from dgl.data import GINDataset\n", + "from dgl.dataloading import GraphDataLoader\n", + "from dgl.nn.pytorch import GraphConv\n", + "from dgl.data.utils import split_dataset\n", + "\n", + "dataset = dgl.data.GINDataset('PROTEINS', self_loop=True)\n", + "\n", + "# Set random seed for reproducibility\n", + "torch.manual_seed(42)\n", + "\n", + "# 2. Split dataset into training and test sets\n", + "train_dataset, val_dataset, test_dataset = split_dataset(dataset, frac_list=[0.8, 0.1, 0.1], shuffle=False, random_state=42)\n", + "\n", + "# Print dataset statistics\n", + "print(f'Training graphs: {len(train_dataset)}, Test graphs: {len(test_dataset)}')\n", + "\n", + "# 3. Create DGL DataLoader for batching\n", + "train_loader = GraphDataLoader(train_dataset, batch_size=64, shuffle=True)\n", + "test_loader = GraphDataLoader(test_dataset, batch_size=64, shuffle=False)\n", + "\n", + "# 4. Define the GCN model using DGL's GraphConv layers\n", + "class GCN(torch.nn.Module):\n", + " def __init__(self, input_dim, hidden_dim, output_dim):\n", + " super(GCN, self).__init__()\n", + " self.conv1 = GraphConv(input_dim, hidden_dim)\n", + " self.conv2 = GraphConv(hidden_dim, hidden_dim)\n", + " self.conv3 = GraphConv(hidden_dim, hidden_dim)\n", + " self.fc = Linear(hidden_dim, output_dim)\n", + "\n", + " def forward(self, g, features):\n", + " # Apply GraphConv layers with ReLU activations\n", + " h = F.relu(self.conv1(g, features))\n", + " h = F.relu(self.conv2(g, h))\n", + " h = self.conv3(g, h)\n", + " \n", + " # Global mean pooling to obtain graph-level representation\n", + " with g.local_scope():\n", + " g.ndata['h'] = h\n", + " hg = dgl.mean_nodes(g, 'h')\n", + " \n", + " # Apply dropout and final linear layer for classification\n", + " hg = F.dropout(hg, p=0.5, training=self.training)\n", + " return self.fc(hg)\n", + "\n", + "# 5. Initialize the model, optimizer, and loss function\n", + "input_dim = dataset.dim_nfeats\n", + "output_dim = dataset.num_classes\n", + "hidden_dim = 64\n", + "\n", + "print(\"Input dim:\", input_dim)\n", + "print(\"Output dim:\", output_dim)\n", + "\n", + "model = GCN(input_dim, hidden_dim, output_dim)\n", + "optimizer = torch.optim.Adam(model.parameters(), lr=0.01)\n", + "criterion = torch.nn.CrossEntropyLoss()\n", + "\n", + "# 6. Training function\n", + "def train():\n", + " model.train()\n", + " total_loss = 0\n", + " for batched_graph, labels in train_loader:\n", + " optimizer.zero_grad()\n", + " features = batched_graph.ndata['attr']\n", + " out = model(batched_graph, features)\n", + " loss = criterion(out, labels)\n", + " loss.backward()\n", + " optimizer.step()\n", + " total_loss += loss.item()\n", + " return total_loss / len(train_loader)\n", + "\n", + "# 7. Evaluation function\n", + "def evaluate(loader):\n", + " model.eval()\n", + " correct = 0\n", + " for batched_graph, labels in loader:\n", + " features = batched_graph.ndata['attr']\n", + " with torch.no_grad():\n", + " out = model(batched_graph, features)\n", + " pred = out.argmax(dim=1)\n", + " correct += (pred == labels).sum().item()\n", + " return correct / len(loader.dataset)\n", + "\n", + "# 8. Training loop\n", + "num_epochs = 200\n", + "for epoch in range(1, num_epochs + 1):\n", + " loss = train()\n", + " train_acc = evaluate(train_loader)\n", + " test_acc = evaluate(test_loader)\n", + " print(f'Epoch {epoch:03d}, Loss: {loss:.4f}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}')" + ] } ], "metadata": { @@ -907,9 +1137,9 @@ "provenance": [] }, "kernelspec": { - "display_name": "Python 3", + "display_name": "chap4", "language": "python", - "name": "python3" + "name": "chap4" }, "language_info": { "codemirror_mode": { @@ -921,9 +1151,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.0" + "version": "3.8.14" } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 4 } diff --git a/Chapter04/poetry.lock b/Chapter04/poetry.lock new file mode 100644 index 0000000..0e13afb --- /dev/null +++ b/Chapter04/poetry.lock @@ -0,0 +1,3640 @@ +# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. + +[[package]] +name = "absl-py" +version = "2.1.0" +description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py." +optional = false +python-versions = ">=3.7" +files = [ + {file = "absl-py-2.1.0.tar.gz", hash = "sha256:7820790efbb316739cde8b4e19357243fc3608a152024288513dd968d7d959ff"}, + {file = "absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308"}, +] + +[[package]] +name = "aiohappyeyeballs" +version = "2.4.3" +description = "Happy Eyeballs for asyncio" +optional = false +python-versions = ">=3.8" +files = [ + {file = "aiohappyeyeballs-2.4.3-py3-none-any.whl", hash = "sha256:8a7a83727b2756f394ab2895ea0765a0a8c475e3c71e98d43d76f22b4b435572"}, + {file = "aiohappyeyeballs-2.4.3.tar.gz", hash = "sha256:75cf88a15106a5002a8eb1dab212525c00d1f4c0fa96e551c9fbe6f09a621586"}, +] + +[[package]] +name = "aiohttp" +version = "3.10.10" +description = "Async http client/server framework (asyncio)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "aiohttp-3.10.10-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:be7443669ae9c016b71f402e43208e13ddf00912f47f623ee5994e12fc7d4b3f"}, + {file = "aiohttp-3.10.10-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7b06b7843929e41a94ea09eb1ce3927865387e3e23ebe108e0d0d09b08d25be9"}, + {file = "aiohttp-3.10.10-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:333cf6cf8e65f6a1e06e9eb3e643a0c515bb850d470902274239fea02033e9a8"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:274cfa632350225ce3fdeb318c23b4a10ec25c0e2c880eff951a3842cf358ac1"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d9e5e4a85bdb56d224f412d9c98ae4cbd032cc4f3161818f692cd81766eee65a"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2b606353da03edcc71130b52388d25f9a30a126e04caef1fd637e31683033abd"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab5a5a0c7a7991d90446a198689c0535be89bbd6b410a1f9a66688f0880ec026"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:578a4b875af3e0daaf1ac6fa983d93e0bbfec3ead753b6d6f33d467100cdc67b"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:8105fd8a890df77b76dd3054cddf01a879fc13e8af576805d667e0fa0224c35d"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3bcd391d083f636c06a68715e69467963d1f9600f85ef556ea82e9ef25f043f7"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:fbc6264158392bad9df19537e872d476f7c57adf718944cc1e4495cbabf38e2a"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:e48d5021a84d341bcaf95c8460b152cfbad770d28e5fe14a768988c461b821bc"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:2609e9ab08474702cc67b7702dbb8a80e392c54613ebe80db7e8dbdb79837c68"}, + {file = "aiohttp-3.10.10-cp310-cp310-win32.whl", hash = "sha256:84afcdea18eda514c25bc68b9af2a2b1adea7c08899175a51fe7c4fb6d551257"}, + {file = "aiohttp-3.10.10-cp310-cp310-win_amd64.whl", hash = "sha256:9c72109213eb9d3874f7ac8c0c5fa90e072d678e117d9061c06e30c85b4cf0e6"}, + {file = "aiohttp-3.10.10-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:c30a0eafc89d28e7f959281b58198a9fa5e99405f716c0289b7892ca345fe45f"}, + {file = "aiohttp-3.10.10-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:258c5dd01afc10015866114e210fb7365f0d02d9d059c3c3415382ab633fcbcb"}, + {file = "aiohttp-3.10.10-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:15ecd889a709b0080f02721255b3f80bb261c2293d3c748151274dfea93ac871"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3935f82f6f4a3820270842e90456ebad3af15810cf65932bd24da4463bc0a4c"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:413251f6fcf552a33c981c4709a6bba37b12710982fec8e558ae944bfb2abd38"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1720b4f14c78a3089562b8875b53e36b51c97c51adc53325a69b79b4b48ebcb"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:679abe5d3858b33c2cf74faec299fda60ea9de62916e8b67e625d65bf069a3b7"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:79019094f87c9fb44f8d769e41dbb664d6e8fcfd62f665ccce36762deaa0e911"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:fe2fb38c2ed905a2582948e2de560675e9dfbee94c6d5ccdb1301c6d0a5bf092"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:a3f00003de6eba42d6e94fabb4125600d6e484846dbf90ea8e48a800430cc142"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:1bbb122c557a16fafc10354b9d99ebf2f2808a660d78202f10ba9d50786384b9"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:30ca7c3b94708a9d7ae76ff281b2f47d8eaf2579cd05971b5dc681db8caac6e1"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:df9270660711670e68803107d55c2b5949c2e0f2e4896da176e1ecfc068b974a"}, + {file = "aiohttp-3.10.10-cp311-cp311-win32.whl", hash = "sha256:aafc8ee9b742ce75044ae9a4d3e60e3d918d15a4c2e08a6c3c3e38fa59b92d94"}, + {file = "aiohttp-3.10.10-cp311-cp311-win_amd64.whl", hash = "sha256:362f641f9071e5f3ee6f8e7d37d5ed0d95aae656adf4ef578313ee585b585959"}, + {file = "aiohttp-3.10.10-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:9294bbb581f92770e6ed5c19559e1e99255e4ca604a22c5c6397b2f9dd3ee42c"}, + {file = "aiohttp-3.10.10-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a8fa23fe62c436ccf23ff930149c047f060c7126eae3ccea005f0483f27b2e28"}, + {file = "aiohttp-3.10.10-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5c6a5b8c7926ba5d8545c7dd22961a107526562da31a7a32fa2456baf040939f"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:007ec22fbc573e5eb2fb7dec4198ef8f6bf2fe4ce20020798b2eb5d0abda6138"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9627cc1a10c8c409b5822a92d57a77f383b554463d1884008e051c32ab1b3742"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:50edbcad60d8f0e3eccc68da67f37268b5144ecc34d59f27a02f9611c1d4eec7"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a45d85cf20b5e0d0aa5a8dca27cce8eddef3292bc29d72dcad1641f4ed50aa16"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0b00807e2605f16e1e198f33a53ce3c4523114059b0c09c337209ae55e3823a8"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f2d4324a98062be0525d16f768a03e0bbb3b9fe301ceee99611dc9a7953124e6"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:438cd072f75bb6612f2aca29f8bd7cdf6e35e8f160bc312e49fbecab77c99e3a"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:baa42524a82f75303f714108fea528ccacf0386af429b69fff141ffef1c534f9"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a7d8d14fe962153fc681f6366bdec33d4356f98a3e3567782aac1b6e0e40109a"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c1277cd707c465cd09572a774559a3cc7c7a28802eb3a2a9472588f062097205"}, + {file = "aiohttp-3.10.10-cp312-cp312-win32.whl", hash = "sha256:59bb3c54aa420521dc4ce3cc2c3fe2ad82adf7b09403fa1f48ae45c0cbde6628"}, + {file = "aiohttp-3.10.10-cp312-cp312-win_amd64.whl", hash = "sha256:0e1b370d8007c4ae31ee6db7f9a2fe801a42b146cec80a86766e7ad5c4a259cf"}, + {file = "aiohttp-3.10.10-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ad7593bb24b2ab09e65e8a1d385606f0f47c65b5a2ae6c551db67d6653e78c28"}, + {file = "aiohttp-3.10.10-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1eb89d3d29adaf533588f209768a9c02e44e4baf832b08118749c5fad191781d"}, + {file = "aiohttp-3.10.10-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3fe407bf93533a6fa82dece0e74dbcaaf5d684e5a51862887f9eaebe6372cd79"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50aed5155f819873d23520919e16703fc8925e509abbb1a1491b0087d1cd969e"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4f05e9727ce409358baa615dbeb9b969db94324a79b5a5cea45d39bdb01d82e6"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3dffb610a30d643983aeb185ce134f97f290f8935f0abccdd32c77bed9388b42"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa6658732517ddabe22c9036479eabce6036655ba87a0224c612e1ae6af2087e"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:741a46d58677d8c733175d7e5aa618d277cd9d880301a380fd296975a9cdd7bc"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:e00e3505cd80440f6c98c6d69269dcc2a119f86ad0a9fd70bccc59504bebd68a"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ffe595f10566f8276b76dc3a11ae4bb7eba1aac8ddd75811736a15b0d5311414"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:bdfcf6443637c148c4e1a20c48c566aa694fa5e288d34b20fcdc58507882fed3"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d183cf9c797a5291e8301790ed6d053480ed94070637bfaad914dd38b0981f67"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:77abf6665ae54000b98b3c742bc6ea1d1fb31c394bcabf8b5d2c1ac3ebfe7f3b"}, + {file = "aiohttp-3.10.10-cp313-cp313-win32.whl", hash = "sha256:4470c73c12cd9109db8277287d11f9dd98f77fc54155fc71a7738a83ffcc8ea8"}, + {file = "aiohttp-3.10.10-cp313-cp313-win_amd64.whl", hash = "sha256:486f7aabfa292719a2753c016cc3a8f8172965cabb3ea2e7f7436c7f5a22a151"}, + {file = "aiohttp-3.10.10-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:1b66ccafef7336a1e1f0e389901f60c1d920102315a56df85e49552308fc0486"}, + {file = "aiohttp-3.10.10-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:acd48d5b80ee80f9432a165c0ac8cbf9253eaddb6113269a5e18699b33958dbb"}, + {file = "aiohttp-3.10.10-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3455522392fb15ff549d92fbf4b73b559d5e43dc522588f7eb3e54c3f38beee7"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45c3b868724137f713a38376fef8120c166d1eadd50da1855c112fe97954aed8"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:da1dee8948d2137bb51fbb8a53cce6b1bcc86003c6b42565f008438b806cccd8"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c5ce2ce7c997e1971b7184ee37deb6ea9922ef5163c6ee5aa3c274b05f9e12fa"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28529e08fde6f12eba8677f5a8608500ed33c086f974de68cc65ab218713a59d"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f7db54c7914cc99d901d93a34704833568d86c20925b2762f9fa779f9cd2e70f"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:03a42ac7895406220124c88911ebee31ba8b2d24c98507f4a8bf826b2937c7f2"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:7e338c0523d024fad378b376a79faff37fafb3c001872a618cde1d322400a572"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:038f514fe39e235e9fef6717fbf944057bfa24f9b3db9ee551a7ecf584b5b480"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:64f6c17757251e2b8d885d728b6433d9d970573586a78b78ba8929b0f41d045a"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:93429602396f3383a797a2a70e5f1de5df8e35535d7806c9f91df06f297e109b"}, + {file = "aiohttp-3.10.10-cp38-cp38-win32.whl", hash = "sha256:c823bc3971c44ab93e611ab1a46b1eafeae474c0c844aff4b7474287b75fe49c"}, + {file = "aiohttp-3.10.10-cp38-cp38-win_amd64.whl", hash = "sha256:54ca74df1be3c7ca1cf7f4c971c79c2daf48d9aa65dea1a662ae18926f5bc8ce"}, + {file = "aiohttp-3.10.10-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:01948b1d570f83ee7bbf5a60ea2375a89dfb09fd419170e7f5af029510033d24"}, + {file = "aiohttp-3.10.10-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9fc1500fd2a952c5c8e3b29aaf7e3cc6e27e9cfc0a8819b3bce48cc1b849e4cc"}, + {file = "aiohttp-3.10.10-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f614ab0c76397661b90b6851a030004dac502e48260ea10f2441abd2207fbcc7"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00819de9e45d42584bed046314c40ea7e9aea95411b38971082cad449392b08c"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:05646ebe6b94cc93407b3bf34b9eb26c20722384d068eb7339de802154d61bc5"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:998f3bd3cfc95e9424a6acd7840cbdd39e45bc09ef87533c006f94ac47296090"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9010c31cd6fa59438da4e58a7f19e4753f7f264300cd152e7f90d4602449762"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7ea7ffc6d6d6f8a11e6f40091a1040995cdff02cfc9ba4c2f30a516cb2633554"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:ef9c33cc5cbca35808f6c74be11eb7f5f6b14d2311be84a15b594bd3e58b5527"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ce0cdc074d540265bfeb31336e678b4e37316849d13b308607efa527e981f5c2"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:597a079284b7ee65ee102bc3a6ea226a37d2b96d0418cc9047490f231dc09fe8"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:7789050d9e5d0c309c706953e5e8876e38662d57d45f936902e176d19f1c58ab"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e7f8b04d83483577fd9200461b057c9f14ced334dcb053090cea1da9c8321a91"}, + {file = "aiohttp-3.10.10-cp39-cp39-win32.whl", hash = "sha256:c02a30b904282777d872266b87b20ed8cc0d1501855e27f831320f471d54d983"}, + {file = "aiohttp-3.10.10-cp39-cp39-win_amd64.whl", hash = "sha256:edfe3341033a6b53a5c522c802deb2079eee5cbfbb0af032a55064bd65c73a23"}, + {file = "aiohttp-3.10.10.tar.gz", hash = "sha256:0631dd7c9f0822cc61c88586ca76d5b5ada26538097d0f1df510b082bad3411a"}, +] + +[package.dependencies] +aiohappyeyeballs = ">=2.3.0" +aiosignal = ">=1.1.2" +async-timeout = {version = ">=4.0,<5.0", markers = "python_version < \"3.11\""} +attrs = ">=17.3.0" +frozenlist = ">=1.1.1" +multidict = ">=4.5,<7.0" +yarl = ">=1.12.0,<2.0" + +[package.extras] +speedups = ["Brotli", "aiodns (>=3.2.0)", "brotlicffi"] + +[[package]] +name = "aiosignal" +version = "1.3.1" +description = "aiosignal: a list of registered asynchronous callbacks" +optional = false +python-versions = ">=3.7" +files = [ + {file = "aiosignal-1.3.1-py3-none-any.whl", hash = "sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17"}, + {file = "aiosignal-1.3.1.tar.gz", hash = "sha256:54cd96e15e1649b75d6c87526a6ff0b6c1b0dd3459f43d9ca11d48c339b68cfc"}, +] + +[package.dependencies] +frozenlist = ">=1.1.0" + +[[package]] +name = "annotated-types" +version = "0.7.0" +description = "Reusable constraint types to use with typing.Annotated" +optional = false +python-versions = ">=3.8" +files = [ + {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, + {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} + +[[package]] +name = "appnope" +version = "0.1.4" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = ">=3.6" +files = [ + {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, + {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, +] + +[[package]] +name = "asttokens" +version = "2.4.1" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = "*" +files = [ + {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, + {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, +] + +[package.dependencies] +six = ">=1.12.0" + +[package.extras] +astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] +test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] + +[[package]] +name = "astunparse" +version = "1.6.3" +description = "An AST unparser for Python" +optional = false +python-versions = "*" +files = [ + {file = "astunparse-1.6.3-py2.py3-none-any.whl", hash = "sha256:c2652417f2c8b5bb325c885ae329bdf3f86424075c4fd1a128674bc6fba4b8e8"}, + {file = "astunparse-1.6.3.tar.gz", hash = "sha256:5ad93a8456f0d084c3456d059fd9a92cce667963232cbf763eac3bc5b7940872"}, +] + +[package.dependencies] +six = ">=1.6.1,<2.0" +wheel = ">=0.23.0,<1.0" + +[[package]] +name = "async-timeout" +version = "4.0.3" +description = "Timeout context manager for asyncio programs" +optional = false +python-versions = ">=3.7" +files = [ + {file = "async-timeout-4.0.3.tar.gz", hash = "sha256:4640d96be84d82d02ed59ea2b7105a0f7b33abe8703703cd0ab0bf87c427522f"}, + {file = "async_timeout-4.0.3-py3-none-any.whl", hash = "sha256:7405140ff1230c310e51dc27b3145b9092d659ce68ff733fb0cefe3ee42be028"}, +] + +[[package]] +name = "attrs" +version = "24.2.0" +description = "Classes Without Boilerplate" +optional = false +python-versions = ">=3.7" +files = [ + {file = "attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2"}, + {file = "attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346"}, +] + +[package.extras] +benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] + +[[package]] +name = "backcall" +version = "0.2.0" +description = "Specifications for callback functions passed in to an API" +optional = false +python-versions = "*" +files = [ + {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, + {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, +] + +[[package]] +name = "cachetools" +version = "5.5.0" +description = "Extensible memoizing collections and decorators" +optional = false +python-versions = ">=3.7" +files = [ + {file = "cachetools-5.5.0-py3-none-any.whl", hash = "sha256:02134e8439cdc2ffb62023ce1debca2944c3f289d66bb17ead3ab3dede74b292"}, + {file = "cachetools-5.5.0.tar.gz", hash = "sha256:2cc24fb4cbe39633fb7badd9db9ca6295d766d9c2995f245725a46715d050f2a"}, +] + +[[package]] +name = "certifi" +version = "2024.8.30" +description = "Python package for providing Mozilla's CA Bundle." +optional = false +python-versions = ">=3.6" +files = [ + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, +] + +[[package]] +name = "cffi" +version = "1.17.1" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, +] + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "chardet" +version = "5.2.0" +description = "Universal encoding detector for Python 3" +optional = false +python-versions = ">=3.7" +files = [ + {file = "chardet-5.2.0-py3-none-any.whl", hash = "sha256:e1cf59446890a00105fe7b7912492ea04b6e6f06d4b742b2c788469e34c82970"}, + {file = "chardet-5.2.0.tar.gz", hash = "sha256:1b3b6ff479a8c414bc3fa2c0852995695c4a026dcd6d0633b2dd092ca39c1cf7"}, +] + +[[package]] +name = "charset-normalizer" +version = "3.4.0" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:4f9fc98dad6c2eaa32fc3af1417d95b5e3d08aff968df0cd320066def971f9a6"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0de7b687289d3c1b3e8660d0741874abe7888100efe14bd0f9fd7141bcbda92b"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5ed2e36c3e9b4f21dd9422f6893dec0abf2cca553af509b10cd630f878d3eb99"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40d3ff7fc90b98c637bda91c89d51264a3dcf210cade3a2c6f838c7268d7a4ca"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1110e22af8ca26b90bd6364fe4c763329b0ebf1ee213ba32b68c73de5752323d"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:86f4e8cca779080f66ff4f191a685ced73d2f72d50216f7112185dc02b90b9b7"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f683ddc7eedd742e2889d2bfb96d69573fde1d92fcb811979cdb7165bb9c7d3"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:27623ba66c183eca01bf9ff833875b459cad267aeeb044477fedac35e19ba907"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f606a1881d2663630ea5b8ce2efe2111740df4b687bd78b34a8131baa007f79b"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0b309d1747110feb25d7ed6b01afdec269c647d382c857ef4663bbe6ad95a912"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:136815f06a3ae311fae551c3df1f998a1ebd01ddd424aa5603a4336997629e95"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:14215b71a762336254351b00ec720a8e85cada43b987da5a042e4ce3e82bd68e"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:79983512b108e4a164b9c8d34de3992f76d48cadc9554c9e60b43f308988aabe"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-win32.whl", hash = "sha256:c94057af19bc953643a33581844649a7fdab902624d2eb739738a30e2b3e60fc"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:55f56e2ebd4e3bc50442fbc0888c9d8c94e4e06a933804e2af3e89e2f9c1c749"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0d99dd8ff461990f12d6e42c7347fd9ab2532fb70e9621ba520f9e8637161d7c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c57516e58fd17d03ebe67e181a4e4e2ccab1168f8c2976c6a334d4f819fe5944"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6dba5d19c4dfab08e58d5b36304b3f92f3bd5d42c1a3fa37b5ba5cdf6dfcbcee"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf4475b82be41b07cc5e5ff94810e6a01f276e37c2d55571e3fe175e467a1a1c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ce031db0408e487fd2775d745ce30a7cd2923667cf3b69d48d219f1d8f5ddeb6"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ff4e7cdfdb1ab5698e675ca622e72d58a6fa2a8aa58195de0c0061288e6e3ea"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3710a9751938947e6327ea9f3ea6332a09bf0ba0c09cae9cb1f250bd1f1549bc"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82357d85de703176b5587dbe6ade8ff67f9f69a41c0733cf2425378b49954de5"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:47334db71978b23ebcf3c0f9f5ee98b8d65992b65c9c4f2d34c2eaf5bcaf0594"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8ce7fd6767a1cc5a92a639b391891bf1c268b03ec7e021c7d6d902285259685c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f1a2f519ae173b5b6a2c9d5fa3116ce16e48b3462c8b96dfdded11055e3d6365"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:63bc5c4ae26e4bc6be6469943b8253c0fd4e4186c43ad46e713ea61a0ba49129"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:bcb4f8ea87d03bc51ad04add8ceaf9b0f085ac045ab4d74e73bbc2dc033f0236"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-win32.whl", hash = "sha256:9ae4ef0b3f6b41bad6366fb0ea4fc1d7ed051528e113a60fa2a65a9abb5b1d99"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cee4373f4d3ad28f1ab6290684d8e2ebdb9e7a1b74fdc39e4c211995f77bec27"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0713f3adb9d03d49d365b70b84775d0a0d18e4ab08d12bc46baa6132ba78aaf6"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:de7376c29d95d6719048c194a9cf1a1b0393fbe8488a22008610b0361d834ecf"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a51b48f42d9358460b78725283f04bddaf44a9358197b889657deba38f329db"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b295729485b06c1a0683af02a9e42d2caa9db04a373dc38a6a58cdd1e8abddf1"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee803480535c44e7f5ad00788526da7d85525cfefaf8acf8ab9a310000be4b03"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d59d125ffbd6d552765510e3f31ed75ebac2c7470c7274195b9161a32350284"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8cda06946eac330cbe6598f77bb54e690b4ca93f593dee1568ad22b04f347c15"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07afec21bbbbf8a5cc3651aa96b980afe2526e7f048fdfb7f1014d84acc8b6d8"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6b40e8d38afe634559e398cc32b1472f376a4099c75fe6299ae607e404c033b2"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b8dcd239c743aa2f9c22ce674a145e0a25cb1566c495928440a181ca1ccf6719"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:84450ba661fb96e9fd67629b93d2941c871ca86fc38d835d19d4225ff946a631"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:44aeb140295a2f0659e113b31cfe92c9061622cadbc9e2a2f7b8ef6b1e29ef4b"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1db4e7fefefd0f548d73e2e2e041f9df5c59e178b4c72fbac4cc6f535cfb1565"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-win32.whl", hash = "sha256:5726cf76c982532c1863fb64d8c6dd0e4c90b6ece9feb06c9f202417a31f7dd7"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:b197e7094f232959f8f20541ead1d9862ac5ebea1d58e9849c1bf979255dfac9"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:dd4eda173a9fcccb5f2e2bd2a9f423d180194b1bf17cf59e3269899235b2a114"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e9e3c4c9e1ed40ea53acf11e2a386383c3304212c965773704e4603d589343ed"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92a7e36b000bf022ef3dbb9c46bfe2d52c047d5e3f3343f43204263c5addc250"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54b6a92d009cbe2fb11054ba694bc9e284dad30a26757b1e372a1fdddaf21920"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ffd9493de4c922f2a38c2bf62b831dcec90ac673ed1ca182fe11b4d8e9f2a64"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:35c404d74c2926d0287fbd63ed5d27eb911eb9e4a3bb2c6d294f3cfd4a9e0c23"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e7fdd52961feb4c96507aa649550ec2a0d527c086d284749b2f582f2d40a2e0d"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:92db3c28b5b2a273346bebb24857fda45601aef6ae1c011c0a997106581e8a88"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ab973df98fc99ab39080bfb0eb3a925181454d7c3ac8a1e695fddfae696d9e90"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:4b67fdab07fdd3c10bb21edab3cbfe8cf5696f453afce75d815d9d7223fbe88b"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:aa41e526a5d4a9dfcfbab0716c7e8a1b215abd3f3df5a45cf18a12721d31cb5d"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ffc519621dce0c767e96b9c53f09c5d215578e10b02c285809f76509a3931482"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-win32.whl", hash = "sha256:f19c1585933c82098c2a520f8ec1227f20e339e33aca8fa6f956f6691b784e67"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:707b82d19e65c9bd28b81dde95249b07bf9f5b90ebe1ef17d9b57473f8a64b7b"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:dbe03226baf438ac4fda9e2d0715022fd579cb641c4cf639fa40d53b2fe6f3e2"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd9a8bd8900e65504a305bf8ae6fa9fbc66de94178c420791d0293702fce2df7"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8831399554b92b72af5932cdbbd4ddc55c55f631bb13ff8fe4e6536a06c5c51"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a14969b8691f7998e74663b77b4c36c0337cb1df552da83d5c9004a93afdb574"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dcaf7c1524c0542ee2fc82cc8ec337f7a9f7edee2532421ab200d2b920fc97cf"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425c5f215d0eecee9a56cdb703203dda90423247421bf0d67125add85d0c4455"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:d5b054862739d276e09928de37c79ddeec42a6e1bfc55863be96a36ba22926f6"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:f3e73a4255342d4eb26ef6df01e3962e73aa29baa3124a8e824c5d3364a65748"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:2f6c34da58ea9c1a9515621f4d9ac379871a8f21168ba1b5e09d74250de5ad62"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:f09cb5a7bbe1ecae6e87901a2eb23e0256bb524a79ccc53eb0b7629fbe7677c4"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:0099d79bdfcf5c1f0c2c72f91516702ebf8b0b8ddd8905f97a8aecf49712c621"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-win32.whl", hash = "sha256:9c98230f5042f4945f957d006edccc2af1e03ed5e37ce7c373f00a5a4daa6149"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-win_amd64.whl", hash = "sha256:62f60aebecfc7f4b82e3f639a7d1433a20ec32824db2199a11ad4f5e146ef5ee"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:af73657b7a68211996527dbfeffbb0864e043d270580c5aef06dc4b659a4b578"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cab5d0b79d987c67f3b9e9c53f54a61360422a5a0bc075f43cab5621d530c3b6"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9289fd5dddcf57bab41d044f1756550f9e7cf0c8e373b8cdf0ce8773dc4bd417"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b493a043635eb376e50eedf7818f2f322eabbaa974e948bd8bdd29eb7ef2a51"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9fa2566ca27d67c86569e8c85297aaf413ffab85a8960500f12ea34ff98e4c41"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8e538f46104c815be19c975572d74afb53f29650ea2025bbfaef359d2de2f7f"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fd30dc99682dc2c603c2b315bded2799019cea829f8bf57dc6b61efde6611c8"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2006769bd1640bdf4d5641c69a3d63b71b81445473cac5ded39740a226fa88ab"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:dc15e99b2d8a656f8e666854404f1ba54765871104e50c8e9813af8a7db07f12"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:ab2e5bef076f5a235c3774b4f4028a680432cded7cad37bba0fd90d64b187d19"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:4ec9dd88a5b71abfc74e9df5ebe7921c35cbb3b641181a531ca65cdb5e8e4dea"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:43193c5cda5d612f247172016c4bb71251c784d7a4d9314677186a838ad34858"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:aa693779a8b50cd97570e5a0f343538a8dbd3e496fa5dcb87e29406ad0299654"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-win32.whl", hash = "sha256:7706f5850360ac01d80c89bcef1640683cc12ed87f42579dab6c5d3ed6888613"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:c3e446d253bd88f6377260d07c895816ebf33ffffd56c1c792b13bff9c3e1ade"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:980b4f289d1d90ca5efcf07958d3eb38ed9c0b7676bf2831a54d4f66f9c27dfa"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f28f891ccd15c514a0981f3b9db9aa23d62fe1a99997512b0491d2ed323d229a"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8aacce6e2e1edcb6ac625fb0f8c3a9570ccc7bfba1f63419b3769ccf6a00ed0"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd7af3717683bea4c87acd8c0d3d5b44d56120b26fd3f8a692bdd2d5260c620a"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5ff2ed8194587faf56555927b3aa10e6fb69d931e33953943bc4f837dfee2242"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e91f541a85298cf35433bf66f3fab2a4a2cff05c127eeca4af174f6d497f0d4b"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:309a7de0a0ff3040acaebb35ec45d18db4b28232f21998851cfa709eeff49d62"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:285e96d9d53422efc0d7a17c60e59f37fbf3dfa942073f666db4ac71e8d726d0"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5d447056e2ca60382d460a604b6302d8db69476fd2015c81e7c35417cfabe4cd"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:20587d20f557fe189b7947d8e7ec5afa110ccf72a3128d61a2a387c3313f46be"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:130272c698667a982a5d0e626851ceff662565379baf0ff2cc58067b81d4f11d"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:ab22fbd9765e6954bc0bcff24c25ff71dcbfdb185fcdaca49e81bac68fe724d3"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7782afc9b6b42200f7362858f9e73b1f8316afb276d316336c0ec3bd73312742"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-win32.whl", hash = "sha256:2de62e8801ddfff069cd5c504ce3bc9672b23266597d4e4f50eda28846c322f2"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:95c3c157765b031331dd4db3c775e58deaee050a3042fcad72cbc4189d7c8dca"}, + {file = "charset_normalizer-3.4.0-py3-none-any.whl", hash = "sha256:fe9f97feb71aa9896b81973a7bbada8c49501dc73e58a10fcef6663af95e5079"}, + {file = "charset_normalizer-3.4.0.tar.gz", hash = "sha256:223217c3d4f82c3ac5e29032b3f1c2eb0fb591b72161f86d93f5719079dae93e"}, +] + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "comm" +version = "0.2.2" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +files = [ + {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, + {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "cycler" +version = "0.12.1" +description = "Composable style cycles" +optional = false +python-versions = ">=3.8" +files = [ + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, +] + +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "debugpy" +version = "1.8.7" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "debugpy-1.8.7-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:95fe04a573b8b22896c404365e03f4eda0ce0ba135b7667a1e57bd079793b96b"}, + {file = "debugpy-1.8.7-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:628a11f4b295ffb4141d8242a9bb52b77ad4a63a2ad19217a93be0f77f2c28c9"}, + {file = "debugpy-1.8.7-cp310-cp310-win32.whl", hash = "sha256:85ce9c1d0eebf622f86cc68618ad64bf66c4fc3197d88f74bb695a416837dd55"}, + {file = "debugpy-1.8.7-cp310-cp310-win_amd64.whl", hash = "sha256:29e1571c276d643757ea126d014abda081eb5ea4c851628b33de0c2b6245b037"}, + {file = "debugpy-1.8.7-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:caf528ff9e7308b74a1749c183d6808ffbedbb9fb6af78b033c28974d9b8831f"}, + {file = "debugpy-1.8.7-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cba1d078cf2e1e0b8402e6bda528bf8fda7ccd158c3dba6c012b7897747c41a0"}, + {file = "debugpy-1.8.7-cp311-cp311-win32.whl", hash = "sha256:171899588bcd412151e593bd40d9907133a7622cd6ecdbdb75f89d1551df13c2"}, + {file = "debugpy-1.8.7-cp311-cp311-win_amd64.whl", hash = "sha256:6e1c4ffb0c79f66e89dfd97944f335880f0d50ad29525dc792785384923e2211"}, + {file = "debugpy-1.8.7-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:4d27d842311353ede0ad572600c62e4bcd74f458ee01ab0dd3a1a4457e7e3706"}, + {file = "debugpy-1.8.7-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:703c1fd62ae0356e194f3e7b7a92acd931f71fe81c4b3be2c17a7b8a4b546ec2"}, + {file = "debugpy-1.8.7-cp312-cp312-win32.whl", hash = "sha256:2f729228430ef191c1e4df72a75ac94e9bf77413ce5f3f900018712c9da0aaca"}, + {file = "debugpy-1.8.7-cp312-cp312-win_amd64.whl", hash = "sha256:45c30aaefb3e1975e8a0258f5bbd26cd40cde9bfe71e9e5a7ac82e79bad64e39"}, + {file = "debugpy-1.8.7-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:d050a1ec7e925f514f0f6594a1e522580317da31fbda1af71d1530d6ea1f2b40"}, + {file = "debugpy-1.8.7-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2f4349a28e3228a42958f8ddaa6333d6f8282d5edaea456070e48609c5983b7"}, + {file = "debugpy-1.8.7-cp313-cp313-win32.whl", hash = "sha256:11ad72eb9ddb436afb8337891a986302e14944f0f755fd94e90d0d71e9100bba"}, + {file = "debugpy-1.8.7-cp313-cp313-win_amd64.whl", hash = "sha256:2efb84d6789352d7950b03d7f866e6d180284bc02c7e12cb37b489b7083d81aa"}, + {file = "debugpy-1.8.7-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:4b908291a1d051ef3331484de8e959ef3e66f12b5e610c203b5b75d2725613a7"}, + {file = "debugpy-1.8.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da8df5b89a41f1fd31503b179d0a84a5fdb752dddd5b5388dbd1ae23cda31ce9"}, + {file = "debugpy-1.8.7-cp38-cp38-win32.whl", hash = "sha256:b12515e04720e9e5c2216cc7086d0edadf25d7ab7e3564ec8b4521cf111b4f8c"}, + {file = "debugpy-1.8.7-cp38-cp38-win_amd64.whl", hash = "sha256:93176e7672551cb5281577cdb62c63aadc87ec036f0c6a486f0ded337c504596"}, + {file = "debugpy-1.8.7-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:90d93e4f2db442f8222dec5ec55ccfc8005821028982f1968ebf551d32b28907"}, + {file = "debugpy-1.8.7-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b6db2a370e2700557a976eaadb16243ec9c91bd46f1b3bb15376d7aaa7632c81"}, + {file = "debugpy-1.8.7-cp39-cp39-win32.whl", hash = "sha256:a6cf2510740e0c0b4a40330640e4b454f928c7b99b0c9dbf48b11efba08a8cda"}, + {file = "debugpy-1.8.7-cp39-cp39-win_amd64.whl", hash = "sha256:6a9d9d6d31846d8e34f52987ee0f1a904c7baa4912bf4843ab39dadf9b8f3e0d"}, + {file = "debugpy-1.8.7-py2.py3-none-any.whl", hash = "sha256:57b00de1c8d2c84a61b90880f7e5b6deaf4c312ecbde3a0e8912f2a56c4ac9ae"}, + {file = "debugpy-1.8.7.zip", hash = "sha256:18b8f731ed3e2e1df8e9cdaa23fb1fc9c24e570cd0081625308ec51c82efe42e"}, +] + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +optional = false +python-versions = ">=3.5" +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] + +[[package]] +name = "dgl" +version = "2.4.0" +description = "Deep Graph Library" +optional = false +python-versions = "*" +files = [ + {file = "dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:bf4d4d0d9300e79281e38627844651fe6355946d933e21d6a8828ce7d7539d00"}, +] + +[package.dependencies] +networkx = ">=2.1" +numpy = ">=1.14.0" +packaging = "*" +pandas = "*" +psutil = ">=5.8.0" +pydantic = ">=2.0" +pyyaml = "*" +requests = ">=2.19.0" +scipy = ">=1.1.0" +torch = "<=2.4.0" +tqdm = "*" + +[package.source] +type = "url" +url = "https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl" + +[[package]] +name = "executing" +version = "2.1.0" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.8" +files = [ + {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, + {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + +[[package]] +name = "filelock" +version = "3.16.1" +description = "A platform independent file lock." +optional = false +python-versions = ">=3.8" +files = [ + {file = "filelock-3.16.1-py3-none-any.whl", hash = "sha256:2082e5703d51fbf98ea75855d9d5527e33d8ff23099bec374a134febee6946b0"}, + {file = "filelock-3.16.1.tar.gz", hash = "sha256:c249fbfcd5db47e5e2d6d62198e565475ee65e4831e2561c8e313fa7eb961435"}, +] + +[package.extras] +docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4.1)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.2)", "pytest (>=8.3.3)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.4)"] +typing = ["typing-extensions (>=4.12.2)"] + +[[package]] +name = "flatbuffers" +version = "2.0.7" +description = "The FlatBuffers serialization format for Python" +optional = false +python-versions = "*" +files = [ + {file = "flatbuffers-2.0.7-py2.py3-none-any.whl", hash = "sha256:71e135d533be527192819aaab757c5e3d109cb10fbb01e687f6bdb7a61ad39d1"}, + {file = "flatbuffers-2.0.7.tar.gz", hash = "sha256:0ae7d69c5b82bf41962ca5fde9cc43033bc9501311d975fd5a25e8a7d29c1245"}, +] + +[[package]] +name = "frozenlist" +version = "1.4.1" +description = "A list-like structure which implements collections.abc.MutableSequence" +optional = false +python-versions = ">=3.8" +files = [ + {file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:f9aa1878d1083b276b0196f2dfbe00c9b7e752475ed3b682025ff20c1c1f51ac"}, + {file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:29acab3f66f0f24674b7dc4736477bcd4bc3ad4b896f5f45379a67bce8b96868"}, + {file = "frozenlist-1.4.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:74fb4bee6880b529a0c6560885fce4dc95936920f9f20f53d99a213f7bf66776"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:590344787a90ae57d62511dd7c736ed56b428f04cd8c161fcc5e7232c130c69a"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:068b63f23b17df8569b7fdca5517edef76171cf3897eb68beb01341131fbd2ad"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c849d495bf5154cd8da18a9eb15db127d4dba2968d88831aff6f0331ea9bd4c"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9750cc7fe1ae3b1611bb8cfc3f9ec11d532244235d75901fb6b8e42ce9229dfe"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9b2de4cf0cdd5bd2dee4c4f63a653c61d2408055ab77b151c1957f221cabf2a"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0633c8d5337cb5c77acbccc6357ac49a1770b8c487e5b3505c57b949b4b82e98"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:27657df69e8801be6c3638054e202a135c7f299267f1a55ed3a598934f6c0d75"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:f9a3ea26252bd92f570600098783d1371354d89d5f6b7dfd87359d669f2109b5"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:4f57dab5fe3407b6c0c1cc907ac98e8a189f9e418f3b6e54d65a718aaafe3950"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e02a0e11cf6597299b9f3bbd3f93d79217cb90cfd1411aec33848b13f5c656cc"}, + {file = "frozenlist-1.4.1-cp310-cp310-win32.whl", hash = "sha256:a828c57f00f729620a442881cc60e57cfcec6842ba38e1b19fd3e47ac0ff8dc1"}, + {file = "frozenlist-1.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:f56e2333dda1fe0f909e7cc59f021eba0d2307bc6f012a1ccf2beca6ba362439"}, + {file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a0cb6f11204443f27a1628b0e460f37fb30f624be6051d490fa7d7e26d4af3d0"}, + {file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b46c8ae3a8f1f41a0d2ef350c0b6e65822d80772fe46b653ab6b6274f61d4a49"}, + {file = "frozenlist-1.4.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fde5bd59ab5357e3853313127f4d3565fc7dad314a74d7b5d43c22c6a5ed2ced"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:722e1124aec435320ae01ee3ac7bec11a5d47f25d0ed6328f2273d287bc3abb0"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2471c201b70d58a0f0c1f91261542a03d9a5e088ed3dc6c160d614c01649c106"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c757a9dd70d72b076d6f68efdbb9bc943665ae954dad2801b874c8c69e185068"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f146e0911cb2f1da549fc58fc7bcd2b836a44b79ef871980d605ec392ff6b0d2"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f9c515e7914626b2a2e1e311794b4c35720a0be87af52b79ff8e1429fc25f19"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c302220494f5c1ebeb0912ea782bcd5e2f8308037b3c7553fad0e48ebad6ad82"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:442acde1e068288a4ba7acfe05f5f343e19fac87bfc96d89eb886b0363e977ec"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:1b280e6507ea8a4fa0c0a7150b4e526a8d113989e28eaaef946cc77ffd7efc0a"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:fe1a06da377e3a1062ae5fe0926e12b84eceb8a50b350ddca72dc85015873f74"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:db9e724bebd621d9beca794f2a4ff1d26eed5965b004a97f1f1685a173b869c2"}, + {file = "frozenlist-1.4.1-cp311-cp311-win32.whl", hash = "sha256:e774d53b1a477a67838a904131c4b0eef6b3d8a651f8b138b04f748fccfefe17"}, + {file = "frozenlist-1.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:fb3c2db03683b5767dedb5769b8a40ebb47d6f7f45b1b3e3b4b51ec8ad9d9825"}, + {file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1979bc0aeb89b33b588c51c54ab0161791149f2461ea7c7c946d95d5f93b56ae"}, + {file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cc7b01b3754ea68a62bd77ce6020afaffb44a590c2289089289363472d13aedb"}, + {file = "frozenlist-1.4.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c9c92be9fd329ac801cc420e08452b70e7aeab94ea4233a4804f0915c14eba9b"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c3894db91f5a489fc8fa6a9991820f368f0b3cbdb9cd8849547ccfab3392d86"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba60bb19387e13597fb059f32cd4d59445d7b18b69a745b8f8e5db0346f33480"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8aefbba5f69d42246543407ed2461db31006b0f76c4e32dfd6f42215a2c41d09"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:780d3a35680ced9ce682fbcf4cb9c2bad3136eeff760ab33707b71db84664e3a"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9acbb16f06fe7f52f441bb6f413ebae6c37baa6ef9edd49cdd567216da8600cd"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:23b701e65c7b36e4bf15546a89279bd4d8675faabc287d06bbcfac7d3c33e1e6"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:3e0153a805a98f5ada7e09826255ba99fb4f7524bb81bf6b47fb702666484ae1"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:dd9b1baec094d91bf36ec729445f7769d0d0cf6b64d04d86e45baf89e2b9059b"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:1a4471094e146b6790f61b98616ab8e44f72661879cc63fa1049d13ef711e71e"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5667ed53d68d91920defdf4035d1cdaa3c3121dc0b113255124bcfada1cfa1b8"}, + {file = "frozenlist-1.4.1-cp312-cp312-win32.whl", hash = "sha256:beee944ae828747fd7cb216a70f120767fc9f4f00bacae8543c14a6831673f89"}, + {file = "frozenlist-1.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:64536573d0a2cb6e625cf309984e2d873979709f2cf22839bf2d61790b448ad5"}, + {file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:20b51fa3f588ff2fe658663db52a41a4f7aa6c04f6201449c6c7c476bd255c0d"}, + {file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:410478a0c562d1a5bcc2f7ea448359fcb050ed48b3c6f6f4f18c313a9bdb1826"}, + {file = "frozenlist-1.4.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c6321c9efe29975232da3bd0af0ad216800a47e93d763ce64f291917a381b8eb"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48f6a4533887e189dae092f1cf981f2e3885175f7a0f33c91fb5b7b682b6bab6"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6eb73fa5426ea69ee0e012fb59cdc76a15b1283d6e32e4f8dc4482ec67d1194d"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbeb989b5cc29e8daf7f976b421c220f1b8c731cbf22b9130d8815418ea45887"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:32453c1de775c889eb4e22f1197fe3bdfe457d16476ea407472b9442e6295f7a"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693945278a31f2086d9bf3df0fe8254bbeaef1fe71e1351c3bd730aa7d31c41b"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:1d0ce09d36d53bbbe566fe296965b23b961764c0bcf3ce2fa45f463745c04701"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3a670dc61eb0d0eb7080890c13de3066790f9049b47b0de04007090807c776b0"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:dca69045298ce5c11fd539682cff879cc1e664c245d1c64da929813e54241d11"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:a06339f38e9ed3a64e4c4e43aec7f59084033647f908e4259d279a52d3757d09"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b7f2f9f912dca3934c1baec2e4585a674ef16fe00218d833856408c48d5beee7"}, + {file = "frozenlist-1.4.1-cp38-cp38-win32.whl", hash = "sha256:e7004be74cbb7d9f34553a5ce5fb08be14fb33bc86f332fb71cbe5216362a497"}, + {file = "frozenlist-1.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:5a7d70357e7cee13f470c7883a063aae5fe209a493c57d86eb7f5a6f910fae09"}, + {file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:bfa4a17e17ce9abf47a74ae02f32d014c5e9404b6d9ac7f729e01562bbee601e"}, + {file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b7e3ed87d4138356775346e6845cccbe66cd9e207f3cd11d2f0b9fd13681359d"}, + {file = "frozenlist-1.4.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c99169d4ff810155ca50b4da3b075cbde79752443117d89429595c2e8e37fed8"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edb678da49d9f72c9f6c609fbe41a5dfb9a9282f9e6a2253d5a91e0fc382d7c0"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6db4667b187a6742b33afbbaf05a7bc551ffcf1ced0000a571aedbb4aa42fc7b"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55fdc093b5a3cb41d420884cdaf37a1e74c3c37a31f46e66286d9145d2063bd0"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82e8211d69a4f4bc360ea22cd6555f8e61a1bd211d1d5d39d3d228b48c83a897"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89aa2c2eeb20957be2d950b85974b30a01a762f3308cd02bb15e1ad632e22dc7"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9d3e0c25a2350080e9319724dede4f31f43a6c9779be48021a7f4ebde8b2d742"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7268252af60904bf52c26173cbadc3a071cece75f873705419c8681f24d3edea"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:0c250a29735d4f15321007fb02865f0e6b6a41a6b88f1f523ca1596ab5f50bd5"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:96ec70beabbd3b10e8bfe52616a13561e58fe84c0101dd031dc78f250d5128b9"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:23b2d7679b73fe0e5a4560b672a39f98dfc6f60df63823b0a9970525325b95f6"}, + {file = "frozenlist-1.4.1-cp39-cp39-win32.whl", hash = "sha256:a7496bfe1da7fb1a4e1cc23bb67c58fab69311cc7d32b5a99c2007b4b2a0e932"}, + {file = "frozenlist-1.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:e6a20a581f9ce92d389a8c7d7c3dd47c81fd5d6e655c8dddf341e14aa48659d0"}, + {file = "frozenlist-1.4.1-py3-none-any.whl", hash = "sha256:04ced3e6a46b4cfffe20f9ae482818e34eba9b5fb0ce4056e4cc9b6e212d09b7"}, + {file = "frozenlist-1.4.1.tar.gz", hash = "sha256:c037a86e8513059a2613aaba4d817bb90b9d9b6b69aace3ce9c877e8c8ed402b"}, +] + +[[package]] +name = "fsspec" +version = "2024.9.0" +description = "File-system specification" +optional = false +python-versions = ">=3.8" +files = [ + {file = "fsspec-2024.9.0-py3-none-any.whl", hash = "sha256:a0947d552d8a6efa72cc2c730b12c41d043509156966cca4fb157b0f2a0c574b"}, + {file = "fsspec-2024.9.0.tar.gz", hash = "sha256:4b0afb90c2f21832df142f292649035d80b421f60a9e1c027802e5a0da2b04e8"}, +] + +[package.extras] +abfs = ["adlfs"] +adl = ["adlfs"] +arrow = ["pyarrow (>=1)"] +dask = ["dask", "distributed"] +dev = ["pre-commit", "ruff"] +doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] +dropbox = ["dropbox", "dropboxdrivefs", "requests"] +full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] +fuse = ["fusepy"] +gcs = ["gcsfs"] +git = ["pygit2"] +github = ["requests"] +gs = ["gcsfs"] +gui = ["panel"] +hdfs = ["pyarrow (>=1)"] +http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)"] +libarchive = ["libarchive-c"] +oci = ["ocifs"] +s3 = ["s3fs"] +sftp = ["paramiko"] +smb = ["smbprotocol"] +ssh = ["paramiko"] +test = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "numpy", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "requests"] +test-downstream = ["aiobotocore (>=2.5.4,<3.0.0)", "dask-expr", "dask[dataframe,test]", "moto[server] (>4,<5)", "pytest-timeout", "xarray"] +test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"] +tqdm = ["tqdm"] + +[[package]] +name = "gast" +version = "0.4.0" +description = "Python AST that abstracts the underlying Python version" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "gast-0.4.0-py3-none-any.whl", hash = "sha256:b7adcdd5adbebf1adf17378da5ba3f543684dbec47b1cda1f3997e573cd542c4"}, + {file = "gast-0.4.0.tar.gz", hash = "sha256:40feb7b8b8434785585ab224d1568b857edb18297e5a3047f1ba012bc83b42c1"}, +] + +[[package]] +name = "gensim" +version = "4.3.3" +description = "Python framework for fast Vector Space Modelling" +optional = false +python-versions = ">=3.8" +files = [ + {file = "gensim-4.3.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4e72840adfbea35c5804fd559bc0cb6bc9f439926220a37d852b7ce76eb325c1"}, + {file = "gensim-4.3.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4019263c9d9afae7c669f880c17e09461e77a71afce04ed4d79cf71a4cad2848"}, + {file = "gensim-4.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dea62d3e2ada547687bde6cbba37efa50b534db77e9d44fd5802676bb072c9d9"}, + {file = "gensim-4.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fac93ef5e44982defef9d3c1e4cd00245506b8a29cec19ec5e00f0221b8144c"}, + {file = "gensim-4.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:7c3409f755fb8d62da99cea65e7a40a99d21f8fd86443a3aaf2d90eb68995021"}, + {file = "gensim-4.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:99e7b70352aecc6c1674dde82b75f453e7a5d1cc71ac1cfbc460bf1fe20501b7"}, + {file = "gensim-4.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:32a4cac3f3c38af2069eab9524609fc92ebaeb2692b7280cfda365a3517a280a"}, + {file = "gensim-4.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c071b4329ed1be02446eb7ef637b94c68cf0080c15c57fbcde667fce2e49c3fe"}, + {file = "gensim-4.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d662bf96e3d741b6ab61a54be842a7cbf5e45193008b2f4225c758cafd7f9cdc"}, + {file = "gensim-4.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:a54bd53a0e6f991abb837f126663353657270e75be53287e8a568ada0b35b1b0"}, + {file = "gensim-4.3.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9a65ed1a8c1fc83890b4eb2a45ae2b32e82a0209c970c8c74694d0374c2415cb"}, + {file = "gensim-4.3.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4db485e08a0287e0fd6a029d89b90913d1df38f1dcd34cd2ab758873ba9255f3"}, + {file = "gensim-4.3.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7198987116373ab99f034b292a04ac841531d12b56345851c98b40a3fcd93a85"}, + {file = "gensim-4.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6237a50de4da7a037b19b2b6c430b6537243dcdedebf94afeb089e951953e601"}, + {file = "gensim-4.3.3-cp312-cp312-win_amd64.whl", hash = "sha256:c910c2d5a71f532273166a3a82762959973f0513b221a495fa5a2a07652ee66d"}, + {file = "gensim-4.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d7efa5e35d3f0ec02e6e8343b623c2c863be99e8c26866cf0bebd24fb10198c"}, + {file = "gensim-4.3.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2e8eaf5ef576f4d45e98cf87e7edda9afb469dff954a923402dc1ffc35195901"}, + {file = "gensim-4.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9161e52a6ec2a0580df66e9fac4ff7fc43efdc40674fbd4dd9e914796cc68bc3"}, + {file = "gensim-4.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a200d6ac522cdf91e6048e1a368318c6b1b6e0c79009dfd408345ea2b9d3c096"}, + {file = "gensim-4.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:065547124a93948926b88cb854e1c09750e9a4c7be92f55858159aa8a23359c3"}, + {file = "gensim-4.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688a13b9bba839fedc7f3da6806d5701a756ed940839702ba6d7f494e917baef"}, + {file = "gensim-4.3.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c560d28133cca58078221d60fce346f98f2c5e93d2ad42942f32c0d60903f65b"}, + {file = "gensim-4.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:832311f0c420c0841c98b9e6cc4d83ea362add6db917bf2d646de4bed48a29f7"}, + {file = "gensim-4.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1049f5bc2a84b21a1cb9976741826c0ebf25cfdff4a888361db4b4a697d99f0d"}, + {file = "gensim-4.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:e99b236b6638a30d7f878e2e21a94dab2f6d4b4fd3c242f44dca1341940cb0cb"}, + {file = "gensim-4.3.3.tar.gz", hash = "sha256:84852076a6a3d88d7dac5be245e24c21c3b819b565e14c1b61fa3e5ee76dcf57"}, +] + +[package.dependencies] +numpy = ">=1.18.5,<2.0" +scipy = ">=1.7.0,<1.14.0" +smart-open = ">=1.8.1" + +[package.extras] +distributed = ["Pyro4 (>=4.27)"] +docs = ["POT", "Pyro4", "Pyro4 (>=4.27)", "annoy", "matplotlib", "memory-profiler", "nltk", "pandas", "pytest", "pytest-cov", "scikit-learn", "sphinx (==5.1.1)", "sphinx-gallery (==0.11.1)", "sphinxcontrib-napoleon (==0.7)", "sphinxcontrib.programoutput (==0.17)", "statsmodels", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test = ["POT", "pytest", "pytest-cov", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test-win = ["POT", "pytest", "pytest-cov", "testfixtures"] + +[[package]] +name = "google-auth" +version = "2.35.0" +description = "Google Authentication Library" +optional = false +python-versions = ">=3.7" +files = [ + {file = "google_auth-2.35.0-py2.py3-none-any.whl", hash = "sha256:25df55f327ef021de8be50bad0dfd4a916ad0de96da86cd05661c9297723ad3f"}, + {file = "google_auth-2.35.0.tar.gz", hash = "sha256:f4c64ed4e01e8e8b646ef34c018f8bf3338df0c8e37d8b3bba40e7f574a3278a"}, +] + +[package.dependencies] +cachetools = ">=2.0.0,<6.0" +pyasn1-modules = ">=0.2.1" +rsa = ">=3.1.4,<5" + +[package.extras] +aiohttp = ["aiohttp (>=3.6.2,<4.0.0.dev0)", "requests (>=2.20.0,<3.0.0.dev0)"] +enterprise-cert = ["cryptography", "pyopenssl"] +pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] +reauth = ["pyu2f (>=0.1.5)"] +requests = ["requests (>=2.20.0,<3.0.0.dev0)"] + +[[package]] +name = "google-auth-oauthlib" +version = "1.0.0" +description = "Google Authentication Library" +optional = false +python-versions = ">=3.6" +files = [ + {file = "google-auth-oauthlib-1.0.0.tar.gz", hash = "sha256:e375064964820b47221a7e1b7ee1fd77051b6323c3f9e3e19785f78ab67ecfc5"}, + {file = "google_auth_oauthlib-1.0.0-py2.py3-none-any.whl", hash = "sha256:95880ca704928c300f48194d1770cf5b1462835b6e49db61445a520f793fd5fb"}, +] + +[package.dependencies] +google-auth = ">=2.15.0" +requests-oauthlib = ">=0.7.0" + +[package.extras] +tool = ["click (>=6.0.0)"] + +[[package]] +name = "google-pasta" +version = "0.2.0" +description = "pasta is an AST-based Python refactoring library" +optional = false +python-versions = "*" +files = [ + {file = "google-pasta-0.2.0.tar.gz", hash = "sha256:c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e"}, + {file = "google_pasta-0.2.0-py2-none-any.whl", hash = "sha256:4612951da876b1a10fe3960d7226f0c7682cf901e16ac06e473b267a5afa8954"}, + {file = "google_pasta-0.2.0-py3-none-any.whl", hash = "sha256:b32482794a366b5366a32c92a9a9201b107821889935a02b3e51f6b432ea84ed"}, +] + +[package.dependencies] +six = "*" + +[[package]] +name = "grpcio" +version = "1.66.2" +description = "HTTP/2-based RPC framework" +optional = false +python-versions = ">=3.8" +files = [ + {file = "grpcio-1.66.2-cp310-cp310-linux_armv7l.whl", hash = "sha256:fe96281713168a3270878255983d2cb1a97e034325c8c2c25169a69289d3ecfa"}, + {file = "grpcio-1.66.2-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:73fc8f8b9b5c4a03e802b3cd0c18b2b06b410d3c1dcbef989fdeb943bd44aff7"}, + {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:03b0b307ba26fae695e067b94cbb014e27390f8bc5ac7a3a39b7723fed085604"}, + {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d69ce1f324dc2d71e40c9261d3fdbe7d4c9d60f332069ff9b2a4d8a257c7b2b"}, + {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05bc2ceadc2529ab0b227b1310d249d95d9001cd106aa4d31e8871ad3c428d73"}, + {file = "grpcio-1.66.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8ac475e8da31484efa25abb774674d837b343afb78bb3bcdef10f81a93e3d6bf"}, + {file = "grpcio-1.66.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0be4e0490c28da5377283861bed2941d1d20ec017ca397a5df4394d1c31a9b50"}, + {file = "grpcio-1.66.2-cp310-cp310-win32.whl", hash = "sha256:4e504572433f4e72b12394977679161d495c4c9581ba34a88d843eaf0f2fbd39"}, + {file = "grpcio-1.66.2-cp310-cp310-win_amd64.whl", hash = "sha256:2018b053aa15782db2541ca01a7edb56a0bf18c77efed975392583725974b249"}, + {file = "grpcio-1.66.2-cp311-cp311-linux_armv7l.whl", hash = "sha256:2335c58560a9e92ac58ff2bc5649952f9b37d0735608242973c7a8b94a6437d8"}, + {file = "grpcio-1.66.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:45a3d462826f4868b442a6b8fdbe8b87b45eb4f5b5308168c156b21eca43f61c"}, + {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:a9539f01cb04950fd4b5ab458e64a15f84c2acc273670072abe49a3f29bbad54"}, + {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ce89f5876662f146d4c1f695dda29d4433a5d01c8681fbd2539afff535da14d4"}, + {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d25a14af966438cddf498b2e338f88d1c9706f3493b1d73b93f695c99c5f0e2a"}, + {file = "grpcio-1.66.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6001e575b8bbd89eee11960bb640b6da6ae110cf08113a075f1e2051cc596cae"}, + {file = "grpcio-1.66.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4ea1d062c9230278793820146c95d038dc0f468cbdd172eec3363e42ff1c7d01"}, + {file = "grpcio-1.66.2-cp311-cp311-win32.whl", hash = "sha256:38b68498ff579a3b1ee8f93a05eb48dc2595795f2f62716e797dc24774c1aaa8"}, + {file = "grpcio-1.66.2-cp311-cp311-win_amd64.whl", hash = "sha256:6851de821249340bdb100df5eacfecfc4e6075fa85c6df7ee0eb213170ec8e5d"}, + {file = "grpcio-1.66.2-cp312-cp312-linux_armv7l.whl", hash = "sha256:802d84fd3d50614170649853d121baaaa305de7b65b3e01759247e768d691ddf"}, + {file = "grpcio-1.66.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:80fd702ba7e432994df208f27514280b4b5c6843e12a48759c9255679ad38db8"}, + {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:12fda97ffae55e6526825daf25ad0fa37483685952b5d0f910d6405c87e3adb6"}, + {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:950da58d7d80abd0ea68757769c9db0a95b31163e53e5bb60438d263f4bed7b7"}, + {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e636ce23273683b00410f1971d209bf3689238cf5538d960adc3cdfe80dd0dbd"}, + {file = "grpcio-1.66.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:a917d26e0fe980b0ac7bfcc1a3c4ad6a9a4612c911d33efb55ed7833c749b0ee"}, + {file = "grpcio-1.66.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:49f0ca7ae850f59f828a723a9064cadbed90f1ece179d375966546499b8a2c9c"}, + {file = "grpcio-1.66.2-cp312-cp312-win32.whl", hash = "sha256:31fd163105464797a72d901a06472860845ac157389e10f12631025b3e4d0453"}, + {file = "grpcio-1.66.2-cp312-cp312-win_amd64.whl", hash = "sha256:ff1f7882e56c40b0d33c4922c15dfa30612f05fb785074a012f7cda74d1c3679"}, + {file = "grpcio-1.66.2-cp313-cp313-linux_armv7l.whl", hash = "sha256:3b00efc473b20d8bf83e0e1ae661b98951ca56111feb9b9611df8efc4fe5d55d"}, + {file = "grpcio-1.66.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1caa38fb22a8578ab8393da99d4b8641e3a80abc8fd52646f1ecc92bcb8dee34"}, + {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_aarch64.whl", hash = "sha256:c408f5ef75cfffa113cacd8b0c0e3611cbfd47701ca3cdc090594109b9fcbaed"}, + {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c806852deaedee9ce8280fe98955c9103f62912a5b2d5ee7e3eaa284a6d8d8e7"}, + {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f145cc21836c332c67baa6fc81099d1d27e266401565bf481948010d6ea32d46"}, + {file = "grpcio-1.66.2-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:73e3b425c1e155730273f73e419de3074aa5c5e936771ee0e4af0814631fb30a"}, + {file = "grpcio-1.66.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:9c509a4f78114cbc5f0740eb3d7a74985fd2eff022971bc9bc31f8bc93e66a3b"}, + {file = "grpcio-1.66.2-cp313-cp313-win32.whl", hash = "sha256:20657d6b8cfed7db5e11b62ff7dfe2e12064ea78e93f1434d61888834bc86d75"}, + {file = "grpcio-1.66.2-cp313-cp313-win_amd64.whl", hash = "sha256:fb70487c95786e345af5e854ffec8cb8cc781bcc5df7930c4fbb7feaa72e1cdf"}, + {file = "grpcio-1.66.2-cp38-cp38-linux_armv7l.whl", hash = "sha256:a18e20d8321c6400185b4263e27982488cb5cdd62da69147087a76a24ef4e7e3"}, + {file = "grpcio-1.66.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:02697eb4a5cbe5a9639f57323b4c37bcb3ab2d48cec5da3dc2f13334d72790dd"}, + {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:99a641995a6bc4287a6315989ee591ff58507aa1cbe4c2e70d88411c4dcc0839"}, + {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ed71e81782966ffead60268bbda31ea3f725ebf8aa73634d5dda44f2cf3fb9c"}, + {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbd27c24a4cc5e195a7f56cfd9312e366d5d61b86e36d46bbe538457ea6eb8dd"}, + {file = "grpcio-1.66.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d9a9724a156c8ec6a379869b23ba3323b7ea3600851c91489b871e375f710bc8"}, + {file = "grpcio-1.66.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d8d4732cc5052e92cea2f78b233c2e2a52998ac40cd651f40e398893ad0d06ec"}, + {file = "grpcio-1.66.2-cp38-cp38-win32.whl", hash = "sha256:7b2c86457145ce14c38e5bf6bdc19ef88e66c5fee2c3d83285c5aef026ba93b3"}, + {file = "grpcio-1.66.2-cp38-cp38-win_amd64.whl", hash = "sha256:e88264caad6d8d00e7913996030bac8ad5f26b7411495848cc218bd3a9040b6c"}, + {file = "grpcio-1.66.2-cp39-cp39-linux_armv7l.whl", hash = "sha256:c400ba5675b67025c8a9f48aa846f12a39cf0c44df5cd060e23fda5b30e9359d"}, + {file = "grpcio-1.66.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:66a0cd8ba6512b401d7ed46bb03f4ee455839957f28b8d61e7708056a806ba6a"}, + {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:06de8ec0bd71be123eec15b0e0d457474931c2c407869b6c349bd9bed4adbac3"}, + {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb57870449dfcfac428afbb5a877829fcb0d6db9d9baa1148705739e9083880e"}, + {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b672abf90a964bfde2d0ecbce30f2329a47498ba75ce6f4da35a2f4532b7acbc"}, + {file = "grpcio-1.66.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:ad2efdbe90c73b0434cbe64ed372e12414ad03c06262279b104a029d1889d13e"}, + {file = "grpcio-1.66.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9c3a99c519f4638e700e9e3f83952e27e2ea10873eecd7935823dab0c1c9250e"}, + {file = "grpcio-1.66.2-cp39-cp39-win32.whl", hash = "sha256:78fa51ebc2d9242c0fc5db0feecc57a9943303b46664ad89921f5079e2e4ada7"}, + {file = "grpcio-1.66.2-cp39-cp39-win_amd64.whl", hash = "sha256:728bdf36a186e7f51da73be7f8d09457a03061be848718d0edf000e709418987"}, + {file = "grpcio-1.66.2.tar.gz", hash = "sha256:563588c587b75c34b928bc428548e5b00ea38c46972181a4d8b75ba7e3f24231"}, +] + +[package.extras] +protobuf = ["grpcio-tools (>=1.66.2)"] + +[[package]] +name = "h5py" +version = "3.11.0" +description = "Read and write HDF5 files from Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "h5py-3.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1625fd24ad6cfc9c1ccd44a66dac2396e7ee74940776792772819fc69f3a3731"}, + {file = "h5py-3.11.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c072655ad1d5fe9ef462445d3e77a8166cbfa5e599045f8aa3c19b75315f10e5"}, + {file = "h5py-3.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77b19a40788e3e362b54af4dcf9e6fde59ca016db2c61360aa30b47c7b7cef00"}, + {file = "h5py-3.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:ef4e2f338fc763f50a8113890f455e1a70acd42a4d083370ceb80c463d803972"}, + {file = "h5py-3.11.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bbd732a08187a9e2a6ecf9e8af713f1d68256ee0f7c8b652a32795670fb481ba"}, + {file = "h5py-3.11.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75bd7b3d93fbeee40860fd70cdc88df4464e06b70a5ad9ce1446f5f32eb84007"}, + {file = "h5py-3.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52c416f8eb0daae39dabe71415cb531f95dce2d81e1f61a74537a50c63b28ab3"}, + {file = "h5py-3.11.0-cp311-cp311-win_amd64.whl", hash = "sha256:083e0329ae534a264940d6513f47f5ada617da536d8dccbafc3026aefc33c90e"}, + {file = "h5py-3.11.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a76cae64080210389a571c7d13c94a1a6cf8cb75153044fd1f822a962c97aeab"}, + {file = "h5py-3.11.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f3736fe21da2b7d8a13fe8fe415f1272d2a1ccdeff4849c1421d2fb30fd533bc"}, + {file = "h5py-3.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa6ae84a14103e8dc19266ef4c3e5d7c00b68f21d07f2966f0ca7bdb6c2761fb"}, + {file = "h5py-3.11.0-cp312-cp312-win_amd64.whl", hash = "sha256:21dbdc5343f53b2e25404673c4f00a3335aef25521bd5fa8c707ec3833934892"}, + {file = "h5py-3.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:754c0c2e373d13d6309f408325343b642eb0f40f1a6ad21779cfa9502209e150"}, + {file = "h5py-3.11.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:731839240c59ba219d4cb3bc5880d438248533366f102402cfa0621b71796b62"}, + {file = "h5py-3.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ec9df3dd2018904c4cc06331951e274f3f3fd091e6d6cc350aaa90fa9b42a76"}, + {file = "h5py-3.11.0-cp38-cp38-win_amd64.whl", hash = "sha256:55106b04e2c83dfb73dc8732e9abad69d83a436b5b82b773481d95d17b9685e1"}, + {file = "h5py-3.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f4e025e852754ca833401777c25888acb96889ee2c27e7e629a19aee288833f0"}, + {file = "h5py-3.11.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6c4b760082626120031d7902cd983d8c1f424cdba2809f1067511ef283629d4b"}, + {file = "h5py-3.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67462d0669f8f5459529de179f7771bd697389fcb3faab54d63bf788599a48ea"}, + {file = "h5py-3.11.0-cp39-cp39-win_amd64.whl", hash = "sha256:d9c944d364688f827dc889cf83f1fca311caf4fa50b19f009d1f2b525edd33a3"}, + {file = "h5py-3.11.0.tar.gz", hash = "sha256:7b7e8f78072a2edec87c9836f25f34203fd492a4475709a18b417a33cfb21fa9"}, +] + +[package.dependencies] +numpy = ">=1.17.3" + +[[package]] +name = "idna" +version = "3.10" +description = "Internationalized Domain Names in Applications (IDNA)" +optional = false +python-versions = ">=3.6" +files = [ + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, +] + +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + +[[package]] +name = "importlib-metadata" +version = "8.5.0" +description = "Read metadata from Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "importlib_metadata-8.5.0-py3-none-any.whl", hash = "sha256:45e54197d28b7a7f1559e60b95e7c567032b602131fbd588f1497f47880aa68b"}, + {file = "importlib_metadata-8.5.0.tar.gz", hash = "sha256:71522656f0abace1d072b9e5481a48f07c138e00f079c38c8f883823f9c26bd7"}, +] + +[package.dependencies] +zipp = ">=3.20" + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +enabler = ["pytest-enabler (>=2.2)"] +perf = ["ipython"] +test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-perf (>=0.9.2)"] +type = ["pytest-mypy"] + +[[package]] +name = "ipykernel" +version = "6.29.5" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, + {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=24" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.12.3" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, + {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "sys_platform == \"darwin\""} +backcall = "*" +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} +pickleshare = "*" +prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" +pygments = ">=2.4.0" +stack-data = "*" +traitlets = ">=5" +typing-extensions = {version = "*", markers = "python_version < \"3.10\""} + +[package.extras] +all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +black = ["black"] +doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +kernel = ["ipykernel"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] + +[[package]] +name = "jedi" +version = "0.19.1" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +files = [ + {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, + {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, +] + +[package.dependencies] +parso = ">=0.8.3,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] + +[[package]] +name = "jinja2" +version = "3.1.4" +description = "A very fast and expressive template engine." +optional = false +python-versions = ">=3.7" +files = [ + {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, + {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, +] + +[package.dependencies] +MarkupSafe = ">=2.0" + +[package.extras] +i18n = ["Babel (>=2.7)"] + +[[package]] +name = "joblib" +version = "1.4.2" +description = "Lightweight pipelining with Python functions" +optional = false +python-versions = ">=3.8" +files = [ + {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, + {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, +] + +[[package]] +name = "jupyter-client" +version = "8.6.3" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-core" +version = "5.7.2" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, + {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "keras" +version = "2.7.0" +description = "Deep learning for humans." +optional = false +python-versions = "*" +files = [ + {file = "keras-2.7.0-py2.py3-none-any.whl", hash = "sha256:0c33ae1f728064ca0d35dfba999e9c316f03623bf5688c82fb83cc74a80ea248"}, +] + +[[package]] +name = "keras-preprocessing" +version = "1.1.2" +description = "Easy data preprocessing and data augmentation for deep learning models" +optional = false +python-versions = "*" +files = [ + {file = "Keras_Preprocessing-1.1.2-py2.py3-none-any.whl", hash = "sha256:7b82029b130ff61cc99b55f3bd27427df4838576838c5b2f65940e4fcec99a7b"}, + {file = "Keras_Preprocessing-1.1.2.tar.gz", hash = "sha256:add82567c50c8bc648c14195bf544a5ce7c1f76761536956c3d2978970179ef3"}, +] + +[package.dependencies] +numpy = ">=1.9.1" +six = ">=1.9.0" + +[package.extras] +image = ["Pillow (>=5.2.0)", "scipy (>=0.14)"] +pep8 = ["flake8"] +tests = ["Pillow", "keras", "pandas", "pytest", "pytest-cov", "pytest-xdist", "tensorflow"] + +[[package]] +name = "kiwisolver" +version = "1.4.7" +description = "A fast implementation of the Cassowary constraint solver" +optional = false +python-versions = ">=3.8" +files = [ + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8a9c83f75223d5e48b0bc9cb1bf2776cf01563e00ade8775ffe13b0b6e1af3a6"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:58370b1ffbd35407444d57057b57da5d6549d2d854fa30249771775c63b5fe17"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa0abdf853e09aff551db11fce173e2177d00786c688203f52c87ad7fcd91ef9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8d53103597a252fb3ab8b5845af04c7a26d5e7ea8122303dd7a021176a87e8b9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:88f17c5ffa8e9462fb79f62746428dd57b46eb931698e42e990ad63103f35e6c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88a9ca9c710d598fd75ee5de59d5bda2684d9db36a9f50b6125eaea3969c2599"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4d742cb7af1c28303a51b7a27aaee540e71bb8e24f68c736f6f2ffc82f2bf05"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28c7fea2196bf4c2f8d46a0415c77a1c480cc0724722f23d7410ffe9842c407"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e968b84db54f9d42046cf154e02911e39c0435c9801681e3fc9ce8a3c4130278"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0c18ec74c0472de033e1bebb2911c3c310eef5649133dd0bedf2a169a1b269e5"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8f0ea6da6d393d8b2e187e6a5e3fb81f5862010a40c3945e2c6d12ae45cfb2ad"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:f106407dda69ae456dd1227966bf445b157ccc80ba0dff3802bb63f30b74e895"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84ec80df401cfee1457063732d90022f93951944b5b58975d34ab56bb150dfb3"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win32.whl", hash = "sha256:71bb308552200fb2c195e35ef05de12f0c878c07fc91c270eb3d6e41698c3bcc"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_amd64.whl", hash = "sha256:44756f9fd339de0fb6ee4f8c1696cfd19b2422e0d70b4cefc1cc7f1f64045a8c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_arm64.whl", hash = "sha256:78a42513018c41c2ffd262eb676442315cbfe3c44eed82385c2ed043bc63210a"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d2b0e12a42fb4e72d509fc994713d099cbb15ebf1103545e8a45f14da2dfca54"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a8781ac3edc42ea4b90bc23e7d37b665d89423818e26eb6df90698aa2287c95"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46707a10836894b559e04b0fd143e343945c97fd170d69a2d26d640b4e297935"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef97b8df011141c9b0f6caf23b29379f87dd13183c978a30a3c546d2c47314cb"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab58c12a2cd0fc769089e6d38466c46d7f76aced0a1f54c77652446733d2d02"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:803b8e1459341c1bb56d1c5c010406d5edec8a0713a0945851290a7930679b51"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9a9e8a507420fe35992ee9ecb302dab68550dedc0da9e2880dd88071c5fb052"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18077b53dc3bb490e330669a99920c5e6a496889ae8c63b58fbc57c3d7f33a18"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6af936f79086a89b3680a280c47ea90b4df7047b5bdf3aa5c524bbedddb9e545"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3abc5b19d24af4b77d1598a585b8a719beb8569a71568b66f4ebe1fb0449460b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:933d4de052939d90afbe6e9d5273ae05fb836cc86c15b686edd4b3560cc0ee36"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:65e720d2ab2b53f1f72fb5da5fb477455905ce2c88aaa671ff0a447c2c80e8e3"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3bf1ed55088f214ba6427484c59553123fdd9b218a42bbc8c6496d6754b1e523"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win32.whl", hash = "sha256:4c00336b9dd5ad96d0a558fd18a8b6f711b7449acce4c157e7343ba92dd0cf3d"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_amd64.whl", hash = "sha256:929e294c1ac1e9f615c62a4e4313ca1823ba37326c164ec720a803287c4c499b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_arm64.whl", hash = "sha256:e33e8fbd440c917106b237ef1a2f1449dfbb9b6f6e1ce17c94cd6a1e0d438376"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:5360cc32706dab3931f738d3079652d20982511f7c0ac5711483e6eab08efff2"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:942216596dc64ddb25adb215c3c783215b23626f8d84e8eff8d6d45c3f29f75a"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:48b571ecd8bae15702e4f22d3ff6a0f13e54d3d00cd25216d5e7f658242065ee"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad42ba922c67c5f219097b28fae965e10045ddf145d2928bfac2eb2e17673640"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:612a10bdae23404a72941a0fc8fa2660c6ea1217c4ce0dbcab8a8f6543ea9e7f"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9e838bba3a3bac0fe06d849d29772eb1afb9745a59710762e4ba3f4cb8424483"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:22f499f6157236c19f4bbbd472fa55b063db77a16cd74d49afe28992dff8c258"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693902d433cf585133699972b6d7c42a8b9f8f826ebcaf0132ff55200afc599e"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4e77f2126c3e0b0d055f44513ed349038ac180371ed9b52fe96a32aa071a5107"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:657a05857bda581c3656bfc3b20e353c232e9193eb167766ad2dc58b56504948"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4bfa75a048c056a411f9705856abfc872558e33c055d80af6a380e3658766038"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:34ea1de54beef1c104422d210c47c7d2a4999bdecf42c7b5718fbe59a4cac383"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:90da3b5f694b85231cf93586dad5e90e2d71b9428f9aad96952c99055582f520"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win32.whl", hash = "sha256:18e0cca3e008e17fe9b164b55735a325140a5a35faad8de92dd80265cd5eb80b"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_amd64.whl", hash = "sha256:58cb20602b18f86f83a5c87d3ee1c766a79c0d452f8def86d925e6c60fbf7bfb"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_arm64.whl", hash = "sha256:f5a8b53bdc0b3961f8b6125e198617c40aeed638b387913bf1ce78afb1b0be2a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:2e6039dcbe79a8e0f044f1c39db1986a1b8071051efba3ee4d74f5b365f5226e"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a1ecf0ac1c518487d9d23b1cd7139a6a65bc460cd101ab01f1be82ecf09794b6"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7ab9ccab2b5bd5702ab0803676a580fffa2aa178c2badc5557a84cc943fcf750"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f816dd2277f8d63d79f9c8473a79fe54047bc0467754962840782c575522224d"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf8bcc23ceb5a1b624572a1623b9f79d2c3b337c8c455405ef231933a10da379"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dea0bf229319828467d7fca8c7c189780aa9ff679c94539eed7532ebe33ed37c"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c06a4c7cf15ec739ce0e5971b26c93638730090add60e183530d70848ebdd34"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5337ec7809bcd0f424c6b705ecf97941c46279cf5ed92311782c7c9c2026f07f"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4c26ed10c4f6fa6ddb329a5120ba3b6db349ca192ae211e882970bfc9d91420b"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c619b101e6de2222c1fcb0531e1b17bbffbe54294bfba43ea0d411d428618c27"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:073a36c8273647592ea332e816e75ef8da5c303236ec0167196793eb1e34657a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3ce6b2b0231bda412463e152fc18335ba32faf4e8c23a754ad50ffa70e4091ee"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win32.whl", hash = "sha256:f4c9aee212bc89d4e13f58be11a56cc8036cabad119259d12ace14b34476fd07"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_amd64.whl", hash = "sha256:8a3ec5aa8e38fc4c8af308917ce12c536f1c88452ce554027e55b22cbbfbff76"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_arm64.whl", hash = "sha256:76c8094ac20ec259471ac53e774623eb62e6e1f56cd8690c67ce6ce4fcb05650"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5d5abf8f8ec1f4e22882273c423e16cae834c36856cac348cfbfa68e01c40f3a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:aeb3531b196ef6f11776c21674dba836aeea9d5bd1cf630f869e3d90b16cfade"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b7d755065e4e866a8086c9bdada157133ff466476a2ad7861828e17b6026e22c"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08471d4d86cbaec61f86b217dd938a83d85e03785f51121e791a6e6689a3be95"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7bbfcb7165ce3d54a3dfbe731e470f65739c4c1f85bb1018ee912bae139e263b"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d34eb8494bea691a1a450141ebb5385e4b69d38bb8403b5146ad279f4b30fa3"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9242795d174daa40105c1d86aba618e8eab7bf96ba8c3ee614da8302a9f95503"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a0f64a48bb81af7450e641e3fe0b0394d7381e342805479178b3d335d60ca7cf"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8e045731a5416357638d1700927529e2b8ab304811671f665b225f8bf8d8f933"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4322872d5772cae7369f8351da1edf255a604ea7087fe295411397d0cfd9655e"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e1631290ee9271dffe3062d2634c3ecac02c83890ada077d225e081aca8aab89"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:edcfc407e4eb17e037bca59be0e85a2031a2ac87e4fed26d3e9df88b4165f92d"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:4d05d81ecb47d11e7f8932bd8b61b720bf0b41199358f3f5e36d38e28f0532c5"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win32.whl", hash = "sha256:b38ac83d5f04b15e515fd86f312479d950d05ce2368d5413d46c088dda7de90a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win_amd64.whl", hash = "sha256:d83db7cde68459fc803052a55ace60bea2bae361fc3b7a6d5da07e11954e4b09"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3f9362ecfca44c863569d3d3c033dbe8ba452ff8eed6f6b5806382741a1334bd"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e8df2eb9b2bac43ef8b082e06f750350fbbaf2887534a5be97f6cf07b19d9583"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f32d6edbc638cde7652bd690c3e728b25332acbadd7cad670cc4a02558d9c417"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e2e6c39bd7b9372b0be21456caab138e8e69cc0fc1190a9dfa92bd45a1e6e904"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dda56c24d869b1193fcc763f1284b9126550eaf84b88bbc7256e15028f19188a"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79849239c39b5e1fd906556c474d9b0439ea6792b637511f3fe3a41158d89ca8"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5e3bc157fed2a4c02ec468de4ecd12a6e22818d4f09cde2c31ee3226ffbefab2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3da53da805b71e41053dc670f9a820d1157aae77b6b944e08024d17bcd51ef88"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:8705f17dfeb43139a692298cb6637ee2e59c0194538153e83e9ee0c75c2eddde"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:82a5c2f4b87c26bb1a0ef3d16b5c4753434633b83d365cc0ddf2770c93829e3c"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce8be0466f4c0d585cdb6c1e2ed07232221df101a4c6f28821d2aa754ca2d9e2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:409afdfe1e2e90e6ee7fc896f3df9a7fec8e793e58bfa0d052c8a82f99c37abb"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5b9c3f4ee0b9a439d2415012bd1b1cc2df59e4d6a9939f4d669241d30b414327"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win32.whl", hash = "sha256:a79ae34384df2b615eefca647a2873842ac3b596418032bef9a7283675962644"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_amd64.whl", hash = "sha256:cf0438b42121a66a3a667de17e779330fc0f20b0d97d59d2f2121e182b0505e4"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_arm64.whl", hash = "sha256:764202cc7e70f767dab49e8df52c7455e8de0df5d858fa801a11aa0d882ccf3f"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:94252291e3fe68001b1dd747b4c0b3be12582839b95ad4d1b641924d68fd4643"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:5b7dfa3b546da08a9f622bb6becdb14b3e24aaa30adba66749d38f3cc7ea9706"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3de6481f4ed8b734da5df134cd5a6a64fe32124fe83dde1e5b5f29fe30b1e6"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a91b5f9f1205845d488c928e8570dcb62b893372f63b8b6e98b863ebd2368ff2"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40fa14dbd66b8b8f470d5fc79c089a66185619d31645f9b0773b88b19f7223c4"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:eb542fe7933aa09d8d8f9d9097ef37532a7df6497819d16efe4359890a2f417a"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bfa1acfa0c54932d5607e19a2c24646fb4c1ae2694437789129cf099789a3b00"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:eee3ea935c3d227d49b4eb85660ff631556841f6e567f0f7bda972df6c2c9935"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f3160309af4396e0ed04db259c3ccbfdc3621b5559b5453075e5de555e1f3a1b"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a17f6a29cf8935e587cc8a4dbfc8368c55edc645283db0ce9801016f83526c2d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10849fb2c1ecbfae45a693c070e0320a91b35dd4bcf58172c023b994283a124d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:ac542bf38a8a4be2dc6b15248d36315ccc65f0743f7b1a76688ffb6b5129a5c2"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8b01aac285f91ca889c800042c35ad3b239e704b150cfd3382adfc9dcc780e39"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:48be928f59a1f5c8207154f935334d374e79f2b5d212826307d072595ad76a2e"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f37cfe618a117e50d8c240555331160d73d0411422b59b5ee217843d7b693608"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:599b5c873c63a1f6ed7eead644a8a380cfbdf5db91dcb6f85707aaab213b1674"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:801fa7802e5cfabe3ab0c81a34c323a319b097dfb5004be950482d882f3d7225"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0c6c43471bc764fad4bc99c5c2d6d16a676b1abf844ca7c8702bdae92df01ee0"}, + {file = "kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60"}, +] + +[[package]] +name = "libclang" +version = "18.1.1" +description = "Clang Python Bindings, mirrored from the official LLVM repo: https://github.com/llvm/llvm-project/tree/main/clang/bindings/python, to make the installation process easier." +optional = false +python-versions = "*" +files = [ + {file = "libclang-18.1.1-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:6f14c3f194704e5d09769108f03185fce7acaf1d1ae4bbb2f30a72c2400cb7c5"}, + {file = "libclang-18.1.1-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:83ce5045d101b669ac38e6da8e58765f12da2d3aafb3b9b98d88b286a60964d8"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2010_x86_64.whl", hash = "sha256:c533091d8a3bbf7460a00cb6c1a71da93bffe148f172c7d03b1c31fbf8aa2a0b"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2014_aarch64.whl", hash = "sha256:54dda940a4a0491a9d1532bf071ea3ef26e6dbaf03b5000ed94dd7174e8f9592"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2014_armv7l.whl", hash = "sha256:cf4a99b05376513717ab5d82a0db832c56ccea4fd61a69dbb7bccf2dfb207dbe"}, + {file = "libclang-18.1.1-py2.py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:69f8eb8f65c279e765ffd28aaa7e9e364c776c17618af8bff22a8df58677ff4f"}, + {file = "libclang-18.1.1-py2.py3-none-win_amd64.whl", hash = "sha256:4dd2d3b82fab35e2bf9ca717d7b63ac990a3519c7e312f19fa8e86dcc712f7fb"}, + {file = "libclang-18.1.1-py2.py3-none-win_arm64.whl", hash = "sha256:3f0e1f49f04d3cd198985fea0511576b0aee16f9ff0e0f0cad7f9c57ec3c20e8"}, + {file = "libclang-18.1.1.tar.gz", hash = "sha256:a1214966d08d73d971287fc3ead8dfaf82eb07fb197680d8b3859dbbbbf78250"}, +] + +[[package]] +name = "lightning-utilities" +version = "0.11.7" +description = "Lightning toolbox for across the our ecosystem." +optional = false +python-versions = ">=3.8" +files = [ + {file = "lightning_utilities-0.11.7-py3-none-any.whl", hash = "sha256:84eebbc700edbfaa6c005458fc911a7fe7f99f02970b00cb322b4d2767deba98"}, + {file = "lightning_utilities-0.11.7.tar.gz", hash = "sha256:7e8458a9f0bfb51ffe6c5ab3957aa37b2792fe8281dd9f1b66aa513a558ec4ce"}, +] + +[package.dependencies] +packaging = ">=17.1" +setuptools = "*" +typing-extensions = "*" + +[package.extras] +cli = ["fire"] +docs = ["requests (>=2.0.0)"] +typing = ["mypy (>=1.0.0)", "types-setuptools"] + +[[package]] +name = "markdown" +version = "3.7" +description = "Python implementation of John Gruber's Markdown." +optional = false +python-versions = ">=3.8" +files = [ + {file = "Markdown-3.7-py3-none-any.whl", hash = "sha256:7eb6df5690b81a1d7942992c97fad2938e956e79df20cbc6186e9c3a77b1c803"}, + {file = "markdown-3.7.tar.gz", hash = "sha256:2ae2471477cfd02dbbf038d5d9bc226d40def84b4fe2986e49b59b6b472bbed2"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.4", markers = "python_version < \"3.10\""} + +[package.extras] +docs = ["mdx-gh-links (>=0.2)", "mkdocs (>=1.5)", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-nature (>=0.6)", "mkdocs-section-index", "mkdocstrings[python]"] +testing = ["coverage", "pyyaml"] + +[[package]] +name = "markupsafe" +version = "2.1.5" +description = "Safely add untrusted strings to HTML/XML markup." +optional = false +python-versions = ">=3.7" +files = [ + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl", hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl", hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl", hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5"}, + {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, +] + +[[package]] +name = "matplotlib" +version = "3.2.2" +description = "Python plotting package" +optional = false +python-versions = ">=3.6" +files = [ + {file = "matplotlib-3.2.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a47abc48c7b81fe6e636dde8a58e49b13d87d140e0f448213a4879f4a3f73345"}, + {file = "matplotlib-3.2.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:20bcd11efe194cd302bd0653cb025b8d16bcd80442359bfca8d49dc805f35ec8"}, + {file = "matplotlib-3.2.2-cp36-cp36m-win32.whl", hash = "sha256:2a6d64336b547e25730b6221e7aadfb01a391a065d43b5f51f0b9d7f673d2dd2"}, + {file = "matplotlib-3.2.2-cp36-cp36m-win_amd64.whl", hash = "sha256:4416825ebc9c1f135027a30e8d8aea0edcf45078ce767c7f7386737413cfb98f"}, + {file = "matplotlib-3.2.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:465c752278d27895e23f1379d6fcfa3a2990643b803c25e3bc16a10641d2346a"}, + {file = "matplotlib-3.2.2-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:81de040403a33bf3c68e9d4a40e26c8d24da00f7e3fadd845003b7e106785da7"}, + {file = "matplotlib-3.2.2-cp37-cp37m-win32.whl", hash = "sha256:006413f08ba5db1f5b1e0d6fbdc2ac9058b062ccf552f57182563a78579c34b4"}, + {file = "matplotlib-3.2.2-cp37-cp37m-win_amd64.whl", hash = "sha256:da06fa530591a141ffbe1712bbeec784734c3436b40c942d21652f305199b5d9"}, + {file = "matplotlib-3.2.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:894dd47c0a6ce38dc19bc87d1f7e2b0608310b2a18d1572291157450b05ce874"}, + {file = "matplotlib-3.2.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:1ab264770e7cf2cf4feb99f22c737066aef21ddf1ec402dc255450ac15eacb7b"}, + {file = "matplotlib-3.2.2-cp38-cp38-win32.whl", hash = "sha256:91c153f4318e3c67c035fd1185f5ea2613f15008b73b66985033033f6fe54bbd"}, + {file = "matplotlib-3.2.2-cp38-cp38-win_amd64.whl", hash = "sha256:a68e42e22f7fd190a532e4215e142276970c2d54040a0c46842fcb3db8b6ec5b"}, + {file = "matplotlib-3.2.2-cp39-cp39-win32.whl", hash = "sha256:647cf232ccf6265d2ba1ac4103e8c8b6ac7b03a40da3421234ffb03dda217f59"}, + {file = "matplotlib-3.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:31d32c83bb2b617377c6156f75e88b9ec2ded289e47ad4ff0f263dc1019d88b1"}, + {file = "matplotlib-3.2.2-pp36-pypy36_pp73-win32.whl", hash = "sha256:67065d938df34478451af62fbd0670d2b51c4d859fb66673064eb5de8660dd7c"}, + {file = "matplotlib-3.2.2.tar.gz", hash = "sha256:3d77a6630d093d74cbbfebaa0571d00790966be1ed204e4a8239f5cbd6835c5d"}, +] + +[package.dependencies] +cycler = ">=0.10" +kiwisolver = ">=1.0.1" +numpy = ">=1.11" +pyparsing = ">=2.0.1,<2.0.4 || >2.0.4,<2.1.2 || >2.1.2,<2.1.6 || >2.1.6" +python-dateutil = ">=2.1" + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "mpmath" +version = "1.3.0" +description = "Python library for arbitrary-precision floating-point arithmetic" +optional = false +python-versions = "*" +files = [ + {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, + {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, +] + +[package.extras] +develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"] +docs = ["sphinx"] +gmpy = ["gmpy2 (>=2.1.0a4)"] +tests = ["pytest (>=4.6)"] + +[[package]] +name = "multidict" +version = "6.1.0" +description = "multidict implementation" +optional = false +python-versions = ">=3.8" +files = [ + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +files = [ + {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, + {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, +] + +[[package]] +name = "networkx" +version = "2.5" +description = "Python package for creating and manipulating graphs and networks" +optional = false +python-versions = ">=3.6" +files = [ + {file = "networkx-2.5-py3-none-any.whl", hash = "sha256:8c5812e9f798d37c50570d15c4a69d5710a18d77bafc903ee9c5fba7454c616c"}, + {file = "networkx-2.5.tar.gz", hash = "sha256:7978955423fbc9639c10498878be59caf99b44dc304c2286162fd24b458c1602"}, +] + +[package.dependencies] +decorator = ">=4.3.0" + +[package.extras] +all = ["lxml", "matplotlib", "numpy", "pandas", "pydot", "pygraphviz", "pytest", "pyyaml", "scipy"] +gdal = ["gdal"] +lxml = ["lxml"] +matplotlib = ["matplotlib"] +numpy = ["numpy"] +pandas = ["pandas"] +pydot = ["pydot"] +pygraphviz = ["pygraphviz"] +pytest = ["pytest"] +pyyaml = ["pyyaml"] +scipy = ["scipy"] + +[[package]] +name = "neural-structured-learning" +version = "1.3.1" +description = "Neural Structured Learning is an open-source TensorFlow framework to train neural networks with structured signals" +optional = false +python-versions = "*" +files = [ + {file = "neural-structured-learning-1.3.1.tar.gz", hash = "sha256:b3bbb76a2c2947d9c20bfa55c4f5a6aec5330aba51d6814cacf04089462f10aa"}, + {file = "neural_structured_learning-1.3.1-py2.py3-none-any.whl", hash = "sha256:5b0de29e48a848528252444ac30a13281bada130dee7e0940ddcff30613e02ce"}, +] + +[package.dependencies] +absl-py = "*" +attrs = "*" +scipy = "*" +six = "*" + +[[package]] +name = "numpy" +version = "1.21.6" +description = "NumPy is the fundamental package for array computing with Python." +optional = false +python-versions = ">=3.7,<3.11" +files = [ + {file = "numpy-1.21.6-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8737609c3bbdd48e380d463134a35ffad3b22dc56295eff6f79fd85bd0eeeb25"}, + {file = "numpy-1.21.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:fdffbfb6832cd0b300995a2b08b8f6fa9f6e856d562800fea9182316d99c4e8e"}, + {file = "numpy-1.21.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3820724272f9913b597ccd13a467cc492a0da6b05df26ea09e78b171a0bb9da6"}, + {file = "numpy-1.21.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f17e562de9edf691a42ddb1eb4a5541c20dd3f9e65b09ded2beb0799c0cf29bb"}, + {file = "numpy-1.21.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f30427731561ce75d7048ac254dbe47a2ba576229250fb60f0fb74db96501a1"}, + {file = "numpy-1.21.6-cp310-cp310-win32.whl", hash = "sha256:d4bf4d43077db55589ffc9009c0ba0a94fa4908b9586d6ccce2e0b164c86303c"}, + {file = "numpy-1.21.6-cp310-cp310-win_amd64.whl", hash = "sha256:d136337ae3cc69aa5e447e78d8e1514be8c3ec9b54264e680cf0b4bd9011574f"}, + {file = "numpy-1.21.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6aaf96c7f8cebc220cdfc03f1d5a31952f027dda050e5a703a0d1c396075e3e7"}, + {file = "numpy-1.21.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:67c261d6c0a9981820c3a149d255a76918278a6b03b6a036800359aba1256d46"}, + {file = "numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a6be4cb0ef3b8c9250c19cc122267263093eee7edd4e3fa75395dfda8c17a8e2"}, + {file = "numpy-1.21.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7c4068a8c44014b2d55f3c3f574c376b2494ca9cc73d2f1bd692382b6dffe3db"}, + {file = "numpy-1.21.6-cp37-cp37m-win32.whl", hash = "sha256:7c7e5fa88d9ff656e067876e4736379cc962d185d5cd808014a8a928d529ef4e"}, + {file = "numpy-1.21.6-cp37-cp37m-win_amd64.whl", hash = "sha256:bcb238c9c96c00d3085b264e5c1a1207672577b93fa666c3b14a45240b14123a"}, + {file = "numpy-1.21.6-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:82691fda7c3f77c90e62da69ae60b5ac08e87e775b09813559f8901a88266552"}, + {file = "numpy-1.21.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:643843bcc1c50526b3a71cd2ee561cf0d8773f062c8cbaf9ffac9fdf573f83ab"}, + {file = "numpy-1.21.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:357768c2e4451ac241465157a3e929b265dfac85d9214074985b1786244f2ef3"}, + {file = "numpy-1.21.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9f411b2c3f3d76bba0865b35a425157c5dcf54937f82bbeb3d3c180789dd66a6"}, + {file = "numpy-1.21.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4aa48afdce4660b0076a00d80afa54e8a97cd49f457d68a4342d188a09451c1a"}, + {file = "numpy-1.21.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6a96eef20f639e6a97d23e57dd0c1b1069a7b4fd7027482a4c5c451cd7732f4"}, + {file = "numpy-1.21.6-cp38-cp38-win32.whl", hash = "sha256:5c3c8def4230e1b959671eb959083661b4a0d2e9af93ee339c7dada6759a9470"}, + {file = "numpy-1.21.6-cp38-cp38-win_amd64.whl", hash = "sha256:bf2ec4b75d0e9356edea834d1de42b31fe11f726a81dfb2c2112bc1eaa508fcf"}, + {file = "numpy-1.21.6-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4391bd07606be175aafd267ef9bea87cf1b8210c787666ce82073b05f202add1"}, + {file = "numpy-1.21.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:67f21981ba2f9d7ba9ade60c9e8cbaa8cf8e9ae51673934480e45cf55e953673"}, + {file = "numpy-1.21.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ee5ec40fdd06d62fe5d4084bef4fd50fd4bb6bfd2bf519365f569dc470163ab0"}, + {file = "numpy-1.21.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:1dbe1c91269f880e364526649a52eff93ac30035507ae980d2fed33aaee633ac"}, + {file = "numpy-1.21.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d9caa9d5e682102453d96a0ee10c7241b72859b01a941a397fd965f23b3e016b"}, + {file = "numpy-1.21.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58459d3bad03343ac4b1b42ed14d571b8743dc80ccbf27444f266729df1d6f5b"}, + {file = "numpy-1.21.6-cp39-cp39-win32.whl", hash = "sha256:7f5ae4f304257569ef3b948810816bc87c9146e8c446053539947eedeaa32786"}, + {file = "numpy-1.21.6-cp39-cp39-win_amd64.whl", hash = "sha256:e31f0bb5928b793169b87e3d1e070f2342b22d5245c755e2b81caa29756246c3"}, + {file = "numpy-1.21.6-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dd1c8f6bd65d07d3810b90d02eba7997e32abbdf1277a481d698969e921a3be0"}, + {file = "numpy-1.21.6.zip", hash = "sha256:ecb55251139706669fdec2ff073c98ef8e9a84473e51e716211b41aa0f18e656"}, +] + +[[package]] +name = "nvidia-cublas-cu12" +version = "12.1.3.1" +description = "CUBLAS native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728"}, + {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-win_amd64.whl", hash = "sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906"}, +] + +[[package]] +name = "nvidia-cuda-cupti-cu12" +version = "12.1.105" +description = "CUDA profiling tools runtime libs." +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e"}, + {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4"}, +] + +[[package]] +name = "nvidia-cuda-nvrtc-cu12" +version = "12.1.105" +description = "NVRTC native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2"}, + {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed"}, +] + +[[package]] +name = "nvidia-cuda-runtime-cu12" +version = "12.1.105" +description = "CUDA Runtime native Libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40"}, + {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344"}, +] + +[[package]] +name = "nvidia-cudnn-cu12" +version = "8.9.2.26" +description = "cuDNN runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl", hash = "sha256:5ccb288774fdfb07a7e7025ffec286971c06d8d7b4fb162525334616d7629ff9"}, +] + +[package.dependencies] +nvidia-cublas-cu12 = "*" + +[[package]] +name = "nvidia-cufft-cu12" +version = "11.0.2.54" +description = "CUFFT native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl", hash = "sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56"}, + {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-win_amd64.whl", hash = "sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253"}, +] + +[[package]] +name = "nvidia-curand-cu12" +version = "10.3.2.106" +description = "CURAND native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0"}, + {file = "nvidia_curand_cu12-10.3.2.106-py3-none-win_amd64.whl", hash = "sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a"}, +] + +[[package]] +name = "nvidia-cusolver-cu12" +version = "11.4.5.107" +description = "CUDA solver native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd"}, + {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-win_amd64.whl", hash = "sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5"}, +] + +[package.dependencies] +nvidia-cublas-cu12 = "*" +nvidia-cusparse-cu12 = "*" +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-cusparse-cu12" +version = "12.1.0.106" +description = "CUSPARSE native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c"}, + {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-win_amd64.whl", hash = "sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a"}, +] + +[package.dependencies] +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-nccl-cu12" +version = "2.18.1" +description = "NVIDIA Collective Communication Library (NCCL) Runtime" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nccl_cu12-2.18.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:1a6c4acefcbebfa6de320f412bf7866de856e786e0462326ba1bac40de0b5e71"}, +] + +[[package]] +name = "nvidia-nvjitlink-cu12" +version = "12.6.77" +description = "Nvidia JIT LTO Library" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-manylinux2014_aarch64.whl", hash = "sha256:3bf10d85bb1801e9c894c6e197e44dd137d2a0a9e43f8450e9ad13f2df0dd52d"}, + {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-manylinux2014_x86_64.whl", hash = "sha256:9ae346d16203ae4ea513be416495167a0101d33d2d14935aa9c1829a3fb45142"}, + {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-win_amd64.whl", hash = "sha256:410718cd44962bed862a31dd0318620f6f9a8b28a6291967bcfcb446a6516771"}, +] + +[[package]] +name = "nvidia-nvtx-cu12" +version = "12.1.105" +description = "NVIDIA Tools Extension" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5"}, + {file = "nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82"}, +] + +[[package]] +name = "oauthlib" +version = "3.2.2" +description = "A generic, spec-compliant, thorough implementation of the OAuth request-signing logic" +optional = false +python-versions = ">=3.6" +files = [ + {file = "oauthlib-3.2.2-py3-none-any.whl", hash = "sha256:8139f29aac13e25d502680e9e19963e83f16838d48a0d71c287fe40e7067fbca"}, + {file = "oauthlib-3.2.2.tar.gz", hash = "sha256:9859c40929662bec5d64f34d01c99e093149682a3f38915dc0655d5a633dd918"}, +] + +[package.extras] +rsa = ["cryptography (>=3.0.0)"] +signals = ["blinker (>=1.4.0)"] +signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] + +[[package]] +name = "opt-einsum" +version = "3.4.0" +description = "Path optimization of einsum functions." +optional = false +python-versions = ">=3.8" +files = [ + {file = "opt_einsum-3.4.0-py3-none-any.whl", hash = "sha256:69bb92469f86a1565195ece4ac0323943e83477171b91d24c35afe028a90d7cd"}, + {file = "opt_einsum-3.4.0.tar.gz", hash = "sha256:96ca72f1b886d148241348783498194c577fa30a8faac108586b14f1ba4473ac"}, +] + +[[package]] +name = "packaging" +version = "24.1" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, + {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, +] + +[[package]] +name = "pandas" +version = "2.0.3" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pandas-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8"}, + {file = "pandas-2.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f"}, + {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183"}, + {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0"}, + {file = "pandas-2.0.3-cp310-cp310-win32.whl", hash = "sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210"}, + {file = "pandas-2.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e"}, + {file = "pandas-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8"}, + {file = "pandas-2.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26"}, + {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d"}, + {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df"}, + {file = "pandas-2.0.3-cp311-cp311-win32.whl", hash = "sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd"}, + {file = "pandas-2.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b"}, + {file = "pandas-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061"}, + {file = "pandas-2.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5"}, + {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089"}, + {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0"}, + {file = "pandas-2.0.3-cp38-cp38-win32.whl", hash = "sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02"}, + {file = "pandas-2.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78"}, + {file = "pandas-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b"}, + {file = "pandas-2.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e"}, + {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b"}, + {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641"}, + {file = "pandas-2.0.3-cp39-cp39-win32.whl", hash = "sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682"}, + {file = "pandas-2.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc"}, + {file = "pandas-2.0.3.tar.gz", hash = "sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c"}, +] + +[package.dependencies] +numpy = {version = ">=1.20.3", markers = "python_version < \"3.10\""} +python-dateutil = ">=2.8.2" +pytz = ">=2020.1" +tzdata = ">=2022.1" + +[package.extras] +all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] +aws = ["s3fs (>=2021.08.0)"] +clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] +compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] +computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] +feather = ["pyarrow (>=7.0.0)"] +fss = ["fsspec (>=2021.07.0)"] +gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] +hdf5 = ["tables (>=3.6.1)"] +html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] +mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] +parquet = ["pyarrow (>=7.0.0)"] +performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] +plot = ["matplotlib (>=3.6.1)"] +postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] +spss = ["pyreadstat (>=1.1.2)"] +sql-other = ["SQLAlchemy (>=1.4.16)"] +test = ["hypothesis (>=6.34.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.6.3)"] + +[[package]] +name = "parso" +version = "0.8.4" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +files = [ + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, +] + +[package.extras] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["docopt", "pytest"] + +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pickleshare" +version = "0.7.5" +description = "Tiny 'shelve'-like database with concurrency support" +optional = false +python-versions = "*" +files = [ + {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, + {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, +] + +[[package]] +name = "pillow" +version = "10.4.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"}, + {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"}, + {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"}, + {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"}, + {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"}, + {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"}, + {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"}, + {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"}, + {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"}, + {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"}, + {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"}, + {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"}, + {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"}, + {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"}, + {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"}, + {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"}, + {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"}, + {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"}, + {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"}, + {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] +fpx = ["olefile"] +mic = ["olefile"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] +typing = ["typing-extensions"] +xmp = ["defusedxml"] + +[[package]] +name = "platformdirs" +version = "4.3.6" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." +optional = false +python-versions = ">=3.8" +files = [ + {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, + {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, +] + +[package.extras] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.48" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, + {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "propcache" +version = "0.2.0" +description = "Accelerated property cache" +optional = false +python-versions = ">=3.8" +files = [ + {file = "propcache-0.2.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:c5869b8fd70b81835a6f187c5fdbe67917a04d7e52b6e7cc4e5fe39d55c39d58"}, + {file = "propcache-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:952e0d9d07609d9c5be361f33b0d6d650cd2bae393aabb11d9b719364521984b"}, + {file = "propcache-0.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:33ac8f098df0585c0b53009f039dfd913b38c1d2edafed0cedcc0c32a05aa110"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:97e48e8875e6c13909c800fa344cd54cc4b2b0db1d5f911f840458a500fde2c2"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:388f3217649d6d59292b722d940d4d2e1e6a7003259eb835724092a1cca0203a"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f571aea50ba5623c308aa146eb650eebf7dbe0fd8c5d946e28343cb3b5aad577"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3dfafb44f7bb35c0c06eda6b2ab4bfd58f02729e7c4045e179f9a861b07c9850"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a3ebe9a75be7ab0b7da2464a77bb27febcb4fab46a34f9288f39d74833db7f61"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d2f0d0f976985f85dfb5f3d685697ef769faa6b71993b46b295cdbbd6be8cc37"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:a3dc1a4b165283bd865e8f8cb5f0c64c05001e0718ed06250d8cac9bec115b48"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:9e0f07b42d2a50c7dd2d8675d50f7343d998c64008f1da5fef888396b7f84630"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:e63e3e1e0271f374ed489ff5ee73d4b6e7c60710e1f76af5f0e1a6117cd26394"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:56bb5c98f058a41bb58eead194b4db8c05b088c93d94d5161728515bd52b052b"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7665f04d0c7f26ff8bb534e1c65068409bf4687aa2534faf7104d7182debb336"}, + {file = "propcache-0.2.0-cp310-cp310-win32.whl", hash = "sha256:7cf18abf9764746b9c8704774d8b06714bcb0a63641518a3a89c7f85cc02c2ad"}, + {file = "propcache-0.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:cfac69017ef97db2438efb854edf24f5a29fd09a536ff3a992b75990720cdc99"}, + {file = "propcache-0.2.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:63f13bf09cc3336eb04a837490b8f332e0db41da66995c9fd1ba04552e516354"}, + {file = "propcache-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:608cce1da6f2672a56b24a015b42db4ac612ee709f3d29f27a00c943d9e851de"}, + {file = "propcache-0.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:466c219deee4536fbc83c08d09115249db301550625c7fef1c5563a584c9bc87"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc2db02409338bf36590aa985a461b2c96fce91f8e7e0f14c50c5fcc4f229016"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a6ed8db0a556343d566a5c124ee483ae113acc9a557a807d439bcecc44e7dfbb"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:91997d9cb4a325b60d4e3f20967f8eb08dfcb32b22554d5ef78e6fd1dda743a2"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c7dde9e533c0a49d802b4f3f218fa9ad0a1ce21f2c2eb80d5216565202acab4"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffcad6c564fe6b9b8916c1aefbb37a362deebf9394bd2974e9d84232e3e08504"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:97a58a28bcf63284e8b4d7b460cbee1edaab24634e82059c7b8c09e65284f178"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:945db8ee295d3af9dbdbb698cce9bbc5c59b5c3fe328bbc4387f59a8a35f998d"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:39e104da444a34830751715f45ef9fc537475ba21b7f1f5b0f4d71a3b60d7fe2"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:c5ecca8f9bab618340c8e848d340baf68bcd8ad90a8ecd7a4524a81c1764b3db"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:c436130cc779806bdf5d5fae0d848713105472b8566b75ff70048c47d3961c5b"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:191db28dc6dcd29d1a3e063c3be0b40688ed76434622c53a284e5427565bbd9b"}, + {file = "propcache-0.2.0-cp311-cp311-win32.whl", hash = "sha256:5f2564ec89058ee7c7989a7b719115bdfe2a2fb8e7a4543b8d1c0cc4cf6478c1"}, + {file = "propcache-0.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:6e2e54267980349b723cff366d1e29b138b9a60fa376664a157a342689553f71"}, + {file = "propcache-0.2.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:2ee7606193fb267be4b2e3b32714f2d58cad27217638db98a60f9efb5efeccc2"}, + {file = "propcache-0.2.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:91ee8fc02ca52e24bcb77b234f22afc03288e1dafbb1f88fe24db308910c4ac7"}, + {file = "propcache-0.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2e900bad2a8456d00a113cad8c13343f3b1f327534e3589acc2219729237a2e8"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f52a68c21363c45297aca15561812d542f8fc683c85201df0bebe209e349f793"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e41d67757ff4fbc8ef2af99b338bfb955010444b92929e9e55a6d4dcc3c4f09"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a64e32f8bd94c105cc27f42d3b658902b5bcc947ece3c8fe7bc1b05982f60e89"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:55346705687dbd7ef0d77883ab4f6fabc48232f587925bdaf95219bae072491e"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:00181262b17e517df2cd85656fcd6b4e70946fe62cd625b9d74ac9977b64d8d9"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6994984550eaf25dd7fc7bd1b700ff45c894149341725bb4edc67f0ffa94efa4"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:56295eb1e5f3aecd516d91b00cfd8bf3a13991de5a479df9e27dd569ea23959c"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:439e76255daa0f8151d3cb325f6dd4a3e93043e6403e6491813bcaaaa8733887"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:f6475a1b2ecb310c98c28d271a30df74f9dd436ee46d09236a6b750a7599ce57"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:3444cdba6628accf384e349014084b1cacd866fbb88433cd9d279d90a54e0b23"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4a9d9b4d0a9b38d1c391bb4ad24aa65f306c6f01b512e10a8a34a2dc5675d348"}, + {file = "propcache-0.2.0-cp312-cp312-win32.whl", hash = "sha256:69d3a98eebae99a420d4b28756c8ce6ea5a29291baf2dc9ff9414b42676f61d5"}, + {file = "propcache-0.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:ad9c9b99b05f163109466638bd30ada1722abb01bbb85c739c50b6dc11f92dc3"}, + {file = "propcache-0.2.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ecddc221a077a8132cf7c747d5352a15ed763b674c0448d811f408bf803d9ad7"}, + {file = "propcache-0.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0e53cb83fdd61cbd67202735e6a6687a7b491c8742dfc39c9e01e80354956763"}, + {file = "propcache-0.2.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92fe151145a990c22cbccf9ae15cae8ae9eddabfc949a219c9f667877e40853d"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6a21ef516d36909931a2967621eecb256018aeb11fc48656e3257e73e2e247a"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3f88a4095e913f98988f5b338c1d4d5d07dbb0b6bad19892fd447484e483ba6b"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a5b3bb545ead161be780ee85a2b54fdf7092815995661947812dde94a40f6fb"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67aeb72e0f482709991aa91345a831d0b707d16b0257e8ef88a2ad246a7280bf"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3c997f8c44ec9b9b0bcbf2d422cc00a1d9b9c681f56efa6ca149a941e5560da2"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:2a66df3d4992bc1d725b9aa803e8c5a66c010c65c741ad901e260ece77f58d2f"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:3ebbcf2a07621f29638799828b8d8668c421bfb94c6cb04269130d8de4fb7136"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:1235c01ddaa80da8235741e80815ce381c5267f96cc49b1477fdcf8c047ef325"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:3947483a381259c06921612550867b37d22e1df6d6d7e8361264b6d037595f44"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d5bed7f9805cc29c780f3aee05de3262ee7ce1f47083cfe9f77471e9d6777e83"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e4a91d44379f45f5e540971d41e4626dacd7f01004826a18cb048e7da7e96544"}, + {file = "propcache-0.2.0-cp313-cp313-win32.whl", hash = "sha256:f902804113e032e2cdf8c71015651c97af6418363bea8d78dc0911d56c335032"}, + {file = "propcache-0.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:8f188cfcc64fb1266f4684206c9de0e80f54622c3f22a910cbd200478aeae61e"}, + {file = "propcache-0.2.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:53d1bd3f979ed529f0805dd35ddaca330f80a9a6d90bc0121d2ff398f8ed8861"}, + {file = "propcache-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:83928404adf8fb3d26793665633ea79b7361efa0287dfbd372a7e74311d51ee6"}, + {file = "propcache-0.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:77a86c261679ea5f3896ec060be9dc8e365788248cc1e049632a1be682442063"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:218db2a3c297a3768c11a34812e63b3ac1c3234c3a086def9c0fee50d35add1f"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7735e82e3498c27bcb2d17cb65d62c14f1100b71723b68362872bca7d0913d90"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:20a617c776f520c3875cf4511e0d1db847a076d720714ae35ffe0df3e440be68"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67b69535c870670c9f9b14a75d28baa32221d06f6b6fa6f77a0a13c5a7b0a5b9"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4569158070180c3855e9c0791c56be3ceeb192defa2cdf6a3f39e54319e56b89"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:db47514ffdbd91ccdc7e6f8407aac4ee94cc871b15b577c1c324236b013ddd04"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_armv7l.whl", hash = "sha256:2a60ad3e2553a74168d275a0ef35e8c0a965448ffbc3b300ab3a5bb9956c2162"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:662dd62358bdeaca0aee5761de8727cfd6861432e3bb828dc2a693aa0471a563"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:25a1f88b471b3bc911d18b935ecb7115dff3a192b6fef46f0bfaf71ff4f12418"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:f60f0ac7005b9f5a6091009b09a419ace1610e163fa5deaba5ce3484341840e7"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:74acd6e291f885678631b7ebc85d2d4aec458dd849b8c841b57ef04047833bed"}, + {file = "propcache-0.2.0-cp38-cp38-win32.whl", hash = "sha256:d9b6ddac6408194e934002a69bcaadbc88c10b5f38fb9307779d1c629181815d"}, + {file = "propcache-0.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:676135dcf3262c9c5081cc8f19ad55c8a64e3f7282a21266d05544450bffc3a5"}, + {file = "propcache-0.2.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:25c8d773a62ce0451b020c7b29a35cfbc05de8b291163a7a0f3b7904f27253e6"}, + {file = "propcache-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:375a12d7556d462dc64d70475a9ee5982465fbb3d2b364f16b86ba9135793638"}, + {file = "propcache-0.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1ec43d76b9677637a89d6ab86e1fef70d739217fefa208c65352ecf0282be957"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f45eec587dafd4b2d41ac189c2156461ebd0c1082d2fe7013571598abb8505d1"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc092ba439d91df90aea38168e11f75c655880c12782facf5cf9c00f3d42b562"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fa1076244f54bb76e65e22cb6910365779d5c3d71d1f18b275f1dfc7b0d71b4d"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:682a7c79a2fbf40f5dbb1eb6bfe2cd865376deeac65acf9beb607505dced9e12"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e40876731f99b6f3c897b66b803c9e1c07a989b366c6b5b475fafd1f7ba3fb8"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:363ea8cd3c5cb6679f1c2f5f1f9669587361c062e4899fce56758efa928728f8"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:140fbf08ab3588b3468932974a9331aff43c0ab8a2ec2c608b6d7d1756dbb6cb"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e70fac33e8b4ac63dfc4c956fd7d85a0b1139adcfc0d964ce288b7c527537fea"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:b33d7a286c0dc1a15f5fc864cc48ae92a846df287ceac2dd499926c3801054a6"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:f6d5749fdd33d90e34c2efb174c7e236829147a2713334d708746e94c4bde40d"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:22aa8f2272d81d9317ff5756bb108021a056805ce63dd3630e27d042c8092798"}, + {file = "propcache-0.2.0-cp39-cp39-win32.whl", hash = "sha256:73e4b40ea0eda421b115248d7e79b59214411109a5bc47d0d48e4c73e3b8fcf9"}, + {file = "propcache-0.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:9517d5e9e0731957468c29dbfd0f976736a0e55afaea843726e887f36fe017df"}, + {file = "propcache-0.2.0-py3-none-any.whl", hash = "sha256:2ccc28197af5313706511fab3a8b66dcd6da067a1331372c82ea1cb74285e036"}, + {file = "propcache-0.2.0.tar.gz", hash = "sha256:df81779732feb9d01e5d513fad0122efb3d53bbc75f61b2a4f29a020bc985e70"}, +] + +[[package]] +name = "protobuf" +version = "3.20.3" +description = "Protocol Buffers" +optional = false +python-versions = ">=3.7" +files = [ + {file = "protobuf-3.20.3-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:f4bd856d702e5b0d96a00ec6b307b0f51c1982c2bf9c0052cf9019e9a544ba99"}, + {file = "protobuf-3.20.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9aae4406ea63d825636cc11ffb34ad3379335803216ee3a856787bcf5ccc751e"}, + {file = "protobuf-3.20.3-cp310-cp310-win32.whl", hash = "sha256:28545383d61f55b57cf4df63eebd9827754fd2dc25f80c5253f9184235db242c"}, + {file = "protobuf-3.20.3-cp310-cp310-win_amd64.whl", hash = "sha256:67a3598f0a2dcbc58d02dd1928544e7d88f764b47d4a286202913f0b2801c2e7"}, + {file = "protobuf-3.20.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:899dc660cd599d7352d6f10d83c95df430a38b410c1b66b407a6b29265d66469"}, + {file = "protobuf-3.20.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e64857f395505ebf3d2569935506ae0dfc4a15cb80dc25261176c784662cdcc4"}, + {file = "protobuf-3.20.3-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:d9e4432ff660d67d775c66ac42a67cf2453c27cb4d738fc22cb53b5d84c135d4"}, + {file = "protobuf-3.20.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:74480f79a023f90dc6e18febbf7b8bac7508420f2006fabd512013c0c238f454"}, + {file = "protobuf-3.20.3-cp37-cp37m-win32.whl", hash = "sha256:b6cc7ba72a8850621bfec987cb72623e703b7fe2b9127a161ce61e61558ad905"}, + {file = "protobuf-3.20.3-cp37-cp37m-win_amd64.whl", hash = "sha256:8c0c984a1b8fef4086329ff8dd19ac77576b384079247c770f29cc8ce3afa06c"}, + {file = "protobuf-3.20.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:de78575669dddf6099a8a0f46a27e82a1783c557ccc38ee620ed8cc96d3be7d7"}, + {file = "protobuf-3.20.3-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:f4c42102bc82a51108e449cbb32b19b180022941c727bac0cfd50170341f16ee"}, + {file = "protobuf-3.20.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:44246bab5dd4b7fbd3c0c80b6f16686808fab0e4aca819ade6e8d294a29c7050"}, + {file = "protobuf-3.20.3-cp38-cp38-win32.whl", hash = "sha256:c02ce36ec760252242a33967d51c289fd0e1c0e6e5cc9397e2279177716add86"}, + {file = "protobuf-3.20.3-cp38-cp38-win_amd64.whl", hash = "sha256:447d43819997825d4e71bf5769d869b968ce96848b6479397e29fc24c4a5dfe9"}, + {file = "protobuf-3.20.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:398a9e0c3eaceb34ec1aee71894ca3299605fa8e761544934378bbc6c97de23b"}, + {file = "protobuf-3.20.3-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:bf01b5720be110540be4286e791db73f84a2b721072a3711efff6c324cdf074b"}, + {file = "protobuf-3.20.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:daa564862dd0d39c00f8086f88700fdbe8bc717e993a21e90711acfed02f2402"}, + {file = "protobuf-3.20.3-cp39-cp39-win32.whl", hash = "sha256:819559cafa1a373b7096a482b504ae8a857c89593cf3a25af743ac9ecbd23480"}, + {file = "protobuf-3.20.3-cp39-cp39-win_amd64.whl", hash = "sha256:03038ac1cfbc41aa21f6afcbcd357281d7521b4157926f30ebecc8d4ea59dcb7"}, + {file = "protobuf-3.20.3-py2.py3-none-any.whl", hash = "sha256:a7ca6d488aa8ff7f329d4c545b2dbad8ac31464f1d8b1c87ad1346717731e4db"}, + {file = "protobuf-3.20.3.tar.gz", hash = "sha256:2e3427429c9cffebf259491be0af70189607f365c2f41c7c3764af6f337105f2"}, +] + +[[package]] +name = "psutil" +version = "6.0.0" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "psutil-6.0.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a021da3e881cd935e64a3d0a20983bda0bb4cf80e4f74fa9bfcb1bc5785360c6"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:1287c2b95f1c0a364d23bc6f2ea2365a8d4d9b726a3be7294296ff7ba97c17f0"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:a9a3dbfb4de4f18174528d87cc352d1f788b7496991cca33c6996f40c9e3c92c"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:6ec7588fb3ddaec7344a825afe298db83fe01bfaaab39155fa84cf1c0d6b13c3"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:1e7c870afcb7d91fdea2b37c24aeb08f98b6d67257a5cb0a8bc3ac68d0f1a68c"}, + {file = "psutil-6.0.0-cp27-none-win32.whl", hash = "sha256:02b69001f44cc73c1c5279d02b30a817e339ceb258ad75997325e0e6169d8b35"}, + {file = "psutil-6.0.0-cp27-none-win_amd64.whl", hash = "sha256:21f1fb635deccd510f69f485b87433460a603919b45e2a324ad65b0cc74f8fb1"}, + {file = "psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c588a7e9b1173b6e866756dde596fd4cad94f9399daf99ad8c3258b3cb2b47a0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ed2440ada7ef7d0d608f20ad89a04ec47d2d3ab7190896cd62ca5fc4fe08bf0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd9a97c8e94059b0ef54a7d4baf13b405011176c3b6ff257c247cae0d560ecd"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e8d0054fc88153ca0544f5c4d554d42e33df2e009c4ff42284ac9ebdef4132"}, + {file = "psutil-6.0.0-cp36-cp36m-win32.whl", hash = "sha256:fc8c9510cde0146432bbdb433322861ee8c3efbf8589865c8bf8d21cb30c4d14"}, + {file = "psutil-6.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:34859b8d8f423b86e4385ff3665d3f4d94be3cdf48221fbe476e883514fdb71c"}, + {file = "psutil-6.0.0-cp37-abi3-win32.whl", hash = "sha256:a495580d6bae27291324fe60cea0b5a7c23fa36a7cd35035a16d93bdcf076b9d"}, + {file = "psutil-6.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:33ea5e1c975250a720b3a6609c490db40dae5d83a4eb315170c4fe0d8b1f34b3"}, + {file = "psutil-6.0.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:ffe7fc9b6b36beadc8c322f84e1caff51e8703b88eee1da46d1e3a6ae11b4fd0"}, + {file = "psutil-6.0.0.tar.gz", hash = "sha256:8faae4f310b6d969fa26ca0545338b21f73c6b15db7c4a8d934a5482faa818f2"}, +] + +[package.extras] +test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +files = [ + {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, + {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "pyasn1" +version = "0.6.1" +description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyasn1-0.6.1-py3-none-any.whl", hash = "sha256:0d632f46f2ba09143da3a8afe9e33fb6f92fa2320ab7e886e2d0f7672af84629"}, + {file = "pyasn1-0.6.1.tar.gz", hash = "sha256:6f580d2bdd84365380830acf45550f2511469f673cb4a5ae3857a3170128b034"}, +] + +[[package]] +name = "pyasn1-modules" +version = "0.4.1" +description = "A collection of ASN.1-based protocols modules" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyasn1_modules-0.4.1-py3-none-any.whl", hash = "sha256:49bfa96b45a292b711e986f222502c1c9a5e1f4e568fc30e2574a6c7d07838fd"}, + {file = "pyasn1_modules-0.4.1.tar.gz", hash = "sha256:c28e2dbf9c06ad61c71a075c7e0f9fd0f1b0bb2d2ad4377f240d33ac2ab60a7c"}, +] + +[package.dependencies] +pyasn1 = ">=0.4.6,<0.7.0" + +[[package]] +name = "pycparser" +version = "2.22" +description = "C parser in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, +] + +[[package]] +name = "pydantic" +version = "2.9.2" +description = "Data validation using Python type hints" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"}, + {file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"}, +] + +[package.dependencies] +annotated-types = ">=0.6.0" +pydantic-core = "2.23.4" +typing-extensions = {version = ">=4.6.1", markers = "python_version < \"3.13\""} + +[package.extras] +email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] + +[[package]] +name = "pydantic-core" +version = "2.23.4" +description = "Core functionality for Pydantic validation and serialization" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"}, + {file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"}, + {file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"}, + {file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"}, + {file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"}, + {file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"}, + {file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"}, + {file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"}, + {file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"}, + {file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"}, + {file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"}, + {file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"}, + {file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"}, + {file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"}, +] + +[package.dependencies] +typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" + +[[package]] +name = "pygments" +version = "2.18.0" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, + {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, +] + +[package.extras] +windows-terminal = ["colorama (>=0.4.6)"] + +[[package]] +name = "pyparsing" +version = "3.1.4" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.6.8" +files = [ + {file = "pyparsing-3.1.4-py3-none-any.whl", hash = "sha256:a6a7ee4235a3f944aa1fa2249307708f893fe5717dc603503c6c7969c070fb7c"}, + {file = "pyparsing-3.1.4.tar.gz", hash = "sha256:f86ec8d1a83f11977c9a6ea7598e8c27fc5cddfa5b07ea2241edbbde1d7bc032"}, +] + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, + {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "pytz" +version = "2024.2" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ + {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, + {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, +] + +[[package]] +name = "pywin32" +version = "307" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ + {file = "pywin32-307-cp310-cp310-win32.whl", hash = "sha256:f8f25d893c1e1ce2d685ef6d0a481e87c6f510d0f3f117932781f412e0eba31b"}, + {file = "pywin32-307-cp310-cp310-win_amd64.whl", hash = "sha256:36e650c5e5e6b29b5d317385b02d20803ddbac5d1031e1f88d20d76676dd103d"}, + {file = "pywin32-307-cp310-cp310-win_arm64.whl", hash = "sha256:0c12d61e0274e0c62acee79e3e503c312426ddd0e8d4899c626cddc1cafe0ff4"}, + {file = "pywin32-307-cp311-cp311-win32.whl", hash = "sha256:fec5d27cc893178fab299de911b8e4d12c5954e1baf83e8a664311e56a272b75"}, + {file = "pywin32-307-cp311-cp311-win_amd64.whl", hash = "sha256:987a86971753ed7fdd52a7fb5747aba955b2c7fbbc3d8b76ec850358c1cc28c3"}, + {file = "pywin32-307-cp311-cp311-win_arm64.whl", hash = "sha256:fd436897c186a2e693cd0437386ed79f989f4d13d6f353f8787ecbb0ae719398"}, + {file = "pywin32-307-cp312-cp312-win32.whl", hash = "sha256:07649ec6b01712f36debf39fc94f3d696a46579e852f60157a729ac039df0815"}, + {file = "pywin32-307-cp312-cp312-win_amd64.whl", hash = "sha256:00d047992bb5dcf79f8b9b7c81f72e0130f9fe4b22df613f755ab1cc021d8347"}, + {file = "pywin32-307-cp312-cp312-win_arm64.whl", hash = "sha256:b53658acbfc6a8241d72cc09e9d1d666be4e6c99376bc59e26cdb6223c4554d2"}, + {file = "pywin32-307-cp313-cp313-win32.whl", hash = "sha256:ea4d56e48dc1ab2aa0a5e3c0741ad6e926529510516db7a3b6981a1ae74405e5"}, + {file = "pywin32-307-cp313-cp313-win_amd64.whl", hash = "sha256:576d09813eaf4c8168d0bfd66fb7cb3b15a61041cf41598c2db4a4583bf832d2"}, + {file = "pywin32-307-cp313-cp313-win_arm64.whl", hash = "sha256:b30c9bdbffda6a260beb2919f918daced23d32c79109412c2085cbc513338a0a"}, + {file = "pywin32-307-cp37-cp37m-win32.whl", hash = "sha256:5101472f5180c647d4525a0ed289ec723a26231550dbfd369ec19d5faf60e511"}, + {file = "pywin32-307-cp37-cp37m-win_amd64.whl", hash = "sha256:05de55a7c110478dc4b202230e98af5e0720855360d2b31a44bb4e296d795fba"}, + {file = "pywin32-307-cp38-cp38-win32.whl", hash = "sha256:13d059fb7f10792542082f5731d5d3d9645320fc38814759313e5ee97c3fac01"}, + {file = "pywin32-307-cp38-cp38-win_amd64.whl", hash = "sha256:7e0b2f93769d450a98ac7a31a087e07b126b6d571e8b4386a5762eb85325270b"}, + {file = "pywin32-307-cp39-cp39-win32.whl", hash = "sha256:55ee87f2f8c294e72ad9d4261ca423022310a6e79fb314a8ca76ab3f493854c6"}, + {file = "pywin32-307-cp39-cp39-win_amd64.whl", hash = "sha256:e9d5202922e74985b037c9ef46778335c102b74b95cec70f629453dbe7235d87"}, +] + +[[package]] +name = "pyyaml" +version = "6.0.2" +description = "YAML parser and emitter for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, + {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, + {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, + {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, + {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, + {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, + {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, + {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, + {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, +] + +[[package]] +name = "pyzmq" +version = "26.2.0" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea"}, + {file = "pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6"}, + {file = "pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b"}, + {file = "pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e"}, + {file = "pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0"}, + {file = "pyzmq-26.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3b55a4229ce5da9497dd0452b914556ae58e96a4381bb6f59f1305dfd7e53fc8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cb3a6460cdea8fe8194a76de8895707e61ded10ad0be97188cc8463ffa7e3a8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ab5cad923cc95c87bffee098a27856c859bd5d0af31bd346035aa816b081fe1"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ed69074a610fad1c2fda66180e7b2edd4d31c53f2d1872bc2d1211563904cd9"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cccba051221b916a4f5e538997c45d7d136a5646442b1231b916d0164067ea27"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0eaa83fc4c1e271c24eaf8fb083cbccef8fde77ec8cd45f3c35a9a123e6da097"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9edda2df81daa129b25a39b86cb57dfdfe16f7ec15b42b19bfac503360d27a93"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win32.whl", hash = "sha256:ea0eb6af8a17fa272f7b98d7bebfab7836a0d62738e16ba380f440fceca2d951"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:4ff9dc6bc1664bb9eec25cd17506ef6672d506115095411e237d571e92a58231"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2eb7735ee73ca1b0d71e0e67c3739c689067f055c764f73aac4cc8ecf958ee3f"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a534f43bc738181aa7cbbaf48e3eca62c76453a40a746ab95d4b27b1111a7d2"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:aedd5dd8692635813368e558a05266b995d3d020b23e49581ddd5bbe197a8ab6"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8be4700cd8bb02cc454f630dcdf7cfa99de96788b80c51b60fe2fe1dac480289"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fcc03fa4997c447dce58264e93b5aa2d57714fbe0f06c07b7785ae131512732"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:402b190912935d3db15b03e8f7485812db350d271b284ded2b80d2e5704be780"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8685fa9c25ff00f550c1fec650430c4b71e4e48e8d852f7ddcf2e48308038640"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:76589c020680778f06b7e0b193f4b6dd66d470234a16e1df90329f5e14a171cd"}, + {file = "pyzmq-26.2.0-cp38-cp38-win32.whl", hash = "sha256:8423c1877d72c041f2c263b1ec6e34360448decfb323fa8b94e85883043ef988"}, + {file = "pyzmq-26.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:76589f2cd6b77b5bdea4fca5992dc1c23389d68b18ccc26a53680ba2dc80ff2f"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b1d464cb8d72bfc1a3adc53305a63a8e0cac6bc8c5a07e8ca190ab8d3faa43c2"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4da04c48873a6abdd71811c5e163bd656ee1b957971db7f35140a2d573f6949c"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d049df610ac811dcffdc147153b414147428567fbbc8be43bb8885f04db39d98"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c811cfcd6a9bf680236c40c6f617187515269ab2912f3d7e8c0174898e2519db"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6835dd60355593de10350394242b5757fbbd88b25287314316f266e24c61d073"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc6bee759a6bddea5db78d7dcd609397449cb2d2d6587f48f3ca613b19410cfc"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c530e1eecd036ecc83c3407f77bb86feb79916d4a33d11394b8234f3bd35b940"}, + {file = "pyzmq-26.2.0-cp39-cp39-win32.whl", hash = "sha256:367b4f689786fca726ef7a6c5ba606958b145b9340a5e4808132cc65759abd44"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e6fa2e3e683f34aea77de8112f6483803c96a44fd726d7358b9888ae5bb394ec"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:7445be39143a8aa4faec43b076e06944b8f9d0701b669df4af200531b21e40bb"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2ea4ad4e6a12e454de05f2949d4beddb52460f3de7c8b9d5c46fbb7d7222e02c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fc4f7a173a5609631bb0c42c23d12c49df3966f89f496a51d3eb0ec81f4519d6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:878206a45202247781472a2d99df12a176fef806ca175799e1c6ad263510d57c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17c412bad2eb9468e876f556eb4ee910e62d721d2c7a53c7fa31e643d35352e6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0d987a3ae5a71c6226b203cfd298720e0086c7fe7c74f35fa8edddfbd6597eed"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:39887ac397ff35b7b775db7201095fc6310a35fdbae85bac4523f7eb3b840e20"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fdb5b3e311d4d4b0eb8b3e8b4d1b0a512713ad7e6a68791d0923d1aec433d919"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:226af7dcb51fdb0109f0016449b357e182ea0ceb6b47dfb5999d569e5db161d5"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bed0e799e6120b9c32756203fb9dfe8ca2fb8467fed830c34c877e25638c3fc"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:29c7947c594e105cb9e6c466bace8532dc1ca02d498684128b339799f5248277"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cdeabcff45d1c219636ee2e54d852262e5c2e085d6cb476d938aee8d921356b3"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35cffef589bcdc587d06f9149f8d5e9e8859920a071df5a2671de2213bef592a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18c8dc3b7468d8b4bdf60ce9d7141897da103c7a4690157b32b60acb45e333e6"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7133d0a1677aec369d67dd78520d3fa96dd7f3dcec99d66c1762870e5ea1a50a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a96179a24b14fa6428cbfc08641c779a53f8fcec43644030328f44034c7f1f4"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4f78c88905461a9203eac9faac157a2a0dbba84a0fd09fd29315db27be40af9f"}, + {file = "pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "requests" +version = "2.32.3" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.8" +files = [ + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + +[[package]] +name = "requests-oauthlib" +version = "2.0.0" +description = "OAuthlib authentication support for Requests." +optional = false +python-versions = ">=3.4" +files = [ + {file = "requests-oauthlib-2.0.0.tar.gz", hash = "sha256:b3dffaebd884d8cd778494369603a9e7b58d29111bf6b41bdc2dcd87203af4e9"}, + {file = "requests_oauthlib-2.0.0-py2.py3-none-any.whl", hash = "sha256:7dd8a5c40426b779b0868c404bdef9768deccf22749cde15852df527e6269b36"}, +] + +[package.dependencies] +oauthlib = ">=3.0.0" +requests = ">=2.0.0" + +[package.extras] +rsa = ["oauthlib[signedtoken] (>=3.0.0)"] + +[[package]] +name = "rsa" +version = "4.9" +description = "Pure-Python RSA implementation" +optional = false +python-versions = ">=3.6,<4" +files = [ + {file = "rsa-4.9-py3-none-any.whl", hash = "sha256:90260d9058e514786967344d0ef75fa8727eed8a7d2e43ce9f4bcf1b536174f7"}, + {file = "rsa-4.9.tar.gz", hash = "sha256:e38464a49c6c85d7f1351b0126661487a7e0a14a50f1675ec50eb34d4f20ef21"}, +] + +[package.dependencies] +pyasn1 = ">=0.1.3" + +[[package]] +name = "scikit-learn" +version = "1.3.2" +description = "A set of python modules for machine learning and data mining" +optional = false +python-versions = ">=3.8" +files = [ + {file = "scikit-learn-1.3.2.tar.gz", hash = "sha256:a2f54c76accc15a34bfb9066e6c7a56c1e7235dda5762b990792330b52ccfb05"}, + {file = "scikit_learn-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e326c0eb5cf4d6ba40f93776a20e9a7a69524c4db0757e7ce24ba222471ee8a1"}, + {file = "scikit_learn-1.3.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:535805c2a01ccb40ca4ab7d081d771aea67e535153e35a1fd99418fcedd1648a"}, + {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1215e5e58e9880b554b01187b8c9390bf4dc4692eedeaf542d3273f4785e342c"}, + {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ee107923a623b9f517754ea2f69ea3b62fc898a3641766cb7deb2f2ce450161"}, + {file = "scikit_learn-1.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:35a22e8015048c628ad099da9df5ab3004cdbf81edc75b396fd0cff8699ac58c"}, + {file = "scikit_learn-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6fb6bc98f234fda43163ddbe36df8bcde1d13ee176c6dc9b92bb7d3fc842eb66"}, + {file = "scikit_learn-1.3.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:18424efee518a1cde7b0b53a422cde2f6625197de6af36da0b57ec502f126157"}, + {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3271552a5eb16f208a6f7f617b8cc6d1f137b52c8a1ef8edf547db0259b2c9fb"}, + {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc4144a5004a676d5022b798d9e573b05139e77f271253a4703eed295bde0433"}, + {file = "scikit_learn-1.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:67f37d708f042a9b8d59551cf94d30431e01374e00dc2645fa186059c6c5d78b"}, + {file = "scikit_learn-1.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:8db94cd8a2e038b37a80a04df8783e09caac77cbe052146432e67800e430c028"}, + {file = "scikit_learn-1.3.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:61a6efd384258789aa89415a410dcdb39a50e19d3d8410bd29be365bcdd512d5"}, + {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb06f8dce3f5ddc5dee1715a9b9f19f20d295bed8e3cd4fa51e1d050347de525"}, + {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b2de18d86f630d68fe1f87af690d451388bb186480afc719e5f770590c2ef6c"}, + {file = "scikit_learn-1.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:0402638c9a7c219ee52c94cbebc8fcb5eb9fe9c773717965c1f4185588ad3107"}, + {file = "scikit_learn-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a19f90f95ba93c1a7f7924906d0576a84da7f3b2282ac3bfb7a08a32801add93"}, + {file = "scikit_learn-1.3.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:b8692e395a03a60cd927125eef3a8e3424d86dde9b2370d544f0ea35f78a8073"}, + {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15e1e94cc23d04d39da797ee34236ce2375ddea158b10bee3c343647d615581d"}, + {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:785a2213086b7b1abf037aeadbbd6d67159feb3e30263434139c98425e3dcfcf"}, + {file = "scikit_learn-1.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:64381066f8aa63c2710e6b56edc9f0894cc7bf59bd71b8ce5613a4559b6145e0"}, + {file = "scikit_learn-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c43290337f7a4b969d207e620658372ba3c1ffb611f8bc2b6f031dc5c6d1d03"}, + {file = "scikit_learn-1.3.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:dc9002fc200bed597d5d34e90c752b74df516d592db162f756cc52836b38fe0e"}, + {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d08ada33e955c54355d909b9c06a4789a729977f165b8bae6f225ff0a60ec4a"}, + {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:763f0ae4b79b0ff9cca0bf3716bcc9915bdacff3cebea15ec79652d1cc4fa5c9"}, + {file = "scikit_learn-1.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:ed932ea780517b00dae7431e031faae6b49b20eb6950918eb83bd043237950e0"}, +] + +[package.dependencies] +joblib = ">=1.1.1" +numpy = ">=1.17.3,<2.0" +scipy = ">=1.5.0" +threadpoolctl = ">=2.0.0" + +[package.extras] +benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.10.1)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] +examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"] +tests = ["black (>=23.3.0)", "matplotlib (>=3.1.3)", "mypy (>=1.3)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.0.272)", "scikit-image (>=0.16.2)"] + +[[package]] +name = "scipy" +version = "1.10.1" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = "<3.12,>=3.8" +files = [ + {file = "scipy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e7354fd7527a4b0377ce55f286805b34e8c54b91be865bac273f527e1b839019"}, + {file = "scipy-1.10.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4b3f429188c66603a1a5c549fb414e4d3bdc2a24792e061ffbd607d3d75fd84e"}, + {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1553b5dcddd64ba9a0d95355e63fe6c3fc303a8fd77c7bc91e77d61363f7433f"}, + {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c0ff64b06b10e35215abce517252b375e580a6125fd5fdf6421b98efbefb2d2"}, + {file = "scipy-1.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:fae8a7b898c42dffe3f7361c40d5952b6bf32d10c4569098d276b4c547905ee1"}, + {file = "scipy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f1564ea217e82c1bbe75ddf7285ba0709ecd503f048cb1236ae9995f64217bd"}, + {file = "scipy-1.10.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d925fa1c81b772882aa55bcc10bf88324dadb66ff85d548c71515f6689c6dac5"}, + {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaea0a6be54462ec027de54fca511540980d1e9eea68b2d5c1dbfe084797be35"}, + {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15a35c4242ec5f292c3dd364a7c71a61be87a3d4ddcc693372813c0b73c9af1d"}, + {file = "scipy-1.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:43b8e0bcb877faf0abfb613d51026cd5cc78918e9530e375727bf0625c82788f"}, + {file = "scipy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5678f88c68ea866ed9ebe3a989091088553ba12c6090244fdae3e467b1139c35"}, + {file = "scipy-1.10.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:39becb03541f9e58243f4197584286e339029e8908c46f7221abeea4b749fa88"}, + {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bce5869c8d68cf383ce240e44c1d9ae7c06078a9396df68ce88a1230f93a30c1"}, + {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07c3457ce0b3ad5124f98a86533106b643dd811dd61b548e78cf4c8786652f6f"}, + {file = "scipy-1.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:049a8bbf0ad95277ffba9b3b7d23e5369cc39e66406d60422c8cfef40ccc8415"}, + {file = "scipy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cd9f1027ff30d90618914a64ca9b1a77a431159df0e2a195d8a9e8a04c78abf9"}, + {file = "scipy-1.10.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:79c8e5a6c6ffaf3a2262ef1be1e108a035cf4f05c14df56057b64acc5bebffb6"}, + {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51af417a000d2dbe1ec6c372dfe688e041a7084da4fdd350aeb139bd3fb55353"}, + {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b4735d6c28aad3cdcf52117e0e91d6b39acd4272f3f5cd9907c24ee931ad601"}, + {file = "scipy-1.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ff7f37b1bf4417baca958d254e8e2875d0cc23aaadbe65b3d5b3077b0eb23ea"}, + {file = "scipy-1.10.1.tar.gz", hash = "sha256:2cf9dfb80a7b4589ba4c40ce7588986d6d5cebc5457cad2c2880f6bc2d42f3a5"}, +] + +[package.dependencies] +numpy = ">=1.19.5,<1.27.0" + +[package.extras] +dev = ["click", "doit (>=0.36.0)", "flake8", "mypy", "pycodestyle", "pydevtool", "rich-click", "typing_extensions"] +doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] +test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "setuptools" +version = "75.1.0" +description = "Easily download, build, install, upgrade, and uninstall Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "setuptools-75.1.0-py3-none-any.whl", hash = "sha256:35ab7fd3bcd95e6b7fd704e4a1539513edad446c097797f2985e0e4b960772f2"}, + {file = "setuptools-75.1.0.tar.gz", hash = "sha256:d59a21b17a275fb872a9c3dae73963160ae079f1049ed956880cd7c09b120538"}, +] + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.collections", "jaraco.functools", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] + +[[package]] +name = "six" +version = "1.16.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, + {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, +] + +[[package]] +name = "smart-open" +version = "7.0.5" +description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)" +optional = false +python-versions = "<4.0,>=3.7" +files = [ + {file = "smart_open-7.0.5-py3-none-any.whl", hash = "sha256:8523ed805c12dff3eaa50e9c903a6cb0ae78800626631c5fe7ea073439847b89"}, + {file = "smart_open-7.0.5.tar.gz", hash = "sha256:d3672003b1dbc85e2013e4983b88eb9a5ccfd389b0d4e5015f39a9ee5620ec18"}, +] + +[package.dependencies] +wrapt = "*" + +[package.extras] +all = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "paramiko", "requests", "zstandard"] +azure = ["azure-common", "azure-core", "azure-storage-blob"] +gcs = ["google-cloud-storage (>=2.6.0)"] +http = ["requests"] +s3 = ["boto3"] +ssh = ["paramiko"] +test = ["awscli", "azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "numpy", "paramiko", "pyopenssl", "pytest", "pytest-benchmark", "pytest-rerunfailures", "requests", "responses", "zstandard"] +webhdfs = ["requests"] +zst = ["zstandard"] + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "stellargraph" +version = "1.2.1" +description = "Python library for machine learning on graphs" +optional = false +python-versions = ">=3.6.0, <3.9.0" +files = [ + {file = "stellargraph-1.2.1-py3-none-any.whl", hash = "sha256:984a839de4645c9703b8f34a065307498feef38e5160a8f9d7764318a3d4621d"}, + {file = "stellargraph-1.2.1.tar.gz", hash = "sha256:804200a7992465bb5f10da95a3b7748014b0a159f1e79a95517c12a9ff2faed2"}, +] + +[package.dependencies] +gensim = ">=3.4.0" +matplotlib = ">=2.2" +networkx = ">=2.2" +numpy = ">=1.14" +pandas = ">=0.24" +scikit-learn = ">=0.20" +scipy = ">=1.1.0" +tensorflow = ">=2.1.0" + +[package.extras] +demos = ["jupyter", "mplleaflet (==0.0.5)", "numba", "rdflib", "seaborn"] +igraph = ["python-igraph"] +neo4j = ["py2neo"] +test = ["black (>=19.3b0)", "commonmark (==0.9.1)", "coverage (>=4.4,<5.0)", "nbconvert (>=5.5.0)", "papermill (>=2.0.0)", "pytest (==5.3.1)", "pytest-benchmark (>=3.1)", "pytest-cov (>=2.6.0)", "rdflib", "treon (>=0.1.2)"] + +[[package]] +name = "sympy" +version = "1.13.3" +description = "Computer algebra system (CAS) in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "sympy-1.13.3-py3-none-any.whl", hash = "sha256:54612cf55a62755ee71824ce692986f23c88ffa77207b30c1368eda4a7060f73"}, + {file = "sympy-1.13.3.tar.gz", hash = "sha256:b27fd2c6530e0ab39e275fc9b683895367e51d5da91baa8d3d64db2565fec4d9"}, +] + +[package.dependencies] +mpmath = ">=1.1.0,<1.4" + +[package.extras] +dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] + +[[package]] +name = "tensorboard" +version = "2.14.0" +description = "TensorBoard lets you watch Tensors Flow" +optional = false +python-versions = ">=3.8" +files = [ + {file = "tensorboard-2.14.0-py3-none-any.whl", hash = "sha256:3667f9745d99280836ad673022362c840f60ed8fefd5a3e30bf071f5a8fd0017"}, +] + +[package.dependencies] +absl-py = ">=0.4" +google-auth = ">=1.6.3,<3" +google-auth-oauthlib = ">=0.5,<1.1" +grpcio = ">=1.48.2" +markdown = ">=2.6.8" +numpy = ">=1.12.0" +protobuf = ">=3.19.6" +requests = ">=2.21.0,<3" +setuptools = ">=41.0.0" +tensorboard-data-server = ">=0.7.0,<0.8.0" +werkzeug = ">=1.0.1" +wheel = ">=0.26" + +[[package]] +name = "tensorboard-data-server" +version = "0.7.2" +description = "Fast data loading for TensorBoard" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tensorboard_data_server-0.7.2-py3-none-any.whl", hash = "sha256:7e0610d205889588983836ec05dc098e80f97b7e7bbff7e994ebb78f578d0ddb"}, + {file = "tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:9fe5d24221b29625dbc7328b0436ca7fc1c23de4acf4d272f1180856e32f9f60"}, + {file = "tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl", hash = "sha256:ef687163c24185ae9754ed5650eb5bc4d84ff257aabdc33f0cc6f74d8ba54530"}, +] + +[[package]] +name = "tensorflow" +version = "2.7.2" +description = "TensorFlow is an open source machine learning framework for everyone." +optional = false +python-versions = "*" +files = [ + {file = "tensorflow-2.7.2-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:050c2ef8d432eb60f2cb6fc75d751fcb3008af6a86ad1147faea30cb59c275b1"}, + {file = "tensorflow-2.7.2-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:3c72b8653a539789ef36f8c1ad8266b9e676dff2293f0f7a68d9b26fc77a37f3"}, + {file = "tensorflow-2.7.2-cp37-cp37m-win_amd64.whl", hash = "sha256:1db663f9f59ba54a294b1f6530f131e90c7a0e6ea49fda5b2c6900e57b0c306a"}, + {file = "tensorflow-2.7.2-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:cb66d4a998af1ca979d6da33e925281596f52e5a9ba67b2295c53677f8379eee"}, + {file = "tensorflow-2.7.2-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:d4dbfab1568564b30bab876424fafd74c8a8715238b76284b5dd1cfe86c7881b"}, + {file = "tensorflow-2.7.2-cp38-cp38-win_amd64.whl", hash = "sha256:b9a7f344b93b953cab4c3f6ec3b6c1799eb538b6a1978d3a4b579d7a81ee7439"}, + {file = "tensorflow-2.7.2-cp39-cp39-macosx_10_11_x86_64.whl", hash = "sha256:99a85258505130b1f3ce203f11b3bb3c95442edefec96c0b221ce0d6541a92c8"}, + {file = "tensorflow-2.7.2-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:bb2115796e2e7738de1844aead493bc1f1122ff1fae65fc691bb1ce5a0fdd2aa"}, + {file = "tensorflow-2.7.2-cp39-cp39-win_amd64.whl", hash = "sha256:3e35d046d0be677239b5e832854bcb291ca79388fa406d9d7547bc3377a7efbb"}, +] + +[package.dependencies] +absl-py = ">=0.4.0" +astunparse = ">=1.6.0" +flatbuffers = ">=1.12,<3.0" +gast = ">=0.2.1,<0.5.0" +google-pasta = ">=0.1.1" +grpcio = ">=1.24.3,<2.0" +h5py = ">=2.9.0" +keras = ">=2.7.0rc0,<2.8" +keras-preprocessing = ">=1.1.1" +libclang = ">=9.0.1" +numpy = ">=1.14.5" +opt-einsum = ">=2.3.2" +protobuf = ">=3.9.2" +six = ">=1.12.0" +tensorboard = ">=2.6,<3.0" +tensorflow-estimator = ">=2.7.0rc0,<2.8" +tensorflow-io-gcs-filesystem = ">=0.21.0" +termcolor = ">=1.1.0" +typing-extensions = ">=3.6.6" +wheel = ">=0.32.0,<1.0" +wrapt = ">=1.11.0" + +[[package]] +name = "tensorflow-estimator" +version = "2.7.0" +description = "TensorFlow Estimator." +optional = false +python-versions = "*" +files = [ + {file = "tensorflow_estimator-2.7.0-py2.py3-none-any.whl", hash = "sha256:325b5a224864379242b7b76c6987ca544239be82579d33e68ec7c2bda57abc9d"}, +] + +[[package]] +name = "tensorflow-io-gcs-filesystem" +version = "0.21.0" +description = "TensorFlow IO" +optional = false +python-versions = ">=3.6, <3.10" +files = [ + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:db8659cce2b45a6689cf041c7745b60338d8158fc394627f916029980aa04e0d"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d5ce0de3c91fb3a47bd91e25081bcd3b3491d515ee45e6d2c63e899ab5e7739e"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-win_amd64.whl", hash = "sha256:8fc48d4a6f06a97b8a866d849844189ecd1d830de9b152276ea579d9772c0533"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:c28ca0dd37d1bb2110a62e9e7f7b0bbdf295add83b38fbe507082fd89f0ebc61"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7c54f1f334076a5514b9f7f537afe4c36fce4233f792ce6ada76651bfad9f2eb"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-win_amd64.whl", hash = "sha256:e22fcc4e6e924842fefc570f7fd0f6fd33e458154be8891b5a7bfd8380c6aa8c"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:95555c647c8330daf712a38d2b158f7a21d5ad77e8fd438360060b37cb8ca1fb"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b12f9d66c8433bb4a67d9cc6cdb14cf11c42d9fe65bdbe09128b6579a80f80e8"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-win_amd64.whl", hash = "sha256:e447d9c03dd7396292ba10dd39a3c6a2cfcb9332b67457592119c5e5d3e38cfe"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:020581f962e7156054c790d649ecc80518d7874e0def5b2f58f965a1998d45e3"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:603f73d61670954833b6ed87199a4a919e2a5dc015f34b20fdd235a611f37e81"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-win_amd64.whl", hash = "sha256:8c95c0ef2de4611a528ef210c233481dd7628c57ff3ef7f08c0f9708125d3ff8"}, +] + +[[package]] +name = "termcolor" +version = "2.4.0" +description = "ANSI color formatting for output in terminal" +optional = false +python-versions = ">=3.8" +files = [ + {file = "termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63"}, + {file = "termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a"}, +] + +[package.extras] +tests = ["pytest", "pytest-cov"] + +[[package]] +name = "threadpoolctl" +version = "3.5.0" +description = "threadpoolctl" +optional = false +python-versions = ">=3.8" +files = [ + {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, + {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, +] + +[[package]] +name = "torch" +version = "2.1.2" +description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "torch-2.1.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:3a871edd6c02dae77ad810335c0833391c1a4ce49af21ea8cf0f6a5d2096eea8"}, + {file = "torch-2.1.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:bef6996c27d8f6e92ea4e13a772d89611da0e103b48790de78131e308cf73076"}, + {file = "torch-2.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:0e13034fd5fb323cbbc29e56d0637a3791e50dd589616f40c79adfa36a5a35a1"}, + {file = "torch-2.1.2-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:d9b535cad0df3d13997dbe8bd68ac33e0e3ae5377639c9881948e40794a61403"}, + {file = "torch-2.1.2-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:f9a55d55af02826ebfbadf4e9b682f0f27766bc33df8236b48d28d705587868f"}, + {file = "torch-2.1.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:a6ebbe517097ef289cc7952783588c72de071d4b15ce0f8b285093f0916b1162"}, + {file = "torch-2.1.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:8f32ce591616a30304f37a7d5ea80b69ca9e1b94bba7f308184bf616fdaea155"}, + {file = "torch-2.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:e0ee6cf90c8970e05760f898d58f9ac65821c37ffe8b04269ec787aa70962b69"}, + {file = "torch-2.1.2-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:76d37967c31c99548ad2c4d3f2cf191db48476f2e69b35a0937137116da356a1"}, + {file = "torch-2.1.2-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:e2d83f07b4aac983453ea5bf8f9aa9dacf2278a8d31247f5d9037f37befc60e4"}, + {file = "torch-2.1.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:f41fe0c7ecbf903a568c73486139a75cfab287a0f6c17ed0698fdea7a1e8641d"}, + {file = "torch-2.1.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:e3225f47d50bb66f756fe9196a768055d1c26b02154eb1f770ce47a2578d3aa7"}, + {file = "torch-2.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:33d59cd03cb60106857f6c26b36457793637512998666ee3ce17311f217afe2b"}, + {file = "torch-2.1.2-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:8e221deccd0def6c2badff6be403e0c53491805ed9915e2c029adbcdb87ab6b5"}, + {file = "torch-2.1.2-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:05b18594f60a911a0c4f023f38a8bda77131fba5fd741bda626e97dcf5a3dd0a"}, + {file = "torch-2.1.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:9ca96253b761e9aaf8e06fb30a66ee301aecbf15bb5a303097de1969077620b6"}, + {file = "torch-2.1.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:d93ba70f67b08c2ae5598ee711cbc546a1bc8102cef938904b8c85c2089a51a0"}, + {file = "torch-2.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:255b50bc0608db177e6a3cc118961d77de7e5105f07816585fa6f191f33a9ff3"}, + {file = "torch-2.1.2-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6984cd5057c0c977b3c9757254e989d3f1124f4ce9d07caa6cb637783c71d42a"}, + {file = "torch-2.1.2-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:bc195d7927feabc0eb7c110e457c955ed2ab616f3c7c28439dd4188cf589699f"}, +] + +[package.dependencies] +filelock = "*" +fsspec = "*" +jinja2 = "*" +networkx = "*" +nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cudnn-cu12 = {version = "8.9.2.26", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nccl-cu12 = {version = "2.18.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +sympy = "*" +triton = {version = "2.1.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +typing-extensions = "*" + +[package.extras] +dynamo = ["jinja2"] +opt-einsum = ["opt-einsum (>=3.3)"] + +[[package]] +name = "torch-geometric" +version = "2.6.1" +description = "Graph Neural Network Library for PyTorch" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torch_geometric-2.6.1-py3-none-any.whl", hash = "sha256:8faeb353f9655f7dbec44c5e0b44c721773bdfb279994da96b9b8b12fd30f427"}, + {file = "torch_geometric-2.6.1.tar.gz", hash = "sha256:1f18f9d0fc4d2239d526221e4f22606a4a3895b5d965a9856d27610a3df662c6"}, +] + +[package.dependencies] +aiohttp = "*" +fsspec = "*" +jinja2 = "*" +numpy = "*" +psutil = ">=5.8.0" +pyparsing = "*" +requests = "*" +tqdm = "*" + +[package.extras] +benchmark = ["matplotlib", "networkx", "pandas", "protobuf (<4.21)", "wandb"] +dev = ["ipython", "matplotlib-inline", "pre-commit", "torch_geometric[test]"] +full = ["ase", "captum (<0.7.0)", "graphviz", "h5py", "matplotlib", "networkx", "numba (<0.60.0)", "opt_einsum", "pandas", "pgmpy", "pynndescent", "pytorch-memlab", "rdflib", "rdkit", "scikit-image", "scikit-learn", "scipy", "statsmodels", "sympy", "tabulate", "torch_geometric[graphgym,modelhub]", "torchmetrics", "trimesh"] +graphgym = ["protobuf (<4.21)", "pytorch-lightning (<2.3.0)", "yacs"] +modelhub = ["huggingface_hub"] +test = ["onnx", "onnxruntime", "pytest", "pytest-cov"] + +[[package]] +name = "torchmetrics" +version = "1.4.3" +description = "PyTorch native Metrics" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torchmetrics-1.4.3-py3-none-any.whl", hash = "sha256:76e67490231acef7f70cf36ab129df72fb2b0256dada7051001ab3b9f8699bf4"}, + {file = "torchmetrics-1.4.3.tar.gz", hash = "sha256:5554a19167e91f543afe82ff58a01059c8eec854359ad22896449c2c8fb0ad89"}, +] + +[package.dependencies] +lightning-utilities = ">=0.8.0" +numpy = ">1.20.0" +packaging = ">17.1" +torch = ">=1.10.0" +typing-extensions = {version = "*", markers = "python_version < \"3.9\""} + +[package.extras] +all = ["SciencePlots (>=2.0.0)", "gammatone (>1.0.0)", "ipadic (>=1.0.0)", "matplotlib (>=3.6.0)", "mecab-python3 (>=1.0.6)", "mypy (==1.11.2)", "nltk (>=3.8.2)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "regex (>=2021.9.24)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "torch (==2.4.1)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +audio = ["gammatone (>1.0.0)", "pesq (>=0.0.4)", "pystoi (>=0.3.0)", "torchaudio (>=0.10.0)"] +detection = ["pycocotools (>2.0.0)", "torchvision (>=0.8)"] +dev = ["SciencePlots (>=2.0.0)", "bert-score (==0.3.13)", "dython (==0.7.6)", "dython (>=0.7.8,<0.8.0)", "fairlearn", "fast-bss-eval (>=0.1.0)", "faster-coco-eval (==1.5.*)", "gammatone (>1.0.0)", "huggingface-hub (<0.26)", "ipadic (>=1.0.0)", "jiwer (>=2.3.0)", "kornia (>=0.6.7)", "lpips (<=0.1.4)", "matplotlib (>=3.6.0)", "mecab-ko (>=1.0.0)", "mecab-ko-dic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "mir-eval (>=0.6)", "monai (==1.3.2)", "mypy (==1.11.2)", "netcal (>1.0.0)", "nltk (>=3.8.2)", "numpy (<2.2.0)", "pandas (>1.4.0)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "pytorch-msssim (==1.0.0)", "regex (>=2021.9.24)", "rouge-score (>0.1.0)", "sacrebleu (>=2.3.0)", "scikit-image (>=0.19.0)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "sewar (>=0.4.4)", "statsmodels (>0.13.5)", "torch (==2.4.1)", "torch-complex (<0.5.0)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +image = ["scipy (>1.0.0)", "torch-fidelity (<=0.4.0)", "torchvision (>=0.8)"] +multimodal = ["piq (<=0.8.0)", "transformers (>=4.42.3)"] +text = ["ipadic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "nltk (>=3.8.2)", "regex (>=2021.9.24)", "sentencepiece (>=0.2.0)", "tqdm (>=4.41.0)", "transformers (>4.4.0)"] +typing = ["mypy (==1.11.2)", "torch (==2.4.1)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +visual = ["SciencePlots (>=2.0.0)", "matplotlib (>=3.6.0)"] + +[[package]] +name = "torchvision" +version = "0.16.2" +description = "image and video datasets and models for torch deep learning" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torchvision-0.16.2-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:bc86f2800cb2c0c1a09c581409cdd6bff66e62f103dc83fc63f73346264c3756"}, + {file = "torchvision-0.16.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b024bd412df6d3a007dcebf311a894eb3c5c21e1af80d12be382bbcb097a7c3a"}, + {file = "torchvision-0.16.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:e89f10f3c8351972b6e3fda95bc3e479ea8dbfc9dfcfd2c32902dbad4ba5cfc5"}, + {file = "torchvision-0.16.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:96c7583700112a410bdc4e1e4f118c429dab49c29c9a31a2cc3579bc9b08b19d"}, + {file = "torchvision-0.16.2-cp310-cp310-win_amd64.whl", hash = "sha256:9f4032ebb3277fb07ff6a9b818d50a547fb8fcd89d958cfd9e773322454bb688"}, + {file = "torchvision-0.16.2-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:67b1aaf8b8cb02ce75dd445f291a27c8036a502f8c0aa76e28c37a0faac2e153"}, + {file = "torchvision-0.16.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bef30d03e1d1c629761f4dca51d3b7d8a0dc0acce6f4068ab2a1634e8e7b64e0"}, + {file = "torchvision-0.16.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:e59cc7b2bd1ab5c0ce4ae382e4e37be8f1c174e8b5de2f6a23c170de9ae28495"}, + {file = "torchvision-0.16.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:e130b08cc9b3cc73a6c59d6edf032394a322f9579bfd21d14bc2e1d0999aa758"}, + {file = "torchvision-0.16.2-cp311-cp311-win_amd64.whl", hash = "sha256:8692ab1e48807e9604046a6f4beeb67b523294cee1b00828654bb0df2cfce2b2"}, + {file = "torchvision-0.16.2-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:b82732dcf876a37c852772342aa6ee3480c03bb3e2a802ae109fc5f7e28d26e9"}, + {file = "torchvision-0.16.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4b065143d1a720fe8a9077fd4be35d491f98819ec80b3dbbc3ec64d0b707a906"}, + {file = "torchvision-0.16.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:bc5f274e4ecd1b86062063cdf4fd385a1d39d147a3a2685fbbde9ff08bb720b8"}, + {file = "torchvision-0.16.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:335959c43b371c0474af34c1ef2a52efdc7603c45700d29e4475eeb02984170c"}, + {file = "torchvision-0.16.2-cp38-cp38-win_amd64.whl", hash = "sha256:7fd22d86e08eba321af70cad291020c2cdeac069b00ce88b923ca52e06174769"}, + {file = "torchvision-0.16.2-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:56115268b37f0b75364e3654e47ad9abc66ac34c1f9e5e3dfa89a22d6a40017a"}, + {file = "torchvision-0.16.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:82805f8445b094f9d1e770390ee6cc86855e89955e08ce34af2e2274fc0e5c45"}, + {file = "torchvision-0.16.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:3f4bd5fcbc361476e2e78016636ac7d5509e59d9962521f06eb98e6803898182"}, + {file = "torchvision-0.16.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:8199acdf8ab066a28b84a5b6f4d97b58976d9e164b1acc3a9d14fccfaf74bb3a"}, + {file = "torchvision-0.16.2-cp39-cp39-win_amd64.whl", hash = "sha256:41dd4fa9f176d563fe9f1b9adef3b7e582cdfb60ce8c9bc51b094a025be687c9"}, +] + +[package.dependencies] +numpy = "*" +pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" +requests = "*" +torch = "2.1.2" + +[package.extras] +scipy = ["scipy"] + +[[package]] +name = "tornado" +version = "6.4.1" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">=3.8" +files = [ + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8"}, + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698"}, + {file = "tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d"}, + {file = "tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7"}, + {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"}, +] + +[[package]] +name = "tqdm" +version = "4.66.5" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, + {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + +[[package]] +name = "traitlets" +version = "5.14.3" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +files = [ + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "triton" +version = "2.1.0" +description = "A language and compiler for custom Deep Learning operations" +optional = false +python-versions = "*" +files = [ + {file = "triton-2.1.0-0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:66439923a30d5d48399b08a9eae10370f6c261a5ec864a64983bae63152d39d7"}, + {file = "triton-2.1.0-0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:919b06453f0033ea52c13eaf7833de0e57db3178d23d4e04f9fc71c4f2c32bf8"}, + {file = "triton-2.1.0-0-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ae4bb8a91de790e1866405211c4d618379781188f40d5c4c399766914e84cd94"}, + {file = "triton-2.1.0-0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:39f6fb6bdccb3e98f3152e3fbea724f1aeae7d749412bbb1fa9c441d474eba26"}, + {file = "triton-2.1.0-0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:21544e522c02005a626c8ad63d39bdff2f31d41069592919ef281e964ed26446"}, + {file = "triton-2.1.0-0-pp37-pypy37_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:143582ca31dd89cd982bd3bf53666bab1c7527d41e185f9e3d8a3051ce1b663b"}, + {file = "triton-2.1.0-0-pp38-pypy38_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:82fc5aeeedf6e36be4e4530cbdcba81a09d65c18e02f52dc298696d45721f3bd"}, + {file = "triton-2.1.0-0-pp39-pypy39_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:81a96d110a738ff63339fc892ded095b31bd0d205e3aace262af8400d40b6fa8"}, +] + +[package.dependencies] +filelock = "*" + +[package.extras] +build = ["cmake (>=3.18)", "lit"] +tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)"] +tutorials = ["matplotlib", "pandas", "tabulate"] + +[[package]] +name = "typing-extensions" +version = "4.12.2" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, +] + +[[package]] +name = "tzdata" +version = "2024.2" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"}, + {file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"}, +] + +[[package]] +name = "urllib3" +version = "2.2.3" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=3.8" +files = [ + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, +] + +[package.extras] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +h2 = ["h2 (>=4,<5)"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "wcwidth" +version = "0.2.13" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +files = [ + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, +] + +[[package]] +name = "werkzeug" +version = "3.0.4" +description = "The comprehensive WSGI web application library." +optional = false +python-versions = ">=3.8" +files = [ + {file = "werkzeug-3.0.4-py3-none-any.whl", hash = "sha256:02c9eb92b7d6c06f31a782811505d2157837cea66aaede3e217c7c27c039476c"}, + {file = "werkzeug-3.0.4.tar.gz", hash = "sha256:34f2371506b250df4d4f84bfe7b0921e4762525762bbd936614909fe25cd7306"}, +] + +[package.dependencies] +MarkupSafe = ">=2.1.1" + +[package.extras] +watchdog = ["watchdog (>=2.3)"] + +[[package]] +name = "wheel" +version = "0.44.0" +description = "A built-package format for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "wheel-0.44.0-py3-none-any.whl", hash = "sha256:2376a90c98cc337d18623527a97c31797bd02bad0033d41547043a1cbfbe448f"}, + {file = "wheel-0.44.0.tar.gz", hash = "sha256:a29c3f2817e95ab89aa4660681ad547c0e9547f20e75b0562fe7723c9a2a9d49"}, +] + +[package.extras] +test = ["pytest (>=6.0.0)", "setuptools (>=65)"] + +[[package]] +name = "wrapt" +version = "1.16.0" +description = "Module for decorators, wrappers and monkey patching." +optional = false +python-versions = ">=3.6" +files = [ + {file = "wrapt-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ffa565331890b90056c01db69c0fe634a776f8019c143a5ae265f9c6bc4bd6d4"}, + {file = "wrapt-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e4fdb9275308292e880dcbeb12546df7f3e0f96c6b41197e0cf37d2826359020"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb2dee3874a500de01c93d5c71415fcaef1d858370d405824783e7a8ef5db440"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a88e6010048489cda82b1326889ec075a8c856c2e6a256072b28eaee3ccf487"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac83a914ebaf589b69f7d0a1277602ff494e21f4c2f743313414378f8f50a4cf"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:73aa7d98215d39b8455f103de64391cb79dfcad601701a3aa0dddacf74911d72"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:807cc8543a477ab7422f1120a217054f958a66ef7314f76dd9e77d3f02cdccd0"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bf5703fdeb350e36885f2875d853ce13172ae281c56e509f4e6eca049bdfb136"}, + {file = "wrapt-1.16.0-cp310-cp310-win32.whl", hash = "sha256:f6b2d0c6703c988d334f297aa5df18c45e97b0af3679bb75059e0e0bd8b1069d"}, + {file = "wrapt-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:decbfa2f618fa8ed81c95ee18a387ff973143c656ef800c9f24fb7e9c16054e2"}, + {file = "wrapt-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1a5db485fe2de4403f13fafdc231b0dbae5eca4359232d2efc79025527375b09"}, + {file = "wrapt-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75ea7d0ee2a15733684badb16de6794894ed9c55aa5e9903260922f0482e687d"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a452f9ca3e3267cd4d0fcf2edd0d035b1934ac2bd7e0e57ac91ad6b95c0c6389"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:43aa59eadec7890d9958748db829df269f0368521ba6dc68cc172d5d03ed8060"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72554a23c78a8e7aa02abbd699d129eead8b147a23c56e08d08dfc29cfdddca1"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d2efee35b4b0a347e0d99d28e884dfd82797852d62fcd7ebdeee26f3ceb72cf3"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6dcfcffe73710be01d90cae08c3e548d90932d37b39ef83969ae135d36ef3956"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:eb6e651000a19c96f452c85132811d25e9264d836951022d6e81df2fff38337d"}, + {file = "wrapt-1.16.0-cp311-cp311-win32.whl", hash = "sha256:66027d667efe95cc4fa945af59f92c5a02c6f5bb6012bff9e60542c74c75c362"}, + {file = "wrapt-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:aefbc4cb0a54f91af643660a0a150ce2c090d3652cf4052a5397fb2de549cd89"}, + {file = "wrapt-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5eb404d89131ec9b4f748fa5cfb5346802e5ee8836f57d516576e61f304f3b7b"}, + {file = "wrapt-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9090c9e676d5236a6948330e83cb89969f433b1943a558968f659ead07cb3b36"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94265b00870aa407bd0cbcfd536f17ecde43b94fb8d228560a1e9d3041462d73"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2058f813d4f2b5e3a9eb2eb3faf8f1d99b81c3e51aeda4b168406443e8ba809"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98b5e1f498a8ca1858a1cdbffb023bfd954da4e3fa2c0cb5853d40014557248b"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:14d7dc606219cdd7405133c713f2c218d4252f2a469003f8c46bb92d5d095d81"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:49aac49dc4782cb04f58986e81ea0b4768e4ff197b57324dcbd7699c5dfb40b9"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:418abb18146475c310d7a6dc71143d6f7adec5b004ac9ce08dc7a34e2babdc5c"}, + {file = "wrapt-1.16.0-cp312-cp312-win32.whl", hash = "sha256:685f568fa5e627e93f3b52fda002c7ed2fa1800b50ce51f6ed1d572d8ab3e7fc"}, + {file = "wrapt-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:dcdba5c86e368442528f7060039eda390cc4091bfd1dca41e8046af7c910dda8"}, + {file = "wrapt-1.16.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:d462f28826f4657968ae51d2181a074dfe03c200d6131690b7d65d55b0f360f8"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a33a747400b94b6d6b8a165e4480264a64a78c8a4c734b62136062e9a248dd39"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b3646eefa23daeba62643a58aac816945cadc0afaf21800a1421eeba5f6cfb9c"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ebf019be5c09d400cf7b024aa52b1f3aeebeff51550d007e92c3c1c4afc2a40"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:0d2691979e93d06a95a26257adb7bfd0c93818e89b1406f5a28f36e0d8c1e1fc"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:1acd723ee2a8826f3d53910255643e33673e1d11db84ce5880675954183ec47e"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:bc57efac2da352a51cc4658878a68d2b1b67dbe9d33c36cb826ca449d80a8465"}, + {file = "wrapt-1.16.0-cp36-cp36m-win32.whl", hash = "sha256:da4813f751142436b075ed7aa012a8778aa43a99f7b36afe9b742d3ed8bdc95e"}, + {file = "wrapt-1.16.0-cp36-cp36m-win_amd64.whl", hash = "sha256:6f6eac2360f2d543cc875a0e5efd413b6cbd483cb3ad7ebf888884a6e0d2e966"}, + {file = "wrapt-1.16.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a0ea261ce52b5952bf669684a251a66df239ec6d441ccb59ec7afa882265d593"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bd2d7ff69a2cac767fbf7a2b206add2e9a210e57947dd7ce03e25d03d2de292"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9159485323798c8dc530a224bd3ffcf76659319ccc7bbd52e01e73bd0241a0c5"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a86373cf37cd7764f2201b76496aba58a52e76dedfaa698ef9e9688bfd9e41cf"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:73870c364c11f03ed072dda68ff7aea6d2a3a5c3fe250d917a429c7432e15228"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b935ae30c6e7400022b50f8d359c03ed233d45b725cfdd299462f41ee5ffba6f"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:db98ad84a55eb09b3c32a96c576476777e87c520a34e2519d3e59c44710c002c"}, + {file = "wrapt-1.16.0-cp37-cp37m-win32.whl", hash = "sha256:9153ed35fc5e4fa3b2fe97bddaa7cbec0ed22412b85bcdaf54aeba92ea37428c"}, + {file = "wrapt-1.16.0-cp37-cp37m-win_amd64.whl", hash = "sha256:66dfbaa7cfa3eb707bbfcd46dab2bc6207b005cbc9caa2199bcbc81d95071a00"}, + {file = "wrapt-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1dd50a2696ff89f57bd8847647a1c363b687d3d796dc30d4dd4a9d1689a706f0"}, + {file = "wrapt-1.16.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:44a2754372e32ab315734c6c73b24351d06e77ffff6ae27d2ecf14cf3d229202"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e9723528b9f787dc59168369e42ae1c3b0d3fadb2f1a71de14531d321ee05b0"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbed418ba5c3dce92619656802cc5355cb679e58d0d89b50f116e4a9d5a9603e"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:941988b89b4fd6b41c3f0bfb20e92bd23746579736b7343283297c4c8cbae68f"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6a42cd0cfa8ffc1915aef79cb4284f6383d8a3e9dcca70c445dcfdd639d51267"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1ca9b6085e4f866bd584fb135a041bfc32cab916e69f714a7d1d397f8c4891ca"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d5e49454f19ef621089e204f862388d29e6e8d8b162efce05208913dde5b9ad6"}, + {file = "wrapt-1.16.0-cp38-cp38-win32.whl", hash = "sha256:c31f72b1b6624c9d863fc095da460802f43a7c6868c5dda140f51da24fd47d7b"}, + {file = "wrapt-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:490b0ee15c1a55be9c1bd8609b8cecd60e325f0575fc98f50058eae366e01f41"}, + {file = "wrapt-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9b201ae332c3637a42f02d1045e1d0cccfdc41f1f2f801dafbaa7e9b4797bfc2"}, + {file = "wrapt-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2076fad65c6736184e77d7d4729b63a6d1ae0b70da4868adeec40989858eb3fb"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5cd603b575ebceca7da5a3a251e69561bec509e0b46e4993e1cac402b7247b8"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b47cfad9e9bbbed2339081f4e346c93ecd7ab504299403320bf85f7f85c7d46c"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8212564d49c50eb4565e502814f694e240c55551a5f1bc841d4fcaabb0a9b8a"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5f15814a33e42b04e3de432e573aa557f9f0f56458745c2074952f564c50e664"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db2e408d983b0e61e238cf579c09ef7020560441906ca990fe8412153e3b291f"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:edfad1d29c73f9b863ebe7082ae9321374ccb10879eeabc84ba3b69f2579d537"}, + {file = "wrapt-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed867c42c268f876097248e05b6117a65bcd1e63b779e916fe2e33cd6fd0d3c3"}, + {file = "wrapt-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:eb1b046be06b0fce7249f1d025cd359b4b80fc1c3e24ad9eca33e0dcdb2e4a35"}, + {file = "wrapt-1.16.0-py3-none-any.whl", hash = "sha256:6906c4100a8fcbf2fa735f6059214bb13b97f75b1a61777fcf6432121ef12ef1"}, + {file = "wrapt-1.16.0.tar.gz", hash = "sha256:5f370f952971e7d17c7d1ead40e49f32345a7f7a5373571ef44d800d06b1899d"}, +] + +[[package]] +name = "yarl" +version = "1.14.0" +description = "Yet another URL library" +optional = false +python-versions = ">=3.8" +files = [ + {file = "yarl-1.14.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1bfc25aa6a7c99cf86564210f79a0b7d4484159c67e01232b116e445b3036547"}, + {file = "yarl-1.14.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0cf21f46a15d445417de8fc89f2568852cf57fe8ca1ab3d19ddb24d45c0383ae"}, + {file = "yarl-1.14.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1dda53508df0de87b6e6b0a52d6718ff6c62a5aca8f5552748404963df639269"}, + {file = "yarl-1.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:587c3cc59bc148a9b1c07a019346eda2549bc9f468acd2f9824d185749acf0a6"}, + {file = "yarl-1.14.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3007a5b75cb50140708420fe688c393e71139324df599434633019314ceb8b59"}, + {file = "yarl-1.14.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:06ff23462398333c78b6f4f8d3d70410d657a471c2c5bbe6086133be43fc8f1a"}, + {file = "yarl-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:689a99a42ee4583fcb0d3a67a0204664aa1539684aed72bdafcbd505197a91c4"}, + {file = "yarl-1.14.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b0547ab1e9345dc468cac8368d88ea4c5bd473ebc1d8d755347d7401982b5dd8"}, + {file = "yarl-1.14.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:742aef0a99844faaac200564ea6f5e08facb285d37ea18bd1a5acf2771f3255a"}, + {file = "yarl-1.14.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:176110bff341b6730f64a1eb3a7070e12b373cf1c910a9337e7c3240497db76f"}, + {file = "yarl-1.14.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:46a9772a1efa93f9cd170ad33101c1817c77e0e9914d4fe33e2da299d7cf0f9b"}, + {file = "yarl-1.14.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:ee2c68e4f2dd1b1c15b849ba1c96fac105fca6ffdb7c1e8be51da6fabbdeafb9"}, + {file = "yarl-1.14.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:047b258e00b99091b6f90355521f026238c63bd76dcf996d93527bb13320eefd"}, + {file = "yarl-1.14.0-cp310-cp310-win32.whl", hash = "sha256:0aa92e3e30a04f9462a25077db689c4ac5ea9ab6cc68a2e563881b987d42f16d"}, + {file = "yarl-1.14.0-cp310-cp310-win_amd64.whl", hash = "sha256:d9baec588f015d0ee564057aa7574313c53a530662ffad930b7886becc85abdf"}, + {file = "yarl-1.14.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:07f9eaf57719d6721ab15805d85f4b01a5b509a0868d7320134371bcb652152d"}, + {file = "yarl-1.14.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c14b504a74e58e2deb0378b3eca10f3d076635c100f45b113c18c770b4a47a50"}, + {file = "yarl-1.14.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:16a682a127930f3fc4e42583becca6049e1d7214bcad23520c590edd741d2114"}, + {file = "yarl-1.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:73bedd2be05f48af19f0f2e9e1353921ce0c83f4a1c9e8556ecdcf1f1eae4892"}, + {file = "yarl-1.14.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f3ab950f8814f3b7b5e3eebc117986f817ec933676f68f0a6c5b2137dd7c9c69"}, + {file = "yarl-1.14.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b693c63e7e64b524f54aa4888403c680342d1ad0d97be1707c531584d6aeeb4f"}, + {file = "yarl-1.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85cb3e40eaa98489f1e2e8b29f5ad02ee1ee40d6ce6b88d50cf0f205de1d9d2c"}, + {file = "yarl-1.14.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f24f08b6c9b9818fd80612c97857d28f9779f0d1211653ece9844fc7b414df2"}, + {file = "yarl-1.14.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:29a84a46ec3ebae7a1c024c055612b11e9363a8a23238b3e905552d77a2bc51b"}, + {file = "yarl-1.14.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:5cd5dad8366e0168e0fd23d10705a603790484a6dbb9eb272b33673b8f2cce72"}, + {file = "yarl-1.14.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a152751af7ef7b5d5fa6d215756e508dd05eb07d0cf2ba51f3e740076aa74373"}, + {file = "yarl-1.14.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:3d569f877ed9a708e4c71a2d13d2940cb0791da309f70bd970ac1a5c088a0a92"}, + {file = "yarl-1.14.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:6a615cad11ec3428020fb3c5a88d85ce1b5c69fd66e9fcb91a7daa5e855325dd"}, + {file = "yarl-1.14.0-cp311-cp311-win32.whl", hash = "sha256:bab03192091681d54e8225c53f270b0517637915d9297028409a2a5114ff4634"}, + {file = "yarl-1.14.0-cp311-cp311-win_amd64.whl", hash = "sha256:985623575e5c4ea763056ffe0e2d63836f771a8c294b3de06d09480538316b13"}, + {file = "yarl-1.14.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:fc2c80bc87fba076e6cbb926216c27fba274dae7100a7b9a0983b53132dd99f2"}, + {file = "yarl-1.14.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:55c144d363ad4626ca744556c049c94e2b95096041ac87098bb363dcc8635e8d"}, + {file = "yarl-1.14.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b03384eed107dbeb5f625a99dc3a7de8be04fc8480c9ad42fccbc73434170b20"}, + {file = "yarl-1.14.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f72a0d746d38cb299b79ce3d4d60ba0892c84bbc905d0d49c13df5bace1b65f8"}, + {file = "yarl-1.14.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8648180b34faaea4aa5b5ca7e871d9eb1277033fa439693855cf0ea9195f85f1"}, + {file = "yarl-1.14.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9557c9322aaa33174d285b0c1961fb32499d65ad1866155b7845edc876c3c835"}, + {file = "yarl-1.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f50eb3837012a937a2b649ec872b66ba9541ad9d6f103ddcafb8231cfcafd22"}, + {file = "yarl-1.14.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8892fa575ac9b1b25fae7b221bc4792a273877b9b56a99ee2d8d03eeb3dbb1d2"}, + {file = "yarl-1.14.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e6a2c5c5bb2556dfbfffffc2bcfb9c235fd2b566d5006dfb2a37afc7e3278a07"}, + {file = "yarl-1.14.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:ab3abc0b78a5dfaa4795a6afbe7b282b6aa88d81cf8c1bb5e394993d7cae3457"}, + {file = "yarl-1.14.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:47eede5d11d669ab3759b63afb70d28d5328c14744b8edba3323e27dc52d298d"}, + {file = "yarl-1.14.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:fe4d2536c827f508348d7b40c08767e8c7071614250927233bf0c92170451c0a"}, + {file = "yarl-1.14.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0fd7b941dd1b00b5f0acb97455fea2c4b7aac2dd31ea43fb9d155e9bc7b78664"}, + {file = "yarl-1.14.0-cp312-cp312-win32.whl", hash = "sha256:99ff3744f5fe48288be6bc402533b38e89749623a43208e1d57091fc96b783b9"}, + {file = "yarl-1.14.0-cp312-cp312-win_amd64.whl", hash = "sha256:1ca3894e9e9f72da93544f64988d9c052254a338a9f855165f37f51edb6591de"}, + {file = "yarl-1.14.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:5d02d700705d67e09e1f57681f758f0b9d4412eeb70b2eb8d96ca6200b486db3"}, + {file = "yarl-1.14.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:30600ba5db60f7c0820ef38a2568bb7379e1418ecc947a0f76fd8b2ff4257a97"}, + {file = "yarl-1.14.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:e85d86527baebb41a214cc3b45c17177177d900a2ad5783dbe6f291642d4906f"}, + {file = "yarl-1.14.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37001e5d4621cef710c8dc1429ca04e189e572f128ab12312eab4e04cf007132"}, + {file = "yarl-1.14.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4f4547944d4f5cfcdc03f3f097d6f05bbbc915eaaf80a2ee120d0e756de377d"}, + {file = "yarl-1.14.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75ff4c819757f9bdb35de049a509814d6ce851fe26f06eb95a392a5640052482"}, + {file = "yarl-1.14.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68ac1a09392ed6e3fd14be880d39b951d7b981fd135416db7d18a6208c536561"}, + {file = "yarl-1.14.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:96952f642ac69075e44c7d0284528938fdff39422a1d90d3e45ce40b72e5e2d9"}, + {file = "yarl-1.14.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a56fbe3d7f3bce1d060ea18d2413a2ca9ca814eea7cedc4d247b5f338d54844e"}, + {file = "yarl-1.14.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:7e2637d75e92763d1322cb5041573279ec43a80c0f7fbbd2d64f5aee98447b17"}, + {file = "yarl-1.14.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:9abe80ae2c9d37c17599557b712e6515f4100a80efb2cda15f5f070306477cd2"}, + {file = "yarl-1.14.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:217a782020b875538eebf3948fac3a7f9bbbd0fd9bf8538f7c2ad7489e80f4e8"}, + {file = "yarl-1.14.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b9cfef3f14f75bf6aba73a76caf61f9d00865912a04a4393c468a7ce0981b519"}, + {file = "yarl-1.14.0-cp313-cp313-win32.whl", hash = "sha256:d8361c7d04e6a264481f0b802e395f647cd3f8bbe27acfa7c12049efea675bd1"}, + {file = "yarl-1.14.0-cp313-cp313-win_amd64.whl", hash = "sha256:bc24f968b82455f336b79bf37dbb243b7d76cd40897489888d663d4e028f5069"}, + {file = "yarl-1.14.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:91d875f75fabf76b3018c5f196bf3d308ed2b49ddcb46c1576d6b075754a1393"}, + {file = "yarl-1.14.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:4009def9be3a7e5175db20aa2d7307ecd00bbf50f7f0f989300710eee1d0b0b9"}, + {file = "yarl-1.14.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:582cedde49603f139be572252a318b30dc41039bc0b8165f070f279e5d12187f"}, + {file = "yarl-1.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dbd9ff43a04f8ffe8a959a944c2dca10d22f5f99fc6a459f49c3ebfb409309d9"}, + {file = "yarl-1.14.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b9f805e37ed16cc212fdc538a608422d7517e7faf539bedea4fe69425bc55d76"}, + {file = "yarl-1.14.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:95e16e9eaa2d7f5d87421b8fe694dd71606aa61d74b824c8d17fc85cc51983d1"}, + {file = "yarl-1.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:816d24f584edefcc5ca63428f0b38fee00b39fe64e3c5e558f895a18983efe96"}, + {file = "yarl-1.14.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cd2660c01367eb3ef081b8fa0a5da7fe767f9427aa82023a961a5f28f0d4af6c"}, + {file = "yarl-1.14.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:94b2bb9bcfd5be9d27004ea4398fb640373dd0c1a9e219084f42c08f77a720ab"}, + {file = "yarl-1.14.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:c2089a9afef887664115f7fa6d3c0edd6454adaca5488dba836ca91f60401075"}, + {file = "yarl-1.14.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:2192f718db4a8509f63dd6d950f143279211fa7e6a2c612edc17d85bf043d36e"}, + {file = "yarl-1.14.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:8385ab36bf812e9d37cf7613999a87715f27ef67a53f0687d28c44b819df7cb0"}, + {file = "yarl-1.14.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:b4c1ecba93e7826dc71ddba75fb7740cdb52e7bd0be9f03136b83f54e6a1f511"}, + {file = "yarl-1.14.0-cp38-cp38-win32.whl", hash = "sha256:e749af6c912a7bb441d105c50c1a3da720474e8acb91c89350080dd600228f0e"}, + {file = "yarl-1.14.0-cp38-cp38-win_amd64.whl", hash = "sha256:147e36331f6f63e08a14640acf12369e041e0751bb70d9362df68c2d9dcf0c87"}, + {file = "yarl-1.14.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a9f917966d27f7ce30039fe8d900f913c5304134096554fd9bea0774bcda6d1"}, + {file = "yarl-1.14.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8a2f8fb7f944bcdfecd4e8d855f84c703804a594da5123dd206f75036e536d4d"}, + {file = "yarl-1.14.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8f4e475f29a9122f908d0f1f706e1f2fc3656536ffd21014ff8a6f2e1b14d1d8"}, + {file = "yarl-1.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8089d4634d8fa2b1806ce44fefa4979b1ab2c12c0bc7ef3dfa45c8a374811348"}, + {file = "yarl-1.14.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1b16f6c75cffc2dc0616ea295abb0e1967601bd1fb1e0af6a1de1c6c887f3439"}, + {file = "yarl-1.14.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:498b3c55087b9d762636bca9b45f60d37e51d24341786dc01b81253f9552a607"}, + {file = "yarl-1.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3f8bfc1db82589ef965ed234b87de30d140db8b6dc50ada9e33951ccd8ec07a"}, + {file = "yarl-1.14.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:625f207b1799e95e7c823f42f473c1e9dbfb6192bd56bba8695656d92be4535f"}, + {file = "yarl-1.14.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:781e2495e408a81e4eaeedeb41ba32b63b1980dddf8b60dbbeff6036bcd35049"}, + {file = "yarl-1.14.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:659603d26d40dd4463200df9bfbc339fbfaed3fe32e5c432fe1dc2b5d4aa94b4"}, + {file = "yarl-1.14.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:4e0d45ebf975634468682c8bec021618b3ad52c37619e5c938f8f831fa1ac5c0"}, + {file = "yarl-1.14.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:a2e4725a08cb2b4794db09e350c86dee18202bb8286527210e13a1514dc9a59a"}, + {file = "yarl-1.14.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:19268b4fec1d7760134f2de46ef2608c2920134fb1fa61e451f679e41356dc55"}, + {file = "yarl-1.14.0-cp39-cp39-win32.whl", hash = "sha256:337912bcdcf193ade64b9aae5a4017a0a1950caf8ca140362e361543c6773f21"}, + {file = "yarl-1.14.0-cp39-cp39-win_amd64.whl", hash = "sha256:b6d0147574ce2e7b812c989e50fa72bbc5338045411a836bd066ce5fc8ac0bce"}, + {file = "yarl-1.14.0-py3-none-any.whl", hash = "sha256:c8ed4034f0765f8861620c1f2f2364d2e58520ea288497084dae880424fc0d9f"}, + {file = "yarl-1.14.0.tar.gz", hash = "sha256:88c7d9d58aab0724b979ab5617330acb1c7030b79379c8138c1c8c94e121d1b3"}, +] + +[package.dependencies] +idna = ">=2.0" +multidict = ">=4.0" +propcache = ">=0.2.0" + +[[package]] +name = "zipp" +version = "3.20.2" +description = "Backport of pathlib-compatible object wrapper for zip files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, + {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, +] + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-ignore-flaky"] +type = ["pytest-mypy"] + +[metadata] +lock-version = "2.0" +python-versions = "~3.8" +content-hash = "efa0179eba359fcaefc59bcf838d3ddb4dc246ee64c0190fea65ca3f732b19ef" diff --git a/Chapter04/pyproject.toml b/Chapter04/pyproject.toml new file mode 100644 index 0000000..f7f9698 --- /dev/null +++ b/Chapter04/pyproject.toml @@ -0,0 +1,33 @@ +[tool.poetry] +name = "Graph Machine Learning - Chapter 4" +version = "1.0.0" +description = "" +authors = ["Enrico Deusebio "] +packages = [] + +[tool.setuptools] +py-modules = [] + +[tool.poetry.dependencies] +python = "~3.8" +ipykernel = ">=6.0.0" +matplotlib = "==3.2.2" +numpy = "==1.21.6" +neural-structured-learning = "==1.3.1" +networkx = "==2.5" +tensorflow = "^2.6.0" +tensorflow-io-gcs-filesystem = "==0.21.0" # This needs pinning - see https://stackoverflow.com/a/76477590 +stellargraph= "^1.2.1" +protobuf= "^3.20" +torch = "^2.1.0" +chardet = "==5.2.0" +torch_geometric = "^2.5.2" +torchvision = "^0.16.0" +torchmetrics="^1.3.0" +# dgl = https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl +dgl = {url = "https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl"} + +[build-system] +requires = ["poetry-core"] +build-backend = "poetry.core.masonry.api" + diff --git a/Chapter04/requirements.txt b/Chapter04/requirements.txt new file mode 100644 index 0000000..104a080 --- /dev/null +++ b/Chapter04/requirements.txt @@ -0,0 +1,132 @@ +absl-py==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +aiohappyeyeballs==2.4.3 ; python_version >= "3.8" and python_version < "3.9" +aiohttp==3.10.10 ; python_version >= "3.8" and python_version < "3.9" +aiosignal==1.3.1 ; python_version >= "3.8" and python_version < "3.9" +annotated-types==0.7.0 ; python_version >= "3.8" and python_version < "3.9" +appnope==0.1.4 ; python_version >= "3.8" and python_version < "3.9" and (platform_system == "Darwin" or sys_platform == "darwin") +asttokens==2.4.1 ; python_version >= "3.8" and python_version < "3.9" +astunparse==1.6.3 ; python_version >= "3.8" and python_version < "3.9" +async-timeout==4.0.3 ; python_version >= "3.8" and python_version < "3.9" +attrs==24.2.0 ; python_version >= "3.8" and python_version < "3.9" +backcall==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +cachetools==5.5.0 ; python_version >= "3.8" and python_version < "3.9" +certifi==2024.8.30 ; python_version >= "3.8" and python_version < "3.9" +cffi==1.17.1 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +chardet==5.2.0 ; python_version >= "3.8" and python_version < "3.9" +charset-normalizer==3.4.0 ; python_version >= "3.8" and python_version < "3.9" +colorama==0.4.6 ; python_version >= "3.8" and python_version < "3.9" and (sys_platform == "win32" or platform_system == "Windows") +comm==0.2.2 ; python_version >= "3.8" and python_version < "3.9" +cycler==0.12.1 ; python_version >= "3.8" and python_version < "3.9" +debugpy==1.8.7 ; python_version >= "3.8" and python_version < "3.9" +decorator==5.1.1 ; python_version >= "3.8" and python_version < "3.9" +dgl @ https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl ; python_version >= "3.8" and python_version < "3.9" +executing==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +filelock==3.16.1 ; python_version >= "3.8" and python_version < "3.9" +flatbuffers==2.0.7 ; python_version >= "3.8" and python_version < "3.9" +frozenlist==1.4.1 ; python_version >= "3.8" and python_version < "3.9" +fsspec==2024.9.0 ; python_version >= "3.8" and python_version < "3.9" +gast==0.4.0 ; python_version >= "3.8" and python_version < "3.9" +gensim==4.3.3 ; python_version >= "3.8" and python_version < "3.9" +google-auth-oauthlib==1.0.0 ; python_version >= "3.8" and python_version < "3.9" +google-auth==2.35.0 ; python_version >= "3.8" and python_version < "3.9" +google-pasta==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +grpcio==1.66.2 ; python_version >= "3.8" and python_version < "3.9" +h5py==3.11.0 ; python_version >= "3.8" and python_version < "3.9" +idna==3.10 ; python_version >= "3.8" and python_version < "3.9" +importlib-metadata==8.5.0 ; python_version >= "3.8" and python_version < "3.9" +ipykernel==6.29.5 ; python_version >= "3.8" and python_version < "3.9" +ipython==8.12.3 ; python_version >= "3.8" and python_version < "3.9" +jedi==0.19.1 ; python_version >= "3.8" and python_version < "3.9" +jinja2==3.1.4 ; python_version >= "3.8" and python_version < "3.9" +joblib==1.4.2 ; python_version >= "3.8" and python_version < "3.9" +jupyter-client==8.6.3 ; python_version >= "3.8" and python_version < "3.9" +jupyter-core==5.7.2 ; python_version >= "3.8" and python_version < "3.9" +keras-preprocessing==1.1.2 ; python_version >= "3.8" and python_version < "3.9" +keras==2.7.0 ; python_version >= "3.8" and python_version < "3.9" +kiwisolver==1.4.7 ; python_version >= "3.8" and python_version < "3.9" +libclang==18.1.1 ; python_version >= "3.8" and python_version < "3.9" +lightning-utilities==0.11.7 ; python_version >= "3.8" and python_version < "3.9" +markdown==3.7 ; python_version >= "3.8" and python_version < "3.9" +markupsafe==2.1.5 ; python_version >= "3.8" and python_version < "3.9" +matplotlib-inline==0.1.7 ; python_version >= "3.8" and python_version < "3.9" +matplotlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" +mpmath==1.3.0 ; python_version >= "3.8" and python_version < "3.9" +multidict==6.1.0 ; python_version >= "3.8" and python_version < "3.9" +nest-asyncio==1.6.0 ; python_version >= "3.8" and python_version < "3.9" +networkx==2.5 ; python_version >= "3.8" and python_version < "3.9" +neural-structured-learning==1.3.1 ; python_version >= "3.8" and python_version < "3.9" +numpy==1.21.6 ; python_version >= "3.8" and python_version < "3.9" +nvidia-cublas-cu12==12.1.3.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-cupti-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-nvrtc-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-runtime-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cudnn-cu12==8.9.2.26 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cufft-cu12==11.0.2.54 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-curand-cu12==10.3.2.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cusolver-cu12==11.4.5.107 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cusparse-cu12==12.1.0.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nccl-cu12==2.18.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nvjitlink-cu12==12.6.77 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nvtx-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +oauthlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" +opt-einsum==3.4.0 ; python_version >= "3.8" and python_version < "3.9" +packaging==24.1 ; python_version >= "3.8" and python_version < "3.9" +pandas==2.0.3 ; python_version >= "3.8" and python_version < "3.9" +parso==0.8.4 ; python_version >= "3.8" and python_version < "3.9" +pexpect==4.9.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" +pickleshare==0.7.5 ; python_version >= "3.8" and python_version < "3.9" +pillow==10.4.0 ; python_version >= "3.8" and python_version < "3.9" +platformdirs==4.3.6 ; python_version >= "3.8" and python_version < "3.9" +prompt-toolkit==3.0.48 ; python_version >= "3.8" and python_version < "3.9" +propcache==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +protobuf==3.20.3 ; python_version >= "3.8" and python_version < "3.9" +psutil==6.0.0 ; python_version >= "3.8" and python_version < "3.9" +ptyprocess==0.7.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" +pure-eval==0.2.3 ; python_version >= "3.8" and python_version < "3.9" +pyasn1-modules==0.4.1 ; python_version >= "3.8" and python_version < "3.9" +pyasn1==0.6.1 ; python_version >= "3.8" and python_version < "3.9" +pycparser==2.22 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +pydantic-core==2.23.4 ; python_version >= "3.8" and python_version < "3.9" +pydantic==2.9.2 ; python_version >= "3.8" and python_version < "3.9" +pygments==2.18.0 ; python_version >= "3.8" and python_version < "3.9" +pyparsing==3.1.4 ; python_version >= "3.8" and python_version < "3.9" +python-dateutil==2.9.0.post0 ; python_version >= "3.8" and python_version < "3.9" +pytz==2024.2 ; python_version >= "3.8" and python_version < "3.9" +pywin32==307 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" +pyyaml==6.0.2 ; python_version >= "3.8" and python_version < "3.9" +pyzmq==26.2.0 ; python_version >= "3.8" and python_version < "3.9" +requests-oauthlib==2.0.0 ; python_version >= "3.8" and python_version < "3.9" +requests==2.32.3 ; python_version >= "3.8" and python_version < "3.9" +rsa==4.9 ; python_version >= "3.8" and python_version < "3.9" +scikit-learn==1.3.2 ; python_version >= "3.8" and python_version < "3.9" +scipy==1.10.1 ; python_version >= "3.8" and python_version < "3.9" +setuptools==75.1.0 ; python_version >= "3.8" and python_version < "3.9" +six==1.16.0 ; python_version >= "3.8" and python_version < "3.9" +smart-open==7.0.5 ; python_version >= "3.8" and python_version < "3.9" +stack-data==0.6.3 ; python_version >= "3.8" and python_version < "3.9" +stellargraph==1.2.1 ; python_version >= "3.8" and python_version < "3.9" +sympy==1.13.3 ; python_version >= "3.8" and python_version < "3.9" +tensorboard-data-server==0.7.2 ; python_version >= "3.8" and python_version < "3.9" +tensorboard==2.14.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow-estimator==2.7.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow-io-gcs-filesystem==0.21.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow==2.7.2 ; python_version >= "3.8" and python_version < "3.9" +termcolor==2.4.0 ; python_version >= "3.8" and python_version < "3.9" +threadpoolctl==3.5.0 ; python_version >= "3.8" and python_version < "3.9" +torch-geometric==2.6.1 ; python_version >= "3.8" and python_version < "3.9" +torch==2.1.2 ; python_version >= "3.8" and python_version < "3.9" +torchmetrics==1.4.3 ; python_version >= "3.8" and python_version < "3.9" +torchvision==0.16.2 ; python_version >= "3.8" and python_version < "3.9" +tornado==6.4.1 ; python_version >= "3.8" and python_version < "3.9" +tqdm==4.66.5 ; python_version >= "3.8" and python_version < "3.9" +traitlets==5.14.3 ; python_version >= "3.8" and python_version < "3.9" +triton==2.1.0 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +typing-extensions==4.12.2 ; python_version >= "3.8" and python_version < "3.9" +tzdata==2024.2 ; python_version >= "3.8" and python_version < "3.9" +urllib3==2.2.3 ; python_version >= "3.8" and python_version < "3.9" +wcwidth==0.2.13 ; python_version >= "3.8" and python_version < "3.9" +werkzeug==3.0.4 ; python_version >= "3.8" and python_version < "3.9" +wheel==0.44.0 ; python_version >= "3.8" and python_version < "3.9" +wrapt==1.16.0 ; python_version >= "3.8" and python_version < "3.9" +yarl==1.14.0 ; python_version >= "3.8" and python_version < "3.9" +zipp==3.20.2 ; python_version >= "3.8" and python_version < "3.9" diff --git a/docker/Dockerfile b/docker/Dockerfile index d4e495a..71229ae 100644 --- a/docker/Dockerfile +++ b/docker/Dockerfile @@ -43,6 +43,12 @@ RUN conda create -n chap3 python=3.8 RUN conda run -n chap3 pip install -r Chapter03/requirements.txt RUN conda run -n chap3 python -m ipykernel install --name chap3 --user +FROM base as chap4 +RUN ls -d -1 */ | grep -v -e Chapter04 | xargs rm -rf +RUN conda create -n chap4 python=3.8 +RUN conda run -n chap4 pip install -r Chapter04/requirements.txt +RUN conda run -n chap4 python -m ipykernel install --name chap4 --user + FROM base as chap5 RUN ls -d -1 */ | grep -v -e Chapter05 | xargs rm -rf RUN conda create -n chap5 python=3.8 From 23cc6660deecb169c242f9915a10b4a4528afc8d Mon Sep 17 00:00:00 2001 From: deusebio Date: Mon, 14 Oct 2024 21:13:03 +0200 Subject: [PATCH 14/31] [Chapter 6] Adding pyg support (#9) --------- Co-authored-by: MARZULLO Aldo ICH --- Chapter06/01_Social_network_analysis.ipynb | 807 ++----- Chapter06/02_Social_network_analysis.ipynb | 812 +++++++ Chapter06/poetry.lock | 2510 ++++++++++++++++---- Chapter06/pyproject.toml | 13 + Chapter06/requirements.txt | 104 +- 5 files changed, 3056 insertions(+), 1190 deletions(-) create mode 100644 Chapter06/02_Social_network_analysis.ipynb diff --git a/Chapter06/01_Social_network_analysis.ipynb b/Chapter06/01_Social_network_analysis.ipynb index 9291bc4..b883c39 100644 --- a/Chapter06/01_Social_network_analysis.ipynb +++ b/Chapter06/01_Social_network_analysis.ipynb @@ -11,7 +11,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": { "executionInfo": { "elapsed": 2015, @@ -67,7 +67,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -86,24 +86,11 @@ "id": "1F-dlWqNGaF8", "outputId": "c422ddf8-3bad-45ae-e437-67d94bc8d480" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "100 213k 100 213k 0 0 138k 0 0:00:01 0:00:01 --:--:-- 138k\n", - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "100 714k 100 714k 0 0 287k 0 0:00:02 0:00:02 --:--:-- 287k\n" - ] - } - ], - "source": [ - "!curl -O http://snap.stanford.edu/data/facebook_combined.txt.gz\n", - "!curl -O http://snap.stanford.edu/data/facebook.tar.gz\n", - "!gzip -d -f facebook_combined.txt.gz\n", + "outputs": [], + "source": [ + "!wget http://snap.stanford.edu/data/facebook_combined.txt.gz\n", + "!wget http://snap.stanford.edu/data/facebook.tar.gz\n", + "!gzip -d facebook_combined.txt.gz\n", "!tar -xf facebook.tar.gz" ] }, @@ -130,7 +117,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -149,17 +136,7 @@ "id": "0u_P2c3T-bc5", "outputId": "bb59b58d-ecf4-45ae-f867-102c84bc09b1" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "01_Social_network_analysis.ipynb facebook.tar.gz pyproject.toml~\n", - "facebook\t\t\t poetry.lock\t tmp.txt\n", - "facebook_combined.txt\t\t pyproject.toml Untitled.ipynb\n" - ] - } - ], + "outputs": [], "source": [ "# check the downloaded content\n", "!ls" @@ -167,7 +144,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -186,24 +163,7 @@ "id": "Uno8xGcQ-jjd", "outputId": "02b5d01a-4e08-4d95-f36c-7251248b3294" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0 1\n", - "0 2\n", - "0 3\n", - "0 4\n", - "0 5\n", - "0 6\n", - "0 7\n", - "0 8\n", - "0 9\n", - "0 10\n" - ] - } - ], + "outputs": [], "source": [ "# take a look at the first lines of the edge list\n", "!head facebook_combined.txt" @@ -220,7 +180,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": { "executionInfo": { "elapsed": 923, @@ -242,7 +202,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -261,26 +221,14 @@ "id": "ssuI-8mvibIj", "outputId": "44e5daa6-07f3-47ec-8bc7-1d3fba54d0ee" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Name: \n", - "Type: Graph\n", - "Number of nodes: 4039\n", - "Number of edges: 88234\n", - "Average degree: 43.6910\n" - ] - } - ], + "outputs": [], "source": [ "print(nx.info(G))" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": { "executionInfo": { "elapsed": 787, @@ -313,7 +261,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": { "id": "poIVgKmCHFw3" }, @@ -325,7 +273,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -345,21 +293,13 @@ "id": "4AqPky9FsP7Y", "outputId": "062d5b31-6091-4df7-b3e5-5914ef14aaa2" }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxb13ng/d+9AEiQBEhxFReJpERSuyVRu2TL1h7bkpO4SbNMp4kzcZo0qd0mbZb2fTvzvjN5PzPTuM10PJ8mcVIvah05jlo7sWTLiuUlsmXtFq1d3ERS4iLuBAhivef9AwTEnaBEEiD5fD8fWiZwce+hROA895znPEdTSimEEEIIMWPp0W6AEEIIIaJLggEhhBBihpNgQAghhJjhJBgQQgghZjgJBoQQQogZToIBIYQQYoaTYEAIIYSY4SQYEEIIIWY4CQaEEEKIGU6CASGEEGKGk2BACCGEmOEkGBBCCCFmOAkGhBBCiBlOggEhhBBihpNgQAghhJjhJBgQQgghZjgJBoQQQogZToIBIYQQYoaTYEAIIYSY4SQYEEIIIWY4c7QbIISIfUopKhpctDp9pCWZqG1xc6PNQ36GlS1L09A0Lfx8ht1CUXYimqZFu9lCiAhpSikV7UYIIWJLIBDgpaONVDf3EGfSOFPZwa2uwJDHmnRIijPR5b79fE5qPH/5qUJWF6VMVpOFEHdBggEhRD9PvVrFwTMt43Kur++aw+qilGFHFHRdZiqFiAUSDAghwsYzEBiNxaTx1R1z+Px9OZNyPSHE8CQsF0IAwamByQoEAHwBxU/frOOHL5djGMakXVcIMZgEA0IIAF462hiV6x45384n/usZfvV+Q1SuL4SQYEAI0au6uSdq1/b3jhK8dLQ+am0QYiaTYEAIAcC8zIRoN4Fnj9yUKQMhokCCASEEAF/YnB3tJuALKN692BbtZggx40gwIIQAwGQy8ciazGg3g9oWd7SbIMSMI8GAECLsO5+ax/qS5Ki2IT/DGtXrCzETSTAghAg7U9nJqYquqF3fYtLYsjQtatcXYqaSYEAIAQT3H3j6YA3RLEP21R1zpCqhEFEgGxUJIQCoaHBR0xy9+frPbpwt1QiFiBIJwYUQALQ6fVG7dnaKhW8+lB+16wsx00kwIIQAIN1midq196ydLVseCxFFEgwIIQAozkmkINNKNLrk9Qtkq2MhokmCASEEAJqm8eSeQjSNSQ0ICjOtFGUnTuIVhRADSTAghAhbNT+Zv/vyQnJTR8otHr/lBhrwxJ5CmSIQIsokGBBC9LO6KIVvP6BYbXqfedpVrHQPcdTdBwSpSWae+soiVs2PbpEjIYQsLRRCDOHWrVvk2BV2ZxX5qgondrzKSpzmxqfiqDAW48J+R+dOitf5+8cWsiDPJiMCQsQICQaEEIM0NTVhtVpxOp1oGthxgOYIPqnBWu19nMpOJ2l4VDx1qiii82oa/Nf/sICFc+4skBBCTAwJBoQQ/SilaGpqIiFh+C2NO1Q65YNGBxQjpR4WZlp5Yk+hTAsIEYMkGBBC9NPV1YXb7cbr9Q75fLuRTpmxdphXDw4INODbnyxkz5pMmRYQIkZJMCCE6KepqQmAQMDASTJeFU+c5sZGcJqg3Fjce+TAjn1wR1+YlcATuwtkNECIGCfBgBACCE4PVDS4OHqhmXpjLo16MV3+29sJx9NNMh0RJQ4+sTuf5QV2irITZTRAiClAggEhBGcqO3n6YE3vRkUWYBkY/Y/xkEQzSRGdLzfNSnFOZMcKIaJPggEhZrgzlZ1874Wr47p1cYY9evscCCHGToIBIWYwpRRPH6xBqfGpK6hpUJCZIOWFhZhiJBgQYgaraHD1Tg3cvdCeBk/sLpA8ASGmGAkGhJjBWp2+cTtXQaasHBBiqpJgQIgZLN02PnP7f/u5+Wxdli4jAkJMUbJRkRAzWHFOIgWZ1tEPHEFhllUCASGmOAkGhJjBNE3j0/doBNMHB6YQRpZS+MRu2YJYiKlOggEhZiilFMeOHaPs9//OfO0q2oDCAlo4QBg6KEhNMvP3sgWxENOCptR4ri4WQkwFXq+X515+k4vldbiJp9xY1vtM3zv84EdDVkoctzpvJxqm2Sw8tjWXPWuzZERAiGlCEgiFmGF+X1bP379aTpd/NjC799GhdhzU0DRIiDPxzJ+W0Or0k2G3SIlhIaYhCQaEmIZC+wy0On39OvCDH1zlqUMdwMCkwaE7d6WgptmNpmlsWDBrwtsthIgOCQaEmGb67zMQVJBpZcc8F/tOdgM2huv8h9Pi8FGcM77tFELEDgkGhJhGhttnoKa5h39u1iCCHQeHInsNCDG9STAgxDQx8j4DoeWDYyN7DQgxM0gwIMQ0Mfo+A2ObGpC9BoSYOSQYEGKaiHyfgaFWDgwmew0IMXNIMCDENDG2fQb6BwRa7yzCtz9ZSGZKnCwhFGKGkWBAiGkitM9ATXMPQ9/5KxJxUqxfpsJYjKtPMqGMAggxs0kwIMQ0oWkaG2c3U9NsY/BUQDB5sES/RKrexqa4E3zmy39Gh8uQUQAhhAQDQkwXZWVlNF55n0fmlXKkOqnfnX8iznAgYDab+d73vovFIssFhRBBsjeBENPAzZs3ee655ygsLKSyshKlwIkdn5aARfVgw4Gmgclk4vvf/74EAkKIfiQYEGKKczgcPPPMM1itVlpaWsKPm81m/H5/+Htd1/nBD34ggYAQYhDZwliIKczv9/OrX/2KQCDQLxCwWCz9AgFN02REQAgxLMkZEGKKUkpx4MABGhsbCQQC/Z7z+W7XHNA0jR/84AfExcVNdhOFEFOEBANCTFHHjx+nrKysNz8gGa+KJ05zh/MD4PaIgAQCQoiRSDAgxBRUUVHB4cOHaTfSKR9QMyARR3jlwHe/+13i4+Oj2FIhxFQgwYAQU0xraysvv/wy7UY6ZcbaQc+7sFFmrOOHnyskISEhCi0UQkw1kkAoxBTidrt5/vnn8Xp9lBuLex8dWCxIQ0Pj50eakMVCQohISDAgxBRhGAbPPfccTqcTJ8m9UwNDVw1UQE2zm8pG16S2UQgxNUkwIMQU8eKLL3Lr1i0AvCqyPIAWR6Q7GQohZjIJBoSYAl555RWqqqrC38dpnohel2GXugJCiNFJMCBEjDt06BAff/xxv8c2lxaRiIPQBkQDaRoUZiVQlJ04CS0UQkx1EgwIEcPeeustTpw4Ef5e13VycnI4d+4jFpguozFE+qAWfOyJ3QWyE6EQIiKyN4EQMUIpRUWDi1anjwy7hdrLJzl69Pfh53Vdx2w2YzabcbvdFBcXU7T6E/zToRvUNLvDxxVmJfDE7gJWzU+Oxo8hhJiCJBgQIgacqezk6YM1/Tr1vsWDdF3HMAwKCgqoq6ujuLiYP/zDP8RsNqOUorLRRYsjGEQUZSfKiIAQYkwkGBAiys5UdvK9F66i1MAMgOB3K/RTzLY6WL16NSdPngwHAiaTKRrNFUJMQ5IzIEQUKaV4+mDNEIEAhLIBruvL2bVrlwQCQogJI8GAEFFU0eCiptk9zJoAAI1Ov5VfHThKSUmJBAJCiAkhexMIEUWtzsiKAmXkzeezn90tgYAQYkLIyIAQUZRmiywe/9SDWyUQEEJMGBkZEGKSDFw6OH92AheO/45EknFhY+h9BhQFmQksyLNNdnOFEDOIBANCTIKhlg7OivNQ4L9BiQ5lxjqCKYR9AwKFrmk8uadQlgoKISaULC0UYoJFsnQQ4JZ9Aw2dRvjZwkwrT+wplOJBQogJJyMDQkyg0ZcOKsqNxfx/n0nHYrHw/P7DZOcv4JFdD1CSmyQjAkKISSHBgBATKLR0cHgaLuw0OXVOvP1vbFi2lEcffQhdl9xeIcTkkU8cISZQpEsHX3/rfZYtW8ajjz4qgYAQYtLJyIAQEyjdZonouCXFc/n0p3dLICCEiAr55BFiAhXnJJKdHMwNGJoizerj8S8+LIGAECJq5NNHiAlUV1dHTs+p3gWDAwMChQb8zeeXSkEhIURUSTAgxARpbm5m3759LMo2U2o5SyLOfs+nWf386MsLWV08K0otFEKIIKkzIMQEcDgc/PM//zMmk4nu7m68Xi+FhfNIm7uU3713nGULC/hPn3tQRgSEEDFBRgaEGGcej4df/vKX+P1+3G43Xq+X3Nxcli1bypnfv8a20jwe/8LDEggIIWKGBANCjKNAIMCvf/1r2tra0HWdnp4eMjMzWblyJa+99hqlpaV88pOflGJCQoiYIsGAEONEKcVrr71GdXU1iYmJOJ1OZs2axerVqzl48CClpaU88sgjEggIIWKOBANCjJN33nmHsrIyZs2aRUdHBzabjbVr1/LGG2+watUqCQSEEDFLggEhxsGZM2c4evQo6enptLW1kZCQwLp16zh8+DCrV69mz549EggIIWKWBANC3KVr165x8OBB0tPTaW1tJT4+ng0bNnDkyBFWr17N7t27JRAQQsQ0KUcsxF24efMm+/fvZ9asWbS2tmI2m1m3bh3vvPMOa9as4eGHH5ZAQAgR8yQYEOIOtbW18ctf/pKEhATa29vRdZ1169Zx9OhR1q5dy0MPPSSBgBBiSpBpAiHuQHd3Ny+++CKaptHV1YWmaaxdu5Zjx45JICCEmHJkZECIMfL5fOzbt4/u7m48Hg8ApaWlnDhxgnXr1vHggw9KICCEmFIkGBBiDAzDYP/+/TQ1NeH3+wFYvnw5Z8+eZf369XziE5+QQEAIMeVIMCBEhJRSvP7665SXl4cfW7JkCR9//LEEAkKIKU1yBoSI0Pvvv8+ZM2fQNA2lFCUlJVy6dIkNGzZIICCEmNIkGBAiAmVlZbz99tuYTCYMw6CwsJDy8nI2btzIrl27JBAQQkxpEgwIMYrKykp++9vfYjabCQQC5OXlcf36dTZu3MjOnTslEBBCTHmSMyDECBobG3n55ZfRdR2/309WVhY3b95k06ZN7NixQwIBIcS0IMGAEMPo6OjgxRdfxDAM/H4/aWlp3Lp1i3vvvZft27dLICCEmDYkGBBiCD09Pbz44ov09PQQCARISUmhra2N++67j23btkkgIISYViQYEGIAv9/PSy+9RFtbG4ZhkJSURGdn55QLBAzD4J3zbdS1ucnPsLJlaRq6HkwTUkpR0eCi1ekjw26hKDsRYNBjU+VnFULcHU0ppaLdCCFihVKK/fv3c/nyZZRSJCQk0NPTw+bNm9m6deuU6RxfOlrPs0du4gvcfnubdY1dK9NZkJfIvvfqaeryh5/LSrag6RpNHd5+j/2HB3JIijNxo90zKKAQQkwfEgwI0cebb77J8ePHAYiLi8Pr9XL//fezZcuWmA8EQiMBb3zUwpnKrgm5hkmD9QtTWFOUwrJ8O8U5MnogxHQgwYAQvT788EMOHz4MgNlsxu/388ADD7Bly5boNiwCQ40ETIZZSWa+si2XRXNstDn9Mr0gxBQlwYAQwMWLF9m/fz8AJpOJQCAwpQKBnx2+Ee1mhOWkxrN7dSbrF6RIYCDEFCHBgJjxampq2Lt3L4ZhhEsNT5VAwDAMHvyvZyZ9RCBSEhgIMTVIMCBmtObmZn7xi1/g9d5OnNuyZQsPPPBAFFsVuSNlLfxwf1W0mxGRgkwrT+4pZNX85Gg3RQgxgKQFixnL4XDwwgsv9AsEtm7dOmUCAYC6Nne0mxCxmmY3333+CmcqOqPdFCHEABIMiBnJ4/Hwwgsv0N3dHX5s27Zt3H///VFs1djNTbNGuwljYij4wb9c5V/fvUlFQzcyMClEbJBpAjHjBAIBXnjhBerq6sKPbdu2jc2bN0exVWOnlOJavZNvPXOZgBHt1twZmToQIjZIMCBmlFBRoUuXLoUf2759O/fdd18UWzV2Zyo7efpgDTXNfacJFDC1EvQ0QNPg7768kNVFKdFujhAzlkwTiBnld7/7Xb9AYMeOHVMyEPjeC1epbZ46+QLDUb1fTx+skSkDIaJIggExY5w4cYIPP/ww/P3OnTu59957o9iisVNK8aNXqjFUsBPtb2qNCoQoFUwurGx0RbspQsxYEgyIGeHy5cscOnQo/P3OnTvZtGlTFFt0Z/7zvnKaOr2jHzgFtTh80W6CEDOW7Foopr26ujpefvnl8Pe7du1i48aNUWzRnXnpaD3vX+6IdjMmTIbdEu0mCDFjSTAgprWWlhaef/758PdTNRAwDINf/C52Sg6PJ02DgsyE8DbKQojJJ9MEYtrq7u7mmWeewTCC6+6maiAA8M75NmK04vBd04AndhdIqWIhokiCATEteb1e/umf/gmfLzgPPZUDAZhalQbH6hOlGVJnQIgok2BATDuGYfCzn/0MlyuYnb5z584pHQjA1Ks0OBbnqh2yrFCIKJNgQEwrSimef/552tragKm7amCgrfekYb6rd2toRX/saWj3yLJCIaJMggExrezfvz9cZnj79u1TJhBQSlFe383xax1D1uzXdZ3Hd869iytoxHIdAllWKER0yWoCMW0cPnw4XF1w69atU6ay4FClhQfW7FdKsWp+MnMTHdS57GM4u8KMBz+xPc0gywqFiC7Zm0BMC8ePH+fNN98EYPPmzWzbti3KLYpMqLSwGlBRsG/NfqUU//Cb6zR09C02FMk+BMEzLtAvcs1YNr4NH0eFWQk8+2fLZDWBEFEkIwNiyrt06VI4ENi4ceOUCQSUUr01+QfP5oe+/+GvK+no9g/x6tE7ThNelunnmKW1UcN8PCRE9LrJJMsKhYgNEgyIKUUpRUWDi1anjwy7BYu3hV//+tcArF69ml27dkW5hZGraHAN2HWwP6UYJhCITCEVpOptxOrYn9478iHLCoWIPgkGxJQx1Nx6Ig5K9DTuX5HHnj17oti6sWt1TmzSnLc3T8BJMh5ir7rff9icI9sWCxEjJBgQU0LfufW+XNj42FjHH69YFJ2GRWDgaEZRdiKappFum9ikuTgtGDR5VfyEXudOmHT4yva8aDdDCNFLggER80aaWwcNNHj6YA3PPXFPzM09j7RSoHSenYJMK7XN7gmpAKABDmXHgmcCzn53vrZzLrouK5uFiBWymkDEvPL6bv7kJxdHPe7n31xKcU7SJLQoMqcrOvjeC9cGdfRa73++/UgBuanxfG/vtWECnTvVf6WBGS9+TIBp3K5wpywmja/umMPn78uJdlOEEH3IyICIeZHOrbc4fBTHSB9zpqKTv/nX8iE7eNX7n3/4bQ1mExhDHGTWwRpnwukO3HVb/MTd9TnuxryUHqy+Fj67+wG2LEuTEQEhYpAEAyLmRTq3Ho3CNYFAgJeONlLd3MO8LCuri1I4VdHJc0fqI7rT9w/T1/sN7iIQiK2pkiz3eT5x71K2Ls+IdlOEEMOQYEDEvKLsBOwmF47A0OvkNQ0KMhMoyp7cjPmnXq3i4JmWfo/94q36SW1DdI1W+Ehhwoff52XZstgteiSEkL0JRIxTSvHzn/+c+eo8MLjr0bSJL1wzcN8AwzD4219eGxQIzDwjBwKgESCOM8Z9fHdfA2eruiarYUKIMZIEQhGzQjsQ1tbWArD101/j2fda+mXmF2Yl8MTuggkrXDPUagCNWN3/L5b0HzXoW15ZagsIEXskGBAxSSnFvn37KC8vB+Dxxx8nLy8PpRSVjS5aHP3X7E+EUG2DoRL8xNhpGuRnWMNLQPvWX0hLMlPb0sONNg/5GVa2LJVEQyEmkwQDIuYopdi/f394B8LPfe5zLF68eNLb8JWnz49YLljcmZ9/cymdLv+gEZe+ZAmiEJNLggERU5RS/OY3v6GsrAyAXbt2sXHjxkm7vmEYvHO+jXM1Dg6cap60604toY+MOxuRWTe7jVNNqagIXv/1XXP4wubcO7qOECJyEgyImKGU4rXXXuOjjz4CYN26dTz00EPjfo2BpYEhuGnQK8cbOXyulYC8I4alYbC9yM+RSgugDcidiGRbZYjXvHiUJaJjLSaNQ/95tUwZCDHBZGmhiAlKKQ4cOBAOBBYsWDDugcBQyYCzU+JQKG51TuymQdNFHG6aq8+zXNcoNxbjwh5+LgEnBqYRtkoOBgseFXkRJF9A8e7FNrbdIzUKhJhIEgyIqFNK8frrr3P27FkAcnJy+OIXvziu1xhuo6OmTu+4Xme685BAmbGOFfop1prex4kdr7ISr3uw4aA2UECVGm7TqDubVqhtkbwNISaaBAPjaLjd6YZ6Pt1mQSlFW7d/wrPiY5lSijfeeIPTp08DkJyczNe+9rVxv8bwGx2JsQkurCw3FrPW9D52zQGaA4BaYx5VaiHjXQExP8M6rucTQgwmwcA4GWl3ulXzk4d8vq++x84UoUDg1KlTAMTHx/Pkk0+Oe1BU0eCSVQHjSsOFHSd27AQDgbZAem8gML4sJo0tS9PG/bxCiP5mXFbOwGpy45E/GRqCrh3Q4dQ2u/nu81d46Wj9kM8PdeyZys4Jb28sGBgImEwmvv3tb2Myjf/OepFudCTGpsWYjUPZ8fvhklpOb2mhcb3GV3fMkeRBISbBtB4ZGDhs39Ht4/+8Xjvs3Xuk52txeOnxBEiIN5Fhtww7BB36/tkjN0ctXBN6+umDNeGiLGcqO/nfB65T23J7P/r8jHg+uzGbzFnxU3Z6QSnFoUOHwoGApml861vfIj4+fkKuF+lGR5Pj7pblxZIaVUJNoIRIVxGM1X2LZkmdASEmybRdWjjasHxfGvAXjxTwyNqsYTvWsZzvboWKsvzV81dHPTY/I54/f2TelJleCAUCJ0+eDD/21a9+lTlz5kzoNb/y9Hlqm92SMzCFPLk7n0c3ZEe7GULMCNNy/G24YfvhKODHr9XwlafPc7aqa9DQ/JmK4Pkma965ucvLD39dGdGxtS0e/uq5/tMLsTq1MFQg8NnPfnZCAwEIjjw8uadwOtyMx4DJ+11alm8f/SAhxLiYViMDoU7wb/dV0NzpvaOPLQ1IS9Jp7TbCj5n14P7yk2WNvZLTjqIxvSYrxcJLf7mSs1VdIyYyRotSijfffJMTJ06E69Lv2LGDe++9d9Ku/4W/Pyf1BKYIm1Xnt3+zespNgQkxVU2pYCBUKrauzT1oM5PxG8aP/pyuGS9+Ii/MEvKptZm8drp5UP5CaMe4//mlBaQkWoZd+jhR+gYCuq5jGAZr1qxh9+7dE37tkPL6bv7kJxcn7Xri7nz7kQI+uW52tJshxIwxJYIBpRT/5+B1Xj3Z3C8RL7SZSXF2It/bO512l5uYhCyLScPXp9buZIwY9A0E4uLi8Hq9FBcX80d/9EcTds2hHL/WwV//y7VJveZ0kE49iVoPicrBVVZOyjVTk8z82/dLZVRAiEkU88HAmcpO/stL5XS7hx+n1zWmUSAweSZ6j3mlFIcPH+b48eMkJSXR3d3N7Nmz+cY3vjHu1xqNjAzcmXv006TrwdGmU4H7cGFjIkfNNA2eemzRlEmIFWK6iOlg4OS1Nr7/LxXRbsa0V5Bp5W8+M39cqyH2DQRSU1Npb2/HZrPxne98Z9C5lVLhL8Mw+n0/0uMjPWYYBl6vF7fb3fvl4cfvQXP3+K+Fn85+/s2lFOckEQgE+PByM3/7q5reZ8b/77Awy8oTu2dW4S0hYkXMBgNPvVrFwTMt0W7GjJRi8bA+o4HshO4+nauizWulx28mXveQYnIBw3fMbrcbn88XThYEsFiC6/0HHjtZ2o00yox1vd9JQDCawiwrz/7ZPeHgzePx8P/8r3/lgmcRTt/41W54cnc+9xTYp2TNDCGmi5grOuT3+3n8ny5J+dgo6vTFcbihgI25Xcyb5cXtN/FerZ1W9+0OID3Bz86iHualBsKPhTr5mpoaHA5HeGoAYM6cOfj9frxeLz6fj0AggN/vxzCMfsHBRErV21jBKa4ay3CTOEFXmZh8j2h4Yndhv875vffew+Zv5P/atYxn3zjPdWMBPu6uUFRBppVPr58tQYAQURZTIwM/2HuFE+Vd0W6GGGSoFRbBx1bop0jVWye9RXfDMOCkcX9vQDCenVDw7ySenhG28Y0Vw6+aSU0y839/rrjfcH1zczM//elP2bhxIydPnsTn86EUtMeXcNWVi+cOgisNeOorkh8gRCyImWBAAoGpSJGIk7Wm95lqN3bDTxnc+Z19Ig5K9EsAMTYdEXyL51JDot5NCu0EdCuVagmOwO1OPM1m5rGteewZUIlTKcXevXvp7OwkJSWF69evA5CYmIjL5UIpcGKnzcikTuXjJ2HUFg0VcAghoicmggG/38/O//fsHbwy+jUBBCzWPyJLa5yCAUE6lSzDadzuELOSzXR7A3S7I31bGGRzgzxTLbbeHfycJNNmZHBD5eOLoGMcDxZ8FNo66XG208RcfNze9jcUpKTqbf1ek5GRSXWzG2tyFhn2OP788T8ccrj+woUL/Nu//Rtr164N7ycRqhcxkFLgUHa0lHkkZS/hfF037U5/+PnU3oBjpNLfQojJFxM5A//p/1y4i1fLB0q0XTZKqaKbhfoF0vp0OME7xmS8Kp44zY0NR9QCBk3TSE1NZcmSJcybN4+srCxsNhtKKSobXVysuMGNyks4Gq/h9rm5oeVTqZaOet6lnCXT3AwEg4trxmJ6uF1G10IPBmYCjFfCncJm9vPA7BtcrXeBBiWz45gzS6eiohwsUGRU4MSOV1lH/Hs3jAB2zUGcx8PKVRuH7Jw9Hg+HDx+mqKiIM2fO9Hnt0Et9NQ1Wlczm859/BLPZHP77bXFMbqErIcTYRD0Y+NOfXqCu1XuHr5YPlVjhIYmPjXXMV1fIN12n3Uin3FiMq0/HONwd6ngymUyYzWY8Hg8mk4mSkhLWr19PQUFBv04oEAjw0UcfcfbsWRoaGggEgomQZrOZ+Pg4Znk6IDDcVW6zmoKJru1GOmXG2kHP375DH4/EwuBoRYlWRndTMwVxJgKBAGa3nYoKJ0qp3g7Yjx0HaI4Rz+b3B+/YvV4v+fn5Qx7z3nvv4XK56OzsHDYA6Gv58uV86lOfClcG1TSN4pwkimXzQSFiWlSDgV++d5MrN11jeEXwwzABZ7+7LxE7qtQilF+jmoWDnnNho8xYxwrGJ+nQZrMxZ84csrKyaG1tpaqqip6eHnJzc1m5ciVLly7tty2yy+XixIkTXLp0idbW1vDqBZvNhslkoqurK9xBzpmVSKGCFhIAACAASURBVJXDS7vXwtCdeDBfwoYDpeCKsaz38YHHRhYAZFPDLK2N2ckmPvHIZzhX2c6rH9bi7ZOYlxrv49PLdZrLe3A6IT09na6uLhyOYKev63q4/ZHweDyYzWYCgQB5eXmDnm9ububEiRMUFhZSVVUV/Gn6LBUdaNOmTezYsUPu/IWYgqIWDBiGwT8fuTnm183iFh1kTUCLxN0LdgLVlPT7vv/zinJjMWu1sSUdJiQkkJuby6JFi1i8eDG6rnP+/HnOnTvHlStXSEpKorS0lNLSUjIyMsKvu3XrFh9++CEVFRU4nU4g2Gmmp6eTmJhIY2Nj+HGLxcKSJUtwuVxUVlaS7/+IdtYx+K4+2Bkuji9HNzQ6A/Y7yqbvK1NvJl1vhm5w1p5mbVYqTab36NFnYbGlY/R08IMnvkRycjJ+/zrKysr44IMPcLuDIxPz5s3DZrNx/vz5iK/p8/mwWCxkZGT0C5ogmDT4+uuvY7PZwoFA6PGh7Ny5k02bNg06R0WDi+ZOD6cqOrnR6sZi0lk1386KeckU5yRJ4CBEjIhaMPDO+bY7KCGs0YFsXhL7TCM8p+HCjhN7cCh7GCkpKcyfP5/FixdTWFiIxWJBKUVVVRWHDh3i8uXLGIbBggULeOCBByguLsZkMqGU4tq1a5w8eZK6ujq83uAUVFxcHPPmzWPWrFlcv36dlpbbBa3y8/NZvHgx58+fp6ysLPx4UQYk+65ypj2v33RHutXPHO9Z7IE24uLjcXkz4S53tYzTbtfVOHbsGJqmYTLpZNsMuroqefDBB0lODmbem81mVq9eTWlpKZcvX+aNN96gurqa2bNnk5mZSWdnZ/jnDhkqfyNU42Hu3LmD2nPx4kWuX79OQkLCqLkfn/70p1mxYkW/14+0cdiH14LbbWelWPj+HxTJigIhYkDUgoG6NikqNJNpcSkkxRn09PRgGAY2m42ioiLmz5/P/Pnzsdls4WM7Ojo4d+4c586do7Ozk4yMDLZt28by5cux2Wz4/X5Onz5NWVkZTU1N4bltm83GokWLyMnJ4dq1a1RXV4fPmZyczNq1a0lMTOS9997jzTffBIKjBoWFhbjdburr65mTE09OQjmVTS6y5hSzY/M6ShfMprw8k3379uHxePAbkQ/ND3Z7ugGCHf369ev54IMPUErhcDhITk5mzZo1g16p6zpLly6lqKiIf/zHf8ThcOByDZ52GzF/w9eG3d5/yi2UNJiamkpVq065sXrY3I8vfvGLLFiw4PZPoxS/PdHEPx6sHXUL8VudPv7quSv86LGJ2RtDCBG5qC0tPFLWwg/3V41+4JQwfarOTZY15g+Ym2oiLy+PRYsWUVxc3G+o2ufzceXKFT766COqq6uJi4tj6dKlrFq1iry8PBwOB8ePH+fKlSu0t7cDwfnstLQ0lixZQmFhIRcvXuT8+fP4fD4g2NEuXbqU1atXU15ezvHjx8PPxcXFsXz5clpaWrh+/TrZ2dkkJydz7do1MjIyePDBBykqKur3M5w9e5bXXnuNLiOZs8a9EfzUQ083rNBPhpMqNU1j8+bN/P73v8dms4WnMOx2Ow8//DALFy4ccmi9rKyMV199lQcffJC33nornDvQP7Fx+KJRFouFuXPnUlpaSm1tLWfPnqXFN2vE1z52Xwpf2nW7PWcqO/lvL5fT6RrbMEl+RjzPP7lcpgyEiKKoBQOnyzv47t7ptKWsBARBiuCYuc5wiXfxuHgo4wKG4aer63ahqeTkZJKTk/H5fLS2tuL3+5k7dy6rVq1iyZIlNDc38+GHH1JdXR2+AzaZTOTm5lJaWsq8efO4cOECp0+fprOzM3zeOXPmsG7dOubOncuhQ4e4du1aeO47JSWFDRs2UFlZSUVFBVlZWeTn53PhwgUMw2DLli2sW7cOk2noqY/33nuPd955l+OBB0aoOqiw4MGMr1/i60irK8xmc3g1hNvtpqIiuGFXeno6u3fvZt68ef2ONwyDp36yj0ZXPDk5OTSVnyAJB6eNkXYaVNh0F4+vclBefi1cOhqIeJfC3Fkmdhb10NLcwsHa0JKBsb8PvvPJQh5ZK7lAQkRLVIIBpRRfefr8tNp/QMOHGre15FNV8FdpvnaFKrWo97GhO4Z4XGzKuMlX/uB+vF4v586do6qqqreT13Aoe3iOOsXkQikj3IHHxcWRn5/PvffeS25uLlevXuX06dPU1taGz2+z2cLz6k6nk9dee42mpqbw8/n5+WzatImysjIuX75Meno699xzD1euXKGxsZEVK1awY8eOftMVQ/7ESnHgwAGOnL4+QkXD4N3/LK1t2PX/Q83LWyxm/vzP/xybzUZDQwOvvfYaDQ0NAOTl5fHwww+Tm5vLmcpO/u6VKm51+vq1LQ433j7Fh4YT2pmwtbWVF154AYfDgUMlcyYQ6WgHmHHjx8qdBsQayHSBuCOhRNVWp9SyuBtRCQam597yMjIQstr0Pj4Vx2Vjeb9KeP31H6bWdZ2FCxdiTl/ES6dcNHfr4SOtdLPYcpnZ8Q48Hk/vpkbg0lJwG3HhztNk0lmwYAHr1q2joKCAsrIyjhw5Er7j1XWdlStXsmrVKk6ePMnHH39MSkoK69evp6GhgfPnz5OTk8NDDz00ZFLdcAzD4Fe/+hUnrrZSHhh7bYWR5vTzU3w8+uij4ZGAiooKDhw4EB75SMhexqEbc4eZn4/sd/Ie/XRwJUMfrUYm543BeQoTqSDTynNP3CMf5CJiQyWq5qTG85efKhzXwHImBBxRCQaOX+vgr/9lOk0RgAQDtxVylQbm4CFplCMVCThZ17u3wfDz20Ffvj+DfNN1Dp+s4nz3vGE7XZPJFC4iBMElgxs2bGDFihUcO3aMjz76iKSkJO677z58Ph9Hjx7FbDazfft2SktL7+hN7vV62bt3Lw0NjXQGEket/hcy2pz+cu0UaaZWiouLeeSRR7Db7XR0dHD8+HHOnDnLMc8GekYZyh/NatP72AcUKIp8ZGB8hUYphFBKUd7QzYUaJ2hwT76t33LUM5WdfO+Fq8OuSntoVQZ/sGH2sB23Uory+m4u1DnRgGX5dopzBh87VMBRkGnlyT2F02oljIwMiAkwtsBotel9bDhGmaMO/prO42qfgka3j9N6j1neZxfF0Dx/38BA1/XwErzq6mqcTidr1qxh69atJCTc3T4C3d3dPPvss3R0dERUrS+SeXmNAKWWcySrW4Oeu/sOW2HFRbF+mfghpi0iyRkYb//9jxewYcGsSbueiE1nKjv50SvVNHX2XyJr1sAar5OfEY/TbVDb4hn1XAM7bqUUr526xXNHbtDh6l9mdPasOL736PzwsaGAQyn6jb6F3hF/8UgBWbPip8VoQVRzBmqb3aMuPxJTyVBvl9Et004T0MxcNlaOeqxGADVCcmJoF0Vd18LV8kK/4rqu9/u+L13XMZlM4XLGoQQ+TdPCb/C+/9/vqr3nU0oRCARoa4us3PJY5uUXaBfJ0ev6ddY3jXwqItg/IXSOoUYe+j5mxcHC3tEVpaBezaXcWDrouIkkIwPiTGUn3+3tgMeDRnDPjP/5pQXUt3l49q0bdPaMXGv8k2szKMhM5OUP6mnqjGzp8FQfLYjaaoKzVV381fNXxu0fXETb3ewg6Wc8S14MNew9UKSbKI123N1sxjTWefl4XBRolVjpoUL1zzEYze0Ev76GDhDSacKBHe+o0zzj70dfXsCaYhkZmKkmMrncpEPgLouDReI/PpDDV7blhffnmCqiuoXxb0408r8O1I5+oBjGUB/m0Rqmip2ciWL9Inla7bCdcqSbKI123N1uxnTnw/xjCbxU79d4fTBN7L+zJBHObNNlCtls0nh8xxw+f9/U2aEraqHLmcpOXjkxeB5UREoxjyus0t8nnh6i3xnHzod3hbGUE4EHqAnMx6Hs/UafQgl7wbnw20KbKLUb6REdVxuYF9F5hqJUMBDwGPHEhf/txkIj8kBAI4pv8zGraXZT2TiWzcvEdKCUoqOjg5NlV6LdlHHhDyh++mYdLx2tj3ZTIhaVcsR9kzJEJPp39Fa6WaBfIE1vC3Yq3F3i23TkJpFqtZDqwMLw3fosrY1yY3HvEcNvorSG90c9rlotGPH54TZjajfSuWYsnsK7bgZ/vokM/locPtnyOMbd7VI7p9NJfX09N2/epK6ujrq6Onw+P7dUDjB67tBU8Yvf3cDtDZCflcCWpWkxPXUw6cGAUoqnD9YMys4Uw0vAyVztOvGaZ9C8tFfFj/xiEb5bL9EujjLPHtxEqVllj3qcGrEzHHozpv7LCCfDRHXYEzsKlGGf6cW7YttQS+2yki38xy157FmTOSgoCO3zEfq6efNmuPJoKMl3qCm36SCg4IV3g4XC/oepmq/G8NTBpAcDFQ2uaVV5cKJY6GGOVkOa3jJiUlqcNvrSGhG8m61V8yM6+rJaNi5XbQ1kYDcHgwGl4IoROm/sTKnEEk2DgswEirLvbjtoMXGGG9W91eXjH357neffvsG2RVZyrF0oZ7Dzr2n14VXxJJh8ZCT4afPG0W1kBm9slIMONdlBcnT4eqcOlFJ8YXNutJszyKQHA61O3+gHzXD5Wjnz9IqIstJtdJGIY9LXg089Gh4i7WTG5870Ogtx+5PI1WvoNmxjuP7MpAFP7C6Q5MEYFcmobpvTz/7TTkAnjjQ00m7/3hug+QKoPlucJ+LAH/5+Zvy7P3vkJp+7NzvmpgwmPRhIt8kQ4GhMGBEvT9M0KNEv9dbFH3qpWAqtdJIx3s2ckix48BHH5HzwaDQyl0Yj8tLGM1X2LAvffbRoyq7RnkiGYeD3+wkEAv3+HO7/I31+LK/1+QJUeudSYywYvcG9vEPkMqkByawz8SbGF1C89H4D87OTYqpY0aQvLZSCQ5FQ4Zr9g54ZZl376HNu0V5tEBss9PTulyB/F3dmYn6PvnBfNl//RP64n/dOKKUwDGPUTvVuOuCxnPtOP6JDhbT6FtHq++dQ/6/rJtq8VtwBM8kJGnkpOsfr4nirwoSh5D0zEWKlWFFU6gycreriu89fCa6AlohgCAorPRRrl4jXR+7w+65rVwoajLlcU5NbNS76Ill3Hyy9645CIR0xuj1rMvnz3XPvutO9mw6472N3aqgqlqN1wJEcbzKZaHToOLwa6TYL87Lihz3f7Y59bMPQpys6+IffXKeh43YJ4IQ4nR7vJFTqmcFCFRL/7svR3bUzakWHhspIFUNLxEG2dmOYbYF7d/8znWIWrVGpJx9tFtzoGCPMyffua6BdpTr8dyhiySLtI7JNjXf02r4d6sCO0WKx3HEHfCfPT8Rw75mKTv7+t9dpaL+dLJyTGs8X7ssesi5+aNlfi8NLjydAQryJzOS4IYejQ8f++4eNHDo3eCRSTJ78jHief3J51KYMolqBUClFZaOLFoePdJuFH/66groWj0wfDDJazf9gTf5F+secNSZ/p7noMJiT6KQ0vZVUSw8AbZ54briSqHCk4vTfXnJpN7lYYL4C/p6o7MQ3MxlEVuxIoaHYrL/JROZTDbXHxFT4/uPWWZxqyWS04N5m9rF6tgOPoXOpNYku7+DcrDSrj22FDgpSgiMftV1xHKm20eaOSrkZMYTvfLKAR9bOjsq1oxoMDCTTB3enWLs4ho1rJoPCghvfXRdFCv4y/OH6dBKTrORnWEcs4NE3yOx71xQIBPjjH39EQ2eAmTRyEh2RbFoVPGa+doV80/WJbtAgfTvd0Jeu6+G5dl3XsVgs4RGGuLg4zGZz+M/QCIOu6+HXhzbC6rt51WjfD/d4bWc8r13PCrV2HH7i4LkXmC7hNGzUq1COhrwXYoUG/Oix6EwXxFQwADJ9cDeK9UtUGEui3YxewV+rzalX+chZhNNn5u4+dBRJWjffWNfDypUrMJvNvVnOvj4Zz75hHwt9Vbeb+G3VeH7AiuGNPqIVrUAgGoa68+8bfISmG+Li4rBY4nilrgSnP26cWzFVEokVCTjRmHkrDqK1P0fMBQMQjIpfPdHE/z4omxiNxR/Mq+NQ9awI3zwT+6EQj4tF+vneDX3Sepc+MuCaY9/pMJIdCUMfqqH54tCfof9vctt5ryETp0+WuUaHIjWuh822Mnp6uvH5pPbIQHe+idV0EPxcWK6dRNMYt8+OqSQaW3nH5GSRpmksy59eZSknVvCuubX2Ap9dtY29Z4OPTeyOhsE3YyFXSddbUAr8SXlkz84mO8lDy/WPcbm6yc3NZefSpTxszmTv+x3cbL+dqZ1m9bEsoZruzmbqjbk0UDDqVddu2o7WcZWrV68SFxfHmjVrKC0txWq1hjv9SCLqv1SKioZuztc6UYZBZZObN862RPAzT88Pn4m0e14rDlMW7d54SnKT+NNPzMVsNgNbgGDw39PTQ2dnZ/iro6OD1tZW2tvbcTgceDwzq9JmmzGT64IE32NmfGiaxjztGjdU/oDpRo1gXsr0fD8ev9Y56cFATI4MgNQjGCz4t6ChDTH4qliunyRVbyMhIYH67kTq4kppc9++803EQZ5+HSse8jLtNLU6qTavpMN9uxqYrikMdfuso7HgYYl+jsy4LhYvXozH46G8vByz2czy5cspLS1F13UaGxtpamqioaGR8nonTq9OnOYmKzFATk42breba/VOTvtHvxMKRcydnZ289957nDt3Drvdzv3338/KlSsxmUyjnmM4pys6eOrfy2lyDP0bp2NgTKEdAGPFzsxL+Npr0DSNOXPmUFxcTHFxMTk5OREPhQYCARwORzhY6OrqCgcN7e3tdHV1DRph6JtdP5UoBScC98syWAJA3/dzLG3ZPrHSbBb2f2/lpE4VxGwwAJJQeFvwh//ihhTevthFU59R8iTNSYnpMn/yuW2cPHmS69evo2ka3/zmNzl16SZvHPkgXJzIYgneNYc+NDMyMlm4agtJaTlkJsfR6fKH645H9tcdPKrUcoYU1QxAQkICycnJ+P1+2tvbMYzgGuW0tDSys7P7fdlstnB7fvrTn3GkfTldPuuQ1w7VrX/2z5b1e4O0trby7rvvcuHCBdLS0tiyZQvLli0b9CYaaZc1pRQVFRW89dZbNDXdImveCoqXrGJeXhqghV8zf3YCV290cf5qDR9X3uJ8PXSp6K0LjnV9/826urqorKykoqKCyspKvF4vSUlJFBUVUVxcTFFREYmJd1eu2ePxDAoWBn71/bgLzdXD7UJDod/XaJrZUwR9RdLZT9/pgmf+dAklubbRDxwnMR0MwExNKOz/JhhYWMiJHa+y9qtAGMpkhv7/H5KQEBxi6+npGXS1hIQEioqKyM7O4Uy9md9d9vWbT9cI9JYRHToJLEnrZo1+NNwOCH64Wq1W8vPzWbZsGQsXLiQubvhkqLq6Ov7+F6/ysbEONG1A8KfQNY0fPbZo2CpdjY2NvPPOO1y7do2srCy2bdvGggUL0DRtyN+hUNWv2fEO3nrrLa5fv05BQQE7duxgzpw5w7YzpLW1lRde2Msb7WvxM95JXlOfpoUyowf/mwUCAerq6qioqKCiooKmpiY0TSMvLy88apCbmzvud0VKKZxO55DBQuj77u7ufq8JJvNZ0HUdpVS/QkUT9dHZamRy3lgzIeeevqbfKMETu/P5gw3Zk3a9KREM/O8D16ltmVlzhiFWulmgXSDN1EZSUhIpKSnU19djsVgwDINly5Zx+fJlvN5g1TCLxUJmZib19fXhcyQmJlJYWIjf7+fWrVt0dHQAhDPyYejqhvG4yOImdZSM2s7v77KyZnEuaWlpGIZBTU0N5eXlVFRU0NraislkoqCggOLiYkpKSkhPTx/0YX/48GEOHa+g2b6RG223h3wTcfCdTxexfXXhqO24ceMGb7/9NtXV1eTl5ZG96D5+fLhr0GjH7emVUyzMNrF9+3ZKSkoi6oBu3rzJiy++iGEYNLiS+FitY7p9EN2twqwEnthdEFGJ1YGjBh6Ph8TExPCoQXFx8V2PGkTK5/PR1dU1bLDQ2dnZbzpC13USExOJjw9WBFRKEQgE8Pl8eL1evF7vmEcbuozkGVQvZHzE45p2G4E9uTufRyUYCOq7XWbMNnLCharnXSPH2sWiuSlUVVUOe3RcXBxer7dfR5+UlMRnPvMZ5s2bx969e/F6vaxYsYJ3332Xnp4enKZsTrlX9J7hzjJ2//sfL2DDgllDPtfW1hYODKqrqwkEAsyaNYuSkhJKSkooLCzEYrHg8/n42c9+htWawP0PfZ62bj+piSYOvvwLiorm86lPfWrUdoRUVVVx5MjbvFo7b4TVFYrZdo0X/3J1xLkG5eXlvPzyy1gsFtxuNxaLhWu+hVz3jT6aMJ2YdNi6LI28jGDdhweWpFJ9yz2otsNYBQIBbty4ER41aGwMViUcOGoQrR3fQsmOIwULDoej36hBfHw8NpuNhIQE4uLi0HU9HDC43e7wV+j9KsHA2K3W3wcN2oxM6lQ+/ruubRJ9f/FIPp9aJ8FABAmE03euaCRJmpMF5iusLkohNzeX3//+9yxYsIDKykoCgcCQrwlNG6SkpNDZ2UlpaSm5ubmcPHmSW7eaRylhHNnw2//4fA7rl42+O5/P56O6upqKigrKy8vp6OjAbDZTWFhISUkJSUlJ7N+/n507d7Jp0yYAjh07xpEjR/iLv/gL7PbIV5lcq3fy9Z9cGvW4SJfxnDt3jt/85jfYbDZcLld4CPlmpzbtP7zTkswsn2cnOcHMikI7W5YNX/RpPDkcjn6jBm63OzytFQoOkpJiJ9FOKcW1+m5u3OokDjcppu5woNA3YHC7b09ZaZqG3W7HbreTlJREvTuZA1WZUfwpppJg9dW1pvcBqDfmUj5N9mbJSrbw0l9NXhJhzAYD5fXd/MlPLka7GTHo9l4EqVorixcvZvbs2bz77rvh9fUejwdd1/nSl76Ey+Wira2Ny5cvc/PmzUFnu9tkJY1gud9V2u/ZtGkjDzzwwIi5Af1+EqVobW2lvLyc8vJyampqMAwDq9WKx+Nhz549LF++nEAgwI9//GPWrFnDjh07Im7b8Wsd/PW/XBv1uJFGNULt/OCDDzhy5AjJyck4nU6sVismkwmn00lLIGPazfGm2sz8x/tzQYN78m0U5yRFfZtVwzD6jRo0NDQAkJubGw4M8vLyojZqMFJuysDpEo/H0y84aG5u5saNG7S1tVHRnUG5sWyymz9FKbKpxa45qFXzp91UwWQmEcZsMBDpB3lakk5b9/hnAJtxk0wHbUzeME3kgtHwA/az9PS4wo+mp6fT2toaHgnYvXs3a9aswe/3c+zYMd55551BZ3JZ8znpvPMSxroG//OPS3A1nOfo0aMkJSXx0EMPsXDhwjGfy+PxUF1dzdWrV/n4448xDAOz2cz8+fPx+XzU19fzne98J+JgI9KAcuDIQN+VB2lJZo4d+5CzF8pJT7agu5pITAwOQXq9XpRStHkTplX2t64NnfgXa5xOZ79Rg56eHqxWa79RA5ttcj5Ih5vSHGpHOr/fT3l5OVevXuXGjRv9Vt20G+mUGWv7vHoo0y9Z7s5N7xHiyUwijNlgINIP8lX6+9htNrLmFHHPwkJePuXmwo3uUV83NIM0blGoV4Sr3J3lARyBBGLxl23n/G466z4mwejAYrmdI5CcnExiYiKNjY3k5eXR0NAwZBJTUVERK+99mCeerbij62cmm/nBZ4rDnUZbWxtvvPEGFRUVLFy4kIceeoiUlDtbeldTU8Pzzz9PcXExPp+PmpoaIJj/sGLFCoqLi8nPzx9xrj+SqaYknPzpBg/3378Zu90+6uqVRL2HZdZyMi0dKKVwuVwoBResD9PaHZNvpTF7fMcc/uiB3Gg3Y0wMw+DmzZvhUYNQAm1OTk44MJgzZ86EjBpE8nuWYvawzvIBPp93yCOC52FG7joqhjeZSYQxGwyM9gbTNCjIsPKfH7Fz+fJlLl++jNPpxG6302lfyft1tt4COsPT8ZJFA3F4SdKdZNIY3jktNTWV9vZ2GlU+VwKTtfnPnUX8CThY0Lv0cNGiReE77IF0XWf79h3MylvMhfJayk4eJS3ey1nup6EjMOYkzbXmD9m2fiGbNm0iOTkYECiluHTpEocOHcLj8bBlyxbWr19/R8WA3nzzTU6fPs3Xv/51bDYb+/bto7GxEYvFQnd3N3FxceG7wJKSkiHzCUK1KgzV/+9WAxSKtdZzpOptGIZBZslGfnXBFkHCqmKRtYpsf3Dkavny5eQv38ZfPX+V6XDXFo1SqOOtu7s7PGpQUVGBy9WDLy6D1Nn5LJqfx/2ri7Hb7eERoHSbhblpJjweDz09PVy76eRWp5sEk4/0eC8eTzDJz+Px9Ev66+np4Va3mWM9a0dt02iltKW+wECT9V6K3ffsM3+6lJLcyXkvxmwwAMMXHRpqDbNSirq6Oi5dusSlS5fo7HTgiC8kIS2fe0qy+cz9xVxv9nKh1kFDYyOVH72NXQuu0R9KWloabW1t1ATmU63GPuR95+7kFzP4l7M6/iPsgaZhj2o30rluWk6nzxp+LMXiId1fRbVaBAOqG450PZvezWrtKCZTMHpauXIl9913H6mpqUBwyP/tt9/m1KlTZGVlsXv3bubOHT3BsK9gMaKfkpSUxGOPPUZTUxPPPPMMn/nMZ0hPTw+vULhx4wZKKbKzs8OBQd+7wJ/96ggHLuk4jdtvqsKsBL5yfxqXPnyNlpYWioqKefFyFt0qiUgLnSzXTzE/LcATTzzBsWPHeP53VVQaCyN4fWzSgIKswYWdpgKl1KCOOtR5n6/r4dWyAK19KnLG40JDw90n6zwRB9naDRrVnH5LbBNxsMB0mVS9rd/1QiKtC3CPfpp0vXnY5++svkDsdmR3bzr/bKObPSuOfd9ZIQmEIUMN2462hlkpxc2bN/sEBp0kJiayaNEili5dSmFhIU6nk5/85Cf9snqDrwUnySizDWvKbI7dms3U+IVUxNPDBtN74QAnMTERwzBwM1uy+QAAIABJREFUu90jzEUqNGCefpVWvZBOv7XfWYN30P2/B8UK0ynSzR3Ex8fjcrnCeQrLly9n8+bNZGQEa6vX19dz8OBB6uvrWbVqFTt27AgXQIpEbW0tzz33HLt27WLjxo3s3bsXj8fD448/Hn6TuFyuAXeBrn5zx0eOHGHx4iUsKL1/0NI3n8/HgQMH+KDs+pjvykx4+eUTC3j99depqanhvvvuwz63lB/+ugqHO/qV7MYiNLcdrVwBwzDweDxDdugDv3p6eujp6cHlcoU7/NAU2UAj/d4P/9jQj6+ynCWjd3pI0zQMw0ApRWcgKaJS2jIyICKlAU99ZXLfizEfDMDw+9NH+tr6+nouXbrE5cuXaW9vJyEhgUWLFrFo0SKOHz8eHlIfqvDO2KLT8YxkI9kPfrB1lg/Zs3UV9957L7quU1NTw3PPPc/H5u20eyzDnEuRSDcb4j7EYSSxZOV67l27nC6Xn6dfHzoQK8nUOH36NKdPn8blcpGQkEBPT084KFi0aBFbtmxh9uzZGIbB6dOnefvttzGZTOzatYvly5dH/G946NAhzpw5wze+8Q3a2tr45S9/yWOPPUZBweCNjQzDoL6+Prx0MTR3nJGRwZIlSygpKRm0Tl0pxb8cOMVzJyP+aw7LN9VSOusGjz76aLg9pys6+O4Loye/Ro/CrOv4+8yjZSYZfP8PF9/xPuqhzjzSTtzlctHT04PH48Hn8w27LPZuBOfgN+MiktGe8KuGOfb2EraBv7ajz/UP/9qxnWcizOy771j16PosntxTOKnXnBLBwHhRStHY2BgeMWhra8NqtZKens6FOncEWbyjXuEuXjs+irWLzDXXYTabsVqt+Hw+OvyJHHevH/W1fe9cTCYT8+bNY+XKlVhmFdDW7R8yEPP7/Vy6dIkTJ05QX18fLnoUCgqKiorYunUreXl5OBwODh8+zIULFygsLGT37t3hEYSR9J0u+PKXv8zPfvYz0tLS+MIXvjDqa1955RUqKiooLCykqqoKt9tNYmJiOKksVBP/7RNX+G8HukY930AaigN/fU+4Ql7sb7ClwlNsKYlmWhw+6ioucvHkW6xfv45169YN2amHOvDu7m66u7vDd+Rerxe/3z/uNf01TcNkMoWXy4b2EQh96bqOruv9fhdD1f9CJYPbPFaOOleNa7uGu7sfbZvuFb0biY1m+POImWQycwVCZlQw0JdSilu3bnHp0iUuXrzEG02L7igiz+QmiZqLRM1JhmqkUc2limICWEd/ceSt7f1z9LYV6xeZo9f2eyzSucjvfCKVWaqRsrIyWltb+z1ns9mYO3cuixcvpqCgALvdPuiD+ObNm5w4cYKLFy+Gg4HQr9fcuXPZvn07BQUFVFZWcvDgQTo7O7n33nvZvHkzFouFkYRWF+zatQur1cpvf/tbvvWtb40YTAQCAZ566ilWr17Njh07wuvUQ7kGjY2NaJrGrFmzaGtr54y6H6eRyFh/B/72c/PZuiwdp9PJyYs3+OHB4YeC+xo4BQOQabewaVEKna4AZ6u66Oq5fcesa4yaFDua0Px3foov3JGPd519TdPCHbXJZAp/31fodyP0FRpyD/05Hiaixn9o3l/Xdcxmc/jn0zSNVn8qF3rm98tNsZtcrLBdJzOuK/x+6fv3EXqsb2DT5LFzpj2vX27PZN5oWOlmltZGh0rHPc3W7U8FKYlmXvlB6aTn7czYYKCvuylwFLpTsNvtdHd3YxgGgQCcUFvwYmV8pw1GP9eG+BMkGO39PlAjnYtcbXqfZN1JYmIiqamp4Rrtdrs9fBcYEh8fT25uLoWFheTl5ZGbmxvOBXA4HP2mEHRdD985zp49m507dzJ37lw++OADPvjgA5KTk3n44YcpKioadmdBuD1d8LWvfY29e/eyaNEi9uzZM+zPc+3aNfbt28c3vvENZs+ePej5zs5O3nzzTS5fvgzc+V3ZyrQWcv0XcblcY+qACrMS+LOH80lJNNPU4cYep8hJvp0I193dTXlDN01tPeh+Bx1OH79ryA9vZn3b8EPbAPna/8/ee4dHdad3358zRTOjrlEvqEsIdQESGEQxtsHG2MbGBnsxYMe7Xu9udjebPPvsZp8kb55cyZtNNnmfJJtNcPZZm+aCjSE24IJtjBoqoIYkJKHeURnV0WhGU877h5hBQhUVJLA+16Xrgpkzv3POzDnnd//u8r2rcaYPheR2Y6vpmKgEb/Q1tZCPDevkal39y2QyZDIZcrkcuVyOnZ0dCoUClUqFUqlEpVKhUChQKBTY2dmNUoaEv/xo8oS92fDLHUr0mhEFTa1Wi52dHSEhIbbEVWdn51mHNEdjsVj4n3/zLzi4+nKzZ4gbltmo6oko0GOYgTRvtLQIqWjCTtBjtNhxTZyrl3SZ2fJPhyJZEz65CNpCIbvne1yCaLTG6Tcax0gc0JGRVaDBYMBisYzkHYirGJ53bWzrTTn5g1/BEApTN6Jwu0eBSqXCw0HBjU7dFHoJt89FFLG5gq0MDIyc4+iWr9byxdEljGq12mYYhIeHs379eqqqqsjJyaGtrQ1BEGhvb+fEiROo1WoeffRRvv/97/PZZ5/x78c/p1GeSI/htqDQnept27Zt48aNG5w7d47k5GQyMzN5+OGHJ5WjLS0txdPTc0JDQBRFsrOzKS8vx87ODovFgpupm7V2RZTqV97VikitMrE6YjVqtZpekwMln/RO+5l4u1I8+9o4/87drcrjJe3j8lpUaFHTSRc+YxTY7NHaul3eLVO5/UdP1NZrYvSEbZ2srRO2vb29beK+c8IePcHL5XLbSns+CBZFgtIH5iVkY23HvH1jLIIQbws5WpNWP/30U0RRxNPT0xaCCvQMnPW59Pb24iQM4KVQIZF0oEJ3l/lMI2f8yIpuLjU5T5vP4C1px91djU5n4VL/KutZz+rYl5k9T631XBRDAJY9A8BsPAMTxwFnph42VybPgo4X8lDKLJil9sjFIRSmHhwdR2RkO4adydPFT/rZBEkeHvK+kVduuWvniiAIeHt74+fnh729PW1tbdTUjG2y5OTkxIrYh/nPTOOtSXGsFsCd6m3WcMHDDz9MZmYmGzZsYOvWreP2bTQa+c1vfkNqaiqbN28e857JZOLjjz+mtLR0zMPa2gmyT+rHlcGZaEuICFjYJLlg06eYr2SyKfc6SRtr6+tGlCiEYRyFAURx/O8okUhYsWKFbXK2t7fHwcHBNnG3traSmZlJWFgYjz/+OEql0jZpL5bU72yZrDx5IiYK28DU7Zit6PV6amtrbSEorVaLXC4f4zVwdZ3ZQ14URc5ezOer9Lwxv69MJkfi5E+bZhADyim9BSphiEjhGm6SbrQyH67qE2+d36j769Z5/fnTXjiZ22loaKC4povLugdLWvt+4fXH/Hlps/+i7X/ZGGDk5tv/z/m09ZmZSbMeewZsK67bsfF7mQk89ngcBC2hDt3UaN3GrBycpDq2BvbjKe/DYDDQ2GdHYf+KMTHN0ecymtEP/flODrN2KITpJ09BgEAPJW//OM42cX/22WcUFBSwatUqampq+OlPfzpS4tXXR3d3N729vTaJWh8fH1sr2eHhYcxm87SZ6zMv8RIJFSoIlNaPeXUmyWRqac+41bV1hS2Xy20raIVCgVKpxMHBwfZnb2+PUqkct8K+c1V9+vRpSkpKxh21q6srP/3pT6c8s/Lyck6dOkVkZCR79uxBJrt/nYgTlSd7u9qN5A313fYKBnup2JHkzucFXXdVynwnoijS3t5u8xo0NTVhsVjw8PCweQ2CgoIm/E4nOtaJ7lGJRILG5DZB2/EhYl06eCzOBalUQlZWFm5ubgzKfKk0rZz2vLIre/jViaoZned88d3H/Pm/X47vm3In/pJ6vGmmRrqWPqOCB8VzIQjwm4OLExoYcxzLxsCIxvwv/v73FJmsFvH4B3ikUIpCMNgs9dHyv3Cva4RHjsmHZvylDRhFO65NUUu9RlGIh6z3VixWwoDoiEFUoJIYcZYOTrhCtV4Wo5O6FiLZbKbf21pZFk7CwILGqq3MzLATWaNuZ43PoC1ubV1hOzo6Ut8r48Tlfpq7x042dzOpzJXf/va3dHePDxHMxBiAkZyLDz74gJCQEPbu3TttkudSZqLyZGDC+P5cSpknQq/XU1dXZ/MaDAwMIJfLCQ4OtnkN3NzcpmjZbjUir+AmGUnstbYoF0Uwq7zo04l4uij42ev7cHR0RBRF3nzzTSwWC52dnXz3u9/Fz89v2vO6lw3irKGXP/wohj/699Ipwznerna8/cOVVFVV8WVeLecafK2j3JNjXSgma2S1GCwbA8Af/vCHkYYhE+gMTLZyvhM773gutNxLF48IiCRxmQoSGFpAt/RCMl/qbaOTzqTSEVlZe3t71Go1KpUKmUxGVVXVpOI0ViIiIti4cSNdJteRBzMTu5d/cyiStdNY8vM9qdwNJpOJv/u7v5vwvZkaAwC1tbW89957rFixghdffHHGTaKWmRhrFZPVa9DY2IjFYkGtdidtYDXdQ7JJ+xtY72O5fKR5V09PDw4ODiQnJ/Phhx+yfv16duzYAUB1dTXvvPOOrd3znj17ZnR8RqORl35zBc2QlMm9pCJwN+Gi8aHNO0MvU4VzJhLgya3U8I+na+nW3b/T158+HcSutV5LRu3z/vX9zRP5+fk0NzcD4CbRkCxkThiPvRPrCgJGyuZ8wkK40DJ5E5L5RwAECkmddjsdTmhxwomZlbzdS+wEwwy30xMWFsbOnTtRq9XASLggPz8fs9nMvn37bJ0SCwoKOHfuHG+88QZOTk60trZy5MiRMYbA6N8PRvoLbNiwwZZsGMRIrsKdLlsX2RB/dSBpRpa8IAiE+zoQ7jvtpvNOZ+f8ZNGHhoby8ssv8+677/LOO+/wne98B4VCMS9jfxux5tF4e3uzceNGWyJuVlEdmo6pHscj9/Ejz7zMhvhgpFIp7777LhKJhJs3bwIQEBBg2zorKwsnJyd0Oh3btm2b0bF1dHTw0UcfEWgS6RbWAHdOzCISQeD17YEc/qJpyrGef8iLNeGu1FcWk321hHaHdbQP3B4syHOsl2x1qPOE99tk3rR1K9059Us1Z690cCKthc7+qY38pYSXi5xfPBe2JLwBo/lWGwM9PT28fy4dg8VzzMTvKA6gFQSGRSXaW/+/naDlzLCoICLYG31XHYODgxjtPDmTVg6E3hp5aVh6oxkWlTCFFOpi4Ug/9gxMm3DnyAANDUP87ne/Y/PmzWzcuJFHHnmEqqoqdDodly9fthkDVlEjJycnKisrOXny5LjwgiiKSCQSVq8eUWucKLlrTZgLb/84jpqbOjr7h/n0zHtI9Z14ykOBpXUj34l1gpgPgoKCOHDgACdOnOD48ePs37//riSll5kchUJBVFQUvRIfKJtetVLu4D6m6ZcgCLS0jMTbfXxGuts1NzdTX1+PTCYjOTnZ1i9kMkRR5OrVq1y4cAE3Nzd+8f09NPTK+aczN+gcvO0BCPZU8eNbLu1wX3v+9sNqegfH5t9IJfC9x1awL9WXwsJCKgsu8fyj20hNXTutl2z0/TYTb5ogCDyd4s1TyV6cyW3nt+cbJ9xuIfnJzgD+84sWjOaZeSj2rPfiRzuDlow3YDTfWmPganUvf3OimIFR8erJGpXI0KNkCB0OWBhxk5bUgh0eiICxUgWML19bStgJE7fkvZcolUokEgk6nQ4HBwciIyNxdHTEsbaf8w2OjC+VGsl9TnRuQNBhW9lfunSJoqIinn76aZ5++mmOHj1KQ0MjWcV1GFFSUqfhxV2byc3N5fPPPx93HFKplA0bNrB+/XqbcuBk3F7dO6BLXklWVhdpaWm8/PLL8/a9LAQ3b94co+8wVwICAjh06BDHjx/n2LFjHDhwYNrvbpmZ4+44s3wMD6fb21l7JGg0GgRBsE36WVlZKBQKBEEYV0lzJzqdjk8++YTKykrWrl3LY489RkVFBVlff02ccZCQNRsIiojDV20/ZmJeE+bC6V+spqpVyzelPegMZhKCndgaq0YikVBdXc3Zs2dZs2YNqampM/aSzcabJggCcYHjO5ZOhK+bHW09w6P+r6CtZ2beyTtxVErYvd6XYbMwradEJoHv3jKSlirfSmPAlqhzhxaADkdqxahx25tQop1AUXB+RYUWirF6CPcSBwcHfH19USgU1NfXMzg4SGBgIMnJyaxatcq2wtm2DR6u7uNfPqmlued2wp21Tt5ON5KvMboKobe3l2PHjo0kX4Uk80WVgrRTVtf4Rmo+0xNoLMBtVGhTKpWydetWUlJSZhX7TkxMJDMzk5qaGtra2vD1Xbo3dnt7+7xXgfj6+nLo0CGOHTvG0aNHOXDgAI6OjvO6j28r4b72BHkqp27Z7qmyJT7CbWNAq9Xi6OiIRCKhq6uLiooKBEGYtilYbW0tZ86cwWw28+KLL+Lg4MDx48dpbm5m1apVPProo7aQ3EQIgkCkvxOR/mMn4ra2Nj788EMiIiLYuXPnPVkFz/T7+8OPYqhtH7J5HkK9VdMmL07G/34pEkEQ2JfqiyiKvPX1WA+BVIDEUGd2rvFga4x6yZflfuuMAYvFwj98VDWBittE/5+OpW8IAERIrk+a92Db8i7zSOVyua3CwIpKpcLT05OBgQFbQ6ja2lqkUilxcXGkpKRMKAAEsCbchWM/S7S5CN0d5agVehob1dTW1lJXVzdGCMlKXmU3xZawca/3GGT0kEICV/C06+ORRx4hOTl5jIv1bnF3dycgIID29nbS09PZt2/frMdaSERRpK2tbcr3Z4u3tzevvPIKx44d48iRIxw8eBBn56UdMrkfEASBn+wKHkmiEyfykAn8+MmgcfestVTW3d0dgMuXLyOVSnF0dCQlJYWJMJvNXLx4kcuXLxMSEsKjjz5Kbm4u165dw9vbm4MHDxISEjKr8+jt7eXdd9/Fw8ODPXv23LMJcPT3BxO3vP/xk0FIJJJxngfb58ZVcUxMkKeCn+wKGRPzf3GTH3s3+nCprJvGLj2BHsr7wgAYzbeqmuBqdS+//qgWjfb+STaZC0p0xCgqcDK3z3oMiUSCk5OTLUNfp9PZJhM7Ozt8fHxYtWoVCQkJSKVSSkpKyMvLo6OjAwAXFxf27ds3L6vo/v5+6uvruX79Oo2Njeh0Q9MK/Hg7Crz787XzdlNevXqV8+fPA/CDH/wALy+veRl3Punt7eVf//VfJ33fxcWFP/mTP5nTPrq7uzl27BgSiYSDBw/OWFBnmanJu9HN35woYlC87XGxZ4Af7PBnV+pYr+WxY8cAqKurY+PGjaSkpPAv//IviKLIs88+S3x8PHei0Wj46KOPaG9vZ+vWrZjNZi5fvoxcLmfbtm0kJSXN+l4ZGhrirbfewmw289prr02qDLqQzKbl/WSfuxN3Jym/PhB1T6uC7iXfGs/A+xmtvHmhebEP454SLrmOk3l8VvmdmfRWpFIparUaDw8PjEajTcCnr29EmVAmk+Hj40NkZCSrV6+2rQg1Gg1paWkUFRUxPDxMZGQk27dvx87OjjNnznDkyBGeeOIJEhIS5nQTOTs7Ex8fb3vIldRqSHu7ZopPCLRrobZ9iHDf+XkwxcbG8vnnnyOXy8nIyJhxyda9ZD6TBydDrVbbPARvv/02hw4dmtKlvMzM8LPXsVaSgRYn1N7BvPDMDrIunKK2oAzjurAxWg+iKDI0NARAcHAw2dnZwIj3Ji4ubsy4oihSVFTEZ599hpOTE1u3buXq1atotVrWrVvH5s2bUSpn31zNZDLx/vvvMzg4uGiGANx9EuJEn+vsH6Zfa+CjnA40WhNhPir+9qWwB76s9oE0BkRRHNPwpldrvGUILH6L4XuJSmK0iZOMRhRFpFIp7u7urFixAm9vbzQaDY2NjXR2dtrK0iQSCe7u7oSFhbFmzZoxHQItFguVlZXk5eVRW1uLvb09a9euZe3atWNWidbeAx9//DHV1dXs2rVrTg+d0QyaZuby7xowzlt5n1KpJCoqioaGBkpLS9m6davNRbtUaG9vn9fkwclwdXUdYxAcPHgQT0/PBd3ng05zczMymRRnixZ/+wEi/Bxw2/Ukhw8fJiMjY0yZoCiK6HQ6ANzc3Lh69SqiKLJjx44xk59er+fcuXOUlZURGRnJ4OAgFy9eZOXKlTz22GNzvn5FUeTMmTO0trZy6NChRb8fZlvSOzpZGGDHGp8FOLqlywNnDEzk7pHavF7fHkMAoMwUS4TlOu6yXjw9PfH09KSyshKj0UhgYCBms5mSkhLy8/MBbO18g4ODWbNmDf7+40WUBgcHKSws5OrVq/T19eHv78/u3buJiYmZUF5VoVCwe/duwsPDOXfuHIcPH+bZZ58lKChozuc3mwzs+SAhIYGysjJUKhWZmZk888wz8zr+XLl58yZSqXTBjQEY8da88sorHD9+3JZDMFleyDLT09zcjJ+fH83Nzbbfz8PDg9TUVDIyMoiLi7MZXKI40uFSKpVSWlqKyWQiJCRkTLy/sbGR06dPo9frCQwM5MaNG3h5eXHgwAFCQ0MnPIa75cKFC1y/fp19+/aN0TpY5v7igTIGRst5jsa88M/EJckQTpSI6/h/94ahGGqipKTEFg+0dht0cnIiIiKCxMREQkNDJ40XtrS0kJeXR1nZiFRpXFwcycnJ+Pn5zehYYmNjCQgI4MyZMxw9epTU1FS2bNkyp4S+6TKIrZUU9WU5hHhtndO+RhMWFoajoyNqtZri4mK2bNmypGLmC1FJMBWOjo62ssOjR4/y8ssvz/i6WGYszc3NREdH09LSMuY3TE1NpbS0lHPnzvHKK6/YQn1GoxEnJycuX74MwOOPPw6MeO7S0tLIyMjA2dkZs9lMV1cXTz75JKtXr563HJrs7GxycnJ44okniIoaX4m1zP2D9K//+q//erEPYj4QRZFfnbhB36Bpzu1KHyRERC5fa2Tgxpf09vagUChYsWIF/f39iKLIk08+ycMPP4xarR4XVzMajZSUlHD27FnS0tIwGAxs3LiR5557jri4OJycZlbba0WpVJKQkIBEIiE9PZ2amhqCg4NnLWAjCAKBniq+LO6awOkzchVES4robK6ktraW0NDQeQlRWMu5amtrkclkDA0NERkZOedx5wODwcBXX301ZcWAUqlk/fr187pfuVxObGwsVVVVZGdnExQUhIuLy7zu40FnYGCAS5cu8dBDD1FeXo6DgwNr1owoAUokEjw9PUlPT8fFxQVfX18KCgro7+/HwcEBrVZLdHQ0KSkptoz+kpISFAoFOp2OlJQU9u7dS2Dg7Nsq30lZWRlnz55lw4YN0+oZLLP0eWA8A9VtuikzQR88Zpr/MCJjmrRpJ09sSrAlwfT39/Pv//7vnDlzBplMRnR0tO0TPT09XL16lcLCQoaGhggPD+ell14iPDx8zisKiUTC5s2bCQ0N5fTp07z55pvs3LmT+Pj4WT2kppIxDTAUIBsc0Sjo6Ojg8OHDPPXUU8TEzKQ98dQkJCSQnZ1NfHw8RUVFbN68eUmU2LW3T185slAFREqlkgMHDvDuu+9y/PhxvvOd7xAcHLwg+3oQscqiBwQETJjkGxISQnx8PF9++SURERG0D0rRWDzR9RixR+Dxxx+ntLSUTz75xOZVCAoKYvv27fMex29oaODMmTPExsby6KOPzuvYyywOD4xnoKpNx9fXNIt9GPeQu0uGfGZTJEFetzN8FQoFMTExFBQUUFpaio+PD729vXzxxRd8+umndHZ2kpiYyLPPPsu6detwd3ef13IaZ2dnEhMT6e3tJS0tja6uLkJDQ2fVKtdPreSZFC9SV7mxIcqNF1N9eHVbAKnJMeTm5mKxWDCbzTg7O1NQUIBWqyUkJGROYQNHR0cqKyuRSqVotVqMRiPh4eGzHm++qKyspKZmqgqLkd/+oYceWpD9y2QyYmJiaGxsJDMzE39//+UqgxlSVFREX18fW7duJT09HZVKxdq1Y5t4BQYG8ll2FW/lWCjr96FD9KPFsoJ+uyA0TeUU5ly81fhIzZ49e9i8efO8K0V2dnZy/Phx/P39eeGFF+Yt/LbM4vLAGAMFNX3k3Ohb7MO4B4gEShtIEHLwkLRjzwA9TF/r/mKqD2qnsaUxKpWK4OBgiouLKS0tpaSkBLlczsMPP8zu3buJjIxcUA16mUxGVFQUHh4e5OTkUFRUhK+v76zi74IgoHayI8BdidrJDkEQkEqlrFy5kqtXrwLYkqiqq6u5fv06QUFBcyqBMplMXL16leTkZK5evcrq1asXvfwoPz+f3t7eKbszLqQxACMlqtHR0bS2tpKRkYGPj8+iZ5jfD6Snp+Ph4UFMTAwZGRkolUqSk5PHbFPSNMTRfDlDJgmjFwNDJgmVPQ6oZf08s2MTu3fvXpDvfGBggKNHj2Jvb8+BAwcW/XpfZv64f+SRpkAURT7KXvja6sXGDj3xkjxChXICAwMwCwpuEjzlZwRhxGU+WsYURjLOP/nkE44fPz5mxZ+amsrq1avvae/62NhY3njjDVxcXDh69CjffPPNvCXAeXl58dxzz9n+39jYaIvv//73v7eVY80Gay23vb09EonEVue9mLS3ty8JQRS5XM7evXuJiIjg5MmTlJeXL/YhLWnMZjOtra22bPyJwgSiKPLb8w230mEmVk/tct5ASkrKgijfGQwG3nvvPSwWC/v375+3EuFllgYPhDFQ3aajsWt2zSbuB1zlOn62VcIH/yOBP/2jp1EoFJQ0DlFsWsugOJULcORh8mi8OzU3dZhMJkpKSnjrrbd48803qa6uZtOmTfzsZz9j7969AJw6dYpr167dg7Mai6urK4cOHWLr1q1kZGTw9ttv09PTMy9jWysfrFy/fh0/Pz8SEhI4f/48p06dQq+/+3wTBwcHwsPDuX79OikpKVy5csVW970YWCwW2tvbMZlMS0IGVSaT8fzzzxMdHc2HH359iRwEAAAgAElEQVRISUkJMDKpVbUOknOjl+q2wQXLYbifsP5uo42BOw1ia17U5N+WQGOXgZqb838Nms1mTp06hUajYf/+/cvJoQ8gD0SY4EHPF4gml56mUnJzc6mvryckJJRLHUEYRDnT5w0IFNT2c/ZKJ2cyqqm/noe/hz3bt29n165dBAcHY2dnh6enJyqViurqaioqKnBycrrn5WGCIBAUFERYWBjFxcVkZ2fj7OyMt7f3nFe74eHhVFdXMzAw0rCpvb0db29vNm3aRG5uLkVFRfj7+9/1Q04qlZKbm8u2bdsoKSlBEIRZ67rPla6uLvLy8rBYLFPqDNjZ2S1omGA0EolkpEVvby+XLl2i3eDEP33axYm0Nr6+puHslU4ulXYT6KnC101xT45pKVJeXk5tbS1PPPEEEomErKws5HI569ats20z0+fchig3Atznb9UuiiJnz56loqKCl156iRUrVszb2MssHRZ/+TAPzFR85n7FeKtjoiiK9Pb2kl3SwIDZnpkYAqPRWuwpEdcRs/EZVq1aNW71uG7dOlvJ2blz5xbN7R0QEMAbb7xBVFQU//3f/20TTZkLgiBw6NChMclURUVFVFZW8v3vfx9nZ2fefvttMjIy7ipEERkZiVKp5MaNG6xZs4bc3Nw5H+tsscoQL7WVtkQi4ZlnnsEjfD2HM03jqn4aO/X8/EgF+TXfhpyfiWlubsbX19eWQDuRZ2CxRLasUuNPP/30vAkVLbP0eCCMgTAfFdLFD5MuGHaC3rYylkgkSBSzLWETEIHfnm+YdMLYvn07q1atQhAELly4QFpa2qJMLgqFgmeffZbnnnuOqqoqDh8+TGNj45zGlMvlvPbaa2OMoGvXrvH111/zyiuvkJqaysWLFzlx4oTNgzAdMpmM2NhYSkpKWL9+PSaTiby8vDkd52y5efOmzdgxm80ASyJ/wMoVzcT6sOKtv6muywed5ubmMep9E+UMhPva4+UIk/XWmyw/aC4UFhaSlpbGtm3bSEhImLdxl1l6PBDGQHWbDvMD+gxZ4W7H9/c/RXR0tM31K7XMPiYoitDQqZ80rigIAs899xwBAQHI5XIuXbo0rYjNQhIXF2dLLjxy5MickwvVajUvvPACgM0oKC0t5aOPPmLbtm0cPHiQzs5ODh8+TFVV1YzGTExMZGBggK6uLpKSksjJyWF4eHjWxzhb2tvbbUldU/1ei/Fb3tYBmdg4me66fJAZHBykp6dnWmOgoqICX13urW9w7Huj2/TOlwFYXV3N2bNnWbNmDampqfMy5jJLl/veGMiv7uPnb5cu9mEsACPrJXVPBhcuXMBsNhMdHY2fnx+ODGDPADPrvj0xXQPGSd+TyWS8+OKLODs7Y29vz+XLl/n0008XzSCwJhdu2bJlXpILo6Ki2LhxIxaLxTZ5Xr9+nQ8++ICQkBDeeOMN/P39effdd/niiy9sq+zJ8PPzw93dneLiYlJTUzEYDLZyxnvJZN0Kl0IyoUY7+fU2mqmuyweV0WJDVu40Bpqamjh9+jQbY32Il1zBHu2YMYI8Vfzmlagp2/TeDW1tbXzwwQdERESwc+fOJeVhWmZhWPynxAy4M/vYYrFQ1TrI0a+b+PnRCvoND96FqmCIBEkeamkPXV1dVFRUUFJSQmtrK4IAa91aJlwhzBQH2eR16DBSLrd//37gdke0jz/++J5q3o9GIpGwZcsWXn31VbRaLYcPH55T1cMjjzxCcHAwer3epmtQXl7O+++/j729PS+99BLbt28nLy+Pt956i+7u7knHEgSBhIQEysvLbZLLly9fxmi8dxObVqtlcHAQg2GYAdEZjcWTAdEJi0VcEg/yxYp33w80Nzfj6Og4Jnl1dM5AV1cX7733Hv7+/gQEBOAm0fBCWDO//2EMf38gkt//MIa3/jh23gyB3t5e3nnnHTw9PdmzZ8+SMCaXWXiWfDVBfk0fvzpxY0z28XsZbXyc10FRvZYR59jiP+xmxnSqgSIyDCQIOUTa1eCqtIwRj/Hw8CAoKAi1Wo2+txWVsYMB0QUjd5OFLeIgDKIr/xiDQY+vr++kmgJWUaK8vDx8fHyoqamhs7OTqKioRXtAuLi4kJSURE9PD2lpaXR3dxMSEnLXyoWCIBATE0NRURH9/f14eXkxODiIRqOhra2N2NhYVqxYQUREBCUlJWRnZ+Pi4jJpRz43NzcuX76Mm5sb8fHxZGVl4ejoOGHnx4WgsbGR9OJWCgzxNFjC6RD9aBMD6RR9cJDoUIg6tDijFZ1BasfDG9feUyNB7SjnUmk3/bqJjVCBkXj3q9v8l4Txci/JyMhArVYTGxtrey0nJweLxUJ8fDxHjx5FpVLx8ssvc+rUKYxGI4cOHcTf03mMyNZ8MDQ0xNGjR5FIJBw6dGhBRceWWVosaWPA2oWwb3DsA8Ry3+YHTJ/9b0HGKrdefv7T77N161bCwsKorq4GRuLdDQ0NtLe3YzQa8XVToDbc4KFIZ2SWQXr1EkyMntjvND5uN+/xdJJSX19Pbm4uw8PD+Pj4TGgUWEv7cnJyiIiIoKqqitbWVqKiohZNhlQmk7Fq1Src3d1tyoV+fn6zKgtcuXIl+fn5aLVafHx8bAZBS0sLcXFxNtlkq/HR29tLaGjouHNXKBQ0NTXR1tbGhg0b6O7upqSkZMEEYO7kbEY5X7SswIgdo39zI3bctPhxU/SnSQyjQ/SjcdjvnpfzzaSp1P61AjFhd9mE/j7HYrHw2WefER8fT2BgoO313NxcTCYTVVVVDA8Pc+jQIQwGA1lZWdjb2/PII4/M+7GYTCbeeecd+vr6OHTo0LKWwLeMJWsMfJu7ELqJbQx2NRATE4OLiwuJiYnU1dXR2NiIxWIhMDCQsLCwW0IlRnR97cSssOfZdd4kh9kT7DSEyniT7iEJJm7LhTqgZYtPK46mmwwNDdnq0RsbG7ly5QpGo3FCo8DDwwOVSkVubi6rV6+moqKChoYGVq1aNateAvOFt7c3sbGx1NbWkp6ejsViISjo7hKoVCoVvr6+lJSUoNfrbR6C7u5umpqaiI+Ptxkf1tV/aWkpgYGBODo6jhlLEARyc3NJSEggICCAzMxMnJ2dF1yvQRRF/uZUE3rzWInaW0cFgJmxmhT9OhNfFncRG+iIn/reKMn5uimIDXSksmWQvlEegmAvFY8EdNJ47Rs8PDzw8ppeXvtBob29nby8PDZv3jxGhjsnJwedTofRaOTgwYO4u7vzwQcf0NfXx8MPPzzvtf6iKPLRRx/R0NDAgQMH8PHxmdfxl1n6LFljoLpNx4m0tsU+jEXhtR3hFOamI5FIcHNz48svv6SqqgonJydb//LHH3+c1tZWnJ2dSUlJobOzk4KCfJpry7GX6FgX48+hxyJYE6zC2dSMh6GMAEsF4lAXFosFJycn7O3t0ev1tkY+TU1N5ObmYjQa8fPzGzPR+/v7Mzw8TF5eHlu2bOH69etUV9dg5xZMbacB/bAZN0f5PXfxWmP0MOJurampISQk5K7cm1YN97q6OiQSCU5OTuj1erq7u2lsbLR1VPTx8SE6OprKykoyMzNRKBT4+992a7u5uZGXl4dcLicmJobOzk7KyspISUlZ0O+luk3HhzkaJvc8TRJKE6CyZZBnUrzu2e82WVOp5Lgwuru7SU9Px8fHBw8Pj3tyPItNRUUFNTU1PPHEEzZvkyiKXLp0CbPZzP79+wkICGB4eJhz584hCALf+c535v33+uKLLyguLuaFF15Y1hL4lrJkjYEHXVVwIqx1wj97LgaLxUJaWhpXrlyhv7+fHTt28OyzzxIeHk5RURE5OTn09PSwZs0aNmzYQGJiIuvWrcPHxwe9Xk9JSQlXrlyho6WGMH9XtqUmo1QqaG9vx97eHq1Wi8FgsGUsW8sWLRYLjY2NZGdn097eTkBAgC3jPjQ0lM7OTgoLCwlbs4MPy+z5uEC76EpygiAQHBxMaGioTblwqvj+RAQFBdHS0kJbWxtqtRpBEDAajXR3d1NfX09CQgKCIGBvb09iYiJ6vZ60tDTa2toICwtDLpcjlUrp7u6msrLS1ukxKysLtVq9oCutiqZ+LpbOrrqiT2cidZXbuCZWC8lETaUEQWDlypV0dHSQkZGBn5/ft6LbYV5eHoIgkJKSYnvt4sWL1NXVIZVKeeaZZwDIysqivr6e4OBgkpKS5vUYsrOzSU9P54knnljWEvgWs2SNgSGDmbNXOxf7MBaQsfF8gRFj4H+9EEZ3azWXL1/GYDAgkUg4ePAgK1euRBAEnJ2dSUhIoK6ujt7eXhwcHIiMjEQikSCTyfDy8mLVqlVs2LDBllhXW1s7Yhh0dADg4+PDrl27UCqVaDQaTCYTKpUKmUxmS1gURZGuri5bTB5GVr5xcXFklbXzwXVnjOLYCWQxXM+jmUtyoSAIREVFUVpaSkdHB9HR0QwMDGCxWOjp6aG2tpbExEQEQUAikRAeHo6fnx95eXkUFBTYui0qlUpyc3MJCQkhICCAtrY2KioqWLt24RL2mlrbuXh99vX58y1fO1usv0FrayuZmZkEBgbOqoPl/cRXX31FUFAQERERAFy5coWvv/4aBwcHLBYLmzZtQhRF3nvvPcxmMy+++OK48NRcKCsr4+zZs2zcuJFNmzbN27jL3H8sOWPAYrFw8ZqG0iYtLRo9uuHFKWVbSJRyATeVBZ3x9uTgKtfzJzt9qLryGTk5OYSEhLBnzx7q6+spLy+3xa5hREmvv7+f5uZm2tvbqa2tJTQ0dEwXMUEQcHV1JSwsjJSUFFsyXHd3N+3t7ZSUlGA2m4mLiyMyMhKLxUJHRwdSqRRfX1/s7OwYGhoCRrqV1dTUkJ2dzbVrJeRpV41roXp7x/fe9TyaO5MLi4uLZ9xzYHRCYUtLC5s3b6alpQWJREJPTw81NTU2gwBGwgtxcXHU19fbchbi4+O5du0aBoOBlStXolarycrKwsvLa8Fi4Z0ttWRW9I9LHpwpE7W3XiwkEgmrVq2iqamJrKwsgoODH9hENp1Ox1dffcW6devw9vamoqKCjz/+mHXr1jE4OMjQ0BCbN2+mrq6OwsJCVCoVO3bsmLf9NzQ0cPLkSWJjY5e1BJZZWsbA+xmt/NmRSi6V9VBcPzCFITBxlvz9UmJossCTiY6o2r8hJcwRx758AsVKmquvoVQq2bNnD6mpqTg6OhIaGkpOTo6t3A1GYsSfZRTjrPbkpT27KCoqIjc3F09Pz0ljrfb29qxYsYI1a9ZQXFyMu7s77u7ulJSUUFVVhdFoJDIyEh8fH3p6etBoNDg6OuLn58fQ0JBNeKdLb0fNcDBTfdeL4Xq+E29vb2JiYmzJhaIoEhgYOO0DT6VS4efnR0lJCXV1dezatYuqqirkcjnd3d3jDAKFQmHLKUhPT6e+vp6goCCbPLGrqyvNzc1UVVUtmHegsLCI/r4ebg673XplZvuwhqWWWjmf1SCoq6sjOzub0NBQnJycFvuw5p36+npKSkrYvn07XV1dvP/++0RFRfH0009TUFDA4OAgmzdv5tSpUwwMDLBx40aCg4PnZd+dnZ0cP34cf39/XnjhhUWrDFpm6bBkjIH3M1p580LzjMoGBSyM1Uu6n7QGRrjRbiJMLMNJpsc81IsgwM6dO3nqqafGxErt7e3x9vbm0qVL1GgE/u2rfk6ktVGrdaG8x4WCRhPPbN8A+m7S0tIwGAyEhIRMWs4mkUhwcHDgypUr7Nq1i8cff5zg4GCk0pFSw7q6OoaHhwkICMDe3p6bN29iMBhQq9UjMXGDkg5x+uz4peB6VqlUthhoeno6tbW1BAcHT5tcaD3Xuro66uvreeaZZygrK0OpVNLd3U1VVRVJSUm2CdSasxASEkJhYSEtLS0MDw/j6emJt7c3rq6uZGVlLUhiXH5NH//nix7qhzy5u/tAREDgL/eGL0pIZzqkUinR0dFUV1fbylrn0z2+FCguLqarq4v4+HiOHz+Oj48P+/btQyqVUlBQgFarJTExkS+//BKAl19+eV7KVAcGBjh69CgODg68/PLL2NktDa/QMovLkjAGLBYLP3u7gunVbo2EcZ049QCNenemF/GZD0RUwhASjJiRzdv+LCLYC1ok+k7bpBIWFjZhyZC7uzsNfXKOFdjRrxsrjduvM/FNaS8vPrGeED8XMjIyqK6uHhc2GI2XlxeVlZXU19ezevVq3NzcCA8PZ926dcTGxtrCCY2NjZhMJtzc3BAEgb6+PkRBTqtl+rKm1d4DRAQtfnnSncmFOTk5Nu2EqQgMDKStrY329nY6OjrYtWvEA+Po6Eh3dzc3btwgKSlpzMPZWgba0dFBV1cXLS0tJCcn4+bmZjO0Vq9ePW+rcKsOh94s5e6vSwFPZxmp0eol2zpYJpPZqjfy8vJYuXLlmK6T9zuZmZk4OTmRl5eHSqXiwIEDKBQjv0VhYSFarRaz2UxLS4vNqzdXDAYDx48ft2kXPGgG1jKzZ0kYA19f6yKtrHcGW0rpwZtWg9utxkT3xhsQKNSw2neYGq01mWm6EMXMjBQHtLhJulGpVJhMJurq6pDJZAwNDSGVSlEoFDaN8n+50HurNnvyOP2PnltNeHg4xcXF5Obm4uHhMeFKVBAE3NzcyMzMHLdatYYTEhMTSUlJwcvLi+HhYdrb2zGbzTjawU2TF8Y76tZHn7sDWsSGLykpKUEikaBWq6nvHKaqTbdoJYjWibq7u3tGyYXW7Pbr16+j0Wgwm81s2bKFoqIiXFxc0Gg0VFZWjjMIrGWFGo2GpqYmysvLCQkJwdfXl6ysLAICAuYlS360Dsds7wOdwcxXxZpFS/icCVaDoLy8nPz8fFauXPlAqOJZLBY+/fRTW0XPnROzVRnz5s2biKLInj175pw7YTabOXnyJB0dHTbtgmWWsbIkjIH/zu3gRutMs6FFLOIkyWsLRA8eOBtqSI104KZOxdAoyXk7wQQS6R1ejZkZA/7SJhwELRaLBVEUEUWR2tpaSktLyc3NJS0tjYyMDL7ILKG033vKMa1x+mA/dxITE2lvbyctLQ29Xj9h2ECtVtPU1DRlprtcLsfb25vo6GgeeughgoODkcvlGPtaaDR43tpqYoVDV5WFwcFB8iq7eTPDwOkrfYtegmhNLlSr1beSIa9NmVwolUqJiIigsLCQ9vZ2vL29SUhIoLi4GLVabesZcadBIAiCLddDFEWuXLlCQEAAg4ODNDY2jsk5mC3zo8MxcgyLmfA5E+RyOatWraKkpITCwkKioqIm9XrdL9y8eZMrV67YDIHRE7PFYuG/s+qp1zqht8hRK0zs2vXknPYniiJnz56lsrKS73znO2OaIi2zDCwRY+BawwCljdrpNwTufW7ALQU3xyA6DE7c7Lvtplei48+eXsH/81I0QV5KQjyVyLry2RQMZRqHaUd+OFxgsLeNH/3oR+Tl5QHw1FNPERoailqtxsHBAblcTo9RRfOw5zSjQVPxBa7np1NSUoLFYkGhUFBVVUV+fj69vb10dnbS2dlJT08PAwMDqNVqCgoKUCqVY8RzJsIqgBQeHs7DDyUQ6GqhvEk7piLCHi3RkiLcJN2YzWZ6RHeKLcnjstz7dMZFXZFalQtramqmTS4crVBo1RsICAigtLQUT09POjs7KS8vZ/Xq1WMMAplMRmdnJ3q9noiICNLS0nBzc6OpqYng4OA5l8zNpw7HUkj4nA47OzuioqIoKiri2rVrrFq1yuZSv98QRZEPPviA/v5+9u3bR1BQkO09axJ1ndaZPtzpEn2pNwWjkEuJDZx9EmVaWhq5ubns3r2bqKio+TiNZR4wBHGx+tKOorJ5gDfeLF/sw5gFIhJB4NcHIvB3GKKgoID8/Hz0qiByBqKn/fShZAsNhV/w/PPPc/HiRbq7u1mxYgV/9Ed/NGa7qtZBXv/PsmnH+3GqBbVCj15/+6+vr4+Ojg4sFssYHYGJsLOzQ6lUzvhPoVBwc0CCRmtkeKCT3pYKamtrbnk64Io5FR2OTBZOcLUb5m+fUy9anwOLxUJ6ejrp6ekEBATw3HPPTTpJZ2Zm8vXXXyOVSvne975HRUUFly5dwsfHh5s3b+Lh4cHrr7+OTCajuk2HRmtE13uT9E9P8r3vfZeenh7OnTuHyWTC29ub733ve3M69pleEzPl7w9Esj5y6df09/b28vbbb2NnZ8crr7yCg8P0RvdS4+LFi2RkZODs7MzPfvYz2+vWJOrJ+P72AF7cdPfS1gUFBZw9e5Zt27YtawksMylLwhgQRZHnfl1Ar27qvvFLExElQ4RLrqMQ9LjJ9fhGrOF4idu0n/zfu914/5NvcPePJCbMm+JLH1DBGhQu/gR6Kvnbl8Kws7NDFEVe/W0JjZ36Cfs0CMJIP/O3/jh2wtWtXq/nk08+oby8nJSUFDZt2oTRaESv19PZ2cnHH39MZGQkgYGBYwyJif6Gh4cnPR+FQoFSqUQikdChk5M1OH3C0xppJt4OZuLj40lKSloUXfrGxkZOnz6NXq/nySefJC4ubtw21tVcZWUlDg4OvP7665y+kEv+tRsEeDuj66jB7BRMozyJxk697XOOkkF2Rpn4wUuP0dPTw4kTJ+ju7iY5OZknnnhi1q55URR58Z+L6OgbZj68Zb//YQzhvvfHxKrRaDhy5Aj29vYcOnTovkoqvHr1KufPn8fBwYGoqCh27doFjBimj/9NPkbz5I9juVTg879ac1cVBVVVVbz33nusXr2aJ598csmGgpZZfJaEMQBQUNvPn71dsdiHMWe8neDne1by2/MNU07ervYy+odMmMdIKYzPNQjyUHLkp/EU1Pbz8yMViDAmP0EQRj7xm1eipuxnLooieXl5XLhwAR8fH55//nnc3EYMls8//5zCwkJ+8pOfTLvSMpvNGAyGSY2FoaEh9Ho9lR0CZ2unL6P75dPeCD2VFBcXo9Pp8Pf3JykpidjY2HvqBtbr9Xz66aeUlJQQHx/Pzp07x+1/eHiY//qv/6K6C+ol8fQZb4c4lBIjeos1GXF8HsVPnwzER63C1V7Cx+8cRq8fIiwsjN27d88qozu/po//caSSuVbUCIA9A7z9k3g8PacPRS0VOjs7OXLkCC4uLhw8ePC+yCGorKzk5MmTrF69mvz8fJ555hkSExMB+Lq4i789VTvtGH+5N5RtcTMrT21tbeXIkSOEhISwb9++RWs7vsz9wZLIGYCRjmZxQY4U1PSiG56dfSIRmEOHw/kpU9QNw1fFGval+lJQ2z9uSEEY2dWQ0TJJKeXYD/TpTFy81sUPnwiatOPbX+wNn9IQGNmvQEBAABEREbYSO3d3dzw9PW2yugaDwSaLOhkSiQS5XI5KpcLJyQk3Nzc8PT3x9fVlxYoVhIaGEhkZiYe334zkpIdrv8JFJWHv3r0EBQWh0WjIzc0lNzcXjUaDSqXCxcVlwVc0dyYXTqRcKJVK0dn5cbLMCYNlbJmpSbSGOSbuGphb1c/X1zScz+9CqwxBatCAoYf8/Hy8vb3vqsLAVkkwWXXJzEdCIgiscarCONBOdPT0oa2lgoODA2FhYeTk5FBTU0NMTMyidtCcjubmZt577z1WrlxJbGwsJSUlPPbYYzavRnp5N8V1A9OOE+KtIjFk6nsdoKenh2PHjuHu7s5LL720pL+bZZYGS8YzYEUURarbBvm7U7U0jHK33k8IAgR6KPnjnYH8+6eNY84j2FNJk0Z/h0dger74y0RbyKDmpo6uASMeTnLCfOzveqK8M2zw2GOPkZ2dzaVLl/jRj36ERq9Ao539+MC0oQ0QsUdLsjQT6/ByuZzIyEg2btxIVVUVRUVF9PT0oFarSUpKIiEh4Z4o0fX09HD69GlaWlrYsmULmzZtQiKR2M5p7tflyDeSYn8Nd2kPQ0NDuLi44OzsjCiKtuoSa+Oo0X8mk4meYRWXh5LnfJ5KBvjV3lWoDK2cP3+eH/zgB/dd++CWlhaOHTuGr68v+/fvH9d+eymg0Wj4wx/+gKenJwcOHCAzM5O8vDx+/vOf2+6t+fQM6HQ63nrrLSwWC6+99tp9mVexzL1nyXgGrAiCgLuTHbvXedPVb6CqbWYlh57OMnSG+e9j4O1qh4NCctdj9+lMaCs/w998HV87Dd523UTatyI1dNMyfPf1vXnXb7I+zA6VSoW7s2JMx7e7xVq7bW9vT2ZmJjdu3CA1NZWMkjbezoUPczRzLgMUBIFATxVfFneN947cmgwfD+kh2McZjUaDRCLBbDbT2dlJfn4+ra2thIeHs3XrVoaHh7l69SqXL1+mtbUVuVyOm5vbgrk9VSoViYmJiKJoUy4MCQmhuccyT221R76QHqMD6wJF7Ozs6O7uxmg04uXlZcu7gJGwjNFoZGhoiMHBQYxGI70mhxmpQE5HvHAFB0sXjz76KMXFxXR3dxMTEzPnce8lzs7OBAUFkZWVRXNzM9HR0UvKHa7Vajl69ChKpdImKpSVlYWLiwvx8fG27YK9lLyX0TalAqtcKvAXL4RNec+bTCbeeecd+vv7eeWVVx7Yvg7LzD9LzjNwJ2azmV+9U0VeVf+U2/3s6WD+zyf187LPp5I9CfFSERvoRLivPYV1AxPG66fjIecKPGWaMSu7G/pAak1hd31MCgZ5SJY+4Xt2dnY4OTnh6+tLZGQkERERM46htra2curUKZoGFOTrE29N0+O7Kf7joZWsCbv7B0t+TR+/Pd8w1jvipeLxSAMVOedJSEggOTmZjIwMKisrsbe3x2KxoNff3l6pVBIdHY27uztlZWW0trbi4OBAQkICSUlJ8y7xO5rRyYXBqx/nzYzJEyhnw3bPcmKC3Wxqh6NvR7lcjlqtRq1W4+bmZvt3r9GePz3eMOd9+1JPlLyCP//zP6ekpISzZ8/yxhtv3FXr56VCXV0d7777LmFhYUtGa394eJgjR44wMDDAa6+9hqurK6Io8o//+I+sX7+eLVu2jNn+ZGYbh79ovPW/8RP+GztWsF4+FgYAACAASURBVC/Vd9L9iaLIhx9+SFVVFYcOHVrWEljmrljyxoCV9zNa+b9fNY9zr7s5yPiLveEkhTjx4j8X38qunhsTZVZPNKnNZpyZugPvxI0OEmT5d/05K4IgIJVKcXBwwN/fn8TEREJDQ5FKpQwNDbH/n/PpMUysKmgNe7z947hZhwwmCm2UlJRw5swZoqKi2LNnDx0dHaSlpVFZWYlarcbT05OmpiZ0utveIZVKRWRkJFKplPLycoaGhlixYgVJSUnExMQsiM66Xq/n/PnzZJc0km/eOK9jx0muEuU9IhHt7OxMQ0MDra2txMbG8tRTT014PqIosuuvLqHDnrnlDJiJF66yY30YO3bs4He/+x3e3t7s27dvDmMuHtXV1bz33nu262kxPQRms5n333+fxsZGXn31VXx8RqS5u7q6+N3vfseBAwcIDQ0d85mbN2/yv/7jAnViBCK3jRm5VOC1RwOmNARgJBE4Ly+Pffv2sXLlyvk/qWUeaO4bYwBGym8ulXZTVD+Ao0LK1lg1EX4OtgnqbF47/9/Zua2Y1I5STv3PifXjrZNaZ/8wvz3fyM0ew12X+s2khGgirDkD1uMYGBigq6uLtrY2Ghsb6ejoQKvVTqkjMBkDovOMJrmFKD+rqKjg1KlThISEsHfvXuRyOW1tbWOMgg0bNtDZ2UlxcfEYj4G9vT2BgYEMDQ3R0NCAnZ0dMTExJCUlERAQMK9Jh6IoUlxczK9O9zIkzl8p2xppJi7SQVauXMnmzZvx9vamsLCQzz77DFdXV55//nnbSn0kn0bH+ewaPivqZZj5yKAXWW1XwD/9xRsUFxfz8ccf8/rrr+PrO/XEs1SpqKjggw8+IC4ujt27dy9KKZ0oinzyySdcu3aN/fv3j5n0CwsL+eSTT/jlL385rlrl1KlTlJWV4evrT/hDu2ns0hPooWRrjHpawyY7O5sLFy6wc+dOkpPnnk+yzLeP+8oYmI7btdfG6TeehN8cimRt+PTiK3Mp9RtxBzbN+Jis5YWzZXh4mI6ODioqKqiurqavr4/h4WEslhE3i8biSYll7bTj/PIpLx5bGzjvK66amhpOnjyJv78/L774ou0hOdoocHd3Z/PmzQQHB3Pp0iXKysrGaB44ODjg5eWFRqOhv78fT09PEhMTSUhImNcEqrSiZv76o5Zb/5tYTGmmq3Ulg6yTpjN6vlIqlURERBAbG8vFixfp6upix44dSNwi+e2nd+eZmhkjiZx/+aQjKSnJ/O53v8PDw4OXXnppnvdz7ygtLeX06dMkJSWxa9eue24QfPPNN6Snp/Pss8+OyQsAOHv2LM3NzfzgBz8Y8/rQ0BC/+c1vEEWR7373u/j7+894f2VlZZw6dYqNGzfy6KOPzss5LPPtY8klEM4FQRAI83Hgy6KuWX3+qbWe7NkwsxWRr5ti1qV+sYFOKOUC1+oHpm3ZPFdDAEZK4pydnQkNDWXt2rWkpqayZcsWtm7dytatWwlfGT2jMsChmi+4knWR6upqOjo60Ov1yGQylErlnB64arWaoKAgsrOzqa6uZtWqVcjlcpycnIiNjSUyMpLOzk4yMzOpqqoiISGB5557jqSkJLRaLT09PRgMBnp7ezEYDDg4OKBQKCgtLSU7O5v29nbs7Oxs3RfnQrCPM0q5hPyafsZP+iM/ZgSlDOI8RZdLaw+HQuwlQ2PeMZlMdHR0UFpaitFoxNXVlUuFzZwoUiyQKJeAEQXDbYVs25SMSqUiKyuLiIgInJ2nL2Fbinh5eeHi4sKlS5cYGhoiPDz8nhkE+fn5fPnllzzyyCMTrtAvXryIv7//ODd+Tk4OdXV1ODs7s3379hnvr6GhgZMnTxIbG8vOnTuXRYWWmTUPlGfAyt3G92USeO2xAF5MvfsM7bmU+lksFi6VddvcgRsiHPmrk3U0durHKBAuNNMqHAJqlYkUWRZDQzqkUikSiQSjccQDo1Kp8PPzw9fXF39/f/z8/GY1kbS2tnLixAmcnZ05cODAuBV9a2sr6enpYzwFsbGxSCQS2tvb+frrr6mtrcVsvj1pqlQqpFIpWq0WJycnW9LhXDsHXq3u5R8/qqZTezuJJdhLxc6VRq5nn6XHoqbYknLrnfFGQ6hQQaxbNzCScW6xWGwdKsdsOa2s8/wQJFRxaNdaNq8J5/Dhw7i6urJ///4F29+9wKr2t2HDBh599NEFnyhv3LjB+++/z9q1aydUlzQYDPz617/m6aefJikpyfa6xWLhH/7hHxgeHmb37t0kJCTMaH+dnZ289dZbtrLKpZA0ucz9ywNpDMD4STrUW0Vt+xBdA0bUDlKaNQYaNTOPyT3ozCTskRTiRFtbG+Xl5VRUVNDV1YVMJsPNzQ2pVEp/f78t2c/R0dFmGFj/ZiIb29HRwbFjx2z93ScyKqYyCkRRpKmpiW+++YbGxkZbKARGXPAmkwmTyURwcDBJSUk2L8RsEEWR6w29fP7NZdoaKkmJXkFHRzs6nY6hoSF6LO5UWVah47Y2ghw9EXYNBNq1IYoWDAYDrq6u9Pb24unpyfbt26murqasrAytVjvjfI75IshTyVMxIqWZ/82rr76KQeY+Z82JxSQnJ4cvvvjC5glbKJqbmzl69Cjh4eG88MILEz5PamtrOX78OD/84Q/HqD1WVlby/vvvI5fL+dWvfjWj/Q0MDPCHP/wBhULBq6++el8oMC6ztHlgjYFl7p7JygB//GTQhGGPrq4um2HQ2tqKRCJhxYoVeHh4IJFI0Gg0tLa22pL+XF1dxxgIvr6+E0oOazQajh07hkQi4eDBgzbZ5DuZyiiAkRVXTU0NaWlptLa2jivbMxqN2NnZERcXx+rVq/H19Z11tUR2djZffvklgiCwZ88egoKC+Ld/+zeGh420WVbQIIZi4LYx5CTVESqWsDHWh+rqakwmExaLBTc3NwIDA2lra6O7u5v2YbcZ5XPMF9ZS0hjHJpoMXvQO3/59gjyV/GRX8LRql0uNjIwMLl68yCOPPEJqauq8j6/RaHjrrbdwd3fnwIEDkxqX6enpXL58mV/84hdjrrP/+I//oLOzkw0bNvDYY49Nuz+DwcCRI0cYHBzktddeW9YSWGZeWDYGlhnDbMMefX19VFRUUFFRQUNDg60tcNT/3969R0dZ34kffz8zuUwm98mFhEQmCblyEeUmFlSsth4L1G61yiWA1K4/u0fcY7vay+n+tvvb3dat3e052lZdt5aLCMqKrOiyalVuVSSQQlBJIIEkJJmQezLJ5DrP8/sjzMCQueXGTJLP65x4ZOaZZ74TdJ7P8/1+vp9Pfj4pKSl0dnZSW1tLXV0dFovFuevBUQ7Z8ZOSkkJISAhtbW1s376d/v5+NmzY4LWWQF1dHQcPHuTs2bNugwIY3Or15ZdfcuTIERoaGlxer9PpUFWV5ORk5s+fz9y5cz3OYjgy+q++W25paWHbtm0oioLBYKChoYE77riDWbNm8S+/fZ1TqmPt2LVngQLcqC+iIDWUxsZGl+UNgNjYWFrCcjlsGb86Ct65JkOOtuZEIDmS+u655x6WLFkyZuft7OzklVdeQa/Xs2nTJq+zX6+99hqqqlJYWOh8rLGxkd///vcoisJPf/pTn2WD7XY7O3fupKamhk2bNk3ImhAiOEkwIMaczWajrKyM0tJSKioqsNvtpKSkkJ+fT0FBAQkJCTQ1NVFXV+cMEC5duoSqquh0OqZNm8b06dMxmUwcP36c3t5e1q9f79yr7Yk/QQEM7q4oKSnh008/paWlZch5FEUhPz+fBQsWkJWV5QyG3M2cpMeHktZ3ghuie9mwYQNGo5FDhw5x+PBh4uLiea9xltc2zo6SzKGhgxeBq7eGRkfHcKBjPla7wcPrr7/R1pwIFE3T+OCDD/j0009ZuXIlCxb47qjpS19fH1u3bqWjo8NZVMjb+z/77LMsXrzYZbnijTfe4MyZM+Tl5bF69Wqfn8GxZbGwsJDMzMxRfwYhHCQYEOOqt7eX8vJySktLOXv2LH19fZhMJmdgkJaWhqIoDAwMcOnSJWpra7FYLNTW1tLYeGWHg6IozJo1i9zcXNLS0jCZTB4vRv4GBTAYuBQXF1NUVERHx9AqlxERESxcuJCQhHz+8c0aNO3aZliDd/j/tDqDpbMH79L6+vo4evQo+z4+wfEB3+v9C/RHMIX1EBkZSVtbGyEhIQwMDFz3fIHhmEgtjx00TWP//v0UFRUNK1HPHVVV2bVrF1VVVS5FhTxpbm7mt7/9LevWrSM7Oxu4klAI8OSTT/pMuvW2ZVGI0ZJgQFw3AwMDXLhwgTNnzlBWVobNZiM6Opq8vDwKCgowm80uGdF9fX1YLBYqKys5duyYSyXC8PBw59LC1TsYrg4QhhMUAHR0dFBUVERxcbHLe/nK6HfstrjbdJrW1hZn/QN/6zfMCykmnkusX7+e8vJyiouL+c53vsN/vnmYo9bg7CT4y/W5LMn1XY8j2Giaxr59+zh58iT333+/370Yrl4eSogK5cuiDykpOcXatWuZOdN3efFTp06xd+9enn76aSIiIgA4ePAgBw4cYNq0aTz22GNeX19cXMy+ffvGLe9BCOlrKa6bkJAQcnJyyMnJQVVVLl68SGlpKWfOnOH48eMYDAby8vLIz89n5szBbZVmsxmz2cytt97K66+/TnV1NbfffjuaplFbW8fh4gpaD58lTOlhWqRKWpprgLBmzRpnUPDWW29x6NAhj0FBdHQ0MwqWEHnDAvT2LhrOn+L06RKaesJddgRcSwOau0M4f6mb1BgDM2bMICkpifc/+cK/34tmIyQ0hL1791JYWMixY8eoqqoiJSEKfHe1DYjE6ODrDugPRVFYuXIlAwMD7NmzB71eT35+vtfXuFseMhLJw7ev9CsQgMHdBomJic5AQNM0PvnkEwC+8Y1veH3tuXPneOedd1i4cCFLlwbnTJGY+GRmQAScpmnU19c7A4PGxkZCQ0PJzs4mPz+f3Nxc57bA3bt3U15ezpxl3+K/T2suX9CJRjuLTHXQXkF392Axn9jYWNLS0khNTcVgMFBWVkZ5efmQmQJ3X/jmJAObV5i51NDEs//T7PNzPHFXFPcszsBoNPLJJ5/w0UcfUx6zymsb5yiliwW6wyjKYCJjXl4eoaGhnDpVQq16A+XaLCC4tr1mJLsvtT2RqKrKm2++SVlZGatXr3ZO3V/rREU7T28tc7s8pFMUv5MpX3rpJVJSUrjvvvuAwQv8a6+9htFo5KmnnvL4urq6OrZs2UJWVhYPPvjglN8CLcaPBAMi6DQ3NzsDg9raWnQ6HZmZmeTn55Odnc0f3zrM2+eTUZzNkAc5s9035JGVoDqTEx0/jiJJsbGxqKqK1WolNjaW1ILb+I8/24d84TvO97crzfzGj54XC/RHiFasxMfH09/fT2hoKFnzv85v3u9wezEBmKc7hknf6rLtsVVNoFSd47IVMVgowK83eS61PZHY7XbeeOMNzp8/z9q1a4ck5PksxuVnMmVfXx/PPPMMK1ascCYuPv/887S0tHhNZmxtbeUPf/gDcXFxbNy4ccT1MITwhwQDIqh1dHQ4tyxWVlaiqhondXfS3h/OcDosqqpKc3OzS4BgsViw21Xv+QAK3GAKx67aqWsd8HiH79gV4O6a4K74kBEraboqIpQeQukhCiuKMnis+62IweF7d6ez7o7hV+oMVgMDA+zcuZOLFy9SWFjIjBkznM+dq+vi0Rd8L/X4SqasrKxk69atzvbQra2tPPfcc+j1en72s5+5fY3NZuOVV15B0zS++93vjml/DSHckZwBEdRiYmJYvHgxixcvpru7m48+K+Xgh54bUWkaVDX28NKr+0iM6EPTNOddt+PfNU3DaDSSmZlJXQfYLF7yATSobu4lVzmNxpzLjw6tF7DIVEdEn8GlqyIM9oWYlRrGoshLXGiooqGth17NQI2WwTl1jvM4I1aydV9Srha4eY/gcUvuxKov4EtISAirV69mx44dvPbaa2zYsIHp0weDneZO/xqeNVn7yfbS0qSmpoawsDBn1cH9+/cDeJwR6O/vZ9euXXR3d/PII49IICCuCwkGxIQRERFBwvRM4KzPY8+cryUlbHCbXmhoqPMnLCyMsLAw9Ho9ISEh6MIj/HrvcKWXm/THqdDmYLVfec1ghcYM5mfdAgze0e3Zs4fz58+jaRp2ux2LxQIMVmDMW3o7Lx7pR71mjsFGFCXqYoI1CIDBzzozJfiWLkYrNDSUNWvW8Oqrr7J9+3Y2btxISkoKCVH+Tcv7SqasqakhLS0NnU5HX18f586dA3BbbVBVVd566y0sFgsbN24cdQ8NIfwlwYCYUPz9gl626EYi1Fba29tpa2ujra3NpaBPeHg4cXFxGMKT/TpfcpwBrbOWWPsBOvXR9GkGwpQe4jt6OP6nRBpmzCAjI4P09HS6u7uZPXs2d999NydPnuSzzz4b7FXQ2sb7h1tQ3S5JKFybVRBs7rk5YUInDXoTHh7OunXr2LZtG9u3b+fhhx8mOzWRpEiVxi4FT0tI5iTvAZKmadTU1DB//nwAjhw5AkBmZuaQaoOapvHee+9RWlrKQw89RHp6+th9QCF8kGBATCjZqUbMSQavSV3mpAgeuHeRy4VL0zRsNpszMHD8tLa2ERPSTceApyp/GgkRdr56SwGxsYN3/93d3dTX11NTU0NzczcWiwWLxcJnn33mfFVXVxeffvop2dnZbN68ma6uLt7+6AQHT3tekgjmWQGA/y1u4qGlI+vfMBEYDAYKCwvZunUr27Zto7CwkOndRTSyeEio5ggPNq8we/19tLW10dXVRXp6urOHBeDcVXC1o0ePcuzYMVasWDGkxbEQ402CATGhKIrCEyszeGpLKeC+w6K7L2hFUYiMjCQyMpK0tDSX52Y5OjZ6qC44J6KCAwcuOncjAISFhREXF0dmZqZz77jNZuPSpUtYrVba29v57LPPnAFCeHg4PcYMwH3TpYmgqrGHinrbhKs8OBxGo5H169ezZcsWXnzxReJ1cFtMGdWhN7lsO43W2/i/hTf53FVRU1MDQHp6OmVlZQwMDBAfHz+kudDnn3/O+++/z9KlS1m48Po1phLCQYIBMeHMz4rhVxvz3NQF8NxhcSTny0g2Xj7fLWiaRnd395CZhfb2durr62lpaaW1P+Ly8gHEh/ZgNEag0+no7++nt7eXzhYLkDVWv4aA8JUsNxlERUUxb948PvroIwB++L37iImJcTbwUrtbef+tbYTaTID3Kow1NTWYTCaMRqMzcXDVqlUux1RVVbF3717mzp3LXXfdNS6fSQhfJBgQE9KCmbH8cfPcEXVYHMn5FEXBaDRiNBqd2eYO7goWJUdoLE/pII4m2tra6O/vJ4oOjFi9NC6CazsFBpuJWnlwOOx2uzMQCA8PvyqHIOpyIBRH1Ze5HDx40Gt5axgMBtLT02ltbaWjo4Pw8HCXegaNjY3s2rWLGTNmcN99903aJRgR/KSclZiwFEUhOzWSJblxZKdGjvqLdCTnc1Soq2503VLY2KnwX2diyV38Db7//e/z4x//mB/96Gme/GYWitdkweC9GEzW3QTX+t3vfgcMlqd+9NFH6e3tZfv27S79KpYvX05LSwslJSUez9Pf3099fT3p6ens3bsXgDvuuMP5vNVqZceOHcTExPDggw+69OUQ4nqTYECIEdI0jeffrXKTazD4Zw0uP3+lvsFNmdFsWBpNMF/0PfGVLDcZnD59mtbWVgAef/xxTCYTGzZsoLOzk1dffdVZRyI1NZWCggIOHjyI3W53ey6LxYKqqqSmplJdXY1Op+OWWwaTUHt7e9mxYweqqrJu3ToMBsP1+YBCeCDLBEKMULnF5rI0cC1HAaS/f+YFQvuutGNuVpOAiZUk9oNvDj8XYyK4uhthvFHPm2/uQVHgzjvvJCwsDICkpCTWr1/P1q1b2bFjB4WFhYSHh7N8+XJeeOEFTp486baAUE1NDaGhoZw8eRKA2bNno9PpnGWQ29ra2LRpk8/WxUJcDxIMCDFC/laoy8ybx01mgzPnoKErhKd31o7z6MaOOcnAyoX+1WOYSNx3I1zGLEM5t99+u8uxKSkprF+/nm3btrFz507WrVtHcnIys2fP5tChQ8ybN29I3YCamhqmT5/uDAZWrlyJpmm88847VFZWUlhYyLRp08b/gwrhB1kmEGKE/C2AdMetN7FgwQIKCgowm80sLJiOOckwIRYKFOCJlRmTbnngREU7f7elbMjMjo0ointv5kRF+5DXTJ8+nbVr11JXV8euXbsYGBhg+fLlWK1W/vKXv7gc6yg2FBYWht1uJzU1lbCwMA4cOMDJkyf51re+NaQxkhCBJMGAECPkKIDk6TKpKO6T7hRF4bt3JKA5MwuC15PfzJh0ywOapvEPOz2VtFZccj2uNWPGDNasWUN1dTW7d+8mPj6euXPncvjwYZc6FB0dHVitVqqrqwG4//77KS4u5tChQ9x1113MnTt3HD6ZECMnwYAQI+QogOQoduT6nOcCSHa7nbNF+1ka8yWR4cGdQZ4UGxboIYy5J/7zS7p6PQdhjlyPinqb2+czMzN56KGHqKioYM+ePSxbtozOzk5OnDjhPMZRbKi3t5eoqChaWlp45513WLhwIUuXLh3bDyTEGJBgQIhRcBQsSox0vbiYkyJ49uF8t3fVH374IRaLhbUrbqEg0jLKEYzv7EJje9+4nTsQis628nl1l1/HNrb3enwuOzubBx54gNLSUo4cOcKNN97IkSNHnLMDNTU1zvoDS5YsYffu3eTm5nLvvfdOuiUXMTnof/7zn/880IMQYiKbbjIQ1lxMnL2WR779FVYvS2HTV9OYbhq6XezcuXPs37+fjIwMjh49iqLZqe4fTUk/R82C8bnAHC1rY445yu1nmWg0TePxl8/Q06/6dXxPxfu0NV5kYGCA6OhoQkNdc0QSExNJTEzkwIEDmEwm6uvrCQsLpzfExP8cOonV1osxRKW+3kJCQgJr1qwZkmQoRLCQ/zKFGAOtrS3MTIliSa7n8rRWq5U333yTkJAQKisrMZvNXLhQSTg2eolg5Bf0cbzTVAbXz/+4ee6Ev6Mtt9hosw34PhDQ08+0KJWqqipOnz6NoiikpaWRk5NDTk4OKSkpKIrC7NmzGRgYYO/evagxWTzzfi+d6hfATGAmkWoXN0dU8/01DwwJJoQIJhIMCDEGmpubMZvNHp9va2vj5Zdfpre319nbvrKyEkWBfN1pTqmLGfkd/tUVDcf2gn31+vlEb1Dk71ZQgCTqaGlpdv5Z0zTq6uqora3l448/Jjw8nLy8PHJzc8nLyyPvlhW89OehxYe6NCOftBdQWj/Agplj8jGEGBcSDAgxSn19fXR2dmIymZyPOYrZNHX0UldVxpfHPkRV7cybN4+Kigo6Ozudx8brWphHEWfVArrx1uLYm/G9a58MDYr83QoKGjdHV9Pd7fqoql5ZXujt7aWkpISSkhI0DY6rtwGRuEklde5OmAyzK2LykmBAiFHQNI0TZfU0q0l0ajFomkbx+Y5ritnoMXIrt01v4dSpU27PE69rZrFyhE6i6VUNlGsF9GAkWMoWT4YGRY6toN6qRgKsXJjED+/7Iaqq0tnZSXt7O+3t7bS1tdHQ0IDFYqG9vd2ZLNhJDF1alMfzTabZFTF5KZq7zbRCCJ/cVbCbFhtGQ3vf5RoCV1/IB/83m6crIl7XjKaBVY2hkRQGtBBilRaSlXocDfBaVdPlpYPABgMKYE6O4JXH50yKu9ri8x388I+lHp+/NTeWX6zP8/h8b28vDQ0N1NfXU1lZycWLF6lsN3Ba9V1e+pfrc73mlAgRSDIzIMQIOLoVXhtKX2rvw/3a/+C6/jm1gGzOcEadRz/hzmctmplSzU6WdpYZ+kridS3cSBGn1QVoBLAWgTK5GhSdre30+vz9X0kBBpcEWlpauHTpkvOnrq7OZXnHIczP381kmF0Rk5cEA0IMk7duhYM81iTERjQl6iIPz+s4r+WDXWGG/gImXTNzteOUaIt9nHf8PLlq8jQoOlHezkvv13g5QuMXuz7n64lf0NjY4OxGqNfrUVXVbUVCgCg6MGLFRhTu/o4UZbDuxFRo/ywmLik6JMQwOboVjm59zd2FffCx81oOjlw1k76FeboijHi/ox0Pk6lBkaZp/NvblT6OUmjpCaWmze688Ot0Oq+BAIBer2NJcoPjna59Z4+VKIUIJjIzIMQwDWeLmnveLgoKoKdBSyFSs9GrhWMnhEzKUHV6utQoqskZ5fv7GJ0y8RsUXd2aODE6FFXTsLR6rih4tT4MOIowX72DwJ3bbruNmJgY3n33XebpmjmnFmC7akeIkU7WLYmeNLMrYvKSYECIYfJ/i9rIVWiz6LeHuz6oOv8xrsxJEWxeMXGXB9wldsZE+D8Jau9uRVW8/55NJhOPPPIIfX19PPfcc8DgjpBFl3eE9GkGwpQeorBSeTKU/q/dLEWHRFCTYECIYcpONRIfGUJrl6dqdu4KAA2voFA/nhoEjd/KXmKUnl+szyc71ThhZwQciZ3qNbP1Hd3+BVEGuojCiqIoaJrmXCZwUBSFb3/728yZMwdN03jppZdclhAUBaKxgmJ1Ptbf38+f/vQn7r333tF9OCHGkeQMCDFMmqbR0e2trK2C+90Efr/DMI8fG02ddl49WDdhAwFHYue1gcA1R3l5XKMg5AyKAhEREYDrMkFOTg4/+clPmDNnDgB79+6lo6PDr7EVFRVhtVp9HyhEgEgwIMQwfXy6Bfu4ztYH7mJ86MtWfr33fMDefzQciZ3eXV262dVMXRk5yYO/e5vtSvtig8HApk2bWLt2rXOqv6ysjJKSEmfglJCQ4PVdNU1j3759/n0QIQJAlgmEGKaLLb4uOBPbuyeaeHKVGb0+gPUNRsD/xE73wZZNM9LQcMHlsUWLFnHPPfeg0+k4V9dFc2c/kaF2kIjACwAACiJJREFU9r6x27mUAPicTdHr9Zw7d47a2lrS0tL8HKcQ148EA0IM0w2ToJ2vL6//uZ61t0+si9ZoEzst2g0YBmyYQy4QFxfHmjVrSE5O5kR5O//2dqXLbgQDS8nTfUFCSCuxsbG0tLR4PbejZsHbb7/NY489NmGXYsTkJcGAEMN051wT//rWBfrtk7eS9/lL3b4PCjLZqUYSo0Jo6vSvTbGrwYvzBXJ5+M4sbrttKYqisOtwndtCRT1EckpdRGrfBVJCMijva8NAFyaaCFXs2JUQ9NoA4bqeywmJg8sNDQ0NfPHFF868AyGCheQMCDFMOp2OR+5OD/QwxlXWtIhAD2HYFEXhR/dnjfIsOgbi8lEUhePlbT4qFipYyOIvFh1WTDRyA2XczOfaQs6oN/G5tpAT9mUU2ZfRqpqcswH79+93NjkSIlhIMCDECDy0LJVvL5kc1fnceWhpSqCHMCILs+O4rWB0zYBOVlrRNI1//+/KMRmTjShOqYup6zISFxeHzWbjyJFP+PBUE1s+ruGj000+ixsJMd5kmUCIEVqUE8eeow2+D5xgVi1MmnDJg1f7xzU5rPqX43T1jmwZJzJcT7nFhqWtb4xG5GhSNYsCQznV9nj+6aMwNK7s2nhGf4FH7k7noWWpY/SeQgyPzAwIMULXoxLh9TY/K5of3JcZ6GGMiqIo/L+1ntsQ+3L2z//Fewc+HcMRwWCTqiiO1MRyXstDu+art9+u8eJ7F9l1uG6M31cI/0gwIMQIZacaMScZAlgVYGyF6OHZjSO/iAaT+Vkx/PrhPGYkhvs+2EkjlB6idVYqz54el3HVkHH539z/V/PKh7WyZCACQoIBIUZIUZTLzXwGy9BOdN+7+wZ0usnzlbBgZixbnriRl/9mNr9cn8sPvmkmyuBt+UPhnwtnc9NN84jUOlCw47li4Ui5q055Rb9d48AX3rcpCjEeFM1bb04hhE/uGuNMJHod/PXXbpgS69WapvF20SX+8EEN1p4rd+DmpHCeWJnpbM5UVtvJYy9+GZAxbvzqdB6+c3LvVhHBR4IBIcaApmlU1NtosvYTF6Hjg5JmKuq7yUqJ4GtzTXxQ0sr7p5ro6gmOKeCIUIV5WTF87cYEls8xTaoZAX9c/feVGB3KzBTX5kxHz7bxk+1nAzK2v38wi6/OTQzIe4upS4IBIa4TTdMot3RRUtVJY1svVU02jp69vs1rFAWeXGlm5aJkqYLnxbm6Lh594Yvr/r4hOoX3/mHBlAvORODJ1kIhrhNFUciZHkXO9CjnY68fsfDiexfH6f3g6lA/IzmCzSvMzqlw4ZkjObS6scdD1oCGXlGwa2PbYfLrNyVIICACQoIBIQLooWWpaJrGKx/WupQ31imXm+r6OW8Xqlf45uIk0kwGNGDujChmphg5f6nb41S48MyRHPrUllLA9e/B0fdw8K9rbH+ff7Vk2pieTwh/yTKBEEFAVVUOfNFCdVMPMxINLJ9tAnB57I5Z8Vxo6KHJ2o8pMoSa5h6qm68cL3eUY89dcmhGcgQ3pcHev4xt/4aM5AheeXyOBGwiICQYEEIIL9wlG5ZbbGOeU/B/7kln9bLpY3pOIfwltxJCCOGFoihkp0ayJDeO7NTIy38e+4JTrx+p51xdJ3J/JgJBZgaEEGIEis938NSWUtQx/gZNiQvl776VxYKZsWN7YiG8kGBACCFGaOfhOv7Da5vjkZNlA3E9yW4CIYQYAU3T2P1J/bid/6X3arDaBggJUQgL0ZGVHEFSbLjsChHjQoIBIYQYgX1FDbR2Dozre7x2eGiwYU4y8MTKDKkXIcaUJBAKIcQwaZrGqwcD0264qrGHp7aUcqK8PSDvLyYnCQaEEGKY9hU10NjRH7D3VzX4yatnOVEhAYEYG5JAKIQQw3Ciop2ntpb5XR1yvD25yswq6TUhRkmCASGE8JOmaWx6/rSXngWBIXkEYrRkmUAIIfxUbrFRFWSBAEC1I49Alg3ECEkwIIQQfmruDFyegDfa5Z/n362SCoZiRCQYEEIIPyVEhQZ6CB5p2uBOg4p6W6CHIiYgCQaEEMJPjp4EwazJ2o+maZyr6+Lo2TbKLV0yWyB8kgRCIYQYhuLzHfzwj6WBHoZHT64ys+foJZe2y5JgKHyRYEAIIYap6FwrT287F+hhXEMjlB76McA1/RQVQFHgVxvzpAGScEuWCYQQYpgW5cRz/63JgR7GEP1EcG0gAJJgKHyTYEAIIUZgYXZcoIcwLJJgKLyRYEAIIUYg+HYW+FeBsMkanNsjRWBJMCCEECMwEXYWuJMYHWxBjAgGEgwIIcQIKIrCEysz/LwfDzxFgYzkCGamGAM9FBGEJBgQQogRmp8Vw3fvTgv0MPyiAJtXmKWhkXBLggEhhBiFW3KCP5HQnGTg2Yfzpc6A8Cgk0AMQQoiJzJE7EGydDGFwaeDJVWZWLpQWx8I7mRkQQohRcOYOKIMX32Dy6NfTWbVomgQCwicJBoQQYpTmZ8Xwq415zEi8dndBYOcK/re4SYoMCb9IOWIhhBgjmqZRUW+jydpPY3svrx+upbZ1IKBjevlvZpOdGhnQMYjgJ8GAEEKME1VVeeCXx2jtUfC3KNBY++X6XJbkBn+SowgsSSAUQohxUlHfTWtPYFdjpciQ8IfkDAghxDhp7gx86d+2rsCPQQQ/CQaEEGKcBEP/gmf3XpAkQuGTBANCCDFOslONzEgMD+gYGtr7Kbd0BXQMIvhJMCCEEONEURTu/0pqoIfBqUproIcggpwEA0IIMY6SY8MCPQS2H6yj+HxHoIchgpgEA0IIMY6CIW+gw2bnqS2lnKhoD/RQRJCSYEAIIcaRo3dBoAsCa8Dz71ZJMqFwS4IBIYQYR8HSu0DToKqxh4p6W+AGIYKWBANCCDHOPPcuuP6arFJ3QAwl5YiFEOI6ubp3QUJUKP+8u5yLTb0+2xlNiwujuaOPAXX0Y5BeBcIdmRkQQojrRFEUslMjWZIbR870SP52Vebg8oGX1+gUePqvsnhmQ96o8g4UBTKSI5iZYhzFWcRkJcGAEEIEiHP5IMn98kFGcgTPPpzP/KwYFsyM5dmH8zB7ONYbR8CxeYUZJZCJCyJoyTKBEEIEmGP5oLGjj+4+OxFhepJiwpiZYhxy8XZtk9zHb96uBGUwQdCTjOQINq8wMz8rZnw/iJiwJBgQQogJ7ERFO8+/W0VVY4/zMXOSgftvTSEpNozE6FC3QYUQV5NgQAghJrirZwvk4i9GQoIBIYQQYoqTBEIhhBBiipNgQAghhJjiJBgQQgghpjgJBoQQQogpToIBIYQQYoqTYEAIIYSY4iQYEEIIIaY4CQaEEEKIKU6CASGEEGKKk2BACCGEmOIkGBBCCCGmOAkGhBBCiClOggEhhBBiipNgQAghhJjiJBgQQgghpjgJBoQQQogpToIBIYQQYoqTYEAIIYSY4iQYEEIIIaY4CQaEEEKIKe7/AzMKx78W97YPAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "plt.axis(\"off\")\n", - "nx.draw_networkx(G, pos=spring_pos, node_color=default_node_color, edge_color=default_edge_color, with_labels=False, node_size=35)" + "plt.figure(1,figsize=(12,12)) \n", + "nx.draw_networkx(G, pos=spring_pos, node_color=default_node_color, edge_color=default_edge_color, with_labels=False, node_size=35)\n", + "ax = plt.gca() # to get the current axis\n", + "ax.collections[0].set_edgecolor(\"#fff\")" ] }, { @@ -373,7 +313,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": { "id": "pRnhOeSYsHn4" }, @@ -404,12 +344,15 @@ " pos=spring_pos, \n", " nodelist=max_keys, \n", " node_color=enhanced_edge_color,\n", - " node_size=max_vals)" + " node_size=max_vals)\n", + " \n", + " ax = plt.gca() # to get the current axis\n", + " ax.collections[0].set_edgecolor(\"#fff\")" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -428,18 +371,7 @@ "id": "gPMC9VDyuF5F", "outputId": "c467e5de-3e8d-4f5c-f954-4f6758bf4ac6" }, - "outputs": [ - { - "data": { - "text/plain": [ - "0.0006669573568730229" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# betweenness centrality\n", "bC = nx.betweenness_centrality(G)\n", @@ -448,7 +380,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -468,25 +400,14 @@ "id": "8uwzyBU8DJPQ", "outputId": "412d94cc-8b6a-4e34-f665-78ce11dd3e24" }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdWXBk153n9+/db27IRGLfC6wiq0hWkSIpUZTUWtgSqaXVlBTuJdrTDoWjJyYmYsIT4Qj7ZZ56JsIv9psn7PGDHbbbs/T0aNStUfdImlZrIyk2SYnFWllVKKCwbwnknnn3e/yQKIhUkRRFkQRQ+H8YiKiqxHIyQeD+7v+c8z+aUkohhBBCiGNLP+gBCCGEEOJgSRgQQgghjjkJA0IIIcQxJ2FACCGEOOYkDAghhBDHnIQBIYQQ4piTMCCEEEIccxIGhBBCiGNOwoAQQghxzEkYEEIIIY45CQNCCCHEMSdhQAghhDjmJAwIIYQQx5yEASGEEOKYkzAghBBCHHMSBoQQQohjTsKAEEIIccxJGBBCCCGOOQkDQgghxDEnYUAIIYQ45iQMCCGEEMechAEhhBDimJMwIIQQQhxzEgaEEO9Ix09Y2fHo+AmVRshLc3UqjfBNHxdCHC3mQQ9ACHE4LW17XF5pcXaqQNYx+NZLW7S9mFLO4spKi+16yMSAy3//zCwA33ppi1onpj9n8pXHRxgq2gf8DIQQ75SEASHEHZa2Pf75v5+j2o4oZS3OzeS4uNignNdZNx2uLjcwNGh0Q77z/DWWdnyuV3R0w8A0egXHP/rkODnXoOMnVNsh5bxNN0i4td1ldjgrYUGIQ0TCgBDiDpdXWlQaPkYasNvKcnO9SVYPqbZtTgzrxHFKiI6Nou35bFdbZMwCG82UsaLOZs1nbddjvOzyH3+6yupuxFDRYXG7y2bdZ6Kc5Z9++YQEAiEOCQkDQog7nJ0qUHBgt6UzUjaYKqVU6xFnxkvcO2Jyec5DGRb9fTn63YhyTqONQZwkRClcuVXhm8Q8NGXy3RfXMEyTm26BZquDlTS5XHP55g/qPHL2PqkSCHEIaEopddCDEEIcPn/7/AX+7qU5vv61z1DbWmKt0uQTH3mIubmb/MWzy7j904z0aRT8eVa8Ms0kg2PprNQ0OmEKms5kPqDu66Rpgm5YWIZGggFRhyiKyPQNc2K0T6oEQhww2U0ghHhTUwMOpwp1xkomJAHDBZ3+vizbG8vcX6rzj798mqfOFTBtl7qXYsc1Wt2QIAxJUlBJTMtPGekDS0WUtQr/5POj/JPfOcXjsybKzDHY57BZD7i13T3opyvEsSbTBEKIN6VpGgBBEBBFEYZhkKYptVqNUqkfw9BZX1uj4GoMFUxaoYsbNBl0LXZ9l0iZRJisVnx0FRHriouv3UIBRpJyYnyCpg+jJYfZ4ezBPlkhjjkJA0KIN2UYBtALA3Eck81m2draotWNaOYm+fc/XsKrJ9xfTvnYPSYL6w0urngEsYtDiqOB7ndoMoKFznKQY/1qjGa4TI2WeOSeIvdP5DgzWZApAiEOmIQBIcSbChONZmTTaPcqA9lsloWFBbzEYGu7xUDeo+5rtGKHpBmwu1ulExfxEwMfF4sQjSwavWVJChNFSpykxImi2oo4MSKLB4U4DCQMCCHu0PETnr8ZcqM1gH2tw4BK6QttFlc2yduKwFTsNCNcM+XajkO91cUmh0FCoBWxVECAhUtChi4aKToJEQ6WZWOZJtODGcp5CQJCHAYSBoQQd6i2QxY3Guhxi416xFLXYT7oUqnYPDiYYzDTZDEMWI2GWW9qOJqOo1mUtCqRUjQokeCgiEgw0EkJMUk1h6ztcnIkw1MfGiTnGgf9VIUQSBgQQryJct6mYEdsJDa6Cqg2OuQcjVZoYmX78b0Gq16Odc8gUYquconRSOlDQ2ERYhHh42KgcPFo42KqBE2DeifGj+QMAyEOC9laKIS4Q841ODccMONscjKzTd7yqbZjcnpIMWNQ68R0gxQ77aABedo4dHEIaVMkxibGxCICoEsGlwjLtnAsnVNjWZkiEOIQkcqAEOIOaZpiEFMwfRKvxn19im7Uwe4LCLoKFTZxlUaiZSloHYa1NXbTQVqqgIain13aFIhw0UkwDIv/+tPjjAwPUcxanBrLyRSBEIeIhAEhxB08z8MwDJRSBEGAY9sE3Rq5vj6azSZJ0GFUaxEaDpYKMLUYWw8oqQw76TAeGTJ4JFiYhsHY2DAP3zfFfRO5g35qQog3IWFACHGH22EgTdP9hkNJkqCUotVqEccxBikZYuj1JsLUYjJ46FqKRq/r4Gx/wuDkSe4ZzTMx4B7ocxJCvDUJA0KIO3ieh+M43D66xPd9NE2j2+3i+z5pmr7px4XYhDjktQ75wXH+0Vc/TCHrUM7bMi0gxCEmYUAIcYdut4uu6yil9qsDmqbR6XTeMggA2IRkdZ/84DQf+9BpZoYLEgKEOAIkDAgh7uB5HknS2/oXRRFxHO//+e3YRsrvPDLCIx99goGCVAOEOCokDAgh3iAMQ6IoIkkSNE0jiiLSNH3bigD0Djb6+Mc/zmc/+9kPaKRCiPeKhAEhxBt4nke328W2bZRS+1WBN5NgEigbm5Df/tTHefLJJz/AkQoh3isSBoQQb+B5Hp7nMTo6+pbVAMMw0KwMK50BfDI8eHKcxz/28Q94pEKI94p0IBRCvEGz2SRJEgYHB9+0KpDP59F1naaXEpDlzD3j9A1NU22HBzBaIcR7QcKAEOINKpUKjuNQKpUIE52uyhKrXhFxcnJyf3eBo4Wcu2+S/uFpRkqOtBcW4giTaQIhxL5WN2J+rcHkSImfv3qZjXQCnwwuHp96oMTSepVG2ySjmfz2pz/OR554nFonkj4CQhxxmrrdVUQIcax1/IS/+PECL5y/RlYPsLxVNpIxHAJSux8/COmQRQceGNP5Z//tZ8ln5H5CiLuBTBMIIQDYafjMr1XJ2wk1T6GUYqhgki2P0wwNGpQIcbDcDIXhU9Q6b99zQAhxdEgYEEIA0G1soQU1qu2EjOZzemaQP376DP3pBrbq4tLFNF0GyoPMDGdkjYAQdxGp8Qkh2N7e5vrVixS8ZSb0lJNTw5y59wRXLvwcrb1KwZhkeGCA+06N81tnynIEsRB3GQkDQhxztVqNn/70p6ysrKAij5nhfqbGh7h8+TJbW1tYusYXHh7kwx+XFsNC3K1kAaEQx9jW1hYvv/wyi4uLRFGE67oMDw+zvr5OvV4H4EMf+hBf/vKX0TTtgEcrhHi/SGVAiGMoTVOWlpaYn59neXmZNE0plUqYpsny8jLtdhtN0zh37pwEASGOAQkDQhwzYRgyPz9PtVplYWGBOI7J5XLYts1mpU6lmeBoBg8/eIZnnnlGgoAQx4CEASGOkVarxcLCAlEUcfPmTXzfJ5PJkCQJYaJzrZbHU4OcGCvy9Bc/J0FAiGNCthYKcUxsbW1x48YNdF1nfn6eSrVFoPfR7IQ4jsPC6ja+yjBazjI6c0b6CAhxjEhlQIi73O31AdVqlWKxyJUrV1jb3GU1GqHR1hnMFfE3F7BUzMnJfgYn72W05EofASGOEQkDQtylOn7CVq1DvbKKlgSMjo5y4cIFVldXUVaerucyUjKoNEIczeDjj9zPp558Us4aEOIYkq2FQtyFOn7Ct/5+jRtLFQbyGl95YpKrl15hcXERwzAIE42KfoLVnTZm0ubzDw/w1d/9gqwREOKYksqAEHehjd02519bZKTkEhklnn/5It3dNSzLIkkSBkoF/M3rjBHz6MP3SRAQ4piTMCDEXSaOY7ZXb5I3QyK9TFrboKXWsXSdOI6xbZutrS0i3+OJh8/xpS9JEBDiuJNpAiHuIkopbt68yerqKolmsdsMae2u45iKMAxJ05ROp0MQBDzwwAPSUEgIAUhlQIi7ytraGs1mE9M0qe9U8JtNMrZJHCeEYYjv+4RhyOnTpyUICCH2SRgQ4i6xu7vL1tYWmUyGa9euEYYhruuiaRq1Wo0gCEiShHvvvZevfOUrEgSEEPuk6ZAQd4FOp8PS0hKZTIa5uTkajQaZTIZMJkOlUsH3feI4ZnZ2lq997WsSBIQQbyBhQIgjLooi5ufnAdjc3GR9fR3HcSgWi2xsbOwHgZmZGX7v935PgoAQ4g4yTSDEEZamKfPz83S7XbrdLsvLywCMjo6yvr5Os9lEKcX09DS///u/L0FACPGmJAwIcYQtLy+zs7OD7/u97YJRRKFQoNVqsbOzQxzHTE9P8wd/8AcYhnQUFEK8OQkDQhxRW1tbrKys0Ol0qFarxHGM4zjYts3i4iJRFDE5Ockf/dEfYZryoy6EeGvyG0KII6jZbHL9+nWazSbNZpMwDCkUCiRJwsrKCkEQMD4+zh//8R9LEBBC/EqygFCII8b3fS5evEitVqPZbOL7Pv39/fT397OyskK322VwcJCvf/3rEgSEEO+IhAEhjpAkSTh//jxbW1t0Oh263S79/f1Mzd7Lz64s0mj7FItF/uRP/kSCgBDiHZMwIMQRoZTi1Vdf3Z8GaLVaDAwMcPqBh/jhlSYXKzl2jFn+wdf/BNu2D3q4QogjRMKAEEfE5cuXmZ+fJwgCms0mQ0NDPP7442zVPFYrHSaHCtx79nG6kfxYCyF+PVJHFOIImJub4+rVq3ieh+d5jIyM8Pjjj7O+vs722jrTI2OY+ZOM9buU81IVEEL8euTUQiEOucXFRV566aX9XQNjY2M89NBDbG5uUq/XmZ2dZerEvdS7MeW8Tc6VfgJCiF+PhAEhDrGVlRVeeuml/QZC4+PjnDx5cj8YTE1NcfLkSXRdpgaEEO+ehAEhDqm1tTVefvllNjY29oPAzMwMSZKQJAnDw8Pcc889EgSEEL8x+S0ixCG0vr7OK6+8wurqKlEUMTw8zNTUFK7rYhiGBAEhxHtKfpMIccisra1x8eJFbt26RRRFDA0NcerUKUZGRgjDkFKpJFMDQoj3lOwmEOIQmVtY5ueX5lhduAlJyPj4OA899BDDw8OsrKxQLBa555575PRBIcR7SsKAEIfEjfklvvn8MnPLLRzKPDFr8IlPPEGxWGRhYUGCgBDifSNhQIhDYHl5mUvXl1ipdMkYIUZmmEc++iDFYkaCgBDifSdhQIgDpJRiaWmJGzduUFlfx1F96MURHrl/hoGCLUFACPGBkK2FQhwQpRSLi4tcvHiRSqWCpmlMTN/D7OmHKDiwubZEqVRidnZWgoAQ4n0llQEhDoBSiuvXr3P+/Hm63S6u63LixAkeeugh0jRlYWFBgoAQ4gMjlQEhPmBKKV555RUuXboEQD6fZ2RkhHPnzqGU4tatWxIEhBAfKKkMCPEBanUjvvuD59jZWKTclyWfz9PX18cDDzyAUoqFhQX6+/slCAghPlASBoT4gLS9mP/3u1e4crPL+MAMU30J+azNmTNn0HWdhYUFyuUyJ06ckCAghPhASQszIT4gr82vst2IuG92jE5s46cWp0+fxjRNCQJCiAMlYUCID8D29jZhe4exssNWzaPPSXj4gZPYti1BQAhx4GSaQIj3Wa1WY2VlhXIxx8luhZIKefTsKQaKOW7duiVBQAhx4GQ3gRDvo3a7zY0bN3Ach2q1SqfT4fTp0/T19bG4uChBQAhxKMg0gRDvE9/3uXnzJqZp0mg0aLfbnDx5cj8IDAwMSBAQQhwKEgaEeB9EUcTc3BwAnU6Her3OPffcQ6lU2g8CMzMzEgSEEIeCrBkQ4j2WJAlzc3NEUUQYhlSrVWZnZymXyywvL0sQEEIcOhIGhHgP3W4c5HkecRyzs7PDzMwMg4ODLC8vMzg4yPT0tAQBIcShImFAiPfQ0tISjUaDJEmoVCpMTk4yPDzMysqKBAEhxKElawaEeI+sr6+zs7NDmqZUKhXGxsYYHR1ldXVVgoAQ4lCTyoAQ74FKpcL6+vp+RWB4eJixsTHW1tYkCAghDj0JA0L8hhqNBsvLy/trBAYGBpiYmGBjY4OhoSGmpqYkCAghDjUJA0L8BjqdDgsLC4RhyO7uLqVSicnJSTY3NxkaGmJ6evqghyiEEL+SrBkQ4l0KgoCbN2/i+z61Wo1CocDU1BTb29sSBIQQR4pUBoR4F+I4Zm5ubr+hkOu6TE9Ps7OzI0FACHHkSBgQ4teUpik3b96k2WxSr9exLIuZmRmq1SrDw8NMTU0d9BCFEOLXItMEQvwabjcVqlarNBoNDMPgxIkT1Ot1CQJCiCNLwoAQv4bl5WUqlQqNRgOAmZkZms2mBAEhxJEmYUCId2hjY4P19XVqtRppmjI1NUWn05EgIIQ48iQMCPEO7O7usry8/IYgEAQBIyMjEgSEEEeehAEhfoVms8nCwgI7OzvEccz4+DhRFDEyMsLk5ORBD08IIX5jEgaEeBvdbpe5uTm2t7eJooixsTHSNJUgIIS4q8jWQiHeQhiG3Lhxg83Nzf1KgKZpjI2NMTExcdDDE0KI94xUBoR4E3Ecc+PGDdbX1wnDkMHBQSzLkiAghLgrSRgQ4pfcbiq0srKC53n09/fjuq4EASHEXUvCgBCvo5RicXGRxcVFOp0OpVKJXC7H+Pi4BAEhxF1LwoAQr7O6urrfarivr49CocDExATj4+MHPTQhhHjfSBgQYs/W1hY3btzYP4Hw9nHERzkIVBohL83VqTTCOx7r+AkrOx4dP3nbfxNC3P1kN4EQQK1W4+rVq1QqFXK5HOVy+a4IAv/rXy+yWQ8YLTn8w6em0HUo523aXsR/eH6dejfhnpEcX/noCADfeaXCVj2gP2fx4VNFJgZcOn7MYsVjdjjLUNE+4GclhHg/SBgQx16r1eLSpUtsbGyQzWYZGhpiamrqSAaBSiPk1naX2eEst7a7LG41yeoR61X4P7/zGpHfpVTMc2uzy+JuQtYxWdpqcWbMpFzMcvHmOoV8jivLTa6tVHHwubLSQrP7GCll+Eefn0bXADQmBlxyrnHQT1kI8R7QlFLqoAchxEHxPI/z58+zuLiI67qMjo4yOzvL2NjYQQ/t11ZphPxP/+4SVQ9mhgv8g0+P87996yrbzYjx4RKt3RWMuMNKMEyYaqRoGEQUzITfnm5gEvDc+gBdlSVO4WRfl8WWQys00EkBnbwZ4lgGfYUCH763xKfPDTMxkAGg2g4p520JCEIcQVIZEMdWFEVcvnyZW7duYds2w8PDRzYIALy2tMvydousmbBZt2l6Mb97FhY2Az7x4UG+//Mut6qDpOseFiEhDhYpxWSDoNEgdAroUZt+y6NBjp0uqDjExCDExSbAiyFKYsK4zg8ueOx0UibLNnEc040MRkoOn36wjB8lEgyEOEIkDIhjKUkSrly5wtzcHIZhMDo6ysmTJ49sEADwqsv02THd1OFEyWF2OMvNnYT7hmCkoPHRGZ1H7p/hX/7lRbwopai3mLWW6KNGtxXRafhYdhl0gwm7RYEqW3EGlRukEQboaUQ3tkg0Gy9JMZIE11BcuFnB0OGR+8ZYrnj8+Y8X0U1HgoEQR4iEAXHsKKW4du0ar732GkopxsbGuPfeexkdHT3oob1rjUaDbm2drz1c4tZWi997+kMMFW1upCm6rhNFETEm33t1Bz/WMEn53AMZPvzA0zz78+vcWlpjJR4nih0KLjw8rhHsdBkqR3SSiOUoR9vswyGlz6wRaS5+mPKTi2uMlbM8et8wlUZI5DfY7YY8MDvOcqXL//3dTSw3z9RQni8+OiSBQIhDSsKAOHbm5+e5ePEiSZIwMTHB6dOnj3QQALh8+TK2bfPwuXtJvJco2CnQq4Douk4Yhqw1dS7M75AojYAs/+Vynb+5PE9MlpjTpOhoxPi+wXNLMGSO8Niwzupqm3pgkrcaeGkR3bAZzWts7/roqkE5dw+/dX+ZrY0VVJyyHoxQaQUEnQadIOW+IZPV3d5CxAenChIIhDiEJAyIY2VlZYWf//znhGHI5OQk999//5EPAru7u2xtbXH27FlyuRzQWxgZkuHGtmK83yQMQ0pZC9KYFB1Q6KQEOGikpGgAKExApxbqBFE/zZsN6skoIS7tMGbY9Xhs0iKjNbFSB488GT1gfmGegSyce/g0HT/m1asLZEct1vx+Nuoxa9tNfhAELG11+cy5QZk6EOKQkTAgjo2trS1efPFFOp0Ok5OTnD17lpGRkYMe1m+k4yf86MUrmHaWU6dOEYa95kJrlRbfvFDn+pJOyY35krdCX95l3NykFuVQaDhagq0CQmwMUiAh2fuVkGISqZh24hDiEGESYVFPHdYDi1MZjz988hQ31+q8stDk7y4nTE6MsRls08cuJ0b6uOeee+gGKd95/gpXdzexAp0LrQE2dlsYlstIyZGpAyEOCQkD4lio1Wo8//zz1Ot1JiYmePjhh++KIPBXL6zw8s2Q+2en8EJFxrYxDIPFis/CegeCJtUkx2uLVcZzHSa1TQYME10lYOVYCwZok8cixManyhAxNikGOVqYxLTpg73KQTtUXFiJsWaneGZmmh+/8AqrFYdQh0ub21gG3Dee5Z+dnSGKIq5fvYxqrjFWzGH3DbO1scbu7i6f/ug5tuoB1XZIzs0c7AsphJAwIO5+nU6HZ599lp2dHcbHx3n00UePfBAAWNv1eW25gaPFdBOHajtkajCDaZoU3QhXC2iRYbzP5tH7JzGSNpubm5hagFIK5RikoUFRNalSBnRcQhQeKTYmCQ4BA1SoMUiERYSJFkfMV1L+7C/+mp2dHbxokgYmCSkkCYtbHn/+gxucKjZRfp2TMxMYVpUba3OMUEWV72O3FTFScijnpaOhEIeBhAFxV/N9nx//+MdsbGwwOjrKRz7ykbsiCCxte/z5s2vMbQYkUZZMbpMbV7a44rW4desWjcvX0L0xclqB6f4sfTmTrfU2AJqVoRtoGH4HlywtCmhoZOkQai55GrQp4uIR4DDANqnSiTGpM0CMzma9w6V6kyoz+LiAQgNiLBphyt+c32HADvnt+wxeXV1naScg1bOMDz/I17/4ELZlypoBIQ4RCQPirhVFEc899xzLy8sMDg7yxBNP3BVBoNII+Rf/+iILtRgAA435tV3yQZec4dFqtWiFFmFq0qfXqbXzNLwcjUaDWBlsJxPUY52M7jGkbVDSqlTVIL5yMVVEjiYeWTxcslqXPq2JR54tNUKvXalOgskWkwS45GnhoZOjQ4SFT44YRSXU+dZlj4QcKQUydAmbLj+8XOePPjkuQUCIQ0ROLRR3pTRNeeGFF5ibm6O/v59PfvKTd0UQAJjfaLFR66CjAIMEne2wxEsbeX62O0ol7qdUyFHOQ6RlyOgB3cY2zWaTQNl0UxdHC+imLqlmUNBbjGjrWFpMhM0S9+KTxSBlSNvE1QPK2g4OATYhGgkpOgkGKTpdsmTwKdDYCwspCgOFToiFS0CKiUcW5ddoezHV9p2nKAohDo5UBsRdRynFyy+/zOXLlymVSnz605++a4IAgJPUcWkT0k+vPK8RYVBXOXa7Dq7xIJbjM2ksUEpDPnbqLJ1mh06ng6tb5LSAZpLFTVrY9C7KqWaQKAODmDZDWAR4ZMmkbfpooqmEHB1CHBIyKBQJvfd38OijTpltOhRIsEjQMfDQ0fFwydEir3cZGZgmnzFxLakKCHGYSBgQd50LFy7wyiuvkM/nefLJJ498H4FftnjjIqf162ym46wyjUInQSPBRiMhSTV2uiZ9hkbe8ClkbUhyKKUwtJhhYxvbdNCSBiE2KLAJcfFo0gekhNjEmNziJE4aYRKiE5MCGgqTEAWYhOTo0iKHQT8GETY+XfIkOCggQ4eSXmcqU2N9Cy4HHqWcJdsKhThEJAyIu8q1a9d44YUXcF2Xz33uc0f6rIE3EwQBN2/exNUDBthhNx3abyKkoRHiopPSbwdYiQ/0uhA2m02UUqSaxXKnSDtxCRnBSUMydBjT1xjT1yikTQLl0qEPUMSYpFikZDEJiXG5vc3QpYWBosIwKTptSoBGggGovQqBhouHl9psdV26SuG2K2zVZ2VboRCHiIQBcddYXFzkRz/6EZZl8fTTTzM+Pn7QQ3rPXb9+nW63C0BG8xikQoccOToMaFt4Wp5S3mK2mKG+G6E0jTRNaTabaJpGpGXopg4GCT4ZMqqLr2UIsclqXWw9IJt0UUCHwt7cvwL0vSDwi2VGARmSvUZFCo0IHZ1or5uhtve+ig5ZdFIyToaMU2BwuE+2FQpxyEgYEHeFzc1Nvve976FpGl/4wheYmJg46CG955RSvPjii/t/N7WYCWMFT2UADVcLGXAbGBikkSLdO6QoTVPa7TZKKSzl4eLRJYuLR4yFpcJeEyKtN12Q0bp0VQ6bgBgLhUbyJmuNFToRwF4lQO1NVRjEr3v/XjDQdItHzs6wuVvnU+eG+ej9MkUgxGEiuwnEkbe7u8u3v/1t0jTl6aefZnJy8qCH9K50/ISVHY+On7zp45ubm2xubt7x71U1yKqaZi2dQrN6ZfdOp7P/eBzH+L6Ppmmo2GdMX2PKWGJWu4GthUTYrKtp/NTB1GLK2g4uXYbZxiYAQCPm9vTAG5mA2nss5XYo6Om1ONbQCPQ8z19v0edqfOT0sAQBIQ4ZqQyII63VavFXf/VXhGHI5z//eWZnZw96SO9Kx0/4zisVVrbbTA7l+NJjd14w/+5Hz9FOXGxCTK3XY8BTWXbVEAl6rzeACskREkXRfmWg2+2SJAlpmpKmKbd/7JVmEiuLCJumKhIqi0m1CJrW2zmgOfSpGg3KKMAnQ+/+oXe336sA2PQu+joaKdrefwYRoKGTADoF00fD5N7xAoWs9QG9qkKId0rCgDiyPM/jG9/4Bt1ul6eeeopTp04d9JDetWo75ML1ZcLWDs3WKA9PO9w3Vd5/fLXS4vvXYoJ0FlsLGdeWcfWAROkEOKi9S3OUKhRq/8JvmibNZnP/77Ey2Ugn8MlgqwCdBI/eNEODIr56gCxdHM1jiE1qDGDunW5oEfXaEaOjk2IToUiI9noKOIRoRFgoIiwK1BnUKtSdU+iZMkU34ZFTgwf3Igsh3pKEAXEkRVHEN77xDVqtFk8++SRnzpw56CH9Rsp5m/4MrHs5BvM6lbUFslqX8fFxvFDxP//Zs+ykQ72mPipFKbjXWSVjGslkYhQAACAASURBVDh+SILWW+oXh2iWhqZpJEmCUmo/DAB7xxFlcAgINIchNomVQZMiFjEBLjnVJtAydAmJ9qoDVQYpUcPDRaFToEmITYkKXQpYe70HmwyRAkUtZNJY5ux903zqqY/x6o0NCnqH2YmBg3yZhRBvQcKAOHIanYB/8xf/iW69wZOf+gTnzp076CH9xnKuwSPjCVP5lC9+9iztxg7r6+vU63WsvjH8RMMipE2ePG0MO8uZhz5Ct77F5o1tuuTI0sGM6qSG2VsfoHoVAs/z9r/O7X4CtysDhp4yplYAjTYFUjSalDBVRICJwsQmIEuHFHpfm4RYs8gojwqTdMjTW06Yomk6BSthxrpGXtcwTZORkstkrku5PICmvdm6AyHEQZMwII6Uthfzv/zZD9mq2ZyeeYwzD37ooIf0nrGNlKG8Rj5jks+MUiqVWFxc5ObV81hRjZzhoitw8Si5iu3VeYp5lxl7nW5sYBNiEBPHYBi99QZxHBPH8f7XMLWYMX0NT2WoMsiGmiTYm/dXKIbYokueABt9r93wAFu4BNQok2omFhGj2hoeLttqFG2vH0GEgaMifC1HaBRJ4hZJktDpdIjjmHK5/BbPXAhx0CQMiCNDKcU3v/1f2KiGzE4MkOkfPzKNazp+QrUdvu1JfUmSoOu/2ODjui6nT5/mtddeY1RbZdDNYGgpmWwfjh7SbtQxKPY6DLZab/g8mtabKojjGKXUG76OqcUYJITKQVcxPkVKVIlx8XGwCAiwCHFJ0dhmvDetgEu/2iHUHAwtoY8mGeXRprDXAxGUbmBoCRlTkYa9dQq1Wg3Hccjlcu/LayuE+M1JGBBHglKK73//+2yvLXBi9AH6h6ePTOOa2zsFtuoBIyXnLdvwpmmKZb1xpX0QBGxubpKxdQwjJooiZkZy1OsRoWHQ6XQwzTf+GCulCGLw0zfuPIiVud+TQFMxmkrxyGISk2CSp46PS4qOSUpCQpbe1kMbjxTwtCx5emcamHrMQ5l5ytMPMTTYz8XFJiu7IUNOyHAuZqfdCwP1ep3h4eH36+UVQrwHJAyIQ08pxbPPPsvVq1c5eWKap7/46V95l31YdPyEKystbm62MJKApTBmbbeAa+sMFHrjv101qHdTDEun4yf7z+vq1avUWh6aXSKb0bAijzAMSZIEy83T9BVG4BErkxAbV49IU0WtW8DtNIkJibMWnlugqoao01vAZxIRYhLi7i3+gxb9BGQxCcjgUaRLgo6PS4sSGTxGWaVodhgoFThz5gwf/ehHKRaLJEnCyYtXOX95jm59C13pvVASBCRJIlMEQhxyEgbEoXb7BMJXX32V0dFRnnnmGQzDOPRTA0mSMLewzP/+zZchM0LFzxBGEa6+w7Ur5ymVh3n83CkenjT40dUGK9WY1Q2DkX6dIFfhi48OkbE1fvbqZRa7A8RBgQEMTuZrlMtl2n7MfCNDqOUgahGmEQEZJnev8/j8XzK9cRld9XYQpGhcG32Cn5z8Q/zyBBqKcO9QowiTGGNvl4C2N/+fQ0MjT5sAhxQTjZQUi3IpzyP33sMjjzzCxMQE3SBlZcejnLf50NkzEPv87Gdb+02Put0u2WwW13UP8tshhPgVJAyIQ0spxcWLF3nxxRcpl8t87Wtf218Yd5gsbXtcXm7x4FQeLWrx2vwKr127zo0Nn92kn7Rdo7u3xM7Dokkf3Y1tvrFR5Qdqiw2mUbpNoCzGSglb9YBqO0R1K6xu1emmI+QMj1ZQpK7FjEURPlmqoUM5E1OJHFLl8uDyD/nShf+DVNP2gwCAjuL01kvcv/kC3zr73/Hi7Few8PHIASa/WFFwu3ugQqHTJUeMudd90MByXD782GN89on7sSyLrZ06//ln23jK3Z/+OHfuHLu7u1y4cAGlFL7vS1VAiCNAwoA4lJRSXL16leeee458Ps9Xv/pVbPvwrQ9Y3OryP/xfr9LwEiwiSuwSY9BilBRFhLvX87vXDMjFo02OrhrFJELfO+gn69okQUorYH8txN8+9wp63MHFQ3eHyZshE0N9VBtdLq/GtJMCrUjRT5XJ7St86cK/QgOMX1owCGCoXovjr17+l3iZPl4bfYL0jh//Xlthk4AYkxAHAB2djKU4WY4Jm5v89V/PU61W2ahHrMaTPHruXhbWuiwMK6aHsjz22GMsLi7S9mLqgYWd7XsfvwNCiPeChAFxKM3NzfGTn/wEx3F45plnyOfzBzqeX94N0PET1nZ9/vV3L1L1evfTHi4RI2ikxNhAjMIg2WvJ65DuldvN3q58zSVwRrGSkIybYdje4hOzRb746BCR32JtbQ1dRUzZmwyUXYLWLjl3jBvrAa0kS5EqgeYyqFX41PV/t1/mfzspGr997V/z6siToN0+U6D3SG9HQIS1V8XI0GW0zyC0Mjw8bjCW9WlUt2k0GiilGCkXMfQ+VjYbFOyIxRsrrN1MieMYzcr0Oh2GGf7t96/zzEcnGB7ow3Gc9/cbJYR4VyQMiENnfn6eH/3oRxiGwZe+9CUGBg62a93i6ib/5m+vUwssxsfG+K17Hf7qR5e4XjHoxBqKDIreLoAYHbi9I+B2JcMEEmw88rRoUSRGJ1Y6HT9lttCir1BgOG4yWSyScw1+9PevUm/7dNIMpYxJ1NwgjWMsN09DyxJqCl9lGFA7jLQWGKivvaPnoqMYaS0xUb/Ocv/tZk0Ki5Ap5inSINZtHOUR5U9g5YfoNwJUY5XlrTaGYVAul5mcnCSfz+NHik5k0J/PoadZms1mb2ujXcAnwiHghfPXKcQbnJ4uk8lkyOVy5PN58vk82WxWGhEJcQhIGBCHyuLiIj/5yU9I05SnnnqK8fHxAxuLUor5+Xn+5gcvcXnFpkGJC2tr/OQVDzP1aVMk3L/w97bv6aSke3/qld11IMUgIU+XEW2DhirT2WvhW8yZxLiMFVJynQhd19nYrvL8hUUWusMEyqYbw5SxxUC5j1z/KCt//xolFeJpWcraLv21NV5/j/+rpGjM1K+y2n+GFAOTCA2NjBZSNFpomra3SHGN1K+Tt1OcjMXU7CwzMzP09/djmiaGYaBpGrVajXq9jhcE5PN5ZmZmaP7s1f1Ohy4eyzeXGcqfZWBggDRN2dnZIU1TwkQnMTKMlnPoVpZG6HDPWJ6h4uGbEhLibiZhQBway8vLPPvss/i+zyc/+UlOnjx5YGPxPI9Lly6xvLxM5LcJGcUnCyS0U5cM8d6GPANQ9OoD3t7KAJ0QixR7/7F+dpjUl3D1gEcyi9z0xkk1iwcnhsiHGzwwnGF5IWJxZYO/fHGb1XqRbupQpko3yREqG9/3+eH3vo3LBJ6WwyHAIqC3VrC38O+dUJqGnvbaB/emMUx0YnT1i6OTb9/hQ4uuZaGrPGtra2xsbKDrvW2DcRzvN0qybXv/7ebNmywsLDCm985CsAlJwpjz589TLpfJZrNks1mU4fDqhkkntgm7c2x1bOzCEKcmyvzTL5+QQCDEB0jCgDgUlpeXeeGFF2i32zz22GOcPXv2QMahlOLq/Bo/eOEyQW2Zth9zuTVKk8LeSnuLBPb68d9esa/tPRISY6FQOMSEe8f8miRMaCu4eu/OeWJmnMpcSD3UcEyNTOSxs7mK53lsNmI26iVcFeLh0iXDmJ0wULCpbK5iaoohbZO1dJoIky3GKTtDv3KtwOsZKqXhlmFvl4BCQyemSYmiamAS44WKEBdHCyGKCIIAwzBI03QvJIBpmmSzWRzH2a8SALTb7d6JiVqKyS9aIUdRRK1WI45jqtUqW82EpWgKx4JG5OKTIZd6bNYDbm13JQwI8QGSMCAO3PLyMj/72c+oVqucOXOGxx9//H39eh0/YbcVUnDB0hLCMKTW8ljZrPPqpSv8ZDlPqGwMpujgkOwd8fv6O+/eGoHexRR6y++65EkxMEiwCdH3lvS5BGQ0D8MwGBkZoeUr/MQmq5qs7xRQWkreVWQyGaqNHVwcPC1HQTUY1Lbo8ztsb0RAr4tgS/URkMGhS1UN8fLQ5/mY9RdkovY7ev6BkeHayMeIyXF7ciFFp8oAg2qbDN7+MccuHkPpJu1Wit2q7ncz1HUdy7KwbRvXdclkMti2TSaTodvtouv6/kmJr9cNUlpRiJF6xKmNR5ZGZOMQktEirNwQoyWH2eHsu/32CiHeBQkD4kAtLy9z6dIltre3OXHiBJ/5zGfe16/X8RP++mebfO+HLzJctPjItI5pGlzYtHhtqUaLEj4uBhEdioD+uo/+5Vn5N/Y8iLF7ZXs0UjRcfPqok6KjGTaOY+B5Hn7UxdXyNJXDVCZlolDA0lPa7TYq9vfv/GNMGqofI0nJaL0gspZMscMQIQ46BXQUtpHw0xNf5cm5f4vOnRfg10vR+fuZZ/DNN2736zUhgiC18TSXlipi4bPLAC1VwCAhq3UZ09cwtZg0TQmCgCAIaL3uXIT910KZhGSxCYmVQYc8jvKoqDFaSR82PjopES4mITnH5B//Vx/GMk1mh7NSFRDiAyZhQByY5eVlrl27xurqKiMjIzz11FPv+8ryajtkYbWKhc9mLWXeDMgVh7i50aZLFo8MCm2vGqC/yWd4/VI97ZceUcRoDLLDCFu0tQIhDlm6WPgoZdJsNrFtm1OFmK1al2knIQljqo3G/kU1wiHUHBzls8sgXZUjr1qUtCodcrB3yY+w0UgJGORv7/1vmN29wInqlbcMBCk6q6XTfPf0P3zT55Wis80onsoR4hJjkqKhAwXqoHqh4fWl/zfjpw7rapoYC0sF1CnhkUUjJsElQQc0LAIMEgLylApF5tZ9fv8TY4e+xbQQdyPjT//0T//0oAdxN+n4vQ5ypq5jm3deTF7/eBSrt33fu9nKygrz8/PcunWLYrHI7/7u734gTYVMXafaBSNbJgka7DQT5jYD2kmGLjnSvTn0X+wE+GW/HFZSINl/TGGSocOovoGjBeS1Nv16FUtP9/fYa5qGaWjEfpPA7+L7Ps1mkziO8VOHjXSSNgW65ACDPE0izSGvtUmUSYc8CQ6QkOCQYpPqFucnPkfRrzDWmu9VJzQNpel749I4P/FZ/r8P/wsi83Yr5xiDGIXCIAV0Yiz0vU6EERYmyV53BIMCTQb0XXTtrasPsTJZSU9QZRAN6JCjSYkEiwSXFGPvddVJsIixSTHodNtEqcn9kzkG+qQqIMQHTVO/fL6peNdun063XvUYL7t88dHhN9zl3H58ebtJKWsQxwndSGdyKP+WJ9ndjVZWVlhaWuL69eu4rstXvvKVD7Sp0O0GQo22z//zny9S21yiroq06CPC5hfrAzTePBC8XrL3vreLbCklahRokGoGLh5T9iYkAZZlvWEe/fZCPF3X6cYWTdVHTQ1SYwCLiHjvrtwkpaxVmNBXAGineTbVKBXGSXjjKYcABX+XD698h5H2EqCo5KZ5eeqLNDNDr3teMTq3F/gpdMDFJ8EkRaGj7UUFEx3FANtM67dw9eBtX42uyrKSzBCSoYuzd7bB2zUa+sV4To0V+R+/cg/3TchRx0J80I7lNME7OVv+3ai2Q9Z2u3RqG1ys2Iw6DU6OF8nn8+RyOartkNWdDptLc1zxTeIoos/0uXWrRCEu8/i5WUql0h2l8vdrvAdhZWWF1dVV5ufnsSyLL3zhCx94d8Gc2zvoqJy3eei+SZ7r+ERNRYLBL68D+NW0vbfenbWGwsLHxyWnOvhahlZkY2gGdhhiar/Yvnf7pME0gpvqAdoUSDBQpPhkMIkZZIMUG1t18VSWjNalZNQx0pRGWsKjeMeIWu4AP7z3j99mvCkmAYrewj2HLhYxmqbh4FGkhqGlaCqmSw6LiILe3l88+Pqx3z4i2U+d/XUBWa0LCrS97Zdvv4qhF7wc0+bMeI6JATnQSIiDcNeHgTdrI/sfn1tkabPJcNHmM/fnKGRtTNN8QyOVt3rrhimNbkLOtfGjdP8YWoBy3ma0ZHNhS2e8bNHn6mxtbbG+vt77eCuDlYbEepYTwya16i7tyMHp7nD+pcvcvPQCAwMDzM7OMj09zdDQEEGs8R9+usFryw3uny7y+x8fAziS4WBlZYX19XUWFhZIkoQvfOELB9ZdsO3FnL8yR2PpAtWmQ4dh0l9ZBXgrvbtbba+jv7+3+yAkQ0ntUmWQUDm9lfnaJqlmoKuEtXSaBiUStF9arNjrXRBjUWGUDB5dTqCn0EeNUW2VBB3zV1xm31y8N+JeKT7EokjIpL5Iqhn7F/fb8nTv/AzK3N9tYKuAHE1Wmdnb4eAxyCY6Cdm9pkNtHO6ssNxuzZQw2p8l5zp87uHBI/X/sxB3k7s6DHT8hG+/tMFmLWB8wOV3PjxKtR1yY7lCt75FZSdDWg+wDUXOSrANhaZp6Lq+HwoMw0DXdXRdJ0p1Xt2wmF9v4KcWrhEzM5Th6YfLzE6Pk8/n+eKjw0zlPdLYp39kiv6cha5C2u027Xabh0fauN0W02P9NPpN8v2j5G1Fo1pgbW2Nzc1N1tfXeemllyiVSkTZCf7ykkmYKC4tVNi5dR4tP04jtDk53sfvfWLySPwCXVlZYXNzk+XlZXzf5zOf+cyBdRfs+An//F99m416SKIMagzuzWX/+nQSDKK9lQYKm5AIkxJVYizyWpM6A1gqpEWRQDkkGHjY1BnirSsRvTv4BIsOBtbe3H7AKA1VIsXc637YO/fgnfUfvH0B7o23tyPBRNFrbWyQghb+ys8SYuOTwVIRuwxSZYAWfWgkeJRoUEZh8Iv1FCm3t2Xqe22ZLCJKrsanHpml6SXMDGU4NSbTA0IclLs6DFTbIddubaGCOpVKjmKySX/BYrTosBoP0qdHNPUStVZIwY755H1Zcq6BYRj4kaLpQ8FR2EbvF9lGPaYVJtgmVDomWtzm8oqivX2DEaeL67rkcjkMO8vlikv8cpX7pof4wydPMjw8zPDwMNPT01h6Srlc5lbk0Z9V6LpOZvT/Z+/NgiTJrjO97/q+xJYRGblWZVZWVW+F7sbSQIMQRYADkiJBjURpTCZxNDLJTE96kWQmPUlPspFMo4d5lPQiGzOZZmxMEoWZoYYamsghQYpgE41GA+hGV9e+5L7Fvvl+rx7cIyqzKqtR3QDZBTB/s7TIqvSIcPfw8HPuOf/5/yVWV1cJgoCjoyOOjo7odrts7abE2QYCRaYENzc7tFRuO3vjocmcaPGV19ZmErFTPE+the3tbQ4PD9nf36ff7/Pmm29+quqCnVGMtGvYbNNmvqgIfBxBX8gDXB5cdRRzHKMXq3kDE4VGWQwpiwETVeKYRUIcUsAkIqHEj+cjTP0ORSEYnM8rDCnPWA0WcZEU/Livch6YTbLZK5kkmIR0maen6hjqETfhZHXgcVjEOATFfggsAhRzxXkUBQNhuv8njzHFJGSD27z2ygv8O7/5VXzHeG6u03Oc468zfu6mCU6y9V1L53AQ0xlnlK2UF5dMlptzXGxYXKhbGCrhRzsByahFe5ggRweoZMxRZ8BbdyN+tB2y3w0p6xNUlmDoglFqEeETJYpeWiZUNrFWoeooNBkTBWNaI8lm3yQLuuwej9i+/S5Hew8Jglx4pt0bIa0qUZIxt7jGpUtroBkMIg3bNqmUPJrNJuVymXDU53Bs5Ta3jGlwTJ85AGQmCfZ+yM79G+zu7qKUwrIsgkTxv/7+B/xf//I9dltjrl1qYpufzo12e3ubo6MjOp0Oe3t7vPrqq7zxxhufyr5MYWgaIR5ubYlmxeC4lxDLaSLwbEmBQKIVLHyLiBSLVbFNXW8zL46oaANqoocmFGPpc8hyIU9sFIS6jzdCmY/hJYXjoUEeZPUiHflxREeFTohVTAlYxFTok9cInEI1MRdLQkBZDDBF8tRX04TEF2M8MQYgwSHBKngIWlEVOBsSg9XlJf6Lf/+XmCuZWIZG1TP/2k3TnOMczxt+5ioDx/2YB0eTM4VJpmz9e7sdLjQrvLpe4fWNOm++2MQVE7qtffYO2ziVBV66usrD0RHSbBHhs2T3qXoTdF3Hr10gOp5g0qMzcTnuh8gkX8GvWgZH0iYYT4go4TOhHbq8F1aoiYxlrUuqQjJZooNLOenTS7Z57/gh7733Hkqz2M9WSMw9QumgskPWVuY53r1PJHWWaha//fUXWFlp4pXrfHDvgDfqB0TCh/E+Kg0ZpceMVAmbiCyJ2GlrHHTu88NbO9Q8A8OtcW/SxJBjfnhjk/8j2uYbv/wllpaWCJO/Or7BNBEYjUZsbW1x5coVfuEXfuHMbadDLT+tR2CmnX/W4wuVlLqIUXOSh1stkrSMREcjRRbeApzB1J8SBRWgk55SGtSFzMlzRZyf9taPafKTfdUy6hwRUGaMM9uH3HJIoCELm+SzPk9ZDPd1GVDDsj1ev1Di8ysO791r8WBkMokTQlGj4nj8+hdf57fe/LeeuDamXgTHx8fcv3+fZrPJgwcP+NGHd+jHYyaWxdEoI0l6HLM44yQ8Omf5STF1QW2uSWcU4zsu5zjHOZ4P/MwkA+Mw44PNPv/oT3bojWMWqwZ/+02fipPf9PujkNsHMT94GDLu7/Od6/P8jmbi2iZfvOzz7/7iChcuXeUf//F93v3D9xBZgKZbiGxMqDwq80PIUlqtCXRH+MYSA6tCw87YWG1S9kyiKEKOQbc05swjgsQlKMamTFICfAI8OqrBgBoKDZ8JQoj8ZqoM+lmJgXTQ0gnHVAGL460YkwXmOeSgB7/zz34fV095GF9kRJWaGXDVOyBTAalKaXBIiEOMxQP1IkYSF+p3CXYYsyB2CUVGSAmdiJ3Nfb75zS0WV9fZiZfoRxqrdZdffMHGMfOb9E8zCCul6HQ69Pt9sixjZ2eHarVKrVbjBz/4wZnPeRqyLENKeSqQJ0ly6ifLstnvaZoSxzFhGM7+9lHvM1EegVxjiRFjPBocMaJKiwViVBF2NSwiEqyiHiAxSDCQlBiCEHiMccVpst20t15iyIA5fnxb4EloxFToMi86tFUeoCeUSckL8raQWLpECUmSRCSF04BCx2aCRcKauM9KTTDOBjQa87zx8jqaErx6waMS1bi/P2R+zuCNDZevvrF4ZpI45dK0Wi2Wl5cRQtBqtXBM+NxrV+kMJrx3/R5Ki7FlQoulQqcgBTJqvs04c2lWLV5c8amXzrUEznGO5wk/E8nAOMz4J9/Z43ff2qIXCGxC+j3FN9s/YMkZEmcaW1GTXmQSKQuBT5CZJJnOKJH8yftHjLbewfErfOewQZbqCHwqSQ8lNHytR9DZ43Ck4TgOuh7QtCIajo9nSA52BXJhgVKphC0mWDLDdHyayREjPMZU6NCgzAgljEIsJi8lB7gkODiGTkuuMkztmfSrKIJNriZn02WehjpmkrkcZGUOWUUiGCVl3H4LT7eQ0mJHXWJAFZ2MGJsyPUJ8UmKGqoJUsCh2iQqS2U5YJ4oOuNveplP0e4+P57lUW+LKSuXUtATwsR8hD+xSSpRSHB0dEYYhjuNw584dyuUy165dIwxD4jgmSZLZ4zSAT3+mgX0a1KeJQJqms9f/aWLa/w6FS4UB81qbmuqBhD41KFbeLhNMcvOgATVAw2PCRfEATeMJFv7J1x5SxmFISJmPlxBILEJqZsxySeeFC5cYSpf93R2k0ImMeVxL50Ip4JVVmzs3r9M52CJULi21iBQ6LmPK2ghSk5qZUTPGOKZgNIqp+BbXygFLtuTCguTqRv0jq0X7+/tkWYbv+7zzzjt0u10WFxcBuHvzA2yVggZXzC027CEZBo7tYNSvoPsNfNviF1+Z4+qyf84POMc5njM898nA5lHAv/juFu/eOkQmSdHxtKjpI2pWRKVSwZm7SDBq0Ah6HA9SGm7KjZ5JNwCl8nDb609o90tMlI5AwyZiXhyjixSUIEoFQaZhBSNMLUPX+xiGQea6dJXB3d0eZRtsA5xJTDUSjJkvbG1lTsxSMUImeIwJ8VAofMYYKiDMXIapiU1AhqDEAJsJXeZJsfAYohMzxmGP10gKpTaDhAyDA5bRMhhSJsFCARkGAkGPOi7BbO47xiQSLpnKRW/GqsREXUahkRQUMmPQ50/e2qF7dYFf+OLnMJ0SnVGCbylMTZIUTnXTwD0N3tMV9/TfJ4N4lmWEYUgURSilCIIgH8ecTPjWt741C+ZSytnvn7bmlSFSLpj7JMLF1RM0JZAyZSO7z0TmI4Im0WzsDmAkyyQYlMXgI0V4DJGyrO1SUy4dNU9fTRhRJS64A09HhobCZQQIxomOPv8Kv/1rr3L95h12sh7VapUXP7uBrhmMO1s4BsiuQ9KVOEmPkhqd0gHIstxYaCp0lCQJjuMwGo1YrvnYBh+p9zAltjabTe7du8fW1hau6zI/P893v/td0jRPhHRdx3VNDCPEdV0+//kXufryq4wizkmC5zjHc4znOhnYPAr4b/732+x3xgil06w6zBkGdTvlc02BkcwRRRH91g7BJCSzqryyUeNzFw3Ee11uHOXGrhddiRdZHI11fEaEOFTo4ogJx2qJsSoR5l5xlMSYZXZRKg9yoyA95eC2ou/iOwYlt4KmbLwsYSB9IMEvZrKX9X3qqg1KYRITKQtbl5SMmGHqkmAypoQjQtbVnaLHmmu+tVkqHPFypFiApE2dvFd9Ws1NkZBhoTFAQxBjoGGjJFgiIsQlwCPCnq1uAQbU+HBcZf+9Dt95/3cZqDmk4VOxUza8NqYmT632pZTEUiPMTExCTJHN/jYtxZ/lUgfMAsWnBSHEKQ2JkxWG6RipYYBtl/A8j2q1imma9Pt9jo+P6fWiUyI7Nb37zO9tiJSyGOKqgCYWUsKOWueIhYJQeHI0MKPpJJQdQZwIDDQ645Q5J2Wc2Xz7L95GizpcXMmrVL7qs7a6Rsdd5MGDBywuLrK1tUW/38cQ6SkPgZOfFeTJQKlUIooiarVaPtHiPr2Hv729jWVZjEYjPvzwQ5RSXLp0iXfffZcoepQQWZaFrut4nscbb7zBnsQh4gAAIABJREFU66+/jmEYzJU/zid2jnOc468az2UycHNnxDv3+kRxRnsQY2spYaYzr3V4dUnwmcuLLDReJEkSWq0WnU4Hs91nEHZRLcX1kc+blxb5yktV0izBkoo0eRF1L2braEJFDlnVtkB3CBOfQHmMKaHQ0JQ6ZcYSYxHgo6mUQPhEykIPJ6QqRWRlInwsQsr0AThQq5S1lA2/zXg0YjddIVA+RpywwC6WcGmpBVwREiiHBJMYnwyNCOtUIpBDkA+vPe1GrQMZER4UvvQBHvusUlJjbEb0KaMQjCkzR6voe+fM7hZNBqpCjEUj7dDJdNxwXFQYHq0sTwrNOAQz97rnAdNgb5omppmfv5PVh8eTFNd18X2f+fl5ms0mjUaDRqOB53m4rkuSJOzu7rKzs0MURbS6o5/42GfBWYer6g5L8oBQ2fhmipZNkGaF1TmDz7/+GVLNods65LgfcrclcMoXWJqzEUlrVnWJ45i7d+9SqVSYm5tjZ2cHTdMolUr0+/0n3n/aZpmeiyRJZsnB9HlPM4nqdDoMh0Pq9Tpvv/024/GYjY0Nrl+/zmTyiCdhWbl4V7lc5s033+TatWvo+nkl4Bzn+FnAc5cM3NwZ8V//o9sMgxTHhLJnMg495l3Jly7pELS4ef2Au8VNZ3FxkYuXXsBrxIwGHd6+O2bvMEF7uMu6+yNKvsdS3ce0LC6UoSYibDlkPLHpjAVKSmJsTJIZ4WlaDgbQVEakLEKqOCpAJ795CpnbvGTkpXiJQYBOiTHDxGYYKjSrTJj5RNKmTxUFrIotJqLERHkoRKFWlzvG5VWAjzvvngf2tBgzk5TJhWBNAlxMJAk2OgkgaHDMkCo96rm1LhKBIsGlTYOa6iAl7PNIYa6utQEIcbHJqw3P4l7308JJIahp0J+u9B/nFMRxPEsOpsHJsiyq1SrLy8usr69TrVZxXXeWOAAMBgO2trY4ODig1+uRprk8b6lUYnn9BR48UNhEJJqPMn1Inwy4zwpDpI+qCwqELtBFjKs3WJyv8sorr5BlGbdv36b+wU1C2SFs3aYrMpYKPYo0TXnw4AFvvfUWly9fzrUxwpB6vc7e3t6Z7ZfpuZo+Jsmj8UHfP1vwZ0oA9TyPO3fucHh4yNzcHPv7+/R6vdl2pmliWRa1Wo2vfOUrvPTSS2ja+bjgOc7xs4LnLhl460aXwSRFqZRxpNEU27zY0PnClQa/+IUv4Hkeu7u77O/vs7+/z48+vMOHbY9eCNWSzyDWGUqDUeLTiktY/RhtLyVCkmIzr+u8XMk4kKu0lGCCjUaKBlTpcEHfOrXqy3vFES4TsiL4SxkRqdyBzRMBqebj6R30LCSUueyslo4plytYkaQnHRyi3BJW6MypYyZcQqIV3eHclFYjK5TwPq6Nr0b6WOUgxSbFwGFEikGGgU5Ci2ZhISsLexiTFBObCBAkOByxSqIMbOK8ciCreIwRKELh4jI+lTD9pDAMI0+wiqA/DfTAKXno6cp2yk1QKleMNE2TcrlMqVSiUqlgmuas7L2wsMDy8jLl8uk69ZTouLe3Nxt/VErhOM4siZBS4nkeS6tVOmrC3e0WlhyjpePZ35/WGnkaHtf0n+7LSfLk9Lg1TeOLn3+NLMu4dUvO9nFnZwff96nVahwfH3N4eIhpmhweHgL5Cv1k6f4kpokA5NWBqbrm0/gC+/v7MzLn7du3sSwLKeXsvaafn23b1Ot1vvrVr3L58uW/dCvqc5zjHD9dPFfJwOZRQG+SoGuQSiPXLXfGlMd73Pqh5M77fz4jLa2vr/P1r3+dBwcj3v7n7yPiHgdtyYgSE0qAJMJBR5FhMA2w46yM0R0RColQkoQK1UI6drGwnT0JixhPTAhx8ZhgEZMqg0wZOISgwMuGrIhthCYYihqaDJBSoZPw2YUJPzzWGCc6JTPF0TUeRssMqOIQYROxyB4gOGSBLk0emd/8pNAJKTFtH4BGh4VCOJci8cgwkUgEOgKHgFjlFYoBPkmhKz+kjMcYX41oagez1sHjge1xTIP1SWnn6e/TID8tVZ8VQE7295VSGIaB53lUKhWazSbLy8uUSiWCIGA0GiGlnLUA5ubmTpWpkySZyT0fHx8TxzG6rlOpVGg0GkRRRBAEWJZFs9nEdV12dna4e+s6jQwWr9SIhjFx4M5W4tPxxZN42nn5ca2W0Wg0C+JpmjIajSiXy/T7fZrNJteuXaNUKnF4eMhkkitelkolBoMBCwsL6LrOcDjENM0zk4Ept2OacCRJgmEYCCHOrAxMSYOmac5IgpVKhQcPHsy20TQN27ZpNBp8/etfZ21t7czr4BznOMfzjecmGfjB/T7/wzfvMyiSgeU5ky9dbfJ3vvZ5smjM5uYm9+/fp9VqzSxwv/3tb2PYPjV7kVbqYyURtoqIcEgxAJ3siaCqM6GEx4RA+DgqmEnHuiIgVQaB8gCFKwIMkTKvt+mrGjWtj6kbbMdLBMrBEhErYgdXBKBgN71Im3kEgro4hv42i06JuZLFpFvMyVsuUrNxstzZzmVElIdZRrNZ9I/bKvgo5MEwn4wHnZhcBU8v3kdDZ4JFhkKny1zhMh9hkZEQkyHIsEhIGaLnanMqYze7yJgyFiEXtE18M8WyrFl52DAMlGYRqTwwmtqjmf+p9sI0wAOzVer0b7quY5omvu9Tr9dZWFhgcXGRubk5hBB0Oh3a7TaHh4cYhkGz2WR+fh7HeeR8N5lM2NvbY39/n3a7jZRyllBOCXGDwQCASqXClStXmEwm3Llzh263i2EYLC8vzxKLMGxy8+ZNoiji1VdfJYoi7t69m2tQSEmqjOK8+PiMWdUfSftOdQee1mqJ45jr16+zuLiI4zgkSTLbN9d1WV9fxzRNFhYWZsddqVSI4xjbtrl27Ro3b96c+WA8jpOaDdP3sywLz/PO7O1vb+eWyXfu3GEwGFCtVk8lAkIIHMdhcXGRX/3VX2V5efnjXpznOMc5nhM8F8nAcT/m73/zFkeD3NBEQ+EFezjHH/Knf1Ribm6OZrPJr/zKr1AulxmNRty/f59bdx+yfdijFD3M9eJsyX62TJx6BEqQkT3BvqcYyjvpHndybGxXXqSjmkigSo8m+2xxhRCX42yei+lDAhxsIiJsTF1hkjGWLmN8KFbdE3xiLLYPe7RFjZIIiJRNFEY4aoQUHj4j6hxzoFYZUilW4VO1tnwl/0mEas5GrkefjyMqpsYxABYJDhEeE4ZU0JGzakhVdZngFxMLua49CALl0maBCDuvNEjYSO+TZcHsdfOVcI1Y86laGRt+B0uXs97/SR7ASS6A67rUajXm5+dpNBqUy2U0TUMpxXA4ZHt7m16vh1KKWq3G8vIy1Wp1Vlnodrvs7e1xcHAwI9NVq1U2NjbwPI/BYECr1SIMQ3zfZ2Njg0ajwc7ODt/97ncZj8eUSiVeeuklyuXyjD+QZRme5/HLv/zL3Lx5k06nw+XLl3Fdl83NTUajEQdDjTbzUPBB6qpFWQyL81xoGhSVgbNaLUopvve97yFlfp4uXryIpmmsrKzMOA6aps0Sn16vR5IkPHjwgKtXr7K8vIxhGLRarSemOKSUTCYTWq3WLBGb+mk8jk6nw2AwoN/vs7m5iW3b7O7uPrqaikRgZWWFX//1X2d+fv4TXZXnOMc5ng88F8nAg6MJ4yjXVMutYDN81WLYGzHoHgH5DdA0zdnol1eeo61v0HUCXHfCFeOQXvsAM96lrNocpAv0qDGZHeIj/fY2ywipsaY9ODUnPlEeE3wkggiLYxYJcAnxsYubeIJ16oZuyBAlcrc6nzEhLoJckW56s3cIiHQfJxtSs1NW/TEHnaOi5aATKpcYh0cBWp7a30+OkxUGwdRcJ5fczf9fRxHhFqp1ghJDNCGJsHNve9EFBF1VJxTuTGkvKAiQsnhmjP3kSne6EpYBY1kCq8TqUhnP82bJgKZpWJY1SwAqlQrlcvkUuS+KItrtNu12mziOcRyH1dVV6vU6pmnOeti7u7scHx8zmeSy0vV6nddee41SqUSv12N/f5/NzU0sy6LRaMwC7Y0bN3j33XdJkoR6vc4rr7yCaZqEYThraWRZRr1e58KFC9i2zfz8PG+99RZbW1ssLS2xuLjI8vIywb0WoitmpsYnKzxT3YEnWghKUevuUR61uZQesfriK/x5JyY0bJIkYX19/cxgK4Rgbm6Or3zlK3zve9+j2+3OdB2mx3zqaigSgMPDQ7Ism/X/Hyf6TUmDcRxz8+ZNIE8OTvIjHMdhbW2Nb3zjG1Sr1Y9zUZ7jHOd4DvFcJAMbCx7X1htc3x6SpJIVL+Bi2cTVfAzDIJYa/UlGGgeEYYeDVo9O0uYwqWNmYyJlE9vHLFYs1teXWVtbY6sj+f0f9hiOd+mwPGsX5Mx5kxYLaFJySdyf3ZQtYjzGjCiRYaGTEuJgEBOREwNdRjgiBDqzNgLkN/pVfZu6agECV0xmf1tQ26Sag6GFZHFKSIonYmSqSFMDRxshNcEEPzeLQRE9UdH4KEyD/lSfPuNR8D8ZkAQGiiZH9KnnhEZ0XEIyDDJ0NCQ11WJAlRiXY7FU9Ld3Tvndu0yoc0ybJgJJidGpla6u6yyUPOJEpzvxmPcEvqXo9/sopfB9n2q1Sr1ep9FoUKvVTpWqpZT0ej1arRbD4RBN06jX68zPz+P7PnEcs7e3N+v/p2neolhYWOAzn/kMlUqFbrfLzs4Ot2/fRilFpVLh1VdfZWFhgU6nw/e///0ZEW55eZkXXnhh1qufchOmvfnLly9TqVRm+1er1fjSl77E97//fTqdDpqmEYYhX/vya7Tf2uVgKM+UKD45/y9kxsXN97h07x0qw+P8k3wXhsBrmk78ua+xc+2X2NY0pJS88sor1Gq1Jz59Xde5evUqDx8+ZHV1lSiKsO2zrx/DMFhcXKTX6xFFEd1ul+985zvUajWWlpZYWVlhOBwyHo+5desWk8nkCV6E4zhsbGzwm7/5m0+dQphiHGYcdse0OiNu7I5ZarhsLNVYbbjnAkTnOMdzBKE+bQm4Asf9mB8+6PPh9ojRJKDuZFwudeh2u9xo+4S4zHnwUj3i+1sp2+2AIDXRZYBJwqq2ScmSj4hohsOhushxUuZwkpe4I5xZWDSIsIi5Km4ypz9aQaXK4DBbZJOrM5b/ZW5iaBJbBXRpPtO8+eMksum/a+NDLm++w8WHP8COH5XUO/4S71/6VfYuXmPPXOOIlaKv/2zVAZ14NvEQFaqIuZlOgiwsdU0SGhygCYFFREkN6VInxiHEpk6HSSFSlBTPWWAfKQxWta3chOexY3ycX3ESQghSpRNjszjn8fnXc0liKSWNRmM20z+FZeV69VMin67rzM3NsbCwwNzcHEEQsLOzw8HBAZ1OZ5ZULC4usrq6SrVapdPpsLOzQ7vdJoqifBqgCHK+73Pv3j0+/PBD+v0+tm2zvr7O1atXGY/H9Pt9HMeZKfNJKVlZWWFhYeGp7Pi9vT1+9KMfEYYhg8EAx3FoLl3kW3/+PWTYf+r1oScRX/rO/0mjtZmfq7M20vJgaf0n/y1bq9dm+/Piiy+eOR1x69YtpJTMzc3x7rvv8u677z7xeWlOhZc2ViCL0DSNq1evUqvV2Nvbo9frEccxk8mEMAxn5ziO49n1W3EEn3n5Kr/xG78x41z0ej16vR79fn/GVxiNRgwnMXcGNdqRzXE2R4qJBlxe9PkbrzX5rS+f7YNwjnOc468ez0UyMA4zOqOYIMr4vXeO2Nt5QCI1vno1bw382Z0EUwUMY8FaOWR3UkKFPcbKQ6mMMMzQNckL/iE1K5fKzbKMKIV+6vMwWSPAQSelTJce86SYgGCBfS7p90/dtIeyzG35CgodQcaL2g1cEdBXVY7lEgYJUhhc0B4+ESDhSdZ4UxzQjyt89Yf/kKv730MJgfbYaZ81CDSD61f+Bv/PS/8xkfCZ4CKLfc0xXennJVuDmAwdnajYShLiIRHYRHiMAA2TvB3SFIc4IpwF71DaDFWVkSoT4TCkQoiDSUyGQYU+NdE9M/F5lmmCkzBNk3q9ztraGnNzc9RqNS5evEiWZRweHnJ0dMRwOEQphW3beJ5HHMezlWocx7ma3dwcFy5cYH19Hd/36fV6HBwccHBwwHg8nr3PhQsXmJ+fJ0kSPvjgA+7du8dkMqFSqfDiiy9y6dIl2u02vV4P27ap1WoMBgOCIKDRaLC6unqqXfE0PHz4kDt37jAej2m32zSbTQaDAQ8ePDhz9FDIjC//+T+m3t564jo4E0Kw+t//Qw5XXmZ7exshBGtra1y+fPnUynw8HnPz5k1WVlbY2dnhz/7szxgOh7PPal+uEuGxVLe5Wu5RKzl86Utf4vLly0CehL3zzjvcuXOH3d3dWTXg5PXsipAXqn00GT8hKy2lnCWAQ1lhrHyGqkwobdqqMdvPZsXiC5er/J2vrXBx/ty58BzneB7wqbcJprbD1+/uoquEduxyMPZwtZAkCrCIaFQqdKMSy9WMmtWnEyUMjRKeSumHBp3MI81MJgOXL1TuM1ewo5VSzEtJI9jmeKRhZEMkBkiNLvO5WJAwnuh1m8RU6BFjU2KEScy+XGWsSgyoAgpXBWgqO3NJ9zhrPAsV//a3/x61yVEeys8IANOX0WXKa3f+EGM44nfe+K/QtFznIMVAJy6aAbms8hLbHHKRAVVM8vTARGIzKQh/uTeCSVK4HNp0aeKqMa7YZZR5bKvLZGi4BDNGgYYkxcJnyAXxEFfkvgcoZlWOQHl0ZINY2M+sypckCYeHhxwfH6Pr+iwAX7x4kUajwfLyMteuXWMymbC7u8vh4SHj8RghBJ7nsbCwMOMb9Pt93n77bYbD4Wxevlqt8tJLL83GDVutFt/+9rfZ2dkhSRLm5+d58803WV5e5ujoiHv37mFZFqurq0wmEw4PD/E8j5deeukjdfofx/r6Omma8vDhQ+I45ujoCNu2Z0H5cVzYep9Ga/PZ50UUHPy9/5TX/+U2Gxsb3Lx5k4cPH7K7u8v6+jqXLl3Ctu2Z2NKNGzdOTWnAyWsypD00KMVjxv32jGA5dXoMw/CJUcmT13OgHI76bXShsEgwRHrK6EoKk+1sjb1kCXQTzwLHAIaPKlyGJmhWTIIoYxxm59WBc5zjOcCnXhnYbgX83989YvfhDXY6CQgDLRmSSsG6tYtr6zyIVhnGOkKz8I2EeklnrRKiqZQ/3WvSjh0MEkwSrmg3aRpdbNvGsqxZeTeROrf7FQLpoKuYTEz75WOa4qBg8udeAsdqiQAfg4QVsYUUOrtyDaEkHeYpMUCisSgOmNM6Z66Yp+Nl1bTDv/fnf5fK8AhNPbtAjULwzto3+N3P/uck2CgkqqgKuARU6LKgHXIsl+hTJcHGY4yGZIKPQNHgiDXtAYbI6KsqbbU4Iz+WVJ89LjKmhIbEJsBjgkInwMVlxAo72CLgiFVSzNm5OlZLjCgTKJc6HRJhntlGePycfFRLYTrbX61W0XUdx3FYWFhgZWWFxcVFdF2fEQk3NzdptVqzVoLv+zMpYSEE3W6Xg4ODWe9/aWmJz372sywsLHB4eEir1cI0TZaWlpBSsr+/j6ZprK6u0mg0PpFgjpSS27dvs7m5yfHxMaPRiEqlws7ODkHwqB2EUnz1j/8XyoOjjz08euHv/gMW/83/kCiK2Nvb49atW7TbbTRNo1arkSqdraMxrXYbW43IovFsouAnkZM++VxLRSAg5uwkcKI87mYvMqKGQBZmXcNCPyOfjvnFdYXrWfjlOS40HL7xheZ5QnCOc3zK+NQrA/WSxWLNRq6/TKPZZ++wzXCiKKV9TCT3xkscZyUMUpJMx8p6HMQaem8LXTcwEhObGikGFhE+ea83CILZTVgIkU8KyCY2IaFwqXGMKyIsEbGXXaBFE4AqXRC5xHCEPSPNOQSFLkFIUIwNxsplIn1Wte0nb6wiX+1/ZutPqQ4OPvaNX6B4c+tf8MH617hb+2yufIg5sz22SPAZMRGjXNIWyTxHtFjAY0iCxbK2O5uWqNJnokoE+ITKoUeNAB9VSCGrQnAoQ8dlhEBxwAqxskmxcZiAgKGqMFRlHEJCPCa4lBl+pCJhqozZyKZC0aB1av4e8pXp7u4uu7u7uXpgaQ7NX8DsDGm32wyHQ/r9/mymfn5+ntXV1ZmuQBRFXL9+nVu3bjEYDGZJwMLCAqZpcuvWLb7//e9j2/Zsjv/hw4copVheXmZlZeXUSvrjYtp/T9OUMAwZj8eEYcjFixe5ffv2bLtq74DK4Ohjv74Sghv/03/HN3dGxHFMFEUzn4LZOc6mOher1MUxq9oYo7jwnjrJ8Aw4+dxMGRyolVnVK1AeeiHhbYh0NlUzpEpaXK9jpvyGDB3YbIVgalzM8mumM4rxnfN2wTk+Oaat5nNnzE+OTz0Z8B2db3yhyW475A/eGTEKYnxL48V56I0bBG0fnbQo5SfEWDhEaCpDz2J8BmiaQtMEl8wdiDMmyntC7tVUUR7Q8QmUTcISJTWiKnq0aRKS914lgoZqExXl7+nrTG+GsbTYUpcKtQLBWJXPHKmLsfHVkNce/PEnPjeZ0Pjyw9+j87mLtFmAQki4Ro9VbQtHi1hWj27wABNZIsSlwiAXQyowPYa+qrKvVhAzHwQdSKnQoSHy1WqobHZZR6ETYuXlYRxcNWZEhQgvJ3TSZl47OnOlD484BZkymOAXvAjBuEimnuZtEGcam90SP/ijBxgkedXByKcFSqXcWbDf77O9f8w4FiSTLsGwS5ZluK5Ls9lkYWEBTdMYDocMBgOklDiOQ5qm3LhxY1ZVmMpbT02Ophr709+nVYKp9PHjhbQpJ+CkAdC05D4ajciyDNM0Z0TJ0rD1ia4FoRR2Z5/j4+OzzxnWmToXJ8/x406GzwpN07BF4c0gEzwZMZE2FtETraLp+/hqSICHQVqkAMWorICS71EuuRwPIi4vudRL1sc/Iec4R4HhJOGfv73HTifCMRR/+5c3aFZ/+tfUz3vC8aknA5AnBK6tcdidYCQD+qHBbtjjIJ6jn/kFQS7DIiTGQSjJISv4coBJhKdGuT5eFHGkLjJUJVw9YUU+0hGYBsOOnGPIBhkmEQ62CmbkPYVCBxriCENMx/OYPR8FmdDx1ZgJZTI0DDKkZCr0BzwSl1k4vkt1cvbN+1mgK8nLO3/B9c/8axhmSlT0fC9oD08d18kb/OOrv8dJflX6RUDPkyxBjIYkpMyBys2SRKEboBOj0EkxMYkxCBkxh8eQDIN57ZiyNjxz30NpsyvXCn+EsGhPeEXZ+KO9DaZOkZEqDJ4yWOcBWfao2nO67C1ZNcZ4di5xvLe3x+7u7myGfhrgu93uTEDIsiyUUnS7eRIxVec7SYgDTrUMzmofTLc9KZkspSRJEqSUTygBavKTmztpMnvq3z5K5+InweMaBDopS2KbSLPIlM4Bq6cUFSFvIdTokxWjqxEOU9KroRmkwqVWcXjxgs1vvXk+UXCOp2McZuy2Q0Cx2nDxbI0gCBiPx0wmEzqdDn/8F+/zgwOPUNnEwsPzXH7rzSXCJPuxgTt//QAQrDacU9tOpbujKOK4O+SfvbWD5ja40PR/Lltbz0UyAHm74LMvrbG/sEDJSKhpF/iDD8aYnQiBQYaGjiTExEVxpJaJuIhAYJBSlT0MEvrMEWHTy3RSYEVtEQk3D/pCJ1FmQZJTaIAjIubVMS00JIIqbQTQkgu5yI4asyj2SLDoqHlibBQKmwkSnQSTI1Zx1INTmgPL2i4vH7+FFNrH4go8Dl2lrHc+wFrJnqnEezI5eFqfeFXfpip77KsVhtTQi4qLQUyAR402Nk5h4DSZTSjskZMNNTJKDGYTCo8jVQZ7ao0O8zjFNivaDvMc8zTOwElYxBgk9KhikRJjPl3QqAhEoTTRwnwk7tT5KzwQ4JHVsW3bs8mE6b+nJkmaps00/KcJwslEATgV+KeJxOPJxNMMjBLzk5fDU/Pp2hMfpXPxka/5YyZCHj8OIQQ6Kb6WIYWJLyMmmYNT+HZALrIVCpe6ahPMKhb5oG6UxewcxVyYt/m1z84TJuckwnOcje4w4H/7g9u8vx0hhODVCyY2Me/vxtTTHbzgXu5Yqgx0NoioUXOhO0r4p9/ZJ8lgsWafGbjHYcZOK+Cf/OkNPtieUKvN8fqazddeyPVloihiMpnMRo43jybc6VW5dtXhsGfMWls/T9WC5yYZ8B2dr32mzoOjCRsLHp59mcA+5P+7fsze0QCVpgT4WMQMqRJhkyIwyNXyZFF+TgoqoQJazNNTVaSygAxNZaQ4M8Z8mR5CpdREm1gZJDhM8NlWa4yoYqk8OCYqD0YRHlU69GiQFitmnyGhsjmSi9RFa7ZiT5WOjBU/DXamk4yeucR78ub+NC38qYWukUXcVdcIsckwGRemRikmDY6oih4t1SyEhRRpoalnkO9Lgo1U+hOBJFAeoXKxiAix8RieSgBGmceARSp0KemTJ/bbECkNdVBoIFjoJE9MbjyLtC/wBDM+SZKZsuA0+E9/dF2f+SFohdDPyWA/dRacBv2z2gZTVr1hGLOk4iRazUtkmo7+Eav8syCFxv7Ky6f+7/FzZoh0Jn38NJx8DsB2ts6QMmWGXNQ3nzBWOsthcfooVMyC2iYQLic/nJroEssRbZr0aXCqbIZGpOCdO31MTVFyLVYa7s/lSuscHw9RFDEYDNjc3GRnZ4eHhyN+2K7Tj3R03eAPWgkBNfKwtc7LdLjo9qiXy6xVdHZlCcMpk4UDPtgecGV9he2WZL89YqEsGI/H7B62+fDeAW/d6tIKLALcvDUat1BpCReDlVJKe5jzchzGaJrBhfUrWCtz9COdNd+gZMPuQYs/fL/LMDFZnvvZJ8I+N8nAOMz44/ePuL/bZWnO4Wuv+Hx5XaFLjz9JIxwZMAgFNdVjZ1JCU5Ih1aJikDIp+qUpRlHshxiXGA+tcOV7pNCXs/LbzDOmjKtJNIXaAAAgAElEQVQmM7b8BA+bgJh8vtwgIcLGJ9fqH1FBIajRZsAcEp0Bc4xUlbZq8gI3METGjlxng58OKUo9I7v9LH2DjwqYmgZuNsYmoE8NHUmGQEOyqO3haBGOnKAk9KiT4aHQyAqy5lmjhaky6MgGITYgmKPNqrZFqnT6qoqQGXe5Rkzec34p/RFS6LTVAlIYs4mFFktk6JjEmCRIcfpLNq2+JMLGVNHHIsRNy/pxphFj/Nhqy6OgmAfcafIw9VIQhkuqOdgiRiYBURSRJMkTiQBAajnsXnyNC1vvf6yKkaYkH65/jVQZs/P8eNUHeOoqP5/mcOmoeULlYJDiMmCfCygEY8pUsh6WFqPpGqaK2MtWC3fNkCXjgJIYYojsiWpBT9UfTRooiqaQR4RbOIaeOhIEGVGquLfX5ysvzXHYi85JhH/NkCTJbOU9GAzY39+fqY1OPTNsLcHOeqSyzliaJKfupwKaX+QXXh3R6XSI45jPuC0ybcJwOORHA4cH33uIIwI6793KW8yZxr5cZagq9GkU93YXUIQJjA8nHHVBZQlSCTTdYN6zEPGIWB2QaiM8R6ezO6F7Y4/eRLIZL1NxDDbdBg03wy/5bCx4fymchb9sfOrJwEnBoc3DIePePtfbFpVMY7nhs3sk6A3HgMVaOeBK2UD0THYGgjQZ4zIiw0IgydBRGDyS4YWcZz91AjQ4tbwszGRSBLIg/QkkXerkGoU6RhGMcofBCRE2GRpDahikBDgk2JhEjCjTk3P42pg+NcZW7bH3+2SILe/ZtnusEiCFzrJ4kkE+DQyxtNHJSNEAQYSLQUKGmAXfnKS4Q6BcUixUYYCcYJJhYqiEQDwiq8VYxMKmrnI1w0VtH4Bb8hohHgJJXIgaxdhsc7nwZrDx1IgUA5sJKQYuISE2lohnicx0RDFTOrpIcQlOHdezsuWfddTurO1soWbGRXEm2B76TKSDg8ay1v6x7/3g6ptc2Hr/mb0ppdC42/w810tfxpHBbNx1ojx0MiZ4BMqjp+aeOJ6TScBY+YT4RVvIRTFPgolWfF/2WSaQProEnyFtGiRYKDR6aY1FsV9MzjxKBoayRE/N4YsRASUUYBYmXlPi7yO5bIkmDCxDo1mx+OLLVYJUsFy3z0mEP8fIsmzW458+RlFEv9+n3+8zmeTVwSRJZiqW04SzknnsUy9IqKcxGfe4fvcAPR1he1Xc+hxq0uHw8ACiBlUyYmUxSmwsDTJlEOKik5JhzKq2Pv3ie5EyjC3SIukQUtDv69ho+IwYAZfMCcMUUsfj4qJO91jwoKeRtrv8/Z0BiwtNVusu/9nfvPQzlxB8qsnAOMz45p9vsnM8Zs438A1J4DWoaBF6NuDu1pj9ts96NaEXGayVQxxTYOgaKg2xMUhwUSg0BAkmJhEZNo9KkydXMU/aGYMsPnyBJMUmgZkvgMaYMhqKFJ0AC7DJDX0jrMIYOMEiwkVDcsgqq/IhGnB76U2+eu93fqJzlOom7ealZ9r2rNL54+2F6Qhai2aRxCR4jPAZMqZMikmMR5C5ZJqBScQRq0Ugz10PPUYkWCRYSDRcFSAlTDQPTWWznnG5aA905BxjKsXzTQRpEYRSMjQEuVvlkCouAX01h0RDJ6bOkBWxhSHSQiRpY7afpoqY55hVPbfafbwqctJL4XH8ODvhj9wue6SnMJQuA1XCVRNC8fTXOYlhZYHvffFv8aV3vlkkV0+HFBodf4V/+oX/khSDsZpHKZjngACfBBuHMZnSnthPFOxmF+lTJcWiQo8hZRI8zKKFk39fTGwCxpRIcRGkgF/cMHNtgBiLsSqdOr5Q2mypKwwpM1IVFrQjlJLEWDNxrPzGmzeXDM3gxWWPX7o2x1derjNfsX5u+q3nyDF1xjwZ/KcS5FJKwjCk3+8zHA4JgoDBYMBkMjmTY2OaJphzyMAoEsxcZh3AY8Q4c7kzqPPKnMH9cY1vvbVbfPd76FSK9mbGltrAkSG2CjBI6NBEIcjN4SDAxyeY3c/yqbU8BuiFT0xOgtXYH8FFr8dk1KPdTiHWsOQKtq7TlnV8W+egF/HgaHKeDHwcdEYxD3a7pEGHXs/myxs2n1ku0ShXcK0FOoMJR/GY45HGqqdYXlnFdWxcmXFFO2J/KIhiiZ20i5W7IsQqStRq9pOb9548VIUo6gHyhCFQfsPsEmKR4jEdvRtS4WTfU2EQI4rgpmMQkQEeQ+K8mEyZHodzlzksr7Mw3CoGvj4epNDYXv8cmfFsF5WpZSzz0bPk0xE0iYZER5IgEVjEhCgsRmTo3OcqhlSU6RUtlJAAryBOaoRUkAg8JkDKttpAZholMWJR7J0KxCZJca41dDJWeUCXhSLoGFCsTaefS4slQGKRsMomjhYRSpu76hWGVGeeETrabEwReKSSh8+uXEMWehFnrfqflXNwcjtDJYykjyYyHC2atURyZ0uPOsfPxOBPlcE7S9/g4Zsv8K//8H/Gj/sz98cpMqGhK8n+wov8xRu/ja2nTLBxiIgxOeDijPSpoUiVjkAxooQvctOo3GZ6HolWVLTqGEgEKRIdgcAkxqdDlRabvFhU0Syutt/i9Yd/xHrrOgLF1twr3Lr0ryKWvFlOPVRVxpTRkUgMQmlikGJpiroR4jom+yMDS4akCOZLDv/B15a50PRmCcB5a+BnCyenZ4ZBwtvf/xAtGyPjPPAHQTDj1ky3nzLykyQhCIKnkmsh/25kmoujJ0iZYKYtHJqFOFqCQVwswSzsaEQnDrg96XOc6o/IxMplQI0IB50kv3+pCbGwqdKmp6qABWhopAigyR4jygyoF/9jQTHDlg+Ry5xInUnCYYc7okSMzWLd44vLy0xUmVsHAcMw40LD5VIzv66P+/GMB/e8JwefajJQL1lcu7LC5mEJX49Zqka4ZoTvuLilGlZ1lf/ois5Rb8L/+/Y9/vC9Qxw9QRc6iXBYa+iYhsEoqeBpIXNyl1vHMaOwRoZAoWERFqNzHszaBZI8nJw+fIGkSocm+9zj5UKVUMAZJarcvldn6oWokRLh4zMkoESKiRQG3934N/ib7/+Pn+j8aEqyufGFZ95eCIFt5PPgOav9yW2mI2g5xyKXGyqJEQ0O0VVWJApGQRjUCHDwRVBIG4/wVY89LqGTAAYhNhKNIU7eC1YeddGmLAaz9yxrI5ayPYZUsJiKNtk4KHRiPIakNMiwZqVmHUWAxwEX8NUdxpSKJCcqxufydObkmOIsaJOQzNoMZ6/Wf5wIz8mWw7K2y1CW2GKDllrAUQEvcAMpdCLhUlIDUmyq9GYr8o9qFeRBeoHdxTXe/bVf4bMH3+LLD3+PxeFDDJkQGCU+XP5X+N76N3DLMaaQ2GqIg0s+/JlXo2wixpSQ6GxyhQgLDbBVPlGRqdyJMi/160h0ahwzwccgo06bSDisGXsoJbHTCEOl/MaNf8BX7v2TU5MwLx+9zbXDv2B37XWuf/lvoRkGXgpamP3/7L3nj2Vnfuf3eU6859wcKneFZieyGWfI4Yw40qw1wdJq5dUqAesFbMCAscC+MeA/wIAMv/ALv7LfLfzK0BqG1/AaktcrWxpZ0Gg40ohDzgw5JDtVd+V4czj35McvTqhb1dXNniCRhPcH3K6uWzfVqXOe5xe+ASl0VCSqYlIzAjxRoKDGBDKmXghxAtBCH9vv8D//Xz2Krau8sFbl999a+vcdgWeIWe+Hy74+7We/6MdmOBg3kHx/K+a9jx5hSI+G0sESDrpylgRcBrB9UgghCGKVY67gxnYyDlP3sdSAG/JjTuM5jllBInDSAs7BpqENqBkek9hNR3VJhR+m166betJ0adKSJ5i4KZYlobvGCFQCCviMUzM3NwVSZ/sEkBaTEg/BKYtIqdHSevQnEfrDdzkJatjFJmoUUx8e86/+p29zOtV4MF2hNr/GYs38zI8OPtVkoFhQ+Y3X5+mOazRKBoYaJ65zR23+6J02+22HlbkiL16xGbmClbkyvUnIht3DdUfEfgJpa5k2zYpBrbTE+pqOf0djt+MTQaqml2zaCS0w4UoH58x/kogRHLGCntZHClHqHAhnc8+z+WeGMUiSDo8iIxbYZyRqaDIgROPh6utsH77MWvsnz2ZKMxP3nv8VxpW5Z3780zLuLDQRsqAcEMR6rluwIA7QRIQeBWiExPi4FJGpjkJTPkJXEzbGobzClEKaMcvUKCk5LlGKOIik8th7Lil7xPEaLoUEbIbPlAIGamqfnOgaqEQEKAQUEp0DRQejRC12KQYerrSpiRFXlG2MeHKOpZBt7oqMOGXxE6t+gEiqTLERcYgnLLTYxxcWY1kmECaKDGmKEzxp4mJTSJORCSWKcownz8YIPdnAj5LEIxOFuixCqRKiJgMCReWHy9/k/eVfJU7r9mQBSkYnKhFCJsdWJaLImCvsMBQNQqmkXZeQEXWyZLfNPHY0TBe15FVsxkRo9GmSyW6HQk8oonJKqNjMaX1uPvorfmnz3wCcAzhm/1/eeR91cY37L/+HFKYKS+EpE4qUlCmWAbFaYdGSvDAvQVHQlJD9kz6bB2PaboWBW0KfDNjtBnzhaoVXr1b4LManvel+EkX1WWLWMyJzc33SV1VVEzDsMzxWURQO+wH+ThvbgFN/Hk+pUNentDhk6kcpPfhyLE8otRz4qyvRGaAXI9nQxRRXFPClSYEgwS2JI8LI5JDlHBfmIVCCEcgBC0zwleQ9QqlSkBMcSiQE8wgPkx4NNPxceh6y4miMofioccSEElHaezyLRHMmeYaKICTCoBNWKYcDRiLCQ0EMjxlhsz/qM5IVJto8E1Fh3f58jA4+dQDh+VahysLCAr5aYfrRAyb9h3zQNRjudhiLFpFRY2Oxyj945Ro/3ov58d0dhDOmFfQIJh06SkL3uo5EUS32owUkOjGwyhYhCscsp2qDFy+y5HsPGydtoaYkKs4yxBhBlLIVEqWhLGMMMDDoUFN6eDLZLEw8QsXg21/65/zW3/x3tLq7nzguyFKNh9fe5N7zX/vE4/fTZN+5IiAaUigU5RgHK52VRfjCpMyYkSyRyB4nQrNtFlnnEb5IqDgmAUEKItSIUypnUqtHqPRkk5Icn6uOY6EmbXs5TcE6HhWmxCj4FNKEQMFigkDBR0WgYIgAXbooBDyv32UclygpYwqKP0NzU4mi6AwfITinzPgkYGAm3ytRCNFAQoiOKkMkCgXpMKVIXybI4zgdS5QYJbLXQk3RIgmwdESRGBMfDSFhOd7JxyWQUC792KBDM1W1iCngoiCJUPBJtmlJAOiAn6Lxs3MtwsXkhCXm5SEmUx5Sw6HG2eIl8DE4Yi1lvXQZ0MyPbyLbHRCgY8o2Kh6b4TUEYMsxX7nzr58KbBRA64ff5tvX/hOM+jJv3q5xvQXC69Butznq9MAf0jlIEiFFUXDjCg/iG2kCrqCJGD+MGTrBudf+WTbUv6sN+meNZ918M/rpsz72WTboi4/9WTw2nhRSylzsZzAY0D06ZdobMI1tYikQoUcn1OmzRIBBkckTsTynMknUbcVliX00JUrOc2lgSh+PAkXhUlADRJysb5pIKOAdOYefrtWJiLrIFWczbxRNhNzgY/pxnW3WmVJBEDOlyCFX0msqOTYqIWUxxBIOdbocsMQZZiwGIjTCZH1IWWiDNPHWCHExGMkiMTojWUZXBW7xOcp2iReWFvn+psNxP2Bj3uLq/LMBwT+t+NSTgcuiUTK4ttpA8gJ6NOGKLul22wymp/i7Pv/PcZndYBnf6XPiVzgQJaqaYNU8QZUBSElDDzmKFghREEiG1PI5qYmDS4E4bx0nf+QU70ySBWZWweHMVzUFVAEXOgYKMXMcJcqFcXJvgQnz4oSSMeIvv/qfc/XDv+aVrW+jxUH+rllkLVnPLHHvhV9h5+rrjx0XVVVz5Tzf9zEMg0qlQq1Wy9G5QRDkMrvjacgkEEhvSBRF58xmEiBNAxAcx0ssir0zE6MUINijkfoV6ESKhRL5ObZAI0IiUIjQU53CEDVt7z/emjdSpYYuc5AaIy2JPU5YYSSrqOk8UEuz7qJwUTWT23NQiksIIbAsK12wa+eqposLfhRFBEGQ3qJLxyWz8r0hakp1dAnRMfDw0HEo5ht1SIEGbVwKzHNEKFWmMtG9CIWOLR36NJhQQsdnLIvsynUQCob0iFHo0UzZKwomDiZT6vTw0YkwsBkxpcwUk5jEgzKX8YXk74DGASt0mUvPY4NZ9kzS+JQE6WfWCSgwYZT/LgZe+poJ7iBhxxTwWOg/oOgOPvH61AIXY/seg8Ii++0JtxcslpbnubLYyo//aDTK7aHvHxSTJCv92wqhMWeFeJ1N3nnn4ROr3ydtZhfvv6gZcdn32X2apv3CN93Z+36RG/CnFVJKPM97jAFw3HPZOnXBOaZzsEkcClpxiTHXaTOX2p4raEhcLBqyjSqic8DWCaX8eycu4KJjCslhvIwvbIy0C1DRPTQhCdJTI5QaQ1lHpN0ygBIjPArsx2uPYYMKikeRCWpMSi1XUVKwbFbpg6RCO+2Mpjoa5xhnSactxEz/H5GkIDoSJSmgsAnTjrOBx3PVACdQcEYDvtf2ac0vcHWhyD/95eVzXYHPoljRZzIZKBZUfvONRbrPN/KDFUURp6enbG5u8nB7n8PDEX2ZWBUX4gmjQGcYS3RFwRFVosBFItOWEPRSSd1pipZWkVQ4ZUgzxQ5kfYDZneNsZnTWus1wBwKFIH1ujIaLBAayioNFjM6AEhoxJUagCP7qxf+Yv7r1T3lt7894dfvbFJ0+ShziqTYn1XXev/pN/KUGlvp4ezlb2FzXTXJVpUwcuLgnJ5ycPG580x04HMYrxHqFkt6kURgg3SrF2MGVFuW4zTRORJr6tFAFXFF3iYVOQUlababUkGoy2/cim1NWCFAo06NOhxE1XGFRkIlEcJ8mT5Ib1kRIQ7SZyCI2UwKhY1kmX6x5bIeCjm+h6yVuzil0ul3GgU6rKLm5UMZQi2xsbGAY51tssxXcxZZqbuAThjiOw3A45OTkhF6vh+M4RO6ZfK9GBHiQzg99TJR02/RTQaYEiJQoV3ZpsiOvApICHms8QlUivLhAjMCliEsi6VyVA8bpXD9KFSslCtPU1W+KDSkQM06prAUUBA4T6pdcHQoKgikmUyzO41m8HKjpUUwATxTyZCYDzWpEM5AoJX1mARE8uxCS5ZzwYXuM097iz7YePRUjoYVlNOppQuCx6G/S7LV55+0oF3pSVTXfrHVdz8WfMpXI2Vt2v2EY+XNn1SCfFJclEZ/0//8/PC4z18punf6YzsgHf8R03KfT6TDwTR7I2/gYWNjcULQURKumOCM1GdEhiYiSrqhMzk1NBkyUKnqcnLUXgbueNJjKQmJ+Jk2E8Ih8h3im65lRlpuyjYlLlS5lMeaUBcyUafA4NkigIrEYp2yvpKsrUv4ZCPoscBiHLLHHhOIl3B4VCJjVp8meG6bJeoSKLgSWAdNYsFAOWa4afNy1ePV6BTcQOF7Avd0plhrhei7/7wcDRqHOxmL1MyNW9JlMBuDi+ADcAAKtymuvf4W33lL41aMO3/3RQ/7mXp/BqEghHBBFEff8GzgklUicVvthSnHy0oWXFNU+SUWDEmyAkp4I2eYfp32AMM0CRTrPBZUYhRATN61lTTyK3OUV6nGbABM/ReCH6EylTTduMqCG1BQ+2PgG/WvX8THYjdYT8yQsmpzynPIAeHzOlnUEQqlyEC0TqEUsxWNZ208qrnQRzOZ/fmwTxmWWGzY9J6bZ1DBEg2m8Qux2MAZ7uGHESVjGEh6qWebK8jVWWwV0XWdn/4Sy6zN2RuxPLHaDq6n40hgFB1ud0lRHhIqFKZKW/STqICWUNBfLMDCMUm4sVCgUMO0KH3WKtMcRpnRYYIxtCt6w+kSGYGFhgTdeusrB/j5H3QmrCzXufPhjLKtMpVJhcXExoRv9jCGlzNuc7XabB4/2eHjYZzQaEbgTJpFBFCscsUKJCdNUD8HGIUKjIvqMqRJLgZ8eCw+TSCho0iMxr1LTcyTEo8Ap8+j4VOilAieQJZMJdyLxghhRQSGknNb0LpdJD2fYDJUzk6nZMNMGagKftVKwVJwOvQRQYIyJC6lSZ0hMhIKOy7RQ5lnDs0o0RTunfT4tqtqIl8J36dGiTpuqNgIJ/s9vnQCcn41fnJNnypKz/8+6A1nSkd2X3T+bdGQ/mzWvyu7Lnjv7nhdHDBcT1sv+/6yPm/oxfSemailYhnjq62VUvswnw/f9HM0/Go0YjUY4TiLfnf0siqJzniK28JgTA6ayzJ5cY0wZnYAJRfbjK5TiIQesEpAl6clKGqNi4NKXTQJMHAoEsYGKiY7/GNsICZZwmcoCtjLFUkNUkRzXzII7Z/UIi5oYsKQcIiWM4kqaWDgoMtHcUGRELFR0PBrilLEsoaaFocmECCWnSseIRFAtVvPE/PHI1pyMoXb2GDXtMghilmyXL60JNhbrGIbOeDPk44cnVIyA//1kF1+a1Itwc0HjdCRYmbM+U4Jbn9lkYDYmbsSfvHfK9977GCMe8/oqKFqBH2zBcXuIIXyqHNOnnqLOdeKcEgKks+wzAKCWzo0SA4w4HwlA9ofV8CniMKZCiJqS3yR6OuM1U/ZpTBGfxEgpMWZJGAx6CobTpUdfVhhQzcGI0zSLVWRSn02wAI0xFdzYoKCcn7N9/cUyN6+t89FHH3Fvt0usVrCFjxfbKIUqFSM4Z74ThiGqG6LYRWK9xpeeq/PrX2xxetrmez/4gP5kl4WFKl+9vsb3d1WEblNSpqyWunjOkJHjc29Q5nQUYqgFIt3GQCMIJL6wWCzGfOG56xiqZDgc4vs+g8EAI5pSrVap1xeo1+vYtk2xWMQ0TabTKb1ej6t2hxXbpFE2kMEKw+GQYrGA6/Y43tznT3c+oNFo4IVwb+qydGWDlcUWx8fHHB8f02q1aLVaKIqSdwMuegI8y/eWZXHr+jori2PG4zHD4ZDhcEinPyEaDBhHJiU5BkG+8TdEm0hqTChh4KWMhSla7POImziUCFExcfBTznKG5leIaLGPRoM+dc5GAAniRKRqi1NMikxSAuDF6b28cLssEvCTyM9HkSezEQIdgYVHk30UEeJLnTYLTCmxVX6Rk/I6rdHOOZrjxVd37TprX/kiz6kwDl5mqaayOl9GaAX6TkTo9BgPOrmgjOu6VBlR5elSyT9rzKLcf964rJq+rKK+LPG4LAHJEoxZuevZ22Xdj1nnzEIhSc5HnuD/+JsTdg47lEyF15c9CobC2BOYwoPIy22tPc9jGkicQIHIJ4jFE7EzkBUeJkGkskei42ExJZIqI1lmQJWAAjFR2jKHfdYQaVV8HmyXbLEhWqLmKpPxQNJXDRnKKlX6GMJDiGT0qciYK+KQQBTQ4ikFXRDHCpY/JZ4MCFUdt1BmSdlH6kWKhiR0k+t4FjR8HC8zokScjvqSxGOfkjLkNF4kIGBKgRIjVGImlNKEXGdIPQWbx2l3OMOFwVlXOHF4TbbNZHysCUBRWC6M2NC26e9P+eGexI8VtqYLjGKboRah6ha/9MVVBo7kxvU5pvqI7ZMJlh7THQWfiXHB5yIZ6I59jvse08ERp55K1DugIxc4iZoUUirXHhuMKeNhMqtCeAYCzH7Vsws7oZeEnJ3MyeIriNDxcVI+vpKeIAXClM42QiVKACsyJkwR8RoJFsCngIGLQNKjSZCK6kYpq0EnII6hwyLT9OTV0vfblxssy918rhZqZezaAkdHR5ycnGCKGAsPadZoaQEbC01uXlvntdde48GDBzx48IBOp0MQDCgr+5i2z2srFSxDYdQ/JRofsTRX56WXXmJnZ4c3l+eoNutsrCwz3/wi0+mU9z7e5f1Bh3p8QqiUKBsK0jEpCoWW6fArz5UIJh3294/wfR/f9xFCUK/XqVQqmGayYPi+z2g0wnVdVFWlVCpxZamFpmkp7kFnPB4zmUwolUqEYUi/32fn4ISHkwaR5nJzrcVbQYCuxIxGI3Z3dxFCUKlUKJfLj7nqwfkZ8pPmyVm1N/sa2Xz0lcGE7iggmvY4OTnhpN9BjRLjnwyYGMfgCYsi42QOGlupkE81nSr6M9LYMQ5lwpSGaRISIXNgUgJRVVJgawLMjPPq/7LIFqXZyEZYWYIh8Skg0yQ2+VlS/YRojClRlz1W1W1s6bEVP4cQBt+5/Z/ye9//b54IIhTAX17/Pdqb2+zKDdRiHbvt8crJFu2ogWq1WGws8WtffYmluXqO88jOk8zaeTYBu6xKzbjql/k7/F3G0yr2nyayZBWejH247GezyUb2NZQqj4I1jsMWMTZiGtPrD3Jl1IS9socmojM2jVxkIkt5QVEU40v1NjIg7YgKo1TMK9NPgSjxH8nn6NlmJVJMC5ydJTL/XkkxRSZe+nqQyLsnVO1t+Rxa5FM3XK7ZiaX32EsosSL2aN3/gKub71DrH+afc1RqsnXtTXbXXsEPz7qDGWh4JMt0aBGl+J/kqNSQUuGK2MIRYyayRISKgqRKjzqnjKhRYEqfBh4mBgGCKGeenR8bJMosiUtL8tOC8EGoXK+OWSzb+L5GEARMJgIn0rAZgtakbGvceXjAXFll68EJ/ZMR2/uSiahx99Dlyzern7qD5+ciGWiUDBZqJvGrX0EJBmiOTXcHCo6HSwGI6dJEMttCzmb7cMYIyO6fjewQnPkQx+jIlIKipBlgYsPrYDNlUezRYw4Xi4oYckVuMSQBwQ1ope0mmKZI/YRwd/bZPAwcijjSTk+pBFFfYJoDF7O5mh2P2XuYVOxCCNZWFpgPfZbX6/zKV15DBlO2trb47ne/i2mavP766/z5n/85pVKJhYV5dF3n0f2P+fG732cwGFCr1fjt3/7tXAN8cXGRXq/H7laPk0OTZrPJ7RurHLoVjvpLNCzBS8twcJIs2r2jPbbudYmiKK9gTNPk6tWrrK2tUalUkDKxBvZ9nzAe8rcAACAASURBVIWFBZrNJpVKBSEEcRwnlct0iuM4aJrG9vZ2/lkWFxfpTlWONwNKeoxHkXJzjivNQu4o2G636Xa7AMzPzzM3N3cOGPbzgriiKGJnZ4etLUG1VODlQoFCoUCv12N/f59er4fneZRw8lPHxGNENQU4+SkYUkmr8mSwFKAhEWmDPki6CvgMaODhQ6qIdp7O6s+co1l3a/a8zSLz3khGXeevhbPOl0x7VsmQy6IedygpYypiQFfO8eH8l7Bf+Rf8+gf/Eill3iGIhYKQMX/y/D/ne+u/y6rcxBM215sleo7F4o1Vgk5As6xx1HN4sH1Mv32EpmlUq1UqlUp+m5+ff+yYh2GYJwxZ0pCh17NbXvWmwjYZSPSic+QsfmTWbfLvMy7Dr1yMbKxwccQw+1VVVaZxgWmopViQAjoeEywUCoTpSHIaF9JzL/kLBxhMsVPzseSMyGbqmaQ3SEaxzQFXiBEEGGkSa86kmuer/rM1NauWxczPgHSgWqHPothjSJ1IKikTp4yFw4AGKj6eb2EHbUYkrf5y2OOf/O3/SKu99djsvjTu8NKP/4T1R+/yN1/9Z/iF0sWjieBMuGuaygsPqRJgsqTsM5BVOnKBAlM8TBbFKcQKHVooSAy8lCptohNSYphihgRTyrlaZ5k+kVbGFB6TyEIj5GgkqBmCSFrYpslaWad7KOhPbSzpYkYT9PEh08GQf3OnRGDOMwwtNNXBtiy2T6ef+rjgc5EMFAsq//CLcyn6cg14mcYPjrm332fYO+Un+8GFxS+Liyfq00I59/9pyoBPwF0TKvTSiyWgoPjnlP5CqeLHFi71lEMfMKZM4pVADmJMLskE0S1lknX6GJQZ4GMkoj5ijCUcLOHkr68rLaxajTfeeIPFxUUePnxIoWBysPOQ69evY9s2h4eHqKrKBx98gO/7fO1rX8O2bba2tmi323Q6HYQQVKtVtre3mUwmrK2tsbKywpUrVxiNRnS7XY6OjojjA25UStycK7Ox3ILIxRuecPLoAb3TQ6SUWJaVb84bGxtcu3YNRVFot9soikKj0aDZbKIoSu477jgO0+k0xzdomkatVkPTNCaTCS+99BK1Wg3Hi4kqp9x5dEzdllxbPZ8xN5tNfN/n8PAwBwUuLy/TbDZ/rkRASkm32+Xg4ADf97l27RpLS0tIKen3+wwGA5aXl8lU1Q4ODtjd3WUwGLAmH7Iln8PFxscmTgGrAjfFpSSiVCDw0NDwqeIyzwEORTyql3yipI90/ty8rGbP7sswL5eNFx5/RoyGKwuoMqIohymWQPLR+te4v/AGL+78JVc776NLn0f1F3l7/XcY2EuUTcFv/do/4m/ujTnqe6y2irz10grvPBhw3Pe4tV7mq19oIcMpg8EgGb90OgAUi8U8ObBtO/97ZS1y276cfpUd89mEwff9c4ml53l5Z8H3/QuskrNuQxiGuSPlRVrhLENldvyQuVTC2Sb+83YsLm7+l0UYhsg4AYaSkn2jVBkvAiaUEEAnLUBMnASwjJLKTfv46FQI0rVKYzdap80cEYkfydnaKdNOVbbJz55L2X1n32tM07FB1jWI0x5pQIExHbmQJiRlEuZR0kWN061XouLKAq6wMKXLN9/5lzQ628kxvnDOZmdzadTmy9/7X3j7H/xnxOrZ9mUJh4ZIBLWKcsCYel69Q0JNrDLAmemWWMKhoYAji2jSp8MCAomOR40uqBolBtQ54ShexpeJf42LjQgjLDHFJKKquvQcjXccDaHqlM2QFaOL6YZUYo3d8Qpb4yq6JljSjplIjZYRJpbkio4bxBRNlYL+6Y4JhPz77MH9AiOjZmweTviv//UdfvF5TZi2uwKuco+xqKeoVZMVZSfntIZSYye+Ske2MPK2WJSCCDVitJR1kFwAILFwaHKKj8GUIhYTimJCQ7TPiegAeeX98ssv89ZbbzGZTHj48CHXrl1jZ2eHdrtNrVbj5s2b7O7u8p3vfIdGo8Hv/M7v4DgOH3/8Me+//z5BEPDcc89h2zbdbhfXdXnppZfY2NigVqvl7xdFEf1+giA+PDzk8PCQfr+P53l5pVKtVpmbm+Pk5IRarYZpmozHYxRFyamOmqad42ybpolt21iWhW3b2LadgwHjOObjjz9GVVVu3bqFEIKJG7F73KNzuMXLt29SqVwuTuO6LoeHh3S7XUzTZHl5mXq9/lMnBYPBgP39fabTKbVajZWVFQqFwmOPy2hz/X4/Txz6/T5jN+TdoxIHXsJpjtCp0MXHwsFOVQAT2F6Yngc6HmWGOGll9HjXKounMf+zrtcs+PUsEh9PP+X46zP3R1QYUKGfdiYMTHyWrBF+qHAc1pBSxVRDWiWF+VaV+6eCOIabK0X+y//oKsA5qdWn0aV832c4HObJQRzHaJpGpVLJkwNN+/mu4SiKHksWLnYbwjDMuxBZJyFLEJ50mx1XzMrsZu85+/3sOX9ZtZ//1S7pAlz8eaLKp3AQrTCWxRSTomPio6Zrip+qdsZpVyChNCfsnsR7ZEqDHleURNZ7FJe5G7+Yj0DPb/gZWFZNR0xnLKv0CKePPxPFmv0+UxpRSKTEVWJK9OnToMwQkJQY5kqCCjHXxD1GVJk7fcjv/fV/+8x/6x+8/tscrb147r4MdJ3hByYUc72DbE11YzMRDGOcS4ofxiv0ZZ0hNazUJO2quE9RmeRYi+x5xHDMEjZTfGGiygApNIQM8y5wgIYpAiJUYqnQS0cQEg2FkJoyZrGqUDKgPQoYUqNeqfDWC/VPVZXzc9EZuCwytsHbH/V48iL6STFLHZyNZKG28Igw0IR8oo594kWgpzK5RXQ81HQsEKVVXYwkEStKFg6DKS4mQSq2oxKxIA4uVaxTFIXpNKmw7ty5k1ekQRDQ6/XodDo5Ovjw8BAhBIVCgT/+4z9GSslgMCCOY55//nkMw8hnswB3797l4cOHNJtNlpaWqFQqeXX/4MEDDg4OcBwnX6hKpRKthSucDly2948pFc5Q1nNzczk/+eTkJK/yWq0Wc3Nz1Go1VPXyk1xRFNbX17l79y7Hx8csLi5SLKg8v97iY+eU4+PjJyYDhUKBq1evsrCwwMHBAY8ePeLo6Ijl5eVzSc6TYjKZsL+/z2g0olQq8fzzz1MsFp/4eFVVqdVqFAoFBoNB3gY3TZcvKgHiyOFoahEgGNBCISJAJ3GH1GY4yxCg0cVCeYpCYhJPSwSmkJqoPB4Z4SsgU4IAkY8oltilSwspNBSlQLlUYnXtOX7tCw2+f3/Mnb0Jqqrw5vUq33qtxUF3ytCJeP5KKedMz3Knn+Y1YBhGDv6UUuaYgcFgkI98ntQ1eNZQVRXLsrCsyz9DBq59WsIwu/lnCcCsYFGWcMyOJ2Y7EbOA1Vnti8vUBLNuw+zPZ39nKSVhVMB1LIpiCjLrLSbjgkT1I6G9irwyj9M2v5LCRlWa4mRmbUkApZKL7X/S4icze4+IIMW8ZKDUjHqdAexk+t4yx1JNsYnQCdAQBISYWExRiLFTYR9P2rgktvCqSPRZvrL1R+fkr58WMYK1zR+yt/rqucJpVnRsRew+JjoWSi0XPHIosST3c1lyO0ok2h2KqZDY5FzBlz3PEB5FOcEXZmK3riSGaHEMj+RNRlRQifBkhIVDlCZbGY4tRkEqKi1xjHQmuP4y4zDAj6b8zV3BW7dq3Fy5OAL5+4nPbTKQxZWWQdHQmPgB58UiPinOWm7nKVohJQZoQIBOgQllMaAuupcq2hn46NJjSJUEL6sQY+Jgk7XOZDorzqq35IQhZx5IlNwy+GJks/CjoyNWVlawbRtN01IUfpFbt26xvb1Nu91GSsn6+jpLS0s8evSI4+NjgiDg9u3bXL9+nTiOOT4+ptPpUCwW0XUd3/fZ3d1lb28PgPF4jOM4hGGIruv5OKBcLqMYNt/b9OlMoGJY/PoXWmysLVOpVPKK3zTNfLHPLEq3trYQQlAqlahWq1Sr1ceq7gTjkGzo2WYLsLCwwKNHj5hOp09c5AFs2+b69ev55r65uUmxWGR5efnSRMJ1XQ4ODuj1eliWxfXr16lWL2vVPx6TyYT79+/T7/cplUozC/0Ja4Mug2mVEokVtp6KrSRnzGWbW3K+/HQxK42dtWkvRpzLCyUukxoFAnwSM6GG0qWh9JmGRQaygUQhEgYrTZsXVuu8sFpnv5OMDVaaFsWC+guTUhVCUC6XKZfLrKys5F2D4XDI8fExBwcHv/CuQfa+GT3wSQlfHMfnRg2X3S7iETJw6mzCcHFEkY0psqRh9rGzo4nsa/baWiQohZJJXKeuTphnn15YZDvcQKYogRptppSBCD+HOetAgEKUCKGlYQmHMj0cbDKiKkCmPxGiUGVIB4Okr5Stj9EMGPuMfg1g4lKnS40OO1zDQ0GiUuGUJWUfHZ9YqDmwMUyVS2MUjuQyBaYsnD54pkQAkqRlvr9FFAmedFpcdGuFMwdSXQaMKFOTFmUxQhMhlupQjfr5lTWLS55Ki5EsU8BjQpkGJ491cR3Fxox9DOnRZj5lKNQoM8RinHf+BBJFRpjxEN22iV2NEBWDCF07AwB/GvG5TAbiOGYwGCRz8GGfL6/D0dhibT5pfb394SmT8GJCEHPRa0CmoBOVKSEGCiE2U+bo0BTHOVo8z6plckIhOecV72Gm0rwePlbaks1CSf+N0ws0Ik4lkjNMgiH8J+rn67rOysoKe3t79Ho96vU6o9Eon8vv7++fo/fVajX6/X4OpltZWWFhYYG5uTnK5TJxHNNoNGi1WhwcHCQiI50O29vbDIdDpJQUCgXW1tZoNpsAeVX/8HCEy4SFWoxmN9Fsk7m5ucdm9Rnav1KpsLq6es67fH9/n729PQzDyBODDNG/vLxMv99na2srHxfU63X29vY4Pj5mY2PjE8+NYrHIzZs3GQ6HHBwccP/+fcrlMsvLywjN4qTv4I87jAcdDMNgY2ODRqPxzFXoYDBgc3OT0WiUUzkVRWE8HjMajWjYkmtmiXuHDiBxKJNpmp8HYP08kbah8ZE8PsrIImHCRIwpp0u9gkLSRi7ZBZqFMnrg4o/HXLtaxbCKvPV8PW9T3lx5cofkFxkXuwaZFsTFrkGWHPwsXYNnDUVRKKSA0SfFJ3UXgiBhFWXJa6b9MQtwne0+ZK5+s0yK7Ot4GiIHkiD08UKfWHExZPK7R2mRMaGCTojNgDZWWqmHqARU6WGJaf7ZNRGyKI4YyWo6DkgMrxIEvgskktUWbmpoFZCJ/2adAYmPRCUxuzplWexTUhLa6CQ+ZSJLGPhcUbbOdTsdbKaySICR6AEQMifbuMJCjZ6uVXFZWOGYWHv2RNog2aw7tBAIurKFJZMNXZFRzgCyxXnNgq5s4VJkQAMJTLBpxaesqtvnXttiQpcmIXp6nAQOBaCUKnqo1Ohgi4hJZHK/Pc8gKgIKlaLJG9cqrDSffN79XcfnJhmYuBH7pwOkN2Q67hNFUbLwX1vnpZcrDKcxjVJSuXz95Tn+h3/7kIO+z1n26kCaSSd5sCAxIk6W6CIDVtjGUqZ5xpejxSGfLV3U2B7KCn1qqTKBSWaMwbmEIJyhimWHPKHvWDiPCbfMCg7FcUy5XEZVVTY3N/M29bVr1yiXy2xvb/Piiy9y586dBO3f6+WL6Pz8PKurqxweHrKzs0OtVsN1Xa5evUocx0wmEz766CP6/T5SSorFIoZdIVaLTH2fk5MT6vVEBa9YLFJQOsyVdcqtNa7MF1md9/KuxPr6+hMrd9M0mZ+fZ35+njhOKILZYn96eppXitVqleXlZR49esTJyQkLCwsIkYgR7e/vs7Ky8syiQ1ky0u/3OTg44Mc/ucM7O5KTYchC1eAff2WZ9ZWFS6mJT4pOp5N3KbIOSDbG6Xa7eJ7Hiy9/kb33++l5Nhti5nZxPPU0TMDFiMnOaXmuo5BIHmXz24RImLixOVhIlFT/wKaoRTSWrvHWm/8B15bK/OWHXY77Hgs181NdjIC8g1QqlVhZWSEIgnyccHJywuHhYd41yG4/jxDVzxI/K9hx9jYrEmYYBsVi8ZwmgRACz/P4yeYx/l6fIhM8zEQBUEyp0KPDHGUcVHwsXGKhUZaJjbogppZiBS7SCQvCoSr7DKijpcToEmMsHExcimKIJgO2ucGUAplORUIoTHAEGiGNVCQtozTGcdKFqoo+BeEQC5VQavn7J+ZFAQOqucy5g0WZEYFuYfqTZ/4bxEIgjZ9u+9JESEPp4MhiYmmcHk8knMpFIqGjyghbjlNDNgsdHykSS3qX+Zz5dcIiVjShpbaTLoQImRNHjGSW/CefLQGdR+kVHyXIsWhIf+wxlgaCCE1RaZRNri58usJDn4tkYOJG/Nt3Dnnn/Qe0Khq/+cYCz19dPZe9V2eKmC/fqvFfFW/y3/+fj+gMXbRownP6Nkd+g15QRFE1lkoRdblP7I2YRgZNO0K6/TyrvxhZi+mixraOTzY/S7zlz4Q5zhb52baauHALzrXxZpMOW3GpiwmmabK+vs6dO3fY2tpidXWVDz/8kHK5zNraGsVikX6/z82bN/F9n83NTdbX1/nGN76RqIqlILv79+8zmUxot9u0222m0ylCCGzbplwuY1hlHjktDntT9GjMjeoQ03QYT0N2To/xxyP+2Te+iFWdz0Fio9GInZ0dPvroIxYWFlheXn7qBqsoSt4RgKRdnyUGe3t7+YjhJz/5CUKIvGLMmAMrKys/zalDrVajWq3ywzu7PDq4m/gj6ItEiv1TJQJHR0fs7e3heV6eCKiqmmM3BoMBGxsbXL31Cs32AfLwI0IMwscQ2UBuRDQrdf2sHQOZtv5HOJTSpENBw2eFbcaUGVFNk1IFL2XFJHVPooUQxfBg54h/h2BtqcG3Xm2hKHwmhE8uhq7rNJtNms3mua7BcDjMuwa2befjhGKx+Kn7A2Qb/EX57Nm4CHZ0HIdOp0O322UwGDAajZLxycSnQI3QqrFoRmyUW4TumKizjYhkXsnWOcUTFiZTpEg27ItgZDibf/upnsA8x/gYLIs9VBGnSqlNkjFqkCISSinqSUMQpl0HiZ7qqhzGCcBxRI3E+2VKWQ4IhZ4XTpni4LLYIZYCD5MKA1rKCZaYsnflJa4+eufZMANC4WjpJlJ5+rl6UcUVkjFJSY4SGfUU/5Wt7YZ06dFigo1DCS2V767JXlq4uTiUiBCEWOxwlUlUTtQPCbGEn4POw1y0SCFMvxqMMdPjEaGiSx+HMqamM544/NkPj9lre/zWlz8dvQH1D/7gD/7g7/1df8o47nu8uzmkZqsMPUFV9wimZ6Y8l110rYrBl2/Wub1W4R9+oUGREWK8R1UdMq93udHweWGjBcGEouqyNN9gfn6ewWBAoVDAMAxKpTMgh4wjXGnhpXoANdHFT+144xQZaxCiEaQXzqwyV2Lok2lan7WLJTohdaWLLpILy6VAT7aSpEMWKGtTnPGIvpsqI6qCubk5RqMRrVYL3/d5++23iaKIlZUVtra2qFarrK2tUS6XaTab2LZNHMfcvXuXbrdLr9dDURQWFha4ffs2L774IhsbG0ylxYf7HviJAchaq4CiwHfvu7y/O8UXRV69Mc/qfJVCmpWbZjIqEELkeATTNJ/aZp0NTdMolUo0m03m5+dzxcKjoyP29/eZTCY5HbHf77Ow8NNV85AszpPJiJNBQKAWUfwBVnCEpiQdjycBGyGp8vb29jg4OMi1FbLPnVEOd3d3qdfr/MZv/AYF0+D+ocPxWEWNxvhxcm6eeV5c7BlkbIBn/Z2ScyjjlGeuhjoeNlOanNBmiYACCirzdkAYaxTkiAIuGzykZQf4osQ0VNnrS7ww5s0btc9cInAxsk22UqkwNzfH3NwclmURhiHdbpfT01NOTk5wHIc4jnPp4M9aZOfN8fExOzs73L9/n/v37+cYFs87c3yMI5+i4rBYUZgzxhC6DIdDROxTEUNKypgSIzosMKJKiEFd6WIpLop4fGPN1heLRKNFEZKyGNFUOkgh6NNElRE9mqmGQXIdZxqWOh4KSmICRIQuAnqyjkcBhyImUzwSj46SmOBiM5ZlhtRxpUVRjNNRQcKKaCgJ5fTYWuX2o796puMnkPz4lX+EW3wyxicTUzqVC7jSoiTGKCJGETFFMaEoxtREH00kAkKutHBEKcXWTBlRTa8thRW2aaltGpymHqVJchSgMqFKh3k6zDGhgpFKgM86I2op1yPTMiiJCR05z5gyPgZRFOP4AkUonI5Cnl+xaVb+/q2OPxedgUbJYKlhcdxXeHnR4LUbBfxp4op2fHyMYRjUajXq9fq5ymCuauSgp7XFb1Cvv8d7772H4zj0O0NE7FEul/Pq9Pr16/nmpqoqvu/zhS98gVKpxKNHj+D9j3OxDk1E1OUpHeaI0TDwaXLIaUqbOS/IkZw6IrX6zQCLKhFVBufwArkGdzqOmI6H/NitECgmDWuBuvMI98MPc32Azc1NpJTMz8/zwx/+ENM0uXXrFgAff/xxDg589OgRrutSLBZZXFykXq/z3HPPcf369RyctXQlYqSdsn00xMRhuTqgNw4JNY3lZsQ01vnBj+/SPTlgZWWF+flE1EgIwdLSEo1Gg52dHTY3N6nVaqyurj61OroY2QikVqsxNzfHBx98gGmaRFGE4zg5/39tbY1qtUqpVHrmKtAd9/n1L7Qo1pfwxm32th5w//59Op0O8/PzLC0tPdZujuOYra2tnCOfWc5m7+m6Lru7u5imybe+9S0KhQJxHPPGSsDhUchpoUHUl0STk1zdzMJhSDXljSfW1+GlGhlPijilrhrYjNEJcChgEOKjM6GSDqM8YgyaVkRBeAyckCJDqkqfulUnUDT2JnCtaTJOKYGfBX30nyYu6xpkI4WtrS0g6RpkWIO/665BhgEYOT7toUelIDA18nHY8fEx/X7qhZFiAi7qF2RAREVR6PQnZ5XtuP/Y+2UgOQcbV551LWcNex7zOOFM478p2zREBytFzUdSQ5MBbVoEFCikNLssFTDwsBmj4SPRKOCixT5D6il1LhEusphSZoSHiUaAh44uk885ESV8YVJKxx5TadGXDZyizXdv/j6/fO9/e+oxlsAPV7/JD+pf50q88xgDK/t9/digzRwSNXEfjQLmlFMKivcYuDBjFEylTVc2GVLOSzYAVaRqsyo0w2N6NFP3DzUVvE+6v2NKac+4h4+RrvUy5XRExBgUdANd0Zn6SVdPIDA0hVAKAilSh9VPp7P1udEZuIzDnLWUe70e/X7S4td1nXq9/lhikD3+/v37fOc736Hb7SKlpFqtIqXEcRwWFxc5PT3Ftm1eeeUV7ty5w/z8PN/85jd59913+cu3v8+DYS2x57ShpAV8OFpCixM/+0V2OeZKih4/y7MUQmr0mWISYiGJMAlocciScvjEEzprYe3HaxSEhyjUWNX2KEV9rvZ3KYYu3doSg9YasZSYpsmXv/xlpJTs7u7y4MEDxuMxkIC0VldX+drXvsbc3BzD4ZDt7W0UReHq1auUy+XHjrOhxmzvH/PvfnDM6TCiZkleXQogdInjmEqlkgMUZzf9Xq/H7u4uURSxvLzM/Pz8z7QI7+7ucnp6yu3bt9F1nQ8//JB2u02z2SQMw1zXIBs7PGl2PJlMuHPnDjdu3MiZBRkQ0HGcc/TIxcVFNE0jiiI2NzcZDofA41r0QRBw9+5dRqMRX//617l16xaO4/Do0SN836cxt0w/KPC/vn3EycCnqAbM2yHjSOXOwxMiFFQR07Ij9icFpqkUcRIRsy5pSTIZpiDUBA2gEFFmiIbHOFU+LAifJbnNfW4ToqMQs2yNcdwQRfqUGLOi7vLFV29TaV3hJ90yUilwpVn4zDin/aIiwxpktzAMUVU1xxlcdr7Mgvoy7YGL9128PwP7ZSyDiRfx9n2PRwc9TBwW2HuiJ8BlUsQX9QWyouAyKeEsLuKZssc+7f7ZBGH2cUJmTpda6ikQUcBhQDMnSVs4ucSxKac85HmyTW+ZHZaVfSARRNJinx2u5Z/hqriXq7cmHdYeR3IZE49pbPL1B/+K1+7830ghUGa2pox2+Lfrv8EfvfRfgKIwxxEb6sMZMHdiCDfFxsNkRIU43bQNXEw81nhISRmfN0q6cCy7cZ1d+RwypWfeUD6inAIk3djkXvwiE0qpEo2a4sEEOhOa9KjRYZerSBKngxgTVIuiAb//ssdKw+SDdpEPDmIOuh6KEJQsleuLRW6uFD81WeLPTTLwSZFVBr1ej16vlycGWcdgtorsdrv86Z/+Kdvb24RhiG3bhGGYV36KovDmm2/iui79fj+f6z08HHJv1MTEQxQqvL5W4Pt7Gj1XYMQOG9zhVC5xygJTCmnjV9LklDXxkFO5RJsWCok/gYGHIZI52mUaA/D4hf7K+B3e/O4fovtTpBAIKRksXefhb/4LNm7dZjQasb+/j+Mk2X4mGWxZFi+88AKNRiPfPFVVZWtri9FoxOLiYoK4v2TTHjkBWwdtAqdH5E3OHM5clyiKKJfLXLlyhcXFxdyXIIoiDg4OODk5wbIs1tbWzo1dniXiOOajjz5C0zRu3brFdDrl448/5urVqznPfzAYMJkkwCPLsvLfbTYR3N3dpdvt8sorr5z7/TzPY3Nzk+l0im3buf5Cs9nkuDOgk1Z3AGNfoWxKSlZCx9zf32d7e5vXXnuNX/7lX84pcZZl5Z8P4HTg8+jYwe0m45s/+VGfH330AENEvLyi8dVfeoO3NyM2D8f0nJhWWSeIoDcOCKMYL4wwlSShnDP6KF6PQ6+BxQCpWJTiNkNq+FiEwmC5HNN3IgzDwlNsXlgp8P5mh1J4hBQKK8oOv/a117lx4wY7+8cU60vcWF/83CcCs1S9i5t4GIY51iDzQYiixD7ZNM38ur+oTnhR4viiXsBFSiDAwNf50VEBf9x5TKDspwlH2uzHa48JnV02B4fL5+NPeg04n4g40mYvWk02ZFlAcN6tJgAAIABJREFUFyGBTPRPVBJUfYKkFzlTocUpUijYcsg2N1IRoYirPKCmdHNevkqELxMxnlhoXFG28iLHUpMEbdudP5ewlKYd1rfeY2n/Y3TfJdQMDpee56/X/jEfld4gTC3GLRzWxSZlMeRULjKmjCOL+KlKzCxYN2MKWKmFso6LQcCKcnl3YT9aZUIRiyl10UUVYSrzbOLHBi4GI6oMqeKnbqQFpiyop8yzx160Rod5YmICLASCgga/ecvhxSuJFsPxWPDegYonLa4v2Xzr1TlWmoV/Lzr088YsCvnKlSs4jpMnBqenp7n0bdY1+N3f/V3+4i/+gh/96EdMJhM0TcP3/bzCzeR6pZS8++67VCoVgkmPAjYuFqVgyOn2XdbRaOllqrrLlbkWnX6f/V6XEzmPh4mFy6LYQ1FgSe7R4gRXFujIeQIMRrJGIHXW2bw0IchaWD4GhWjCl777h2h+smmJdBGqHG1y8/0/436hyGAwQEpJs9lkfX2dRqPBw4cPGY1GtNttwjDk8PAQXdcplUrUarVcx2A4HJ7byLIo2zovX18ClphMJpycnNDtdvMFdDKZ8OGHH7K1tcXa2hpLS0sUCgVWV1dpNptsb29z9+5dWq0WKysrz8wZVxSFjY0N7t69m7MLyuUyx8fHvPDCC9i2zdLSEmEY5u3hdrvN0dHRuSqw3W7TarUeS3RM0+T5559ne3ubbrdLo9EgjmP+9r33+cmJia8UaRR1EILOJKBq67y56mHgsr29zcrKCl/60pe4d+8e4/H40oRqrmpgCpf7owirVEXRXRpWjGrV+f1/8lXmqhYH41N0VaFkaXzr1RZeEDP1Q1xf8t7DAWMvol7U+bVXX6LfPuYPv/2A++0aqqKw/txL7B+fsjfSMaTL6aRAa34RQ1OpWBq6FlPSA2SsUZCTfCS1urqa4jyOGPVViouLz3ah/R1Fpu73SZX4xWo8kySebbtf3MgvbuazGgDZczJL44tWxYqiYBhGjlPJNv6MXph9tuy1PC9Cj2tMtSJl4VLWQJH6uc8w+zs/KS6OCwtKgv24rNIHcivghEkAmogoiICyGjKNi9hygin8HCysKEquJaIXSqjDMqOgzqIesl4cMnE9pJf4l4yjKTtOSCdsIGWMqUSomoUpHcKwiBV7BKgYeAxFHUeWCKSGJdwcZB0LFYszRT+NEEMzME2NdW3IIPCp6i54Ma5d5e7tX+Xu7V/Nj0coNcK4iCUnuCkbzMfkWC4ylDUioWNKlz4JfuG8+VwyjsvqdIfEhXWIjowFG+LhY+JFK+ouU2nTjufYlLcIpIpGgEjBviIFUJZVj0BGVNUJPiYLxpBCrCCnIpVmkngoWCoIRSUWJmEYIsT/x957BUly5/l9n/SZ5X377ulpM253YBbAYnHEmts9icu7W4pxIUUoGMEHiSG+HBU6vuhNcU8i9UBJIb1IokwwxBAlHhWSgrzjcvfu9tZiF1j42TE97W11uS5f6VMPVZmo7ukBBsAMMADmG1ExPdWmqrIq8//7/35f49Hqwk7NIJPyuXs04HeeCp4EFT1sCIJAPB4nHo8zOzsbdQyazSa1Wi0qDF544QVKpRI//OEPGQwGkUOZLMvR+GFnZ4dsNku51sRGjZixuuBgqAqe5xAXh8Q2TdNIOQ6+0yTR34isMavBJKb/3glsCAM6foZWkMFD4oQssj/PgrB1biswPHkmj++g2oN7X28QoP/6z+lc+iYXLizywgsvMDMzgyAIdLtdHMchHo9zfHyM53nIWpxq2+KkXeHw8DC66IUErNXVVaamps49tvF4nMXFRWZnZ6lWq1Sr1egxBoNBVBTMzc1FJkmXL1+mWq1G1r2zs7ORh8EHIZFIUCqVODg4IJ1OMzExEY0/wk6DLMvkcjlyuVw08gm7BqGrIRBZKY/r1MMxSTweZ2NjYxjFHM/R81xUr8vBSYJ2rw+Cym4DQCHW+A2pZJKvfvWr3L59G0mSWF1djUYtZxFaJc8U01yctonHXmQio1FMG2dyN+5l839pIXnqe3OlFH83Pc3/8Vc7zE/E6Q58vvHMDK/cqnNn55i2Bc8vZ6h3HL77bBG710Atb9J0+0j+SFM9WthmZ2cRRZGDgwN832d6evqB3pPzcN5ifl6b/ewiPq7NP/uz4/kB93PxG38fwxFOGA8sy3IUASzLMi4ypqeQjUsY6vAYtHs2m/sVsLs45tBm2vM8bF/E9GRUwUYK3isazusGnF3U00ENY7RL93wXj9MIj//Z53w2EjnmndCzm2RiMhIGlY6P5cfQGC6yjqCRiqkIskHbUTjoGNiCNlYoOBSDbaxg+FwkXLoDga7nYMgemcSQKC2LPpezXaxAIxOXSBpZfN9nMBhuLpROB1XvcinuEDMMJMGn0nYIXJuyW+CCbFMZaHiuSCEZp21L6E4X1zMw/Pdc+sJC1BQSyL6J4DgMbJ9yMIsnp0CGpUwCq99mMBhg28OfD7ujw/AhH3WU9zGURPYZoOEHIi0KvDdqO0vK9UdLuDg8DiO1QJssg5H50DhkwUXCpU+CHgZhcqOEhcDQ5FvFAW8YDHUSJMgIDSzTwgqUYZdG8Agkg5QwNDHK6BYpqUO3C11H5mdbSU4GAj3XZC4fdjI+PXwui4GzGC8MxjsGtVoNSZL49re/zV/91V/R6Qw/EK7rRsz4VCpFLJnll7v7DIKhkuBivEEqZjAYDCgUClHxYJommqYhCML7kntUbBJBkzJT2GijKFKVQWCMIkjOzx5X7d59FemS56IytB/+2c9+RjweJ5FIYFkWkiQxPT2NYRhs7Bzw5m6AJxcopmS+ekHC6rejvILd3V02NzfJ5XJRUE82m72Hwa8oCtPT01HqYaVSodls0u/3o0yEcPc8NzdHqVQim82yt7cXkfLm5+cfSHUwMzNDq9ViZ2eH1dVVdF2nXC6zvLx8z8+OF4LT09NsbGxEcsazOvVxd7twvDEYDLA8k3w8T6vc47mNPyG/+UtMX+Lw4jf4de+bLKR0XvrqNcrlMrlcjvn5+fuy1ptdkzs7dZYvTN534X8/G9/zvjeT1/nSYo7jpsV03uDZ1SLPrk5xUF/m1+tNTnouy1NxlqfibN7dQRMsYmIfH5+zm9FQCrq/v4/jOExOTp67iA93vda5i7hlWdHv3K/Ffl5yYLjojS+A4UIe7tBDTf/ZnzvL4Qjn7eGCHS7e4Y691bV4u6ywc9xGC3pMiQcEQcCRP0Pf19GxmBKr7ztrfxAIgoAq+miCNXpeyj3POzyXzj7/8L4QnmcRF11kwaDfHyD7ARr992KJFZ+BHXA4SNPyEvTRyAUNXCWJqKbR6OL7Plow7GC4gcyRN43lxjBEkzm7jK4MzbMkSRp6gFTee88EQYj4M6LvIPaP6PQk9u1JbDFOXNGJyR4dZxhT7Ik6G20JTfKZTwVk3H38XgWJ4QYrkHT27QkGgYEhmUyJ+ziejBXESMkuXcfADjQMw6Bv+2CkyScVqi0Lqx8bZi4IMMU+Cg7tIIuJHoUH2WioI5lfmNEZo0+X1MhtdpgT46CNyH/BmDPsvVCxEUYmceHPeITcqCAy8UrQwQ407ECiLEwjBt5IjaCjE/DyQodkpsTyhMpEskC7Z7G5ZWIhU0wrtHoe80X90/f4+LxwBj4KBoNBVBh0Oh1++ctf0mq1ovnb4myR2ckCv9k85t1aAg0LR9S5lDpB8zuRU1kikcC2bTRNo1KpRGxhuL9Z0UmQHelyPVwUclRICr2RE9jpC1B4oUs1y3z9R//zPa8jAAbJAr/8/T96T8A2OpnHo4ZVVaUfxLjbLZBPyliBzu98KcmVCwUymQyCIETEwu3tbUzTjEKFstlslDOQTCbPVQmEI4RqtUqn04miZmOxGDMzM5Hcsd1us7u7i23bUWzxB8kFu90ud+7cYXZ2djhnHJktvV8xEQQBb7/9NsVikZmZmXvc7QaDYZclNEIKF6JKpYJfKTP3v/8xUr9JuIIGCLSMIv/fd/87/uA7i1y/PHQvDOE4TpTM2O/3qbd6/PTOgI4tc3mxxO89//BCSM4SasOdeatnRVwHTYZXXnmFGzduYJpmtINdWVnhwoUL0aLuum6UbxEGY4WLargzH8fZHez4v+ExDM1zwq/Pvi/jX4+30N+vzR++V+HvjbfdxzsE488l/LdlK/ymkcTtndD3JC4aFSRJZsucGO60A43L6ROyukfPN7h5kga7jR1oXIxVSMrDEZ4kSei6TjwexzAMNE079Zjji/34sQqf29mF/7z/h79/9+5dYGjJ/eqrrw7jv13wpBjfeOkriL7NbrXPr/cVZMHmsBdjthhnOgVX8z0MVcS27ah71/MN7rSy5BIyLRNmpT0k++TUmCR8TaG82nVdWq0WlmUhiiJHTZd9b4aY7GH6KtPSETYqNb+EqmocmGlULALPZl7aZjZpcXn5Al/5ylfw1Bz//K+2UIIBd3eOmRZ2iCsBu1aJvq+R1jwuZ3vYtsU7xxqikWMiozBntLhZlal3PWS3ywR7UdHW8LMcBPN0IyngMFlhyHdwR0mJCuKoP5OkSZPCqDhQyFPhWrZJJibRaPUQnA4SbvRZrLl5bvPlUbgYDAPnHWREVGFoRe+N1BYiPjmhRjdI0yOOLtrYgUpGbJLPZinmElzK9lmrgpKZ5/Z+l8APyKdU/v7vXmCh9MR06FNDGGoyPT3NYDBgYWGBf/bP/yV3mklMDMyGgDnYY9BqYgjy0NQjGCC4PRzPwTAM6vU6nudx9epVjo6OcBzn1C5ofOYfGVwEBgl6kU2sjIeMjzUqGEwMBkEMCXfk2jUsCtqZScqTq0yU7xJGfIaknuBv/T2ee+b5KAc+JD8OBoPIHMdxHCyvD5bIft/AEKv8+pVj3vnVUJOt6zqpVIp8Ps/y8jKWZdHtdtE0DcuyuHPnDrdu3ULX9cjDIJPJEI/HicVi94wQyuUyJycn9Ho97ty5w+7uLtPT0ywuLnL16lXK5TLlcplGo8H8/Px9w4jg9Ljg8uXLyLLM8fExCwsL9/2ddruN53nRgn3W3c62bTY3N9nY2KDbHe6iJEkacin+7T9B6rciXgYM9c1ps8Zv/fp/IPjePwVgf38/Wvxdd/g+hYE5gZzAV1WWJ2PUOu8v3zu7CI7PtU3TxLKsU7fwe+FifnZnHu6Ow47P+AJ8fHwckSXPLqLhyCcWi0Wt9hBnI33Df8fvP+/r8QX7bAFx3i0k9oWPP94hkOVhOFZ4f/h1+LPjBcj4beAEZN5qcNy2mcwM1RMA/+aNauS+GCoqeqZ37v1h0RSaHjmOEylawk7Th5HSvh+CIOD4+JhSqcT6+npUFOmKxB/8wd9gcXGRH/3oR7j9JhOZGXpeglnqPD8tszKfJ66lIxKx7/vMzs5SabTpqTHalkwpaXNlao5k7CKWZUXEyvCzFF5DxqWZrusST/XQnTy1rkeSAQsj/oHQEjhsu3iuhYuFi0Zbu4A4meblbz1FNmlQbdkkDJXdwzbTOYPfff4bxDWJm3c22TmqE1ht7IFAEJuCRJpLC0UGnsjllQWuuj32jptYHZ9mPcPJyQmuCwMSWCP1Q2juFZYDApChSkBAku4oKlwZ7fjBoI2GxZ1mCutEI6lmmUiLLMYbuGYXy7JQPYeBWeXQzmMjj3gHIioWV+IHxBXY7OdRGHDipnCEFBmhj+DLmL6GKg6DoxqWyuE+NHs6hiazmBt2kK/OxXlhOfPQcj8+Dr7QnYGzCIKA//K/+Z+41cygYaEmC8yIu3jdY3xBwfSHH6RSPhVJ22A4Vrh8+XJkJBKOG87DeKcgCAJM4iRo46CgCMPgJBVrSAYS7u0SiJ7L6q2fML/1Bqpr0s1MUvutf4/u6nNcunTplFzq4OCARCJBPB6PIlxt26bVNWl0HQSni+8MTs1rx3dh4xdtXdcpFAoYhoEgCJE+OtxNGIYROcCFxUHI+C+Xy9RqtUjlYRgGk5OTka/D3t4enTd/jvKXf4J/+3UERSX77b/FxN/5I7SZxej1hOoCRVFIJpOUy2WuX79+X0Li1tYW/X6fa9eu3fO90Exob2/vVHiM4zj4tSMm//Hfu+976AsinX/0Z6QLGVRVjQKaNE2LFifbtmm0+/zFuy2OWzZpzeeZaRfBt+8JsAmPf7iAjy/s48l24fMe/3d8MR//f/gehbu68dM8kUiQSqXOVY6E44BwdxjurscX6vAWkuzGF+pw4R5fqMcX73HL3fvdHhXOkyffL3b5/eKYYXj8wzTRdrsdSXh1XY/GT4lE4iO/HtM0+f73v0+xWOTnP/95NO775je/yfLyMm+88QbHx8ckEgkmZxZY2z7CHTS5dmkJTdOi877VarG3t4frDne7hYkZBp5CNiGjy0NFTWiNHD7uuAvrSXvA3Z0jPLMFrjl8PbKOEsuyNFdiYeECN3eavH7jLr7VoyNmsaUcrqBxaVLAQ+evLctM5RP8YsNmq9xB9C1+//kiX336cnR8LMtifX2dd35zh59tetTcPKlUihdW0vz7L8+RSejR+Rnmqfz8jTv85c0+PTugwhTjAV5D0Z9Dgg4phvLgE/IEiKRpkBaayNjUmEQIfE7Ik6WOqum8vKLw7JXhCPP4+Ji7m3vs1G22e3kabgJBlJBEKEk1ZqQ9qv4kjhgnpYtcyDqoXodyo8dafxpP0mnbOmagoCsSk1mNZy+m8QNOFZqPA77QnYGzeO211zDbNXQ0XDlJWvPQPZeBKKKrEpI1iHY3ocNZsVik2Wxy9+7daL4W7qTHMS79GXpYpxAJ6Ao2Nhox+hE50QskysycayLiSzK3v/Tb3L72LWRRQDWGBD3n+Jjt7W1mZ2cj4qBpmkMVhOMQBEE0h43FYsxMitEiMx7LGi4GYXphuAsNW+twuhU7vkiEC2MymSSbzUbFQSKRIJlMUiqVqNVq1Ot1NjY22N/fZ2pqismtt+j8V38fRxDBH16Yqv/yn1D/1/+MS//LXxK7/HT0uKG6IJlMIggClUrlXOKb7/s0m00mz2HJh2ZCe3t70UIczk1jsRjm0eb7fk7EwKe9c4taqxQx288S4MI2o+2L4CuYosNru6fnzmfDnca/vt9c+YMW0nHyXFgAhhf38KI/PT3NlStXIta8oihomhYt1p1Oh/39fbLZLIuLi6d22p+21e/HwXn8i/vxNd6PxwFENt6hosXzvFORzMfHx1HaZ1gchLyUB0G73cb3fW7cuBHZhl+6dAlN0/jpT3+KIAzDwIIgIHBNYkIfRxlmfGiahmmaUay5pmnEYjGuXLnC5OTkPd4rg8EgCtoK/22325gOrLWSbPdLKF6My7kuhWwyur4dHh3xb97tstvP47PAVCrgP/ubq6hGnDc3u9S7NrkYLM0rHNU6HNT7JFUHV0gyPbNwqlDSNI1r166RmrjIsXbIFWwOGyYltcnGnTaJRIJsNksmk4k6MaWpebSJY16/W6W1eTIydhsWBD4SwiicbhjINBwnCvjY6KiygOYN0IMBAyGOgUUgyEhuh931I9rHm8zOzjI7O8tvf+MlRFHk9Vt7/Ou3etQGAgYmghJjaekyq16fo/oJ2B28loenqqRzRTwvD3IMPIe4NOwYSqLES5ez5JLKY2f//aQYGKHVavHzn/8cWXBZ0CsImonmOgx6zaiF7nleFFCiaRqDwSAKEmo2m5imGVXg44s/EHUD1MDCR6RJngCBRNCkKJRJit33zDOIoQYW1qgzcF6iYSKZxLZtgpHZ0PXr1yMTobm5OTY3N4cnTKl0D7Hr7O4zXGQUZSiBisViZDIZ4L0M+MFgQLPZpNfrnVrswtZ4OI8P/eLhvaJh3OsgLA7i8TiDwYD1t99A+h//AQQBQjDGu/Zc/EGf7f/iP+bK//Xr6AIWjguOj49JJpNUq1UmJycJggDbtqP2ZrVaZX9/H9M0uXv37pAYaFnnvo7x1rfnechmj2+/T7a6Jyms15r4zf65i/X48dRHC6kknd4dhwv22Z11+DPjO+xxyds4se6DdtVbW1v85Cc/wbZtBEGIFDMzMzM8/fTT9z0XstksyWSSra0tDg4OWFxcfKQ79s8DJEmKZMsA/X4/Kg729vaiNNCw5f5BXYOw4xAqYYrFIqqqcuvWrWgk1263o89BKIu2bRtJkiKZbBAE0TXrPIXQeFFTKpUAokLi7bUDDjcrQ8mzUeDr3/kGX14eFj7Hx8e8dWefdwYuiiejaTK+JmEJBk/NpZgvxk91VooFm7d3b1LtiFxZLFFIn8/1ySVUZotxjpsyz17K8s2nsjiDYQBb2MmLx+NRYfA3npvgqcU0P7/d4PZWBV3yQNHpdbusHZnEAhM3kEY2wXpkI1x2csQEPdqAiYEXKR4C1+XkxOTk5IQ7d+5AYpYKM7RtkXg8hS97JFWBrGKB3SaZNFi6cJlEIsHdnWNu7ZxQqw6odX0EyQYEcmkVQ5F48VKa5an4Y1UEhHhSDDDcMf3gBz+g1+sN572aRCwWUK+3og5AuOtKp9NRpb2/v4/v+5imiWEYUbSw7Qkc+VOnXLbCkKMOCWz0ERNAwaSAGehMe/skxC7H/jQ94sOQkMAmReN8ZYGqRjv53/zmN8zNzTEYDKLZvO/7lEolDg8PgfOZyyHJcJxwdZ6MK1yE4vF4dJELNcrhIhw6sIWz7nEDGNu2I3nnWSxs/ho893w+r+8xWHuH//u//Uf08zOn4l3DQsz3fb7//e9Hr2d8YQ9tXcPXP37/+H3jOyVFUVBiRerLX6Gw/jrCmYIgEASCr3+Pr3/n3zm1sx5ftMPb2QX7k95VdzqdqDg9exw+CKGCZGNjg42NDZaWlp4UBB8C4QI7OTkZdQ3a7XakvAm7BmFxcLZr0Gw2OTgYKh7Czk2lUiGRSETKlbAbF94WFha4fv16NCq8efNm1MWcnZ194Oeu6zqWZZHUYHkujytfYL6UYnGmQL1e5+DgANd1WbkwxQtewJ+/08ByA2ZyOoulYZLjeGclCAKOD3d4dsanMHWR6WLqvovhuYqbuEahUIjyScJjs7+/H21cvvdcjm9cTbO3vcFvKmClpjCSDtnEBYpJgYVYi1ffvsVhrc+xmUIfeSD4gjQ0YrrPaXHQT3KrvziSFoKByVevTvLd5yZZndI5qR5Flu8dW+SV4yKWcBE1KaI7Jqoi4fnw3acLPLuUZiZvPJaFADwpBgB455132N3dPbWTDReb8GTSdT3SvdbrdSzLik66UqnE/Pw8P/jBD4Zz+SB+KuEQGugM6AcxbFT6DIM6hlBoEKNLhpx/TI80NiIWCSR8Ksxw0b1NTOhhCQZxuuiiFS3IMJzz3r59e/h1IGH6CrrosLOzc64e+iyx6+z3P0kYgzaBIN6z6I6jcfcmdZNT7epwJBPuksMo23Dn3G63KRaL5PN5DMNAFMXI3lgQhGi+HzLqVVVlYmKCmZkZJicnMf6Tv8vdP/x9em/9AmQZ/AB8j/jz3+LSP/zfEB9zH/+QLxCOBkJexYcpSNLpNMvLy2xsbLC+vs7y8vKTguAj4GzXYJxrEO52NU2LxgnJZJJfv/kubUdFBRKahm3bpNPpKIWzUCjQbDajHf/BwQHT09PRNSl05vR9n2KxSDwef59n+B583+fg4IBKpUI+k+bv/PVZOmaAJtjs76zT6/XIZrPMzMygaRrTUx7PLqVp9z0uzybOJcLt7OzQ6XS4dnn5fUnCIe43opEkKcqiCAusk5MTyuUyvn+IruvMllIEbhUhZpDJTWKoYrQAv/zVpyhXT/hXr5bZrXTw+3VSpoJrStF5EnZ0xcCj7E+wwzLB2DJpEcPQFK7NJYnrEpnEIouLiwwGA/7slXWa2x3mJlWqTZvpvEHf8pjO6nz7qeJjQRJ8P3zhi4FKpcLrr7+O53kRIU4QhIhtHZ5cgiBEM1jP88hkhuSxTqfDxYsXmZiYiC64qmCR0X1a5jDsQ8EmIzQQA4cWObwoslYkNMawkTkhh4uKN4q39RDwiLHOZaTARwxAp8cKt9Dd9zgJ4dx/SE4cdSS8AVPeg+ujPy0MjPT7FgIAV1/+NtryNTKZDPPz89Euam9vj4ODg2ieGo42arUaOzs70S6p1+vxxhtv0Gg0otZ7KAMM/RIWFxeHRYDx3kXo0v/6Izq/+ktav/i3OI7LenwC6eW//tgXAjBs9YbpfWflbh+m6EulUiwvL7O+Pgx2Wl5efiyTAD9LCAm3YdcgVCg0m00qlQq2J/D6vojJPAnZZnlC4fLKIjMzM5F6RxAE1tfXEQSBXq9HEASnTK+Oj49xHAdd1x849nswGESBZqE3iG3bnFQPqDQaGIZxj7lWXJd4avH+6YGHh4fU63UuXLjwQIXAg2K8wPJ9PyoMWq0Wlm3xy9s7JIswX0oykx+er4IgMFXK8be/k6beGQYXW/1r1Go1Dg4O2Dus8G5Vp+NotIMkXTJnHlUkFRf5xrXcPbt7wzD4+lcu8dbRNuWmxWzB4G9/Y5r2wGWxFHvsCwH4ghcDlmXxq1/9im63e4o1H5qowPBNdhyHer1OEATRgnPt2jXq9TrNZhNZlvnlL38ZEX0EzyYfbBEXFXwfDvx5bBRM4liokZvVachYhNX7e9HHMPTS8tDR6NMnQSdIo1O55/WEudznEQ8fB4y3zEOjH/+5bxPc+OG5o4JAELGKs9w1A4xREmLoYBju4lutFsfHx5TL5ei9aTQaJJNJFEWh1WrxyiuvcHR0FO2Ke70eqqoyOzvL6urqPUFLIQRRJPW175D62ncIgoDKr35FpVI55X74uKLf72OaZjTqOUtI/DBIJpOsrq5GUbvjSZdP8PEwntQJwwX5xsYxJgaGaLN45St88+sLLEzcf2ffarUiVQ8MP9/NZjNKM30Q4mK1Wo06FFeuXEHTNA4PDyMi5MLCAvl8/kN9dmq1GkdHR0xPTz+w4+hHgSiK0TEMgoBb2zVerxwxnY9z3LTukfS+13kwgCzz8/OsrKzw69/ssParMm63TcUNB/jTAAAgAElEQVQaP79FZAFWpg1eWM3ypYXzi5piWuU//b0LbFX6n5kCYBxf2DM6CALeffdd9vf3I8lKJpPBcZyo0g6Z2bquc3Jygqqq5HK5iLxTr9dxHIfXXnttpHsdiw0NlGGriXnqFBHxsFFO5VyPPRvCGMz37DTfg4sGCPRJIuHSDtIk/dY9yVtn/czPIx5+VJw1TAklZ+GxDOf34ZhlXPNtGEbEqg7nm6HeX9M02nGfwX//nw/HBSM1QSCKoOrE//AfcjE9weHhIQcHBxwdHbG/v8/i4iJLS0ssLCxErcIwMrnT6bCwsEC5XOanP/0ptVot2g3rus78/DxXr16NEgofBIIgMDs7y9tvv83h4SGrq6sP7dg+CgwGg4ggeR434sMiHo+zurrK2toad+/eZWVl5UlB8AhgGAbThQSllAJ6icmMel+yXfjejptFAZTLZfr9Pul0+lw1zThc12V7e5tWq0WxWGR2djZSR7muy8TEBJOTkx+6GxSalxUKhftamz8KCILAwlSO1QUv8onIJd5/UQ6VGV995iqNoMh+3UQ97HJ7vx/1b//wd+d5din9gQqAYlr9zBUBIb6wZ/Pe3h63b9+OFAAhGSdcOMJFLPRvDz3LQ8nW2toanudFjnNhct64j4AYeKOcbxgQw48W/HF4vBdVO4SEiTcqAIZ4L3RDwKNLjB3/IoIgYNCLfAjOGhydHRGc5xgX3s5avoaL/TiRMByljP8tURQjslyYZBhmBUxOTkbjlFCimEgkKBaLZLPZ9xan/+iP6H7laxz+039M7/WfEEgyPPNNOi/9Hn05gd/pkMvlSCaT0cJfLpdZW1vjy1/+MtPT09y6dSuSwwmCQL1e56c//SnNZhNRFInH41y4cIHr168zMTHxkWbfhUIh8jeYnZ0lFot96L/xSSFM5gsLtHF81KIgFotx6dIl1tbWWFtbY2Vl5b6x0U/w0RG4JpeyHYrTRaYzHVTJZxhpfS9CGXE4OgiVNIIgMD09/b4FW7vdZnt7myAIWFpaQlEU1tbW6PV6ZDIZZmdnP5QcMkS/32djY4N0Os38/PyH/v2Piw/K+3iQ39OVaV653eCd7Q7ffirP1y7nPvgPfMbxhSwGut0u77zzDvV6HdOFvqOiYnF8fBxJcWYXljisdbFcsAdDfb3nedSbXTwpRrlcw+4PtcBD0knsPYfBUat+gI6Eh4hAjD4mMi7CiJASjN3e+7CKWChYI94AY98TCHkGQzVCAj0YsmAHQQxNFtAEi3xcGy3kBp7nYVlWpIgIiXTj8rbwdY1bwY5bxIaFQiiBC2WVoavhMIFLiMKfMplM5F+vjYhPruuSy+UolUqnZvLjSDz1Iqv/9Z+cui90Rmu1WlSrVVqtFslkElmWabfbHBwccHh4GFkkr6+vMzc3x87ODuvr60PHtHicpaUlnn322Xs01h8Wuq5TKpXY39/n6OiIpaWlj/y3HjV6vV6k6hBFMSKMflwCoGEY9xQED8t17wmG6Ha7xDWJ1bksnudFnbCzCGW/pmkyMTEBEJmelUolisXiuX8/CAIODg4iee7MzEyURHoeL+DDIDQP0nWdixcvfmq+FB/kE/Egv/e9r07yva9+ummenyS+cMWA67q8+eab7O7u0rd9ds0SXUchodjM61Vk+ihGks1ujq2myEazR8mw6faSOMis3bRwBR+dNFNiFzdQOPDncZGJCUPjoFA5IOOSooGLPCIDJhAwcdAQAR+J4FTUpoCOjURAgI2HgBuNDUQ0BqRojuw2VUx0jKBHI8gjCClUv0dKapMdGYNomhbJcXq9XuSpPh6/Ot5GDnf54wt/LBbDMIyhgc5IIhiGwKRSKQqFQnThEUWRer0ezdWbzSbFYpHr169/pF10+BoKhQJLS0vYth1FMVcqlYgrEI56BrbPK2/dRfL6GKrI8vIyX//616ML5cNAPp+PQqzC8KfHDaHfQlgAjLd4H8bFWdf1UwXB6urqk4LgIcH3/YjYGo6mtre3yefz5xLwQsOrdDqNbdscHBwgSRJzc3PnFn6mabK1tcVgMIja92tra4iiyPz8/LlR3w8K13VZX19HFMUnypPPIL5wxcCNGze4ffv20JVNSWKaOrrYxxaT9P0urucTI8F+rY/k2VTIU+5KQ/vgUdZVIajSJ8YgMKgGkzQooGLhBjIZ4YSiUOaQefqBTpUrMMoeGC7mA3oksdFx8AmiDoCAiINODwd9NO8f5hV4iBh0mGMLTXBokcUMPOJij1jQoSfm+dKFKXbKJwgqpNMpTNOMvPnDeX6z2cR1XZLJZGQrHM71dV3HMAzS6TSGYUQ+7OPGJ6Gnf6lUOkW6M02To6OjKKchnU7z3HPPIYoi29vb3Llzh/n5+Y9NIlJVNZIWXbp0KfLe393d5bU332V9T8B0DZKKyz/4D15m5eLDb1GG44per0e5XD53x/ZpIxxdwXBxkWU5Kvoe1k5N07SoILhz5w6rq6sfqaX8BKcRFnGqqhIEAfl8nnq9zu7uLlevXr1nge33+wRBEKVytlot5ufnIxnjOGq1Gnt7eyiKwsTERMR5KpVKTE1NfSyViO/7bGxs4LruPbboT/DZwBeqGLh16xbvvPMOlgttR0URHTQGWHIKfJ/1bg6fEsZJH5E2feIEiPhIo118gI9MgyIJ2njB0DhIxaJLChmLml+kIFZxAhmLGBYGKiYmIh4yXdI4oxCNYEQYFEbdAIMBKh4xmhh0qTExctkWUPDokKUjSCi+yYRQphVkaJNFUBJsHp1gBD0GnSqt1tCVMLTs9X2fTCYT+SOk02kmJiZIp9Nks1kMw4hMgWq1WuSzHovFyOVyXL58mYmJiVO74CAIaDabVKvVyAmtWCxGTmkhrly5EsUWt1otFhYWHpo0TZZlSqXSsDi5cI3uj3dYv/kGfV/l9XfvcmFu6qFflEL2t2VZNBoNpqamHiiG+ZPEYDA4FZgly3JkSfwwCwJVVSOVQVgQPG7H4rOGXq8XSZxD0uv8/Dw3b97k6OjolEwwdP2UZRld13n33XdRVZX5+flT77Hneezs7HByckI8Hsf3/Uh9MzMz87HfsyAI2N7eptfrcenSpSefgc8ovhDFgOd5rK2t8c4779D3FF4/VrC8ofNUKqjQRKdNGosYMg4mBovCGjmhRs0vUWNo0ykQIBCQ4gRF8JAEDyPoYY529xJwQo5sUEce5WfL2Dgoo5BLF4fY6G95gI+Mg4KDTh9/lIrlojAggYOKPSISBoBLhpLUxBVj+EEH2x/aFYuSwdNzMYqax9G+HFkUh23/0NDk+vXrbG1t0W63SafTkcNcu92OfieXy7G0tMTk5OS5RiWu61Kr1ahWq9i2HRHzQse6s5AkKdIY7+7ucvPmTRYXFx+6NC+XUFmcyiAKz7F95002br3JX2gOL7300kPVN8NwVNBoNKKL6oULFx7q3/+4CMmD45yP0DArdJl8WDivIHgcRyefFXS7XWKxGKIoRsWcrutMTk5SLpfJ5XKnjm+/30fXdRqNBicnJ6ysrJya93e7Xba2trBtO/LcMAyDlZWVh3Ze7O/vc3JywtLS0gObGz3B44fPfTFgWRZ3795le3sbN5B4t2pQ9XR0LPxAoE+MNtmR/l/AGUVcyoJHUuxgCAMyfp3jYBJXSiNJIrLroQc9DKGP7wfUKRAADjIaHm4gEaeNg4yFjoOKN/IREPHxR5laIhYaFjYKXdK4KHTIYNAZEQ8D3FEXwcABJBwpRV6zmFYVBFOk0TeI2Sc49UP0hRlSqRSyLPP0009HCYKKokSzfFEUI5ONqakppqenI5ldOn1/85Ber0elUokshXO53IdyNsvlciQSCba2trhz5w5TU1NMTU09tF3qe0zgNIOnNP7sXx1x48YNgiDg+vXrTE9PP7THSqVSURu3Xq8zNTX1WLXIx2WFIWlwvAB42KQuRVHuKQgeZ6XF44zQ4Q9Om0NNTk5GI7HV1dXoPRwMBkxOTkakvTDSOwgCjo6OODw8xHGcaFT0cXkBZ3F8fEylUmFubi7ySniCzyY+t8VAz/TYLZ/Qqu5h9dsIgkBr4NPqWugIuFKcuOihqBqBL1EdSIj4iPjk5DbFhIRvqwiOQ1ZokqKLK8ZQRB9bAtkfBmBscYkOSQQCAgR0ehwwPwrFENEZICCg4EQyQ2lUGsi4mMQQ8XBQkPDwERgQJ+xDDPUH4EtxSnKDWa1GKSkxPzPN04kMa1tH+KaJJgscHx+TyU/S6NoMbJ9er0KtVqPRaOB5XtTifumll6LEvsuXL1MoFM49hr7vR17q/X4fVVWZnp6mUCh8JI15uIssl8scHh7SbrdZXFx8aAtpxAQuLOD8zu/wwx/+kLW1tUiL/bAeSxAEcrkc1WoVSZIol8vRRfjTRijvDIOoQk5IiEfF7pZlOSoI1tbWWF5efuyNmR43OI4TddvC8V6I0PhnbW2Ner1OoVAYRqCbJkEQ0Gg0uHr1KoZhYFkWW1tbVKtVgiAgHo8zMTHxsXkBZxGGB01MTEQhR0/w2cXnshjomR7/54/ucuPuAaWUwpX8ADHwqFfLKEIRWQVDabMYO8FJLNINEkiVHvgmetDjry2KTOUvMxgM2Nvbo2d59B0R3R8QuCbyyL+67aew0FFwMdFQsfCQGBBHxqFHDI0BPiIWBiIe7tgoAAQ0BrjIiPh4yAQjNoGGhYuMInhoos9kwuGpgo0hDQ18JicnuXDhAorgUa8PW/G/fusGf3GjRd9XuVN9m+fmoJRLcfHiRUqlEoVCIboYXL58mZ/85Ce88sor/NZv/Ra53Hs6WsuyqFar1Go1PM+LLGlTqdTHXkwEQWBqaopUKsXW1hY3b958KOTCs7h27RrNZpPXXnuNzc1NJEnCNE0WFhbOJVd9WISqglQqFXUHHgdG/WAwiNQe41bEZ8OZHgUkSWJlZeWUdfFHlah9ERF6lYTFwFkkk0lyuRz7+/tkMpnIGr1er2MYBhcuXKDRaLC+vs7JyQmJRIKJiQlmZ2cf+hw/HD/kcrkHtjt+gscbn8tioNG1efPmDk6/zno7hlM9BLvDrjWBFUgYvsmEtwcDl4sTaZQ4LCtVytUGgtuj21C5XR064VmewJ41QdeV0YIB+eCQajBJP4gxwBglZktIo6/aZPERRgFFAi1yGHRQMBkyBRRcBEQEbHRcPBRskrTwERmQGGVwy+R1l2eKbUS3j+q1SRs5stkJms0mt27dYmNjI4obVRSFeGYCtSeTEmxMX+WF33qBxcnzL8aqqvLyyy/z4x//mF/84he89NJLSJIU6fklSaJQKFAsFh9JCzwejz9SciHAiy++SLfb5fbt22xvb6PrOpubmxQKhftKrx4Uob982IY/Pj5mbm7uoT33j4p+v49lDXMrfN//xHMExguC9fV1lpaWHjpn4/OKbrcbhW2NcwbGMTc3R6vVYn9/P/KSsCyLq1evsrOzw+bmJkEQMD09zcLCwiM59qZpsr6+TiKRYGFh4VPzEniCh4vPZTGQNiTyCZEaWVKiRUaVOOiJQ79vwcTxdUzHRxM8Kkd7KEqZbreLP7qIdjwrcuNrmjItd6jx76OhCwlMDCQ8HDTSVOmRZoCOi4aLzDBNQETABQRcVHQsnMhsSBrZBzkEyFhoI8vh4e8pWMzELZ4utpjL62QyMzhOiXK5TKPRIJVKReFEoSzwa1/7GqqRQnu7wd3dKkrzEE14fztiTdN48cUX+fM//3P+9E//lAsXLpDP51lYWCCXyz1ynfCjJhdKksTLL7/MYDBgf3+f9fV1rl+/Tr1ep9vtcvHixY9Fdsvn8xwcHFAoFKhWq0xOTn7qkqowbRNOywrD+x6mmuB+CHXmm5ubUUHwfnyUJxii1+tFn/3Q/fMsZFlmdnaWnZ2dyD+kWCxydHTEyckJ+Xye1dVVisXiI3mfHcfh7t27KIryJNb6c4bP5TvpuA6TRp/LuT4r6TadZg1ddMjFwFNSKOLQLyAIAgaDAZV6i0pfoeXGsT0xMvIwTZPAsxEDj0GgowYWYuChBsNxgIrJgBQ22kgCCEOnQAkIIkOhGH1kbAJExBExUMBHiGSDDj4CEh46PbJxkacnBlyez7OyskKpVCKbzTI9PR1Fdy4tLUXfC4KAvb09DFXgu88W+Q+/tciXJ2yq5f37HqN+v8/Ozg4bGxtMTk6iaRrNZpOpqSkKhcInepLncjmuXr2KqqrcuXOHw8PDh8Z4j8VivPzyy5RKJSzL4saNG1HL9NatW1Sr1Y/1vIHIICb0Y/g0MZ5U6LousizfYyH9SUAURS5evEg6nWZjYyMinj7B+QiCgH6/f4qQe79zIJ/Pk0gk2N47ot4XqDd7dDodvvSlL/Hiiy9SKpUeSSHgeR7r6+sEQcDKysqT9MrPGaQ//uM//uNP+0k8TPRMj//nF7u8cqtKvevjtw/AsxCFAF2waFgati9hBxq638ZxA/a9WQ78BepBATdQiAsdhGAYCXwcTGMLOsJopt8jiYhPSjghTZMeiVHmwPDmEwoBIUmTLHUUHBTcUdEg4SGRpINOHxEfd0Qs9AmQ8El6VVLeEULgRYSiubk5VldXWV5eptvtUqlUIuVArVbDMAz6/T6ZVIKJXJJO64Rqtcry8vKpQKGTkxN2dnYilvHExAQrKyvMzc1xdHTE8fEx6XT6E2eDh1nlgiBwdHREu92OrIc/LkInxXq9jmmaVCoV5ufnSaVSHB0dYZomqVTqQy+UkiTR6/Xo9/sRoTB0Yvw0EBaFnU4H13VptVoYhoGiKNF9IQn0k/CMFwSBbDYbmVKFxlZPcC8GgwHVajXinmxvb6MoCrOzs/f8rCAIIGn8ix9vUXMyJIsL/P63X2BmevKRffaCIGBjY4N+v//ES+Bzis/dmKDRtbmzd0LbFDFJYgrTzItbyLgMbA9fkDAwo4hfYGQuBCDQIx5F/4Y5A2pgUaeIi4TOgB4pBoGBwYAACQcdEY8kDTw0LIZZB0vcIRBkzEAbFREeCg4aJioWSdoY9NhkCQ8VD5UADwEBWRr673e7Xfb391FVlUwmQ6FQYGJiAkVR2NvbI5VKYXsClU5AKieytrbGzMwMs7OzUZZ4KpWKvAFCB8KLFy+SyWSiQiGbzfLMM8/w1ltv8e6773Lt2rX7eps/KoyTCzc3Nx8quXBxcZFWq8Xt27exLItXX32VF198kYsXL7Kzs/ORRxT5fJ7NzU1mZ2epVCpUKhWmp6c/9vP9KAiZ5WF6ZmhFHBIIx2OMPykIgsDi4iKiKLK1tYXv+/dVr3yREcaoh0X4B71Hb9xYxyLG0lwGIzNF35V4dCHBsLOzQ6fTYXl5+UlB9znF564Y0EWHXrOCiYGCjR2owxQ/0ScmeOj2vRG/MXqYxAgIiNOL7g8jgYfSQR8de5hGiEuMAX3ikQOhi4KIQJIGcaFNjB51JmgERTxERAKy1OljoOLgCfLoMRzkIMBFRARimooWmySWUTAYOgGGAULlcpmDg4NTxLDNnUM2uhmkrsuR2eflq1neurPPVD6J7/u8/vrrUds/n89TLBbvezJPTExw9epVbt++ze3bt/F9/6H6+j8o4vE4V69eZXd3l+3tbdrtNvPz8x+7LXn9+nU6nQ6Hh4d4nsevfvUrXnjhBa5evcrm5iZ37txhenr6QwUapdNpJEmKImArlQoTExOfSgs19BcIPQaAKI1yvOX8ME2HHgSCIEREs52dHYIg+MQLzccdvV4vMhsC7pEWjuPg4ICDrdtkDI10aeGBYno/DsJNRcjveYLPJz5XxUC/3+f1V39BNjhEZB4LFQkHMRgqA/AsikKZHgnidKOI3xlxj7TfxEEmKbSj+8NI4Exg0AgKWBjEgx4SLo6goAYmA3TEUbKgiokrKCTEoUSo5yWiRd4DLEHHCEwcVJTAxhIMFLnBgj6gQYqBLZBLG7x8fYJ/9+kMg85J5O5l2zayLEfz6X6/T6/Xo1Pt0/c0YuYJ76yZrG0doOpJDLHMrHJCvdWjtHCNpbkSqfgHXzBmZ2dxHIetrS02Njbwff8TzSMPIUkSi4uLpNPph0YuFEWR559/nh//+Md0u11c1+XVV1/F930uXbrE4eEhh4eHkSfBg5ABRVEkl8vRaDS4fPly1B34NI5Z6FPv+z6O40TugyEZ7ZMgD94PYUEgiiK7u7t0TRfZyHyoiNnPM3q93imS5f0IhJVKhYODAxyzw7euFnjq+clHegxrtVpkg/yw5b9P8Hjhc1MMnJyccOvWLbb3y+x2U7iIyLiIOPiChO9bmL7GYTCPi0KfBFPBQbTwd0hhYmAGMaaCA4BhRwEbQxiQowYIGGI/+p4YeBhSQNPRUZDxkZEDB9vXkEfdAgcdAY8JjimKZSQ8NrwVOqTQgwGTuQSGdgK6hKzquLZJetCgVb9ILpfjK1/5Cv1+P3IQDC/42WyWyclJJmZcejc7dBwF+h16lo8UnNCUDJK+zHFLp/zqMZdrAr/33OQHXjQEQeDChQs4jkO5XGZ3dxfP886dXX4SyOVyxOPxKPDo4zoX6rrOCy+8wM9+9jM0TcM0Td544w0ALl26dMr/4MKFCw/Egs/n81SrVUzTpFAoUKlUKJVKn3h3YDypMFSanOcx8GkywOfm5jBd+H9f2ccWTliayfHdZ4tf6IIglAeOkwfPKwaazebQ96TXQxRFnnvmy0wWHl3LvtVqsbOzQ7FYZHLyixPl+0XFZ74YCG03t7a22N7ept62ML0EAiID9KGtb+BhBhrb/hJt0hiYIHAPN0AJHDokSfrJqDhQsSAAWxjmABhCH1lwh86AokDe20UXE8i+TZUp2mRoB2lStFAwKdJDiWdZ0gbEgoBaV0T1LAz6eEhMzV7g4lSScrmMYQRIUoxWq8Wbb74Z2f1qmoaiKORyOVRVpdFoUKlUcF0Xy7KYFBymkmliBYlDu4AlxElrPtPxNPVtB99s8Zt1n8W0zTOXZz9wxyuKIktLSziOQ6vV4vDwEN/3mZub+1R2lpqmPVTnwmw2y1NPPcUbb7xBOp2m3W7z5ptvEgQBly9f5urVq2xvb7O+vs7ExAQzMzPv+7rj8Ti6rlOv15mZmaFWq1Gr1T7xEUuYSSCKYlQMANG/n2ZnYBx6soAtdFCCAZsHJzRW0x8pe/7zgtBsaLzrdXZM0O122dzcJJPJsLm5STqdfqQLdL/fjx7ncfDPeIJHj890MeB5Htvb2+zu7lIul2m1WuAMiCkZ+r6E6nXRGeAIGlV/gjYZQBjO7QMTMRg6AnqBhBw4NMghIFALinhIGIJJb0QuTNCLSIcyw26C40sc+bN0SaJh4hK24QUcMUZac/FRWZzUEaotLNdCDnxSikXf14n5Pdw+PP/8b3N4eMju7i6ZTIZEIsH+/j5bW1vouo6maQiCgOd5KIpCLBZjdnaWIAjY2toi5vtks8Ni4aKk03chl9TxXJmd1oCjhslM3MHu1rhxo0mxWIxIiPeDLMusrKxEhLtKpYLv+5+ayUhILkwmkw/FuXB+fp52u83du3cplUpUq1XeeustgiDgypUrLC0tRS3ZTqfDxYsX37f4yOfzHB0dRc+pXC5/osoCx3FwXRfHcRDFoTx2vAj4pHkC74dcQmVpJsfGQQM16OKZLeCLXQyEZkMhxt+z0OQnHo9jGAatVovnn3/+kT2fMM9F13UuXrz4WBSQT/Do8ZmVFtq2PRwLbG8PE7vafRo9n8AxidPBDWTEwCUm9NAFk3aQRSDAQWEYPOwyCGKcBHnawTBgQ0AgThsbHQUHV1BGREMn6gxkhCaiMKzYW36KbZYxMRgQI0YXT9CQZZmpuMVKqsmV+Szm8W08q4fnecgivPT0CgyqyGaFjukxPzeDa5tUq1WOjo5IJpOkUqmojQ3DxWZqaopSqUQqlYrkhd1ul1wuRz6fH5rMSJCOKSiSgIjPRFJA81ukaZBNDQlK7Xaber2O53mnSEtnIcsyyWSSZrMZyehM0zylQvikoaoqhUIBy7I4OjrCsqyPJAsEKBQKtFot6vU609PT9Pt9jo6OEASBUqlEIpEgnU7TaDQ4Pj5G07T7ki9VVY1+JiwGFEX5xFLcer0ejUYjaiGfnJygKErUVQpDqmRZZnp6+lPd7amyyELRYHkmxcW8QLNWRlXVL2y4UblcjhJDQ+zv7+N5HjMzM6ytrUXF+WuvvUav1+Nb3/rWIxlDua7L3bt3EQSB1dXVhyLtfYLPBj6TxUCn0+H111+nXC5jWRa1kw4b3SxbLZ2mmyDun5ATGxiiiSFYyIGJjYaDPMoLtFFwOCFPn8TIGshHxaFDFheZGH0mlQo5oUZSaBMXumSEZsQxAOgESRqURnZDIgtalS9NukyobSbUJiuLMzQbdQ6rbUQhQMQnk8nwN7/3uxwd7nOzplFz03QdlZmswszUsK2saRpPP/00y8vL0U7c8zw0TePk5IS9vT0GgwH5fB7DMFhdXSUej0fBJc1mc+io6Psk4jpThTS9TgvHcej3+9i2je/7dLvdKIr3fkWBqqoYhhH5n3e73aGfwadYEIiiSDabRdd1KpUK9XqdeDz+obMBwkW/XC7T6XSYn5+n0+lwdHQEQKlUQlEU8vl8VHzYtk0ymbznWEmSFB2biYkJLMui0Wg8MgOYszg5OaHT6dBqtVBVlXq9jq7rkbVtpVJBlmUkSfrUiwEYFgTpmEI+m8Z1XQ4PD9E07QtXEITeEGGqZ4i9vb2o0+N5HpcuXcL3fV555RVmZmZYWVl56M/F933W19exbZvV1dXHKonzCR49PjPFQM/0OG5aVI7LvPHrV6m3etS7HuXDQ7q2wLGVoetIdEjhBgpJsUPNK3ASZLHRSQUN6kyOdvGJUa6Ago6JjUqcHgla2GikaRPIGnE6+MHQGVATLETBxw1kTHQEAhKagK0WsR2BhGjx/HICxW6QkG0MXUXWEvxiy+PAyuKICTLKgIsX5nnmmWe4cXef3baG7PVJlxZ44UsLzE8XKEHAsyAAACAASURBVBQK1Go1TNMkm82iaRqFQoFOp8Pu7u7/z96bPbtx51l+n1wAJJDYgYu74O4LSVESSbFE7erSdFVPV01Vd030eKI94aeO9oPDD47wP+Dwi9/84nCEX/zS43A7Jhzu6omamq6u6mWqulsqqVpFSSUud98v9j2RiQSQix/AzOIVF5ESJZISTgQYuPcCyAQI4Hd+3+/5nuPHkM7OzqLrOu12G0VRUBSFXC7HzMwMExMTvtFMrVaj2Wz6wrL5+Xkcx6HdbtPpdDAMg1arRafTwXVdwuHwHQudoijIsky9XieVSvn+B8lk8rGK0cLhMKlU6tQCHo1GH2rxlWWZTCbjpzjm83m63S6lUgnXdcnlcj75CIVClMtlGo0G0Wj0rm2WSqXiO8SVSl/ejrdarTIcDmk0GiCFOCx3iKkRggEJQRCo1Wo+GZienv5STIceFPF4nOFwSKFQ8DMfvi7wzIZmZmZOkdnj42MqlQqJRIIzZ86gKArXrl3j5OSE119//ZEHQHktR03TxhHUX1M8FWRAN21+crXKf357g/c/3iXoGmy1VH5z2KM7lEkEeujE0EgQkYbIoktQtGm7CQTXRkelS5wuMVykW4mBrm8hnKSJhEOXJDYBRBECTo+eE6ZFBtMNowo6DiJFJ0/TzSKrE8zELJTeEamwzbkzK9w8amPYQVRBJxFT6QzDbGoZBo5MX1BJBbpcOr8ycvsrnNAyoN61iActvvXiCkF5VMYNh8N+uToUCnF8fEy32yUYDPql54WFBSzLIp1OMzk5iWma1Go1Wq0WlmWRSqVYWVlheXmZSCSCZVkUi0UajQayLPsug4ZhoGmaP63QbDaRJAlVVU8t9Kqq4jiOL4zzCMTjJgTeYg58ZudCRVGIRCIcHBwQDAbJ5XJ0u13K5TKO4/jxrJFIhFQqRbvdplQq+a/T7Y/jleM9570vqzrgiTyLlQYfFgPsNSWGUpxM2CIgCVSrVQQ5TM9VmJ7MsbT45IjCBEEgkUj41ZdwOPy1cbjzPkefFOd+/PHHdLtdXn31Vf+z9/bbbxMKhXj55Zcf+XkcHx9Tr9fHwVJfYzwVZKDc6nN1p4Mw6KLbAS48e4aemMY1W6iZWb77Oxf59stnQAoTCkiokknYaVAaZGiToEuCLuotl7/f5gaICLiIBDExiN8yDZaZcAskxDZtUoTo00dBFbo4gkwvlCcVU2j0JByjwlRC5g++/30K3SBhachJ3SAVHLK2lCeWzbNecpADMo7tMBFo89Zrl0kkErQaNVRBx2wekZbavPnabwVBiqLgui7r6+uUy2Vc1/XtiDOZDPV6nXK5TKvV8k1yMpkMk5OThMNhbNum0WhQrVbpdDqoqsri4iJTU1MMh0NUVUXXdXq93qn0vW63S61W4/DwkGKxiGVZxONxvzcZi8UwTZN6vc7c3BzNZpNWq0UqlXqshEAQBF9n4b02D7sj98KfDg4OSCaTJJNJDMOgVCphWZa/oHvkw7ZtisUihmH4mgVBEOj3+7RaLXK5HIqi+DqCL3Kn5TgOx8fHOI5DoW6wWXERLQ1bjpEKWUQCLsVKg5KbpzpMMBSjXDwzQ1B+cqJJBEEgmUzS6/UolUr+FM1XHV42hkc4YWQqtLe3h6qqPP/888CI7F2/fp3nnnvukU8RlMtlisUic3NzYy+BrzGeCjIgiyLFZp+hEObs4iSvPTtFU7cJqFnW5rM8Nx/lcOcm1f0PGLSOyMhtZmYXsUMZWm2NHhECWDhIiFi4jJIERuHDDjI2QySsW5bAAAkaWATpo6DQIyN3WJqfRU7McKNo07MkpECQ73/zEsl4hO2Czq83KyiCwbdeXOSN116hUS0iK1GUsAraIflIl7d+5w0kSRqJ+GplJLeP1m7y0ksv+YuuJ1hrtVrAyDnP69EHg0EymQyNRsOfPkin034IjVc6n5yc9HvbnU6HarWKYRi+j/6zzz5LKpXy3Q3D4TDJZBJJkuj1etTrdQ4PD9ne3vb70IqikE6n0TSNZrPp56c3m03/vo8Tn1dcmE6n0XWdo6Mj8vk8kUgE0zR9QjA5OemP5yUSCVRVpVqtUqvViEQihEIhJEnycyNUVcUwDN+d8IuqDhiGQa1WYzgcousaxUafnhMkowrMxS1kSeCo2qVupwkKJm4wwXMrORKRx5uw+El4WQaekDMajX7lCcHx8TGxWMz3s6hWq5ycnCAIApIksbKyAsC7775Lr9fjzTfffKTJmF5WydTU1GMxyhrjycFTQQY89fH8hMKFhTjJaICZlEzQatE+/g0fvv8uhUKBiBLkGxef4bnz56hVSuwU2jSHEYYEsJFv1QEcYhgEsVHDQdSgQNytIzsD+kQQsRkQwkFiSjwhJmpMBLsszk2TiKucnBQo9mKIAkjhDDHanBwf8vfXu3QGQaLxFP/uOy/SNzoY3Q5vfmONdLBHY+99ZibTXLx4ERhNQxwdHZHNZikUCv4Xwu7urr+YPPfccwyHQ1qtFplMxl/UvKxzz2Sm0+mc2sEDfoshHo+Ty+VIp9P+dMLBwQH9ft+3KE6n0yiK4gsJJycnSaVSAH4/fnt7m8PDQ78Mb5omuq4zlV9g96RBs1Enm04+dvXx5xEXCoJAJpOhVqtRKpVYWlpCkiTfgGkwGPiEADhFjjzNgudG6DgjsWgoFLrlIfHF9cI7nQ7tdpter4fWbhIYNkiFhszGLGKRII7jUK9VMFHpOSFycdlvSz1p8CoEXpsmFos9tDD0aYFlWZycnPgVvVarxf7+PrlcjuFwSK/XY2VlBU3TeP/995mZmeHs2bOP7PjdbpednR3S6fRj8xAZ48nBUzM3oioSqhJG0zSu3tji5s2bNJtNBEFgYmKC559/HkVR+Oijj/joo48AOD+dx20p1GoVGm6SJC2EcJbVuTnioo5evI6hNQkLPSxRwnUE2qQIY2Ih4wgSUclkenIaVVWp1WqI7oicxOMJQkqQ/GyKw2KDgeAwkwngBmIc1EzUQXVUbo4qWFoJ0R2cCrDxBEBLS0tcvXqVX//61wD+dID395WVFdbX19nb22NlZcX/wGqaRj6fZ3p62g/1WVxcJJlM3vX180SGExMT/m4rFApRrVZ9/4JkMunHOruuy+LiIktLSzSbTer1Opqm+ecSDAbRTYvC+w2C8SlCrg7uOheefTISzTznwr29vYdyLgyFQrzwwgu8++67rK+vc+HCBd/Kd3d3F9d1uXTpkv84wWDwlCGSpmnE43EajQZzc3OoquqnI35RExiGYfjixl6vhxIQSIREbNel0ZOIyC6iO2Q2WIJAjHnVISDawJPp+ieKIqurq2xtbbG9vc3a2tqXNqL5ZcIzG1JV1TcVSqVSfuiV5zOwvb2NbducO3fukR3b8y6IRqOPzTtkjCcLT0VlwAvpeffdd3nnnXfY3d3FcRxWVlZ46623mJmZ4caNG/zq1x9RavWZyKSZzU/TrJcp1XVcUSYaVliYzzOXBKHya8zib5CHTULCAFkCCYsoGpYbQMAhIhikpTarK0t+qIogCFy5fBGLAHIgwGzcYTk1RHT61PoRhqLKVDLEG2sKWqvG/Pw8oVCIv/2HX3HcFnn2mXPMTo8S2yRJYnt7G0EQOD4+xjAM3nrrLRYWFk6VRm8XFMKIRDiOw+HhIdlsllQqRSaTodfrUSwWcRyHWCx2zw+3IAgEAgGazSYLCwvMzc357YRut4uu67iu6+/GhsOhn5joeR9452+6Cts1AXfQQrcCpEIWA6NFIpF4pKXMz4rPKi70/AS8Ec7V1VWGwyGu6/rjrLeHGX1Ss+BNacTjccLhsF8diEQiXwhRKpVKiKLIwcGB7zxoiRGuliMcawG0gQRGGTUkkY6FiEYUksnkA1ktPy54LYNOp+Or6p+E99SjRKPRwDRNMpkMW1tbRCIRVlZWEEWRUqmEruvMz8/z7rvvEgqFeOmllx7Joj0cDtnc3CQQCLC2tvbY23tjPBl4IslAtT3g+pGGNehROjngH//xH7l69SrVahVVVbl06RK/+7u/i6qqfPDBB3zwwQfUW13KzNGRpqh1bdqlLYZml9l0gJe/8TztvszWYYVO7YT48HhkKSzLxONxdNOi5yoEBIuk2CIqjjwF5vOTTE1NIcsyw+GQixcvkk4l6Fa2WcgGeOWZCTLJKLJg8+2XVjk7l+A7L0zQ10aioNnZWartAf/HT48p9DMjQjCnEosE6XQ6XL9+nX6/TzAYpN1uc+HChbsqeRVFQRRFf/TKtm3f+jYQCPhhObIsP9Ci55Uku90u2Wz2jnZCMBhkOBz6hkde+I2nWQgEAliWhSjAUIqiWwEUdCZCBl2tRalUIhaLPRG7uU8u1JVKxfdOuB+8yszh4aGf12CaJoIgUCwWMU3zjnRDT8/R7/c5OTlB13Xy+TyhUAhN09A07ZGn9Xlz6oFAgJ2dHUKhEENH4p8LQY4NlUF/gGW7hOwWiUgARVH8llMmk3miFwKv5dNut6lUKiSTj78N9ShRLBaRJIlqtYokSacW5lKpRLfbJRwOs76+zrPPPvtIevq2bbO1tYVt25w5c+YrR7DG+Ox44shAtT3gf/2PO/z4vRP+y9Uj6vsf4Ay6TE5O8tprr/H6668jiiK/+tWvuHr1KrWmRiA6wfzqs+zWXPqdKi3DJRtxuPLCs3zr936fn6/3+YebbUw3SI8I2ZDOhTNzRKNRTko1TqwZmm4W0w2TChgEXJOJbIrnnnsOTdMYDocsLi5iWRb1eh0Rh9euXCKTTnJ0dMTU1BRzMznyGYWgNNq1T01NEY1GuX6k8U/rLWTXoN2DdnGDneu/Yn19HV3XcRyHiYkJCoUCrVaLbDaLbdu+gMhbbKLRKKZpUi6X0U2LcmvAbH6GYOD0+N/ti57XGvgkPD3B3XarsiwTjUbJZrPkcjnfjMiLxbUsC9d1CQQCyCKE7DYx2WQpIxINj1IVu90uh4eHGIaBLMs+mXmc+CziwlQqRa/X4/j4mHA4TD6f959TqVTCMIw7Wg8eMQPY29vDsix/jLNcLvs5Bo8Kg8Fg5H3QNtg9aZKMR6lrffYaIgICJgoxUSfpVkjERgp9r0dtWdY920pPCjxC0Gq1qFarXxlC4E2ueCPDZ8+ePbUwVyoVWq0WzWYT0zR5/fXXP7d2wnVddnZ26PV6vnfBGGN4eOI+VevHXbZLPbqmg+0qlOLn+fabizyzlKPTrPB3f/d3HB8fY1kW0UQGM7jKkWax/ZsShqEzcILkswr/6lsvElIzvL/d5Mb+KHEQQJJD5GbX2D7ZwezU/JCiEH0GYoyGpZNTZF555RXW19dH1sLT0ziOQzabZXZ2lv39fRRF8bMDbtcC1Go1X4gGsJSLsDidZq8ok1VhcUIhrkyhqirFYtHXPcDIdezdd9/1H0uSJILBIKFQyL8UKw3eOygjRbLU7AK//0KGeCToR9WqquoH7ezs7JDL5Zidnb2jvBiPx4nFYpycnJBIJO5afpRlmXQ6TTqd9kcPW62Wb1jkOA7JWBjFNOl1mxiaSygU8p3UyuUyhmH48/nZbPahTYEeJW6PRfa+iO8XiyyKIufPn6fX6/ne8IuLi+zv7yNJkm8Cdfny5TtIxcrKCo1GA03TuHnzpq8fKBaLj7Q8bxgGvYHD//ePe2jDCE0xit2qoAguuBBBY5qROt1wVQQ7SN0QmF3MUa8WmZqaeuIV+54V78bGBpubm5w9e/apFxX2ej3K5TLpdJq1tbW7Ph9vTHV6evpzRXd7ODg4QNM01tbWvlbGTmM8GJ64ykBLH/BPN1sMLIFQQCKoqGyXuvzkl7scbn1EX6uSSCS4fPkyy+dfZKPs0Cjt09Jt1tID/sWLK3zvrRd4b3fAf/j5Ab+8XmQwMEGQEUSJuNynVm9xYqj03TAxYZRF0HPDmG4Q0w0TnT7Pwd4WEkNWl0ciuuXlUaRwv9+n2WwCIxX36uqq/0F2XZf9/X0SiQSJRIJut0uz1eSg2ELv9VjIBvnuq2e5fOkC8/PzBAIBDMPg29/+Nru7u+i6zg9+8APm5ubIZrPE43GfvQ8GAzRNo9Tsc9gOkFIlSo0eUr9Gt1mhWCxSLpepVqs0Gg1c1/UnFjwtwWAwwDRN+v2+rwUol8vIsoyqqvddpL1qQiKRIJfLMTEx4Z+fJ7DzzrHVatHr9YBRiyObzdLr9Xx1v+M4/hje40A4HCadTtPpdD7VudAzaKpUKlSrVfL5PNFo1Cc5JycnGIZxR8tAFEUGgwGiKJJMJn0TKU9L8KgW4Gazyfp+hY/2DSS3T8GM0u5LBBmSE8tkxSq4NgU7T6mf4MhIUDWk0SSMZOA6T351AEZELplMUq/XaTQaT8Qo6+fBjRs3qNVqXLly5a5ugtVqld3dXQAuX778uf+PCoUClUrlviLjMb7eeOIqA6vTUb59IcN7m20QXATg5rHBwJEpBBb4735H4ZsvPUs4HObjG1tUj7fRhxILUzH+3ffeYGYyw1Gtx2HNxMUlHFbIxkIEZZFirYPWs2jaGQQc+kRIU2NaPKHtJqg6U/QJ8f7hAFWe4Xdm0jz/wjmS0d+W02zb9lP8vFl013UxDINyuUyhUCCbzVKv1wGoGyIDR+aVZ2bo2TKiEvcXjVgshm3bGIbB2toalUqFw8PD+yaS6aZN9P0S5eaAxbjEC8/GCcmj87JtG8uy/OuBQIBAIECxWOT69ev+eOHtaLVGPf6ZmRlkWfYta2+/fPJ33s/xeJxUKsXy8rLvYlgoFCgWi7TbbZrNJoVCgUKhwCtvvEWAEI7Z9pX38XicbDb7WHIOQqEQZ8+epVgsUiwW0TSNxcXFuy7S8XicZ555ho8++ohr167xjW98g5mZGQqFArOzsxwdHeG6Lt/4xjdOVQgymQzNZpNsNkssFuPw8JBGo8He3h4XLlx4JM/DMAxalSMUwUIXEgyHQ2L0GAghJMFCFiw0J4bmxggMB7SGKm7vhK3DFGuXJ6jXS0xNTT0VJWNvcmNzc5Otra2ntuddKBQol8vk8/l7LsyDwYBut0s+n//c1tG1Wo1isUg+nx+bCo1xTzxxZEBVJP6bb+Z567n0qPz5TpGjmkkkBK4YpC3O8ItrNY73NnC6BZ5JR1h85QIXzi0RV0c79HQ0yMJEmFJzQCQCsxmJaqPNdAJq+shvwEXAQQAEZMEiQZu2kKbtJhFwyaRT9IQYmumSvK1C19b7bB41WJkbzQKvr69jGAau6/pCoImJCVRVRVVVLFemI9Uot/pMp0Oko78tB0ajUURRRNM0Ll26xC9/+Utu3rx5XzKgKhLff3GKRndAOhpEVT59d/Tcc8+xv79PqzWKL/baHrZt0+v1uHHjBtFolHQ6fQepGAwG9Ho9/+fbM9Y/CUmSyGQyxONxWq0WxWKRSqXC9t4R/7Dz9yiJaV66sMb3rzzLoNehVquxu7vrtyOy2eyXWr4UBIGZmRni8Th7e3vcvHmT+fn5U+lxHqanp9F1nc3NTW7cuMGFCxewLItKpcLc3JxPCF588UWfEMTjcQKBAPV6nfn5+dH7wbLY2dkhGo2ytLT0uUlQs9mk06yQl00GokbJjvsJm0EGWK5Mw83SJ4KJQBATR5Ax2wVW5s6xt12nWCyytLT0uc7jy0IoFGJtbe0UIXiaNAReMqmqqvd1EjwoNjnWIzybm/9cept2u83BwQETExOP3LlwjK8WnshPkapInMmPVuBQQGS/2qNj2CQjMu9uNtk+aSO4ClcW1vjvv/M82VTsjvv/4KVJXlxJ0O600eoFPjRd1g+7hFwHAQkQSFMlLBgAyILFjHAIgkho4ixhRWFhInxq8dZNm39YN/iwqFB3HJRwm2wy6iv5vdn8bDZ76ny+e3nirot3KDSKO9Y0jYWFBSKRCLVazR8Pu9/royoPvmh6TmaVSoXj42N0XfczCyKRCIuLi9RqNTKZzKd+sbque9cqxCd/l06nWVhYQNd13r9+wN7OEKdZ5O/+qYN26PDyhRXOnTuH67rU63Vf9Kiqqm+E9GWVgaPRKOfPn+fw8JC9vT3a7Tbz8/N3HH9paQnDMDg6OiIcDnPu3Dl/smNpaYm9vT1c1+XKlSu+PXE6nfbtm0OhEJcvX8YwDDY2NrBtm8XFxc+8u7Usi4ODAyzLIhKSoK+RFoeAS1joIQsWPVQGhEhRoydEmBFPiCkCaasO9mgi4ujoiOnp6aeiOgCj1tMnCcHT0DJotVocHh76luL3mrYp1HX+0w2RRn8JcTfChQsDJhIPr5EwDIPd3V0SicRjT6kc48nHE6cZ+CSy8SDfWE4wN6Fwfk7l6p4GogiiTCad4uJy6q62qkPLZXt3l8O9TWqNNq2TdYZalb4rMSRAgjp58YSgOPTvMzWR4n/8b/8rLq9meWktyZW15KnFu9zqc+3YZDGfwRJVXnx2noX8qArgzQwvLi7esdvz4lo/6fgmSRL7+/sIgsDs7KyfVOaJ3B41Pjlt4M3Te7a6tm1/6nE922NZln1xYzgcJhKJEI1GicfjJBIJUqkU6XSaqakpzq6tIoQz9JwQsqOh9IscHexx7do1yuUykUiEs2fPEo1G/RZMpVKh3+/7x/mi8clkwrs5F3r9/06n42stvJHDXq9HNpvl8PCQSr2DoKQIyBJqOOQ/R0VR/FHHTqeDZVk0Gg3fyvhh0W63ee+99zAt6FhhTvpZ2qSwCBATNETBQXBdTDfMQFCIoDMhN5ibTGANTGRZ5syZM9TrdQaDge86+TQgEAgQj8epVCp0Op3Hno/xadB1nZ2dHRKJhG8nns/n70q+3/n4mHe2umSiAXpOiOWpCPnMwxG1fr/P5uYmiqKwurr6RL82YzwZeOLJAEBSDXBmRiUVDXL9sEtds1CCElfWEry4krxjkR2lHFb48796n48KIptVl4KZoEyOJtP0idAhQ9uNIztDQsKAtdUl/uRP/oSoGiYTD5KJB+94XC8jodG1mUqNrJGDski3Z/HBjT0mMmmymYf7Qt3cL7NVMpmfzRMNB/iH35T5+Y5IOpVgLvvoS+beiJ1nUnQ7AfDUzY+67OrZST+zmOaFlRSpeMTPRajX6xwcHHD9+nUajQaJRIKVlRUCgQDtdtuPDP6yRIeRSOSUuFAQhFPiQlmWicViI31EuY5uBZnLzzDs9+j1eoiBCH/16zJv3yhzUjNIhYa0GjW/4tNsNv3sB8uy6Pf77OzsUKvV0HWdWq3m5x1Uq1WfGFUqFUqlEsfHx34F41e/+hWFcp09I0tpmKZLEhWNgaAQFXUCDBEFhxAmsmCRFBooku2PyXY6Hc6fP08gEKBUKpFKpZ6qHnwgECAWi1Eul9E0zc/oeNJgmiZbW1uEw2FWVlb898Ds7Owdt3Vdl431G2yX+tiBOPlMhO+8MPFA7UAPlmWxtbWFIAisra09VW2UMR4fBNfzvHxKUG0PWD/WiEcCrE6rd/2QHNV6/OhXFX5z7Sa7WgQLCW6lFXojhr+FxZXpPv/Tn3yTaPjTPzS6aZ8q+eumzX/6VZF3P9wgqbi8MGOhBH7rESCKIqIo+j9LkuT/rmPC//OeTrVjEZUHTIUaXNWW4Fae4veWGlxeipDJZMjlciSTyUdayvXaBuFwmMXFRba2tohGoywvLz+yY9zruEdHR77z4fHxMdVqFV3XGQ6HBAIBJicnWVlZYWJiwp+3dl2XRCJBNpu95zjko4Lrur64MBqN3iEu3D0s8B/+fouT5oCJZJQXZy1a5QOqXZeNdgq714RQgn9xTiEXE2l1TTJTi6SjASIh0XfWW1hYwDAMGo0GoVDIn0oYDocMh0Msy2IwGPjXAf95X79+nWrXZbc3ScAd0iBNWOgRRWNaPEEWLCxX5sSeQ0dFRWcucMybr72Ebdvs7e3x5ptvcv78ea5du4aqql/4//0XgW636793PQe/JwWerkgURc6ePYssy/5Cvbq6esftm80mP/vZz7DlKCvPvcbylPpQLQLHcdja2sI0Tc6dO/fEj42O8eTgqaOME4kgE4n7K2LT0SCpaABHzWNpHUZE4F5e7DJmIEVTHz4QGfhkv77RHVDv2qzN56i0+ygxgXTE8XvrjuP4Yj3vuuOM/r5dE+j0FQKYdAZBjEECEAEHF5F/3uuhH//6lO2tF6MbCAT8aFyv9JjNZv2QoQfZQedyOaLRKLu7u2xsbBCLxWg2m+i6/oW6B+ZyOd8+N5PJcOXKFUqlkr9j0jSNWq3GyckJgUCAqakplpeXiUajtFotdnZ2fKvhbDb7hfS6P01cGIikGMpJys1DDhtwdNTgYkYnHAoxlVKoBXKIwzZ2z8RKzPHzrR6DzUOeW57i37wxz8zMDMPhEMMwmJiYIBgMcnR0xM2bN/1cBVEUfY+GUCiEoii+30SlUmF9fZ2Q2EOhhymEybg14jSRBdt/Hj03TI0JXCR6REg7dWzbZmFhgYODA7a3t3nmmWeYnp7m4ODAj7V+mhCNRv0sg93d3VMZHo8Ttm2zvb2N67r+Dt11XXRdZ3Jy8q73OTg4wDRNXn75IufOPlyV0XVd9vb2MAyDM2fOjInAGA+Fp44MPAhUReLFlTi7JZ2B2eOkBS4CIhYRNAwiWAQBEVGAdCx4Sij4MEhHg0wmQ5RbcZ5fC/HG5Qcv6b3QHlD88T6lVpLJZIiXViL87z8pYDkikgC/f3mWyWDEX6BN0/R3ib1eD8MwqNfrHB0dnXpcryIhSRKBQMC3343FYqTTaSYnJ5mbmyOVShGJRHjmmWc4ODig0WiMFPO7h2SnFx94WuGzIJvNIooie3t72LbN8vIyvV5vlD4ZifjjVMVikVKpxNHREcFgkOnpaebm5giHw9RqNcrlMtFolEwm88Ak6GFwL3FhOhpkJpfixlGXcL/N0A1gWBLYHYLmb8g4AQKuyeGhwNuHMsVeAkXo8+H6Mf3Sb5hKSD6J8crdFy5coF6vo+s6yWSSpaWle+5yNzY26Pf7WGaXadFkQBDRtam6U5humKDTB9TQsgAAIABJREFUJy3W6TsBBijYSIg4DJwAlUqF1157jUQi4avNFxcX/ZFPLzb3aUIsFmNlZYWdnR329vYeyaTG54Hruuzu7mKa5imTpH6/j23bdyXbhmGwt7dHJBL5TBWa4+NjWq0WKysrT4QV+BhPF76SZAAgnwlzbjZGVJG54DhMJBTMgc3QdlFDEh/uaxTqJhPJAH/yu7OfedFTFeme0wKfholEkP/h+4vsVQyWcpFR1SMZ4efXG7z1bJpXz9054gajLxovO0DTNBqNBuVymWaziaZp9Ho931io3+/T6/V8o6RPwmtbeN4BA0fkeDDJ5LzJM8tTfPdy7gsjBOl0GlEU2d3dZXt7m5WVFVZXVzEMg0KhQLvdZnp6mkuXLqFpGtvb2xSLRQ4ODlAUhenpaX+HdXBwwNHREel0mkwm80gc2zx4zoXxeJzDw0PfufBfvzwq6e8dl+jVj4grAm+8+hayLPPhhx9SLpep6QKdvkUAA0MIE3W7KOIASRrpENrtNtvb25w/f35kaz03R61W86sEy8vLd+zUW62WH6IEo0kYGQuDCKYbJuAOqZPFcFUkLBwEbCRcROpulo7e9WOxT05O2N7eZmlpienpafb3931DpacNiUSC5eVldnZ2/DyJx0UIPLe/1dXVU69lt9sFuOti7flzXLx48aFFs+VymUqlwvz8/NhUaIzPhKdOM/AwuFt/3/vZ6NunFuGvMmzb9sVphUKBWq1Gu93GMAz6/T6DwcAfDezaCsf2HHO5OANB4c3VAM8sTpDJZHxf/Uf9BdvpdNjZ2UFVVVZWVvzd/e2kIBQKMT09TSwW88vblUqF4XBIOBxmamqKTCaDIAhYluU7H6bT6Ucqiuv3++zt7aHrOjMzM8SSEzT1Ic3yEe+98wssy+LVV19lbW2Nn/3sZ5RqLTaaURqGREh2mAucoAh9AL9qY9s2sVjMz4SYmZkhl8v5gUhzc3OnAo7ee+893n77bTRNO3VulitTdPJobow+EVLU6BJFI45NABGLOB2ez/W4tJxmaX6Ga9euIcsyb775JpOTk1y/ft1XoD+t8IydstksCwsLX/rxPeOtxcXFO0x+Dg4O0HWd8+fPn/q9ZVn89Kc/pd1u84d/+IcPRWabzSa7u7tMTU2Rz+cfyXMY4+uHrzQZGOPhoZs2/+8vdql0hij0WI01cYY9HMfxxwdTqRTRaJRIJIKqqo+kN9ntdtne3vYXotsV0HcjBel0msFgwO7uLru7u/5oZCQSOeVqKIqiLzqMx+OPhMh8Uly4tLREMBikUCjw05/+lG63y+zsLNPT05ycnFCpt+kORJKqxMpCnmq1iizLtFotDMPANM1TIlMvtnpqaopkMokoikxMTLCwsIBlWfz5n/855XKZ3sBlQJAgAwC/VTAkSMPNYroKfcIMCDIgSIABMjZhDNbyMX7/UoZK8YjhcMj09DRvvvmmv5CeO3fuqS411+t19vf3yeVyX+qMfbVa5fDwkHw+f1eTnxs3bqCq6h0kpVAo8Dd/8zcsLy/z5ptvPvDxNE1ja2uLVCr1WCshYzz9GJOBMe7A7RWUSEik2+363gTdbtc3RQoEAoTDYT/bwCMHkUjkM3kD6LrO1tYWwWCQtbW1O3b09yIFgiDQ6/XY3d1lZ2eHRqPhE4N0Ok0sFvMFl57o8FERGE/z4IkLq9UqP/zhD9E0jeeee458Ps8vf/lLFEXBsiwWFxcJBoPU63VmZmZwXdev1ASDQTRNQ9d1v7fskQNFUZicnEQKRvjnj9ax+r2RPoAwQfrg4jsPTosnALTdBHV3kqBrohPDBkwihDGJh1x+Z00iFxOxLAvLsvjWt75FPB7nxo0b/v/B0wxvYZ6cnLzrGN+jhtfymZiYuKuFsG3bfPjhhywsLJwyJnNdl5///OccHx/zne9854Fjrnu9HhsbG0QiEdbW1sZEYIzPhafCZ2CMLxe3myR5AUXJZJJ8Pk8ulyMWiyHLMo7jMByOTJssy0LXdRqNBpVKhVqthqZp9Pt9XNf1tQn3PW4wSCKRoFqt0mw27wijCQQCpNNpksmkn/rWaDSQJIlYLEYul+Ps2bN+n7bb7frz+l4Udbfb9YWSwOdqe3ieDaZpUiwWRzkBtyyfbdv29QXxeBzTNP3n4pkz6bpOMBgkEAhgmibz8/O88cYbLC4ukk6nCYfDCIJAv99H0zSOi1XePxKoWSm67qiNo2BioDIgSETo0UdBFbpI2LiIDAkyEMKI2ICLDJgoKE6bpFsmGlH88xoOh74RTrlcJh6PP9XpgKqqIkmSH0Z1t0CgRwVd19ne3iaRSNxzh+699/L5/Cmi2263uXr1KtlslosXLz7Q8YbDIZubmwQCAdbW1p6occoxnk6MycAYD4VgMEg8HieXy5HJZAiHw34iInCqOmBZFq1Wy1f9e0r5wWCA67rIsnzHl1ggEPDT6er1+l3z6+9HCsLhMKFQiMnJSc6ePcvS0hKhUAhd1/3H7HQ6fhxzq9ViOBx+ZqdDz7lQEAQ+/vhjNE3jwoULXLp0yS9Vu67rL/7ZbJZOp0M0GiUUChGPxxFFkV6vR6lU8onTYDDw9RxeZcAkTMmMjeK2CRIQLIYEbuUQDP3KQBSNsjtDizSuK2Ah4yDiEECmT5QuefEQuz9yQZRlmWw2S7VaZXFxkWg06o95Pu3BNl7+R6FQQBTFRyos9fBJU6F7LcyNRgPDMO6IFP/4448plUq8+OKLDyT+s22bzc1NHMd5asOaxnjyMG4TjPFIMBgM/MXVE7ZFo1ESiQThcNgXMRqGgWEYfuCRoiinWgzhcNiP/739C+9+XgL3ax94cF2XRqPB7u4uh4eHdDodXNclGAwSi8VIJpNks1kmJiYe2oXRNE02NzexbRtZlhkMBszMzJBMJvnhD39IpVLxycby8rLf1vAisaPRKMfHxxwfH+O6rq978Dwjstks0WiUv/iPP+bnN/VRa8DtkxBaSILt52t4+oEBQY6dRXBtOqSxEZEZYCGRoMmscERUMvzzD6kJVp+5hG22OX9mmeeff94XpXk20U87PFHf3NwcuVzukT3ucDhkY2MDQRB8U6F74XbPAQ+mafKjH/2IQCDAD37wg0/d4buuy/b2Nrquc/bs2afOE2KMJxdjMjDGI4dXEWi1Wv6iGw6HSaVSvouiaZo+OdB1nV6vh+u6CILgZx0Eg0FKpRKCIHDmzJlPHXd7EFIA+OFCu7u7HB8fo2kajuP4xCCdTvuK/lgsdt82Qq/XY3Nz0/f5l2XZFxfebjL17rvv0u6aZKYXiQbB0BoMh0OCwSDBYJBcLodpmnQ6HcLhsD86mUwmcRyHcrnMO+/9moapYLoheqhYQuCURsATEOpOjAOWMQkhICBjopPEc99U6PIMvyEha/4EghBOs5JPsRbv8K//4DuIosjNmzcZOhLpqfkv1HPiy8Lx8THlcpn5+fkH7svfD94OfTgccvbs2U/VoXz00UdMTEwwMzPj/25jY4O3336bV1555Y4Jg7thf3+fRqPB2traF9r2GOPrh3GbYIxHDs85L51Ok8vl/JaBJ0JsNBq4rkssFvN345OTkySTSX+no+s6zWYTy7IolUocHh76ZMGzdf7kIn2v9oFXZvduL4oiqqoyOzvLmTNnmJ6eRpIker0e7XbbH8EsFos0m00EQUBRlDsMjbxI41Ao5JdrBUFAVVVc1+XatWucnJyM+v62wEYrxmEnhDaQSAYHSILr6yRSqRRzc3O+8NELMfKe12+ub3CjkeDEnaVNGpMIQUysW62Bmpuj4eYoudNUydElio2Eg4CAgM1vWyAWQVokSbp1HEGi6WZRxAG6FUAVDdKxENFolP2jIn/7cYvdukSpNWBhInxHXsfThHg8jmVZFItF373zs8IzFfLc/j5th26aJuVymampKb/KZds277zzDoIg8Prrr3+qYVahUPCDzMZeAmM8aowrA2N8aXAcB03T/KqBZVm+RiCZTN6xC7dtG8Mw/PEpTdNIpVL+wny7PuGTCYNwZ6VgZmbG7+/fDYPBgEqlwu7uLsVi0Z+cCAaDpFIpZmdnR9MA4Tgn1TbN8iGpeMTPT2i1WrTbbTRN80OJvPOUopP8pqrSbRQwLJl/9UKamGxSq9UIh8NMTExw7tw5Op0OtVqNpaUltra22NzcRNd1ThoDNnszdO0wNhIWASQsIuhMc0SJWRwEdGJYgM3tC90Q+GRf2WGCIiviFlV3CkFJEQk4TIY6JFWZpZUzVOtt1psqz59ZoNEd8ocv5b6Q8KwvE67rcnh4SK1WY3l5+TMnNR4cHFCv11ldXSUej3/q7T39yMWLF/1WwsnJCT/96U95/vnnuXLlyn3vX6vVODg4uOfI4hhjfF6MycAYjwWeR3uz2aTVajEYDJAkyScGnrDOg+M4bG9v0+l0mJ6eRhRFv8XgTTR8csRRVVVkWX5oUgCjnVypVGJvb89PxXNdF2SFo/4kVc0iHYaLMxaBW1kAiqKQSCRIJpNEIhHK5TLnz58fKb93Dvj1kYBuB+lUD5hXqjyztkS/36fZbJ6qVNy8eZPJyUl0XefatWvs7OxgDl2OnEWO+hNYSIjYZKje2vm7VJnGQcLFufUMbu9dO7cut//OJYTOIttEMGiQRSdGUBaxXJnVhQkSIchkMpi2zGQyxHcfwmr7SYbruuzv79NsNlleXn7oXfb9TIXuhcPDQzRN49lnn/XP4W/+5m8olUr80R/90X11GZ82sjjGGI8CX1k74jGebHjRwNFolLm5OX8sr9lsUq/XEUWReDzukwNJklhdXWV3d5dyuezb58JIxHW7/qBSqWDbowU6GAyiqqo/ztdqtdjb26NYLDI9PX1PUqAoCouLiywuLqLruk8MNo+alNsDXLNFwYyQEjSeX53i7NmzfsCQN5oXDAZ9NfvlaBQlvEu5oTN/8SwbN/psbW0xNzeHqqpomkahUCAWi5FIJPjggw+AkRWyqqrI/T4JvUaBBBIiFhJDZMKYaCRwEHFxGSVemreGCG/HJxdxlz4Kh6zgINBHAUSCVh9FAkPr4pLi989k/eyOrwIRAHyrYq/U/6C7exjt0IvFIvl8/qEmLT4Z/tVut31B4/2IgGEY7O7ukkgkvlTzpDG+fhhXBsZ44mCapl9213UdQRB8xX8ikeD4+Jhms3nfnVm/3z9FEG6fYBAEAcMwsCyLWCzGwsKCb2V8P7iuS6Xe5i/ePmT3uIHQbzIlFpAFyzc08lwDW60WoVDIF5Z5eRKFQoFyuUwgEODo6IharUY8HsdxHPr9vr9gNBoNUqmUnzMhyzLbpR7b9jm8D+ycsEcYnU33OTokvLNExMHBYUQAREbR3XdbyC1CmD4RGAkMXcJ0kXGYn83z2jMZfvDS5FeGCNwO13XZ2dmh0+k8kCCvWGnw0c1dlvJZzq4uPvBxHMfhgw8+OCVcfOedd9jY2OB73/vePacb+v3+KJnyliZl7CUwxheJMRkY44nG3UYWVVXFMAwGgwHTs0uISvxTd66u62Ka5ily4LUoer0eqqqOsgZSEwzdENPZGNGw7EdR27aNZVnYto1mDKi2+4iWTrtR5ujoiEajQb/f96chYGRy44nUvKkBjxh0Oh0AP2hKURR//DISiTA3N4dpmjQaDYLhGAfFJqbeoezOYKASQWdSKKATpexMY6CioyICEkPcWyTARcBCYUQI7iQ7En1sREaaAhcBh4SgEVAi/MsrS/SHzldCK3AvOI7Dzs4O3W6XtbW1e+7Sr93c4s//doNQfJrn1mYeKsBL0zQ2Nzc5f/484XCYfr/PX/zFXxCLxfiDP/iDu97Hsiw2NjZwXZdz58491KjrGGN8FozfYWM80fDG7nK5HJZl0W63abVaANSaGj/9+GNMIkwlQ7y2GiQWDvgJjB7PvZ3vetdlWSaTyRCLxWi1WtTrdf756sdstmPodoh4yObi1JBkVCEUChEKhZBl+XT1QJJIpVKk02lMcyQGLJVKtFotTNPEskYVg9nZWZLJpG8iJIoisViMbrfrj1EeHR35f/OmIj74zQ3aA4VSK0Sjm0EhwqRQYEgI2xUpuzP0CWMjE6TPgJFKfehPDgi3WgdD7v5Rd27VA4a3/AlHi1skopBMZah1BqxOq5853vtpgCiKrKyssLW1xfb2Nmtra3dkMliWxY9/9guK7RTPZmzKrQGN7gBVeTCCpOs6oij6UwRbW1v0ej1eeeWVu97e08dYljUmAmN8aRi/y8Z4auAt4JlMBsdxCO1X+XX1mIilcVQZsC6YpMO2H1AUCAQIBEbkwLvuXSRJ8pX+kUiEmZkZDqs99q7r5DBo6i6aOUSw274lczgcJpFIkMlkSCaTdw1psiyL9fV11tfXMU2TSqVCuVwmGo2yvLzMuXPniEQi6LqOruuUy2WOj48ZDAYMh0Pfg+G99z9kt5um5Sbo9CWSVOkLEYaEaLmpU8mECBB2NSxC2IgMkRDgVnyxhAu3ZIWeuFC49e9IbigiIgAiQ0SgZwd5fT7Kty9kyGfCX8kWwe0QRZHV1VW2trbY2tq6w9PiJz/5CbbZ5tzSObS+wJTiPBRB8vQCgiDgOA7r6+vEYjEWFxfvuK3ruuzt7dHr9Thz5swjydAYY4wHwZgMjPFUQhRFFmeyPLvqUm71eSYZ4tsXkgQE29+B327pe3tMs5cT4JXtvRL+GTVB0dSpaTbnUgpvPaOC3afb7dJsNul0OtTrdd/rPhgM+gQhlUqRSCR8P/zLly8zOztLrVbj5s2bHB4e8uGHH/Lxxx+TSqU4d+4cU/kFKloRMRBmcXGRwWDgTy5olkLLktEdG5MwLTHHpFgBx8UkTIQeJiodkiiuQYQeKWpoxOgjYxPERiaMzpAgFqOdv4CDgOW/jjIWFkFELARGPemIbHF5ZsiZ/NPvPPigkCSJtbU1Njc3fUIQDoc5OjpiY2OD/GSWf/tvX+XqtU0iAYNI6MH7991u1w8mOjk5odVqceXKlbtqAI6Pj2m1WqysrDzVqZFjPH0YawbGeKpxe8Lip+1gh8PhHSThdrLgOA7m0EXrQzIiEVdDpwiD5wFvWZavOWi32/R6PT+bQZIkOp0Oc3NzzM/P+xUEy7IoFApcv36dYrGIZgy52VBHC7tociahoQR+OxnRtwQO7CX6fYmXD37MhaP/gjpo0w9FuD7/Flfn/yXN4CQDggyRUeiToIlJiBZZRqFEFnNsU2UWjTjgEkWjTxCFIRpRBGxCDBgi4yKTDEM+FeDZtMYbr15hNpf8ylcGbodlWWxubmJZFmfOnOHP/uzP0HWdP/3TPyWZTNLtdtnY2Hhgj4J+v8+1a9dYXV0lkUjwV3/1V9Trdf74j//4Dl8Mr0r0qBwSxxjjYTAmA2OMcQuWZd2VJHjXvWkEGFUmPJLglX/7/T7VapVisUgsFsO2bT//QFVVf0xSURSu7ZT49z/dJIhJnxB58ZCoZPqPNxgMCFbKvP7L/4vgsId4a4Zg9K+AGVT5v1/9nzmOn2OIQgATBRMHAYMYDgIhBsyyR5sEDSaQcEhRQydOjzAh+oDLAIUBAURsJFHm8mKUgVZCDkV58fnVr4y/wIPCSwT88MMPOTk54eWXX+ab3/ym//etrS0GgwHnz5//1AmURqPB3t4eFy9eRNM0/vIv/5IzZ87wxhtv3PV2U1NT5PP5L+R5jTHG/TBuE4wxxi3IsuwbF90Nt5OFT1YX+v0+juP444rT09P+OGGv18MwDBqNBrZtI4oirhTi3FKOm3tlFHqEhFuVCdMcic0cizd++e+Rh6ZPBMDr9ruEhgb/9bv/C//bt/5PLCmAhEOU0bSFRQAHiQADqkyhkbylFrAxiDBExkHARSCMgSIMqLlZXEQsB4oNHYQE31hIUm71H0os91VAIBAgHo9zdHREJBLh1VdfPfX3mZkZ1tfXaTabpNPp+z6Wruu++PTjjz9GEAQuXLhw6jaaprG/v+9nYowxxuPAmAyMMcYD4kHIwkcffYSiKGSz2TuIg2VZDAYDDMOg1+uxFKkjpDr02hUkLD/S2bIscju/JjDs3WUYcATRdYj1m1wu/B3VuTMExSEB+gwJkXLrDAlSdyf8xV+8JRbsMWpNCDgYCITRkYJhVFtECQXRTYt8Lk7bFOlaQVYnQl/paYK7wXVd/vqv/xpZlrl8+bKvIfDaRKqqkkgkKBQKn+pk2e12UVUV0zTZ399nenr6lMFRr9djZ2eHaDTK4uLip1Yaxhjji8KYDIwxxiOC53qYz+fvanHrkYHbScJlXefHP/lbqu0eIWtALCKPKgvHNz71eA4CZwu/pLs4R5ABRSePSRiFHhNCCY0EHTeBQg8HiKDTQwVE3FshRi5gWTaZqENAHGBZsFPssjSd4ruXJ1idVr9WLQKAX/ziFzSbTS5dusSVK1fY2NjwCYE35jczM8PNmzdpNBr3NL5yHIder0c2m+XGjRsMBoNTVYHhcMj29jbBYJCVlZUxERjjsWJsaTXGGI8I5VqbatdFDNyZhudJc7yRR29UMRiJY2UvUWSBojOLOXTp9/sEh+Y9qwIeRFwiQ40gAwYEMW/pAHqo6ETJcUKGKnGaZKmSooZFgN+OFjoYxOnbAo4gc3ZKZC7h8MKiSi4RJB0LfO2IQK1W4+rVq8TjcX7v937Pd/8bDodsbW35hC8SiZBMJikUCtxLdmUYhh/fvbm5eaoNYNs2W1tbuK7L6urqpyYWjjHGF41xZWCMMR4BdNPmP79f5qg65Ki7w6vLMgFxpCHwLndDTReoazbRoIPWD2M6QTA0dDWJ2q0h3kff6wgilqoiCxaWIyFhY7gRhgSouTkigkFePGRIkIabpeNmbrkNjhQEAQa3Rg0FlFCAb7+6xlbRoNzqM5n8erYHfvSjH+E4Dt/73vf8nbqiKKfGDtfW1pAkiZmZGW7cuEG9XvdHB2+HZzZULpfpdru+aNDLRBgMBpw9e/aOqYIxxngcGJOBMcZ4BGh0B5TbA9SARalp0jLCzGYUP7jobhdJktjY3idfsukmztEo7iIOJapmio25V5kqbd33mKLrcLDwApYrU3WnGLoyIzcByycGjjgiCQM3RBCT/7+9Owuy8z7z+/599/fsS5/e0QuARgMkuICLqKE00kiyZjSSJUueOHEqlWScm1TlIqlUkkpVcjO6y4UrZZedpSZjV2xnqbKdcUnyDFUaabRSpiAKFEhhB3pB791n39/9n4sDtEiRFBeABAg8nype4BT6sN/TZL+/9/9//s9jkqBISNAoax1sNcDT0hxJ91mccFiazrzro5oPmp/+9KfUajUeffTRNw0FSqfTnDhx4g2dClOpFKVSid3dXcrl8pv6BvR6PdLpNBcuXCCVSrG8vAyMxh93u93D9xDifiBhQIi7oJg2KbgJsTHO4nSRp06/83G8ZrNJv9Pgb39iHs3J89JLDf7VyxZ90lyfeISjxbMcaV9HV8mbvjbRdLbGTrFTWQY0PFKkNI++ShHg0ieHyxBdxZhajMuQoZYhq7oE2IDC1TwmtS1CbAwv4MpalceWph/YOQS/TbPZ5OWXXyabzfKFL3zhLf9OJpM57FS4srLC8ePHmZmZ4eLFi9Tr9Tf1Bri9MlCtVnnyySfRdZ2dnR3q9TpHjx59x8FIQnyYpGZAiLvA1CKem9f4ysfG39W5fN/3uXnzJqVSiYUjk8yWbSKrRJc8IQ6enuHPPv4/s1J+EoBY00nQSLTR/7Lr40/wV8/9F9haiKMFuAzxcbAJcRlSoj46rqgZuBYs5Vs8NTlg0VgjQ5dxqgTKGG0hJBXOHZT40+9u8c2f79P34g/887qfdAch/8+/+Q7DUPH5z3/+8NTAW8lmsywtLdHtdlldXcVxHMrlMru7u2/oQ3G7vfT6+jqmafLYY4+9YfzxOx1JFOLDJisDQtwFvu/jWhrHpvNY1m8PArf7zxuGwcLCAo1GYzT5sHZATJrk1sCgoZ3jT5//Byy2LvLs9neYCjeIXYeNI2eoFheoUMfURkcSj+i7+MrGIGYrnKFLHleNVgZGNQttwmGXsVSa7qDHULm4DAGNoZ7Fsh2iOGF1r0ejV3po+gr0vZg//cY5LmxbzI0/yuz88Xf8mlwux/Hjx1lZWWFtbY3p6WkajQa1Wu1wHHG/38f3fQ4ODlhYWCAIAm7evMn4+DhTU1Mf9GUJ8Z5JGBDiLrjdLOi3PVXetr29zWAwYGFhgZWVlcMRzfvbq6Q4SkCKEAODBKUZ7JRO8J3SHMv6ZXL6qLFQmsHh+8VxjGsb5G2NQZyiExbpkaNPFjsJmTc20FVIEOsEw4QKuyS6ga5iPJXG0mM0x0EDxlLxQ1U4+O8ubvPSlQY5PSKxirz86hWW50ZzJtLp9Nse9ysUChw7dozV1VU0TTtcHahUKui6Tq/XY39/nyRJOHnyJKurqxSLxTfVIghxv5AwIMRd4Pv+4Yja36bdbrO3t4fjONy8eZM4jmk2m1y7dg3d7zBBhi5ZbEKKNGhRxsMmjYdF8JbvqWna4cTDyKjgk0InAc2iS5G26uAyZCeeJtEtUgyoqF321Qw1NUEUG5xwYj617DI/FrynITwfZVe2evzDb67iqQJ9ijxezFLJ2xwcHLC7u4tpmuTzeQqFAvl8/k2jhIvFIkePHmV1dZVCoUC0s871b/0Z8cWf4wUBVnmeyU9/lXq9TiqV4ujRo9JLQNy3JAwIcRd4nveO42bDMOTy5cv0ej2KxSKO47C9vX1YXW4QMWtsEmBjE2BqEfmkzY6aJ8KiqqaYVtuY2huPKSZJgmEY9Pt9srkuKS1HV+WwDbB0h5Y2Ry808LApmDGJmUIzEtrdPH0yKHRWaoqnZwc0DcWltQMWZyoP9GmCvhfzT79znaGyR6OeE4P9rRu8FgzI5XKk02kcx2E4HFKtVjEM47DzYKFQIJVKoWkapVKJxcVF1v/1P0H9H39CDyAZ1VxMrV2CV/8a7b/9Ryz9nT9+yymFQtwvJAxgo5EYAAAgAElEQVQIcRf4vv9bq8N93+fs2bM0m02OHx/tS1++fJmDgwN83ycMQ2BUiGi+bsRwohnEyhidBiBDWxUo0AYgwMbVQ3Q1+lrLshi293nEajMwxtBMhw5llo4u8ovrHcYd6HoJ6XiffDpB9wuowEJDkaDohwa/3I641Osyt6ce6AFFjV5AMOxjEpNoDjk7ZnlidLOu1WqEYXg4R8I0zcMx15ZlkclkKJVKTExMjIJBpwZ/9ieHIeA2TSmIQqJ/+N/AF74KpTf3IhDifiFhQIg7FMcxYRi+5cqAUoqDgwMuXbpEp9Ph1KlTDAYDLl26RLvdPhxk9HbSZkwq9BioNL6yqakJeuRBgwCHlPKY0rbQkhhN00b/xAHlTEjGhdVul83tAzKWST6V4vFjBXKdHYI4S94L6UQ2UWJgGQlHpsa42XEYL9gP/ICictYmq3eZMEOOzC/w1WfLzJcXD9tFDwYDOp0O3W6XXq+H53n0+32iKDrsQni7RuTo2W8yptRbd4xUCuV71L7xz5j6z/67D/UahXgvJAwIcYd83wd4U81Ar9djY2ODZrNJFEUsLi5Sr9e5fv06nucdTim8fXP5TaNixIRpfYtWUqCmJkhpHj2VQQMy9Bkql9hMYzO6YcWY7KkZ/G6ajKdYmrSIoyY3+orQGqecmyCrZTh27BjBdejd6GGbYCcduv00Y/kc9W74wHcgzLgGC26VdM7jv/wP/pB85s3Xenvq5OuHTfX7fer1OrVa7TAsuOsX0ZI394L49RsldM/9WMKAuK9JGBDiDt0OA7dXBqIoYnt7m1qtdji+1rIsarUam5ubh1sCg8HgbdsUwygMBEGApScUVJuBlsUjRYY+hqEzjB1chlhqiGmZBEGAh0Vs5nG1kF0vh1fVqORMQvqkwjrrOzlmTI2xQcIffeo46ew+Owcddqsp1loWx9Lw+09WmB1zH9gtgttiv08lo79lEIBRYebt7YHDr4ljpqamGAwGtNtt9vf30cx3+DWqaWhSLyDucxIGhLhDnudhGAamaVKv19na2kIpRWXyCCub+zT3a6Rsjb29vcOl/G63i1LqbVcFXNc9rDzXdR0ziZg1d/ASC5sA13HoeAqbAF1FwOiGZeNjqT6+PmqP6yQdusM8U5UijXYXr1vlkq+43h/wlN/kj35nhrWDIj+93GS65FDvhqQc/YEPAjAKcW/X/Eep0cCo4XDIcDik3+/Tbrfpdrv0+30ajQadToder8ex0hxHa1u/dY5E7rnPflCXIcRdIWFAiDvU6g6p9eH8r64QB33K5TKl8Wn+zYsbvHatSt42mTF3ybo2URTRarXQNI0gePujgrZto5RC13UMwyCOYxwTjGiIUgrbsMkaHkGsM1Bp4iDA1DRsXTGZbBCqFhNjx2n2HMp2wHKuT8+G+jBmdVCgaJv8/EabZ5fynJ7LsVH1HqoBRXEcMwgScmaRdt9Hi3994x8OhwwGAzzPw/d9oigiDEP6/T6dTod+v08YhodbCOtHn2bxxlmUit9cN6DrGJkcY3/rj+/FZQrxrkkYEOIO9L2YvzrfYKs+YGES/v1PH2eyUmSzNqQXWWTtmGo3Zn6mRBK3aTQamKZJv98niHX6FPATk7zWwdVH2w3pdPpwi0ApdbhCYBjGG7YVglhnN5llSAaTkHlrG1cLMLUYmzZTuQbGRIHG3ga9tsVqf4yuyuIrC8O0GD3IamRcgy8+Pf5QDSi6sVHlhjfL9p5L5y9f49kj6vBURpIkxHGMUgrP82i323Q6HXzfP2w5HEXRaAvHspg78xz6qWOo/+W/hzgGXrdCYKdY+l//AjNfvAdXKcS7J2FAiDvQ6AXo6TFOZHP4yiFgVDfgaAGtvVXq3YjpkoMetag36pimyXA4xI9gVz/OVjiBQieruixzkbQZvmGSna7r6LqOpmlvOKceBAEBNkMy+MqhTQFCjZPZXfRwdDqhtr/FwoLBzGSZ9f0eyi4wn3cJ6gb5lM6TRwvMjo2KHjOu8cCeHPhNfS/mhfNNmmoCHZODrqI9VEwVnMNVgHq9TrfbZTgcrcTcbkDUarXo9/sATExM8KUvfQnXdXnhhRcY/p3/kdKFn1CsrgM61YmjhM/9AUcmFsne0ysW4p1JGBDiDpSzNtPlFPstnenSaIn94OCAn/zkJ0wbA06dmmXQ2qfdqGLb9mFVuuaU6XpZEnR0FB5p+mSppP3Dm75SCsMwDusMDMNA3dqXjqIIGzAJaVPAxSfWTJSZIW1pDIdDbNum0Wjwmc98BvPaKrXVDj3P5lgx5MysweeeXX4oVgF+U6MXECYGYzmDQWSRdQ3ybsze3h6tVovBYICmaViWRbFYJJ1OU6/X2d/fJ4oiUqkUH/vYx3j++eeJ45jvfOc79Pt93PFp1h/7LHEcH9aCpP2ICxcuMDExIU2HxH1NwoAQd+A3l9gPdjf42c9+RhzHPHLiKJubm3SaVUzTRNM0er0epmlyfHGKjctt2qRR6Dj0yel9MpkCuq4Tx/FhZ8HbZ9sHg8Eb/t2mFjGjbaAURJiktSFa1CddyBBF0eHRuJdeeomvfOUrhMGL7DXWOXlkhl5nlwvXijxx6thDFwjyKZ2pgkFvLEvkdZmIbnLj6uhp33VdKpUKtm3jui6tVouVlZXDItHl5WU+97nPMTY2BsDZs2epVqukUikMY/Q53v75AYcdDDc2NlhcXLwn1yvEuyFhQIg7NPBjVnf7nN27RHv7Crm0xdLSEjdu3KBeH20NOI7D1m4VX2V4fGmRZm2PI1oTCGlQocIOlbyN4zi3pgxGDIOEAIs4SEi0NHYUYGoQKfOwZbGr+yxoa4d/JtLwPINYsxhENgVrFEB+8IMf8Le+/GW+9a1vsbq6yk48y/lGle1B7oHtNNj34sOQZukxrVaLer3O5uYmWq1FJYhJ2zH5lE06PYFt2xiGcdiG+Nq1a3Q6HWC0JfD888/zyCOPHD7hX79+ffRemsb4+DhbW1uHgeD28VGlFEEQcO3aNWZnZ9/VICsh7gUJA0LcgWo74B/82zV+tVpHJSGPTUzytdNjrKxcpdFooOs6uVyOm1t7bIXTGJkKr+4pcsMh7aTEOsuATocy5fAqtFpEUYQXKrbCKYZkGSQ2OiE53SMbN6kygY9DgQ7j+u6t3gM90KAbOQT9mIY+Sz9ysIIhc1mPje0DXnjhBRYWFtisXaHWj3l6sfTAdhrsezHffuWAi2sNwsDjsVITI2weTpdMuy6VUo5MJgOMbtrpdJo4jrl8+TK1Wo04jslmszzyyCM899xzb2g33Ww2uXjx4mhipOsyPT3N9evXsW2bOI4PT4DA6Ahjp9NhZWWFU6dO3ZPPQ4h3ImFAiDuwdjBgu+GRJBFRrHF1N+Sf/eVroMGEoxgv53hlI8Dz88ROEUf53KyblMixr6YBHUgAnbXBOKVcB1PXCTDxSZPPpTlopbAIaSdFNKYIcdFI6JGnmlRQ6Nj42HhEsUM68igUS0wU4Np+in43oGSl0bb2WVhY4D/8oy/zv/35WS5c2+DUiWP84nqLJIGFiQcnEDR6AWv7A65s92n2I67vWPzBMZf5qSKu62Ka5mH9RSaTwTAMLl26xNbW1uEEyNnZWZ555hkWFxffMG0wiiJ+/vOfE0URhmFQLpcZDAbEcUwmk6Hf7+M4zuG2TqfTYWZmhrW1Nebm5g4DiBD3EwkDQtyBoxNpZssuvUFEb+DTVymuxUsArEcDnH6IRwaNBNfrU8UhwKbBMhoBo2NoOqBQMawNxpg1djDiAIch7UEanYQERXyrsdCoC75GiEWEiYtHlwIJZXQUPRURd3uERgXb9imaA7BKJGafX/7qMp8cm+ePv/wMf/7tF/nr83skRpp/+4sqf/J3TzwwgaCctTF0nUFkYBiKdqRzpTPJ8gLYhiKINUItxfRYhvWVq4ctoi3LYnp6muXlZZ588sk3nOy47fz58wwGA0zTRNd1ZmZmuHr1Krqu47ruqED0deHh9pHEOI65fv06Z86c+TA/CiHeFePrX//61+/1NyHER1XGNXhiIU8xY7F7UKfnR0TYaChiTBLMWzdzHY3RGfUYmxgLHY0MXVx6uHTJaANCXEpOgKsHlFMRn3xqmd2dHSJlv+69DHQUJiEuMZHmot0KCKCRYBAlgGaScy2UirG1CMPOcrXhcmmzj5MpY6cL/Go7pJxzaA0i5sZdlmcejKdW29SZKbu8ut6h3osw0FAoFsoa2WyeH69b/OBShx+/ukm/uoajRxSLRY4ePconPvEJTp069Zb7+zdv3uTKlSsUCgX6/T7j4+MsLCxw7ty5UcdHxznsReB5HjDqW5BOpxkbG6PZbFKpVN4yZAhxL8lZFyHu0HjB5g+eGuf0Qg6dBFAodBRg4pFgkGAwxGGIS4gJtwJCli7L+hVszaBFhdhIUypkSKfTTI4VmJ9IY2oxKTNiIptQMrrM2nWO53tUaLA07XJyAuZzA2w9QUehE6LQSJKEVMpmoWKyN7A5u1/k5nCMvXbCj85voaws44UUnWFEOWvx2Nzbj2D+KFqYSPH3PjvDkXKKghNCHDLwIv7ifJfv/arFelNj0yvxK+8kxYl5Pvaxj/H5z3+emZmZNzzZ33ZQb/OjsxdJ50r0ej2y2SzFYpEkSRgMBuRyOTRNOzw58vqZBu12m3Q6ja7r3Lhx4zAwCHG/kG0CIe6SQi6Ny4AIRUgGbu37Z+jQJ0eCxa+f3jV0Qoak0fJzZKIUORUThgEHnZhQFdEKZTYOBsR6itmcjp5JEdT3WOuXqcdZFA7TJJSzOpu9gHFjgKYF7MVjhKRoDDVyPjT0PB4RhqERRQY1T6PuR+z2q8xVXL74dIXnT5UfmC2C13tsocDfeMJjdc9hpmSyPOdybr+GIoJbzYO7kUMzyvHYY48dngb4TftNj3/056/RHqao9F2OpTssT5aYmJhgdXUVgHK5TKvVwjRHQ6NubxnA6Ihhr9ejVCpRrVbZ399nenr6Q/kMhHg3JAwIcRc0egF+YvPpM4v8+KpHa5igEaOw0M00TqwYKg0wGBUMmkToNElxvl3GNnVipcjqBhc7U/TJcL6nc6zahCRgd5BnzIjYHeboqSyWbpHECXtd0B2HJOjTDEto2MSYmHhEuORTGqblADFeNLrROaaBYRrYpk6rH3JsOvNABgEYbeN89eOTNHqlw5kLT+4mrNdCmv0YjQiDmJ31a/zjf3yJT33qUzzzzDNveI++F/On33qNCzsRmqax2Qpoj5WYO2KRzpf56cWz3PRmyHl5oqBLotkM4xCsLJHqY2qjroaNRoPJyUl6vR4rKytUKhU5aijuG1IzIMRdYOo6u02fYWwyV0mx0wxIlE4+bfGZJ6bBsCFJGAa/fiK9XTiYYECS3JpiqAhwCDCJMWj4Ol5i0QldDgY6g8TGAMLkVgf8OMS2LDpxBi+xMDWNoXJIMFGAHyaYtkMpY2BaBsWMSda1SJRGkigWx1N88emJB7LPwG22qVNIW9imjm3qnJjOsDydIYpjxnIWTx5xmHabdNtNrl+/zmuvvUapVDpsLLTf8vnF9Trt3oBeZINKaA0iVjf3+e7PVzhXL3MQlbi4r9hqaex1EjYGRfpk6IUmaXroJFiWxcTEBIVCgWq1iuM4lEqle/zpCDGiKfVb5m4KId611ze52awNeXmlzceOF5irpNiuewyDiB9dqHFupUvHi+l7oyl3jqWjoUjigDj0MQ2dXuwCCQqFhoYBaIaJqUUYJBSchI6n0HRIuylcI6DtQcezSYBcSieMEkppDcO0GMs5hLHCNDTOHM3xyGyGIEo4dSTHeOHBn1L4Vl7/87KNhLW1NX74wx9SrVYBqFQqfO1rXyNbqPDtVw64sFbnys0GXqQwow4GEZ5K0SGHdqtA0SakTI0ueSadLkEQM6PfJK0NKBaLPP744xw5coSdnR06vkZp5iSn5ssP7c9A3D8kDAjxIep7Mdv1IcMgodULqPdCjk6m+evX6vz0Yo0wjpirZBj4EZ1hTHsYoaGjNB3X0nAthaNFTBVMLu/FxImGZeg8OmOy3VH4IQTR6PBhJmWQsg2miy6lnMXvnCgwWbSZHUs90CsBdyJJEq5fv853v/vdw1HTs7Oz/N7vf4VXruyQshQXdhM2dmpYqk+gbK62ssQY6ETk6eIyJMQiY8U4SY9JNjG1iEwmw9LSEouLi/jK5c++v49HmqNTBf6rLy9KIBD3lNQMCPEhyrgGy7NvnmHXG8b8aqNLOZ2i58N//NkFNmpD/uLn+2i6Ioo1PnO6xCBQlN2YG/sejhVgGjpKg8+cmWWj5nFps0+iFAsVlz94qsK5lQ49L+bImMvTxwsSAt6BruucPHmS5eVlLl26xPe+9z3WN3d56Z/8JanSDM89foL/9PcneO2iorHfI5M2GLtyk+1mRJoeWb1HohnoKiZJDJIE2lqBjOrhxjH1ep1cLserGwP22ynSZp29lsvawUDCgLinJAwIcR84dSTL/FiKvZbPVNHhzNE8Z47mWdkdsNP0mCm5/HufmOHlG232Wz5PHM9gWj0OOj4zJZePL5f47OMG23UPUIdP/8sz2cOlcAkC756maZw+fZrTp0/znR+d41//dJNKzmarPiBM4DMfP83Zsz0ajQbHyhHOcJvkVt3HqAvhkGFss6IewVMpXIac9K5gtlpsbm7S2GljqiVCLcdU0eHoRPpeX7J4yMk2gRD3iWo7YO1gwNGJ9OFT4m++9vp97oEfv+nvi7tvNOegyspWHZsBX352khPH5ul2u7z44ovU63XW19cxTRPf9ykWi8RxzM4gwxX/KA4+Hi5z+k2mnA6JmWG7l8bXspw6tcx/8jeOPbCnOcRHh4QBIYR4B7dDWDRs0TjYYWxsjIWFBXZ3d/nhD3/I1RvrJGYGLexhMDqCqKwcV6OTtIPR8cEsHWIsDC3GUw4LhYDlR8/w1ecmmatIGBD3lmwTCCHEO8i4xq3JjikKGYf19XWiKOLYsWMsnTzN968EeNFoO2Ba3x6d+1Q6T5UOWKlGNJMSGoohKUqqjo8LzhhTRfew/4EQ95K0IxZCiPegXC6ztLREt9vl2rVrjM8ewyN1azsgxVCl2U1m2Qhm6BjTjFk9Yky65AGIMZm0m3zhiSxffHpcajnEfUHCgBBCvEf5fJ7l5WV836e+d5Os4ePj4DIEFB4pzGTIbnNIP7ZxtIAydfK0Gdf3WMrUmSsZEgTEfUPCgBBCvA+ZTIaTJ0/iGIr5VI0jxiYzxjYpbYjLEB8HvBZW3EdXET4OKW1AQWtjmgZXN+r0vfheX4YQgIQBIYR431zX5eTJk+RS1qjLYC5F2tGZ1reZ0rbJ0aGqpmlTpkeOQFl0kyyX2mW+dyXmGz/blUAg7gsSBoQQ4g7Yts3Y2BiaptHp+3haFi+xOUim2FZHqDOBj02IzT7T3FTH2Qwm2G3HfO+VLbbrw3t9CULIaQIhhLhTjuMQ4LIRzhIENh4pQhxsPBQaMQYJBgoNH4cIE4OIZrPJj3/yE+zffQrNzlPJO1JHIO4JCQNCCHGHIkxuBrM0qGAREuBgExBgk6FFQIUYG0jwSI96EQB5mly8VOXFi3VCs8Dzz57m7/7uEWkiJT50EgaEEOIO7bVChrjYBPjYWARYBGTpkKVNmzIaIQoThUYCJGh4OGypBbrkUZHGCy/voGkaf+9z87JCID5UEgaEEOIO9L2YC1seIWMkjJ72QSfCwCIgRR8dhULnVjciEiw8TEIMUvhEmIAGccSPXzqPt/5jfu+504zPHme/pzFZcNB1ZMaE+MBIGBBCiDvw6uVVhrFFiRp9MiRYdMnjMsTDZUAaE480EQOy3K7bVmhE2HSxb/1p9HoCbOy2+KffPMc+ewQ4OI7LmeNjPLJQlkZF4gMhYUAIId6nTj/gu9//EbayCTQHS4W0KBNh0qWATsgmx94QAjQiFBqjVQID0G6925AYiyYlWpTRSYiwSdGl4yturK7g2CYXN11Oz+UkEIi7SsKAEEK8D30v5hs/2+J6O4et+Yyzxx5TeKRQ6CgS2pSJsPn1DT8BdAwiYvTXvQ4KF9AYdR0wMW+dRBiSwSKk58HZ81cZ9PtsVKdlhUDcVRIGhBDifWj0ApoDRc5RNL0UISZ9CuhERFhoKGJMRisAt1u6KAwiHIYMyKJQcLhKcLv50Ki2IMbGwkeRoBPh4aKTsLu7Q7vToWJ3Ob54ROoIxF0hI4yFEOJ96Hsx336lyrnLW5xfbxHgkqCjkaAxWgMY3dh1RuOJAsY4IMDFIwNoDHG4ffM3SBgVFxo4dFG3agkSLHRiTHxCXExi0rpPwexSqkxz5tQ8X3t+TgKBuCOyMiCEEO9DxjX44tPjmFrM+fXu4esKDfPW0UKfDLcDQYxFi/FbGwEaafrAKDSMwoNOlg5dCrd6EoxeNQhIsFAY2HjMZEM0K0scmeTshMtrexwvRzx7ehHTlF/p4v2RdsRCCPE+ZVyDTz46zsJE5tYrOjoJCp0Em9Gv2NHtXqERYuEQohNTpIHDgASDEAsAjxQwigARNgYmBjBGjeP6NSb0Kl4QMZZzePLUPImZI2tFVLdXOXfuHLVaDVnsFe+HbBMIIcQdurFZ5X/6P7/PVjgOGEQYmAxJsIhwANBJsPAxiHDxGWebFmMk6HQpUqBOhzLB60KETcxMZshxe51k2KQfGmzEC2Dl+L2Pn+ZTj1ZI60OatV329vaI45jp6WlOnTpFKpW6lx+J+IiRNSUhhLhDU5USKUfHCkM8LHRCDBQxya3JBDE2PovcQNM0eipHVxsjUjbmrcZEISkMIrIE9Mng4FOizgmnzfLxo9Q609zcrdPvljA1i++fu0ku2OLMiXHy+Tyu67K/v8/a2hqbm5scWVxibHKBSsGVegLxjoyvf/3rX7/X34QQQnyU7bd99r0s+rCGr2zCWBHgoLCAGB2NilZjwd0HFdKmjK0CYixKVDFQJJhogMOQPG2OaDeZNPYZeAGX2mU8d4ZU6Qg+LrZto1RCQe2jRz1s2yaOY0zTxLZtqo0O33u1wbm1LoPYYWE8hW3KrrB4e7IyIIQQd6ictTlSydDrTpPzPa5u9uhFNj4OOuAQ8OyiTTYZY2e/jhME1NQYGhp9CiSaSZYuHinGtH0KWhtTi4iUyXYyT6OXgizoOswXoefD5KTLqYlxus0qGxsbnDx5ksnZBaotj9T4CdbiPabKGfZbPo1eQMaVbQPx9qRmQAgh7oK+F7O2XeWvvvs9Xtu36TLGMDIwtZBJq8GZ8S75jEOpVOLly7tc61XI6EP8xEZXATEGLkOm9W0AAmxiZbKdzDEkTYjN4wt5/vO/+Si+72EmA0KvR6vVYnt7m2Z3yFYwSbYyz5GJAiho9kMmi440KBLvSFYGhBDiLsi4BgvTY+x5edBjnj0xjt5ZoXawS9qx6A+GHJkeJ5fLUXI3KQy6eGQouhE5f4MYA5uASBnsqHkiLAwVMiRNgI1CY+3mJv/XX3T4r/+jT1HIVAAIw5CTJ0/yiwvrXHilzrGCQ7MX8vtPVkg5ujQlEu+K1AwIIcRdctAOWG0YTBQc7HSeZ09O8MrVA6pBjsQq8qXPPMPU5DirK9fRhlUKdsC408fWQozER6GzGS/SoIJCo0+eABODBAXk6FLveKxffZVMaZquBxnXopDPMD01SWjkaA4SJosOTx8vUMnbUisg3hVZGRBCiLuknLU5NlPk8qpPKeoyNbmEXZiioEeEmsvK5gGffPoki4uLtFotNG2AY7p0fIN+kiJWBpFmY6mIISn0WxMMfFLoRPhYZNWAa1Wdl//vc4yNVfjcU7N89bnJwyZIjV4gqwHiPZMwIIQQd8nohjzBmYU0B1s3MMImn37uCfZbPsPWLtGgSa1WI51Ok81maXWHZAvzbPd8ekrDSAI8bAIsHAIcBrQpoxGjk2CiyGtNttUcodIZegE3q8PDAsGMa0ihoHhfJAwIIcRdlHENlmYLZI1Ztre3+b1TJ/CSAs19n53NUbGf4zjkihUuNCLW9zOEzgQT6RY7DQ9LxRTMJl40ajw06kZoYhK9rnWxRYhDo+ezf/ManX6ZvqwGiDsgm0lCCPEBmJycJJ1Oc7C7yWzZYayYwbZtarUamqahuwWs3KiVsabpaKkKx2fyZPUejpsm52okmDgMsQiJGY07ipSBjU+ROml67Db7/P1//kP+3x+scm27T9+L3/F7E+I3SQGhEEJ8ADRNI5vNsre3B4DruhwcHDAYDLBtG42E0swSkZGm7Hg8OQufe2qWvZVzZPUBj8ymqXcDBrGLTozCJMJmQJYYkyEZQhxCXOJEcWO7S8u3aPYjaTIk3jP5r0UIIT4gqVSKqakpdnd3UUrRG4b4eo7dapO0Y/CHZ8b4o9+Z5pPHdI5N2GhJwLH5GayozZOPHOXJiSHL1lUm2cYgwWWIhwsk5GgDCltX+FoapemU0uqwyZAQ74WEASGE+ABNT0+TSqVY29zllzsGl5p5Xtl12G6DYZosTGbIpW1s26bf7/PpT3+aXpziGy9t8+iZ55nKJozrVVz6eLjYBGTpMRqWrPATDUtLWJq08COdyaJDOWvf68sWHzESBoQQ4gOkaRqLi4vUOz5OYZr56QpbvRQv3dT461+16Hsxruui66Nfx/WhwYXoDC9Xx/jnZyNml86QtWPmWSFDF4chphZR0apk6eAQECawV23xu48WpdugeF8kDAghxAcsnU5zfH4SR/XZqA6wLIu8FXJ5dY96NyCVShHHMY7jcH61iebkGC9laPZD9OIximOT1Ji6VS9gMVRpYmUAGj4OCmiEKf73f/kj/t0vr0oRoXjPJAwIIcSH4PjCLL+7nOJkocOxCQcjXSIZ1NnbuIZlWXieRy6XYyrtU85a9LyEctbiuVOTnDj9DFY6TyVn4pFmSJptFmhRIsQkxMImoOqn+Rc/2OKbZ/ckEIj3RPoMCCHEh0DXdebn5vj2uSqB7rA4O8lSRpOuV6QAAAMGSURBVGd/ZwMVeQA4jsNYKuZ/+NuLXNsPeGwux8JEinzqFC9ePGCr6TE3lqPW9BgmJorRMUMNgNHYZB+Ll662eHapwPJs9l5esvgIkZUBIYT4kPjKJj8xz+njswSR4ujSSWZmZqjX6+zu7hIEAZqmUXRC/uYzEyxMjLoJlnIpvvTcPK4RYhBRLFVINBelmaRzJU7PmEwZVQB6gUajFzIMknt5qeIjRlYGhBDiQ1LO2syOZdhv+UwWHcYLKSbzj6KU4tLVFc6+tkK5kGW42SSdK7+hEHD6yAInH7EJunWu7w05Nlsib4UEMfzxHz7DcPAof//PL2M5Fvm0QcqWZz3x7kkYEEKID8lbDxNKMTt/jBfOt+h0LHo3ArJulV0vxxefnjgMBJW8w+xYhtUgJkqGaFFCT3dZyHsErR1OLi3x5U8c58LqAeMZH9eI2KwNZWiReFc0pZS619+EEEI8zDZrQ/6/n26TcmxeulxleUInXyzxtY9PMlf59eChvhdzcbPLixcbVAo2Ow2fP3wyT9LZJJ0roafHiZKE1sEmL696aG6ZmbGUHDcU70jWkYQQ4h4rZ23mxrN4YcL8RI5Mrsh0yX1T86CMa3B6Lsf8RJruMGZpOsOJI2Uqk0f49i9rfOvsNpc2B5Qm5gj0DBNFRzoSindFtgmEEOIee/32gWsZeGH8tsv7b7XV0HByxGaembEs+y2fJxayHJ0uHtYmSEdC8U5km0AIIT7i+l7Mt1+pHt78v/j0OMBv1CYI8fYkDAghxAOg78Vy8xfvm4QBIYQQ4iEnBYRCCCHEQ07CgBBCCPGQkzAghBBCPOQkDAghhBAPOQkDQgghxENOwoAQQgjxkJMwIIQQQjzkJAwIIYQQDzkJA0IIIcRDTsKAEEII8ZCTMCCEEEI85CQMCCGEEA85CQNCCCHEQ07CgBBCCPGQkzAghBBCPOQkDAghhBAPOQkDQgghxENOwoAQQgjxkJMwIIQQQjzkJAwIIYQQDzkJA0IIIcRDTsKAEEII8ZCTMCCEEEI85P5/M/9m2NuujfYAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "draw_metric(G,bC,spring_pos)" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -505,15 +426,7 @@ "id": "wXbYnUjisJjq", "outputId": "2087e3f7-c47a-42dc-d2a4-f8050dd817fd" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.30657814798734856\n" - ] - } - ], + "outputs": [], "source": [ "# global efficiency\n", "gE = nx.global_efficiency(G)\n", @@ -522,7 +435,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -541,15 +454,7 @@ "id": "-rTdO9YrsbqP", "outputId": "854d3db6-d42e-4f5e-ea77-30840164f6af" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.6055467186200876\n" - ] - } - ], + "outputs": [], "source": [ "# average clustering\n", "aC = nx.average_clustering(G)\n", @@ -558,7 +463,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -577,18 +482,7 @@ "id": "94viGU4vserg", "outputId": "05b8e669-e338-4943-88ff-5ece3ce55a8c" }, - "outputs": [ - { - "data": { - "text/plain": [ - "0.010819963503439287" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# degree centrality\n", "deg_C = nx.degree_centrality(G)\n", @@ -597,7 +491,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -617,25 +511,14 @@ "id": "L73effhYiPYp", "outputId": "48bfad8c-3581-48dc-cd22-4c4caa088790" }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzda4yk133n9+9zf+rWVV19v09zhpwhOUOKpERRlCWKlkiRskRaWNkL7xoQFg6MDRbYIECCAPvKGyBvEiQvEuSKBMka640ta2U5stfSWpYpXkTzIpJz5cz0dE/fb9Vd96rn/py86J4mKQ5JiSLZ3dP/DzHAzFRP13mq2V2/53/O+R9NKaUQQgghxJGl7/cAhBBCCLG/JAwIIYQQR5yEASGEEOKIkzAghBBCHHESBoQQQogjTsKAEEIIccRJGBBCCCGOOAkDQgghxBEnYUAIIYQ44iQMCCGEEEechAEhhBDiiJMwIIQQQhxxEgaEEEKII07CgBBCCHHESRgQQgghjjgJA0IIIcQRJ2FACCGEOOIkDAghhBBHnIQBIYQQ4oiTMCCEEEIccRIGhBBCiCNOwoAQQghxxEkYEEIIIY44CQNCiF9Kx09Y2vLo+AmVRsjLM3UqjfCmjwshDhdzvwcghDiYFjY9Liy1OD1RIOsY/OXLG7S9mFLO4uJSi816yFify3/+1DQAf/nyBrVOTG/O5OkHhxgo2vt8BUKIX5aEASHEuyxsevzrP5uh2o4oZS3OTOU4N9+gnNdZNR0uLTYwNGh0Q/7mhcssbPlcqejohoFp7BQcf+8Lo+Rcg46fUG2HlPM23SDh+maX6cGshAUhDhAJA0KId7mw1KLS8DHSgO1WlmurTbJ6SLVtc2xQJ45TQnRsFG3PZ7PaImMWWGumjBR11ms+K9seo2WXf/+zZZa3IwaKDvObXdbrPmPlLP/y68ckEAhxQEgYEEK8y+mJAgUHtls6Q2WDiVJKtR5xarTE7UMmF2Y8lGHR25Oj140o5zTaGMRJQpTCxesVvkfMPRMmP3xpBcM0ueYWaLY6WEmTCzWX7/2kzn2n75AqgRAHgKaUUvs9CCHEwfO3L5zl716e4dvf/BK1jQVWKk0+/5l7mJm5xneeW8TtnWSoR6Pgz7LklWkmGRxLZ6mm0QlT0HTG8wF1XydNE3TDwjI0EgyIOkRRRKZnkGPDPVIlEGKfyW4CIcRNTfQ5nCjUGSmZkAQMFnR6e7Jsri1yZ6nOP//6SR47U8C0Xepeih3XaHVDgjAkSUElMS0/ZagHLBVR1ir8i68O8y9+6wQPTpsoM0d/j8N6PeD6Zne/L1eII02mCYQQN6VpGgBBEBBFEYZhkKYptVqNUqkXw9BZXVmh4GoMFExaoYsbNOl3LbZ9l0iZRJgsV3x0FRHrinNvXkcBRpJybHSMpg/DJYfpwez+XqwQR5yEASHETRmGAeyEgTiOyWazbGxs0OpGNHPj/NlPF/DqCXeWUz53m8ncaoNzSx5B7OKQ4mig+x2aDGGhsxjkWL0UoxkuE8Ml7rutyJ1jOU6NF2SKQIh9JmFACHFTYaLRjGwa7Z3KQDabZW5uDi8x2Nhs0Zf3qPsardghaQZsb1fpxEX8xMDHxSJEI4vGzrIkhYkiJU5S4kRRbUUcG5LFg0IcBBIGhBDv0vETXrgWcrXVh325Q59K6Qlt5pfWyduKwFRsNSNcM+XylkO91cUmh0FCoBWxVECAhUtChi4aKToJEQ6WZWOZJpP9Gcp5CQJCHAQSBoQQ71Jth8yvNdDjFmv1iIWuw2zQpVKxubs/R3+myXwYsBwNstrUcDQdR7MoaVUipWhQIsFBEZFgoJMSYpJqDlnb5fhQhsc+1U/ONfb7UoUQSBgQQtxEOW9TsCPWEhtdBVQbHXKORis0sbK9+F6DZS/HqmeQKEVXucRopPSgobAIsYjwcTFQuHi0cTFVgqZBvRPjR3KGgRAHhWwtFEK8S841ODMYMOWsczyzSd7yqbZjcnpIMWNQ68R0gxQ77aABedo4dHEIaVMkxibGxCICoEsGlwjLtnAsnRMjWZkiEOIAkcqAEOJd0jTFIKZg+iRejTt6FN2og90TEHQVKmziKo1Ey1LQOgxqK2yn/bRUAQ1FL9u0KRDhopNgGBb/5JFRhgYHKGYtTozkZIpAiANEwoAQ4l08z8MwDJRSBEGAY9sE3Rq5nh6azSZJ0GFYaxEaDpYKMLUYWw8oqQxb6SAeGTJ4JFiYhsHIyCD33jHBHWO5/b40IcRNSBgQQrzLjTCQpulew6EkSVBK0Wq1iOMYg5QMMez0JsLUYjJ46FqKxk7XwenehP7x49w2nGesz93XaxJCvDcJA0KId/E8D8dxuHF0ie/7aJpGt9vF933SNL3pvwuxCXHIax3y/aP84W9/mkLWoZy3ZVpAiANMwoAQ4l263S66rqOU2qsOaJpGp9N5zyAAYBOS1X3y/ZN87lMnmRosSAgQ4hCQMCCEeBfP80iSna1/URQRx/He79+PbaT81n1D3PfZh+grSDVAiMNCwoAQ4h3CMCSKIpIkQdM0oigiTdP3rQjAzsFGDz/8MF/+8pc/oZEKIT4qEgaEEO/geR7dbhfbtlFK7VUFbibBJFA2NiG/+cWHefTRRz/BkQohPioSBoQQ7+B5Hp7nMTw8/J7VAMMw0KwMS50+fDLcfXyUBz/38Cc8UiHER0U6EAoh3qHZbJIkCf39/TetCuTzeXRdp+mlBGQ5ddsoPQOTVNvhPoxWCPFRkDAghHiHSqWC4ziUSiXCRKerssRqp4g4Pj6+t7vA0ULO3DFO7+AkQyVH2gsLcYjJNIEQYk+rGzG70mB8qMTP37jAWjqGTwYXjy/eVWJhtUqjbZLRTH7zkYf5zEMPUutE0kdAiENOUze6igghjrSOn/Cdn87x4uuXyeoBlrfMWjKCQ0Bq9+IHIR2y6MBdIzr/6p99mXxG7ieEuBXINIEQAoCths/sSpW8nVDzFEopBgom2fIozdCgQYkQB8vNUBg8Qa3z/j0HhBCHh4QBIQQA3cYGWlCj2k7IaD4np/r5/cdP0ZuuYasuLl1M06Wv3M/UYEbWCAhxC5EanxCCzc1Nrlw6R8FbZExPOT4xyKnbj3Hx7M/R2ssUjHEG+/q448Qov3GqLEcQC3GLkTAgxBFXq9X42c9+xtLSEirymBrsZWJ0gAsXLrCxsYGlazxxbz+fflhaDAtxq5IFhEIcYRsbG7zyyivMz88TRRGu6zI4OMjq6ir1eh2AT33qU3z9619H07R9Hq0Q4uMilQEhjqA0TVlYWGB2dpbFxUXSNKVUKmGaJouLi7TbbTRN48yZMxIEhDgCJAwIccSEYcjs7CzVapW5uTniOCaXy2HbNuuVOpVmgqMZ3Hv3KZ566ikJAkIcARIGhDhCWq0Wc3NzRFHEtWvX8H2fTCZDkiSEic7lWh5P9XNspMjjT35FgoAQR4RsLRTiiNjY2ODq1avous7s7CyVaotA76HZCXEch7nlTXyVYbicZXjqlPQREOIIkcqAELe4G+sDqtUqxWKRixcvsrK+zXI0RKOt058r4q/PYamY4+O99I/fznDJlT4CQhwhEgaEuEV1/ISNWod6ZRktCRgeHubs2bMsLy+jrDxdz2WoZFBphDiawcP33ckXH31UzhoQ4giSrYVC3II6fsJf/sMKVxcq9OU1nn5onEvnX2N+fh7DMAgTjYp+jOWtNmbS5qv39vHb33hC1ggIcURJZUCIW9DadpvX35xnqOQSGSVeeOUc3e0VLMsiSRL6SgX89SuMEHP/vXdIEBDiiJMwIMQtJo5jNpevkTdDIr1MWlujpVaxdJ04jrFtm42NDSLf46F7z/C1r0kQEOKok2kCIW4hSimuXbvG8vIyiWax3Qxpba/imIowDEnTlE6nQxAE3HXXXdJQSAgBSGVAiFvKysoKzWYT0zSpb1Xwm00ytkkcJ4RhiO/7hGHIyZMnJQgIIfZIGBDiFrG9vc3GxgaZTIbLly8ThiGu66JpGrVajSAISJKE22+/naefflqCgBBijzQdEuIW0Ol0WFhYIJPJMDMzQ6PRIJPJkMlkqFQq+L5PHMdMT0/zzW9+U4KAEOIdJAwIcchFUcTs7CwA6+vrrK6u4jgOxWKRtbW1vSAwNTXFt771LQkCQoh3kWkCIQ6xNE2ZnZ2l2+3S7XZZXFwEYHh4mNXVVZrNJkopJicn+Z3f+R0JAkKIm5IwIMQhtri4yNbWFr7v72wXjCIKhQKtVoutrS3iOGZycpLf/d3fxTCko6AQ4uYkDAhxSG1sbLC0tESn06FarRLHMY7jYNs28/PzRFHE+Pg4v/d7v4dpyre6EOK9yU8IIQ6hZrPJlStXaDabNJtNwjCkUCiQJAlLS0sEQcDo6Ci///u/L0FACPGBZAGhEIeM7/ucO3eOWq1Gs9nE9316e3vp7e1laWmJbrdLf38/3/72tyUICCF+KRIGhDhEkiTh9ddfZ2Njg06nQ7fbpbe3l4np23n14jyNtk+xWOQP/uAPJAgIIX5pEgaEOCSUUrzxxht70wCtVou+vj5O3nUPf3+xyblKji1jmn/67T/Atu39Hq4Q4hCRMCDEIXHhwgVmZ2cJgoBms8nAwAAPPvggGzWP5UqH8YECt59+kG4k39ZCiF+N1BGFOARmZma4dOkSnufheR5DQ0M8+OCDrK6usrmyyuTQCGb+OCO9LuW8VAWEEL8aObVQiANufn6el19+eW/XwMjICPfccw/r6+vU63Wmp6eZOHY79W5MOW+Tc6WfgBDiVyNhQIgDbGlpiZdffnmvgdDo6CjHjx/fCwYTExMcP34cXZepASHEhydhQIgDamVlhVdeeYW1tbW9IDA1NUWSJCRJwuDgILfddpsEASHEr01+ighxAK2urvLaa6+xvLxMFEUMDg4yMTGB67oYhiFBQAjxkZKfJEIcMCsrK5w7d47r168TRREDAwOcOHGCoaEhwjCkVCrJ1IAQ4iMluwmEOEBm5hb5+fkZlueuQRIyOjrKPffcw+DgIEtLSxSLRW677TY5fVAI8ZGSMCDEAXF1doHvvbDIzGILhzIPTRt8/vMPUSwWmZubkyAghPjYSBgQ4gBYXFzk/JUFlipdMkaIkRnkvs/eTbGYkSAghPjYSRgQYh8ppVhYWODq1atUVldxVA96cYj77pyir2BLEBBCfCJka6EQ+0Qpxfz8POfOnaNSqaBpGmOTtzF98h4KDqyvLFAqlZienpYgIIT4WEllQIh9oJTiypUrvP7663S7XVzX5dixY9xzzz2kacrc3JwEASHEJ0YqA0J8wpRSvPbaa5w/fx6AfD7P0NAQZ86cQSnF9evXJQgIIT5RUhkQ4hPU6kb88CfPs7U2T7knSz6fp6enh7vuugulFHNzc/T29koQEEJ8oiQMCPEJaXsx/+aHF7l4rcto3xQTPQn5rM2pU6fQdZ25uTnK5TLHjh2TICCE+ERJCzMhPiFvzi6z2Yi4Y3qETmzjpxYnT57ENE0JAkKIfSVhQIhPwObmJmF7i5Gyw0bNo8dJuPeu49i2LUFACLHvZJpAiI9ZrVZjaWmJcjHH8W6Fkgq5//QJ+oo5rl+/LkFACLHvZDeBEB+jdrvN1atXcRyHarVKp9Ph5MmT9PT0MD8/L0FACHEgyDSBEB8T3/e5du0apmnSaDRot9scP358Lwj09fVJEBBCHAgSBoT4GERRxMzMDACdTod6vc5tt91GqVTaCwJTU1MSBIQQB4KsGRDiI5YkCTMzM0RRRBiGVKtVpqenKZfLLC4uShAQQhw4EgaE+AjdaBzkeR5xHLO1tcXU1BT9/f0sLi7S39/P5OSkBAEhxIEiYUCIj9DCwgKNRoMkSahUKoyPjzM4OMjS0pIEASHEgSVrBoT4iKyurrK1tUWaplQqFUZGRhgeHmZ5eVmCgBDiQJPKgBAfgUqlwurq6l5FYHBwkJGREVZWViQICCEOPAkDQvyaGo0Gi4uLe2sE+vr6GBsbY21tjYGBASYmJiQICCEONAkDQvwaOp0Oc3NzhGHI9vY2pVKJ8fFx1tfXGRgYYHJycr+HKIQQH0jWDAjxIQVBwLVr1/B9n1qtRqFQYGJigs3NTQkCQohDRSoDQnwIcRwzMzOz11DIdV0mJyfZ2tqSICCEOHQkDAjxK0rTlGvXrtFsNqnX61iWxdTUFNVqlcHBQSYmJvZ7iEII8SuRaQIhfgU3mgpVq1UajQaGYXDs2DHq9boEASHEoSVhQIhfweLiIpVKhUajAcDU1BTNZlOCgBDiUJMwIMQvaW1tjdXVVWq1GmmaMjExQafTkSAghDj0JAwI8UvY3t5mcXHxHUEgCAKGhoYkCAghDj0JA0J8gGazydzcHFtbW8RxzOjoKFEUMTQ0xPj4+H4PTwghfm0SBoR4H91ul5mZGTY3N4miiJGREdI0lSAghLilyNZCId5DGIZcvXqV9fX1vUqApmmMjIwwNja238MTQoiPjFQGhLiJOI65evUqq6urhGFIf38/lmVJEBBC3JIkDAjxC240FVpaWsLzPHp7e3FdV4KAEOKWJWFAiLdRSjE/P8/8/DydTodSqUQul2N0dFSCgBDiliVhQIi3WV5e3ms13NPTQ6FQYGxsjNHR0f0emhBCfGwkDAixa2Njg6tXr+6dQHjjOOLDHAQqjZCXZ+pUGuG7Huv4CUtbHh0/ed+/E0Lc+mQ3gRBArVbj0qVLVCoVcrkc5XL5lggC/+NfzbNeDxguOfwnj02g61DO27S9iD9/YZV6N+G2oRxPf3YIgL95rcJGPaA3Z/HpE0XG+lw6fsx8xWN6MMtA0d7nqxJCfBwkDIgjr9Vqcf78edbW1shmswwMDDAxMXEog0ClEXJ9s8v0YJbrm13mN5pk9YjVKvyff/Mmkd+lVMxzfb3L/HZC1jFZ2GhxasSkXMxy7toqhXyOi4tNLi9VcfC5uNRCs3sYKmX4w69OomsAGmN9LjnX2O9LFkJ8BDSllNrvQQixXzzP4/XXX2d+fh7XdRkeHmZ6epqRkZH9HtqvrNII+W/+3/NUPZgaLPBPHxnlf/7LS2w2I0YHS7S2lzDiDkvBIGGqkaJhEFEwE35zsoFJwPOrfXRVljiF4z1d5lsOrdBAJwV08maIYxn0FAp8+vYSj5wZZKwvA0C1HVLO2xIQhDiEpDIgjqwoirhw4QLXr1/Htm0GBwcPbRAAeHNhm8XNFlkzYb1u0/RivnEa5tYDPv/pfn788y7Xq/2kqx4WISEOFinFZI2g0SB0CuhRm17Lo0GOrS6oOMTEIMTFJsCLIUpiwrjOT856bHVSxss2cRzTjQyGSg6P3F3GjxIJBkIcIhIGxJGUJAkXL15kZmYGwzAYHh7m+PHjhzYIAHjVRXrsmG7qcKzkMD2Y5dpWwh0DMFTQ+OyUzn13TvE//cU5vCilqLeYthbooUa3FdFp+Fh2GXSDMbtFgSobcQaV66cRBuhpRDe2SDQbL0kxkgTXUJy9VsHQ4b47RlisePzpT+fRTUeCgRCHiIQBceQopbh8+TJvvvkmSilGRka4/fbbGR4e3u+hfWiNRoNubZVv3lvi+kaLbz3+KQaKNlfTFF3XiaKIGJMfvbGFH2uYpHzlrgyfvutxnvv5Fa4vrLAUjxLFDgUX7h3VCLa6DJQjOknEYpSjbfbgkNJj1og0Fz9MefbcCiPlLPffMUilERL5Dba7IXdNj7JY6fJ//3Ady80zMZDnyfsHJBAIcUBJGBBHzuzsLOfOnSNJEsbGxjh58uShDgIAFy5cwLZt7j1zO4n3MgU7BXYqILquE4YhK02ds7NbJEojIMt/vFDnry/MEpMl5iQpOhoxvm/w/AIMmEM8MKizvNymHpjkrQZeWkQ3bIbzGpvbPrpqUM7dxm/cWWZjbQkVp6wGQ1RaAUGnQSdIuWPAZHl7ZyHi3RMFCQRCHEASBsSRsrS0xM9//nPCMGR8fJw777zz0AeB7e1tNjY2OH36NLlcDthZGBmS4eqmYrTXJAxDSlkL0pgUHVDopAQ4aKSkaAAoTECnFuoEUS/Naw3qyTAhLu0wZtD1eGDcIqM1sVIHjzwZPWB2bpa+LJy59yQdP+aNS3Nkhy1W/F7W6jErm01+EgQsbHT50pl+mToQ4oCRMCCOjI2NDV566SU6nQ7j4+OcPn2aoaGh/R7Wr6XjJzzz0kVMO8uJEycIw53mQiuVFt87W+fKgk7Jjfmat0RP3mXUXKcW5VBoOFqCrQJCbAxSICHZ/ZGQYhKpmHbiEOIQYRJhUU8dVgOLExmPf/zoCa6t1HltrsnfXUgYHxthPdikh22ODfVw22230Q1S/uaFi1zaXscKdM62+ljbbmFYLkMlR6YOhDggJAyII6FWq/HCCy9Qr9cZGxvj3nvvvSWCwPdfXOKVayF3Tk/ghYqMbWMYBvMVn7nVDgRNqkmON+erjOY6jGvr9BkmukrAyrES9NEmj0WIjU+VAWJsUgxytDCJadMDu5WDdqg4uxRjTU/w1NQkP33xNZYrDqEO59c3sQy4YzTLvzo9RRRFXLl0AdVcYaSYw+4ZZGNthe3tbR757Bk26gHVdkjOzezvCymEkDAgbn2dTofnnnuOra0tRkdHuf/++w99EABY2fZ5c7GBo8V0E4dqO2SiP4NpmhTdCFcLaJFhtMfm/jvHMZI26+vrmFqAUgrlGKShQVE1qVIGdFxCFB4pNiYJDgF9VKjRT4RFhIkWR8xWUv74O3/F1tYWXjROA5OEFJKE+Q2PP/3JVU4Umyi/zvGpMQyrytWVGYaoosp3sN2KGCo5lPPS0VCIg0DCgLil+b7PT3/6U9bW1hgeHuYzn/nMLREEFjY9/vS5FWbWA5IoSya3ztWLG1z0Wly/fp3Ghcvo3gg5rcBkb5aenMnGahsAzcrQDTQMv4NLlhYFNDSydAg1lzwN2hRx8Qhw6GOTVOnEmNTpI0Znvd7hfL1JlSl8XEChATEWjTDlr1/fos8O+c07DN5YXmVhKyDVs4wO3s23n7wH2zJlzYAQB4iEAXHLiqKI559/nsXFRfr7+3nooYduiSBQaYT81//2HHO1GAADjdmVbfJBl5zh0Wq1aIUWYWrSo9eptfM0vByNRoNYGWwmY9RjnYzuMaCtUdKqVFU/vnIxVUSOJh5ZPFyyWpcerYlHng01xE67Up0Ekw3GCXDJ08JDJ0eHCAufHDGKSqjzlxc8EnKkFMjQJWy6/P2FOr/3hVEJAkIcIHJqobglpWnKiy++yMzMDL29vXzhC1+4JYIAwOxai7VaBx0FGCTobIYlXl7L8+r2MJW4l1IhRzkPkZYhowd0G5s0m00CZdNNXRwtoJu6pJpBQW8xpK1iaTERNgvcjk8Wg5QBbR1XDyhrWzgE2IRoJKToJBik6HTJksGnQGM3LKQoDBQ6IRYuASkmHlmUX6PtxVTb7z5FUQixf6QyIG45SileeeUVLly4QKlU4pFHHrllggCAk9RxaRPSy055XiPCoK5ybHcdXONuLMdn3JijlIZ87sRpOs0OnU4HV7fIaQHNJIubtLDZeVNONYNEGRjEtBnAIsAjSyZt00MTTSXk6BDikJBBoUjY+XgHjx7qlNmkQ4EEiwQdAw8dHQ+XHC3yepehvknyGRPXkqqAEAeJhAFxyzl79iyvvfYa+XyeRx999ND3EfhF81fPcVK/wno6yjKTKHQSNBJsNBKSVGOra9JjaOQNn0LWhiSHUgpDixk0NrFNBy1pEGKDApsQF48mPUBKiE2MyXWO46QRJiE6MSmgoTAJUYBJSI4uLXIY9GIQYePTJU+CgwIydCjpdSYyNVY34ELgUcpZsq1QiANEwoC4pVy+fJkXX3wR13X5yle+cqjPGriZIAi4du0arh7Qxxbb6cBeEyENjRAXnZReO8BKfGCnC2Gz2UQpRapZLHaKtBOXkCGcNCRDhxF9hRF9hULaJFAuHXoARYxJikVKFpOQGJcb2wxdWhgoKgySotOmBGgkGIDarRBouHh4qc1G16WrFG67wkZ9WrYVCnGASBgQt4z5+XmeeeYZLMvi8ccfZ3R0dL+H9JG7cuUK3W4XgIzm0U+FDjlydOjTNvC0PKW8xXQxQ307QmkaaZrSbDbRNI1Iy9BNHQwSfDJkVBdfyxBik9W62HpANumigA6F3bl/Bei7QeCtZUYBGZLdRkUKjQgdnWi3m6G2+7GKDll0UjJOhoxToH+wR7YVCnHASBgQt4T19XV+9KMfoWkaTzzxBGNjY/s9pI+cUoqXXnpp78+mFjNmLOGpDKDhaiF9bgMDgzRSpLuHFKVpSrvdRimFpTxcPLpkcfGIsbBUuNOESNuZLshoXboqh01AjIVCI7nJWmOFTgSwWwlQu1MVBvHbPn4nGGi6xX2np1jfrvPFM4N89k6ZIhDiIJHdBOLQ297e5gc/+AFpmvL4448zPj6+30P6UDp+wtKWR8dPbvr4+vo66+vr7/r7qupnWU2ykk6gWTtl906ns/d4HMf4vo+maajYZ0RfYcJYYFq7iq2FRNisqkn81MHUYsraFi5dBtnEJgBAI+bG9MA7mYDafSzlRijYsdPiWEMj0PO8cKVFj6vxmZODEgSEOGCkMiAOtVarxfe//33CMOSrX/0q09PT+z2kD6XjJ/zNaxWWNtuMD+T42gPvfsP8u2eep5242ISY2k6PAU9l2VYDJOg7vQFUSI6QKIr2KgPdbpckSUjTlDRNufFtrzSTWFlE2DRVkVBZjKt50LSdnQOaQ4+q0aCMAnwy7Nw/7Nzt71QAbHbe9HU0UrTd/wwiQEMnAXQKpo+Gye2jBQpZ6xN6VYUQvywJA+LQ8jyP7373u3S7XR577DFOnDix30P60KrtkLNXFglbWzRbw9w76XDHRHnv8eVKix9fjgnSaWwtZFRbxNUDEqUT4KB235qjVKFQe2/8pmnSbDb3/hwrk7V0DJ8MtgrQSfDYmWZoUMRXd5Gli6N5DLBOjT7M3dMNLaKddsTo6KTYRCgSot2eAg4hGhEWigiLAnX6tQp15wR6pkzRTbjvRP/+vchCiPckYUAcSlEU8d3vfpdWq8Wjjz7KqVOn9ntIv5Zy3qY3A6tejv68TmVljqzWZXR0FC9U/Ld//Bxb6cBOUx+VohTc7ozk4jAAACAASURBVCyTMQ0cPyRB21nqF4doloamaSRJglJqLwwAu8cRZXAICDSHAdaJlUGTIhYxAS451SbQMnQJiXarA1X6KVHDw0WhU6BJiE2JCl0KWLu9B5sMkAJFLWTcWOT0HZN88bHP8cbVNQp6h+mxvv18mYUQ70HCgDh0Gp2AP/nO/0e33uDRL36eM2fO7PeQfm051+C+0YSJfMqTXz5Nu7HF6uoq9Xodq2cEP9GwCGmTJ08bw85y6p7P0K1vsH51ky45snQwozqpYe6sD1A7FQLP8/ae50Y/gRuVAUNPGVFLgEabAikaTUqYKiLARGFiE5ClQwo7z01CrFlklEeFcTrk2VlOmKJpOgUrYcq6TF7XME2ToZLLeK5LudyHpt1s3YEQYr9JGBCHStuL+e/++O/ZqNmcnHqAU3d/ar+H9JGxjZSBvEY+Y5LPDFMqlZifn+fapdexoho5w0VX4OJRchWby7MU8y5T9ird2MAmxCAmjsEwdtYbxHFMHMd7z2FqMSP6Cp7KUKWfNTVOsDvvr1AMsEGXPAE2+m674T42cAmoUSbVTCwihrUVPFw21TDabj+CCANHRfhajtAoksQtkiSh0+kQxzHlcvk9rlwIsd8kDIhDQynF937wH1mrhkyP9ZHpHT00jWs6fkK1Hb7vSX1JkqDrb23wcV2XkydP8uabbzKsLdPvZjC0lEy2B0cPaTfqGBR3Ogy2Wu/4PJq2M1UQxzFKqXc8j6nFGCSEykFXMT5FSlSJcfFxsAgIsAhxSdHYZHRnWgGXXrVFqDkYWkIPTTLKo01htwciKN3A0BIypiINd9Yp1Go1HMchl8t9LK+tEOLXJ2FAHApKKX784x+zuTLHseG76B2cPDSNa27sFNioBwyVnPdsw5umKZb1zpX2QRCwvr5OxtYxjJgoipgaylGvR4SGQafTwTTf+W2slCKIwU/fufMgVuZeTwJNxWgqxSOLSUyCSZ46Pi4pOiYpCQlZdrYe2nikgKdlybNzpoGpx9yTmaU8eQ8D/b2cm2+ytB0y4IQM5mK22jthoF6vMzg4+HG9vEKIj4CEAXHgKaV47rnnuHTpEsePTfL4k4984F32QdHxEy4utbi23sJIAhbCmJXtAq6t01fYGf+NqkG9m2JYOh0/2buuS5cuUWt5aHaJbEbDijzCMCRJEiw3T9NXGIFHrExCbFw9Ik0Va8nozroAAorUUEBVDVBnZwGfSUSISYi7u/gPWvQSkMUkIINHkS4JOj4uLUpk8BhmmaLZoa9U4NSpU3z2s5+lWCySJAnHz13i9QszdOsb6ErfCSVBQJIkMkUgxAEnYUAcaDdOIHzjjTcYHh7mqaeewjCMAz81kCQJM3OL/C/fewUyQ1T8DGEU4epbXL74OqXyIA+eOcG94wbPXGqwVI1ZXjMY6tUJchWevH+AjK3x6hsXmO/2EQcF+jA4nq9RLpdp+zGzjQyhloOoRZhGBGSwVMywN8uZpb9lqHGdEIf1wjSvTj5B3d05uVFDEe4eahRhEmPs7hLQduf/c2ho5GkT4JBiopGSYlEu5bnv9tu47777GBsboxukLG15lPM2nzp9CmKfV1/d2Gt61O12yWazuK67n18OIcQHkDAgDiylFOfOneOll16iXC7zzW9+c29h3EGysOlxYbHF3RN5tKjFm7NLvHn5ClfXfLaTXtJ2je7uEjsPiyY9dNc2+e5alZ+oDdaYROk2gbIYKSVs1AOq7RDVrbC8UaebDpEzPFpBkboWMxJF+GSphg7lTEwlckiVS6I0Pn35+/zG7HfhbesE7uRnPHr1T3h2+lv86K4/QGkGFj4eOcDkrY+80T1QodDpkiPG3O0+aGA5Lp9+4AG+/NCdWJbFxlad//DqJp5y96Y/zpw5w/b2NmfPnkUphe/7UhUQ4hCQMCAOJKUUly5d4vnnnyefz/Pbv/3b2PbBWx8wv9Hlv/i/3qDhJVhElNgmxqDFMCmKCHe35/dOMyAXjzY5umoYkwh996CfrGuTBCmtgL21EH/7/GvocQcXD90dJG+GjA30UG10ubAc004KtCJFL1USDB689D0+N/f9mzQNVqDgkbnv4CQeP7rnD0mB9F3f/jtthU0CYkxCHAB0dDKW4ng5Jmyu81d/NUu1WmWtHrEcj3P/mduZW+kyN6iYHMjywAMPMD8/T9uLqQcWdrbn4/0iCCF+bRIGxIE0MzPDs88+i+M4PPXUU+Tz+X0dzy/uBuj4CSvbPv/2h+eoejv30x4uEUNopMTYQIzCINltyeuQ7pbbzZ1d+ZpL4AxjJSEZN8OgvcHnp4s8ef8Akd9iZWUFXUVM2Ov0lV2C1jY5d4SrqwGtJEuRKoHm0q9V6Gsu8PDc99/3GjTgcws/4MLkl7hW+hRvnSkAkO7uCIiwdqsYGboM9xiEVoZ7Rw1Gsj6N6iaNRgOlFEPlIobew9J6g4IdMX91iZVrKXEco1mZnU6HYYZ/9+MrPPXZMQb7enAc5+P8MgkhPiQJA+LAmZ2d5ZlnnsEwDL72ta/R17e/Xevml9f5k7+9Qi2wGB0Z4Tdud/j+M+e5UjHoxBqKDIqdXQAxOnBjR8CNSoYJJNh45GnRokiMTqx0On7KdKFFT6HAYNxkvFgk5xo88w9vUG/7dNIMpYxJ1FwjjWMsN09DyxJqCl9l6FNbZPQux6+/QqLpGCp932tJNIP7rv+QK/fdz1tBQGERMsEsRRrEuo2jPKL8Maz8AL1GgGoss7jRxjAMyuUy4+Pj5PN5/EjRiQx68zn0NEuz2dzZ2mgX8IlwCHjx9SsU4jVOTpbJZDLkcjny+Tz5fJ5sNiuNiIQ4ACQMiANlfn6eZ599ljRNeeyxxxgdHd23sSilmJ2d5a9/8jIXlmwalDi7ssKzr3mYqU+bIuHeG//O9j2dlHT3dzt33jqQYpCQp8uQtkZDlenstvAt5kxiXEYKKblOhK7rrG1WeeHsPHPdQQJl041hwtigr9xDrneYpX94k5IK8bQsZW0bgL7N+Q8MAgCGSjix9QYGCYqUFAOTCA2NjBZSNFpomra7SHGF1K+Tt1OcjMXE9DRTU1P09vZimiaGYaBpGrVajXq9jhcE5PN5pqamaL76xl6nQxePxWuLDORP09fXR5qmbG1tkaYpYaKTGBmGyzl0K0sjdLhtJM9A8eBNCQlxK5MwIA6MxcVFnnvuOXzf5wtf+ALHjx/ft7F4nsf58+dZXFwk8tuEDOOTBRLaqUuGeHdDngEoduoD3u7KAJ0QixR777FethjXF3D1gPsy81zzRkk1i7vHBsiHa9w1mGFxLmJ+aY2/eGmT5XqRbupQpko3yREqG9/3+fsf/QCXMTwth0OARUCIjZ7e/NjjmzHSiAQLk3B3GsNEJ0ZXb32OG3f40KJrWegqz8rKCmtra+j6zrbBOI73GiXZtr3369q1a8zNzTGi75yFYBOShDGvv/465XKZbDZLNptFGQ5vrJl0YpuwO8NGx8YuDHBirMy//PoxCQRCfIIkDIgDYXFxkRdffJF2u80DDzzA6dOn92UcSikuza7wkxcvENQWafsxF1rDNCnsrrS3SGC3H/+NO3Ft95GQGAuFwiEm3D3m1yRhTFvC1XfunMemRqnMhNRDDcfUyEQeW+vLeJ7HeiNmrV7CVSEeLl0yjNgJfQWbyvoypqYY0NZZSSeJMNlglHzapJobIe/X0Hn/6kCKRjU7ikYCu7sEFBo6MU1KFFUDkxgvVIS4OFoIUUQQBBiGQZqmuyEBTNMkm83iOM5elQCg3W7vnJiopZi81Qo5iiJqtRpxHFOtVtloJixEEzgWNCIXnwy51GO9HnB9sythQIhPkIQBse8WFxd59dVXqVarnDp1igcffPBjfb6On7DdCim4YGkJYRhSa3ksrdd54/xFnl3MEyobgwk6OCS7R/zyjk14FjfeTGFn+V2XPCkGBgk2Ifruzn2XgIzmYRgGQ0NDtHyFn9hkVZPVrQJKS8m7ikwmQ7WxhYuDp+UoqAb92gY9fofNtQjY6SLYUj0EZHDoUlUDNOjlxalvcGz7wgdeu47ixWNPo+/2E7ixbiBFp0of/WqTDN7eMccuHgPpOu1Wit2q7nUz1HUdy7KwbRvXdclkMti2TSaTodvtouv63kmJb9cNUlpRiJF6xKmNR5ZGZOMQktEirNwAwyWH6cHsr/MlFkL8iiQMiH21uLjI+fPn2dzc5NixY3zpS1/6WJ+v4yf81avr/OjvX2KwaPGZSR3TNDi7bvHmQo0WJXxcDCI6FAH9bf/6Fxe6vbPnQYyNRYBCI0XDxaeHOik6mmHjOAae5+FHXVwtT1M5TGRSxgoFLD2l3W6jYn/vzj/GpKF6MZKUjLYTRFaSCbYYIMRBp4COwqbNuZFHeSz7b+j1NjDUzacMEk2n6Q7wxuiXSXjnXfdOEyIIUhtPc2mpIhY+2/TRUgUMErJalxF9BVOLSdOUIAgIgoDW285F2HstlElIFpuQWBl0yOMoj4oaoZX0YOOjkxLhYhKSc0z++T/6NJZpMj2YlaqAEJ8wCQNi3ywuLnL58mWWl5cZGhriscce+9hXllfbIXPLVSx81msps2ZArjjAtbU2XbJ4ZFBou9UA/Saf4e3b8bRfeEQRo9HPFkNs0NYKhDhk6WLho5RJs9nEtm1OFGI2al0mnYQkjKk2GntvqhEOoebgKJ9t+umqHHnVoqRV6ZCD3cmACBuNlIB+Yt3i/3jov+c//dl/RtGvoO1OatwYsUKnbffyvz/0PxAbN9vep0jR2WQYT+UIcYkxSdHQgQJ1UDuh4e2l/5vxU4dVNUmMhaUC6pTwyKIRk+CSoAMaFgEGCQF5SoUiM6s+v/P5kQPfYlqIW5HxR3/0R3+034O4lXT8nQ5ypq5jm+9+M3n741Gs3vdjb2VLS0vMzs5y/fp1isUi3/jGNz6RpkKmrlPtgpEtkwQNtpoJM+sB7SRDlxzp7hz6WzsBftEvhpUUSPYeU5hk6DCsr+FoAXmtTa9exdLTvT32mqZhGhqx3yTwu/i+T7PZJI5j/NRhLR2nTYEuOcAgT5NIc8hrbRJl0iFPggMkJDi7CxV1PLuHVyeeJLByDLUWcJMuAG2nl2dO/BO+c+9/RSM7/LaxxxjEKBQGKaATY6HvdiKMsDBJdrsjGBRo0qdvo2vvvS4hViZL6TGq9KMBHXI0KZFgkeCSYuy+rjoJFjE2KQadbpsoNblzPEdfj1QFhPikaeoXzzcVH9qN0+lWqx6jZZcn7x98x13OjccXN5uUsgZxnNCNdMYH8u95kt2taGlpiYWFBa5cuYLrujz99NOfaFOhGw2EGm2f/+c/nKO2vkBdFWnRQ4TNW+sDNG4eCN4u2f3YG0W2lBI1CjRINQMXjwl7HZIAy7LeMY9+YyGerut0Y4um6qGm+qnRh0VEvrvBia1zKN1ga+gY/W4NgHaaZ10NU2GUhHeecrhHKTJRCw2FZxVQ2o3ruHFdMTo3FvgpdMDFJ8EkRaGj7UYFEx1FH5tM6tdx9eB9X42uyrKUTBGSoYuze7bB+zUaems8J0aK/JdP38YdY3LUsRCftCM5TfDLnC3/YVTbISvbXTq1Nc5VbIadBsdHi+TzeXK5HNV2yPJWh/WFGS76JnEU0WP6XL9eohCXefDMNKVS6V2l8o9rvPthaWmJ5eVlZmdnsSyLJ5544hPvLphzdw46Kudt7rljnOc7PlFTkWDwi+sAPpi2+2vnzlpDYeHj45JTHXwtQyuyMTQDOwwxtbfm82+cNJhGcE3dRZvCzhhUzJPn/zceXnirtXCq6dR7Rmj0jrAyeRqjN6WRlvAovsewNDz7Zm2Ad8ZqEqDYWbjn0MUiRtM0HDyK1DC0FE3FdMlhEVHQ23uLB98+9htHJPups7cuIKt1QYG2u/3y/fc37AQvx7Q5NZpjrE8ONBJiP9zyYeBmbWT//fPzLKw3GSzafOnOHIWsjWma72ik8l6/umFKo5uQc238KN07hhagnLcZLtmc3dAZLVv0uDobGxusrq7u/Hsrg5WGxHqWY4Mmteo27cjB6W7x+ssXuHb+Rfr6+pienmZycpKBgQGCWOPPf7bGm4sN7pws8jsPjwAcynCwtLTE6uoqc3NzJEnCE088sW/dBdtezOsXZ2gsnKXadOgwSPqBVYD3snN3q+129Pd3dx+EZCipbar0EypnZ2W+tk6qGegqYSWdpEGJBO0dixUfmfvzdwQBAF2llBsrFBurTM+/yrk7HuPqyVMfYqzx7oh3SvEhFkVCxvV5Us3Ye3O/IU/33Z9BmXu7DWwVkKPJMlO7Oxw8+llHJyG723SojcO7Kyw3WjMlDPdmybkOX7m3/1D9/yzEreSWDgMdP+EHL6+xXgsY7XP5rU8PU22HXF2s0K1vUNnKkNYDbEORsxJsQ6FpGrqu74UCwzDQdR1d14lSnTfWLGZXG/iphWvETA1kePzeMtOTo+TzeZ68f5CJvEca+/QOTdCbs9BVSLvdpt1uc+9QG7fbYnKkl0avSb53mLytaFQLrKyssL6+zurqKi+//DKlUokoO8ZfnDcJE8X5uQpb119Hy4/SCG2Oj/bwrc+PH4ofoEtLS6yvr7O4uIjv+3zpS1/at+6CHT/hX/+vP2CtHpIogxr9u3PZvzqdBINod6WBwiYkwqRElRiLvNakTh+WCmlRJFAOCQYeNnUGuFkl4gtzf/aez2fsbm+85+rf8uzQ07RKPbC7IO+D3XgD3hnvzo4EE8VOa2ODFLTwAz9LiI1PBktFbNNPlT5a9KCR4FGiQRmFwVvrKVJubMvUd9syWUSUXI0v3jdN00uYGshwYkSmB4TYL7d0GKi2Qy5f30AFdSqVHMVknd6CxXDRYTnup0ePaOolaq2Qgh3zhTuy5FwDwzDwI0XTh4KjsI2dH2Rr9ZhWmGCbUOmYaHGbC0uK9uZVhpwuruuSy+Uw7CwXKi7xK1XumBzgHz/6/7P3ZkGSZNeZ3nd99/DYIyPXqszaurq7utGNtQEMjAAEUkMCkpFjMmpGFCUbk8xkJj1INpKZXvQg06NkNg/zJMn0NBrNjIkagcMhJXFEgABBkC2gN6DRXd21Z+W+xb75fq8e3CMqsyqrukCC7AKYv1laLuER4e7h6efcc/7z/5eZn59nfn6e1dVVTE1Sr9dZj31qBYWmabiLi6ysrOD7PoeHhxweHtLtdtncSYjSiwgUqRLc2OjQUpnt7If3TWqixRc/sTqTiJ3iWWotbG1tcXBwwN7eHv1+n9dee+1jVRfsjCKkXcVmizZzeUXg+JTA00AyDa46ihpH6CgSTAxMFBolMaQkBkxUkSMWCHBIAJOQmCKn8RE0mVANWh/57qnQeXX7O+xWr+aSyB/1r5wFZpMUgZgFZJOALnP0VB1DSeriiBVt60R14GFYRDj4DCkhEFj4KGr5eRQ5AwGmRMEHSDAJuMgtPvHic/zmN76M5xjPzHV6hjP8TcYv3DTBcba+a+kcDCI645SSlXB10WSpWeN8w+Jc3cJQMe9t+8SjFu1hjBzto+Ixh50Br98JeW8rYK8bUNInqDTG0AWjxCLEI4wVvaREoGwirUzFUWgyIvTHtEaSjb5J6nfZORqxdettDnfv4/uZ8Ey7N0JaFcI4pbawyoULq6AZDEIN2zYpFws0m01KpRLBqM/B2MpsbhnT4Ig+NQBkKvF3f8z2vQ/Z2dlBKYVlWfix4h//4fv8n99+l53WmGsXmtjmx3Oj3dra4vDwkE6nw+7uLi+//DKf+cxnPpZ9mcLQNAIKuNVFmmWDo15MJI8P4n10UiCQaDkL3yIkwWJFbFHX28yJQ8ragKrooQnFWHocsJSz/o2cUHf6eyih8fmN38dO/SfuhULQ9s7xk6Uv89FER4VOgJVPCVhElOmT1QicXDUxE0tCQEkMMEX82FfThMQTYwpiDECMQ4yV8xC0vCpwOiQGK0uL/Ff//i9RK5pYhkalYP6Nm6Y5wxmeNfzcVQaO+hHrh5NThUmmbP27Ox3ONcu8vFbmlYt1XrvaxBUTuq09dg/aOOV5nr+ywv3RIdJsEeKxaPepFCbouo5XPUd4NMGkR2fictQPkHG2gl+xDA6ljT+eEFLEY0I7cHk3KFMVKUtal0QFpLJIB5dS3KcXb/Hu0X3effddlGaxly4Tm7sE0kGlB6wuz3G0c49Q6ixWLf69rz3H8nKTQqnO+3f3+Ux9n1B4MN5DJQGj5IiRKmITksYh222N/c49fnxzm2rBwHCr3J00MeSYH3+4we+EW3z9q59jcXGRIP7r4xtME4HRaMTm5iaXL1/mC1/4wqnbTodaflbfgZl2/mnfnysn1EWEqknub7aIkxISHY0EmXsLcCpTPyMKKkAnOaE0qAuZkefyKD7trR/R5Kf5V/v+pb/Lv/Xh//TEbTQkG7VrCAQaMrdJPu3zlPlwX5cBVSy7wCvninxq2eHduy3WRyaTKCYQVcpOgV/97Cv8xmt/55FrY+pFcHR0xL1792g2m6yvr/PeB7fpR2MmlsXhKCWOexyxMOMkPDhn2UkxdUG11qQzivAc96nPyRnOcIa/WvzcJAPjIOX9jT7/9E+26Y0jFioGv/WaR9nJbvr9UcCt/Ygf3Q8Y9/f4wfU5/oVm4tomn73k8Xe/tMy5C1f459+5x9vfeheR+mi6hUjHBKpAeW4IaUKrNYHuCM9YZGCVadgpF1ealAomYRgix6BbGjXzED928fOxKZMEHw+fAh3VYEAVhYbHBCFEdjNVBv20yEA6aMmEIyqAxdFmhMk8cxyw34N/8Xt/iKsn3I/OM6JC1fS5UtgnVT6JSmhwQIBDhMW6uooRR7n6XYwdRMyLHQKRElBEJ2R7Y49vfnOThZU1tqNF+qHGSt3lS8/ZOGZ2k/5ZBmGlFJ1Oh36/T5qmbG9vU6lUqFar/OhHPzr1OY9DmqZIKU8E8jiOT3ylaTr7OUkSoigiCILZY096n4kq4MtVFhkxpkCDQ0ZUaDFPhMpDv4ZFSIyV1wMkBjEGkiJDEIICY1xxkmw37a0XGTKgxkePKWb43uW/R2O8wxc3f//UOkUqMgGhd879CraQWLpECUkch8S504BCx2aCRcyquMdyVTBOBzQac3zmhTU0JXj5XIFyWOXe3pC5msFnLrp8+TMLpyaJUy5Nq9ViaWkJIQStVgvHhE9+4gqdwYR3r99FaRG2jGmxmOsUJEBK1bMZpy7NisXVZY968UxL4AxneJbwc5EMjIOU3/3BLv/q9U16vsAmoN9TfLP9IxadIVGqsRk26YUmobIQePipSZzqjGLJn/zkkNHmmzhemR8cNEgTHYFHOe6hhIan9fA7uxyMNBzHQdd9mlZIw/EoGJL9HYGcn6dYLGKLCZZMMR2PZnzIiAJjynRoUGKEEkYuFpOVkn1cYhwcQ6clVxgm9kz6VeTBJlOTs+kyR0MdMUld9tMSB6wgEYziEm6/RUG3kNJiW11gQAWdlAibEj0CPBIihqqMVLAgdggxiDDZDuqE4T532lt08n7v0dEcF6qLXF4un5iWAH7q75AFdiklSikODw8JggDHcbh9+zalUolr164RBAFRFBHH8ez7NIBPv6aBfRrUp4lAkiSz1/9ZYtr/DoRLmQFzWpuq6oGEPlXIV94uE0wy86ABVUCjwITzYh1N4xEW/vHXHlLCYUhAiadJCJTQ+ear/zV/cuXvce3oz3m59UPWDt/DSDNy3+H8S/zp3/ovWaot4Fo654o+L67Y3L5xnc7+JoFyaakFpNBxGVPSRpCYVM2UqjHGMQWjUUTZs7hW8lm0JefmJVcu1p9YLdrb2yNNUzzP480336Tb7bKwsADAnRvvY6sENLhsbnLRHpJi4NgORv0yutfAsy2+9GKNK0veGT/gDGd4xvDMJwMbhz7/zxubvH3zABnHecfToqqPqFoh5XIZp3Yef9Sg4fc4GiQ03IQPeyZdH5TKwm2vP6HdLzJROgINm5A5cYQuElCCMBH4qYbljzC1FF3vYxgGqevSVQZ3dnqUbLANcCYRlVAwZi63tZUZMUtFCBlTYExAAYXCY4yhfILUZZiY2PikCIoMsJnQZY4EiwJDdCLGOOzyCeJcqc0gJsVgnyW0FIaUiLFQQIqBQNCjjos/m/uOMAmFS6oy0ZuxKjJRl1BoxDmFzBj0+ZPXt+lemecLn/0kplOkM4rxLIWpSeLcqW4auKfBe7rinv5+PIinaUoQBIRhiFIK3/ezcczJhO9+97uzYC6lnP38cWteGSLhnLlHLFxcPUZTAikTLqb3mMhsRNAknI3dAYxkiRiDkhg8UYTHEAlL2g5V5dJRc/TVhBEVopw78HikaCgCr8w73je4ceErfPZCid96tcadwx6dbpsvVSpcffUiumYw7mziGCC7DnFX4sQ9imp0QgcgTTNjoanQURzHOI7DaDRiqephGzxR72FKbG02m9y9e5fNzU1c12Vubo433niDJMkSIV3XcV0TwwhwXZdPfeoqV154mVHIGUnwDGd4hvFMJwMbhz7/3f9+i73OGKF0mhWHmmFQtxM+2RQYcY0wDOm3tvEnAalV4cWLVT553kC82+XDQ4ECzruSQmhxONbxGBHgUKaLIyYcqUXGqkiQecVRFGOW2EGpLMiN/OSEg9uyvoPnGBTdMpqyKaQxA+kBMV4+k72k71FXbVAKk4hQWdi6pGhEDBOXGJMxRRwRsKZu5z3WTPOtzWLuiJchwQIkbeqAhhNFrA5vMLDrtIqrKGJqowPOT26wX7xIt7CIho2SYImQABefAiH2bHULMKDKB+MKe+92+MFP/hUDVUMaHmU74WKhjanJE6t9KSWR1AhSE5MAU6Szx6al+NNc6oBZoPi4IIQ4oSFxvMIwHSM1DLDtIoVCgUqlgmma9Pt9jo6O6PXCEyI7Vb371O9tiISSGOIqnyYWUsK2WuOQ+ZxQmPJgNDCl6cSUHEEUCww0OuOEmpMw1Cq8cThGC4ecX86qVJ7qs7qyr6d1BAAAIABJREFUSsddYH19nYWFBTY3N+n3+xgiOeEhcPyzgiwZKBaLhGFItVrNJlrcx/fwt7a2sCyL0WjEBx98gFKKCxcu8PbbbxOGDxIiy7LQdZ1CocBnPvMZXnnlFQzDoFb6aT6xM5zhDH/deCaTgRvbI9682yeMUtqDCFtLCFKdOa3Dy4uCly4tMN+4ShzHtFotOp0OZrvPIOiiWorrI4/XLizwxecrJGmMJRVJfBV1N2LzcEJZDlnRNkF3CGIPXxUYU0ShoSl1wowlwsLHQ1MJvvAIlYUeTEhUgkhLhHhYBJToA7CvVihpCRe9NuPRiJ1kGV95GFHMPDtYwqWl5nFFgK8cYkwiPFI0QqwTiUAGAeigbH7txv/CV+7+DobK9m29eo1Et3iu/WMg48H/+NzX+L1X/wF72gpFNcZmRJ8SCsGYEjVaed87Y3a3aDJQZSIsGkmHTqrjBuO8wvBgZXlcaMbBn7nXPQuYBnvTNDHN7Pwdrz48nKS4rovneczNzdFsNmk0GjQaDQqFAq7rEscxOzs7bG9vE4Yhre7oL33ss+CswxV1m0W5T6BsPDNBSydIs8xKzeBTr7xEojl0Wwcc9QPutARO6RyLNRsRt2ZVlyiKuHPnDuVymVqtxvb2NpqmUSwW6ff7j7z/tM0yPRdxHM+Sg+nzHmcS1el0GA6H1Ot1fvjDHzIej7l48SLXr19nMnnAk7CsTLyrVCrx2muvce3aNXT9rBJwhjP8POCZSwZubI/4b/7pLYZ+gmNCqWAyDgrMuZLPXdDBb3Hj+j538pvOwsIC5y88R6ERMRp0+OGdMbsHMdr9Hdbc9yh6BRbrHqZlca4EVRFiyyHjiU1nLFBSEmFjEs8IT9NyMICmUkJlEVDBUT462c1TyMzmJSUrxUsMfHSKjBnGNsNAoVklgtQjlDZ9KihgRWwyEUUmqoBC5Gp1mWNcVgU4fbTty/d+h6/d+WcnHlnrfXDidwG8uv1d2s4K337x7+PjYiKJsdGJAUGDI4ZU6FHPrHWRCBQxLm0aVFUHKWGPBwpzda0NQICLTVZteBr3up8VjgtBTYP+dKX/MKcgiqJZcjANTpZlUalUWFpaYm1tjUqlguu6s8QBYDAYsLm5yf7+Pr1ejyTJ5HmLxSJLa8+xvq6wCYk1D2V6kDwacJ8WhkgeVBcUCF2giwhXb7AwV+HFF18kTVNu3bpF/f0bBLJD0LpFV6Qs5noUSZKwvr7O66+/zqVLlzJtjCCgXq+zu7t7avtleq6m3+P4wfig550u+DMlgBYKBW7fvs3BwQG1Wo29vT16vd5sO9M0sSyLarXKF7/4RZ5//nk07Wxc8Axn+HnBM5cMvP5hl8EkQamEcajRFFtcbeh8+nKDL3360xQKBXZ2dtjb22Nvb4/3PrjNB+0CvQAqRY9BpDOUBqPYoxUVsfoR2m5CiCTBZk7XeaGcsi9XaCnBBBuNBA2o0OGcvnli1Zf1ikNcJqR58JcyJFSZA1tB+CSaR0HvoKcBgcxkZ7VkTKlUxgolPengEGaWsEKnpo6YcAGJlneHs1ExjTRXwnsoGVCKr93+3x5JEU671WoovnT/d/nXL/wnJMLAYUSCQYqBTkyLZm4hK3N7GJMEE5sQEMQ4HLJCrAxsoqxyICsUGCNQBMLFZXwiYfrLwjCMLMHKg/400AMn5KGnK9spN0GpTDHSNE1KpRLFYpFyuYxpmrOy9/z8PEtLS5RKJ+vUU6Lj7u7ubPxRKYXjOLMkQkpJoVBgcaVCR024s9XCkmO0ZDx7/HGtkcfhYU3/6b4cJ09Oj1vTND77qU+Qpik3b8rZPm5vb+N5HtVqlaOjIw4ODjBNk4ODAyBboR8v3R/HNBGArDowVdd8HF9gb29vRua8desWlmUhpZy91/Tzs22ber3Ol7/8ZS5duvRXbkV9hjOc4WeLZyoZ2Dj06U1idA0SaWS65c6Y0niXmz+W3P7Jn89IS2tra3zta19jfX/ED//gJ4iox35bMqLIhCIgCXHQUaQYTAPsOC1hdEcEQiKUJKZMJZeOXchtZ4/DIqIgJgS4FJhgEZEog1QZOASgoJAOWRZbCE0wFFU06SOlQifm1fkJPz7SGMc6RTPB0TXuh0sMqOAQYhOywC4gOGCeLk0emN9kWO7fxouHT30e3WSMplKkMAgokjHiE0Cjw3wunEueeKSYSCQCHYGDT6SyCsUAjzjXlR9SosAYT41oavuz1sHDge1hTIP1cWnn6c/TID8tVZ8WQI7395VSGIZBoVCgXC7TbDZZWlqiWCzi+z6j0Qgp5awFUKvVTpSp4zieyT0fHR0RRRG6rlMul2k0GoRhiO/7WJZFs9nEdV22t7e5c/M6jRQWLlcJhxGR785W4tPxxeN43Hn5qFbLaDSaBfEkSRiNRpRKJfr9Ps1mk2vXrlEsFjk4OGAyyRQvi8Uig8GA+fl5dF1nOBximuapycCU2zFNOOI4xjAMhBCnVgampEHTNGckwXK5zPr6+mwbTdOwbZtGo8HXvvY1VldXT70OznCGMzzbeGaSgR/d6/Pff/MegzwZWKqZfO5Kk9/+yqdIwzEbGxvcu3ePVqs1s8D9sz/7Mwzbo2ov0Eo8rDjEViEhDgkGoJM+sp7WmVCkwARfeDjKn0nHusInUQa+KgAKV/gYImFOb9NXVapaH1M32IoW8ZWDJUKWxTau8EHBTnKeNnMIBHVxBP0tFpwitaLFpJvPyVsuUrNx0szZzmVEmIVZRrNZ9JOtgi/d/+ZTi+VKBHvly0ht+tHq+d8NYkAnIlPB0/P30dCZYJGi0OlSy13mQyxSYiJSBCkWMQlD9ExtTqXspOcZU8Ii4Jy2gWcmWJY1Kw8bhoHSLEKVBUZTezDzP9VemAZ4YLZKnT6m6zqmaeJ5HvV6nfn5eRYWFqjVaggh6HQ6tNttDg4OMAyDZrPJ3NwcjvPA+W4ymbC7u8ve3h7tdhsp5SyhnBLiBoMBAOVymcuXLzOZTLh9+zbdbhfDMFhaWpolFkHQ5MaNG4RhyMsvv0wYhty5cyfToJCSRBn5efHwGLOiP5D2neoOPK7VEkUR169fZ2FhAcdxiON4tm+u67K2toZpmszPz8+Ou1wuE0URtm1z7do1bty4MfPBeBjHNRum72dZFoVC4dTe/tbWFgC3b99mMBhQqVROJAJCCBzHYWFhgV/5lV9haWnpKa7QM5zhDM8inolk4Kgf8Q+/eZPDQWZooqEo+Ls4Rx/wvT8uUqvVaDab/PIv/zKlUonRaMS9e/e4eec+Wwc9iuH9TC/OluylS0RJAV8JUlLUI17q2VDecfe442NjO/I8HdVEAhV6NNljk8sEuBylc5xP7uPjYBMSYmPqCpOUsXQZ40G+6p7gEWGxddCjLaoUhU+obMIgxFEjpCjgMaLOEftqhSHlfBU+VWvLVvKgca5/+9REYJogSLRchU5DAP/3i//pKVtnevTZOKJiahwDYBHjEFJgwpAyOnJWDamoLhM8Uiy0XNceBL5yaTNPiJ1VGiRcTO6Rpv7sdbOVcJVI86hYKRe9DpYuZ73/4zyA41wA13WpVqvMzc3RaDQolUpomoZSiuFwyNbWFr1eD6UU1WqVpaUlKpXKrLLQ7XbZ3d1lf39/RqarVCpcvHiRQqHAYDCg1WoRBAGe53Hx4kUajQbb29u88cYbjMdjisUizz//PKVSacYfSNOUQqHAV7/6VW7cuEGn0+HSpUu4rsvGxgaj0Yj9oUabOcj5IHXVoiSG+XnONQ3yysBprRalFG+99RZSZufp/PnzaJrG8vLyjOOgados8en1esRxzPr6OleuXGFpaQnDMGi1Wo9McUgpmUwmtFqtWSI29dN4GJ1Oh8FgQL/fZ2NjA9u22dnZeXA15YnA8vIyv/qrv8rc3Nwp19wZznCGnxc8E8nA+uGEcZgwLY8LUjzVYtgbMegeAtkN0DTN2ehXoVSjrV+k6/i47oTLxgG99j5mtENJtdlP5ulRZTI7xAf67W2WEFJjVVs/MSc+UQUmeEgEIRZHLODjEuBh5zfxGOvEDd2QAUpkbnUeYwJcBJki3fRm7+AT6h5OOqRqJ6x4Y/Y7h3nLQSdQLhEODwK0PLG/R945Fof30NXJcjTA66u/zuJwneZ4m53Kc3znuf+Qe41P5o8erycIpuY6meRu9ncdRYibq9YJigzRhCTEzrztRRcQdFWdQLgzpT0/J0DK/JkR9qMr3elKWPqMZRGsIiuLJQqFwiwZ0DQNy7JmCUC5XKZUKp0g94VhSLvdpt1uE0URjuOwsrJCvV7HNM1ZD3tnZ4ejoyMmk0xWul6v84lPfIJisUiv12Nvb4+NjQ0sy6LRaMwC7Ycffsjbb79NHMfU63VefPFFTNMkCIJZSyNNU+r1OufOncO2bebm5nj99dfZ3NxkcXGRhYUFlpaW8O+2EF0xMzU+Xs+Z6g48rrWilGJhYYGXXnqJb33rWzNRprW1tVODrRCCWq3GF7/4Rd566y263e5M12F6zA+/vlKKg4MD0jSd9f8fJvpNSYNRFHHjxg0gSw6O8yMcx2F1dZWvf/3rVCqVR/btDGc4w88Xnolk4OJ8gWtrDa5vDYkTyXLB53zJxNU8DMMgkhr9SUoS+QRBh/1Wj07c5iCuY6ZjQmUT2UcslC3W1pZYXV1lsyP5wx/3GI536LA0axdkzHmTFvNoUnJB3JvdlC0iCowZUSTFQichwMEgIiQjBrqMcEQAdGZtBMhu9Cv6FnXVAgSumMwem1dbJJqDoQWkUUJAQkFk3IMxRSwCPAQTvMwsBkV4rKLxZ5d+k1f3vnsitKdCY2JW+IOX/nNiY2p8M9WnT3kQ/I8HJIGBoskhfeoZoREdl4AUgxQdDUlVtRhQIcLlSCzm/e3tE373LhPqHNGmiUBSZHRipavrOvPFAlGs050UmCsIPEvR7/dRSuF5HpVKhXq9TqPRoFqtnihVSynp9Xq0Wi2GwyGaplGv15mbm8PzPKIoYnd3d9b/T5KsRTE/P89LL71EuVym2+2yvb3NrVu3UEpRLpd5+eWXmZ+fp9Pp8M4778yIcEtLSzz33HOzXv2UmzDtzV+6dIlyuTzbv2q1yuc+9zneeecdOp0OmqYRBAFf+fwnaL++w/5QnipR/PD8/3EopRiPx2iaRrVapVKpsLe3x9bWFlJKXnzxRarV6iPP03WdK1eucP/+fVZWVgjDENt+uCKWv79hsLCwQK/XIwxDut0uP/jBD6hWqywuLrK8vMxwOGQ8HnPz5k0mk8kjvAjHcbh48SLf+MY3HjuFMMU4SDnojml1Rny4M2ax4XJxscpKwz0TIDrDGZ4hCPVxS8DlOOpH/Hi9zwdbI0YTn7qTcqnYodvt8mHbI8ClVoDn6yHvbCZstX38xESXPiYxK9oGRUs+IKIZDgfqPEdxiYNJVuIOcWZh0SDEIuKKuEFNf7CCSpTBQbrABldmLP9L3MDQJLby6dJ8qnnzh0lkp/2+J1fwybQLTGIMYqq0adHkkOW8r5+t2j65823+zvv/iGKUlb13ylf455/+bzkoXQQyLsB04iHMVREzM50YmVvqmsQ02EcTAouQohrSpU6EQ4BNnQ6TXKQozp8zzx5SGKxom5kJz0PH+DC/4jiEECRKJ8JmoVbgU69kksRSShqNxmymfwrLyvTqp0Q+Xdep1WrMz89Tq9XwfZ/t7W329/fpdDqzpGJhYYGVlRUqlQqdToft7W3a7TZhGGbTAHmQ8zyPu3fv8sEHH9Dv97Ftm7W1Na5cucJ4PKbf7+M4zkyZT0rJ8vIy8/Pzj2XH7+7u8t577xEEAYPBAMdxaC6e57t//hYy6D+VHoEZ+ZzfeJe5o3VMJdGbS8gvfJ3al/425XKZOI65d+/ebH+uXr166nTEzZs3kVJSq9V4++23efvttx/5vDSnzPMXlyEN0TSNK1euUK1W2d3dpdfrEUURk8mEIAhm5ziKotn1W3YEL71whV/7tV+bcS56vR69Xo9+vz/jK4xGI4aTiNuDKu3Q5iitkWCiAZcWPP6NTzT5jc+f7oNwhjOc4a8fz0QyMA5SOqMIP0z5v948ZHd7nVhqfPlK1hr4/u0YU/kMI8FqKWBnUkQFPcaqgFIpQZCia5LnvAOqViaVm6YpYQL9xON+vIqPg05CiS495kgwAcE8e1zQ7524aQ9liVvyRRQ6gpSr2oe4wqevKhzJRQxipDA4p91/JEDCo6zxptjnSC2eSCIiLHbk6oxM1hAHVEQW6PtplV2W8oFGF5nvqyYTlgb3iIwCR94KCIFBRIqOTphvJQkoIBHYhBQYARomWTukKQ5wRDAL3oG0GaoKI1UixGFImQAHk4gUgzJ9qqJ7auLzNNMEx2GaJvV6ndXVVWq1GtVqlfPnz5OmKQcHBxweHjIcDlFKYds2hUKBKIpmK9UoijI1u1qNc+fOsba2hud59Ho99vf32d/fZzwez97n3LlzzM3NEccx77//Pnfv3mUymVAul7l69SoXLlyg3W7T6/WwbZtqtcpgMMD3fRqNBisrKyfaFY/D/fv3uX37NuPxmHa7TbPZZDAYsL6+/pGjh2v33uKl976FkBlfRgBSaGhKki6u8dL//Id4F56bkRq3trYQQrC6usqlS5dOrMzH4zE3btxgeXmZ7e1tvv/97zMcDk9ckyEFFus2V0o9qkWHz33uc1y6dAnIkrA333yT27dvs7OzM6sGHL+eXRHwXKWPJqNHZKWllLMEcCjLjJXHUJUIpE1bNWb72SxbfPpShd/+yjLn586cC89whmcBH3syMLUdvn5nB13FtCOX/c4EVwv421dCPFvjeqdMNzSp2ClNq8+9o5RhKNBUQj/QOQwsEkwq2phPl+9RK2R93ukNqucrjkYaRjpEYrAnl+gyl5X9RfBIUA+kzZZcI8KmyIgFbXcmWzygAihcfJ7TPjxVm36iCrNAH2JTF0d0VHP2+wvjt7i6/jq1wy2MNCI0Cxyeu8rG2qdYN16kzRwqVx4IcTGISTDQifJmQCarvMgWB5xnQAWLCEnmnpii5W2OlAaHmMS5y6GNLSJcxixpOwTSYktdIkXDxSfEYkiVBCN3XBxyQdzBFf6JFsG0ItCRDSJh/9SqfFPi4DQAnz9/ftYqqNVqTCYTdnZ2ODg4YDweI4SgUChQKj3gGwRBgO/7DIfD2bx8pVJhbW1tNm7YarV477332N7eJo5j5ubmeOmll1haWuLw8JBOpzMbI5xMJnS7XQqFAufPn3+iTv/DUEpx9+5d7t+/PyPe2bZNFEVsb28/9nlr997iE+/+68e/rtCgXOfSP/5T6hefAzJxpBs3bsy0BdbW1rhw4QK2bRMEAbdv36bdbqOU4vr163S73UeuSWUWWbP3KRnB7DinTo9BEDwyKvnw9bwodtBFOrsejhtdKc1iI1llN14E3aRggWPAzvBBUrVUNfnlVxr80rX6WbvgDGd4RvCxJwNbLZ/ff+OQnfsfst2JQRho8ZBECtasHVxbZz1cYRjpCM3CM2LqRZ3VcoCmEr6326QdORjEmMRc1m7QNLrYto1lWbPybix1bvXL+NJBVxGpmPbLxzTFfs7kz7wEjtQiPh4GMctiEyl0duQqQkk6zFFkgERjQexT0zqnrpiPj5dNk4kk0fjGj/5HLu+9jRQCbTo/D4BACcGfX/1Nvvvcb5MKnRQDhSDGRiHzdaPAxadMl3ntgCO5SJ8KMTYFxmhIJngIFA0OWdXWMURKX1Voq4UZ+bGo+uxynjFFNCQ2PgUmKHR8XFxGLLONLXwOWSHBnJ2rI7XIiBK+cqnTIRbmqW2Eh8/Jk1oK06BcqVTQdR3HcZifn2d5eZmFhQV0XZ8RCTc2Nmi1WrNWgud5MylhIQTdbpf9/f1Z739xcZFXX32V+fl5Dg4OaLVamKbJ4uIiUkr29vbQNI2VlRUajcZfSDBHSsmtW7fY2Njg6OiI0WhEuVxme3sb3/dPbCuEwAgn/Mof/iN0+Sgp9DiUpjH53K/S/Af/A5cvX54JCu3u7nLz5k3a7faMY5Aonc3DMa12G1uNSMPxbKLgLyMnffy5lgpBQMTpSeBEFbiTXmVEFYHMzbqGuX5GNh3zpTWFW7DwSjXONRy+/unmWUJwhjN8zPjYCYT1osVC1UauvUCj2Wf3oM1woigmfUwkd8eLHKVFDBLiVMdKe+xHGnpvE103MGITO1/NWoR4ZL1e3/dnN2EhRDYpIJvYBATCpcoRrgixRMhueo4WTQAqdEFkEsMh9mxF7ODnugQBfj42GCmXifRY0bYevbGKB7Q9Q6SsyA0+/8N/RrN9H2CWCOSbAgqhFL908/9ASxO+/eJ/hEGIRsIYlSkfYs5sjy1iPEZMxCiTtEUyxyEt5ikwJMZiSduZVS4q9JmoIj4egXLoUcXHQ+VSyCoXHErRcRkhUOyzTKRsEmwcJiBgqMoMVQmHgIACE1xKDJ+oSJgoYzayqVA0aJ2Yv4dsZbqzs8POzk6mHlisoXnzmJ0h7Xab4XBIv9+fzdTPzc2xsrIy0xUIw5Dr169z8+ZNBoPBLAmYn5/HNE1u3rzJO++8g23bszn++/fvo5RiaWmJ5eXlmd7BXwTT/nuSJARBwHg8JggCzp8/z61bt05sq5Ti0v4NtI9IBACElBTe+Q4//N53+d73vjeTXA7DcOZTMDvH6VTnYoW6OGJFG2PkF+FHTTI8CcefmyqDfbU8a2/5qoCeS3gbIplN1QypkOTX65gpvyFFBzZaAZga53NL5s4ownPO2gVn+Itj2mo+c8b8i+NjTwY8R+frn26y0w74ozdHjPwIz9K4Oge9cQO/7aGT5GNrMREWDiGaStHTCI8BmqbQNMEFcxuilIkqPCL3aqowC+h4+MomZpGiGlERPdo0Cch6rxJBQ7UJ8/L39HWmN8NIWmyqC7lagWCsSqeO1EXYeIwJ85G7l+/8KfPt+/mM/5PxpTu/y+78i2w0XsYgxiakzTzkQsJVeqxomzhayJJ6cIMHmMgiAS5lBpkYUo7pMfRVhT21jJj5IOhAQpkODXGIAAJls8MaCp0AC5sQHwdXjRlRJqSQETppM6cdnrrShwecglQZTPBmFZBxnkw9jlUfpRob3SI/+uN1DOKs6mBk0wLFYuYs2O/32do7YhwJ4kkXf9glTVNc16XZbDI/P4+maQyHQwaDAVJKHMchSRI+/PDDWVVhKm89NTmaauxPf55WCabSxw8X0qacgOMGQNOS+2g0Ik1TTNM8QZQEKO2cTBCeBBGHjN5/k3bzwmO3ibBO1bk4fo6fNMnwJGiahi1ybwYZU5AhE2ljET7SKpq+j6eG+BQwSPIUIB+VFVD0CpSKLkeDkEuLLvWi9VPv0xnOMMVwEvMHP9xluxPiGIrf+upFmpWf/TX1i55wfOzJAGQJgWtrHHQnGPGAfmCwE/TYj2r0Uy8nyKVYBEQ4CCU5YBlPDjAJKahRpo8Xhhyq8wxVEVePWZYPdASmwbAjawy5SIpJiIOt/Fl4Vih0oCEOMcR0PI/Z81GQCh1PjZlQIkXDIEVKpkJ/wKPiMrb0uXjvDXiKRACyscFX1r/N0dylrEfLHoZKCHGxyTgOx4/r+A3+4dXfwyS/Cv08oGdJliBCQxJQYl9lZkki1w3QiVDoJJiYRBgEjKhRYEiKwZx2REk7XSY5kDY7cpWETLY5Ox+FvGz8ZG+DqVNkqHKDpxTWWCdNH1R7Tpa9JSvGmIKdSRzv7u6ys7Mzm6GfBvhutzsTELIsC6UU3W6WREzV+Y4T4oATLYPT2gfTbY9LJkspieMYKeWpSoAAeho/laLkFB9VRXiSzsVfBg9rEOgkLIotQs0iVTr7rJxQVISshVClT5qProY4TEddDc0gES7VssPVcza/8drZRMEZHo9xkLLTDgDFSsOlYGv4vs94PGYymdDpdPjO//cTfrRfIFA2kShQKLj8xmuLBHH6kYE7e30fEKw0nBPbTqW7wzDkqDvk917fRnMbnGt6v5CtrWciGYCsXfDq86vszc9TNGKq2jn+6P0xZidEYJCioSMJMHFRHKolQs4jEBgkVGQPg5g+NUJseqlOAiyrTULhZkFf6MTKzBX7FBrgiJA5dUQLDYmgQhsBtOR8JrKjxiyIXWIsOmqOCBuFwmaCRCfG5JAVHLV+QnNgSdvBVy4gaB6u44anB4XToCvJc/tv8sfxf4xjSorakCLDpyrxHk8OHtcnXtG3qMgee2qZIVX0vOJiEOFToEobGyc3cJrMJhR2yciGGilFBrMJhYeRKINdtUqHOZx8m2VtmzmOeBxn4DgsIgxielSwSIgwHy9olAeiQJpoQTYSd+Jc5h4I8MDqeErumyof2rY9M0nSNG2m4T9NEI4nCsCJwD9NJB5OJj5qisB3K7OpgadB4Jae+PiTdC6ehI+aCHn4OIQQ6CR4WooUJp4MmaQOTu7bAZnIViBc6qqNP6tYZIO6YRqxfRhxbs7m33x1jiBOGQfpL9yN9Qx/eXSHPv/kj27xk60QIQQvnzOxifjJTkQ92abg380cS5WBzkVCqlRd6I5i/uUP9ohTWKjapwbucZCy3fL53e99yPtbE6rVGq+s2nzluUxfJgxDJpPJbOR443DC7V6Fa1ccDnrGrLX1i1QteGaSAc/R+cpLddYPJ1ycL1CwL+HbB/zp9SN2DweoJMHHwyJiSIUQmwSBQaaWJ/Pyc5xTCRXQYo6eqiCVBaRoKiXBmcn3lughVEJVtImUQYzDBI8ttcqICpbKgmOssmAUUqBChx4NknzF7DEkUDaHcoG6aM1W7InSM9IgJsvjd5/aW2AKTUkuhR8Q2LUHScZTlHiP39wfp4U/tdA10pA76hoBNikm49zUKMGkwSEV0aOlmrmwkCLJNfUMsoQjxkYq/ZFA4qsCgXKxCAmwKTA8kQCM0gIDFijTpahPHtlvQyQ01H6ugWChE6Op9MQJfBppX+ARZnwcxzNlwWnwn37puj7zQ9A0bZaGK+H1AAAgAElEQVQITL+mzoLToH9a22DKqjcMY5ZUnIbttVdY3Xz3Iz9PiaBfWaRbWn7k83/4nBkimUkfPw7HnwOwla4xpESJIef1jUeMlU5zWJx+FypiXm3hiyzpnaIqukRyRJsmfRqcKJuhESp483YfU1MUXYvlhvsLudI6w0+HMAwZDAZsbGywvb3N/YMRP27X6Yc6um7wR60YnypZ2FrjBTqcd3vUSyVWyzo7sojhlEiDAe9vDbi8tsxWS7LXHjFfEozHY3YO2nxwd5/Xb3Zp+RY+btYajVqopIiLwXIxoT3MeDkOYzTN4NzaZazlGv1QZ9UzKNqws9/iWz/pMoxNlmo//0TYZyYZGAcp3/nJIfd2uizWHL7yosfn1xS6LPAnSYgjfQaBoKp6bE+KaEoypJJXDBImeb80G4vLPpAIl4gCWu7K90ChL2Plt5ljTAlXTWZs+QkFbHwislEog5gQG49Mq39EGYWgSpsBNSQ6A2qMVIW2avIcH2KIlG25Rptm5gKI85ijfjIcEZL8FESv0/QNnhQwNQ3cdIyNT58qOpIUgYZkQdvF0UIcOUFJ6FEnpYBCI83JmqeNFibKoCMbBGSqiDXarGibJEqnryoImXKHa0RkPefnk/eQQqet5pHCmE0stFgkRcckwiRGipP/ZNPqSyxsTBX+VIS4aVk/SjUijI+stjwIilnAnSYPUy8FYbgkmoMtImTsE4YhcRw/NhEA6DRW6VcWKQ0OTpBJH4aG4vUr/w476XnqWnu24j+t6gM8dpWfTXO4dNQcgXIwSHAZsMc5FIIxJcppD0uL0HQNU4Xspiu5u2bAorFPUQwxRPpItaCn6g8mDRR5U6hAiJs7hp48IkFKmCju7vb54vM1DnrhGYnwbxjiOJ6tvAeDAXt7ezO10alnhq3F2GmPRNYZS5OY49eHgOZn+cLLIzqdDlEU8ZLbItUmDIdD3hs4rL91H0f4dN69mbWYU409ucJQlenTyO/tLqAIYhgfTDjsgkpjpBJousFcwUJEIyK1T6KNKDg6nZ0J3Q936U0kG9ESZcdgw23QcFO8osfF+cJfCWfhrxofezJwXHBo42DIuLfH9bZFOdVYanjsHAp6wzFgsVryuVwyED2T7YEgice4jEixEEhSdBQGD2R4IePZT50ADU6uzzMzmQSBzEl/AkmXOplGoY6RB6PMYXBCiE2KxpAqBgk+DjE2JiEjSvRkDU8b06eKRGNMmZa3/FNVBQCkpuN/RGn4YTxcCZBCZ0k8yiCfBoZI2uikJGiAmGkapIhZ8M1Iitv4yiXBQuUGyDEmKSaGivHFA7JahEUkbOoqUzNc0PYAuCmvEVBAIIlyUaMImy0u5d4MNgU1IsHAZkKCgUtAgI0lolkiMx1RTJWOLhJc/BPH9bRs+acdtTttO1uomXFRlAq2hh4T6eCgsaS1ny4xEYI3v/Dv8rf+9J/gBINHEoKp58MbV36d9eXP0qHOWJZwhD8bd52oAjopEwr4qkBP1R45nuNJwFh5BHh5W8hFMUeMiZb/v+yxhC89dAkeQ9o0iLFQaPSSKgtiL5+ceZAMDGWRnqrhiRE+RRRg5noEU+LvCUstYWAZGs2yxWdfqOAngqW6fUYi/AVGmqazHv/0exiG9Pt9+v0+k0lWHYzjeKZiOU04y2mBPeo5CfUkJuMe1+/soycj7EIFt15DTTocHOxD2KBCSqQsRrGNpUGqDAJcdJJ8bDuDRz//v0gYRhZJnnQIKej3dWw0PEaMgAvmhGECiVPg/IJO90iw3tNI2l3+4faAhfkmK3WX/+LfvvBzlxB8rMnAOEj55p9vsH00puYZeIbELzQoayF6OuDO5pi9tsdaJaYXGqyWAhxTYOgaKgmwMYhxUSg0BDEmJiEpNg9Kk8dXMY/aGYPMP3yBJMEmhpkvgMaYEhqKBB0fC7DJDH1DrNwYOMYixEVDcsAKK/I+GmDmngb3Gy/RKzSpTI6eKimQQmP73Muk5un68o/DaaXzhwmG0xG0Fs08iYkpMMJjyJgSCSYRBfzUJdUMTEIOWckDeeZ6WGBEjEWMhUTDVT5SwkQroKl01jMu5e2Bjqwxppw/30SQ5EEoyZ0WM/W9IRVcfPqqhkRDJ6LOkGWxiSESRmmBLXVxtp+mCpnjiBU9s9p9uCpyXCjpYXyUnfATt0sf6CkMpctAFXHVhEA8/nUeRqIMOu4S3/7Kf8YLt7/PxY03MZMHlZujyhpvXP511s99hkBlVZYYg7GaQymYYx8fjxgbhzGp0h7ZTxTspOfpUyHBokyPISViCph5Cyf7fzGx8RlTJMFFkABefsPMtAEiLMaqeOL4AmmzqS4zpMRIlZnXDlFKEmHNxLGyG2/WXDI0g6tLBX7pWo0vvlBnrmz9wvRbz5Bh6ox5PPhPJcillARBQL/fZzgc4vs+g8GAyWRyKsfGNE0wa0jfyBPMTGYdoMCIcepye1DnxZrBvXGV776+k//v99Ap5+3NlE11EUcG2MrHIKZDE4WYVWx9PDz82f0sm1rL7r167hOTkWA19kZwvtBjMurRbicQaVhyGVvXacs6nq2z3wtZP5ycJQM/DTqjiPWdLonfodez+fxFm5eWijRKZVxrns5gwmE05miksVJQLC2v4Do2rky5rB2yNxSEkcSO2/nKXRFg5SVqNfvKzHuPH6pC5PUAecwQKLthdgmwSCgwHb0bUuZ431NhECHy4KZjEJIChZzkl2BQoseYIgqBJ0LevvQNvvb+//pU50Uoyf3Ln/upz6eppSzx5Fny6QiaREOiI4mRCCwiAhQWI1J07nEFQypK9PIWSoBPISdOagSUkQgKTICELXURmWoUxYgFsXsiEJvE+bnW0ElZYZ0u83nQMSBfm04/lxaLgMQiZoUNHC0kkDZ31IsMqcw8I3S02ZgiMAuGPh47chWZ60Wctup/Ws7B8e0MFTOSHppIcbRw1hLJnC0L1Dl6Kgb/NCEbUiY2LW5c+yTO1RFzg01I4cg5R6u0isuES9xAaToHcokuDRxCIkz2OT8jfWooEqUjUIwo4onMNCqzmZ7LlSxtUuoYSAQJEh2BwCTCo0OFFhtczatoFg4dFBpDSojcutoiOnF8Q1VhTAkdicQgkCYGCZamqBsBrmOyNzKwZECCYK7o8B98ZYlzzcIsAThrDfx84fj0zNCP+eE7H6ClY2SUBX7f92fcmun2U0Z+HMf4vv9Ecm2iDFLNxdFjpIwxkxYOzVwcLcYgypdgFnY4ohP53Jr0OUr0B2Ri5TKgSoiDTpzdv9SESNhUaNNTFcACNDQSBNBklxElBtTzv1iQz7BlQ+QyI1KnkmDY4bYoEmGzUC/w2aUlJqrEzX2fYZByruFyoZld10f9aMaDe9aTg481GagXLa5dXmbjoIinRyxWQlwzxHNc3GIVq7LC37+sc9ib8P/+8C7fevcAR4//f/berEmy87zz+71nPyf3pfbu6mr0BjQWAiRMaiANx5bEoEaWrZAUivD4E8yFb/wBHCHf+8b+Bg7bF3aE7bAsz8RIlhXDIGhxSIAkQKC70V3dtS9ZuS8nz/764iyVVV2NhaQEIDxPRHZ1ZWVVZp48532f5b+gCpVQWGy2VHRNYxpWcRSPRnLIo7OAqVcnRiBRMPAy6pwDxbggId1OLr59QUKNPkscs83LmSqhgCtaVKl9r0ruhagQ4VOixIQ5ZSL0bLuSDKnzcOt3uNv/KdeOPnphdyBvpn70xvcZ11e/8PEUQmBqKR88RbU//5icgpZiLFK5obKY0uIUVcZZoqBlgEGFORYlMUdBUmJKSQ45YguVENDwMElQmGCls2Dp0BQ9KmJcPGdFmbIaHzGhikEu2mRiIVEJcJgQ0SLGKFrNKpI5DidcoyQfM6OcJTl+Rp9L05lFmmKxaRMSFmOGq6v1zxLhWRw5rCmHTJIye9ykK5ex5Jw7PCARKr6wKcsxESY1hkVF/mmjgnSTXsbDyrpZFrHWZr95G5WIiLQSmmMxlhV0EkwmWNik5M+0G2XiM6NMgsout/AxUABTpoyKWKZOlGmrXyVBpc4ZLiU0Ypr08IXFpnaElAlm5KfelarCln6GziFP/esEUsNRXDbVPWxNIISBoig4EShejBQ6KhJVMakbIb6wsNSEUCY0rAg3BC0KcIIe/9P/NaDUvskrmzX+/J21f98R+Byx6P1w1ddP+9lv+rE5DsYLJT/eSXj/42cY0i/wLLpyngRcBbB9UQghCBOVU67hJQ5WMmddPcRWQ+7IB5wlS5yygUTgZgWci0NTG1E3fGaJl43q0go/yq5dL/Ok6dOiLTuYeBmWJaW7JghUQiwCppmZm5cBqfN9AsiKSYmP4IxVpNRoawOGsxj96Xt0wjpOqYUaJzTGp/yP//3/zdlc48l8g/ryJqt18ys/OvhSk4GSpfKH31qmP63TLBsYapK6zp10+T9+0uWw67KxVOLVaw4TT7CxVGEwi9hyBnjehCRIIW1t06FVNaiX17ixqRM81NjvBcSQqemlm3ZKC0y50mFm67MYCYITNtCz+kghzpwD4XyrPp9/5hiDNOnwKTFhhUMmoo4mUz+BOn0iodNUBrz/9p8y+7jB3e0fIWTetTifD4e6xcevf4+DG9/4lY7nZ9HZIN2kVpQjwkQvdAtWxBGaiNHjEI2IhACPEjLTUWjJZ+hqysY4lteYY2UZs8yMktLjEmeIg1gqzz3nmnJAkmziYaVgMwLmWKQOChpxpmugEhOiEGKlOgeKDkaZeuJRCn086VAXE64puxjJ7AJLId/cFRlzxupnVv0AsVSZ4yCSCF/YaElAIGymskIoTBQZ0RIdfGni4WBlyciMMiU5xZfnY4SBbBLEaeKRi0JdFZFUiVCR+eeeHQUBmYFW+v5DJNvcR8j02KrElJhyjT3GokkklazrEjGhQZ7sdlnGicfZogYSFYcpMRpDWuSy25HQU4qonBMpDkvaEE+UKKk+JdtgqWzySjVBtUtcW15DJNc5PT1lOBwynvlYc4W16IwZJcrKHNuARK2yakteWZagKGhKxGFnyPbRlK5XZeSV0Wcj9vshb92s8o2b1SuP0ZcdX/am+3kpqp8Wi54RuZvri76qqpqCYT/HYxVF4XgYEux1cQw4C5bxlSoNfU6bY+ZB5lvB1VieSGoF8FdX4nNAL0a6oYs5nrAIpIlFmOKWxAlRbHLMeoEL8xEo4QTkiBVmBEr6HJFUseQMlzIpwTzGx2RAE42gkJ6HvDiaYigBahIzo0yc9R7PI9WcSX9DRRARY9CLalSiERMR46MgxqdMcDicDJnIKjNtmZmocsP5eowOvnQA4cVWocrKygqBWmX+8RNmw6d82DcY7/eYijaxUWdrtcY/e+MWvzhI+MWjPYQ7pR0OCGc9ekpK97qNRFFtDuMVJDoJcJ0dIhROWc/UBi9fZOn3Pg5u1kI9dw7IM8QEQZyxFVKloTxjDDEw6FFXBvgy3SxMfBIUykzQ8Tlik6f3/yU/uP0vuLf3LpvdX6LFIYmhcbz+Cp31uyhf8BP5Itl3oQiIhhQKJTnFxc5mZTGBMKkwZSLLpLLHqdBsl1Vu8IxApFQck5AwAxFqJBmVM63VY1QGskVZTi9Ux4lQ07a9nGdgHZ8qcxIUAqwsIVCwmSFQCFARKBgiRJceCiEv64+YJmXKyhRLCRZobipxHJ/jIwQXlBlfBAzM5XslChEayHQzVmWERMGSLnNKDGWKPE6ysUSZSSp7LdQMLZICSyeUSDAJ0BAS1pO9YlwCKeUySAx6tDJViwQLDwVJjEJAuk1LQkAHggyNn59rMR4mHdZYlseYzHlKHZc654uXIMDghM2M9dJnRKs4vqlsd0iIjim7qPhsR7cQgI3LkrLDVDbp67fwErinzJlPpzwedVBk6gY6izSeBivY9Rbfvl/ndhuE36Pb7XLSG0AwpneUJkKKouAlVZ4kd7IEXEETCUGUMHYvqjL+KhvqP9QG/avG5918c/rp533s59mgLz/2V/HYeFFIKQuxn9FoRP/kjPlgxDxxSKRARD69SGfIGiEGJWYvxPLkDq6O4rHGIZoSp+e5NDBlgI9FSXhYaohI0vVNEykFvCeXCLK1OhVRF4XibO6NoomIOzxgmDTY5QZzqggS5pQ45lp2TaXHRiWiIsbYwqVBnyPWOMeMJUCMlnXrchbaKEu8NSI8DCayRILORFbQVYFXeomKU+aVtVV+vO1yOgzZWra5uez8xj6Pf4j40pOBq6JZNrh1vYnkFfR4xjVd0u93Gc3PCPYD/s1phf1wncAd0gmqHIkyNU1w3eygyhCkpKlHnMQrRCgIJGPqxZzUxMXDIilax+mHnOGdSbNAkd0fLXxVM0AVcKljoJCwxEmqXJik91rMWBYdykqKJfBkWkFOjQY/v/V93r/9h2gyTH0HMlrdmnyxgYyqqoVyXhAEGIZBtVqlXq8X6NwwDAuZ3ek8YhYKpD8mjuMLZjMpkKYJCE6TNVbFwbmJUQYQHNDM/Ap0YsVGiYMCW6ARZ5VtjJ7pFEaoWXv/+da8kSk19FmCzBhpTRzQYYOJrKFm80Aty7pLwkPVTO4vQTkpI4TAtu1swa5fqJouL/hxHBOGYXaLrxyXLMr3RqgZ1dEjQsfAx0fHpVRs1BEWTbp4WCxzQiRV5jLVvYiEjiNdhjSZUUYnYCpL7MsbIBQMmSaFA1oZe0XBxMVkToMBAToxBg4T5lSYY5KQelAWMr6Qfg5oHLFBn6XsPDZYZM+kjU9JmL1mnRCLGZPivRj42d9McQcpO8bCJ0FQZsw0suh2ZgSYPDiMsfFxhM+acoiuaxxwi56ssKQlHHZn3F+xWVtf5tpquzj+k8mksId+fFRKk6zssxVCY8mO8Hvb/OQnT19Y/b5oM7t8/2XNiKu+z+/TNO03vuku3veb3IC/rJBS4vv+cwyA04HHzpkH7im9o22SSNBOyky5TZelzPZcQUPiYdOUXVQRXwC2zigX37uJhYeOKSTHyTqBcDCyLkBV99GEJMxOjUhqjGUDgUQlHUWUmeBjcZhsPocNshSfEjPUhIxarqJkYNm80gdJlW7WGc10NC4wztJOW4SZ/T8mTUF0UlfZmACHKOs4G/i8VAtxQwV3MuJH3YD28go3V0r8Z7+zfqEr8FUUK/pKJgMlS+WP3l6l/3KzOFhxHHN2dsb29jZPdw85Pp4wlE7qcJfMmIQ640SiKwquqBGHHhKZtYRgkEnqzjO0tIqkyhljWhl2IO8DLO4c5zOjvDNwjjsQKITZ7yZoeEhgJGu42CTojCijkVBmgiJjhEyYUqEkJmmrHpMTucqQFpb0Mje4q9Ho+cLmeV6aqyoVktDD63TodDrPPb4/cjlONkj0KmW9RdMaIb0apcTFkzaVpMs8SUWahrRRBVxT90mEjqWkrTZTakg1ne37scMZG4QoVBjQoMeEOp6wsWQqETykxYvkhjUR0RRdZrKEw5xQ6Ni2yTfrPruRoBfY6HqZu0sKvX6faajTLknurlQw1BJbW1sYxsUW22IFd7mlWhj4RBGu6zIej+l0OgwGA1zXJfbO5Xs1YsCHbH4YYKJk22aQCTKlQKRUubJPiz15E5BY+GzyDFWJ8ROLBIFHCY9U0rkmR0yzuX6cKVZKFOaZq98cBzIgZpJRWS0UBC4zGldcHQoKgjkmc2wu4ln8AqjpU0oBT1hFMpODZjXiBUiUkv2mlTp1JkGmp1FBI8LHoMykwF4EIcwSiZBDDnwLt7vD3+w8+1SMhBZV0GhkCYHParBNa9DlJ+/GhdCTqqrFZq3reiH+lKtELt7y+w3DKH53UQ3yRXFVEvFZ////w+Nyc6381htO6U0CCCbMp0N6vR6jwOSJvE+AgY3DHUXLQLRqhjNS0xEdkpgYk/RnAJoMmSk19CQ9ay8Dd31pMJdWan4mTYTwiQOXZKHrmVOWW7KLiUeNPhUx5YyVzFrbuWLtFKhIbKYZ2yvt6oqMfwaCISscJxFrHDCjlBWBi6ECIYv6NPnvRlmyHqOiC4FtwDwRrFQi1msGD/o237hdxQsFrh/yyf4cW43xfI//58MRk0hna7X2lREr+komA3B5fABeCKFW481v/RbvvKPwH530+OHPn/L3nwwZTUpY0Yg4jvkkuINLKQPwiaymTylOfrbwkqHaZ5loUIoNULITId/8k6wPEGVZYLp4AqgkKESYeFkta+JT4hFv0Ei6hJgEGQI/QmcuHfpJixF1JAq2nKEpMUmG6tYJmVLGlOfz7ctztrwjEEmVo3idUC1hKz7r2mFacWWLYD7/CxKHKKmw3nQYuAmtloYhmsyTDRKvhzE6wItiOlEFW/ioZoVr67e43rbQdZ29ww4VL2DqTjic2eyHNzPxpSkKLo46p6VOiBQbU6Qt+1ncQ0ooax62YWAY5cJYyLIsTKfKx70S3WmMKV1WmOKYgrftIbEhWFlZ4e3XbnJ0eMhJf8b1lToPP/oFtl2hWq2yurqa0o1+xZBSFm3ObrfLk2cHPD0eMplMCL0Zs9ggThRO2KDMjHmmh+DgEqNRFUOm1EikIMiOhY9JLBQ06ZOaV6nZORLhY3HGMjoBVQaZwAnkyWTKnUi9ICZUUYioZDW9x1W00hyboXJuMrUYZtZATeGzdgaWSrKhlwAspph4kCl1RiTEKOh4aASMqWGrIYp08ZJUkClGxcFFkTEhJqacg4AS04L2+WlR0ya8Fr3HgDYNutS0CUgIfn3rhPSoLFTll+fkubLk4v/z7kCedOT35fcvJh35zxbNq/L78t9dfM7LI4bLCetV//+8j5sHCUM3oWYr2Ib41L+XU/lyn4wgCAo0/2QyYTKZ4LqpfHf+sziOL3iKOMJnSYyYywoHcpMpFXRCZpQ4TK5RTsYccZ2QPElPV9IEFQOPoWwRYuJiESYGKiY6wXNsIyTYwmMuLRxljq1GqCI9rrkFd8HqETZ1MWJNOUZKmCTVLLFIz0+XlN6cCBUdn6Y4YyrLqFlhaDIjRimo0gkiFVRL1CIxfz7yNSdnqJ0/Rs26DIKENcfjP9gUbK02MAyd6XbEg6cdqkbI/9rZJ5AmjRLcXdE4mwg2luyvlOCWkL/OgOwfKWZezL9+/4wfvf8AI5nyreugaBb/7w4cdkYYImCZQ8Y02JM3CdBJCkoIWSYXQ9EByDd1b0Eh7RwwklZPASVcplSJULNWE+hEKKSI/RTNXcKlhJqBDZt0UImRWcJh4qHhM6BdbAYlpmyp2ygyZi/Z4oxlIB0T3BW/xFKCC3O23321wt1bN/j444/5ZL/PkdzEFAF+YvCS06FmhBfMd6IoYupFTJ17JHqdWxsN/uCbbc7Ouvzopx8yPNtnpVVj8/Zr/HhfRegOZWXOrXIf3x0TxIL3DxXOJhGGKgiEwyTUmYUKqkjYLM347ksxhioZj8cEQcBolCZjtVqNRqNBo9HAcRxKpRKmaTKfzxkMBoxnqdhQs6Ijw5RnXCqV8DwP13XRdZ1ms4kfAUaVlYbNxmqb09NTkiSh3W7TbrdRFKXoBlz2BPi83wdBwHQ6ZTqdMh6PGY/H9IYzHo8qTGMzVdQTZMyH83nnTJYZUwMkNnM22WaPW7iUiVAx8TJRJo3csa/MiBanDGkypMH5CEACAQIVkzkSkXUsLFyqXFyc5KXbVbm8zM7m1IorFw3KoaoOM+oMadFFERGB1OmywpwyIXrKb1BibC2iZgleac+JolQ0ZsdtohglmiXBtbKPJmKmoc5aXeX6cgWhWQzdmMgdMB31CkEZz/OKRf2rHldV01dV1FclHlclIHmCsSh3vXi7qvux6JxpWWlyPvEF//vfn7B33KNsKnxr3ccyFKa+wBQ+xH5ha+37PvNQ4oYKxAFhIl6InYHzwiOMVQ5IdTxs5qhZYTKiRohFUii4kpVHIju/F8F2KcbKYk6FMSY+XZYyQHZaNl0XuxiKjykCDDXDcgidUFhoyRxLFyRJgqqqz9l0S71EyZBEXipMlL92RcacJutMKJNko7408TjEFzZnySohBnOszOfFKqjfJj4qMTZTOqxm10qOC4OLXeGcDp2Oj02RAmXXrQn3nV10OU/HuInCznyFSeJgazGqbvNPvvkyI1fy/beW+GB3wm5nhq0r/Pb9FrfXSl96d+Ar2xlYjP404HToMx+dcOarxIMjenKFTtzCyqhcB2wxpYKPyaIK4TkIMH+r5xd2Si+JOD+Z00RBEKMT4GZ8fIUEicQiyuhsE1TiFLAiE6IMEa+RAqICLAw8BJIBLcJMVDfOWA06IUkCPVaZZyevlj3fodxiXe4Xc7VIq+DUVzg5OaHT6WCKBBsfadZpayFbKy3u3rrBm2++yZMnT3jy5Am9Xo8wHFFRDjGdgDc3qtiGwmR4Rjw9YW2pwWuvvcbe3h7fXl+i1mqwtbHOcuubzOdz3n+wzwejHo2kQ6SUqRgK0jUpCYW26fJPXyoTznocHp4QBAFBECCEoNFoUK1WMc20qg2CgMlkgud5qKpKuVzm2lobTdMy3IPOdDplNptRLpeJoojhcMjeUYensyax5nF3s807YYiuJEwmE/b39xFCUK1WqVQqz7nqwcUZ8ovmyXm1t/g38vnoG6MZ/UlIPB/Q6XToDHuocSoDnAMTkwR8YVNims5BEzsT8qllU8VgQRo7waVClNEwTSJiZAFMSpdPJQO2psDMpKj+rwo1O28XI1+sMstlJAEWkoTcJAjS6idCY0qZhhxwXd3FkT47yUsIElRNRxcRVQbU5qf0DnxiNHbiW3TiBvo8pD+a4IoD9uUWaqmB0/V5o7NDN26i2m1Wm2t8/7dfY22pUeA88vMkt3ZeTMCuqlJzrvqn+Tv8Q8SnVexfJPJkFV6MfbjqZ4vJRv41kirPwk1OozYJDmKeMBiOCmXUlL1ygCbiczZNlrTmBUVJTK/U21jUvJhkYl65fgqknaCkmKPnm5XISiM4X09l8b2SYYpM/OzvQSrvnlK1d+VLaHFAw/C45XQBmBFVC3EAACAASURBVPo5JTbC91Mg+GUwpyYiiEYEC28hBw1PZIUebeIM/5MelTpSKlwTO7hiykyWiTO6d40BDc6YUMdizpAmPiYGIYK4YJ5dHBukyiypS0v6U0sEIFRu16asVhyCQCMMQ2YzgRtrOIxBa1FxNB4+PWKporLzpMOwM2H3UDITdR4de3znbu1Ld/D8WiQDzbLBSt0k+cZvoYQjNNehvweW6+NhAQl9WkgWW8j5bB/OGQH5/YuRH4JzH+IEHZlRUJQsA7SyWs1hzqo4YMASHjZVMeaa3GFMCoIb0c7aTTDPkPop4e78tfkYuJRwpZOdUimi3soqw/T50rmak0w5eJpW7EIINjdWWI4C1m80+Ke/9SYynLOzs8MPf/hDTNPkW9/6Fn/7t39LuVxmZWUZXdd59vgBv3jvx4xGI+r1On/yJ39SaICvrq4yGAzY3xnQOTZptVrcv3OdY6/KyXCNpi14bR2OOumiPTg5YOeTPnEcFxWMaZrcvHmTzc1NqtUqUqbWwEEQsLKyQqvVolqtFhe47/vM53Nc10XTNHZ3d4vXsrq6Sn+ucrodUtYTfEpUWktca1mFo2C326Xf7wOwvLzM0tLSBWDYrwviiuOYvb09dnYEtbLF65aFZVkMBgMODw8ZDAb4vk8Ztzh1THwm1DKAU5CBIZVsxJQOlkI0JCJr0IeplDIBI5r4BJApol2kswYL52g+t1w8b/PIvTfSUdfFa0FwniToBKjZkMumkfQoK1OqYkRfLhFGIZDQo8SI67TFGQA9WcXLKqsAjZrs4wuH260yA9dm9c51wl5Iq6JxMnB5snvKsHuCpmnUajWq1WpxW15efu6YR1FUJAx50pCj1/NbUfVmwjY5SPSyc+QifmTRbfIfM67Cr1yOfKxwecSw+FVVVeaJxTzSMiyIhY7PDBsFiygbSc4TKzv30k84rYKdzHwsPSPymXou6Q2SSeJwxDUSBCFGlsSaC6nm4nqZd7Ly+y/KvmfvHEFClSGr4oAxDWKpZEycCjYuI5qoBPiBjRN2mVAtkpYN7QhDhfbZLus7P8eYDQlMh8Nrr9FZvYO8IvnPn19kiQikqoIqEWNqhJisKYeMZI2eXMFinlrDizNIFHq0UZAY+BlV2kQnosw4wwwJ5lQKtc4KQ2Ktgil8ZrGNRsTJRFA3BLG0cUyTzYpO/1gwnDvY0sOMZ+jTY+ajMf/bwzKhucw4stFUF8e22T2bf+njgq9FMlCyVP75N5cy9OUm8DrNn57yyeGQ8eCMXx6Glxa/PC6fqJ8WyoX/zzPudwrumlFlkF0sIZYSXFD6i6RKkNh4NDIOfciUCqlXAgWIMb0kU0S3lGnWGWBQYUSAkYr6iCm2cLGFW/x9XWlj1+u8/fbbrK6u8vTpUyzL5GjvKbdv38ZxHI6Pj1FVlQ8//JAgCPjud7+L4zjs7OzQ7Xbp9XoIIajVauzu7jKbzdjc3GRjY4Nr164xmUzo9/ucnJyQJEfcqZa5u1Rha70NsYc/7tB59oTB2TFSSmzbLjbnra0tbt26haIodLtdFEWh2WzSarVQFKXwHXddl/l8XuAbNE2jXq+jaRqz2YzXXnuNer2O6yfE1TMePjul4UhuXb+YMbdaLYIg4Pj4uAAFrq+v02q1fq1EQEpJv9/n6OiIIAi4desWa2trSCkZDoeMRiPW19fJVdWOjo7Y399nNBqxKZ+yI1/CwyHAIckAqwIvw6WkolQg8NHQCKjhscwRLiV8ale8orSP9Hwb9vJ7zO/LMS+XH/P8ZpSmxxqetFBlTEmOMyyBZEgLH4s+bUaySYUBUfYaVBIs0+KPv/8f8/efTDkZ+lxvl3jntQ1+8mTE6dDn3o0Kv/1WGxnNGY1G6fil1wOgVCoVyYHjOMXnlbfIHedq+lV+zBcThiAILiSWvu8XnYUgCC6xSs67DVEUFY6Ul2mFiwyVRZGd3KUSzjfxX7djcXnzvyqiKEImKTCUjOwbZ8p4MTCjjAB6WQFi4lJmAiiZ3HRAgE6VMFurNPbjG3RZIib1IzlfO2XWqco3+cVzKb/v/HuNeYa0P2+rq5naiMWUnlzJEpIKKfMo7aIm2dYrUfGkhSfO2Qaq0PmtH/4P1E+eIIWCkAmJEKwfPmBUW+HH7/wLAqv83HGyhUtTpIJaJTliSqOo3iGlJtYY4S50S2zh0lTAlSU0GdBjBYFEx6dOH1SNMiMadDhJ1glk6l/j4SCiGFvMMYmpqR4DV+MnroZQdSpmxIbRx/QiqonG/nSDnWkNXROsaafMpEbbiIh0ExQdL0womSqW/uWOCb4WmIGrIqdmbB/P+K//l4f85vOaKGt3hdzkE6aikaFWTTaUvYLTGkmNveQmPdnGKNpicQYi1EjQMtZBegGkc2aXFmcEGMwpYTOjJGY0RfeCiA5QVN6vv/4677zzDrPZjKdPn3Lr1i329vbodrvU63Xu3r3L/v4+P/jBD2g2m/zpn/4pruvy4MEDPvjgA8Iw5KWXXsJxHPr9Pp7n8dprr7G1tUW9Xi+eL45jhsMUQXx8fMzx8THD4bCY3amqSq1WY2lpiU6nQ71exzRNptMpiqIUVEdN0y60+UzTxHEcbNvGcRwcxynAgEmS8ODBA1RV5d69ewghmHkx+6cDesc7vH7/LtXq1eI0nudxfHxMv9/HNE3W19dpNBpfOCkYjUYcHh4yn8+p1+tsbGxgWc+7Tea0ueFwWCQOw+GQqRfx3kmZIz/lNMfoVOkTYOPiZLP7FLYXZeeBjk+FMW5WGT3ftcrj0wyw867XIvj1PFIfzyDj+OsL98dUGVFlmHUmDEwC1uwJQaRwGtWRUsVUI9plheV2jcdngiSBuxsl/sv/5CbABanVT6NLBUHAeDwukoMkSdA0jWq1WiQHmvbrXcNxHD+XLFzuNkRRVHQh8k5CniC86LY4rliU2c2fc/H7xXP+qmq/+NSu6AJc/nmqyqdwFG8wlaUMk6JjEqBma0qQqXYmWVcgpTSn7J7Ue2ROkwHXlFTWe5JUeJS8WoxAL274OVhWzUZM5yyr7Ahnj8+7AvLC97nSiEIqJa6SUGbIkCYVxoCkzLhQElRIuCU+YUKt2KD/+N/9N6ydfpKJsl2MRKR23n/zz/4LDBG+UDU0xw/MKBV6B/ljvcRMBcOYFpLix8kGQ9lgTB07M0m7KR5TUmYF1iL/PRI4ZQ2HOYEwUWWIFBpCRkUXOETDFBllXCoMshGEREMhoq5MWa0plA3oTkLG1GlUq7zzSuNLVeX8WnQGroqcbfDuxwNevIh+VixSBxcjXahtfGIMNCFfqGOfehHomUxuCR0fNRsLxFlVlyBJxYrShcNgjodJmIntqMSsiKMrFesURWE+Tyushw8fFhVpGIYMBgN6vV6BDj4+PkYIgWVZ/OVf/iVSSkajEUmS8PLLL2MYRjGbBXj06BFPnz6l1WqxtrZGtVotqvsnT55wdHSE67rFQlUul2mvXONs5LF7eErZOkdZLy0tFfzkTqdTVHntdpulpSXq9TqqevVJrigKN27c4NGjR5yenrK6ukrJUnn5RpsH7hmnp6cvTAYsy+LmzZusrKxwdHTEs2fPODk5YX19/UKS86KYzWYcHh4ymUwol8u8/PLLlEqlFz5eVVXq9TqWZTEajYo2uGl6fFMJEScuJ3ObEMGINgoxITqpO6S2wFmGEI0+NsqnKCSm8WmJwBwyE5XnIyd8heRKECCKEcUa+/RpI4WGolhUymWub77E999q8uPHUx4ezFBVhW/frvG9N9sc9eeM3ZiXr5ULzvQid/rTvAYMwyjAn1LKAjMwGo2Kkc+LugafN1RVxbZtbPvq15CDaz8tYVjc/PMEYFGwKE84FscTi52IRYDqovbFVWqCebdh8eeL71lKSRRbeK5NScxB5r3FdFyQqn6ktFdRVOZJ1uZXMpCfSkt0FtYWkQFKL7f/yYqf3Ow9JoYM85Ju+mlfIK+21eynYfYXk0yK3SFGJ0RDEBJhYjNHIcHJhH186eCR2sKrItVnSYRKc3LI+smjF36+ipQ0hsconSnHSy89h4FYFB3bEPvPiY5FUisEj1zKhabLmnKIE6cS7S6lTEhsdqHgy3/PED4lOSMQZmq3rqSvPUngmbzLhCoqMb6MsXGJs2Qrx7ElKEhFpS1Oke4ML1hnGoUE8Zy/fyR4516duxvPdz7+MeJrmwzkca1tUDI0ZkHIRbGIz4rzlttFilZEmREaZOjqGRUxoiH6VyraGQTo0s/Q5UkGMTRxcchbZzKbFefVW3rCpKAxAy+9lMTVG2U+Cz85OWFjYwPHcdA0rUDh37t3j93dXbrdLlJKbty4wdraGs+ePeP09JQwDLl//z63b98mSRJOT0/p9XqUSiV0XScIAvb39zk4OABgOp3iui5RFKHrejEOqFQqKIbDj7YDejOoGjZ/8Fabrc11qtVqUfGbplks9rlF6c7ODkIIyuUytVqNWq32XNWdYhzSDT3fbAFWVlZ49uwZ8/n8hYs8gOM43L59u9jct7e3KZVKrK+vX5lIeJ7H0dERg8EA27a5ffs2tdpVrfrnYzab8fjxY4bDIeVyeWGh77A56jOa1yiTWmHrWfszPWOu2tzS8+WLxaI0dt6mvRxJIS+UukxqWIQEpGZCTaVPUxkyj0qMZBOJQiwMNloOr1xv8Mr1Boe9dGyw0bIpWepvTEpVCEGlUqFSqbCxsVF0DcbjMaenpxwdHf3Guwb58+b0wBclfDnL5KqRRH67jEfIwamLCcPlEUU+psiThsXHLo4m8q/539ZiQTmSzJIGDXXGMocMohK70RYyQwnU6TKnAsQEBcxZB0IU4lQILQtbuFQY4OIURFXIGVSpnXmNMT0MckEuMjDhORj7nH4NYOLRoE+dHnvcwkdBolLlLBWqIiARagFsjDLl0gSFE7meCgaJQzYOPyIRCop8McYjFiqvHP2I/aVXX6jJAguJwULkDqS6DJlQoS5tKmKCJiJs1aUWD4sraxGaMJc2E1nBwmdGhSad57q4ruJgJgGG9OmyTITOmDoVxthMi86fQKLIGDMZozsOiacRoWIQo2vnAOAvI76WyUCSJIxGo3QOPh7ynRtwMrXZXE5bX+9+dMYsupwQJFz2GpAZ6ERlToSBQoTDnCV6tMRpgRYvsmqZnlBILnjF+5iZNK9PgJ21ZPNQsn+T7AKNSTKJ5ByTYIiLbnCLoes6GxsbHBwcMBgMaDQaTCaTYi5/eHh4gd5Xr9cZDocFmG5jY4OVlRWWlpaoVCokSUKz2aTdbnN0dJSKjPR67O7uMh6PkVJiWRabm5u0Wi2Aoqp/ejzBY8ZKPUFzWmiOydLS0nOz+hztX61WuX79+gXv8sPDQw4ODjAMo0gMckT/+vo6w+GQnZ2dYlzQaDQ4ODjg9PSUra2tzzw3SqUSd+/eZTwec3R0xOPHj6lUKqyvryM0m87QJZj2mI56GIbB1tYWzWbzc1eho9GI7e1tJpNJQeVUFIXpdMpkMqHpSG6ZZT45dgGJS4Vc0/wiAOvXiawNTYDk+VFGHikTJmZKJVvqFRTSNnLZsWhZFfTQI5hOuXWzhmGXeOflRtGmvLvx4g7JbzIudw1yLYjLXYM8OfhVugafNxRFwcoAoy+Kz+ouhGHKKsqT11z7YxHguth9yF39FpkU+dfpPEKOJGEU4EcBieJhyPS9x1mRMaOKToTDiC52VqlHqITUGGCLefHaNRGxKk6YyFo2DkgNr1IEvkdKAExNvlJDq5Bc/DfvDEgCJCqp2dUZ6+KQsjIBYJacMZNlDAKuKTsXup0uDnNZIsRI9QCIWJLdwvpbCUOeF/25GEImaKH/mZ4jV4VBuln3aCMQ9GUbW6YbuiLjggHkiIuaBX3ZxqPEiCYSmOHQTs64ru5e+Ns2M/q0iNCz4yRwsYBypuihUqeHI2Jmscnj7jKjuAQoVEsmb9+qstF68Xn3Dx1fm2Rg5sUcno2Q/pj5dEgcx+nCf+sGr71eZTxPaJbTyuV3X1/iv/urpxwNA86zVxeyTDrNgwWpEXG6RJcYscEutjIvMr4CLQ7FbOmyxvZYVhlSz5QJTHJjDC4kBNECVSw/5Cl9x8Z9TrhlUXAoSRIqlQqqqrK9vV20qW/dukWlUmF3d5dXX32Vhw8fpmj/waBYRJeXl7l+/TrHx8fs7e1Rr9fxPI+bN2+SJAmz2YyPP/6Y4XCIlJJSqYThVEnUEvMgoNPp0GikKnilUglL6bFU0am0N7m2XOL6sl90JW7cuPHCyt00TZaXl1leXiZJUopgvtifnZ0VlWKtVmN9fZ1nz57R6XRYWVlBiFSM6PDwkI2Njc8tOpQnI8PhkKOjI37xy4f8ZE/SGUes1Az+099a58bGypXUxBdFr9cruhR5ByQf4/T7fXzf59XXv8nBB8PsPFsMsXC7PJ76NEzA5UjIz2l5oaOQSh7l89uUSJi6sbnYSFIJ5ACHkhbTXLvFO9/+D7m1VuHfftTndOizUje/1MUIKDpI5XKZjY0NwjAsxgmdTofj4+Oia5Dffh0hql8lflWw4+JtUSTMMAxKpdIFTQIhBL7v88vtU4KDISVm+JipAqCYU2VAjyUquKgE2HgkQqMiU+lzQUI9wwpcnq1bwqUmh4xooGXE6DJTbFxMPEpijCZDdrnDHItcdC0lFKY4Ao2IJme8pDwpKI1JknahamKIJVwSoRJJrXj+1LwoZEStkDl3sakwwSBgbtc+tSuQHTBkybiSJvmZn5uIaCo9XFlKLY2z44mEM7lKLHRUGePIaWbIZqMTIEVqSe+xXDC/OqxixzPaajftQoiIJXHCRObJf7rOp6DzOLvi4xQ5Fo8ZTn2m0kAQoykqzYrJzZUvV3joa5EMzLyYv/rJMT/54AntqsYfvb3CyzevX8jeawtFzHfu1fmvSnf5b//PZ/TGHlo84yV9l5OgySAsoagaa+WYhjwk8SfMY4OWEyO9YZHVX468xXRZY1snIJ+fpd7ycTYXhvNFfrGtJi7dwgttvMWkw1E8GmKGaZrcuHGDhw8fsrOzw/Xr1/noo4+oVCpsbm5SKpUYDofcvXuXIAjY3t7mxo0b/N7v/V6qKpaB7B4/fsxsNqPb7dLtdpnP5wghcByHSqWCYVd45rY5HszR4yl3amNM02U6j9g7OyWYTvjPf++b2LXlAiQ2mUzY29vj448/ZmVlhfX19U/dYBVFKToCkLbr88Tg4OCgGDH88pe/RAhRVIw5c2BjY+OLnDrU63VqtRo/e7jPs6NHqT+CvkqsOF8oETg5OeHg4ADf94tEQFXVArsxGo3Y2tri5r03aHWPkMcfE2FkKPxFRDZQGBEtSl1/3o6BzFr/E1zKWdKhoBGwwS5TKkyoZUmpgp+xYtK6J9VCiBN4snfCv0Kwudbke99ooyh8pXTS89B1nVarRavVutA1GI/HRdfAcZxinFAqlb50f4B8g78sn70Yl8GOruvS6/Xo9/uMRiMmk0k6PpkFWNSJ7DqrZsxWpU3kTYl7u4hYFpVsgzN8YafCVSLdsC+DkeF8/h1kegLLnBJgsC4OUEWSKaW2SMeoYYZIKGeoJw1BlHUdJHqmq3KcpADHCXVS75c5FTkiEnpROOWKg+tij0QKfEyqjGgrnaJz8bON3+f1j/4NqnyxpLQiE45v3P9cicBlFVdIxyRlOUll1LPuQr62G9JjQJsZDi5ltEy+uy4HWeHm4VImRhBhs8dNZnElVT8kwhZBATqPCtEihSj7ajDFzI5HjIouA1wqmJrOdObyNz875aDr88ff+XL0BtS/+Iu/+It/9Gf9gnE69Hlve0zdURn7gpruE87PTXmuuujaVYPv3G1wf7PKP3+rSYkJYnpATR2zrPe50wx4ZasN4YyS6rG23GR5eZnRaIRlWRiGQbl8DuSQSYwnbfxMD6Au+gSZHW+SIWMNIjTC7MJZVOZKDX1yTevzdrFEJ6Kh9NFFemF5WAxkO006pEVFm+NOJwy9NDPXVMHS0hKTyYR2u00QBLz77rvEcczGxgY7OzvUajU2NzepVCq0Wi0cxyFJEh49ekS/32cwGKAoCisrK9y/f59XX32Vra0t5tLmo0MfgtQAZLNtoSjww8ceH+zPCUSJb9xZ5vpyDctI80jTTEcFQogCj2Ca5qe2WRdD0zTK5TKtVovl5eVCsfDk5ITDw0Nms1lBRxwOh6ysfLFqHtLFeTab0BmFhGoJJRhhhydoStrxeBGwEdIq7+DggKOjo0JbIX/dOeVwf3+fRqPBH/7hH2KZBo+PXU6nKmo8JUjSc/Pc8+JyzyBnA3ze95SeQzmnPHc11PFxmNOiQ5c1QiwUVJadkCjRsOQEC48tntJ2QgJRZh6pHAwlfpTw7Tv1r1wicDnyTbZarbK0tMTS0hK2bRNFEf1+n7OzMzqdDq7rkiRJIR38VYv8vDk9PWVvb4/Hjx/z+PHjAsPi++eOj0kcUFJcVqsKS8YUIo/xeIxIAqpiTFmZUmZCjxUm1IgwaCh9bMVDEc9X2fn6YpNqtChCUhETWkoPKQRDWqgyZkAr0zBIr+O0N5CqWiooqQkQMboIGcgGPhYuJUzm+KQeHWUxw8NhKiuMaeBJm5KYZqOClBXRVFLK6UjW6KuraERc6z28+rgB2ze+zSebv41KfOX7yyMXUzqTK3jSpiymKCJBEQklMaMkptTFEE2kAkKetHFFOcPWzJlQy64thQ12aatdmpxlHqVpchSiMqNGj2V6LDGjipFJgC86I2oZ1yPXMiiLGT25zJQKAQZxnOAGAkWkqq8vbzi0qv/4Vsdfi85As2yw1rQ5HSq8vmrw5h2LYJ66op2enmIYBvV6nUajcaEyWKoZBehpc/X3aDTe5/3338d1XYa9MSLxqVQqRXV6+/btYnNTVZUgCHjrrbcol8s8e/YMPnhQiHVoIqYhz+ixREKq4d7imLOMNnNRkCM9dURm9ZsDFlViaowuzL4KDe5sHDGfjvmFVyVUTJr2Cg33Gd5HHxX6ANvb20gpWV5e5mc/+xmmaXLv3j0AHjx4UIADnz17hud5lEolVldXaTQavPTSS9y+fbsAZ61di5loZ+yejDFxWa+NGEwjIk1jvRUzT3R++otH9DtHbGxssLycihoJIVhbW6PZbLK3t8f29jb1ep3r169/anV0OfIRSL1eZ2lpiQ8//BDTNInjGNd1C/7/5uYmtVqNcrn8uatAbzrkD95qU2qs4U+7HOw84fHjx/R6PZaXl1lbW3uu3ZwkCTs7OwVHPreczZ/T8zz29/cxTZPvfe97WJZFkiS8vRFyfBJxZjWJh5J41inUzWxcxtQy3nhqfR1dqZHxokgy6qqBwxSdEBcLg4gAnRnVbBjlk2DQsmMs4TNyI0qMqSlDGnaDUNE4mMGtlsk0owR+FfTRv0hc1TXIRwo7OztA2jXIsQb/0F2DHAMwcQO6Y5+qJTA1inHY6ekpw2HmhZFhAi7rF+RAREVR6A1n55XtdPjc8+UgORencETNDaVy8NxzHieca/y3ZJem6GFnqPlYamgypEubEAsro9nlqYCBj8MUjQCJhoWHlgSMaWTUuVS4yGZOhQk+JhohPjq6TF/nTJQJhEk5G3vMpc1QNnFlajT07t0/RyoKb3/yl6hxVGgNSKHwi5u/z1+98i+RiU51gS65GPn7DRKDLktI1NR9NA5ZUs6wFP85cGHOKJhLh75sMaZSlGwAqsjUZlVoRacMaGXuH2omeJ92f6eUs57xgAAjW+tlxumISTCwdANd0ZkHaVdPIDA0hUgKQikyh9Uvp7P1tdEZuIrDnLeUB4MBw2Ha4td1vdDGv3zxSyl5/PgxP/jBD+j3+0gpqdVqSClxXZfV1VXOzs5wHIc33niDhw8fsry8zO///u/z3nvv8W/f/TFPxvXUntOBshby0WQNLUn97FfZ55RrGXr8PM9SiKgzZI5JhI0kxiSkzTFryvELT+i8hXWYbGIJH2HVua4d4AiXVqtFuVwuFpYkSTBNk+985ztIKdnf3+fJkydMp1MgBWldv36d7373uywtLTEej9nd3UVRFG7evEmlUnnuOBtqwu7hKf/qp6ecjWPqtuQbayFEHkmSUK1WC4Di4qY/GAzY398njmPW19dZXl7+lRbh/f19zs7OuH//Prqu89FHH9Htdmm1WkRRVOga5GOHF82OZ7MZDx8+5M6dOwWzIAcCuq57gR65urqKpmnEccz29jbj8Rh4Xos+DEMePXrEZDLhd3/3d7l37x6u6/Ls2TOCIKC5tM4wtPif3z2hMwooqSHLTsQ0Vnn4tENM6vPQdmIOZ6lj4PmoINeAP+8iiQwjnqMBFGIqjNHwmWbKh5YIWJO7POY+EToKCev2FNeLUGRAmSkb6j7f/MZ9qu1r/LJfQSoW11rWV8Y57TcVOdYgv0VRhKqqBc7gqvNlEdSXaw9cvu/y/TnYL2cZzPyYdx/7PDsaYOKywsELW9pXSRFf1hfIi4JPm5FfxjPlj/20+xcThMXHCZk7XWp4mdOfhcuIVkGStnELiWNTznnKy+Sb3jp7rCuHQCqIpCUBe9wqXsNN8Umh3pp2WAecyHVMfObSoq10qIkRVjRj9eghljchMByerr3FJ9rrmUCXhYJkiRO21KcLYO7UEG6Og4/JhCpJtmkbeJj4bPKUsjK9aJR06Vj2kwb78iVkRs+8o3xMJQNIeonJJ8mrzChnSjRqhgcT6MxoMaBOj31uIhEkyJQtpNqUDPjz1302miYfdkt8eJRw1PdRhKBsq9xeLXF3o/SlyRJ/bZKBz4q8MhgMBgwGgyIxyDsGi1Vkv9/nr//6r9nd3SWKIhzHIYqiovJTFIVvf/vbeJ7HcDgs5npPj8d8Mmlh4iOsKt/atPjxgcbAExiJyxYPOZNrnLHCHCtr/EpanLEpnnIm1+jSRiH1JzDwMUQ6R7tKYwCev9A3zVMcMzU5efvtt9nd3WU4HGIYBi+99BKTyYTDw0NcN832c8lgjTeh9wAAIABJREFU27Z55ZVXaDabxeapqio7OztMJhNWV1dTxP0Vm/bEDdk56hK6A2J/du5w5nnEcUylUuHatWusrq4WvgRxHHN0dESn08G2bTY3Ny+MXT5PJEnCxx9/jKZp3Lt3j/l8zoMHD7h582bB8x+NRsxmMyBFb+fvbTER3N/fp9/v88Ybb1x4f77vs729zXw+x3GcQn+h1Wpx2hvRy6o7gGmgUDElZTulYx4eHrK7u8ubb77J7/zO7xSUONu2i9cHcDYKeHbq4vXT8c2//vmQn3/8BEPEvL6h8dv/5G3e3Y7ZPp4ycBPaFZ0whsE0JIoT/CjGVNKEcskYovgDjv0mNiOkYlNOuoypE2ATCYP1SsLQjTEMG19xeGXD4oPtHuXoBCkUNpQ9vv/db3Hnzh32Dk8pNda4c2P1a58ILFL1Lm/iURQVWIPcByGOU/tk0zSL6/6yOuFliePLegGXKYEAo0Dn5ycWwbT3nEDZFwlXOhwmm88JnV01B4er5+Mv+htwMRFxpcNBfL3YkHUREcpU/0QlRdWnSHpRMBXanCGFgiPH7HInExGKuckT6kq/4OWrxAQyFeNJhMY1Zacocmw1TdB2veXPTHpy5cQjNogyi3Eblxtim4oYcyZXmVLBlSWCTCVmEaybMwXszEJZx8MgZEN5fu3NRwwzStjMaYg+qogymWeTIDHwMJhQY0yNIDOgs5izop6xzAEH8SY9lklICLERCCwN/uiey6vXUi2G06ng/SMVX9rcXnP43jeW2GhZ/1506NeNRRTytWvXcF23SAzOzs4K6du8a/Bnf/Zn/N3f/R0///nPmc1maJpGEARFhZvL9Uopee+996hWq4SzARYOHjblcMzZ7iNuoNHWK9R0j2tLbXrDIYeDPh25jI+JjceqOEBRYE0e0KaDJy16cpkQg4msE0qdG2xfmRDkLaz8QpdRxCxKT9ifPzrAGw+olVPlvd3dXUajEVJKWq0WN27coNls8vTpUyaTCd1ulyiKOD4+Rtd1yuUy9Xq90DEYj8cXNrI8Ko7O67fXgDVmsxmdTod+v18soLPZjI8++oidnR02NzdZW1vDsiyuX79Oq9Vid3eXR48e0W632djY+NyccUVR2Nra4tGjRwW7oFKpcHp6yiuvvILjOKytrRFFUdEe7na7nJycXKgCu90u7Xb7uUTHNE1efvlldnd36ff7NJtNkiTh373/Ab/smARKiWZJByHo/X/sveePHHea5/kJlxGR3leWZ7EMnZpSq1tqjWbVZntnd2fH7AKLXeCwwP4F5/+CeXVv7/29vcPt4XCYO2BvdgbdPTfTVt1Sy7NpiuVtem/Cx73IjFBWsUhREilREr9AgcWqyqrMiIz4Pb/n+ZqBTSqq8OqiSQSD/f195ufneeWVV9jc3KTf719YUBVSEVTB4H7PRY+nEBWDrO4h6Rn+3b/5YwopnZN+DUUSiesyf/JiHtP2GFkOhuXz7k6HvumSiSn8ixdfoF2v8L/+bIv79TSSKLJ8+QWOKzWOegoR36A20MgXS0RkiaQuo8geccXG92Q0fxCOpBYXFyc8jzK9tkSsVPo0l9sTR+Du90k78fO78cCSeLrtfn4hP7+YT3sABI8JIo3PRxWLokgkEgl5KmGC3kReGDy34HeZpovipRnJMRKCQUIG0VfOPIfp1/wwnB8XauKY+3HRTh8Io4DHSgKQBRdNsElIDiMvRtQfoApWSBYWRTH0ElG0OFI3Qc/OUFIclmNdBoaJb47zS/ruiIOhQ8PJ4vsequgiyTqqP8RxYuieiY1EBJOukGHox7F9GV0wQpK1J0jofOzoJ+MQkSOoqsyy3KVjW6QUA0yPh0VJxIUuup/GmKjBLFQqfomun8YVFFTfoM2Yv3A2fG48jgv26UOiRJDpouB7ApeEnQfMi+alQ0Z+lLpXYNu/gu1LyNgIE7KvMCFQJiQT23dJSQMsVGYiXTRPxB8JE2smHxMRXQJBlPAEFcdxEASXTh/26zrppMf90xF/8qL/pRblX5vOwKMQdAwCW92gMEilUuzt7fHTn/6U0WgUXpyyLPPCCy8wOzvL7du3cV2Xcr1Nd+SFWdmaaBPXFVzXDcl4qqrS7XbHc8GhHVpjBlVycAEDHHgr1PziJEXLpUCVZWn3sVmyQeUaF4esJxrIjDsbS0tLvPrqq8zPzyMIAv1+nz/84Q/EYjEqlco4i12NUe+ayN4ICSe86TmOg67rbGxsMDs7+8jnYNs2tVqNWq1Gv9/Htu3Q7jUWi7G4uMj8/HyYWler1Tg5OUEQBBYWFkIPg8fB9LjANE22tra4cuXKhZ2GYOQzrVOvVCqhS+HDdOrVapXt7W06nQ6WlOSXWw4RDIZ+nO5gCEIEw9f41oJCtPkWydiYJ1Cr1ZAkiUuXLoWjlvPY29uj3++zsnaNv323Fsr4gtb8o2x8L/re5vGA//0f91maidEfeXx7WeHNOw3u7VfomiL//HsbNHo2f/pyAWvQ5B9+9ne0u0Mkb8wu/8EPfsAPf/hDAE5OTjg9PWV2dpa5ubnHPicXHffHabOfX8Sntfnnf3Y6P+BhLn7BeZzW8AfxwEEccBAT7CBjuAqZmIQeGS8W3YHFzlEVrD620cM0zTHT3xMxXJmIYCH5HxcNF3UDzt9CH7Z7DxAUFtNjJ0mSHohENl2BgSWQjspI2FR7HkfO4oSkprIgHZKL+giyTtdWOOrpWIJ6plBwkTH9j5+LJygQSaDLLum4hq7rY+twQcH0VdIxiYQ+Ll4C59Ner8fAdJFiRaK6jiR4VLs2vmNSdvJosk91pOI6LqWET9eSEOw+ruuheIMzagIAR9SQPQNFdHF8ibK/gCsnyURhNd7CHHYZjUZYlhUez1NvnhExRr6KTQQPCQmXHHVGkzTQsV2zHEbFfxw5/LGiR2OIhMuIKDIOGuaZMcA0hn6UXXedBlmC5EYJE4GxyXcEmyD6SxE80kKTnFAFHw69JUwhji/pCIKEKEJac/jxpR4pDfq2zN9uJagMI0QUgcWczn/355e+MG+Pi/C16Qw8CrFYjFgs9kDHoF6vI0kSP/7xj/nHf/xHer3xG8JxnJAZn0wmiSYy/PbgiJE/VhJcjjVJRnVGoxH5/DiSt9/vYxgGqqoiCMIjyT0RLOJ+mzKzWKiTKNIII1+fRJA8PHscxo5YDfKAgOHpZPp18poTts5/9atfEYvFiMfjmKaJJEnMzc2h6zrb+8e8d+DjynkKSZnvXZIwh90wr+Dg4ICdnR2y2WwY1JPJZB5g8CuKwtzcXJh6WK1WabfbDIfDMBMh2D0vLi5SLBbJZDIcHh6GpLylpaXHUh3Mz8/T6XTY399nY2MDTdMol8usra098LOCIITne25uju3t7VDOeF6nPu1uF4w3RqMRpmuQi+WodhRSugWOz2EX8mmBj3brbGgar3/vBuVymWw2y9LS0kNZ6+2+wb39BmuXSucCtz5e3B9l43vR9+ZzGi+sZKm0TeZyOi9vFHh5Y5bjxhq/32rTGjiszcZYm42xc38fVTCJikM8PM6X/oEU9OjoCNu2KZVKFy7i412veeEibppm+JiHtdgvSg4MFr3pBTBYyIMdeqDpP/9z5zkcwbw9WLCDxTvYsXf6Jh+UFfYrXVR/wKx4jO/7nHrzDD0NDZNZsfbIWfvjQBAEIqKHKpiT56U88LwvKgbORxcDuK5JTHSQBZ3hcITs+agMP44lVjxGls/JKEXHjTNEJes3cZQEYiSFSn/MJfLHHQzHlzl15zCdKLposGiV0ZSxeZYkSWMPkOrH50wQhJA/I3o24vCU3kDiyCphiTFiikZUdunZ45hiV9TY7kqoksdS0iftHOENqkiTjYovaRxZM4x8HV0ymBWPsF0Z04+SlB36to7lq+i6ztDyQE+RSyjUOibmMDrOXBBgliMUbLp+BgMtDA+yUIlMZH5BRmeUIX2SE7fZcU6MjToh//lTzrAPIoKFMDGJC37GJeBG+aGJV5welq9i+RJlYQ7RdydqBA0NnzeWeyTSRdZmIswk8nQHJju7BiYyhZRCZ+CyVNC+fI+Pb0Jn4GEYjUZhYdDr9fjtb39Lp9MJK/uVhQILpTx/2KnwUT2OioktalxJtlC9XuhUFo/HsSwLVVWpVqshqQ8eblbU8jMTXa6Lg0KWKglhMHECO3sDmg48Aeh5Sba8q6F6/bq2TU4zz4SkBBfzdNRwJBJh6Ee538+TS8iYvsafvJDg2qU86XQaQRBCYuHe3h6GYYShQplMJswZSCQSF6oEghFCrVaj1+uFUbPRaJT5+flQ7tjtdjk4OMCyrDC2+JPkgv1+n3v37rGwsDCeM07Mlh5VTPi+zwcffEChUGB+fv4Bd7vRaKxvDoyQgoWoWq1iOiCoKbC6jCyP9+sptlsqjuczl4T/+Hqcm1fH7oUBbNsOkxmHwyGNzoBf3hvRs2SurhT581eeXAjJ+Y5BsDPvDMyQ66DK8Oabb3Lr1i0MwwjfG+vr61y6dClc1B3HCfMtgmCsYFENdubTOL+Dnf43OIaBeU7w+fnzMv35dAv9UW3+4FwFj5tuu093CKafS/Bvx1L4QzOBM2gxdCUu61UkSWbXmEHFwPBVrqZaZDSXgadzuzU+95avcjlaJSGPR3iSJKFpGrFYDF3XUVX1zN+cXuynj1Xw3M4v/Bf9P3j8/fv3gbEl91tvvTWO/3bAlaL84PXvIHoWB7Uhvz9SkAWLk0GUhUKMuSRczw3QIyKWZYXdu4Gnc6+TIRuX6RiwIB0iWa0zY5LgNQXyasdx6HQ6mKaJKIqcth2O3HmisovhRZiTTrGIUPeKRCIqx0aKCCa+a7Ek7bGQMLm6donvfOc7uJEs/+kfd1H8Eff3K8wJ+8QUnwOzyNBTSakuVzMDLMvkw4qKqGeZSSss6h1u12QafRfZ6TPDYVi0Nb0Mx/4S/VAKOE5WGPMdxqTbMZl27F2QoE2b/KQ4UMhR5UamTToq0ewMEOweEk74Xqw7Oe7yrUm4GIwD521kRCLC2IrenagtRDyyQp2+n2JADE20sPwIabFNLpOhkI1zJTNkswZKeom7R318zyeXjPDf/NkllovPTYe+NAShJnNzc4xGI5aXl/nf/tP/xb12AgMdoylgjA4Zddrogjw29fBHCM4A27XRdZ1Go4Hruly/fp3T09OQ2R/g/MzfIjLWvTIIbWJlXGQ8zEnBYKAz8qNIOBPXrrO7kum4zmIclrJxNi5fRxCEMAc+ID+ORqPQHMe2bUx3CKbI0VBHF2v8/s0KH/5urMnWNI1kMkkul2NtbQ3TNOn3+6iqimma3Lt3jzt37qBpWuhhkE6nicViRKNRYrEYKysrLCwsUKvVKJfLtFotBoMB9+7d4+DggLm5OVZWVrh+/TrlcplyuUyz2WRpaemhYUQwzi4oFoscHx9z9epVZFmmUqmwvLz80Md0u11c1w0X7PPudpZlsbOzw/b2Nv3+eBclSRLxeBzFdbHtDkjQ6LVwBwb4cxRjArYYx4+OZ+xHR0fh4u844/MUBOb4chwvEmGtFKXee7R87/wiOD3XNgwD0zTPfATfCxbz8zvzYHccdHymF+BKpRKSJc8vosHIJxqNhq32AOcjfYN/p79+0efTC/b5AuKij4DYN93qDzoEsjwOxwq+Hnwe/Ox0ATL9MbJ90u83qXQtSumxegJ46Njmoq8HRVNgemTbdqhoCTpNn0ZK+yj4vk+lUqFYLLK1tRUWRZoi8W//7b9iZWWFf/iHf8AZtplJzzNw4yzQ4JU5mfWlHDE1FZKIPc9jYWGBarPLIBKla8oUExbXZhdJRC9jmmZIrAzeS8E9ZFqa6TgOseQAzc5R77skGLE84R8IHYGTroPrmDiYOKh01UuIpRRv/OhFMgmdWscirkc4OOkyl9X5s1d+QEyVuH1vh/3TBr7ZxRoJ+NFZiKe4slxg5IpcXV/mujPgsNLG7Hm0G2larRaOAyPimBP1QzAKCMoBAUhTw8cnQX+iRFAmO37Q6aJicq+dxGypJCIZZlIiK7EmjtHHNE0irs3IqHFi5bCQJ7wDkQgm12LHxBTYGeZQGNFykthCkrQwRPBkDE8lIo6Do5pmhJMjaA80dFVmJTvuIF9fjPHqWvqJ5X58HnyjOwPn4fs+/9P//L9wp51GxSSSyDMvHuD2K3iCguGN30jFXDKUtsF4rHD16tXQSCQYN1yE6U6B7/sYxIjTxUZBEcbBSRHMMRlIeLBLMP17LCIU01GyqbGb3pUrV87IpY6Pj4nH48RisTDC1bIsOn2DZt9GsPt49ujMvHZ6FzZ909Y0jXw+j67rCIIQ6qOD3YSu66EDXFAcBGOLcrlMvV4PVR66rlMqlUJfh8PDQ3q9HplMhsXFxYdKBAN1gaIoJBIJyuUyN2/efCghcXd3l+FwyI0bNy4810dHRxweHp4JjwkWWYBer0e51mazk6DvxhgqeTRVJR8X+TffEkhHx+SyIKBJVdVwcbIsi2Z3yN9/1KHSsUipHt+ecxA864EAm+D4Bwv49MI+nWwXPO/pf6cX8+n/B+co2NVNX+bxeJxkMnmhciQYBwS7w2B3Pb1QBx8ByW56oQ4W7umFenrxnrbcfdjH08JF/IuH8TUexeOA8fEPZurdbjeU8GqaFo6f4vH4Z349hmHwd3/3dxQKBX7961+H474f/vCHrK2t8e6771KpVIjH45Tml9ncO8UZtblxZRVVVcPrvtPpcHh4iOOMd7v5mXlGrkImLqPJhByJ6b877cLa6o64v3+Ka3TAMcavR9ZQohlWF4ssL1/i9n6bd27dxzMH9MQMlpTFEVSulARcNP7JmsxsLs5vti12yz1Ez+QvXinwvZeuhscn4AJ9+Id7/GrHpe7kSCaTvLqe4t+9sUg6roXXZ5Cn8ut37/H/3R4ysHyqzDId4DUW/dnE6ZFkLA9ukcNHJEWTlNBGxqJOCcH3aJEjQ4OIqvHGusLL18YjzEqlwv2dQ/YbFnuDHE0njiBKSCIUpTrz0iE1r4QtxkhqIpcyNhG3R7k5YHM4hytpdC0Nw1fQFIlSRuXlyyk8nzOF5rOAb3Rn4DzefvttjG4dDRVHTpBSXTTXYSSKaBEJyRyFu5vA4axQKNBut7l//344Xwt20tOYJhWNPayTiPj0BQsLlSjDkGjj+hJl5i80EQkgCw6q5OPZkM8vUalU2NvbY2FhISQOGoYxVkHYNr7vh3PYaDTKfEkMF5npWNZgMQjSC4NdaNBah7Ot2OlFIlgYE4kEmUwmLA7i8TiJRIJisUi9XqfRaLC9vc3R0RGzs7Osra2Ry+U4Ojri1q1bzM/Ph66G05hWFyQSCQRBoFqtXkh88zyPdrtN6QKWfGAmdHh4GC7Ewdw0Go0yGAyoVCpjJzs5hoFOTBqRiJosJEYsJQ1aFYfGZPGeXtCno289z8PyRPAUDNHm7YOz53D69Z3//GFz5U9aSKfJc0EBGNzcg5v+3Nwc165dC8l1iqKgqmq4WPd6PY6OjshkMqysrJzZaX/ZVr+fBxfxLx7G13gUjwPG5yUYoc3OzuK67plI5kqlEqZ9BsVBwEt5HHS7XTzP49atW6Ft+JUrV1BVlV/+8pcIwjgMzPd9fMcgKgyxlXHGh6qqGIYRxpqrqko0GuXatWuUSqUHvFdGo1EYtBX82+12MWzY7CTYGxZR3ChXs33ymUR4fzs5PeVvP+pzMMzhscxs0ue//9cbRPQY7+30afQtslFYXVI4rfc4bgxJRGwcIcHc/PKZQklVVW7cuEFy5jIV9YRrWJw0DYqRNtv3usTjcTKZDOl0OuzEFGeXUGcqvHO/RmenNTF2GxcEHhLCJJxuHMg0HicKeFhoRGQB1R2h+SNGQgwdE1+QkZweB1undCs7LCwssLCwwD/9weuIosg7dw75f98fUB8J6BgISpTV1atsuENOGy2wergdFzcSIZUt4Lo5kKPg2sSkccdQEiVev5ohm1CeOfvv58XABJ1Oh1//+tfIgsOyVkVQDVTHZjRohy1013XDgBJVVRmNRmGQULvdDtn0vu+fWfyBsBsQ8U08RNrk8BGI+20KQpmE2P/YPIMoEd/EnHQGLkrnCngKvu+jqio3b94MTYQWFxfZ2dkZXzDF4gPErvO7z2CRUZQxizgajZJOp4GPM+BHoxHtdpvBYHBmsQta48E8PvCLh4+Lhmmvg6A4iMVijEYjNjc3OTw8pFQqsbq6Sqdv8O6dA4rlOldWlx+Img3GBZVKhUQiQa1Wo1Qq4fs+lmWF7c1arcbR0RGGYXD//v0xMdA0L3wd063v4GvBMXGR0Skx8DRigwqCXeG05V449z3fAlcUBW2ykErS2d1xsGCf31mfZ8AHnweF3DSx7pN21bu7u/ziF7/AsiwEQQgVM/Pz87z00ksPvRYymQyJRILd3V2Oj49ZWVl5qjv2rwMkSQplywDD4TAsDg4PD8M00KDl/kldg6DjUKlUACgUCkQiEe7cuROO5Lrdbvg+CGTRlmUhSVIok/V9P7xnXaQQmi5qisUiQFhIfLB5zMlOdSx51vN8/5/9gG+tjQufSqXC+/eO+HDkoLgyqirjqRKmoPPiYpKlQuxMZ6WQt/jg4Da1nsi1lSL51MVcn2w8wkIhRqUt8/KVDD98MYM9GgewBZ28WCwWFgb/6rszvLiS4td3m9zdraJJLigag36fzVODqG/g+NJEgaGFNsJlO0tU0MINWKASC+TbrZZBq9Xi3r17EF+gyjxdSyQWS+LJLomIQEYxweqSSOisXrpKPB7n/n6FO/st6rUR9b6HIFmAQDYVQVckXruSYm029kwVAQGejwkY75j++q//enziGXMJotFoyAeIx+Nj8t1wSDqdJh6PE41GOTo6IpvNYhgGg8GAXq+HIAhYrsCRPXuhy1bPj2OhYaHgoCDgEKfPHEfExT4Vb44BsUlIiE2OGin5wbFDNptlMBjgeR66rrO4uBiaqei6jud5FIvFcDdyEXN5ehG8aM47PRcOiojgJhdolINFOHBgC2bdDyOfPQrBCCVZXEYXRixpNXRlTACb1nLbth0WYgH5afq5T7+m8+3z6dd6EYM7aH+rqhqOPFxB4eC0SSausHF56cwiff4jIGoGrfHphfqL3lV/+OGHvP3226FqJpgh//CHP+T73//+Jz4+cGlMJBKsrq4+Lwg+I4KuQVAcBFyDRCIRFgfnuwZvv/02P/nJT8LrLCh44/F4SFweDMYhZjMzM2E42Xe+851wzHb79m2GwyGCIHD16tUHCutHodPpcPf+Lr/bc3HkBEvFJP/y23nM4TiG3HEcEpkCv9r2+dmHTUzHZ2Muyv/wFysPzL9932dra4t6q0d+doW5QvKRi+HDRjRBPkm73Q79VIKNSySapDN0Odzb5g9VCVNI0OzZZOIyhYTAcrTDWx/c4aQ+pGIk0YTRY5lC1Zwcd3hpIi0EHYPvXS/xp98tsTGr0aqdcnh4SKPRoGeJvFkpYAoxIrLIadMgoki4Hvz712d4eTXFfE5/JgsBeN4ZAMY3zYODgzM72WCxCUYCmqaFutdGo4FpmuFFVywWWVpa4ic/+cl4Lu/HziQcQhONUei/PWQc1DGGQpMofdJkvQoDUliImMSR8Kgyz2XnLlFhgCnoxOijiWa4IMN4znv37jjcw/ElDE9BE2329/cv1EOfJ3ad//6XhSA9jNohNV/DlxtExfGFep6lHoxkgl1yEGUb7Jy73S6FQoFcLoeu64iiGPoVCIIQzvcDRn0kEmFmZob5+XlKpdIDHga3bt1iZ2eHl19++aF+As8SAr5AMBoIeBWfpiBJpVKsra2xvb3N1tYWa2trzwuCz4DzXYNprkGw21VVNRwnJBIJfv/eR3TtCBEgrqpYlkUqlQr9UfL5PO12O9zxHx8fMzc3F96TAmdOz/MoFAqPXQh4nsfx8THVapVcOsV//JcL9AwfVbA42t9iMBiQyWSYn59HVVXmZl1eXk3RHbpcXYhfSITb39+n1+tx4+raI0nCAR42opEkKcyiCAqsVqtFuVzG807QNI2FYhLfqSFEddLZEnpEDBfgN773IuVai//8VpmDag9v2CBpKDiGFF4nQUdX9F3K3gz7rOFPLZMmUXRV4cZigpgmkY6vsLKywmg04r+8uUV7r8diKUKtbTGX0xmaLnMZjR+/WHgmSIKPwje+GKhWq7zzzju4rhsS4gJWPhBeXIIghDNY13XH1WgkQq/X4/Lly8zMzIQ33IhgktY8OsY47EPBIi00EX2bDlnc0ARDJHDKspBpkcUhgjuJt3URcImyxVUk30P0QWPAOnfQnI85CcHcf7yznnQk3BGz7qfP/P4yEbiuaalZkt6AuViC2eIyxWIRTdNIp9MsLS2Fu6jDw0OOj4/DeWow2qjX6+zv73Pz5k0URWEwGPDuu+/SbDbDXX0gAwz8ElZWViiVSuj6xXPi5eVl9vb22NnZ4cUXX/zCjslnhWEYYXrfebnbpyn6kskka2trbG2Ng53W1taeySTArxICwm2pVBoHG00UCu12m2q1iuUKvHMkYrBEXLZYm1G4ur7C/Px8qN4RBIGtrS0EQWAwGOD7/pkitVKpYNs2mqY9duz3aDQKA80CbxDLsmjVjqk2m6Eh2fTfiWkSL66kHvo7T05OaDQaXLp06bEKgcfFdIHleV5YGHQ6HUzL5Ld390kUYKmYYD43vqYFQWC2mOU//LMUjd5462EOb1Cv1zk+PubwpMpHNY2erdL1E/RJn/urIsmYyA9uZB/Y3eu6zve/c4X3T/cot00W8jr/4QdzdEcOK8XoM18IwDe8GDBNk9/97nf0+/0zrPnARAXGJ9m2bRqNBr7vhwvOjRs3aDQatNttZFnmt7/9bUj0EVyLnL9LTFTwPDj2lrBQMIhhEgndrM5CxiSo3j+OPoaxu7aLhsqQIXF6fgqN6gOvJ9hZP4p4+GViumUeGP3ouh7OqOPxOFIkCpEECRWatVMsmZ45AAAgAElEQVSOjo7Y2tpC13XS6TTtdpuFhYVwF9/pdKhUKpTL5fDcNJtNEokEiqLQ6XR48803OT09DXfFg8GASCTCwsICGxsbDwQtXYR4PE4+n6dSqdDv9z91zsIXjeFwiGEY4ajnPCHx0yCRSLCxsRFG7U4nXT7H58N0UieMF+Rb2xUMdHTRYuXad/jh95dZnnn4zr7T6YSqHhi/v9vtdphm+jjExVqtFnYorl27hqqqnJychETI5eVlcrncp3rv1Ot1Tk9PmZub+1SOo58WoiiGx9D3fe7s1XmnespcLkalbT4g6f2486ADGZaWllhfX+f3f9hn83dlnH6Xqjl9fYvIAqzP6by6keGF5YuLmkIqwn/755fYrQ6/MgXANL6xV7Tv+3z00UccHR2FkpV0Oo1t22GlHbSmNU2j1WoRiUTIZrMheafRaGDbNm+//fZE9zoVG+or41YTSzQoIOJioZzJuZ56NgQxmB8n130MBxUQGJJAwqHrp0h4nQeSt877mV9EPPysOG+YEkjOgmM5Pb+fJrgFmvuAVR3M0wO9/zTzeTgcMug2cd0ag8lxv379Ou12m5OTE46Pjzk9HRcIKysrrK6usry8HLYKg8jkXq/H8vIy5XKZX/7yl9Tr9XA3rGkaS0tLXL9+PUwofBwIwthG+YMPPuDk5ISNjY0ndmyfBkaj0RkyJHy6EcF5xGIxNjY22Nzc5P79+6yvrz8vCJ4CdF1nLh+nmFRAK1JKRx5KtgvO7bRZFEC5XGY4HJJKpS5U00zDcRz29vbodDoUCgUWFhZCdZTjOMzMzFAqlT51NygwL8vn859obf4kIQgCy7NZNpbd0CciG3/0ohwoM7737es0/QJHDYPISZ+7R8Owf/tf/9kSL6+mPlEBUEhFvnJFQIBv7NV8eHjI3bt3QwVAII0LFo5gEVtYWEAURdrtdqgmsCyLzc1NXNcNHeeC5LxpHwHRdyc53zAiihcu+NNw+TiqdgwJA3dSAIzxceiGgEufKPveZQRBQGcQ+hCcNzg6PyK4yDEu+Dhv+Ros9tNEwmCUMv27RFEMyXJBkqEsy2SzWUqlUjhOCSSK8XicQqFAJpN5QOIUFAVBLHW32+X4+BjP88hmsyQSiXDhL5fLbG5u8q1vfYu5uTnu3LkTyuEEQaDRaPDLX/6SdruNKIrEYjEuXbrEzZs3mZmZ+Uyz73w+H/obLCwsEI1GP/Xv+KIQkEmnCZYBPmtREI1GuXLlCpubm2xubrK+vv5QT4jn+OzwHYMrmR6FuQJz6R4RyWMcaf0gAhlxMDoIlDSCIDA3N/fIgq3b7bK3t4fv+6yurqIoCpubmwwGA9LpNAsLC59KDhlgOByyvb1NKpViaWnpUz/+8+Jhtt+f5nGaMsebd5t8uNfjxy/m+KOr2U/+BV9xfCOLgX6/z4cffkij0cBwYGhHiGBSqVRCKc7C8ion9T6mA9ZorK93XZdGu48rRSmX61jDsRZ4TDqJfuwwOGnVj9CQcBERiDLEQMZBmBBS/KmPj9+sIiYK5oQ3wNT3BAKewViNEEfzhyDAyI+iygKqYJKLqZOFXMd1XUzTDD0RAiLdtLwteF3TVrDTFrFBoRBI4AJZZeBqOE7gEsLwp3Q6HfrXqxPik+M4ZLNZisXiQ2fygiCEs9RA4hQ4o3U6HWq1Gp1Oh0QigSzLYaFwcnISWiRvbW2xuLjI/v4+W1tbYWjS6uoqL7/88gMa608LTdMoFoscHR1xenrK6urqZ/5dTxuDwSBUdYiiGBJGPy8BUNf1BwqCJ+W69xxj9Pt9YqrExmIG13XDTth5BLJfwzCYmZkBCE3PisUihULhwt/v+z7Hx8ehPHd+fj5MIr2IF/BpEJgHaZrG5cuXvzRfik/yiXicx/3l90r85fe+3DTPLxLfuGLAcRzee+89Dg4OGFoeB0aRvq0QVyyWtBoyQxQ9wU4/y25bZLs9oKhb9AcJbGQ2b5s4godGilmxj+MrHHtLOMhEhbFxUKAckHFI0sRBnpAB4wgY2KiIgIeEfyZqU0DDQsLHx8JFwAnHBiIqI5K0J3abEQw0dH9A088hCEki3oCk1CUzMQZRVTWU4wwGg9BTfTp+dbqNHOzypxf+aDQaShUty2IwGIQhMMlkknw+H954RFGk0WhQrVbp9/u0220KhQI3b978TLvo4DXk83lWV1exLCuMYq5WqyFXIBj1jCyPN9+/j+QO0SMia2trfP/73w9vlE8CuVwuDLEKwp+eNQR+C0EBMN3ifRI3Z03TzhQEGxsbzwuCJwTP80JiazCa2tvbI5fLXUjACwyvUqkUlmVxfHyMJEksLi5eWPgZhsHu7i6j0Shs329ubiKKIktLSxdGfT8uHMdha2sLURSfK0++gvjGFQO3bt3i7t27Y1c2JYFhaGjiEEtMMPT6OK5HlDhH9SGSa1ElR7kvje2DJ1lXeb/GkCgjX6fml2iSJ4KJ48ukhRYFocwJSwx9jRrXYJI9MF7MRwxIYKFh4+GHHQABERuNATbaZN4/zitwEdHpscguqmDTIYPhu8TEAVG/x0DM8cKlWfbLLYQIpFJJDMMIvfmDeX673R7rgxOJ0FY4mOtr2jjONJVKoet66MM+bXwSePoXi8UzpDvDMDg9PQ19GVKpFN/97ncRRZG9vT3u3bvH0tLS5yYRRSKRUFp05cqV0Hv/4OCAt9/7iK1DAcPRSSgO/+O/f4P1y0++RRmMKwaDAeVy+cId25eNYHQF48VFluWw6HtSOzVVVcOC4N69e2xsbHymlvJznEVQxEUiEXzfJ5fL0Wg0ODg44Pr16w8ssMPhEN/3w1TOTqfD0tJSKGOcRr1e5/DwEEVRmJmZCTlPxWKR2dnZz6US8TyP7e1tHMd5wBb9Ob4a+EYVA3fu3OHDDz/EdKBrR1BEG5URppwEz2Orn8WjiN4aItJlSAwfEQ9psov38ZBpUiBOF9eXcVCIYNIniYxJ3SuQF2vYvoxJFBOdCAYGYze7PinsSYiGPyEMCpNugM6ICC5R2uj0qTMzcdkWUHDpkaEnSCiewYxQpuOn6ZJBUOLsnLbQ/QGjXo1OZ+xKGFj2ep5HOp0O/RFSqRQzMzOkUikymQy6rjMYDMJY58BnPRqNks1muXr1KjMzM2d2wb7v0263qdVqoRNaoVAIndICXLt2LYwt7nQ6LC8vPzFpmizLFIvFcXFy6Qb9n++zdftdhl6Edz66z6XF2Sd+UwrY36Zp0mw2mZ2dfawY5i8So9HoTGCWLMuhJfGTLAgikUioMggKgmftWHzVMBgMQolzQHpdWlri9u3bnJ6enpEJBq6fsiyjaRofffQRkUiEpaWlM+fYdV329/dptVrEYjE8zwvVN/Pz85/7nPm+z97eHoPBgCtXrjx/D3xF8Y0oBlzXZXNzkw8//JChq/BORcF0JaLCkKRfpY1GlxQmUWRsDHRWhE2yQp26V6TOeIYt4CPgk6SFIrhIgovuDzAmu3sJaJEl4zeQJ/nZMhY2yiTk0sEmOvldLuAhT5wGNYZ4k1QsB4URcWwiWBMioQ84pClKbRwxiuf3sLyxXbEo6by0GKWgupweyaFFcdD2DwxNbt68ye7uLt1ul1QqhSiKbG9v0+12w8dks1lWV1cplUoXGpU4jkO9XqdWq2FZVkjMy2QyF7YFJUkKNcYHBwfcvn2blZWVJy7Ny8YjrMymEYXvsnfvPbbvvMffqzavv/76E9U3w3hU0Gw2w5vqpUuXnujv/7wIyIPTnI/AMEuSpCdqLnVRQfAsjk6+Kuj3+0Sj4+CxoJjTNI1SqUS5XCabzZ45vsPhEE3TaDabtFot1tfXz8z7+/0+u7u7WJYVem7ous76+voTuy6Ojo5otVqsrq5+KpfD53i28LUvBkzT5P79++zt7eH4Eh/VdGquhoaJ5wsMidIlM9H/C9iTiEtZcEmIPXRhRNprUPFLOFIKSRKRHRfNH6ALQzzPp0EeH7CRUXFxfIkYXWxkTDRsIrgTHwERD2+SqSViomJiodAnhYNCjzQ6vQnx0MeZdBF0bEDClpLkVJO5iIJgiDSHOlGrhd04QVueJ5lMIssyL730UminqyhKOMsXRTE02ZidnWVubi6U2aVSDzcPGQwGVKtVWq0WMG6Xfxpns2w2SzweZ3d3l3v37jE7O8vs7OwT26V+zAROMXpR5b/851Nu3bqF7/vcvHmTubm5J/a3kslk2MZtNBrMzs4+Uy3yaVlhQBqcLgCeNKlLUZQHCoJnWWnxLCNw+IOz5lClUikciW1sbITncDQaUSqVQtJeEOnt+z6np6ecnJxg23Y4Kvq8vIDzqFQqVKtVFhcXQ6+E5/hq4mtbDAwMl4Nyi07tEHPYRRAEOiOPTt9EQ8CRYsREFyWi4nsStZGEiIeIR1buUohLeFYEwbbJCG2S9HHEKIroYUkge+MAjF2u0COBgI+PgMaAY5YmoRgiGiMEBBTsUGYoTUoDGQeDKCIuNgoSLh4CI2IEfYix/gA8KUZRbrKg1ikmJJbm53gpnmZz9xTPMFBlgUqlQjpXotm3GFkeg0GVer1Os9nEdd2wxf3666+HiX1Xr14ln89feAw9z6PValGtVhkOh0QiEebm5sjn859JYx7sIsvlMicnJ3S7XVZWVp7YQhoygfPL2H/yJ/z0pz9lc3Mz1GI/qb8lCALZbJZarYYkSZTL5fAm/GUjkHcGQVQBJyTA02J3y7IcFgSbm5usra0988ZMzxps2w67bcF4L0Bg/LO5uUmj0SCfz4dyXN/3aTabXL9+HV3XMU2T3d1darUavu8Ti8WYmZn53LyA8wjCg2ZmZkIF0HN8dfG1LAYGhsv/8Q/3uXX/mGJS4VpuhOi7NGplFKGAHAFd6bISbWHHV+j7caTqADwDzR/wT1ZEZnNXGY1GHB4eMjBdhraI5o3wHQN54l/d9ZKYaCg4GKhEMHGRGBFDxmZAFJURHiImOiIuztQoAARURjjIiHi4yPgTNoGKiYOMIriookcpbvNi3kKXxgY+pVKJS5cuoQgujca4Ff/792/x97c6DL0I92of8N1FKGaTXL58mWKxSD6fD28GV69e5Re/+AVvvvkmf/zHf0w2+7GO1jRNarUa9Xod13VDS9pkMvm5FxNBEJidnSWZTLK7u8vt27efCLnwPG7cuEG73ebtt99mZ2cHSZIwDIPl5eULyVWfFoGqIJlMht2BZ4FRPxqNQrXHtBXx+XCmpwFJklhfXz9jXfxVyHF4VhB4lQTFwHkkEgmy2SxHR0ek0+nQGr3RaKDrOpcuXaLZbLK1tUWr1SIejzMzM8PCwsITn+MH44dsNvvYdsfP8Wzja1kMNPsW793exx422OpGsWsnYPU4MGcwfQndM5hxD2HkcHkmhRKDNaVGudZEcAb0mxHu1sbBFaYrcGjO0HdkVH9Ezj+h5pcY+lFG6JPEbAlp8lmXDB7CJKBIoEMWnR4KBmOmgIKDgIiAhYaDi4JFgg4eIiPikwxumZzm8O1CF9EZEnG7pPQsmcwM7XabO3fusL29HRr1KIpCLD1DZCCTFCwML8Krf/wqK6WLb8aRSIQ33niDn//85/zmN7/h9ddfR5KkUM8vSRL5fJ5CofBUWuCxWOypkgsBXnvtNfr9Pnfv3mVvbw9N09jZ2SGfzz9UevW4CDwRgjZ8pVJhcXHxiT33z4rhcIhpjnMrPM/7wnMEpguCra0tVldXnzhn4+uKfr8fhm1Ncwamsbi4SKfT4ejoKPSSME2T69evs7+/z87ODr7vMzc3x/Ly8lM59oZhsLW1RTweZ3l5+UvzEniOJ4uvZTGQ0iVycZE6GZKiSToicTwQx37fgoHtaRi2hyq4VE8PUZQy/X4fb3IT7blm6MbXNmQ6zljjP0RFE+IY6Ei42KikqDEgxQgNBxUHmXGagIiAAwg4RNAwsUOzIWliH2TjI2OiTiyHx49TMJmPmbxU6LCY00in57HtIuVymWazSTKZDMOJAlngH/3RHxHRk6gfNLl/UENpn6AKj7YjVlWV1157jZ/97Gf8zd/8DZcuXSKXy7G8vEw2m33qOuGnTS6UJIk33niD0WgUZhzcvHmTRqNBv9/n8uXLn4vslsvlOD4+Jp/PU6vVKJVKX7qkKkjbhLOywuBrT1JN8DAEOvOdnZ2wIHgUH+U5xhgMBuF7P3D/PA9ZlllYWGB/fz/0DykUCpyentJqtcjlcmxsbFAoFJ7KebZtm/v376MoyvNY668ZvpZn0nZsSvqQq9kh66kuvXYdTbTJRsFVkiji2C/A931GoxHVRofqUKHjxLBcMTTyMAwD37UQfZeRrxHxTUTfJeKPxwERDEYksVAnEkAYOwVKgB8aCkUZImPhIyJOiIECHkIoG7TxEJBw0RiQiYm8NDPi6lKO9fV1isUimUyGubm5MLpzdXU1/J7v+xweHqJHBP705QL/1Y9W+NaMRa189NBjNBwO2d/fZ3t7m1KphKqqtNttZmdnyefzX+hFns1muX79OpFIhHv37nFycvLEGO/RaJQ33niDYrGIaZrcunUrbJneuXOHWq32uZ43EBrEBH4MXyamkwodx0GW5QcspL8IiKLI5cuXSaVSbG9vh8TT57gYvu8zHA7PEHIfdg3kcjni8Th7h6c0hgKN9oBer8cLL7zAa6+9RrFYfCqFgOu6bG1t4fs+6+vrz9Mrv2aQ/uqv/uqvvuwn8SQxMFz+798c8OadGo2+h9c9BtdEFHw0waRpqliehOWraF4X2/E5chc49pZp+HkcXyEm9BD8cSRwxZ/DEjSEyUx/QAIRj6TQIkWbAfFJ5sD4wyMQAkKCNhkaKNgoOJOiQcJFIkEPjSEiHs6EWOjhI+GRcGsk3VME3w0JRYuLi2xsbLC2tka/36darYbKgXq9jq7rDIdD0sk4M9kEvU6LWq3G2tramUChVqvF/v5+yDKemZlhfX2dxcVFTk9PqVQqpFKpL5wNHmSVC4LA6ekp3W43tB7+vAicFBuNBoZhUK1WWVpaIplMcnp6imEYJJPJT71QSpLEYDBgOByGhMLAifHLQFAU9no9HMeh0+mg6zqKooRfC0igX4RnvCAIZDKZ0JQqMLZ6jgcxGo2o1Woh92Rvbw9FUVhYWHjgZwVBAEnl//z5LnU7TaKwzF/8+FXm50pP7b3n+z7b29sMh8PnXgJfU3ztxgTNvsW9wxZdQ8QggSHMsSTuIuMwslw8QULHCCN+gYm5EIDAgFgY/RvkDER8kwYFHCQ0RgxIMvJ1dEb4SNhoiLgkaOKiYjLOOljlHr4gY/jqpIhwUbBRMYhgkqCLzoAdVnGJ4BLBx0VAQJbG/vv9fp+joyMikQjpdJp8Ps/MzAyKonB4eEgymcRyBao9n2RWZHNzk/n5eRYWFsIs8WQyGXoDBA6Ely9fJp1Oh4VCJpPh29/+Nu+//z4fffQRN27ceKi3+dPCNLlwZ2fniZILV1ZW6HQ63L17F9M0eeutt3jttde4fPky+/v7n3lEkcvl2NnZYWFhgWq1SrVaZW5u7nM/38+CgFkepGcGVsQBgXA6xviLgiAIrKysIIoiu7u7eJ73UPXKNxlBjHpQhH/SOXr31hYmUVYX0+jpWYaOxNMLCYb9/X16vR5ra2vPC7qvKb52xYAm2gzaVQx0FCwsPzJO8RM9ooKLZj0Y8RtlgEEUH58Yg/DrQSTwWDrooWGN0whxiDJiSCx0IHRQEBFI0CQmdIkyoMEMTb+Ai4iIT4YGQ3Qi2LiCPPkbNrLv4yAiAlE1ghotEU0r6IydAIMAoXK5HKb4BS26nf0TtvtppL7DqTHkjesZ3r93xGwuged5vPPOO2HbP5fLUSgUHnoxz8zMcP36de7evcvdu3fxPO+J+vo/LmKxGNevX+fg4IC9vT263S5LS0ufuy158+ZNer0eJycnuK7L7373O1599VWuX7/Ozs4O9+7dY25u7lMFGqVSKSRJCiNgq9UqMzMzX0oLNfAXCDwGgDCNcrrl/CRNhx4HgiCERLP9/X183//CC81nHYPBIDQbAh6QFk7j+PiY4927pHWVVHH5sWJ6Pw+CTUXA73mOrye+VsXAcDjknbd+Q8Y/QWQJkwgSNqI/VgbgmhSEMgPixOiHEb/z4iEpr42NTELohl8PIoHTvk7Tz2OiE/MHSDjYgkLENxihIU6SBSMYOIJCXBxLhAZuPFzkXcAUNHTfwCaC4luYgo4iN1nWRjRJMrIEsimdN27O8C9eSjPqtUJ3L8uykGU5nE8Ph0MGgwG92pChqxI1Wny4abC5e0xES6CLZRaUFo3OgOLyDVYXiyRjn3zDWFhYwLZtdnd32d7exvO8LzSPPIAkSaysrJBKpZ4YuVAURV555RV+/vOf0+/3cRyHt956C8/zuHLlCicnJ5ycnISeBI9DBhRFkWw2S7PZ5OrVq2F34Ms4ZoFPved52LYdug8GZLQvgjz4MAQFgSiKHBwc0DccZD39qSJmv84YDAZnSJYPIxBWq1WOj4+xjR4/up7nxVdKT/UY1uv10Ab5Sct/n+PZwtemGGi1Wty5c4e9ozIH/SQOIjIOIjaeIOF5JoancuIv4aAwJM6sfxwu/D2SGOgYfpRZ/xhg3FHAQhdGZKkDAro4DL8n+i665NO2NRRkPGRk38byVORJt8BGQ8BlhgoFsYyEy7a7To8kmj+ilI2jqy3QJOSIhmMZpEZNOo3LZLNZvvOd7zAcDkMHweCGn8lkKJVKzMw7DG736NkKDHsMTA/Jb9GWdBKeTKWjUX6rwtW6wJ9/t/SJNw1BELh06RK2bVMulzk4OMB13Qtnl18EstkssVgsDDz6vM6Fmqbx6quv8qtf/QpVVTEMg3fffReAK1eunPE/uHTp0mOx4HO5HLVaDcMwyOfzVKtVisXiF94dmE4qDJQmF3kMfJkM8MXFRQwH/p83j7CEFqvzWf705cI3uiAI5IHT5MGLioF2uz32PRkMEEWR7377W5TyT69l3+l02N/fp1AoUCp9c6J8v6n4yhcDge3m7u4ue3t7NLomhhtHQGSENrb19V0MX2XPW6VLCh0DBB7gBii+TY8ECS8RFgcRTPDBEsY5ALowRBacsTOgKJBzD9DEOLJnUWOWLmm6fookHRQMCgxQYhlW1RFR36feF4m4JjpDXCRmFy5xeTZBuVxG130kKUqn0+G9994L7X5VVUVRFLLZLJFIhGazSbVaxXEcTNOkJNjMJlJE8xInVh5TiJFSPeZiKRp7Np7R4Q9bHispi29fXfjEHa8oiqyurmLbNp1Oh5OTEzzPY3Fx8UvZWaqq+kSdCzOZDC+++CLvvvsuqVSKbrfLe++9h+/7XL16levXr7O3t8fW1hYzMzPMz88/8nXHYjE0TaPRaDA/P0+9Xqder3/hI5Ygk0AUxbAYAMJ/v8zOwDS0RB5L6KH4I3aOWzQ3Up8pe/7rgsBsaLrrdX5M0O/32dnZIZ1Os7OzQyqVeqoL9HA4DP/Os+Cf8RxPH1/pYsB1Xfb29jg4OKBcLtPpdMAeEVXSDD2JiNtHY4QtqNS8GbqkAWE8t/cNRH/sCOj6ErJv0ySLgEDdL+AioQsGgwm5MM4gJB3KjLsJtidx6i3QJ4GKgUPQhhewxSgp1cEjwkpJQ6h1MB0T2fdIKiZDTyPqDXCG8Mor/5STkxMODg5Ip9PE43GOjo7Y3d1F0zRUVUUQBFzXRVEUotEoCwsL+L7P7u4uUc8jkxkXC5cljaED2YSG68jsd0acNg3mYzZWv86tW20KhUJIQnwYZFlmfX09JNxVq1U8z/vSTEYCcmEikXgizoVLS0t0u13u379PsVikVqvx/vvv4/s+165dY3V1NWzJ9no9Ll++/MjiI5fLcXp6Gj6ncrn8hSoLbNvGcRxs20YUx/LY6SLgi+YJPArZeITV+Szbx00ifh/X6ADf7GIgMBsKMH3OApOfWCyGrut0Oh1eeeWVp/Z8gjwXTdO4fPnyM1FAPsfTx1dWWmhZ1ngssLc3TuzqDmkOPHzbIEYPx5cRfYeoMEATDLp+BgEfG4Vx8LDDyI/S8nN0/XHAhoBAjC4WGgo2jqBMiIZ22BlIC21EYVyxd7wke6xhoDMiSpQ+rqAiyzKzMZP1ZJtrSxmMyl1cc4DrusgivP7SOoxqyEaVnuGytDiPYxnUajVOT09JJBIkk8mwjQ3jxWZ2dpZisUgymQzlhf1+n2w2Sy6XG5vMSJCKKiiSgIjHTEJA9TqkaJJJjglK3W6XRqOB67pnSEvnIcsyiUSCdrsdyugMwzijQviiEYlEyOfzmKbJ6ekppml+JlkgQD6fp9Pp0Gg0mJubYzgccnp6iiAIFItF4vE4qVSKZrNJpVJBVdWHki8jkUj4M0ExoCjKF5biNhgMaDabYQu51WqhKErYVQpCqmRZZm5u7kvd7UVkkeWCztp8kss5gXa9TCQS+caGG5XL5TAxNMDR0RGu6zI/P8/m5mZYnL/99tsMBgN+9KMfPZUxlOM43L9/H0EQ2NjYeCLS3uf4auArWQz0ej3eeecdyuUypmlSb/XY7mfY7Wi0nTgxr0VWbKKLBrpgIvsGFio28iQv0ELBpkWOIfGJNZBHBJseGRxkogwpKVWyQp2E0CUm9EkL7ZBjANDzEzQpTuyGRJbVGi+UHGYiXWYibdZX5mk3G5zUuoiCj4hHOp3mX//ln3F6csTtukrdSdG3I8xnFOZnx21lVVV56aWXWFtbC3firuuiqiqtVovDw0NGoxG5/5+9N/tx7L6zPD93IXnJy50MxsLYl1ylzFRKqdWqUpfdXXbbVW7UTKPQmIdBoQaYwTwMMP/A/AXzNsA8zUO91KAxGBuN6hrbsqu67XJJllSy1lxij4yN+355Ly/Ju8wD815n5CJlSillpsQDRCIWBrcM8nt+3+/5npPJEA6HOXXqFKqq+sElrVZr5KjoOERVhelsAl1rMxwOMQyDwWCA4zh0u10/ivd+pCAYDBIOh33/8263O3NJAoEAACAASURBVPIzeIyEQBRFUqkUiqJQqVSo1+uoqvrQ2QBe0S+VSmiaxvz8PJqmUSwWAcjlcgQCATKZjE8+BoMBsVjsrudKkiT/uZmcnKTf79NoNL4yA5g70Ww20TSNdrtNMBikXq+jKIpvbVupVJBlGUmSHjsZgBEhSEQCZFIJLMuiUCgQCoW+dYTA84bwUj09HB4e+p0e27Y5ffo0juPwu9/9jnw+z9ra2iO/L47jsL29zWAw4NSpU09UEucYXz2eGjKgmzblVp9KucQH779Hva1T79qUCgW6A4FyP0l3KKERx3IDxESNmp2l6aYYoBB3G9SZunWKj97KFQigYDIgiIpOlDYDQiTo4MohVDQcd+QMGBL6iIKD5cqYKAi4REMCg+AEg6FAVOxzZTVKYNAgKg8IK0HkUJS392yO+ymGYpRkoMfy4jzPPfccV7eOOOiEkG2DRG6BF59ZYH4mSzabpVarYZomqVSKUChENptF0zQODg78GNLZ2Vl0XafdbqMoCoqikMvlmJmZYWJiwjeaqdVqNJtNX1g2Pz+P4zi02206nQ6GYdBqteh0OriuSzgcvqvQKYqCLMvU63VSqZTvf5BMJh+rGC0cDpNKpU4U8Gg0+lDFV5ZlMpmMn+KYz+fpdruUSiVc1yWXy/nkIxQKUS6XaTQaRKPRe45ZKpWK7xBXKn19J95qtcpwOKTRaIAU4qDcIaZGCAYkBEGgVqv5ZGB6evprMR16UMTjcYbDIYVCwc98+LbAMxuamZk5QWaPjo6oVCokEglOnTqFoihcvXqV4+NjXnvttUceAOWNHDVNG0dQf0vxVJAB3bT5+QdV/r+3Nnj/012CrsFWS+WTgx7doUwi0EMnhkaCiDREFl2Cok3bTSC4NjoqXeJ0ieEi3UoMdH0L4SRNJBy6JLEJIIoQcHr0nDAtMphuGFXQcRApOnmabhZZnWAmZqH0DkmFbc6cWuHGYRvDDqIKOomYSmcYZlPLMHBk+oJKKtDl0rmVkdtf4ZiWAfWuRTxo8d0XVgjKozZuOBz229WhUIijoyO63S7BYNBvPS8sLGBZFul0msnJSUzTpFar0Wq1sCyLVCrFysoKy8vLRCIRLMuiWCzSaDSQZdl3GTQMA03T/G2FZrOJJEmoqnqi0KuqiuM4vjDOIxCPmxB4xRz4ws6FiqIQiUTY398nGAySy+XodruUy2Ucx/HjWSORCKlUina7TalU8p+n26/Ha8d7zntfV3fAE3kWKw0+KgbYa0oMpTiZsEVAEqhWqwhymJ6rMD2ZY2nxyRGFCYJAIpHwuy/hcPhb43DnvY7uFOd++umndLtdXnnlFf+199ZbbxEKhXjppZce+f04OjqiXq+Pg6W+xXgqyEC51eeDnQ7CoItuB7hw/hQ9MY1rtlAzs/zgjy7yvZdOgRQmFJBQJZOw06A0yNAmQZcEXdRbLn9/yA0QEXARCWJiEL9lGiwz4RZIiG3apAjRp4+CKnRxBJleKE8qptDoSThGhamEzJ/96EcUukHC0pDjukEqOGRtKU8sm2e95CAHZBzbYSLQ5o1XL5NIJGg1aqiCjtk8JC21ef3VPwiCFEXBdV3W19cpl8u4ruvbEWcyGer1OuVymVar5ZvkZDIZJicnCYfD2LZNo9GgWq3S6XRQVZXFxUWmpqYYDoeoqoqu6/R6vRPpe91ul1qtxsHBAcViEcuyiMfj/mwyFothmib1ep25uTmazSatVotUKvVYCYEgCL7OwntuHvZE7oU/7e/vk0wmSSaTGIZBqVTCsiy/oHvkw7ZtisUihmH4mgVBEOj3+7RaLXK5HIqi+DqCr/Kk5TgOR0dHOI5DoW6wWXERLQ1bjpEKWUQCLsVKg5KbpzpMMBSjXDw1Q1B+cqJJBEEgmUzS6/UolUr+Fs03HV42hkc4YWQqtLe3h6qqPPvss8CI7F27do1nnnnmkW8RlMtlisUic3NzYy+BbzGeCjIgiyLFZp+hEOb04iSvnp+iqdsE1Cxr81memY9ysHOD6s0PGbQOychtZmYXsUMZWm2NHhECWDhIiFi4jJIERuHDDjI2QySsW5bAAAkaWATpo6DQIyN3WJqfRU7McL1o07MkpECQH/3xJZLxCNsFnd9vVlAEg+++sMh3Xn2ZRrWIrERRwipoB+QjXd74o+8gSdJIxFcrI7l9tHaTF1980S+6nmCt1WoBI+c8b0YfDAbJZDI0Gg1/+yCdTvshNF7rfHJy0p9tdzodqtUqhmH4Pvrnz58nlUr57obhcJhkMokkSfR6Per1OgcHB2xvb/tzaEVRSKfTaJpGs9n089Obzab/u48TX1ZcmE6n0XWdw8ND8vk8kUgE0zR9QjA5Oemv5yUSCVRVpVqtUqvViEQihEIhJEnycyNUVcUwDN+d8KvqDhiGQa1WYzgcousaxUafnhMkowrMxS1kSeCw2qVupwkKJm4wwTMrORKRx5uweCe8LANPyBmNRr/xhODo6IhYLOb7WVSrVY6PjxEEAUmSWFlZAeCdd96h1+vx+uuvP9JkTC+rZGpq6rEYZY3x5OCpIAOe+nh+QuHCQpxkNMBMSiZotWgffcJH779DoVAgogR5/uJZnjl3hlqlxE6hTXMYYUgAG/lWH8AhhkEQGzUcRA0KxN06sjOgTwQRmwEhHCSmxGNiosZEsMvi3DSJuMrxcYFiL4YogBTOEKPN8dEB/+Val84gSDSe4j98/wX6Rgej2+H159dIB3s09t5nZjLNxYsXgdE2xOHhIdlslkKh4L8h7O7u+sXkmWeeYTgc0mq1yGQyflHzss49k5lOp3PiBA/4I4Z4PE4ulyOdTvvbCfv7+/T7fd+iOJ1OoyiKLyScnJwklUoB+PP47e1tDg4O/Da8aZrous5UfoHd4wbNRp1sOvnY1cdfRlwoCAKZTIZarUapVGJpaQlJknwDpsFg4BMC4AQ58jQLnhuh44zEoqFQ6JaHxFc3C+90OrTbbXq9Hlq7SWDYIBUaMhuziEWCOI5DvVbBRKXnhMjFZX8s9aTB6xB4Y5pYLPbQwtCnBZZlcXx87Hf0Wq0WN2/eJJfLMRwO6fV6rKysoGka77//PjMzM5w+ffqR3X6322VnZ4d0Ov3YPETGeHLw1OyNqIqEqoTRNI0Prm9x48YNms0mgiAwMTHBs88+i6IofPzxx3z88ccAnJvO47YUarUKDTdJkhZCOMvq3BxxUUcvXsPQmoSFHpYo4ToCbVKEMbGQcQSJqGQyPTmNqqrUajVEd0RO4vEEISVIfjbFQbHBQHCYyQRwAzH2aybqoDpqN0cVLK2E6A5OBNh4AqClpSU++OADfv/73wP42wHez1dWVlhfX2dvb4+VlRX/BatpGvl8nunpaT/UZ3FxkWQyec/nzxMZTkxM+KetUChEtVr1/QuSyaQf6+y6LouLiywtLdFsNqnX62ia5t+XYDCIbloU3m8QjE8RcnVw17lw/slINPOcC/f29h7KuTAUCvHcc8/xzjvvsL6+zoULF3wr393dXVzX5dKlS/71BIPBE4ZImqYRj8dpNBrMzc2hqqqfjvhVbWAYhuGLG3u9HkpAIBESsV2XRk8iIruI7pDZYAkCMeZVh4BoA0+m658oiqyurrK1tcX29jZra2tf24rm1wnPbEhVVd9UKJVK+aFXns/A9vY2tm1z5syZR3bbnndBNBp9bN4hYzxZeCo6A15IzzvvvMPbb7/N7u4ujuOwsrLCG2+8wczMDNevX+e9339MqdVnIpNmNj9Ns16mVNdxRZloWGFhPs9cEoTK7zGLnyAPm4SEAbIEEhZRNCw3gIBDRDBIS21WV5b8UBVBELhy+SIWAeRAgNm4w3JqiOj0qfUjDEWVqWSI76wpaK0a8/PzhEIh/uGf3uOoLXL+7Blmp0eJbZIksb29jSAIHB0dYRgGb7zxBgsLCydao7cLCmFEIhzH4eDggGw2SyqVIpPJ0Ov1KBaLOI5DLBa774tbEAQCgQDNZpOFhQXm5ub8cUK320XXdVzX9U9jw+HQT0z0vA+8+2+6Cts1AXfQQrcCpEIWA6NFIpF4pK3ML4ovKi70/AS8Fc7V1VWGwyGu6/rrrLeHGd2pWfC2NOLxOOFw2O8ORCKRr4QolUolRFFkf3/fdx60xAgflCMcaQG0gQRGGTUkkY6FiEYUksnkA1ktPy54I4NOp+Or6p+Ev6lHiUajgWmaZDIZtra2iEQirKysIIoipVIJXdeZn5/nnXfeIRQK8eKLLz6Soj0cDtnc3CQQCLC2tvbYx3tjPBl4IslAtT3g2qGGNehROt7nt7/9LR988AHVahVVVbl06RJ/8id/gqqqfPjhh3z44YfUW13KzNGRpqh1bdqlLYZml9l0gJeef5Z2X2broEKndkx8eDSyFJZl4vE4umnRcxUCgkVSbBEVR54C8/lJpqamkGWZ4XDIxYsXSacSdCvbLGQDvHx2gkwyiizYfO/FVU7PJfj+cxP0tZEoaHZ2lmp7wP/55hGFfmZECOZUYpEgnU6Ha9eu0e/3CQaDtNttLly4cE8lr6IoiKLor17Ztu1b3wYCAT8sR5blByp6Xkuy2+2SzWbvGicEg0GGw6FveOSF33iahUAggGVZiAIMpSi6FUBBZyJk0NValEolYrHYE3Gau7NQVyoV3zvhs+B1Zg4ODvy8BtM0EQSBYrGIaZp3pRt6eo5+v8/x8TG6rpPP5wmFQmiahqZpjzytz9tTDwQC7OzsEAqFGDoS/1IIcmSoDPoDLNslZLdIRAIoiuKPnDKZzBNdCLyRT7vdplKpkEw+/jHUo0SxWESSJKrVKpIknSjMpVKJbrdLOBxmfX2d8+fPP5KZvm3bbG1tYds2p06d+sYRrDG+OJ44MlBtD/jf/9MOf//uMf/1g0PqNz/EGXSZnJzk1Vdf5bXXXkMURd577z0++OADak2NQHSC+dXz7NZc+p0qLcMlG3G48tx5vvuv/5Rfr/f5pxttTDdIjwjZkM6FU3NEo1GOSzWOrRmabhbTDZMKGARck4lsimeeeQZN0xgOhywuLmJZFvV6HRGHV69cIpNOcnh4yNTUFHMzOfIZhaA0OrVPTU0RjUa5dqjxz+stZNeg3YN2cYOda++xvr6Orus4jsPExASFQoFWq0U2m8W2bV9A5BWbaDSKaZqUy2V006LcGjCbnyEYOLn+d3vR80YDd8LTE9zrtCrLMtFolGw2Sy6X882IvFhcy7JwXZdAIIAsQshuE5NNljIi0fAoVbHb7XJwcIBhGMiy7JOZx4kvIi5MpVL0ej2Ojo4Ih8Pk83n/MZVKJQzDuGv04BEzgL29PSzL8tc4y+Wyn2PwqDAYDEbeB22D3eMmyXiUutZnryEiIGCiEBN1km6FRGyk0Pdm1JZl3Xes9KTAIwStVotqtfqNIQTe5oq3Mnz69OkThblSqdBqtWg2m5imyWuvvfaltROu67Kzs0Ov1/O9C8YYw8MT96paP+qyXerRNR1sV6EUP8f3Xl/k7FKOTrPCP/7jP3J0dIRlWUQTGczgKoeaxfYnJQxDZ+AEyWcV/u13XyCkZnh/u8n1m6PEQQBJDpGbXWP7eAezU/NDikL0GYgxGpZOTpF5+eWXWV9fH1kLT0/jOA7ZbJbZ2Vlu3ryJoih+dsDtWoBareYL0QCWchEWp9PsFWWyKixOKMSVKVRVpVgs+roHGLmOvfPOO/51SZJEMBgkFAr5H8VKg3f3y0iRLDW7wJ8+lyEeCfpRtaqq+kE7Ozs75HI5Zmdn72ovxuNxYrEYx8fHJBKJe7YfZVkmnU6TTqf91cNWq+UbFjmOQzIWRjFNet0mhuYSCoV8J7VyuYxhGP5+fjabfWhToEeJ22ORvTfiz4pFFkWRc+fO0ev1fG/4xcVFbt68iSRJvgnU5cuX7yIVKysrNBoNNE3jxo0bvn6gWCw+0va8YRj0Bg7/72/30IYRmmIUu1VBEVxwIYLGNCN1uuGqCHaQuiEwu5ijXi0yNTX1xCv2PSvejY0NNjc3OX369FMvKuz1epTLZdLpNGtra/d8PN6a6vT09JeK7vawv7+Ppmmsra19q4ydxngwPHGdgZY+4J9vtBhYAqGARFBR2S51+fnvdjnY+pi+ViWRSHD58mWWz73ARtmhUbpJS7dZSw/4Vy+s8MM3nuPd3QH/8df7/O5akcHABEFGECXicp9avcWxodJ3w8SEURZBzw1jukFMN0x0+hz7e1tIDFldHonolpdHkcL9fp9mswmMVNyrq6v+C9l1XW7evEkikSCRSNDtdmm2muwXW+i9HgvZID945TSXL11gfn6eQCCAYRh873vfY3d3F13X+fGPf8zc3BzZbJZ4PO6z98FggKZplJp9DtoBUqpEqdFD6tfoNisUi0XK5TLVapVGo4Hruv7GgqclGAwGmKZJv9/3tQDlchlZllFV9TOLtNdNSCQS5HI5JiYm/PvnCey8+9hqtej1esBoxJHNZun1er6633Ecfw3vcSAcDpNOp+l0Op/rXOgZNFUqFarVKvl8nmg06pOc4+NjDMO4a2QgiiKDwQBRFEkmk76JlKcleFQFuNlssn6zwsc3DSS3T8GM0u5LBBmSE8tkxSq4NgU7T6mf4NBIUDWk0SaMZOA6T353AEZELplMUq/XaTQaT8Qq65fB9evXqdVqXLly5Z5ugtVqld3dXQAuX778pf+PCoUClUrlM0XGY3y78cR1Blano3zvQoZ3N9sguAjAjSODgSNTCCzwP/2Rwh+/eJ5wOMyn17eoHm2jDyUWpmL8hx9+h5nJDIe1Hgc1ExeXcFghGwsRlEWKtQ5az6JpZxBw6BMhTY1p8Zi2m6DqTNEnxPsHA1R5hj+aSfPsc2dIRv/QTrNt20/x83bRXdfFMAzK5TKFQoFsNku9XgegbogMHJmXz87Qs2VEJe4XjVgshm3bGIbB2toalUqFg4ODz0wk002b6Pslys0Bi3GJ587HCcmj+2XbNpZl+Z8HAgECgQDFYpFr167564W3o9UazfhnZmaQZdm3rL39487veV/H43FSqRTLy8u+i2GhUKBYLNJut2k2mxQKBQqFAi9/5w0ChHDMtq+8j8fjZLPZx5JzEAqFOH36NMVikWKxiKZpLC4u3rNIx+Nxzp49y8cff8zVq1d5/vnnmZmZoVAoMDs7y+HhIa7r8vzzz5/oEGQyGZrNJtlsllgsxsHBAY1Gg729PS5cuPBIHodhGLQqhyiChS4kGA6HxOgxEEJIgoUsWGhODM2NERgOaA1V3N4xWwcp1i5PUK+XmJqaeipaxt7mxubmJltbW0/tzLtQKFAul8nn8/ctzIPBgG63Sz6f/9LW0bVajWKxSD6fH5sKjXFfPHFkQFUk/rs/zvPGM+lR+/PtIoc1k0gIXDFIW5zhN1drHO1t4HQLnE1HWHz5AhfOLBFXRyf0dDTIwkSYUnNAJAKzGYlqo810Amr6yG/ARcBBAARkwSJBm7aQpu0mEXDJpFP0hBia6ZK8rUPX1vtsHjZYmRvtAq+vr2MYBq7r+kKgiYkJVFVFVVUsV6Yj1Si3+kynQ6Sjf2gHRqNRRFFE0zQuXbrE7373O27cuPGZZEBVJH70whSN7oB0NIiqfP7p6JlnnuHmzZu0WqP4Ym/sYds2vV6P69evE41GSafTd5GKwWBAr9fzv749Y/1OSJJEJpMhHo/TarUoFotUKhW29w75p53/gpKY5sULa/zoynkGvQ61Wo3d3V1/HJHNZr/W9qUgCMzMzBCPx9nb2+PGjRvMz8+fSI/zMD09ja7rbG5ucv36dS5cuIBlWVQqFebm5nxC8MILL/iEIB6PEwgEqNfrzM/Pj/4eLIudnR2i0ShLS0tfmgQ1m006zQp52WQgapTsuJ+wGWSA5co03Cx9IpgIBDFxBBmzXWBl7gx723WKxSJLS0tf6n58XQiFQqytrZ0gBE+ThsBLJlVV9TOdBPeLTY70COdz819Kb9Nut9nf32diYuKROxeO8c3CE/kqUhWJU/lRBQ4FRG5We3QMm2RE5p3NJtvHbQRX4crCGv/z958lm4rd9fs/fnGSF1YStDtttHqBj0yX9YMuIddBQAIE0lQJCwYAsmAxIxyAIBKaOE1YUViYCJ8o3rpp80/rBh8VFeqOgxJuk01GfSW/t5ufzWZP3J8fXJ64Z/EOhUZxx5qmsbCwQCQSoVar+ethn/X8qMqDF03PyaxSqXB0dISu635mQSQSYXFxkVqtRiaT+dw3Vtd179mFuPN76XSahYUFdF3n/Wv77O0McZpF/vGfO2gHDi9dWOHMmTO4rku9XvdFj6qq+kZIX1cbOBqNcu7cOQ4ODtjb26PdbjM/P3/X7S8tLWEYBoeHh4TDYc6cOeNvdiwtLbG3t4fruly5csW3J06n0759cygU4vLlyxiGwcbGBrZts7i4+IVPt5Zlsb+/j2VZREIS9DXS4hBwCQs9ZMGih8qAEClq9IQIM+IxMUUgbdXBHm1EHB4eMj09/VR0B2A0erqTEDwNI4NWq8XBwYFvKX6/bZtCXec/Xxdp9JcQdyNcuDBgIvHwGgnDMNjd3SWRSDz2lMoxnnw8cZqBO5GNB3l+OcHchMK5OZUP9jQQRRBlMukUF5dT97RVHVou27u7HOxtUmu0aR2vM9Sq9F2JIQES1MmLxwTFof87UxMp/tf/4b/l8mqWF9eSXFlLnije5Vafq0cmi/kMlqjywvl5FvKjLoC3M7y4uHjXac+La73T8U2SJG7evIkgCMzOzvpJZZ7I7VHjzm0Db5/es9W1bftzb9ezPZZl2Rc3hsNhIpEI0WiUeDxOIpEglUqRTqeZmpri9NoqQjhDzwkhOxpKv8jh/h5Xr16lXC4TiUQ4ffo00WjUH8FUKhX6/b5/O1817kwmvJdzoTf/73Q6vtbCWzns9Xpks1kODg6o1DsISoqALKGGQ/5jVBTFX3XsdDpYlkWj0fCtjB8W7Xabd999F9OCjhXmuJ+lTQqLADFBQxQcBNfFdMMMBIUIOhNyg7nJBNbARJZlTp06Rb1eZzAY+K6TTwMCgQDxeJxKpUKn03ns+RifB13X2dnZIZFI+Hbi+Xz+nuT77U+PeHurSyYaoOeEWJ6KkM88HFHr9/tsbm6iKAqrq6tP9HMzxpOBJ54MACTVAKdmVFLRINcOutQ1CyUocWUtwQsrybuK7CjlsMLf/ux9Pi6IbFZdCmaCMjmaTNMnQocMbTeO7AwJCQPWVpf4q7/6K6JqmEw8SCYevOt6vYyERtdmKjWyRg7KIt2exYfX95jIpMlmHu4NdfNmma2Syfxsnmg4wD99UubXOyLpVIK57KNvmXsrdp5J0e0EwFM3P+q2q2cnfXYxzXMrKVLxiJ+LUK/X2d/f59q1azQaDRKJBCsrKwQCAdrtth8Z/HWJDiORyAlxoSAIJ8SFsiwTi8VG+ohyHd0KMpefYdjv0ev1EAMRfvb7Mm9dL3NcM0iFhrQaNb/j02w2/ewHy7Lo9/vs7OxQq9XQdZ1arebnHVSrVZ8YVSoVSqUSR0dHfgfjvffeo1Cus2dkKQ3TdEmiojEQFKKiToAhouAQwkQWLJJCA0Wy/TXZTqfDuXPnCAQClEolUqnUUzWDDwQCxGIxyuUymqb5GR1PGkzTZGtri3A4zMrKiv83MDs7e9dlXddlY/0626U+diBOPhPh+89NPNA40INlWWxtbSEIAmtra0/VGGWMxwfB9TwvnxJU2wPWjzTikQCr0+o9XySHtR5/916FT67eYFeLYCHBrbRCb8XwD7C4Mt3nf/urPyYa/vwXjW7aJ1r+umnzn98r8s5HGyQVl+dmLJTAHzwCRFFEFEX/a0mS/O91TPi/39Wpdiyi8oCpUIMPtCW4laf4w6UGl5ciZDIZcrkcyWTykbZyvbFBOBxmcXGRra0totEoy8vLj+w27ne7h4eHvvPh0dER1WoVXdcZDocEAgEmJydZWVlhYmLC37d2XZdEIkE2m73vOuSjguu6vrgwGo3eJS7cPSjwH//LFsfNARPJKC/MWrTK+1S7LhvtFHavCaEE/+qMQi4m0uqaZKYWSUcDREKi76y3sLCAYRg0Gg1CoZC/lTAcDhkOh1iWxWAw8D8H/Md97do1ql2X3d4kAXdIgzRhoUcUjWnxGFmwsFyZY3sOHRUVnbnAEa+/+iK2bbO3t8frr7/OuXPnuHr1KqqqfuX/918Fut2u/7frOfg9KfB0RaIocvr0aWRZ9gv16urqXZdvNpv88pe/xJajrDzzKstT6kONCBzHYWtrC9M0OXPmzBO/NjrGk4OnjjJOJIJMJD5bEZuOBklFAzhqHkvrMCIC9/NilzEDKZr68IHIwJ3z+kZ3QL1rszafo9Luo8QE0hHHn607juOL9bzPHWf08+2aQKevEMCkMwhiDBKACDi4iPzLXg/96PcnbG+9GN1AIOBH43qtx2w264cMPcgJOpfLEY1G2d3dZWNjg1gsRrPZRNf1r9Q9MJfL+fa5mUyGK1euUCqV/BOTpmnUajWOj48JBAJMTU2xvLxMNBql1Wqxs7PjWw1ns9mvZNb9eeLCQCTFUE5Sbh5w0IDDwwYXMzrhUIiplEItkEMctrF7JlZijl9v9RhsHvDM8hT/zXfmmZmZYTgcYhgGExMTBINBDg8PuXHjhp+rIIqi79EQCoVQFMX3m6hUKqyvrxMSeyj0MIUwGbdGnCayYPuPo+eGqTGBi0SPCGmnjm3bLCwssL+/z/b2NmfPnmV6epr9/X0/1vppQjQa9bMMdnd3T2R4PE7Yts329jau6/ondNd10XWdycnJe/7O/v4+pmny0ksXOXP64bqMruuyt7eHYRicOnVqTATGeCg8dWTgQaAqEi+sxNkt6QzMHsctcBEQsYigYRDBIgiIiAKkY8ETQsGHQToaZDIZotyK8+xaiO9cfvCW3nPtAcW/v0mplWQyGeLFlQj/x88LWI6IJMCfXp5lMhjxC7Rpmv4psdfrYRgG9Xqdw8PDZd3UIQAAIABJREFUE9frdSQkSSIQCPj2u7FYjHQ6zeTkJHNzc6RSKSKRCGfPnmV/f59GozFSzO8ekJ1efOBthS+CbDaLKIrs7e1h2zbLy8v0er1R+mQk4q9TFYtFSqUSh4eHBINBpqenmZubIxwOU6vVKJfLRKNRMpnMA5Ogh8H9xIXpaJCZXIrrh13C/TZDN4BhSWB3CJqfkHECBFyTgwOBtw5kir0EitDno/Uj+qVPmEpIPonx2t0XLlygXq+j6zrJZJKlpaX7nnI3Njbo9/tYZpdp0WRAENG1qbpTmG6YoNMnLdbpOwEGKNhIiDgMnACVSoVXX32VRCLhq80XFxf9lU8vNvdpQiwWY2VlhZ2dHfb29h7JpsaXgeu67O7uYprmCZOkfr+Pbdv3JNuGYbC3t0ckEvlCHZqjoyNarRYrKytPhBX4GE8XvpFkACCfCXNmNkZUkbngOEwkFMyBzdB2UUMSH93UKNRNJpIB/upPZr9w0VMV6b7bAp+HiUSQ/+VHi+xVDJZykVHXIxnh19cavHE+zStn7l5xg9EbjZcdoGkajUaDcrlMs9lE0zR6vZ5vLNTv9+n1er5R0p3wxhaed8DAETkaTDI5b3J2eYofXM59ZYQgnU4jiiK7u7tsb2+zsrLC6uoqhmFQKBRot9tMT09z6dIlNE1je3ubYrHI/v4+iqIwPT3tn7D29/c5PDwknU6TyWQeiWObB8+5MB6Pc3Bw4DsX/ruXRi39vaMSvfohcUXgO6+8gSzLfPTRR5TLZWq6QKdvEcDAEMJE3S6KOECSRjqEdrvN9vY2586dG9laz81Rq9X8LsHy8vJdJ/VWq+WHKMFoE0bGwiCC6YYJuEPqZDFcFQkLBwEbCReRupulo3f9WOzj42O2t7dZWlpienqamzdv+oZKTxsSiQTLy8vs7Oz4eRKPixB4bn+rq6snnstutwtwz2Lt+XNcvHjxoUWz5XKZSqXC/Pz82FRojC+Ep04z8DC413zf+9ro2yeK8DcZtm374rRCoUCtVqPdbmMYBv1+n8Fg4K8Gdm2FI3uOuVycgaDw+mqAs4sTZDIZ31f/Ub/BdjoddnZ2UFWVlZUV/3R/OykIhUJMT08Ti8X89nalUmE4HBIOh5mamiKTySAIApZl+c6H6XT6kYri+v0+e3t76LrOzMwMseQETX1Is3zIu2//BsuyeOWVV1hbW+OXv/wlpVqLjWaUhiERkh3mAscoQh/A79rYtk0sFvMzIWZmZsjlcn4g0tzc3ImAo3fffZe33noLTdNO3DfLlSk6eTQ3Rp8IKWp0iaIRxyaAiEWcDs/melxaTrM0P8PVq1eRZZnXX3+dyclJrl275ivQn1Z4xk7ZbJaFhYWv/fY9463FxcW7TH729/fRdZ1z586d+L5lWbz55pu0223+/M///KHIbLPZZHd3l6mpKfL5/CN5DGN8+/CNJgNjPDx00+b/+c0ulc4QhR6rsSbOsIfjOP76YCqVIhqNEolEUFX1kcwmu90u29vbfiG6XQF9L1KQTqcZDAbs7u6yu7vrr0ZGIpETroaiKPqiw3g8/kiIzJ3iwqWlJYLBIIVCgTfffJNut8vs7CzT09McHx9TqbfpDkSSqsTKQp5qtYosy7RaLQzDwDTNEyJTL7Z6amqKZDKJKIpMTEywsLCAZVn87d/+LeVymd7AZUCQIAMAf1QwJEjDzWK6Cn3CDAgyIEiAATI2YQzW8jH+9FKGSvGQ4XDI9PQ0r7/+ul9Iz5w581S3muv1Ojdv3iSXy32tO/bVapWDgwPy+fw9TX6uX7+Oqqp3kZRCocCvfvUrlpeXef311x/49jRNY2tri1Qq9Vg7IWM8/RiTgTHuwu0dlEhIpNvt+t4E3W7XN0UKBAKEw2E/28AjB5FI5At5A+i6ztbWFsFgkLW1tbtO9PcjBYIg0Ov12N3dZWdnh0aj4RODdDpNLBbzBZee6PBRERhP8+CJC6vVKj/96U/RNI1nnnmGfD7P7373OxRFwbIsFhcXCQaD1Ot1ZmZmcF3X79QEg0E0TUPXdX+27JEDRVGYnJxECkb4l4/Xsfq9kT6AMEH64OI7D06LxwC03QR1d5Kga6ITwwZMIoQxiYdc/mhNIhcTsSwLy7L47ne/Szwe5/r16/7/wdMMrzBPTk7ec43vUcMb+UxMTNzTQti2bT766CMWFhZOGJO5rsuvf/1rjo6O+P73v//AMde9Xo+NjQ0ikQhra2tjIjDGl8JT4TMwxteL202SvICiZDJJPp8nl8sRi8WQZRnHcRgOR6ZNlmWh6zqNRoNKpUKtVkPTNPr9Pq7r+tqEz7zdYJBEIkG1WqXZbN4VRhMIBEin0ySTST/1rdFoIEkSsViMXC7H6dOn/Tltt9v19/W9KOput+sLJYEvNfbwPBtM06RYLI5yAm5ZPtu27esL4vE4pmn6j8UzZ9J1nWAwSCAQwDRN5ufn+c53vsPi4iLpdJpwOIwgCPT7fTRN46hY5f1DgZqVouuOxjgKJgYqA4JEhB59FFShi4SNi8iQIAMhjIgNuMiAiYLitEm6ZaIRxb9fw+HQN8Ipl8vE4/GnOh1QVVUkSfLDqO4VCPSooOs629vbJBKJ+57Qvb+9fD5/gui2220++OADstksFy9efKDbGw6HbG5uEggEWFtbe6LWKcd4OjEmA2M8FILBIPF4nFwuRyaTIRwO+4mIwInugGVZtFotX/XvKeUHgwGu6yLL8l1vYoFAwE+nq9fr98yv/yxSEA6HCYVCTE5Ocvr0aZaWlgiFQui67l9np9Px45hbrRbD4fALOx16zoWCIPDpp5+iaRoXLlzg0qVLfqvadV2/+GezWTqdDtFolFAoRDweRxRFer0epVLJJ06DwcDXc3idAZMwJTM2itsmSECwGBK4lUMw9DsDUTTK7gwt0riugIWMg4hDAJk+UbrkxQPs/sgFUZZlstks1WqVxcVFotGov+b5tAfbePkfhUIBURQfqbDUw52mQvcrzI1GA8Mw7ooU//TTTymVSrzwwgsPJP6zbZvNzU0cx3lqw5rGePIwHhOM8UgwGAz84uoJ26LRKIlEgnA47IsYDcPAMAw/8EhRlBMjhnA47Mf/3v6G91leAp81PvDgui6NRoPd3V0ODg7odDq4rkswGCQWi5FMJslms0xMTDy0C6NpmmxubmLbNrIsMxgMmJmZIZlM8tOf/pRKpeKTjeXlZX+s4UViR6NRjo6OODo6wnVdX/fgeUZks1mi0Sg/+U9/z69v6KPRgNsnIbSQBNvP1/D0AwOCHDmL4Np0SGMjIjPAQiJBk1nhkKhk+Pc/pCZYPXsJ22xz7tQyzz77rC9K82yin3Z4or65uTlyudwju97hcMjGxgaCIPimQvfD7Z4DHkzT5O/+7u8IBAL8+Mc//twTvuu6bG9vo+s6p0+ffuo8IcZ4cjEmA2M8cngdgVar5RfdcDhMKpXyXRRN0/TJga7r9Ho9XNdFEAQ/6yAYDFIqlRAEgVOnTn3uutuDkALADxfa3d3l6OgITdNwHMcnBul02lf0x2Kxzxwj9Ho9Njc3fZ9/WZZ9ceHtJlPvvPMO7a5JZnqRaBAMrcFwOCQYDBIMBsnlcpimSafTIRwO+6uTyWQSx3Eol8u8/e7vaZgKphuih4olBE5oBDwBoe7E2GcZkxACAjImOkk8902FLmf5hISs+RsIQjjNSj7FWrzDv/uz7yOKIjdu3GDoSKSn5r9Sz4mvC0dHR5TLZebn5x94Lv9Z8E7ow+GQ06dPf64O5eOPP2ZiYoKZmRn/exsbG7z11lu8/PLLd20Y3As3b96k0Wiwtrb2lY49xvj2YTwmGOORw3POS6fT5HI5f2TgiRAbjQau6xKLxfzT+OTkJMlk0j/p6LpOs9nEsixKpRIHBwc+WfBsne8s0vcbH3htdu/yoiiiqiqzs7OcOnWK6elpJEmi1+vRbrf9FcxisUiz2UQQBBRFucvQyIs0DoVCfrtWEARUVcV1Xa5evcrx8fFo7m8LbLRiHHRCaAOJZHCAJLi+TiKVSjE3N+cLH70QI+9xfXJtg+uNBMfuLG3SmEQIYmLdGg3U3BwNN0fJnaZKji5RbCQcBAQEbP4wArEI0iJJ0q3jCBJNN4siDtCtAKpokI6FiEaj3Dws8g+fttitS5RaAxYmwnfldTxNiMfjWJZFsVj03Tu/KDxTIc/t7/NO6KZpUi6XmZqa8rtctm3z9ttvIwgCr7322ucaZhUKBT/IbOwlMMajxrgzMMbXBsdx0DTN7xpYluVrBJLJ5F2ncNu2MQzDX5/SNI1UKuUX5tv1CXcmDMLdnYKZmRl/vn8vDAYDKpUKu7u7FItFf3MiGAySSqWYnZ0dbQOE4xxX2zTLB6TiET8/odVq0W630TTNDyXy7qcUneSTqkq3UcCwZP7tc2liskmtViMcDjMxMcGZM2fodDrUajWWlpbY2tpic3MTXdc5bgzY7M3QtcPYSFgEkLCIoDPNISVmcRDQiWEBNrcXuiFw51zZYYIiK+IWVXcKQUkRCThMhjokVZmllVNU623WmyrPnlqg0R3y5y/mvpLwrK8TrutycHBArVZjeXn5Cyc17u/vU6/XWV1dJR6Pf+7lPf3IxYsX/VHC8fExb775Js8++yxXrlz5zN+v1Wrs7+/fd2VxjDG+LMZkYIzHAs+jvdls0mq1GAwGSJLkEwNPWOfBcRy2t7fpdDpMT08jiqI/YvA2Gu5ccVRVFVmWH5oUwOgkVyqV2Nvb81PxXNcFWeGwP0lVs0iH4eKMReBWFoCiKCQSCZLJJJFIhHK5zLlz50bK7519fn8ooNtBOtV95pUqZ9eW6Pf7NJvNE52KGzduMDk5ia7rXL16lZ2dHcyhy6GzyGF/AgsJEZsM1Vsnf5cq0zhIuDi3HsHts2vn1sft33MJobPINhEMGmTRiRGURSxXZnVhgkQIMpkMpi0zmQzxg4ew2n6S4bouN2/epNlssry8/NCn7M8yFbofDg4O0DSN8+fP+/fhV7/6FaVSib/4i7/4TF3G560sjjHGo8A31o54jCcbXjRwNBplbm7OX8trNpvU63VEUSQej/vkQJIkVldX2d3dpVwu+/a5MBJx3a4/qFQq2PaoQAeDQVRV9df5Wq0We3t7FItFpqen70sKFEVhcXGRxcVFdF33icHmYZNye4BrtiiYEVKCxrOrU5w+fdoPGPJW84LBoK9mvxyNooR3KTd05i+eZuN6n62tLebm5lBVFU3TKBQKxGIxEokEH374ITCyQlZVFbnfJ6HXKJBAQsRCYohMGBONBA4iLi6jxEvz1hLh7biziLv0UThgBQeBPgogErT6KBIYWheXFH96Kutnd3wTiADgWxV7rf4HPd3D6IReLBbJ5/MPtWlxZ/hXu932BY2fRQQMw2B3d5dEIvG1mieN8e3DuDMwxhMH0zT9truu6wiC4Cv+E4kER0dHNJvNzzyZ9fv9EwTh9g0GQRAwDAPLsojFYiwsLPhWxp8F13Wp1Nv85K0Ddo8aCP0mU2IBWbB8QyPPNbDVahEKhXxhmZcnUSgUKJfLBAIBDg8PqdVqxONxHMeh3+/7BaPRaJBKpfycCVmW2S712LbP4L1g54Q9wuhsus/QIeHdS0QcHBxGBEBkFN19r0JuEcL0icBIYOgSpouMw/xsnlfPZvjxi5PfGCJwO1zXZWdnh06n80CCvGKlwcc3dlnKZzm9uvjAt+M4Dh9++OEJ4eLbb7/NxsYGP/zhD++73dDv90fJlLc0KWMvgTG+SozJwBhPNO61sqiqKoZhMBgMmJ5dQlTin3tydV0X0zRPkANvRNHr9VBVdZQ1kJpg6IaYzsaIhmU/itq2bSzLwrZtNGNAtd1HtHTajTKHh4c0Gg36/b6/DQEjkxtPpOZtDXjEoNPpAPhBU4qi+OuXkUiEubk5TNOk0WgQDMfYLzYx9Q5ldwYDlQg6k0IBnShlZxoDFR0VEZAY4t4iAS4CFgojQnA32ZHoYyMy0hS4CDgkBI2AEuHfXFmiP3S+EVqB+8FxHHZ2duh2u6ytrd33lH71xhZ/+w8bhOLTPLM281ABXpqmsbm5yblz5wiHw/T7fX7yk58Qi8X4sz/7s3v+jmVZbGxs4LouZ86ceahV1zHG+CIY/4WN8UTDW7vL5XJYlkW73abVagFQa2q8+emnmESYSoZ4dTVILBzwExg9nns73/U+l2WZTCZDLBaj1WpRr9f5lw8+ZbMdQ7dDxEM2F6eGJKMKoVCIUCiELMsnuweSRCqVIp1OY5ojMWCpVKLVamGaJpY16hjMzs6STCZ9EyFRFInFYnS7XX+N8vDw0P+ZtxXx4SfXaQ8USq0QjW4GhQiTQoEhIWxXpOzO0CeMjUyQPgNGKvWhvzkg3BodDLn3S9251Q8Y3vInHBW3SEQhmcpQ6wxYnVa/cLz30wBRFFlZWWFra4vt7W3W1tbuymSwLIu//+VvKLZTnM/YlFsDGt0BqvJgBEnXdURR9LcItra26PV6vPzyy/e8vKePsSxrTATG+Now/isb46mBV8AzmQyO4xC6WeX31SMilsZhZcC6YJIO235AUSAQIBAYkQPvc+9DkiRf6R+JRJiZmeGg2mPvmk4Og6buoplDBLvtWzKHw2ESiQSZTIZkMnnPkCbLslhfX2d9fR3TNKlUKpTLZaLRKMvLy5w5c4ZIJIKu6+i6Trlc5ujoiMFgwHA49D0Y3n3/I3a7aVpugk5fIkmVvhBhSIiWmzqRTIgAYVfDIoSNyBAJAW7FF0u4cEtW6IkLhVv/juSGIiICIDJEBHp2kNfmo3zvQoZ8JvyNHBHcDlEUWV1dZWtri62trbs8LX7+859jm23OLJ1B6wtMKc5DESRPLyAIAo7jsL6+TiwWY3Fx8a7Luq7L3t4evV6PU6dOPZIMjTHGeBCMycAYTyVEUWRxJsv5VZdyq8/ZZIjvXUgSEGz/BH67pe/tMc1eToDXtvda+KfUBEVTp6bZnEkpvHFWBbtPt9ul2WzS6XSo1+u+130wGPQJQiqVIpFI+H74ly9fZnZ2llqtxo0bNzg4OOCjjz7i008/JZVKcebMGabyC1S0ImIgzOLiIoPBwN9c0CyFliWjOzYmYVpijkmxAo6LSZgIPUxUOiRRXIMIPVLU0IjRR8YmiI1MGJ0hQSxGJ38BBwHLfx5lLCyCiFgIjGbSEdni8syQU/mn33nwQSFJEmtra2xubvqEIBwOc3h4yMbGBvnJLP/+37/CB1c3iQQMIqEHn993u10/mOj4+JhWq8WVK1fuqQE4Ojqi1WqxsrLyVKdGjvH0YawZGOOpxu0Ji593gh0Oh3eRhNvJguM4mEMXrQ/JiERcDZ0gDJ4HvGVZvuag3W7T6/X8bAZJkuh0OszNzTE/P+93ECzLolAocO3aNYrFIpox5EZDHRV20eRUQkMJ/GEzom8J7NtLNMgSpE8Aizlxj7DQo+jk6aHSc0fxxENkFPokaGISokWWUSiRxRzbVJlFIw64RNHoE0RhiEYUAZsQA4bIuMgkw5BPBTif1vjOK1eYzSW/8Z2B22FZFpubm1iWxalTp/ibv/kbdF3nr//6r0kmk3S7XTY2Nh7Yo6Df73P16lVWV1dJJBL87Gc/o16v85d/+Zd3+WJ4XaJH5ZA4xhgPg3FnYIynGqoiPfDs1hsR3O/EZVnWPUlCp9PxyYIHURR9PYDX/u33+1SrVTqdjq9D8PIPVFUlmUz6BjNXd0p89OYmIUwMR6HarhCVTL9LAQPy7gGuDUvFD7m8/wtSRpmummFr8WVuTL1KH5mR8E/CRsRAxUG4tU0gIOEgIqDQxSCMhIOKBsQxCBPBAFwGKAwJIGLT7susKCo3yhpbP7/BC8+ufmP8BR4Esiz7HYKf/OQndDodXnrpJd+LwFtRLRQKJJPJz91A8dIxVVWl2WxSKpU4derUXUSg0WhwdHTE1NTUmAiM8VgwJgNjjHELsiz7xkX3wu1k4c7uQr/fx3Ecf11xenraXyfs9XoYhkGj0cC2bURRxJVCnFnKcWOvjEKPkHCrM2GaiKI4ui9Di3/9yf/F+YPf3iryLhGjzVR1G2W5wS/O/48IuAi3jIejjLYtLAI4SAQYUGUKjeQttYCNQYQhMs6t3wxjoAgDam4WFxHLgWJDByHB8wtJyq3+Q4nlvgkIBALE43EODw+JRCK88sorJ34+MzPD+vo6zWaTdDr9mdel67ovPv30008RBIELFy6cuIymady8edPPxBhjjMeBMRkYY4wHxIOQhY8//hhFUchms3cRB8uyGAwGGIZBr9djKVJHSHXotStIWH6ks3e5VPWY8we/BUC85S4g3irrV3Z/xkfT36OVniHHNkFxSIA+Q0Kk3DpDgtTdCb/4i7fEgj1GowkBBwOBMDpSMIxqiyihILppkc/FaZsiXSvI6kToG71NcC+4rssvfvELZFnm8uXLvobAGxOpqkoikaBQKHyuk2W320VVVUzT5ObNm0xPT58wOOr1euzs7BCNRllcXPzcTsMYY3xVGJOBMcZ4RPBcD/P5/D0tbr0ifztJuKzr/P3P/4Fqu0fIGhCLyMRiMer1OssH7+MIIqLr3HVdtiDx/NEv+K/p/56w1CPIgKKTxySMQo8JoYRGgo6bQKGHA0TQ6aEyohbSre4AWJZNJuoQEAdYFuwUuyxNp/jB5QlWp9VvzYjAw29+8xuazSaXLl3iypUrbGxs+ITAW/ObmZnhxo0bNBqN+xpfOY5Dr9cjm81y/fp1BoPBia7AcDhk+/9v785i7LzPPL9/3/09+1o7WVVkFYuUKFvUYrnl3R673V562tNBMkGQycxVkJsEQe5yFd/lYi4yyAAJBskgmWxAkulJt6fbhttur9LIskxJlrkXq0jWXnX2/d3/uTjksWRJlixSokQ+H6AueMA6rHMOUe/v/f+f//Ncv45t26ysrEgQEPeVtLQS4h45rHeo9RW69eZpeHfqdO8cebxzVNFO54mq59hnif3kGF6oftu8yOu+ZRAA0FVMzm+S1obYBATYeKRw8BmRYUCWaXapUCNPiyo1StSJsPjt0cKEIXn8WCPRTE7P6hwvJDyxnGG6YFPOWQ9dEKjX67z88svk83m+8pWvTLr/hWHI+vr6JPCl02mKxSJ7e3u8XQ32cDicjO++du3aG7YB4jhmfX0dpRSrq6vvOLFQiPebrAwIcQ8MvJi/+dUh27WQ7f4Gz540sfRxDcGdr7dSH2g0ejFZO6Hnp/ASG4bjoUid/CzlxvZbBgKlafj5PHP6LqYWESUGBjFDlSbEoq6mSWtDFvQtQmyaqkpXVW53Gxw/n0Vw+6ihhutYfPnZU6zvDzls+8wUH87tge985zskScI3vvGNyZ2667pvOHZ46tQpDMNgfn6eS5cu0Wg0JkcHX+9Os6HDw0P6/T6f+cxnJv/O5uYmQRBw+vTpNxUTCnE/SBgQ4h5o9gMOOwEZK+Kg5dEepjhWcSeDi97qyzAMrl6/ycJBTL9whub+JnpoUPNKmEnA84vf4sTmL9/USFgxnkDwyuIfk8MjUiY1NUuoTMbdBKJJMEj0cUgIlIONh0mCun3aoKx1sdUQT0tzLD1gedphdS7zro9qPmief/556vU6jz766JuGAqXTaU6dOvWGToWpVIpSqcT+/j7lcvlNfQP6/T7pdJoLFy6QSqVYW1sDxuOPe73e5DmE+DCQMCDEPVBMmxTchNiYYnmuyBNn3/k4XqvVYtBt8g8+tYjm5HnhhSb/z0sWA9Lj1sC5mP/vyf+Kb73yz9BVMqkfiHWTv336P6OePobDFgAeKVKax0ClCHAZkMNlhK5iTC3GZcRIy5BVPQJsQOFqHjPaDiE2hhdw5UaNx1bnHtg5BL9Pq9XipZdeIpvN8tWvfvUt/04mk5l0KtzY2GBlZYX5+XkuXrxIo9F405HAOysDtVqNxx9/HF3X2dvbo9FocOLEiXccjCTEB0nCgBD3gKlFPLOoUZ2feleNenzf59atW5RKJZaOzYwHIVklehi3DwqaQMILC3+fy9U/4vM7/5p57wbDdIlfLXyVtjONy7hwUNPAZYRHCpsQjRFZuiSaSaIZuFbMqtPGTGns1Q7YjedJMyJQFqFm00yq3Dgqcf0HO3y5qT+wUwrfTm8Y8n/+m+8zChXf+MaXJ6cG3ko2m50Egs3NTVZWViiXy+zv71OpVCarA3faS+/v72OaJo899tgbxh+/05FEIT5oEgaEuAd838e1NE7O5bGs338hvdN/3jAMlpaWaDab48mH9SNi0iS/M26475T5u5V/xGn9Ejm9S0l1yeBhE2Bq4yOJx/R9fGVjELMTztMjj6vGKwPjmoUO4ahHJZWmN+wzUi4uI0BjpGexbIcoTtg86NPslx6avgIDL+Zf/OV5LuxaHJ96lIXFlXf8nlwux8rKChsbG9y4cYO5uTmazSb1en0yjngwGOD7PkdHRywtLREEAbdu3WJqaorZ2dn3+2UJ8QeTMCDEPXCnWdDvu6u8Y3d3l+FwyNLSEhsbG5MRzYe7m6Q4QUCKEAODBIWBToxGArd7DZhahPm6+QJxHOPaBnlbYxin6IZF+uQYkMVOQhaNLXQVEsQ6wSihyj6JbqCrGE+lsfQYzXHQgEoqfqgKB//dxV1euNIkp0ckVpGXfn2FtePjORPpdPptj/sVCgVOnjzJ5uYmmqZNVgeq1Sq6rtPv9zk8PCRJEk6fPs3m5ibFYvFNtQhCfFhIGBDiHvB9fzKi9vfpdDocHBzgOA63bt0ijmNarRbXrl1D97tMk6FHFpuQIk3alPGwSeNhEbzlc2qaNpl4GBlVfFLj5kSaRY8iHdXFZcRePEeiW6QYUlX7HKp56mqaKDY45cR8ds1lsRL8QUN4Psqu7PT5Z3+1iacKDCjysWKWat7m6Ohosryfz+cpFArk8/k3jRIuFoucOHGCzc1NCoUCURRRq9WYmZmh3+9Tr9eZmpqi0WiQSqU4ceKE9BL4rmriAAAgAElEQVQQH1oSBoS4BzzPe8dxs2EYcvnyZfr9PsViEcdx2N3dnVSXG0QsGNsE2JMtgHzSYU8tEmFRU7PMqfFRwtdLkgTDMBgMBmRzPVJajp7KYRtg6Q5t7Tj90MDDpmDGJGYKzUjo9PIMyKDQ2agrnlwY0jIUl24csTxffaDrBgZezL/8/jojZY9HPScGhzvXeS0YksvlSKfTOI7DaDSiVqthGMak82ChUCCVSqFpGqVSieXlZW7evEkcxxwcHFAul9nY2CAMQwqFAoZhsLq6+pZTCoX4sJAwIMQ94Pv+760O932fF198kVarxcrKeF/68uXLHB0d4fs+YRgCb94CSDSDWBnj0wBk6KgCBToABNi4eoiuxt9rWRajziGPWB2GRgXNdOhSZvXEMr9a7zLlQM9LSMeH5NMJul9ABRYaigTFIDR4ZTfiUr/H8QP1QA8oavYDgtEAk5hEc8jZMWvT44t1vV4nDMPJHAnTNCcDpO4MuiqVSkxPT1MoFCgWiywuLrK5uUm9XmdnZ4e9vT1M06RcLnPq1Kk3rSoI8WEj/0OFuEtxHBOG4VuuDCilODo64tKlS3S7Xc6cOcNwOOTSpUt0Op3JIKO3kzZjUqHHUKXxlU1dTdMnDxoEOKSUx6y2g5bEaJo2/ooDypmQjAubvR7bu0dkLJN8KsXHThbIdfcI4ix5L6Qb2USJgWUkHJutcKvrMFWwH/gBReWsTVbvMW2GHFtc4s+eLrNYXp60ix4Oh3S7XXq9Hv1+H8/zGAwGRFE06UJ4p0YklUpRqVQoFouMRiOee+EldpsBj546zurq6juuGAnxYSBhQIi75Ps+wJtqBvr9PltbW7RaLaIoYnl5mUajwfr6Op7nTaYU3rm4/K5xMWLCnL5DOylQV9OkNI++yqABGQaMlEtsprEZX7BiTA7UPH4vTcZTrM5YxFGL6wNFaE1Rzk2T1TKcPHmSYB361/vYJthJl94gTSWfo9ELH/gOhBnXYMmtkc55/Of/wZ+Qz7z5td6ZOvn6YVODwYBGo0G9Xp+EhXa7zdHREVEUMfST2zMiplgpPAbGO9eRCPFhIGFAiLt0JwzcuQOMoojd3V3q9fpkfK1lWdTrdba3tydbAsPh8G3bFMM4DARBgKUnFFSHoZbFI0WGAYahM4odXEZYaoRpmQRBgIdFbOZxtZB9L4dX06jmTEIGpMIGN/dyzJsalWHCn392hXT2kL2jLvu1FDfaFifT8JXHqyxU3Ad2i+CO2B9QzehvGQRgXJh5Z3tg8j1xzOzsLMPhkE6nw+HhITdv3mRvb28cGkhPZkQ0BzzQqyviwSJhQIi75HkehmFgmiaNRoOdnR2UUlRnjrGxfUjrsE7K1jg4OJgs5fd64/kDb7cq4LrupPJc13XMJGLB3MNLLGwCXMeh6ylsAnQVAeMLlo2PpQb4+rg9rpN06Y3yzFaLNDs9vF6NS75ifTDkCb/Fn//RPDeOijx/ucVcyaHRC0k5+gMfBGAc4t6u+Y9S44FRo9GI0WjEYDCg0+nQ6/UYDAY0m0263S79fp8wDEmS8bwHm2DSAOrg1mXKX13+AF+REO+dhAEh7lK7N6I+gFd/c4U4GFAulylNzfFvntvitWs18rbJvLlP1rWJooh2u42maQTB2x8VtG0bpRS6rmMYBnEc45hgRCOUUtiGTdbwCGKdoUoTBwGmpmHriplki1C1ma6s0Oo7lO2AtdyAvg2NUczmsEDRNvnl9Q5Pr+Y5ezzHVs17qAYUxXHMMEjImUU6Ax8t/u2FfzQaMRwO8TwP3/eJoogwDBkMBnS7XQaDAWEYTrYQAAzDoFKp0Gg0mIt2xydCWgGh9xlw3zzOWogPGwkDQtyFgRfzt6822WkMWZqBf/9zK8xUi2zXR/Qji6wdU+vFLM6XSOIOzWYT0zQZDAYEsc6AAn5ikte6uPp4uyGdTk+2CJRSkxUCwzDesK0QxDr7yQIjMpiELFq7uFqAqcXYdJjNNTGmCzQPtuh3LDYHFXoqi68sDNNiPHlXI+MafO3JqYdqQNH1rRrXvQV2D1y6f/MaTx9Tk1MZSZIQxzFKKTzPo9Pp0O128X1/sgIQRdF4C8eyOHHiBKdOneL5559HKYWpxZMTIa+88gpf/OIX79vrFOLdkjAgxF1o9gP0dIVT2Ry+cggY1w04WkD7YJNGL2Ku5KBHbRrNBqZpMhqN8CPY11fYCadR6GRVjzUukjbDN0yy03UdXdfRNO0N59TH+9M2IzL4yqFDAUKN09l99HB8OqF+uMPSksH8TJmbh32UXWAx7xI0DPIpncdPFFiojAvcMq7x0OxtD7yY777aoqWm0TE56ik6I8VswZmsAjQaDXq9HqPReCXmTgOidrvNYDAAYHp6mq9//eu4rst3v/tdYPx53QkMAOvr6zzyyCPSglh86EkYEOIulLM2c+UUh22dudJ4if3o6Iif//znzBlDzpxZYNg+pNOsYdv2pCpdc8r0vCwJOjoKjzQDslTT/uSir5TCMIxJnYFhGKjx7TxRFGEDJiEdCrj4xJqJMjOkLY3RaIRt2zSbTb7whS9gXtukvtml79mcLIacWzD40tNrD8UqwO9q9gPCxKCSMxhGFlnXIO+OGwa1222GwyGapmFZFsVikXQ6TaPR4PDwkCiKSKVSfOITn+DZZ58ljmO+//3vMxgMyGQyDIfDybYOjDtOXrhwgenpaWk6JD7UJAwIcRd+d4n9aH+LX/ziF8RxzCOnTrC9vU23VcM0TTRNo9/vY5omK8uzbF3u0CGNQsdhQE4fkMkU0HWdOI4nnQXvnG0fDodv+LdNLWJe20IpiDBJayO0aEC6kCGKosnRuBdeeIE//dM/JQye46B5k9PH5ul397lwrcjHz5x86AJBPqUzWzDoV7JEXo/p6BbXr47v9l3XpVqtYts2ruvSbrfZ2NiYFImura3xpS99iUqlAsCLL75IrVYjlUphGOP38c7nB0w6GG5tbbG8vHxfXq8Q74aEASHu0tCP2dwf8OLBJTq7V8ilLVZXV7l+/TqNxnhrwHEcdvZr+CrDx1aXadUPOKa1gJAmVarsUc3bOI5ze8pgxChICLCIg4RES2NHAaYGkTInLYtd3WdJuzH5M5GG5xnEmsUwsilY4wDy4x//mL//zW/yne98h83NTfbiBV5t1tgd5h7YToMDL56ENEuPabfbNBoNtre30eptqkFM2o7Jp2zS6Wls28YwjEkb4mvXrtHtdoHxlsCzzz7LI488MrnDX19fHz+XpjE1NcXOzs4kENw5PqqUIggCrl27xsLCwrsaZCXE/SBhQIi7UOsE/Hf/9ga/2WygkpDHpmf41tkKGxtXaTab6LpOLpfj1s4BO+EcRqbKrw8UudGITlLiJmuATpcy5fAqtNtEUYQXKnbCWUZkGSY2OiE53SMbt6gxjY9DgS5T+v7t3gN90KAXOQSDmKa+wCBysIIRx7MeW7tHfPe732VpaYnt+hXqg5gnl0sPbKfBgRfzvZePuHijSRh4PFZqYYStyXTJtOtSLeXIZDLA+KKdTqeJ45jLly9Tr9eJ45hsNssjjzzCM88884Z2061Wi4sXL44nRrouc3NzrK+vY9s2cRy/YavA93263S4bGxucOXPmvrwfQrwTCQNC3IUbR0N2mx5JEhHFGlf3Q/7Xv3kNNJh2FFPlHC9vBXh+ntgp4iifWw2TEjkO1RygAwmgc2M4RSnXxdR1Akx80uRzaY7aKSxCOkkRjVlCXDQS+uSpJVUUOjY+Nh5R7JCOPArFEtMFuHaYYtALKFlptJ1DlpaW+A///Jv8D3/xIheubXHm1El+td4mSWBp+sEJBM1+wI3DIVd2B7QGEet7Fn980mVxtojrupimOam/yGQyGIbBpUuX2NnZmUyAXFhY4KmnnmJ5efkN0wajKOKXv/wlURRhGAblcpnhcEgcx2QyGQaDAY7jTLZ1ut0u8/Pz3Lhxg+PHj08CiBAfJhIGhLgLJ6bTLJRd+sOI/tBnoFJci1cBuBkNcQYhHhk0ElxvQA2HAJsma2gEgGIcCBQqhhvDCgvGHkYc4DCiM0yjk5CgiG83FlJogEaIRYSJi0ePAglldBR9FRH3+oRGFdv2KZpDsEok5oBXfnOZT1cW+cfffIq/+N5z/N2rByRGmn/7qxr/zT889cAEgnLWxtB1hpGBYSg6kc6V7gxrS2AbiiDWCLUUc5UMNzeuTlpEW5bF3Nwca2trPP7442842XHHq6++ynA4xDRNdF1nfn6eq1evous6ruuOC0RfFx7uHEmM45j19XXOnTv3Qb4VQrwrxre//e1v3+8fQoiPqoxr8PGlPMWMxf5Rg74fEWGjoYgxSTBvX8x1NMZHzmJsYix0NDL0cOnj0iOjDQlxKTkBrh5QTkV8+ok19vf2iJT9uucy0FGYhLjERJqLdjsggEaCQZQAmknOtVAqxtYiDDvL1abLpe0BTqaMnS7wm92Qcs6hPYw4PuWyNv9g3LXaps582eXXN7s0+hEGGgrFUlkjm83zs5sWP77U5We/3mZQu4GjRxSLRU6cOMGnPvUpzpw585b7+7du3eLKlSsUCgUGgwFTU1MsLS1x/vz5ccdHx5kcLfQ8Dxj3LUin01QqFVqtFtVq9S1DhhD3k5x1EeIuTRVs/viJKc4u5dBJAIVCRwEmHgkGCQYjHEa4hJhwOyBk6bGmX8HWDNpUiY00pUKGdDrNTKXA4nQaU4tJmRHT2YSS0WPBbrCS71Olyeqcy+lpWMwNsfUEHYVOiEIjSRJSKZulqsnB0ObFwyK3RhUOOgk/fXUHZWWZKqTojiLKWYvHjr/9COaPoqXpFP/ki/McK6coOCHEIUMv4q9f7fHD37S52dLY9kr8xjtNcXqRT3ziE3z5y19mfn7+DXf2dxw1Ovz0xYukcyX6/T7ZbJZisUiSJAyHQ3K5HJqmTU6OvH6mQafTIZ1Oo+s6169ff0MvAiE+DGSbQIh7pJBL4zIkQhGSgdv7/hm6DMiRYPHbu3cNnZARabT8cTJRipyKCcOAo25MqIpohTJbR0NiPcVCTkfPpAgaB9wYlGnEWRQOcySUszrb/YApY4imBRzEFUJSNEcaOR+aeh6PCMPQiCKDuqfR8CP2BzWOV12+9mSVZ8+UH5gtgtd7bKnA3/u4x+aBw3zJZO24y/nDOoqI8WcxLrpsRTkee+yxyWmA33XY8vjv/+I1OqMU1YHLyXSXtZkS09PTbG5uAlAul2m325jmeGjUnS0DGB8x7Pf7lEolarUah4eHzM3NfSDvgRDvhoQBIe6BZj/AT2w+d26Zn131aI8SNGIUFrqZxokVI6UBBuOCQZMInRYpXu2UsU2dWCmyusHF7iwDMrza1zlZa0ESsD/MUzEi9kc5+iqLpVskccJBD3THIQkGtMISGjYxJiYeES75lIZpOUCMF40vdI5pYJgGtqnTHoScnMs8kEEAxts4f/bJGZr90mTmwuP7CTfrIa1BjEaEQczezWv8839+ic9+9rM89dRTb3iOgRfzL77zGhf2IjRNY7sd0KmUOH7MIp0v8/zFF7nlzZPz8kRBj0SzGcUhWFkiNcDUxl0Nm80mMzMz9Pt9NjY2qFarctRQfGhIzYAQ94Cp6+y3fEaxyfFqir1WQKJ08mmLL3x8DgwbkoRR8Ns70juFgwkGJMntKYaKAIcAkxiDpq/jJRbd0OVoqDNMbAwgTMalh8QhtmXRjTN4iYWpaYyUQ4KJAvwwwbQdShkD0zIoZkyyrkWiNJJEsTyV4mtPTj+QfQbusE2dQtrCNnVsU+fUXIa1uQxRHFPJWTx+zGHObdHrtFhfX+e1116jVCpNGgsdtn1+td6g0x/Sj2xQCe1hxOb2IT/45QbnG2WOohIXDxU7bY2DbsLWsMiADP3QJE0fnQTLspienqZQKFCr1XAch1KpdJ/fHSHGNHXnfI0Q4q68vsnNdn3ESxsdPrFS4Hg1xW7DYxRE/PRCnfMbPbpezMCL0QDH0tFQJHFAHPqYhk4/doEEhUJDwwA0w8TUIgwSCk5C11NoOqTdFK4R0PGg69kkQC6lE0YJpbSGYVpUcg5hrDANjXMncjyykCGIEs4cyzFVePCnFL6V139etpFw48YNfvKTn1Cr1QCoVqt861vfIluo8r2Xj7hwo8GVW028SGFGXQwiPJWiSw7tdoGiTUiZOj3yzDg9giBmXr9FWhtSLBb52Mc+xrFjx9jb26Pra5TmT3NmsfzQfgbiw0PCgBAfoIEXs9sYMQoS2v2ARj/kxEyav3utwfMX64RxxPFqhqEf0R3FdEYRGjpK03EtDddSOFrEbMHk8kFMnGhYhs6j8ya7XYUfQhCNDx9mUgYp22Cu6FLKWfzRqQIzRZuFSuqBXgm4G0mSsL6+zg9+8IPJqOmFhQU+/5U/5eUre6QsxYX9hK29OpYaECibq+0sMQY6EXl6uIwIschYMU7SZ4ZtTC0ik8mwurrK8vIyvnL5n350iEeaE7MF/otvLksgEPeV1AwI8QHKuAZrC9k3Pd4fxfxmq0c5naLvw3/8xSW26iP++peHaLoiijW+cLbEMFCU3Zjrhx6OFWAaOkqDL5xbYKvucWl7QKIUS1WXP36iyvmNLn0v5ljF5cmVgoSAd6DrOqdPn2ZtbY1Lly7xwx/+kJvb+7zwP/8NqdI8z3zsFP/JV6Z57aKiedgnkzaoXLnFbisiTZ+s3ifRDHQVkyQGSQIdrUBG9XHjmEajQS6X49dbQw47KdJmg4O2y42joYQBcV9JGBDiQ+DMsSyLlRQHbZ/ZosO5E3nOncizsT9kr+UxX3L59z41z0vXOxy2fT6+ksG0+hx1feZLLp9cK/HFjxnsNjxATe7+1+azk6VwCQLvnqZpnD17lrNnz/L9n57n/31+m2rOZqcxJEzgC588y4sv9mk2m5wsRzijXZLbdR/jLoQjRrHNhnoET6VwGXHau4LZbrO9vU1zr4OpVgm1HLNFhxPT6fv9ksVDTrYJhPiQqHUCbhwNOTGdntwl/u5jr9/nHvrxm/6+uPfGcw5qbOw0sBnyzadnOHVykV6vx3PPPUej0eDmzZuYponv+xSLReI4Zm+Y4Yp/AgcfD5fj+i1mnS6JmWG3n8bXspw5s8Y/+nsnH9jTHOKjQ8KAEEK8gzshLBq1aR7tUalUWFpaYn9/n5/85CdcvX6TxMyghX0MxkcQlZXjanSaTjA+PpilS4yFocV4ymGpELD26Dn+7JkZjlclDIj7S7YJhBDiHWRc4/ZkxxSFjMPNmzeJooiTJ0+yevosP7oS4EXj7YA5fXd87lPpPFE6YqMW0UpKaChGpCipBj4uOBVmi+6k/4EQ95O0IxZCiD9AuVxmdXWVXq/HtWvXmFo4iUfq9nZAipFKs58ssBXM0zXmqFh9Ykx65AGIMZmxW3z141m+9uSU1HKIDwUJA0II8QfK5/Osra3h+z6Ng1tkDR8fB5cRoPBIYSYj9lsjBrGNowWUaZCnw5R+wGqmwfGSIUFAfGhIGBBCiPcgk8lw+vRpHEOxmKpzzNhm3tglpY1wGeHjgNfGigfoKsLHIaUNKWgdTNPg6laDgRff75chBCBhQAgh3jPXdTl9+jS5lDXuMphLkXZ05vRdZrVdcnSpqTk6lOmTI1AWvSTLpU6ZH16J+ctf7EsgEB8KEgaEEOIu2LZNpVJB0zS6Ax9Py+IlNkfJLLvqGA2m8bEJsTlkjltqhe1gmv1OzA9f3mG3MbrfL0EIOU0ghBB3y3EcAly2wgWCwMYjRYiDjYdCI8YgwUCh4eMQYWIQ0Wq1+NnPf479mSfQ7DzVvCN1BOK+kDAghBB3KcLkVrBAkyoWIQEONgEBNhnaBFSJsYEEj/S4FwGQp8XFSzWeu9ggNAs8+/RZ/uFnjkkTKfGBkzAghBB36aAdMsLFJsDHxiLAIiBLlywdOpTRCFGYKDQSIEHDw2FHLdEjj4o0vvvSHpqm8U++tCgrBOIDJWFACCHuwsCLubDjEVIhYXy3DzoRBhYBKQboKBQ6t7sRkWDhYRJikMInwgQ0iCN+9sKreDd/xuefOcvUwgqHfY2ZgoOuIzMmxPtGwoAQQtyFX1/eZBRblKgzIEOCRY88LiM8XIakMfFIEzEky526bYVGhE0P+/afxo8nwNZ+m3/5V+c55IAAB8dxObdS4ZGlsjQqEu8LCQNCCPEedQcBP/jRT7GVTaA5WCqkTZkIkx4FdEK2OfmGEKARodAYrxIYgHb72UbEWLQo0aaMTkKETYoeXV9xfXMDxza5uO1y9nhOAoG4pyQMCCHEezDwYv7yFzusd3LYms8UBxwwi0cKhY4ioUOZCJvfXvATQMcgIkZ/3eOgcAGNcdcBE/P2SYQRGSxC+h68+OpVhoMBW7U5WSEQ95SEASGEeA+a/YDWUJFzFC0vRYjJgAI6EREWGooYk/EKwJ2WLgqDCIcRQ7IoFExWCe40HxrXFsTYWPgoEnQiPFx0Evb39+h0u1TtHivLx6SOQNwTMsJYCCHeg4EX872Xa5y/vMOrN9sEuCToaCRojNcAxhd2nfF4ooAKRwS4eGQAjREOdy7+Bgnj4kIDhx7qdi1BgoVOjIlPiItJTFr3KZg9StU5zp1Z5FvPHpdAIO6KrAwIIcR7kHENvvbkFKYW8+rN3uRxhYZ5+2ihT4Y7gSDGos3U7Y0AjTQDYBwaxuFBJ0uXHoXbPQnGjxoEJFgoDGw85rMhmpUljkxydsLlGweslCOePruMacqvdPHeSDtiIYR4jzKuwacfnWJpOnP7ER2dBIVOgs34V+z4cq/QCLFwCNGJKdLEYUiCQYgFgEcKGEeACBsDEwOoUGdFv8a0XsMLIio5h8fPLJKYObJWRG13k/Pnz1Ov15HFXvFeyDaBEELcpevbNf7b/+VH7IRTgEGEgcmIBIsIBwCdBAsfgwgXnyl2aVMhQadHkQINupQJXhcibGLmMyNW7JskoxaD0GArXgIrx+c/eZbPPlolrY9o1fc5ODggjmPm5uY4c+YMqVTqfr4l4iNG1pSEEOIuzVZLpBwdKwzxsNAJMVDEJLcnE8TY+CxzHU3T6KscPa1CpGzM242JQlIYRGQJGJDBwadEg1NOh7WVE9S7c9zabzDolTA1ix+dv0Uu2OHcqSny+Tyu63J4eMiNGzfY3t7m2PIqlZklqgVX6gnEOzK+/e1vf/t+/xBCCPFRdtjxOfSy6KM6vrIJY0WAg8ICYnQ0qlqdJfcQVEiHMrYKiLEoUcNAkWCiAQ4j8nQ4pt1ixjhk6AVc6pTx3HlSpWP4uNi2jVIJBXWIHvWxbZs4jjFNE9u2qTW7/PDXTc7f6DGMHZamUtim7AqLtycrA0IIcZfKWZtj1Qz93hw53+Pqdp9+ZOPjoAMOAU8v22STCnuHDZwgoK4qaGgMKJBoJll6eKSoaIcUtA6mFhEpk91kkWY/BVnQdVgsQt+HmRmXM9NT9Fo1tra2OH36NDMLS9TaHqmpU9yID5gtZzhs+zT7ARlXtg3E25OaASGEuAcGXsyN3Rp/+4Mf8tqhTY8Ko8jA1EJmrCbnpnrkMw6lUomXLu9zrV8lo4/wExtdBcQYuIyY03cBCLCJlclucpwRaUJsPraU5z/9xqP4voeZDAm9Pu12m93dXVq9ETvBDNnqIsemC6CgNQiZKTrSoEi8I1kZEEKIeyDjGizNVTjw8qDHPH1qCr27Qf1on7RjMRiOODY3RS6Xo+RuUxj28MhQdCNy/hYxBjYBkTLYU4tEWBgqZESaABuFxo1b2/zvf93lv/yPPkshUwUgDENOnz7Nry7c5MLLDU4WHFr9kK88XiXl6NKUSLwrUjMghBD3yFEnYLNpMF1wsNN5nj49zctXj6gFORKryNe/8BSzM1NsbqyjjWoU7IApZ4CthRiJj0JnO16mSRWFxoA8ASYGCQrI0aPR9bh59ddkSnP0PMi4FoV8hrnZGUIjR2uYMFN0eHKlQDVvS62AeFdkZUAIIe6Rctbm5HyRy5s+pajH7MwqdmGWgh4Rai4b20d8+snTLC8v02630bQhjunS9Q0GSYpYGUSajaUiRqTQb08w8EmhE+FjkVVDrtV0Xvo/zlOpVPnSEwv82TMzkyZIzX4gqwHiDyZhQAgh7pHxBXmac0tpjnauY4QtPvfMxzls+4za+0TDFvV6nXQ6TTabpd0bkS0sstv36SsNIwnwsAmwcAhwGNKhjEaMToKJIq+12FXHCZXOyAu4VRtNCgQzriGFguI9kTAghBD3UMY1WF0okDUW2N3d5fNnTuElBVqHPnvb42I/x3HIFatcaEbcPMwQOtNMp9vsNT0sFVMwW3jRuPHQuBuhiUn0utbFFiEOzb7P4a1rdAdlBrIaIO6CbCYJIcT7YGZmhnQ6zdH+Ngtlh0oxg23b1Ot1NE1DdwtYuXErY03T0VJVVubzZPU+jpsm52okmDiMsAiJGY87ipSBjU+RBmn67LcG/NN/9RP+rx9vcm13wMCL3/FnE+J3SQGhEEK8DzRNI5vNcnBwAIDruhwdHTEcDrFtG42E0vwqkZGm7Hg8vgBfemKBg43zZPUhjyykafQChrGLTozCJMJmSJYYkxEZQhxCXOJEcX23R9u3aA0iaTIk/mDyv0UIId4nqVSK2dlZ9vf3UUrRH4X4eo79Wou0Y/An5yr8+R/N8emTOienbbQk4OTiPFbU4fFHTvD49Ig16yoz7GKQ4DLCwwUScnQAha0rfC2N0nRKaTVpMiTEH0LCgBBCvI/m5uZIpVLc2N7nlT2DS608L+877HbAME2WZjLk0ja2bTMYDPjc5z5HP07xly/s8ui5Z5nNJkzpNVwGeLjYBGTpMx6WrPATDUtLWJ2x8COdmaJDOWvf75ctPmIkDAghxPtI0zSWl5dpdH2cwhyLc1V2+ileuKXxd79pM/BiXNdF18e/jhsjgwvROV6qVfhXL0YsrJ4ja8csskGGHg4jTC2iqtXI0sUhIBmj2iQAAAPeSURBVEzgoNbmM48WpdugeE8kDAghxPssnU6zsjiDowZs1YZYlkXeCrm8eUCjF5BKpYjjGMdxeHWzhebkmCplaA1C9OJJipUZ6szerhewGKk0sTIADR8HBTTDFP/j//1T/t0rV6WIUPzBJAwIIcQHYGVpgc+spThd6HJy2sFIl0iGDQ62rmFZFp7nkcvlmE37lLMWfS+hnLV45swMp84+hZXOU82ZeKQZkWaXJdqUCDEJsbAJqPlp/rcf7/BXLx5IIBB/EOkzIIQQHwBd11k8fpzvna8R6A7LCzOsZnQO97ZQkQeA4zhUUjH/9T9Y5tphwGPHcyxNp8inzvDcxSN2Wh7HKznqLY9RYqIYHzPUABiPTfaxeOFqm6dXC6wtZO/nSxYfIbIyIIQQHxBf2eSnFzm7skAQKU6snmZ+fp5Go8H+/j5BEKBpGkUn5BtPTbM0Pe4mWMql+Pozi7hGiEFEsVQl0VyUZpLOlTg7bzJr1ADoBxrNfsgoSO7nSxUfMbIyIIQQH5By1mahkuGw7TNTdJgqpJjJP4pSiktXN3jxtQ3KhSyj7RbpXPkNhYBzx5Y4/YhN0GuwfjDi5EKJvBUSxPCP/+QpRsNH+ad/cRnLscinDVK23OuJd0/CgBBCfEDeephQioXFk3z31TbdrkX/ekDWrbHv5fjak9OTQFDNOyxUMmwGMVEyQosS+rrLUt4jaO9xenWVb35qhQubR0xlfFwjYrs+kqFF4l3RlFLqfv8QQgjxMNuuj/jXz++ScmxeuFxjbVonXyzxrU/OcLz628FDAy/m4naP5y42qRZs9po+f/J4nqS7TTpXQk9PESUJ7aNtXtr00Nwy85WUHDcU70jWkYQQ4j4rZ22OT2XxwoTF6RyZXJG5kvum5kEZ1+Ds8RyL02l6o5jVuQynjpWpzhzje6/U+c6Lu1zaHlKaPk6gZ5guOtKRULwrsk0ghBD32eu3D1zLwAvjt13ef6uthqaTIzbzzFeyHLZ9Pr6U5cRccVKbIB0JxTuRbQIhhPiIG3gx33u5Nrn4f+3JKYDfqU0Q4u1JGBBCiAfAwIvl4i/eMwkDQgghxENOCgiFEEKIh5yEASGEEOIhJ2FACCGEeMhJGBBCCCEechIGhBBCiIechAEhhBDiISdhQAghhHjISRgQQgghHnISBoQQQoiHnIQBIYQQ4iEnYUAIIYR4yEkYEEIIIR5yEgaEEEKIh5yEASGEEOIhJ2FACCGEeMhJGBBCCCEechIGhBBCiIechAEhhBDiISdhQAghhHjISRgQQgghHnISBoQQQoiHnIQBIYQQ4iEnYUAIIYR4yP3/OLXjnTaQ2qwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "draw_metric(G,deg_C,spring_pos)" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -654,18 +537,7 @@ "id": "vLp2CBJHtC1d", "outputId": "e5e9c70a-1327-4590-d4c4-049e0484115f" }, - "outputs": [ - { - "data": { - "text/plain": [ - "0.2761677635668376" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# closeness centrality\n", "clos_C = nx.closeness_centrality(G)\n", @@ -674,7 +546,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -694,25 +566,14 @@ "id": "jjVxMxbWi23s", "outputId": "709444e2-13b5-473d-b0f1-f920889be174" }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdWYxk133n+e/db2wZkZH7XskqsooUixRJiZIla6ElUtTSlIWx3XC3AaHhQaOBBhoYYJ76rQeYl5m3GczMywxmxuiecbvVantkt+22LGshTZOUSNbK2jIr9y0yY4+733vmIbJSJKuolWRmVv4/RAGVFZkVJ6KYeX/3f875H00ppRBCCCHEiaUf9gCEEEIIcbgkDAghhBAnnIQBIYQQ4oSTMCCEEEKccBIGhBBCiBNOwoAQQghxwkkYEEIIIU44CQNCCCHECSdhQAghhDjhJAwIIYQQJ5yEASGEEOKEkzAghBBCnHASBoQQQogTTsKAEEIIccJJGBBCCCFOOAkDQgghxAknYUAIIYQ44SQMCCGEECechAEhhBDihJMwIIQQQpxwEgaEEEKIE07CgBBCCHHCSRgQQgghTjgJA0KIX0gvSFnd9ekFKbVWxKs3m9Ra0T0fF0IcL+ZhD0AIcTQt7/hcXu3w6EyJvGPwZ69u0/UTKgWLK6sddpoRU0Mu/80L8wD82avbNHoJgwWTrz89xkjZPuRXIIT4RUkYEELcZXnH59/8+5vUuzGVvMX5uQIXl1pUizobpsPVlRaGBi0v4i9fusbybsD1mo5uGJhGv+D4+5+ZpOAa9IKUejeiWrTxwpTbOx7zo3kJC0IcIRIGhBB3ubzaodYKMLKQvU6eWxtt8npEvWtzalQnSTIidGwUXT9gp94hZ5bYbGdMlHW2GgHrez6TVZf/+PdrrO3FjJQdlnY8tpoBU9U8/+prpyQQCHFESBgQQtzl0ZkSJQf2OjpjVYOZSka9GXNussKDYyaXb/oow2JwoMCgG1MtaHQxSNKUOIMrt2t8m4THZkz+6pV1DNPkllui3elhpW0uN1y+/b0mTzz6kFQJhDgCNKWUOuxBCCGOnr956QJ/++pNvvmNz9PYXma91ubTH3+Mmzdv8Sc/WsEdnGVsQKMULLDqV2mnORxLZ7Wh0Ysy0HSmiyHNQCfLUnTDwjI0UgyIe8RxTG5glFPjA1IlEOKQyW4CIcQ9zQw5nCk1maiYkIaMlnQGB/LsbK7wcKXJv/jaWZ49X8K0XZp+hp006HgRYRSRZqDShE6QMTYAloqpajX+5ZfG+ZdfPcPT8ybKLDA84LDVDLm94x32yxXiRJNpAiHEPWmaBkAYhsRxjGEYZFlGo9GgUhnEMHQ21tcpuRojJZNO5OKGbYZdi73AJVYmMSZrtQBdxSS64uJbt1GAkWacmpyiHcB4xWF+NH+4L1aIE07CgBDingzDAPphIEkS8vk829vbdLyYdmGaf/+DZfxmysPVjN94wGRxo8XFVZ8wcXHIcDTQgx5txrDQWQkLbFxN0AyXmfEKTzxQ5uGpAuemSzJFIMQhkzAghLinKNVoxzatbr8ykM/nWVxcxE8Ntnc6DBV9moFGJ3FI2yF7e3V6SZkgNQhwsYjQyKPRX5akMFFkJGlGkirqnZhTY7J4UIijQMKAEOIuvSDlpVsRNzpD2Nd6DKmMgchmaXWLoq0ITcVuO8Y1M67tOjQ7HjYFDFJCrYylQkIsXFJyeGhk6KTEOFiWjWWazA7nqBYlCAhxFEgYEELcpd6NWNpsoScdNpsxy57DQuhRq9l8ZLjAcK7NUhSyFo+y0dZwNB1Hs6hodWKlaFEhxUERk2KgkxFhkmkOedvl9FiOZz86TME1DvulCiGQMCCEuIdq0aZkx2ymNroKqbd6FByNTmRi5QcJ/BZrfoEN3yBVCk+5JGhkDKChsIiwiAlwMVC4+HRxMVWKpkGzlxDEcoaBEEeFbC0UQtyl4BqcHw2Zc7Y4nduhaAXUuwkFPaKcM2j0Erwww856aECRLg4eDhFdyiTYJJhYxAB45HCJsWwLx9I5M5GXKQIhjhCpDAgh7pJlGQYJJTMg9Rs8NKDw4h72QEjoKVTUxlUaqZanpPUY1dbZy4bpqBIaikH26FIixkUnxTAs/snnJhkbHaGctzgzUZApAiGOEAkDQoi7+L6PYRgopQjDEMe2Cb0GhYEB2u02adhjXOsQGQ6WCjG1BFsPqagcu9koPjly+KRYmIbBxMQojz80w0NThcN+aUKIe5AwIIS4y50wkGXZQcOhNE1RStHpdEiSBIOMHAn0exNhagk5fHQtQ6PfdXB+MGV4+jQPjBeZGnIP9TUJId6bhAEhxF1838dxHO4cXRIEAZqm4XkeQRCQZdk9vy7CJsKhqPUoDk/yz3/7Y5TyDtWiLdMCQhxhEgaEEHfxPA9d11FKHVQHNE2j1+u9ZxAAsInI6wHF4Vl+46NnmRstSQgQ4hiQMCCEuIvv+6Rpf+tfHMckSXLw+5/FNjK++sQYT3zikwyVpBogxHEhYUAI8Q5RFBHHMWmaomkacRyTZdnPrAhA/2CjT33qU3zhC1/4kEYqhHi/SBgQQryD7/t4nodt2yilDqoC95JiEiobm4jf+uyneOaZZz7EkQoh3i8SBoQQ7+D7Pr7vMz4+/p7VAMMw0Kwcq70hAnJ85PQkT//Gpz7kkQoh3i/SgVAI8Q7tdps0TRkeHr5nVaBYLKLrOm0/IyTPuQcmGRiZpd6NDmG0Qoj3g4QBIcQ71Go1HMehUqkQpTqeypOofhFxenr6YHeBo0Wcf2iawdFZxiqOtBcW4hiTaQIhxIGOF7Ow3mJ6rMJP3rzMZjZFQA4Xn88+UmF5o06ra5LTTH7rc5/i4598mkYvlj4CQhxzmrrTVUQIcaL1gpQ/+cEiL79xjbweYvlrbKYTOIRk9iBBGNEjjw48MqHzr//ZFyjm5H5CiPuBTBMIIQDYbQUsrNcp2ikNX6GUYqRkkq9O0o4MWlSIcLDcHKXRMzR6P7vngBDi+JAwIIQAwGtto4UN6t2UnBZwdm6YP3juHIPZJrbycPEwTZeh6jBzozlZIyDEfURqfEIIdnZ2uH71IiV/hSk94/TMKOcePMWVCz9B665RMqYZHRrioTOT/Oa5qhxBLMR9RsKAECdco9Hg7//+71ldXUXFPnOjg8xMjnD58mW2t7exdI3nHx/mY5+SFsNC3K9kAaEQJ9j29javvfYaS0tLxHGM67qMjo6ysbFBs9kE4KMf/Shf+9rX0DTtkEcrhPigSGVAiBMoyzKWl5dZWFhgZWWFLMuoVCqYpsnKygrdbhdN0zh//rwEASFOAAkDQpwwURSxsLBAvV5ncXGRJEkoFArYts1WrUmtneJoBo9/5BwvvPCCBAEhTgAJA0KcIJ1Oh8XFReI45tatWwRBQC6XI01TolTnWqOIr4Y5NVHmuS9/UYKAECeEbC0U4oTY3t7mxo0b6LrOwsICtXqHUB+g3YtwHIfFtR0ClWO8mmd87pz0ERDiBJHKgBD3uTvrA+r1OuVymStXrrC+tcdaPEarqzNcKBNsLWKphNPTgwxPP8h4xZU+AkKcIBIGhLhP9YKU7UaPZm0NLQ0ZHx/nwoULrK2toawinu8yVjGotSIczeBTTzzMZ595Rs4aEOIEkq2FQtyHekHKn/3DOjeWawwVNb7+yWmuXnqdpaUlDMMgSjVq+inWdruYaZcvPT7Eb/+j52WNgBAnlFQGhLgPbe51eeOtJcYqLrFR4aXXLuLtrWNZFmmaMlQpEWxdZ4KEJx9/SIKAECechAEh7jNJkrCzdouiGRHrVbLGJh21gaXrJEmCbdtsb28TBz6ffPw8X/mKBAEhTjqZJhDiPqKU4tatW6ytrZFqFnvtiM7eBo6piKKILMvo9XqEYcgjjzwiDYWEEIBUBoS4r6yvr9NutzFNk+ZujaDdJmebJElKFEUEQUAURZw9e1aCgBDigIQBIe4Te3t7bG9vk8vluHbtGlEU4boumqbRaDQIw5A0TXnwwQf5+te/LkFACHFAmg4JcR/o9XosLy+Ty+W4efMmrVaLXC5HLpejVqsRBAFJkjA/P883vvENCQJCiHeQMCDEMRfHMQsLCwBsbW2xsbGB4ziUy2U2NzcPgsDc3By/8zu/I0FACHEXmSYQ4hjLsoyFhQU8z8PzPFZWVgAYHx9nY2ODdruNUorZ2Vl+93d/V4KAEOKeJAwIcYytrKywu7tLEAT97YJxTKlUotPpsLu7S5IkzM7O8nu/93sYhnQUFELcm4QBIY6p7e1tVldX6fV61Ot1kiTBcRxs22ZpaYk4jpmenub3f//3MU35VhdCvDf5CSHEMdRut7l+/Trtdpt2u00URZRKJdI0ZXV1lTAMmZyc5A/+4A8kCAghfi5ZQCjEMRMEARcvXqTRaNButwmCgMHBQQYHB1ldXcXzPIaHh/nmN78pQUAI8QuRMCDEMZKmKW+88Qbb29v0ej08z2NwcJCZ+Qf58ZUlWt2AcrnMH/7hH0oQEEL8wiQMCHFMKKV48803D6YBOp0OQ0NDnH3kMf7uSpuLtQK7xjz/9Jt/iG3bhz1cIcQxImFAiGPi8uXLLCwsEIYh7XabkZERnn76abYbPmu1HtMjJR589Gm8WL6thRC/HKkjCnEM3Lx5k6tXr+L7Pr7vMzY2xtNPP83GxgY76xvMjk1gFk8zMehSLUpVQAjxy5FTC4U44paWlnj11VcPdg1MTEzw2GOPsbW1RbPZZH5+nplTD9L0EqpFm4Ir/QSEEL8cCQNCHGGrq6u8+uqrBw2EJicnOX369EEwmJmZ4fTp0+i6TA0IIX51EgaEOKLW19d57bXX2NzcPAgCc3NzpGlKmqaMjo7ywAMPSBAQQvza5KeIEEfQxsYGr7/+Omtra8RxzOjoKDMzM7iui2EYEgSEEO8r+UkixBGzvr7OxYsXuX37NnEcMzIywpkzZxgbGyOKIiqVikwNCCHeV7KbQIgj5ObiCj+5dJO1xVuQRkxOTvLYY48xOjrK6uoq5XKZBx54QE4fFEK8ryQMCHFE3FhY5tsvrXBzpYNDlU/OG3z605+kXC6zuLgoQUAI8YGRMCDEEbCyssKl68us1jxyRoSRG+WJT3yEcjknQUAI8YGTMCDEIVJKsby8zI0bN6htbOCoAfTyGE88PMdQyZYgIIT4UMjWQiEOiVKKpaUlLl68SK1WQ9M0pmYfYP7sY5Qc2FpfplKpMD8/L0FACPGBksqAEIdAKcX169d544038DwP13U5deoUjz32GFmWsbi4KEFACPGhkcqAEB8ypRSvv/46ly5dAqBYLDI2Nsb58+dRSnH79m0JAkKID5VUBoT4EHW8mL/63ovsbi5RHchTLBYZGBjgkUceQSnF4uIig4ODEgSEEB8qCQNCfEi6fsL//VdXuHLLY3JojpmBlGLe5ty5c+i6zuLiItVqlVOnTkkQEEJ8qKSFmRAfkrcW1thpxTw0P0EvsQkyi7Nnz2KapgQBIcShkjAgxIdgZ2eHqLvLRNVhu+Ez4KQ8/shpbNuWICCEOHQyTSDEB6zRaLC6ukq1XOC0V6OiIp589AxD5QK3b9+WICCEOHSym0CID1C32+XGjRs4jkO9XqfX63H27FkGBgZYWlqSICCEOBJkmkCID0gQBNy6dQvTNGm1WnS7XU6fPn0QBIaGhiQICCGOBAkDQnwA4jjm5s2bAPR6PZrNJg888ACVSuUgCMzNzUkQEEIcCbJmQIj3WZqm3Lx5kziOiaKIer3O/Pw81WqVlZUVCQJCiCNHwoAQ76M7jYN83ydJEnZ3d5mbm2N4eJiVlRWGh4eZnZ2VICCEOFIkDAjxPlpeXqbVapGmKbVajenpaUZHR1ldXZUgIIQ4smTNgBDvk42NDXZ3d8myjFqtxsTEBOPj46ytrUkQEEIcaVIZEOJ9UKvV2NjYOKgIjI6OMjExwfr6ugQBIcSRJ2FAiF9Tq9ViZWXlYI3A0NAQU1NTbG5uMjIywszMjAQBIcSRJmFAiF9Dr9djcXGRKIrY29ujUqkwPT3N1tYWIyMjzM7OHvYQhRDi55I1A0L8isIw5NatWwRBQKPRoFQqMTMzw87OjgQBIcSxIpUBIX4FSZJw8+bNg4ZCrusyOzvL7u6uBAEhxLEjYUCIX1KWZdy6dYt2u02z2cSyLObm5qjX64yOjjIzM3PYQxRCiF+KTBMI8Uu401SoXq/TarUwDINTp07RbDYlCAghji0JA0L8ElZWVqjVarRaLQDm5uZot9sSBIQQx5qEASF+QZubm2xsbNBoNMiyjJmZGXq9ngQBIcSxJ2FAiF/A3t4eKysr7wgCYRgyNjYmQUAIcexJGBDi52i32ywuLrK7u0uSJExOThLHMWNjY0xPTx/28IQQ4tcmYUCIn8HzPG7evMnOzg5xHDMxMUGWZRIEhBD3FdlaKMR7iKKIGzdusLW1dVAJ0DSNiYkJpqamDnt4QgjxvpHKgBD3kCQJN27cYGNjgyiKGB4exrIsCQJCiPuShAEh3uVOU6HV1VV832dwcBDXdSUICCHuWxIGhHgbpRRLS0ssLS3R6/WoVCoUCgUmJyclCAgh7lsSBoR4m7W1tYNWwwMDA5RKJaamppicnDzsoQkhxAdGwoAQ+7a3t7lx48bBCYR3jiM+zkGg1op49WaTWiu667FekLK669ML0p/5Z0KI+5/sJhACaDQaXL16lVqtRqFQoFqt3hdB4H/68yW2miHjFYf/+tkZdB2qRZuuH/MfXtqg6aU8MFbg658YA+AvX6+x3QwZLFh87EyZqSGXXpCwVPOZH80zUrYP+VUJIT4IEgbEidfpdLh06RKbm5vk83lGRkaYmZk5lkGg1oq4veMxP5rn9o7H0nabvB6zUYf//S/fIg48KuUit7c8lvZS8o7J8naHcxMm1XKei7c2KBULXFlpc221jkPAldUOmj3AWCXHP//SLLoGoDE15FJwjcN+yUKI94GmlFKHPQghDovv+7zxxhssLS3hui7j4+PMz88zMTFx2EP7pdVaEf/9/3uJug9zoyX+6ecm+V/+7Co77ZjJ0QqdvVWMpMdqOEqUaWRoGMSUzJTfmm1hEvLixhCeypNkcHrAY6nj0IkMdDJAp2hGOJbBQKnExx6s8Lnzo0wN5QCodyOqRVsCghDHkFQGxIkVxzGXL1/m9u3b2LbN6OjosQ0CAG8t77Gy0yFvpmw1bdp+wj96FBa3Qj79sWG++xOP2/Vhsg0fi4gIB4uMcrpJ2GoROSX0uMug5dOiwK4HKokwMYhwsQnxE4jThChp8r0LPru9jOmqTZIkeLHBWMXhcx+pEsSpBAMhjhEJA+JEStOUK1eucPPmTQzDYHx8nNOnTx/bIADg11cYsBO8zOFUxWF+NM+t3ZSHRmCspPGJOZ0nHp7jf/5PF/HjjLLeYd5aZoAGXiem1wqw7CroBlN2hxJ1tpMcqjBMKwrRsxgvsUg1Gz/NMNIU11BcuFXD0OGJhyZYqfn88Q+W0E1HgoEQx4iEAXHiKKW4du0ab731FkopJiYmePDBBxkfHz/sof3KWq0WXmODbzxe4fZ2h9957qOMlG1uZBm6rhPHMQkmf/3mLkGiYZLxxUdyfOyR5/jRT65ze3md1WSSOHEoufD4pEa46zFSjemlMStxga45gEPGgNkg1lyCKOOHF9eZqOZ58qFRaq2IOGix50U8Mj/JSs3j//yrLSy3yMxIkS8/OSKBQIgjSsKAOHEWFha4ePEiaZoyNTXF2bNnj3UQALh8+TK2bfP4+QdJ/Vcp2RnQr4Douk4URay3dS4s7JIqjZA8/+Vyk7+4vEBCnoSzZOhoJASBwYvLMGKO8dSoztpal2ZoUrRa+FkZ3bAZL2rs7AXoqkW18AC/+XCV7c1VVJKxEY5R64SEvRa9MOOhEZO1vf5CxI/MlCQQCHEESRgQJ8rq6io/+clPiKKI6elpHn744WMfBPb29tje3ubRRx+lUCgA/YWRETlu7CgmB02iKKKStyBLyNABhU5GiINGRoYGgMIEdBqRThgP0r7VopmOE+HSjRJGXZ+npi1yWhsrc/ApktNDFhYXGMrD+cfP0gsS3ry6SH7cYj0YZLOZsL7T5nthyPK2x+fPD8vUgRBHjIQBcWJsb2/zyiuv0Ov1mJ6e5tFHH2VsbOywh/Vr6QUp33/lCqad58yZM0RRv7nQeq3Dty80ub6sU3ETvuKvMlB0mTS3aMQFFBqOlmKrkAgbgwxISfd/JGSYxCqhmzpEOMSYxFg0M4eN0OJMzucfP3OGW+tNXl9s87eXU6anJtgKdxhgj1NjAzzwwAN4YcZfvnSFq3tbWKHOhc4Qm3sdDMtlrOLI1IEQR4SEAXEiNBoNXnrpJZrNJlNTUzz++OP3RRD405dXee1WxMPzM/iRImfbGIbBUi1gcaMHYZt6WuCtpTqThR7T2hZDhomuUrAKrIdDdCliEWETUGeEBJsMgwIdTBK6DMB+5aAbKS6sJljzM7wwN8sPXn6dtZpDpMOlrR0sAx6azPOvH50jjmOuX72Maq8zUS5gD4yyvbnO3t4en/vEebabIfVuRMHNHe4bKYSQMCDuf71ejx/96Efs7u4yOTnJk08+eeyDAMD6XsBbKy0cLcFLHerdiJnhHKZpUnZjXC2kQ47JAZsnH57GSLtsbW1haiFKKZRjkEUGZdWmThXQcYlQ+GTYmKQ4hAxRo8EwMRYxJloSs1DL+KM/+XN2d3fx42lamKRkkKYsbfv88fducKbcRgVNTs9NYVh1bqzfZIw6qvoQe52YsYpDtSgdDYU4CiQMiPtaEAT84Ac/YHNzk/HxcT7+8Y/fF0Fgecfnj3+0zs2tkDTOkytscePKNlf8Drdv36Z1+Rq6P0FBKzE7mGegYLK90QVAs3J4oYYR9HDJ06GEhkaeHpHmUqRFlzIuPiEOQ+yQKZ0EkyZDJOhsNXtcarapM0eACyg0IMGiFWX8xRu7DNkRv/WQwZtrGyzvhmR6nsnRj/DNLz+GbZmyZkCII0TCgLhvxXHMiy++yMrKCsPDw3zyk5+8L4JArRXx3/3biyw2EgAMNBbW9yiGHgXDp9Pp0IksosxkQG/S6BZp+QVarRaJMthJp2gmOjndZ0TbpKLVqathAuViqpgCbXzy+LjkNY8BrY1PkW01Rr9dqU6KyTbThLgU6eCjU6BHjEVAgQRFLdL5s8s+KQUySuTwiNouf3e5ye9/ZlKCgBBHiJxaKO5LWZbx8ssvc/PmTQYHB/nMZz5zXwQBgIXNDpuNHjoKMEjR2YkqvLpZ5Md749SSQSqlAtUixFqOnB7itXZot9uEysbLXBwtxMtcMs2gpHcY0zawtIQYm2UeJCCPQcaItoWrh1S1XRxCbCI0UjJ0UgwydDzy5Ago0doPCxkKA4VOhIVLSIaJTx4VNOj6CfXu3acoCiEOj1QGxH1HKcVrr73G5cuXqVQqfO5zn7tvggCAkzZx6RIxSL88rxFj0FQF9jwH1/gIlhMwbSxSySJ+48yj9No9er0erm5R0ELaaR437WDTvyhnmkGqDAwSuoxgEeKTJ5d1GaCNplIK9IhwSMmhUKT0P9/BZ4AmVXboUSLFIkXHwEdHx8elQIei7jE2NEsxZ+JaUhUQ4iiRMCDuOxcuXOD111+nWCzyzDPPHPs+Au+2dOMiZ/XrbGWTrDGLQidFI8VGIyXNNHY9kwFDo2gElPI2pAWUUhhawqixg206aGmLCBsU2ES4+LQZADIibBJMbnMaJ4sxidBJyAANhUmEAkwiCnh0KGAwiEGMTYBHkRQHBeToUdGbzOQabGzD5dCnUrBkW6EQR4iEAXFfuXbtGi+//DKu6/LFL37xWJ81cC9hGHLr1i1cPWSIXfaykYMmQhoaES46GYN2iJUGQL8LYbvdRilFplms9Mp0U5eIMZwsIkePCX2dCX2dUtYmVC49BgBFgkmGRUYek4gElzvbDF06GChqjJKh06UCaKQYgNqvEGi4+PiZzbbn4imF262x3ZyXbYVCHCESBsR9Y2lpie9///tYlsVzzz3H5OTkYQ/pfXf9+nU8zwMgp/kMU6NHgQI9hrRtfK1IpWgxX87R3ItRmkaWZbTbbTRNI9ZyeJmDQUpAjpzyCLQcETZ5zcPWQ/KphwJ6lPbn/hWg7weBny4zCsmR7jcqUmjE6OjE+90Mtf3PVfTIo5ORc3LknBLDowOyrVCII0bCgLgvbG1t8dd//ddomsbzzz/P1NTUYQ/pfaeU4pVXXjn42NQSpoxVfJUDNFwtYshtYWCQxYps/5CiLMvodrsopbCUj4uPRx4XnwQLS0X9JkRaf7ogp3l4qoBNSIKFQiO9x1pjhU4MsF8JUPtTFQbJ2z6/Hww03eKJR+fY2mvy2fOjfOJhmSIQ4iiR3QTi2Nvb2+M73/kOWZbx3HPPMT09fdhD+pX0gpTVXZ9ekN7z8a2tLba2tu7687oaZk3Nsp7NoFn9snuv1zt4PEkSgiBA0zRUEjChrzNjLDOv3cDWImJsNtQsQeZgaglVbRcXj1F2sAkB0Ei4Mz3wTiag9h/LuBMK+votjjU0Qr3IS9c7DLgaHz87KkFAiCNGKgPiWOt0Ovzpn/4pURTxpS99ifn5+cMe0q+kF6T85es1Vne6TI8U+MpTd18w//b7L9JNXWwiTK3fY8BXefbUCCl6vzeAiigQEcfxQWXA8zzSNCXLMrIs4863vdJMEmURY9NWZSJlMa2WQNP6Owc0hwHVoEUVBQTk6N8/9O/2+xUAm/5FX0cjQ9v/zyAGNHRSQKdkBmiYPDhZopS3PqR3VQjxi5IwII4t3/f51re+hed5PPvss5w5c+awh/Qrq3cjLlxfIers0u6M8/isw0Mz1YPH12odvnstIczmsbWISW0FVw9JlU6Ig9q/NMeZQqEOLvymadJutw8+TpTJZjZFQA5bheik+PSnGVqUCdQj5PFwNJ8RtmgwhLl/uqFF3G9HjI5Ohk2MIiXe7yngEKERY6GIsSjRZFir0XTOoOeqlN2UJ84MH96bLIR4TxIGxLEUxzHf+ta36HQ6PPPMM5w7d+6wh/RrqRZtBnOw4RcYLurU1hfJax6Tk5P4keJ/+KMfsZuN9Jv6qAyl4EFnjZxp4BIYOMYAACAASURBVAQRKVp/qV8SoVkamqaRpilKqYMwAOwfR5TDISTUHEbYIlEGbcpYJIS4FFSXUMvhERHvVwfqDFOhgY+LQqdEmwibCjU8Slj7vQfbjJABZS1i2ljh0Ydm+eyzv8GbNzYp6T3mp4YO820WQrwHCQPi2Gn1Qv7dn/x/eM0Wz3z205w/f/6wh/RrK7gGT0ymzBQzvvyFR+m2dtnY2KDZbGINTBCkGhYRXYoU6WLYec499nG85jZbN3bwKJCnhxk3yQyzvz5A9SsEvu8fPM+dfgJ3KgOGnjGhVgGNLiUyNNpUMFVMiInCxCYkT48M+s9NSqJZ5JRPjWl6FOkvJ8zQNJ2SlTJnXaOoa5imyVjFZbrgUa0OoWn3WncghDhsEgbEsdL1E/7HP/o7ths2Z+ee4txHPnrYQ3rf2EbGSFGjmDMp5sapVCosLS1x6+obWHGDguGiK3DxqbiKnbUFykWXOXsDLzGwiTBISBIwjP56gyRJSJLk4DlMLWFCX8dXOeoMs6mmCffn/RWKEbbxKBJio++3Gx5iG5eQBlUyzcQiZlxbx8dlR42j7fcjiDFwVEygFYiMMmnSIU1Ter0eSZJQrVbf45ULIQ6bhAFxbCil+PZ3/gub9Yj5qSFyg5PHpnFNL0ipd6OfeVJfmqbo+k83+Liuy9mzZ3nrrbcY19YYdnMYWkYuP4CjR3RbTQzK/Q6Dnc47/h5N608VJEmCUuodz2NqCQYpkXLQVUJAmQp1ElwCHCxCQiwiXDI0dpjsTyvgMqh2iTQHQ0sZoE1O+XQp7fdABKUbGFpKzlRkUX+dQqPRwHEcCoXCB/LeCiF+fRIGxLGglOK73/0uO+uLnBp/hMHR2WPTuObOToHtZshYxXnPNrxZlmFZ71xpH4YhW1tb5Gwdw0iI45i5sQLNZkxkGPR6PUzznd/GSinCBILsnTsPEmUe9CTQVIKmMnzymCSkmBRpEuCSoWOSkZKSp7/10MYnA3wtT5H+mQamnvBYboHq7GOMDA9ycanN6l7EiBMxWkjY7fbDQLPZZHR09IN6e4UQ7wMJA+LIU0rxox/9iKtXr3L61CzPfflzP/cu+6joBSlXVjvc2upgpCHLUcL6XgnX1hkq9cd/p2rQ9DIMS6cXpAev6+rVqzQ6PppdIZ/TsGKfKIpI0xTLLdIOFEbokyiTCBtXj8kyxWY62V8XQEiZBgqoqxGa9BfwmcREmES4+4v/oMMgIXlMQnL4lPFI0Qlw6VAhh884a5TNHkOVEufOneMTn/gE5XKZNE05ffEqb1y+idfcRld6P5SEIWmayhSBEEechAFxpN05gfDNN99kfHycF154AcMwjvzUQJqm3Fxc4X/99muQG6MW5IjiGFff5dqVN6hUR3n6/Bkenzb4/tUWq/WEtU2DsUGdsFDjy0+OkLM1fvzmZZa8IZKwxBAGp4sNqtUq3SBhoZUj0goQd4iymJAclkqoqB0CclgqYo8RdhgnQyehX3XQUET7hxrFmCQY+7sEtP35/wIaGkW6hDhkmGhkZFhUK0WeePABnnjiCaampvDCjNVdn2rR5qOPnoMk4Mc/3j5oeuR5Hvl8Htd1D/OfQwjxc0gYEEeWUoqLFy/yyiuvUK1W+cY3vnGwMO4oWd7xubzS4SMzRbS4w1sLq7x17To3NgP20kGybgNvf4mdj0WbAbzNHb61Wed7aptNZlG6TagsJiop282QejdCeTXWtpt42RgFw6cTlmlqCRNxTECeeuRQzSXUYodMuaQYNFUZH4scAb6WJ1Um0f6RwhkG5n4nQYsAnwJg8tMVBXe6ByoUOh4FEsz97oMGluPysaee4guffBjLstjebfKff7yDr9yD6Y/z58+zt7fHhQsXUEoRBIFUBYQ4BiQMiCNJKcXVq1d58cUXKRaL/PZv/za2ffTWByxte/y3/8ebtPwUi5gKeyQYdBgnQxHj7vf87jcDcvHpUsBT45jE6PsH/eRdmzTM6IQcrIX4mxdfR096uPjo7ihFM2JqZIB6y+PyWkI3LdGJFYPUSTGoMwTodCijAVW1jU+emDx3WgkrdNz9bYLZXd/+/bbCJiEJJhEOADo6OUtxupoQtbf48z9foF6vs9mMWUumefL8gyyueyyOKmZH8jz11FMsLS3R9ROaoYWdH/iQ/jWEEL8qCQPiSLp58yY//OEPcRyHF154gWKxeKjjefdugF6Qsr4X8G//6iJ1v38/7eMSM4ZGRoINJCgM0v2WvA7Zfrnd7O/K11xCZxwrjci5OUbtbT49X+bLT44QBx3W19fRVcyMvcVQ1SXs7FFwJ7ixEdJJ85SpE2ouw1oNi5A4s2gyiA50qaCToROgUURhoZFhE6ChCCnw0zMFALL9HQEx1n4VI4fH+IBBZOV4fNJgIh/Qqu/QarVQSjFWLWPoA6xutSjZMUs3Vlm/lZEkCZqV63c6jHL8P9+9zgufmGJ0aADHcQ7pX1AI8bNIGBBHzsLCAt///vcxDIOvfOUrDA0dbte6pbUt/t3fXKcRWkxOTPCbDzr86fcvcb1m0Es0FDnU/nx8gg7c2RFwp5JhAik2PkU6dCiToJMonV6QMV/qMFAqMZq0mS6XKbgG3/+HN2l2A3pZjkrOJG5vkiUJllukpeWJNEWgcgypXXK6R6IMDFKM/SDi0ibBJKRE/1TB/uFH2f6CwPTgjAEAhUXEDAuUaZHoNo7yiYunsIojDBohqrXGynYXwzCoVqtMT09TLBYJYkUvNhgsFtCzPO12u7+10S4REOMQ8vIb1yklm5ydrZLL5SgUChSLRYrFIvl8XhoRCXEESBgQR8rS0hI//OEPybKMZ599lsnJyUMbi1KKhYUF/uJ7r3J51aZFhQvr6/zwdR8zC+hSJjq48Pe37+lkZPu/699560CGQUoRjzFtk5aq0ttv4VsumCS4TJQyCr0YXdfZ3Knz0oUlFr1RQmXjJTBjbDNUHaAwOM7qP7xFRUX4Wp6qtgfAejZLi0EsIhQaCm2/T4DaPywILAISDBIcDGIU2f46ghgNjZwWUTY6aJq2v0hxnSxoUrQznJzFzPw8c3NzDA4OYpomhmGgaRqNRoNms4kfhhSLRebm5mj/+M2DTocuPiu3VhgpPsrQ0BBZlrG7u0uWZUSpTmrkGK8W0K08rcjhgYkiI+WjNyUkxP1MU+/uSCLEIVlZWeEHP/gB3W6Xz3zmMzz66KOHNhbf97l06RIrKyssbdR5uTZOg2HYv6fO0aXHAAoDUGgk5PD3VwboRFhk2ICGRsYQ25zRb+DqISo3wi1/kkyz+Mj8CMVomUceGGdl8Qa5YoU3NgzWmgovc6hSR3cKzOe2GXRTtmpNNrMpfAqYxExqK2SawUo6j0cenwIKhUGGRoxDSo88BikxOhk/LdObRKRY9CsDCWe5zJC5h6b12win6X6IsCyKxSKWZaHrOrre3zaYJMlBoyTbtg9+ZVnG4uIiQdw/C+FOrwPLsqhWq+TzefL5PMpweHPTpJfYRF6T7Z6NXRrhzFSVf/W1UxIIhPgQSWVAHAkrKyu8/PLLdLtdnnrqqUMLAkopri6s872XLxM2VugGCZc747Qp7a+0t0hhvx9/tv9V2v4jEQkWCoVDQrR/zK9JypS2iqv375yn5iap3YxoRhqOqZGLfXa31vB9n61WwmazgqsifFw8ckzYKUMlm9rWGqamGNG2WM9miTHZZpJi1ibExcclpT8pkOCQ4ZARYBGhkxEyAPvLGTVi2N8loNDQSWhToaxamCT4kSLCxdEiiGPCMMQwDLIsOwgJpmmSz+dxHOegSgDQ7Xb7JyZq2f7uhb44jmk0GiRJQr1eZ7udshzP4FjQil0CchQyn61myO0dT8KAEB8iCQPi0K2srPDjH/+Yer3OuXPnePrppz/Q5+sFKXudiJILlpYSRRGNjs/qVpM3L13hhytFImVjMEMPh3T/iF/esQnP4s7FFPpz8R5FMvpz9zYR+v7OfZeQnOZjGAZjY2N0AkWQ2uRVm43dEkrLKLqKXC5HvbWLi4OvFSipFsPaNgNBj53NGOh3EeyoAUJyOHjU1QgtBulSIEMnwyTbH6sGRJhoOCh07gSB/p6Cfj+BO+sGMnTqDDGsdsjhHxxz7OIzkm3R7WTYnfpBN0Nd17EsC9u2cV2XXC6Hbdvkcjk8z0PX9YOTEt/OCzM6cYSR+SSZjU+eVmzjEJHTYqzCCOMVh/nR/AfwLy+EeC8SBsShWllZ4dKlS+zs7HDq1Ck+//nPf6DP1wtS/vzHW/z1373CaNni47M6pmlwYcvireUGHSoEuBjE9Cjz0wso/HTB3R3v7HmQYGMRotDI0HAJGKBJho5m2DiOge/7BLGHqxVpK4eZXMZUqYSlZ3S7XVQSHNz5J5i01CBGmpHT+kFkPZ1hlxEiHHRK6ChsuqQMkh0sCryzjbA/RvW2j+68jpR33nX3mxBBmNn4mktHlbEI2GOIjiphkJLXPCb0dUwtIcsywjAkDEM6bzsX4eC9UCYReWwiEmXQo4ijfGpqgk46gE2ATkaMi0lEwTH5F//Vx7BMk/nRvFQFhPiQSRgQh2ZlZYVr166xtrbG2NgYzz777Ae+srzejVhcq2MRsNXIWDBDCuURbm129+fccyi0/WqAfo+/4e3b8bR3PaJI0BhmlzG26WolIhzyeFgEKGXSbrexbZszpYTthsesk5JGCfVW6+CiGuMQaQ6OCthjGE8VKKoOFa1OjwL9ZYoQY6ORETLMT+/BNfrTF/rbxqruGuu9XleGzg7j+KpAhEuyX2XQgRJNUP3Q8PbS/70EmcOGmiXBwlIhTSr45NFISN+2k8EixCAlpEilVObmRsDvfnriyLeYFuJ+JGHgffbzTqd7++PAsemx/35bXV1lYWGB5eVlKpUKX/nKV+46cOeDUC3aPDg7gmU/xebKDZYaKc3NJh5FPAr7BXT46QX13d59Uc3e9rna/jy9TkHvYBMCGjnNw9QyDKO/eC/LMixDI6957GyuYpomvV6PLMsIMoftbByPPF2KaGjYKiDQ+lMVBXp4FAETjZQU5x7jvPPxu0PLu0NBgkFGun9YsUKnQwWTBJ2UDAuTlBQdnzwl2thEP/P9TZTJejZLnWFcAroUaFPef953jjMiz52KxcZug58sWnzqXIWHpg63p4QQJ5GEgffRndPpNuo+k1WXLz85+o6L/J3HV3baVPIGSZLixTrTI8X3PMnufrS6usry8jKLi4vk83m++tWvfmjNaAquwZefHKHeLdPqjvJ//eeLhFvLhMpBI9u/NP20Ec+9A8Hb3Sm/3/m8jASH9WyWTDNw8SlZIVmaEIbhO+bRlVL4vo+u63iJRVsN0FDDNBjCIt5/dkWbKlVq5DSPKcOjnDXYUuPUmPwFxvd2b68SJPsNihOM/RUFLgEpJhlgkuISkGBikTBEjSl95WDNwHuJsEkwcQnxcAlxePd0yr3GlWASxCk/v4IhhPggnMgw8IucLf+rqHcj1vc8eo1NLtZsxp0WpyfLFItFCoUC9W7E2m6PreWbXAlMkjhmwAy4fbtCKany9Pl5KpXKXaXyD2q8h2F1dZW1tTUWFhawLIvnn3/+Q+8uWHD7Bx1VizaPPTTNi72AuK1IMfj5F653uzNH3790aygsAgJcCqpHoOXoxDaGZmBHEaaWHnzlnZMGsxhuqUfoUiLFQJERkMMkYZhNMmxs5eGrPDnNo2I0MbKMVlbBp/wrjDfDJETRX7jn4GGRoGkaDj5lGhhahqYSPApYxJT07juCwJ2x39k2GGTOwbqAvOaB6l/iYyzuXkb47vEoHNPm3GSBqSE50EiIw3Dfh4F7tZH9jy8usbzVZrRs8/mHC5TyNqZpvqORynv98qKMlpdScG2CODs4hhb6Jejxis2FbZ3JqsWAq7O9vc3Gxkb/660cVhaR6HlOjZo06nt0YwfH2+WNVy9z69LLDA0NMT8/z+zsLCMjI4SJxn/4+03eWmnx8GyZ3/3UBHA8pxdWV1fZ2NhgcXGRNE15/vnnD627YNdPeOPKTVrLF6i3HXqM7i/A+1X077a1/Y7+wf7ug4gcFbVHnWEi5fRX5mtbZJqBrtL9RkEVUrR3LVbs9y5IsKgxTg4fj1PoGQzQYFxbI0Xfv4f/ZSX7I+5PU0VYlImY1pfINOPg4n5HEe/uv0GZB7sNbBVSoM0ac/s7HHyG2UInJb/fdKh7z6mMO62ZUsYH8xRchy8+Pnys/n8W4n5yX4eBXpDynVc32WqETA65fPVj49S7ETdWanjNbWq7ObJmiG0oClaKbSg0TUPX9YNQYBjGQaOVONN5c9NiYaNFkFm4RsLcSI7nHq8yPztJsVjky0+OMlP0yZKAwbEZBgsWuorodrt0u10eH+vieh1mJwZpDZoUB8cp2opWvcT6+jpbW1tsbGzw6quvUqlUiPNT/KdLJlGquLRYY/f2G2jFSVqRzenJAX7n09PH4gfo6uoqW1tbrKysEAQBn//85w+tu2AvSPk3/9t32GxGpMqgwTDZL10R6NNJMYj3d+srbCJiTCrUSbAoam2aDGGpiA5lQuWQYuBj02SE965E9O/gUyx6GFgkKBQh47RUhQxzv/th/9yDX6y8fucC3B9vf0eCiaLf2tggA+1nrwmA/lRA/4jkmD2GqTNEhwE0UnwqtKjuN2PK9seXcWc6Rd9vy2QRU3E1PvvEPG0/ZW4kx5mJwi/wGoQQH4T7OgzUuxHXbm+jwia1WoFyusVgyWK87LCWDDOgx7T1Co1ORMlO+MxDeQqugWEYBLGiHUDJUdhG/wfZZjOhE6XYJtR6JlrS5fKqortzgzHHw3VdCoUChp3ncs0lea3OQ7Mj/ONnTjM6Osro6Cizs7NYeka1WuV27DOYV+i6Tm58nKmpKXzfZ2dn5/9n781iLEnPM73njz1OnP3kyb2y1u5mF7u5syWaEElREiQKA0iGDWPGM4Bh39sGDBiG50pz54sBBr40bMALxoZtmZrRaDAai5ZESVSLzWaTbPZWa2flvp19i/3/fRFxojKrsprVTUpd5OQLJE4ucc6JiBMZ3/d/3/u9L8fHx/T7fbb3EqL0KgJFqgS3tnp0VGY7+94Dk4bo8KWXNwqJ2DmepdbCzs4OR0dHHBwcMBwOeeWVV7h+/frHtj+9SYS069js0GUhrwg8DeP+NObEwWx4r8EJer6aNzBRaFTEmIoYMVNlTlgiwCGBzFSIMj+53z/3OxS5YHA2rzCmUnT/LaI8KfhJ/8pZYDZJi1cyiTEJ6LPAQDUxlKQpTljTdj6QG2AR4eDn+yGw8FGnRhtVcVyntQ0AEkwCrnKHl198jv/wt7+C5xjPzHV6gQv8uwz9937v937v496JnyWmQeYHb2garqVzNIroTVMqVsLzyyYr7QaXWhbrTQtDxby16xNPOnTHMXJyiIqnHPdGvHov5K2dgIN+QEWfodIYQxdMEosQjzBWDJIKgbKJtCo1R6HJiNCf0plItoYmqd9n72TCzp03ON5/gO9nwjPdwQRp1QjjlMbSBleubIBmMAo1bNukWi7RbrepVCoEkyFHUyuzuWVKixOGNACQqcTf/xG777/H3t4eSiksy8KPFf/LH7/N//P/vcleZ8rNK21s8+O50e7s7HB8fEyv12N/f5+XXnqJz3/+8x/LvsxhaBoBJdz6Mu2qwckgJpJPYtyfD4FEy2V/LUISLNbEDk29y4I4pqqNqIsBmlBMpccRK7k8sZFLAn84olw2hhfnjocGWZDV83Tkcab+WSh0AiwUCoFFRJUhWY3AyVUTM7EkBFTECFPET3w1TUg8MaUkpgDEOMRYOQ9By6sC50NisLayzH/1H/8KjbKJZWjUStnjBS5wgY8PP3eVgZNhxObx7Fxhkjlb//5ej/V2lZcuV/nU1SavPN/GFTP6nQP2j7o41UVeuLHGg8kx0uwQ4rFsD6mVZui6jldfJzyZYTKgN3M5GQbIOFvBr1kGx9LGn84IKeMxoxu4vBlUqYuUFa1PogJSWaaHSyUeMoh3ePPkAW+++SZKszhIV4nNfQLpoNIjNlYXONl7n1DqLNct/v7Xn2N1tU2p0uTt+4d8vnlIKDyYHqCSgElywkSVsQlJ45DdrsZh731+dHuXesnAcOvcn7Ux5JQfvbfF/xXu8I2vfZHl5WWC+O+ObzBPBCaTCdvb21y/fp1f/uVfPnfbuUXGz+oRKLTzz3t8rprQFBGqIXmw3SFOKkh0NBJk7i3w0H3wNOYcf9BJzigN6kJm5Lk8zs976ye0+en+1VKaHONTYYrDwykHiUCgIXOb5PM+T4nHiDp9RtSx7BKfWi/z2VWHN+932JyYzKKYQNSpOiV+8wuf4nde+d3Hro25F8HJyQnvv/8+7Xabzc1N3nr3LsNoysyyOJ6kxPGAE5YKTsLDc5adFFMX1BttepMIz3F/inNygQtc4GeJn5tkYBqkvL015J9/e5fBNGKpZvAPXvGoOtlNfzgJuHMY8cMHAdPhAd99Z4Hf10xc2+QL1zz+oy+vsn7lBv/Hn73PG996E5H6aLqFSKcEqkR1YQxpQqczg/4Ez1hmZFVp2SlX19pUSmY2GjYF3dJomMf4sYufG7+YJPh4+JToqRYj6ig0PGYIIbKbqTIYpmVG0kFLZpxQAyxOtiNMFlngiMMB/P6//GNcPeFBdIkJNeqmz43SIanySVRCiyMCHCIsNtXzGHGUq9/F2EHEotgjECkBZXRCdrcO+OY3t1lau8xutMww1Fhrunz5ORvHzNXqfoZBWClFr9djOBySpim7u7vUajXq9To//OEPz33Ok5CmKVLKM4E8juMzX2maFt8nSUIURQRBUPztg95npkr4coNlJkwp0eKYCTU6LBKh8rCrYRESY+X1AIlBjIGkzBiEoMQUV5wl281762XGjGjw4cYAM2hEVOmzIHp0VRagZ1RIyArytpBYukQJSRyHxLnTgELHZoZFzIZ4n9W6YJqOaLUW+PwnLqMpwUvrJaphnfcPxiw0DD5/1eUrn186N0mcc2k6nQ4rKysIIeh0OjgmfOblG/RGM9585z5Ki7BlTIdlYsxcoCil7tlMU5d2zeL5Va/Q2bjABS7wbODnIhmYBil/8N19/vDVbQa+wCZgOFB8s/tDlp0xUaqxHbYZhCahshB4+KlJnOpMYsm3f3zMZPt1HK/Kd49apImOwKMaD1BCw9MG+L19jiYajuOg6z5tK6TleJQMyeGeQC4uUi6XscUMS6aYjkc7PmZCiSlVerSoMEEJgxkZEUog8XGJcXAMnY5cY5zYhfSryINNpiZn02eBljphlrocphWOWEMimMQV3GGHkm4hpcWuusKIGjopETYVBgR4JESMVRWpYEnsEeYks92gSRgecq+7Qy/v956cLHClvsz11eqZaQngQz9CFtillCilOD4+JggCHMfh7t27VCoVbt68SRAERFFEHMfF4zyAz7/mgX0e1OeJQJIkxev/LDHvfwfCpcqIBa1LXQ1AwpA65CtvlxkmmXnQiDqgUWLGJbGJpvEYC//0a4+p4DAmoMKHSwgkFgF1M2KlrPPc+hXG0uVgbxcpdEJjAdfSWS/7vLhmc/fWO/QOtwmUS0ctIYWOy5SKNoHEpG6m1I0pjimYTCKqnsXNis+yLVlflNy42vzAatHBwQFpmuJ5Hq+//jr9fp+lpSUA7t16G1sloMF1c5ur9pgUA8d2MJrX0b0Wnm3x5Rcb3FjxLvgBF7jAM4ZnPhnYOvb5N9/b5o3bR8g4zjueFnV9Qt0KqVarOI1L+JMWLX/AySih5Sa8NzDp+6BUFm4HwxndYZmZ0hFo2IQsiBN0kYAShInATzUsf4Kppej6MLNxdV36yuDe3oCKDbYBziyiFgqmLBBQAmRGzFIRQsaUmBJQQqHwmGIonyB1GScmNj4pgjIjbGb0WSDBosQYnYgpDvu8TIwOaBjEpBgcsoKWwpgKMRYKSDEQCAY0cfGLue8Ik1C4pCoTvZmqMjN1DYVGnFPIjNGQb7+6S//GIr/8hc9gOmV6kxjPUpiaJM6d6uaBex685yvu+c+ng3iapgRBQBiGhaCOEILZbMaf//mfF8FcSll8/3E7aBsiYd08IBYurh6jKYGUCVfT95nJbETQJCzG7gAmskKMQUWMcLTwA197Rdujrlx6aoGhmjGhRpRzB56MFA2FywQQTGMdfeFF/v5vvMQ7t+6ymw6o1Wo8/+mr6JrBtLeNY4DsO8R9iRMPKKvJGR2ANM2MheaOg3Ec4zgOk8mElbqHbfCBeg9zYmu73eb+/ftsb2/jui4LCwt873vfI0myREjXdVzXxDACXNfls599nhufeIlJyAVJ8AIXeIbxTCcDW8c+v/d/3uGgN0UonXbNoWEYNO2Ez7QFRtwgDEOGnV38WUBq1Xjxap3PXDIQb/Z571iggEuupBRaHE91PCYEOFTp44gZJ2qZqSoTZF5xlMWUFfZQKgtyEz854+C2qu/hOQZlt4qmbEppzEh6QIyXz2Sv6Ac0VReUwiQiVBa2LikbEePEJcZkShlHBFxWd/Meq4Ygocty7oiXIcECJF2aZL3qs0p9ipgUC40RGoIIAw0bJcESIQEuPiVC7GJ1CzCizrvTGgdv9vjuj/+QkWogDY+qnXC11MXU5JnVvpSSSGoEqYlJgCnS4m/zUvx5LnVAESg+LgghzmhInK4wzMdIDQNsu0ypVKJWq2GaJsPhkJOTEwaD8IzITl3vP/V7GyKhIsa4yqeNhZSwqy5zzGJOKDw9GpjSdmIqjiCKBQYavWlCw0mYpjbf+ZvX0MIel1azKpWnhmysbdBzl9jc3GRpaYnt7W2GwyGGSM54CJz+rCBLBsrlMmEYUq/Xs4kW98k9/J2dHSzLYjKZ8O6776KU4sqVK7zxxhuE4cOEyLIsdF2nVCrx+c9/nk996lMYhkGj8mE+sQtc4AJ/13gmk4FbuxNevz8kjFK6owhbSwhSnQWtx0vLgk9ePSugygAAIABJREFUW2Kx9TxxHNPpdOj1epjdIaOgj+oo3pl4vHJliS+9UCNJYyypSOLnUfcjto9nVOWYNW0bdIcg9vBViSllFBqaUmfMWCIsfDw0leALj1BZ6MGMRCWItEKIh0VAhSEAh2qNipZw1esynUzYS1bxlYcRxSyyhyVcOmoRVwT4yiHGJMIjRSPEOpMIZBBkw2tPulHrQEpICXJfep8SB6xRVlNsJgypoBBMqdCgk/e9M2Z3hzYjVSXCopX06KU6bjDNKwwPV5anhWYc/MK97lnAPNibpolpZufvdPXh0STFdV08z2NhYYF2u02r1aLValEqlXBdlziO2dvbY3d3lzAM6fQnP/WxF8FZhxvqLsvykEDZeGaCls6QZpW1hsFnP/VJEs2h3zniZBhwryNwKussN2xE3CmqLlEUce/eParVKo1Gg93dXTRNo1wuMxwOH3v/eZtlfi7iOC6Sg/nznmQS1ev1GI/HNJtNXnvtNabTKVevXuWdd95hNnvIk7CsTLyrUqnwyiuvcPPmTXT9ohJwgQv8POCZSwZu7U74x//8DmM/wTGhUjKZBiUWXMkXr+jgd7j1ziH38pvO0tISl648R6kVMRn1eO3elP2jGO3BHpfdtyh7JZabHqZlsV6Bugix5ZjpzKY3FSgpibAxiQvC02kzFk2lhMoioIajfHSym6eQmc1LSlaKlxj46JSZMo5txoFCsyoEqUcobYbUUMCa2GYmysxUCYXI1eoyx7isCvBh592zwJ7kY2aSCpkQrImPi4kkxkYnBgQtThhTY0Azs9ZFIlDEuHRpUVc9pIQDHirMNbUuAAEuNlm14Wnc635WOC0ENQ/685X+o5yCKIqK5GAenCzLolarsbKywuXLl6nVariuWyQOAKPRiO3tbQ4PDxkMBiRJJs9bLpdZufwcm5sKm5BY81CmB8njAfdpYYjkYXVBgdAFuohw9RZLCzVefPFF0jTlzp07NN++RSB7BJ079EXKcq5HkSQJm5ubvPrqq1y7di3TxggCms0m+/v757Zf5udq/hjHD8cHPe98wZ85AbRUKnH37l2Ojo5oNBocHBwwGAyK7UzTxLIs6vU6X/rSl3jhhRfQtItxwQtc4OcFz1wy8Op7fUazBKUSpqFGW+zwfEvnc9dbfPlzn6NUKrG3t8fBwQEHBwe89e5d3u2WGARQK3uMIp2xNJjEHp2ojDWM0PYTwtxAZkHX+UQ15VCu0VGCGTYaCRpQo8e6ftaMJesVh7jMSPPgL2VIqBwkOiXhk2geJb2HngYEMpOd1ZIplUoVK5QMpINDmFnCCp2GOmHGFSRa3h3OTGkzpzidD2/WopE8UjlIsHPDmAkJBikGOjEd2rmFrMztakwSTOzcYS/G4Zg1YmVgE2WVA1mjxBSBIhAuLtOf6F73YWAYRpZg5UF/HuiBM/LQ85XtnJugVKYYaZomlUqFcrlMtVrFNM2i7L24uMjKygqVytk69ZzouL+/X4w/KqVwHKdIIqSUlEolltdq9NSMezsdLDlFS6bF35/UGnkSHtX0n+/LafLk/Lg1TeMLn32ZNE25fVsW+7i7u4vnedTrdU5OTjg6OsI0TY6OjoBshX66dH8a80QAsurAXF3zSXyBg4ODgsx5584dLMtCSlm81/zzs22bZrPJV77yFa5du/a3bkV9gQtc4GeLZyoZ2Dr2GcxidA0SaWS65c6UynSf2z+S3P3xXxekpcuXL/P1r3+dzcMJr/3RjxHRgMOuZEI5t3iVhDjoKFIM5gF2mlYw+hMCIRFKElOllkvHLmkH2OLsTdQioiRmBLiUmGERkSiDVBk4BKCglI5ZFTsITTAWdTTpI6VCJ+bTizN+dKIxjXXKZoKjazwIVxhRyz3dQpbYBwRHLNKnzUPzm58WOgFl5u0D0OixmAvnkiceKSYSiUBH4OATqaxCMcIjznXlx1QoMcVTE9raYdE6eDSwPYp5sD4t7Tz/fh7k56Xq8wLI6f6+UgrDMCiVSlSrVdrtNisrK5TLZXzfZzKZIKUsWgCNRuNMmTqO40Lu+eTkhCiK0HWdarVKq9UiDEN838eyLNrtNq7rsru7y73b79BKYel6nXAcEflusRKfjy+expPOy09qtUwmkyKIJ0nCZDKhUqkwHA5pt9vcvHmTcrnM0dERs1mmeFkulxmNRiwuLqLrOuPxGNM0z00G5tyOecIRxzGGYSCEOLcyMCcNmqZZkASr1Sqbm5vFNpqmYds2rVaLr3/962xsbJx7HVzgAhd4tvHMJAM/fH/If/fN9xnlycBKw+SLN9r8w69+ljScFpa3nU6nsMD9zne+g2F71O0lOomHFYfYKiTEIcEAdNLHgqrOjDIlZvjCw1F+IR3rCp9EGfgq81l3hY8hEhb0LkNVp64NMXWDnWgZXzlYImRV7OIKHxTsJZfosoBA0BQnMNxhySnTKFvM+vmcvOUiNRsnzZztXCaEWZhlUsyif9hWwQchC4bZZDzoRGQqeHr+Pho6MyxSFDp9GpgkWIRYpMREpAhSLGISxuiZ2pxK2UsvMaWCRcC6toVnJliWVZSHDcNAaRahygKjqT2c+Z9rL8wDPFCsUud/03Ud0zTxPI9ms8ni4iJLS0s0Gg2EEPR6PbrdLkdHRxiGQbvdZmFhAcd56Hw3m83Y39/n4OCAbreLlLJIKOeEuNFoBEC1WuX69evMZjPu3r1Lv9/HMAxWVlaKxCII2ty6dYswDHnppZcIw5B79+4V9sSJMvLz4uExZU1/KO071x14UqsliiLeeecdlpaWcByHOI6LfXNdl8uXL2OaJouLi8VxV6tVoijCtm1u3rzJrVu3Ch+MR3Fas2H+fpZlUSqVzu3t7+zsAHD37l1GoxG1Wu1MIiCEwHEclpaW+PVf/3VWVlY+7MV5gQtc4BnBM5EMnAwj/uk3b3M8ygxNNBQlfx/n5F3+4k/LNBoN2u02v/Zrv0alUmEymfD+++9z+94Ddo4GlMMHmV6cLTlIV4iSEr4SpKSPse/Jh/JOu8edHhvbk5foqTYSqDGgzQHbXCfA5SRd4FLyAB8Hm5AQG1NXmKRMpcsUD/JV9wyPCIudowFdUacsfEJlEwYhjpogRQmPCU1OOFRrjKnmq/C5Wlu2kv8oQjXnI9Ojz8YRFXPjGACLGIeQEjPGVNGRRTWkpvrM8PKJhUzXHgS+cumySIidVRokXE3eJ0394nWzlXCdSPOoWSlXvR6WLove/2kewGkugOu61Ot1FhYWaLVaVCoVNE1DKcV4PGZnZ4fBYIBSinq9zsrKCrVarags9Pt99vf3OTw8LMh0tVqNq1evUiqVGI1GdDodgiDA8zyuXr1Kq9Vid3eX733ve0ynU8rlMi+88AKVSqXgD6RpSqlU4mtf+xq3bt2i1+tx7do1XNdla2uLyWTC4VijywLkfJCm6lAR4/w855oGeWXgvFaLUorvf//7SJmdp0uXLqFpGqurqwXHQdO0IvEZDAbEcczm5iY3btxgZWUFwzDodDqPTXFIKZnNZnQ6nSIRm/tpPIper8doNGI4HLK1tYVt2+zt7T28mvJEYHV1ld/8zd9kYWHhI12VF7jABZ4NPBPJwObxjGmYaaplVrApnuowHkwY9Y+B7AZommYx+lWqNOjqV+k7Pq4747pxxKB7iBntUVFdDpNFBtSZFYf4UL+9ywpCamxom2fmxGeqxAwPiSDE4oQlfFwCPOz8Jh5jnbmhGzJAicytzmNKgIsgU6Sb3+wdfELdw0nH1O2ENW/KYe84bznoBMolwuFhgJZn9vej43SFQTA318kkd7Pf6yhC3Fy1TlBmjCYkIXbmbS/6gKCvmgTCLZT2/JwAKfNnRtiPr3TnK2HpM5VlsMqsLVcolUpFMqBpGpZlFQlAtVqlUqmcIfeFYUi326Xb7RJFEY7jsLa2RrPZxDTNooe9t7fHyckJs1kmK91sNnn55Zcpl8sMBgMODg7Y2trCsixarVYRaN977z3eeOMN4jim2Wzy4osvYpomQRAULY00TWk2m6yvr2PbNgsLC7z66qtsb2+zvLzM0tISKysr+Pc7iL4oTI1PV3jmugOnWwh6ErG28xaXN3+AN+2jK4XmlemuPMfBi1/m/Sji8pUr5wZbIQSNRoMvfelLfP/736ff7xe6DvNjPnM15AnA0dERaZoW/f9HiX5z0mAURdy6dQvIkoPT/AjHcdjY2OAb3/gGtVrtw16YF7jABZ4xCPVxq76QVQb+2b/a5J2dMXEiWS0N+VRlH1eLMAyDSGoMZyl66iNkSCQ1enGZo7iJmU4Jlc1le5+lqs7KygobGxts9yR//KMB4+mIHit5u0DLV8VgErHIIVf094sybqIM9uQljtUSAR567rJmIHMyns9VcQclDE63EebIWgyZUI0rZmdeN9EcDBlgiKyUHkUZ92CoahzJFQJcZniZWQyKEJunz9XmQX+uT5/yMPifDUgmMW0OGNLMCI1k2gspBiYBNYbU6TCiRoSLFNm0xLyScnrUcCe9TJc2AskCJ2dK4rqu45Yb7MZL9GewUNF5rjbC1hXVahXP86jVajSbTVqtFvV6/UypWkrJYDCg0+kwHo/RNI1ms8nCwgKe5xFFEQcHB0X/P0my8zonDFarVfr9Pru7uwyHQ5TK3nd9fZ3FxUV6vR5vv/12QYRbWVnhueeeK3r1tm2j63rRm7906RLVavXsdXtywg9+8AMmkwmaphFFESvrV/mDV/c4HEtKTJ/sAKgU1+/+Dc/d+iv0NOvhn24MKU1DSEmwsE7nP/gvWfzML/Hiiy9Sr9fPvQK63S4PHjxgbW2Nt99+m3v37p0h+c3hui5XrlxhMBgQhmFB/KvX6ywvL7O6usp4PGZ/f59bt27R6XQKpcg5HMfh2rVr/PZv//YTpxDmmAYpR/0pnd6E9/amLLdcri7XWWu5FwJEF7jAM4RnIhmALCH40eaQd3cmTGY+TSflWrlHv9/nva5HgEujBC80Q36wnbDT9fETE136mMSsaVuULfmQiGY4HKlLnMQVjmZZiTvEKW64BiEWETfELRr6wxVUogyO0iW2uFGw/K9xC0OT2MqnT/up5s0fJZHNf7alz/rhO1za/BHOZIiRxgRGiaP6Nd668qvMmi06YpFjVvO+/tNVB3SiYuIhzFURMzOdGJlb6prEtDhEEwKLkLIa06dJhEOATZMes1ykKM6fs8gBUhisaduZCc8jx/gov+I0hBAkSifCZqlR4rOfyiSJpZS0Wq1ipn8Oy8r06udEPl3XaTQaLC4u0mg08H2f3d1dDg8P6fV6KKXwPI+lpSXW1tao1Wr0ej12d3fpdruEYZhNA+RBzvM87t+/z7vvvstwOMS2bS5fvsyNGzeYTqcMh0McxymU+aSUrK6usri4+ER2/P7+Pm+99RZBEDAajXAch/byJf78r7+PDIZPTAReevPfcmXzjZ/8wWo6WDad//SfEK1eZ3V1leeff/7c6Yjbt28jpaTRaPDGG2/wxhtnXz9RBppT5YWrq5CGaJrGjRs3qNfr7O/vMxgMiKKI2WxGEATFOZ4nrhEWVUfwyU/c4Ld+67cKzsVgMGAwGDAcDgu+wmQyYTyLuDuq0w1tTtIGCSYacG3J41dfbvM7v3S+D8IFLnCBv3s8E8nANEjpTSL8MOVfv37M/u4msdT4yo2sNfBXd2NM5TOOBBuVgL1ZGRUMmKoSSqUEQYquSZ7zjqhbmVRumqaECQwTjwfxBj4OOgkV+gxYIMEEBIscnKkOAIxlhTvyRRQ6gpTntfdwhc9Q1TiRyxjESGGwrj14LEDC46zxtjjkRC7yyfvf5ov3/gg3mhTl9Tmk0NCUZFRe4PUXf5fvLf9GPtDoIvN9zTBf6WclW4OIFB2dMN9KElBCIrAJKTEBNEyydkhbHOGIoAjegbQZqxoTVSHEYUyVAAeTiBSDKkPqon9u4vM00wSnYZomzWaTjY0NGo0G9XqdS5cukaYpR0dHHB8fMx6PUUph2zalUokoihiPx0ynU6IoqxQ1Gg3W19e5fPkynucxGAw4PDzk8PCQ6XRavM/6+joLCwvEcczbb7/N/fv3mc1mVKtVnn/+ea5cuUK322UwGGDbNvV6ndFohO/7tFot1tbWzrQrnoQHDx5w9+5dptMp3W6XdrvNaDRic3Pz3NHDa3f+hpvv/OlPfN0Cmo5WriL+yf/O7jRECMHGxgbXrl07szKfTqfcunWL1dVVdnd3+au/+ivG43HxWR3INUJKLDdtblQG1MsOX/ziF7l27RqQJWGvv/46d+/eZW9vr5iSOH09uyLgudoQTUaPyUpLKYsEcCyrTJXHWFUIpE1XtYr9bFctPnetxj/86iqXFi6cCy9wgWcBHztnYG47/M69PXQV041cDqclXC0gDn0sQlrVKv2wzEotpW4N6YUxY6NMSSUMA4NeWiJJTWYjl89V36eRs6OVUixIScvf4WSiYaRjJAZIjT4LmViQMB7rdZtEVBkQYVNmgknEgVxjqsqMqAEKV/loKj2X9P8oa3wmXb72g/+VF/deLbY5nQgAaCoLGpVJl6+//j8RfVLw3Wu/i0amc5BgoBPlzYCstL/MDkdcYkQNkyw9MJHYzHLCX+aNYBLnLoc2fdq4aoor9pikJXbUNVI0XPyCUaAhSbDwGLMuHuCKzPcARVHl8FWJnmwRCfupVfniOObo6IiTkxN0XS8C8KVLl2i1WqysrHDz5k1msxl7e3scHR0xnU4RQlAqlVhcXCz4BsPhkNdee43xeFzMy9dqNV544YVi3LDT6fCd73yH3d1d4jhmYWGBV155hZWVFY6Pj7l//z6WZbG2tsZsNuPo6IhSqcQLL7zwgTr9j+Ly5cskScKDBw+Ioojj42Ns2y6C8mnoScTzt/7yqV8bAJkiJyOW3vwzrv1n/y23bt3iwYMH7O3tcfnyZa5cuYJt24XY0nvvvXdmSgNOX5MB3bFBOZoyHXYLguXc6TEIgsdGJU9fz75yOB520YXCIsYQyRmjKylMdtIN9uNl0E1KFjgGMH5Y4TI0Qbtq4ocp0yC9qA5c4ALPAD72ysBOx+dffe+YvQfvsduLQRho8ZhECi5be7i2zma4xjjSEZqFZ8Q0yzob1QBNJfzFfptu5GAQYxJzXbtF2+hj2zaWZRXl3Vjq3BlW8aWDriJSkfXLXaa0xWHO5M+8BE7UMj4eBjGrYhspdPbkBkJJeixQZoREY0kc0tB6566Yi/EyNeG33vofuLb1+oceFvz9z/7X/Gj914mxUUhUXhVw8anSZ1E74kQuM6RGjE2JKRqSGR4CRYtjNrRNDJEyVDW6aqkgP5bVkH0uMaWMhsTGp8QMhY6Pi8uEVXaxhc8xaySYxbk6UctMqOArlyY9YmGe20Z49Jx8UEthPttfq9XQdR3HcVhcXGR1dZWlpSV0XS+IhFtbW3Q6naKV4HleISUshKDf73N4eMhkMsEwDJaXl/n0pz/N4uIiR0dHdDodTNNkeXkZKSUHBwdomsba2hqtVusjCeZIKblz5w5bW1ucnJwwmUyoVqvs7u7i+w8nLDY2f8DLP/o3H2lwVCvX+PSf7hIj2N/f5/bt23S7XTRNo16vkyid7eMpnW4XW01Iw2kxUfDTyEmffq6lQhAQcX4SOFMl7qXPM6GOQOZmXeNcPyObjvnyZYVbsvAqDdZbDt/4XPsiIbjABT5mfOyVgWbZYqluIy9/glZ7yP5Rl/FMUU6GmEjuT5c5ScsYJMSpjpUOOIw09ME2um5gxCY2dRIMLEI8sl6v7/vFTVgIkU0KyDY2AYFwqXOCK0IsEbKfrtOhDUCNPuSkuRC7IM05+LkuQYCfjw1GymUmvfNJYiIrGqx273B96/UPfV4U8Ltv/vdsLb1Mz1zMlA8xC9tjixiPCTMxySRtkSxwTIdFSoyJsVjR9oppiRpDZqqMj0egHAbU8fFQuRSyygWHUnRcJggUh6wSKZsEG4cZCBirKmNVwSEgoMQMlwrjD1QknBMze6qNQtGic4ZsCNnKdG9vj729vUw9sNxA8xYxe2O63S7j8ZjhcFjM1C8sLLC2tlboCoRhyDvvvMPt27cZjUZFErC4uIhpmty+fZsf/OAH2LZdzPE/ePAApRQrKyusrq6eWUl/WMz770mSEAQB0+mUIAi4dOkSd+7cKbbbePDDj/wecjLk//7H/zmHlz5JGIaFT0FxjtO5zsUaTXHCmjbFyLOO8yYZnhann5sqg0O1WlS9fFVCzyW8DZEUUzVjaiT59Tplzm9I0YGtTgCmxqU0u2Z6kwjPuWgXXOCjY95qvnDG/Oj42JMBz9H5xufa7HUD/uT1CRM/wrM0nl+AwbSF381Y/VkpPybCwiFEUyl6GuExQtMUmia4Yu5ClDJTpcfkXk0VZgEdD1/ZxCxTVhNqYkCXNgFZ71UiaKkuYV7+nr/O/GYYSYttdSVXKxBMVeXckboIG48pn9z8dsEH+DAQgCEjPr/7Ld64+g26LEIuJFxnwJq2jaOFrKiHN3iAmSwT4FJllIkh5Zgfw1DVOFCriMIHQQcSqvRoiWMEECibPS6j0AmwsvIwDq6aMqFKSCkjdNJlQTs+d6UPDzkFqTKY4eWNEcE0T6ae5G0QpRpb/TI//NNNDOKs6mBk0wLlcuYsOBwO2Tk4YRoJ4lkff9wnTVNc16XdbrO4uIimaYzHY0ajEVJKHMchSRLee++9oqowl7eemxzNNfbn38+rBHPp40cLaXNOwGkDoHnJfTKZkKYppmkWRMnStP+R5aSk0EgOthhW1x8/Z1jn6lycPsePOhk+LTRNwxa5N4OMKcmQmbSxCB9rFc3fx1NjfEoYJHkKkI/KCih7JSpll5NRyLVll2bZ+mgn5AIXAMazmD96bZ/dXohjKP7B167Srv3sr6lf9ITjY08GIEsIXFvjqD/DiEcMA4O9YMBh1GCYejlBLsUiIMJBKMkRq3hyhElISU0yfbww5FhdYqzKuHrMqnyoIzAPhj3ZYMxVUkxCHGzlF917hUIHWuIYQ8zH8yiej4JU6HhqyowKKRoGKVIyF/oDHorL6EHAjcPvf+hE4DQ+s/kt9q5+GoOEMO/5rmsPzhzX6Rv8o6u/R0l+NYZ5QM+SLEGEhiSgwqHKzJJErhugE6HyAUuTCIOACQ1KjEkxWNBOqGjjc/c7kDZ7ciMfyQzy9kQpLxt/sLfB3CkyVLnBUwqX2SRNH1Z7zpa9JWvGlJKdSRzv7++zt7dXzNDPA3y/3y8EhCzLQilFv58lEXN1vtOEOOBMy+C89sF829OSyVJK4jhGSvmYEqAm08de48NAl+cH8w/Sufhp8KgGgU7Cstgh1CxSpXPI2hlFRchaCHWGpPnoaojDnPRqaAaJcKlXHZ5ft/mdVy4mCi7wZEyDlL1uACjWWi4lW8P3fabTKbPZjF6vx5/9zY/54WGJQNlEokSp5PI7rywTxOlPDNzZ6/uAYK3lnNl2Lt0dhiEn/TH/8tVdNLfFetv7hWxtPRPJAGTtgk+/sMHB4iJlI6aurfMnb08xeyECgxQNHUmAiYviWK0QcgmBwCChJgcYxAxpEGIzSHUSYFVtEwo3C/pCJ1ZmTpJTaIAjQhbUCR00JIIaXQTQkYuZyI6asiT2ibHoqQUibBQKmxkSnRiTY9Zw1GaxOp4nHksn7/5UiYAAGtNDFoMdyt7kqUq8p5ODJ/WJ1/QdanLAgVplTB09r7gYRPiUqNPFxskNnGbFhMI+GdlQI6XMqJhQeBSJMthXG/RYwMm3WdV2WeCEJ3EGTsMiwiBmQA2LhAjzyYJGeSAKpIkWZCNxpzH3QICHVse2bReTCfOf5yZJmqYVGv7zBOF0ogCcCfzzROLRZOJJBkaJaWOk8bl/+0kQShGbzrl/m3+uTdXhUZ2LD8JPmgh59DiEEOgkeFqKFCaeDJmlDk7u2wGZyFYgXJqqi19ULLJB3TCN2D2OWF+w+Y1PLxDEFyTCC5yP/tjnf/uTO/x4J5ugeWndxCbix3sRzWSXkn8/cyxVBjpXCalTd6E/ifkX3z0gTmGpbp8buKdBym7H5w/+4j3e3plRrzf41IbNV5+z0EkIw5DZbFaMHG8dz7g7qHHzhsPRwChaW79I1YJnJhnwHJ2vfrLJ5vGMq4slSvY1fPuIv3znhP3jESpJ8PGwiBhTI8QmQWCQqeXJvPwc51RCBXRYYKBqSGUBKZpKSXAKxnyFAUIl1EWXSBnEOMzw2FEbTKhhqSw4xioLRiElavQY0CLJV8weYwJlcyyXaIpOsWJPlE4c6Y+NEH4UuPGYSFSeqsR7+ub+JC38uYWukYbcUzcJsEkxmeamRgkmLY6piQEd1c6FhRRJrqlnkCUcMTZS6Y8FEl+VCJSLRUiATYnxmQRgkpYYsUSVPmV99th+GyKhpQ5zDQQLnfixyY2nkfYFHmPGx3FcKAvOg//8S9f1wg9B07QiEZh/zZ0F50H/vLbBnFVvGEaRVJzG8eJ11nfe+khJokDRWbxa/PzoOTNEUkgfPwmnnwOwk15mTIUKYy7pW4+JaJ3nsDh/FCpiUe3gi0xoa4666BPJCV3aDGlxpmyGRqjg9btDTE1Rdi1WW+4v5ErrAh8OYRgyGo3Y2tpid3eXB0cTftRtMgx1dN3gTzoxPnWysHWZT9DjkjugWamwUdXZk2UMp0IajHh7Z8T1y6vsdCQH3QmLFcF0OmXvqMu79w959Xafjm/h42at0aiDSsq4GKyWE7rjiDAMcZiiaQbrl69jrTYYhjobnkHZhr3DDt/6cZ9xbLLS+Pknwj4zycA0SPmzHx/z/l6f5YbDV1/0+KXLCl2W+HYS4kifUSCoqwG7szKakoyp5RWDhFneL00w8mI/RLhElNByV76HCn0ZK7/LAlMquGpWsOVnlLDxicjmyw1iQmw8Mq3+CVUUgjpdRjSQ6IxoMFE1uqrNc7yHIVJ25WVcdp9wtB8O6inZ7efpG3xQwNQ0cNMpNj5D6ujWc7YOAAAgAElEQVRIUgQakiVtH0cLceQMJWFAk5QSCo00J2ueN1qYKIOebBFgA4IGXda0bRKlM1Q1hEy5x00isp7zC8lbSKHTVYtIYRQTCx2WSdExiTCJkeLsP9m8+hILG1OFH4oQNy/rR6lGhPETqy0Pg2IWcOfJw9xLQRguieZgiwgZ+4RhSBzHjyUCAFvXvsDG9ptPva9zSATd5gb9yioGyblVH+CJq/y5OmZPLRAoB4MElxEHrKMQTKlQTQdYWoSma5gqZD9dy901A5aNQ8pijCHSx6oFA9V8OGmgyJtCJULc3DH0NDQEKWGiuL8/5EsvNDgahBckwn/HEMdxsfIejUYcHBwUaqNzzwxbi7HTAYlsMpUm8RmbdgHtL/DLL03o9XpEUcQn3Q6pNmM8HvPWyGHz+w9whE/vzdtZiznVOJBrjFWVIa383u4CiiCG6dGM4z6oNEYqgaYbLJQsRDQhUock2oSSo9Pbm9F/b5/BTLIVrVB1DLbcFi03xSt7XF0s/a1wFv628bEnA6cFh7aOxkwHB7zTtaimGistj71jwWA8BSw2Kj7XKwZiYLI7EiTxFJcJKRYCSYqOwuChDC9kPPu5E6DBmeVlbiaTIJA56U8g6dMk0yjUMfJglDkMzgixSdEYU8cgwcchxsYkZEKFgWzgaVOG1JlY9Z+6KgAQWaWn2+6RSoAUOivicQb5PDBE0kYnJUEDBCEuBjEpogi+GUlxF1+5JFio3AA5xiTFxFAxvnhIVouwiIRNU2VqhkvaAQC35U0CSggkUS5qFGGzw7Xcm8GmpCYkGNjMSDBwCQiwsURUJDLzEcVU6egiwcU/c1xPy5Z/2lG787azhSqMi6JUsDP2mEkHB40VrfuB7z1srDCor1AdHqJ9iKleDcWrV/99tuXVYtx1pkropMwo4asSA9V47HhOJwFT5eUy2zERLooFYky0/P/lgBV86aFL8BjTpUWMhUJjkNRZEgf55MzDZGAsywxUA09M8CmjADM38ZoTfx/KZUs0YWAZGu2qxRc+UcNPBCtN+4JE+AuMNE2LHv/8MQxDhsMhw+GQ2SyrDsZxXKhYzhPOalrigGZOQj2L2XTAO/cO0ZMJdqmG22ygZj2Ojg4hbFEjJVIWk9jG0iBVBgEuOgkpRnFn9hgW8vPjyCLJkw4hBcOhjo2Gx4QJcMWcMU4gcUpcWtLpnwg2BxpJt88/3R2xtNhmrenyX/y9Kz93CcHHmgxMg5Rv/vUWuydTGp6BZ0j8UouqFqKnI+5tTznoelyuxQxCg41KgGMKDF1DJQE2BjEuCoWGIMbEJCTF5mFp8vQq5nE7Y5D5hy+QJNjEUDgdakypoKFI0PGxAJvM0DfEyo2BYyxCXDQkR6yxJh+gAZuLnyHRTAz50XrECsGotkRQejojmPNK548SDOcjaB3aeRITU2KCx5gpFRJMIkr4qUuqGZiEHLOWB/LM9bDEhBiLGAuJhqt8pISZVkJTadEzruTtgZ5sMKWaP99EkORBKCFFQ5C5VY6p4eIzVA0kGjoRTcasim0MkeQiSVeL/TRVWHgiAI9VRU57KTyKn2Qn/IHbpQ/1FMbSZaTKuGpGIJ78Oqfxwy/8Ll/+9v+MkYZPlRAoBG+u/ypvr/wKkXJQChY4xMcjxsZhSqq0x/YTBXvpJYbUSLCoMmBMhZgSZt7Cyf5fTGx8ppRJcBEkgJffMDNtgAiLqSqfOb5A2myr64ypMFFVFrVjlJJEWIU4VnbjzZpLhmbw/EqJX7nZ4EufaLJQtX5h+q0XyDB3xjwd/OcS5FJKgiBgOBwyHo/xfZ/RaMRsNjuXY2OaJpgNpG/kCWYmsw5QYsI0dbk7avJiw+D9aZ0/f3Uv/98foFPN25sp2+oqjgywlY9BTI82CkFmDgc+Hh5+cT/LptayGKDnPjEZCVbjYAKXSgNmkwHdbgKRhiVXsXWdrmzi2TqHg5DN49lFMvBh0JtEbO71Sfweg4HNL121+eRKmValimst0hvNOI6mnEw01kqKldU1XMfGlSnXtWMOxoIwkthxN1+5KwKsvEStiq/MvPf0oSpEXg+QpyyOsxtmnwCLhBLz0bsxVU73PRUGESIPbjoGISlQYkyUFZOpMGBqlfnx2tf4zO6ffuQe8eb1Lz719qaWssIHz5LPR9AkGhIdSYxEYBERoLCYkKLzPjcwpKLCIG+hBPiUcuKkRkAViaDEDEjYUVeRqUZZTFgS+2cCsUmcn2sNnZQ1NumzmAcdA/K16fxz6bAMSCxi1tjC0UICaXNPvciYWuEZoaMVY4rAQ5U8PPbkRmGydN6q/2k5B6e3M1TMRHpoIsXRwqIlkjlblmhy8lQM/mF5iX/x7/03/L3v/jPcaFIc/aOYc1s2L32Ov/zUPyISDg4hESaHXCpInxqKROkIFBPKeGKCRZTbTC8g0fKKVhMDiSBBoiMQmER49KjRYYvn8yqahUMPhcaYCiK3rraIzhzfWNWYUkFHIjEIpIlBgqUpmkaA65gcTAwsGZAgWCg7/KOvrrDeLhUJwEVr4OcLp6dnxn7Maz94Fy2dIqMs8Pu+X3Br5tvPGflxHOP7/hPJtZAtVlLNxdFjpIwxkw4O7VwcLcYgypdgFnY4oRf53JkNOUn0h2Ri5TKiToiDTpzdv9SMSNjU6DJQNcACNDQSBNBmnwkVRjTz31iQz7BlQ+QyI1KnkmDc464oE2Gz1CzxhZUVZqrC7UOfcZCy3nK50s6u65NhVPDgnvXk4GNNBppli5vXV9k6KuPpEcu1ENcM8RwXt1zHqq3xn1zXOR7M+H9fu8+33jzC0WN0oRMLh42WjmkYTOIqJS2gIfe4fRIxCeqkCBQaFkE+OleCol0gycLJ2cMXSGr0aHPAfT6RqxIKOKdEldn36nmtQaCREOLhMcanTIKJROf1K7/N53a+9aHPjSJjnu+v33zq5wghsI1sHjxjtT++zXwELeNYZHJDZTGhxRG6SvNEwcgJgxo+Dp7wc2njCZ4asM8VdGLAIMBGojHGyXrBqkRTdKmIUfGeFW3CcrrPmCoWc9EmGweFTkSJMQktUqyi1Kyj8ClxyDqeusuUcp7khPn4XJbOnB5TLII2MXHRZjh/tf6TRHhOtxxWtD3Gssw2V+moRRzl8xzvIYVOKFzKakSCTY1BsSL/oFaBr1zu1m5y/6v/I688+Nd86cEf4sUjUpG1azQlESi2mje5d/WX2F19GRMfhxnZ8GdWjbIJmVJGorPFdUIsNMBW2URFqgxS9LzUryPRqXPCDA+DlCZdQuGwYeyjlMROQgxSdF3jinmCyR7vh5eIlEFJm7Ghb+MaAiEsNE2jlIAWpChhoqPQNZu6FRMKB0eXxErScBJmMRhJ9P+z92Yxlt33nd/nf/Zz96326uoq9sImxUWkZEqmZDmWociyPXFsj4NggMwMAuQhT0GegwGcpzwlQQLkYV4mGGSSYDIex/HY40X2OCNLXiBTlkixm83eal9u3X059+z/PJylblVXN5uUbJKIf8BFVd26dZdT5/z/v+W7UPC7/O+/26fY2uKFjSq/9ubK33UEniHmvR8u+/q03/24H5vhYNxA8pfbMd+7/QhDejSULrZw0JWzJOAygO2TQghBEKucsI4bF7DiGavqAbYacEPe4TRe4IQ1JAInLeAcCjS0ITXDYxq76aguqfDD9Np1U0+aHk1aso2Jm2JZErprjEAlwMJnkpq5uSmQOtsngLSYlHgITllGSo2W1mcwjdAfvkU7qFEoNlGjmProhH/xz/+I05nG/dkatcUNlmvmJ3508LEmA0VL5ec/t0hvUqNRMjDUOHGdO+7w/3y3w0HHYW2hyGfWC4xdwdpCmf40ZLPQx3XHxH4CaWuZBZoVg1pphasbOv57GntdnwhSNb1k005ogQlXOjhn/pNEjOCYNfS0PlKIUudAOJt7ns0/M4xBknR4FBmzxAFjUUOTASEaTq3Ft5//Nb58918983HJxHne+olfIVY/2Cgnf/9Pybiz0ETIknJIEOu5bsGSOEQTEXoUoBES4+NSRKY6Ck35CF1N2BhHcp0ZVpoxy9QoKTkuUYo4iKTy2GuuKPvE8QYuVgI2w2eGhYFKhEaU6hqoRAQoBFiJzoGig1GiFrsUAw9XFqiJMevKDkY8PcdSyDZ3RUacsvyBVT9AJFVmFBBxiCdstNjHFzYTWSYQJooMaYo2njRxKWClyciUEkU5wZNnY4S+bOBHSeKRiUJdFqFUk7GT1eSbt/5z/ujmf8ZnTv6MunOMGgW4epn7rdc4KV9FTdPaCA2ViCIT1tllJBqEUkm7LiFj6mTJbodFCtEoXdRAolJIbaoHNMlkt0OhJxRROSNUCixoA1xRpKh6FG2DhZLJC5UY1S6yvriCiK9wcnLCYDBgNPWwZgor4SlTipSUGbYBsVph2Za8sChBUdCUkIP2gAeHEzpuhaFbQp8O2esFvLZV4dWtyqXH6OOOj3vT/SCK6rPEvGdE5ub6pK+qqiZg2Gd4rKIoHA0C/N0OBQNO/UU8pUJdn9HiiJkfpfTgy7E8odRy4K+uRGeAXoxkQxczXGHhSxOLIMEtiWPCyOSI1RwX5iFQgjHIIUtM8ZXkNUKpYskpDiUSgnmEh0mfBhp+Lj0PWXE0wVB81DhiSoko7T2eRaI5k/yFiiAkwqAbVimHQ8YiwkNBjE4YU+BgPGAsK0y1RaaiwtXCp2N08LEDCM+3ClWWlpbw1Qqz2/eZDh7yTs9gtNdlIlpERo3N5So//co1frAf84O7uwhnQivoE0y7dJWE7nUdiaLaHERLSHRi4ArbhCicsJqqDV68yJKfPQo4aQs1JVFxliHGCKKUrZAoDWUZY4CBQZea0seTyWZh4hGj8M7Nr9GKjrl1/08/kGoYi4Tp8Nc/8ct0lq594PH7MNl3rgiIhhQKRTnBwU5nZRG+MCkzYSxLJLLHidBsh2Wu8ghfJFQck4AgBRFqxCmVM6nVI1T6sklJTs5Vx7FQk7a9nKVgHY8KM2IUfKw0IVCwmSJQ8FERKBgiQJcuCgG39LtM4hIlZYKl+HM0N5Uois7wEYJzyoxPAgZm8r0ShRANJIToqDJEomBJhxlFBjJBHsfpWKLEOJG9FmqKFkmApWOKxJj4aAgJq/FuPi6BhHLpxwZdmqmqRYyFi6JI7q38BH5K8ZREgA74KRo/O9ciXEzarLAojzCZ8ZAaDjXOFi+Bj8ExGynrpceQZn58E9nugAAdU3ZQ8XgQXkMANg4LyjYT2aCnX8ON4Xllxmwy4d6wjSITN9BpqPHQX8KuNXnjxRrXWyC8Lp1Oh+NuH/wR3cMkEVIUBTeucD++kSbgCpqI8cOYkXMeS/NRNtS/qQ36o8azbr4Z/fRZH/ssG/TFx34Uj40nhZQyF/sZDof0jk+Z9YfM4gKxFIjQoxvqDFghwKDI9IlYnlOZJOoFxWWFAzQlSs5zaWBKHw+LonCx1AARJ+ubJhIKeFcu4KdrdSKiLnLF2cwbRRMhN7jDIK6zw1VmVBDEzChyxHp6TSXHRiWkLEbYwqFOj0NWOMOMxUCUsHfyvxEM08RbI8TFYCyLxOiMZRldFbjF5ygXSrywssxfPnA4GQRsLtpsLT4bEPzjio89GbgsGiWDa1caSF5Aj6as65Jer8Nwdoq/5/MHJ2X2glV8Z0Dbr3AoSlQ1wRWzjSoDkJKGHnIcLRGiIJCMqOVzUhMHF4s4bx0n/+QU70ySBWZWweHcVzUFVAEXOgYKMQscJ8qFcXKvxZRF0aakjHn7pW/woPoqX3j/t2iN9x+TKI6FgpAx7YVr3H/hpxg01h47Lqqq5sp5vu9jGAaVSoVarZajc4MgyGV2J7OQaSCQ3ogois6ZzSRAmgYgOIlXWBb7ZyZGKUCwTyP1K9CJFBsl8nNsgUaERKCk25dKSIiatvcfb80bqVJDjwVIjZFWxD5t1hjLKmo6D9TSrLsoXFTN5MUFKMUlhBDYtp0u2LVzVdPFBT+KIoIgSG/RpeOSefneEDWlOrqE6Bh4eOg4FFGQ6SZq0aCDi8Uix4RSZSYT3YtQ6BSkw4AGU0ro+ExkkT15FYSCIZOksE8zZa8omDiYzKjTx0cnwqDAmBllZpjEJB6UuYwvJP8HNA5Zo8dCeh4bzLNnksanJEjfs06AxZRx/lkMvPQ5E9xBwo6x8IgRlBgxCS067Sk+JncOImw8CsJjRTlA1zX2uUZXllnQYg46U15csllZXWR9uZUf//F4nNtD3zssJklW+r8VQmPBDvG6D/judx8+sfp90mZ28f6LmhGX/Zzdp2naj33Tnb/vx7kBf1whpcTzvMcYACd9l+1TF5wTuocPiENBKy4x4TodFlLbcwUNiYtNQ3ZQRXQO2DqllP/sxBYuOqaQHMWr+KKAkXYBKrqHJiRBemqEUmMk6wgkKskoosQYD4uDeOMxbJCleBSZosak1HIVJQXLZpU+SCp00s5oqqNxjnGWdNpCzPT7iCQF0ZEoSQFFgTDtOBt4PFcNcAIFZzzkzzo+rcUltpaK/KdfXj3XFfgkihV9IpOBoqXyi59fpnerkR+sKIo4PT3lwYMHPNw54OhozEAmVsVWPGUc6Ixiia4oOKJKFLhIZNoSgn4qqTtL0dIqkgqnjGim2IGsDzC/c5zNjLLOwBnuQKAQpH8bo+EigaGs4mATozOkhEZMiTGKjLi3+gbvrvwUzw3f5vXdP6A47UMQMTbqtKub3L7601TKzqXuf9nC5rpukqsqZeLAxW23abfbjz2+N3Q4iteI9QolvUnDGiLdKsXYwZU25bjDLE5Emga0UAWsq3vEQsdSklabKTWkmsz2vajAKWsEKJTpU6fLmBqusLFkIhE8oMmT5IY1EdIQHaaySIEZgdCxbZPXax47oaDr2+h6iZsLCt1ej0mg0ypKbi6VMdQim5ubGMb5Ftt8BXexpZob+IQhjuMwGo1ot9v0+30cxyFyz+R7NSLAg3R+6GOipNtmVq0nQKREubJHk125BUgsPDZ4hKpEeLFFjMCliEsi6VyVQybpXD9KFSslCrPU1W9GAVIgZpxSWS0UBA5T6pdcHQoKghkmM2zO41m8HKjpUUwAT1h5MpOBZjWiOUiUkv6llTh1xn6qp1FOJbANSoxz7IUfwDSWCDlg37NwOtt8c/vRUzESWlhGo54mBB7L/gOa/Q7f/U6UCz2pqppv1rqu5+JPmUrk/C273zCM/G/n1SCfFJclER/0/f8fHpeZa2W37mBCd+yDP2Y2GdDtdhn6Jvfli/gY2BS4oWgpiFZNcUZqMqJDEhFhkvwOQJMBU6WKHidn7UXgricNZtJKzM+kiRAeke8Qz3U9M8pyU3YwcanSoywmnLKEmTINHscGCVQkNpOU7ZV0dUXKPwPBgCWO4pAV9plSTIvA+VCBgHl9muxvwzRZj1DRhcA2YBYLlsohq1WDOz2bV69XcAOB4wW8vzfDViNcz+XfvTNkHOpsLlc/MWJFn8hkAC6OD8ANINCqfPZzX+TNNxV+5rjLt7//kL94f8BwXMQKh0RRxPv+DRyKKYBPpDV9QnHy0oWXFNU+TUWDEmyAkp4I2eYfp32AMM0Ck8UTQCVGIcTETWtZE48id3mFetwhwMRPEfghOjNZoBc3GVJDCoWj2nXebiaqhnvR1cQ8CZsmp7S4Dzw+Z8s6AqFUOYxWCdQituKxqh0kFVe6CGbzPz8uEMZlVhsF+k5Ms6lhiAazeI3Y7WIM93HDiHZYxhYeqllmffUaV1oWuq6ze9Cm7PpMnDEHU5u9YCsVX5qg4FBQZzTVMaFiY4qkZT+NukgJJc3FNgwMo5QbC1mWhVmocLtbpDOJMKXDEhMKpuDz9oDIECwtLfH5l7Y4PDjguDflylKN9979AbZdplKpsLy8nNCNPmJIKfM2Z6fT4f6jfR4eDRiPxwTulGlkEMUKx6xRYsos1UMo4BChUREDJlSJpcBPj4WHSSQUNOmRmFep6TkS4mFxyiI6PhX6qcAJZMlkwp1IvCDGVFAIKac1vTvHcjmLDJuhcmYyNR9m2kBNcAZ2CpaK06GXACwmmLiQKnWGxEQo6Lho+IyoYqsBinRw40SQKUKlgIMiIwJMTDkDAUUmOe3zaVHVxrwUvkWfFnU6VLUxSPB/dOuE5KjMVeUX5+SZsuT891l3IEs6svuy++eTjux38+ZV2X3Z386/5sURw8WE9bLvn/VxMz9m4MRUbQXbEE99vozKl/lk+L6fo/nH4zHj8RjHSeS7s99FUXTOU6QgPBbEkJkssy83mFBGJ2BKkYN4nVI84pArBGRJerKSxqgYuAxkkwATB4sgNlAx0fEfYxshwRYuM2lRUGbYaogqkuOaWXDnrB5hUxNDVpQjpIRxXEkTi+T8dEjozbFQ0fFoiFMmsoSaFoYmUyKUnCodIxJBtVjNE/PHI1tzMoba2WPUtMsgiFkpuPzEhmBzuY5h6EwehNx52KZiBPzr9h6+NKkX4eaSxulYsLZgf6IEt4T8UQZkf0sxdSN+73un/Nn37mDEEz53BRTN4s+34aA9xBA+ixwwos6u3MJHJ84pIaSZXAR5ByDb1N05hbQzwEhSPfkUcZhQIURNW02gE6KQIPYTNHcRhyJqCjZs0EYlQqYJh4mLhkefVr4ZFJmwqT5AkRG78SanLAKJ+t5N8UMsxT83Z/vqZ8rcvHaV27dv8/5ej0O5gSl8vNjguUKbqhGcM98Jw5CJGzIpPE+s17i2VufnXm9xetrhz/7qHQaneyw1q2xcf4m/3FMReoGSMuNaqYfnjPAjwfcOFE7HIYYq8EWBcaAzDRRUEbNRnPKV5yIMVTIajfB9n+EwScaq1Sr1ep16vU6hUKBYLGKaJrPZjH6/z2iaiA01yjoySHjGxWIR13VxHAdd12k0GnghYFRYqtusLbc4OTkhjmNarRatVgtFUfJuwEVPgGf92fd9JpMJk8mE0WjEaDSiO5hyb1hmEpmJop4gZT6czTunssSIKiCxmbHBA3a5hkOJEBUTNxVl0sgc+0oMaXLCgAYD6pyNACTgI1AxmSERacfCwqHC+cVJXrhdlsvL9GxOrLgy0SCZDsEKTKkxoEkHRYT4UqfDEjNKBOhYBOhKhK2FVC3BC60ZYZiIxmw7DRSjSKMoWC95aCJiEuis1FSuLJYRmsXAiQidPpNhNxeUcV03X9Q/6XFZNX1ZRX1Z4nFZApIlGPNy1/O3y7of886ZlpUk52NP8H//xTG7R11KpsLnVj0sQ2HiCUzhQeTlttae5zELJE6gQOQTxOKJ2Bk4KzyCSGWfRMfDZoaadveGVAmwiHMFV9LySKTn9zzYLsFYWcwoM8LEo8NCCshOyqYrYgdD8TCFj6GmWA6hEwgLLZ5h6YI4jlFV9TGbbqkXKRqS0E2EibL3rsiIk3iVMSXidNSXJB4HeMLmNF4mwGCGRYkxPhZTSkgEJh4qETYT2iyn10qGC4PzXeGMDp2Mj02RAGVXrTEvFnbQ5SwZ48YK27MlxnEBW4tQdZuffP0WQ0fy9dcWeHtnzE57iq0rfOnFJtdXih97d+AT2xmYj97E52TgMRsec+qpRP1DunKJdtTESqlc+2wyoYyHybwK4RkIMPuoZxd2Qi8JOTuZk0RBEKHj46R8fIUYicQiTOlsY1SipJ0vY8IUEa+RAKJ8LAxcBJI+TYJUVDdKWQ06AXEMXZaZpSevlr7egdxkVe7lc7VQK1OoLXF8fEy73cYUMTYe0qzR0gI2l5rcvHaVz372s9y/f5/79+/T7XYJgiFl5QCz4PPZtQq2oTAenBJNjllZqPPSSy+xu7vLG6sLVJt1NtdWWWy+zmw243t39nh72KUetwmVEmVDQTomRaHQMh1+6rkSwbTLwcExvu/j+z5CCOr1OpVKBdNMqlrf9xmPx7iui6qqlEol1ldaaJqW4h50JpMJ0+mUUqlEGIYMBgN2D9s8nDaINJebGy3eDAJ0JWY8HrO3t4cQgkqlQrlcfsxVD87PkJ80T86qvfnnyOajrwyn9MYB0axPu92mPeiiRonxTwZMjGPwhE2RSTIHje1UyKeaThX9OWnsGIcyYUrDNAmJkDkwKVk+lRTYmgAz47z6vyzU9Lydj2yxSi2XkfhYSGIykyBIqp8QjQkl6rLPFXWHgvTYjp9DEKNqOroIqdCnOjuhu+8RobEdXaMd1dFnAb3hGEfssyc3UYt1Ch2PV9rbdKIGqt1iubHC17/0EisL9RznkZ0nmbXzfAJ2WZWacdUv83f4m4ynVewfJrJkFZ6Mfbjsd/PJRvY1lCqPgg1OwhYxBcQspj8Y5sqoCXtlH01EZ2yaNGnNCoqimFyqt5EBacdUGKdiXpl+CiSdoDifo2eblUhLIzhbT2X+s5Jiiky89PkgkXdPqNo78jm0yKduuFwrdACYeBklNsTzEiD4RTCnJkIIh/hzHyEDDY9lmS4tohT/kxyVGlIqrIttHDFhKktEqChIqvSpc8qYGhYzBjTwMDEIEEQ58+z82CBRZklcWpLfWsIHoXK9OmG5XMD3NYIgYDoVOJFGgRFoTcoFjfceHrJQVtm+32bQHrNzIJmKGnePXL5ws/qxO3h+KpKBRslgqWYSv/pFlGCI5hTo7YLleLhYQEyPJpL5FnI224czRkB2/3xkh+DMhzhGR6YUFCXNAK20ViswY1ns02cBF5uKGLEutxmRgOCGtNJ2E8xSpH5CuDt7bx4GDkUcWUhPqQRRb6WVYfJ6yVytEE/Yf5hU7EIINtaWWAx9Vq/W+akvfhYZzNje3ubb3/42pmnyuc99jj/+4z+mVCqxtLSIrus8uneHH7z1lwyHQ2q1Gr/8y7+ca4AvLy/T7/fZ2+7TPjJpNpu8eOMKR26F48EKDVvw0ioctpNFu3+8z/b7PaIoyisY0zTZ2tpiY2ODSqWClIk1sO/7LC0t0Ww2qVQq+QXueR6z2QzHcdA0jZ2dnfy9LC8v05upnDwIKOkxHkXKzQXWm1LCQrIAACAASURBVFbuKNjpdOj1egAsLi6ysLBwDhj2o4K4oihid3eX7W1BtWTxsmVhWRb9fp+DgwP6/T6e51HCyU8dE48x1RTg5KdgSCUdMSWDpQANiUgb9EEipYzPkAYePqSKaOfprP7cOZrNLefP2ywy741k1HX+WhCcJQk6Pmo65LKpx11KyoSKGNKTCwRhAMR0KTLkCi1xCkBXVnDTyspHoyp7eKLA9WaJvmOzfOMKQTegWdY47jvc3zlh0DlG0zSq1SqVSiW/LS4uPnbMwzDME4YsacjQ69ktr3pTYZsMJHrROXIePzLvNvm3GZfhVy5GNla4OGKY/6qqKrPYYhZqKRbEQsdjio2CRZiOJGexlZ57yX84qYILqflYckZkM/VM0hsk47jAIevECAKMNIk151LN+fUy62Rl95+XfU8/OYKYCgOWxT4j6kRSSZk4ZWwchjRQ8fF8m0LQYUwlT1rWtEMM7SxxfxoG5MLRRHDG1Jql8sIjqgSYrCgHDGWVrlzCYoaHybI4hVihSwsFiYGXUqVNdEJKjFLMkGBGOVfrLDMg0sqYwmMa2WiEHI8FNUMQSZuCabJR1ukdCQazArZ0MaMp+uSI2XDEb75XIjAXGYU2mupQsG12Tmcf+7jgU5EMFC2Vb7y+kKIvN4CXafzVCe8fDBj1T/nhQXBh8cvi4on6tFDOfT9LGfAJuGtKhX56sQRYin9O6S+UKn5s41JPOfQBE8okXgnkIMbkkkwQ3VImWaePQZkhPkYi6iMm2MLBFk7+/LrSwq7V+PznP8/y8jIPHz7EskwOdx9y/fp1CoUCR0dHqKrKO++8g+/7fOUrX6FQKLC9vU2n06Hb7SKEoFqtsrOzw3Q6ZWNjg7W1NdbX1xmPx/R6PY6Pj4njQ25UStxcKLO52oLIxRu1aT+6T//0CCkltm3nm/Pm5ibXrl1DURQ6nQ6KotBoNGg2myiKkvuOO47DbDbLL3BN06jVamiaxnQ65aWXXqJWq+F4MVHllPcenVAvSK5dOZ8xN5tNfN/n6OgoBwWurq7SbDZ/pERASkmv1+Pw8BDf97l27RorKytIKRkMBgyHQ1ZXV8lU1Q4PD9nb22M4HLIhH7Itn8OlgE+BOAWsCtwUl5KIUoHAQ0PDp4rLIoc4FPG4THI66SM93oa9+Bmz+zLMy8XHPL4ZJemxhistVBlRlKMUSyAZ0MTDokeLoWxQpk+YvgeVGMu0+KWv/wJ/8f6E44HHlVaRN19a47v3h5wMPJ6/WuZLr7WQ4YzhcJiMX7pdAIrFYp4cFAqF/P+VtcgLhcvpV9kxn08YfN8/l1h6npd3Fnzfv8AqOes2hGGYO1JepBXOM1TmRXYyl0o428R/1I7Fxc3/sgjDEBknwFBSsm+UKuNFwJQSAuimBYiJQ4kxoKRy0z4+OhWCdK3S2Iuu0mGBiMSP5GztlGmnKtvk58+l7L6znzVmKdL+rK2upmojFhO6cilNSMokzKOkixqnW69ExZUWrjhjG2CUKdlx3rk7PDx8pmNpC4eGSAS1inLIhHpevUNCTawyxJnrltjCoaGAI4to0qfLEgKJjkeNHqgaJYbUaXMcr+LLxL/GpYAII2wxwySiqrr0HY3vOhpC1SmbIWtGD9MNqcQae5M1tidVdE2wop0wlRotIyTUTVB03CCmaKpY+sc7JvhUYAYui4ya8eBoyn/7f73Hjz+vCdN2V8AW7zMR9RS1arKm7OaI/1Bq7MZbdGULI2+LRSmIUCNGS1kHyQWQzJkdmpziYzCjiM2UopjSEJ1zIjpAXnm//PLLvPnmm0ynUx4+fMi1a9fY3d2l0+lQq9W4efMme3t7fOtb36LRaPArv/IrOI7DnTt3ePvttwmCgOeee45CoUCv18N1XV566SU2Nzep1Wr560VRxGCQIIiPjo44OjpiMBjksztVValWqywsLNBut6nVapimyWQyQVGUnOqoadq5Np9pmhQKBWzbplAoUCgUcjBgHMfcuXMHVVV5/vnnEUIwdSP2Tvp0j7Z5+cWbVCqXi9O4rsvR0RG9Xg/TNFldXaVer3/opGA4HHJwcMBsNqNWq7G2toZlWY89LqPNDQaDPHEYDAZM3JC3jkscegmnOUKnQg8fG4dCOrtPYHtheh7oeJQZ4aSV0eNdqywuSwDmfze/eJ+PxMfTTzn++tz9ERWGVBiknQkDE58Ve4wfKpyENaRUMdWQVklhsVXl3qkgjuHmWpH/+u9tAZyTWn0aXcr3fUajUZ4cxHGy4FcqlTw50LQf7RqOouixZOFityEMw7wLkXUSsgThSbf5ccW8zG72mvM/z5/zl1X7+X/tki7Axd8nqnwKh9EaE1lMMSk6Jj5quqb4qWpnnHYFEkpzwu5JvEdmNOizriSy3uO4zN34M/kI9PyGn4Fl1XTEdMaySo9w+visKyDP/ZwpjSgkUuIqMSUGDGhQZgRISoxyJUGFmGvifcZUzxls2YbI/y8X42lmZBfxA1OKud5B9lg3NhPBMCa5pPhRvMZA1hlRw05N0rbEPYrKNH+d7O+I4YQVCszwhYkqA6TQEDLMu8ABGqYIiFCJpUI/HUFINBRCasqE5apCyYDOOGBEjXqlwpsv1D9WVc5PRWfgssjYBt+53efJi+gHxTx1cD6ShdrGI8JAE/KJOvaJF0ECWHFlga3+D3j54E8oeGMiVEZmi++v/Qy79eeRIjm5DWa4mASp2I5KxJI4vFSxTlEUZrOkwnrvvffyijQIAvr9Pt1uN0cHHx0dIYTAsix++7d/Gyklw+GQOI65desWhmHks1mAu3fv8vDhQ5rNJisrK1Qqlby6v3//PoeHhziOky9UpVKJ1tI6p0OXnYMTStYZynphYSHnJ7fb7bzKa7VaLCwsUKvVUNXLT3JFUbh69Sp3797l5OSE5eVlipbKrast7jinnJycPDEZsCyLra0tlpaWODw85NGjRxwfH7O6unouyXlSTKdTDg4OGI/HlEolbt26RbFYfOLjVVWlVqthWRbD4TBvg5umy+tKgDh2OJ7ZBAiGtFCICNBJ3CG1Oc4yBGj0sFGeopCYxNMSgRmkJiqPR0b4CsiUIEDkI4oV9ujRQgoNRbEol0pc2XiOr7/W4C/vTXhvf4qqKrxxvcrXPtvisDdj5ETcWi/lnOl57vTTvAYMw8jBn1LKHDMwHA7zkc+TugbPGqqqYts2tn35e8jAtU9LGOY3/ywBmBcsyhKO+fHEfCdiHqA6r31xmZpg1m2Y//38Z5ZSEkYWrmNTFDOQWW8xGRckqh8J7VXklXmctvmVFOSn0hTtubVFpIDSi+1/0uInM3uPiCDFvCSbftIXyKptNf1tkD5jnEqxF4jQCdAQBISY2MxQiCmkwj6eLOCS2MKrItFnmRfnGvp6ugmf3/yBpzqNzouOrYm9x5KGUGq54JFDiRV5kMuSF6JEot2hmAqJTc8VfNnfGcKjKKf4wkzs1pXkvccxPJI3GVNBJcKTETYOUZpsZTi2GAWpqLTECdKZ4vqrTMIAP5rxF3cFbz5f4+Za6UOd9z+u+NQmA1mstwyKhsbUDzgvFvFBcdZyO0/RCikxRIMUXT2lLIbURe/SjNTAR5ce64dv89Pv/58sjXeIhIpIBYWkUPjy9m9yVN7imzf/EW+vfjU9YRLQmIGbXEri8o0ym4UfHx+ztrZGoVBA07Qchf/888+zs7NDp9NBSsnVq1dZWVnh0aNHnJycEAQBL774ItevXyeOY05OTuh2uxSLRXRdx/d99vb22N/fB2AymeA4DmEYout6Pg4ol8soRoE/e+DTnULFsPm511psbqxSqVTyit80zXyxzyxKt7e3EUJQKpWoVqtUq9XHqu4E45Bs6NlmC7C0tMSjR4+YzWZPXOQBCoUC169fzzf3Bw8eUCwWWV1dvTSRcF2Xw8ND+v0+tm1z/fp1qtVnc4ecTqfcu3ePwWBAqVSaW+jbbAx7DGdVSiRW2Hra/kzOmMs2N4V5s6xni3lp7KxNezHiXF4ocZnUsAjwScyEGkqPhjJgFhYZygYShUgYrDULvHClzgtX6hx0k7HBWtOmaKk/NilVIQTlcplyucza2lreNRiNRpycnHB4ePhj7xpkr5vRA5+U8GUsk8tGEtntIh4hA6fOJwwXRxTZmCJLGuYfOz+ayL5mz61FglIomcZ16uqURQ7oh0V2wk1kihKo0WFGGYjwc5izDgQoRIkQWhq2cCjTx6GQE1UhY1AlduZVRnQxyAS5SMGEZ2DsM/o1gIlLnR41uuxyDQ8FiUqF00SoCp9YqDmwMUyVS2MUjuVqsrGLA+DJaoUWM2qi/0xOozCXGMxF5kCqy4AxZWrSpizGaCLEVh2q0SC/suZxyTNpM5ZlLDymlGnQfqyL6ygFzNjHkB4dFgnRGVGjzAibSd75E0gUGWHGI/RCgdjVCFExiNC1MwDwxxGfymQgjmOGw2EyBx8N+MJVOJ7YbCwmra/vvHvKNLyYEMRc9BqQKehEZUaIgUJIgRkLdGmKkxwtnmfVMjmhkJzzin/9/d/lS3d/40yHQM61t9Lvl8bb/MO3fp3fm+zyxzf/UQpXTDAJhjjvBjcfuq6ztrbG/v4+/X6fer3OeDzO5/IHBwfn6H21Wo3BYJADcNbW1lhaWmJhYYFyuUwcxzQaDVqtFoeHh4nISLfLzs4Oo9EIKSWWZbGxsUGz2QTIq/qHR2NcpizVYrRCE61gsrCw8NisPkP7VyoVrly5cs67/ODggP39fQzDyBODDNG/urrKYDBge3s7HxfU63X29/c5OTlhc3PzA8+NYrHIzZs3GY1GHB4ecu/ePcrlMqurqwjNpj1w8CddJsMuhmGwublJo9F45ip0OBzy4MEDxuNxTuVUFIXJZMJ4PKZRkFwzS7x/5AAShzKZpvl5ANaPEpl7hY/k8VFGFgkTJmJCOV3qFRSSNnKpYNG0yuiBiz+ZcG2rimEXefNWPW9T3lx7cofkxxkXuwaZFsTFrkGWHHyUrsGzhqIoWClg9EnxQd2FIEhYRVnymml/zANc57sPmavfPJMi+zqZhcihJAh9vNAnVlwMmXz2KAWkTqmgE1JgSAc7rdRDVAKq9LHFLH/vmghZFseMZTUdBySGVwkC3yUhACYmX4mhVUAm/pt1BiQ+EpXE7OqUVXFASRkDMI1PmcoSBj7ryva5bqdDgZksEmAkegCELMhObv0N8CS1wmQz7T2T0+iTwiDZrLu0EAh6soUtkw1dkVHOACqI85oFPdnCpciQBhKYUqAVn3JF3Tn33DZTejQJ0dPjJHCwgFKq6KFSo0tBREwjk3udRYZREVCoFE0+f63CWvPJ593fdHxqkoGpG3FwOkR6I2aTAVEUJQv/tau89HKF0SymUUpOqK++vMD//DsPORz4nGWvDqSZdJIHCxIj4mSJLjJkjR1sZZZnfDlaHPLZ0sWs9dqjP+dLd38DgKd5DmS/+8bdf4Zj1PnzzV8iQsXGeUy4Zb41Fscx5XI52Yzvvkfh+/8vz/3572J0jyDw0a0CjVfe5OD5n2SsFOn3+/kiuri4yJUrVzg6OmJ3d5darYbrumxtbRHHMdPplNu3bzMYDJBSUiwWMQoVYrXIzPdpt9vU64kKXrFYxFK6LJR1yq0N1heLXFn08q7E1atXn1i5m6bJ4uIii4uLxHFCEcwW+9PT07xSrFarrK6u8ujRI9rtNktLSwiRiBEdHBywtrb2zKJDWTIyGAw4PDzkBz98j+/uStqjkKWqwX/0xVWuri1dSk18UnS73bxLkXVAsjFOr9fD8zw+8/Lr7L89SM+z+RBzt4vjqadhAi5GTHZOy3MdhUTyKJvfJkTCxI3NwUaSSCD7FChqEY2Va7z5xn/AtZUy//7dHicDj6Wa+bEuRkDeQSqVSqytrREEQT5OaLfbHB0d5V2D7PajCFF9lPioYMf527xImGEYFIvFc5oEQgg8z+OHD07w9wcUmeJhJgqAYkaFPl0WKOOg4mPjEguNskxs1AUxtRQrcHG2bgmHqhwwpI6WEqNLTLBxMHEpihGaDNjhBjMsMtG1hFCY4Ag0Qhqc8pxyP6c0xnHShaqKAZZwiIVKKLX89RPzooAh1Vzm3MGmzDgHYisyYoZFQTgUmeAwD/ibYYune4489f8mQhpKF0cWE0vj9Hgi4VQuEwkdVUYU5CQ1ZLPR8ZEisaR3WcyZX22WsaMpLbWTdCFEyII4Ziyz5D/ZWhPQeZRe8VGCHItGDCYeE2kgiNAUlUbZZGvp4xUe+lQkA1M34ne+e8R3375Pq6Lxi59f4tbWlXPZe3WuiPnC8zX+SfEm/9O/eUR35KJFU57Tdzj2G/SDIoqqsVKKqMsDYm/MLDJoFiKkO8iz+ouRtZjms9YohJ9591986M/z927/L7y1/h/iawUgONfGm086CopLXUwxTZMXjm9T+v1/jhb651IOEXhE3/m3LH/nd2ktbzL4+/8Vd52Yq1ev8rM/+7OJqlgKsrt37x7T6ZROp0On02E2myGEoFAoUC6XMewyj5wWR/0ZejThRnWEaTpMZiG7pyf4kzH/4Gdfx64u5iCx8XjM7u4ut2/fZmlpidXV1adusIqi5B0BSNr1WWKwv7+fjxh++MMfIoTIK8aMObC29rhnw9OiVqtRrVb56/f2eHR4N/FH0JeJlMKHSgSOj4/Z39/H87w8EVBVNcduDIdDNjc32Xr+FZqdQ+TRbUKMFIU/j8iGRN50niUwT4P9oJBp63+MQylNOhQ0fNbYYUKZMVXUVD/DS1kxSd2TaCFEMdzfPebfIthYafC1V1soCp8onfQsdF2n2WzSbDbPdQ1Go1HeNSgUCvk4oVgsfuz+ANkGf1E+ez4ugh0dx6Hb7dLr9RgOh4zH42R8MvWxqBHaNZbNiM1yi9CdEHV3EJHMK9k6p3jCToSrRLJhXwQjw9n820/1BBY5wcdgVeyjijhVSm2SjFGDFJGQiPNEaAjCtOsg0VNdlaM4ATiOqZF4v8woyyGh0PPCKcMErIpdYinwMKkwpKW0885FtiHrBCyIY4p6SEFpM/HPiyY9aTRwMS4DG9rCoSTHiYx62l3I1nZDuvRpMaWAQwktle+uyX5auLk4lIgQhNjsssU0KufW4rbwc9B5mIsWKYTpV4MJZno8IlR06eNQxtR0JlOHb/71Cfsdj1/6wsejN6D++q//+q//rb/qh4yTgcdbD0bUCiojT1DVPYLZmSnPZRddq2LwhZt1Xtyo8I3XGhQZIyb7VNURi3qPGw2fFzZbEEwpqi4riw0WFxcZDodYloVhGJRKZ0AOGUe40sZL9QBqosdzO3/F1sn3P/SUR5EhA3uJ/dpNdELqSg9dJBeWi0VftpKkQ1qUtRnN3/9nLPzpb6DE2Xzv8hCTAdZb/w5x63VWX3qNcrlMs9mkUCgQxzF3796l1+vR7/dRFIWlpSVefPFFPvOZz7C5uclM2rx74IGfGIBstCwUBb59z+XtvRm+KPLqjUWuLFaxjCSPNM1kVCCEyPEIpmk+tc06H5qmUSqVaDabLC4u5oqFx8fHHBwcMJ1OczriYDBgaenDVfOQLM7T6Zj2MCBQiyj+EDs4RlOSjseTgI2QVHn7+/scHh7m2grZ+84oh3t7e9TrdX7+538eyzS4d+RwMlFRowl+nJybZ54XF3sGGRvgWT9TMlfMOOWZq6GOR4EZTdp0WCHAQkFlsRAQxhqWHGPhsslDWoUAX5SYhSr7A4kXxrxxo/aJSwQuRrbJVioVFhYWWFhYwLZtwjCk1+txenpKu93GcRziOM6lgz9pkZ03Jycn7O7ucu/ePe7du5djWDzvzPExjnyKisNyRWHBmEDoMhqNELFPRYwoKRNKjOmyxJgqIQZ1pYetuCjicX2FbH2xSTRaFCEpizFNpYsUggFNVBnRp5lqGCTXcdIbSFQtFZTEBIgIXQT0ZR0PC4ciJjM8Eo+OkpjiUmAiy4yo40qbopiko4KEFdFQEsrpUFYZUcdiRoBOWRljqamzpxZDnIxlp7KILy1Uoks/XxaZmNKpXMKVNiUxQRExiogpiilFMaEmBmgiERBypY0jSim2ZsaYanptKayxQ0vt0OA09ShNkqMAlSlVuizSZYEpFYxUAnzeGVFLuR6ZlkFJTOnKRSaU8TGIohjHFygiUX29tVagWfnbtzr+VHQGGiWDlYbNyUDh5WWDz96w8GeJK9rJyQmGYVCr1ajX6+cqg4WqkYOeNpZ/lnr9e3zve9/DcRwG3REi9iiXy3l1ev369XxzU1UV3/d57bXXKJVKPHr0CN6+k4t1aCLile0/4qPMgSWCN7d/i+9u/gJVhudmX7kGdybC8f3fZ+XdP3qm5xWAEgVs/Ov/AV75HHfueDk48NGjR7iuS7FYZHl5mXq9znPPPcf169dzcNbKesRYO2XneISJw2p1SH8SEmoaq82IWazzVz+4S699yNraGouLiaiREIKVlRUajQa7u7s8ePCAWq3GlStXnlodXYwMqV+r1VhYWOCdd97BNE2iKMJxnJz/v7GxQbVapVQqPXMV6E4G/NxrLYr1FbxJh/3t+9y7d49ut8vi4iIrKyuPtZvjOGZ7ezvnyGeWs9lruq7L3t4epmnyta99DcuyiOOYz68FHB2HnFoNooEkmrZzdTMbhxHVlDeeWF+Hl2pkPCnilLpqUGCCToCDhUGIj86USkph9IgxaNoRlvAYOiFFRlSVAXW7TqBo7E/hWtNkklICPwn66B8mLusaZCOF7e1tIOkaZFiDv+muQYYBGDs+nZFHxRKYGvk47OTkhMEg9cJIMQEX9QsyIKKiKHQH07PKdjJ47PUykJxDAVdeDqx7zOOEM43/puzQEF3sFDUfSQ1NBnRoEWBhpTS7LBUw8CgwQcNHomHhosU+I+opdS4RLrKZUWaMh4lGgIeOLpP3ORUlfGFSSsceM2kzkA0cmRgNIcBOjc7mJaznLcdBoTJHl5yP7PP6sUGHBSRq4j4aBSwop1iK9xi4MGMUzGSBnmwyojwn0wWqSNVmVWiGJ/Rppu4faip4n9B6J5TSnnEfHyPt4cmU0xERY2DpBrqiM/OTrp5AYGgKoRQEUqQOqx9PZ+tTkQycFx3KWpl1rly5wmQyod/v0+8n0rG6rufa+PMXv2mafPGLX6TZbPKtb32LXq9Hp9OhWq3mlLvT09N8BvzKK6/w3nvvMR6P+cIXvoDrurz/cJejUS2x57ShPO0iPmQiAAl+YGG6yzoPWVGOHqPHrCjJXMyKHF6+/Qcf6rkFgDfD+c1/yg9e/jqTyQRIQFpbW1t85StfYWFhgdFoxM7ODrdv32Zra4tyuTx3nKs0SgaGGrNzcEI7OOF0FLFoS1pVwWg0yiviDKCY6SHcuHEjUTTc2+Pdd99ldXWVxcXFD70Il0ol1tfXOT095dq1a1y/fp133303F1A6OTnJdQ2yscOTZseZet2NjQ0qFRsWrrDYqPDgwQMcx+H4+Jhut8vCwgLLy8tomobX73Dvf/0fcf/0dxDDXvL+ay3Em99AvPkNQs1kZ2eHMAz56le/SqvVwnEcHj16hPR9/uHPXGUQWPzL7xzTHhoU1YDFQsgkavHewzYRic/DWsHjYJo4Bp4llZkGfLbQyLQ9G+dogMR7IEJLeeEhGr4o0pQdFBLbVYWYrgOOyzm77K2NFV5t1flhr4xUDNabVo63+bTGPNZgdXU1xxqMRiM6nQ7Hx8eoqprjDC47X+ZBfZn2wMX7Lt6fgf0ylsHUi/jOPY9Hh31MHJbYf+Js+zIp4nl9gafR6ObjYgGRFRcXcU7Zc2TrS5YgzD9OEGMzwyBIkPdpzT9M3V3H1LFxEi0DATNZJEJHIyJGsMARq0rCDJhSQot9drnGJMUJmPK8ayEIXGxs4YKEpmhTFcPHPmtmOZ6pMHosQwyb4uEcmDsxhJtRSBINCsTppr3PJqfxChvxQ0rK5LxREsm6WxajRPAtruPLBGejEJ8b49aUAZV4yJQSYVrxx+m1qqU8igZd3FRoKUYmbCHVpmjA119usNZY4Z1OkXcOYw57HooQNGyVzQWbm2vFjw2386kVHboYWWWQJQZBEKDret4xmK8ie70ef/iHf5gv5oVCgTAM88pPURTeeOMNXNdlMBjkc72HRyPeHzcx8RBmmf/yX/0nH/39Av/9L/4fGErAqti9VGPg+nt/yq07//4jPX8sVL719/8blEIJwzCwbZsXXniBRqORb56qqrK9vc14PGZ5eTlB3F+yaY+dgO3DDoHTJ/KmZw5nrksURZTLZdbX11leXs59CaIo4vDwkHa7jW3bbGxsnBu7PNNniGNu376Npmk8//zzzGYz7ty5w9bWVs7zHw6HTKdTIEFvZ59tPhHc29uj1+vxyiuvnPt8nufx4MEDZrMZhUIB13WRgYf5W/+U2R/+S4hCkGfq5An7BNANxm98nR/e/Cleff1zfPnLX84pcbZt5+8P4HTo8+jEwe1tU61W+b3vD/j+7fsYIuLlNY0v/eTn+c6DiAdHE/pOTKusE0TQnwSEUYwXRphKMnlcMAYoXp8jr4HNEKnYlOIOI2r42ITCYLUcM3AiDMPGUwq8sGbx9oMupfAYKRTWlF2+/pXPcePGDXYPTijWV7hxdfkTPyL4oJin6l3cxMMwzLEGmQ9CFCX2yaZp5tf9RXXCixLHF/UCLlICIeHIf//Ywp90HxMo+zDhyAIH8cZjQmdPEt257P4nPQecT0QcWWA/uoKJx0xa6CIkkIn+iUqCqk+Q9CJnKrQ4RQqFghyxw41URChii/vUlF5OCVSJ8GUixhMLjXVlO5/T22qIqqrsuIsfmPRkyomHrKWJbsLjvyoeUBYjTuUyE8o4soifqsTMg3UzpoCdWijruBgErCmPr71ZF2JKEZsZddFDFWEq82zixwYuBmOqjKjipwZ0FjOW1FMW2Wc/2qDLIjExATYCgaXBLz7v8Jn1RIvhZCL43qGKJ22urxT42qsL0WWHSgAAIABJREFUrDWtvxMd+lFjvjJYX1/HcZw8MTg9Pc2lb7Ouwa/+6q/yJ3/yJ3z/+99nOp2iaRq+7+dt7UyuV0rJW2+9RaVSIZj2sSjgYlMKx4SagRZ+NB9WX7MJhMlY1gmkzlUePHZSbj787ofCmZ87HjLiJxhS+ulf4OHDh4zHYzqdDmEYcnR0hK7rlEolarVarmMwGo3ObWRZlAs6L19fAVaYTqe02216vV6+gE6nU9599122t7fZ2NhgZWUFy7K4cuUKzWaTnZ0d7t69S6vVYm1t7Zk544qisLm5yd27d3N2Qblc5uTkhBdeeIFCocDKygphGObt4cuqwE6nQ6vVeizRMU2TW7dusbOzQ6/Xo24bjP67/4LZvbcRl+TIeRco8Ch959/w2cNHvP6P/zHvv/8+k8nk0oRqoWpgCpd74wi7VEXRXRp2jGrX+bX/+EssVG0OJ6foqkLJ1vjaqy28IGbmh7i+5HsPh0y8iHpR5+uvvsSgc8L/9kf3udepoSoKV597iYOTU/bHOoZ0OZ1atBaXMTSViq2hazElPUDGGpac5lXjlStXUpzHMeOBSnF5+UOcXT/+yNT9PqgSv1iNZ5LE8233ixv5xc18XgMg+5vM0viiVbGiKBiGkeNUcge9lF6YvbfsuTwvQo9rzLQiZeFS1kCR+rn3MP+ZnxQXq31LSbAfT+oWZFbACZMANBFhiYCyGjKLixTkFFP4OVhYUZRcS0S3SqijMuOgzrIecrU4Yup6SC/xL5lEM3adkG7YQMoYU4lQNRtTOoRhETv2CFAx8BiJOo4sEUgNW7hpdyHRGcja/1mb3tAMTFPjqjZiGPhUdRe8mCdZSZTECFvWcFM2mI/JiVxmJGtEQseULgMS/MJ587lkHJfV6Q4FDDRG6MhY5N2FLDQRsqbuMZMFOvECD+TzBFJFI0CkYF+RAijLqkcgI6rqFB+TJWOEFSvImUilmSQeCrYKQlGJhUkYhggRMZzATsemVom5dzTja6/KvzMq+nGHEIJisUixWGR9fT3vGAwGAzqdTp4YvPHGGywuLvLNb36T2WyWK5RpmpaPH3Z2dqjX6xx3BvgYOTLWEgG9lRu09u+ca8E+S8QIZkaZf/Dtf4Ieubh6iePWDYZbW0R2CtgJA0zP+cjTIwFcjR2aN28SBAHFYpGTkxOiKEIzi5yOPPqjNoeHh/milwGwbt68ycrKyqXPWywW2draylv4p6enTCaT3Cs9SwquXLmSiyTdunWL09PTXLp3fX091zD4oCiVSiwuLnJwcEC1WmVpaYn79+8zmUzyToOmaTQaDRqNBlJKHMf5/9h77yBJ8uy+75OmqjLL+6qu9mZ63O6suTV3u9gzOBDEEcAB1AEEggAhCYCCkCGJQIgMigiFIIkhCkGJigCkkAgphCAFCQgRClLEne5wd8DZ3Vtza252bkxPe1vem8ysNPqjOnOrZ3p2x8+a+UZ0dHd1VXWaynzv9973fb9e1cBVNQQ8KeXxOXVRFJmfnyeoqmz/1hcQrr59bCJw/fF1UDd/yKW//zfx/53fZXl5mUgkcuxzXankyUyMhYJBKPhxcvEAmZh6gxbYO3hkNnLkb9PZKL8eK/B/fXOLmVyI7sDmU09M8r1LNa5slWjr8PRSnFpnyOeezGD06viL6zTNPpJ9OFN9GNimpqYQRZG9vT1s26ZQKNzUOTkOxwXz48rs1wbx8dn8a5877h9wIxW/8fPo8jlce2BZlj0LYFmWMZHRLB+JkITqHx2Dds9gfbcMRpehNpKZtiwLwxbRLBm/YCA57yQNx1UDrg3qMaeKerhKt2yTa0V13eN/7TZfa4kctBr0jCbxoIyESrljo9tBAoyC7FAIEA36EWSV9tDHXkfFEAJjicKQjLOJ7oy2RcKkOxDoWkNU2SIeHhGlZdHmVKKL7gSIhyQiagLbthkMQrRaLXydDn6ly8nQkKCqIgk25fYQxzQommnmZIPyIIBliqQjIdqGhDLsYloqqv2OSp+biGpCGNnWEIZDBoZN0ZnCkqMgw2I8jN5vMxgMMIyj7Y6R+ZCN/9DvYzQS2WdAANsRaZHmnVbbtaRc+zCEi6PjcDgt0CbB4FB8aByyYCJh0idMDxXXuVFCR2Ak8u1nCNbIGKrhhIkLdXRNR3d8oyqNYOFIKlFhJGIUV3SiUoduF7pDme9uRGgMBHqmxnTKrWQ8OHwok4FrMZ4YjFcMqtUqkiTx2c9+lm9+85t0OqMPhGmaHjM+Go0SjCR4eXuXgTOaJFgI1YkGVXZPfoLszg9veXtEHKL9CvF+GRh9fOdqb8OKwM7kI1w49xMEzN4dfzT2Vy5y6bvfRZIkCoUCqqqytrXHm9sOlpwmE5V5dk5C77c9v4Lt7W3W19dJJpOeUU8ikbiOwe/z+SgUCp7rYblcptls0u/3PU+Era0tJicnmZ6eJpvNkkgk2NnZ8Uh5MzMzNzV1MDk5SavVYmtri+XlZRRFoVgssrS0dN1zxxPBQqHA2tqaN8547Zz6uLqdfeFlxIuv3toBdmx49WvMOf/FDROBZlfjylaNpbn8DQP/u8n4Hve3yZTCI/NJSk2dQkrlyeUMTy5PsFdb4vurTRo9k6WJEEsTIdavbhEQdIJiHxuba/McdxR0d3eX4XBIPp8/NoiPVr36sUFc13XvNTcqsR/nHOgGvfEA6AZyd4XuzvRf+7zxwDnu+ucGbDd4uyv2VlfnB0UfW6U2AafHhLiH4zgc2JP0bQUFnQmxcl0P/b369cftk1+0CQj64Xb5rttu91q6dvvdx1xYlk5INJEFlX5/gGw7BOi/Y0vssxkYDvuDGC0rTJ8ASaeO6Ysg+mME6GLbNgFnVMEwHZkDq4BuBlFFjWmjiOIbiWdJkjTSACm/c84EQUCWZSzLQrSHiP0DOj2JXSOPIYYI+RSCskVnOLIptkSFtbZEQLKZiTrEzV3sXnnEaJFlHElh18gxcFRUSWNC3GVoyehOkKhs0h2qGE4AVVXpGzaoMVIRH5WWjt4PejyFCXbxMaTtJNBQPPMggwD+wzE/16MzSJ8u0UO12ZFPzJDAIfnPwXWJPQ5+DASsQzVHV+jJ5dY4nohXmA6GE8BwJIpCAdGxDqcRFBQcXpjtEIlnWcr5yUXStHs66xsaOjKZmI9Wz2ImozxwjY+PRDIwDtckZ3JyksFg4CUGzz33HC+//DKtVgvTkVnbbzE/lUFRFN6+ssnACY+UusQgjqyjaR2YPcMgkUdplj354feCJ3c5RjwcfRwdcBym9y4Qrx/wgyd/8o73td7ucP7NN/H5fFy6dGlElHSCXO2mSUWalMoKE0qE03NpFhYWEATBIxZubm7y2muveccrkUh4PgORSMRrp4ii6DG63RZCpVKh0+kwGAy4fPky29vbTE5OMjMzw8LCAu1229MmcG2L30ub4Np2wdbWFpqmvWsy4TgOnU7Hc2e8kbqdbdtYf/jfI4siwq3a3Uoy1T/9AyLnnmU4HHrOjP1+n1qrx3euDOgYMk3RIZ+z3jXw3yyOSyocx2EhFyAVjlM7ZLIbgzY7Ozvoun7EQGd/f5+XXnrJC+qmadLpdHjzzTc9IqgbVN2V+TiuXcGOfx9flbvB/dpze+2qeryE7v5Pt68/XuaHo3368bL7eIVgfFvc7y3DR0v3E/bZ9K0wsppAkmTQkiTQ0Jwk8ZhAQrHo2SrVRgyf0cZwYihBnYg8auFJkoSiKIRCIVRVJRAIHPmf48F+/Fi523Zt4D/ud/f1V69eBUaS3K+++irBgM2UeYAlBfnUcx9DtGfYrvQp7/rICQb7vQCJzBKFKJxJxVH9IoZheNW7nq1SaiWYDMu0tDCiNMAyGvR6Pa9N4u6TO15tmiatVgtd1xFFkXrTpGNJBOUezaGfgrSHiJ+hnSXkD7CnxbBtnY2awIxkMRUJc2ppjo997GNY/iR//M0NfM6Aq1slBKFNxucw0AX6doCY3yQcAMPwsaPnENUkgs/H3HSLfkWm1pUJmV2SNEaEP6dL3U6w58wwshqWGRCDQ66D5PmCmIeCPxYqA5qE8KFh4UOlSzQWJR5MUG/1EIYdJEwcx0G2TbIcUCd9aC42wsiMXMQvDPE5+qFR1EiHIUmVLjFAICR0MCw/b270SCWalNthTib6rFTAF58hqHRxbIflQpBf/JHCA+ftfGgIhHeKwWBAs9nkj/74T7nSjKChkgoLzKs1ms0me2ZhJOrhDJgP1RAsnWg0ir2/wbNf/eeIlvGegeRm+/+2INIJpYl1y3e0TxvPf4GthaeRJMlTPNMtgR09y8BWR6uDQAm/OJrJVhSFaDRKKpUikUig6zrdbtcLDt3uaKWhKIqnYRCPxwmFQp5nAsBwOKRSqVAsFmk0Rjcb0zRRVZVCocD8/DzhcJhisUixWMTv9zMzM3NDMyIXOzs7VCoVTp06xdWrV4nH48zOzt7w+a1Wi9XVVc6cOXOsOqJhGKyvr7Px5mtkfvfXbmsyBABJRvr9r2EFRv/DNcxpGX6+fdVgIhmk2bf5/DNZptPHJwLXrqjH+9qapqHr+pEv929uML92Ze6ujl3r6PHL3K2KwNEgapommqZ5DpPjgQo4EnxvFJSP+3k8YF+bQBz35SYT7vfxCoFrbes+7v58XAIy/jUYOnztrTqltkE+rvC5JzMAfPmNiqe++LknM4QUiZ5mHfu4mzS5okfD4dCbaHGP6a2M0r4bHMfhy1/+MtlsltXVVTY2NrBtG0mS+MIXvsD8/Dzf+MY32NotcWBP0rP8GN0aTy/FODGTIhSQ6PdHZEGXxFuut7lcD9LWZUKSwWMTJpGgD13XPWKlO87nJlLBYBDHcYjFYpimSa3ZY3eYo9q1CDBgKTKSPl9pRdlvi9SGYXzomATIhQwemYnxaz/9GImISqVl8H9/Z5vt/SphacBPPp0jFJC4eGWdrYMajt5G8Qk4wQnersc4PZthYIl88oQP0eyxU2qid6o0a6WRHoMpsGdPc+AU0LxpHBHh0EfBlUt2cIjQPbQK96Ed2j770InSwhJ86E6AiN8hFxOZD9Uxte7oWrME1rRp9o0UBvIh70BERed0eI+QD9b7KXwMaJhRVEFDFQa07CiaHUAWRx4hvmAczfIzm7BRAzKnFybYaxicmQ7xzFL8rvl+3AkeJgNjcByH/+Z/+AMuNeME0PFH0kyK21jdErbgQ7NHblrZVBTTfKf3Gqjs8OQ3/wXi4SzwcW7zxz3+rtsC9PxRwkb79nZGENn77T8inEwRCoU8C1fDMGh1NerdIcKwiz0cHOnXjq/Cxm/aiqKQTqdRVRVBELz5aHc1oaqqpwDnJgcu479YLFKtVr0pD1VVyefznq7Dzs4OnU6HRGI0LnqjEUF3usDn8xGJRCgWi5w7d+6GhMSNjQ36/T5nz569/vgeignt7Oxg/fBVgv/T37+943yI5O99ifDpJ7zgZBgG9Xafv3i7RallEAvYPFEwEWzjOgMb9/i7AXw8sI8727nbPf59PJiP/+6eI3dVN36Zh8NhotHosZMjbjvAXR26QWE8ULtfLsluPFC7gXs8UI8H73HJ3Rt93SscZ7F8I9vld7NjhtHxd91E2+22N8KrKIrXfgqHw7e9P5qm8ZWvfIVMJsOLL76IrutIksSnP/1plpaWeOONNyiVSoTDYfKTs6xsHmAOmpw9uUggECAcDhMKjXr+Ozs7mOZotZvOTTKwfCTCMoo8mqgZtwrWNO2ICmujPeDq1gGW1gJTG+2PrOALJliczjI7O8fFrSavX7iKrffoiAkMKYkpBDiZF7BQ+JElmYlUmJfWDDaKHURb56efzvDs46e846PrOqurq5z/4RW+u25RNVNEo1GeORHj51+YJh5WPJln10/lxTeu8JcX+/QMhzITjBt4jayShoTpEGV0D22QwkEkRp2Y0ETGoEoewbFpkCJBDX9A4YUTPp48PWphlkolrq7vsFUz2OylqJthBFFCEiErVZmUdqjYeYZiiKgiMpcY4rc6FOs9VvoFLEmhbShojg/FJ5FPBHhyIYbtcCTRfD/gI9cmeDe89tpraO0qCgFMOUIsYKFYJgNRRPFLSPrAW924CmeZTIamovDK53+LifU3yV34FsFu/br3vtX+v4OAI8q3NU3gAMOlx9Bsh6goMhwOcRzH68MGg0Em86IXZMZtWd1g4LoXuqtQt7QOR0ux40HC7/d7bOVEIuElB+FwmEgkQjab9XQC1tbW2N3dZWJigqWlJVKpFLu7u1y4cIHJyUlP1XAc4+2CSCSCIAiUy+VjiW+2bdNsNskfw5J3xYR2dnZGq7te9xaP8PV4+VvfoH1p44j1rW3bGLYItg9NHPLa9tG+87XmTuM/36iv/F6BdLxM7yaA7s3dvekXCgVOnz7tseZ9Ph+BQMAL1p1Oh93dXRKJBPPz80dW2g9a6vdOcFyL5kZtm/dq57irZneixbKsI5bMrg6G67kRjUa9sdubQbvdxrZtLly44MmGnzx5kkAgwHe+8x0EYWQG5jgOjqkRFPoMfSOPj0AggKZpnq25W+k5ffo0+Xz+umrPYDDwjLbc7+12G20IK60Im/0sPivIqWSXdGL0/rqus39wwJff7rLdT2Ezy0TU4Td/Zhm/GuLN9S61rkEyCIszPg6qHfZqfSL+IaYQoTA5eyRRCgQCnD17lmhugVJgn9MY7Nc1sv4ma1fahMNhEokE8Xjcq8RkJ2YI5Eq8frVCa72BcGinPPKekRAOzelGhkyjdqKAjYGCXxYIWAMUZ8BACKGi4wgyktlhe/WAdmmdqakppqam+NFPPYcoirx+aYcvvtWjOhBQ0RB8QRYXT7Fs9TmoNcDoYLUsLL+fWDKDZaVADoI1JCSNqi2SKPHcqQTJiO99J//9MBk4RKvV4sUXX0QWTGaVMkJAI2AOGfSaXgndsizPoCQQCDAYDDwjoZ1mk9W5J7k8+SiR5gFSr8cQH4XKCotrL3OrKoUiDhGtzlDyI1vGTScEbvIw/Bu/yfTUiLh3LbHr2tWnG2R8vtEIVDAYJB6Pj97vcMLCbaP0er0jwc4tK7r9eLcPD+8kDe4qUVVVLzkIhUIMBgNWVlbY2dkhn8+zuLhIq6vxxqVtssUqJxdnr7OadacLSqUSkUiESqVCPp/HcRwMw2AwGKBpGpVKhd3dXTRN4+rVqwwGA3RdP3Y/YqU9nrqls3M9WrpJ/7D3On48lcNAKklHV8fXlsKvXV2Pr7DHR97GiXXvtare2Njg29/+NoZhIAiCNzEzOTnJ448/fsN9SSQSRCIRNjY22NvbY35+/p6u2D8MkCTJG1sG6Pf7XnKws7PjuYG67YT3qhq4FQd3EiaTyeD3+7l06RLBYJBQKES73fY+B+5YtGEYSJJEMpn0qnzuPeu4CaHxpCabzQJ4icQPVvbYXy+PRp7VNJ/8sU/x6NIo8SmVSrx1ZZfzAxOfJRMIyNgBCV1QeWw6ykwmdKSykkkb/GD7IpWOyOn5LOnY8VyfZNjPVCZEqSnz5MkEn34swXDQodFoeJW8UCjkJQZ/7akcj83HePFyncsbZRTJAp9Cr9tl5UAj6GiYjnQoE6x4MsLFYZKgoHjTYaJjeRMPjmnSaGg0Gg2uXLkC4SnKTNI2REKhKLZsEfELJHw6GG0iEZXFuVOEw2GubpW4tNWgWhlQ7doIkgEIJGN+VJ/Ex0/GWJoIva+SABcPkwFGK6avfvWr9Hq9Ub83IBEMOtRqLa8C4K66YrGYl2nv7u5i2zaapqGq6shaWJJoxKfZDU2goRIv7WALAtJtdmN+uPRpzq187Yj4zY3gJgKlH//3aA4h2+uxv78PHM9cdhnD44Sr48a43CAUCoW8m5w7o+wGYVeBze11jwvAGIbhjXfecD9/+EP+/Ovf4sCeJJqdRRXKzLz2GqpP8DgP4/aubiJm2zZ//qUvktm/gtquIlgmpl+lklugG05dVz4fb4O4j7UiGSxRRrJvzQXNQzDCX/nlX8UfCnsGNW5pfDxQ3+9VdafT8crD1x6H94I7QbK2tsba2hqLi4sPE4JbgBtg8/m8VzVot9ve5I1bNXCTg2urBs1mk7290cSDW7kpl8uEw2HPb8Gtxrlfs7OznDt3zmuzXbx40atiTk1N3fS2K4qCrutEArA0ncKU55jJRpmfTFOr1djb28M0TU7MTfCM5fD183V002EyqTCfHTk5jldWHMehtL/Fk5M26YkFCpnoDYPhsRM3oQDpdNrzJ3GPze7urrdw+fxTST51JsbO5ho/LIMenUCNDEmE58hEBGaDLV79wSX2q31KWhTlUAPBFqSRENMNLou9foRL/fnD0UJQ0Xj2TJ7PPZVneUKhUTnwJN87hsj3Shl0YQF/REQZavh9EpYNn3s8zZOLMSZT6vsyEYCHyQAA58+fZ3t7+8hK1g027sWkKIo391qr1dB13bvostksMzMzfPWrXx315Z2Q53Do2MIdjQheDD9D+ek5Pvv9/x3Rtm5IcnMfPf/4T3IldBJlbYutra1j56GvJXZd+/cHBdc9jMoOFUfBkWsExREJyi1/u+dIlmXEXovpKy9RWHkFn97HEUQQBHBsTjkOxsKjSH/tb6E++2OIougREAVBIBAI4Pf7PUZ979wLRM5/G8G+dir8PSBK5P7G32bq1Ol7cERuHy5fwG0NuLyKW0lIYrEYS0tLrK2tsbq6ytLS0sOE4DZwbdVgnGvgrnYDgYDXTohEInz/zbdpD/34gXAggGEYxGIxz4UznU7TbDa9Ff/e3h6FQsG7J7nKnLZtk8lkrquw3Qi2bbO3t0e5XCYVj/ErPzFFR3MICAa7W6v0ej0SiQSTk5MEAgEKExZPLsZo9y1OTYWPJcJtbW3R6XQ4e2rpPUnCcOMWjSRJ3uSSm2A1Gg2KxSK2vY+iKExlozhmBSGoEk/mUf2iF4BfePYxipUGf/Zqke1yB7tfI6r5MLV3CNaukqPoWBTtHFss4YyFSZ0gasDH2emRfHs8PM/8/DyDwYD/73urNDc7TOf9VJoGhZRKX7coJBQ++1jmfUESfDd85JOBcrnM66+/jmVZHiFOEAQ0TQPwLi5BELwerGVZxONx/H4/nU6HhYUFcrmcd8P1CzpxxaalKZj+m+8THoemP8uF9Atc+PTH+fjmn/GxrS8TsLQjpERbENmdfpS1hY9zOfoUmqWiWAMmrJufj34/wFVdU2ITRO0ehVCEiews2WwWRVGIx+PMzMyMeqIbl7n0638Fq1H2pjgExz7SjfFvXoT/8R8Qrv0ddj/xs9Trda/07o4BunoJU7/y92j/1jdufaMdm8zP/Qd36QjcPWia5rn3XTvuditJXzQaZWlpidXVkbHT0tLS+9IJ8IMEl3DrVg3cCYVms0m5XMawBF7fFdGYISwbLOV8nDoxz+TkpDe9IwgCq6urCIJAr9fDcZwjWhelUonhcIiiKDdt+z0YDDxDM1cbxDAMGpU9yvU6qqpeJ64VUiQem4/d8D339/ep1WrMzc3dVCJwsxhPsGzb9hKDVquFbui8fHmLSAZmshEmU6PEQhAEJrJJfunHYtQ6o6WH3j9LtVplb2+Pnf0yb1cUOsMAbSdCl/g1/1UkGhL51Nnkdat7VVX55MdO8tbBJsWmzlRa5Zc+VaA9MJnPBt/3iQB8xJMBXdd55ZVX6Ha7R1jzrogKjE7ycDikVqvhOI7XSz979iy12mjsUJZlXn75ZY/oI1gGKWeDkOijOjGHePUWZ9cP0fNF2UqcRcCkFJrnK2d/na+f/Hf5kcq/JWvsITgOeiBIJbfI0K/Sd4Jo9vHuZe8HjJfMZVkmEBgJjLg96nA4jOQPgj9CJAD1ygG7u7usrq6iqirxeJxms8mEIlP7zZ/GblbffZzzcJVf/+Pfp7O2jvHczwIjqWm/38/U1BTLy8ue0dLur/wWpX/5z25pnwr/0X9JYGrhto/JvUK/30fTNK/Vcy0h8VYQiURYXl72rHbHnS4f4s4w7tQJo4B8Ya00Mu8RDeZPf4xPf3KW2dyNV/atVsub6oHR57vZbOI4Dtls9qaIi5VKxatQnD59mkAgwP7+vkeEnJ2dJZVK3dJnp1qtcnBwQKFQuGnF0duBKIreMXQch0ubVV4vH1BIhSg19escOd+pPKhAgpmZGU6cOMH3f7jFyitFzG6bsj7uoyIiC3CioPLMcoJHZo9PajIxP3/3p+bYKPc/MAnAOD6yV7TjOLz99tvs7u56IyvxeJzhcOhl2m5pWlEUGo0Gfr+fZDLpkXdqtRrD4ZDXXnuNRqPhJRCmI2M4PkTH4kr8WR6N/jn59voRoaH3go3I92Z/Bkvy4zrY9YkgySZvT3yKSXH7OuetG7mX3Q1cK5jijpy5x9Lt37ttlvGZb1VVPVa12990fSTGmc/9fp9eu45lVegdHvczZ87QbDbZ399nb2+Pg4MDBl/7Q0KNqhfsbwa5V79EaeYRnMICMzMznDlzxnModDH5m/8Ea9Cj+q/++WG74QbnSxDBscn/6j8g/+v/8PYP6j3EYDDwCJLHqdvdKkKhEMvLy6ysrHD16lVOnDjxMCG4B1BVlUI6TDbqAyVLPu6/IdnOPbedTscTiwIoFov0+31isdix0zTjME2Tzc1NWq0WmUyGqakpms0mV69exTRNcrkc+Xz+lqtBrnhZOp2+obT5vYAgCMxOJFmetTydiPdy5HQnM5594gx1J8NuTcO/3+Xybv9QuQD+k5+c4cnF2HtOAGRi/g9cEuDiI3s17+zscPnyZTRNwzRNj4xTrVa9REBVVU+/3dUsd0e2VlZWPKW0wWDgOeeNS5mKjoVOgO+c+Hl+4fX/9qa3zUbAEmVenv2Zw0feMd0QsOgSZMseKQaq9Dy51OPsScdxnGKc+3Wt5Ksb7MeJhG4rZfy9RFH0yHKuk6HrFZDP5712ijuiGA6HyWQyJBKJ60ac3KTA9YVot9uebn4ymSQSidDe3SR46eUbB+obwBFETuy+zeKbk0LlAAAgAElEQVSv/cfkcrlje9+CKDLzj36f8LlnKf7hP0VbvwSS/M7/EgSwTKzJRWZ+47fJ/9Qv3dI23E+MK/hdu6+3mxQEg0FOnjzJysoKKysrnDhx4oaaEA9x+3BMjZOJDplChkK8g1+yGS0IrocgCHS7Xa914E7SCIJAoVB414St3W6zubmJ4zgsLi7i8/lYWVmh1+sRj8eZmpq6pXFIF/1+n7W1NWKxGDMzM7f8+jvFe/l93MzrFF+B712uc36zw2cfS/GJU8l7vNUPHh/JZKDb7XL+/HlqtRqaCf2hHz86pVLJG8WZml1kv9pFN8EYjObrLcui1uxiSUGKxSpGfzQLPCKdBD1rTpc8OEBBwuJi4VO81LzCc2v/+j23zT6kG/7Lp36HZjA99peRmAaIGCgYhFGc/qGneJCALBAQdFKhwGEgV7Esy5OidcuI4yt3N9sfHxUc/3lcn9wdgXPHKiVJ8tj97nPcUp2rXx84JD6ZpkkymSSbzR6rBAijm5rbS3VHnFxltFarRaVSodVqkb/yym2dc8GxCb75DbLRdx/pEgSB1E//LZI/9cv0fvA9Gl/7fzDrZRAEfOk8rZPPchCI0Zufv63tuF/o9XreVIcoih5h9E4JgKqqXpcQ3C3VvYcYodvtEgpILE8nsCyL3d1d5o/5vLljv5qmkcvlgBFXoNPpkM1myWQyx76/4zjs7e1547mTk5OeE+lxvIBbgSsepCiKJ3H+IHC7st/jr/v8s3k+/+yDdfO8n/jIJQOmafLmm2+yvb1N37DZ1rJ0hz7CPoMZpYJMH58aYb2bZKMpstbskVUNur0IQ2RWLuqYgo1CjAmxi+n42LNnMJEJCn0yQhGFAX0niIxJlDomMt88/YsM5BCfufJ/AgIiR3vd9qFX+FBS+FdP/UPWs08hM8T0WgsiAQZEaY5MQfCjoaA6PepOCkGI4rd7RKU2iUNhkEAg4I3j9Ho9T1N93H51vIzsrvLHA38wGERV1ZGAzuGIoGsCE41GSafT3o1HFEVqtRrlcplut0uz2SSTyXDu3DmCweAtnyt3H9LpNIuLixiGweq/+T0Gtzn14OgDtPVLhB595j2fKwgC4cefI/z4c0e3qVKhevEitVrNM396v8HVW3ATgPES7924OSuKciQhWF5efpgQ3CXYtu0RWwVBYGpqis3NTVKp1LEEPFfBMhaLYRgGe3t7SJLE9PT0sYmfpmlsbGwwGAy88v3KygqiKDIzM3Os1ffNwjRNVldXEUXx4eTJBxAfuWTgwoULXL58eaTK5ougaQqK2McQI/TtLqZlEyTMbrWPZBmUSVHsSmioOIdeV2mnQp8gA0el4uSpk8aPjunIxIUGGaHIPjP0HYUKpwnpNZ7Z/nOe2vryIW/AuU5ZsBKe4cX5v8761BP05MRhv99GR8VCRKXDNBsEhCEtEmiORUjsEXQ69MQUj8xNsFVsIPghFouiaRrtdvuIrG2z2cQ0TSKRiCcr7Pb1FUVBVVVisRiqqno67OPCJ+FwmMnJSbLZrEe6g9EN5uDggFqthmVZxGIxnnrqKURRZHNzkytXrjAzM3PHJCK/34+kD+7oPaz+nakNuu2KXq9HsVg8dsX2oOG2rmAUXGRZ9pK+u7VSCwQCXkJw5coVlpeXb6uk/BBH4SZxfr8fx3FIpVLUajW2t7c5c+bMdQHW9Z1wXTlbrRYzMzPeGOM4qtUqOzs7+Hw+crmcx3nKZrNMTEzc0ZSIbdusra1hmiYnT5582D76AOIjlQxcunSJ8+fPo5vQHvrxiUMCDNDlKNg2q90kNlnURh+RNn1COIjYSNhIODjYyNTJELOqzOy+xdP7KwT1FkPBT1PNsDn9Mfq5LENHRndUnr/6p/z4yh8iOPYRjYDR6l5AwqGhZPiTJ/4zmvFJQnSJ0USlS5Xcocq2gA+LDgk6goTP1sgJRVpOnDYJBF+Y9YMGqtNj0KnQajkEAgFPste2beLxuKePEIvFyOVyxGIxEokEqqp6okDVatXTWQ8GgySTSU6dOkUulzuyCnYch2azSaVS8ZTQMpmMp5Tm4vTp055tcavVYnZ29o5uOlL4zsaTpGD4vZ/0bq8/ZH/ruk69XmdiYuKmbJjvJwaDgdcigJHGgCtJfDcTAr/f700ZuAnB++1YfNDQ6/W8EWd3BHRmZoaLFy9ycHBwZEzQVf2UZXnkrvr2257p1/g5tiyLra0tGo0GoVAI27YpFovE43EmJyfv+Jw5jsPm5ia9Xo+TJ08+/Ax8QPGRSAYsy2JlZYXz58/Tt3y8XvKhWyPlqahTpolCmxg6QWSGaKjMCyskhSpVO0uVUQ9bwEF0TH7i6v/G02tfRDH72AjelMBUU+Sx/W/RVRN859QvEGsWeW7j39xwu6TD10W1Gv/hS3+P/+O5f0wzXsDEx4AwQ/wYBA7/M5jEyUpNTDGI7XQw7AAKA0RJ5fHpIJmAxcHuaBXoWqu6LONYLMa5c+fY2Nig3W4Ti8U8hbl2u+29JplMsri4SD6fP1aoxDRNqtUqlUoFwzAIhULMzc15inXX7aMkeTPGrm2x61p4Owg9+gyt734ZbtVqGBACCsrCnYsDpVIp6vW6d1Odm5u74/e8m3DJg+OcD1cwy1WZvFs4LiF4P7ZOPijodrsEg0FEUfSSOUVRyOfzFItFksnkkePb7/dRFIV6vU6j0eDEiRNH+v3dbpeNjQ0Mw8Dn89Hr9VBVlRMnTty1uf/d3V0ajQaLi4s3LW70EO8/fOiTAV3XuXr1Kpubm5iOxNsVlYqloKBjOwJ9grRJoOPHRmCI75CJbxERO6jCgLhdo+TksYQwf/313+XE/ve8Ev/4uKDkjC7e0KDB5978X256GyVsBGvIL778X/NPf/SPwA8SFiIOJhICoDIEJIZSlFRAp+D3IWgi9b5K0GgwrO2jzE4SjUaRZZnHH3/ccxD0+XxeL18URU9kY2JigkKh4I3Zuba2x6HX61Eulz1J4WQyeUvKZslkknA4zMbGBleuXGFiYoKJiYlbXqWmf/bfZ/9//q9u6TUASDKpz/8KUuj2iFHjiEajXhm3VqsxMTHxviqRj48VuqTB8QTgbpO6fD7fdQnB7XBEHgJP4Q+OikPl83nq9Trb29ssLy9753AwGJDP5z3Snmvp7TgOBwcH7O/vMxwOvVbRnfICrkWpVKJcLjM9Pe1pJTzEBxMf2mSgp1lsFxu0Kjvo/TaCINAa2LS6OgoCphQiJFr4/AEcW6IykBCxEbFJym0yYQnb8CMMhySEJlG6PPLWV1jYf/k95YVv5zITsVGHHZ7c/QovLnyBUTVAQMYcqQxKIbJynalAlWxEYmaywOPhOCsbB9iaRkAWKJVKxFN56l2DgWHT65WpVqvU63Usy/JK3M8995zn2Hfq1CnS6fSx22Tbtqel3u/38fv9FAoF0un0bc2Yu6vIYrHI/v4+7Xab+fn5WwqkvswE8c/+LM2//H/BugVBJcsk/jO/esvbfBwEQSCZTFKpVJAkiWKx6N2EHzTc8U7XiMrlhLi4V+xuWZa9hGBlZYWlpaXbrv58VDEcDr1qm9vec+EK/6ysrFCr1Uin0944ruM41Ot1zpw5g6qq6LrOxsYGlUoFx3EIhULkcrk75gVcC9c8KJfLeRNAD/HBxYcyGehpFn/yjatcuLpHNurjdGqA6FjUKkV8QgbZD6qvzXywwTA8T9cJI5V7YGsoTo8fmReZSJ1iMBiws7NDT7cQ6jUWN16+x1vu8PzGv+Y78z+HXxhiIuMTLAKiTT485LG0gSqNBHzy+Txzc3P4BItabVSK//5bF/iLCy36tp8rlR/w1DRkk1EWFhbIZrOk02nvZnDq1Cm+/e1v873vfY/nn3+eZPKdOVpd16lUKlSrVSzL8iRpo9HoHQcTQRCYmJggGo2ysbHBxYsXb5lcOP2f/nd03/guZrMK1s0JDw1+9BfYMCVmG41jyVW3ilQqRalUIhqNetWB9wOjfjAYeNMe41LE15oz3QtIksSJEyeOSBff7ojaRxGuVombDFyLSCRCMplkd3eXeDzuSaPXajVUVWVubo56vc7q6iqNRoNwOEwul2Nqauqu9/Hd9kMymbxpueOHeH/jQ5kM1LsGb17cYtivsdoOMqzsg9FhW8+hOxKqrZGzdmBgspCL4QvBkq9CsVJHMHt0634uV0ZBRrcEdvQcj698A1sQEZ3bkxa+GYhAqn/AbPsSu7FTpBSTJzJtRLOP32oTU5MkEjmazSaXLl1ibW3NE+rx+XyE4jn8PZmoYKDZfp55/hnm88ffjP1+Py+88ALf+ta3eOmll3juueeQJMmb55ckiXQ6TSaTuScl8FAodNvkQn9uiuX/9Wtc/Y3PMawWb6xEKEpgW+ye/RTlU5/kVKfD+vo66XT6hqNXNwtXE8Etw5dKJaanp2/7/e4W+v0+uq4Do8rO/fYRGE8IVldXWVxcvKua9B9mdLtdzyF0nDMwjunpaVqtFru7u56WhK7rnDlzhq2tLdbX13Ech0KhwOzs7D059pqmsbq6SjgcZnZ29oFpCTzE3cWHMhmIqRKpsEiVBFFRJ+6X2OuJI71vQWNoK2hDm4BgUT7Ywecr0u12sQ9voh1L99T4mppMawiPbP7lPU0Ejmy/XkMM9Xg802I6pRCPTzIcZikWi9TrdaLRKI7jeKV/RVH4xCc+gV+NEvhBnavbFXzNfQLCu8sRBwIBPv7xj/P1r3+dL33pS8zNzZFKpZidnSWZTN7zOeE7IReqC6c5/SevUv6j36Pyp3+A1W6AJI9UEy0LHJvwkz9C/Od/g52BjH7ocXDu3DlqtRrdbpeFhYU7IrulUin29vZIp9NUKhXy+fwDH6ly3Tbh6Fih+9jdnCa4Edw58/X1dS8heDc+ykOM0Ov1vM++q/55LWRZZmpqiq2tLU8/JJPJcHBwQKPRIJVKsby8TCaTuSfneTgccvXqVXw+30Nb6w8ZPpTJwNAcklf7pP0mAadH5aCKIgokFWgPo/gcHckZEawGgwGNdp+upYAjowoDHGfoZeaO5Uc1OvhN7b5tf1iVWMwNODWVolAoIAgC/X4fURQpFou0222WlpZwHIdGo8HW1hY7Ozs88sgjfO7JDE8thnntpU0qxV0KuePL7/1+n0qlQr1eJ5/Ps7u7S7PZ5JFHHrkrZfRbwe2SC33JLJN/9x8z8Rv/Oa1v/hnazhqOriFF48Se/6so86cAeKFW4y/+4i+o1+tcuHCBp59+emRocukS09PTN1Rqu5nt3tvb8wRiSqXSLfnG3wuMOxWapomiKNdJSN8PiKLIwsICGxsbrK2tMT8/f98/Vx8kOI5Dv9+nUCgceew4uNoDmzsH1PoCkWYPSZJ45JFHmJ2dvWeeEZZlsbq6iuM4nDhx4qF75YcMH7pkoKdZ/Nkr+7y2Az4BcnYZyTKRBIGkvUfTyGMgUxJyTDh7gMWePU3dyeDgkKLKJDvIjonpyFScPKJz9wx/bgYDAXq1bQ6kJIZhMDk5yezsLLFYDF3XeeONN9jd3WVycpJwOIwgCDQaDS5dusT8/DxzuQjFiQz7+/ucO3fuiKGQSwjs9Xr4fD7y+TzpdJrTp0/zyiuv8Prrr/PEE0/cU5ex43An5ELRHyDx4z93w7+nUimefvppz6Hy9ddf59lnnyUSibC9vU2n07kt/QOfz0c0GqXZbJLNZimXy9eZH91PuMntcPhOMutKSY8Hlrs5WvhuGE8I1tfXmZ+fP8JNeYh34FZ03OmcG7UJ4FAyO1vgh9UgfStORJ7i888/Qip+7wibjuOwvr6OpmmcOnXqfcGPeYi7iw9djafeNbiy06CtiewNImwZBUxnVCodGBa2IKEKmmfxa+A/FBcCEOgRwmD0QXd9Bmz5/pR+bQSKkTkakUlkSfacv1555RW++MUv8qUvfYm33nrLY+/u7OzQ7/cxLIFyx8GwRVZWVigWi0xNTTEYDKjVahiGwf7+PufPn2djY8O7ST/66KNMTEzg8/lIJBI88cQTWJbF22+/TaVSuS/7PA6XXHjq1CmGwyEXD2V/7wbm5+c5deoU4XAY27Z59dVXMQyDhYUF2u02Fy9e9MSWbgWpVIp+v+/1Zsvl8l3Z3tuByyx33TNdKWKXQDhuY3y/IAgC8/PzpFIpNjY2qFar9+1/f5Dg2qi7I5nvdY7euLCKTpDF6TRqfIK+eW9X6VtbW3Q6HRYXFx/qSHxI8aGrDCjikF6zjIaKDwPDGQV8v2gTFCwU43qL3yA9NII4OIToeY+7lsAdKcp6+hxztQv3lDcg4PDG8r9DID5BMO5HZRScXAOhYrHoufi5q9j1rX3WunGkrsmB1ueFMwneurLLRCqCbdu8/vrrpNNpRFEklUqRyWRueDHncjnOnDnD5cuXuXz5MrZtewYo9xOhUIgzZ86wvb3N5uYm7XabmZmZOy5Lnjt3jk6nw/7+PpZl8corr/DMM89w5swZ1tfXuXLlCoVCgXw+f9MBMxaLIUmSZwFbLpfJ5XIPpITq6gu4GgOA50b5ICoDLgRB8IhmW1tbOI5z262ZDyt6vZ4nNgRcN1o4jr29PfY2LhNXA8Syszdl03sn2N/fp1arefyeh/hw4kOVDPT7fV5/9SUSzj4iM+j4kRgiOodsc0snIxTpESZE17P4nRR3iNlNhshEhLb3uGsJHHdULs+/wEL1/D3bdkuQ6KgZDs5+nhc+NsdffTzOoNPw1L0Mw0CWZa8/3e/36fV6dCp9+laAoNbg/IrGysYefiWCKhaZ8jWotXpkZ8+yOJ0lGnrvG8bU1BTD4dDr9dq2fV/9yF1IksT8/DyxWOyuKBfCqPT69NNP861vfYtut4tpmrz66qvYts3JkyfZ399nf3+fTqfD/Pz8TZEBRVEkmUxSr9c5deoU5XKZcrn8QI6Zq1Nv2zbD4dBTH3TJaPeDPHgjuAmBKIpsb2/T1UxkNX5LFrMfZvR6vSMkyxsRCMvlMnt7ewy1Dp85k+axp/P39BhWq1VPBvl+tw4f4v5C+p3f+Z3fedAbcTfQaDS4cOECV9a2uFgN0XGCyFj40IiLLWQMNDvAvjNDjygGAUJCD1GwsRGpORm6RDFQCAk9bES0Qwtin2DSCyWY23kD2dJvWlTIQfCMh9/tNbYgYithNn/ld0kkIOdvEgn6icVizM7Oks/niUQi3gSBIAiEQqGRF0A6RWMAlhxBsHV6uo3fGdC3fQTQ2Gir7LQDNHWR+WwIv/zunSFBEIjFYpimSbvd9mafH9SKQFVVEokEnU6Hg4MDAI8ncTuQZdmbAnD7nu7P8/PzRCIRT25ZVdWbms+WZZlyuexJPNdqNc/F8X6iVCrR7/fpdDoYhoFhGN6cv6sc6fP5mJqaemBjkLFYjJ5u8W9f2eetzR61nsNsRn3Pz+WHGcPhkP39/SMW31tbWwiCwMzMjPe8ZrPJ5uam5wj66U+9wGQ2cc+OXavVYmNjg0wm81BL4COAD3wy4MpuupLDB/UB+/0wBio6CjI2GaGI6chs2os0SI4CtCASEjr4hCEaCg0njc8Z0iNEAJ2ak6HhpOk7ITp2jJaQ4iCzzKndlw5Nh94dtiDSCE/w0skvMNlcRbYMHEE48jpbEEeuAwtnKf/yPyI2M0UmFqDXbXNwcEC326XRaHgB2S0julyAer1Oo1bBbzZJBx3mUwKBSBp/NMtkKshsLsZBX8GPTrllkAgMySbD71nCFgSBeDzuud+5Wvd3Q3ToduAGcEEQODg4oN1uE4lEbpuo52oE7O3tEYlEME2Tvb09ZFn2VkD9fp+DgwNs2/YMn24Ev99Po9HANE0KhQKlUglZlu+7At/u7i66rjMYDDxBmlAohCRJ1Ot1YJQMFAqFB6qJ0Lf8vLXZw+cMqHUsliYjxIIfXZe7TqdDo9Fgenrauza3t7dxHMdTtux2u6yurhKPx1lbW0NRFJ599tl7tk39fp/V1VWi0Shzc3MPtQQ+AvhAJwOWZXlM5b29PZrNJtqgT9eJoAkRAk4fhQEhsUfJmaRBChAZIqMwICHUAQHD8aM5Kg2SWPixkDAIoAg6/UNCYVAY0Axk6eYnmD74IbJpYCNclxRYgoiIw37iBF/5zG9Tzj9G+5N/k55sERi0EU0DB4lBIMra5FO0f/Zv89l/9i8IZXIMBgNP5KfdblMul2m327TbbWq1GqVSiV6vh9/vJ51OE4vFaLfbiNhkEyEKuRQzaZV8VOBkIUA0KFPrO1Q7JumwSCGk06yPVAVVVX3XpEAURe/9Lcui3+97vukP4sYgCAKRSMRT/CuVSvj9/tvWwHerH8VikUwmg67rnhd8LpcjkUh4UsOtVsvzfLgRbNumWq0yMTHhmTlls9n7dqyGwyEHBwcMBgMMw6DT6SAIAqqqen4U8P5IBmRRpNYbfS79To+TEwHi0Y+udLHrJjo+Vri9vQ3A7OwsmqaxsrJCMBgkFApx4cIFzp07Rz6fvyfbo+s6KysrBAIBTpw48VBL4COCD2wyYBgGly5dYnNzc7RCbvep92ycoUaIDqYjIzomQaGHImi0nQQCDkN8yJj4MBk4QRpOirYzMtgQEAjRxkDBxxBT8B0SDYcYwsghUFFNtheeoBdK4u93Ceodb5scYC37Mb7+2G9w9emfYyGpcXomwaBylVYwyvbMY2ye+hGCv/ibvDn5NLvxCZpShJnpSUxDo1KpcHBw4AW9QCCApo30DVKpFBMTE2SzWaLRKN1ul3K5TLfbJZlMkkqlRqNkEsSCPnySgIhNLiIQsFvEqJOIjioLbnJhWdYR0tK1kGWZSCRCs9lEkiR6vR6aphGPxx/YSsFNhHRd5+DgAF3XiUajt3XDSqfTtFotarUahULBqwYIgkA2myUcDhOLxajX65RKJQKBwA3Jl36/33tOKpWiWCyOVCHvk4tbr9ejXq/T6/UQRZFGo4HP5yMQCODz+TyTKlmWH3gy4JdFZjMqS5NRFlICzWrxjhK7DzqKxaLnGOpid3cXy7KYnJxkZWUFWZY5ceIEr732Gr1ej8985jP3hKRqmiZXr15FEASWl5cf2JjsQ9x/fCDPdKfT4a233qLRaDAcDqm3eqx1Exy0TGSiFIRtpqU1BnIQHAHJ1lHpYSKiMEDARMSkSgYbiSADZDT86LRJ4uCg0icrl1CcHo4zGjMcuRma2JKP3dnHeGPqx6j004T1JpYok4v2yE6lSRgmIbHK0tw0+6Uq9Y6BIkmIgk08Huczn/wEnc6f8626jNEP8sVXi3z6dJgTJ05wcHCA3+/n0UcfRZZlut0ua2trns95tVr1xu3S6TTBYJD5+Xkcx/F6/K1Wy1sVRiIRHlueZGNjg0aj4QUERVHQtFECks1myeVyx174oVCI+fl51tbWUFWVZrPJ2toaCwsLD2zFcLfIhaIo8uSTT/Ld736XarXK/Pw8m5ubXLhwAcdxOHv2LMFgkNOnT7O9ve3ZP4+Xc134/X4ikYhnIpNMJr2qw/1InPr9PjBKkgOBgKcx4BLRxkcL3w8IKRIhRYX0DNvb7/TIP2okNcdx6PV6xxJObds+IvJjWRZ7e3tMTk7ekzl/27ZZW1vDNE1Onjz5wNU0H+L+4gNTGehpFqWmTrlU5I3vv0qt1aPWtSju79M1BEp6nO5QokMU0/ERETtUrTQNJ4GBQtSpUyOPhsqAMANUbHwoaBj4CdEjTAuDADHaOHKAEB1sR0DCIiDoiIKN6choKAg4hAMC7eAcNSkFapAnT6bwGXXCsoGq+JEDYV7asNjTEwzFMHHfgIW5GZ544gkuXN1lux1AtvrEsrM888gsM4U06XSaarWKpmkkEgkCgQDpdJpOp+P1EWdmZpiamvICv6IoKIpCNpulUCiQyWTw+Xx0Oh2q1SqNRsMLCDMzM9i2TavVot1u0+/3aTabtNttHMfxysrjUBQFWZap1WokEgna7Tbdbpd4PP5AA8zdIBe6fATXxXFycpJut0uxWMRxHLLZLKIoeueiVCpRr9cJh8PH3izL5TKpVIpwOEyxeP9WvJVKZZQY1+sgBdgutYmEgvh9kpdEugJEExMTR4hpDxrRaNQj0bl8jo8KBoMBlUqFQqFwJMDv7u56pNTl5WUUReHChQvs7e3x/PPP33UDKMdx2NjYoNPpPLSg/ojiA5EM9DSLL79R4UsvXuH7b6/jd/pcbYY4vz2gO5SJ+Qb0iNAhRlAaIosOftGi5cQQHIseIbpE6RLBQcLEBzg4iDhAnAYSNl3iWPgQRfDZAwa2SpMUmqN6EwYH9iQNJ40cylCImCiDHRKqxanlRS7ttOhbfkJCj1gkRHuostJJYdgyuhAi4evy+JlFpqenOdjfo9mHWtck6jf57FOL+OXRql1VVa9cHQgE2N3dpdvt4vf7vdLz7OwspmmSTCbJ5XJomka1WqXZbGKaJolEgsXFRRYWFggGg5imycHBAfV6HVmWicViBINBj31eq9Uol8s0Gg0kSSIUCh0J9KFQyOuL53I5L4F40AmBG8yB2yYXKopCMBhka2sLv99PNpul2+1SKpWwbduzZw0GgyQSCVqtFsVi0TtO4+/jluMTiQSaplGv1+8Ld2B/fx/btjko13nrwMdGQ2IoRUmpJj5JoFKpIMgqA0dhIpdlfu7Bmyq5cCdY3NbPzU5xfBjgXkfT09NHPiNvv/023W6XT3ziE9619+KLLxIIBO4JcXB3d5darfbQWOojjA9EMlBq6ryx1kYwuvQsH+fOLjMQkzhak1Bqis998jF+7NllkFQCPomQpKHadYpGihYxusToEvLIgW4iMOLyi/jR6BNliA8TmYyzT0xs0SJBAB0dhZDQxRZkBoFJEhGF+kDC7pfJx2R++qd+iv2uH1Uaslfrk/APOTE/SSQ9yeWijeyTsS2bjK/Fp597klgsRrNeJST00Bo7JKUWLzz3tLe/iqLgOA6XL1+mVCrhOA7T09MsLy97uuSlUolms+mJ5KRSKXK5HKqqYlkW9QHHe8UAACAASURBVHqdSqVCu90mFAoxNzdHPp9nOBwSCoXo9XoMBoMj7nvdbpdqtcr29jYHBweYpkk0GvVK4pFIBE3TqNVqTE9P02g0aDabJBKJB5oQ3A1yoWv+tLW1RTwe96YpisUipml6Ad1NPizL4uDgwFMfdI2tdF335IkVRfF4BPdypWXb/z97b9Yk2Xmd6z17zGHnnFnzPPWM7kYTDQIgIOGIlEkdSuKx7BOKE75SyBcOXzjCf8C/wHeOcITvdEPHiRMmQ8EjiwIpyaQkTCRGoocas+ac58yde2fmHnyRvTe70DNQALqBfCIK0V1dVZlVqKpvfWu9630djo6OcByHXLXLZslFtNrYcpRkwCKsuORLNQruDOVBnIEY4cqZ6adqnc/bYDEMg0KhgKZpX0ha5tOG5/TpFZwwXHXd3d1F0zSee+45YFjs3bx5k0uXLp26cLBYLJLP55mbm/vGjWlG/J5nohiQRZF8vcdACHF2cYJXLk5S120ULcPafIZL8xEOdm5T3vuQfuOQtNxkenYRO5Cm0WxjEEbBwkFCxPL3/kVsJBxkbAZIWKjYd6yI49SwUOkRJIhBWm6xND+LHJ/mVt7GsCQkReVP//AqiViY7ZzO+5slgkKX776wyKuvvEStnEcORgiGNGgfMBPu8PofvIokSUMRX6WI5PZoN+u8+OKL/qHrCdYajQYwdM7zRHuqqpJOp6nVahwcHJBIJEilUn4Ijdc6n5iYIBqN+oLBcrlMt9ul2+2SSqW4ePEiyWTSdzcMhUIkEgkkSfJXFw8ODtje3qbZbKKqKsFgkFQq5a9Cefnp9Xrdf9+vks8rLkylUui6zuHhITMzM4TDYUzT9AuCiYkJ37gnHo+jaRrlcplKpUI4HCYQCCBJEqVSiVgshqZpdLtd353wi+oOdLtdKpUKg8EAXW+Tr/UwHJW0JjAXs5AlgcNyh6qdQhVMXDXOpZXxp26dTxAEksmkL+SMRCJf+4Lg6OiIaDTqGw6Vy2WOj48RBAFJklhZWQHgnXfewTAMXnvttVOd5XtBZ5OTk1+JUdaIp4dnohjw1MfzY0EuL8RIRBSmkzKq1aB59Ds+eu8dcrkc4aDKt66c59KFc1RKBXZyTeqDMAMUbOQ7fQCHKF1UbLSQiqYKxNwqstOnRxgRmz4BHCQmxWOiYpsxtcPi3BTxmMbxcY68EUUUQAqlidLk+OiAf77ZodVXicSS/KcfvECv26LbafHat9ZIqQa13feYnkhx5coVYCj0Ojw8JJPJkMvl/F8I2WzWP0wuXbrEYDCg0WiQTqf9Q80LMTEMwxcO3n2DB/wRQywWY3x8nFQq5W8n7O/v0+v1fIviVCpFMBjEcRzC4bC/Wgf48/jt7W0ODg78Nrxpmui6zuTMAtnjGvValUwq8ZWrj70Wvdeyr1araJr2WIIrT8BWqVQoFAosLS0hSRKDwYBCoUC/3/cLAuBEceRpFjw3QscZikUDgQCFQuELnYW3Wi2azSaGYdBu1lEGNZKBAbNRi2hYxXEcqpUSJhqGE2A8JvtjqacNr0PgjWmi0ejXNhTH87fwOnqeqdD4+DiDwQDDMFhZWaHdbvPee+8xPT3N2bNnT+3xPXFyKpW6Z0wx4pvHM7NN4KmP2+02H9za4vbt29TrdQRBYGxsjOeee45gMMjHH3/Mxx9/DMCFqRncRpBKpUTNTZCggRDKsDo3R0zU0fM36bbrhAQDS5RwHYEmSUKYWMg4gkREMpmamELTNCqVCqI7LE5isTiBoMrMbJKDfI2+4DCdVnCVKPsVE61fHrabI0GsdgHR7Z/YI/YEQEtLS3zwwQe8//77wFAUd+bMGf/fV1ZWWF9fZ3d3l5WVFf8Htt1uMzMzw9TUFNlsllu3brG4uEgikbjv188TGXo+BgCBQIByuYxt2yiKQiKR8JPvXNdlcXGRpaUl6vU61WqVdrvtPxdVVdFNi9x7NdTYJAFXB3edyxfPPhXz3lQqhaZpTxyLHAgEeP7553nnnXdYX1/n8uXLvpVvNpvFdV2uXr3qf5xPpy22221isRi1Wo25uTk0TSMWi5HP57+wlcxut+uLGw3DIKgIxAMitutSMyTCsovoDphVC6BEmdccFNEGnk4bYFEUWV1dZWtri+3tbdbW1r60Fc0vE89MTNM0Op0O2WyWZDLJ7OwspVLJtyPe3t7Gtm3OnTt3ao9tmibb29tEIhE/N2LEN5tnojPghfS88847vPXWW2SzWRzHYWVlhddff53p6Wlu3brFb97/mEKjx1g6xezMFPVqkUJVxxVlIqEgC/MzzCVAKL2Pmf8d8qBOQOgjSyBhEaGN5SoIOISFLimpyerKkh+qIggC169dwUJBVhRmYw7LyQGi06PSCzMQNSYTAV5dC9JuVJifnycQCPCP//IbjpoiF8+fY3YqAwzX47a3txEEgaOjI7rdLq+//joLCwsnWqN3CwphWEQ4jsPBwQGZTIZkMkk6ncYwjMdyzBMEAUVRqNfrLCwsMDc3548TOp0Ouq7juq5/GxsMBqiqSiKR8L0PvOdvukG2KwJuv4FuKSQDFv1ug3g8/lSsJX1WcaHnJ3B4eIhhGKyurjIYDHBdl0KhQK/XOxFm9GnNgrelEYvFCIVCfncgHA5/IYVSoVBAFEX29/exbRtJkrDEMB8Uwxy1Fdp9CbpFtIBEKhogEg6SSCROeOE/bXgjA89862n5njpNarUapmmSTqfZ2toiHA6zsrKCKIoUCgV0XWd+fp533nmHQCDAiy++eCqH9mAwYHNzE0VRWFtb+8rHeyOeDp7KYqDc7HPzsI3VNygc7/Ov//qvfPDBB5TLZTRN4+rVq/zRH/0Rmqbx4Ycf8uGHH1JtdCgyR0uapNKxaRa2GJgdZlMK3/7WczR7MlsHJVqVY2KDI2TBQpZlYrEYumlhuEEUwSIhNoiIHRJCg/mZCT+ffjAYcOXKFVLJOJ3SNgsZhZfOj5FORJAFm++9uMrZuTg/eH6MXnsoCpqdnaXc7PN/vnFErpceFgRzGtGwSqvV4ubNm/R6PVRVpdlscvny5fsqeYPBIKIo+qtXtm1TrVaZmZlBURQ/LEeW5cc69LyWZKfTIZPJ3DNOUFWVwWDgGx554TeeZkFRFCzLQhRgIEXQLYUgOmOBLp12g0KhQDQafSpuc58+qEulEqqqPrJl73VmDg4OEASBxcVFTNP0LZFN07wn3dDTc3huhrquMzMzQyAQoN1u0263Tz2tz3VdDg8PURSFnZ0dAoEAA0fitzmVo65Gv9fHsl0CdoN4WCEYDPojp3Q6/VQfBN7Ip9lsUiqVSCS++jHUaZLP55EkiXK5jCRJJw7mQqFAp9MhFAqxvr7OxYsXT2Wmb9s2W1tb2LbNmTNnvnYF1ojPzlNXDJSbff73v93h79495v/74JDq3oc4/Q4TExO88sorfOc730EURX7zm9/wwQcfUKm3USJjzK9eJFtx6bXKNLoumbDD9ecv8t0//j6/Wu/xL7ebmK6KQZhMQOfymTkikQjHhQrH1jR1N4PphkgqXRTXZCyT5NKlS7TbbQaDAYuLi1iWRbVaRcThletXSacSHB4eMjk5ydz0ODPpIKo0vLVPTk4SiUS4edjm39YbyG6XpgHN/AY7N3/D+vo6uq7jOA5jY2PkcjkajQaZTMYPI5IkyT9sIpEIpmkOLYlNi2Kjz+zMNKpycv3v7kPPGw18Gk9PcL/bquepn8lkGB8f9x0KvVhcy7JwXRdFUZBFCNhNorLJUlokEhqmKnY6HQ4ODuh2u77B0VdtePNZxIXJZBLDMDg6OiIUCjEzM+N/ToVCgW63e8/owSvMAHZ3d7Esy1/jLBaLaJp2qt2Bfr8/9D5odske10nEIlTbPXZrIgICJkGiok7CLRGPDhX63ozasqwHjpWeFryCoNFoUC6XvzYFgbe54q0Mf9rkp1Qq0Wg0qNfrmKbJd77znc+tnXBdl52dHQzD8L0LRozweOp+qtaPOmwXDDqmg+0GKcQu8L3XFjm/NE6rXuKf/umfODo6wrIsIvE0prrKYdti+3cFul2dvqMykwny77/7AgEtzXvbdW7tVfByAyU5wPjsGtvHO5itCn1UTEIE6NEXo9QsnfGgzEsvvcT6+jqyLDM1NYXjOGQyGWZnZ9nb2yMYDLK7u0swGDyhBahUKiec1JbGwyxOpdjNy2Q0WBwLEgtOomka+Xze1z0AHB4e8s477/gfS5IkVFUlEAj4L/lSjXf3i0jhDBU7x/efTxMLq77bnKZpXLhwgb29PXZ2dhgfH2d2dvae9mIsFiMajXJ8fPzAvAFZlkmlUqRSKX/1sNFo+IZFjuOQiIYImiZGp0637RIIBHwnQC9Fz9vPz2Qynytx8PNyt3Oh94v4Yc6Foihy4cIFDMNge3vbX9Hc29tDkiTfBOratWv3FBUrKyvUajXa7Ta3b9/29QP5fP5U2/Pdbhej7/D//Osu7UGYuhjBbpQICi64EKbNFEN1etfVEGyValdgdnGcajnP5OTkU6/Y96x4NzY22Nzc5OzZs8+8qNAwDIrFIqlUirW1tft+Pt6a6tTU1KmEXu3v79Nut1lbW/tGGTuNeDyeus5AQ+/zb7cb9C2BgCKhBjW2Cx1+/naWg62P6bXLxONxrl27xvKFF9goOtQKezR0m7VUn3/3wgo/fP153s32+c+/2uftm3n6fRMEGUGUiMk9KtUGx12NnhsiKgyzCAw3hHknsCgydYH93S0kBqwuD0V0y8vLpFIper2eHwfbarVYXV31f5Bd12Vvb494PE48Hh+mDjbq7Ocb6IbBQkblT14+y7Wrl5mfn0dRFLrdLt/73vfIZrPous6PfvQj5ubmyGQyxGIxv3r3wmcK9R4HTYWkJlGoGUi9Cp16iXw+T7FYpFwuU6vVcF3X31jwtAT9fh/TNOn1er4WwEvY0zTtoYe0102Ix+OMj48zNjbmPz9PYOc9x0ajgWEYwHDEkclkMAzDV/c7juOv4X0VhEIhUqkUrVbrkc6FnkFTqVSiXC4zMzNDJBLxi5zj42O63e49IwNRFOn3+4iiSCKR8E2kPC3BaR3A9Xqd9b0SH+91kdweOTNCsyehMmBcLJIRy+Da5OwZCr04h9045a403ISRurjO098dgGEhl0gk/LTOp2GV9fNw69YtKpUK169fv6+bYLlcJpvNAnDt2rXP/f8ol8tRKpUeKjIe8c3mqesMrE5F+N7lNO9uNkFwEYDbR136jkxOWeB/+oMgf/jiRUKhEJ/c2qJ8tI0+kFiYjPKffvgq0xNpDisGBxVzmDEQCpKJBlBlkXylRduwqNtpBBx6hElRYUo8punGKTuT9Ajw3kEfTZ7mD6ZTPPf8ORKR37fTbNum1+tRKpX8XXTXdel2uxSLRXK5HJlMxs8PqHZF+o7MS+enMWwZMfj7GOBoNOonAq6trVEqlTg4OOD69ev3+9IAQzfGyHsFivU+izGJ5y/GCMjD52XbNpZl+X9WFAVFUcjn89y8edNfL7ybRmM445+enkaWZd+y9u6XT7/O+3ssFiOZTLK8vOy7GOZyOfL5PM1mk3q9Ti6XI5fL8dKrr6MQwDGbvvI+FouRyWS+kuCjQCDA2bNnyefz5PN52u02i4uL9z2kY7EY58+f5+OPP+bGjRt861vfYnp6mlwux+zsLIeHh7iuy7e+9a0THYJ0Ok29XieTyRCNRjk4OKBWq7G7u8vly5dP5fPodrs0SocEBQtdiDMYDIhi0BcCSIKFLFi0nShtN4oy6NMYaLjGMVsHSdaujVGtFpicnHwmWsbe5sbm5iZbW1vP7Mw7l8tRLBaZmZl54MHc7/fpdDrMzMx8buvoSqVCPp/347lHjLgfT10xoAUl/oc/nOH1S6lh+/OtPIcVk3AAXFGlKU7z6xsVjnY3cDo5zqfCLL50mcvnlohpwxt6KqKyMBaiUO8TDsNsWqJcazIVh4o+9BtwEXAQAAFZsIjTpCmkaLoJBFzSqSSGEKVtuiTu6tA19R6bhzVW5oa7wOvr63S7XVzX9YVAY2NjaJqGpmlYrkxLqlBs9JhKBUhFft8OjEQiiKJIu93m6tWrvP3229y+ffuhxYAWlPjTFyapdfqkIipa8NG3o0uXLrG3t0ej0WBsbMwfe9i2jWEY3Lp1i0gkQiqVuqeo6Pf7GIbh/91xnAc+jiRJpNNpYrEYjUaDfD5PqVRie/eQf9n5Z4LxKV68vMafXr9I32hRqVTIZrP+OCKTyXyp7UtBEJieniYWi7G7u8vt27eZn58/kR7nMTU1ha7rbG5ucuvWLS5fvoxlWZRKJebm5vyC4IUXXvALglgshqIoVKtV5ufnh98PlsXOzg6RSISlpaXPXQTV63Va9RIzsklfbFOwY37Cpkofy5WpuRl6hDERUDFxBBmzmWNl7hy721Xy+TxLS0uf63l8WXixuncXBM+ShsBLJtU07aFOgvv5Okd6mIvj859Lb9NsNtnf32dsbOwLizwe8fXgqfwp0oISZ2aGJ3BAEdkrG7S6NomwzDubdbaPmwhukOsLa/zPP3iOTDJ6z/v/6MUJXliJ02w1aVdzfGS6rB90CLgOAhIgkKJMSBimvcmCxbRwAIJIYOwsoWCQhbHQicNbN23+Zb3LR/kgVcchGGqSSUR8Jb+3m5/JZE48nz+5NnbfwzsQCCDLMu12m4WFBcLhMJVKxV8Pe9jXRws+/qHpOZmVSiWOjo7Qdd3PLAiHwywuLlKpVEin04/8xeq67n27EJ9+XSqVYmFhAV3Xee/mPrs7A5x6nn/6txbtA4dvX17h3LlzuK5LtVr1RY+apvlGSF9WGzgSiXDhwgU/mbDZbDI/P3/P4y8tLdHtdjk8PCQUCnHu3Dl/s2NpaYnd3V1c1+X69eu+PXEqlfLtmwOBANeuXaPb7bKxsYFt2ywuLn7m261lWezv72NZFuGABL02KXEAuIQEA1mwMNDoEyBJBUMIMy0eEw0KpKwq2MONiMPDQ6ampp6J7gAMR0+fLgiehZFBo9Hg4ODAtxR/0LZNrqrzX2+J1HpLiNkwly/3GYs/uUai2+2SzWaJx+NfaWT1iGeDp04z8GkyMZVvLceZGwtyYU7jg902iCKIMulUkivLyfvaqg4sl+1sloPdTSq1Jo3jdQbtMj1XYoBCnCoz4jGqOPDfZ3Isyf/6P/73XFvN8OJagutriROHd7HR48aRyeJMGkvUeOHiPAszwy6AtzO8uLh4z21PlUXiYeUexzdJktjb20MQBGZnZ/2kMk/kdtp8etvA26f3bHVt237k43q2x7Is++LGUChEOBwmEokQi8WIx+Mkk0lSqRSTk5OcXVtFCKUxnACy0ybYy3O4v8uNGzcoFouEw2HOnj1LJBLxRzClUoler+c/zhfNp5MJ7+dc6M3/W62Wr7XwVg4NwyCTyXBwcECp2kIIJlFkCS0U8D/HYDDorzq2Wi0sy6JWq/lWxk9Ks9nk3XffxbSgZYU47mVoksRCISq0EQUHwXUx3RB9IUgYnTG5xtxEHKtvIssyZ86coVqt0u/3fdfJZwFFUYjFYpRKJVqt1leej/EodF1nZ2eHeDzu24nPzMzct/h+65Mj3trqkI4oGE6A5ckwM+knK9R6vR6bm5sEg0FWV1ef6q/NiKeDp74YAEhoCmemNZIRlZsHHapti6AqcX0tzgsriXsO2WHKYYkf//17fJwT2Sy75Mw4RcapM0WPMC3SNN0YsjMgIPRZW13ir/7qr4hoIdIxlXRMvefjehkJtY7NZHJojazKIh3D4sNbu4ylU2TST/YLdXOvyFbBZH52hkhI4V9+V+RXOyKpZJy5zOm3zL0VO8+k6O4CwFM3n3bb1bOTPr+Y4vmVJMlY2M9FqFar7O/vc/PmTWq1GvF4nJWVFRRFodls+pHBX5boMBwOnxAXCoJwQlwoyzLRaHSojyhW0S2VuZlpBj0DwzAQlTB//36RN28VOa50SQYGNGoVv+NTr9f97AfLsuj1euzs7FCpVNB1nUql4ucdlMtlvzAqlUoUCgWOjo78DsZvfvMbcsUqu90MhUGKDgk02vSFIBFRR2GAKDgEMJEFi4RQIyjZ/ppsq9XiwoULKIpCoVAgmUw+UzN4RVGIRqMUi0Xa7baf0fG0YZomW1tbhEIhVlZW/O+B2dnZe97WdV021m+xXehhKzFm0mF+8PzYY40DPSzLYmtrC0EQWFtbe6bGKCO+OgTX87x8Rig3+6wftYmFFVantPv+kBxWDH72mxK/u3GbbDuMhQR30gq9FcPfY3F9qsf/9ld/SCT06B8a3bRPtPx10+a//ibPOx9tkAi6PD9tEVR+7xEgiiKiKPp/lyTJf13LhP/7XZ1yyyIi95kM1PigvQR38hR/uFTj2lKYdDrN+Pg4iUTiVFu53tggFAqxuLjI1tYWkUiE5eXlU3uMBz3u4eGh73x4dHREuVxG13UGgwGKojAxMcHKygpjY2P+vrXrusTjcTKZzAPXIU8L13V9cWEkErlHXJg9yPGf/3mL43qfsUSEF2YtGsV9yh2XjWYS26hDIM6/OxdkPCrS6JikJxdJRRTCAdF31ltYWKDb7VKr1QgEAv5WwmAwYDAYYFkW/X7f/zPgf943b96k3HHJGhMo7oAaKUKCQYQ2U+IxsmBhuTLH9hw6Gho6c8oRr73yIrZts7u7y2uvvcaFCxe4ceMGmqZ94f/vvwg6nY7/ves5+D0teLoiURQ5e/Yssiz7B/Xq6uo9b1+v1/nFL36BLUdYufQKy5PaE40IHMdha2sL0zQ5d+7cU782OuLp4ZkrGcfiKmPxhytiUxGVZETB0Waw2i2GhcCDvNhlTCVJXR88VjHw6Xl9rdOn2rFZmx+n1OwRjAqkwo4/W3ccxxfreX92nOG/b1cEWr0gCiatvkq3HwdEwMFF5Le7BvrR+ydsb70YXUVR/Ghcr/WYyWT8kKHHuUGPj48TiUTIZrNsbGwQjUap1+vouv6FugeOj4/79rnpdJrr169TKBT8G1O73aZSqXB8fIyiKExOTrK8vEwkEqHRaLCzs+NbDWcymS9k1v0ocaESTjKQExTrBxzU4PCwxpW0TigQYDIZpKKMIw6a2IaJFZ/jV1sG/c0DLi1P8t+9Os/09DSDwYBut8vY2BiqqnJ4eMjt27f9XAVRFH2PhkAgQDAY9P0mSqUS6+vrBESDIAamECLtVohRRxZs//Mw3BAVxnCRMAiTcqrYts3CwgL7+/tsb29z/vx5pqam2N/f92OtnyUikYifZZDNZk9keHyV2LbN9vY2ruv6N3TXddF1nYmJifu+z/7+PqZp8u1vX+Hc2SfrMrquy+7uLt1ulzNnzowKgRFPxDNXDDwOWlDihZUY2YJO3zQ4boCLgIhFmDZdwliogIgoQCqqnhAKPgmpiMpEIkCxEeO5tQCvXnv8lt7zzT75v9uj0EgwkQjw4kqY/+PnOSxHRBLg+9dmmVDD/gFtmqZ/SzQMg263S7Va5fDw8MTH9ToSkiShKIpvvxuNRkmlUkxMTDA3N0cymSQcDnP+/Hn29/ep1WpDxXz2gMzU4mNvK3wWMpkMoiiyu7uLbdssLy9jGMYwfTIc9tep8vk8hUKBw8NDVFVlamqKubk5QqEQlUqFYrFIJBIhnU4/dhH0JDxIXJiKqEyPJ7l12CHUazJwFbqWBHYL1fwdaUdBcU0ODgTePJDJG3GCQo+P1o/oFX7HZFzyixiv3X358mWq1Sq6rpNIJFhaWnrgLXdjY4Ner4dldpgSTfqoiK5N2Z3EdEOoTo+UWKXnKPQJYiMh4tB3FEqlEq+88grxeNxXmy8uLvorn15s7rNENBplZWWFnZ0ddnd3T2VT4/Pgui7ZbBbTNE+YJPV6PWzbvm+x3e122d3dJRwOf6YOzdHREY1Gg5WVlafCCnzEs8XXshgAmEmHODcbJRKUuew4jMWDmH2bge2iBSQ+2muTq5qMJRT+6o9mP/OhpwWlB24LPIqxuMr/8qeL7Ja6LI2Hh12PRJhf3azx+sUUL5+7d8UNhr9ovOyAdrtNrVajWCxSr9dpt9sYhuEbC/V6PQzD8I2SPo03tvC8A/qOyFF/gol5k/PLk/zJtfEvrCBIpVKIokg2m2V7e5uVlRVWV1fpdrvkcjmazSZTU1NcvXqVdrvN9vY2+Xye/f19gsEgU1NT/g1rf3+fw8NDUqkU6XT6VBzbPDznwlgsxsHBge9c+B++PWzp7x4VMKqHxIICr778OrIs89FHH1EsFqnoAq2ehUKXrhAi4nYIin0kaahDaDabbG9vc+HChaGt9dwclUrF7xIsLy/fc1NvNBp+iBIMN2FkLLqEMd0QijugSoauqyFh4SBgI+EiUnUztPSOH4t9fHzM9vY2S0tLTE1Nsbe35xsqPWvE43GWl5fZ2dnx8yS+qoLAc/tbXV098bXsdDoA9z2sPX+OK1euPLFotlgsUiqVmJ+fH5kKjfhMPHOagSfhfvN97+/dnn3iEP46Y9u2L07L5XJUKhWazSbdbpder0e/3/dXAzt2kCN7jrnxGH0hyGurCucXx0in076v/mn/gm21Wuzs7KBpGisrK/7t/u6iIBAIMDU1RTQa9dvbpVKJwWBAKBRicnKSdDqNIAhYluU7H6ZSqVMVxfV6PXZ3d9F1nenpaaKJMer6gHrxkHff+jWWZfHyyy+ztrbGL37xCwqVBhv1CLWuREB2mFOOCQo9AL9rY9s20WjUz4SYnp5mfHzcD0Sam5s7EXD07rvv8uabb9Jut088N8uVyTsztN0oPcIkqdAhQpsYNgoiFjFaPDducHU5xdL8NDdu3ECWZV577TUmJia4efOmr0B/VvGMnTKZDAsLC1/643vGW4uLi/eY/Ozv76PrOhcuXDjxesuyeOONN2g2m/z5n//5ExWz9XqdbDbL5OQkMzMzp/I5jPjm8bUuBkY8Obpp819+naXUGhDEYDVaxxkYOI7jrw8mk0kihSjuygAAIABJREFUkQjhcBhN005lNtnpdNje3vYPorsV0PcrClKpFP1+n2w2Szab9Vcjw+HwCVdDURR90WEsFjuVQubT4sKlpSVUVSWXy/HGG2/Q6XSYnZ1lamqK4+NjStUmnb5IQpNYWZihXC4jyzKNRoNut4tpmidEpl5s9eTkJIlEAlEUGRsbY2FhAcuy+PGPf0yxWMTou/RRUekD+KOCASo1N4PpBukRoo9KHxWFPjI2IbqszUT5/tU0pfwhg8GAqakpXnvtNf8gPXfu3DPdaq5Wq+zt7TE+Pv6l7tiXy2UODg6YmZm5r8nPrVu30DTtniIll8vxy1/+kuXlZV577bXHfrx2u83W1hbJZPIr7YSMePYZFQMj7uHuDko4INLpdHxvgk6n45siKYpCKBTysw284iAcDn8mbwBd19na2kJVVdbW1u650T+oKBAEAcMwyGaz7OzsUKvV/MIglUoRjUZ9waUnOjytAsbTPHjiwnK5zE9/+lPa7TaXLl1iZmaGt99+m2AwiGVZLC4uoqoq1WqV6elpXNf1OzWqqtJut9F13Z8te8VBMBhkYmICSQ3z24/XsXrGUB9ACJUeuPjOg1PiMQBNN07VnUB1TXSi2IBJmBAmsYDLH6xJjEdFLMvCsiy++93vEovFuHXrlv//4FnGO5gnJibuu8Z32ngjn7GxsftaCNu2zUcffcTCwsIJYzLXdfnVr37F0dERP/jBDx475towDDY2NgiHw6ytrY0KgRGfi2fCZ2DEl8vdJkleQFEikWBmZobx8XGi0SiyLOM4DoPB0LTJsix0XadWq1EqlahUKrTbbXq9Hq7r+tqEhz6uqhKPxymXy9Tr9XvCaBRFIZVKkUgk/NS3Wq2GJElEo1HGx8c5e/asP6ftdDr+vr4XRd3pdHyhJPC5xh6eZ4NpmuTz+WFOwB3LZ9u2fX1BLBbDNE3/c/HMmXRdR1VVFEXBNE3m5+d59dVXWVxcJJVKEQqFEASBXq9Hu93mKF/mvUOBipWk4w7HOEFMumj0UQkLBj2CaEIHCRsXkQEqfSGEiA24yIBJkKDTJOEWiYSD/vMaDAa+EU6xWCQWiz3T6YCapiFJkh9Gdb9AoNNC13W2t7eJx+MPvKF733szMzMnCt1ms8kHH3xAJpPhypUrj/V4g8GAzc1NFEVhbW3tqVqnHPFsMioGRjwRqqoSi8UYHx8nnU4TCoX8RETgRHfAsiwajYav+veU8v1+H9d1kWX5nl9iiqL46XTVavW++fUPKwpCoRCBQICJiQnOnj3L0tISgUAAXdf9j9lqtfw45kajwWAw+MxOh55zoSAIfPLJJ7TbbS5fvszVq1f9VrXruv7hn8lkaLVaRCIRAoEAsVgMURQxDINCoeAXTv1+39dzeJ0BkxAFMzqM20ZFESwGKHdyCAZ+ZyBCm6I7TYMUritgIeMg4qAg0yNChxnxALs3dEGUZZlMJkO5XGZxcZFIJOKveT7rwTZe/kcul0MUxVMVlnp82lToQQdzrVaj2+3eEyn+ySefUCgUeOGFFx5L/GfbNpubmziO88yGNY14+hiNCUacCv1+3z9cPWFbJBIhHo8TCoV8EWO326Xb7fqBR8Fg8MSIIRQK+fG/d//Ce5iXwMPGBx6u61Kr1chmsxwcHNBqtXBdF1VViUajJBIJMpkMY2NjT+zCaJomm5ub2LaNLMv0+32mp6dJJBL89Kc/pVQq+cXG8vKyP9bwIrEjkQhHR0ccHR3huq6ve/A8IzKZDJFIhJ/87d/xq9v6cDTg9ogLDSTB9vM1PP1AH5UjZxFcmxYpbERk+lhIxKkzKxwSkbr+8w9ocVbPX8U2m1w4s8xzzz3ni9I8m+hnHU/UNzc3x/j4+Kl93MFgwMbGBoIg+KZCD+JuzwEP0zT52c9+hqIo/OhHP3rkDd91Xba3t9F1nbNnzz5znhAjnl5GxcCIU8frCDQaDf/QDYVCJJNJ30XRNE2/ONB1HcMwcF0XQRD8rANVVSkUCgiCwJkzZx657vY4RQHghwtls1mOjo5ot9s4juMXBqlUylf0R6PRh44RDMNgc3PT9/mXZdkXF95tMvXOO+/Q7JikpxaJqNBt1xgMBqiqiqqqjI+PY5omrVaLUCjkr04mEgkcx6FYLPLWu+9TM4OYbgADDUtQTmgEPAGh7kTZZxmTAAICMiY6CTz3zSAdzvM74nLb30AQQilWZpKsxVr8hz/7AaIocvv2bQaORGpy/gv1nPiyODo6olgsMj8//9hz+Yfh3dAHgwFnz559pA7l448/ZmxsjOnpaf91GxsbvPnmm7z00kv3bBjcj729PWq1Gmtra1/o2GPEN4/RmGDEqeM556VSKcbHx/2RgSdCrNVquK5LNBr1b+MTExMkEgn/pqPrOvV6HcuyKBQKHBwc+MWCZ+v86UP6QeMDr83uvb0oimiaxuzsLGfOnGFqagpJkjAMg2az6a9g5vN56vU6giAQDAbvMTTyIo0DgYDfrhUEAU3TcF2XGzducHx8PJz72wIbjSgHrQDtvkRC7SMJrq+TSCaTzM3N+cJHL8TI+7x+d3ODW7U4x+4sTVKYhFExse6MBiruODV3nII7RZlxOkSwkXAQEBCw+f0IxEKlQYKEW8URJOpuhqDYR7cUNLFLKhogEomwd5jnHz9pkK1KFBp9FsZC9+R1PEvEYjEsyyKfz/vunZ8Vz1TIc/t71A3dNE2KxSKTk5N+l8u2bd566y0EQeA73/nOIw2zcrmcH2Q28hIYcdqMOgMjvjQcx6HdbvtdA8uyfI1AIpG45xZu2zbdbtdfn2q32ySTSf9gvluf8OmEQbi3UzA9Pe3P9+9Hv9+nVCqRzWbJ5/P+5oSqqiSTSWZnZ4fbAKEYx+Um9eIByVjYz09oNBo0m03a7bYfSuQ9Tykywe/KGp1ajq4l8++fTxGVTSqVCqFQiLGxMc6dO0er1aJSqbC0tMTW1habm5vous5xrc+mMU3HDmEjYaEgYRFGZ4pDCsziIKATxQJs7j7oBsCn58oOY+RZEbcou5MIwSRhxWEi0CKhySytnKFcbbJe13juzAK1zoA/f3H8CwnP+jJxXZeDgwMqlQrLy8ufOalxf3+farXK6uoqsVjskW/v6UeuXLnijxKOj4954403eO6557h+/fpD379SqbC/v//AlcURIz4vo2JgxFeC59Fer9dpNBr0+30kSfILA09Y5+E4Dtvb27RaLaamphBF0R8xeBsNn15x1DQNWZafuCiA4U2uUCiwu7vrp+K5rgtykMPeBOW2RSoEV6YtlDtZAMFgkHg8TiKRIBwOUywWuXDhwlD5vbPP+4cCuq3SKu8zHyxzfm2JXq9HvV4/0am4ffs2ExMT6LrOjRs32NnZwRy4HDqLHPbGsJAQsUlTvnPzdykzhYOEi3PnM7h7du3cebn7dS4BdBbZJkyXGhl0oqiyiOXKrC6MEQ9AOp3GtGUmEgH+5Amstp9mXNdlb2+Per3O8vLyE9+yH2Yq9CAODg5ot9tcvHjRfw6//OUvKRQK/MVf/MVDdRmPWlkcMeI0+NraEY94uvGigSORCHNzc/5aXr1ep1qtIooisVjMLw4kSWJ1dZVsNkuxWPTtc2Eo4rpbf1AqlbDt4QGtqiqapvnrfI1Gg93dXfL5PFNTUw8sCoLBIIuLiywuLqLrul8YbB7WKTb7uGaDnBkmKbR5bnWSs2fP+gFD3mqeqqq+mv1aJEIwlKVY05m/cpaNWz22traYm5tD0zTa7Ta5XI5oNEo8HufDDz8EhlbImqYh93rE9Qo54kiIWEgMkAlh0iaOg4iLyzDx0ryzRHg3nz7EXXoEOWAFB4EeQUBEtXoEJei2O7gk+f6ZjJ/d8XUoBADfqthr9T/u7R6GN/R8Ps/MzMwTbVp8Ovyr2Wz6gsaHFQLdbpdsNks8Hv9SzZNGfPMYdQZGPHWYpum33XVdRxAEX/Efj8c5OjqiXq8/9GbW6/VOFAh3bzAIgkC328WyLKLRKAsLC76V8cNwXZdStclP3jwge1RD6NWZFHPIguUbGnmugY1Gg0Ag4AvLvDyJXC5HsVhEURQODw+pVCrEYjEcx6HX6/kHRq1WI5lM+jkTsiyzXTDYts/h/cDOCbuE0Nl0L9Ei7j1LRBwcHIYFgMgwuvt+B7lFANMvBIYCQ5cQHWQc5mdneOV8mh+9OPG1KQTuxnVddnZ2aLVajyXIy5dqfHw7y9JMhrOri4/9OI7j8OGHH54QLr711ltsbGzwwx/+8IHbDb1eb5hMeUeTMvISGPFFMioGRjzV3G9lUdM0ut0u/X6fqdklxGDskTdX13UxTfNEceCNKAzDQNO0YdZAcoyBG2AqEyUSkv0oatu2sSwL27Zpd/uUmz1ES6dZK3J4eEitVqPX6/nbEDA0ufFEat7WgFcYtFotAD9oKhgM+uuX4XCYubk5TNOkVquhhqLs5+uYeouiO00XjTA6E0IOnQhFZ4ouGjoaIiAxwL1TBLgIWAQZFgT3FjsSPWxEhpoCFwGHuNBGCYb5b64v0Rs4XwutwINwHIednR06nQ5ra2sPvKXfuL3Fj/9xg0Bsiktr008U4NVut9nc3OTChQuEQiF6vR4/+clPiEaj/Nmf/dl938eyLDY2NnBdl3Pnzj3RquuIEZ+F0XfYiKcab+1ufHwcy7JoNps0Gg0AKvU2b3zyCSZhJhMBXllViYYUP4HRq3Pvrne9P8uyTDqdJhqN0mg0qFar/PaDT9hsRtHtALGAzZXJAYlIkEAgQCAQQJblk90DSSKZTJJKpTDNoRiwUCjQaDQwTRPLGnYMZmdnSSQSvomQKIpEo1E6nY6/Rnl4eOj/m7cV8eHvbtHsByk0AtQ6aYKEmRByDAhguyJFd5oeIWxkVHr0GarUB/7mgHBndDDg/j/qzp1+wOCOP+HwcAuHgySSaSqtPqtT2meO934WEEWRlZUVtra22N7eZm1t7Z5MBsuy+Ltf/Jp8M8nFtE2x0afW6aMFH69A0nUdURT9LYKtrS0Mw+Cll16679t7+hjLskaFwIgvjdF32YhnBu8AT6fTOI5DYK/M++Ujwlabw1KfdcEkFbL9gCJFUVCUYXHg/dl7kSTJV/qHw2Gmp6c5KBvs3tQZp0tdd2mbAwS76Vsyh0Ih4vE46XSaRCJx35Amy7JYX19nfX0d0zQplUoUi0UikQjLy8ucO3eOcDiMruvouk6xWOTo6Ih+v89gMPA9GN597yOynRQNN06rJ5GgTE8IMyBAw02eSCZEgJDbxiKAjcgACQHuxBdLuHBHVuiJC4U7/x3KDUVEBEBkgAgYtsp35iN873KamXToazkiuBtRFFldXWVra4utra17PC1+/vOfY5tNzi2do90TmAw6T1QgeXoBQRBwHIf19XWi0SiLi4v3vK3ruuzu7mIYBmfOnDmVDI0RIx6HUTEw4plEFEUWpzNcXHUpNnqcTwT43uUEimD7N/C7LX3vjmn2cgK8tr3Xwj+jxcmbOpW2zblkkNfPa2D36HQ61Ot1Wq0W1WrV97pXVdUvEJLJJPF43PfDv3btGrOzs1QqFW7fvs3BwQEfffQRn3zyCclkknPnzjE5s0CpnUdUQiwuLtLv9/3NhbYVpGHJ6I6NSYiGOM6EWALHxSREGAMTjRYJgm6XMAZJKrSJ0kPGRsVGJoTOABWL4c1fwEHA8r+OMhYWKiIWAsOZdFi2uDY94MzMs+88+LhIksTa2hqbm5t+QRAKhTg8PGRjY4OZiQz/8T++zAc3NgkrXcKBx5/fdzodP5jo+PiYRqPB9evX76sBODo6otFosLKy8kynRo549hhpBkY809ydsPioG+xgMLinSLi7WHAcB3Pg0u5BIiwR0wInCgbPA96yLF9z0Gw2MQzDz2aQJIlWq8Xc3Bzz8/N+B8GyLHK5HDdv3iSfz9PuDrhd04YHu2hyJt4mqPx+M6JnCezbS9TIoNJDwWJO3CUkGOSdGQw0DHcYTzxAJkiPOHVMAjTIMAwlsphjmzKztIkBLhHa9FAJMqBNBAGbAH0GyLjIJEIwk1S4mGrz6svXmR1PfO07A3djWRabm5tYlsWZM2f4m7/5G3Rd56//+q9JJBJ0Oh02NjYe26Og1+tx48YNVldXicfj/P3f/z3VapW//Mu/vMcXw+sSnZZD4ogRT8KoMzDimUYLSo89u/VGBA+6cVmWdd8iodVq+cWChyiKvh7Aa//2ej3K5TKtVsvXIXj5B5qmkUgkfIOZGzsFPnpjkwAmXSdIuVkiIpl+lwL6zLgHuI5AnyCa0Ea5kzuQpIyERQ+ZofBPwkaki4aDcGebQEDCQUQgSIcuISQcNNpAjC4hwnQBlz5BBiiI2DR7MitBjdvFNls/v80Lz61+bfwFHgdZlv0OwU9+8hNarRbf/va3fS8Cb0U1l8uRSCQeuYHipWNqmka9XqdQKHDmzJl7CoFarcbR0RGTk5OjQmDEV8KoGBgx4g6yLPvGRffj7mLh092FXq+H4zj+uuLU1JS/TmgYBt1ul1qthm3biKKIKwU4tzTO7d0iQQwCwp3OhGkiiuLwuVg2CgP6qFiuzJG7iIXM4I77oEUAARfhjvFwhOG2hYWCg4RCnzKTtEncUQvYdAkzQMa5854hugSFPhU3g4uI5UC+poMQ51sLCYqN3hOJ5b4OKIpCLBbj8PCQcDjMyy+/fOLfp6enWV9fp16vk0qlHvqxdF33xaeffPIJgiBw+fLlE2/TbrfZ29vzMzFGjPgqGBUDI0Y8Jo9TLHz88ccEg0Eymcw9hYNlWfT7fbrdLoZhsBSuIiRbGM0SEpYf6ey9XZ8wfSFA2DUoM46FTAATCxWVHhYqEZqMs40qDlDoMSBA0q0yQKXqjvmHv3hHLGgwHE0IOHQRCKEjqSE0WyQYUNFNi5nxGE1TpGOprI4FvtbbBPfDdV3+4R/+AVmWuXbtmq8h8MZEmqYRj8fJ5XKPdLLsdDpomoZpmuzt7TE1NXXC4MgwDHZ2dohEIiwuLj6y0zBixBfFqBgYMeKU8FwPZ2Zm7mtx6x3ydxcJ13Sdv/v5P1JuGgSsPtGwTDQapVqtotIniEGbOH1kQEQnQgiDPgohDERsQpKBSp+8M4NJiCAGY0KBNnFabpwgBg4QRsdAA0TcOyFGLmBZNumIgyL2sSzYyXdYmkryJ9fGWJ3SvjEjAo9f//rX1Ot1rl69yvXr19nY2PALAm/Nb3p6mtu3b1Or1R5ofOU4DoZhkMlkuHXrFv1+/0RXYDAYsL29jaqqrKysjAqBEV8pI0urESNOiWKlSbnjIir3puF5Ol1v5dFbVVTDMazMVfIskHdmMQeub14kCxZT4jFJineSB2VcRIK0SFFFxSAsdFHvaAlMQgToYaChE2GcY9KUiVEnQ5kkFSwUfr9a6NAlRs8WcASZs5Mic3GH5xc1xuMqqajyjSsEKpUKH3zwAbFYjD/+4z/23f8GgwFbW1t+wRcOh0kkEuRyOR6kwe52u3589+bm5okxgG3bbG1t4bouq6urj0wsHDHii2bUGRgx4hTQTZv/970ih+UBh50dXl6WUcShhsB7uR8VXaDatomoDu1eCNNRoTsMRbJcmT4qQaGH4g5wEJFwAIW4UCEoGIQEA1mwsBwJCZuuG2aAQsUdJyx0mREPGKBSczO03PQdt8GhgkChf2fVUCAYUPjey2ts5bsUGz0mEt/M8cDPfvYzHMfhhz/8oX9TDwaDJ9YO19bWkCSJ6elpbt26RbVa9VcH78YzGyoWi3Q6HV599VX/cbLZLP1+n7Nnz94jJhwx4qtgVAyMGHEK1Dp9is0+mmJRqJs0uiFm00E/uOh+L5IksbG9x0zBphM/Ry2fRRxIlM0kstOnwiQWMkFMUlRokAZcHCTqZAi5OiHhGMuVKbuTDFyZoZuA5RcGjjgsEvpuABUTGQf3zrZBSmihul1MIcxsWGdxPMDqlPbYq5pfN958800qlQoXLly4JxQoHA6ztrZ2wqkwFAqRTCbJ5/OkUql7fAM6nQ7hcJgbN24QCoU4c+YMMIw/brfb/scYMeJpYFQMjBhxCiTCMvGggy2NsTiV4PmLj17Hq9fr6K0a/+0r8wiBGG+/XeO//FZBJ3zHGnjoAdBHYU44YFwoYroB6owRxMBk6DMAYBIiJJjobog+QXSiBDEQXRtZsAliYAgaEbd9531cgoLJhHDEABXJ7LO+W+bS6tTXNofgYdTrdX77298SiUT4/ve/f9+30TTNdyrc2dlhZWWF6elpbt68SbVavWcl0OsMlMtlrly5giiK5HI5qtUqS0tLjwxGGjHiy2RUDIwYcQrIgsWL8wKZ6bHHMurp9Xrs7++TTCZZmJ0YBiEpSdpIdxYFZcChTwiZMGHXYEHcJSR0MZ2wLxRU6SMI+MWBygABgwgtHEHGESSCis1qoIEcEsiVCxzb04Qx6LsKA0Gl5mTYLSXZ/uUR36uJX9uUwgfR7g748U/fwBi4/PCH3/O3Bu5HJBLxC4JsNsvKygqpVIp8Pk86nfa7A569dD6fR5ZlLl26dCL++FEriSNGfNmMBIQjRpwCvV6PoCKwPBV75EHq+c9LksTCwgK1Wo0bN25Qq5SwEXHuiRsWqJPGcMO+qHBGPGBKPB7GJ8swq+SZk4+YV46GRkZo4DqI7jBtsac3MWoHpEN9YmKHgaAQxAAEDDGCogawbIdsoUOt0//Cvk5PG7pp83/97fu8d6xgRC8wM7/yyPeJRqOsrKzQarXY3d1lcnKSwWBApVL5/cfVdXq9HqVSibm5Ofr9Pvv7+4yNjTE5OflFfkojRnwmRp2BESNOAc8s6GG3So/j42O63S4LCwvs7Oz4Ec3F4ywhlugTYoCEhIOLhIiNgMMwhnjYhZDvyhewbZugKhFTBbp2iNYgQYcoOhFUZ8C8dIDoDujbIn3DIUMeR5QQXRvTDaOINkIggACkQ/Y3Sjj41s1j3l6vERUtHCXBbz9e58zcMGciHA4/cN0vHo+zvLxMNptFEAS/O5DJZBBFkU6nQ7FYxHEczp49SzabJZFI3KNFGDHiaWFUDIwYcQr0ej0/ovZhNJtNCoUCgUCA/f19bNumXq+zubmJ2GsxjkabCCoDEtRokMJEJYyJwv1v7ILw/7d3Z0Fy3Vee3793v7mvlbUBVQWgUAAIUoRIimpqa0nT3dPSqN2anpglJmZ7mreZ8KufrLd5mIdxeCLscNgT9tgORzjsdnRruqnQSK2VMgVJoCCK2IECUHtV7svNvPvfDwmUSFE0KYIiQOB8IvCADKBQNxNR93f///M/RzuceBgbdQIy6KSgWQwp01cDXCbsJPOkukWGMXW1y75aoKUaxInBSSfhs2suS7XwtxrC81F2dWvEf/OX6/iqhEeZZ8p56kWbg4ODw+X9YrFIqVSiWCy+bZRwuVzm2LFjrK+vUyqViOOYZrPJ7Owso9GIVqvFzMwM7XabTCbDsWPHpJeAeGRJGBDiA+D7/ruOm42iiCtXrjAajSiXyziOw/b29mF1uUHMorFJiI1NiKnFFNM+O2qJGIummmNeTbcG3ixNUwzDwPM88oUhGa3AUBWwDbB0h552lFFk4GNTMhNSM4NmpPSHRTxyKHRutRTPLY7pGorLtw9YWag/1nUDnp/wH755g4myp6OeU4P9rZu8Ho4pFApks1kcx2EymdBsNjEM47DzYKlUIpPJoGkalUqFlZUV7ty5Q5Ik7O3tUa1WuXXrFlEUUSqVMAyD1dXV3zilUIhHhYQBIT4AQRD8/1aHB0HA+fPn6Xa7nDgx3Ze+cuUKBwcHBEFAFEXA27cAUs0gUcb0NAA5+qpEiT7AtAeBHqGr6d+1LItJf58zVp+xUUMzHQZUWT22ws9uDJhxYOinZJN9itkUPSihQgsNRYrCiwx+vh1zeTTk6J56rAcUdUYh4cTDJCHVHAp2wlpjerNutVpEUXQ4R8I0zcMBUvcHXVUqFRqNBqVSiXK5zNLSEuvr67RaLba2ttjZ2cE0TarVKidPnnzbqoIQjxr5HyrEA0qShCiKfuPKgFKKg4MDLl++zGAw4PTp04zHYy5fvky/3z8cZPROsmZCJvIZqyyBsmmpBiOKoEGIQ0b5zGlbaGmCpmnTX0lINReRc2F9OGRz+4CcZVLMZHjmeInCYIcwyVP0IwaxTZwaWEbKkbkadwcOMyX7sR9QVM3b5PUhDTPiyNIyf/pClaXqymG76PF4zGAwYDgcMhqN8H0fz/OI4/iwC+H9GpFMJkOtVqNcLjOZTHjl1Z+y3Ql56uRRVldX33XFSIhHgYQBIR5QEAQAb6sZGI1GbGxs0O12ieOYlZUV2u02N27cwPf9wymF928uv25ajJgyr2/RS0u0VIOM5jNSOTQgh8dEuSRmFpvpDSvBZE8tEAyz5HzF6qxFEne56Skia4ZqoUFey3H8+HHCGzC6OcI2wU4HDL0stWKB9jB67DsQ5lyDZbdJtuDzr/7BH1PMvf1a70+dfPOwKc/zaLfbtFqtw7DQ6/U4ODggjmPGQXpvRsQMJ0pPg/HudSRCPAokDAjxgO6HgftPgHEcs729TavVOhxfa1kWrVaLzc3Nwy2B8Xj8jm2KYRoGwjDE0lNKqs9Yy+OTIYeHYehMEgeXCZaaYFomYRjiY5GYRVwtYtcv4Dc16gWTCI9M1ObOToEFU6M2Tvmzz54gm99n52DAbjPD7Z7F8Sz84bN1FmvuY7tFcF8SeNRz+m8MAjAtzLy/PXD4d5KEubk5xuMx/X6f/f197ty5w87OzuGkyfszIjoej/Xqini8SBgQ4gH5vo9hGJimSbvdZmtrC6UU9dkj3Nrcp7vfImNr7O3tHS7lD4fT+QPvtCrguu5h5bmu65hpzKK5g59a02mGjsPAV9iE6CqGe50IbQIs5RHo0/a4TjpgOCkyVy/T6Q/xh00uB4ob3piPB13+7PcWuH1Q5kdXusxXHNrDiIyjP/ZBAKYh7p2a/yg1HRg1mUyYTCZuBbJnAAAfbklEQVR4nke/32c4HOJ5Hp1Oh8FgwGg0Iooi0nQ67+H+pEmfDHt3r1D92ysf4hUJ8f5JGBDiAfWGE1oeXPzlVZLQo1qtUpmZ5/95ZYPXrzcp2iYL5i551yaOY3q9HpqmEYbvfFTQtm2UUui6jmEYJEmCY4IRT1BKYRs2ecMnTHTGKksShpiahq0rZtMNItWjUTtBd+RQtUPWCh4jG9qThPVxibJt8pObfV5YLXL2aIGNpv9EDShKkoRxmFIwy/S9AC351Y1/MpkwHo/xfZ8gCIjjmCiK8DyPwWCA53lEUXS4hQBgGAa1Wo12u818vD09EdINifzPgPv2cdZCPGokDAjxADw/4T9f7LDVHrM8C3//cyeYrZfZbE0YxRZ5O6E5TFhaqJAmfTqdDqZp4nkeYaLjUSJITYraAFefbjdks9nDLQKl1OEKgWEYb9lWCBOd3XSRCTlMIpasbVwtxNQSbPrMFToYjRKdvQ1GfYt1r8ZQ5QmUhWFaTCfvauRcgy89N/NEDSi6udHkpr/I9p7L4K9f54Uj6vBURpqmJEmCUgrf9+n3+wwGA4IgOFwBiON4uoVjWRw7doyTJ0/yox/9CKUUppYcngj5+c9/zhe+8IWHdp1CvFcSBoR4AJ1RiJ6tcTJfIFAOIdO6AUcL6e2t0x7GzFcc9LhHu9PGNE0mkwlBDLv6CbaiBgqdvBqyxiWyZvSWSXa6rqPrOpqmveWc+nR/2mZCjkA59ClBpHEqv4seTU8ntPa3WF42WJitcmd/hLJLLBVdwrZBMaPz7LESi7VpgVvONZ6YvW3PT3j5YpeuaqBjcjBU9CeKuZJzuArQbrcZDodMJtOVmPsNiHq9Hp7nAdBoNPjyl7+M67q8/PLLwPTzuh8YAG7cuMGZM2ekBbF45EkYEOIBVPM289UM+z2d+cp0if3g4IAf/vCHzBtjTp9eZNzbp99pYtv2YVW65lQZ+nlSdHQUPlk88tSzweFNXymFYRiHdQaGYaCmj/PEcYwNmET0KeESkGgmysyRtTQmkwm2bdPpdPj85z+PeX2d1vqAkW9zvBxxbtHgiy+sPRGrAL+uMwqJUoNawWAcW+Rdg6I7bRjU6/UYj8domoZlWZTLZbLZLO12m/39feI4JpPJ8IlPfIKXXnqJJEn45je/ied55HI5xuPx4bYOTDtOvvHGGzQaDWk6JB5pEgaEeAC/vsR+sLvBj3/8Y5Ik4czJY2xubjLoNjFNE03TGI1GmKbJiZU5Nq706ZNFoePgUdA9crkSuq6TJMlhZ8H7Z9vH4/Fb/m1Ti1nQNlAKYkyy2gQt9siWcsRxfHg07tVXX+VP/uRPiMJX2Ovc4dSRBUaDXd64XuZjp48/cYGgmNGZKxmManlif0gjvsvNa9Onfdd1qdfr2LaN67r0ej1u3bp1WCS6trbGF7/4RWq1GgDnz5+n2WySyWQwjOn7eP/zAw47GG5sbLCysvJQrleI90LCgBAPaBwkrO96nN+7TH/7KoWsxerqKjdv3qTdnm4NOI7D1m6TQOV4ZnWFbmuPI1oXiOhQp84O9aKN40yXquM4ZhKmhFgkYUqqZbHjEFODWJmHLYtdPWBZu334e2IN3zdINItxbFOypgHku9/9Lv/FV77C17/+ddbX19lJFrnYabI9Ljy2nQY9PzkMaZae0Ov1aLfbbG5uorV61MOErJ1QzNhksw1s28YwjMM2xNevX2cwGADTLYGXXnqJM2fOHD7h37hxY/q1NI2ZmRm2trYOA8H946NKKcIw5Pr16ywuLr6nQVZCPAwSBoR4AM1+yL/7T7f55XoblUY83Zjlq2dr3Lp1jU6ng67rFAoF7m7tsRXNY+Tq/GJPUZhM6KcV7rAG6AyoUo2uQa9HHMf4kWIrmmNCnnFqoxNR0H3ySZcmDQIcSgyY0Xfv9R4YgQbD2CH0Ejr6Il7sYIUTjuZ9NrYPePnll1leXmazdZWWl/DcSuWx7TTo+QnfeO2AS7c7RKHP05UuRtQ9nC6ZdV3qlQK5XA6Y3rSz2SxJknDlyhVarRZJkpDP5zlz5gwvvvjiW9pNd7tdLl26NJ0Y6brMz89z48YNbNsmSZK3bBUEQcBgMODWrVucPn36obwfQrwbCQNCPIDbB2O2Oz5pGhMnGtd2I/6Xv34dNGg4iplqgdc2QvygSOKUcVTA3bZJhQL7ah7QgRTQuT2eoVIYYOo6ISYBWYqFLAe9DBYR/bSMxhwRLhopI4o00zoKHZsAG584ccjGPqVyhUYJru9n8IYhFSuLtrXP8vIy/+jPvsJ/9+fneeP6BqdPHudnN3qkKSw3Hp9A0BmF3N4fc3Xbo+vF3Nix+KPjLktzZVzXxTTNw/qLXC6HYRhcvnyZra2twwmQi4uLPP/886ysrLxl2mAcx/zkJz8hjmMMw6BarTIej0mShFwuh+d5OI5zuK0zGAxYWFjg9u3bHD169DCACPEokTAgxAM41siyWHUZjWNG4wBPZbierAJwJx7jeBE+OTRSXN+jiUOITYc1NEJAMQ0ECpXA7XGNRWMHIwlxmNAfZ9FJSVEk9xoLKTRAI8IixsTFZ0iJlCo6ipGKSYYjIqOObQeUzTFYFVLT4+e/vMKna0v88688z59/4xX+5uIeqZHlP/2syX/9D08+NoGgmrcxdJ1xbGAYin6sc3Uwy9oy2IYiTDQiLcN8LcedW9cOW0RblsX8/Dxra2s8++yzbznZcd/FixcZj8eYpomu6ywsLHDt2jV0Xcd13WmB6JvCw/0jiUmScOPGDc6dO/dhvhVCvCfG1772ta897G9CiI+qnGvwseUi5ZzF7kGbURATY6OhSDBJMe/dzHU0pkfOEmwSLHQ0cgxxGeEyJKeNiXCpOCGuHlLNxHz642vs7uwQK/tNX8tAR2ES4ZIQay7avYAAGikGcQpoJgXXQqkEW4sx7DzXOi6XNz2cXBU7W+KX2xHVgkNvHHN0xmVt4fF4arVNnYWqyy/uDGiPYgw0FIrlqkY+X+QHdyy+e3nAD36xide8jaPHlMtljh07xqc+9SlOnz79G/f37969y9WrVymVSniex8zMDMvLy1y4cGHa8dFxDo8W+r4PTPsWZLNZarUa3W6Xer3+G0OGEA+TnHUR4gHNlGz+6OMznF0uoJMCCoWOAkx8UgxSDCY4THCJMOFeQMgzZE2/iq0Z9KiTGFkqpRzZbJbZWomlRhZTS8iYMY18SsUYsmi3OVEcUafD6rzLqQYsFcbYeoqOQidCoZGmKZmMzXLdZG9sc36/zN1Jjb1+yvcvbqGsPDOlDINJTDVv8fTRdx7B/FG03MjwL76wwJFqhpITQRIx9mP+6uKQb/+yx52uxqZf4Zf+KcqNJT7xiU/wB3/wBywsLLzlyf6+g3af75+/RLZQYTQakc/nKZfLpGnKeDymUCigadrhyZE3zzTo9/tks1l0XefmzZtv6UUgxKNAtgmE+ICUCllcxsQoInJwb98/xwCPAikWv3p619CJmJBFKx4lF2coqIQoCjkYJESqjFaqsnEwJtEzLBZ09FyGsL3Hba9KO8mjcJgnpZrX2RyFzBhjNC1kL6kRkaEz0SgE0NGL+MQYhkYcG7R8jXYQs+s1OVp3+dJzdV46XX1stgje7OnlEn/rYz7rew4LFZO1oy4X9lsoYqafxbToshsXePrppw9PA/y6/a7Pf/vnr9OfZKh7LsezA9ZmKzQaDdbX1wGoVqv0ej1Mczo06v6WAUyPGI5GIyqVCs1mk/39febn5z+U90CI90LCgBAfgM4oJEhtPnduhR9c8+lNUjQSFBa6mcVJFBOlAQbTgkGTGJ0uGS72q9imTqIUed3g0mAOjxwXRzrHm11IQ3bHRWpGzO6kwEjlsXSLNEnZG4LuOKShRzeqoGGTYGLiE+NSzGiYlgMk+PH0RueYBoZpYJs6PS/i+HzusQwCMN3G+dNPztIZVQ5nLjy7m3KnFdH1EjRiDBJ27lzn3//7y3z2s5/l+eeff8vX8PyE/+Hrr/PGToymaWz2Qvq1CkePWGSLVX506Tx3/QUKfpE4HJJqNpMkAitPrDxMbdrVsNPpMDs7y2g04tatW9TrdTlqKB4ZUjMgxAfA1HV2uwGTxORoPcNONyRVOsWsxec/Ng+GDWnKJPzVE+n9wsEUA9L03hRDRYhDiEmCQSfQ8VOLQeRyMNYZpzYGEKXT0kOSCNuyGCQ5/NTC1DQmyiHFRAFBlGLaDpWcgWkZlHMmedciVRppqliZyfCl5xqPZZ+B+2xTp5S1sE0d29Q5OZ9jbT5HnCTUChbPHnGYd7sM+11u3LjB66+/TqVSOWwstN8L+NmNNv3RmFFsg0rpjWPWN/f51k9ucaFd5SCucGlfsdXT2BukbIzLeOQYRSZZRuikWJZFo9GgVCrRbDZxHIdKpfKQ3x0hpjR1/3yNEOKBvLnJzWZrwk9v9fnEiRJH6xm22z6TMOb7b7S4cGvIwE/w/AQNcCwdDUWahCRRgGnojBIXSFEoNDQMQDNMTC3GIKXkpAx8haZD1s3gGiF9Hwa+TQoUMjpRnFLJahimRa3gECUK09A4d6zAmcUcYZxy+kiBmdLjP6XwN3nz52UbKbdv3+Z73/sezWYTgHq9zle/+lXypTrfeO2AN263uXq3gx8rzHiAQYyvMgwooN0rULSJqNJiSJFZZ0gYJizod8lqY8rlMs888wxHjhxhZ2eHQaBRWTjF6aXqE/sZiEeHhAEhPkSen7DdnjAJU3qjkPYo4thslr95vc2PLrWIkpij9RzjIGYwSehPYjR0lKbjWhqupXC0mLmSyZW9hCTVsAydpxZMtgeKIIIwnh4+zGUMMrbBfNmlUrD4vZMlZss2i7XMY70S8CDSNOXGjRt861vfOhw1vbi4yO//4Z/w2tUdMpbijd2UjZ0WlvIIlc21Xp4EA52YIkNcJkRY5KwEJx0xyyamFpPL5VhdXWVlZYVAufyP39nHJ8uxuRL/+isrEgjEQyU1A0J8iHKuwdpi/m2vjyYJv9wYUs1mGAXwT76wzEZrwl/9ZB9NV8SJxufPVhiHiqqbcHPfx7FCTENHafD5c4tstHwub3qkSrFcd/mjj9e5cGvAyE84UnN57kRJQsC70HWdU6dOsba2xuXLl/n2t7/Nnc1dXv2f/ppMZYEXnznJP/vDBq9fUnT2R+SyBrWrd9nuxmQZkddHpJqBrhLS1CBNoa+VyKkRbpLQbrcpFAr8YmPMfj9D1myz13O5fTCWMCAeKgkDQjwCTh/Js1TLsNcLmCs7nDtW5NyxIrd2x+x0fRYqLn/vUwv89Gaf/V7Ax07kMK0RB4OAhYrLJ9cqfOEZg+22D6jDp/+1hfzhUrgEgfdO0zTOnj3L2bNn+eb3L/B//WiTesFmqz0mSuHznzzL+fMjOp0Ox6sxzmSb9F7dx7QL4YRJYnNLncFXGVwmnPKvYvZ6bG5u0tnpY6pVIq3AXNnhWCP7sC9ZPOFkm0CIR0SzH3L7YMyxRvbwKfHXX3vzPvc4SN7258UHbzrnoMmtrTY2Y77ywiwnjy8xHA555ZVXaLfb3LlzB9M0CYKAcrlMkiTsjHNcDY7hEODjclS/y5wzIDVzbI+yBFqe06fX+Kd/6/hje5pDfHRIGBBCiHdxP4TFkx6dgx1qtRrLy8vs7u7yve99j2s375CaObRohMH0CKKyClyLT9EPp8cH8wxIsDC0BF85LJdC1p46x5++OMvRuoQB8XDJNoEQQryLnGvcm+yYoZRzuHPnDnEcc/z4cVZPneU7V0P8eLodMK9vT899Kp2PVw641YzpphU0FBMyVFSbABecGnNl97D/gRAPk7QjFkKI30K1WmV1dZXhcMj169eZWTyOT+bedkCGicqymy6yES4wMOapWSMSTIYUAUgwmbW7/O2P5fnSczNSyyEeCRIGhBDit1QsFllbWyMIAtp7d8kbAQEOLhNA4ZPBTCfsdid4iY2jhVRpU6TPjL7Haq7N0YohQUA8MiQMCCHE+5DL5Th16hSOoVjKtDhibLJgbJPRJrhMCHDA72ElHrqKCXDIaGNKWh/TNLi20cbzk4d9GUIAEgaEEOJ9c12XU6dOUchY0y6DhQxZR2de32ZO26bAgKaap0+VEQVCZTFM81zuV/n21YS/+PGuBALxSJAwIIQQD8C2bWq1GpqmMfACfC2Pn9ocpHNsqyO0aRBgE2Gzzzx31Qk2wwa7/YRvv7bFdnvysC9BCDlNIIQQD8pxHEJcNqJFwtDGJ0OEg42PQiPBIMVAoRHgEGNiENPtdvnBD3+I/ZmPo9lF6kVH6gjEQyFhQAghHlCMyd1wkQ51LCJCHGxCQmxy9Aipk2ADKT7ZaS8CoEiXS5ebvHKpTWSWeOmFs/zDzxyRJlLiQydhQAghHtBeL2KCi01IgI1FiEVIngF5+vSpohGhMFFopECKho/DllpmSBEVa7z80x00TeNffHFJVgjEh0rCgBBCPADPT3hjyyeiRsr0aR90YgwsQjJ46CgUOve6EZFi4WMSYZAhIMYENEhifvDqRfw7P+D3XzzLzOIJ9kcasyUHXUdmTIjfGQkDQgjxAH5xZZ1JYlGhhUeOFIshRVwm+LiMyWLikyVmTJ77ddsKjRibIfa9301fT4GN3R7/4S8vsM8eIQ6O43LuRI0zy1VpVCR+JyQMCCHE+zTwQr71ne9jK5tQc7BURI8qMSZDSuhEbHL8LSFAI0ahMV0lMADt3lebkGDRpUKPKjopMTYZhgwCxc31Wzi2yaVNl7NHCxIIxAdKwoAQQrwPnp/wFz/e4ka/gK0FzLDHHnP4ZFDoKFL6VImx+dUNPwV0DGIS9De9DgoX0Jh2HTAx751EmJDDImLkw/mL1xh7HhvNeVkhEB8oCQNCCPE+dEYh3bGi4Ci6foYIE48SOjExFhqKBJPpCsD9li4KgxiHCWPyKBQcrhLcbz40rS1IsLEIUKToxPi46KTs7u7QHwyo20NOrByROgLxgZARxkII8T54fsI3Xmty4coWF+/0CHFJ0dFI0ZiuAUxv7DrT8UQhNQ4IcfHJARoTHO7f/A1SpsWFBg5D1L1aghQLnQSTgAgXk4SsHlAyh1Tq85w7vcRXXzoqgUA8EFkZEEKI9yHnGnzpuRlMLeHineHh6woN897RwoAc9wNBgkWPmXsbARpZPGAaGqbhQSfPgCGlez0Jpq8ahKRYKAxsfBbyEZqVJ4lNCnbKldt7nKjGvHB2BdOUH+ni/ZF2xEII8T7lXINPPzXDciN37xUdnRSFTorN9Efs9Hav0IiwcIjQSSjTwWFMikGEBYBPBphGgBgbAxMDqNHihH6dht7ED2NqBYdnTy+RmgXyVkxze50LFy7QarWQxV7xfsg2gRBCPKCbm03+zf/8HbaiGcAgxsBkQopFjAOATopFgEGMS8AM2/SokaIzpEyJNgOqhG8KETYJC7kJJ+w7pJMuXmSwkSyDVeD3P3mWzz5VJ6tP6LZ22dvbI0kS5ufnOX36NJlM5mG+JeIjRtaUhBDiAc3VK2QcHSuK8LHQiTBQJKT3JhMk2ASscBNN0xipAkOtRqxszHuNiSIyGMTkCfHI4RBQoc1Jp8/aiWO0BvPc3W3jDSuYmsV3LtylEG5x7uQMxWIR13XZ39/n9u3bbG5ucmRlldrsMvWSK/UE4l0ZX/va1772sL8JIYT4KNvvB+z7efRJi0DZRIkixEFhAQk6GnWtxbK7DyqiTxVbhSRYVGhioEgx0QCHCUX6HNHuMmvsM/ZDLver+O4CmcoRAlxs20aplJLaR49H2LZNkiSYpolt2zQ7A779iw4Xbg8ZJw7LMxlsU3aFxTuTlQEhhHhA1bzNkXqO0XCeQuBzbXPEKLYJcNABh5AXVmzyaY2d/TZOGNJSNTQ0PEqkmkmeIT4Zato+Ja2PqcXEymQ7XaIzykAedB2WyjAKYHbW5XRjhmG3ycbGBqdOnWJ2cZlmzyczc5LbyR5z1Rz7vYDOKCTnyraBeGdSMyCEEB8Az0+4vd3kP3/r27y+bzOkxiQ2MLWIWavDuZkhxZxDpVLhp1d2uT6qk9MnBKmNrkISDFwmzOvbAITYJMpkOz3KhCwRNs8sF/mXf+cpgsDHTMdE/oher8f29jbd4YStcJZ8fYkjjRIo6HoRs2VHGhSJdyUrA0II8QHIuQbL8zX2/CLoCS+cnEEf3KJ1sEvWsfDGE47Mz1AoFKi4m5TGQ3xylN2YQrBBgoFNSKwMdtQSMRaGipiQJcRGoXH77ib/218N+C//8Wcp5eoARFHEqVOn+Nkbd3jjtTbHSw7dUcQfPlsn4+jSlEi8J1IzIIQQH5CDfsh6x6BRcrCzRV441eC1awc0wwKpVebLn3+eudkZ1m/dQJs0KdkhM46HrUUYaYBCZzNZoUMdhYZHkRATgxQFFBjSHvjcufYLcpV5hj7kXItSMcf83CyRUaA7TpktOzx3okS9aEutgHhPZGVACCE+INW8zfGFMlfWAyrxkLnZVezSHCU9JtJcbm0e8OnnTrGyskKv10PTxjimyyAw8NIMiTKINRtLxUzIoN+bYBCQQScmwCKvxlxv6vz0f79ArVbnix9f5E9fnD1sgtQZhbIaIH5rEgaEEOIDMr0hNzi3nOVg6yZG1OVzL36M/V7ApLdLPO7SarXIZrPk83l6wwn50hLbo4CR0jDSEB+bEAuHEIcxfapoJOikmCiKWpdtdZRI6Uz8kLvNyWGBYM41pFBQvC8SBoQQ4gOUcw1WF0vkjUW2t7f5/dMn8dMS3f2Anc1psZ/jOBTKdd7oxNzZzxE5DRrZHjsdH0sllMwufjxtPDTtRmhiEr+pdbFFhENnFLB/9zoDr4onqwHiAchmkhBC/A7Mzs6SzWY52N1ksepQK+ewbZtWq4WmaehuCaswbWWsaTpaps6JhSJ5fYTjZim4GikmDhMsIhKm445iZWATUKZNlhG7XY9/+x+/x//x3XWub3t4fvKu35sQv04KCIUQ4ndA0zTy+Tx7e3sAuK7LwcEB4/EY27bRSKksrBIbWaqOz7OL8MWPL7J36wJ5fcyZxSztYcg4cdFJUJjE2IzJk2AyIUeEQ4RLkipubg/pBRZdL5YmQ+K3Jv9bhBDidySTyTA3N8fu7i5KKUaTiEAvsNvsknUM/vhcjT/7vXk+fVzneMNGS0OOLy1gxX2ePXOMZxsT1qxrzLKNQYrLBB8XSCnQBxS2rgi0LErTqWTVYZMhIX4bEgaEEOJ3aH5+nkwmw+3NXX6+Y3C5W+S1XYftPhimyfJsjkLWxrZtPM/jc5/7HKMkw1+8us1T515iLp8yozdx8fBxsQnJM2I6LFkRpBqWlrI6axHEOrNlh2reftiXLT5iJAwIIcTvkKZprKys0B4EOKV5lubrbI0yvHpX429+2cPzE1zXRdenP47bE4M34nP8tFnjP56PWVw9R95OWOIWOYY4TDC1mLrWJM8Ah5Aohb1mj888VZZug+J9kTAghBC/Y9lslhNLszjKY6M5xrIsilbElfU92sOQTCZDkiQ4jsPF9S6aU2CmkqPrRejl45Rrs7SYu1cvYDFRWRJlABoBDgroRBn++//z+/y/P78mRYTityZhQAghPgQnlhf5zFqGU6UBxxsORrZCOm6zt3Edy7LwfZ9CocBcNqCatxj5KdW8xYunZzl59nmsbJF6wcQny4Qs2yzTo0KESYSFTUgzyPK/fneLvzy/J4FA/Fakz4AQQnwIdF1n6ehRvnGhSag7rCzOsprT2d/ZQMU+AI7jUMsk/Fd/d4Xr+yFPHy2w3MhQzJzmlUsHbHV9jtYKtLo+k9REMT1mqAEwHZscYPHqtR4vrJZYW8w/zEsWHyGyMiCEEB+SQNkUG0ucPbFIGCuOrZ5iYWGBdrvN7u4uYRiiaRplJ+LvPN9guTHtJlgpZPjyi0u4RoRBTLlSJ9VclGaSLVQ4u2AyZzQBGIUanVHEJEwf5qWKjxhZGRBCiA9JNW+zWMux3wuYLTvMlDLMFp9CKcXla7c4//otqqU8k80u2UL1LYWA80eWOXXGJhy2ubE34fhihaIVESbwz//4eSbjp/i3f34Fy7EoZg0ytjzrifdOwoAQQnxIfvMwoQyLS8d5+WKPwcBidDMk7zbZ9Qt86bnGYSCoFx0WaznWw4Q4naDFKSPdZbnoE/Z2OLW6ylc+dYI31g+YyQW4RsxmayJDi8R7oiml1MP+JoQQ4km22Zrwf/9om4xj8+qVJmsNnWK5wlc/OcvR+q8GD3l+wqXNIa9c6lAv2ex0Av742SLpYJNsoYKenSFOU3oHm/x03UdzqyzUMnLcULwrWUcSQoiHrJq3OTqTx49SlhoFcoUy8xX3bc2Dcq7B2aMFlhpZhpOE1fkcJ49Uqc8e4Rs/b/H189tc3hxTaRwl1HM0yo50JBTviWwTCCHEQ/bm7QPXMvCj5B2X93/TVkPHKZCYRRZqefZ7AR9bznNsvnxYmyAdCcW7kW0CIYT4iPP8hG+81jy8+X/puRmAX6tNEOKdSRgQQojHgOcncvMX75uEASGEEOIJJwWEQgghxBNOwoAQQgjxhJMwIIQQQjzhJAwIIYQQTzgJA0IIIcQTTsKAEEII8YSTMCCEEEI84SQMCCGEEE84CQNCCCHEE07CgBBCCPGEkzAghBBCPOEkDAghhBBPOAkDQgghxBNOwoAQQgjxhJMwIIQQQjzhJAwIIYQQTzgJA0IIIcQTTsKAEEII8YSTMCCEEEI84SQMCCGEEE84CQNCCCHEE07CgBBCCPGEkzAghBBCPOH+P8mYrKkMV6NFAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "draw_metric(G,clos_C,spring_pos)" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -731,18 +592,7 @@ "id": "MQOah_yDtbaW", "outputId": "7a449548-ba12-41be-cd93-6a3c0f1beb88" }, - "outputs": [ - { - "data": { - "text/plain": [ - "0.06357722918564916" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# assortativity\n", "assortativity = nx.degree_pearson_correlation_coefficient(G)\n", @@ -751,7 +601,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -770,18 +620,7 @@ "id": "axqLxhKXtoqF", "outputId": "118e10dc-f058-47c6-aa5a-5db66d6a5cef" }, - "outputs": [ - { - "data": { - "text/plain": [ - "0.5191742775433075" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "t = nx.transitivity(G)\n", "t" @@ -789,25 +628,14 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": { "id": "_KKwGKCUARdb" }, - "outputs": [ - { - "data": { - "text/plain": [ - "0.7368407345348218" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "import networkx.algorithms.community as nx_comm\n", - "nx_comm.modularity(G, nx_comm.label_propagation_communities(G))" + "#import networkx.algorithms.community as nx_comm\n", + "#nx_comm.modularity(G, nx_comm.label_propagation_communities(G))" ] }, { @@ -822,7 +650,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -842,34 +670,7 @@ "id": "KP54IveMbNLD", "outputId": "39f42abd-9cf5-4755-de44-b9f7b4600d4b" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0 is in community number 0\n", - "107 is in community number 2\n", - "3980 is in community number 13\n", - "3437 is in community number 12\n", - "686 is in community number 14\n", - "1684 is in community number 4\n", - "1912 is in community number 3\n", - "698 is in community number 14\n", - "348 is in community number 1\n", - "414 is in community number 1\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3Rc933n/fct0we9AyQIFpAEexE7qUJRVLOKZdlOYjuJErfnSeyUY9nek+ds9nl2E2927d2cFMdxNpGlRJItUb1RVKEaxSZ2kRAJFhAkiF4H0+fe3/PHAAMMAbCIAAEQ39c5PMTcuXPv71LC3M/9VU0ppRBCCCHEpKWPdQGEEEIIMbYkDAghhBCTnIQBIYQQYpKTMCCEEEJMchIGhBBCiElOwoAQQggxyUkYEEIIISY5CQNCCCHEJCdhQAghhJjkJAwIIYQQk5yEASGEEGKSkzAghBBCTHISBoQQQohJTsKAEEIIMclJGBBCCCEmOQkDQgghxCQnYUAIIYSY5CQMCCGEEJOchAEhhBBikpMwIIQQQkxyEgaEEEKISU7CgBBCCDHJSRgQQlwRy7JJWPZYF0MIMQrMsS6AEGL8SiQsTNPgiXdr+LN/2UnCslk2K5+9NS0oBQ+snsYPH1rEn/xyJycbuplelMEXVpbz4OoK5k7JHuviCyGukKaUUmNdCCHE+PIPrx7lR7/aA4CpayTs4b8mNODid52mzrt/dS8LpuVyuLaNgiwP5QX+0SuwEOKaSBgQQgzi//JjXMs3gwbcuWwKZ5t7qD7fCcAjmyp5eXcdgXCcjYtK2fKfNqFp2sgUWAhxTSQMCCEG8T382BXu2ff10Vc/cOU399mlmVSWZfFfv3YTc6RJQYgxJR0IhRCDTC/qq9JXA/5WeJ0Xf2VoeAw79fPgBoPhKE5c6OK1vedY8ecv0tQRusYSCyGuhYQBIcQgh//+S6yYopPnivNn987k1rIQ6wq7eOw7C3HoyWAACoeuCFvGgE9eXDOQHib6/2ipfS1b8fi7NaN6PUKIS5MwIIQYRNd1/ni9jz+c3cjvritmZW4b64q6WTG3jIenNVPui3D30hIenGdc/mADmhKchobHadAfCpKqpJlAiDElYUAIMSTTTI487u7uTm377HwnL9blUxf08GF1K2boAkXu2DBHGFgDkGxCiFmKcGxgswLcv2oa962aNkpXIYS4EjLPgBBiSKZpYisIBAIAeL1e/vsz+4lYyWeIYDTBruYsvjazkYaIh+31mTRGXAOOcHGTgZb288ziDA7/w8Ojeg1CiCsjYUAIMcieE81895k2OkJT+bjnArNNB7MKcuk42Qn03vCVojNm8m81JWQ6FdmuGI0RJ+k3/eFHGHQFh6tREEJcbxIGhBCD/OHffUBn2AY0Pq6N8TEl6KdgXUEYp+4kamtoGnTEHAB0xhRZDg0DhXVRDcBwgeBPHlh4PS5FCHEFpM+AEGKQ5s7woEmHbAW7W7P41uwLrCvsQk/rBKjRFTcxtPSOgX3vXWzT4lL+/EEJA0KMFxIGhBCDfPuuqt6f0m/utoLOmMmO5kwSanBzQEwN95WSHhDONPeMYGmFENdKmgmEECl2zzmsCx/xF7M/41tf+QSnniBm69QHfexvyScY93KwvZTLdQ4cPDNhH4Wmady6oGQUr0IIcbVkOmIhBFbrYeLHH8duPYitQ9QbJeIJYZsWKA1HzMTR48UdM4laBr86Ppv/dWQBnTEXLt0mYvfVCPSFApX2s6EpHlicRYBMlszI48cPL8btlGcRIcYLCQNCTGIqESZ27F+wzrxE1Buno6CVnuwelD7014IZNclqzSazJYdA1Mn/PrQUXfPSHTOp7vSyry0DNUQgcJk67b/+vetzUUKIqybRXIhJSsW6iHz8KHbgFC1lzXQVdF52naGEK0FbWSudBZ0U1hXx/63Yw/sXprOneSq1Pe6hzgJofPeeeaNxCUKIESJhQIhJSCXCRD7+AYngac5XniXmjV7V5y1ngoaZ9eQ25nELkLB1DrT5B/QOUGQ4LH705eXMmpLHF1aUj/AVCCFGkoQBISah2NF/wQp8viCQokF7SRu6pXGbgtpAFqcCbk4HvLgMxdM/vovbFk8d2YILIUaFhAEhJhmr9RBW7Uu0Tmn+/EFggNbSVtzdfu6f/hmdUS84M/jxo3+Kw5SvFyEmCvltFWKSiR1/nIg3Tld+58gcUIeWaQ2Un3CyoDjEA9/6S3RdpjARYiKR31ghJhE7UIdqPURnQetlOwtejagvSsgb4a75CQkCQkxA8lsrxCRiNXyIbUBP9sjPABjI70S1HUbFukb82EKI0SVhQIhJxOo4TsQbGXYegWsR9oUBsDtrRvzYQojRJWFAiEnE7j5O1BMalWPHXXFsHezu06NyfCHE6JEwIMQkouJhLMManYNrYJug4sHROb4QYtRIGBBiEtE0HW0kew5efHwFmmaM2vGFEKNDwoAQk4k7DzPqGJVDa5aGHgfNkzcqxxdCjB4JA0JMIkbOPDxh/6gc2xV2oQF61uxROb4QYvRIGBBiEjFy5uMIG5ixkZ9vzNftQxlOtMyKET+2EGJ0SRgQYhIxSm8Gw0Vma9bIHtiGrPY8HFPvQtNHpxlCCDF6JAwIMYloDi+O8rvJac3DiI9cR7+s1myMOJjT7x+xYwohrh8JA0JMMo4530DT/RTWFcEIzD3kiDrIbyjEqHgAPXP6tR9QCHHdSRgQYpLpCsP7zYvwd/vJbcq9pmPpCZ3S01PRXQU4539rhEoohLjeZNVCISaRM2fOsGXLFjQtGys4ndsBzdJpK736hYscUQelp6fitLJxb/gbNNMzKmUWQow+TSk18pOUCyHGFaUUu3fvZtu2bRQVl/JPu6LUdHv5o3lH+c/LDhBxx2itaCDqjV7BwZJ9BPIvFKK7CnCv+Rv0jGmjfxFCiFEjYUCIG1w8HufVV1/l8OHDLFq0iC0fneTFs/mp95flt/Jvt3xAmTdEjzdMT0EnYV+EhDOeqi3QbA1n2IWv20dWWx5mHIyK+3HO/7bUCAhxA5BmAiFuQE+8W8Nf/PteUIp7pocoN5vZuHEj27dvJ26l37z3t+bxxGfLyfSEuGt6EzND5wGwjeQfACOWzAXKcOKYeifm9PvRM2dc56sSQowWqRkQ4gZztjnA/D/aQvI3W6EBL/3ZInZu34plWUQtjf84VURb1AnAivxu7p4e4Qc/+AGGYaCiHdidJ7C7TycXHdIMNE8+etZs9MzpaIZzLC9PCDEKJAwIcYPZ9VkTt/8/r6dt+/3KJgrd/f0BYrbGuR4XbsNmeo7GD3/4KIYhCwwJMVlJM4EQN5jZJV7y3BZtkeQKhXmuOHnO9I6BTl0xMzOCy+Xi0UclCAgx2UkYEOIGYts2r7/yEt+obOZIuw9lWyzI6cEYYkYRp9OZahoQQkxuEgaEuIG89dZbnDp1iiyPh+W5ncPu53A4ePTRRzFN+QoQQsgMhELcMA4dOsSuXbuoqqoiHA4Pu59pmhIEhBBpJAwIcQOor6/nlVdeYebMmVRXV6e263r6r7hhGPzwhz/E4ZCVBYUQ/WQ0gRATXCAQ4Je//CVut5vW1tbUdtM0SSQSqde6rvPjH/9YgoAQYhCpGRBiAkskEvzmN7/Bsqy0IOBwONKCgKZp/OhHP5IgIIQYkjQaCjFBKaV49dVXaWxsxLKstPfi8XjqZ03T+PGPf4zTKZMFCSGGJmFAiAlq165dHDp06JL79NUISBAQQlyKNBMIMQGdPHmSbdu2pW27uLMgwKOPPorL5bpexRJCTFASBoSYYNra2njmmWfStgXiJo0RNwm7f9sPfvADPB5ZUVAIcXnSTCDEBBKJRPjVr36V1ifg0w4fb5zPRaGR64zztZlN/MUP/xSfzzeGJRVCTCRSMyDEBGHbNo899hg9PT1p2z9syadvfHB7zCRnwV1kZGRc/wIKISYsCQNCTBBPPvkkzc3NadvWr1/PwKlCNE3D45WmASHE1ZEwIMQE8MILL3D69Om0bbfeeiuHDh3ilsJWtN5tlaVZfOO2yutfQCHEhCYzEAoxzm3dupXdu3enbVu6dCkHDx5EKcW0adO47e4v0tIdY2FFLi6HrEIohLg6EgaEGMfefvttduzYkXqt6zpFRUU0NDSgaRozZ87kq1/9qiw6JIS4JhIGhBintm/fzgcffJB6res6pmlimiaRSIRZs2bx5S9/WYKAEOKaSZ8BIcYZpRTvvvvuoCBg2zYlJSUSBIQQI07CgBDjiG3bvPX2O3z44Ydp203TZM2aNZw/f57Kykq+8pWvSBAQQowYaSYQYpzY9VkTD//1VjpCFvOzg9w9pR1dg9LSUpYvX87rr7+eqhEwDOkkKIQYORIGhBgHlFJMf+QJWnssVO9AwbuntPHtexZRXl7Os88+y+zZs3n44YclCAghRpw0EwgxxpRSvPHGG3QEE6kgoKGYPmcx06ZNkyAghBh1EgaEGENKKV599VX27t3Lkty+aYYVXpfJ5kUFPPPMM8yZM0eCgBBiVEkzgRBjRCnFiy++yOHDh3tfw8keL1VL1rJmpo8db7/C3LlzeeihhyQICCFGlYQBIcaAbdv8+te/pqamJrVN0zS+9rWvEYvF2LJliwQBIcR1I2FAiOukJxznP96rIRq3sOp2EmhrSHv/K1/5CgBbtmyhqqqKhx56CF2XljwhxOiTgcpCXAeWZXP3f3mDA6faUCiyHBp/MFvHodsAPPjggyil2LJlC/Pnz+eLX/yiBAEhxHUj3zZCXAcnG7vZf6qNZDWcRlfcpD7oBOCee+7BNE0JAkKIMSPfOEJcB/mZbgwdoL9Vzu9IcPvtt+P1ennuuedYsGCBBAEhxJiQbx0hroOaowe5d0oLfpeOU7fZVNLOg5tWk52dnQoCDz74oAQBIcSYkD4DQoyyY8eO8eabb/LgqrlUHT+OUoqbbrqJwsJCnn/+eRYuXMgDDzwgQUAIMWbk20eIUVRXV8fzzz9PRUUFx3uDwKJFi5g6dSovvPCCBAEhxLggNQNCjJKWlhaefvppCgsLOX/+PEop5syZw4wZM3jxxRdZtGgR999/vwQBIcSYkzAgxCgIBAI8+eSTeL1e2tvbsSyLGTNmMGfOHF566SUWL17MfffdJ0FACDEuSBgQYoRFo1GeeuopEokE8XicWCxGaWkp8+fP5+WXX2bJkiXcf//9aJo21kUVQghA+gwIMaIsy+LZZ5+lvb0dXdcJh8MUFBSwZMkSXnnlFZYuXSpBQAgx7kgYEGKEKKV45ZVXOHPmDF6vl56eHrKzs1m+fDmvvfYaS5cu5b777pMgIIQYdyQMCDFCtm/fzqFDh8jOzqazsxO/38+KFSt44403WLZsmQQBIcS4JWFAiBGwb98+PvzwQ/Ly8mhvb8fj8bBy5Uq2bdvG8uXL+cIXviBBQAgxbkkYEOIanThxgtdee428vDza2tpwuVysXr2ad955h+XLl3PvvfdKEBBCjGsymkCIa1BfX8+WLVvIzs6mra0N0zRZuXIl27dv56abbuKee+6RICCEGPckDAjxObW3t/PUU0/h8Xjo6OhA13VWrlzJhx9+yIoVK7j77rslCAghJgRpJhDicwgGgzz55JNomkZ3dzeaprFixQo+/vhjCQJCiAlHagaEuErxeJynn36aYDBINBoFYOnSpezevZuVK1dy1113SRAQQkwoEgaEuAq2bbNlyxaamppIJBIALFq0iP3797Nq1SruvPNOCQJCiAlHwoAQV0gpxeuvv05NTU1q27x58zh8+LAEASHEhCZ9BoS4Qh999BH79u1D0zSUUlRWVnLs2DFWr14tQUAIMaFJGBDiChw6dIh3330XwzCwbZuKigpqampYs2YNmzdvliAghJjQJAwIcRmnTp3i5ZdfxjRNLMuirKyM2tpa1qxZwx133CFBQAgx4UmfASEuobGxkWeeeQZd10kkEhQWFlJfX8/atWvZtGmTBAEhxA1BwoAQw+js7OTJJ5/Etm0SiQS5ubk0Nzezbt06br/9dgkCQogbhoQBIYYQDod58sknCYfDWJZFVlYW7e3trF+/no0bN0oQEELcUCQMCHGRRCLBr3/9a9rb27FtG5/PR1dXlwQBIcQNS8KAEAMopXjhhRc4d+4cSik8Hg/BYJANGzZw2223SRAQQtyQZDSBEANs27aNY8eOoZTC6XQSDoe5+eabJ3QQsG170LZYwqYjGCccs8agREKI8UZqBoTotXPnTnbt2gWAaZrEYjFuueUWbr311rEt2OfU1B2lsTMGgMvUmJLjwu00iVs2JxpDqf3KclzkZzhp6Y7R2BVFA8py3eT4HMQSNi2BGCjIz3DicsjzgxA3Ik0ppca6EEKMtaNHj7JlyxYADMPAsqwJFwQSls2Fzii2rSjIcHCyOTJoH10D09CIJdJ/7WcUeDjdEk7b5nXqhGLptQo5XgO/28TvNnGaEgyEuFFIGBCT3tmzZ3niiSewbTs11fBECwJKKT4934N9md9mpWxAS2vyUEph2FFswz3omJdqGvG5dLI8DjI8BqGojduh43UZ13IZQogxIs0EYlJraWnhqaeeSrWrK6W49dZbueWWW8a4ZFcnGLMGBQFdA1v13dQBtN4/gzU2t1BQPCUVhjRNu2wfiWDUIhi1obN/W1mOC9PQMHUNn8uYsP0shJhsJAyISSsQCPD4448Ti8VS22677TZuvvnmMSzV5+PQNUAx8GZfnOVk38HDmC4vBcVTYJgbfFd7C7FIfx+CgYFgOOnv95+3viOa2ifXZwIaccsmz+8gy+u4hisUQowmafQTk1I0GuXxxx8nGAymtm3cuHFCBgEAl8Pg/MmjKKVQSuFzauRnODlxcCd7332ZaHMNtccPA6T2UUrRVF9LoLONsorZqWMppQgGOmlpOHdF5x6uobE9mKA9GCcQsahtjRCMysgFIcYrqRkQk45lWTz55JO0tbWltm3cuJENGzaMYamuzcmTJ/nkw22cPLKHzs5Ovve976FpfhKJBIZh0BOKMG32otT+fU//RWUVg46laRpefxaGYdLWdIHcwpJULcDAGoGLaw/6miWG0x1O4HXq0nQgxDgkNQNiUlFK8fzzz3PuXP9T7+233z6hgwDAq6++iqZpLF68GICOjg4Slk1GTgEOpwtLd6Zuwhf/PRRd1/H4MsgrKk27+fdRSg2oElD4nLBn27M0nK1JbQv3dPf2xUju19wd42xrBOmzLMT4I2FATCpvvfUWx44dS73etGkT69evH8MSXZtI3OLIZ6cIRaIsXLiQkpISADpCCY7WB1l5+4NsuPdrdLY1pzUPXO6GPNQ+faGg/swJ9r77CpbVW+2v4Pz5emzDyezpZWTSyVvP/h8Of7wVvxMG9mPoCic40RjiQkcEW0KBEOOGhAExaezevZudO3emXt9xxx2sW7duDEt0bdp74hxvCGF7C9n00CNsvuse8vLyMEwTM7OYvidy0+nEm1XI8QM7SMTjWFaCcKjnkoHgUqMJSisqcXv9dNQnawE0XSe7oJSVGx8gYHtpjbgoLi7hG1/7Hcpy3IM+H4nbtATiNHZGB70nhBgb0mdATArV1dVs3bo19fqOO+5g7dq1Y1iia9fYFU1W1WsaTpeb7ijkZWbi9Wehaf05X9M0DIeTzw7t4bNDewCYUbWUhatuveTxhxpR0Pd60ZrbyHBCIGajaen9AJxuD8tvu4/2rgDPPP0k06qWM3Pe0kHHlA6FQowfUjMgbnjnzp3jmWeeSb3evHnzhA4CCcvmlaON1HWGOdbSQ21nCHrnEnA6nfRobiIJC1up5B9bceLQHjIyMlLH6GpvTnUi7HNx08DAvgKDmwx06pvb00LHQNG4TUOPzrSqZbhdLpov1BGLRlLHA/C75VlEiPFCZiAUN7TW1lb+6Z/+KTWp0ObNm1mzZs0Yl+rzs2zF335whrZQIm37VL9J9NQews1nCRYvwldWyfzCTHQNahpb6f74WUzTxOn2smj1Rjy+DLo72sgrKsXjyxh047+SSYcGutS8BH1fMX3hw9A0CjKdFGU5ZWSBEOOE1AyIG1YwGOSXv/zlDRMEAM53RQYFAYBzPQmai5YRmL0ZYhECUYtd5zv5uK6d9rZWABKJBCs33k9hWQVZuQVMnTmX6v07iMeiaTfsgcHgxOG9hIOBy3Y6vNRNfeAxNU3DBrwyO6EQ44qEAXFDisVi/PznPycejwM3RhAAcF1ucSCXD7u0CiIBsBNowQ6MM7tTb2fm5KHryWMoZeP2+tn+0hNEwsEhmwjcHi8fbX2WaDjIUPo+Y1mJtMAwaBjiRWKJwcsqCyHGjoQBccOxbZt//ud/JhRKTrF7xx133BBBAKA4w0WBFhx+2j8ATQdPJmbtJzirt5Hjdabear5Qh7LtZG2JgramesLBHno629NqB/r+Lq+cz6aHHsHt9Q99Kk3Dtm0CXe2DagAGikZCaWGhMxTHutyqSkKI60bCgLihKKX41a9+RXt7O3BjjBq4WGj/69By+tKBQNkoTyaQvDE7nU4Mw8Try0TTdXRdR9N11t35JYqnzuDQrncIBwNDHupykxTpuk52buEly6zrBvFY/5LKwahNSyB2iU8IIa4nCQPihrJly5bU7IK33377DRcE2traklMMqwR98wigFKgB1e52cplivfMCkOwrYFkWBaXlZObkpR1PN0yWrr+Tnq4O3tryr0Qj4asqz5VMYKRpGqbDicPpTgsUCUtqBoQYL2Rsj7hhbNu2LTW74G233TahZxYczhtvvAGA3nQCK68CTBeg0JpPonWeR/mL0EwHRsc59J4WoD8MxGODJ/nRNA3T7F9N0DCMqyrPlXYCHLhf38iDHJ+sYijEeCE1A+KGsGvXrtTsghs2bJiQqw92huJc6Bx+7n6lFKdOnQJAj/bgPPwqWucF0HRU0Wzs6atxNB/HUbcPPdCc+lwkkqyeb2uq59Sx/alj9TFMk8qFKwA4W/Np2vlGlFJ0tbdgxrqYXezF57q64CGEGD1SMyAmvGPHjvHmm28CsGbNGjZu3DjGJbp6z+2/wE+31aCAmyvz+MkX52Po6U/de/fuTf+QnUBll/a/dnqxs8swWk+n7Tbwpn5k93ucPPIJC1beSum0WWi9IwvmLV9PNBKiq701te9ID/1TQGdrI2sXrMQ0JQgIMZ5IGBATWl1dHc8++ywAy5cvZ/PmzWNcoqsXiVv8r7dP9vUA4IOaNnacauPmyvzUPh2hGC+dDKIW3Yfe1Yhxdh+2Nyc1HfGVKiyrYNXG+zFMc9CT/9J1m9NmJez7+WpDwXCf0TSNguJSTFO+doQYb+S3UkxYbW1tPPbYYwAsXLiQL3zhC2Ncos/HstWgYXaNza3QGwb2neviuSNNkF0GgF04CztnClqoc1AQcMQDlPi6KPT04DHjaEA44aAp7Kc57GfRqtvQjcGtgxdPTWzbNrquDTvdcJ/h1i9QyiYcDOL2eNENQ/oJCDHOSRgQE4pSilDMJhpL8PqbbwEwe/ZsHnrooTEu2efnc5n8zsopPLXnPAC5RoSj72xhW3AlazfcwgufNg3+kOlCuXyp4YVT1UmWW+8zd9p+TF0RtzS6I04UkOmO4zRsLFujuylKj3Y/kYyFANiWhd7baXDgTf1KOxIOV2twZM/7nD52AH9WLvd9+ffoCgQ4ceQTfvtL913pP4sQ4jqSMCAmlEDEJppQ2LbGXfc9zO4P3+YL99w11sW6Zt+7bQath7YTiMT56z/5Fvv2+HjvvfeoPlmLXXHr0B+KBPAbIe5mC3P4lPouL499WsmhC7nUtftJ2MmnekO3Kc8Jsqi0nXsWVDM1+Ak9/iU0l/8Rlqtg0NP9xT3/I+EQHq8v9fpKmg2i4eSETz1d7UzJMXn56adZsGBBavZDIcT4ImFATCixRPJJWNd1bNvm1tvvGOMSjQxN08ghgE+P4XGarF+/njlz5vDyyy/T0lqLnV+R3LGvj4Cyqezazv2uXUTiOn/1wWI+Pl2IYvCN2rJ1zrRlcKYtg5eOlLOqooXv33qcqT3fo3nGDwhl3XTJcjkczvR+BLZNKBjA68+8on4FFy5cIBgMsnDhwmv6NxJCjB6J6WLCUEpxru5MauEhXdcx9fG/2I1lK2qaghyo6+JsW3jYIXuWZaU9ORcUFPDII4/gPrcX88R7mCc/wjz2Juapj5l95nG+VLyDoxey+O7Ta9lxumjIIDCYxu7aQr791Gr21WZScuqv8XXtSVtT4OLyGaaZvoAR0HT+DD1d7UNfRyLBhdqa1OujR4+Sm5tLaWnpkPsLIcae1AyICUEpxc9+9jMsW3HL7XcxZ24VLoeOyxy/YcC2bbZs288nxxtZvmwuJUW5BCJhPvjkBLv3HuPB25ewaU1Van/LsnA40jvY7TlxgaOqHE8gylT7PDqK7MQFHpizj311efzVm0tSzQFXIxhz8N+2LuLHm4+wRvufRGf/lIRv2qCOhDC4X0B78wWq9+/gcCyKYTrweDwsXbeZ7IJSIqEedr71AmrAjIjV1dWsWrVKVikUYhyTMCDGPaUUf//3f08wGMQ0TVYsmXfVM+WNhe//9W/41+d2oGng+c12/ul//N8U5mdxoq6VX724k399bgczpxZwrrGdvGw/ph2iJM/DHwRCZGd4qWnu4c9fPIkypqDQ6LQzWJyo5s7yGjpDbv7mrUWfKwj0sZXOT99ewM9/azeFdf/Ahbn/HTRj0PBC6J+r4MPXf0N7c3KaY5fLxcMPP8ysWbOIRCI89thjNDc3DzpPNBqVJgIhxjlpJhDjmlKKX/7yl3R0dKDrOo8++ui4CgLtXUH+3398lR/+9DmOn2mkqa2bt3dWs+XNvTz2/MdAspk/FI6yY88x2joCPP/aTiwr+eR86lwLsbhFQ0sX59ri7K3p5tv/+T8A+OBEC7YCpemgaTTqBczNbqHc38n/fncekcS1Z/mYZfCzt+fhDdeQ2f7esPv1NRNk5iSHO958881849t/StRdTE1jEM1w8vWvfx2fzzfosyUlJeTn5w/aLoQYP6RmQIxbfSsQNjY2AvC9730Pp9N5mU9dP7Zts+xLf0VTWzcA//jUe6CBPczSvIera/m3p98mkbCGPaZSsOtQcgbBQENtck6ECm8AACAASURBVDni3je8KsLS/AYOX8jj8IXcEbuO6qZs9p0rYJ77NbrzbgeGHjKolMKh2fzxH/8xtunjQlccgERMcbYtzOziDB555BF+/vOfE1UmbZ5SdGVx67y5I1ZWIcTokDAgxiWlFE8//TR1dXUAfPOb3yQ7O3tMytLcHuCTT2uZU1HMzPICTp5t5qP9J+kORlJBAMBWKrWQ4FB2fXL8sufSNNhwUyVKKQLHdzCTcs4ZJbhVhNuNT5ji7+LxHYtG4rLSvPrpFG4qP4AzdIaYd3rae0oplG2z/8M3OX/mM2o++5SqZWupXLgy1eExFI5x8GANfr+fO++9j5/s7CRmeAB4qcnLBqXQpc+AEOOWhAEx7iil2LJlCzU1yR7pX/nKVygrKxuTslSfauDW3/8Z3T0RdF3jD7+0jide3EU0nhjxc03JM6ko9vOLv/waJ06cwLYsZnOG2dYZAGZlNGMr2H9u5KvcD5zPxbI1PMFqYt7pqeGCSim6O1r56I1n0pZJbqg7TeXCldi2jaZp1J2q5sCO5CRQnc4CYrn9wxWPt4Z5f88hlsyeRnZ2tnQkFGIckjAgxhWlFC+99FJqKeLNmzdTVVV1mU+Nnl/85gMCweSqf7at+JdnPxq1c925OIOZ5YW0hCwef2U7R8wFJDSTGVYdhXY7RZ4e6rt8hOMj/2sbtwzOdvhJRN/ho70BZi1YTkHJNAKdrex977VByx93tjby4eu/obSiklg4SGv9aXJzc4lEIoRikf4dlUJD8e6br/HB1gR+v5+pU6cydepUysvLKS4uxjAMmgNRfnPgAnHL5oGFxczMH9z3QAgxeiQMiHFDKcUrr7zCoUOHAFi5ciVr1qwZs/JYlsW5c2cZZlqAqza7xEFda5xIfPB7N1Vm48/w8GpkLr/5109AzU11791nLmRDfA8ZziiNnZ6RKcwQGro8lJjttDXV09ZUP+h9h8NBRUUFpaWluN1u3G43Sinq6rppTCQIBAJkZmayoaqS7s8+47xvFho207uOYqoEmqbh8/lob2/nxIkTtJj5tPjKyXAaNGtZxFTygj881c6//s5icr3jp3+IEDc6CQNiXFBK8eqrr3LgwAEgud7A3Xfffd3LEQxH+Ycnt3OuoYVCvYlAx+Chcp9Hvl/noVXZxBM2T+/opLHTwmHAxiUFFPnjVE7NZW+okJDtAI1BCxAFND8aCkuN3gAg29bQNEVOfjGFZRUEutrSJg+Kx+PU1NSkmm+G0t3dzb59+ygGioNn0t5TStHUlFxnoceRxcnspQB0KWDAhEkxS1Hd2MO6GSPXSVIIcWkSBsSYU0rx+uuvs3//fiA5FO23f/u3R+VcwXCU37zxCYmEzVfvvomsjOST9o4DpzhYfY7/+W/b0joFjpQN8/wAGIaGyi6iZHoR3rxc6vx+Gk2dY1ELTbdRKEBjYHWEjk2WHSBmmWS6YyNetj4ZngQ4/Nx872+hSM7weOLIXjpbmwh2d9DV3jLsZy9ez2AolmbQ5i7F1nSiurvvg0Pum+mRryYhrif5jRNjSinFG2+8wSeffAJAZmYm3/rWt0blXJZlc9e3/o5Pjp4F4B+eepfnfvoNnn1zH//1/7w/KucEMHSYUeTknF5MjVFB4Up37xLByad8G4hiMmgoQu8aBAvin+ElgpY3j4r4R+iawlYj3QlPMasgQKN3YSoIAFQuuCl1o9//4ZvUnTw69Kd7Oxzquo5l9Q+dbHUV0+ybhjMRJmp6CTr6RoSoiw+Q/FvTKPQ7mVeUMZIXJ4S4DAkDYsz0BYG9e/cCyRntvv/9749ab/Pq0w2pIABQc7aF7//lP/PJ6fConK/P1GIfB9yLadNzUze9IVfvG/K6NY445pJlmPhnzMNz6j0qcgOcbssc0TKWZYfwO2O4p64lPKBsA2cgnL145bBhoG+fhGXR5Kmg2TcVhUbU8CbfdF5c5a8N/CCgWD0tm4p8Pw8sLMKYAGtOCHEjkRkIxZi4OAgYhsGf/dmfjersgnnZfvSLbjLvHQvSE7GH+cTnPI9fI8eno2tQVOCncO1ttGu9T8RXGnT69tM0FDq77ZlEfFXEtAzumHthRMsLcOfceuKal0jm4mH3ScQv3UShgBPZy6jLqiJi+pNBQNMuf82aBprO7rpuVpRnk+l2XHp/IcSIkzAwghKWorE7Sn1nlEBk8Dh0y1a0BGLUd0Y43xGhti1MU3d02BnrblRKKbZu3ZoKApqm8Ud/9Ee4XK5RPW9JQRa/+Muv4fM4cTkM/O7RefqMJqAzZKN0nZyb1hHVXckphT8vTSOmDLq6AwQKNrO5qgG/a4ghCZ+T1xnnrvkN9ORvQunD/zc4vOu9Sx4n6Mimy13Uv+Eqa3gU8PqxkemwKYS4OhIGRlBjd5Rg1CYSt2gOxAnH0qedbeqO0R2xiMRsogmFZUNPxKI9NHJf7ONdXxDYs2dPatsf/MEfkJOTc13O/437V9Oy42d07P5bVi+pHJVzWHay5rt4/nycGRn9Uwpfo39/fTu7zuVgmAbfXf/ZiBwT4JtrT+B2QmfhfWnbBy5rfHDn27Q3Dx5umNoXsEbgOv2u8bPuhBCTyaTqM2ArRXN3jFDMxmFqFGc6cRhX/gVm2YqOUIJowkYD3A6dbK+J3jtTWzTR94SffL1zzz5MO0J5eTllZWVE4r3V0b37a71VqNUnTnLy0G7WrVtHZWVlWpt5VyhOWzCBAjJcBoWZybHXqc9PIEMFgYcffpgpU6Zc13JEYwl2HTrN976+iZ2HzhAMj2wYC8cUTr+fgrlzRvS/0RFtBnV1FiULv8jG2U/zSV0+79WUXNMx181o4q6qepqmfJe4I5/m+lqazp2huf4M4VAQX2Y24WCAeLR/IqGo7uZk9lJCjgyyoq1khpuoy16QDD3KAq33hq7UVdUO5HhMvrq09JquRwjx+WhquHFAE5xSiraeOOG4jduhk+d30BlK0BFK9L5vE+ruoL7uFMrpI8etk+lx4XA4MAwDwzDQdT31s6brhDQvNjoDOz/5XTpFmcmq1fqOKJGEleoYfeLgLg7v30M0GkXXde566GvkFBQByRXgbNtC1w12v7+NmqMHU8csKChg6dKlLFi4hOZw//VomkamWycYtbEUeBw6xVnOCTHnu1KKN998k927d6emud20aRPr1q27ruUIBCPc9vs/4+jJhlE9T+mSxeRXzkIbqqPgNTJ0+EHRi9yeeYT/8dZCPjpd/LmOs6qimb+48zDBrJVU+79OS+N5ThzejW0Nv5ASwIns5XS68ntv/v2jAFKuJgT07uvQNZ763aV4XZPq+USIceOGDQPtwXjqxo9S+BygGyaBaP8XXW1jC9WdCTRdx07E6PpkK1ZPBwAut4dYLIqyk0/zDqeLr37zTwadJxIOsf/911mwYAFFxSVoniwC4QSGmfxSy/eZhLvbqKur40JDI768ElxuL4Gu5HnseISm87W0tLQQi6V30KqYPY/1m76Qts2yEui60fvEqcj2mOT502dqi1s2XeEEoJHtMTGNsQ0LA4OAruvYts1NN93Evffee93L8u8v7+Lbf/kfo36e+V98AHMUV1jUsflPpS9wW+ZRXjlSzq92zyJ6hUsaOw2Lr688yUOL6+jJWkVjxZ+D7kDTNMLBHj7a+gzB7s5hP38kbz1hR+/Qv6t8+h/4GXc8QGV5CR6nyTdXT6Use/RmVxRCXNoNG8OjiQE9xDWN03Xn+HTfTjZ+4eHeTTon23rQzOQXkGaY5M5ehq/jDIvXbCQjO5dYNMLBHe/Q3tpELBYj1BPA4/Wh6TpKKT5t7KY1FMM94ya2v/82ga525i1ZydLVNwPJm2BjZ4iyTD8rV64EIBgM8tOf/pSlS5dy4MABMjMzKS6fSeXi1QQDndR+doTOzg7i8ThN5+tS7bZ9T9P9QQBA47MTJ3HZIebPn4/H48GyFfUdUazeiNcTTVCe6x6z2oOBQcDpdBKLxZg1a9aYBAEAh2P026SdPt+oBgEAG52/vvAQxyNlfGvhu6yZ0cqLh6by9mel9MSG7o3vdca5fXYDX1xyjoKMKG2lv0tHwX1oev/XgMvjZe6Stez74PVhz10QPkedY17axEhXIzPaSrndxE/+5PeHHmIphLjubqiagePNPew914mpa6wpzyVh93eCOrTnQzoaz1E+ez6WO4toZzPnjAI0lzd5o7VtIvUnqMx2Mm/pqtQTbFtzA28+/ySappFfWMyyW+4mIyuHuq4Q57sirCnPxeMwUEqx672tOJ1uZi1bS9SCHLdJIhbhuV/9I4ZhUFJWRsacVTQGLQr8LqqKc/B7valwAXChtob333wZ27YxDINplVWsunkzmq7T1tJEQVF6G/Hu97dx8kQ1Kh5l2rRprF53M47s9H2K/QY+z/Wf510pxbZt29i1axc+n49gMEhRURHf/e53r3tZ+kRjcR7445/z/t6a5Jw+I/h/v9epsbrSi55XTEvJspE78GWsLw7zg+k78XfuxLLgVFsGJ5szaAu6UECuN8qcoh5m5HVj6Iqe7FU05X0JlTkzbR6BZOC0aag7zZ53X77kOTtchbR6yuhwX30ThVPFeOG76z/PpQohRsmEqRmwbZuGrhiRhMLQoCTbhctMPlUopajvivJ2TSsAPqdOT9TC7Ug+RfudGhUl+Zw530BEL0KL62i+irShFCoRJ1x7BMfKtaltmqbhdLpTX5gtTQ3srDmPIze56Mr0HC9us/8oS1bdzJsffkTLuWQVq9vUKeg5DyQXvWkzsgnbHgyvRrsNtT0WC3xa6lwAvqxcqubNo2r5elzeDCzLYvtrz9FYn5ws5+Y7H6B85pzUOWcsW4824yZm5ngwExE+/exTFq0o7H3iUigFr7zxNsW5GSxavpruWHJd+YIMB55RfEoeGARycnLo6OjA7/fzne98Z8h9+/7Ytp32+lLbL7XNtm1isRiRSIRIJEI0Gk39+b/unc7dS7Opa+zk5y8PP8/+1Vo7x8tNM72c170MP3HvyPuo0cOhjs1kGWt4qLgGn+sUC2ZeIMtsAxSGMwuyF9LpnUUgZz1t3QkOv/cG5VVhplUuSOvkqGs6G1Ys5O4NS9POYVkWoVCIw4cP8/bbb3PLnGKOHj1MW+gcZ7IWEDd6q/gv12ygFF6PdxT+FYQQ12JChIF4wqauo38J1YStONvSw5nDO4lEIkypXETMk516v6ogE+eAm3QgauNwechcfCvx3vpze0BvfKUU8Y4G7GiImmOHmDl3AbruRNM0jh7YRWFhIbFYjI6ODqxwNw6SnQAHTZKmG7inLUy9jCRsvGWVmI73mTJtJituvR3dMDje2sP5rjCBaGLQnO4tDfVkFpbj8magaRqmabLxvi/z7L/9HZpm4PVnpZ2yIMNLrs/TWxY3S1dv4GT1EaZMm4HL40XTFCs2bKKzvZWOSPLaE8qiriXKwQ+3pt1Qr/aGe6ltkUiEeDyOpml0dCT7R0SjUX7yk58M2nesBLsGjyLwe0x6woPniBhOSbZBOKZYWO5m+YzeJqeLp9odaUPccAPRBAE8NGXdybNnGkhOXaHQgc3aQebNm0+mXkDr/sOc+ewQubk5HN3zPj6fD4fbTzTYhR3tYeMt69N+d/oYhoHT6WT37t3MnTuXRCKBZVlkW60s6/iYDkce2AmCpp/6jLmDq1wGTKL0e6umjso/ixDi8xvXYUApRSCSoLUn/ctZ0zR0w2TXrl14vH4WrN1MNGFj6hqWrXAY+sDJTtE0jermMDGnZ9DNt+91vLsN3e2js62Fl5/+VwpLptDd0U57a1PauUMn96O7vMyZVcnZzjBFfjeZbgcK+Kw9wsVzrpuGjj8zi7Wb7kXTkqMI5hdm0BaKUegfPMHLrHmLBg1H03Wdr37zT1OjDy528dStRaXlhEJB3F4ffcMcs3LyBvx76JgOJwVTZtJy/hROtwdvRjaRYDfxaARd11NlvfjPUO/16bvJnz17lkAgkGoaAJgyZQqJRIJYLEY8HseyLBKJBLZtp4WD66k422TZdDf7zySHzW2o8rJqdjaqYAmffFrL2fMtRKIxWtq6yHDrhGI2sQH/KzpN+O31OTjN9H9/rxrd6Y0v5rcD5Puc+Lpr6dr1Hov1fD4zZqKhmGudQrO7qN7/cdpnIpEImgaHPn6beDxOPB7nzjvvHDII9Hn//fcJh8NUVFSwdevW1Ha3wyA7nBydkR1twR8PEHBkkxHrQGkadVnzMTw+NszM44uLSpgiHQWFGHfGbRiwbZvatiiKocfUh4M9AMTjMWzbwmnorCnP5VxXmEA4QpY7faGTYO+T/kDxng4c3kw0w8Q3axn+yuXE2i7QffAdamuqAdAcLnyzlqG7fEQaThJrqsU+9Qn+BfNJdEXYWdeOz2kQTdjEbUW04TTustkoIMfjwG5PTh2rXzTf+9x8P9mO/pvfwI6CF+u7fm2ISV3623r7P286TDramsnJzUfrvXkP9bnyynlohsnU6ZW9/RZsOutPEehsIxQKEQ6H06rZ+27kF9/Eh9MXBADOnz8/7H5jRdM0Ni/OYO0cL7qm4XXpQBxv5Dh/eO8ibGsWp6sPEIsm+1vYtmJ/bZijdREyPAabF/kHBQGATNXz+XrZX668QKERYlroOCHDx113bmb59Hzefek3aBqc60zekIvtVort1kseKx6P43A4CIVCZGZmEo1GKS8vH3b/lpYWdu/ezZo1a3jnnXdS2zMzM+nuTl/lMSvWSlYsef6MjAz+y9eWkpWVXqMlhBhfxm0YaO2daAf6e9L33dQi4RCvPfMrIDlf+s5332DVrXfhdRi4gy1caO8gyzUPvye5TOqxg3tobwvhnjoXTdNTzQIqEQdfdtp5nXmluIpnEG04CUDmotswswpA03Dml9EZDRMLdVLoc+B3GvTELHpiFq7e4XvO4hkEj+2gKDcLh9NB3rzF3PPl3yMaieDsnW5X0zSKMtxEIuG06xpugppLvT9wW9/PHq+P8hmVRKMRnE5XWnNI335926bOmJ12vJ44fPDBB4POk51XwNJ1mzAMg0/376L5wrkhyzoR+d3ptS2RUA+nj35CJJKsMTjTHGPboR4sW7Ghysfv3XrxojvpDGxyVBcdZI1oIFBASeQMBXoAXQvibTnK9BX3sGrVSp577jmys7Pp7Bx+SOBAiUQiVXPjdDpxOp0UFhYOfd7eJaazsrKor68nHk82r3i93kFBYKC8vDweeeQRfD7fVV+rEOL6GndhoDscp6Vn6DbbjtYWjh7YRSTQwaKFCwiFQtTU1HDmxDFqa6px5pXhX3Qbmt/HR3Wd5HbU0Hr2BB3t7XjyS4l7/GgOD/H2ekKnD5O18t7UpDBpvaoHLJZjZheknsiVUjiyCoiEujh2oZ1VU/PpjsZp6olytiOUPIZu4Jq5lDMfPsv9v/NNfBmZaJqGy+0m2NON1+tPzUDocrlT57mWmeqGm41wYBC41Of6Q4KOy+WhaskKymfMoaujlaP7d4MGdzzwWzicLjQNikqn8uKTv0zVzkxkmZmZlJaWMmPGDEpLSykoKCAYDLJz506qq6tp6+jmuV1d9I1UfW1/gNIck7yMS//qTLPq6XBkX3Kfq+VQMYrsVmwUbrebvXv3UllZSVVVFRkZGfj9/isOA5ZlpRaFsm2bKVOmDDvM7+jRo9TW1rJixYrUehK6rhMKhYY9fllZGd/4xjdGfb0JIcTIGHdhYLggkIjHePeVXxMOJ9tjGxsbAciuXEJ22VxIRIlGwmkdldpzZmGbefgK2/BMSfbAtyJBMJ3kbvgymmPwF5UdDRFtqk0ewnSAAkX/E3Ui2Im7tJKGsEXjqRaSU//00zQNzUj+s3r9GWk3Y68vg2CgG39mVmrfkXC5GgXov/HblpUWdgbup5QiJ7+QwtLk9MB5hcXMqlo06LiGqZOdmz+hwoCmaeTk5DBv3jymT59OYWEhfr8/9X5tbS0fffQRtbW1qRoBTdMIRhWJixY17AxZlw0DRXYrPjtIUPNepnZAUWR2MdvTQKHZhaHZhG0np6OFnIoUE1H9Q0JnWWcxdY25c6sIh8OcOXOGp556iilTplBSUkJNTU1auLscq3emwe7ububPnz/kPtFolG3btjFz5kz27duX2m7bw6/0OGvWLL761a9imuPu60UIMYxx9dsaTwyeBlUpRfWhvTScOc69995LQUEBu3btoqamhojpw5y2GBtQugPT0T9kKTnvv4GZmYeZ2d95znD78JbPG/L8blNn3fxpdBR8ieNH9tPQ2j5oOlnNSpDhS84NYKmLuwsmRWuTa7431NUydUb/YjiaphGJhFO1BX3Xl1bmUZJqahlirfqBrx1OZyo4XPykqHrXnU8kEpimg2VrbqWrs41T1UdGrdxXyzAMTNMkGo1iGAaVlZWsWrWKadOmpV2vZVkcOHCA/fv309DQkLoxmqaZmhxJKUWOz6Ak10VjexQ08Dg1ynIuvcSubSvCMZtFVLPTuXzIfXLNAPdm7+eerP0UOQMAhBMGltJxGwlMXWEpjf3B6bzccRPV3UVMs+qxgePHj6ee7C3Loquri/r6epRSmKZJInFloyH69ovFYsP2F3j//fcJhUJ0dXVdMgD0WbRoEQ888IBMJiTEBDMuJh2KJWxae2KE44OL0t7SxOvPPp62zTAMioqKmLZsAzURd9p717KAz7ryXBJK0RONk+txkgh1c6gtTrB3OKKJzepiHxlZ2SQsm/0XOmkLRgifq8aZX05+Xh5LS7NxmTrnzpxkx9uv8sVvfAeXO9l7OhwKkojH8WdmpW7OiXgMw3Sg9048NBaLDw3VeXG4siil2L/zPZatubV3RkSd82dOsuu9N4mEg4P2Lyydisfro+FcLbEBi92MBL/fz5QpUygsLKStrY3Tp08TDoeZOnUqS5YsYf78+WnV1KFQiN27d3Ps2DHa2tpS1+33+zEMg+7u7tS27OxsCgsLqa2tpasnwv7TYSwbFle4yfIOPz9DfXucX+/oIm4psr06Gzct4JSnf14IHZuv5O3k9/Pfw7LhnbpSdjQUcaIji/be/5cNzaYiM8C8vE7uqqhnXm4HjeFMaszN+EsWsWvXLnp6eigsLKS7uztVk9E3UdaVcrlcWJaFZVn86Ec/GlSl39LSwi9+8QsqKio4ffo0wCVrHtauXcumTZsm3AJaQohxEAZ6ogmauodYNU4pdF2jwG1z+vQp9u7dm/YEB6B7MshZfX9ywRRNQ8VjaI7BowYuxalreJ0mM3O9nOsK0xzsXx8gy2XSFe1/yjLtOLfMKsFhGijbprOjndeffxIzM5+spZvYUJGHt3eiI6UU+z7ezvK1t6WVp7tuD0VmE87gKbTQBexEDN3pxfaVE/fPIpq9FNuZx3jVNxdCQUlZ2nVFI2Fef+Zxgj39HcoWr1zPwpuSkziFggFef+ZxIuHh25kvxePxUFpayty5c6mqqkLXdY4cOcLBgwdpaGjA5/OxePFili5dSn5+fupzzc3N7Ny5k5MnT9LTk2zW0HWd3NxcvF4vjY2NqTUhHA4H8+bNIxQKcerUqdSN1e1243Q66e7uTus973Q6icfjaTfHv32tlciAULtgqouFK6o4Zs4iWw/w38qfYY6ngWdPTOc/qmcRTFy6lgGgKreDHyw/QkVWENf8b6NVfJFDhw6xY8eO1BwO06dPx+/3c+TIldfS6LqOw+EgJydn0GRQSimeeOIJ2tvbL9lJsM8dd9zB2rVrL7ufEGJ8GvNmgrYh+ggopQgHe3j+iX/CMAwyMjKYMmUK69evp6ysjLNnz7J33wHa3UUkQt1gJYi11ZMIdJC5+LYrPnd5loe5hRnomkZXJJ4WBIC0IACQ0EzquyNU5PpA05LT2cajqHhyQiSHoadV/7tcnuQTNuBu24Hn/IuUhD4jYeucb/VT1+Qibml4nB3MKD1Fcfar2EonkreaUNmXiGfM4XoZLhP2D2vsv/GbjsE3MIfTxfQ58/l0387UtnlLV6Z+9nj9TJs1l+NH9l9RebKyspgxYwZVVVVUVFTgcDhQSnH69Gm2bt1KdXU1tm0ze/ZsbrnlFmbNmoVhJKeFPnHiBHv27OHcuXOpG73T6WT69OlkZ2dTW1tLa2v/0Lvy8nKqqqo4cuQIhw4dSm3Pzc1F13VaW1vJzMwkkUgQDAZZsmQJBw8eJBaLpZ6mo9Eo8YRKCwIAHUGLaXY9JXYz35i+D68W4fvb13CsPeeK/h0Aqttz+M7b6/nDBcf5LX6BwwqzfPnvsnTpUqqrq3nj/2fvzaPjuO57z09VdVXvWBpbY9/BfadIkRRFiqJkyZIs2ZadKF7myS+x571M8iZ5z3nzZskkM5lkcjJJjh3n2E5sOZa8x5G12JIoUSIpkiLFTdwBYt+BBtCN3tda5o9GN9BAgwQ3U/Lj9xwcdFfdunW7lvv73d/y/b3+On19fVRUVFBWVkYgEFhQ9CofMumhtbULSYAyQYNW67U5AZ566inWrVu35N9zF3dxFx8+3HFlYDFc/iBd817TNJKqxtjEFJd/9jN0w0ApLMfevA5zkTsbnJUY7yE1NcT0iV9StPFjCCb5mhaC0VCclpKFueI2WWJrrYseX5hBfy6BzFQkhigKVNgVzp04AoAanCLad55+1720lab5DTQ1Re+ViwhxD/cVncYa/ICLA0X86v3lnOpyoWoLfap2i8r9ayZ4fOs5Kr3HiFR9glDdF0CyLGi7VOQz91/NHaHrOqlkIp2JIIoYus7E+AjlVbWIosjE2DB+7yTFpblpaIIgLHADqKlUtrCSIAikZgRUxi8vCAKxWAxd13E4HDQ3N9PU1ERTU1NOcJ/f7+fs2bOcPXuWQCBAaWkpe/bsYe3atTgcDlRV5dSpU5w7dw6Px5Nd0TscDpYvX05lZSWdnZ309fVl+ywoKOCee+7BZrNx6NAh9u3bB6RXyw0NDcTjcUZHR6msrKSiogKPx8Py5ct5+OGHKS4uZsWKFfz4KxXEwgAAIABJREFUxz8mkUhkr6Uii1hkYZ5lwIKAwf/QcAKrkOQPD2xjNHL9qXaqIfLtCysIp0z8Lt9HsNdgqtnDqlWraG5u5mtf+xqhUOiqEf75kEqlcDpzOTkyQYMZGumr4ZlnnqGtrW3R/bquc244RDiuIYkCVlnAqpioL7FiVW5/0ai7uIu7WBo+dG4CwzAY9Yc4e+wQ0/3tNC1fzbYHHkUQBLyTHt7rHUcuzi2OYug6ibFuwu3HUBSFsopKEk3bcBU4SKg6kdTi9dkbi20sK3NiGAbnxgOMhxLsbiql1G4moeq81eUhPj+c3DDQ42F8x14GfU7fgoi7pg5noQvPlBd7pINP1X1AIiHxjVeaOdN99fz0DETB4PGtI3z+wSE0Ww2BNX+Brix9JXktXI3gKF/beCzKKz/8ZxRzOj2yzF3Nw089g8EsmdLoYB8HX38RfY4bp7q+mZ0PfwKTLDPU183hfS9lBbUgCBQVFVFdXc3y5ctpaWnJ8VmnUik6Ojr44IMP6OvrQ1EUVq1axcaNG6muriYUCnH8+HE6OjqyAksQBFwuFytXrqShoYFLly5x4cKFbF68yWRi1apVbNq0ia6uLo4fP57dpygKa9euZWpqiv7+ftxuNwUFBXR2dlJaWsojjzxCc3NzzrU5c+YMr776as62pODg+f2DRBM6Gxut3LfCzpbyIXZW9vEHB7Zfl0VgkTvCn957lvvrgzj2fg/Bkn6mzp07x0svvcQjjzzC/v378wYROl1pBS7km1iwT5Zlamtr2bBhA4ODg5w5cybHJZcPX/rSl/JaFTJIqjqn+v3pbIzMNJPhzAA21hdiN99VCO7iLj4MuOPKAEAipTEZSdIxHiKqGiS1tMAYOfYrHn780zP57QKT4TinRwM5xxaaJWRJIjDWz9jJt7Lbza5KnvrM53hv0EfsKsqAXZHY2ZD2MRuGQSipUu6woEiz3AL+aApBhP7pKJ1Ts+l0gdP7SE2P5/Qn2Yso3PwIpcI4j0z/NX0jZv7iRyuJxK/fCFNXHuHPv3gZa3EZ02v/BkN2Ltr2WgJ+/v6hvi5MJpmCIhcWazo7YrEgRl3X+NG3/jZnW2lFFdUNzYQCfob7uhYNDhQlCVlWSMRj2Gy2LPWty+VCVdUcf3RBQQEFBQWkUim8Xi+qqlJbW8vGjRtZuXIlk5OTHDt2jL6+vuwKWJIkqqqq2LBhA42NjVy8eJFTp04RCMw+JzU1NWzZsoXa2lreeOMNOjs7s9ejsLCQe++9l56eHrq7uykvL6euro6LFy+i6zq7d+9my5Yt2Zz8+Th06BAHDx7M2VZeXs7ERFrg2k1Jfm/lCV7srudb5/NnsVwvCpQkLzx6mOLm3Zg3fBVI39/nnnuOZDLJ6tWreeedd3KOWbntYSoa0m4nz0An7cfexDAM7HY7bW1tdHZ25jBGzoWjuIzV930cs83OeP8Vuk4d5Ctf/jIlJSWMjIzQ39/PyMgIPp+PSCSCZLZTUtNIWXUTjuKyRZ/JWpeFxtK7RYvu4i4+DLjjboLpaIp3e73ZAkJzYcjWGd98fgY+AVheXkCp3Uy4ooAj/nE8XekAqqoyF7Ik0uSycckTyh5jkUTi2uxKP5LUSKo6iint73cqJmKpNL1xNrLclvaRr6ssRBSgYzKtEOjJhQLQ1rgWWdTZPf2PDHsU/vwHK4knb+wyD07Y+d+/t4q//t2LFPR8g8Dy/5Z7fZbAXmgYBr5YklBcpbbIhiSkg/0unXmfbXsexe4smMlqSCHIua6VTP+dF89mt4mihN1ZQNzpZtjRADYdwR+B8d6859c1jYSWdrVkBLjNZsPn8+F2u3n66adJJpOcPXuW3t5ehoeHcyLWh4aGGB0d5ZVXXsluUxSFlpYWduzYQVVVFVeuXOHUqVO88sps2V2Hw8GmTZvYsGED4XCYV199FY9nts5EXV0d27dv59y5c+zbt4+SkhJ2795NR0cHp06dYt26dezduzfHXZEP999/P8FgkDNnZmMhMooAwJqScXQDftDemu/wG0IwqfCTjnr+vbwfZdVXEJR0quojjzzCd77zHSRJyqYdAtgLS7KKAEBFfRuDl08T9k/R2NjIJz7xCQC8Xi/f//73CYVCOedbtf1jWGwOBFGkqmklvokx/vFb/4RoLFSyWzbupHbZ+qX9jpiKqhuYFlT8uou7uItfN+64ZeDdHi8T4bQvORNsl2Ho8w9ewV3hpqm2FossEU2qHB+YImmkJ481FU6Wlxdkhcd0OMJP/vlrAOzY+zj1LcsRRRF/LMloKI6u6wiCwFBgVogLwIMtZZhmzN3tE0EG/TEaXDZcVoX6Ihsmada/Px6K825fOvhMCk1giXoxq2n2wUQiQby4no2mg7SED/JH31rPmO/mi7LsWDnJf3n6Cr62/0qidCeQpmS2LKEUbDwe40jvBBsa3LisaT+9rusIkMM5MN9ykPl+5cIZzBYLVruT4b5uVq6/B5vDSVLTOTE0TSiRAsPA9+5P0vTOeSAIArUtKzAXljLc10XMO7agjSiKLFu2jFWrVjE1NcWlS5eYnJwtBGwymbL8AZmxzU+lE0WRtrY2tmzZQn19PefOnePtt9/OrnhFUWT9+vVs3LiREydOcP78eQoLC9m6dStjY2NcuHCByspKHn300auav+dD13V++tOf0tXVNS8Q0+D3VpzgvdEy/ub0rQ2wKzIn+Nljb3MpuYXWPX9EcXExExMTvPHGG4yOjmI2m2eVr4Jitj72+ZzjT7z2IyIB75LOtfPpr2CS0+RHH4wGODseAgOKpy5S6JstAW1SzOz89Jdzjs21NBlAruAvdcisrFrc4nUXd3EXvx7cccuApufqInOnC3tZDQmLg/bJEJIAmgGFFpnAxAgTF45S+cWvZNsLgkCBbVbwlrqrsv5sVTdIzPj9DUOnwGwimFARgJUVzqwioOo6AzMBg32+KH1EKbTIlNiUrMLhi85GaVtclTgqa2krdVBZMHPu2ATW9w7wwoG6W6IIABy9XMquzknWyv9ComQHBgKaNusTnq/PZcY65Rnl4Ou/IBGLoj71DFiqIQ+ZUOaYDDRdZzQQI6EZVLetwWFOW0bc1XX4owmCoTglNpm2UgdnRv1p642kLKoM3P/Ip6htTPvbV6/fzFsH3ibccy6nja7rtLe3097eTkPrClZs2kFbMoFN0ti0aSNmsxm/38+ZM2c4c+YMkUgkqwiYTCY0TUPXdTo6Oujq6srxd8uyzL333su6det47733+O53v4vdbueRRx4hlUpx8OBBTCYTTzzxBBs2bLjuPHlRFPn0pz/N888/z/j4ePbcDjlJkTnBe2MV19XfUuBPmGn3FWGRevnmt75F68ZduBuX0bzjSdx+L+ff/WW2bTQ4zUjXBapb0+W1R7ovLlkRABjruUTt8g1Mx5KcHQ8DAggwXbaGOqeMKRXFOzbAfEEP8y1Wcyi/Z7ZPR/I/M3dxF3fx68UdVwZWVDg42jedFurzVqWKbdZEm/EiCKKIxWZDjYaR1ASiYM62j0dnfZ52x+xqY27MgCQKrHanXQspVSel6wTjKQotMpIoLnAjTMeSOM0mJFFgIpTg8sSsj9s8U+51KpLIKgOxvleQVJE3TucGOd4cBH5xtJp72i6gBM6RLNpA9+XzAKxYtxkA78QYsmLBVVYxaymZmiAxk9d//sRR9jz+NNIizHCZa2gYBpc8IUZDcRyKCc0wqJckLHI6bW88kqR/OopNllhWmr4/yalh9ER+f7PV7sgqAgB2xUTtys20z1MGMqiub+a+h57IjicZj/HmO4fo7WzP4d23Wq3sefhRausacdgsREPTvPLKKwwPD2eFccbPn0qlOHz4MIcPH0YURdxuN2VlZRw9epRwOMzmzZt54IEHlpRGtxgUReGZZ57hueeew+/3o+s6bmva3N45fXsq9l2ZLuLB2jHqlm+kqmVV9v2xF5XQtnkXF+YoBJ2nDjJ0Je3uiYWWVr8gg+4PjhD0ekhYS4CqnH3163dSYlOYGOji0ntvMNbbTmXTiqv2l5OmKt11EdzFzeHKaJA/fO4k3eNBygss/M7ORn7/Y8sQb7H7KRRLEYimqHZZfyOJte64MuAusLCs3E7HRFqYGIaBoan4h7txNeROKuurChkPxhkXSmna9RSHz19mx8b1OCwK8USSV1/7Fc17PoMgCERTOo6ZSGWn2cTUzIp+eVkBpfa0ydNikuj1hmkqcWSFzwPNZbzR6cEAKhxmymeyChRJpMJpZl1lISOBGCndQJ5xH9iU2ctomzjIofOlNxwnsBjahwoY8ToonjzISMLNhVPp+vSZ/wDFJeU8+InPYrHaiISDDPV307Z6A77JcTyjg7z0g3/iyc9/GUmS8gQJ6tk8/dFQnEKLzNba4qzVRdd14qqOb4aLIZrSuNjRQXCwi+REf05fJsVC47rt2EqrCcykDs7lKkimFl8NVlTXoesaopi+d4rFyvKNO+jt7spp17ZiDfXNK9B1jWgKDh05nlMmOaMQzbWaZAIkx8bGGBubdVWcPHmS06dPZ33tGZdE5jrNjctYjJVx7v+MxcKpJFB1gcnYjaeGXg2jYRsFSgKbPTdDQRAEzLaFsQ7XqwTMxcRgFwbdmOvun1EKwO1QcFnTVqPy+la6PjiMKKUJuQRRzHE9nRwOsKLcjkMx5VgGqotvz7W5i98M+CMJDl7yUFtiZ1NzfjK2Z//xKH0TEQygbzLC//PiRSRR4D9+bGk8LeP+GBZZosiuLNrmpZND/MF3T5DSDHatrOCFP9iBYvrNoty+48oAgNmUG6mtaxrF9bk30ipLFJhlCspkvNEkRlEpQnEZH4wFsxNL5eYHs0KgyxuhtcSOwyxTZFWoNyCQSFFkkdGNtIXAMAxMUm55ZLvZxObqIkZD6bgCbzRJZYEF80yAYWupk0aXne6pMMVWhUKLPPtQpILY9EkuDSyed33jELjQ52Bn6UX2vfVC3hbT3glefP6bWG0OCl0l7Pn4p7OT8pG3XmWgu4Nj77zGjr2PLxBqmVW0KIpYTCJVBelJeq4gtCkmWjKuAcDb30FycnDBONbc/xiFpZUAFBcW0j4RZnm5AxHo84YZOn1g0V/pnRhDFNPxIfGUjiwKOCwmyipr8PtmiYLqZ2o+iGJagalvbOHS+dkgvvmKAFy9uE6GgCd1FUXleiEKBqouks98fiug6iKiYOAd7cfdsDznOR7ruXzN4wtK3bjcdYT9U0wN5w8AnQsBg4qhw8TsbuwFxdy/fpZd09B1dDWFzVmUfeZiKY2YqnN5IkKPL8pQIEaFw8xEJMnKMjs7m11UF91VBu4iPw5c8vC5rx0m40n+Tx9fxisnhxidjvHYCjuPNCTp6emhf6IGY9479o03rrDv3BhffWIl963IX5r7g34fn/vaEXzhJALwF8+s59/vacnu13WdYDDI9PQ0//NzZ0hpOiBw6LKHz/7duwRjKQLRJKIg0FDmYH1jMbtWVrBj2eIZNB9mfCiUgXqXlT5flGBcRRAEyqQY00LuJBFLaYwG41QXWjGJIil9YSrd/Mj6Hl8EpyKh6mCRRSIJlfcG077SJped2iIbmp5bxjee0hgKxLIFiIYCMRSTSPWMG8AwDEyiyPLygpzxGYaBFEpPqL1jV49Av1H0jDl4WO/GJLSgGvlT3ZwFRVjtjnS1wTnPY+uq9Qx0dzDQ3cHYUD/3PfQElbUNeR/a9ZWF+CKJnNcr067cYUYWBZxmCWPN/SQnBokNd6D6JzINKSqbNSUbhkE0qfLKW/tJjHajair2hjVYapYRH+kiOTGAaLZjdjegp5IM9HRSfPkyxZWNAMRIx3L4JnNTOH3eSapq6rKrfZ93kg8bkpqEImnIokZKv/X59A4lRVKTmBjowtB1yuvaEASB0Z5L+MYG8h5jcRRgcxYhSjKr73sUZopXjXRdoPPUwWueUzR07OFRCI8y2uWidtl6dF2j89Qh1FSSsf4rxJVC9vd6iau5ylggoRFMRDGA94YCuOwysaSGy65Q57J8JCfQu7h9+IPvvs/ckLKvvdZBZlJ78UKI813TPFQapNEaoCeWccWl9/vCSU50TfE7Xz/Cib96FHeRlURK43jXFKFoir966SI9ntk0cQP43358FmXqMlo8yOBEED3qQzA0AimZuNrK3An1RPdUztiGvVGOdU7yD69foaHMzh89voLPbqv/SD3THwplQBYFqgrMRJMqiiSyvqWF7qkIQ/7c1L2xUAyrLBLLU90wH3QjPQEBC4iHen0RgvEUoYTKoD+GxSRSW2hFlsQFlQgT80mH5iAYT3HJEySp6SzTPDQD/sji5qabgT8iIwpgljRUdaFwWb52E5vvexCAZCKOYaQ5XgzDyImnSCbi9HZcpKquMe95iqwKfeMTxAttWGYsIsF4io7JEKpuoOoGbaVOjsdUlIoGzO5GEhODhDuO0bhi44JKjKphUOK0EyivhYpmTE4XgiCglFQT7jyFvXk9zLgFzJXN6IVVOavcQDCMdyJXGTh+5ACKolBZXcvI0AAnjx++uYt7g3AUl1Fe10oiGma0+yKGMfusTMXtiAI0F4bomC665eduKQwSVWqpX7WZ8b4rKBY7yXgkryJgtjlxNyyjcc1WBFFEnwlAzWSUVLeuwTvaj3e0H0gTFK2+7+NIJpnBK+cYvHRiQZ/dZw4TmByjZeNOmtbeS9JSxNGEC65MzsybeVwqcz6PBhKU2cyE4jEkUaDmrsvgv1sYhkEgEKCvr49Tp07h8XgIhFuBxZXo7ngxDzHGg65RysNxeqIFmKxORoPpud4gTXy1/0wf6ypEvvLCFXq9GcvfwswWgK++lQDMQDlQRokphle1LGg7L+4dg3SgOsDAZIT/9L1TvPj+EF9/djMVRbcmkPx240OhDIyHEtmYAVXTONTpoSQyAPaG2SJEhkEkFORCQr1GffilY2pOZkBc1enyRqjI4zeaDMepLbKhSAIp3UDAQBBAEgTaJ4I4FBOldgXT5O31Ic1N0MqH9Vt3Zj/LiplIOIjDWUhw2suZYwez+0RJQhDTAl4zDIqtub85pWmMJyRio3621LrA0Dk5PJ21xsAs10KWire0htrdn6G+JC30MgrB2MQ4VWWltJe2IJdCVkOZgb11U472rBRX5Ch7hmHg88zGAkiyQsPqLZitDs5dvMQ7+9JBciZZoXHNvchmM6M9lwlPX91SUFDqZsW9D6GYrQx3nqPvwvt525lkhZaNO7EXljA13MvA5VOzYy8qZdNDn8lyYThd5XS8vz+7fzJmR9MFVpZM3wZlwGBNWYBU4f00VtxL/crNiJIJQRAY6TpP56lD2Zblda2s3P4wgjDHjy8ujBtZvfOxNG10IoasWLKKQvParTSu2szpt35GeHrWVWOSFVZuexhBTCuMa9ZsoPuyJ6uAXwul9tkaF6H40sou38VvBsLhMKOjo4yMjDA0NMTQ0NAC1sx19ilOhedm4szPTDEIqGYKTQnWO72sd3pRDZF/Di5n7mz5/VfepdIcpddXt0hfLLrdq16/IM/Mkkc6Jnj0r97h5T/ZTW3J9VOQ/7pxx5SBpKZzvH+ayUgS69yYAUFAF0ycPHuJhp3NczYLDF88SdX6nYgz/u3bUfLXE1lY4CWhGRwb8CKLkJpZ+JXaZGoKbdhkiTWVheiGgaRVwACUFCRuiHHwWigpSKLqAgktf9+6rudck0unj9PTcSHHV15S7uahJ59hIqby3qCPcruZ4upZZSDjBim0KoiCgChAQjVyFAEAfzzXty6IIoo8ex8zY3AYUdqn5vDlz7td+eom+OIpZEmkQDERjYTpPHkQSTaz+r5HKCqvRhDSQqq8roWBS6fou3CctbueoKDEjQG4m1Zy8rUfEQvnslXOxZqdj2UFXsPqLQSmxvOuqJdt2UNZTTOCKFJQUkEyHmWsN+2Pr2xckRWEmfHMVQZUQ6IvVMyjDUO82N2w8MffBNaXeSm3RrjiTBeDyigCAFXNq+k6c5iWDfdRUt2EYrYuOHe+9yaTcqpYFvJXCKLI6h0f5/gvn88ev37PJ7PvYmabXTEtSRloKbFkXW8ARbYPxbrkLm4DMnU+Mn8jIyNZ5tGrlcRe7vDPUwYgd0UvcMRfwUr7NAemq1ANkc0FUyiCRtKQZtoJXIiU0hm9EWXz5t5XTTfw+OM8/f+9yzv/50PYLR/uZ/yOje7yeJjJcBIDiCZVMjfZAKITQyQjwRmT60wEt2HQXF9HyiRlTTS/Tn+MAFQV2LCbTUxHk4yF4kxFA6woc6IbBqIgYDibMRBorgwzOHHrNcHmyjBTMRuakd8CceLdt9j+4McRBIkpzyi9nZcWBM3t/vjTSCYTvb60oJSlhULCMAxcNgXHTJaExSRikyWiV6F1BvAnNEzhOBU2JV3UaLCbhMkM84Z7LSVOEAQmoknGQ1H877+Knkqw/akvZYXU3BTU+lWbGO9rp3AmTiG9R2TtridQrHZ8YwO0H9+fNYvDjOIyT+BZ7PmJb5yuiuwKWdd1nK4yxnrB6iyiunVNzlhi4YWlfs9OVfF080XWlvo4P3XrSlM/3dpPxFRF0LpyAWtkMhGjYdU9VLeuXZCue6PvjCAImMyzZvzqZeuytQ4y/UdnaMV31BVxZjSIphsokkA4NfsMWmWRv36sDbvZxJAvTiShUmSTcReYuYuPDqYjSb7+WgfTkSSf39nI5plI/1QqxdjYWI7w93rTcVqSJGG1WnMqai4I8jUyvDFgF1UEjDmW0IXkVf6UwlveGrQZwf9+oJx8ttOEIWFCQ83rdpjbXmAxF8KNQNMNBqYi/NcfnOEbv7vl2gfcQdwxZSCW0rK3wAASQR8J3ziKKGCOemlrbiQ+eAlz9XIkWaGxxE5V0xamwjEuTYRz+pqvXd6MkiAKC/1BkA44rC5Mr2TK7GYUScDttGazDAAMyUZSqWZtU4AD524t0YyAwdqmIKOxxc3N/V3tjA31Y7ZYCfp9edtYrFYCcRWLScIAPOEEzUk1Jz1SEARCCRWzJGZTC++pKaJ9IrSgzPN8TMWSRFMq+D0Mvb8PR+MazE2z9LTzFwHzFYO5n0XJhLmyGXWkA7N1oXKVbisgmWQS0XBawM+Y7C2OQkRRpKy2mWhwOscNYOg6E0PdlNU0g2GgaWrWVw5p83dlczpv3z8xjMWeTnEVRZHK5lUYBiRiYYR5ecwRv5fa5RsY7jyHMaOE9YWKGY04+OONF/m9/ffdkkDCHZXj7Kjy0Fv+hzkskplrkoxFKXbX5b2u+d6TwNQ4haW5vBiJWATFYsvpY2KgM/vZUVi64LxnR4OkdIO6QjOtJe7ssaGEyuUZt9LqMgfnhkLUl1ipL/lo+FLvYhaGYaCqKr/9d+9yYcgPhsFPj/bxqRoP5aI/t3DbPGiaRjgczr/PENjvq6Y3VoBNVHmkdIgKJcbHSwZ4w1uLlhXic985gzI5RlDLp0jmsXwt6mAFCR1t/qrlFuLn7w/y7J5mNjXdugXBrcYdUwbqi62MzNACC4KAFJ5k5PyxNC3tph1YqltxWcysrSrE0IWsn9llMxOe6ECSFWI+D66m1SAIqIkowZE+XE2rbsp9sBg5c9EMlW+6jUF1oQ2TKOQoItOxJOU1H+O+2Pd47o1GQjE5f2c3gPXNfsoLY7zVefXc2UQ8RiIeW3T/2OQUHlVGEgXssoQkCLzb0c/6hmpK7emCUBc9QbzRJMF4iiKrTLFVwTAgnFyaLziq6hi2EjDJhPovIBa7kYvd2ftyPYqbvXEt/okBdF1DEMQFQi08PUkk4OPcwVdo27wb2WxBMsmzK30DLPaCBf22H38LaYcJW4GL6ckRGtdsBQP6Lp5g7a4nsBemqwFqapLw9CSO4jIgncpY07aWka4LWXdFZixldS2U17fiKC6j4/39MwqBwL6hZXyh7QxfWdPBN86t5GZWHaXWGP958yV89k34Cu7L28ZRXIqaSuRsy1z7zPXPXEdd1wn5PAuUgcHLZzAMjZYNO0EQ8Ax05mQbTHuGFpALhVI6GAZnLrWzdfXytJKmajgUiS3Vs8RLumHQNxWj2GbCYbl178hvKnRdR1VVNE3L+b/Y56Xuv5FjdV0npYucG83c+/Rz9G/DbgqkYp4q78cuzVrhNEOgI1JEXJdosQUoNKVI6QIx3YRDSpHRpzsiRfTGCgCBuC7Sm7Czo2yI5UUTNBV4eWuqnq6wa55VVGCdc4qEYWI44QAMZHRSeVf/AslFgxEFFEEjtojF9Vbhb16+xE/+6P7beo6bwR2tTTAVSTIZTlJsk3E7zYRCIc5c7GDCWj3TwsBlMbG2Oq1N6bqOzzvJq798mZp79iJbbASGe/D1txMPeDGJAu5191FQk1sUJmP4uRm0ljqodFqyk6luGAvY/AzDQEgFsR75HV484uaH7zTc5FnTEDD4i2cv4nKpvNC1kRsRJpKtEKWigVJ3NQXlaVriCocZswg+3xStdWkufl3XOdA7lRMjsJi15GowDINo9xliAxexVLdhX35vjiC/HmUt8MF+Ci1mVmx7CMkkk0rE8Ax0EQtNM97XgTaPBrl2+QZaNtyXFsaCwIV3f5mz8gdYt/tJit3p3zxXQC42trnbDcPANz6Ey12bo9zMPS4WCdJ/4QSamsQ3NsTDG6ysTr3K8+0tfO9SGzdyD8usMf5u10lKChSuNP0lqrx4SexrXeO5Y9Y0dQ6hUkZh0Ok48Q7jve0AOJ1OTCYToVCIisYVtG7aldP/lD/Avo5RlOgUZd7LWGQTJqudKXstD23flpf5srbYTGPZhy+wyjAMdF2/pmC8GQF8PX3f6BQtiuICEq25//N9vtq+uW2++P1+JsMpdGPWpC5gYBY1BAxWO6bZ5Jxkn7eWvrgTATAJOg8Uj3BgupqUIVFsivNUWT9mUeOIv4Iia5TPN1xiZ9kQVmnhwiOhi5zwVfLD/tW87alHM0SerexAR2Ag7iSlizRaAvx8ooW4kd/Z4ctkAAAgAElEQVSSsNh7Vy5HmUgtjK25lZAlka5/eBKL/OEs233HCxXNx7A/xvGBXKY0s6eD5ctXEY2E6G6/gNi4EU00YZdNrKwoQBGhs/0Ch/a/jmEYlLSuw71qa04fsgCGIGAxiZTaFPr9i6+e80EUoMnlwGE24YsmMUsCVYW27IuqzdQtKHdYMPX+ALnvB3z1O+tuCefAo5tH+fLHe/lp9xoGw8XXPgAoqmvDUVFHMuzHO9hF0ZbHQRSxyCaKLHKWZ0GfKQ4VTqhZhelAzyQJbfF0yqXAMAxSfg/B0/tQymopWLcnu/16/Nh6Ksn00Z8vWvdgMZTVNOMoLmV6fAj/5OiC/bt/+3+6KXeSp/8K5XWtC8z0Gcz9nWoqiUlWqJh6idrJH3J0tIK/Pb2a6cTSU+nuqxrnP2++hNlip7vxz4jLFdc1/nzKwfx7YRhGTt0KwzB462Q3rx67wuaCCZqcKdY98GQ6UDNzrGGQCk3R/v5+goHAAtKm1fc/Tll1Y06fkL7nG2qdOGcYDA3DQNO0mxa6NyOA5267USwmUK9XAF9LKF+rrSRJeWuQ3CgGJkK8dboXpxDGHJ/kVMcQbww7GUnYZgh/5i650s/Ux1wD7PPV5/RjF5NEdBkQEDBY75iixBrhj1ceZ7lzGp8Mw8Uppi06AYuOKoKkQ0FCpDguUuU3UZ4QGIo5+JOzD3DSW4WOyDLbNA8UjyIIENVMnAqW0R4pQr+m6d9AwmCDY4JT4VtJIZ8fr/+ve9jQ6KJ7PMTFQT/rG4ppKL89vDTXiw9deGOJXcEkCmh6enJKRUO0v3+UM8fezbZZ0bAZEYHl5QVY5XSK1Mo1G/CMjXKl4xKh0f4FykDKAAyDcFIjnIxd92pXN6Dbm+vv0gyocFpIaTqdkyGKZlL0QtWfQRk+xFc/08n/8t3VBG6Cd2BZTZB/93A/H0y6s4qAIJkw5gTESZKUzSQAKKhupnrj7tkaD65KYjOpZAk1XYuhfCaFUhQEdMNAx8i+yw7FRCJ29diAa0EQBGRn2qKTnBwiNngZS+2sWdkwdPREDNGcG8g3X0EIXT563YoAwORwD5PDPYvuTyXj6WyCG1QIyutasymv+SwKOfz7MxX/PKVPkVAq2Sx8m++XHebnnQ38sq8WX3wxpcBgY7mXT7f2s73Sg8++iStVX0E1FS95/TLXPTAf88c7/3cIgsDDW1p5vz/M6wNW/q9NhTiLc9ncDCAeCVDpdlNeVpZlcQyFQoRCoZlMhtxz6rrOyJUPOPaL01kT+NXYIa+FuQJ1vmCUZTlnu9lsvmEBvJT9HyWSmcVgGAZerzcb+X+ic5xvXXTMCH2DlfZpdhX7WGFLzZjn52I2yG80bsck6KiGkN0+vyzdozVdPNt8Hr/Z4EBlgimbvmBxrokwZdKZsut0lagUxQTWjhn8eNurPNe7hr+8vJ0r0WKarUHqrWFsksq9hR4uReYvnPJbBjREhpLORfffKgjAxSE/05EkX/iHo2gzlPY/++OdbGsru23nXfL4PmyWAYBALEWPN4okCiwrs2ORJRKJBGfPneP0qVOYqpbhalzJ8jIHkihSYlMwDIPusSnGEoubem8XrLLE2opCJElAlkTGgjGGxnrZOvJnTPs0/vyFFUwGrp9QZU2jn//2W+1MJez8vHcNhmyjbtuj2IrLSUaCDLz3GsnIwgj2ynX3UVy/PLtqTcWj+NRMOqaOHo/yYEs5pa7idBaEYXB2LIDNJBFOqvT48hcduhF4D/0EY8Z/7Vy7G6WsdibfXSc5OYxcWIY4V2AkY+iiCUEUifZfQBtuJ5lMUldXh6IoOXUA5tcCyGybu13XdeLxONFoNCeK2VFcxroHnkRWLGhqCskkLxCGS7FiGIZBeHoyG1m/FDeDSQ1SNfkTXP5DCIZKp7+QDm8BI2E7qi7gUFK0FoVYVRqg1BIlbKpmovzT6RiBW/RcX8tSMBfffL2dg5fG+NvfaqGquibL+igIAmH/FB/sf3FBjEIG1sJitj76uZzrePjn317g2rndmKsQZT7/9/T9attVVSUcDjMZiPJ6n4krQQsWUee+ojH6Y04uRVzz6H4NLIJK3DCxuPCcK1hnLQZuOcJ4Kr0A+NOVR/h3TRe5XJricpmKcT2PtgEtPom1HoXXRpr5ow/20mb3U61EKDClEDH4t8nma/cz05mEkc1IuF0QgN/eXMz5oRCXPCkgnbr96IZqvvsftt228y4VH0plYD5CcZWjfT7CSY1yh8I9tQXsa/dk00SKLTIryh0cH5zmetYXt0JpqHAoLCubDVDL9NczFSLsH2D98F8hJvz8y5v1vHnavYBDOx/MssbnHhjg8a2jJAvW8sOLdXing7hXb8PVtCrN/a7rhCeGGDy+b8HxRfXLqN6wK/0bdZ3ASC/TgQDWmjYENUnwwrsU1y/jge334lBkhgJRzoz4bzquIh+87/4UI5kOFFUKS3FueAjBpKAn4wROv4GeiCEXuxHUOC3V5Ty4Zw/73nyTiYRIRW0DnScPo8dCbNmyhZ07d+Jw3LhJTdd1hoeH6ezspL29HZ9vNuNCNlspr2+lcfVWTIp5QSzA1Vwa13J35DPBA0haBFfwKI5oB5ZIF2bNi4COhpmYpY6YrRm/cwth64rrUgKWMh5dVRFNpgVt5itA4bjKf/necX7voTY2t+ZmyAS9E0wN9zBw+RTF7lpKqhqIBqcZ7bmUE4nrcJWzcttDaKrK5aP7iIVvvGDSrcRc4Zj5E0Ux62sXRRFZlrMWBkVRMJlM2f8ZC4M4wzWReU7mKqRL+b6UdqfG4PAQJDWoshusr9ARBQPDgOYiHZHc9uNhCCQM3JYkkqGiaSqpVIpUKpV1iQAEVIXzIRcpQ6Q3VkAq62s3ZtL6Ms/H/GfJWGT7tWCwo2CUnZWDfLn1LGfcSXpcSwtMzofqoMi9Q2a+07uO/7d9e855ykwxJtWFnBmLjet2KgKZczikFFU2lc7QbHzCtrZSfvHV3bf53NfGR0IZONTtZSqS5iQwDJ14wIe1KDe1CUMH4c5UkbqnpjgnNS8DXTcQ9Shy1z+jjL3OuN/Ga+9XcKy9hKmgmbkPnygY1JRF2b12goc2TmKzGKRavkSy+gnOf3Ca/u52hMplFFY3zxaC8U/Sd+ilvGMqbV2Hs7KBeMBHc5FEtbuCM2fO0NWVrv4nWp247n0CpNsczX3+DcpKXASDQcbGxtAFEbOzmERwGvS0qyOz0sw8ioUrtyFXtaW/6xrN2hjn3j+KpmmsX7+edevWYTKZUFU1O7nN/ZxvW77vsViMSCRCLBbL+rpNssKyLQ9SWFZJeHqKwrJKTLKCmkwQ9nspKp+lSs4ndK/XsnCnEAsHuXjkVxjAhj2fQlZy07PCAS8D3d28eWmK5jo3n9i9KWf/3N8WCXixF5aQ4QXx9F7iyqlDN2X6/01EvhX6XOUj425QFAVFUTCbzVitVs5PyXzzRJyF+fBp1FvC7CgaYzRho9iUYDJl5Yi/cmavgYjBfUXjrHJM54wnoYv8aLyVhC7N9PzreTYb7dO8tutnDJQmOee+eQtR25SJNR6Zz773Sc5Mz/X7GyyzTtMdK8qz6r9RZebmIInwp0+v5f/+twuo2uz9/Mtn1vOlOUWS7gQ+EsrAGx0ThGdYzTIR4rdyUl1sAl8qNtcUY59XmnV+X2KgHdPQS0gThxHRCMcVhqdspFSwWXRqSqOYTSoprMRKdyM2fxbBXoWu61w+f5qjh97GXFRGw47HEGZ4/IdPvUNguJvy8nKeeeYZXn/9dTo7OxeMr6mpiS1btvDyyy8Ti6UDJ10uF/5IHHNpNfbl226Z+XkutFiI6aMvXvdxJbt/B8GUCSzTifacJdZ/YcnHZybVjL848/9qnyFNkerz+fB6vVmXgkmxYC8oJhLwoaYSCKKI1VFI45p7EUQRs82Os7h8wX2HxZWEDws0VeXdf/0mmz/2WziKyxa4SaY9w5x/95fs/NTv5TANwtWDD1PxKEqgj5aWFtxuN6qqEgwGCQQC+Hw+PB4PU1NT+P1+IpHILa0U+ZsG3YDvjS6bw6iXH3NX8flz5g0+7+5CFnV6owWYBI3JhJnz0fwV/W5+pTz/+NnvL9z7Mqvdo7zdEkO7Fes3A3b3Wgj6inj4wDMLrK+7i4Y5FnCTyLmG85WBX4dlAKyiRkyXFpzPIkt0fv3JO1oW+SOhDHRPRjg7OuMbN3R0TUe4Q8E6sgBmWcrm3JfYFFaWOxcN0lqAZAAp2I46dQGLNg2GiiGZ0e116I5WPPEiDr97iMc++VuYzRYmPWO8/PMfkkykfbKKowh7iRvZSPKFz3ySoaEhXn755Wzg1u7duzl48CBAduWRMQlm8LnPfY6enh4++OADNm7cyBXKEGxFt1bB0nUSnj4KpntZtWoVDQ0NQNo/GQqFmJycxOv14vF4mJycrSMgCALF2z+FYLGRyeNvViJUW3RkWUZVVS5fvsyVK1dQFIXNmzezYcMGLBZLVrjf7O9IJpPs37+fM2fO5Fw7RVFy4g4AXJV1rNv95A2f604rCSdf+zHWwiJWbX8k7zgymRCLYu70IaSzC+JBL6f3/xvJZBK73U5LSwstLS00NzdjtS4kGjIMg1gsRiAQyP75/X68Xi/T09OEQiESifwxCb/pCKRkfuRZSkn0/D76uXiytI/9vmoi+u0ppLZwLAsFbIvDx5u7f8rx6iRDhTfuHpiP0ojIAwNmvnD8CY5O1eTs2+CcxGVK8PZ0ZruBWdBwK1EGE845ysPtVgiu3v/Zv3kM9x0savSRUAYAPKEEwbhKuVMhGFM5MXh7fNzzkZmsW0vsmGUJVyZjIJE2cTvNNy98MtA0ldde+leGBnqRJAmL1UYkHMrub25upq2tjTfeeAOz2UxhYSHPPPMMv/rVr7Lmf6vVSiwWY82aNTidTo4dO7YgT7myspKpqSm2bNnC3r17OT8a4HCfj1v9ImyvkHDbTYyPj+PxeBgfH2d8fDw7sdtsNtxuN/F4nLGxMT772c/S2tqKN6ryxpUJQvEUTI/yPz62fUGeeiAQ4NChQ5w9exan08n999/P+vXrkaQbz+HVdZ0LFy5w4MABgsEgGzduZNeuXWiaRmdnJ11dXfT19aFpGk6nk1gshqqqlNW2sHL7xxZN5bpaUCHcWddBPBJCsdqzVoH5v2Gxsc8GXEFDiYWkZjAVTmJXJNrcDkyCweDgIN3d3XR3dzMxMYEgCNTU1GSVg8rKyiX/dk3TCIVCWWUhY2nw+/1MT08TDAYXWBjmu2g+akjpIj/zNM1h2Jsv8Jf+3JTJMZqtfo4HK6/d+KaxmAne4P9YeZTPNl/k9eXR6wsYXMIp93ZbOT7YyO+f/hhzr9MW5wQbCqZ4y1dDb6wQWdB4yDVMvTXMPm9Nluzo2uO/RQNdpO//+HAbf/qZtbfhnEvDR0YZmI+UpnOwe4pA/NZpl/mQuTxWWWJVRQF25eaEf76gNMMwaL94llPHj+QI/7mwWq187nOfY3x8nF/+8pd88pOfZN++fSSTSXRd5+mnn+bEiRP09/cjCAK///u/z+joKC++OGumz6yaM5NmWVkZDz74IA1NLfzLqeFsCc6roa7ISpFFxh9LMRhYhKvB0DGSMaaPvpj1G7tcLtxud86fw+HIjufb3/42FouFL33pS1mB1NvbxwsvPM8XvvAFmpqa8p7K6/Vy8OBBLl68iMvlYvfu3axevfq67pFhGHR3d7N//34mJiZYsWIFe/bsobS0dEHbZDJJT08PnZ2ddHZ2Eo2mizAVV9azbtcTwNKF+6/DKrAUhSPH5K/ri3InZGCRRe5pKCSlGZhElpTPHggE6Onpobu7m56enqzVoLm5OWs1sNmWGuyVH4lEYoGyMP9v7nSX8dUDWaKhD1OcQ1/MyRveunlbr3/1WmKK8snyfg75q+iK3kz1zMVN/1c/BjKWgtd2/RSldpLTVbfeNbRqwkTNuI0vHP4EFyJp94dFSPEZdy92UeWI3017pAiHpPJwyRClSoKoJvGvnmai+tzMCIMqJcxoMn+9kptHhplBR5/DiigAg9/8FPIdchV8ZJUBgOP9PoYDt958OH8CTUaCiHK6+I4rFWBZcyMWixVd067qS13qeXq7Otj3y+v3rc/FYtHvGWTMs5mYgfn7KldvJVhYv2DfXDQU21hW6sieo2MyRP90NG/bwOl9SDE/dXV1rF69mmXLlqEoi5snh4aGeO6559i7dy87duwA0tfnn/7pn7Db7Xz+85+/6tjGx8c5cOAAnZ2dlJeXs2fPHtra2q55L0ZGRti/fz/9/f3U19ezd+9eampqrnoMpJWQ559/nkgkknUlZJgPP4zIF8+SzxIABpIgMCe2iSKrRFOZDV8khSxJuAuVm1JiNE1jaGgoazXweDwIgkB1dXXWalBVVXXLFSXDMAiHw3mVhcz3SCQ3rVZRFGRZzga5ziUqut1T52jCxsuTjXN/AU4pSSgvF//iWGWb4n6XhwshF0cCbq4uwG/GVL5w1VsuR5lMWTAQqVDCHH7oB5yrTNB7ExkEi6EqJLJjyMy3Lm2hJ1JEWJOpMkexiBqdkcKsm0DAoNCU5Bl3NwBXIoW8Mz33nTd4oqSf06EyRpN2boeF4Fl3Oy9NNjCt5boFfvAHO9i79tdhvVmIDx3p0PVgdWUBw4HJtN9SuDF+AUUSSGq5L7WuqYhS+tIYhsHouSMkfB7u2bYTZ7GL9w69jclkYsXq9ZRVuHPOez3nz7R1V9cuqb3dbqewsJDR0VFkWUbXdVavXk17e3vWly3LMmVlZYyOzrLu2Ww2GhoaUFWViYkJ/P50alcmIj8Wi9F78iAFGx5Cdrmzvvr5KLXl1mcosSl5lYFV5XZqH9tLV1cX3d3dvPjii0iSRH19PS0tLbS2tlJSUpJzrWpra9m2bRsHDhxg2bJllJaWIggC27Zt4xe/+AUej4eKisWLP7ndbp555hmGh4d55513+MlPfkJ1dTV79uzJWhUyc7cgpIX5O++8w+XLl7MBmK2trUu6fyMjI/zwhz/MUtZKkoTZbCYanF7Q9maDU28W80mHMt81NYlJNi8YU4HFxOpqJ55gkmAshdNioqrIgigKt6yOgCRJNDQ00NDQwN69ewkGg1mrwbFjxzh48CA2my1rNWhpablpqwGk3zen04nTufiKL5VKEQwGF1UWAoFADkOhKIrYbDbMZjMmUzqIWNM0UqkUyWQya7m7EVTIUZxSIiv8q5QIqx0+3vRdn7Wg2pJ+R1c6pumOFTCetF/lmOtM9p9Z8YsYC9j+ltumecA1SkIXiWomrsSdmASDkPn2KFFBZSYbSYlTnopTTjy7L6TJ2fEaCARUhZQuIIsGLnn+glJAFGFX8Sg/8bTeFnf0L6Ya8WsLuWcS6p2zTH0klAFdN4in0rfEogjomsaVK1c4d+4c46EE5Su3YFbMlNpNeK9TazZLIvXFViJJlfFgHB3wdp0lND6EtbiMqM9DIuhj76NP0rIsXS62qWUZqqpmX/6bmewNw2BseHBJbTVNy67wM6b+c+fO5bQRBIHR0dGsoM9s27x5M42NjTz//PPY7XbWrVvHwYMH0TQNs9lMPB4ndP4gBRsfxlTgyqsQBBMqJXMUgkzcxFw0uWzc31KKKJTR3Jwm/fD5fFnF4O233+bNN9+kqKiI1tZWWltbaWhoQJZlHnjgATo7O3n55Zd59tlnEUWRVatW8fbbb3P8+HGefPLagXo1NTV88YtfpLe3l3feeYcXXniBpqYmPvHJpzFbrBiGzsnj73HwwDs4nU6efPJJ1q5du2Tq1q6uLn72s58hyzLJZDKbAhYKhYgnhkhEw5hts1wIc5+HOxEbMD9DIPPfJJvxjg3gqqhNT5Ez26uLLZgkkepiC9XF10+UdSMoKChgw4YNbNiwAU3TGB4ezloNLlxIZ5HMtxrcSqrduZBlmZKSEkpK8leXywQ7Xk1ZCIVCOVYDs9mMw+HAarWiKEo2qDeVShGPx7N/82mQJ1LWHCvAaNLBDtM4CwV5/mA90LnHOUmTNe16lASDEjnOeNKWpy2wQOxdOz6h1BRFRaTeHGIg7sSvmRFIVwistoQxDDCLOmYxSTSaFjf6bXoNMv1KwkLx3WgNcTJYlg0WNICjfje7XWOMJ+YqmuljX52sxyGlblNcmoFftWQ/Z65tgdXEPc2L1xu53fjQKwOGYTAd1dCN9Ocpf5SfvfDPRCIRqqur2blxHatXN2WFZCShcnxgmumYmtMHsEBoC0BjiYNiq8LIdJjRy+8T900SmUqvquOBqWwfNXUN2QnIMIysr3H+ZH+9CkEymeDQ/tez31uWreTe+x5A13WOHHyTwb5ZSt14PM7g4CCSJNHY2EhVVRXvvvsubW1t9PT0oGla1kIwd2KJRqM8//zzFBYWEggE2LBhA4IgYLfbiUajxONpDdrpdLK1tghHUTHDYZUebwhBEJFFAUkU6PaGEQUBl1XGF0vSlaFnnrHMbKwuYGt9mtVwLlwuF1u3bmXr1q2kUin6+vro7u6mq6uLkydPYjKZaGhooLW1lQceeICf//znHD9+nO3btyNJElu3buXtt99mz549V13VzUVTUxONjY10dnYyPjGFYrZkh9rcugyTJLJly5ZsWuFScPbsWV5++WUcDgfRaBSz2Ywsy4RC6clWEESUPKWW7zQWex5LKutRJIGUlq4ZX+KQKXXc7kjzqyNjQaqvr+fBBx8kFAplrQbvv/8+hw4dwmq15lgN7PZf3zUXBAGbzZYNfs0HXddzgh3zKQyZdy7TZ8ZiYbfbURQFSZJQPHGYzO3bLOppwZtYWIkzjfRcZxY0Pl3eS6E865uP6xKd0SLyKQ8COnZJJTxnBT3nV+c9k1uOMJmyoSHgV81z2qZTG9/21eKxe6kyR/AkbViEtGvAdJsWv/JMvyl9oaLokhPUW8L0x50zYxQYS6afmwvhuQI4fW10RILa7XgXjOzVnz1fGsGYyu4/e4uX/2Q3rZWL3d/bhw99zEBKM/BHc/1L508eYe2aVZSVLc7nfHrIT58v7R9XE3Gi0x6c5TUgiOhqiskrZ4h7R2lbew8pVaXj1BHUxOLFix75xNM0NLVmFQJd17N+xAxuZOVnGAaH9r/O5QsfUFBYxO88+x/S/RgGmq6z79WfU1ZRiWd8lKH+3pxzGYbBihUrqKio4ODBg9n8+kQigSiKfPGLXyQajeLz+Whvb2dkZOSqY3n8t79EQZEr+xtP9oxgdzpZUZZOnRwLxjg3Pkt/nH2owz4C7ce5Z1Uru3btumpswPzf7vV66erqoquri4GBAXRdx2KxkEgkePzxx1m7di2apvH3f//3bN68mb17917vJSalGaj67P2Jx2KoiUjeAMHFxnn06FHefvttCgoKCIfDWCwWJEkiHA7PBpnaHNz75LPXPb4bQT6lM1Nv4XrRVGal3Gm+oznOS0GGQTJjNRgbGwOgqqoqqxhUV1ffNqvBrUQikchRDiYnJxkeHsbn8xGPx2diOmC/r5ruWDrob51jiu1FHlRD4JWJBjwztL5mQZ3JoU9neay2+9hUOIlZzJW6AzEHr3nzxwWts09yLpKZT5cWTa+gzpQFvnYMgjDDaHj+0e/QXRnnSumNF4NaDHV+ia2jCl+/sI3LIRfvByoQBIP7CseptUa4HCni0HQ1GYG8wj7NruIx/s3TyGTKugg77LVTNq8HJjTabD4uR+fKrtlzCAJ85t56vv6le274HDeKD70yoOkGvogGpF8OwzB44TvfQDZJrFixgpUrV1JdXZ1XEMdTGpGkxnDPFV5+6RfXDPiRJGlBTn4GZrOF7Q98jFJ3FR6Ph4baGhyO9Cp1KQrB1dLLjh85wAcnj1FdW8+Tn1kYKJeJ8H7rtZfo6riE0+kkFAphs9my0ewAJSUleL3erKLw2GOPsXnzZlRV5b333uPAgQML+nY6ndkUr00PPDFr/dB1zp08yrp7duREl58e8hJO6ZTaFcqdZlpL7RRZJI4ePcrhw4ex2+08+uijLFu2LO91uBoSiQR9fX1cuXKF8+fPo+s6/z977x0e1YGm+f5O5ahQygFlCUmAQGSTkzFgG9vgnHC73W139/Rtu2fD3Lu9ez2zc/fO7OTx9AzuZIINxiY4YaKJIggQIIIEKKCcU0lVqnzO/lHUQYUCAgQ48D5PPaA6+VTV+dL7vZ9KpSItLQ2Px0NDQwO//vWvh+1sBCBK4HB7UV7jgRzc/w3HjxYwYcIE5s6dS1jY4AxrSZLYtWsXhYWFhIWF0dPTI2eh3G43kiTJJZu3336bFqeSRqtb3hZu/TsxHNxKW2Lf49SXnycubUyQwTRoFExOuROW+f2BzWYL6lBwOBzodLqgrMGdyFffLXi9XsrKyrh8+TJ1dXV0dnb24xWU94Zw1WEmTOUmVd+NWiESqgpm4Le5tdh8Kna0pwS9v8hSS6bB77RLEogIKAWJLo+Gjc3XVe4EwKJ2kqLrocujocI51HegfyeBQeGlVxyKR9I3Cvb/75OZ24hJauD4qDsbhDYQJjSpsTSZeLtwCUeswVmb0fpOJoW0Ue00U+s0EaFxMjmkFZUg0erWsb0tCYc4UFYEHgptJE7r4HR3BFXO0H7XeCsdFlGqXiQE2ry6Qdd7YnIi7785fZhXPXJQvvvuu+/e86PeAhSCgFIBHt+1dJpOwaiEOHw+HxcvXqSwsJAzZ87Q3d2NVqslJCTkel1UqcCgURIbE0NeXh6lpaVDipcYjcZ+ojLh4eFERERgd3tRp02kzQW9KgNV1VWkJcQGSYve7ME80HKXy8nhfbtwu104nQ6yc/NQqdSykVEoFLL8sFan43LJefkcJ02aRGNjI5IkoVKpZCZ0SEgI4eHhnDlzhvLycnbs2MHVq1f7HTs9PZ1XX32V/Px8xo4di8cn+VPGkj9tfL7oKBk5wX2vZUd30VR8iJRQNZNGpxBq1KNQKEhOTmbs2LE0NCOoi7gAACAASURBVDRw6NAhmpqaGDVqFDrd8CNVlUpFZGQk2dnZpKSkcPbsWdLS0nC73VRVVeHz+Thz5gx2ux2FQkFISMgwo0CJD9evQyEIJMTFUFtTRU1NDa2trRQWFmK324mNjUWrDeabeL1etm3bxpkzZ7BYLNhsNkwmk+wwKhQK+fu0YsUKkpKSCNEKlF0pxeH0oNVfF07qK2F8O2TTG3Er+wisI/p8lBzdhSnUgs4UGkzgtNw/sZPbhUajITY2ltzcXB566CEyMjLQ6/U0NDRw6tQpjh07xpUrV7BarSiVSsxm813jbQR+r1uOVvDj1cf5YH8ZBrEH0dbKuXPn2LdvH7t372bfvn0cPnyYixcv0tzcjMPh6BekXHWY2d2RRIdXS4PbiCgJZBut/Y5pUPowqbycs0Vcm8niv7Y8UwdmlYcGl4EtLWkUdsfQ6dGSbewkTO2m3a3DoPSyyFLPQ2Et1LpMlPTemCqH4EhY4MbIeKKplXq38YZt/BQ9EFBcE/fxopCXWzQuHg5poDLcOzLqg9egEGFinZbParJZXzumzzn7X+1eHRfsFqaFNKNTivT6VCgEiVCVB6PSS56pnTR9N2X2kKB2P5CYb2nAcu2+NblvLEndCglTYnlkFZd6w3FJg5cn/9eLE0iKvPflxm99ZmAoiKJITU0NJSUllJaWYrPZMJvNcsZg1KhRQcbC5/Px+eefy6SkoRAeHk5nZydKpZJf/OIXbN5TQPjoyfJyrUrB9KSBSUYDobvbitkc0j+16/Hw+SfraWn2pzyNJjNj8iYiiiLmkBBG5/rJbaIocrnkPPt3fzXkcbKzs+UI+0YoFAoWLVrEpEmTKC8v58svv0Sj0fDUU0+RkpKCKElYHV58ooRJq8LjtFNR34Y5wu9lWzva2Pv5RhwOhzycZfLkycyYMYOQEH+NS5IkSkpK2LlzJy6Xi3nz5jFt2rTbEgPatWsXp06d4s0338RkMrFx40aamppQq9XY7XY0Go0cBWZmZg7KJ6ivr+cPf/gDL7/8skxqLCsrY8uWLQiCIPeXT506lZkzZ2IwGHC5XGzatInq6mri4+NpbW2VuQJ6vR6XyyU7X3l5eTz11FM0NjaydetWurq6WLx4Mbq40XT2Xk+Hij4fkuhDoQqOpoYb3d+47kCZhaEyBpIocvXCCWwdzYybu9z/yBIE4sO0ZER/+7gOdwK73S5nDcrLy+WsQVpampw16Pt9kSQJt9sdROgb6OVyuYL+djgc8v+7vWo2NF1nn6sEiVfjLvdL198MhztjgyYFGpVuXo3zi4p1eLT0eNXEanvl/VY7TOzvTMAjKcg3tzE5xE80WN+YeY0D4N/PvPB6coz9h0RtbUml2R0g0fVVD4ShDFuYwkWXGOzsKxCJVvfS5DHJ6/V1LiI0vRxdtJ7SWPeIlgoCJYKHDzxPhS0wunigKD1YHXFZRDXJ+uuj6Q92xlFiD5e30whe5oX7OyLqXSbKHX0zA0ORMAde9nLsZSrdURztGNh2PD4pgd+/dX8mGH6nnYG+kCSJ2tpaSkpKKCkpoaenB5PJRHZ2Nrm5uSQnJ8uOQUlJCZ9++umQ+7NYLPJUO4VCgT4ynpQZy64dS8TndpEbIhB3rS3Q6XRQW1VJZvaYfvvq6OygvqaaMePGB/EMApFit7WLrR+vxdEb3OOs1elZ8vhKYuMTaWlqYOeXW4LWCQsLk9sEYWC53BuRlJREZmYmWVlZaDQaPv/8c6qqqpg5cybz58/vZ7QlScLu8lBdXcPxgoPU1dVhMBhkVnXgnk6YMIFZs2YRHu7/IbpcLvbt28fJkyeJjo7m0UcfZdSo4bVQBuDxeFi9ejVGo5HXXnuN5uZmfve737Fy5UoiIiLkDoW6ujokSSI2NlZ2DBITE+Vz27VrF+fPn+fXv/51kHPY2dnJpk2baGtrIyMjg8rKSgRBYPbsOWRk5xISEorH4/G3Dfb2svWTjUiSSHt7Ox6PB1EUCQsL45e//KVchomJiWHFihVERkYiiiJlLb3YnF7KLp4hKiYOlfn6DABHjxWDVgnam5MiRZ+Py6cOkj5+Omqtvp+uxGC48btWVnSQ7qYqxuRPpa3HRcqoeGZMyL6vKogjAUmS+hnqgPF2OBy0trbS3NxMZ2enXFoLDAfy+XyDlgcDGMzp6os6p5Ev21KC3nsupnyA1rWhUWoP40Bngv+4SKToelgSWctFWziHuuIBMCg8PB1TiVEZbFCvcXkB+H19Dl5JIe9nWohfie9GHOuK4awtgr5GUiX45KFHQzkENy4LnnQYWOf60tmhDTyXdoFFCRXsznTiUN+5+VH74OEyPccak/jpyUdvadtIVS/PxF4PnK4LPQWftx/BAkrBy/wwKtwoBamPamQwxhvbeCismT3t8VQ4w4OWrf7JNJZPTkShuD+/xe+NM9AXkiRRX18vOwZWqxWDwUB2drask2+z2fiP//iPIFZvX2i1WhISEmhra6O318Hk6bOITkqjW9JQ39ZJXdF+nJ0tpGZkoVKpqSy/jNfjwRwaxsoXXkOn0+MTJXo9PjmCq68qp7qshHH5k0lITA56wLjdLjZ/9AFdne03vb7QsHAWP/oUIWHhlF8u4dA3OwecQWAwGBBFUb5GpVKJwWDAbrcjiiIhISFkZWXh9XopLi4mLi6OFStWDNlWVV9fT2FhIRcvXkShUMiGMmBs8vLymD17tkzOa2hoYPv27TQ0NDBx4kQWLVo0oD79YKipqeGDDz5g8eLFPPTQQ6xbtw6Xy8Ubb7wh37/e3t6gKLC3tzeodvzNN9+Qm5vL0qVL++3f4/Hw1Vdfce7cOfLz8xFFkbyJU4iNjZMdt8C1+Xw+Nqz/AJfTSUdHB0qlkjfffJPt27dTXV3NrFmzmDdvXj+HqqKigg8//JAlL/0cl3hd8c5iUDImMZTqtl6sDi9hBhUmrQqv6Bf6qe100dnrwaRVkhVjwtrVQcHxk4RlTO5Xfrjhk0ImJIle3B4faq2W9voqLhR8jclk5O2332bv3r0cPXqUhQsXMmvW/RVLEkURl8s1oEG/8eVwOHA4HHInjMvl6teWNxDaPHp6vCritXa0ChGHT8mp7iicooocYyeJOr+j7REF6lwmNIKPeG2v/HAOjCsO3HNRFGXlQkmSgqYAAoQo3TwXWzFgq9tQkCQ43RNJhSMEi8rFrPAmdAofHzSMxin608sCElNCWsg1dlLuCKXHq+aKPRSXpCLX2MGssCYKu6M50+MnqmkEH3PCGmj36rCoXWTqrbLT4JMETnVH0ezWE6/pJdvYiU7pQ5IETvdEUuM00enRyvLT/VsOBzKc8tWQrO2mV1STYbDiFFWoFT7en74dZ4iTwymuO5MllmBqvQZLh5bFB16g2XlrHBEFIm8mlga9V9Frptppprw3BB83y2gGOwgZeqtM+BwIE01+h+yDhux+ugzl7z0xYloet4PvpTPQF5Ik0dDQIJcSOjs70ev1ZGdnk52dzfHjxwdMqYNfw7+xsTFIY0AQBHZ8sZmr5Zf7rS8IAnqDkTF5E0nPyiEkNEw2DKIEXp+PI/t2otXqmDkvmBUviiLnz57iyIE9N72mF3/0M0LDwmUjdWjfLi4WFwH+uvucOXOYOXMmCoWC6upq1qxZQ3Z2NpcvX2biQ3NJSs+mp7uLY/t24LD3yJ0RgXLEokWLmD59+pDRYk9PD6dOneLUqVNy6tzhcMjnlJ2dzbx584iJiUEURU6dOsW+fftQKpUsXryYvLy8YUejO3fupKioiLfeeouOjg42bNjAa6+9RnJyf2a0KIo0NDTIrYsB8aXIyEhyc3PJzMzs16cuSRInT55k586dCILAz375jkw8u1FHQhRFThw/yqED+1iwYAFHjhxBp9Px1FNP9TsfSQKvCE3NzZRdvkRG3lSq2h3y4zMrxkhs6K3pYgCcqbHS4/DKIaAgeZGE/jXIsQkmio4e5OixYyiVKnxePwEtNDSUt99+29/JcvAgBw8eZO7cucydO/e2MwQBYz5cI97b24vD4cDlcuHxeG4amd8uApLD53osHGjzO6gmtcgvx/ey7pKeBtv178EzMRWEKN1saUmj81ofeK6xg7nhjcM+XrdXzQWbBYUgkWdqx6Acueta15iF3ReQzZWYGtJCqT38mqBOAP7Pb0lEDSm6HmqcJmw+NUpE9nclypH71JBmJg2QJdBo/DoiN3KrRAnO9URQ1BOFW1Je20/geIOT5iaHtDAlpBVJgk+a0+m81oI4M7KOP03bTn2Il5OJ7ttzCCSY0Kwms0PFL4seZntjxpDnMhBU+PhJ4qUBl/2uLmfA6Y+DEQYViJgUbrrFG3lSgTslsTL6Kvs74mn3BgdEoQY1l//l9geejQS+985AX0iSRFNTk5wx6OjoQKfTERERIbfdJSalMmb8RJwOByeOHsTp6GXVT/8vDEa/cRB9Pr/RPrg3aN8Go4kZcxaSMTpXfm+goS8B3PjQFUURz7UUf/HpQk4dLxjwGrQ6Ha//7NdB21+6WMy+Xde5BIIgoFKp0Ol0cjp7ypQpqA0hJGaOk8/F53ZSdvYo1dXVtLe3B51fQMsgPz+f7OzsQYl6gSmChYWFNDQ0yKWKgFOQnp7O/PnzSUhIoKenh927d3PhwgVSUlJ49NFHh9Xe17dcsGrVKt5//30sFgvPP//8Tbfdtm0b5eXlpKSkUFlZidPpxGAwBE3SMxgMlJeXs2nTJnw+HzNmzWHWnHlD1ukvni/mqy8+Iy8vj6VLlw5IlHT7/N0wgX0oBYl2m5sepz8LEGW+dUcAwOH2canJhsMtEmXWkB6lp9HqpqL1emdJlElNTryZP/7xj9TV1QVtH3AGAigoKOCbb75h6tSpTJ06dUCjHjDgdrsdu90uR+Rutxuv1zvimv6CIMhpfJVKJRv1wCvgvN742fh8viDJ4MC/q6vSr40B9j+UJ4e0cLI7WNFydlgDeoWP3R3B5azX40tvue5/N1DlMLG7fRQ+FESqHeSb29jTMVDpTWJ2WCNjTdcVMfd3xHO5N0xO4YernDwfWzHAtoPjhDWK0z0B4Z6bpcwlFoXVkmnya3DYvCrWNwV3GD2fWMJfjj9Eh16kKNGFXTN8U6TzQH6Dhnibkv9xfg4bavqXZ28OiTi1nelhLURpnP0yOF+3JlLtuln3QP99DrZcp5RQAP5O+eB1fvfmNJZPvrUy6kjjB+UM9IUkSbS0tMiOQVtbG5bIKJ59+Q2utfnT0dbKJx/+gSWPryQlPUs2iIEWvwDSs3KY//CjqNQqFIrbm5on+fsm5Ta+Iwf3Un65pN/gopDQMF7+8S+C3ivYv5tzZ07e9Bh5U2YxdtJ0+TrcbhcFX39Keno6aWlpciahuLiY9vbgcoXJZGLUqFHk5OSQnJzcj5l9Ywkh4AwEvl6jRo1i4cKFJCcnU1FRwfbt27FarcycOZPZs2ejVg+dHgtkOBYvXoxOp+OLL77gF7/4xZDOhM/n4+///u+ZNGkSixYtkvvUA1yDpqYmBEEgLCyMzs5OTCYTNpsNhUJBekYmsXHxdHV18sjSR1EolEEZAqu1i7amesaOHSu/Z7PZ5MmMzc3NzJ63iNBrbYuSJKFSCKhvf6jikPD5fLRZe2ntcYPoReez4XI52bp1az9DHRC5CRjykdbZFwRBNtTKa6PGB3KM+75uTLmPNNY2ZPUZRiMxM7SJC3YL3V6NbMpWRF3FKSqDevEFJH4cX4paEXxOCoUClUolX99AXUUD/d33/vR9r69jE1je0NCAJEmYzWa6u/2tgi5RgcOnIi02hFqryLqqgI799ZS9ViHybHQ50SEamR9R1B3Jie5oAj3/yboelkbWDniv+p5338/jWFcMxbYI2RkwKT0kam1c6h1cNW9maCN55g7mzFvAW1s76O71yDmFBeH12AQFf5+/l2i9nfJIDxXhXpxDPAo0XkjpUpHdqsbu0vJfi+fzTXPq4Bv00wkY2FCrBB86wcc4cwcTzP5nn9On4IPG7EG3GR5unqmYnxvDxndm38ExRgY/WGfgRrS2ttLQ3EZ8cmbQ+7/71/+NUqnkoTkLCLdEUnGlNMjwjsmbyNxFS++K7rzX62X7tk3U11YFvb/86ZdITErxk/tsPWxYsxrjNVKf0+nE4/EM+ECNiI5jyYqX/IlCQUHlpQsc278jaJ2Awlp4eLis0W42m+UoMACtVkt8fDwpKSkkJCQQHx8vcwFuLCEEyg8AMTExPPzww4waNYojR45w5MgRQkJCWLZsGRkZGQyFQLngJz/5CevWrSM7O5vHHnts0PWvXLnCxo0beeuttwaca2C1Wtm1axelpcE1w0Bpx+fzkZ6Zxdz5C6/NUlDITo7L6aC2qkI2/k1NTfKDV6vVEhsby9z5C4mNT7ze6qrwvwaC1+sdMBq32Wx0d3fT09MTlFoPGPK7EZXDwJMI+36n7uZjI2CIAtG/SqVCpVKhVqtRq9WyBLRer0en06HX69FqtWi1WjQajTxcqO/6h6908ss1Z3F5RaakR/DxO7Np63bx7ifFtPa4+PH8dJ6aloQoSvzZn06wtbAWpULgb17K55U5/tkWDoeDyspKmZtis9nQaDSkpqbKxNXQ0BsjyduDJEn81V/9FbGxsTQ3Nwfd7wD35r333uNoi4GT3dGoBMg0dBKq8jJvdChmlZfq6mpUKhWiKGIwhfB5lYFqp5kIlZNFEfUYlV7UajVKpRKXyzXoZyoIAhqNhi63ko/rR13jLUgsCK/noi1cFj+6tnbQtjqlyLn/vYS9pV38z83nabc50YgupoW1sCwvih5Rz8lLNTyTdI7p0bWoFCItepFOgw+rTsKnkFCKAiEugTCHgmi7EkESONkaz8/PLKbLM5zW5cEY/gMb6kcjq0i6xh850hXDOdtAAYdEiMKNQeW51m54PUOiQsSLcojj+qFUCPz3lWN58+GbD1S7F3jgDPSBxyvSeU3tUJIkrF2dbFyzetD1k1MzePSp5+74uIHo6EZpY1EUaWqo47NP1getr1QqyRg9BpVKRfnlElyu/iTIQLper9djMpnwer14PB5CwiNJSMmgx9rFlQunb8mQ9B35euPsePB3YAQcg4SEBCIjIykrK+P48eM0NjYGMeAtFguLFi0iMjJS1kEYM2YMjzzyyKAtgm63m9WrV2MymUhPT6egoIC33357UDnarVu30tTUxM9//vN+y/qKCWk0GkRRxOv1otVq5Xqp2WzmzV/8qh+RsL2tjXUf/B6v10toaCgxMTFER0djsVgIDQ2VNR96enqwREaj1empr6uh+MxpuUYeqJPfi+l3I40bjXUglR8w2AFjHTDYBoNBNtxDGeyAYbpbD0a700uH3UWixXDTY7RYnejUSkIMA4epgZJjwDGora1FkiSioqLkElRSUtItyV33RUdHB++99x7R0dG0tLTI78fExDBlyhR27NghD8kSBAUejwdB8M9W8Hg8jBo1ivT0dOrr6ykrK5O/uwEnPsDxaWhokBVLLRYLDocDu92O0WhEUqjYXWei3qEjXmvnobBmvJKCZpeeUJWb/V2JNLn0BIyqAl8fUtz17MHTCU2srRklZxRUgsR/m2LnJz96Rb4/HR0d7Nv9FRerLjHR0kReeDNRmuvPNUljQhE6Gq95DG2a8Rw+X89/2dXb51hDoX+dP1Tposen6UfiA4kZoU3MSfSRnJxMbW0dZxvc7O+MvyZKdH09BRI/irvEse5Yap1GlAIk63roFVWU9YYOel56jZJwo4a/e2UiC8fdnwmFA+GBM9AHf/zjH9HojIydMBmHo5fjh/fR091f7AP8tfsXX3sLrU5/x/KnkiTR2dHO+bOnyBmTR2R0rBxNN9TV8MXmj4a9L6VSiVqtlgehGI3GoF76ochaN852v1MIgkBMTAzx8fEYDAYaGxupqAiuU5rNZhYuXAjAnj178Hg8LFiwgClTpgx4XwPlgvnz51NQUMCMGTOYN29ev/U8Hg9/93d/x6xZs5gzZ07QMq/Xy+eff86FCxeCjEJgEqRer6enp4ek5BReeHlV0LbrPvgDLc1NQSnubxv6pqYH+hwVCoUsCKXVajEYDBiNRtlwNzQ0UFBQQHp6OkuWLEGn08lG+7sg9Xs/4HQ6qayslEtQNpsNtVodlDUYSunyRhQVFfHVV8GaImq1GovFIo98Bv9vta8SaXp6OiqVioaGBnlmRsDBXbx4cT9isCiKtLS0UF1dTXV1NVVVVfKY86NdMZzrUxbIN7cxI7wNhUKB1+tldV0OUh9jKiDx0pRwvi6x02H3oFMp+F8r02hpaeFv9l+XMQf45jfzGJPcP+L+rx+eZv2hSkQJjEoXM8KbyDV0ETcqjZycXHJycmRNk01Hq3j3k2I67f0DEz+G1kywqBx0yEqA/nUU+ImkgXZQQVAgRedytEHBxUZ3kICSEpGfJJRyo1/5TXscVxzXtQr6QqdWcPEfl2PUffvGAj1wBq6hvLycjz4avtGdMXcRefkDG6zbRc3VCmLi4lGp1ChVKtwuF19s2UBLU8OQ22m1WsxmM21tbZjNZvLy8igqKkKn0xEXFxfUshX492atWH2va6TT0IHopS/0ej0PP7IMY6iFttZWrpaVMH/eXOLj4/ttv2PHDk6fPk1OTg4VFRX86le/ulbHt9LR0UFXV5csURsbGyuPknW73cPqKQ9Aq9Xy05/9Et218ofN1sPv/+PfhtXGdjP0jaz7kuMC0XUggtZqteh0OoxGo/wyGAzodLp+EfaNUfXWrVsHFNgKCwvjV7/61ZDnV1payubNm8nKymLlypW3HeH+ECFJEs3NzUFZA1EUiYyMlLMGycnJQ97Tbdu2ce7cuUGX9y29BQTSAoiJiZE5QEeOHCE8PJyQkBBWrVp104yIJEm0tbVRXV3Nrz4up8IaOEeJKclGvvhvS/F4PBQUFPD6xy04peuzCcIMai79yxNIkkRjp4MwowaDVkWn3c3M3+yk0+Y3sKnRRg791RJUyv7PTrvLy7ufFHPmagfzxsTyy8WpVJaXUVJSQmVlJaIokpiYSE5ODjk5OYSFhbH4r7/hfE0Xg5Ma/UqILqn/HIVlEVVoFT7qnCYcoorRxi6ir2UknD4F6xqzBm0vnBHaxHhzOyqViqioKArawtktN6b1v8/RoVp2/N8LSYi483HcdwMPnAH86ee//du/HbbRU6nU/Oitt1Hfokb+zTAQ78Bq7aKzrQWFUkl3Vxcnjx/uJ07U//z844v7Gpu+qd3hyCcHvhZ9SV13g2wWQEhYOC+sehOFQkCSwG7v4cM//DYoAur7772CJSKCyVOm4/N5OVF4DIUg9KtdB+rWgQjbZDLJI2sDkw0DjPh7iffee08WzuqL4TgD4OdcfPLJJ6SmpvLss8/elOT5AAPD6XRy9epVOWvQ09ODWq0mJSVFzhoExLrA34HyN//6e3o7m9EM0sXQd0S50WjEbrdjsVh4/fXX/Sl+SeL9999HFEVaW1t54403SEhIGPY5X7lyhd98cIBDbRYUgr+18N1n8ngoxsE333xDb28vSTlT+B977Ti9Ijq1gr3/YxEZsf2n7fl8Pn77wcfsumRnUv54frV8AhG30UnjdDq5cuUKJSUlVFRU4PV6iYuLIzl9NKc7TfS6Jc6cLaZLNBIfH8ehUr8SowC8ku3A1VHHppZgTtizMeVEqPu3Ue5oSaDGM3iq/6VZKfzlymwOHTpESUkJrVYna+Vuif7bXPqnxwkz3V730L3CA3cfWL9+/S1Fv8lpGSPuCMDASnKhoWGEhl5npI9KSeOjP/37gNvHxCWw7Iln0BuMXK24wu6vto5IFHsvEBUd22csNJjNoRiMpn7dFIOhr7MTIEQZDAYsFgt6vR6VSkVZWdlN70dmZiYzZ84kKSkp6PNYt24dPd3dvPrqq6SmDsVe/nbA6/UO6AjcCrKysnjxxRfZuHEjGzdu5Pnnn7/lIVEPADqdTo5kA11MgazBrl272LFjBxEREaSnpxOXlMafb67hYp0FJWE8ElEbJJcLyMO7Ojs7MRqNTJkyhU8//ZSsrCyZP1NRUUFzczN6vZ6xY8cO2xHwer3s2bOHEydOsHxsJgsicjlfZyMjQoGy+hCfHasnNzeXRYsWER4ezqsrh96fJEl89dVXWBsree/nL5GWlnZb9xD89zEvL4+8vDzcbjdlZWWUlpZSVHgEj8dDXFQUE2fE8/f72mVHYFZ2FL9ZOY4JKRZ8Ph/CHw/z8Um/vsJYYzsWld8R8ElwoDOeit5QFIh4bjKN8cVZqZhMJpYtW8ayZcs4cKaStf9+ut96SoXAf3967LfeEYAHzgBFRUX9+rBvhpjYeJm8cy8hCAKhYeFERsfQ1tLcb/nCRx5Hq/OntFPSMskZl8+Fs6fu6TneLlpbmvD5fNczA7Yeeu3+h2BgSmN6ejrLli3DYvG3Mu3YsYOioiJ8Ph/PPfecPCnx9OnTfPXVV7z11luYzWYaGhpYs2ZNkCPQl8wI/vkCM2bMGLDrAGDWrFlcvXqVPXv28NOf/vRu3YYRQ2tr64jsJy0tjZdffpkNGzbw0Ucf8eKLL/Yb6PQAw0eARxMTE8PMmTPlOSJlZWVcunSJ97+p4KI1BhDwIXC4K45kfRnh4eGMGTOGzMxMEhISUCqVbNiwAYVCQVNTEwCJiYnycY4cOYLZbKa3t5cFCxYM69xaWlrYsmUL7e3tLFmyhKlTp9Ld3U3U3r1cOHcBQ2wsq1atIiUlZdjXe/DgQc6ePcuTTz55R47AjdBoNIwZM4YxY8bg8XioqKigtLSUfWeqqHBcvw8Fl1qJDvF3HCiVSv75p/P4z0/3+jlV3ddby0+16bnSG0bgvg/lCLz7TB6T0oNVWmflpRBqOI+111/+VAhw5K+XkBr97ZuaORh+0M5AV1cX27dvv+XtAgS/YUGSUNjKUXRdQNldhtTbhCR6EdQGMKfiM2fis0wCzc1bkgLGa/nKl9i49n28Xo8s3f9AzgAAIABJREFUVASg0xuujyCWpFuS/b2fEAQBW7eVL7duZNKUGeh0WprqrmI0GrHZbDIRqrq6mt/+9reywuLChQspKyujt7eXo0ePys5AQNTIbDZz+fJlNm3a1K+8IEkSCoWCiRMnMnPmzJuSu1JTU2USZG1t7S3PWbjXCBiIkUBycjKvvPIKH374IevXr+ell176zny3vu3QarWyGqokSfRsOsWJfdVc06pCqdHxF3/xF4M6YIIgyIJpsbH+gWJ1dXVUVVWhUqmYMmVKUAliIEiSxKlTp9i9ezfh4eH85Cc/wWKxcPDgQY4cOYJWq+Xxxx9nwoQJt1TqOnPmDAcPHmTBggWMHz9+2NvdKtRqtXwPo3Oa+fQfDgctF2+oLCZYrtXso8ykp6fz6KOP8hdrjnDkWFPQ9MeBsGRCPD9dlNnvfZVSwfH/bwm/+biYHqeH//LEmO+UIwA/YGdAFEXWr19/WzVonV6P4OtF0VOBwlaB4LGBICBpwhHNmYimFBCUqJq+QVG1DbWjEo9PQXWDnrpGFT6fgNHgIz25lMgwJyIqfDFz8SQ/g2QaPAUdSFvr9Hpeev1naDRa6mur+fqzT/B43BSfLmTazHkAeD0erpReuJ1bc9eg0+lQKBT09vZiNBrJysrCZDLR3NxMdXU1DbX+V6AeqlQqiY+Px263Y7Va5cj+wIEDnD17luXLl7N8+XLWrl1LTU0N9fX1hIaGUlVVxWOPPUZhYSE7d+7sdx5KpZIZM2Ywffp0DIbhkXkEQWDixIkcOXKEgwcP8vLLL4/ovRlpNDU1BZHM7hSJiYmsWrWK9evXs27dOl555ZVh37sHGB4EQeAnj4zl42N1dFxrcX5lSvigjkCAY9Te3o4gCLLRDxhwQRD6ddLciN7eXr744gsuX77M5MmTefjhh7l06RIbNmzAbrczffp0Zs+efcvZoMBU1EmTJt3TuRfTs6JZNC6Wvef9zvBr89JIvAlhT6FQsOrhcXx8shWvT0SU/Kx/p8f/21EKsPk/zUWvUZKXFD7oIKFwk5bfvjF1ZC/oHuIH6wzs3buXUEsUYyZMobW5iUsXi4OWh4SGYTKH0N7a0qePX2Jqhpaoq/+E/txZBEHC41XQ61SDAGa9G4VCwocKVEYUHiunS0LYeTCJ4lITPnEAToDZy7xpXSydd4SIpv14017Ck/wcKIYma2k0/h9nfGISy59+kcryy5w9dZzmxnrMoWHUVlVi6+kech93G0ajkbi4OLRaLVVVVdjtdpKSkpgyZQo5OTlBZZZALbW6upqamhquXr1Kb2+vPFsAgrsQurq6WLduHZmZmYwfP57i4mIOHDhARkYGgiBw9epVLlwIdoaUSiXz5s1j6tSpt1X7njBhAgUFBVRUVNDY2Ehc3LenR/hGNDc3j3gXSFxcHKtWrWLdunWsXbuWV155RZ7h8AAjg7hwPX+9SM9XRy6SEK5DWV+BzTZlwPsccAZsNhsmkwmFQkFbWxuXLl1CEISbDgWrrKxk27Zt+Hw+nn/+eYxGI+vXr6euro6cnBwWLVokl+RuBY2NjXz66adkZmaybNmyeyqoo1QIrPuzmRRXd6JRKchNHJ4I1JhRYez6zUL2nmskKdLI8smJ9/S8vw34QToD1dXVtHZYWbr8aUSfD8UEJQaDkdMnjwIwOnccCx55HEEQ6Om28sXmDeTnJjBG3I3BWUZ1mYFdB2MprTBQ16RFvGbkNWqR5AQn47NtPDK7E0sYdPcIXK40DOgIAFh7VHy+N5Lt+y08vaSNlUs+RGgrwp3/16AKFtMZbLZBdGwc0bHxREbFsOfrz4Z9H26UE74VqNVqucMgAL1eT1RUFD09PfJAqMrKSpRKJePGjWPq1KmD1uT71lKnTp3q117o7KS6uprKykquXr2K3d6/i6KszD/n3WQykZ6ZTURUFLljxnHh/HXnTqVSsXDhQqZMmXJHPI+IiAgSExNpbm7m0KFDPPfcnQtO3Q1IkkRj4+DDde6kIyMmJobXXnuNdevWsWbNGl599VW57/sBRgadLfUk621kJMbS0NDLrl27WLmyP1MvMIvB5/PJk0aPHj2KUqnEZDIxderAUarP52Pfvn0cPXqU1NRUFi1aRGFhIefOnSMmJuaOSLJdXV1s2LCByMhIVq5ceV90KRQKgfzUW3dichJCyUkYGQXJ7yJ+cM6Aw+Fg48aNzFm41D+t75pxSMvMpvRiMaLoY/rs64QbkzmEV5eNRl3yj7R3KPnb9clcuBKQnwyG26OgrMpAWZWBrbujmDeti9dWNDE+287fvJ9ERc3gXrrXp+Dj7dGcKTXxmz+7gub0/4N70t+C0k9+CcxrF31eeWhSAIFxtslp12tZAVa9IAhBMsJ9MRyjoFAoMJvNMkO/t7cXSZLweDxoNBqSkpLIyclh/PjxKJVKzp8/z4kTJwBoa2sjNDSU55577pajaEEQsFgsWCwW8vPzAeju7qaqqoqSkhJqampkcRSAx55Ywagk/1joxFFJdHdbqautYcmSJUyePHnEvPzx48ezfft2Ll26REtLC9HR0SOy35GE1Wod9DMfCURFRfGjH/0oyCG4FUGdBxgcXq83yJFbvHgxn332GRMmTCA9PT1oXUmS5M85ISGB7u5uzp49iyRJLFiwYEAdg/b2drZs2UJzczMLFizA5/OxZs0a1Go1jz32GPn5+bdtwB0OBx999BFqtZoXX3zxQefJdww/KGdAkiQ+/PBDXC4XXZ3t18dXiCIhYWH86K23g35gAOqmPWhL/4EDhWH87uM4XO7h/VBEUWDfsXDOlpj4T2/U8pe/quL//ZeUIR0CgMuVBv7yX0bxP39dhrr8j3hGXx9KpNPpglL/gdHDgf93drQFLRssTXwjkz4ApVKJxWIhMjISj8cjC/hYrX4VRpVKRWxsLFlZWUycOFGOCNvb22XWsNvtJisri8WLF6PRaNi2bRtr1qxh6dKljB8//o6MckhIiNxaBP5656VLlygqKiIhcVTQvZgzdx7pqf1HHN8pxo4dy86dO1Gr1Rw+fHjAiO1+YyTJg4PBYrHIGYIPPviAVatW3VZK+QGC0dTUJItiiaJIXl4eZ8+eZfv27fzsZz8L0nqQJEl2iFNSUjh27Bjgz96MGzcuaL+SJHH27Fl27NiB2Wxm3rx5nDp1CpvNxrRp05gzZ86AkzeHC6/Xy8cff4zdbufHP/7xoBLhD/DthfLdd999936fxL2AJEls3ryZcZNnsGDxYxgMJurraggJDUOpUqFS+X9kgfG/kiSh7C5FW/wue46E8+8fxePz3brH7HApOXI6hPHZNpbN62D/8bCbOhQdVjUOp8CUUUX4Qsch6WOvD7tRq6muqvAr1V2bPQ7Q3tbCri+34O4zhzygajeQU6BUKomKiiI7O5v8/HwsFgter5f29nZaWlro6OjA5XIRERFBXl4eTzzxBEuWLGHSpEmkpKSgVqu5cuUKO3bsYNeuXXR2djJp0iSeeuopJk+eLOv0T5gwga6uLg4ePEhbWxtpaWkjpmanVquJi4tj0qRJfqXwaw6OQqHgmz27SEtNHfHoRKVS0dLSQk9PD3V1dYwbN+5bR6S7ePEiNTU1g2Z+dDod06dPv+PjBPrnL1y4wKlTp8jMzHxgBO4QJSUlVFVVAci/n8TERI4cOYIkSUHp+7Nnz9Ld3Y3b7Wbu3Ll88cUXiKLIypUrgzoInE4nn3/+OQUFBWRkZCBJEufOnSMlJYXnn3+ecePG3dFvUpIktm7dSlVVFa+88orc1fAA3y38IJwBt9vNxx9/zPgps+Qpcjq9HrVajU4/8NCS0uJC4uv+hatVIv/7d4lI0u1HtF6fgqILZpbO7SAx1sWxMzevS5VX65mQ20uEsgJf4tKgZfaeHsIsEXL9WxRFLl0spvpqeb/JcoHsQXR0NKmpqXR2diKKIikpKSiVSiorK7l06RL19fXY7XZCQ0PJycnhscce47HHHmPKlClkZGTIBs9ut3PixAm2bdtGUVERBoOBhQsXsnz5cjIyMvpFFyqViuzsbCIjIzl+/Dhnz54lLi5uxNPKSgFAoLe3lx1ffcnlSyUUFhaSmJh409aqW4VaraaoqAi9Xk9vby/Z2dkjuv87RWFhIV1dXYNmhkbKGQB/a1xubi6lpaWcOHGCjIyMB6TCO8Dx48fRaDR0d3cTEhJCfn4+BoMBURQpKCggNzdXdrjOnDkjZ+0C/JzU1NSgWR01NTWsX7+elpYWEhISqKysRK/Xs2LFCmbPnj0ijuzu3bs5c+YMzzzzzIhqCTzAvcX3tkwQYNp2dnby8ccfIwlKomKu160FQcBwbYjPQFDXfQHaJv51TbpMELwTWHtU/PGTON55vY7dh+1cKBs6gpIkgc/3WPjPKZfx9lQgmtNlQ19y7jQ93Vayx+RdG5YjUna5BJ/PR3RMHObQMKIiwoi9NiQoNDSUkpISzp8/L6fSr171i2ibzWYyMzOZMGGCrGc+EOrr6zlx4gQXL14EYNy4cUyZMmXA2QEDYezYsSQmJrJt2zbWrl3LrFmzmDt37ogJNwkCqJUQHmIkNiaK0hI/UWr9+vXMmjWLefPmjdix0tPTMZlMWCwWiouLmTt37reqZn43OgmGgslkktsO165dy8svvzzs78UDBKOuro7c3Fzq6+uDPsNZs2Zx4cIFvvrqK1577TW51OfxeDCbzRw96ic/L1myBPAHCAcPHuTw4cOEhITg8/loa2vj0UcfZeLEiSNG7Dt27BjHjx9n6dKl3zqn+AFuDd87Z0CSJGwuEadHQvR52fnV11itViKj+xPY2lpbiI6JCxpRC3C1/DIpigscOhFKffPIqa0VFIXw9FItS+Z23NQZADh5zky3XYOueT+iOZ2ebivf7PqCxrpaKsou0drSiMlkpuxyKR1treTlT2HW/MUAeL0eThzay969e7HZrsuZGgwG0tLSqK6uxufzsWjRIrkGfyM8Hg8XL17k5MmTNDQ0EBYWxvz58+Vo5VYRFhbGqlWrKCgo4MCBA1RWVrJixYoRrzXPmTOHhoYGLl++DEBBQQFVVVWsXLlyRIy2QqFg3LhxnD17Fp1OR0FBAY899tgd73ck4HK5gobW3CsYDAZWrVrFhx9+yLp163jppZe+9cJM3zb09PRgtVpJTEyksLAwyBlQqVQ8+uijrFu3jrNnz5Kfny9PzVSpVLjdbnJzc4mOjqarq4stW7ZQV1eHVqulu7ubadOmMXfu3DviBdyIixcvsnv3bmbMmDFo58IDfHfwvXMG3F4Jp+daqlxQMH/xY6z/w2+Zs/CRoPVqqyv5+vNPmTl3EfEJSajU/h/UmZPH8TUeYWyqi12Hhj/YY3gQ2HkonNefbsJs9NJjH/r2+0SB0nId+bGXOHJwL8VFhfKy8PBwMlJGsW/fPrq7u0lKSmLStOviHgqFEpXOiMfjITU1ldzcXPLy8uQaend3N//2b//Gtm3bUKlU5Obmytt2dnZy6tQpzpw5g8PhICMjgxdeeIGMjIw7jigUCgVz5swhLS2NrVu38v7777Ns2TLy8vJGtK/3ueee47333pMNY0tLC6tXr+bxxx9nzJgxd7z/8ePHc+zYMZngNWfOnG9Fi11zc3+Z6htxt4Y96XQ6XnnlFTZs2MD69et58cUXb0m69oeOgCx6YmLigCTf1NRU8vLy2LNnD1lZWTLR2Wq1IggCS5Ys4cKFCzJ3APzqkYsXL5ZbD0cK1dXVbNu2jbFjx7Jo0aIR3fcD3B987zgDHp+E2+f/EQmCgFKpoqWpkbz8KUHrbdu0DrfLSV3NVcouXeD0yWNcPHeajrYWcsKbCBNsfLA5lqGkKW8HPTYVjy/s4MIVI02tN886xEa6GZ1Yy5fFwUbY4XBw6dIlXNcIg1arlbHjJ6LR6mSjmpKUwMML5zN+/Hji4+OD0uRarZYxY8Zw+vRpLly4QGxsLF1dXezatYuvv/6a1tZWJkyYwFNPPcW0adOIiIgYUWMdEhJyV8mFgiCQn58vR1g+n4+QkBBOnz6NzWYjNTX1jsoGJpOJy5cvo1QqsdlseDweMjIyRuTc7wSXL1+moqJiyHW0Wi0PPfTQXTm+SqVizJgx1NTUUFBQQEJCwoMug2Hi7NmzWK1W5s2bx6FDh9Dr9UyePDlonaSkJE6ePInVaqWtrQ2Xy4UkSeTl5VFWVsbBgwcRRRGLxcLKlSuZM2fOiBNcW1tbWb9+PQkJCTzzzDP3fEbLA9wd3HtFiLsMjco/vzrgVV+6eA6XyxG0jiSKiJLfcw4NtzB7wRKWLn+azOyxqFRqYvS2ay2AI69A1dyupseuJC3JefOVga4eFXq1F73+enpvoFGyTz75JHGRobLBbqyvpaWxdsh9WywWXnnlFQRBYNOmTXz00Ud0d3fz+OOP8+tf/5pHHnnkrj7ItVotTz75JCtXrqS8vJzVq1dTXV09YvvXaDS88cYb8t+dnZ0kJSVRXFzM73//e1paWu5o/+PHj6e8vJyJEydSVFQUVI65X2hqahrRVPDtQKPR8MILL5CamsrGjRu5cuXKfT2f7wrq6urkYUOCIAzI+zAajSxatIgTZ85zukXFVYcZCYErV65w8eJF1Go1S5Ys4ec//3k/XYKRQE9PDx999BFms5nnnntuxJz3B7j/+N45Az5RAlHE7XZRcqGYg3u/prG+lvLLJXKNTQJmzX0YjUbLk8++QnpWDinpWTy87AlefP1nhKg9NLferdntAi3taiLCPMNc2+/U9BXY8Xg8JCYmolAoZLnR48ePI3rdRJqU6BVuPvtkPceukYoGQlNTE1988QXr168PivhnzZrFxIkT7+ns+rFjx/LWW28RGhrK2rVr2b9//4gR4KKjo1mxYoX8d01NDVlZWQD8/ve/59SpU7edNg/0chsM/gFRgT7v+4nm5uZvhYyqWq3m2WefJTMzk02bNlFaWnq/T+lbDZ/PR0NDQ5AzMNj3MjNnLJ93jGZPWxw725PY3Z6A0+lk/PjxvPPOO0ybNu2uKP+5XC42btyIKIq89NJL993pfICRxffKGZAkCatDRBIUaLU6cseOJ2O0vz5s7eqUSYIKhYLktAzCLBHodHoUCoX8ADUYjOj1ukHlg0cCPlFAoRieAYoI9+Lwanj88eW88847vPbaa2i1Wurq6oiOjpblgNvb23n//feprq7GZDQQHh5ObW1t0APF5/Nx/vx5/vSnP/H+++9TXl7O7Nmzeeedd3j22WcB2Lx5M+fOnRv5i74JAuTCefPmcfjwYT744IMRI8IFOh8CKCkpIT4+XlYT3Lx5M07n8DI1fWE0GsnIyKCkpISpU6dy8uRJent7R+ScbweiKNLc3IzX670vMrA3QqVS8fTTT5Obm8unn37K+fPn7/cpfWsR+NxulhkAOFzaSrvz+udb6QjlmZdf58knn7xr0yR9Ph+bN2+mvb2dl156idDQH65s7/cV9/+JMYIIjKrsGxk9NHs+AO2tzUEKde2tLXR1tss1tyCjKWgxG3137TzNBh8O5/DqbOnJThrtRr788kv++Z//mc8++4ysrCwsFgtNTU1MmzmPN3/1F7z841+QkZXDunXrOHz4MBMmTEAURc6fP093dzf79u3jn/7pn9i6dSsqlYpnn32Wt99+mzlz5mAymcjJyZHbkgIaAvcaAXLh66+/js1mY/Xq1RQXF48I4W3p0qUkJFwnhBYXF+Pz+XjmmWeorKxk9erV1NYOXVYZCOPHj6ehoUHmCxQWFt5ki7uH9vZ2/5x2j2dIZ+BuEQgHglKp5KmnniIvL4+tW7dy5syZe3bs7xLq6upQKBSybPdQmYFQQ9+snYRKKZCccPeGZkmSxFdffUVlZSXPPffcoPNFHuC7je8VgVAA7E4vIMgOgVKppKjwCB3tbXi9XkLDLFitnezf9RV2Ww911ZVEREdjMpkRBIFeu52mkj3EGbvYeXDk6+V6nY9VK5rZXWChqn7oNJtaJfLjZ5qpsEVSa/O3xDmdTlpaWnA4HIxKSWPOgiUoFApUShWxCaPIyBqNUmOg22rF5fag1Og5VVTEpdISxo0bx5NPPsmMGTOIiorql05OTEzE5XJRV1fHlStX0Gq196U9LCC20tnZycGDB2lvb79jcqEgCIwbN46ioiJ58mFTU5McvVZWVnLo0CEUCgWjRo0adqo9PDyckydPotFoiIuL49SpU0yePPm+1FIrKyvldPxQ44vvJoFwIAiCwOjRo7HZbBw4cACj0RjkmD2A34lUqVQyYfDIkSMolcoBxaEunzlKeVUDLR49GpWSf1w1mQm3MZhnuDh48CCFhYU88cQT5OTk3LXjPMD9xffKGWhqaqKqug5LZJT8nkKh4OK5M3g8bnLH5ZMwKhmTycyolFQulZyjp9uK6BNJzRh9LTXno/rSCcZE1LHjoAW3Z2STJ7kZvcybZmXjl9F024Y2GLMnW5k92crOmixcoka+ngA7OCYugdSM0cD1zgmd3khIaBixCUnkjB1PXEISo3PG8dBDDzE2N/umcrHp6em0tLTQ3t5ORUUFgiCQnJx8z+vQKpWKnJwcIiIiZOXCgIDS7UKpVJKTkxPEE2hubsZut/PCCy/IQi21tbWkpaUNa4a7QqHAarVSUlLC8uXLOX78OCqViuTkkZ+LcDOcO3eO9vZ2PB6PfH0DfW732hkInEdmZiZOp5Ptuw/w/2+5zN9sKKS2pZv5E1MGnRH/Q8GePXtITU2VM0xHjx5FoVD0+5xOnDjB/v37SdLbmBHdy6b/+SPGJY+swmZfnDlzht27d7NgwYIHWgLfc3xvygQXL15k62efk57VXwUrJDSMx1Y8T/aY6+I6YeERJKX42baTH5otv6/RaMlZ9AsQlMyb1jXi57nwoU7qmzTUNg5taFRKkaeWdOALy+PRZ94gNzdXnjPg8XjweDzU1VzF6XQEpRMD/IeAEQiki93DrHoIgsCKFStITExErVZz4MAB9u7de09Ty30xbtw4mVy4Zs2aOyYXWiwWnnnmGeD6vblw4QJbtmxhwYIFvPrqq7S2trJ69Wp5PPLNMGHCBHp6emhrayM/P5/jx4/f1amBg6G5uVkmdQ31ed2vz1IQBB555BEK26I4frmNqiYr720+we++uPclqW8T7HY7nZ2dMl8ABi4TlJaWsmPHDtkhXjR/DmrV3XuEl5eX8+WXXzJp0iRmzZp18w0e4DuN77wzIEkS+/fvZ/Pmzej1/aNeSZJ4fOULjEpOk/8OwHWNNOb1Xo+kFAoFhvBR+GJm8+gCKyrlyMm6RlncTM/vZtdhCzdrW1y5pI34KCcfFqrYtWsXPp+P3Nxc4uPj5XO19fSwad3vOXJgD9/s+IKWpgZEUezHgRBFkaqrlezcuXNY7W8qlYrnn3+ekJAQDAYDR48e5euvv75vRiRALpw7d+6IkAuzs7OZOXMmoijKxrOkpIRPPvmE1NRU3nrrLRISEtiwYYN874dCfHw8ERERFBcXM2vWLFwuF6dOnbrt87tdDDat8NtAJgxAEARa7CARcFYFLlW33WSr7zf6ig0FcKMzUFtby9atW8nNzZVFhu5mpN7Y2Mgnn3xCZmYmy5Yt+1Z0qDzA3cV3ukzgdrvZsmULRUVFWCKiUCiVxCckoe0jvBOQ6wz8HfjX4/EQFm4hb+JUBEFAf8PAItGQSEj7FwgwLOngm0Piz39ch0Yt8R8b4vF6B39ATxzTw0+fa+J46yguW2Po7e2lra1NnpYXGDVsMpno6uykuamBzo42mhvqAAFbj5VLF8+i0WjRG420t7Vw+vhhKirKOXbsGE6nk9jY2CEn+qnVajIzMzl9+jQmk4nKykq6urrIysq6Lw8GQRBISUkhLS2N4uJijh07Rmho6G2TmVJTU6murqatrY2wsDCcTidtbW00NTWRn5/PuHHj0Gq1HD58mLKyMlJTUwdlaguCgMvloqioiDlz5mCz2Th79ixTpky5Z4IsNpuNgwcPolQq+2UlAnLbAWg0GmbMmHFPzmsg1LVYKSypRyH4Sb9PT4/hoQlZ9+187jeKi4vp6Ohg/vz58m/r2LFjiKLIzJkzaWtrY/369cTFxZGWlkZFRQUpKSlMmDDhrpxPV1cXa9euxWKx8MILLzzQEviB4DvrDHR1dbFmzRpqamqYPns+Dy97kpwx45FEkebmBkJC/YQ7n8+LIPQ3vEqlEpM5BIPBiE5vACQCxENJkkAbDkiMjSjkYpmB1o47G4X76PwOls7t5B/+lEhd4+DEwekTuvnzN+q4ardQ0DYWj/d6VBoZGUlycjIWi4X29na6uvxlDEEQMBqNWK1WaqoqsHV30mvv4dSJo5w6XsDlknN0dXXi8/mIioqisrKS48eP43Q6iYuLG1RTQK/Xk5KSwokTJ4iNjaWiooLW1lays7PvW7QZGhoaRC7s6OggNTX1lh9YgiAwZswYeQxsdHQ0drud9vZ2GhsbGTt2LKNGjSIzM5Pz58/f1PkIDw/n6NGjhIeHk5eXx5EjRzCZTPeMKFdTU8P58+cRRRGVShWUzbjRGVCr1ffVGZiXn0JkqJ5R0aEsG2fC0XAOs9n8gx1udPjwYSwWC2PHjpXfO378OKIokpeXx9q1a9Hr9bz88sts3rwZj8fDq6++elfaCB0OB2vXrkWhULBq1aq71qr4AN8+fCedgerqaj774kt/K6EkseyJZ/8Pe28eHNV55m1fp/dFW2vf9x2BkDCCmN02NmCIITYGYxY7jhM7ydRkqSQzU7PUV9/7TqXeZCb1TiZf4mTigDHGYBsbY7wvkpAQEkhCEkISktC+trq1t3o/3x9NHyMkNlsYsPsqdyF3nz59uvv0ee7nfn7375YeUypV6PR66qrPEB4ZjVyuoLe7E61OP20A866rf36TTbvf7XbTbFTgGqzkwYIBGlq1DA1/sYBg7TIzz27r5+jHIXxwYnaPcJ3Wxfef6GPnI4O0W6JJ/c4LrF7zACkpKbS0tAB3oGr0AAAgAElEQVSe9e6Ojg4GBgY8mY1LM9r58+cjk8kYHx9HFEUmJycZHx9HoVAQHR2Nv78/Y2NjgOfH7nQ68fPzo729nfLycux2O5GRkbMGBQEBAURERHDq1CnS0tJobm6mt7eXzMzM22ZDOlfiQrlcTkZGhuQeGBkZKQUEPT09zJ8/X7JN9gYfIyMjJCcnz3jvarWarq4u+vr6uPfeezGbzdTV1VFQUPCVBE7nz5+nu7sbURRZvnI183MXIpfJGDIa77jMgEwmsDgrhg3fSmPFPdlYLBYKCwsJDg7+xpWtud1u3nvvPRYsWEB8fLx0f3l5OU6nk+bmZux2O3v27MFms1FaWiq1DZ9rnE4nBw4cYHR0lD179vi8BL5h3BXBgFsUGbe6mbC56e7po7ffyMr71pGTm49/YBDBIWHTtpfJ5IRHRksX4YDAoGnCutnS3LOpr0NCI9Amr8c1UMHaRe243HChTYco3lia3DPA97J1/RAfnwzir4ejuFwrIJOJJMZaefShIf7+qT5SEkXsKc/wymk5RqOJefPmERgYyMKFC2lra6OzsxO32018fDwpKSlSUDA0NERoaCiLFy8mLy+PiIgInE4no6OjjI6OMjY2JpktxcTEMDU1xdTUFG63G7lcTmdnJ6dPn8bhcMwaFISGhqLVaikvLyc/P5/GxkY6OjrIysq6rSnEiIgIcnJypLJAt9t905UPWq2WqKgo6urqsFqtUobAbDbT1dXFggULpODDO/s/d+4c8fHx+Pn5TduXIAiUl5eTm5tLbGwsJSUlBAQEfCUz3tOnTyOKIstWrCL/nsWEhoaTmT2PwYF+hofNMzIDy5Ytu+XHdCMIgkBqaipjY2MUFhYSGhpKeHj47T6sr4yBgQEqKipYuXLltI6ap06dwmKxSFmAkJAQDh8+zOjoKGvWrJnzkl9RFHnjjTfo6Ohg165dREZGzun+fdz53BXBwITVjc3psRHWaHWEhX9+ogaHhHG+rpqwCI/phiiKuJxO5FcMUtcaILzOhN4lApfL+fnMT6ZEFreWseEBlibW8638CewO6BlQX9WlMMDPyYbVJn763V7SE20IiKTEW1m3apTFC8ZZWTDKw/cN893H+lm/0kx0jIuAnMdRL/oVupjFhIeHU1hYiEwmw2Aw8NFHH9Hc3Iy/v7/Uv3zdunX09vYSEBBAQUEBRqORyspK6uvrpU6D999/P/n5+YCnkZHdbmdsbAy3242/vz86nQ6r1So18unq6qK8vByHw0F0dPS0gT4mJga73U5FRQWrVq3i/PnztLa2kpWV9ZVaF1+JRqMhNzcX8KRbW1tbr7m+Pxvejm5tbW3IZDL8/f2xWq2YzWY6OzuljoqRkZFkZ2fT1NRESUkJarWamJgY6dwyGAxUVFSgVCqZN28eRqOR+vp6CgoKbrnO4rPPPkOn01HwrWVoNFoEQcDlcmGdsnKxtRk/Pz/WPbyJgqX3IpPJSLsDmip58ZYdms1miouLiYyMJDQ09HYf1ldCY2Mjra2trF+/XrrmiKJIYWEhLpeLJ598ktjYWOx2O++88w6CILBjx445P58++OADampq2Lp1K8nJyXO6bx93B3dFMGCxuyV3QZg5sJsHutGqFChVasxDRj589y3iEpJRXadO3BsEXL5fT0BwhQJbkDMiT0KdsIZARR9L0i6w6QEzuVnjJETbSIqbIjvVworFo2zfZGL3ln7mpU+hTLwPe+6/4UzYijMwi8HRKYLD9aTOS8U45eScKZiy/ngKe5O577GfISg9/gGhoaFSzfvp06cZGxvjoYceYsuWLaSmpnL27FlOnTrF8PAwixYt4t5772XhwoUsWbKEyMhIrFYrdXV1nD59mubmZkJCQli2bBlqtZqBgQF0Oh0TExOS+yIglS263W46OzspKytjYGCA2NhYSXGfnJyM0Wikurqa9evXc+7cOZqamsjKyrqmGPFWMxfiwoSEBHp6eujr6yM4OBhBEHA4HJjNZtrb28nNzUUQBHQ6HQsXLsRqtVJUVERfXx8pKSkolUrkcjlms5mmpiap02NpaSnBwcG3dKblcDj48MMP8fPzIzAwCENwiJQJOlt1hoGBfh7fsYvEpGQCAgNJSk5FAO6k0n6vMdHg4CAnTpwgOjr6G9HtsKKiYkZlwKeffkpbWxtyuZxHHnkE8JgQtbe3k5iYSF5e3pweQ1lZGcXFxaxfv14KrH1887grggERT2ti8Fw0FLLPrYdVcnDaJjn+zjFKij6lvraaifExIqKiMYTMdNm7nCsfu7ziYGJ8XDKd6e5q50JDHQnZ38IZeR+uqAeQawz4B7iID+0nP8fBvEwXiWkBBKYspMYYTuiq/4fmqWQCw+JArsWpjeGd4maWbPoJ+uQHOdFoo6bdxrhDg4hAfn4+arUaURSpr6/n5MmT2Gw2ZDIZu3fvJiPDY4oUEBBAbm4ubW1tjIyMoNfrSU9P97gQKhSEh4eTlZXFvffeKwnrLl68yOnTp6UufZGRkWzcuBGNRoPJZMLpdKLValEoFFKvA1EUGRoaktbkwTPznT9/PhcvXqS+vp7NmzdTV1dHfX09mZmZN2TScyv5MuJCQRDIzMzk3LlzDA4Okp2dzfj4OG63m+HhYS5evMjChQulQTY1NZXo6GgqKiqoqqoiKiqKoKAgNBoN5eXlJCUlERsbS19fH42Njdxzzz23LDvQ399PVVUVKpWK8/V1+Pn7I7rdVJ6poOpMBQBrH9ogzTzdbjdymXBHBQPw+XfQ29tLSUkJ8fHx01LnX0c+/vhjEhISSEtLAzzLPZ988gl6vR63282KFSsQRZGDBw/icrnYvn37jOWpL0N9fT3Hjh1j2bJlrFix4vpP8PG15a4IBhQypIuXViXDTy3DZbdSV32G1159mXPnzmGz2QBPyjc1NZX2tjaycq5feuPNDrhcLikbIAgCKpWKt18/wPm6aqoqTjI40EfW/DzPDFjpjzsoBzFqNWW9ocSs+SdcSY/jjv82rrBlJMxbQ0NTM598+B5LlixhyDjA8aOvYx4y8uCDDyIIAmazmba2Nvz9/bHb7fT39xMWFsbrr7/OqVOnSEpK4tFHH6W9vZ2GhgZp7Ro8a75jY2N0d3czMDDAxYsXSU5OntZFTBAEgoKCSElJoaCgQBLDmc1mBgYGqKurw+VyMX/+fNLT03G73QwODiKXy4mKikKlUkmdEm02G62trZSVlVFXV0dcXBxTU1aiE9NZtvpBwqNiePfYUVKSk2+7+vhKcWFNTQ0xMTE3JIa6XFDY09PDypUr6enpQSaTMTw8TGtrqxQQgOdcmz9/Pu3t7ZJmYcGCBdTW1mKz2cjIyCA4OJjS0lLCw8Nv2Vp4S0sLzc3NiKKI1Wql+UITNdVVGAcHCAkNxWazER0TS2BQkHS+K+UCd2LpuEwmIysri66uLkpLS0lMTPzaCtksFgsff/wxS5YsISIigsbGRo4ePcqSJUuYnJxkamqKlStX0tbWRnV1NVqtloceemjOXr+jo4NDhw6Rk5Pj8xLwcXcEA4IgoJALqOQC3Z0dvP7663z04Qe0t7dJF7esrCypBndgYACb1UpufgHCZQP85SIqu91GT1cHXR2tnCz6hInxUWLjE6e9ZmV5CSajZzYtl8sJMoQQHvF5QxCXywVuF4GGkGk/JL1axrFjbxMfH8+ivFxeP3wQ46AnPe8VbomiSE1NDdnZ2fT39zMyMkJVVRUajYZHH32U5cuX4+fnR3JyMqdOnZLK3byvU1RURGhoKJs3b+bs2bOUl5cTFhZ21bVWnU5HXFwcixYtoqamhpCQEEJCQqirq6O5uRmHw0F6ejqRkZEMDw9jMpnw8/MjOjqaqakpqVTNarXS19fHwsXfIiUty2PSpPdDr/fj6JHXSEtLk+ySbycRERHMmzdPEheKokh8fPx1L3harZbo6Gjq6upoa2tj48aNNDc3o1QqMZvNMwICtVotaQqKi4tpb28nISGBuro6li5dSlBQEN3d3TQ3N9+y7EB1dTVWq1WqGNFoNNy7YhVbHn2cRfcUMD83j+PH3sLldDI+PkbRZ5+QlJhw2zM5V8MbELS1tVFWVkZycjL+/v63+7DmnPb2durq6njwwQcZGhri1VdfJTMzk29/+9tUVVUxOTnJypUref311xkfH2fZsmUkJibOyWsbjUb2799PTEwMW7duvW2VQT7uHO7IYOBKZb/VauXUqVMcPHiQqqoqxsfHAc9F74EHHiA8PBxBqSUuKZ3Q8Eh6uztRKZX0dHcQGR2HSq2W9jVsMtJyoYEP33mT83XVdLa1MjE+xuBAH6npWZc8B6C7s53aqgrpmARBoLO9lZT0TLRaHS6Xk88+OEZrcxNZOQslvYFSDsa+LsrKyli/fj2iyp+MnDxyFy0Bl4O0VI8Fskql4uTJkzgcDmkGvmHDBjZt2jRtrVSn0xEREUFhYSGiKJKUlITT6eTdd98lPz+fefPmkZubS39/P0VFRdhsNpKSkq5aziaTydDr9Zw+fZqNGzeybt06EhMTkcvltLe309bWht1uJzY2Fp1OR39/PzabjeDg4GmGNtnzFxIcEip9rk6Xg5bGeqqrq0lJSZnTVOYXRavVSmugxcXFXLx4kcTExOtmL7zvta2tjfb2dh555BHq6+vRaDSYzWaam5vJy8ubtqyUmJhIUlIS1dXV9PT0YLfbCQsLIyIigqCgIEpLS2+ZMK6kpAR/f3/MZjMqlYqnvvcD0tIypHNAqVQgE2R88tH7NDU2MGw243Q6SU+/c41+5HI52dnZtLS0SGWtd8I5NZfU1NQwNDTEggUL2L9/P5GRkWzbtg25XE5VVRUTExMsXLiQjz76CICdO3fOSZnq+Pg4+/btQ6/Xs3Pnztuq9/Fx53BHBQOiKDJhdTFmFbHYRSam7Bw/+gZHjx6lra1Nmp16fzRqtZrPPvuMAEMYy1evxT8gkLDwSPR+fjQ3nmdsdIQgQzCRUR7jF0EQ0Gh1vPnqPhwOz6CWlJLOhs2Pk5O7iNMni+lsb6X1QgOnSguloESlUuF0OsnJyWFqYoTjb7/J6bJiYmOiCQ8LpbS4kMyMDAL9NOjVMj755BPcbjffWvkADpe3iZCciKhYrBMjKJVKWlpaaGhoYGpqShpUUlJSZi0ZCgkJQaFQUFhYSEREBFNTU1RXV/PAAw/g5+cnqdc1Gg0nTpygpaVlxrLB5YSHh9PU1ER7ezv5+fkYDAZSU1NZsmQJOTk50nJCZ2cnTqcTg8GAIAiMjo4ik8nQarVYp6ZIy5yHKIrIZDLKS4vo6fZsX11dTVBQ0B1RM36luPDUqVOSd8K1iI+Pp6+vj4GBAQYHB9m4cSNnz57Fz88Ps9nMhQsXyMvLm3Zx9paBDg4OMjQ0RE9PD4sXL8ZgMEiBVn5+/pxmB0RRpOxUOStWryEpJRX/gAAys+ZdsQ0YBwdoab4AeAbavr4+cnNzr3qO3AkoFAqpeqOiooKMjIw7Ius0V3iDuIqKCrRaLbt27ZKyNdXV1UxMTOByuejp6ZGyel8Wm83G/v37Je+Cr1uA5eOLc0cFAw6XyKT981S+IJMRGhlDbVUFMpmMhQsXsmPHDiwWC8eOHWNkdIz71m0iPSsHuVwhzc4VCgXnzlYSERnN6gc2cPniqCAIiG43Y2MjKJRKvrN9j8eKWKGiftyfj840YRlsR4FHSCeTyXA6nSQkJNDV1UV7eztOp4Nt27aRmprKsWPHyM/PY0FOFgq5wOTkJMeOHWPFihUEh0dLQkdBEBBkMv74+/+kpKREajULnhms0+mkra0NhULB1NQUcrkc9WUZjbi4OIxGIxNTDqLiU0hITiUxPlbq9iYIArGxsaSmplJTU0N5eTmhoaGzzkQFQcBgMFBSUjJjtupdTli4cCEFBQWEh4djt9sZGBjA5XJJs4gh4yB9PZ2MjQxTfbqMjrZm6fNyu900NDRQV1eHTCaTgpnbiXegNpvNNyQu9Krbz58/j8lkwuVysWrVKs6ePUtgYCAmk4mmpqYZAYE3MDOZTHR1ddHQ0EBSUhJRUVGUlpYSGxs7pyr5kZERsnJyCQkNIzQ0jPj4ROl4vEtoDocdi2WSkNAwhofNBBmCcbtdTE5OkpGRMWfHcivwBgQNDQ1UVlaSkZFx23Upc4Hb7ebdd9+VKnquHJi9zpj9/f2Iosijjz76pbUTLpeLQ4cOMTg4KHkX+PDhRRBvV/eZWbA63IxbpzcG8vgGOFAr5VSVn5A8uwF2PvMj/PwDpnkEIIq0XGggMTkVperqa6Iul4viT99nzdqHEUWRn71STcVFMyCilsPjSVO4++oAzwVJFEXy8vKIj4/nyJEj/PCHP+T1119HEASeffZZac3txIkTFBcX87Of/QzkKiZsn3+8oijy2st/ZWx02NNXYGQEt9t9zd7zMpkMpVKJRqMhOS2Tb618APBcTBBdKFwWNBoNGo1GOgar1crRo0dpbGxkyZIlrF27dtY1wf379zM2Nsbzzz9/3fSjy+Wis7OTpqYmLly4wPDwsORsd/kp5P0e1Go1drtd6g2RlZVFXl4eiYmJt12oVFtby/Hjx9HpdHznO9+5poGL2WzmT3/6Ew6HgzVr1hAQEMDRo0cJDg7GbDYTHh7Os88+OyOosFqt/Pa3v0WtVuNwOFi3bh1VVVXIZDKefvrpOfsMmltaibvUffNyvH4bDQ31zF+wUDq/vL+VyYkJ/vKn/+YHP/gBBsOta4E7V0xMTLB3716cTidPPfXUXV9l0NfXx5///GeUSiXPPPPMjEzV3r176ejoADzLob/61a++1OuJosjbb79NbW0tO3fuJCkp6Uvtz8fXjzsqMyCTwZR9emwiCCCTKxCREWAIo6aq/NLaeTI5CxdPcxQcGhygu/Mi6dk5lwa/a5cVBoeE4bDbmXDAb99r8j6CSxSoNSsJMQQS5DJxzz338NhjjzF//nzMZjP19fXIZDJaWlp48sknCQgIADwD9FtvvUVGRgapqan0dnchU+mmmYnEJ8SzccNDLF26FJPJxODgID/60Y+oqPDoEzZt2kRycjLBwcHo9XqUSqWkEo+IjiU6Nl56zy63yB9//ztOnjxJcXExJ0+e5PTp05JHvVqtprm5mcrKSkZGRjAajRiNRoaHhxkfHyc4OFgSLV5unjP7dyOTlhMKCgqYN28eAQEBkpHRlbhcLuk4582bR29vr6Tut9vtUhne7cDrXNja2npdceHlDoVev4HY2FjOnTtHWFgYRqORhoYG8vPzpwVUCoUCo9GI1WolLS2NoqIiDAYDXV1dJCYmztlgdq6ujuDQMOTyz4MRb0B24UIjY6OjxMTGSQ6c3sdVSuWlKpEWMjNntv2+01CpVGRmZnL27Flqa2vJysq6YwWQ10MURQ4fPszY2Bjbtm0jISFhxja1tbVS75HFixeTkjIz4LsZioqKKC8vZ/PmzXfF9+3jq+eOygwAOJxORqau/nhXx0VioqPx12sYGBpF53dJZSyKjBq7SE1NwTQxs+WsN2V6udGQ3W7jlb/9icz5+fxjoQ37FU/TqWSU/MO9UvpOFEVaO3po7+ik8VwNuQtyWLFiBS6Xi4GBAaqqqqisrCQwMJDR0VEAHt3xNGHhkZcGChGdSoZe7QkOTp06xQcffMBjjz3Gp59+itlsJi4uju9+97uzfzYukRGLCxA9/7nsWEY9A87VbqOjowwODkoNbLw+ArOhUqmkLMPN3ERRpLOzU3IlvDLLEZeQxPpHtiKXK+jpaOW9Y0dwOp2kpKSQl5dHRkbGbVEzu91uiouLKS4uJjY2lu985ztXHaRLSkr45JNPkMvlPPvsszQ2NlJYWEhkZCT9/f2Ehoby/e9/f5obY0tLCwcOHOB73/sew8PDvPPOOzidTiIiInj22Wfn5D28+uqrmIeHWbFyDdGxcWi1WinTVHu2Gq1OS0ZmNjDdZEsURXq6Onjl5Zf40Y9+dNekjEdGRvjb3/7mEUo+9RR6/Vx0FP1q+fTTTzlx4gQBAQH89Kc/nXWb7//vfVw0TpGjH+b//NvPv5TIr6qqimPHjnHffff5vAR8XJU7LhjwIooiQ1cM6ldezBrP1eBwOoiMjCIpPhqdxvODGbE4cVz2VNHthll6EvT1dPLmof0A9DoDOeXKYsp5qZIBCPNXU/Iva6TtRyxO7E5PWtztdtNw9hRtF1vp6+uTxI1KpVKaPcbExBAYFMyY1eOgqJBBoE6O7NJxdHZ28re//Y2lS5eSnp7OSy+9hCAI/Ou//utVPxe7U8TmdCMTBHSq2fssXInVauXtt9+moaGBgoICVqxYgcPhwGq1YjQaOXr0KOnp6cTHx18zsLBarTPa416OWq1Go9Egk8mw2WxYLBYEQeCZH/4cpVIplXnqFC6aGjyVB93d3eh0OhYsWEBeXt5t8aXv7OzkyJEjWK1WHn74YebPnz9jG+9srqmpCb1ezw9+8ANKS0s5deoUMTEx9PT0EBwczHPPPScFBG63m9/97ndkZWWxYcMGhoeHefnllzGbzSxevJj169d/6eWC3/72t0xOTgKQsyCXNfetRafXM2Q08tknH7B1+85p70GqqjGbCTH489+//z1JSUls2bLlSx3HV4nJZGLv3r3odDr27NlzV4kKz5w5w/Hjx9Hr9WRmZrJx48YZ22z/3QkKzw9c+j+R9/7xPvKSv1iw1tzczMGDB8nPz+fhhx++7Ut0Pu5c7thG1YIgEKgVGJ2avh59+d+ZObk4xgdntIn1U8vYW9JJc/846QYRzWgry9as47kXK7g45Ek7rMoIIdVUJD0nWjHKDkMjFbJ86nonUStl/O+tn7cUFUVRqgzwutBN2TxKe29DocOHD7Nu3TqpH4CXYL2ACFIQ4MU7GxsYGJDMRERRxG63X3UmoFIIqBQ3N4vWaDRs3bqViooKPvzwQ7q7u3nssceIiooiKiqK3t5eqqur2bhx43VnWi6XC5vNdtVgYWpqCqvVis1mY2pqCsvU1Axb6HeOv4vNMs7mzZtxu91UV1dLSv+YmBjy8vLIycn5ytLA8fHxPPfcc7z77rscOXKElpYWNmzYMO31BUFgy5Yt/PnPf8ZsNnPo0CF2796N1Wrl7NmzJCQk0NHRwR//+Ed+8NxzqJQqZDIZCxYsoLq6moceegiDwcDzzz/Pf/7nf3L69GnMZjObN2/+woruqakpJicnSU5J5d7lq4iJjQVgYmKcgy/vJSIyatr2giDw6oF9iCL09nSzc+dOli9fzvvvv8+KFSvumn4AISEh7N69m7179/Lyyy+ze/fuO7oqwktTUxPvvvsuixYtorKykthL39eVfB4IAAj8n7fPc/AnNz+j7+3t5bXXPN4fPlMhH9fjjtIMXIlcJkOrBIUcVHJhRhpfEAQiQgJnnOT/8f4Ffv9RC419Y5RenKCoV8HLpW0MW5x4dQQdpinqLMEECFYC5VYAnHYr/7JnLc/cn8XfrU0lNWL6Rdrq8DRL8pKdkcK87CzCo2LoN5owDRlZv27djJT31TolKpVKTpw4gUwmp6CggJKSErIW5KFQaggOCpjT1rfeaoO0tDRp4A0JCSEsLEyy1bXZbJIt6tXwChq1Wi3+/v4YDAbCwsKIiooiLi6O5ORk0tPTycrKYsGCBSzKz8fpcuMSPYGOdcpCadHHGI2DkpWvRqPh8ccfJyEhAZPJRHl5OeXl5ZhMJrRaLYGBM7/jucYrcgwODqasrGxW50K5XE5qairV1dUMDw8zNjbGpk2bGBoa4uLFiyQlJREaHkFyaiZuZLhFCArwp6ysjMjISMLCwpDJZAQEBNDQ0IDVaqWyspKIiIgvVGHQ2tqKTK5k86Nb8ff3lz4jpVLF8PAwLc1NpGdkorsU4HV2tFNSXMToqEe42tXVxaZNmzh79iwjIyNkZ2fPzYf5FaDX60lJSeHUqVO0trYyb968216xci26u7s5ePAgGRkZ5OTkUFdXx9q1a2fNavzHsfN4TNg93+fCRAMbF80eOFyN4eFhXnrpJUJCQnjiiSfu6M/Gx53BHbtMMBtTNhcTlwkMNQrw1848yR/6zQnajJOX3fP5D2s6nvvzFO3M0wzyq1/96pqzUadLZNzqwi169ARalYxJmwuL3bt04CI0QI3iBk3fp+wuxqY8NsgC4HK7kMk+DyQMWgHFTWYBboQrlw3Wrl1LWVkZhYWF/PjHP55zdbkoiticIm4RaqpO8+EH76PX66X0thelUkl6ejrLli2jubmZs2fPMjw8THBwMHl5eeTm5n4lTnTDw8McOXKEnp4eVq1axYoVK6YFZi0tLXz2WSFr1z1MaGgoCqWc4s8+pbqqkr/76S+mbVtZUeZp95w9D7lcTsuFRpxOJy0tLZI4dGpqisDAQAICAqQlKO+/V96cTiculwuXy4XD4WDbjl0kJCbN0MMcPfIajQ3nWbR4CQ88uA7w9Kt/ed+LGAcHJF3HT37yE5qbmzl+/DjPP//8Xdc+uKenh5deeomoqCiefPLJ29pB82qYTCb++te/EhYWxq5duygpKaGiooJf/OIXM4Jcl8vFY//0P5SZgwEBg15F2b+vI0h345oBi8XCiy++iNvt5plnnrkrdRU+vnru6MzAlSgVlzIFMtCr5WhVsw+Upy8O0zI4cdk9VxucPfcb3X4c/n+/d93oWSYT0Kpk6FQylHLPc8emPi/ZAig5cYJDBw9QUlJCaWkppaWllJWVcerUKSoqKqioqODMmTNUVVeTnJk7LWsgCNMzAT39gxx8eS/t7e1YLBZUKhVarfZLz5K9tds6nY6SkhIuXLjA8uXLaWxsZHh4eM5niF47aaVcIO5SF8SGhgZpJm4ymZDJZLhcLqkVc29vL6mpqaxevRq73c6ZM2c4efIkvb29KJVKDAbDnGZOLker1bJw4UJEUZScC5OSkqRUtMEQTMa8+fgHeLM3AgmJyXR1dpIzf8G0fbW0NPPQ+o2EhIYREhqGVqejs93TKqenv+gAACAASURBVHlkZIS4uDhUKhVmsxmHw0F4eLikuwCkQd+7JOBwOHA6nVI5Z1x8AuERkdMqBXq7uyn67BNEUWTbjl3Tzmu36Kars0MSGZpMJh544AFqamowm83MmzfdsOhOJyAggISEBEpLS+nu7iY7O/uWnRdfhImJCfbt24dGo5FMhUpLSwkMDGTBggUztm9oaMDcXEFewDC/+9l2/uWx+WhVNz6rdzqdHDhwgLGxMZ566qmvbV8HH3PPXRUMgHdgkUlmO7OxNDWYvxa1XeXRmVkCtULODx/4Yv3drQ73tKWDwf5urJZJVCoVCoVCujB5Z3V2ux2r1YrD4SS/4N5rDux2m42KshMMDQ3R0tLC6dOnKS4upqioaNrNm9bu6urC5XIRGBh43cBGEARiYmJITU2ltraWiooKsrKyqKmpIT09/ZbOwGNjYwkICJBMeDZt2sTExAQmkwmdzlOKabPZGBgYoL6+ntHRUXJycsjJyaGnp4dTp05RWVnJ5OQkgYGBt0RAJggCSUlJJCUlSS2jL2+LLApyKZDzzspHhs2Mjo4QEeFpV2wyDREdFYPmUgAnCAJ6vR9+Og0LFiygsbERmUwmaV5GR0cZGhpiaGiI4eFhpqam0Ol0hIeHk5ycTG5uLkuXLmXNmjVotVra29vp6e4iMjIKvd7Pc2YLAgGBgWRkZhMeEUlM7HQPha7ODro6O0hNTZVeZ/ny5Wi1WkpLS8nKyrrrXOkCAwOJjY2lpKSE/v5+srKy7oiAwG63s3//fqxWK3v27MHf3x9RFHnvvffIzs6etc/AG2+8weTkJDnZmaxcuuimAn9RFHnjjTfo6Ohg586dd4QDqI+7h6/lQpJBr2JpajBlLR4ToatnBjyPbVkUc5XHr4+/Vs7YlGfpQK2UsXbNSh68b9UNPXd40olTqsITEcXPMwyiKFJ+4hO0Wi02m+2qpkTgueiYTCZMJhPnzp2bdRuvJbJerycmJoaFCxeSnJxMdHQ03//+9zl27BiVlZUkp2Yw6ZAxPOlEr5ahUtyai2p+fj5KpZI333wTu93O1q1bGRwcpKioiKamJoKDgwkLC6OrqwuLxUJVVRXweb8BuVxOdXU1J0+eJC4ujry8PObNmzfnPuteceHx48clceH6DRsQ5Grcl/XQkMlkDBkHKT1RROP5elQqFZFRMSxeslTalyiKDA4OcOjQIek+i8WC2+0mPDycpKQkOjo66O3tJScnh02bNl31/ZSVlQEeEeGhgy+TlT2Pb295THo8JDSU4CvKBQVBIDwiAofDQUFBAQ0NDYiiyEcffcRDDz1ESUkJhYWFbNu2bc4+v6+KpKQktm3bxsGDBzly5AiPPvrobQ0IXC4Xr732GiaTiaeffloqWTWZTFit1lmNrvr7+6U24+vXr7/p1/zggw9obGxk27ZtVxUn+vBxNe66zMCNsjozjBGLgwCtkvuywugetjBld+OvUZAdHUD/qA0QuD8rlN88kfuFU+9ymYBWKaBTydAoZTe1H43Ss61MEPBTy9CqBGwOT+gSoBHIz8tl2bJlrFq1itWrV0u3VatWkZ+fT1paGuHh4SgUClwuF06n85pBg9vtxmazYTQaqaurk7IMpaWlGI1GdHo/tmzfjVanxy2CzQnaGyxf/CJEREQQERHBiRMnJB//3NxcMjIyMBqNNDU14e/vz/3334/BYJAupAMDA/T19aFSqUhJScHlcklLMMPDw+h0OgICAubsuL3iQoPBQFlZGbU1NSTEx3nW+IGJ8XFOlp6g5mwVKSkp6LRazp+vJys7R0rhe6pEbBx8eR92m23asVmtVkJCQigoKGDlypUEBARw6tQpzp8/T0JCwoyZ+oULFzh79uy0+7RaHfNzp7fsnu39GwzBRERE0tvTTU9PD263G6PRyMqVK9FoNJSWlpKRkXFXdgkMDg4mIiKCoqIihoeHyczMvC0KelEUOXbsGI2NjTzxxBPTBv6mpiaamprYsGHDjOzd+++/j9FoJCYmhqVLl16522tSVlZGcXExGzZsmHX5wYeP63FXCQi/DC63SP+olVA/FWrlN6tdp91uZ3BwkMbGRlpaWhgdHcVut88IHKJi4tiybfe0+945chCdRkVaWhqxsbGEhobO+YyrtbWVQ4cOERMTw/bt2yURZ19fn5QpCAkJYeXKlSQmJlJYWEh9ff00zwO9Xk94eDgmk4mxsTHCwsJYuHAhubm5cyqgupq48O2336a6uhrwZBMeeugh3nv/A7Y/uVuqLnn/+DFqzlZdc/8ajYa0tDRycnL49NNPGRoa4qGHHprW/vj3v/89ZrMZhUKBSq3GckmIuWLVGpZ8a9k0x0uYHhR47aPPn6vjXG21ZHm7bt06Fi9ezB/+8AdCQ0N54okn5uwz+6o5d+4cR44cIS8vj40bN37lAcFnn31GcXExW7ZsmTEwHzt2jO7ubp5//vlp909NTfGb3/wGURT53ve+N6Nc+lrU19fz+uuvs2zZMh544IE5eQ8+vnl8Y4IBH9fHLYqYJ5xScyWrdYpXXvwjNptV2kYulxMdHU1MTAwxMTFER0dLXQ2/DJ2dnbzyyiuEhoby5JNPTmtG09vbS3Fx8bSgICcnh7GxMT7++GOampqmOSvq9Xr8/PwwGo0AZGRkkJeXR0pKypwEMm63m6KiIk6cOEFcXBxbtmyR2hR//PHHgCebIAgCgUFBxMUnYhwcoLurE7Vajc1mQ6lU4nA4rvk6KpWKgIAAhoaGLvW5fwS708nbR48il8v59uZHUSiVdLS3odFoCA4JpflCI309Paxcc790DLMxNjrK22++Rk9PzyUtg56f//zn1NbW8uabb970gHSncfbsWY4ePUpBQQHr1q37ygKCyspK3nnnHe6//36WL18+4/E//vGPxMTE8O1vf3va/SdOnODTTz+9pivhbHR0dLB//36ys7PZsmWLz0vAxxfma7tM4OPmEQQBtdIzWCrlAiH+GpYvu1fq7ufNKExOTtLf38+5c+ek9HxbWxtGo1EyTLpZw6DAwECSk5MpLy+nsbGRrKwsab3c39+fnJwc0tPTMRqNlJSUUF9fT1BQEKtWrWLVqlVkZWUxOjrK6OgoNpuNyclJRFFEo9EwPj5OZWUl1dXVWCwWgoKCvlTnu9nEhUFBQdxzzz0EBQXR1NSE2+1GqVQSFRlJ/bk6xsY89tQul4ugoCAsFgsBAQFSI6PLywK9uFwuLBbLpb/dLMi7B7VGx7ycBaRlZCC/NNgHBRnQ6fQoFApCw8LpaG+jr6+XuPgEqUun97jBkx0YNpsoKfaYbikUCmkd29upsb+//65ON0dGRuLn50dhYSEOh4Pk5ORbPlBeuHCBN998k8WLF3PffffNeD2bzcYHH3xAQUEBUVGfG0K53W4OHjyIy+Vi/fr1REZG3tDrGY1G9u/fT2xsLFu3br0jRJM+7l58wYCPacgEAbVChlohQ3ZJAR8UFER6ejr33nsv6enpaDQaJiYmsFgsKBQKAgMDcTqdtLe3S4NjZWUlnZ2dUsmcRqO5bg24v78/aWlpnD59mvr6ejIzM6cFFVcLCjQaDUlJSSxYsIAVK1aQnJzMyMgIY2NjOBwOaTlBJpPR2dnJqVOn6OjwlNcFBwd/4b4I3rbIJpOJoqIiqWkRIPkBmEymGYOCIAgolUqcTicWi4XAwECsVithYWFs2bIFnU4nBV5e8u9ZTGLS5wOaIMimDe6XV60Eh4aSkJCEw25HoVR63C8vdZj0VjWUlZ6gv693Wr+Kvr4+CgoK0Ol0lJaWkpKScleXpkVHR6PRaCgsLASYVb0/V3R3d/PKK6+Qnp7OI488MuvA3NnZSW1tLffff/+0pasLFy5QU1ODUqlk69atN/R64+Pj7Nu3D71ez86dO+dcOOvjm4cvGPBxwwiCgL+/P8nJyRQUFJCTk4Ner2d4eFjqzxAfH09qairh4eFMTEzQ0NAgqf5ramro7u5mZGQEl8uFVqudIaLS6/VkZGRQVVVFTU3NrP3rrxUUhIeHExQUxMKFC1mxYgWxsbGYzWYmJiamCSwnJyepr6+nvLyc0dFR/Pz88PPzu+nZo1dcqFKpKC8vx2q18sgjj7B+/XrOnDkzQ5eh1WqZmpoiICCAiYkJsrOzGRgYQBRFJicn6e7uRq/XY7PZplWRhISGkpqWjiAIUpmqN4ix220oFAqpHbZarUapVKJQKqf5D3j/7Whv47OPP5SMjQRBIDAwELPZzPz580lISOD8+fP09fWRm5t7U5/HnUZsbCxyuZzCwkIUCgXx8fFz/homk4n9+/cTHh7O9u3br1rWW1dXR19fHw8++OC08+zw4cNYLBaWLl16Q90JbTYb+/fvx263s2fPnruuFNTHnYkvGPDxhdHpdCQkJLBo0SLy8vIIDAzEZDLR2NhIT08P/v7+LFq0iGXLlpGSkoJKpWJoaIi6ujqqq6spKSnh/Pnz9PT0MDY2hiiK6HQ6/Pz8yMrKoq6ujsrKStLS0mb1Erg8KBgcHKS0tFQKCrzWvyEhIeTn57N8+XJCQ0MxmUxMTk5Kg6y342RlZSUNDQ2emXVw8E052ZnNZt599100Gg2BgYGcOXMGlUrFunXrOH36NABh4eGsuW8tCUnJjI+OMjRkxGAw0N3dTVhYGBaLRWpVPTAwwOTkJP7+/iQlJXHvvfcyLzubvv5BggwGqQMleNb+//qXP9LX24PJbCIoyIBGo5lhgT3tb5lA/bla3G43m7+zlU2bHyUjK5vOjjY6Ojok0WVvXz+x8Qmo1RoEPO3E70YSEhIQRZHCwkI0Gs2clt1NTEzw0ksvoVar2bVr1zV7JJSWluLv7z8twDIajRQVFSEIArt3775uqt/lcnHo0CEGBwfZvXv3XdNt0sedj09A6GPOsVgsNDU10djYSGtrKy6Xi8jISDIzM8nKyiIkJIShoSF6e3vp6emht7eXgYEBaWYbERFBdHQ0wcHBnDlzBpvNxq5du667ltrb20tRUREXLlyYJjS88gJrt9upra2lrKwMs9k8Yz+CIJCZmcmiRYuuu9Y8MDDA/v370Wq17N69G51OR3FxMSdOnMBgMGA2m4mPT+A7W7ejvJTKtVgsvPCH/ztN9Ogd3C+/LyAgAJ1Oh8PhYFHBUhbmLZKO73JOFH9Gbm4+2kuGTZcvCVzO5fdZrVbKSopZff9aKdtgNg3x4l/+xC9/+UsUKjVOtyB9JwqZx/nzbsXrp1BWVsbGjRtZtGjRl96n3W5n3759jI2N8cwzz1y1/bX39X/zm99QUFDA6tWrpfsPHz5MQ0MDGRkZbN++/brv4e2336a2tpadO3eSlJT0pd+DDx9efJkBH3OOUqkkKiqK+fPns2TJEiIjI7FYLJw9e5by8nLOnTuHy+WSsgr33HMPy5YtIyMjg/DwcERRpLu7m7q6uktujQ6qqqowGo04nU4UCsWstsz+/v7Mnz//qpkC7/beioglS5ZQUFCAVqvFZDJhs9mkfQ0NDUnOjDabDYPBMGPW5/XFDwwMZPfu3fj5+UmOggqFgsbGRgAMIaHk5uVLs3WVSkVjw3mpJNB7TH5+flitVinlb7PZcLlcRMfEsvq+tbM2vBJFkfiERNRqNXK5fMaywOVcfp9CoUCv90On003b7+DgAFq9H37+gQgIUiAlind3MCAIAsnJyVgsFgoLCzEYDDcs1JsNt9vN4cOH6evrY/fu3dft+Gg2mzl58iTLly+XmlLZbDbeeustAHbv3n1d0W1hYSHl5eVs3ryZzMzML3zsPnzMhi8z4OMrw+l00tbWRkNDA01NTVgsFvz9/cnIyCArK4uEhIRpYj673U5fXx/t7e1UVFRIynoAtVpNdHS0VOYYHR09w2joRjMFXsbGxjh9+jRVVVXTXstLREQE6zZsJDI6BpfLzfvvHmPEbGLp0qW0tbXR09OD2WyeJvwD8PPz4wc/+nvkcrmnFbbdzuuHDtDd3Q14AgGXy8WuXbtoaWmhqqqKrVu3cuzYMcZHh0mL0fLIQ98CtwNkKvCLQ9TFIZMrZs0A3Chez4ErgwxvNuDzfYvIBIGrtAK5q/AaAp09e5ZHH330C/Vi8O6jpqaGHTt23NA6f01NDW+99Ra//OUvJQ1MUVERhYWFRERE8Nxzz13z+VVVVRw7duyqJYs+fHxZfMGAj9uCt4VuY2MjDQ0NjI6OotFoyMjIIDMzk5SUlGnr9na7nUOHDtHZ2cnKlSsRRZHe3l56e3sZHx8HPOLDKwMEvV5/00EBeDIDFRUV1NbWShmDIIOB7z//d5KjoNvt5v/7/e+kGb5MJsPPz4/w8HDCwsIoKyvjySefZHJyktq6cyxbvhI/f3/efOM1+vt6MRgMDA8PA0jZjp07d/KXP/+JDYvDCBw7SYi8D6V85k/UjQohNA8h8dsI4QUzmlzdDJcHFFcuJSgVCs9NfvdqBq7E7Xbz1ltvUV9fz9atW296ll1YWEhRURGbN2++YYHl8ePHaW9v50c/+hHg+Zx//etfY7fbefrpp68pbGxububgwYMsWrSIDRs2+LwEfNwSfMGAj9uOKIr09/dLgYHRaESpVJKamkpmZqZUzuh0OnnttddoaWnhscceIysrC/CUWXm1B97b1NQU4Cn/i4mJISoqCo1GQ1NTEy0tLTccFIiiSF9fH+Xl5YyNT7Btx65pj7/4lz8xMT5GdnY2mZmZREdHo9PpOHnyJJ999hm/+tWvUCgUmM1mjhw5Qm9vL/fccw+VlZW43W40Gg1Wq8fUSSaT8a1Mf+bLCvFXjNPcoqS4WElLi5yubjk2m4BaLZIQ7yItzcnq1S4SE+y4NLEo8v8BwZD1hT//K4MB778KQUQh//oNPm63mzfeeIOmpia2b99Oauq1G5V9VtXGh6cvohcsOHureOCBm5uhv/DCC0RGRvLII48AngH+lVdeQafT8Ytf/OKqz+vt7WXv3r0kJyfz+OOP+7wEfNwyfMGAjzsOb0VCQ0MDPT09yGQykpKSyMzMJDU1lY8//pjz58+zefNm5l9qGXz5ZEkURUZGRmYECF7Hv8DAQNxuN+Pj4wQGBrJq1Spyc3MRBBluEWTC7LNgl8vNlN2F/JLYzzg4yL4X/zyjfNBgMOBwOFAqlTz88MMEBQXhdDqZnJyksrKS8+fPS6WF3tI+RDcro9soCO+moUnJX/6spfXi9fqIiWRkOPnB920kJzkQ0ndC6vUV6Zd/TrPNMi8PCDy+Eze0u7sOl8vF4cOHuXjxIjt27LiqIO+D8lY2/9Mh5DIBl1tk69II9v2v797wDN1ut/PrX/+ahx9+WBIuei2lryVmHB4e5q9//StBQUHs2bPnpipcfPi4WXzBgI87mrGxMRobG2lsbKS9vR1RFImNjcXtdhOfmMyqNfcDngFcKbt6KtvtdmMymaYFCH19fdJAHh0dw/adnguuKIooBDdKhRy3243VasVqtTI1NYXdbkep1mK32ag/V0trayujo6Nf+P15Bl036+OayDYMsneflrePaRDFG5+Ny2Qijz1q5ckdUxC/CSHn7+cslSwT+FpoBa6G0+nk4MGDdHV1sXPnzlnT9T/8j3fZ995ZyaY7LTaY2n3XXuO/nPb2dvbt28dzzz1HREQEw8PD/Nd//RdyuZx//ud/nvU5FouFF198EVEU+e53vzun/TV8+JiNr2nM7+PrQkBAAAUFBRQUFDA1NcWFCxdoaGigf2BACgQA3CK8c/w442OjKJVKSQDnvQHT/l+n05GUlITVamViYoJ7CpZOa/DT2t7B4YMvc61YWaPRoNVqiYyMxOVyMT4+LqX8vcjlcsLDw/Hz88NsNmMymQCPRkClUmGxWFgV00W2YZD/+E89JaU3Z+MM4HYLHH5Ni9ks4+9+fAx0EZAyN42GlF/zrLRCoWD79u0cOHCAV155hd27dxMdHT1tm4QI/0vtqgVkgicYuBm6u7tRqVSEhYUB8N577wFcNSPgcDh49dVXmZqa4plnnvEFAj6+EnzBgI+7Bq1WS25uLrm5udjsdq4cpo1GI12dni58MpkMhUKBQqFAqVRKN5VKhUqlQi6Xo1AoUKvVBAUF4ec/3cXN5XLOCAS89sXx8fEkJSURGxtLYGDgtFm4xWLhyJEjXLx4EVEUcblc9PX1ARAUFMTmzZsxGAwMDhqRK1VM9lax0FrMgVe0XygQuJyPP1ETHe1iy5a/IQ9fiuD/xerQPcsEImq57GsjGrwWSqWSJ554gpdffpn9+/ezZ8+eaWWHzq5SFkSKtJplhOpc/P3Ga+sLrqS7u5uYmBhkMhl2u53m5mYA1q5dO2Nbt9vNm2++SV9fH3v27JHKEH34uNX4fAZ83JXIZXJEkAICAZGsjDSys7NJTk4mKiqKwMBAVCoVDodD6lUwOjqK2WxmfHwcURRRq9UEBASgkMsJCQ1DJvNkB0IMgWRkpEsVCQ6HA6vVyuTkJH19fTQ0NFBeXs7Jkycl0aPT6cTf35/q6moSEhLYsWMHGo2GgYEBnE4nVquVxsZGLly4wNp1DxMRGUV453/T3jLJ//0v3U0tDVyN+vMKVix3oHdeQJaw4QvtQxRFero6CTZ4THS+CQGBQqEgOzubCxcuUFFRQXp6Onq9npKSElpbmkkLEXn3L/9MgK2dnq62aS2lr4UoinzwwQdkZGSQlJREUVERnZ2dJCUlkZeXN+u2tbW1PP744yQnJ9+qt+vDxwx8mgEfdy2iiLSOezXR3+fbilgsFkZGRmbcRkdHGRkZwe12E2QwMDY6ikwmIygoiKCgIAIDAwkKCiIgIADw9J7v7++nu7sbk8k0zTXQS2BgoCR4jImJYXJykvLycs6ePUtqWgaPfOcxRFMt4qmf8q//5k9N7dyJw5YusfOP/zABy/6IS580TXh2I74E3oyGQqFAwKMZ+CYEBODJ7Ozbtw+LxcLOnTv505/+BMCOHTtIS0ujq6uLF198kccee+yGPAq8+oAnnniCtLQ0/v3f/x2n08lPfvKTGU2gysrK+PDDD3n44Ye55557bsn78+HjaviWCXzctQgC3GjVmyAI6PV69Ho9MTExMx6/WrAwOjpKW1sbIyMjUjUCgEqlIigoiKSkJMlExmKxMDAwwPj4OKOjo5SXl1NeXg54TJJCQkJYtGgRsXEekZq74236B5TU1M7tz7DitJLhUQWGruMocn5y1e2uFRhI+gnA6Qbl11hEeDk6nY5du3axd+9eKRAICQkhLS0NgLi4OFJTUyksLCQrK+u6lRteY6nY2FiamppwOp0YDIYZgcC5c+f48MMPWbZsmS8Q8HFb8AUDPnxwY8HC1NTUrMFCf38/w8PD04IFpVKJVqtFJpPhcDiw2WxSFUN5eTlL713Ot6xVnCyVA3M77Xa7BcpOynkwrArV/Jntk2f7+2rbfBPx8/MjNzeXTz/9FIBdu6Z7S6xevZr/+Z//4dy5cyxYsOCa++ru7iY4OBidTicJBzdt2jRtm46ODt566y3mz5/P/fffP9tufPi45fiCAR8+bgBBENDpdOh0uhlqc/g8WHjhhRcICwsjOTl52hLE5YECQN3pz1gxb5SWllvTfralVcF6Wx+i04KgmNnx0XvMl3PVLMHXvKLgSlwulxQIqNVq9u/fz1NPPSW1Co6JiSE9PZ2ioqLrmlZ1d3cTGxvL8PAwY2NjqNXqaX4GRqORV199lfj4eB555JFvfCDm4/bhCwZ8+JgDBEHAZrMxNjbGunXrJHdEL972xN6Mgt1YC8Nl9PTcmpG2p0eGIIgwNQj+iVc95stxuVzIZLLPmx3xzdILePnDH/4AeBpfPfXUU/ztb3+Tqgy8rbRXr17Nn//8Z2pra8ldkIN76Czu4SZco81gHwFBQFQGEefqJi7sAY6+dQSAVatWSa8zPj7OgQMHCAgI4PHHH5/Wl8OHj68aXzDgw8eXRBQ96+oav0D+/ue/RDPLArvX30CpVKLX61FbdDAMTuetGWmdDs9+LRMj6PxurJmRt3GUl+uJMr+O1NXVSf0ifvzjH6NSqdi9ezd79+7l5ZdfZvfu3Wg0GqKioliQlcR4zQtM9feDbQzkAjK9DZQOj9hiXMXyaAUy00VC/VVUR8RSsMizrGCz2Thw4ABut5snn3xyRkdMHz6+anzBgA8fXxK3CC4RBEGGWq3B5Xbz2muvMTExgcViYXJyUuqV4CVCO87uDNBqb00xj1bn2e+p8kru37wQuLZg0O12E+jvz+XGyt/E5YEjRzwz+DVr1qBSqQAICwtj165d7Nu3jwMHDrBz507k5tM86PcGomYceeAE8vBJBJ1jRvAkiiBOqAgc9GOFyo698BkUub/k8If1jIyM8PTTT0tVKj583E58wYAPH3OIIAiX0r0CBoNBalx0+U2v16NTCYifbiMh0UVL69z/DBMTXLhRIPeLnrVNMXic7iYnJ3A6HJwoKmTzI5tQa7SI1+jP8HXmhRdeADw6gZX/f3t3Ht1Weed//H3vlWRJ3nc7TmI7dvY9kAVISICWEPYdEiD8StOW0kJaSjltZ+Z02jkzpf210/ZASyEdCkyn7VASCIHQkKS0YQ2QxSEJWZzNWbxvsixb0tV95g/FsuUl8SInjf19nROwrq4f3Wsf6/noWS+/POq5nJwc7rvvPl588QX2vPoYE5x7MVL82Atr0BxWd8UB4Z+hlhjAkViHlddI8HCQ4IffJt1bxPy7vkt2dvag3pMQvSVhQIgB0jVAKRThMKADd9xx+1m/r1ZPZ9zYJjZvHtjKg90ZN85ExRfSUOfF52smPj48+K1j64DdbqfJ42HkqNHccvudKMtCqeHXIgCwf/9+qqurAXj44Ye7PWfEiBGsWGjHXbUX2+h6jBxvnwKT7gzhmFiBeSKZRRzCbm0D+rdKpBCxNgz/7IWILU2DpoYaNr31Jo11Nb2ak19fX8/emngWLDBxOGLbVRDvtpg3z8TIvYSKU6d47tmnWb9uLa+vfSXcbt3BqNH57S0GCd5n8QAAG9NJREFUmkaw5w+5Q1JZZSNXPPIC8x55mTcPGEybPrPHvQDMU+/irnoTW349tty+BYE2mgb2UY0YuR6Cu58mVLdngHcgRGxIGBAiBmpqatj+ycfEu51nrSRCoRCrV6/mYEsx8e4Qly8IxPRarroqgM0GjL6OMcXF+Hw+Pt21k8/27ubdd/4eOa+1pSVqemHbDorDRWvAZOn3V/PhnpO0mholFRonzO6b7VWgkUDJT9FTWzGyvQN+bduoRrQEk8D2H6FC/gGXJ8RASTeBEDFQV1eHw+Ho1Q5zmzdvpry8nNtuu43ju0u5//7jbP3ITlPTwLN5errFsmV+9FFXo7sy+NzVS6ivq+PiOfMoHFOEUopPd+1kytTpxDmdpwNAe9fB4dKDTJ44fsDX8Y+urKKBaf/vGfzBUOSYBry+6T2mpPsYO3YsI0aMiKwhEDy0GkJe7AW1MRlLoWlgH1NNYJcN89ib2MfcPPBChRgACQNCxEBtbS3p6elnncJ38OBBPvjgAwoLC1mzZg1pCcXcmXeSr3/NxxM/jh/QZkW6rnjkYR+O+CS0SQ+ePqZz17LoFfSmTJ2OUipS0bUFgq0fvEdGZhYBU2Ezwtv1DlW3/vOfo4IAgELj0gnpfPTRR2zZsgWXy0VxcTFjiwspOrEWI8NzxsGCfaW7TPTUVswjr2ArlAWHxPkl3QRCxEBdXd1Zt5ttampi9erV2Gw2jh49yqhRo6huDLLh5DjmzAnw1Qd94YWC+kHXFd9Y6WPaNBPbRd9Bsyf2eG53Mws0TePiOfMYU1RMSEEg1GV4wZDhD5h8drS6y/GbJprQeBTTNElISMDtdnPs2DF2bHoeguHpg7FmZHtQ3hMoz6GYly1EX0jLgBAxUFtbS35+fo/PNzQ0sGrVKvx+f2Rv+6NHjwJQ2pjBhuPjWPy5A2RlKZ58yk1tbe9zelZWiJWPtDBxYoD1xyeTluxlpPcwI0eNxmYL/4l37ArweDxRiwu1Pd92buQYsd414R9DRZ03sttlG4eumJQVvlvTNPF6vXi94bEBk7ObsHSF5gp2LmrA9ITweBGrfj96cnHMyxeityQMCDFAgUAAr9fbbcuAZVls3bqVzZs3EwqFmD59OocOHYpUNG121+XgDTpYPGE/Tz3pYfXqODZuiqOxsedQkJZqcfXVrdxyi59Wy84rZbO44o7HyMzKRilFZUU52Tm5US0BrS0tnDxRxvgJk7q0DiilwpV/h+WIh6K8zCQKc1M4Uh5eaVBDY9Ujl5DmsvB4PDQ0NFBfXx/5HWW7m9DjA4Oy7oJmKDSXwmosjX3hQvSBhAEhBqiurg4Ib3Xb0fHjx3njjTeorKwEoKCggJKSkh7LOdqUxvMHZ7Mg5zB3L61k6dJWPv3UxsGDBmVlBsGgRlycYvToEOPGWUyeHATNxo6aEbxbns+UmfPIyMwCws3+2Tm5XV7D6XLRUFePruuRmQRRoUDT0AhvWTxUu7Bths6G/7yXux79JYGQxlPfu5d5U7u26liWhdfrRX38GHrc8UG7Hs0eRAU8g1a+EL0hYUCIAaqtrQXaw0BLSwubNm1i/4EDZGZm4na7UUpFugXOxB+ysenkON6tKGRyWiWjCxpYMqGJRGdr5BzTSMVIG4+WeRHbT6Xwdsk7QNc+/p4GpF0yfwGWZWHoOpZlhQNAh3OHw+ZEo7KSWDw2PBiwuyAA4cGXSUlJtDqc4T6TwTTEf97iH5+EASEGQCnweptJS0vH6XSyc+dONm7cyCWXLeDrK8P71n/04Qe8vfmtPpXbGrKzrXok26pHAuCO05gzezbuxBSClkFScgr1VXWcrDhBWno6dbW17N29ixkzLyI7JydSjmWFK7zO2+xqmoYC4mw6AQuG7giB7tV5Wihr0MjoYSaoZVnU1dVRWVlJksckwzV4b5UqaEd3JA9a+UL0hqY6b2ouhOgVpSAYAotwf/u2jz5k86a3mDfvEhZedXXUub995lfU1tREHZs562Kmz5xFY2Mj615djWmavX7trOxs7ln+AA6HA8uyeHXNnzm4fx+6rpOZlc2EiZOYedFsAgE/O7Zt4/JFV2BZVpdQ4NDDMcC0wlHAZjCkpxQC7D5cxVUrX8TjC2DT4ZV/v50xGTaqqqqorKyksrKSqqoqQqHw1MNLco5zae5hXLNPxLzFRIU0/J+MxDHjMWz5S2JbuBB9IC0DQvSTpYjs8qdpGrNmzyUvL5f8/AIC0VPYu4zUv/6mW5g0eSoAWdk5PPClr/Ls00/2+rVnXTwnUqamaSxech3Hjh4h4PdTWVFOZUU5f397M3a7ncsXXYkVCqEbXddJ1rRw5T+c9iP4yR/ex+MLj+I3LcXXnniJZdND6Loe6dJp+4yk6zqnmhPRlYby2dHiYzujwPKE96XQUyfEtFwh+moYvQUIMbh0XaMgvwAN8Le2b1l8qPQglRUVkcfJySlMnjItMspf0zRSUlP79FrBQHSl5HbHc+31N3Y5zzRNqqurIkEgqqJj6I8N6M7OgxUdHmk0mwb66fETwWAwqvXEsizKmpJpNu2YlQkxv5ZQVRJaUiFaYkHMyxaiL6RlQIh+0rVw03pbP5uhaWga7Nixg3Xr1jFqdD5xcXGUHjwQ9X1Ol6tLWaE+dBEAfPjBu0yeOg2XyxUZ/Ddy1Ogu5ymlsMwg77+7hXHjJ9DU5OH4sWMkp6QwfeZMLKUP+W6Bzmy26M9AGYl2MjJSqK6uxu/34/dH7xWg0NhRPYJL7QHseR60uE7NPv1kNduxGuJwzLhFVh8U5520DAjRT5oWHnlv10//34D169fz2muvoZTC09jAwQP7UUrhcDjIyR1BnNNJVWUFJ0+eiJRjWRYv/+8fu5SflpZOUfFY0jMzu/T1N3u9bFj/OnC6wrcsjpcdA2DsuPF8/pprmT5zFgC7d+8mMz2V3/32GV764//gdLmYPvMiLCu80mDnBXiGuiVzxqDRPlyyIKGFqqqqLps2QfvAy23VefiCDvyH0mOyMqOyIHg4Ey1xNMaoq8/+DUIMMmkZEGIAlOL0tr+KUMgiEAx/ws/NzaW8vByAtPR07ln+AG63m4Dfz+qX/siffv8Cy7+wgozMrPD+Affcx+tr17B3z24AJk6azA0339a+WFBrC2vXvMyUqdMZUzyW+vo61q97lcOlB8nKzqGqsoI3X3+NCRMncdOtd0TGCBQVj6PJ4+HT3Xv44he/yKpVqxg3fiLQXtGFLNB7se3yheSTfadY+cs3OVnt5Zp5RfzHA/MpLT3Anj17sJWXsbBQp8KrkZ+smDmivXa32WyYponL5cLn80VmYwQsG7vMK7m0aQOhk0nYRvZ/XQClwDyWimqx4bz8u2i6fcD3K8RAyWwCIQagtUPrftufkt/vp6L8FK+vXUNGZhYXzZ5LUfHYSL+01+ulurqSMWPCy8+2bRSklOL//+jfAFjx4NdIS4ve+KjjksLh8y103Ygc7zzwrU0oFMIwDNaueZl9n+3hrmX3MTq/IHKOTQ//GyoCwRAFd/yS+qb2tRlcNsXX55mRgZK6rqPreqTib+sayMjIoKqqKqo8p9PJ0qVLGT16NMH9/0Nw33MYeY3Y8jx9HnOhrHAQCFUl4JjxLWz51w7oXoWIFWkZECJG2ipqp9NJQeEYHnrk0UiF27GSTkpKIikpic45XNM04pxO/K2tZ51mGB54aES9buev20KCYRhYlsWUadOZMXMW6enpVFVVkpWVjaZpmJYGKjytcCio9bREBQGAFlNjZ4XO/KI4Wlpa0HWd+Ph4GhsbASgqKqK0tLRLEJg9ezaLFy/GOD0A0zZuGUHTJFT6IqFGJ46iWnRn78YQWM12goczUS02HDMelSAg/qFIy4AQA9DbPveOn+p7el4pxeFDpax+6Y+MHDWaO+++B7vD0esyuisT6NJqEH4cblXoWK5ziHw0sCzF5Pt+zdGKxqjjaS6Lxz+fyM4TAV7b5Sdo6VwyLpUrRjV2GTSYkpLC0qVLycrK6lL+008/TZzvANfm7yPRHsBI82Fke9ET/GidWlhUSMNqisOsTMBqcNFoJpJ95Y8xUsfH/L6FGAgJA0IMkN/s/2q1bZV0WwuCZVn84qdPEAwGsdvtLL13ObkjRvapvM6Boa2b4GznDpUwAFDT0MyYu54kaFpRx+eODLH1RPTPItVp8ZU54U/3mqZx5ZVXctlll3UbvDZt2sR7771HYmIirc0NTEsvZ/7oOhyhBhQKnCF0R7hVJ+S3ofltaEBNq4td9YXsrErj5lvvYMqUKYNz40L0k4QBIQZIKfD3Y7aZUoqdO7Yxc9bFUf3+p06d4ERZGe+/u4VHHn08qiLvXIErpSIr5bWdd7bWg+gy2pchHkphAOCVLftY9oM1UcfcdoUv2PXnc/tkk4XTRnDnnXeSlJQU9VyLP8hDP1vPhq2lJOgtLCi2ke30kxQfh2EYLFp4Odv/9mdy3E1kub24DBMFtJh2Kn0JlPsSqW6Nx+Vy09LSgtvt5hvf+AZ2uwwcFP84JAwIEQOtfVsmIKLzzoEdK+qe9hXo7vtRCu0M552NXYNuGg8uaEopptz3NEcqGlAqvC7E2Lwk9p/oOhNgzijY8JtHcTqdUcctS7Hw4ef5ZF95W6mARrxd8YWLFcUTp/GTl/cQCIa4eCTkp4Rw6FDt04h3KDI77X2QkpJCQ0MDixYtYuHChYNz40L0g4QBIWIgGIJQD39J3W4V3EudZxAMxuI0Q61FoKPyWi8//N3fqWn0seL6WeTnJHPFIy/Q4I0eI3DNWJMZuYqCggKWL18e+Tn/YeOnfPGJdd2W7TAUgVB3v4/21pYrCkPMHdUe6rKzsykvL8cwDFauXEliYmLM7lWIgZAwIEQMKBXe7KenQND/cs8eAM4WNs5UxlCbVtgbZshiwdd+x86DlQDkpdq5d4ovaprgnDlzWLJkCU/8/l1++PyWHhYa6mmnx/bjhqZ4bL4ZVXZeXh6nTp1i6tSp3HLLLTG6KyEGRsKAEIOg7a+qrRIwrfC/jmMDevMpv6fzBtJKoBOuqgwdBtCzcEFrDZi8+WEpuq6xZG4xAX8LGzduZNeuXVHnTZlzJQ/84n3MUOj0rJGOAaBzGOj62K7Do5e1hwGbzcb48eN5dv1nfHJSB93G9ZeN4zePXY/bKWMIxPkjYUCIc0CpcKuBdbrvGgvONMygL5V9b8/VCbcCDNcA0BuBQID169dTUlISObblqM4Hxw2Ugikj7Ow+1bZJVNtbp9bp67avFPMLQoxJhZwEhaaB3W6npELjtT3Rb7uPL7uUH3xx0WDdlhBnJWFAiPPMUnTZ8rg3OoaAjtURhCt+XQPz9EG7Pry2KR4oy7JYs2YNW7fv4amtNjpW8qu+fS1vbPgryYYXhwFH6mBksiLFBccbNRIdCpsBW47oHKgNj8pMilN8ZXZ4BcQ3DxiUVGhRZd5y+QT+8P1bz/FdCtFO3h6EOM+iq4Ww7gb2G51Oimymo0GcLTwQ0GG0b5pkM8LHnDYJAn2l6zq33347D3z5ITr/dkbnpPL09x8gP91Oultx8UhFTmL45zw2Pfy1wyASBAA8fo23D4d/CYbWuasBbpwvixCJ80veIoQ4z7TTlXlbRe60gd0W/jSva+F/Dj1cwcedPieuQ0Xv6JAc2s6XHXFjY/zoDBbNzI88zoq38JbvIzk5mWXLlgHhLqD6FvAF27+vux//J6cMfvORwfZynXAIUNh0nRe+dyN3XzV5UO9DiLMZwpOKhLiw6J1qEEPv2kKgad1XNGJw6LrG2h/dzavv7CMUUmQ7Gnjnb5sJ+Fu44YYbWLjoCh56cgtH6nU0FNeMDTE1RxGyIMNtUeOL/rzV0Br92LQUn5tddC5vSYhuSRgQQogzcNgN7ryy/ZN7RmoSa9euxefzYWRP5Uj96c2o0NhQarDtpKLKp2NoiuI0i9K67hpgw10FUwozSU10dvO8EOeWhAEhhOiDadOm4Xa7eemllzi2ty7qOUtBlS/cdhNSUOPTsOkqvDMk0HHWwaRcO6//ZOmgLCQlRF/JmAEhhOij4uJi7r//fka6m8lOan8bHZmkorpxTKvrCo+ZbsXNE03uu9hOdlrCublgIc5CphYKIUQ/1dTU8LsX/ps9ZU247AqXHV7YYYtshrSo0GRXhU5dS1tgUHyuKMT7ZQaBEHzn3sv43vKF0jogzjsJA0IIMQAej4ef//znhCzw+KE1CG8fMahu1miNbG+tYdctriuq4qr8Wi7ObWRMcgs2PTzWQI/PRk+djJExEyNvEZrNdZ7vSgw3MmZACCEGICkpiQov/LHEhj+koaE6LAAVDgFfn3WMh2YdI81pEooL4kj2o7mCoCtQGqrFg1l3HPPEZrTdT2EruBH7+OUSCsQ5Iy0DQggxAJ5mPyNv/ilBq2tT/+SMJp5ZvJvxaT7s2U0Y2V50d88LUVt+g1BlAqHKZDRnBo6Z38XImD6Yly8EIAMIhRBiQDZvO9JNEFAsGFnHhjs/ZtwID86pFdgLG84YBAD0uBD20Y04pp4C4xT+9x/DPPHXwbt4IU6TMCCEEAPw3q6yTkcUs7I8/OmmnThTW3BPrUCPD3b7vT3RnSaOiRXoaV782/6DqgNvx+6CheiGhAEhhOinD/ec4FevfHL6UXiJYbctxKprd+NI8OOcUINm9K8nVtPAXlSLluzD3PkEC1b8gufX74zZtQvRkQwgFEKIfgiaIX4dCQLQtlD0t+ceYXRSC86xtWj6wIZkaRrEFdWR4HHylfFb+dLPfFTWN7Pyjrk4HfL2LWJHWgaEEKIfHv/1Jl5+ey/tqwoqkhxBvjzjOPY8D7rrzOMDekuzWzgL6rl1XBUFyT7+9bm/c/U3f08g2I99r4XogYQBIYToh3XvHYisIdC218DdEytwGApbljemr2Vk+DA1xRemngTg432neOL37/LU6o84XuWJ6WuJ4UnCgBBC9MPUoqwOSw+Hv7quqAo9uQXNYcX0tTRdEZfZzA3FlZFjP/r9ezz+603M+dJvJRCIAZMwIIQQ/fDMt68nMzW+wxHFjGwPtkT/oLyenuAnP8lPoqO9+0EBDd5W1r23f1BeUwwfEgaEEKIfslLjWfq5KZHHIxL8JNgtNHffphH2lnZ6euL4tGbaZi60OX7oM5qbmwfldcXwIGFACCH66d9WLGLcqDQA4u3hAX2aLbZdBG00I1xugsMk3C2hoQEzc0O4fMd48skn2b59O7KorOgPmZsihBD9ZLcZfPTsCnJv/hnm6QygulmWOBaUCpdrdij/87PHMCHXwVs7SmnyBfjfHevJSXub2xZfyvjCEZys8TJ34ggKR6QOyjWJoUPCgBBCDEDJoUpa/CEqQk4sBcpvA2I/bkC1ht+uj3vaNy966+PDbAR0HUKWjgYcqG3lbx1WLLTbdDb+/D7mTsqL+TWJoUO6CYQQYgBy0hLQNGgxDUobXKhmx6C8jmp20BQwOOZxth2J/DdktR+xVHTLRNC0+Np/rpd1CcQZSRgQQogBGJ2dzNPfuo7k+DjeO56Gv9bNYHTb+2vcfHAqpcOR3ndH7DlSzY3f+RO+1sEZ3CgufBIGhBBigO5fMp2/P3U//703D1tIx6p3nf2b+sDyOjBa7Tz/aR59CQEdvbOrjLv/dTWWJQMMRVcSBoQQIga2lJRRUpXIxxVJtJaloGI0qUAp8B9L4YQ3jo1HM/pdjmUpNn58mKdf/eTsJ4thR8KAEELEwKSCTAC+9dcJqBYb5smkmJQbqopH88bxjU0Tu4wH6I9/evavnKxuisGViaFEwoAQQsTAZVNH8atHl2DFF/Bfe4oxTyUTqnEPqMxQYxyBo6m8sHsEb5elx+Q6zZDFc2/siElZYujQlKxQIYQQMVVTXcXh17/J5NQK7Pn1GDletD58qFcKrFo3/kNp/K0sjXvWzSAQit1nt4xkN2WrV6L15aLEkCYtA0IIEWMZmVkEir/CB5UjMctS8e/NxvLZe/W9VquBf38GwUPprN6XE/MgAFDT6ONIeUNMyxQXNll0SAghBsGll83nt5/tw1N9imtcnxH41AEJfmyZzejxATRXEE0PtwKoFhuq2UGwJh7V6KTeb+PRzRNZdyhr0K5v+4FyxsjKhOI0CQNCCDEIdF3npptu4tlnnyW1cAU5KWWYx16nsCkO/XTrvIVCO73HAECdlc7qPensr89ky4m4wbs2TaOqXjY2Eu0kDAghxCDJzs5mwYIF/GXTFv68P5FTdbNx20xWzGxkcmYzwbhMDLsLT201ydljMYmjPlTOlmMKt9NGk9/E6ue6AmeiUDJeQESRMQNCCDGIFixYwGFvIuV1LQD4TBtPfpzGoxtHURKYw/IvfRfTOQq7K4WTJ0/yq48dHKo3KG8cnCAA4a6JrNT4QSlbXJgkDAghxCAyDIPp06agaJ+4pYDmoMaqNz7lxb+UkJGRgWVZ+AIKb4t5+iytw9mxN2tszqCUKy5MEgaEEGKQPXzX5RRmdfwkHq7odQ0OHK8lMzOTxsZGcrO6G9AX+9aBrNR4CnJTzn6iGDYkDAghxCBLio/jk+e+ythMI+q4Ugrq9pOSkkJtbS1FY8ZweVH7UK4ElwOHLbZv07qu8eUbZ8mYARFFwoAQQpwDJYerOVgdvY3wvXPjiQtU8+GHH6KUIisri0vzWjj55wfx/OVxql9/jK/fNiem1+GwGTxw3cyYlikufBIGhBDiPPnmirtITEykqclLlRdKSivRNJ1Dhw5ht4dbCP5p+QKS4mM3zfCJB68iNz0hZuWJoUHCgBBCnANzJ+Zx0/zxkccP3nQRE8fkcs899/CXgwbPbbfzyH99yjOf2Fj247/xrafewh8wcTvt3Hr5hAG/vq5pXDO3iC/dMGvAZYmhR/YmEEKIc8SyFLsOVeKwG0zMz0DTNEpP1DH1/t90OVfXNL519yX8cMUi6jwtzH/od/1eQljT4KqLxvDSD2/DFde7ZZHF8CItA0IIcY7ousaMsTlMKsiMDODraRyfpRQlpRUApCW52P3iV/nBA4v69brfu3c+a/79DgkCokcSBoQQ4jwqykvjwZsuijrWFhCuvKgwckzXNR5begnLF0/r9twzrUew8s652G1Gj88LId0EQghxnimlOHiijkAwxJaSY2zde5JLp4zqcQqgp9mPw6azr6yWzduO8M+r3o56PtHtoMkXAOC+xVN59vEbzsl9iAuXhAEhhLiAKaW4419e5o0PDgKQn5PMhp/dwzslZaQkOrl23lh0XdYUEGcmYUAIIS5wQTPEmi37aG4JcPOCCaQluc73JYkLjIQBIYQQYpiTAYRCCCHEMCdhQAghhBjmJAwIIYQQw5yEASGEEGKYkzAghBBCDHMSBoQQQohhTsKAEEIIMcxJGBBCCCGGOQkDQgghxDAnYUAIIYQY5iQMCCGEEMOchAEhhBBimJMwIIQQQgxzEgaEEEKIYU7CgBBCCDHMSRgQQgghhjkJA0IIIcQwJ2FACCGEGOYkDAghhBDDnIQBIYQQYpiTMCCEEEIMcxIGhBBCiGFOwoAQQggxzP0fP4j5sxuN0LwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import community\n", "\n", @@ -880,14 +681,25 @@ " print(node, \"is in community number\", parts.get(node))\n", " \n", "n_sizes = [5]*len(G.nodes())\n", + "\n", + "plt.axis(\"off\")\n", + "nx.draw_networkx(G, pos=spring_pos, cmap=plt.get_cmap(\"Blues\"), edge_color=default_edge_color, node_color=values, node_size=n_sizes, with_labels=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# enhance color and size of the ego-nodes\n", "for node in ego_nodes:\n", " n_sizes[node] = 250\n", "\n", "plt.axis(\"off\")\n", "nx.draw_networkx(G, pos=spring_pos, cmap=plt.get_cmap(\"Blues\"), edge_color=default_edge_color, node_color=values, node_size=n_sizes, with_labels=False)\n", "\n", - "# enhance color and size of the ego-nodes\n", - "nodes = nx.draw_networkx_nodes(G,spring_pos,ego_nodes,node_color=[parts.get(node) for node in ego_nodes])\n", + "nodes = nx.draw_networkx_nodes(G, spring_pos, ego_nodes,node_color=[parts.get(node) for node in ego_nodes])\n", "nodes.set_edgecolor(enhanced_node_color)" ] }, @@ -911,7 +723,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -931,18 +743,7 @@ "id": "shV3rrYbjkGy", "outputId": "23e0e823-56d7-4044-a490-a98d91978dc7" }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9Z3RUZ5bv/TuVlHMACRQQiogggiSCTQZjMMkYHDC0jd3T3dPTt71m3rfvu+7MnZm+c9ea7tsfbt/b42l3t+22TTAGbAuTMSYnCQkhhAgqSSjnnEoVz/tBrmOVVJJKQjK2eX5rea3uqlOnThWl8+xn7//+b0mWZRmBQCAQCARPLKrHfQECgUAgEAgeLyIYEAgEAoHgCUcEAwKBQCAQPOGIYEAgEAgEgiccEQwIBAKBQPCEI4IBgUAgEAiecEQwIBAIBALBE44IBgQCgUAgeMIRwYBAIBAIBE84IhgQCAQCgeAJRwQDAoFAIBA84YhgQCAQCASCJxwRDAgEAoFA8IQjggGBQCAQCJ5wRDAgEAgEAsETjggGBAKBQCB4whHBgEAgEAgETzgiGBAIBAKB4AlHBAMCgUAgEDzhiGBAIBAIBIInHM3jvgCBQPD9QJZlCmraaWg3EurrxrQwXyRJ+tbPIRAIxh4RDAgEgmG5UtTIvx4pQF/fqTwWF+rNrzcks3Bq8Ld2DoFAMD5IsizLj/siBALBd5crRY3seD8TWYa+NwsJkCTYvSudRbFDL+ZjcQ6BQDB+CM2AQCAYFFmW+dcjBQMWcej9/zJ8/fzge4qxOIdAIBhfRDAgEAgGpaCmHX1954BF3I4sg76+k7s17eN6DoFAML6IYEAgEAxKQ7vRpeNOX8rk1q1bVFRU0N3dPapzVLd0jfj6BALB2CAEhAKBYFBCfN1cOq6hrIjD968p/9/Dw4Pg4GCCgoLo0Pi7dI4Tn+6nIW8icXFxxMfH4+fnN+xrRHeCQDA2CAGhQCAYFFmWWf37ixQNkuaXJIgL8ebUW4sxm800NzfT1NTk8F9DQyOfdMTSKrvTKxnsdw4gKkDH/1zoQXFxMeXl5dhsNkJDQ4mLiyMuLo6IiAhUKsdEpuhOEAjGDhEMCASCIbla3Mir72X2iv363C0kCVRI7H4jbcjFV5ZlzhZU8uN9t52ICGUkYLW2kCj3HgIDAwkICACgu7uburo6jEYj7u7uxMbGEhcXR2xsLLnV3aI7QSAYQ0QwIBAIhsXZLjw+1Jt/HaHPwH/PuE1Jk0F5LC7Um39YGkmMl3lARqGjo0M5TqvVIkkSJpMJWYYj1pk0W3SDZitiQ7w5/dbicSsZiPKE4IeGCAYEAoFLyLLMb97Zg9XNh81rlo1qAbx37x5/3H+EZza9SPQE/yHPYTQaaW5uprGxsU/JoYH7dV1k9CQO+17HfvEUyeHD6w5GiihPCH6ICAGhQCBwCUmS8KeTqIlBo15kGxsbmeQpszYlcthAws3NjbCwMMLCwhweP3u/jowPs4d9r/p2I8nhgz8/mt19X/OkvhTVd/Lqe5miPCH43iKCAYFA4DI9PT14eHiM+vUNDQ2EhIQ8Uko91NfdteN8Bu+EGM3ufjjzJOg1TxrP8oRAMF4InwGBQOAyBoMBd3fXFmNn1NfXExIS8kjXkBzmS1yot5O+hF4kZPwlA5eO7KeoqGiAs6F9d1/UJxCAb3b3V4oanZ5XmCcJfsiIYEAgELiE1WrFbDaPOjNgs9lobGwkNDT0ka5DkiR+vSGZ3s233O85UEkq/uW5JHQ6LXv37uXDDz+koqICeDRrZFfNk+pdPE4g+C4hygQCwQ+UsVa89/T0AIw6M9DS0oLVan3kzADAwqnB/CrNiz/daKLF9s31xIV80+EgL5iGXq/n7NmzvP/++yQkJDBperpDaaA/fXf3/XURrhowhbp4nEDwXUIEAwLBD5DxULwbDL0tgaMNBurr6wEeOTNgx63lIb+a7sHMJSupdxLwSJJEfHw8cXFx3Llzh3PnznHmwGEgbvhrdSI+tJcnhjNgmhbm++gfTiD4lhFlAoHgB8Zoa+LDYc8MjLZM0NDQgIeHB15eXqN6fV8MBgMVFRXEx8eRHO7HssRQksP9nGY+JElixowZ/PznP2f102kund/Z7n7I8gQyKiT+dUOyEA8KvpeIYEAg+AExnuOCHzUzMBadBHbswsC4uOF3+XbUajVbVy4gNsRrUPEhyASoDHRW3Hf6HS2cGsxPE60EqE0Oj/tJPfyfzbHCZ0DwvUUEAwLBD4jxVLyPRWZgLPQCAHq9nokTJ+LrO7KUvCRJ/I+N0wfZ3YNKkng1yZ2TJ0/y4Ycf0tzc7HBMS0sLxrI83l47kWO/eIq//iiVIz9fyK6JNbQV3ni0DyUQPEZEMCAQ/IAYT8V7T08PKpUKrVY74tfaOwnGIhiw2WwUFRWNKCvQl4VTg/n10hD8pR6Hx/0kAxt9K1iaFMarr75KW1sbf/zjH7l+/To2mw2Ay5cv4+7uzrx585TyxIzJAaxcuYKioiJKSkoe+fMJBI8DISAUCH5AjKfi3e4xMJo0f3NzM1arVREPPkqnQ1VVFQaDYdTBAIClqoC34lWkrl6liA8nulk4f/48R48eJTAwkKVLl1JdXc2pU6e4e/cuS5cu5datWyxfvhydTudwvqSkJCZPnsyZM2f48Y9/LHQDgu8dIhgQCH5AjKfi/VHcBxsaGgAICQl55E6HwsJCPD09mTRp0qiupb6+nvLycrZs2UJyuJ9D18CWLVtYtGgRZ8+eJSMjg4kTJ7Jq1SpycnLYs2cPGo2GuXPnDjinJEmsXLmSDz74gDt37jBjxoxRXZtA8LgQZQKBYByQZZk71W2cu19PQXXbqAR7o8GueP9GLtj3OR5J8f4o7oP19fV4eHhwq8bwyJ0Oer2e2NhYVKrR3b5ycnLw9PQkKSnJ6fMTJ07klVde4bXXXkOr1fLll1/i5tabSTGbzezevVtpk+xLVFQUCQkJnD17FovFMqprEwgeFyIYEAjGmCtFjaz+/UWe+8NlXv/wBuv+cJnVv7/I1eLRtfSNlEi3HlZrC4nwc6ztx4V4s/uNtFEr3nt6eh6xkyCUXx+9+0idDu3t7dTV1Y26RGA2m7l9+zYpKSmo1eohj42KiuL111/n5ZdfprW1FVmWmTx5MgaDgT/96U9cvHgRq9Xq8JoVK1bQ1tZGdvbwg5QEgu8SIhgQCMaQ8erxHwnnzp0jJcyDC79axT/NVbMlqI5jv3iKU28tfqTWt0ctExg9Qx6500Gv1yNJElOnTh3VdRQUFNDT0+M01e8MSZIICwvDZDKRlJREV1cXLS0tBAUFcf78ed59911qa2uV40NCQpg9ezYXL15Uui8Egu8DIhgQCMaI8ezxd5XS0lJKSkpYtmwZKpWKuBAPwqWWQQ15RsJoMwNWq5XGxkbwcE2nMFSng16vJyIiYtRBSU5ODjExMQQGBrr8mitXrqDVatmwYQM///nPWbt2reK50NbWxl/+8hfOnTunZAmWLl2K2Wzm8uXLo7pGgeBxIIIBgWCMeNxT7WRZ5uzZs4SHh5OQkAD0GgSN1Q51tJqB5uZmbDYbU8Ndy0oM1ulgsVgoKSkZdYmgrq6OyspKl7MCAJ2dneTk5JCeno67uztqtZrU1FR+8YtfsGzZMiUAuHTpEu+88w7V1dX4+PiwYMECMjMzaWtreyzaEYFgpIhuAoFgjBhJj39/3/uxoKioiIqKCrZv365kAdzd3bFYLFgsFjSaR/tzH22ZwN5JsCAxgrjQ+lF3OpSWlmI2m4mPjx/xNUBvVsDb21sJlFzh6tWrqNVq0tPTHR7X6XQ8/fTTzJs3jytXrnD9+nWampr4y1/+woIFC1i0aBEZ1+/zzP+5RK3hm4zMo86HEAjGC5EZEAjGiMc51c6eFYiMjHSop9t38kbjo43VtdlsGI3GUWUGGhoa8PT0xNvbW/H271+wcKXTobCwED8/v1EZF5lMJpeFg3a6urq4ceMGaWlpgwZBHh4erFy5kl/+8pfMnj0bSZK4du0a//h/P+JoRxS1Bsfjv03tiEAwEkQwIBCMEfYe/8Eq85IE8aHjM9Xu3r171NbWsnz5cofF1N4S96ilgkcZX9zXhnjh1GB270onxM1RhT9cp4Msy+j1euLi4kalfSgoKMBoNI6oRHD16lVUKhULFiwY9lgfHx/Wr1/P3/3d3zF1aiznO0KwIdM/7Pm2tCMCwUgRZQLBuDMSt7lHcaZ73Nh7/F99NxO530LwqD3+Q2Gz2Th37hxTp04lKirK4Tn74j1WwcBoygT19fUO17UoNphX/B9S3mFl/dZXXfp3bmxspLW1ddQlguzsbGJjY/H393fp+O7ubm7cuEF6evqIPnNgYCApy5+jtWBw8WBf7UhyuJ/L5x4vvs9/c4KxQwQDgkdiuBvJSNzmHtWZ7rvAvAhf1nk9JFueQk33N4/Hhnjx6w3Tx+Vz5Ofn09jYyObNmwc8N1bBwGgnFlqtVpqamkhNTXV4vLOzg6mBASxLDHXpPHq9Ho1GQ3R09IjeH6Cmpobq6mpefPFFl19z7do1AJeyAv153NqRkfBD+JsTjA0iGBCMmuFuJPae+/7ZUHvddPeudBbFBivncvXY7zK3bt0ixNbMif/yKlXdEg/Kajl/8jD/Zf3zxI7DzdVqtXLhwgUSExMJDx+4sjzuzIC9k6Bvnb+jowOr1er0egdDr9czZcqUUQ1JysnJwcfHx+WsgsFgICsri9TUVDw9PUf8fo9TOzISfih/c4KxQWgGBKNiOHOdy/oGl3vuvwv9+WOBzWYjMzOT5ORk/P39SQ73Y/P8eKb4aykqKhqX98zNzaWlpYVly5Y5ff5xawbstr32AUUADx48AHDZOKinp4fy8vJRtRQajUby8/OZPXu2y/bF165dQ5ZlFi5cOOL3Axe0I4yfdsRVfih/c4KxQwQDghEz7I1Ehl/uzXSp5/6//uYP/Orf//BY+/PHisLCQpqbm5k/f77ymCRJxMbGotfrx/z9LBYLFy9eZMaMGQ6LbV8kSRoTrwGDwYAkSUpw4SoNDQ14eXk57LDtY35jY2NdOkdxcTE2m21UeoE7d+5gNpuZM2fOoMf0nSNx82E9mZlZzJs3Dy8vrxG/H/R+5/+wNBKQnQQEvUvtPz6b8Fjr8o/bE0Pw3UOUCQQjxn4jGQwZaDK6dqPrsmkY2GjmnO9CjXUorl27RmRk5IBpevHx8dy8eZOmpiaCgoLG7P1u3LhBZ2cnS5cuHfK4sQgG7O6DI13A+nYS2KmtrUWj0bicgtfr9YSGhuLnN3KxXU5ODrGxsYO+1lmpy1+KJS3c+RAjV5BlmYY7l3k+wECeJp6ihi7luSmBHkwzFFCZ04Y17iWX2xzHmu+TrkHw7SCCAcGIcfVG4gp/+/p2ZODYH4a3bn3cNdahqKqqory8nG3btg14bsqUKajVagoLC0clSHOGyWTi8uXLpKSkDGutO1aZgdG0FdbX1zNlyhSHx9rb211W9cuyTFFRESkpKSN+7+rqampqanj55ZedPj9YzbxN9uDH+26ze5fHqGrm+fn5lJSU8NNXXiE2Npa7Ne3U9xHYlpREs2/fPg4fPszmzZtdDrDGUvX/fdE1CL49RJlAMGJcvZFEBngwsJDQS9+6aXywB0Ea0+DHjmN//lhx/fp1AgICnLrb6XQ6pkyZMqalguvXr2M0GlmyZMmwx45lZmAkWK1WmpubHUoY7e3tWK1WJk6c6NI5qqur6erqGpVeIDs7G19fX6fliPGqmRsMBk6dOkVycrLiiZAc7seyxFBlPsTUqVN5/vnnyc/P59SpUy69x1hPwnycnhiC7yYiGBA4pW8dtb+nenKYL7EhXgy30G+Pl76+2cj9nu+93f790kh6enr485//zDzpodNj7XXX8ejPHyva2tooKChg/vz5g4rU4uLiKCsre2QnQOhdcK5evcrcuXNdSp2PVTAw0k6CpqamAZ0EdiFlTEyMS+coLCzE3d2diIiIEb230Wjkzp07zJkzx+m/yXjVzL/88kusVivPPPPMkMclJyezdu1aMjMzuXLlypDHjsckTEmSeDVJhzNdg8T4eWIIvruIYEAwgOF2IZIk8VKcetDFG2Rem+lNbd5FntHp8ZccF6IwLxUvBNVQcu0Ef/7zn2lqaiJc3cFqbeGAY0PdbGz0rWDOJO/x+riPTFZWFm5ubkOmsuPi4rDZbBQXFz/y+127dg2bzcbTTz/t0vGPKzNgn0nQNxiwf35XgwG9Xk9sbKzLnQB2bt++jcViYfbs2c6vbQQ1c1cpKysjNzeXlStX4uPjM+zxqampLFmyhK+++oqbN286PWa8Mhj5+fmUZp7m76ZLxIY6/m2Fe6uGdIMU/DARmgGBA670Hs+a6E59/iVWa93JskbRYvtmkfCXekjXlFN05Sa+vr7Q3s4bYbXoG7tJmjOfezevkxziz7JlS/n444+V14WHh0N1Na/6llHeYWXjSzuZ6OfBJE+Zd955h5MnT7Jp06Zv62twGaPRSE5ODvPmzUOn0w16XEBAAMHBwej1eqZNmzbq9+vq6uL69eukpaXh7e1agOTm5jYmmgFX6/x26uvrB3QS1NbWolKpXMpodHR0UFNT49Cd4QqyLJOTk0N8fHzvb9AJY10zt1qtHD16lMmTJ4/I8njJkiV0dXVx9OhRPD09SUxMdHh+WLHuKNwM79+/z+eff86sWbPYuHEtfw+KriEv8yKexhYWTn3W5c8g+GEgMgMCBVd3IV9+eabXNEbdwY8n1bNBV8BKrZ4/bozkJd9iwtUdyLJMe3s7Wq2Wzs4OglQG1qZEEeZupa6uloyMDOXc0dHRVFdXo9VqMRp7mOQpsyJpIsnhfvj7+7NmzRry8vK4f//+t/l1uERubi5ms5m0tDSnz/ctt7hPjKWwUP9IvduXL19GpVKxaNEil1/zuMoEDQ0NDnoBWZZpa2vD19c14ZtdY+FqC6Kdqqoq6urqhlyUh6uZg8xED5mEUNfaC69cuUJTUxPPPffciFLrkiTx7LPPkpSUxKFDhygtLXV4fqwzGMXFxRw6dIikpCQ2bNiAJEkOuobls+Opqammvd15eWSo8qHg+40IBgQKrtZRz90qVG4Cnp4eBKkMRKjbmKAz4+Xl2C4WFRWFyWQCen3bAwICkGVZWZx8fHwoKysDYPbs2VgslgG7xlmzZhEfH8/Ro0fp7u7mu0JfkyFnO9D+5ZZ/y7awtyWaI1kPRvV+7e3t3LhxgwULFoxoYX5c3QT92wrb2tpGJB7U6/VERESM2AUwJycHPz+/IU2N7HMknGpaJFBJEnPkIvbs2TPsb665uZlLly6xYMECJkyYMKJrBVCpVGzevJnIyEj2799PbW2t8txIMxhDLdZlZWXs37+fmJgYnn/+eaell7i4OFQqlWIM1ZexFjEKvluIYECg4HLLoEdvutjLywubzQaAp6cn2dnZNDc3OywaJSUlSJKEWq2mtrZWqSPLskxwcDAvvPCCcsOyLxL9+9IlSWL9+vXYbDaOHz/+SJ9xLLl//z6tra1O2wUHE321yu68lVE8KtHXxYsX0el0I06bu7u7Y7FYsFqtwx/sBHvwNpJgwGKx0NTU5PBvad/19m81HOz1JSUlI+4i6OnpGVI42Jd5Eb4861E8QKcSF+LNnjfS+f9ef56GhgbeffddGhud/3vJssyxY8fw9vZ2qbNjMDQaDS+++CKBgYHs2bOH5uZmoDeDERM0eFcOyET6aUia6DPkYl1dXc2+ffuYPHkyW7duHdTfwMPDg6ioqAFZuPEQMQq+W4hgQKDg6i7EXe5Bo9GQlJSk7Jo0Gg01NTU8++yzyqLh7e2tBAseHh7s379fSaFKksT27dvJyspSHsvKygJwurvy9vZm7dq1FBQUcOfOnUf7oGPE9evXiY6OJiwszOHxocotIGFDHrHoq6WlhdzcXJ566qkRuwA+6nwCewfESLIRTU1NyLLsUCawdxK4EgyUl5djMplGHAzk5eVhs9kGFQ72JTMzk1C5hf+WIvNKQBlvzXbj2C+e4tRbi1k4NZjIyEjefPNNNBoN7777ruKc2Jc7d+5QUlLC2rVrh9SMuIKbmxvbt2/Hzc2NPXv20NnZSU9PD/OkEiScWXP1dgIkdRfw63f2D7lY/+avnxMaGspLL7007HyHxMRESktLld+LsC5+MhDBgEDBlTqqv2TA09iC2WwmMTGRrq5ed7X29nY8PDzw9fWltbUVSZIUMxxZluns7HS4CdnrxwUFvTeRpUuXKunRwUx0pk+fzrRp0zh+/DidnYOLqsYbWZY5m1vI1dJ2QuJmD7gJDlduAWnEbWvnz5/H09NzwPQ/V3jUYGA0EwuddRLU1NQgSZJLLoyFhYX4+vqOKO1uFw4mJCQMq+Y3m81cvtxrdLVy5Qq8La3Mj/RWvADsBAQEsGvXLiZPnsyePXvIzs5WnuvvKTAWeHl5sWPHDsxmM7t37+bgwYMEWZr4z23JA1T//lIPLwTV8NbLz3K0xgObLDtdrG2yzFXjJF5++WWXAsmEhARsNpui2RDWxU8GIhgQKAxVR7XvQtI15ahUvUdcuHBBWWC8vb2xWCycPHkSgBkzZlBeXu5wBqPRiNVqVRaV06dPo1ariYmJYfHixWg0wze3rFu3DpVKxdGjRx/LTsSeit11QM8Zcxx/e6RiQN10rEVfDQ0N3L59m8WLF49qat+jBgOjmVhYX1+Pt7e38hpZlmltbcXHx8elNkF7S+FIxHgVFRU0NDS4pOa/ceMGJpOJxMRE/Pz8MJvNgwY77u7uvPLKK8ybN49jx45x8uRJbDYbZ86cwWKxDOspMFL8/f159dVXaWpq4uHDh2zevJlnZ0/h9FuLOfaLp/jrj1I58vOF/HhSPd5d1Ry7mkeTRcfgtt4SjWYtD1vNLr2/n58fYWFhim5gPNowBd89RDAgcCA10o/nvEuZ4O640PpLPWwLqVc6BYKCghx258nJyZjNZtra2nB3d2ft2rVOF66IiAhiYmLQaDRUV1djtVqZP38+PT09WCwWAM6ePauIDvvj6enJc889x4MHD7h9+/YYfvLhcbVuOtZta+fPn8ff33/IYTtDMZpgoK8Q7U5lK7I88sxA3xKBfZTxYAOV+tLU1ERzc/OIBxPl5OQQEBAwrIeBfcATwMqVK12ayKhSqVi7di3PPvssWVlZ/PWvf+XmzZusWLHCJU+BkVJbW4vVakWlUpGbm4vNZnNQ/c+YHMC2bb21//tltcOfkJEt1gkJCej1eiwWi7AufkIQwYDAgYKCAoIsjfznc+Fs0BXw27VRbNAVsElXgE93tbLA22vCdnJzc5X//dRTT3HixAnMZsediFqtpqKiAo1Goyz8gYGBxMbGKiUCrVZLe3s7J06cGPQaExMTmTlzJidOnBi0BWqsGUnd1BWHxgCVwaW2tZqaGu7evcuSJUtGPdRmpMFAfyHajz8rIcOUTF6tweX3bGhoIDj4G9OaiooKwDWzIb1ej1qtdklbYMdgMFBQUMCcOXOGzSZkZ2djNBqJj48nKChoRJmPtLQ0XnrpJaqqqtBoNCNue3SFyspKjhw5QkpKCtu2bePBgwdOM2EhISGsXLkST8l54NyfkSzWiYmJmEwmSktLCVYZCFQb+T7bhQuGRwQDAgVZlsnKyiI2NhatVkuQysBUjx6CVAYkqddYpW+at7W1VXlt3xvpgwcPyM/Pdzi3j48PNpuNwMBACgoKlMdnzpyJJEnU1tYq9eR169Zx69YthwCjP2vWrEGn0/HFF198K+WCkdRNbTYbT3vWOhV9SVLvf2nq8gFlFGecO3eOoKAgZs6cOeprt9eJXQkGhuqCeGPPLZdU4xaLZcBMArvzYGRk5LCv1+v1REdHj0iQl5eXhyzLwwoHrVYrFy5cAGDVqlUALmUG+lJXV4csy3h4ePDee+9RWVnp8nUOR3t7O5988glhYWGsW7eOhIQENm7cSG5uLmfPnh1wfHp6OnOmTMBfMjCWi3VoaCj+/v7cuHGDDz74gDUh7agkif5xlrAu/uEgggGBQmVlJTU1NaSlpdHV1YVWq+XcuXMOgr6WlhanfeL2HbokSVRUVCjBgf0Gm5aWxqpVq2hubna4adgzDbW1teh0OgIDA5k1axYpKSkcP36c+vp6p9fq4eHBhg0bKC4uHtTKdSxxtW5a197DkSNHUDXo+d26KGKCHXvkpwS6s3tXGgn+DDu4qKKiAr1ez9KlS0dsx9sXSZJc8hoYrgvCVdW4PWvUVzxYXV0NMGyZwGg0UlpaOiJBnl04mJSUhJfX0NmW3Nxcenp6iI2NVTIXIxFINjc3c/HiRRYuXMhPfvITAgMD+eCDDwYEv6PBbDbzySefoFKpePHFFxUNzaxZs1i1ahWXL1/m+vXrDq+RJIlp05JI15SP6WwPSZIICQmhsLCQSZMm8S8/fZndu9KJDeknYlQZ+OOLycK6+AeACAYECllZWUravru7G0mSsFgsLF26FOi9QciyTE1NDUlJSQ67PPsCIUkS4eHhSpdBT08PKpWKnJwcUlNTCQ8PV0oEkiQpvee1tbXIskxAQAAAa9euJTAwkIMHDw6qH4iNjWXOnDmcOnWKlpaW8fhKFFytm5Y/yCcvL49NmzbxwlMz+PDFODboCngrRccL3nr++1wVi2JDiI2NHTIYkGWZs2fPMmHCBJKTkx/5+l0JBsZKNW4P4OwLv81mo7W1FS8vr2EFkCUlJdhsthHpBcrLy2lsbBxWOGiz2Th37hzwTVYAXM8M9PcU8PLyYufOnSQnJ/PZZ59x/vz5UWepZFnmyJEj1NfX8+KLLw6wml64cCELFy7k1KlTDlqZoqIiTp06RVqUn9PZHr0dB7WkRrpmVWwnMzNT+X0uXrwYNzc3FsUGO4gYP/9JGtsDymi6e1W0Ff4AEMGAAOj1gb979y6pqalIkkRjYyMmk4klS5You1L7H7wsy6xatYqwsLABHQBubm5UV1c77NBUKhWtra3k5OQo9qf28xQXF9PT00NDQwMmk0kJBrRaLVu3bqWtrW3IzoHVq1fj6enJ4cOHx/WGNG2iDyE6C0OlYiN81ZTmXmHlypXMmDEDgMbGRoJUBpYlhrIwKcuOIAsAACAASURBVFJRaMfHx9PU1ERTU5PT8z18+JDS0lKWLVs2JulXV4KBsVKNNzQ04OPjoyyu9umFrogHCwsLCQ4OVn4HrpCdnU1gYCDR0dFDHpeXl0d3dzcxMTEO19LT04MkScOWJZx5Cmg0GjZt2sTy5cu5cOECn3322QCtjCtcvXqV/Px8NmzY0DunwwkrV64kJSWFw4cPo9frKS8v55NPPiE2NhYPDw8maTrZ6lXIFq9CfhTdzf4fzWKLx318uqv58ssvXboOWZY5c+YMJ0+eVJwu+watfUWMs6NDWLduLYWFhdy7d2/En1nw3UIEAwKg94aqVqtJSUlBlmXKysrQarWkp6eTnZ09YNd0/fp1Ojs7HRZgSZIwGAyK/0B4eDiBgYFKzfr06dNUVVU59DpbrTbe+eQo5RZfmmweDsNwgoODWb9+Pfn5+YOWAtzc3Ni4cSNlZWWKadF4cO3aNebIxb06ACd1UwlI7rlHenoaCxcuVJ6zZyyCgoJITEykrq6O5uZmYmJiUKvVTrMD9qzApEmTRqyoHwx3d/dhxyePlWq8vw2xvaYeFRU15OtkWaaoqGhEJYLu7m7u3bvH3LlzhwyabDYbX331FdAbQPbFbrU81OuH8hSQJImnn36arVu3cv/+fT788MMR+WDo9XrOnDnDU089pQSRzrA7ccbGxnLgwAH27t3LpEmT0Gq1FBcXs3nzZtzcdCRN9EFVe5eOit7foyRJ3LhxY9jZHlarlcOHD3PlyhVWr17N6tWrSUhIcGpNbCcxMZGEhAROnDjxyJbXgseLCAYEWK1WcnJymDVrFu7u7ty5cweDwUBERASNjY2UlpYqGgB7JuDGjWxySuopNXnTZPPA3d1DCQzsN50VK1bQ1dXF/PnzWbVqleJG2NPTQ1RUFNVWHzJMyfz+vgdnzHF8YUrmx5+XOfTsz5gxgzlz5nDixAkHz/a+TJkyhbS0NM6cOTPoTvtRuHfvHmfOnCFc3cFv1kQMqJuGuFlY41bE8uRJPPPMMw6Lil1k6e3tTWxsLBqNhnv37qHT6YiOjnYaDBQWFlJVVcXy5cvHTJTlSmbAbjr1qEK0+vp6h2Dg4cOHwPDiwZqaGjo7O0cUAN26dQtgyPHR0Duyt6uri+jo6AFGRq4MYXLFU2DatGm89tprtLW18e6771JXVzfs9Tc2NvLpp58SHx/P8uXLhz1epVKxfPlybDYbJpMJNzc37t69y5YtW5gxYwbr16+nqqqK5ORkrl69ip+fHxqNhoCAAL744otBu29MJhP79+8nPz+f559/Hp+oaZy7X48mJJqGhsZB7Zjtg5ZMJhNfffWVGGT0PUYEAwLu3r1LV1cXaWlpGI1GTp8+jU6nY8KECWRlZeHm5qbscC0WC92+EXzWk8THLVHKIv5xWwzNWkcRkclkwmg0EhgY6NBmBpBfb+K0OZ5W2THj8LDJMMDrfM2aNQQHB3Pw4MFBd7crVqzA19eXjIwMJegYC6qqqvjss8/w8fEhKCiIbYtncvqtxbyVYGBHZAf/kq5jLbeYM8mLzZs3DxD62W++np6e6HQ6YmNjlZRqXFwcpaWlDp9JlmXOnTtHdHS0S214ruJKMCBJEjuT3Z0P70F2STVusVhoaWlxSMNXVVUBDDugSK/X4+bmRkRExJDH2ekrHBxqmJEsy0pWwNliPtzchfLycpc9BSZNmsSbb76Jh4cH77//PoWFhYMeazAY2L9/Pz4+Pjz//PMuBX7t7e18/PHH+Pn54e7uTmFhIatWrVLGYickJJCSkoJeryc5OZnTp0+TnJxMW1sbarWazz77bMDfR1dXFx9++CHl5eUkLd3E359pVtpKf36kkgxTMp9dGdwC3M/Pj2XLlvFF5gOW/e4rMcjoe4oIBgRkZWUxZcoUQkJCuHjxorJo6HQ68vLyMBqN+Pv7o9FoqJcCOFAfOmARb5Xd+aKjd7dvf+2hQ4eAXkvXc+fOKQtEZGQUF7smfL3cON4AnXmd2/UDnZ2dHDlyxOluQ6fTsXHjRiorK7l27dqYfC9tbW3s37+foKAgOjo6WLBggaJ5iPJTE6XtpPXhHSSpdwyzM3FcV1cXkiQpzyUlJVFVVUV7eztxcXHYbDYHz/uCggLq6upc2iWOBDc3t2GDAbPZTH3+ZVZrCwnzdPx3CfOS2P1G2rCq8cbGRodOAqvVSmtrK+7u7sPuvvV6PVOnTnXZT6G0tJTm5uZhhYMFBQV0dHQQGRnpNCAZKhiwWq0cPXqUSZMmMW/ePJeuy8/Pj9dff50pU6awf/9+rl+/PuA3a7PZ+PTTT+nq6nLZJri7u5vdu3cDvYGkPaNx8+ZNh8mKa9aswcPDg/b2diIiIrh79y4eHh6EhIRQXl7OpUuXlGNbWlp4//33aWtrI3nF8/zqRLnTttJ/v945ZFupOSiG0+Z4Slscf2MjGWQksgqPFxEMPOFUV1dTWVlJWloaDQ0NXL9+nUWLFmEymaiqqsJqtRIREUFHRwfh4ZO40hPudBG3t55lWaOQ5d6bqF1EePToUWprazEajb2OaqX1NJg0Ts7RizPVelBQEBs2bKCgoMDBH74vkZGRLFy4kHPnzg3akugqRqORffv2odFoCA8Px9PT06HXX5Ik6uvrsdlszJgxg7y8PKdTAbu7u9FoNMquLz4+HpVKxb1795SMiX33aLPZOH/+PHFxcS7vjl3FlcxAZmYmnZ2dxPna+P3qYDa63eX9H81jm28x//60t0vtY/bv3R4MNDQ0YLPZBkyi7E9XVxdVVVUj0gvk5OQQHBw8pBZBlmVFPDdYin+oMsHVq1dpbGxk/fr1IyrZ6HQ6tm3bxoIFCzh16hTHjh1Tfh+yLPP+519yQd/I7OXrXRJLGo1G9u7di8FgYNq0aWRlZbFy5UreeOMNuru72bdvn9J14+bmxqZNm6ioqGDKlCl4enoiSRIPHz5k9uzZXLhwgfLycmpqanjvvfcA2LVrF3+4UjtkW+k/H853ukDLssz/OHoPnDhruDrISIxHfvyIYOAJJysrC39/f+Li4jh58iR+fn7MmjUL6DWK0el0zJ49G6vVSrvah1bZg6E80Fts7jTLHr3Hf50ir66uRpIk2trakCSJbtk1M5n+qvXk5GRSU1M5deoUNTU1Tl+zbNkyAgMDycjIGPXIXpvNxqFDh2hra+P555/nzp07zJs3T9ndW61WSktLsVgsbN++naeeeorOzk6nimqj0eiw63N3dycmJkbRVcTFxVFUVIQsy+Tl5dHU1MSyZctGdd1DMVww0N3dzeXLl1GpVMybNw+r1UqYu5VlCaF4m1uHTMP3pX8ngb1EMJx40K6dcDUY6Orqckk4eP/+fdrb25k8efKgKn2DweB0Z273FFiwYMGIBibZUalUrFq1ivXr15Obm8vevXs5W1DF4t+c5n9mW/jSFMfffPZw2EXPYrGwf/9+mpqaSElJ4dq1ayxevJhFixYRFBTEq6++SkNDAwcOHFB+89HR0cyfP59Lly6xevVqTCYTWq2WlpYWIiIiOHDgAH/961/x8/Nj165dVPeohx2uVdzYzblbeurr62lra6OnpwebzeZ6S2q1c72CGI/83UAEA08wXV1dykL34MEDiotLiEtbxtn7dTTZPLDZZMXYx8vLi/yiCpfO2y3rWLRokUP93L4r8PT0fCT71NWrVxMaGsrBgwedLm72Vq/a2lplKt1IOXnyJMXFxWzdupXy8nJsNpsyLVCWZY4ePUp7ezuenp5MnDiR0NBQoqOjB3QzWCwWLBbLgF1nYmIiZWVldHV1ERcXR2dnJ5WVlVy4cIFp06YNGIk8Fri7u2M2mwcNkC5cuIDVasVmszFnzhxMJhM6nQ6TyYQsyy678/WfSVBWVgb01tKHQq/XM2nSpGFNg+zk5uYiSZISuDqjb1ZgzZo1gx7nLDMgyzLHjx/Hy8uLJUuWuHRNgzFnzhx27NhBdkUHb+zJpaLdsfVwqEXPHphWVlaSmprKlStXmD9/vuL9ARAWFsZLL71EaWkpGRkZyt/aihUrCAwM5Pz582zZsgWz2czDhw8JDQ2lq6sLnU7Hzp078fLycrmtdN/nx/njH//I73//e37729/yb//2b/zHux+59Nrf//mv/O53v+Ptt9/mww8/5PPPP+fMmTP814M5YjzydwARDDzB3Lx5E0mSmDFjBn85cpHjzOZnh8v5hy+K+cKUzBHrTBrVQdy7d4+uri78XbQ295RMXL16VQkG+gYFHR0dBKl6hrZPBfwlA7qugal+jUbD1q1b6e7uHtSKODw8nKeffpqLFy8OmkEYjMzMTG7cuMG6deuUBX7GjBmKCcz58+e5desWCQkJDjvStLQ0KioqHN6vo6MDYMACl5iYCPTuWjs0/tSqgtl/6gptbe0ON/mxZKj5BM3NzWRnZ+Pm5kZiYiK+vr7KTnKkEwsHayscKsCxWq0UFxe7nBWQZZmbN2+SnJw85HXp9XpaWloIDw8fMhhxphm4c+cOxcXFrFu3bkS2yIMRFRXFbW2CyzoZ6P2cX3zxBXq9nvnz53PlyhXmzJnD6tWrB2RDpkyZomSxTpw4gSzLaDQaNm/eTH19PZWVlUpAlJ2dTVRUlLIZANfbSrdvXseuXbvYvn07W7duZcOGDSxJG9oC2o6XykJ3d7fSoXT79m2+uHSTynaLGI/8HUAEA08oNpuN7OxsZsyYwUenMslonUyD0VG41WzR8dqH2VSaexczb3PbkIs4yPhLBgIlA7IsK7vQ/upltVo1pH0qyDwfZeXTTz912tIUEBDAxo0buXfv3qDeAosXLyY0NJSMjAzF8XA4CgsLOXXqFAsWLGDu3LncvXuX9vZ2FixYAPTWqC9evMiKFSuIiIhwMJdJSEjA19eXGzduKI/Zg4H+CnQvLy8sQVP52ZEqNvznVU50R/N2sQ/HpTno28fH332oYOCrr77C3d2drq4uRSRnNpvR6XQj8u03m800NzcrwYDFYqG1tRWNRoOv7+DtiBUVFRiNRpeDgZKSElpaWoYUDsqyzKlTp4DBtQL24/oHA3ZPgWnTpo1IwzAUeRXNlLYYcVUnI8syJ0+eJC8vj/nz53P16lWmT5/OunXrBi2LTJs2jXXr1nHjxg1FJBgWFsaSJUu4dOmSwwyFyMhI5s6dy8mTJ6mvryfGXzukqZb9b/vetTNIkkRsbCzTpk1j9uzZrE5NIlhrHvS1EjJxod7873/+B/7pn/6JX/3qV/zyl7/kpz/9KXOfck0oK8Yjjz8iGHhCsddS4+PjeTe3DbtIqC/2HUumJRJZ7u0zH84DPV1TjiT1Cqj679r9/Pzw8/PDarUS52vjKZ8mVP3Oo1VJpGormTXRHR8fHz7++GPFO74vSUlJpKenK0ZG/VGr1WzatInGxkZlMM1Q1NbWcujQIeLj41m5ciWyLHPt2jWmTp1KaGgohYWFHDt2jHnz5rFo0SK0Wq1DMGCvtefn5yvKbrtmws/P0Qr2SlEje6r8qTc6/vnVG6Rxq5EOFgxUVFRw9+5dAgMDHcb/2oMB+3fvSmbAHrjZywT2gT6hoaFD1vULCwvx9vZ2uTySk5NDSEjIkCLLkpISmpubmThx4pD+Bs7KIHZPgaFKCyNBlmWOnrk0/IF8s+hdvHiRrKws0tPTyczMJD4+no0bNw47o2LevHksXbqUc+fOkZOTA6A4Cd65c6d3yqGnJ5cvX2bu3LkEBATwySef8N5777FAV+l0GJH9b3u+toLW1hbee+899u/fT11dHXfv3uUvf/kLT3nUDBHcwzLfXiGpWq3G3d2d5ubm3mu8PHD4kjPEeOTxRwQDTyhZWVlERkZy9MotWmWPIYVDrbIH7ere3W24uoO1ng+deqCv1hYSru7dDdtv/n1LBW1tbbS1tfW2OJk8udwRhK3fTslig2xLBMdziklKSsJgMHDw4EGntW67JfKhQ4ecBgwTJkxg6dKlXLlyZcjJch0dHezbt4/g4GCef/55VCqVoraeP38+VVVVHDp0iISEBJ599lkkSUKj0WCz2RyyHnPmzEGWZWXaoj0Y6JsZ6DsMaLTK69HgLBiw19RDQkKorq52EOP1LxO4khloaGgAvukksA8nGq4zQq/XExsb65Jav6Ojg/v37w8rHLRnBYZb0PuXQUbiKeAqV69epb5scL+BvoT6upGZmcn58+eZO3cuN2/eJDo6mi1btrjccrl48WJSU1M5duwYeXl57N+/X+nkaWtr48UXX0SWZfbu3UtqairNzc10dXXxLz99yfkwIqmHV8KaSPDvDRJTUlKoq6vjnXfe4eDBg4SGhhJsbWKNW5HT+8IzOj3W6nvs37+fa9eu8fbbb7N7925qamqYoLOM+cRFwegQwcATSF1dHWVlZURERHC/zLmrX3/azd/8VEJtzWzSFbBBV8BKrZ4NugI26QqUQABQjHQmTJhAUFCQw9z3+voGLg3jM3Bbm8DFi5eYP38+ZWVlnDx5csA1qdVqXnjhBXp6egadTbBo0SLCw8PJyMhw6hlvMpn4+OOPkSSJl19+WakPX7t2jZCQEAICAti3bx8TJ05UAgX4Ztpi33N6eXkxffp0srOzleE89sftjNUwoJHiLBi4f/8+FRUVREREIEmSw/hfu4BwJBP96uvr8fX1VZT5FRW9gtPBVPzQ2+fe2Njosutgbm4uarV6SOFgaWmpImQcrouh7+fr6ykwnHeBq9ithtc/NZtQNyvDLXqWhlJOnjzJzJkzuXPnDmFhYQ4TDF3B7goYHx9PRkYGFRUV7Nixg2eeeYYbN25gNptJSkqiq6uL48ePExgYiNFopKGhQRlG9HpYLT+bBv+SrmOTrgBdS6midbl16xZms1mZ51BRUYEkSUyU2vjXNC0/mlCt3Bd+GtnEJE0narWaoqIiTp8+TWBgIFFRUbS3t+Pl5cl8bQUqSRrw3UiSGI/8bSKCgSeQzMxMfHx8KCgoIG7y8MNjAKUDQKVS4e/vjyRBiMZIhLqNIJUBtbpv5wA02TyosPpxp6qVxsYmpZfe3b239bDF5s5Q9dOabvCPTuby5cssWrSI7Oxsh3q8HX9/fzZt2sSDBw8GjHe1X+/GjRtpbW0dMA/eZrPx2Wef0dTUxMsvv6zsBJuamnjw4AFz5sxh7969eHh48NJLLzmYCtn/d389QlpaGq2trej1eiUY6NuWN1bDgEaKfYG2BwNWq5UzZ84wdepUHj58yLRp0xyu02w2K5kBrVbr0q60fyeBPRszlPNgYWEhKpXKJbdFm83GzZs3mT59+pDBiT1wdCXN3zfzYfcUeO655x5pZLSdvlbDsiwzRy52moa3L3pvzPbl8OHDJCUlUVRURFBQEK+88sqwkx6d0dzcTF1dHWq1GlmWcXNzIzU1lZiYGDIyMhy+v5iYGBITEzl8+LDS/hus7iElVMOr65aiVqvQaDTcvHkTnU6HSqVSZo+EhISg1WqVvwONRo2vtV25LxiNve2HZrOZkJAQVCoVxcXF1NfXExkZSXt7O798aQ1/2T5rQFYhLsTbJaMrwdgggoFx4rvqpmUwGMjPzyc4OJj29nbmTAlxWRQIvTdke/q77w3Tni63zxv4wpSsWBVnmJJp0gSzcuVKEhISwN21carJqQsJCQnh1q1bzJ49mxMnTlBcXDzge01ISGDBggWcOXPGaTkgJCSEFStWcP36daXVDXprw4WFhWzZssVhwcrMzMTT05Pbt29jMpnYvn37gD57+06tf7bBrlzPyspysCK2ozZ3ufTZx7pGKkmSgwthTk4Ozc3NJCYm0tLSMsBdr29mYDSdBGazmZaWFlQq1QAr6r7o9Xqio6NdcuArLi6mra1tyF17eXk5dXV1BAcHM2XKlGHPaf8+enp6FE+B4WyTXcFgMPDxxx/j6+vL1KlTuXbtGq89u8BpGj4uxJvfrYtEf/kYMTExVFZW4u3tzfbt2136XvpTVVXF+++/j0aj4Sc/+QkTJkxgz549NDc3s3btWrq7u8nNzSU6OhqVSkV2djYRERHodDo+//xzbDYbFosFtVqNVqtl+vTpXy/2EjU9aiptfsxZsYGamlqqqqqUTo3Q0FBu377tMKTJYrGQmJiIJEmKAZUsy0iSREVFBVu2bCEpKYkJciubdAUc2DWbTQHVPO/5gFNvLRaBwLeI67kngctcKWrkX48UoO9johEX6s2vNyQ/9h93bm4usixTXl5OYmIiV69e5SmPAI51xyAj47hb/0YUqFJ9M3bYy8uLzs7OAbviWtmP0+bYAWFFq+zOkc4oTKezCFO1g80DmDzstYYHeDH/pZd49913qampwRoSywvv3/o6q9CL/XtdsWIFFRUVHDp0iJ/85CcDFrD09HTu379PRkYGP/vZz7h9+zbXrl1jzZo1Dilqg8FAbm4uvr6+NDU18dprrzl1iHNWJrCTlpbG559/rlyDp6cnVquVixcvcunSZYI002m26JyGX9LXn2k8aqR246Genh4uXLhASkoKxcXFhIaGDqjr980MuNpJ0NLSogQD9hbLoKCgQXfZJpOJ0tJSVq5c6dL15+TkMGHChCHbBEeSFYBvygRnz54dE08B+MZquLu7m2effZbDhw8zd+5c0tPTkSSJ028t5m5NOxmnzmHtaOaNLSl89NFHTJo0icbGRrRaLTt27HDZ6KkvRUVFHDhwgAkTJvDyyy/j6enJK6+8wvvvv89HH33kMJ1x5syZ1NbW4uvry5kzZ1i9ejWnT5/m0qVLWK1WJeBNT0/nZO5DMo2RX5uOwalj1fhLiSzxroPSUqBXKNu3+0eSJNRqNTNmzFAmH9q9OUpKSggODla6NYqLi5kwIZS0uHCKI7wpLKxWBjEJvh1EZmCM+S67adlsNm7cuIG3tzfu7u7o9XpUKhUhthZWawuHFAXKsoyHhwdvvvkmr7/++gB7WVmGa6bJQ1oVXzdHoFZrCJQMBGlMQ/gYfiMa8vHx4eWXX+Z2vYmPyn1psTneHOzf6/WHLbzwwguYTCYH4xU79nJBV1cXn376KcePHyc1NZX09HSH427cuKH46W/btm1QhftgZQLobfHy8vJSFpqWlhb+/Oc/c/nyZRYvfprf71g06DAgkMetRmoPBq5cuYLJZCI1NZUHDx4wb968Ae9nzwy4MtEPBhcPTp48eND38OHD3s4SF9r32tvbKSwsHFI4WFVVRU1NDYGBgcOWHeyZu2tl7bRJPhQXl4yZp8CXX35JSUkJzzzzDCdOnCAqKkoRnkLvIpkc7sdzc6Ygt1Swd+9egoKClB31zp07FV+LkZCXl8fHH39MTEwMO3fuVIIJT09PVq9eTUdHB42NjezYsYNp06bx5ZdfkpqaSmNjIxEREVy4cIF58+Zx4cIFjEYjarWa4uJifvNBhtOhYm395pFUVVXx9NNPA72ZMx8fH9ra2jh48KBSgjMYDJSUlLB48WLa29vZu3cvPT09FBcXM3XqVOAbt8rSr4MMwbeDCAbGkL5K8e+im5a9jt3W1pteN5vNSnp/sraL43+3kP/7bBgrtXo2ud9zEAW6ubnR3d3N/v37efvtt+nqckx3N8sew1oV27sS1q1b27sgSjDYN/Xf1sQpN88JEyZwR5c4rGGLr68vmzdvprCwkKtXrw64gsDAQObPn09hYSFhYWEDdo9Wq5UrV64gyzLr169Xbk7OGCozoNFolDkGkiTxwQcfoFar+Zu/+RuWLl3KzAluPOOuJ1jrGEhM9JRYrS0kMWB8/izd3d3p6Ojg+vXrLFiwgMLCQodr7UvfboLRdBLY2z2HEg8WFhYSGBhIUFDQsOfPzc0d9Frt9M0KDBVM9fXB/1+ZnXxmSOCENIcG1fAzAobj1q1bXL9+neXLl3P58mW8vLzYunWrU82FvXyi0WiwWCyYTCZ27typtKK6WmqUZZnLly+TkZFBSkoK27Ztc9AZ3Lt3j0OHDin1/bNnz7J69WrUajXV1dW9rqCennh5eVFcXMykSZMwmUwUFxeze/cerpsm43zugKS0HkdHT6G7u1sZ26xWq5USjL0kqVKplM8QERHBjh07qKur44MPPqCjo0MRGdszdUVFRaP7RxCMChEMjCGPSynuKpmZmWg0GrRarcOUM4DXXnsNg8FA9te9yf2NgoKCgpAkic7OTmRZ/tpH4BuhYJ3NtZ1MaFQc8+bN4+n4UD58PZUAlaNQLibIg+e8HlKaeVrZdRfUtFPWasIVw5a4uDgWLVrEV199RXl5ucNxnZ2d5OXlodVq6ejoUAa72Dl69Cgmk4m0tDRSUlKG/ByDaQbs2HdCsiyzfPly3nzzTcXf/sKFC0z1svBGWC3/z3QzmwNr2OZTzC/jOpms7VJ8+scad3d3qqur0el0LFiwgJs3bzJz5kynqdi+PgOuZgb8/PwGdBIMVn+XZZmioiKXsgJ9hYODpY1ramqorKwkICDAoXOlP4Nl7up7VI+cuausrOTo0aPMmjWL4uJiuru7eeWVV5x+f52dnXz22WdIkoTFYqGzs5MdO3YQGBioXKcrg3vs5kRfffUVS5YscRA/2oOEAwcOEB8fz5tvvsn27duprq7mxIkTrFu3juLiYmVWxooVK+ju7lYW7LKyMqbOW0K9UT1s6/G8VRvZuHEjhYWFyDJUG1TUEEgLXqSmpjJ9+nTlniJJEp9++imBgYHs3LmTpqYm4Bt/Cvu9xpl/iGD8EMHAGOKqUvzjjOMcPXqUq1evcv/+ferq6gZdVB4V++4iI1NPdnEtZrNlwHslJSXx9qEzbHkvl4/qwx2Ef/YUYHV1tXKTsNlsFDRaHISCmZahW7jslD/I58svv0SWZWI8zWzU3mGz+32lFem3S3z5f3dupKqqik8//RSbzTZiBf7y5cuJiIjg0KFDSgbDbDazf/9+bDYbO3bswGg0Kr3o0LtLvXXrFn5+fi7VmwcrE5hMJk6cOMHp06eB3h1S3zkNTU1N3Lp1i4ULF9LY2EB6/CTWzY7Gme3Z7gAAIABJREFUn04ePiwhKipq3IIBWZbp6Ohg6dKllJaW0tHR4XQsr31Ggb1M4Erd1i4elGWZ3NIG7jT3Bop9uwv6UldXp5heDUdRURHt7e1DjhC2ZwWeeeaZQbMC45m5a29v55NPPiEsLEzxqdi2bZuyuPelp6eHvXv3YjQa8fT0xGAw8OqrryrflaulRovFwqeffqrYZy9dulT57FarlS+++IKvvvqKxYsXs2XLFrRaLREREWzbtg29Xs+DBw+YPXu2MkHzxo0bPP300w6LsAHXyibHzl6mqamJOslfuS980T6ZjJ4kfnakitN5ZTz33HMsWbJEcX38j//4D3p6eggNDUWlUrFv3z4MBgOSJOHh4UlhQ/d3ToD9Q0YICMcQV/29g720VFVVkZ+f77A79fHxUZzgAgMDHf4bjZBmoJAxGX/JQLqmnEmaTtzc3DCZTHx1p5LT5nj677xbZXdOm+NZTaGDh0C11YfT5ngnuwX7IwNvxnZh3CsLFnPq1ClsNhve3t7odFpCJRP+JhP+/v4cP36czZs3s3XrVvbv38/Ro0cJiXfN+7yluhRTjD86nY4tW7bwpz/9ic8//5xXXnmFjIwM6urqeP311wkPD2fNmjV88cUXJCUl4e3tzcGDBwF47rnnXKrXOysTlJSUcOTIEbq6ukhOTqagoACr1crDhw+VGvaFCxfw9vZm0qRJ2Gw2wsPDCQ8P58qVK0Cv1XJeXp5Ssx9LamtrUavVzJkzh3379jF58mSnO3f7b1Kr1bqcGaivr4cJCaz+/cWvf2+9O/57b19zKpzV6/XodLphfQCgVzgYFhY2aMmhrq6O8vJy/Pz8hgwu7Jm7weibYUoOd63jBXp/A5988gkqlYrY2FjOnz/Phg0biI6Odnrsxx9/TEtLC6GhoYq2wl6KGS5ggd6A5YufpnHgwAEqKyvZtm2b4gEAvRMo7c9t3rx5QGklLi6OjRs38vnnnzN//ny8vLyUEcelpaUEBQXR1NREYGAgd3OuAYkMR03xfQ4USk7vC00WLV9KCez0i2LJnCAqKiqoqqrCYDCwe/duAGbMmEFxcTEffvghcU8/x4HOOBpMGg592NtO/F0RYP+QEcHAGJIc5ktcqDdFg5YKZPylHpLD/Vi8eD06nY7u7m6am5sd/quvr+f+/fsOBjFeXl5KYNA/WHB2s7bvLvoH1PYFfo26iIk9bQQEBJLRMHmQ65WQkcm0RLJJVYBKJeHvH8B54zTkZgPOhILf7LEkh7MA7Eh2Z/78dNRqNcePH8fX15fIyEhqamowmUy4u7uTkpJCRkaGMgTl8OHDkHsLf2na1wImZwu1TIjOyu2LJ3iQ+RXJycnMnj2bTZs2sW/fPj766CPKysrYtm2bsqCkpKRw79693vPTm/YPDAwcUifQl75lgp6eHk6fPq20a+3cuZO8vDylnS8rK4uYmBjq6+vJz89n3bp11NfXo1KpmDBhAmq1Gh8fH0wmE0ajEavVSklJicMN/lGx7649PDxoa2ujpKSEjRs3Oj22bzDgimbAZDJxt8nKl3VWZNn5bnb3rnQWxX5zI9fr9cTExAzrX9DW1oZer2fdunWDHuNKVgBG5vGQPLjUwQFZljly5Aj19fWsWLGCU6dOsXDhQgcDJztWq5UDBw5QXV3N5MmTqaioYOvWrRw4cIDi4mICAwNdDlj+11/24W7oFQP2tVtubGxk3759GI1GfvSjHw3q/jhz5ky6u7s5deoUs2bNIi8vD+gVG+7atYvf/e53NDc3Eyip8JcMtA3qUtp7T/O1dXLOkjyogNgmy/zyo8v88zw1UVFRlJWVERgYSHt7OxaLhfz8fKKjo8mp7OS3e27Rf2ka7HckGDtEMDCGSJLErzck8+p7mSDLXzfm2ZFRSRI/mRdAVtZ1bt++zapVq5gxYwZeXl5O/2gNBsOAQKGpqQm9Xu9Q8/fw8HAIFAICAvjH041Odxf2Bf6acTKbdG0UNRlosgy1A+2tCbZJ3gSreyhqMvDQ1MNQQsH+xIb68ExwGyXXTpLlL5GWlgbA8ePH8fb2VhYEg8HA+vXrMZvNHDp0qE9Ln0y6pvzrXYfz9sflfk387as/4969e+Tm5pKb+/+z997RUd5pvufnraSqUo4oJ4RACARC5JyDweRsgjFuh+vpnu49e/ee3bs70zt7d+7u7b0zPd3jgBNgg0kGZGNyBpEUUc4551g5vPtHuV5USELq271n59zme46Pz0Gl0ltvVf1+z+95viGHgIAAAgICqK2tJSUlhYSEhBdXKQisWLGCI0eOoFAosFgso24mgyGTyZDJZDQ1NXH37l1MJhMbNmxgxowZCIIgEaZCQ0MpKyujp6eHu3fv4uvrS3JyMj/99BPjxo2TioqEhARycnKora3F39+fsrKyv1gxYLfbuXnzJj4+Puh0OjIzM1Gr1SQmJg77eGe3QyaTYbPZRu0MtLe3S/kVrzrN3vj1YgRBQK/X09DQwIYNG0a99uzsbEnrPhw6OzupqanBy8tr1Ps11s7dn+Lx8PjxY/Lz81m5ciV3795l0qRJw0ol7XY7qampVFVVER0dTU1NDTt37mTixImEh4dTXV3NrFmzxlywdOpt/G+H33FR9VRVVUnM/f379w8riR2MuXPn0tzcTG5uLnK5HLvdjk6no7CwcNCjROap6rlmcnI7hpced6ORZIfDQ6DDouRpSS1uhmzAYYwESMmp1dU1PNBFDFt0DPc5eo2/LF4XA39hzB8fwMfbE/ifv892+XL4ykwcSFTz4dYV9PSkcPPmTS5evEhmZibr1q0bVsKm0WgICwsbVldtNBrp7u4eUixUV1dT22ejxjz8Qu+AY4PvEjVjngn22+T4YEUvji1vfl1gP5aeFtxlFv7Lv/sVKpWKmzfVXL16FaPRKLWHnYQ2cFgY2+12fHx8sNvtdHZ2olarMZlMhMr7WU0Zxe5Tqet5MVrxEYzMUdThZTBw69Ytdu/ezeLFi6murubhw4eSPOn58+dEREQwdepUZDIZFouFS5cuoVKpMJlMqNXqETec4eAsxjIzM4mLi2PDhg0ugUT9/Q45ZmRkpFQwlJSUsHnzZonFPbgATEhIID09HYvFQlRUFBUVFZI5y5+L3NxcWlvbiJq+gPzsArozilmRMm1EZztnZ8A5px2tM/CsrPGVG8HL7XfnaxuNPGi328nJyWHq1KkjjsmuXr0KMGys78tQDbTiJzfRZVMx7ChLcBgAjdXjwWk1PHv2bDIyMvDz82PLli1DrkMURa5evUpBQQHjx4+nsrKSbdu2OQy4cMQPP3v2DLvdPuaCZd+2DS6FQGZmJleuXGH8+PFs27Zt1PfMGcSVn5+Pu7s7Op0Ob29vKbERIC4uju7ubjQGA6vtZTyzRrq8z87v3tQgFUU9bmAe6a+9QNuAmYiXmkGiKJKXl0en/dUFxX/rGOc1xobXxcD/B5C1l7PHu4putHTqrSTGhDNrQgi3b9+mrW0WQUFB7Nixg+rqaq5evcrnn39OSkoKy5cvH7PRiFqtJiQkZEgRYTKZ+C8nLsMYVDkhsZPQdTTBGAjUoT5aAtUqbCYltI3++EitBXN/L+DQC0+cOJFVq1ahVqu5e/cuERERuLm5sXbtWqlVbzKZ+Oyzz+ju7mbGjBnk5ua6BMmEGvr59cZw7N6hnPnxGp5yO+vmTeX8+ULsdpm0OK9evRovLy9aWlqIiooiJiaGBw8ekJqayu3bt0lKSqKpqYm2tjZ27drFyZMnsdlsmEymMXnAFxUVceXKFex2O5MmTWLnzp1DNoC+vj7sdjuenp5Mnz6d9PR0AgICmDp1Kmazmfb2dhePg8jISDQajXQq7+/vp6WlZcxJfiPBYrHwzfVnPBZm0PrMBEwAC2QVqPCa0DHsDNZ5DU7292idgZqW7jFdi7P9Xl5eTkhIyKhBQGVlZfT394/oONjd3U1lZSUeHh5Mnjx5yM9FUXQoUVp7qMjPpLuqgNX+EZxpCxrSYfpTffDb29s5f/48cXFxNDY2YrPZXLItBuPOnTtkZmZKhcDGjRtdCs/x48dz//59mpubSQwNJdxTTkO/lZFGYnGBHsyKc3wu7HY7N27c4NmzZ8yePZs1a9aMaqVsMBj44YcfKC0tZcGCBSxdupTvv/+e8vJyFxXR/Pnz8fb25ssvvyRU3s9mWSFdoga9qEIrmPETDAgC2O2+KK1j62j4aWRs3bAVT09PyUJco9FgNBoRtD5jKyj+hDHOa4wdr9UEf2FYLBZyc3NJTp6OLzqiVTrcLd3MmTMHHx8fbty4IZ24YmJieP/991m7di0FBQX88Y9/JCMjY4isb6yoq6tzbKZNtaM/GGiuKiFEbSfEfWhIyAuI+AoGZH3NzJs3D1lvE6GjPN5HMCD0NCGTyZDL5ZL7mCAILF68mLVr11JfX49arSYpKclFhqfRaNiyZQvFxcWS8YpcLsdgMBAWFsaFCxfwsPSwZmo4lvZqEhISWLp0KXa7HaVSyZMnT3j69CnfffcdHh4e7N69myVLlvDWW28B4OHhwZMnT6iursbX15esrCwphfCnn356JWt5YGCAs2fPcu7cOSIjI/H29pZkUC+jv99BuNRqtYSGhmK32yX715aWFkRRdCHEyWQyEhISpJ+rVCopz+HPwZeXHpLaG06b0fWrXt1pGFFK5+wMOJMiRztl2vVjKwaCvNyw2+1jlhRmZWURGho6YkH0qq7Ao4oOVv0szfvobAH/XKzmlmoORqORteqh6Xp/ig++wWDg9OnTeHp6olQqaW1tZc+ePXh5De0oPH78mLS0NKkQWLt27RA+QWhoKCqVisrKSh48eECisQgZw2QY/Dxq/IdNUxAEAZPJxOnTp0lPT2fdunWsW7du1EKgsbGRzz//nNraWvbs2cPKlSsRBAFfX1/sdrvLfbTZbPj5+UncEkEAf5mBCHkvsb4q6fq6u7vxRT+qrbm/3ESsrxupqank5eVJ5EmDwYAoioj6nldeuxOFmY8pLCyUwtDGgn+r9vD/lvC6GPgLo6ioCIPBwMyZM7FarSgUCnp7e1EoFKxevZrKykoXMw25XM6cOXP45S9/SUJCAleuXJG+rGOFzWbjzp07HDt2DFEU8REH8JUZGW3DnhMfztq1a0i2lTssRUbIMZ+tqEMQHMYvMTHRLNK2IDBcQfBihmgyGSUuQHl5ucuXb8aMGVKc6rFjx1y8zGUyGZcuXcLb2xuj0UhsbCwKhQJBEFi/fj3h4eGcOnUKT09PLBYLTU1NLF68mMTERCwWC25ubly/fh2DwcDevXuljSw2NpYlS5bQ3NyM3W5nxowZaLVaiouLEQSBkJAQSkpKyM/PH3q3fm5jfvLJJ9TW1rJjxw527tyJSqUa1oHQarVK7oMajYbMzEzc3NxoaGhAFEWamppQKBRDXBwTEhIwm810dnYSERHxZ0sMBwYG+DyrmxcUzkGviZGldH9qMSDvayFE+woWyaAY2vr6eoxG46iSwp6eHioqKkbsCjjDoJxJkYPxQprX7/Lvjf1WfuiLBBE2qwo5tnsiK5XlfPJmxJh98AdbDcfGxlJcXMyWLVuGVTpkZ2dz8+ZNYmJiqKysZPny5UMcL8GxBkRHR5OVlcW9e/fYt2oW3x4emmEQF+TJicNzmD8+gJ6eHr7++mvq6urYu3evxMMZCaIokp6eztdff427uzvvv/8+8fHxdHd3c/ToUdLT01myZIkUJgSQl5dPQWMPJ+7k0GnXSGRkmUzGmjVrXJ5fEBzf++GcNZ3rwkxZDa2tLdL4p6GhAY1Gg5ubm4MgLRheHWcMhLoLyPtb+P777/nd737HiRMnyMjIoLe3d8TXPlbPhr92vC4G/sLIzMwkNjYWX19frFYrSqUSnU6HxWJh4sSJxMTEcP36dWmhdcLd3Z2NGzfy7rvvolAoOHbsGOfPn5fCbkZCZ2cnR48eJS0tDQ8PD3p7e4mPn8Bsee0rv5jzVPVUVJRz4sQJEgMUHDs4c9gc89XKMpZNdix09fX1mM1mtP31/N0iX/wVrn4FvoPsi8HRJbHZbAwMDEinAHCYs9jtdoKCgqT4Uyfq6uqQy+XYbDa0Wi2LFi3CZDLh4eHB6dOnWbt2LX5+fty4cQOVSkV1dTWCILBlyxZCQkKk08LLpxxAmukrlUqWLVsmSa6Sk5MlT/XU1FTu3bsncQL6+vo4deoUFy9eJC4ujo8++khqSSuVymH9IZxdAef7U1dXx7x582hpaaG+vp6mpiaCg4OHMOljYmKkVDiVSkVjY+MQp8c/BScu36fbrv6TTbCcr8n5/1eNCcxmM319vXw4O2B4i+WX2u/ODfxVzoTg6Aq4ubmNyONwzrWdJ1snTCYT/+OpZ9jFl4mmro55kyZNYkqYDxHyXhLDvMfMzXBaDc+cOZP09HSWLVs27IiiqKiIn376iaioKKqrq1m4cKFk1fsy7HY7er2evr4+Vq1axaJFi5gX68ev4vrZqCrk7Rg9G1WFXPmb+cwfH0BDQwNffvklZrOZw4cPv9JkyXlPvv/+e65evcqsWbM4dOgQPj4+5OXl8dlnn6HT6Th06BBLly5l//79aDQammye/EOmjQ3/+ohv6zz50ZzID5YpNNk8pYJoMARBcPB6RrE1d8Lb2xu73Y5CoUAURXQ6HTKZwFxl/cifI0Hg/9kzmw8//IC//du/ZdWqVdjtdq5du8bvf/97jhw5wr1792hubpYK3H/L9vD/1iD/7W9/+9v/vy/ivxe0tLRw9+5dVq1ahZeXF2lpaXh5eaHX65k2bZoU0pGWloZWqx3Wt93Ly4vk5GR8fHzIzs7myZMnAISFhbm0AEVRJCcnhzNnzmAymbBarXh5ebF27VoeP36Mp8xMkNDPgMoPnfXFQhfprWSuvYS1ybG0t7cjiiJ6vR5bXxv/fvMclsT50l/yhP9l62wCmp/h7yYiiiJRUVG0t7djMBgcBLyeFv5uz1K6C+4zY5ySWFMVyYomvGSOU+XgxVUQBLRaLbGxsYiiyJUrV+jq6kIURebMmePiFOjv709fXx8Gg4G33nqLZ8+eYbFYeOedd8jLy6OwsJBt27ZRVlaGyWTCYrGQnJyMTCaju7tbcr5TKBSUl5eTlJSEQqGgoqKCCxcuMGXKFPr6+qitraWqqorw8HC2bt3KnDlzCAoKoqysjOrqap48eUJpaSn37t3DYDCwdetWFi1a5EK6y8/PR6VSuagUwKG5f/78OeAoJnx9fdm0aRMFBQX09/fT3NxMVFTUkFa5TCajo6ODrq4uZDIZAwMDBAUF/Tel6HV0dPDt5XtU2Ua3+l2VMI6YgBfE0Lq6OqqrqyUJ2NKlS0f83ZaWFrKzs1m7cCadJel02N0xii94F/FBHvxhT7J06r5+/TpRUVFD7tlg2Gw2UlNTmTJlyrAKgb6+Pn766Se0Wq0LYa+srIx/+eYCT/q8eZXaxSAq2DE/Hj+NgpycHObOnTumLIDnz59z+/Zt5s6dy7Nnz5g6deqwCpTKykrOnTtHaGgo9fX1zJ49m1WrVg1bcDhfa2VlJQDz5s3D09OT8+fPU1BQwK5N61iQNIHS3AwSExOpqanh9OnTBAUFceDAAXx8fFyez8mTKGzsQ2+2Yhvo5ttvv6W1tZWtW7cyb948LBYLP/30E/fu3WPy5Mns3btXMkdSqVRUDij4slKNEYXLfTSKcqrs/gQJA3hgxM/PT+qAOeEpMzNJ3k681kCir53xlmqW+uvQinqX8afFYkEURUwmM+1WFXo3f1CoCJLpCBB76RTdMfLiuxbrr+Ff986QPkdqtZrw8HCmTZvGnDlzCA4OxmAwkJeXR3p6Ojk5OXR1dfEP99vpNdqGL4gFyGvoZf/cqNfqBF4TCP+iyMzMxNPTk4kTJ0oneuepqre3F39/f8aNG0dycjL37t1j6tSpwxIGBUFg+vTpTJo0iQcPHnDv3j1ycnKkhD29Xs+lS5coKSlBrVZjMBhYtGgRKSkpHDlyBLvdjpubG2EMECnPp0PtRr9NzprFc9i+Yi537yp5+PAharWaadOmkZ6eTnNzM1988QWJiYlEyHuJ81cjpMzg2bNntLa2MnXqVKqqqjAajVJqYVZWFv4yA0J3FZ5uCmw2mfSFH9x6FkWRZ8+eMXHiRG7dukVtbS0+Pj689957aDQa8vPzpTafn58fnZ2djnS3Gzeoq6uTmPoHDhzg6NGjnD9/nq1bt/LNN99QV1fHwMAA1dXVPHr0iLlz55KVlYXJZKKjo4OLFy+yaNEizp49S1xcHJs3b6auro5vvvkGURR54403AMdGnJiYiFKp5NSpU2i1Wil5z2njGxQU5CLXckoSX8bgzkBLSwsHDx5EJpMxa9Ysbt68id1uH/GUmJCQQF5eHs3NzYwbN47y8nKmTZs29g/hz7h9+zaBHm7QNfpjX5bS/Sm5BM5MguzsbGLdLQSJBXSj5c2d+wjx0TI5xEtaaHt7e2lra2Px4sWvfM7S0lIGBgZGHBE43R1XrFiBTCajr6+Pa9euUVxcjDxo4phes9IrAIPB9Tv6KjithhMTE8nPzyc0NJQ333xzyCbS0NDAmTNnCAoKorGxkenTp4+YlWC1Wjl37hwVFRVs376da9euUVZWxsOHD2lqamL37t3Ex8dLG+6DBw8oKioiKSmJN998cwjZdbi0VB/BwLogT/79e2/h5+dHU1MT58+fZ2BggM2bN5OUlORybf39/fxLWhPiS4WAA66+I05poBNJSUnk5eUhCBCkMrNjy1KOHTtGX5+BmBhHdoHBYJDItU02zxcKBfOL652jqOMt3xp0Kh86dBZkpn7enJY84hjHqQSaMmUKNpuN2tpaSktLeVhQQ21P5LC/A6/VCS/j9ZjgLwSTyUR+fr40D3e2md3dHSeuwTOt5cuXY7fbuX///iufU61Ws3r1aj744AN8fX05deoUX3zxBR9//LHEO/D29ua9995j0aJFnDhxQjq5m0wmEhISWLt2DT4MEKXsxxcdVquV2tpa5HI5ZrOZyZMnc+jQIUnv7yT75efnk5ycjNVqJTIykvv370sncJ1Oh0ajoaioCHCQ8mSyF4WAc3EZfIq2WCx89dVXdHV1IQgC8+fPR6PRkJ6e7nJvysvLmT59Om+99Rb19fXI5XKpDevj48OBAwekYsg5t/z6669JTU1l2rRprF69mrfeegtBELDb7ZSWlnL8+HGCgoLYtm0bMpmM6OhoaVMfPPMXRZHu7m4EQUCn07Fp0ybeffddJkyYwNOnT/nDH/7AN998Q35+vhTx+zJnQBRF8uq7aBJ96RK1xMTESk5006dPl7o7I7XJx48fLy3y3t4OGd7LI6XRUFtbS0lJCbtWz2dCkMeYZvmD4cwlGEtiYVtbG+7u7pSVlTFt2jQEASYGubNycgiJoa7t97KyMmQy2ajGTllZWYSHh0tZDoMxMDBAUVERGo2GpKQknj17xscff0xtbS2zZ8/GTzO28804L7WkVBmt4HFaDQcHB9Pe3o5SqWTXrl1DNuPW1lZOnjyJj48Pra2tTJ48ediCARwF13fffUdVVRV79uxh8uTJhIeHk52dTXt7OwcPHpR4FUqlErlcTlFREcuWLWPz5s3DFgLDtcN7RTVn2gIp6nSEcH311Ve4ubnx3nvv/fx+vbi2goIC/uGPR+mwKBktcKxHcJUYy2QyqSsHDultUVERgiAgCAI2m43Ozk7pnjtdTF9OQnSaolX0y4j0lDEnwgN/mePEPxqxWhRFKTvFz88Pr3Gjx6TDCxvzv3a87gz8hZCXl4fFYmHGjBnACx26VquVZvlOuLu7s3jxYm7fvs3MmTOHEMleRmBgILt37+bcuXMupLKFCxeydOlSRFHkyy+/lObebm5u+Pr6sm7dOj799FM8PT2x2Wy0tbVx4cIFmpqa2L9/P3fv3uXMmTO8++67fPDBB1y/fp2cnBzAcdKrr68nIiICnU6Hm5sbLS0O8s/kyZOlQsCJwcxeZ1dApVJhsVhcCgWTyYQoisTExJCWlsbt27fx8fGhp8fBJBYEgZqaGuk0LIoiZ8+elWRb/v7+7N+/n2PHjpGdnY1cLndooTUa3njjDQRBICoq6oV7IY7NLSkpSZJ9tbW10dXVRVBQEBcvXuSDDz7AZDLx448/Ul9fT3JyMpWVleTl5bF//37CwsJYs2aNZGh04cIF1Go1Wq3WRf/uejJzbHi5LW7EVTokfGq1mnHjxtHY2DiiIYxSqSQ+Pp6KigoMBgMmk4n6+vphrW2HgyiK3Lx5k5CQEJKSkvifhHreO5X380/HJqUbHF882kbZ1taG2WwmOjoapVKJIAgujniDUV5eTmRk5Cufs6ur65XuiM5ci5SUFL766itaWlrw8fFhYGCA9PR0goNDCPOIoGnAPqJjXtzPXgKZjUZkMtmIfgvwwmrY6SbZ3t7O4cOHpSLfie7ubk6cOIFWq6W7u5u4uDi2bNkyLLvfYDDw3Xff0dbWxr59+4iKiqKtrY2amhpsNhu7d++WRogDAwOcOXMGu91OeHj4sF2VV1sYCyDCb048Zr3wnAUL5rN8+XIXvoper+fKlSsUFhbiGTYF+hkVAzYFvoMoL3a7ne7uF6oSJ2HRmcg4eBQYEhLKxRrfV8SdO7oPUS3lzJs3l4yKZup75VxPL2TtHEfgUVdXFx0dHUP+G2zv3oU7MPI4yok/xWTqv2e85gz8BSCKIj/++CMRERFSa7OxsZHi4mJiY2MxGh3M+sHzz9DQUPLz82lubn5lLCs4ThwnTpygoaEBcJzEbTYbXV1ddHd3c/HiRcnxbuXKlZSWlrJp0yYePXpEV1cXERERDAwM0NnZKWnrx48fT3x8PPn5+RQUFJCcnExiYiJBQUEUFRWhVCpxc3OjubkZg8HAtGnTKCwsJCgoCFEUmT9/vtSd0Gg0WK1Wl9GATCZzMa8JCAiQrHbB0SnJzMxkyZIlAFJymVOql5WVJZ3Anj6fCJkVAAAgAElEQVR9SnV1NZMnT0ahUODh4UFMTAyPHj3CZrNJTnl9fX1MnDgRQRDw9/fn+fPnmM1miTMQGxuLt7c3t2/fRqfT8fbbb5OTk0Nubi6PHz9GJpOxa9cu5syZw7hx47h//z5arZawsDDkcjnBwcFMnz6dqVOnIggCVVVV9PX1UVpaSm6Lkd/8WEmXzlUo3Wu0cTGnkZlRfkT6aSksLJR86UcK8bHb7RQUFDAwMIBWq0WhUIzZJrmoqIhnz56xdetWfH19eXzjR5Q99Zjcx9FnfvH+vDzLH4ySkhL0er20UU6dOnXEv3f16lXMZjN79uyR5rSzZ88ewnOwWCxcvnyZlJSUES1yAR49ekR7ezubNm0aQrDU6/WkpqYik8mora2VVCi+vr7MmjWLN998k4ULF+KFnpsVzuJ7qGPef3pjPPGhflRVVdHS0sKCBQuGvRZRFPnhhx+ora1lwoQJlJWVsXv37iHX39/fz7Fjx6RrDA8PZ/fu3cN6Vuh0Or755ht6eno4cOAAERER1NbWcuLECTw9PSWVwrhx42hra+P48eMYDAZiY2MZGBhg1qxZQ56zsLmPf737amMRvU3Ghxvns3rxXJcCpbS0lJMnT9LV1cWmTZuIm5TImazR0wKnKFoI8/OUTvqi6Igx77S7Y5cp8FIK2O22YU/ztX1Wcm2hvKr7YESJWjRyutaNHHMwVXZ/Lpf2cuJ+IbkPr1OcmUZhYSHNzc0IgoC3tzeenp5SCBKAWrRQLwRgsMuG/VvOztj/sCr+NWeA12OCvwgaGhpoa2tzmXE6OwMajQYfH58h0heFQsGqVauoqKgYUUImiiJPnz7liy++kNrrK1eu5Ne//jVr167FZDKRlZUlbbp79uyhuLiY8PBwLBYLBQUFrF27FrVajcViwWw2s27dOqn9qNVq2bNnDwMDA5w7dw6bzcbkyZMl3XFHRwfR0dEIgkBmZiZ+fn709vZSW1tLfHy8tEkoFIohZLiXFwHnSd+5wJeVlREXF8eSJUukjgY4No0dO3ZISgSNRsO+ffukFqyzAxEcHIy/vz+iKGK321m/fj25ubncvHkTm83G+fPnMRqNRERESBLP06dP09TURF5eHrNnz8ZgMODm5kZPTw/BwcF88MEHkjNibGwsM2fO5NatW0Nmo/7+/qxcuZLk5GS8vb3x9vbhj49bsIviqBK+zs5OvLy8SE9PH/Y9B0eeu7ObEhgYOGaJodVq5fbt20yYMEGSs1VVVRHvLXL/P6zi6K54VirL+Wh8/yuldA7OgIrqHitVRs2Iuuz29naMRiPjx48nMDBQSrsbzjGzpqYGq9X6Sn8Bm81GTk4OSUlJLqd15wjuX//1X6X328vLi+XLl/OrX/2K9957j4ULF+Lr60tLSwvlaZdZ6zbUS8BHMLLNr5mS+z/Q3d2NwWB4ZZfCaTWclJREfn4+a9asGcLcNxgMnDhxAovFgslkYty4cSMWAr29vRw9elQqRENDQykuLubbb78lJCSEd955h6CgIKqqqigvL+err75CrVbz7rvvEh0dTWdn57Cba3P32BQnKq8XHUij0UhqaiqnT58mLCyMDz/80GEIduHEqH4BPoIBP8GATqcjJCSEJpunS4JpqjGBc7p4KfHUCUEQ8PDwwCwfnaMB8MgSSbvZtSDssiq5bo5nyoptfPjhhyxbtgyZTEZRUREVFRWS+iYmJoZDh97mf10XPyaVy2u8Lgb+IsjMzMTX19fl9OYsBpRKJV5eXlIbfDAmTZpEdHQ0N27cGDIX7u/v55tvvpFkiM7NKjg4mK+//prLly/j7+/KFM/IyKChoYG5c+dy5coVJkyYwNSpU+np6ZGq5ZcX6oCAAHbu3ElNTQ1Xr15FFEVUKhVJSUls2LCBxsZGNBoNoijS29uLyWRCEASeP38uzb07OzsRRXFYRrZzUffx8cFms7nM2CsqKjh27JjUFQDHIpWbm4ubmxuBgYEcP35cih1ub2/n22+/xWAwcPnyZdra2iTdtnOxfvLkCUePHqWsrIzt27dz4MABAgMDMZvNUmKc8+98/vnnErGvsbFRsi52YtWqVXh4eJCamjrsIuyc5U5ZvPZnG9WRonMdRKWsqlZ6e3tJTEykvr5eIii+DDc3N8aPH49SqcRut9PR0eHSgh0JmZmZ9PT0sGrVKqxWKz/++CPgMOWRy+VMi/QnQt6LLwOvXACLu+x8WuvH53V+fFGmHFGX7TT9WbRoEf39/RiNRhQKBQEBQ4uMsrIyfHx8hv2Z9HeLi9Hr9cycOVMqAM6cOcPvfvc7Lly4IMXbHjhwgN/85jcsWrTIZdzS19fHd999h0KhIEwxwBa3InZ6VvLZniQ+iu3jo5gefvvhHhQKBd9++y39/f0jciKcbpZTpkzh+fPnzJw5c4iW32w2c/LkSYkQ5+vry969e4d1Iezq6uLo0aPYbDYOHTpEUFAQmZmZnDt3jkmTJkmeGDExMRQXF3Pq1Cmio6N555138Pb2JiAgAJvNNmQd6ezs5OGNyyPe08FwtsMrKyv59NNPKSkpYdOmTWzatInbt29z8uRJDAb9iPK+wT4iguB4/VkNA8PO/rvtbtywuBYEzpm+ymZg7BhGHirC/3Wrik8//Yxr166h1+ulNSo2NpZf/OIXHDhwgODgYOozb7PZuwFfmSsv4E8xmfprweti4M+EXq+nsLCQlJQUlwV2cDHg4+NDX1/fkNOVIAisWbOGjo4OMjMzpX8vLi6WSFFOg4+VK1dy+fJlTpw4gUwmY9OmTZIELSYmhjVr1lBeXo4gCDx9+hSj0cj69espKyujpqZGmm072d+DERMTw4YNG8jKyuLp06cSMS4lJYUPPvhAki8FBARIY4K0tDSam5vx8vJCoVBIDPCX4dz8KyoqpK7A6tWrWbhwIfDCV8AJs9lMVlYWc+bM4eDBg4SFhXHixAn0ej0HDhygq6uLTz/9lJycHDZu3MiaNWtQqVTU1NTQ2tpKdHQ0jY2NJCUlER8fj0Kh4ODBg2i1WiwWi3SNT548YeHChbz33nusW7eOCRMmcPHiRZcOjkqlYtOmTdTX1/P06dMhr83pM1BW1zLi52MwSmodm39KSsqo3YGEhAQsFgstLS3IZLJR3QiNRiMPHjwgOTmZwMBAHj9+TF9fH/7+/pJW33kKfpVz26OKDr6sVNNmcl0aXtZlV1dXU11dDThGXk4fiZCQkGG9+cvLy5kwYcIri5CMjAz8/f25c+eOVAA4CybnZ2TlypXExMQM+V2TycR3332HzWbDYDD8XFyLHNi4nFlhWvRNZcyePQsPDw8OHDiA1WqlvLx8WL6A02o4OjqaiooKoqOjWbduncu1W61Wzpw5Q1tbG3K5HHd3d/bt2zdsp6GtrY2jR4+iVCo5dOgQvr6+3L17l8uXLzN79my2bduGQqGQZuEmk4lp06axa9cuqbBwFlGDu2gFBQV89tlnyPua8ZUZRyWKxvmr+emnnzhx4gQBAQFSN+CTTz6hoKAAcLyXOxYnsU5d+Uq/AMcp36EGGHn2jxRgBY6iuNOuQW9X4cGrTdGczzHST9tNcrwiE9BoNHR2djJhwgQ+/PBDdu3aJR1Sbty4wcDAAGGKAf6PeWou/3IhRw/O4vIvF47ZZOqvCa+LgT8TTj359OnTXf7d2a5SKpV4e3tjs9mGNZAJDg6WpIa9vb2kpqZy9uxZTCYTYWFh7Ny5k6qqKo4fP47RaGTPnj3s3r2b+/fvY7PZcHd3Z/v27QQHByOKIsHBwZKzV1lZGd9//z0BAQHSdbS1DR8skJyczPz58yW7ZKdkzs/Pj8OHDxMZGUlraysymQx3d3dsNht5eXmYzeZXarSdBVBBQQE2mw1BEJg7dy4LFiyQZJXDseXnzJmDSqVi7969jB8/ntOnT9PV1cXChQvp7+/H3d1d2lzGjx8vcQRqamoICQkhLy+P4uJiAGmhdsJmszFt2jSWLVsmuRtu3rwZpVLJ+fPnXa4nKiqKuXPncufOHZdCShRF+vv70el03Lv6w4ivfzDsum4pYXLWrFkUFBS4pE8OhjPExmw2ExQUNOqo4OHDh1itVpYuXUp3dzcPHjwAcNG3j1YMSEQ0YOiJ7MW4w2q1cvXqVTw9PfHx8UGpVNLY2IggCMPyAdrb2382wxrqOmgymcjLy5Nkop2dnfT390vE2t7eXpKSkqSO1XAOfjabjXPnztHd3Y1arZbe07i4OBITE8nMzESj0UgpjT4+Puzfv59mk4L0Bh3Pazqkz6nTathJ+vXw8GDHjh0uc3a73c6FCxekIlulUnHgwIEhpEJwcIeOHTuGh4cHb7/9Nh4eHly6dIkHDx6wcuVKyafAaDTy3XffUVlZKTliDv6bXl5eqFQq2tvbsVqtXL58mfPnz2O1WomKiuQft00f9C65vnMC8OGcAI4cOUJeXh5vvPEGW7Zs4ebNm5w5c0biNG3YsIGDBw/SYlJgQ2CRooo3lYW8M97IRlUhW9yKJOOgiRMnUttnfWVHbHAgmssowTqBAdTS9b18vWNFSW0zCQkJ/PKXv2TLli0uHJzS0lKys7OZMWMGOp2OGTOSSQz1ZtmkoCEql9dw4HUx8GdAFEWysrKYPHnykIXAufGrVCrJ+W64UQE4pIY2m42PP/5YihNdvHgxXl5enD59ms7OTrZt28b7779PbGwsZ8+eZWBgALvdzs6dO9Fqtdy/f59x48ah1+sJDg5Go9Fw5coVVCoVEyZMwGq1EhQUNGxnwImVK1eSkJCAXq93uVaZTMaWLVsApHYwIC1iPT09KBSKIXPSl33O3d3dJTveixcvYrfb2bp16xCiWGJiolQoKBQKduzYQWJiIufPn+f27dvExcUhiiLHjx9Hp9MRFRUlSQLB0emYPHky58+fp6amhrq6OhfHNEEQyMnJcbEe1mq1bN++ncbGRu7cuTPk/fH19SU1NRWr1UpRURFffvkl2dnZ2O12Dm9dQ1yg+6gnM0V/K6GhoQiCQHJysmQcNRy0Wi3R0dEoFAqUSiU1NTUuTOnB6Onp4dmzZ8yfPx8PDw+pfR8SEuKyATuzIkZ6nsLmvp+VEK8ed5y79YSOjg68vb2lBbi+vh5RFIctBsrKylAqlZIiwlkAnD59mt/97ndcvHhRkuz94he/ICwsjPT0dGQyGe+++640Llm8ePGQz4rTxKq6upqpU6fS1dWF1WqVNjer1crz589JTk6WPp+PKjrYe6KIH4wJXB6IYvORZ6z65/uklTs6Ak7prLP4HnzaF0WRS5cuSdkZMpmMAwcODBu6VFNTwzfffENAQAAHDx5EpVJx5swZcnNz2bx5MwsWLEAQBLq7u/nqq69obGxk3759REZGSl0XJwRBICAggMbGRr744gupk7hkyRKWLVtG6YNLrHevJtLbdUQRohVYrSwj7+b3eHp68v7776NWq/n4448pKSkBHPyYjz76CKN3FGv+5SH/8eEA143juWRJ5AnxNNbV4i9z8AicSpGqqipQj02b32DzHnaUMBx8BCPzFGOzYj/81nY2bNgwRJmj0+m4dOkS8fHxDAwMEBgY+GcHfv014HUx8Gegurqarq4uZs6cOeRng8cEzmJgOP9su90uuexZLBYCAgKYOHEiDx8+pKGhgTfffJOPPvpIavVeunSJhoYGrFYrq1evJjw8nNraWinTXafTsW7dOgwGg7RApaenYzKZ8Pf3f2Ux4LT1VSgUUmKcEz4+PkyaNAmNRiOdWkVRxNPTkxkzZmC1WiUXRCdEUZRag/U2b+r67cjlCm7dukVZWRlbt25l6tSpkhzTiZfjauVyOcuWLZMy16Ojo3n77bfR6/UcP35carGGhoayYsUKHj9+TGBgIBEREXz77bccPXpUKhTmzJmDKIrIZDJ++OEHifQGEBERIf3+4La8Uqlk/fr1NDU18V//63/l3LlzuLm5SafUpKSkn8NjYAhRCREZAn//5mSam5ukFqbTU/9VwVQJCQlYrVa6urqw2WxDNggn7ty5g0ajYf78+ZSWllJeXo7NZmPFihVDTkAjWSgDtI9Rb/0gPZeUlBT6+voIDAxEFEWpnT8cebC8vJyoqCiKiopcCgCdTseKFSv4m7/5G2w2GzExMZw+fZqcnBxWrVrFe++9R2BgoKQsGa4r8OjRI7Kzs1mxYsXPhjeO17ty5Uq8vb0pKCjAaDRK39ER7WnbBzjwdToPy9qIiIigqamJXbt2Sc588EK2+fz5c6nbN5wLoPM1nzx5kvDwcPbt24fdbuebb76hurqaPXv2SITauro6vvjiC+x2O++++y4xMTHExMRQXV095HOhVCopLi6mvb0djUbD/v37kclkHD9+HE9PT/7T3+zn/n9YJbXDj+6KZ69PNSGyPrRaLRs2bODGjRtcuHBBko9u27aNPXv2kN9mHva+dFgU3LDE06VykA+d64fZbAbjyHkAg1FmCxhxlADggZEVinI2qgrZrCpkorxjVBJjpJeCmeOHOnOKoshPP/2E3W5n5cqVlJSUMH369NedgDHgtc/Anwin3Wd7n4ncp9kEBgYNexpynp6VSiVqtRqVSjWkGOju7ua7776jo6MDmUwm2dEaDAbWrFlDSkqKy2n7wYMH5OXloVAoSEhIkAhNDx48wNfXl/LycpYtW8blyw5C0bvvvotKpeLcuXNUVVWRl5eHXq+XFoLhoFQqCQ4Oprm5mVOnTvH2229Lj01JSeHkyZN0dnZKGej9/f2MHz+ehIQEiUzlhIvD2M/wt5uZWVnNnuVLJGb5y6eqZ8+e4enpyfz5813S2dzd3SUXQ4vFwoEDBzh+/DiXL1+W/AUWLlyI1Wrl3r17qNVq7HY7KpUKtVpNaGgoa9aswWq1kpWVhUKh4NSpU7z33ntSETNv3jzq6uq4ePEi77//Pm5ubmRkZPDs2TPAcap1FjHOzoLVamX++AD+frE///ygweX1egtG/tOWJKYGuXFrYMDFbGj27Nnk5uZSVlY2rO1uQkICV69eRafT4eXlRVlZmVSISfe4qYn8/Hw2bNgAwLVr13Bzc2PcuHHExsYOeU6nf4DNZhtyyg4co97aU2lnwYIFZGZmEhQURE9PD2azGY1G4/JeGo1GCgoKqKurQyaTUVFRQXh4OCtWrGDy5MlSkfz06VMMBgNlZWXEx8ezbt06aYO9d+8eNpuNxYsXD+k8FRQUcPv2bRYvXizlXYCjIzJr1ixEUSQjI4MJEybg6+v7Sj0+CNgRyZHFEVKew+bNmyRliRNpaWk8efIEHx8fjEYjb7/99hASL0BhYSEXLlxgwoQJbN++nYGBAckQzKkiAMjNzeXSpUtERESwc+dOicwYGxvLvXv3aGpqIjw8HJvNxs2bN6XwssjISNasWcP169epra1l8eLFLFmyRBorTBrnQWtJFmlpaYSEhLBnzx7Onj3LZ599Jm2KU6ZMYc2aNWi12lHvC4jc7w9is6rdxX7YTzDgKzPSbXdjpLhlD0yDRgLDQWAANe4yM4EKE876Z46ijhuW+CFR086xR4KhkK++qmPVqlUuHhy5ubmUlJSwc+dOamtrsdvtr5TGvsYLvC4G/gQMtfvUEO4Zw/SqziFklMHFgFMH6ywGRFEkMzOTa9euSZn3g79k69evH+Ldnp+fz71793B3d0etVkvOZvX19VRVVeHp6UloaCiVlZX09fXxzjvvSBvc9OnTqaqqwtvbG71ez4kTJ9i0adOwCxk45JChoaE0NzeTmprKjh07qK2tldrPfn5+vP/++/zjP/4jAOfOnRuig3c6jL28uHRaldwgns1eL4xphpNh3bp1i46ODt544w2+//57ent7OXz4MIGBgXh6enL79m36+/slAphcLqe6uhqj0SgVJEajkUWLFpGfn09DQ4NkSrR+/Xo6Ozsl9cCpU6d45513pPdq06ZNfPrpp3z55ZfSfH369OnMnj2b77//nkePHkmeB4DkRqjureWDyB6KmnvRiyrcZRbCtNBXbqbJ09H9GFwMhIaGEh4eTkZGxrDFgKenJ2FhYTQ3N+Ph4SGlPzoXdOdJNSAggOTkZO7cuUN/fz92u33YrgA4eAN9fX2YTKYhVth+6F65uAuAt2Bg1+oFEhEzMDBQIg+GhYVhNBopLS2lqKiIyspKiX+xaNEiSYrphN1u5+nTp9y6dQu5XM62bduYNGmSdN0Wi4WMjAyUSiXz5893uZa6ujpSU1NJSkoiLCxM4kg43z+ZTEZDQwPNzc3s3bsXGDwGGQkCbSY5kbPnDeEAZWRkcOfOHXx8fCQy63AOiTk5OVy6dIkpU6awadMmOjo6OHHiBEqlksOHD+Pn54coity5c4e0tDSmT5/Ohg0bXAqzsLAw3NzcpO/1mTNnXJQnSUlJfPvttyiVSg4ePOiyGba0tJCamkp7eztLlixhypQpXLlyxSWBcteuXS4Sz9Huizho9u8vvFinBAFmy2u5YR95046Xd5BtG90JUC+qsNsdahFRFB2hR5SRKcbQaX1xcPERjKz27yXe20saFcbHx7NixQpUKhVXr15l2rRpJCQk8OWXXxIXFzfsCOc1huL1mGCMGKm92NhvG5J+ZbFYJBa9c7NyFgMGg4GjR49y5coVRFFELpdjMBiYO3cuv/nNb4iKiuLOnTsuLULnwufr64vZbGbnzp1SK/3BgwdotVoGBgYkD/09e/a4uBo6r2HHjh2AQ470ySefcOvWrWHJZE7J3LZt2yguLubIkSMcP34cd3d3lixZQldXl4sc0MnmB4chkigyKsv4P154LsnlnCca58nIucg+f/6cP/zhD1RWVrJz507pNS1cuJA1a9aQnZ1Nf38/e/fupUfwJL1Bz9///gsKCgp54403SElJIS0tDXd3dwRBICMjQ5Kn7d27V0qWbG1t5YcffkAURVpaWrh69apEDhw3bhy//vWvWb9+PYGBgWzZsoX29nbu378v3VfniKSyspKIiHAp831WXAju7lrKy8ulGfPLC9OsWbOoqqoacXwzefJkKdWtv7+f1tZW6Wfl5eXU1NSwatUqOjs7efLkCWq1mri4uBFdAJ332FmsOlFZWcnRo0dHTLt0jkDWB+uYMWMGbW1t0hzbeWLt6enhd7/7HampqRgMBlauXMmkSZMYN24cS5cudSkEGhoa+PzzzyVHQWcBPLiAefDgAVarlXnz5rkUjJ2dnZw+fZqIiAjWrVvH1atXpc/QggULpM9PZmYmPj4+UqE61jFIj8n1tefn53PlyhXJ6XDv3r3DjkOePn3Kjz/+yIwZM9iyZQv19fUcPXoUT09P3nnnHfz8/LBYLJw7d460tDRWrVrFxo0bh3RonJbZhYWFfPLJJ7S0tKDRaKTuz6VLl4iKiuKDDz6QCgG73c7Dhw/54osvEEWRw4cPo9VqOXLkiPT+OAuRl+WdY70vevHFpux0khwtqTBcPrZRglYw/7x2vLj3ofJ+driXsVFVyHsTbWxWF/OLsDYiVHoaGxvZuXMn27dvp729nU8//VSyWl67di3t7e1SNsRrjA2vi4Ex4NV2n0Nz4fV6vTQnr+oyI4oi3t7etLa28k//9E9SbK8gCKSkpPC3f/u3rFixAq1WO0Rq2NXVxZkzZ/Dx8aG7u5v169dLpK3GxkbJtjYkJITq6mq2bds2ZCNwblqCIODj48OUKVNYvHgxT58+4+9//yVfX3tGYeMLYxnnXNkZeOQMKjp06BDz58/Hzc1Naps73f98fX2lpL0uUTMqy7jL5sZ//vRbKioqpLm9cz7rdB50Pp+Tge+E3W6X8hXqzVr2nijiXP94blkmcKY3lhuKWVj8Yli/fj2TJk2isbGRiRMnMjAwwKlTp6ST/KFDh3Bzc3OMfgoL+eMf/8iRI0eoq6tj7dq1rFy5ksbGRhcr1eDgYBYvXkxaWprU6bFYLFRXV2OxWCSikkwmY/LkyXR0dBAYGEhZWdmwsrvExETc3d3JyMgY9k4lJCRIHg9KpVLiMtjtdm7dukV0dDRxcXFcuXIFjUaDXq9n2bJlI9z34YuB3NxcTp48ic1mY9nkUFYrywhQumYuhHvIWa0s499tc0QGNzc3o9VqOXfunHTtgiCwatUqfvOb3/DOO+8we/Zsyb3PCaPRyJUrV/jqq6+QyWRMmTIFrVY7pJVrtVp5+vQpCoVCkqGCgxx28uRJ3N3d2blzJ48fP6a3txe73Y6Pj49k16vX6ykoKGDmzJlSoeDvPrLt8GDUFOfy6NEjwFFwXbx4EW9vb/r6+ti1a9eQ8YEoity/f5/r168zf/581q9fT1FRESdOnCAsLIyDBw/i4eEhORVWVFSwa9cuaQz2Mux2O2azWbJ6joyMZOfOndJ3LjEx0WWs0NHRwddff83du3eZP38+27Zt4/r161y5ckXi8Rw6dIhf/OIXaDQaLly44KKYGet4SCu8IJ5GR0dLn/VQeT8fRHbyd7OVrNPWSLP/UHk/foJhzCZGAwMDUsHovC8mkxF/mQFLbQ5+gp7+/j5JUp2bm0tiYiIfffSR9P3W6XQ8fvyY7OxsNBqNC4FWFEUKmnq5W9I2opHWXzNejwnGgFHbaD+zrP/l+Hmscje+rxZoMTtkTLe+yiLKV8VMmvAyvGDoJyUlsXTp0iHko5CQEElqOGHCBMlEpbe3l5SUFJcEu/v37yOXy6WOgHPzexnOYsBisRAUFERXVxdeE2ZxR22jqtMA9zvgfhoxfmr+z63TEEWR9vZ2zp49S3x8PG5ubhQWFpKcnExMTAzJyclkZWUBDuZ+W1ubpH/28PCgvlc+5BqGg5tvECdPnpROfV5eXjQ2NtLf3y8FDSmVSgwGA0eOHGHfvn2EhoZy7do1SktLmbh4I19fb+RlF/qabiP7vnrGt+/MkeyNy8vLWb16Nbdu3eLs2bPs3r0bd3d3Fi1axK1btwAHh2P27NmsWbMGmUyGKIo0Njbyww8/EBwcLLGWFy5cSGlpKWlpadJ9dZrqOONo3IAAACAASURBVFvvWq2WSZMm8dNPPxEdHU1GRsawBjdyuZyUlBSePn3KihUrhpAnfX19JRWIkxeyePFinj9/Tnt7O5s3b6agoICamhrc3d2ZNGnSiCFI8CI4y2g0Iooijx494vbt28jlcsLCwnjjjTcoLf1npge1UNzSx+Y9B/FSitw6d5z46ROkrohT6ugMxrLb7Rw+fNjl+hsbGzEYDMTHxyOKIkVFRVy7dg2z2cyaNWtITk7m97//PTNmzBgavPPoEVarlYULF7p8fk+fPo3ZbObw4cPodDoePXokLeobN26UHutUaSQnJ0vXknbpR3yEwJ9Z7cOPQSYEebB5msN5UqfTkZ6ejqenJ319fezYsWOIA6FzVPPkyROWL1/OwoULSU9P59q1a0ydOlWyVW5paeHUqVOIosihQ4dGZLf39/dz9uxZyXp8ypQpREREcPLkSfz8/PD19UWr1Urt9KdPn3Lnzh28vb15++23pY6L854sWLCAJUuWSPd327ZtfP3119y/f5/ly5fT2dlJ7t3r+AiqEe8LiAS52QiQmSTPgAcPHrgUMq2tLcwICyVWrUevdx0ljDb/d5oYeXl54e/vT29vL35+fhiNRnQ6HePHj2fBggUuCiC73c69e/fo7OzE39+fiooKZs2ahZubG48fP8ZutxMZGSld43CJjhOCPPjfNya+9hv4Ga+zCcaAwsY+fshtGvVxSssA5xs0DFhh8Ie+12ilxOhJkDCAp8xB3nMSpkpKSqioqKCmpobGxkba2trw9PSkrKyM/Px8SQPs6+vL9u3bKW4doLCxj7qmFrLS7kmeAEuWLBkyV3VCr9eTlZXF9OnT0ev13C9t4T8/7adb73r66zFYuJDdgNBRhdauZ/v27SxbtoyJEydKxjsJCQmEh4fz+PFjwCG7c3otCILAr371K+xyJTerR3cZ+2BxHF4qJO+D4OBg2trasFqtlJSUEB8fz969e6UMgOfPn9PZ2UlOTg4rV67kt3dbh9xrBxxhJzm1nWgbs0hOno5arSYnJ4dly5aRlZVFeXk5jx49oqioiKCgIHQ6HYIg0NLSQnx8PJ6enpKHgZPkN23aNInoGRERwePHjxFFkaSkJNLS0pg4cSIeHh4UFxfj4+PD/PnzqampYWBggN7eXsxmM7Nnzx5yGvT39+fJkyd4eHgM2342GAzU1NSgUqloa2tj+vTpXLhwgYkTJ5KUlMSpU6cICAigq6uLHTt2DKt3d6KxsVE6rWdlOUhmarUab29v9u/fj9Vq5dmzZ7i5uSE369j1xjLuXE6lp6eb9vZ2SkpK8PDwwGg0MmPGDFasWEF6ejre3t4uJ3hwpA+2t7czd+5cUlNTSUtLIzY2VvKOKCwspKCggM2bN7sUSjabjVOnTiGTydi7dy9yuRxRFDl//jx1dXXs37+fwMBAiUsiiiLTpk1j3rx5gGOjSE1NJT4+XiKcXrp0CU9PT8ZpoGBAgzDkM+PYmP7vTZNYPmcaHR0dZGdno1ar0el0bNmyRVL0OGG327l8+TIZGRmsXbuWefPmcfv2bemEvn79emQyGSUlJXz33Xf4+vpy8ODBEbk6Tj8RZ/CWQqHAYDCQn59PSkoKO3bsoKGhgb6+PiIjIzlz5gzZ2dnMmjWLpUuXcvXqVXJzcxFFkaCgIPbt20dSUtIQvwKZTMb9+/fp7Ozk6tWrWK0Wls6YxP1a53d26Ia9RFlFdKDniL4YAM3NzcMqVTxlZuSinRbR8+dnc0CGyFx1KzEyx0HCqZyRy+XodDrCw8Pp6elh6tSpJCcnk5CQQG9vr4sts9lspri4GFEUJQVVSEgITU1N9Pb2UlBQQOWAgl9eKB2SG9KtM7vkhvy143Ux8BKcaoHCxj70ZivdTbWcPn+RIvPwX+DB6DIJmEfIAQfoFN35YMVkYmNj8fX1xc3NDbvdjk6no6Ojg7q6OkpLSykrK5M2eZvNhtlsprxPxm/vtvL10yZ+yG0itaCDGrsv3oKRieEBREVF0dvbi06nk5IB5XK5FGeckZEhRZb+PtuIUVSOwByGDruWJE0vmzdvlja/iRMnUlhYSF5eHrNmzaK8vBy9Xs/UqVMpLCyUnkGj0bB2yXy+uZuPUZQPcy/A0Ro0MkPZLCkTnN4GNptNWsz27t2LVqtl2rRptLa20tHRQVtbGwEBATwpaSBD7z/C8zteS4/BSqi9nf07NrkkEcrlcnp7eyUzImeKW3V1NYIgUFJSwtSpU3Fzc0OhUBAZGUlaWhp6vV5qebu7u2OxWKivr0er1VJRUcHy5csZGBigvLycoKAgpk2bhtlsJjs7G3CcxoOCgoakVDrT8EpLS5k1a9aQYkGr1ZKRkSG19nt7e2ltbWXXrl08fPiQpqYmrFYrkyZNGlbmOhidnZ2Ul5fT3d1NWVkZ3t4OA5aDBw/i6elJf38/GRkZiKKI1WrlyZMn9PT04OPjw5IlS9i4cSP/L3vvHR3lneZ7ft7KyjmjjEAgkSQEIolgMjYmGGOCaWx3t8dzZ/bu3Dl7d/fc/WPu2b139+zcGc9Zd7fbbmwTDMIGTEbkHBSQAKGccw6lklRJFfaP8vtDhSSQJ5wz7u7nH2OVqvTWG37P83ueb5gzZw537twhMzOTwcFBKioqSEpKElbTcly5cgWdTsfdu3exWq1s2bKFFStWiO7BpUuXCAoKIjMz0+19Dx48oLa2loULF4o277Vr13jy5Ak7duwgISGBkpISHj16hNPpRKfTsWfPHtEVqKmpoaCggHnz5nHmzBkaGhpYtWoV3t7etNeUsC5tKiVtBsy8GBskBHmyQlOPva2M8PBw0XGwWq1kZGSMKXTsdjtnzpyhuLiYt9923V/nzp2joKCAtWvXCgOuR48ece7cOZKTk3nvvffG7Q7Jdubnzp37UUQollWrVlFWVobRaGTnzp0sWrRIdBgqKysFJXXHjh2YTCZOnz7N0NAQCoWCN954gy1btowLnHM6nRgMBqqqqujs7GTBggVERUVRln+PUMUQPXZPt/PiL5lZoaknXDKMKQS8vb2xWq1C3XOiaLP7cN8W/2Mh8OLedgKtNm8iVCa8MYtuhvxfWUJcpVIJM7eYmBgKCwtRKBTC68BkMokxa0NDA7W1tYCrq+ZwOPltiR2Tc7x12fWj4pYB3s+M/ZOnH/5JjwlG0wRDfbX0D1v5rxfK3FpJ/pKJhSoH/pLplW00H8nK4CtFNVyI3MquYVbNm4a/v79Qb3v5mO7evcvt27dRKpXY7Xb8py/kULGdl0dcsve3prOBtovj65PL7oPgWnwHFL7ona8SC3EdZ7tZwZdffsmGDRuIjY1Fp9Oxe/duDhw4wPfff09wcDDd3d2cPHlSgCOTkpK4c+cOKSkpfDDbi0+f2l7ZGqypcekYbNq0iYsXL6JWq4Ugztq1a8W50Wg0LFiwQKDpe3p6sHmM3UGPFxZJR09PD7m5uXR0dAgVxIyMDAoKCqipqSEyMpJly5bR3d3N8+fPMRqNHD9+nP3796NWq4mMjGTt2rXk5OQQGxsrlOwyMjJ48OABjx8/RqPREBsbS0dHB5IkiXFBcnIyOTk5gqFx8+ZNkpOTx1jbZmRkcPDgQerq6sYwM4KDgwkICKC/vx9fX18qKyvJzMzEZDJRUFDAtGnTqKqqYsWKFa89H3K7uLOzk6ioKLq6ugR24smTJ26Fi7zYajQaPvnkE3HMsm99SEiI+P2X5+gVFRUC7JiZmcnKlSvd6KxdXV00NzfzzjvvuL3Pbrdz//59lEql+D4FBQU8evSI9evXk5ycjNls5vLly+I9GzdudEuyubm5eHh4cPnyZeLi4nj//ffp6Ojg+vXrLF68mMLCPP4iJoCy9gGSZs9n1aJ0Zkb4otfP45tvvuHQoUPodDoh1PXkyRNmzpwpwHo2m40TJ05QU1PDO++8w9SpUzl+/Dh1dXVs376d1NRU7HY7Fy9e5MmTJyxbtoyVK1eOm2yGh4f5/vvvBS4lKysLh8MhnrGenh5hZywncVmueN68eVy6dEl01mJiYti8efOEnYfOzk5ycnJobGwkISGB5uZmCgsLsdlsSJJEnM5CmLOU9e99xLBTRX9bA6X3rwJOYUUsh4znARfdNjQ0dFx109eDiZ08tESxRaPn5dMzPGykz+lBc1UPMc/rWJYaL3BVp0+fBlz3UVZWFgsXLsRms2EwGPjiiy9ISEhweag09rpRfcc7vuquIcraDaRETk5E6Y81/mSLgfFmSDD2dpUTbrqyhUL7lAmTW5Kie1IUmoKSajrKX/gQeHl5icLAz88Pk8nEkydPmD59+o8dAvihUYnTaR9/Jy9BhdcsLv9PS7FYLJhMJkwmE0ajUfx7YGCA3NxcNBoNhkl6hJjQoFKpOHjwIKmpqaxZs4aAgAB27tzJ4cOHxcLu7e1NVlYW58+fJy4ujq6uLi5evEi0lxdr1fVjdAb8JTNLPdpInxJAU5OrGJA1+kcXRvfv32fKlCmo1Wra29s5fvw44CoMRkZGcAz3Aa9XFfNW2Tl27BharZYlS5aQmprKyZMnKS8vd1EFb+RSMaBkSbqLCtbb20tbWxttbW2cP3+erVu3iuKhqamJc+fOERERQWBgoCiyrFYrAQEBQt1vdDEgy8iqVCpWrVrFH/7wB549eyZm2XLExMQQFhZGQUHBmGJAkiRSUlJ4+PCh6PosXryY48ePExwcTFNTE3PnznUDWY4XAwMD3Lp1C3CxW1pbW4XUcl1dHQ6HQyDxZUaJwWDggw8+cCtexmMSyOMNk8nEjRs3BKZk375943oJPH78WGAcRkd+fj5Wq1XIUVdVVZGTk8PChQuF6NDNmzcFFTchIUG072Vdgbq6OlQqFW+99Rbz5s2jp6eHs2fPMn36dMrLy/Hw8KCnp5tV81J5++0XSVq+TvL3WLBgAWvWrCE7O5vs7GxhenX8+HGam5vZtWsXERERHDp0iJ6eHvbs2UNCQgImk0kk+C1btrjhfEZHY2OjkAP28PBg48aN5OXl0drayqpVq5gzZw6ffvqp2Onm5OS4MQ8OHTqEJEmoVCqhSzJewWEymbh9+zYFBQUEBgayYcMGSkpKxG5eoVCQlZVFa2srw8PDBEjDFN28QXd3N9HR0UJdMioqipaWVvqcHhjtGjwlKymR/kyZEuXmrTI6XoCJJ4qxtEW1Wk2bw4f7xgjx3uvHygnRFLMmUE+UaljgVMCFX5CppXLI9up99skl+C6DhZSJoTZ/EvEnWQzINMGxYFKn20zLFa7qtcYRzBpVFfn2scltoaoJrWSbVDHgKVkJDw9n7lzXHFuv16PX6xkYGKCpqUmo/lVWVgKuh6lRP758LLyobCs6h0iJ9BvDHQcX8Co3N5eMjAwWBMVw9LP7rz1OD6zs37+fkpISrl+/zm9+8xuWLVvGokWLSElJEeJHBoNBLMzNzc1s3LhROAPGeWiIsJSil7zwDIpkqLuFQMmE5IC2Ntf31Ol0glY3WgK5sbGRr776iiVLlnD27FnsdjuzZs1i48aNtLW1cfToMfxHXt2t8ZfMhGvtqNV+WCwWpk2bRnBwMHv37uW//v44Rx+Y6LOncO6hHh7eJynUm/+y/k0Gc7IZHBzk+fPnhISEsGzZMiRJ4q233uLLL7/kxIkTfPTRR27FS39/P/X19VitLvaIfB2cTqfwpQgJCWHmzJncuXOHWbNmuYHmJEliwYIFnD9/nv7+/jESqzNmzOD+/fuCCvrw4UNaW1tJS0vj2bNnoi09UcgW0PICqtfrhalVbGws69atY8aMGUJsyuFwYLPZmD179hh2igxmVCgU9Pb2IkkSISEhlJSUcPnyZQFU1Wq14xYCIyMjYtw0OrnJ7XKFQsHKlStpa2vj5MmTTJ8+nbVr1wIukSWZvaBUKoXehsFg4NKlS1RWVqJQKPjkk08IDAzEYrHw3Xff4evri8ViwWg0olAoiIqK4s033xyFWrdw9OhRhoeHxeihrKyMjIwMdu7cyZEjR/j222/x8/Ojv7+fvXv34uvry9dff43FYmH//v1ERETQ29vLsWPHMJlM7Nu3b0zHRL4n7t+/L2SvY2JimDVrFhcuXMDDw4MPPvhACJkFBwdz8+ZNDAYDs2fPZsaMGULSGGDq1Km8+eabbsqfo//OkydPuHHjBjabjWXLljEwMOBWVAQFBaHX60lMTOTu3btCAj0+Pp4tW7YQERHB119/zcDAAAVNBvJsKW7r370mMwtaK4mcADM8mo74qjA6NQRLrlFBo1nH1ZH4MZufbquK7I5g1mv1hEvu6owKhQKdTofVahWjPYvFgqlzGMZXgXeL0EkyKv6Y44+aWjgeleT1alvjhat61SlsbNGUsllTymq1Sz5zh1fVT6bQdHR0cPnyZc6dO0deXp6g142W/5Vjsg9T1yu4wqPFcVIifAnV2id1nBcuXCA+Pp6/+qu/Ij09ndu3b/OP//iPFBcXC2dDtVpNRUUFWq2W6upqdDodkiShVCqZOnUqKpWSAIaZE6IkSGFCrXYdi6wf7+fnNy6yeu7cuRgMBn744QccDgfbt29n27ZtaDQaKisrcTjsk7JatdlGROv08OHDtLS08KzDzKm+CPrs7ue2pmuID48UkfrGdpHob968KQyPtFotO3bsoLu7m8uXL7vtlqOjozl79ixGo9GtGOjt7cVut+NwOKipqWHlypUYDIZxd1KzZs1Cp9ON+1pERIRYwLVaLfn5+cyaNYuysjLS09PdOPwvR3l5OQcOHMBqtYq5r1KpZMOGDfzt3/4t+/fvZ8GCBfj4+IgxjUw9W7169ZjP6+7uJjQ0lJ6eHkErPX78OKdOnSI2NpaPP/6Y/v7+cY2JwKUcaLFYxshQP378WPzcbDaTnZ1NSEgI27ZtEzvB8+fPj5Ecfvz4Mb/73e9oaWkRIyWZU3/mzBmXc11UFA0NDXh4eKDVann33Xfdnovs7Gy6u7uxWq2kp6fzl3/5l3h4eHDw4EH0ej1vv/220KTYunUrGo2Gr776CoCPPvpIUHsPHDggPBXGKwSMRiNHjhwRhYBsw3zx4kWSkpL4+OOPRSFQWlqKXq9ncHCQbdu24enpyXfffSeunywlPF4h0NLSwoEDBzh//jwJCQksWLCAR48eCTR+VFQUv/71r/n444/x8/MTVuFqtZq9e/fy/vvvExkZid1uJzo6mko9k7YqHh2j6YivCk/JKuTLX6dRkm+PxelEnCenE1Zu20fiss10WtWEhIRSV1dHU1MTCQGaV67Lsm/IzIix5/BPLf5oOwMTUUk+WBz3GhWyicPo1BCkMBEkmQjCtRuWx2g/hUIjh8PhcFMedH2OizLk7+9PQEAAHhY11+tef2zB3hNzqOVW4sjIiMsPPkXHPxRZxxyn/K/F2hYkXPzzZ8+eMWvWLJYsWYLFYhGULdm/Xa/X09bWJiSMv/vuO4KDg9Hr9QwPD4ukIiuojeb22u12NxGd0VFaWirm1rL2fXx8vHCLi4uLQ9HUxHpFDY8sU8bt1syL9KSry6UtsGPHDu7fv8/hw0e4qsr4sSs01pkPJ/z9zQa+fv99vvnmG4Fi/+Uvf0l4eDjh4eFs2LCBCxcuEBsbK9Qlt23bxueffy7a5h4eHpS0DZD3rIZehwfTQ72pqKhgxowZzJkzh3v37pGWluY2R1er1cybN4+ioiJWrFjh1nlobGwUeAen04nD4cDT01Ps+F4Oo9FIRUUFeXl5YpYbGBgo/h0SEkJGRsaY9402MQoMDBwXhNbd3c3cuXMFdkD2Tti1axfTpk2jpqaGkZERN32B0VFYWEhiYqJb98PpdHLr1i0UCgVLly4VlNNdu3aJ81BYWEhHh8suOiwsjMTERA4dOkRjYyPz5s0jMjKSixcvvvAhePCAiooKFixYQH5+PiEhIRgMBj766CPBuLDb7Zw8eVK0wmfPns2mTZuQJIn9+/dz5MgRvv76a3Q6HVqtFk9PTy5evIjFYiEkJITdu3fj5eVFUVERFy9eJC4ujh07doxrZdzS0kJ2djZGoxEPDw/eeOMNHj16hMFg4O233xYAX6PRSE5ODiUlJaJNf+3aNTGj9/LyIjw8fAy7AWBoaIgbN27w9OlTwsLCWLlyJUVFRZSWlgq9k3Xr1pGcnMzg4CA5OTn09fUBriLzk08+QZIk7HY7T58+5d69ewwMGChwpL5y7p9ni2GLonTM3F/eJL2ugxestODt7UPDgO21Y4Vemwa9yout6ek877ZyayCYg9+W/Ph6Cg/qrfwqLY4p6mEKCwvZkRDAV3XSmA2gJIECib/bnPInDx6EP1I2gTwGGI9KcrNifAvfyUSqqgNvpWNCsQofhZVQaYhep9cYRO4qXSOxOrNIjjJdarxITk5m1apVtLW10dFQTSNBr0Xm+9S7eL+hoaFjFM3ABaqKiooiJiYGD4eR3oqCMceZFOrNf1kZibW5ROwSHA4HXV1dPH78mI6ODubPn8+SJUvE7s7T01PYGMte8h999BH+/v5uO1y5vT1aTvflBzApKUksTDabDYVCwf79+wkJCeHOnTvk5+czPDxMZmYmxcXFREVF4TB0k6zsJkbZT7RigFnqTuYp2/BVWMnMzMRut6PX6yktLWXNmjVUdRu50fFq8Zm+YSurk0NITYwR45qKigpmz56NRqMhIiKCvr4+Hj16hN1uJyoqigULFuDp6UlxcTFtdh8ON3rx+d167jaaqLSH0mAPwNLdyLol84mIiODRo0colcoxu8fAwEAePHiAv7+/6Jg4nU5OnjyJVqvFaDSKe6irq4sFCxYIYaLCui4uPCzmxp173LlygaqqSoaHh4mKiuLtt9+mqKiImJgY9Hr9hMY/jY2NYkadkJAwhiFgNpu5efMm8fHx3L17F7vdTlJSEr/4xS+EGFZeXh5DQ0PjSiJ3dHRw69Yt1qxZ48aqKCwspLy8nDlz5vDs2TN6e3vZt2+fKBiGhoY4fvy4+O4pKSmcP38egHfffZfMzExycnIIDg4mMzOT2tpazp07Jz5PBuPt3Llz1I7SydmzZykvL0eSJJKTk0UXAhDg0cLCQsxmM1u2bCEkJITy8nJUKpUQE7p27Ro3btwgPT2dbdu2jQsKzs3N5eTJk4yMjBATE0Nqaio3btzA19eXffv2CcBbVVUVR48epaenhw0bNmCz2ejo6MBqteLl5cWOHTvQaDS0tra6XT+73U5+fj7ff/89fX19ZGZmMjw8zLNnzwQi/4033mDr1q34+vpy584dfvjhB/R6PVlZWdTX12O32wkLC6O1tZUTJ05QXFzM1KlTiU9bysnyYV7VOTWjJkbZj6fkTleWJJc/R50jSPzuqDMjaIs+kmt96LF7UGt/NfYFYIqkp7C8jovGeMwvMbjMDiUPWq04OqvZtjaL3ZvXkhEXyIOKFoZsL35vWqg3/9+ueX/WGfgx/ug6A69TC2TMrn1Sn4q/ZCZQMuEYx2BOp9MJ2lekcpAtilIXyMbpAtkESiaUCgVZWau4ceMG0dHRAj0so3TlHR+4Eo/cel+wIIPeolouDMdP2HFY5tnOlClRXL16lbt377JgwQKRnOQY7VYXHBzsdpxJs+ZT/fwx/9tOl6jPUy8bZ8+exdvbm7i4ONENkCSJx48fCy36GTNmCEW80drpDoeD+fPnU1xcTEdHByqVyk32eDSFSKFQ4Ovri16vF0lo9OeUlpaSkJAgxhJKpZL79+8jSZJoC+t0OiSDQXRrwLUzv3fvHh9//DFXrlyhqqqKkydPEpWxFhr7XnvFvzl+mmjlgLg+Q0ND/P73v2fRokUEBASQlpZGXV0dVqtVtGnT0tL4JuchV83x8BLOo33YyQXiWfaghHez5pCens7Dhw/JyMhwQ8L7+/vjHZ1M9p3naMMSmRnpS0lJCW1tbezbt48jR46I8+dwOJg3bx7fXHrI7/K66bbKj7MfIZo5pDlreXf5HDIyMvjqq6/w9/dn586d/P3f//2ENsaj1RbH6wrI3YA7d+6INvv69etFh8PpdFJdXU1SUtK4u63CwkK8vb3HKMPdunULSZKw2Ww0NjYKLQE5rly5Iu5fmWopsxRkkGlLSws7d+5Er9dz6tQpYmJiqKmpwdfXl+7ubjZs2CBEg5xOJ5cvXxZU0/j4eLZv3z4GKJmdnY2fnx9arZZTp05ht9tJTk4W4D9vb29qa2tZv379uBoSZrOZU6dOCUDb4sWL6ezsFNTMN954A5VKhdls5sqVKzx9+pSkpCRmzZrF1atXhRW6n58fn3zyCVqtFoPBQF5eHjabDZVKRX19PTk5OfT09DB79mwcDgf3798X3yUtLU1QOvPz87l37x52u53FixezePFiMQYLDQ3lxIkTOJ1OZsyYwbp16ygrK+OHnBvA+F2e0WF0agjCREBAAD4+PuJekn0GxgMTv+Hfh69pEJVKhUajwcMyubFCgFbBteEp43Yr5HW/wmsWixYtQpIklkwN5sPwdka8Q5mZtohQXy0zI3z/3BEYFX8UxcBoiuCgZeS1ZiQ/vouJdtqTafGPDrPZLJKGRqPBarUSJJkIV9vEAuZwOKiurqHHriNtzgp8Y7t4fveyoOuM1yWQ9QGCgbXqkTEPU7Daxgezvegp7aO62qWQ1tDQwIMHD3j48CFpaWksWrQIPz8/t2JAXmAkCYIkE9sXJ3Og7D7t7e1ERkaKHanFYqGkpARJkggMDBR+BLLaYGtrK0uWLOHOnTuAC8SjVCp59uwZq1at4s033+SLL74Y88B5eHiI8Yinp6cwFhrPyjc/P5/8/HzCw8PR6XTCAyE6OpqWlhaysrK4cePGmPeZTCY8PT25du0aO3fu5Ny5czx79ozivHtAyvgXclSEemvYuHIjRqORoqIiDAYDw8PD3LhxY8y1Ki4uRq/X4+vrxwNT5LjTSfln/3i7mR3LZpOVlcWTJ0+ERj2MHm15A96c+M19poZ4McdWRcb06XR0dIjOivzf/+OzI1yxJuHEPrnADQAAIABJREFUvRvUbVVyTZrOrsiZHDt2DIDdu3ej1WontDG2WCzU1NQISuto8SKn08nz58+FI+aaNWu4fv06arXard3f29tLf3//uCMCq9VKcXExCxcudOtePXv2DKPRSHh4OCUlJWzdutXNfKe+vp6SkhLx/97e3uzZs8dNabGgoABfX1/i4+M5dOgQWq1WqCzq9XoXePZHl09AdJpUKhVRUVG8++67bsfU2trK0aNH8fPzY8+ePdy9e5f29nYUCgULFiwgLS2N7OxsOjs7effdd8dV/mxvb+fYsWPCN2TZsmVCrGvPnj2iMKmrq+Ps2bOYzWbWrVtHe3s7P/zwA+AqDuPj4yktLRUdh+DgYBfQrrGRoqIiysrKmDJlCgsWLKCoqEh0T+Lj41m3bh1BQUEUFxdz69YtBgcHSU9PZ/ny5cILQJZ97urqQqVSERgYiCRJfPfdd2i1Wvw0OphEjvZVOcDpAtO+TG+UNx96yYshu0pskhakZlBQ0C4K7gCY1FghaVoSJ4rGt/52hURDv0VQBl2U5G5WzkplUXLo67/Mn2D87IuBiSiCk4uxif/lkOfPkcqx4L7RISf10TsunU7H+vXrOX/+PG12H05XeaF3pnDuRNmPn53CYm0LYbibeXh6euLn5+e2245UDrJNVU6PXcu8RSsI9/cg7/IPvJmxn574QC5cuMCJEyfYtm0bWVlZIokWFBQwe/ZsJEkSCeDRo0fAC5peaGgooaGhtLa2kp6eLhYdb29vurq60Ol07NixA4PBwNmzZ0UxIaO/5XA4HDgcDvLy8li4cCHh4eEkJU0jt7IZo9NLLAAOh0MkNHkOCozhKkdERIhz0NHRgVKpRKVSkZqaytOnT5EkifDw8AnHLXa7nYqKCqqrq9mwYQNdXV0429ontdhojN3cv3+fX//61yxdupQvvviC7u5unE4nWVlZTJ8+nSNHjrgJQ5W09tPvCBnnM+WQ6DBBYV0n8xPDyczM5NGjR66xR6dlXIZLbfcwtUQyPyOSGzcu4enpKUCAIyM2SrQzwGof9285gf/leD7bdHo++uiFi6VGo3E773LIdsEeHh4MDw/j7e0NuBL8pUuXqKurE8C8+Ph4IQ41utirqqpCpVKNyyJ4/vw5VqvVDTjodDq5fv26UH9cuXKlEJgB1zWUEyMwrsufrNK3dOlSLl++THd3N3FxcdTX16NUKklISGD9+vXi93Nzc4XRVGhoqBsuAaChoYHs7GzCwsLYuXMnly9fpqSkhLVr11JTU8PRo0dRq9V4eXkJKnBSUpI4JtmVNCcnB6fTSXR0NGFhYVy7do3ExES2bNkiBHuuX79OQUEBcXFxYnQgdxmXLFnCihUr6Ojo4MmTJ7S2thIdHS2Kr+zsbHQ6HQsXLhT4EHAxBNavX09iYiLV1dWcOHGC7u5uZs6cyapVqwgKCsLpdFJeXs7NmzeFf8ayZct4/PgxTU1N9Pb2otFosFgseDstBKms9NrUTPTMBEhmfB2DILmszuVu4ovrDAalL0MjklgHJMlVxI2+pyeLvXpcqgTcpaHHC5ky2N/fL9a6P8f48bPGDEyEDZhMLFI1MuTUjZntZ6nqSFF1Eq0YIFXVwTyVa/78zwmr1YpCoUCvDeNET9jY2RYqamyBQqY4IiKCoaEhHA4HBoMBrVbrZigCTjwlGwOtNWA2oFAo6O/vZ+3atURERFBaWkpZWRkajYbly5eLFrS8cx0eHkar1ZKbmwu4RhS+vr4sWrRIcOvnz5/P8PAwBQUFWCwW3nnnHTo7O8nNzSUtLY3Vq1fT09NDT0/PhK1mu93O48ePqTYoOFivI3cogDpHkGt27gjAyz7EjOgQ0RGQsQky/U5eGOSEJZs6yXrjb775JoWFhTgcDtGqlyM5ORm1Ws3g4BBdIxr6nF6UVtbwPP8hen0/CoWEL6bXzjDDvFySqHl5eS6Z4NSFPChrxmxz0NVYS3BwMJWVlQQHB6PVaunv72dqxkqu17zepa3v+V3qnuWKXWtHRyf/WGii3zgyIcejsK6baVInoaEhgnXS5/SgwPTqeafRruAvNi1i9rQ48bMnT54wPDzMsmXLRCu5q6tLeDDYbDYsFgvp6emUlpZy6tQpwejo7u7G398flUpFdXU1c+bMISEhQXz2zZs3CQoKGtct7sKFC0RERLgBF0tKSiguLgZciX7t2rWiuDCbzRw8eFDgSKZNm8Y777wzRrCpsLCQ2tpaEhMTefjwITNmzKCyshJPT098fHzc1AmfPn0qBK4CAwN5//333cB+1dXVwhFx+/btnD59WogLpaWloVAoKC8vx2azsWnTJubNm8fdu3fp7e0lOTkZq9XKyZMnxTO2YMEC+vv7qampYfXq1WzcuBGtVktTUxPffvstjY2NrFixArPZzMOHD7HZbISEhLB3714hf+3t7U1eXh5eXl5YLBZOnTol1Cy9vb0pKyvDarWi0+lYu3Ytb7/9NkajkR9++IEHDx4QGhrKO++8Q2ZmJh4eHlRVVXHq1CnxmUajkYiICKFjIbNf7HY7kZGRbN26hZlTgrhcIY/Xxj4zWeo6ogM8sFgstLe3ExQUJJ7jNrsPN0aSeDIS7rYO+ElmkiID3SjFkiThI1kmxF6t1NYToRhkxClRaX99Yv91VgKhPjoaGxspLS1l9erVY/w//hyu+Nl2Bl5NEYRXjQH8JTPTlT1MV/aMme3Lm5zR8+d/SZSXV3DGmvJKJO5TZRLbMjXk5uYSEhIiePfynN3b25vNmzfz7NkzysrKhIEOIHjDy5Yt44MPPuDw4cPcvn2bvr4+Nm/ezKJFi8jIyOCLL77AYDBw7tw5QdOyWq0CwBYVFcXTp08ZGBjg1KlTgIv2NGPGDOLj48nOzubw4cPs3LmTmJgYsdjKCdvb2xuj0Sha/S0jXnx5v3/M95ZFnBTNNcTqtFitVvEenU7nhnOQRy/x8fHU1bkoFS0tLXz++edYLBZ2797NmTNn3M5oWloaN0paONMQ+GKkYnW1HjeFD5MR44fz2bNxZ5gRnhKZ6mb8LYOYTC4wX2mPjV/+0IDe2Qm4+Pb+komOy7nEaNV4e3vjcDgwGo3cv36JyYwgpseEMzMmUHQ98qtbqbP6v+IdLmqr3Tdc2D7D5GmnKh/3lq2MUZABoE6nk5ycHAICAggICBCdn0uXLmEwGFi0aBHLly9HrVZz9uxZ5s2bJ8Y1ozUIzGazcHx8Odra2mhvb+e9994TP5Pn9vLnjOb9l5eXc+HCBZFQtFotb7/99pjPlYWG4uLiuHnzJklJSZSWluLn58fIyAi7du0Syb6iooKzZ8+i0Wjw8fFh7969bniN0tJSfvjhB5KSkli/fj3Hjh0TmgKxsbHcvXuXW7dukZKSwsjICGfPnmXHjh1s376dkydP4nA4aG5uZnBwEJ1OR3p6ujA6+uijj4iMjMRms3Hr1i0ePnxIVFQUGRkZ3LlzR4hVrVy5ksWLF7t1PmRdhLy8PMxmM3FxcZjNZjo7O4Usb2ZmJllZWQwNDXHixAkqKioICwtjz549QsSqpqaGW7du0dbWRmxsLJs2bRIiVK2trSgUCtGV0Gg0aLVa9uzZQ2VlJc+vX2Kt2oNCEugZeZGgw3ROVvh04zk4yOCgq0jT6XSigGuz+/y4y3cPeR2gtYpI5YtX5S6fPFYYkLwZtCvxVtrwdw67GAAKBYHOV7MUJAmSQl5QBjs7O/Hw8BDdrj/H2PjZFgOvcxKcqBB4ef4/mib4bxGTUeDqNEtMSc0kZXCQ0tJSPD09iYqKEs5wQ0NDfP/996xcuZK1a9eSnZ0tKFbwYq6elJTEhg0buHr1KsXFxfT397N79250Oh2BgYF4enrS1NSEUqnE4XAI/XmHw0FkZCROp5ODBw+KnbYMINPpdOzdu5cTJ05w7Ngxpk2bJlrNwcHB9Pf3i6LAhRtQ8WAo8pUF0HNNMjszddy5c0d0P8xms6DmAWzYsAGDwSBaunFxcVRXV4viobe3Fykwmg5TD2q7kUDJRLVBwf9bYMTxEh9a79RxrF1HT08Vv3zLJV8bcfKUezFoN7Fh7XquX7+OzWajpHtkwoXsijWJtc4qaGlhZGSEXnUId22v26m4CtHhlkoetb74qdE5sbHQ6FB4BmDq7BAF42Q53C8LqsjJ0Ww24+npSVlZGQ0NDezZs4e8vDyRgL28vNi1a5dorZpMLpvZ0NBQsZsfPbeXVQzHwwsUFhbi4+Pj9lpRURFGoxGtVsuuXbtQKpUMDQ1x6dIlysvL3QrDjRs3jiuoVVdXR19fn9gpNzQ04Ofnx9DQkBsbob6+nhMnTqDRaPD09GTfvn1uieHJkyecP3+e1NRUli5dyqFDh7Db7XzwwQcEBQUJH4IVK1YIyeDTp0/z/fffs23bNmbPni2EgKKiovDx8eHBgwfMnTuXDRs2oNFoaGtr48yZM/T19bFs2TLa29u5evWqeM+WLVsIDnbv9FitVu7evUt9fT1Op5NZs2ZRUVEhRn7Tpk1jzZo1qFQq4d/g6+vL1q1bhS10fX09t27doqWlhejoaNavX091dbXAf0iSJIqAadOmCQvsAwcO8Omnn4oR6IeblvB5RgZlbQYOfn+aIE8VGxfN5syZIsLCwnA4HHR3d+NwOH7EnTheK0U8ESURICgoEKmvD/8f6yIvby8WLlxIU1MTNTU1LFQ1cW1k+o+upaMo0uNQBru6usaMtP6142V5+58bQPFnWwx0v0JkZ6KY7Px/ohiN+Pfy8kKSJJEEQ0JC6OnpGTO/nuzu7eSl69BWSkZGBmVlZaIQyMjIoLGxka6uLq5du0ZeXh4rV67k4sWLJCQk0NHRIdrt1dXVVFdXC+BXc3MzX375Je+//75L4rOtDR8fl/NYcnIyFRUV1NXV8Zvf/EbMac1mMx999BGff/65G8hMrVazc+dOzpw5I8BcCxcupKWlhZSUFAIDA7lz545rQbApX1sAtQzaKW4ei+qXKWAqlYq2tjaam5vx8fHBw8OD2tpapkyZQktLC73qEP7iXAt6pw/gKlr8MHHqh2IczvFmm67F57Eznt+lpWE0GgWAUi4GJUni8uXLJCYmUlNTO6mFLMJaSrvDh6vmmAlb/K5wL0QjIiJczAFvb3Qteq7Xv/LNAGgcJlCpBIDzdRzul3dHcoy2MbZarVy9epXp06czPDwsEjrAhx9+OAZdDy4DGIPBgIeHhxvIsLq6mpCQkDG23BaLhefPn7N48WLxeVarlUuXLgEuyWLZG+Hq1asoFAoyMzNFqz02NlYktpejoKAAtVotEppGo2FgwGWyJXctWltbyc7ORqVSodVqef/9992EenJzc7ly5Qrp6enMnTuXQ4cO4enpyf79+1GpVBw+fJi2tjbhOwAuavC2bduQJEl00uSQx2jbtm1j1qxZ2O12bt26xb179wgLCyMrK4v79+8LNsDatWuZP3++W+JwOp2UlJRw7do1jEYjU6dOpbq6WogGyQY9b731Fo8ePSI3Nxe1Wi0+S6VS0dDQwO3bt2lsbCQqKoo1a9ZQU1PD5cuXx+ggpKSkCGZGbm6uGMM5nS5fgpSUFEFlTJ3iz19sXsbRo0dRKOaiUCgICgoSrAS73Y7dbp+0FPGgypcQlcUlMz4KRCx3F8BlTx0bG8uxY8fo7e1FqVQSySD/Oc2L3+f3uP2dqSFjrYm7urrGxbH8a8Ufg0Xyz7YYCJmkfORyVS1qySHGAAC9jvFHA6+L0UhuuZUqh9zafzkmu3vrbaklSOEyIxk9A/f392f9+vWUlZVx7do1AeLz8/OjpqaGDz74gIMHDxIWFkZnZ6eQvpWjv7+f3//+90RGRjI0NMTs2bMpLi5mzpw5wp3PZDIJIKC3t7cwp3kZca5UKlm7dq0QMPH29qavr4+EhASCg4NFgTHZAqi4uonolyQR5ERns9mEvj0g5uQtLS2u1uM4yXcAHThedTFdgiX/6f/8R4IUY7tBciFXW1s76YWs1+HxiqLhRQSpRpgv1ROpHESSJOLj41m1ahX5+fmMFD3BX5r+SlBjgGRmpKuBwMAAMjMzyc/Pp7e3d0Kw1asEVUYXA/fu3WN4eJihoSHOnDmDh4cHkiRhMpnGzOa7u7sF/c/pdLopR8qUwvF0+J8/f47NZhPAQYfDweHDh3E4HMIE68iRI9TX1zNnzhxWrFjBgQMHfvweElu2bBl3hzUwMEBlZaWQQ5ZxLEuXLhXH0d3dzZEj39Jj98Ci0LJr3UbRLXA6ndy7d09YDsfFxXH48GHCwsLYtWsXw8PDHDx4kJGREfbv3y8Mg+To7e0VVEtwjTqampqwWCysWLGCWbNm0dnZyZkzZ4QmhKyzAC4dh82bN49Rj+zo6CAnJ4empibi4+MZGRkRmwOVSsWmTZvQ6XR89913fPbZZ9hsNhYtWsTixYvR6XQ0Nzdz69Yt6uvrCQ8PZ9WqVdTW1nLt2jW3rhC4nvdf/vKX4l54/vw5arWajIwMFi5cyDfffEN/f/8YN8zExETi4+O5c+cOYWFhNDQ0iOdn2rRplJeXT3odGLIp8bWPv7mTR5oajYYvvvgCq9VKcHAwu3btcnVZah7zfpCCRoMNv/AYBjqafqRIv0jANpuN3t7eMe6Y/1oxkbx9TdcQe7/K48iHC1ky9d9/QfCzLQZSInxJCvV+xajA1ZKNV/aLZN9m9xmH62qadLfA6YReh27cQsLLy2tMgQCTV+CSCxVZ5AZchcC1a9dob29n8+bNzJgxg6KiIm7evMnAgAuodvLkSVJTU6mpqeFv/uZvKC0t5eHDh+J1cO3C5Bmv0WgUMqPya+3t7cLkpqenh3/6p38ag/QHV8X/3Xff4XQ60Wq1gtJ37949t9/7KRKkL5+3Dz/8kK+//lrgBRYtWkR0dDRWq5WBgQFu3rz1yh37ZGLYoSZQmtiXHSbf0el0+rymaHDFYqma5DAvenuHcDqd5OXlUVlZSV9fn2snrG7+kSI4PoJ6lX8f/ho//vIv/5Lr168LmqfM4a70nk1D/4sFNSnEm7+bYFcit8fb29t58OCB6/sajezdu5erV68yODg4rnBVd3c3QUFBAuswGjjY1tbG8PDwGAlip9NJYWEh06ZNE7vxK1euCMxLTEwMn3/+OV5eXoJuN5pfv3r16jGdBjlycnIAhG6HUqlkxowZrFq1CnD5L/y3Aye5MzSVfocrCV78tpSk0Eb+7q2ZDNc94dGjR6xatQofHx+OHz9OUlIS27dvp7GxUThy/uIXvxhzDMXFxZw9exaHw0FERAQGg4GmpiYSExMJDAzk9u3bdHd3U1FRQUDAiwLObrej0Wh48803SU1NdStyTCYTt27d4vHjxwQEBJCUlER1dTWSJKFQKAgODhYqlHJXZcqUKWzevBkfHx9aW1u5desWtbW1hIaGsnz5curq6rh586YAzZnNZpRKJXPmzKGoqIjU1FQuXLgg9BhWr15NWlqaADn29/fj6elJTk4OH374obgvLBaLkGCWQ3YvTU5Odo15JrkOaJ3mMY+uj48PPj4+2Gw2urq6OHnyJABz5szhzTffRKVSsWLFCo4cOUJ8fDxDQ/WsmxfHlSuVPH/+3G18JXds/y2YBK/XtYG/O1/K1f8569/9yOBnWwxIksSO9Cn895yKcV4diw14HZBlLVWvLAheV0iMVwi4jvP1VJkVPt2M99zIKNuSkhKqq6tZv349aWlpzJ07l0ePHnHnzh0GBgZ4/vw5DoeDyspKFixYQEZGBg0NDTx8+FCInchRU1MjHmKFQkF1dTVhYWHs3buXmpoaTp8+zZw5c8jPzyc3N5fW1lY0Gg19fX3o9XpR/Y8WERodarWaQOvkC6DhYQSvHRBFi81mQ6vVkpKSwuDgoODA90tek0q+rwqZDz06goKCRILVaDT4O4CJLdpFSK8ZDsgRkTAdQ3sZCoVCtFHlgs3Hx4cIvZ616rGgxlCNncW6VnxN3axY+zanTp2iosL9no9UDpKiK6czSIXSOxBPaYT/9dcbJ1x8ZCzIzZs3hQOiLH8sAzonKgZCQkJEApCV/MBFKdTpdG4/A1eR0NHRIRJ0bm6ucKnUarXcu3ePhQsXsmrVKjQaDV1dXWI8IKsJjhft7e1UVlbi5eVFU1MTOp2OgIAA4TI5NDTE//WHE5w1RI+5QvKOba26ig83rRdgwLS0NDZt2sTjx4+5fPkyU6dOZfv27W7oc5vNxrlz50S7PiUlhdraWtRqNTNmzKC8vJzw8HA8PT2FYJbMFACYOXMmGzdudBuvOBwON0OhadOmUVdXJ8CiKSkprF69mvz8fB4+fMiZM2eYMWMG1dXVPybCIS5cuEBVVRXBwcEsXbqU+vp67ty5I47dYrGgVqvJzMxk4cKFopDPzc0lLCyMrVu3kpKSIq67bMEcFRXF+vXr+eabb7h16xYzZ87k8ePHlJSUYLfbhdOq1WoVxYBsL/xTN0Kjw2w2s2/fPm7cuCHGU1lZWQLPAAihK/m5jYiIQKFQCLCxHPL7/y2Kgddh135OFsk/22LgQU0P/8/l8QoBV6QrW0Ryn4yn9quALD+lkBiNK/DwcFFtkrwcYBhfgStT3UyQbQifHx8k+TOmTp1KfX29AO9YLBbOnj3LuXPnSExMJD09nf/4H/8jf/jDH8QO/uLFiwKkFR8fT3x8PAMDA3z33feUtPaLjoazrV3s7iRJ4r333sNisYiHprS0VBzj6Dao21kb9T3BtbBbLBbhA/9TfBpG0ydlAxf5O49uFwPY1SFgHveQJhFOwnQOwYceHYmJiWJRsVqteDutk1rIQqXJ6VusXbqQayfK3L6rLFIlF30ygtrmE8aAFXzVTnxsBjw9Pei3umR+Ozo63Oxb5RgaGuRvfv1rKisrBXZjvIQ+PDxMUVER4EpCGzZscBPjsVqt2O32cbX1u7q6SE9PF+8fPSaorq4mMTFxzGjh8ePH+Pn5kZiYSEVFBVeuXBHFn6enJ3v37hXtd1keWL6vRksDjw6z2czRo0fF9/H09ESpVAq9ALPZzOHDR7jeH/JKhboyjxR6e3spKChg+fLlLFu2jMuXLwt1wzVr1rj9/b6+Pr799lv6+/vRarXExcVRWlrK9OnT2bx5MzqdjqNHj/LgwQN0Oh3+/v4iMXl4eLBly5YxnZPm5mZycnKE90Zvb6/oDkZGRrJx40acTienT58W4Nrly5ezYsUKfvvb35Kfn8+1a9cIDAxk0aJFNDQ0cP/+fZEoLRYLWq2WZcuWMWfOHEpLSzlw4AB6vR4PDw+2b98upJBHR25uLt3d3fzqV78iODiY6dOn8+DBAx48eICvry9LliwhLS2NgYEBvv76a8BdvRJAqVT8ZL8WOZKTkzlx4oRYk3x8fMjNzWXq1Kmi4KysrBSKjPI59vPzc8MagItJIKtI/muE0+mkt7eX2tpaLj1tAsYCW1+On4NF8s+yGBjdmpkoahzBpDo7kaR/nqf2i781+UJCoXBPkCaTCR8fHwYHB4nVqYmwussUL5kZx6ZNv6KsrMxNRc/pdNLZ2clf//Vf09fXJ3b4sutiTU0NNTU1YlY6NDSEv78/er2eY8eOER4ezjvvvENQUBCFLUN83hhIv+PFnTi6o+F0Ovn000/dvpXJZHLj9o8XQUFBeHl50dzcjMPhEIXA4OAgfn5+OAcGSHe0UGSPwjHqvClwkqZsfe1YRk54Mpq7qqqKc+fOEaBTwqTwn+MvPnPtNWg9NGM0El52CpQkWObZwYXhuFcuZEGK1+9+orwV3L/wnZt/vHxeRx/HkiVLXIut3YDObmXfnn0cPHgQi8VV/XR0dAjp65eLsejoaIKDgzGZTIyMjNDZ2enWKnU6nTx9+pRr166JAtPHx2eMWdHIyAhOp3OMvr7RaGR4eJjAwECGhobw9fUVvzM4OEh7e/uYXbzZbKa0tJSlS5fS3t7OyZMnRSEQEBDAf/gP/8GtYHn69KmQul64cOG4bpZyYnQBQCV0Oh0jIyPs3btXuC4ePXqUqm7ja5/5ZoONK/ll7HvrTVJSUjh+/Di1tbVs2rRpzIy8pKSEM2fOYLfbhRZDTU0NGzZsICMjg4GBAU6cOEFDQ4MQz5Ln8pIksWPHDjcA29DQENevXxe+CaNb7j4+Pqxbt47Q0FBu3bpFeXk5oaGh7N69m+vXr9PR0cGJEyfo6ekRioiNjY08evRIFAFWqxVPT0+WL1/OtGnTKCoq4re//S0Wi4Xp06ej1+tZvXq1oB2OjoGBAWGzLZuVmc1mPDw8cDqdfPDBB3R0dHDu3Dm3zqPTiTs7x2kSY6x8Rxz99hfJWAZzRygGx2C4lEoFJSUlQtxKr9eTlJREZ2cn3377LXv27CEmJkYYf3V0dNDR0YFGoyEmJoZnz5652YDLTIJ/SRiNRurr66mtraW2thaDwYBSqcQjJI7JFAM/B4vkn2UxMBla4ejk/lM8tV+mGf6kQsJpGrNIy8A3l2OgO3q9ttYl/SpJkuAZy7Qog8HAp59+ysyZM1myZAnvvPMO5eXlXLt2TYwknE6nqJz1er3YxXR0dPCb3/wGZeRMvqrzwIn7jfi60Yi8q5T52PLfkD3hLRYL/f39Auwnz/3lxW9gYIA2uw+F9iljuikOJArtUwhSGF9ZEMjJUu6uXLlyBYBYXyVRJgWtQ3YmSr5eWFFJDgZGXbcAhZkFyiaWJoWIUcR4fw8QCS/Y2statXXcjs5onMnrdj+plgqUvmqioqJoaWkZt8AKDAzk6dOngi2RmppKdHQ0Op1OSDeP5oGDu0JjW1ubmF8rlUqam5tFMdDd3c3FixdpbGxk9uzZqNVqCgsLCQoKGoNgl50tX95FyQBZ+d6OiooSr8kJQZbXlaO4uBibzcaUKVM4ePAgdrtdJP99+/a5FQJGo1FoDnh5efHGG2+MOUcAd+/eFX4YKpUKk8nEu+++S0REBHa7ne+//57W1laGHZOzpE1fuoqEhAS+/vprDAYDe/d15BQLAAAgAElEQVTudcNC2O12Lly4wNOnT8V3rK+vJzAwkF/96leEhoZSVFTE1atX0el0zJkzR9AuwTUWMBgMnDhxgv379xMUFER+fj63b99GoVAQGxvr5lOSlZVFamoqDx484NSpU/j6+rJlyxZmzZpFX1+fGAf6+voSGRlJe3s7+fn5ojCzWq34+PiwatUqIiMjycvLEwyNtLQ0MjMzqaqqoqqqalwJZfkcOhwOiouL8fT0JC0tjfnz5zM0NMShQ4f47LPPhIoouArRgmYDj6wvu4e+2HTs8q6lZdiJWdKic1oIlEy0O3w4Y02Z8D1Tp05l165dHD58GKPRyO7du8nOzubbb79l06ZN9PT0CExJR0cHDQ0NpKamumTHi4tZvnw54CoGJmKjTBR2u53m5mZqa2upq6sTRWpISAgzZswgMTGR2NhY1Go1N/7pLjVdQ+MODCdi9Px7jJ9lMTBZWqGc3H8KoG28z/gpf2siadyXw+mEDouKv/6/v/ixIgZwWYxGRkbS2dlJb28vZWVllJWV4eHhQUxMDCtWrKC3t5e8vLwxO/fR/3Y64WS99M8ejcgOhKMtluV2nPy6HHJxolKpcDqd+Pr6cdOUjFNv+Wf9bfn4+5we/I9jOVj0Xfg7LWRmLsRoNJLaVE4bEyffpeoGIhSDbruUxEAdev0g9fVDr71Ger2e6dOnU1lZSSTjG0+NPu5XGbHIC1tfn4vZoVarhX/FaLZGX18fkqTA7BFMGwHYm/oIe/BAnH+/UWOkgIAAzGYz7e3t4udms5nm5mZiY2OJjIykubmZ9PR07t27x/379/H392ffvn34+/vz29/+dsw1BMTxOJ1ONzEecC2oCoVC3AOjd5TV1dVMmTLFTQdABg6Gh4dz9OhRHA4HaWlpFBUVER8fPwaQd/XqVdEl2bp165jOBLhwCbdv3xbeFjabjTfeeIMZM2bgcDjIzs4WZlcekxHTB6ICvTlw4ABarZZf/vKXbjx/vV7Pt99+S29vL1qtlrCwMGpqakhPT2fdunWYTCaOHTtGTU0N06dPp7u7W2gNLFq0CE9PT27cuMH8+fMZGRnhm2++wcPDg/7+fqKjo+no6BCt/3nz5rFkyRKePXvG559/jkqlYs2aNWRkZAixsOLiYjG+USqVIkHJ1y4gIIA1a9bg5eXFo0ePOHv2LF5eXixfvpz58+eLa1pWVkZCQoLb9RoYGKCoqIiCggJMJhNBQUFkZWUJEOPp06fdRoYajYbMzEyCg4PJKarjsjn0lWPUZLXEzAgPBgcHCQsLJ79pgKvD8a98DzU1fPPNN2i1WgYHB9FoNKIgOHfunJCaljdc9+/f5+OPPwZcBery5csxm80YDAbCwsJeeR+Mbv3X1tbS0NDAyMgInp6eJCQkkJGRQUJCghslVY7/ujmFvV/l/biujGL04ESB4mdjkfyzLAYmSyuUk/u/BMjyLykkgDHzXS8vL6oNinHBiGsC+9HpdBiNRjQaDd7e3gIPYDKZqKysdGMbjJfU5CTa4Xgdyn3i0cjL4e3tLToECoWCkZERNm/ezLlz58TvyHPJuLg4Pvv2NI16K6+yPJX5xb52w5hX3cCaHQBBBCjMDDxtIAw9n2xbj/LsHR5aol65Yx/dhdHrTT+en/ELgSlTpojdtcPhcOM8v9zRAXenSnAVBLu86mg1MqZokH9Xpqb6+/sLND247pGWES/Xd27xAFy4iHOXOlio8mG6P6IQkKWPJUli4cKFBAUFcenSJZRKJdXV1cTGxhIdHc3Tp0/53e9+h8FgYOnSpSxbtgyVSsXx48fx8vLCYDC4HT+M9dUYHd3d3QQGBroZRYGroKitrWXJkiVuv19dXS06SgqFgn379omd/1tvveX2u83NzSKJyruul6Ovr4/Tp08LoKckScyePZvo6GiuXr1KUVGRALWGhoaSHh3D3Yevf+bvnTtOaGgIv/jFL9xAfeXl5cKlMCQkBJPJRFdXlzAlev78OTk5OYLBUFFRgdPpJCgoiO3bt4sRh1ar5dKlS/j5+QldB29vb5FYY2JiWLduHU1NTXz11VeMjIyQmZnJkiVLMJvNXLp0iadPn+Lp6cmsWbNoaWnBZDK5Sfj6+/uzceNGbDYbjx49orm5maCgIN566y1mz54t3CXB1alsbGzk7bffxul0Ultby+PHj6mqqhIFWFRUFJs2baKoqIgLFy64jbemT5+O2Wymvr6eoqIiBgeHOG+fzfipRIIfFVbn6lpJSUn50f/CQblHKs7h8WyRX7wn2bcWi8VCS0sLWq2W4eFhIYT1D//wD1itVpqbm7FYLGg0Gnp7eykvLxeeKvBq8KDRaKSurk7s/uXWf0xMDFlZWSQmJhIeHv7aRL44MZjf7pjJ/36i0G098pPM/Ldtc/6sM/BvGS9ohYNMJrlP1vxivGv+LykkYKwTX7VBMSEY8WRvBD6+w/yn3dsF/WtgYICvvvqKwcFBIT368o4OXJV6o1lH7kj0T0Lbjx6NxMbGkpaWJtDAcgwNDTE0NIRKpcLHx4e+vj5RCMTExLBhwwZyc3O5efMmGo2GoCmzQP/6DsmAVWJ2Ypxb234isGa/Q8uZgSn809srcDiMhKFni0Y/Zsfuwm1M+uu7xdy5c3ny5InAZbwq5Ln76DCbTQQpxkpZm81mdDodVquVyMhIGhoa3MZJ/ZpQrhqjJtwlKQw1hEvubo/JycmsW7eO4eFhLl26hNPppKqqikWLFtHa2orRaCQgIIDdu3eL3W51dTWVlZW88847nDlzZgxuYnSn4mW1v+7ubqHwJ9PcABobG7FarQIY53Q6KS4uFveHJEns27dPuOLFxMS4uRw6HA4hKa1SqXjzzTfHnFer1cp3332HWq0WIE9ZY//Zs2duLowrVqxgcHCQwsLHLFT5TPjMK5BYqGrCy8uT7u5usrOzWb58OfHx8Vy5ckVgSGTtgNjYWLZu3YpKpeL777+noqKCxMREuru7KS8vR5IkVqxYwdKlS8X4Y2RkhOHhYRQKBQMDAwJkK2MuNm7ciNls5sSJEwwMDDBv3jzR2r5+/TpPnjxBp9Mxc+ZMWltbhd2yfJ4jIyNpa2sjOjqaK1eu0NvbS0xMDO+99x7Tpk0bN4mVlZUhSRJ6vZ7PPvuM/v5+wsLC2LhxI11dXTx+/Biz2cyXX34p7lHZa0KpVFJeXk5zc7PQm1i0cQcHT0+smOX8UWG1vMNAT89tF3OioYtaawgTbRbk99Q7rPznX73DgwcPqKio4LPPPmPlypVMmzYNi8VCaGgo2dnZTJ8+HQ8PD+Li4rhz5w5RUVFUVlYyNDQkNjAyLXOi1v/MmTNJSEggNjZW4C5+SoQ6+tiqLSM58w2uPyzgrz56n7tns+krN+FMn/rnzsC/VUiSxN+uiOGT70snndwn08p9OWQ3rckUEvB6MaPJgBF/aFDi+B//gFrtarmPTvxyYREREcH/z96bR8dVnum+v12zSrNK82jNs5FtecCG2Nh4wCbGBjMkkABpkk530t25OX1P+vY6fbvP7Zxm3fRqAuk0JDQJNgRjIAwBAzI2nm15kCzJmq1ZKs2zSlLNte8fxf5cpVkGOsO571pay5Krdu2969vfOz3v82RnZ6PT6Whra6O5uZl2q55PnJlLHHS7aWF6wOXFA3R0dBAYGDgr61XM5XIJpK5S8di+fTuxsbHs27ePu+66i9LSUj65Wg9kzXr/TDNKDj/k71Luzz++X8MBo7c6MlfGvpw2DRGJmIcs3qqOuRuz2byk9ypgzeWY3W4nLCyMjo4O4uPjsVgsWCwWZBlOjpsWvOZSRyL3Gyzi+w8MDBQjdEFBQYJwanBwkH//938XG8+6deuE03a5XJSUlJCamkpeXh5Hjx6dFQz4/u6bJYM3w1q1ahV1dXWYTCaBT2lqaiI4OJiYmBjGxsY4evSoKNWDdyIgJSWFX/7yl4CXSc7XLl26JNbAvffeOysIUQCDQ0NDfoF1QEAAubm5QuYbvKX5mpoagWVJ1lvZH9jNFXcKZsvN50h55h/bvpaw1AKqmztpr6/itdcOo9XelCIPDQ2lq6uLLVu2cOedd9LY2MjRo0eRZZmMjAwRMMbExHDgwAFxr2VZprGxkWPHjjE+Pk5MTAx9fX3Y7XYkSUKtVqNSqTh58iQDAwPk5OQI2vDz589TXl6OVqslOzubnp4eamtrxf1WwJcWi4XMzEx6e3uprq4mNzeXffv2zSJG8r2PZrOZs2fPAt6Sen5+Pvv27QPgwoULAosxPDyMVquloKCA6Ohourq6OH3a68jT09N54IEHCA0N5dChQ3x8+iIwG+g506ZlHcXFhd42BEtzth59MNevXyc/P5+GhgZycnIoKSnh/PnzqFQqvvGNb/D+++9TV1dHaGgoW7Zs4cUXXxR6KzU1NZjNZgICAnjjjTf8Sv/p6ekLlv6Xa+3t7SQkxFO0IpKGS+OkR+jRb7+bN954g+bm5jkpuv/Q7I8yGAAIsfayS988B2hlfueujG4t1P/1NYWjPdXoYKe1aVbWrXwWsCAQRrFlgRFdNylyo6OjRWSujCElJSVxxx13cPvttzM1NcW2fzuF7PQeY2nmrWgEOcdB8uIBtFotdXV14hVarZaioiIqKytnsREqDufIkSMUFxezevVqQkND2bVrF3FxcZx8o2lJ1ZSJCavoey/1/gw4tZhUszNzX1Nojecy0YboDQBigeWRT42Ozq5ILBT4K5MZ4+PjAqlvsVi8M/IWz5KuOSw1n9HWajQajRj/U8q6aWlp9Pf3A94s52tf+xq//vWvMZvNgma6tLSUsbExHnnkESRJEiN4vub7HStcBODFhExPT4us1JdLoKmpiYyMDC5fvszJkycFtqWzs5M777yTgoICent76evrIykpyU/nfmJiQoySJiQkiHOVZZm+vj4aGxupqKgQOAUlU922bRt33HEH5eXlHD16FPC2FxRSH/BWGUJDQ9myqoDQE58Smp1HeuFqqi6dxT3USY87iP/r3BTmjy5+djYmwiQj6z3eNeBwOJiamuLxxx8nOjqa9957j+rqapKTkxkeHqa52Qv+3b59O+vWrRPPw9DQECUlJbS0eJUtNRoNfX19SJJEWloaLS0taDQaxsbG0Ov1fPOb3yQ6Oprz589TVlaGWq0mIyODnp4e6uvrRRDg8XjIyspi3bp1XLt2jdHRUc6fP09oaChBQUE89NBDc64ehQq6rKxMrJH8/Hw2b94ssAC+gW1CQgLZ2dlMTk5SV1dHRUUF0dHRbN26lYKCAkZGRqiurqauzjsm65kaYSnBgFFycP36dS8eZYl4DpXdQnl5ubi3mzZtYt26dYK9sqSkhJ07d9LX18fY2BiTk5NkZmYKHo4TJ04IkiaXy7Ws0r9iS9EbkGWZtrY2Vq1aJSq6k5OTZGdnk5KSIqSr5xqT/UOyP9pgoKGhwevcdbWMSYF4dMFI9gnC5GlGCaDLHTrnRj1XNgneDXUmWYVidrudOJWdfbparIYIhqfd4ti9nqVzECwVjLjjvgcpiJD44IMPGBkZwWKxiPnsxMREgSBub2/nkUceoduqos+6nDLU3NWTmQ7f6XRSVVVFUVERw8PDtLa2YjAYhMwpeLPJc+fOcebMGXJycoiIiKC0tJQH0/J4qYV5qym56n7MHu93JI+NI0nLB2vOZzqdjsLCQkH76mtfFvnUtrARQqy9fq9V6JmVkVBAVAfAW9L+xfvnF7tcAC7e6CdICiUzLgp7XytVVVWsXr2as2fPCpIelUollB+TkpJEX3p8fJxz586xbt06oqKiAG8veybDpG9lwDcYUCYJFKCoMjUwMjLC8PAwsixTUVHB2rVrSU1N5c033yQ8PFwQxHzwwQfAbKzABx98INbRfffdR0tLC42Njdy4cUMEp06nk4CAABEABQcHs2nTJmpra0UgEBMTI0r14AXXmUwmMjIyOHHiBMXFxaxatYo33ngDoyyTuuMAB99vRXa68F2bvmsgI9jN9PQ07733nljvSpAD3vbB/fffL6iE7XY7Z86c4fLlyxiNRgIDA0Uwmp6ezu233y74GWw2G5GRkYyMjPDBBx8wOTmJJEmsWLFCBEHKtciyTEFBAQUFBVRXV/Paa69hMBhQq9WsW7cOtVrtN72gWH9/P2VlZVy/fh2n00lWVhbx8fFUVlZit9t54YUXxJpUAK0FBQUMDQ1x8uRJjEYjBQUFgta5pqaGl156CYvFQlhYGMXFxRQUFHD69BnOXbcx5jHMU5W8GfjbbN71L4+OkRZppG1oet73hEs2orVO3G6PqPy8/fbbFBQUYLfbKSoqorm5mV/84hcEBASg1Wo5fPjwzSPIMOQOwCbpuP22PL6xd+uyS/VL1RsYHBxkamqK1NRUUVGbnJwkNjaWHTt28J//+Z9cu3Zt1rjqH5r9UQYDU1NTYqPTaNTEqJ04nf10e4L4nWvxDF0x376tEgj4suHNfj0Y7SMYP5uIWi6Z0VLBiJ/87i3qgyTy8vK47bbbuHDhAgEBAaSnpzM+Pi761QMDA/z85z8nIv/OJR1XsTDJxlcC+zG5Fs+CNRqNiOi/9rWvcfr0aWJjYxkZGaG7u9sPXNTc3IzL5UKr1bI6MYjOzrpZkqeBn2UFpa4VPufj/Y4+L1hTMYfDweXLl8Xvymb3ZZJPvTMazw7tpN86m4vkxJcm+vjx4xil2cRAc9kll1d050QbROtvY/RUBZcuXcJisbB582YqKysZGxujra0Np9NJUlISVVVV2O12jh8/jl6vZ8uWLeJ4BoMBWZbxeDx+4kGK+fLlDw4OolKpRGaZmJiIy+USlLiSJPHkk0+i1+v51a9+BcCePXuQJImBgQF6e3tJSEgQgQh4KwpKmT0yMpKXXnoJh8NBWFgYOTk5JCUlUVJSQkBAgF9lYNOmTbS0tPD2228LnoH+/n7xHatUKuLi4jCZTFy4cIG77rqL6OhoDh48SGRkJA8//DAHfl3J3BUr7xqoDcjn2e9/hXfffVdoAkiSRGdnJ1qtlj179rBy5Uqxf1RXV3P8+HGsVm+VS2EOjIiIYNu2bbS1tXH48GEhRa5WqwVOYnR0lMDAwFk4FUmSWLVqFStWrODatWscOXJE6JQUFRXx3nvvYTabWbNmDRMTE9jtdtRqNXV1dZSVldHV1UVQUBAbNmwgMzOT5uZmzp07Jz5HITaLjIwUjJB1dXVkZWWxefNmTCYTdXV1okVjNBrJz8+nsLCQxMRE4Vj37v0ql9sP8e5YoriHN80b+P/jvXnIfd79wRv4wAZNB+1S1CwEvvKedZpO3G4XQUFBgvVSlmXBx9LW1ibA1so0QUBAADabDWtoCh/332QqLblk4zetZ5clGrQcvYH29nbUajVJSUniviiBdnx8PCtXruT06dMUFhZ+YcRHX4b9UQUDSsnm4rVahj0BREhWPB4Pbrd72RmfVqtFq9WSnJxMe3u7KJnOFwjMZcslM1oOGHF6+iYRjkajQafTUVNTQ1JSEt/4xjfo6uriwoULOJ1OGquuAPmLnu96TQex6inCmUaLBvcMToS5TGmVgHf8a3JyUsgd5+bmsmnTJs6fP09tba0IUtRqNZcvXyZeDYmqGpxh0fSMTTMlayl1pcz6DOU72q698bnAmnAzwFPO2xcVf6vkU+Hh4YyMjC47kFAQ8n5X4HO/HQ7vSOli16x8hmIDdhXv2RN5WD/I//kXj2EymZBlWchBt7W1kZycjCzLXL16ldraWvbv3++3Ec2UMQb/ypBvH3VgYACTycTg4CBarZbx8XFee+01BgcHCQsL47vf/S5Wq5WXXnoJtVpNUFCQmNWfWRVQxmVPnz4tjq/T6di0aRPZ2dlER0fj8Xg4ePAgLpebTosHK6GkRIchjfVgMpk4cuSIeK/VaiUiIkJoPCQnJ6PT6bh+/Tpf/epXsdvtvPHGG+Tk5LB//35uDFkX5SgxT7j455+/TJBzTHA5KN9bSEgIarVatDI+/vhjurq6CA8PZ2pqitFR70TQli1bmJqa4r333kOtVrNt2zYKCwspLy/n0qVLYixYkiQ/KnO1Wk1xcTEmk4mysjKuXbtGfHw8Bw4cIDc3VwRuaWlpfPTRR4Lm+cMPP6SlpYXp6WlSU1N54IEHkCSJq1evCpwAIDJ+h8NBY2OjCAzuuusucnJyaGtr4/z584KGXAGqpqamzmK0dDgctLa2cltsAFNTc1Bp6z2s8jRTFJfPWEAqNTU1PPLII7z++usETnazXTMyJ4ZrT+w0ulHvXq2Al7VaLWq1WiRrvkG1Wq0WnBMjuije7zPN8gPLEQ1art5AW1sbiYmJom1nMBj8qm5bt26lrq6O8+fPz8uf8YdgfzTBwOySTb7IKONUFsrk1EU36gO6RtxulyDJUdTAlhMA+NpSy9o2SQ9YMRoDWO9ZHIw4k8nQ5XKJxdXV1cWrr77qd/ylBhm56kHhqOZCw4PX8SmZja9JkiSQ3EofT3G8ISEhgi2sv7/fL4DweNyoLb0kqry4is+ONvPoyMhccSWzTt3Jcdfypz7Eq2TZnwlt2kFKiAaw3VIbQpIkRkdHlxVIxOndfll2UFAQarXabwMT71pk0kU59szPkpE5OW7i6c8EpgoKCjhz5ozQm9i9ezcBAQFcvHiR5OTkWaQrSgDgGwz4nrMvz4AyVjg4OIjRaOTll18mNjZWSA273W4OHz4sRjLvuOMOJEliaGgIs9mMyWTi+vXr3Lhxg6GhIb+KnCJO5GslJSWUdVkodaTfvOdmiNZH0Pv6R0R5bj6v6enptLS0iJ68zWbDbDbz0EMP0dTUxLVr19i0aRPbtm1jenqayvq5W4EzzS4ZCJYkent70ev17Nu3j8DAQM6cOcPbb7/Nhx9+iM1mIzAwEI1Gw+joKCqVivXr1xMUFMTZs2dxOBysX7+e4uJiqquref7553E6ncTHxzM4OCjGTRVLSEggMzOT8vJyARC85557SElJmVXiXrFiBbIsi3HNhoYG1qxZI9qdR48eFaOWarWayMhI+vv7MRgMXLlyRdCWKwC9zs5OTp8+jSRJQqwpOzt7Ft+D1Wrlxo0b1NfX09zcLBgZb0+LIK69lnEpiIyVxYTqZFrLzxEaHkJVVRUbNmxAlmWxxrRaLVszEoirv4nhKspeQajHxvDwCIbPQLFwk5PFPOBE69KzbXUO99yzC5fLRUNDAx999JGo/J2xRM/pB5YjGrQcvYHc2GDa29uFvDN4n3ffAC80NJTbb7+d0tJSiouLZ6lU/qHYH0UwMF/JRskoN2g6GHYttNH7A898v6ilBgJGo1HMeIu/LbGsbZDtIHkfpHg1XnpOd4pQUoObYMQk3TRu902p5Ll46H1NIbFZP3Fro5Mzba5AAGaj9GVZprOzU6DEU1NT2b59OzExMbS0tPDmm2/6BRxLdaYGlWtOwR7l/qwIsONY4LbP1dOPm4bVUgtGaWmiBr7fq3LdywkkAgJu0vqCN7tZaFxpvkmXhcGgEgN2Nf/47EusCPVmRkrWVFVVJdaM1WolJiaG0tJStFotGo0GrVYrHEVbWxs2m01k/Mq6U9oHkiSJsULleDt27CA0NJS33nqL9PR03n77bUZGRlizZg1XrlwhPz+f+vp6PvzwQ8BbDaiqqhIAOEVtcPXq1bMCgcrKSt6/3DhnlW/AruJD0tihvUGKwUZ+fr5gBszOzmZoaIipqSkeeeQRzp07R1dXF7m5uYyOjvLcc88xPj7OsCeApVTRnJYhHCoHhYWF7N69G4PBgMfjIScnB7PZLO6fspdkZWWRlpbGpUuXGB8fp6ioiE2bNtHQ0MCLL74oVP6GhoZmkfe4XC40Gg3d3d309PSwcuVKNm7cOOdsvMVi4dq1awJ/MDk5icFgICEhgfb2doEfAS+WIiEhgdHRUdra2pAkifj4eHbs2IHL5RKYi5qaGlJSUtizZw95eXmzCKcmJydpaGigoaGBtrY2PB4PiYmJbN26ldzcXMLDwxkeHubnP/85YUySHewNCJ+tvkRwcDB1dXXs3LlTBE3KOhoaGiIgwECiBFbrOMPNVYx+tt8pa7HbFXTzufjssay+EUBk/jgb0yNZtWoVx44dY9OmTQx7jBw8PreUPCwsGmS1WjGbzXR1dfFJdTcQsegaGZiwEyFNY7PZ/KimfflhFNu0aRPXrl3jxIlPyb5924KAxN+X/cEHAwuVbJQM6bprcTQr3Mz4FAfrm6EofwsMDCQvL4+rV6/6/f/09LRfxgu3zkEQr7Zwn6pmFiI9IMBATk4hjY2NYp58oUAAvE7H6XSKIGOpo5NarVa0WBay+cYM4WZJXqPRYDabefHFFwkLCyMlJUVscEpAsBxnmqQeZ5/K2woakL3o3GhpEpPKumggMJcT6Z2W+Yi0z9WGWA6eYXx89vtnjvHNNN9JF5ukZ9yt5fIcLZWZZkVLREQYLpeL4OBgxsbGcDqdtLe3izVUW1uL2+32I1JSTHEIM+3HP/4xinSu2+0WXBCBgYHU1dUxNjaGRqPh8OHDjI6OkpyczNWrV1GpVPzsZz/zA6dt3LiRqKgotFotx44dQ5ZldDod69atw2KxiABlYGCAo0c/5Io7Z8EqXxlpfHWllvJybxstJyeHjo4OZFkmNjZWVCkAWlpaiIuLIyEhgYmJiWU9s4GBgURGRgoRr48//pi+vj6CgoJEMKBgFVpaWrhx4wZZWVk8+OCDdHR08PLLLzM9PU1sbCxDQ0N+RFNGo5Hi4mLGxsaoqanB4XAIwGR8fLxfICDLMu3t7ZSVldHQ0IBKpRL0xH19feLzwYtTycjIwO1209ra6qdRsWHDBmw2G++++644/3Xr1rFx48ZZ2er4+Dj19fXU19fT2dkpAI47d+4kNzfXD2AK+E0kNDY2sm3bNoqLi7ly5QpOp5MbN24QGxvL4OCg2DdmVomUUVnvyK2MOiGPT5pnAxPbhq2i5L8hNRy73U5nZyfVwx4gisWsf8HNX6IAACAASURBVMJGjM5JV1cXXV1dmM1mAZJVqVRMu/QsJRiIDtHT1laLRqPxG+kMDAycFQzo9XpMeRv55/M9jJXdBA3PBUj8fZkkL3Uw+/dkNT3j3PvvS0NcL2brNR3EqCbnHAXzXZT79++nra1NZB0Lmb8Dml3ivV3TQa52BFle2KnPtIUqAjP1D3xtlljIImNvgN/M9HJNkiTRdlHOyfccgtQuNuamcL62jfcdi2dke3W1mFTWRSWjZ5osK+OdC2/yN9sQMFcFZYd27mmCpRw/GDv362pQJohCQkL8KJyXYgq3xbAnYEn368GgZv7lv/8lWq2Wvr4+fvnLXyJJEjExMYyOjmK32/nzP/9zYmO9I5RKKb+6upoPP/yQLVu2kJWVhcvl4vLly9TV1aFWq9mzZw8dHR1UV1eLMUan00lRUZEXu1Nbi1qtFsA1JahUqVRoNBq/yshybKnXrawTxRkrnw1eB33HHXeQlZVFREQEhw8f9psUUp5Zb3Dha9418FcFEnvXZ1NTU+OHhdHpdOK6AgIC2LBhA21tbbS3t4ugOSAgQAh3xcTEMDw87FchCwkJYeXKlfT29tLS0kJwcDAbNmwgMTGRI0eOIEkS09PT7N+/n8zMTKqqqigrK2N4eJjIyEiKiooAb6vOt4qn0WjIzs7GbDYzPj5OWFgYK1euJC4ujtLSUjEFER4eLoSLCgsL/SY8FAa/+vp6enp6UKlUpKenk5ubS3Z29iwOCF+7evUqJSUlBAYGYrFY2Lt3L5mZmTz77LMEBwcTFhaGXq+ns7NzVnsEIDY2Fo1Gw5/92Z8xNDTECy/8gndsuYx69Mz1vEnIhKsd3KetQdlrR2Qjv7PnzXuOij0U3EKg03vvgoODkWWZyclJwbBYUFDAX5cM0DI4taDewLEffIXDhw8jyzKPPfaY+H9ltPR73/ue+JtS3fbMoiz2Hm8pWIYv2/7gKwNL1SEIxM4UOuYHYUki05rLqfguzpkMfIpJkkRKSgqTk5NibGixEm+pawX17pg5ndhCTn1mIBAbG0tISAgDAwOzCG9UKhVGo1EgdecanQSJYY+BaVlHZKAGg3VYBAm+5Ck2m21Wb3shBUPlQVJslhN3wulKK+s1miVnZLcy/vd52xARKjtr1R3zjhUu3Nv3Ht+Cgd8588V3vdxAAG4CNhfLYJXNMNA5RnV1NatXryYmJkawFPb19bF7925KSkro7OwUwYBKpUKv1/tx8CvUuTU1NYKDoK6ujqamJmJjYwWlq8FgID8/n4qKClwuFy6XC7VaTU5ODuPj40xPT/P973+fiYkJnn32WaKiovjud7+Ly+Vtzb3wwgs4nU4SExPZuXMnTqdT/N+ZM2e8x1hGBSnBIIsxvezsbEpLS0lJSeHBBx8kICCAyspKfvGLX/itW61Wy99+/avcVt3Ji2Wjs6poD2eo+OGj9+N2u+nv7xckQW73TRxIVFQURqORU6dOERkZyYEDB7BarZw+fdqvBan0vMHrhHNzcwVALzo6mn379lFQUCCAeU888QSvvPIKOp2Od999VwAVc3NzWbt2LW1tbZw8edKPfGpqakp8501NTeTl5ZGamsrIyAg1NTWcPXsWlUpFREQE+/fvJyEhgXfffRetVsu2bdvo7+8XAcDAwABarZaMjAwxhTCXlPVcNjIyQlhYGAaDAZ1Ox0cffcRDDz1EfHw8ZrPZb8/S6XRCFEux9PR0AbiNjIwkdfWdjJ5foG+PxIhbj9sUh3qih127drF27Vrqnjs3r2gQyETr3KxJj8ViMdLT08Pk5CRpaWls27aNnJwccb3/jz6ax351GWZUpCUJVEj80958PB4PHR0dfOUrX/H7lJltAn+V3VvHMnzZ9gcfDCxVh2ClppdLrpQFQFg3zdepJOm8m+9SsANKuS4nJ8evbaCUeBvdkT5o+dnzy1/VdxDpHvbJoOfPnGYGCopMp6/p9XocDgcej2dWWcrXZjnoMQiTYmcFKP39/QIN7p/py4tmebLMjOu/acr1r1GbP1MyXJjJcamofbX6ZvXkVtoQvhWUSLUdg0GPdQGZhvkDv9nXuhhfwWK2KIW2JLFW1U58fBxXrlxh1apVSJJEbm6u6Cfn5+dz/fp1urq6WLdund/xlXloX+elrCUlmHj44YdpaGgQiG6Xy8Vrr70mQGUrVqzg0UcfxW6388wzz3D33XcjSZLfBIFKpRLOwel0olKpuPvuuxkYGMBsNvuVaGHp7ZiCtEQmOuvIy8sjNDSUCxcusHr1anbv3o3ZbOatt97yuzbwjnnt2rWLjz/+mMHeXr5hCqZjwoUVHbcX5THS0sC0eYrKyjTePnmF3rFpwvRGglxeHoy0tDSmpqaEkzcajURERHDs2DEsFouQkPYNPlQqFUlJSYyPj3Px4kVSU1N59NFHSU9P99v4HQ4HZrMZo9Eo7ofb7SY/P5+Ojg5qa2vF8VJSUlCr1YKvQrHVq1fT2dlJZWUlOp1OTPu8//77bN26lcTERFpaWqiuriYjI4Nf/epXjIyMoNfrycrKYsuWLWRkZMwpErWYjYyMEBoaisViweVyCVCpEtBIkkR+fj41NTWEhIQIMDJ4k5DIyEgmJyfp7u6mtbWVmuZOllKqX7n+DmqPv8no6CjvvPMOhY4hmpk95qj8a626g4aGURGQ5ufnC6IgX9uYHsmr31rPD18rpd92kywoMyqIf/qsrN/V1YXT6fTDC4A3GLDZbKJVuhxA4kwsw3+l/cEHA4oOwULRXnpkIAe//xRvnb3Oc+d7GHTMvKz5nUrcZ6NgSvSfnZ1Nd3f3gs5VYbiaafVuRRlr7s87OxXDPt2QmBaQJAmdTif6d4oFBwczPT29aIAy831z2XKzbEmSZpV456tgKPesxx3MJVeyn2Swv3mvv9kTyXbNDa6458c1DHuWMf7nuem5l8tRMLOCIss3WRVjY2Pp6+vzwzwoFq+2cJ9Uy9uOAiaZq4S5NFXGpZgSfFRqsuj3CVLCJBvfXWvCaIn0MjeOjNDV1SXG6hRraWkhMTGR+vr6WcdWQGKKwxwaGhIiWHq9nuLiYi5duuTncFJSUtiwYQNvvvkmRqORRx99FI1GIxQ0b7vtNiYmJmhpacFkMpGUlITVauX69esi65MkiYMHDyJJ0pw0sBGSlXCVbd7yMMhE6z2Mtdeydm0xFouF0tJSdu7cSVpaGi+++KKoZPjali1b0Gg0HDx4EIPBgEqlYnLSQnZ0JA899BBRUVE0NCTz08Mf8cSbzYzJn0k0OyFS6+RrWRq6Oq+jUqm46667sNlslJeXCwpf5R4qFhsbS1hYGE1NTXR0dKDRaNi0aZM4D8UGBwcpKysTnBAZGRmkpqZSVlaGx+MRQUB4eDgRERH09/fT0dFBZGQkd9xxB+3t7QKQePnyZbKysjhw4ABZWVlotVrOnTuHRqMRgknl5eWAV/I6OzubXbt2kZaWNmtscCnmcrkE139LS4vYr/R6PYWFhVRXV7NmzRqsVisNDQ309PQIBk1ZlsX+oVKpOHfuHAAvvfQSANOeAJYSDJw//iHheMewExIS2JgeydT12QF7qGRlZ+QE965dRUFBgZ8+xnx2e1oE+/V1xBUVk5xdOAvw19bWhl6vF5U1xZRAu729nampKU7U9c469lw2MGEnP35JL/1S7A8+GJAkSUhEAn4TBcpWUeRuwmZbzWPb1/Lo3TI13WOUlDfxH5cGmXtD8b7bd6ZcWciNjY2iVBQUFMT09PSiID5Yepl6Qh1MqMfy2bXI2O12oqKi/LIji8VCcXExCQkJ1NfX09TUNMsZG41GAR6cz26FZEcp/yqiKsp5zmUL8TvMd/1GjYd96vkpoW91/O/zCkqBt0Sv1WpFpjDf+OUoAUyyUPl06YqQ81lKSorXwWusZOobmQgKxqUN5Gv7d/P+oRcYqYetBw7w+uuvExISwpUrVzCZTFRUVAi8SWNjI/n5+Vy6dImJiQk/56uscavVypkzZ/xm0e12O+fOnWPFilTGVSGoAsNwjA/y9Y0b+eijj/B4PGzevFlIVpeXl5OXl4fBYODQoUMAQirZ10FKkkRwcLAY6/VtR0mSRHh4OBqNhnW9HXzimX8yZpWnmTs330FzczMjIyPs3buXqqoqjh07Nus+Go1G9u7dy4ULF+jq6iIgIIDp6WlRodi4cSMul4tTp07x5tmqOdfykFPDz2vhb25bxZ2Z0ZSWljI8PExYWNicgXNISAiDg4MMDw+zZs0asrKyqKys5MKFC1RXVwt544qKCtrb24UiodvtFiN7M210dBSbzUZeXp5QvTx//rwf/fKGDRvEHLvb7aa5uZnS0lJkWea1115Dr9fj8XjYu3cvt91227LpcWVZZnBwUAj9tLe343J5R7U9Hg+FhYUCtLp//35iY2P55JNP2LNnD9XV1aKVoLTPlHPv7b3pLBMSEli/fj2pqanU/vIqLUNzKRuC8jyHyVMgwfe//32Cg4N5/vnnSdBM8qD+Bv0ODXbJgF62sWfjbezY8cCyyvDeqREb29Zkk5g4e7Kjra2NlJQUUS1SfhSg6GuvvQaAIzAaSF7086KXWAX/suwPPhiAmyWbuagh/3ZrCvWnWzh06BCPP/44oaGhFCaGMzS5Ai7NP2ai2FzUtgp6fqHqwFzHWYpNOFWEzgjCBwcHRZSsgO/evdyEUaolOVhNRESEX1kNmDXZIEmSAG6Bt5w46NLfsozxzKqDQljj+/eFg425bdKtIVw9H67h1iSjvVWWW1em9LXs7GwBtprPvija5PlMkiQ6OjrYtWsXn376KVbrNDnpcTQ1NeEZ7mTLls2cOHGC9vZ2QdKjZP+SJJGVlUVDQwNNTU3s2LEDgM7OTgoKCsRnKAFue3s7bW1twE0AXnx8PJl33ss/f9hAy3QoTANEc/HVWjZoJaKAvLw8pqenKSsrE0Q7Tz/9tAiglJaTLxA2MDCQ2NhY4uPjiYqK4vjx40xMTOB2uwkICGBqagq73U68Gnapm6kPKKB99OZ6i9K6KFa18chdawTXRUJCgp9Coq9jzszMJC0tjbfeegutVoskSd7x3vh4HnzwQUJDQ2loaKCkpISJCQul9rx5A2eAV2ttjDUcJSzMW8r17YMreg1dXV1MTEwgyzLBwcFiIuGBBx5g1apVlJSUiKAlLCyMNWvW0N3dLQjGwNsz1+v19PT0iOvRaDSkpKRQU1MjxhS3bt1KdnY2L7zwAkFBQYyOjtLQ0EB9fT03btwQ+1h2djYrV67knXfeYePGjaxatWrxRfiZTU1N0draKqR+LRYLarWalJQUtmzZQnp6OgaDgeeee05UAxRnX1xcTE1NDceOHRNVtrkEvrZt28bq1at55plniIuLY3R0lKqqKjInBmklc87nWYXEluAB1C7v+nr33XcZHh72ocxOx3PjBps2FXPu3DlaW1uX3Y9vbm4mICBATGO4XC6GhoZEy7a9vR2dTsczzzwDePEoMTExJCYmMjIywl133YVarebixVLCJCvjcsCCgMS8uM8vmPR57I8iGADYlBHJJz/4CnW9EwzMmNFcl/I4hw4d4tChQzzxxBOEhIQsGWuwVOezkMkyOOWlRdnzfZ6SZc9C0I8oYEd/CduZplar/TJZj8ezZKclGcNQOewLVkAUxTXFDAYD3dPSsuSSYfH7/Xky/FtRppxpNTU1i77mi6JNnst8kfkOh4Pt27fz0Ucf0dTUxIoVKzh+/Djf+973OH/+PFeuXGH37t188MEH3t5kbS27d+/GZDLR0NCAw+FgbGyM8PBw0UZQCGOUAECWZYqKili9ejVHjx5lYGCAUX0M33rl2ixejyGnhg+daXw1yDs256s4qTh1xTweD1FRUcIxrFu3jnvuuUd85ltvvcXY2Bgejwe1Wu0X3KpUKv7261/l9OkzXJ8exibpiQ0NQDc1yO23b+D8+fNC335iYkIg+X1H1LZv305TUxPHjh1Dr9djs9lQq9Xcc889rF69mqGhIX7zm9/Q2tqKWq1m2GNYcC3LwLBLx4gqAOmzioYkSSQlJYlyuclk4t5772XlypWYzWaqqqo4d+4cp06dElMiOp2OzMxM+vv7GRsbE2V7g8GAyWRieHiYoaEhYmNj2bBhA5OTk9TU1OByuWhsbGTdunUUFxcLAKjdbiciIoLR0VHq6uqora0lKiqKdevWYbVaqays5P777+ett94iKChISCTPZy6Xi87OTuH8FZxSdHQ0BQUFpKenk5yc7IcrUNZScHAwVquVgYEBfvaznzE2NjZvVdG3BdfW1ibGX8vKyjAYDGg0GhI00/yPtWH8omyEQfvNDCpC7WCj3sye4lwuXfImScr4Y0BAAEajkQMHDvDjH/+YsLAwP8K0pZgCiq6pqSE0NJT33nuP/v5+P+VMpXpYWFhIeno6MTExhIeHizbr9evXKS0txW63c9ttt/H/ptzmVdmdOU3gA0j8ffMN/NEEA+B9+PLjQ2f1VcLCwnj88cc5ePAgBw8e5IknnhBYg6YBC/OhsUMlG3lxoeTn305fXx+tra3zztTPZ3M58Llt4TL1knr7VguSJFFQUMDWrVs5ePCgKLXOVdJeqjOSp8fwqLyLXEGbzxV0+D7YQUFBREfGw5InEhcv08MSgHMsnOEvV5nyVuyLaEnMZ4pDVavVnDx5km9+85ukpqbS2dnJyMgITqeTU6dOsX37dj744APMZjMhISFMTU2hUqmEuqWSkVdUVKDT6aioqODKlSsCHa9wCAQEBHDfffcBCBa3dzvUC/J6nJ2KIVZqEn9VGO4UCexvf/vbhISE8NprryHLMoGBgezcuVO8/uLFi344Bt8gQpIkHnzwQU6ePElvby+xei0BAVocjlHyblvJuXPnBIWvwWAgKCjIrxURHh5OcXExp06dEpurkkmvWbOG6elpXnzxRT8wrtvtXla1J1KykZCQwNTUFJ2dnSQlJfHwww+TnZ0tPjM6OprIyEgCAwMZHx8XFTuHw+Gnd6Bghmw2G4ODg+Tk5KDVamlra6O0tJTAwEBWrVpFa2srY2NjNDY2UlxcTEVFBQ0NDX69epVKxV/8xV8IDYgXXniBnJwcmpubaW5u5uGHH55FfrVQ6T89PZ0NGzaQlpY2i1dAua9tbW2i368QkIG3uhoREUFqaiphYWGcOHFCBETgv191d3eTm5uLLMsYDAbi4uK4dOkSDz30ELm5uRQnVfGrd46RkJ7HUFcLgc4xJI9XidNkMjEyMoLH40GWZaxWK+vXrxf3RKvVEhoaytjYGFardRahksvlYnBw0K/M78uiqnBgJCUlsXbtWqKjoxn2BHDmciVTrfXs3r3bT1myurpaUG2HhITw4IMPisDtZ04n/+PdKj9fkREVyP/cW/AHwTPwRxUMLGRhYWE88cQTHDx4ULQMFKzB7NlO7zb337etYLJlhJMnT1JQUMB3v/tdxsbGOHz4MG63e1EA3/z98uU5saX29p+K7md6eorq6mqqq6v9XzWDsTAiIoI78/OpuOyka8I5x3G95zXTaSlo8sVsaGiIYc8US2FzWy4L4ufN8Ocfr/xi7ItqScw0380SvCNYb7/9Nl//+tc5dOgQFouF5ORkysrKeOqppwgMDKSyspKsrCwB/qutrSU4OJjg4GDGx8eprKwUWZiiZJiYmMi9997LwYMHcTqdYoxuamqKETmA3un5zhCU1lJM9mpCZQsNDQ388Ic/FGyD9913H6GhoQJUBvDII4+IDbO1tVWIzcxl9913H6dPn2ZgYACdTidYEENCQkQWrfD3V1VV+QUC8fHxTE1Ncfz48Vktg97e3jkJlpTXLTVwDlR5MQJms1lk+Tk5OYSHh+PxeDCbzZSVlVFXV4dKpSI1NZXw8HC/1pPymcp4XVJSkpdbYniY69evo1arycvLY/fu3aSmpnpbfoODvPLKK4yNjfEf//EfgFc58e677yY8PJwjR47g8XhExj44OMjAwAB33HEHJSUlZGVlkZOTA9ws/SsBgG/p/6677iI9PZ3o6OhZmarVaqWlpYXa2lrMZvOsNmp0dDQajYaJiQm+/e1v09PTQ1dXl1BhVNa2Lw9JUmQwGscYe/fu5dixY9TU1IgWWW5uLk6nk46ODkwqK7a2coIApJvcKNHR0TidTqampkSAUVVVRXZ2NuANBnJzcyktLeXUqVOiKqP8DA0NiXUSHh5ObGwsa9euxWq1cuXKFf7mb/5GVAEuNA/xZ2/7tqrTqXjuHP/01TwinEOcOnWKwcFBERSmpKT4jfBOtpSzT9fIuh37mfJoOHf8KD966FESEn7/gQD8EZAOLddGR0c5dOgQarWaxx9/nHLzJP/Hby7OisaK3E1khnh48sknqa2t5dNPP8Vut7Np0ybS09M5cuSIANPNPV+/GAnNTVN4DZL13rGjmcdbDtFKpNomJF1dLq+qV3a2lyBFr9cjSRLj4+OEhoZ6Mxd7wIIEK/OR7CzFlnoPQrGyQbu0Mv3M43+ZGf7nteUSI81lC3FNqFQqIb6Tn58vRvbCw8MJDAxkw4YN/Pa3vxWb9k3ciezXUtq0aRMXLlxAq9Wyc+dOMjMz6e7u5v333xflcyXw7XKHcsKZueh5//rxYqqPHSElJYVdu3bxk5/8hJCQEH7wgx/gdrv5t3/7N6xWKwUFBTzwwAOAl9Xul7/85ZykM+BVOrx8+TLDw8MYDAZcLhc6nY7p6WnxepPJhMvlmlPnYaaZTCaKi4uRJIlr167NOWWgmCzD75wFC04xhEs27g9oIDs7i9jYWMbGxuju7p51XL1eT3h4OBaLRfSw1Wq1AM85nU5MJhNut9uvhx4dHY3RaKSjo4OAgACKioowGAw0NTXR1dUlOCAcDgeRkZF85zvfEUyiP/nJT7Db7ULr4fTp01y6dImioiLKysrYu3cv/f39tLa2iqpITEwMaWlpc5b+wRs0NDU1UVdXR3d3t1+gqtFoiIqKIiMjg46ODtxut/isgYEBP2GnpKQkEhISvKJZQ645n5n/df9tuLrrqKysZP369WRmZlJdXU19fT0Oh0NUu5KTk2lpaSEnJwe73U53d7eYhFBaR06nU5BRKWPgvsGYTqcjJiZm1o9v1eStt95ifHycp556CvCnxPfjHfhsbezQ3uDOrGjuuusuEhISePXVV9Hr9Tz00EOAF3/2zDPPoNVq+dGPfoTb7ebpp5/m3nvvZfXq1fOuy/9K+5OpDCgWHh4uWgZKheAf1qio6uxhyz17iQkxkBcXwsBALi+99BIffvgh+/btIy8vj3PnznH+/HkqKirYuHEjFy5cEMQqarWGXpuKpKxCum5UEx5hYqxv8X75Zk0LqepRJAnmAacvq0Qpy1ahrw7eRVZeXo5arRZ88hs3bhTMafFqCw+FD3BsMGTBLHsxDYS5bLEMGbwMjNnqoVty4p8nw/8iA4n5jvV5WxKyjCCCUt7rK1IlyzIul4vW1laSkpLIzMwUZWGz2UxdXZ1fMKFkRorIzNNPP40sy1y4cEFk16dPn56VIftWwJaaITvGBxkbG+P+++/nww8/RJZl0Qrwgh6taDQawXDncrk4cuTIvFWnlJQUPvnkE5xOpwD6gb+SohLg+rbywsPDCQkJoaOjQwQ1BoOBBx54gPj4eD799FPBuzCfKZMzmwzdfDidNm+156nVoTy+6wciU+zr6+Pq1auMjo7icrkICQnBZrNht9uFw/WldFY47F0ul3CgKSkphIWFMTw8jNlsRqvVEhUVJXgJwBvU7Nmzh/z8fFQqFS+//DL9/f0cOnSIJ598ErVaTVpaGvX19QwODpKens7169cJDg7m8uXLqFQq3n333UVL/xaLRQAQe3t7/e6zVqslMTFRaDD4cvl3dXUhyzK9vb0EBQWhUqnYv38/iYmJfjTHNYNOPumdmLMV+v23b7BL30asBNevX+fy5ctERERw++2309LSQlBQECtWrKCkpASNRkNraytPPfUUzz//POCtknR2dhISEoLT6RQEUR0dHaxYsQKQGJED2HbvA6THmciLn18TwOPx0NraKsSHlqJi2Bi0kl88uk0cUwF0KnblyhVkWRZTHCqVisjISL9Jit+3/ckFA+DdIJSWwSuvvMLmzZupqakmO9hFwmekDjExMezdu5d33nmH+Ph41q9fz913383q1as5fvw4J06cIDY21ivyMa27Gc3WeIB8AvuWxoyolTyo1d5S53xth+UC0mYeR2EHVP5+8eJFQR2q1WoJmuzm/y4OZ0pn5FJVA2qHBZPKhiTdnK+fr/qxmKP7IkB7X7R9ERn7Uo91qwHLUs5RmcX2eDycOXOGLVu20NraKkB5dXV14r2JiYn09PSg1WqF9K1v9i3Lsh+IymQyYbfbmZycFNmd0+lcAvOhd4pnrK2W6OhooqKiRGsiNzeX4eFhSktLAVi/fj1VVVVMTExQXV29YDbf2dnpN3uumEaj4cCBA4SHh3Po0CE/B7Vy5Uqam5sxm82A97lYuXIlO3bs4PTp04Iq1u/8fYInhWJZ+bwozyg7tLNFxBKDNfyv+4vYnBOL0+kUFMFms1lMSAwODorr02q1GAwGLBaLyOY9Hg9TU1PcuHEDjUZDbGwsubm5pKen4/F4aGhoYHp6mpGREVFpMBqNhIaGMjAwwKeffsrU1BTr16/nW9/6Fi+//DLd3d28+uqrfPOb3xRjyFevXuX8+fMii9dqtWzevJmMjIxZpf/R0VHq6+tpbGwUGgeK6fV6UlJSyM7OJi4ujvHxcbq6uqipqeHkyZOAF9CclJSEJEmsWbOGHTt2UFlZSUlJCfn5/pVOWZZ5qWL8s7Bq7lZoqSORfbpxUlNT2bRpE3FxcUiSREVFBcnJySQkJBAYGIjdbsfhcPCrX/1KHMFsNqNSqUhMTCQiIgKz2Sz0OdptBn7nLGDEred3b3uxKglBKr6erSEzRBYVYLfbjcvlwmKxYLPZqK+vp6Ghga5JmabhhUYDJdpH0WQjugAAIABJREFU7X6kQUFBQYL/wel0cvmydzR+zZo14l2xsbF+LJW/b/uTaxP42sjICIcOHUKj0WC328nNzWXPnj1+rzl27BiXL1/m8ccfJyXlJnteW1sbJSUlVPZaF9AeWDwFVDjU5zKlj+p2e5bEq79Pd+skNsomEBcXR09PD7m5uXOS0Sh2K9oAX1ZJfznHXkgrYrltkaUcK8VgW5Dr4Ys4x7kcmGI6nQ6NRiNm5+er7kRFRTE6Ospjjz1GUFCQ0Fd3OBxiTlzJxhc6P5Uk8ZN7kqg79R55eXmiNx0ZGYnH4/GbMICbWgW+jsbX4RcVFdHc3Cy44X3PPykpiUcffZSqqipKSkrEPVCc0I0bN/wExtavXy9AcAudg4KhmBl4KFS64+MTqE3JJGYVsDY/k/yEUEZGRigvL6eyshKr1Up0dDQul0tcr6LRYbV6OUvi4+MxGAwCixERESGy8bGxMdrb2/0yR5VKhclkIisri6KiIiYmJqiqqqKurg6XyyXY/bRaLRs2bGDlypX85je/YXR0VJTEZRnGpCAM4dHYRvsJk6d44onHWbHCK3esUBQ3NTUxMDDgt46UEbqsrCzBEKhk/UpgERUVRVJSkviJiIjAYrHw05/+lEceeYTs7GwqKip4//33+Yd/+Ac/HoNq8yhf/Y+Lc65NX9urqyU7OhC1Wo3NZhOVllu1xZ61A6Y+0gK990FJqKampnA4HGJtLbV19vLja7krx8tHcPHiRU6fPs3f//3fU15eztGjR4mKiuIv//IvxeuV1/zd3/3dsjkfvgz7k6wMKBYRESFaBgrSU5HSVGz79u309fXx1ltv8Z3vfEcQs0RERJCVlcWL5rEFZo9ln3/PNJkorWtBRLmy8S0VkOZLvwveDUQZKVycLtj7/z09PQCLBgLL1Qb4vKC9+Rz+coKSWyFZWuh8lnKsRPfcbJSf97i+56iwVYI341AkXsGLTlecnO/aiI+PZ/Pmzbz++usAFBQUcOrUKU6ePElXVxdqtZrg4GAcDgdTU1N+DHSbc2JJttp4q4U5qz21J70z8b4UuTExMdjtduEcH330UaKjo7lw4QJXrlwRx/BVwSwsLKShoUH8rowZut1u1q1bx7Zt2/jtb38r0PfgrYCMjo4KYh6PxyN68UrGqpivZofSd3a73eI+KYGAgjC3Wq0kJiayb98+4UAbGxv5zW8+oLW1FYPBIMrQSvau0+mQJEkINiUlJTE6OkpPTw9BQUEUFBRQWFhIbGwsnZ2dglTIYrFgNBpJTEwUQURPTw8XLlzgwoULBAUFkZiYyKZNm3A4HHR2djI+Po7D4eDMmTOcOXNGXKPD4cAWmkLJYLC3otELEEG03k3k1RvoPvmEgYEBv8AnMDCQtLQ0UlNT0ev19Pf309XVxbFjxwQQMTExkeLiYtHzn4nEB8T3HRHhZQtUcAcOhwObzUZfXx+9vb18UtMNLM76Ny3r/EChyroMDQ0lLCyM4OBgOjo6PlM29AY/BITgmRpl2+oc1qxZjUajoaenh/ff/4CGwELkMTvz7d+fjkUQOFktnjWj0Ygsy0RERLBmzRoiIyMZcgdw4pXri567L2lQYGAgfXYNn1R3c+5MGWqZWdiA2FhvpWlkZMQPaPj7sj/pYAC8i/SJJ57g17/+NVarlaqqKr9SjUql4sCBA7z44ou8+eab3HnnnVRUVHDjxg3GVcGMerIWOLqywOZ24BsN3YQZQ1GpVHzrW99CrVbT3NzM9evXRVlWsaWU232TPr1eL2Rp57JbzdSX66x8Vdpu1eZz+Bmqoc+0DPxtvqBkqSyQS2EGXOqxBl26eSs/n+e4M89RCeZ8s0lAzFbbbDY8Hg+hoaFYrVampqbIyMgQs+uK8xgeHiYvL0+A3xTzdRSK892n855vWFwK432dbMhOYuXKnXz88cesWLFCjCzu27eP7Oxs/vVf/xXwBthJSUkcOXLEL0v3nZZIT0+ntrbWL4AJDQ1lYmJCoOh/9rOf+ekLpKamipl2XxsfH58VDAcHB2OxWPwqDsprlM8MCAjA5XJht9spLCxk48aNREdHMzExwZkzZ7h27RoWi4Xw8HAhPmOz2cRIptVqRZIkoqKisFqtDA8PY7PZyM3NpbCwkMTERDo6OigvL6exsZHp6WlCQkLIy8sjNzeXpKSkWRmhxWKhu7sbs9lMZ2enH8ugsg58K0WyLDOsjeKD/shZz8mAXcW/XXOwQztJdpiRpKQk4uPjkSSJvr4+gfQH7zRWUlISK1euJCkpiZiYmCVlq0ow4HK5uH79umhdPffccyLIMxqNIAeylGAgXC8RYgwhOTkZp9PJ4OAgIyMjWK1WvzaT355hA4jn7GUrj45foyBKy9DQECNyAB1jDuar4CpiRyu33sPazDgiIyNxuVw888wzbNmyhcLCQgAyZZnM6NYFKfHDJBvDzVV4Yu+gtHWEvy8ZoMORz/uHK4FEwiQTdwYl+r1LEQ/r6+v7/4OB/yqLiIjgySef5Pnnn+fYsWNkZ2fPEqfIzs7m6tWrHDlyhJiYGHbv3s2IPo63Dy8uYxyIgyluRoXReg/fXh3KfRsepKWlhRMnTqDX69FqtRQWFlJYWIjH46G7u1uQwAwPDy8LkKaQAM2FRh9UR3B+Ou6WeubLdVZLGUNcyBaqQpS5ZwuOKL/PlUEvGYjp0YnXz3ePl3qsqSUc61aOuxh7oe942vT0tMi4XS6XqBb4MgIqDnBqasovo/d4PH7U0yqVir/+67/mjTfeoLe3l2iNgwfvKuLIkQZ27NguWN7Wrl3LK6+8QmBgIIWFhfz2t78V5ezU1FR+/vOf+42eGY1GsVZCQkLE2KFyLQr47utf/zoTExM8//zzYl0HBgbicrn8AgHl+meuf0XJT+nX+4ps+QYBNpsNt9tNcXExGzZsIDg4mNbWVk6dOkVjYyMqlYrg4GBUKpUIwBQJY4/HQ3BwMEFBQQwODtLb20tWVhZbt25lxYoVtLe3U1lZyZtvvilIgVatWkVubq5wxnOZMvOu8P0r/WSTySTIcyYmJvyoyz0embOT0QsyJ17X5bDRNCQmA1QqFfHx8eTk5IiS/1w8AvOd48DAAL29vfT19Ylg4sUXXxTfM3grU0r7amhoCL11kDApetFWaIjHgiQFsWfPHgwGAydPnqSyspIf/vCHYoTwRHUXBz/qmHPPeL4edjTXE6+2MC0vTfRnaMop1qqixZGWlnbzLkoLU+JLksR6TSenTtXycUUbb/RHziLsGpMNfPtwFa9+yyCkio1GIyEhIfT19fmxg/6+7E8aMzDTzpw5w+nTp0W1YHh4mPLycvGAxMbGYjabuffee1mzZg01PePc++/nFz3uffp6ZNkzp0NQNiTloYuMjCQyMhKTySQeHFmWefrpp/F4PKSnp9Pa2jovL75SUpyvN9zrCeGYI/OWe+ZL7Y/drW0iSb34eNdCtpzxzPnMF5Ox1BHNIGx+2gJzBUpf5LF8bTljpL4VB6UvvBxTqVSsWLGC1tZWv2OkpaUxNjbG+Pi4yDrz8/Opra1Fr9fzox/9iH/5l3/B5XJhMplYsWIFbW1t/NVf/RWvv/46ExMTJCYmUlZWxn333UdMTIxwBlu2bOHs2bN+61Ov1wsnOvP8tFqtILp6+OGHOX36tHAw8123Wq3GaDRisVgWfN1MU7L54OBg1q9fz5o1a/B4PFRWVlJeXs7IyAiBgYEC+a98liRJItDR6/WCiS41NZXCwkLS0tLo6OgQLQCXy0VMTAw5OTnk5eURFRU1ZwAgyzIDAwNi3r+jo0OMC6enp5OWlkZaWhpBQUG43W7a29uprq6mvb1dZMlLXU9/kzXNuqx4UR3wbZXOZ8pUhOL4e3t7/Vj4IiIixJhodHQ0FouF0dFRvzHQmJgYwsLCuHjxItrEfP6z2TBrb5IkkGTYrm0Uz41Wq2X16tX09vZitVpZsWIF/f39jIyM8upw8pLwVSPy0u7Nffo6IiR/cg2NRkNQUBCBgYEEBQVhNBrptAdwpMmN2XKzUmPSOPjZ43cQp7Jw5MgbvDmZOT/4VoKMqCA/qeLXX38dt9vNY489tuh5ftn2v0VlQLH169dz9uxZxsfHee6553C73ZhMJu6++26KiooICAjg6NGjfPzxx8TExJAUHExSiGZe0h4FWf3sD/4bP/3pT4mJicLj8dDT0yM2E+XB6O3tZXBw0A8NbTQaRXnI6XSSnZ3Njh07BBK1rq6OiooKv8xnpiyrTqcTBEmyDJecSUsq8Wu1sxX54Mul2p1pi1chFjffDHopzIDAZ2qDN22utsMXeSxfu1X2woUc3cyWUJzBg+Mzeuk777wTs9mMw+EQG1BHRwcmk4mVK1dSUVFBQkICRUVF1NbWotVqhVwxeEe2mpqayM3NZXx8nKamJnbt2sUnn3yC0Whk5cqVPPvss4C31Kywrymm6GXMDAQ0Go1g30tISGDHjh28+uqrszQ3fK/bZDJhMpm4ceOGCASUaYuF7o9S+QgODmbHjh0UFBTQ19dHSUkJNTU1eDweEZgrz5cC1FSr1YSEhIjgKT4+nu3bt5Oamkp3dzd1dXUcPXoUj8dDQkICW7ZsITc3V/TQZ9rk5KQf1//k5KTQHdi6dStpaWkCnNja2kpJSYnQO1BMpVIRGOgF2fVZliY3XHT7ZjblzBbb8T0vxekrjl+piKhUKiIiIjAajSQnJ2Oz2RgbGxMtAqWvn5GRgcFg4OzZszz55JMkJ3sR+Irugrunnl36YEodiX7PfXqkkW+vDqPhTJloJfki8AFRDRklaEmVy9jcYqgvW5ImwE//5r9htVqZmJjg5ZdfJiMjg+TkZCYnJ5mamhJCRM7JSXa6pxjU6fwSv08PV3tliwMiGbMsQGktz5Yqjo2NpayszA8X9Puy/y2CAVmW6enpETfd4/Gg0WgIDQ3liSeeEC0Dp9NJZmYmjY2NvPzyy3g8HvLcwZjx4gb8yCakm5zS4N1EsrKyWLt2LeCNqhsaGqj7/9h78/Co7itbdJ2a57lKpaE0CwQSxWTANhgzGGw8EsdxPGHS13aS2+7ky7vv5b7u9979bg/pdNIZnHTScTsxcWNiDMTYxtjG2MyjAIEQSAjNUmmWSiWVah7P+6P4/VSnZjGZe531ffUhquqcOjWcs/dv77XXunKFrhbIBZa4t6lUKo4veWtrK1pbW8Hn86HX62EwGFBcXJzkWw7EKgQCgYDTR/OKdZgM5FjiD6cuQd9KqV3OXlhgJJrsIz5TxCcluegeXHtmwl6S2w43c1+cR2+yemFKvkXIh9UqO7TBUWzbto1erElALikpQWlpKSXcGQwGyj0RiUQcER2z2YyGhgZUVVWhoaEBQmGsHxuJRLB69WqcPn2aBubJyUnOtANZUSeCx+NBIpHA7XZTpThiXZsKarUaS5YswalTpziWwYnTAIkgx5Kfn497770XxcXFaGpqwpYtWzA8PEwVDgmDnOyPYRjqWBoIxJKq5cuXo6ysDCMjI2hpacHnn38OIJYsrV+/HtXV1ZyZeoJQKMTR+ielf7PZDKvVSgV/otEo2tracOTIkSR1P1IJAUC5ISRpESO3c4iQ21iWxeTkZFLgJ68nEomgVqshl8upeZTT6YTdbgfDMHS1P2fOHOTl5WH37t1YuXIlVqxYASCmTBrvgAnErmvkuzAzTnxT6Yc9IkaILwMv6IJmyoOrMUoLTQZTfbcMw8Adzs1q+fyVdlj4DP7xiXn4wZ4OIIVYELl+k+TKbrcjFAph+fLlKCwsTNony7JwuVwYGxvD2NgYmpqaMDAwAIlEApZlMTKV2zUx3qo4Pz8fXq8Xbrc751bNrcL/1slAMBjE5cuXcf78eQwNDUGtVsNqtaKxsRFf+9rXsG/fPvzxj3+E1WpFX18fFQIhwhk6nQ7/5+bNaBz2JzsmGhX4+8drYv7ZHg/tIxKIxWLMnz8f8+fPx5EjR3DmzBk8/vjjaG5uppl+fLbP5/Mxa9YsGI1GKuk5NjaW1kHP7/cnZZLOQG4dn0z96FsltRuP3P0cMiE5KWFZQMyEsZA/gLaIgVO+VyIAVw62w+NRKQz82D7TkToVCNyQhXEB34Wvq4ZwwKG9IW2GTHyLD51FWC/0olDgxqOPPooPPvgAoVCIkuYOHTqEFStW4MSJE/D5fHRlLZFIOD1pj8dDtdn37NmDmpoaXLhwARKJBNXV1fjFL35Bn2s0GjmKeonWvuT/JBGQyWSclkAi+Hw+Vq5cifb2dhw4cIBzfya5cPL4rFmzcO+990IgEKC+vh67d+9GIBCg9s3kPRPuhFQqRSQSgc/nQygUwsKFC1FSUoLx8XFcvXoVR48epRLDjzzyCKqrq6l3ffx7zlT6v/fee1FeXg6BQICWlhbU1dVh9+7dSUZNEomEVjwikQh9nIwAVlVVobS0FAaDAc3/diIjuS1PHIWt8RTOfT6C4eFhyg+RSqVUuloikWBqagrBYBBjY2OQSCTIy8vD7NmzkZeXB7PZDKPRyFEpdLvdVE2RgCR/DQ0NqKurw9jYGGc6IPa5B6BCAHx4IJaJIRbHrKvJfD+QrKVC1AFlkdwqklIEIZFI8Piy2dDr9fg//nQKo3FmR0UqAX769GKOJ0BLSwskEgk8Hg/q6+vhdDoxNTUFp9NJ/46vcJHPwu/3Y8GCBTDxVNh/klu5TYX4qQNCIhwaGvpLMnArMDIygvPnz+PSpUsIBAKYNWsW1dz2er1obW3F4cOHEY1GMTExgaNHj6KsrAxr165FZWUlDAYD+vr6sHXrVpw4cSJWFv3BSnx0/AL2HjiOl59/CstmFdJgTFZG6b5Mi8WCo0ePwmg04qmnngIQuxD19vbigw8+oLPJLS0tdORPLpdTeeFFixbh/PnzeOCBB3Ds2DF6gUiEmM3NZClbif9WCgml93NIhXQr8OSkJFWCoYAfs/h2FPGd8ERFOBjOzoU4FKrECvTQ95iK1OmNinAgh31lSrqUnkFsFA3ekHphrlMfH3zwAX1EKBTCZrNh5cqVWLVqFU6ePEmDHxAL1EQVTSAQoLu7GxUVFeju7obL5aKz2GvWrMHrr79O97t48WK0tLQkTbcIBAIqkQyAatTzeLyMpmDFxcXQ6/U4fPgwvS9TEhAvybxo0SIsWbIEQ0ND2L9/P2w2G/h8Pj0GMhEQjUYhEokgFAqpjG11dTVKSkrgdDrR2tqKuro6CAQCVFZW0qkJkkwQkNI/SQASS/8VFRWQyWS4ciUmt7tv3z7Oe+fz+Zx2XzQapcm+TqdDcXExZs+eDYvFkpR8AKDktkRHPHKeLIh2oL7eA71eT4maLpcLPp8Pfr+frvatViuV5lWpMiv0TUxM4NKl2Ljd8ePHsW/fPni9XvrdXLyYTLxmGIaaBgGgSQ7LstDr9ZTEyePxsGTJEhQVFWH37t345je/iePHj2NwcBAmoQBGhDAWFCBd5bJEI0IByyIUio1c31uhx5OSFuhrrZDp83HmyOcol4oxcTWMd89OB3vynbz77ruU1KpWq6FWq6maYvxNLBbj3//93zE+Po6ysjLU1tbi7fZjaRMz0laOtypWq9WQSCQYHh7GrFmZJtduPf63SQbC4TCuXLmC+vp69PX1QaFQYOnSpZg/fz7cbjc6Ojpw5MgROmcfCASwdOlSmEwmHDp0CB6PB1arlZ5sxcXFePDB2BhVQUEBrFYrfIPtuLtYgbtnc0dEsiUDRUVFYBgGNpuNcgREIhF0Oh18Ph+MRiNefvll9PX1oa2tDZ2dnRxvbmLQcubMGZSUlHDmrhmGQXl5OfR6Pez2cRxruTkl/lvh/pc5gCUfK9I8LzEpSZdguCFGQ6QQRp4Hcl5uKwoPREk9/+vVUMiWdDEMYBIEEYnMvOUyk6kPA2/aC2BqagoMw2DFihVUKpeIuwAxHgs5RzQaDSXUnj9/Hvn5+WhuboZIJMLp06fpavX+++/HqVOnkhIBHo+X1CYgo5CJK2Gy4hIKhbBarbh8+TKtipGqQrokgLjdEU37K1eu4K233oLX66WrN1L+jz8GYm5TUVGBwsJCulBobGyESCTCrFmzcN9996GyspKjW09K/yT4pyr9a7VaqmB39OhRzugtn8/nJEkkCRAKhcjPz0dlZSUqKipgNptTEv18Ph8t8ZMy/3phAHUhS1LyvlwyCBMbG0seGxtDUVERysrKYDabkZeXl7TaT3wdUp0cHByE3W7H1NRU0hjx0NAQTWj4fAF6p8II8qUQRXycawZRrHQ6nZg3bx6WLl0KnU5H9QsikQh++tOf0rHpqakpCIVCavyzY8cOCIUCLIn0Yh8qALDX0h2C2P8218rh6ZLB4XDgN7/5DUKhEAIBPwabY3oXeh7gdPrQ19cHtVpNpb5PnDiB+++/HwsXLqSTJNlQW1uLY8eO4fz585g3b17GxAwAvrNEz0myGIaB2WzmuGh+WfhfPhkgEwFEGaysrAwbNmwAy7Lo7u7G73//ewSDQchkMpSXl2PJkiVQq9V4++23UVJSQud9t27dirfffhubN2+m/bklS5ZgcHAQe/fuhUajQUdHB9asWZN0DCQZSJW1A7GWgclkQl9fH0d4gri3rVq1CiKRCBUVFVSe9M0334TX60V1dTU6Oztht9vhcrk4DGqipNbb2wur1YrFixfjZMc716YJbrzEbzbngRkZgZEXmLFvQSrcOGEw9h6WciR7c1shPyFszsKFSN4mnTjRzeRVZHPGTIdcRxR9iPlZEMdCIFbK/vOf/4w1a9ZQZT6SeMpkMkoMU6nUaB31oNMrQV1rP5bNKsLQ0BAYhqEldqPRSDUMAG6vN9VvJhqNJpEEyfOKi4vh8Xho8kuQauCJJAEajQb33HMPdXA8cuQIeDwe3SY+QSFEQsJ+LywshN/vR3t7O1paWiCVSimJl5TyyeuPjIxQJ0abzcYp/S9fvhw6nQ4dHR1oa2vDuXPnOK9LxMHI50L+JcJCs2fPRmlpKdRqNSdQkB710NAQp8dPVtY8Hg8KhQJ8Ph/FYh/MTHLyPn+eFbW1G9DV1YW6ujoMDg5i+fLl1MGQqEYODAygr68PIyMjmJiY4Kzy4z9zgUAAmUwGhmHoeCZ5T70BKc6ELLCHppMLMl3zt3/1NZSVlcHtdqOpqQlz5sxJ6svz+XyUlZWhv7+f+j2Q2f/9+/fDbDbHpryamhDtbk+Z/CwT2NB/3k2nVJxOJ0pLS+F2u/H000/DYDDgyJEjuHLlCp566im6OLtw4UJsRHDZspTiSukwZ84cHD16FL29vRgfH8e9FQa8+fwC/Ld3TnOOzSAM4S6mBy1HLqLNJOJUAcxmc8Z22e3CHZcMsCyL5qEpjE0FYFKJMTc/uVwViUTQ1taG+vp6qgxWUlICoVCIgYEB7Nu3DzweDxaLBStWrEBFRQXVuSYoKChAY2Mj5syZA6PRiM2bN9OE4MUXX6Q/+EceeQSjo6PYuXMnIpEI5s6dm3TMbrebsnvTwWKxcOakvV4vrl69ColEgjlz5nCee+7cOQwNDWHDhg0YGhricAviCVpk1RUOh2kpOJ8HPF84iY8HJZwfo44fxHPVQkidYtjtieqBqZ3zyIon1UWdXHBnMpmaawCTIAg/hEgX3M/GBepcV8gTkGbgQqTehvT8Uwk45cKrAGKjX7dCojnXaQ4pYs8jqoNkhdzb24s33niDfo/kNyYQCGITMRElPu5QYixYg48+6QZQg2PNPiwTKDltonh+AZA+uREKhZwkIv43JxaLYTabUxJlE0G2KygowOLFi+FyuXDy5Ek4nU6Orzw514kvQCQSgU6nQ0FBAUKhEDo7O9Hd3Q2FQoHq6mrMmTMHJSUl9Bx2u9105R9f+i8tLcWaNWug0+koMZCYghEQ2+V4fQM+nw+j0YiysjLMnj0bRUVFnGoDkQuOH+UbHh6mSZpAIKBBiiwCotFozE9Cp0MwGIxpEYyN4f9++Xm89dZbAPiw2+2orKyExWKBSqXCF198gZ07d2YUCyOVC5FIxHkOeT9KpRJ6vZ66Ez7++ONoczL49ruXUs7Xfx6ahRcjSpQBlPBMyJYsy1JBIfIdEpdB4pny4x//mO7vk08+gUwmQ4UCMHumkx+tmMF988rR2OhBNMpCKBRCrVbD7XZjcnISJpOJXmeXLl1Kq8gPPfQQAKCjoyOtymImmEwmaDQauFwuXLhwAevWrUM+bwobRc2IqMwYmvTh+6+8iNkmOT788ENcvXoVO3bswNe//nXq32A2m1FXVwe/35/UgrqduKOSgZMd9mSinkmBf7hG1HM6nbhw4QLOnz8Pj8cDtVoNvV6PiYkJtLa2QqvVoqKiApWVlSgtLYVYLE77WvPnz8dnn30Gt9sNhUIBo9GIF198MSkhEAqFePrpp/Hb3/4WYrGYyhXHw+VyZSV/WCwW1NfXw+v1QiaT4eTJk2BZFnfffTcnSenp6cHnn38OkUiEffv20ZWP1WrFrl27MDIygq9//evYv38/8vLMCCvNONfUCn7QTYONcLyTqseRQLR6wSwwTASNnXbw+XxotVpK7LkeqYnrqRTkGsD8yJQ0xAJ1S8SIPJ6biv5kg5cVwcJ3Yj3acCJUyhGJyrRNICJIK4e8XpieVwEQDYUbN0tKheupTpBATQR15s2bR/0Jrl6NySr7fL7rkqPOhJKSEmpERI/u2t/5+fkYGRnJmgiQ4FpVVYWKigrYbDbs3buXs89pee9pp0CFQoHCwkI6pz84OAi1Wo3a2lrMnTuXtvBCoRB6enrSlv61Wi1GR0fR09ODgwcPcpKexHJyNBqFRCKB2WxGVVUVqqqqYDAY6HkeiUQwNjaWNMMfP9FBOAQExI0x0XZXqVTC5/PhZz/7GaxWKxUtkkqlcLvdGBwcxI9+9KOk85UIQJGEJH40k/T2dToddDod9Ho9/VehUND38fvf/x5msxkWiwUv7T6W0tWP/Db/n90NeG2dnopN7d+/H263G06nk5NIkWSxhQQwAAAgAElEQVQsFApR46Hh4WEUFRXh4YcfRigUwt69ezE0NITVq1ehqKgoNqsfjiAYDOCVV17BO++8Q8cCtVotHA4HKisr6WsUFxeDx+Ohra0dRdZ7MDzpw5m2ATx+38ythBmGwdy5c3H27Fk0NFxEXvVd+Oh0KxysFI/NK8epU6dQrORRO+PDhw/j+PHjeO+99+Dz+XDXXXfBbDZjPCrFnrMdqK20pFwA3w7cMaJDmfyiGQbYXOwCRlqp/SPxOi8rK6Pl9XSzvang9Xrxy1/+EmvXrsU999xD7x8dHcXWrVuhVCppQhAIBPCv//qvdMTogQce4Oxrx44diEajeO6559K+3uTkJH7961/jmWeeQXl5OX72s58hEonghz/8Yawa0tyMxsZG6sA2f/58LFq0iLqCnTt3Dp9++ikA4LHHHkN9nwu/OzN2Q8EmXUXgViG7yBCbpOaYDYmiP+kQL+Jjj0ixN5RdjOQeQQ/qwiUZBZzyea6kqsFQ9OaZJWXCzTRlmpbszf4d5WKaRS5mBQUFHNljArICykQijD+2efPmQalUUrXOVCCVD7lcjsLCQoTDYaqxYDAYMGfOHMyZM4cyuEdGRijxj0wSKZVKlJeXQ61WU4+BiYkJTjBNPG9I8CwuLqYERNJqDAaDGBkZ4az2R0ZG6P7EYjH4fD7HllwqlcJsNsNkMnF6+6RtEQgEaAI1ODiIwcFBTvUwFUg1Id1nW1RURIN+JvIgAcuy+MlPfoKlS5eCpy/GX+1sy/h8IHYO5ksilKiZSMhTq9WQSqX4+c9/gX4PCy8rQk1ZITwDbfje9/4GHR0d2L9/P5RKJbVIBmKJRV1dHU1sFi9ejNOnT0MkEsFoNGJgYAAMw+Chhx7CwoULIRQK8Xe/+k/sG+VqFpTqJPjxk/M5Ewa5oL+/H//0+11JC4NSnQSzXY34/175BiwWC72/ubkZu3fvBsuyMM5bgfd7+OgYm55CiF8A307cEckAy7JY/6v0LMz4C1B+vpmuDoqKijKW5rNh165dcDgc+O53v8u5nyQEKpUKmzZtQmdnJ95//306ivWNb3yD0y74wx/+QC2RM73H1157DVarFSqVCvv27UNxcTEUCgVaW1sRjUaRl5eH4eFhPPnkk1QXG4hpxb/77rtYunQpnE4nzve78d64GdE07OEHRe3I52W+OBCkknNNp3CYba47F2QLYHcLenE6XDqDPWaa+Y89nhi8cgl4avgBBnDOMCjerGCaK2Zi5JRL8perot3XJFehgTvlY8QlkM/np5SrJr4B2SASiTB37lyEw2G0tLSk/O3FTwWYzWawLIuhoSGEw2FqE0xagS6XiyP44/F4KOtfo9HA7XZjZGQkpddBPIRCIYxGI8rLy1FdXQ2z2Qw+nw+v15u02ieJC8MwEIlEYFmW0yoxGAyclb7ZbKa6J5OTk+jr60N/fz9GRkYwOTkJj8eT9hxM5VpJvvPq6mpKNCYB/+zZs9i/fz8YhsFjjz2GhQsXcrYNBoNwOp2YnJykI4IOhwNTU1NUgwHIXbX0zU2LELY1orOzE6+++mrK55zssOO/vXMaI/7paku+DHjE7EFksAWLFi3Cgw8+yGmxDA8P44033kBFRQUMBgPOnTsHYhlfXl5OFTiBGCdGXrEIPz/nRzShxUcWntv+yzIqGZwLTrSPxRaydC+I+4vFPz+Qj+fWLuZsMzg4iH/eshufesuuPevGj+NGcUe0CZqHpjitgWTESsOWeXdjboGKaosPDAxAKpXS20wTgwULFuDdd9/F8PAwXS0AsT4Q4RBs27aNlhrXrFmDiYkJ7NmzB0ajEUajEUCsTRBfhkr5DhgGRUVF6OjooAQtm80Gs9mMtWvXoqqqClu3bkV1dTUnERgeHsZ7772HqqoqrF+/Hn19ffiXN85d682l7qnXhSx4StaKSGR6JSCRSCAQCODxeFKWawk8Hg+VbU3EjSYCQPaxxXyeCy2RvBlIFDOYTghyI00yDLCUb8Pn4Vlpt5krGMmSlKTWEriZZkm5IJepj3ijnry8PFoCf/DBB3H0Uifa+8eg5EegZt058zpcET40KU63+GmBRFVAIhmcLRGQy+VU4CfdiBrLsuDxeDCZYqp6o6OjsNlsKCoqwurVqzFnzhwoFArYbDY0NDSgs7OTiimR0rbP54PD4eD4JKSCQqFAfn4+Zs+ejcrKSqhUKkxNTWF4eBjt7e107I28L5IMxa/EpVJpUonfaIwplo6MjKCnpwcXLlzA+Pg4Z94+HoSLkAoajQYajQY9PT147rnnYDAY8Oc//xlDQ0PIz8+Hx+PBXXfdRbePRqOYO3cuhEIh9u3bh48++giHDx+mUxbx5MBUnz+ZQCgsLIRJYcaBxowfIQAgXyND02VnSnEmIL46zG27DHlZbOmS4V/WP47HVi9M2i4vLw9CoRD9/f144YUXcNddd+HNN99EJBJBV1cXBAIB7r77bpw8eRJlZeX4Uf0Eoki+vpCryN/vbeZIBmcCy7L4h4+vJO0rfn+/OzOGZ9dwFQbz8/NxVVYL1uu5KcdxM3BHJANjU7k53jW292K0bTyt9KhQKOQkB4k3iUTC+b/BYIBMJkNDQwM2bNjA2ZfJZKIcguHhYaxatQoMw+Dxxx/Hli1bsGPHDrzyyisQi8VZ1aOmpqZw+fJl9PX1UaUvuVyOTZs2IS8vDwDw8ccfIxgMco7D5XLh3XffhVarxapVq3D58mXUtfbnFGxGQ0LoedMXo1AoBJPJhJqaGjidTtoj1mq10Gq16Ovroz3LGzUfyoZsASx3oh9B7DnJPgF+LOXbIGbC6IuoOWX8s5HilPuWIwirYAhypHaDTESilsDNMiJKhVQrPyD76GP8NoSQNhRV4dVPhjAe1gDQAKFYRWEOfySnY0nH/yDBJBF8Pj+rd4BWq4VOp0Nvby+amprSPo+0A8fHxzEyMoLS0lI8+OCDqK6uhtfrRWdnJz7++GOOiJhOp0N+fj6cTict16cC4dOUlJRg7ty5KCwspIz+4eFh7NmzB4ODg3RVHO9dAMS+I71eT8v7eXl5MJlMiEQi6O/vR19fHxoaGjKu8lONtKnVahgMhqQ+fjAYxO9//3s8+uijGBsbw8DAAKqqqqi+ytDQEKLRKPr6+vC73/0OoVCIIzIVDzKtJBQKoVAooFQqodFoYDAYYDKZoNVqoVLFFmOXL1/GBx98gE2bNkEkEuH9oQzz9UxMpG1uvgonnU7k5+cnPYdlWfz93uaMvIMtF6fwzVXJsr0Mw8BisaCrqwuTk5MwGAxQqVTQ6XRob29HOBxGX18f5HI5mgYnMcmak15h+jiSJYNZlkU4HIbP56PaDOTvlhF31oVsvyuC13fsRak6Vi3j8/mwuaLotKeWuU93HLcad0QyYFTl1iP+zovfRE2BmqqEZbqRL8zpdHLuS4WzZ8/iypUrKZMHs9mM7u5uXLhwAUajERqNBg899BB27NiB999/H4899hhYlk1KBggpq7GxkWanJSUlNBl49NFHaSJgs9lw/vx5bNiwga46ent7sX//fjoDToxgnPIiAOl/zASJwSYSicBms2F4eBhKpZJOJZARHolEwvF6zwXXa5MMZA5g6aoH2XC3oA8yXpAej58V4Gy4GJPh6X3IEYAnJUExlnh4IMbpcCkUuD4Bp1vp7XAzxjvdbve1Vk1V0kV3kpWgLlwS9xnNbGySuNTFgyQwmapKBoMhZsU7Pp5k0UxA5r6dTicmJiboSF9hYSGGhobQ2dmJY8eO0dK/TqeDRqOBx+OB2+3myPvGQyKRwGQyobKyElVVVYhGozRZOHToEIaHh+mxEx8EUk0jvX0S9Imsc39/PwYHB9HY2Jh2lZ+qZaNUKmnAjyftaTQajt5AJBKBy+XC5OQk6urqwDAMTpw4EdPPD4XwT//0T5zfCqkE2e0x8rBUKoVWq6Ukwby8POh0Opw5c4ZaED/11FO0J58KDocDCoWCkrSpqx/Lnf1nmJjs7/+7YTb1MzAYDLh48SI8Hg+8Xi+8Xi/a7T60j6ZfULGIBceGnjGUqmO/M5/PR/8llYrt27dDoVDA4XDA6XTSz4EQVPsjfORy/fzT7r0o4jlp3Ej3+x1idADKUz4Wj8a2HozznHQCqy+iBpC9tRIvXXyr8b8EZ4BklvtvsGRCxmTik4bh4WEcPHgQtbW1tF8en/lNTExkvJCRcqDJZIJSqUQ0GoXL5YLD4UA0GoVer0dFRQVmzZoFj8eDDz74AAKBAH/3d38HHo8Ht9uNN998EyzLwmw2Y2hoiFNGLS0tRXl5OQoLC1FQUIAORyAnJ8VE17ubjZn0qq8XJNkYjipxNlyc9fnx7zkTNwFJ96V89bi/71zOwEyRO4mTJEy3jgCp1+uT2OTxEIvFtLUlFAppwBaLxejr60NXVxct/RPSGzG5SQWiKldYWIiqqirI5XI4HA4MDQ2hv78fDoeDBuj4KgzR5M/Pz0deXh4UCgUCgQBGR0cxNjaWtZcfD5lMBqPRyAn2Op0OWq0WQqEQLMtSI6DR0VGMjo7C4XDQ1/D5fGk/r/jPValUQqfTobW1FR6PB+vWrcMXX3yBzZs3o7S0NO22jY2N2LNnD1iWxbp163DvvfcmPYdlWbz33nuYmJjAww8/TIP65429eLctzLkm6PkBLBP2IQ+TSfsRiUSQSCQQiUToDSmwayR7fzyVWypxvwwEAuDxeFCpVHA6nRAKhQgGgxxHy1w5MS8aB2ASBamXTSQSofbg8d9zrvv7u4VAlSG2wJRIJBjwMvjeJ4NZt/vkeytuW2XgjkgGAOBUpz2m3IQEv+hrmeW2l5beMnblG2+8AY1Gg29+85uc+wOBAH72s59h9erVsFgs2L59O1QqFdasWYNIJIJLly5R4xSj0UhX2aQUFI1G05648TPRsfcZM0dRq9Xw+/2w2+247777UFFRwalURCIRrPjxZ7CH0stxJgYbiUQCrVYLILYyzNSzzcUK9may2NMhvuogRRDHQuVwpujzkdeNf883wxqZ7Hcad940wfUg14vXclEvmkOmm57sMQwDuVyedqUuEAggEAjg9/shFotRVVWF/Px8Kq5FSv8kUci0ahMIBDAYDCgsLITBYEAwGMTQ0BAGBgY450CibwJZ7YtEIvj9fkxNTVHiXKq5/ERIJBKOVTkJ+lqtFjweD1NTU7Db7RgZGYHdbsfk5CRcLhflWaS7JItEIuonoNFooNVqceLECdx9991YuXIlDh8+jO7ubvz1X/813aaurg779+/H+vXr0djYCJlMhhdffJGzX5ZlEQgEaFAfHBzEgQMHEA6HodFoUFRUBJ/PRx38UgkSEfB4fEzxlJgMsijSK5EnCoNhYtWMQCBAFTAT3+P1WnsTxO+TEFRJ9ZNYQPt8vpySYS0vgG8XjUEqldDgLZFIIBaLOf8n972w/Sq6x31pJYh1giDq/3FjkqDU7VgAzwR3RJsAAO6tMGDbf1mW0RDoVmHBggX4/PPPqQYAQWtrKyKRCGpqaqDRaPCtb30Lb7/9No4fP46nnnoKHo8HXV1dCIfDcDqd1JioqKgILMvCbrfDZrOhr68PfX19nBIoKbGNjY1Bq9VCo9HQJICUFY8fP47jx48nHe9iKPE5cjcSIvtdsGABurq6oNPpMH/+fBw9ehQsy0IkEqGkpARdXV1ZE4GZaOIn/oZzbSukqjrIQS7C2d/zzbBGJu8HSM1FyKYlkEmD4MtKBIDcOQ1SNkg94W+GaBLDMFREJlUiQC7cIpEI5eXlUCgUcLvd6O7uRlNTE139keQ5EAgkBWapVEpX3QKBgM7yp+IHMAwDrVZL5XgDgQC8Xi+mpqbQ19eHnp6ejO9HKBRCr9fDZDJRa2WtVkvn+4eHhzE2Noaenh5cunQJHo+HMz6YCIFAAIlEAo1GQ8v3RqMReXl50Gg0VAQtHp2dnTh+/Djmz58PiURCPz8i5OP1eim/4tSpUygpKUFzczPefvttALHxahLcU3NRGGrdrFarwefzIRQKoVQqMTk5mZLDEo1GoIhOQsEDhG4vnNc4FcC0SFqqZOdGVT1T7ZMYPhFr5VAohIaGBqzVOPD+REHS9ZNhAIZlsJTfC52uEBs3bsyoVUPwo6+JYi0SJC9kGQD3iPpS8hymWyvpHXFvp97AHVMZIGBZFleGpjCaQYHwZsPj8eAXv/glZi1bg7ySKvq6O3fuhNvtxssvvwwglt2ePXsWBw4cQDQaBY/Ho8YbWq0W999/P0ZGRujsb7xkazQaxfj4ONWhfvjhh3H69Gn4fD6UlJTA5XJhfHycc4Ej1QK5XA6ZTIZwOAybzQaNRoMr4xGcjZRgIhofpHy4W9iXdayQWKK63W56gSY+4vGTBDczg8+1rZCtvJ+oQ5BqH7mOOuWKtYJ2yOO4CLmu/hOrBlr4MIFbo0iYK67n+7tVehRkVFWhUKCgoIAGcKJqmG42nhwTMZIRi8VwOp1wOBwpny8Wi+nzCBGMGBNlOz6NRkMd+9RqNU0cJicnYbfb4XQ64Xa74ff70ybSPF5MdEYmk9HyPRkpJEI+mSahotEoDe4keHs8Hly6dAkjIyOoqqqC1+ulwkXplEGFQiHC4TC17I33RchUkSAQCAT0epGtJUJUDMlvh5DwMvFehlkVPgtUJZ1TDFgwYPBXZW5gpA0SiQR33303SkpKOKt0p9OJ3/3ud6itrUVTUxPkcjnmzp2Lhx9+mO6rqakJu3fvhlNixlG3CePh6eTYouLjX55aDBM7gd27d0Oj0eCZZ56hVdVMSCeYt7lWhs5Tn+Jv//ZvUyYWJzvsSY6Ks0y3fgGcCndcMvBlINUXUmmUY5brIp5/YAlKS0vR2NiIpqYm+Hw+6PV6TE5OQiKRgM/nw+Vy0ROJqBkqlUqapTudTnR0dKR8baVSSVcnHR0dMBqNWL9+PXQ6Hccsw+Px4I033oBWq8XExMS1i08IDlaK8rkLsdQ6G1/s+k9s2PAQrFYr2tra8Nlnn8Hv93NOcqIvHu85n+4nEL+SVwmiUEVd6I/mFmjje3u5thVymv9n/Fgp6IIP6QNqrgEvVyQmNtfDC7gdHItccKdwGhQKBfR6PRXlIRLC6X6LAoEAcrmctrGmpqaSnkvGGsl5R6oHmS5xRI3RaDRCp9PRc4M4+5GZ+mAwmHb1TKaYFAoFNBoNdQE0mUw0gYgH8WcgQT0+wMffT3zuE89h8rosy9LVOoCs75W8X7KQySQnTlQccyGAEggEAvB4PASDQRQUFEAmk3GC9cDAAAYHB/Hoo48mldvJ6HOqoBofHB0OBz766CP09vZi8eLFWLduHSfI/vjHP4ZIJKITLYmaLQBw5MiRa34aDApqluDMpVaYlCKIPGPIyzPhoYcegkKhwI4dO+Dz+fCNb3wDZWVlWd8/y7LU2VbGBPE/v/8SXC4Xtm7dir/5m7/hWD0TxATtfobKJffDXDr7ti2AU+GOaRN8WZiebeVm5p1jHnSiErJTV6A8cABisRhKpRICgYAKiZAfnFAohFAopCcvKYMKBAKo1Wp6EVEqlVi3bh0OHDgAt9sNq9WKJ554AlNTU3jzzTdhMpnwrW99iyOoAcR+ZHv27KGSpKTfabXOA8Mw6OlpwrKn1mCwZi5Onz6NxYsXw2q1oqqqCp988gmam5s5+4pfEcVfDMhKrba2Fg6hEf9eNzodvK5z9GwmbYVcZvSdrBQMA1h40ySixPaDFtlLjmR/mREj07Fs7DVyb0NwtQRutrzvjYBhMo1uztzMaiYgFS6ymk5sF8T/Fok2Puk1k1YcAQmCZMVJHABJMOW+51iSoFKpaBuQBHxSJYjfdzxI+V6tVtNxNZPJRBn4EomEBvf4oO5yuTA8PMwJ+OSWjnfAjyupR6PRnKZH0lk6EyRykxL/jYdQKIRYLOZwlEhfnGEYXLx4EcFgkLZwXnzxRTidTuzZswcbN27E/PnzsX37doRCIWzevDlp/x9++CFCoRBqa2vTHu/ySgM+/8FKXBmawtnLbWg4dRj//PJ/pdNaOp0OmzdvRn19Pb744gu0t7fjscceozovBQWFuNA9Ai8bGyVONRFx//33w263o6WlBcMt9SiXCOCM8FGz7mm0XzqHrVvfxpw51Xjqqadw8OBBbNu2DQ899BCWLFmSMUgzDIMHl9ag8cgnAGLS8oSsOTU1lTIZiAnORfDwPda0+gu3C1/pZCDTbCv5/4EJLTaKYnPFiaW0eH/12tpaOBwO9Pb2YsOGDZg7dy7kcjnC4TB++ctfAoiJvNTU1ODQoUOUrRsMBql/9rPPPktXNfFmTc6eZrS3t6O0tBRtbW1gGAZPPvkkamtrMTo6ikuXLqG5uRkrVqzAG2+8gYsXL2ICCrT3jyDoZcDnCzgCRPEQCARYuHAhFApF7OQYHsbnjb34PCQGmyDzO8lKcHqGo2czCZzXM6OfbsVdybPjfKQojVZBugQhsS0RGzXcG6rhrOJncpw61nfdHItbhWzCTzczMZFKpZQhT4JhKpAyOQls4XCYM7sPgLOSTRUESTAjK+VQKIRgMIhQKJQySSDle7VaDYVCQTkEBoMBcrkcDMPQZCE+qLe2tlKfkXQz++mOOxMyifyQ/RBkqqAQ7gK5icViNDQ0UB2TiYkJ1NXV4Wtf+xosFgsN+Nkse9evX4/t27dTRT+FQoFPP/0UxcXFsFqtCIVC6O7uTunsCoByD7KBYRjUFKhhUcyGre5T9PX1cRRfGYbBkiVLUFVVhb179+Kdd97BggULoKy8C1uGzOgLTpfXW/7zUpK0L8MweOKJJzAxMYHz/W6c8RdjIirBzo+7AOhhUedhqqcb7e1bsGzZMuh0Ouzbtw/Dw8N45JFHMrZ0JBIJKioq6LQLqUqkI203NzfDYrF86YkA8BVPBnJVPnQJVCiQxiRP4xmlYrEYTU1NiEQi6OjogNVqhcvlwoEDB+D3+6FUKmGz2SgzWiQS4cSJE9SC1OFw4NChQxgfH8cLL7wAiUSC4+2j+MePWzjHpWF8uE+mB3p6wOPx8Oqrr1JikMFggMViwcGDB1FRUYExvg4v7e6Ou8hLoGFmY6V8BPqwnfPuCgoKoNVq0dDQgEgkAj6fn3Ulj7hH0q0s5/BH0B+NZeYzMRLKdfY+xPLQF1HDwwrjvAOmMclKcD5ShMX8fnREDRmSkdiWc3kjGIiq4UT6pCV+FT8TLYHbrUiYK3JRLrxexPf6cxWwyrS6jV/FktI1KXPHa2OEQiFO+4uU70lfXi6XQy6XU18En89HhXY8Hg/Gx8fR1NSUdXQvV8xEF4Icr1gsptcYmUwGmUxGA3p8Sf3s2bOYmpqi1w2RSIT/+I//QElJCadHTsDn83Hq1CkwDIN169ahvb0dV65cgdVqzfkY+Xw+Nm3ahDfeeAPDw8N4/fXXwbIsvvOd74BhGHR3dyMcDqOqKnUb0el0oqAg96F5lUoFjUYDm82W0i1Wo9HghRdeQENDA/746Ul8UsdH4jWrY9SNF7acSZL2FQqFKF32IH7cdSnp+tHvDGOAseD/WlyFs2frIJFIsHDhQjQ2NsJut+Ppp5+mktGpMGfOHHR0dKC7u5t+p6mSAb/fj46ODqxbty7nz+RW4iudDOSqfGiwVKBcFaHlyHA4TJnH4XAYUqkULpeLmmOEQiEcPnyYs49AIIDt27dz7tuyZQv9+6233krbW59kJfjYU4r1wiBqtAK8++67dNUT30/c39iLT71lKYPjXncJ1gsDqNYy1NSEEB2B2AouGMwteHkgxj2CnmuywfGM/1iQjJfxnYl4Ty6MYh5YHA1XcO5Lt+LuiBrwuKAZ74dq4YY45fMAFoOsmjLnD4Uq01Q9plfxTwibc2Y+90dzy/ivR5HwRsEwgO7aa5Jqhw43nhDcjGCaajUMTJfP+Xw+RCIRZDIZrQaQlS0hCZK+f7oWwM0ECebxCwapVBrTwpfLOWX3VONpxOI5F7Asi48++giLFi3irCjJNEEqWK1WnDp1Cg0NDViyZAnuu+8+fPjhh0lS7LlAKBSipKSECvnU19fjkUceQVtbG7RabcpyOOFOzXQFXFxcDJvNlvZxhmGwcOFCXDnsBJui6pRO2pdlWfzrwW5kkhH+wCbAn199FQcPHkRDQwMMBgPsdjv+8Ic/4JlnnqFKiomV3FmzZgEA1bFJ58Vx9epVKgt9J+ArnQzkqnz46Nr7MK8omVHqcrnwy1/+Ehs3boRcLse2bdtgNBqxdu1a/OlPf0JhYSF6e3vBMAy++93v4vTp07h8+TKefvpp7Nq1C5FIBEuXLkVFRQVCoRC+u7cfcKa6kE4HonxHrJxMMk4iVmK3j+OUryBrOTrfmbocTVZwuZbA5UyIM3rmYYU4HS5Jel4sCGfq0U8Hzmz9bACI5lTyj90/yUrRy2qzuBrGnjeBGBchs2Pi9Co+1757rlUEk1IEeLM/72biTiE1JoJhGNo/T+yhk9V2vArpzXpNwlMgq3NSZpfL5VAoFJQQl2rePF4h8FaDcBEqKio49weDwSSyIoHJZIJMJsPQ0BC8Xi/mzZuHo0eP4tixY3j66adTbkMEdwiBkPxrt9upvbtYLMb58+fR2dmJYDCIkpISdHd3c54fjUbh8XgQjUYxNjaGs2fPch5L3H/8v0QUaufOnQCm20PkOZFIBIM+Prrsecgm7fuvf9gOiyL22xoOCNA+mv66QLYZ8DL4+te/jiVLluCzzz6jv7ctW7Zg48aNcErMKacI7jFUQDAeM8VKlww0NzejuLgYKpUq7XHcTnylk4GafBWqTIr0wg/X2OsH33sb0dWrMG/ePE5fjXzBSqUS+fn52LRpE7Zt24aDBw/ioYcewscffwyGYWg/rbGxkdofRyIRqFQq6kXQNOhEn7Mnw9Fyy8nxJVEgxqCPHzPMtn06zKQETiSFdawPH1L2fvrWQi4aAen62Tyw1xKBmS1bY66D2ZFrEgQAh0KVWCHsyUlLINf5aZFn7PmvTY4AACAASURBVMb0kWaIO4nUmAhCCpwJSAJBAnq8DwkhLpJWQeIqndgI3+gxx7ctMgW6TMEv3WPxt56eHjAMg6amJly6dIne7/V60dzcjL6+vpT7I4nUb3/7Wzoi2dLSgp/85CcAQKWWyb+ZeA4kKJJrEGl9trS0oKWlJe129fX19PsiyFQRIcdAvFRSISbtm5f2cYL2/jH4r004zVQOuLi4GK+88gouXryIgwcPIhqN4je7PscXodlJ51DHqBudjBbrBAp0dnZCqVQmyWz7fD50dXXhwQcfzHoMtwtf6WSAI/yABMEIADyGh39+cgHcnRF8+OGHOHnyJFavXo3q6mowDMNJBoCYg9cLL7yAP/3pTzh37ty1fbIoKirC3r17kZeXh5KSEmzdupUqFpJefa4tC1JOjh/9YRgGobAcyCGOZypHE9b8TLXpc2ktAOnFexKDTmI/O8TyEloDuUPNXJ/HQCZ4IIoFTGEbnhA2oyeqhZOVQM34UcqbQDwP68tk76fDjQhH3UrEB3QyoUNW4YRzIxKJIBQK6Qx7PFs+MWiS+wgJcHh4OCk4ZrolBsZUf8c+z9wIgjcb58+fT7ovXqchHRIrKqmmGxKrM/GOiX6/n+o8kGvQ1NQUTQzI5AWPx6NqrB6PB4ODg5gzZw5EIhHn+kX2Hf//+PuPHz8Oi8WCWbNmpXxO92QIBz4dyvp5vfiNx1GdpwDDMGgb8+HAtstZtzHFVY9JS2Lu3Lk4evQo/vuRqSQbZODa0ufaOVbUexXLli1NanXcaS0C4CueDADplQ8NwhB+vXlFjIV6VyUGBgZw6NAh7Nq1CwUFBVi7di1cLhcYhuGoFhYVFeGFF17AW2+9BSAmIfrFF18gGAzi2Wefxc6dO2EwGPDAAw9g27ZtGBkZQUFBQc4ti2KDCpicohauxA1OGE7N0k5EuqCXqmScqyVwrqvqRCOhTIQ1UnXQw3cti58pYklLKW8CjTNQNsu8iqdHBxYsToRKIWCicMZ9Zo0pyuy3k72fC+5UUiOpCITD4bSmYrcaqZTiyH3x/5JKAnk8/rFMN5K8xAfY+L/J4/H/j9+eZVl0dHTAZDJREjF57ZaWFhQWFkKn06U8HpZlcenSJUSjUcyfPx8ikYiqJFqtVs51LB26urrg9/sxe/ZsTv+/ubmZqi86nU7w+XwOkZD4BigUipSVgHgBpEQoFAqMjY2l5CIAAJ9lkS8Dhr2pHA9jZ7JZBkz1tuCcjbweYJYCI75027AwS4Gu88fRfSH58T43Mp5DLGKPj4VFCIfDVIuGvPfm5maUlpZmJCLebnzlkwFgera1sXccr//ndsyrKoa9vRFVquX0OYWFhdi0aRO6u7vp7KlGo4FUKk0ayZFKpbQkJ5VK4XQ6IZfLcejQITpCKJVKY1aWNhsKCgqytiwAFiUaMf7H9/4KwWAQPT096OrqQnt7O/x+/w3JeaYrGSciXfDKubXAC0LPS+1UmEmqeOYOf9NJC48X+3d/aBZSjw9yk5vc7ZNjREokrAhTldlZFhAzYSzm9yMMHoSIQsb7chQIgVtrs5wL4oMn+X/i/amCci7bZ7oveV8MxsJieKJ8yHlhGAXBDMnpzL+oVNvETxikCnzZXoesvolREtmG7HdqaipjIkXaA52dnZBIJHRR0dramtGGHQB1lgRi9tHkbyIxTdQVJyYm4HA4cO7cOeh0OvB4PLpwIqTDbIj/HEKhENxuN+VfpcL9CjF2eo1k6/ijBgCsUtoxMMCtgKxWibHDZ0i7zWq1HUNDydcehmHQ4xUDSJ2cxMPLijA1NUUrVETptauri2NXfyfgL8nANTAMA97UIAqYCTz70PPYMtCGixcvJo19lJWV4aWXXkJrayv27NkDv9+PHTt2YM2aNTCZTACA06dPQyCIeVdPTU2Bx+NRx7Fvf/vb9KQrKChAX18f7r777swti2tt9xp/Mzo6Sql5S1tbGyYnJ2n5dJkzczk6ppHNfd+5jBLKEcQaYQf0vNTB60Z1xbMR2XLZf/z9N7LiJqv4E6HSLGRCgsxl9qFomvfG2MBkHuu+ZZDm0k/C9dks54JUZXVC4CPtAdL3J2Q+ct9MbvETBomgSncOLvHrHx67/TKwM8G+ffvQ1taG73//+5zA6HQ68atf/QpPPPFEErEwHu3t7di+fTs0Gg1eeuklAMC5c+ewb98+PPPMM2lX3wDw6aefYmJiAiaTCd/5znfo/ZcuXcIHH3yAV155BUqlEizLYu/evWhoaMDk5CSef/551NXVIRKJ4Pnnn5/xex4YGMCbb76JRx99FBaLJe3zHkupXqjMKO376HVsA8Q4XjtzcI+VMUHqjeFyuSCTySin4k5qEQB/SQY4uHLlCgoLC6HX61FbW4vLly9j7dq1SRcUhmFQXV2N8+fPw+12Y2RkBK+//jqsViuWLl2KxsZGRKNRVFZWcogv0WgUg4ODyMuLkV0sFgsuX75My0eZzJr+xyNzMHDBjZ07d8JsNtORQFJaLSoqAo9nh8DdjZO+/JTlaDPjglQqhd/vh1QqhclkQtOAE5OB7KOEDIOMJf3r7YvnSmTLNmVwj6AHciaUVFUgyQ55L4nvDSn64wV8F9agA3tD1ytpHCuzt0YMaXUQviyS3mBEibpQNjvozMnbrQBRxsxkPxwf/HLt0xNCYfytLyjDVhtZBU/vk8yk/8MqI5YUq2hCkbg94St8Gejs7ER5eXnS6xPho3TTBARlZWXg8/no7++Hx+OBXC7HwoULqSnaxo0bU243PDyM+vp6qNVqGAzcINnW1ob8/Hy6yGEYBo8//jhKS0vx4YcfYuvWrVAoFJg9e/Z1vef8/HwIhULYbLaMyUC8emGu3jbXsw2QA/mciV23iyN8OtrqcrmQl5dHWwRyuTyn93+78Jdk4BoCgQA6Ojqwdu1aADEnw3PnzqGrq4tKXSbC7XajsLAQGzZswIULF3Ds2DFcvhwjpbAsi97eXmpMxOfzIZVK8cknnyAvLw8FBQWwWCw4deoUnE4nNBoNgNiP840nLPjV1vdgXbYS98yfAz3fh6tXr2B4eBiRSAQDAwMQCoWwWq2YPXs2VQKbmpqCCcBGkQOTjByeqABSBDHLKIfbHUQgEDdC6PWip6cHEzn247OVjHPtiydaE9eFciOyzXj/0Vi7gWUz9/bS9cf1vGzViOy4FM6/o0h6ubWDbi6pkbgNkn5wtgCeTl/gekl64XCYJsyBQAB8vgAfTWhTfi/stdf5xRFbRm8GhmE41Yds1YlcKxnZFAAnJycxPj6eUuGPJFHZkgGBQIDKykq0trbi6tWrWLx4MQQCAZYvX479+/dj5cqVlItAPxeWxb59+6DX62MtybjHo9EoOjs7sWzZsqTXslqtKCwsxJYtW+B2u9HV1UUJ0zMBj8eDxWKBzWbD8uXLMz6XqBfW5K5tdN3bZKrkEtfBiatuOkFBxK16enrwyCOP5P5itwl/SQaugdgVk9JNfn4+jEYjGhsb0yYDLpcLSqUSfD4fS5YsQU1NDV577TU6FhUIBDA8PIx77rkH1dXV2LZtG/h8Pnbu3Ilvf/vbNMvt6+ujyUA4HMYnn3yC2SY5DMFh7Hv3BJVwZRgGJSUl4PF46O3tjRl7nDxJ+3BisRiBQAAMA2jhQU1RAUQiLQYGBhAKhSghiZAOGYaZ0ShhNmRTtUtNUswEbqC+nv1PWx9nRmKyk63akUuCkKtmwe0g6WVuB03jZpMao9Eoh63O5/OhVCqhUCgxFhbBGQSEYR8kPjtCofTOeSSpIJME8SqE5DUI+TBR+S+emDYelcIRyf17ia8skDYGn8/nEPsIiAgYESYLh8MIBoNUEjkbiJBSuhtZYQ4MDGBiYoLzmMPhABDjDBBFQvJ5Ja5ya2pq0NraisbGRixevBgAsGjRIlodeOKJJzjPb2pqgs1mwzPPPIMdO3ZwkoG+vj74/f60qoN6vR6vvvoqfv7zn2NiYgK/+tWv8NJLL9HrXa6wWCw4c+YMh4T3ZSNTJZe0GQalC1FfX08N7UiLYM6cOV/WYafFX5KBayAtAsKQZRgG8+fPx+HDh+H3+6mEKQER0ogn3TQ3N3NIQcQdTCwWw2w2Ux0Ct9uNXbt2YfPmzdDr9bDZbNDpdOjo6EBDQwM96ckFjmEYzJs3D6tXr0Y0GkV9fT1sNhvOnDnDETshyQDxhh8aGkJ5eTlWrlwJoVCI+vp62O12iMViPPPMMzhy5Ah4A4PQRgKYiGQeJWTZ2GzuTKYA4pErSTEV4gP1TPcfG5HMjlTJTrpqhBp+hMHLOH6ZaLWcDrdLeTD7BEEM9wm6YODfuuOJRCK4Mh7BmRFV3PFooeXp8Gi+F3N0fNjtdkxMTEAoFMJgMEAoFMLtdlN/gEy6/BKJhHIFwuEwbT2Q8zJX8uTiFWthNfDg9/upoVEgEKDKhvH/ptNE4PF4kEgkUCqVlPsQn1TEJzXxVQGS4JBjDwaDcLlcGB0dhUAgQFNTE00yEhOfHTt2JB1HqjYHEAvk7733HmQyGUQiEfLz89HY2AidTgeNRkOrFZ999hnKy8vpdvFTBG1tbZDL5RllhoknBLEW/s1vfoOnn356Rm2DkpISHD16FGNjY5SbdScgW5shPz8fAoEQoyEhTve6wHptKCsrz2ly43bjL8kAklsEBFarFQcPHkRTUxPuuusuzmPEcY0QZpoGJvHO4UaIRVooQs5Y0NLrUVJSguPHj+Ps2bO477778Oyzz2L79u2w2Wx45513EIlE8fm5K/jgTDvUIhaqiAtmsxmhUAjj4+Oorq7G/fffD4fDgQ8//BC9vb3UVhTgSr8S3YMlS5ZAIpHg0KFDmD17Npqbm9Hb2wuLxYIHHngABw8exHvvvUdP0ntF/fjUV562Hx9ieZz++UxV6nJdlaZDtqpErn4KmZIdLXwYjyZXHNJVI4aiyowcCatgiCPLfL3v7WYh1yDogwi4hclJuqRtIirGnwbEeHCsHfm8mFw2SWgBwGg0ora2FhqNBsFgEHa7HePj43A6ndS6N97cKB1y/bzvqqlETUFuLTQyChl/I8lCqmTC5XJxHkuX3BASJbkFg0EYjUaUlpbS+0hwHxwcxJkzZ/Dkk09CLBbTZIIkDfG3UCgEh8MBr9eLwcFBagtNjNgOHTqUdCxdXV3UoGjr1q3g8Xh0O6FQiDfffDNte4Rcl/Lz86HRaHDq1Cns2LEDtbW1WLVqFUQiETodATh8EeSpJCl79jFOVKwieiclA0DmNsOpznHsCdViNMAHrgCAFkUqASo67XccUZVhvwy1jDsMhA37gx/8IEk7+5133oHf76fMWwLCcF204Vn828mhJGOhVcox/Oh7m6BQKDA5OYmjR4+isbGRnrwejweDESXORko4yoEk0N5boceyZcvQ09NDHccI4o1gCO655x7KWn3xxRfR39+PrVu3IhwOQ6fTwWq1wu/3o6uri44kSSQSaDQaDA8PYxhqnA4UJZXYp1fWqUh7vSlJe4kYj0rxUfB6yHixQJ2qfxvPPchdlCh14E5laJRLwpNpCiKf58KHwZqsExaZetM3E7l+B4+LmqHn3ZpkgGWR02fyDXkbIpHwjDgCpJwPTK9E+Xw+XeG6XC643e6cjkHHD+CVwjFoNGpqWazVaqFSqaBSqW6q9DDLsggGg5zkIVUi4XA40NnZCZPJRF0gc6lKxN+I4ZFUKoXdbkdrayv0ej02bNhAn3Pp0iUcO3YMr776Knw+H9566y0sWrQIVqsVFy9exOXLl/HII48gFArB6XTi5MmTqKqqglKp5CQb8cmH1+tN2yZJdQ5p+QGsVY+jUhnhJBg9PT2QSqWorq6eEU8j3hr6duJkhx2b/ngmyRWXQazCmWie9GXjL8kAYqU1t9uNl19+Oemx5uZmvPfee3j11Vc5LNqrV6/ite2f4ovw7BQWyCx4DIP/eKYWhvA4Ojs70dnZSYU3otEo7Hw9PvaUpljNsuCBwZP6QSg9g0nHI5PJoNPpIJPJqCuWQCCg5kNCoZCSpmaKRHLfsVA5nMh1nC998OyLqHEglF36M3H/DID1wjbk81yclbmfFeDsjLgHMcSSm+nSPdfqGEiVKKwTtEHCC6cVSsqkj5DOeCrTe7tV2gO5BuJsideNHOPtSEgkEgn0ej0sFgtKSkowMDCAc+fOIRqNYtmyZVi+fDnO97uw6Y9nU563DIANkk7kYTLtaxA3RKVSCa1WC4PBAL1eT5X3lEplVjLgTHHkyBGcOXMGP/zhDzn7JlWJc+fO4fjx43juuecyViUSE450IK2LaDSKwsJCmkD4/X5aeRwcHERTUxOeffZZqFQqmnAk8hQOHTqExsZGfP/736fJgt/vx7/t3I93BpPJnMy129/UAhWKad7FyMgIPB4PrQ6RWzaQKkYupM5cCZ+ZxlaBWJK3/lfHMk4bVBoVHPOkLxtf+TZBuhYBwezZsyGRSNDY2Mh5jsvlipWmky4oAMAgyrL47zvOYaOoGSaTEVVVVdDr9ZBIJBgbs+N/ngmmLWtHweKAQ4uNokHOiJyDlaLPJYTCOwEtBgDEGNbxBK10GTghW6VKEmQyGSwWC5xOJ5jhYeivlcwzWfomHnemcbnrKYUTIhtAgliiMuLMsUbYAYaZtkvWwoc9oZqMjP8D4SpEMX3SJyY96TgMQPYJi1Tv7WYaBSUG8aV8G74Iz2z882aaGd0OsSMijDM4OIi6ujoAsaqB2WxGIBBAU1MTLCYTtrywED/e355mvvxRhEIhTE1Nwel0Ynx8HGNjY3A4HHA6nXC73XC5XJiamsLAwEDK4xCLxZDL5VCrY9UFg8EAjUYDlUoFtVoNmUw2oyDQ1dWFsrKypAAkEAigUCiowVI6snMqECvi1atXY9asWTRRaGxsRGtrK8LhMCorKyGTyeD3+ymR+cKFC5yqRKIba2JVgojufPrpp9QXQiwW45gnDzEN9eSpDjDAvlEFPn9uOlhevXoVO3fuxKZNmygBkbSHUrVD0rVIEqsWk5OTSY/l4o2RamyV3EZDYrSPpp/sIEZIV4amcm5H3Wp85ZOBxCmCRAgEAtTU1ODSpUtYvXo1PRmbB6dyHllj4vTCBQIBnDwVHJHynLbVM77kC3IodkFeqxnHXL0AbrebGoXQPTAxyVTyoyYcA4ZhUFFRgZKSEpw8eRLhcBgajQbz58/Hrl276Pa+HIl38cecblwuF9EgOYJYzO+HiJlW55vuy6d+vVT7ybTqJaJJJNCMR7PL8ia6JOaiEZAYhJ8QNmMC6TgHmPH+c0G6IJ66JZJ6guBmmxndrMkVMhWTqOAnl8sp6z4+6RUIBHA6nXA4HKivr6ePbVCqsEQnhjMIPLB8CZbNKoTJFAsyQqEQer0eer0e5eXJ5yrLslR6l4z8EeIjGSFzOBxwOBzo7u5O+R5IdUGj0UCv10Or1dLqglqtpqRlv9+P/v7+jONooVAo61hhImprazEyMoKuri6sXLmS3m+xWNDa2gqVSoXnnnuOBuPXXnsNVqsVa9euRTAYxE9/+lOsXLkSNTU1GVsck5OT4PF4GBoaovcPeBnYAnORjkOUKlgWF8f0MWw2G00GiHW0UCi8qXP70Wg0ayKRKdkYmvQCyB7kiRHSnYCvfDJw5coVFBUVZfTZXrBgAc6fP4+enh56YRia9ADIPi/rgwhKpQAmkwkWiwUOhwOfNfbldGxeVoRARJD2gvz+RCHc7tQX5HTOb0TbvKOjA0Csrzo4OMhJBIDcVeq4SD0ul8uYngdiHItUUHU+MNlIgalfPxmxPSzlJ696Z+JUGP8amTQCMq2kLdcc0261UVCmIH4+UoR1wjZIeRF4osK0Zf9bcYw3qlQ5fWwxHXuit0+SA4/HQ1evSqUSpaWlkEqlCIfD1AqXJAIxp0IeNGE3xGEfLh39FJeOxoIL4QnE34isLv0EGAZKpRJKpRJFRUUpjzMQCMDpdNKEIZ70SKYjvF4vRkZGUm7P5/Mhl8shEAjAsizsdjsuXrxIkwWVSkUTgGAwSDkTuaK6uhoHDhyAzWaD2+2mOvnEAMnj8VCZYVIpIWOF3d3diEajqK2tzahaCAC//vWvUVNTQx1bAeDQ1RHs2Vqf9Ri/OHEO2hVzkZ+fD5lMBqPRiN7eXlit1hm915kivrpxPWgadGJ7DgqFphw9aW4HvtLJQLYWAQFRJbx48SJNBgQhL4DMWt4AYFZL4fGMUt4AAIhz7HWvWrYAv6l3gQ0Bt0q4JnE0iSD7hTs9UpV505XME0FWnXcLemfMCUiN2LGfjRRjGcNd/V4/kz910pPrSvpWGgXlEsTPhovxpKQFOsabdj+34hhnolTJ5/MhFovh9Xrp336/n/N7jXcNTKwSuFwuKgAGABqNhrbqRCIRfD4fRkZG0Ntro1MkKmEUperYKnNsbAzd3d20ry4QCGAwGJKSBJUqvVqdWCymz0uFaDT6/7P35tFt3de97+dgJEGQBElwnmdSFEVREql5HizHkqzYstM4ifMcJ3lNm7Rps5w0vb339a532+alNytt0rqJ0ziN0yZxXNeyrdiJPMrWQFISJ5HiPA8gQRIkQJCYCOD9AZ+fABIkIVlJ/OL3XUuWKQLnHJxzcPb+7f3d3y/z8/MiWZidnWVmZgaLxYLNZmNhYUFwgQDR9giGRqNBr9fj8XhYWlri4sWLIdUFWQclHOTKx8zMDB0dHdTU1GC1Wnn33XfZtm0bra2tXL58mXvuuUdY8MrJQHd3N4mJiesmAj6fD5vNtmKxlRIXWZAd62nnBx2XiI2NFeZIkfob/C4RqULhhvS43/qxrYYPdTKwXotAhiRJbN68mQsXLuByudBqteg9c6RG65l0QLhgGSCIxHDfziouXryIw+EgLy8PlUrF5KQZg3n1QCsBWXFK0tPTmXSu5UYY/oEsC6PIVqMqlQqPx0NRURGpqam0tLSwtLREcXExJpOJ6enpsMcfuWlPKFYLsvKY3owvmjc9RavM6QcCVutSesT7W4mVo4TBAVkm7S34NO/ZKmvDHMf6CE56bmcl/ZvsnUcaxKe92jVJeu/3GIPHX4MRqZKk1+sVUwEy5O0lJiaysLAQ1npXhlKpDLEZnp+fp7e3l/b2dvx+f8Cwx5DHr9wVTLrfW/F7INXnY69ugtjFabEd2ZBMkiRMJhMdHR2CmxMc8IP/RDJHrlAoiI+PJz4+XpTAg+H3+3E4HPzLv/wL6enpFBYWioRhbm6O+fl5XC6XEBwCeOONN1ZsJ7gdkZiYGJIsFBUVYbFYaG9vp6amhvPnzxMVFcXhw4eJjo7m8uXL7NmzR+wjMTERv99PT08PFRXrk0Htdjs+n29FMhCJMVuCwsmnTh4kNjaWrq4uurq6RDv0Zz/7GRUVFRQXFxMdfTcWDXcXIQqFy6cJghQKPyjkQfiQJwORtAhkyJoD7e3tbNmyhYUFO8eNNp4ZCWR2K0ZHgE2eLs6fn6Sqqor9+/eHqG5t7Z7k0/92DZ8//Gz/BsdNfna2E1ifhb/8gRys8S5rvkuSRE9PL1d7J7B7legkL47WG2tWFFZfza/dm1+rzCt7HKynzheZSdDK/QfCrnwFQrcpbIfxLSNH+olUVTAYwUnP7ayk76bq43K8nyAuO2na7fb3fYyrVZwgVLthSR2DxuvA4F8IuRfl8b2lpaUViUFw8JPZ37Lyn4zllYLl9rgTGHh5JG5FIDI7Jf7LlcG3Tu6mKjUKs9nMxMQEJpOJqakpkVwkJSURGxsrpneGh4dpamoSn1uv169IEJKTk2+rlC9JEg6HA7vdzrZt2ygpKVnxmqWlJWw2Gy+++CIOh4MNGzZgsViYnZ1lbm5OGKQ5HA4xUhwOQ0NDfPe738VisVBcXExra6uYnrpw4QLx8fGo1Wr0ej0TExPMz8+vqjoYDFlAbfkzdj05XwmJjxUpeeGFF9i5cyfHjh3jnnvuoa+vj//4j/9genqaF154QaiylpaWUlpaSkJCwrrH9NuCrFD4tV9cY3T+1r0XrFD4QcKHNhmItEUgIy4ujsLCQpqbW1Al59NpUxHnmOBPKg28MhkTwkpOULqoUQyyPS+LgwcfIDk5ecX29pak8uPHaviTf3s3RGcg16DhoQKIXUyiZdgC66uYopPc4qHo9XrDjgyNLenviBW+XHRnwa9+z3wnckb6ckLdgi+yB+ItnYNIyILvlYxZa6RLTjLCFu4i2Metf1+e9NxOEM5SWO9K7zwc7iSIK5VKvF4vHo9HeFfcjf6+3NOPjY0VwjPyv4M/UM3yOkhOTkanMzI5OSnu3UjY3PLrIpH6DTlyP7xjT1nFnyBwzP/z5Zs8rO8hOzuLrKwsNm7cSGpqKjabTSQHExMTjI6OimOViYByn9nlctHV1RVS3k9ISFiRJCQlJa1ayu/r60OhUJCXlxf29yqVisTERDQaDTqdjgMHDiz7rH4WFhYEd0FuSVgsFubm5rDZbGI8T06yent76enpEdu4evWqkF5+5plnxIi0xWLB7/eLKkO4RGe1ZADWl/PdWZBEfX0658+fx2QycebMGYqKioiLi6OkpIRdu3bR1dVFd3c3r7/+Or/+9a9JSUmhpKSEsrIyMjIyfucr791FRr5UaKPP4mTnweMRGyH9LvChTQYibRGEILWU77w1xFzPZaAYPFAwHsX/fXoDi7PTvHH5GosWE9l6BY888nEyMzPX3FxelIv71W3su//jSNEGkmJUZOr8740tpZGfP8elt6xMOsOtdCH4gezxrD5W+H5Z4cvH5+Ik17pl3uB9L3+tntXnm4OxSWVaJfEgzM+3g/dHSAyX9NxOEH4/Lo/r4U6CuLxiDg7A7/cY4+LihH233W7HYDCwsLCAx+PB7/cTHx+Py+XC6XQyNTWFJEmCmV5fXx+yyg6G0WgMCWDySl0m2S2vCIRDpFUcd0wydrud+vp63nnnHSCghJiVlUV2djY7duwgISGBmZkZkRxMTEzQ29srWhh6vZ7CRf2EAQAAIABJREFUwsKQKoLVaqWpqUmomCoUirB8BIPBQF9fHzk5OetWFNxud9jWhCRJ6PV69Hr9qs8j2W7Y7/ezd+9egJCEQZaA9vv9DA4Oivf98pe/DNmORqMhLi5OCDTFx8czOTmJWq3G4Qj4PCwXbFpPznfHjh2kpaXxn//5n3z/+9/n4YcfJjc3l5GREfR6PVEZxaTrc9iwW4lmYZLu7m6uX7/OxYsX0ev1IjHIz8+/q2JRkSJgWDfIjm3bOFj2wVJOXI4PrejQz3/+cxYWFlYoC64GWU1qeVk/8H9+jqm72ZYdi9FopKuriyeeeCIk25f1xeXZZZvNRkdHB2azmbi4OBYXF1cIaEiSxLg3ll+7i9cUrlkrkN+J2EwkIjPya1yKKGIUS+QbNNhs1pAH8lqiO0Gfcs1jMvnWMzdab1t3F6tVU+7kPN/NGf5grHXeFZLEUVXXmtsP7vffyTHKCpkJCQnMzc3h9/uJjo7G4XCg0+lwOBwiiOfn5zM6OioSWaVSybFjxyguLubcuXNCAjcYRqORrVu3MjY2RmdnZ0gSo1AoxAz/wsJC2IQiUhGsh1OniZ0fxufzERUVRUJCAkqlkoWFBUGoi46OJisrSyQImZmZqNVq5ubmRIIg/y0H/6ioKNLS0khKShIBfHFxEbPZjNlsFomERqPB4/GQnp5OZWWlSBJk1n8wnnrqKTIyMjhx4sS6n2s5Ojo6xDTRV77ylRXbP3/+PFeuXGHDhg3k5+fzy1/+UvCfZmdnsVqtKyo5SqVSeCwEIzo6GoPBIDQXgicj4uPj0ev1YcV8bDYbzz33HCaTifLycl6/MUJP3GZ6p25xqopT9PzPUxXsyE9kZGRE8AwsFgtqtZqioiJKSkooKSn5rXkDTE5O8r3vfY9HH32U/Pz838o+7xQfymTA5XLx93//9xw+fJidO3eu+/r11KTAT6ZeyXeOpzA4OEhbWxsGgwGv14vL5RKroduFbGgyiYG355OZWbq1OsiKVfDpjTGMN73FkSNHiImJobGxkZGREfEwlyQJmzKe/7SvL0Qiq77d7sNfdm8LXpFJkoTP5183ON7C2kmOzwfPuzfeMdHv/WK/qg+15FtXfS8SxcFwScRvQoFwzBvLZU8udm61oBIUDmqV6ycaOp0upEcffIwpeg1Rzhm2bKkWI2jhIJtmyWNpwa2rjIwMvF6vGKlTq9UUFBTQ3d294nuSmJiIUqlkdnY24taBDIVCgcFgQKvVMjc3h8PhCMiBJ+fzz33rTwKd0rSTrZdITk5Gr9czPz/P2NgYXm9AJtdoNKLVanG73UxNTQkn0NTUVJEcZGdnYzAYkCSJ+fn5kORgYmJCJBUqlYrU1FRSU1NJSEhApVJhNptpamoiKSmJubk58R3T6XQrqghnz56lpKSEe+6557bOEcDZs2dpaWlBkiSOHz9ObW1tyO+tViv/8A//QHFxMRUVFZw9e3ZF0uB0OkPaEPL/9/b2Ct7H8msja0UEX3O5kmEwGESSEJwoXLt2jVcb+znvKSHAA7oFCVbI/MojmXJiMDo6iiRJZGdnC57BehMRMvx+P+0mG1NhKhiroa6ujtdff52vfe1rt60D8dvGh7JNcLstgnaTLaSntRISY3YfP37pDcHQDhYBkgWAVCqV0AbXarUMDw9TUFBAUVGRyJZlsZHl2fH169d55uU3OfnwJ0k36NiQHselS5eYUqupra2ls7OTkZER9uzZw4EDB5iYmGBsbIzzbePQw7pYT9MgXDsh2EI2GH6/P6JSLPAemz/Ym2Flu2GW6JDX3BlunyAor+bzlbMRBehImfLBWEvB8E5hViTS4EoPOWd6nNQoIqs4LGfxy8dolJwoPUp8UsCbIzMzM0SBL7ii4HK5hCeA3G+WNQHkeX/53zweD11dXWGPZXZ2lrS0NCoqKvB4PExOTjIzM7PidXl5eRw7doyJiQkaGhqYmJjA5/OJPnhCQgLV1dUoFAo6O7swSKqIWimLi4SMsiUkJJCWlkZ0dDRzc3OMjIwIwZ/MzExiYmLw+Xz09/cLH/uYmBiys7NFgrBz504RGJxOZ0iCMDIyIkr2gXMvkZmZydatW4mJicHv9zM7O8vU1BR9fX1cvXpVvLapqYmZmZmQJMFoNK5ZHh8bG6OlpYXMzEzMZjM3b95ckQzIVZvBwUEUCgUZGRkrqgfyTH5qamrIv3/ve98jOzub48ePi6pocMIwNzcnuAtyYiD7SMgmVcEJQ2BqpyLsosz/3n/+r5faeO3P9ov7Ljk5meTkZPbs2YPdbqe7u5uuri7eeustXnvtNYxGo0gMsrKywgb4S73TK7kN71Ui1iICDg4OkpWV9YFPBOBDmgzczhQBwJRt9RGmYGQUlrO/2MjAwAAmk4kvfvGLaLXhWfGyR/j9999PXNz6s6azs7MUJGg4suHWyF1nZydFRUWMjIxw9uxZqqqqOHTokHiAZGZm4o0b4V97WtfdfqzSxwVPOK+EwM/hNA3WYoxHSqjboRohWnJj9gceLimSfcXI252JA4VChwcJ/20REu+kd7+ay+Fviy807o3lvDN/xcPSjpbXlko4Jq3dVgquKgEhqza/309KSgozMzNMTEysuLeX3w/L+/pytQBuVR9SUlICXh1B463l5eVotVqam5vx+/2YTCbm5+d58MEHycvLY2ZmRvAK5GrB4OAgTz31FHFxcRw6dIicnBxaW1u5du0adrud2dlZLl++DAQqE1/cmcrfXrbhW3bdA6tLiU9v1OEz6UVpX8bs7KxYzSsUClJSUsjKykKj0TA1NcXQ0BAulwulUimeMZIkYbPZuHDhAh6PB4VCQXp6ukgOsrKyQgiCHo8Hs9nML37xC1QqFdPT0yH26AkJCaSnp1NVVUVKSgoqlYpnn32WtLQ0/H4/N27cEPoEkiSRlJS0opKQkJCAJEm88sorpKWlsWvXLp577jmGhoaYn58PsWaXEyqv10tvb6/gFUQCq9XKxo0bUSqVJCQkrMr29/v9LC4uriA62mw2kTA4HI51Fxl+oHdqgSf+9h8pSNCEtCDkv3Nzc6msrMTv99Pf309XVxdNTU1cunSJmJgYSkpKKC0tpaCgALVaHWI4FIxes51P/rB+VcMhn8/H4OBgRNXnDwI+dMnA7U4RACRHqBJ18sg+KjLiSUlJ4d///d+Zm5tbkSnL6OvrIzk5OaJEAAJfSFnwAxAly5KSEp599lkKCgo4efJkSFbr9/vpv/4uicooZr3a1ed5JSdevw+Ld+1xv9sRmYmUULeAmmtLWWu2Je6Gze8iGmKQk7rwkwjBWG01H0lZ/zex2o8Ed0M1UA7oq7W1TCYT6enpTE9Pi6C3vASsUqnEak52jFtaWsLlcrFlyxba29tZXFxEr9eLcT2DwcDS0hJ2u52Ojg40Gg0nT54Uqzi73c6Pf/xjEhISOHPmDB/5yEc4ePAgjY2N1NXVYbfbRdA9e/YsCoWCTZs28YUvfAGLxUJzczOtra14PB7Gx8dhfJx7tPFc8+cz5b71GIx/794zuBIo27WLwsJCpqamqK+vZ3x8POSz+nw+Ue6HQI9fDvAKhYKJiQkGBgZYXFxEkiTS09MxGo2CUNfd3U19fWC0Li4uLiQ5kAmY999/P5s3b8br9TI9PR1SRbh06VKI1sLi4iJlZWVs2bKFxMREQc6UuQj19fViWkSlUhETE4PVamXbtm0hxkQdHR0h1QGLxYJKpaKwsJCurq5VJxuWQyaIRrLokiSJmJgYYmJiyMgIr8/r8Xj4ZdMQL70QvooUjPzyzeRFLWKz2RgfH6ezs3NFxUun04kkoaKiAr/fj9Vqpa+vj6amJpRKJYWFRTw5mBDWg0b++a9fbg9rODQxMYHL5Yr4fP2u8aFLBu5kiiASgQyD5KSr7k0yDx0kNzcXjUZDV1dX2GTA7/fT19fHxo0bIz6G2dnZEDZwV1cXkiRRX1+P0WjkoYceWjGe1NnZSW9vD08cOslfviY7IK5c/X55XxZJKVt56bmb6x5H8Hy6QqEgKSlJzEIHI1I/gitLuSt+s7wtEcm2bmF5kL/1s2zHHIN7mXuhk1rl8JruhPCbI/zdLUTitbBeQqdUKlGr1as62vn9fvbs2UNaWhr//M//TExMTIhKHgSCpFqtYcKtYsGtQie5yYrR4HI5aWxsJD8/n7GxMRHAjUYj09PTVFVVkZCQwDvvvIPb7ebll18mPT2dRx99lLfeeouRkRFmZ2f5wQ9+QEpKCmfOnGH37t3s2LGDmzdvcuXKFUwmkwhqzc3NNDc3k5qayr333svx48fp6emhqamJ3t5e0rByH81YNNG4ldGU52Xw0QO1zMwU0tnZyRtvvMH58+dJT0+nrKyMEydO4Pf7aWlpoa2tLWRcEgKVkP7+fkF61Ov1FBQUkJ2djc/nY3x8nIGBAfG+1NRUqquriY6Oxu12Yzabef311/F6vaJNODY2hlarJTs7W3AKqqqqxLWYnZ1lfHyc559/HkmSaGxsFJLMMlExLS2NLVu2kJaW9p5R2hTj4+NcuHCB6OhoWlpaREsDAi6DU1NToopgNptJSEgQrYGhoSFyc1d+b5djrbHCO4FaraYoKxlYPxkoyEji+Pb9IQFallQOblfIPw8ODmK1WkNI3F6vl/ruMUacq/NL1jIcGhwcRKVSrTtV9kHBh45AeLtTBDIu903zyR/WB+RpVghkwH/fk4Cl4wqLi4ts27aNubk57HY7n/vc51ZsS2aYfvKTn6SwsHDdffv9fr7xjW+wf/9+du3aBcCPf/xjRkdHiYuL4zOf+cwKkw6Xy8WTTz5JWloaGRkZ/PSN6yt9wyUHtaphTtQU8/r1Tl50rZ8gBdvLSpIkHhbBPb1gTYJbwX5lEqLDvWbZPph9vx45L5wBT3j4iZec7FP14yDyMv6dkAN/mxj3xnLRkxeRWNMRdY/wSQgHuZe/GjQaDffeey+Tk5M0NDRQW1sbMksf1qNe4WS/3kzS0jQ+nw+lUkl+fr7wyCgqKmJoaIiYmBiOHj3K1atXQ8bYampq2LRpEy+++GJISyErK4sHHniAhIQE/H4/IyMjXLlyhc7OzhUqiFqtll27drF7927hYNjY2LjCG0Cn01FRUcGOHTuE4mBPTw9ut5ukpCTKysooLy8nKSmJvr4+rl27xsjIyLpjjYmJiZSUlJCVlYXL5WJkZIShoSHRdjAajeTk5BAXF0dHRwdzc3NotVqRbBkMhhDuQWpqKgqFApfLxTe+8Q0efPBBNm7cuIKoaDKZBIdJJip6PB5mZmb42Mc+Rl5eHna7nbq6OhoaGoCAqNLs7Kw4fyqVSqiZLi0t8YlPfIKMjIw1e+E9PT389Kc/5ctf/vJdSwgiIXMb1UucULSQlJRIbW0tmzdvXrVduxxOpzNk4uvdXgv/0Lx+ZfJHn65ZMTr405/+FK/Xy6c+9amI9v27xocqGbjdKYLlCEciKUm5pSbldrupr68XboBer5c//uM/FkpeYjuXLvH222/zta99LaLZV7vdzre+9S0+9rGPUVZWhs1m49vf/jYajYY//MM/DNuH+/Wvf821a9c4evQor776KgBqtQZdZjFtfaNsyM/ANtQhgqBCoeQF1wYs3siCc7hyebgxQLk0H7oSd1CunOTKUt66nz04+VhvZe73w4A3gQtL6ydYwdtdD3cyNvjbxOqJSnjczmdfD7L7XkVFBVevXl03abpH00NetAuXy0V8fDz79+/n1VdfxePxkJqaikqlYmxsjF27dpGRkcG5c+dElUKj0XDfffcRHx/P888/H7IyLygo4PTp06LXbbFYQngFwS6HkiRRUFDAvffeS1JSEtPT07S0tNDc3LyiwmUwGKiurqampoaRkRE6Ojro6urC4XAQFxcnEoPs7GxmZma4ceMGra2tK6olyyHzBsrLy8nIyMButzM0NMTQ0JBIdrRaLeXl5SQnJ6NUKrFYLIyNjWEymd6rvgRIiykpKTQ0NPDAAw9QWVkZdn8Oh0O0NAYHB+nu7g45luTkZIxGI+3t7QAcOXKEHTt2MD09zU9+8hP0ej2Tk5MrJk3CmTolJSWhUCi4du0ar7zyCn/1V38VdlzwTiEWZn5ZbTQAebbggYQxvvDAYZqbm7l58yZqtZrNmzdTW1sb8eSAjLZxKyciMBz65Zf2hFQGvF4v3/zmN9mzZ89tcSx+l/hQJQOtra288MIL7ytT9Xg8fOV/fZtN2/exc3N52PGSxcVF3nrrLa5du4Zarebw4cNs27ZNlPGfeeYZlEoln/jEJyLa5/DwMD/60Y/4whe+QFJSEj/4wQ+YnJzkkUceCSsJOjk5yfe//322bt3K9evX8fv9aLVajh07xrlz5/D7/SFf6m3btlFQUMA//OzVsA9yCVBIEn97LIOei+cYcevCBv0FYXu8MgjsUA0RI3lE4jDqi2zWe/kqdr2efaQz5OutjoMx44vmJff6Oux3M8hGivUTlZBXY5CcPKzvweMJv9rZv38/PT09gb76XT8WPwkKF48YBoiJ0TE1NYVGo+H06dO8+eabTE9Po9FoqKiooKWlheTkZE6cOEFzc3PIGGN6ejr3338/FouFF198MaRvXl5ezsmTJ4VevdPpFLyC+fl5NBpNSCk4Li6Ow4cPiyA6ODhIa2srbW1tK0YZU1JSqK2tpaqqitHRUTo6Oujs7MRms6HT6SgpKaG8vJyCggK8Xi99fX1cv36d4eHhdcciNRoNOTk5VFRUoNFoeO655ygtLcVqtQpOQmxsLLm5uWRlZREdHY3NZmNsbIzh4WHxXU5KSgqpHiQnJ6/gET3zzDPMz8/z2c9+dgUPIfi6JyYmkpqaSkdHBzk5OYyOjvLVr36VX/3qV3R0dHD48GFmZmYEJ0FuTyiVSoxGozApeuCBB0hJSRFkyruBS73TPPHzBsYXboWvkhQ99yTPY++7TlRUFJ///OdRKpVcu3aN69evs7i4SHFxMbW1tRQWFkZ0LHIlosc8T7h7WjYc+vUyzsDo6Cg//OEPefzxx1d1tfyg4UOVDNxpiyAYc3Nz/OM//mNEJf4f/vCH2Gw25ufniY+P5+DBg5SWlvL3f//3HD16lO3bt0e0z+bmZl588UW+/vWv88orr9DS0kJiYiJf+tKXVrzW7/fz9NNPs7gYIM8sLS2h1Wo5ceIEZ8+eDTsKGBMTI77I495YmhRFmF23+Ac58WoeyPWiXxjj+qidX7mK1hASimzl/H4D7GpJwW8icP8mEoy7hUg/72+jnRHpsXw8YRCD305qaipDQ0NIksSpU6eEvj9AdXU1o6OjWCwWDh48SF5eHi+88ELIWGFNTQ2HDh2itbWV1157LSTgbt68mePHj4vysM/n4+bNm9TV1Yk+vNvtFu0QpVJJVVUVR44cET38zs5OWlpaVggfSZJEVlYWe/bsoaioSLQSOjs7mZmZQaPRUFxcTHl5OUVFRWLSoL29nZaWFtFLXw+VlZVUVFSQlpb2nsNioHIwPj4uEvrc3FwSEhK4fPky+/fvZ2FhgdHRUSYnJ8UiIFgUaX5+nhdffJFPfOITFBWt1B+5cuUK58+fF9dgcnIyJEGIjQ0Iqw0MDFBVVcWBAwdEkF9YWBCJgdlsprOzM0RgSqPRhDV1Wt7ijBS9vb185yf/xaGPfJTi7BSxMHv33Xd58803USqVfPrTnyY7O5ulpSXa2tqor69nYmICo9EoErv11B3//bWr/Pc3Jwmna6CQJH7yeO2K8cJ3332Xixcv8tWvfnVVqekPGpR//dd//de/64P4bcDlcnHu3Dm2b99Odnb2HW9namqKpqYmdu/eve5NLGuTP/7448zMzHDx4kXa2tpwOBwcO3Ys4i9BR0cHFosFl8vF1atXUalU1NbWChKPLIbRPmaj8UY7PTca8ft9eDweURF48cUXhYubJEnCxwAQ404ZGRlgn+a+kjhi5nrJU81ToTSxwTtAtG+BxMQk/tNsZNGnILyk7+qyvk7U5Chn0UmBB3Y0Swz6EnCiWuV9gQSiWjUelsj3hqeYFm8G/b4kurwpDPoSiJecpCgW7ni7q2EJBV3e9aVEN6omxOe7XcjJzYwvhiUURLO07vFJkoQ/IYt2+/pqajG4OajuI0M5L/QhZKjVapEgarVavF4v8fHxJCUlidV0uH748pXVjC+Gft/6Zdg07xSZcWosFgvl5eWYzWa6urooLi6mpqaGrq4uTCYTCQkJFBUVcenSJaanp3nooYcwGAwMDg7i9/sZHx/n2rVrlJeXc/r0aSRJYnh4GECw7Z1OJ7m5uahUKlJSUtiyZQuFhYUsLi4yNTWFWq0WfXCTycSlS5cE8be0tJSqqiq2bNkiRIfkyQCr1UpbWxuXLl1ifn5eJCYVFRVER0czPDxMQ0MDV65cYXx8HK1WS1VVFXv37mXnzp1kZGTgcrmw2WyrjuiazWba2tqoq6tjYmKCpKQktm/fztGjR8nPz0en0zE9PU1HR4cYwYyKiqKkpIQ9e/ZQWVmJwWBgfn6ejo4OGhsb6erqQqPRoFAocDgcqNVq4cgIgWBfX1+PJElUVVWxYcMGbty4gUKhoKqqipycHLHQMJlM1NfXU19fT39/P7Ozs4LsWFVVRU9PD9nZ2TzyyCPk5+djNBrFcba1tdHc3Mzly5e5du0avb29mEwmoTeg1WrXbaHq9XoaL7/NtrJcqkrzxWfIzc3FYDDQ0dFBc3MzycnJpKamkpaWxtatW8nPz2dubo4rV67Q0NDAwsICiYmJYd0PHQ4Hb738HJszY5lwa5h33/reGCQH//uBCg5vXLnyf+eddzAYDILs+f8FfGiSgZs3b3Lz5k1OnjwpjETuBGNjY9y8eZNDhw6tKyQRExNDXV0dRUVFHDx4kMLCQm7cuIHb7WZycjLi0UKZIdzd3U11dTXj4+Pce++9xMTEcKl3msefucY/vdXLiy3jnO9fZMifSIzXTlJUoKQqk4I0Go1ICLxeLzqdjpycHGZnZ/H7/aJfarHMoJOWyDPGkJ4Qg0KhYH5+ni6znSZPGneqApitsBKvcL2nI+9jya9g3B8XZnuBVex+dT9xitByttyTXh7snajo9yWRorATJzkZ9ckOkStbFuG2uxbeT+ISCdZKbmLXOE6FQoF1wRlRonJc3UWqckGM/cGt+yGYaPfggw9SUlKC1WpldHQUWOkAGIy8vDwWFxfx+XzvJU0rTbmWozp6Br/DSlxcHCaTia1btzI+Ps7w8DCSJPHAAw/Q29vL1NQUFouFI0eO0NfXR11dHWVlZRw/fpypqSlmZ2fxer10dnbS19fHnj17OHLkCA6HQwjWjI6OcunSJXw+Hzk5OcI2uKKigqqqKhGcfD4fer0et9uN3W6npaWF+vpAX7qgoIC8vDy2bdtGaWmpkOGV3UCnp6dpbGykvr6excVFamtr2bNnD5s3byY2NlYIIV25coXBwUG8Xi8FBQXU1NSwd+9eNmzYIKYylk9xyMI5i4uLjIyM0NzcTF1dHTMzM6Snp7N9+3YKCwtpa2ujtraW+fl5WltbaWpqEklCTk4Ou3btQpIkJicnKSsrw2Qy0djYSENDAw0NDQwPDwvCotyWsNvtxMbG0t/fj8/n46GHHqKiooJNmzZRUVFBQ0ODSK6cTieDg4M0NTVx9epVrly5IrwpoqOjSUxMpLS0lIqKCrZt2yaSldzcXOFTMTIyQktLC01NTVy8eJGWlhYGBgZCWhDR0dGCf6BUKunu7sbj8VBeXh5y3tLS0sjKyqKtrY329nbUajU5OTlIkoTBYKCiooLNmzcDgcrrpUuXMJlMxMTECMVIgFdffZXJyUm++NjHKVVMEjPbx59/7CiP787FaKpnwTxEdXV1SGLs9Xp55ZVX2Lx5c1hr6g8qPjRtgrvRIgBoaGjg/Pnz/Lf/9t8i6jk9+eSTZGRkcPr0aQC++93vkpiYiM1mw2w2U1ZWxqFDh8I6G8r4zne+w+zsLDt27MDj8dDf38+XvvQlLvfNCDGM0Iu4ekk4eAY8GLJKYrjepswuj7RcvhqWkwFXJ7352aCYpFY9GhJcI+lJK/DjW8W5UCYbpivmb1sUaD2Snl5ys1s1cNsl+PX8G7Yox8hSWlc9xvXOiSRBRoyCY0tXWX6XxMfHY7PZSEtLE8EzWDdAXjGvBbVazc6dO3E6ndTXN3DWXYHVH72mpsX9Qe0i+d7KyspifHwcn89Heno6Dz/8MK+99ho3bwbGXXfv3i2CdGlpKSdPnmRkZISXX345hNAmr9CXlpZ45ZVX6OjoEL9TqVQcPHiQHTt2hBDaXC6XCOZWq5X4+HjsdnsI4bCwsJDjx48LAprX66W/v5+WlhY6OzvFOGCwhXFlZSX79u0jKioKu91OV1cXnZ2dIrhmZmaGTCbALZ+AvLw8xsbGVpiPyVWd4O+vfJ3uuecekViYTCbRVhgeHha8ivj4eDZt2kRubi7JycmYzWZGR0cZGRlhbGwshH8BgVW2yWRCr9evaEuePXuW/v5+/uRP/kSs4mWi4vj4OK+//jp6vV4YHclExfT0dDHymJaWFsL093g8IdoI8h+ZLCqPM8sthrGxMcbHx/nzP//zsM/j8fFx/u3f/g2Px8OWLVs4ceLEitd5PB5u3LhBfX09ZrOZ5ORkamtrMRgM/Md//Acf+chHqKmp4dVXX2VgYIA/+qM/AgILwx/+8IccPHgwhCQoc7w+97nPraqZ8EHEh6IycLdaBBCY3bdarezYsSOi19tsNtra2ti5cydzc3O8/fbbHD16lHvuuYekpCTa2tq4ePEiVqtVzAEHY3BwkLq6OlJTU3n44Yc5d+4cFRUVFBYW8vgz17AsuMM8eAM3+4w/hjLlFAqFJL4Aa6kGhvtddHQ0arUar9dLdc0O3hy+EwGg0JWz3w9veIrXWGlLTPn1DHhDV8cWfzQt3oxV3hN4nz9MYgGwUzXEHvUQdr/2jlbhsQo3KZKdCV8snjDyHG718x83AAAgAElEQVQUgcqEZF9zOyFHtuZ5CLRdTP64VY9RvqbxkjOoPB9E/Hxv7PVk0hRqt21FAig/+IP7ujqdjgcffJBDhw5x9OhROjs7WVhYIC4ubkWgCHwGP8PDw5jNZnJzc/HNmegLcyxygrpP3U9+cixOp5PY2FhcLhdarVZUpyCwIr1+/To5OTkiSRgeHkaj0XDgwAGam5u5du0apaWlHD9+HLfbLWSRx8fHuX79OklJSRw6dIhNmzYxMTGB1WoVMsF1dXXodDrS09PFuFx2dja1tbWkpqYyNTXF3NwcMTExqNVqPB4PFouFhoYGWlpa0Ol0wmhow4YN1NbWkpiYiMPhwGq1IkkSHo+HkZERLl26xI0bN1AqlWzdupXNmzezfft2UlJSmJ+fp6mpibq6Om7evIndbmd0dJSFhQX+8A//kL1791JeXk5sbCw2my3kOsnXPzh5k6snTU1NuFwuIX28b98+BgcHcblcZGVl0dnZyfXr12loaGBmZobY2FgqKio4evQomzZtIiYmRkgwW61WvF4vS0tLjI+PY7MF7qOYmBhSU1O5dOlSiCOiWq0mISGB+Ph46urqOHPmDCdPnqSkpIS0tDRRnbhx44aoANy4cYORkREsFgs+n0+MWBYWFrJp0yZ27tzJ9u3bKS4uJj09HbVazezsLF1dXUxOTuJ2u0V7Z3R0lNnZWdzugK17UlISGzduFPsYGRlhw4YNIX18pVJJeno627ZtIy8vD4vFQl1dHTdu3ECv13P48GGio6Npb2/H4/FQXV0NBMinHo+HS5cuUVZWJtq+zc3NmEwm7rnnng+kVfFq+FBUBu7GFIGMs2fPYrFY+MxnPhPR62VW6WOPPcbk5CS/+tWv+OpXvyqy4aWlJa5fv84777yDy+WitraWvXv3Eh0dzeTkJE8//TRut1vMUsvbsqniIxp5CV6NR0VF4fP5VrgjrobTp0/z9ttvY7fbSUpKwmye4r+c5euI/4T+u0y5Ca5S3Cnp7c4rE34hLPTa0p0bCUXj5oKnABt3Z8Qw8vOw+jEqFApUKhWDDu2qOhKrGUzpdDrsdju7d+/m0qVL4neVlZV89KMfRZIkfvnLX9LU1ITRaAzRkwiGrEk/OTkZ0Nonnoal3BBjLbkqUxTrZXFxkfT0dEwmE8nJyUxNTZGdnS0e1P39/WHL5X6/H5VKxZ49exgdHaW3t5fq6mruueceLBYLL7zwAlNTU+I9GRkZnDx5krS0NMbHxzl79mzI76Ojo/nIRz5CRUXFiof26OioCNJqtZrY2FgsFssKwuHhw4dDHPBmZ2dpbW2lpaWF2dnZkGAtSRJpaWns2LGDyspKkTT09fXR2dlJV1cXTqcTjUbDli1bKC8vJysrS1QxXC4X/f393Lhxg97e3hVVg2C1x2DIaoYHDhxg9+7dKJVKpqenReVAliCGQHk9NzeXGzfamPFFYXF4ifK72FdZyMKCXVQr5NFIp9PJ4uIin/3sZ0MUUoMnoFJSVraxZEVFk8kUYtwkP5tiY2NFBUH+e/k0gt/vx2w2873vfY/KykqUSiWTk5NMTU2JcxAdHS3soOXzazQaeeyxx9Z0LvzVr35FfX29cI4sLS1lYWEBrVYbMgW2tLTE97//fTQaDY8//jgKhYIf//jHaLVa/uAP/mDV7X8Q8aFIBu5WiwDgJz/5CVFRUTz00EMRvd7v9/Otb32LqqoqZmZmcDgcPPbYYyte53K5uHLlCleuXEGSJLZu3UpraytarZaZmRk+//nP097eTlNTE1/5yle40D3NYz++uu7+T8WPkaOyiZ7bckEZSZJITEzE5/MxOztLdnb2CtnVYKxX1l6u7pekcrNNCi2f315QvxVgLf7bCZ4rETBFWs35MDKL4UgQ6aTC7Sc3gdG8+9VtIcmGvHpdPmGRqllCqVSEXdHDrfJyRUWFmC8vLS2lq6uLmpoa7r33XlpbWzl79ix6/S2d/uD2gbw6VSgUuN1uEXj8fliKTWV6wYPG66AsNZapKbPoIS8sLJCXl8fg4KBIDAoKCujv72fv3r0MDg4yOjqK3++nqqoKpVLJzZs3Q5KEmJgYHA4HWq1WjAc2NTXx+uuvhwTEbdu2cfjwYaKioujt7eWll14K0SiIjY3lxIkTFBcXr0gKrFYr9fX1NDY24na7SUlJEStPGenp6Rw7dixEdtbv9zM6OkpLSwvt7e04nc6Q86ZUKsnJyWHv3r3C2laeVCooKMBsNmO324mJiaGsrIyysjLy8/PFilYOhN3d3dTV1a2Q2gUE8TP4u6xQKER7orCwUATq2dlZ0VJ4p2uSN+YSQ+777DgV/+O+cg5vzGJycpKRkRFGR0cZHBwU5zIuLk6MNbpcLt5++23+4i/+ImLBH7/fj8ViWSGYJH+26Oho0VpIT08nPT2dxMREnnzySfLz87nvvvuAQIVzbm6OyclJzGYzU1NTwuAq2AAqJydH6DQkJydjXtIyu+hF63fyxn8+w86dO9i3b59oIUxNTQlCdmVlpeCMjY6O8vTTT3Pw4EHicit48ul/5+DOLXzs2O7/vzLwQcL7FRpaDvnGu/feeyN+z0svvcTQ0BB2u31dEYqFhQXefPNNGhsbkSSJiooK2tra+NrXvsa//uu/kpOTw6lTpyIWw1gtMMnuiJOTk5SXl4f0VoMRGxuLRqMJGenyp5TwzkIq/TO3tpsgOdiuHiFdMc+MLyqkH69UhirB3d6K+NbnSJQctzFTf2cItnK+HSGfYEQ6Yngn5yH4GCEQVPR6vRhXU6vVPPHEE3R1dXHhwoUQtT45eMpGROG++tHR0SQkJDA+Pk5ZWRmbNm0SXvey0VDwalceS33ooYfw+Xy0trbS09MT8vrl+9LpdPh8PpxOJ8XFxfT09JCVlcXo6CglJSV0d3ezc+dObDabSFJqa2s5duwYly9f5s033wQCfXk5WZaRlpZGcnKyCAQyoqKiOHbsmCCN3bhxg1dffTUkuUhISODUqVNhteRdLpcg783NzZGcnMzS0pJQD5T3sXPnzhBXQgisHru7u2lpaaG3t1dUOOSVvVqtpqioiLS0NN566y2eeOIJoqOjQ7QMZKa+rGVQWFgoRuLeeecd6urqOHnyJO3t7UItMRgKhQKNRoPL5Qq5Flqtlvz8fEpKSigoKKBtyrMmD+nBRBN7S1LIzc0VrP2f//znjI6OsmnTJtHDl+8PudUj2znf7hih7GK4PEEIvt9lIuyRI0dIT08nOTk57CTC0tISk5OTnD17lunpaeGH0G2Vwipm/vn+bO7dUkBiYiKSJPHd734Xv9/P3Nwc0dHRbNmyhZqaGuLj4/nOs7/m6Zb5kG1E4mr4QcLvfTJwN1sEAN/85jfZtWsXe/bsifg9XV1d/PznPwdYl1Ti8Xj4yU9+wtTUFDk5OXR3dyNJEkePHuX8+fN8/OMfp7i4mMnJSc483czo/BJrrXQ/lTSMXh+D1+vFZrOtukoMh3BqY4888giJiYl4vV6+9/NzNHcPopPcJCmchDP8WY7AQ3DptoO6HGDfT5COdD9ZCuv7Sjru194kUVq5Ultu6nN7gkGhx5ijWskBANi1axdHjx4FAiukb33rW+Iayh4ASqWSjRs30tLSAsDGjRtpa2sDAop7cXFxISVbGXLJNNx+k5KS+OIXvwgEeDJPPfUUHo8Ht9sdNvEwGo3YbDbcbjdlZWV0dHSiTSukb3yajYVZzA20s23bVqKiokQLo6ioiDNnzmAymXj22WdxuVxERUXx0Y9+lO7ubq5fvy4swufm5sIeZ3JyMqdPnyYjIwOv10tDQwNvvPFGyHVJSUnh/vvvD/s99fl8dHV1UVdXx/DwMHFxccTFxQnyIwRWnUVFRRw7dmyF+ujCwgJtbW20trYyPj6+orQvSRLV1dXs379fTBrJVYCOjg46Ojowm82oVCqKioooKytjYmKCzs5O/vRP/zTk9Tdu3Ahp/wRDq9UiSVJIMuT3w0tLlcx6NWG4N4E7NE0HjxpHMJsDEs5xcXGkpqbS09PDgQMH2LdvH16vl+eff57R0VFycnIYGRkR1YOEhIQQUaSUlJQ7UieUJ0YmJibo6OgQky9wy00yuIqQmpoqKhRer5cXXniB9vZ2TL64wPNkDRJ2tmaR5ORkLBYLGRkZbNq0iZGREcEhUGZu4Id90fj84RwwWdXV8IOG3/tk4G62CJaWlvibv/kbTp8+fVvzox6Ph7/7u79DpVLx9a9/fdXSkc/n4xe/+AX9/f08+uijZGVl8bOf/UzYokKgD2qxWHA6nasGRvkmfOrjlRypzMHr9TI6OkpjYyOtrevbGa+H9bTrl2O5Rjy8PwndMW8slz252LlFtlTgw7eq1oGfWFzMs/5I6SlNYCV6Z+2I25clvpPkRj4XcnsgGH/2Z38mgsj4+Dg/+MEPxO+io6OFa92ePXu4eDFQWQpOBkpKSvj4xz+O3+/n1Vdf5erVq8THxzM/Py/K+8sh3w8VFRVkZ2eTlJTEwsICZ8+e5ciRIzidTq5du7aCB6DT6QIjZW7dCqGr1Gg/m5e6OV6dT1ZWlpDUTk5O5pFHHkGpVPLss8+KIHDgwAGKiop48cUXsVgs7N+/X/AQWlpaQqoHEKgqlJeXk5eXh9FopKWlRVgcy8jMzOTUqVNhe94QYJPX1dWJ0bWsrEAJPfgcJSQksH//fiorK1cEvampKVpaWmhtbRXBMvi7FRcXx+bNm9m9e3eIMI7FYhEVg9HRUUGCPHbsGKWlpUKS+fnnn2dgYIDPfe5zjI+PCynl5UmeUqkkKiqKcYeS/1osCftZg/HLL+2hIEHD8PCwaC3IBE5ZCGl6ehqdTsenP/1pIJAgygS+0dFRJiYm8Pl8aDQaMjMzQxwbw837r4XZ2Vm+853vcObMGZHIyomC2WwWiV5SUlJIcnDzZgf/o861+iQOkGPQ8I19AXfN5uZmJEkK0eSIjtbxb+ZMZn3h24+SBEXJ+rCuhh80/F4nA3e7RSDfdJ/61KcoKCi4rfd+4xvfQKlU8sQTT4T9vd/v59y5czQ1NfHQQw+h1WoZGhqivr5+xWo+OLiaFYnUubNCyFolKXq+cjCXeOcEbW1tYo46+P2yqpms097f37/qWGFycjIKhYLZ2dnbqiwsh9wbljHujaVuKQfrmj35lYZFy0t6epyUKqZo9GWtymXYqRqidSk9ImOkSKWSw21jm3KUSvUt45va2lqioqJ45513Vn1X5NyEwGjeY2kmrNY5JEkKWdEWFxfzyCOPAIHE9cknnxRlbEmS2L9/P2+//faKrcp9fgjoBsgPcL/fz0svvURzczMKhQKDwSC87YNlfeX7MaAf4Q8hzAEUFhaSnJxMX1+fsCwO/uxreRkc1/ZyoDydqqoqnn/+eaGq98gjj5Cens4bb7whgnheXh6nT5+mrq6Ouro6cnNzOX36NAaDAZPJtIJgGAydTkdqaiqLi4srjIvy8/M5ceJECEEuGFarlYaGBhobG3E6neTl5eF2u0OU+1QqFZs2beLQoUMhpXK/30/b2ByXm9ppv3aZFLUHr3eJqKiokJK+0WikpqaGrVu3hjDhbTYbzz33HFNTU0JRUTYxunbtmrBADt6f2Wymp6eHtra2kM8aKYclnCnPyMgITz/9NCUlJTidTiH+FBUVRU5OjmgrpKeno1AohJW0nByMjIyEVLCCWwtGo3HNQOr3+/n2t79NZWWlqIrJ8Hq9TE1NhSQIctUr0jbd/9oTQ3qUl4sXL5KTkyNaYw6Hg+F5Hz+fy193G8u9Cz6I+L0eLbxbQkMy5Oxwz549t9X7stvtvPvuu3g8HmpqalbIXy4uLvLyyy/T0tKCwWCgsbGRlpYWxsfHA2UopVI8FGR3NjlwVxdnY5zt4NOHN7M7L5Yq7RQ51jYG26/R19cnFOSKioqQJAXT3ijc+lTm7A50khefL8DqXb5y12g0whTJarWGzF3L0Gq16PX6sKVjSZJWKN0tN4GJVbgpU04RLbkZ9clflNVFglYTHHKjZMIfx1blKItocHKrXxuDGw1e+n3G90YCJVZOPYTuJ1LFwXAw+eNCxgutVqtw5pOhUCgoLCwUgVU+DznKWXZUltI6IXMxwo/mqV1WMjMzhdiPDKPRSGVlpQjiw8PD6HQ6PB4PycnJ+Hw+wSHYunWrSMyCEzydTsfWrVsDe5ckSkpKGBgYwGq14nA4SEtLw+FwhCSOfr+f+Ph4HA4HX/7yl8UYWGJiotDln5mZWbE6X3+0Eha0SSRZbrKwsMCpU6fo6uoS/fvk5GR27NhBeno6XV1dgsm/b98+qqqqaG5upr6+Hr1eT1FREdu2bUOn0wkFQxmJiYkUFhaytLTE9PT0imrL3NwcDQ0NjI2NkZubu+JZEhUVRWFhIbW1tUKkx2w2k56eTkZGBlarVSgcXr58mZ6eHhITE2mfXuKzz1zjn97u4+KIiy5vClZDAQe3lhOrcDM7O4tCoSAqKgqbzUZvby/vvvsuvb29REdHYzQaiYqKYmBgAK1Wy+c//3mMRiNzc3PcuHFDHPvCwgI6nQ6dTockSej1enJycti2bRs7duwgIyMDj8eDedZK19L6olHxpms45wKTJXq9HpVKRXx8/Hs8jSl2n3iYt5p7KSzdwOayAmZnZ4VN8pUrV8T0gsFgYMOGDWzatIldu3axadMmMjIyUCgUjI2NCQGj+vp64e7o8/nQ6XQhnABJkhgbG8NsNrNly5aQY1UoFOj1etLS0iguLqa6uloIHtmUBi4Mrqx0LUe0pQ+PZUwkZzJpNiYmBpvKQPPs+mZzR8tTyTfemezybwu/18nAW2+9RXR09F2pCkCANSqrD0biNihDLulBoMwZHR1NT08PV69e5fXXX+e1114TfUC1Wi1WV7K4SHJyMgsLC/zpn/4p+/fvp6ioiOvXr6NQKJienkalUmEa6GJupBvX3JQQbtm+fTv33nsvR48eZUqRyN9dmuW6M4V2u442p4FedywGhQs9t8q3cgYuZ9TBD32VShUSfGQS2PJEQK/X4/P5Vp1ICM7yJQmMikVSJTsz/piQQG6QnOxX9wtHwvUCxyIa7le3k6ucJVthJVUxz4AvCTfKVd+zfD8QmeLg8m0E/yzrO0gSYcc4ZdY03BKRkSTQSUtI0/1kqJ1MeaNDzkVWrIqd/k5xjOFkbGdmZjAajfT09FBXVyfIVW63m8rKSkZHR3E4HEiSxN69ewU5L/h6qFSqEM8MSZIoLi7mypUrQKCfbrVa8fv9GAwGkUjo9XocDgc2m42tW7eSmJhIXl4eKpWKzs5OHn30UY4fP05KSgqdnZ3k5uYy7lBy3ZWyyjkOnE+7B05UZ2Pq78JsNnPmzBkGBgZwOp20tbWhUqmorq6msrKSgYEB5ubmaGlpEWRAq9XKhQsXMJvNFBQUkJ+fz+bNm7FYLCI5cblcmEwm8vPzefjhh6mpqSEnJweNRoPFYhH3sTx/3tzcjMPhEOOZ8kpdqVSSmZlJTU2NqIL19/ej1+spKSnB4/HgdDqZn5/n1cZ+/vd1J5aFZYnHooe3hxZ5/NQB7j+yB51Ox+zsLIuLi2i1WtTqgIxze3s7Fy9eZGRkhIWFBaKioqiurhbJWm9vL4cPHwagpaVFzM3bbDa0Wq1oJYyNjVFfX09vby9p8TEMk4Q99JCC71wSFC72xM0xMTFBY2Mjly9fpr+/H5vNxozKyJPtPn7UMEHvUgIXJyXa57U8eHQ3f3DiKMXFxRgMBqG9cv36dfH+ubk5kVSVl5eLRCU/P1+IY928eZPGxkYuXrxIZ2cnExMTQlLZ6/XS3NzMrl271vUCkCQJnU6HWqfnpw3Da74W4B/+z/s4sGMLdXV1PPjggxw5coTNmzdTWVmJMT0zom18fl8BKbHvf0H6m8TvbZvgbrcIAOrr63n99df5y7/8y4j7P36/n5/97GeYzWZBqJIDbExMDH6/X5TH5LEfuaSm0Wj40Y9+RGZmJhqNhjNnztDZ2cn58+fDluvT09M5ePAgBQUFIV+Id7rN/B8/uopvlRVxpOY1sob9zp07hciKyWSip6fnfbUPxNG8NxrnUerQK73EeObu2NgoErXCGNwcUveSpFip7rf2COXtcRwgsGqvqKjg3XffXVP4SezlvXPhj4rjwPZqTDevAX5mZmYoKipaUW1YjoSEhJA594ceekgYVcXGxrJ//37Onj0LBMrgAwMD4r3V1dXs27cPg8Eg/u2f/umfsFgsIVbAwRwEuDWt8PWvf10ky16vl+9///tERUXx2GOPhRjJFO49xV+9tr474hF1D584WEVDQwMGg4EzZ87w8ssvMzw8jN/vZ/PmzZw4cULwHBobG8XnevDBBxkaGuLcuXMoFApOnTpFSUmgL97V1cW5c+eEQp4kSWi1Wo4cOUJ1dbXo8Q8ODnL27NlVDYaSk5PJyMgQf9LS0sTnN5lM1NXVicSlpKSExUUH3+qIWlM1MrjPLEsmt7S00NbWxuLiIjqdDq/XK753CoWCiooKampq+OlPf0p5eTmnTp0CAi2jgYEBOjs76ezsZHFxUcj6LiwskJKSwp49e6ioqKBuwMIn/rUuIi0OSZKIi4tDq9XSNr3EK4v5q/KXlpPofD5fiPnS0NCQSLAyMjLEMzA7O1tUYvx+P9PT06KtMDo6Kto+UVFROJ1OtmzZQmVlJZmZmevKxcuOhL1me1jqs4Q/cB3+bD9TU1P8y7/8C5/5zGdChOvm5+fZ//+8tqr1uySFdzX8IOL3tjJwt1sEgLArXUt90OfzCSOOy5cv88orrzA5OYnL5RK9Mjmoer1e3G43RqORBx54gPvuu0/YCScmJgr/9Pn5eRwOB++88w7d3d0hhJj77ruPY8eOCZ3u7u5uVCoV6enpWK1WLl68yFde6sXhX311HLySDYZer2f37t2UlJRgs9nE3HNvby9dXV0MDw9jtVoFMWx5WwAIaXGshezs7IAVrLREvNKN2hsaoCM1wZH9DyJRK/Sgokw1hU6xkishKw4ur1bE4A6rQLgcBZoF9AQCpSRJREVF0dnZGTHxUqlUoJOW0HntmId7cTgW8Xg8GI1GTp8+Lfwmbr3+1nkOMNQVTLiUTHmjWUKBwr3A9PQ0arWalJQUYmNjGR4exufzCaa0/F6r1SoMeFJTU4mKisJkMjE3NxfCB1jewsrMzBSa/bIjnkKhwGg08u6772IwGEhLSyM7O5uhoSFudvfT5jSwHu4vjaGr5Sp79+5lYGCArq4uzpw5w+LiImazmcnJSQYHB9mwYQMVFRUkJCTQ3d3N3Nwczc3NbN68mX379mEymbhw4QLz8/Pk5+eTmprKtm3b8Hg8gojn9Xrp7u6mp6eHtLQ04uLiMBgMQjVweHg4pNojl93tdjutra00NjYKNbzx8XEkSWLDhg3s3r0bhUJBW1sbXeYFWpbWujfBsuDm2IZUUmKjkCSJ2NhYiouLRVnf5XKJQCh/7yYnJ2lqamJpaYmMjAyys7NRq9VCwre4uFh4JdjtduFT4vP5hFZE1NICUzfrcepSQkx5EiQn+9T9HN6YhVqtFi0/l8uF3b7Aa66CNStpV/vNfGxLugjQ8mfKyspi48aN7Nq1i4qKCoxGozB4kysHnZ2dTE9Ps7S0RHJyMjk5OZSWllJTU8P27dvJy8tDr9czMjKC2WymqalJXAOz2YzT6USr1YoJiuBrV5Si54WmsTCHHUh+DkUPUZGXxk3TPJc6RsgvKiU7OSB+ZDKZeOqpp4jx2ldVAFUg8Z2PV5OT+MFuEcDvcWXgbk4RyHjhhReYm5sLEQ3yeDzCU3x4eJiRkRHcbjcKhYK4uDjh6Q23xFoqKyspKCjg17/+NampqXzyk58UKwm5zCmPEMmXRx6XMZvNYnV+9OjRkJt7fn6et956i+bmZuEzYFXERcQQlley8mx4sK2xDKPRSGFhIf8ve+8dHPd55nl+OgONbuSccwaRAYIBJBhEUqREibIsS7Lk8TjNzrpmxzu7M1t7tVV7dXV3W6673dmt2fPWbI1vxut1eYJsSVYirUASRGzkDBA5hwYa6IDO3fdH6/cSjUBAvtmxbuqef1QCwA6/9D7v9/mGpKQkvF4vH3/8MU6n80Q73ePqOIXCF0UG/r5ih/1+2NVEYXL4CMWF3w+/cp/sc6Tr5Yey7+Hgrvq4Okw5INV+CeiyV4/Bl8mW93DzJ2nGa7PZcDgcZGdnMzMzI47/v/yX/1I8UF0uF1VVVYSHh/PJJ58AT/ItIDA2MBqNeL1elEqlWJj2q2beeustpqen+f73v09oaCg7Ozv86Ef/hV86i1h3KI7YmUG00sXrUbNkZKQzNDTElStX6OzsRC6X88Ybb9DX10dzczMKhYLw8HBef/31z90y1/n5z38uJIZNTU2cO3eOnp4e7t27h06n48UXXxS7vJWVFd59910R0iMhKpWVlVy5ckW41fl8Pnp6esS1L5VSqeTMmTPCMGh5eZnl5WVBmJRm1wqFgtFtOR/ajyed/ZMiP7//4gUB6e8vu93O8PAwP/uwGbNbRrjSR7jPglz+5F6KjIykoqICtVpNZ2cn29vb5Obmcu7cOdLT04U0b3R0VPBJAkZHRdwzDHPrK6/jMm/Q9et3kMkC1+Hv/d7vodVqmZqaCsRCjy/ylu34Z8xtzQhlqVFkZ2eTk5NDampqkInS8IqZDbOT+HANRYl6tre3g5CD7e1tIIDESMhBRkaGOD4/+9nPREbDXmKi1OjqdLogWWNSUhJKpZKWSSP/9lfDPF5/wmmKkjuoU8wREhrCA0v8Af+Ab54KY7LlA/x+P42NjazLovjf703+/z4DX7b6HzEiAPjJT36CRqOhqqpKSGokgw2VSkV4eDh+vx+z2YzH40GlUqHT6TCbzXz9618nNTWVH/3oR6SkpDA/P49Go+HrX/868/Pz9PX1sbCwEPSAkRzEIiMj+f3f/31++tOfMjMzE2QXK9X29jY9PT309gos11oAACAASURBVPZitVrFrHjJH8k958Hc8v21f1GMiIhgZ2dH2MzeuHGD2tpaFhcX+fDDD3+jYBuFQsEPfvAD/uIv/kKw3CV477g6Cey/V3Uw5omlzZN57Oue1C0QAudDrdbw3zbTj/0cL2pGiI2NISMjg+7u7qC/2N8IHCa9lOokYUG5ubmsrKxgs9meKjcFP9c1k5zOisJoNIrd3f5GrLGxkaamJpxOJ52dnbS2tuJyucRnLC8vFx4FAd/8J8FPhRmJWBfGefbZG9TV1YnXtFgs/Nmf/RmnTp0STnEjIyP8x59/xK89BQF+zCG7qv/ytVKGP/2FmMcPDg5y7do1DAYDbrebN954g4WFBd577z3RjHzta18jMzMTp9PJu+++K8KOpLGB0+nkl7/8JUtLS5w9e5aLFy+iUCjw+XwYDAbhOyAlOqpUKq5cuUJVVZUYHbjdblpbW2lubg7ixqhUKkpLS9Hr9aytrYlYXuk8y+Vy1lyqL9TYJicnc/nyZbKysoLu+cMWMcn2OS88sNuX3hsC91p9fT2NjY2Havvv3btHW1ubsIiWjllSUpI43gqFAqVSiVarFXHDJ228X4pZoyjSx9bWFna7HbVaTWZmJjZ9Kj8bcweZmB22kO7s7AQ1BxLnIzo6mvT0dFwuF48fP+ZP/uRPgsakNpstaLSwtLSEx+MRmQSpqamkpqby3977DKPNw1efe4b6/BT+zX/+7/zKkn7kvfSMaoLv3r5AdXU1d+/epa2tnazKc4REJ9Dy8Qf8T7//DRISEo49Ll+W+kc5Jvj7HBFYLBYmJyfp6upibGyMjY0NBgcH2djYQKFQiEXX4/EI4l5FRQVNTU1cv36dsbExEhMTOXfunCD89fX14fV6kclk3L9/n5GREba2tlCpVGRlZdHU1ER+/SV6ZzfZsdm5UF/J6uoq3d3dJCUl8dprr4kFZGJignv37vHBBx+wtLREWFiYGD/odDr8CvWJoNhS5SoxWpXQ0UpNic1mQ68PdOkff/wxBoNBLCJyuZz8/Hy2tw/K3PaXTCbj4sWLJCQk8Nlnnwl4ea/Zyt6SZuabvjA8yAmVeY4M5DlMdXDfk3PI3wW9w4lihyVpZVlZ2eeoj/NEn0MvdwpCncfjCVpspe8cFRV1KAFTKqkRkJrCgoIC8RDeW1tbW5/H6cr5xJ2H3X8UXAtGn5bvXzuFy+VCr9djt9uF3l+qubk5kQ+QkZFBU1MTSqVShNcAAvGYtWv41JNPvycQ/NS5pWHWF4VlaZLr52vF30v59M3NzeTn56PX64mLi8Nv2UBmnMEdkcy2/UnTkxev4z+9WsnFoiTy8vLo6urC7XaTnZ1NW1sbTU1NbGxs0NnZydmzZyksLBSEyN7eXsLDw0lNTaW4uJjQ0FCmpqbY2dmhr6+PnJwcLl68iFwu59GjR4yPj5Oeno5OpyM1NZXy8nJMJpPYKUv32cTEhBgdSFJLKXBI8gnw+Xysrq4yNzeHTCajsLCQ+vp6Ll++zLVr12hsbORCfSXvDSxjdhx1v/hJ0sr4XkOKGIUMDAxgMBjECKB9xsQbP+5gyxZMUHWiYtofS7YevOaAA6NarSYkJAS73c7c3ByPHj1iZmaGsLAwQkJC2NjYYGJiggcPHhAXFyd8JSRb34WFhaBm1ePxEBMTQ0NDA7W1teQWFvPLwcMlm3srzzuHx7qFx+MhLCwsMM4xy/i/RuSY7G72XrMmm4tf9i5RkxFNenQAlZEyMAoKCqirq6OmpoaUlBShPpidncXn89Hd3c3q6iq7u7uo1WoiIiKIjY0lOztb+DYUFBQQGxuLy+ViamqK3t5eVB47EXInbvMmSqWSn87r2HZ4OepecuuT+Ncvn0Mmk33uZmnnq89fpzw7md7WB2RkZBzpUfFlrH+UyMBvOiLw+/1BHt3z8/NBEJPNZiM0NBSn04nX6yUkJCQIrkpMTAzquB0OBz/84Q+5cuUKAMPDw0HaY4VCQXx8PEVFRZSXlxMeHn5ot5+qV1DiGCFL6+KP/uiPsNvt9PT00N3dLVAASd4XFxdHXFwcKpUKs9nM8vIKPzfnPNVYI0rh5HnlIN/73nfx+/381//6X6mtrcVgeHr2gUqlOrDQwZMZud1uR6lUEh4ejslk4l/8i39BS0vLAXOX/XWY7l7a8fjhgOGQ9DtJdXC8q9/hxMn93v7RMjt1dbXk5eXx85//POiB+LTPeBQZMyQkBK/XGwT37/degEBQkCQNk+oo9CAnJ4epqSkiIiKY2XbzjrP4iO/8pH70fDrrEz3odDrm5+fR6XSsra2JZk5qoKXPqlQqSU1NFax2qZlZ9UfwoSPnSLLZv7uexisXnphzeb1e/vzP/xyVSsW3vvUtZDIZLpfr86AXDZWXbvEXP/s7ND4H50qy+OpXn+R/rK2t8Zd/+ZfExcURFRXF4OAgN2/epLe3F6PRyGuvvYZareZnP/sZTqcTl8vF2bNnuXz5MjKZjMXFRf76r/+a3d1d/H4/Fy9e5Pz586yurvKLX/wCk8nE5cuXOX36tGhMx8fHef/997FarQLq9/l8Qk4rNVBhYWFC8bPfxyAsLIxr165RWloa1PC2Thn5+l904Cdw3e0/dnuvzdDQUBQKhSA6goz3/RVsOA8fr0is///1bKgI6FlYWAACTZnb7T6ycY+LiyM6Opq5uTni4+NpaGhAo9EwMzNDc3Nz0N9WV1dz+vRpYmJiOPe/fcSS9fCFU4afZJ2CbyYss7y8JJ4XJ0H7krQyfvpaIRkZGccquCwWC3/6p38qUIKVlRWRsLj3OR0fH39g82GxWPjLv/xLzGYzarWapV05bzsKn/p+8MSA6Yc//CEhISH88R//MTKZjH//7/89FRUVXLp06djX+LLUPzpk4IvEFUukm5GREdra2vjoo4/ETsHhcBASEoJGo8HhcLLikGP0adFFRHPlXB1XrlwRgRVpaWno9fqgmODHjx+LQJTp6Wmmp6eDMrlPnTrFd77zHWpqasjIyECj0dAyaTy02ze7fEz7Yrhamc1IZzMfffSRIDJJ/toSImCxWNjY2MButxMZGUlycjK7qzOHE1wIwLHnFVNEqbxcu3aNoaEhpqenRdOy96aJiIgIvN7uroBRjyppwYiNjRUBIR0dHcKM5Kg6ykvAgZIpXwyrPj22PY2ADgenlfOkKAPH9njiYOCbNyjnyFJuB73vUdHGg22fHWh49noDpCt2KFWsUqVaQS8PLBD7ZZjSMZHQIwld2e+9AAHZ4P7xQHp6umCzS3P5sLAw1tbWOHfuHK+99hqq+GzeHVg58Hr7yzndhdq5TUREBA6HA7lcLhZJgDt37tDf38+NGze4ePEi0dHRWK1WVldXxWdSqdR8ZM98qtSzd3aT7zYVimtI4r00NzcTHh5OUlISCoWCtLQ0Hj1qJl4fwp2r5xjvM2A0bhAWFiaicXU6HZmZmbS0tKDVaklNTeXRo0dcvHiR3d1dHj16REFBAefOnRPqlrm5OdbX18nPzycqKoqKigpWVlYwmUzMzs6ysLBARUUFdXV1OJ1OHj58yNzcHHq9XrjluVwu0QxIx0ciEFZVVfHKK69w6dIlKioqqK2tpaSkhM3NTTEGc7vdjI6O0tfXR2RkJDExMchkMtKitdRkRDOwuBN0v+fH6/kPL58SoxzpORQaGipGNZu+UHpcT4OfZTj8SjTGcZamRsV1I6F+e8cfQBAvKSwsjOjoaJaWlsT1sbq6isPhwGw243Z7cITGsu5WM7e0yqChlUePmglx7TwVLWtUTqFymcW14Pf7T0Tytbphe+gBfe0PmZ+fx2q1olKpCAsLO7CgS02LVqvlzTff5PTp02RkZBAaGiqIhZJvweLiImazWXA5QkJCmJiYwOfzBeToz758onupLjkEpT0g9SwsLKS4ONCMT01N4XA4KC0tPfY1viz1j6YZkAgoH3UMMTW3yFefu35gROD1ellaWmJwcJBHjx7xwQcf0NHRwdTUFD6fj7CwMNRqNQ6HQ8C39vB0PtrNxGCPZdoXQ68ljAGTgorsRNJjnjBENzc3efjwIR999BF3795lcHAQi8WCTCYjJyeH6OhoTCYTr7zyCnK5nNXVVWpra4M+/7d+0sWWzXVItx+46IeWzCRaHiOTBS/SoaGhJCUlUVxczJkzZwQcWVxcTHd3N56dNRLkVqzqGKyeJ/8uSmbnmwUQag6Y03R0dAg/BNjvBxDwMZcY5YcpBw6Tzuwl0B0HQp3ES8C9zzPAhYJpX4ww+jmp6qBQsUHE5wv30xqQvm11kIlQ0Cf63BsgXOZEK/OQkZFBTEyMMEd58nfB38VqtRISEnIkF8Dj8Rz43d7RgHQcfT4fBQUF3Lp1C5lMxq7bdyLN8+9dyGV9fpKNjQ3cbrdQtkif+fLly4IvcO7cOXJycigtLSU+Pl5A8d6IJNotUTztQW73KahNVJMe/2RMFRkZiclkoquri8rKShEPrFAoePDgAWVlZcTHxzM9Pc3jx4/FSAECTokpKSk0NzcTFRVFUlISzc3NXLhwAY/HQ3NzM2lpaTQ1NYmH/dbWFpOTk+Tn56PT6YQt8OzsLGazWbgGejwe4Ro4MDAgJHjSiKioqAizOZD+KRlqLS0tMTMzQ0JCgsg9CQsLo7y8nJycHMHah8AmZXh4mMHBQWJjYwNz7mgtb5zO4JniBK4WJfDdxmz++dV8MmP1JCcnU1dXJxQaS0tL6HQ6qqurUcfn0LxwPM8mBZO4xvdfO4DwMtn7O5vNJkiUDodDICBOp5M5RwgfWNPpcsQx5Y0WDXM4dpIVlkPVN1FyJ02aOeL928Ikyev1BoyoTnivfu/WGcoyEzCZTPT19WEwGOjq6mJ1dVWQnaXcgc3NTcbGxjhz5gxKpZLo6Giys7OprKwUBE8pjloyQmpvb2dubk54d2xtbVFVd4afdy0e88lAO9eKY3sdi8XClStXiIkJfJ+VlRXm5+eDPDu+7PWPohlomTTyrZ908WefTfJgbpdxbzyfPDaRHqnBa16nr6+PBw8e8OGHH9Ld3c3CwgIKhQK9Xo9SqRSZ3BCQuNXW1nL16lVCMsr5N5+uYXYGL2LSPEtnX6fv0cd8+OGHtLe3s7S0JGJOq6ur2dzcpKKigoSEBLq7u7l58yanTp3C7/djMBgoLy8XPtzDK2b+7LOnacdlOFCRE2IlPT6SlJQUcnNzKS0tJTc3l7i4OJEGZzab6evr45133mF1dZWwsDC+9txV3mzI5EJOJI3ZUbxYpKfYO8vE7DybvjB2XR7U3if2p9Kcem9JDYBKpeLUqVNBhiz7d8IymUxIKPf+7Gl1kp3CcfLIk7oHlipX0co8J2pA9ksvNRpN0LHRaDQ899xzzMzMsLi4GCS3O6xpgsDCtpdEqNPpDjUoAml8ocXo0wb4E3iQyQL/5s033xTwaZxOw1ud05hdvkO+C4CfWJWb//C7V3j06BHV1dUYjcYDToaVlZUUFxfT1dWF0WikpCRAdgsJCaGtrQ2NRkNYaiEdq8erSEI2H3O5/lTQz9LS0ujo6MBmswnNvyQ37Onp4ebNm2xsbLC1tcXg4CA1NTViFxsVFUV8fDwPHjwgMTFRIA2NjQEd94MHD4iNjeXKlStsb2+zsrIiHAvDwsJYXFzEaDTidDrFyGNxcZHt7W3S09MpKSkR1tvZ2dncvHmTnJwcUlJSqKqqQqvVMjc3J5ACt9tNV1cXOzs7pKWlCXfRiIgIqqqqSE5OZmlpSZBk7Xa7aDakJiJeH0JWbJiQEUolk8mIiYmhvLycoqIibDYbPT09zK+sM+Y5nqEuXeN7Sy6XExERQUJCAmlpaSgUCqxWq7hOExISUCgUYhRqs9kC8sTkYv78sfoAH8WBkmlfDAlyG8kKC6dj3MS7V0iT71CqXKVKuSJMzaxWKxERERQUFFBTU0NhafmJuAaF/kVyUuJoaGigqamJrKwsNBoNS0tLwtVwZGSEzc1NNBoNjx8/pqysTChApFIoFERGRpKZmUl5eTlnz54lNzdXkKWXl5fFPbm9usC0OwKL+yhfkQDn6FKcXYQ2Xb16VTQlZrOZT3snUMZn4fD4iNNpjn3+/bbr//PNwFHQ+pbNyTv9K6wOtuIwLgoiiTR7kzr8jIwMEY/a1NREcXExycnJhIaG8u0jd+rgx8/A4jZJ1kl0Oh2FhYXcunVLeAXodDpaWlpIS0sTD6uzZ88CgYWgra2NyMhIUlNTARheMvNO//EGLFlqC2rnDltbWywtLQnN/9jYGKOjo4yMjDA8PCwgTghAlWNjY/T29jI3Nsj61BCG8UV+YYwLgsVnPJFEyBzo5a5DZ4rS3BQIiikFDh0ZfBHJoVwux+jVnmincLACjVK6wkR+XBgjVs1TNc97iYMnaUAcqMgPsxOuCuza9x8br9dLRkYGt2/fFrapUmk0GrHLl4yaILAoxMXFsbu7K2bnh5UYX3gOji80bgs7OztkZ2ejVCoD2ufxPnqFPepBuPb1LDcNZXk8fPiQ06dPi5HPXktpo9FIfHw8qampNDc3k5SURGxsLGq1mv7+fjQaDTanl+6d4wNlspxTnK8tD7LgVqvVqFQqmpubycvLIzw8XGRkSLnxd+7coa+vD4fDwdjYGLW1teJhGhsbS2RkJA8ePCAzM5OoqCgePnzI+fPn0Wg03L9/H5fLRUxMDBaLRaQjjo2NiQjh1NRUCgsLsVqt7O4GPBx0Oh2XL1+mpqaGuLg4Ojs76e7uJi4uTsD7EsFwa2srKB7aaDTS2dmJWq0mOTkZmUwmFvPa2loiIyOFNTMEELPe3l6mp6dJTEw8Uj4olWR/vrGxgduydaxDZqTMQW3IOpGREUGoj06nExsQq9Uqsgmkc2+z2QQXQiJ9ms0W/tuc9ghiauD/jb5Aw+x0OgJeIXInOoUvqBkOCQlhd3eXGzdukJOTQ3p8JB8MrrBlcx76PWRAik5Og26L7u7ADn58fBwIKGiampqor68nKSkJj8fD48ePxe+npqZwOp0olUp0Ot2hC7HUGKWnp1NWVsbQ8g7LdgU2p4fYMDWYV5nyHj5elctk/FFDDJaVGXFOh4aGSE5OZtjo4U/en6HDFs2vBlb5Wec8HwyukBuvIy1ae+BzfFnqt9oMSND+8JKZXZfnC3dPJpOJb/2kC7PTe0jkZuD/t+XhZHuXsFoDM+WEhARB2MvJyREabSk7fHBwkL6+Pn71qI9frzyNsBJYJP6X3/sKt681UVhYKB5qEIhOnpmZYWFhgcrKSq5duyZ+p1QqmZ+fx2g0ivRDm8tzMmvM37vFnWevBFjJFy5w4cIFGhsbSU9Px2g0YrFYSE1N5caNG0RGRrK8vMwLL7yAUqkUEP+6PJqPnLmHwuIS5B6uCJDcJL+EwGIlw+gNEUY20g5V+k7R0dFBendxpI44p/vRBK9MeaIdz1GVJt9B5TCdWHUAJzczqk/V4jEFN2vS91Kr1UxPT2MymcTDKDw8HKfTKR4UISEhWCyWoO8sWcx6PB6Ki4sPkM+eNr6QzpPbtMLg4CBpaWlotVraPn6P2sxoJrdcB6ydr2jnaSpOJiEhgY6ODqqrq1lbWxO5E9Ln8nq9dHR0sL29jVarZWRkhKqqKpRKJUtLS2xvb+PY3sAYmobZeRTb2k+qTkGJLwC/SrNUqZKTkxkfH2dqaorKykrh/hcTE8ODBw+IjIzk0qVLGAwGdnd3MZlMFBUViX+fmJiIVqvl/v37JCYmIpPJhNLF5XKxuLjIzMwMERERREdHYzabCQ0Nxe12C2JhZmYm1dXVOJ1OlpaWMJvN9Pf3k5ycTH5+PqdOnWJxcZGHDx9itVrJzMxEoVCg0WgoLS0lKSmJubk5MWpRKBSMj48zPj5OfHy8GB3IZDJhDx4SEhLEzjebzXR3d7O4uEhSUtKBzBOv18vg4CC/+MUv6OzsJCYmhlu3bnG2LJd3B1bwH+Eqejl0Hq1vVyASOTk5VFZWCo+H1dVVMcLLyMiguLiY0tJSSktLhToFAvwIE9pjTJICz8LGnAhitAFDIukYeb1e7ty5IxwYpQTLxcVF/H4/4dhpWXIj2/faMllgwf3Rm3U8f/ksdXV1JCUlCQ6GwWCgvb2djY0NIiIiqK6u5sKFC5SWljI2NobP52N6ehqDwYDBYGB5eRmHw4FWqz0wPpaQ5V9Nexiz6xn3xjNqDSFZtk1llJsdRUSQAVOkzM6LCducSgghKiqK1dVV5HI5LpeLD7qn+D+6HJ+rEJ7UYeqIL1v91pqBvdD+O/3Lx3ZPkhXl6Ogo7e3tfPTRR/zyvgHDbizHzS3TFSa0Mg9Op5PNzU3m5+eZmJhgbGyMqakpQSqS4FKVSsW2TEf35vE5288UJx4aQHH37l3MZjP5+fncuXPngK7X6XTS3d1NfX09SqWSOJ2GDwZXMNkO3yHKZIE0wn9+NT9ocV1eXubdd9/lwYMH6PV6bt++zaVLl1CpVNy9exev18vw8LCYY/t8/qe4hT2BxQvk68hkCDjUHJrE+5a0Qwl2cdoAy/owMtz+Ki4uFj7ye+Hzf/pP/ynL0+OMWDU4ebqN6FFVqlwlTO5FL3MeOr/cn0EAnHiskGYbPwC57i2v1yt2WeHh4Xzve9+jvb1dfEePxyNIYPv/HQR2fhJcCcfzJ2SA0R9GvmwNlUpFR0cHu7u7zM/PkxmnJ35nnH/9jZs8eyqNWGMfBc5JwnCQlpZGVFQUPT091NfXs7KywtbWliCWAbzwwgtUVFRgNBoFwjQ9PU1eXh4ul4vR0VF8Ph83zlbyyZRFfKYnFViQvpq6i07mYHl5+YBnvEwmExC/Xh+YkUOAzW42m2lra6OqqoqcnByRrhcg8zoYHh6mvb2d0dFRnE6niA3WarXYbDaRDbC8vEx5ebkwFxoaGiIkJITR0VFsNhu5ubkoFAoxZpPcPXt7e0Umw6lTpwgLC6OtrY3BwUFSUlJERHRsbCzV1dXCeExSG0h+BSaTKWh0IJfLxRgSEPHLENjYGAwG1tbWSElJQalU0t3dzVtvvUV/fz+pqancvn2bCxcuBHIfYnXUZEQzuBRMQJSu8YJIOHv2LMvLy3g8Hra2tsQ9d+nSJWpra+nv7xfW5dLzcGxsDKfTSXh4OE1NTZSVlbHmUmM4Hs2nJikEmXUDh8OBUqmkurqanp4erl+/jlqtZmpqitu3b4ssg5GREWxrc2TqfFhU0Zj3LLj5n0tLJZ8ByTmzsLCQhoYGCgoKBIG2u7ubtrY2RkdHcblcqFQqbDYbP/jBD8jJySE0NFRIs6WMBimcbXDdxe/8VdcBZNnuD3CR/uSVJv7nF8qRLQ2QF+rgX71Qw508NXqZi8nJSWZnZ4HA+Eqn0/PudjL2oxAbGQws7vDG6Ywv5cjgt9IMHAXt7+2eUiNDWF5eZmhoiJaWFj788EPa2tqYnJwUN3BEZimfzRy/AH2loYBrZ6qoqqqitraWM2fOcP78eZqamrh48SLnzp2jvr6empoaKioqKC0tJSo+6UQ79TvF4WQmBEebrq2t8emnnxIREcHv/M7vHCqJ0ev1tLW1kZCQQEJCQrA15r46zNZyfX2d9957j3v37qFUKrl16xYXLlxgaWmJu3fvcvfuXQH3SZajfr8folOPJX45UFGbrCZcHSARuaKy+Pla7JHzwmjvNmEEE5r2XuzJycmCUKXX6+nr68Pv94tEPZVKRWNjI5988jHh2Jk6Yld/8GdPfidB/+L47mH7S/PLSuWyQASkOkkoUYzSTYV86YAfgbT7388JcDqdGAwGsdBrNBoh9zwMOYGAaZTFYhGvtS3T0edJOuIzBY6DNBpRuG0ijU8ul4tRxqsv3CQrNoz2z+7h9/uEIVZGRgZDQ0OcP39e+LtL14ff7ycvL080bWVlZayurrK4uEhHRwderxeTyYRaraY4PYFQ2wrLDhV235OFPkruoFE5jX53mfPnzzM1NYXX6yUnJyfoG0jNj8FgoKqqSvACMjMzGRwcZHBwEI1Gg9lsxuFwMDU1xeDgIKurq4SGhpKVlUVtbS2hoaGsrKyIRWdgYIBz586RkpLCZ599xu7uLnV1deTn5zM0NIRCoRAGNPn5+SiVSiHxnZqawm63C1QvNzeXzMxMiouLmZyc5OHDh3i9XtLT05HL5eJZlJ+fz9LSklAMyWQyNjc36ezsRKVSidEBBBCx7OxsqqqqBFtfKqPRSEdHB62trUxMTIjNxOnTpwXSIJVEQPTMdJMbuku2c1pc406nk8XFRe7cuUNqaioLCwuCAzA0NCTGPd/85jeprq7m7NmzlJSUkJiYyMTEhLBOHh0dxWTZZcR1eHzz3kraHkLmsIjjcvnyZTo6OkhLS+PUqVMiKOmFF14I6PpVKjQaDbmJUcRsjZAm3yJNvsOd4nD+7Uu1FKQcjhJKVsYZGRlUVlYGoQYjIyOsrKzgcASa0LCwMEpLS2loaKC+vp6UlBT8fv/nqEEX/7HXeeT4Q4aMgcVtXiiJZn58iBi1l9qyAnQ6HUlJSRQUFDA4OIhCoSAhIYHJTTtdjrhDXutJ7bWZ/rLVP3gz8HTWfKAeDs9hbPslXV1dzM/PExYWRnFxMefPn+fmzZvU1dUFuvqQsBMt2P/qdg0lOWlER0cTHh6OVqtFo9F87uF++Ik7bqcuLUAhE5+wtbVFamoqGo0Gq9XKj3/8Y9xuN6+++uqRGegajYaJiQnsdruAUNOitVSnR9E8PMeu9wmSsLdL3tra4sMPP+T9998X1puS4co777zD2NgYNpstCH5PSUmhsbGRyspKxtds9Gw9PdUL4Pdvn+PVW5dJSkri37Vus+uTcxKCXUREhMhVDwsLw+12853vfIcHDx5gt9vZ3t4Wumm1Wo3T6SQmJobQ0FDGx8ePyQRQfP6OT4f+pUVaYvtHyANs/8NOtUzGsWOFi+pZdLKD+QtPC2fae/zlcrlY0DIzM48MvNnbVFiUkTx2HZ9/LmUxSF4TEGjgIiIikOkP8AAAIABJREFUqK+vx+Vycf/+fcLCwnC5XLjdbgG7X7p0ifn5ebEYSc1Adna2kPRptVrKy8sZHx8X3AaHw4FMJsNisVBblE34Wj8pGEmT7/DvfucKNeo17MaArj01NZWVlRWWl5c5d+7cgfstNTVVSL02NjZobW3lk08+wWKxiAe6NBOWdn1/+Id/SE1NDTk5OSQkJJCfn4/FYuHhw4dBRMKqqiqysrK4f/8+29vbVFVVUVpaysTEBE6nk52dHUZHR8nLyyMkJAStVktFRQU7Ozusra1hsVjo6+sTAUQVFRXIZDIePXrExMSEyLaHQHNfWVkpmjJAGEZJO+74+Pig8CeNRkNBQQFlZWVBckTpXMhkMlJSUigoKDgQey6VTCZjZWacSIULr82E3+8TBFafz8fQ0BAul4vr168TGxvL0tKSOM8ej4fW1lYxopBIyG1tbbz00kvcvHmT7OxsEiJCaV10YPMeRuAF8BMtd1KtXgt67cePH+P3+9FoNELe2dzc/Hmcuozl5WVycnJ47bXXqK+vw2ZcwWNaxrUTaIhGR0exWq2EhoYeKiWUaj9qkJaWxsDAADKZjP7+foEaWK1WEhISqK6uDvgnJObw3/u2jvhOgTLtulnu/BDnzgbb29t0dXXR3d1Nb2+v2NT4fD5MJhOrTvWJRo5f1jjjf/Bm4HjWPOx65bxUn8sL1y9x48YNKisrycrKIjo6OghqPBZa53Bo/ST1tBALaZ71x+fi2V2fZ21tjc7OTtxuN/fv38dqtaLVarl+/fpT39disTAwMEBDQ4MYI5gWJ/GO3eefPH+Gl+rzhNwoUunl17/+Ne+++y42m436+nqio6Pp6Oigu7ubzc3NIGKbWq0mMjKSb3/720K90NXVhdsvZ2A3/NjvL5/4lKXJUWZ3vNxbOqwREEdD7FCleaH0/s8//zzDw8P09vZisVgEp8LpdIr5rcfjISsrS+hyfT4f4Qo3l9JURNnmxa6+RrlEboSMZYfqWOg/JCTkC6UoHtWASK+dJH8i65PJZCiVSurq6tDpdEEksgNHZo/vBAQe8Ha7Hb1ez2uvvcbKysqB0YpkfGT0aFj0Hd8MfLcxG+vG8oGcA4fDgdfrJTQ0lN7eXiIjI7HZbFy6dEnEXzc1NTE/Py9CeqQHW0ZGBunp6UHfIyUlhfb2ds6cOfO53tyNxWJhbW0Nl8tFpEaOHju5qfHk5+eJ5ECj0UhVVRWzs7NotVoBF/f19dHS0sKnn36Ky+Vie3ubzc1NoqKiKCgooKGhgaioKGZnZ7l16xZNTU10d3cLy9mamhpxfCVI32g00tzczOXLl/F6vTx8+JDy8nIKCwtFjPGpU6coLy9ncXERk8mE3++nt7eXtLQ0QTAuKChAr9czMTEhfi+RjTMzM8nLy2N4eJiWlhbUajUpKSmCMLjfwXBvyqPBYAjaOEBgPNDW1sbY2BgKhQKtVhs0SpJSDx0Ox5FJfJK7YmZmJmtra0LxIxkkGY1GBgcHsdvtnD59WqAESqUStVrN+vo6BoOBgYEBgShcunQJvV5PVFQUmZmZlKTF8MuepSM5Co3KadEwS+fF6XSKEcrk5CQpKSm43W56e3tZXFwkLy+PiYkJFAoF2dnZ9M5uMLi4w6mqGq6eq8fpdNLf309HRwcDAwPs7OygVquDuFn7SyaTER0dzcDAIOqEbErOXSc+KZUwhU9wDTo6OlheXmbBCs3zx0s037xcidJuIjExkTt37lBbW0tdXR1er5fV1VVefvllnn32WbLzi/jr7oPI7v76ssYZ/8M3Aydkzb/RVE55TvKhHtpSnSR16k+/WkFGrO43+qxHG4MEdurP1xdw6tQplpeX2d7eZn5+XmSL5+bmBhGeDquQkBDa2ztw6xJYsPgxWWz8+t1fUFCQz/NXL5IVG4ZO4eP+/fv84he/YHNzk6ysLKEOkKSMUiUlJXHlyhVu3brFo0eP0Ol03L9/n/n5eXJycrhx4wa3rzXxwdDqsYjHc5lywsK09M0ZGXM8nekMgR3qqaxELl68yOjoKHFxcQwODuJ2u4mLi8NqtXL9+nWGh4dFjK7E0fD5fKyvr4sGITQ0FJNpC63MQ6TCxTdffYmdnW2cm0sUKjYoj4WSSB9ZzikBi+6VMSqVyiNDfY6q48YK0uurVCq0Wi2rq6tBzoFSnOtxTYjX68XhcLC1tUVjYyNpaWkijniv8dGTRuBoaVOsykPa9gBvvPF1hoaGhMW1VPPz88zMzOBwOIiNjcXr9fLKK6/Q19eH0+mkoaGBlZUV5ubmgnaTqampZGVlBR8fvR6n00lrayt5eXmCoS8twtJ7WywWLl68yNDQEHa7HbfbjVqtxmQyMTk5icFgEOhVdHQ0xcXFnD59Wpz/N954g6ysLGJjY8nMzGR+fp6enh5qamooKiqiu7sbm82G2WymoKAg6PgXFBSwvLxMa2sr165dw+128/DhQzHuePjwIYuLi5SVlXHq1Cl2dnZYWFhAq9UKcp7kTieRCMfHx3G73UxPT4uxQUxMDJWVlSJJdH5+nszMTEFM02g0lJSUkJSUxMzMjHD8UyqVbG5u0tHRgd1up6+vj/fee4/t7W3Onj3Lyy+/zPnz5wWaIo2U/H4/i4uLtLe34/V6SU5ODho9SujOs88+i8FgEKin1+vF6/WSkpKC1WpFr9fT398vApji4uJYWVkhNDRUuIRKToUej0ekHkLgWfi4/S7rntADDfML8VvcqMoWjn9SyeVy4adhsVgYGRlhe3sbp9NJSEgI3/3ud5HJZPzsk25+2GHhnUkX074YPlvw0Lnq4VZjDV+9eZn09HTBfZIUHltbWygUCiIiIg6sES2TRv5Pg42PFmS8N7TGh5NWpt0RvHH7KlcaKgkLC2N1dZXB0XHGvXFPvV8B/ujZcpanx4iOjqa2thadTses2cvb97vZdXt5/aXn0Gg0JEZqfyPe15el/sGbgZOy5k/aPR21YEfKHDRpZkhWWCkoKPiND/5RxiDS7D4kJITy8nIeP36M1WpFoVDgcrlwuVwkJiYGwYL7q2/Fzp/2OvjbEQvv9C/z193LTLr0PH+xjuQIDc3Nzfzd3/0di4uLwg55c3MzaO4cHx/PhQsXeOWVVygoKBDZ6y6Xi5CQEBobG3nhhRcoKysjMjLyWMRDBnw9241nezVAiFOGnDhm9qvPX6etrU2E4OTn57OxsUFcXBwKhYJr167x6NEjIDBOkIx09j60tre3gwx3fvd3f5d79+6xsrKCXC4PoDJOK4rdTeL1IbjdgXMuuartNeQ5qi5cuBDks7/3+x81VvD5fMKJ7+LFizx+/Fi8h6QI+CJoxM7ODkNDQ4LUtUoEd11HEQbhsN3YGzketP5dRkdHSUpKEg9Iv98vzF0kNrlk7lNVVcXKygrr6+vYbDbCw8OZnJwUi4u02Oyf70PAC6C/vx+73Y7JZBJ+E2q1GovFgsfjwWq10traGnSNSguR0+nkypUrfOUrX+HcuXOUlJQIo6akpCQePnyITqcTIwqZTEZWVhadnZ2sra1RX19PREQE4+PjrK6uEhUVRWJiongfuVxOYWEhs7OztLe3c+vWLbFgl5SUUFlZSUtLCzMzMyLuWCaTMT4+LkiVEgIgzaXLy8tZX19nc3MTq9UqxgZSJHB6ejo9PT10dHQEPAP2WN3uJRguLi6iVCqFa6ikJqqpqeH1118PkodKi05MTAyLi4ui4ff7/czNzYnURsnBcXl5mdnZWa5evUpfX58YE+bk5Igwn4yMDGZnZ5HJZCQmJjI7O8vGxgaFhYXCfyEyMlJkrSwvL9PS0sL09DRxcXEYjUYm+zoo15opDncT716jVLlKtXoVpXOH27dvo9FoghxGpWeWuIJlTwKxPB4P7e3tLHv1/PV6HDvOYG8MiT9WlxVDeW4q+fn5nD59mpycHEF47OzspLOzk42NDWQyGRERESKzweoOvodMNhe/7FuiqTSd85VFVFZWcqGukl/1Lx2piJHhJz9ezz+/mo/BYCAqKop1WZQgvo/adYx54vhgaJXceB3p0WFPR5P5cscZ/4M3A78pa/5ptXfBzlSaiV7v4U6uBrXbIiDQzMzM3/gzy2SyI41BAH79618zOjrKtWvXhIWoQqHAYDCwvr5OUlKS0PZK1TJp5M3/uxO7L5hc6PQreW9wnWnDJxhnx8Rube9CExERwdmzZ3nppZc4ffo0NpuNjz/+WIQVabVaQkND+f73v09qauoBaPGoBiovLowa9xDfuH6aW7dusby8zM7a4ok0zZnmYTo62jEajWKXfOPGDfr6+tjd3aWkpISCggIMBoNQHkgPhvj4eNRq9QGP/qtXr/Lee++xs7NDYmIi0dHRIsZUrVZjt9upqKhgdXU1yPL2aYFJAAsLC8e6IUql1WpFc5KRkYHJZArSi0vMb2nxe/XVV0lJSWFqaor6+nph+nS0oZAfvx8+dh2UegZKtu+/0m7MhHzjMVevXmV8fByj0Uh6ejomkwmtVktaWppYCCAgY1QoFFRVVTE2NobX62V6elpYz+5tBqQ5/P6SdmKdnZ1A4BzMzs4G5RrAk8wKqXw+H2+88QY9PT1YLBbOnDlz4LXDw8Mxm80YDAYqKyvFjHyv3FBqZkwmE2tra4yPj1NUVBQkx1MoFBQVFTExMYHBYOD27dtYrVYePnxIYWEhtbW1tLe3MzExQXFxMXl5eURGRjIwMEBUVFSAMGcykZeXJyx7S0tLUalUTE5OIpfLRdOQnp5OdHQ0FRUVbG1t8eDBA4xGI1lZWeKeUygUQsI8PT0d5Pqn0+mYmZnBZDIFjQ4g8MxJSEigrq4OrVYroH3pHEmyObVaLSSNjY2NQlIXHx/P6uoqWVlZonGSmsOGhgZefPFFVCoVIyMjrK6uChTAaDSi0WhoaGhgd3eX1dVVent7GRoaEv4MlvUlIhUuQmVuEZcs+Y4YjUZSUlKwWCwoFAq+/e1vMzAwEHRNSPeqx+Pl79Zjj3627GPfSwt+Tk4O9fX1FBYWotFomJ2dpbOzk7a2dv5TvxObR344H23f66lUKgqSIp6KLF8NW0Jm22RpaYktVRz/6u7iU4nvZ3Njn4omf5njjP/Bm4Gn7kwJkGZ+k+5JWrAzY8MYNLRw9uxZxsbGyMzMpK+vj+jo6P8hcZJtbW08ePCA69evc/r0aaE73t3dRafTsb29TWtrKw6Hg9TUVJRK5bEkSj9+Njyhn5PyAgdJo9FQXV3NrVu3uHLlChEREXR1dfH222/T09ODWq2msbGR5557jpaWFkGeOqoOQzx+tzaBEUMz1dXVAm6VySBRK2PcKcHWT06aRCe6HDqPDofQ0Ot0OiwWCz09Pfj9frxeLxEREaytrTE9PS2sn6UF0mq1Hph5x8TEMDQ0hM/nE4mBW1tbIhVyZmYGtVrNiy++yNraGtvb2yKG9qiSoP4vks0VHR2NyxUwYZIIolI405kzZ4iIiBBGNjExMdy4cYPk5GQmJiaYnp5Gr9eTmZnJ5uYmPp+Py5cvExMTExRYdTLnRahXzlGrXqFCsYTabQ7AlZ/vCEdHRwNmQDYbHo+HV199lfz8/KDAI4fDweDgoEA5IiMjefz4sYjghsCOLTY2lqKiIhwOBwsLC2LW+umnnwaFV0le95cuXWJmZobExETcbjcpKSm8+uqrjI+PiyZ2fn5eXAMlJSUH9PQQIBN2dnZiNpspLHwSEhMbG4vFYqGlpYXi4mIqKioYHh5md3eXwcFBamtrg2BzpVJJUVERw8PD9PX1cefOHcxmMw8fPhQ7TIPBIPzkMzIySEtLo6+vD51OJzwK8vPzUavVYuHPzMxkdHQUCMzppbGBVquluLiY2NhYweGRyIKjo6O8/fbb9Pb2Eh8fT15eHltbW8jlchwOB6GhoUJ1IJfLRQqfVHK5nNTUVGpra5HL5UKfL52ryclJFhYW8Hg8NDQ0EB8fL543KpWKxMREHA6HcGLMzc2lq6sLjUbD+fPnqaurIyYmhrm5OVZWVsQiOT09TWxsLFevXsXpdIrANon8qlQqxQKv1+vFqMjhcIgMCMmCOSUlJai5U6lUuFyuE+WIHMW+l8lk6HQ6oSgpKyvD6A3h3emnx33vf72jNkZpeiWn/WM0FiQwNjaGxWLl5yuRRyeC7mk00mPCnoomf1nrtyItfBq0/4P6SF5oOD557agKDQ0V1qOpqamMjIxQVFREa2srGRkZT4Xtv2gNDQ3x3nvvcfbsWdGVv/fee9TU1HD9+nVhRJORkcHY2BhdXV2oVCq2/GH85/tTT3nlACkvQ7lNRUE2V65c4bnnniMnJ4fFxUXu3r3Lhx9+yOrqKiUlJdy6dYuLFy+SnJzM4uIi3d3dPPPMM8e6mu1HPLa3t+nu7iYjI4Nf/epXwghG5dwhUbGL0afdNy+0c0E1TWNBArW1tWL2XVZWxsrKCrdv32ZmZgav18vW1hazs7MHvNGPKinvPCEhgampKWQyWYCkk53N3bt3KSkpEVawzz77LP39/Ucu8lIT8EUcESUi37Jdgd3jIwS3kI35/X5KS0u5efMmH3/8MRaLhYSEBLa2tqivr0elUjE3Nyd2ZsPDwzz77LP4/X5mZmZ47bXXkMlkzM3NkZeXx7zVz8QJlANFig0S5BYxvpDUARaLlTmLlzmzHw9yYnUapqYmOXfunCC5ScdaCpwJDQ3lxRdfpLOzE6/XK8YLXq8Xu92OwWDg448/pr+/n4WFBZRKJWlpadTU1FBfX8/g4KCAlK9evSrGOCaTie3tbS5evEhsbCwjIyPifErHb2Zmhurq6gOzXilqt7m5mezs7CApnXQcx8fHhV2yRCicmpqiqqoqCLFTqVQUFhbS39/P0NAQL730Etvb2zx8+JDc3FzOnDlDT08P/f395Ofnk5ycTF5enpCK2Ww2BgcHyc7OFo1LZGSkMCLa2dkRLoLJyckiznivUZFEfIuLi+O5557j8uXLFBYWCgfDjY0NVCoVDoeD8PBwEb0eGxtLVFRU0LFRKpVkZWVRVVWF2+0OQtGkc9vf309sbCw2mw2TyURhYSGDg4Pcvn1bZEpIqoLPPvsMp9NJXl4eiYmJVFdXk5iYyNDQEB6PR5Bw+/r6cLvduFyuA2M4n88nklp3d3dxOp3I5XJycnJYXl6mpKREWD2bzWb8fj/f+c53uHjxIqmpqbSNLZ1IMXMS9r1Wq2XTqz0RH23/6x22MfpGVSwTPa08++yz3Lhxgw/aBuhxxnPSxuU4NPnLWL8106HDTsBprZHxntagcJIvWjKZjLW1Nebn53nxxRdFtrkUxFNYWHjAs/o3qenpaf7mb/6GU6dOcePGDWSyQExqV1cXV65cETtYmUzG4OCgmIu2t7fTMbHEqP14UuMfvnyJF6+cRSaT0drayttvvy0anYsXL3L79m2KioqCjlV7ezsWi4WrV69+4QtwY2ODgYEBZmdnBZzp8QQCeG5dPA2Pm3nlXCF68yz5vnkqlcukRGiora1Fr9czODhIcXGx2I1GRkYKKVNUVBRnzpxhZmYGeHojAAHCmtvtZmdnh5SUFL773e9it9t56623KC0t5cUXXxQysc7OTnQ63R5fhcBCvukLA6Uapcd+qKwQCMoRkGovkW/SE8W4N04YLOllTrKysnjllVdob29nYGAAgG9961u0t7eTkJDAzs4On3zyCQkJCczOzpKbm8szzzxDTEwMLS0tREdHMzk5ic1mw2g0Ynf7TmR8dC7WidJtC/q8y149v9xMoN+TJMyg5olBbl3HbVplY2OD+Ph4rFYrJSUlwuXQbDYzOjoqgrk8Hi8bHjWbvjDcfhm1ZYHM+EuXLvHMM89QVVVFXl4eSUlJREVFsba2JhqAmJgYwT3Ym1ZZXFyMwWAQP6uvr2d9fR2r1SoWcsnmWKrExEQmJyeZmJgIWuCldMPm5mbcbjfFxcWkpKQwMDCA1WoNyjmQSpLudXV1MT4+zksvvcTW1hbNzc3k5ORw7tw5BgYG6O7uJjc3l/j4eEpKShgfH2d3dxelUonBYCA5OVkszhqNhlOnTuH1epmdnRXmQNIsfnBwkPHxcZEwGB4ezq1btwQPQXoNiWA4PT0dFEylUqnEHDwtLS1odACBhik/P5+ysrIDkckul4uRkRG8Xq9As6TxhIS8jY2NcfPmTaKjo7l//z47Ozvk5+eLBb2vr4+vfe1rKJVKYYq0168EAmNKKYFTsnOWyL9qtZqMjAwWFhZ48803hRGQz+cjLi5OmE9FR0ezZbbx2cLxRN+T8sf+3/DR9i/eoaGhtLS0kJCQQGpqKm8/6OKx+/iN5JdVNniS+q3aEe8/AZmZmUxMTDA8PExlZWWQjPCLlLRjrK+vJyoqikePHnHt2jUWFxcZGBigrKzsUInOSWt1dZWf/vSnZGRk8NJLL4kdTk9PD2tra0JSKJfLhRRJYv/X1dVh3nWdyNf9mTQ5Hfd/zb1799jY2KCsrIznn3+e8+fPC/LQ3vL7/bz//vsUFBQcOvM9rkZGRsRcU6rKykpefvll3n//fRwOBxvzU+QmhOO1mYS9aUtLC6Ojo+j1er7+9a+Tl5fHwMCAgDRDQkL4Z//sn2E2mxkbGwtarPfbGksleRVUVFRw9epVNjY2+Nu//VsKCgqEo6NarSYpKUnwEuBgFPGoO/bJQi53HWD8H9YIPM0CuCBaxR9863Xm5uZ4++23Bepw6dIlgQQZDAYyMwPWtdvb26SkpFBcXEx4eDgrKyv09/eztrbGc889x8TEBHol7IRns7171IMxkE9f5J6Cz0dpT/usVg9MeqKRGWfEd7ZYLEK2Ji08TqczoOXfd8xGXDGM28M4W5ZDYWrcoU2lVqulv78fuVyOXC6noqICg8FAYmKi8AQoLy8X8kPJne/mzZsMDg6i1+uZmpqitbWVra0twsPDhWQsMTGR5uZmEVUslV6vR6VS8eDBA9LS0gSZbGZmhuXlZWJiYg6MAkNDQ8nNzaWjo4Pp6Wm+8pWvsLGxQXNzM1lZWZw/f56RkRE6OzvJzs4mNjaWsrIyFhcXWVtbIyoqivb2dnQ6nXBJlHIUkpKSGB4eRqlUMjk5SWtrK1NTUxQWFvLSSy9RV1fH9PQ0zc3N+Hw+YVQklUQwdLlczM/PizGUlKrX3t4uZJ37UZTQ0FCKi4spKChgdXVVoC7SvQMBNCY3N5e5uTlhnrS0tMTExAS3bt0iLi5OSC4LCgpEUuTt27cpLCykpqZGKKX2ltPp5PTp0ywuLlJUVITRaBTXlNfrJT4+nrW1NRobG4mLi6O3txcI5B7Mzs6i0+l4++23mR0bZEEWi/1QD5PAdZ8cJud3a+LR6Y7fPP198tHkcrkYCRUWFvLx/Ucnskr/ssoGT1JfqqAiuVxORkYGLS0th3b6Jy3JPjQpKYmysjKmpqaYmprilVdewWAwMD09LaJMv2iZTCZ+8pOfEBUVxeuvvx7UVHzyySckJyeLlDepJEMSl8tFe3s7So+dSZf+SOKMjICLW8T8IyIjI7h06RK3b98WFpxH1erqKq2trVy+fPkAzPi02tra4t69e7S2toqfyeVykeHw1ltvsby8TEREBF/96lfZ2NjA5XLx+uuvc+rUKRISEhgaGhKxt8PDw7jdbgErejwe7HY79+/fZ8mjC1p49toa740J1mq1REREMDMzg8FgYHBwkNDQUPLy8oSh0cjICH/zN3+DUqnE4/Ecu5AnKe2onIcb/gCoVGruOZ5u1WzXxvN8USQ//vGPxehiYmKC2tpaPB4PPT09aDQaysrK6O7upqqqSkDRer1eEPDi4+MJCQm4bKrVauJDfAxaD2sQ/ciR8RffOstzl86IHdzurv3EaYtSLoc0s56fn6empoadnR3mHCGHHrPjvNTDwsJoaWnB5/Oxs7PDjRs3MBgMREdHYzQaMZlMohmXSKMWi4WGhgbGx8exWCz8wR/8ATqdjtHRUbGQqlQqsrKysFqtdHZ2UlFREYQcSG563d3dVFRUiNGZyWRibGyM4uLiA/dIWFgYmZmZwmDnK1/5Cuvr6zQ3N5OZmUljYyOPHz+mra2N9PR0YmJiKCkpwWw2MzU1RXJyskAysrKygnb4NpuNpaWAtlwmk6HVarl06RIpKSnCxEgmk9Hc3Mzk5CQZGRlByOReB8OFhQUsFotwqoyOjmZ4eJjh4WFiYmIONTDT6/Xk5ubS3t5OZGSkUI9Itb6+DgQ2SK+99hoTExNsbm6yvr7O5csBU7FHjx4xPz8vfDAaGhqAwGji7t27h0ZtS9/5ypUrQmorkWEHFrZYc6vxyhTMTwyzs7ODz+cjMjKSzc1N+vv7USgUvPLKK9QVpvPuwOoBMzEZAfb9Rc0sI50PmZiYwO12ExUV9VQDpr9PNv/S0hJra2tUVVXRfv/XGLVpQRkF+1//yywbPEl9qZoBQDDhHzx4ICQ8X7TUajWjo6N4vV4KCwuFbCk6OpozZ87w6NEjNjc3KSoq+kInzmaz8Vd/9VfI5XK+8Y1vBCkEdnd3+eijj2hoaOD/Ye+9g9s8s3zNB4kkwAiQBBOYc6ZISqISZcmycpYc23bb7jg9oW/vbm1tzd66tVt1796991ZNzW7d2Zmanen2dLu7nW0FSy3LSgxgzjnnBALMAAPS/gF9r0mRouie1J7aU9VVbZEAgQ/43ve85/zO84uIiNjwOJPJREVFBc3NzY/n390Eypbpd26VaXpUrH+Uq+b7r15k//79hIWF7ShxqaurE/PGO/n96elp7ty5w82bNwWrGzyLQEhICG63m9LSUmQyGU6nkz/90z9lcXGR+/fvc/bsWfE+y8rKsFqthISECDMk6SQo2f2Oj4/vyHhHMkiSeovR0dG0tbWJnmxnZyf19fWUlZXR2dkpqHgqlRd3VxO3dVabdmrYF+IQVYdN18Ph9Uwh36zNzmzzQ1TOZV599VV8fX3FZj8wMMDU1BQpKSnU1taSmJgoxI8dHR2oVCpT2UwHAAAgAElEQVQxI2232xkaGiIy0mMcNDPSQ4I/TKyqWHF/LYYLkq1wxGcI+2gb9fX1ArVqdvnQtENcsdbHMwXw/e9/n9DQUCoqKjh8+DCnT5/mPxvnWLSz9fPIns5SVygUdHZ24uXlhdVqJTw8XKCKrVZPK0Ov15OYmCiEhNKkh9TeUSqVHD58WOBkJycnqaiooL6+Xszaz8/Pb+B1SKfy6upqJicnycrKEtqA1dVVWltbKSws3IQADwgIEG2G6elprly5wuTkJKWlpcTGxnLo0CGGhoYoLy8X645UPpc8Cdrb25mamhI992vXrmGxWNizZ48wrPH29qa2tlaIDqXqYFJSkkCr+/j4bMATw0aCYV9fnzD1kcBAVVVVmEwmDAbDJqMdiYp46tQpsrKyhCnP+pBaCC+88ALd3d2YTCZkMhkFBQXExMRgNBoxmUyEhYWRk+OxnO7o6BBtMLlcTnJyMhaLhbCwMAHLamtrE7yCDRUmZzB3+qzUTjlJ0vujdtlYWlpCpVIREBAg2n/7c1IJss/QODy7QY8Up/Xmr14v5J0zB4mIiBDYaqPRyPj4OHK5HJ1Ot2mdexYb5puo+efm5mhpaXm8Z5RybE82j4Zsm8BL34axwZ3EH1wyAB6W/cTEBDU1NeTm5j41E9wuLBYLPT097N27F39/fxYXF6mpqeHw4cOEh4fz8OFDXC7Xtor79bG2tsavf/1rrFYr3/3udzdxwru6uujo6OD06dN4e3uzvLxMQ0MDt27d4sGDB1gsFiE6O3bsGF72RezjnczI/B9vYJ7Qylf58+ci+MH54m+sbfjd734nPNm3i4mJCW7fvs3t27dZWVkhPj5enCDAs9AvLCzg4+PDmTNn6O3tJT09nfT0dD744AN0Oh3Hjx8XSNHbt28LrsGlS5d44YUXmJ+fZ3p6WrQcZDI5d9cStz3JzisC+c6eaMbHx8nKysJqtfKb3/yGyMhI3nnnHXbt2kVqaqqgFa6PaYfXjpzVotxmvFxbU8d26mAY6bYQKF+lpaWFpqYmAFH6B0/y53K5mJmZERWTlZUVuru7hZJcOm1J3vEqlQr34jSpchM5Ojehj+e4DwTM4e1YJD09nZiYGGJiYkhISMAVGEXZyLO5BtHyeXxdHk/6ffv2CaTq3r17GbXJ+Nvy4W2u2fYs9cnJSebn51leXmZ0dJT8/Hzq6+tFIrm2tiac6yQ0rdls5vz589TU1DA2NsbBgweRy+WEhISQm5tLRkYGKysr1NfXY7fbmZqa2mBkBBvHDf38/IiJiSEpKYm6ujrsdjsDAwPCCXF9BAUFER4eTklJCfPz81y8eFEkBDExMRw6dIjx8XFKS0sJDQ0lNDSU2NhYdDodtbW16HQ6oQuan5/n0KFDXL58mdTUVNLT09FqtbS1taFWq+nu7mZ0dJTExERBzdu1axc2m41Hjx4xMjJCfHz8pnFCiWBosViYmppCo9EwPz+PVqsVvgXAhtaBXC6npKSE+Ph48vLyBBinp6dnw/tfXl6mtbWVsLAwFhcXGRwcFEyJxMREampqWFlZIScnB29vbz744AOhNVAoFAQHB2O32/nJT35Cbm4udXV1HkbG5OS2iX7zgjc65xz+co+t9I9//GNRKZyfn+fKicOoBitJVts4lBhE2GwL/+FSPgWpccjlckJDQ8nKymL37t0EBgYyMjJCVVUV1dXVzM7OCmiS9Hk/iw2z03A4HDQ0NJCSkkJDQwPP780lK1xDXf/0hsTl2zA2uJP4g0wGpOy/trZWbAzftPTicrmora0lJycHtVotxpYWFxc5dOgQKpWKhw8figViu3A6nXz00UeMj4/zxhtvoNdvFntVVFSIGe379+9z48YNenp6iIyM5Pnnn+fcuXNiVKm1tdVjdWu1kKaYJl65wJm8aP7k+TSyGaa3sZLe3l5CQkI2JR1Pi7m5Oe7du0dxcfGWrw88Lmk3b97k7t27OJ1OXnjhBdLS0igpKdlgravVajl79iwnT54UEwZnz56lu7ubxsZGXn75ZaEV+Oyzz3C73Rw/fpyLFy+i1WppbGyktrYWl8slntfi8nnmqdvmUlCcEIR51DMnfePGDUJCQvjOd76Dl5cXLS0t/Pa3v2V1dRWXyyXcy/r7+4nI2Evl5PaiRIAoZgiUb72J7tTBMEs5SYivF/Hx8WRkZDA8PIyXlxchISH4+vpitVq5ePEix48f58CBAxw6dIj5+XksFgt+fn68+uqrNDY2otFo+OlPf8qePXsoKip6vJmtEaH1xddlJVijEifqjIwMiouLxRicj3/gjsRS2aopNHIPECk01ENba2pqYu/evZS1De7I6OtpoiibzUZDQwMhISHMzs4SGRnJ4OAg0dHRTE9Pi+kKqRohcesDAgIIDg5mcHBw00bv6+tLamoqu3fvxsfHh+HhYWF17OXlRXBwsEgelpaWKC8vJz09ndDQUDG9IPkaJCUlbXrNUrn94cOHrK6ucvbsWSYmJkRCcPDgQcxmM48ePUKr1RIWFsbq6iomk0loH7y8vERVY307Ljw8nNTUVFHSXlpa2jBtoFAoSE5OJjo6WoCKpIrX+lgvMJREmTKZDJvNhl6vp7W1ldbWVvFeZDIZVVVVREREEBsbi1wuZ3p6WthpPxnr9QUdHR1kZGSg0+koLS1FoVDQ2tpKUFDQhjHSgoICWlpaOHLkCAaDQXiJSFWPX/T7bJvoz8kDSJFNYbNZqampIT09nczMTMrKyujt7aW4+BCttUYyY/T0T5hZVAbhG6jbYGuvUqmIiooSHhNKpZLOzk4h5F1eXiYwMBC1Wv1Poub38fGhvLyciIgIenp6yMnJYWG8nyT3BP/rW2e/VWODO4k/yGQAPKV+SeCi0WgElWyn4efnR3l5OSEhIURGRuLl5YWXlxelpaWkpKSQkZEhzE1iYmKe2mN3u93cuHGDzs5OXnnlFWJjYzf9ztTUFHfu3GFlZYWmpiZkMhn79+/n4sWL5OfnExISwvj4OA8fPuTatWt0dXURHh7OCy+8wJkzp3HZ5hhorkK+tsTZs2dITU2lp6eHsrIyzGbzltCiJ6OxsZHBwUHOnTu3oUQqUcuuX7/O/fv3kcvlnDhxgrNnz3pQoL/5jWgDgGex/MlPfiJIal999RUKhYKioiI+/PBDMjMz8fHx4f3336enpweZTMbu3bs5cuQIIyMjvP/++zQ1NaHValleXhYJxpJKS8/as9W4hxKCmBvpZnh4GJ1Ox5tvvolSqeTWrVvcv38f8LSSXnnlFcLDw/nss8/Ys2cPloUlKqc3u0M+GVnKyQ1WxD4+Phw7doze3t4dORhq5av8xVtHcblc9Pb20t/fL376/PPPCyb/7t27iYyMFHPVDoeD9vZ2DAYD/f39yOVyFhcXCQoKIiIiQpDlpL6qw+Hg+eefp7+/n6CgIGZnZ8nPzxd/K9TPm09rB55KT5NgUEeCbaLcLPm8T01N0dTURHf/0I6Sn6eJoiS1fVxcHHNzcwwNDQna5MzMDG63m7CwMKKiojCZTCwsLCCXy5mZmeHy5cui5Cv1qNeHSqUiJiaGxMRE6uvrUSgU1NfX09DQgN1uJyQkhNTUVNra2ujs7CQvL4/w8HCWl5cZGxtjbGwMvV4vEqD1ERYWJlDdku5jfHycsrIyDAaD8F948OABzc3NVFRUoFarKSoqwmKxIJPJUKvVVFZWiiRECj8/P3JzczGbzUxOTuLj40NNTY1oG0iEQcki+tGjRwIz/qSoeb3AcHBwEF9fX1Gx8/b2prKykqmpKQwGA21tbWi1WhITE1lZWeH9998nLi5O8AFSU1M3QKjEt8TtprGxEb1eT1tbO7nPnaFhcJqahmZ83HZkMk9yEhISwvz8PJcuXRLCZcnhMXnvUX5eNcF2if6yS0FRtBrZyqIYB+3t7SUuLk7oPey6BP6mHZockRjH7dva2ms0GuLj49m7dy9xcXGsrKzQ0NCA0WhkYGBAsDS2cozdaSiVShobGwUQLScnB6PRSHZ2FkW5Gd+qscGdxB9sMgCejclms4nsfzvx3JMhKXyXl5dF2TwiIoLOzk5RRkxKSmJkZITKykpSU1PRaDS0TSzQNraAbc1BqJ83Dx48oLq6mosXL27oXUpscakN4HK5SE5O5sqVK6LXLXmj37hxg7KyMpaXl9mzZw+XLl2isLCQkJAQDwUrNZXIyEjq6+uprq4mJiaGU6dOiVO20WhkdXVV0O62inv37glmOnhu8r6+Pq5fv05JSQk+Pj6cOnWK06dPEx4eztDQEL/85S/FCKFMJiM0NJTIyEjhori4uMjNmzcpLi6ms7NTTAfU1NQQHx9PamoqIyMjnD59mnv37vG73/2OwMBAcnJy6OrqElamLpcLl1xF+9qzS/BXMgKYGOjC29ubH/zgB9hsNn75y1/S1+fhMmRlZfHaa6/h5+fHr371K7RaLfPz88yOD2HWRLOw+jSWwNc2x97eX8/dR0dHI5fLGRvzWBQ/y8HwmGaE1y54nCKLiopYWFgQ5jCdnZ1i83e73YKd73A4+Pjjj1Gr1R6q4/w8ly9fxuFw0NbWxu7du7l165awQpUMbi5fvozNZhMCuV27dol+sUwmw9zXRq1ZjuyJRVgm8xhpFSv78VrzIJ+luXCplXHkyBGunHmBB33zzFhX2Wohf5YoSq1WU1VVRUhIiGDcy2QyZmZm0Gg0KBQKHA4HmZmZeHl50djYiNPpxGazkZSUxNraGqOjo0RHRz/V3TMgIACr1cro6CivvfYaDoeDmpoaKioqWFhYIC8vj4aGBgHUSUxMFGjwzs5OsrKytmy3SXz/hw8folarOX78uEgIHA4Hg4ODWK1WVlZWyM3N5fXXXyc2NlaMHs7NzREREYHRaMTLywuDwSCukVKpJCMjA7VaTXt7O/7+/nR1dW1oG6hUKjIyMggODqaqqor6+nr0ev2m67BeYDg8PMzCwgK+vr7MzMyg1+sxm81UVFQgl8sJCAggNTWV+/fvMzIywuuvvy4gaIGBgbz88ssCBPYkM+CrlhHu2ZP5rHuZzmV/Oh1fj9OeO7KP6upq9u/fT0JCgnhto6OjHgFsWCI3WiZ5VjyXHMyaZZSAgABRXZGMrsYcfnxkDtuk+XmWkFUmkxEUFCTux9DQUKanpx8TCSswmUwolUqCgoJ+L8H44OAg8/PzLCwsEB0dTUdHh4C+/VuLP+hkACAuLm5D9v9NPtD5+Xna2trYv3+/wFmGhoZSWlpKUFAQkZGRpKam0t7ezo3qbv5r1SJ/9bCPa03j/KZ6mE+q+zH1tnD5xGEKCwvFaXB9GyAiIoKoqCgsFgs//OEPCQgIYHh4mAcPHnD9+nV6e3sxGAwcP36cU6dObeoTShEcHCywpiUlJUxPT1NUVMS+ffuQyWRUVlZSV1cnxunWL87Ly8vcunVLiBe7urr4/PPPMRqN+Pn5cfbsWY4fP45er2d2dpZbt25x9+7dDRCeF198kcHBQfR6vSivVlVVMTIyQl5eHnfu3BF0wStXrrB//36uX7+OTqejoqKCmZkZnn/+eZGhg+dEIY05GYIDaVv02naCIjFEjXa0Art9TfjMSzoNiTZ4+PBhFAoFH3/8MRaLRcxTv/nmGxSmGLZFix5W9ZMZG8bc3JxYDAMCAujo6MDPz4+1tbVtHQzP6qbRrplIT0/Hz8+PiYkJ7ty5g0KhQK/Xs7y8LESUk5OTWCwWgXzt6uritddeo6mpCS8vL86dO0doaKjwamhoaKC4uJiqqirx2qxWK/v27ROLvb+/P9HR0Z535HZTde8L9ieHM2KTs7BO5ZwYouFC6Az+tq8BLJJhDHg2q9dffx2NRkOS3o9P60fXfQpf/z/5M2igEjhpbW2N2dlZ8vLy6Ovrw+FwkJCQwMzMDBaLhaKiIoKDg8VGJIF2Tp70eFlMTk6ye/fuLf8GeBK22tpa1tbWuHjxIoWFhXh7ewvCoESBjIqKEhUDqYIgCQo7TdYNSb50Unc4HDx8+BB/f390Oh39/f0MDg4SEBDA5cuXxfSH0+kU925OTg5jY2NiZK+mpoaFhQWSkpLE+iT1/xMSEgR4aWFhYUPbABCCvZGRER49eoTNZhNjqetjvcCwu7sblUqF3W5nZWWFiIgIzGYzMzMzqNVqHj58yOHDh0lJScHpdNLV1YXFYmH//v2EhobS1dVFVFQUCwsLHt3PM4S9oSwgs81w5cqVDdULs9lMR0cHmoAgvhp8tvvf9w/GMdDRxPHjx2lpaWHv3r0cO3YMk2maT6ZDd4wlflpIyXROTg75+fn4+vrS398vqJBSIuXn57fj0/z09DQ9PT04HA40Gg2Li4vPdKP9tsYffDKgUCiIiYkRsJGtDFSeFjKZjNraWmFJCh4Rkdlspr6+noKCAnx8fJhRhfLfapeZsdlZ/2VcWHMx4ArhuexYhtrquHbtmgCMSG2AgoICampqxFjP9evXMRqNrK2tCQZ4fn4+wcHBz/wCSaeF0NBQYTkcGhrK7t27ycvLY2FhgbKyMjo6OtBqteIU0d7eTmdnJykpKVy/fp3q6mp0Oh3nz5/n6NGjosT35Zdfcv36dVHCleLkyZPs2rWLkpISYdPqdrv5/PPPCQgIoLq6GplMxpkzZzh79ixarZZHjx7R3d3N4uIieXl5HDhwgPv372M2mwkKChIbo2TetLS0RKi3ax24Y/3G43kte53tBCrswvSnsbFRiDzffPNNMXNuNBqpqakRivU333yT4ODgbcmWks2x1N+W3r/VasXf3x+n0ymcDv3laxQE2IhwmoSD4WHdEjKbRUB2QkJCeO+999DpdIKwePr0ac6dO4der6e9vZ21tTVqampEkuVwOBgeHsbpdKLVaklKSmJ6epqmpiaxGUnVl2PHjlFeXo5er0epVDI3N8fy8rJoFUxPT2M0Grl66gjRK4PEKuZ4Pi2UDPk40bPNyKyeknBSUhIzMzM4HA4iIiJYWlrC5XKJEnq0TkNX+S0sLt8NUwwJwWr++2v5zxRFzczM0NXVRUhICGq1WrQ5JDa+y+UiIiICvV4vqhwOhwOz2cy+ffsYGxsTtLqnVf4kp0hpFDA0NJSYmBj27t0rKimS8ZPD4RCCwoaGBoZWfPhPZTP8XcWoSPLXl54jIyMZGhqirq6O3t5eUlJS8PHxwWQykZ2dLXwSHj58KCoaSqWSrKwsFhcXaWtrE+2KkZERUlJSNmyYUqVsbGwMs9ksHBLXtw2kBEOtVmM0GmltbSUqKoqAgI1W408KDCcmJggKCmJ6elqYHHV2dqJUKjl58iQajQatVovRaESpVCKXy8Vop1Kp5NKlS5hM03w2E7Ztv79v1s6ZlADy83dt+OnExARdXV1Mj/Rv216T4akw/fm5XCorKzEYDMTExFBSUkJeXh6hqfnPaDNsL2TdKry9vQUxMy0tDbfbTWtrK5WVleLeDAoK2vJgtj6k1i94+AoJCQnPdKP9tsYffDIAnj6cBBvZrr+/1eMqKysJDAzc4M8uebPb7XYSEhL4o/ebmbFuTAQ8IcONG2PnKCGzHWIaQGoDqFQquru7KS8vZ25ujsHBQeLj4zl58iQnTpwgNjb295qE0Ov15ObmMjU1RUlJCTMzM6SmppKdnS3KhaWlpYyOjhIaGsr9+/dZWVkRWoQLFy7w3HPPodVqWVxc5KuvvuLatWssLCwQGRm5wd1u3759HD58GLfbzb1798Qo5t27d0VP0O12c+nSJXbt2sXS0hJffPEF1dXVeHt78/bbb2O1Wrl58yZ+fn44nU6WlpYICgriwoULNDU14XK5kMlknDuyD/t4JyaHz4ZTd1KoL0e8BwljXlQSVldXkclknDp1ilOnTombdmhoiE8//RTwYI9feumlDaNWkpL4SJIOW281qe4RdinHCfHxCEGfNH2Sko0nTZL8/PyQrS4SKF/lub35JCUl0tfXh1arxW6309vby9TUFFeuXKG6uhp/f38uX76MTCYjODiYuro6UR5fWloS5jJeXl7odDo6OjooKCgQ8J7ExETa29uRy+WkpKRw8uRJbDYbJSUl7Nmzh87OThYWFsjPz8fb25umpiaGhobw9fWlsbERt20ex+w4ydFhFBcXC7e79PR0TCYTL774ojDYcblcdHd3k5WVhVqtptl4nyzvWZLVNt4+XojPQBl/8fZRMmKf7eUhsRUSExMZGhripZdeEkJdpVIpRkvT09MJCAgQaniZTIaPjw9FRUXU1tZiNpvJzc196t8JDw+nr6+Pzs5O8vPzHztYeip9u3btEiOoQ0NDVFZW4nK5WNPG895YEFbnRqiNVHpWzg5TevszZmdn0Wq1Aq383HPPMTo6SllZGdHR0eTk5ODv78/Dhw+Zm5sTI4dS9aqmpkYgeFtbW0lKStqg8fHy8iI7O5v1DokdHR0b2gbSRp+RkUF3dzelpaW43W7Rxlof6wWG3d3dYpRXune8vLwE2yEuLo6pqSlsNhsTExMUFRUREhIitFOG7L38vHr7fv8KKnzneonQ+gqvg/v37/Po0aPHCXkoSptly/aalOj/5Uu5xIcGMDAwwOLiIqdPn6a/v5+mpia8wxO52TL1zO/a70P3kzwMkpKSKCoqwmAwYLVaqa2txWg0MjIygkwmQ6vVbgm5UygU3K5sweLyZWlljROH922pQ/m3EN+KZAA8sBHJ2zwvL29HBEG5XM7Q0BBzc3NidhY8JVO32015eTmKkFj+rmJsm2fx3Az/4Z0LHCzwLApWq5WqqiquXbtGbW0tAAcOHOCll14iNzcXrVb7jy4jeXl5kZmZiVarpaqqSqi24+LiyM3NJSQkhIaGBiorK8Xm+53vfIeDBw8SFBTE0tIS9+/f57PPPmNmZobi4mIxoeHj4yOQrufOnUMmk2G32yktLRWJgNT/9vX1JSIigmPHjlFdXc2HH37IzMwMTqdTmCI1NTV58KIzMyQmJjIzM0NoaCgPHz7E29tbCBSzsrIY7WwkXWkmXrmAQTbL//7KIUImqvBxWikuLhaWvuDpSUdERBAWFiZOx3//938viH/Hjx/f8gZeXl7m5se/wb0whUbmEM5qbrcbu92+iTFgNps9n/TjzywoKGgDde3s2bMkJydTVlaGTCbDYrEwOTkp2P4zMzPExMSQnZ0tnmdmZoaOjg6mpqY4f/48/v7+jI+Pk5KSIkxcGhsbmZ6exmq1srCw8BgL7OD06dMEBQWRkJDA4OAg7e3tBAcHC6fH/v5+ysvLcTqdTE5O4nQ6KS4u5tVXXyUnJ4eQkBDu3bsnqhgOh4MTJ06QmpoqSvUul4uenh7y8/O5UdaA2aXBW+7mtRf20lprJCcnZ0c+HtJUSWxsLH19fcJFc2xsjMjISJaXlzGZTOzbtw8/Pz/RRpDL5ZhMJo4ePUpbWxvj4+Ps2bPnqfe1TCYjMjKS0tJScepbH5IRWWtr62Ow0gjvPlXh7jED65iy8tpuAy+99BIHDhxgYmKCsrIy4uPj2b9/v0gIYmJiRH+/pKREEPukqqXU95cmD2pqajAYDBuun+ScajAYhK/DVm0DCVQEUFpaSl9f3yZQkRTrBYaSJbeUJBkMBuHLEBcXR19fnxBepqWlicRFHZXC9eaJTc/9ZMSpFhnvasRkMnH37l1GRkbYv38/w8PD2Gw2/OVrRPvYmcEfm/Pr5CUhWMNeZzv5Ub5ER0czNzdHW1sbBw4cICEhwYNPX16jYvrZtNl/LN1PStQzMjLYs2cPOp2OyclJDyK+qgqLxYK3t7ewei/vNfMnH7ZSsRAkAGlVE/YtBY3/FuJbkwzIZDLi4+OpqqpienqajIyMHW24kgf5/v37N2TYUVFRtLS00DwyS/PC9qUigGPpYTjnJvjqq6/44osvGB4eJikpCa1WK1zifp8qwHYhoVnXm5/Mz89jNpspKSnBarWK9oTD4SAwMJCgoCBKSkr49NNPMZlMHDhwgKtXrwLw6aef4u/vj81mw2Aw8Oqrr4prMjo6SmNjI8PDwyLhSUpKYnx8nEOHDnH9+nWam5tF2dTlctHV1cXS0pJAL1+6dAlvb296e3tZXFzkyJEjREdHC8V9TEyMUMernMv4uW0sz06xsLBAVFSUKP3L5XI0Gg3p6elinnhubo6bN2/icDi4cOECe/fu3fLzX1hY4N133xXK6TNnzjA8PCxaAFIisF5ABZ5NTXI0NBgMQoUNMD4+TmFhIV1dXczOzuJ0OsnIyMDf35+KigohHnvyZFtfX09YWBgHDx7ks88+48CBA5w5c4aioiLm5uYYHR0VBi4OhwOlUklwcDDHjh0T1zQxMZHa2lpsNhtOp5PR0TG6TDYmV5UkpWVyqDCX3t7eDd8/i8Ui/Nelk5FUhpcmCux2O/1WFf+pbIba5VB67UG0rWq51zOLanmGvVlJOwJ+qVQqWltb8fX1ZWpqioiICAoKCqioqGB1dZXl5WWcTicGg0E8X1tbm2gFRUVFkZiYSGtrK0tLS9uWYP38/LDZbFRWVpKbm7upxCuZ9HR0dFB06irvt8yx7YnXreQn5w8QHRIoiJtDQ0NUVFSQnJzMnj17GBkZoby8nOjoaFJTUwUqWULxSn3qmJgYampq8PHxISAggPLycgIDAzeNLet0OrKysoR1sa+vr8AOS20DuVxOfHw8iYmJtLS0UF5ejlqt3gQqgq8Fhj09PSwuLuJ2u4UtdXBwMGq1mra2NuRyOX5+fszMzLBr1y7Cw8MpKyvD2zeAe0Nb43vXR6Z8Ao3M097x8fHhBz/4gQdK1jrAvDyANRfoXAv853dOErQ4RLRijv/29gn+pxNpyKwWamtrKSgoEF4O6enphISEEBAQQH35Qyx+MSw+Rfz7z0H3UyqVwj9G+i719PRQWVlJQ0MDtaOL/M+3hzfbFdvs2woav83xrUkGwFMe0+l0PHr0aEd8APh6/CkhIWFDpi6XywkKCqK0snpH41V+I5V01FehUCg4dOgQFy9eJHs0JDkAACAASURBVDs7mwcPHpCQkCCU4/8c4e3tTUpKChaLhdbWVgYGBoiOjua1115jaWmJlZUV0tLSMBqNVFZWMjExwb59+7h69SpJSUnMzc3x3nvvidGkoKAg3nnnHSHkun//Prdu3cLtdvPcc8+h1+sZGRlhbm6OgIAAMSr4yiuvEBkZyd27d1ldXUWpVLK6ukpBQQGXL1+mubmZkpISFAoFP/rRj8jIyBCjSzKZTIycra56zH5mZ2cf0wNVTE5OotFoeOONN+ju7sbhcAjQ0NzcnGg3xMbGUlRUtInCBp7+9S9+8QsWFxdxuVxkZGTwwgsvoFQq6evr2+SJ4INndEomk3H48GExsbA+EZDJZBtGALu7uwFISUmhpKSE3NxcfH19mZubo6CgQDyus7OT/v5+0tLS6OvrY3FxkatXr6JUKlEoFKSkpFBTU4PT6WTXrl2iv766usr09DQmk4nGxkbu3LkjNtQJVwBf2ZOoW9XT7wymfEpGyeAS0QEqThwsFH97aGiI9vZ24uPjmZ6exmAwCK1NeXk5mZmZzHrpeX8qBKtTxvoNc85mp++xB0NOwtfz/9vF+Pg4JpMJtVqN2+0mOzub9vZ2IVDz9fUVNFCdTudBcj8m6y0tLfHcc89RW1vLxMTEpqT9yYiOjqaurg6LxSKmXtZH/GN3w+reCdqtzy4pry89SwlBb28v1dXVgs+/PiFISkrCYDBQXl7OwMAA6enpQq2emppKY2MjKysrxMTECFxzXFzchk3Mx8eH3NxcVldX6e3tJTQ0lLa2tg1tA2ATqGh0dHRLAfL8/Dz379/H7XZz8uRJQYaUeAMJCQmi8iQJHSX9SE9zPZNeESysudhuRHWXclz4h6ytrXG9qov/q2F1nZmXnhFZCAdzksiLDqSrtowDBdkEBAQQGRlJVVWV8KswGo0EBwdjMBjQ6/XMzFhYMQ3S49D+k2CEv2mo1Wri4uLYs2cPiYmJrK3Z+YtaG8tuxdbXZIeCxm9bfKuSAYDQ0FDm5+epqKggMzPzmfP3fn5+VFdXo1arN9EGg4ODmRkbonFGtkE8tTHcaOUrvJ7jAfFI0A2VSsXMzAyPHj2iuLh4w6zxP2UsLy9jNBr55JNPMJlMZGZmolQqGR4eRiaT0d7ejlarZXBwEJlMRmBgIDabDZfLJcan/uEf/gGZTCZmlH/0ox/h4+NDbW0tH374IaOjo2RlZQnznDt37gAe8Yw0h33q1ClWVlZ49913BQRFp9PxyiuvEBwczPvvv8/g4KDg8ksjjh7hVxkWl5r+OTtrLgj29WJ5eVnAg6Te9ltvvYVOp6Ouro7l5WWKi4tpb28XinuDwYDZbMZoNDI7O0twcLAQnU1NTfHuu+8KYppSqeTNN98Unu6fV3RwZyV+nSfC16NTAfI1CgoKhOr7yaqBpJqXRqGkRVaj0fDyyy8zNjbG5OQke/fuBTzVqI8++oigoCBmZmYYGhrixIkTG0rba2trotQvWQc7HA58fX0ZHx9ncHAQk8lESEgIx44dYyUwlr/vV28qe1sd0G71pTDu65OK1DvPzMyku7ub7Oxswel4+PAhiYmJ/H2v11N0Mp7osazy9sHEb1R9S01NZXh4mD179rC4uMj4+LhAUk9PT7Nv3z5UKhUWi0UkgpJWQCLmSRXAp4VSqcTX11dAgp7UD0ml+xJj1Y6MZb5/MI6wgK/XEKVSSXp6Ou3t7dTV1ZGVlUV+fj7Dw8OUl5cTExNDfHw8cXFxVFZW0t3dTXp6OiqVCl9fX7Kysujq6mJiYoLs7Gyqq6sxm80kJydvaGnJ5XKSkpIIDQ2lubkZX19f5ufnN7UNpMTRYDBQV1dHVVUVWq12A6jo5s2bAgP+8ssvs2vXLqanpxkdHSUkJITp6WmBgoavEcI5OTl8Ut5G76ofq66tyvSeKZwXfEcJ8UFMo4w7/bmzttkXY8Wl4LOGMV7YlYB50OPcKIHW3G43RqORvLw8xsfHsdlsZGZmCsBcf3MNyUEKrD4h/2iM8O8b0vpp9w/j51XjPL2q9M0Fjd+G+NYlA+DJ/pubm+nr6xNGIE8LCZkrGU48+bOoqCi6a0voc25VEnUjl8n46zf2cvJg4QbkJUBrayt9fX2cPXv2HwW32CqsViulpaV88sknDA0NkZeXx4svvsiuXbvIz89HqVRSXl4uSGeFhYW8+OKLHDp0yMNgbxvkemkjVXUNyNc889IKhYIf/OAHWCwWPvjgA5qamsjMzBSWpe3t7aKUbLfbiY6O5nvf+x4Gg4GGhgZ++9vfYrfbkclkHDlyhNOnT1NVVcWtW7fQ6/WcPn2a+vp6nnvuOVESrhyY5S9qbRtOEP32QLxWZvGXr6FQKLhy5QpHjhwRi2VzczMLCwusrq5y7949VCoVBoOBt956iz179qDRaGhubqa8vFzMKX/yySc4HA68vLxwOBwUFxeLEcmK/hn+S7V10wzz154Ii6RE6oS9ckFBAePj4/j4+IhF1Ol0MjU1JdgXUmsoODiY8fFxBgYGOHDgAAC3bt1idnaWo0eP0tjYKCY71n93jEYjg4OD6HQ6pqenxUIrvfY9e/bg7+/P6OgoTU3N/GrIF5trq5OK57+bx74+qVRWVoqTc3d3t+iPulwu7t+/jyYq9XEJ/WkhY2HVtePFTi6XU1tbS0pKCh0dHRQWFqLRaKirqxNobofDIXgCPj4+AmUrqdwPHjxIRUUF4+PjHDhwYNt7OiwsjIGBASHCfLKS4OfnR4AX3OuZZZWnaYs8J96g4XI0GjWhoV+7M6pUKtLS0mhubqapqUkkt+sTAmliobq6mvb2dtLS0vD29hZiwYmJCdrb2yksLKStrU1MKjzZStTr9aSnp9PV1YXVasXPz4+KiooNbQNgE6hoZmaGuDiPC+Hdu3cpLCwUrqj+/v5kZWUJrsra2ho6nQ6r1YpSqcRut9PW1kblwCwfT4ex4tpYHZLClzUuhkzzf/7sbQ4fPkxmZia9vX3cXDBsOwbYMrbA1Vw9jY2N7N27F4VCQWRkJA0NDczMzBAREUFHR4cY+ZZK9s3G+7x9IIHvn9z9r0r3axtb4FrT+DN/79tsV7xVfHMKwx9AeHt7c/nyZcbGxigpKXnm7yckJDA2NrZBRS5FUFAQxanhHPfqJlC2vOFnOsUq//BWIc+lR2x6HEBvb++WnuP/mFhcXOTOnTv85V/+JVVVVRQWFvLTn/6UU6dOERAQgN1up6KigoqKCvEYl8uFQqHw4DN7zfz4+ijvToTzlT2ZDxcS+XApmTGHHydOnODLL7/k17/+NRqNhh/+8IdcuHABf39/ZmdnAXjw4AEymQx/f3+++93vIpPJ+OCDD7hx44aYCvje975HVFQUf/u3f0tjYyMnT57krbfeEoAP6WRX3mvmjZ9XMefeuKFYHCq+tKdgkuv42c9+tslLQVowKysrBZjp6tWrAgVbVFTEn/3Zn3Hu3DnGxsa4ceOGaDdER0cLWhx4NAL/2402PAf9raZFoMoRw8OHj8S/SvqCzMxM1tbWUCqVolKwfrRValWo1WpWVlZwu90MDw/T1NTE888/LxLE9da1i4uLVFZW8ujRI5xO5wYq3MWLF3G73Wg0GjIyMjhx4gQ/+9nP2Hf6RSwOry1evyfcQI9pifYJD2BIAgtJf186ZUpVE6trZ4mraeHZ3gfg2dAkK2eA4eFhoqKiUKvVAlLj5eUlKi9xcXEEBQXh7++Pt7c3DQ0NuFwuCgoKhLByu5CqVRaLZcN9sD727dvHpRgH0ul2Y3j+7d8diiQsTM9nn33G3/zN39DR0SE+Z39/f9544w0cDgfvvfeeSP6ioqL49a9/zfDwMOHh4bz99tusrq7yi1/8QohOvby8ePnllykoKKC2tpasrCzm5ub4u7/7uw0eIFKEhITw/e9/n4yMDMxmM+Hh4Tx48EAwNqTQaDRcvXqVS5cu0d3dzV//9V9z7do1DAYDaWlpABs8O1JTU/njP/5jCgsLMZlMG1gToaF6Ph9R4XrCdGf9NVLKXGgWx6irq2NkZMTT+ppdY86tfspjwO32fBd9o1JZXV0Vn7lKpRJiUY1Gg81mE8JdgNjYWA4ePMjDhw/RYuVImp7MyMB/lTJ8aMDO1nP9Dn/v2xLfysoAIGZwS0pKSEhI2JYI5ePjQ1VVFQaDQZTzLRYLZWVlfP7550xOThKosHPEoOR/fOUFTmRG8HJuMMqOL8mKC9/ATpfC6XRy8+ZN8vLytkQUf9OQvAU+//xzob6+evUqaWlp4rRbU1PDRx99JMbCbDYb6enpZGRkUFZWxu8aB/iP5XObRC/SCXi+twHV2gIXLlzghRdeEPP1FRUVfHyvCrNTjVOmwMdt58qVKywvL/Pzn/+cyclJVCoVCoWCnJwcJicnuXPnDuHh4bz++uskJSUhk8m4f/++OMG43W6+98vax69l69PsgiKIPzqWueGGt1gsYqPMzMxkaGiIl19+eZM+RC6XMzc3R2NjI3K5XIxWWSwWcnJySEtLQyaT0TaxwH9/0LvNlfdMixhkFoEpliyXz5w5w+LiouAyyOVyJiYmxIYRGhpKVFQUMzMztLe3U1RUxMcff0xAQAAnTpzg448/Ri6Xs7q6it1u5+7du9y5c4f+/n7cbjcHDhxgfHwclUqF0+nkyJEjrK6u0tzczO7du4UyfGTRveOTSqxOzd27dwGEsOz48ePietXW1jI9t0CzLeAZz7Zz9bZMJhNqdafTKUrbk5OTony9srLC/Pw8+/btQy6Xs7KyQn9/v7g2oaGhFBYWUl5eLjQv24Wfnx/Ly8tUVlaSk5OzpZNfYVoco40lzMr8H48XekKnWOOYZhilpZ+XXnqJ7OxsQR/s7u4mICAAnU6HWq0mKSmJqqoqent7ycnJITs7m6GhIYxGI7GxsURERJCenk5TUxN1dXUkJyej0WiQyWQkJyejUqkwGo0kJiaKRD4iImJL0mBaWhr+/v5CozM7O7upbSCTyQgLCyM7O5u2tjZmZ2eJjo4mNjaW+vp6cnNzN/AJ1hMMBwYGsFo9plWD8w4an+F6ufrY9XJioIuGhgYGBgYwO9U7MvNSz/ZiCPRmampKtAz1ej1dXV2YzWaWlpbQ6/Ub1tbY2Fi6u7tpbW0lLy9vy0mhf4kI9fPmVssEs9athZX/HILGP4T41iYD8LU6vampiby8vC0pY+BJBiTPgOXlZW7fvs3du3fFxnH+/HkMBgM1NTXsyU4lP9lAdGggU1NTdHV1sXv37k0f+tDQEA0NDWJT/X3DYrFw9+5dbty4wezsLAcPHuTKlStiIXE6ndTX1/PRRx/R3t5Oeno6L730EpGRkZSVlXHkyBHy8/NJSUnhP5bOPB7r2XrznVcEEu8YxWIxo9PpWFhY4L+8+zn/d5OdRkeE6KWPKfT4Ohep+OomdrudlJQUcnM9qvWlpSUmJiY4efIkp06dEpqNlZUVbt++zZ49e4iKitrRJmx1yDaUovv7+3nvvfeQyWQCTFNcXLypvQMeL4ZPP/0UhUKBTqfjhz/8ISMjI4JN397ejre3Nya7N9ebnj06FS2fFwZGKysrqFQqTp8+Lexepc/C7Xaj1WqFniI7O5uFhQVaWlrw9vampaWFF198kYaGBjGeOTs7y9DQEGFhYWKELTk5maCgIAYGBnA4HPj5+TE+Pi5gQxqNRkCWrGuOHZkS/bA4AcWaVXAPpA3lwIEDjIyMcP36daxWK5FaP0blocyvPM3YyU2ERsb/cmbnBmFms5menh7i4+MZHR2lsLAQu91OTU0NBQUFAjYUFxeHVqslKCiIiooKvLy80Gg0zM7OUlhYyNTUFGNjY8TGxj6TJ2IwGKivr8dsNm/p1Onl5UViWCArLXd5rTiT1w5n88PiBN4p1NPd4CnF9/f3c/DgQXbt2kVcXJywMR4YGECr1RIVFUV8fDxGo5Hh4WFycnLIyspicHAQo9FIXFwcYWFhZGRk0NHRQXV1NQkJCfj7+4tSf0hICEajEZ1Oh1arpaSkBLVavclvRRqfTEpKoq2tDbvdjp+fH0ajEblcvqFt4HK5KC0tFWhxyclTMh16Mvz9/SkoKBCGPmaXZkebeqKPDT+3DfC0Z85dusJHDTsYRVzuxbk0y/z8PAaDQRgq6XQ6ysrK0Gp1DC+5WfYOFuu1XC4nNjYWo9HI4uLiP6soe7uQyWQk6f22pJn+Swga/7XiW50MSLO7H5W28H+Uz/L/lo9sSRmTHLx6e3sFve/o0aOcP3+elJQUfH190ev19Pf3b4CaBAYGYjQaCQ8P3yQQlHzpJSvfbxomk4k7d+7wxRdfsLS0xOHDh7l06RIJCQnC6a+xsZGPPvqIlpYWkpOTefHFF8nPz0etVtPQ0MDo6ChnzpxBoVAwtOji7yvGeJYr4E+vPsfshOdkc7u+n+uLMZv6qjanjMpJF1Heq3z/lYvs3r2bDz/8EKfTSXR0NN/5zndISEjY8L67u7tpa2vjzJkz+Pj47LjvppnpxTk/SVNTE19++aUY4RoZGSEsLIwrV65sur6VlZV88cUXKBQKQkND+e53vyswzhcvXqSoqAiTyUR5eTm9gyO0LD+bI/6kgVF8fDxqtVpUO1wulyixSqwCycZWsquWBFttbW3CmyEhIQGLxcLzzz/PqVOnMJlMNDU1ceHCBe7cuYNarcbX15czZ84IUZxKpaKpqYndu3d73uM3OKkMDw/T1taGwWAQI4Q9PT189dVXYvrjxz/+EVkxIU9d7GTAm0kuDuSlPfO6SbG2tkZ9fT05OTk0Nzezd+9eseFLp1LwaGGkk7w08rm8vMzs7CwZGRmkpaVRWVnJ5OQkhYWF2/5NpVKJv78/JSUlT/U3kDQebXUVnDxYQHx4MAEBAQQEBNDe3i7+dlpaGlqtlry8PKKioujr66OsrExYDUsOe5OTk2RlZW1KCEJDQ8nMzKSnp4eKigpiY2NFtVKv1xMbG0tVVRVut5uUlBThVZKYuFmk6e/vT25uLpOTkwwPDxMdHU1TU9OGaYM7d+5gMpn43ve+R05ODt3d3VitVjG1sdWaJE309PT0gNKbDvuzk4Hi0DXcy/Pis+tpqWfQuT1tMMzHRa5sVPxbS0sLExMTGAwGIiMjKema4rfjgTww+Wxar1MNIWg0Gh49erTluvsvFU+jmf5bsSveKr7VyQBA/ZiV/1pjY8kOW1HGpturqC+9K9Tab7/tEcOEhYVtEB5JM/2lpaXC8jgwMJD+/n5GR0dFqUuKu3fvEh0d/Y3RlBMTE9y+fZvbt2+zurrK0aNHuXjxIrGxscLUp6WlhY8++ojGxkbi4+N58cUX2b179wbwyJdffikYBLBz0YuPpRvH7DgKhZK7a4mbRHWPrwYywBUUzakkX371q1+xurrKoUOHOH/+/JYTHEajEafTyaFDh4Cdn2Z3+80z3N0qCIBzc3OMjY3hdrsJCgoSs+rgOemVlJQIoE5kZCRvvPEGPj4+fPbZZ6jVak6dOkVQUBDZ2dmkpaWxNm+hZtKxrRNhkGyFPMX4hrHD4j15fPnllyQkJFBUVERzczPgsXe22WyPQUou5mS+fFXXxfTsAl6uVdxuFxqNhpWVFdGvHR0dFar5Tz/9lKioKFEOXltbo7i4mJycHKampmhsbOTUqVNUVlaK6sC2JxU2egh0dHQwNDREXFwc3d3dzM3N4XK5OH36NNHR0XR3d3Ps2DFign23XOyS9b6cD7GQEsiWo3tPC29vbyoqKoTjZnR0NJGRkXR3d+NyuYQI02w2C7iQTCYTI6MSqTArK4u+vj4mJiaeajK0PvR6PYODg7S1tW0pJgSPRqG9vZ2Ojg527dqFXC4nIiKCxcVFJiYmmJqaEiAjCUyTn58vytrSxl1YWEh1dTWzs7NkZmaSmZnJwMCASAhCQkJEklBeXk5UVJSobkhmOk1NTeIaVFZWChDVkwJklUolbHqbmpoIDw/HbDbT0NCAt7c3Dx8+5NixYyQkJODr60teXh6lpaVMT0/T39//VFCRVqulsrKS+PBgWuaU294XBn8lGc4BIT4U11Onpk2Mbco2PEYG/Em+H2efKxKTMeCpgFZVVXGvbZRfjQRuGttbb0i0JzORyclJqqurycnJ+SfVZH2TkGimxzPC/s3ZFW8V3+pkYPu+tIcyNrHmzZ+/eJBjx455boL4eMLCtsas+vv7s7S0RHV1tYDrSLzwpKQk0YtbWlri7t277N+//6nP9WSMjIzwxRdfcPeuJzE5fvy4aE9Io2zt7e188skn1NXVER0dzZUrVygqKtrEbF9cXOTLL7/k4MGDopc+t2Tjg7rtSIqeSFwbwFfhxGRX0eSI3PK6eULGjM3OQkcZASrPonv16tUtTxxut5ubN2+SkZEhBHahft580TzOjG3rzwbcRAeoKNYuMj8/x4kTJzhy5AjLy8tMT0+L5+3r66OpqYnq6mrKysoYHBwEPJoR6eQ4NDREVVUVFy5c2ADK8fPzQ6sNYrC5il6HVHLevHjlqKYwOmLXjR3qedS/QLDKzh+98RKlpaXMzs7i4+ODQqHA6XQysqbhnj2Za71r1FsUdDn1jCvDePXMUfqaqjhw4IDYTKVyuVarpb6+nvPnz/Po0SPxXJcuXUKpVGIwGIQLnk6n21AdeNpJJfmJk4rRaMRisTA1NYXD4SA5OZm3336b8PBw+vv7BUQKNi52yeplAidqePd/uIp5qAuHwyGIijsJb29vGhsb8fPzY2FhwVOiT0wUZmFZWVlMTEwIH4fMzEx0Op1oaSgUCsbGxti7dy9RUVHU19djsVi2RRTD16X1srIylErllvodadywrKyMlZUVMWWSmJhIb28vq6ur9PT0bBhVlFDHhYWF6HQ62tvbaWlpwWAw0NPTg9VqJS0tbUNCEB8fj06nIzMzk7GxMUpLS9Hr9eJ0q9FoyMrKoqenh+7uboqLi2ltbaWjo0N4Ijz53mJiYoiNjRWiSj8/P+rr69FoNFy5ckUkP3K5nKqqKvLy8jCZTBiNRkHwXH/PqlQqxsfHGRkZwd9t29ahc5+7kxC1x+Gyv78fp9OJRqPh3/+7H7MnPoSWsY3fxQg1XAybxTXRQVNTE2NjY6LKKZPJcLvh+lzkUw4gbJjfT0xMpK6ujtHRUYFy/tcImUyG3t/n35xd8VbxrU4GdtKXtjnlXCiIIyEihM7OThwOh1DebhUGg0Gw1VNTUwkODqa1tVUsYAAdHR10dnZy9uzZbamDbrebwcFBbty4wYMHD1AoFJw8eZKzZ88SGRkpkoCuri4++eQTampqiIiIEK6AT9MitLS00Nvby7lz54SK+/4X16g3u7fN9ENVDv6fPzrN6dOnkeli+aL12TzwUznRWCcHOH369FNLdhMTE1RWVnL06NENQietYo3fdVo2W+w+/t8R7yEUK7O89tprZGZmYjabuXfvHkVFRWIReOedd8jLy2N6elpMPPj6+qJQKIRrXWdnJzKZDLPZzPDwMCaTCavVyuzsLB999BEJ+gDeOX+Y5rEFZm128TqClXYyZBPUOjaPStlccrpWA9HLFulrqhKCuJWVFUbtvlu6vNmccm62mTD4rPHOSxfEaU9qN01NTaHX60lISKC0tBSAnJwcUV1aj8l+/vnnqaurQ61WCz7B+s3bPdrEsSj4qx+dIkbni81m4+HDh2LTkMYji4uLiYjwTMNI1rsSD0H6nPT+PnitzjHY0czBgwfp7+/HZrMJLO5OQ6qAhIeHMzExIYhzNTU15Obm0tnZiUqlYmpqSmgmZmdnmZycxGq14nK5CAwMJDU1VZSWd+/e/Uz0uK+vL6urq1RUVGwpJgTPJurl5cWjR4+IiooiODhYzPrX1dWhUqno6OggMzNzw+OlimFhYaGwIl5bWxOz8usTgoqKCqGJyMzMZHp6mkePHqHVasWhYf3oYX19vRCR1tTUEBsbu8mcCBCVrqGhIcbGPAm/3W5nfHx8A6Sorq6OyMhILl++zNLSEo8ePWJsbGwTqKirq4upqSn85WuEya2YXRsdOkNVDg4qeolULGK32+ns7CQmJgadTifurWNFebxRFItzqJ6AxWH+/dUi/uPLRRzdm8uBAwfIz88nMTERvV7PxMSE5/50+dC0rWjx6/n9KJ0/er2eR48eiUrt/x//vPHtTgZ2WBqfayulrfKBYLm7XC5RepZmyaVQqVR4eXlRWlpKcnIyAQEBKBQKjEYj2dnZaDQaj6eBQvFUxbPb7aa3t5dr165RWlqKj4+PAPeEhYU9zpI9v/Ppp59SWVmJXq/n0qVLHDp0aMsFYX08ePCAgIAAYft6+/ZtWltbCZSt0O/ayh3Rk+mfDJzk4C6P/e6qix2V8YuClvCVOzl16tRTs+K6ujomJyc5derUhmtpMw0z11MPupjHjpCeMPjL2efuIk0r46233iI8PJylpSV+9atfER0dzZkzZygrKyMwMJC0tDRhFw2QlZXF22+/zb59+zhw4ABeXl4MDAxQWFiIWq1mZmaG3t5ewWUXff7ZSY5GqwheGUVvn+JwmJ0M5yBla9HbOrY1DM+QrjRjsZhRKBTIZHIeutOwOZ9CJwOsXsH84LlUcb28vLzo7OzEbDZz5swZAVWy2WxcvHhxQ+VHYtebzWZiYmI2VAfAsznp1Eqq793k8N5d6PV6ysvL+fjjj4XjIXicKBsbG9m3b5/oXbe2tmK327cUZFosFmH3Lfl5rCcq7iQWFhZobm4mPz+fhoYGioqKCAoKorq6mpCQEMxms2izjIyMkJ+fL6BgXl5eBAQEYDKZKCgoICAggLa2NnECf1ZILAyTyURWVtaWvxMVFcXY2Bi1tbXk5OTg5eWFj48PkZGR1NXVIZfL6e/v///Ye+/oKM88z/dTSTknJFBWSUiIIGFAkQxCmGwwmGRsbBy62+2+O7N3z5w5c3fmzN6z5/Ruz3ZP6GnaHmiSjTEmucFkZLCEAggkIYESyjmVYqlUUr33KPt1VAAAIABJREFUj/L7oFIsYTx7Z833L1uUVG+9VfU8v+f3+wbmzp07iskuj6Xkz1l1dTU1NTXCZTImJoanT59y9+5dQkJCcHV1JSoqis7OTtLS0nBychLMeZVKRXR0NH19fWRkZDBv3jxhQuXl5TVmEI6trS2RkZHCtTIgIIDm5mZyc3OF2iAvL0/YeEdERDBjxgzu379PdnY27u7ueHt709HRweXLl8Voxt7UR6SqhUBVB8HqbnbN92Fa831cVUaLU313dzdLliyhpqaGqqoqgoKCcHNz41ZmLrqefhIWxjLDw0yalJMYZbOhvr4+mpqaMDj48EQ/Odla1u97eHjQ39/Pd999x8yZM3Fycpr0d1/i+fEfuhiwdi79n9fHEhk8XUjP6uvryc/PJycnhzt37lBQUMDTp09pbGykq6sLHx8famtrqaioIDY2Fm9vb+7du095u4FOlQvffpfJgtkRQkMtQ5Iknjx5wtmzZ7l79y4uLi6sX7+e1atXC1MTSZKoqKjg7NmzpKen4+bmxubNm1m2bNmE8kgZBoOBixcvsmjRIvz9/cnKyhJeC8sWzmHX6jjuV7RYMMWn2Zr4zbY5KFtKycjIMJ9cQgMmJaWFedrj23KfFStWjGI+D8e1a9eYPn36qEX44cOHaAyd/NMvXydl1jRWRfkQ59qNa3U6LsoB3nnnHUHOO3nyJHq9nj179ggCkZ2dHY8fP/7eSlgiNjaWTZs2iYXaZDJx/vx5goOD2bJlC5GRkcTGxrJgwQIxq16+fDmenp6CSGfq1ZlVA/1dtJnsJhmVQD8aXlsUxt5tm8x+7oWVPBiYyAZbQdeANMqwJzMzE71eT2JiIleuXMHBwRyfO7KgVCqVuLu7c+fOHV555RWhSBjuXlhTU8ODBw/w8fHhwoULlJeXM3/+fFJSUsjNzcXOzg6tVsujR49Yvny5OBU+fPgQtVo9ZvtfLgYSEhKEvfCiRYsmeJ1j4/79+8TExFBYWEhwcDCenp40NjZSX19PUFAQzc3N9Pf3C4lbdHQ0hYWFwpq4s7MTrVZLaGgoOTk5VlkUwzMy4Z07d8TJfyRktzv5786ePdsisa6srAy9Xo9OpxuXhKdSqQgICCAuLo6amhqqq6vJysrCZDKxcuVKqqurLQqCmTNnotfrSUtLQ6PRiPRUhUKBVqsVPBg58EgeHw1XDshIS0ujtraWV199VahXHB0dSU9PR6lU0tXVJRwUwUyelMcG3377LR0dHcImemhoCBsbW5oG1LRJjmgUQ6TEhtFYYSa+Dg4OYjKZmDZtGra2tvT29vLkyRO0Wi2tra1cK6jhf93Xc71Bw1OTJ18+aOTMvQp66sopfZjJ1atX+fbbbykoKBDP5+jqQW7X5PP24ZLW4OBgHj9+bMH3eIkfB/+hiwFrWdZ/t20hgYGBREVFkZGRQUpKCps2bSI8PJwZM2ZgZ2dHT08PlZWV5OXl8eDBA/r6+kReeUZ5G6eaPLhSp+RCXgOFAx7k69RE+LoQ4OGAyWSisLCQM2fOiFPQxo0bxUYkf6mrqqo4d+4ct2/fxtnZmU2bNrFixQqrI5nB3OKTWfu1tbWcPXsWgAULFrB48WLy0m/gWJ/Lohm2ePbXszHCAf+OfDavSiY+Pl7o+AcGBlgdN5dzD+uQRhmPmDsJe7WDKPUdbN68eVzNb09PD1evXiUxMXGUF0B6erqYoXrYqynIuElRbiYREeFCiaFUKklLSyM/P5+dO3cKm9U7d+7Q29srCHBxcXG8+uqrFotBTk4OhYWFbN++XZyuBwcHOXnyJK2trbz11ltERUURGhqK0Wjk0aNHuLi48N577xEeHk5dn5Kclsnv+ZsrYpkVYD6xXcl+TLFhco3+cHcyOQ0PzKfn7u5uent7SUlJGXP04unpKRzsIiIiLLoDJpOJq1ev0traSk1NDdHR0Wzfvl3M5B89esS0adNwdXWloqJChB7J98vZ2XlM0mt7ezuPHj0iISGBpqYmamtrJ9X6j4SDgwMZGRn4+/vT0NAgTIcGBga4d+8e8fHx5OXlYW9vdvwrKioSJDl5hOfg4IDBYCAqKgqlUklZWRlKpZLg4OBJn9/b25vq6moePXo0LpnQxsYGb2/vUe3nwMBAGhsb6ejoENc+UWtapVIxb948YbtcX19Pbm4us2bNYmBggMzMTEJDQ3FxcUGr1SJJErdu3bLIKlAoFAQEBODt7c13332Hvb090dHR3L59G51Oh1arFa+hra2Nc+fOkZycTGJiorCabmlpQavVcu/ePYxGIzY2NhY8C41Gw6xZs3B3dycjI4PW1laGhoawD4nls1oXC55MdqMRh8Fu7AZ7iIuLIzExkSdPntDT00NYWBg6nc6cm6Fw55I+dBQfqMswRGajiVBnibjZWuLi4li5ciWrVq1Cp9Oh72imzSFw3PValrT+YmmwKGBlSeVIvsdLvHj8hy4GpqoHValUPH36lN7eXmJjY3FzcxO63rlz5xIfH09iYiKzZs0iMDDQHAzUauSzeo/RgS79g5zJraW3Kp97aZcF43fz5s0sXbrUIsa4traW8+fPc+vWLezt7dmwYQOrVq0S2tupQI7RjYiI4OjRo0iSxPz583Fzc+P06dP09vayfv06tq5bTX3xQwK93ejt7aW7u5vo6GiioqKwtbXl22+/pbuhAvehdpoH7S1mhm6KfpZqnmLXWU1CQoKF695IFBUVUVxczIYNGyz4E5IkceXKFaKiovD09OTEiRM8ffqUzZs34+DgQF1dHUuWLKG8vJyvv/6a5cuXi0Wsp6eHjIwMkSK4ZMkSi00NzB2SU6dOER0dLdrekiRx9uxZysvL2bVrl1jM6+rqOHnyJBqNhp///Oe4urqaW5CDcKGonckgn1SUSiXdegPXKvqt/h2Ay5cvi1TJ2tpaPDw8UKvVZu7GOO+/HIYTEBBATU0Ntra2IvOguroaJycnDhw4wPz588WM+/Hjx1RWVqLVahkYGKCvr8+CH5CRkYGPj8+YC2pHRwcFBQWiYJT191OBUqkUIVMuLi60tLQQGxsrLHbDw8OpqKjAy8uLvr4+1Go1dXV1LF26lLt37+Lu7o5araampoYFCxYQHBxMRkaGVRbF8IxMKJ+UxysgZLlhenq6aD/LJ/XCwkIUCgVPnjwRrfCJni8iIgKdTkdTUxOhoaHk5+djMBiws7MjNzdXFAQhISFoNBrS0tLQ6/XCqAvM5Nzg4GCysrLo7u4mOTmZrKwsKisriYiIQKPRcP78eYxGsxmYSqXC3t6emJgYuru7efToEWFhYbS1tdHZ2TnquhUKhYg8HxgYoH7ImVNN3uhHjMf0koqyQQ/eWBXHppXmEZyXlxc6nU5kn5hMEtcMYeOO1hQKBd0ad/7mjaV4e3tjb2+PQqHA3t6ezMxM1i1+hWulneOu18tsKijKucPAwAB+fn5oNBoLvsd4EtKX+OH4D10MwNT1oJ2dnTx69Ej4Yo+ESqXC2dmZadOmmY18brfRL2kYb6b8tGOQ0KE6FArz35bHC01NTVRXV3Pz5k3RIly3bh1r1qzBy8trykWAJEkU1Or44tpd/INCybh5BaPRSHh4OI2NjRQVFbFw4UK2b9/OjBkzRLhOZ2cnsbGxYjZpb2+Pq6srNTU1NDU14aYeJJxG9q6Yi7qpiDcXTSfRqQN6zSeI+Pj4CbW+d+7cQaPRCPtfGTqdjoyMDCIjIzl37pwYAYSHhwsi26xZszh27BiBgYGsX78ehUKBTqfj8OHDwlZ11apVLFmyZNT9Sk9P5+nTp+zYsUMQ7y5fNhdl27ZtIzw8HDAXFgcPHjQrT74fS8hwUBg5nf10XP/6sZzGwgOmcfx2Ef3jJJqN/J22tjYuXrzIypUr6enpoa2tjf7+fpKSkiZ0rrS3t2doaIjs7GyRTV9YWCj4FYmJiaNO+Pfv36epqUm4RNra2grpKcC3335LSEjImM/b0dEh/AE6Ozt58uTJmPd9MjQ3N1NRUUF0dLTgLNjb21NSUoLBYMDNzU24Oq5YsYKcnBymTZuGyWQSnSCFQoGDgwOBgYH09vZSXV1tdUqpo6OjcPqbM2fOuEFmwcHBPHnyhMePHwu3O7VaTXBwMDk5OTg4OAgVxFiERBlyQdDU1ER5eblQhlRVVWEymcjLyxMFQWBgIE5OTqSlpdHZ2UlExLPPlcyPycvLo7KykpSUFB49ekRBQQEqlYrMzEw2btxocQ+USiUzZ87Ezc2NnJwcNBoNkiTx4MGDUSZF6enpFBcXI0mQrplLt3EsG2Iz1fdhdQdtmefIyEjn8ePHDA0N4e3tbeZcGdTkDU08WhsrxMfV1ZWCggJcVYPsTU0cd71+c00ckiSRlZUlIs39/PwIDAyktraW+/fvM2/ePEpa9WMazL3E8+M/fDEAU9ODyqEqM2fOnNQ5sKzd8H161XgwW9n+9VvrSYiNxs/PDxsbG1pbW0WEbVdXl3jerq4uGhoa0Ol0wvNe1ltPhPSyVt45eo9/SSunzOjG7QaJsgFnZjir6W2qwsfHhzfeeIN58+ZZ6JVbWlooLS1ly5YtgrTW09PDyZMnGRwcJDU1laamJvr79cyNCMZ2oBMXDSxduoScnByR8T3egihbMs+bN2/UKayqqorCwkIqKytxc3Nj3759ghhVUFDAwMAAxcXFGAwG9uzZg42NDS0tLfzpT3+iv7+foaEhlEole/bsGfW8vb29nD59moULFwqFR3p6Ot999x3r1q0THYbBwUF+//vf09/fz5YtW0adiAcGBniS/S1PpbGKHclCvy9DpVKh6G4mvU5eyJ69dwoklAqlxe9cv36d7u5uNm7cyK1btzAYDCiVSl577bVJWfIKhYKCggI6OjpEByg5OZmcnJwxOSZpaWn09vYSHx9PYWGhKGjBXEzeuHGDWbNmjWmv3dnZSV5eHnFxcfT29vL48WOSk5OnPKOVDZiSkpJ48OCBiA6XJYaLFi3iwYMH2NnZ4eXlhaurKzk5OWKEYGNjg5ubmwjdCQgIEN0Ba8cW/v7+PHz4kMbGxnHlkSPlhnLxaJajupOXl4dKpaK8vHxMQuFwKBQKIiMjqampIScnh9TUVJKSkujp6RHeEXL8tsxnSEtLo6WlhcjISHGPZemhTIBNSUmhtraW/Px8fH19SU1NHXOt8PX1ZebMmcK3IioqipycHGFSpNfrOXXqFCaTifBFyzlfZmBCc7IhJVsWhrJ2WRKrVq1i+fLlvPLKK8THx1PdLfFd7eSZFSNDfBQKBUajkXv37rE1dRlvJ4eNuV5rNBpCQ0OJjY3FYDCQkZFBbm4uarWahIQEzt19zP97p41PMmrHNJh7iefH/zFsDIVCQfR010kDLmbMmIFGo+Hp06eT/s0WK4NaegZVhISEEBISQl9fH3V1dTg7O7Nu3Tr279/P5s2bmTt3Lmq1mrKyMi5dusSRI0f4zW9+w69//WsOHTrE+fPnycjIoKSkhPb2dhH6Iof9lDX3WDynTrLjTMd0whJfZd++fWP6HXh7e9PX14fRaGTevHncv3+fr7/+mqioKH72s58RGxtLdHQ0SqWS69ev09/fT0tLiwi6MZlMqNVqTp48KcJ7hqOmpgaDwSA2HBlyZQ8QERHB22+/baGQ0Ov16PV6qqur2bp1qzAnOXToEEajEaPROCGZ8s6dOygUCtHGfvjwITdu3GDJkiXCe0CSJI4ePUp3dzcJCQkWJ2QZGo2G6apu/nvKDLQ+lkxlb5shtrjVMn/GaAbzW2sTWGtXjpvCclzgqRnk2DuLRDeqq6uLvLw84uPjRWEox6ROZKbT3NzMyZMnOXLkiOBChIWFCTKlnAI3HJIkidAjT09POjo6LLgocpDSeCdleUMymUxi3DMwMN5sd3zIoxm5VV5VVQVAeHg4er1e2PTKnIGUlBQkSeLp06c4ODjg7u5OT08PHR0dPH36FDs7OyIiIujq6hIeE5PBxsaGNWvWUFJSQnFx8biPmzZtGqtXryY7O1uoVQDmzJlDXFwcBoOB5uZmLl68aBFpPRbUajU7duzAx8eHEydOMDg4yLZt29i/fz+2trbcvn2bf/zHf+TRo0fMnj2b7du3U1xcPOq75ejoyL59+wgLC+PPf/4zHh4eSJIkioqJXovc7Xz8+DFRUVE0NDRw8OBBvvrqK0wmE/7+/kwLjhj3bwzHjLBZQk0lr6VKpZLkhaO/R2NhrBCfmJgYhoaGKCgomHS9dnJyYu3atXz00UeEh4dz5coV/v6Pp/hzTzDNBsttq6y5hz3/lkV6WSsv8fx4sbm7/wGgUqkICgqioqJi0pmotelVdpKBs2fPUlBQgIuLCxs2bGDevHniNDGcCQ4I45XW1lZaWlqESYzsRy5fp4eHJ0da/JEkJaOXIvOX58ijPnavGuf6vz+J37lzhwcPHgAQGRnJpk2bxGPq6+sJDQ0lPDycy5cvi8eHhYVRX1+Pn5+fmOtv2bJllAWxo6Oj0LGDWf98/vx5KisrcXd3H9OoSM6zX7FiBUFBQVRWVvLZZ5+hUqkwGo1s27aN+/fv09nZOeo1yWE7S5YswcHBgZKSEi5cuMD8+fNZtmyZeNylS5eoqakhNDSUlJSUMe+PfDKf7a3h3HsL+JvfHESPDb94Zy/THUwcPHiQS5cu8dprr1n8nq2tLa8lRePzXTodOBASFYOLjUR3dbnFWCozMxONRsPChQv5/PPP8fT0pK2tTdjGjjxtdnR0CDKlm5sbW7ZsITo6mpMnT9Lc3CxCjGbMmDHKsU4OBFIqlWg0GoxGo0UxIEtpxytChnveDy8GJnMAHAk3NzccHR2pq6sjMDBQFAMyUbempobAwECMRiPt7e2CSHnhwgUiIyOpqqqiv78fV1dX7t27R1hYGKmpqRQXF3PlyhXef/99q65DJo5evnyZ0NDQcbswixYtory8nPPnz/PBBx8I+drq1aupr6+npaWFvLw8pk+fPqm6wsbGhl27dnHkyBGOHTvG/v37CQgI4OOPP+bQoUO0tbXx1VdfiUyRnTt38sUXX3DixAl27tyJra2t2XekpQ+vuUtpM9lTUvyA6dP98PPz48KFC7S2to7iz8hwdHREkiRWr17NjRs38PX1ZWBggJqaGhQKBVu2bKFeb935b7xEvmg/F8J9nChr7hljTTKPycK9nZjlN5pk6+TkREREBA8ePBCy6Mng5ubGpk2bSEhIYMO/Zo2Zsihfx99+XcjVX019tPUSZvwf0xmYCkJDQ6murhYa9PEgf/DHb6iBr73E1VOHqaioYO3atfziF79g/vz5E7YVZU/9qKgolixZwpYtW3jvvff4q7/6K371q1+xZ88eVq9ejcIjgKb+sQoBM0ZG146HrKws5syZQ0JCAuXl5fT1mYNHJEmitraWgIAAFi1axMqVK5Ekifb2dmbOnMny5cspLi5myZIlFBQUjIqLLSsrIzw8XHz5urq6OHz4MCUlJULvPPKL2dXVRVtbG25ubiQnJ1NSUsLx48dRqVQiJnbWrFliExr5HqWlpWFnZyeMib788ktmzpzJunXrxHPdu3ePe/fu4ebmxu7du8e9L/IGMTAwwMWLF/FS9+MrtRHubY+7u7uQcBUUFIz63YSEBBQK8FD0sX9tHBHeDhgMzzoFer2ee/fusXDhQtrb26mqqkKpVOLr64vBYBCbJJgdJS9evMg///M/8/TpU1599VV+8YtfiPZ0amoqvb29+Pj40NLSMqbMU3Zt9PT0FFG6w4sB+T0fb3OXOwOSJFncl6lCoVDg7+9PbW0tQUFB1NTUiCJFdvybOXOm4DTIM/vg4GDq6urQ6/V4eHhgY2NDcXExXV1duLm5MWPGDBobGy0inye7jldffZWuri6h5BjvcXJxfP78edEBUKlUvP7660KyeOXKFYv3bDzY29uLsZfcmbKzs2P//v34+vpia2sO5Dl58iRpaWmsXLmSxsZGjh49yo3CWlJ+e5v1//Qd7xy9z6/zVZw3zuZ+bQ8Gg4GVK1eSkZHBl19+OWanTh7lxcTE8NZbb9Hd3S1igmWX0MLvruKm0MM4q4oCiQifsTdz+X793cZoc4bFqIXRrEL6243R427IsbGxNDQ0CPtxa9E8aEtT/1ghbN8/s2TdWvgS4+MnWQyEhIQwODhITU3NhI+z+OCP+lcJkIjXVLNmTQofffQRCxcuHHVimwrkFnJYWBhxcXFExlin8x6ZOy9JEpmZmXzyySeCZLR+/XqSkpIARAu/paUFg8EgOheyfa5KpeLKlStmdzofH0pLS0lMTOT69euUl5cDCJmRPGutq6vjk08+obe3l927d9PX1zdqdGEymfjqq68Acyv20aNHnDx5EhsbG0wmE7t37xZzfbk93tPzbDwih/wsXbqUzs5OPvvsM+G4Jm9m1dXVXLx4ERsbG957770JZ94qlQqlUkllZSWPHz9m+fLlAGKhkhPqLl68KDZYGTIXBKCwsBA7OzvRigfIzs5GkiTi4+PJysrCycmJlpYWkpKScHV15fHjx+j1eq5fvy7ax8uXL+eXv/ylhckQmDf4hIQEmpubASx84mW0tLSI90t2ahzOKJc7Az/2mACemfsEBgYyODgo/Om1Wi319fUEBgZiMpnw9fWlqKgIhULB+vXr6evrw9HRPDduaWlBrVZz//59wGyiBGaDLWvh6elJYmIi6enptLePrxpxdHRk06ZNlJWVkZ2dLX7u7OzMtm3b6O7uxsnJiS+//NLifR8PTk5O7N27F5PJxLFjx+jr68POzo49e/bg4eGBTqdj3bp1mEwmLl++jKenJ/lNBt49/nD0ONBkx7XBmdwsrBP8n7KyMg4fPkx3d7fFY+VioL+/n4CAAIskx6ioKCorK3ny5DFx6urv1zPLgkDx/f//l9Wjw5OGIzHMi2P749B6W47QvDSDrFYX0/EkSxCARyI8PBwnJyfRqbQW1o5sR66FL2E9fpLFwLRp03BwcLCKNyA++CNmym6Kfl73auLXf/Eu8fHxk5LBngfWjimGt/RaW1s5fPgwV65cITY2loiICLGoOzo6Mn/+fLKzszEYDNTW1qJQKMRJU94woqKiiImJ4eLFi0J54OPjQ1hYGKdPn6a9vZ2SkhKRyldQUMDhw4dxc3PjwIED4lpGsr9v3rxJTU0NkiSh0+k4c+aMUAK8+eabFiREmdw5fBO+efMm7u7uaLVajh8/jrOzM2+88Ya4993d3Rw7dgyFQsH+/fvH3fiGQ61WU1hYyLx584iLi0Oj0VBb+yxxTU5hPHv2rOBxSJLE1atXhTIhIyNDtHiNRiMDAwNkZWURGxsrgqdcXV1xcnIS7nD5+fn87ne/Izs7m/j4eD7++GOSk5PH/RwtXrxYbNLFxcWjFlu5GJClYHZ2dhakz8k6A+ONCZ4H/v7+giBrY2MjTtRyodfa2ir8JFpaWmhtbcXT05MlS5bQ29srIqO9vLzIzc1laGgIf39/3N3dhVWytVi8eDFOTk588803E879w8PDWbRoEdeuXROcGYCgoCDWrFlDV1cXJpOJU6dOTdpRBHMhtnfvXnp7ezlx4gQGgwF7e3v27t2Lm5sbN2/eZMOGDezYsQOjcZA7fb7fHy8sIf+syD6a5uYWbt++zbZt2+jp6eHTTz+lsbFRPNbW1pY2kz03nzSRXVpPVlY2SqVSxCvL3gbTVd3s9e/EXWm5cbop+1lrV4atrnLS15ek9eLqr5Zw8aNkDu9byMWPksn6rxvYvy6J/Px8/uVf/oXCwsJR91ypVBITE0NBQcGY3Y3x8Dxr4UtMDT/JYkChUBASEiJiVSdDjJ89fzmrn9fsi1mlKWXftHr+uDkQx55aq04KzwtrxhRyS89kMpGens7Bgwfp7e3lrbfeYu3ataK1LCMxMVEE58gxwfLin5WVhVKpxMbGhvXr17NhwwaePn2Kvb09169fZ8OGDTg4OHDy5EmKi4sJCAggPT2dM2fOMHv2bPbt24eTkxONjY2oVCoLSWJJSQnp6ekiJKegoEBYQb/11lujWt9yMSDzBmpqaiguLiYpKYmTJ08CsHv3brHhDw4OcvDgQQYHB9m6datVAVJyLLFGoxFWyvKpVoadnR1btmyhpqaG9PR0AEpLS6msrCQ1NZWwsDB6enpE0dLf309ubi79/f0kJiaSk5ODSqWiubmZ+fPnc//+faGmCA0N5Ze//CUrV66cUL4G5nm0/JqMRqPo7shoamrCZDLh5eU1ijwI5mJAo9GM27kaPib4ocXA9OnTUSgU1NfXExAQQHW12SXUyckJPz8/ysrKiIyMpLGxERsbG4qKigBISkrCy8sLSZLw8fGhq6uLnp4eQQKUx1jXr1+3+lpkMmFZWdmEZEIw8wQ8PT356quvLDaquLg4oqOjGRgYoLGx0SpCIYCXlxd79uyhra2Nzz//HKPRKAoCV1dXjh07hru7O0s27UQn2TNRC7yyw8DijW8gSRIXLlxgw4YNODo6cujQIYqLi0kva2XPZ0+4MBDNX379lO2HHnCmPwqN/2weP36Mt7e3uOY5c+agai1jh3MZp999hcP7FnL2/UW84fKUWZ7mboxc+E6EkSRAlUpFXFwcP//5z/H39+f06dN89tlnolMlIzY2lv7+fh4/fjzpc8iYdC1UMOF44yUmx0+yGAAzb6Curp7cihZuPWmmsL5z1Bdcr9dz48YNfve735Gbm8uGxbF8sDEZZWc97u7uwkzlx8Jk8zmQ+IvlQbS2tnLo0CGuX7/OggUL+OCDD4SW3Nvbm56eHnHqd3FxYd68eWRmZlJTUyPY311dXTx69AgfHx8xl50/fz5vvfUWSqWSnp4ebt68yRtvvEFnZ6cwb/ruu+9YvXo1mzY9C+ZpbGzEx8dHbDCdnZ2cO3cOrVYriicbGxtsbGx4++23x9y45RZ3V1eX2ACmTZtGfn4+3d3d7NmzRygUJEni8OHD9Pb2snjxYov26ERIT0/HZDKh1WqF49mMGTMprJONAAAgAElEQVQsOgNgPh0mJSWRlpZGTU0N165dIyQkBK1WK9rXeXn5tJnsuVZYz4XbucyePQdHR0fu37+Pr68vg4ODPHz4kG+++YaIiAjBnJ+K33pXVxcuLi5oNBru3r0rugOSJInZsLe3NzqdblQxoNfrJyQDvsgxga2trbD0DgoKorq6WmwuWq2W8vJywsPDMRgMTJ8+XWwKKpWKjRs3AghyoZeXF/fu3QPMYyx7e3vy8/OtOp3LiIyMRKvVcvny5QlPo2q1mq1bt9Le3s61a9fEzxUKBRs3bsTDwwM7OzsePnwormky+Pn5sWvXLurq6vjyyy/N7n/29rz55pu4uLhw9OhRSmomDwwDMCjM3AN3d3dOnTpFUlISYWFh/MOJi+w9lEVFm97i8TrJjoMlGlzCF+Ls7IyNjQ0+Pj5irDU0NMjt858Raq8nNtibJUsW097ejk6no6xsogC4ieHi4sKOHTvYsWMHzc3N/P73vyc9PZ2hIbNFuoeHB0FBQeTmPuBRfee46+9wKBQK/jo1AjMvYcR443vDoom4Ci8xOX6yxUCz0p2zhlm89sds3j6Sw7p/+o6U394mo7yV/v5+0tLS+N3vfkdWVhaLFi3i448/FnrbwMBArl69ysKFC8nLy7OYa79ojDef03o7stWjgbyrpzh48CAGg4H9+/ezZs0ai1azrCgY3h1ITk6mr6+PtrY2wRfIyspCo9Gg1WotHuvv788HH3yAi4sLeXl5FBUVCZlee3s7O3fuHGXg1NTUJEYEQ0NDnD59GrVajYODg5BH2dnZ8fbbb4/pIQ9mk5I2kz2Z1d1cznpEVVW1iF/duXOnRZjLhQsXqK+vJzw8nBUrVlh1XxsaGkhLS8PBwcFinODv7093d/eojs+yZcvw9fUVVscpKSmiLa93CeTT+mlcGIjmLy6U81lHEP9U7sKJ6zlCaipJEtOnT+fDDz9ky5YtREVF8fjxY6tOmGAegXR0dJCQkCDkl5mZmYC52JI3Rw8PDzo6OkY55/X19U1YDAwfE6jVahQKxXMXA/CMNxAUFITBYBCtd61Wi16vR5IkXFxcUKvVNDY2ipl+QEAAERER6PV63NzcUKvVVFRU0NbWhkKhIDExkaGhIdGlsQYKhYK1a9fS09Mj0iLHg4+PDykpKeTk5FBSUiJ+bmNj831L36zSuHz5suh4TIbAwEB27NhBeXk5586dw2QyWRQEmbeuWvV3fFzMWQRvvvkm4eHhfPXVVwQHB5OvmYlJksZRHCn4osxERUUlO3bs4MCBA7zyyiv09/fj4eGBu7s7R44c4c6dOyxYsAAXFxfs7OysLnYmQmRkJD/72c9YsGABN27c4I9//KPgaammz+K3JY6s/6fvRq2/40Ff+ZBX7Z8S4mn5OQ73drKQ9L7E8+EnWQykl7Xys1NF6CTL1mxZcw97Ps3iP//PT0lPTyc2NpaPP/6YVatWiYVUXljkxUmpVFqQjn4MjDWfO74rilBHI3q9Hnt7e95+++1REkZAZCMM3+Dd3d1F58DPzw+DwcD9+/d55ZVXmDZtGn19fRZzWScnJz744ANhpyqTumS74OEYGhqiublZnPZv3LhBXV0dXl5e5Ofni+7B7t27x7V6TS9rZeuhh1wYiOZfHkl8eL6aC4NzyKnu4vXXX7d4nVlZWTx8+BAPDw927txp1f00Go2cOXMGHx8f3N3dLU6L8rhiZHdApVIJkpuHh4codtLLWjnV4jPqs1TZ3s/f3W6nfsgZk8nExo0bhQ4dzLyMjo4OQQqcDPLGM3v2bOH2KHcH5PfW2dkZlUpFZ2fnmJ2BiTgUw8cECoUCGxubH1QM+Pv709zcjKenp3Dkk39uZ2cnVAXNzc2o1WqLlvHmzZtRKBQYDAYaGxstNqeEhATUajV37961upACc5GUlJRERkbGpIqEhQsXEh4ezvnz5y0KfU9PTzZv3kxHRwcuLi6cOnXK6jGhVqtl69atFBYWijGDPDIIcdPgruy3ugWu0WjYtm0bcXFxnLj0LQ19MO6IAWjog6jEVYSEhKBSqcTnR+6+zJ8/n5s3b/LFF1+QlJREf38/paWlo9r7zwNbW1vWrFnDgQMHUKlUHDp0iN+cuMh/TWsZe/0dxy+grq6O7Oxs9qxeyI2/WG6xFl751ZKXhcALwE+uGJAkib/9uhDzOjJar2pC4p4UwkcffcSaNWss4mVl+Pr6Mn/+fNLT05kzZw45OTk/aOG0BvJ8bkm4Jy0lD/jkk0+EdnhgYICzZ8+KNtxwqNVqPDw8LIoBQJDfampqyM3NxWg0EhcXJ07ccttZhr29vUgllBeysLAwzpw5Y/G329raGBoawtfXl+LiYu7evYunpydVVVVoNBpxP8ezOJZNlspHsKrbh2y4aoygRfnMTriyspLLly9ja2vLe++9Z3WL8Pr16+h0Ol577TVsbGwsigFnZ2eRITASRUVFKJVK2tvbxal+os+SBNyTQvDzm05MTIzFvwcHB4tURmtQVVWFh4cHTk5OwmNBtt0driTo7DS3W8fiDFg7JgCEV8HzQh4/NTU14e/vL4qBkRLDrq4uAgICLO6Dvb09kZGR6PV6lEol3t7ePHz4EKPRiEqlIiYmBoPBMKbkcyIkJyfj7Ow8KZlQlhsqFArOnTtn8dioqCiSkpLQ6XRIksSXX35p9chi1qxZbNiwgdzcXK5fv44kSTg4OLBv35us8epCluZZXsvYLXClUsmaNWuYNd86V0Yv/2f5IvJ3e/fu3SiVSvLz80lKSqKhoYE7d+7g5uaGQqEgJyfHqr9tDfz8/Hj33XdZs2YNx4v6MUlj+wVI8P136tk9N5lM/PnPf8bX15e4uDirDeZeYmr4yRUDhQ1dlI5jmGGGgoY+qOmZ+NSxYsUKlEol/f39GAyGKUtlngf19fV88skn3Llzh+TkZA4cOMDcuXPZsWMHT58+5euvvx5zkfP29h61uXd0dODk5ER6ejqZmZnMnj0bFxcX0UkY/nhZAvXgwQOL02V9fT329vacPHlSyOrSi6qpGXKlusvEmTNnsbe3p6OjA6VSiZ+fH/PmzcPBwWFMyd/wzXWslufwhUKn03H8+HGUSiXvvPOOmPlPhvLycrKzs1m1ahXe3t5jbnr+/v4WJEIwt+IzMzNJSkoiMjKSr7/+mpyyxkk/S22DNniFzxu1YKlUKiIiIqwuBqqrq0X8rXzakiSJu3fv0tjYKDbNsWSFYC4GJuoMDB8TAD+4M+Dl5YWtrS21tbXCfEj+bMoSQ29vb2xtbbGzs6Ours5CObJy5Urx3x0dHfT391NYWAiYv3sKhYKbN29O6Zo0Gg2pqamUl5dPet8dHR3ZvHkz5eXlo8iaK1asICQkhKGhIRoaGqYkd4yNjWXNmjVkZGQI/wMHBwf+n/d3sMOnBTeVJcN/shb48zgCtrS0YGNjQ1BQEO+++y6RkZGkp6ej1Wpxd3cXBeW9e/emxM2YDEqlEqfAKDpMdkzFLyA7O5vGxkbWr1//MsL4R8RP7s6+KL2qg4MDy5cvp6ioiNDQUDIzM61i4D4PBgcHuXHjBp9++ikKhYIDBw6wfPly0XIPDQ1l8+bN5OXlcePGjVG/7+XlZXF6N5lM1NbWMmvWLNrb2+nq6hK+72q1Gjc3N/H4/v5+PvvsM7Kzs1m7dq0g5yUkJODr60tnZyddXV38+sh5Vv/2Nv/XlSauG8PZ+1kRX3RrqdSbF6HAwEB27949oavdZIWavFDk17TzySefMDQ0xOuvv27BH5gIfX19nDt3jtDQUOEmN7IzAOZRQX19vUWn5datW9ja2pKUlMSGDRtQqVR8fe1bq57XZdro8Q2YZ6rNzc2Ttq37+/tpamoSxQBAdHQ0AQEBGI1GKioqGBoaErJCGF0MWEsglDfsH1oMyOZDMm9Ar9eLz5QsMaysrCQ8PJy2tjZUKpXFBu3p6cn06dORJImenh78/PzEqMDe3h6tVktnZ6dVRkDDMXPmTCIiIrhy5cqkr0+rNcfwXr9+3ULCp1Qq2bp1K7a2tjg7O5ObmytGZ9YgPj6epUuXcvPmTXH6lguCA9Ob2OH6lN9ujrCqBT4VxZGM1tZWEZZmY2PDli1bWLdunXBAlS29BwaMfHk90yqCn7WY6vrb2dnJzZs3Wbhw4ZhmWy/x4vCTKwZepF5VnrF3dXWh0+mEROpFora2loMHD5KRkcGyZct49913x0xvmzNnDikpKaSnp486yXh7e9PV1YXBYP6CNTc3YzQaRZzxcNkamIuH1tZW2tra+PTTT6mrq2PPnj0sWrSI5uZmXFxcuHv3Llu3biUhIYFqgz2HKx1HtfZ1kh3f9IfBtJns3LkTGxubCdvV1i4Ux7/6M319fSxfvpzIyEirfkeSJC5evMjg4KBoAYO5+BmrMzA4OCjm+Q0NDeTl5bFs2TJsbW1xcHBg8+bNdDZZRyDzcxv79Wq1WtRqNU+ePJnw92XS1fC0QdmoB54ZM8myQhcXFwvTIkmSJu0MjBwT/NBiAJ4pM/z9/VEqlWLjHi4xlHkDgYGBo07rCxYsEBvQ0NAQdXV1whBKVnFcuXJlytclOzrevn170seuWrUKLy8vzpw5MypDYPv27XR3d+Pt7S3sr63F0qVLiYuL49KlS+Tn5wOIkUGwq5qyO+eZZmO0KrZ5PGM0BaBUjB4xyMXA8L+xYMEC9u/fj16vp6CgAKewVzg3EM1ffdtpNcHPGkx1/f3mm2+ws7Ozmhj8Es+Pn1wx8CL1qkqlkrVr19LS0oKXlxcZGRkvpHoGM8nt6tWrHDp0CBsbG95//32WLFkyoc1xQkICCQkJXL58WbRUYbSioKamBqVSyeDgIAaDgYGBAQvmtJeXF42NjXz66acAvPvuu4SGhqLX66mpqWHhwoUMDQ1x584dVq9ezWOH2WMapsjLU1q3t7juiYoBaxcKg66JyMhIlixZYtXjAfLz8ykqKmL9+vUWoUkajWbUpufr64tSqaS2tlYYDHl5eTF//nzxmLCwMF5NmIubQj9BmKtEmJfDuJ8ljUZDeHj4pC3rqqoqkaY3HD4+PhapfHJnYOTjjEYjQ0NDVqsJ4MUUA/7+/vT19dHT08P06dMtTvFarZaysjLCwsLM7WMnJ2pqaixc9WbNmoVGo8HOzo7m5macnJzESdrDwwM/Pz8aGhqstiiW4e7uTnJyMnfv3h01PhsJWW7Y0dHB1auWrP8ZM2aI77+bmxunTp0a5Qo4HhQKBWvWrCEmJoZz586JglBWCzg4OHDkyJFJrw/GN0YLdNOMGjFIkiTWq5GYPn067733HgPuIfxzIVMi+FmLqay/T548obi4mNTU1El9OF7ih+MnVwxMpN1/Hr1qUFAQc+bMobu7m4aGhim3LcdCdXU1f/jDH8jOzmbFihW88847goU+GVavXs2cOXM4e/asMFWSv/hyMVBbW4uvry85OTn4+PgQGBjInTt3kCQJSZLo7u4Wrdl3331XyP/Ky8uRJIk5c+awePFicnJySC+qorrTyPhsZgVlLb1iBjhRMWBNy9NNoSfC23wqsxY6nY5Lly4xd+7cUR4EY40JNBoNvr6+1NXVCYOh1atXj5pXrlq1ilTvbvOrHMen/RcJPhN+liIjI6mrq5uQlS7zBcb6O7KFtCTB48Zucmr76LVxtyhKJ3MfhBc/JgBLZUZQUNAo3oBer6etrY2QkBA6OztRKpUWhZGtra0oCMD8vjx69Ej4K8jdATlgaypITk7G1dWVS5cuTVrAe3t7k5KSwr1790YZF82fP5+YmBg6OzuFQ+FYRN6xoFAo2LBhA5GRkZw+fVo4osrJhfb29lYXBElaL/4+wZaNNoX8VaIrv4rUs1x/F1VruXiMJEnklDVS1mdHl8plzNdtZ2fH7d5pyLLE4ZAwf85GEvymggk7GcPW34GBAb755hvCw8OJiop6rud6ianhJ1cMwPja/efVq65atUqYiWRkZDz3dclfgMOHD+Pg4MAHH3ww5Ux5mQkdFBTEF198QWNjIxqNBnd3d4vOgJeXFyUlJSQkJLB48WLq6uooKyvj4sWLPHr0SLyu4RV5aWkpPj4+uLq6Eh8fj5OTE19dss4NTp4BTlQMTFioASCx2KGR9947YHWxZjKZOHvWTGRcu3btqH8fjzU/Y8YMC4MhOYNhONRqNf9p9zrW2pXjO6ID76bo541prTz59sKE7eOIiAiUSuW4owLZ2384X2A4dDodDSYXzg1Es+3T+5xs9OB/FKgtWrqT5RLAjzMmcHBwwMPDQxQDcjQxPJMYlpaWMnPmTGpqaggKChrVJYmJiaG7uxtXV1c6OjoYGhoiLy8PMPNQXF1dLcK3rIVarSY1NZWKigqrxnsLFiwgIiKCCxcuWJz+5UAkb29z92uqhEKlUslrr71GcHAwJ0+eFCqWkQXBZN2PsrIyrl69yrrEeby/IZmP39xKYqK5S3jlyhW+K20h5be32X4ol+vGcH7+de2Ybf9JeTv88EAgef31d7F0wxy+/t66dQu9Xs+rr776Ui3w74SfZDEAY2v3n1ev6uLiwtKlS9Hr9ZSWllqtHR+OyspK/vCHP5Cbm0tKSgpvv/32uPK7yaBSqdi+fTseHh6cOHECnU4neADygtzV1YWTkxNz5swhLCyMadOmcebMGR48eMCaNWsALBYgk8lEWVkZgYGBZGRkcOjQIbq6uhjqGT8AZjjkGeBkErfxCjVXhZ5U21L+7me7hEOeNcjIyKC6upotW7aM2Wocrxjw9/cXMdOrV68ed0Hy8fFhX2o8a4bu8TcL1azSlPJhiI73/Fv42w934uvry/Hjx0epE2TY2dkRGho67qigrq6OoaGhcYuBO6XNXBkIn7Cla01nYOSY4IdKC2XIJMKAgAAUCgWVlZXAaImhJEm4ublRVVVlEcQUFBSEu7u76E5pNBru3bsnTqYrVqxAkqQxibOTISIigpkzZ3LlyhXBpxkPsguhUqm0SDeUr2n79u0YjUY8PT25f/8+ubm5Vl+HWq1m+/bt+Pr6cuLECWHQJI8M7OzsJiwIWlpaOH36NFqtltWrV4vrTUlJYe3atZzNKGLvoaxRIUhjtf2t5e3cvHv/B41Ek7Re/LdEO7Y7l49af+vr68nOzmbZsmXjepG8xIvHT7YYgNHe2j+kAo2Pj8fd3R2VSjUli2KDwcDFixc5cuQILi4ufPjhhyQkJPxgCY2trS27du1Co9Fw/PhxoRCQTx7V1dXExcWhUqloaWmhp6eH/v5+UlNTiY+Px9HRUbQne3p6uH79On19fdy7d49bt27h5ubGtm3biAnynjgSddgMcHBwcEI1gYzhhdofd8fwulMZm20K+U+71wt/BGvQ0NDArVu3SExMtCDfDcd4m57MswgNDcXPz2/C51m0aBFabRj1hdnEBzphaCxn0aKF4j2YNm0ax44dE+l9IxEZGUlVVdWYp9uqqipsbW3HtGyWJIkvSk3f3/nxNdvy5vrvPSYAczEgZ1X4+vpauPbJEkOVSsX06dPFdQ7vkigUCmJiYqipqcHZ2RmDwUBLSyvX7z/h1pNmVJ5B2NrakZeX91wyuNTUVPR6Pd9+O7kyZLjcUHZ/lOHu7s5rr71Gc3Mzfn5+XLp0aUyvivFgY2PDrl27cHNz49ixY8KR0cnJiX379mFraztmQdDX18fnn3+Oi4sLW7duHbVuLFy4kCL76AlDkIa3/a3l7ZTm3+PEiRNjJmhaC51OR7i3vcX6K3sK+Pj4EBcX99x/+yWmjp90MfAiIbcd5TamNUSi8vJy/vVf/5W8vDzWrl3Lvn37prTZTQYnJyf27NnzfceijPJ2A1/fr6BL5YJSqeKVV16hpKSEf/u3fxMt3dLSUgDx30ePHuUf/uEfyMzMRKlUsmnTJv7yL/+S7du3M3PmTAYHjSISdTLDFGtOqM9+V8EsPxfKbp/HaVDHqlUrx2zVjwej0cjZs2fx9vYW0cRjQaPRYDKZRs155daxNVwNmY1tMpno7OzExsZGWDbb2tqye/duvLy8OHbsmIVETUZkZCSSJI0ZpFNdXU1AQMCYxWFhfSetRg2TabafNPagUqkmTNb8McYEYC4GTCYTDQ0NgjcgQ5YYlpeXExkZSWVlJUFBQaPa9vPmzcNoNOLv70/9kDPnBqI58NVTM8v9n7/j66G51Aw4PFdOiJubG4sXLyYrK8uqjl5YWBjx8fHcuHFj1HsZHh7OsmXLaGhoEPkBU7Eql2OO7ezsOHr0qOCRjCwI5EJhaGiIU6dOYTAY2Llz55heG4UNXRNzekbo+q0l+P1y72s0NDRw8ODB5+ZJ6XS6USf/nJwcGhoaWL9+/YRk6Zd48XhZDLxAREREEBoaiiRJZGRkjBvC0d/fz4ULFzh+/DgeHh58+OGHLFq06EeZjXl4eDBzyUYON03/3t7XxFe9EfzZNI9jV7P4/PPPCQkJ4Z133iExMZHS0lIOHz5MTU0NDQ0NQsLm7e3NrFmziImJwdbWFpPJxOnTp2lsbGS6qpu1duWEek3sGT6VYgDgyy+/pKWlhejoaJKTk6f0um/cuEF7ezuvvfbauEl9gBg5DO8OyAZD7u7uVpG3wKxWcHJyEsTL4aMMW1tbkWV/9OhRi4hcMJ84g4KCRvEGTCYTNTU1444Iqpo7rbq2hk6zrHCiz9ePoSYAczGlVqsFb0Cn04kkSicnJ3x9fcWoYGBgAG9vbyoqKiy6JK6uroSGhpLX2M9VY8SokUh9j4mrxghOfZv3XK3rxMRE3NzcJnUmlLFy5Uq8vLxGpRsCLFmyhPDwcLq7uzGZTCKcyFo4Ojqyd+9eAI4dOyZO3k5OTrz55pvY2NiIDsHFixepqalhx44doxQkMqaq67eWYK3Vavnggw/w8PAQ2QZTvfcji4Guri5u3rzJggULhIPlS/z74WUx8IKxbt06Gkwu/Jdvu8cM4SgtLeX3v/89hYWFrF+/nr179477RX4RSC9r5Vfny+iULMljDX0S/z2zB/fIeGbPns358+e5dOkSYNYhR0VFoVKp2L17N+Hh4TQ3N4uTuSRJnD9/nuLiYhQKBZs3bybY3sAvtd1c/CiZv1sxjY02hXy2N9qCgzGVYuD27ds8fvwYHx8ftm7dOqXXLLvGrVq1atKTvXxaHr6oywZD0dHRImRoIuh0Op48eUJISAhgJmiOtH+WT32urq4cPXp01L9HRkZSXl5uMbtuampiYGBg3GJAbbSuRWsnGay650ql0qIYMBqNP9hISx4B1NXVidcxlsTQ09MTd3d34WQ5sksyb948LjY6jDsSAbjT5ys0+1OBWq1m7dq1VFZWCvLsZI/funUrOp1ulM+BbBHu4OAgHBin6oXg6urK3r170ev1HD9+XKgnnJ2d2bdvHxqNhk8++YQHDx6wYcOGcT8f8Hy+KtYSrJ2dnXnzzTdJTk7m5s2bUxobyF204WvfN998g42NjYX75Ev8++FlMfCC8bjdxNWB0aeXsuYedn+ayf889jXTpk3jZz/7Ga+88sqPypS1xt73cH4Pp09/RWdnJytXrmTlypX09fWh1WoZGhpCp9OJ0YFWq0WSJC5fvkx+fj4qlYqdO3cyb948li1bxsOHD3Cnl13L5uFrOziKFGdtMVBcXMytW7ewt7fnnXfemdI90uv1nD9/npCQEKtmjnIxIJ+ChxsMyc55clt2PGRlZWFjY0NzczNhYWG4u7tz5syZUSdCOZjGyclplGQsMjKSoaEhca/BvGmqVKpxnddcTV1W8TU8lf1Wj2aGcwaAF0YirK2txcHBAW9vb4tiIDw8HL1eT0NDA5GRkVRUVIxpQGRym4FOsmciCatOsueLq9anGQ6HVqslKiqKq1evTkomhGdyw/v374/q6Njb27N9+3a6urqYPn06OTk5U7Yr9/T0ZO/eveh0Oj7//HPxPjg7O5OcnIzBYBCWwhPheX1VrCVYK5VKVqxYwe7du6c0NpCjyeXOQHFxMU+ePHnpKfC/ES+LgRcIsfkC4xG6iuyj2blzJ66urj/69ViTw9BhsmPNjv0cOHCAxMRE4uPjcXZ2przcrE9uaWmhtLQUf39/HBwcSEtLIzs7G5VKxd69e8Xcd8GCBXh7e3P58mXUajURERGjZr99fX2oVKoJ1QCtra2cOnUKlUrFgQMHpqQckF0GjUajSL6bDMM7AyMNhsZLMBwOOZciIiKCpqYm4uPjBZFsLO98BwcHC1MZmRDm5uaGn5+fxcZSXV3NjBkzxh1ztLa2kmxfPylfo79/4sRCGSM7A8AL4w10dXXR1dU1ijcwMsVQNigqLy8XJ2KAjj7rWu3N3QPPPcNes2YNBoOBtLQ0qx6/YMECZs6cOUpuCGbjqvXr14tshosXL46rKBkP06ZNY9euXTQ0NAj/gubmZr755hvCwsJwcnLiT3/604Tpgj/EV2UqBGutVsv7779v9dhgeIbGwMAAly5dIjw8XPhmvMS/P14WAy8Q1my+NV2DPG60zqXsh8LaeWG/4lmLUK1Wk5iYSFHRYzqVLlx9VEd2aT1arZaMjAxu376NWq3m7bfftjiVKJVKUlNTqampobCwkFmzZlnk1MMzWeF4i4rBYODTTz/FZDKxa9euKY9PCgoKKCwsZN26dRYugxNBrVbTZrLndlkblzMfUVHxzGDI3t4eT0/PCRdxOU1vYGAADw8PwsLC8PPzY8WKFWRkZAjjp+GQJWO2trYcPXpULIxRUVGUlJQwODiIJEkW4URjoaWlBT9lN38x3xY/R8t7OrylO5mcU8ZYxcCL6gwAIqegra1NEOuGSwwDAgJwcHBgcHAQk8lk4YppbbvbQTHwXBbFYG7PL1myhKysrFG8jrEgmwapVKpR6YZgHm0sWLCA2tpaPDw8+OKLL6ZEKAQICAjgjTfeoKKiglOnTvHZZ5/h7u7O66+/zr59+1Cr1Rw5cmTCguBF+6qMBxcXF6vHBsMzNG7dukVfX99LT4H/zXhZDLVo4EwAACAASURBVLxAvKgQpBcFaxfQB3fTLGbY/W5BnBuI5kxfBL+5p+er3gj+6k4vRy5nolareeedd8ZsXYeGhhIZGcm1a9cIDg5Go9FY2CJPtClJksQnn3yCwWAgJSWF0NDQKb1W2WVwzpw5Imp5MqSXtbLzWCEXBqL5vy9W8uGFai5KMbQonxUhcot7LJhMJrKysggPD6e0tJSFCxeKxSwxMZHg4GDOnj0rTH+GQ2aIy4u5TqcjKioKo9FIeXm5yJofrxiQJInm5mYGBwdZGunL+wGtfBTeM2ZLd7JcAhljjQleRGfA2dkZFxcXQSKE0byBuro69Ho9ERERVFZW4u/vbzEqkNvdk0tYXWloaJh0tDMeEhIS8PDwsMqZEJ7JDZ8+fTqmmiE1NZXp06ej1+sZGhri9OnTUyIUwrMgspKSEnp7e9mxYwe2tra4uLiwb98+lEql+AyNhxfpqzIRrBkbSJLEw6o22mx8SS+qIjMz66WnwP8P8LIYeIF4kSFILwKTzQtBwk2hp6vqMb///e/5zW9+wz9/eY39R3PRmUYwtnvNjO3Y1DfGDEqSsXr1anp7e8nOzh41KpgoOe/kyZO0tbUxd+5ckaBoLUwmE+fOncPW1pZXX33Vqt9JL2tl76EsKtosN+rWATV7D2ULI5YZM2bQ1NQ05gm5pKSEjo4OHBwcUKlUxMTEiH+TiZVGo5E///nPY24sMiFMXsw1Gg2enl5cv/+Es1kltJnsx2VV9/X1iTa6u7s7dXW1xM/0H7OlO1lioYwfa0wAz4oqZ2dnPDw8xpUYzpw5k9bWVoKCgigrKxPPL7e7lQoFYynmFcDfboxmzZoU4PkCjMBMeHz11Veprq62mowYFhZGQkICN27cEEFKw//e66+/jiRJuLq6UlNTMyrjYDJIkkR5eTkKhYLBwUGys7PF58nFxYW33noLpVLJn/70pwkLghfpqzIZxhsbpJe1kvLb2/xdloELXf7s+/wJFwbnYPK2Xjb8Ej8OXhYDLxDWbL4hHnZWhSC9CEw6L1QoSPXuxsnJ8Xuv+H4+fdCJSZLGCR1S8L9u1054YvLw8CAhIYH09HSCg4MtRgW9vb1jbkq3bt2ipKQEPz8/Nm/ePOXXeffuXaqqqsZ1GRyJiYiVI41YhuvkRyIzMxN/f39KS0uZN2/eqOd2dXVl/fr1FBUVCQvdkZBPdwB//8dTnOgI5n8UqPlvd9q5MBDNxj9kj5kUN1wTbzQaMRqNY5LJrDV6gh+/GJBjoUfyBoZLDMPCwgRHYnBw0IJQmRjmxR93zsVN0W/xt31shtjoXMX8GU6EhITg4uJCaWnpmB0ZaxAaGkp0dDTXrl2z4C1MhBUrVuDj4zMq3RDM7/G2bdtobGwkODiY7OxsHj58aPX1ZGRk8PDhQzZv3kxqaiqZmZkWiYtT6RD8e2Lk2ODv/3hqTCfE9kEb9v0p5wcFIL3ED8fLYuAFYjJvfQUQ2Zv/QtMNJ8NE88Lj78Tx1+9uQ6PRoNPpSN357iSMbet8yZOTk7Gzs+Pp06cWo4Kx2tVFRUXcvn0bR0dH3n777SmfVhobG7l58yYJ/197Zx4W1Znn+8+pKqrYkX0pNhEBwQVwj7ui0ZhEjYkZbZf0dLbuudM3M3OfuTPP3dJ3nuk7t2/f6Z7u25OkE9NxSUxixLgbF1xiVKRZFI2CiCACSoHsRRVVVN0/yCkpKKCKTdT380+WOqfOoSjO+3t/y/c7ezaxsbFOndOv/noXIZbQ0FBUKlWPvgHZlEqr1dLS0sKMGTMcvldKSgqpqakcOXKk19S1n58fSQtWsedBONV6+7vqzSlOp9MhSRI+Pj5UV1fj5ubmUCnRGV8CmeEqE4C9LXRMTAw1NTV2i7U8YqhUKhk3bhx37twhPDy8RxNqxqQo/kNcIy+qr7HS+w6r3a/zz3M9CbE2cOrUKQAWLlyI1Wp12MDpLMuWLaO9vd32nv3R17ghQGxsLBkZGZSWljJ27FgOHjzYqyJlV4qKijhx4gRz585l8uTJzJw5k0WLFnH69Gk7q3I/Pz9bULlt2zablsOjRi4bbNiwgb13VA43Go6UEAUjjwgGhpheF98Qb7b/eAYvzZnIiRMn2LFjR59OdUNJX/VCHx8fNm7ciF6vZ8/h4069373GvndcGo2GjIwMrl+/jlartT3Qu/cM1NTU8NVXX9kmB/pSyHOE2WwmMzOT4OBgl/zOXentUCgURERE9OgbyM7Oxs/Pj8rKSsaOHWuTL3bE8uXL8fLyYu/evQ7n9q1WK78+VU6vTnH0fFDqdDrc3NwICQmhvLycyMhIh4ptrmg7dM0MdB+5HCxdbaHlDEZXaWJ5xLCqqspmXDRu3Dhu3rzZY6cdFhZKoKKNZydpCZD0VFZWsnDhQpt63ZQpU1Cr1RQUFAxIohge+o3k5OQ4VI10RFBQEM8++yy5ubkOvSZmz57NhAkTuHv3LoGBgXzxxRd9zuXfv3+fzMxMkpKS7L7f8+bNs1mVd80w+Pn58dprrwHwySefjJqAAMDoFUK9xR1nlRAFI48IBoaB3hbfeQkhLF26lE2bNlFbW8v777/fq1vdUNNXvTAwMJANGzZgbND18Q4POfDlTrZt29bnyN3kyZPRarU0NDRw79496urq0Ov1eHl5AZ071q1bt2K1Wm1iPK4iqwyuWbOmT5XB7rja29G9ibC5uZnCwkKSkpK4e/dur1kBGY1Gw5o1a6isrLRL78q4kqmQkTUKAgMD+5w6kIMBV0cLlUolSqVyyIIB2Rb67t27jBkzBj8/P5tpEdiPGCYkJCBJks03oqSkxO691Gq1LYthtVqpqKggPT2doKAgDh8+jCRJzJo1C7PZ3MNDwBVmzZpFYGCg082EAFOnTiUxMZEDBw70CPZlR1E/Pz/MZjNms9mmUGi1Wu0US5ubm9m1axcBAQGsWbPG7u9VkiSWLl1KWloa+/fvtws8RmuGYLQ1Vwt6IoKBYaKvxTcuLo63337bZjN88ODBIRnhGgxarZa3X13JGKntBzminkgSRPooifPXUFZWxtatW/nVr37F0aNHe9RnJUli+fLlNDQ0oFAoOXT+MmXt3twzqOjo6ODDDz+kvb2d5557zun0fldKS0u5ePEiS5YscWji0xeuCrFotVqamppss+Q5OTmoVCpaW1vx8/MjISGh32tGRUWxYMECzp4928PSeCAPSp1Oh8lkQqPRYDAYehWfkX8vrooOwdBJEst0DapiYmLsMgMKhYK4uDhKSkrw8vIiKiqKyspKQkJCeuyyGxsb8fHxobi42NbTUVlZycqVK7l79y75+fk26+/vvvtuwKlnuZmwoqKi156P7sjuhr2NG2o0GtatW0dLSwshISFUVFTw+y+Psey3Z+0USxf/+iRlbRr+4i/+wqHWhiwTnpyczFdffWXTBYHOcb0tW7ZgtVrZtm3biGUg+2K0NVcLeiKCgUeEp6cn69atY+XKlVy+fJk//vGPTqcjh4uEhAT+dkEU0LuIza9encbPf/7X/M3f/A1Tpkyho6OD7OxsfvWrX/Hee+9RWFhoewBGRkbiHjOFPW1J/PfzbZwwjefnR6qZ9U+HuFZrJi0tjenTp7t8n21tbXz99deMHTuWWbNmuXy+q0Isckf/3bt3MZlM5ObmkpKSwvXr15k2bZrTDpPz5s0jMjKSzMxMO5U7Vx+Uer2e1tZWrFYr7e3tKBSKPqcOJElyqrGya2YAhicYePDgAXq9nujoaKqrq+0+B3nEsLW1laSkJEpLS0lMTKSoqMgu3V9fX49Wq0Wv1xMV1fl9LSwsJCYmhsmTJ3PixAlMJhOTJk3CYDA4JTHcG2PHjmXixIkcP37c6YZET09P1qxZw+3btzl//nyP14ODg1m1ahVlZWUowifwb1c6ejTV6dpV7G+O5qqu902CQqFgzZo1xMXF8cUXX9gFmXJAYLFY+OSTTx55QDBQJUTByCGCgUeI7Hb35ptvolQq+eijj7hw4cIjbaLZ/OxM/vNMb/wk+wdfd4ESX19fVq9ezT/+4z+yYcMGtFotOp2OzMxMfvnLX/Lll19yJP82HxS79ZBm1hkVHDMlEDDBtRFCmcOHD2MymVi1atWAx6NcEWLx9fXFx8eHyspKCgsL0ev1tsU1PT3d6WvKD2+9Xs+RI0ds/9/VB2VXTYiGhgbCw8N77bdoa2vr16So6/0NZzAga1NUVlYSGxtrS/HLdB8xNJvNeHp60t7eTmlpqe24+vp6wsPDiYiIoLa2FpVKZZs6WLp0KRaLhZMnT5KRkQEwqEZC6GwmNJvNTjcTQmf2b/bs2WRlZTmcRElOTmbWrFnsLn3YF2KP5FRTnVKpZN26dYSHh/Ppp5/abSjGjBnDa6+9hsVieeQZgsEoIQpGBuW777777qO+iacdLy8vUlNTMRqNnDlzhrt37xIXF+eSFO9QMjUxhpj2clT3v+dHCyfxn55P5W+XJhAd4OXw+MDAQNLT03nmmWeAznp2ZWUVfyg002ZV4SDPgCRJFFY2smlWjEsPgMLCQs6cOcOLL77YpzqfM0QHeLJpVgzLkkNZOiGUN+fH9fpzVlRUUFtbaxPEKSsrIzExkUmTJrl0TQ8PD3x9fTlz5gxBQUGEhIQgSRLxId7sza/s8VHJD8rfrU+z3VdJSQklJSWo1Wr0ej2JiYmMGzfO4fVu3LhBc3Nzv30NAHl5efj6+toMqS5fvoy7uzuJiYku/Yy94e7uTk5ODt7e3kyYMIE///nPeHh42ASmNBoNRUVFGI1G0tPT+f7775EkiY6ODoxGI0lJSRgMBs6cOUNaWhpBQUFcunSJ6OhodDodqamp+Pr6olar+fbbb0lOTrb1rMTFxQ1YAlyj0aBSqTh37hwJCQn4+Pg4dV5sbCxFRUVcvXqV1NTUHg2ebe6B/OnSPXprqgN40NrOsuRQQnx6z+wolUqSk5MpLi4mJyeHxMREW1lI/v3l5+dz5coVJkyY4NDqeCSICvBkWkwAV+428qD1YZCZEOLN79anDbkAksA1RGZglKBSqXj22WfZuHEj9+7d47333rOTYx1J5Hr/3JRYKrKP4mNudFrnf/Hixfzd3/0dS17e3PeY4gC6hxsbGzl06BATJ050eRHuDWeFWCIiIrh85wF599oxeYfS0NDo1ALriMmTJ5OSksKhQ4dsDV6uZCp0Oh1qtRp/f39aWlr6DIrkzIAzSJLUIzMwlL0skiTZ+gYkSeqhNwCd2YFbt25htVpJSkqiuLiYpKQkioqKbMZZ0Cm0NHHiRBQKBUFBnZ+NnJKfNm0a4eHhHDp0iKVLlwIDFyGSmTFjBsHBwRw6dMjpzJ1SqWTt2rU0NjY6vH5ti3OfrTNNdbJNtoeHB9u3b7drHPT392fLli2YzWa2bdvWw0dhJBkpJUSB64hgYJQxbtw4fvrTn6LVatm1a5ctJT7SyCntyMhIdu3aZSdy4wxmleMsQnec7R62Wq0uqwwOFd+V1PJfzxv42pDECdN4/vv5Ng5Zp3Bb79oopIwkSaxcuRK1Wm03bujsg1LWGJAzR30FA876EsDwlwmgs1Qg20LHxMRQWVlp9/0eP348er3eNmLY1tZmsza+ffu2TYPf398fDw8PJkyYQFlZGSqVytZoqFAoeO6557h37x4VFRWEhIRQVVU1YIlieNhMWFlZ6ZIDYVBQEMuXLycvL69HI+RQN9V5enqyadMmFAoFO3bssPNBGE0BwUgqIQqcRwQDoxAvLy/Wr1/PihUryM/P58MPP3TKOGWoUalUvPrqq/j5+fHpp5+6VHMc6gfdhQsXKCsrY/Xq1U7vdIcCWba4vN4+aKltd3MoBuQsHh4erFmzhvLycrsmM2celPIkgdlsJiQkpM/Pw1lfAuhcRIdzmgA6mwiNRqNNcthisdiNbcojhjdv3iQiIgIfHx/u37+Pv78/169fp76+Hjc3N1uAk5qaSm1tLaGhobS0tNj6KSIjI0lPTycrK4u5c+cCuCwD3J2uDYquqBump6eTlJTUY9xwOJrqfH192bRpE0ajkZ07d9opKAYEBLBlyxZMJtMjDwgEow8RDIxSJElixowZvPHGG0iSxIcffkh2dvaINxe6u7vzox/9CEmS2Llzp9MPwX4fdHQKMTnzoLt//z5ZWVnMmjWLsWPHOn/zg8QV2eKBEBsby5w5czh16pRTanTQmfZvaWmho6Oj3xKBfLyzmYHuZQI3N7dhyQxA52SGHMh0LRV0HTGUJInExESKi4uZMGECN27coL6+njFjxtiCJFl+WK6Ddw2slixZgkKh4ObNm3h7e1NcXDxgiWKZrg2KziK7G6pUKrtxw+FqqgsICGDjxo00Njby2Wef0d7ebtMxuFxjZtbylzEa29m2bZvLLoqCJxcRDIxyQkJCeOONN5g6dSpHjx5l165dfaqWDQeySmFLSwuff/65U2ULSZL42cxgOk1k7BfLzkeblRci+td9l1UGAwMDWbJkyYDuf6AMRAzIVRYtWkRoaCiZmZlOLbxdJwmam5t71ReQGW2ZAY1GQ0hIiK1vIDo62k5vAB6OGMrNkQ0NDYSFhaHX66murraztlYoFEyZMsUmF33t2jXbGKKnpydLly6lsLCQiRMnYrVaXZoIcIS3tzeLFi0iNze3T2vr7vQ2bthbr8i4IK9B2QuHhoayceNG7t+/zy+37mHpb87YdAzWb7/CIWsqt1pUIiAQ2BDBwGOASqVixYoVbNiwgaqqKt57770eqmzDTVBQEOvXr6eqqorMzEyHsrpdqa+vp+S7Q2yKbGScA2nm/zrHj/obF8nKyupzZ52VlUVdXR0vvfSSSyqDQ8FIqKYplUpeeuklGhsbnUpjdw0GoO9+AYvFgsFgGFU9A9CZHegqPlRRUWFn6yuPGJaUlDB27Fg0Gg11dXX4+flRV1fXw+pWnsTx8/PDZDJRVFRk91pkZCQlJSW4ubmRn58/YIlimenTpxMaGsrhw4f7/TvoytixY3nmmWfIysqyywR17RX53dokXva+yU/C7zE7LnBQ96nVahk/73m23fGhRGe/4N+ua2NfUxQlzUoREAgAEQw8VowfP563337bNlN89OjRQT/YXCEqKopXXnmFoqKiPiVajUYju3btQqPR8A8/XsPxv1nA12/PIsPtJv+2Ioxv3pnPT56fx7Jlyzh37hynT592+D63b9/mwoULLF682GWVwaFgpFTT5Caz3NzcfuWpdTod7u7uuLu74+/vj69v72UWV9QHwfE0wXAEA5GRkeh0OoxGIzExMZjNZrvF0cfHx+ZiqFQqiY+Pt00VGAyGHsFAQEAAMTGdI6oKhYLc3Fy7n2nlypXU1dWh1Woxm812Bj8DQW5QrKqqcqmZELB9l/fs2WP32cq9Ii9OG8ebrzxHcXER586dG9R9Wq1WPsh5QF+eF5dVCbS1Gdi+fbsICJ5yRDDwmOHt7c2GDRt49tln+fOf/8xHH33UY7c4nCQkJPD888+Tm5vLt99+2+N1i8XCnj17aGpqYsOGDXh6eiJJElOiA4hxaybcvcNWA509ezZLlizh7NmzPTT7DQYDX3/9NbGxscyePTBxosGSEu5LlJ8KR5IwMLSqaenp6SQmJrJ///4+G7t0Oh1KpRKr1epUvwA450sAI1MmgM5gwGq1UlVVRVhYGGq1us8Rw8TERKqrqwkJCQFwGACnpqbS0NCAxWKxmzqATpOkGTNm2EoTg5EolomOjiY1NZWTJ0/a/B+cQc4ENTc3c/ToUYfHJCQkMH/+fE6dOmUnM+wqzpS5SuvamP3cy7S1tbF9+/YRL0EKRg8iGHgMkY1YXn/9dSwWC3/84x/JyckZsebC9PR0Fi1axKlTp8jLy7N77fjx45SUlPDKK6/Y5r/le/bw8OjRwDV37lzbe3XdCR0+fBij0cjq1asf6ejRfM97nfuqYVZNk5vMlEol+/bt6/V3KU8SGI3GfoMBVxwLwXGZwGKx2KXwh4Lg4GA0Gg13795FoVAQHR3tMBiQRwzHjx+PQqGwjbc6Cn6Tk5Nxc3OzGSx1/14uXLgQd3d3fHx8aGtr62GNPBAyMjKwWCycOHHCpfPkTFB+fn6v97FgwQLi4uLYs2ePTVvBVZwtc7UrPNiyZQttbW1s27ZNBARPKSIYeIwJCwvjjTfeIDU1lcOHD/PFF1+4tEsZDPPmzWPatGkcPHjQVqPNy8vj4sWLLF++3KEinoeHh92ok8z8+fOZP38+J0+e5MKFC1y9epXCwkKee+65AavGDQUVFRWo68v4l+VRTokBDRYvLy9WrVrFrVu3HKayDQYDzc3Ntt26M82DMLgyAQydjXHX68h6A4CtibDrtaOiotBoNNy8eRN3d3diY2NtksRlZWU9giW1Wk1KSoot6CwoKLB7P3d3d5YtW2Yb7XNlGqA3vLy8WLx4Mfn5+X06eDoiLS2NCRMmcODAAYfOggqFgpdeegmNRsPu3bsHVA50tsxlqL9PYGCgLSCQMwTdnRQfpUy6YPgRcsSPOUqlkoSEBMLDw7l06RK5ubmEhYXZdVwPB5IkER8fT01NDefOncPd3Z0jR44wdepUFi5c6HC3fPXqVdzc3EhKSurxWmxsLB0dHZw6dYqbN28yYcKEXt9npPjmm2+wWq38+JUXnJYtHiwBAQEYDAbOnTtHYmIi3t4Pg5B79+7ZatTu7u5kZGT0+flUVFRQVFTEkiVLnPocr1+/jtlsZvLkyUCn4mNhYSHTp093yujIFerq6igqKmL27NlIkkRubi6JiYk2qV9Jkqiurqa6upr09HTa29u5cuUKGo0GvV5PfHx8j34JDw8P8vLyMJlMtLe3Ex4ebpedCgkJoby8nJaWFvR6/aAkimXCw8MpLi6mpKSEtLQ0p7+vkiQRFxdHXl4ed+7cYfLkyT3OdXNzIyYmhm+//Zbm5maXZaGDvTUcLqymvtVxMCcBQW4mvEpPc/VqIR4eHsyZM4e8vDyO5JfyL+cb+cPpW+y7XMVnl+5wuLCa+BBvogKcCy4FjxciM/CEkJiYyE9/+lNCQkLYsWMHx44dG/bmQnn3EhwczJEjR4iIiGD58uW9PhB7ywxA58Nx0aJF+Pr6YjabiYiIeKSBQENDAzdu3GDmzJlIkjSiqmkZGRkEBgaSmZlp9zvsqgIpN8z1hWyo5KyroqMyAQx9ZgA6+wZaW1tpaGhAq9WiUqkclgq6jhharVY8PT3x8vJymF6Pjo7Gz88Pq9VKQEBAj1KBJEk899xzts90sCJE0PmZrVy5kurqarvGRWeQhafKysocuhtCZ7CxcuVK8vLyyMvLc2m33q+OgSTxb5vn8PrrPyEiIoLjx4+zfft2TIHj+LImhFu19uWCkpqWQQltCUY3Ihh4gpD1AJYuXUp2djZbt26ltnZ4/3DNZjNGoxGlUklTU1OfZQp3d/c+RV+ys7NpamoiKSmJ48ePu/xwHUqys7PRaDRMmTJlxK+tUql46aWXqKurs6tHy5MEgFPiS65oDMDIlQnA3hZaqVQSGRnpMBiAThdD2YCoo6ODpKQkrl+/3mMhlCSJ9PR0rFZoVftzqqiG7OJKu+OCg4OZM2fOD9eu5Pz1ikGnwSMjI0lLSyMrK8vlevvYsWNtwlO96RakpaWRnp7OhwfOsujXWTa9gJW/P8ey357l/K3e/8b787yYEx9MZGQka9eu5Z133mHmzJl8WWL5oenQ8QTCYIS2BKMXEQw8YUiSxDPPPMPrr7+OyWTigw8+IDc3d1j+eC0WC1999RV6vZ5NmzYB9JBA7YqjBkKZmpoaTp48ycyZM1m3bh3Tp0/n4MGDLo9uDQVGo5H8/HymTp36yJwjQ0NDycjIIDs726YpUVtba8sG9NcvAK6pD4LjaQIYnmDA09OTgIAAO72BO3fu2F2/64ghdH63W1paSEhIsLkRdscwJoav21N4v8yf4+3jefVPBT0WzPnz51OnCuLr9hQ2bL/i9MLaF7IglqvNhOCc8JRfwgyOGuIpe2D/9+PMbt2R58XR/ziP1HBPampquH37NoWFhVy7do2yRjP1FneG0mBM8HgwsioughEjPDycN998k2+++YaDBw9SUlLCCy+84NLi0B/ffPMNpaWlbNy4kZiYGDZu3MjHH3/M559/zsaNG3uIBPWWGZBVBgMCAmx18BUrVmCxWNi/f79NZW6kKCgowGQyDdiVcKiYOXMmJSUl7Nu3j7feeotrVU08MHjgjoLg4OB+z3fFsRBGNjMAnTtqeTccExPDmTNn0Ol0thFC6MwO5OXlYTabbbK60BlYfv/994SHh9uO/a6klrc/v4rFat/fIC+YO/5yJnPig8i508TB1lgs3QLk7se5gpeXF0uWLOHQoUOkp6cTFRXl9Lmyu+EHH3zAkSNHWLVqld3rVquVfzp8A0cLtPwTvHvgGkd/PheDwUBLSwstLS20trba/tn13/NaWsjU63sIJqlUKnRuIUBEv/dc02Qkpf/DBI8RIhh4glGr1bzwwgvEx8dz4MAB3n//fdasWTMk+v45OTlcunSJlStX2vzog4ODWb9+PTt27GDv3r2sXbvWrl7dW8/AqVOn0Ol0vPHGG7YAQhaLsVgs7Nu3D4VCMWS2xX1hsVjIzs4mOTm5T0GfkUCSJFatWsV/+d12Fv86ixrjw1HCa787xy9eTOlzmkGv1/cQ6OmLkewZgE6FvKtXr2I2m4mMjEShUFBWVtYjGDh37hw3b97EarXi5eVFcXExiYmJXL9+ncWLFyNJkp2PhKP0NnQumN/8x3lOHXfsnfku94Wkp6eTn5/PoUOHePPNN53u1QAIDAxkxYoV7N+/n/j4eFJSUmyvyXoBvSHv1v/2n/6VAMm+TKdWq/Hy8sLb2xsvLy+0Wq3t37v/U61Wc626ia9/37/Y0WCFtgSjDxEMPAVMmDABrVbL3r172b59O3PmzGHRokUolcoBvV9paSlHjhxhxowZTJs2ze616Oho1q5dy5dffsnRxPPwjAAAFYVJREFUo0dZsWKF7aHq4eGB2WzGZDLh5tZp/ys3T2VkZBAWFmb3XvLsvcViYe/evSgUCruH5HBQXFxMfX09a9euHdbrOMuV+8YB72L1er3dzrk/upcJ5N/RcGYGLBYL1dXVREVFodVquXPnjl1GJioqCrVaw8m8Iio6/EiLGEtRUTEvvPA8BQUFtkyCswvmH4/mOnXc99VNpES4NmkgKxN+9NFH5OTkMHPmTJfOT01NpaSkhIMHDxIZGWmbdHBWLyBl2hzmxwfYLfLy79BZZIOxkl7EiiSps99gKIS2BKML0TPwlCBbmy5ZsoQLFy7w8ccfU1dX5/L71NXVsXv3buLi4nj22WcdHpOUlMTKlSvJycmxExKSU9ZyqUBWGYyJielVZVCSJF588UUmTpxIZmZmv3K9g+XixYu2helR099ut79mLld7BrqXCSRJws3NzSljqoEQGhqKSqWy6xsoLy+3+3kulD7g6/YUfn3VjROm8fyfQhU76qK5VmtGo9HYpgpKq5z7Lh8971wPykD9JrRaLenp6Zw6dcpleV9Jknj++edRq9Xs3bvX9rtwVi9gTnoKSUlJREZG4u/v73IgIN/DcDgpCkY/Ihh4ilAoFMydO5e//Mu/xGAw8MEHH5Cfn+90c2FbWxufffYZ3t7evPzyy32mQadOncqCBQvIysqioKAA6OwZqLN4cPL6Pa5VNXL48BEMBgOrV6/u870UCgWrV69mwoQJ7N69286IZiiprq6mvLycWbNmDcv7u8pgXBOtVit6vd7lBsLudeThkiSGzlp5eHi4Xd9AS0sLDx48ADp7ADZ9nE2Nwf670WB1528P3KbFS8vFixf513/9V04c+Mqpa0aNca4hdDBpcNk6eSDNhPK4YXl5Od999x3ghB34EMpiQ/8TCEMptCUYPYgywVOIVqvlrbfe4siRI+zfv5+SkhKef/75PpvNOjo62L17N21tbbz++utOidAsWLCA5uZm9u/fT1GjxAc5dZS2p7D/65vATcZIHfzdwkVO1bUVCgVr1qzBYrGwe/duXn31VcaPH+/Kj90v2dnZ+Pn5ORRFehS44prYvZnLaDRitVpdaiDsXiaA4Q0GoLNUIO/uo6KikCSJ8vJyAgICbFmRnsGQhBUrB6s9WK02YjQaCZBgjNRGg7W3TngrAUojAc3lBKr8qDO7OTxuKNLgnp6eZGRkcODAAdLS0pya/OhKbGwsc+fO5fTp08TFxaHVavnFiyls3NqpStn1VzRcu3V5AuH76iZqmoyE+GpIDvcVGYEnGJEZeEpRq9WsWrWKl19+mdLSUt5//327OW87cZPKzl18eXk569atIyAgwKlryE2AivAJ/MPRCm7X2U8SNFjd+R+na50WMZG7ruPj4/niiy8GZeLSnebmZgoLC5kxY4ZLjV/DyWBcE12VIoaeZQIYmWCgsbGR5uZmNBoNYWFhlJeX95sVAYkGqwcNkhcBAQFIEqyJNv2wvHc/y4oETFeUExoazAxlWa/HDdXCmpaWhlar5fDhwwPydli4cCFhYWHs2bMHo9H4SHbrIym0JXj0jI6nnuCRkZKSwttvv42/vz/btm0jKyuLs8U1LPvt2YfiJv/vHP/tgoHo6RnExsa69P6SJHG6OdhW4+72qssiJkqlkpdffpm4uDg+//xzbt++7dL99EZOTg4qlYr09PQheb+hYDDp4YEEAyNdJgB78SF42DfgbFak1aLiwYMHLFy4kLdWL2K5poRgtf3iO0Yy8JJ/JelaL3Q6HWFSE+vD6/BXGHsc979XRA7JwiqrHdbU1JCTk+Py+XLg29LSYnM3dKQX8M0780XaXjAkiGBAgJ+fH5s3b2bhwoV8eeYyW/50iZJuHdeNVg9+cfaBy1Kk16qbKNG1MpQiJiqVinXr1hETE8OuXbt6KNe5islkIjc3l9TU1CHX4B8MXZu5uodS/aWHXbUvhkcTDPj6+uLj42MXDDQ2NuIhOXdNH2Xn/Z4+fZqPPvqICGUzK6UCXlRfY1N0Mzs2JPOyZxFJ/gqbSFFYWBia+jJ+En6Pv5/cwSshOnb/JJ3V6mvcv9LTlnugREREMG3aNE6dOtWnLXVvBAQEsGLFCgoKCrh2rTNgvibS9oJhQgQDAqBzIZg3bx43vCY53MUPVIrUlbq3K6hUKl599VUiIyP59NNPuXPnjkvnd6WwsBC9Xu/yKNhI8My4IN5dEMQYyV6fob/08EDLBCPdMwD24kOyLbN7Wy1xgR44yid1YmWM1MaG5+ajVCpxc3OzpeMlCQIVbQSbajDpbqPVRlBVVQV0Wh0nJSUhSRLNzU003L5KtKqZ6fHhxMWNRaer5cyV0iFz6lu8eDEqlYrjx48P6PzU1FSSk5N5b28WS/7vKZekiAUCVxDBgMDGteomyuqNDOUu3tm6t7WtweUHr5ubG+vXryciIoJPP/3UZRtZ6OyNuHjxIomJiU73Qow0EcpmtgTfdSk9rNfrcXNz66EC2Re9ZQaGa7RQJjIykqqqKiwWC56enjZ3wdnqCiQc6+5JwEzVHQ4dOkRHRwcmk4moqCh+/vOf247y8fEhOzvbFigqlUqbrsXUqVP52c9+hkaj4cGDBxw9epSA5Gf4uj2FLbuuD9mC6+HhQUZGBoWFhZSVlbl8viRJBCY/w6HWsZTW2QsKCeMgwVAiggGBjeHYxfdb9wYClUbO7tvFH/7wB86dO+dSStXNzY0NGzYQFhbGzp07ezV76Y3S0lJ0Ot2oGSd0RG1tLSEhwS41c7mqMQCOgwE3N7cRyQyYTCabK2NMTAw3btzAvfEOv10VT3S3ccAxkoHlmptEKJvtZumnT59u9/sfN26c7d7HjBlDR0cHer2e9vZ2ioqKOHPmDP7+/vj5+bEv+wZ/vefGD9MIDxmKBTc1NZXIyEgOHz6M2Wx22nUQOoPV/3WsBByERcI4SDCUiGBAYGMw3eu94YyN6u9em8fmzZuIiIjgzJkz/OY3v+HTTz/l2rVrTtkwq9VqNmzYQHBwMDt37qS6utrp+7t48SJhYWEuj3+NJDU1NQQFudYk5qpjITy6MkF4eDiSpODs1duculGDzqShrc3A7NmzGWO8z2LDBV5UX2N9RD2rNN+zWn2NqZE++Pv7YzKZfrhv2Jp5jF1nrtCq9sdq7ZS5hs4R1zfeeMMWOHh7e5OcnMzdu3epqKigoaGRS+aYYXPqk6dqrtw3suB/H3cp1T8YrQmBwBWEzoDAxnBJkcpjUe8euGYnBTs+2Jt3bfr6wcTFxWEwGLh69SoFBQV89dVXeHh4MHHiRNLS0ggLC+t1R6zRaPjRj37Ejh072LFjB5s3b+4hb9wdnU5HSUkJq1evHrWNWCaTifr6eqeMiboyVJmBkQgGLpU3st88iY9PPgA6BYfGSCk0593Cz3AfLy9PaG3Fu/0+zzw7l7q6Or7//nteffVVPvnkE6o6fMglDp1RBXcAfBgjtTFTdYeX501iwYIFSJJEdHQ0t27doq2tjalTp5KWlsa+ffu43WCmrr53MaLBSBTL3GpRcaw9AUt7B10Dju6y0q2trdTU1HD//n1qamr47nYDENjv+wvjIMFgEcGAwIa8ix8OcRNnRUzc3d2ZNm0a06ZNQ6fTUVBQwJUrV8jJySE0NJTU1FQmTZqEl5dXj2u4u7uzadMmtm/fzo4dO9iyZYud6U13srOz8fLyGna/g8EgS0a7Ggzo9Xq8vb37P7ALjyIYkFUGrVZ76dwGqzuZ9VqWubWSolbR2trKW2+9hbe3Nw0NDeTn55Obm0tVhw/HTON7BK8NVneOmRIYW9lCzWef0draassYdXR08O///u+2Y3Udzi3wA11wbbLSgENzJCu8s+M71nnfRK9vBTobZIODg4kKCoGeTs09EMZBgsEiggGBHc7t4geGLGLi7AM1ODiYpUuXsmTJEkpKSigoKOD48eMcP36chIQEUlNTGT9+vJ1IkBwQbNu2je3bt7NlyxaHC6ler+fy5cvMnTvXpSa7kUan0wGuBwNtbW0un9NXmcBqtQ559qSr90JvKoNX3BJZGNxMfX09x44do62tDb1ej0Kh4MqVQrLNKQ4XWfn8L25a2BJci9HY0y3Tx8cHg8GAj2QBJ3okB7rg9muiBOjaVYQkpDEtPozQ0FACAgJsipD7fntWGAcJhp3R+xQUPDJGmxSpQqEgISGBhIQE9Ho9hYWFFBQU8Pnnn+Pl5cXkyZNJS0uzLX4eHh5s3rzZFhC89tprBAbap1rz8vKwWq09XBdHGzqdDh8fH5f1D1z1JYDeGwjrLB4cv1aFNsB7SL8H/S2SIFGthws37hCogOvXr6NQKGxumw+sHjRY++qLkKi3uHOnqYNApZmAgADmzJljUwU0mUyYTCbCPdwIMpuoNakYDoliZxtzoxMnkZJkn8kazmydQNAVEQwIHOLqLn6k8PT0ZObMmcycOZN79+6Rn59PQUEBFy5cQKvVkpqaysSJE/H09GTz5s188sknbNu2jddeew1/f3+uVTdxr6GNk+cvM2vSZIflhtGETqdzeYcvmxS52kAo70TlLMB3JbX84+F73GlPYf+nnWZT40O8+cUgM0Qyzi6SRskdhcJIeHg4np6eWK1WiouLManGgBMVDINCg9ncTExMDEVFRTY9Ag8PT1rVAZTrzSRJVZwjms59+sOFdSgW3ME25g5ntk4gkBHBgOCxJSwsjBUrVrB06VKKi4spKCjg8OHDfPPNNyQlJZGamsrGjRvZsWMH//Thl1xWJlBq80eI5WKxO8G3akf1w1Sn0xEfH+/SOSaTiY6ODpczA/JiZ7VaOX+r7odavv0x3RveBoOzi2REgBeq1lZ0Oh0GQ2e6X6FQoA30Bn0/JwPu1s6gIz8/H09PT5YtW8aOY5fYey/cLrPghRFvb2/utzysGQzFgjsUjbmjLVsnePIQwYDgsUelUpGcnExycjLNzc1cuXKFgoICdu7cia+vL4Qm8nWlBSt6uu76yh4YhmxhGw7MZjMPHjwYUL8AuCZFDNh6LywWS6+1fPm/3z1wjWPvzB/UYtTfIglW/CUDMb4qJL8INm/ezPnz5zlx4gRJSUmUlt5mjOTVp1PhGMmAb0czSBASEkJtbS37s4s4YhjX45p6NLS1mvjn1ROJ8PMYsgV3qFL9ozVbJ3gyEDoDgicKHx8f5syZw89+9jN+8pOfEB8/nu3X2oZthnw4qaurw2q1DmiSAFyTIoaHwcDVqsYRmW3vS4NCdhCcobpDeXkZjY2NNDU1cf78eVJSUqivr8dgaGOOe1WfToWz3CrQaNRER0fT1NRER4eFIzXefX4fPjlfxsLE4CF16nsUroMCgSuIzIDgiUSSJCIjI2lQ+FB//lyvxw3FDPlwMdBJgoEGA/LCV9PYs/PeEUMx295bPdxfYeSVOCvtFc20qgO4W9fB//z9x/jTTmVlJQ0NDQQGBvLOpk14ffQVx+r87FL+Ye5WXpvsxf0rTQQHa38IHgz9Nh0O5/dBpPoFoxkRDAieaFyRWB5t6VedToe3t7fL6f7BlgmsbY1OHT9Us+2OFsm2qpt8uP8slzomUm/8YZKinU4xofY7zI6LYcqUKWRmZuLVcpfV6rs8sHqgt6rxlNp5fc1y8vPzCQ0NZfny5VRXV3P27FkqGpVO3dNwfR9Eql8wWhHBgOCJZjgklkeKgUwSQGdmQKlUolb3rqrnCNmQ6MLh3QS6TeGByW3EZtu7L5LnWmM4ZkroVUyI0mLKy/cTGxvLqlWrOHnyJDS3ICkUtHao+eLYd7i11CBJsHXrVts1IvzDoab/+xmN3weBYDgRwYDgiWa4JJaHE9m3PvtOC4kxYS4L/shjhc6eY7VaycvL49ixYwAsWbKYjLAkNv/p0g+vPzx2JGbbrVYrvzj4PY6bAjvFhC51xLBKcZXKykrKysqo6vAh25zysARQB/6KEH482Yvmklx8fHwICwvj+vUbBCgDqe/QPDbfB4FgJBANhIInmn6NkkaZaMt3JbUs++1Znv/9OfbUhfLLPKvLNrqu+BJUVlby0UcfceDAQRSB0VR0+KEJG8ec+EfX8NafOY8sJqQIiKKjo4M6t2COmxN7OA7WWzT8psBMnSqIhoYGKioqWLFiOf+2ec5j830QCEYKyToa26gFgiHmu5LaHk1qCSGjS7TloU6/fW+8ROdC5ewIZGZmJs3NzWzZsqXXY/R6PVlZWeTm5tLmG81FUxRl9Q/7K2RxodlxgSPe8HbqRg0/3pbT73E/nWBlTtwY3jlW26t6IFjxVxj5w8pwpk+fbnMufBy+DwLBSCKCAcFTg9VqHbWd3FZrZwagr3JGfLC3U7P9O3fuRK1Ws27dOofXyc/P58SJE1gsFoImzuGX55sGHYAMJVerGnn+971PgMhsDqmioaGe/e39G00d+uu5PaYDRvP3QSAYaUSZQPDUIDepLUoKGdIZ8qHAWd/6c1fLePDgAU1NTej1epuJ0MPjrJTWmyg1eHCtqtHutaqqKrZu3cqBAwdISEjgr/7qr/jipqVXcaFHpcEg93n09tuRpM5d/C/eeZ3n1q536j1rHEyVjObvg0Aw0ogGQoFgFODsCOS23fuIUvYc/VMqldzDj+8MWuo7QqAK3r9+jmC1iRUhLQSYamlsbESj0ZCQkIBGo+HL4+e5WWPu9VqPSoPBFcW+yCDnGv3EdIBA0DciGBAIRgHOjkD+aM1Kxvq7YTabMZlMmM1mzGYzeZWtfHy+sYeXgK5dxY67Y1iuqSUlKBAvLy9aWlpoaGigqNkNCO/3mo9Cg8FZc57HcVpEIBiNiGBAIBgFOLuoLUyN75HOtlqt/P3psw7T/Z3VfyvFPlP4979aaHfu1apGvnaiNv+odtXOKPYJi1+BYGgQPQMCwShgMCOQ/fYbIHGrVt/DS8DZ2vyj3FU7U9cXuv8CweAR0wQCwShiICNvzo7i/WnLdBYlhdj9v/O3atm4NbuzYdDBrvpxWkzFdIBAMHBEMCAQjDJcXdScHcVzNF4HYuZeIBCIYEAgeOxxRqNgfLA33/ShUSB21QLB040IBgSCJ4AnKd0vEAhGHtFAKBA8AYgmOoFAMBhEZkAgeIIQ6X6BQDAQRDAgEAgEAsFTjigTCAQCgUDwlCOCAYFAIBAInnJEMCAQCAQCwVOOCAYEAoFAIHjKEcGAQCAQCARPOSIYEAgEAoHgKUcEAwKBQCAQPOWIYEAgEAgEgqccEQwIBAKBQPCUI4IBgUAgEAieckQwIBAIBALBU44IBgQCgUAgeMoRwYBAIBAIBE85IhgQCAQCgeApRwQDAoFAIBA85YhgQCAQCASCpxwRDAgEAoFA8JQjggGBQCAQCJ5yRDAgEAgEAsFTjggGBAKBQCB4yvn/ef79dQnjRPwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "G0 = nx.read_edgelist(\"facebook/0.edges\", create_using=nx.Graph(), nodetype=int)\n", "for node in G0.copy():\n", @@ -964,7 +765,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": { "id": "_mX4VNsvlPRb" }, @@ -982,7 +783,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -1002,18 +803,7 @@ "id": "W-TKkMJemhlv", "outputId": "2b1455cc-bb4b-4b5f-ecc5-a0411734184e" }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydeXhU1333P3dmNNr3BSQkIYRWxL4LMDs2BrMHbzhu4iVOm6ZukjZt2qZvt/SNmzRNm/h1Eu81xthgDDZmM0ZiByEhhBZAIwGS0C6N1tHs975/yDPWIM1oRggv4Xyex49h7r1nzh1m7vme3yopiqIgEAgEAoHgnkX1ZU9AIBAIBALBl4sQAwKBQCAQ3OMIMSAQCAQCwT2OEAMCgUAgENzjCDEgEAgEAsE9jhADAoFAIBDc4wgxIBAIBALBPY7Gm5NkWaahoYHQ0FAkSbrbcxIIBAKBQDAKKIpCT08PCQkJqFTu9/9eiYGGhgaSkpJGbXICgUAgEAi+OOrq6khMTHR73CsxEBoa6hwsLCxsdGYmEAgEAoHgrtLd3U1SUpJzHXeHV2LA4RoICwsTYkAgEAgEgq8Zw7n4RQChQCAQCAT3OEIMCAQCgUBwjyPEgEAgEAgE9zhCDAgEAoFAcI8jxIBAIBAIBPc4QgwIBAKBQHCPI8SAQCAQCAT3OEIMCAQCgUBwjyPEgEAgEAgE9zheVSAUCASCHquJM606DDYzE0JimR6Z7HPjsmsltZw6WILRYCYpNY7lm2cTGh50l2YsEAi8RYgBgUDgEVmReanyGG9eP41FtjlfTwmO4WfTv0FOxLhhxzAazPz7n79JYf5V1GoVSCDbFV79+X7+8oVHWL5x1t28BYFAMAzCTSAQCDzy66tHeLnquIsQAKg1tPP0uVe50ds67Bi/+MHbXDxxDQC7XcZuk1EUBavFxi9/uIOSs7q7MneBQOAdQgwIBAK3tJi62X79zJDHZBSssp2Xdfkex6itaubsJ2XIsjLkcUkFO188eqdTFQgEd4AQAwKBwC1HGss8HrcrMkcay7DeZjUYyLmjZahU7mMLZLvCpdM6TEbLiOcpEAjuDBEzIBAI3NJl6UMlScjK0Lt6AJsic+jYUZJixhIdHU10dDRBQZ8HBVpMViSVBG4sAw6MBiMBgdpRm7tAIPAeIQYEAoFbxgVFYlNkj+doZRWVpRVc7D7vfC0wMJCYmBiio6MxY8Zu8zyGX6DEi7/7DampqaSnp5ORkUF4eLjb862yjX23itldc4FbfXrC/AJZlziDR8bPI8o/2LebFAgESIriQfJ/Rnd3N+Hh4XR1dREWFvZFzEsgEHwFMNjMrDj6Aia7dcjjakliW8oCfjhpNRaLBb1eT3t7u8t/rS2tnN3ehtXoJmZAgvVP5zJlaQJVVVXU1tYiyzJxcXGkp6eTnp5OUlISKlW/V9Nkt/K9gv+lSH8TCXCMqkIiyj+ENxY8Q2JQ1F34NASCrx/ert9CDAgEAo98eKuYfyzZg4SEwuePC7WkIj4wnLcWPkek1v1uXFEUik5V8C/Pvondah8USBgWryZrZTD+AVqioqKIjIwEoK+vj+bmZsxmMwEBAaSlpZGens4RqY4dteeRGfzoUksqssLieXvRd0fp7gWCrzdCDAgEglEjv/kKL177FF1PMwB+kpo146bxfNYqovxDvBrjVnULO148zPGPilFkiXETYnnoiQXkPphNZ1fHIItCT0+P81o/Pz8kScJoNXNgmh3bMA7Odxb9KdnhCSO+3+Ho7TZSclaH1WInbdI4EifG3bX3EgjuBG/XbxEzIBAIhmXpmGyWxGXx3//7Mv5hwXzzoS2E+AX4NEbixDjWf2cOxvDr/PCHPyQ0NNR5LG5M7KDzzWYzer2etrY2p0Co7GjApmkZ9r3KO+vvihiw2+y8/h8f8+Gbp7BaPs+gmJabxg/+41HGJAr3hODriRADAoHAKyRJwr/PzvjYSJ+FgIPW1lYCAgIICRnemuDv7098fDzx8fHO1+oMet7N/69hr9Wo1B6Pd1h6+LjhHPktlzDZLaSFjGND4kJmRKZ7vO7XP3mPT9+/wO321NKC6/xo62/47f4fERHtnaVEIPgqIeoMCAQCrzGZTAQGBo74+tbWVmJjY33uaeAgMShy2OBASYFovR13HtDq3ga+ff4F3rhxiBuGRhpN7ZxpL+OvLr3E76o+dHvdjasNHN09WAgAyHaZjpZuPvrfUz7fk0DwVUCIAYFA4DVGo5GAgJFZBQBaWlqIjR3sEvAWSZJ4Jm2x2+MqJCZZwzm29wB/+MMfqKqqclnc7bKdv7/8Cgab0SUY0v5Z+uSuunzyWy4NOfaxvUX9fRXcIMsKR9477/a4QPBVRogBgUDgFXa7HavVOmLLgCzLtLW1ERd3Z8F2GxJn8lz6MqDfCiAhoZb6H2ULYtN5df3zfOtb38LPz4+3336bN998k7q6OgDOtpfTau4cMhMB+sXErrrjQx7rau8ddm5dHYaR3JJA8KUjYgYEgj9CDN19HHv7JNWXbuIX4Efu+jnMWD55xOZ56HcRACO2DHR0dGC32+/IMgD91oE/zVjO2EYr71afI2laJhHaYNaMm+psqzx+/Hi+/e1vo9PpOHbsGK+99hqZmZk0TupPP7S7KaQko3Ctpxa7IjsFhoPYhEgXa8JQxIx1XyhJIPgqI8SAQPBHxrn9Rfzssf/C1GdGre4PpNv7m4NkzJ7Izz7+CRGxI1uwjEYjMHIx0NLSnwVwp5YBB53XG9gYlMmjsx4d8rgkSWRkZJCenk5ZWRl5eXlcsjSgJCrgQRNJSEMeXrllDjt+c8T9dZLEmsdyfbwLgeCrgXATCAR/RFRdusE/bf4F5j4zKP2pcHab3XnsHx76udsAueFwWAZG6iZobW0lMDCQ4OA7LxdsNBqpq6sjPd1z9D/0L9JTpkzhe9/7Hg+kL0CW3N+/pEBOyHhU0uBHY3xyNI/+2cqhr1PB+IyxrH1iofc3IRB8hRBiQCD4I2L3rz4ClKEj3m0y1y5UUZJfPqKx79QycKeZBANxBAZ6IwYcqNVqHp3/EMmBcW72/qBIoLmgp6CgYEjR9OSPHmTRN9LQBn3+6FRrVMRM9OOvf7OVwGB/329GIPgKINwEAsEfEac/KPDYFEitUXNm3wWmL5vs89ijYRlITEwc0bW3o9PpGDt2rM8VUVWSip9P/w4/Kv5/NJr0/Y0NpH6LgCLB00mrCTNYOHjwIBUVFaxfv56oqM9TGTs7O5HD2vnxHzYzNnI8FrOVhJQY/nf765wtOE1qesqo3J9A8EUjLAMCwR8RA6viucNiGrrp0HCYTCZUKhV+fn4+X+vIJLjT4EHHWFVVVT5ZBQYyJiCKvwxaQ+bVQGaHZzA1NJUZtiTmFoXR9GEZ8fHxPPHEE3R1dfHSSy9x7tw5ZLlfYJ06dYqAgADmzJnNxEnjyJ6RQnhkCCtWrKCqqorr16/f8f0JBF8GwjIgEPwRkTp1PFXFN1Dkof3idrudtBkTRjS2o8bASMz8er0eu91OXFwcRpuFAw2XOdlyDYvdRk7EODYnzyY+MMKrserr6zEajSMWAwClF0uYF5TBn8z6k8/nOFtPXl4e+/fvJyoqiqVLl9LQ0MDhw4epqKhg6dKlXLp0ieXLl6PVal3Gy87OJjExkaNHj/Lss8+OiitEIPgiEZYBgeCPiE3fX+NWCEiSRECQP8sfXzSise+k+mBraysAfcEq1uX/mn8t3cfx5mucaavi1aoTrM37FftvDV3s53YqKysJCgpi3LhxI5pLS0sLtbW1zJo1y+X1qKgotmzZwnPPPUd0dDR79+6ltraWVatWYTAY2L59O2q1etB10P/Zrly5ksbGRsrKykY0L4Hgy0SIAYFgFFEUhRO7z/KDxT9lTeBjrAv7Jv/22H9x7ULVF/L+K564jxXb7uv/y4DNqVqjQq1R8Q/v/pCg0JEt6HdSfbClpQVtUAA/LH2PDkt/8R5Hzr6Mgqwo/LRkD2Wdt4YdS6fTkZaWhko1ssdXUVERQUFBZGdnD3l87NixPP74487CRZ988gn+/v2BgVarlbfeesuZJjmQ8ePHk5mZybFjx7DZhnfXCARfJYQYEAhGCUVRePH51/jXh39FxZlrWM02TL0mTr1/ju/n/h3H3ztz1+egUql4/GcbSd84jsTseFRqFRp/NcseW8RvC37OvDUzRzy2yWS6o0yCrsQgmk3d2N2kNqokibdveP6Muru7aW5uHrGLwGq1cvnyZaZPn+6sweAOR+Gixx57jM7OThRFITExEaPRyO9//3tOnDiB3W53uWbFihV0dXVRWFg4ovkJBF8WQgwIBKPEuf1F7PvtIaC/Tr0Du01GURR+/s3/oaOl667P4/jx40xZlclrpf/ND/c/xUO/vI+/efP7TJyWckfj3qmboCVMGVTVbyB2ReZ0q87jODqdDkmSmDhx4ojmUV5ejslkGtLUPxSSJBEfH4/FYiE7OxuDwUBHRwfR0dHk5+fzyiuv0NTU5Dw/NjaWGTNmcOLECWf2hUDwdUCIAYFglNj7mwOo3DWyUcBulzn8et5dncPNmze5fv06y5Yt648RCAgYtUVppJYBu91OW1ub09Tu8dxhCiLpdDqSkpJGLEqKiopITU11SRccjtOnT+Pn58f69ev53ve+x5o1a5w1F7q6unj55ZfJy8tzWgmWLl2K1Wrl1CnRwVDw9UFkEwgEo4Tu4g1ku/scfwmovnTjrr2/oigcO3aMhIQEMjMzAUZVDIw0ZkCv1yPLMtOjxnO20X1MgFpSMSNyvNvjNpuN69evs3ix+66FnmhububWrVts3brV62t6e3spKipi4cKFznufM2cO06ZN4/z5884F/+TJk1RUVLBp0yYSEhLIzc0l7+xZrgYEcKO7B61azcq0iSydMAH1CGMdBIK7iRADAsEooQ3wnH8vqST8hjnnTqiqqqKuro5t27Y5U9sCAgKw2WzYbDY0mjv7uY/UTeDIJNg8cR7bW4sw2MxDdg20KzJPpC5wO87NmzexWq1kZGT4PAfotwqEhIQ4hZI3nDlzBrVazbx581xe12q13HfffcyePZvTp09z7tw52tvbefnll8nNzcUwNp53tQHI5wpQSRKSJPFeaRkZMTG88Y3NjAkJGdE9CAR3CyFRBYJRYtGmeag0HnziNpncdXPuyns7rALJycku/nTHbtZsNt/R+LIsYzabR2QZaG1tJSgoiNjwSP57zja0ag2qAakOjjiC72WsYH6M+1iAyspKwsPDR1S4yGKxeB046MBgMHDhwgXmzp3rVgQFBgaycuVKnn/+eWbMmIEkSXx0/jx/feQIdklCod/1YfusaFF1eztPv/8B8gj7QwgEdwshBgSCUWLjX6xBrVEjqQYXnFFpVCRmxLNg/ey78t5XrlyhqamJ5cuXuxS8cfjp79RVcCftix09CQBmRqWwd8nzzDNHE2KEhIAIVsXn8EbuszybvtTtGIqioNPpSE9PH1FBn/Lycsxms9eBg9BvFVCpVOTmDt+JMDQ0lHXr1vHnf/7n1EZG4a7TsV1RuNLaypmaWq/nIRB8EQg3geCO6DaZaOjpIUSrJTF8cGvcPlsXxR0fUtZ5CKO9mxBNDFMj1zA9Yi1adZDLuU2mFj5pyqeksxwFhZzwLO4fs5TEoIQv6nbuiMT0eH62/yf8dMPPMRssqDUqZEVBsSskZSTw7wf+DrXGu12pL8iyTF5eHhMnTmT8eFefu2PxHi0xMBI3QUtLi8u8xgaGk1UHSYZA/u7vfuTVGG1tbXR2do7YRVBYWEhaWhoREd5VOezr6+PChQvMmzfPp3uOioqiymZH8SBYNCoVx65fZ1GK+/iILxK7InNRX0ObqYfYgFBmRg3dtVHwx40QA4IR0dLbywsnTrL/6jWnCTQnLo4fLlrI0tT+crfd1hbeuflDem3tKPSf02lt4GTLq1R0HeXR8b8kQB0KQKH+Er/W/R5FUZA/O7fJ1MLR5uP86cRvcV/s16NPfM6iTBb8OAetPgS1QUtLWwuWsD7+7x/+ZVAJ29GitLSUtrY2Nm3aNOjYaImBkXYstNvttLe3M2eOq3ukp6eHyMhIr8fR6XRoNBpSUlJ8en+AxsZGGhoaeOSRR7y+5uzZswBeWQVux/F78ITltvoEXxbHmip4ofxjmk3dztfGBoTzk8kPsWRM1pc4M8EXjZB/Ap9pMxjY/PY7fHTlqsuD70prK8/s+YCPrl4F4HDDr1yEgAMFhXZzLfnNfwCg3dzBf+t+j12xO4UAgIyMgsJL1W9Qb2z8Au7szrl06RI2xcaz//Qn/OAP3+X5//cdwiYEUldXd1fez263c/z4cbKyskhIGGxB+bItA45MgoF+/p6eHux2+5DzdYdOp2PChAkjapJUVFREaGio11YFo9FIQUEBc+bMISgoaPgLbiNnTBwqD5YBmywzZcwYn8cdbfKbr/CjondoGSAEAJpNXfxl4ducaqn8kmYm+DIQYkDgM/9z5hwtvb2DcsIdQVE/PXKUxr4aavqKBwkBBwoyFd3HMNq7OdZywmNAlYTEkab8UZv/3UKWZc6fP09OTg7hn7lMxowZQ1hYGDqd52I6I6W4uJiOjg6WLVs25PEvO2bAUbY3Li7O+dq1a9cAvC4cZDKZqK2tHVHVQbPZTGlpKTNmzPBYvrilu5e69k4sNjtnz55FURQWLHCf2eCJb82c6fH7HKL1Y13Wl7vrlhWZX5QfBAaHNzj+/suKgygi0PGeQbgJBD5httl4v7zcbXEYBeixWPj1gd3E5ngeS1Zs/Pb1F6hM7EGOcG9alZGp6L52B7P+YqisrESv17N582bna5IkkZaWhk6nY/Xq1aP6fjabjRMnTjBlyhSXxXYgo1V4yGg0IkmSV4WDBtLa2kpwcLDLDtvR5jctLc2rMaqrq5FleUTxAmVlZVitVmbOHLoM89GyKl769BxXG/rTH0MDtCTTx5PzZxIcHOzz+wGsy8rkuK6KvZWVSHy+uKolCWSZdVotGncRhl8Q5Z311Bs73B5XgJuGNq51N5IV/vWI2RHcGcIyIPCJTpMJ0zBNWCRF4Xpjp1fjKXYJkNxGXzvH5KvfEvbs2bMkJycP6qaXkZGBXq+nvb19VN/vwoUL9Pb2snTpUo/njYYYcFQf9DWSf2AmgYOmpiY0Go3XJnidTkdcXJzT2uILRUVFpKWlDXntjjOXeP6tj7jW2Op8rcdkocKk5q2qdszWkTcbmtapZ41axayEBIK1WqICA3l06lTefGgNQfp2du3aNaivwReJ3mIY1fMEX3+EZUDgE6Faf1SS5DlPWpJYPmMFJoqxY3V7WrA6kue+88981HCEd+v2OrvY3Y4KFdMihjEzfMnU19dTW1vLww8/POjYhAkTUKvVVFZWjiggbSgsFgunTp1i+vTpw5bWHS3LwEjSCltaWpgwYYLLa93d3V5H9SuKQlVVFdOnT/f5vRsaGmhsbOSxxx4bdKytx8DPP8r/7D1ue08kyutbePfcZZ68z/fGTqWlpdy4cYO/ePzxIV0bcVotO3bsYN++fWzatMkrgWWzy5zV1dDc3UtMaDAL0sejvYPMlDEB3gmrsV6eJ/j6IywDgiHptZoo6ailrPMWVvnzHVKQ1o9VaRP7TZ5uUKtUPDJzHjOjNnnc8c+LeRSVpGZR5Dwku8SQ4QUKqCQV949ZOvKb+QI4d+4ckZGRQ1a302q1TJgwYVTjBs6dO4fZbGbJkiXDnjualgFfsNvt6PV6FxdGd3c3drudsWPHejVGQ0MDBoNhRPEChYWFhIWFDemO2FdUMUgEuKDAznMlPr+n0Wjk8OHD5OTkuJ3zxIkT2bx5M6WlpRw+fHhYv/yRUh3L//1lvvv6Xv7P+0f53hv7WPazP/DhxQqf5+cgM2ws6aFj3NrbVEjkhI8jNXRo95Pgjw9hGRC4YLRZ+O+rR/igrgjzZyIgwi+IJ1MX8q2Ji1BJKv5iQS75128g2+1DrvXfnj6NqKBA1MUZWDtj8UttRZH7Tf0KCpIEdl0y4+Puw2g08s5rO0i0R1E3qx1F+mxE6TPXgKzwWPhGYgNivrgPwUe6urooLy9n9erVboPU0tPTOXz4MGaz2We/++0YjUbOnDnDrFmzvDKdj5YY8DWToL29fVAmQVVVFQCpqalejVFZWUlAQABJSUk+vbfZbKasrIyFCxcO+W9S297p0cKlAPX67iGPeeKTTz7BbrfzwAMPeDwvJyeHvr4+Dhw4QEhICIsWLRryvLyKan64ff+g31lnn4mfvHsYtUrF2um+ByNKksQWbQYvyM1IKlfNrkJCo1LxtzlrfR5X8PVFWAYETix2G98teIP3agqcQgCg09rH/1z7hH8r/RCArNhYfpIziZDb8qnVisJ0i5mAyyVUVFTw6dFjWIsyMB2ZgbUygaDOVKxXEslufoag2qm8++67/OEPf6C9vZ2gTn8mnhjDmKoIgtr9yQxKY0viOpbXzufqobKvdDvYgoIC/P39PZqy09PTkWWZ6urqO36/s2fPIssy9913n1fnf1mWAUdPgoFiwHH/3ooBnU5HWlqax0yAobh8+TI2m40ZM2YMeTwsMMCtW8pBsL9vdSFqamooLi5m5cqVhIaGDnv+nDlzWLJkCZ9++ikXL14cdFxRFH554KTHMf7zwEnsXtQ1uJ3S0lKuHT7Ld1Q5TI1wFVoT1OG8lvsMUyJ9E2CCrzdCDAicHGgooaSjbsgmMgB76ooo76ynt7eXusILbDQaWGs1k2s2sdhk5D8mZTHVaqGrq4vdu3cTFhaGoihEqBOxXk5hpvpJrOXJ1Os6eOCBB2htbaWzsz/QMCEhAY1VTVLLGJKLYvjHyX/FlsSH2LpmCxaLhUOHDn2RH4XXmM1mioqKmDVrlseiQpGRkcTExNyxq8BgMHDu3Dnmzp1LiJfNbvz9/b+UmIGWlpZBmQRNTU2oVCqvLBo9PT00Njb67CJQFIWioiIyMjIICwsb8pwHp2Vgl92LAZUE62Z6v+O22+3s37+fxMREn0oeL1myhNmzZ7N//36uflafw8G1xjZutnZ4lCzNXb1cqmnw+v0Arl69ygcffMC0adP47ppHeHPhd9i/7Ae8nvsM3zNmsboujMkRiT6NKfj6I8SAwMn7tYUuDWRuRy2p2HfrIkePHsVutyMB2RERpNuspNht5GRkOBcMRVHo7u7Gz8+Pnp4eAOLj49FqtTQ1NbF3717nuCkpKTQ0NODn5+fcgTp2guHh4axevZqSkpJBD8uvAsXFxVitVubOnTvomKIoXO6s5rXrB3ilej9khFOpq7yj3O1Tp06hUqlYuHCh19d8WW6C1tZWl3gBRVHo6uoiLCzMq6A5h3DyNgXRQX19Pc3NzR4X5UnjxrByctqQxYFU9Fu54o3tXkf8nz59mvb2dh566CGfMi4kSeLBBx8kOzub3bt3c/PmTeexzj6jV2N09nn/b1tdXc3u3bvJzs5m/fr1zrkmBkUxI2o88zKm0NDQQHf3YBdJo7GTl3X5/Fvph7xUeYxaw+hmxwi+XIQYEDhpNHa6tQpAfw3zG/omSkpKnAvawAWip6dnULrY+PHjsVgsQH/d9sjISBRFcS5OoaGh1NTUADBjxgxsNtugXeO0adPIyMhg//799PX13fmNjhIDiwzdvgNtM3fxp4X/xQ+KX2Rn7THeq8tnj+YieTlNnLvhe2Aa9AffXbhwgdzcXJ8W5i8rm+D2tMKuri6fggd1Oh1JSUk+VwEsKioiPDx82KJG//Hog8xJiKTfY644ZXBybCT/+uA8bumu8tZbbw37ndPr9Zw8eZLc3FzGjKCyoEqlYtOmTSQnJ7Nz506ampoASIgc2qpxO47zGnq6+VXBaZ49uJfvH9nP/qqrLmWPa2pq2LlzJ6mpqWzevHlI10t6ejoqlcpZGAr6Rdxvrx1lzbFf8VLlMfbWFfFK1XHW5/+an5ftR1Z8d1MIvnoIMSBwEu0f4jGbX41ET1Obc+ELDg5G/sxfGRQURGFhIXq93mXRuH79OpIkoVaraWpqcvqRFUUhJiaGb3zjG05h4Vgkbs9LlySJdevWIcsyBw4cGK3bvWOuXr1KZ2fnoHRBq2zjry69xHVDv/nWrsjYP3tgmv0VflbzDnpLj8/vd+LECbRaLfPnz/fpuoCAAGw224jz2h3izRcxYLPZaG9vd/m3dOx6b081dHf99evXfXYRmEwmysrKmDlz5rBxBpIik9Zbz0MBvSyOVLM+LY43ntvK/h/9CeuWLuTJJ5+ktbWVV155hba2tiHHUBSFjz/+mJCQEK8yO9yh0Wh45JFHiIqKYvv27ej1epKjI5iVMs5DaWOFSLWCpbWRnRWXuW/7y/y26Byf3Kji4+pr/PmR/Tyw8w0aerppaGhgx44dJCYmsnXrVrdtnAMDAxk/fryLFW7nzfO8UnUcBQUZBduA7/POmvO8XHV8xPct+OogxIDAyYZEzznVdhRi68zYbDY0Gg3Z2dnOXZNGo6GxsZEHH3zQuWiEhIQ4xUJgYCA7d+50miUlSWLbtm0UFBQ4XysoKAAYcncVEhLCmjVrKC8vp6ysbHRueIT0GExU6Bo5cOQU48ePJz4+3uX4ydZS6vpanA9MFyQwKlb215/x6T07OjooLi5m0aJFPmcj3Gl/ArPZDPjWl6C9vR1FUVzcBI5MAm/EQG1tLRaLxWcxUFJSgizLbgMHB3L+/HmsViuzJ2eT4S+zKi2BOamJzu9jcnIyzzzzDBqNhldeecVZOXEgZWVlXL9+nTVr1txxIyp/f3+2bduGv78/27dvp7e3lx+tzkU1wGrhQEJBBWyYEMXvPv6Qv80/gl1RnNkRjv/XdnfyzX3v8db27cTFxfHoo48O298hKyuLmzdvYjKZsMp2Xq7K93j+m9WnMNosI7xrwVcFIQYETjYmzWR8cAzqoewDCozthOje/vauVquVrKwsDIb+CmXd3d0EBgYSFhZGZ2cnkiQ5i+EoikJvb6/LQ8jhPy4vL0dRFJYuXeo0j7orojN58mQmTZrEgQMH6O3tHeW7H57uXhP/96XDPPTMSzz7dzv44HQP758y8OHRyy5xACdbL3uMvUCCT5sGR497Ij8/n6CgoEHd/7zhTsXASHmDpooAACAASURBVDoWDpVJ0NjYiCRJREdHD3t9ZWUlYWFhPpndHYGDmZmZw0bzW61WTp06BcCKFSswGo1Dip3IyEieeuopEhMT2b59O4WFhc5j3tQU8JXg4GC++c1vYrVaeeuttyg5mceDoVbmpY5z+UalR4awPMBAgKkH/cTxSG68e3ZFobq7k46wYB5//HGvhGRmZiayLKPT6bja1TBsFcI+u4WL+hof7lLwVUSIAYGTII0/r+U+TaYU5ZJ4LMkwoVVibrUaCcm5czp+/LhzgQkJCcFmszmj/qdMmUJtba3L+GazGbvd7lxUjhw5glqtJjU1lcWLF6PRDF/2Yu3atahUKvbv3/+FNlExGC386U93ciC/HJvt8x2/vsvEC7//hDf3nHe+ZrSbPcZeAPSYvS/z2trayuXLl1m8ePGIuvaNRAwYbRbq+zrotZpG1LGwpaWFkJAQ5zWKotDZ2UloaKhXaYKOlEJfgvHq6upobW31Kpr/woULWCwWsrKyCA8Px2q1uhU7AQEBPP7448yePZuPP/6YQ4cOIcsyR48exWazDVtTwFciIiJ44oknaG9v58aNGzy1dSOvPvcw+f/wHXY/v428v3+W3X/9NJljomnX67nQ3oLi4WNSKeCfleH1v194eDjx8fFcu3YNk+xdSWaz7L7SqODrgRADAhdCVf5ML7PwfUs2c6pVbJMyebBEzfRaNWNj+k2+iqIQHR3tsjvPycnBarXS1dVFQEAAa9asGXLhSkpKIjU1FY1GQ0NDA3a7nfnz52MymbB91vPg2LFjzqDD2wkKCuKhhx7i2rVrXL58+S58AkPz/qFiauv1yG7S0V559zTNbf0R2BOCx6Ly8NOSFAg3eW9Szs/PJyIiwm2zneHwRQzU93Xw95d2c9+Rn7E271csPvLv/LPuY7oDFJ8tAwNdBI5Wxu4aKg2kvb0dvV7vc2OioqIiIiMjh61h4GjwBLBy5UqvOjKqVCrWrFnDgw8+SEFBAa+//joXL15kxYoVXtUU8JWmpibsdjsqlYri4mJkWSYmNJjshDjiwkJQq9VO3/9wolilUiGpfXvUZ2ZmotPpGB8QhVoa/tr0UO+CQgVfXYQYELhQXl6O0WhkRkoWiR0qHpm8GH97/7ZDr9c7F3iHT9hBcXGx88+LFi3i4MGDWK2uuwW1Wk1dXR0ajca58EdFRZGWluZ0Efj5+dHd3c3BgwfdzjErK4upU6dy8ODBIVOg7gZ7j1z23GZZkjh0vL887NqEXGQ3rZsBFAmibsheBfQ1NjZSUVHBkiVL3AZ9DYe3YqDW0M7jp17iUEMpts/iHWQUCnpqyc+2U2vr8vo9W1tbiYn5vGpkXV0d4F2xIZ1Oh1qt9iq2wIHRaKS8vJyZM2cOa00oLCzEbDaTkZFBdHS0T5aPuXPn8uijj1JfX49Go/E57dEbbt26xUcffcT06dN5+OGHuXbt2pCWsNjYWFatXEm0TUby8N20KTIzxvrWeTArKwuLxUJ3YyuLIia6dUOoJRXzYyaSFOy5P4bgq48QAwIniqJQUFBAWlqa02Tv6EcP/YVVBpp5HQWDwPVBeu3aNUpLS13GDg0NRZZloqKiKC8vd74+depUJEmiqanJ6U9eu3Ytly5dchEYt7N69Wq0Wi0ffvjhF+IuaNN7jv6XJImm1n5hEu8fxdzO/s6FLrEDn01zRcQ0QltwplR6Ii8vj+joaKZOnTqyiYPTTzycGHih/GN6baZBgY8yCnYV/N+r3mVy2Gy2QT0JHJUHk5OTh71ep9ORkpLiU0CeI911uMBBu93O8eP90e+rVq0C8MoyMJDm5mYURSEwMJBXX32VW7dueT3P4eju7ubdd98lPj6etWvXkpmZyYYNGyguLubYsWODzp83bx5LQyJQ3AggFRAdGMjqVN9iGuLi4oiIiODChQtEnq4nzK4ZFAcjKRCKlv8zdaNPYwu+mggxIHBy69YtGhsbmTt3LgaDAT8/P/Ly8lwC+jo6OobME3fs0CVJoq6uzikOHA/YuXPnsmrVKvR6vcvOzWFpaGpqQqvVEhUVxbRp05g+fToHDhxwESMDCQwMZP369VRXVw9ZynW0CQsZZqFQFCLDg1AUhY8++oigsj7+Im4d2aHjnacEG1R8N2ENfzvtm4SFhg1bjbCurg6dTsfSpUt9Lsc7EEmShq010Gzs4kyrDrs7YSXBtZ4mrnY1Dvt+DqvRwODBhob+NMvh3ARms5mbN2/6FJDnCBzMzs4mODjY47nFxcWYTCbS0tKclgtfAiT1ej0nTpxgwYIFPPfcc0RFRfHGG28MEr8jwWq18u6776JSqXjkkUecgnzatGmsWrWKU6dOce7cOZdrJEli6+TpZPf1W+EGWggkRUEtK/wydxn+at/a0EiSRGxsLJWVlUwcm8juFc/zXMYy4vxDUSERpQ1msZTA4jIIsnz124sLhkeIAYGTgoICp9m+r68PSZKw2WwsXboU6H9AKIpCY2Mj2dnZLrs8x+5ckiQSEhKcWQYmkwmVSkVRURFz5swhISHB6SKQJMmZe97U1ISiKERGRgKwZs0aoqKi2LVrl9v4gbS0NGbOnMnhw4fp6Oi4Gx+JkzXLJqNSuX/o2WWF++/LJi8vj5KSEjZu3MiGnGX8TfwWFp0M42+UB1lQHkNsowaVSkVaWppHMaAoCseOHWPMmDHk5Nx5++bhxEBdn36YkMd+avuGrzrnEHCOhV+WZTo7OwkODh42APL69evIsuxTvEBtbS1tbW3DBg7KskxeXh7wuVUAvLcM3F5TIDg4mCeffJKcnBz27NlDfn7+iK1UDhHZ0tLCI488MqjU9IIFC1iwYAGHDx92iZWpqqriyJEjbImIZVWXiXEWO8EKJIWGsSwkkk2dJio+zRvkshuO8+fPO7+fixcvJjYkgufSl3Fk5Y+5uPZfOLbqb3lhxbcJVwdw4MCBLzSYV3B3EGJAAPRXD6yoqGDOnDlIkkRbWxsWi4UlS5Y4d6WOH7yiKKxatYr4+PhBGQD+/v40NDS47NBUKhWdnZ0UFRUhSZ9nIyiKQnV1NSaTidbWViwWi1MM+Pn5sXXrVrq6ujxmDtx///0EBQWxb9++u/pAenjtTPz9+vO7b0cCHlo+mbamG5w8eZKVK1cyZcoUoN93rlIkxkTHkZGR4SzmkpGRQXt7O+3tQy+uN27c4ObNmyxbtsyniHp3DCcGQv28M5GHaoY/r7W1ldDQUOfi6uhe6E3wYGVlJTExMc7vgTcUFhYSFRVFSkqKx/NKSkro6+sjNTXVZS4mkwlJkoZ1SwxVU0Cj0bBx40aWL1/O8ePH2bNnj88LL8CZM2coLS1l/fr1JCQM7d9fuXIl06dPZ9++feh0Ompra3n33XdJS0sjKCiIJKvMGqPME91W/kwTyn+u30IYEnq9nk8++cSreSiKwtGjRzl06JCz0qU70eoIFK6srOTKlSs+37Pgq4UQAwKg/4GqVquZPn06iqJQU1ODn58f8+bNo7CwcNCu6dy5c3T39rgswJIkYTQanfUHEhISiIqKcvqsjxw5Qn19Pf7+/iiSgj65l6rcRp4qfp5ry+ppyu5ECft84YuJiWHdunWUlpa6dQX4+/uzYcMGampqnEWL7gbXKkqYNb6X6DDXn4xKUnhoWSYbliRz4MAB5s6dy4IFC5zHHRaL6OhosrKyaG5uRq/Xk5qailqtHvJB67AKjBs3zueIencEBAQ4iwcNRUboWJKDoj1WoIzwC2J2dMqw73V7GWKHT338+PHuLgH677uqqsonF0FfXx9Xrlxh1qxZHkWTLMt8+umnQL+AHIij1LKn6z3VFJAkifvuu4+tW7dy9epV3nzzTZ/qYOh0Oo4ePcqiRYucInIoHJU409LSeO+993j77bcZN24cfn5+VFdXs2nTJrRardO8X1hYyNy5c5EkiQsXLgzb28Nut7Nv3z5Onz7N/fffz/33309mZqZLaeLbycrKIjMzk4MHD36lO4sKhkeIAQF2u52ioiKmTZtGQEAAZWVlGI1GkpKSaGtr4+bNm84YANlfzZUEO/9kPsO/B15m7xQzl5PsKKH+TmHgeOisWLECg8HA/PnzWbVqlbMaYZ/FSMvCXlqyurAE21AkBdlPoTPRwG/1r3O99/PAuilTpjBz5kwOHjzozDi4nQkTJjB37lyOHj3qdqd9J1y5coWjR48SpFX45d+u461f/QkrZ0fw4PwoNuZqGRfawQcf7CErK4sHHnjAZVFxBFmGhIQ4AzOvXLmCVqslJSVlSDFQWVlJfX09y5cvHxWrAAxvGZAkib/IWtVv93BjYPle5gr8VMP7nltaWlzEwI0bN4DhgwcbGxvp7e31SQBdunQJwGP7aOhv2WswGEhJSRlUyMibJkze1BSYNGkS3/rWt+jq6uKVV16hubl52Pm3tbXx/vvvk5GRwfLly4c9X6VSsXz5cmRZxmKx4O/vT0VFBVu2bGHKlCmsW7eO+vp6cnJyOHPmDOHh4Wg0GiIjI/nwww/dZt9YLBZ27txJSWkpYxcu5GBvHz/95CiNISE0t7W5LcfsaLRksVg4+ulRLnde5zeVe/j5lR3sqDmK3vzFZPsI7hwhBgRUVFRgMBiYO3cuZrOZI0eOoNVqGTNmDAUFBfj7+9PR0YFZo3A03cy1eAXzZ65fmwauxykcSDVgi3CtbmaxWDCbzURFRbmkmekn9NAR1N1vXx+41qnAqlj4r8qXXJqfrF69mpiYGHbt2uV2d7tixQrCwsLYu3evU3SMBvX19ezZs4fQ0FCio6NJS0sjNSmGnAmhpIzxY/rUHK5fv86YMWPYtGnToEA/x8M3KCgIrVZLWlqa06Sanp7OzZs3Xe5JURTy8vJISUnxKg3PW7xpVrQyPodnI+eg+Szj0ZFOppElVstJbB0/uDPj7dhsNjo6OlzM8PX19QDDNijS6XT4+/uTlJQ07PuAa+Cgp2ZGiqI4rQJDLebD9V2ora31uqbAuHHjeOaZZwgMDOS1116jsrLS7blGo5GdO3cSGhrK5s2bvRJ+3d3dvPPOO4SHhxMQEEBlZSWrVq1i0qRJQH99gOnTp6PT6cjJyeHIkSPk5OTQ1dWFWq1mz549g34fBoOBN998k5LaOg5FxfAfly7zbmkp75WW8YviEvYEhXDYQ5BueHg4uUsX8Zr5OD8o/i0fNZzhWNNFXr9+kEfP/gsf+VB6e2AfD8EXixADAgoKCpgwYQKxsbGcOHHCuWhotVpKSkowm81ERERQnqzQ58+gameKBFYNFKV8njev1WrZvXs30F/SNS8vj7i4OBQUulNMuLNHyyi0WfSUdn3ug3TED/T29vLRRx8NGRug1WrZsGEDt27d4uzZs3f4ifTT1dXFzp07iY6Opqenh9zcXOcD29Fu2RHMlZKSMmRwnMFgQJIk57Hs7Gzq6+vp7u4mPT0dWZZdat6Xl5fT3Nzs1S7RF/z9/YcVA1arFdNZHWtK1DwmZZBzS8U/T9nIYzXRLPdP8ep92traXDIJ7HY7nZ2dBAQEDLv71ul0TJw40et6Cjdv3kSv1w8bOFheXk5PTw/JyclDChJPYsBut7N//37GjRvH7NmzvZpXeHg43/72t5kwYQI7d+7k3LlzLt9Zu91OT0cvu97bhcFg4LHHHvOqTHBfXx9vvfUW0C8kHRaNixcvunRWXL16NYGBgXR3d5OUlERFRQWBgYHExsZSW1vLyZMnned2dHTw2muv0drVRV5oGO2ffUdssoztM9FgkiT+vbScdg/dG48GX6M7ov/3b1dk7Mj9KamKzK8rd3O+vcLjvZ1svcz3i/6HB/L/igfy/4q/vPhbzrSVe7xGMLoIMXCP09DQwK1bt5g7dy6tra2cO3eOhQsXYrFYqK+vx263k5SURHtfN3WRstuyp4oEDRoTpvD+Rc9utzuDCPfv309TUxNmsxk5ACwazwFWKlTcNLiWMo6Ojmb9+vWUl5e71IcfSHJyMgsWLCAvL89tSqK3mM1mduzYgUajISEhgaCgIJdcf0mSaGlpQZZlpkyZQklJyZBFhPr6+tBoNE4RkZGRgUql4sqVK06LiWP3KMsy+fn5pKene7079hZvLAPnz5+nt7eXsKAQlsVkktGiZn3STGSjxescfMfn7hADra2tyLI8qBPl7RgMBurr632KFygqKiImJsZjLIKiKM7gOXcmfk9ugjNnztDW1sa6det8ctlotVoefvhhcnNzOXz4MB9//DGt9e28+PxrbIr8Fpujv832Z/djLJYwdw0fcGg2m3n77bcxGo1MmjSJgoICVq5cydNPP01fXx87duxwZt34+/uzceNG6urqmDBhAkFBQUiSxI0bN5gxYwbHjx+ntraWxsZGXn31VQCicxfQYTINmVqqACZZZnvR0NaBGkMzZ9sr3D4bVEi8ffOo23t7/fpB/qnsDa5213zWTBrKu27w09JX2VHj/jrB6CLEwD1OQUEBERERpKenc+jQIcLDw5k2bRrQXyhGq9UyY8YMuvzsyF48C1vV/SZvu93uNJE3NDQgSVK/qVIZ/isnKzJ+0mDfdE5ODnPmzOHw4cM0Ng6d775s2TKioqLYu3fviFv2yrLM7t276erqYvPmzZSVlTF79mzn7t5ut3Pz5k1sNhvbtm1j0aJF9Pb2DhlRbTabXXZ9AQEBpKamOuMq0tPTqaqqQlEUSkpKaG9vZ9myZSOatyeGEwN9fX2cOnUKlUrF7Nmzsdlszoh5d018huL2TAKHi2C44EFH7IS3YsBgMHgVOHj16lW6u7tJTEx0G6VvNBqH3Jk7agrk5ub61DDJgUqlYtWqVaxbt45z+ed5eupf8uH/O4yxt//fQbEpnNtTxJ/N/htqKurcjmOz2di5cyft7e1Mnz6ds2fPsnjxYhYuXEh0dDRPPPEEra2tvPfee87vfEpKCvPnz+fkyZPcf//9WCwW/Pz86OjoICkpiffee4/XX3+d8PBwnnrqKU7XNwx7P3tLLlNXV0dLSwtdXV2YTCZkWeZ8e4XHxlwyCuXdN+m1Ggcdu9JVw/aaT5znDbwG4NXrB6jqqR92boI7R4iBexiDweBc6K5evUphczW3Zkby9+UfUJJkpyNQdhb2CfH3bjGICAkDYOHChS7+c4eZNFQbQkCH1m2QGgASqGuHPnT//fcTFxfHrl27hlzcHKleTU1Nzq50vnLo0CGqq6vZunUrtbW1yLLs7BaoKAr79++nu7uboKAgxo4dS1xcHCkpKYOyGWw2GzabbdBCmpWVRU1NDb29vYxLi8GgtFFbV8Px48eZNGnSoJbIo0FAQABWq9WtQDp+/Dh2ux1Zlpk5cyYWiwWtVovFYkFRvO9LcHtPAkeVxXHjxnm8TqfTMW7cuGGLBjkoLi5GkiSncB2KgVaB1atXuz1vKMuAoigcOHCA4OBglixZ4tWc3DFz5kws5RpMXSZku6s/3G6T6es28p/P/m7Iax3C9NatW8yZM4fTp08zf/58Z+0PgPj4eB599FFu3rzJ3r17nb+1FStWEBUVRX5+Plu2bMFqtXLjxg3i4uIwGAxotVqefPJJgoODMdlsnutMSBJdfQZee+01XnrpJX7961/zwgsv8K//+q98kvepV2m9P//lC/ziF7/gxRdf5M033+SDDz7g90W7PQoJtaRif8PouP0EnhFi4B7m4sWLSJJEds4k/v7y+xzPtvNpdxVnOm9wI04hb5Kd96zXqLhSgZ/e2F9pzMNvXm2HgFv9ZXvPnDnjFAMDRUFPTw+xN0L7YwaGGkuB8eZxnD9ylqqqqkGHNRoNW7dupa+vz20p4oSEBO677z5OnDjh1oLgjvPnz3PhwgXWrl3rXOCnTJniLAKTn5/PpUuXyMzMdNmRzp07l7q6Opf36+np/yxuX+CysrJQJ7fwvzXf5aD5JwStvcj7nX9B37gy7luyyKf5eoun/gR6vZ7CwkL8/f3JysoiLCzMuZP0tWOhu7RCTwLHbrdTXV3ttVVAURQuXrxITk6Ox3npdDo6OjpISEjwKEaGihkoKyujurqatWvX+lQWeSj0TR1c+qQcd3Fxsl3mytlKbpa7WgcUReHDDz9Ep9Mxf/58Tp8+zcyZM7n//vsHWUMmTJjgtGIdPHgQRVHQaDRs2rSJlpYWbt265RREhYWFjB8/3rkZAJg8dgxqDxYWCYiRZZ5++mmeeuoptm3bxtatW1m/fj2L0mZ57JqIAv4WFVqbir6+PmeG0uXLl6k2NHrs8GlXZHS9o1fuWeAeIQbuUWRZprCwkClTpvAv53dxM7Tfb2lXZJA+DxLcd6uYq2PsSEhk1UtuA/9QYEpPMFrl8wJFjl3o7dHLYfpgxpZFIMvQaQqgsTeUpt5Qei1aQtoDyawbz8SJE9m9e/eQKU2RkZFs2LCBK1euuK0tsHjxYuLi4ti7d6+z4uFwVFZWcvjwYXJzc5k1axYVFRV0d3eTm5sL9PuoT5w4wYoVK0hKSnIpLpOZmUlYWBgXLlxwvuYQA7dHoJf0fYD/PB19UqvzNdnPjDanjtOm3yIrI3NveMKTGPj0008JCAjAYDA4g+SsVitardanuv1WqxW9Xu8UAzabjc7OTjQaDWFhYW6vq6urw2w2ey0Grl+/TkdHh8fAQUVROHz4MOA+VsBx3u1iwFFTYNKkST7FMLijXteE4qbb5UBqKj5f9BRF4dChQ5SUlDB//nzOnDnD5MmTWbt2rVu3yKRJk1i7di0XLlxwBgnGx8ezZMkSTp486dJDITk5mVmzZnHo0CFaWlrYnJnpvhQ1/bo902rho48+QpIk0tLSmDRpEjNmzGBN1n0EWTUeNwpPZK7mH3/6j/zDP/wDP/7xj3n++ef57ne/y5jIGI/XSUCgavjgSsGdI8TAPYrDl5qUNoETljr3i7wEujEydklhfLuKnDpVf8qZApKM888TWiRSqkzOnbpWqx20aw8PDyc8PBy73Y7GEsWN9rE09obRZQqk0xRIXU8kzQHJVN6qJSQkhNDQUN555x1n7fiBZGdnM2/ePGcho9tRq9Vs3LiRtrY2Z2MaTzQ1NbF7924yMjJYuXIliqJw9uxZJk6cSFxcHJWVlXz88cfMnj2bhQsX4ufn5yIGHL720tJSZ2S3I2YiPDzceZ7efIszbW85P9vbP+sbhkKudOcNO19fcScG6urqqKioICoqyqX9r0MMOD57bywDDuHmcBM4GvrExcV59OtXVlYSEhLitXukqKiI2NhYj0GW169fR6/XM3bsWI/1DYZygzhqCnhyLfhCQLB3i1nggP4XJ06coKCggHnz5nH+/HkyMjLYsGHDsD0qZs+ezdKlS8nLy6OoqAjAWUmwrKyMlStXEhQUxKlTp5g1axaRkZG8++675O15n4VyvwgdaCFw9DqYL0GsotDR0cGrr77Kzp07aW5upqKigldffoUZVZGo7eDSrPOzZ0NUhwapoA273Y5arSYgIAC9Xk9eXh7SVc91CBRgSZx7V5Bg9BBi4B6loKCA5ORk9pedRR7mW2DVQG9Yf7pXRrOK9VcCmXxLxYRWiawGFfeXqplep0YasLo5Hv4DXQVdXV10dXXhHx/JsSQDVpUCkoTy2X8A9ZZuLk335+KlYrKzszEajezatWtIX7ejJPLu3buHFAxjxoxh6dKlnD592mNnuZ6eHnbs2EFMTAybN29GpVI5o63nz59PfX09u3fvJjMzkwcffBBJktBoNMiy7GL1mDlzJoqiOLstOsTAQMtAadchJA8/OwmJko6P3R4fKUOJAYdPPTY2loaGBpdgvNvdBN5YBlpb+y0dDsuAoznRcJkROp2OtLQ0r6L1e3p6uHr16rCBgw6rwHAL+u1uEF9qCnhLk6EB/3DPPRmCw4OYvqy/B8X58+fJz89n1qxZXLx4kZSUFLZs2eJ1yuXixYuZM2cOH3/8MSUlJezcuROz2ez8DT7yyCMoisLbb7/NnDlz0Ov1GAwG/uvpp3jr4W9wX0oKakAjScQrMitMfSwNCyU0NBSr1cr06dNpbm7md7/7Hbt27SIuLg6t3s6c4jDGNfjjb1OjskOIQU26LpDJ5cFUXdOxc+dOzp49y4svvshbb71FY2Mjie1B+Fklhur4rUJFrH84K8bM9PUjF4wAIQbuQZqbm6mpqSEpKYlbjd5F6loHLMaqPivpzSqm1anJalQRPETXMkchnTFjxjiL9Ti4oGlDHuCKGIhdkWm09xI+P5OTJ08yf/58ampqOHTo0KBz1Wo13/jGNzCZTG57EyxcuJCEhAT27t07ZM14i8XCO++8gyRJPPbYY07/8NmzZ4mNjSUyMpIdO3YwduxYp1CAz7stDhwzODiYyZMnU1hY6GzO43jdQaelAcWDXVRBocMy+j7SocTA1atXqaurIykpCUmSXNr/OgIIfeno19LSQlhYmDMyv66u3wfuLoof+vPc29ravK46WFxcjFqt9hg4ePPmTWcg43BZDAPvb2BNgeFqF3iLTqfj2LFPWfmc51iQx/9uM9oALZcvX+bQoUNMnTqVsrIy4uPjXToYeoOjKmBGRgZ79+6lrq6Ob37zmzzwwANcuHABq9VKdnY2BoOBAwcOEBUVhdlsprW1lQXJyby6ZRM/DAniV1kZ/NOsmYyz22loaCArKwvor/potVqd/Rzq6ur6/2yU2BI2n4d0E1h0OpyZF0OYQTIqSYVarXY2VYqKimL8+PF0d3cT7h/CtMshxPj1Cy9JkZA+EwYJgdH85/Q/I8iLfhiCO0eIgXuQ8+fPExoaSnl5OdOix3uO7AdUMoR9tvFWqVREREQ4/+w8R6VCUaDNrqbAHMCnpiBOmgI5X9dKS1u7M5c+ICCA+kjFY8CRWlLRMUZLdnY2p06dYuHChRQWFrr44x1ERESwceNGrl27Nqi9q2NeGzZsoLOzc1A/eFmW2bNnD+3t7Tz22GPOnWB7ezvXrl1j5syZvP322wQGBvLoo4+6FBVy/Pn2eIS5c+fS2dmJTqdz6qQyzwAAIABJREFUioGB1fECVKEeLQMA/qoQj8dHgmOBdogBu93O0aNHmThxIjdu3GDSpEku87RarU7LgJ+fn1e70tszCRzWGE+VBysrK1GpVF5VW5RlmYsXLzJ58mSP4sQhHL0x8w+0fDhqCjz00EN31DLawcBSw5OWp5H6YDwarRpJklBr1CCBSq3iiZ9+g61/tZ5r166xd+9esrOzqaqqIjo6mscff3zYTo9DodfraW5uRq1WoygK/v7+zJkzh9TUVPbu3evy+aWmppKVlcW+ffvo6uoC+r8fGo2GxYsXo1Kp0Gg0XLx4Ea1Wi0qlcvYeiY2Nxc/Pz/k7UKvVLlY6R/qh1WolNjYWlUpFdXU1LS0tJCcn093dzbceepRXZv01OeXBLA7IJrEhgAW1Y3l93t8wLshzfQrB6CHEwF2ixtDOy7p8flVxiF01BfRYvxpNPIxGI6WlpcTExNDd3U3G2GTiOz8vPXs7kgJJ7RJae//qLcuy0/w98IFpt8tctARwzBxMjd2PdllDo6zhnCWIo6ZgJP9AVq5cSWZmJrLaszlYURTMso1NmzYRGxvLpUuXmDFjBu8cOsSP9+7jub37+PHBw5y8eRNZUcjMzCQ3N5ejR48O6Q6IjY1lxYoVnDt3zpnqBv2+4crKSrZs2eKyYJ0/f56goCAuX76MxWJh27Ztg8rdOnZqt1sbHJHrBQUFLqWIHYyRp6LgKUBQIid8pcfPZyRIkuRShbCoqAi9Xk9WVhYdHR2DqusNtAyMJJPAarXS0dGBSqVyKUV9OzqdjpSUFK8q8FVXV9PV1eVx115bW0tzczMxMTFMmDBh2DEdn4fJZHLWFBiubLI3GI1G3nnnHcLCwpg4cSJnz57l2z99nPcaX+H7Lz7Dw3+9nqz14/nTtx/nT/75EWpqati1axepqancunWLkJAQtm3b5tXncjv19fW89tpraDQannvuOcaMGcP27dvR6/WsWbOGvr4+iouLSUlJQaVSUVhYSFJSElqtlg8++ABZlrHZbKjVavz8/MiZnEN9kIUzKRYOpPdxPMNK5APTudXSSH19vTNTIy4ujsuXL7s0abLZbGRlZSFJkrMAlaIoSJJEXV0dW7b8f/beO7qqM03z/e19snKOCCVACJDICJOjgQITjMkgG5ui7NWuul3dt+fOzO11a63pnpmu66mequoq5wA2GQuEydnCZCSEJFCOKOd4dPLe94/D2eighKuomblTPGtp2Zy4z9lnf98bnvd51pOYmEhVRSWBrWr+dsJGJreFYqi1Iwovt6f/kXj5bb9g2CQHv8o5xprvf8tHxVc4UHmL//LwJEsu/ZrvarL/Zx8e2dnZyLLM48ePGTt2LDdu3GBGnQFPMwrhB57+v28vJFWLbtbDnp6eCILglhWX2jWUObRPnura7J3/7ZJFbvRquHz5Mjk5Ofj2yIMGH663TvAJQ6PRsHnzZgCOVFZxwuDJsZJSLpWWkZ6fz1vfHmP74aP0WK0sXryYiIiIQfkDKSkpjBw5kvT0dKxWK5mZmdy6dYtly5a5lahNJhPZ2dno9XpaW1vZtm3bgHa6A7UJXJgxYwbl5eVuwYDD4eDq1auc/OoGYnugG79CgSSgdhiY6L9y8C/nz4BLeMhsNpORkcGkSZMoKysjJCSkX1+/b2XgeScJ2tvblWDANWIZGBg4aJZttVqprKx8bsZ+VlYWoaGhQ44J/piqADxtE1y5cuWFaAqAM2BOS0ujt7eXOXPmcP78eaZOnUpKSgre/l689u6rvP2ft7IodTaN7Q3U1dVx8OBBIiMjaWlpQaPRsGPHjiH9FgZDaWkpe/fuJSAggJ07dxIcHMzWrVsxGAx8/fXXHDlyRLmOk5OT0Wq1hISEcOnSJV555RVFrthVGZBkiZthvdwcI1HnK9FtgBZPmS9bM7mYYAUfPZWVlQAKOdgFQRBQqVRuToweHh7ExsbS29tLYGCgcu5dv0MfHx9CQkKw2WxDumy+xIvHy2DgBeP/fXRa2fQlZOyyc4rWItn5f3KOcb1pcOOSvzQkSeLevXt4eXmh1+spKSlBFEVEk40FBSqSqkVCBQ+0NvA3i0x6LDKvUIVGEpBlGYPBwK5du5RFxgVZhkK7jsH6DTICNRbodDiJd/FN4uBtAhlEQWBtlDP78/b2xjclhVtW56brIhq6xqDu1dbyf507r/AHrFarm/CKC652gdFoJC0tjTNnzjB9+nRSUlLcHnfv3j1FT3/jxo2DMtwHaxOAc8TL09NT2Wja29v59NNPuX79OnPnzuO96Z/gZYxHllH+ALTWAMQ7M/FQ+w3y5fx5cAUDN27cwGq1Mn36dIqKipg2bVo/Mp6rMvA8jn4wOHlwxIgRgz6noqICh8PxXMFAV1cXxcXFQxIHa2trqa+vJyAgYNi2g8PhICfjEZlncumtt7wwTQGAixcvUl5ezrJlyzh79izR0dEK8bQv4uLiaGhoYN++fQQGBioZdWpqqqJr8WOQk5PDwYMHiYuLIzU1VQkmPDw8ePXVV+nu7qalpYUdO3Ywbtw4Ll68yPTp02lpaSEqKoqMjAymTZtGRkYGFosFlUrFv2We5lKr08JYdo/xMeng5sinG3ZtbS1z584FnJUzb29vOjs7OXr0qNKCM5lMlJeXM2/ePLq6uti/fz9ms5mysjLi4+OBp2qVriDjJf7H4PlZKS8xLJrN3aQ9zhy0BS8i8EnJVeaEvBiP+h+LZ/vYfbNaHSp+veYdCpuLuXD1AjqzCtHydPHS6XT09vZy6NAhxf/dBaMsYBpWZlimWVITplXz9qylROkbOFp9D0F+usiICEjILGzxw1N2/jRlWWZ/weB+6pIsc764hOqOTqL8fFm3bh0HDhzg5s2bzJ492+2xAQEBikRrREREv+zR4XBw48YNZFlm9erVyuI0EIaqDKjVapKTk7l16xaCILBnzx7CwsLYvXs3oaGhdHZ20nwunKDoUZg9azCajUitXowfvZi7NXdpa2sjICBgmO/zx0Ov19Pd3c2DBw945ZVXKC4uVo71WfSdJvhTJglc455DkQeLi4sJCAggMDBw2NfPzs4e9Fhd6FsVGGrSIOPoLT7+uz201LYpt/mGe2Gcb4E/U1bgwYMH3L59m8WLF3P9+nU8PT3ZsGHDgJwLV/tErVZjt9uxWq3s3LkTX19fWi097K+4xXc19+m0mQjX+7J+5HQ2Rs/AoHYPWGRZ5saNG1y+fJkpU6awcuVKt2pMQUEBx48fJzg4mM7OTq5cucLrr7/O559/Tl1dHR4eHnh4eODp6UlZWRmRkZHU1NRQWlbKIZ9yGCQ+kgRo1NvoMKiYHBZHRUWFYtusUqmUFkxQUBAtLS2IoqhM30RFRTF69Gj27dvHnj176O7uVkjGY8aM4eLFi5SWlpKQkPDnnZCXeG68rAy8QFxrKhpSTUtCJq+jhlZLz6CP+Uvizp07qNVqNBqNm8sZwKSN0/jPNb/lM9MBqma2UDy/jtrkVmw6Z9kvMDAQQRDo6elBlmW0Wi02lUyNv0RNsITgY2M4JqIsyyQnJzN9+nT+Y9Jr/NdJGwjoFREkJ0lxjN2b3ya+QVCdhUOHDmG326nr6qbqSQAz6OsC159wAUaPHs3s2bO5fPkyjx+7axr39PSQk5ODRqOhu7tbMXZx4dSpU1itVmbMmMGkSZOGfM/BOAMuuDIhWZZZtGgRu3btUvTtMzIynBus0UCMOBef1vHoTCF0dXYhiqKi0/+iodfrqaurQ6vV8sorr3D//n2Sk5MH7Ev31Rl43sqAr69vv0mCwfrvsixTWlr6XFWBvsTBwXro9fX11NTU4O/v7za58iwyjtzknzf9q1sgANDVaOTfL/sncq8N7a43FGpqajh16hQTJ06krKyM3t5epUT/LHp6ejh27JjSbuvp6WHHjh0EBARQbWxj4w9/ZE/ZD7RYerBJDh73tvHbwgvsvPU5PTb38dBz585x+fJl5s+f70Z+lGWZ69evc+TIEcaMGcOuXbvYtm0bdXV1nD17lpUrV1JWVqZ4ZSxevJje3l6lqlZYV4VJx+AaJODUG4kNJDU1lTVr1nC3pITbWh0HRDWHNDqu6wwEjE1kwoQJSiAgCAJpaWkEBASQmppKa2sr8FSfwrXWDKQf8hJ/ObwMBl4gTA7rkDrbLhw4ephTp05x8+ZNCgsLaWxsHHRT+VMhyzLXGov4xb19/OTKb1h35becM5VhlG393ks/3ZsD7cdpc/TZdAXoDjVTldKEXescLXItEg7JwQ1DC2cmOrgXL1EQ60A9qRv1tE4Er8HU/gRemzOD27dvK3rxyQQyr0BkfY6ONffVJD7oxavdxtatW6mtrSUtLQ2rY3j1QAEUu1WARYsWERUVxbfffovRaAScm9uhQ4eQJIkdO3ZgsViUWXRwZqkPHjzA19f3ufrNg7UJrFYrZ8+e5cKFC4AzQ+rr09Da2sqDBw+YNWsWzc3NREZGkpiYiN1up7y8nOjo6L9YMCDLMt3d3SxYsIDKykq6u7sHtOV1eRS42gTPQ2Jrbm7GOySAz0q+Z/nlD/g6vpXzSXZOGYvoGsCgprGx0UlgfY6RwtLSUrq6uoa0EHZVBZYtWzZoVcDhcPDhL/cMeJ8syUiSzGf/7pthj2cgdHV1cfjwYcLDwxWdio0bNw5Y4TGbzezfvx+LxYKHhwcmk4nt27crm+E/PviWDmtvv8RCRqa4q4HfFTqvH7vdTlpamiKfvWDBAuWzOxwOvvvuOy5fvsy8efNYv349Go2GqKgoNm7cSElJCUVFRUyePFlx0Lx37x5z585VNuHn9Wg0mUycOXOGi2VlnNAZKFFrMIoiPUClWs0/Zj/g28IiVq1axfz58xXVxz/84Q+YzWZCQkIQRZEDBw4orbWeQC23hUbSHmfSaOr8E87IS/xYvGwTvECM8g4dsjIAoJVFgnRe1NbWkpeX55adent7K0pwAQEBbn8/hlUsyRL/lHeC49X3USHgQHamz5FQFgpzC1X4WEV0Oh0myUyOr9NBr9/VL4JdJ9Ea101o4dM+9sMREqWhcv/HGyRUE7uw3/cF09OyqIBMYmgAG5cv4Y6/N+fOnUOSJLy8vNBoNAiCgMPhwM/Pj9OnT7Nu3To2bNjAoUOH0Or1+Op0dA5BJpKBqnt3yUZm/PjxaLVa1q9fzyeffMLx48fZunUr6enpNDY2snPnTqVF8N1335GYmIiXlxdHjx4FYNWqVc8lfjNQm6C8vJyTJ09iNBoZP348jx49wuFwUFFRofSwMzIy8PLyIjIyEkmSiIiIICIighs3bgBOqeWcnBylZ/8i0dDQgEqlYsqUKRw4cIARI0YMmLm7fpMajea5KwNVrQ1cjO2lvbjUeQ2I0KuFT0szOFWXy95ZPyVQ97QPXlJSglarHVYHAJzEwfDw8EFbDo2NjTx+/BhfX98hg4vcjHza6tsHvV+WZArvllJbWk/kqOc3i7LZbBw+fBhRFBk1ahTff/89q1evJiYmZsDHHjx4kPb2dkJCQhRuhasVU9LVQE7H4A6GEjLf1dzn3dh5nEpLp6amho0bNyoaAOB0oDxy5Ag1NTWsW7euX2tl9OjRrFmzhuPHjzNz5kyFEFxRUUFlZSWBgYG0trYS4R2Ap6UZo5YhFUo9Gkz88Dibb3V65+rX5/pxheh3dXp0I0YwJSSE6upqamtrMZlMfPONM/hKSkqirKyM/77/c+7GS1TGGEGG+3knEBFYGTmRf0xajU7148csX+L58DIYeIGYERhLpMGfelPHgEGBIEN0EwSPDOT11WvRarX09vbS1tbm9tfU1ERhYaGbQIynp6cSGDwbLDy7WB97nMXxaqf3uMN1HE+uT6sK7oyWeLXA2dOzj4Eh2/0idET2ElLoiyiIaIN8KAtrG/ChwhMhIdXIXhxF3ji3aYEAvYZRXdXk5OSQkpKCKIqcOXMGHx8fRo4cSX19PVarFb1ez6RJk0hPT1dMUE6cOEGMRkuORuu2yCjviUygJBOp0fDdd99x7tw5xo8fz+TJk1m7di0HDhzg66+/pqqqio0bNyobyqRJkygoKODEiROAs+wfEBAwJE+gL/q2CcxmMxcuXFDGtVJTU8nJyVHG+e7evUtcXBxNTU3k5eWxcuVKmpqaEEWR0NBQVCoV3t7eWK1WLBYLDoeD8vJytwX+z4UruzYYDHR2dlJeXs6aNWsGfGzfYOB5OANWq5UMvzban3A+FAjOzave1MF/eXiS30zdotxVUlJCXFzcsPoFnZ2dlJSUsHLl4BMWz1MVAGhvfL4Ms72x87mDAVmWOXnyJE1NTSxevJjz588za9YsNwEnFxwOB0eOHKGuro4RI0ZQXV3Nhg0bOHLkCGVlZQQEBFDQNbyxlkWy8+HhvWhbTOzYscNNbrmlpYUDBw5gsVh48803B1V/TE5Opre3l/PnzzNx4kRycnIAJ5fo7bff5oMPPqC9rZ0xahXZIwcehRVkCOx2apA80Ij9AgH3x8r846HDvBMXS3R0NFVVVQQEBNDV1YXdbicvL4/AuEiO+lRhM+Jcr568lITM6docjHYL/zpt67Dfz0v8aXgZDLxAiILIv0zewE/vfIXFbnNjzAsyxHkGsytuPHdu3CYnJ4elS5eSlJSEp6fngBetyWTqFyi0trZSUlLi1vM3GAxKYODn58dntv7iPC7IInTrZRo87IR0i3RIXa49e/DnqGUEnYjKoeKR2O6kvw/yeEEEIdiGV7mMxuFgcog3//zeTq5cOE96ejoWi4UZM2YAcObMGby8vJQNwWQy8dprr2Gz2fj222+Vkb4JNivNooo6tfqp2eGTloVBllmKhMlk4r333qOgoIDs7Gyys7MJCgoiKCiIqqoqpk6dSmJi4tPjFAQWL17MJ598glqtxmazDbuZ9IUoioiiSF1dHVevXsVisbBq1SqmTJmCIAh0dTn7/xERERQXF9PR0cHVq1fx9/dn8uTJnDp1itDQUCWoSExMJDs7m6qqKgIDAykuLn5hwYAkSVy4eAFdoA9dvb3cvXcPvV7P+PHjB3y8q9ohiiIOh2PYykBhXSX1fjAYZ8QhS1xtKKDJ3EWI3ofe3l5qampYtWrVsMd+//59NBoNEyZMGPD+1tZWKisr8fHxGfb7Ch4xPFHxxzwOnO6ceXl5LFmyhKtXrzJ27FiWLOmvEyFJEunp6ZSXlxMTE0NlZSUbN24kISGBESNGUFFRwfTp09GJz7ck281W3n37bbepnvLycoW5v2PHjgFHYvti5syZ1NfXk5OTg0qlQpIkjEYjjx49Uh4T0yzQqRcpD5Gekn2frBdeZphR7rx2m0WVMukzEGRBoNruUIJScAojgfNaTEpK4mhPPjbVwMqkEjJXGgvI76xlnO/Qdtgv8afhZTDwgpHkH8VHE7bwq8vfUBMgI4ngJWuIaYL1obEsW7mYlElTuXjxIsePHyczM5MVK1YMOMJmMBiIjIwccK7abDbT3t7eL1goqiqjcczQBEVBhlYvCOkGtVU1bHNQkEC2SthlGatKHjZ4QIQdo3xoqqpF6DahFQVee+019Ho9Z8+exWw2K+VhF6ENnBLGkiTh5+eHJEm0trai1+uxWCwsspiotKtpC4+g0WzG3mtkbkgIXo+r0EgS7TYbly5dYvPmzcybN4+Kigp++OEHZTzpwYMHREVFkZSUhCiK2Gw2Tp48iVarxWKxoNfrB91wBoIrGMvMzGTUqFGsWrXKzZCou7sbWZYZOXKkEjAUFhaydu1aVCoVdXV1bgFgYmIid+/exWazER0dTWlpqSLO8ufi41unOBRUT9eTsfXLphssSI5GUA0+/w8oHJHhKgMPGsqH/Q1JyJR0NRKi91E+23DkQUmSyM7OJikpadA22dmzZwEGtPV9FtoQEUOADlPbwC0nUSWSNDeR0OjnU70rKSnh0qVLzJgxg3v37hEQEMC6dev6HYcsy5w9e5aHDx8SHx9PWVkZ69evV5jysbGx3LlzB0mSSAmKRy2I2AfzO5bBy6Hil9t/il+f31tmZiZnzpwhPj6e9evXD3vOXEZceXl5eHp6YjQa8fX1VRwbAUaNGkV7ezuvtJgY0WqkMliixyCgsUlEtYlEtAuoZIHAwEDUJvOTJGHwcyA57HT19Pa7XZZlcnNzKZ1oH1aZ9Fxd3stg4C+El8HAXwBNj8qZ0+iF2CLS3WtkfMJYRowdwaVLl5g9PYWQkBA2bNhARUUFZ8+e5dNPP2Xq1KksWrTouYVG9Ho94eHh/YKINmMXh7//YNjnh4WEMDksiuKaUhrljsEXcwlCOwIJCghCFEVCtEaKhKGdxtQO56giOC/0iooKEhISWLp0KXq9nqtXrxIVFYVOp2P58uVKqd5isfDxxx/T3t7OlClTyMnJUVolngYDcSYT/2H2K4wdO5b9+/cjyzKTX3+db7/9FkmSlMX51VdfxcfHh4aGBqKjo4mNjeXatWukp6dz+fJlkpOTqauro6mpiU2bNrF//34cDgcWi+W5NODz8/M5c+YMkiQxduxYNm7c2G8D6OrqQpIkvL29mTRpEnfv3iUoKIikpCSsVivNzc1uGgcjR47EYDAoWXl3dzcNDQ3P7eQ3GD4qvMynHfegT3JvUsuckyqx3D/MB1M3o3pG6c11DC7293CVAWPn0L8HF7Qq53dbUlJCeHj4sEZAxcXFdHd3D6o42N7eTllZGV5eXowbN67f/VaHg3s1tbR0dlL78CHNJcVM2TKWGx/m9CtiiCoRtVbNz/5b6nN9lubmZtLS0hg1ahS1tbU4HA43b4u+uHLlCpmZmUogsHr1arfAMz4+noyMDOrr64mMjGSudiRXzZUDX5MC/HzCMiUQkCSJCxcucOfOHWbMmMGyZcuGlVI2mUycOHGCoqIiZs+ezYIFC/j2228pKSlxM96aNWsWvr6+fP755wT2CgQaXS0d99eXJIlwm41qzeAcFwGZeJUKDw8Pli9fjre3tyIhbjAYnC3L4S49WabL2p+M+hIvBi+nCV4wbDYbOTk5TJo0CYfdgVZU09nZyYwZM/Dz8+PChQtKxhUbG8vPfvYzli9fzsOHD/m3f/s37t2753ZB/hg8fvyYbz7/Cv9eYWiFPwEiTVqys7PxQM8ke+LAD5RAdAh4FWhpbW3llVdewfexEY0gDjpFKMjO0mJzo7MnrlKpKCpy6gQIgsC8efNYvnw51dXV6PV6kpOT3cbwDAYD69ato6CgQBFecemdR0ZGkpaWRlVVFTExMYqK4oIFC5AkCY1Gw61bt7h9+zYHDhzAy8uLzZs3M3/+fLZt2waAl5cXt27doqKiAn9/f7KyshQXwlOnTg1oduRCT08PR44c4ejRo4wcORJfX19lDOpZdHd3A84ebEREBJIkKfKvDQ0NyLLsRogTRZHExETlfq1Wq/g5/Kmo7Gnmk7Lvn5yYPncIztN3pbGAS/WP+j3PVRlwqckNl2V6tFrRDqMz4aXWk+w3AkmSnnukMCsri4iIiEEDosGqArIs8/X9bF756BNSj37L3124yG/q6rkTHoktWk9yahyeoe6fafysBH77wz8xesrwHgkmk4lDhw7h7e2NRqOhsbGRLVu24OPj0++xN2/e5Pr160ogsHz58n58goiICLRaLWVlZWRkZOBzs5opKudkgUpwWoa7rMJ/Fr+AjXEzAWfwfOjQIe7evcuKFStYsWLFsIFAbW0tn376KVVVVWzZsoUlS5YgCAL+/v5IkuT2PTocDgICAgbklvStgrW3txNns6LlqeWxG2Sn4miySsTHx4f09HRyc3MV8qTJZEKWZTxcKqiDwCHLlGc+5Pjx4zx69OhHKRRW9NRztTGb2y35mB3W4Z/wV4iXlYEXjPz8fEwmE9OmTePevXuo1c5gQK1W8+qrr3L48GG3xVClUpGSksKECRO4fPkyZ86cISsrixUrVjwX0xqcF21GRgbXr1/Hx8eHMQ0q7sQNPJInyOBvhN7iOkaPHk1KSgoHDx1k/NRRlAVUY5aeXmC6bg1jq2OwPCntZWdnM3pkLN0tzWQEdfZrFwgyGCwwpl7E7HAa3Lgy9r4l7ylTpnDhwgU6OzvZs2ePm5a5KIqcPHmSgIAA5yITF0dtbS2SJLFy5UouXLjAwYMH+clPfoLNZqOuro558+bR3NzMo0eP0Ol0nD9/Hr1ez+7du5WNLC4ujvnz55ORkaEcQ1tbGwUFBahUKsLDwyksLCQvL68f+1qWZfLy8jh37hyCILBhwwbGjRvHhx9+OKACod1uV0akDAYDt27dQqfTUVNTgyzL1NXVoVar3fq94GwV3L9/n9bWVuLj4ykpKfmz5HEPl912E3V6FiICR6vusiwiye32HxsMtDe1sChgJOcclYM+5q34OehUGqqqqjCbzcOOFHZ0dFBaWsprr7026P0lJSWKU2RffHL3Hh/8cL3fc0q6uqiQBV6L92byu6NYueA1Duw5xPpt65i95JUhj8eFvlLDycnJ3L17lw0bNgw46XD//n0uXrxIbGwsZWVlLFq0qJ/iJTjXgJiYGLKysujq6mLJosXMnTuXos56Pr17htLaKrwlNb/e9D6RngHK5z948CCdnZ1s3bp1SG0FcP6G7927x/nz5wkPD+fNN9/Ez8+P9vZ20tLSqK+vZ/78+RQUFNDS0kJPm40Pf3WMpjITRqMRj0AIG6fDJ1SNKIosW7aMI0eOKK+vBZaae7mo98D6TECgAhZaTMi9DhqeGCFlZ2cjiiIGgwFJklCr1cQ1d5MbNXgiJAoCr8dMo6GkitzcXOV7S0hIYMyYMW4BigtVxkY+KDxEQddTTxKDSseWkYvZGr34hbTh/nfBy2DgBSMzM5O4uDj8/f2x2+0YDAa6u7ux2WwkJCQQGxvL+fPn+zGpPT09Wb16NVOnTuXs2bPs2bOHCRMmsHTp0gEzDhdaW1s5fvw4dXV1eHl50dnZycKEBLprC8iPHJj0s7jBF0k0UVJSQklJCUFBQewS6hoFAAAgAElEQVRevBtJlPi+7Drnv7/A7MRXeHg7Bwu9JCQkUFRURHV1NREREQTUGfn5qBT2NWbS/kSUSJRgZLvIuGoB3RNTI1e5uaenh7q6OoX7UFNTgyRJhDwZM3I6HjoXkMePH2MwGHA4HHh4eDB37lz27t2Lt7c3hw4dYuvWrZw4cYILFy6g1WqpqKggKiqKdevW0dbWpmjiP5vlwNNsRqPRsHDhQkpKSqisrGTy5MlKFp6enk5bWxszZszAw8ODrq4uTp06RUlJCUlJSSxfvlxp5Wg0mgH1IVxVAdf5efz4MQsWLOD777+nurqauro6wsLC+jHpY2Nj0Wq12O12JVM0Go1uFsg/Btk1JUMOukrIVBhb+t3u+kyu/w7VJrBarXR2drIxdD69TXau2WucmewTLwuHLLElZiZvxztlal0b+FDKhOCsCuh0ukF5HK6+tiuzdaGxs5N/vd4/EHB+XrABj/QGUqNGEDN+JL4xnowYPfSx9IVLanj27Nlcv36dhQsXDtiiyM/P59SpU0RHR1NRUcGcOXMUqd5+xyVJ9Pb20tXVxdKlS5k1a5YziP4hC5+sGrYkjKOoqIhQnXMdqKmp4dChQ2g0Gt555x23oNLqcNDQ3Y1OrSb0SWXNYrHw3XffkZ+fT0pKCkuXLkWlUpGbm8vp06fx8PBg586djBgxgmnTpvFP/+6/k3euB5keJVM3G6Gtys7IqXoiknSkpaW5fQZBEAiUJNb39lCu1tCo0eCQZEIcduLtNp4NJ319fZUkyWKxYDQaiTWJ1ARItHniXsl6snb93bjlrI2dBYudwVBRURFFRUWcO3eOM2fOEBYWRkJCAgkJCYSFhdFobucX939Pr929gmByWPiy4gwmh4Vd8X8ZH5D/P+JlMPAC0dDQoMz9urIrnU5Hd3c3XV1dBAYGsmzZMj755BMyMzMHzBIiIyN55513yMnJ4dKlS/zhD39g7ty5vPLKK279bFmWyc7O5ty5c8rter2epUuXkp6ezlhZRXi7QPdYfyqNLagdMNbuy/YpSzj56AQTJ04kLy8PSZJoaWnhm2++YcWKFUz0Gc/t+utMWzaZcg+n+E1HRwfjxo0jPz+fpqYm1Go1HbeL+GJdKh8f/pqgyDC6qhrQSE+vYEEQlA1eEAQKCwuJjIxElmVu3rwJOIOEOXPmKDP2gDLjbDabeeedd7h58yZ+fn689dZb7N27l8OHD7Np0yaOHj2K1WqlrKyMefPmoVKpiIuLU4IBQRA4ePAgb7/9NjqdjtLSUk6dOkVSUhLl5eWkpaVhNBoZM2YMK1euZMWKFRQUFJCenk5GRgbXrl0jLCyMlpYWdDodmzdv7ieN2te6tS9cbGlweh1ERUUxd+5ccnNzuXfvHvX19QOOMKpUKsaOHUthYaEiG11aWsrEiRMH/c0NhpaWFnpbOxADhSG1L7wH8Iq3Wq2oVCqFQzEUj8IlQ+zp4UFoZgvL9TrKfa2MHDea6IAwVo+YTLTXU9fCkpISRo0aNWRG5nA4ePDggWKk8yy6urooLCzEw8PDrYpTXFzMr0+dxiENTmSTBYFiWWbilClu9sXPA5fU8MyZM7l16xbJyckDbvBlZWUcO3aMyMhIqqqqmDFjBosWLRr0s6anpytCPy6TnmPHjlFUVMTq1asJDAykqKiI1tZWmpubSU9PJyIigk2bNimBYq/Vxh9u3+ZATi7dT8rnicHBbE8cS/Od2xiNRqWiZbFYOHnyJDk5OSQlJbFy5UqFoGkzyeRf6qRftf/Jvx9nmfEOUeEd6pT3dk0EuK51DZBgtzFJo8YvwI/6+np8fX0xGo1u10p3dzd2i4OCG+U0ZrdjMzrQ+2oZPTOA1hXeVIWC7cnPzscEfztxJa/HzlSe7+fnR0pKCikpKZjNZkpLSxUOQkZGBj4+PjyeINGrNg/6+z/8+AprR8whSNe/ovDXiJecgReIzMxMvL29SUhIcCsTA4pPeGhoKJMnT+b777/vJwnsgiAITJo0iffff59p06bx/fff8+GHHyrZq0tU5OTJk0o/fc6cOWzbto2zZ88q6nG+FpGYR0bmletIKVezNWkBUyZOYu7cueTk5KDVaklJSUEQBOrr6xUzHXBe3FOmTMFms9HY2EhERAR6vR673Y5Op6Onp4esrCw8rQLmyiY8VFq3fmXf3rssy9y5c4eamhr27t1LaWkpfn5+vP/++yxevNit8uFSbBMEgQsXLpCfn8+cOXPw9fUlNTUVh8NBWloar7/+uqL01tPTQ15eHjdu3GDmzJloNBosFgstLS0cP36c2tpajhw5wqhRo1i7di1vvPEGVVVVNDc388orzvKwKIqMHz+eDRs2AM5ef319PTabDUEQqKuro73dXbDGNZLYFya7lfzWanp0MjIyDQ0NLFq0CFEUmT59Ovn5+U5Bl0Ey48TERKxWK/X19YSGhv7JaoSXL19mtNlryEDAJebyLH6ML4ErGLh//z46nQ5Dj4MJdWr+ZcYWfj52qVsg0NnZSVNT07B8gaKiInp6egYlDrrUHRcvXowoinR1dXHkyBEOHjwIBgPqYfrmkiAQFBHR7xodCi6p4fHjx5OXl0dERASvvfZav6CmpqaGw4cPExISQm1tLZMmTRrUK8Fut3PkyBHy8/N544038Pb2pri4mH379lFaWsrmzZuZPHmykvlfu3aNtLQ0xo8fT2pqqhIImG02dhz9ls/uZSqBAEBhczP/97UfeIjA7t27GTduHHV1dXz66acUFBSwdu1a1q1b5zapcXLfNez2IThLAjQUON/DFQi40Dcwc7USwHneo6KiCA0NVa51c5eVB5+WUXm5EVOrFbvZQU+jifITtdh/VcmaPA8214Xweok3i/JV+DwefELKNQm0fv16/uEf/oEdO3YwZmwCD8W6IX//MnC18X++k+z/KngZDLwgWCwW8vLymDJlCqIoKhu964J1BQPglMuVJEnpXw8GvV7Pq6++yrvvvou/vz8HDx7ks88+449//COlpaWAs9y2e/du5s6dy759+zCZTIiiiMViITExkWXLluFwOBBFkY6ODmw2G1VVVahUKqxWK+PGjWPnzp3KvL+L7JeXl8fkyZOx2+2MHDmSjIwMJk+ejCiKGI1GDAYD+flOHXcvLy83ExLXwudS6QNnyfmLL76gra0NQRCYNWsWBoOBu3fvun03JSUlTJo0iW3btlFdXY1KpVLKsH5+fqSmptLb28vJkyeVxebLL78kPT2diRMn8uqrr7Jt2zYEQUCSJIqKiti7dy8hISGsX78eURSJiYlRZrD7ZiuyLNPe3o4gCBiNRtasWcOuXbsYPXo0t2/f5ve//z1ff/01eXl5isWv6/k9NjO/fnSahZf+hf9Qf56LSQ4uTnBgHhukKNFNmjRJCZgGCwbi4+OVTNzX15fS0lI3W9jnQVVVFYWFhexIWUaS34gBSekqQcRf58kb0dP73efyJXgex8KmpiY8PT0pLi5WKhhBQUEDVhOKi4sRRXFYYaesrCxGjBiheDn0RU9PD/n5+RgMBpKTk7lz5w5//OMflQzcX6d1k6YeCBpRxPeJgyMMXxlwSQ2HhYXR3NyMRqNh06ZN/T5jY2Mj+/fvx8/Pj8bGRsaNGzdgwADOgOvAgQOUl5ezZcsWxo0bx4gRI7h//z7Nzc28+eabCq9Co9GgUqnIz89n4cKFrF271u29D+TkklNfj/RMOu/611WrDYdWy40bN/jiiy/Q6XTs3r2biRMnuh3bw4cPufDd9aEtRmTobnL0IyqKoqj4UYAzYcnPz3/aLnI4lIofQOnJWszt1gHfy9hkpuBYOSEqT2IDwxEQyMnJGZZYLcuy4p3i7e+DJA6tBqsSRDps/3N8Yv5XxMs2wQtCbm4uNpuNKVOmAE/n0D08PJRevguenp7MmzePy5cvM23atH5EsmcRHBzM5s2bOXr0qFumOGfOHBYsWIAsy3z++ee0tDj7vzqdDn9/f1asWMFHH32Et7c3DoeDpqYmjh07Rl1dHTt27ODq1ascPnyYXbt28e6773L+/Hmys52R8v3796muriYqKgqj0YhOp6OhoQFJkpSWQV/0Zfa6qgJarRabzeYWKFgsFmRZJjY2luvXr3P58mX8/PyUsrggCFRWViobiyzLHDlyRBnbCgwMZMeOHezZs4f79++jUqlob2/HYDDwk5/8BEEQiI6OVtQLwbm59S05NzU10dbWRkhICMePH+fdd99V+qrV1dVMnjyZsrIycnNz2bFjB5GRkSxbtkwRNDp27Bh6vR4PDw+npLPdyq7bX1Lc3eC2IBt1cFbfwJiya+yMn4deryc0NJTa2tpBBWE0Gg1jxoyhtLQUk8mExWKhurp6QGnbgSDLMhcvXiQ8PJyJycn8S1s475z/Aw2+sjMoeMIhifUM4jfTtuKv7c9H6GtfPNxG2dTUhNVqJSYmRpGW7quI1xclJSWMHDlyyNdsa2sbUh3x4sWLyLLM1KlT+eKLL2hoaMDPz4+enh7u3r3LyLAwNKKIbZCpEEGWWZs4Fs0TVz1RFN2C1mfhkhp2qUk2Nzfzzjvv9ONxtLe3s2/fPjw8PGhvb2fUqFGsW7duQHa/yWTiwIEDNDU1sX37dqKjo2lqaqKyshKHw8HmzZsV6+eenh4OHz6MJEmMGDGCefPm9Xu9/Q9yBj1+cO63/7hvPxGNDcyaNYtFixa58VV6e3s5c+YMjx49wsvLkzbB0r9N0Pc7FOm3MUuSRGtHm1OBVHa2CO/evas4MvY1DfPV+9NW/HDIA27O66Smopb5i19BtP+Al8FEXeVhImM3IEkCbW1ttLS09PtTNDKQUc0CxxA7nEOWCNEPLcz014SXlYEXAFmWyczMJCEhQSmD9S1BusgyfZGSkqKMGg6HxsZGPvvsM6Ua4Mric3JyOHv2LB988AGNjY2IosjSpUsxmUwsWrSI8+fPI8sykZGRqFQqqqqqKCoqYsOGDURHR7Nx40b0ej0HDhxQbHtdZXKNRoMsyzx+/JjW1lYSExOpqKggJCQEo9HIihUrlONzjRD2hauCAM6FIigoCJVKpZTVL168qDit9c0AAwICFNMSnU7H1q1bqaurU4xdwNlq2b59O42NjUiSpFRCzpw5owQi48ePV0YW1Wo158+fVzKX27dv4+3tzbZt2xBFkS+//JKPP/4Yo9HIW2+9xerVq1mzZg0VFRXcu+dUc9RqtUycOJG33nqL999/n6lTp9LV1UV9fT1/d/j3FHX1z8xcKfm/FV5SzFZcJdnCwsJBz/fYsWOxWq3U1tYqWffzIj8/n9raWpYuXYogCFw5c55XSlT8p4CFvBk8nfE1IjvtCRyd9z7RngMr7bmqHs/jS1BbW4vNZmPFihXKtIRrI3v2NSsqKoZtEdy/f39QdcTe3l7y8vIQRZHr16/T0NAAOK+x+fPn84tf/IJf/Oxn/HTCk+c+cz4EWUYH7Eh0KhW6gp3B+At9pYZjYmKoqKhgw4YNiqGQC93d3Xz99deIokhPTw9RUVGD2hYbjUb27t1La2srb775piLN+9VXXymjtK61oqmpic8//5yOjg4SEhL6uWy6UN3ZObQjiiRR19PD9u3bFfKgC0VFRXz44YeUl5ezfv16Vm6cP2QggAD+Uc7gyRXQNvhKXEuwc2Kqg++mOrg83k5NqIiMPCCnpiy7qt9tz0J2yMQH5zM97u/ZsuJ7XltwhwiPX2GsmkbagXf58MMPOXLkCDdv3qStrQ0/Pz+io6OVYxIQCGvQDjlirRJEFoYM7U7614SXwcALQE1NDU1NTW49TldlwGAw4Ofn1y8YUKvVLF26lNLS0kH7wrIsc/v2bT777DOlvL5kyRL+9m//luXLl2OxWMjKylIWiS1btlBQUMCIESOw2Ww8fPiQ5cuXo9frsdlsWK1WVqxYoZQfPTw82LJlCz09PRw9ehSHw8G4ceOUueOWlhZiYmIQBIHMzEwCAgLo7OykqqqKMWPGkJSUpHyWZxf5ZzMHV6bvWoiKi4sZNWoU8+fPVyoa4Nw0NmzYgM1mU6RwXRt/34AgLCyMwMBAZFlWxg5zcnK4ePGiwiswm81ERUVht9tRq9UcOnSIuro6cnNzmTFjBiaTCZ1OR0dHB2FhYbz77rvKOGdcXBzTpk3j0qVL/XqjgYGBLFmyhMmTJ+Pr60uBT+/QCyjwXY2z4tLa2oqPjw93794d9LFjxoxRqinBwcHPzRuw2+1OrsDo0co4W3l5OV5eXqxKWcCGyKmMbhQJ6hGGJPA1mo3c0do4ZmnmB8FIbc/AokLNzc2YzWbi4+MJDg5WSHADKWZWVlZit9uHDAYcDgfZ2dkkJye7ZeuuFtwf/vAH5Xz7+PiwaNEifvGLX7B7927mzJmDv78/DQ0NWLIymWO14PnMFhnhcLBZq+b8sWO0t7djMpmGrFK4pIaTk5PJy8tj2bJl/Ub4TCYT+/btw2azYbFYCA0NZfPmzQO2STo7O/nqq6+UoDMiIoKCggK++eYbwsPDefvttwkJCaG8vJySkhK++OIL9Ho9u3btIiYmhtbW1gFL5Z7DGVoJAimTJrm1Z8xmM+np6Rw6dIjIyEjee+899Ho9hfV30RiEweXGBQhNdL6f0WikaZQXt0ZLtD71oKJLD/eirGRHS8h9zoEgCE5zMt3wBen5a9rZsjELncZdZMig62X9kgze3TmG9957j4ULFyKKIvn5+ZSWlioJSGxsLP8w+0381V5P3ZKewe741/DR/GmTOv874mUw8AKQmZmJv7+/28XmCgY0Gg0+Pj5KGbwvxo4dS0xMDBcuXOjXF3ZlG+fPn8fhcCibVVhYGF9++SWnT58mMNA9s7t37x41NTXMnDmTM2fOMHr0aJKSkujo6FB6dc8u1EFBQWzcuJHKykrOnj2LLMtotVqSk5NZtWoVtbW1GAwGZFmms7MTi8WCIAg8ePBA6Xu3trYiy7KS2fSFa1H38/PD4XC4ZQqlpaXs2bNH8TMH5yKVk5ODTqcjODiYvXv3KrbDzc3NfPPNN5hMJk6fPk1TU5MykeFarG/dusVXX31FcXExb7zxBqmpqQQHB2O1WhXHONf7fPrppwqxr7a2VpEudmHp0qV4eXmRnp4+4CLs6uX2qBxDyvEKgkCdqQOj0UhnZyfjx4+nurpamXx4Fjqdjvj4eEWnoaWlpR95cSBkZmbS0dHB0qVLsdvtfPfdd4BTlMc10w1Pq1bPQpZl/tv9a/yzsZIrQg9ZmDhraWVO2kf8OiujnyCTS/Rn7ty5dHd3YzabUavVBAUF9Xvt4uJi/Pz8BrzPhYKCAnp7e5k2bZoSABw+fJgPPviAY8eOYTKZEASB1NRUfvnLXzJ37ly3dktXVxcHDhxwBqeSg/WmXl6X7Hyx5jX+LjiQ1KAAfvnOO6jVar755hu6u7sHrXy41CwnTJjAgwcPmDZtmuKp4YLVamX//v2K2qS/vz9bt24dcAKira2Nr776CofDwc6dOwkJCSEzM5OjR48yduxYtm7dil6vJzY2loKCAg4ePEhMTAxvv/02vr6+BAUF4XA4+q0jra2txNvtA4v9PIEEvJ78VEuirKyMjz76iMLCQtasWcOaNWu4fPky+/fvx2ozM26ZFxp9/x+0qIKERR4YfJwBfZtg4Ybvk+N5RtQKoCpYpsHXnUjc09ODZ6QOUT34BSOKMrt/VT+gurHz3wJa2+/5+OOPOHfuHL29vcoaFRcXx09/+lNSU1MZExnHtId+hHca3LgJofoA/n3iVtZH9W+5/DXjZTDwZ6K3t5dHjx4xdepUt2yrbzDg5+dHV1dXv8VUEASWLVtGS0sLmZmZyu0FBQUKKcrFyl2yZAmnT59m3759iKLImjVraGtrQxRFYmNjWbZsGSUlJQiCwO3btzGbzaxcuZLi4mIqKyuV8rSL/d0XsbGxrFq1iqysLG7fvq0Q46ZOncq7776Ln5/TvjgoKIiQkBBkWeb69evU19fj4+ODWq1WGODPwrX5l5aWKlWBV199lTlz5gBOXYG+ZUur1UpWVhYpKSm8+eabREZGsm/fPnp7e0lNTaWtrY2PPvqI7OxsVq9ezbJly9BqtVRWVtLY2EhMTAy1tbUkJyczZswY1Go1b775Jh4eHthsNuUYb926xZw5c9i9ezcrVqxg9OjRHD9+3K2Co9VqWbNmDdXV1dy+fbvfZ3PpDHiqhreX9tN6KIprU6dOHbY6kJiYiM1mo6GhAVEUh20VmM1mrl27prDPb968qYyzumb1XVnwYMptX+Rn8oe8WzwRu0N6olQoAx89vM1nj54eb0VFBRUVFYCTDOn6bOHh4QNq85eUlDB69OghKxL37t0jMDCQK1euKAGAK2By/UaWLFlCbGxsv+daLBYOHDiAw+HAZDI5g2tZ5s2f/ISkgABaKiuZPn06Xl5epKamYrfbKSkpGZAv4JIajomJobS0lJiYGFasWOF27Ha7ncOHD9PU1IRKpcLT05Pt27cPWGloamriq6++QqPRsHPnTvz9/bl69SqnT59mxowZrF+/HrVajSRJtLW1YbFYmDhxIps2bVICC1cQ1beK9vDhQz7++GPierrQ4BTleRYCsHz0aMaFhGC1Wjl16hT79u0jKChIqQZ8+OGHPHz4UDmXS1fNY9omf+JmGwiK1RISb2DkND2TN3jjN8L5fQmCQF2EekhLCkGGiuCnQbS5w0rNzRZqb7TgGzN4Rj5umpGgMNugNgeCIOPr2cqMKb4YDAZaW1sZPXo07733Hps2bVKSlAsXLuDoMDOp3J93TXP53eSf8+n0v2ffzP/I0rBpQxz5XydeBgN/Jh48eAA4meJ94SpXaTQafH19cTgcym19ERYWpowadnZ2kp6ezpEjR7BYLERGRrJx40bKy8vZu3cvZrOZLVu2sHnzZjIyMnA4HHh6evLGG28QFhaGLMuEhYVRU1ODwWCguLiYb7/9lqCgIOU4mpqaBvwckydPZtasWYpcsqu3HxAQwDvvvMPIkSMVXoKnpycOh4Pc3FysVuuAFQEXXAHQw4cPcTgcCILAzJkzmT17tiLeMxBbPiUlBa1Wy9atW4mPj+fQoUO0tbUxZ84curu78fT0VDaX+Ph4AgMDefDgAZWVlYSHh5Obm0tBQQGAslC74HA4mDhxIgsXLkStViMIAmvXrkWj0ZCWluZ2PNHR0cycOZMrV664BVKyLNPd3Y3RaCS4xjxkb9IhS6yIcPohuBwmp0+fzsOHDwcdL3VpGlitVkJCQoZtFfzwww/Y7XYWLFhAe3s7165dA1C4AzB0MGB1OPhj3q0h3+OPebexOOw4HA7Onj2Lt7c3fn5+aDQaamtrEQRhQPfN5uZmOjs7B1QdtFgs5Obm8vXXXyv8lO7uboVY29nZSXJyslKxGkibw+FwcPToUdrb29Hr9co5HTVqFOPHjyczMxODwaDwEDy8vRi5ciZ5AWauW6up63pamXJJDbtIv15eXmzYsMGNCChJEseOHVOCbK1W6zbq1xe1tbXs2bMHLy8v3nrrLby8vDh58iTXrl1jyZIlilOm2WzmwIEDlJWVIQgC4eHhbu/p4+ODVqulubkZu93O6dOnSUtLw263My4qii/XrCbwScDk2kMFIM5mZUOgP1VVVXz88cfk5ubyk5/8hHXr1nHx4kUOHz6M2WxGpVKxatUqVmxaR7bQQlWIA12yhlHzDaz62SQiJujQGp4G7QkJCbSoLEMPHgjQ6QGSQ6bku1oyf1dM5aUGam40017ag8sSQxCfHOyTf0enDD/qCdDSVExiYiI///nPWbdunRuXo6ioiPv37zNlyhSMRiOzJ6cwwS+WeK9IROHltjcQXk4T/BmQZZmsrCzGjRvXbyFwbfxarVYhFXZ0dAy4cS5atIiHDx/yxz/+EZvNhkqlYvbs2bS0tHDo0CECAgJYv34948ePx+Fw8M0339DT04MkSWzcuBEPDw8yMjIIDQ2lt7dXCQzOnDmDh4cHo0ePJjs7m/Dw8AErAy4sWbKE9vZ2N9EbcJIB161bx+9+9zulHAwoi5irPAzuo3p9hYdcgYvRaKSuro5r164hSRKvv/46J06ccNuAx48frwQKarWaDRs2cOLECdLS0pRFvq6ujr1795Kamkp0dDRFRUXK+8XGxhIQEEBaWhrbt29HFEWlZO46ruzsbGJjYxXeg4eHB2+88QZ79uzhypUrLF261O38lJaWkp6ezs6dOykuLubGjRtKNvzzKSv5VfMVuu1mHM+4zQnA8ogkxviEkVV3lYiICARBUALA7OxsZs+e3e9ceHh4EBMTQ01NDRqNhsrKSoXl/yw6Ojq4c+cOc+bMwcvLS2mFhIeHu23ALqLnQES0By11tFuGNoHptJrJaqpFqKyjpaWFyMhI5TxVV1cjy/KAwUBxcTEajUaZiLBYLBQVFSl9XofD4ewlazS89dZb5OTkcPfuXUJCQti1axe5ublIkqSIS/WF63deUVHB5MmTycrKApy/m1WrVmG323nw4AFTpkxBrVZztaGAX+Uep8tmQogAGQcrr/2W7bGz+D/GLlXEqIKDg2ltbWXXrl1u2b6LVFhQUKBc16mpqQOaLlVWVnLw4EFCQ0PZunUrKpVKkSNfu3atwqNpb2/nwIED9Dwh+WVkZFBRUeHWlhAEgaCgIGpra/nss8+UoH7+/PnExsZy/Phx1pjNxM2ahcnLC51KzcK4WHJu3uTalStkPHHQ3LZtG3V1dcpaA05+zOIVr/K7yqucvZru3OCjAAFCLVp6ix7hgaC4cD5+/Jjy8nIMMRoEbEMGBGoHlJ+tozH7SZtLfsrrlCXne/iP8UYUBbQ+GkIn+WMY3QsMMW3wBGte/xu8/foTTY1GIydPnmTMmDH09PQQHBz8Zxt+/TXgZYj0J6DT2ku1sY2CsmLa2tqYNq1/yalvm8Alg/ssiRCcWcadO3ew2WzYbDaCgoJISEjghx9+oKamhtdee42/+Zu/UUq9J432JtkAACAASURBVE+epKamBrvdzquvvsqIESOoqqpSPN1dTH+TyaQsUHfv3sVisRAYGDhkMCAIAuvWrUOtViuOcS74+fkxduxYDAaDkrXKsoy3tzdTpkzBbrdjt9vdBIQkWaIl0MbD8UaypnRzJ7qJ9mCJC5cuUlxczOuvv05SUpIyjunCs3a1KpWKhQsXKp7rMTExvPXWW/T29rJ3716lxBoREcHixYu5efMmwcHBREVF8c033/DVV18p2XFKSgqyLCOKIidOnFBIbwBRUVHK8/uW5TUaDStXrqSuro7f/OY3HD16FJ1Op2Sp8ybNYO+snzLK051lLsgw1R7If5r4uuJJ4CphujT1hzKmSkxMxG6309bWhsPhUMryz+LKlSsYDAZmzZpFUVERJSUlOBwOFi/ur70+mISyyd7/toHQ0dPN999/r0xTBAcHI8uyUs4fiDxYUlJCdHQ0+fn5HDp0iA8++IDjx49jNBpZvHgx77//Pg6Hg9jYWA4dOkR2djZLly5l9+7dBAcHk5WVhUajGbAqcOPGDe7fv8/ixYvJzc1VPu+SJUvw9fXl4cOHmM1mpk2bRmZrBX+fdZBumzPokQWcpk0CfFNxk//z/OeUlZURFRVFXV0dmzZtUkSw4OnY5oMHD5RqX2pqqtJGe/Yz79+/nxEjRrB9+3YkSeLrr7+moqKCLVu2KIHA48eP+eyzz5AkiV27dhEbG0tsbCwVFRX9fhcajYaCggKam5sxGAzs2LEDURQVue733n2XTfPm8daUKWyZmIyjq0vxBfHw8GDVqlVcuHCBY8eOKYHl+vXr2bx5M78qPsW5urynG/uTn02T1srNCQJqb2e27lo/rFYrIc2OIS2HkSG83E7D/aH5Lg6LxNgNI4lbFo5nqJ6GVn8aWvyQpIFfXJIEjNaxePn2l4GWZZlTp04hSRJLliyhsLCQSZMmvfQgeA68rAz8COR11PBh0WVut5Qi45ynHTVWjy64v5ylK3vWaDTo9Xq0Wm2/YMCVEbS0tCCKIqIo0tLSgslkYtmyZUydOtWNlXzt2jVyc3NRq9UkJiYqmcO1a9fw9/enpKSEhQsXcvr0aQB27dqFVqvl6NGjlJeXk5ubS29v76AZput4w8LCqK+v5+DBg7z11lvKY6dOncr+/ftpbW39/9h786go8zTP9/PGQiwE+yYgiCgKCoqaoLjglm5pZqrpVmoummalnd0z09VT98zMPXfmzpw70z09Uz1V3dnZZZmVWmqmiYpruiuioKCIgAgoCqLs+xZssb7v/SOMn4SA2eeeOfec6srnHA8SRLzxrr/f9/c83+f7Fav8vr4+Jk2aREJCgiBTAThVCuWJA/T6O4W2+IBRpiu4j4auCv4sfbVglr++qiooKMDHx4f58+cjSZJwZ/P29mbq1KlkZWVht9v5+OOPOXToEBcuXBD6AgsXLsThcHDz5k30er1QY9Tr9URERLBq1SocDgdFRUVoNBoyMjL4/PPPBYhJS0ujrq6O06dPs2fPHnQ6HYWFhRQUFACuVa0bxJSVlQGubMgEUzD/wXc+h++dpceooJYh1Cyhc/TSObcDo9FIf3+/h9hQamoqpaWlPH36lPj4+BHXIiEhgUuXLjEwMICvry9Pnz4dIYnc1NREWVkZ7777LgCXL19Gp9MRFhZGbOxIBz63foDT6fRYZU/xD8ZtYTFWSEBL2WM0Gg0LFizg/v37hIaG0tPTg81mw2AweFxLi8VCeXk5dXV1qFQqqqurGT9+PMuXL2fatGkCJN+9e5ehoSGePn3KlClTWLNmjZhgb968idPpJD09fQRDv7y8nOvXr5Oeni78LsCVEUlJSRHmPHFxcQQEBLD3zikY6xglyHE28m+mTqX6STXr1q0bYRR2+/Zt7ty5g7+/PxaLhZ07d44g8QJUVFRw6tQp4uLi2LRpE/39/UIQzN1FAFBaWsq5c+eIiopiy5YtgswYGxvLzZs3aWpqYvz48TidTq5du0ZtraslLzo6mlWrVnHlyhVqa2tJT09n8eLFoqww3LgsPDycbdu2cfz4cX73u9+JSTExMZFVq1ZhNBop7KjhbsezUa+5IkE/Dh6bBonrkzzIp+E9Er4WiT6dMhIUKKB1gu+tfkZSpz3f1/t8AIfFiZdR+/IaSly8NZeP37/mck4dJh4kyxIOp4ojZ2NR679hxYoVHhocpaWlVFZWsmXLFmpra5FlWWT/foo3x09g4J8ZhR01fHHvELLyqlnGKSlUmSx8mLeP7xb+GWH6V6vi4WBAkiQPrQG3LsHly5eF5/3wh2zt2rUkJHjaCpeVlXHz5k28vb3R6/VC2ay+vp6amhp8fHyIiIjg2bNnmM1mPv30UzHBJScnU1NTg5+fH4ODg3z33XesW7du1IEMXO2QERERNDc3c+bMGTZv3kxtba1gjwcGBrJnzx7+5m/+BoDMzMwRqnLPJg3R6/cy9e8eKF7moboDnJQGt/H2y5dHa8PKysqio6ODd955hxMnTtDb2ytMWXx8fLh+/Tp9fX2CACZpVFQ/r2GRxSIAicViYdGiRZSVldHQ0CBEidauXUtnZ6foHnB7GLiv1bp169i7dy/ffPONqK8nJyeTmprKiRMnyMvLY9q0aWK/3X35T58+Jd43XPS/S5KEwWggOztbZD+Gg4GIiAjGjx9PYWHhqGDAx8eHyMhImpubMZlMI9wf3SvV4OBgZs2aRXZ2Nn19fciyPGpWAFy8AbPZjNVqFSl+gHBvXxaEjCevrR5llM+pJYmUgHHUFz/ivffeE0TMkJAQUS6JjIzEYrGIEsCzZ89E+WfRokWiFdMdsixz9+5dsrKyUKvVbNy4kfj4eLHfdrudwsJCtFot8+fP99ifuro6zpw5w4wZM4iMjBQcCff1U6lUNDQ00NzczPbt2+my9lPU9WLEcQ0PRYJbHVVsX7BoBAeosLCQ7Oxs/P39BZl1NIXEkpISzp07R2JiIuvWraOjo4PvvvtOmAoFBgaiKArZ2dncvn2b5ORk3n33XQ9gFhkZiU6nE8/1sWPHPDpPZsyYwbfffotWq+WTTz7xmAxbWlo4c+YM7e3tLF68mMTERC5evOjhQLl161aPFs+LTQ9RS6oRJS5xXoAXgU7imj2fU5UiseCJijuTnPSYXtksKyow2CCtWo3ZovCjKBNw2mRkvSxKfY1twRw8s5LViyoYH+rSB1EUeNYQTvGTpWgMLp+TQ4cOMWXKFJYvX46XlxeXLl1i5syZJCQk8M033zB58uRRSzg/xcj4CQz8M8KpyPyn0lPIijJC61pGocs2wJeVV/nr5E2AaxAbUNlwGhTkl8+4GwwMDQ2RkZFBfX09kiQJb4F58+aRlpbG8ePHyc7OZurUqQLpuwe+gIAA+vv7+fjjj0UqPTc3V6w6Q0JCqKur46OPPvJQNXRPmJs3b+bLL7+ks7OT3/72t6SlpbFo0aIRaXl3Knnjxo0cPXqUffv20draSlRUFElJSeTm5nq0A7rZ/OASROq2mGkNs4/dbifB5bb7bOtcRkRQmDhOg8HA0NAQYWFhtLa28uDBA9E7/OGHH4pjWrhwoRASag2EzgUBPLG0Aw1knv/vTGnX8OmaNbS1tXH79m0iIiLo7e2lsLCQxMREDAYD27dvZ+/evXR3d9Pa2srZs2fZuHEjra2t5OfnixJJZGQk27ZtE5yQDRs28Pvf/56cnByhtOcukTx79oyZM2cKMBAbG0tvby9VVVUYDAZMJtOIgSklJYXTp0/T3t4+qhKlW0/enYVpbW1l3LhxAMJ1cdu2bXR2dnLnzh2RARlLBdC9+rRYLB5g4NmzZ0SXvqAkVMWgGg9AoJYkQvTezG7sJyAiglmzZlFSUiLq2G7Vyp6eHn71q18hyzJRUVG8/fbb1NbW0t3dzZIlSzz2w63139raCowOgHNzc3E4HCOyAp2dnRw9epSoqCjWrFnDvn37hC7DggULxCR9//59/P39mTRpEo1Db1yfirCP1AmirKyMixcvCqXDDz/8cNRyyN27d7ly5Qpz5sxh7dq11NbWCs7P9u3bMZlM2O12Tp8+zePHj1mxYgVpaWkjQJtbMruiooK8vDzsdjsGg4Hly5dz/vx5zp07R3x8PO+//764nrIsk5eXx82bNwkODmb37t00Njayb98+kTEJDAxkYGBgRHtnr20QeQwgAIAEttdmiujoaBdvwWJhSaWaLhN0BEg4ZCeB/RLjeiUkJBzBujH7/N2h1qnQemswmUweHUnNHUFkXFqJRtXF7OQJlJQ2oDe6MiVdXY384he/oKGhgevXr7N3715MJhM6nY7Vq1fT3t5OY2OjEFH7KX48fuIM/DPiXkcNLZbeMU0vnIrMlaYy+uwW8trL+aLoNxTM6+N+Sj+7K37NV1Wn0ft509rayq9//WsBBCRJYs6cOfzlX/4ly5cvx2g0jmg17Orq4tixY8J7fO3atYI129jYKGRrw8PDef78ORs3bhwxEYjVsyTh7+9PYmIi6enp5N8p4P/87//EV0cucbf8Bc6Xg4YbDMiyjE6no7W1laSkJHbt2sX8+fPR6XQiba5SqXA6nQQEBAgFtj4fJ8qP3FmySuEfjn9NdXW1qNu767Nu7Xf39twMfPFZWaa2tpaqCIX8WAdPh17xILr0Mnejbdw2dbF27Vri4+NpbGxk6tSp9Pf3k5GRIVbyu3btQqfToSgKFRUV/OM//iP79u2jrq6O1atX8/bbb9PY2OghpTpu3DjS09O5ffu2yPS41fXsdrsgKqlUKqZNm0ZHRwchISE8ffp01La76dOn4+3tLZQOX4+EhASh8eDOPrjPQVZWFjExMUyePJmLFy9iMBgYHBxk6dKlY5734WDAHaWlpRw5cgS93clfGaNJ7HVieJn39ffS8/Ppqfy3qGSGWttFdqW5uRmj0UhmZqbYd0mSWLFiBX/1V3/Fp59+SmpqKrW1tR6rUIvFwsWLF9m/fz8qlYrExESMRuOIVK7D4eDu3btoNBrRhgouctiRI0fw9vZmy5Yt5Ofn09vbiyzL+Pv7C7newcFBysvLeeutt1CpVATrTehUP7L2kWDB1Jnk5eUJJ82qqipOnz6Nn58fZrOZrVu3jigfKIpCTk4OV65cYf78+axdu5ZHjx7x3XffERkZySeffILJZKKvr4+DBw9SXV3N1q1bRRns9ZBlGZvNJqSeo6Oj2bJli3jmpk+f7lFW6Ojo4MCBA9y4cYP58+ezceNGrly5wsWLFwWPZ9euXfz85z/HYDBw6tQpD8LueGMg0puaBBXwfq0BJSYmRtzrEhLTTeF8Gr2A2R1GwntVYnuBU3zQemveuDAInxOISi3R398vMkfu82KxWOgfNJKb307/oCur5W6pLi0tZfr06fzFX/yFeL4HBgbIz8+nuLgYg8EgCLQO2Ul2yyN++/Q631TnUGVuGft4/0Tjp8zAPyPqB7t+9D0ORea/XNrLA596USMHsMp2zjbcxlulIanPgMbp+sOMGTNYsmTJCPJReHi4YJrHxcUJEZXe3l7mzJnjYWebk5ODWq1Gr9fT1NQkJr/Xww0G7HY7oaGhdHV1MWSIJLvJjwGLjVu1jzmU9ZggXwP/6dNVKIpCe3s7x48fZ8qUKeh0OioqKpg1axYTJ070YG1PnDiRtrY20f9sMpno4scFcgCCg4I5cuSIWPX5+vrS2NhIX1+fMBpyy+Lu27ePDz/8kIiICC5fvsy92krKp7sGNI965cv/H36ex+KweIKCgpAkiaqqKlauXElWVhbHjx/nZz/7Gd7e3ixatIisrCzAxeFITU1l1apVqFQqV7qysZGzZ88ybtw4IXCzcOFCnjx5Ihwe7Xa7ENVxr7aNRiPx8fGcP3+emJgYCgsLRxW4UavVzJkzh7t377J8+fIRWZqAgABCQ0Npb28XvJD09HQePHhAe3s769evp7y8nBcvXuDt7U18fPyYJkjwyjjLYrGgKAp5eXlcv34dtVpNZGQkG9e+R+NvfsNaXRAtra385//73zE4OMhXX31FUlIS7e3t5OTkiFZHtzGWLMvs3r3bY/8bGxsZGhpiypQpKIrCo0ePuHz5MjabjVWrVjFr1iz+/u//XjD9h0deXh4Oh4OFCxd63L9Hjx7FZrOxe/duBgYGyMvLEx0r77//vnivO1sxa9YsALpa2pnU68Vjk2N00psCQV7e/HzpenKlALKyshgYGODevXv4+PhgNpvZvHnzCAVCd6nmzp07LFu2jIULF3Lv3j0uX75MUlIS69atQ61W09LSQkZGBoqisGvXrjHZ7X19fRw/fpyGhgbAVduPioriyJEjBAYGEhAQgNFoFOn0u3fvkp2djZ+fHzt37qShoYGvv/5anJMFCxawePFicX43btzIgQMHyMnJYdmyZXR2dqJ92Izs8yYzAkglDJWqW2QZcnNzPYBMS0sLERERI7o9JJXE1I3jqThSi9MkYZ/sega0T4ZQDcgYQ3WMT3dlxHx9fQkKCqK3t5fAwEAsFgsDAwNMmjSJBQsWUFJSIng6sixz8+ZNOjs7CQoKorq6mpSUFHQ6Hfn5+ciyTHR0NJIk8bC7nl8WZdBu7UMjqZAVha+eZLEgJI6/nbUFH+0/z8L6X3r8BAZeiw5rL122PgK9fITPte8/82YpMTa46mavDTYyCn16O42RKibUuciEdXV1ZGZmYjQaMRgM4p/RaBR98vv378fhcODl5UVoaCipyfO4cvAGNoudgCiX3anbYW/x4sWjdjWAJxgICQnh9M2H3MtqHfG+TvMgf/X3Z5gXPkSw3smmTZuYNm0asiwzMDDA8ePH+eyzz0hJSeHOHVdPenJyMidPngRcaP7P/uzPuP/oARXmk2/MDqicsCJpIU+UR0Kn3z2Q9Pf3c/LkSeLj41m9ejXff/897e3tHDhwQFjIOhZEoLLUMQbhGEmBw09yiCxq5a233qK7u5usrCyWLl1KVlYWBw4cYHBwkJ6eHkJDQ2lra0OSJIqKikhOThar+Pfff599+/aRmZnJp59+ikajQa1Ws379evbt2we4mNVuEqCbqW80GjEajUyYMEGkwt3td6+vBufMmcPt27cpLS0doXIHrpXgzZs3sdvttLW10dPTw40bN0hKSiIwMJDvv/+e8PBwmpub35gVgFdgYHBwkEuXLlFYWIher8dkMvGzn/1McCTsdjtqlQqLxcLx48ex2WxUVFRQVlZGdHQ0Op2OGTNmkJqayj/90z/h5+c3Asi4yyPe3t5kZGRQVVVFfHw8a9aswdfXl9LSUiwWywirYqfTSV5eHhqNRqz0FUXh9OnTtLS0sHPnTvz9/Tl8+LD4zMyZM4UYkSzL3L9/n8TERFFOKigoIDU8mAaDjT61JyCQFNe/eQ06BvsHWLJkiSi7GAwGzGYzGzZsGFHGkGWZCxcuUFxczOrVq0lNTeX69evk5eUxf/583n77bSRJorKyklOnTgnDsbFq2DU1NWRmZmK1WoWiXmNjI+Xl5aSkpLBixQpOnz4tFCnPnj1LbW0tc+fOZcaMGVy4cEHwN8LCwli/fr0oKblj/PjxLF26lOzsbLq7u3n8+DEmk4l3xsVxcaDKYyHjOvEQ3Afez7pHdCO9LqJWXFw86nGZJnmj/Yc42iIlcCsP2hWCy63MUfxRZFc78sDAAGazGbVaTWdnp+iqiIyMFF0WarWaiooK7HY7iqJQX1/Pw4cPAZewWWxsLLNmzeL+/fvU1tbyt19/yQ8TzNgV18LBMawccqe9mn9b9D1fz931U7cBP4EBEdV9jXz97BxF3a9aymb5x7FaO4PCi7mo48E5Sj0RAAVMNgXJoLwxHdYUYeOT2NVoNBqGhoYYHBxkaGgIs9lMa2ur+N2dwnNrFQwNDFGS8YQTf36N4aU97zA9UzeOZ/LMWEwmE48fP/YAFQaDAY1GI8CAw+HAPyCIkuZREMvLnVRQeNTpxdsTnSQkJAhew+bNm9m/fz/ff/+9IPK1t7d7rAQURaGkpITFCxdy4PhFGoKHRv8aBca1ePGorYyuri6Cg4Pp6OgQKXCn00lISAgffPCBIF6dPHmSp0+fUlZWRnBwMLe6GpDfICuuSFDc/IzAITVpaWmYTCYOHz4sVsFNTU0EBQXx85//nIiICG7dukV2djaKovD999/z+eef4+Pjg16vZ/PmzRw4cICrV6/yzjvvABAaGkpaWhp5eXk8efIEs9nM1KlThY+Be9JNSEjg8uXLAGLwdVsyu8PX15eEhATu3btHSkrKiIEpISGBGzduCEniK1euCDOqGzduYLfbMZvNJCUljTDReT3cE1FeXh4tLS2iRW7Hjh0YDAZRsx0cHHTJE//d3wmp3blz5zJt2jS0Wi3/43/8D9GCB4ypL+Dn58fevXsxGo1s3brVI3NVVFQkNCGGR35+Pna7nbS0NHHvXrt2jcePH7N161YiIyMpKysTPBW9Xi/srMHFf+jp6WHevHns3buX/v5+li9fzuDgIO332ulPjeb2UJ3reVZglnckn8Wmc/fkZQ4ePMj777/P8+fPxXOakpLCjBkzPPbR6XRy5swZKioqWLduHUlJSZw9e5bS0lJWrlxJWloaiqKQn5/PtWvXmDZtmhC2ej1kWSY3N1dYmk+YMIG5c+dy+vRpenp6PM5bUFAQhYWF7N27F29vbz766CMaGhrYv38/8KoNNy0tbVTHREVR8Pf3R61WU15ezty5c9HpdOTl5TE7UENlmIPBl5jOIGmIanaS0KxGkeURbcnuGr/RaBxTPEtGIT/OSadJ5TkWaCU6kvXk9llYUqPD6XCKcc/90w2ih7f/rlixQlhhO51OtFotKpWKZcuW0dPTw/PnzwWfKSAggHzfPmzy6NkgGYXCzuc86K5jVuCEkW/4E4s/STCgKArYS1CGToGzjafWIP7tUwd22RPplnRXUSpXMUPjzdRmFY/Gj8KEefmRMLtMr8Ib+27tXgrmgT7i46bi7+8v1Nte37fc3Fxu3ryJWq12kWVuW2gt7hphhjPQZuHhH55j/EsjTU0XRv1OrVYrVmwXL16kfUiDfazlNAASvTY1Xf1DfP3116xZs4YJEyag1+vZvn0733zzDcePHyc4OJj29nZOnDghyJFxcXHk5OS4apr+C9nfm+3RWogMqCCgW01sjZ4qxZVqXrt2LRcuXECr1QpBnJUrV4pz4+XlRWpqqmDTd3R0oA9Rv4QuY6c3NU7X4NjR0cHdu3dpaWkRKogpKSkUFhZSXV1NREQEixYtor29nbKyMgYHBzl69Cg7d+5Eq9USERHBypUruXTpEhMmTBBKdikpKeTl5XH//n28vLyYMGECLS0tSJIkygXx8fFcunRJdGhkZ2cTHx8/YqBOSUnh4MGD1NTUjOjMCA4OJiAggO7ubnx9fXny5Anz5s1jaGiIwsJCpkyZwtOnT0eQ9EY9Jy/Txa2trURGRtLW1ia4EyUlJWJ1Z7FYhLGMl5cXX3zxhdhnt/tjSEiIeP/rdfTKykoxmM+bN4+lS5d6tLO2tbVRX1/Ppk2bPD7ndDq5ffs2arVaHE9hYSF37txh9erVxMfHY7FYBMACeOeddzxKMHfv3sVgMHD58mViYmL46KOPaGlpISsriyXz51NUVMTugEjqOltYvnAxK9Jd2ZSEXeH84Q9/4NChQ+j1ehwOB6GhoZSUlDBt2jTB2nc4HGRmZlJdXc2mTZuYPHkyR48eFc5/iYmJOJ1OLly4QElJCYsWLWLp0qWjrj7dGTc3LyU9PR1ZlsUz1tHRIVwgzWYzT58+FXLFs2bN4uLFi0KAKDo6mvfff3/MLqHW1lYuXbpEbW0tsbGx1NfXU1RUhMPhQJIkppr1RLcNsennH6M3edPxtJar9y+jKIqwIgbXJKp+yecBV7utO7v2ejQHKHSOReaXoMMXGrzthPe+eh4URaGvzcmzqg6s/TJV+oeEGPNYsT5N8KpOnz4NuO6j9PR05s6di8PhwGw2s2/fPmJjY5EkiRrvjjeOyWpJxbXmip/AAH+CYEBRHCi9/x4s5wA14OSrFwuwy37Ir/MpJZBV8HyKjRlFBhRJxZNw+VVqWgIvB8x+ocLm56DnRzJNKicUFd6nuLBIvObt7S2AgZ+fH0NDQ5SUlDB16lSePn1Kf8sQlTk1YxwMyDaFMGs0n/+3j7BYLAwNDXlkHYaGhujt7eXu3bt4eXkx2DvSUnS0cCgqNBoNBw8eJDExkRUrVhAQEMDWrVs5fPiwGNhNJhPp6emcO3eOmJgY2trauHDhAt7e3sx46E1nkIPuCRJ9kgWvIYlxrV6E9xkJjwoXA6Bbo384MLp9+zbjx49Hq9XS3NzM0aNHARcwsNvthLQ5aYh5QyZGgcguV1bDbYe8YMECEhMTOXHiBCWVj+hNnMgvKvPQNJQwPTSC7W8lE97ZQXNTM01NTZw7d44NGzYI8FBXV8cPP/xAeHg4gYGBAmTZbDYCAgKEut9wMOCWkdVoNCxbtozf//73lJaWilq2O6KjowkLC6OwsHAEGJAkienTp5Ofn4/VakVRFObPn8/Ro0cJDg6mrq6O5OTkESvs16O3t5cbN24Aru6WxsZGIbVcU1ODLMuCie82YTKbzezatcsDvLhLKsHBwaL33c2uHxoa4vr164JT8vHHH4/qJXD//n3BcRge9+7dw2azCTnqp0+fcunSJebOnStEh7Kzs0UrbmxsrBDkcusK1NTUoNFoeO+995g1axYdHR2cPXuWqVOniuxZV3sH8xKTeXvREvHd7uvkPo7U1FRWrFhBRkYGGRkZwvTq6NGj1NfXs23bNsLDwzl06BAdHR3s2LGD2NhYhoaGxAQ/XGnw9aitrRVywAaDgXfeeYeCggIaGxtZtmwZM2fO5De/+Q3Pnrk0AC5duuSRiTt06BCSJKHRaIQuyWiAY2hoiJs3b1JYWEhgYCBr1qyhvLxclLRUKhXp6ek0NjYyMDCAts/O1TMnaW9vJyoqivr6emRFZmCSxzRVgAAAIABJREFUP/e8OujxBhQnwX0w1xbM/ODJHt4qHscYJI8sPQwLSYHmCC3hvS/5P7JCTb6F9mrbq5ZECf7+lyf5/h8vM3dTJApOwVMBF3/B3VrqDrfdu2P2j/Q0AoOO0b06/tTiTw8M9H8JlvMvf3NSZ/XmsSVg7A9I0OttZ9CoI75ZzaQ2iWZ/BZsGjFYY1yuhUiQGbVpqY95wU8kQ2qZ1+WyPG0dycjJ6vZ6enh56enro7e2lrq5OtLQ9efIEgPayXiQVjNX5Iztlrn2bw5/9r09Enfr1sNvt3L17l5SUFJK9Asj62+M/ep50KpmdO3dSXl5OVlYWX331FYsWLSItLY3p06cL8SOz2SwG5vr6et555x0hh6vz0hHcKRHarSIqapKYOOzYRXpZr9eL9ONwCeTa2lr279/PggULhFxxUlIS77zzDk1NTRzOOMITm40hr5HZGElxgbQJHRJavRaDwYDVamXKlCkEBweTvv5dNl/6noG+ZtCpwG6ho/E5NxprWD8lgai+Pvr7+ikrKyMkJIRFixYhSRLvvfceX3/9NZmZmezevdsDvHR3d/P8+XNsNptQfAPXBOX2pQgJCWHatGnk5OSQlJTkQZqTJInU1FTOnTtHd3e3hxsfuEoFt2/fFjX9/Px8GhsbmT17NqWlpSxevPiN19NtAe0eQHt6eoSp1YQJE1i1ahUJCQlCbEqWZRwOBzNmzBjRneImM6pUKjo7O5EkiZCQEMrLy7l8+bIgqup0ulGBgN1u5+HDh6SkpHhMbrIsk5OTg0qlYunSpTQ1NXHixAmmTp3KypUrAZfIkrt7Qa1WC70Ns9nMxYsXefLkCSqVii+++ILAwECsVivHjh3D19cXq9XK4OAgKpWKyMhI3n33XTF5Wq1Wjhw5wsDAAIqioNfrefToESkpKWzdupVvv/2W7777Dj8/P7q7u/nwww/x9fXlwIEDWK1Wdu7cSXh4OJ2dnXz//fcMDQ0JqezXw230lZ2dDbiAYFJSEufPn8dgMLBr1y5RdgkODiY7Oxuz2cyMGTNISEjg2LFjlJaWAjB58mTeffddD+XP4d9TUlLC9evXcTgcLFq0iN7eXg9QERQURE9PD5MmTSI3NxdfX1+OHj3KxIkTWb9+PeHh4ew/sJ8srxYqAzpe6QVI0OkDF6QO6uq6mDxGY9qQF2909FQk6MUKuPwkGspeAgF49V0vf7bVDnDvh1omLTR6qDMqCshOFXq9Dlmxo9VqiI6Oxmq14md7QbdubFdRWVGYaBrZ0vunGP+iWws7mrq4dfIut04V0N3agyIPwuBhhitgtNpHTp6jhUX/su3OKRHdqWJyq4qIHhU6jWuFbBxSE9asHV1cQwa1DFH1rpVkS0sLly9f5ocffqCgoEC01w2X/3WHY2ikic/rMdAz0gBpeAwXx0mOi8TPoH4DtUEh1OBAr3HJek6cOJF/9a/+FXPmzOHmzZv8+te/5uHDh8LZUKvVUllZiU6no6qqCr1eL3gGkydPFhLC7jTucA8DtVqNn5/fqMzq5ORkzGYzp06dQpZlNm7cyAcffICXl5fLh8Ahk/5Ug89LrSZJdv0DF0hb9ESNl1PCbreL1Onhw4epr6/nrwquYFHjMUC420bPvHiMaek8MdFnZ2cLwyOdTsfmzZtpb2/n8uXLHqvlqKgozp49K2rtRqORjqEBSuueY5WdyLJMdXU1S5cuxWw2j7qSSkpKQq/Xj/q38PBwMYDrdDru3btHUlISjx49Ys6cOR5iPq/H48eP+eabb7DZbKK2q1arWbNmDb/85S/ZuXMnqamp+Pj4iDKNu2779ttvj9hee3s7oaGhdHR0iLbSo0ePcvLkSSZMmMCePXvo7u4e1ZgIXMqBVqt1hAz1/fv3xesWi4WMjAzBHXGvBM+dOzdCcvj+/fv89re/paGhQZSU3OI+Z86cob+/n8jISF68eIHBYECn07FlyxaP5yIjI4P29nZsNhtz5szhz//8zzEYDBw8eJCenh7WrVuHw+GgtbWVDRs24OXlJer0u3fvFq2933zzDSqVis8++2xUIDA4OMi3334rgIDbhvnChQvExcWxZ88eAQQqKiro6emhr6+PDz74AKPRyLFjx8T127hxI9u2bRsVCDQ0NPDNN99w7tw5YmNjSU1N5c6dO4KNHxkZyeeff86ePXvw8/MTVuFarZYPP/yQjz76iIiICJxOJ9ZIHyoDXy50hj0zbhBeFiXTpxt9BW6w8UYTL0kGw8tNOx0yzRUjfTNefSG0VlkxernqDuPHj6elUaI4X82dGypuXLJzL1ehr8fEs2c11NXVMdMy9nMBLg2N98bPeuN7/lTiX2RmYKB3gH/44vfcPJ6P8pIHoNao+OQ/xrL1c0+ii6/6DTffsNDaR58+h+u8x1UbUMsSzeE2F5P+ZYrLYFGRUGnEYPFkIMqyPMJb3t0y5O/vT0BAAIOTnbQ+eHOrnv843xHysq9vU6PRYLfbUakkNi+YwP6smhHCYCpJQiUpJAa7jqm0tJTS0lKSkpJYsGABVqtVtGy5SWU9PT00NTUJCeNjx44RHBxMT08PAwMDYlJxK6gNZyA7nU5RV349KioqRN3arX0/ceJE4RYXExNDXV0dK5540Wp00Obr2m5Qn0SY2SV4EhYWRltbGxkZGWzevJnbt2/zP49/x5PgsTGwBBypKePIRx/xhz/8AUVROHnyJJ999hnjxo1j3LhxrFmzhvPnzzNhwgShLvnBBx+wd+9eamtradKr+C91D3j02JWSV0fpmOH0YtKjCj7cuImZM2dy69YtZs+e7VFH12q1zJo1i+LiYpYsWeKReaitrRV8B0VRkGUZo9EoVnyvx+DgIJWVlRQUFIhabmBgoPh/SEgIKSkpIz433MQoMDBwVOZ7e3s7ycnJgjvg9k7Ytm0bU6ZMobq6Grvd7qEvMDyKioqYNGmSR/ZDURRu3LiBSqVi4cKFouV027Zt4jwUFRUJQaewsDAmTZrEoUOHqK2tZdasWURERHDhwgXRVZOXl0dlZSWpqancu3ePkJAQzGYzu3fvFgRPp9PJiRMnRKfHjBkzWLt2LZIksXPnTr799lsOHDiAXq9Hp9NhNBq5cOECVquVkJAQtm/fjre3N8XFxVy4cIGYmBg2b948qpVxQ0MDGRkZDA4OChGhO3fuYDabWbduHTNnzkSSJNHpUV5eLtL0165dEzV6b29vxo0bJ8ojw6O/v5/r16/z4MEDwsLCWLp0KcXFxVRUVKAoCn5+fqxatYr4+Hj6+vq4dOmSIL3qdDq++OILJEnC6XTy4MEDbt26xdXgLiT/sflQEvAiRCapYeT4M6FDRav/2KpDigpiOl1S7PKgFqfNPOZ7XR+A2soOQmJ1NL4wUP3oJQv0ZQwNQsGtHlLnR5CWHkJh0X0mJZuo0fR7jnVIyCj8x6R1BOrewET+E4p/cWDAbrPz71f+V6qKnwsgAC7U+eDGA7Z+7vn+KfpewrUDNNuNjJpLUkBnlfDpc93ow2tVr4dKkZj8zEB0nY6uQAeySsE4qMavV41Wo0XlpRKDrZscOOLrFIX4+HiB5NVRPyLfJYFPgp4vv/yStLS0EROMO4Yb1MyfMYlH5WVUduvosrpvAYWFM2PZuHASN6+cw25/9ZmysjKxonjrrbeYOHEimZmZ9PT0YDQaRWrVrSD42WefUVVVJeSL4ZVJ0/AJbbirIUBcXJzoX7dYLKhUKj755BMaGhq4du0a9+7dE7r4t27dYvz48TQ0NBDSpyLkZVJFkiRBKkxMTKS6upq6ujqOHTvGBx98QF7hTSSlb1TJXddZgLr+XiwqeO+99/jhhx+QZZkjR46wZ88eTCYTs2fPpra2lvPnz6MoCkFBQfj7+7Ny5Uq+yr7IjTAtqoFXAM6pkihV2anpqWbNYD+LFy+mrKyMu3fvitY5d7jbNsvKysTKebjscEdHh7iHiouLSU1NxWQyUTfQSUnbc1qbmuF5Jy01deLcRkZGsnTpUjIzM0W71mg2xuAJBl5vS3Nfl76+PlQqFdeuXRPXbdOmTeK+q6qqws/Pb9TOhpaWFhobG9myZYvH60VFRVgsFpKTkzl79ix9fX18+umnwuWzv79f6EGAi7C4b98+fH19BS9h//79xMbGEhQUxLNnz8jOzmbmzJkUFRUREhJCR0cH27dvF0qPiqLwww8/UFVVhSRJxMfHs27dOpF5MBqNvPfeexw4cEDoDPT29nLlyhW8vLzYvHkzBoOBq1evcufOHd566y3WrFkzghzq1gO4evUq4CoLTJw4kYsXLxIaGsqePXsE6e/p06ecO3cOh8PBe++9R0NDA/X19cK2e926ddTU1HgYaYHruSosLOTmzZsCUNXV1QmApdFoWLJkCampqdjtdq5fv05BQQFeXl4sX76c69evY7VaqaysxGq1kpOTQ09PD9OnT8fhY0Vx9DNWKBL0GkZf/kf0SIT0QrsvI4dXBULNENYrISOP6qY5WqhUKro7Zcruu427RgqN3MtvwmKvZ+Pmlfxfc1PJeHGX/Y+zMUuuMXBOUAy7Jy9mXrAnP+dPOf7FgYGc43d4Uji66UbVQz12m4TW69WNK0mwJ+wR/6XhLUYwXV7+GltjEIpaowEBvV7voejmZVcxrtVzQpZlmfTFi7lw6zrjIyLoeNGIhCRYusMnxsrKSpF6X7hsPj2VA1RdbBjxvZIKvMcZiFkQTmRkJFevXiU3N5fU1FRSU1M9+APDwUBwcDCBepn54UMMOSRmzk6lrOQe/3rLXMLDwzGqnZw9exaTyURMTIzIBkiSxP3790W9PyEhQQxKw7XTZVnmrbfe4uHDh7S0tKDRaDwmH/dxut0DfX196enpEUSp4dupqKggNjZWlCXUajW3b9921RdfpoXdevvDt20wGLh16xZ79uzhypUrPH36lBMnThA5Lwlaxh7Y3PGHAwfQyYjr09/fz+9+9zvS0tIICAhg9uzZ1NTUYLPZRJp22owk8h66JsjX7xIZMKvhb/Ku8L9WbGTOnDnk5+eTkpLyShXQaef2wAsaknz56kkWv4wNY7p/JOXl5TQ1NfHxxx/z7bffimOUZZmo6XFsv/Ylj2yv2r5U/jBzmh/Rj/pJX7CIlJQU9u/fj7+/P1u3buVXv/rVmAPvcLXF0bIC7mxATk6OSLOvXr1aAAFFUaiqqiIuLm5UMltRUREmk8mjhODOCkiShMPhoLa2doSk9pUrVzw0HAoLC0WXgptk2tDQwNatW+np6eHkyZNER0dTXV2Nr68v7e3trFmzRogGKYrC5cuXefjwIWq1mokTJ7Jx48YRRMmMjAyhoXDy5EmcTifx8fGC/GcymXj27JnQGXj9mC0WCydPnhSEtvnz59Pa2kpOTg7z5s1j+fLlaDQaLBYLV65c4cGDB8TFxZGUlMTVq1dFe7Gfnx9ffPEFOp0Os9lMQUEBDocDjUbD8+fPuXTpEh0dHcyYMQNZlrl9+7Y4ltmzZ7NkyRJRXrp16xZOp5P58+czf/58UQYLDQ0lMzMTRVFISEhg1apVPHr0CIu5Hwy8kazrJb3KCgQEBODj40NdXR0SEmnVasrHy7wIUZBfnl61E2I6JBb0BdJHLxqNhoAwL1SaHuQf4ThPmh7OvXvdSJKMMka6QpLAqJssPC0+mbQQa/YjfEODWPfuexjUoxu1/SnHHz0Y6LX1c7nlHk/7GtBIap7de4zkJaHYRiLVvm4N2af8eXtzN8Mz6gt8WvmPkcV81ZJIj/OVcIrWLjHpmZ6QjpG9wcPDYrGIScPLy0sMtELWF4WnoQ4ud2UxMMMJ1BExzoeIpwNEdbnu/NcFPMBFaiosLCQsxR+VHupvtTPY7ppUNTo1sQvH894vVlBw/y5VVVVs3ryZFy9ekJeXR35+PrNnzyYtLQ0/Pz8PMOAeYAAMGoXFc2dQVXaPpqYmwsPDRQ3farVSXl6OJEkEBgaK/l232mBjYyMLFiwQ/dEqlQq1Wk1paSnLli3j3XffZd++fSMGSHcGAVwDu3siHw1o3bt3j3v37jFu3Dj0er3oLY+KiqKhoYH09HSuX78+4nNDQ0MYjUauXbvG1q1b+eGHHygtLaWnuBwlQjfi/SIUhUAHhJh8WbhwIYODgxQXF2M2mxkYGOD69esjrtXDhw/p6emhygA21dhsKUWSON9Uw9/KLhe+kpISbt++zYoVK8hvr+LfFx+nz2FBrVMhe8nsyPsdqUGxxBX2MHXqVFpaWjwyKnYNfHp3/wiSlixBib4XdVoECxcu5A9/+AMA27dvR6fTjWljbLVaqa6uFlkrdyrddVoUysrKhCPmihUryMrKQqvVeqT7Ozs76e7uHrVEYLPZePjwIXPnzvUoaZWWljI4OMi4ceMoLy9nw4YNHuY7z58/p7z8lb+9yWRix44dHkqLhYWF+Pr6MnHiRA4dOoROpxMqiz09PaSkpHgIOuXk5IhMU2RkJFu2bPHYp8bGRo4cOYKfnx87duwgNzeX5uZmVCoVqampzJ49m4yMDFpbW9myZcuoyp/Nzc18//339Pf3o9frWbRoEfn5+QDs2LFDAJOamhrOnj2LxWJh1apVNDc3c+qUy2HR39+fiRMnUlFRIcolwcHBKIpCbW0txcXFPHr0iPHjx5OamkpxcbHIOE6cOJFVq1YRFBTEw4cPuXHjBn19fcyZM4fFixdjMplE1kKj0dDW1oZGoyEwMBBJkjh27Bg6nY7oUC3lhjdYXEswrkNBo3EB9u7ubo/2RrUiMbNezbQmhV5vCUWR8R+Q0MoS8SlTKCwsFP4eYVO9xuYNSBAQpaFnoAPZYUJRRtc2ABepsL11cNjvCh3tHSQlJv0EBMaIP2owcLu9jL9+9C122XXzS0jIG2SYOw7p37UhNY9Mw//uP0cyeaaN2PgBFAVUKpAVSPdpZpLVype3l9CvUqOzSvj3aFC90bD7Vbh7cIevuPR6PStXreI/PT5D82uW582OPppiYdAgMbXR8zuMRiN+fn4eq+2QJH9CZwQw1GVl+dLlhMeO48SpTBIS4wkZF8z58+fJzMzkgw8+ID09XUyihYWFzJgxA0mSxATgVg90t+mFhoYSGhpKY2Mjc+bMEYOOyWSira1NCO+YzWbOnj0rwISb/e0OWZaRZZmCggLmzp1LYEgw1umh3LI3YdW69M1j2lVMsLwqFQw3Jnm9V9mtqgeu9LJarUaj0ZCYmMiDBw+QJFdnxmhAClyp08rKSqqqqljz0riI5mbCLE7adKrRSwWSRFKPDfOAldu3b/P555+zcOFC9u3bR3t7O4qikJ6eztSpU/n222+x2+04nU5sNhu1jkEklTJmCQLAikxzdxfRQSHMmzePO3fuEJwYy78p+Q7ny+NwIovJ/X5nDc+DJb6cuZqTJ096CLxUBdgZ0o1tyXvf1sSXJw/j7OnxcLH08vLyOO/ucNsFGwwGBgYGRIq+s7OTixcvUlNTI4h5EydORFEUQkNDPcDe06dP0Wg0o3YRlJWVYbPZPIiDiqKQlZWFJEm0tLSwdOlSD4Efp9MpJkZgVJe/oaEhysrKWLhwIZcvX6a9vZ2YmBieP3+OWq0mNjaW1atXi/ffvXuXnJwctFotoaGhHrwEgBcvXpCRkUFYWBhbt27l8uXLlJeXs3LlSqqrqzly5AharRZvb2/RChwXFyf2ye1KeunSJRRFISoqirCwMK5du8akSZNYv349JpMJm81GVlYWhYWFxMTEkJiYyPXr10WWccGCBSxZsoSWlhZKSkpobGwkKipKgK+MjAz0ej1z584V/BBwdQisXr2aSZMmUVVVRWZmJu3t7UybNo1ly5YRFBSEoig8fvyY7Oxs4Z+xaNEi7t+/T11dHZ2dnXh5eWG1WoluVqgKlrCpRloVS4qLsBttfqVDMGfOHJFNBFdW7IW3imofLf0qBW+nQpzsJGZAprCw0OOejpqlZ6DLibnZOcLt0OivZuGmSbR3tWC1uRc0Y2cGTKZXvI3u7m4x1v0Uo8cfLRio6W/i/6k45GG7KQRoQtUo/zMUdjYjvYYHBvvV/NdfJrPpP9iZFV+Nr2mIvgEDJY8n8bAqFh+Hhv9dhpd9fX2ce1FE8yidi+57/FG4k4hONT4WSUx+VquV5uZmdDrdiPS6PsCLvAe3iGyPxM/Pj/z8fLZt24bJZOLYsWOcPHmSJUuWsGTJEubPn09xcTF37tyhr68Pu91OSUkJNTUu3QJJkggICECj0RARESHS/+4VeldXF1u2bCE3N5eDBw+yY8cOfvGLX3Dq1CkeP348avcDuADRr/7pHyiaqaXeYAY9IEG/Hlr8ZV50D/KBdQLNDS5lMfdKta2tTSgbwqvSg3uycTqdxMTE8Pbbb/P48WPsdjtnz571+O74+Hh6enp4UtZMR/0gDhv8quIoEZO9UOtcGgBL2+xcGedFt5eEpLgmb/fP5B4HsQOykKH99a9/TdKEWcTo43j+ogFDpJbc3FxRGgoJCcHhcNDW1kby4hRyq4p4U0iKwu//6bcE+b6qqf/q7ikUr9EFlGSg3VfhdxeOEeiUhIUuQG3wWNZZrlApcNfawN9t3ekxCLpTzcNJp21tbRQUFDBu3DgB9ry9vUUPt4+PDzt27CA/Px+9Xi9U4V6f9Kuqqpg4ceKoSntFRUXExcV5+HGUl5eL70tOTvYgQ1osFg4fPiyAy5QpU1i3bt2I7ZaWliLLMhqNhgcPHjB9+nQqKirw9vbGaDSyadMmkTJ/8OABV65cQavVEhgYyI4dOzxklKuqqjh+/DjR0dGsX7+eU6dOUVtby+bNm5k2bRomk4nnz59jsVjYsGEDRqORjIwMzpw5w4YNG4Qrobs1ODU1lbq6OoqLiz1cCt1OpH19fSxbtozm5mbOn3e1PIeEhLBhwwaRoYuIiECn0/Hs2TMGBwe5cuUK4MoQeHl5UVBQgCRJ6PV6li1bxpw5c2hsbOTgwYPU1dURExPDunXriIx02f4+efKEmzdv0tLSIkoxvr6+nDp1SnQDOZ0uRcCIiAiWL1/OWmWA/6P0OEO6l107kosr4GORWNHsi+wYEOJjRUVFgt9il+BqmBdtetXLZ0xFr6LQZFBT6ePkQwLpbn21AFBrVSSs8KbzhZ22KhvWfgWtXiI0zovgWC2dPS8JsGEyvV1jE4EVBZa+/Urp073I+AkMjB1/tGDgZH3u2H/USBChgQUGyPVk66NAYGIQJY99KHk8Otv5f2fk2epBxxtFNwYSglipn8qdO3c8JkM3EDCZTLz//vuUlpby6NEjoVkOiL7hRYsWsWvXLg4fPszNmzfp6uri/fffJy0tjZSUFPbt24fZbOaHH34QJEibzSbanyIjI3nw4AG9vb3Ca2DRokUkJCQwceJEMjIyOHz4MFu3biU6OponT54I62T3Pg4ODgogURhppcn+Uo745bG7VxUt/pDdUk+yzoDNZhOf0ev1HjwHd+ll4sSJAsA0NDSwd+9erFYrP9u2jW8vnWLAoGCygkaWSJw+g9/+9RWePXIiSa5BoUty0PDEQVyyD8vWx/Hw4UPeb7JRZ1RR463GpgJ/u8LmidPp6ayhjz6XAc+AlvuHH5Hb9lDsk1qnIio9lKtcRavVYjKZkGWZwcFBGu/kEjBBwolE35BhRD1TLUlMsEL8pMmEhIQIsFOpMb/R5VVSoMlfZrIuREgSA1h/5OmVgeAJkSMmbDdHwWq1YjQaURSFS5cuERAQQEBAgJicL168iNlsJi0tjcWLF6PVajl79iyzZs0S5ZrhGgQWi0U4Pr4eTU1NNDc387Of/Uy85q7bu7czvO//8ePHnD9/XgAfnU43KhBwCw3FxMSQnZ1NXFwcFRUV+Pn5Ybfb2bZtm2D2V1ZWcvbsWby8vPDx8eHDDz/0UC6sqKjg1KlTxMXFCU8Mt6bAhAkTyM3N5caNG0yfPl0A0c2bN7Nx40ZOnDiBLMuC7KfX65kzZ44wOtq9ezcRERE4HA5u3LhBfn4+kZGRpKSkkJOTI8Sqli5dyvz58z0yH25dhIKCAiwWCzExMVgsFlpbW1GpVEiSxLx580hPT6e/v5/MzEwqKysJCwtjx44dQsSqurqaGzdu0NTUxIQJE1i7dq0QoWpsbET10osCXNkjnU7Hjh07XODh4kVWOtTYYgPoD9TS2tzCJwvXMlBWS4e6g3YGxOJAr9eLDoV7gRrada5rKjJmL3+26VSc6+9kwbDMnqIoSCqJ4FgvgmO9RMnKPWbJsoxKpSIkXKbhBVgsI2Vf1WqJ0DA/lq181W3R2toqbMR/itHjjxYM5HdWeGQFRoRDQUnVI70GBgLjffGP/f/vhuh7uSoeKxRAO86fFSkrMJvNVFRUYDQaiYyMFMz6/v5+jh8/ztKlS1m5ciUZGRmixQpe1dXj4uJYs2YNV69e5eHDh3R3d7N9+3b0ej2BgYEYjUbq6upE77+iKDgcDmRZJiIiAkVROHjwoCh1uAlker2eDz/8kMzMTL7//numTJkiUs3BwcF0d3cLUKBSqbAaVDT6Wd7o01AboeKzyank5dwSNU6LxSKEiQDWrFmD2WwWKd2YmBiqqqpcFsZBMn/+7ASdk13XVy1DdIeEdKiImseugUiMMS9/Vj3ow6E84NN//S4Gg4GTJ08SM/jqHqrvKmX16tVkZWVhbu7nwe8rUByea2+nVebFtRYUh0xUeigNDQ0Mqodon9GHOWCQeLcPi1NFY2cAzd1+wMvMg6KQ1OWgurlaEMoUlDHNlobfJJKXhiBjEFVVVQIwGm0uUuJY51klScSHj+x1d0+OFosFo9HIo0ePePHiBTt27KCgoEBMwN7e3mzbtk2spoaGhujv7yc0NFSYwwyv27tVDEfjCxQVFeHj4+Pxt+LiYgYHB9HpdGzbtg21Wk1/fz8XL17k8ePHHsDwnXfeGVVQq6amhq6uLiwWC6Ghobx48QI/Pz/6+/v5+OOPRUr9+fPnZGZm4uXlhdFo5OOPP/aYGEpiXwP2AAAgAElEQVRKSjh37hyJiYksXLiQQ4cO4XQ62bVrF0FBQZw5c4aHDx+yZMkSIRl8+vRpjh8/zgcffMCMGTOEEFBkZCQ+Pj7k5eWRnJzMmjVr8PLyoqmpiTNnztDV1cWiRYtobm4WHQaRkZGsX7+e4OBgj+Oz2Wzk5uby/Plz1/2TlERlZaUo+U2ZMoUVK1ag0Wi4du0aJSUl+Pr6smHDBmEL/fz5c27cuEFDQwNRUVGsXr2aqqoqwf+QJEmAgClTpgizq2+++Ybf/OY3Iv3/zuo1pKamoiiKq2x29zGzZ8/m9KPThIWFIb/0L5BlGbVazSAy1Sb12J07kkS1Sc1b3Q50owzlgYGBAlTIsoy3tzdz586lrq6O6upqkt5yUlftS2uzmxvgYnxPihvHf/7rTRgMnvLXr5e0/neFrMgUdBZxpeUGtUMNeKm0zAt8izXhyxmn/+PJRPzRggGn/CNiPBJIXq8uvFqnIjwliOgl/99viOGMf29vbyRJEpOgu3Xp9fq11gnWN8lxAm11TWS+yOTx48ekpKTw6NEjAQRSUlKora2lra2Na9euUVBQwNKlS7lw4QKxsbG0tLQIAl5VVRVVVVWC+FVfX8/XX3/NRx99hFarpampCR8fHwYHB4mPj6eyspKamhq++uorUae1WCzs3r2bvXv3epDMtFotW7du5cyZM4LMNXfuXBoaGpg+fTqBgYHk5OQgyzItOscbARDAkOKgsqtxxOvu9KJGo6GpqYn6+np8fHwwGAw8e/aM8ePHc91R5/KJcL4yQnKqoE6nMHjtyRtFTpqrITl5FhbL0Ii/SZLE5cuXmTRpEhcybiA7lDEK8lCX2054ShAOLye1c9txeMkex6xVy8SEdqJVO6nrCMLghMXtNgKtrg2Gh4fj7++PyWQi115El9o25jlTJFiVPJ+hwlo0Go0gcMa0q3gYPTYgllFYN4qgynAbY5vNxtWrV5k6dSoDAwNiQgf49NNPR7DrwcUWN5vNwpHQHW6g8rott9VqpaysjPnz54vt2Ww2Ll68yP/L3ntHx3WmZ56/eytXIRRyziACAeYsUCLFIEqkAhUtqSW11MFuu+3xenzsPeMzOzvrsX3W4+1gq9UKLYlqSaRyi5IoihQlBpEUQRIEQRBEBhEJFGJVAVWoXHf/KNyPVUQQPdO9I52z7z8EUYVbt+797vc93/s+7/NARLJY9Ub4/PPPkWWZ9evXU1tbC0TaCNWF7cY4f/48Op1OLGh6vR6n08nu3btF1uLatWu89dZbaLVaDAYDTz75ZIxQT21tLYcPH2bVqlUsX76c3/72t5jNZp5++mm0Wi2vv/46g4ODwncAIq3BDzzwAJIkiUyaGmNjY4yNjfHAAw+wZMkSQqEQx44d4+TJk2RkZHDbbbdx6tQp0Q1wxx13sHr16ph5SVEUmpqaOHLkCNPT05SWltLR0SFafOPi4vB4PNxzzz2cOXOG2tpadDqdOJZWq6Wnp4fjx4/T29tLTk4O27dvp7Ozk0OHDs3SQaiqqhKdGbW1tVy4cEFsGLRaLVVVVUIOWpIktm/fzt69e1m1ahWyLJOSkiK6EtQSw7hRJvwNc21YknBa9OT5I5ymaBKxCgQgYk9dUFDAvn37GB8fR6PRYDCG+JP/sJr9vzvKpENGr9Njjvfzz//y9Kz2zpGRkTl5LP+zEVbCvND1GifHaoV2gTfk5YvhExwfPcV/qvjfqEj4w2egfx/xnQUDlQkF1Ns7CM+XYJUlCnOTSfxBZGIyZRsYzQ1yMcuF1xhGF5DJtOnIGtKjC96cEGMoGMZn96MQ0dCWopjjNzp6qZE/IdOcvYDohgRJA9O0OCMP0uTkZAwJ0Wq1cuedd9Lc3MyRI0cEiS8xMZHOzk6eeeYZXnvtNTIyMhgeHhbSt2rY7XZeeOEFsrOzcblcLF26lMbGRpYtW0ZraytLlizB4/EIImBcXJwwp7mRca7RaLjjjjuEgElcXBwTExMUFxeTmpoqAMbNRldnF9YbVkB1oQsGg0LfHhApyPbhfpqXzlzPG+YZXffCamcAXneY/+M//SPmhNmTlArk2ls6GGuZnBcIACghhbFmJ/JjmggQmGcIZSc7qO6zUi0lMeqLLKaSJFFUVMSWLVs4d+4chZfCTOTO90GRrMfAp7Xgj6j9rV+/nnPnzhEaG6MvFZzmuQVhnii6heL42TuTaDBw8uRJ3G43LpeL/fv3YzKZkCQpUia5YUIdHR0V7X+KosQoR6othXPp8F++fJlgMCiIg+FwmNdff51wOCxMsN544w26u7tZtmwZmzdv5uWXXxbXavfu3XMCeKfTGVGjnJFDVjUYNm7cKM5jZGSEX/3jC4x3OpFlme/99I9EtkBRFE6ePMmxY8e45ZZbKCws5PXXXycjI4PHHnsMt9vNa6+9RiAQ4OmnnxaGQWqMj4+LVkuIlDr6+vrw+Xxs3ryZJUuWMDw8zP79+xkZGWHt2rXYbDaRmi8uLubee++dpR5ps9n47LPP6Ovro6ioiEAgIDYHWq2WXbt2YTQaeeedd3j22WcJBoNs2LCBW265BaPRSH9/P8eOHaO7u5vMzEy2bNlCV1cXR44cickKQeR5/9GPfiTGwuXLl9HpdKxZs4Z169axZ88e7Hb7LHv0kpISioqKOHHiBBkZGfT09Ijnp6ysTACDm4lwKIzPN3c/oVoe0Ov1vPjii/j9flJTU3nsscfYv38/Z8+eJScvngTrFCUlOXR1dTE8PBwzNoPBIOPj46xfv/6mz+lm48To15wci4DWaAZPmDCBsMLP25/nuZX/jE5euCPt2xDfWTDwQN6t1NnbwBGC0x5whyFHB+uMoJGQw5A1ZkCbJxGSFRqXupmKn8kmSBDShOkp9DGU5WfZpTiMvgXIKGGF/pOjDJ4bJzgdOYYuTkvOhlRyNqQgSRIWiyVmEVajcFTiahr4dHNr6FvdEdENNVTiEUSAwJEjRxgaGuLee++lsrKS+vp6jh49KkR83n//fSGu81d/9VdcuXKFr7/+WrwOkV2YWuOdnp4WMqPqa0NDQ8LkZmxsjF/+8pezmP4QQfzvvPMOiqJgMBhES9/Jkydj3pc6JS1oTgKgC0KCl1nX7Qc/+AGvvvqq4Ats2LCBvLw8/H4/TqeT51u/nKWcKK7nNys3AxAOK7McIKMj6AstCAQgovEQ9ISZzvEuKOotAcvWZmE70Edqairj4+MoisLZs2dpa2tjYmKCQllmMF7Clqhc/yOuA5s1V2Ws5ngUk8Kf/dmf8cUXX0R2R0hsbNNwJTfMQIYsPNvj0PGTxdv4XuGGOc9JTY8PDQ1x+vRpIDIunnjiCT7//HOmpqbmVLMcHR0lJSVFcB2Ki4vFa4ODg7jd7lkSxIqicOHCBcrKysRu/PDhw4Lzkp+fL+x41Xa76P76bdu2zco0qKGKWuXl5YnyV2VlJVu2bAGg68pV/vauv2dywI0kgyTJ/P3nP6d4WQH/9Xd/w+WOS5w5c4YtW7YQHx/P22+/zaJFi3jwwQfp7e0Vjpzf//73Z51DY2MjH330EeFwmKysLCYnJ+nr66OkpITk5GSOHz/O6Ogora2tsQAuFEKv13P33XdTXV0dA3I8Hg/Hjh2jrq6OpKQkIcIlSRKyLJOamipEu9SsSm5uLvfeey/x8fFcu3aNY8eO0dXVRXp6Ops2beLq1ascPXpUkCS9Xi8ajYZly5ZRX19PdXU1Bw4cEHoM27ZtY+XKlRgMBvr6+rDb7ZjNZj777DN+8IMfiHHh8/mEBLMaKoGwoqKClpYW0nxhNGGF0ALttpqwQrJnNhCIj48nPj5ekHPff/99AJYtW8bdd98tRJTeeOMNioqKmJqaorS0lK6uLhobG2PAgJqx/UOQBw/ZjiIhzUn+VVCYCro4O1HPxtR1v/fP/n3HdxYMrEmqoOrdRJpfboIQIEdYropVhr9NZrE5BW0oMgi7i7wRIDBbqAqfXqGtfJpljXPzCBRFofX9fsZbYmUyA64gPUdseMa8lN6TMycQADAEJW5t03C2JMSkmRijjyyXhpVdEvEzvuA3hmrc09TUREdHB3feeScrV65k+fLlnDlzhhMnTuB0Orl8+TLhcJi2tjbWrl3LmjVr6Onp4euvvxa1aTU6OzvFQyzLMh0dHWRkZPDEE0/Q2dnJhx9+yLJlyzh37hy1tbVcu3YNvV7PxMQEDodDoP/5FOx0Oh0EAuROSFxLVlC8YbTX/ChaCOUZQBMBCqXDMrIi4Xa7Y9QYVdASDAYxGAxUVVUxNTUleuA9C0gE+OfbXUeFRgtxiVoUYpFDSkqK0FGwJJqQtVKkTDBPKGHQJWgI678BNSigSdCybNkyWlpahA97KBQSgC0xPoF1nXa60xS6MsK4jREgkGWX2CznIgcncbgj+vgffPBBTPZFF5ZY3qdho9vKhC5AcmISyT4NTxTdMu8pqVyQo0ePCgdEVf5YJXTOBwbS0tLEAqBq6EOkpdBoNMb8DiIgwWaziQW6trZWuFQaDAZOnjzJunXr2LJlC3q9npGREVEeSE1NnXc3NzQ0RFtbGxaLhb6+PoxGI0lJScJlcnx0gr++/f/EPRHZASthUGayiD1X+vnp+v+dqh/mc/d9uwQZcOXKlezatYu6ujoOHTpEaWkpDz74YEy3QTAY5OOPPxbp+qqqKrq6utDpdFRWVtLS0kJmZiZms1kIZnm9XqEvsHjxYnbu3BlTXgmHwzGGQmVlZVy9elWQRauqqti2bRvnzp3j66+/Zv/+/VRWVorODZfLxYEDB2hvbyc1NZWNGzfS3d3NiRMnxLn7fD50Oh3r169n3bp1AsjX1taSkZHB/fffT1VVlbjvqgVzTk4Od955J3v27OHYsWMsXryYuro6mpqaCIVCwmnV7/cLMKDaC+sVKHOFaInXCNJgTCgK5VMh5nqEvF4vTz31FF9++aUoT912222CzwAIoSv1uc3KykKWZUE2VuMP1UkQVsL0Tc8Wg4sOjaThqqvn/wcDf8h49e/20fJi0/X1Xc0cO8Pwn8fQPp0AeTpCsoItc/56LDI4rSGmTSHMntkT4ET71CwgEB3DFx2kL0sisSDycEfzClS3vAytiS3NLiYsMBGnICuQPikR75WEFrn6IKnHKC0tpbu7W5B3fD4fH330ER9//DElJSWsWrWKv/zLv+Q3v/mNABKffvqpIGkVFRVRVFTE8MQY/3zwDXr9dmQFMh0yytBgTNveo48+is/nEw/NlStXxPeLToNGx41SwmobpOoDv6RdwXdxBOVLO9KMAFQoWcv0IymkrEuibOj6DYmWZVYNXNTvHJ0uBrAU6IC5gUgoA3xFoO+9blp0Y1SuSkXBMev3JSUlYlIJhoOkL7Viu2ifN0Og0cukVVpx+r2E9QsQWSWw6hLZtm0LLS0tMd9VFalyOBzISJSMSpSMyiQmWQkGAui0OrxeO/qZvv+zZ89is9nmlMT2Tbr5qz/+Y9ra2jhx4sS8XhVut5v6+nogsgjdddddMWI8fr+fUCg0p7b+yMgIq1atEn8fvfvq6OigpKRkVmmhrq6OxMRESkpKaG1t5fDhwwL8mc1mnnjiCZF+VxSFjz76SIwr1aDoxvB6vezdu1d8H7PZjEajEXoBXq+X//4ff4F7zDvrbwHCwTBTo24ylTwmJiY4d+4cmzZt4tZbb+XQoUNC3XD79u0xnz8xMcGbb76J3W7HYDBQWFjIlStXKC8v595778VoNLJ3715Onz6N0WjEarWKhclkMrF79+5ZmZP+/n4+++wz4b0xPj4usoPZ2dns3LkTRVH48MMPBbl206ZNbN68meeee45z585x5MgRkpOT2bBhAz09PZw6dUoslD6fD4PBwK233sqyZcu4cuUKL7/8Mg6HA5PJxIMPPkhxcfGsMkxtbS2jo6P8+Mc/JjU1lfLyck6fPs3p06dJSEigpqaGlStX4nQ6efXVVwG42tFNwB1EZ9aiNWqQZZnV9iCTWolrZs2sNt5cT5jV9qDYVUtRk3RFRQXvvfeemJPi4+Opra2ltLRUAM62tjbRJqte48TExBiuAUQ6CVQVyd9HKIrC+Pg4nZ2dSIqEsmBtUvlOlAjgOwoGHKNO3v/5gblfnLkvfSdGqH6ikGlzmPDc/j0xMRU/NxiwXZiYJX4RHZIMwxftJBZYZi2QHo+H+Ph4pqam0Ov0pLgDpLivD/jKykp27txJc3NzjIqeoigMDw/zF3/xF0xMTIgdvjLDSO/sjLDR1Vqpy+XCarXicDjYt28fmZmZPPTQQ3QqDv76wlu4rD5U36SOzBDJLljfqcEQjJzvL37xi5jv5PF4kKQIUJnPhyElJQWLxRLxOg+HBRCYmpoizhzPxd80wKAnpoavmQgS/8IwaY1B5O2znQqjQ13wVDZ3e3s7H3/8MWVeC1ek+a2iJx+G9OdBmUMCIT3XiDnTjl5vmCXHe6NTYN6mdCbap/BPB2drCwPFd2Uh6ySsA2YmCl0LlgpMvTpe+eiVGP949bpGn0dNTQ2nT5/G7/Xh9/t55KlHeO2110R912azCX2DG8daXl4eqampeDweAoEAw8PDMUx/RVFoaGjgyJEjAmDGx8fPMisKBAIoijJLJ2B6ehq3201ycjIul4uEhATxnqmpKYaGhmbt4r1eL1euXGHjxo0MDQ3x/vvvCyCQlJTET3/60xjA0tDQILQu1q1bN6ebpbowTk9Pi976QCDAE088IVwX9+7dS3ftwILPLRKc2V/PuGmIu+++m6qqKt5++226urrYtWvXrBp5U1MT+/fvJxQKkZmZSTAYpLOzk7vuuos1a9bgdDp577336OnpEeJZ6n2TJImHH344hsCmei1cunSJ1NTUmJR7fHw8O3bsID09nWPHjtHS0kJ6ejqPP/44X3zxBTabjffee4+xsTGhiNjb28uZM2cECPD7/ZjNZjZt2kRZWRn19fU899xz+Hw+ysvLcTgcbNu2TbQdRofT6RQ226pZmdfrxWQyoSgKzzzzDDabjY8//jiSrZvw0Xt0hLEWZ+RZkSC5LJ6CLRlY0o1sHwkwbtVxWRfArZEiokNTQRRTiJMVYeyWSCYsYxIW2TSkT2toamoS4lYOh4NFixYxPDzMm2++yfe+9z3y8/NpbW2lsrISm82GzWZDr9eTn5/PpUuXYmzA1U6C/5mYnp6mu7ubrq4uurq6mJycRKPRkLbOymicY15AEFLCrLDOTX79tsV3Egx8vf/8nCY/IhRwdLkIekPIN+dQPC/xzDvhX5hIFgbPeGRxmst8RyW+zSX/qkq/SpIk+ozVtqjJyUl+8YtfsHjxYmpqanjooYdoaWnhyJEjoiShKIpAzg6HQ+xibDYb//TysxyvCkdILVLsema3wJnSEJtaNTFoXA01Taz2Y6ufoXrC+3w+7Ha7IPupdX918us40YPr2my2vhrXvh4nY0Uy5tT5kbq6WKrZFVVoJVebwBqdgfP+oVnZHkkBrQWqt8k4O2C0N0zAB0YLZJfqSMoJUFpaIkoRc30eRFqaXHoXS39UTPdhG+Ot18mEplQDBVsySK2M1L+Te+KYzPIQNITmBAQpV+Op6zxHcnIyOTk5DAwMzAmwkpOTaWhoEOZL1dXV5OXlYTQahXRzdB84xCo0Dg4Oivq1RqOhv79fgIHR0VE+/fRTent7Wbp0KTqdjgsXLpCSkjKLwR4IBJAkadYuSiXIRpsfqaGWolR5XTUaGxsJBoPk5uby2muvxWQrnnrqqRggMD09LTQHLBYLW7dunX0xga+++kr4YWi1WjweD4888ghZWVmEQiHeffddrl27RsD7DbwPBVx2F4888ggZGRnCjOiJJ56I4UKEQiEOHDhAQ0OD+I7d3d0kJyfz4x//mPT0dOrr6/n8888xGo0sW7ZMtF1CpCwwOTnJe++9x9NPP01KSgrnzp0ThkIFBQXCD0Kr1XLbbbdRXV3N6dOn+eCDD0hISGD37t0sWbKEiYkJUQ5MSEggOzuboaEhzp07J4CZ3+8nPj6eLVu2kJ2dzdmzZ0WHxsqVK1m/fj3t7e20t7fPKaGsXsNwOExjYyNms5mVK1eyevVqXC4Xv/3tb3n22WcJh8MRoum4j8uv9uD3Bq5PMkoko+q46mLp08XEZZvI90OqIxApk4VDXMoL052hCG6RIsFwItgSQ6zsUSgYlyktLeWxxx7j9ddfZ3p6mscff5y33nqLN998k127djE2NiY4JTabjZ6eHqqrq7l06RKNjY1s2rQJiICB+bpR5otQKER/fz9dXV1cvXpVgNS0tDQqKyspKSmhoKCAbl8f/9eVf5nzGDIyRZYCyuNL53z92xbfSTDgcrgju6vQwo5+QV8I87QOvU/Cr1fmb+8LQ5J97kuhNWthfAE3LQl0lut/O5807o3hNYTpT3Pxp+/+PUavTJpGhzYUIeFkZ2czPDzM+Pg4zc3NNDc3YzKZyM/PZ/PmzYyPjwvVseiFJfrnzowIEJiLZa5IYI+DsXiFtKm5L0ooFMLj8cRYLKvpOPV1NVRwotVqURSF0YbJhXdlM9mUou2zXfHUCGgUBq0K/+XI64Qmpsj0wy3r1kcIkLWNLC410RLviVhFz4TVDau7NcRJEnFlkFN2/cWkJCt2u130ay8UDkfEC6At2EblI/n43UF8dj8ag4wp1RCzgGoDGgrOpjFc6cCVfl1bQeOXSemKJ6kvUj6amJjAbrej0+mEf4UKEBUULofH6MlR8Jrd6OJDjLivknT6K3H9o8tISUlJeL1ehoaGxO+9Xi/9/f0UFBSQnZ1Nf38/q1at4uTJk5w6dQqr1cpTTz2F1Wrlueeem3UP4TpgVR0oo2NkZARZlsUYiN5RdnR0kJubG6MDoBIHMzMz2bt3L+FwmJUrV1JfX09RUdEsQt7nn38usiT333//nAqG7e3tHD9+XHhbBINBtm7dSmVlJeFwmLfeekuYXZnTDLiHPMwrRSJD8dICzGYzL7/8MgaDgR/96Ecxff4Oh4M333yT8fFxDAYDGRkZdHZ2smrVKnbs2IHH42Hfvn10dnZSXl7O6Oio0BrYsGEDZrOZL7/8ktWrVxMIBNizZw8mkwm73U5eXh42m02k/lesWEFNTQ2XLl3i+eefR6vVsn37dtasWSPEwhobG0X5RqPRiAVKvXdJSUls374di8XCmTNn+Oijj7BYLGzatInVq1eLe9rc3ExxcXHM/XI6ndTX13P+/Hk8Hg8pKSncdtttgsT44YcfxpQM9Xo969ev5/3/fIiAd47smQLhoELXgUGW/XEJWq2WjIwMpqamcOfG0Z0wc+5R048yM2dcLAyTPinR2dnJnj17MBgMkeyqXi8AwccffyykptUN16lTp/iTP/kTIAJQN23ahNfrZXJykoyMjHkGwsxnz6T+1Z1/T08PgUAAs9lMcXExa9asobi4OKYlFaBcX8qflf6AF7peE+3u0sx3SQjE8TcVP/2DaBv8IeI7CQZyFmV9IxCQdRJ6ixYJifw+A52L5q4fokCmTTdve2HGMitT/fMbYqBA+tK52c4w2/LYZDHTmDXGUFZk4pVmBLS6SjwsH0rFqDMyPT2NXq8nLopY6PF4aGtri+k2mGtRs5sVRhIU+lPmBgJqSGEYtCrC+nehiIuLExkCWZYJBALce++9fPzxx+I9al2ysLCQ0//019+4K/M5AzGmTtdfUujIVGjJDhOWQMKBkgi6fJjobyB3HO6/d3fEO17RMJqgEJLBOi2R6Jn/C6tkrPmAQG5urthdh8PhmJ5nvUWL3hL7qEQ7Vep8GnIbUtAk6pjUTiGFJExOPdLMDVDfq2aOrFarYNOHJYWzJWFsVmVmLASRtHDaPMkl2xfcptWQakoQQMBgMGC325EkiXXr1pGSksLBgwfRaDR0dHRQUFBAXl4eDQ0N/PrXv2ZycpKNGzdy6623otVqefvtt7FYLExOTsZkGWC2r0Z0jI6OkpycHGMUBRFA0dXVRU1NTcz7Ozo6REZJlmWeeuopsfO/5557Yt7b398vFlF113VjTExM8OGHHwqipyRJLF26lLy8PD7//HPq6+sFqTU9PZ3cJwt4+68/neNOz0QYyPGzZ88e0tLS+P73vx9D6mtpaREuhWlpaXg8HkZGRoQp0eXLl/nss89EB0Nra6uws37wwQdFicNgMHDw4EESExOFrkNcXJxYWPPz89mxYwd9fX288kqklLR+/Xpqamrwer0cPHiQhoYGzGYzS5YsYWBgAI/HI8jFEOk62rlzJ8FgkDNnztDf309KSgr33HMPS5cuFe6SEMlU9vb2ct9996EoCl1dXdTV1dHe3i4AWE5ODrt27aK+vp4DBw7ElLfKy8vxer10d3dz+ssztJ+JJevFhAJTQx7SzVlIpjBVVVUcP36ci4aA6MmfFTOAwLM4jcyeAD6fj4GBAQwGA263Wwhh/exnP8Pv99Pf34/P50Ov1zM+Pk5LS4vwVIGFyYPT09NcvXpV7P7V1H9+fj633XYbJSUlZGZmfuNivjF1HXnhLH722b9hyotj2ulmY9Z6Wo5exlvmITEjYcG//7bEdxIMrNu1Emt6Io5R5zw9ZpCxPAlZG1ngs4b0+AwK/fk+UdOSFFBkSBnTUtJlmuMgkUhbauVa7XikFHDjZ0kQl2UiuTxys1U1OVm5Toa5MSXclDEeAQI3SPSGZajPGSPVnsRP735StH85nU5eeeUV4SGv6obfGCGzjlP5HibiZr7bwpcQAI1RD1Gs+oKCgoii2AwbWA2Xy4XL5UKr1RIfH8/ExIQAAvn5+dx1113U1tZy9OhR9Ho9liQzzqH5UYYkgc6swe/3U1hYGJO270pXuJIb7TcRiYAMp7Lc/JeaOwl7w5FuAyRy7dINx5ZuOjtzYyxfvpyLFy8KXsZCodbdoyPkDGBhNvHO6/ViNBrx+/1kZ2fT09MjzrM1KyxaCtWxoABI4DZC21ILpoZI5iXa7bGiooIdO3bgdrs5ePAgiqLQ3tzV49kAACAASURBVN7Ohg0buHbtGtPT0yQlJfH444+L3W5HRwdtbW089NBD7N+/fxYQiy5l3aj2Nzo6KhT+1DY3gN7eXvx+vyDGKYpCY2OjGB+SJPHUU08JV7z8/PwYl8NwOMz+/fuBSGbp7rvvnnX9/H4/77zzDjqdTpA8TSYT7e3tXLp0KcaFcfPmzUxNTXHhwgVya1IZOD02Z5Zq+T2VWApkzGYzo6OjvPXWW2zatImioiIOHz4sOCSqdkBBQQH3338/Wq2Wd999l9bWVkpKShgdHaWlpQVJkti8eTMbN24U5Y9AIIDbHcliOp1OQbJVORc7d+7E6/Xy3nvv4XQ6WbFihUhtf/HFF1y8eBGj0cjixYu5du2asFtWr7PqJ5KXl8fhw4cZHx8nPz+fRx99lLKysjkXsebmZiRJwuFw8Oyzz2K328nIyGDnzp2MjIxQV1eH1+vlpZdeEmM0JSWF5cuXo9FoaGlpob+/H0mSmBqdu4Nq1mfWtZK6OFGoE9pk/4Ly2wrgMIVxOp388Ic/5PTp07S2tvLss89y++23U1ZWhs/nIz09nbfeeovy8nJMJhOFhYWcOHGCnJwc2tracLlcYgOjtmXOl/pfvHgxxcXFFBQUCN7FvyfG+kdJ7U1gR8UODp86zAN338uLdRGFySeeeOI7kR34ToIBrU7LT/7tKf7vx5+N/CL6QZfAaNWRvyk96lcSRT1GMoZ1DGcG8BrC6AIS6SM64qfmrpsDwk1rydNFtP9uAMfV2Pa/5LJ4ynbnMhUH7ZkhriUpKDIY/VA8KlMyLKGN0pr168IMZs/T2TAzYZ3RXsX7s5+JlHv0wq8Ci6ysLMrLy9Hr9XR3d9PW1cGxIg+umXXoZowWFQlMzgAGQ6Qmn5CQQG9vLxaLJWbXGx3BYFAwddWMx/bt28nMzGT37t3cfvvtnDlzhq6qazhtU/MiEiUM6csi2ZRo5m9IimQE5oyZ6/OL5sPsaJv/Yb0ZIKCgMBqv4Mm04Ha7SHVJcG2AgYGF24TUSExMZMzpRMOCvMGY8Pl8WK1Went7yc7OZmpqCodrkqvp85evFAm6pEmKdRoSAhpx/y0Wi2ihi4uLE4JTo6OjPPvss2LiWbt2rVi0g8Eghw4doqioiMWLF3PgwIFZYCD6/9G7ZIjssFasWEFzczMpKSmCn9LR0UF8fDwZGRk4HA4OHDggUvUQ6QgoKCjgxRdfBCJKctFRW1srxsDdd989C4SohMGxsbHYDJvJRGVlpbD5hkhqvqmpSXBZSnbkkFKQhO2sneGuyO8yilOJrzZgWS6zcetmTGXZXLMNYrvYzr59+2KsyBMTE+nv72fz5s3ceuuttLW1ceDAARRFobS0VADGjIwMHnroIXGtVTOgw4cP43Q6ycjIwGaz4fP5kCQJjSbCtD969CgjIyNUVFQI2fBTp05x4cIFdDod5eXlDA4OcuXKFXG9VfLl1NQUixYtYmhoiMuXL1NZWcnu3btnCSNFX8eBgQG++iri6XLq1CmqqqrYvXs3AKdPnxZcjPHxcXQ6HdXV1aSnp9Pf38/x48cJh8OUlJTw4IMPkpiYyHP//MKcn3VjLF+9jIHpHlavXs358+fRLJzURQImx+1YLBYaGxupqqqitbWViooKDh06xKlTp5BlmSeffJKPP/6Y5uZmEhMT2bx5My+99JLwW2lqamJgYACTycQ777wTk/ovKSmZN/X/PxI9PT1kZ2djtVpRFAWfz8e2bdt455136OzsnFOi+9sW30kwAGDK1bLsmRJ6jtlwXo0gVFknkbE8ifxN6TF1fDXMHg1F3TfRWjATqkZ7fLKFJU8V4R71MtnnjhD9Ci0Yk/SMxof5elEIRbq+CHt10JwdZigRNrZrBCCYSA4uvFBLMJUQwqcPgz+y85QkifT0dIHM1TakvLw8Nm7cyIYNG9jffZ6Pmj9e4MA3hBLJXuSNS/hCkdTq5OQkOp2O5uZm8TadTsfy5ctpaGiYRYBUF5y3336b1atXs3LlShITE7nzzjuxWpL4h/P/im8yMGc2xVochxJSmB7zoShOrFYrTqeTkQSF4EIjUoIpk4JDGyQ+uDDiUWWNbwy3XuHMohBTJpDCUxAPbbJCnCfMhk4Ncb75j+sDruj0tAdC+C3xyIpCUTDAkoCfhAVAiNqZ4XQ6BVN/amqKULKJgHa2vsSNMREPyzLLaG5pwazVivY/Na1bXFzM8PAwENnlPPbYY7z66qsMDAwImekzZ87gcDh49NFHkSRJtOBFR/Q9VrUIIMIJmZ6eFrvSaC2Bjo4OSktLOXv2LEePHhXclr6+Pm699Vaqq6sZGhrCZrORl5cX43M/OTkpWklzcnLEuSqKgs1mo62tjYsXLwqegrpT3bp1Kxs3buTChQvC6a+yslKI+kAky5CYmMjtf3o7X5Z9yY68Gm6//XY+O3KQa0ODNGeHODh5HH/dTJ03DXK0Mkt7AhiIEHrdbjff//73SU9PZ//+/Vy+fJn8/HzRVqbRaNi+fTtr164Vz8PY2BiHDh2iq6uL1NRUtFotNpsNSZIoLi6mq6sLrVaLw+HAYDDw1FNPkZ6ezqlTp6irq0Oj0VBaWsrg4KDQpYDIRqCsrIy1a9dSX1+P3W7n1KlTJCYmEhcXxyOPPDLn2FGloOvq6sQYqaqqYtOmTYILEF1yyMnJoby8HJfLRXNzMxcvXiQ9PZ0tW7ZQXV3NxMQEly9fprm5GWOqDmOyPkKynie0Zg3j4cjnNjY2RjIadomujPnLmIoEaWMRJdULFy6Ia1tTU8PatWuFeuWhQ4fYsWMHNpsNh8OBy+Vi0aJFQofjiy++ECJNwWDw35X6B7D73bzTc5ZPBhpwBKbJMSXxUMEa7stdgUFzndOiKArd3d2sWLFCZHRdLhfl5eUUFBQI6+q52mS/TfGdBQOtra0k5ltY8mQRIW8YvcaAL+Rlon2Kvq9GkGSJ5EXxJBZZburGFxcXzxKrUEOtRZpTDaQVJAvCXFhSOF8cqW3PJWhkt0B7ZpjFgzNCHpqbS18/+YPvY/LIfPLJJ0xMTDA1NSX6s3NzcwWDuKenh0cffZQT4+3z1+AgRg1Q7ZpYfVVGH4q9Ljcu+IFAgEuXLrF8+XLGx8e5evUqRqMRn88Xo2B48uRJTpw4QUVFBcnJyZw5c4b7/3E7h372FY7uqMVOBn2cFkeXC0dX5PfmDANF2zJJKo0ncJM47Zvep9frWbJkiZB9FX8nK3xVEcI38xxHkw/dRjhZHmJbkwbdHM5BXiQOmUxMSbIwXglLEle1Onq1Oh7SadBHqT4CQp5ZbQkFRHYAYO2aNXw6HnuOc0V7vswFuQlWgDUkU3QtSENDA6tWreKrr74SIj2yLAvnx7y8PFGXdjqdnDx5krVr1wrLWoPBMEvoKjozEA0G1E4CddyrXQMTExNCUfHixYusWbOGoqIi3n33XZKSkoRAzCeffALM5gp88sknYhzdd999dHV10dbWRnt7uwCngUAAk8kkAFB8fDw1NTVcuXJFAIGMjAyRqocIuS4lJYXS0lK++OILVq9ezYoVK4R6pn1rIe32TqJLZApwzRrGXa1l42WFBKOF6elp9u/fL8a7CnIgUj544IEHhJSwz+fjxIkTnD17FrPZjMViuZ6hKClhw4YNQp/B6/WSmprKxMQEn3zyCS6XC0mSKCwsFCBI/S6KolBdXU11dTWXL19m7969GI1GNBoNa9euRaPRxHQvqDE8PExdXR2NjY0EAgHKysrIzs6moaEBn8/H888/L8akyt2prq5mbGyMo0ePYjabqa6uFrLOTU1NvPzyy0xNTWG1Wlm9ejXV1dW85trLFz8/M+vz1Sjeno1nxgfE6/VitVopGbEzkC3jDwdnzVmSAhYv5E5q0WhlgsGgyPx88MEHVFdX4/P5WL58OZ2dnbzwwguYTCZ0Oh379u0DIABc1eoY1WqRdBK3Fhfx8O77MM1BSp0vrk3befrr3zDuc4lz7Jiy8U9Nn/DpQAMvrH8akyaSoRwdHcXtdlNUVCQyai6Xi8zMTO644w5+85vfUF9fP6td9dsW3ykw4AsGaR4ZwT3t4Wp/PzoiD74+Qc9Yl4Pmt3oJekJIM5P8YO04lgwjix8vwJAweyBE15dVIBCthjdXRCsN2hIVsbDMGRJ0pylUDipISJinNd9o4COH4K2XXifeaGHx4sUsW7aM06dPYzKZKCkpwel0inr1yMgIv/rVrxhYEzc/EJg5DzUbkDOlpXhQISdsxsP87X9qaLVagegfe+wxjh8/TmZmJhMTE5EWrihyUWdnJ8FgEJ1OR05xFtVPFWIhnr6mQbwuH73Hh/FPxdbap0d8XNnbS8Uj+cStjp/rFGJDAfP8MgNAZFE7e/as+L862fWnKHh1zHkPFCmS0elPUSgenf2Ger0+Bghc/zuJkKLwhQJ33XDouUROomWim47VYqhk4TEETEnXQZpDDnAxH/6friNsPFuLa8rFpk2baGhowOFw0N3dTSAQIC8vj0uXLuHz+Thy5AgGg4HNmzeL4xiNRhRFEZaw6nVTI1ovf3R0FFmWxc4yNzeXYDAoJHElSeKZZ57BYDDwyiuvALBr1y4kSWJkZIShoSFycnIEEIFIRkFNs6empvLyyy/j9/uxWq1UVFSQl5fHoUOHMJlMMZmBmpoaurq6+OCDD4TOwPDwsLjHsiyTlZVFSkoKp0+f5vbbbyc9PZ3XXnuN1NRUlu3axOsNb847BuzaIHGbl/IXa+7hd7/7nfAEkCSJvr4+dDodu3btYunSpWL+uHz5MkeOHMHj8ZCYmCjIqsnJyWzdupXu7m727dsnrMg1Go3gSdjtkXT4jTwVSZJYsWIFhYWF1NfX8/bbbwufkuXLl7N//34GBgZYtWoVk5OT+Hw+NBoNzc3N1NXV0d/fT1xcHOvXr2fRokV0dnZy8uRJ8TmqsFlqaqpQhGxubqasrIxNmzaRkpJCc3OzKNGYzWaqqqpYsmQJubm5Aqz8h//2p4wOjdK8v4eAJ3h9rtFJlNyRQ+7aNL73ve9RV1dHZ2cnLpcLc1DiruEkvsycZDLkFQJhigwJPpkN7RJKKEyQMHFxcUL1UlEUocfS3d2N0RghW6vdBCaTiT6/n6NGMz5FEbe4q7ePT156mT0PPUhVxs3pDfzdxfeY8Ltj5lX1p8uOAX7d9iV/vfguIFIi0Gg05OXlieuiAu3s7GyWLl3K8ePHWbJkye9N+OgPEd8JMBAKh3mu9iyvXqhnamaXrjHHsSgYYFXAT2DcQ9Mb3UI+NrqdyD3qpemNHlb+aWmMsZBOp0On05Gfn09PT49ImS6oX3BDTJpmJJAXyP74deDXgiEIVocGo0fCa5ynTqxApk2PJhxRJVRJTFqtFr1eT1NTE3l5eTz55JP09/dz+vRpAoEAoSE7Utr8XAFJgQwHrO/SIEsSigIBbeCmyHZqqQQi7V8ul0vYHVdWVlJTU8OpU6e4cuWKACkajUYsxl7NNGWbCjn164uE/XMwG2f+3/XpIGvKy4j3zG/7LCmQ6QDjAiUC9Tup5x3Nir+W9A3FSmAgOUzxaOwNNVutXPUHF7RiHQuFGZVl0qPq2ipDPua9Udc76A+wyCbTlBteGCTOkXXqtPop98N/fOJPSUlJQVEUoTzY3d1Nfn4+iqJw/vx5rly5wv333x8zEd1oYwyxmaHoOurIyAgpKSmMjo6i0+lwOp3s3buX0dFRrFYrP/nJT/B4PLz88stoNBri4uJEr/6NWQG1Xfb48ePi+Hq9npqaGsrLy0lPTyccDvObF1+ht2GKwRY3AY9CfLKR1FINiQlW3n77bfG3Ho9HWN3Kskx+fj56vZ7GxkbuuecefD4f77zzDhUVFdx///38rP1zNJI8v/25BKd9/RheeIHp6Wmh5aDet4SEBDQajShlfPbZZ/T395OUlITb7cZut2M0Gtm8eTNut5v9+/ej0WjYunUrS5Ys4cKFC9TW1oq2YEmSYjYYGo2G1atXk5KSQl1dHfX19WRnZ/PQQw9RWVkpgFtxcTEHDx4UMs+ffvopXV1dTE9PU1RUxIMPPogkSZw/f17wBACx4/f7/bS1tQlgcPvtt1NRUUF3dzenTp0SMuQqUbWoqGiWoqXf7+fq1assuaMCS7GeifYpfM4AucXZaLMUikqLaG9vJxQKUVRURFNTE48++mjEQfLaJJv7AlxLknHGRxb/bflLGa5rIjcnV3TbqORlnU6HRqMRm7VoUK3RaNBqtYx7vXxhthBQFJCkmKnG7vXy1Hvvc+xHPyBhDnXN6GiftHHJMbfyKkQMiT7oq+PPyrdi0kR4W7m5uaJsZzQaY7JuW7Zsobm5mVOnTs2rn/FtiG89GFAUhb89dJiPmltibm5IkmjT6piQZRadHUQJzUOhD4NnzMd42xSZS5IJBoNCJEd1A/v3AIDo0IZvjqynm9H/M5vMVLSGaFzqjpQWotccBcwemYJe46xFOhgMisHV39/PG2+8EXP8wlGZq+nzfwdFihAaJa4fdy42PER62NWdTXRIkiSY3GodTz3PhIQEoRY2PDwcAyBCoRC2/mHG2xZ2AQy4gzg63ayMj+NkeSjiDBl1bSUF9EFY0r9wjWDcHKY7NcyUSUEfhNyJaSqCCeCFoIZvXHRv7DCVJIlrzknCZsvcfxMVDllD+ozDWvQuOy4uDo1GEzOBqVE6LDFllOhNU0SbqfrvQmZPkgLtSX5Rg6+urubEiRPCb2Lnzp2YTCa+/vpr8vPzZ4muqAAgGgxEn3O0zoDaVjg6OorZbGbPnj1kZmYKq+FQKMS+fftES+bGjRuRJImxsTEGBgZISUmhsbGR9vZ2xsbGYsa3ak4UHb979yMOv9iOdzLKznbQw8Q1+K9tr1K2zYRGG7kwJSUldHV1iZq81+tlYGCARx55hI6ODurr66mpqWHr1q0RFbmxIULhhcGXzWVHp4vUlYeGhjAYDOzevRuLxcKJEyf44IMP+PTTT/F6vVgsFrRaLXa7HVmWWbduXcSW+quv8Pv9rFu3jtWrV3P58mV+/etfEwgEyM7OZnR0VLSbqpGTk8OiRYu4cOGCIAjeddddFBQUzCp1FhYWoiiKaNdsbW1l1apVotx54MABUd7UaDSkpqYyPDyM0Wjk3LlzQrZcJej19fVx/PhxJEkSZk3l5eWz9B48Hg/t7e20tLTQ2dkpFBmLSoqQtb1oNBq2bNlEKBTi+PHjWK1WLl26xPr161EURYwxnU5HaWkpmtZWmADQkJWiJb6klLGxMUGK9WoVrqaH6U8JEtD2E5cIt5uL+Js7vgfhMK2trRw8eBC/30+7VkdQYU4fhLCi4PR6+eBKM8+sWjn/zQeanbOt1W+M6ZCffvcEpXGRDhvV3hkiz3s0wEtMTGTDhg2cOXOG1atXz3Kp/LbEtx4MXBgcZH/z3HaYiiQxotGS0DI5v7gIgATjrZNCNS76Rt0sEDCbzaLHW40su8TlhcxxFEibBHkmY+HxeEhAy8r6OAaLggwle1Fk0AYksob05PUbMKAlpITEhDmXDn106HQ6smU9FYOTtGYrsQvIzM+FoxLpkzfX2jIXEIDZLH1FUejr6xMs8aKiIrZv305GRgZdXV28++67AnD4XcGb6nX0TQbIcktsbtHQkh1iyBo5fzkMuRMSlYMyVgz4mU1YUlC4nBumK1OJWUyHrWH68bHuipaE6RBOkzJvJkdSmKVVoCgK2pvsCtJFeVKosr4Q2d3M164kIbGiV6ZgDHpTw7iMCoaAhC9Bx7h2fmKWIsFgaIrnnnsOk8mEVqsVu6ZLly6JMePxeMjIyODMmTPodDq0Wi06nU4sFN3d3Xi9XrHjV8edWj6QJEm0FarHu+OOO0hMTOS9996jpKSEDz74gImJCVatWsW5c+eoqqqipaWFTz+N9PmPj49z6dIlQYBT3QZXrlw5Cwg0NDTwu+dq8U7dMOZnxo9zOEB/vcSimgSqqqqEMmB5eTljY2O43W4effRRTp48SX9/P5WVldjtdv71X/8Vp9PJWF5owSwaCpiDsqj3L1myhJ07d2I0GgmHw1RUVDAwMCCunzqXlJWVUVxcTG1tLU6nk+XLl1NTU0NraysvvfSScPkbGxubJd4TDAbRarVcu3aNwcFBli5dyi233DJnb/zU1BT19fWCf+ByuTAajeTk5NDT0yP4IxDhUuTk5AixLUmSyM7O5o477iAYDArORVNTEwUFBezatYvFixfPEpxyuVy0trbS2tpKd3c34XCY3NxctmzZQmVlJUlJSYyPj/OrX/2KUCjE9PQ0Gzdu5PTp08THx9Pc3MyOHTsEaFLH0djYGEajUVhmX7p0Scx3TqcTlxFOlIcIaK/fL7sFfid1M3rpXX6++nFWrFjB4cOHqamp4avWdpQ5DN+ih9DRrq45wYDH42FgYCCScR1qhPmlY67fO1kTASxeb4zUdNwcxnM1NTXU19fzyceHMRsKGR9zkZIax+3bq0hK+uaNxv8X8a0HAx80XUEzU5edKyRFIRRQFtzwRdSwrk8u6oCL3qGov7NYIrX68+fPx7w+PT0ds+MFsPgl8sYl+lPmSPvPnG7F0OydrNmjobRZQwl6wnJksZOI1D8rKipoa2sT/eQLAQGIpHYDgQCVbg3xnjDtWWGcM91ZcT6JUptE4Zg0q31Sp9MRDoe/EQzN12YI11PyWq2WgYEBXnrpJaxWKwUFBWKCCwaD6Mw3xwxU35fokVh8TYM2FMKWGNFgmNYrOMwKJodvzlbQ3lSFrszYfn31baOKh6/zI1mFvrSFMyhFo7ORQpyiYA2FcMjynLsOAFlRyAoGYKZr4Ma4sY0vOiQkUtyQ4o58f1mWOV3kj0xICyxa+lCkTS05OZLxio+Px+FwEAgE6OnpEWPoypUrhEKhGCElNdQF4cb4h3/4B2GdGwqFhBaExWKhubkZh8OBVqtl37592O128vPzOX/+PLIs82//9m8x5LRbbrmFtLQ0dDodhw8fRlEU9Ho9a9euZWpqSgCUkZER3n/rYxzX5s5aqd97tCPAfT+spqHhIhAhavb29qIoCpmZmSJLAdDV1UVWVhY5OTlMTk5SMC5zNWPhMV8Q0anBYrGQmpoqTLw+++wzbDYbcXFxAgyoWaCuri7a29spKyvj4Ycfpre3lz179jA9PU1mZiZjY2Mi9Q2RzcXq1atxOBw0NTXh9/sFYTI7OzsGCCiKQk9PD3V1dbS2tiLLspAnttls4vMhwlMpLS0lFApx9erVGI+K9evX4/V6+fDDD8X5r127lltuuWXWbtXpdNLS0kJLSwt9fX2C4Lhjxw4qKytjCKZATEdCW1sbW7duZfXq1Zw7d45AIEB7ezuZmZmMjo6KeePGLJHaKjs1NUVYCXOxUktAvqEDa+bnU6Md/PbqKZ4p2ojP56Ovr4/JeZxjo8MfCgm1wf7+fvr7+xkYGBAkWVmW0cohpGULZ32zTVbyLSnUNtai1WpjWjotFsssMKDX6wn78/ntS+1IdKDRyIRCCi899yVPPnMrj3+/5n+5FsG3Hgxcm5ycFwhAJDvgzzZj6Fo4De1zBmh5rw99nI6MFVbiMk0xu131Z7fbTW5uLoFAQOw6FooVvTI6g5ar8T4kBaQZ4SG9HOJhayNZi3QMtlfgcc8WNpKQYnpuvV6v+MyFMgLz1fpz7TK5dpmAJuIDpgsx58IJsfXh6J7pG2M+IAAIQGU0GsUOyeFwMNQ1zHjrJOGAQlyWiVvuWUNb0QDOHve890hjkElaFJlgbAlhaksj313dxY/Fw1hCmKIRiWV9csz3iqgWhudNqysSjMdHdv7lgxJt82RQym0yye7ZB5CA5QE/x40mmKlHxn6AQsKxQRq/HiJnfQrZ61KQZImEhIQYCeebCVXbItcuY/sGjsMyUoQwi06nw2az8eKLLyJJEnq9XojcPPnkk2RmRqSf1VT+5cuX+fTTT9m8eTNlZWUEg0HOnj1Lc3MzGo2GXbt20dvbK6x61YWqtLRU1Ms1Gg12ux2NRiNY9rIsi/eqaeFofoAafr+fF16Y3afutC0g/T0ToYDC6WPniUuNcGnUVjJZlunr60Ov17Nx40bKyspITk5m3759omXWOi2RPyrRlzobwEsKJHhgd8EqltyxmKamJk6ePCm6UvR6PZIk4XK5MJlMrF+/nu7ubnp6etDpdELU5vXXX4+4lWZk4PP5hH8ERDgHS5cuZWhoiK+++or4+Hi2bt1Kbm4ub7/9Njqdjs8++wyj0ciiRYu4dOkSdXV1jI+Pk5qaKjgCFy5ciMniabVaysvLGRgY4MqVK1itVtavX09WVhZnzkTY/mfOnCEpKYnly5dTX1/PkiVLuOuuu8QxVAW/lpYWBgcHkWWZkpIS7r33XsrLy2dpQESHytlQuygaGhpYv349tbW1WK1WGhoasFgss+YZdR7LzMxEq9Xywx/+kLGxMf7bG79mTDM/U1hRFF658iXX9h0HIhmuJIORCa1uIRV0jE4n//Iv/yKAcnx8fMyGsLy8nCVLlqD3tfDJtYZ5idk/LN2ELMl0d3dTUFAQw6eIi4sTZFs1PvqgjiMHO4isEBCc2ZyGQgqvvXyCuHgj9z34v7bb4FsPBtIslgUzAygKoQ0Z0LnwpOsa8kTMc2QYOjdOxgorpXfnCFJh9OJ6owKfGpIkUVBQgMvlEmlEjSKxrC1EsVGDu2wES/YwGbpJVll7MWqCKFkSBYubqf9iK47hzFnHm4/AdyMQyMzMJCEhgZGRkRgUDpFBbDabBRrV3dAyqKDgswaYTvQBEqmeJMIj18FAtHiK1+udtbNdyMFQURTxucFAiLaDg0xcciIRWTOVMHR8co38zWlM9k2jhOfmdhRuy0SjkwnICudKwhFUPseOoDtdIW1SIcdx/UWfFiG4NG8oMJqgsHhQQ6InTHtmGMdMds46DdV2E2m22WZSauSHgqz3eTmvNxBSlBiVx4SvbSQd7sOvQPfnNlyDHsoeY/qmYgAAIABJREFUyP13AwG4TtjMtkvEeSItjzfuUGQkLGjIGgri9Xq5fPkyK1euJCMjQ6gU2mw2du7cyaFDh+jr6xNgQJZlDAZDjAa/Kp3b1NQkNAiam5vp6OggMzNTSLoajUaqqqq4ePEiwWCQYDCIRqOhoqICp9PJ9PQ0f/7nf87k5CS//OUvSUtL4yc/+QnBYBC3283zzz9PIBAgNzeXHTt2EAgExGsnTpyIlCnkm9sdqSBUbdMrLy/nzJkzFBQU8PDDD2MymWhoaOCFF16IGbc6nY7/fsujvNb7NV9MXxW6FtJMKeqPLFXcv+teQqEQw8PDQiQoFAqJ7E5aWhpms5ljx46RmprKQw89hMfj4fjx4zElyOgFISkpicrKSkHQS09PZ/fu3VRXV4uF5Omnn+b1119Hr9fz4YcfCqJiZWUla9asobu7m6NHj8aIT7ndbnHPOzo6WLx4MUVFRUxMTNDU1MRXX32FLMskJydz//33k5OTw4cffohOp2Pr1q0MDw8LADAyMiJq+WoXwlxW1nPFxMQEVqsVo9GIXq/n4MGDPPLII2RnZzMwMBAzZ+n1emGKpUZJSYkg3KamppK8tBjJ0zb/7lwCj1bBmJ6Ed9jOnXfeyUOFhdz7xt65369ENkgr9HqyCwuZnJxkcHAQl8tFcXExW7dupaKiQnzfvwuV4gx6OD7cGtnkSRKSBCFF4celm3ggbxWhUIje3l5uu+22mI+6sUwQCIR4c8/JBa/fG3tOsuu+FWi1N6+D8/uObz0YuH/x4nk5AwBIEpXL0vC1jGGrs88pPQpcN9KY+Xf4ogNDgp6irZGJ8Ga4A2q6rqKiYlbZIDdhlLUrD80+PVlBJsSKrUc5/8mTuF1hAQAWYvLfCBRUm87oMBgiVrzhcHhWWkqNgDHIteUTeBOvCwCNSE4s4wayLiWhjWraHx4eFmxwt9sdc54LneuUQaE9K0x/YhhlQxbSVDrGQw7MH4wju8MEpoN0H7ZRem82A1+N4okyftKaNBRuyyBzZTIQae0LySyYHu/KCJPjkK9nT/6d2bUcu0yOXSY0I7qgUSRkOYQhSu53rigLBigMBmidVuhumkIzHSTu0hhaR+xudrTJSWp1Iinl/+PKZhpF4tY2DWdLQxGJaUCeAcXxHvjZykf49MK7ZGVlce7cOVasWIEkSVRWVop6clVVFY2NjfT397N27dqY46v90NGLlzqWVDDxR3/0R7S2tgpGdzAYZO/evYJUVlhYyPe+9z18Ph8///nP2bZtG5IkxXQQyLIsFodAIOJat23bNkZGRhgYGPh/2Xvv4DjOM8//0z0RMwMMMMhhkIlEEsxBJCVSlKi8CraCV5Ilymvv7XqD63zB+9u6vbpau1a1e7ey5SDX6mQzyLJlBdO2AkkFBjGTAAESORI5x8Hk0P37Y9AvZ4hAepN9vnuqUCQGPT3dPd3v+32f5/t8v3EpWoCkTF0URC6T5dObJdbfVkV7RztVVVXY7XbOnDnD+vXreeCBBxgYGODtt9+OOzeItnndd999HD58mIThYZ5MSqZfmUOVYc+qLXRONNM60Mo/nH6H00MtBENBsjKM5IxEMBElKHo8HjHJWywWHA4HR48eZW5uTlhIx4IPWZZxOp3Mzs5y9uxZioqKeOaZZygpKYlLCweDQQYGBoQ8MkTHpJUrV9Lb20tTU5PYn7YS1fQqtFi/fj19fX3U19djNBpFt8+vf/1rdu/eTV5eHl1dXTQ0NFBaWsqPfvQjpqamMJlMlJWVsWvXLkpLSxc1ibpZTE1NYbfbmZubIxwOC1KpBmgkSWLlypU0NjaSlJQkyMgQXYSkpaXhdrsZHByku7ubidEx1Ft4fP7g/gd4e/8bTE9P09/fz+0SnFKj5WOt+0eaz+Y9kZaKd2iQlhhAunLlSiEUFBsmnYFvb3ial39xkNrwCLllReQkpPCocz351ihpd2hoiFAoFMcXgCgY8Pv9olTa3DjA7OzybdyzM15amgZZvSb/5if9bxS/82BgW0E+O4sKOdXTi3LDCCEBDuBbzz9Hyp/Z+Nl33uXwPx1jqjdmZbvMoDJ4foLc7WnoDLJA/+Xl5QwODi45uQIiLRkb+ZXNKIqELC/8QElW0RlCJOc04W6rEBO9ls7V6ndaJCYm4vV6bwpQbnzfjRHRKfRunoja60LcpOlJCdC/cYLC8xnCUAeiICSW/Ka9thgY0Ol0TJrCfFYeQZFUVC3LkqjD9zkHwW02kv9LL/KcgqKozF7zsP7PVjA36MM/HcSQoMNeZEXWXa/TT1tjCICLhQQz89lKbdA1haLaA14jSwMDCVLd8X/UxXyIVvKAaBZmZGREcB5iwwhYjg+TenlqoVNbzGeN1Ez9i8AARFsod7bqSVtbytmRdjZt2Yxl3M9QTQO+zAmKioqYnZ1lamqK/v5+0VanRVdXF3l5ebS0LATTGklMmzAnJiaECZbJZGLjxo2cP38+bsIpKChg69atvPXWW1gsFp555hn0er1w0FyzZg0ul4uuri5SU1NxOp34fD6uXr0qVn2SJLF//34kSVpUBtaQIJNRZmK0fREvkPmo3pVLW3sbGzduZG5ujnPnznHvvfdSXFzMq6++KjIZsbFr1y70ej379+/HbDYjyzI+l5uKtHSefPJJ0tPT+VWalW/2fUx45grM32Mj9iCNmRLPSeX0X+1FlmXuvPNO/H4/tbW1QsJXu4ZaZGVlkZycTEdHB729vej1erZv3y6OQ4vx8XFqamqEJkRpaSlFRUXU1NSgKIoAASkpKTgcDkZHR+nt7SUtLY0dO3bQ09MjCIkXLlygrKyMxx9/nLKyMgwGA6dOnUKv1wvDpNraWiA6kZWXl3PfffdRXFy8oG3wViIcDgut/66uLjFemUwmVq9eTUNDAxs2bMDn89Ha2srQ0BD6eQVNVVXFmCvLMqdORVfOr7322vw+VFjOdVgFuw/eORgVGqqpqSE3N5eHCvKxtrTSYjAwotMjAdmRMJWhIE6vmdXzqpix/hhLfoSqEugc4UubN3PnujsX/P3atWuYTCaRWdNCA9o9PT14PB7OnW1b8N7Fwue9eYns3zJ+58GALEm88vAf8K0TJ3m7oZHw/AQgAbuLCinp7+PnP/kJe/fuZe83nmbvN56OCqL85CO+96V9y+47ElBwD/qwF1rFjdzW1iZSRTabDa/Xe1MSH4Aja2RRICBChZTMUUa7V8dZxQYCAdLT0+NWR3Nzc2zcuJHc3FxaWlro6OhYMBlbLBZBHlwqZnO9hM2RxSdIGQJJYeYyfCSNXq8Faulfrd6sHediEY6EuVQUQZFZ2IOvk4hkGfE8l07iD0ZBgYnGWcofdZKUZyEpb/H64810yyEqnhT3uySzYkTlSv4SHAsV7B5IuQm/yOv1YjAYxEphqfZL32RgaSAAoIJ34ibKSDeJgoIC+vv7kWUZf+cIt5nSsdaN8dxzz/H3l9o4deoUjz/+OD/72c9ISkri4sWLpKamUldXJzImbW1trFy5kvPnz+NyueImX+0e9/l8nDx5Mq4XPRAI8Nlnp9Bbc+idNGOzJZDADNu3b+eDDz5AURR27twp/DNqa2upqqrCbDZz4MABAGGVHDtBSpJEYmKiaOuNLUdJkkRKSgp6vR5l0yh+d4TZwTCyTkKJqCLjV7LBgSHTxY4dt9PZ2cnU1BQPP/wwV65c4ejRowuuo8Vi4eGHH+bMmTP09/eTkJCA1+sVGYpt27YRDof59bGjfNN9etH20zAqB9RWvrF+EyXpuZw7d47JyUmSk5MXBc5JSUmMj48zOTnJhg0bKCsro76+njNnztDQ0CDsjevq6ujp6RGOhJFIRLTs3RjT09P4/X6qqqqE6+Xp06fj5Je3bt0q+tgjkQidnZ2cO3cOVVV54403MJlMKIrCww8/zJo1a35jeVxVVRkfHxdGPz09PaJVW1EUVq9eLTJrjz32GFlZWXz00Uc8+OCDNDQ0iFKCVj7Tjj2WU5Gbm8uWLVsoLi4m0Pgup8c7Fl8YSFAxoo+WHYE///M/JzExkVdeeYVMVSFXiRAK+AXguO2229izZ89vRNIbGBjA7/cv6Sug8QW0bJH2oxFF33gjWrIwGm5tUVBQlH7zjf4N43ceDACYDQa+tedu/tOO7VwaGERRFdZkZ5M9z54+cOAABw4c4Pnnn8dut0e9szOybr5jEDdTbGikueWyAwv2c5NctYqEqkqLTt7j4+PodDpCgRATLS68Y376P/uQ1MokMorScDgccWk1YEFngyRJ6PX6OEVAV/Yy1svRg8KVHQ8GtLgx66AJ1sS+PmUD99KGj6CT8O+2Y/3xOLJPQQmrcSvwxSJzVuJaxjLlEwWyZ+Lfr6oqReMSM5b4fn1tZZkQhC1dSxtSxUZ5ebkgwy0VerNu6XKUtk3CP7/2J0kSvb293HfffXz66adC/Kajo4PGxkZ27tzJJ598Qk9PjxDp0Vb/kiRRVlZGa2srHR0d3HPPPQD09fWxatUq8RkawO3p6eHatWsAYnIwWjOp6ZYZGZ9CQodKCLAy8PKHVGRG76mqqiohjKUJ7bz44osCQGklp1girNVqJSsri5ycHNLT0/n4449xuVxEIhESEhLweDwEAgFkvcTKexPZuno3hw4eZ3rchTlRR9VtOfiZ4Y477hRaF7m5uXEOibET84oVKyguLubtt9/GYDCIFracnByeeOIJ7HY7ra2tHDlyhBrrDOEcFgfOEigSHJlsoeBCnWDex9bBNb+G/v5+XC4XqqqSmJgoOhI+//nPs27dOo4cOSJAS3JyMhs2bGBwcFAIjEG0Zm4ymRgaGhLno9frKSgooLGxUbQp7t69m/Lycn74wx9is9mYnp6mtbWVlpYW2tvbxThWXl5OdXU1v/jFL9i2bRvr1q275XvR4/HQ3d0trH7n5ubQ6XQUFBSwa9cuSkpKMJvNvPzyyyIboE32GzdupLGxkaNHj4os2418J4C77rqL9evX89JLL5Gdnc309DSHDh0iuecajtJ58u+8pov22N2vKyQ1MI1PjpZlDh06xOTkpMh0lZSU0N7ezrZt2zh16hRdXV3iWbjV6OzsJCEhQXRjhMNhJiYmRMm2p6cHo9HISy+9BET5KJmZmeTl5TE1NcWdd96JTqeLEjdTVWampEXLX7JOYv3GIjKzfrv6A/9HgAEtUhISuGdFfF9ycnIyzz//vAAEe/fuJSkpiZK1hUiytOhkr4UkgzXz1ggyS4UqqYRyXJx0VaAEw1jlIEWmcXIM08RyoSRJZWoke8n9TLTN0PbuAGF/JHrcqkrv8THSKsdY8VgeOoMcZ2F7Y+h0uriVrKIoRAw3V7aL6BVR61suA6I5rmlhNptxmb3LCuMAYJRR0vXIfUHMKYabIvOsWYlEX5QQuGBFMP9Vlo4uXNFo/fp5UyrX0lXmElQMYXBOyTgnpUX9BhaLxsbGm26TvsrOZMvy5MCM1bfQqLxIxMphB4NB9uzZw4cffkhHRweFhYV8/PHH/Nmf/RmnT5/m4sWLPPDAA7z33nvo9Xqampp44IEHSE1NpbW1lWAwyMzMDCkpKaKMoAnGaABAVVXWrl3L+vXref/99+kZGOdEqxetEzcW5PaMBAkGTWwq0bFv3744x0ltUtdCURTS09PFxLB582bBXFdVlbfffpuZmRkURUGn08WBW1mWefrppzl58iRZaxVydXZSUlKYmZlh+9ao4qXmb+9yuQSRMLZFbc+ePXR0dHD06FFMJhN+f3SVeP/997N+/XomJib4yU9+Qnd3NzqdjpHs5VNSKtBj8lHA9dZRSZJwOp0iXZ6amspDDz1EdXU1AwMDXLlyRXQjaF0iRqORFStWMDo6yszMjEjbm81mUlNTmZycZGJigqysLLZu3Yrb7aaxsZFwOExbWxubN29m48aNggAaCARwOBxMT0/T3NxMU1MT6enpbN68GZ/PR319PZ/73Od4++23sdlswiJ5qQiHw/T19YnJX+MpZWRksGrVKkpKSsjPz4/jFWj3UmJiIj6fj7GxMb773e8yMzOzZFYxtgR37do10f5aU1OD2WyOqq6qMn9X9BCfXqvnon+QNGcOc91DVPpsmDxjrJkvZQGi/TEhIQGLxcLjjz/Ot771LZKTk+ME024lNFJ0Y2MjdrudX/7yl4yOjgrnzEgErBYrqhrVoSgpKSEzM5OUlBRRZr169Srnzp0jEAiwZs0a/uChtfzNfz3EzLQnDhDIskSy3cLX/vP9Sx/Qv1P8HwUGlgoNEOzfv5/9+/ezd+9e0nIc3P65LZz6xYVFAYEkS6StSsJZkkdVVRUjIyN0d3cv20p3Y6j6CO6t/URSfaAaQTHiVhIYCSeToZ9lh60dnaSiKBLhgImR7qJF9+Me9tH8s14hnBR7vBOtLtRDA1Q+mY/P50OSJFatWsXu3bvZv3+/GJgWS2kbPQZCCZGlfXYVMHn1celajW2+GOiIfbBtNhuFOanUS70LtrsxJH80zZu9KfXm2yKxvV3HmTLNWRCQooOxrMLmLnmBMFDsezPmJDLmbvox/6JwlCdhzTLjGfUvzA7IzLev3rwmuVhoE6pOp+PYsWM899xzFBUV0dfXx9TUFKFQiOPHj7Nnzx7ee+89BgYGSEpKwuPxIMuycLfUVuR1dXUYjUbq6uq4ePGiYMdrGgIJCQk88sgjQBR89E4YCEdUFsfQEkNTKuNpYRyR61kzTeFOs8D+yle+QlJSEm+88QaqqmK1Wrn33nvF9mfPno3jMcSCCEmSeOKJJzh27BjDw8MYDAYSEhJwu91UV1dz6tQpIeFrNpux2WxxpYiUlBQ2btzI8ePHBfDUVtIbNmzA6/Xy6quvxpFxI5HIwu6VRSKsRgC9yEh4PB76+vpwOp089dRTlJeXi8/MyMggLS0Nq9XK7OysyNgFg8E4vwONM+T3+xkfH6eiogKDwcC1a9c4d+4cVquVdevW0d3dzczMDG1tUa5EXV0dra2tcbV6WZb50z/9U+EB8cMf/pCKigo6Ozvp7OzkqaeeWiB+tVzqv6SkhK1bt1JcXLxAV0C7rteuXRP1fk2ADKLZVYfDQVFREcnJyXzyyScCEEH8eDU4OEhlZSWqqmI2m8nOzub8+fM8+eSTVFZWRkW8Dh1iQ1oeTVOz+P0+gkRbJVNTU5mamkJRosRsn8/Hli1bxDUxGAzY7XZmZmbw+XwLBJXC4TDj4+Nxaf5YFVVNA8PpdJJoLeTsZwN0tI4BARKsetatzqS8vAJZjnZbNTQ0iFbapKQknnjiCQHc/vbvH+bv/vYNxod1hMMqsk7lDx7dwBe+uJ20tFvwZfk3jt8LMABRQLB37172798vSgZ/+cpXaKnpYLxnUuSXJElCRcWabuY/vvIn1DVe5tixY6xatYo/+ZM/YWZmhp/+9KdEIpGbEvi8q0aJpMxPmvMDibaSGgsncdXrZK2lj3DQSPOph1Aii1/u/lPjS7OnVZhsceGbCOKsyMHj8dDQ0CD6v7W4UbHQ4XBQaC/hiPzZEjsGZEgeiFe/0tjkN4uJiQlC0yrymqgo0KKhqOh6AsjjIZLyLWRvctx0vwAJIYm7mnSM2FVGklUi0nx/+KS0wGnxtxGyTmLVFwtpfaef2WueOL0Ca6aZyifzo6WE3zBiB0uItmC9++67PP300xw4cIC5uTny8/Opqanhy1/+Mlarlfr6esrKygT5r6mpicTERBITE5mdnaW+vl6swjQnw7y8PB566CH2798f9baYb6PzeDwMzxiXAALRkFCZCdjYs7MCl8tFa2srX//614Xa4COPPILdbhekMoAvfOELogTR3d0tzGYWi0ceeYQTJ04wNjaG0WgUKohJSUliFa3p91+5ciUOCOTkRJ+Pjz/+eEHJYHh4eFGBJW271DmJaevStrqSCmlz1yW4BwYGxCq/oqKClJQUFEVhYGCAmpoampubkWWZoqIiUlJS4kpP2j609jqn04nX62VycpKrV6+i0+moqqrigQceoKioCFmWGR8f5+DBg8zMzPCDH/wAiDon3n333aSkpPDmm2+iKIpYsY+PjzM2NsaOHTs4cuQIZWVlVFRUANdT/xoAiE3933nnnZSUlJCRkbEgi+fz+ejq6qKpqYmBgYEFZdSMjAz0ej0ul4uvfOUrDA0N0d/fL1wYvV4vQRV6wwZcqg4DKmsykjCEfTz88MMcPXqUxsZGUSKrrKwUAlqA+P7hujZKRkYGoVAIj8cjAMaVK1coLy8HomCgsrKSc+fOcfz4cZGV0X4mJibEfZKSkkJWVhabNm3C5/Nx8eJFvva1r2Gz2fjVuzUcePUocky61+eB73/7IxqvDvDok+WcPHmC8fFxAQoLCgriWnjrr1ykpELh//vvT2A0mHj9Jwf53FPVvxNAAH6PwAAsLBk8//zzfP/Ci/z13v+Bq8WPfzZAaq6DPc/vZEDp5nJDLS+88AJNTU18+umnfP/732f79u08++yzvPnmm4JMF5s+V4k6ECrGMCHn7NKrbiS6A5kYm7MY6yghHDRGyVGKEr8/RWXqJrr9SDDeNENCWlT0xGKxEAwGCYfD2Gw2ysvLaWxsxGQyIc0r4EUiEfpP95BUkYArJx6waKl9xzUbZtfiMrm3EsaIRMmoREfWYgqMKsgSSb+YpnBXBrnb0pD1t05YkpDInpXIXijm91sJn0ElqI/yD4wRCYNFz+rnivCM+ZnpdoMKSU4LttyEWyYpBVwhArMh9Ak6ElKNCzwdNFngTz/9lHvvvZf33nuP3t5eUlJSOHz4MPfffz/vvPMO7e3tYsX/61//GlVV41ZAW7Zs4cyZM4yMjPDQQw+xYsUKBgcHCYfDBAIBXnzxRQF8I8pN7gcJSkor2LNnD9/97ndZtWoVsizT0tKC3W5nxYoVRCIR3n33XSDqmaCps83OzvLOO+8suesHH3yQ06dPMzk5idlsFq1Zs7OzYsBOTU0lHA7Hye5qMTQ0JP6vqiqpqals3LgRSZK4fPnyol0G2n6LxmU6syKLl73mn80VUwZkOcrJyMrKYmZmhsHBQdFKqYXJZCIjI4O5uTmRBdBslV0uF6FQiNTUVCKRCDMzM6IbICMjA4vFQm9vL11dXSQmJjI0NERHRwf9/f0ikxAMBklLS+PZZ58VSqIa4XdiYoLk5GSampowmUwMDg7i9XpZuXIlH3/8Md3d3SIrkpmZuWTqH6KgoaOjg+bmZrEfLfR6PdnZ2ZSWltLb20skEmHt2rXU1NTg8Xj49re/DURXx06nkz179vDGyQucnFZQYi5x61CAbDnC5weHCAQCeDwetmzZQlpaGr/85S9paWkhGAyKbFd+fj5dXV3o9XqKioro7OxEp9MJ4q9mFrVvX5Q8fuXKFXHcly5d4tKlSxiNRjIzMykoKGDz5s1kZmaSmZkZlzV5++23yc3NxWazMTYyyysvfwSAsghSPvFpM8NjDWzdXswjjzxCbm4ur7/+ehxYcrvdtLe3YzQaKS8vm++ikBgZGRGchN92/F6BAYiiO61koAGCe/5oJ8PDw3z1q18VA/Xo6CivvfYaH3zwAY8++ihVVVWcOnWK06dPU1dXx7Zt2zhz5gzhcBi/DQbyAoyk+lFkMPtlCsNm9NIyWICo333vSD6GYPQmWyyVr0TU5X0ViIr3RILzinzzHQja4O12u6mtrUWn0wk9+W3btkVrcOEI2Y0ppKkO+lJHCCdE32MNJZDYbsI+eJ04uJjioV+v4jZHGf7J3sXVDFcOykRkhe550p9G3pMViVVdULwz75Ynx3+tCOlVRjODjKeFiOhVbG4dOUNGkuZ+89t9PFGhOVdhar4VWVIhd0pi5aCMJShhzTBjzfjNeCfeiQDdR4aZ6bo+WFgyTBTtycKxIilO3yEcDtPd3Y3T6WTFihUiLTwwMEBzc3PcCli7vzSTmRdffBFVVTlz5oxYXZ84cWLBCjk2A2YxqniCsGTOXJXIz0mhq6uLmZkZPve5z/HBBx+gqqooBXz66af4fD70er1wKwyHw7z55ptLZp0KCgr46KOPCIVCgugH8UqZdrsdj8cTV8pLSUkhKSmJ3t5ewbcwm818/vOfJycnh08//VToLiwVJpMJAgG29hk5nx+EmNZWTVxq86CJe9dvY/PmzaLbZGRkhEuXLjE9PU04HCYpKQm/308gEBATbqyks6ZhHw6HxQRaUFBAcnIyk5OTDAwMYDAYSE9PF7oEEAVADz74ICtXrkSWZfbt28fo6CgHDhzghRdeQKfTUVxcTEtLC+Pj45SUlHD16lUSExO5cOECsixz6NChm6b+5+bmBAFxeHg47jobDAby8vKEB0Osln9/fz+qqjI8PIzNZkOWZR577DHy8vIE2fJ8Zx/Hp7WJNN5RcETR842ffcgqf/SaXb16lQsXLuBwOLjtttvo6uqKliULCzly5Ah6vZ7u7m6+/OUv88orrwDRLElfXx9JSUmEQiEhENXb20tCwEbLW31Md7nR63Ss2l7BXf9xHZvvX5xIqSgK3d3dwnzow/dvokQrgRrK5tlnnxUvaYROLS5evIiqqqKLQ5Zl0tLS4jopftvxewcGIDpAaCWDgwcPsnPnThoaGhgaGiI3NxeIouKHH36YX/ziF+Tk5LBlyxbuvvtu1q9fz8cff8wnn3xCVlYW3aFRLlfMxrkM+s0KrXixulMpsk2ynGiaBCLVuVjZQdZLGJMMBF1LtwiqCljSr9vP3rgfTR1Qe/3s2bNCOtRoMKJrifDYqj2YdRbqL9cRnA0gS3L0Jp7XO4gFAj6DytX8CEMx2vgJAagckimYjIc/EhJr+nWsGFUZSFEJ6lWsAYm8aSmqhPjvnNX3JkS4ssZDyKBqB4g3QWEsM0R+r4nC3lufuIftChdK4wVJVQkGHSrjSRF2teiwBH+zE/ROBLjyWpcAd+L18QBNb/RS+VQ+qRXRViStF1tRFE6ePMmuXbvo7u4WpDxNYhcgLy+PoaEhDAaDsL69UW7IEI3SAAAgAElEQVQ7lkSVmppKIBDA7XaL1V0oFMKZGqJ1eKnsQLQMdf/OlXx05D0yMjJIT08XpYnKykomJyeF/O2WLVu4cuUKLpeLhoaGRT0btOjr64vrPddCr9fz+OOPk5KSwoEDB+ImqOrqajo7OxkYGACiz0V1dTX33HMPJ06c4Kc//ekCAlsseNJkk7XPyxpX2D2noydbYjQpmsHL9Zt4qmALD9+zE6PRSCgUEhLBAwMDokNifHxcnJ/BYMBsNjM3NycUHRVFwePx0N7ejl6vJysri8rKSkpKSlDm3fe8Xi9TU1Mig2GxWLDb7YyNjfHpp5+KVfOXvvQl9u3bx+DgIK+//jrPPfecaEO+dOkSp0+fFqthg8HAzp07KS0tXZD6n56epqWlhba2NuFxoIXJZKKgoIDy8nKys7OZnZ2lv7+fxsZGjh07BkS1KpxOJ5IksWHDBu655x7q6+s5cuQIK1eujLvu/3Ts4nylduHzoiLROOHGaYZEOWp6tn37drKzs5Ekibq6OvLz88nNzcVqtRIIBAgGg/zoRz8S+xgYGECWZfLy8nA4HAwMDEQ7Zc4O0fnrQSQ5Oo4GUag71sjlTxrY8dxGbnt6ncgARyIRwuEwc3Nz+P1+WlpaaG1t5eyJmUUzAjEnwMhwPFHJZrOJjE8oFBKW7hs2bBDbZGVlLZAt/m2GpN7M0J4oU9hutzM7O7uoUMjvakxNTXHgwAH0ej2BQIDKykoefPDBuG2OHj3KhQsXeP755ykoKBCvX7t2jQ+PHOa9oi5CxkXS4ACoZJnnyEhYogUxLGE/UoYUWTx/oNVR+06N0vPp6LK6/Vv+UyWy4Z8/s2qDQHZ2NkNDQ1RWVi4qRhPQqxyvjOA33sDmn0+fruqXWbEIm/9fGl5JwiNJmFWVxJhbMjgXYuTyNLO9HiQJkksSyVybjMGyEMeqqFzcPEfAqC6ZsqlqspA2eXOFNQWVI2siBPQs+t1rGYJtA+ZltR5ujOaf9zLVNrfkd22w6tn89fI4Wd7FJjAtjMZo+UnrnV+qIyQ9PZ3p6WmeffZZbDab8FcPBoOiTzyqnge1vWZmPPq4Q9RUAf/ii9vZtDKdN954g6qqKlGbTktLQ1GUuA4DmDd+mRea0SJ2wl+7di2dnZ243e4Fx+90OnnmmWe4cuUKR44cEddAm4Ta29vjDMa2bNkiSHDLHYPGobgReGhSui6Xi+zsbLZt20ZVVRWyLDM5OUltbS319fX4fD4yMjIIh8PifCVJwmq14vP5iEQi5OTkYDabBRfD4XCI1fjMzAw9PT1xK0dZlklNTaWsrIy1a9ficrm4cuUKzc3NhMNh0fFjMBjYunUr1dXV/OQnP2F6ehqj0UAkcxhD6TCy3YusGgj1Ogi2Z/HcE/+BwsJCVFUVEsUdHR2MjY3F3UdaC11ZWZlQCNRW/RqwSE9Px+l0ih+Hw8Hc3Bzf/va3+cIXvkB5eTl1dXX8+te/5m/+5m/E+OYJBNn833+w6H0p7i9UdqSayPZNkJaWhk6nw+/3i0zLPyf800Fqvte+bAl2x9fWklEW5TJpCyqPx0MwGBT3VnuTzNiwtKxzUWaWnZ+88+fi97Nnz3LixAn++q//mtraWt5//33S09P56le/umCbv/qrv/qNNR9+k7jV+fv3MjOghcPhECUDjempWWlqsWfPHkZGRnj77bf54z/+Y3GxHA4HcnkyIWl5RDgRsJJudi80s1MhbSKf8BJAAK73eudsSWWqYw5Xnzf+xp1/a9ljecgGacFgKcuyaCm8EdP5DCpeIxgjYPMj9qvVVRcDAgDtWcpCIABiQmzKVcifkDD9KxH5ZiSZGqOJIZ0O7SKmRiJsCAYwtk7T8lZ/nJ/BzDUP/SfHWPlMAUn58eTHKUeYgHn572sgL3BLYGDUrhJYZjNVgsEUlcBAZNlSUWyEvOFlgQBAyBNmusuNY8X1FK6WvYHoikOzeIUoO12b5GLvjZycHHbu3MnPfvYzIFq7P378OMeOHaO/vx+dTkdiYiLBYBCPxyMU6GQZnrwrjytdXmpbZwjN3792i0JxWpC2uqO0Rc0C4yRyNVMebXJ85plnyMjI4MyZM1y8eFEcV6wL5urVq2ltbRW/a22GkUiEzZs3c9ddd/HOO++IujtEMyDT09NCmEdRFCFko61YtYj17NDqzpFIRFwnDQho/Aqfz0deXh6PPvqomEDb2tqoqamhu7sbs9ks0tDa6l0zLwoEAuh0OpxOJ9PT0wwNDWGz2Vi1ahWrV68mKyuLvr4+ISo0NzeHxWIhLy9PgIihoSHOnDnDmTNnsNls5OXlsX37doLBIH19fczOzhIMBjl58iQnT56cP0cJ1jZhLpxAVaLt0ioRdKVDWEvGuNp3io8++oixsbE44GO1WikuLqaoqAiTycTo6Cj9/f0cPXpUEBHz8vLYuHEjTqeT3NzcBUx8QHzfDkd0QtV4B8FgEL/fz8jICB29/Qvet1hMuVxkG+KVHLX70m63k5ycTGJiIj29PfSoc/SkKXjNYMVA9kiY+4rWs2n9BvR6PUNDQ3zva/8bWZIWKNdqIckS3Z8NQPL18q3FYkFVVRwOBxs2bCAtLY2+ax7+/psfLn3gEmzeVih+DSkRWuQZrqT7ebXtGKOXouqb69fHWydnZWURCoWYmpqKIxr+tuL3GgxA9Cbdu3cvP/7xj4VndmyqRpZlHn/8cV599VXeeustbr/9durq6mhvb6e/MIicJ6EsBQgkibCqI6JK6NFU0iSQVPQjNgxNDqx2E7Is86UvfQmdTkdnZydXr14VaVkAWS+z6tlCBs9PMnxxkuBcOErwW5GI8/YMEnOjD2HsYG8ymYQtbWy4TSpXnRFG7YgJPMkbre1nzS4/bamo9KQvzahm/vQGU1WKx6IbJSQkoCjKPwu9z0oyhxMshIFYNDUpy3xsTiCzvg9L5IZrr0IkpND0Ri8bv1YWlyGYtYej4iRLnaYErqSIIIEuF14TN9VQUGXw6CIkhm4NGAXnwssTRecjMLsw06CBvdjVJCB6q/1+P4oS1Yzw+Xx4PB5KS0tF77o2eUxOTlJVVSXIb1rEThTXujtJkmBXBQTDEiUlRQz2X6OsrIzVq1dz+PBhCgsLRcvio48+Snl5Of/zf/5PIAqwnU4nb775ZtwqPbZboqSkhKamprh72m6343K5BIv+u9/9bpy/QFFRkehpj41YgqEWiYmJzM3NxWUctG20z0xISBAkytWrV7Nt2zYyMjJwuVycPHmSy5cvMzc3R0pKijCf8fv9oiVTa/VNT0/H5/MxOTmJ3++nsrKS1atXk5eXR29vL7W1tbS1teH1eklKSqKqqorKykqcTueCFeHc3ByDg4MMDAzQ19cXpzKo3Qdx1uuFI+gLopOnFLMrSQZFCdNq+zm+kQ0k2uw4nU5ycnKQpChxTWP6Q5R87XQ6qa6uxul0kpmZeUurVQ0MhMNhrl69KkpXL7/8sgB5CQkWEmQ9PmXpB0pFIt2ow2yKZmfy8/MJhUKMj48zNTWFz+eLfs+oXC5U6EtTxbM+pQbpK4UOdy3/oTZCkjGBiYkJ3MO+ZdP7qqLiGQ7w8MMPk5aWRlpaGuFwmJdeeoldu3axenVUD7mkROEXb12mq2N0wf4kCWSdyujEZU6dsmOuzOUbdW8xFfQgZUFH5wkUp0q2TeKrleVx79XMw0ZGRv4fGPj3CofDwQsvvMArr7zC0aNHKS8vX2BOUV5ezqVLl3jzzTfJzMzkgQceoM0xzf7eheZDN4btUg5hpwvVHMIQNJPnL2NtxhZWPBclfH3yySeYTCYMBgOrV69m9erVKIrC4OCgEIGZnJzEuSOdvO1pKCEVSSch65aeZDQRoNiBwW1SOVEZWSCp6kqAc6UKm7ujJj1LRUQm+t5lQlLBa7j+QNxKG+JSUWM0EWYRKeP5cxp/rIj81mkWYLF5QDBaP0Pett/8Ieo/PYF3xI+sl3CUJ5JanrTALc8Y5uZ8B1UleM1LV90sIW8Ekz2qL2BJMy26ucF6a+2GBuvNH8vY9jSv1ytW3OFwWGQLYhUBtQnQ4/HErehjmejaa3/5l3/Jz3/+c4aHh7GYZXZs28ybb3azZ88eofK2adMmDh48iNVqZfXq1bzzzjsinV1UVMT3v//9ODa1xWIR90pSUpJoO9TORSPfPf3007hcLl555RVxX1utVsLhcBwQiPX3iAUCmpOfVq+PNdmKBQF+v59IJMLGjRvZunUriYmJdHd3c/z4cdra2pBlmcTERGRZFgBM4wwoikJiYiI2m43x8XGGh4cpKytj9+7dFBYW0tPTQ319PW+99ZYQBVq3bh2VlZViMl4stJ53Te9fqyenpqYK8RyXyxUnXW4oG1p0XxAFBFJCiJW7M/B2J4rOAFmWycnJoaKiQqT8F9MRWOoYx8bGGB4eZmRkRICJV199FUBwlXJyckT5amJighKdn0Zl8edCAkwopCk+QiEdJpOJBx98ELPZzLFjx6ivr+frX/86oVCI/912nL7eqK6BBvq1xcu0VeXgdD2bu+ezXLfQvWQw6YlEIuJe1bw4iouLxTY6ncyL//iH/O1/e5er9X3RcVmNdhbYk8384fOraWg6xy/PfsqJ2YgYz1Q5usACGElW+du29/ne5i+K/VosFpKSkhgZGYlTB/1txf8VYACiD9Qdd9zBiRMn2LdvH3v37hV1QO0BycvLY2BggE2bNrFhwwYyvWP8uPfw0jtVIMWlxzKWiDJyvRYzwRyf8AmffPyJGJBef/11nE6nQKCakYvT6WT37t28+OKLKIpCSUkJ3d3dS+riaynF2JWOFs05CmHdEil+FerzFbJnJOQllv46BXQRiCwzZ6kSmML/8hKBD4nBmNLAgpAkIskm/MVJJHQtovanwkzXXBwYSJ7RM+BcxuxDUaEhQN+x64Pp2JUZElKNrPpiISb7deJc1oy0/LUIKqS/OERLjTuamp1f9AyenSBvexoFd2UuGPSNNgP2IiuzPZ5l+SGOFQtd1LSWMnH6Md99QK8yK/kwGoCYlbSiKBQXF9Pd3R23j+LiYmZmZkSpIRAIsHLlSpqamjAYDEJbHxBmOw6Hg9TUVD766COysrJobGxEURTuvvtuhoeHBcBYt24dr7322oIsVqxCoEaAlGUZg8EgCLZ79+7lxIkTYoLRjvlG90GdTofFYmFubk7sUzu32G1vdAfVVvN6vZ677rqLDRs2oCgK9fX11NbWMjU1hdVqFcc7MzODTqcTHIOEhASSk5OZmJhgbGyMoqIibrvtNoqLi+nt7aWhoYFDhw4RDofJzMxk69atVFVVkZ6evigAUFWVsbEx0e/f29sr2oVLSkrYtm0bxcXF2Gw2IpEIPT09NDQ0EAgEot+drCAnLQ/GVUWiZ+YqTtNudu7cKbIDsaXSpULritAm/uHhYaHCB9FFliYlrbVSasCpu7ub1NRUMjMzyc/Px3PmLG5TEj1uLYMYvR46WcKg0/EXm0rprb9IJBJhdnaWl156ifXr1zM8PIzZbObDDz9kaHSEA46eJWctrXTnNapYglGgP9W+tAKZJIG91MKHH364YCz9zne+g81mw2q1YrPZsFgsPPi5XLbvyqKn24USUekfbKa4VM9jn9/D2vWlfP3MQRSuA4Abj+3UeDvNs4NU2XPF65op2u9C/F8DBiDKbv7ss8+YnZ3l5ZdfJhKJkJqayt13383atWtJSEjg/fff5/Dhw2RmZmJPSqLakE9DsG/R1Lkkw3/b9cesfayUl156iczMTBRFYWhoSKTItJtseHiY8fHxODa0xWIR6aFQKER5eTn33HOPYKI2NzdTV1cXd6PeODAajcZo2xJhhhzLpPglCBpgxK6SMyMt6sgnERX2Wa5UIAHOqX85GPDILA0EYiKcsvhqAlgg1JQyrcfslfGblcUJhLKE9NbCmr1vKkjTG72s+9NSMWgbFImKIZkm5yKEPBVs/3sMaqOrCdEaOr/fgTMTmOyGRRUXC+/K5Oq+a3E8iNgo2pO16IomFgho4TapNOZGGE5BZDHSXLB2zEziTFQf4/bbb2dgYIBgMCjOrbe3l9TUVKqrq6mrqyM3N5e1a9cKMKDZFUO0Zaujo4PKykpmZ2fp6Ojgvvvu46OPPsJisVBdXc13vvMdIAocNPU1LTS/jBuJjXq9Xqjv5ebmcs899/D6668v8NyIPe/U1FRSU1Npb29nbi46yGvdFotdHy20zEdiYiL33HMPq1atYmRkhCNHjghQo61otedLI2rqdDqSkpIEeMrJyWHPnj0UFRUxODhIc3Mz77//frTzIDeXXbt2UVlZKWroC74ztztO69/tdgvfgd27d1NcXCzIid3d3Rw5ckT4HWghyzJWqxVZLxFRl3+MZFliy+bb2JHx1NIbzR+XNulrE782scuyjMPhwGKxkJ+fL4CSViLQ6vqlpaWYzWY+++wzXnjhBfLzo3a8NTU16CTYpE7hMBpoD+lxqzJWk5H715Tz1MYqdH43vfUXRSkploEPUREll1klsIxvCRAtBaYauCN3LReCF+k7MUbIE1mgQivLEiariW/t/xtScxx4vV5cLhf79u2jtLSU/Px83G43Ho9HGBF1dXXh8XhE2caRDjOzM3zzm9+MjtkrIsuWWHWSzCfDTQvAQE1NTRwv6LcV/1eAAVVVGRoaEhddURT0ej12u529e/eKkkEoFGLFihW0tbWxb9++aDpQVslZZ2PQ6kae18VVUDHqDPzniidZm1KKqqp4PB7KysrYtGkTEEXVra2tNDc309nZKdpXAOHelpSUFOdL3tbWRltbmxAoSUtLIz8/f4FvOUQzBJogC4DftCzZdf5CgG9+8btU5qFsRGbAEVk8wwCsGJEw32KNfLEIySodWQqdycDC01oQsmcJpr4E9gLrDS9JrG60cGWNh6DxemuhVluUfjSDdH4RuWk12to33RlP3FsxKiEh05KjRDME86v/hPEwCR/NLFv/7z89QdYGx4LyQ2KuhVVfLKTz/UF8E9cnML1FR+FdmWStvzWVxqVKQhOJ8KnNz54BG7bxAK+//roYrLUJuaCggMLCQkG4S0tLE9wTo9EYJ86TlZVFXV0dK1asoK6uDoPBwMTEBJFIhDvvvJNz586JiXlmZiau20GSpEXvM1mWMZvNuN1uoRSnWdcuFna7nU2bNnH27Nk4y+AbuwFuDO1YtM6A/Px8Ghsb+dGPfsTIyIhQONQY5Nr+JEkSjqWBQABFUdi+fTtFRUWMjo7S0tLCRx9FRWjy8/O55557qKioED31sREKheK0/rXUf1ZWFtXV1ULwR1EU2tvbOXHixAJ1Py0TAghuiAZazKPJ6DJmF1p5zoeKQnHiluu/qyozMzMLJn7t84xGI3a7HavVKsyjZmdnmZiYQJIksdqvrKwkMzOTd999lzvuuIMdO3YAUfJfrAMmRMc17bso1QdYaY2m2M1m8DSf5+3Gs2JbDQwu+t0u18MdE8FgiNraWvQmHd/84Bu89NyrjPaMz3Mqon411mQr33rvr0jLjQJ2q9UaVVUNhdi+fbtoQY+7lqrK3Nwc4+PjjI+P09jYyODgIGazGUVVWIYrTvSTwROOB63Z2dl4vV7cbvctl2r+reL3GgwEg0EaGhqora1leHgYu91OdXU1V65c4bHHHuPw4cP8+Mc/prq6mv7+fiEEoglnaN0INpuNjrkBjg9f5vSlc6zLr+Irtz2OTR8l9mk2x7FfpslkYs2aNaxZs4YTJ05w4cIFHn74YZqamgTSj0X7Op2OsrIy0tPThaTn+Pj4kg56fr8/DkkaI9zcNEgC00264CxBiZ0tOi4XRpiKuTf1YSgfkVkx8s8HAkGdymcVEWFCJCeEUHxL9O6pKrI3jKV98d50SZbIXB+v/+9NiDCXGKHwmomgUWUmJUxEBza3jrFv9qO2L+8X3ndiFGumGVNSlBEtIbFiVKJoXGLUrhLUgTUAnPPTfhOhqKArhHcisKggkb3Ayt3/bQu9DYMEpoPoLTrshbZlOSI3RoNzCcAWxaucyXCzZ0yHjMxDDz3EoUOHCIVCgjR37NgxduzYwenTp/H5fGJlbTab42rSHo9HaLP/6le/YuXKlVy+fBmz2UxFRQX/+I//KLZNT0+Pc6W70dpX+10DAhaLJa4kcGPodDruuOMOOjo6+OSTT+JeX04uXPt7WVkZ27ZtQ6/XU1NTw7vvvksgEBD2zdo5a9yJhIQEIpEIPp+PUCjEunXrKCgoYHJyktbWVk6ePCkkhh988EEqKiqEd33sOd9K6l+v19PS0sL58+d59913Fxg1mc1mkfGIRCLi71oL4IoVKygsLMRnHeKd/r9a9DqoCiiTiZy8Uk9Kcq+Y/DV+SEJCgpCuNpvNuFwugsEg4+PjmM1mMjMzKS8vJzMzk6ysLNLT0+NUCt1ut1BT1EIDf3V1dZw/f57x8fG47gC47nyqKFGBKJPJhF6vF/39sFBLxWg0khJRMYTDhG4yazncCBXO9TvWsr/tu/zDf/k2gw1jJNoScUlTPP9f/5Cq2+IJfS0tLZjNZjweDzU1NczOzuJyuZidnRX/j81wadfC7/ezdu1a0qUmJlTvkmuEiKpQZIu3KdZIhMPDw/8PDPxbxOjoKLW1tVy9epVAIEBZWZnQ3PZ6vbS1tXH8+HEURWF6epqTJ09SVFTEXXfdRWlpKWlpafT393PgwAFOnz7Nfffdx4rEPPw90wx31vHCg38ggAAgVkZLfZlOp5OTJ0+Snp7O448/DsybwvT2cujQIdGb3NLSIlr+tNqlJEmsX7+e2tpa7r77bj777DMxQMSGKSyROQtj9qUzBLpI1BXwZpEYkNjZpsdljrr/6SKQPiehu2nqYflozVHi3AhNGT58vYksQDFqNPeZN+Nn+t7CKIjpcWFpnUJSVCRZouIJJ6bE6MMYMCq0lXuZSYm5JgpkjRoo6UpAp0iMdd1cC8A95Kfm5TbKP+ckbeX1VZ5ekcidvn58ozd2OCwR6jLbTU9Pk5RngbyF9tE3C79eZSSmW2RBSOAxw6QN0twqhw4dEn8yGAz09fVxxx13sGvXLs6cOSMmP4hO1Joqml6v59q1a5SUlHDt2jXhbBmJRNi9ezc//OEPxX43bNhAS0vLgu4WvV4vpJUBoVEvy/KypmD5+fmkpqZy/Phx8dpyIEADxjqdjvXr17Np0yaGh4c5evQofX196HQ6cQxaR4CiKBiNRgwGAx6Ph1AoREVFBQUFBczOztLW1sb58+fR6/WUlpaKrgkNTGihpf41AHBj6r+kpASLxUJzczP19fUcPnw47tx1Op0o92mtjxrYdzgc5OfnU15ejtPpXAA+IJN7s7/OR8PfQVGV+WyVhCSrqLNW/GcraA+0Cx0Djag5NzeHz+fD7/eL1X51dbWQ5k1KSloyba2Nm1evXgXg1KlTHD58GK/XK76b+vqFqn2SJAnTIECAHE06WiNxyrLMpk2byMvL49133+Wpp57i1KlTDA0NUTqhoyUzsqT2R45bzx89+hS/+tWvCIVCUSErvQ5dtsIf3Bcd39944w3OXzrPxPRE3GSvfSc/+9nPBKnVbrdjt9uFmmLsj8lk4gc/+AGTk5MUFRWx15bO/2peogVRBYOs48HcNXEv2+12zGYzIyMjlJWVLf7ef6f4vQED4XCY5uZmampq6O/vx2azsXnzZtasWYPb7aazs5MTJ06IPvtAIMDmzZvJyMjg2LFjeDweqqurxcOWn5/Pvffey+HDh8nJyaG6upqmpiZyc3NJTo63p70ZGMjLi0ry9vX1CY6A0WjE4XDg8/lIT0/ny1/+Mv39/bS3t9PV1RXnza0ZdFy4cIGCgoK4vmtJkiguLiY1NRXbzCBvqL3aeLAgVg7I6G/RyhcgyS+R5P/XqWNFJJWetHgugt4SISHfjX/Yghq6ztQzArqAylBKEtKmRFDBvSmbGXeQqitDlFZYSXBEuQRhnUr9GjcB0w0TrwwjWSGCRpWVTRZsOQnMDXiXTe1DdDXV+m4/69JMS9pbJ+Ys7Le+MWSDRELq0nwHLW6W6l4svCZuSdnRawLc8atyl8uFJEns2LFDSOVq4i4Q5bFoz0hycjIDAwM89NBD1NbWkp2dTVNTE0ajkXPnzonV6s6dOzl79uwCICDL8kJeynwr5I0rYW3FZTAYqK6upqGhQWTFtONfCgRobndbtmxhxYoVNDc3s2/fPrxer1i9aen/2GPQzG1KSkrIzc0VC4UrV65gNBopKyvj9ttvp7S0NE63Xkv9a5P/Yqn/lJQUoWB38uTJuNZbjZSogSQNBBgMBqH3X1JSQlZW1qJEP5/PJ1b5Wprf496AvnAU2e6FiI5wvwN1zIFBpydElLMxPj5OXl4eRUVFZGVlkZmZuWC1f+PnaNnJoaEhJiaik+eNbcTDw8NRfwC9Ae+4zMTAHHqDjqQcmQT79edaU6ycnZ1l9erVbN68GYfDIfQLIpEIf//3fy/apl0uFwaDQRj/vPnmm1RPmJlN8DFkV4T0ufZM2/zwh6ZKoeEwNTXF9773PUKhEH6/nwsXLggeguYJYbfbhdT36dOn2blzJ+vWrROdJDeLVatW8dlnn1FbW8szzz3LydFWLk1eiz5v88+oJmm97prMxMAwiUVF4v2SJP3OkAj/jwcDNyqDFRUVcf/996OqKteuXePVV18lGAxisVgoLi5m06ZN2O12Dh48SEFBgej3PXDgAAcPHuT5558X9blNmzYxNDTEe++9R3JyMp2dnezevXvBMWhgYCFqj4ZmXNLf3x8nPKG5t+3atQuj0UhJSYmQJ33ttdfwer1UVFTQ1dXFxMQEc3Nz4rPgupJab28v1dXVbNiwgb7XX+FyQdT+VwtjGKoGZYrGfzOVq8zMTEZHR5dVtrvV8BkXZ+brrWGsJS4iPj1qUKZwCvqnLASRoilvSRIPlWI10LYtnxV40EaA4exgVGhosclRgqnUMK6kCLlbUnMAUeYAACAASURBVGnt9y6y0eLvGzw/QdkjeYv+2ZJuJqnAslAkKub9mesc6IwyyrwA61K6Br8pEID5tsdb2k5FkmRUVRWOhRBNob799tvs3r1bKPNpwFMbRBVJZSZTpd/kp8M8QUt3O5XFZQwPDyNJkkixp6enCw0DiAc3i90ziqIsIAlq2+Xn5+PxeOLc6bTjvTE0EJCcnMxtt90mHBxPnDiBLMviPbEARSMSqqpKRkYGubm5+P1+Ojo6aGlpISEhQZB4tVS+9vkagayrq4u+vr641P/27dtxOBx0dnbS3t7OpUuX4j5XEwcTZlDz/2rCQuXl5RQWFmK32+NW41qNenh4OK7Gr62sZVnGZrNFwUXYQqjlxvtVZdWqSlatWkV3dzfnz59naGiI7du3CwdDTTVycHCQ/v5+RkdHmZ6ejlvlx15zvV6PxWJBkiTRngngGgvSfnyGgFth/tFFVSElX0/p7RZe+KPnKSoqwu1209jYSGVl5YK6vE6no6ioiIGBAeH3oPX+Hz16lKysLDZs2EBWYwPnu3rpSVPwGFWMYSiYlHFOSnSpLXQ3tIouldnZWQoLC3G73Tz55JOkpaVx4sQJmpubefzxx8Xi7PLly0iSxJYtWxYVV1oqKisrOXnyJL29vbimZ/n+pi+yv+MzftxyHL8RUGFjSiFZbXMYJl288cYbPPnkk3FZgKysrGXLZf9e8TsFBrqu9PDOS+9x5tBFQoEQRdUFPPYXD3DXs7fHobRIJEJ7e3ucMlhBQQEGg4HBwUEOHz6MLMs4nU527NhBSUmJ0LnWIicnhytXrlBZWUl6erpwOzx48CDPPfecuOEffPBBxsbG+PnPf04kEqGqqmrBcbvdbqxWqyBqLRZOpzOuT9rr9dLa2orZbKaysjJu20uXLjE8PMz999/P8PBwHLcglqClrbrC4bBIBTuQ2OsqpLF3ALdRxSLpSZ1VsZotlK0vo6+vb0EN78ZebS20Fc9ig7o24N6CmjUQbVtcKiQJ9JYwJIA6bSCAtChFWpUkAio0ykZK1BB2VWEkc3kegKTAaGaQFVVJZG92MHxxatntAVBgujNKqAr6VEZ7VFzj0ROwZ8hkFEqUPZbH1R9fIzgXWgAIrDkJyH+Yzqc5YVwWQIUMV5ScmT73L5cdtQUkkj0wY2HJDIEhDOmu69+rpjqorZB7e3v5p3/6J/E9aveYXq9nLCVA+wofYaMLHPDq6BHkrTDc10gexrjzjeUXwNLgxmAwxIGI2HvOZDKRlZW1KFH2xtDel5OTw4YNG5ibm+PMmTPMzs6KMUJRlOtdIfO+AJFIBIfDQU5ODqFQiK6uLq5du4bNZqOiooLKykoKCgrEM+x2u8XKPzb1X1hYyO7du3E4HIIY2NTUFJcB0VolY/UNdDod6enpFBUVUV5eTl5eXly2QZMLjm3lGxkZESBNr9eLSUpbBCiKQigUwuFwEAwGSU5OZnx8nC9/+cvCtW9iYoLS0lKcTidJSUl8/PHH/PznP19WLEzLXBiNxrhttPNJTEwkNTWVsbExVFVl26adfOuPfkrIN39jxDTKTPeH6T+vUvjNQgBBeNbIlqqqCkEh7Tv0er309fUJz5S/+7u/E8f2wQcfYLFYKMVKTsd1UGk2m6laV0V9fb1QULTb7bjdbmZmZsjIyBDj7ObNm0UW+b777gOgs7NzSZXF5SIjI4Pk5GTm5ua4fPkye/bs4XY1m6GrOhJTU5idmua///XzKJsUDh06RGtrK2+++Saf//znhX9DVlYW58+fx+/3LyhB/XvG7wwYuPDhZf7HY/8QTZuFowNvZ901/mHv96n5qJ5vHPwLccFra2vxeDzY7XZSU1OZnp6mra2NlJQUSkpKKC39/9l78+i4yjPd97dr1zxIVaVSabZkW/Js2cYDmBmMwQwJJAECxEBuE5Lc0J3bfW/37fRwz1nrdJKTbnJoskIngYaTOARjCBDAgDF4wDaeB1myZFuyJkvWLJVU87z3/aO0t6ukqpIZQ6/kWatWSVV7+HZV7e99v3d4nlpqampSamQ5sGzZMt59910CgQBWq5Xi4mIeeuihaQ6BTqfj3nvv5amnnsJgMGTldvb7/TMWf1RVVXHs2DFCoRBms5n9+/cjyzJXXHFFhpPS3d3Ne++9h16vZ9u2berKp76+npdffpmhoSG+9rWv8dbrbxPsiCOHBcZ8o9jnmTE6UpPLhd4L2AE7ApBEJsX4lkwmGR0dRRRFHA6H6hRcqkFPx0eNFJjiMxswQQafN/t3JiMj6UDWwmlBz2n0GCUJy4SE1ezPGTWXBYjrUm07czaUYZ9jpX1rH/Fg/hW5LMmMD0q0HpIyVCV9oxJ9rTB/rZYV35nLwDEPwyfHU6RDdh0llzkZvLuQk24uzogCjBTAcIHEim6oGfvkDsHiCxr2z5NyFo0uvqCZVuOhGGqFUGfp0qWqPsHZs2cBOBvr4/SitJW7EpURoWt2BEGCyr6Z0x/pqK6uVoWIFCh/l5WVMTQ0NKMjoBjXuro65s6dS09PD1u3bs04pvKbTFcKtFqtVFRUqH36/f39FBYWsmTJEhYtWqSm8OLxON3d3TlD/w6Hg+HhYbq7u9m5c2eG0zM1nCxJEkajkdLSUurq6qirq8Plcqn3eTKZZGRkZFoPf3pHh1JDoEBRY1Ry+srDZrMRDod5/PHHqa+vV0mLTCYTgUCA/v5+fvjDH067XxUCKMUhSW/NVHL7TqdT5ZdQnq1Wq3odzzzzDKWlpRzZ3k40Es/O9ifDYIefnW8doKjSrNJIb9++nUAggNfrzXCkRFFEAsYSCTQaDQvKyxkeGqKyspLbbruNeDzO1q1bGRgY4Prrr6eyspIXX3xR1TB49NFHeeGFF9S2QIfDgcfjoba2Vj3HrFmzEAQNHx5t5UQnjE0EGejt5vYbPzrxjyAILFq0iPebDvHM4EGe2t1CMBCgsFLinllzCBw4QSAQwG63c++997J792727dvHK6+8QjgcZtWqVRS6nQyWxPhN6zvMK63hKtcSDOLHl5b/uPhCCBWF/GHuq/g2kWBkWu+4gqseXYFQHlflHxOJBHq9ntmzZ6vh9Vy9vVnPGQrxxBNPsG7dOtauXau+Pjw8zKZNm7DZbKpDEI1G+bd/+ze1xeimm27KONaWLVuQJIkHHngg5/kmJib42c9+xn333cecOXN4/PHHSSaT/N3f/R2yLNPS0kJjY6OqwLZs2TIuu+wyVRXs6NGjvPNOqjjFnajizcffIxFLIupEpKSELMmUrnIw99byae1suZArIvBZYbBQ4mBdDgMmw5xhgcFeG2OCdspbMkkDKe6AaZcmYy0K4qqZmPoGkIoMlPfrmdt50ePvPzxG57u5pUMFDdjn2/HrS3PKS2s0sOIWEb0pc0D99pTSYVZMZjNuaRIxfYL2TAUDhRInqyU1HImQ6vpY3KdhzkdMCSmpoBMrAgSs2Qu0ADQJWHuoAHGG2hPFYJSXl2fQHitQVkD5igjTx7Z06VJsNpvK1pkNSuTDYrFQUVFBIpFQORZcLhcLFy5k4cKFagX30NCQWvindBLZbDbmzJlDYWGhqjEwPj6eYUyn3jeK8Zw1a5ZagKikGmOxGENDQxmr/aGhIfV4BoMBURQzZMlNJhOlpaW43e6M3L6StohGo6oD1d/fT39/f0b0MBuy8Yqkf7aVlZWq0c9XPKhAlmV+8pOfsGbNGn71t7sITOQhPxKgdIGemstNKouj0oqZ/rDabLzQcpr/2Pch4cnz20QNC6MRfvHd79LZ0cH27dux2WyqRDKkHItDhw6pjs3KlSs5ePAger2e4uJi+vr6EASBDRs2sGLFCiRZ4KH/6ykujCYRNQJJSUaYJCm//YYl/P131iOKl37//KZpJ0/2fKCy0UNqYSNqNKxqg3/62reoqqpSt29paeHVV19N1bpcV8UHwlliyUTqd4WMWTTwl3Vf5Zay1Zc8hnz4LyVUtGvzh4SDkdzFXQKcfOsMK76dkuFUVgeVlZV5Q/P5YDabmTdvHo2NjRnOgNvtVlMGzz//PA8++CAdHR1IkqS2YpWXl2ekC/x+PyUlJXnPV1hYiM1mo7e3F6/XSzweZ9asWWzdupXW1lYkSVKP8dWvflXlxQY4d+4c27ZtS0nC7jjNa09cZEVMxi+uHgaPjaPRapi7ofySjHwuOleF4XAqPk6xWzpKvRou64KT1RISqRtGaYWrGRFY2qshjoRHljMoimURyPk1CwTGrFhdIYzW6SkDWQOlg5letnuZne5dQ0ix7EZblkBf6ULOoy4qSTDUJVG1KHNgHe60wqbpQ0WW4bxLZsHAJ3cGyrwaSpoERgomRakSqW6RXF0f+Zw/SZKIGCQCtvzfr6RNCUKVjhtz/hYUlUBRFLM6AopuwEzQ6/UsWrSIRCJBc3NzdgnwtK6A0tJSZFlmYGCAtrY2SktLueqqq9RUoN/vV3PnCoGMUvW/fPlyAoEAQ0NDNDU15b1/tFotxcXFzJkzhwULFlBaWoooioRCIQYHB2loaFBX+4rjIggCer1e5TlRXisoKMhY6ZeWlqq8J0qRW0NDA0NDQ0xMTGSQ3uT6LNKhfOe1tbVqobFi8I8cOcL27dtpamqiurqa2WmFbZByZLxeLxMTE2qLoMfjwefzEQqFiMVifPjhhwT9+VkQNRqBebUL+Lt/2siOHTvo6Ojg3nvvzdhGlmX++q13eLu1NePe9yeSHNHq+c7mF1k0MszKyy7jlltuyUixLFu2jEOHDqkMr4cPH0YURWKxmBodlmWZbdu2sWfPHgZCJfSNTdZvTEYzFGnlt3c3U1FSyMNfuyLvNSlo9w/xs95UzUz6bScLkJAljsyFnvGhDGdg8eLFOBwOfvTurzgrN6uOvMJcGEpG+bezL2IS9Vzrzuw++CzxhXAGOk52pQxNIsdEJENoOMratWux2Wwqt3hfXx8mk0l9fFTHYPny5bz44osMDg6qqwWY7hAoocYbb7yR8fFx3njjDYqLiykuTvWM+v3+jDBUNgiCQGVlJe3t7SpzV09PD6Wlpaxbt466ujo2bdrEggULMhyBwcFBXnnlFerq6li/fj1b/ubtvOcZODJG1TXFmAqMGSsBo9GIVqslGAxmDdcqCAaDKm3rVHwSR0BB9ZiG8nGBC06ZoEFGlxSo9AhYYqk7qZYYbUKm8Za0zMChIBMYNWc6A5PbV1zQYwll/i4C/WGMhTpCI1PypZOVyTU3leCJaGfsPJgYlqmaUkLiM81M/uQzfXrRGA0CJb78J0wX6lGKQkFmze21dPqP4fNOII8XEvBcIj+9NntlP2R2C0xlBVQog2dyBCwWi0rwk6tFTZZlNBoNbrcbSEX0enp6qKys5IYbbmDhwoVYrVZ6enpoaGigo6NDJVMqLS2lqqqKcDiMx+PJ0EnIBqvVSllZGfPnz6e2tpaCggJ8Pl9Kke/cObXtTbkuxRlKv/9MJtO0EH9xcTGSJDE0NER3dzcnTpxgbGwso98+HUotQjbY7Xbsdjvd3d088MADuFwufv/73zMwMEBZWRnBYJBVq1ap+0uSxKJFi9DpdGzbto0333yT3bt3q10W6cWB2T5/pQOhoqICZ0mCsYHcFNuyDHMXVqkkadnImfZ0dfNWtiK6yfEeD4X5+vqb+dKVa6dtUlJSgk6n48KFC2zcuJFVq1bx7LPPkkwm6ezsRKvVcsUVV7B//37KKqp54/Ue5Dw36Za3jnP/l1eh181sHl/qPoxGECaTsdMhCbBt9DRXsSrjdVepmwu1ScgzpT7b+TbXFNd/bsyEXwhnQG+cOT+iEQVaWlqIRCI5qUd1Ol2GczD1YTQaM/53uVyYzWYaGhq49dZbM47ldrvVGoLBwUGuv/56BEHgy1/+Ms899xxbtmzh0UcfxWAwzMge5fP5OHXqFL29vSrTl8Vi4cEHH1SjAW+99RaxWCxjHH6/nxdffBGHw8H111/P3vc+pK81fwuKPFn8pqvP/Grj8Thut5vFixfj9XrVHLHD4cDhcNDb26vmLD+J+NClQCcJzB7NMakhcZkc4YRgRFAiBKly/DwQEH16NMlUbhtAHxOo7DEgDJs4MXlTl0pJtI0e2l7tzd6nbNDg/mYlJWU2PDsuwfHJcv/nK5Rk8jJm2iYXPm5XR/o+wWAQwRzBeO0ZWiwHkU0CWjcImgGKwzpsgSr8yfxFVOZI7hCqYkymQlmp5YPD4cDpdHL+/Hmam5tzbqekA8fGxhgaGqKmpoZbbrmFBQsWEAqF6Ojo4K233sogEXM6nZSVleH1etVwfTYo9TTV1dUsWrSIiooKtaJ/cHCQN954g/7+frWoThTFDKZFpZ9fCe+XlJTgdrtJJpNcuHBBXennW+Vna2krLCzE5XJNy+PHYjGeeeYZ7rjjDkZGRujr66Ourk7lVxkYGECSJHp7e/nFL35BPB7PIJlKh9KtpNPpsFqt2Gw27HY7LpcLt9uNw+GgoKAAk8mk6jA8+OCDlJuP8/N/fiXn96URBNbfvQZIFRCWlZVN22ZLUxOiIJDMEZERBYGDExN8Lct7giBQVVVFZ2cnExMTuFwuCgoKcDqdnDt3jkQiQW9vLxaLhdMdw3kdAQBfIEJ79wiL6lLjlGWZRCJBOBxWuRmUv/cOniaZK5cIIMAJz3nefPNNNVomiiKdjBAQ88+zfeFROoMDzLWW593u08IXwhlY++VVvPaz3CteUavh+nuv4m/+5vsAKktYvofyhXm93ozXsuHIkSOcPn06q/NQWlpKV1cXJ06coLi4GLvdzoYNG9iyZQuvvfYaX/rSl5BleZozoBRlNTY2qt5pdXW16gzccccdqiPQ09PD8ePHufXWW9VVx/nz59m+fbvaA/7MM88QHJ45vwqQzBL+TiaT9PT0MDg4iM1mU7sSlBYeo9GYofU+8zmSjJzyMtbqQ0rI2MpNlK50qkWMnwQLiGGXk5xBz5CsTYXd5dwk7IIs4wwLrD1YQNiUCtMnwlp2G034jCLC5ATTEpeo2dqX8gOyzDlSTKJrLMiZDWYq24HG7NulTgoFxdPHUzEu0FGSW9tBFqB8/ON5+p+0vRMgEPZiuqUFwZwyZkIaja1giHOF7jx7RmuJZZsaZDDHRAomskfgFJW6dCgOTL6oksvlQpZlxsbGpkk0K1D6vr1eL+Pj42pLX0VFBQMDA3R0dLB371419O90OrHb7QSDQQKBQAa9bzqMRiNut5va2lrq6uqQJEl1Fnbt2sXg4KA6dkUHIV34KN3oK7TOFy5coL+/n8bGxpyr/GwpG5vNphr89KI9u92ewTeQTCbx+/1MTExw6NAhBEHgww8/ZGhoiHg8zr/8y79k/FaUYkileNhkMuFwONQiwZKSEpxOJ4cPH1YliO+++241J58NHo8Hq9WKwWDg5nsuZ/+7p2jY35ahASBMpsW+9z++iqXQwPj4OB6PB5fLxcmTJwkGg4RCIUKhECe7u3M6AgBJWaZrfFydy0OhUMazEqnYvHkzVqsVj8eD1+tVPwelQHXcGwZm7hh4482t7DbGVbuR6/cbXpzMfzgZEvE4p1pPqb8dWZYZccVgemPaNAQTn+3CLB1fiAJCWZb5/tp/pO1EJ1Jias4LNKLIU0f+J7XLZ+c4wqVBaZNJdxoGBwfZuXMnS5YsUfPl6Z7f+Ph43olMCQe63W5sNhuSJOH3+1O92pJEUVERc+fOZd68eQSDQf7whz+g1Wr5h3/4BzQaDYFAgGeffRZZliktLWVgYCAjjFpTU8OcOXOoqKjAUeBk46zvEYvkZ9Nb+n/MpnBWds6DTwOhkQinfttNPJBWkDRp3+q+VEHJCkf2HT8CZGTiYuqwHYKeI3pDTmcAYF0kRMXk9xQD3jBZiAhCRv7RemyY4pc78gYZJJuGsd/VIXoEiv+dnM6AIKQKCA3mzKOF9DI7FidTPOVTTiTIYAvDjafFnLwDnzW01cMYLm/P+b4sQ6fXTVuoOFPsaVL7ackpC3bvp7OGKCoqmlZNng6FplahRFYMtsFgoLe3l87OTjX0rxS9KSI32aDk6CsqKqirq8NiseDxeBgYGODChQt4PB7VQKdHYRRO/rKyMkpKSrBarUSjUYaHhxkZGZkxl58Os9lMcXFxhrF3Op04HA50Oh2yLKtCQMPDwwwPD+PxeNRzhMPhnJ9X+udqs9lwOp20trYSDAZZv34977//Pg8//DA1NTU5921sbOSNN95AlmXWr1/PlVdeOW0bWZZ55ZVXGB8f57bbbiMYDOLz+tm66QAnd59XWwwd5UZmr7JhdktZx6zX6zEajej1en4fi9ObzO3sCrJMRTLJjdHpxlFRv4xGo2g0GgoKCvB6veh0OmKxWIbiZzgmsK8tT0sTIGrgK2v16LSCWuORTCZVefD07/lUZTKv848Ml40YubtkBUajUX2MikH+1fOHHDtdxJa1/41io33G7fLhv1QBoSAI/MvWH/DPd/yE1qPtiNqUFUgmkhjMBv7pxb/5xI4ApH40yqpfQW1trdonrPScKohGozz++OPcdNNNVFVVsXnzZgoKCrjxxhtJJpM0NTWpwimyLKs85EqfriRJjI2NMTY2xpEjR9TjJhIJfvSjHwGZ7VCyLKs0l6Ojo1xzzTXMnTs3I1Kx7sFrefe5ndmr3AUwFRkoqMqkuDUajTgcKQMdCATy5mynSuVOhZSUaP7deeLBKTf3pNE892YfpmJDimr3Y0BGpqtYpr1EIjjZclsQDGPzQMBvyDDukJok3FKS8rQbtEOrS1UjT9lWNxpJiZ1ka4GahMYvIYQlki6R8a+D46XM61MIVerWaIhpRM5d0DHqF5EQsJuSzCqKc3UbHKpNEtWluhkgVchYGIK15/54jgCAWDlGniALANWCH+9IBcPFsZRmvAwun56qTh22wCebMgRBwGKxEAgEsnYFaLVatFqtupqePXs2ZWVlKrnW22+/TTKZVB0Fpag1WzW9VqvF5XJRUVGBy+UiFosxMDCgKoKmjyldN0FZ7ev1eiKRCD6fD4/HQ1tbG6dOnZrxGo1GY4ZUuWL0HQ4HGo0Gn8/H6OioKno0MTGB3+9X6yxyrc/0ej0Wi0UN3zscDj788EOuuOIKrr32Wnbv3k1XVxff+9731H2Ki4vZvn07giBQUlLC3r17pzkDsiwTjUYJBoM4nU5uueUWduzYwfvvv8/Ro0eprKwkHA6rCn7phETPPfecehzRDavvt0NSSzwRo7zyoox3MpkkGo2qDJiyLBOLxdS5plKrozePwy8LAnOl7M5WumqlYrjTOVD0ej2iKBIOhzHpZYptSUb9olo0OOVMVBVJmIy6DOOtaChMfW1ciPLt0y+SlKVp6wYNAjpBw6Kwjdtuu23amV49eoTOQD/T9wQNGlY5539iR+Cj4AvhDADYiwv5+aEf0/hBCwfeOEosEmfu8hrWfeMazLaPRgTxUbF8+XK2v7edEd84TlshYkreitbWVpLJJIsXL8Zut/PNb36T3/72t+zbt4+7776bYDBIZ2cniUQCr9erChNVVlYiyzKjo6P09PTQ29tLb29vRghUCbGNjIzgcDiw2+1EIhFGR0fViXDfvn3s27cvY6xxRwKj00B4LJq5atWk0imL7qmeVnCiHHf58uV0dnbidDpZtmwZe/bsQZZl9Ho91dXVdHZ2zpjXHTvjJ+bLE5nQQN/BUQrumZXxckIjc8EhM26R0chQ4hMo8QoZhlFG5kS1RI8r8+bwmQFLGOdQkjHPxYiHIMvMTiS4PBbJuK3P59Bql0xacvauKmMQQTakvv/oUnAIAsajqWJBALtboHSOBp+k5VC7cXLcqbOPBkRGA1rmhGJsCEXpt6ddr1dDUQCiCHgFDUZZ4qN16386ELRSXkcgFYmTmN9qovackZheQpsQ0CU+GTeCIAgqiUy2kL2SttLr9cyZMwer1UogEKCrq4vm5mZ19ac4z9FodBphjslkUlfdWq1W7eXPVh8gCAIOh0Ol441Go6qMbW9vL93d3XmvR6fTUVRUhNvtVqWVHQ6H2t8/ODjIyMgI3d3dNDU1EQwGM9oHp0Kr1WI0GrHb7Wr4vri4mJKSEux2u0qClo6Ojg727dvHsmXLMBqN6uenEPmEQiG1vuLAgQNUV1fT0tLCb3/7WyDVXq0Y92wpKEEQVOnmwsLCFOWwTofNZmNiYiJrDYskSSDEEHWpVIJSUwEXSdKyOTuzE3FadDr8aLI6/A5JojKee27KdkxF8EmRVo7H4zQ0NLB2kYGdJ+ME1Z+PoKY0qstszHEM4nBUc9ddd+XlqgGYDTxheoC/PbGFhJRMGfbJFmKTTs93TSu44G3Kuu/fLvg6f33iKWJSPMMhENFg0Zn4q3lfyXvuTxtfiDTBHxNDER/PnN3J6z0nSIpgFHXcWXkZf1F7Lbtff4dAIMC3vvUtIOXdHjlyhB07diBJEhqNRhXecDgcXHfddQwNDam9v+mUrUqUQOGhvu222zh48CDhcJjq6mr8fj9jY2MZE5wipWqxWDCbzSQSCXp6erAYrJze1sHgcQ/xUBJBK1BS76DiyiLMLuOMbYWKJGogEFAnaEVHPKOTQIaoLwaCgN6mRRAEzr3Zx3DjeM7+ewDRoGHtDy4mxEZsEofnSqmwv0JSpkmFzK88J2Ke7CRQeQjy4PIWLZGYFgEokZKYs1zrVqOZ8SydJdrxKFU/OaGOYSpkDUSvsuH/f1M0qYIEtUMCS/oyjxVLwN5Wy2SAIbtlXVkTpsh6ceIfFzQ06PVcELVqMnVWMsGKWJTCz5HrQb+sG21d/6Sc63TIEiT7iogevKjo9lnxUSireqvVSnl5uWrAFVbDXL3xypgUIRmDwYDX68Xj8WTd3mAwqNsphWCKMNFM47Pb7apiX2Fhoeo4TExMMDo6itfrJRAI5C1s1mg0GAwGzGazGr53uVyUlJSoRD75OqEkSVKNu2K8g8EgTU1NDA0NUVdXRygUUomLcjGD6nQ6EpNkPhaLyqDq1AAAIABJREFUJUMXIV9EQoFWq1Xni5lSIkp0VPntKEV4+epeohoN+01mLij31GQIa5HFzF9UzyI8MUFHRwdGo5ErrriC6urqjFW61+vlF7/4BUuWLKG5uRmLxcKiRYsyVuXNzc28+uqrWKwF9IwKdA9DIBTHbIBbr1vIt75xC+e7u3j11Vex2+3cd999alQ1H0Yjfl7rPcY7Z44QDYepCBt4/P7vc6Gtk9dee40f/OAHWR2L7uAgP9z7n3QbxpEF0AoiN7pX8PDsDZSaLp03Jx8u1X7/STsDfaFxHtr/DBPxUEZFqChoKNCauPxknC9ddSM1NTU0NjbS3NxMOBymqKiIiYkJjEYjoiji9/vVG0lhM7TZbKqX7vV6VeatqbDZbOrqpL29neLiYm6++WacTmeGWEYwGOTpp5/G4XAwPj6uTj5SQua6669l+Yrl/Md//AcbNmygvr6etrY23n33XSKRyDSCFK1Wm6E5P/UnIMsyA0c89B0cJeqdVLNz6KlYW4S/P8xI00ReZ0Cj13DlP6ScgYBBZufiJFKWjgBBTkkCr2sR0cgCB2sTDBWkjHI2CJPERPW9+VtI9+uNdGq101YYAEWvdVJwaGg655EAaAXGn6gmWTOZn5BhWc90Ap+uER3nhvTTL0gZJzIuW5IV1akIz5hGw7tGMxJkjEmQZbTAreEQ9nwf6KcIwRrGdGtD3uhAePdipJHp7V+fJqxWK0VFRSopj0IhnGs60mq1WCwWNY3l8/mmbau0NSr3nRI9yDfFKWyMxcXFOJ1O9d5QlP3Se+pzrZ6VLiar1YrdbldVAN1ut+pApEPRZ1CMerqBT39d0bmfeg8r55VlWV2tAzNeq3K9ykImH524wuJ4KQWgCrRaLRqNhlgsRnl5OWazOcNY9/X10d/fzx133DEt3K60PgOcGx3jaF8fzadOYfJ4+P++/1fqOTweD2+++Sbnz59n5cqVrF+/PsPI/vjHP0av16sdLVM5WwA++OAD9uzZgyAIrFmzhsOHD6v2ze12s2HDBqxWK1u2bCEcDnPPPfdM42DIhVOnTvHaa68B8Fd/9Vf4fD42bdrEX/7lX2ZIPStQUtFX33gtCy9bQoHOgkn8dGOG/6VqBv5Y+FHzm0zEg9OqWJOyhDce4kSlTPnx4+zYsQODwYDNZkOr1aq5TuUHp9Pp0Ol06s2rhEG1Wi2FhYXqJGKz2Vi/fj07duwgEAhQX1/PnXfeic/n49lnn8XtdvPNb34TvV6PzxticMCLs8iKwaDljTfeUClJlZx/fX2qB7XpVBPX33A9ixYt4uDBg6xcuZL6+nrq6up4++23aWlpUa9NluWMFVH6ZCCKIolEgtF9ITp3ZzL0RcZjdLwzQEGNJa8jgACFsy7WC3S6pZShzWJ8ZAECRhgolKmYEFI9+nmi0bIAPuP0ySsagfFRAUkCi01mnjNGRw4ltrE7Z4MoUHhwEKTU+QQJpCIt/r8tv+gITOJMucSITaZ2WENRIHURvnB+Z0RGYCJ08UIO6o3THAEm/0/IMocNBm6JfD5Vw3LAROzkbAwrupAl1AiB8nfsbPln5ggoES5lNT01XZD+W1S48ZVcs5KKU6AYQWXFqeSJFWOaDsVJKCgoUJkBFYOvRAnSj50OJXxfWFiotqu53W61At9oNKrGPd2o+/1+BgcHMwy+8simB6BcUzoPwKV0j+SSdFaQrteQ7TkdOp0Og8GQUaOk5MoFQeDkyZPEYjE1hfPQQw/h9Xp54403uOuuu1i2bBmbN28mHo/z8MMPTzv+66+/TjweZ8mS/LS/da4i6lxFNIsaXn31VZUyHlJtpQ8//DDHjh3j/fff59y5c3zpS1+itraWkWCQM4V2TgRDRM1WTLKMZXSMmmgUW5rDcN111zE6OsqZM2c4evQoGkmk99gQyxcvp7fjPJs2bWLhwoXcfffd7Ny5k+eff54NGzawevXqGXv+6+rq1G26urrU+gyfz5fVGVBS0SsWL6PQ+Nk64DPhT9YZ6A9NcHCkPWfnmITMcCFcOO/BgkA0Gp0WSkvXV1+yZAkej4fz589z6623smjRIiwWC4lEgieeeAKAW265hcWLF7Nr1y61WjcWi6n62ffffz/tbSP85tkPaDjWDYBOL1K/ogTR0MO8+TW0tbUhCAJf/epXWbJkCcPDwzQ1NdHS0sLVV1/Nr57+FS8d28aYIUTIH6RAFPKGW7VaLStWrMBqtaYkVw+007q7O+fn5usOIuo1JOOKdvoUyFC60oGUkNBoNfQ58lTaklrtD9hlKiZAmyQ/uZAMurR5T0pC+1kNw/3pOwiYzDKLL4vQ4krjKgAEJGRRQ83/k6Te6Wf4fQNnB91MVFqJrbCAKKjnUbgNYjoYcMj0O5Ms7dFQO6xByJVnSIPCCD0uaPDkCQHLgsCQqMUvCNg+p3RB4lwZks+Ebn4fYknKCEoeK/G2cpIXpk9YnwQmk0mtkFeMYTYoYXLFsCUSiYzefSBjJZvNCCrGTFkpx+NxYrEY8Xg8q5OghO8LCwuxWq1qDYHL5cJisSAIguospBv11tZWVWckV89+rnHnQz6SH+U4CvJFUJTaBeVhMBhoaGhQeUzGx8c5dOgQX/nKV6iqqlIN/kySvTfffDObN2+ms7MTSEV33nnnHWbNmkV9fT3xeJyurq6syq5ATsKhXJg1K1V31NPTk8H4KggCq1evpq6ujq1bt/LCCy9QtXgxTw+P4glHkCavIwQ8faKB97q6een+r+OYLBwXBIE777wTj8fDkZeb6N03jBSXaRLaQQZ7aQHxu1LMr5dffjlOp5Nt27YxODjI7bffnjelYzQamTt3rtrtokQlchVtt7S0UFVV9ZE+l88Kf7LOQFdgZCaCOQACZgEHelU8JL2i1GAwqDSp7e3t1NfX4/f72bFjB5FIBJvNRk9PD5FIBIPBgF6v58MPP1QlSD0eD7t27WJsbIyNGzdyunmQ//6DVzJu9HgsyfEjfRgMWqAbo0nDY489phYGuVwuqqqq2LlzJwV1JRxbE2BfaBdCYDL0bQf7QpEVXUUkA5krkvLychwOBw0NDSSTSURRZOC4J9VDlmNRImjAVmXC1xtGSnMIBE1qdSkaNZx5KSWVWzjHgvCwEy7L3eYoA9LkHFTl0dBSkZ/AQ/P+BAd/P4yUlNEsnk3SYmOq9xAOgXhI4qorw7Q6RUZJcR+47T6Wzelmblmq77rqvgiV0QH2Ny+nRxBy/h4UZ+bULAlXQKDYlmTQmz3ykBqmjLsgZcj8l6CJDhAQNNjkT87weKmQhuxEh+xktEl8Skh3Pi+VwCrf6jZ9FauErpUwdzo3Rjwez0h/KeF7JS9vsViwWCyqLkI4HFaJdoLBIGNjYzQ3N8/Yunep+Ci8EMp4DQaDOseYzWbMZrNq0NND6keOHMHn87Fx40a1Pe9Xv/oV1dXVWSvXRVHkwIEDCILA+vXrOXfuHKdPn6a+vv6SxyiKIg8++CBPP/00g4OD/PKXv0SWZb7zne8gCAJdXV0kEgnq6uqy7u/1eikvv3QCnYKCAux2+zRnQIHdbmfjxo00NDTw/R27GNMImR0CgoAky3SPj/OjD/bw01svdovpdDrEXgvnd6Vxjk/eCt5hPyeeO8vGJ7/CkSNHMBqNrFixgsbGRkZHR7n33nvVSEU2LFy4kPb2drq6utTvNJszEIlEaG9vZ/369Zf8mXyW+JN1BszaSyPHWVw7n6qkWe0zVZ6VyuNEIoHJZMLv96viGPF4nN27d2ccJxqNsnnz5ozX0tty/vf//jVH94mk5sQpE7MsEI3KdLdruPzqQl588UV11aPkE6N6iXf1F0hqJ7m202zQhD3JsboxljdYKCwoVNuwlEJHSK3gYrEY4dFoTkcAUgY/EZZY+Vgdg8c8jJ71ISUk5IRMzJ8gGbm4s7criPW/B5H/uozIutyeb2Eodb01IwLt7tRqfGo0QZBkNL0xIi8PIsQAs4mkJVf+SyCZlKFL4q61rQg1wwgaEDWZ5l7QgGCKs0YeZ0ljMacqJzsZcthFQYaOYokVgQTndBLRuJClPSm1/6yiSQW6S1zt6y/JNf30IRSG0FaNIWiTSH4TiR4XxD/ZtPBpGNNsq2G4GD4XRRG9Xo/ZbFajAcrKVikSVPL+uVIAnyYUY56+YDCZTJjNZiwWS0bYPVvLmiLxfCmQZZk333yTyy67LGNFqXQTZEN9fT0HDhygoaGB1atXc8011/D6669Po2K/FOh0Oqqrq1Uin2PHjnH77bfT1taGw+HIGg5Xaqc+6gp41qxZ9PT05HxfEAQKq2sYyON0J2WZrWfO8s/XX4d9MjrgHw/w6k/fyrq9LMlIgkzzm+38YMtfsmPHDhoaGnC5XIyOjvKf//mf3HfffZSVldHV3MO7z+1ioGuIAqeNGx+4mnlXzANQeWxyaXGcPXtWpYX+IuBP1hlYYq/EqbfgiWUPWwIYEgIrSmu4fNXqrKEhv9/PE088wV133YXFYuH555+nuLiYdevW8bvf/Y6KigrOnz+PIAh897vf5eDBg5w6dYp7772Xl19+mWQyyZo1a5g7dy6NDRfYv+Ng7gHLAiMDMDoyjqi9GBJVyEqOWHpJaHMYMgH8tiTjjgTCeHZ1M2UFpzXNoO8gpLYxFOiovrGE6htLGDzhoX1rf5Yxp56sTw0QXWVBLtROe1+QoXqSmlifFLi2VeRQbRK/Ka3zQABta4SCH19IOQIALnuKLyCXQqMsMDwAS8rH0WhzG1pZArF0HH23m5AhtyOgjGOoUEYWZVbVhDnWbSISFy5eKKnhLJ8VwWJIveaWkpgkKSvvQeqgMgXAbKt1RuW5TxViEsPl59BWelI1ILIAGhn9sm6iR+eS7C3+/MYyBYIgqPnzqTl0ZbWdzkL6aZ1TqVNQVudKmN1isWC1WtWCuGz95toc7ayfBZRahLlz52a8HovFphUrKnC73ZjNZgYGBgiFQixdupQ9e/awd+/eaaJBChTCHaWAUHkeHR1V5d0NBgPHjx+no6ODWCxGdXU1XV1dGdtLkkQwGESSJEZGRjhy5EjGe1OPn/6skEK99FKK8ENJDynbJJNJWqL526EBEpLEf2zezOxJDZv2fT3Eo7mdVikpcey9kwhJDV/72tdYvXo17777rvp7e/bZZ9F2W9n16wOIWg3JhISo1bD9N7tZceMS6u4uZ2B4gM7OzpzOQEtLC7NmzfrCFOX/yToDOo3Id+pu4H+2ZPcOAW4UKnn/3e0cPXSY66+/nqVLl2bk1ZQv2GazUVZWxoMPPsjzzz/Pzp072bBhA2+99RaCIKj5tMbGRlX+OJlMUlBQoGoRtDR6Z2zhkmWBWBRM2syQKMDQ6kheQyZIMFIcxzmeO7wN4F5qx3c+lHsDGdxLM737gaOevMcUkmDc6SX8lSJ1jEKqHZdVXRqMiTSWwKjAuhaRUZuMx5o6n3jEx+CvL2QeVCsyg3oRyQTk7CNUB3dxG4084yGJ6mF7fZK15+BqXYhhvzZFOiRDoUmi3BFHl+ZPaYDL4lH2G0xqq5SKyf9XRML4Qp9OaPpSYVjdjlie+t5SRYSTESVRwnDFOSIR/WfeUZALSlHgR4HiQCgGPV2HRClcVFIFU1fpiozwJx1zetoin6HLZ/xyvZf+6O7uRhAEmpubaWpqUl8PhUK0tLTQ29ub9XiKI/XUU0+pLZJnzpzhJz/5CYBKl5tOm5sLilFU5iAl9XnmzBnOnDmTc79jx46p35eCfBERZQyKlko2+EUtGGfmohnq7ycx+Rn0tY9Cph+f5eQQnAhR4LQxa9YsHn30UU6ePMnOnTvpPzJK+9sp/oDkJGuu8ty45zRJbYKCtVo6Ojqw2WzTaLbD4TCdnZ3ccsstM47788KfrDMAcG/1GgKJCL9s20VSlieFMiSQ4DbjXH5408OMXDHC7t27ef3119m/fz833HADCxYsQBCEDGcAUgpeGzdu5He/+x1Hjx4FUj/myspKtm7dSklJCdXV1WzatIni4mKV6lgURaxWwyUVGYmTtjy99UcQBJIzfJOyAEkx9/GjWpneIhnfnQVEKiXEXRPo2qZwqgtgdhlwLc40EqHR7NXR6m4ClLbE8a6HCUvK9pZOCNQOa3AGp08EAgLFfoHiSWe6/VRIrUlQEYnmp9FDxmgCabQAoWIsZ189QHIs9f2VejUMF8yc541pYf+8BCv7ZcaWBgkbJfRxAcOQHnF4eo5jbiKBRIRjegNxUJ0APbAmEqY6+fk6AoI1jHbWdPY/mKRAkEC36ALRPZ+vM5Bu0JUOHWUVrtTc6PV6dDqd2sOeXi0/1WgqrylFgIODg9OMY77HVMOY7W+49ALBTxvHjx+f9lo6T0MuTI2oZOtumBqdSVdMjEQiKs+DMgf5fD7VMVA6LzQajSrMEwwG6e/vZ+HChej1+oz5Szl2+v/pr+/bt4+qqirmzZuXdZtIUuLArt3E8tRoFJtM/P0D96Gb/N0cn9PE/3rvV3k/J51Bi73k4j0gCAIrVqxgwYIFbPzp93LuJyUlTr3fyqrF8+jp6WHNmjXTUh1ftBQB/Ik7A4Ig8EjtdXylahXv9jcxEvXT23IOW5ePCnsCQRBwu918/etfp6+vj127dvHyyy9TXl7OunXr8Pv9CIKgtisBVFZWsnHjRn79618DKSrM999/n1gsxv33389LL72Ey+Xipptu4vnnn2doaIjy8nLWXj0PnU4kHs9VUQxV1QXMmqVnaGhIlXBV1OBMQQ3xwmTeVa05lH31c75IoqE61QIoyMCthci329Ef8VPweD9CJDXRFVZbmP+1KjTaTMsq6jQkcslPT8KGhuWtH+/nptFmuaiRcZhVnvd6Sysl4ufK0FaNkYxr6GspwT9qQatPULF4GIszBEkNie6UDO6sMYGzZamUeb4OCFmQMZqjnFuQTNVXaCAsg9cepq8iSn2TFV1atENGZq4UpSYco1+jIyQIWGSZimSCT7Ye/XgQyz15KYkFDWhLvES1SUh8fiNUIgKJRCKnqNhnjamr1PRURfqzEklQ3k9/L99DcV7SDWz638r76f+n7y/LMu3t7bjdbrWIWDn3mTNnUpLCTmfW8ciyTFNTE5IksWzZMvR6vcqSWF9fnzGP5UJnZyeRSIT58+dn5P9bWlpU9kWv14soihmFhIpugNVqzRoJSCdAmgqr1crIyEjWWgQF1zsdvDea3cEFuKGwgJMNDer/SVsSU4GBsD+aNTogaATqrqlh5+4d094b7/fhG84ufJV+PYlhSBakaswULhrl2ltaWqipqclbiPh540/aGVDgNFh4YPbaFAHEK0dYsmQJjY2NjIyMUFycyp1WVFTw4IMP0tXVpfae2u12TCbTtJYck8mkhuRMJhNerxeLxcKuXbvUFkLTZO6qp6eH8vJyrDYj9228kud/vW/a+CC1mLz7/lXcentqnN3d3XR2dnLu3DkikQjlA3p89vz509LB6cVFQwUSJ2ZLang8ZQRTP9jYaivJH89m3nthCmssWEqM0/YHcC0uZPCEJ2fhoSyBa1HuVWYsEGfgqIeRUxMkohKmIgNlq50ULy5E0Ag459noPzTlRo8noLsP5lROD78jYyuEsioZabSA3m2LOHmihERUm1LpkwVO75hH5dIBFhUnUhWLgC4pcFWbyP55SWLKnZHFYJp0cXTi5KSlydwuaJFoqwux+IwFWZAZrwoyXh0gbk6mVP/GDMzqtGEZ/2OQEU8OVStx0fPLA40En4G7km48lf+nvp7NKF/K/vleu/gmDJkSnCuMMqFPYpAE5vgNzPYb0ObwAi+1uG+mfdI7DLIZvpnOo6y+FaEkZR/luD6fL68jpaQHFCY/ZVHR2tqaV4YdUJUlAVVzRbkmRcbd6XSq6oRHjx7F6XSi0WjUhZNSdDgT0j+HeDxOIBBQ66+yYaksM6TV0phIqIrnStbvSr2O6oCfC8FMA77igfkceLppWrpA0AgYC/TMualMLbBOh38wd51ZOsrLyvEygs/nUyNUCtNrZ2dnhlz9FwF/dgbSoBBAXHPNNbS1tXHy5MlpbR+zZ8/mkUceobW1lTfeeINIJMKWLVu48cYbcbtTK8yDBw+qIio+nw+NRqMqjn37299Wb7ry8nJ6e3u54oorAHjwL64B4MXfHSCRFiGwO8ysutLG8Yad1M5zUVdXR1lZGW1tbUxMTKDX65kdtjA6HGe0eDLkrNwzk0Z+3nkL5rgWaYrFbi276AhMgyAwXqenIGLCEs09SVWsLWK4cRxJlqd72QIUzDJTMCv7qiM0EqHp110kIkl1X384hL83xOhpLwvvmUVhjQVruYnAQDjz+IOjEItDZQlYU8cXtTJllTJVcyREESZCGo41V6iDkaWL13HhVClJe4KllRfDpPawwC2nRHYvTBLImoaUMWrjuTMUAoy5EoQNScYWThBwRzLeCzmjhIqilJ1yUDjw8cScPgmkpMxEqx73kvyOgBTRcdEj+nSRLayuFPAp6QEl768U8ymvfZRHeodB+rl/1LyV7T1HEQUNSVlCQGDAHKRvjon/vOIvKDbmN4p/TGzbto22tja+//3vZxhGr9fLk08+yZ133jmtsDAd586dY/Pmzdjtdh555BEAjh49yrZt27jvvvvyrr7feecdxsfHcbvdfOc731Ffb2pq4g9/+AOPPvooNpsNWZbZunUrDQ0NTExM8I1vfINDhw6RTCb5xje+8ZGvua+vj2effZY77riDqqqqnNt9D+j0eHj99BnGQiHKCwr4yqJFlBfk/j5P3tPMb/7bFlr2twKg1Ylcf99VPPLjB3BVZP8sYtE4Hz7ZSGAiv1Nwze1X8tYHb6jaGH6/H7PZrNZUfJFSBPBnZyADp0+fpqKigqKiIpYsWcKpU6dYt27dtAlFEAQWLFjA8ePHCQQCDA0N8ctf/pL6+nrWrFlDY2MjkiRRW1ubUfgiSRL9/f2UlJQAUFVVxalTp9TwkSAIPPTItdx1z2qe+tmL9PcNc/c9d3D1dQsRBPj973/PSy+9RGlpqeqxKqHVyspKLu/XcC44QU9pkIgpNdkW+ESqeg0UeVKOgMlkIhKJYDKZKCwpYszWlf9DkWHQLlM7lNsZMDkNLHlwNmde6iEeTKTy+5NuuX2OlQV3V+UMDZ55qSfDEVDOCeA566fv0BiVV7pY9EA1p1/oJjAQyWDN0/h8zF9YiG22HikJeiOkf12dw0o0JHubxcCElrnuGGZ9GvudJFDqFegwTidMEgUpZwND2mEZrA4RdWcp6pxUARxYMo5l1IA2/vmF4WMhidPbg0T9Bq66XovenkDIcnpZhkR7KZ8m98BMUJgx88kPp/+GLjVPrxQUKo+zhRH2FKYKJxUKcnnyB9cTHOOxvc/xz6U3ZjgUU50MpV7hj4GOjg7mzJkz7fwK8VGubgIFs2fPRhRFLly4QDAYxGKxsGLFClUU7a677sq63+DgIMeOHaOwsBCXy5XxXltbG2VlZeoiRxAEvvzlL1NTU8Prr7/Opk2bsFqtzJ8/P9uhZ0RZWRk6nY6enp68zgDAHKeT//vqqy752MtvWMKT+37IaL+H4EQQV4UTS2F++Xe9QceX/s+b2fKvryNnUUAVtRoWXD6Pldct54NjO9XWVr/fT0lJiZoisFg+O5n5j4M/OwOTiEajtLe3s27dOiClZHj06FE6Ozupra3Nuk8gEKCiooJbb72VEydOsHfvXlXiVJE0VoSJRFHEZDLx9ttvU1JSQnl5OVVVVRw4cACv14vdflGqcmxskLjUy7e+eyfLli1meHiYM2fOMDg4SDKZpK+vD51OR319PfPnz1eZwPw+P6U+kZJeG5JOQJBAk0wRE/kNfqLRqFo4FAqF8PQGYQbCOQFIXsK8V1BlZvXfzMfT5iM4EEHQpsL71tKLy+uoL07/4TFGmr1IsSR6m47wWP62oP7Do1SsLUJv0bLs0bl4u4KMnfUhJWQsJUbcy+xojSIyMv12ma5iiYAJdAmoHNYw2iwyk1Eb9mmpcWUaodkjGtpLPj4JUMgVzR1gnxyOtzxE0fnPZxUqyzKtu0JEfKkUQfNPKln+w/MIsoxGq2yTepZGbcTPVuQ+2EeAojao5INnMuC5+AU+bpFeIpFQHeZINMLx0lDOSJiETFt8jN+8+xqF4dy/GUEQ8joLU6MTlxrJmIkBcGJigrGxsawMf4oTNZMzoNVqqa2tpbW1lbNnz7Jy5Uq0Wi1XXXUV27dv59prr1VrERTIssy2bdsoKioiEolkvC9JEh0dHVx++eXTzlVfX09FRQXPPfccgUCAzs5OtWD6o0Cj0VBVVUVPTw9XXXXphv6jwFXuxFV+6cJAG//bPbQebefEjlMIGkF1CgSNQFG5k3984fsALFiwQO2gUMituru7uf322z/9i/iE+LMzMAklRaCEbsrKyiguLqaxsTGnM+D3+7HZbIiiyOrVq1m8eDH//u//rrZFRaNRBgcHWbt2LQsWLOD5559HFEVeeuklvv3tb6tebm9vr+oMJBIJ3nrrLVwuF93d3ezYsUOlcBUEgerqajQaDefPn0er1bJ//341D2cwGIhGowgIiPFUGkKv19PX10c8HlcLkpSiQ2NSwBCHaJ75Qxag8BJbuTWigGthIa6F0+sDAgNhTv22i2T0ImthIpK/CwEg5ksQDybRW1OrMfscK/Y5mUU3EjJH5ybpd6BO9GEdnC6RsczgCAhAMkutgzUqsKxHQ2O1lGqDnDyMJGny0htAagyCKZbfB5EhZv38uggCI0mCoxedm4kWC0e+P5fqr41Scp0X0SATHdEh9JeTaC+7SAv5CSFJUka1uiiKjJfoaS2KM6iPIshQGdYztx9s3tzOguJUKJ0E6SyEyjmU4sOpzH+KIxLWyQT0M3SLyDBik1VnID2yoKQxRFHMKOxToJCAKcRkiUSCWCymUiLPBIVIKddDWWH29fUxPj6e8Z7Hk4p2+Hw+lZFQ+bymRhEWL15Ma2srjY1eqiA+AAAgAElEQVSNrFy5EoDLLrtMjQ7ceeedGds3NzfT09PDfffdx5YtWzKcgd7eXiKRSE7WwaKiIh577DF++tOfMj4+zpNPPskjjzySsfi5FFRVVXH48OGMIrw/JvQGHT96+x/Z/eJ+3nr6Pfo7higosnHzw9dz26PrsDlSc9SKFSs4duyYKminpAgWLlz4xxx+VvzZGZiEkiJQKmQFQWDZsmXs3r2bSCSiUpgqUIg00otuWlpaMoqCFHUwg8FAaWmpykMQCAR4+eWXefjhhykqKqKnpwen00l7ezsNDQ3qTa9McIIgsHTpUm644QYkSeLYsWP09PRw+PDhDLITxRlQtOEHBgaYM2cO1157LTqdjmPHjjE6OorBYOC+++7jgw8+oHa0h5bSRFbDJchgjIG8e4KmxgnioQSmIgOlK504arNXBWeDLKXSAemOwEdBtlB2OtpLZfqVuUVIezbKyAYJIZrbsMkIWAyZ4WJh8iBzRjQUhAXOlSYZnuQFcQYEHH49npIcxl4G97AOTXleIkcANJcScvmU4O1PTCuUCvUaOPNkBWeeLJ+koBZYvbEAMVv3xqeEptIYbWXRiw6WAN2mKF21cIuvmGWkWN7Gx8fR6XS4XC50Oh2BQEDVB8jHy280GtVagUQioaYeLkV1D1J1qGvWrOYm81wikYj6CIfDamRN+V95zsWJoNFoMBqN2Gw2tfYh3alId2rSowKKg6OMPRaL4ff7GR4eRqvV0tzcrDoZUx2fLVu2TBtHtjQHpAz5K6+8gtlsRq/XU1ZWRmNjI06nE7vdrkYr3n33XebMmaPul95F0NbWhsViyUszrGhCKNLCP//5z7n33nvVtIEsy/SdGyASilI+txSzbXqxTnV1NXv27GFkZEStzfpjQ6vTsv6h61j/0HU5tykrKyNh0tJhi+Hxn0bXH2f+nJpL6tz4vPFnZ4DpKQIF9fX17Ny5k+bmZlatWpXxnqK4FhgK8cSjv2Tfa4cJB8LYys2pSvildlwuF9XV1ezbt48jR45wzTXXcP/997N582Z6enr4Xz//DcfOxnhp7xnYdAa7Raa6KMaS2hISiQRjY2MsWLCA6667Do/Hw+uvv8758+dVWVHIpH5VeA9Wr16N0Whk165dzJ8/n5aWFs6fP09VVRU33XQTO3fu5JVXXkmxmAkywzYNI5bJSSWNFEiTlCn4ST8dxy6yZ4XHYnha/RQvKWTeVyoRZkygw3hHQJVC/kgQwFJqRGfK/TOVkWl35xJSgPiCGLomA0LWKnEZnSgjVcXZWyYxZk3t4whA3ZCGinENroCAq107ZS+RsxqJEXdCbS1Ungt8IrXtJkY1MSYqgxe7DaZCA7ahmYlSPi3Icj6OFeGi5/IZtssP2yTayiZ789O5lybrKN4rGEFzahzjZOZIcWgBiouLWbJkCXa7nVgsxujoKGNjY3i9XlW6N13cKBuMcTBHIZRbfRoZWF+7kgWFZZd8XUor5FTnIZcz4ff7M97L5dwoRZTKIxaLUVxcTE1NjfqaYtz7+/s5fPgwX/3qVzEYDKozoTgN6Y94PI7H4yEUCtHf36/KQitCbLt27Zo2ls7OTlWgaNOmTWg0GnU/nU7Hs88+mzM9osxLZWVl2O12Dhw4wJYtW1iyZAk6j4VX/u0tBjpSGgE6o46bH7yOR37yDXV1DamWbSUi+kVxBmaCJEs8efY93loUQQY0ch+SFT7QjFHS18jtFcv+2EPMgCBfQiLuUvWQ/6tCqYb967/+62nc2S+88AKRSEStvFXQ19fH4//w77S+dCHVI5tIM6YyVKwq5uc7/xWbzcbExAR79uyhsbFRvXnbLkRp6TNMbi6k70qNK8bNV5Rz+eWX093drSqOKcimQrh27Vq1avWhhx7iwoULbNq0iUQigdPppL6+nkgkQmdnp9qSZDQasdvt9A8NcN4t0O5KEDSCmIQqj0Dyl/2Ej3tzGgjnfBv22VZslSas5aackYLzHwxxYd9IfunjHFhwT9W0tkRZhkFJZFwSSYgy7YtjCJYcK784GLdbEUczawcUWSLXNQG65yYz88hKB8aAwOK+7GEJGZkJe5LBkhiRSdKhkiE9RWNaBARi5gRdVw4ja7JQHEtg8uqZdcSlRiE+a0z0xTn7fh5mScBUqGHZVz67GoaDcxMM2fNwOMiweFDL4mGdmuu/VCjhfLi4EhVFUV3h+v3+VN66WKKxOvsPUZChKCiwobcAq9VKYWGhKlnscDgoKCigoKDgU6UelmU5pQmS5jxkcyQ8Hg8dHR243W5VBfJSohLpD0XwyGQyMTo6SmtrK0VFRdx6663qNk1NTezdu5fHHnuMcDjMr3/9ay677DLq6+s5efIkp06d4vbbbycej+P1etm/fz91dXXYbLYMZyPd+QiFQlnTJH2HRunaPjj9e9CAxW3mxr9bjaXQrDoV3d3dmEwmFixY8JHqNNKloT9P/Pzs+zzXsTfrewLw89UPcrV73mc+jku13392BkiF1gKBAN/61remvdfS0sIrr7zCY489llFF23iiib+/6kdIcTlrRSnA95/+FhUri+no6KCjo0Ml3ghFZfa1mtWgdDZcv1SLXp6Y9rrZbMbpdGI2m1VVLK1Wq/La63QffSLNhuBwhIZfts+84aQHYykzsvCeWRgd07kMevcOc/6D4ZlXnYo3NPlcc1MJlVcVM2GS6XFJRHSAT2TogoWwJCKkB/YdMcSFQYRsOgRxqDpgJNCrJ5ZILUPdBQmKq6McWZk/b7+kR4NWSq0q3T4BMR8b0RSE7FH6lntIGqSLK28NmEcNlB6zM3xgnIFjHqLeOFqjiHuZnYq1LgwF+YvAPg5kWabxDwEi/typmjlXmnDPm/79xXQSo644Ca2MMaLBNapD8xE+BwXb6hNE8umDyVA2IXBFx8fvsDAajRQVFVFVVUX1/8/em0fHUZ/53p+q3tXaWvu+W5Ity7K8YRtjYxtssxhIQgiBTDIBwgyZJDOTmZCZzPveM/fm5p7k5uZmQlaSQIBAEmAAm93GxhgbbNlYtmTJkmxJ1i61lt7Urd6r3j9aVe6WWi1BGJL3kO85Opju6qrq6qrf7/t7nu/zfUpLGR4e5vTp00iSxFVXXcWmzZv5waUDPDd4Bg0CYa6Uw6aHtVzXZ0Zw+xNGGJRuiCkpKVgsFrKyssjMzFSd91JSUhYVA75fvPXWWzQ1NfGNb3wjZt9KVOL06dMcO3aMu+66K2FUYi7hWAhK6kKSJAoLC1UC4fP51MjjyMgIbW1tfPaznyU1NVUlHHN1Cm+++SYtLS187WtfU8mCdXCCv1v9r8jhBWJVosDGz65m7e11KqmwWq14PB41OqT8LQYlirEUUedSBZ/xylaj4Qp62XnoewSlBUzkEFiRVsBTW/520fP/Y7HU+ftjnyZYKEWgoKamBqPRSEtLS8w27z5/OpIDXwgCPPrvT7L6/iqys7NZtmwZmZmZGI1Gnj/UCSzsliUg097no7E08v9BrYw1N4DdEkIW3KS77OT169EHI65i0QKthYRKitgqHklISkqiuLgYp9OpRhdc/Usz1lAGUo/VR+tvemn82yp0SbG3laU6hf4j4wvvQ4jYHCcXmgjPmg7lrbFgsOhoLg3Tny0jyCD5RUIdyTDrFRDdMVC26wi3JaNpmJ7vAaCDmowgyUkhwlKk9FAU4FxxOEYcGO+7tZVc+Y11IagfFCmdWtpAn+QwUHU0j+kcH/7UAIIkkDxuRDup4fxjl/FYfVfElN4wI01TjLc4WHVPBUlZf5wpkSTJOAZDuCfDCCKkF2mp3m7iwoEZQr5oh5XI98yp1pG9LJaEyMj0lfkZKvKrHkWyCJqQl+qLSWRPvj/SIi6Bny5lm0RQjHFGRkY4efIkEIka5OXl4ff7udDezuezG9mRvZyXxlo4O9SNPiRz77o97ClYhXHW7zsYDOJyuXA6nUxNTTExMYHNZsPpdOJ2u5mensblcjE8PBz3PAwGA2azWY0uZGVlkZ6eTmpqKmlpaSQlJb2v1Wpvby/l5eXzJiCtVktycrLaYGkhsXM8KK2It2/fTnV1tUoUWlpa6OrqIhQKUVVVRVJSEj6fTxUyNzc3x0Ql5nZjnRuVUEx3Xn31VbUvxOnnWhMuDmRJ5uKRPv7Hb7+lvtbZ2cnTTz/NX/3VX6kCRCU9FC8dslCKZG7UwuFwzHtvKb0x5patxpSwGqcJahfWqcjItDuHGfM6yTP9aXqAzMXHngzMrSKYC61WS11dHa2trWzfvl19GC+fH4wpKZkHOTJBQqxfuFarpaffkDAqICPg8kaO40oJcb7eQ1hZLAmRlsT9xT7W9mdRLefidrvVRiEKFMtU5aZWNAaCIFBZWUlpaSnvvPMOoVCI9PR0GhoaeOaZZ2I+/74gQcAdYuyMneJrYjveJeeZSCs34+zzxB8AZNDuKKKwOglz1GxwoSBMf9aVHLM0Ypitc4zvGSC7dMhOLUL6lQdZkCHXCSl+AYTZ/kazcCTN9xGYs8sYBDXQXB6pLiixLUwITKYZSssuo9f7cbnSGOgvQ4rSB/S8ORJDBKKvQ8gXpuu5QRr/ZumD+ly4J0J0vTlD0CtHeg0Awy1+UnI0rNiThH0wzFRvgHBQJsmiIbdWT1rB/Nr5/lI/g8V+9Too1yqsgY7lM2jPJ2FxLJ0QFNgFenITXHMhEhlYDEpVzFxRoNlsVlX30aRXq9XidDqx2Wy899576nu5qancICQRCAQor9Bi106SnZ2tCvwyMzPJzMykoqJi3jnIsqxa7yolf4rwUSkhs9ls2Gw2Ll+e7+UhCIIaXUhPTyczMxOLxaJGF9LS0lTRss/nY2hoKGE5WjAYXLSscC5WrlyJ1Wqlt7eXrVu3qq8XFxfT1dVFamoqd911l3pf/PCHP2TVqlXs3LmTQCDA9773PbZu3UpdXV3CFIfD4UAURUZHR9XX20/0sliocGrEroqwIdLOGGBgYEAlA0rraJ1O96HW7UuStCiRSEQ2HF4PzGqQEsETWryi6qPCx54MXLhwgaKiooR9tlevXs2ZM2fo6+tTBwaZxdXJgiZSepScnExOTg7FxcXYbDaaL19kMZtXUYSQRqZt5SwRiL6pZgf4M6WTcMZHknf+vhbq/KZ4m3d3R1IAGo2GkZGRGCIAkFr2AR4sGcZb55MBiOT+25/qxz3sVY13lKHAtaOckZIcOn1QoQmyRu9D0sh058bm26VxAwmfLkFGHtdDeigm3SADEykS2dNzVlVhYrUCAQkhJCObROaHF67sr61IosgmIM45F0GQWLf+JHUrzyMIMrIsIIoyfp+Bt9/ezuBAGeGAhPWsfeFxUAbPmI/pES8pBe9fYOh3S1w46EGa/emjA0HTE2F6jvlYebOZolXGhKmkkEaOIQKxXzRynn1lfiznlj4BVYyLXM4OExaZt19BBlMgQhgWg+Jjr/jtK+TA4/Goq9eUlBTKysowmUyEQiG1Fa7ynQ0GA6IoquHzffv2Rc5DEFSdQPSfYqurnq8gkJKSQkpKCkVFRXHP0+/343Q6VcIQLXpUqiNmZmawWq1xP6/RaDCbzWi1WmRZZnJyknPnzqlkITU1VSUAgUBA1UwsFbW1tRw6dIiBgQHcbrfqk680QPJ4PKrNsBIpUcoKL1++jCRJrFy5MqFrIcCPfvQj6urq1I6tAE94n+GpM88hJ6i50Ro1HD16lJqaGvLz80lKSiI7O5v+/n5WrVr1vr7r+0V0dOODYNnUZY6cfDThNnpR+2cTFYCPORlYLEWgQHElPHfunEoGcusykV9aeDAVNSIVG4qwWCw4HA5VNwCQlaJlzLnwpRdFgWuvWoaxwUko3LLggCzLMFIQoKrng6vS55YmKUjKMpBelYyjx/2+FOYhX/z96UxaGu6twNHrZqhtmjGfQDDDxMyqXKSUKyHx3rAOIQDF2TNXoiEKFivFk8HgEwhFna8swngqWNMlVgxBzdiVAb3QLjKRKqFrdpP07BT6toihQihfh/fWDHx70kEzd9aKtDGeSpHJno59b+36JlbWt6o8Qpj1/tcb/Oy87gCvvbqX3tYMpODiF9Qz9sHIwFiHP0IEFojAeKbCOIZDZJYk7pI5lRmMqPwXggDTqWH8eglDYGlpE3NAYPMlDSerwgQ1qK0RZDGi8r/6okbVZGg0GgwGAzMzM+q/fT5fzP0a3TVwbpRgenpaNQADSE9PV1N1er0er9fLQO8g7x1uxTXqQWMQyVuVQeHyPHQ6HRMTE1y+fFnNq2u1WrKysuaRhNTU1AWjaAaDQd0uHiRJYnp6WiULdrudqakpbDYbLpcLj8ejaoEANe0RDb1eT3JyMsFgkFAoxPHjx2OiC4oPSjwokY+pqSk6OjpYv349TqeTY8eOsW7dOlpbW3n33XfZvXu32oJXIQMXL14kIyNjUSIgSZKas47Gjruu4bf//dkFPyeIUL21jFOnTvH222+TkpKiNkdaan+DPyXWZZRRlJTByIwdKc7DqBFEbi5swKz90/UomYuPNRlYLEWgQBAEVq9ezdGjR/H7/ZF8YLGB7AoLk332eSp5QYiEpL/2g7/BJds5duwYXq+XsrIytFotKWNWeqxBfEEhJu+tQCPCVSuzed00BIlS9yLYMkLQE/uyYoyitBrVarUEg0GqqqrIzc2lpaWFUCjEsmXLGB0dZXJyMu7uaz5RRNsTfZGQ9sJ1aVFfHEwZC69OBEHAUplCa2EuDkkT97uDQE9YR1a8WLIpDO7EjoKB1DAicszKXpnULhRJZLoFdG4NQ2gJ2sDcOkzSr6wxE59mLEjyL6zo2meY/ueCuA5Dc237jUYvK1e2xg8ozBK3xjXv0Xdhaf3L53aGXCome4MJfydBAFt/EEtR4hV9WCMv6NQ3b7s4iC5/jUaWW2BPq4ahDBmbOaIFyXUJ5DliIy3hcFitClCg7C8jIwOPxxO39a4CjUYT02Z4enqa7u5u2tvbI7qC9mm69g8ihSQEAQRBZPjdSawNTuo/W8G0d1rdj9KQTBAERkdH6ejoULU50RN+9N9S6shFUSQtLY20tDQ1BB4NWZbxer38/Oc/Jz8/n8rKSpUwOBwOpqcjrqKK4RDA4cOH5+0nOh2RkZERQxaqqqqw2Wy0t7ezfv16Dh48iNFoZOfOnZhMJt599122bNmiHiMjIwNZlrl06RJ1dXWLfke3240kSfPIQNGyfG780k5e+/Vh5nJSUSOiMYik1Ru58cYbSU5Opquri66uLjUd+vvf/566ujqWLVuGyfTRleguFYIg8L9W386XTv6GoBSKIQQiAvmmdL5Sc32CPXz0+FiTgaWkCBQongPt7e2sWbMGj8fD1q+t48D3juMe9aLRapBlCSksozNo+ex3buXAu6/icrloaGhg27ZtMa5bnx6Z4h++/Z+MTbrVMjcZAa1GprHEy7vHDjFQ54EMEg7IcpyRP9rjXfF8FwSBjvOdvPvcewTcQYwWPTPumYSTji5JS8OXKpjqcDHe6sTvCjBjTZDjkiFvXWJLz6AMVmnx284zrQM5tiWzpsBH+GKClp8yCLn++CF+IivRphwBpycZQZbROPzk/zoSohWk2O0AjMemCWycxr91vgI3aU7jppLSPjUSEA+iKFNQMEJaXhhTpj6hDbMggqXqg7U2lRZQZyuQAZ0m/mpE6aTpdrsxeTWLEgFBAv0CUYGFIk4Q6f1QNilQNolaPz+3gZZSvhcKheYRg+jJT1F/K85/CuZGCqLb4zr63HQ816+Spkh/rcjxh8+Pk5KWyjd++wDBYJDx8XHGxsYYHR1lYmJCJReZmZmkpKSo1TsDAwOcPXtW/d5KajD6Lzs7+32F8gVBwOv14na7WbduHdXV88vQQqEQLpeL/fv34/V6WbFiBTabDbvdjsPhUBukeb1etaQ4Hvr7+/nxj3+MzWZj2bJltLa2qtVTR48eJS0tDZ1OR3JyMmNjY0xPTy/oOhgNxUAt3hj7tZ9+iaQUE/t+8jqhwJWUZnl9Cf/8mwdo6T7L888/z6ZNm9i1axe7d++mp6eHp556isnJSV544QXVlbWmpoaamhosFsui5/RRYZWlmKe2/A3fPfk8Z/wjyAKYtQY+UbyW+6q2ka7/8zIe+tiSgaWmCBSkpqaSUlrK9989gba7h6FQmIqQjXsevpN8fSHv7j+N2+mm39ZLxeYielydLF++nLvvvlttgxyN4oJM/vDje3nw//2/CMY88vLyWVaaQVWRiXHrKENDQwy7L0VW/gtAkCB9Nt2gDIrhcHheyZAsywwcHWfw2ESklGd2la81aajaWxDXPliBqBHJXplO9soIkel/08rgsYk4JxOZwLLrYvclCTLTeV48mT4QQWM3IPaYkUILayYEQAiKFNgFRi1XBGdCbgBhMoBs00VtCYo/sF5rQzZGvT4HsgD+5PDsvwWSzsb5HtHbi2B6xR5LBmRI9UL6nJJ9nS6ALAsJCQGAXh+ieGsOF18YWnCbvLUZ8yoylgpTugb3RDhhdCCnOA240s5Vo9EQDocJBoNq74p0hwaDT8BviOOTACBBjlWHNkHqRsnpp6SkqMYz0a9DRByXnZ1NUlISVqtVvXeXouZWtluK1W804t6/s5AlmY63L/GT7/2M9MJUioqKKCoqYuXKleTm5uJyuVRyMDY2xtDQkHquihBQyTP7/X66urpiwvsWi2UeScjMzFwwlN/T04MoipSVlcV9X6vVkpGRgV6vJykpiWuvvTb2+8gyHo9H1S4oKQmbzYbD4cDlcqnleQrJ6u7u5tKlS+o+Tp8+rVovP/HEE2qJtM1mQ5ZlNcoQj+gkIgMarYa/+T9f4LPf+iTvHWgh4A1QXl9C9brKiNB5VTmFhYUcPHiQ0dFRbr/9dqqqqkhNTaW6uprNmzfT1dXFxYsXOXToEAcOHCAnJ4fq6mpqa2spKCj4k1sXV6XkssueyQa3nk9/7k5StEa04kfXnOz94GNLBpaaIlDw86ZT/HTShiDLyAODoNEyIAj0j43yuzu3krkslcOHDxMczkRjFLnvs/dRWJi42cvY6CjpRi/33LOd4uJileWnJEeEMjmOQn4Yej3SXS3OPS0LUDASWeUl6vg2dHyCgbeiVgVR5WydzwxS9zkNlsqlrURLtudgzNAzdHxCXd3qzBryN2RSdHV2jCOh3xxkcO0kIdNsnb0A5HlZUe2k72Qx7on4IkUZgVRBomJAxGUK457V8AgCaFa4kYaNSMMGCEQeKt3oNCknh/F/2kRATkkcSYlKP+gmEpvwCBJoBqIiIXKk9G11v2aeWZDLmY64SF1cMKjF600iZ5WWgDtE36Ex9XvJABJkr0qjfHdewv0kQl6tnu7xxM0kRIuLaGtEZcUcPQELCNR2JtG6yhMJ40YHACQwBATK+xYWV6Wmpqrtu91uN+np6Xg8HoLBILIsk5aWht/vx+fzMTExgSAIqjK9qakpZpUdjaysrJgJTCEVishuMdvhcFDC2btI2awArl4fZXUluN1umpqaePvtiHlMdnY2RUVFFBcXs3HjRiwWC1NTUyo5GBsbo7u7W01hJCcnU1lZGRNFcDqdnD17VnUxFUUxrh4hPT2dnp4eSkpKFo0oBAKBuKkJRcCcnJy84HiktBuWZZlrrom0UY8mDIoFtCzL9PX1qZ975ZVXYvaj1+tJTU1VDZrS0tKwWq3odDq8Xi9arTauYVNqRgo7Prsl7rlv3LiRvLw8/vM//5OHH36YO+64g+KSEg5d7OXpCTd9NgcWk4mbd+yhIdnAQG8PZ86c4fjx4yQnJ6vEoLy8/EM1i1oqlGu2bt06LPo/ry6Fc/GxJQPvJ0Vw4OIl/s+x40BkRQmooegBp4vbH3mUHQ47hQUFrFq1iq6uLvLyYgd0xV9cqV12uVx0dHQgiiLPP/88MzMz8ww0BEFgucVE+wpPZLJQDh1pPMeySyZS3IlZZsgfZvDtBCtgAfqPWFUy4E2L2OgGkkJoAiJpo0kkTxhVO19BEMhdbSGnIZ2AK4goajCmGUi3pKklXeFwGEmUGFw3SUhpDBM1mQgambJNg1w8XEHAM3eQkzEgk68JIYYEru3Q0Jct01EgERYjIXRNsQ+xyAdeyLynG40nMonJZyQCVy/soCfLIEWVwsl6zZWE/kKfMV458WwX1A1rsMzMZxtDQ8XMeJIwmmaI50UiSQKXLtYQDkceuaLNWeTUp2FtceC3B9AmaciuT8ec88HUywoyy3XYB0NMXZ5DDGejQTfds4apcE/czypQ8v1pLi2NZ5PpL/UxlRnpbSCGIW9MT8mAAX0wfopAMcFSxLOKF0YwGCQpKQmv16uuGMvLyxkaGiIYDHL06FGOHz/Orl27+MpXvsLLL7+sWuAqmJycJCsri7Vr1zI8PExnZ2eMDbEoimoNv8fjmUcoFjK5iblUooDZaEaj0WC1WpEkCaPRiMViQaPRqK6gEEmtKNGD6upqtm/fjk6nw+FwqARhdHSU7u5udfI3Go3k5eVRU1OjTuAzMzOMj49z6dIllUjo9XqCwSD5+fmcPHlSJQmK6j8aH6S0UEFVVRXNzc0AbNiwYd7+Dx48yIkTJ1ixYgXl5eW88sorqv7JbrfjdDrVWv/JyUkmJyfRaDRqjwWAhx56SL1e6enpqudCdGVEWloaycnJ87wUysrKuP/++3n22Wd59DeP0ZycRce0D9ExiCTLjDhctI9aKbak8eRf38Ett9zC4OCgqjNobm5Gp9NRVVVFdXU11dXVH1lvgPHxcbxeL+Xl5R/J8f4YfCzJwPtNEfzi1GlEQUCKM2mEZZnhYIjyjRupz87m8uXL+P1+fvKTnxAOh9VBMJFye65HgAKNRkOh10juxTT6Mt2MJrnRGnSUCllcY1hOwSoLB8cOct1112E2m2lubmZwcFAdzAVBwN3vRwolGABlcA978TkD2Dd6cJbMxPjtu/N8GB06is9koQnFllYZ0mbbrgoRo5fo91x5XkKG+BENQQAEmTSs3dEAACAASURBVKwKGyPnr5AmRTux0eBVNXs6SSDHBW3F8/chBEIqEQAwHnMx87kspHTt/CoAOfIXmrgy2c6syCT5bGIzpMLaNFa3azCEwBhcOOQgyyJHj+5g1+5XkSQ5JkogSQLT0ymcbV4f8xl9io7iLfNTSH8MBEEgPTOI8+I0QdmIoNeBLGMwyVRtS1+UCEBkslJy9MkeDXUXzIRFmZBWJtOUxsy0h8bGRrUEbS5CoRAGgwG73a6WpUW3zi4oKCAcDmO1WlUXzZqaGi5evEg4HOa1117jtddeAyKCNY1Gg91uVyf8yclJDhw4EPfYkiTFrLgzMjIwGAw4HA68Xi+mFCNJFiMz9oXd9+SwjF8/w+joqFrOlpyczPT0NMPDw4TDYfR6PVlZWWrFwzvvvEMgEIiQ5dxcNXrQ2NjI9u3bEQSB6enpmBRDb2+vqtLXarXk5uZSV1eHxWJBq9UyPj7O2bNn8fv9HDp0SI16JCUlzYsiKA3KPgi6urqAyL1z4cIFNmzYEPP+VVddxYkTJ2IIx6c+9akY0uDz+WLSEMq/u7u7Vd0HoOoXrFar6hURPTYqkYz09HSVJChEYffu3Xz3lTfoGLND1HisfHrY6eKfnn+VJ79wB6WlpZSWlnL99der1stdXV3s378fQRAoLi5WdQaLVUQAOCddvPX0u0yN2MjIt7D9zqtJy1rcjffy5ctoNJoFy0//nPCxJAPvJ0UwEwjSOjbfPzsagizz4plm+oJXVvbRE7xiAKTValVvcIPBwMDAABUVFVRVValsWTEbmcuOm5ubefnll/nWt76lhruOHz+OTqdjw4YNdHZ2Mjg4yJYtW7j22msZGxtjeHiYAyNvAbGrq3iwZbhxFc+Gl5VDz/7XlxpkdKWdonOxD010C9loyLKMJ3vhwRYiK/zM/GkmzucQnDUeyBdDrND7yRBj9zeWJsd1CpTNIrJWQJglO4JfJu3/GcT5P4uRMnWg6CMEECQBf08ysv9KJMVXmY6/wIx+1MO8VL8AGr1I8bpMDAl620djdKSIl1+6jcbGMxSX9CMIEAzquNhVy7mza/H7/7hV/1Iw9M4EfYesV6o/ZiMfIQEGwk5W3Fm6aHOpuSp+AI0koA2K+KTIPTI8PExhYWGMA190BYHf71d7Aij5ZsUTQKn3V14LBoPqhDQXdrudvLw86urqIja2VmsM8VRQVlbGrl27GBsb49SpU4yNjSFJkpoHt1gsNDY2Iooi41udtL/YG19XIUSEsxnVqeq1iC5ls1gs5OXlYTKZcDgcDA4OqpNkYWEhZrMZSZLo7e1V+9ibzWaKi4tVgrBp0yZ1UvX5fDEEYXBwUA3ZQ2TsKCwsZO3atZjNZmRZxm63MzExQU9PD6dPn1a3PXv2LFNTUzEkISsrK2F4fHh4mJaWFgoLCxkfH49LBpT0Y19fH6IoUlBQMC96oNTk5+bmxrz+i1/8guLiYvbs2aNGRaMJg8PhULULCjFQ+kgoTaqU1yXgKMmRwSMOwpLM6f5h2oZGWFlUoF6/7OxssrOz2bJlC263m4sXL9LV1cWRI0d44403yMrKUolBUVFRjM5AlmWe/t/7efy//YFwWEKjEQmHJR7+p8f5/L9/hjv/5baEuoS+vj6Kioo+MFH7KPGxJAPvJ0UQXkJ3HUEQSLNYWFNUSFZWFpcvX2Z0dJSvfOUrGAzxldtKj/Bbb711Sf0ebDYbaWlpMQ92Z2cnVVVVDA4Osm/fPhoaGtixY4c6gBQWFuIfDfP2L08nPn8R3I0JJm8R3Dk+AqYQeu+V4ydSjCesUZ+FTiNxS9I0g6lgT5UQBfBOC0hzyswWdKzTifi3pWA44lKrAbRDATK+1It/SwqBNWbQChjqksnyCXR6NZGUgPLwigITn1tB1jNdGPtcEdIggCxFVu0r7izBkPb+jFymJnM49MYNaHUBdLogfp8RSfpoBEM+eyBCBODKRKesumSwX3Iz0eYkZ9XCveSjo0qRj1+ZMWVZJicnh6mpKcbGxubd23Pvh7l5faXFNkRWtzMzM+Tk5CBJUkx56/LlyzEYDJw7dw5ZlhkdHWV6eppPfepTlJWVMTU1peoKlGhBX18fv/zlL0lNTWXHjh2UlJTQ2trKe++9h9vtxm638+677wJQu6sC30iInvcGYgiBIApodRr+8dH7CSX7uHDhghplUGC329XVvCiK5OTkUFRUhF6vZ2Jigv7+fvx+v7oaTEtLi0TKXC6OHj1KMBhEFEXy8/NVclBUVBQjEFSqGJ555hm0Wi2Tk5Mx7dEtFgv5+fk0NDSQk5ODVqvl6aefJi8vD1mWOX/+vOpPIAgCmZmZ8yIJFosFQRB49dVXycvLY/PmzTz77LP09/czPT0d05pdIVThcJju7m5VV7AUOJ1OVq5ciUajwWKxLKj2l2WZmZmZeUJHl8ulEgar109gASIQtSO+98hj1BnEeSkI5b+lpaXU19cjyzK9vb10dXVx9uxZ3nnnHcxmM9XV1dTU1FBRUcHrjxzhkX99St19aLbXQEgK8+i//Q5zWhK3fDl+ubAkSfT19bFp06YlX68/JT52ZOD9pgiS9XoqMzLotdkWFGhLwG0bN7K3cTUAOTk5PPnkkzgcjnlMWUFPTw/Z2dlLbvxks9lUww9ADVlWV1fz9NNPU1FRwd69e+ex2oHpXkwZBnyOQHzrZBEyG9OQMhfJpQowk+FHP7y0W8bo1OFOFB2QQOvSc3BVGJ/+Smlfb66MyQ9XX9KQ4ot8F4tnYULguTML/Uk3eCV1H0JQxnjEhfGIC89fZ+O6WsQF6POcBPqTkCYNqvZDMmkZ/0IdeSMuKi5NIIRlkgtNZCxLmbeCDsnQH9LRG9bhlUWSBIkKbZBSTXBeViIU1BMKvj8i8cdirNme2A9CgNHTUwnJgDKhL5TWGh0dJT8/n8nJSXXSmyva02q1BKUQflHGIGjQySKhUAi/38+aNWtob29nZmaG5ORktVwvPT2dUCiE2+2mo6MDvV7P3r171VWc2+3m8ccfx2KxcPvtt3PjjTeyfft2mpubOXnyJG63W5109+3bhyiKrFq1igceeACbzca5c+dobW2NRBfGx8jdnYKQXcD4WRfTVg86o46SdbmkrTLx7oW3KSkpYfPmzVRWVjIxMUFTUxMjIyMx31WSJFU0CJEcvzLBi6LI2NgYly9fZmZmBkEQyM/PJysrSxXUXbx4kaamJiAiuIwmB4oA89Zbb2X16tWEw2EmJydjogjvvPNOjNfCzMwMtbW1rFmzhoyMDFWcOT4+zvj4OE1NTWq6RqvVYjabcTqdrFu3LqYxUUdHR0x0wGazodVqqayspKura8HKhrlQBKJLWXQJgoDZbMZsNlNQUBB3m27rBC8//ORiO2JN4xo2ZKSo2qyRkRE6OzvnRbySkpJUklBXV4csyzidTnp6ejh79iwCIqd/GD9ipeC3/+NZbvzSTrS6+ePi2NgYfr9/ydfrT42PHRl4v1UEgiBw77q1fOvgG3HfFwWBVFmm+cX9hPsus337dkpLS9Hr9XR1dcUlA7Is09PTw8qVK5d83na7PUYN3NXVhSAINDU1kZWVxac//el55UmdnZ1093Rz/3/czY/veSwywEeP8SLozVru+PatPMNLiU8gHo8QRTIzM9Va6GikD5mZrJwtJ4s3kYvQozHhnyX60ZEEnx6OVYe5vk0zqxkQSPKB1zCfFEh5ehzfLyX3B1aCPVcedilNg+euLHw3xq5E9GUzmP0yk9NGEARMyNQQoKZAQFOwcJ/0gAxHfGac6okK+GQBW0BDj6DjWuMMuj9hFVNYlLEtl5F2ZYEO6AogvOJBmIiaqGUS+htARKei0+kW7GgnyzJbtmwhLy+Pn/70p5jN5hiXPL9W5nxBgL5MiZAGkMPkO2C13UySI0hzczPl5eUMDw+rE3hWVhaTk5M0NDRgsVh4++23CQQCvPTSS+Tn5/P5z3+eI0eOMDg4iN1u51e/+hU5OTncfvvtXH311WzcuJELFy5w4sQJRkdH1Unt3LlznDt3jtzcXG644Qb27NnDpUuXOHv2LN3d3eStzyBvfYRg63Q6qqurueqqq5icnKSzs5PDhw9z8OBB8vPzqa2t5eabb450f2xpoa2tLaZcEiKRkN7eXlX0mJycTEVFBcXFxUiSxMjICJcvX1Y/l5ubS2NjIyaTiUAgwPj4uKoNUNKEw8PDGAwGiouLyc3NJTc3l4aGBvW3sNvtjIyM8NxzzyEIAs3NzaolsyJUzMvLY82aNeTl5WE0GpmYmGBkZISjR49iMploaWlRUxoQ6TI4MTGhRhHGx8exWCxqaqC/v5/S0tKE9xEkLiv8ICjPziQvNZkxl3vhjWQZ3dQ4ObWVbN68OWZxpFgqR6crlP/v6+vD6XTGiLgdA9P4XIl7BzjGnVw4cZFVW+fPJ319fWi12kWryv5c8LEjA+8nRaDgjvqVtIyN8XTreTSCQHh21SQKAhaTiSc//Slc/f0cPXqUtrY21q1bR1lZGV1dXTENQBSMj48zPT1NZWXlko4vyzI2m436+nr1tfb2djQaDUajkbvuumte6ZHf7+f111+nurqalIIkVn2xnP6jVuyXIvbCglYgb3UGxVuzEIMSmoBIWJ8gJSKAyRF7DEmWEERBHXz8Wpn+LJnRNAlZgOSBLHRFdgxi+IoOYVacKIwm49LpFyyZ9OtgIFOmckJAINLW9lhNmJAmihDMOuTlmo1s+Fw53skAVo+P9moILk8C7fydCzKY87zsnA4SliPz5lLm8OaAEZc811Q/8m+HrOFcwMh6Q2KdxH8VPElhWus9BK82Rq6JKMBaI/JnU+G7NoQjV0iSxpA4zBoOhxOmfwD27dvHDTfcwPr16zl16hQbN27k5MmT+LUyb9WGY0mbAGPpcCDNw3WDyaRMBVRRVVVVFd3d3UxOTlJVVcWFCxcwm8186lOf4vTp0/T19TE6OsoTTzzB+vXr2bVrF/v372dycpLx8XF+9rOfUVRUxCc/+Unq6+tZuXIlg4ODnDhxgs7OTpUUWK1WHnvsMQwGA5s3b+Yzn/kMfr+ftrY2mpubsVqtBINB2tvbaW9vJykpibq6Or785S+rjoPvvPMOR44cITMzk9raWj7zmc+QmZlJT08P7733HoODg/MiJG63m7a2Ntra2oCIGLKuro6ioiL8fj+Dg4P09fWpaYesrCwaGhpITU2lo6MDh8PBxYsX1Yk6PT09RnuQm5tLRkaG2qDnmmuuYeXKlfOEip2dnTEdHHNzc1UdwCc+8QnKyspwu92cPHmSU6dO4ff7uXz5Ms3Nzeq9oNVqcTgcmEwmjh8/TmlpKQUFBQlz4R82GdCIIl/avJ5vv34k7vuCLFOmE9AHfPzud78jIyODDRs2sHr1agwGQ0zzqYXg8/lUsnD69XOcZ36TqbnwuuM/9319fZSUlPxJSho/CP7/cZYfEt5vikCBIAh85/rr2L2siqfOtXCqu4e0pCQ+u24td9TXk5FkguxsVq1aRVNTk9oNUAntKU5eCrq7u9FqtUti1xBpGBIIBNQ0gcJk9Xo9n/vc5+J263rrrbeYmZmhsrKS1157jeQCE41fqKakoIS2cxeoa1xBz+VIs6JzzefIqEphosK5oMFMkl2PwRN58EfSJbpzJWzJgDxCdirkOQQuFMqEorsryhpkRyYVQT9JGdPIgkySw4Cl38zpHG1kJk6AEYtE5URk8krzCuxs19CbIzGYETlOihcqJkSKbBHCkJRlwLtKSyh/AaMcIpPUeCqIyGiWRAPAKwsMhnUL2CdHfBH6wzpWyT4MH3F0QBJkztd7COpmtRDK8TUCSDLytzJgKIhwKQgCCVMEChJVvkBkBbx//34g8my0trayfv16fmk9GTd6I8/6KBzLc7NnUqtqByYmJrjlllt47bXX6O7uJjc3F61Wy7PPPsvmzZtZt24dL7/8Mj6fj9OnT9PS0sJNN91EWloazz33HNPT0wwNDfHQQw9RUVHBbbfdRklJCSUlJdhsthhdgdKU6MiRI7z11ltUVFRwww03sGHDBiYnJ2lpaeHcuXNqA6HTp09z+vRp0tPTaWxs5KabbmJwcJCOjg6am5t55513SE1Npba2lm3btlFcXMzU1BTnz5+ntbU1JlqiwGazqZOyohtYu3YtBQUFuN1u+vv76e/vV/UTBoOBiooKsrOz0Wg02Gw2hoeHaW9vR5IkVbSo9D5QfjelgVK0Q6DX61VTGn19fVy8eBGItB8WRZHs7OyYcaqxsZGNGzcyOTnJb3/7W5KTk1XPgGAwyGOPPQYQt6lTZmYmoijidDrVhk4fFu5e38DlKTtPnj6nFDypC7RCo461PhszMwJ33303586d48CBA7z55pusXr2aDRs2LFo5oAghc3JySNGl8Zu/fybh9gAltfNX/uFwmP7+frZsme+f8OcKQV7syQe10YTT6VxyjvvPEa2trbzwwgv8wz/8wwdmq6FQiO985ztqLi8eZmZmOHLkCO+99x46nY6dO3eybt06NYz/xBNPoNFouPvuu5d0zIGBAX7zm9/wwAMPkJmZya9+9SusVit33XVXXEtQq9XKww8/zNq1azlz5gyyLGMwGNi1axcvv/wysiyrAi6AdevWUVpeyo8u/RJ3ru9KaeHsnZFrzObf6x5kvM/Kfzv2OzrzwrG+9VEdAuPOlzJc2xFbn394RQjXIqW+Fjdc2/n++GpbYZjuXHlRAeOtZzSICfsXX8FIWMtx/+J1ydsMHnI1i3ez/DBhzQnQVZvAZCgkw5szaL5vQ2PUsOaBKpIzzPM8LRRs27aNS5cuMTIy8r7OIyTKvLI6jLTIdd/Rn0TBjI6kpCQmJibQ6/XcdtttvPnmm0xOTqLX66mrq6OlpYXs7Gxuvvlmzp07F1PGmJ+fz6233orNZmP//v0xefPly5ezd+9e1a/e5/OpuoLp6Wn0en3Md09NTWXnzp1q1K2vr4/W1lba2trmuSDm5OSwYcMGGhoaGBoaoqOjg87OTlwuF0lJSVRXV7N8+XIqKioIh8P09EQMcAYGBhZ1VNTr9ZSUlFBXV4der+fZZ5+lpqYGp9OpahJSUlIoLS2lqKgIk8mEy+VieHiYgYEB9VnOzMyMiR5kZ2fP0xE98cQTTE9Pc999983TIUT/7hkZGeTm5tLR0UFJSQlDQ0M8+OCDvP7663R0dLBz506mpqZUTYISIdRoNGRlZalNij75yU+Sk5Ojiik/DJwfGeNHLx+k2zrB6uW17K2v5dpl5bz26qucOXMGo9HI/fffj0aj4b333uPMmTPMzMywbNkyNmzYQGVl5ZLO5V92f5uzb7YhhedHy0SNyOrtdXzv4H+b997Q0BCPPPII995775+8rHCp8/fHigz84Q9/wOPxcO+9937gfTgcDn70ox/xuc99btEw/yOPPILL5WJ6epq0tDS2b99OTU0N3//+97n++uu56qqrlnTMc+fOsX//fv71X/+VV199lZaWFjIyMvjqV786b1tZlnn00UeZmZnB5XKpNd8333wz+/bti1sKaDabIy5jyJGqgRpwyE40QZHtuVuo1y3HOjTGKWs3z2fFb7eaCIIMhTaB9ZevaBrOlIUZzFy4t70gQ9mEwOqB+Ep8e5LMUEYkL53sEyiZEjCEBIbTJU5VJQhzz9oJ77ywdJIxGtZwzL+4e9i1Bg85fwQZmLVCYAmFGCo6a2YYzw4m/pAjjPlvplh+RzFJ2f815Y3TBplD9Yt8dxlWDYqs9qYRDAbJzc2lv78fQRC45ZZbVH9/iKxMh4aGsNlsbN++nbKyMl544YWYssL169ezY8cOWltbeeONN2Im3NWrV7Nnzx614kGSJC5cuMDJkyfVPHwgEFBX0xqNhoaGBq677jo1h9/Z2UlLS8s84yNBECgqKmLLli1UVVWpqYTOzk6mpqbQ6/UsW7aM5cuXU1VVpVYatLe309LSoobPF0N9fT11dXXk5eVhtVrVyMHIyIhK6EtLS7FYLLz77rts27YNj8fD0NAQVqtVXQQopkjFxcVMT0+zf/9+7r77bqqqquYd88SJExw8eFD9DaxWawxBSElJUSumGhoauPbaa9VJ3uPxqMRgfHyczs5OvF6veo31en3cpk7xIptLQU9PD08++SRf/vKXYyzfjx07xptvvolGo+ELX/iC6u7a1tZGU1MTY2NjZGVlqcQukbvj6GUrX17/Tdx2T6xuSoCkNBM/P/2/Kaic7xh67Ngxjh8/zoMPPrig1fRHhb+QgTnw+/18//vfZ+fOnX9Uqcfg4CCPPvooDzzwwIKtSRWcOHGCw4cPc8899/D222/T1dVFeno6Dodj3g2cCEeOHOHs2bM0NDRw/PhxtFot11xzjapHGJl00jM0hVGvRXJbef21V9VQ7NyIAEQGM51OF7NCUsKWSoXCxYsXY5Ti6enpnCwN0ql1LlzqlwCGINzYcmUCtifJvLUi8eSxo11D2pwa/5Aoc7oizFj6lQoEWYiQh9UDIsWTcLAySEAPkjn+Q9h4WaRsaulTblCG/d4UpARpBS0yt5im48kUFsUUIhcwMIQWWRBIkcNUE2DZrAPDQhAEgb7VEv3JroTCB5OsZ8PxJPX3n9tRUAn9wpXyv7S0NMxmMyMjI/NW09HHV3sM6GRea1icCG0aMZE3ElTtiaurq2lvbwciOe+cnBxeeOEFJEmisLCQvLw8zpw5Q0lJCbfeeitdXV0cPnxYvS8NBgM33ngjy5cv5/jx4xw7dizmPr/qqqvYsWNHTG57cHCQkydPcuHCBXQ6HYIgxHy/vLw8du/erarAXS4X58+fp6WlRbVOjiYRlZWVbNu2Ta2y6OjooKOjg7GxMfX92tpa1XHQ7/fT29tLc3MzfX19S+rDkJWVpZa8ZWdnMzIyQn9/PwMDAwwNDalGSIrZTkFBAZIkMTw8zNDQEENDQ2olgV6vZ+XKlRQXF1NcXExGRoa6SlYWO4IgsHv3bjIzM3nqqafU6gylUVH0eRuNRvLz88nLy1P/m5mZyeOPP05qairXXXcdVquV8fFxJiYmsFqtTE5Oqr+h2WyO29RpobJsBYFAgO9+97vcdNNNrF27NuY9ZQElCAK33367KhiXZZmBgQFOnTqlVq00Njayfv36mGotBV6vlx985/8yccbNpaN9BH0hDCY9ddctQ7sszN8/+NW488Bvf/tbRFFccvT3vxJ/IQNz8GGkCCAiQHz22Wd58MEHF22dabPZ+PGPf8wdd9zB8uXLGRwc5JlnnsHtdlNSUsL111+/pBDSc889x/DwMHa7ncbGRs6ePcsDDzyApDHyvx47xIm2PnVbnShTkxGm1OzFYNCTn5+vmqYo9qbKT56UlER+fj49PRFXuuhBDlB7v3s8HtxuN6+vCOD5gAvLaDKg1WoJhoIcrw4zmcqclEMk990wIlExMp+xn6oIM2yJowmY3Uf2D0bhrcjKK1hpwPupTPzXpKqmRSUTAmv6xXm9BRbDuYCBiyE9C+VBanV+VukSK/XjYRgtbxO5j1Sr69nfoIAQW/EuSAhEUWQo10t3lW9BMqARRBrM5SS/GslDa7VadRBX7gelxTXAHXfcQTAY5Ny5c/T19S2qHygrK2NkZIRgMMhbNUHsyQtXNooS3NCiIVkTWZWnp6fjdrtpbGzk9OmIF8aKFSvYunUrf/jDH3A4HBgMBq699lpOnjyJ1+tlz549VFRU8NJLL6n3LUBBQQG33HIL6enpvPHGGzFpBVEU2bJlC1u3bo1Zpdntdk6dOkVzczPBYBCz2RxTFWM0Gtm8eTObNm1Sex+MjY3R0tLC+fPnmZmZiSFWRqORmpoatm3bploxKxGDgYEBtcPe8uXLqa2tJTU1FVmWmZiY4MKFC7S2tqpiQgXx/B40Gg35+flq5MHhcPD73/+eTZs2YbVaY4yQiouLKS0tpaSkhJaWFlpaWlixYoU6MUPEIjg6tfD666/j8XhUweOBAweQJImvfvWr6oQ5NTXFT37yE9asWUNqaqqqR1DM1nQ6HZIkkZOTw7p168jLy1M9EQDVEEohCcpfdEfK9PT0eSQhKysr5jf81a9+RVZWFp/4xCfm3W/d3d38/ve/R5IkrrvuOq6++uqY951OJ6dPn6a5uRmv16tWk5SXl6vX/cUXX+TChQv83d/9HaeaTnHmVDP/9M2vI8syv/zlL9Fqtdx3330xJnHhcJjvfe97bNu2bd4x/xT4CxmYgw8jRQBw6tQpDh48yL/9278tKef0s5/9jIKCAm677TYAfvzjH5ORkYHL5WJ8fJza2lp27NiRMErw0EMPYbfb2bhxI8FgkN7eXu76/D18/r8/hc01QziOf0BVWoBay/yyGK1WO88CFK64JMZbpSgk4fCKEC4TS5PfR39egkJ7bJqgO0fifMnC4fx/KTrDSrefI6dWY3NF7jm3QeaNRKHosIy2y4vlmwOzBwZk8N2ZhXFvFhXjIvkOAbcBRi0yIVEm1SuQ7xDQLBLuCMtw0m9iWNJxxQ4xwkCEbD9ZJTNcfVFEn6CL31wEgRdIIQRXjJBmIejDaDL85GqD5AdliqcETHHskEMamaarXIQ1LPi7fEGzhb632ub95mlpabhcLvLy8lS3t+hoUDRxWAg6nY5Nmzbh8/l4ueMk71THt6BGhuoxgVVj+hjVvXJvFRUVMTIygiRJ5Ofnc8cdd/DGG29w4cIFAK6++mrcbjctLS3U1NSwd+9eBgcHeemll2Lqx5XUQSgU4tVXX6Wjo0N9T6vVsn37djZu3BgzePv9fpqbm2lqasLpdJKWlobb7VbPUxAEKisr2bNnjypAC4fD9Pb20tLSQmdnp1oOGN3CuL6+nq1bt2I0GnG73XR1ddHZ2Ulvb68a+aitrWX58uXqfjs6OnjmmWcoKytjeHh4XvMxxfUz+rdUfqfdu3ezYsUKzGYzo6OjalphYGBA1VWkpaWxatUqSktLyc7OZnx8nKGhIQYHfGhlUAAAIABJREFUBxkeHo7RXwCUlpYyOjpKcnLyvLTkvn376O3t5Wtf+5o6yStCxZGREQ4dOkRycrLa6EgRKirRA+UvOgIQDAZjvBGUP6UcUylnVsjB8PAwIyMjfP3rX487Ho+MjPDYY48RDAZZs2YNN99887ztgsEg58+fp6mpifHxcbKzs9mwYQPp6ek89dRT3Hjjjaxfv57XXnuNy5cv8+UvfxmIlH0+8sgjbN++PcaISdF4felLX1rQM+GjxF/IQBQ+rBQBwOHDh2lra+Pv//7vl7z9mTNn+Od//mecTicPPfQQn/nMZ6iurqatrY0jR47gdDpZvXo127Ztmxe16Ovr4/HHHyc3N5f777+fH/7wh9TX19PlMPLkgTNI8YyEAJDZWeTBpJXjri6WCpPJhCAI+Hw+fJtKeNXfg7zQ2i+BgHBbp4YMz6zRjyDzakOYYIK0fYbWyysrX0YOaXh0326mHGkRAlG8wGQThcw7LyJ6YolG499WYcwzcKZcYjgjYm+MHPE30Adh3WWRXFfi1MGlbInWNBFpXA9+EQwSYl4AISWECOQ6YVP30rUI3eg4hXEOEZDRFnrR5kbKlYSoa7p8RKRmVFCjGspE6kgL0bbSExHvKeaKiEhI/HXJbnxvDqj2vPEQTQDMZjN79+5Vu+Y9/PDDWK1W1QRnLpR7S6vVUlRUxHF7D2fLJILaWc40e0pVVoF1U2Z8Xh+ZmZnYbDbV7z/amVCBVqulsbERQRBUy13F6//QoUMIgsDevXspLy/n8OHDnDp1Sv2s0Whkz549rFq1Crvdzv79+xkYGFDf1+v17Nq1izVr1sRMDJIkqWV4g4ODqv1vNNlIT09n+/bt1NfXq5/1+SJuhS0tLWoEAK48bxkZGaxdu5YNGzag1Wrx+XxcvHgx4gPS3U0wGCQ7O5vly5fjcDjo7e3l61//OhApQ+7q6qKlpSVm1axce8XfPxopKSlqU56ysjL0ej2PP/444+PjlJaWMjg4qEY18vPz1dRCUVER09PTdHR0cPTo0Zh96nQ6Kisr1QhCQUEBTqeTn/70p2qZaTScTif/8R//wV133UVZWRlWq5XR0VFVqDg+Pq6ed0ZGxrw0w1wdgdfrnUcQxsfHVT8MrVYbV4+QnJyM3W7n17/+NV6vl4qKCu688864JZGyLNPf309TU5Nqj202m7nnnnuwWCzs27cPm83GPffco37m0KFDnDx5kvvvv19NFxw9epQTJ07w4IMPzrOV/1PgL2QgCh9WigCIe0MkgqIq/eIXv4jVauX111/nwQcfVNlwKBTizJkzvP322/j9fjZs2MA111yDyWTCarXy6KOPEggE+OQnP4nFYlH3dc/3X8a5QH1rBDI16QGWpV8JXRuNRiRJWlBJPhe33XYbb731Fm63m8zMTAbt4xxcEYyt9b9yOCCqCaBwZTJY3S9SPnnloZhIkThes7jN829qDlGfZKNvOJenXt1JV55ER6G0qGYh868uITqiBkgR8tdmMPWV3AVTDMJsxUN6lEYhKMBls4b+JJGQAK60MJqkIBrtwo/M9ec1JPuXFh14DwOX0F9JDwDaPC/aAu/cQIGKhn6Riokr11IUxUiXQMHHSIGfqcwQkiiTNq2jaNRAsiP+YKR093O73Vx99dW888476nv19fV84hOfQBAEXnnlFc6ePUtWVhbj4+NxCaXiSW+1WiODs1bEUWDCGpxGF4KtmcsY6oyE9JUqlvz8fEZHR8nOzmZiYoLi4mIGBwdZsWIFvb2980yPFOKj1WrZsmULQ0NDdHd309jYyO7du7HZbLzwwgtq6BsiqYO9e/eSl5fHyMgI+/bti3nfZDJx4403UldXN2+1ODQ0FKMrSElJwWazzRMc7ty5M6YDnt1up7W1lZaWFux2ewzREgSBvLw8Nm7cqJKJYDBIT08PnZ2ddHV14fP50Ov1rFmzhuXLl1NUVKROKIrW4Pz58yqJiIZGo0EQhHnRHIXIXXvttVx99dVoNBomJyfVyIFiQQwRvURxZSojoZdJKhwATQi/I4Vk71ZmhooYHh6JsVT2+XzMzMxw3333xeTcoyug4uXUlbLraIIwNjamjk0pKSnzCMLcagRZlhkfH+cXv/gF9fX1apfJiYkJ9RqYTCaV2CrXNysriy9+8YsJOxe+/vrrNDU1qam0mpoaPB4PBoMhRgcQCoV4+OGH0ev13HvvvYiiyOOPP47BYODOO+9ccP8fJf5CBqLwYaUIICIMMRqNfPrTn17S9rIs84Mf/ICGhgampqbwer188YtfnLed3+/nxIkTnDhxAkEQWLt2La2trRgMBqamprj//vtpb2/n7Nmz/OM/fp1NX/pRwuMKyJSnS2wsiaQFlLKfuboAQRDIyMhAkiTsdjvFxcXzbFej4TDJnFgWsRAWZyd7WQCzD67q1zFmDjOaLiEJkDUjstpvQRqLVU+PpkmcXLY4GfjpsrfYlBqpXvjRU7dxSTTxbnXizwmOEJlf6FbFhQrMFUn0/ahk4c/JUGAX2NAbSWW4tAKv5emZUX0Trvj8msx+DKY44XN5PvFJhHMY6IgmA4KMscGOsJD4WAZjCHa3aGJ6N0QLAKOh0+nU+vp4UMLLdXV1qoivpqaGrq4u1q9fzw033EBrayv79u0jOTlZzadHpw+U9JIoigQCgZgIgsViwe12EwwGVSc7URQxmUx4PB7Kysro6+tTiUFFRQW9vb1cc8019PX1MTQ0hCzLNDQ0oNFouHDhQgxJMJvNeL1eDAaDWh549uxZDh06FDMhrlu3jp07d2I0Gunu7ubFF1+McQ9MSUnh5ptvZtmyZfNIgdPppKmpiebmZgKBADk5Odjt9hhCnZ+fz65du2JsZ2VZZmhoiJaWFtrb2/H5fDHXTaPRUFJSwjXXXKO2t1XEexUVFYyPj+N2uzGbzdTW1lJbW0t5ebmaL1cmwosXL3Ly5Mm4zaX0+khKJvpZFkVRTU9UVlaqE7Xdbqe/v5++iXfxlTyJIIYRZjtvylKkf0mB4To2F3yb8fEJBgcHGRoaoq+vT72WqampauTA7/fz1ltv8S//8i+LCgGjr5nNZospdRwdHVW/m8lkUlML+fn55Ofnk5GRwc9+9jPKy8u56aabgEiEx+FwzBMtTk1NxYhLS0pKKCwsJDs7G0efG5/djyUnndLGQn796K/ZuHEjW7duVVMIExMTqiC7vr5ejS4MDQ3x88cfIXxVCaflcab8blJFA3dWbuKu8k2k6z+adskL4S9kYBYfZooAUG+8G264YcmfefHFF+nv78ftdrNly5aEjT48Hg9vvvkmzc3NCIJAXV0dbW1tfPOb3+TXv/41JSUl3HLLLVz/1Z/jcCeoL0emNj1AVXr8KIDSHdFqtbJ8+fKY3Go0UlJS0Ov1MSVdpRXlpG2q4aJ/kva2NpJGZyjy6NRa3Lm31Fz1ukcvc3BVYuW5gMwr9S+Rp498x8dfvI7+0RwO1EeISNzogCST9PtJzH+YmrszdKuSGf12UcKogiBH/AdkBJ4v1OPWCjGr9miYU73o9HO+w/skA1OIHBCudH8TUwMYliWwWp3Fto4rKReNRkNycrJarqbT6fjGN75B1//H3nvHx1Weed/fc6bPqGvUe5ds2ZLcGzIuVFeMIeAFskkIm2wqCSQh2d0n+2yeZxOyKW/IkyxkQ1ggFAdTHMDYYHC3bFnNkq1m9d6lGY1GU8/7x3Bua6xi2IdN9n2z1+fjj+2ZM6fc55z7vsrv+v0aGzl+/HiQAJC6eKpCRHO9+iaTicjISHp7e8nPz2fp0qXs3x8gXlHT+deWFRwOB3fddRd+v5+LFy/S3NwctP21xzKbzfj9fqanp8nJyaG5uZnYlETqR3tIT0llorGT9WvWYbPZhJOyatUqbr75Zs6cOcP7778PBOryqrOsWnx8PDExMWIhUM1oNHLzzTcLbpDa2loOHToU5FxERkayc+fOObnkXS4X1dXVlJWVMT4+TkxMDF6vNwjwZzQaWbt2bZAqIQSix6amJmpqarhy5YrIcKgOnE6nIzs7m/j4eD744AMeffRRTCZTEJfB2NgYBoNBcBlkZWWJlrgTJ05QVlbGjh07uHTpEs3NzbOyf7Iso9frcblcQffCYDCQkZERKClkpHBi7K+Y9o0TIBsJNkUBe90aYuWtorQQERHBSy+9RHd3N0uXLhU1fPX5SE1NFcDElJSUj91GqKoYXusgzHze9Xq9AAkmJCQQExMzJ+uf1+tlYGCA119/neHh4UD5s99L7cstTI9dHS+tSUP2Lcl8/vsPkJiYKLotnnjiiUBZ7kMmxmXLlrFy5UpcBolPHf0F44oraH6RkYg3hfPv6x4ixvjJES99XPtvZ+BD+yRLBACPP/4469at+1jMUo2Njbz00ksA1wWVeDwennvuOYaGhkhNTaWpqQlJkrjppps4cuQI9957Lzk5OTz+7GFePX6ZeSEDH2IGYiNDsFgs+Hw+bDbbvFHiXDaTmAgCtb19+/aJTMLBgwe5ePEiMDvjMJ+p0dGpHC/DYXMv6hr8rA3r5xc5J8VnT/7hdgZHIxkzK5zK8+GTZ9ISB1IUuropwr/fjeSZfR7mzyXSuTPsumREOyo19Bo0HI1bSGRIQavzERI+u0yzpU5DuEuecyzmEvV5HzMDaFAkCTnCjSHr+s7ADQ0aYhxzH2PdunXcdNNNQCBC+slPfiLuoaoBoNFoKCwspKamBoDCwkJBmRsRESHQ4dcuKNd2o8y06OhovvzlLwOB+eKpp57C4/HgdrvnfDasVis2m40pr4vewnCqtKOCsMikaMjoUbgnaQVmo0mUMLKzs9m7dy99fX28/PLLuFwujEYjd9xxB01NTVRUVAiJ8PHx8TnPMyYmht27d5OYmIjP5+P8+fNBrYoQIBfatWvXnO+p3++nsbGRsrIyOjs7CQsLIywsTIAfIfAuZGdnc/PNN89iH3U4HNTV1XHx4kV6e3tnpfYlSaKkpISNGzeKuVbNAqgti4ODg2i1WrKzs8nPzxeUwyqOSd2+trY2qPwz0wwGg8ACqRaa2kvSDZVzbh/YsYTstjJycicDA4GMXVhYGHFxcTQ3N3PjjTdSWlqKz+fjwIEDdHd3k5qaSldXl8geREZGBnUuxMbG/ofq6k6nUzgH9fX1dHd3i+9UNcmZWYS4uDiRofD5fLz22mucPVxO7e8CUtZzTV1ZtyeQsDIajUZDTEwMo6OjJCYmsnTpUrq6urh06VIAfFhkpEU7iX8OLJVGkimNzeNnK/Z97Gv8pOy/nYEP7ZMsEajsg7t37xZiIR/FPB4P//zP/4xWq+Wxxx6btwvB7/ezf/9+WltbeeCBB0hOTubFF18UsqgQqIOOjo4y4XBxqtfMtE+akyZ3x5pMHt63hdDQUHw+H93d3VRWVorF+//GPurCr9q1mQEIZAeOF/hwa4MdAg1+InUu/j3/PRL0UygKjIyH8ev92wPfp4zgyh6ikTDaHNF4/Rosbj+a34+i++PobEdABlOUgejHMqjKYX7woQJGD9x6UcO5KB0NoZp5swLqDyKsjqDfx9hhQ9PHY0x0A6cw0y9pkfVeDEtmg/RmmgTcWq3B6JXmLA88/PDD4h3t7e3lN7/5jfjOZDKJXvMNGzZw6tQpINgZyM3N5d5770VRFA4dOkR5eTnh4eHY7XaR3p91Th8+D4sXLyYlJYXo6GgcDgevv/46W7duZXp6mgsXLszCARgsJt5NmWTEMjeOI21Y4q/DS0hOTubQoUNAYDHft28fGo2Gl19+WSwCN954I9nZ2bzxxhuMjo4KiuCuri5qamqCsgcQyCoUFBSQnp6O1WqlpqZGSByrlpSUxM6dO+flE+np6aGsrIxLly6h0+lITk5mYGAgaIwiIyPZuHEjS5YsmbXoDQ0NUVNTw8WLF8ViOfPdCgsLo7i4mPXr1wcR44yOjoqMQXd3N5IkodVqufnmm8nLyxP0vwcOHKCtrY3Pf/7z9Pb2Ul9fT2Nj4ywnT9U4CcmvJCL3iigPzGd7s87gnvbS2dkpuhV6enoABBHS8PAwZrOZT3/600BgDenq6hLlBRXQqtfrSUpKClJsvF7L9rU2NjbGL37xC/bu3Ssc2bmAitHR0UHOwQ/2/JyeSwPz9sKaw0z86Mz3GLeNMTg4SHV1NZIkibnMYDDgDzWwP210QVCzBLyz5VHijH+etfO/nQE++RKB+tDdf//9ZGZmfqzf/vCHP0Sj0fDoo4/O+b2iKLz55ptUVVVx1113YTAYBLL12mheXVynvRKXxkz0Oa4WmSNCTHx2x2puWZFOU1MTdXV19PX1BS3GsiwLVjNJkkStdr62wpiYGGRZZmxs7GNlFq41tTasmlOn0BzvpyvWh1uSMcsedltb+ev4Bqy6aZVygJffKaWpIxl9cRu63H5Rw4Sr9czJE6lU/r0T57DrKpWyAoaSUPQPJuIIkxhUMxHzdDws6pHJ65c5G6WlKVSD/2M6A+lDEkVdchDN8apVqzAajZw4cWLBsRlBphsdPblOXKFzd0xICiSNy9wyZmV8fBxJkoIi2pycHPbtC0QgXq+XX/3qVyKNLUkSGzdu5NixY7P2O7POn56eLiZwRVE4ePAg1dXVyLJMRESEQLTPJCJSn0e1F38mYA4gKyuLmJgYWlpahGQxQHu0n6r0hbtDNjVoWZOcT1FREQcOHBCsevv27SMhIYGjR4+KRTw9PZ3du3dTVlZGWVkZaWlp7N69m4iICPr6+mYBDGea2WwmLi6OqakpEfWqlpGRwfbt2+ckpYEArkDlK5ieniY9PR232x3E3KfValm6dCmbN28WqfLRKScv1NRwsL6e0UkHBucUBX4fyW43JqMxKKVvtVpZuXIly5cvD+qzt9ls/OEPf2BoaEgwKqoiRhcuXJhFm65mDZqbm6mrqwu6VmtRA9GLWq7jDEjclXUW+Rpgi0rGlpuby/T0tOjeMBqNpKamirJCQkICsizj8Xjo7e0VzoHa4aBe68zSgtVqXbCNW1EU0WWlZsVU8/l8DA0NBTkI/f39TI44OP/TheWJAe75XzvI3ZCB2+3m1KlTpKamitKY0+nkimzj/ZTZDvK19qtVD7AuZjZ1/J/C/tsZ4JMvEagI2Y/DHggB9bKf/OQnADzyyCOz6mZTU1McOnSIuro6IiIimJiYQFEUdDqdEFlRJ9jIyEicTqeIsnJzc7lYf4UlK9ZjMRtxjnTT2dEuIkAIeLBJ6alUuHrp1E6h0+uJsikkj0gobu+cYEGVUrWlpWVeOVuDwYDRaMRut8+K/CVJCvKiFzIFhSUFV7htdSVGgxe/EhDem5rW886plVxqSUcTN45x4+X596HA1FsljF/yYeucQpJg7JYwWhZrRVdD4MSYrasARE3ChiYNGkWi1SJzPGbhMoFG6yM0Yvrajz8EIV4lNZrZZ62aLMtkZmZy5cqVWXveuPs2Hmt/k2lNMFWzpIDJHcALGL2SiEJnZgZmRvWvv/46tbW1mEwmpqamiImJITo6moaGBgChW3GtJSYm8vnPf1783+/388wzz9DV1QUEavJDQ0Oznhl1fnj44Yfx+/2MjIzQ3d3NiRMnCA0NFc7kTDuW72XMwrzOgKTAajmelKpxUlNT2bhxI/v37xfP4549e1i0aBGNjY0cOHAAr9eLyWTirrvuEmPgcrm49dZbKSoqQlEUysvLhUzwzNa/tLQ0Jicn6enpmROMB4Eyxfbt2+edS9xuN9XV1Zw7d47R0VESEhIIDQ2d5WgnJiaSv3o1j5w6w6jTiV8FtSkKiiSxPi6WLYqf9rY2ZFnGYDCI91mSJJKSkli3bh35+flIksSBAweYnJzk7rvvprGxkfr6eiFEFBcXR0FBAQUFBbN0CiDQFtna2kp1dTU94+Wk3nxq7ptBwPF29MUwXbeNzMxMsrKySEtLE+n3f/vl01x4rZaJ5inGRyaIy7KyZm8JplQt3T3deL1edDqdEJNKS0sjKSlJOJFjY2NBzoHavWI0GoMolZOSkmaBEl955RUmJiY+UgZYURSqT9XyrY3/dN1t83alkLYuIdCxY7OJspBWq0Wn09Gtn+YFU9t19/Nvaz7LiuiM6273n2H/7QzwyZYIICAb/Morr/Dtb38bo/GjU/HV1NTw+uuvA7Br1y4yMjKCUmxqtKLVarFYLExPTwcBr1Qk9te+9jUiIiLo7+/nySefDIrIZk42auS/aNEi8vLyGNa5+eK5f2fMMxXoWyewBup8UNqqJ8x2dcFeqARw7XHm2zYkJITp6el5CWvm+51W6yUntYcQ0zQ2h5nmzkT8/kAEYlhfjyZhTGQErjXFD57GJDy1aQD0RPo5nzWPI6IeWgKDO6B8mNN/lXjIB/wh2cC0hvkBhKFOdIa5QZClDRqiJz9ae+FcJRSvSUt9tIsOq4JHC5F6M2s0iUhn2jBch9TozjvvZHx8nKNHj6LT6YSztnr1aq5cucLIyAiSJHH33Xfz8ssvB4Zhxv2IjIzkq1/9atA+ZzqzmZmZdHR04PP5ghzX6OhoRkZGWLRoUVCnzenTpzl69CgPPfQQVquVhoYGXn31VVJTU/nXiFamdQtPP3Hj8GjcRsrLy4mLi2Pbtm288sorjI2N4fP52LJlC+vXr2d8fJyXXnpJgAZvvPFGVq5cyZEjR6ipqaGgoIDt27djNpux2Wy8/fbbopdcvQfLly9n06ZNImptbm7m8uXLs9Lq4eHhFBUVkZmZSUJCwixue7/fL1D+HR0dhIWFkZaWRnd3N2NjYyjAQaMZmyzP+3x978aN7M3N4eLFi1y8eFEg2WVZFo6BRqMhIyMDl8uFyWTi3nvvBQLEaIcOHWLLli2i48DlchEVFSVIjpKSAkp7HR0dnDp1ipaWFiIiwknecgqvoYtr23HU13XgRCkaZ+CYk5OTyLJMcnIyhmkzv3/0IG6n+2qbsSyh+BW23l/KN/7tC0H6CioRkkajITk5OYjrQB1Pl8sl6JRVJ0F1BOPi4oJKC1euXOHIkSN85zvfWVBWWTXbiJ29cZ9DmR90BcD/fvu7rLy1BJvNxs9+9rNZ4nAun4et7z2O3Tt/m3e4zsS7W76FXvPnEQn+i3cGPukSAcC5c+d47733+O53v/uR1bcUReHFF19kcHBQAKrURfJaUhO17Ud9MfR6Pb/73e9ISkpCr9ezd+9eGhoaOHLkyJzp+oSEBDZt2kRmZqZIJdo8TnZ88DNsHufs0pgCWh/cXKfB4L3+9agUo2vXriUqKkqAeJqbm/+vygfXml6vR5bloIyEafsFZPPC/Aje3ghcpwIc5B8UeBk3s2AK+oYGmejJqyQ+M21YL3E4To9HvuoQqJGbweTGZJn7XCQFMsa0FAVr22C1Wlm8eDEnT578SNkS1SwhFjZv2szZs2dRFIWRkRGys7PnzCrMtMjIyKA+97vuuksIVYWGhrJx40bhoGZkZNDWdjW6KSkpobS0lIiIq3LHv/zlLxkdHQ3KUs3EIMDVboXHHntMoLl9Ph9PPvkkRqORz3zmM0iSJIRkqtaH0j49tmBmYIk3kqwaO6WlpZw/f56IiAj27t3LH//4Rzo7O1EUheLiYrZv3y5wDpWVleK67rzzTjo6OnjzzTeRZZmdO3eSm5sLBIC9b775psjcSJKEwWBg69atlJSUiBp/e3s7r7/++rwCQzExMSQmJoo/8fHx4vr7+vooKyujrq4OrVZLbm4u9RMT/G50fMH7lxgayvGHHkT+0FHr6+ujpqaGuro6pqamMJvN+Hw+8d7JsszixYtZuXIlL7zwAgUFBezcuRMIlIza2tpoaGigoaGBqakpTCYTsizjcDiIjY1lw4YNLF68GLcywet19yFZBlH8UoA3hADjZv+5pUy0ply9P5JEWFgYOq2Ot797CrfDO2/9/eGnvsDtD16Vjvf7/UHOQUdHB06nE1mWSUxMFHNgSkqKCLwURWF4eDjIOVADKaPRyPT0NMuWLWPJkiUkJSVd1yn4x73/wpk3yudUJAQwRxp5sespzGYTg4OD/PrXv+azn/0sKSlXx2BycpKvHXiCCuvc2SSAr+ffwl9n/fmkjD/q+q35/ve///3r7czlcvHDH/6Qxx577CP3jP657fLly1y+fJkdO3Z8rCh+IVPlStesWTPvNn6/n76+Purq6jhz5gxvv/02AwMDuFwuUStTF1Wfz4fb7cZqtbJnzx62bdvGihUryMzMJCoqSuin2+12nE4nJ06coKmpKQgQs23bNm6++WY0Gg1NTU00NTWh1WpJSEhgYmKCn548wEXP4NwTrgR+CXQ+CesckWxISAjr168nNzcXm80m+p6vXLlCY2MjnZ2dTExMiEVbpUqdaRqN5iOBDVNSUoIY7q4Fxuky+5EM81PjKn5QJiz4uq24NQq1qXOA0oJ+AKEuCevk3KkGsw9yJn3oFHDJEnpFIdGpIEVMo7VcR47W7Sdr0hhUOzcajTQ0NHxk4KW6ELndbpqampiamsLj8WC1Wtm9e3cQ4x4Ej7NGo0HxKgxcHsXWPYXf60fR+xkeHkan0wW02kND6ezsxO/3C6S0+tuJiQlOnz6N3W4nLi4Oo9FIX18f4+PjQdfk8XiCjpuUlMTY2Bgej0co4smyjNVq5eTJk0RERARIbVJS6OjoYGR8jL6QBcZSgiVdMssy8rlw4QI33HADbW1tNDY2snfvXqamphgcHGRgYID29nYWLVrE4sWLiYyMpKmpifHxcaqrqykuLqa0tJS+vj6OHz+O3W4nIyODuLg4VqxYgcfjEUA8n89HU1MTzc3NxMfHExYWRkREBKtXryY2NpbOzs6gTIEkSYKD4eLFi1RWVnL69GkaGxvp7e1FkiQWLVrE+vXrkWWZuro6quyT9F8nSrS73dxXXIRZr0eSJEJDQ8nJyWHNmjUkJibicrnEQqi+dwMDA1RVVeH1eklMTCQlJUVwTURHR5OTk0NoaGigZj45id/vFyqmKlfE2LBxVctXAAAgAElEQVSdEwfGyEveRF/vICmxS5nsTKHj+CIcA5EUFBSg0+kE54TL5aKzoo+B6gWcGwna6zu47cGrglHqNSUnJ1NYWMiaNWuJjkrBYo5Aknw0NQe6Q86cOUNDQwPDw8N4vV5iYmJITU0lLy+PlStXsnr1atLT0wkJCRGlhaqqKnEPVJZCg8EgOihUy1mWwbvPHcfruYae/UNcUe4dybQPtmDEzKlXznPpdCNJCUmk56ciSRJ9fX089dRTWEZcRMRa6ZamkLgqICpJ8OnMDXwhZ9MnJt38H7GPun7//zYz8EmXCABee+01xsfHg0iDPB6P0BTv7Oykq6sLt9uNLMuEhYUJTW+4mmZfsmQJmZmZHD58mLi4OO677z4RSYyPj1NTUyNaiGYqzanlAjU6v+mmm4IeMrvdzgcffEB1dbXQGTiV52coZAGQlgIRjgBQC672hqsgmZlmtVrJysoiISEBn8/He++9h8vl+liR7nx2vQ4F3eJOdAXd85YJAKbP5uDrisGlVXi7+Do8BgoUfAgYvJ6ZzWYhxfpBvpfx69S504dlijvkOcdQtWuj6uvZfMRC6vmp2SVFUeg5M0zXySF8rqv3JSzBQub2eEISTWi1WsLDw3E4HExPT5OZmUlbW5sY/0cffVRMqG63W4jRHD16FLiqbwGBNjxVgU6r1YqF6dqumQMHDtDa2sqXv/xlTCYTExMTPPHUr/kg38uY7J7VliUhsS46i4IKOx63h9TUVOrq6ti6dSvnz59HlmXuv/9+qqurOXnyJBqNhrCwMP7qr/6K6OhoBgcHhdiRoihs2rSJDRs2UFlZyZEjRwgJCeGOO+4QUV5fXx8HDx6kv78fuNoGWlJSwtatWwVbnd/vp7KyUjz7qmm1WtatWycIg3p7e+nt7RWASVmWCQkJQaPRcNY5Tbl8vW4V+N85Wdy+ebPoDrjWnE4nF+pPcKrqCF4nyBOReL2+oHcpIiKC4uJi9Ho958+fZ3x8nOzsbDZs2EBqaqpozauvrxecFBaLhYKCAi5cuMB3vvMdWltbBdeETqfjC1/4AmazmZaWFi5fvsw7vzxG1+lBlOtMA+v/bjHJqckCb6CyK775eiUvPX+GwYHAPBkSYmTnncu5fedienu7ReZAFUGKiYkRmYO0tDQxPi+88ILQaJiJPVAd3ZCQkKC2xoSEBPpbB3nykWc591alGLP0JSlErjJhjNPS/vYAfdUj6kMJCiTlJLDvn3dRVncaRVEoLS0lKSmJfzvwAiOpJiwJ0Qy1dPOje75Mamhwa+mfw/6iywT/GSUCgGeffRaDwcCyZctE3Usl2NDpdEKFzGazCbBMSEgINpuN++67j+TkZH7961+TlJREZ2cnBoOB++67j87OTqqrq+nq6gqaYFQGsYiICP72b/+W559/nra2tiC6WNXGx8eprKykqqqKyclJgfY+nu9jNGThWxw2BVsuB0cq6v1WaWZV/vHu7m4OHTr0HxK20Wg0PPzww/z2t78VYDI1vXc9k4xuTLdWgdY3yyFQ/KA4jDgPF4M/wMn/VrEf7wLiPQAbGmVi7B+9x1mv19MRC2VxUwvud2O9huipQDSWlpY2C6h3rSMwF25AtY8iFpSdnU1fXx8Oh4PO44N0HhuctY0kS0gaKHkoh4IVuQwPD4vo7lpHrLS0lE2bNuFyuTh//jxnzpzB7XaLcywqKhIcBaZwC62mMcYiPfhlSNfHortkZ/eWbaxatUrs026388tf/pKlS5cKprjLly/z/Gv76V0dQ/V0vxhTraRhT8pyHll0G9OOKZ5++mk0Gg1JSUnU1tZyyy23UF5ejsfj4f7776erq4s333xTOCP33HMP6enpuFwuoToHV8sGLpeL1157jZ6eHtavX8+NN96IRqPB7/dTXl4ueAf8fj+yLKPT6di6dSvLli0TGRuPx8OZM2c4efJkEJhSp9NRWFhIaGio4ONXgwFZlpFlmSGfnz+a5yffkYBIv5/tzoAjmZiYyJYtW4LU9IZd7bzb9wQ9zrqrP5w24L6Yiqc9BovFgkajCcq2GY1GVq9eTWlp6Zy9/UeOHOHs2bOCIlods4SEBDHeGo0GrVYrsBc+n4+O9wfoPj20sDMgwa6fb8RoMjI6OorT6USv1zPYE0pd9ezyiyRJLF+ZwQ8e/xQabeBcJyYmgsoKartoVFQUqampuN1umpub+fa3vx3UceFwOIJKCz09PXi9XqH+mJycTLgpgrcOvIMHFw997UGsVitfWPtNhhrGZ5U+JFlC1kmUfCGbvfftYfny5Rw+fJiysjJKS0vJyspakIr5T21/0c7AJ9lFYLfbBdivsrJSvPhGo1H08E9MTODz+TAYDLPaaJ599lnMZjOf+tSnAHjrrbe4cOFC0AulmtFoJDklGWNeIo06O7XNDcgjU9yTux6rIYQjR46QkJAgJDP9fj/Nzc1UVFTQ3NyMRqMRimtut5uQkBAuxDppiHTNy7wnKZA2LFPSEaCJ9Xq9syLQ0NBQwsLCGBkZCVq4ZVkmNzdXsKrNR2EMgZd706ZNFBcX89Of/nQWAc/MBWkgzM+VOD/DoYHzi7FDTr+GWJ0Dw4Z6ZJMHxf9hHV9W8I2bcZ0qQJkKpMAa4/1cTl5gZlIgZBq2XtJcV8pYkiSsViuZmZmcP38eL35O5PuYMM+tz5AyIrG8PdBNIEkSFouFqampORd7ta4/n6mOgOrY5eXlMTU1JZD915pv2k/Zv9Sj+OZ5pWWwFoTxdy99Q1Dk9vb2YjAYZokQpaSkkJOTQ1paGlarlfPnzwvxGtVBdJh9XFziwKO/JqpXoLg9in/53N8FfX727FmOHDkSRLx18OBB6urq2PnAp3j6yGs47HYy5Qge/dLXxII1MjLC7373O0JCQoiNjaWuro7bbruNCxcuMDk5yX333YfD4WD//v2ifLFjxw5KSkpQFIXz589z+PBhJEnCZDKxd+9eUlNTOXXqFMePHyc2NpY77rhDTNw2m41Dhw7R0NAQ1BUTHx/Ptm3bSE5ORlEUJiYmaG9vp7y8PKiNUDWr1UpOTg6JiYmCOleSJJxOJw/84RWqB4fm4PkL2F8nJbDmQ8ClGtmazWZWrVpF/vJUXu75Jh6/E2XGHtRW3CXS3bQf94osh16vR6fTiSyVLMukpKSwfv16EhMTGR8fp6+vj3feeYfo6GjCwsLo6OiYMxOlvqdJSUksWbKEyMhIBppG+J87fzrPlQASRGSGUHhfuvjIYrHg95l594/zP/8A3/mHXWy5uXDO7yYnJ4MAiWqbpMViITMzU8zD0dHRQYGTz+cTUs+qkzATDxIXF0eMIZ5//dzvF7ymG+9fy/eeCQhKPfHEE4yOjvLQQw8RERHB448/zp133klh4dzn/qe0v2hn4D9aIlDbW9SHq7OzU7yIOgxMjk8SHhuKx+fB5/NhNBqD0lXx8fFBHvf09DSPP/44W7duBQLdCDMnDY1GQ2xsLAUFBRQVFSGb9Hyj4kXOj7SikQKLvQLIksTSDol8m4lvfvObOJ1OKisrqaioEFkAlRkuJiaGmJgYdDodNpuNxpEe3spZOJLd1haKfsTJQw89hKIo/OY3v2HlypVCY34+U1sfr32E1Bq50+lEq9USFhbG2NgYjzzyCKdPn55F7jLT1IVcqASD+HdRN+RahpDjJpD0XhSbCW9PNP6BcNQL9MoBRUTfAvz+AFsuyYRNB0dHfklhOFTBrYEQl0T4FKxauYqcnBxeeuklsaB7ZIXaFD9d0YpgzdN6IXtQIr9XntfBMBoDOIKZk+y13AsQEAqqra0N+my+7EFWVhYtLS2Eh4fT+H47V97smefC1R3Bzyr+BxXVFYSEhNDZ2UlISAgDAwNBji4gzlVVJBwbG2Nqagqv14tfUji3yoZbq1wtkqqmBO7Z3yXczY2LruJrfD4fTz31FDqdjs997nNIkoTb7ebJJ58Uwi5PPPEEXq93VlfCwMAAzzzzDDExMURGRlJbW8u2bduoqqpieHiYffv2odfreeGFF3C5XLjdbtavX8+WLVuQJInu7m5efvllpqamUBSFG2+8kRtuuIH+/n5effVVxsbG2LJlC2vWrBELR2NjI2+99RaTk5Mi1e/3+wkJCcHj8YgsnsViISYmBofDMYvHwGKxcMstt1BYWBi0II05nXzmlVepHRhAI0n4FAVZkvArCiUeN0vcVzOEJpMJjUYjgI6GNU1oU0YQrUHXDr9XxvP2OkqWrgg8F42NwoE0GAx4PJ55HfeYmBiioqLo6OggNjaWtWvXYjAYaGtr4+TJACOoz+1D8cGq9StZu3Yt0dHRfHbpV+mu75+LxRiA+392B54QJz09PWK+aGmQ6e+WUOaNVCA5JYS//8EOUlNT56QYnml2u52f//znIkvQ19eHoihYLJageTo2NnZWDd9ut/PMM89gs9nQ6/VcfqONnrKFsx2hUSG8Ovw7nE4njz/+OEajkW9961tIksRPf/pTiouL2bx584Ln/Kewv1hn4OOUCFTQjbrwq/oBEKi1mUwmuqr7ufRmC/buQE1Wa9Sw+o5iPv39T5GWlTZnus3v93PlyhWOHz8+Z8QgyzJLlixh165dQQ/l1y/8nhMDjXPSWgJ80bIMQ3sgVaZ66CoQR6vViowABIhkEhISMJvNvNpVQXWaP1Dy+vBwshIAD34z/xZanz+KRqPhO9/5juiYUG1mxB4eHk5UVBQ9PT0fWfkwNjZW1E3nouOdaaOWACvh/KawPamWcJ1LTISehiQ8tamozsBHFUHafElD+AyFwjarn8tJftwzAMhhU7DTl4ajce4F1q1RmDAryEhETIKWqwDKhdL7czkAM01djGdmYdLS0ujo6ACuOgYqJmHDhg1s2bKF5/7pDzz/T6/g9y58/au+kUeoNYSMjAyGhobQ6XRB3AF33303+/fvZ9u2bSQmJoro68qVK2Kb4UQ/l7Pt8x5D8kPqRChP7/nHoM87Ojp45pln2LFjB8uWLQMCTIm//e1vWbt2LXl5eTz99NMAQkdete7ubp599llB/FJbW8uOHTu4ePEi3d3d3HPPPVitVl544QVGR0fxer0UFBRwxx13oNPpmJqaEtgFCLRJ7tmzB71ez9GjRzl37hzp6els2LCByclJ+vr6BNf+tY6YRqOhuLiYG264ISj7ODQ0xDvvvCOOoVp4eDi33noreXl54p33+f0ca2vjrYZG7C43GVGR3LN0CSmhoYIRcWxsjJCQEEGx7FGmMe8+tyB2BkC+uJTplsggx3NmlkNVu5wpZKSCPRMTE6mpqRGEP36/H7/fz5k/ltNytAd7V2AuNEToSFwdTfKaGFwOD5eeb8fRP40kB9P7Zm9PJHVNvOhEUUswl6pkxq6j46E3wKpSL1qtlrS0NDIzM8nMzCQuLm5OUN4zzzyD2Wzm7rvvxuVy0dXVJZ7fnp4e/H6/COLULK5KhPTcc88xNjYWyKJcUHj3ueMLvkuSRuL3vf+H4eFh9u/fT2FhIXfeeScAzz//PDqdTmSE/5z2F+UMdEyO8mJLJVUj3binpjG0DfLje/+GFGtc0HY+n4/e3t6gyF/t54+OjsZgMDA9PS2kSicapqh9uVX0y6oma2QyClP42cl/whQSoM4cGRmhvLycK1euBEmdqgx/AC0tLXzqU5+ivr6e/v5+vvjFL4p9ttoH2XPiifkvUgkQ42xs1Ir9zgQJqS1NqpqXxWLB7/fz4osv0tLSwojFz1BuGJ26KXx+H9YJyOyXuDF9CRcvXsRisSBJknCG1GMAwum4ljhnLqKhj0NTfK1VpPvoilLm1Q+QUMgLG2CFtTPoc3ddCp7LASBYd6Sf8vn4BWZYab2G6A/Fflpi/VxMnf0bSQHZDxsbgh2H+SwtLQ2NRjNrIZhrXD4qVmKhfWg0GnJycrj77ruRJIn3nj/Bjx5Y4BkCZK3E/3j/6xz94KjgqFDPRXVevvrVr3LixAnq6+v50pe+JABaDQ0NgpugvdhPZ4h9dlZghulcEs8u+/asuulrr71Gc3MzX/7ylwUw79SpUxw9epQHHniAvr4+3n33XWC2lkdraysvvPACubm56HQ6amtr2blzJ5cvX6a1tZU777yTjIwM9u/fL5zmuLg47rnnHkJDQ/H7/Zw8eZJjx46h0WjQ6/UUFxfj8Xhob28PEnaKjIwU75XBYKCiokKwdqoAXZX7YGa7GQQY+WZia1SLiori9ttvJysra8H7BIH37sqVK5SVldHa2kpYWBi5RSnUJ/xm4d/5wVObhqcxad5tPsq7ajAYiIiIQKfTceVYJxd+f/kqadcMiy4II39v4PrHrkwyXD+B36NgjjWQtjYBjSmgvRAfH4/f7xfdUU11MoP90jyqYwFLz4jhB/+yi5aWFlpbW+no6MDr9YpSgApGVJ/Ro0ePUllZySOPPDLLWVDB3qpz0NXVJcpwKSkpTExM4PV6mZiYIFtXyDN//9L8PAQSWGJMrPxKHnFxcfT09ARxEBw+fJimpia+8pWvLDjGfwr7i2kt/ENbNZ858QI1oz30TtkY9EzRFyLxRm89q6KScfQPU11dzfHjxzl06BAVFRV0dXWh0WhERK1qckOgVrpy5UrWr97Av3/9VXxe36yHX1EUJoZs9A8O0DxUz6FDhygrKxMRc2xsLMuXL2dkZITi4mLi4uKoqKhg27ZtLF26VDChFRUVCR7ug91VnB9una9NFyRwGqBg1EBcdAxJSUlkZ2dTWFhIdnY2MTExQg3OZrNRXV3NG2+8QX9/PxaLhbtu3s7OzBXcHb+MexNXssmaR7etj4qRRpwmP7Ldi+L1iwlCBS/ONBUprtPpWLp0KaOjo0HgwZnOgSRJooVy5mcL2eUkP66FiP+QkFDIDhsO+lSOmsTTnAB+GUWCttiFJzlJgcU9Mlq/hFdWOJPjn9sB+bDFyKlTSBm7uoHBYAgaG4PBwI4dO2hra6O7uzuo3W6udksIZG5mgghDQkLmzLY4JIk6nZ5zeiOXdHqGNBpMikKIohASEsIDDzwg0qcJWXEc+Pmb+OaJZiQZ0tcm8cV/eJCTJ0+yfPlyhoeHZ2EaSkpKWLRoERcuXGB4eJjFixcDAQfm7NmzAac508iwNLlg+Un2SxgqJygpKQn6PCUlhXPnzuFwOETPv9puWFlZybZt2xgaGmJ0dJTa2lpWrFghWtIiIyOJjY3l+PHjxMfHExsby8mTJyktLUWSJI4fP47VamXr1q2iFq4qDlosFrq7uxkeHsblcomSR3d3N+PjAZbDxYsXC7bEzMxMtm3bRlZWFklJSSxbtgyz2UxHRweKoqAoCh6PhwsXLjAxMUFKSoogzAkPD2fZsmUkJibS09MjHD+n08nFixdpaGggLi5uQUyTGqQUFRVRUFCAw+GgpuYimtweFnqVJAk87bEoE7NBirIsEx4eTlxcHCkpKWg0GkEepCgKcXFxaDQaXC6XkD73Tvo59cvqeTkEnMMuzFYDlngTCVlxWNL1WBeFE55mQdIinq3JyUnCw8PJy8tjxYoV5OZmcfp4y/wXgoI1wQmyTZQsNm3aREZGBgaDgZ6eHi5cuMDZs2e5fPkyIyMjGAwGmpubWbJkiXA0VdNoNERERJCenk5RURHr168nOztbLJRd7d1Mjk0iaSQUk5emo53zXjNASmkMqYVJAqtw0003ifVxyFFHn+cIemsfXmWKEF0y0vXSOf9J9lHX7/9POwM1oz184fR+lYY+YB9O4C6vlzdaqnEdq2FkcAi9Xk94eLiovTkcDiRJIi0tTcijbtq0iUWLFpGYmMjJ/ec588b5eY+tKNDd2EfI4kDHQH5+Ptu3bxdcASEhIZw+fZqUlBQxWa1fvx4ILARnz54lIiKC5ORkAMpHWqkYbQ8QfCxgBSN6PI5A9qKnp0f0/Dc0NFBfX8/ly5e5dOmSaHGEgEfc0NBAVVUVlZWVfNB0jt9LZTRGjjJi9TIc46EnyYXi9xNmC4Dq5krnq3VTIEimFJiznv1xWg5lWaY92se0jgUWGIUw/TSZocGiM5Ks4B8JQbGbSY6IoVU7iWue/UgKJI5KpI0GrqMnUqEneoExl2DSCIV2CwY5kPq/dmx8Ph9paWns2rWLjo6OIFCgwWAQEbdK1ASBRSEmJoapqSlRO7/WBmQNh0xmBjQaXLKMR5KwSTJXdHoUIMrpZGJigszMzAA9ql5La88VOi7MLk0hgyFEz01fX09h0WJOnDjBmjVrmJqaEtgA1WkZHh4mNjaW5ORkTp48SUJCAlarFb1eT01NTcAZ0HrpNc3vDEgKxE9Z0DTaWbFiRRBLnwpoO3nyJDk5OYSFhYkMmqobv2fPHqqrq5menqahoYGVK1cKZ9JqtRIREcHx48dJT08nMjKSEydOcMMNN2AwGDh27Bhut5vo6Gjsdjs2mw23201DQ4MAuyYnJ5Ofn8/k5KTgcAgJCWHLli2sWLGCmJgYzp8/T0VFhaBylqQADXRRURGjo6NBWYTh4WHOnz+PXq8nMTFRpOSjo6NZuXIlERERdHZ2imfB4XBQVVVFa2sr8fHx87YPqqZSmA8NjDAlDyKFOud1CBSvjLs8G60mMOepaXlAlBwgsDirC5l67x0Oh8BCGAwGtFotTe91MNGxAP++BG67h/hlUbMAxjOdYaPRyNTUFLfddhtZWVmkZyZQW93B4MDsbgJZIxFtDWHfp1cwMjrEhQsXKCsrE6yR2dnZbNq0idWrV5OQkIDX66W5uVl839LSgsvlQqvVEhISMmcgojpGk73TvP+rs5Q9fZGeM8P0lY+i+CE0w8h4y+xnXJIlCtfnc88/7KK17SrVdF1dHTEJodQ4/oFe6WXMsaOMumvpnDxMm+0gVlMxZu2fvrvgv7wz0D01yvNtZ3izu4ba8S6shlCiDB9P6/oHFw7ROjk29/IpgU+SiNOZMY5NCVUwlau7qKiIrKws0aOtaofX1tZSXV3NsZfPMNI+saBn6Pf4+T9v/oQbSm8gPz9fTGoQ6Ghoa2ujq6uLkpISbrnlFvGdVquls7OT4eFhoX447fPwZk/1gtdrNYTyb3/1LUpvKKW0tJSNGzeyceNGSktLSU1NZXh4GLvdTnJyMrfddhsRERH09vaye/dutFot4+PjTBjd1BQ78OiCSXkUGcYjfUgKRExoxbnKskxoWChXQqapTPdRk+KjMc6H3ahgcUkYvVevKSoqak5e9/kyAtdmE9w6iaHQhcmCCsL7sRpnT0ze3iiUiQByP3pSoitamSVKJClgdMOqVg26D7sRhsIUBsOuQ1AkwUZLBuN9weAw9br0ej2tra2MjY2JySgsLAyXyyUmCpUWeOY1T01NCWdh0aJFQeAzD/C2yYIncKCZBwVgQKPF6vfhGR6mtraWlJQUzGYzZZdOk7c8m57GAbxTHxIEyRLR+WEsuTeTxcsKiIuL49y5cyxfvpyBgQEmJyeDFgyfz8e5c+cYHx/HbDZz+fJlli1bhlarpaenh/HxcbwDDvpTvPiUeTgsJNhrWctY2wA2m41FixYFfZ2YmEhjYyMtLS2UlJQI9r/o6GiOHz9OREQEmzdvpry8nKmpKcbGxigoKBC/j4+Px2w2c+zYMeLj45EkifLycoGb6e7upq2tTeBcbDYbJpMJj8cjgIXp6eksX75c0N7abDZqampITEwkNzeXpUuXCn2FyclJ0tPT0Wg0GAwGCgsLSUhIEKh7lbinsbGRxsZGYmNjRdQvSRIJCQmsXr0ao9FIV1eXGGubzUZFRQXd3d2ivDfTfD4ftbW1vPrqq5w/f57o6Gg2FN1Gj1SOz+8LAhGq3QTU5cF4BF6vVyzOWVlZlJSUCI6H/v5+0V2QlpbGokWLKCwspLCwkNHRUYE1cLvd9F0YZWpoYYZRn9vP1s9tQK/XMzk5KcbI5/OxZ88ewcCoKlh2d3cHuhJSDTTUd+CcCn6IFi9N4X/9+F6WFuVTUlLCqlWrSEhIwOPxUF9fT3l5OWVlZQwNDREeHs7y5cvZuHEjhYWFNDQ04Pf7aW1tpby8XHR7TE9PYzabg0jozr1VwWO3/oDeKwPCafF7FUZax/E4vCzdk400rcE+EhgrrUlD0tpolt6VTUhYCJGRkfT39yPLMm63i4nY3+DWdYCkfPiqBvbpU6bptB8mLfRW9JqFHb9P2v7LOgOKovBE43t8q/Jlqsc6aLIPUDPWxUsd5xiYtnFDbC7yHIuHSkVZX19PWVkZ77zzDq/5+/AukHmRUFDcXlLtiriOkZEROjs7aWpqoqGhgZaWFvr6+gRS2u/3B5D43Q566uaXtwTQ6rU88P2751zsDh8+jM1mIzc3lz179swCGrpcLioqKli9enUArW2O5I/d1Ti8rjkPKSHxYHYpy6LTgz7v7e3l4MGDHD9+nNDQUHbt2sXmzQGmr8OHD+Pz+bh06RJjY2MBzvQsB1Mm/7y1XluYj8ReA/KHa7Rf8VOW5KI+MRC1KzL4ZbCboN2qEDEFVsmE3+8PwhvMZ4sWLWLJkiVBJDcAX/rSlxiou0J9yNScKXsJBaPGw5qYNjRzoKg9l5NRpgNsbQYvJI1K+DRgMwVKklofZA5KrGjXCAcGwKlX6Im6flkhrnZcaBfMZWq7EgQcgb/5m7+hrKxMXKMqonNtBkDNMlgsFpGuBGjV6ujQaJkv/JOBaUki3e1Gp9Nx7tw5pqam6OzsJLUgGUMWPPLjr7Htc1vR5vkIydYh6QLp+MjISCorK1m9ejV9fX2Mjo4KkBjA7t27KS4uZnh4WGSYWltbycnJwe12U19fD16F20s2Ue5oDpyiCkxFQgEy2oxkT0cL9b5169YF9X5LkiRS/KGhoQIXEBMTg81m4+zZsyxbtoysrCyhrqdiei5dukRZWRn19fW4XC4hG2w2m3E4HKxcuZKEhAR6e3spKioS5EJ1dXUYjUbq6+txOBxkZ2ej0WhEmU1l96yqqkKSJHJycli6dCkWi4WzZ89SW1tLUlKSqLtarXNG3LYAACAASURBVFaWL18uatEqjkblKxgbGwsqHagtfSooUpVfhoAianl5OQMDA0K8p6KiggMHDlBTU0NycjK7du1i48aNxEenkBW6hiFXG3bvVU4JxanHXZmBq8VKaGgo69evp7e3F6/Xy+joqHjnNm/ezMqVK6mpqRHU5ep82NDQgMvlIiwsjE2bNrFkyRKay9oYahtZcC7UmTVsvG+NYPzTarUsX76cyspKbr31VvR6PS0tLezatYvW1lZsNhuXL1+ms6uDzJxQdt+5Gp3ehc5g4+Fv38GDf3MTlpCra43KnJmfny+AphaLhYGBASoqKjh79iz19fW4P3wfHA4HDz/8MFlZWZhMJvr7+6moqKCsrIza2tpAqcjp4p92/xy30z0nNsDr8LLx9hv4n69+G5JcZG9K4bHffIOCddn4lQBIvL29HQiUryLTbIRkX5qny0MJtIFKkGD+5LhvPor9l2UgfKHtLI9ffnvukwE+m1XKV/JvErS+M8F+TqdTeNmpqak85qjB7psf1S4Dq01xfD1xuVDYu/ZvrVY752Le3dzHZ/K+OnunM3aeujKeH7z6XRISEoK+GhgY4F//9V8JDw/nS1/60pwc2arwxZ49e1iyZAkA9RO9PFj2NE7vVUa2QJVcYV1MNv/PivvQyYEJdXBwkA8++ICGhgZiYmJELa2+vp6amppZyHMAr0bhzDrbwlGwArnNJlZoMwMUq/IoFZnzC/5o/HBbzdVIW7WZAKXExERiY2Oprq4mMzOT9vZ2/H6/yMrodDoefvhhfvzjHzNm8lOWp+DU+IVWiiKDWeNiS0Ij4fpg0J3iB/+4hen3iuY5RQWvDFo/c7b8+SSFQ0U+PPMQFEkKZDqMLG2Y3RkwU/r3WpvJGGgwGIiMjBRyqvPZzHt11mCiRacTinZzmRbY5whkvNTOAlmWCQ0NxeFw8L3vfQ+AH/3oR4I0KCwsjNtvv52XXnqJr33ta5w8eZKGhga8Xm+gZdDvZ/fu3SJjNTIywsGDB+ns7ESSJNLT02lra0Ov17Nu3ToqW+toCB2m22xH1smsiF+E41gHltHAM7Blyxbee+891q1bN0teFuCNN96goaGBr3zlK6LG63K5ePLJJwFYvHgxdXV1gn0OAlmWhIQE4uPjiY+Pp729naqqKoHbuHz5Mnv37mV8fJwjR46wcuVKbrvtNgYHB/n9738vIubMzEz27t0rIkUVFT4yMoLf7xfdBhaLhZGREV577TV6e3vZsGEDGzduDHJu+vr6ePPNN+nt7RUqfLIsC36NVatWzQoIVMbQqqqqWeOidt4sWbKE9evXExcXN2sbgDF3D6++8zzeaYn+hqkgMJ5OpxPCVR988EEQoZmaifnqV7+KyWQSwVZXVxdvvfUWZrNZOPeOThdVv2ue8/iBnUHSWisZN8UDgedYr9fz0EMP8Ytf/IJ77rmHrKwsfvWrXxEZGcnmzZt55pln0Gg0aDQa4uLi6OjoCCK1Ki0tnVcy+lpzOp20trZy5coVmpubRcYjOzubgoICsrOzCQsLY3p6mra2NgFGbDrZRuOB7gX3HRoVwtNXfsbBgwcBuOWWWwSVvM/n47nnnkOSpEA7Y8JbWFJbF5SANmqs7Mo49JGu65Oy/5IAQo/fxzcqXsDpm5tWFaBurAvNuU4Ov32ICxcu0NnZicViYdGiRdxwww1s2xZgNsvOzqZ2rI/2ydF56+wK8NDSUm5evJzY2FiioqIICwvDbDZjMBjQaDTzprDDokMZ6BiitaZj1neyRkbWSmTuiOdifQ2jo6MB5S6DgcnJSZ5++mk8Hg/33nvvvA+0wWCgqakJp9MpUqgxxlBuTVxCfX09Y5ILrVZHVmgMX8rdwtfyb0EnaxgdHeXQoUO89dZbgnozPz+fS5cuiYnV4XAEpd+TkpIoLS0lszCHD6bq5jwf1SQgQxfLN+7+AmvXruVZew3jXue8qWBFArNHIvLDNF94eLjQVbdYLHg8Hj7/+c9z/PhxnE4n4+Pjom9ar9fjcrmIjo7GZDLR2NiI0SORMQBhLhmdTyJyCnJH/KzJvozJ4AoKlBU/4NXAhWK8jqsTrZqiD5xiQI1wvt5/GQmTG3qjlGBpYwKOgNYHK1tltJ7ZgMCFxJlmjr8sy9hsNqF1P5/gzUy/vN9gYFhh3swABJyBQk/AGVa5JiDQkhgeHs7q1atxu90cO3YMi8WC2+3G4/GItPvmzZvp7OwU5DQqKC4zM1Oo2pnNZoqKimhsbBTYhunpaSRJwm63szgrH0dtP/FdWhK79Dx862fxj7uEemBycjJ9fX1iEb32fUtOTubcuXNCdObMmTMcPXoUu90uSJHUmrAa9X39619nxYoVZGVlERcXR25uLna7nRMnTgQBCZctW0ZGRgbHjh1jfHycZcuWUVhYKFT8JiYmqK+vJycnB6PRiNlspri4mImJCQYGBrDb7VRXVwsBouLiYiRJ4tSpUzQ1NYkWRwgQc5WUlGA2m0W0qCLV1Yg7NjY2SPzJYDCQl5fHkiVLGBkZCcKaqB08SUlJ5OXlzVJGVM2kCaO1th+cBibtk6JcoWoO1NXV4Xa7ufXWW7FaraLPX1EUvF4vZ86cESUKFYR89uxZ7rzzTrZtC0gVx6ZZaTh9hanxObpfJNAYZIruyUbWy0H7bm5uDvAiGAzk5uYSGRnJyZMnyc7ORpIkent7ycrKYt++faxatYrugQH6R8cYHR7i3IeZn8nJSUwmk+h2msuuzRqkpKRw8eJFJEmipqZGZA0mJyeJi4tj+fLlrF27lq7KARrOXVlQudDtdNOpNGObtDE+Ps6FCxeoqKigqqqK6upqMc5jY2NYUrowRNgXBHeCxKKov15og0/c/kuWCeonevl9+9kFt/GjkOw3s2nJKm688UZuu+02SkpKyMjIICoqKsgbjzWF8Ie2uevskgJhegM/XLUTvTwfA83Ctvr2ZUwM27hS1fahpy+hKBCbZuUHf/wuucsCnO4DAwOcP38ej8fDsWPHmJycxGw2c+utty6IoLfb7Vy8eJG1a9eKqKHtchP9Jy/yj1sf4Fur7uCutFUUhCfisE/y7rvvcvDgQRwOB6tXryYqKopz585RUVHByMhIELBNr9cTERHBgw8+KLoXaqtq6E5xL9TJAxKEtXmpPlJGc3Mz75n68S+wvQxkx6Vg7rJjMplENKHX69m5cyeXLl2iqqoKu90uMBWq5KrH48Hr9ZKRkUFLSwvT09OByUySKYhMwtI1SfyETJhDg68zBqPJgN9sR9IoKD4JX0csrnO5eMaDJ0qj0fixVBTDnQGCoQmzcpVnQIG4CVjdosE8Yw6UJAmtVsuqVasICQkJApHNGsoP773qGCiKgtPpJDQ0lH379tHX1xdcWtH40KYPoVvchc/ipHU8ev59A6k+Hw9t2Ux3d/csnYPp6Wl8Ph8mk4mqqioiIiJwOBxs3ryZiooKZFlm06ZNdHZ2CpEedWJTe7BnXkdSUhJlZWWsW7cOm82Gx+PBbrczMDCA2+1Gr9fj9/uJiIggJydHKAcODw+zbNky2tvbMZvNIl1cXV3N6dOnef/993G73YyPjzMyMkJkZCR5eXmsXbuWyMhI2tvb2b59O5s2baKiokJQzq5YsUKMr5rSHx4e5uTJk2zZsgWfz8eJEycoKioiPz+f48ePMzg4yNKlSykqKroqJ6woVFVVkZKSIgDGeXl5hIaG0tTUJL5Xwcbp6enk5ORw6dIlTp8+jV6vJykpSQAGVYDh2NgYw8PDQSqP5eXlQYED/y977x0c553m+X3ezo3Y3WjkTOQMggQRGMUcQDEpp9md2dHNzYa58/lsX1256sq+sqt8rrrzXTmUfXu+nZ20ExQoKksUiQw0iEBkEDmHRqOBjkAn/9F6fwOIBCXNetczW36qVJJQjbcbb7/v+3t+3+cbCI8H2traGBkZQalUEhERsWeUJKceer3efZP4JiYm2NzcJCsri5WVFaH4kQ2SrF/ySjweD7W1tczNzYksCY1Gw+rqKhaLhYcPH7K9vc38/Dynv8xEMBqNZGVncf71Z+j8rBv70haSFFamEAJtrJqS17JQx/5WQSN/L9vb22KEMj4+TmpqKj6fj56eHubn58nLy2NsbIwJt5v/bWiYv55fYEijYVyr40BBIVkRegYfPqSjo4OHDx+yubmJRqPZw8160j0XGRnNnbsPWXZEEJNQQFp6FqYYDaMjYa5BR0cHi4uLbMxs8ah96qnjD0mS+K/+j79gzbpGUlISN2/epLq6msPV1fgDflaWl3n++ee5fPkyESYv6zu97H9ABUZtAQdir+3/hn8H9XvZDMy7bbw7/zgk9tX6bu0lThWH3bOeZOojV0pELAaNnsblCZSSQiAEUgiUwRAvuE08U374qcd4WimUCmquHOLy98+SXpBC5TOlPP/PrvKP/+0fkZAeNucoLy9ncXERu93O7OwsLpcLnU4nIKqnHl+j4v3pFrqlGXqcEzi9Lppuf05BfgHHjoUjL91uN1988QVvvfUW6+vrZGdnC3XAV81/kpOTOXv2LA0NDTQ3NxMVFcW9e/eYnZ0lJyeHy5cus6OHCefik9GUECgDUPgokvTUtPAuQb321GZAkiQ0y04SNsMQ8qlTpxgeHiY+Pp7+/n58Ph/x8fE4nU4uXrzI4OCgiNGVORrBYJDV1VXRIOj1euH8KEkSL730EvZ1B9bhEL6RVGLXy4ldrcI2rAJfWFa3W8aoUqn2DfXZr6K9EgfWJFI2FKTZFBQvKjhgVaIJSHuOr1ariYiIYHl5eY+GXI5z/bomJBAICC+LEydOkJ6ezvj4OFKUB/25h6gyrSiivBjMdkbnU/AF9gtYCHE1KpLliQlee+01BgYGCAQCex6Ss7OzTE1N4fV6MZvNBAIBXnzxRXp7e9ne3qaurk6M4nbvJtPS0sjOzt57fqKj2d7eprW1lby8PMHQlxdh+b0dDgenTp1iYGAAj8eDz+dDo9GwsbHB+Pg4FotFoFcmk4ni4mJqa2vF9//666+TnZ2N2WwmKyuL2dlZuru7OXz4MEVFRTx48ACXy8XW1hYFBQV7zn9BQQGLi4u0trZy4cIFfD4fjY2NlJWVUVZWRmNjI/Pz85SVlVFeXh6Wk83NERERIch5sjudTCIcHR3F5/MxOTnJ3Nwcubm5xMXFcfDgQZEkOjs7S1ZWlhg3aLVaSkpKSE5OZmpqSjj+qVQq1tfX6ejowOPx0Nvby507d7Db7Rw9epTnn3+e48ePCzRld/jU/Pw87e3tBAIBUlJS9rjxyejO5cuXsVgsAvWUoezU1FScTifRX5oZyQFM8fHxLC0todfrhUuo7FTo9/tF6iGAVq9h0NZDbG4E5dVl7ES4STsaT86lZNJzUiktLRWOf3IpFAp0Oh1+vx+Hw8HQ0BB2u53t7W10Oh1vvvkmPfZN/u3oGHObm+KJ5AuFGLbbWdFo+B+/+8fkZmcL7pOs8LDZbMJ+fffzfXh8me/9i58ysbjDqm2byTkbD4aWGV/Y4Z/84GVqjxwkMjKS5eVl5lZmWWh/SjOvkKi9eogX/uI6fX19mEwmvJmx/Nvpu/ybiU+5Jy2yGhuisrCEQlMqsdpMxuw/Z/9mIES5+c8waPP2fc+/i/q9bAb0Sg1/PdX6tfK5Py84R6wm4qmvkasiLpVzqQUEQkF2An503gAlLjWHZ3fQ2N3Y7fY9rl+/S0VE68k7dICi2nySD+x1vtLpdFRUVPDo0SOcTidKpZKdnR12dnZISkraAwvurjHHHP985P9iweRmbtvKuGuBpvV+5uPcvFp7lWhlBE1NTfz6179mfn6eqKgoXC4X6+vrexj7CQkJnDx5khdffJGCggKRvb6zs4NOp+PEiRNcv36dsrIyDAYD+dFp3F3pZifo2/M9SEggQeFYBFWpxaysrLCysoInSoVdG9iXZxACiucljuSVcunSJdra2kQITn5+Pmtra8THx6NUKrlw4QLNzc1AeJwgz9t3P7Tsdvse577vfve7fPLJJywtLX1500t4XNts2jf3aPNlVzXBCH6KrPHkyZOCU7G7JMLqiIgd6TEORDAYxGQy4XQ6OXXqFI8ePRLvISsCvg0asbm5ycDAQJjURRD92X4k/TaSIjwZUEiQmbDG5HIiPr/84JeQvoSPT/r9HE1Pw+PxMDw8THJysnhAhkIhYX0ss8nVajXR0dFUVVWxtLTE6uoqLpeLmJgYxsfHxeIiLzZPMsVJT0+nr68Pj8cjnNrKy8vRaDQ4HA78fj9Op5PW1tY916i8EG1vb3P27Fmee+45jh07RklJifCOT05OprGxkaioKDGikCSJ7OxsOjs7WVlZoaamRtjrLi8vYzQaSUpKEu+jUCgoLCxkenqa9vZ2GhoaxIJdUlLCwYMHaWlpYWpqSsQdS5LE6OioIFXKCIDs7FlRUcHq6irr6+s4nU4xNpAjgTMyMuju7qajo4PY2Ng9Vre7CYbz8/OoVCp2dnaQJEmoiQ4fPsyrr74q5KGSJGEymaiuriYuLo75+XlxjYdCIWZmZkRqY3JyMkqlksXFRaanpzl37hy9vb1iTJiTkyPCfDIzM5menkaSJMGzWFtbo7CwUPgvGAwGkYOxuLhIS0sLk5OTxMfHY7Va6e7uJjouiogUDdpEJfo4rfApuHbtGlqtltnZ3xqCyc8scX/t4hH5/X6a29v58ZYTP48vnyHA6najUSq5VFFBfn4+tbW15OTkCMJjZ2cnnZ2drK2tIUkSAdS8+S9/jsu1I44nv593x8/dtjFevX6UvLywsqL+ZB2Tw9MsjC4/foNK4Wbgv/6rP8ecaqKzs5N+g5v/sNjEsmcz/OyUwKuGT5YH8IeCHE0oRac0s+huQkKx668KXw/pUWcpMX3/791v4PeyGdAp1cy7bEw4V57YDiiRqDHn8Gp2/bc6brwuitMp+byae5gyjxbbgyHyM7MF5CUTn/6u6tNPP2V4eJgLFy5gtVrxer0olUosFgurq6skJycLbS/Axo6DP33w73D6PWGPBAmxMAdVcH+tj+m3HzA9MSV2a7sXmtjYWI4ePcqtW7eora3F5XLx2Wef8cEHH7CwsEBERAR6vZ4/+7M/Iy0tbQ+0GKHScSqhEuv2JnPuVfG+uVGp/JPc51i5P8apU6doaGhgcXERz4KVafOX39ZX9bYhMLiheEHB2toa7e3tWK1WsUu+dOkSvb29uN1uSkpKKCgowGKxCOWBfKMmJCSg0Wgec2s7d+4cd+7cYXNzk6SkJEwmkyCSaTQaPB4PlZWVLC8v75FCPs3yGMLucN/UKTEiIkI0J5mZmWxsbOzRi8vMb3nxe/nll0lNTWViYoKamhph+rSffXMoFEKZakOdu/LYrFGn8VGcOUeM3k3IqyHKo+FAKMixHS+lJhNTU1OcO3eO0dFRrFYrGRkZbGxsEBERQXp6ulgIIIwwKZVKqqqqGBkZIRAIMDk5KeyldzcD8hz+qyXvxDo7w/4bGo2G6enpPbkG8NvMCrmCwSCvv/463d3dOBwO6usfv79lMqbFYuHgwYNiRr5bbig3MxsbG6ysrDA6OkpRUdEeOZ5SqaSoqIixsTEsFgvXrl3D6XTS2NhIYWEh1dXVtLe3MzY2RnFxMXl5eRgMBh4+fIjRaAzzdTY2yMvLE4mFpaWlYRe+8XEUCoVoGjIyMjCZTFRWVmKz2bh//z5Wq5Xs7GxxzymVSiFhnpycJBAIiGsvKiqKqakpNjY29owOAOGceOTIESIiIgS0L39HsmxOo9EISeOJEyeEpC4hIYHl5WWys7NF4yQ3h3V1dcKieWhoiOXlZYECWK1WtFotdXV1uN1ulpeX6enpYWBgQPgz7L7f5AVe9h2xWq2kpqbicDhQKpX8yZ/8CQ8fPtxzTci/Oy5JTCmU+/JiQsCj9XW+X31YjGFiY2PJycmhpqaGwsJCtFot09PTdHZ28uuPelnZePJWMxSC7R0/caZISvKSxXV6/EYt64sbjPdOhdMIv9xQqPRKip5Px6myY7fbGVib4X3Dqvhcv/2iwv/qts1Qa86l2FiDWVeB27+Kyx/2+4hSp1Fq+keUx/0ZCul3G1n/ber3shkAOGTK4t7KCPadvTNOKQQRQRX/a+13iNbo9/ntry+tVktnZydHjx5lZGSErKwsent7MZlM+zJy/zbV1tbG/fv3uXjxIrW1tUJ37Ha7iYqKwm6309raitfrJS0tDZVKxVtzjXTaRvZFSHyhACp3iGjnb5UOWq2WQ4cO0dDQwNmzZ4mNjaWrq4t33nmH7u5uNBoNJ06c4OrVq7S0tAjy1JMqUqXjREIF11KP8kzCQV7MOM0rmWeI8WuF/lyGW3V+iaSgnrkoHyEp/D0pCDcwmWoDhwZ86JUaYW0rzykdDgfd3d0izTA2NpaVlRUmJyeFr768QDqdzsdm3nFxcQwMDBAMBikrKxO55MnJyVRWVgpG+40bN1hZWcFut4sY2v1Khvq/SSMQCoXwbuyglyIISkFCBAVBVA5nqq+vJzY2VhjZxMXFcenSJVJSUhgbG2NycpLo6GiysrIEQ/3MmTPExcXtyaxQ5y2hMLie+ExUKkLExzrITV0ivT+R5GAQVTAori95R9g5MoJDqcTt9aLw+3n55ZfJz8/fE3jk9Xrp7+8XKIfBYODRo0cighvCOzaz2UxRURFer5e5uTmh67579+6e8CrZ5/706dNMTU2RlJSEz+cjNTWVl19+mdHRUdHEzs7OimugpKTkMT09hMmEnZ2dbG1tUVhYKH5uNptxOBy0tLRQXFxMZWUlg4ODuN1u+vv7qa6u3gObq1QqioqKGBwcpLe3l5s3b7K1tUVjY6PYYVosFgYHByksLCQzM5P09HR6e3uJiooSHgX5+floNBqx8GdlZYVllYTn9PLYICIiguLiYsxms+DwyGTB4eFh3nnnHXp6ekhISCAvLw+bzYZCocDr9aLX61lfXxe7/dTU1D2wt0KhIC0tjerqahQKhdDny9/V+Pi4sNWtq6sjISFBPG/UajVJSUl4vV7hxJibm0tXVxdarZbjx49z5MgR4uLimJmZYWlpSTiHTk5OYjabOXfuHNvb22JsJ5NfVSqVWOCjo6PFqMjr9VJZWSneb3BwkNTU1D3NnVqtZmdnhxmlCqtK9VSc2OP3893Dh9B+JaRIkiSiosL5GtXV1ZSVlfH23XG2XE8fD/r9QS6dLBH/r1QqqX+2mvPfOUVCupmi2nyu/uMLnP7TOhbtc2RnZzMyMsKDGAf2SPZFSJWSgu2AjzPJJUSp08iOuUKR8Y8oNH6HAsNrxOlL/38Hwq+WTqnmSmoF0Wot864NvEEfZm00DaZikttWiNfF7CEvfdvS6/XCejQtLY2hoSGKiopobW0lMzNzX9j+d6mBgQHu3LnD0aNHRVd+584dDh8+zMWLF4URTWZmJiMjI3R1daFWq3nXbWF958mSNLmCCkhaC7Nwz549y9WrV8nJyWF+fp6PP/6YDz/8kOXlZUpKSmhoaODUqVOkpKQwPz/PgwcPOH/+/Ne6mmmVGuK0MUSrwyOZjY0NHjx4QGZmJu+9956QH6k2t8m1KonwKYgIKjA6Qhyxx5Ax6kIVlMjNzaW6uprx8XEgnLq3tLTEtWvXmJqaIhAIYLPZmJ6e3rMQP20HL+edJyYmMjExgSRJXL58mQMHDvDxxx9TUlIirGAvX75MX1/fvou83AR8U0fE1b4NRn41x9z9NSYbF5hrXcHnCoDBj0IZ3gmVlpZy5coVPvvsMxwOB4mJidhsNmpqalCr1czMzIid2eDgIJcvXyYUCjE1NcUrr7yCJEnMzMyQl5eHO3oaYpxPZyGHwDecvudv3NnZYT4Q4P9eWMKiUtPvDzCs1mBVq1kfG+XiiROC5Cafa6/XKwx4bty4QWdnJ4FAQIwXAoEAHo8Hi8XCZ599Rl9fH3Nzc6hUKtLT0zl8+DA1NTX09/cLSPncuXNijLOxsYHdbufUqVOYzWaGhobE9ykbf01NTXHo0KHHuDwajQadTkdTUxMHDhzYY9Urn8fR0VFhlywTCicmJqiqqtozvlOr1RQWFtLX18fAwICQ2DU2NpKbmxuWRXZ309fXR35+PikpKeTl5dHf3y9cSvv7+zlw4IBoXAwGgzAi2tzcFC6CKSkpGAwGEhIS9hgVycS3+Ph4rl69ypkzZygsLBQOhnJIlNfrJSYmhqGhIYaGhjCbzRiNxj3nRqVSkZ2dTVVVFT6fbw+KJn+3fX19mM1mXC4XGxsbFBYW0t/fz7Vr1xgcHAQQqgJZapiXl0dSUhKHDh0iKSmJgYEB/H6/IOH29vbi8/nY2dl5bAwnxzorFArcbjfb29soFApycnJYXFykpKREWD1vbW0RCoX4/ve/z6lTp0hLS6Pl0SMW4KmKGaUk8aP6OpRfw/uKiIjgnc8GsG95nvq6OGMkDafLHvt5lCGS4rp8Kk6WkFWSjkajFs+WS5cu8R/H7+PW7N+2hAgRCAV5MatG/EwhKVFK6r/ViPr/jfq9bQYANEoVB02ZvJpdx5t5p3j9wFGOpxYR3PbR1NREfn7+1y5k+5UkSSKJ8MaNG/T09Ag5YUdHB4WFhY95Vv8uNTk5yS9/+UvKy8u5dOkSkhSOSe3q6uLs2bNiBytJEv39/WIu2t7ezrjRzo7qKQuTBAkRRv71c/+FeMi1trbyzjvviEbn1KlTXLt2jaKioj3nqr29HYfDwblz5771Rbi2tsbDhw+Znp4WcKbf7yczM5NnTpxkpXuU16vPo562E7CGH+zR0dFUV1cTHR1Nf38/xcXFYjdqMBiElMloNFJfX8/U1BTw9EZAPq7P52Nzc5PU1FTefPNNPB4Pv/nNbygtLeXGjRtCJtbZ2UlUVBTb29uECOGIDuCIDuBXhYgMafD7npweCOzJEQCYb15j4sMl/J7ffr5QEByLHuwTTuLLDeTkHuDFF1+kvb2dhw8fAvC9732P9vZ25ZVBUgAAIABJREFUEhMT2dzc5PPPPycxMZHp6Wlyc3M5f/48cXFxtLS0YDKZGB8fx+VyYbVaCSq3UaXb9v2MoSBgMxLrDO/W5c+7rFDyiU6PMxjc80B1ItG/40MxP8e2zUZCQgJOp5OSkhLhc7C1tcXw8HB43u93M5XiZjDPwVS2lzmTE1OimUtVpzh/5hznz5+nqqqKvLw8kpOTwxn2KyuiAYiLixPcAxkKNpvNFBcXY7FYxM9qampYXV3F6XSKhVy2OZYrKSmJ8fFxxsbG9izwSqVSWHv7fD6Ki4tJTU3l4cOHOJ3OPTkHcsnSva6uLkZHR7l16xY2m42mpiZycnI4duwYDx8+5MGDB+Tm5pKQkEBJSQmjo6O43W5UKhUWi4WUlBSxOGu1WsrLywkEAkxPTwtzIHkW39/fz+jo6B5fh4aGBsFDkI8hEwwnJyeFxwOEmxh5Dp6env7Y81aj0ZCfn09ZWdljkck7OzsMDQ0RCATY2dkhEAiI8YSMvI2MjHDlyhVMJhP37t1jc3OT/Px8saD39vby0ksvoVKphCmSjO7sTi+VPSlkO2eZ/KvRaMjMzGRubo433nhDGAEFg0Hi4+OF+ZTJZEJyu/l0ZZX9SilJnMvL5WpR4b6v2V0jEytMzlrZD/hTKiRO1uRTU5n1tcfS6/W0tLSQmJhIWloaP+u/j0v7dEQxRW/kVsbhb/RZ/z7r97oZ2K+ysrIYGxtjcHCQgwcP7pERfpuSd4w1NTUYjUaam5u5cOEC8/PzPHz4kLKysidKdL5pLS8v85Of/ITMzExu3boldjjd3d2srKwISaFCoRBSJJn9f+TIEWb8Vuwq776QkwIFp1KqiLUq+Oijj/jkk09YW1ujrKyMZ599luPHjwvy0O4KhUK8//77FBQUPHHm+3UlJ7/tXqgPHjzI888/z/vvv4/X6+XRo0fExcXhdDqFvWlLSwvDw8NER0fz2muvkZeXJ2JlZTLbj370I7a2thgZGUGh9hGRtI4m2knQpybkVz32WWSvgsrKSs6dO8fa2hq/+tWvKCgoEI6OGo2G5ORkwUuwGX0MlLmZT99hLcHHcrKPJfM2Oq+CCE/4XH2V8b+7Edje8jH088eJheIzOf0YEwz803/158zMzPDOO+8I1OH06dMCCbJYLGR9aV1rt9tJTU2luLiYmJgYlpaW6OvrY2VlhatXrzI2NobCE0Vk8QaB0JOoVOF1Ptifx9ZS4LcJksDnOj3bkvTknZUkMbW5Sa7fT0xMDA6HQ8jW5IVne3sbe8hNz0Entjg/ARUghc2pZpUbjClWacg+ik71+D0fERFBX1+f8J+vrKzEYrGQlJQkPAEqKiqE/FA2VLpy5Qr9/f1ER0czMTFBa2srNpuNmJgYIRlLSkqiqamJiIgIkd0B4QZRrVZz//590tPTBZlsamqKxcVF4uLiHhsF6vV6cnNz6ejoYHJykueee461tTWamprIzs7m+PHjDA0N0dnZyYEDBzCbzZSVlTE/P8/KygpGo5H29naioqKES6Kco5CcnMzg4CAqlYrx8XFaW1uZmJigsLCQW7duceTIESYnJ2lqaiIYDJKRkbEHDZEJhjs7O8zOzooxVHR0NDabjfb2diHr/CqKotfrKS4upqCggOXlZYG6AGL85vF4yM3NZWZmhtzcXLKyslhYWGBsbIyGhgbi4+OF5LKgoIDJyUkePXrEtWvXKCws5PDhw0Iptbu2t7epra1lfn6eoqIirFaruKYCgUCYr7CyzIkTJ4iPjxemSi6Xi+npaaKionjnnXcYHxxkR6vDKnyUd1UohAS8EBdHqtH4xLHSVys+Lop3P3341Nf8yz+9SGz014+hFQqFGAkVFhbyRfN9FmOfEmeMxCvZdVSafndU+++q/iCbAYVCQWZmJi0tLU/s9L9pyfahycnJlJWVMTExIeKDLRYLk5OTlJWV/U6Sw42NDX784x9jNBp59dVX9zQVn3/+OSkpKSLlTS7ZkGRnZ4f29na0OwrmE/eHs0KhEOY2NyM9g8TGxnL69GmuXbsmLDj3q+XlZVpbWzlz5sxjMOPTymaz8cknn9Da2ip+plAoRIbDb37zGxYXF4mNjeWFF15gbW2NnZ0dXn31VcrLy0lMTGRgYIDt7W06OzsZHBzE5/MJWNHv9+PxeLjf+DnmgwOkHOvBcGCe2OxFTIVTaGJcuJfNhIK/bW4iIiKIjY1lamoq7JHQ349erycvL08YGg0NDfHLX/4SlUrFWpSXgTI3ftXenAG/KsRago8op5IYn/YxbsLuWumyY596uqWyyqfhmTfq+U//6T+J0cXY2BjV1dX4/X66u7vRarWUlZXx4MEDqqqqBBQdHR0tCHgJCQnodDoWFxfRqLVEelMJJi0RDP1WuRH6csOf5Kjnhw3/A5WVlWIHN7u9zaBG+1SI1aVQcMDvY+fLhUKeWc/OznL48GE2Nzfpy7XjivyKPfWXh3T4PKxvb3Es/nFYNTIykpaWFoLBIJubm1y6dAmLxYLJZMJqtbKxsSGacZk06nA4qKurY3R0FIfDwV/8xV8QFRXF8PCwWEjVajXZ2dk4nU46OzuprKzcgxykpaUxNzfHgwcPqKysFKOzjY0NRkZGKC4ufuweiYyMJCsrSxjsPPfcc6yurtLU1ERWVhYnTpzg0aNHtLW1kZGRQVxcHCUlJWxtbTExMUFKSopAMrKzs/fs8F0uFwsLC+HTJklERERw+vRpUlNThYmRJEk0NTUxPj5OZmbmHmRStkPOz89nbm4Oh8OBWq3G7XZjMpkYHBxkcHCQuLi4JxqYRUdHk5ubS3t7OwaD4bFYbNn8yefz8corrzA2Nsb6+jqrq6ucOXOG5ORkmpubmZ2dFT4YdXVhu1yVSsXHH3+8hwwql/w3nz17Vkht7bogA2lB3tXM8jBhhztTD5ifnUO7EQ5BMxgMrK+v09fXh1Kp5MUXX+TVE8e519WFTZJQSJJISI7VavheagrO8XHa2toYGxvD5/NhNBr3NWCKN0Wh06qxPJxB+aUnDCD++5+/eZaayifzqJ5UCwsLrKysUFVVRddH97Cm6gh7w+5t2JWSRKwmgn9Vfh2d8nffZP5d1R9kMwAIJvz9+/eFhOfblkajYXh4mEAgQGFhoZAtmUwm6uvraW5uZn19naKiom8FpbtcLv7qr/4KhULBd77znT0KAbfbzUcffURdXd1j9sSrq6u0tbXx8OFDfD4f2h0FUhDsBr/wcocvLa0lKJ6N4dyBWq5du0Z9fT2JiYnfqHF58OCB0Bt/k9evra3x8ccfc+fOnTBcvUunbzabCYVCNDU1hWU7gQB//ud/jsPh4O7duzQ0NIi/s7m5GZfLhdlsxm63EwgExE5QjvtdXFwg5XgXMdkLKHbZdUoSaGMdRCZb2ZpMQyLcEMizxfT0dAYHB8VMdmRkhO7ubpqbmxkZGQmbGO1sM1TqeSx8KfwG4X85YgIkzaswGU0CdfhqrfTYcK96n2pC4nF6scUsCofJyMhIsdjLBlT5+fl0dXWRk5MjyI/Dw8Oo1Wqhkfb5fMzMzJCSkhIeJ4wso7Nm498OgNZHyKcguGLA15PL5mD4Pbq7u1laWsLr9bKKxLTqcUTlq5Xh9xP3ZWLnn/zJnxAfH09bWxsnT56k8nQNv7A1PUU2GmLWvcKzqUfRKfc+gJVKJSMjI2g0GlwuF0lJSQQCATY2NnC5XIRCIRISEsjJyRFEQlnpIY93VCoVJ0+eFCE0y8vLtLW10d3dLbT2m5ube/w65F15Z2cny8vLlJaWCm7A9vY2AwMDHD58eA+hEMKIkDxmWFtb49atWywvL9PU1ERmZibHjx9nZmaGlpYW8dyR4XM5k2BoaIiVlRUxc3/33XdZX1/nyJEjIrBGq9XS1dUlSIcyOpibm8vAwAAtLS3odDqRbCjXbgfDiYkJEeojGwN1dHSwurpKWlranqAd+Zw0Nzdz6dIlSktLRSjP7pJHCOfOnWNsbIzV1VUkSeLQoUNkZGTQ2trK6uoqiYmJlJeXAzA8PCzGYAqFgry8PNbX10lMTBRmWYODg8THx9PrWqCpIMhWRJjvhARbgW3GlQ62jVrSt1S4nC7UajUxMTFi/JedmUmxXo9/cIBnqquJdrnI2NrkPzx3iyvHjolUws3NTSwWC62trSwuLqJQKDCZTI8958oLU6koSmXT4cW64USrVlFbdYD/5gfnOVnz7fT9drud/v5+6uvraWls5uXKZxgJ2tj0eVAgoZQUBAmRpDfwv9d8h5SIb74B+/usP9hmAMJe9ktLS1gsFioqKvbtBJ9W6+vrPHr0iJqaGqKjo3E4HFgslnDQR1IS9+7dIxgM7su4/2rt7Ozw05/+FJfLxXe+853HcshHR0cZHh7m8uXLaLXhHWhPTw8ffPABX3zxBevr64J0dvbsWfRrAbaGlwnqFHjV4bRAo01F6YyB7xy5Rl1d3bfmNnz00Ucik/1ptbS0xIcffsiHH36I1+slOztb7CAg/KDf2tpCp9Nx5coVxsfHKSoqoqioiL/5m7/BZDJx/vx5YSn64YcfCl+DGzducO7cOTY3N1lbWxMjh6hkG+aKkf0QbVT6bSJVKeSnH2dhYYHS0lJcLhc/+9nPSElJ4bvf/S4HDx6koKBAuBXK5YwMMJu5vX/mggR+dQiTTYXawxN3OgBbc2625t1PbQaUOomkI+Gbvr+/n76+PgAB/UO4+QsGg9hsNoGYeL1exsbGBJNc/gxydrxarcZudeJfiSFmo4SthwYC82Z0ISPb29sUFRWRkZFBRkZGmNQWH0/jU+atcpX4dlD7/ajVaurq6oSlak1NDZPBVe6v9T3194OEqIsrIVH3+INueXmZzc1NPB4P8/PzVFVV0d3dLRrJnZ0dkVwnW9NarVaeffZZLBYLCwsLHDt2DIVCgdlspqKiguLiYrxeL93d3fh8PlZWVvYEGcFeuWFUVBQZGRnk5uby4MEDfD4fU1NTIglxdxkMBpKSkmhsbGRzc5Pr16+LhiAjI4Pjx4+zuLhIU1MT8fHxxMfHk5mZiclkoqurC5PJJHhBm5ubHD9+nJs3b1JQUEBRURFGo5HBwUH0ej1jY2PMz8+Tk5MjXPMOHjyI2+3m/v37zM2FmepflRPKDobr6+usrKwQERHB5uYmRqMRq9VKR0cHwJ7RgUKhoLGxkezsbCorK6muriYqKopHj/bmCXg8HgYGBkhMTMThcDA9PS08JXJycrBYLHi9XsrLy9FqtfzN3/yNQNKUSiVxcXH4fD5++MMfUlFRwYMHD8KGSKtL3C8Miibgt39Q+J8NpQ+VN4DRHY50/sEPfoDH4xGchWPHjjE3MYHats6xAwewLkyTdiCTtIQklEol8fHxlJaWUl1dTWxsLHNzc3R0dNDZ2cnGxoYwTZK/75REA+eOFfHGzRpev1HDmfoCEs3fPlPH7/fT09NDfn4+PT091JRXcS4mn8WOQepKq6g0Z/FHOcf4FyUNmHV/v0mE36b+oJsBufvv6upicXGR0tLSb02GCwaDdHV1UV5ejl6vF7Ilh8PB8ePHUavV3Lt3TzwgnlaBQIBf/epXLC4u8vrrr5OQ8HgmdVtbm9Bo3717l/fee49Hjx6RkpLCmTNnuHr1qpAqDQwMMDo6in/NTcKqmuyFCL6Tc5E/qr6OZ3mT5uZmxsfHMZvNjzUd+5Xdbufzzz/nxIkTT/x8EE5Ju3PnDp9++imBQIBz585RWFhIY2Pjnmhdo9FIQ0MDFy9exG638+DBAxoaGhgbG6O3t5cXX3xRcAXefvttQqEQ58+f5/r16xiNRnp7e+nq6tojN4wrH0Ub+3TGfHJ6LLH+Y4yPj5OQkMB7772H2Wzm1VdfRaPR0N/fz89//nO2t7cJBoMivezh6iNWE7/ecTBuXY32KVMAdaSS5a6N/V8gQfLhOIw5UURERJCdnU1xcTGzs7NoNBrMZrMIDLp+/Trnz5/n6NGjHD9+nM3NTdbX14mKiuLll1+mt7eXiIgIfvSjH3HkyBFqa2sFFB0TEyOshOUddXFxMSdOnBAyuLLsbH7R9xD3zs6+owJjIEBFwCcsoOPj44Fw41JTU8PQ0jhd3omvPW9XU+sxax+/Dt1uNz09PZjNZjY2NkhJSWF6epr09HTW1taEukJGI2Tf+piYGOLi4pienn5soY+MjKSgoIDq6mp0Oh2zs7Mi6lij0RAXFyeaB6fTSUtLC0VFRcTHxwv1gpxrkJub+9hnluH2e/fusb29TUNDA0tLS6IhOHbsGFarlfv372M0GklMTGR7O5y1IHMfNBqNQDV2j+OSkpIoKCgQkLbT6dyjNlAqleTl5ZGeni6MimTEa3ftJhjKpExJknC73SQkJDAwMMDAwID4WyRJoqOjg+TkZDIzM1Eowr4fcpz2V2s3v2B4eJji4mJMJhNNTU0olUoGBgYwGAx7ZKSHDh2iv7+fZ555hrS0NJElkpWVxVZ2NP2h9acGoHkjFGSvSLhcLiwWC0VFRZSUlIhn3fHjx/nNWBsfxazQk7zD+5sjvDffgwIFJYYUIXlMTU0VGRMqlYqRkRFB5PV4PMTGxu5BbP82pdPpaGlpITk5mUePHlFeXs7Y2Bg6V4B/du0N6uPzyI6KR/H/kWTwm9YfdDMAYahfJrhEREQIV7JvWlFRUbS0tGA2h22DNRoNGo1GqBWKi4tFuElGRsa+M/ZQKMR7773HyMgIL730EpmZmY+9ZmVlhY8//hiv10tfXx+SJFFfX8/169epqqrCbDazuLjIvXv3ePfddxkdHSUpKYlz585x+fJlXC4XbW1tbGxscOXKFQoKCnj06BHNzc1YrdbHTIueVL29vUxPT3P16tU9EKnsWnb79m3u3r2LQqHgwoULNDQ0IEkSP/vZz8QYAMIPyx/+8IfCSe2zzz5DqVRSW1vLL3/5S0pKStDpdPziF7/g0aNHSJJEdXU1zzzzDHNzc/ziF7+gr68Po9GIx+MRDUZc4RzqKNcTPzvI65mCZGUDg4ODzM7OYjKZeOONN1CpVHzwwQfcvXsXCI+SXnrpJZKSknj77bcpqSijVzn31PMDkDavRbuz98bV6XScPXuW8fFxNFFq3Gte3NYnOAlK4SzzshcO8Pofv04wGI4wnZycFC85c+aM8OSvrq4mJSVF6Kr9fj9DQ0OkpaUxOTmJQqHA4XBgMBhITk4WznLyXNXv93PmzBkmJycxGAxsbGxQVVUl3kshSfg2NmhdfRwdkAApFOLotpf02BgBN8s57ysrK/T19bEwOsNi2tOzKozqaP5RztUnPvBktn1WVhZ2u52ZmRnhNmmz2QiFQiQmJpKamsrq6ipbW1soFApsNhs3b94UkK88o95darWajIwMcnJy6O7uRqlU0t3dTU9PDz6fD7PZTEFBAYODg4yMjFBZWUlSUhIej4eFhQUWFhZISEgQDdDuSkxMFFbdMu9jcXGR5uZm0tLSRP7CF198wcOHD2lra0Ov11NbW8v6+jqSJKHX62lvbxdNiFxRUVFUVFRgtVpZXl5Gp9NhsVjE2EB2GJQjou/fvy9sxr9Kat5NMJyeniYyMlIgdlqtlvb2dlZWVkhLS2NwcBCj0UhOTg5er5df/OIXZGVlCX+AgoKCPSZUcoVCIXp7e0lISKB9cpCEUxWMOpYZfNCH+ksATavVYjab2dzc5MaNG4K4PDExgcfjwVUQx8DG/FORuW1liAuabFxOl5CDjo+Pk5WVxcbGBr+y9tGT7seJXxzH6ffSvPaIWZeNM0nFezaEcjNeU1NDVlYWXq+Xnp4eWltbmZqaEl4aXx0XfZtSqVT09vYKQ7Ty8nJaW1spLS3lwIEDv/Nx/77rD74ZgPDC5Ha7Rff/TRilcskMX4/HI2Dz5ORkRkZGBIyYm5vL3Nwc7e3t5OfnM941zTv//gOa3+5kbc5KWkEKza3NdHZ2cv369T2zS9lbXB4DBINB8vLyuHXrlph1y9no7733Hs3NzXg8Ho4cOcKNGzc4fPgwZrMZtVpNQUEBKSkpdHd309nZSUZGBpcuXRK77NbWVra3t4Xb3ZPq888/F57pEL7JJyYmuH37No2Njeh0Oi5dusTly5dJSkpiZmaGH//4x0JCKEkS8fHxpKSkiBRFh8PBnTt3OHHiBCMjI0IdYLFYyM7OpqCggLm5OS5fvsznn3/ORx99RGxsLOXl5YyOjqJQKIQRUFSyDU3M1lOQAQWxmhyitmsZGhpCq9Xy/e9/H7fbzY9//GMmJsI72NLSUl555RWioqL467/+a4xGI75ND7PaDXz7TZNCEOFWkDWjRULao7tPT09HoVAIQpSpMBqf249zeS93IDJZR/nrOUTG6WloaKCwsJDa2lq2trZEOMzIyIhY/EOhkPDO9/v9/PrXv0av17O4uMjm5iY3b97E7/czODhIdXU1H3zwgYhzlQNubt68idvtFgS5gwcP7pkXL/T3o3G5sKrVeHaNPlJjYvhhQT7MzYpxiqwLl0cZzzzzDFcvXUGpUzNgn9r3Qf69nMuUxD55lKbX6+no6MBsNguPe0mSsNlsREREoFQq8fv9lJSUoNFo6O3tJRAI4Ha7yc3NDfskzM+Tnp6+b7pnTEwMLpeL+fl5XnnlFfx+PxaLhba2Nra2tqisrKSnp0cY6uTk5Ahr8JGREUpLS584bpP9/e/du4der+f8+fOiIfD7/UxPT+NyufB6vVRUVPDaa6+RmZkppId2u53k5GRaW1vRaDSkpaWJxUqlUlFcXIxer2doaIjo6GhGR0f3jA3UajXFxcXExcXR0dFBd3e3SFbdXbsJhrOzs2xtbREZGYntS8mo1Wqlra0NhUJBTEwMBQUF3L17l7m5OV577TVhghYbG8uLL74ojMB2ewa4FQH+cuchg+khut0LzEbuMBEfZDMiSMKWxJkTp+js7KS+vn7PIjg/Px82z8o20WefeyoyoJIUvJJ0mNnZWWJiYgS6srKyglWxTXv2l8jeE44x7lihMCaZ7KjHGztJkjAYDOJ+jI+PZ21tjc7OTtra2lhdXUWlUmEwGH4nwvj09DSbm5tsbW2Rnp7O8PCwMH37Q6l/EM0AhOWGu7v/b/OFbm5uMjg4SH19vbCzjI+Pp6mpCYPBQEpKCgUFBfR09vF//uCn3P5fPmGsa5Lxnina33/Ab/7d+6y6lrj2cgOHDx8Wu8HdY4Dk5GRSU1NZX1/nzTffJCYmhtnZWb744gtu377N+Pg4aWlpnD9/nkuXLj02J5QrLi5O2Jo2NjaytrZGbW0tdXV1SJJEe3s7Dx48EHK63V2yx+Phgw8+EOTF0dFR3nnnHVpbW4mKiqKhoYHz58+TkJDAxsYGH3zwAZ9++ukeE57nn3+e6elpEhISBLza0dHB3NwclZWVfPzxx8Jd8NatW9TX13P79m1MJhNtbW3YbDbOnDkjOnQI7yhkmVN0hBld6lMy0QlxQPcGH70Vhsrz8/NRqVSCpyG7Dco58r/+9a9ZX18Xeuqbxy7TsjX05ZH2HBYpBEUjEei3w1p1u90uHoYxMTEMDw+LnANJIWHKjyHpkAlTRgzxRQZSjsaReSqR+JSwpLKoqIioqCiWlpb4+OOPUSqVJCQk4PF4BIlyeXmZ9fV1Yfk6OjrKK6+8Ql9fHxqNhqtXrxIfHy+yGnp6ejhx4gQdHR3is7lcLurq6sTDPjo6mvT09PCfFQrxwQcfcKy4mGezMnFPjPODK5f57qFD/GlVJVO9PXsiceXAGAgvVq+99lo4ntiYy6ftX+CMDobdJaUvWdgSvJxxmlcyzz41IW5mZoadnR02NjaorKxkYmICv9/PgQMHsNlsrK+vU1tbS1xcnFiIZKOdixcv0tbWxvLyMtXV1fteGenp6XR1dbGzs8P169c5fPgwWq1WOAzKLpCpqakCMZARhIGBAZLjs3n/Vxbavhhmcc5GSkYcWm0YefD7/dy7d4/o6GhMJhOTk5NMT08TExPDzZs3hfojEAiIe7e8vJyFhQUh2bNYLGxtbZGbmyueT/L8/8CBA8J4aWtra8/YABCEvbm5Oe7fv4/b7Ray1N21m2A4NjaGWq3G5/Ph9XpJTk7GarVis9nQ6/Xcu3ePkydPkp+fTyAQYHR0lPX1derr64mPj2d0dJTU1FS2trYIKOF+YYDNr7rrSeDSwVp0iEJ3JPaNDW7durUHvbBarQwPD5ORlErz9iz7lVJScDqpiAup5cIQrb+/n5qaGs6ePcv7zjFW1PtzfpSShH3HQ0Na5b7vAYhmury8nKqqKiIjI5mcnBSukHIjFRUV9Y3Hzmtrazx69Ai/309ERAQOh+Nr02h/3+ofTDOgVCrJyMgQZiNPClDZryRJoqurS0SSQphEJIduHDp0CK1Wy0//y3dYGF6GEISCIZFvHfQHWR/e4swLJxieHOTdd98VBiPyGODQoUNYLBYh67l9+zatra3s7OwID/Cqqiri4uK+9gKSdwvx8fFYLBa6urqIj4+nurqayspKtra2aG5uZnh4GKPRKHYRQ0NDjIyMkJ+fz+3bt+ns7MRkMvHss89y+vRpAfF98skn3L59W0C4cl28eJGDBw/S2NgoYlpDoRDvvPMOMTExdHZ2IkkSV65coaGhAaPRyP379xkbG8PhcFBZWcnRo0e5e/cuVqsVg8EgFkY5vGlrLYTe6EH9BHQgFJLwrBnpeEuPhEKE/vT29gqS5xtvvCE0562trVgsFsFYf+ONN8hPyqLKmMeEc4n1nU1x7CingsLRCAybYURFnm/Lf7/L5SI6OppAILAn6TDGGI0iFvQJGrTRauGdL5vsmM1mfvKTn2AymYTD4uXLl7l69SoJCQkMDQ2xs7ODxWIRTZbf72d2dpZAIIDRaCQ3N5e1tTX6+vrEYiSjL2fPnqWlpYWEhARUKhV2ux2PxyNGBWtra7S2tnLq1ClGR0YwKpVkRUcz2NHOZ59+KhqB3NxcbDYbfr+f5ORknM5w5r0MoSskieHYhADAAAAgAElEQVR3O0i269FIKoqTcmB8i/++5k0uZtZ97TVrs9kYHR3FbDaj1+vFmEP2xg8GgyQnJ5OQkCBQDr/fj9Vqpa6ujoWFBeFWtx/yJydFylLA+Ph4MjIyqKmpEUiKHPzk9/t3EQq7GW7f5lf/0cJAzwyPBhfobBrl7Z+0ERcfTW5RCikpKczMzPDgwQPGx8fJz89Hp9OxurpKWVmZyEm4d++eQDRUKhWlpaU4HA4GBwfFuGJubo78/Pw9C6aMlC0sLGC1WkVC4u6xgdxg6PV6WltbGRgYIDU1lZiYvaS3rxIMl5aWMBgMrK2tiZCjkZERVCoVFy9eJCIiAqPRSGtrKyqVCoVCIaSdKpWKGzducN85xVik58kLsQReDezMrFGZmitQR7mWlpbCuRiTc1ijQng0PH6cLwU+/13FTbLNybS1tZGWlkZGRgaNjY1UVlbSqbIy636K6RbgC/p5/cDR/S/Er5RWqxWOmYWFhYRCIQYGBmhvbxf3psFg+Nr1zOv10jHUi1sDO24veQdyvjaN9vet/sE0AxCew8lmI0+b7z/p99rb24mNjd1jcSxns/t8Prwrfn76r3+zL4NckiQedvdDgk+oAeQxgFqtZmxsjJaWFux2O9PT02RnZ3Px4kUuXLhAZmbm76SESEhIoKKigpWVFRobG7HZbBQUFFBWVibgwqamJubn54mPj+fu3bt4vV7BRbh27RqnTp3CaDTicDj47LPPePfdd9na2iIlJWVPul1dXR0nT54kFArx+eefCynmp59+KmaCoVCIGzducPDgQZxOJ++//z6dnZ1otVr++I//GJfLxZ07d4iKiiIQCOB0OjEYDFy7do2+vj6CwSCSpOBQ7kvML8ygibUjKb+Mm0ZFRsQVJu8W4NsOCSRhe3sbSZK4dOkSly5dEtfdzMwMb731FhC2PX7hhRcEdJ6gM3IlpZbTiQc5YijE37hI8oQC3bZCjAa+GvokNxtfDUmKiooSEPuRI0fIyclhYmIiPJbw+RgfH2dlZYVbt27R2dlJdHQ0N2/eRJLCjOkHDx4IeNzpdIpwGY1Gg8lkYnh4mEOHDgnznpycHIaGhlAoFOTn53Px4kXcbjeNjY0cOXKEkZERtra2qKqqQqvV0tfXx8zMDJGRkfT29uJwOJifnyc5OZkTJ06ItLuioiJWV1d5/vnnRcBOMBhkbGwsTMLSavjwQTMhSUHqVgTfO3qLibt9HDtc941cQGVvhZycHGZmZnjhhRcEUVelUglpaVFRETExMYINL0kSOp2O2tpaurq6sFqtVFRU7Ps+SUlJTExMMDIyQlVVFQqFQiB9Bw8eFBLUmZkZ2tvbCQaDTPUEmRoMk+VCIQjKTX4gSPu9EbyBdb5o+oiNjQ2MRqOwVj516hTz8/M0NzeTnp5OeXk50dHR3Lt3D7vdLiSHMnplsViEBe/AwAC5ubl7OD4ajYaysrI9CYnDw8N7xgbyQl9cXMzY2BhNTU2EQiExxtpduwmGY2NjQsor3zsajUZ4O2RlZbGysoLb7WZpaYna2lrMZrPgTn2qXWZle39rdCkEQSmEfnxDkK29Xi93797l/v374YY8PoGYRQ/2GAUuTQgpBCpFWHanRuLUUhQv1ZxDpVIxNTWFw+Hg8uXLTE5O0tfXhzsjhmmX9akZBcm6WF7YZfX7TUvOMMjNzaW2tpa0tDRcLhddXV20trYyNzeHJEkYjcbH0Jiu9Sn+5+nPaDFuMZUQYsDgIWjQcSgph8gnGHH9vtY/qGYAwmYjcrZ5ZWXlN3IQVCgUzMzMYLfbhXYWwpBpKBSipaWFxQ4rEz0zAg14rEKwsxngP7z3bwTC4HK56Ojo4N1336WrqwuAo0eP8sILL1BRUYHRaPxbw0gajYaSkhKMRiMdHR2CtZ2VlUVFRQVms5menh7a29vF4vvqq69y7NgxDAYDTqeTu3fv8vbbb2Oz2Thx4oRQaOh0OmHpevXqVSRJwucLW0HLjYA8/46MjCQ5OZmzZ8/S2dnJL3/5S2w2G4FAQIQiyVnfNpuNnJwcbDYb8fHx3Lt3D61WKwiKpaVldN+zsjF6APdKIpuTqVwu/59our3CttfPiRMnwpG+X+7a9Xo9ycnJJCYmit3xX/7lXwrHv/Pnzz/RpVLtk/jo5+/iWgsjBHKyWigUwufzPeYxYLVaxesgjB7tdl1raGggLy+P5uZmJElifX2d5eVl4e1vs9nIyMigrKxMHMdmszE8PMzKygrPPvss0dHRLC4ukp+fL0Jcent7WVtbw+VysbW1hdfrxe/3c/nyZQwGAwcOHGB6epqhoSHh+hgKhZicnKSlpYVAIMDy8jKBQIATJ07w8ssvU15ejtls5vPPPxcoht/v58KFCxQUFPw2PCoY4Ndrffz71RYGjV7G4/yMGndApcA7tkh5Wfk3yvGQVSWZmZlMTEyIFM2FhQVSUlLweDysrq5SV1dHVFSUGCMoFApWV1c5ffo0g4ODLC4ucuTIkX3va0mSSElJoampSez6dpccRDYwMEBeXh6PRmfo+GT/rHqAuelVLt2q5vnnn+fo0aMsLS3R3NxMdnY29fX1oiHIyMgQ8/3Gxkbh2CejlvLcX1YeWCwW0tLS9pw/OTk1LS1N5Do8aWwgGxUBNDU1MTEx8ZhRkVy7CYZyJLfcJKWlpYlchqysLCYmJgTxsrCwUDQug+ZttnxP8fOXQOOHnM2wd8vq6iqffvopc3Nz1NfXMzs7G07EDEnku/SUaOLZ2XJREpfOa4Un+acZzzBy34JOpxMjusHBQY4ePcqBAwdob29Hp9UyoNxfxaNA4tXseg6aHidvf5uSG/Xi4mKOHDmCyWRieXmZ9vZ2Ojo6WF9fR6vVYjAYaFod4087f8zajvO3TYoE875NPlrs50JK2R9MQ/APrhmQs807OjpYW1ujuLj4Gy24cgZ5fX39ng47NTWV/v5+xttn2JjZFLuGJ1UoFOK1//Y5JiYm+Oyzz3j//feZnZ0lNzcXo9GI/8uUuN8FBXhaydasu8NPNjc3sVqtNDY24nK5xHjC7/cTGxuLwWCgsbGRt956i9XVVY4ePcpzzz0HwFtvvUV0dDRut5u0tDRefvllcU7m5+fp7e1ldnZWNDy5ubksLi5y/Phxbt++zcOHDwVsGgwGGR0dxel0CuvlGzduoNVqGR8fx+Fw8Mwzz5Ceni4Y9xkZGUxOThIbY8K7qWF7S8fSQphlnpqaKqB/hUJBREQERUVFQk9st9u5c+cOfr+fa9euUVNT88Tvf2tri//8n/+zYE5fuXKF2dlZfD4fHnWILV2IkATa0N5MAr1eLxIN09LSBAsbYHFxkcOHDzM6OsrGxgaBQIDi4mKio6MF7ClJ0mM72+7ubhITEzl27Bhvv/02R48e5cqVK9TW1mK325mfnxcBLn6/H5VKRVxcHGfPnhXnNCcnh66uLpxOF/8Pe+8dHeWZpnn/3ipVSVUqSaWcc0ZCSCAQIJIAk03GARtjMNjt3J6vz8zXPbv7zc7u9uzMzvS07W67u22Dsw0YaBsLLIRFVEBIQgEFlHMoRZRLUtX7/VGuB4SCcU/P7PRMX+dwdFC9qjc/z/3c93VfV3uLmavftpJzrQ1Dm0xwcBCrUhZRW1sz6fnr7u7mxo0bIijV6XQiDV9RUYHJbCLH10iF6xij5rulEZMCigdauKORWesVg9sDCH6pVCpu3bqFvb09HR0deHt7s2DBArKzszEajYyMjGAymfDz8xMCYqWlpaIU5OvrS2hoKLdu3RJ8jJmg0+kYHh4mJyeHefPmTRmLrCY95eXlhHgnUphTP+uxj43AKz99HL2zo1DcbGhoIDs7m/DwcBYtWkRTUxOZmZn4+/sTGRkppJKtUrzWOnVAQAA3blgmPUdHRzIzM3FycprStuzi4kJsbKywLra3txeyw9aygUKhIDg4mNDQUEpKSsjMzESj0UwRKoK7BMOqqioGBgaQZVnYUru6uqLRaCgtLUWhUKDT6ejp6SEhIQEvLy+uXbvGoLeGbvPIjKtySQb3fgnP7+bqrq4u7OzsePKxfWR9kU/WBzdpy+nmTsMQqGUOP/UETp1j2LcMsW/NVvQOFinsvLw8FixYILwcoqOjcXNzw9HRkZJLOYwGOjEoG6cch1JS4Gxrz9/E7fijqvvZ2NgI/xjrs1RVVWXhZt0s4FfGm4xjmnI8MjBqGqd/bIRVXn8a5YL/cMEAWNJjLi4uXL58+YH0AeBu+1NISMikSF2hUKDX68m6dJ2u8jsz/r0kSbgFudBCLXl5eSiVSpYvX8727duZO3cuFy9eJCQkRDDH/zVga2txL+zu7ubWrVvU1dXh7+/P3r17GRwcZHR0lKioKLKyssjJyaGtrY0lS5awe/duwsLC6Ovr4+OPPxatSXq9noMHDwoiV0ZGBmfPnkWWZVatWoWHhwdNTU309fXh6OgoWgUfe+wxfHx8SE9Px2g0YmNjg9FoZMGCBezcuZPi4mKuXLmCUqnkueeeY86cOaJ1SZIk0XJmNBoJDg6mt7eXsbExVCoV7e3taLVa9u3bR2VlJRMTE0JoqK+vT5QbAgMDWbx48RQVNrDUr48ePcrAwABms5k5c+bw0EMP0c4wp23qKQ6UaXCXqfGU6dCZcBiV0I5biKUrV64UHQv3BgKSJE1qAaysrAQgIiKCK1euMG/ePOzt7enr62PBggXi7yoqKqitrSUqKoqamhoGBgbYvXs3NjY2KJVKIiIiuHHjBiaTiYSEBFFfNxqNdHZ2YjAYKCwsJC0tjcGBEQpzoa1JgXEUxscljKNQU9lP+a02IqL0LFm6WOy7oaGBsrIygoOD6ezsxM/PT3BtMjMz0UT7kaHpmJGwNaiBABsn5vk+GD+ntbUVg8GARqNBlmXmzp1LWVkZ/f39SJKEvb29UAN1cXEhJydHKOsNDg6yatUq8vLyaGtrmxK03w9/f3/y8/Pp7u4WXS/3wupuWFbYRGfL2KwCUgBbHl2Eg6MlpW8NCKqrq8nNzRX6/PcGBGFhYRbHvcxM6urqiI6OFmz1yMhICgsLGR0dJSAgQMg1BwUFTZrE7ezsmDdvHkajkerqatzd3SktLZ1UNgCmCBU1NzdPS0C+c+cOGRkZyLLMhg0bhDKkVW8gJCREZJ6sREcrf6Q2q5Lesx1ov+jGNmsAxmVMvmqw+e54JZjXqEQ7fvf4+zsGee9Hxyi5cJux/nHGhyYY7jZiKOxDMilI3pokOrSsOhLXr18XfhVZWVm4urri5+eHh4cHPd09KCsMqMO8aDf2o8AiTSwDITp33kraj5fmX4+9r9FoCAoKEuXAkvFO8qXOGbeXkakZNLAveCkqxR/mn/NviQedv/99qyVMA6uf+blz5yYN2jPBy8sLjUYzqR/cioiICJIeTsDGTomkmH5klGUZl3laQkJCOHToEM899xyLFi1Co9HQ09NDT0/PtOImfyyMjIxw+fJlXn/9dVHn9fHxoaamhhs3blBRUYGDg4MwTLFmKurq6uju7mZ4eJhPP/0UlUrFnTt3sLOz45lnnkGlUnHjxg3efPNN8vLyRIp77ty5FBQUCHva0dFRtm7dysGDB7GxseGDDz4ALJOko6MjzzzzDHPmzOHIkSPk5+ej0WiIj48XQiq2ro5UepnJD5jg9FglPfYyGq0Gg8Eg0vbWFeGrr76Kv78/arVaMN+rq6uF/aqfnx8Gg4E333yT3//+95Mc2zo6OnjvvfcYGrJoGahUKjZv3szt/jb+cSCHrvsEyHp0cDXSRJfOMlvcy0O5dzKytl2eP3+exsZG8XlBQQE6nY7169djZ2c3WRFxcJArV67g6upKbW0txcXFpKSkTHoRx8fHmZiYQJZlWltbRXBjbUe7fPkyxcXF6PV6zMZgBvutz+fkn+1tI1RXTD43q5qkh4eHUK+793kqUHShnEUoRZLh2zuzdX5Mhp+fHx0dHfj7+4trFBUVhY2Njbh+t2/fxmQyYWtry5w5c1AqlYyNjVFVVUVvby/Lly/HZDJx9erVWfdlZ2fHQw89RGlp6bTvtEqlYteuXWAzPHPp7zvY2tng7DqZtGhra8sTTzwhWleHhoZ47LHHLM51n35KQ0MDISEh7Nu3D4PBwIcffsjw8DAA7u7uHDp0CJ1OR319PfHx8Vy9epWTJ09OIqeCZUW/YcMGdu/ezZ07d3B0dKS1tZXf/va3IuUPlnLh5s2beeKJJ+jo6OCtt94S74MV6enpouV4wYIFvPjiiwQGBtLX14ebmxvNzc2TymkfffQRFRUV9BQOU/e/KtCm9qK+NYI6bwjH19txeakORYfleIM7FfiaNIIDIcsyZccaMPbfJ/L1XWPSl7/6hpqrTTg4OAjNDZ1OR3JyMrm5uQwODuLr6yvO0UpMdlJpWFWt5rPkH/FK1DpeiFjDu4sP8sWKlwi0/+GS9H8IJEnC398frzmhKGbrkwTGzSa6x2b3MflTw59UZsCK4OBgiouLqampEUYgM8EqmWs1nLj/M/9Af8qabtFVegdJIU0ZQOaujeJ/n/gbYmNjJ0leAty6dYuamhq2bNnyLxK3mA5DQ0NiIGloaCA+Pp49e/aQkJDA/PnzsbGxITMzU0ymiYmJ7Nmzh6XLkul0VnCpt4pzt3IoulGAYsgyqSuVSg4fPkx3dzfHjh2jqKiImJgYYVlaVlYmUsnj4+P4+/vzzDPP4Ofnx82bN/nss88YH7co2qWkpLBp0yauX7/O2bNn8fDwYNOmTRQUFLBq1SpcXV35ouEGL+Z9RIeDmX4N9Ghl6j1keu1l9K0jKGRLtmDXrl2kpKSIAau4uJj+/n6MRiPffvstKpUKPz8/nn76aRYtWoRWq6W4uJjMzEw6OjoYGxvj5MmTTExMiEBixYoVhIWF8VcFx2kZ7p0qrPPd/3t0MsEGCW9vb2GvvGDBAjFBW/X0TSYTHR0dQvvCWhpydXWltbWVuro6kpMtbOezZ8/S29vL6tWrKSwsFJ0d9z47WVlZ1NfX4+LiQmdnpwh+rMe+aNEiHBwcqK1pIvNiN/IsykDdnaNs3bkAWztLGjUnJ0esnCsrK0V91Gw2k5GRQb2/km7T7HViBfBk2LIHelYVCgV5eXlERERQXl5OYmIiWq2W/Px8Ic09MTEh9ATs7OyElK2V5b5s2TKys7NpbW0lOTl51nfa09OTuro6QcK8P5Og0+nQOanIuVSN2SRNmx2QJHAPkmntLkej0eDu7i72qVKpiIqKori4mKKiItFV0NjYSGZmppCFDgsLIzc3l7KyMqKiorC1tRVkwba2NsrKykhMTKS0tFR0KtxfSvTw8CA6Oprbt28zNDSETqcjOzt7UtkAmCJU1NPTQ9B3LoTp6ekkJiYKV1QHBwdiY2OFrsrY2BguLi4MDQ1hY2Nj4QedzubCG98Zk8nitlt+DpuxvTlEaKwLy43uvPjii6xcuZKYmBhupN+kNqNlxnsjSdBS1cZDB1ZQWFhIUlISSqUSHx8fbt68SU9PD97e3pSXl4uWb2vK/vLly3jpnNkav4z5LkH4aP/l3Ks/BA1DXWR0lM+6jQQ8G57y79KY6H78h80MgCV637lzJy0tLVy5cuV7tw8JCaGlpWUSi9wKvV7Poo0JxB8OxS3GEaVagaSUcA3UE7snhL87819nVP+rrq6e1nP8X4KBgQHS0tL45S9/yfXr10lMTOTVV19l48aNODo6Mj4+TnZ2NtnZ2eJvzGYzSqWShrE+tlz8Z37efIFC/RDlvmbOhQ6RETSMUWFm/fr1nD9/nk8++QStVsuzzz7Ltm3bcHBwEK1oFy9eRJIkHBwc2L9/P5IkcezYMc6cOfNdV4DEM888g6+vL7/73e8oLCxkw4YNPP3000LgIzg4mCsdt/mft75iQjaDBLLC8g+gRTNGfpAZtVrNa6+9NsVLwTpg5uTkCGGm3bt3CynYxYsX88orr/Dwww/T0tLCmTNnRLnB399fqMW1DPeS31OPecZWEUtKvNceLl++LH5tXcXFxMQwNjYmVrjApNbWe1fzo6OjyLJMY2MjRUVFrFmzRgSI91rXDgwMkJOTw+XLlzGZTJNU4bZv344sy2i1WubMmcP69etZu3r7rIEAgMkkc7vibjeEVVjIun9recyqM69XaZFmW/nIYM+DD3IeHh7CyhmgsbERX19fNBqNEKlRq9Wi3z4oKAi9Xo+DgwO2trbcvHkTs9nMggULBLFyNlhVA7u7uye9B/diydIlpOwIQKGQUSinnqvWCQ6/tgkPDw9Onz7Nb37zG8rLy8V9dnBwYN++fUxMTPDxxx+L4M/X15dPPvmExsZGvLy8OHDgAEajkaNHjwrSqVqt5tFHH2XBggXk5eURGxtLX18f77777iQPECvc3Nw4dOgQc+bMoaurCy8vLy5evCg0NsQxa7Xs3r2bHTt2UFlZydtvv82XX36Jn58fUVFRAJMyVJGRkbz44oskJiZiMBgmaU105N6ZsUwkmUHZOIZ77gg93T3k5+fT1NRksWEv7WA29V1ZhsbyFiJCIjEajeKeq1QqQRbVarUMDw8L4i5AYGAgy5Yt4+LFixYho/+LWOUZNWv6X4HEYrcw9Oof5h3z7x1/ksEAWFKTK1eu5MqVKzQ1WaRoR4eNDA+MTGGLBwcHI8sy9fX14nfd3d2cP3+eX/ziF1RWVqLz0rDqhUV81f8R58eP8+u8/41+jpZbt0qm3b/JZKKuru4H6R7Mhr6+PlJTU3n99de5efMmS5cu5cc//jEPPfQQOp2OiYkJrl+/zhtvvCFaAB0dHYmPj2f16tV8m5fFgczf0TFi4T+YZLNYDXc5QFa4idSzqbS2trJ79272799vcQMbreds8V9SbfO3BDyUiWtMNQr1KFu2bKGlpYU333yT27dvo1KpUKlUxMfHU1BQwEcffYRer+f5558XZL6qqiqCgoJQqVS8W315xlSbLEGri4xbZOCU3nJr/zRYJuOuri527tw5pc3NxsYGjUbD4OAgCoUChULByMgIlZWVREVFoVKpaBuZ7MM+E0bU8iTzoubmZgASEhIIDw8Xk5xCoSA/P19sZ32erN0pRqORc+fO4ePjQ1xcHBcvXsTe3p7W1laysrI4cuQIv/jFLzh//jxms5nk5GSUSqUIfqyW21YVPGDabonpoPiuzGW1FAaEyqI1GLBOLE51A1NsWO/HAml6f4vp963Ax8eHrq4unJ2daWhoEOTHO3fuoNVqGRsbE3LIVrLlyMgIQ0NDDA8PU15eTkpKCpIkcenSpe/dp6enJ4sWLRKk2vshSRKHnn+cRZvsCYlxQm1rCYxc3HWEJWhIWKvlWtYV1q9fz6FDh3BwcOD48eO88847wlTJ2dmZffv2MTAwwCeffILZbJ4SELi5uXHgwAEAjhw5IiY4hULBpk2bWLt2LYWFhWLR8N5771FdXT3leNVqNdu3b2fLli0YDAZcXFymLRtIkkRcXBzPP/88arWavr4+nJycRBfG/QsetVrN+vXrOXz4sNAtUCps6K65MyufQlJAX60lDZ6ens6RI0e+4yXMGFpPQvr5dKGqasW9dudWwap7sWrVKjw9PTl16pRok/y/AUeVhsNhK6f9TPqOz/BCxOp/46P618efbDAAsHz5cvz8/Pj13/yOF5P+Xx7WPck2p6c4FPsa5977VgQFzs7O6PV6ampqKC4u5v333+dXv/oVhYWFzJ07l+eff55t27bR2toqJgJXV1eioqKEwcr9sDLU/6V8ge7ubr788kvefPNNysrKWLlyJT/+8Y9JSUlBq9ViMpnIy8vjzTffJC0tjdDQUF566SUWL14s7F2XL1+Obm0s45I87SpYlqBXBxOBzqJ3vba2lhu1H3Cu6RH67S6hcetF496L27wKwrZforrtCkePHmV4eJiIiAhWrlzJ+Pg4VVVV3Lp1i82bN/PUU0+JevTo6CiNjY2Eh4fTPz5CcV/TzCtyABnq7Sanqmtra3n33XdFarCsrIwVK1ZMG3AVFhZy/PhxYWX6yiuvCLnm/Px83n77bTrrZ05n3gv1fSaGPT09qFQq4WlhNpvFytcqGASIQd2aIbhx4wbt7e1s2LCBq1evCh17g8FARkYGWq1WtBnGxsaKIGJsbAydTse5c+dYvnw5g4ODIuiInOODWj17CUqttiFqjq84dlmWcXBwoL+/HwcHB2xsbGhqahL6DGHjDkRoLIJD90MpSbiM2xBj+v62wnvh5+dHc3MzgYGBYpC3dqNY23pHRkbEZ/Hx8aKs4+DgQF5eHmq1mqioKPr7+0XJZjasWrUKW1tbzp8/P+3nOp2Ox/ftxD1skL9+cwNf5/0Nn174K37286eRmcBkMnH8+HE8PDzYt28f+/fvx8bGhk8//ZT333+f+vp63N3defLJJ+ns7OTYsWMoFAoef/xxvL29+eSTT2hqakKv13PgwAE0Gg1Hjx4VwawkSSQnJ7Nr1y6qqqpEe92nn35Kbm7ulOO1WgofPHhQyEdrNBo++OADoTtghUqlEvX327dvc/LkSWByZuBeeHt789xzz6HX62d07bwfNkrVJKKup6cnP/rpYcEPmAlaD1ua2htpbW2lsbFRvCcKhYJ169ZRd7uBzhsDvPH0Ef5i5X/j/f/6OYamLpRKJTt37qS/v5+0tLQHOsZ/LRwOW8WLEWuwVVjePeub4mHnwK8XPcVcZ/+Z//hPFH+SnAErJEni5ulyzr9xjZ72PhHp9ncPkv1VHt3tvSzevEA4eFVXVwv1vtWrV7N161YiIiKwt7fHw8OD2traSaImTk5OZGVl4eXlNcmMBBC+9FYr3x8Kg8FAWloaqampDA4OsnLlSnbs2EFISIhw+issLOTEiROUlJQQHh7Onj17mD9/PhqNhps3b9Lc3MzmzZtRKpX8vDyVQdM0BjvfQSkpmBMZxaFlD1NdXU1++Tnk0C8s11FhvZ7fGQZJZkbsihhuiGDP7sdYuHAhx48fx2Qy4e/vzwfl29wAACAASURBVBNPPEFISMik866srKS0tJTNmzczpoSP6jJnv3eAvWEUU22nMM45f/68aOFqamrC09OTXbt2Tbm+OTk5pKamCnvT/fv3Cxnn7du3s3jxYgwGA8U5N+hwVWC0mVlDwm4c4poUU9LmwcHBaDQaMjIyRL3dOohatQqsNrZWu+rm5mbc3NwoLS0V3gwhISF0d3ezZs0aNm7ciMFgoKioiG3btpGWloZGo8He3p7NmzcL5zyVSkVRUdF3zn1q+u+MUFE2fepUkmDbrkSWLo8ALJ0EpaWl+Pn5YTabRQB34cIF0f3x/HM/YmvIQhqHuqkbnMyaXuYewfJGOxxttSL1/CAYGxujoKCAuLg4iouLSUpKQq/Xk52dTUREhJjch4aGiIuLE46E4+PjjIyM0Nvby5w5c4iKiiInJ4f29nYSExNn3aeNjQ0ODg5cuXJlRn8DK8cjKyuLOXMs/iYODg44OjpSVlYm9h0VFYWzszPx8fH4+vpSU1PDtWvXhNWw1WGvvb2d2NhYYmNjqa+vJysrS6gixsTEUFVVRXZ2NoGBgUK/3sPDg8DAQK5fv44sy0RERAivktDQ0CnPt4ODA/PmzaO9vZ3Gxkb8/f0pKiqa1G2QlpaGwWDgmWeeEW56Q0NDomtjujHJ2tFTXV1FT9UAY4OzBAUyrHp6Cfbuluyb9d5VNd6mp2qA8aGJGTMLyw4kItvf/e6SkhLa2trw8/Ojs7KXj149jaGil8HOYQyNXZRm3ebLX31DSFwgkQnhaLVaC39gmnH33wqSJLHANYjHgxYT5uDJItcQ9gYv4a9iNuP/b0Ro/GPhP2Rr4f1oKGvi54+9bvnPNA9mVX4tjXdqyb2Vg8lkYmJiggMHDrBy5Uo8PT0nEY+sPf1Xr14VlsdOTk7U1tbS3Nw8RYozPT0df3//HyxN2dbWxrlz5zh37hxGo5HVq1ezfft2AgMDhalPSUkJJ06coLCwkODgYPbs2cPChQsnCY+cP39eaBAA/LbqImPmmV9uWZYxG/oxF7dgMBhwn1eBrb5/2vqfJIFCYWbF0k1Iw958+OGHGI1Gli9fztatW6flUGRlZWEymVi+fDl2ShUnG24wYprFVliCpDFXNCMyZWVlYjXV19dHS0sLsiyj1+tFrzpYUp5XrlwRgjo+Pj7s27cPOzs7Tp8+jUajYePGjej1eubOnUtUVBTDTZ2UWAVNpiERxjcocBpRMDFqoqdqkKH2ESQFJK9aSlpaGiEhISxevJji4mLAkmUaGh6i232CqqAhTndmkdFewPj4OHYDFjlrrVbL6OioqNc2NzcLhb1Tp07h6+uLg4MDRUVFjI2NsWLFCuLi4ujo6KCwsJCNGzeSk5ODVqu1yM8mBFJT1U5zUw8KhcU7wPpz/sJA/p+fPoxSabmR5eXlNDQ0EBQURGVlJX19fZjNZjZt2oS/vz+VlZWsXbsWOxsV63xi2eo3n2gnH0LH7HG90cH/2fUiVWUVwjb5QWFra0t2drZw3PT398fHx4fKykqRUTGZTHR1dQlxIUmSRMuoVakwNjaWmpoa2traZjQZuhceHh7U19dTWlo6LZkQLByFsrIyysvLSUhIQKFQ4O3tzcDAAG1tbXR0dAghI6swzfz58/Hw8OD27dti4k5MTCQ3N5fe3l5iYmKIiYmhrq5OBARubm4iSMjMzMTX11dkkaxmOkVFReIa5OTkCCGq+wnIKpVK2PQWFRXh5eVFV1cXN2/exNbWlkuXLrF27VpCQkKwt7cXnQudnZ3U1tbOKFTk7OxMTk4Orh4uNBdM5S8AIIGds5o9f72FyqpKQT60InxJMG0l3YwNjd99pxSADAk7oll7cDmLFi0SJTKwZECvZmTy0SunMY2bJ43XsixjNpu5djKH1XuXETEnnPb2dnJzc4mLi/u/OueolTaEO3oRq/fD395l2mzav3f8pwgGPv1fp6jKr5m5hUgCs1Hm8H/Zz5o1a8jJySE4OBhPT89pN3dwcGBwcJDc3FwhrmPVCw8LCxM1t8HBQdLT01m6dOmM33U/mpqaSE1NJT09HZPJxLp169i6dSt+fn7CmKasrIyTJ0+Sn5+Pv78/u3btYvHixVPq6gMDA5w/f55ly5YJrYVL7eUYRvtnJgUB3j2gbhlAoVDgPr8Ype0sKwNJwtDRw6VTbdjY2ODh4cHu3bunXXHIsszXX3/NnDlzCA0NRSFJjJknyOuun/arFUhojPDjsIfo6uykr6+P9evXk5KSwsjIiGgZtDovFhUVkZuby7Vr10Sd3tHRUawcGxoauH79Otu2bRPCNmBJEwc7edKQVUyXg5nxe8rvtuOQ0KDAr0ui8WInFccb6Sy5Q3d5P203eii5XI5bmJ79h57i6tWr9Pb2WlKmNgoKInpp9DcyaiczjJFBhZFu1wkGfRT8ZOMhcq5lkZycLCbT8fFxIQJUUFDA1q1buXz5MkqlEpPJxI4dO7CxscHPz0+44Lm4uIjsgFqtYtWaGGLj/JiYMKHT2eHipiQobIL/9Q/PoVLdPbGsrCy6u7vp6OhgYmKC8PBwDhw4gJeXF7W1tUJEygoHlR0Rjl5o+sapuVXBsmXLhDGLtd30QWBra0thYSE6nY7+/n7UarXgDJSWlhIbG0tbW5vwcYiJicHFxUVIOSuVSlpaWkhKSsLX15eCggK6u7tnlSiGu8qE165dw8bGZlqLcatS4LVr1xgdHRWlvdDQUKqrqzEajVRVVU2SOrdKHScmJuLi4kJZWRklJSX4+flRVVXF0NAQUVFRkwKC4OBgXFxciImJoaWlhatXr+Lh4SFWt1qtltjYWKqqqqisrGTFihXcunWL8vJy4Ylw/7kFBAQQGBgoSJU6nY6CggK0Wi27du0SwY9CoeD69evEx8djMBjIysoSCp73vrMqlcrinGnqZXx0goHmETGRW3ZqsepeeDia2pYabG1tSUlJoba2FpPJhFar5bWf/JidL2/GO8STpoZmZBsToQsDWfPiEtzj9FRUVFgssltaRJZTkiRac7rprRmYmavwneDSwvXxhISEkJ+fT3Nzs5By/jP+MPynCAa++MUZWqs7Zt1GZaNi71/twtHRkYqKCiYmJmZNf/r5+Qlt9cjISFxdXbl165YYwMCy+qqoqGDLli2zqg5aSYtnzpzh4sWLord4y5Yt+Pj4iCDAWvO7ceMG3t7ewhVwJm34kpISqqurefjhh0UtO//6DSrVs/e9bh72Yf9jT7Bx40bqh08wIQ/Pcuww1G1HfMCj1NTUsGnTphlTdm1tbeTk5LB69WpBVpur9yO3o4oO48AkYyKlJGGnVJFUAb0NbQwODrJ3715BFvz2229ZvHixGAQOHjxIfHw8nZ2douPB3t4epVIpXOsqKiqQJImuri4aGxsxGAwMDQ1ZfNJPnCDY0YN/2vUSsfbeOHSOoa/sY16TgjB7D4pPVNOa0418Xx10uG+UnrIB/Bd6kV9oaZtrb2+nwruPDo/vVkT3tvxLYFSaKG6+jWe3rRAYAkS5qaOjAw8PD0JCQkQ/fVxcnMgu3SuTvWbNGqHbYF2x+vg6s3xVNBs2z6PNUEJQsCexsbGW4x0e5tKlS2LSsLZHrlixAm9vbwBhvZuUNFXjvauri7KyMpYtW0ZtbS3Dw8NCFvdBYc2AeHl50dbWJhTnbty4wbx586ioqEClUtHR0UF4eDh6vZ7e3l7a29sZGhrCbDbj5OREZGSkSC0vXLjwe6XH7e3tMRqNZGdnixLE/dDpdKjVai5fvoyvry+urq4oFIrvDI3yUalUlJeXExMTM+nvrRnDxMREYUU8NjZGa2srw8PDkwKC7OxsgoKCcHZ2JiYmhs7OTi5fvoyzs7NYNNzbelhQUEBycjKtra3cuHGDwMDAKeZEgMh0NTQ0CKvt8fFxWltbJ4kU5efn4+Pjw86dOxkcHOTy5cu0tLRMESq6ffs2BoMBfagOfZAOeVzGbJKxdVLhk+TKyucSGWFI7KeiooKAgABcXFzEuzUnZg5hCcEMO/ahCpJ56W+eI2XDShISEkhOTmb+/PmEhobi4eFBW1sbkiRRn9HGaO/M2UJZlhkeGGHrC+tRqVR4eHhw+fJlkan9M/4w/IduLbRC66ARLOqZMDI+wi9/+Uv+7u/+jsHBQUpLS7l8+TLl5eV0dnYKxrX4Tq2WlJQUbt68SUtLC5IksWTJEsrLy0UbWHV1Nd7e3jO6rMmyTFVVFUePHuXDDz9kZGSERx55hOeff565c+eKIKCqqop3332XY8eOodVqOXDgAE8++SS+vr6zntPt27cnpQG/+eYbVOUGfHok4RJ292AsPxJaVNA/KqycveyTkJiZqS4BiVHb6erqwsXFhYiIiBm3raysnKIXr1ba8JJuIfGNCoLt3VEplOhVWh4JTOJnuqXohyXUajWHDh0iMDCQwcFBTp48SUhICKtWrQIQNdC0tDQhMBMbG8trr73Gq6++ys9+9jPWrFkDWCY/q0Vzbm4uX3zxBZ9//jkjIyP09/dz/NgxhkoacKy5g2e/Am8PL1qrO+jIn0ET3QwDPUO8/z8+E6I5qBS0+YzNmH0xI1Oj6iZh5aJJL529vT2enp709vaybNkyrl+/LoyQ7rfuTU5OFsFDXFyc0JK4FxMTE7S2thIQEMDY2BhXrlzhjTfeEG54gCgf3Ss4NDw8PGPa3brCtJIl/xA2t5+fH21tbfj7+wv/BV9fX+zs7Ojv70er1YpJ+KuvvhLqiyMjI6jVavR6PXl5ecK1UZblGcmB92PlypVoNJpZiWdJSUmEhYXx5Zdfijq4k5MTe/bsEbLJx48fn3K9wZJdSExM5OWXX2bdunVCtOvIkSOMjY2xd+9ePDw8+Pjjj2lpaRH6GfPmzeP06dPCwwTuth4mJiZy+fJlIiMj0ev1vP/++6IV7344ODjw2GOPiYnfeo3v7Tawil+p1Wq2bNnC3r17aW9v5+233xbf29vba3mWv9veKcieyN3+JL4cQeILkTz6l9vo6u8U/f9gCYiampqE2mZ+fj51dXW09vdT0t9Pm0KJ7T1joVWQzMvLS/AlxsbGUD6AFot8j616WFgYSUlJpKeni3bZP+NfD39cpZx/YyzfvYRrp6eycq2QFBLbnt3IsscT6erqoqamhtraWmExDJYH18XFBTc3N/HP29sbd3d3zp07Jwg6GZfTOV/yIRFzg6gZzCEh9KEp+5NlmYqKCq5evSoIM3v37iUsLEwM0rIsU1dXx8WLF2lubsbf35+nnnqK4ODgBzpno9FIXV0da9euBeD69evcuHEDCYkfOS9kYI4rH1RfxTBuGezchiRSFP688Mhujh07xnvvvcfWrVsJD3uM+oGz0+5DNoNKaY+XzRp+X36UTZs2zSoRW1VVRWho6JQ2uK4OA4lmd15a9ZI49+zsbNK/TQdg7969ODs7YzabOXnyJJIkCX8DsJRjPvvsM1EaSEhIYMuWLZOOJT8/n6ioKDZv3jzpGh05coSBgQGWLVvGyMgI3d3dlJaWCv5BR0cHbTe7LBP7TPxCs0zHzR6e/p+PWlr+6gq40j/9NROQQOGvm/JrK/nQwcGB8vJynJycCAkJwd3dfdJ2VvvZzz77jE2bNlFSUsKNGzdYunSp2KalpQWTyUR/fz9vvPEGo6OjJCYmEhsby3vvvYednd1dTYF7JLhHRkZmDAasz6fZbBbqkz8Ufn5+TExMYG9vjyzLgvBmdXyMjIykpqYGs9mMwWAgOzub5ORk3NzckGWZgYEBent7aWlpISoqCq1Wy61btx5I1MvW1pZ169Zx8uRJqqqqCA8Pn/Yct23bxttvv81XX33F448/jiRJhISEsHr1ajIyMjAYDHz99dds37592tS0SqViyZIlLFiwQCgS/vM//zNLlixh586dnDp1io8++oh9+/bh6+vL1q1bUavVpKamYjQahTCVQqEQ/Jb09HRiYmJwcnLixIkTrF69mmXLlk3Z/7Vr1zCbzWzZsoX09HTs7OzQarV88MEHQuHy3tbC8PBwnn/+eb7++mtOnDhBXFwcw8PDKBQSTiFNuEQ1onLoxzyhZKDBB09pMyUlJSKomJiYwNPTk4mJCbq7uzl9+jTR0dHkV1Rw4MQXNCuUlldHoyXro0/YHhRIssaOToNBZHvgrm6IV5QbPTX9M5Z1FUoFCasnl6bWrl1LXV0dp06d4vDhw390cbc/4y7+pK/s8l1JfPw/fGmpbsM8MTnPq1AqcHR1YNfLW3BycyQiIoLExET+/u//nrVr1zJnzhw6Ozvp6uoS/27dujWlZ/mtt97CKa4fxbprtCgnaOmQUCySKaeWgH4NkY7LMZvNlJWVcfXqVQwGA0FBQTz11FNTNMkbGhq4ePEiDQ0N+Pr68uSTT05h5X8fqqurMZlMgqj1zTffAJCYmMiyZcs4f/48S8tG8AgIoKO1jbmRcygtLcWUYuLgwYOcOXOGkydPsmTJEhIX/Yy8rp8jm0FSWF5QWQbZpESq30neRInQUZ8Jg4ODtLa2TlnhgmXCtXIaJiYm+PrrrykqKrK4ylVViYnq8uXLNDQ08NRTT6HTWSZShUJBe3u7IBclJSWxfv36SdcqPz+fO3fusHfvXvG7iYkJjh07xp07dzhw4IBIzxYWFlJeXo6jo6PoPnjr+vs0S51M0zl69/tGzKxcaek5DleEwc3vvUUo7hMsaWtrE1mljIwMVCqV4ElMh4iICME4j42NJTMzk8TERNHmmJOTA1j4AfHx8axcuRK9Xi9WfK6urvT19aFUKieVmkZGRmZ0IrQGWLIs/8HBgJeXF0qlkoGBAezt7amvryc0NFSsxhctWsTNmzfRaDTo9XouX74s5MUvXrwoatJ5eXn4+fmJ5/natWsiWzQbYmJiKCgo4Ny5cwQHB087ceh0OrZt28Znn31Gbm6uKJksW7aMlpYW0X7s4+MzbTnFCrVazf79+/n6668pKCggJyeHvLw8Fi5ciNls5qOPPuKpp57Cx8eHDRs2YGdnx4ULFzAajUJPQZIkli5dipOTE6dPn8bPz4+lS5eSkZFBd3f3pCCou7ubnJwcli1bxoIFCwgJCeH48eMYDAbCw8NF6+r9QbtWq2XPnj0UFxeTmprK+IQR3+X5OPh1IMuWTiKFjQl9eAOj5t9gbkxmtMORpKQkAgICSEtLY3h4mPDwcGpqarhZXs43WnuGkCbF0EPj43xSWcUthcQjvj4sWLAALy8vvLy80Ov1fPnll1QqqqhKb2TcOD7tO2c2m3Geq2VwcFCMAzY2NuzcuZN33nmHCxcusGHDhu99Dv6MPwx/0sGASq3iHy78N/77zv9DRW41ShsFIGGaMOEd4sl///1f4uR2twanVqvx8/Ojrq6OhQsXYm9vT1BQ0KTvHBsbo7u7m87OTq5du8Ydp1JG3O4RCZEsT/GYPMiZ5v9JTsM6usosk2JoaCibN28mICBg0nc2Nzdz8eJFamtr8fLy4vHHHyc8PPwHBQEN9V10dw6Qf7MIDw8PxsbGOHbsGADz58/HycmJX//61xZ1xh07mTt3Lr/97W9FH/e1a9fYvn07O3fuxMfHh/Pnz1NV5cYoa7EPqsbRt5+x0QlclAspzgDTaC8KRT7Lli2btWZr7SG+fyUmyzLt7e0kJyczODjIsWPHaGtrY8eOHQwODtLY2IhSqaSmpoYrV66QkpIi7sXg4KDoswZYsWIFq1atmnS9jEajMAqyrq5lWeb3v/89jY2NPPnkkyIQaGlp4auvvkKlUvHss89ib2+Pi4sL4XNDKUm7Pet1d/W9m2YPdfTDDhWjzFz3VEoK5jpNzvJcu3YNZ2dn1Go1NTU1uLm5YTQaZy29bNiwQdzP0dFRQUC8ePEiXV1d6HQ69u/fP4nHYTAYkCRJlCT0ev2kazY8PCz4A/fj3jLBHxoM2NjY4OXlRUtLC4GBgcKnwErYM5lMqFQqwU7XarWkpqayfft2vv32W1HSuHXrFuvWrSMpKYmMjAxycnJYuXLl974vkiSxceNGfvOb35CZmSmCuPsRERHBwoULSU9PJygoCE9PTyRJYvv27bzzzjuMjo6SlpaGp6fnlPHh/v1t2bIFk8lESUkJgYGBZGdno1JZ+vOtGQIfHx9SUlJQq9UiINiwYYM4n5iYGBwcHPj8888ZGhpi3bp1fPvtt/T19fHII4+g1Wo5f/680PgHS/nnmWee4dy5cxQUFBAaGkp9fT2NjY00NDRMIlJKkkRMTAwXL15E4V2Jzs9iUnXv5bQsBkx4J+ey0O53hIdFcefOHdauXcv169epqqpCoVBQoVJbAoHp7oUkUSTDP2/YQOB9QWdCQgJFRUX86Nf7eOv5DzGbzJhN34l52ShAhm0/fYjm3kbeeOMNkpKSWLp0KRqNBk9PT9auXUtaWhrh4eF/NKG3P2My/qSDAQA3HxfeyP45ZdmVFFwoxjRhIiY5igUPxU2b2rbaIJvN5mk/V6vVeHt74+3tjX+gL+/WPzX9jiXLKrpdf43RwXmARF1dHf39/aLcYJ3smpqa8PDw4JFHHpmxB3gmlJY08+tfplF1u/3uOXtoqK89glZnIjw8nIaGBm7evElSUpIQYgGLcUpPTw9Lly7l/PnzrFq1Cr1eT0xMDKWlpbS0tKBS6RjMi2GR98OkX04nZMkSgnwtA8rExMSMk4cVVVVV+Pj4TOFP9PX1YTQasbW15Z133sFsNvP000/j5+fHhQsX0Gq1DAwMcOrUKUJDQwXDva+vT5ghgSVNaB0A70VOTg5Go1GsGGVZ5ptvvqGsrIw9e/ZMCizef/99AA4cODDpOFc+toRT/zhz2l+hkNjy7Drxf7XCht0BK/m44cK0vAFJhrVeC3CxvRuAdnd3U1ZWxubNm6msrKSjo4Pu7m5SUlJmLb04OzuTnJxMZmYmfn5+ZGRkYDabCQkJ4c6dOyxatGgKobOzsxNZlnF3d6e+vn4SXwBm5wxMVyawmgz9EPj5+VFZWSlqvePj4+h0OuH9EBoaSldXF319fWzcuJFz585RW1tLeHg4BoOBvr4+FAqFsB2fP38+ubm5FBUVPRCh0d3dnSVLlnDt2jXi4uKmXAMrHnroIRoaGjh16hSHDh0SE/gjjzzCu+++i729PSdOnODZZ58VegEzXbetW7cKB8IdO3ZQW1vLzZs3kSSJo0ePsn//fvz8/EhOTsbW1pbU1FTGxsZ4+OGHxTMQEBDAM888wyeffEJmZiabNm3i22+/5b333mPJkiVUVlayZ8+eSYG5jY0NDz/8MP7+/qSmpqJSqZiYmBBlg3tLDdnZ2fT33yF4Ve2MQtSSAmw0o+SUf8apk1pRctBqtfj4+HDnzh2qzEwfCHwHpSRxurSMHycvnfR7KwFxQj/K0YrXOfP2efLSCjGbzcSnxLL1hfX4R/oyMjJCVlYW169fJy8vj6VLl5KUlERSUhLV1dW8e/r3DEVEkFFXz7jJRLS7O/vnJ7BtTvSfZNvfvyf8SRMIrZAkiZilkez7b3t4+m8fY+H6+BkH2pCQEEZHR2lvb5/283vRp6xFul+ebtJ+Qakf5sDLj/HUU0+xfv16goKC6O/vJzs7m0uXLgmp5JGREfLz80lLSyMvL4/6+noGBwenVTe0orSkmZ+88jE1VZPJM12GEQqyTYwbdVRVVaHT6XjuuedYv379JOKam5sbnZ2dQqjo2rVrFBQU8NZbb9Hf3y/U8KzH5+7uTldXF2vWrGFiYgJbW1vOnDkzrdwrWFZ6NTU109ZnrYSf9PR07O3tOXz4sGAEDw0NodFoOHnyJEqlkh07diBJEp2dnbz33nvCBU6hUEwbCAwNDZGVlcWiRYvEQJ2ZmUlubi6bNm0S7PyJiQl+97vfMTExwfbt26cENl6BHgSsmkF2VwLPEHe2v7Jx0q+fCl7PXIXlPCTrrfvup4dRx8sROydtn5mZib29vdARsOJ+3YrpEBwcjCRJNDY2YjabmT9/PmvXrmV8fHzaFjrr97u5uYnMgBWyLM/KGbi/TCDL8hRy7YPA19eX3t5ePD09MZlMgv0eFhZGTU0NERERdHV1YWdnx8DAAHPnziUtLY3o6Gj6+vpEW6WVSGhNqV+8ePGBj2HFihVotVpRQpsOKpWKnTt30t3dzYULF8TvPT092bp1q8hOHTt2bFpC4b1QKBTs2rWLgIAAvvrqK+bPn89LL71EdHQ0ExMTHDlyhIsXL2I2m0lMTGTnzp0UFRVx8uTJSdfY1dWVZ555Br1ezzfffMOaNWuQJImzZ8/i5eU1o6ZJfHw8hw4dQpIk0S2VkZEhvA3u3Llj8d5QTqDWjcxIgAWQzRJ2zn0kJyezd+9eXnvtNX7yk59w+PBh/uIv/gKjcvYpQ5IkDPdoEtz7+4SEBMrKytB7OXL475/kt4X/yDvFv+DF1w/iH2khTWs0GtasWcMrr7xCXFwcly5dEuRYh7lzOSHDucoqRsbHmTCbKTUY+Mm5b/jLc99gnq3e92d8L/5DBAM/BL6+vqhUqmntT+/HqGnggb5TaWciODiY4OBghoeHaWlpwcHBgc2bN3Pw4EG2b99OXFwcNjY2VFdXc/bsWT744AP+6Z/+iX/4h3/gyJEjfPnll2RlZVFZWUlPTw9ms5m3Xj9vSafNQLgpKTCyY8cO9u/fP63egbu7O8PDw4yPjzNv3jzy8/M5c+YM0dHRvPDCCyQkJBATE4NCoeDChQuMjo7S2dkpJhWz2YyNjQ2ff/75tANiU1PTtOluWZa5fv06YEnJHjhwYFLL1MjICCMjIzQ2NrJr1y4hTnLkyBHGx8cZHx+fdTV29epVJEli2TKLq15hYSHffvstK1asENoDsizz4YcfMjAwwJIlSwS7/l6oVCr8l7uz92+34+5/V59AaaMgJNmP2P1BKNWTXxGlQsn/XvwCCbcccTeo8JlwxL1bzebBOaxo8kWjvBuM9ff3U1RUxOLFi6mtraW/vx9JknBycppVTMdgMPD5xgAVFgAAIABJREFU55/zwQcfiExGaGgo5eXl1NTUCBe4+6+5lZfg6upKb2/vpFWx1UhpJtOt+8sEwB9MIgRLGcfOzk4w3cPDwxkZGcHBwUH08JeVlbFu3TpkWaa2thatVouzszODg4P09vZSW1uLnZ0dERER9Pf3T/IWmQ1WPf7KykrBo5gOnp6ePPTQQ+Tm5lJVddeyee7cuSQlJWE0GjEYDKSmps4atINllf7oo4/i4eHBJ598wsTEBLt37+bgwYPY2tqKjo9bt24RGxvLI488wu3bt6e8W/b29uzfv5/Q0FC+/vprXFxckGVZCFLNdi5WF8Dy8nKio6NFt8HJkycxm834evszaySA5TmImRPH8uXLCQ8Pn+TUqlAocLefSo69F7Is4zlDl1V8fLwoqXwfdDodGzdu5OWXXyY8PJwzaWn8Zfq3yJI0SQ3ZGgCcLivnq/LZnQb/jNnxny4YUCqVBAYGPpD2uV7t873bgIQ8ZMvp06d5++23aW5u5uGHHxbqc/7+/sybN4+1a9fy2GOP8dJLL/HXf/3XvPDCCzzyyCMsWbIEZ2dnOjo6uHTpEp999hlvvvkm/+VnP6eyom3GQAAkhgdlbFVuM6ZyrbX0q1evCq37qKgotm3bJnqpW1tbCQkJYePGjXR1ddHR0cHVq1cJDQ0V1qJdXV2cOXNmyoBYWVmJvb39pBX3+Pg4J0+eFGnq3bt3T+EcdHd309vbS0pKCoGBgdTX14tU/vj4OLt378bV1VVwBu5FX1+fSB9qtVoqKyvFauxektnZs2dpamoiJCSEdevWTfkeQKjgLdoRz+9K/5HEFyNZ8KNIjre/y99/9f9hVpo4e3ZqGcHOzo4N0cuIuq0lPFvBs67riNMEMTY6WQ46JycHlUrFwoULLapvrq7IsixaJu9Hb2+veI46OjrYsWMHL7/8MmFhYXR2dmI0GikuLhYeDPdfF5PJhEKhQKVSMT4+PikYsHYXPGiZAP6wYECv12Nvb09LSwsBAQEiGLC2GDY1NREQECDEh6w18pKSEgICAujv72d0dBQnJyfRjmcljf0Qvfro6GhCQkL45ptvZl3ZL1q0iPDw8EnthmApI/j5+Qlp6Bs3bnzvPtVqNXv37sXR0ZGPPvqI3t5e/P39efXVV3F3d2dgYICTJ0/y29/+FkmSePzxx2loaOCTTz7BaDQiyzLlpS2cOX0TtSKYQP9oqqqq8Pb2JiEhga+++or09PQZAxNrF8dDDz3E7du30ev12Nraiuzkju278dAk3rUPnQYyJnzsl8/4+aNzY2dNx5tlmZ33uZBaodPpiIiI4ObNB2Dhfge9Xs+2bdvwTVnNbI4KCknig4IH/94/Yyr+0wUDYCkVNDY2fq9hh5ddJC7qgBntXiUUaAcDOPL2p9TV1bFx40Zeeukl5s+fP6vbnFVTPzo6mhUrVrBjxw6effZZfvrTn/LjH/+YJ598ktiYBQ90Lp2G/u/d5vr168ydO5clS5ZQU1Mj0vDW9i9/f38WLVrEmjVrkGWZnp4eIiMjSUlJ4fbt26xYsYKSkpIpdrHV1dWTiJD9/f0cPXqUyspKtFot0dHRUwKV/v5+uru70ev1LFu2jMrKSj7++GOUSqWwiZ0zZ46YtO6/R5cuXcLOzk4IE504cYLIyEg2b94s9pWXl0deXh56vZ4nnnhixutiDVLGxsY4e/YsDt5aNJ4q7HS26PV60do33UpmyZIl4homJiaKdiwrRkZGBLu8p6dHOPl5eXlhNBonObYNDAyQmprKr371K2pra9m0aRMvvfQScXFxQqhqaGgIDw8POjs7p9WhsKo2WjsJYKrGAMwcDNxbJrj3uvxQSJI0ybSoqalJBClWxb/IyEja29uxtbWlvLyc+Ph4goKCaGlpYWRkBBcXF9RqNbdv36a/vx+9Xo+vry/t7e2TLJ+/7zg2bdpEf38/165dm3W7bdu2AfDll1+KiVapVLJnzx7hf5CWljbFZW86aDQannzySdRqtchM2dnZcfDgQby8vLC1tUWhUPD5559z6dIl1qxZQ3t7O2/9+ijPH3iXV557n9+8eYG330jn4/cqKSu0oanRotmwZs0asrKyOHHixLQBjjXAj4+P5+mnn2ZgYEC4KFpVQg1FwciYp2Xzy2YJaSAIZ9vIGc/v6QXz8XV0RDlDQPBIZAT++pmzegkJCbS1tQn58QdF4/AwNrNwbMyyTEVn14yf/xnfj/+UwUBwcDATExMiYp4JkiSxwfs1FJIN0n2XSjaDeUzB8A1f1q1bx8svv8zChQv/RX2w1hRyaGgoS5NnN2mxwsV1qkqhLMvk5OTwzjvvoFAoiIyMZMuWLaL+bk3hW1ebVrEgq3yuUqkkLS0NSZLw8PCgqqqKpUuXcuHCBWpqagDLSrSzs1PwBVpaWnjnnXcYGhriiSeeYHh4eErpwqonAJZU7K1bt/j8889Fy9wTTzwhmOfW9Pi9qzWryc/KlSu5c+cOn376qVBcs05mjY2NpKamolarefbZZ2cl6SmVShQKBfX19cJCFxADVVxcHLGxsaSmpooJ1or+/rtBWGlpqQgGrJNJbm4usiyzePFiITLU2dkpRIXKy8sZGRnhwoULIn2ckpLCK6+8wsKFCycFk66urixZsgSDwaIlPzRNTbazs1PcL6tS4/0aA8C/epkALFkAa2bAKpAEd10MAwICMJvNeHl5UVZWJlj5w8PD2Nvbo1Kp6OzsFA6UcDc7cO7cuQc+DldXV5YuXUpmZiY9PT0zbmdvb8+2bduorq6e5Cbo4ODA7t27GRgYQKfTceLEiUn3fSbodDr27dsnWgyHh4exs7PjySefxMXFhb6+PjZv3ozZbOabb75Bp3PmQmo3tTWW+yvLspise7sl2hrcqai4TVVVFTt27KC6upqjR48yMDC5jGkNBkZHR/H39xeKqWDJlNTX11NxY5j2nHkgKyythSiF+Jg86EX1+ehpny8rnOzsOLH3MdaGhU7KEDiq1ayyVaMuyCc1NXVG98Tw8HB0Ot0Pyg4A2D3AuKp+QLvvP2N6/KcMBjw9PdFqtQ/EG/DRzmFv4D8TaD9fEMVkM5iaXbHLX8krh37K4sWLv1cy9YciMNiN0DCPWdnc3r56omMmlzK6uro4evQoaWlpJCQkEBERIQZ1e3t7wc42Go00NzcjSZJYaVonjOjoaOLj40lNTcXJyUl0Q4SGhvLFF1/Q09NDZWWlcOUrKSnh6NGj6PV6Dh8+LI7FqjFgRUZGBk1NTciyTF9fH6dOnRISvFZdBiusxMZ7J+GMjAycnZ0JCwvj448/Fqps1ms/MDDARx99hCRJHDx4cMaJ717Y2NhQWlrKvHnzSEpKQqVSCRtrgM2bNwsjJGvZwqqMZ3XJy8rKwtbWFlmWGR8fZ2xsjOvXr5OQkCCMp5ycnNDpdERHRxMREUFxcTGvv/46ubm5LF68mFdffXXWNs7ly5eLSfr27dtTBltrMODm5kZfXx92dnaTZHW/LzPwxyoTgIU3MDY2ho2NDWq1epKlMVieUQ8PD3HcXV1duLq6smLFCoaGhjAYDKhUKtzc3CgoKMBkMuHn54ezs7OQSn5QLF++XNhDz1b3Dw8PZ9GiRVPU7gIDA1m/fj39/f2YzWaOHz/+QBbAer2effv2MTQ0JMoAGo2Gffv2odfrycjI4OGHH+bRRx+lumKIMaM8w2pdpqGul3lzV9PZ2cmVK1fYvXs3g4ODvPvuu5OI0N3S/8/eeYdHdZ5p/3emaNR7L6g3qhCiCERHSDSbYnq1ARvi2Flvsskmm2Q3ZfOts5vdeJO4gQvNFGPAmGaKwGCBBBa9CUkgkIQaQn1Uppzvj/E5aNDMaESxnbXu6/JlQGdGZ2bOnPd5n+cuTVT5tfNl9SXKa6s4ffq0HDh17do12dug/mYYrWeWUnelP+FumUR7zMS9YiW3DgzFqHPocqH2c3HhzWefIfullax7bhZb5s0h9+XVrHn5B0zKzOTixYv87W9/48qVK53ec4VCQVJSEpcuXeqSmNkRE2Ki0VsYG0pQCgIZsY8XJ/99x/eyGBAEgcjISLt4AwCuxmDcr4+mbW8q2v1JOGdPZrz3a9wvabFrp/Co57jq1XQUCqwWBPMWp5jdxLOzs3nnnXdobm5m2bJlTJo0SW4tSxg+fLgcnCPFBEs3/9zcXBQKhWxnOm3aNG7evImTkxOHDx9m2rRpODs7s2XLFvLz8wkLCyM7O5sdO3bQt29fli5diqurKxUVFSiVSjPp240bN8jOzpYlhJLTmUKhYNmyZZ1a31IxICkZSkpKyM/PZ8SIEWzZsgWAhQsXygu+Xq/nnXfeQa/XM2vWLLsCpKRYYrVazaRJk1AoFPKuVoKjoyMzZsygpKSE7GxTLHNBQQHFxcVkZmYSHR1NU1OTXLS0trZy9uxZWltbGT58OGfOnEGpVFJVVUVycjJ5eXlcunSJ9vZ2oqKiePXVVxk/frxFP/2OcHBwkF+TTqeTuzsSKisrMRqNspLAkqxQrVZb7Vw9rCaARy8GgoODTcE0d+8SFhYm+w1IEsPCwkISEhKoqKjAwcFBtsrt6Ebo7+9PQ0MDTU1NMglQGmN1ZP93BYlMWFhYaJNMCCaegI+PD5988onZQjV06FD69OlDe3s7FRUVdhEKwaTqWLRoETU1NWzevBmdTicXBB4eHmzYsMGUgtngii1in0IhcOWCKa5YFEV2797NtGnTcHFx4f333yf7yhn+4exf+NmtD7ie2MIbdz9l6dnXKeqlJaF3IteuXcPPz08+5379+nG7sJr6/Dj6uv4Tg/x+ytiUJahUajw9PcnLy7PI13kY/q6upEWEMzg0FIevu2xDhw7l5ZdfJjQ0lO3bt/PRRx/JnSoJAwcOpLW1lWvdIPyl9upF34AAi3wFAdM9cnmKfaPVHljG97IYAAgJD+dEZRV/PvElH52/QI2F3UZLSwtHjhzhjTfeIC8vj+Epo5k8ajb3yuvw9PTE1dW10xz9SSIpOYI//Gk+IWHmOe2BQR6kjfPg6nVTml51dTXvv/8+hw8fJiUlhVWrVsnSMz8/P5qamuRdv7u7OwMGDCAnJ4eSkhKZ/d3Q0MDly5fx9/eX57LJycksW7YMhUJBU1MTWVlZzJs3j/r6em7evElzczNffvkl6enpPPvss/JCU1FRgb+/v7zA1NfXs2vXLmJiYuTiycHBAQcHBzOXwI6QWtwNDQ3yAhAQEMDFixdpbGxk0aJFskJBFEU++OADmpubGTlypFl71Bays7MxGo3ExMTIksyQkBCzzgCYdocjRoyQpaKHDh0iMjKSmJgYMjMzqXEV+fPd4xzuo2dl3nrWXssipl+i7OMeGBiIXq/n/Pnz7N+/n7i4OJk5Lzmt2YOGhgbc3d1Rq9WcOnVK7g6IoijPhv38/Kirq+tUDNiSFcKTHRNoNBr8/f1l3oAkjYQHEsPY2Fja2toIDg6WFwWlUskzzzwDIJMLfX19ZSJh7969cXJy4uLFi3btziUkJCQQExPTJZlQpVIxa9Ys7t+/z6FDh+R/l7wEvL29cXR05Pz582ZZA7YQFBTEggULKCsr4+OPP8ZgMODk5MSSJUtwd3dn/fr11NdZb8sDGI0ijY2t+Pj48MILL+Dl5cW2bdsYMWIEQbFh/K5kC5fri80eY1CIlIS1savtDEOGDMHNzQ0HBwf8/f3lsZZUQN++fRtHR0dGjhzJ/fv3qaurk83EHgXu7u7MnTuXuXPnUlVVxZtvvkl2drZMmvX29qZXr14c/DiLnf+7j8/e+pzym7azBxSCwFtTJ+PzdUGjUihkDoGTWs07058l/iFr7x50D9/LYuDTq9d48WQOXzpoePP0GX59+AjD336X//kyG1EUaW1t5dixY7zxxhvk5uYyZMgQfvSjHzF27FgGDRpkupAPHmTw4MFcuHDBbK79pJGcEsn7m17ir2uf59/+8BxvvL2M9dte5ic/ex4HBwfWrFnDO++8Q1tbGy+88AIZGRlmrWZJUdCxO5CWloZWq6WmpkbmC+Tm5qJWq2XmuoTQ0FBWrVqFu7s7Fy5c4OrVq7JM7/79+8yfP1+WNEnoaENsMBjYvn07KpUKZ2dnWR7l6OjI888/bxY5LEFvNHKurp6vHDSsLyzio+xsiu/ckeNX58+fb+bpv3v3bu7evUtsbCzjxo2z630tLy/n2LFjODs7m40TQkNDaWxs7NTxGTNmDIGBgWzZsoV79+7JCoVN985yPMHATedWGp0gX1vJV34trHEu5POz2bLUVBRFgoODWb16NTNmzCAx0bRjs2eHCci+/ampqbL8UrIlrq+vlxdHb2/vTh4DYNtwCMzHBCqVCkEQHrkYgAe8gfDwcNra2uTWe0xMDC0tLYiiiLu7OyqVioqKCnmmHxYWRlxcnGydrFKpuHXrFjU1NbJ9r8FgkLs09kByJmxqapLTIq3B39+fiRMncubMGW7cuCH/uxQuJKk0Dhw4IHc8ukKvXr2YO9eU/rlr1y6MRqNZQYCiBcFG4JpCKRASairuXFxcWLJkCbGxsXzyySeUBLWidxARLQVsCFARpKNabKS4uJi5c+eycuVKBg0aRGtrK97e3nh5ebFu3TpOnDhBSkoK7u7uODo62l3s2EJCQgI/+MEPSElJ4ciRI7z77ruUlJRQWlDOsdfz+Pzfs3nrtQ/5yw/XsiT2h/x29p/QNrZYfb4LOTlMa2/l7cmTWJQ0gNn9+vK79AmcWv0SY6Lsy3bpgXV874qBrKKb/OO+/Wh1OhAEDKLpa6Q3GvlrTi4/3bqNN954g+zsbAYOHMiPfvQjJkyYIN9IpRuLdHNSKBRmpKOnAUEQiE8IZsSoeHr3DUEQBJqamlCpVLS0tODk5MTzzz9vlhoowcfHRzb0keDl5SV3DoKCgmhrayMvL49BgwYREBCAVqs1m8u6urqyatUq1Go1x44dk0ldRqOx02JmMBioqqqSd/tHjhyhrKwMX19fLl68KHcPFi5caNEnv+BeDePXvs8/HjzENZWaYzX3+XXOaT5zceXa3bvMnj3b7HXm5uZy/vx5vL29mT9/vl3vp06nY8eOHfj7++Pl5WW2W5TGFQ93B5RKpUxy8/b2JjAwkIPll/mgyLS4mKm1BKjXt/D/yrIQMWUrPPPMM7IOHUy8jNraWpkU2BWkhadv374MGzYMQO4OSJ+tm5sbSqWS+vp6i50BWxyKjmMCQRAe2ZJYQmhoKFVVVfj4+KBSqWTeQGhoKI6OjrKqoKqqCpVKZdYylkKC2traqKioMFucUlNTUalUnDp1yu5CCkxF0ogRIzh58mSXioTBgwdblBv6+Pgwffp0amtrcXd3Z9u2bXaPCWNiYpg1axZXrlyRxwzSyCAu0cVqeA+A0SAyedoDkyq1Ws1zzz3H0KFDOdl8HdGGdYACgSNVZ5k0aRKRkZEolUr5+pG6L8nJyWRlZbF161ZGjBhBa2srBQUFndr7jwKNRkNGRgYrV65EqVTy9l/e5eWhP6WiyHTNymRJEbJ3neZfp//R4udaVlbG6dOnGTd2LOm9E/nVuLH8Pn0CCwb0x9VGjHwP7Mf3qhgQRZE/ffmlTduNT0tKievTh1dffZWMjAyLMcWBgYEkJyeTnZ1Nv379OHPmzGPdOLsDg8HAsWPHePfdd+WUv/b2dnbu3GlRu65SqfD29jYrBgCZ/FZSUsLZs2fR6XQMHTpU3nFLbWcJTk5O9O3bF0C+kUVHR7Njxw6z566pqcFgMBAYGEh+fj6nTp3Cx8eH27dvo1ar5ffzYStdgPrWVhZs3Ub51yzpjgYjDSIc9/QmuAPJsLi4mAMHDqDRaHjxxRftts49fPgwdXV1zJw5EwcHB7NiwM3NDQ8Pj07FAMDVq1dRKBTcv3+fa9eusf5mNgorV5MRkWaNSEuoG8HBwZ2sdCMiInB0dLR7bnr79m28vb1xdXWVHfZ0Oh2nTp0yUxLU19cjimK3rIjBfEwAyF4Fjwpp/FRZWUloaKhcDDwsMWxoaCAsLMzsfXByciIhIYGWlhaT0Y2fH+fPn0en06FUKklKSqKtrc0u85qOSEtLw83NrUsyoSQ3FASBXbt2mR2bmJjIiBEjqKurQxRFPv74Y7tHFr1792batGmcPXuWw4cPI4oizs7O/OwXywkO60wclS7nBUtGEBFl3gJXKBRkZGRg6GIdFI0iXsG+shkXPPhuL1y4EIVCwcWLFxkxYgTl5eWcOHFCzrSwx1vBXgQFBbFixQpcar3Q1rfKuQQdYTQYOX/0MuePXjb/d6ORPXv2EBgYaDM8qgePh+9VMXCnvp7r1fesJdYCYBAEHGPjzNLeLGHcuHEoFApaW1tpa2vrtlTmUXD37l3WrFnDiRMnSEtLY+XKlfTv35+5c+dy8+ZNi8ZAgGwz3BG1tbW4urqSnZ1NTk4Offv2xd3dXe4kdDxekkBJiXMdz8fJyYmNmzaz6dNcFr32IQv+cTNf3nBm/4kitm3fiZOTE7W1tSgUCoKCghgwYIDFdDWAbZcuU9vSgsHCaxAFgZq2NnZfNS0adXV1bNy4EYVCwfLly81smG2hqKiI06dPM2HCBPz8/CwueqGhoWYkQjC14nNychgxYgQJCQl8+tlurtSXYbRxNSlEuCnWM3jw4E6FilKpJC4uzu5i4M6dO3IAlrTbkiKhKyoq5EXTkqwQTMWArc5AxzEB8NidAV9fXzQaDaWlpbL5kHRtShJDPz8/NBoNjo6OlJWVmSlHxo8fL/+5traW1tZWrly5Api+e4IgkJWV1a1zUqvVZGZmUlRU1OX77uLiwvTp0ykqKupE1hw3bhyRkZEYDAbKy8u7JXccOHAgGRkZnDx5UvY/cHNz5a/v/oC+A53peBmH9vLhn/5lGstWWg5cAvDVWE6hlCFAcox5LHB1dTUODg6Eh4ezYsUKEhISyM7OJiYmBi8vL7mg/Oqrr7rFzegKCoWC60dvWo0MB1CqlBzdbD4COn36NBUVFZ3iy3vwZPG9emeb2uy7uTXZcRN0dnZm7NixXL16laioKHJycuxi4D4K9Ho9R44cYe3atQiCwMqVKxk7dqzcco+KimL69OlcuHCBI0eOdHq8lFEgwWg0UlpaSu/evbl//z4NDQ2yiY5KpcLT01M+vrW1lY8++ojTp08zadIkmZyXmppKYGAg9+7X83leG29u/JLi0hpa2vRo2xVs+PQcX1xV0qQ1LbS9evVi4cKFtLe3W92h7s+/YbNQE4ADNwrQ6XSsWbMGg8HA7NmzzfgDtqDVatm1axdRUVEMGTIEoFNnAEyjgrt375p1Wo4ePYpGo2HEiBFMmzbNpqlUR6jVarmj8jASEhKoqqrqsm3d2tpKZWWlWRpmnz59CAsLQ6fTcevWLQwGgywrhM7FgL0EQmnBftxiQDIfkngDLS0t8jUlSQyLi4uJjY2lpqYGpVJptkD7+PgQHByMKIo0NTURFBQkjwqcnJyIiYmhvr7eLiOgjoiPjycuLo7PP/+8y9cXExPD0KFDOXz4sJmET8oi0Gg0uLm5cfbsWXl0Zg+GDRvG6NGjycrKknffbm6u/PvrLzF5phejJjrwt/cW8t7Gl5g4qb/NjtfU4FSrpmgACAIZQebx4vfu3cPX11ceB82YMYMpU6Zw5coVdDodKSkptDfqKNhfwuzA5UxynM/S2Ff4+L9209Js2T/AXjTVdkGWNBhpqn9wTH19PVlZWQwePNii2VYPnhy+V8VAqIe7TRcrCZHelpPOHoY0Y29oaKCurk6WSD1JlJaW8s4773Dy5EnGjBnDihUrOun3wSQXmjhxItnZ2Z12Mn5+fjQ0NMgpZFVVVeh0OhITE9FoNGayNTAVD/fu3aOmpoa1a9dSVlbGokWLGDJkCFVVVbi7u3Pq1ClmzZpFrSGUxlbTzejhhby1XeDiHRUxMTHMnz8fBwcHm+1qbRdtaRFo1rXz/vvvo9VqGTt2LAkJCV28g18/VhTZu3cver1ebgGDqfix1BnQ6/XyPL+8vJwLFy7IiZDOzs7MnD4D70bbTu9GAdKCEqzK+WJiYlCpVFy/ft3muUvmWA/H0k6dOhV4YMwkyQrd3d3NihVRFLvsDDw8JnjcYgAeKDNCQ0NRKBTywt1RYijxBnr16tVpt56SkiIXJ1LokWQI9SgWxRIkR8fjx493eeyECRPw9fVlx44dnTIE5syZQ2NjI35+frL9tb0YPXo0Q4cOZd++fVy8eBEwbTCWLluKr58ruz/bbpfb4vTQNHo5+6N4+Fb+9ZdxScRE/B3N72dSMSBBEARSUlJ44YUXaGlpIffoGS69d5vSk/douq9F367nblEFa/55I6+N/BXNDfb7PDyMkNhAm2RJQSEQEv3g/rZ//34cHR3tJgb34NHxvSoGPBwdmRIfZ9VKUyEIRHl5MSjYnkwC0w100qRJVFdX4+vry8mTJ7tFarIFnU7HwYMHef/993FwcOCll15i1KhRNnekqamppKamcuDAAbmlCp0VBSUlJSgUCvR6PW1tbbS3t5sxp319famoqGDt2rUArFixgqioKFpaWigpKWHw4MEYDAY+P3SUy0UNWFsSRQSqG1WMHJMhL4i2ioG+Af5WPxswGYs4NTVRUVFBQkICo0aNsnrsw7h48SJXr15l6tSpZqFJarW606IXGBiIQqGgtLRUNhjy9fUlOTlZPiY6OpqpHolWOxmCCG4tMH9IutVzUqvVxMbGdtmyvn37Nq6urp14AP7+/vTr96AF7O7qTvmdSjzcze1gdTodBoPBbjUBPJliIDQ0FK1WS1NTE8HBwWa7+JiYGAoLC4mOjkahUODq6kpJSYmZq17v3r3laOGqqipcXV3lnbS3tzdBQUGUl5fbbVEswcvLi7S0NE6dOtVpfPYwJLlhbW0tBw8eNPtZSEiI/P339PRk27ZtnVwBrUEQBDIyMkhKSmLXrl1yQSipBZydnVm3bl2X5+eicuTPyT9kYmAKKuHBvUGisIVVAAAgAElEQVTTLjDfYySLI8xzOURRlO9XDyM4OJgXX3yRgl1ltDS0dqruRaPIrUt3eP8XH9n1Gi1h6qqJXZAljWQuNy38169fJz8/n8zMzC59OHrw+PheFQMAPxs9Cj8Xl06LjlIQcFAq+a/Jmd3KcA8PD6dfv340NjZSXl7e7balJdy5c4e3337bxJ4dN47ly5fLLPSukJ6eTr9+/di5c6dsqiR98aVioLS0lMDAQM6cOYO/vz+9evXixIkTXzN7RRobG+XW7IoVK2T5X1FREaIo0q9fP0aOHMmJUxfQWyACPYzC2w9uaLaKgYVJAyzyBSQYRBHfykp8fX2ZM2eOXe8HmPgF+/bto3///p08CCyNCdRqNYGBgZSVlckGQ+np6Z3mla+mz2FwnamwUAqmnwkAIjjpYHihigYr8c8SEhISKCsrs8lKl/gClq7L3r1701zZyrWP7zAvcBXrlu9k+6uHefvH62i4b1qYunIfhCc/JgBzZUZ4eHgn3kBLSws1NTVERkZSX1+PQqEwK4w0Go1cEIDpc7l8+bLsryB1B2xFFVtDWloaHh4e7Nu3r8sC3s/Pj4kTJ/LVV191Mi5KTk4mKSmJ+vp62aHQ3uhnQRCYNm0aCQkJbN++XXZElZILnZyc7CoI3NUu/FPiPH7u+AxJ51x41SmTZY1DKfvsoqx0MohGsu4W8Kfzh8lzbUfrZpl5ePdGJdVFtVbn+kaDkc8/OEpLk3UJoC1MWDSKlIykTt0B6dpe9tt5hMSYFE779+8nNjbWanRzD54svnfFQICrK7sWL2TBgP44fb1bVQoCGXGx7Fi4gAEPZd7bgwkTJshmIidPnnzkc2tvb2f//v188MEHODs7s2rVKtLS0rpFmpGY0OHh4WzdupWKigrUajVeXl5mnQFfX19u3LhBamoqI0eOpKysjMLCQvbu3cvly5fl19WxIi8oKMDf3x8PDw+GDRuGi0vXdr8AatWDHYutYmBgcDA/HGZiC3d0GpP+nNzeRpDGgZUrV9pdsBmNRnbuNBEZJ02a1PncrLDmQ0JCzAyGpAyGjlCpVPx7+lLSrzuQIvrR3zOUwGYVE1sCGX9ZSZRXIB999JHN9nFcXJyJWGVlVCB5+3fkC3TExRNXuLC2iJrrDTJDW9eiY+f/7uOVYb+g/l5Dl7kE8HTGBM7Oznh7e8vFgBRNDA8khgUFBcTHx1NSUkJ4eHinLklSUhKNjY14eHhQW1uLwWDgwoULgImH4uHhYRa+ZS9UKhWZmZncunXLrvFeSkoKcXFx7N6922z3LwUi+fn5oVQqu00oVCgUzJw5k4iICLZs2SKrWB4uCLrqfhQWFnL84FEm9knj2WETmf3cbLlL+O6+HYzd+1deyt7K2sLTXPAX+GHBIVac2EyjzpwDUHiua1fWtpZ2ygorujzOEpQqJb/99Kcs/vVsXLwe3Ad6JYbwzxteZeEvZwEmjk5LSwuTJ0/u1uasB4+O710xACZv7X+bMJ6zr7xMzuqXuPDqD/nLtKnE+3VundkDd3d3Ro8eTUtLCwUFBXZrxzuiuLiYt99+m7NnzzJx4kSef/55i608e6BUKpkzZw7e3t5s2rSJuro6mQcg3ZAbGhpwdXWlX79+REdHExAQwI4dOzh37hwZGRkAZjcgo9FIYWEhvXr14uTJk7z//vsoDY2olbZ3VRoHFQMSHxB/upK4vZY2gjefnUZycJDJZhQYGBDA+LZW+hv0rFy5UnbIswcnT57kzp07zJgxw2Kr0VoxEBoayv3797l37x7p6elWb0j+/v48lzaR4K9qWKyNYtg16NviRrBvAMuWLSMwMJCNGzd2UidIcHR0JCoqyuqooKysDIPBYLEYMBqNbP3VHowGER5q0BgNRipuVfHBL7fY1Rl4eEzwuNJCCRKJMCwsDEEQKC4uBjpLDEVRxNPTk9u3b5sF5YSHh+Pl5SV3p9RqNWe+OsNd7T1uN1eSNnYUoihaJM52hbi4OOLj4/n8889lPo01SC6ECoXCLN1QOqc5c+ag0+nw8fEhLy+Ps2fP2n0eKpWKOXPmEBgYyKZNm2SDJmlk4OjoaLMgqK6uZvv27cTExJCeni6f78SJE0lJH8OfG65QoTV1ngyIiF9/1l9W3mRV9jaz1+LgaN9369Lli488ElU7qFn869n8w8fPk/bT/mwueZs1l/6b8QtNVuV3797l9OnTjBkzxqIXSQ+eDr6XxYAEB6USPxcXnJ5AyNCwYcPw8vJCqVR2y6K4ra2NvXv3sm7dOtzd3Vm9ejWpqamPLaHRaDQsWLAAtVrNxo0bZYWAtPO4c+cOQ4cORalUUl1dTVNTE62trWRmZn6963eR25NNTU0cPnwYrVbLV199xdGjR/H09GTOnOdIinHGWk9REOC5SQNxcTbppfR6vU01gYSM2Fi2zp/HjR+/xuVXXmZQWQkheh3z5s2T/RHsQXl5OUePHmX48OFm5LuOsLboSTyLqKgogrroFg0ZMoTo6GhycnIICQmhuLiYwYMHy59BQEAAGzZskNP7HkZCQgK3b9+2uLu9ffs2Go3GomXz+aNXaKhqstnSPbT+GLX3TAqDb3pMAKZiQMqqCAwMNHPtkySGSqWS4OBguQjo2CURBIGkpCRKSkpwc3OjxL2RAxHFLM79Ay+cfp1/q99GcZyOvEvnH0kGl5mZSUtLC1988UWXx3aUG0rujxK8vLyYOXMmVVVVBAUFsW/fPoteFdbg4ODAggUL8PT0ZMOGDbIjo6urK0uXLkWj0VgsCLRaLZs3b8bd3Z1Zs2Z1um+cd27DoFRYNCYyiCKnq+9w5t6DzyR5Qj9UahtKGQE8g9y5UHiOTZs22Uw47Ar1jfUERwfiG+JjVozu2bMHf3//Hk+Bbxjf62LgSUJqO0ptTHuIREVFRbz11ltcuHCBSZMmsXTp0m4tdl3B1dWVRYsWodVqOX3oLBd25rPh37ZTX6hFQMGgQYO4ceMG7733ntzSLSgoAJD/vH79ev77v/+bnJwcFAoFzz77LD/5yU+YM2cO8fHxJIYpCfM2LaYKwdTSF75enSamJfLi/DT5fOzZoXaEALz/3nu0trYyfvx4i616a9DpdOzcuRM/Pz85mtgS1Go1RqOx05xXah3bw9WQ2NhGo5H6+nocHBxky2aNRsPChQvx9fVlw4YNZhI1CQkJCYiiaDFI586dO4SFhVksDkuud73YtLfqqLxdhVKptJms+TTGBGAqBoxGI+Xl5TJvQIIkMSwqKiIhIYHi4mLCw8M7te0HDBiATqfjfqyS64kttDg9aIO0GNopCWzhXN8Gvjhp22rYEjw9PRk5ciS5ubl2dfSio6MZNmwYR44c6fRZxsbGMmbMGMrLy+X8gO5YlUsxx46Ojqxfv17mkTxcEEiFgsFgYNu2bbS1tTF//nyLXhuf3bli0wtDJSg4UPqgK+Xh687UVROtt+ZFWP77RSxevJjy8nI52+BRUFdX12nnf+bMGcrLy5k6dard8t0ePBn0FANPEHFxcURFRSGKIlknT5BdVcCJqhvcbzOvnltbW9m9ezcbN27E29ub1atXM2TIkKcyGxN0Cm5uqyb7jQuUflnNme0XubTpJnl/ucGezQfYvHkzkZGRLF++nOHDh1NQUMAHH3xASUkJ5eXlsoTNz8+P3r17k5SUhEajwWg0sn37diorK0kMbmdkfBszJvZnbGocSbHuTBnixK9fnYxK+eAS624x8PHHH1NdXU2fPn1IS0vr+gEdcOTIEe7fv8/MmTOtSvsAeeTQsTsgGQx5eXl1Sd6ScPHiRVxdXWXiZcdRhkajkbPs169fbxaRC6YdZ3h4eCfegNFopKSkxCpfQFDbd70YBBOfxdb19TTUBGAqplQqlcwbqKurk5MoXV1dCQwMlEcF7e3t+Pn5cevWLbMuiYeHB4ExYeS4fL3oPPQyRESaXA1sv3X0kVrXw4cPx9PTs0tnQgnjx4/H19e3U7ohwKhRo4iNjaWxsRGj0SiHE9kLFxcXFi9eDMCGDRvknberqytLlizBwcFB7hDs3buXkpIS5s6d20lpIkGrt/0Ziog06cxHJC/+52LGzh8BgFKlQKlSolAqEASBZb+bR+bzY4mOjmbVqlV4e3vL2Qbdfe8fLgYaGhrIysoiJSVFdrDswTeHnmLgCSN9UgYXehn4TfspXj6znlfObCD9yB/51flPaNa3UVBQwJtvvsmVK1eYOnUqixcvtvpFflwY9Ab+OeP3FF80tQFFI7Ksp/l+C++9vIV+sf3p27cvn376Kfv27QNMOuTExESUSiULFy4kNjaWqqoqeWcuiiKffvop+fn5CILA9OnT8XZXEePfwm9fm8oPFqWh01ZbbGmCfcXA8ePHuXbtGv7+/syaNatbr1tyjZswYUKXO3tpt9zxpi4ZDPXp00cOGbKFuro6rl+/TmSkKSylpKSkk/2ztOvz8PBg/fr1nX6ekJBAUVGR2ey6srKS9vZ2q8VAxKAQBKVtzXbCkBhULgq73nOFQmFWDOh0usc20pJGAGVlZfLrsCQx9PHxwcvLi9bWVotdEm2MxqYhFcAdP223LYrB1NWbNGkSxcXFMnm2q+NnzZpFXV1dJ58DySLc2dlZdmDsrheCh4cHixcvpqWlhY0bN8rqCTc3N5YuXYparWbNmjWcO3eOadOmWb0+AKLcfKxaZgOIIkS7m3OT1A5qfr7xR7xz/r+Y9do00hePYvGvZ7Ox+E0W/suD76KbmxtLliwhLS2NrKysbo0NpC5ax3vf/v37cXBwMHOf7ME3h55i4AnCKBr53c0D3PIXMXZ4Zw2ikb1lF5iz/3/YuHkTAQEB/OAHP2DQoEFPlSmbu/csNy/exqDvfEMXjSJGnZG97x7hk08+ob6+nvHjxzN+/Hi0Wi0xMTEYDAbq6urk0UFMTAyiKHLgwAEuXryIUqlk/vz5DBgwgDFjxnDu3Dk5PVCtVndq99pbDOTn53P06FGcnJxYvnx5t96jlpYWPv30UyIjI+2aOUrFgLQL7mgwJDnnSW1Za8jNzcXBwYGqqiqio6Px8vJix44dnXaEUjCNq6trJ8lYQkICBoNBfq/BtGgqlUqrzmstei0hqVZIpoKpaFv623ldug/KDxEEM84A8MRIhKWlpTg7O+Pn52dWDMTGxtLS0kJ5eTkJCQncunXLogGRwU2J0IU9ZZvG2G2LYgkxMTEkJiZy8ODBLsmE8EBumJeX16mj4+TkxJw5c2hoaCA4OJgzZ850267cx8eHxYsXU1dXx+bNm+XPwc3NjbS0NNra2mRLYVtYGJNic0wgCAIzIwZY/FlU/3BWvr6IH7/3Axb96jn8wzpfawqFgnHjxrFw4cJujQ2kaHKpM5Cfn8/169d7PAW+RfQUA08Qp6qLyK4usPjVMyJSpmgmYEIyCxYswMPDw8JRTxZf7sxFobT+EYtGaCho4ZVXXmHlypUMHz6cYcOG4ebmRlFREWBiKhcUFBAaGoqzszPHjh3j9OnTKJVKFi9eLM99U1JS8PPz48CBA6hUKuLi4iwWA0ql0qYa4N69e2zbtg2lUtlt5YDkMqjT6eTku67QsTPwsMGQtQTDjpByKeLi4qisrGTYsGEykczSwuTs7GxmKiN1Tzw9PQkKCjJbWO7cuUNISIjVMUd1dTWxGaH0mxKHQiGAYJJuATi5OvKLTf9AysQBXSYWSni4MwA8Md5AQ0MDDQ0NnXgDD6cYSgZFRUVF8o4YwEPj+iC5xwocROUjWRRLyMjIoK2tjWPHjtl1fEpKCvHx8Z3khmAyrpo6daqczbB3716rihJrCAgIYMGCBZSXl8v+BVVVVezfv5/o6GhcXV358MMPbaYLzgjvz9igmE69Aalb8G/Jmfg5unbrvCwhJiaGl156ye6xQccMjfb2dvbt20dsbCy9e/d+7HPpwaOhpxh4gthdelY2n7EEBQJnhXvfmG62pam1yzavqMeMtKhSqUhJHkzWhi+58N5NfjH6P/j4n/ejLdJz/IsTHD9+HJVKxfPPP2+2K1EoFGRmZlJSUsKVK1fo3bu3WU49PJAVWnv9bW1trF27FqPRyIIFC7o9Prl06RJXrlxhypQpZi6DtlBt0FLuYeRs7W2u3bhuZjDk5OSEj4+PzZu4lKbX3t6Ot7c30dHRBAUFMW7cOE6ePCkbP3WEJBnTaDSsX79evjEmJiZy48YN9Ho9oiiahRNZPPfqakREpr42nh9uWUrclDAW/MtMfrruh2wrX8vYeaa5b1dyTgmWioEn1RkA5JyCmpoamVjXUWIYFhaGs7Mzer0eo9Fo5oo5LmAgoo3WgAIFEwIGAY9mUQym9vyoUaPIzc3txOuwBMk0SKlUdko3BBPxMSUlhdLSUry9vdm6dWu3CIUAYWFhzJs3j1u3brFt2zY++ugjvLy8mD17NkuXLkWlUrFu3TqrBYFKoeBvw2fzs/4TCHJ68J0Y5BvGeyPnMy8q2eLjHgXu7u52jw06ZmgcPXoUrVbb4ynwLaOnGHiCqGptwCBaX3yNiFS12pd//iQQ3jvUtkRRAMHVwJYtW+QZdsP9Rja8upPCPXdpLNXSUNVE/Z1mdv/HYf68ZC2CUWD58uUWW9dRUVEkJCRw6NAhIiIiUKvVZrbIthYlURRZs2YNbW1tTJw4kaioqG69VsllsF+/flaDgTriTnMNK3PeZ9ml9eTEGvnFzT28kL+ZukQvudsBD1rclmA0GsnNzSU2NpaCggKzdMLhw4cTERHBzp07ZdOfjpAY4tLNvK6ujsTERHQ6HUVFRXLWvLViQBRFqqqq0Ov1prRCbQ1p8wez5F/nkL54NI7OD5jlXeUSSLA0JngSnQE3Nzfc3d1lEiF05g2UlZXR0tJCXFwcxcXFhIaGmo0Kol1DGOuXZFFGKYgmW97FsZkEBgZSXl7e5WjHGlJTU/H29rbLmRAeyA1v3rxpUVKcmZlJcHAwLS0tGAwGtm/f3i1CITwIIrtx4wbNzc3MnTsXjUaDu7s7S5cuRaFQyNeQJagVSpbHD+OLKa9w5tkfc37GT/lo7BJGBUZ36zzsQVdjA1EUuZx9nS8/OU1bhZGK8gpyc3N7PAW+A+gpBp4gAp08u+wMBDo9/fGAhMkrxpsYQtYgQuBgb/Lz83nzzTf505/+xC9m/p4718o6HQfQWKrFqczbYlCShPT0dJqbmzl9+nSnUYGt2fWWLVuoqamhf//+coKivTAajezatQuNRsPkyZO7PL6ipZ4lJ9/l7H3zdnKrUuSoSzXvFT0IsAkJCaGystLiDvnGjRvU1tbi7OyMUqkkKSlJ/plErNTpdOzZs8fiwiIRwuSbubGVm7EaVhZsZVru3/giQc9lVZ3FAlOr1cptdC8vL7kdbQn2cgae1pgAHhRVbm5ueHt7W5UYxsfHc+/ePcLDwyksLDT7/T/rvYDByqgH3IGv/+/crOBl1wz8HD2ZONHkxf+o3QGlUsnkyZO5c+eOHCDUFaKjo0lNTeXIkSNykFLH55s9ezaiKOLh4UFJSUmnjIOuIIoiRUVFCIKAXq/n9OnT8vXk7u7OsmXLUCgUfPjhh1YLAjBdk54OTrio7B+9PSosjQ3yDl1gaewrvDbyV+z+w2HOvHOV1f1+RuttI8OGDXvq59QD2+gpBp4gngkd2GVnYIxr93a8jwP/Xn788C/LAcy4A9LuddyikfQeHYuLi4spEraqgfwTN2Vb204Q4dhHJ2mut84Y9vb2JjU1lezsbCIiIsxGBc3NzRYXpaNHj3Ljxg2CgoKYPn16t1/nqVOnuH37tlWXwYfxXuEXNOparX5W7xQcleWgHXXyDyMnJ4fQ0FAKCgoYMGBAp9/t4eHB1KlTuXr1qmyh+zCk3d19Bz0Lct7lokczDYIOraij1gV+c3U3/5S3Bb3RfDfZUROv0+nQ6XQWyWT2Gj3B0y8GpFjoh3kDHSWG0dHRMkdCr9ebESrVChW/HLSMoTluxOU7EVPoSNI5F2bV9uPCkVxaW1uJjIzE3d2dgoICix0ZexAVFUWfPn04dOiQGW/BFsaNG4e/v3+ndEMwfcbPPfccFRUVREREcPr0ac6fP2/3+Zw8eZLz588zffp0MjMzycnJMUtctLdD8E2j49hg5/uf8fNJ/05FsbmXQ2tDO2c+uMIX2+w3auvB00FPMfAEMcw3mjEBCRbzxRUIBLU5ULDzC7Kzs59YumFXmLY6g/934Jf0H/2AmNMrMYTX3nmJn334QxYtWoRaraauro7RA8dbdbOT0N6q4+bFOzaPSUtLw9HRkZs3b5qNCiy1q69evcrx48dxcXHh+eef7/bMsKKigqysLFJTU4mIiOjyeINo5LPS8zaLNoMo8vldk0QtICAAlUrViTcghVKFhITQ1NTEkCFDLD5Xnz59SEpKYv/+/VZb127ubpyOFdEpRLO3X3KNO1p5jc3F5rHU1dXVCIKAm5sb5eXlqNVqi06J9uQSSHhaYwIwj4UODw+nqqrKbLGWJIZKpZLo6Gju3LlDUFBQJxKqq6srUQG9CKx0IKbeC89mB0KCQ2hvb+fo0aMAjBkzxuT18YjKAoCJEyeaPWdXsCU3BIiIiGDChAncvHmTyMhI9uzZY9WRsiPy8/M5fPgwaWlp9O/fn6FDhzJ27FiOHTtmFlXu4eHB0qVLAVi3bp3s5fBtQxob1Oe1m4LQrCQWvvOTdRj03Ruf9ODJoqcYeIIQBIH/TJ7L4qjhOCofuL2pFUpm9krh4yk/YfiwVA4fPsyGDRtsJtU9SaRMHMB/Hv5X9rdtZq92E2sv/w+TV05AoVDg5uYmuxRmn8y26/ls5ZGDyWRnwoQJXLt2jZCQEPmG/jBnoKqqiu3bt8vKAVsOeZag1+vZsWMHfn5+dueda/XttBptk+KUgkB1m4kdrlAoCA4O7sQbyM3NxcPDg7KyMiIjI2X7YkvIzMzExcWFnTt3WiR0nqouoryt3qJlLJjqs4+KT5kVkNXV1ajVavz9/bl9+zahoaEWHdu64+3QsTPwsOTycdExFlrqYHS0JpYkhnfv3pWDi6KjoykoKOi005asmaVMg9LSUsaMGSO71w0YMAAHBwfOn380i2J4kDdy5swZi66RluDr60tGRgZ5eXkWsyZSU1NJTEyktLQUHx8ftm7dalOXX1lZyY4dO0hISDC7vkeOHCmHEHXsMHh4eLBs2TIAPvzww+9MQVBaUM6dy2U2Nxr3y+u48EXXgVE9eHroKQaeMNQKFf+YmEnWhJ+xZtgLvDv0eY5M+Bm/7PcMrhon0tPTWbx4Mffu3ePtt9+2mlb3NKBSqywGkfj4+LBgwQJEdx0Kle1LQqlR8MnnW1m3bp1NyV3//v0JCQmhrq6OiooKampq0Gq1uLi4AKYd63vvvYcoirIZT3chuQzOmDHDpstgRzirHMwKNUswiEb8HR8wrx8mETY2NnLp0iUSEhIoLS212hWQoNFomDFjBmVlZWbtXQlX6kttck0AylvqqNc92ElLHgU+Pj42VQdSMdBdaaFSqUSpVD6xYkCKhS4tLcXT0xMPDw85tAjMJYZxcXEIgiDnRhQWFpo9l4ODg9zFEEWRkpISkpOT8fX1Zd++fQiCwLBhw9Dr9Z0yBLqDYcOG4ePjYzeZEGDQoEHEx8fz2WefdSr2pURRDw8P9Ho9er1edii8ef8+e67nc6iwkMa2Npqamti8eTPe3t7MmDHDrGMmCALp6ekMHDiQ3bt3mxUe38UOQV2Vfedg73E9eDroKQaeEpxVGgb7RDLENwp3tfmNOCoqilWrVskxw3v27HkiEq7HQUhICAuWzidgoKdVObcgwOhFw/D286a4uJj33nuPP/7xjxw4cKDTfFYQBDIzM6mtraWx0sh//3QT+ccaObWngHsVdaxZs4b29nYmT55sV3v/Ydy8eZOcnBzGjx9vMcTHGpSCgmdCB9pcfJWCgszgfvLfQ0JCaGhokLXkZ86cQaVS0dzcjIeHB3FxcV3+3rCwMEaPHs3x48c7RRqrFUq7Fhu14sHOv7q6Gp1Oh0ajobW11ar5jPS5dNd0CJ6cJbGEjkVVeHi4WWdAoVAQFRVFYWEhLi4uhIWFUVZWhr+/f6dddn19PW5ubty4cUPmdJSVlTFlyhRKS0s5d+6cHP39OCM5iUxYUlJilfPxMKR0Q2tyQ41Gw5w5c2hqasLf35+rpaVMeWcN6e9/yI/27GXVrt0MffNtVn+4Dp3ewLx58yx6bUg24b1792b79u2yLwiY5HpLly5FFEXWrVv3jXUgrcEv1Meu4/zD7DuuB08HPcXAtwRnZ2fmzJnDlClTuHDhAu+++67d7cinhdjYWF7535V4xphMSKQugfLr/49bMJKfvv0qr7zyCq+99hoDBgzAYDCQm5vLH//4R9566y0uXbok3wC93H24fQKu7G/k3LFi7t3U8fmmsywZ8Vuu51QycOBABg8e3O3zbGlpYdeuXURGRj4SC3l5zGg81c5WC4Ifxqfj6fBg8ZR08qWlpeh0OvLy8ujTpw/Xrl0jJSXF7oTJkSNHEhoayo4dO8xc7kb4xdl0iVMgMMAzDBeVSS6o1Wppbm5GFEXa29tRKBRWvdy1Wi2CINhFrOzYGYCnUwzcv38frVZLr169KC8vN3sfJIlhc3MzCQkJ3Lx5k/j4ePLz883a/bW1tYSEhKDVagkLCwNMHhPh4eH079+fw4cPo9Pp6NevH62trXZZDFtDZGQkffv25dChQ3YTEp2dnZkxYwa3bt3i5MmTnX7u5+fHs88+y7Xi2xx0dqXwoVFBm8HAyZZWyqKjbXbMFAoFM2bMICoqiq1bt5oVmVJBYDQa+fDDD7/VgiAg3I8BY/pYNUATBIGg6AD6jEj4hs+sBx3RUwx8i5DS7l588UWUSiVr167l1KlT3xi50BIGD03hlbUv0HdJBEkZvRmU3p/0JWP485e/52frX5Hn0u7u7kyfPp2f//znLFiwgJCQEKqrq9mxYwd/+MMf2LZtG+bLzcIAACAASURBVL9d/T5VxabdtGgERJMNsmiEW6daCPawP4WwI/bt24dOp+PZZ599JJOSAEd31o94kWG+0WZUT1+NK7/s9wzLos1Dkdzd3XFzc6OsrIxLly6h1WrlxTU52X7TFunmrdVq2b9/v/zvce6BpPrGoLTyWoyILI8ZLf+9Y65BXV0dQUFBVvkWkvugPe/T0y4GJG+KsrIyIiIi5Ba/hIclhnq9HmdnZ9rb27l586Z8XG1tLUFBQQQHB3Pv3j1UKpWsOkhPT8doNHLkyBEmTJgA8FhEQjCRCfV6vd1kQjB1/1JTU8nKyrKoROnduzcNERE0GQyIlj4bQeCzopsUPpTv8TCUSiVz5swhKCiITZs2mW0oPD09WbZsGUaj8VvvEKz+n2WoNepOBYGgEBAUAj96c2WP4dC3jJ5i4DsAPz8/VqxYweDBgzl48CCbNm3qtlPZk0RaWhoT547DZbDAsjdm8+O1q+kzPN7qlzU2NpYVK1bw85//nJEjR+Lo6EjeyctcPFmE0Qp7WKEQ2PZW92/Sly5d4vLly0yePPmxLJ1DnL3425Al7Bv3Y94cspQPU1dyYNxPeK6X5U5FaGgoJSUl5OTkyP4J/fr1szuBUYKXlxeTJ0/mwoULZjvW15Pn0NfDtLtXCgoUCPJ/P+s9hVEB8fKxkpLAwcFBdvWzBnvdB8FUDDzNMYGXlxfOzs6yI5+Li4uZxNDNzU2WGHp7e+Pn50dFRQW+vr4yCbW1tZXW1lY8PT1JSkqisLCQ0NBQtFotdXV1uLq6Mm7cOM6ePUtdXR2RkZHU1dWZjSS6Czc3N8aMGcNXX31lcWG3hvHjx+Pv788nn3xi8X3Ma9ZaLgS+hlIQ2HW1MxHxYajVahYsWIC3tzcbN240CwiTOgQGg+FbLQiiB0TwRvbv6T/K3G44dmAkfzz0awalW85H6ME3h55i4DsClUpFRkYGixYtoqKigrfeesvMjvWbhCAIZGRkkJiYyCeffGL3jVStVjNu3Dh+/OMfEx8yyKaVvNEocim3iFZt16EwEurr69m7dy99+/alX79+XT/ADgQ5eTLcL4Yk716oFNbz0wODgzhXX8J5XSUEuFNfX98lcdAa+vfvT58+fdi7d69M8HJXO/HB8BW8NWQpz4Ymkx7Uh5WxY9g37sfMjzQfhVRXV+Pg4ICXlxdNTU02LYvtzSUA0+f+cGfgSXJZBEGQeQOCIHTyGwBTd6CoqAhRFElISODGjRskJCSQn58vB2eBqbDo27cvCoUCX19TgI7Ukk9JSSEoKIi9e/eSnp4OPLoJkYQhQ4bg5+fH3r177e7cKZVKZs2aRX19vcXfX9eFh4EgCNR0iHK2BSkm28nJifXr15sRB728vFi6dCl6vZ5169Z1ylH4phA9IIL/PPKvbLz1Jv9z4nd8cP0N/nbmdQaM6fOtnE8PzNFTDHzHEB0dzerVqwkJCWHz5s1yS/ybhtTSDg0NZfPmzWYmN/ZA4+BoMyRJgk5nn7ZYFMVuuQw+SWy/c4ZfNh3neKyO0zFGXm/JIXuAgvruNQVkCILAlClTcHBwMJMbKgQFqX4x/Lr/s7yePJfVceMsOlZ27AwANouB7nYGnuaYAEyjAikWOjw8nLKyMrPrOzY2Fq1WK0sMW1pa5GjjW7duyR78Xl5eODk5kZiYSHFxMSqVSiYaKhQKJk+eTEVFBSUlJfj7+3P37t1HtiiGB2TCsrKybiUQ+vr6kpmZydmzZzsRIf1dXWw+1iiKBNuZsQEmrsLixYtRKBRs2LDBrLv4XSkIwMQh6DsigdC44G/tHHrQGT3FwHcQLi4uzJ8/n0mTJnHu3DnWrFljV3DKk4ZKpWLu3Ll4eHiwadOmbrUYY/qGWoxO7gi/YE9c3e3btZ46dYri4mKmT59u9073SeCjW6f4/aXdNBjMd3H31DpeOLWWm43dK5IkODk5MWPGDG7fvm2RZGYLkpJAr9fj7+9v8/2wN5cAnv6YAEzjlra2Ntly2Gg0msk2JYlhQUEBwcHBuLm5UVlZiZeXF9euXaO2tha1Wi0XOElJSdy7d4+AgACamppkPkVoaCjJyclkZWWRlmbigHTXBvhhdCQodsfdMDk5mYSEhE5yw/n9+6Ow0T4TRZGZ3Uzxc3d3Z/HixbS1tbFx40YzB0Vvb2+WLl2KTqf71guCHnz30FMMfEchCAJDhgxh5UoTsWbNmjXk5uZ+4+RCR0dHFi5ciCAIbNy40e6bYMqYRPyCPK0bFAnw7LJRdpGGKisrycrKYtiwYURGRnbn9B8Lzfo2/jf/kMWfGRFpM+p568ajk9MiIiIYMWIER48etcuNDkxt/6amJgwGQ5cjAul4ezsDD48J1Gr1U+kMgEmZIRUyHUcFHSWGgiAQHx/PjRs3SExM5Pr169TW1uLp6SlfN5L9sEZjUlp0LKzGjx+PQqGgoKAAV1dXbty48cgWxRI6EhTthZRuqFKpzOSGiwcmEeXlZZU4+krqMEI87O8MSPD29mbRokXU19fz0Ucf0d7ezq1Lt/nw11vY+rvdBIuRNDdoWbdu3bfKTerBdws9xcB3HP7+/qxcuZJBgwZx4MABNm/ebNO17GlAcilsampiy5Ytdo0tlEoFK38zCYVSpKOCT7qJe4aocA1r67K4kVwGfXx8GD9+/GO9ju7iaMU1Wg3WX6tBNHKk8irNevt5Dw9j7NixBAQEsGPHDrsW3o5KgsbGRpvkQfjudQY0Gg3+/v4yb6BXr16dOCmSxFCr1RIfH09dXR2BgYFotVrKy8vNoq0VCgUDBgyQ7aKvXLkiyxCdnZ1JT0/n0qVL9O3bF1EUu6UIsARXV1fGjh1LXl6ezWjrh2FJbuim0bB1/lxm9O6NqoM81QX49ZhRvDq8e4FdHREQEMCiRYu4W1rO6hE/4cUBP2HLf+xk95sHWPtPmzj+7+e5ffpuT0HQAxk9xcDfAVQqFZMmTWLBggXcvXuXt956q5Mr29OGr68v8+fP5+7du+zYscOirW5H1NbWknP+GJN+kMAzS0bi4e2CQgWhMb689sd5vPL6DHJyc8jKyrJZEGRlZVFTU8PMmTPtdhl8UrjX1mR11ybBKIrUtdtH8rIEpVLJzJkzqa+vt6uN3bEYANt8AaPRSGtr63eKMwCm7kBH86GSkhKzWF9JYlhYWEhkZCQajYaamho8PDyoqanpFHWblJREW1sbHh4e6HQ68vPzzX4WGhpKYWEharWac+fOPbJFsYTBgwcTEBDAvn37uvwedERkZCTDhw8nKytL7gR5Ojnx+qQMTv9gFR8vmMfGZ6cxT9+O5gl8v0NCQtB+JXLnrEkBYdAb0esMIJoyRi5sKuTu1aqegqAHQE8x8HeF2NhYVq1aJWuKDxw48Ng3tu4gLCyM2bNnk5+fb9Oita2tjc2bN6PRaHj+xUWs+tcZrD/1K4Ys8uCVP01l4uwhDB+eysSJE/nyyy85duyYxee5desWp06dYty4cd1yGXxSCHB0x9BF50IlKPByeEQm4deQSGZ5eXld2lNXV1fj6OiIo6MjXl5euNsgmHXHfRAsqwmeRjEQGhpKdXU1bW1thIeHo9frzcYkHSWGSqWSmJgYWVUgyQo7wtvbm/DwcARBQKFQkJeXZ/aapkyZQk1NDSEhIej1erOAn0eBRFC8e/dut8iEgHwtPyw39HB0JDk4mNTYWJ6bOZP8/Hy+/PLLxzrP0oJyzuy5YDkTQDRp/FuumgrG9evX9xQE33P0FAN/Z3B1dWXBggVkZGTw1VdfsXbt2k67xaeJuLg4pk6dSl5eHidOnOj0c6PRyCeffEJDQwMLFiyQFyK1Wo1CoTCb2aampjJ+/HiOHz/eybO/tbWVXbt2ERERQWrqo7dLHwdjAhNwElRWA1aUgoKM4H44f+0M+DhITk4mPj6e3bt32yR2VVdXo1Sa7Ivt4QuAfbkE8M2MCcBUDIiiyN27dwkMDMTBwcGmxDA+Pp7y8nL8/f0BLBbASUlJ1NXVYTQazVQHYApJGjJkiDyaeBKpob169SIpKYkjR47I+Q/2QOoENTY2cuDAAYvHxMXFMWrUKI4ePWpmM9xdnPr0DAoboWJGg5FLX1xn7nPzaGlpYf369d/4CLIH3x30FAN/h5CCWFasWIHRaOTdd9/lzJkz3xi5MDk5mbFjx3L06FHOnj1r9rNDhw5RWFjI7NmzZf23dM5OTk6dCFxpaWnyc3XcCe3bt4+2tjamT5/+rTmTOSrUpN53x0IiNUpBwEWlYXWcfWmJXUEimSmVSj799FOrn6WkJGhra+uyGOhOYiFYHhMYjUazFv6TgJ+fHxqNhtLSUhQKBb169bJYDEgSw9jYWBQKhSxvtVT89u7dG7VaLQcsPXxdjhkzBkdHR9zc3GhpaekUjfwomDBhAkajkcOHD3frcVIn6Ny5c1bPY/To0URFRfHJJ5/I3grdRau2DcEOq2x3V3eWLl1KS0sL69atMysI9EYD7YZvrvvYg28PPcXA3zECAwNZuXIlSUlJ7Nu3j61bt3Zrl/I4GDlyJCkpKezZs0ee0Z49e5acnBwyMzOJjo7u9BgnJyczqZOEUaNGMWrUKI4cOcKpU6e4fPkyly5demyXwcdFSUkJHkUNvBY0ilDnB6Q1ARjiE8WGES8R6uz9xH6fi4sLzz77LEVFRRZb2a2trTQ2Nsq7dXvIg/B4YwJ4cjHGHX+P5DcAyCTCjr87LCwMjUZDQUEBjo6OREREyJbExcXFnYolBwcH+vTpIxed58+fN3s+R0dHJk6cKEv7uqMGsAYXFxfGjRvHuXPnbCZ4WsLAgQNJTEzks88+s5gsqFAomDlzJhqNho8//viRxoGR/Xph0Nsu5BzdHbhbXYaPj49cEKxfv54vy67x8un1DN7/G4Yc+A3Tj73BttunMYj2cyR68PeFnmLg7xxqtZopU6Ywb9487ty5w1tvvWXm4/60IAgCkyZNIiEhge3bt3P69Gn27t1LSkqK1fAhS50BCWPGjCEtLY2DBw/y6aef0qdPnyfmMvioyMnJwcfHhyUDJ/DZmNfYkraaNUOfZ9+4H/PW0GWEuzz5lLWYmBiGDh3K4cOHO3lLSLHFYFrcvL1tFyKPOyaQ8g6eJolQMh9qb28389VXKBRER0fLRNmEhATu3buHRqOhsbHRIpM/KSkJvV5Pc3MzTU1NnRw8+/btS0REBCqVitra2seyKJaQkpJCYGBgt8mEUidIrVaza9cui4+VwswqKyvNsizsxbCpg/AK9LQ6KhAUAtFjwti6dSt//etfKSwsZN68eVxS1fLDcx+RU12I+PWM7HbzPf5w+TP++dw2jD0Fwf9J9BQD/0cQHx/P6tWr8ff3Z8OGDRw8ePCpkwul3Yufnx/79+8nODiYzMxMq219a50BMN0cx44di7u7O3q9nuDg4G81uKSuro7r168zdOhQBEFAEAQSPIIZ7BtFkJNn10/wGJgwYQI+Pj7s2LHD7DPs6AIpEeZsQQpUsjdV0dKYAJ5OMRAaGkpzczN1dXWEhISgUqksjgo6SgxFUcTZ2RkXFxeL7fVevXrh4eGBKIp4e3t3GhUIgsDkyZPl9/RxTYjA9J5NmTKF8vJyM+KiPZCMp4qLi60aTwUFBTFlyhTOnj3LV3l5nKwu5PUre/ndpU/ZfvuMTVmrSq3il1teQ+mgkpNHJQgKgT7D4/mPj37D8uXLCQ4O5tChQ7y7aR05QabvqKEDWUb606HyK+wru9it19mDvw/0FAP/hyD5AaSnp5Obm8t77/3/9u49Lqo6f/z465wZBhjuIHIXREW8g3hJsbyXpqWl2WpeKit3a79trbXffez++raP77f2/m1/u11W+2XrtSxNS1Eyy9uWiqSg5gVCLspFQW4zMFxm5pzfHyNTyAwwCETyef4TMucczhlozvt8Pu/P+72u2dNkV7BYLDQ0NKDRaDAYDK1OU3h4eLRa9CUtLQ2DwUB8fDz79+93+cO1M6WlpeHu7s6oUd3fQEWr1fLggw9SXl7ebD66aSUB0K7iS67UGIDumyaA5m2hNRoNkZGRDoMBsHUx9PX1RafTYbVaiY+P58KFCy2mCiRJsnWRdDeji6kgz3yU/Ovnmm0THBxMcnIyAHnZBXz0xm4+fiOV04fOdTjnJjIyksTERA4cOOByAl7//v3thaec1S1ITExk0OjhrM79hKdPbGBbwQk+uXKKV77ZxczP/8xXpd86Pf7Iu4byVvqfmLbkTnQetpGekJhgnvzjUv702Ut46N2JjIxkwYIFPPfccygJ4bZ22k7iTBmJrQW3thpD6JlEMHCbkSSJiRMn8sQTT2A2m1m7di0nT57skuRCRVHYvn07JpOJZcuWAbQogfp9rU0TlJaW8sUXXzB+/HgWLVrE2LFjSUlJcXnpVmdoaGggIyODpKQk+w2xu4WEhDBjxgzS0tLsQ+XXr1+3jwa0lS8ArlUfBMerCaBrggG9Xk9gYGCzegOXL19u9vO/v8QQbH/bNTU1xMXFUVVV1WxaAcCiNGKMPoH+vq8xDjyK+7hv2V72S7YWvIDB/N2oysQJEynYX8qJ1y6y5tmNvPWLf/HCtN/xWPwvyPq6Y9n7TQWxXE0mhLYLTymqwk7fEgyetvfGoipYbgzV11kbee7rLeQYnZcrjxkWxa/W/5yU2i182riVzblvsXD1fVgUC6WlpeTl5XH27FnOnTtHsbXGWRxgOxdULrXys4Qfr+6t4iJ0m7CwMJ566in27dtHSkoKOTk53HfffS633G3Nvn37yM3NZenSpURHR7N06VLeffddtm7dytKlS1sUCXI2MtBUZTAwMJAZM2bY8xEURWHXrl32KnPdJTMzE7PZ3OGuhJ1l/Pjx5OTksCF1B8rEGD7zycI6RMWvTmK0uYQ5al9kyXk870rHQujekQGwPVE3PQ1HR0dz+PBhysrK7EsIwTY6cOrUKSwWC42NjfZgwdPTk/PnzxMWFgbY6vinFP+RS6ajSHLzwLfIdI7383/J8v5v4an1Zc3zG7lyrNQ+9t10zJLca7w47Xe89fWfXG6i4+XlxfTp09mzZw+jR48mKiqq3fs2dTdcu3YtqampzJs3r9nrx8ou8W3NNYdP6yq2G/SWvGO8NPx+e7nqmpoae+5EbW1ts69ramowmUwt8hS0Wi21/UHydbqaFgAPzQ8TIAtdSwQDtzGdTsd9993HwIED2b17N2vWrOGBBx7olPr+6enpnDhxgjlz5hAbGwvYhmAXL17Mpk2b2LlzJwsWLGg2X+0sZ+DgwYOUlZXx5JNP2gOIpmIxiqLwySefIMtytyQUKopCWloaQ4cObbWgT3eQJImwO0fy2pks1JKzqDc6LFfpVV46s4Pj5Zf4n1EPOg0ITCZTiwI9renOnAGwJRF+8803WCwWIiMjkWWZ/Pz8FsHA0RMHOJWzE8/gMuT6CLKzsxk8eDAXLlxg2rRpSJJESf1FcoxfOfw5Kgo1lutkVqUQXT2N1HccryRQrAqN9Y188OdPWP3Oz1y+ntGjR5ORkcGePXt46qmn2p2rARAUFMTs2bPZtWsXAwcOZNiw79r6Hrp2AY0kO83kt6oKe/JPIX18xuEqCy8vL7y9vfHy8iIiIsL+9c3/1el0pJXn8tO09U7PUyPJ3BM2vN3XJfx4iGCgFxgyZAgRERHs3LmTjRs3kpyczNSpU9FoNB06Xm5uLqmpqYwbN44xY8Y0e61fv34sWLCADz/8kE8//ZTZs2fbh7Y9PT2xWCyYzWZ7pnpT8tSMGTMIDQ1tdqymjGtFUdi5cyeyLDf7kOwK2dnZVFZWsmDBgi79Oe1RZ2nkvy7uQpWbP6mpN54Q9xSdZnyfAdwfmehwf5PJZH9ybo/uXE0AtpEBRVEoKSkhKiqKiIgILl++bB+RMSs1XHVfz6AF+8mTP6PfTMDqxtVLF7gz7tdkZmbaRxLOV3+BjAYFx0vpVFQyylI48bYRWSOhWB0/+1otCgfe+ze//H8/dTmBtaky4TvvvEN6ejrjx493af+EhARycnJISUkhMjLSvqy2QWk7EVjV2ILnm2/yTb/D9hoX1J8R/pGcry5qUX1TRsJN1vBI/4kuHVP4cRA5A71EU2vT6dOnc+zYMd59913Ky8tdPk55eTnbtm0jNjaWe+65x+E28fHxzJkzh/T09GaFhJqGrJumCpqqDEZHRzutMihJEvfffz/Dhw9nx44dbZbrvVXHjx+335h+aKnFZ6i1NDgdspWQeC/vmNP9Xc0ZuHmaQJIk3Nzc2tWYqiNCQkLQarXN8gYKCgpQVRWr0sDBoqcpqNnbfNhfY8Z70HkKNW/j7q6zryqorrve5pK3WnMVGScy2syfaaw3Y27s2EqciIgIRo8ezcGDB10u7ytJEnPnzkWn07Fz50777yLeN6zVa5ORGBYQSVJSEvHx8URGRhIQEOByIAAgSzKvj11GQoAtJ0UjyWhvjDz56/SsGfcoUV6dV1tD6DlEMNCLyLLMpEmTePzxx6mvr2ft2rVkZLT94dikrq6O9957D29vbxYuXNjqMGhSUhKTJ0/mwIEDZGZmoqoql2pruah1Y9vZbyitqSE1NZX6+nrmz5/f6rFkWWb+/PkMGTKEbdu2NWtE05lKSkooKCjgjjvu6JLju+qiocT+QeyIikq24arD35+qqphMJpcTCG+eR+6qksRgmysPCwtrljdQU1NDRUUF+cZUKhsuoNLyJihJcF39kpABCsePH+e1114jK7Og1b9jVQWpTk9wvyDaWiYfEOKHzt31G2mTptbJHUkmbFpuWFBQwFdf2aY95kYmoJO1ThP7FFQWx3Te36y/Ts+6CSvZnLyKlQPuYmn/ifwpcRH7pr9AQmDrVS+FHy8xTdALRUREsGrVKlJTU9m1axc5OTnMnTu3WbKZoioYzPXoZA16rTtWq5Vt27ZRV1fHE088YV/i1prJkydjNBrZsDuF02npFBiNoHPnxLHj/PHYcWLNjbw66552zWvLsswDDzyAoihs27aNhx9+mEGDBt3S+3CztLQ0/Pz8iI+P79TjdpS7rG01kQvATdY4HM5uaLC1h3YlgfDmaQLo2mAAbFMFTU/3UVFRSJJEQUEB5cEfY8uYc/wOqIpEo/cpGhpG0tDQgJQXgi6+2OG2dpcj8IjRIGtlFIvjiEDWyMxddfctXJFtpcSMGTPYvXs3iYmJ7Vr58X0xMTFMmjSJQ4cOERsbS0REBH9MXMQLp7YC2HMHZCQUVB6IGs3dXTCPP9w/kuH+kZ1+XKFnEiMDvZROp2PevHksXLiQ3Nxc1qxZQ0FBAY1WC+/kHObuL/7ClP1/YOK+V3ji2DreSN1KQUEBixYtarPyXRNJkhh9113s13tx+UYZWG7cuBTgkpuODVfa3xO+Ket64MCBfPDBB7fUxOVmRqORs2fPMm7cOJcSv7rSXSHxrZZ/1UgyU0KGOHzN1VLE0HKaALonGKiursZoNOLu7k5oaCgFBQXUWUppLaddklX8gjXIskxgYCCq0RN9iS2f5OYBAlUBpcKb2ov+hEWFMnDOjZUCN8VQkgT9hkSw4Jdzb/m6EhMTiYiIYO/evR3q7TBlyhRCQ0P56KOPaGhoYGroELYkr2JW+Aj0Gh1ukoZh/hH8IeEh/mvED9e/Q7h99IxPPeEHM2zYMH76058SEBDAvzau55HP/s6bWV9wveG7+c6TFfn8i4v4Tx1BTEyMS8f/16kMGgHVwYeVCuzNzuZCafu7Lmo0GhYuXEhsbCxbt24lLy/PpfNxJj09Ha1Wayta00OMCYxhmF8EGgfvXdN3VgxIdrhvR4KB7p4mgObFh+C7vAEPbR+cVr7BNjJgKLeiqioVFRVMmTKFB4a8SOOpAWgavxsNUS0y1kth6DImENo33JZwmODPpKcT8An/7r3RumsIHRvEsxsex8v31pffNlU7LC0tJT093eX9mwLfmpoae3fDeL9wXk1YyNFZL5F+7+/YlLyK2REjRSAgdAoRDAj4+fmxfPlyNBMG8K21yl6PvIkKIMEmYybVja41Qtp57nyLrOTv00gSu11MCtRqtSxatIjo6Gjef//9FpXrXGU2mzl58iQJCQntmv7oLpIk8frYpfT3sHV/1CChkWQkQCdr+cvohxnq5zjR0dW+BPDDBAO+vr74+Pg0Cwaqq6sJ095NWyMDVZci7StiDh06xLp167DmhmHclYDp0wSCzt/L4uC1WM8OwtvDz16kKDQ0FIItTP/1OB5bt4C7X57ApoI3GTA7jCNHD3fatYWHhzNmzBgOHjzYaltqZwIDA5k9ezaZmZmcOJNhqyVwegevnN3Fl6XZokeA0KlEMCAAthvBSW05rT1kmBUrKUWnXTquscF57XSw3fCqnVQsbI1Wq+Xhhx8mMjKSLVu23FLTmbNnz2IymVxeCtYdAt29+W3gXSRnyTwYmcT9kYn8augc9s/4FdNChzrdr6PTBN2dMwDNiw81tWW2lA7GWxOLqjgYUVLBUBBGXVkAs2bNQqPR4Obm9t1wvCqhGvQYiySyz+cQHh5OcbEtn2Do0KHEx8cjSRIGg4H8klw8At3o0zeIqJgY0qqqeHjzFu5dv5GffbyLQ7l5t1S9c9q0aWi1Wvbv39+h/RMSEpBHRPCzgh389fxe9hadZueVk/w8fRM/+fc/uV7vepAhCI6IYECwu2wqbzVhTSPJ5Ne0f0gfILKNFsRWq5Wa4mKuXLni8oeum5sbixcvJjw8nC1btrjcRhZsWffHjx9n8ODB7c6F6G7l168zSA7gt6Pm8fLI+Szufwe+bq0/8ZtMJtzc3FpUgWyNs5GBrlpa2CQyMpLi4mIURUGv19O3b18u5xdTfOhOGkpi+P7HlGKRqc4aSPFXiYBESkoKVqsVs9lMVFQUzz77rH1bHx8f0tLS7IGiRqOx17VISkri6aefxt3dnYqKCranpPCBxcpX7p6cvHqNrOvX+eLSJVbu2MmzKXuwuNCR8Ps8PT2ZMWMGZ8+e8LQLXwAAE3tJREFUJT8/3+X9LxpK+NjjMlbJNk5iVRV7HsmlmlKeSd8oRgiETiGCAcHOs40yoyrgpXV36ZhLRo1stda5JEn0razg3Xff5c033+TLL790aUjVzc2NJUuWEBoayubNm502e3EmNzeXsrKyHrOc0JHr168THBzs0j6u1hgAx8GAm5tbt4wM1JnNnMnLw9jQQHR0NBcvXuRqYSUzBv6NEeobXDk4lisHx2M6/ihXT8YjS1r7+TUZO3Zss9//gAED7Ofu7++P1WrFZDLR2NhIVlYWhw8fJiAgAD8/P14/d55LlVXAd5MTTdNbqVnZrEk70eHrS0hIICwknDf+822eGP48c/RLWBT2JG+/uJGywtZrfWzI/RKQHKZPWFWFLMNVTpR3Tt6M0LuJYECwmxU+Ak0r69qtqsJMF5cwPZIwihGhocg3zT80/es3U6fwm+eeY9myZYSHh3P48GH+9re/sWXLFs6dO9euNsw6nY4lS5YQHBzM5s2bKSkpaff5HT9+nNDQUJeXf3Wn0tJS+vTp49I+rnYshB9mmqC0poZ/nr/AB3pvFuz8hMTX3+SdomKKGhuZMGECOTk5bH8/ldriEAI1oym6bBuZCgsLIyAgALPZjAWJS2Y3nn//U3657QDfKN4YFJmDBw8CtiWuTz75pD1w8Pb2ZujQoRQWFnLlyhUKDQYKNc6XcarA+pOnaOzAqgCAxvpGzmy4xOlt31JwvpDGejOV16r46P/uYdWo1eSfu+J038PXLra5ouTwta4txCX0DiIYEOyW90/GTdYgO3gMkZG4MziOYf6uVebzdHNj86KFPJY0Gu/vdQAc1CeIf8ydw2NJo5EkidjYWB588EFWr17NvffeS11dHdu3b+e1115j7969lJSUtDqN4O7uziOPPEJgYCCbNm1q0dHOkbKyMnJycrjjjjt6bEa22WymsrLyBxsZ6Mpg4FpNDfM3v8dH585jvfH+q8CZ6mpSPfR8dvYshw8ftl9HZWUlM2fOJCkpiYqKCubNm4dBkUmt8+Kk2ZMSq4YrJjMX6iU+rffiW7MbEydOZPLkyej1ens+Ql1dHUlJSSxYsICwsDAMXt5tnmtlfT15FZUdus73Xt3Bt+m5Lb6vWBVqDXW88vBr9r/t2tpa8vLyOH78OLt27aLB0voUjYQtl0cQbpUoOiTYRXv3Ye34R3nh5FbKGoxoJRlFVVFQmRIyhFcSHuzQcb10On4zZTKrJyVTbDDirtUQ5uPj8Abs4eHBmDFjGDNmDGVlZWRmZnLmzBnS09MJCQkhISGBESNG4OXl5XDfZcuWsXHjRjZt2sSKFSuaNb25WVpaGl5eXl3e7+BWNJWMdjUYMJlMeHu3fZP7vu4OBv585N9cr61tsdpERUJFZZ/ZygOqik6no7a2llWrVuHt7U1VVRUZGRmc+PprjjToqW9q1oBk3x8gw+xJQmEZpe+9R21trX3EyGq18tZbb9l/Xr1WC+6ujaK0l7nRzK639qEojgNZxapQcL6Q/33p7+Bvoba2FrAlyAYHBxMapqdEMjkdtbCoCkP8XOuwKAiOiGBAaGZUQD9Sp63my7Jssg1XcZfdmBwymBhv125GjrhrtfQPDGj39sHBwcycOZPp06eTk5NDZmYm+/fvZ//+/cTFxZGQkMCgQYOaFQlqCgg2bNjAxo0bWbFihcMbqclk4vTp00yaNMmlJLvuVlZmGxbvyMiAq/u0Nk2gqmqnjp4Y6utJuZjlfNmpJFEjSfQZMZI+jQ1UVlby2WefUVdXh8lkQpZlPsu8iEl1PvohofLZpRLmBGsddsv08fGhvr6ecJUb9YqdX1+gpyexLvztNrleWEFNVW3rG0lQXVjDtOnJ9O3bl5CQEAIDA5FlmYii0/w2c7uT3ST0Gjdmh3d9N0/h9tdzPwWFH4xW1jAlZIjT6nbdTZZl4uLiiIuLw2QycfbsWTIzM9m6dSteXl6MHDmSxMRE+83P09OT5cuX2wOCRx99lKCgICyKlfzaqyioFGVeQlXVFl0Xe5qysjJ8fHxcrn/gal8CaDkyUJJ3jQPrjpJ9vJC3azdx9/Ip9B/eObXpi43GdmXoH7twgbgbQ+UXLlxAlmV7bYFSRXtjDMHxTVxFosSMvWFQYGAgycnJ9qqAZrMZs9lMkF5PnM6NbxvNDotjATw+Jgm3DnT5dHNv30fs+AnjmTp1aovv3xs+kvTruXxceMpefhhsuQKyJPGXpMXoXUzqFQRHRDAg/Kjo9XrGjx/P+PHjuXr1KhkZGWRmZnLs2DEiIiJISEhg+PDh6PV6li9fzvr161m/YT3+s+PYU36CarPtKU1jlUgYE4mbZ8/+IC0rK3P5Cb+pSZGrCYRNvQkURWHjyx+y5fcfIcu20YId3+xh+193c89jU3l+7So02o61v27i696+912nqmg0GlRVJSwsDL1ej6qqZGdnI2vcoY38UlmW0WptIwPR0dFkZWXZ6xHU++moCtFwvb6RUZX1VOm8KVVVZElCUVU0koRVVbl/SDxPje1Y0BgUHkj/Ef3I/8b50lkJiXGzExy/Jkm8PHI+E4IH8n7+cbIMJbjJWmaEDuWR/hMZ4ON8GkwQXCGCAeFHKzQ0lNmzZzNz5kyys7PJzMxk79697Nu3j/j4eBISEnjkkUd4/sBrXC452Gx5llWjckpTyEtn3uH3I59EI9/aza2rlJWVMXDgQJf2MZvNWK1Wl0cGmqYBdv9zH1te/QgAxWq7gak3nuI/W38IvyAfnvzzMpeOfbNwX19GhIRw7to1B30JbbSqyqR+UZhNJiorKykrK7MP98uyzEBfb7Kv1jm/HlT6arHf/DMyMtDr9SROT+bvRUco96747mdFSURfrWTloOkcLSunwlRHP38/Hh45kon9ojo8RSJJEo/8n4W88vBrDl+XZYmpiyfRt5/zgE+SJO4JH8E9YjpA6EIiGBB+9LRaLUOHDmXo0KEYjUbOnDlDZmYmmzdvxhrqzuU4x33lVVS+rszmSNkZpoYkdvNZt81isVBRUdGhfAFwrRQx3BgZUFTe//1Op9uoqsrHb6Sy5LcP4uXXMonTFavvTOax7Tucvj7C3EjJ5ctERUXZp36OHj3K559/Tnx8PDm5eXigoQHJ4VSBikSsZMJstg0f9O3blytVZfyh4t/UezV/SregcikUivwrefeujiXKOjP5oQlcL1zB2y9uBEm6kZogYbVYGXfvaJ5bu6pTf54gdIRYWijcVnx8fEhOTubpp59m5cqVVPfXILVS2FBGYk/xse47QReUl5ejqmqHVhKAa6WIwRYM1JbWU17S+hK6xnozmQfPuXRsR+6MieH1++bapwyaGjJpgLESPH3HeKxWK/n5+VRXV2MwGDh69CjDhg2jsrKSxvo6pno33nii+e6XLN34ephbPRFaKzqdjn79+mEwGPi2r4V6WUF18qC/88pJco2lt3xtN1vw/Fy2FPyT5b9bxPSldzHvmVm8fvz3/Pcn/4mHvmdPVQm9gxgZEG5LkiQRGRmJW5kXapXz7RRUSuornG/wA+roSoKOBgOSJKFY2lcSurG+c0oUzx4cx7QBsXyec4nC6mr8PT2ZGBrCxrXvcGDDUU7vyaah2ozWXSZzexaRE/pQpCuiqqqKoKAgnlu2jJANm8i4XkuBWYNVhUDZyj2D+5HYP4KDBw8SHBxMZWUl9fX1FASpTgMBsCXm7S0+w88Hz+iU6/u+PhFBPPLbBZ1+XEHoDCIYEG5rATofZGQUJzPT0o1teqKysjK8vb1dHu6/lWkCfR93NG4arObWC9kMTIxx6ditcddqmRM/2P7vupo6cj68SuH5EvsDv9lk5cpXpZScLGfk47EMSYpj1KhR7NixA1NlOYM1MPh7aR/TRg/n1KlThISEMGvWLEpKSjhy5AhmbSuRIba/h8rGNpYCCsJtSAQDwm1tRmgSB0oznL6uAveEju2+E3JBR1YSgG1kQKPRoNO13mviZmazGa2HhqDhPpSdrsJRFVyNVmb4pCFEDXatEqUrNrz8IcUXr7XsYKyCpd7Kxe2X8QzSUVBQQExMDPPmzeOLL76gvN5Iqb9t/v+Dr/ahvVaDhMS6desA28iH3ipTq1Ec1voHUFSVME//Lrs2QeipRM6AcFsbGxjPKP+BTkosy0TrQ5gZ2rNqDRRcKGTnP/Zy7INTWMpVl7s5Ni0rbG8GvKqqnDx5kr179wKw4n8WET00Ckluvr+skfHv68eL/3rGpfNxRUNdA3vf+RzF6mSNgQqmaw3UXbNNUxQVFbFz18d8FVBN6kgrX8dYyYxRSImq5tBwldg7RqLVagkICCA+Pp7oa22fw30Rjpf5CcLtTIwMCLc1WZJ5deRK/p61nS+unbIXbQEYFxTPi/E/waONbo3dxVBh5I9L/0H6p5m2aoCofLPzEl9vOcdL21YT1j+kXcdxpS9BUVERe/fu5fK1IuR4f4qqjSQN9eRPR15m/9uH2PP2fq4XleMb5Musx6cy/z9m4x/celvqW3E1v4w6Y8tqgTdTDTKhCaGUlpZyZoBEvr/aYiCh2l3hH/WnmO/nT1VFFWazmVXJd/P3+pMUmK47rH74s7hphHh23fUJQk8lqe147DAYDPj5+VFdXY2vr293nJcgdLryBgOnqy6hojDEN4Zwz6Af+pTsrBYrv0j+Ld+eymvxVKzRygSEBvD26b/iE9B2v4EdO3ZgNBpZsWKF021MJhMHDhzg5MmTGAbrOB9aSaNqsQ3NS+CpcefpgfO4N7x7WzuX5F1j+YCft7ld0rIhTHpoHHW+Wl41fuV0O0mFuAodzw2awZgxY3Bzc8NgruNvF/aRUpRpb/IT5unPUwOn8EC/pE67FkHoCdp7/xYjA0KvEeTuy7QeWE8A4HjKSbLSLzl8zWpRKC+u4NN1B3johfvbPFZr1QdVVSUjI4PPP/8cRVEImjGII41ffzc/f2NmoM7awP9mfYiHxr1b37PQmL5ExYdTmFWM07YFssTIqUMpKCjgiO4aUhhOVwioEhSHyEyYMMH+PV83T14eOZ9fDplFQe11PDRuxHoHI7fSvlsQbnfir18QeoBDHx5F1jj/31FVVFLXf8G1a9eoqKjAYDBgMpnsTYQASusr2ZL/OUe8csn0u0qhqazZMYqLi1m3bh27d+8mLi6Onz79Mw6qF1s9r3W5e1AcZRJ2EUmSWPrSQ60GArNXTmfJoz/hmWeeYejYBOQ2ciNqLA0O8y583DwY7h/JQJ8QEQgIvZ4YGRCEHsBYUeM8ae6G0sIy1qxZ0+L7KipXYszkR9mWFEq+kCtVkZb2B+KqAxlbGY6h2kB1dTXu7u7ExcXh7u7O9hOpVGkcV2dscrW+gm+NRQz2jer4xblo2uJJlBdV8M6vN9+o2Ge72VstVu5ccAfP/ONx+7b9fIKdtvdtEurp26kdFwXhdiSCAUHoASIHhZF54CxWi+OAQNbIDEqIZeXKlVgsFiwWC2azGYvFwpHac/y77oR92+8PmWf7VtBYbSLG6ElQUBBeXl7U1NRQVVVFgWcVRLd9brUW5/X/u8pDL9zP1MXJfLbhMCW51/AN9GbqkkkMTOjfbLv7IhJ4I+tznA0lSEg81G9cd5yyIPyoiWBAEHqAe5+cwSdvfur0dcWq8OCz9xEZGdns+1bFyn8f+8j5gSUojGrkj/NXE+zXPGEyr6aE9PS/tHlu4Z592tymK/SJCGLJb1rvE9DHw4fnh9zDX8+nItG8NIGMxCCfEH4SM75Lz1MQbgdiokwQeoDYkdH85NcPAHDziLYkwV0L7yB5fsviSDk1xVQ0Glo9tkVSuGRuucC+v3cYg336OazBALY6DEkBcYR6BrbzKn4YS/tP5A8JDxHt9V3Q4qFx4+GY8aybsBK9VtT+F4S2iJEBQeghHn91MRGDwvjgzx9TmFUMQFB4AA/+Yg4Lnp+LLLeM3RuU9vUIcLbd6vhF/OLU6zRYzc1KNmskGb3Gnf+I69wOfl1ldsRIZoWPoKiuknqrmQjPADy1PaN+hCD8GIhgQBB6CEmSmPXYVO55dArlJZUoFitBEYFoNBqn+0Tr+6KRZKxtZPzHeoc5/P4A73DeSnqO9Xn7+HfZaRRUNJLM1L6JrOg/q0fVYmiLJElE6nv2KIYg9FQiGBCEHkaSJPqEt++m5qfzZnJwAodKMx02Y5KRGekfS5S+r9Nj9PMK4b+GL6fO0oDBUouvmxeeGjG0Lgi9icgZEIQfuWcGzSfMM7DF3L+MhL/Oixfjf9Ku43hq3QnxCBSBgCD0QmJkQBB+5Px13ryV9Dw7Co+wp/g45Y0GfN30zA4bz4LIuwh0FyXEBUFonehNIAiCIAi3qfbev8U0gSAIgiD0ciIYEARBEIReTgQDgiAIgtDLiWBAEARBEHo5EQwIgiAIQi8nggFBEARB6OVEMCAIgiAIvZwIBgRBEAShlxPBgCAIgiD0ciIYEARBEIRerl29CZoqFhsMhi49GUEQBEEQOk/TfbutzgPtCgaMRiMAUVFRt3hagiAIgiB0N6PRiJ+fn9PX29WoSFEUiouL8fHxQZKktjYXBEEQBKEHUFUVo9FIeHg4suw8M6BdwYAgCIIgCLcvkUAoCIIgCL2cCAYEQRAEoZcTwYAgCIIg9HIiGBAEQRCEXk4EA4IgCILQy4lgQBAEQRB6OREMCIIgCEIv9/8BrUm80NHjucAAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "node_colors = [0] * G0.number_of_nodes()\n", "count = 0\n", @@ -1029,7 +819,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -1049,18 +839,7 @@ "id": "MYtd8B9Atc1Y", "outputId": "bbe6645f-769c-4f94-f734-450871a0c3e4" }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eXhUZ3av++6qUqk0zxISSAjQyDxJIGMwZjYYMLZpbON2224nTrqT0zc5Nzk3SfdJniQ3SaeTnPQ96dODh263J2ywG9uYyQIxgyaEkIRApXkeS2NJqmnv+0dRGwmpSiUhPDTf+zw8xrWH2ruo2t/vW99avyUpiqIgEAgEAoHggUXzVV+AQCAQCASCrxYhBgQCgUAgeMARYkAgEAgEggccIQYEAoFAIHjAEWJAIBAIBIIHHCEGBAKBQCB4wBFiQCAQCASCBxwhBgQCgUAgeMARYkAgEAgEggccIQYEAoFAIHjAEWJAIBAIBIIHHCEGBAKBQCB4wBFiQCAQCASCBxwhBgQCgUAgeMARYkAgEAgEggccIQYEAoFAIHjAEWJAIBAIBIIHHCEGBAKBQCB4wBFiQCAQCASCBxwhBgQCgUAgeMDRfdUXIBAIvhmYrQ6uNfYyZJeZFWIgNToASZImdY7KDjOXa3sYtjuICzHwyLxwAn3FY0gg+KqRFEVRvuqLEAgEX19kReGDohY+LW3D5rjzuJgZ4sufrkskKTJgwnMM2Rz8R04NRU19aCXXeUGnkfjjh2ezbl74/bp8gUDgBUIMCAQCj/w2v5FPS9vHvK6RwEer4V93pjEz1ODxHP96qoqChl7kcZ42EvC325JZGBs0TVcsEAgmi8gZEAgEbjENWvmsbKwQAOfM3uaQOVTc4vEcjT1D5NWPLwQAJAk+Km6910sVCAT3gBADAoHALZdqesBD7FBW4FJNNzaH7Haf/PpeNB5SC2QFSlr6sdjdn0MgENxfROaOQCBwS7/FjkYj4XA3rQccCpw8dYaZ0eFEREQQERGBv7+/ut3qkPEmzXBw2IpvoOflBoFAcH8QYkAgELglOlDvUQgA6HBwq6yYgst96mt+fn5ERkYSERHBkG80DsXX/QkUBZ1jmJ/99N+ZO2cOycnJpKSkEBIS4vYQm0PmTKWJkzc7aOu3EOir45GkcLalRxFi8Jn0fQoEDzoigVAgELhlyObglQMlbkP4Ggl2zI/mO5mzsFqtmEwmurq6Rv3p6OyiOHItdo2vM0HgLiRg2xwDaT7dVFZWUl9fjyzLREdHk5ycTHJyMvHx8Wg0zlVNi13m/z1ZyY22ASTurGJoJAgx+PCPO1KICfIgPgQCwRiEGBAIBB45Y+zivy7UjRp4wTn4RgXq+efH0wg2uA8yKorCtbpO/vVsA3ZZQXEtGtx+9AQMd5LYkYuvj47w8HDCwsIAGBwcpK2tDYvFgsFgICkpieTkZArNwRy9ZWK8J5dGgrkR/vzLzrRpunuB4MFAiAGBQDAh+fU9HLjaQl33EOD0B1g7L4znV8wkxM+7sHxT7zCHCuu5WNONovEhNsSXbamRrIzR0WPqGhNR6O/vV4/18fFBkiSGrXbKZ21B1nh+z3/dmcbcSH+P+9wLZoud0tYBbA6ZORH+zAwRuQ6CbzYiZ0AgEExIRkIoK+ND+D+/eQ9DYDDP7t6Ov147qXPMDDGwNU6m5/xx/vzP/5ygoDu+AtGREWP2t1gsmEwmOjs7VYFQ29k/oRAAqOw03xcx4JAV3ilo4vjNjlEGTAtnBPL9tbOJChTLE4JvJkIMCAQCr5AkCc1wH7ExYZMWAi46OjowGAwEBgZOuK+vry+xsbHExsaqr7X2Wbj8UdmEx+q0nqume4dsfHGrk0u13VjsMonh/mxLi2JRnGfjo59frONspWlMteWNtgH+5vMKfrI7TSQwCr6RCDEgEAi8Znh4GD8/vykf39HRQVRU1KR7GriICdITE6Snrd/qfidFwW+gBUUJH/d9ak2D/N1xI2arQ8076BiwklvXw84F0byQMXPc4+pMQ5ypNI37lrICPUM2jpd3sG9Z3JTuTSD4KhGmQwKBwGuGhoYwGKa+Pt7e3k5UVNSUj5ckiScXz3C/HUjQ9nLy04/41a9+RWVlJSPTohyywj9nVzE4QggAqjviZ2XtXKrpHvfc56pME5onnaromsztCARfG4QYEAgEXuFwOLDZbFOODMiyTGdnJ9HR0fd0HRuSI9i79LYgUJyGRq7mR8tmBfPP+9fz4osv4uPjw7vvvstbb71FQ0MDAAUNvXSZbR6tkd3ZL/cN2ya8tn6LfbK3IxB8LRDLBALB7yEWu8yNtn7aB6zoNBJJEf4khPlNOTwPziUCYMqRge7ubhwOxz1FBsAZHdi3LI6A7hqOlbUwd8Eygv18WDs3XG2rPHv2bF566SWMRiOnT5/mzTffJDU1lZ7Y5Wg14M49WVGgsnMQh6ygvSsMEBmon/DaIvwn3kcg+DoixIBA8HtGZaeZz8rasMmKGtYubOxlRpAvTy+OnXLy39CQs6xwqmKgvd05477XyICLjroK1kb58cyGeeNulySJlJQUkpOTKS0tJScnhxtt15CD54EHg2SJcb2RWJ8UwcFr7hsqScDm1MjJ3YRA8DVBLBMIBL9HtPVbOFzaiu12HFxW7qyHtw1YOHS9halai7giA1NdJujo6MDPz4+AgIApHT+SoaEhGhoaSE5OnnBfSZJYtGgR3//+99mweM4d06Px9kUhNdKAZhw1EBPky1OufIW7PkMJhfgwA1vShBgQfDMRYkAg+D0iv6HH7TZFgdZ+C/U9w1M6971GBu61kmAkrsRAb8SAC61Wy9PrVzIzxBfJTStGBQlbxQXy8vLGFU3PLI8l078bH/lONYNWUggdqOdPVoTi5zO1qItA8FUjxIBA8HuEscPsNjkOnHa9lZ3mKZ17OiID95ov4MJoNDJjxgyCg4MndZxGkvjhlqQ75kCuAV+RAYVnl0SxNjWOY8eO8dZbb2EyjS4l7OnpwVJxiT+ZDz/ZlcY/7UjltX2LWEwjl8/lTMOdCQRfDUIMCAS/Rzi8WAKwT9CF0B3Dw8NoNBp8fCZvquOqJJgOMSDLMpWVlZOKCowkKtCX7yY7mNVVxJIZ/qRH+zHff5DU1rPUnTlIbGwszz//PL29vfz85z/nypUryLIz4/DChQsYDAYyVq5gToQ/KdEBBPvp2bhxI5WVlVRXV9/z/QkEXwUigVAg+D0iKlBPe7/VTRDcmT8Q40VW/Hi4PAamEuY3mUw4HA6io6MZtjk4X91NYUMvdllmXmQAm1IiifLyupqamhgaGpqyGAC4XnSVZVE6vrM9/fYr6ZhMC8nJyeHIkSOEh4ezfv16mpubOXHiBDdu3GD9+vVcu3aNDRs2oNePvtb09HRmzZpFdnY2f/AHfzAtSyECwZeJiAwIBL9HrJgV6lYIAPhoJNJjPFvuuuNe3Ac7OjoAsPmG8Kcf3eCXl+opbOjlWlM/v7veyvcPlXK20jvDnoqKCvz9/Zk5c+aUrqW9vZ36+npWrFgx6vXw8HCeeuopXn31VSIiIjh8+DD19fVs3rwZs9nMO++8g1arHXMcOJMUN23aREtLC6WlpVO6LoHgq0SIAYFgGlEUhcu13fzw81s881YRz799jf/IqaayY2rr9JNlQUwg82MCXRejvq6RnH92LYzBVze1n/29uA+2t7fj6+fPv59vove2eY/r6lwVD/91vs6rz8loNJKUlIRGM7X7KCwsxN/fn/T09HG3z5gxg+eee041Lvriiy/w9XXmGNhsNt5++221THIks2fPJjU1ldOnT2O3C/MhwTcLIQYEgmlCURTezG3k33NquNVuxi4rDNtlrtT18Fef33JrczudSJLEkiAr1psXCdbJzsQ42U56dCAvrJzFvIipl/UNDw/fUyWBIyqZrkHP7n9Hbozv/ueir6+Ptra2KS8R2Gw2rl+/ztKlS9FqPWf+u4yLnn32WXp6elAUhVmzZjE0NMQvf/lLzp07h8PhGHXMxo0b6e3tpaCgYErXJxB8VQgxIBBME4UNvRwrd4bDR453suKcpP/0XC29QxNb2t4rZ86cIQIzr65NZomtmoCb2eyYH0P0PbbXvddlggFDpGobPB6yAkWNfR7PYzQakSSJefPGNxqaiLKyMoaHh8cN9Y+HJEnExsZitVpJT0/HbDbT3d1NREQEZ86c4fXXX6e19Y4RUVRUFMuWLePcuXNq9YVA8E1AiAGBYJo4Wt7huZGNrHDaeH8b2dTW1lJdXc2jjz6KJEkYDIZpG5SmGhlwOBx0dnai9zV4zGcAkCeohjAajcTHx09ZlBQWFjJ37lzCw8O9PubixYv4+Piwa9cuvv/977N9+3bVc6G3t5fXXnuNnJwcNUqwfv16bDYbFy5cmNI1CgRfBaKaQCCYJqq7Bj3W+CNBjWnovr2/oiicPn2auLg4UlNTAaZVDEw1Z8BkMiHLMmkxgZT1DrrdTyNBuivfYRzsdjvV1dWsW7du0tcA0NbWRmNjI3v37vX6mIGBAQoLC1mzZo167xkZGSxZsoTc3Fx1wD9//jw3btxgz549xMXFkZWVxfncAkyhybQOKvhoJTLiQ1g2K2RMzwOB4OuAEAMCwTTho9UADrfbJUDvKU5+j1RWVtLQ0MD+/fvV0jaDwYDdbsdut6PT3dvPfarLBK5Kgi0LZnKstpohm+NuN1/AuUzw+AL3fQtqa2ux2WykpKRM+hrAGRUIDAxUhZI3XLp0Ca1Wy6pVq0a9rtfrWbt2LStXruTixYtcuXKFrq4uXnvtNbKystAnLKY0JpiSkk40koSEs71xQqiBH25NIlw0NBJ8zRDLBALBNLF6duiE/e5Xxofcl/d2RQUSEhJGrae7ZrMWi+Wezi/LMhaLZUqRgY6ODvz9/YkIDeL/2TgPvVYzyg7Y9Zk9uzyWxXHuHQUrKioICQmZknGR1Wr1OnHQhdlsJj8/n8zMTLciyM/Pj02bNvGDH/yAZcuWIUkSpwpv8F+XmlAkCZCQFXDcvt3G3mH+6YuqCZdDBIIvGyEGBIJpYnt6FFqNNG4bHI0EscG+ZCSE3pf3Li8vp7W1lQ0bNowyvHGVxN3rUsG9tC8eaUM8f0YgP90znxSdCV9bP1EBPmQlhvGP21N4akms23MoioLRaCQ5OXlKhj5lZWVYLBavEwfBGRXQaDRkZWVNuG9QUBA7d+7kT/7kTxiOXYIzhXTsdcoK1JqGKGnun8TVCwT3H7FMILgnFOVO5vx4s2JFAbt8Z2YkAVoNaKWxbWJlxdln3rXurpGc+35TllhjQwz89aYk/vnkLayyhFYjIcsyiqQhLsTA32xOui/rxbIsk5OTw7x585g9e/aoba7Be7rEwFSWCdrb20ddV2SgnmjTDQLMZv76D//aq3N0dnbS09Mz5SWCgoICkpKSCA31TowNDg6Sn5/PqlWrJnXP4eHhdGhCx3Q1HIlWclaeLJk5ub4K9wuHrFDeNkDPkI0wfx/SYwLH7doo+P1GiAHBlFAUsI0YuME50Os0zgHctY/lriV0hdviANBr7wgCh+w830gcCjgc4DPinF93UiN9WdiWQ2BKJvroRNpbWxisLeHvn38R/RQ8/b2hpKSEzs5O9uzZM2bbdImBqXYsdDgcdHV1kZGRMer1/v5+wsLCvD6P0WhEp9ORmJg4qfcHaGlpobm5mX379nl9zOXLlwG8igrcjcOL3g+2KfaHmG5y63p480oDXYN3Sl4jA3x4ZXU8K+9TFEvw9eQb8ogVfJ1wDfJ3P88UnAO64/agbnWfS6fu6zrf3UJgJHeLjq8z165dw24Z4jsblvJHa2bzh2sS8RtopqG+/r68n8Ph4OzZs6SlpREXFzdm+1cdGXBVEoxc5+/v78fhcIx7ve4wGo3MmTNnSk2SCgsLCQoK8jqqMDQ0RF5eHhkZGfj7+0/6/eZE+I+Jeo3EocC8yMmfd7rJr+/hJ6erRwkBgC6zjR+fquZqY+9XdGWCrwIhBgSTxu5h4IY7gmDimvI7ywgT4fBin68aWZbJzc1lwYIFhIQ4EwVjYmIIDg7GaDTel/csKiqiu7ubRx99dNztX3XOgMu2Nzr6TpXArVu3ALw2DhoeHqa+vn5KroMWi4WSkhKWLVvm0b64ub2HmsZOrDY7ly9fRlEUHnrooUm/HzgrItyuEigKfjoND8/xPipyP5AVhV/nNo67zXXpb+U1oohExwcGIQYEk0IZkRnticoq71q5vvvee9R5MWv+JkQGKioqMJlMrF69Wn1NkiSSkpLuixiw2+2cO3eORYsWjRpsRzJdxkNDQ0NIkqSKC2/p6OggICBg1Azb1eY3KSnJq3NUVVUhy/KU8gVKS0ux2WwsX7583O2fnC5m9TP/wrytP2T+zr8jYcNf8U+vf8GixUsJCJiadfOaOWGsne30S7i7akJCZqH1FhrFQ9jsS6Cyc5D2Aavb7QrQ1Gu5r74Ygq8XQgwIph2Hw0H/wIBX+9psNhRF+b2YgVy+fJmEhIQx3fRSUlIwmUx0dU2v+2B+fj4DAwOsX7/e437TIQZc7oOTzeQfWUngorW1FZ1O53UI3mg0Eh0drUZbJkNhYSFJSUnjHvuLD87yzH9/jZKKJvW13oEhLpX3868HShm2TN06Oqwxl/TBG6RGB+DnoyHYV8fm1Ej+6uFoHG1VHDx4cExfgy+TPi9tsfuGRcOlBwUhBgTTjkajITlpnlcD/Ivf+Q5zEmd7XGOFr39FQVNTE/X19aOiAi7mzJmDVquloqJi2t7ParVy4cIFli5dOqG17nRFBqZSVtje3j5GDPT19Xk9sCuKQmVl5ZSWCJqbm2lpaWHlypVjtrV19fEXP/kIGGuBrACFNxp47dDU7IRLSkqoqanmhS2r+Mcdabz9/FLefG4xf5CVwPKU2ezbt4/q6mo++eQTr0WwQ1a42thLdkUnBQ292O5x3SwiwDvTo8iA+5P0Kvj6IcSAYFwU5U5r2ZHPK0ma+EsjSRLBgQHoNHh82Ok0zvPJDhs2qw1ZHvuAcx3/da8muHLlCmFhYeO62+n1eubMmTOtSwVXrlzBYrHwyCOPTLjvdEYGJoPD4cBkMo1awujr68PhcDBjxgyvztHc3IzZbJ6SGCgoKCA4OHjc5Yh3PsudwPhH4Vcfnpv0ew4NDXHixAkWLFjg9prnzZvHk08+SUlJCSdOnJhQEFyp7eYPPyjhn76o4hcX6/mX7Cr+8IMSzlZOPdKUGO5HQphh1DLGSDQSzIvwZ1bo1HpACL55fM0fsYIvG0UBm8NZLWC9/cficCb5uZ5ZOi2AMu7gDeCwWZAkyLtyiZLia87XHA5kh8NZd68o5F25RF+PiaGhIX71y1/y4YF3sdts6nbXH4fdTmdb89c6MtDb20tZWRmrV692m6SWnJxMXV3dPTsBgnPAuXTpEitWrPBqhj1dYmCylQRdXV1jKgkqKysBmDt3rlfnqKiowGAwEB8fP6n3tlgslJaWsnz58nH/TaobOtB4+FIpCtQ2T36w/eKLL3A4HGzdutXjfgsWLGD79u3k5uZy8eJFt/sV1Pfwbzk19N4Vru+3OPjf5+u4UG2a9DWCU7A/Ej6MoihjBIEEaCSJ72ZN7jMXfLMRPgMCFUVxDv7jzRXsMsiS0xtAI0FFeRmRMbGEh0eo+9isVi5fukB5WQmbN28mOzsbSZIozM8lfcEiYuNiaWxowNdHR3HRVUqvX8Nms9HT0wNdXfziZz9lybIVJMyeTULCbPQ+Oo58/gkN9fV873vfm1KY+ssgLy8PX19fli5d6naf5ORkjh07RlVVFfPnz7+n97t8+TKyLLN27Vqv9jcYDHR2dt7Te04lMuDqSTBSDFRVVQHeiwGj0UhSUpLHSoDxuH79Ona7nWXLlo27PTTYf8Jyl6CAyd1vXV0dRUVF7Nixg6CgoAn3z8jIwGw2c+rUKfz9/cckOSqKwm/zm5Bwf6lv5zeRlRg2aTOrkpISruV8xo4lWRh1s6noMKvbYg12/tumBSRFTS2BUvDNRIgBgYpD8fx8dC0bDJoHOPLZp9hsNhLnzCU4JASrxUJ4WCiXL10C4NChQwQHB98OC9s5m5PN1q1buXDuDLGxsWzdupX3339fPXdcXBzNzc2UXr/GlUsX+NGPfoRGI7Fl82Z+/vOfc/z4cZ544on7/AlMHovFQmFhIStXrkSvd78OGxYWRmRkJEaj8Z7EgNls5sqVK2RmZhIY6L7D30h8fX2nJWfAW/c+F+3t7WMqCVpbW9FoNF5FNPr7+2lpaRk3D8MTiqJQWFhISkoKwcHju/w9vWUF//GbbLfn0Ggkntue6fV7OhwOjhw5wqxZsyZlefzII49gNps5cuQI/v7+pKWlqdvquodo7vMcSeoatHGr3cz8Gd59FwBu3rzJ7373O5YsWcLu3ZuRJIm2fgvdgzYun/kCe18nSVHe37vg9wOxTCBQ8SYnySFDdna2mgk9aB7g+rUibpbfIDExUZ09KopCX18fPj4+9Pc7fdhjY2PR6/W0trZy+PBh9ZyJiYk0Nzfj4+OjzkBdM8GQkBC2bdtGcXExN2/enOY7vneKioqw2WxkZo59eCqKQkPPEOeruzhb1UV0yhIqjMZ7qpy4cOECGo2GNWvWeH3MV7VM0NHRMSpfQFEUent7CQ4O9qoqwZVj4W0Jooumpiba2to8DsrL0uPZvWHJuLa7GknCRwNpMXavM/4vXrxIV1cXjz/++KQqLiRJ4rHHHiM9PZ1Dhw5RW1urbvM2k3/A4n3Gf1VVFYcOHSI9PZ1du3ap1xoT5EtaTCAr0ufR3NxMX1/fmGM7BqwcutbCLy/V80FRMy1909MaW/D1QIgBgYo3Q9Tg0BDFxcXqgDZygOjv7x9TLjZ79mysVmc9c3h4OGFhYSiKog5OQUFB1NXVAbBs2TLsdvuYWeOSJUtISUnhyJEjDA4OTvX2pp2RJkN3z0D7LXZ+W9DI+0XN5Nb3kN/QQ40uFseCzZTVjG/2MhF9fX3k5+eTlZU1qYH5q6omuLussLe3d1LJg0ajkfj4+Em7ABYWFhISEjKhqdFv/ulFNqxMUP/fNYYnzY7i9b/dQ2tDJW+//faE3zmTycT58+fJysoiJiZmUtcKzuqbPXv2kJCQwIEDB2htbQUgOtA7T4eoQGdEqnPAygdFzfz4VBX/60wNl2q6R1Ud1NXVceDAAebOncuTTz457tJLcnIyGo1GNYYCp4h7v7CZ7x0s5cNrLZyu6OSj4lb+9KMbvHGlQXRg/D1BiAGBykTzGUVRqK+rUwe+gIAANYnQ39+fgoICTCbTqEGjuroaSZLQarW0traq68iKohAZGcnTTz+tCgvXIHF3KZokSezcuRNZljl69Oh03Oq0cPPmTXp6esb41ztkhQ+uNdNudoog1/IKgOTrz4m6IczWyddvnzt3Dr1eP+mwucFgwG73fpZ7Ny7xNhkxYLfb6erqGvVv6Zr1zpkzx6vjq6urJ11FMDw87DFxcCQaSSEr0cb3toTz5JoYXto+n5Ov/YBrH/+Ipx/fwAsvvEBHRwevv/6625wLRVH4/PPPCQwM9Kqywx06nY59+/YRHh7OO++8g8lkYkawL+kxAe5/l4qCv72fvkYj2bc6+d6hUj4qbiW/vpfLtd38x5ka/vxwOZ0DVpqbm3nvvfeYNWsWe/fuddvG2c/Pj9mzZ4+Kwh0r7+Cj660ooLZjdn2fj5V38FFx65TvW/D1QYgBgcpE5XuSJJGfdwW73Y5OpyM9PV2dNel0OlpaWnjsscfUQSMwMFAVC35+fhw4cEANS0qSxP79+8nLy1Nfy8vLAxh3dhUYGMj27dspKyujtLR0Wu53qgzbHLT0DXOhsITZiYnExo5uvVvRMYBp0DauJa0kaXAoGq41jQ3DeqK7u5uioiIefvjhSbsA3mt/AlcFxGSiEV1dXSiKMmqZwFVJ4I0YqK+vx2q1TloMFBcXI8uy28TBkeTm5mKz2Vi9chEr5wXy9MZ01q680yI5ISGBV155BZ1Ox+uvv646J46ktLSU6upqtm/f7jFnxBt8fX3Zv38/vr6+vPPOOwwMDLB/aTSS4hjbBVGRkZDJ9Ovi3WPn+MWlulGi0/Xftn4Lf3/sJm+/8w7R0dE888wzE/Z3SEtLo7a2luHhYeyyMuFg/0lJG8O2r9ZRUXDvCDEgUNFKzujAeGvasixTabxFQ30dg4OD2Gw20tLSMJudWch9fX34+fkRHBxMT08PkiSpZjiKojAwMDDqIeRaPy4rK0NRFNavX6+GR92Z6CxcuJD58+dz9OhRBrx0OJxOhm0OjpW3818Xa3m7sImeWSvpT1xDcXPfqM+sosPsOcoiSdxonZwYOHPmDP7+/mO6/3nDvYqBqXQsHK+SoKWlBUmSiIiIcHeYSkVFBcHBwZMKu7sSB1NTUyfM5rfZbFy44DQV2rhxI0NDQ+OKnbCwMF5++WVmzZrFO++8Q0FBgbrNG0+ByRIQEMC3v/1tbDYbb7/9NnnZn5FuymVhzOilkpkGO/NaL6J0N+GTutZty2RZgeYBO47QeJ577jmvhGRqaiqyLGM0GqnuGhxT1ng3w3aZ8rYv//comF6EGBCoSLdLB01dnaMGN4fDwbWiQg5/dPD2fs6h7uzZs+oAExgYiN1u5/jx4wAsWrSI+rt6DlgsFhwOhzqonDx5Eq1Wy9y5c1m3bh063cTFLTt27ECj0XDkyJEv1cLYYpd592oTpa39o/okDMkSJ251cLmuR33N6pAnzL8YnITVbUdHB9evX2fdunVT6to3FTEwbHPQ3m9h0OqYUsfC9vZ2AgMD1WMURaGnp4egoCCvygRdJYWTScZraGigo6PDq2z+/Px8rFYraWlphISEYLPZ3Iodg8HAc889x8qVK/n88885fvw4siyTnZ2N3W6f0FNgsoSGhvL888/T1dVFTU0N+3dt4e92pPP6M4v4ya40frVvIf+xL4OEUD1dJhMVPQ6Q3H+mkiITvWC11/9+ISEhxMbGcuvWLazedBEDrN40LBF8rRGlhYJR2O023v3tr1m4cBH9AwPMnTeP06eyGR4aIioqio6ODhRFISIiYtTsfMGCBeTm5tLb24vBYGD79u2Ul5djs40e9OLj4wERNQwAACAASURBVAkKCqKiooLm5mYAVq9e7QxJ2p0zkNOnT5OUlDRu2NXf35/HH3+cDz74gOvXr7NkyZL7+Gncoaip1xn6d7P9Qo2JhTOCCDboiAzQU2saci8IFBmNxfvIwJkzZwgNDXXbbGciJiMG2vstHChq5mJNDw5ZQZJgQYQPFp/ASUcGRi4RuFoZu2uoNJKuri5MJhNbtmzx+v3AmTgYFhY2oYeBq8ETwKZNm7zqyKjRaNi+fTuRkZEcP36cpqYmGhsb2b59u1eeApOltbUVh8OBRqOhqKiIpKQkQv18CPW7Iwb37t3LL375S2dQwINm0mg0SNrJPepTU1O5dOkSj259HI00caOw2WHCqfCbjogMCEZRVlbG0NAQM2bEcLP8BjFRkQzfDhObTCZ1ZupaE3ZRVFSk/v3hhx/m2LFjY4SAVquloaEBnU6nDvzh4eEkJSWpSwQ+Pj709fVx7Ngxt9eYlpbG4sWLOXbs2LglUPeDa019Hmf7ElDW6iyhXBIX7DkyIGkYqLnuVUJfS0sLN27c4JFHHnGb9DUR3oqBlr5h/vKzm1yo7sZx++mvKHCj00ZVzFraJtHArqOjg8jISPX/GxoaAO/MhoxGI1qt1qvcAhdDQ0OUlZWxfPnyCaMJBQUFWCwWUlJSiIiImFTkIzMzk2eeeYampiZ0Ot2kyx69obGxkc8++4ylS5fyrW99i1u3bo0bCYuKimLzpk34WXtAcT+DdyiQGj05A6G0tDSsVivdbY0sm+Hn9vwaCRbHBTEjeHJ5LIKvH0IMCFQURSEvL4+kpCQ1ZO/qRw/O5YKRYd6enjuh8ZEP0lu3blFSUjLq3EFBQciyTHh4OGVlZerrixcvRpIkWltb1fXkHTt2cO3atVEC4262bduGXq/n008//VKWC/onyP6XJOgddoqfEF8twT21ztdH7nT7OlNCtVjb69WSSk/k5OQQERHB4sWLp3LZAOo68URi4M0rjQxaHWNmgTIgSxreKGjz6v3sdvuYngQu58GEhAR3h6kYjUYSExMnlZDnKnedKHHQ4XBw9uxZADZv3gzgVWRgJG1tbSiKgp+fH2+88QaNjVMrFR2Pvr4+PvjgA2JjY9mxYwepqans3r2boqIiTp8+PWb/VatWkW7od7tMIKEQbNCxavbkDKOio6MJDQ0lPz8fe/Ex/LCODT4oMv5ahT9eM3tS5xZ8PRFiQKDS2NhIS0sLmZmZmM1mfHx8yMnJGZXQ193dPW6duGuGLkkSDQ0NqjhwPWAzMzPZvHkzJpNp1MzNFWlobW1Fr9cTHh7OkiVLWLp0KUePHh0lRkbi5+fHrl27qKqq4urVq9PzAXjAT+d5Vq4AAXotiqLw2Wef0VF6iYejJWKD7oR1ZXMPa+IM7FqSQFBQ0ISNixoaGjAajaxfv37SdrwjkSRpQq+BLrOVoqY+9+FgSUOtaYiarol9HlxRo5HJg64loYmWCSwWC7W1tZNKyHMlDqanpxMQ4HkGXFRUxPDwMElJSWrkYjIJkiaTiXPnzvHQQw/x6quvEh4ezm9+85sx4ncq2Gw2PvjgAzQaDfv27VMF+ZIlS9i8eTMXLlzgypUro46RJImN6XFE9N+udBg5g1dkJNnBH60Ix2eSnb4kSSIqKoqKigoS46L46d6lfGtZLOH+PkgShBh0LA4YZE5TDnrHJEJGgq8tQgwIVPLy8tSw/eDgIJIkYbfbWb9+PeB8QCiKQktLC+np6aNmea7ZuSRJxMXFqVUGw8PDaDQaCgsLycjIIC4uTl0ikCRJrT1vbW1FURTCwsIA2L59O+Hh4Rw8eFA1LbqbpKQkli9fzokTJ+ju7r4fH4nKwtggjxUCigLzY4LIycmhuLiYJ554gocWzOXRWC1D599juVIHZdnYWoxoNBqSkpI8igFFUTh9+jQxMTEsWLDgnq9/IjHQ2u9dA6WWCexx4U40yTXwy7JMT08PAQEBEyZAVldXI8syKSkpXl0POMsQOzs7J0wclGWZnJwc4E5UALyPDNztKRAQEMALL7zAggUL+Pjjjzlz5syUo1QuEdne3s6+ffvGWE0/9NBDPPTQQ5w4cYLr16+rr1dWVnLy5AkyAnpJbM8lcLgDvWwhOtCH+YY+UlrPkP/FJ2OW7CYiNzdX/X6uW7eO8CB/9i6N5Vf7FnHwxeW88exi/nJ3JoE+EkePHv1Sk3kF9wchBgSA0z3wxo0bZGRkIEkSnZ2dWK1WHnnkEXVW6vrBK4rC5s2biY2NHVMB4OvrS3Nz86gZmkajoaenh8LCQiRJUiMDiqJQVVXF8PAwHR0dWK1WVQz4+Piwd+9eent7PVYObNmyBX9//0n1hp8KK2YGIzmsKG46NS6ODaKm/Drnz59n06ZNLFq0CLhdYqfIREVEkJKSopq5pKSk0NXVRVfX+J3xampqqK2t5dFHH51URr07JhIDAXrv8hG82a+jo4OgoCB1cHV1L/QmebCiooLIyEj1e+ANBQUFhIeHk5iY6HG/4uJiBgcHmTt37qhrGR4eRpKkCZclxvMU0Ol0PPHEE2zYsIGzZ8/y8ccfT3rgBbh06RIlJSXs2rWLuLi4cffZtGkTS5cu5ZNPPsFoNFJfX88HH3xAUlIS/n5+BFs6SOkpYlH7GdbaS/mzx5ZhUKyYTCa++OILr65DURSys7M5fvy46nTpTrS6EoUrKiooLy+f9D0Lvl4IMSAAnA9UrVbL0qVLURSFuro6fHx8WLVqFQUFBWNmTVeuXGFgYGDUACxJEkNDQ6r/QFxcHOHh4eqa9cmTJ2lqasLX1xeNRsPylZm8/Ad/hKzR89/+7C/YvHU7kZF3QsuRkZHs3LmTkpISt0sBvr6+7N69m7q6OtW06H5wvTCPwcKjaId7R72uyA7SQjXMppujR4+SmZnJQw89pG53RSwiIiJIS0ujra0Nk8nE3Llz0Wq14z5oXVGBmTNnTmqG7AmDweCxffLsMD9iJ0gCC/LVetUQ524bYtea+uzZnteWFUWhsrJyUksEg4ODlJeXs2LFCo+iSZZlTp06BTCmSsFltezpeE+eApIksXbtWvbu3cvNmzd56623JuWDYTQayc7O5uGHH1ZF5Hi4nDiTkpL48MMPeffdd5k5cyY+Pj5UVVWxZ88e9Hq9Gt4vKCggMzPTaRaWnz9hbw+Hw8Enn3zCxYsX2bJlC1u2bCE1NXWUNfHdpKWlkZqayrFjx+7Z8lrw1SLEgACHw0FhYSFLlizBYDBQWlrK0NAQ8fHxdHZ2Ultbq+YABAQE8vC69WRmreXxJ57mT/6v/5uNm7cSFRWlCgPXQ2fjxo2YzWZWr17N5s2bVTdCm83GCy+9wqYt2wiPiESj0WDw82PJsuVEx8WPWrdetGgRy5cv59ixY2rFwd3MmTOHzMxMsrOz3c6074Xy8nKys7NRhgfYnRLCy5nxhHdXEtlTid/NU/SWXuDjjw6RlpbG1q1bRw0qriTLwMBANTGzvLwcvV5PYmLiuGKgoqKCpqYmNmzYMC1RAZg4MiBJEvtX3J6RuomwPLM8zqu15/b29lFioKamBpg4ebClpYWBgYFJCaBr164BeGwfDc6WvWazmcTExDFGRt40YfLGU2D+/Pm8+OKL9Pb28vrrr9PWNnHCZWdnJx999BEpKSls2LBhwv01Gg0bNmxAlmWsViu+vr7cuHGDp556ikWLFrFz506amppYsGABly5dIiQkBJ1OR1hYGJ9++qnb6hur1cqBAwe4XlJK2qN7KGUmv7pUz3D4PNo7TW7tmF2NlqxWK9nZp7jROsAbVxr43+dq+fh6K92Dk4+SCL4ahBgQcOPGDcxmM5mZmVgsFk6ePIlerycmJoa8vDx8fX3p7u7Gz8+P5779Illr1hJwe03TYDCwfGUGzzz/InFxM0ed12q1YrFYCA8PH1VmtiprDVHRMaOWDMBZeihJYL3LfXXbtm1ERkZy8OBBt7PbjRs3EhwczOHDh1XRMR00NTXx8ccfExQUREREhDPxLEBPsL0XvbmDBWkpVFdXExMTw549e8Yk+rkevv7+/uj1epKSktSQanJyMrW1taPuSVEUcnJySExM9KoMz1u8aVa0OjGMXbMlNMrtyonbyWgaRWalfw9b06I8HO3EbrfT3d09Kgzf1NQEMGGDIqPRiK+vL/Hx8RO+D4xOHPTUzEhRFDUqMN5gPlHfhfr6eq5evcrGjRsn9BSYOXMmr7zyCn5+frz55ptUVFS43XdoaIgDBw4QFBTEk08+6ZXw6+vr4/333yckJASDwUBFRQWbN29W22KnpqaydOlSjEYjCxYs4OTJkyxYsIDe3l60Wi0ff/zxmN+H2Wzmrbfe4lZTF/XzdnCwyk72rS5OVXRysNLKrZkbOV/s/j5CQkJ4aN2jHGzw4X8eq+DkzQ7OV5t4/2ozr35YwombHRPelwuHrKhlrYIvFyEGBOTl5TFnzhyioqI4d+6cOmjo9XqKi4uxWCyEhoayYfNWQsPCxgx4Go3WuX64c7f6ml6v59ChQ4DT0jUnJ4fo6GgkSSIjc7WH7HjnA3Hk88CVPzAwMMBnn302bm6AXq9n9+7dNDY2cvny5Xv4NO7Q29vLgQMHiIiIoL+/n6ysLPWB7Wq37ErmSkxMHDc5zmw2I0mSui09PZ2mpib6+vpITk5GluVRnvdlZWW0tbV5NUucDL6+vhOKAZvNRkfRadKbTvJoSA8zesr53pp4ssx5LA/zrrFSZ2fnqEoCh8NBT08PBoNhwtm30Whk3rx5Xvsp1NbWYjKZJkwcLCsro7+/n4SEhHEFiScx4HA4OHLkCDNnzmTlypVeXVdISAgvvfQSc+bM4cCBA1y5cuUuR0+Z7l4zHx48hNls5tlnn/XKJnhwcJC3334bcApJV0Tj6tWrozorbtu2DT8/P/r6+oiPj+fGjRv4+fkRFRVFfX0958+fV/ft7u7mzTffpKtvgIaZ6+izOq/ToSi4TAUdWl8+rNOppbPjcWkoErNvxO1jnb9f5fZ/X7vcwNWGXrfHAlyp7eZvjtxi31tF7HuriB8dvUVBfY/HYwTTixADDzjNzc00NjaSmZlJR0cHV65cYc2aNVitVpqamnA4HMTHx2O12pg/f6HbQVyj0RARGcXMWbMA50PUlUR45MgRWltbsVgsBAYGYZjQ3EUZY9oTERHBrl27KCsrG+UPP5KEhAQeeughcnJy3JYkeovFYuG9995Dp9MRFxeHv7//qFp/SZJob29HlmUWLVpEcXHxuCZCg4OD6HQ6VUSkpKSg0WgoLy9XIyau2aMsy5w5c4bk5GSvZ8fe4k1kIDc3l4GBAYL8/ciYFUj0QA2PJkdiHzZ7XYPv+txdYqCjowNZlsd0orwbs9lMU1PTpPIFCgsLiYyM9JiLoCiKmjznLsTvaZng0qVLdHZ2snPnzkkt2ej1er71rW+RlZXFiRMn+Pzzz2lu6+a//+shZqz7C+LW/w++/9NcSjpC6BuaOJJlsVh49913GRoaYv78+eTl5bFp0ya++93vMjg4yHvvvadW3fj6+vLEE0/Q0NDAnDlz8Pf3R5IkampqWLZsGWfPnqW+vp6WlhbeeOMNAFLWP0m/VR63tFRBwoaWY6Ut415bY88QhQ19d3pA34UEfHTdfbOjA1eb+becGio6zOprt9rN/Mupaj72cJxgehFi4AEnLy+P0NBQkpOTOX78OCEhIarFb1VVFXq9nmXLlhESGorGixlbcIjT3MThcKgh8ubmZiRJUvvZT4SijN8sacGCBWRkZHDixAlaWsZ/MD366KOEh4dz+PDhKbfslWWZQ4cO0dvby5NPPklpaSkrV65UZ/cOh4Pa2lrsdjv79+/n4YcfZmBgYNyMaovFMmrWZzAYmDt3rppXkZycTGVlJYqiUFxcTFdXF48++uiUrtsTE4mBwcFBLly4gEajYeXKldjtdjVj3l0Tn/G4u5LAtUQwUfKgK3fCWzFgNpu9Shy8efMmfX19zJo1y22W/tDQ0Lgzc5enQFZW1qQaJrnQaDRs3ryZnTt3cvZiASue/nt++eE5Bgady0IOGT45c4OsZ39MedX432dwLr0cOHCArq4uli5dyuXLl1m3bh1r1qwhIiKC559/no6ODj788EP1O5+YmMjq1as5f/48W7ZswWq14uPjQ3d3N/Hx8Xz44Yf8+te/JiQkhJdffpmSjvHLd0dypryFhoYG2tvb6e3tZXh4GFmWKWzoQ+NBJyk4B3ezZWx0qaLDzKHbXRFH/uJdouS9wmavvC0E944QAw8wZrNZHehu3brF8LCF555/Aa3ej41bthEdE6Ma+/h40UQIwP/2oLFmzZpRUQTX4K7VamhsqPe4ri9JEqXXi8fdtmXLFqKjozl48OC4g5ur1Ku1tVXtSjdZjh8/TlVVFXv37qW+3nmtrm6BiqJw5MgR+vr68Pf3Z8aMGURHR5OYmDimmsFut2O328cMpGlpadTV1TEwMMCcpBRsikRDQyNnz55l/vz5Y1oiTwcGgwGbzeZWIJ09exaHw4Esyyxfvhyr1Yper8dqtaIoiteRgbt7ErhcFmfOnOnuEMApBmbOnDmhaZCLoqIiJEny2JtiZFRg27ZtbvcbLzKgKApHjx4lICCARx55xKtrcsfy5cu52R1Kn9mGwzH6e293yPQPWvjjv39v3GNdwrSxsZGMjAwuXrzI6tWrVe8PgNjYWJ555hlqa2s5fPiw+lvbuHEj4eHhnDlzhqeeegqbzUZNTQ3R0dGYzWb0ej0vvPACAQEBWB0TRCckif7BId58801+/vOf85//+Z/8+Mc/5h/+4R/IzsnxKk/nxz/5N37yk5/ws5/9jLfeeovf/e53/Ob0dY+DkEaCL26Nn7womF6EGHiAuXr1KpIksWjRIhxo+fZLrxAYHIqP3pdly1fy4ndfZV5KGuXl5dTX19HX2+uxlt9ms1FyexC/dOmSKgZGioL+/n4uX3TOQN21Sm5rbeazzz6lsrJyzHadTsfevXsZHBx0a0UcFxfH2rVrOXfunNsIgjtyc3PJz89nx44d6gC/aNEi1QTmzJkzXLt2jdTU1FEz0szMTBoaGka9X3+/s1fB3QNcWloakQkp5Nb1U2sJZMWOFyjv0RA8M4V1j6yf1PV6i6f+BCaTiYKCAnx9fUlLSyM4OFidSU62Y6G7skJPAsfhcFBVVeV1VEBRFK5evcqCBQs8XpfRaKS7u5u4uDiPYmS8nIHS0lKqqqrYsWPHpGyRx6O1s4/T+VVu3R0dDpnc6zXcuCs6oCgKn376KUajkdWrV3Px4kWWL1/Oli1bxkRD5syZo0axjh07hqIo6HQ69uzZQ3t7O42NjaogKigoYPbs2epkAGBehL/H2T2KjL+1h+9+97u8/PLL7N+/n71797Jr1y6y5s/x2DURRcHHMYxOsTE4OKhWKF2/fp26HgueZISsQI1JRAa+DIQYeECRZZmCggIWLVpER1cPScl3yrkkSVKTuBQ0rMpaA8D5czluQ7KKolB6/ZpquKIoijoLvXvWUFdbzbHPP0WWZRRFQZZldZ/amiounjvLvHnzOHTo0LglTWFhYezevZvy8nK33gLr1q0jOjqaw4cPq46HE1FRUcGJEyfIyspixYoV3Lhxg76+PrKysgDnGvW5c+fYuHEj8fHxo8xlUlNTCQ4OJj8/X33NJQbuzkBvHZRIXrUJh3Qn2qLx8WXWggyahvXI98E8yZMYOHXqFAaDAbPZrCbJ2Ww29Hr9pHz7bTYbJpNJFQN2u52enh50Oh3BwcFuj2toaMBisXgtBqqrq+nu7vaYOKgoCidOnADc5wq49rtbDLg8BebPnz+pHAZ3VNa3I3uRIV9efUcMKIrC8ePHKS4uZvXq1Vy6dImFCxeyY8cOt7/B+fPns2PHDvLz89UkwdjYWB555BHOnz8/qodCQkICK1as4Pjx47S3t7MuMcjz907SED5Qy2effYYkSSQlJTF//nyWLVvGlmVJGBSL+2ZJEuzNmMP//NGP+OEPf8hf/uVf8oMf/IA/+qM/Ijo8BDy09ZIA3wmswAXTgxADDyiutdS09HSiZ8S6fcBIkkTmqiy0Wi2l14vJOfUF8u1wsiusrCgKVwvy+eLEMXWmrtfrx8zaQ0JCCAkJweFwMDQ4OO4gHR+fQFt7G4GBgQQFBfH++++r3vEjSU9PZ9WqVaqR0d1otVqeeOIJOjs71cY0nmhtbeXQoUOkpKSwadMmFEXh8uXLzJs3j+joaCoqKvj8889ZuXIla9aswcfHZ5QYcK21l5SUqJndrpyJkJAQdT+zxUF156D62d79WXeZbbR6Yfk7WdyJgYaGBm7cuEF4ePio9r8uMeD67L2JDLiEm2uZwNXQx1VF4o6KigoCAwO9Xh4pLCwkKirKY5JldXU1JpOJGTNmePQ3GG8ZxOUp4GlpYTIE+HkXWQj0u5O3cO7cOfLy8li1ahW5ubmkpKSwe/fuCXtUrFy5kvXr15OTk0NhYSGA6iRYWlrKpk2b8Pf358KFC6xYsYKwsDA++OADjh18m4R+ZyLrqAjB7QE+YaiaAFsf3d3dvPHGGxw4cIC2tjZu3LjB66+9RnLfdTSK467eCM6SgqChdqw3z+NwONBqnZVHJpOJnJwc7A2lnrQACpCVOLkmS4KpIcTAA0peXh4JCQk0NDRN6Bdv8PNj5izngzfvyiVe+8V/ceZ0NkVXC7hw7gy//D//H9knj40a/F0P/5FLBb29vfT29jJ37jx2PvEUPj4+SJKERqNR9/PR+/LyK69SXFxMeno6Q0NDHDx4cNy1bpcl8qFDh8YVDDExMaxfv56LFy967CzX39/Pe++9R2RkJE8++SQajUbNtl69ejVNTU0cOnSI1NRUHnvsMSRJQqfTjYpogHNtWFEUtduiSwyMjAw09w577HEA0Ng9/U5u44kB15p6VFQUzc3No5Lx7l4m8CYy0NHhrCd3RQZczYkmqowwGo0kJSV5la3f39/PzZs3J0wcdEUFJhrQ714GmYyngLcMdNYT7Of5URscaOCRDGd0Ljc3lzNnzrBixQquXr1KYmIiTz31lNcll+vWrSMjI4PPP/+c4uJiDhw4gMViUX+D+/btQ1EU3n33XTIyMjCZTJjNZv5m/xb+dmsyS2cGo1FkNCgEWUwktueS7tNNUFAQNpuNpUuX0tbWxi9+8QsOHjxIdHQ02oEOUtvOEzlQi16xIcl2/Ox9zDRdJ7GzAGPFLQ4cOMDly5f52c9+xttvv01LSwtRlhZ0snXcqIJGggh/H9bNCx/nLgXTjRADDyBtbW3U1dURHx9Pa5t3pTsjB/qenh7ycy9z6uRxLl88T2/P2Hpgl5FOTEyMatbjYs68JLRardtZjq/Bj8d37uL8+fOsXr2auro6jh8/PmY/rVbL008/zfDwsNveBGvWrCEuLo7Dhw+P6xlvtVp5//33kSSJZ599Vl0fvnz5MlFRUYSFhfHee+8xY8YMVSjAnW6LI88ZEBDAwoULKSgoUJvzuF53MWh1eJoIqftMN+OJgZs3b9LQ0EB8fDySJI1q/+tKIJxMR7/29naCg4PVzPyGhgYAt1n84Kxz7+zs9Np1sKioCK1W6zFxsLa2Vk1knKiKYeT9jfQUmMi7wFuMRiOnT5/iu7s9OyT+j1e2YfD14fr16xw/fpzFixdTWlpKbGzsqA6G3uByBUxJSeHw4cM0NDTw7W9/m61bt5Kfn4/NZiM9PR2z2czRo0cJDw/HYrHQ0dHBorgg/npzEhusBXwnupXnU7QEDbfT3NxMWloa4HR9tNlsaj+HhoYGp0C2mXlstg8PDxeysPEYSS3nmB9kRSM5f6vOpkonCQ8PZ/bs2fT19RHsp2du+2XCDE6hI6GowiAmyJe/eywZPx+xTPBlIMTAA0hubi5BQUGUlZXh6+MzYYMfu91OR7vTWlWj0RAaGqr+3YXr7zNnxbP98V08/52XeepbzxIaFkF3d7daS28wGEhNmz9huHPh4iWkp6dz4cIF1qxZQ0FBwaj1eBehoaE88cQT3Lp1a0x7V9d17d69m56enjH94GVZ5uOPP6arq4tnn31WnQl2dXVx69Ytli9fzrvvvoufnx/PPPPMqAiK6+93L3VkZmbS09OD0WhUxcBIdzydRpowMqDzmMk1NVwDtEsMOBwOsrOzmTdvHjU1NcyfP3/UddpsNjUy4OPj49Ws9O5KAlc0xpPzYEVFBRqNxiu3RVmWuXr1KgsXLvQoTlzC0Zsw/8jIh8tT4PHHH7+nltEuRloNr182i82LA9HrnC6bOq0GCdBqJP76Dx/jz17YyK1btzh8+DDp6elUVlYSERHBc889N2HkbjxMJhNtbW1otc622r6+vmRkZDB37lwOHz486vObO3cuaWlpfPLJJ/T2Os2BHA4HOp2OdevWodFo0Ol0XL16Fb1ej0ajUXuPREVF4ePjo/4OtFrtqCidq/zQZrMRFRWFRqOhqqqK9vZ2EhIS6Ovr49t7HuN/7UohsSOPVVES0QM1LB4u56dPzic22LsqFsG9I8TAfcI0aOVybTc5lZ0UNfVisU//bG8qDA0NUVJSQmRkJH19fYSGhlBx66bb0iBZlikrua4+NGVZVsPfIx+Ysiyzedt2nv/Oy8xfuJiZs+KZOy+JXXue4oWXXiEsLJxNmzaRmprq5cNNYs+ePURFRXHt2jWWLVvG8TMX+V1BFR+XtHC0vJ0a0yCKopCamkpWVhbZ2dnjLgdERUWxceNGrly5opa6gXNtuKKigqeeemrUgJWbm4u/vz/Xr1/HarWyf//+MXa3rpna3dEGV+Z6Xl7eKCtiF77y4ASRAYW4kOl/AEqSNMqFsLCwEJPJRFpaGt3d3WPc9UZGBqZSSWCz2eju7kaj0Yyyor4bo9FIYmKiVw58VVVV9Pb2epy119fX09bWRmRkJHPmzJnwnK7PY3h4WPUUmMg22RuGhoZ4//33CQ4OZt68eVy+fJm//uMnqD31z/z0r/bxguqqHgAAIABJREFUZ9/ZxPaV4bz5N1v40R/voK6ujoMHDzJ37lwaGxsJDAxk//79Xn0ud9PU1MSbb76JTqfj1VdfJSYmhnfeeQeTycT27dsZHBykqKiIxMRENBoNBQUFxMfHo9fr+d3vfocsy9jtdrRaLT4+PixYsJBuXRg1YcsoDX+IyqgsEtftoamtg6amJrVSIzo6muvXr49q0mS320lLS0OSJNWASlEUJEmioaGBp556ivT0dGprawgaauMP1yWRqjSj665DM019OQTeIcTANOOQFY6Wt/N6bgMXakwUNvbyRUUnP7tYR2nL+E1CvkyKiopQFIX6+nrS0tK4ePEiOdknMJm6UBRlVJtiRVFob2vldPaJUX0EAgICkCRp1Kx4+cpMlq9w1uK7ZpEusRAVHcNjj+/i1KlTFBcX09LSPGFdskZyzr6feeYZkCRqrH74rtxJRZ9MZecgZa39HCxu4cC1Zix2mY0bNxIXF+c2f2DVqlUkJCRw+PBhrFYrBQUFXL58ma1bt44KUQ8NDVFUVITBYKCrq4v9+/eP2053vGUCF5mZmVRXV48SAw6Hg5ycHN7/9a8Y7G5nvKwpRZZRHHZmhd2f2ZDLeGh4eJizZ8+ydOlSqqqqiI6OHrOuPzIy4G0lQXd3tyoGXCWWERERbmfZVquV2tparzP2CwsLiYmJ8VgmOJmoANxZJjh9+vS0eAqAUxh/9NFHDA4O8vDDD3PixAlWrFjBqlWrCAv25w/2ruXv/3QX+7cvo7ujmebmZt5//31mzpxJZ2cnPj4+fPvb3/bYb8EdlZWVvPXWW4SHh/PSSy8RFRXFc889h5+fH7/97W/58MMP1d/x4sWL0ev1REdHk52dTVZWlmpX7IoMyIpCZUAqtdGr6TFEY9EHYdaH8VmtjVtRa9AFhlJbWwugJge7cFUljezE6O/vz5w5cxgcHCQiIkL9t3d9D4ODg4mOjsZms3nssimYfoQYmGZOGTspbXWWlCnccdKyywpHb3ZQ3WV2f/B9RpZl8vPzCQwMxGAwYDQa1aSit3/9Oqe+OIF5YIBBs5mO9jZOHv+cd3/7azXj2s/Pj1deeUV9yIxk1eqH3C43aDQa4hNmExYe7gw3FuS5HSBcIkR7e1IQFBRE5mNPY4lwhpGl2/XMrndq7Bnm2M12NX/AarWOMl4ZeQ27d+/GbDbz0UcfcfToUTIyMli1atWo/fLz81U//W9961tuM9zdLROAs8QrICBAHWi6u7v51a9+xYULF1i7di3bMlKQzd3qvbquVbYOUpN7Ar3u/vwsXWLg4sWLWK1WMjIyuHXrFitXrhyTjOeKDHjT0Q/cJw/Oum1PPR41NTU4HA6vxEBfXx8VFRUeEwebmppoaWkhPDx8wmUHRVEwmW0MOHSERMVRXV09LZ4CAF988QXV1dVs3bqVY8eOMXv2bDXxdCRz586ltbWVd955h4iICHVG/cILL6i+FpOhuLiY/5+9946OKs/yPD8vnCJC3iKLDEhCAgkJ4b03iU8SmwlJmiIzu7v69HTP7vZ09+xWz8729G5OV3V3ZValTzzCCIT3JMIlCIGQQd5776Xw780fQTwUyEBVZc2e3eJ7DgeQnl68p4j3+33vvd/7vUeOHCEqKopdu3bJZEKv17N8+XJ6e3tpa2tj586dxMfHc/XqVaZNm0ZbWxthYWFkZGQwdepUMjIyMJlMKJVKDtwuJLP+Gbl2eAkIAiBgUbtS4flcu1FfX8+8efMAe+bM3d2d7u5ujh8/LpfgDAYDFRUVzJ8/n56eHg4dOoTRaKS8vJxx48YBz90qHSTjNf7n4DUZ+AnRZ7KS0zBy9C8Ad6s6/+dd0Atw1LG7n5kHWSwWOUK3Wq2kJE+mo62JtOOpHDtyiCePH8mbnYuLCwMDA6SmpvL555/T3/+c1Hh6euHh6TmquluSJMIjItFoNMREj0d4ZjUyOEPg2Bhv37yOyWSUv1bQJTJS/5GE3dK0y2DB09OTjRs3UlJSwr1794Yc6+Pjw8yZMykpKSEoKGhI9Giz2bh79y6SJLF27Vp5cRoOo2UGVCqVPMdAEAT27t2LUqlkz549LFy4EONAPw8vHaP+0VWai7KofHKH3GsnoLmIprpqOjo6RnzdPwRarZbe3l7u37/PrFmzKCkpcbrWwRjcTfD7dBI42j1HEw+WlJTg4+ODr6/vS8+fnZ094rU6MDgrMNpnsbnHxO2yTh7VdGN0DWLioo3MWP8evsGjiw1fBU+ePOH+/fssXryYO3fu4OrqyubNm4fVXDjKJyqVCqvVitlsZteuXXh6etLc3sP//uszRC77O7ym/xWT1v0jv9p/jX7D0GhZkiTu3LlDeno6SUlJbNmyxakUV1hYyIkTJ+T6/o0bN1i+fDlKpZKGhgb0ej16vR5XV1fKy8sJCQnBbDZTVlbOpeIORhK5SAh0Kz0wqD3kaN8xtlmpVMolGEdJcrDRWFhYGDt37qS5uZm9e/fS29sri4wdmbrhTMde44+H12TgJ0R5++j1YAlo7DHRb341E5yfGg8ePEClUqFWq52mnAF89PEnuHv5MTYymp27P+DP/vI/sG7jJjlC8fX1RRAE+vr6kCQJjUaDxsWFuPiJTIif+MrXkJiYyNSpU9EoFSgFkeamRmw2GxaLhcb6OgZ6u3j8KIvU1FSsVis9JitdBisjrkjPUNVpj16io6OZM2cO169fp6amxumYvr4+cnJyUKvV9Pb2yoNdHDh37hxms5np06eTlDS6+nskzYADjkhIkiQWL17Mhx9+KPvbZ2RkoNVqMfX34K4wYW6vw2boobu7G4VCIfv0/9TQarU0NDSg0WiYNWsWjx8/JjExcdi69GCfgVfNDHh6eg7pJBip/i5JEmVlZa+UFRgsHBypht7Y2EhdXR3e3t5OnSsvoqnHRG59Lyarc5lK6aLncU0PnQMjT+Z7Gerq6jh37hyTJ0+mvLycgYEBOUX/Ivr6+jh58qRcbuvr62Pnzp34+PhQUdvKjK3/zC/3XqWprQeTxUp5bSv/8K+nWfLer+jpe14Gc5gTXb9+nQULFjiJHx0k4dixY8TExPDhhx/y9ttv09DQwMWLF1m9ejXl5eXyrIwlS5YwMDAgb9hl9c1YVHpGffYkCV1oLLt27WL9+vXkVjRQ751Aju9c8vwXUOubTOik6UyaNEkm/oIgkJaWho+PD7t27aK9vR147k/hWGuG8w95jT8eXpOBnxAWm/hSpTjA0eNpnDt3jnv37lFUVERzc/OIm8rvC0myD0IxW8FohX6jlTFBIaheMMsBWPnGGjy8/VAOal9SKBTExsax870P0bu60tDQ8DydLYpMSkzi53/1N6zb+BYLFy999pqjOIkJAqEhIdy/f/+ZX7xES1Mj+7//hl99+t/45f/zTxzY9x1VlRXs2LGD+vp60tLShni5j4TBDm+LFy8mLCyMEydOyBkMi8VCamoqoiiyc+dOTCaT3IsO9ij1yZMneHp6vlK9eaQygdls5uLFi1y5cgWwR0iD5zS0t7fz5MkTZs+eTWtrKyEhIcTFxWG1WqmoqCA8PPyPRgYkSaK3t5eFCxdSVVVFb2/vsGN5HWZSjjLBq4jYWltb8fQbw4knjXx8NI+7HnMoCl7C3RZh2AE1zc3N9PT0vFJLYVlZGT09PaOOEHZkBVasWDGqS2Zxc9+w34NnWabm36+M19PTw9GjRwkKCpJ9KrZs2YKPz9AeeaPRyKFDhzCZTOj1egwGA++88468GX7wn/fT1tWH7QXXQlGSyC+t5z//+xnA/tlLS0uT7bMXLlwo37vNZuPMmTNcv36d+fPns2mT3dcjLCyMLVu2UFpaSnFxMcnJyfIEzYcPHzJv3jx5E35V+Z7RYODChQs8rO2heMw8OtzGYlHpMSu1dOtDOFCh5GZVH2vWrGHBggWy6+Nnn32G0WgkICAAhULB4cOH5dKa1SOIQoMrV4vbaO9/+RCl1/jD8erNq6/xUvi5al7aQ66QbLhplNTX15OXl+cUnbq7u8tOcD4+Pk5/fhdVsSSBRcTJC12hVDJvwSJSps3gyIG9dHZ22M8pCMRPep7SdrpWpRI3N3dmzZ7H9avP+/wXLVnGtBmzXnmkq2izYTIZmZKchMVs4tKlS4iiiJubm2w8ZLPZ8PLy4vz582zcuJHNmzeTmpqKVncZF69JmGyj/2Yf3ryMMDGaiRMnotFo2LRpE19++SWnTp1ix44dpKen09zczHvvvUdwcDArV67kzJkzxMXF4ebmxvHjxwFYs2bNK93XcGWCiooKzp49S39/PxMnTuTp06fYbDYqKyvlGnZGRgZubm6EhIQgiiLBwcEEBwdz9+5dwG61nJOTI9fsf0o0NTWhVCqZMmUKhw8fJjQ0dNjI3fGZVKvVr5wZqGvtpNBrGr1PGpEkQFBiUeo4kdvMrYpO/q/VsXjpnqeuS0tL0Wg0L/UBALtwMCgoaMSSQ3NzMzU1NXh6eo5KLjoHLJito3+OeoxWBsw29JpX7223WCwcPXoUhULB+PHjuXnzJuvWrSMiImLYY48cOUJnZycBAQGytsJRiskvred+TuWIr2UTJfafuc8/fLSCC+dOU1dXx5YtW2QPALBPoDx27Bh1dXVs3LhxSGklOjqa9evXc+rUKWbOnCkLgisrK6mqqsLX15f29nYCPPVUWPsxj5YdEASEjhrut1spDFxkP27Q8yM9+3ejTwLe4ROY4qujtraW+vp6DAYDBw4cACAhIYHy8nI+33+MGr8UGjxTQJL48l4NArBgvA97Zo39o+lpXuM1GfhJEe6tw1OrosdoHZ4USCLmhhJ8Ar1Yv24tGo2GgYEBOjo6nP60tLRQVFTkZBDj6uoqE4MXycKLi7VNYshQFEc3gE6nY9OWbXz39RcYjUZmzZk3qqGJQqEgcXISN67Zo+iQ0NARiYDja5IoIigUiKKIIAgMDAyw77uvWbp0CTNmzEChUHDhwgU8PDwYO3YsjY2NmM1mtFotSUlJpKeny0NQTp8+jSrchmpswvCbtCQi9XeisfRz5swZLl26xMSJE0lOTmbDhg0cPnyY/fv3U11dzZYtW+QNJSkpicLCQk6fPg3Y0/4+Pj6j6gQGY3CZwGg0cuXKFblda9euXeTk5MjtfJmZmURFRdHS0kJeXh6rV6+mpaUFhULBmDFjUCqVuLu7YzabMZlM2Gw2KioqnBb4PxSO6Fqn09Hd3U1FRQXr168f9tjBZOBVNANms5lCZTi9NqXz514QkCRo7TPz9Y+1/C+Ln4v6SktLiYqKeql/QXd3N6WlpaxevXrEY14lKwBgegkRkO/HKr4yGZAkibNnz9LS0sKSJUu4fPkys2fPdjJwcsBms3Hs2DEaGhoIDQ2ltraWzZs3c+zYMcrLy/Hx8eFJYe1LX9NosvCvv/keD42ZnTt3Otktt7W1cfjwYUwmE+++++6I7o+JiYkMDAxw+fJlJk+eTE6OfcCYXq/n/fff59NPP6WzowN/9wrqvROGPQeSiKupHRdzD82eMUgvEIEXj/2303dYGmAiPDyc6upqfHx86OnpwWq1kpeXx5jwaH6wjcPWbbKfx7GeABnlHQyYbfyvS17t+XyN3x2vycBPCEEQWBs/htQnDVhtNqdJXpIk4atXExnqwf27t8nJyWHZsmUkJCTg6uo67ENrMBiGEIX29nZKS0udav46nc6JKKRMn4Va4zLswqhUKvHx9SM0bCzVVZWyre5oi7LGxQWdTo/ZbCIwKAT74zlK9CwIdHS009/XR2NDHXNmzSI6ejzp6emYTCamT58OwIULF3Bzc5Nf22AwsHbtWiwWCydOnJBb+qw1+SjcfFH6htjTHoLwvCRhNiKUZ2LQKPjkk08oLCwkOzub7Oxs/Pz88PPzo7q6mpSUFOLi4pzeqyVLlvDll1+iUqmwWCwv3UwGw2Gh3NDQwA8//IDJZGLNmjVMmTIFQRBkwVRwcDAlJSV0dXXxww8/4O3tTXJyMufOnWPMmDEyqYiLiyM7O5vq6mp8fX0pKSn5yciAKIpcuXoVvbc//QMGMh9modVqmThxeK2HI9uhUCiw2WwvzQyU1TXToxu5N1+UILO6i44BMz56OwGuq6tjzZo1L732x48fo1armTRp0rDfb29vp6qqCg8Pj5f+vrTqV4sqXV7xOLBP58zLy2Pp0qX88MMPTJgwgaVLlw45ThRF0tPTqaioICIigqqqKrZs2UJsbCyhoaFUVlYybdo0XFxezWDIZjXz/sfvO3X1VFRUyMr9nTt3DtsSOxgzZ86ksbGRnJwclEoloijS39/P06dP5WN8+qoxqt1pd4uwOwMKCvkZdLH0MbbtMQADGu+RiQCAoKADN8rKnsottw6hrGNy6g9NCmwuymHPI0mQWdNNedsA4/x+95bL13g5XpOBnxjBnlrWj3fj6K1sVAGRoFCiFK1YGooY46thyRurSElK5OrVq5w6dYqsrCxWrVo1bAubTqcjJCRk2L5qo9FIZ2fnELJQX9/ArHmLRr1Gm80mk4GBgf6XmntYrVaMRgOiKKLT6RBFidECOkEQuHH1EuVlZQiCwMzp01i7di1arZaLFy9iNBrl9LBD0AZ2C2NRFPHy8kIURdrb2+1CO5MJ89ObKAMiCEycjVFS0N/TxRiVidrsDESzEYtKxbVr19i2bRvz58+nsrKS27dvy+1JT548ISwsjISEBBQKBRaLhbNnz6LRaDCZTGi12hE3nOHgIGNZWVmMHz+eNWvWOA0k6u3tRZIkxo4dKxOGoqIiNmzYIKu4BxPAuLg4MjMzsVgshIeHU1ZWJpuz/KE4dPMJdxVxmNw9wB2Ka40kj5uFQjn84+/IDDgI18syAwW1baNvBNjpY3WHAR+9Rr63l4kHRVEkOzubhISEEctkFy9eBBh2rO+LaK2rwjygQq1zG/FYb736le1vS0tLuXbtGtOnT+fhw4f4+PiwcePGIeeWJImLFy+Sn5/PuHHjKC8vZ9OmTcTGxgL28cMPHjxAFEUWz4hFrVJiGcWkzNtNzd/+h49kJ1Cwfw4vXLjAuHHj2LRp00vfM8cgrry8PFxdXenv78fT01Oe2Agwfvx4Ojs70RvK8eyro8NtLGaNB0qbCc/+ejwHGlEg4uvrS41CkEnCSLBZLTIRePFacnNzaQ5ZPuooZKUAdys7XpOBPxJek4E/Asrys1HV5qBoyGdgwMCE2BhCx4Vy7do1ZkxNISAggM2bN1NZWcnFixf56quvSElJYfHixa9sNKLVagkKChpCIoyvYNQhCAJ+fn4kJyfTWF9n33RGOFYUbVRWlOHt7W2PFK3Wl1q1mkxGbM+EdZIkUVlZSWxsLMuWLUOr1fLDDz8QFhaGi4sLK1eulFP1JpOJL774gs7OTqZMmUJOTo7TIBlDSyVzfaczYcJ4Dh06hCRJvLluDSdOnEAURXlxXr58OR4eHjQ1NREeHk5kZCS3bt0iPT2d69evk5iYSENDAy0tLWzdupVDhw5hs9kwmUyv5AFfUFDAhQsXEEWRCRMmsGXLliEbQE9PD6Io4u7uTlJSEpmZmfj5+ZGQkIDZbKa1tdXJ42Ds2LHodDo5Ku/t7aWpqemVJ/mNhKOP6jhdDWieD92xKFzI7NXyLzcr+ZuFkShfsD92XIND/f2yzEBfTxfgOeoxAGql/XNTWlpKUFDQSwcBlZSU0NvbO6LjYGdnJ+Xl5bi5uREfHz/k+2aLlbuPy2lp76S5ppjO5ioiYhMISpz7jGg5f44VAsQEuA45z3BobW0lLS2N8ePHU19fj81mc5ptMRg3btwgKytLJgLr1q1zIp7jxo0jIyODxsZGQkJCWDtvPCd/KB7xtX/x8w0yERBFkStXrvDgwQOmT5/OihUrXvp8GgwGTp8+TXFxMXPmzGHhwoWcOHGC0tJSp1bf2bNn4+npyTfffIOruRPXjuHbokVRxHWgmW7NyE6TSBL+ti70ej0rV67E3d1dthDX6XR222LF6FkRCXv79mv8cfBajfETw2KxkJOTQ1JSEjarFaVCoLu7m+nTp+Pl5cWVK1fkiCsyMpKPPvqIlStXkp+fz69//WsePnz4Une+kVBTU8OXX3xB00sc/hQKBfV1tWRnZ2OxWKirrR72OFEUMZstZNy4Tnt7O7NmzSLr4QPZUnSkn8nJfkxTUxMKhQKlUklxsX1hEwSB+fPns3LlSmpra9FqtSQmJjq14el0OjZu3EhhYaHc1ujwOw8JCSEtLY3q6moiIiJkF8WFCxciiiJqtZoff/yR+/fvc/jwYdzc3Ni2bRsLFizg7bffBsDNzY0ff/yRyspKvL29efTokTyF8Ny5c6N2RPT19XHs2DGOHz/O2LFj8fT0lNugXkRvr914Sq/XExwcjCiKsv1rU1MTkiQ5CeIUCgVxcXHy9zUajTzP4fdFfbeR47ktz/436BqfXW9mdRf3h/G9cGQGHG5yL4sylT1NqBjdbluvVhLj74ooiq/cUvjo0SOCg4NHJEQjZQUkSeK3qRlELPs73vj41+z++4P8b18+5Hy+wNOnRRTdPs9Ad7vTubx0KqaFe+GhezkZNBgMpKam4u7ujlqtprm5me3bt+Ph4THk2Hv37nHnzh2ZCKxcuXKIniA4OBiNRkN5eTkZGRmMc29nYbLdrEmlVKB4Vj4XgL/fs5KfbZ4P2MlzamoqmZmZrFq1ilWrVr2UCNTX1/PVV19RXV3N9u3bWbp0KYIg4O3tLWt8HLDZbPj4+AyrLRmcBevs7MSrrxalaBl2+iCShIBIsKURDw8P0tPTyc3NlcWTBoPB3q5s7bdnF0aAKEoUZz/g1KlTPH369HdyKKzpNHC3ooNHtd1D2kpfw47XZOAnRkFBAQaDgalTp2K1WlGpVHR3d6NSqVi+fDnl5eVOZhpKpZIZM2bw85//nLi4OC5cuCA/rK8Km83GjRs32Lt3L5Ik8eDHeyMuCqLNRl1tLVkPM4mOjmbFihUcP3qEwqe5vGjs09LcxLnTJ2lvt8+pz87Otivfb99EEIQhhEMURbq7u/jx3h2MRqOsBSgtLXXaZKdMmSI7H+7du9fJy1yhUHD27Fk8PT0xGo1ERUWhUqkQBIHVq1cTGhrKkSNH5HGqDQ0NzJ8/n4kTJ2KxWHBxceHy5csYDAZ27Nghb2RRUVEsWLCAxsZGRFFkypQp6PV6CgsLEQSBoKAgioqKyMvLG/I7c6Qxf/Ob31BdXc3mzZvZsmULGo1mWAdCq9Uqt0jpdDqysrJwcXGhrs6ehWloaEClUg1xcYyLi8NsNtPe3k5YWNgf3GJ4Mb9x+MX5GRQCXCluG/L135UMtLc2k+wx+sK8PmEMGpWC2tpajEbjS1sKu7q6KCsrGzEr4BgG5ZgUORj//fur/PX/fZzObmcvjaflLXx9uZGqyipyrhxjvJuZ/B9OESx0Mi3i1YjAYKvhqKgoCgsL2bhx47CdDo8fP+bq1atERkZSXl7O4sWLhzhegn0NiIiI4NGjR9y8eZNlS5dw8bu/5UHq37JxYTSTwrQsmOhB4blf8A+f2Ltdurq6+O6776ipqWHHjh2yDmckSJJEZmYm3333Ha6urnz00UfExMTQ2dnJ999/T2ZmJgsWLJCHCRlVbnz7oJ49R/P4L/e6qPZNod/F3iapUChYsWKF8z1IViJb7qMUrfYNfdAfQbIR3voQY2czTU1Ncvmnrq4OnU6Hi4uLXSDdO/qaJwgCS2MDaG5u5sSJE3z66accPHiQhw8fygOWXkRdl4H/dK6Iv04v5FcZVfy3a+V8cCSXtJymlw5o+1PD6zLBT4ysrCyioqLw9vbGarWi0+no7e3FYrEQGxtLZGQkly9fHqKkdnV1Zd26daSkpHDx4kX27t3LpEmTWLZs2bARhwPt7e2cOnWKhoYG3Nzc6O7uJjAwkFs3bzB/4WJEUUTxTNmvUChob2/n6uXzsrlNaWkpfn5+TIqPQ6UUaGltJePWLaIiIzh/7hwAsbGxFBcXU1tbS3BwMD/evUNEeDiu7p74+tk3NKvVSuHTfG7euIrx2UboSDf39fXR0NAgax/q6uoQRZGAgABqa2udnMlqamrQ6XTYbDb0ej3z5s1j3759uLu7k5qayo4dOzh9+jRXrlxBo9FQWVlJWFgYGzdupKOjQ/bEfzHKgefRjFqtZtGiRZSWllJVVUVycrIchaenp9PR0cH06dPR6/X09PRw7tw5SktLSUhIYOXKlXIpRz2MZwM8zwo43p+amhoWLlzIzZs3qa2tpaGhgcDAwCGizcjISJlgOCLF/v5+pxHIvwueVjUCI7ekipI9e/AiHPfk+Hu0MoHZbKa7u5t1C1wxVZjI7dGAJMrdK6IEq+L82ZhoN1xybOCjOROCPSvg4uIyoo7DUdd2RLYONLV28o+/OTvi/ZqsEg9KTfzllmTcdRp6Whtw0716C6fDanjOnDncuXOHRYsWDVuiKCgo4Ny5c4SHh1NZWcncuXNlq94h1yWKDAwM0NPTw7Jly5g9ezaiKFJT+oRx7h28sX0qxcXFhIyxlwbq6upITU1FrVbzwQcfOJFKi02kY8CCWingo3+uxTlz5gwFBQXMmDGDZcuWoVQqyc3N5fz58+j1et577z1CQ0OZOnUq//TtCUrdJ4EJMFsANSZ9ID2uwQR2FuDfW05aWprTPQiCgM7STWzDNbpcQxnQBSBKoDe1491fi0p0fk48PT3lIMlkMtHf34+vUEO3a/BQMeIzLcK700NZM3EKsIiuri6Ki4spLi7m0qVLXLhwgcDAQGJjY4mNjSUwMJDWPjN/f74Eg8U5a2W0ihx53IDRauPtlJHnXPyp4TUZ+AnR1NQk9/06oisXFxd6e3vp6enB19eXFStW8OWXX5KVlTVslBASEsIHH3xATk4O165d47PPPmPevHnMmjXLqZ4tSRLZ2dlcunRJ/rpWq2XZsmV2b/6SEkqKClm8dDmCQsBkMtFQV0doSBAtzc1MnjyZvLx7NQZsAAAgAElEQVQ8RFGkra2NAwcOyP7phU/zmTFtqrzpdXV1ER8fT0FBAS0tLahUKs6eOc2bb77JF58dZuzYsRQXFzl5JgiDFP+CIFBUVERISAiSJMlWwX19fcydO1fusQfkHmej0cgHH3zAvXv38PLyYvfu3ezbt4+jR4+ydetWjh8/jtlspry8nPnz56NUKomKipLJgCAIHDlyhPfffx8XFxfKyso4d+4cCQkJVFRUkJaWRn9/PzExMaxevZpVq1ZRWFhIeno6GRkZ3Lp1i8DAQNra2nBxcWHbtm2y4MuBwaNbB2OwSOrhw4eEhYUxb948cnNzefjwIY2NjcO2MCqVSiZMmEBRUZE8/risrIzJkycPOfZlaGtro7ezDcE1ZFTvi+Fa6MxmM0qlUtZQjKajcNgQ6/V6lEUXiFe50eoSSGRcAqF+niwc7+s0hbG0tJTx48ePKvaz2Ww8efJEHqTzInp6eigqKkKv1zv10JeUlPB//OoItlE8KSQJcqr6mDw52Wl88avAYTU8c+ZMfvzxRxITE4fd4MvLyzl58iQhISFUV1czffp0Fi9ePOK9pqeny0Y/jiE9J0+epLi4mHXr1uHr60txcTHt7e20traSnp5OcHAwW7dulYmi0WLjRE4TV4raGHi2+UX46FgarqX09jn6+/vZvHkz8fHxmEwmzp49S05ODgkJCaxevVoWaFqVLpR7JtqZ0+D36Jm+osk7Hr2pA1dzJz4+PnJHgONZV0o2fPuqCbW14OXlRWNbI56envT39zs9K729vdgEFRUE0OE7FpvSBY1owru/Dr2pkw63sbKGwMXSy7uzo1g+8fl4bC8vL2bMmMGMGTMwGo2UlZXJGoSMjAw8PDxoC5qGwaIf0mbtwOm8ZlbF+cuk6U8dr8nAT4isrCzc3d2JjY2VNwRHVNXd3Y2vry9jxowhOTmZmzdvkpCQMKxgUBAEkpKSmDBhArdu3eLmzZtkZ2ezcuVKYmJiGBgY4OzZsxQVFaHVajEYDMybN4+UlBS+/PJLRFHExcWFjo520k8eRxRFbDYbq1evJjExkba2Nm7fvo1Wq2Xy5MlkZmbS2NjIV199JbebSZLElClTePDgAc3NzfImajQacXV1pa+vj6ysLLq7u8jPtzN8RwbC8fMOSJLEgwcPiI2N5dq1a1RXV+Pl5cWePXvQ6XTk5eXJaT4fHx/a29sRBIErV65QU1MjK/V37drF999/T1paGm+++Sb79++npqaGvr4+KisruXv3LjNnzuTRo0eYTCba2to4deoU8+bN49ixY4wfP54NGzZQU1PD/v37kSSJN954A7CnPidOnIharebIkSPo9XqZWDhsfAMCApzatRwtiYNhtonUd/YhaN2RjHYR4LvvvotCoWDatGlcvXoVURRHjBLj4uLIzc2lsbGRMWPGUFpa+nuRgevXrxOMiS5GHhQkCLBg3FCHvN9lLoGDDDx+/BgXFxes/V0Embr56yWbhpCI7u5uWlpamD9//qjnLC4upq+vb8QSgcPdccmSJSgUCnp6erh06RKFhYXYBA0qpQLrKM6VNhF8AgLpbrf76L+SqdIzq+GJEyeSl5dHcHAwa9euHUJq6urqOHr0KAEBAdTX15OUlDTirASr1crx48cpKyvjrbfe4tKlS5SUlHD79m0aGhrYtm0bMTExcsnp1q1bFBQUkJiYyNq1a+Xfr8kq8o+XSylvG3Da+Ko7Bvimw8AEbSh//fYCfHx8aGhoIC0tjb6+PjZs2EBiYqLTtV3Mb7A7H47iF9DuHolre+eQGRqJiYnk5uYCz0sJe/fupbu7W55dYDAY6OnpwYSKisA5mFXPsl6CgEFQYfCIRWvpIanrR1xcPTAN9GHu7UTRbIWEsS9eDYDcCTRp0iRsNhvV1dUUFhXzY5ML4uhOytyt6GTtpDEjH/QnhNeagZ8IJpOJvLw8uR7uaD1zMPfBNa3Fi+3p+4yMjFHPqdVqWb58OR9//DHe3t4cOXKEr7/+ms8//1zWHXh6erJnzx7mzZvHwYMHMRgMKBQKTCYTcXFxrFixApvNhkKhoKurC4vFQnV1NUqlErPZTHx8PO+9957c7+8Q++Xl5ZGcnIzVamXs2LFkZGSQnJyMQqGgv78fnU5HQUEBYBflDSYCjsVl8LAUi8XCt99+S0dHB4IgMHv2bHQ6HZmZmU6/m9LSUpKSknj77bepra1FqVTKaVgvLy927dolkyFH3fK7774jPT2dyZMns3z5ct5++21Z01BcXMy+ffsICAhg06ZNKBQKIiIinnsYDIpWJEmis7MTQRDo7+9n/fr1fPjhh0RHR3P//n3+/d//nf3795OXlyeP+HX8vMkqcq2kjc/uVHGnU4t2+npcpq0jcNIM2YkuKSlJ1nKMlCYfN26cvMh7enpSVlbmNBb2VVBdXU1RURFvzptMtL8eYZjcgEIAT62KZbH+Q77nmEvwKhMLW1pacHV1paSkRCYtfn5+w2YTSkpKUCgULzV2evToEaGhofIsh8Ho6+ujoKAAnU5HYmIiDx484PPPP5cjcD8v/ahEAECjVuLt7vrKmQGH1XBgYCCtra2o1Wq2bt065B6bm5s5dOgQXl5eNDc3Ex8fPyxhADvhOnz4MBUVFWzfvp34+HhCQ0N5/Pgxra2tvPvuu7KuQq1Wo1QqKSgoYNGiRWzYsMHpta8Ut1LWOjAkAnb0CJWowxG0bty9e5dvv/0WFxcX9uzZw+TJk52uLT8/n+uPikb9XSAoGHDxGaJJUigU8jwKsLfeFhQUyOUim80mZ/wA6n0m250NB5kLOf5tVLtToYnAWwNh/t4I2CcyvkxYLUmSPDvFw9sHURi9RVShEOg2vu5OcOA1GfiJkJubi8ViYcqUKcDzPnS9Xi/X8h1wdXVl/vz5PHz4UI6sRoO/vz/btm0jOjqahoYGBgYGsFqtzJ07l5/97Gf4+/vz7bff0tZmF4O5uLgQHBzMqlWruHHjBu7u7mi1WlpaWjh58iQNDQ3s3LmTsLAwjh49ipubGx9//DGJiYny5vb48WNSU1MJCwujv78fFxcXWfwTHx8vRysODFb2OrICjhTv4IXDZDIhSRKRkZHcuXOHixcvOvVLC4JAVVWV07CVY8eOySUIX19fdu7cSVdXF48fP0apVNLZ2YmLiwtvvPEGgiAQHh7OunXr5HNaLBanlHNLSwsdHR0EBARw6tQpebTr999/z6VLl0hKSsLDw4Pc3Fw5Avybv/kbNmzYgCiKnDx5kl/+8pe0tLTQ19eH2SaSml1Pdn031kErsqB1p9snmgfVdsW+VquVN7iRDGHUajUxMTHykCCTyeS0yL4MkiRx9epVgoKCmJyYyF/OHIObwd5RIIAsKAzx1PJ/rorBQzt00x48vvhlG2VLSwtms5mIiAjZWnqwI95glJaWMnbs2FHP2dHRQUVFxYhZgatXryJJEikpKXz77bdcunQJvV6P2WwmMzOTmCAN6lEsawUBdqyehlptn6qnUCicSOuLcFgNO9wku7q62L59+xAdR2dnJwcPHkSv19PZ2cn48ePZuHHjsEJehw1vfX0977zzDuPHj6elpYWqqipsNhvbtm2TRz/39fWxb98+RFEkNDSU+fPnDyEXV4raRh+QJsGvjl/j2rVrzJw5kw8++MBpUuTAwAAnTpwgLS0NN73upZ4RIA4rHm7v7ELk+XObmZmJUqlEkiRqamrkyYzeweH06saM7CkgKOh2DaW+pYPg0DB6tAHUSN5cyCrGJkrYbDZaW1spLCzk9u3bnDp1iq+//pp//ud/5l//9V85ePAg169cQiGOPu9FFCX8XF+XCBxQ/uIXv/jF/9sX8f91SJLEmTNnCAsLkxex+vp6CgsLiYqKkpX1gx3SgoODycvLo7GxcdSxrGCPOA4ePEhdXR1gj8RtNhsdHR10dnZy6tQp2fFu6dKlFBcXs379eu7evUtHRwdhYWH09fXR3t4u99aPGzeOmJgY8vLyyM/PJzk5mYkTJxIQEEBBQQFqtRoXFxcaGxsxGAxMnjyZp0+fEhAQgCRJzJ49W85O6HQ6rFarU2lAoVA4mdf4+fnJVrtgz5RkZWWxYMECAHlymaNV79GjR3IEdv/+fSorK4mPj0elUuHm5kZkZCR3796Vsx42m42enh5iY2MRBAFfX1+ePHmC2WxGpVJRVlZGVFQUnp6eXL9+nf7+fnbv3k12djY5OTncu2fvwNi6dSszZsxgzJgxZGRkoNfrCQkJQalUEhgYSFJSEgkJdmvkiooKenp6eNpqpFvtyYuujI5Fu6bTQGKQBy4qBU+fPpV96R2DaV6EKIrk5+fT19eHXq9HpVK9sk1yQUEBDx484M0338Tb25v0tBNI9fmsTRlPsJeOnso8ZgdI/N2bs3DXDr8JFhUVMTAwIG+UCQkj2NFib+8zm81s376d7OxsWXz54swDi8XC+fPnSUlJGdEiF+Du3bu0trayfv36IQLLgYEB0tPTUSgUVFdXy10o3t7eTJtmN7ZatGAeZlM/d7KrhpxbEECnUfDZ373FGH8fKioqaGpqYs6cOcNeiyRJnD59murqaqKjoykpKWHbtm1Drr+3t5e9e/fK1xgaGsq2bduGzY709/ezf/9+urq62LVrF2FhYVRXV3Pw4EHc3d3lLoUxY8bQ0tLCvn37MBgMREVF0dfXx7Rp04acc29m3ahkQJBEBGMPH29cwtSpU50ISnFxMYcOHaKjo4P169fjHxxKdn0vI88tFvEeqMfd2Iq3tzdGo5EebQB1Pok0+CbR6hlDtz4YtVJAY+pCGiaab7bq6HZ9iXBPEJBsVu4ZA+hwHUuvPpAnrVZOP6nh/o3L5N67wdOnT2lsbEQQBDw9PXF3d5eHIAmATaEZ1RlRpRD483nhuLyedwC8zgz8JKirq6OlpcUpmnFkBnQ6HV5eXkNaX1QqFcuWLaOsrGzEFjJJkrh//z5ff/21nF5funQpf/VXf8XKlSsxmUw8evRI3nS3b99OYWEhoaGhWCwW8vPzWblyJVqtFovFgtlsZtWqVXL6Ua/Xs337dvr6+jh+/Dg2m434+Hi577itrY2IiAgEQSArKwsfHx+6u7uprq4mJiZG3iRUKtWQvvEXIwdHCtmxwJeUlDB+/HgWLFggZzTAvmls3rwZi8UiW+G+8847cgrWkYEIDAzE19cXSZIQRZHVq1eTk5PD1atXsdlspKWlYTQaCQsLk1s8U1NTaWhoIDc3l+nTp2MwGORoLzAwkI8//lh2RoyKimLq1Klcu3ZtSG3U19eXpUuXkpycjKenJ1bvsaO1RwOQ32TvMGhvb8fDw4PMzMwRj42JiZHLLv7+/q/cYmi1Wrl+/TrR0dFyO1tFRQVubm6smJPCsvFe+PdW4GrqGFXA12m0UaMOIcvoSxkBtPYNPzWutbUVo9HIuHHj8Pf3l0VwwzlmVlVVYbVaR/UXsNlsZGdnk5iY6BStO0pwn332mfx+e3h4sHjxYv7yL/+SPXv2MHfuXLy9vWlqakLdW8KaFA88dM+XNwGIDFDz87XhXLt0ms7OTgwGw6hZCofVcGJiInl5eaxYsWLIeGSDwcDBgwexWCyYTCbGjBkzIhHo7u7m+++/l4locHAwhYWFHDhwgKCgIN5//30CAgKoqKigtLSUb7/9Fq1Wy4cffkhERATt7e3Dpspf6pgoCEydnOBEKI1GI+np6aSmphISEsInn3yCVqvl6ZVjqGymUfwCJHx7qwA7sTGHTKY6YAYDLs+1JyaVG9Wek6j3SXQiKYIg2IeTKV9t22nxjMYiOd+bRVBT7TeFqau388knn7Bo0SIUCgUFBQWUlZXJU0ojIyP5izem4qVVjtheu3NqCO4ur2VzDrz+TfwEyMrKwtvb2+lhc5ABtVqNh4eHbLAxGBMmTCAiIoIrV64MaTXs7e3l5MmTsp1uSEgI69evp6enh++++46GhgaCgoJkkRvYlet1dXW89dZbXLhwgejoaBISEsjOzpZrdS8u1H5+fmzZsoWDBw/KM841Gg2JiYlotVouX76MTqdjYGCA7u5ubDYbgiDw5MkTObvR3t6On58fbm5uTp4Bjvu3WCx4eXkNqX2XlZWxd+9eOSsA9kUqJycHFxcXfH192bdvHzt27GDnzp0cPHiQAwcO8Pbbb3P16lVaWlqYMWMGDx48kBfry5cvU1NTIwuwoqKi+Oqrr2htbUWSJI4cOSK/zldffYWvry/Tpk3j4cOHVFVVOW1Wy5Yto7y8nPT0dHbv3j0k5euo5VrVWoRRyIAgQJfRQn9/P93d3cyaNYsff/yRxsbGYQ11XFxcGDduHFVVVXK3R2dn50u95rOysuQ0ttVq5cwZ+6jb5cuXo1Ao5Pr/iyUeByRJIvVxI6d7Q5+VFCRqjAJ/djyfDQlj2JES7Cw2e2b6M2/ePHp7ezEajahUKvz8hjrRlZSU4OXlNez3HCgsLGRgYICpU6diMpkoKSmhoKCA0tJS+bMjCAI7d+4kMjJyyM/39PRw+PBhVCoVkyP0TApzoWNAwRtrNlCcl4leI7Ft2za+++47Dhw4QEhIyIiaCIeb5aRJk3jy5AlTp04d0stvNps5dOgQPT09MoHesWPHsB0QHR0d7N+/H0EQeO+99/Dx8ZEthOPj42UdQGRkJE+ePCEnJ4fo6Gg2bdqERqPBz88Pm81GV1eX01jk9vZ2vPvr6FeNnHaXEFgU+zwLVV5ezpkzZzCZTKxfv56YmBiuXLlCTk4OKpWKKOMDKvxnYFVqnUyABMlGeFsWLlb7htsrqihRPMuSDH7tZ5+RTrdwPAaa8DDay1SOmr6LYETwsiEpRiExjtcdQlrt/z+e107WhVQE7ORcp9PJGZR58+YRHByMyWQi9tJlyjQRtKv95XP5u2nYlhzEgvG+vMZzvM4M/IEYGBjg6dOnpKSkOC2Ug8mAl5cXPT09Q0wuBEFgxYoVtLW1kZWVJX+9sLBQFkU5VLlLly7l/PnzHDx4EIVCwfr16+no6EChUBAZGcmKFSsoLS1FEATu37+P0Whk9erVlJSUUFVVJbcODadRiIyMZM2aNTx69Ij79+/LwriUlBQ+/vhjuabv5+cnlwnu3LlDY6PdUUylUskK8Bfh0CCUlZXJZGf58uXMnTsXsPsKDCZBZrOZR48eMWPGDN59911CQkI4ePAgAwMD7Nq1i46ODn7729+SnZ3NunXrWLFiBRqNhqqqKpqbm4mIiKC+vp7ExERiYmJQqVS8++676PV6LBaLfI0//vgjc+fOZc+ePaxatYro6GhOnTrllMHRaDSsX7+e2tpa7t+/P+TeHETnZXNtJOwOfA5CmJKS8tLsQFxcHBaLRXZyfJkbodFo5NatWyQnJ+Pv78+9e/fkdlZHr74jCh7Jue1cQQtpuU2AgISAJCjsfwOn8po5k98iH1tZWUllpX3UbnBwsHxvQUFBw3rzl5aWEh0dPWpG4uHDh/j6+nLjxg0+/fRTTp48KZNdx2dk6dKlwxIBk8nE4cOHsdlsGAwGmTz8bOdGpsYH09lax7Rp03Bzc2PXrl1YrVZKS0uH1Qs4rIYjIiIoKysjIiJCbrt1wGq1cvToUVpaWlAqlbi6uvLOO+8Mm2loaWnh+++/R61W89577+Ht7c0PP/zA+fPnmT59Ops2bZIHhnV0dGAymZg8eTJbt26ViYWDRA3OouXn5/PFF1/g1lqAUrKNkNiXmBnuRaSvXVdx7tw5Dh48iJ+fn5wN+M1vfkN+fj5gfy+XTE9kYksGIe1P8DI04mNpI7CrgAkN13A32tcPQRDo94nmRaMy55cWaXePkP9rVupodY+i1WMcrqbWkd0GHTMORvms9OFCYHQCOp2O9vZ2oqOj+eSTT9i6dasszr1y5QqW3g6ie/PZ5t/Cf30jhv++fgKfvzXxNREYBq/JwB+IJ0+eAHal+GA40lVqtRpPT09sNpv8tcEIDAyUWw27u7tJT0/n2LFjmEwmQkJC2LJlCxUVFezbtw+j0cj27dvZtm0bGRkZ2Gw2XF1deeuttwgMDESSJAIDA2Vnr5KSEk6cOIGfn598HS0tLUOuASA5OZnZs2fLdsmOljkfHx8++OADxo4dS3NzMwqFAldXV2w2G7m5uZjNZtk2eDg4CFB+fr6cVZg5cyZz5syR2yqHU8vPmDEDjUbDjh07GDduHKmpqXR0dDB37lx6e3txdXWVN5dx48bJGoGqqiqCgoLIzc2lsLAQQF6oHbDZbEyePJlFixbJ7oYbNmxArVaTlpbmdD3h4eHMnDmTGzduOBEpSZLo7e2lv7+fvqqCUZ3+JAnixrjR0NAgT5icNm0a+fn5TtMnB8PhaWA2mwkICHhpqeD27dtYrVYWLlxIZ2cnt27dAuzZDccmNhoZsNhETuY0jfoaJ3ObsNjsbaoXL17E3d0dLy8v1Go19fX1CIIwrB6gtbWV7u7uYV0HTSYTubm5cptoe3s7vb29TJ06FX9/f7q7u0lMTLTb1Wo0w3pz2Gw2jh8/TmdnJ1qtVn5Px48fz8SJE8nKykKn08ltszq9K97hU7iZ18XZO2XUNjzfYB1Www7Rr5ubG5s3b3bKCjlEpA6SrdFo2LVr17DmUPX19ezduxc3Nzd2796Nm5sbZ8+e5datWyxdulSelGk0Gjl8+DDl5eWyI+bg1/Tw8ECj0dDa2orVauX8+fOkpaVhtVoZH+LPf1oUhpvgKOc88/cAvPpqma5porq6mi+++ILc3FzeeOMNNm7cyNWrVzl69KisaVqzZg1rN++g3ORKhy4YnbmbsLZHLPPpwb+3ArX0XHkfGxtLj6R56aRCo9oDCYE6n0SKg5fQ5BVPq8d4+nSB8nUiic/cCu3PkJtx+DXqRVTUNREXF8fPf/5zNm7c6KTBKS4u5vHjx0yZMoX+/n5mp0xmwhg3Inz0Lx3M9qeK12TgD4AkSTx69Ij4+PghC4Fj49doNLLzncNI5kUsXrwYm83G559/Lo8TnT9/Ph4eHqSmptLe3s6mTZv46KOPiIqK4tixY/T19SGKIlu2bEGv15ORkcGYMWMYGBggMDAQnU7HhQsX0Gg0REdHY7VaCQgIGLV7YenSpcTFxTEwMOB0rQqFgo0bNwLI6WBAXsS6urqGNad50efc1dVVtuM9deoUoijy5ptvDhGKTZw4USYKKpWKzZs3M3HiRNLS0rh+/Trjx49HkiT27dtHf38/4eHhcksg2DMd8fHxpKWlUVVVRU1NjZNjmiAIZGdnO1kP6/V63nrrLerr67lx48aQ98fb25v09HSsVisFBQV88803PH78GFEUWZYYgU6jGnHYU1yAGwFuLjQ0NBAcbE+1Jycny8ZRw0Gv1xMREYFKpUKtVlNVVeVk6jQYXV1dPHjwgNmzZ+Pm5ian74OCgpw2YMesiOHOU9o6QK9p9BbGfrON4pZ+MjMzaWtrw9PTU16Aa2trkSRpWDJQUlKCWq2WWywdBCA1NZVPP/2UU6dOyS17P/vZzwgJCSEzMxOFQsGHH36IWq1GFEXZXGowJEniwoULVFZWkpCQQEdHB1arVd7crFYrT548ITk52W6W9UMukcv+nj/7rye4XdjH+axOJqz5BX/7y5NYrVbZjMoxPGf79u1O0b4kSZw9e1aenaFQKNi1a9ewQ5eqqqrYv38/fn5+vPvuu2g0Go4ePUpOTg4bNmxgzpw5CIJAZ2cn3377rdxdMHbsWDnr4oBjuFh9fT1ff/21nElcsGABixYt4uaZY8Q03WT3BBXvzQjjo9lj+WLLJDbH6Lh54xp79+7F3d2djz76CK1Wy+eff05Rkb2NMCoqig8/+oQ7fT58cvwpV5o11HpOoixoATWhC3lSXCnfu6NTpKKiAo1SMeosAbDbFDd4T6LTdezzaF8uKdgnHXoYmvAcaMS3t5LoxpsEdr2kvfEZPnx7M2vWrBlSPuvv7+fs2bPExMTQ19eHv7//Hzzw608Br8nA7wGDxUanwUJpeQUdHR1MnTp1yDGDywQOMjCcf7Yoijx48ACLxYLFYsHPz4/Y2Fhu375NXV0da9eu5c///M/lVO/Zs2epq6vDarWyfPlyQkNDqa6ulme69/f3s2rVKgwGg7xAZWZmYjKZ8PX1HZUMCILAxo0bUalU8sQ4B7y8vJgwYQI6nU6OWiVJwt3dnSlTpmC1WrFarUOsk2NiJ/Dm5m3s/mAPK1atIXZCPNevX6ekpIQ333yThIQEuR3TgRfH1SqVShYtWiTPXI+IiGD37t0MDAywb98+OcUaHBzMkiVLuHfvHv7+/oSFhXHgwAG+//57mSjMmDEDSZJQKBScPn1aFr0BhIWFyT8/OC2vVqtZvXo1DQ0N/Mu//AvHjx/HxcVFjlKnTZ7E21NC8NM7kyFJFPEwtvJGXIBMghwpTIen/miDqeLi4rBarXR0dGCz2YZsEA7cuHEDnU7H7NmzKS4ulmvsS5YsGZKWH8lC2fyS3nwHuvv6uXnzJikpKfT09ODv748kSXI6fzjxYGlpKeHh4RQUFDgRgP7+fpYsWcJf/MVfYLPZiIyMJDU1lezsbJYtW8aePXvw9/eXO0uGywrcvXuXx48fs2TJEnJzc+X7Xbp0KZ6enuTn52M0Gpk6dSq3s0rZ9h+/pqvX/mw6ukBFCf7twA3e/Y+/pry8nLCwMBoaGti6datTfd7RtvnkyRM527dr1y6n1tjB93zo0CFCQ0N55513EEWR/fv3U1lZyfbt22VBbU1NDV9//TWiKPLhhx8SGRlJZGQklZWVQz4XarWawsJCWltb0el07Ny5E4VCIdt1f/Lxx6yZlcjq+ACWxfph7GqV54Lo9XrWrFnDlStXOHnypNw+umnTJrZt28ZvH7Zyt7LzedL/2e+xW3ClJnQBLm72NcyxfpjNZly7a0YdOYwk4WZoocMtfPgMgiAAEjZBzdj2RwR3FaC19KK19KA1d4+cbZNEwlxhfNDQVL8kSZw7dw5RFFm6dClFReBMzuAAACAASURBVEUkJSX9JKPA//+O1wLC3wGNPUZuV3RQ1flMgCWJuCcuxDtgKOt0RM9qtRqtVotGoxlCBjo7Ozl8+DBtbW0oFAoUCgVtbW0YDAZWrFhBSkqKU7R969YtcnNzUalUxMXFyYKmW7du4e3tTWlpKYsWLeL8+fMAfPjhh2g0Go4fP05FRQW5ubkMDAzIC8FwUKvVBAYG0tjYyJEjR9i9e7d8bEpKCocOHaK9vV2egd7b28u4ceOIi4uTxVRgj+jf2rqD8IhIeS6Cf8AYomMnUFleRnh4hCzWezGqevDgAe7u7syePRtBEOTpbK6urrKLocViYdeuXezbt4/z58/L/gJz587FarVy8+ZNtFotoiii0WjQarUEBwezYsUKrFYrjx49QqVSceTIEfbs2SOTmFmzZlFTU8OpU6f46KOPcHFx4eHDhzx48ACwR7UOEuPILFitVnz0GpI0HZy9cweFmzeINmydjRgtJlqTI9Dr9fT19TmZDU2fPp2cnBxKSkqc2k4diIuL4+LFi/T39+Ph4UFJSckQS+SGhgby8vJYs2YNAJcuXcLFxYUxY8YQFRU15JwO/wCbzeYUZYd5abEvzaOjMvchKpWKOXPmkJWVRUBAAF1dXZjNZnQ6ndN7aTQayc/Pp6amBoVCQVlZGaGhoSxZsoT4+HiZJN+/fx+DwUBJSQkxMTGsWrVK3mBv3ryJzWZj/vz5QzJP+fn5XL9+nfnz58vzLsCeEZk2bRqSJPHw4UOio6Px9vbmv/x2HzByMJt+q5x/+/kMysrKWL9+vdxZ4sCdO3f48ccf8fLywmg0snv3bqd+fQeePn3KyZMniY6O5q233qKvr082BHN0EYDdSOfs2bOEhYWxZcsWWcwYFRXFzZs3aWhoIDQ0FJvNxtWrV+XhZWPHjpXFstXV1cyfP58FCxbIZQWbzUZGRgZ37twhKCiI7du3c+zYMb744gt5U5w0aRIrVqxAr9eT39hLbkPvkPsAQFBgkATqlAH40+0kPvUwNKG19mFU6oeSAklEKVpR2YbPZg0+f7/OH5ugQi3Y/QsEIKQjl4oxs5Ek0fnckoQgibiU3eabbx6xbNkyOePk+J0WFRWxZcsWqqurEUVx1NbY13iO12TgFVHdaeB4ToPzQiIosHqFcOBRPTunhjq1qQwmA44+WAcZkCSJrKwsLl26JM+8H/yQrV69mri4OKfXz8vL4+bNm7i6uqLVamVns9raWioqKnB3dyc4OJjy8nJ6enp4//335Q0uKSmJiooKPD09GRgY4ODBg6xfv37YhQzs7ZDBwcE0NjaSnp7O5s2bqa6ultPPPj4+fPTRR/zTP/0TAMePHx/SB79k2UrCxtoXU8ci5fg7PDKK0NDnEeRwbVjXrl2jra2NN954gxMnTtDd3S0PZXF3d+f69ev09vbKAjCVSk1lVZW97/kZITEajcybN4+8vDzq6upkU6LVq1fT3t4ud2o4Zhg43qv169fz29/+lm+++UauryclJTF9+nROnDjB3bt3Zc8DQHYjLCkpYYybhqamcvvHQxDQ6fXcuHFDzn4MJgPBwcGEhoby8OHDYcmAu/v/YO9No6JK03zf344IiCCYZxAFREVQEZEEcZ7SOQdnS3PSzO7Kzu6zeli9zqd717nf7v1Qa1X16qpT1Vmdk5lp4pjpjKZToigoAorM8zxEMEUQAzHtfT+E8UoIWHXuPV+qK5+1cmESEZsd7977fZ/3ef5DKElJSfT39xMSEiJ2eb4J3bdTjYmJIScnh9u3bzM+Po4sy9NWBcCLGzCbzTgcDj8p7OjgQBbHaqkx2Kfd7akkWBgVQGtVJW+++aYAYsbGxgrwYFJSEhMTEzQ2NlJXV0dra6vAX6xdu1ZQMX0hyzJlZWXcvHkTtVrNvn37yMjIEOftcrkoLy8nICCAVatW+Z1PV1cX58+fZ+nSpSQlJQmMhO/6qVQqenp66O/v58iRIxhGximpbOFVIStQdK+OT45snoIBKi8v5/bt20RERAgw63QKiVVVVVy6dIklS5bw9ttvMzQ0xLfffitMhaKiolAUhdu3b1NSUsKyZct44403/BKzpKQktFqteK5PnTrlxxpaunQp33zzDQEBAXzwwQd+i+HAwADnz5/HaDSyfv16lixZwtWrV/0cKA8dOuTHmrnXNoJaghktHRQY1ScRa/LHrUgopA48oDM2D7s28sVOXlIR4JkgxVjOeFCc9wAzNtGej71Kg+yZEJ4meucYaYP3GYnNZlTtu2cUQiYMZDJAdFyoaBWmp6ezefNmAgMDKSoqIjs7m8zMTD777DPmz58/bQvn55gaP7cJ/oyQFYWr9YNejMuUVyWsLg/FrS/ocS6XC7cqECkoDEn9QlrWZPJm1l9++SVXr15FURTUajV2u52CggL+5V/+hZSUFG7fvu1XIvRNfJGRkTidTg4ePChK6Xfv3hW7Tp+G/uHDh/2czHwL5oEDBwAvHen3v/89N2/enBZM5qPM7du3j/r6ej799FOOHz9OcHAw69evZ2RkxI8O6EPzg1cQSRcURFb2silUPF+oVCokdYDAJfje59sZ+SbZJ0+e8O///u+0trZy8OBB8Z3WrFnDtm3bqKysRBMSzYaDvyRvz98yd80erld10D82wY6dO8nNzaWkpITg4GAkSaK8vBy73Y4kSRw5ckQ4Sw4ODnLhwgUURWFgYICioiIBDoyPj+ef//mf2bVrF7GxsezZswej0UhxcbEYV1+LpLW1VSjHgXeHp9fraW5uFj3mlyemvLw82traZmzfLFq0CEVRRBVmcHBQvOZzXdyyZQvDw8OUlpai0+mYP3/+jCqAvjH2Jau+aG1tRXlWRIBnYkp5ViVBRFAA0X2PmDVrFjk5ORgMBtHH9u1Yx8bG+NWvfsX58+ex2+28/vrrZGRkEB8fz4YNG/wSgZ6eHv74xz8KRUFfAjw5gbl79y5ut3uKSdfw8LBQx9yxYwdFRUXiHlq9erW4fx4/fkxERATz5s3DYp3qzvhySIDDNbU0/ezZM65evUpERAQWi4UjR45M2w4pKyvj4sWLLF++nD179tDd3c2XX35JaGgoH374IVFRUbhcLs6cOUNJSQlbtmzhrbfemoKD8Elm19bW8vvf/56BgQGCgoJE9efSpUukpKTwd3/3dyIRkGWZe/fu8Z//+Z8oisJHH32EXq/n008/FdfHl4i8TO8cn3DPnAgASBJulX8l0ackGSA7mDdYQtpACYnWdmLNraQYH7Gw7xZBLjM61/irWwmASnah8TgICQnxY1zpnSbmDz8io/dHdoUNsKjvFvm0o/dY6O3t5eDBg+zfvx+j0cgf/vAHIbW8fft2jEaj8Ib4Of68+DkZ+DOia9TOuMMzYwlVUaDBYMHh9tBstPJ1RS9BBXvR5b3Ft7Vj3GoeIiQ8ksHBQX7961/T3d0tNLtzc3P5p3/6JzZv3oxer59CNRwZGeHUqVNEREQwOjrKrl27BGirt7eXlpYW7HY7iYmJtLe3s2/fvikLgW/RkiSJiIgIlixZwrp163j4qJzffnuOK4/qaB+2Ij9/EH19ZZ/hkc+o6NixY6xatQqtVivK5j71v8jISFQq1fNSeNKUCe7l0Gg0XC26RktLi+jb+/qzPuVB3/F8CHxfyLJMZ2cncxa9Rvqq7UzIL/5WUFgUaXmbiEhexK5du8jIyKC3t5eFCxdisVgoLCwUO/ljx46h1WpRFIXa2lp++9vf8umnn9LV1cX27dt5/fXX6e3tpaurSxw/ISGBdevWUVJSIio9LpeL9vZ2XC6XACqpVCoWLVrE0NAQsbGxNDU1TUu7W7x4McHBwZSXl087TpmZmSiKgslkEtUH3xjcvHmT1NRU5s+fz9WrV4UexMaNG2cc9+mSgadPn3LixAnULhvbQ/qJNbcSoHhxBSGBat5aEs+R5AlMgy+qK/39/ej1es6cOSPOXZIktmzZwr/8y7/w4Ycfkp+fL9T7fDExMcHVq1f5/PPPUalULFmyBL1eP6WU63a7KSsrQ6PRCBoqeMFhJ06cIDg4mIMHD/LgwQNMJhOyLBMRESFMkGw2GzU1NUJxLyEmHJ12Ztlh8Cb6G1cv5/79+8JJs7m5mR9++IHw8HDMZjOHDh2a0j5QFIXi4mKuX7/OqlWr2LVrF3V1dXz77bckJSXxwQcfEBISIpQKW1paOHTokGiDvRyyLON0OoXUc3JyMgcPHhTP3OLFi/3aCkNDQ3zxxRfcuXOHVatWsW/fPq5fv87Vq1cFjufYsWP87d/+LUFBQXz//fd+jJn4UO2rFwJFIdDtz4RKTU0V97oEzIvS8nZmJCkT7YTZB0UdINRuQOOZeAWNUCba0oWEV4PAlzD6xmViYoIAj4OumnI0Hm/Vz0epfvr0KYsXL+Yf/uEfxPNttVp58OABlZWVBAUFCQCtR1Z41DnGqao+zj0doHNkeq2Nv+b4uU3wZ8So/dUa1+AtMX517QGm4FkveLKAW4bKHhOoErGNV4HHS89ZunQpGzZsmAI+SkxMFFTDBQsWCBEVk8lEbm6un4NdcXExarVaVAR8i9/L4UsGXC4XcXFxjIyMkJi9mmBpDk6PQq0VaqsHCNLAzkVeiqLRaOT06dOkp6ej1Wqpra0lJyeHuXPnkpOTQ0VFBeBF7hsMBsF/fhXN8OWIjo7mxIkTYtcXFhZGb28v4+PjwmgoICAAu93Op59+yrvvvsusWbO4du0a3f1GsrdtBvxZC9LzHWLniJ3Y0EAhb9zc3MzWrVu5efMmp0+f5he/+AXBwcGsXbuWmzdvAl4MR35+Ptu2bUOlUqEoCr29vVy4cIGEhASBWl6zZg2NjY2UlJSIcfWJ6vhK73q9noyMDC5fvkxqairl5eXTCtyo1Wpyc3MpKytj8+bNU8CTkZGRggXiw4WsW7eOJ0+eYDQa2b17NzU1NXR0dBAcHExGRsaMJkjwwjhrYmICRVG4f/8+t27dQq1Wk5SUxJ5d2+j4zW/I1o0yMDjI//U//gc2m43f/e5bsrKyRFXER3X0GWPJssxHH33kd/69vb3Y7XbS09NRFIW6ujquXbuG0+lk27Zt5OTk8G//9m8sX758Sqvo/v37wn9j8v178uRJnE4nH330EVarlfv374vd5FtvvSXe62Np5OTkeK/tiJHlaSGUNoxOuy5JQFx0CP/8twe4e7eYmzdvYrV6mROhoaGYzWYOHDgwRYHQ16opLS1l06ZNrFmzhkePHnHt2jWysrKErPLAwACFhYUoisKxY8dmRLePj49z+vRpIT2+ZMkS5syZw4kTJ4iKiiIyMhK9Xi/K6WVlZdy+fZvw8HCOHj0qKi6+MVm9ejXr168X47tv3z6++OILiouL2bRpE8PDw9ibypCZii95MTgSGUF25ElmZHfv3vV77gYGBpg1a9aUTYCEwpyhSjriCrzn9FL/X+caJ9bkTXDDwsKIjo7GZDIRFRXFxMQEVquVefPmsXr1aj8GkCzL/PTTTwwPDxMdHU1LSwt5eXlotVoePHiALMskJycjSRJNBiu/utPGqM2FWvImfYWVfeQkhfHPG+YSPI2N919j/OxN8FKMO9yM2l0oIDSrx+wumoxTNQJeDsckO86XQ9EEgCwjmwzChKapqYmGhgZaWlro6Oigt7cXg8FAaGgoTU1NPHv2THCAIyMj2fn2XpqHbPSZJzAODXH/zk2hCbB+/fopfVVf2Gw2KioqWLZsGTabjVaThxZ32JTSoMujUD9oob+5BrfVxP79+9m4cSMLFy4UwjuZmZnMnj2bBw8eAF7anU9rQZIk/vEf/xG1WkVUTNyMbQLwTuwaFbjdLqF9kJCQgMFgwO1209DQQHp6OkeOHBEeAE+ePGF4eJiqqipWbtuLRx04I0pYkWVs9glKbxexbNkydDodVVVVbNy4kYqKCpqbm7l//z51dXXExcVhtVqRJImBgQHS09MJDQ0VGgY+kF92drYAes6ZM4cHDx6gKApLly6lpKSEhQsXEhISQn19PREREaxatYqOjg4sFgsmkwmn00l+fv6Uc46Ojqa0tJSQkJBpy892u52Ojg4CAwMxGAwsW7aM77//noULF7J06VIKCwuJiYlhZGSEAwcOTMt390Vvb6/YrVdUVFBSUoJOpyM8PJz33nsPt9vNw4cP0Wq1OB0O8vPzOXXqFKOjoxiNRhoaGggJCWFiYoLly5ezefNmHj16RHh4uN8OHrzug0ajkYKCAs6fP09JSQlpaWlCO6K2tpaamhp2797tlyh5PB4KCwtRqVQcOXJEmN2cO3eOrq4u3nvvPWJjYwWWRFEUsrOzWblyJeBdKM6fP096eroAnF66dInFaXFUt5mxO/0plJIEKhW8syGRNSuySU9PZ2hoiMrKSnQ6HVarlT179ghGjy9kWebKlSuUl5ezfft2Vq5cya1bt8QOfdeuXahUKhoaGvjuu++IjIzkgw8+mBGr49MTGR0dJSgoCI1Gg91u59mzZ+Tm5nLgwAF6enowm80kJydz6tQpKisrycvLY8OGDRQVFfH06VMURSEuLo53332XpUuXTtErUKlUFBcXMzw87G2xuCdImpNMj03y28h4HySFYMcQkQNVREdHzaiLAdDf3z8tU0UjO7EHhOAMCH1xbEVB5zSRYX4CLm+VysecUavVWK1WZs+ezdjYGFlZWeTk5JCZmYnJZPKTZXY6ndTX16MoimBQJSYm0tfXh8lkory2hcKuQOwuGQXEfwAGi4Nmg5X186N+ZhvwczIgYnDcwZV6Azebh3jaZ+Zxt4nuMTu24QGunfsO4heIXefLoSgyyoQFArQz3lSSJKHSh7Nmfjxz584lMjISrVaLLMtYrVaGhobo6uqisbGRpqYmsch7PB6cLjeOhEVUjalpGbbTNmSlxeRBHT0b2WRgVmw0KSkpmEwmrFarcAZUq9XCzri8vNxbVZBUNKviBZbh5XNUAJU+DPVIN7t37xaL38KFC6mtraW6upq8vDyam5ux2WxkZWVRW1srjhEUFMSKFSuorn5GTGzcjGXQJ5UV1NfVCGaCT9vA4/GIyezIkSPo9Xqys7MZHBxkaGgIg8HgFVGKmo1WPzMwSJIkxkwmuusr2b9/Pzk5ObS2tlJdXY1arcZkMgkxok2bNqFWq2lvb0eSJBoaGsjKykKr1aLRaEhOTqakpASbzSZK3sHBwbhcLrq7u9Hr9bS0tLBp0yYsFgvNzc3ExcWRnZ2N0+mksrIS8O7G4+Li/PAc4KVSGo1GGhsbycvLmzJmer2e8vJyUdo3mUwMDg5y6NAh7t27R19fH263m4yMjGlprpNjeHiY5uZmRkdHaWpqIjw8HEmS+OCDDwgNDWV8fJzy8nIURcHtdlNaWsrY2BgRERGsX7+et956i+zsbIqLiykoKGB8fJyGhgYWLFggrKZ9cf36dXQ6HXfv3sXpdLJ79242bNggqgdXr14lOjqagoICv8/dv3+f1tZWVqxYIcq8N27coKqqigMHDpCWlkZNTQ2lpaUoioJOp+Odd94RVYGWlhbKy8vJycnh/PnzdHR0sGnTJqIiwwiRDcQnJtHWMyKoheuWp/I//4+D2Ec6ePbsGQkJCaLi4HQ6ycvLm5LoeDwezp8/T3V1NW+//TY5OTlcvHiR8vJytm7dKgy4SktLuXjxIhkZGfziF7+YtjrkszO/ePEibreblJQUNm3aRF1dHTabjUOHDrFy5UpRYWhsbBSU1AMHDmC32/nhhx+wWCyoVCo2b97M7t27pwXOKYqC2WymqamJwcFB8vPzSUpKou3xHTTuCewBocgq7zhqVQpRphZmjz4D2TMlEQgJCcHpdAp1z+lCQaI9rgCrLs4/yZAk3Got4+pQYhwDKLIsqhm+n06n07tp0GiEmVtycjIVFRVe3JHk9Tqw2+2izdrR0UFrqxfAGxkZSXtgMiYpWNg5+58bGCxOsmeFERPys3vhX2WbQFEU+swOnvWbsTg8qFTQPjzVD7xr1EanrOBU61B3PSNgbs60xwIJxTqKpNXDKzy0pcAgLFYr6QsWEBERIdTbXj7e3bt3+emnn1Cr1Xg8HhJXv8mYKgSByH3+UEn6CLTZWxmpuSnohC+Hz30QvJOvOjoJKWbRtO/1HlpCCo1hQgrgj3/8Izt27CAlJQWdTseRI0f47LPPOH36NDExMRiNRs6ePSvAkQsWLKC4uJjFixczNmKku6vTj1ro+9nZ3sZPt2+IvuWuXbu4cuUKAQEBQhBn69atYmwCAwPJz88XaPqhoSFmKa8WyAEFj8uJWq1maGiIsrIyBgYGhAqiz4+gpaWFWbNmsXbtWoxGI8+ePcNms3Hy5EmOHj1KQEAAs2bNYuvWrRQVFZGSkiKU7PLy8rh//z6PHz8mMDCQlJQUBgYGkCRJtAsyMjIoKioSDI3bt2+TkZExpWqSl5fHV199RVtb2xRmRkxMDJGRkYyOjhIWFkZjYyMFBQXY7XbKy8tJT0+nqamJDRs2/IkxecHcGBwcJCkpCYPBILATVVVVfomLb7INDAzkk08+Eefss1SOjY0V73+5j97Q0CDAjgUFBWzcuNGPzmowGOju7mb//v1+n/N4PJSUlKBWq8X3KS8vp7S0lO3bt5ORkcHExATXrl0Tn9m5c6ffIltWVkZQUBDXrl0jNTWV9957j4GBAW7evMnmDaupqKhg7YeLae/qZ8vmDWzbsgmAnMw5fPnllxw/fhydTieEuqqqqli0aJEA67ndbs6cOUNLSwv79+9n/vz5nDx5kra2Nvbt28eSJUvweDxcuXKFqqoq1q5dy8aNG6dNjK1WK6dPnxa4lHXr1iHLsnjGhoaGBCjVt4j75IpzcnK4evWqqKwlJyfz1ltvzVh5GBwcpKioiM7OTtLS0uju7qaiogK32+1VPXQNENHXweEPPyEoOIT+1nquFzWiKAoajUZIiytIqFSSYJQ4HA7i4uKmVTc1ByVg080g/StJWHUxjAZEE+Z+AYxVAJs2ih7dHJwherrGHCRWd7AxK0Xgqn744QfAex+tW7eOFStW4Ha7MZvNfPrpp6SlpSFJEg/sMa8EMKolKO0YJSP+z29v/leNv7pkQJYVrtQbqDdYkKQ/IaAlqUAFuvQC7BVXQJLQJGchSSoUFCRJBS4HzqYyVCGRqKJnv+JgoHjcPC4v5/EksFhwcLBIDMLDw7Hb7VRVVbFw4UKampqQgiMZU02/A5ZUKiSVlty3jrAhzdtjs9vt2O12bDab+LfJZKKsrIzAwECc0p93yaUA7674q6++YsmSJWzZsoXIyEgOHTrE119/LSb2kJAQ1q1bx6VLl0hNTcVgMHDlyhWCg4M59d03LEhfyGv5BWi1OkymMaqfVtHd2UFSUpKYAH0a/ZMTo5KSEmbPnk1AQAD9/f2cPHkS8CYGLpeLgfZG5kXPmrlNoMBQVzNqtZrvvvsOrVbL6tWrWbJkCWfPnqWppZWCLW8xjI5btf1EhepZ8/pOhoeH6evro6+vj0uXLrFnzx6RPHR1dXHx4kUSExOJiooSSZbT6SQyMlKo+01OBnwyshqNhk2bNvGf//mfPH36VPSyfZGcnEx8fDzl5eVTkgFJkli8eDEPHjwQVZ9Vq1Zx8uRJYmJi6OrqYtmyZX4gy+nCZDJx584dwMtu6e3tFVLLbW1tyLIskPg+RonZbObYsWN+yct0TAJfe8Nut3Pr1i2BKXn//fen9RJ4/PixwDhMjkePHuF0OoUcdVNTE0VFRaxYsUKIDt2+fVtQcdPS0kT53qcr0NbWhkaj4c033yQnJ4ehoSEuXLjAwoULqa+vJygoiNGRYdYULGfr6y/Alr7r5Pse+fn5bNmyhcLCQgoLC3n//feJjY3l5MmTdHd3c/jwYRITEzl+/DhDQ0O88847pKWlYbfbxQK/e/duP5zP5Ojs7BRywEFBQezcuZOHDx/S29vLpk2byM7O5je/+Y3Y6RYVFfn15I8fP44kSWg0GqFLMt3zYLfb+emnnygvLycqKoodO3ZQU1MjdvMqlYp169bR29vrVU61jXL50lmMRiNz5syhu7sbWVGQZi+h2RWJXRvxvH0wTLpmhGWzQv28VSbHSMgcLztlpgVZkbFEziPM7k0GFKA3Zjmj+qQXn1Nk/lAxwunHnSxzNyO7HGJzAV78go9a6gufvbpnzswumWJ8pmGQ/DXGX10yUNIxQr3Bm9H+KdtZwLvgB0ci6cNxd9Xg7m1EHT0bArQoExbkkV5QFBS7iYDU6R968PawPQavglxCQoLoY4+NjTE2NobJZKKrq0uo/jU2NgKgiUtFkeWZWxRA7cA4m+bHoNfr/bjjvnC5XJSVlZGXl0fEnPkUVk11UPQ/qII8YeXoP/4dNTU13Lx5k9/97nesXbuWlStXsnjxYiF+ZDabxcTc3d3Nzp07hTNgYGAgTY0NtDQ3Cd92X/i46TqdTtDqJksgd3Z28vnnn7N69WouXLiAx+MhKyuLnTt30tfXx8lTp3Fk5hKoD52yy5ZlGbfDjqGjHm1AAEFBQTgcDtLT04mJiWHfoSM87jQhBeoIBmRJYsjiZMjqYsX2A9w88wXj4+M8e/aM2NhY1q5diyRJvPnmm/zxj3/kzJkzfPTRR37Jy+joKO3t7TidTqH45h1KRfhSxMbGsmjRIoqLi8nKyvIDzUmSRH5+PpcuXZrWoTAzM5OSkhJBBX3w4AG9vb0sX76cp0+firL0TOGzgPZNoGNjY8LUKiUlhW3btpGZmSnEpmRZxu12s3Tp0insFB+YUaVSMTw8jCRJxMbGUlNTw7Vr1wRQVavVTpsIuFwu0W6avLj5yuUqlYqNGzfS19fH2bNnWbhwIVu3bhX3jY+9oFarhd6G2Wzm6tWrNDY2olKp+OSTT4iKisLhcHDq1CnCwsJwOBzYbDZUKhVJSUm88cYbYvF0OBycOHECq9UqWg91dXXk5eVx6NAhvvnmG7799lvCw8MZHR3l3XffJSwsRhKu/QAAIABJREFUjC+++AKHw8HRo0dJTExkeHiY7777Drvdzvvvvz+lYuK7J0pKSoTsdXJyMllZWVy+fJmgoCCOHTsmZJ1jYmK4ffs2ZrOZpUuXkpmZKSSNAebPn88bb7wxRfnT93eqqqq4desWbrebtWvXYjKZ/JKK6OhoxsbGmDdvHnfv3hUS6HPnzmX37t0kJiby+Rdf8NQZQ79qDgS+cBO0aqOokmIYaKxhJi9Klzro1dRCSYXNo35+SInB0PmMBs0Sr03+OUwIT1yxzB6p9qNeK4Ci1qLTafE4bAQ8b+05HA5aXXZs6uAZPRRkBZLCZ7ax/muK/9LUwnGHm0aDhSajBavTjdMjU9EzVRL4zwlJ97yM5HHhMbTj6W1AHu4h4PmErtjHcfe3THEmBG8igOzB3e3trQ8MDHDt2jUuXrzIw4cPBb1usvyv+LuaP93LmnC/OrOdLI4zO1yH2j0z1UeRZTwjveCa4PLly15f8P/238jNzeWnn37i17/+NdXV1cLZMCAggIaGBrRaLc3Nzeh0OiRJQq1WM3/+fCEh7Cvj+s7Fpx8fHh4+LbJ62bJlmM1mvv/+e2RZZt++fezdu5fAwEAaGxtxOR3UFl/Abh4FQJY9yLK3deCwjVP703ncTgcul0uUTr/++mu6u3toGfWg0QYJeqd3oL0/By1u3vjFUbHQ3759WxgeabVaDhw4gNFo5Nq1a35JyJw5c7hw4QI2m00kA063TJ9hGAXvQtfS0sLGjRsxm83T7qSysrLQ6XTTvpaYmCgmcK1Wy6NHj8jKyqKuro7c3Fw/Dv/LUV9fz2effYbT6RR9X7VazY4dO/jXf/1Xjh49Sn5+PqGhoaJN42vhvP7661OOZzQaiYuLY2hoSNBKT548yblz50hJSeHjjz9mdHR0WmMi8CoHOhyOKTLUjx8/Fr+fmJigsLCQ2NhY9u7dK3aCly5dmiI5/PjxY37/+9/T09MjWko+Tv358+exWCwkJSXR0dFBUFAQWq2WgwcP+j0XhYWFGI1GnE4nubm5/P3f/z1BQUF89dVXjI2N8fbbbwtNij179hAYGMjnn38OwEcffSSovZ999pnwVJguEbDZbHzzzTciEVi7di2RkZFcuXKFBQsW8PHHH4tEoLa2lrGxMcbHx9m7dy96vZ5Tp06J67dv3z4OHz48bSLQ09PDZ599xqVLl0hLSyM/P5/S0lKBxk9KSuKXv/wlH3/8MeHh4Rw/flywd959913ee+89Zs2a5VWqjE2jX+ezKp7c9/fe//0Ri1+Ap1+KQLf9lSZeKDIBHu9mwqNIDIemzWx+JEkMByURHOmlVs+eM4eR4Dk0J26gNmkrFdHrqY9dgyMug9a2Nrq6ukiVhqc/1vNQqSQ2LHh1Re2vJf5LVgYcbg8/Ng7RYLAI5KgkQUqEDtcr1TVmDsU1ve3rZOCMq+UhyG7UielIz6lpkiShTFhwNZR4QYaTQpblKd7yPspQREQEkZGRWPWBmF+FdFUUdCplirzsy8fUaDS4XC4kSSJNNUYzcc+Rwy8WNAkFRXbj6fSyA54+fcrTp0/Jyspi9erVOBwOQdmSZZnIyEjGxsbo6+sTEsanTp0iJiaGsbExrFarWFR8CmqTkyWPx+MnojM5amtrRd/ap30/d+5c4RaXmppKV1cXNbfOEBydQETcbJAkzMY+xga87Yf4+HgMBgOFhYUcOHCAkpISzhfdIGPtmzOPJwoGG7z33vt8+eUXAsX+N3/zNyQkJJCQkMCOHTu4fPkyKSkpQl1y7969/OEPf6Czs5OwuCRsIbMpbh4BIO/tjxgf6KShqYXMzEyys7O5d+8ey5cv9+ujBwQEkJOTQ2VlJRs2bPCrPHR2dgq8g6IoyLKMXq8XO76Xw2az0dDQwMOHD0UvNyoqSvw7NjaWvLy8KZ+bbGIUFRU1LQjNaDSybNkygR3weSccPnyY9PR0WlpacLlcfvoCk6OiooJ58+b5VT8UReHOnTuoVCrWrFkjKKeHDx8W41BRUcHAgNdZMT4+nnnz5nH8+HE6OzvJyclh1qxZXLlyRYAo79+/T0NDA/n5+Tx69IjY2FjMZjMfffSRYFx4PB7Onj0rjJaWLl3Krl27kCSJo0eP8s033/DFF1+g0+nQarXo9XquXLmCw+EgNjaWI0eOEBwcTGVlJVeuXCE1NZUDBw5Ma2Xc09NDYWEhNpuNoKAgNm/eTGlpKWazmbfffpvs7GwkScJms1FUVERNTY0o09+4cUP06IODg0lISJjCbgCwWCzcunWLJ0+eEB8fz8aNG6msrKS2thZFUQgPD2fbtm1kZGQwPj5OUVERIyPe+1Sr1fLJJ58gSRIej4cnT55w7949qgMWQFDoK3b4CiMhKSSO1U15JdLaxbh+qlKjCElFpMUrVy2FJeBR/4nNj6SixyYRqVIxHLeMXgm/jY1DE0I1oSzLTGB5oJHHFZUkpMYwKAejTFJCVEneqsDHq5IJ171af+KvJf7LsQk8skJhVR+do/YpIkFjE+5pP/OqUBQFxWHF3e4FSvn45zOFPNqHu78JxWZCHh3A3VOLu70StexFxfoWRx9darrIyMhg06ZN9PX10d3SQMDsjBmzZQWwt1VRefcmkiQRFxc3bVJQVlZGUlISycnJuK0maktvIwWFoXpe8VAUhXkxegpiJZqrK8UuQZZlDAYDjx8/ZmBggNdee43Vq1eL3Z1erxc2xj4v+Y8++oiIiAi/Ha6vvD1ZTvfl/uaCBQvExOR2u1GpVBw9epTY2FiKi4t59OgRVquVgoICqqurSUpKwmQy4bCOYzL0YjL04LCaxfEKCgrweDyMjY1RW1vLli1bmFAHoQ2NfgWVSMItKySEakhKTBDtmoaGBpYuXUpgYCCJiYmMjIxQWlqKx+MhKSmJ/Px89Ho9PcMWMte+gSypEROPSo0uNBJZF0ZKbCizk2ZRWlqKWq2esnuMiori/v37REREiIqJoiicPXsWrVaLzWYT95DBYCA/P9/rNOn00Ddiob65leLbt7hy+RKNjY1YrVaSkpJ4++23qaysJDk5mbGxsRmNfzo7O0WPOi0tbQpDYGJigtu3bzN37lzu3r2Lx+NhwYIFfPDBB0IM6+HDh1gslmklkQcGBrhz5w5btmzxY1VUVFRQX19PdnY2T58+ZXh4mPfff18kDBaLhZMnT4rvvnjxYi5dugTAwYMHKSgooKioiJiYGAoKCmhtbeXixYvieD4w3qFDh8TOW1EULly4QH19PZIkkZGRIaoQgACPVlRUMDExwe7du4mNjaW+vh6NRiPEhG7cuMGtW7fIzc1l796904KCy8rKOHv2LC6Xi+TkZJYsWcKtW7cICwvj/fffF4C3pqYmTpw4wdDQEDt27MDtdjMwMOA1BgoO5sCBAwQGBtLb2+t3/TweD48ePeL06dOMjIxQUFCA1Wrl6dOnApG/efNm9uzZQ1hYGMXFxXz//feMjY2xbt062tvb8Xg8xMfH09vby5kzZ6iurmb+/Pm0BaYw4XmVVbGEJLuJtPVOeUnrtmANjMKl0U+dwxSFkAkj8eYmUBRcah1D+lfjrgAiHYO4UFMjJYu/P/lcAAYcasbbq9m1aQ0f7lxFUICalv5RXM+L4YsTQvi71ckUpEa+fPi/2vgvVxloMFgYGJ9+F/+/Gr6Fy9lWKX43ncOcTqfzl3d1OfAMtvm9R5Zl1q/fwO2SByTNSqSn3Tvh+lC6vh0feBceX+k9L3sp1V3VqFKW+S2kz08QZXwY9XAnSakp/Pjjj9y9e5f8/HyxOPlisltdTEwMsnkIZ/UNCNSTv2oNj+4Xs+rYByQmzsWzcycXLlwgJCSE1NRUUQ2QJInHjx+Lfn9mZqZQxJusnS7LMq+99hrV1dUMDAyg0Wj8ZI8nU4hUKhVhYWGMjY2JRWjycWpra0lLSxNtCbVaTUlJCZIkibKwT29/8rGDgoK4d+8eH3/8MdevX6epqYmzZ8/y+p53sP4ZlOLPP/sMj8shro/FYuE//uM/WLlyJZGRkSxfvpy2tjacTqco02Yvy8EQkPD8CC/9EUlCqw/lafsgKxbOJjc3lwcPHpCXlydaKB5ZwS4FkbPhDVqMVubZXYQHBVBTU0NfXx/vv/8+33zzjfiOsiyzeGkOd2q6caufo+m1ccRlbyIkcR7VJddYvWoVeXl5fP7550RERHDo0CF+9atfzWiHPFltcbqqgK8aUFxcLMrs27dvFxUORVFobm5mwYIF0yZcFRUVhISE+LUQfFUBSZJwu910dnYKLQFfXL9+Xdy/Pqqlj6XgA5n29PRw6NAhxsbGOHfuHMnJybS0tBAWFobRaGTHjh1CNEhRFK5duyaopnPnzmXfvn1TgJKFhYWEh4ej1Wo5d+4cHo+HjIwMAf4LCQmhtbWV7du3T6shMTExwblz5wSgbdWqVQwODgpq5ubNm9FoNExMTHD9+nWePHnCggULyMrK4scffxRW6OHh4XzyySdotVrMZjMPHz7E7Xaj0Whob2+nqKiIoaEhli5diizLlJSUiO+yfPlyQel89OgR9+7dw+PxsGrVKlatWiXaYHFxcZw5cwZFUcjMzGTbtm1eeuO4CSZrBLwcikLApKJBZGQkoaGhdHV1IQGpQ48YiMhkJDgFRfUcHyB7iLJ0kkEfZrzzYJDkQCW7kVWvWJYUhdSIAJ450/4kMDEieyOrVnmrJ29nxTNYdpHImHjeevMNoSHzc7yIv/hkwOb08GzAzMC4A7UkYbC8OhHwTaTTTVRTFluXA2drOfJQ15T3To6JiQmxaAQGBoqJ9sUCLKGalUGZPRLdir0MAzEp+YzWleI2dPid1+Tw6QMAqG0WAlKyQP9crlP2EGjuZVE4PLDbaG5u5sCBA3R0dHD//n0ePHjA8uXLWblyJeHh4X7JgG+CAcBpI3tBCuXFTvr6+khMTBQ7UofDQU1NDZIkERUVJfwIfGqDvb29rF69muLiYsBbNVGr1Tx9+pRNmzbxxhtv8Omnn04Z66CgINEe0ev1YiGfLtF69OgRjx49IiEhAZ1OJzwQ5syZQ09PD+vWrePWrVtTPme329Hr9dy4cYNDhw5x8eJFnj59Sumd62RvPTTjtVRkGfv4KMFBWtZs2YzNZqOyshKz2YzVauXWrVtTrlV1dTVjY2NEzZ6HNnHhDEf2sj9Mbg2yorBu3TqqqqqERv2Qxcmz3nHcskJQXDJaWeFRh4nIIA2ld++xcOFCBgYGXrSeFAVNoJaKbjOBQSF+4B9JpUIfn8rat99j1cJEvvzySwCOHDmCVqud0cbY4XDQ0tIiKK2TxYsUReHZs2eCwrplyxZu3rxJQECAX7l/eHiY0dHRaVsETqeT6upqVqxY4Ve9evr0KTabjYSEBGpqatizZ4+g8QG0t7dTU1Mj/j8kJIR33nnHT2mxvLycsLAw5s6dy/Hjx9FqtUJlcWxsjLy8POHyCYhKk0ajISkpiYMHD/qdU29vLydOnCA8PJx33nmHu3fv0t/fj0qlIj8/n+XLl1NYWMjg4CAHDx6cVvmzv7+f7777TviGrF27Voh1vfPOOyIxaWtr48KFC0xMTLBt2zb6+/v5/vvvAa91+Ny5c6mtrRUVh5iYGBRFobOzk8rKSurq6pg9ezb5+flUVlaK6sncuXPZtm0b0dHRVFdXc+fOHcbHx8nNzWX9+vXCC8An+2wwGNBoNERFeUV4Tp06hVarJTo4jb6AV5j9SBIh471iDhwdHfWjN6oUmVmjtcSPNeLQRXoxRE4TasXNwucUX7fbjdtiJkrTydBMuAFFJsw+yOhIJ6QuBPergYkjzhfXU1EUhoxGspYs+TkRmCH+opOBZqOVi3WDyJMEAv4UIkCSJBSPC+V59jl5R65YR3F2PkMKCERx2JHH+v88ygEIDu7kHZdOp2Pbtu382GZCFT0HDy/2i1ZZRWDGGtz6cFwdT/2OpdfrCQ8P99tte4wdKMNdKIFBbNm6nchgLacK75J+9ChR4WFcvnyZM2fOsHfvXtatWycW0fLycpYuXYokSWIBKC0tBV7Q9OLi4oiLi6O3t5fc3Fwx6YSEhGAwGNDpdBw4cACz2cyFCxdEMuFDf/tClr0WpA8fPmTFihXExMWTtHQVRkWPNlCHMmHB3d+CbDWKcff1QYEpXOXExEQxBgMDA6jVajQaDUuWLOHJkydIkkRCQsKM7RaPx0NDQwPNzc3s2LEDg8FAf38/JkMvYTGJ0zI0JJWKnroKzGYzJSUl/PKXv2TNmjV8+umnGI1GlOcL+cKFC/nmm29eCEM5ndhdMgGyB5XqFVoTKg2mcSuRYSEUFBRQWlpK1vJ8agyuSfeul8cNMGpzkbB4JUvigzh37ix6vV6AAGNSMtDpp9+xSZKEOyCE7y9fZ2xszM/FMjAw0G/cfeGzCw4KCsJqtQpp6eHhYa5evUpbW5sA5s2dO1eIQ01O9pqamtBoNNOyCJ49e4bT6fQDDiqKws2bN4X648aNG4XAjO8a+hZGYFqXP59K35o1a7h27RpGo5HU1FTa29tRq9WkpaWxfft28f6ysjJhNBUXF+eHSwDo6OigsLCQ+Ph4Dh06xLVr16ipqWHr1q20tLRw4sQJAgICCA4OFlTgBQsWiHPyuZIWFRWhKApz5swhPj6eGzduMG/ePHbv3i0Ee27evEl5eTmpqamideCrMq5evZoNGzYwMDBAVVUVvb29zJkzRyRfhYWF6HQ6VqxYIfAh4GUIbN++nXnz5tHc3MyZM2cwGo0sWrSITZs2ER0djaIo1NfXc/v2beGfsXbtWh4/fkxXVxfDw8MEBgbicDgId7ViCE7Bg2aqeI8iE+i2E+UYxP1caj03N1dUE8GrS2DSJzIWmoJDpSXQbSfS2k24rZ/y8nK/ezp+rAF7QBjWoNgXaojPn2+d28JrWgNGWcZhMYE2esZqhQToJ8kMj46Oirnu55g+/mIxA0aLg5NP+6YIBf2pUGQZz3Avnr4GpEAvolyxm3F3PcPV+hjFNoZiGUWZmMHf+38hnE4n9qBoJqLm+iPXAdFPDo/HY+gAt4PExEQsFguyLGM2m9FqtX6GIoqigNtFa2M9Y6Nes47R0VG2bt1KYmIitbW11NXVERgYyPr160UJ2rdztVqtaLVaysrKAG9pLiwsjJUrVwpu/WuvvYbVaqW8vByHw8H+/fsZHBykrKyM5cuX8/rrrzM0NMTQ0NCMpWaPx8PjqmpqPdGYtNFIOj2qwCAkXQia+LnIujAStB7Gn1cEfNgEH/3ONzH4Fizf2Pn0xt944w0qKiqQZVmU6n2RkZFBQEAAqqAwEtOXEZeaSc/gCCU/3cY42I8kSYz2dxKRmEygTu+lbUqS+Nld+4iBlmdiQXz48CFB4dHkFKxlcGgU2/gYHR0dxMTE0NjYSExMDFqtltHRUQrWbsQma14pbaooMj989XuqKivFrtUTHI9mJjVFSUIXEk7JzSs4bBZiY2MF62R+3iYCAnUz40kUGbNpjJ2b1vi5KVZVVWG1Wlm7dq0oJRsMBuHB4Ha7cTgc5ObmUltby7lz5wSjw2g0EhERgUajobm5mezsbNLSXuja3759m+jo6Gnd4i5fvkxiYqIfcLGmpobq6mrAu9Bv3bpVjN/ExARfffWVwJGkp6ezf//+KVTSiooKWltbmTdvHg8ePCAzM5PGxkb0ej2hoaF+6oRPnjwRAldRUVG89957fmC/5uZm4Yi4b98+fvjhByEutHz5clQqFfX19bjdbnbt2kVOTg53795leHiYjIwMnE4nZ8+eFc9Yfn4+o6OjtLS08Prrr7Nz5060Wi1dXV18++23dHZ2smHDBiYmJnjw4AFut5vY2FjeffddIX8dEhLCw4cPCQ4OxuFwcO7cOaFmGRISQl1dHU6nE51Ox9atW3n77bex2Wx8//333L9/n7i4OPbv309BQQFBQUE0NTVx7tw5cUybzUZiYqLQsfB4PMiyjMfjYdasWex9+02WJYXxsH3Yq06oyIB3oda5LWTZanDbxwkPD8fhcNDf3090dLQX3yKpaY8rYDhsHk61Do9ah1Ojxxw8C4s2moWhHsxjo2L8VRJEWHvRusbxqAOQ8OIO4kzNzBqtwWExe3FcqBgPip+5dQHsXZrAvBhvq7Szs5Pa2lpef/31Kf4fP4c3/mKTgbutIxis0y9GrwpJknC1VSAPdeEZaMHdU49noAXFMvJnVwH+V2IiPgNJq3+FOI5MbHQ0Wclx1NfXExsbKxZBXyIQEhLC/v37kWVZlOjHx8dxOBxeoxG7nSVLlpCRkcGzZ89oa2tjdHSUzMxMkpOTycvLo76+HqvVSl1dnQBByrLMnDlzyMrKwmKx8OTJE5YtW8aZM2ewWCysX7+e1157jSVLltDe3s79+/eFEFB7ezvBwcFiIQ4JCcHtdotdumbhKpzaML8kSPwMCsNisRBgHxWtAR+3OzIyUrgBajQaZFkmLS2N0VHvhGGxWKiqqsJut/OLXxymrasPVaAOj9uFIsu8vmUrmvh0Yudnow+PQR8WiT4ylri0RYSFR5IYFUJfbw+GtnpspmGQJJx2C2MDXQQ7h+hu9O5e3W43iSnzmJv3OkpIPCN2mcikNBIWLEWRZZ6WPyAgIICYmBgCAwOxWq10dHQQP3fRK5MB02AXYRo3qampmEwmzGYzs7PXTlng/O4RWcbtdKB22xgfHxdVqOQlK1BpXt1fjYkKZ1m6P0ixpqYGk8nEihUrCAgIEIwJlUolEPcOh4Pu7m6amppYuXIlBw4cIDY2lps3bzJv3jz6+/sxGo2sWbNGlIQnJiaEQNDLHgt9fX0UFxezdetWYaGrKApff/21ANUdOHBAjEN9fT3ffvutuO5arZYPPvhgWnDe+fPnSUhIoKqqivnz59PQ0EB4eDgej0fILIMXi3Pu3DkCAwMFcG9yK6S2tpYzZ84wf/58du3axcmTJzEYDBw5coT58+dz7949ioqKWLx4MZGRkZSWlpKZmUlmZibFxcUYjUZu3rxJX1+f2LFXVFSg0Wh45513WLRoER6Ph1u3bnHp0iWio6NZsWIF9+7dY3BwEEmS2LRpkwD5+UKSJNrb22loaODJkyckJCTgcDgYGxsTc0VBQQGHDh0iODiYy5cvc+PGDXQ6Hbt372bjxo2EhobS2trK999/T2lpKdHR0axZs4ampiZcLhd2ux1ZlkX1MDAwEL1ez4cffkhvby/XLpwj0tRGUoiKmBAtynAXR1fPY46lBY/Dhs1mw+VyiefYYrF4lV6jshgPSvAu2i/ReF3qIMbsTiE4JL4voHONE2ntId7WRcR4J8GecVBkgTMKdI1j0ifhUWmmJAQqCeJCA/nblXPQqFXi2g4ODs6oBPlz/AW3CVqGra9cu6f0/5//Th7uRh7tn+FT//tDpQ/3ChfNEBISUbPmsGXpLMxmM7W1tej1epKSkoQznMVi4fTp02zcuJGtW7dSWFgoKFbwoq++YMECduzYwY8//kh1dTWjo6McOXIEnU5HVFQUer2erq4uwf336c/LssysWbNQFIWvvvpKLPC+SVSn0/Huu+9y5swZvvvuO9LT00WpOSYmhtHRUTEpqVQqNPowpKikGR86SZLQJS8iJyWCu8U/iaRnYmLCT5hox44dmM1mUdJNTU2lubkZWZaJTc2gyxVC5sa9AHjcLgwdDYyrI5GfC6P4FhbfeYTPXkBbZZ+Qrz137hzDPS9Ai+14wXA3b94kQB9Kcu7mKSV/TUAgqctWI6nV9NZX0NPTgxSgJX3ldkJjZ/7OXu11ma6aR1hGDAJQBqD6E3bPCgqBWh3R0dE0NzcTGxuL0WjEYRtHHTCzWZMkSSRET+VQ+3bCExMT6PV66urq6Ojo4J133uHhw4eiMhMcHMzhw4dFadVut2OxWIiLixO7+cl9e5+K4XR4gYqKCkJDQ/1eq6ysxGazodVqOXz4MGq1GovFwtWrV6mvr/cDwO7cuXNaQa22tjZGRkbETrmjo4Pw8HAsFosfG6G9vZ0zZ86IRe7999/3c9isqqri0qVLLFmyhDVr1nD8+HE8Hg/Hjh0jOjpa+BBs2LBBSAb/8MMPnD59mr1797J06VIhBJSUlERoaCj3799n2bJl7Nixg8DAQPr6+jh//jwjIyOsXbuW/v5+fvzxR/GZ3bt3i0TJF06nk7t379Le3o6iKGRlZdHQ0CAW7fT0dLZs2YJGoxH+DWFhYezZs0fYQre3t3Pnzh16enqYM2cO27dvp7m5WeA/JEkSrYn09HRhgf3ZZ5/xm9/8RiSfO56DJBVF8Vp9V95l+fLl/PBDHfHx8ciyjNFoRJZlrxonakaD57xSN2AsJJnEsQbUylQMS1RUlKgKybJMcHAwK1asoKuri5aWFtIMDxhK3cCQS/VCy0BSMTdKz3/flIYu4MVzZTAYprS0/neFrCiUto9SVG+kc9ROoFrFqrmR7FwUS2LYX46g0V9sMjAN1mxKTFbuU9xO3H2NuDur/z//zcn4guDgYCTphT53bGwsQ0NDU/rXissJAbpXVAYUejs7ONN4n/r6evLy8qirqxOJQF5eHp2dnRgMBm7cuMHDhw/ZuHEjV65cIS0tjYGBAQHAa25uprm5Wex2uru7+eMf/8h7771HQEAAfX19hIaGYrPZyMjIoKGhgba2Nn73u9+JPu3ExAQfffQRf/jDH/xAZgEBARw6dIjz588LMNeKFSvo6elh8eLFREVFUVxc7C0vBkWg/hMPnRsV/WNTnSB9FDCNRuOlVnZ3ExoaSlBQEK2trcyePRslNJ6UrAKvROrzz6k1ASSkLWbEMTUJnDzWcxa9xvKls6d1X5MkiWvXrjFv3jzUsfNQqdQzKj/OWZTHQEsNqFRkbdpHoG766o9gpExYaX54E8uIFxORmJhIRESEl5I5YUGtC3nFoq4ie/FCHt5qQaPRiOrQYFsdc3OmagxM+iCzIqaWRCfbGDudTn788UcWLlyI1WoVCzrX+cNnAAAgAElEQVTAhx9+OAVdD160uNlsJigoyG9n7UtUXrbldjgcPHv2jFWrVonjOZ1Orl69Cngli33eCD/++CMqlYqCggJRak9JSREL28tRXl5OQECAWNACAwMxmUzs3r1bKCf29vZSWFiIRqNBq9Xy3nvv+e28y8rKuH79Orm5uSxbtozjx4+j1+s5evQoGo2Gr7/+mr6+PuE7AF5q8N69e5EkiXPnzvmdk6+NtnfvXrKysvB4PNy5c4d79+4RHx/PunXrKCkpEWyArVu38tprr/ldf0VRqKmp4caNG9hsNubPn09zc7MQDfIZ9Lz55puUlpZSVlZGQECAOJZGo6Gjo4OffvqJzs5OkpKS2LJlCy0tLVy7dm2KDsLixYsFM6OsrEy04Xy+BIsXLxZURkmS2LJlCydOnCA3NxeVSkV0dLRgJXg8Hi/NWBf7avVBQJFUuIJj0LtGcLlcfiBiXyIAXnvqlJQUvvvuO4aHh734DM8E76S4uFxShlXnrdAFWgb4vz/4hymVNoPBMC2O5f9vyIrC/7zXSXHriNAusLtkrjcYudU0xP+5dQGLEv4yfA/+YpOBxDDttFoCk8PVXoUybgQFZJsJddxctDk7kXTBKC4HnoFW3P1N4P7z2g1eR79wFEXBah1nMlzRJ6n7cngM7WhSlzKFavY8JJUKc0cdY6Neup7ZbPbrgUdERLB9+3bq6uq4ceOGAPGFh4fT0tLCsWPH+Oqrr4iPj2dwcFBI3/pidHSU//iP/2DWrFlYLBaWLl1KdXU12dnZwp3PbrcLIGBISIgwp3kZca5Wq9m6dasQMAkJCWFkZIS0tDRiYmJEgvHnxuTdsS98C53b7Rb69oDokxuGx8hd+ZZ37F5aPGdauMXrkkSALphf//vvsY+PTnndl8i1d3SyImfrK48nqVREz5lHUEi4NxF4xXs7q4pxm42YjYPiPObOncumTZt49OgRNQ1PSFm2ZtrPKoqC7HFz6eTXOB0TREZGUlBQwKNHjzC01xGXupDgiNhp/35ylI4Q7dRHfHIycO/ePaxWKxaLhfPnzxMU5MXR2O32KROq0WgU9D9FUfyUI32Uwul0+J89e4bb7RbAQVmW+frrr5FlWZhgffPNN7S3t5Odnc2GDRv47LPPxFjt3r172kTJZDLR2NiITw7Zh2NZs2aNOA+DwcD/82+f0zZgR1Kp+OSDLaJaoCgK9+7dE5bDqampfP3118THx3P48GGsVitfffUVLpeLo0eP+uEuwAus9FEtwSsr3NXVhcPhYMOGDWRlZTE4OMj58+eFJoRPZwG8Og5vvfXWFPXIgYEBioqK6OrqYu7cubhcLrE50Gg07Nq1C51Ox6lTp/jtb3+L2+1m5cqVrFq1Cp1OR3d3N3fu3KH9/2XvPaPjqtN039/elUsq5RytYGXnbNk4AQabpmGgaWhoOs/0mbBmzbp3zVqz7rn3w1nz4a4zt8MMQ9NNk6a7MQY3bWOMAzbGxjZOsiwrRytnqaSSKqd9P2ztv6tckmDOmTkX1rrvF1tVu3be+//83/d5n6e3l6ysLPbu3UtPT48oHWjXHtTn/cc//rG4F5qamjAYDGzatIktW7bw5ptvMjMzE+OGWVJSQlFRERcvXiQzM5O+vj7x/JSVlQlg8GUiHA5FtR5HhqY8aTQa+c1vfoPf7yctLY3nnnuOY8eOcf36NTJNMvNz3ZSUlNAzZWd8fDzq3gwGg0xPT8e4Y/5HxKdd01zsWcheRAxGYQUCYYV/Ot/Dq99ehUH31e9g+NqCgQ35ifTNeBb9TlEUCIcIjXVDKACyHuPqB5Ftam1TkiTQGdCvWIMueyX+O2dQfEv7dIOEvqAGfU45klF9mBSfm+BQG8Fh9aaPi4uLbtlbiOBoF/qcMhSDOfaFrSiE5qeiyhaayA2oQODs2bOMjo7y+OOPU1lZSX19PefPnxd19T/+8Y/U1NTQ3d3N3/3d39HS0sLnn38uvgd1Fqa15LndbiEzqn03OjoqTG6mpqb45S9/GcP0BxXxv/vuuyiKgslkEi19ly5dil7OMbFomSbq0AM+FLcj5rz98Ic/5I033hBtStu2bSM/Px+/34/D4aBrbC7Wc/3fGxEZnsVCZzB+IbBAUTCarWQUVS2/rKJQvXodH7//e9LS0pienkZRFK5fv05HRwd2ux1ZpyMhM4/k7BWgGWChDpoS0HntY6wWMxazib/8y7/k3Llzos2z5cIHFK7eTnZp9T2mdyhAWU4SBcmLpyi19Pjo6ChXrlwB1PvihRde4OOPP2Z+fn5R4arJyUlSU1NFh0ckcXBkZASXyxUjQawoCrdu3aKsrEzMxs+cOcPwsCpQU1BQwCuvvEJcXJxot4vsr3/wwQdjMg1anDp1ClDbTLXyV2VlJXv3qi6ErV39PP7Tf2bY7keSQJYkzv9vb7Gq7Czv/fwndLbUc/XqVfbu3YvNZuPw4cOsXLmSp556iv7+fuHI+b3vfS9mHxobG/nggw8Ih8NkZ2czNzfHwMAAJSUlpKSkcOHCBSYnJ2lvb48CcKFQCKPRyGOPPUZNTU3UM+LxePj000+pq6sjOTmZlStX0tXVhSRJyLJMWlqaUKHUsip5eXk8/vjj2Gw2hoeH+fTTT+np6SEjI4Ndu3Zx9+5dzp8/L0hzXq8XnU7HmjVrqK+vp6amhhMnTgg9hgcffJD169cLkuPMzAxWq5VTp07xwx/+UNwXPp9PSDBrobmXVlRUqGUe3wySEkJZzsk1HMLkscd8brPZsNlsBINBJiYm+OMf/wjAmjVreOyxx9Dr9ezevZvf//73FBUVMT8/T2lpqbApjwQDWsb2P6OT4GTrBBKLd7EpCsz7Qlztm+WBkq++5PHXFgwUp1jJTjAxOueLGngURQEljL/1ogoEAEPRWmRbStSDJ/5vtGAo346/8dyS2zJW7kBOK4ge3IwW9MXrkawJBLquLwoEAAj68N35GGPVLqT4ZBQlDCyQ6mbHCLRfJj4+btFWL824p7m5ma6uLh555BHWr1/P2rVruXr1KhcvXsThcNDU1EQ4HKajo4PNmzezadMm+vr6+Pzzz2Nm393d3eIhlmWZrq4uMjMzeeGFF+ju7ubo0aOsWbOGGzducO3aNYaHhzEajdjtdmZnZ8UguhSSNxgMBPxuQpN96NIL0ckyJp2Mwj0PBUVRCA63g6J2EGh97YAALcFgEJPJRHV1tSBLdnd3Y876Yhey5SIU8BPwxJ7r1NRUMcDKhAmHgsi6ZR4PScLrnMNgWr4mqCgKtqQU1qxZQ1tbG7IsizSqBths8fG0XzlFVkkN2StXY7EloYTD2Ifvwvw4fsckLpeLb37zm7z//vtR2ZdQMMDd+ovMDbZjsNpITEjAOz/DQzUvLrlPGhfk/PnzaA6Imvyx3+8XNd/7Y3JykvT0dDEAaEp+oLYUms3mqM9ABQljY2NigL527ZpwqTSZTFy6dIktW7awd+9ejEYjExMTojygqQkuFqOjo3R0dBAXF8fAwIAgn2ouk5PTMzz8o19idwYWrgOEFu7d1p5Rdj7/f/PdHXF88xsHCAQCfPDBB6xfv56DBw9SV1fH6dOnKS0t5amnnopinweDQY4fPy7S9dXV1fT09GAwGKisrKStrY2srCysVqsQzNI6BQCqqqo4cOBAVHklHA5HGQqVlZUJErC2jQcffJAbN27w+eefc+zYMSorK+nq6qKoqAin08mJEyfo7OwkLS2NHTt20Nvby8WLF8W++3w+DAYDW7duZcuWLQLIX7t2jczMTJ588kmqq6vFddcsmHNzc3nkkUd48803+fTTT6mqqqKuro7m5mZCoZBwWvX7/QIMaPbCOiVIirOf6fiiJXQDFFKc/eiUWGVYr9fLiy++yCeffCLKUw888IDgMwBC6Ep7brOzs5Flmbt3owXftN//R4OBUFihf8a77DI6WaJnyv3/g4H/zPjsrp3ROXVAipmBShIEF1Lcsh5dVumSJD5JltElZSFZElA8czHfyyl56NJjDUe0beqzVxIav0t4blJ8HqmC5/P5sOgUXPUfISekIdvSUZQw4ZlRFM+cqkUeCogHSVtHaWkpvb29grzj8/n44IMPOH78OCUlJWzYsIG//du/5be//a0AEh999JEgaRUVFVFUVMTUzCyHz1xiLiijhEOEp4cYHR0VsztJknj22Wfx+XzioWlpaRHHGZkGvf/4I2fXJpMJn88nfOBDd+tZUVhMaoINeeFc+UNhxl0+xvo6CA7cE5GJbJ/UDFy0Y45MFwOUpH9x3W+prISihPHPjhLwxwKZkpIS8VLxeb1M9HWQWVS56KxfURRCwQAzI70EfB4MJsuS+yJJEgadOsNta2uLOlZNpEoDfWPdTYx1N5GckkLA7xfKdJFtjmNjY1H2rVo4Zu38+TNP09HRwcX2piW9KlwuF/X1qqJmOBzm0UcfjRLj8fv9hEKhRbX1JyYm2LBhg/h95Oyrq6uLkpKSmNJCXV0diYmJlJSU0N7ezpkzZwT4s1qtvPDCCyL9rskDa/dVpDRwZHi9Xt5++21xPFarFZ1OJ/QCvF4v//t/e4Xp+VhSGkAoFGbK4UVOWofdbufGjRvs2rWLnTt3cvr0aaFu+NBDD0Vt3263iw4Hk8nEihUraGlpoby8nMcffxyz2czbb7/NlStXMJvNJCUliYHJYrHwxBNPxGROBgcHOXXqlPDemJ6eFtnBnJwcDhw4gKIoHD16VJBrd+3axe7du3n55Ze5ceMGZ8+eJSUlhW3bttHX18fly5fFQOnz+TCZTOzcuZM1a9bQ0tLCa6+9xuzsLBaLhaeeekpIIUfGtWvXmJyc5Cc/+QlpaWmUl5dz5coVrly5QkJCArW1taxfvx6Hw8Ebb7wBQO/gMEG9FX3Ij05R5cSzZtrw6eNwWjKjLImRZOK9E2TNtt3zj4nYfkVFBUeOHBHvJJvNxrVr1ygtLRWAs6OjQygyauc4MTEximsAqmOnpiL5HxGKojA9PU13dw/SYtoL0Qtj0H09uhe+lmDA7Q9xc3B20e+EOlvhavzN55GsCUjLzfAWQralEloEDOizS5e3EA6H0WWVEp6bjBkgPR4PNpuN+fl5dcY8N0V4bkp8X1lZyYEDB2htbY1S0VMUhfHxcf7mb/4Gu90uZviKoqAoCt3d3XR3d4taqdPpJCkpidnZWQ4dOkRWVhZPP/00TsnC0WY7voxK9Chqdj2/mpBjEn/LBQiqWZVf/OIXUcfk8XiievsXi9TUVOLi4lSv83BYAIH5+XmSkpPJX7+XeFs0Kc4gS+QnWJCNYfq/QB5KG/A0NndnZyfHjx/HPT2EVLo4mUy7HqFgAJ1BfRlqGgJIEv75Ge58dipKJVKL+50Ch1pvkppbhN4YXd7RgEZv/WeEggHG77aSW75u6VKBBKPdLZyur4vyj9fOa+R+1NbWcuXKFbwLM60XX3yRt956S9R3x8bGhPT1/fdafn4+aWlpeDweAoEA4+PjUUx/RVFoaGjg7NmzAmDabLYYsyKtPez+Fj63243L5SIlJQWn00lCQoJYZn5+ntHR0ZhZvNfrpaWlhR07djA6Osof//hHAQSSk5P5q7/6qyjA0tDQIKSut2zZsqibpTYwut1utSvFbCYQCPDCCy8I18W3336bm+1TS6ZvFy4LH15sweg289hjj1FdXc3hw4fp6enh4MGDMTXy5uZmjh07RigUEloM3d3dPProo2zatAmHw8GRI0fo6+sT4lnadZMkiW9961tRBDan08m5c+eEb0Jkyt1ms7F//34yMjL49NNPaWtrIyMjg+985zucO3eOsbExjhw5wtTUlFBE7O/v5+rVqwIE+P1+rFYru3btoqysjPr6el5++WV8Ph/l5eXMzs7y4IMPUlJSEnNuHA6HsNnWzMo0UKooCj/4wQ8YGxvj+PHjdHd349NbGU8sx2HNWRjsFRI8Y2Q6OjCH51kxeYNgUj4junSCOguGkIck1yAh2cDdzO14jElIKMR7Jkif78EWmKW5uVmIW83OzrJy5UrGx8f5wx/+wPPPP09BQQHt7e1UVlYyNjbG2NgYRqORgoIC7ty5E2UDrnUS/M+E2+2mt7eXnp4eenp6mJubQ6fTkZG7gwlsSwKCkKKWtL8O8bUEA11TrmXFhiRJRk7OBp3hy7UdwJI2m5LF9oVEMsmipl0jpWK10Ihvi8m/atKvkiTh9/vRHPCcTidzc3P84he/oKqqitraWp5++mna2to4e/asKEkoiiKQ8+zsrJjFjI2N8fIbv8e84SCiJIEkMnWyLRVjzR78DacXPSYtTWw0GrHZbGIbmie8z+djZmZGkP20ur/28jOn5BKfkhlL8Fv4O7diPeO9bXjnFwd02j7AvezKmTNn1H0P+ZF9DkLGhJj1h8Nhgn4vzZ8eJSWniIyiCgxGC17XHFP97YzdbaVoxQpRilhse4AY8O6cO8KKNbWk5haLe8AzN8NA8zXsw+qLe6SzgfSCMgyWuEVnsUNttxhsvkFKSgq5ubkMDQ0tCrBSUlJoaGggLy+PoaEhampqyM/Px2w2C+lmWZajPDAiFRpHRkZE/Vqn0zE4OCjAwOTkJB999BH9/f2sXr0ag8HArVu3SE2NNmxSFEU4W94/i9IIstq9HakjoJWiNHldLRobGwkGg+Tl5fHWW29FZStefPHFKCDgdrs5fVq9H+Pi4ti3b1/MOQL47LPPhB+GXq/H4/HwzDPPkJ2dTSgU4r333mN4eBhvILws3FSAmTk3zzzzIpmZmbzxxhvMzc3xwgsvRHEhQqEQJ06coKGhQRxjb28vKSkp/OQnPyEjI4P6+no+/vhjzGYza9asEW2XoJYF5ubmOHLkCN///vdJTU3lxo0bXLhwAVmWKSwsFH4Qer2eBx54gJqaGq5cucL7779PQkICTzzxBKtWrcJut4tyYEJCAjk5OYyOjnLjxg0BzPx+Pzabjb1795KTk8P169dFh8b69evZunUrnZ2ddHZ2LiqhrJ3DcDhMY2MjVquV9evXs3HjRpxOJ//2b//GSy+9pPJZJAmfPo7e7AdUAyAt+ypJzFkymTenUzL+OZaAg0T/NAb3oFomC4cZSa7BbitayBJIKEjMWzKYt2SSZ28g2TVEaWkpzz33HL/73e9wu9185zvf4Z133uEPf/gDBw8eZGpqSnBKxsbG6Ovro6amhjt37tDY2MiuXbsAFQws1Y2yVIRCIQYHB+np6eHu3bsCpKanp1NZWUlJSQmFhYXcnfHzf57sXHQdsgTFqVYqMha3d/6qxdcSDHiDoWVRPyyo1ukNKG6HSg5cUBtcLJRwiNDM2OLfBXxLpp1BTT0TiDXh+aKQTHEo6YX8/L2PVWtjnR4lFCQxMZGcnBzGx8eZnp6mtbWV1tZWLBYLBQUF7N69m+npaa5fvx4zc4/8vz63Qs0EyItI1coyuoQ05KRMwrOLWwhrDoSRFstaOk77XgsNnOj1ehRFIads9bL8PiUcJrOokv7Gq0suozMYSckt5vzNFqbHR/AHgmzZsgW3282V44eo2LqXxNzSKB0A18wEXdfP4XU6GOm4zUjHPUnU5ORklHBY9GsvF7Ozs5SXl9PR0UHn1TMYTBZMcQmEAv6YLoSgz0vT+fcpXv8AyTlF4j4JeD0MtdUx2qUODHa7nZmZGQwGg8hMCIAoSWBJorCmmrjEFJLLnbgnh7jy+VVx/iPLSMnJyXi9XkZHR8XnXq+XwcFBCgsLycnJYXBwkA0bNnDp0iUuX75MUlISL774IklJSbz88ssx1xDuAVZFUYR5khYTExPIsizugcgZZVdXF3l5eVE6ABpxMCsri7fffptwOMz69eupr6+nqKgohpD38ccfiyzJk08+GZOZAJWXcOHCBeFtEQwG2bdvH5WVlYTDYd555x1hdpVm0zE+G1xy0iBJUFOWi9Vq5bXXXsNkMvHjH/84qs9/dnaWP/zhD0xPT2MymcjMzKS7u5sNGzawf/9+PB4Phw4doru7m/LyciYnJ4XWwLZt27BarXzyySds3LiRQCDAm2++icViYWZmhvz8fMbGxkTqf926ddTW1nLnzh1eeeUV9Ho9Dz30EJs2bWJubo7jx4/T2Ngoyjc6nU4MUNq1S05O5qGHHiIuLo6rV6/ywQcfEBcXJ8TDtGva2tpKcXFx1PVyOBzU19dz8+ZNPB4PqampPPDAA4LEePTo0aiSodFoVJ0i7UkE51QeVPQJVnlCI2lrKRlVTa0yMzPVyVFGCfbwCrFc5G9QFIZS1hDvnaK7u5s333wTk8nE/Pw8RqNRAILjx48LqWltwnX58mX+4i/+AlAB6q5du/B6vczNzZGZuYyNMvdS/9rMv6+vj0AggNVqpbi4mE2bNlFcXBzVkgpQkWnkbx5YwcuX+wmF1PevhIIiySTKfv7hwVVfG5GjryUYSLEYv9CDQAkFUfxeQCEw0Ixx5ebFl1MUtesguDghLjR+FzkhfdHvQM1CBCd6l/z+/vquNS6eQHYluuwyQFlgxssYSjZiHG3GbAjgdrsxGo3Ex8cLPoDH46GjoyOq22CxQU2KT0WXnIUuo2jZjIYSDqNLzV8SDERGfHy8yBDIskwgEODxxx/n+PHjYhmtLrlixQqaptVMxHJhstoWTdcD5JSvo6BmM5KsU0lGRTUUBXwMt9xgsr+Txx//hiqYcusSiZn5yDo9rplJVVFwidDIWEsBgby8PDG71pTYtOsW8HkI+KI7VyKdKv0eF+1XTpGQnIpktBIOBXFOjy+QRe8tq4HKpKQkwaaXZJmK7Y+SnLNClKMM5jjiUzKZnp/BYLJgNuoFENCkjyVJYsuWLaSmpnLy5El0Oh1dXV0UFhaSn59PQ0MDv/rVr5ibm2PHjh3s3LkTvV7P4cOHiYuLY25uLtppk1hfjciYnJwkJSUlyigKVEDR09NDbW1t1PJdXV0ioyTLMi+++KKY+X/jG9+IWnZwcFAMotqs6/6w2+0cPXpUED0lSWL16tXk5+fz8ccfU19fL0itGRkZfOdAKf/w66XBpqJAtnmWN998k/T0dL73ve9Fkfra2tqES2F6ejoej4eJiQlhStTU1MSpU6dEB0N7ezuKopCamspTTz0lShwmk4mTJ0+SmJgodB3i4+PFwFpQUMD+/fsZGBjg9ddfJxAIsHXrVmpra/F6vZw8eZKGhgasViurVq1iaGgIj8cjeCagdh0dOHCAYDDI1atXGRwcJDU1lW984xusXr1auEuCmqns7+/nm9/8Joqi0NPTQ11dHZ2dnQKA5ebmcvDgQerr6zlx4kRUeau8vByv10tvby9XG1q4m7SdJZ91ScZtSCC7fC3h2VGqq6u5cOECI+EU0ZMf+xt1XYbijSRONOHz+RgaGsJkMuFyuYQQ1s9+9jP8fj+Dg4P4fD6MRiPT09O0tbUJTxVYnjzodru5e/eumP1rqf+CggIeeOABSkpKyMrK+sLB/IGSFAqtIf7pnTOYMwpwzzt4oCyT9stn8M4VkWhZHoh8VeJrCQaKU61YDTrc/uCiLFUlHCY01iNS/6HRTgImK4aCmoX6Maq0tiwTnhog0HMrZh1ahCZ60edVgjm2XKAoYZR5O+FpDTFLIMsQvjfjuj8lHMgsR59dtrDfkniOFFmHP3cNrpkOvv3YY6L9y+Fw8PrrrzM/P48sy0iSFDOjAzDGJSCVbkNOTBcdC18URouVyOJFYWHhgqLY0ajlnE4nTqcTvV6PzWbDbrcLIFBQUMCjjz7KtWvXOH/+PEajkXWPPr98NgWFgE+ti6+4L22fvXI1K9Zsv7fwwjp0eiP5a3ZQu20rbvvoQt07yPRgdLfE/WWaf0+sXbuW27dvC17GcqHV3SNjbmYaiAUkXq8Xs9mM3+8nJyeHvr4+sZ95VRtJylYJquL+kiQkwBKfxLp9T1B3+l0g2u2xoqKC/fv343K5OHnyJIqiCOng4eFh3G43ycnJfOc73xGz3a6uLjo6Onj66ac5duxYDBCLLGXdr/Y3OTkpFP60NjdQNd/9fr8gximKQmNjo7g/JEnixRdfFK54BQUFUS6H4XCYY8eOAWpm6bHHHos5f36/n3fffReDwSBInprG/p07d6JcGHfv3s38/Dy3bt1i60oL17o8i2YRD2xbQX6qE6vVyuTkJO+88w67du2iqKiIM2fOCA6Jph1QWFjIk08+iV6v57333qO9vZ2SkhImJydpa2tDkiR2797Njh07RPkjEAjgcrmQZRmHwyFIthrn4sCBA3i9Xo4cOYLD4WDdunUitX3u3Dlu376N2WymqqqK4eFhYbesneecnBxGRkbIz8/nzJkzTE9PU1BQwLPPPktZWdmiz19rayuSJDE7O8tLL73EzMwMmZmZHDhwgImJCerq6vB6vbz66qviHtW8JnQ6HW1tbQwODiJJEi7FGLP+xaJ9YJxEz7hQJ7SHTISXE91UwK23gcPBj370I65cuUJ7ezsvvfQSe/bsoaysDJ/PR0ZGBu+88w7l5eVYLBZWrFjBxYsXyc3NpaOjA6fTKSYwWlvmUqn/qqoqiouLKSwsFLyLf09MjQyQ4bzL/tqVnDlzm6d+/A/8pu0GH3/8MS+88MLXIjvwtQQDOlliZ56F0z1zRPZlw8IA7XMRGIhWGgz2NRAav4s+qwRMcRDwEpzoRZlfejapuWn57nyMqWIHUnK0yEp4egh/x1UkayL6/Bp0aQVIsqxqEIx0qhoEEcAAgwldTvmiAEZ78Cb0afzsZz8TKffIgV8DFtnZ2ZSXl2M0Gunt7aW75y5SxQNI1oSFdX0JgQtJwmsfFy+ohIQE+vv7iYuLi5r1Rp3DYFAwdbWMx0MPPURWVpbQQL969SrDnU3kVm1gKUAiyzom+9UMRyTzV9bpyK9ePIOjnZ+O8Xmaz51a8rC+LBBIzMgjp6gMp8vF3OQww8PDDA0NfanfJiUlMTfvVK/jl9yez+cjKSmJ/v5+cnJymJ+fx+lykV26dBpRks6RJ64AACAASURBVGX08SkYrTb87nlx/ePi4kQLXXx8vBCcmpyc5KWXXhLr27x5sxi0g8Egp0+fpqioiKqqKk6cOBEDBiL/jpwlgzrDWrduHa2traSmpgp+RFdXFzabjczMTGZnZzlx4oRI1YPaEVBYWMhvfvMbQFWSi4xr166Je+Cxxx6LASEaYXBqaioKWFssFiorK6Nsvrdt20Zzc7PgsuxbnUhBZgJ1vT7uDqsz6aKcZCoyA6zKcLJ9xy6wZDA0PMLsWA+HDh2KsiJPTExkcHCQ3bt3s3PnTjo6Ojhx4gSKolBaWioAY2ZmJk8//XSU50JHRwdnzpzB4XCQmZnJ2NgYPp8PSZLQ6XTIssz58+eZmJigoqJCyIZfvnyZW7duYTAYKC8vZ2RkhJaWFnG+NfLl/Pw8K1euZHR0lKamJiorK3niiSdihJEiz+PQ0BCfffYZoKbUq6ureeKJJwC4cuWK4GJMT09jMBioqakhIyODwcFBLly4QDgcpqSkhKeeeorExER+/fafFt3W/bGmupy+ulE2btzIzZs3kZUQsdOZqL3FYZ8iPS6OxsZGqquraW9vp6KigtOnT3P58mVkWea73/0ux48fp7W1lcTERHbv3s2rr75KYaEKrpubmxkaGsJisfDuu+9Gpf5LSkqWTP3/j0RfXx85OTkkJSWhKAo+n48HH3yQd999l+7u7kUlur9q8bUEAwCukR4CTXfQFaxCtzBIK6EgobEeFQgEYtP+imeOQO/tmM+XCk2y1iSDv/k8mG3Iiaq1ZtgxjuJ1ISdmYly1F5DuzeyMFvQr1iCn5uFvPCsAgS4ld1mxHEmS0CWkgdFC0O8Rn2VkZAhkrrUh5efns2PHDrZt28btgWnO9ixNxos5D5oo00QvoQX1xbm5OQwGA62trWI5g8HA2rVraWhoiCFAagPO4cOH2bhxI+vXrycxMZFHHnmEhsYmhtwujJa4RbIpCrNj/UiyDrMtibm5WVH3TszIQ29cuv1HkiSsCSkYLPEElyEfwj1Z4/vDFJdA5Y6DWBNTCIdDJAL5VRtxz9lpu/QRPldsR4kWOoOJ3Ip1ZBZXYzCZCYeCTPZ3Mtxej9fpWPJ3WmeGw+EQTP35+XlSs3LRG79YuzwhPYcMm4n29jb0er1o/9PSusXFxYyPq+We9PR0nnvuOd544w2GhoaEzPTVq1eZnZ3l2WefVdsdF1rwIiPyGmtaBKByQtxut5iVRmoJdHV1UVpayvXr1zl//rzgtgwMDLBz505qamoYHR1lbGyM/Pz8KJ/7ubk50Uqam5sr9lVRFMbGxujo6OD27duCp6ABwn379rFjxw5u3brFiRMnALW8oIn6gJplSExM5M/3rKPkk0/IX7GdPXv2cPb0CYaHR7jY6uSXp47h86vLy5JEeY6Rh9fEYzHK+P1+XC4X3/ve98jIyODYsWM0NTVRUFCw0Famkn8feughNm/eLJ6HqakpTp8+TU9PD2lpaej1esbGxpAkieLiYnp6etDr9czOzmIymXjxxRfJyMjg8uXL1NXVodPpKC0tZWRkROhSgDoRKCsrY/PmzdTX1zMzM8Ply5dJTEwkPj6eZ555ZtF7R5OCrqurE/dIdXU1u3btElyAyJJDbm4u5eXlOJ1OWltbuX37NhkZGezdu5eamhrsdjtNTU20trZi8HkxBpz4DXEsBfx1IR/jbWqWpbGxEUVRSHSPMJ1QsnRLniRjnRvC5XFx69YtcW5ra2vZvHmzUK88ffo0+/fvZ2xsTJg2rVy5UuhwnDt3Tog0BYPBf1fqH2DOG+R02yQXuqeZ9wXJiDfxcEUae0pTMeqjO4x6e3tZt26dyOg6nU7Ky8spLCwU1tXLmZF9FeJrCwba29tR5qfwN32CbDRjtSXgcswip+RgKFil9vLbRwjPLk4MvD+Ki4tjxCq0EAI7njnMcoTcryRhrNyhpnUjZuPajSbbUtDnV9/zQ/gSLY4A3//hj1E8c3z44YfY7Xbm5+dFf3ZeXp5gEPf19fHss8/S6/AvS6iMEmVaKJP4O67EyDDfP+AHAgHu3LnD2rVrmZ6e5u7du5jNZmFzCups8tKlS1y8eJGKigpSUlJUN7ea1fjTirGlR7S3hcP4PE6SsgoX1PbANTulEgkdDnSGL9cH/EXLGY1GVq1aJWRftZD1Bmr2PIHBrM56I8mH5vgkavY8QcPpdwgFYzs/9EYzq/b+Geb4RAFwZJ2e9BUVpOaXMlB3jrHBaO6IJs+stYQCIjsAsGnjJpaGHveieM12ZKOZzRW1BL0uBlrqaLhzhw3r1/PZZ58JkR5ZljGbzVitVvLz80Vd2uFwcOnSJTZv3kx6usp/MZlMMUJXkZmBSDCgdRJo973WNWC324Wi4u3bt9m0aRNFRUW89957JCcnC4GYDz/8EIjlCnz44YfiPvrmN79JT0+PStrs7BTgNBAIYLFYBACy2WzU1tbS0tIigEBmZqZI1YNKrktNTaW0tJRz586xceNG1q1bx7vvHkZRFFpn07nWFS0fHlYU2kd82N3wfK2NpATV2vfYsWPiftdADqjlgz/7sz8TUsI+n4+LFy9y/fp1rFYrcXFxAoyWlJSwbds2oc/g9XpJS0vDbrfz4Ycf4nQ6kSSJFStWCBAUKaJWU1NDTU0NTU1NvP3225jNZnQ6HZs3b0an00V1L2gxPj5OXV0djY2NBAIBysrKyMnJoaGhAZ/PxyuvvCLuSY27U1NTw9TUFOfPn8dqtVJTUyNknZubm3nttdfU1uGkJOFm+vYndXzuW1p7P2e+E4/LKY47KSkJ/3wf88kr8YeU2HeWEsYYdJPsn0ReyNJomZ/333+fmpoafD4fa9eupbu7m1//+tdYLBYMBgOHDh0CICTpmI0vxGNOBUliXV4S3z6wHZP+yw/G4/M+/uvJThyegOA2DMx4+O3VQT7rtvN/PbJSrG9yUhUFKyoqEhk1p9NJVlYWDz/8ML/97W+pr6+PaVf9qsXXCgwEQ2EmnH7cHg+DI6Ow0AKnI4w7CKZNjyMZzCjhECAh5VURdtrxNX8K/ljp4sj6sgYEItXwFotIpUE5JRfJuJzgjIw+u4xgfxOgoLgdX4hIlVCQt179FVaziaqqKtasWcOVK1ewWCyUlJTgcDhEvXpiYoJ//dd/JX3nUygsP6PWlBml2VG8/U2Yg24WF3OODr1eLxD9c889x4ULF8jKysJutzM8PBxFLuru7iYYDGIwGLBZzVz/9CgFxWX40SPp9ORXb8ZoidYesCakULnzMTo+P7Xs7FqcHyW87Owd1EHt+vXr4m/tZZdRWB6zfS1kWcZoiSd9RblqQHRfFKzaGgUEIn8noSd/zc4YMLCYyEmkTPT5s6dYvf87GM2xbnyRIRnu1TB1JivFG3bRP9DJ9V/9ivn5eXbt2kVDQwOzs7P09vYSCATIz8/nzp07+Hw+zp49i8lkYvfu3WI9ZrMZzcY60jxIi0i9/MnJSWRZFjPLvLw8gsGgkMSVJIkf/OAHmEwmXn/9dQAOHjyIJElMTEwwOjpKbm6uACKgZhS0NHtaWhqvvfYafr+fpKQkKioqyM/P5/Tp01gslqjMQG1tLT09Pbz//vtCZ2B8fFxcY1mWyc7OJjU1lStXrrBnzx4yMjJ46623VPGcNTv4P37/q0XPs6LA+IyPsG0tf/M33+JPf/qT8ASQJImBgQEMBgMHDx5k9erV4rlqamri7NmzeDweEhMTBVk1JSWFffv20dvby6FDh4iPj+fxxx9Hp9MJnsTMzAxxcXExPBVJkli3bh0rVqygvr6ew4cPC5+StWvXcuzYMYaGhtiwYYOwnNbpdLS2tlJXV8fg4CDx8fFs3bqVlStX0t3dzaVLl8R2NGGztLQ0oQjZ2tpKWVkZu3btIjU1ldbWVlGisVqtVFdXs2rVKvLy8sQz9F+e3Mvk63+iN24lQfRCKlwKB8md7yTDO8LzP/gBdXV1dHd343Q6MYaCrPG10mKpwhVQohwHLSEXhRPXCIeChFHJy5rqpaIoQo+lt7cXs9mM2+0W3QQWi4XpsIX+jC0E0aFNj85Py9Qdaea/PlxKceryz5oW/3KxLwoIwL3JVteUi8P1I3xvs1qS6evrQ6fTkZ+fL86LBrRzcnJYvXo1Fy5cYNWqVf9hwkf/GfG1AANhReFq3wx1Qw58C5K25q1PExrrJtjXQFgyYKrZgySrhyNFzPgkaxKmVfvw3fqIyLmzwWDAYDBQUFBAX1+fSJkuBwTuDzkuaVlBIkD1MjAYIeAjPDtO2DOPZI5btK6vKGG1syEcwu12CxKTXq/HaDTS3NxMfn4+3/3udxkcHOTKlSsEAgHsQ33oslcuK4wUtg/jb70oXmABvf5Lke0i3f0+/vhjnE6nsDuurKyktraWy5cv09LSIkCKTqcTg/Fwfw9JSUmklW9CpzfE7KMkyyiKQvGG3dR9+BZuhx2LLWlx5b9wGPuC6t+S53vhmLT9jmTFp+bHstTvj9S80hgwkJqWTsaK8iXPryTLGKw2bKlZzE/fy0RpDPmoY4g4336fj5GO2xSu3r4sSFws65RSUIZ3dowXXlBf3IqicPHiRUKhEL29vRQUFKAoCjdv3qSlpYUnn3wy6kV0v40xRGeGIuuoExMTpKamMjk5icFgwOFw8PbbbzM5OUlSUhI//elP8Xg8vPbaa+h0OuLj40Wv/v1ZAa1d9sKFC2L9RqOR2tpaysvLycjIIBwO82+/+wMpBeUk55ViNFsJB7yMdDWSkpLK4cOHxW89Ho+wupVlmYKCAoxGI42NjXzjG9/A5/Px7rvvUlFRwZNPPsnf//wYep1MMLSErgjw0ZUeMo2/xu12Cy0H7bolJCSg0+lEKePUqVMMDg6SnJyMy+ViZmYGs9nM7t27cblcHDt2DJ1Ox759+1i1ahW3bt3i2rVroi1YkqSoCYZOp2Pjxo2kpqZSV1dHfX09OTk5PP3001RWVgrgVlxczMmTJ4XM80cffURPTw9ut5uioiKeeuopJEni5s2bgicAiBm/3++no6NDAIM9e/ZQUVFBb28vly9fFjLkGlG1qKgoRtHS7/dz9+5dKmxBjH1nmLdkEtBbyElNQJnopKggj85ONaNTVFREc3Mzzz77LO+88w6BiT5WBO/isGbjNaeghENsK82kr+4Cebm5ottGIy8bDAZ14rcwWYsE1TqdDr1ez5w/TG/OFsLo7hG0F8LpC/LfznTx8lPVxC1i3hUZfXY3HZNLyMujdkGc7Zji2fU5mPQyvb295OXlibKd2WyOyrrt3buX1tZWLl++vKR+xlchvvJgQFEUTrZN0DoendKUdHp0OWVIccmEnXYVACxGzJNlpLgk5NQ8ZIfKQtdEcjQ3sH8PAIjat9Di3Qz3h6wohFGRq7f9MqbVD6FIEK1sF0bxzBPob4wZpIPBoLi5BgcH+f3vfx+1/uBYF/rc8iW3L8my6s7IvcFoMTY8qD3s2swmah2SJJjcWh1P28+EhAShFjY+Ph4FIEKhEI55J2W5RUsSGyVJwmi2kpxVQPfNT6je/SQy0edHExTqa7iy5HECxCVnkFlchSUhhZDfy9RgF77ZcdWgRW/8gkFXEsqFkZ95AuHlfQoWwpKYwvz0WEzLZHx8PDqdLuoFpsVIRwPm+CSySqrFLF37d9mOjHCY1IJyUYOvqanh4sWLwm/iwIEDWCwWPv/8cwoKCmJEVzQAEAkGIvc5UmdAayucnJzEarXy5ptvkpWVJayGQ6EQhw4dEi2ZO3bsQJIkpqamGBoaIjU1lcbGRjo7O5mamoq6vzVzosg4ffYcadXbMccniWugmC0Ub9hD09goCvd+X1JSQk9Pj6jJe71ehoaGeOaZZ+jq6qK+vp7a2lr27duH2+2mu3d4SSAA6nRhaGwagyEdSZIYHR3FZDLxxBNPEBcXx8WLF3n//ff56KOP8Hq9xMXFodfrmZmZQZZltmzZQnx8PJ999hl+v58tW7awceNGmpqa+NWvfkUgECAnJ4fJyUnRbqpFbm4uK1eu5NatW4Ig+Oijj1JYWBhzH6xYsQJFUUS7Znt7Oxs2bBDlzhMnTojypk6nIy0tjfHxccxmMzdu3BCy5RpBb2BggAsXLiBJkjBrKi8vj9F78Hg8dHZ20tbWRnd3t1BkLCrMp7+/H51Ox66tewkVq2ZNSUlJ3Llzh61bt6IoirjHDAYDpaWFan3frQ78SQEDpSUlTE1NCVJsQDYxbVvBbFwuYdmIKc3JulT4L4/vRAmHaG9v5+TJk/j9fuwJKyOAQHSEFXD5QlzotnOwenk1wp6p5Uzr1PAGw4zOeSlIMtPX1yfsnUF93iMBXmJiItu2bePq1ats3LgxxqXyqxJfeTAw7PDGAAEtJElGl5SJHJcULV5xXyjhMLq0fAILLYCRF+rLAgGr1Sp6vLUITw9C8Yalt6uE1WzAQm1ebQvz4Ks/ibloDUpKHpKsQwl4CY52ERxsRUeYUISS4WI69JFhMBgwEsDX34ihcDWKEhaDrjaYBEe7opwRl4vFgIC2rvv/HhgYECzxoqIiHnroITIzM+np6eG9994TgMO4RCbk/vUZrfHMjPbT9MkR8qs3k7IAIMKhEJMDnQy23FjWbnrFmlpyytfeG0zDYbV/3++h4dwfcc1OYU1KW5LIEw6Hcc9Gkw41H4IvE+GFmbXFYhGyvqDObpZrV7p76wITfW1kFlVhjk8k4POQmJqJwWpb8jeSLBPWGXn55ZexWCzo9Xoxa7pz5464ZzweD5mZmVy9ehWDwYBer8dgMIiBore3F6/XK2b82n2nnUNJkkRboba+hx9+mMTERI4cOUJJSQnvv/8+drudDRs2cOPGDaqrq2lra1O1IFCzAXfu3BEEOM1tcP369TFAoKGhAachleS4xKgBULt/4lMyKVi1heEWdTuaMmB5eTlTU1O4XC6effZZLl26xODgIJWVlczMzPDP//zPOBwOZqecS/e4L0SCRS/q/atWreLAgQOYzWbC4TAVFRUMDQ2J86e9S8rKyiguLubatWs4HA7Wrl1LbW0t7e3tvPrqq8Llb2pqKka8JxgMotfrGR4eZmRkhNWrV7N9+/ZFe+Pn5+epr68X/AOn04nZbCY3N5e+vj7BHwGVS5Gbm8vMzAy9vb1IkkROTg4PP/wwwWBQcC6am5spLCzk4MGDVFVVxQhOOZ1O2tvbaW9vp7e3l3A4TF5eHnv37qWyspLk5GSmp6f513/9V0IhNau5Y8cOrly5gs1mo7W1lf379wvQpN1HU1NTmM1mFXB7PNy5c0e87xwOBz5DPD0Z2wnJBvF+dxuTuOKU8Hw2wN/vK2HdunWcOXOG2tpajowlsFztUwHqBh2LggGPx8PQ0JCace2dBXnF0itaCINOLZ15vd4oqelIfRgtamtrVd2Gs5+SWLmdGXeAFKuBHcXJJFpiBbb+v4ivPBhoGptftoNLUcKq7PByIUlRpQPthoucoWifxcXFUVVVxc2bN6O+d7vdUTNeAMXrIjR+F11mrNGH+juJ4EBT7D575vC0XkLVJdBBWB00zWYzFRXVdHR0iH7y5YAAqKndQCAArkYUtwN9fjVS/IJDlnce/2CrWnq4LwwGA+Fw+AvB0FJthnAvJa/X6xkaGuLVV18lKSmJwsJC8YILBoME/Ms7e2nrCnjVY3Y77Aw0Xyfo96uAQJYxx9mIT04XMsD3R0ZRJTnlawHEYC8yC3oTxRv30n/nczKLq5bcB1mWGetpifnc55rD5ZjGmpCy5Ew9HAoxM6aSyxbLACwmrhQZzulxnNPjYj9WbttPijm2G0MLRVEIBfzodDpSUlIIBoPYbDZmZ2cJBAL09fWJe6ilpYVQKBQlpKSFNiDcH//4j/+IJEnCZVHTgoiLi6O1tZXZ2Vn0ej2HDh1iZmaGgoICtW1MlvmXf/mXKHLa9u3bSU9Px2AwcObMGRX4GY1s3ryZ+fl5AVAmJiY4d+ESa/Y/t+R5kmSZrJIa0gwB6m6qte6Kigr6+/tRFIWsrCyRpQDo6ekhOzub3Nxc5ubmWFVg4tbd5dkyqwtN4ljT0tKEidepU6cYGxsjPj5egAEtC9TT00NnZydlZWV861vfor+/nzfffBO3201WVhZTU1Mi9Q3q5GLjxo3Mzqo6/H6/XxAmc3JyooCAoij09fVRV1dHe3s7siwLeeKxsTGxfVB5KqWlpYRCIe7evRvlUbF161a8Xi9Hjx4V+79582a2b98eM1t1OBy0tbXR1tbGwMCAIDju37+fysrKKIIpENWR0NHRwb59+9i4cSM3btwgEAjQ2dlJVlYWk5P3PFzuzxJprbLz8/OEFYWxnO2Ewoboid7C83d7aI4PmsZ5oiYdn8/HwMAAzkAJyEtzuAACobBQGxwcHGRwcJChoSFBkpVlGT8GyC1YdoKZHm8kO8HEtZZe9Hp9VEtnXFysC63RaMRYtYejYwrSjSFkWSIcVvi3m0M8szabp9Z8uQ6H/8z4yoOBOW9w2VZuSZJRwsEF3spSF08BkxVj5U4Uv4fgWA+4ZqJmu9r/XS4XeXl5BAIBMetYLgJd1zGazYSTclVgoiBuWMXrRE7KBp+LsHexGpQigACoKVttm8tlBJaq9Ycm+wlN9qvgSJKWnUVH1ocje6bvj6WAACAAldlsFjOk2dlZvEGFnPJ1yDo9njk7mQlmZscHSUzPXXJwC/p9zI6pLPukrAIqdhwAJDGwJ6TlkJiRx2hXI723L8X8Prd83ZJpdUmWScxQr89gax35VRujuB7a/4fbbuG0L67IONh8nYraA0tuQ9bpWLv/24x03lEliBfKJ5ESzl8mNG2L6cEeUnOLl1025JzGsSDMYjAYGBsb4ze/+Y1adjEahYbEd7/7XbKysgBEKr+pqYmPPvqI3bt3U1ZWRjAY5Pr167S2tqLT6Th48CD9/f3CqlcbqEpLS0W9XKfTMTMzg06nEyx7WZbFslpaOJIfoIXf7+fXv/51zOdp+V/cjy3r9LR39wHqS1ZrJZNlmYGBAYxGIzt27KCsrIyUlBQOHTokWmazkgysKjDRNBDbeixJkG7T8f0ntrN6VRXNzc1cunRJdKUYjWqZyel0YrFY2Lp1K729vfT19WEwGISoze9+9zt8Ph+ZmZn4fD7hHwEq52D16tWMjo7y2WefYbPZ2LdvH3l5eRw+fBiDwcCpU6cwm82sXLmSO3fuUFdXx/T0NGlpaYIjcOvWragsnl6vp7y8nKGhIVpaWkhKSmLr1q1kZ2dz9aqqxHj16lWSk5NZu3Yt9fX1rFq1ikcffVSsQ1Pwa2trY2RkBFmWKSkp4fHHH6e8vDxGAyIyNM6G1kXR0NDA1q1buXbtGklJSTQ0NBAXFxfzntHeY1lZWej1en70ox8xNTXF//PGu8wppiW10xQU/ljXS/MHrwJqhsuYkoA7Lg9lqXIkCuHpQf7pnz4QQNlms0VNCMvLy1m1ahXnp8xc6J5ZskPrz1ZnIUsSvb29FBYWRvEp4uPjBdlWi1Ntk3w2LoEkoaDaH6vHD4dvjxJn0vNo5dJKt/8r4isPBuKNui/IDCiEfW501sWFI9SXt4wcnwq2NFAU9LkVBEe7CHTdQCMVRg6u9yvwaSFJEoWFhTidzns97EoYV+OnSJYEDMUb0KXmisFFstiQCqohrxJ/83nCjomY9S1F4LsfCGRlZZGQkMDExEQUCgf1JrZarffQaCg2rS3sk1Ew++ZwTd3TNY8UT/F6vTEzW40fsBg4URRFbFfWGSjdspe0PNXpUUFBlnX4PS4Gm2+QkJYDSxAu+5uuEg6F0OkNlG97BEmSo9PEC7/JXrkax8Qw9uF7baAGsxVLQnLMOqP3M0xiRh6Dzddxz06RU7EOW4oqE+qanWSqt5WRntYlf28f7qW77lOK1+1UszkLYleR4MBoiWfFmlrikzPoun723w0E4B5hc3qoG/fcBszxSbFlDUVBCfoZ7mzE6/XS1NTE+vXryczMFCqFY2NjHDhwgNOnTzMwMCDAgCzLmEymKA1+TTq3ublZaBC0trbS1dVFVlaWkHQ1m81UV1dz+/ZtgsEgwWAQnU5HRUUFDocDt9vNX//1XzM3N8cvf/lL0tPT+elPf0owGMTlcvHKK68QCATIy8tj//79BAIB8d3FixcXdBi+nLGYooRF1kqz2L169SqFhYV861vfwmKx0NDQwK9//euo+9ZgMPC7//7n/OytTzhyrg1fcGEgkKAqz8RfP7ORP3vycUKhEOPj40IkKBQKiexOeno6VquVTz/9lLS0NJ5++mk8Hg8XLlyIKkFGDgjJyclUVlYKgl5GRgZPPPEENTU1YiD5/ve/z+9+9zuMRiNHjx4VRMXKyko2bdpEb28v58+fjxKfcrlc4pp3dXVRVVVFUVERdrud5uZmPvvsM2RZJiUlhSeffJLc3FyOHj2KwWBg3759jI+PCwAwMTGxUMsvFV0Ii1lZLxZ2u52kpCTMZjNGo5GTJ0/yzDPPkJOTw9DQUNQ7y2g0opliaVFSUiIIt2lpaWRXbqB7UlmGkyURkE3Ep2XjnBzhkUceIb2khr//sGPxxRW1jTFfmSJ1xQrm5uYYGRnB6XRSXFzMvn37qKioEMdbEgzj9Ie5OeBQu7BkGQm1vPTUmiweLEslFArR39/PAw88ELWp+8sEgVCYIw3Ll2mPNIzyUHka+kW8ZP5XxVceDFRn2WhZgjMAKnA02vvwzZrQ55TH1MzFchFSrwC6rFIUnxtlWB0Avgx3QEvXVVRUxJQNJIMJXWpu9LZYyFzIYKzejXTnFF63U+zXckz++4GCZtMZGSaTCb/fTzgcjklLifWY4jBW7US2paHJFIclCdPMKL72y1HiTOPj44IN7nK5ovZzuX01xyeSV7mB9BXl4txrDw+AwWRhxbqddN88T17VRqwRA3fA56G/8SoTvW0ApBeWIy90OiwWSjhM9srV2IfvfiGfIvqHiFnG9FAP00M9onSkhEPIVio8AQAAIABJREFUshwl97tYTNxtZXqwm5zydeRXqT3D0XVtaeEYypga6GJmtO/L7dtiuxsO03LhA8q3P0JCWnYU6HDP2VmdG881+zTZ2dncuHGDdevWIUkSlZWVop5cXV1NY2Mjg4ODbN4creyo9UNHDl7avaSBiW9/+9u0t7cLRncwGOTtt98WpLIVK1bw/PPP4/P5+PnPf86DDz6IJElRHQSyLIvBIRAIIMsyDz74IBMTEwwNDUWlaAHmJke+sEMn4HVTkJ1Be/s0VVVVJCYmcuXKFdavX8+BAwcYGhriyJEjUccGapvXI488wqlTp8gzT/IP3yqkc3CGsCLx2EPb6Otup729g3/473/g4ytq6r4o00JVrh6LUaa4uBiXyyUGeavVSkpKCmfOnGF+fl5YSEfek7Isk5+fj8Ph4PPPP6eoqIjnn3+ekpKSqHvH7/czNDQk5JFBfSdVV1fT399PS0uLWJ82E9X0KrRYv349AwMDNDQ0YDQaRbfP8ePH2bt3L3l5efT09NDU1ERpaSmvv/46drsdk8lEWVkZu3fvprS0dFGTqC8Ku91OYmIi8/PzBINBQSrVAI0kSVRXV9Pc3ExCQoIgI4M6CUlLS8PpdDI8PMzdu3eZnLCDtLiaYmQ89ugjHP7dG8zMzDB44RRF7jC91tIFN8SFe2jBGXGLeYqZ3rtMRADS6upqIRQUGUa9zN/vLeY3752g02mgoKic9Hgje1emkp2gAoaRkRECgUAUXwBUMOD1ekWptHPSxbxv+fFlzhukc8JFVdbSmg3/2fGVBwOFyRaKUqz02d2LClRIXiffe2wPNquFC409tEz7CRjjxQ2wHINdn1eJd6gVwiGB/svLyxkeHl5ycAVEWjIydDkVS77EJElG0RnwJ2SjuDrFQK+lc4Wo0ULYbDbcbvcXApT7fxe7UwaMax5CMlrFfoh9SspUWy5vn77X58tC7T6C/KZ9thgY0Ol0mG3J1Ox5ElmnX/pcLwCDxMw8Gk4fIj4lE3N8AkGfF8fksCqEtBBxKRnLsuglWSY+Ra2nCiMhrxuv04EpLtbWOPJ3c5MjUZ8p93lIaL/NyspibGxMcB4iIxTwYzCaovrz749wOExmSfX/FBgA9biaz/+JdVtqmXB42LJlC+ODd2k4f4aUvXspKirC4XBgt9sZHBwUbXVa9PT0kJeXR1tbW8y6NZKYNmBOTU0JEyyTycTGjRu5du1a1IBTWFjI1q1bee+997BarTz//PPo9XrhoLlmzRrm5ubo6ekhNTWV/Px8PB4PjY2NYtYnSRJvvfUWkiQtKgMb8HmY7O+IApaRoSgKfvsQbW2tbNy4kfn5ea5evcr+/fspLi7m1VdfFZmMyNi9ezd6vZ633noLs9ms2kF7XKyvyOGZZ54hPT2dwx9Y+W//+Cf8wXsk0u4xPxdbZP7huxsYHFQtePfs2YPX6+XWrVtCwlc7h1pkZWWRlJREV1cX/f396PV6amtrxX5oMTk5SV1dndCEKC0tpaioiLq6OsLhsAABycnJpKSkMD4+Tn9/P2lpaezYsYO+vj5BSLx+/TplZWU8/fTTlJWVYTAYuHTpEnq9Xhgm3bql+rCMjIxQXl7OI488QnFxcUzb4JeJYDAotP57enrE+8pkMrFq1SqamprYsGEDHo+H9vZ2RkZGhIKmoijinSvLMpcuqaW/1157DYCwPg5y8pfcNoqCOTDHu39QSap1dXXk5uayJdOG1HWZ6YRiXOY0FEUh3jtJ2vxd4hKNrFpQxYz0x1h6EwqOvla+sXkze3YVxXzf29uLyWQSmTUtNKDd19eHy+XiZr8d+H/Ze+/ouM7z3Pe391QMBhhg0Aa9VxJgLyIpkaJEqlBWt+S4qPjKiePkOGf5rtyVk3t97lnr+MRJnMiR47Ki61iiZEW0Gm2rkBQlFrGADQRAohKF6L0MMDMYTNv7/jHYH2YIDEgpseM4510Li8TMYM8u397f873v+zzPzRkE88HPxmr7t4rfeTAgSRIPr87gWOcEV4ddUV3AhclmBs8c5bWOT3jmmWe4Z1MV9xAepOdbezgzsXLKRdIbkRNSUGbGxEBub28XqSKr1crc3NwtrT51SRkrrmZARbalI09cj7KK9fl8pKWlRa2OXC4XGzduJDs7m9bWVjo6OpZMxhaLZbF5MNY+ZRQhmeKXr6NLMpLVji4lh9BEn3hdS/9q9WZtP5eLUChE6da9YSBwE6lNWZZJzS3let0J3FOjMWvzaihEbC3Fhc/ccD0kSWLoWgOF6+6I+Xn39DjuqaWTRGTMzc1hMBjESiEW/dKckLyitKgsy1HZj88S+fn5YvLpaG7EZDJx6fgETz31FBdOHePUqVM8/vjjvP766yQmJnLhwgVSUlKor68XGZP29nZWrVrFuXPnmJ2djZp8tTHu9Xo5efJkFBfd5/PxySefMCcl09g1T4I1HofVz5e2b+f9999HURR27twp/DPq6uqoqqrCbDazf/9+AGGVHDlBSpJEQkKCoPVGlqMkSSI5ORm9Xk/35ZMYzHELKpXhlI4GvubG+mg8fZQdO3bQ2dnJ1NQUDz74II2NjRw5cmTJebRYLDz44IOcOXOG/v5+4uLimJubExmKbdu2EQwGOfjrQ/zRdz4gEFw69gJBhf/1ykX+6f+6m/LiXGpra5mcnCQpKWlZ4JyYmMj4+DiTk5Ns2LCBsrIyGhoaOHPmDFevXhX2xvX19fT09AhHwlAoJCh7N8b09DTz8/NUVVUJ18vTp09HyS9v3bpV8NhDoRCdnZ3U1taiqiqvvfYaJlMYxD744IOsWbPmU8vjqqrK+Pi4MPrp6ekRVG1FUaiurhaZtUceeQSHw8GHH37Ivn37uHr1qiglaOUzbd8jeyqys7PZsmULRUVFvHB6gMuDruUb+SSJDFeneBb86Z/+KQkJCfz4xz/GGnCSNHOFwERAAI7bbruNPXv2fKomvYGBAebn52P6Cmj9Alq2SPvRGkVfe+01AMzJGZCwvOdKZOQm3VpJ5jcVv/NgAMIUjnvK07mjKIUB5zyKqpKVaCbBrMdZ+EX279/P/v37efrpp7HZbOj1ehxZmTBxC1LEyww0rWlupezA0rgVwxp12cl7fHw8PGgVNWx2FJ9Ew+g8dc3Hidcp2O32qLQasITZIEkSer0+ShFQl74UzUbtjaqgSy+IAgNa3Jh10ARrIl9PSHF8qklPp9ffFFhND/fgKFkd831FUaL6BWBBy76zCYstNYqvrz2kfXMu2s8evqV9LC8vF81wsSLkn18xla2qKkH/TbI2K4QkSfT29nLvvffy8ccfC/Gbjo4Ompqa2LlzJx999BE9PT1CpEdb/UuSRFlZGW1tbXR0dLB3714A+vr6WL168bxq16Gnp4fr18MMDW1yCOqT+Jczk/QNt4araqoLFbhw/WXuqQlnFKqqqoQwlia0893vflcAKK3kFFnKiY+Px+FwkJWVRVpaGkePhvsqQqEQcXFxeDweMb6unT3M4196hvb+cXyBEH6vG8U1Tm9nG7t27RJaF9nZ2VEOiZETc2lpKUVFRbz55psYDAZBYcvKyuLzn/88NpuNtrY2Dh8+zJFLIwSCy8jjEr6zFUXiwOEGNuQ3is77yDq45tfQ39/P7OwsqqqSkJAgGAmPPfYY69atC3/XAmhJSkpiw4YNDA4OCoExCNfMTSYTQ0ND4nj0ej35+fk0NTUJmuLu3bspLy/nJz/5CVarlenpadra2mhtbeXatWviOVZeXk5NTQ3vvPMO27ZtY926dbc0DiGcOeru7hZWvy6XC51OR35+Prt27aK4uBiz2cwLL7wgsgHaZL9x40aampo4cuSIyLLd2O8EcNddd7F+/Xqef/55MjMzmZ6eDjMervcRn7oRjzl1IXupia5LbEr0oJucwbswvg4ePMjk5KTIdBUXF3Pt2jW2bdvGqVOn6OrqEvfCrUZnZydxcXGCjREMBpmYmBAl256eHoxGI88//zwQ7kfJyMggJyeHqakp7rzzTnQ6HbW1tVjnx8OZimU6ImUJarISSbP++6oT/ocAA1rEGXSUpkW7qSUlJfH0008LQPDMM8+QmJhIutW0ol4/LOgAeJbn1d9ySBK61LwFud/Y6W2QVvRJUBPTMVfsQDKYQFFQJTAUrsU/0Ye7LSy0s1JNW6fTRa1kFUVBMtxMZEcGvVHU+laaqDXHNS3MZjMWm33FlH7U8anqTWWEAaZH+mKqEIYfjCpD15Yq+0GYrz/Z30lG8SosiXaC/nkm+joY621HuUWtgKampVLEN8ZEfycpuSUrfma879qK78eKSDlsv9/Pnj17+OCDD+jo6KCgoICjR4/yJ3/yJ5w+fZoLFy5w//338+6776LX62lubub+++8nJSWFtrY2/H4/TqeT5ORkUUbQBGM0AKCqKmvXrmX9+vW89957XLs+zMsnuwksKH1GJoUaOp3M+wJ8YUcKL730UpTjpDapa6EoCmlpaWJi2Lx5s+hcV1WVN998E6fTibIgKR4JbmVZ5g/+4A84efxDBgYG0Ol0JCcn43Q6heKl5m8/OzsrGgkjKWp79uyho6ODI0eOYDKZwqJTOh333Xcf69evZ2Jigp///Od0d3ej0+noGvWv+KxQVJXm3lk25NtERkOSJHJzc0W6PCUlhQceeICamhoGBgZobGwUbASNJWI0GiktLWV0dBSn0ynS9mazmZSUFCYnJ5mYmMDhcLB161bcbjdNTU0Eg0Ha29vZvHkzGzduFA2gPp8Pu93O9PQ0LS0tNDc3k5aWxubNm/F6vTQ0NPDoo4/y5ptvYrVahUVyrAgGg/T19YnJX+tTSk9PZ/Xq1RQXF5OXlxfVV6CNpYSEBLxeL2NjY/zgBz/A6XTGzCpGluCuX78u6K+XLl3CbDaj1+vRE+Ib65M4295Dy4xERnY+k30d5KiTKKOzrF8oZQGC/hgXF4fFYuHxxx/nO9/5DklJSVGCabcSWlN0U1MTNpuNX/7yl4yOjgrnTEWSiY9PQCWsQ1FcXExGRgbJycmizHrlyhVqa2vx+XysWbOGhzas429OjeD0BqKaImUJEs16/vC2FUoiv6X4DwUGYoUGCF5++WVefvllAQjK0uJpH4uRZlJVQmM9OFKSqaqqYmRkhO7u7hWpdEtCp8e4ejc622Kde7nJUVUUCPoJjfUsuxnJase46s7FQRLRfCen5GCs2I6/5RO8Xi+SJLF69Wp2797Nyy+/LB5My6W0Vc8Mqtkas5avKgrq3GxUulbrNl8OdETe2FarlcxbdP/SYrhzqebCMl9Cyye/puqOB4WzoESYkqOEQlw7d4S5mdg39szYADNjt2ZF/FljavA67ulx4m0pSwGLouD3ekRD5KcNbULV6XQcO3aMp556isLCQvr6+piamiIQCHD8+HH27NnDu+++y8DAAImJiXg8HmRZFu6W2oq8vr4eo9FIfX09Fy5cEN3xmoZAXFwcDz30EBAGHxc65/AHFZRlVHlUoLXfQ++omZzUxYlfU7jTLLC/9rWvkZiYyGuvvYaqqsTHx3PPPfeIz589ezaqjyESREiSxOc//3mOHTvG8PAwBoOBuLg43G43NTU1nDp1Ck3C12w2Y7Vao0oRycnJbNy4kePHj4uxqa2kN2zYwNzcHC+++GJUM24oFLqpLDdAYKGmq2UkPB4PfX195Obm8uSTT1JeXi6+Mz09ndTUVOLj45mZmREZO7/fH+V3oPUMzc/PMz4+TkVFBQaDgevXr1NbW0t8fDzr1q2ju7sbp9NJe3s7GzdupL6+nra2tqhavSzL/PEf/7HwgPjJT35CRUUFnZ2ddHZ28uSTTy4Rv1op9V9cXMzWrVspKipaoiugndfr16+Ler8mQAbh7KrdbqewsJCkpCQ++ugjAYgg+nk1ODhIZWUlqqpiNpvJzMzk3LlzPPHEE1RWVhIXZ2b24EE2FBpo9vWKZ3RtbS0pKSlMTU2hKGH9AK833FujnRODwYDNZsPpdOL1epcIKgWDQcbHx6PS/JEqqpoGRm5uLvbyTdTNmOh2hq+lyTbHlqIyyivSkBfYVlevXhVU2sTERD7/+c8L4Pbn24I8/6uzOK35hCQdshJkb1UGj67JxG6JLUr224rfCzAAYUDwzDPP8PLLL4uSwZ6yNPonZ/GEbpigVRW8s9y/KosLtWG6zurVq/n617+O0+nkX/7lXwiFQjdt4DMUb0RODF9obfuR3yMeMKEAUscZYWV8Y+hzVy35Wy0kSUaXmofOmkyyWYfH4+Hq1auC/734uWjFQrvdTk6qiQ5W8E2QZYI3CBJp3eQ3i4mJCaZnzrAps3RFqV5tNT87PszIrYABwO/10PDhAZId+SRnFSDrdHimxxnraSe0jDX1bztUVaHl5K8p27qXJEeuoMNJkozHOUH72cOEAiuLDC0XkQ9LCFOw3n77bb74xXApzOVykZeXx6VLl3juueeIj4+noaGBsrIy0fzX3NxMQkICCQkJzMzM0NDQIFZhmpNhTk4ODzzwAC+//DKBQEDQ6DweDy0DvmWBgBayBNcnJR66J2yQ09bWxre+9S2hNvjQQw9hs9lEUxnAF77wBVGC6O7uFmYzy8VDDz3EiRMnGBsbw2g0ChXExMREsYrW9PsbGxujgEBWVhYej4ejR48uKRkMDw8vK7CkfS4nxcDQdGxNE0mCvFSj+PzAwIBY5VdUVJCcnIyiKAwMDHDp0iVaWlqQZZnCwkKSk5OjSk/aNjR6XW5ublhbYnKSK1euoNPpqKqq4v7776ewsBBZlhkfH+eVV17B6XTyox/9CAg7J959990kJydz4MABFEURK/bx8XHGxsbYsWMHhw8fpqysjIqKCmAx9a8BgMjU/5133klxcTHp6elLnkder5euri6am5sZGBhYUkZNT08PewTMzvK1r32NoaEh+vv7hQvj3NwcIcnAdHw2PoMVnRKkMM6Hzj3Ogw8+yJEjR2hqahIlssrKSiGgBYjrD4vaKOnp6QQCATwejwAYjY2NlJeH5dkNBgOVlZXU1tZy/PhxkZXRfiYmJsQ4SU5OxuFwsGnTJrxeLxcuXODP/uzPsFqtHGod581z/cjSYobRp4vjn88P0DbmYW+6l5MnTjA+Pi5AYX5+fhSFt772E7Km2/mve1djjIvn1Zd/xv33fe13AgjA7xEYgKUlg6effpqnNubwo1+8j7WwGlVvwmrSUZUax/n3j3B+QM+zzz5Lc3MzH3/8MT/84Q/Zvn07X/7ylzlw4IBopls2fW4woUsvWkHoKByB7sthBcBQAP1CzTx6exK6lNwVG/BUVUGy5zDRdxVJkrBYLPj9foLBIFarlfLycpqamjCZTEiSxMzMDKFQiJazx5CKN6NLLwxnGjQxpIXsRaC/GdU9FfN7bxahgI+ha41kV6yPmSEI+n0MXWtgqL1hSePfiqGqTA/3/Ks78v+twhgXj95oxjfnJhTwEfTP0/LJr7Ek2rFl5IAk4ZoYidkYGWub5vhEAj4vXpdziaeDJgv88ccfc8899/Duu+/S29tLcnIyhw4d4r777uOtt97i2rVrYsX/61//GlVVo1ZAW7Zs4cyZM4yMjPDAAw9QWlrK4OAgwWAQn8/Hd7/73cXSxDINdDdGQVEZe/bs4Qc/+AGrV69GlmVaW1ux2WyUlpYSCoV4++23gbBngqbONjMzw1tvvRVzu/v27eP06dNMTk5iNpsFNSusPxDer5SUFILBYJTsrhZDQ4tsEVVVSUlJYePGjUiSxOXLl5dlGWjbXVcQx8VO74qlgk0lVmRZpqysDIfDgdPpZHBwUFAptTCZTKSnp+NyuUQWQLNVnp2dJRAIkJIS5qk7nU7BBkhPT8disdDb20tXVxcJCQkMDQ3R0dFBf3+/yCT4/X5SU1P58pe/LJREtYbfiYkJkpKSaG5uxmQyMTg4yNzcHKtWreLo0aN0d3eLrEhGRkbM1D+EQUNHRwctLS1iO1ro9XoyMzMpKSmht7eXUCjE2rVruXTpEh6Ph+9///tAeHWcm5vLnj17eK++h2vmElRktALuuCSTYB6hf2gEn8+Hx+Nhy5YtpKam8stf/pLW1lb8fr/IduXl5dHV1YVer6ewsJDOzk50Op1o/NXMol566SUgDAy0/b548SIXL17EaDSSkZFBfn4+mzdvJiMjg4yMjKisyZtvvkl2djZWq5Vxt5+fnQ9fo2icHH7mnbk+Td/FS2zITOShhx4iOzubV199NQosud1url27htFopLysLMyikCRGRkZET8K/d/xegQEIozutZKABgvIkHcMtH/ONb3xDTFqFTzzOT3/6U95//30efvhhqqqqOHXqFKdPn6a+vp5t27Zx5syZsLCKNRlDThWk5CLJOpR5FybfLIGbdONKkhSebBdEgJbtTpflm3bio6qwsPrWGAjaw9vtdlNXV4dOpxONc9u2bVt0EWw/Szx+5m25SOZwv4U+OI+3u4HQaFfEbizl7BtMccQlJBEKBfE4J5ZVfuprOo+s05NZWrMg7BEW41GUEL2NZ285G/BvGTqDiYzCSuw5xegMBjzT44x0Nn2qiVqLxLQs8qq3kpgapg+pisLEQCe9V2rxz7mZm51ibvbTAaq4hCQK1t5OkmPR8tTjnKD3Si0zo/1R+g7BYJDu7m5yc3MpLS0VaeGBgQFaWlqiVsDa+NJMZr773e+iqipnzpwRq+sTJ04sWSFHZsCS4nVMuWNnxFSgtCCdrq4unE4njz76KO+//z6qqopSwMcff4zX60Wv1wu3wmAwyIEDB2JmnfLz8/nwww8JBAKi0Q+ilTJtNhsejyeqlJecnExiYqIwyQmFQpjNZh577DGysrL4+OOPhe5CrDCZTCTh4+EtyRw8P71w7sPvaT4GD22287l7bmfz5s2CbTIyMsLFixeZnp4mGAySmJjI/Pw8Pp9PTLiRks6ahn0wGBQTaH5+PklJSUxOTjIwMIDBYCAtLU3oEkAYAO3bt49Vq1YhyzIvvfQSo6Oj7N+/n2effRadTkdRURGtra2Mj49TXFzMlStXSEhI4Pz588iyzMGDB2+a+ne5XKIBcXh4OOo8GwwGcnJyhAdDpJZ/f394zA4PD2O1hgHTI488Qk5Ojmi2vDI0S3ubMUKhdXHx4IrL4IWT3SR1XQl/9soVzp8/j91u57bbbqOrqwur1UpBQQGHDx8OM066u3nuuef48Y/DdtR5eXn09fWRmJhIIBAQAlG9vb1YcyvoTU3HbU5DZzBQkW5l7ep01ucsT/dTFIXu7m5hPvTxtYmb9J+pGEq28uVHasQrWkOnFhcuXEBVVcHikGWZ1NTUKCbFv3dI6q0Uy/4DxvT0NC+//DIGg4GdO3fyzjvv8Nxzz5GdnS0+c/XqVd555x3uvfdeceGnpqY4evQobW1tOBwOpgMyUsUdIC1O2pGNSjcLX+OH4AprcMcqO5g2P4JkssQW2lFVAtdqCY12L/u+FLHi10JLOWsyqatWrybRnsbl+nq8M1NRf3NjStVgtlC07g7sOYtOg745F/1NFxjrWaqxAGC0WEnNLUVvNOHzzDLR3/mZUuX/2ohLSGbVnQ9jMIVXxppyoizL9DdfDJsd3WIkZ+ZTsf3+8HYiHSYVhYDPy5WP38I/92kYJ2BOSKLmrseX2DmrSlgXo/3MIaaGFv0XNJCnqiq7du3i1KlTy46jnJwchoaGMBgMwlFQa+xaLlJSUvD5fLjdbrG6CwQC1HV7OXol9jHpdTLdH/4vjh39gKmpKZ599ln+9m//FqvVyre+9S1hWANhcxabzcbs7CxXr15d1rNBC20MRjZQQngF+vjjj5OcnMz+/fujVqc1NTV0dnZGgeOamhr27t3LiRMnqKurW9ILEDnWNdnkyGa28dkgDb1+ro/6CSkhyrKt/NGTt/P5z92F0WgkEAjQ0tLCpUuXGBgYID4+Xjg6apOnwWDAbDbjcrmE6JLP54tiBmRkZFBZWUlxcTGKotDW1kZzc3NUU6bFYsFmswllwK1bt7JlyxYBCEZGRsjPz+epp56itraWjz76iOTkZHw+nzhP2vOvpKRkSep/enqa1tZW2tvbhceBFiaTCYfDQXl5OZmZmczMzIiJX8uwxMXFkZubS2dnJ+vXr2fv3r00NDRw+PBhvv3tb0ed9/9x6BrNI65lu+m1KBs6hinooaqqiu3bt5OZmYkkSXz/+99n9erVVFZWcuDAAXw+3xL6s1aGqqiowG63MzAwQE9PD1PxuQymrAmjO00QLbxkYZPNyzqrR2SAQ6EQwWAQl8tFf3+/OF8NciET+tQV1BAhwaTjpS+uEb8fPXqU1tZWvvnNbxIIBPi7v/s7/H4/X//618nICCufvvPOOzidTr761a/G3O5vM35vwQCEJ/b9+/ej1+vx+XxUVlayb9++qM8cOXKE8+fP8/TTT5Ofny9ev379OocOH8FVuB2M5pgCKCsBAjUUZL72rSj/gcjQBrCcVYG+cN2y21JVFUIBfOffCVsmf8bQtp2ZmcnQ0BCVlZXLitEYTHHU3P15jHHRJjnasV5vOM1wjG7+f00YzBZMlgQCPm8U68BgtpBRVEViWhaoKs7Rfsauty5P3ZMk1t/3ZYwWa0wOdduZD2KaHd24rY0PPI3BvDxIUxSFib4OeutPrqj1cGOUb7sPe1bBstkgVVUJzM9x6b39UVmY5SYwLYxGI3q9XnDnYzFC0tLSmJ6e5stf/jJWq1X4q/v9fsET93q9BEMqb9TO0D8ZiEoEaSvk7/2fD3HfbUW89tprVFVVidp0ampqmPY5FZ0lkWVZCM1oETnhr127ls7OTtxu95L9z83N5Utf+hKNjY0cPnxYnANtErp27VqUwdiWLVtEE9xK+6BN/jcCD01Kd3Z2lszMTLZt20ZVVRWyLDM5OUldXR0NDQ14vV7S09MJBoPieCVJIj4+Hq/XSygUIisrC7PZLHox7Ha7WI07nU56enqiVo6yLJOSkkJZWRlr167yrbEEAAAgAElEQVRldnaWxsZGWlpaCAaDgvGjgYKamhp+/vOfMz09jcFg4Mp1F3XdXsZdIcxGPeWZBtYXmvmzb3yVggW7Y02iuKOjg7GxsahxpFHoysrKhEKgNvlrwCItLY3c3FzxY7fbcblcfP/73+cLX/gC5eXl1NfX8+tf/5pvf/vb4h70BkJ85ec3eWaoKmXKIKbBelJTU9HpdMzPz4tMy2cJvy6O9qyw7kKsiXyt9yopUvj4NOM2j8eD3+8XY2vAvobp+JyVjYvijfzkiUXq7tmzZzlx4gR/+Zd/SV1dHe+99x5paWl84xvfWPKZv/iLv/jUmg+/ifi9KxNEht1uFyUDrdNTs9LUYs+ePYyMjPDmm2/yh3/4h0KYxW63k1G+BrcU25wDWECcyww0VSXONcR8DCAAi1xvZbAN2Z6NbAsr64lV+8L7/rYzqKHgkoelLMuCUngjpjOYLZjjEwn65/G6Fik+Wl11OSAAkF2xfgkQiNyn/JrbGO9p+1fx6CMjLiGZgrXbSHIsera7pkbpbaxFp9dTvm3Bp2BBN8CWkUtO1SZaP3kX12Q0VTM5Mx+zdXmPCgifz6yytbcEBpIdeRjj4mO+L8syqXkl9DWeBm4NDOiNZuzZBSuqYhrj4knKyMU5sthwFgk6rVarsHiFcHe6NslFjo2srCx27tzJ66+/DoRr98ePH+fYsWP09/ej0+lISEjA7/fj8XiEAp1eJ/GXX9nAkUvDHDnfx5w/PG6y7AZuK7Mw2XWWn3eF09eRErmaKY82OX7pS18iPT2dM2fOcOHCYjYm0gWzurqatrY28btGMwyFQmzevJm77rqLt956S9TdIZwBmZ6eFsI8iqIIIZtjx45Fnc9Izw6t7hwKhcR50oCA1l/h9XrJycnh4YcfFhNoe3s7ly5doru7G7PZLNLQ2upYMy/y+XzodDpyc3OZnp5maGgIq9XK6tWrqa6uxuFw0NfXJ0SFXC4XFouFnJwcASKGhoY4c+YMZ86cwWq1kpOTw/bt2/H7/fT19TEzM4Pf7+fkyZOcPHlSjJl3aidpHvAhLXi4+AIBLnYFaOydp7TiIvrgh4yNjUUBn/j4eIqKiigsLMRkMjE6Okp/fz9HjhwRjYg5OTls3LiR3NxcsrOzl3TiA+J62+1hp1St78Dv9zM/Px9maQ2MALHvy3CoOF1uMohWctTGpc1mIykpiYSEBHp6exn1G5iKzyNgiMcsK8Q7r3NHeSYbN6xHr9czNDTE//dJRxhIx/hGCZVBfQah4fPiNYvFgqqq2O12NmzYQGpqKkNBCz88v4JgmaqyzrHYbxBUVPoDFgYsRbx5eYCu2nogLBcdGQ6Hg0AgwNTUVFSj4b9X/F6DAQgP0meeeYaf/exnwjN7w4YN4n1Zlnn88cd58cUXeeONN7j99tupr68PN3sUrEHOSYuJKqMZCgta2AvgIDQ1yHxPHTabDVmW+epXv4pOp6Ozs5MrV66ItKz2t/6rH6PPqUSfVQ4mS1gDYWqA4EALymz45oh82JtMJmFLGxlmq42CtTtIzlycXD3OSfqu1jI9HK1lvlykF1Wu2MMgSTJp+eVhZz7CD1JFUT4Teo9LSKL67sfQ6QxR59KalMaqnQ+GJ0F50bBI+1en01N5x+e4/P4rUaAkMS0LRQkhy8tLq0qyTEJq5rLv3Rim+MSbZn5kWYfOaAbfrdFRjXGWmzacqqqKybKUxqWBucjVJCC41fPz8yiKgs1mw+v14vF4KCkpEdx1bfKYnAzr+WvNb1pEThQ917soT4HS+1KY8ymUlhQzMthLWVkZ1dXVHDp0iIKCAkFZfPjhhykvL+d73/seEAbYubm5HDhwIGqVHsmWKC4uprm5OWpMayUFrYv+Bz/4QZS/QGFh4bKlj8gGQy0SEhJwuVxRGQftM9p3xsXFiSbK6upqtm3bRnp6OrOzs5w8eZLLly/jcrlITk4W5jPz8/NRPhaSJJGWlobX62VycpL5+XkqKyuprq4mJyeH3t5e6urqaG9vZ25ujsTERKqqqqisrCQ3N3fJitDlcjE4OMjAwAB9fX1RKoPaOIjMFNVf99I8oCmFRo4X8AcU/vuLp/jGPXaSbOFGvqysLKSFxjWt0x/Czde5ubnU1NSQm5tLRkbGLa1WNTAQDAa5cuWKcId84YUXBMiLs1gw2HcQkIyxU+2STCJekZ3Jy8sjEAgwPj7O1NQUXq83fJ2BAfsanMl54pnrURUm01J5Z3iKwKXLWE0GJiYm8BrTVtaZQWLenMKDDz5IamoqqampBINBnn/+eXbt2kV1dTUAxYrKB50ueqa83Ei0kVCR1CD9p37JKek2kovX8P2TPczMK5BYwhuNY6jx60mUsiitWBX1t5p52MjIyP8GA7+tsNvtPPvss/z4xz/myJEjlJeXLzGnKC8v5+LFixw4cICMjAzuv/9+/PYCzvTO3FRb0Nd8En16IZgs6ILz2BUXlVl2Su94iq6uLj766CNMJhMGg4Hq6mqqq6tRFIXBwUEhAjM5OUmwv5lgf3PYFU9VYls1sigCFPlgMMUnUn3X4+hvEBuy2JKp2LGPa7VHmBzoirVJZJ0evWFlFSxVUaJWzLdCQ4wV+Wu2I+sMS7MQ8qIb4LJ0S1lGJxlIL6xkqD3CZvoWC17ZFeuJT0pFCQWZGuoJ1+hvONdB//wt9YSY4hNxlFRjMMXhm3Mxer2VeddSlTWAwC2ABkmSCPjmbulzGj1tbm5OrLiDwaDIFkQqAmoToMfjiVrRR3aia69985vf5Be/+AXDw8PY4o3s3LGVAwd62LNnj1B527RpE6+88grx8fFUV1fz1ltviXR2YWEhP/zhD6O6qS0WixgriYmJgnaoHYvWfPfFL36R2dlZfvzjH4txHR8fTzAYjAICkZoekUBAc/JzuVxR5yjyHGjgKRQKsXHjRrZu3UpCQgLd3d0cP36c9vZ2ZFkmISEBWZYFANN6BhRFISEhIdxpPj7O8PAwZWVl7N69m4KCAnp6emhoaOCNN94QokDr1q2jsrJSTMbLhcZ51/T+NUOklJQUIZ4zOzsbJV1+sTP2WFEBj09BZyskNVUSzABZlsnKyqKiokKk/JfTEYi1j2NjYwwPDzMyMiLAxIsvhq2ENZvjrKwsUb6amJjAPnudUVt5zD3VB+cxzw4S0IV1Tvbt24fZbObYsWM0NDTwrW99i0AgwFv1gzQ1L5SiNGC98O+cMYnDA17yJsOZKCk1JXbmdiEMchgIa2NV8+IoKlq0D9fJEv/P3lL+7ng3LSNuZAlQVRQkEgzwULZKw4CXDz65QFdH3KKFsiSLR5LLksE/XRzlL/csnmeLxUJiYiIjIyNR6qD/XvGfAgxA+Ia64447OHHiBC+99BLPPPOMqANqN0hOTg4DAwNs2rSJDRs2MDnn53Rv7KYnVVFQZ0dhehD/ZL94fRAYbIGPPlrkO7/66qvk5uYKBKoZueTm5rJ7926++93voigKxcXFdHd3E4xB8dJSipErHS3yqreGgcCSFH94ci3asJOpoesxKX5KKEgoGECnj+1aJskS/vmbT1Y3C4MpLip7seR7bmEiTsrIjQIDM2ODZFfEllrVXBvzqrcI4JBeWMnc7DQtJ3+N37s4eU0N9ax4LlRFIeCfp+qOzy0KIxEGGgOtdfRdXUp9C8zP4Rztx5aWHTP7EvT7mB5eKoesUcoWj2Xx2uuNZmRTPAbkqJW0oigUFRXR3d0dtY2ioiKcTqcoNfh8PlatWkVzczMGg0Fo6wPCbMdut5OSksKHH36Iw+GgqakJRVG4++67GR4eFgBj3bp1/PSnP12SxYpUCNRUCWVZxmAwCC2BZ555hhMnTogJRtvnG90HdTodFosFl8sltqkdW+Rnb3QH1Vbzer2eu+66iw0bNqAoCg0NDdTV1TE1NUV8fLzYX6fTiU6nEz0GcXFxJCUlMTExwdjYGIWFhdx2220UFRXR29vL1atXOXjwIMFgkIyMDLZu3UpVVRVpaWkx+4HGxsYE37+3t1fQhYuLi9m2bRtFRUVYrVZCoRA9PT1cvXoVn8/HzMwMwZDK5ArMDwj3epyua6fiwTXs3LlTZAciS6WxQmNFaBP/8PCwUOGD8CJLk5LWqJQacOru7iYlJYWMjAzy8vKYO3sOxZ7HeGih1LBwPmQJ9LLMQ9nQNqQSCoWYmZnh+eefZ/369QwPD2M2m/nggw8YHh3lqFIJcgxeviQzY8nC72zFGPKS6B3FFZcR+wBVlbjZfj74oGnJs/Qf/uEfsFqtxMfHY7VasVgs7LJa2VBoZcBvQgF66s+SFxfgwS/9F6rz0/mbQ03EIk+rSFwemKVrYo7i1MXSs2aK9rsQ/2nAAIT51p988gkzMzO88MILhEIhUlJSuPvuu1m7di1xcXG89957HDp0iIyMjLCssSHAmF+/DLoMp7D/YNcG8h7ZwfPPP09GRgaKojA0NCRSZNogGx4ejuo4hjAy1NJDgUCA8vJy9u7di9Vqpb+/n5aWFurr66MG6o0PRqPRGE4jyjpSc4pjTjKSJGEwxZHkyGd66PqyjnwA4z1tpBetip0iVGGir2P59z5FGC3WT6VeeGNIkrSkocc52ofX5cQUn7js/mugSJLkSGYTcVYbVXc8QMORA+I1JRigv/kiBWu2LdlOuPMfwVi4sSyRU7kB/5ybka6l0sZ9V86xevejEMPboPfK2Sg3RS0igYAWZquN/JrbsGcvsj5mxgYZbrvE1MgAiqJw++23MzAwgN/vF+e7t7eXlJQUampqqK+vJzs7m7Vr1wowoNkVQ5iy1dHRQWVlJTMzM3R0dHDvvffy4YcfYrFYqKmp4R/+4R+AMHDQ1Ne00Pwybmxs1Ov1oss+OzubvXv38uqrry7x3Ig87pSUFFJSUrh27RoulwtYZFssd3600DIfCQkJ7N27l9WrVzMyMsLhw4cFqNFWtNr9pTVq6nQ6EhMTBXjKyspiz549FBYWMjg4SEtLC++99x6KopCdnc2uXbuorKwUNfQbw+12R2n9u91u4Tuwe/duioqKRHNid3c3hw8fFn4HWsiyHHbGk2RgYtnvifzs9m238eSTn1vxc263W0z62sSvTeyyLGO327FYLOTl5QmgpJUItLp+SUkJZrOZTz75hGeffZa8vDwg7Cgoo+DoO4nBmsdEfD5+fTxmo47thcnsKUokNDtGW+1iKSkQCHD+/GItf3x8nHlDAsHMmwj0SBKBxEy2Fdu5UFfPqK2MkN68hMUgASajjv/+5APYLY8wNzfH7OwsL730EiUlJeTl5eF2u/F4PMKIqKurC4/HI8o2iYBzHv7n//yfYSph0u0rNhnqJDjXM70EDFy6dOmWZd1/k/GfAgyoqsrQ0JA46YqioNfrsdlsPPPMM6JkEAgEKC0tpb29nZdeein8AJN1JK7bQyA+Ncw1XVhd6nUy91akkZcch6qqeDweysrK2LRpExBG1W1tbbS0tNDZ2SnoK7Do3paYmBjlS97e3k57e7sQKElNTSUvL2+JbzmEMwSaIAuA2ZJwU72CcD16ZUe+gbbLpOSWhn0NltneYNtlAv+KzIBObyCrYh2OourPvA0IT8iz44M3vKjSeuo9Vu16WJQyIqmFsWyHJVnGYkshyZEX1bg31F4PqORWbUJnMIob1u+dC9f/5dhU0OzK9Yx0Ny8pP7inx2g++SuKN94ZZfIUmPfSe7X2lmWMzVYbNXc/jk5vjOpDSEzNJGHHA/Rc/IjRvi5effVV8bDWJuT8/HwKCgpEw11qaqroPTEajVHiPA6Hg/r6ekpLS6mvr8dgCNdjQ6EQd955J7W1tWJidjqdUWwHSZKWHWeyLGM2m3G73UIpTrOuXS5sNhubNm3i7NmzUZbBN7IBbgxtXzRmQF5eHk1NTfzzP/8zIyMjQuFQ6yDXtidJknAs9fl8KIrC9u3bKSwsZHR0lNbWVj788EMgDJb27t1LRUWF4NRHRiAQiNL611L/DoeDmpoaIfijKArXrl3jxIkTS9T9tEwIIHpDNNBSmG6kd9y/pJatRTCkcN/tiyloVVVxOp1LJn7t+4zGsFdJfHy8MI+amZlhYiJMj9ZW+5WVlWRkZPD2229zxx13sGPHDiDc/BfpgAnh55p2LVJmu8nyDaKoKmaTiYnrHl77aBEoamBw2Wt7i5Ol3x8Ia68Af7Erl39qmGXc7QdVQUJClSTijTr+255iUuLD4CI+Pp6JiQkCgQDbt2+PoqBHnjuXy8X4+Djj4+M0NTUxODiI2WxGUVUU6SY20JKENxANijMzM5mbm8Ptdt9yqeY3Fb/XYMDv93P16lXq6urC9U+bjZqaGhobG3nkkUc4dOgQP/vZz6ipqaG/v18IgWjCGRobwWq1Mury0TI8w7mLdZTlOXjgthpM+vDF12yOIy+myWRizZo1rFmzhhMnTnD+/HkefPBBmpubBdKPRPs6nY6ysjLS0tKEpOf4+HhMB735+eiadtA3f1N0Ga5Hr1zj98+5uXrsbUo23hmm82nb9/sYbKtjsK1+5ZO+QugMRlbvfhRLQvItAZfI/b7xPVVVGO1uiXrdnJBEgj2d3qvnMJotJDly0ekNeKYnSCsoX7H8oaoquas2Mzczid+7mH0Zam9gpLOJ5Mx89EYT8+5Z9CYz5bfdE3NbkiRhsiRgSUheVpDINTFM34XD+DGEFQj988yODQpZ41uJgrXbw0BgmX4LVIXMVVsZ6Q133D/wwAMcPHiQQCAgmuaOHTvGjh07OH36NF6vV6yszWZzVE3a4/EIbfZf/epXrFq1isuXL2M2m6moqODv//7vxWfT0tKiXOluvIba7xoQsFgsUSWBG0On03HHHXfQ0dHBRx99FPX6SnLh2vtlZWVs27YNvV7PpUuXePvtt/H5fMK+WTtmDSjGxcURCoXwer0EAgHWrVtHfn4+k5OTtLW1cfLkSSExvG/fPioqKoR3feQx30rqX6/X09rayrlz53j77beXGDWZzWaR8QiFQuJ9jQJYWlpKQUEBd9w7zb6v/3DZ8yBJkJWsp7v5HNND7WLy1/pD4uLihHS12WxmdnYWv9/P+Pg4ZrOZjIwMysvLycjIwOFwkJaWFqVS6Ha7hZqiFhr4q6+v59y5c4yPj0exA2DR+VRZEIgymUzo9XpcLpfInN54bY1GI3p8yCE/im7l7IDFNylUONeW5vGPxSrff+09RpU4EhKTmOpq5Iu71lKeHt031traitlsxuPxcOnSJWZmZpidDXu3aP+PzHBp52J+fp61a9fSNqvgDMR+rimKSvYNNsVaE+Hw8PD/BgO/iRgdHaWuro4rV67g8/koKysTmttzc3O0t7dz/PhxFEVhenqakydPUlhYyF133UVJSQmpqan09/ezf/9+Tp8+zb333ktGgomxnlH8nRe4a9+fCSAAiJVRrIuZm5vLyZMnSUtL4/HHHwfCD6Le3l4OHjwouMmtra2C8qfVLiVJYv369dTV1XH33XfzySefiAdEZAT98zhHeknKyIs50YYCfqaHem56/uZdTpqOHyQuIRmLzU4oGGB2fBDlJl4NN4vcVZtvGQhIkoRzpB9bRk4UyFEXeiXazx4RGQpjXDwlm+8iKWPR+UtVFEZ7WumpP4USCpFeWLnid0qShNWezvp9X6Hj3NGoRkslFIz6PS0/ViPUDdtc4Ti1FOtnUUU0mC0kZxas0G8hE2e1kZCaiWtimIMHDy7+rcFAX18fd9xxB7t27eLMmTNi8oPwRK2poun1eq5fv05xcTHXr18XzpahUIjdu3fzk5/8RGx3w4YNtLa2LmG36PX6KCMgTaNeluUVTcHy8vJISUnh+PHj4rWVQMAi00TH+vXr2bRpE8PDwxw5coS+vj50Op3YB40RoCgKRqMRg8GAx+MhEAhQUVFBfn4+MzMztLe3c+7cOfR6PSUlJYI1oYEJLbTUvwYAbkz9FxcXY7FYaGlpoaGhgUOHDkUdu06nE+U+jfqogX273U5eXh7l5eXk5uYuAR8ZGRn85P/9En/6ndcJhTSPjLAmRIZNz2NbbEKPISUlRTRqulwuvF4v8/PzYrVfU1MjpHkTExNjji/tuXnlSphRdOrUKQ4dOhT2Hli4Ng0NDUv+TpIkYRoECJCjSUdrTZyyLLNp0yZycnJ4++23efLJJzl16hRDQ0Okz/UxYi2OQedWSApM8dRjn+NXv/oVgUAgLGQlgTLUwt1r1lBSksRrV/o5d8bFxOhw1GSvXZPXX39dNLXabDZsNptQU4z8MZlM/OhHP2JycpLCwkIekTN4+cLA8n3MqopeJ3FHcXT5yGazYTabGRkZoaysbNnz/duK3xswEAwGhTJYf38/VquVzZs3s2bNGtxuN52dnZw4cULw7H0+H5s3byY9PZ1jx47h8XioqakRN1teXh733HMPhw4dIisri5qaGpqbm8nOziYpKSnqu28GBnJycpAkib6+PtEjYDQasdvteL1e0tLSeO655+jv7+fatWt0dXVFeXNrBh3nz58nPz8/inctSRJFRUWkpKQwMz2Emp4DyvITUe/VcyifQrjI65rG6/pXWjwvhKzTkVFUdXPpZcKeB6qqhk2AFurzIC0I/Vyjv/miECbSGYysvvNRjJZolC/JMhmFlRjN8bSdfh/31CgJKY6b0CYlQKZs614aj74R0x3RPb0C51g7hmAAbwxWQWTcLNW9XJhusd/CbLXhmhiOWpXPzs4iSRI7duwQUrmauAuEa7baPZKUlMTAwAAPPPAAdXV1ZGZm0tzcjNFopLa2VqxWd+7cydmzZ5cAAVmWl5QJNCrkjSthbcVlMBioqanh6tWrIium7X8sEKC53W3ZsoXS0lJaWlp46aWXhAInINL/kfugmdsUFxeTnZ0tFgqNjY0YjUbKysq4/fbbKSkpidKt11L/2uS/XOo/OTmZ1tZWkVGIpN5qTYkaSNJAgMFgEHr/xcXFOByOZRv9vF6vWOWPjIzgGR7mj/cm09jjZXw2hFEvUZZlpMRhjurZGB8fJycnh8LCQhwOBxkZGUtW+zd+j5adHBoaYmJigtnZ2SU04uHh4bA/gNGIz5zOVMiAXpaIdw9hCi5m2dLT04XUcnV1NZs3b8Zutwv9glAoxN/8zd8I2vTs7CwGg0EY/xw4cIBsbw9z+gRm4zKEkqBWijMF3NyV6hUaDlNTU/zjP/4jgUCA+fl5zp8/L/oQNE8Im80mpL5Pnz7Nzp07WbdunWCS3CxWr17NJ598Ql1dHV/6ylNc7J+heXihsVW7RxdKy9kTDYwNJlNYWBg1fn9Xmgj/w4OBG5XBCgsLue+++1BVlevXr/Piiy/i9/uxWCwUFRWxadMmbDYbr7zyCvn5+YLvu3//fl555RWefvppUZ/btGkTQ0NDvPvuuyQlJdHZ2cnu3buX7IMGBm5E7VpoxiX9/f1RwhOae9uuXbswGo0UFxcLedKf/vSnzM3NUVFRQVdXFxMTE7hcLvFdsKik1tvbS01NDRscDn7+xkGKN92JJXERgQb98/RePcdoV/OnOrcZGRmMjo6uqGx3q2GMs66YpoeFFGt3C8lZBeg1OeGIG1ICkjML6Gk4s7iPRaswxScsT0GUZOxZBSSkZjLccSWq7BErJElCUVUyS2vounR82c94Z6eZGRskMTVzeSVBJVzCUEJBhBJMjPi0QABujaIIEPR5xWSpORZC+Dy/+eab7N69WyjzacBTe4iGFJXusRDt3R5SmscYbG9ndVU5w8NhcKGl2NPS0oSGAUSDm+XGjKIoS5oEtc/l5eXh8Xii3Om0/b0xtONKSkritttuEw6OJ06cQF6gpkK0t4HWSKiqKunp6WRnZzM/P09HRwetra3ExcWJJl4tla99v9ZA1tXVRV9fX1Tqf/v27djtdjo7O7l27RoXL16M+l5NHEw7L9q/mrBQeXk5BQUF2Gy2qHGs1aiHh4ejavzaylqWZaxWKzqdjiSriW3lN9hpqyqVlZWsXr2a7u5uzp07x9DQENu3bxcOhppq5ODgIP39/YyOjjI9PR21yo8853q9HoslrMqp0TMB3LKVvuSN+PWWBf6/BIkVJM4NkzNZz7Nf+RKFhYW43W6ampqorKxcUpfX6XQUFhYyMDAg/B407v+RI0dwOBxs2LABx9Ummib6mYrPw6e3oA/5SPYMkDQ3wLURhY7mRsFSmZmZoaCgALfbzRNPPEFqaionTpygpaWFxx9/XCzOLl++jCRJbNmyZVlxpVhRWVnJyZMn6e3tZdY5zf+9p5hfNg7ydl0fQX0cqCqrMuIx9dcR9Azw2muv8cQTT0RlARwOx4rlst9W/E6BgTG3j4t9Tq5NeAgpKmlWIxtykliVEb0SCoVCXLt2LUoZLD8/H4PBwODgIIcOHUKWZXJzc9mxYwfFxcVC51qLrKwsGhsbqaysJC0tTbgdvvLKKzz11FNiwO/bt4+xsTF+8YtfEAqFqKqqWrLfbreb+Ph40ai1XOTm5kbxpOfm5mhra8NsNlNZGZ3CvnjxIsPDw9x3330MDw9H9RZENmhpq65gMBiVCp5sPk23N4DRkoCkKkwP92E2m1i/fj19fX1Lang3crW10FY8yz3UtQfurapZh4K3ptIn6fQxJYAlWUZvNJFTtZGx6614Z6dJL6xYcXuKEiItv5zuuhMMd1whs7TmFsSEZJIzw9LUmhyyLT384HKODjDW3ULHhY+ovvNRjJZ4IFrvwT09htc1zZq9TxKflIqqKjhH+hlsq1/a9PgZwueZxT01RnxyakwRo4BvHmeE6ZGmOqitkHt7e/mnf/oncR21MabX62kd8HK4wYXXP4EkwcdN76GXYUdPI1tKoh+Ukf0FEBvcGAyGKBARpY+xoIO/XKPsjaH9XVZWFhs2bMDlcnHmzBlmZmbESk5RFHF9NVe/UCiE3W4nKyuLQCBAV1cX169fx2q1UlFRQWVlJfn5+eIedrvdYuUfmfovKChg9+7d2O120RgoTMEWQpulApwAACAASURBVKNKRuob6HQ60tLSKCwspLy8nJycnKhsgyYXHEnlGxkZESBNr9eLSUpbBCiKQiAQwG634/f7SUpKYnx8nOeee0649k1MTFBSUkJubi6JiYkcPXqUX/ziFyuKhWmZC6PRGPUZ7XgSEhJISUlhbGwMVVXZsWcff3dhhmBIWTAiWhyTs3EZjOftpKCgAEA0PGvNlqqqCkEh7RrOzc3R19cnmn//6q/+Smzv/fffx2Kx4AASxxfZBmazmap1a2loaBAKijabDbfbjdPpJD09XTxnN2/eLLLI9957LwCdnZ0xVRZXivT0dJKSknC5XFy+fJk9e/awOs5N89BH2OxpOKcm+fZT/w1FKebgwYO0tbVx4MABHnvsMVatCosQORwOzp07x/z8/JIS1G8zfmfAQNekh4NXR1BZXEiNufx80DpGz+Qc+6rCymCXL1+mrq4Oj8eDzWYjJSWF6elp2tvbSU5Opri4mJKSEgoKCjCZYgvorFmzhsOHD+N2u7FaraSlpfHUU08tAQQGg4EnnniCH/7wh5hMJiFXHBkul+umzR+5ublcunSJubk5LBYLZ86cQVVVtm7dGjUx9fT08OGHH2I0Gjl06JBY+dTU1PDGG28wOjrKY489xtGPj5FfsZbElDQG+3oZ7m7B5wlnDbQVICymnoqLqwiFQkxMTKDT6UhOThag4LPYU3zaTEFgfg7X1CjW5LSYE5iqKsuq790YWWVryCpbg39+Lmz4s2LTpIzBFL7BrtefwjnST/HGXTEBR+TfJTnyqNh+H5FyyIlpWeRUbqDt9Ac0Hv0FjuLVpBdWojeZ8XlcjHY3Y03OoHjDLtEQKEkySRm5JDny6Lp0/JYZAytF75VaqnZ+Liaw6bt6bomehDZRa4I61dXVwp+grS1sQHW+aYCDFxbBpzY0ggqcaPYgAVtKbyLRfUPk5+fT19cXNc60/2dmZjI6OnpTIKBNrqWlpRQXF9PX18e7774btU1tTEY6BVqtVrKzswVPf2hoCJvNxurVq6mqqhIlvEAgQE9PT8zUf3JyMmNjY/T09PDxxx9HgZ4b08mKomA2m3E4HJSWllJaWkpqaqq4TqFQiPHx8SUc/khGh6AML4TmxqjV9LWfhIQEvF4v3/ve96ipqRGiRXFxcbjdboaGhvjOd76z5H7VBKA0QBJJzdRq+3a7XehLaP9arYsLsxdffDHMNnHq8YeU5RkNksy4Gs/xhg6S8QgZ6SNHjuB2u8N6CRFASqfToSLhVo3IkkRRlp3RkRFycnK4//77CQQCvPvuuwwPD7Nr1y5ycnJ4/fXXhYfB1772NV577TVBC0xOTmZqaoqSkhLxHXl54b6qi92jdJ3uxTnnp3/cyF2lt9YLFHV4kkRVVRUnL7dwsMPLr2eb8bhdGJKqqC5JYfbCKdxuN0lJSTzxxBMcP36cU6dO8dZbb+H1etm4cSNJqRlMx+dw4EIPJTnpbMpLwqT/7XsV/E4YFfmCCj8+20MgFHtXkqY7Gb56Ttg/BoNBjEYjhYWFIr0ei9u7XMzNzfH8889z1113cdttt4nXx8bG2L9/PwkJCQIQ+Hw+/vZv/1ZQjO6+++6obR04cABFUfjiF78Y8/ucTicvvPACX/jCFygqKuJ73/seoVCIP//zP0dVVZqbm2lsbGRgYAAIg5X169eTmxu2ub148SIffPABAHse/gIeQzIqErKmsgaMdjXRXX9qxbR0ZMTKCPymIsmRT9UdDyw7gamqynDHFaz2DBJTHbe8zZs5SCqKwkjnlajSgqO0hsK1O1b8G+dIH0kZOUiybpl9VVBCCpc/eHUJzdKeXSicDpfdV1Wl7v1XohgLnzWSM/Mp3ngnxrh4cU6Dfh+9V2s/dUlIKwW9fGKaUWcwppijQQf/5b5UjPqVexa0c5aVlRUle6yFtgJaqYkwct+qq6tJSEgQap3LhZb5iI+PJzs7m2AwKDQWUlNTqayspLKyUnRwj46OisY/jUmUkJBAUVERNptNeAxMT09HTaY33jfa5JmXlycaELVSo9/vZ3R0NGq1Pzo6KrZnMpnQ6XRRzotxcXE4HA7S09Ojavta2cLn8wkANTQ0xNDQUFT2cLmIpSuinducnBwx6a/UPKiFqqr89V//NZs3b+aVYTuewArPEVUhxd1D1nSzUHHUqJiRPwkJiRztdvHGpV6CC8JCZoKkzHTwP57ZR3dXF0eOHCEhIUFYJEMYWJw7d04Amw0bNlBbW4vRaCQtLY3BwUEkSeLee+9l3bp1qJKOb+4/zoScLAy4NGnj3aUp/NG2PHQxaMPLxdsXOni9aRZYdEZEVdDJMjljF/ivf7CP3NzF5ubm5mbefvttVFXFtnYP52fiCASVcEURiTiDzP+xJZddpSnLf+FvKH4nMgOto64VgYCqKkzpw5zs9PR0sTrIyclZMTW/UlgsFsrKymhsbIwCA+np6aJk8Oqrr/KVr3yFrq4uFEURVKysrKyocoHL5RK2lLEiPNgT6O/vZ2ZmhkAgQF5eHu+++y7t7e0oiiK28eijjwpdbICOjg4OHTrEli1bmFMNeIzhQSI8tqWw/l1G8WpCoSB9V2pvaZKPJeeqKRzeGJ+l2S0ynCO9dJz/iKINu5B1OlQtnStJjHY309N4hsK1O7Da02/ZxetmDy1Zlhnrjl6Jj/e0kb96C7JOv2zNX5blBTliedntS5KMLIOjeBX9zRej3nOUVIePa1nRo/C5Ti+sZKDl0q0c3ooxPdzLpff2k5SRKxwfnSO9MVkfK4E/RVFwekKMOFduMA2EoHvUz6o8S8yxoLkE6nS6ZYGA5htwszAajVRVVREMBmlqalr2+yJZAQ6HIwwqh4e5du0aDoeD7du3i1Kgy+UStXNNQEbr+l+7di1ut5vR0VGuXLmy4v2j1+tJS0ujqKiIiooKHA4HOp2Oubk5RkZGqK+vF6t9DbhIkoTRaBQ6J9priYmJUSt9h8MhdE+0Jrf6+npGR0dxOp1RojexzkVkaNe8pKRENBprE/6FCxc4cuQIV65cIT8/P6qxDcJAZmZmBuf/z96bR8dZ32m+n7f2VapNpX2xFlu2ZHk3BoKxMWYPkHRCIIGQuSGdnqYnt+ecO3N6Zs69//TMPdOn+3ZnbvftNGk4aUIChkDALDEELxjbeLcsWbItW/ta2kqqVbW+7/2j/L6uUi2SwRDOIc85dVR633rXqvf3+67PMz+vtAh6vV78fj/hcJhYLMbRo0cJVz2QolDPA5VKxao1bfxkx6Ps37+fvr4+HnvssYzPSJLETw8PcmxgLoNhMCKpGStu5n/sPYdl8AibNm7k3nvvzUixrFu3jhMnTigMrydPnkStVhOLxZTosCRJ7Nu3j8OHDxNecQezqlQRuBLNuDaJH7w6S6lVx5+sW56GyfDcAnu6Axn7kN8nJRh2bWJs1k+aLUBLSwt2u52/e+0gF7wGUkbEdUGlhbjIPx0dwqBVsa3uOhfJ540vhTEwFYxdt9ByQBBUCBY7t956K1arVeEWHxsbw2g0Kq8bNQzWr1/PK6+8gsfjUbwFyDYI5FDjXXfdxdzcHHv37qWkpISSkhIgZQykh6FyX4NAVVUVvb29SlvZ8PAwZWVl7Nq1i6amJl588UWam5szDAGPx8Prr79OU1MTu3fv5ujVWaKimDPULggC5U1tjF06C2IywxMwGFKVxaFQKGe4VkYoFFJoWxfjsxgCMqaHevCO9eOqacJgKSYRizIz0qt0B3j6uilvaruhfeaKDsiGznjP+axef4vdTSQcwFycaXnLpESDHZ/gqs7P5gip+oXi0uosY8BscxXumBDAVHwTLX5JyiBKyoV0oR65KFSSJBw1bez/5CLz8z6qXXos+uVFiaJxMe9vIb1bYDEroEwZvJQhYDabFYKffC1qkiShUqlwu1NKn1NTUwwPD1NVVcXOnTtZvXo1FouF4eFh2tvb6evrU8iUysrKqK6uZmFhAa/Xm6GTkAsWi4Xy8nJWrVpFY2MjRUVF+P1+PB4PV69eVdre5OuSjaH0589oNGaF+EtKShBFkcnJSQYHBzl37hyzs7MZ/fbpkGsRcsFms2Gz2RgcHOS73/0uLpeL3/zmN0xMTFBeXk4oFGLz5s3K9qIosmbNGrRaLfv27ePtt9/m0KFDSpdFenFgrvsvdyBUVlYyqhWZS6rIoPVMgwSscBcpJGm5yJnax/wpQyD7YAAMijZ+9MC3uXdLds1WaWkpWq2W0dFRnnzySTZv3szzzz9PMpmkv78fjUbDtm3bOHbsGJV1jbzp1yAVcCLe6Z7i4dZStOqlHZL3L00rHn3ua1fxyUiIbeszl5eUljFb0gqx/OnWX58d55Za27I6h24GvhTGwLJCMpJId3c3kUgkL/WoVqvNMA4WvwwGQ8b/LpcLk8lEe3s7999/f8a+3G63UkPg8XjYsWMHgiDw8MMP88ILL7Bnzx5+9KMfodfrl2SP8vv9XLhwgZGREYXpy2w289RTTynRgHfffZdYLJZxHoFAgFdeeQW73c6OHTvo6LpETFdWkIhLpVJjK6tlZvhKxvJ4PI7b7aalpQWfz6fkiO12O3a7nZGRESVn+VnEh5aDZCKeRRgkY8HvZaD9CCs23JHXw14MQRCIhAJodXrU2ms50EiIscvtRPxz1KzdBqSoejU6PSu33ZOVSpEkCcQkU1fbmervxlVd2LiTj5t9bQkKaT1JUorq+NPg03Z1pG8TCoWYDyX5zQkfs4GDyI/e6b4FzPrlDTp2S/5hQ55MFkP21Aru127H4XAwNDREV1c2lbMMOR04OzvL5OQkdXV13HvvvTQ3NxMOh+nr6+Pdd9/NIBFzOByUl5fj8/mUcH0uyPU0tbW1rFmzhsrKSqWi3+PxsHfvXsbHx5WiOrU6lUaSJ365n18O75eWluJ2u0kmk4yOjiqefiEvP1dUrLi4GJfLlZXHj8Vi/PznP+ehhx5ienqasbExmpqaFH6ViYkJRFFkZGSEf/7nfyYej2eQTKVD7lbSarVYLBasVis2mw2Xy4Xb7cZut1NUVITRaFR0GJ566ilqBvz8/PhI1v5kCMDOayFvn89HeXm2172/Z6agQ6gSoGfBRC6qL0EQqK6upr+/n/n5eVwuF0VFRTgcDq5evUoikWBkZASz2UzvXBRJW3hMCUaTDHoXaCpJdYdJkkQikWBhYUHhZpDfnxlIIkqFjH+Bi5Mh3n77bSVaplarGYloCMUKyzpP+KMMzS1Q57ixGp1Piy+FMdDoMnN2NL8gkEqA5nIbD+36jwAKS1ihl/yF+Xy+jGW5cOrUKS5evJjTeCgrK2NgYIBz585RUlKCzWbjvvvuY8+ePfz2t7/l619PFXEtNgbkoqyOjg7FOq2trVWMgYceekgxBIaHhzl79iz333+/4nUMDQ3xwQcfKD3gP//5zzEWOdhw3xMF76UkSahz9A0nk0mGh4fxeDxYrValK0Fu4TEYDBla70tBpdFSUtOEvWIFKrWaoHeKyf5upYjxs2Diaidhn5eKVesodqfy9pA/JSCJIoGZCfrOHMJotSGJIqIksvr2BzAW2RGvcf1Xrd50PYqQJeYkIGi0NK3fxqYtt9I3MlrQGJFEEd9Udgh8dqSXipXr8m6nUqmYHetf3o1YhM/a3gkw5wvwyrF5/AupfaUPvuGYVDhCB9gsGqqduYcNWaUuHbIBUyiq5HK5kCSJ2dnZLIlmGXLft8/nY25uTmnpq6ysZGJigr6+Pj7++GMl9O9wOLDZbIRCIYLBYAa9bzoMBgNut5vGxkaamppSNSbXjIWDBw/i8XiUc5d1ENKFj9InfZnWeXR0lPHxcTo6OvJ6+blSNlarVZnw04v2bDZbBt9AMpkkEAgwPz/PiRMnEASBo0ePMjk5STwe56//+q8zfityMaRcPGw0GrHb7UqRYGlpKQ6Hg5MnTyoSxN/61reUnHwueL1eLBYLer2eu1a6ODk0T+d4gFT10jU+h2s8AM9sq8aklpibm8Pr9eJyuTh//jyhUIhwOEw4HObSnBtRym9FixJM+K9PwuFwOOOvHKl4+eWXsVgseL1efD6fch/kAlVf0g8leQ+j4O133sGwMKvMG/l+v+HyHaAtUPQsSSTiKSZc+bcjSRLzpnJwbV7yPMKxzx6NXS6+FAWEkiTxq7NjeILRnLVvKgGe2lRFqbWwvO5SkNtk0o0Gj8fDgQMHaG1tVfLl6Zbf3NxcwYFMDge63W6sViuiKBIIBPB6vYiiiNPppKGhgZUrVxIKhXjzzTfRaDT8l//yX1CpVASDQZ5//nkkSaKsrIyJiYmMMGpdXR319fVUVlZSWlbOieFQ3sFaxoWDvyUwM/GZ7lUhGK12WnY8gtaQslgFQVDIgfpOH2Jq8PJNOY5Gp0eSJEpqVrJi4/aC4bKLH7+jhMvVGi3r7/suOoMpa1Jesq1QgBq7iXhSZHQ+FSHJR4fc/rtfEw1nGj96k5X19z6esx5BFEUW/F46Pnxt2UWeNxsXhiO8dy6/wSYAGnWqeyD9FAUBVILAd24rosa1hFjMMuF0OrOqydMh09TKlMjyhK3X6xkZGaG/v18J/ctFb7LITc5ru5ajr6yspKmpCbPZjNfrZWJigtHRUbxerzJBp0dhZE7+8vJySktLsVgsRKNRpqammJ6eXjKXnw6TyURJSUnGZO9wOLDb7Wi1WiRJUoSApqammJqawuv1KsdYWFjIe7/S76vVasXhcNDT00MoFGL37t18+OGHPP3000qbXy50dHSwd+9eJEli9+7d3HZbDqEuSeL1119nbm6OBx54ICUZHQyx78oc3UEjCU2qOLQo6acqMoTeN5rznHU6HQaDAZ1OR7uhlXnBkl9/QJKwRiapmz6dtUpWv4xGo6hUKoqKivD5fGi1WmKxWIbiZ0xtpKdiV0GdA5WU5LbwGTQklRqPZDKpyIOnf88TtjXMWFfkFyiSJGoW+rh7hQWDwaC85pI6ftZVOFIG8NxjrYp+wueNL4UxACkL6PXOCTyBqBK6FCXQqgS+3lJKoys3oc/NwHPPPYfNZuM73/lOxvJoNMrf/u3fsnPnTqqrq3n55ZcpKirirrvuIplM0tnZqQinlJSUKF62HAoSRTHvg5veEw3X6HAtFoqLi4lEIszMzHDHHXfQ0NCQEanomQwz7o/mrBkQRZFIcJ7z77+SsdxgMGC3pwpRgsFgwZztYqncxRBUKjbe/yRaozkrnCn/lC4ceONT0ezKKG1ooWLleozWVJFPcG4ard6Ye3IXRfwzE3R/9JayrKxxLSs23PGpc221dhMqlUAwEmcqkPLq5ONKooiExJXjHxAJ+ihvWoe9og5BUBGY9TBxtZNkPEbz7fejM5qVqIRKpSbgneTy0d99JqGnz4o3Tvi46ik8CDktaiocWrpHIorh2Vhu4PaVBsrthYmjloIgCJjN5ryeukajQaPREIlE0Ov1NDU1UV5erpBryaF/2VAo5LVpNBpcLheVlZW4XC5isRgTExOMjY1lPAOLdRNkb1+n0xGJRPD7/UrhXK6+/MUwGAwZUuXypG+321GpVPj9fmZmZpicnGRmZob5+XkCgYBSZ5FvSNbpdIqegM1mw263c/ToUbZt28b27ds5dOgQAwMD/Pmf/7myzYkTJ/jggw+455576OjowGQy8f3vfz9jv5IkEY1GFU99fHyc/fv3k0gksNlsVFVVsbCwoCj45SIkkqFSqxF0JuLRCOUljox2ymg0qjBgLr5Gr7mGMUdbwUm61ttOUXA057r0fcoFqnL0U5aAltOfg64tBIzu3BO4JFKyMMo6tSdj8pY1FBYvC4oa/vvRaZI5gnYCoBFEtgbP8B//4s+y1v8fey8xPLeQ07lTCbC+soj/unvpdOXNwpciTQBg0ql5alMlw/MRemdCJEQJt0XHmlLr595zuX79en7/+9/jD4awmq/3n/f09JBMJmlpacFms/GDH/yAX/7ylxw5coRvfetbhEIh+vv7SSQS+Hw+RZioqirFpz8zM8Pw8DAjIyOMjIxkhEDlENv09DR2ux2bzaYYAXJY8ciRIxw5ciTjXDU6Pa13fROjxZYxMUqiiJRM0J+DNU/e7/r16+nv78fhcLBu3ToOHz6MJEnodDpqa2vp7+9fMq/rqKxHb84dFkuRhCSpWLWeK8c/yFinUmtw1TRhcbiRxBQR0vzkcJaH3LDlLtx1zZDW3GYudiKoVCwE5jBar1fXSqLI9PAV+s8eztiHcxn5/kKQxyOTTo1vsItwQqS4tBok8E2OMNF7AVOxk7bdjwGCYhTZy2pwVNQx0n2as+/9EkdFPRanfL1DBGYm0Oj0GK02YpEFkvGlJ5abjVhiads/KUo8uNHK7jYLoaiIQStg1H22Z1AQBIVEJpchIA/cOp2O+vp6LBYLwWCQgYEBurq6FO9PNp6j0WjWxGw0GhWvW6PRKL38ueoDBEHAbrcrdLzRaFSRsR0ZGWFwcLDg9Wi1WpxOJ263W5FWttvtSn+/x+NhenqawcFBOjs7CYVCGe2Di6HRaDAYDNhsNiV8X1JSQmlpKTabTSFBS0dfXx9Hjhxh3bp1GAwG5f7JRD7hcFipr/jkk0+ora2lu7ubX/7yl0CqvVqe3HOloARBUKSbi4uLU5TDWi1Wq5X5+fmcNSxiMgkLAVSkUglyTQVcJ0nLZezYwmPMFNUT1ZizJ2lJxBAPYAnmJ+zKtU9Z8EmWVo7H47S3t7MmOcj5uJmo1iJfqNKZVW6UcIx2YV/VxKOPPlqQq0bGf9YV8XeH+kmIUmo4kyQQwKBV83BZlN7TuVNff/61Wv7P310hlhAzWnlVAph1av63W6pzbvd54UsTGfhDIRJPctXjZ2w+glqjRSVApc1AndPIW2/8hmAwyDPPPAOkrNtTp06xf/9+pfJcFt6w2+3ceeedTE5OKr2/6ZStoigyOzur8FA/8MADHD9+nIWFBWprawkEAszOzmYMcHK0wGw2YzKZSCQSDA8P43CVYC5bQVlDK1q9ETGZYGbkKqMXzxIN+ZdsK5QlUYPBoDJAyzrimZ0EAv64CgGwaJIIAjRs3kFJXTOqAq1EiViUU29dl6QtKqmg+fYHrskApwYPlUpN2Ofl4pF3iIVTk4O9vJbVdzxU8NwvfvwOGp0BJAnf9FhOL7tt92NY7MtIDOaAWafGbU2FOZPJJJc7TnP+ZKYkq0ZvYPNDT+fkIJDR/dFefFPXvRhTsYOatdsUgSFJEpkd7We46ySRZWgY3Cwc7Apyum8hb5ZCEGBluY5vbC1OW/b58FHIraoWi4WKigplApdZDfP1xsvnJAvJ6PV6fD4fXq835+f1er3yObkQTBYmWur8bDabothXXFysGA7z8/PMzMzg8/kIBoMFC5tVKhV6vR6TyaSE710uF6WlpQqRT6FOKFEUlcldnrxDoRCdnZ1MTk7S1NREOBxWiIvyMYNqtVoSiQQqlQqz2Zyhi1AoIiFDo9Eo48VSKRGZxVD+7chFeIXqXpIaA6OuTfh1jutOgiBQpV3gLleYoHeavr4+DAYD27Zto7a2NsNL9/l8/PM//zOtra10dXVhNptZs2YNDzxwnfejq6uLN954A0uxnWlDOVP6csIJFXoxwp31RTy5Yz2DA/288cYb2Gw2Hn/8cSWqWghz4Tj7r8zwUWcfkYUF7Ekf/9e/e4Sh3sv89re/5a/+6q9yGhYj8wv83d5TjCVTKRK1SuBrK+x8Z0M57s+YFr9RfGkiA38ILMSSnBqcJ56UFN58UYLRuQgeX5SRiUlu27qZsbExOjo66OrqYmFhAafTyfz8vFJ0Bykr+M0331TYDJubmxUr3efzKcxbspciEwhZrVbi8ThWq5XJyUnKysq45557cDgcGWIZoVCI5557jpqaGubm5vD0tDPSdQqVWs1tt93GfVvX8f+dPsR9991HW1sbV65c4f333ycSiWQRpKhUqqxUgVz4tbCQmijOea2cni0iEE/9RIp1CbY4fTTkaaFJR/oEqTcXsfqOryttUUKa5rfRaqNl+8Oc/2APkiRS2tCiGFm5IIoitrIaBs8fLXj88PwMpmJn3v3kqxsQAJvxen5OpVIRCmaTubjrVhc0BERRpLypTTEGzPYSWnd+A1XaNoKgwllZj62smgsH3mDBf3MEoZbC+joDp3rzd4tIEmxcYVy07OYbAhaLBafTqZDyXLlyJcvoSJ/YNRoNZrNZSWOlq83JEAQBk8mkPHdy9EDO7+eCzMZYUlKCw+FQhH1kZT+/309fXx+XLl3K6z3LXUxygbGsAuh2uxUDIh2yPkM4HMbr9TIyMpIx0ae/lw2Nxd+BfK/UajX9/amC1KUm9Hg8rjAzBoPBgnTi8jiRXgC6VK2CRqNBpVIRi8UoLS3FZDJlTNZjY2OMj4/z0EMPZYXb5dZnSE2QlzxBuroukJjs5z8/+4xyDK/Xy9tvv83BgwfZtGkTu3fvViZZOcoj076HQqEMsh9ICQvNzMxw+PBhTP55Httq5eTJkxQXFzPyiY8Xek9z33338cwzz7Bnzx7+9V//lW9/+9tZHAyLYTdp+fb6cprVM/z2tynNmcTCXUpheTAYzGkMuI0qSkaO8M0du1izfiNWvQaD9tNx53xWfKWNgUueIPGklMW2JgHxpEjd+js4e/Yo+/fvR6/XY7Va0Wg0CpGI3EKl1WrRarXKwyuHQTUaDcXFxcogYrVa2b17N/v37ycYDNLW1sYjjzyC3+/n+eefx+1284Mf/CA14CVEIgkJvSZV4b13716FklSeyNeuXYsgCHR2dLDjzjtZs2YNx48fZ9OmTbS1tdHU1MR7771Hd/d1NjpJkjI8ovTBQK1Wk0gkObnQwBFPgvRQvS+mZv+Ek+o+P19fkT9knMrhjyv/lze1pQyBXCQ8KhXGIjv2ijq8Y/2YivJP4JAauE1F2Va6zmjGXl6LoNYQnpvG09dVULI4fdKRJ2e1SsBt0aPTqIgmkvgX4oTjSWwNHauJVQAAIABJREFUG1lZVMrElQ4CsylDzuJwXwsF5jYGVCoVVud1EqqGTTtShsDiDgaVCjVa6jdup/ujvXnP92bCYdFw91oz+y+EUv3RsgNG6tu+pdFIbcnnU7AkR7hkb3pxuiD9tyhz48u5ZjkVJ0MOWcsep6wAKE+m6ZC5D4qKihRmQHnCl6ME6ftOhxy+Ly4uVtrV3G63UoFvMBiUyT3daw8EAng8HuX/9Fe+uoP0kLooisvqHskn6SxjcW3S4r/p0Gq16PX6jBolOVcuCALnz58nFospKZzvf//7+Hw+9u7dy6OPPsq6det4+eWXicfjPP3001n7f+utt4jH47S2tha8pmqbkWqbkYqEmze6jyiU8ZBqK3366ac5c+YMH374IVevXuXrX/86jY2NzIXj+Ms3MpAsJunQok1G6QhZqI8lMeuuT7B33nknMzMzXLp0idOnT6PWG/GoHGy490GGLrbz4i9/yermZr71rW9x4MABXnrpJe677z62bNmyZB1SU1OT8pmBgQGlWNPv9+N0ZvOLyKno9WvXUGz5YiMBi/GVNQYW4klmQwXChIKQ4pI/m7KGo9FoluWdrq/e2tqK1+tlaGiI+++/nzVr1mA2m0kkEvz93/89APfeey8tLS0cPHhQqdaNxWKKfvYTTzxBOClwYciHN5w6N5UAqoiPwZExKsvcigf1zW9+k9bWVqampujs7KS7u5uvfe1rPPfcc5y+0IPOkhLPUBksBcOtGo2GDRs2YLFYuHTpEid65zkyJH82/Yefev/rk17u3R5Fp9XlneAn+7pRqdSIYhJnVWHyHkkUcVSuwDvWTzIRK1jtL4kiiXgah7pKTf3G7dfEiq7L04b9c3j6uihraM1oD1zMuJhMxLDoNBSZjZh0qZBmMJpgOnh9sNYajDgq63FVNzLQfoSJq51ZnP+5IA+2pmJnynjIA0Glothdhd5cpBAvfd7Y3GDCadVw8mqYoel4Kldq17C10cSqiptrCBiNRqVCXp4Mc0EOk8sTWyKRyOjdBzI82VyToDyZyZ54PB4nFosRj8dzGgly+L64uBiLxaLUELhcLsxmM4IgKMZC+qTe09Oj6Izk69nPd96FUIjkR96PjHz702g0Su2C/NLr9bS3tys8JnNzc5w4cYJvfOMbVFdXKxP+Uqyf99xzDy+//LISibBYLPzud7+jpqaGtrY24vE4AwMDOZVdgbyEQ/lQU1MDpFqv0xlfBUFgy5YtNDU18c477/DrX/+ahrWbOBStxo8b6dq8H1cb2Ht5jtPjYf77A6uwGjTK9o888gjeuTk6gmamipuQBDW9lwIgNFLc2Ig01cHVF17glltuweFwsG/fPjweDw8++GDBlI7BYKChoUHpdpEJ5PIVbXd3d1NdXX1D9+XzwlfWGAhFl9e/aS52IsWjinhIekWpXq9XaFJ7e3tpa2sjEAiwf/9+IpEIVquV4eFhpTJap9Nx9OhRRYLU6/Vy8OBBZmdnefLJJwmLai4M+jIiFaIESa2VdXd/m479v0GlUvHss88qhUEul4vq6moOHDhA4+q1bHrwKQL6IsSoiKCzY21wstJSxnD7YYL+zNx0RUUFdrud9vZ2kskkarWajjnbdZ3wHIjHk/zbb4/wzLfuRMX19jk5vG9SJbn/kceQJAnP6BAJo4HCwcVUcSHAzPAVatbemvdzKdVCA1sffQaVWk0yEUejM2QZD0ZLMTqDib6zhylraMFsS8mUXg/RX4sGqLUEFiIsTI9Q29iMiHDNELjeKw3XB/UVG+7APz3O3MQQJbUryQdRFPFe4xIwWAoTi8gwfIHGAMAKt44Vbt2S2g6fBunG53IJrAp5t+lerBy6ltUW07kx4vG4EvVKD9/LeXmz2YzZbFZ0ERYWFhSinVAoxOzsLF1dXUuGw5eLG+GFkM9Xr9crY4zJZMJkMikTenpI/dSpU/j9fp588kmlPe9f/uVfqK2tzciRy1Cr1XzyyScIgsDu3bu5evUqFy9epK1t+WyfarWap556iueeew6Px8PPfvYzJEnixz/+MYIgMDAwQCKRoKmpKef2Pp+PioqlZcRlFBUVYbPZsowBGTabjSeffJL29nb+39Negtr4IkpgAUlKkff826lR/sP2OmWVVqvF3LabyYverP36Y3C5aB3fXNnAqVNHMBgMbNiwgY6ODmZmZnjssceUSEUurF69mt7eXgYGBpTvNJcxEIlE6O3tZffu3cu+J58nvrLGwHKFKBob6omX2pWcmfxXrjxOJBIYjUYCgYAijhGPxzl0KLOqPxqN8vLLL2cse+GFF5T3v/i3f2PTQ99Ptc8J2eFkrcFETestePvO88orryhej5xP1BpMaMqbUWtSnl26lV9cUkH91rvp3P+6QmoEKIWOkPLgYrEY3qg2ryEAKdrN84N+2t9/mdKGFpyV9ajUGow6LaVOu5LvEgSB0soaBEFgKhAhHM8zMAoQmksVjE32X6S8aR1avTFnCyGCQFFJhXJtshGRtUuVCrVGi6nITmDGg7HIkdPrke/r1c4+zh7dT936r+GsXZmzbRNSg3tZ41r6zx0mEtqGLl97pSQx0XsBSBVTLgeJ2NKCPZ8HIroifKYKREGDPhHEFhpDLX22yfBmTKa5vGG4Hj5Xq9XodDpMJpMSDZC/C7lIUM7750sB3EzIk3m6w2A0GjGZTJjN5oywe66WNVnieTmQJIm3336bjRs3ZniUcjdBLrS1tfHJJ5/Q3t7Oli1buOOOO3jrrbeyqNiXA61WS21trULkc+bMGR588EGuXLmC3W7PGQ6Xa6du1AOuqalheDg/3bYgCJTWryHYkZvRFFIO1dGBOX5wSxVWfWrMCEYTvHM5d52O3BBwVajgP/zFX7B//37a29txuVzMzMzwr//6rzz++OOUl5czPLfAgSuzTAaiWA0a7qi3s3JlylGQeWzyaXFcvnxZoYX+MuArawwUGzVo1UJBgaR4dAGnRc/mO3OHhgKBAH//93/Po48+itls5qWXXqKkpIRdu3bxq1/9isrKSoaGhhAEgT/7sz/j+PHjXLhwgccee4zXXnuNZDLJ1q1baWhoIJhQMSvktzYFlYqS2pUMnD+KmIgrFqdMVmIsrUetyR+6tzhKsZXVMu/JLRUre3AGtchizzhjX0gY1UliCyFGuk4x0nWKhua1NO+4L2swk703t9XA8Fw4q59WDp/Kkr6JWJSuQ2/SfPsDmIodSjj++jVJyxcwuna/kteqp/NBEkXsZTVMD15GY7TkNQTk67GX1wJw8fBe1tz5MAZz0fW0gSAgJhP0fPK+0iHgn5kgthDKK5ksSRKxcACN9Okoij8tREHNiHMDflN5SrENAIEJWwtV3vPYwuMFt/88IQiCkj9fnEOXve10FtKbdUy5TkH2zuUwu9lsxmKxKAVxufrN0xkCP2/ItQgNDQ0Zy2OxWFaxogy3243JZGJiYoJwOMzatWs5fPgwH3/8cZZokAyZcEcuIJT/zszMKPLuer2es2fP0tfXRywWo7a2loGBgYzPi6JIKBRCFEWmp6c5depUxrrF+0//K5NCvfrqq8D19JD8mWQyyTg20DTkvAYZSVHihT1v4tbGUavVDInFJMQS8o1zogTnx/yoDHX8yZ/8CVu2bOH9999Xfm/Pv/AClk0PccwjKqydKgEOXZ2ltdxKZU0dEyND9Pf35zUGuru7qampoahoedHDzxtfWWNAJQg0uExcnswvJSvOj/P+4fc5cfw4O3bsYO3atRkTi/wFW61WysvLeeqpp3jppZc4cOAA9913H++++y6CICj5tI6ODkX+OJlMUlRUpGgRDHsXmC1wLpDyhHUGE5GgLyMkCrBx0+6CuXlRFHFVN+Q1BmSsKQ4xGs5fyCIhsNqWmXtd2boxb0GdnKO36DX4wrGMtIIgwNWT+4lHrw/okaCP8x+8QlFJJVZXGUgSKrWGqjWbbziUrdbo8ir4pZ3gdS9UTC7JUKgzmtn00NNcOvIu7ft+jaOyHntZDYJKTdA7ydTgZZJpdQ1IEkOdx2m65e6sfcv/D5w/9oV4r+kYdazDb7zmEaYZQBIqRpwb0SSjWKK5pYI/b8hFgTcC2YCQJ/R0HRK5cFFOFSz20mUZ4c96zulpi0ITXaHJL9+69Nfg4CCCINDV1UVnZ6eyPBwO093dzcjISM79yYbUP/3TPyktkpcuXeJ//s//CaDQ5abT5uaDPCnKY5Cc+rx06RKXLl3Ku92ZM2eU70tGoedNPgdZSyUX/MYklBQ2BgA8Y2P44qnnbNpaDzZXQZIjSJHhWfUaampq+NGPfsT58+c5cOAAM8YqOjyZlN7y34ueAImiNWilQfr6+rBarVk02wsLC/T393PvvbnUFv4w+MoaAwBVdgMJUaJvOqz4wpIkIUoi2oVZHrxzK1vXrODQoUO89dZbHDt2jJ07d9Lc3IwgCBnGAKQUvJ588kl+9atfcfp0ijZTkiSqqqp45513KC0tpba2lhdffFFhLJRz9Zplpi3kiSa99UcQBEWgJx8EQVDaJ3NBozNQUreKOoud2mkthzo99I5n5rAFJBz6OKuKMo2WYruzcJGgJLIwO0EgHE+RDkkS3vFBJq6cJ+jN3fLlnx7DP50iGanfuD1VCHgDA7YkSUTCAUJz0zgq6wtGBwKzKbbEuYkhbGU1S+5bqzPQcucjDJw/irOqAYOliHgkTCIey2l8TA/1IKhU1K27XaFYFgSBRCzKQPsRpb7gi0JUY8Jnrsy9UhBAEpkqasIy/cUaA+kTutyhI3vhcs2NTqdDq9UqPezp1fKLJ015mVwE6PF4sibHQq/FE2Ou97D8AsGbjbNnz2YtS+dpyIfFEZVc3Q2LozPpiomRSETheZDHIL/frxgGcueFSqVS2FhDoRDj4+OsXr0anU6XMX7J+07/P335kSNHqK6uZuXKlTk/E5ME/rY9RqJAiUaxXsVP/t130Fy7ps7JCD87Xfg+aVQCxYbrU6QgCGzYsIHm1av5969dgERuB0iUoMevZpXawPDwMFu3bs1KdXzZUgTwFTcGBEFghctEpc2Axx8lmhDp7jxP34UzFFvN3LV5DW63m+985zuMjY1x8OBBXnvtNSoqKti1axeBQEDpbZZRVVXFk08+yS9+8QsgRSH64YcfEovFeOKJJ3j11VdxuVzcfffdvPTSS0xOTlJRUUGJVYfgKUBZL0kQC+G0FzM5maoTkB+2WCxG2OelyFWef1KWJMKB3Dkyd10z9Zt3IAgqJEnkvnqBB25dyemeSf6f35wlGk8CAlWmCF+vnmExIWQiEUe9RJg0OD9L17EDBT+TD2IymS+aVxCTvV0EvJO4qhsRALMulRoSJQjFEsSTImIyydRgypOZHuqhumULGq1+SflitVZH09ZdSreCZLFR7K6ioqmNro/2ZrELzgxfZXa4F1t5DVqDidhCkLmJoWV1Jtxs+I1lBVsjEVSEjCUkBTVq6YsTSpEjAolEIq+o2OeNxV5qeqoi/a8cSZDXp68r9JKNl/QJNv29Ug+T9n/69pIk0dvbi9vtVoqI5WNfunSJyspKHA5HzvORJInOzk5EUWTdunXodDqFJbGtrS1jHMuH/v5+IpEIq1atysj/d3d3K+yLPp8PtVqdUUgo6wZYLJa86bJ8bZIWi4Xp6emctQgy1hgtdIbM5Bso1ujmaD93ncEwKYFecBOVcksvC0is0IbY/8G+rHX+hJpgsrTgmCQBuFaQnLxEIpEgEAhkRAa7u7upq6srWIj4ReMrbQzI0GlU1DiMRKNRXj1xiNbWVjo6OpienqakJMVkV1lZyVNPPcXAwIDSe2qz2TAajVlep9FoVEJyRqMRn8+H2Wzm4MGDSguh0WhErVYzPDxMRUUFWrWKFU4j/TPZOVC5KK3CJLH7xz8mGo0yODhIf38/V69eJRKJ4Onrotidx9sDEASm+rPDd7bSahq37lJ+qOmkQJubSvjrx9fw/ocfU2OOUGLIndce6r1M45p1eb1vlUrNSH9P3lPTGkyUNbRSUrsStVbHwrXWwJmRXrgWRahYtT7v9lnhd1Ek6J3C03cBMZkkMHaV1tZ1GXOfw6wjsBDj6O/fUor8kvEY3YffZs32r6PVG6/dtjy1E/JgKw/u1/6aip00btlJzyfvgyBQ1tBK+cp1GC3FSJLEvGeEsctn8U//4XLyoqCmUF2IDElQw+dgDKRPnvL/i5fnmpSXs32hZenrTHY3juqV6C1FJGMxfBMD+DxDSGLh9r4bQa5t0jsMck18Sx1H9r7TiZQEQVD26/f7CxpScnpAZvKTnYqenp6CMuyQes5kjpXZ2VnlvUwxLbMryuqEp0+fxuFwKCRngiAoRYdLIf0+xONxgsGgUn+VCyVApaaOMbUbIcUJrBRC14vjmGfHWaxq0CwE6dA0ApmGsSBJ6IhTHuxlPJg95oUEI2hKs5YvRkVVFdOTl/D7/UqESmZ67e/vz5Cr/zLgj8ZAGmQCiDvuuIMrV65w/vz5rLaPFStW8MMf/pCenh727t1LJBJhz5493HXXXbjdqX7y48ePK9rVfr8/xWR3TXHsT//0T5WHrqKigpGREbZt2wZAvStlmQ/MplgAJUlEEFToNCpmrpzl1PlT6L/zHUW85cqVK8zPz6PT6YjOeZgZvqrw8l/Pg6c815GuE8Qj2TUJVWs255XqFVQqmhrrCFw5SiTHQyHjUsdp6le1AJosg0AURaY9o0xN5BYYMRbZad35jQxvXOPUU1RSgbOqkZ7j7+OfHiPgncRiK8mpQpiORCyKp6+L0YtnEJNJXKUVtLa2IQjZA63FoGVV8xqOjw8qy8LzM5x77yXa7v42pmJH3mvOB0GlUvQb6tZ9DUfldeYyQRCwlVZhK6um99R+poeu3PD+PysElQq3zcIUhQsx1ckoanFpVbVPg1xhdbmAT04PyHl/uZhPXnYjr/QOg/RjX/IEGZuPKkRLABZXOU2b7mBzTTH6JfTu/5DYt28fV65c4Sc/+UnG79nn8/HTn/6URx55JKuwMB1Xr17l5Zdfxmaz8cMf/hCA06dPs2/fPh5//PGC3vfvfvc75ubmcLvd/PjHP1aWd3Z28uabb/KjH/0Iq9WKJEm88847tLe3Mz8/z/e+9z1OnDhBMpnke9/73g1f89jYGM8//zwPPfRQFqNg1md9ET7u8+JfSOCyaLmzwYnLsinv57smArxybpyeqdTYqFYJ3L7Cwfc2VeA0b8u5TTwpcn7PBUJLyAvftrqWvWevs84GAgFMJpNSU/FlShHAH42BDFy8eJHKykqcTietra1cuHCBXbt2ZQ0ogiDQ3NzM2bNnCQaDTE5O8rOf/Yy2tja2bt1KR0cHoijS2NiYUfgiiiLj4+OUlqasyurqai5cuJDmlQs0lJipcRjZ99FxvHPz3L1zOxUOC1LDLn4T9PLqq69SVlamtATKodWqqio8F08Snp/GXd+CwZIK4QW8k4xdOsfcxCCQilREIhGMRiOl5RUUlRTu+5UkEXtFHRNXOvJ+Juif58A7r7H9vkcxmizXwvqpEKdndIijH76dd9tVt92PelFYXn7vqFxBxcp1jPec5/KR91h9x0NYHG5FCVAQVIjJJFdO/J6gdxKVWkNsIZgRem/ddKvynS2GIAisWNnChdPHCAauF/CJyQRzE0MYrbaC6YJ8EASBylUbcVSuyPZwr3VYNGy+i7mJ4S+0pVBrMNGy4xEMVjv958byt3tKEs7AwKfJzHxqyMyYheSHFxdfLidPLxcUyi9HzUoc9etS+1j02XA0wSc94zhFb4ZBsdjIkOsV/hDo6+ujvr4+6/gy8VG+bgIZK1asQK1WMzo6SigUwmw2s2HDBkUU7dFHH825ncfj4cyZMxQXF+NyuTLWXblyhfLycsXJEQSBhx9+mLq6Ot566y1efPFFLBYLq1at+lTXXF5ejlarZXh4eEljoLLYwBMbl89l0Fpu5X88uApvOEYolsRh0mWwFeaCVq3i3mYXb3ZOZv2GINVVsLLEzPqGSg5YLEpxcCAQoLS0VEkRmM2fnxLvp8EfjYFriEaj9Pb2smvXLiClZHj69Gn6+/tpbMytghcMBqmsrOT+++/n3LlzfPzxx1y4kOovlySJoaEhRZhIrVZjNBp57733KC0tpaKigurqaj755BN8Ph82m03Z7+jwEO1H9/PII49Q6bAwNTXFpUuX8Hg8JJNJxsbG0Gq1tLW1sWrVKoUJzO/34fe3M3q5Ha3egJhMkkzEcblc6PV6otGoUjgUDocZHR2jPL/RfO068vfzp2Nmcpw3X/oXqmobcJSUkkwkGRvqY272eoGgzmimvKkNV3UTaq2WaDiUk144HeVNKWMgHl2gc/9vKHZX4ahcgUqtITQ/w/RQj1JUWV2/kqY16ymyOYhGIwz1XqKiJnvgzLw+iar6lVzuyNRJn+zvLpiaWAq2suqCHRaoVLjrmhm/cv5TH+NG0Xz7Aym1S0Hg7iYX712aRpTS6LivTa6mqJcSf99NOaasNijng5eawPPxC3zaIr1EIqEYzNFolJqy+vwdI4JAQm3gg/0fE/blL54UBKGgsbA4OrHcSMZSbbPz8/PMzs7mZPiTjailjAGNRkNjYyM9PT1cvnyZTZs2odFouP322/nggw/Yvn27UosgQ5Ik9u3bh9PpJBKJZKwXRZG+vj5uueWWrGO1tbVRWVnJCy+8QDAYpL+/XymYvhGoVCqqq6sZHh7m9ttvv6FtlwuHSYdj6ZIJBd9eX07vTJjO8UBGhEkAHCYt//udqYhgc3Oz0kEhk1sNDg7y4IMP3tTzvxn4ozFwDXKKQA7dlJeXU1JSQkdHR15jIBAIYLVaUavVbNmyhZaWFv7hH/5BaYuKRqN4PB5uvfVWmpubeemll1Cr1bz66qv86Z/+qWLljoyMKMZAIpHg3XffxeVyMTg4yP79+xUKV0EQqK2tRaVSMTQ0hEaj4dixY0oeTp7wAeLRCBUVFeh0OsbGxojH40pBklx0mIhFiUXC6Az5nwKVSkVobmZZ91ASRUYGrjIycDVrndnmomXHo6g1WsXbVmsLc3ELgoDeZEGrNyrth76p0Qw1QPlzX9v9MDUNq64zIVqs2J0lS3twkpRzAI0EffSfO0zDph0Z4kn5UiqZuxTRGsxLdFhIGD9FGuLTwuosy9BLKC8y8CdtZZwf99M3EyYpSZi1AtbpbpyBQVTcnMJGURQzqtXVajXl9c2461vQWRyASHBmIhW9mhrLO+HLRoXcSZDOQigfQy4+XMz8JxsiOqMZnWmpvLhIsbtSMQbSIwtyGkOtVmcU9smQScBkYrJEIkEsFlMokZeCTKSU7yV7mGNjY8zNzWWs83pTTHp+v19hJJTv1+JnoKWlhZ6eHjo6Oti0KeUNbNy4UYkOPPLIIxmf7+rqYnh4mMcff5w9e/ZkGAMjIyNEIpG8rINOp5Nnn32Wv/u7v2Nubo6f/vSn/PCHP8xwfpaD6upqTp48uWTr7xcFrVrFf93dyNF+L7+/PJMiHdJr2NHk4O6VLizXyI02bNjAmTNnUKvVBAIBJUWwenV+7ZQ/FP5oDFyDnCKQK2QFQWDdunUcOnSISCSiUJjKkIk00otuuru7M4qC5ElEr9dTVlam8BAEg0Fee+01nn76aZxOZ0qW2OGgt7eX9vZ25aGXBzhBEFi7di07d+5EFEXOnDnD8PAwJ0+ezCA7kY0BWRt+YmKC+vp6tm/fjlar5cyZM8zMzKDX63n88cf56KOPmOrvpnJ17h5+SRSJRULoTWZadn4Drc7AQmCeyf5u5j35WcGyIAisuv1+VGmGgHyPlwNJKjwxrV63her6FOtXerV2atvCg4dKrcbnnVXO89pGAEz2dbPgn6Ni1XpspdWAgH9mgngkhKtmZd57Nj1yFXtZzRIdFhJi4osjGiourcpShLQbtexscLKj3oFEinvjxBv7EG+SIZALlWu2ULV6U5pRpcZSUkWzuwpvbzticJaZmRnm5ubQarW4XC60Wi3BYFDRByjEy28wGJRagUQioaQelpLclSEIAlu2bsWwoZlIJKK8FhYWlMia/L/8Nx8ngkqlwmAwYLValdqHdKMi3ahJ/15kA0c+91gsRiAQYGpqCo1GQ1dXl2JkLDZ89uzZk3UeudIckJrIX3/9dUXpsby8nI6ODhwOBzabTYlWvP/++9TX1yvbpXcRXLlyBbPZXJBmWNaEkKWF//Ef/5HHHntMSRtIksTEtW6usiI9xhyqfbW1tRw+fJjp6WmlNusPDY1KYEejkx2N+essysvLQW9hSlfCxxMSLIxRs6JhWZ0bXzT+aAyQnSKQ0dbWxoEDB+jq6mLz5s0Z62TFtakFNc/+yzH2nhwitBCl1FTORruf1bYFXC4ntbW1HDlyhFOnTnHHHXfwxBNP8PLLLzM8PMxrb71HeettqJ3ldM0JBAU7aouDMqOReDzO7Owszc3N3HnnnXi9Xt566y2GhoYUWVHIpH6VeQ+2bNmCwWDg4MGDrFq1iu7uboaGhqiurubuu+/mwIEDvP7664TDYQTV6DWCn3Igs/BQFJNIokT9ph3KOqPVhrOqnumhK1w9tb9AL+R12EprMJhvnGVLEkVC8zMFKX0FQWBV2+aC6/NBFEVi0QjBaIyWnd9ItWYKAoFZD+M955kd7cM/PZ5d+S8IgEBJ7crrrYXX/gZmPfSfPUxt262U1rcU7LCYHekteP03EylmxfxytcL1fz63cyh2V1G1OuWJphuFsodvb9jAufd+SWwhFQmTDVpIydO2trZis9mIxWLMzMwwOzuLz+cjGo1mtCXmQ2whRCTkR2+yFvhdCDRWlWI1FOjMWQS5FXKx8ZDPmAgEAhnr8hk3chGl/IrFYpSUlFBXV6cskyf38fFxTp48yTe/+U30er1iTMhGQ/orHo/j9XoJh8OMj48rstCyENvBgwezzqW/v18RKHrxxRdRqVTKdlqtlueffz5vekQel8rLy7EyNP8VAAAgAElEQVTZbHzyySfs2bOH1tZWTI1bePeKj8lrBcpatcCOBiff21yheNeQatmWI6JfFmNgKYiSxK/OjNFVuiOlkRCWkCQL3YJAfZ+X7Q1fXGRwORCkPwRbxpcMcjXsX/7lX2ZxZ//6178mEokolbcyxsbG+G8//RV7R8uQJEhco5+SRX7WuyLs+5vvYbVamZ+f5/Dhw3R0dCgPr8lVRePWXSBJaap6qe6B0UtnUQU83HLLLQwODiqKYzJyqRDeeuutStXq97//fUZHR3nxxRdJJBI4HA7a2tqIRCL09/crLUkGgwGbzcbk1BTlja2461sxWopJJuJMD1/BbHNhcZTmnNDUAixMDxOYHmNmcpzZKU/e+1vdsoXK1ZtQqW6c5e3ysX05SXlsZTVY7CVotFq23PI1dIvJD9KQS4xHFJNIEpzvOI+jtjlT3fDa+9GLZxjuOpl3v0XuSkpXrEZvLiYeCTM9dBnv+CBIEgZLMevu+U5O6WJJFAnMeug69OaN3IrPhOLSalrufDjvekmSWPDPcf6DVz63c2i+/X5s5XV5DSRJFBm7fJaJnnYl179cyOF8uO6JqtVqxcMNBAIEg0HKGlup33hn3uMHZj0MnPo9FouF4uJiRbLYbrdTVFREUVHRTaUeliSJWCyWYTzkMiS8Xi99fX243W5FBXI5UYn0lyx4ZDQamZmZoaenB6fTyf333698prOzk48//phnn32WhYUFfvGLX7Bx40ba2to4f/48Fy5c4MEHHyQej+Pz+Th27BhNTU1YrdYMYyPd+AiHwznTJDPWFUzYW7NrayQRk7jA1sQlTLrraZrBwUGMRiPNzc03VKeRLg39ReLls2P8tnMy7/r/uruBjVV/eLVCGX80BkiF1oLBIM8880zWuu7ubl5//XWeffbZjCra9s5udv3fJ0lIqizOfRn/+MPNrCuJ0dfXR19fn0K8odEb2fTg9zOocBdj+NxBRnuzeQFMJhMOhwOTyaSoYmk0GkV8SKvV3vBAmgumIgfr73sia7kgQIlZj1mvyZhkZ6c9HP1gb0ZVvozK1Zuoadm6ZK49RVEsKIPDUOdxxnvaMdlcuOtWoTOYEcVUTldvsiiUxoKgwqhV47boUeVgcpQkibGhPpzucoym1D5GBq7Q23OZ+lsKK4Z5uo8jiAkiC2EmhgeUToblwOosY9Vt96EzmhHFJAICgkrFvGeEq6f2U1K7irKGVvQmC4l4lOnBHsavnFc845uNDfd/D725KO9k3Hv6oKITkQ6t3oijqh6NzkA06Gd2rD9vP34hbP760+iM+UlWUsyUA/QcyyZ6WS4MBgNOp5Pq6mpqa2sZGxvj9OnTiKLILbfcwm233cbAXIIx33V1Svl3nFgI0nvifQLz3oIRBlkN0Wq1YrfbcblcOJ1OhXnParUuW0Njufjoo484efIk/+k//aeMfctRidOnT3PkyBG++93vFoxKLDY48kFOXYiiSGVlpWJARCIRJfI4Pj5OV1cXTzzxBEVFRYrBsbhO4eDBg3R0dPCTn/xEMRamfSH+6sNxpHw8HkisNwdp1c8rRsXk5CShUEiJDsmvpSBHMZZT1Lncgs9cbavpCEYTPLPnguIkZl8f1DtN/M3DzUue/xeFr3yaIF+KQMaqVaswGAx0dHRkfGbv6TFiYn5rU0Div//6GN9v8FBSUkJTUxNOpxODwcBc0gA5+t5liKKIubQOrhkDaq0ed90qbGU118LYkwz1XyQejyNJUkaBVr5CJTkUm8tIMJlMVFdX4/P5lOiCtaQ8Z769zGpAr8nMywPYnSXsfvS7vPfaL4hFMweZuYkhatfm7tmFlEcW9s8RnJtCo9Gm6hIGLhENB2jYvJPS+jWpiT91UOW46Q/jQjyJJxChvChb0lgQBM4d/4jAvBeNVkcymUASReo3bs/Koyv3RKfGadaxYvvdyrJoZIFznxyiv6cr77WkIzDr4ey7v8RRuQKzvSTVsjg+SCToo2XnNzDbnEDqerR6I+VNbZTUNdN18A0WAvNL7r8QBEGFvaIuRf8sisxNDHH56Hup2g+9QTmuHAXx9HblNARq1m6jctUGuMZgp1KpSMSi9J05xOzojXUcLKkTIUlIy8zt599FihhnfHycEydOAKmoQVlZGdFolO7ubkpK3KwtczAdFhmb8hKPLrCxeQVlRS4e2PTvgdRz5Pf78fl8zM7OMj09jdfrxefzEQwGCQQC+P1+xsbGcp6HXq/HbDYr0QWXy4XNZqOoqIji4mJMptzCVfnQ39/PihUrsn6rGo0Gi8WiCCzlK3bOBVmKeOfOnaxcuVIxFDo6Oujp6SGRSNDY2IjJZCISiSiFzOfOncuISixWY10clZBJd373u98puhCdAQMUEAWTEBgUHfy3R65HcS5fvsyrr77KU089pRQgyumhXOmQfCmSxVGL+fn5rHXL0cZY3Laa/hrDTkJ05d1WAvpmw8wEY7gshankvyh85Y2BxV0Ei6HRaGhpaaGzs5OdO3cqD2P3iF9Rq8oFCYGpSOpLTucL12g0rLrtfooKdHGrVCos9lRezOJws2b7w4r2gCAIFJdWUdm8kdHOI7CQGpxkoRAZMmWq/KOWawwEQaChoYHa2lqOHTtGIpHAZrOxbt06Xnvttevb5zg/o1atSBRnn7Mao8lM05p1dLdnhtbD8zPMT45QXFKZl9woMOth9NIZYuGgsry6dSvuFauVe7IUogmRSELMKEASRZHx4X4C86lq60SaiJDJVpJzv3KUYTF0egO33vUAkiQycCW/ZKrBaKa6vgmd3kBgfo7Rwd6MiXPFhjswFzvJJVWt1upo2rabzg9/s+T15oPF4ab59geUiAQIVLdswT89TtfB3+KsqsdVsxK1RkvYN4unt4v5yZGs/VS3bKWyeWMWm59aq2Plrfdy8eO38U3mJpPKhdmxfiqa1uWNEAkqVSrNsgTkrpjFRYFms1mpuk83ejUaDT6fD6/Xy5kzZ5R1RUVFCIJALBajxngvKrebkpISpcDP6XTidDqpr6/POgdJkhTqXbnlTy58lFvIvF4vXq+XgYGBnNcgRxdsNhtOpxO73a5EF4qLi5Wi5UgkwujoaMF2tHg8vmRb4WK0trYyOTlJf38/27dvV5ZXV1fT09NDUVER3/3ud5Xv/R/+4R9oa2tj165dxGIx/uZv/obt27fT0tJSMMUxPz+PSqViYmJCWd5naECy1BY0COYW4oiShOra8WtqUrohw8PDijEgCILSNXEz+/ZFUVzSkChkbPijkcKU39ewkPji6L6XwlfeGLh48SJVVVUFdbbXr1/P2bNnGRwcvD4wiMtoFRJSnrXFYsHtdlNdXY3X6yWaiLMUHayYTKDW6liz/eupdrwMqlUVqCSq1t3B+Q/2KHK56cin/CZzm/f2porX1Go14+PjGYYAwPzUaJbnYtapC1fnXyPxWWwMAFw5/gGr73gIq7MsFTK/VoQnU6mW1q+mtH4Nk/3dDJw7gqBSUbFy/Q3n+oKROEZt+nmmBn53RTVT45kTnpiIZVyPfCSH6brhlXl5Ke94/bYdDF69lJNFb/22O2lu23ztsyIqlZpoZIHjh/YxNtiLSq3BvWJ13glRNgTN9hJCc4WFVHJBb7Ky5s5HUF/jhkiv07A6y1i57R469/+G8Z7zBVNJaq2OyuYNecmaJFGkpuUWLtyAMeDpvUBZQysqyLp+URSJhYPMji5dVCnz2Mvfh2wchEIhxXu1Wq3U1dVhNBpJJBKKFK58zXq9HpVKpYTP33rrLeXa5DqB9JdMq5t+D6xWK1arlaqqqpznGY1G8fl8isGQXvQod0eEw2EmJ3PnldVqNWazGY0mlZKbmZnh/PnzirFQVFSkGACxWEypmVgumpub2b9/P8PDwwSDQYUnXxZACoVCCs2wHCmR2woHBgYQRZHW1taCrIUA/+t//S9aWloUxVaA19rHeb3Dk9eZAlBLCQ5/9BGrVq2ivLwck8lESUkJQ0NDtLW13dC13ijSoxufBl0TAbrez26xTodWLeAyfzmiAvAVNwaWShHIkFkJz58/rxgDzY4E+6T8E5VaBZurdNjtdubn55W6AQBXTQRnVWHJzdIiPV+752FiWn3eARlJoLxxLQPtR5a61LxY3JokIxKYT6n4lVYrA3eufPzic9Lpcz88iViUCwfeoLi0mvLGtdgr6pR16YNsaX1LKnc81l9QZTEXJEkkFFrAlebVq1RqKmpWUFXXyPkThzMMldnRfopLqzFq1RQbtTlbmnJdo8lsoaS8Ksu4WH/Ldlav25LmSaf2p9Mb2H7voxx4ew/BUHhZ12W2uT6VMVDe1IZarckbgbE43NjKavBPjRY0BuzldQXJpgSVCqurDJ3RvOwah2gowKWP36H5aw+i1uqUllGVSk005Ofix+8o7JFqtRq9Xk84HFbeRyKRjN9rumrg4ihBIBBQCMAAbDabkqrT6XQsLCwwNTNLGAM6UxHJRAzfxBCqZAStVsv09DQDAwNKXl2j0eByubKMBDm6kAt6vV75XC6IokggEFCMhbm5OWZnZ/F6vfj9fkKhkFILBChpj3TodP8/ee8dHNed3Xt+bkd0QGqkRs6JIAECIEGQBMUgUiQlcZQojWc08rMnvH1jz7Nfjev5ef22try7tVVTdnnX5Vnb4/GOPfIES5NEjahEZYogEUgi55y6EbvRAR3Q3ffuH817iSYCwZl5Gq11qlgku/uGvvf273d+53yDDrPZTCgUIhwOc+3atZjqgqyDslXIlY+VlRUGBgY4ePAgLpeLjz/+mAMHDtDd3c3169c5e/asYsErJwPDw8NYLJb7JgKiKOJ2uzctto4VWfhJ5/agYySRAo2HtrabXL16lfj4eMUcabf+Br/NqLKayYjXseRd3zLhUQnwULFlV2POJxWf6WTgfi0COQRBYP/+/Xz00UcEg0H0ej1Z+jUKko1MOSOKIcbdzwMIfOs/niHinOTjjz/G7/dTUFCARqNhaXk5SnEymLfW2pdEhOAK+oRMQpEdcAkqFUmZ+XBPMiALo8hWoxqNhlAoRElJCRkZGXR1dREOhyktLcVut7O8vLWo0EjrO1QdfwJTchqSKBKOSLDDPCaKIm7X1s6IcrgWZsgu3x/Dooj5ToKAtbgK78r2KNydImGDJKoc8up4f+NxFufnCPp95BSWotHqMWsgPSHugQGX+jjDpv/LFYF7Q17B7jt4lOb339rV/u/bX98mUnJLdgRqimKElJzi++pEqLXaXQm8qDU6YHMysJH+ujHcy3ZuvvZ9UvNKiU+xIkkiq/ZpHPbJGJpqJBJRWAF3zz26P4vFwtra2pbWu8p5qdUxNsMej4fR0VH6+vqQJImMwkqK6o+TcsepUyWoyK6oI+RZYbz9PVbu/CZkRoLBYEAQBOx2OwMDAwo2Z+OEv/HPbnjkKpWKxMREEhMTlRL4xpAkCb/fzz/8wz+QmZlJcXGxkjCsrq7i8XgIBoOK4BDAe+9tdgbd2I6wWCwxyUJJSQkOh4O+vj4OHjzIlStXiIuL4+GHH8ZgMHD9+nWampqUY1gsFiRJYmRkhKqqqvt+R6/XGwX93pMMZCbGcboshXeHNys9qgRQSSJx9i4effRRzGYzQ0NDDA0NKe3Qf/u3f6OqqorS0lIMBsOmffy2QxAE/vihQv7irWHCohSTEKgESDPr+GL97mWTP4n4TCcDu2kRyCFrDvT19VFXV8fampf/qT6Ov2kOseDXoVELSKJERJLQazT8r5/L5dob/4bb7aampobjx4/HqG55/EFuTbkISdxBmoOgUhNeDzLY/AaeZTsVTY+SnFmw44C8VW9/o8a7rPkuCALTM7OgM5Fbsgeve5W+vv4d0fHh9SDd7/0MS3YRafllrJsTSCzcPGjJoVKpGO3fWV5XrdGSZN1+H/K30hlNCtVytyEIKhLiNiuuySGKEY6evoDJHB+dWDYkJA/ajlhzx7ImcgpLd5yEVSoV1ux8pPA6freTuPikHc/zgUSdNsT9qg4C0crGViE7aXq9XgIe132viRgJE/R7t35vB2tmMRJmcWKAxYkBhT9/r16FTN8Lh8ObEoONk5+M/paV/+S4t1Kw0R43IS2LogMnAdnz4O7qTGO2sPehxylOEgiFQiwuLjI/P4/dbmdpaUlJLlJSUoiPj1fYO9PT03R0dCjfW24NbvyTlpb2QKV8QRDw+/14vV4OHDhAWVnZps+Ew2Hcbjevvvoqfr+fPXv24HA4cDqdrK6uKgZpfr9foRRvFVNTU3z729/G4XBQWlpKd3e3wp766KOPSExMRKvVYjabmZ+fx+PxbKs6uDFkAbWtxtivHc7DoFXz5sBSDOo+L9nAHxzJpuPqDL/4xS84fPgwjzzyCGfPnmVsbIwf/ehHLC8v88orryiqrOXl5ZSXl5OcvLO8+ScZZekmvnWhgu++38egCxBUGLQqHi5L5ZlqK/Fxn67p99N1Np9g7LZFIEdCQgJlVdVMroYRp1bJqTnGqn2Sb/+OFX3WPi63z+D2+lga7+RQjoBzcJzKykqef/55xQZ5Y8Qb9BwrTeGffvAypfvqyczKxqCKEHCuoK8oZnZWj8+5RHJmPtthC0RRxLUURTPLg2IkEtmSMlRVd5i99Y2oVGoFFR4M+Gn98K0t5YPlkESRlZlRRSAndLCJfQeObLYNvkPfmxodjNlepVKTV1xOZm6UX+5YWUZmD257TEkCKVrGT8ku2nKS3WrVmmLSoVHvNCGrlYnwV6V+iaKIy7mCYzm2cqHV6na1ktZodcz036SscWtKoyRJLIz1/coGRj7XCvEp1u0TEwHU9+Bd1Go1kUiEUCikeFe4Fme3rV7BHaXFqeEdVRTlikh8fLwiPLPxdYiC49LS0jAajSwsLCjP7m7Q3PLndiP1uzFyKuuV38BW5xzSGPm3n/2YSGCNnJwccnJy2Lt3LxkZGbjdbiU5mJ+fZ3Z2VjlXGQgo95mDwSBDQ0Mx5f3k5ORNSUJKSsq2pfyxsTFUKhUFBQVbvq/RaLBYLOh0OoxGIydOnIh5X5Ik1tbWFOyC3JJwOBysrq7idrsVep6cZI2OjjIycndMaG9vV6SX//Vf/1WhSDscDiRJUqoMWyU6OyUDapXAf2jI4ekaK11zboJhkfxkA8WpUaZF4dNPk52dzZUrV7Db7Vy8eJGSkpLoWFxWxpEjRxgaGmJ4eJh3332Xt99+m/T0dMrKyqioqCArK+u3Ll2cl2ygOjJOPmt8/gsvYNKpUd+n3frbis9sMrDbFoEcE8s+UquORWlavjCWrEJScoqJU0NDoYWihHXee+895lI86FUmfu+rXyU7e2cVM5vNxsLUCI89fIzcTHM0y9emYYjTk5aWxqrbS0CSojJG25Sf50e6gdhqwL1RVddITUNTzHYQ7WUfO/sk71/+CfOzu+vDdbdfw+tepaq2kYTkaP/Q71tjuOc2fZ2tMeX2hCQLpy48h8mcoKDa80sEJAkWvAEC27jmqVQq/G4nCxP9GBNTMMTfRQ7DZhMbvVogyajDqLv/4/zrDA6iKCKJIm0fvb3pPY/Led8EIxwKEfCtseYZRhdnJL866qgYlamKahAsTQ0x2dX8K5+jfbRnWydKOcnqa78a87q8Yr53Ah5pfTcqVCTGAv4kUSTo8zLds7mHLUdCQoJi3+31eklKSmJtbU2hwyYmJhIMBgkEAiwtLSEIgoJMb21tjVllb4zU1NSYCUx+FmSQ3f1kh1Vq9X0rU5IokpFfhm9hAq/XS2trK1evRq9ZWloaOTk55Obm0tjYSHJyMisrK0pyMD8/z+joqNLCMJvNFBcXx1QRXC4XHR0dioqpSqXaEo+QlJTE2NgYeXl5960orK+vb9makAHMZrN52/FIthuWJIljx44BxCQMsgS0JElMTk4q273++usx+9HpdCQkJCgCTYmJiSwsLKDVavH7/Wg0mi0Fm+L1GpqKNqvxCYJAY2MjVquVn/3sZ/zjP/4jzz33HLl5+bTPeGi9Ps+8O454cx1NT5wkV3AyOTrMrVu3uHbtGmazWUkMCgsLf6NiUbsN+ZodOHCAhE9ZJeDe+MyKDr300kusra1tUhbcKhbcQbrnPNu8K7HudXHzjR+RlZVFamoqQ0ND/Nf/+l9jsn1ZX1zmLrvdbgYGBlhcXCQhIQGfz7dJQEMQBJKseZQfOYcgqJQBWRbnGb/1IQvj21PcILoSfeY//CGabWhHoijiWJrn7V/8EICUjExKKmuIT0wi4PcxOTLA3OTo1voEpni0Oi3+tSjiWKZ0RSIR1BoNn/vC14gzmrb0lJeAuVX/JlEOSRQJrQe49dqLSJKIWqMlo6iK3L0NqNSbrWNzkww7VgPuPe6DJgMbt7HPTNLZehXH0mbgkyAIPPnC14kzGLdMCkRRZKSvk5vX3lVe08YZSS+oQG9KILweYGlqGL/bsWnbB43SQ2dIzStVzks+viAI6H0LfPj6z3fcfmO/35iUSu6eg1iyCxAEFZFwiMWJAWb62wkHt65eyAqZMnhWkiQMBgN+vx+j0Yjf71eep8LCQmZnZ5VEVq1W88gjj1BaWsrly5cVCdyNkZqaSn19PXNzcwwODsYkMSqVSuHwr62tbUoo1Fodh5762o7fXxJF1ubHWRrrZmFhAVEUiYuLIzk5GbVazdramgKoMxgMSvUgNzeX7OxstFotq6urSoIg/y1P/nFxcVitVlJSUpQJ3Ofzsbi4yOLiopJI6HQ6QqEQmZmZ7Nu3T0kSZNT/xvjud79LVlYWjz/++I7fbasYGBhQ2ER/8id/smn/V65c4caNG+zZs4fCwkJef/11Bf/kdDpxuVybEkm1Wq14LGwMg8FAUlKSormwkRmRmJiI2Wze8vfjdrv56U9/is0+z3L+Q8yFTTHUbgFIj9fxfzxaRlKchpmZGQVn4HA40Gq1lJSUUFZWRllZ2SfmDbCwsMB3vvMdfvd3f5fCwsJP5Ji/anwmk4FgMMhf/dVf8fDDD3P48OH7fr51YhV3YOeyZZx7GpM2Srnp7e0lKSmJSCRCMBhUVkMPGjLf2ZyUgiW3DENyBjq9HlXIh1HyoRHXuXLlCqdPn8ZkMnH79m1mZmaUwVwQBIor9nLoxPn7HuuVf/0HquobKauqRRQjqFRqRZBnecHG+5d/SmgLjwDZvW3jiky4QzFsPHl+28lXkiRc/hBO/91qhiSKSEgMXL0c40xoTExh/9nf2XxsAfItu+MWbyVJfL+ITuAdjA50E/D7CPh2Rs1nZOdx8rFnFarbxv143au8/YsfbhJk+h8RKTnFFNQcRW+KgiklSSLgdTHd1czKLnj8RqNxE3hPpdGi1mgx6nV4PG5qa2sVCtpWIZtmybS0ja2rrKwsIpGIQqnTarUUFRUxPDy86XdisVhQq9U4nc5dtw6Uc1apSEpKQq/Xs7q6it/vR6fTUfvoC1HHzB2eBVkGW6azmc1mPB4Pc3NzUQdEnU6xBl9fX2dpaYn19XUEQSAjI0NJDnJzc0lKiuJDPB5PTHIwPz+vJBUajYaMjAwyMjJITk5Go9GwuLhIR0cHKSkprK6uKr8xo9G4qYpw6dIlysrKOHv27ANdI4BLly7R1dWFIAicO3eOhoaGmPddLhd/8zd/Q2lpKVVVVVy6dGlT0hAIBGLaEPK/R0dHFdzHvfdG1orYeM/lSkZSUpKSJGxMFP7542G6/Ylb3juVABUZZv7383exFTIlU04MZmejlOnc3FwFZ3A/RgSAOxCmecKJ07dOskHL0SLLrlb6LS0tvPvuu/y3//bfHlgH4pOOT3fd4n9QPEiLICJK900EJFFkeNrObP9N5bWNIkCyAJBGo1G0wfV6PdPT0xQVFVFSUqJky7LYyL3Z8e3bt7l8+SX+/M//XCl3Xbt2Da1WS0NDA4ODg8zMzNDU1MSJEyeYn59nbm4OX1jY1Yq4bF8tpXv2A3fR9/I5WNKsNJ48z8dvX4rZZqOFbMz1kCSy8ot2FN0QBAG9KkIoGECrj0OSRBy2SWYHbm6i1CVn5m9pHSxK91/tywONnODsNkRRJBxap7+jDd/adlWh2FiYm+bKKz9iX/1hsgtKov3n9XXGBrvpuXn9E0kEssprKag5olD05IgzJ5JWtIcV+9R9zaXuTQQAxHAIKRJmLRytXs3NzZGdnR2jwLexohAMBhVPALnfLN8rme8vvxYKhRgaGtryXJxOJ1arlaqqKkKhEAsLC6ysbEagFxQU8MgjjzA/P09bWxvz8/PRqtedPnhycjK1tbWoVCoWZ4ZJKdq3JRJHkkRCAT/OO0mTz+eLobIlJydjtVoxGAysrq4yMzOjCP5kZ2djMkXlrsfHxxUfe5PJRG5urpIgHD58WJkYAoFATIIwMzOjlOwh+jvJzs6mvr4ek8mEJEk4nU6WlpYYGxujvb1d+WxHRwcrKysxSUJqauqO5fG5uTm6urrIzs5mcXGR/v7+TcmAXLWZnJxEpVKRlZW1qXogc/IzMjJiXv/Od75Dbm4u586dU6qiGxOG1dVVBbsgJwayj4RsUiW/LiEwkP1I1BhlixAl6J/3MrrgoiTjrvtsWloaaWlpNDU14fV6GR4eZmhoiA8++IB33nmH1NRUJTHIycnZhIW61LPASx12RFFCpRIQRYnvt8/x+dpMntqXseP4Mzk5SU5Ozqc+EYDPaDLwICyC3a7oLRYL6XV1pKamMjExgd1u5xvf+AZ6/WYlO7jrEf7EE0+QkHB/Rz+Hw0FiYmLMD3twcJCSkhJmZma4dOkSNTU1nDp1ShlAsrOzWVxx4d6BnghRGlth2d5t31epVOQWlmKKT2Rtg/fATohxlUp9X/UtKRym5dV/ZiaQxKRbTTgSIc8UoCQ+muXLIahU20o0eYNhzPrN7YONsepYZn52ktKq/VEO/rbVChFJlFCp1fjXvHz01iu7TgTkcCzN89Fbr6DR6tBqdQQDvh2v028y9KYEBYewlVW0JauQ1NxSlibTcmUAACAASURBVKeHt93HxqoSxD7/kiSRnp7OysoK8/Pzm57te7/nvX19uVoAd6sP6enpiKIYQ2+trKxEr9fT2RkVRrLb7Xg8Hp555hkKCgpYWVlRcAVytWBycpLvfve7JCQkcOrUKfLy8uju7ubmzZt4vV6cTifXr18HICs7m4y8EiIaQ/S5Ur5rVPK6KFFAdfAA/f39SmlfDqfTqazmVSoV6enp5OTkoNPpWFpaYmpqimAwiFqtVsYYQRBwu9189NFHhEIhVCoVmZmZSnKQk5MTAxCUWQw/+clP0Gg0LC8vx9ijJycnk5mZSU1NDenp6Wg0Gl5++WWsViuSJNHT06PoEwiCQEpKyqZKQnJyMoIg8MYbb2C1Wjly5Ag//elPmZqawuPxxFizywlVJBJhdHRUwRXsJlwuF3v37kWtVpOcnLwt2l+SJHw+3yago9vtVhKG1ZCKiPo+bAxJ4ts/+AWZ4YVNLQj57/z8fPbt24ckSYyPjzM0NERHRwfNzc2YTCbKysooLy+nqKiI98dW+dGtu66lkTt9iYgo8eNbNoxaNecqNwPEIfp7mJyc3FX1+dMQn7lk4EFZBGqVgFGnxre+PTBJUKnYV15ESU70pqenp/PDH/6Q1dXVTZmyHGNjY6Slpe0qEYDoD1IW/ACUkmVZWRkvv/wyRUVFXLhwYVNW++7br1PV+DAmczxbTaeiGME2PU5O4c40IUEQyMjOY3ywZ8fPKee7OE92fvGO9LlZm53vDmXhDWtQ3VEK7HAkkKANczF/gRR9dKD3rixsC85b9Ycw6qLbb3UsSZJIsqSQmJyi5CYb/QiiE5XEyuI8tukJVCqB5cV5bFNjmxLBkCjQt2qix2nGG1YTrw1TnbzGnkQv95omhkPrMdLHn0RkFFbuWI2RRBFryd4dkwF5Qt8uCbbb7WRmZrK8vKxMeveWgDUaDaIoodbpQYwgiRHC4TDBYJC6ujr6+vrw+XyYzWaFrpeUlEQ4HMbr9TIwMIBOp+PChQvKKs7r9fLiiy+SnJzMxYsXefTRRzl58iS3b9+mpaUFr9erTLqXLl1CpVJRXV3N17/+dRwOB52dnXR3dxMKhbDNzWG/9CLWkipyK+rQxJkACd/SLMO3rnHd4yQvL48jR45QXFzM0tISra2t2Gy2mO8qiqJS7odoj1+e4FUqFfPz80xMTEStwgWBzMxMUlNTFUDd8PAwra1REayEhISY5EAGYD7xxBPs37+fSCTC8vJyTBWhubk5RmvB5/NRUVFBXV0dFotFAWfKWITW1laFLaLRaDCZTLhcLg4cOBBjTDQwMBBTHXA4HGg0GoqLixkaGtqW2XBvyADR3Sy6BEHAZDJhMpnIytoaADu94uWbv9z+2b2zI+rq6ijRexVsls1mY3BwcFPFy2g0KklCVVVU7MzlcjE2NkZHRwcqtYbB7DPsNE3+tNPO6fJUNFswBObn5wkGg7u+Xr/t+MwlAw/KIhAEgXyLgYH5rfnUSBJBn4cf/eQHVFdXc/LkSfLz89HpdAwNDW2ZDEiSxNjYGHv3br8avzecTmcMGnhoaAhBEGhtbSU1NZVnn312Ez1pcHCQkZER6g42IopmQNrUyw74fFh2YZSxVTlepVKRkpKicKE3xuhgN3u3oCDe3VbN//3WFGvh6DmLGxIVT0jNy5MZfKXEhl4tsbowQ8DrivrQ35MUhEUJm8tHPEGSku8mSxtlaiF2flxZtJOSnhnlca95Geq5xWD3rR01FwIRFS9NZLAUlMt9At6wGrtfT5fDzHMFC+jVvz34jUrWb9hJk0KlwhC/Mw9brVaj1Wq3dbSTJImmpiasVit/93d/h8lkilHJ0+jiyK06SHphJWqNNtr+mZtkebwH56KN27dvU1hYyNzcnDKBp6amsry8TE1NDcnJyVy9epX19XVee+01MjMz+d3f/V0++OADZmZmcDqd/NM//RPp6elcvHiRo0eP0tjYSH9/Pzdu3MButyuTWmdnJ52dnWRkZHD+/HnOnTvHyMgIHR0djI6OYh/pwT4STW61Wi1lZWV84dmnWF5eZnBwkPfee48rV66QmZlJRUUFjz/+OJIk0dXVRW9vbwxdEqKVkPHxcQX0aDabKSoqIjc3N+qRYbMxMTGhbJeRkUFtbS0Gg4H19XUWFxd59913iUQiynM7NzeHXq8nNzdXwRTU1NQo98LpdGKz2fj5z3+OIAjcvn1bkWSWgYpWq5W6ujqsVitxcXEsLS1hs9n46KOPMBgMdHV1KS0NiLoMLi0tKVWExcVFkpOTldbA1NQU+fn5Oz5HsDOt8FeJ7GQTKSYtK2s7UEkliaBtiPRDtRw5ciRm7JEllTe2K+T/T05O4nK5YkDcHk0CwftMka5AmOFFL3us8Zvem5ycRKPR3JdV9mmJzxyA8EFYBHJIksTAvJe51WDMa4IgoFML1ObGM9zXzUcffYTP5+PAgQOsrq7i9Xr52tc2I5dlhOmXvvQliot3liWWj/Wtb32L48ePc+TIEQBefPFFZmdnSUhI4Mtf/vImk45gMMjf//3fY7VaycrKort3gH0Hjyqr9Ug4zORIP51tH7OnsoLCfYeJM+yMsH3t3/5f3Kt30e6CICiDhSRJ6OMMFFfsI7ugBJVKRSDgJyu3kGgScmfSv9O7v/xBG//Lz8fZ3p9B4mGrk7qU6MBpTEyh6sSTaLQ6JSGQcQTLM6MMt1whPjGZ3IISag+f2PY7iKLI/OwUH731C9RqNaFdWKACXJ5NYdBl2qQ2CVGHyr1JXs5l//pMgF8lDAnJVB1/Am1c9P7t1DIJeF3cfuOHO+5vow7AVqHT6Th//jwLCwu0tbXR0NBAS0sLGn0c1Q9f3JS0SXeUACfa3mFpLqppr1arKSwsVDwySkpKmJqawmQycebMGdrb22NobAcPHqS6uppXX301pqWQk5PD008/TXJyMpIkMTMzw40bNxgcHNykgqjX6zly5AhHjx4lGAzS29vL7du3N3kDGI1GqqqqaGxsVBQHR0ZGWF9fJyUlhYqKCiorK0lJSWFsbIybN28yMzNzX1qjxWKhrKyMnJwcgsEgMzMzTE1NKW2H1NRU8vLySEhIYGBggNXVVfR6vZJsJSUlxWAPMjIyFH+Fb33rWzzzzDPs3bt3E1DRbrcrGCYZqBgKhVhZWeHzn/88BQUFeL1eWlpaaGtrA6KiSk6nU7l+Go1GUTMNh8M8//zzZGVl7dgLHxkZ4cc//jH/5b/8l99YQvBm/yLfa93GD0MSSQk7qGcSu92OxWKhoaGB/fv3b9uuvTcCgYCSLHTMufnJxP0Bx39+upi63M3f78c//jGRSIQXXnhhV8f+bcdnqjLwoC0COQRBoNJqJj1ez4zTz9yigzidluJMC9lJceg0Kg4cOEB1dTWtra2KG6Bc2pOVvOQYHR1Fo9HsKruGqGHI+vq60iaQM1mdTseXvvSlLd26PvzwQ3w+H8XFxbz5ZtQf/sZ7lykrr2BiYpLc3GwGB6KWtbdv3SIsxLH3wJEtJxJRFFmwTSuJgCW7kKyy/VE5WSQsC7P4FmdoOHocrU7HRgMiQRBYmreRkJgc5dHbZxnsucXffbwO7FyRGPEYlGTA51qh68pLWEv2kZpXilqjw+92MD/Wy/LMKEgSnlUHWp1uR7CgSqUiM7cgSmHcpeSvN6TaNhGAqENln8vM8YxVDJpPBh8gh6BSs+ehz6HVG+4LEpWFgu4X91sfrK+v8+qrr0aPLwh0d3dz8OBBVkTjltUbQaUCSSSn+iiLs+MKdmBpaYnPfe5zvPnmm4yOjpKRkYFGo+GnP/0pR44c4cCBA1y+fJlAIEB7eztdXV089thjJCYm8vOf/xyPx8Ps7Cx/+7d/S1FREU8++SR5eXnk5eXhcDhicAXypPnBBx/w4YcfUlRUxPnz52loaGB5eZmuri46OzsVA6H29nba29tJSkqitraWxx57jJmZGQYGBrh9+zbNzc0kJCRQUVHB8ePHyc3NZWVlhZ6eHrq7u2OqJXI4HA5FgEjGDdTX15OVlYXX62VqaoqpqSkl2dHr9RQVFZGWloZarcbhcDA3N0dfXx+iKCqgRdn7QL5vsoHSRoVAv9+vtDQmJycZHo4+Bz/+8Y9RqVSkpaXFjFO1tbU0NjayvLzMD37wA8xms6IZEAqF+P73vw+wpalTSkoKKpUKlyuqYrkRf/DrxrnKNGzuIG8OLCHcUeiQKYbJqiAZ8+34Ekw8//zzdHZ28vbbb/P++++zf/9+Ghoa7ssckIGQ6enpJFqD/GSi777nlJ202Y8lEokwNTVFU1PTFlt8OkP9F3/xF3/x2z6JTyr6+/vp7+/nwoULD+xGJQhR7ECaScPL3/t/qCvLo7IoN0ZNSq1Wk5+fT11dHYFAAJvNRmdnJzqdjszMTKX09+GHH2KxWNi/f/+ujj0/P09nZycPPfQQcXFxvPjii6ytrfH5z39+yxLUwsICr776KnV1dXz8cdS3QK/Xc/bsWZqvXWN9PYjP51NQwgcOHKC0KB/b/BKJySnKJC4PLjq1iqpCKznZWXgEM0V1x9EZTAgqFYKgwmBKYO+eyjurB5UyKckocqM5nnd/+RK3mt9nanSQNY+LWyvx+CI75aICRk2E6uS7dL5IOIRrcRb7SDe2oQ4WJwfxuWJX45m5haRlZO0oDSwIAr23buwaHDrji2PAtbWErxwSAgXmAEm6B6O//bqRllcadUHcRSIQXg8yevN9NCph21Xs8ePHCYVCm0rgO0UoFGJ+YZGyxkdQbaOkJwgCGp2edY+DcNBHUlKSYu/71FNPsbCwwNLSEsFgkOrqam7dusXy8jIXL15U7G8jkQiDg4MsLCzw7LPPUlRUxOjoKJFIBKfTyY0bN1hcXKSoqIiEhARKS0s5ePAgBoOBhYUFxdlP/nxbWxsdHR2kpaXR2NjI4cOHyc/PRxAElpeXo220QIDJyUmam5tZXFyksrKSp556SjEsGxwcpK2tjZs3b+L3+ykuLubcuXMcPXqUzMxMAoEAHo9nS8aNx+NhfHycrq4uxsbGiIuLo76+nurqavr7+ykpKWFlZYXu7m5GR0dxu91YrVZqa2vZt28fVqsVv9/PyMgIoVCIgYEBent7sdvtrK2todFoFM0FrVZLcnIyOTk53L59G7VazR/90R9RUVFBZmam8p3l+z4+Pk5vby/Ly8vYbDZSUlLweDx885vfVACZZ8+exWAw4Ha7GR0dpauri/b2dpqbm+nv71fUGTMyMhSzqV9XEVAQBOpyEqnLTcBmsxHwuqkvzuSL9Vl87Vgpfq+biYkJRkZGePbZZzly5AgqlYquri6am5ux2WwYDAYFQLlTmPQahha9LHnX2WqkUAmwLyuex/ZsNqKy2WzcvHmTU6dO7RoX9tuOz1Qy8MEHH2AwGH4tdKfb7aa1tZWDBw/GAPo2htx/HBsbQxRF+vv76e7uxmg0kpSUxJtvvsnBgwe3tT69NyYmJhgaGuLMmTO8/vrrjI2NYbFYOH9+s36AJEm8/PLLaDQapqamEEURvV7P448/zmuvvaZ8ZqNaocvlorOzk6mxQZzLCyRbLNH+2qoDHUHWXYt0dtxmeMpGVlUjEFuKjo/TYtKpd0Tpa7W6GNnjeb+epYCW7doEAhLF8QGK4/1bvm9Js1JRc4C8ojLikyx4XE4i4TBanZ6C0u3xIJIksupYZri3Y9vP3BuudQ3990kGAPYle0nU/Xr+5A86WGaV78eQYLnvdn63k4GPLxP0eXYsZ8to8gcNvSmerPKdk1tJklhdshH2ufD7/WRnZ+NwOOjv7+fMmTMYjUbm5uaYn59n//79uFwubty4QWVlJadOnWJqakrBp9y8eROj0cgXvvAFEhISmJycVFgJzc3NuFwuCgsLiYuLIzc3l0OHDpGWlobT6cTj8aDX6xFFkWAwyODgINeuXcPtdlNdXc3evXtpbGwkLS2N9fV1pYy/trbG8PAw165dY2Vlhf379/Poo49SVlaGRqNhfHyctrY2WltblYrgsWPHOHHiBHv27MFoNLK6urqlwVIkEsHhcDA0NER/f1RILCsri4aGBk6fPk1hYSF6vV5ZGAwMDLCwsEBSUhKFhYXMzMxw/PhxTCYTNpuNjo4O2tvbaWlpYXJyEofDQSQSYXp6mtbWVp5++mnFdTErK4vy8nLq6+vR6/WKu2pFRQUrKyuKs6KMl1Cr1SwvL2M0GmlqaqKhoYGjR49y8OBBSkpKsFqtqNVq7HY7wWCQnp4eWltbuXHjBsPDw8zNzbG6ukooFEKn0z2w9TJEbcbz4taZvv46X32sidKsFFSCQFlZGWq1mpGREW7evElFRQX79+/n0KFDWCwWxsfHuXHjBn19fQrtcDspaIjqFnw4vEQoIsbicSSROJXE/3ymDLN+86Kmq6uLubk5zp079ytLn3/S8ZlJBoLBIJcvX+bQoUPk5ub+yvtZWlqio6ODo0ePblmev/eYQ0NDfOUrX2FlZYVr167R29uL3+/nkUceue/2cgwMDOBwOAgGg7S3t6PRaGhoaFDaDKGISCAkEhYleru7uHmzHVEUCYVC6PV6HnnkEV599VXFxU0QBGWFBCh0p6ysLOZmphDCfq5/+A6TI/30dt2mv7+ftbU1sioPoNYbN008iQYtOrVq2wlJEFTEGUwMdLUrr5m1Ebqd8aTEx/FMUxGnqrMpzkxkdtlLYD0qXXwuewXTPWV3tUbDQ2efpP7ISVLSrSSnZpCVV0BF9UH8a16mxoYorqxGrdmaQigIAp2tV3Eub2/acm8YNRFurcTHgBzvDZ1K5KTVuR0FesewpFmpbzrF0Ycfp7qhiYLSSoAtlQ43hiAI5JTuRWfc3kYXoiuYm699n1AwmljJ+hByaLVaZeWq1+uJRCIkJiYqq8GNz8q9x1f+rVKTXV573/P1LEyzbJ/BbDbjcDiorKxkcXGRoaEhZSU/NDSE3W4nOTmZkpISmpubWV5e5tlnnyUpKYnJyUkkSVJWX5WVlTz55JMIgsD0dNTgSUbbBwIB8vPz0Wg0pKenU1dXR3FxMT6fj6WlJbRardIHt9vtNDc3K8Df8vJyampqqKurU0SHZGaAy+Wit7eX5uZmPB4PBw8e5NSpU1RVVWEwGJienqatrY0bN25gs9nQ6/XU1NRw7NgxDh8+TFZWFsFgELfbvS31dHFxkd7eXlpaWpifnyclJYVDhw5x5swZCgsLMRqNLC8vMzAwoFAw4+LiKCsro6mpiX379pGUlITH41HaG0NDQ+h0uqjkt9+PVqtVHBkh2mJobW1FEARqamrYs2cPPT09qFQqampqyMvLw+fz4Xa7sdvttLa20trayvj4OE6nUwE71tTUMDIyQm5uLl/84hcpLCwkNTVVOc/e3l46Ozu5fv06N2/ejAI67XZFb0Cv199XPthsNtPc3ExGRkYMAyE/P5+kpCQGBgbo7OwkLS2NjIwMrFYr9fX1FBYWsrq6yo0bN2hra2NtbQ2LxbKl+6FaDDH80auYE5JwS3pEojixClOQxMmrNFZXbDmOX716laSkJAXs+f+H+MwkA79Oi2BjzM3N0d/fz6lTp+4rJGEymWhpaaGkpISTJ09SXFxMT08P6+vrLCws7JpaKCOEh4eHqa2txWazcf78eXRxBubd6yx7w3iDETyBCILejFqlwjYzqbQnZFCQTqdTEoJIJILRaCQvLw+n04kkSQojQBZ1sVgsJCUloVKp8Hg8ZJTVoo3b/IMx6TQ7JgMQ1eWXkwGNRoNJHeLxE/X8b793gsOVmewrsHBkTyYvnConIkpYAuOUmDcr/h19+DFyCkrvtCBUigKiIAjkFpZSVL4Xkzk+RuQG7srxjg1EBYAeJDQqCETU2PxRPMRW0ZDqptD84KJC2fnFPPz4cyQmpyoldp1OT1Z+EZY0K9PjQ9uKBKlUKlBrdnS2FACzRmS0++61lyd2+XnYCLR75plnKCsrw+VyMTsbBWrtVEkoKCjA5/MRXg+SmJGD3mhmW2OtSIThtnfR3JH0TUhIwG63U19fj81mY3p6GkEQePrppxkdHWVpaQmHw8Hp06cZGxujpaWFiooKzp07x9LSEk6nU2kdjI2N0dTUxOnTp/H7/YpgzezsLM3NzYiiSF5enmIbXFVVRU1NjTI5iaKI2WxmfX0dr9dLV1cXra1Rr42ioiIKCgo4cOAA5eXligyv7Aa6vLzM7du3aW1txefz0dDQQFNTE/v37yc+Pl4RQrpx4waTk5NEIhGKioo4ePAgx44dY8+ePQor414Wh/xs+3w+ZmZm6OzspKWlhZWVFTIzMzl06BDFxcX09vbS0NCAx+Ohu7ubjo4OJUmQaZKCILCwsEBFRQV2u53bt2/T1tZGW1sb09PTCmBRpkp6vVGZ8fHxcURR5Nlnn6Wqqorq6mqqqqpoa2tTkiu5nSJXJG7cuKF4UxgMBiwWC+Xl5VRVVXHgwAElWcnPz1d8KmZmZujq6qKjo4Nr167R1dXFxMQEi4uLCkPCYDAoK221Ws3w8DChUIjKysqY62a1WsnJyaG3t5e+vj60Wi15eXkIgkBSUhJVVVVKm7azs5Pm5mbsdjsmk0lRjAR48803WZm38ScvPIl1bQL11E3+6j8+wUMVWQz39Shj8sbfXyQS4Y033mD//v1bWlN/WuMzwyb4VVgEW0VbWxtXrlzhv//3/76rku7f//3fk5WVxZNPPgnAt7/9bSwWC263m8XFRSoqKjh16tSWzoZy/O3f/i1Op5PGxkZCoRDj4+N8/Q+/wawzSGQbvFp/RysdLR9tel2eDO697bJK4laSr/LEWvPI5zEmpmz63vF6DSkm3faaApEIU2NDXH/vsvJaeXU9B45uD+QURZGZiWG6Wj/G44qWac0JSTzx/H/cdhuIpUDK/w6F1llesDHc28HsxEiUdVBYikarw+VYZmZiZEdaIUBEhNdmUxnxmFCrBCKipPx9/kAef3K+gA9e/+kDqQxqNFqevuMbce+1C0VEvMEw9tlpFmYnWJoaIhTYrAyo1mipv/B7dyohW5cjda5pPrpyedM9T0xMVPrQ8uS5UTdAXjHvFFqtlsOHDxMIBBiatLHn+OeiqcA930eSJOYGbzPX375JulqSJHJycrDZbIiiSGZmJs899xzvvPOOUjI/evSoMkmXl5dz4cIFZmZmeO2112L44/IKPRwO88YbbzBwByQrf5+TJ0/S2NgYU7oNBoPKZO5yuUhMTMTr9SrnKQiCggWQAWiRSETp9w8ODip0wI0Wxvv27VNwPl6vl6GhIQYHB5XJNTs7O4aZAHd9AgoKCpibm9tkPiZXdTbeS/k+nT17Vkks7Ha7Akicnp5WWhOJiYlUV1eTn59PWloai4uLzM7OMjMzw9zc3KYWRn5+Pna7HbPZzH/+z/855r1Lly4xPj7OH/3RHymreBmoaLPZePfddzGbzYrRkQxUzMzMVCiPVqs1BukfCoVitBHkP3LrSqYzy2DFubk5bDYb3/zmN7ccf2w2G9///vcJhULU1dXx+OOPb/6thUJKK2NxcZG0tDQaGhpISkriRz/6EY8++igHDx7kzTffZGJigj/4gz8AogvD733ve5w8eTJGiGl6epp/+Zd/4Wtf+9q2mgmfxvhMVAZ+Uy0CiAKGXC4XjY2Nu/q82+2mt7eXw4cPs7q6yocffsiZM2c4e/YsKSkp9Pb2cu3aNVwul8ID3hiTk5O0tLSQkZHBc889x+XLl6mqqsKSmY9/fXvkeqo1m7HBHkJ39NI3rpC3i63eMxgMaLVaIpEIZRV7kHRG7l35hSIiCXFaBLbpeQsCrR+9jX/trkvbifPPoNFsX1kRBIGEJAtF5XuZnRghGPBTWF5FZs72q2B5u3v/rVarufrmL1hZnOfIw49x6MRZMrLzSLNmU1BaSWnVfpzLi3jdq9vtFpUAn2uq4KnTjQhAaoKB+pI0/uzZOr54ogyD0USSJZWp0YFt93FvFJbvJa+obJNQlMO3zpJ3nUBYRGs0k5ieo/Tj3Ut31dCijI0InpV5UnNLo86Hyr6imo0FFh23Pn5HGZA3hjzwbzQOMhqNPPPMM5w6dYozZ84wODiorOK36nVLksT09DSLi4tkpCYzNzlGkjUPlVpzVxJZkrANd7I02qXQ8wKBAPHx8QSDQfR6vVKdguiK9NatW+Tl5SlJwvT0NDqdjhMnTtDZ2cnNmzcpLy/n3LlzrK+vK7LINpuNW7dukZKSwqlTp6iurmZ+fh6Xy6XIBLe0tGA0GhXgnEajITc3l4aGBjIyMlhaWmJ1dRWTyaSg5x0OB21tbXR1dWE0GhWjoT179tDQ0IDFYsHv9ysI+lAoxMzMDM3NzfT09KBWq6mvr1f61+np6Xg8Hjo6OmhpaVHUDmdnZ1lbW+M//af/xLFjx6isrCQ+Ph632x1zn+T7vzF5k6snHR0dBINBRfr4oYceYnJykmAwSE5ODoODg9y6dYu2tjZWVlaIj4+nqqqKM2fOUF1djclkUiSYXS4XkUhUNMpms+F2u5EkCZPJREZGBs3NzTGOiDJQMTExkZaWFi5evMiFCxcoKyvDarUq1Ymenh6lAtDT08PMzAwOhwNRFBWKZXFxMdXV1Rw+fJhDhw5RWlpKZmYmWq0Wp9PJ0NCQAgyV2zuzs7M4nU7W19fRarWkpKSwd+9e5RgzMzPs2bMnBiegVqvJzMzkwIEDFBQUKKyPnp4ezGYzDz/8MAaDgb6+PkKhELW10XZYQkICoVCI5uZmKirutgs6Ozux2+2cPXv21wZMfpLxmagMdHd388orr/xG+K6XLl3C4XDw5S9/eVefn52d5Xvf+x6///u/z8LCAm+99RZ/+qd/qmTD4XCYW7ducfXqVYLBIA0NDRw7dkxBQP/zP/8z6+vrCpda3lfYkIa4w50TRZHu9mv03b5rMxsXF4coipvcEbeLJ598kg8//BCv1xs1S3F7qX7kd1BrdZtAMVoVZCYaUG1gwBgN5gAAIABJREFUEsil+baPrjA60KV8NiMrj9NPbDYe2u57LMxN8/7ln7Cn9hA1DcceGJAjGw7FGUzkFpVt2l5unbz9ix/EYAlUag2peaVYsotQazRkZmaTbDag02wPOPrlj/9JqWTcL+qPnqK0qjZmYFr1rceYN90bY7c+ZGHsLt1JpVJFWRwaPdaSvSRnFaJSq/GuLLAw1otrQ/KwMWR3P6/Xy9GjR2luvmubvG/fPp566ikEQeD111+no6OD1NRURU/i3pA16RcWFggEAmi0OnJKqwhJKiLrQZLiBAb7ouI+sgxxZmYmdrudtLQ0lpaWyM3NVQbq8fHxLcvlkiSh0WhoampidnaW0dFRamtrOXv2LA6Hg1deeYWlpbu+FllZWVy4cAGr1YrNZuPSpUsx7xsMBh599FGqqqo2Ddqzs7PKJK3VaomPj8fhcCjfX61WU1NTw8MPPxzjgOd0Ounu7qarqwun0xkzWQuCgNVqpbGxkX379ilJw9jYGIODgwwNDREIBNDpdNTV1VFZWUlOTo7yvAaDQcbHx+np6WF0dHRT1UCtjoJ4763myGqGJ06c4OjRowoAUK4cbASNWq1WLNmFfDTtY0WfQQQVcetu9idHsAQWsNnmYiSVA4EAPp+Pr371qzGAanl1/PWvf12hPm4MmXZtt9tjjJvksSk+Pl6pIMh/y9LOckiSxOLiIt/5znfYt28farVaYaXI18BgMCh20PL1TU1N5fd///d3dC586623aG1tVZwjy8vLWVtbQ6/X8/zzzyufC4fD/OM//iM6nY6vfOUrqFQqXnzxRfR6Pb/zO7sb4z4t8ZmoDPwmWARytLe3YzKZqKqq2tXn4+PjuXnzJhqNhrm5OYxGIwcOHFDeV6lU5OTkKJKgMhrZ7/fzzjvvKJavx44dY2BggJWVFc6ePYvTt3NZWxRF1twuPM4lNBoNoVCIcDi8afUva5fHxcURCATIzc1VVpGDg4MEAoHovtbWotS+hRlSsotQa3XRld+dUvyae5Vb77+Gz+NCo9ER9K8xOzXKwO3rTIzErpaTLKk7Iv7vPb/4xCTGBruj/dvy3as2btwHQFZe4bagQoiKJk2PR/nXceZEqs88S1p+OYb4ROLMiYQkAU8wjFoloN8iIZAkiVXHEs7lhU3vbRXpWTmkZ2Yr5X1RkljwbF59b9y/OTkd20hXzGsqlYr1oB/Xwizzoz3YR7pZmR1DDAWUqs5W+xJFEVEUSUhIUCbJ8vJy+vv78fl8lJSU4Pf7GRgYQBAEZaCOyg2LG65dFGkfDAZJSEjA7/exujSPJhLAtWRncd5Oenp69Bm6g1VxOBwUFBRgs9nIzMxkbm5OcS48fPiwQr0DqKmpISsrS1nxyeh4k8nE7OwsN2/eJC0tjfPnz2M2mxVmgcfj4datW6ytrVFVVcXhw4fJyclhcnKS9fV1wuGwAqxLSUnBYrnLykhISGDPnj3s378fURSZmpoiEokogj0y4PD69esMDw+TkpJCUlISBoOBgoICGhoaKC6OCnzJjosajQa3262wFyYnJ0lOTqa0tJSKigr27t1La2sr+fn5TExM0NbWxq1bt3A4HDHl8aqqKpqamqisrCQhIYGFhQXFGXXj71tG6cuJlUyRHBsbQ6VSKTiIw4cPU11djdVqZT6o5jVHCh5NIqJKiySoCanjmAmbseQW8ydfukBlRQVpaWmKcNHa2ppC05ybm8PtdrO8vMzk5CSnT5/eEgioUqkwm81YrVZKS0upra1VcAR5eXmYTCY8Hg/Dw8N0dnbS2tpKW1sbY2NjLCws4PP5UKvVpKam0tfXR2pqKhcuXKC+vp6mpiZqamooKCggOTlZuVfy8+Tz+bhx4wYTExMsLS3h8XgYWQky6lzH6Q+jCnq5/NovOXLkCF/4whdITExkZGREoWwajUZSU1NRq9UK8PqD5hZurur5lw4H3eupTEkpBCOQn2xAf69W+ac0/t0nA7/JFgGgoFc3CnrsFDLAaGxsjMXFRfbv37+l2JBGo6GgoIC6ujrlxxUKhSgqKmJxcZHTp09z5coViouLqaysZNUX3pL7ujFmJoaZnRrftIKAaO8wKSkJr9dLQUEBMzMzAEoZUA5ZwETWNA8FfMRFPNRUlWM2xjEzPsRE13Vmelrwe90szc8xNtDNaH8XtqlxXKvOTeh1SRSpqD7Ag8TsxCiLtmkKy/ZGVQgfoPwmOxDq9HE7Mh4SkizRSoogsO/0RXQGswJQ3Bj+UIQ4rRqtevOP3DY9jmNpd8lAaH2dsqq7CHx/KIJ3Jw8MQUCt1eG0T7LujwKq1Go1JpNJKeFrtVr+7M/+jPT0dObn52NogiaTScGLyJUbIGa1LJsHySXYrKws+vr6WF9fV5gGGzUo5GM//fTTVFZWsra2phjbSJKk2PrKADBJktBqtcrqtLS0lKmpKXLzCljx+Cgpq+T2zTb27NmjJCkLCwvk5ubywgsvoNFomJiYAKLMB7PZjNvtVih/Xq9X+X3Jx5RbByaTiT179nD48GEsFguTk5OEw2HW19fp7e2lu7ubjIwMkpKSlOsRFxdHcXExBw8exGw2MzU1xdraGmlpaej1egKBQAzgUBRFsrKyUKvVJCYmUlZWRmNjI1arNYamqFarWVlZoauri+vXrysTzeTkJF/96ld56KGHKC4uVmhy8iJhcTFauUpMTFRMd2Q76Keffhq4W9rfiA1SqVTo9XrC4TAul0txVWxpacFms6HRaMgrKOT7QxJBkViBrTvP/6wrSFfbNQT3AikpKezfv5+TJ09it9vx+/3s3btXEXCS79H09DTLy8uEQiEMBsOONEJBEBR75qKiIqqrqzly5Ah1dXUUFhaSmJhIIBBgYmKCzs5OBagoVwhkNoDRaMRkMpGWlkZBQYHSyjl69Cjl5eVMT08rjIhJj8Rri/Fcnw9zc8bNtXEnbw8toxNEju4tQqfTKWDP7u5uNBqNYoDl9/tJSUlBY07iJ3MmJtbUBCJRb5CQJDC46KV5wsnRwmQM2t07pv624t99m+A32SIA+Mu//EuOHDnyQMpSQ0NDvPTSSwD3BZWEQiF+8IMfsLS0RF5eHsPDwwiCwJkzZ7hy5Qpf+MIXKC0tZWbRRZDtJ0VJFHnlh99BoxKUScDtdm/Z990u7vW1t1gsfPGLX8RisSCKIr/85S/p7u4G7i9hK4cMdjr1+HNkZOftuuT/+sv/wqpjCUualdOf+zxqjfYes6GdOfqzk6Nk5hbuyCkGeOmf/i8S0nOobHpsx88ZtGqsCZtZKa+99D08q44tr8VWpj4br8NaMMyi9/73p/eDV/As27c8xpEjRzhz5gwQTYL++q//WrmHsgeAWq1m7969dHVFKwx79+6lt7cXiEreJiQkxJRs5ZBLplsdNyUlhW984xtANKH87ne/SygUUpKBe7dJTU3F7XYTjojsP/4o2qRM1HdWkGI4xMzALazG6GQstzBKSkq4ePEidrudl19+mWAwSFxcHE899RTDw8PcunVLsQhfXV3d8jzT0tJ48sknycrKIhKJ0NbWxnvvvRdzX9LT03niiSe2/J2KosjQ0BAtLS1MT0+TkJBAQkKCAn6E6HNYUlLCI488skl9dG1tTUk8bDbbptK+IAjU1tZy/PhxhWkkT3YDAwMMDAywuLiIRqOhpKSEiooK5ufnGRwc5I//+I9jPt/T0xPT/tkYsgDQxnaMy5DJdNrOSXqSOswB310J54SEBDIyMhgZGeHEiRM89NBDRCIRfv7znzM7O0teXh4zMzNKUpqcnBwjqZyenv4r8fBlxsj8/DwDAwMK8wXuuknKAMXMzEwyMjKU1mwkEuGVV16hfWSO8YyjSNsAb7Mc3aR4p1Cr1aSlpeFwOMjKyqK6upqZmRkFQ7BUcIKFiJmt0FgqAQ7kJvKnD99fdv63Hf/uKwO/yRZBOBzm/fffp6amBqvVuuvtEhMTuXbtGlqtlvPnz2+PuhdFfvaznzEzM8MLL7zA0aNHsdvtigc3RCVN3333XXo6b5NfUrHtKjnic3LqoSOcOHGC2tparFar4ge/27i3ouD3+2lra+Pq1atcvXp11/vaWBmQB8xF+yyFpXtQ7WApDNGBzb3qoLv9GhAtrSdaUjEY74oAycBEYYtVvCiKuFcdjA/2kltYuoMwkoR/zUt/ZxuZJfswJadui86HqEFSsvHuKkcURebnphjsurntNltNTrOTI1jSrcQnJiNJETzB+4gWSRJT3TeIhEMx+gByXLx4URn0ZB74xuOHw2EkSaK0tFTh5Mv+EgB5eXm88MILNDU14fP5sNlsJCYmKpoVW+FNZOqbrGAnSRK5ubn09fVx+vRpsrKyWFxcjOll+3w+4gwGyo4+itGSGaNcKKjUJKZns+x0g99FfX09o6OjOJ1OhoeHaWho4NChQ0xPT+NwOOjp6aGsrIzTp08zMTHB6uqqMjGlpKQo4Dv5uLdv3+bWrVsKaPfYsWPodDqlOra2tsbt27cZHR0lJycnhkcuC9XU1tZSWlqKx+NhbGwMrVZLfn4+6+vrrK+v43A4aG9vp7u7W5G3lfU9cnJyqK+vp6qqCq1Wi8PhUK6rIAjY7XYFCBgIBMjOziYxMZGCggLFo8FsNmOz2Whra2Nubo5IJILBYCA+Pl6pmHR0dLC2tsYf/uEfKrTK1dVVpWog3w+1Wo3RaGQpLpM1beKOZlcBScX/+eXHONzYSG5uLjqdTrnvk5OTtLe3Y7fbWVlZITExkS9+8YscPnyY2tpasrOz0Wg0inCSXJmYmJhgZWWFcDiM0Wi8L2Ub7gIVc3NzKSwspLW1lYsXLypVGEABKt6+fVvReJmensblclFSUsJVTzLeyPZW6+GETP7g/EGyMq2oVCoFQDk4OMj8/DwajQZtQgpDmgKk7cYVwOYK8nBZCkbdp7s68O86GfhNtwhcLpeiPridL/dWoVaruXHjBhqNhqNHj275GUmSeP311+nr6+OZZ56JiuN0dtLX1xezmpelTcOhENOjQyT+f9y9eXBc93Xn+7m9d6MBNPZ93wgQIHaCJLiBlERKpESZsiRbsf3sLHImzjhOnEV5k5pMval6NeOM47zy1KRsTxxlcyzHlmPZEheJIkGQBEHs+77ve6MX9N73/dG8P6JJAHJSntjxqUIVidu4e/9+53fOd4mJJTL6kbSmSoI4sxaTRmZoaJCrV69y5coVOjs7xeStgH+Uvlt+fr5AWz8ekhQyI4qMjMTn832kGcte1waQkpIitAx8Xg9TY4OoVCpi4nZfHSjl7JZbV7FZN6iuP0PVsQb0BpMo38tyEJ3eQH/HfYymCAxGE8Fg4KGTr8Tm2gqri3PEJ6dijgwNdLsmBLLMQGcLq0vzxKRkYY5N3DcZAMKSAYDF2SmW5qbCJn2ld6ygsx+PYCDA1MgA89Pj+L0eNAYz7JEgycEgG/MT+G0r4p3YeayCggKBR/H7/fzN3/yNWPlJkkR9fb0w/1ESAQj1lJX9RUZGUlFRIVa3W1tbTE9PI0kSZrNZTKo7hYiUZG9zc5Px8XFBt5MkicnJSXQ6HXl5eXi93rBKU0xaHsn5ZbtKR0uShDk2keHuVgJeN2fPnhU2tN3d3RQWFnLixAn8fj+zs7MCR/DKK68gyzJNTU1YrVZOnTrFyZMnw8rDEPJXWFhYYGBggLa2NtbX10lPT0ev14v2gt1up62tjZmZGTIyMp4QpdmJK5BlmZGREVwuF9nZ2ZhMJux2O263m6GhIe7du8fW1hbp6emiVO7yyvzk3hT/cGOKO4N2Rua30evUxEaEuPnb29tMT09z584d+vtDoNHk5GQiIiLIzMykqqqKqqoqZmdncblcDA0N0dzczMTEhJBCf+6558jOziYhIYHi4mKBNYiOjmZ7e1vgg3w+Hw5dLNv62P2dL4GXK1LQ6bTEx8eTl5cntAY6OzvJyckRq3ZlvJydncXr9ZKcnExFRQU1NTXCHtpiseB0OhkaGhKeD/39/SwuLrK9vR0mqbxXGAwGOjo6MJlMIulQFBXr6+sFEFNJvPr7+2ntGWTaXLTvtfqDMuaAgyiVD7VaLd6D1NRUTCZTqNUVNLCm/+iFYUVaFMlRP51Z0s8rfqmTgZ+V0JASq6urdHV1cfz48Z9aPRBCVKmmpiZ8Ph+1tbVP9M22t7f58Y9/THd3NxaLhY6ODrq7u1lYWMDnC72IyqCvuLP5/f5QH1wV4MHdW2SnpyD5t+lqaeTGtfcEUEhRkCsoLCQtu4DCg5XkHSglEJRx2Kz4/T6hw74zdDodBw4cEA5eO3nXSigrkN1Kx5IkPYEVeNzm2O/zsjg7SV9HM163i4SUNNRqDbIcYiF4PW7u37zK7MQIyenZHD75tNj3o+OEJpLE1Ayuvv33zE2N4bDZWJ6fxmbdID0nn5j4JKIssSHq48Nz2qlFgCyzurxAa9MHyHIQjVZPfOZ+mBAZvUZNpOHRCkaSJGITkoiKiWdmfFj8fmtrSzjzKaFSqcjLyxO9dQDXtoPl+RlqDxVh9apQqcLlneVgEM+2neHmazjtNtLS0tje3g57bvHx8ZSVlSHLMu+88w4zMzOYTCZ8Ph8JCQlCrhegurpaaAvsTDZNJhPV1dXimgoLC5mcnGRrKyQhrOjh71zly7JMdHQ0LpeLL33pS4IGFhsby8zMDH6/n/X1dSFmpURu9Sl0hoh9K2WJiQn0td3D6XTywgsvMDw8jMfjEcpyR44cISUlheHhYYHkP3nyJOXl5QJ4Zjabyc/Pp6amBpPJJBQMlYiNjSUvLw+/3y/62zvDarWKFXhWVtYTY4mCKzh8+LAQ6VlZWSElJYXU1FS2trbCAIejo6PY3PDcb32Dq3f6Wdt04PL4sbmCDMy5MVqSOVychPUh3sZgMAj9/6amJsbGxjAajcTHx2MwGJicnESv1/P6668THx+P1Wqlt7dXnLsCelMmVbPZTGZmJjU1NRw5coTU1FR8Ph9bG2tsmPcxT5ODmN0rLLZeZ319PQRoNZvRaDRER0fTPzLNWzeG+VHLBjd7NlnZ1lGYn0uE1if67M3NzYK9YLFYKCkpEdiAQ4cOkZqaikqlYn5+XggYtbS0CHfHYDCIyWQKAyVKksT8/DwrKytUVVWFnfJeQMWEzHwap/awpRfXK+OaG2JrZkj4Zihjh4LVUUfEMOX/aOG4s4VxJJp/sZOBX2rMwM9KaEiJ/v5+vv/97/NHf/RH/6Lkoru7m3/+538G4NKlS+Tk5DAzMyMEQRQAl0ajISIiQqzUlF6rUsb9nd/5HSwWC0tLS3zjG98QIiePi8OoVCqSk5MpKSmhqKgIc3QMC1YvQZmwvqbX4+b21R+ysvio37Zf7//x4+z1WbPZjNvt3lOwZq+/U2s0pGXmYTBFsO2wsTAzIc735PmPkZaVu6cbYTAYZLDrAV0ttwHIzC3ixLlLu352J8bA5XQw0tfJYHcrgcDDvq1KRfWFz4ScAPfoZyZG6onQ7S6Xev2H/8Dq0vyu2x6Px212AUzmKBJyS0nMLUarM6BVS0jOde5cfRu/d39MwUsvvYTVauXGjRtotVoMBgN2u526ujrGxsZYX19HkiReeeUV3nrrLXEfdiabX/ziF8P26XA4+OpXvwpAbm6uQNZbLBahWR8XF8f6+jolJSW8/PLL4m/v3r3LjRs3xEQ1NDTE22+/TWZmJonlZ4Tt8l6xsTBFnGyltbWVpKQkLly4wPe//32hPnj27Fnq6+uxWq1897vfFe2O06dPU1tby/Xr1+nu7qa4uJiLFy9iMpmw2Wy89957DA8Phz2D6upqGhoa8Pl8LCwsMDo6ysDAwBOtkejoaMrLy8nNzSUlJeWJ5D4YDDIyMsL9+/eZnp4mKiqKrKwswYGXZZn//eEmG47AruKSEvDfvnyZz75QQ09PDz09PayurqLX64WMMCBsoD0eD0ajkU9+8pNASBjtypUrnD17lpWVFUZGRvB4PMTGxgqRI0UXQKk8jI+PE22xMJZwlGWP+kmHzocnWmRtJ0XnxePx4HA4BBvKq4rmj//yNm6vX1yTSpIIyjK/cvEwf/mfP8ny8vITQkhqtZr09HSysrLIysoKq5x4PB7m5+eFKNLc3JyodCUlJQncQXp6OmNjY1y/fp033njjp2oz2N1+fvW7PXuJe4r4T0/nUZkeEuf62te+xmuvvRYGHvf6g/zGW7049wH+mvVqvvVq2a6A41+k+KWtDPysWwQQMgyampqioaHhp0azy7LMhx9+SCAQQK1Wi5Lh4OAgNpsNr9cbthJJSEigpKSEEydOUF1dTVdXFxaLRaz6ent7+cEPfhCGFFYmk5SUFF544QVeeOEFampqyMzMRG8wPlQqDArxIeVHpVKTmVvI+FAvAf/e3HYlFLBTfX29kNo0mUwCvayE1+vdV9xoz3sVDLK1uY7duo7LaQ+7L5VHT6PXPymFrIQkSaHWw0Ma49GzFzAYdy8vKtd/7Yf/QPvdD1lZnEOWd5yvLLO1Mkd8ZmEYDkHRTYg2aIg27o6KDgYDqNQq5ibDqwHx8fHU1tYyOzsbzqzYZTTyeT1sLc+yMNTJ5vQgB9Ji6GhuRK/T4XK5yM/PD6sq7IzBwUEmJyeJiYkRVD5Zljl27Bjd3d1CjlcRnwGEVjs88nNPSkoSCa9Op6Ovr09s28mbV56Ry+UiIiKCpaUl6uvrRdsnLS1NnFNVVRVJSUmoVCq6urooKK8jIO/RtiH0Pqj9Lloar1NfX8/o6ChTU1O88sorLC0tYbPZmJiYYGtri7KyMsHEWVxcZGoq5Gl/8eJF0tLShLNgfHw8qamplJaWkpKSImiGEPIz6OjoICYmhrKyMoqLizlx4gTZ2dlCtAdCY8v09DRdXV3cuXOHgYEBQalTBHkSExOpqKigqKgIh8NBf38/gUCA4uJiFrfgRuf+3hjDk0v83ufOkZWVRU1NDYWFhUCoOunz+cQqf3V1FZvNxubmJuvr65jNZn784x9TVlbG008/TXFxMUce9vf9fj99fX1Cgvj+/fu0trai1Wo5d+4cz1+8yPHCJBr7Z3CjATnIQ9YtIJO20YPZMY/L5RLA0KioKAJBmT/9dhsuTyCM4aT8u3dknozkOE7VHSQzM5OysjKOHTvGgQMHiIuLw+l0MjAwQHt7O/fu3WNsbIyNjQ0kSSI9PV2ID9XX13Pw4EFSUlKQZZnZ2VkhqTw3N4fP5xNaABEREfuChfUaFdMbLhZt7t1ZWbKMURXgc7VpaLUatra2aGtro7a2NgyI7tp20vrgAVbt3m3jVytTKUn+2dk4/5+KX9pk4GfdIoCQ+qDNZttXfTAYDAojjnv37vHee++xvLyMx+NBpVLh8z0CfgUCAbxeL/Hx8Vy+fJkLFy5QU1NDbm4usbGxwj/dbrfjcrm4ffs2IyMjYjCOi4vjwoULPPPMM0Kne2RkBI1GQ0pKSshMZWQSvdmya/9bKeX7vB5Wd1QHlDCbzdTX11NYWIjNZsPhcBAREcHY2BjDw8MCjKNk64+3BYCwFsd+kZGREeYB/3ipNr+kHINx71VkMBjEur7KzMQwWp2e2uNP7ZuwBYNBHFube67gfe5tViYHCfh9aHQGAj4vW8uzpCfGEmPebzUrse2wszgzHjZpGgwGhoaGfqp7AYjJ1Ov1MjIyIiyn4+PjefHFF4XfhBI777NarUat0RIRl4LJkoBKpcaxtcna2hparVZgQGZmZggGgwIprfzt1taWMOBRkoLFxUUBPlOu6fEWVlpamtDsz8/PF9cRHx9PU1MTFouF5ORkMjIymJ6eZstmIyoxjT2dKyWJqa47ZGek0tbWxokTJ4SD58c//nG2t7dZWVlheXmZqakpSkpKOHjwIDExMYyMjGC1Wunq6qKiooKTJ0+yuLhIY2MjdrudnJwckpKSqKmpwefzMTc3hySFrJ1HRkYYHR0lOTmZqKgoLBaLUA2cmZkJqxQoZXeHw0FPT4/oew8PD7OwsIAkSZSUlIgEqa+vj3t9S8ys+falBtscbl5/5QRmUwj1HxkZSUFBgSjrezweUVFUvnfLy8t0dnbi9/tJTU0lIyMDrVYrNAoKCgqEV4LD4RBiW8FgUHDmbZvrzN77MUeLs1hZWqA4M5kY9xJJiy2Y3OsUFxej1WpFy8/j8dA5uknPzN4y3BIwODHHr37sqFi1K9eUnp4uXCIjYlLQGqPQqGRGR0dEcjA0NMTa2hp+v5+EhAQyMzMpKiqitraWuro6srOzMZvNzM7OsrKyQmdnp3gGKysruN1u9Hr9ExbKuXFGGsc2CATl8Gfx8H1OX+tgoqcVU3wKLbMOhla3Sc/MIjM+SgA9v/nNb6K2LxGbkMyaXw/IjxIoSeJSaSIvV6T8u1Ai/KVtE/ysWwQAP/zhD7FarXzuc58Tv/P5fMzPzzMzM8PMzIwAy6hUKqKiokJo9oeTnFJmLysrIzc3l2vXrpGUlMSnPvUp0QOzWq10d3cLCtFOnrDSLggGgxw9epSnn3467CWz2+3cvHmTrq4u4TPw9KVPkpCSvi+Kfn1liWtv/x0QwgF4PB4iIiIEkEoJBTCUkpJCIBDggw8+wOPx/KuqAI/HR1ETD9Ue52DVkV2Bhkrcef/HTI8NojcY+fjn/uOen4PdFRr3CkX4SZZlzl3+FHGJyXuCC4PBIOODPTy4fX3Xe6iE0WgU5d6fJhRZ3L3ObycwL7WokoyDtah3yD17HFaGmq/jfChCFR0djdPpxO12k5uby+TkpLj/f/AHfyAGVK/XS1VVFVFRUdy4cQMINztKTExkbW2NQCCARqMRE9Mf//Efh71zP/jBD5iYmOC3f/u3MRqNbG1t8c1v/W/Kzn4ctd60K5ArxqCi5b1/xOv1kpmZSV9fH0899RQPHjxApVLx6U9/mq6uLpqamlCr1URFRfErv/IrxMXFsbKywne/+11BMWxoaOD48eN0dHRw/fp1zGYzH/vYx0TVcHFxkXfeeUeY9CiWlQBJAAAgAElEQVQ00MrKSp566imhVhcMBuno6BDvvhIajYZjx44JXZCFhQUWFhZYXV0VwlBmsxm1Ws377Uvc6LF9pE7It//4DBeffZrIyN1XlS6Xi2s3m/nRlVtopCCZiQaCj+lAWCwWKioq0Ol0PHjwAKvVSn5+PsePHyczM1NQ8wYHBwWeJCIiguLiYtra2njjjTeYmJjge9/7HhB6D3/zN38Tk8nE+Pg4AwMD/OUP2mkZceyriArwh5cSyEhPIzc3l7y8PKGu+K1/usP/+OvrzC6FNBgskUY+/+pJPv9SHUuL86K1oFSvEhISRFshKytL3J/vfOc7wqNBaSsoMscQWtzspDWmpKSw4vTzNw/m6Jh79DwyIjUYZ1rQOpZZSqxiXZcUymgeTvApUXpezAxy98oPkWWZkydPkpaWxt9870d4EwuJTkpncXKUP/nsC6RY9m+D/SLFL2Vl4P9EiwBC6oNGoxG9Xk9nZye3bt3i6tWrQnlLlmXBxVboOwaDAZ/Px2c+8xmee+45+vv7iYqKoru7m4iICD7xiU8wMTHB+++/z3vvhYB/U1NTOJ1O0TuLjY3ly1/+MoODg2xublJWVsaFCxfCBlur1Up7e7sQiFEG7IKSCiIi9wa4SJKEx+NitL8LeORQZzKZ8Hg8JCUl4XQ6efbZZ3nxxRcxGAzcunWL9vZ2/H5/WDVgpzLdbqFWq8V1KNUEg8HwkWY4ADbrBvklh/akD9q3rLTd+QBZlgn4/Rw4VI1Krd4zCZIkib72Zpz2rY88tjIJ63Q6tFotyfv4I0iSRGvTddzbIT3/4uJiAdRT4vFEYLeKihLKPd3vvmZlZeHxePD5fKSX1JB16OgT2AqNVk9CVhHWhSlSkhKEHS/wBCdfo9Fw8uRJampq0Gq1tLe3Mz4+Lj5TVlb2aNLU6ohKziK9pIa49HyS07NYXZrDoNOKvjSEKj/3799ne3ubwsJCDAYDMRYLH773NtkFBwhIjxgUEpBu0VOWFk1x8QG6urpwOp3k5+dz//59Tp8+LVz3nn76aZKTkxkeHsbv99PZ2Ul6ejppaWlUVFSwsbHB6uoqU1NTzM7OcvLkSSorKxkfH+f27dv4/X6ysrKIioqiqqoKk8nE9PS0WDWvrKzQ1taGwWAgOTlZKM7V1dWhVqtF20dRKezv78dkMoXK5w8rfwrwzOfzhaR8CdI5tc9KWoIki4ZMs43m5mZGR0eJiYkJc9MbGF/kM2+8ydf+4R59My56Ztx0T7kw6VUkRIXAbUrSNTU1xfj4OBAyfLp48SIxMTFidZ6Tk8Phw4fxer3Mzc1hsVgE6FUZ15aWlkSbrLOzU0gur6ysMLPqZW5j/0qHBFyqz0Sr1TA+Pi5ohV/9uyb+51v3sTke3Q+3109z5wR94yt88bMXKCkp4ciRI1RWVooWwdTUFO3t7TQ3N9Pb2yvex6mpKZ555hnS09M5cOAAdXV11NbWkpmZidFoZH19nZ6eHlF1WJqdpCgywJn8WGzDLVg2BvkPz1TwzPHDfH8iyKYu8WGiKomE1enx077kIdo5z6UL5zl27BhtbW0szk7yVFUhDSXpjN7/gMNV5f8ioPnPO34pk4GfZYvAbrczNjZGW1sbQ0MhVGlvby+rq6uo1Wp0Op2QNlUc1xRlrvPnzzM0NERycjLHjx9HpVKxtrZGV1eXUHK7desWAwMDbGxsoNVqycnJof7MOcrrn0ZljkOtj6C4IJelhXna29tJSUnhtddeE6CnkZERrl+/znvvvcf8/LwQGPJ6vZjNZqJj47DEJe6D2A4wPz3B/PS48DUPBoNi1eN0OomMjMRqtfLBBx/Q2toqSoQqlYrCwkKsVqsose4VkiRx+vRpkpKSuHnzpigv7xRbUSIlI5vaE09Td/ocpVVHiU9MwWbdZHywh/ScArQKrU2WkVQqrBtr3Hz3e8Ix8GBlHWnZ+fui1G3WDTqbb33k81d45WVlZczOzrK2skRKZg4G45MoeFmWmRzpZ6SvEwit3Gw2m+D2K6Fcc0xMDG63+yMBmwqNr6ioSADgdsbGxgY+nw+dwUhR/XO7Vy0kCQkJtd5A1YEQ6ExRllQSPyWmp6eFP0BWVhYNDQ1oNJoweqTT6cQYFUPxyUvEZxZijLJgjIxBGxlDSmE5IwM9VB96JNmt+NM3NTVRWFhIZGQkCQkJWDc2aG/6gKePVdPVeo+FsT7Wx7t49vRRoZpXUFBAW1ubUORsbm6moaGB1dVVHjx4QH19PQcOHBD0u87OTqKiokhPT6ekpASj0cj4+DhbW1t0dXWRl5fH6dOnUalU3Llzh+HhYTIzMzGbzaSnp1NeXs7m5qZYKSvfs5GREdE6UKlUWCwWYTikiOoEg0GWlpYEHVOZkM6ePcu5c+c4efIkZ04e5XbrMAurtj0BbK9fOsTJujKcTicrKyv09PTQ2tqK3+9n26+h4XNfY3J+Pezd8fhlRhY9nKo/TIwxINgbOp0Og8GAy+USgMHJyUkiIiIwGAysrq4yMjJCY2MjCQkJREdHCwqz1WpldnY2LBn1+/3ExcVx9OhRamtrKSrK561rXbtfSOjVIztRS158SGLa7/cTERHBdtDA376/O+VWBibm1ijITqKsIJRUKh4YRUVFHD58mJqaGtLS0gT7QJGhbm9vZ2lpie3tbXQ6HdHR0cTHx5Obm0tFRYVQIoyPj8fr9TI+Pk5/dyeSx4EmGNJiWfVpeWCP3IN6KCEjUVRUxEsnQwqiV65cweVyCQO6u3fvkpWVtasvwy9q/FK2Cf61LQKFK62gXRVREwD0kWw5XCRE6gj4PGLVv7NcpawclHC73XzlK1/hqaeeAkJshIWFR8YxarWaxMREiouLKS8vxxRhpmvOzua2D4lw5P94RyPWuTG+/OUv43K5hHCKw+EIU4ZLSEggISEBrVaLzWbD7nTxzOVP79uzuvmTt1iYneb1119HlmW+9a1vUVtbS2tr6773S6vVPjHRKeerDD4ajYaoqCg2Nzf5/d//fe7evcu9e/f23OfByjoqjpwiGAyKexkMBlCp1HTcu0nA7yc5PQudwcDWxjqzkyMszT0aUNQaLS/9X19Au4fsqSyH7F/ffevb2KzhIDyVSkViagY6vQH7lpXNtWVqa2spKCjgu9/9rngeGq2O6mMN5BSVCpCS1+NhqKeNvvZ7e07uBoOBQCAQVu5XDHt2hgIUffzcdqsO5OXlhZDg0dEY4tLJrT61v4hTMEimxkrL/WbMZjMzMzOYzWaWl5dFMqck0Mq5ajQa0tPT2dzcZHt7G7/fj6RSU/Xcp3ZlXCh0zTStnYOFj5TXAoEA3/zmN9Fqtfzar/0ait/BN77xDWHs8vWvfx2/3/8EK2F5eZk333yThIQEYmJi6O3t5cKFC3R2drK2tsZrr72GTqfjO9/5Dh6PB6/XS319PWfPnkWSJObm5njrrbfY3t5GlmVOnz7NiRMnWFpa4u2332Zzc5OzZ89y5MgRcf+Gh4d59913cTgcotQfDAYFnVZJoBTpW6fTGSbtrGw7d+4cpaWlYc9l3erghS/8LzoGZlCrVQQCQWGJfaokgqOFj8rLRqMRtVotNAF+1GpjeMGzZ1leq5b4vReSqKutJjo6muHhYSGopNfr99ULSUhIIDY2lunpaRITEzl69Ch6vZ7JyUmampoA8PplgkGZY0dCvgZxcXFUX/4vDE2v75ncfOW3T2NiS1QaAN7vcdA56drzOiQJirNi+aevfpbMzMxdPQ52ht1u5y/+4i/IzMzE6/WyuLgoAJ07x2lFAOrxv33zzTex2WzodDom9DmsmrNhH60Rs17Nm6+V43K5+MpXvoLBYOAP//APkSSJP//zP6eiooIzZ87se86/SPFLlwx4PB7+7M/+jLNnz36k6qACulEm/unpabHqVUxHepcCXBtXseAKcUT1apkXKuL4v1+pIi8rddcedjAYZGxsjMbGxrDJXwmVSkVZWRmXLl0Keym7Zm2sOvZ2FNTb55gY6BKrDoXzGhkZiUajweFwCHBTVFQUKSkpIfETd5DDp55BloOifCwHg0gqFbEmFV//6n9DrVbzxhtv0NLSwgcffCCOubP/GB0dTWxsLPPz8z+182FiYqLom+4mx7sz4hKTOf/SZ/bcvpM9obgjDuygEwKkZeVx+rmXPvK8FHljJfJLyik/fCIMpLi5tsL8eD/dHbsnRTq9gZi4RGQ5yPrK0kOxo0ctk73aH7slADtDmYx3SsVmZWWJlbkyKSmYhOPHj3P27FnGVhxMrrvYC5CnROs7f41KDpCTk8Pq6iparZbV1VXxbF555RW+973vceHCBVJTU0XPdmxsTHwmJe8gOdWn9zxGMBjEvjTJx8/Whf1+enqaN998k+eff15wwhcWFvirv/orjh49SlFREd/+9rcBhI+8EnNzc/zt3/6tMLLp7e3l+eefp6enh7m5OT7xiU8QHx/Pd77zHTY2NvD7/RQXF/Oxj30MrVbL9va2wC5AiCZ5+fJldDodN27coKWlhezsbI4fP47D4WBxcZH5+fkwqWEl1Go1FRUVnDhxIgxdvrq6ytWrV8UxlIiOjub8+fMUFRWJ73wgEOTqnX6+f70Dm8NFQVYiv3q5npy0WOFZsLm5idlsFhLLjm0Pf/He3pOuEq+cSKIoWR2WeCosGiXRVlqJO8WjFLZFd3c3GRkZxMfHizbVu4093OrdZH4j9F5Hm1TU5BqpLYjA6Q7w1j0rK1sBVBKPzk+C8+VmagujUalU4njBYJB/arYyvrw/i8lsUPPb52PRaDRkZWWRm5tLbm4uSUlJuya9b775JiaTiVdeeQWPx8Ps7Kx4f+fn5wkGg2IRl5mZSVZWFikpKahUKv7u7/6Ozc3NEMC79DyN45v74iAkOcj/ej6LtbU1vve971FaWspLL4XGnr//+79Hq9Xy6quv7v+gfoHil6JNsGhz83b3Ev/Utcj1/nm2tr1cbDhKZEQ4FS0QCDA/P09vby937tzhvffeo6WlhfHxcTG46nQ63G43brebrlUd/zgcgSPwKCMNyBLDy27ujFj55Kk8YWe7vr7O7du3uXr1KteuXaO3txe73Y4kSeTl5REbG8vm5iavvvoqKpWKpaWlsIHO4fEzvLw72AxCk/emY5vRrhDgbecXwWg0kpKSQklJCceOHRPlyJKSklC/d3SIpbkpEhKTMJoiCAaCLM1N8eD2ddYWZ1leXsZkMtHS0iLoZo8fQ9ExVxDlu/W5d/ty7gTQfVTeWX74BJbYvWWAH1EiVeLfiSnpyHJQaCXEJiSRmVe073EAJkf62XaGSruFpVUcPvkMmsf4yXqDkbjkDOanxnC7tp/YRyDgx2nfwumwIctBsrKyiIuLE+IoO897Zzgcjn2xEn6//4ltO1sDO5OioqIiLl68GMJ++IOs2PcfXIMBPyXpMYyOjAiamsJsUc757NmzeDweHjx4wPHjx8nLy6O0tJTExERRis85VIfOFLUvdkKl0WNRe8P6phaLhc3NTdra2qisrBT2wGq1msbGRsrKykhMTGRiYoLR0VHRUoBQgpuWlkZTUxMxMTGkpKTQ1NTEqVOn8Pv9NDU1kZGRQUNDA3Nzc9hsNjY2NhgbG6OwsBCz2UxZWRkqlYqpqSlsNhsdHR1CE0NRJezp6RFqh0qLqLi4GJvNhtPpFO/g/Pw8k5OTJCUliYQgIiKC8vJy8vLyBGofQouU/v5+ent7iY+PJzY2FpVKojA7iRfPVvDqszU8dbSYOEsIZJiamsrhw4cFQ2N+fh6z2Ux2fgnv3Jl48oaH3XtINEOKZXdnTSV20pOVbU6nU/Tf3W63qIBcfzDLPzYu4nA9eq89PpnJFR+rNh+lmQYqso2kxGhQqSRizWoOpOv5+LEEMhN0ggmjVMf8fj+TK15W7fsrmhZkJfO1P32d6OhoNjc3hUFRW1sbS0tLAuysSHCvr68zNDTEsWPH0Gg0xMbGkpubS2VlpQB4KnbU3d3dArswPT2NzWYjGAyysbFB7qHD9C3tJ0okYwy6mb79NhsbG9jtdp566ini4uKAECB1ZmaGurq6ffbxixX/7pOBGyNr/NfrY4yuOllz+rB6ZRyGBJpmHBTHG9hamaerq4vGxkauXLlCe3s7s7OzqNVqsaJWPLkhBHSqra2l7vhp/uiHC/gDT05gsgxrNjcry4ssD9zhypUr3L9/X6yYExMTqa6uZn19nYqKCpKSkmhvb+fChQscOnQIWZZpbW2lvLxcSJwubLnZcO49kEuShN4UydrkAHGxsaSlpZGfn09paSn5+fkkJCRgMpkEe6Grq4sf/ehHLC0tERERQcPpkyRYzOhkDwaVD706iMPpwukJYI6yYN1YD1MS3Ck3q4SSAGi1Wg4dOsTGxob4zOPgQUmSntDO/yh6TXndyTDPgZ824hJTGO5pDwGckCgsrdz388FgkO6W2wT8fjQaLQ0XX96VkyxJIdCQyRzJ9NijJElx79v5/+eff57JyUnm5ubC6HZ7gQNDVr+PQIRms3nXaospIpKDVUeoPfE0xRW1JCSl4XY5cTpsmM1mPvOZz4jyqUmnZnLN+RD0vLucsX15iqePH6apqYnq6mrW1taeUDKsrKykpKSEtrY21tbWhF23wWCgubkZvV5PdkklaPd2gQzd5wCdt69RWRn+PDIyMmhpacHpdAr+vEI37Ojo4MKFC6yurgrfAQXICCGcRWJiIo2NjSQnJ5OYmEhTUxMnT55EkiQaGxuJj4/nqaeewmq1sri4KBQLFcvjtbU1PB6PaHnMzc1htVrJzMzk4MGDqFQqNjc3yc3N5cKFC+Tl5ZGWlhYGMFTaTT6fj7a2Nra2toRWP4QqAVVVVaSmpjI/Py+qPC6XSyQbO5OI3UKSQvbi5eXlwhGyt6eb+yPOj2QilGUaSIze3To4OjqapKQkMjIyUKvVQjxIlmWSkpJQq9V4PKFWqNPpxOmFb7w3tecx1+0BYiM1JEVryE2PJzNG5kCansx4HRrVI1tlh8NBdHQ0RUVF1NTUcKAonx/e6N1jr6GoyFQRpXWLlkVDQwM5OTno9Xrm5+eFquHAwADr6+vo9XpGR0cpKysTDBAl1Go1FouF7OxsysvLqa+vJz8/n+joaLa2tphdXMbp8SPJAQK2VaZVSexZZZMhcWuEtAhJyLw//fTTIikZWbZxb3abTY0Ft18mOUovqpm/qPHvOhkYXXXy329MIMOOFzU0gHv9QRpHlpm/9w5rK8sCSKL03pQMPysri8OHD/PMM8/Q0NBASUkJqampvP1ggXdbZ/Y8tgyMLtgp1M5hNps5cOAAFy9eFFoBZrOZu3fvkpGRIQYrxZcgKiqK5uZmLBYL6enpAGxs+7Buf7Twz+pEP06HnY2NDebn5wXnf2hoiMHBQQYGBujv7xcURwih4YeGhujs7KSjo4PpuUUSs0vILDhIRk4BWfkHKDpUTTAYFLz73cr5St8UQqXdnZ/ZrZ/9L6EcqlQqcotKMZr2lqfdK9RqNesri9isG5gjTFjikzDssZ9gMMjM+DCTI6EVbmZeEdkFJXvuW5IkoiyxzIwNIhFatT9+bwKBAFlZWVy6dEnIpiqh2MZCiBWiJAAul4uEhAS2t7dF7/zxSEhO49xLnyIxNQOD0YRObyDKEkN+cTkAs1NjbG1tkZubG6L1SRI9nW3ooxPDJJeV6w76PHgWhynMz+P27dscOXKE7e1tgQ1Qkpa1tTUSExNJT0+nqamJlJQU4uPj0el0dHd3h8CAeiMGy97AVDkYZNu6wmj3A2pqasJU+hRWRlNTEwUFBURFhSoMubm5tLS0sLq6yuXLl+nq6hLa/rW1teJY8fHxWCwWGhsbyX7oWX/79m1OnDiBXq/n1q1beL1e4uLisNvtQtxraGiIsbExZFkWaHOHwyE0HMxmM2fPnqWmpoaEhAQePHhAe3s7CQkJxMXFCRGc8vJyNjY2BMBQuWcPHjxAp9ORmpoqKldxcXHU1tZisViENDOEKmadnZ1MTEyQnJy8J31QCaW6srmxxuSilXXH3itqrRqerYxCr9MSHR0dVvVRWg4QmpyViUx59k6nU2AhFNDnze5VZtb2WagADneA8ixjWGtLpVKFJcMGg4Ht7W2effbZkBV7Xhp3OsaYWXxSQEutVpGWGMV//o2zbG6siRW8ohqZn59PQ0MDdXV1pKSk4Pf7GR0dFdvHx8fxeDxoNBrMZvOu76mSGLkNcTQ7oukmnbWofNbNOchIGLZmcRgTQ6u/nVVS4EBSBJcKIpgYHxPPtK+vj+iEZP5nyyrXp7049bGMrLm4M7nJh6PrFCeZiY3Y28L55x0/t2Rg2e7h3YEVGsc3GF1xEmPSEm34aBnJnfFX9yZZtO1BaZEkZJWaGJ2EvPXI1z0pKUkA9vLy8gRHe25ujsHBQXp7e+nq6uIH96aY2eJJWc4d4ZNV/PB//BYnTxznwIEDYlCDkHXy5OQks7OzVFZWcu7cObFNo9EIn+/y8tDAHgjKLNr2l5rVaSQ+8VwI+HTy5ElOnToljFgyMzOFe1h6ejrPPvssFouFhYUFXnzxRTQaDVarlUhLLM+8+CvoDcawL4harSYlPVuU3JVtil5CVHI2+bVnyK44QUphBcaoGNwOGz6PS1xTbGxsGN/90aPY/R4+Xk0wmiJISsn4Vwl0zE+PY91YZXt7m9WleXILDz5BQwwGg7icDu5cfwe/LzT5Jqdnk5yete8xJUnCt73F3OzME7+H0OQ2MTHB5uamGIyioqLweDxioFBkgXde8/b2tkgWSkpKwsBnao2W8y99Go1WF4ZLUVooSWmZrK8sMD05Tm9vLxkZGZhMJt75wVvEmA340KA1hAZ9WZbZmJ9gvPUGmWkhO9eWlhaqq6tZXl4WvhPKeQUCAVpaWrBarZhMJgYGBqiqqkKj0TA/P4/VamVlYYa0ogpk5F3vnSRJRAWsTI2NYLPZKCkJT7hSU1MZHh5mfHycysrKUOVLrycuLo7GxkYsFgtnzpyhtbWV7e1tNjc3KS4uFn+fnJyMyWTi1q1bJCcnhyidD5kuCkVucnJS4FxsNhtGoxGfzyeAhdnZ2VRXVwvZW5vNRnd3N6mpqRQWFnLo0CHm5ua4ffs2DoeD7Oxs1Go1er1eKBhOT0+LVotarWZ4eJjh4WESExPFql+SJFJSUqirq8NgMISh8202G+3t7czNzZGSkvIEFS0QCNDb28vbb7/NgwcPiIuL4+Xnz/CT28P4ArvLGV+oiSUzIfReKZNzXl4elZWVgm64tLQkWnhZWVmUlJRQWlpKaWmpYKdASPSqc9LN2keU871+mc8+X4lOp8PhcIh7FAgEuHz5Mn19faIK29bWxtzcHLIsU54bRVf/xBPJzbGKXH749d+iuqKEyspKDh8+TEpKCj6fj8HBQVpbW7l//z6rq6tER0dTXV3NqVOnKC0tZWhoiGAwyMTEBK2trbS2trKwsIDb7cZkMoUxzNpnt/iv10dZsnvEWC+r1FglM361nnzfDOrIWJz+0DZ1wEu8fZx89yhmo4GYmBiWlpZQqVR4vF7eWTaz6FahLEqVx+PxB2ma3OREbsyeMuY/7/g3TwZkWeY7HQt89eYkQ8sOZjZcDK04uTq4xvq2l6r06F3LKbIss7a2xuDgIPfv3+fq1au0uuIIqva5sbJMwOsh2vXIkGV9fZ2ZmRlGRkYYGhpifHycxcVFgZQOBoNotVoWnFoGVgL7luN0GhX/6ZXKXQfDa9euYbPZKCws5PLly08ADT0eD+3t7dTV1aHRaDBqVSxsefDvg1jJiTMR81hmubCwwDvvvENjYyORkZFcunSJM2fOoNVquXbtGoFAgP7+ftHHrj3xFFExcXuK9yQkpzHS2yF0+mVZJqvyJBkHa9HqjajUalRqNcaoWJLySnBuroI/JDz0uBHRblFSUkJZWVmYyA3AF77wBTraHpCaXShkj/8l0dd+D/d2qNrjcW0zPTaERqMlOjYOlUqN1+thtK+Lezffw+16hGMwRpjJLijeZ8+hJOLWtXcIBvceEAOBQJjH++c//3nu378vrtHv92M0Gp+oAChVhoiICFGuBMgtPEhW/oE9n5MsB9EbIpgY7kOr1dLS0sL29naIHaDXMNB6mwsN9WQlRHL/2ttM9rfj87jJyMggJiaGjo4O6urqWFxcZGNjI0zL4MUXX6SiooK1tTVRYZqYmKCgoACv18vg4CB+n4+q0gM4go8U5R6eGEgS0z3NeDaXRB/+2LFjYa0YSZJEiT8yMpLU1FQghGa32UL8esUNr6+vj+XlZfR6PW63m/7+fu7fv8/g4CAej4fl5WVhxuN0OqmtrSUlJYWFhQXKy8uFuFBfXx8Gg4HBwUGhW6C4diYkJAh1z87OTiRJoqCggEOHDhERESH47GlpaURFhXQ74uPjqa6uFsJjCrAzGAzS2trK5uZmWOtApVKJNiSEAJFKbG5u0trayvLysrD6bW9v5wc/+AHd3d2kp6dz6dIlTp06RW5WGhdOldE3Mi+EegAiDSqeOWSmNENHZGQk9fX1LCws4Pf72djYEN+5M2fOUFtbS3d3N7m5uUK9dGhoiKGhITweD1FRUTQ0NFBWVsaD/gWmFvcXSTLpVXzyXJlQ/NNoNFRXV9PR0cH58+fR6XSMj49z6dIlJiYmsNlsDAwMMDc7w+HiBD7/iQaiDUESIzz8f3/yaf70P36MaPMjzJeinHngwAEBNI2IiGB5eVnoDQwODuL1etFqtTidTn73d3+XvLw8jEYjS0tLtLe3c//+fXp7e0OtIn+Ar7Ws4QvIT16bJOFX6TlRVcIb5w7gGWkmM7jC712sIT9GQ9DvZ2xsTLiAxsTE4I1OZ06fwW6tBRkIyjISEhVpH21s9POIf/Nk4L3BVf6xIzQ5yzt+ACbXXQRlmbLUkHLfwsICfX193L17lytXrtDc3MzY2Jj4Avd7ovDvU4mWJMiOi+DFIwc4dOgQVTDK6vIAACAASURBVFVV1NbWcuzYMU6cOEFDQwOnT5/m+PHj1NXVUVNTQ0VFRShDLsjkL68M7r1vZCoT/ZyvTH2ixLe8vMyHH35IdHQ0n/3sZ3elxERGRtLc3ExSUpJAxsYYtSzZPA8nkPAXKi5Cy4HkR+WulZUVfvKTn3D9+nU0Gg0XL17k1KlTzM/Pc+3aNa5duxZmcxsMBlFrtBw98+y+Kn6SJGG3WYkwhGRMzYmZZBw8LLbt/BxIxKbmMjvUQeAxwNvOz6ampgpAVWRkJF1dXciyLBz1tFotJ0+e5Nq1qyzOTpGVV4RGoyX4EOD0uNPgzggGg2ysLtPXHk5X9Hk9zE+PM9DZwkBXK31t91icm3rCg8Fhs1J4sGrPBCQYDLI0O8nEcN8T25TV/+OYAI/HQ2trq5jo9Xq9oHvuVjmBkPCP3W4X+zpQVk1MfMK+AD2jyUx/x328Xq9w41OpVKKV8ey5pzFo1bx//ZoQ0bHZbGRlZdHX18eJEyeYm5tjdXVVbJdlmYKCApG0KQJDc3NztLS0EAgE2NzcRKfTkRgbzcxQdwirodaCHCTJYqL9/R+yMj3MxsYGJ06cYHw8JM2cl5cXdg1K8tPa2kpVVZXABWRnZ9Pb20tvby96vR6bzYbb7WZ8fFwIzBiNRnJycqitrcVoNLK4uCgmnZ6eHo4fP05aWho3b95ke3ubw4cPU1hYSF9fnxALmpubo7CwEI1GIyi+4+PjuFwuUdXLz88nOzubkpISxsbGuH37NoFAgMzMTFQqlRiLCgsLmZ+fFxVISZJYX1/nwYMHaLVa0TqAUEUsNzeXqqoq3G63AOxBqN3Q0tLCvXv3GBkZEYuJI0eOhOELEmIj+cylo3zi2Rq03iWOH4zjcA4kWbTiHZybm+Py5cukp6czOzsrMAB9fX2i3fO5z31OWP0ePHiQ5ORkRkZGhHTy4OAgwYCf7qnd39vQtUJFtgGtdxWXyyXuy9mzZ2lpaSEjI4NDhw7R29uLzWbjxRdfpLOzE61WK74bwwO9GFXbJFu0xEQaSExMfMIyeue7HxkZSVZW1hNVg4GBARYXF3G73SwsLBAREUFpaSlHjx6lrq6OtLQ0ZFlmYmKCm4OLrOlT9rwuJIk5q4vTWUaG+3vREiAvLxez2UxKSgpFRUX09vaiVqtJSkpi0BONU23e0xZZBlYdHl4oTdr7mD/H+DdNBvxBmT+7MYFnnxl8dMWBrecmV997V3iJR0RECPOeCxcucPjwYfLz8xlf38doAgCJy9VZHC/LJzExkdjYWKKiojCZTOj1+n1XoLGRemZWHfROP9nPUqlAI8EzSUsMdreysbEhvNAdDgff/va38fl8fPKTnyQ2NnbX/ev1euF/rpRQ9VoVSVE6BgcGUekMaLRazHo1eQkRFCRFoJIkNjY2uHLlCu+++66Q3lQEV370ox8xNDSE0+kMK7+npaWFbF0rKlEbLXveLXiYOPjcXLr4LEePHsVlSMAv717qlyQJSaXC63KEKgSEBniv1yv4vT6fj9/4jd+gsbERl8uF1WoVvGmdTofH4yEuLg6j0cjw8DDubSdDPe3YtzbxeNxsrC0x2t9NTFwiGq3uibK/3+el5ea7OB128Xtlkn70ub1X9LIss+20k5lXtGuf3ef1cPeDH+Nxux4++0c90J3HeDx23n+VSiUmtOzsbLH63+1clMjMKyJ6H2aFcl2KnLKiNQEhFHh0dDR1dXV4vV5u3bpFRESEMMVSyu5nzpxhZmZGTEZKMpCbmyvUA00mE+Xl5QwPDwtsg9vtDiWNdjt5Odn0td1jbqiT+eEunjt9DOv6qnAPTE9PZ3FxkYWFBY4fP/7Ee5Senk5LS4tISu7du8eNGzew2+1iQFd6wsqq70tf+hI1NTXk5eWRlJREYWEhdrud27dvhwEJq6qqyMnJ4datW1itVqqqqigtLRUufltbWwwODlJQUIDBYMBkMlFRUcHW1hbLy8vY7Xa6urpITU0lNTWViooKJEnizp07jIyMCIojhJL7yspKkZQBQjBKWXEnJiZisTz6/un1eoqKiigrK2N9fT0Ma6K8i2lpaRQVFT3hjKhErCWCrdVZokxqnA/9BhQAazAYpK+vD6/Xy/nz54mPjxc8f0Xw6969e6JFoYCQm5ubeemll7hw4QK5ublkJsfQ3DOD1fkkrkWSQKeW+Hh9IjoNYfseHR1FlmX0ej2FhYXExMTQ1NREfn5IEGxhYYG8vDxee+01Dh8+zOz8EgvL62xuhBKiwcFBHA4HRqORiIi9sUSPVw0yMjLo6elBkiS6u7tF1cDhcJCUlER1dTVHjx5lWYphbN21byvYG5AZff8fsW2uY7VaaWtro729nc7OTrGoCQaDbG5usmFIxqON2jMZUO7X5UPJe27/eca/aTIwsbbNuwOr+34miES82s3xyhJOnz7Ns88+S2VlJTk5OcTGxoaVGmNNWj4cXd99R7KMSafmCyey/9XWkecq01mzu+me3ECWQ5acMpAZb+b7f/w0FbkJTE5Osry8zIMHD/D5fNy6dQuHw4HJZOL8+fP7lrvtdjs9PT0cPXpUrNYH+nppvP4TGmoPUl2YTnqMkSijBrvdzvvvv88777yD0+mkrq6O2NhYWlpaaG9vZ319PQzYptPpsFgs/Pqv/7pgL3R0dFBScfgjKwN97S28++MfMTo6ijnjwL4TErJMUnws08M9GI1G0SrQ6XS88MIL9Pf309nZid1uF5gKxXLV5/Ph9/vJyclhfHwct9stJlGTQctQbycL0xNsri0zNTqA0WQiIjIatUZDwO9ncqSPezfeY3M9/J0yGAz7TtSPh3Vjlc21ZWLik4TOgCzLLM5O0nT9R2HiRJIkodFoOHz4MGazOQxEttu9hEeJgSzLuFwuIiMjee2111hcXAxrrag1GnIKD1JWU0+UJRZTxN6gsmAwyPzMOMX52czNzT3hc+B2uwkEAhiNRjo7O7FYLDidTs6cOUN7ezsqlYqGhgZmZmaESY8ysCkc7J3XkZaWxv379zl27Bg2mw2fz4fdbmd5eRmv14tOpyMYDGKxWCgoKKCjowMIrXSrqqqYmprCZDKJcnFXVxd3797lww8/xOv1YrVaWV9fJyYmhqKiIo4ePUpMTAxTU1NcvHiRhoYG2tvb8Xq9jI6OUlNTI+6vUtJfW1ujqamJs2fPEggEuH37NuXl5Rw4cIDGxkZWVlY4dOgQ5eXlYXbCnZ2dZGRkCIBxUVERkZGRjIyMiO0K2Dg7O5uCggL6+/u5e/cuOp2OtLQ0ARh8XMFQ4dZDSM5858IBQu2B5uZmhoaGUKvVmEymsFbS4uIi9+/fx+12k5aWtqs9r6KumJ2dzfLysmD8KAJJa2tr9Pb24nK5OHLkiKgSaDQadDodKysrtLa20tPTIyoKZ86cITIykpiYGHJysnnt+WN8eLeHpXUnkkRISwCIMqp49ZiFKKMsklnluSgS2QrQOS0tDZ/PR2dnJ3NzcxQUFDAyMsLg1Ab/71838fXvd/FgzEX3tI/s3EIKMy309/XS0tJCT08PW1tb6HS6MGzWbt+5iCgLHw6vYIstJLHsGBnZuUSp/Qw9xBq0tLSwsLCADROTjv3bkRLwxWcrWV1ZJjk5mcuXL1NbW0tNbS0Bf4ClpSVefvllnnvuOQJGC4Or+1dQcmJNnC2M3/eYP6/4N00Gluxebo7tMXnviFdPVXDsUCHR0dH7TlwJZh1mvZrOeZt4OQGQZVRygFp5nGMVJfvuY79QqyTOV2XwubOFFKRGc6o0md95vpT//tnDpMebSU1N5dChQywsLGC1WpmZmcHpdGIwGMjPzw8DPO0WklrL334wwJV+Bx/2rbDlcNF26z0OFBVy/PhxIAQyu3nzJm+//Tbr6+vk5OQIdsDj4j8pKSk89dRTXLx4kTt37mA2m7l16xYzMzPk5eVx/vx5zFEWvP7daymyLOPzemi5fY201NQQ2CYh6wmd+7BrABanRtlcnCY7O5vTp08zODhIQkICvb29+Hw+EhIScDgcnD9/nv7+fmRZJjIyUmA0gsEgKysrIkEwGo1C+VGSJD7xiU+wvrbGQE8HA50trM5PsDg1Sn93u5Ag3klj1Gg0e5r67BU26wYjfZ3MTgwzNTZIT+sdxga6n9i/VqvFZDKxtLQUJhwkSdITFYndIhAI4Ha72djY4OTJk2RkZDA2NkZkdAznP/4ZcgoPEhkdgynC/MTguvM5SZLEWG8rfb3dfOpTn6Kvr09IXCsxMzPD5OQkbreb+Ph4AoEAr776Kl1dXXg8Ho4ePcri4iLT09Nhq8n09HRycnLCjhkZGYnH4+HevXsUFBQIhL4yCSvHttvtnD59mr6+PlwuV0gmWadjc3OTsbExWltbRfUqNjZW6M4rz//Tn/40OTk5xMfHk52dzczMDB0dHdTU1FBcXEx7eztOpxObzUZR0SM9CUkKycMuLCxw7949zp07h8/n4/bt26Ldcfv2bebm5igrK+PQoUMhOtnsLCaTSYDzFHU6BUQ4PDyMz+djYmJCtA3i4uKorKwUTqIzMzNkZ2cLYJperxdWu5OTk0LxT6PRsL6+TktLCy6Xi66uLn7yk59gtVqpr6/n5Zdf5sSJE6KaorSUZFlmbm6O+/fvEwgESE1NDWs9KtWd5557jtbWVlH1VAR+0tLScDgcREZG0t3dLQyYEhISWFxcxGg0CpVQRanQ7/cL10MAo17L6ngzuQlqaipKMMhbHCkw8nS5mbysFEpLS4XinxIqlUroadjtdgYGBrBarXg8HgwGA6+//jrNfQv8yTeamJp/JKTk9QXoGV1iei3AX/w/XyQ/L1dgnxSGx8bGBmq1+ok5YmzVyRs/HmZBimHTp2Fmy8PApsy8Kp7/8PFzHK4oFVbbMyP9rJlz9lzJS8jUZFh4sTaf7u7u0GI0uZD/n7v3DI7rTPP9fqcjGmgA3Y1u5JxzIhGYQIpJDKCYlChptN7ZCbtzN3jL/mJ7yy6X635w3bI/uOrWvXbVJq12dkYjjTgURYmiSJHIQIMgQOScc2qg0QFAB39onVeAQFDUeH1Xc59PEtg46D7n9Hmf9//8wz8/XeG9J8t0OEPZ0FkozMkkNTKMOEMwt7sXnsutePtgHEmm/aPY/y3rv2gzEKRScLt7/js1sm8diCVU+2KMywxLCOVJ4fh8sO31odjaIHprjqg5K771BWw22y7Xr9+n9Do1JakRlGdGkhIVuutYQUFBFBUVMTg4yMbGBkqlkq2tLba2toiOjt4FC+6sJyNLnP/3D+lY1NA/s8HT8RVuNk/SvhTEn73+Eia9htraWj788EOmpgLyRYfDwfLy8q65c2RkJMePH+eNN94gKyuLsbExbt68ydbWFkFBQVRVVXHlyhUKCgowGAwEqRTYNz3PZCFLkkTTV58RGWFkfn6e+fl5Qk2WryOQ9zl/ksTY00bSkxM5f/48jY2NLC0tsbGxQWZmJouLi1gsFpRKJS+//DJ1dXVAYJwgG+nsfGjZbLZdhjs//vGP+eKLL5idnRVfesfGBjabbZc2X3ZV22nIs18dP358l8/+znK7nDg31oXaQC6fz4fJZGJjY4MTJ04wODgo/oasCPg+aMTa2hpdXV2Mjo4CcO76jwgOCRWGSoFTu/ucy+5xEmCtvYda8uJyuejt7SUmJkY8IP1+vzB3kdnksrlPaWkps7OzLCws4HAEwpSGhobE4iIvNt+e70PAC6CjowOXyyWc2goLC9FoNMJzfmNjg4aGhl33qLwQbW5ucvr0aV599VWOHj1KXl6eMGqKiYmhpqYGvV4vRhSSJJGSkkJLSwvz8/NUVFQIe925uTmMRiPR0d9ArgqFguzsbMbGxmhqaqK6ulos2Hl5eZSUlFBfX8/o6KiIO5Ykif7+fkGqlBEAeS5dVFTEwsICy8vLbGxsiLGBHAmcmJhIW1sbzc3NhIeH77K63UkwnJqaQqVSsbW1hSRJQk108OBB3n77bSEPlSQJk8lEWVkZERERTE1NiXvc7/czPj4uUhtjYmJQKpXMzMwwNjbGmTNnRKiTz+cjLS1N5BMkJSUxNjaGJElER0czNjbG4uIi2dnZwn/BYDCIrJWZmRnq6+sZGRnBYrGwtLREW1sbEeE6osMhUu/FpFcJn4LLly+j1WqZmPhGcSM/s3bevzsJtbV1DfyfHw2w7fHveR75/bCwYkejVnHlbAWZmZlUVlaSlpYmCI8tLS20tLSwuLgYOLYmmP/pziDO7a+J3zvY/FseH41jNq4eSCEjNYWSkhIOlZUyNr/MnHMvRwt/IIr4L6qSMYUEEh+nNHH8us/JsmNLHH9bGUTDmA2vz09ZkgFjsJrWybVdm1P5yIeSDbxeHPOD9Rv4L9oMaFUK5tY3mbS5ntkQKCQoiA2lOu/7ESwMOjUHE8M5l2Mh1jPPRHsdackJAvKSJInk5OR/lc/wrLp37x69vb28/PLLLC0t4Xa7USqVWK1WFhYWiImJ2UWGWVhzceJ//JQ1xxZ+v8w0Dfzbtl/BzaZxnH33mBgbEbu1nQtNeHg4R44c4fr161RWVuJwOPjyyy9FWFFwcDA6nY4///M/Jz4+fhe0qFBIhGpVeHw+tnYYKmlUEiadgs9v3+TEiRNUV1czMzPD1NgwUWm5gLR3h+rz4VhdZKIzIPFpampiaWlJ7JLPnz9Pe3s7TqeTvLw8srKysFqtQnkgPxgiIyPRaDR7LHrPnDnD7du3WVtbIzo6GpPJJGJMNRoNLpeL4uJi5ubmdkkhn2d5DIikuRep4OBg0ZwkJSWxurq6Sy8uM7/lxe/GjRvExcUxPDxMRUWFMH3az77Z7/eTkJJBRt6zVSnyA9TtcrA0P8PU2CCND+7g33YzOjrKmTNn6O/vZ2lpicTERFZXVwkODiYhIUEsBBBAmJRKJaWlpfT19eH1ehkZGRH20jubAXkO/+2Sd2ItLS1A4BqMjY3tyjWAbzIr5PL5fPzoRz+ira0Nu93O4cOH9xw7LCyM9fV1rFYrJSUlYka+U24oNzOrq6vMz8/T399PTk7OLjmeUqkkJyeHgYEBrFYrly9fZmNjg5qaGrKzsykrK6OpqYmBgQFyc3PJyMjAYDDw9OlTjEajSAbNyMhAoVCgVqvJz89HrVYzNDSEQqEQTUNiYiImk0mkIz569IilpSVSUlLEd06pVAoJ88jIyC7XP71ez+joKKurq7tGB/J1j4qKory8nODgYAHty9dIls1pNBohaayqqhKSusjISObm5khJSRGNk9wcHjp0SFg09/T0MDc3J1CApaUltFothw4dwul0Mjc3x5MnT+jq6hL+DDu/b/L9KfuOLC0tERcXh91uR6lU8pOf/ISnT5/uuifk3+0ad9IztX96o98PvSNz/PW7p8QYJjw8nLS0NCoqKsjOzkar1TI2NkZLSwuf9a+wqjI+kwPgJ9AQGIPVZFhCxH16KD2KVaeH0RUXEqAIiGVR+rZIXGrFNtKJzWZjYHaVNilVHGvHhQKgd36DwthQypMMZEWGsOzcZuFra/noUC1vlMTw9sE4lIofZiMA/wZqgtxoPa0Ta9g3v2XF6vejZZu/eTmLkBdEBZ5VWq1WJJn19fWRnJxMe3s7JpOJqKh/fRZnY2Mjjx494ty5c1RWVgrdsdPpRK/XY7PZaGhowO12Ex8fj0ql4j/e6eFe+wy+ZyxIfsC97UMnbRETvCW+OFqtlgMHDlBdXc3p06cJDw+ntbWVmzdv0tbWhkajoaqqikuXLlFfXy/IU88qhUJCH6QiXKciVKvEGKLCFKLG7dwQ+nMZbt3edOF1bxAWmfA1q98HXxMKVb4t2r/8CKUisGOVNfR6vR673U5bWxt+vx+v10t4eDjz8/OMjIwI62d5gdzY2Ngz846IiKCrqwufzycSA1dWVkQq5OjoKBqNhqtXrzI/P4/NZkOpVD4XEZCh/hdtBPRhBqKiY3G7nHg824IgKoczHT58mPDwcGFkExERwfnz54mNjWVgYICRkRFCQ0NJTk5meXkZn8/HqVOniIiI2JVZkVV4AGNE5J7AH7lkJ8Tbv/o7FmYm2fzaMVOv14sd4eTUDAaTGbfbjcvp5MaNG2RmZu4KPHK73XR2dgqUw2AwMDg4iNfrFYuXx+PBbDaTk5OD2+1mcnJS6LofPHiwK7xKRipOnjzJ6Ogo0dHRbG9vExcXx40bN+jv7xdN7MTEhLgH8vLynhntGh8fT0tLC+vr62RnZ4ufm81m7HY79fX15ObmUlxcTHd3N06nk87OTsrKynbB5iqVipycHLq7u2lvb+fatWusr69TU1MjdphWq5Xu7m6ys7NJSkoiISGB9vZ29Hq98CjIzMxEo9GIhT85OZne3oDCaHh4WIwNgoODyc3NxWw2Cw6PTBbs7e3l5s2bPHnyhMjISDIyMlhZWUGhUOB2u0Wsrrzbl1P45FIoFMTHx1NWVoZCoRD6fPlaDQ0NMTk5icfj4dChQ0RGRornjVqtJjo6GrfbLZwY09PTaW1tRavVcuzYMcrLy4mIiGB8fJzZ2Vlk59CRkRHMZjNnzpxhc3NTjO1k8qtKpRILfGhoqBgVud1uiouLxd/r7u4mLi5uV3OnVqsDEtXpTWZWt5+bs+B0b/GX75xEq9nNlZAkCb1eLxQlBQUF3J+VAn4Az9l5e3x+TqRHiP9XKiTKEg2cSDdh1mvIitTzcraFw3obk30dpKSk0NfXx6gqDpcmfN9jKyTY8vqoTDYSHablRHoEVwujuFIQxSv5kWRE6n+wiIBc/8WbAa1KQVWaiWCNknn7JpseHwadmqPxGpRdn2MM1uwiL33f0ul0wno0Pj6enp4ecnJyaGhoICkpaV/Y/veprq4ubt++zZEjR0RXfvv2bQ4ePMi5c+eEEU1SUhJ9fX20traiVqv5v+5NM7vqeu6xfX6JfGMg+/306dNcunSJtLQ0pqamuHv3Lp999hlzc3Pk5eVRXV3NiRMniI2NZWpqisePH3P27NnvdDVTSBIqpSS61dXVVR4/fkxSUhKffPKJMIKxLc4xP9LFtsuBd2uTtcUZlkc66Wn8Eq9nm/T0dMrKykQGekFBAbOzs1y+fJnR0VG8Xi8rKyuMjY3t8Ubfr1wuFxqNhqioKIaHh5EkiQsXLpCamsrdu3fJy8sTVrAXLlygo6Nj30VebgJe1BExJTOXY2cvU1R+lIS0bNLzitEGBTMy2Cfkjvn5+Vy8eJEvv/wSu91OVFQUKysrVFRUoFarGR8fFzuz7u5uLly4gN/vZ3R0lLfeegtJkhgfHw848JkiA8qB53Fb/H662hp3fcatrS0MEZHEpOVTVFFFXEomOUVlRMclYW1uoLzsoCC5yefa7XYLA56rV6/S0tKC1+sV4wWvNzB6sFqtfPnll3R0dDA5OYlKpSIhIYGDBw9SUVFBZ2engJTPnDkjxjirq6vYbDZOnDiB2Wymp6dHXE9Zdjc6OsqBAwf2cHnkqN3a2lpSU1N3Senk89jf3y/skmVC4fDwMKWlpbuQFbVaTXZ2Nh0dHXR1dXH9+nVsNhs1NTWkp6dz+PBh2tra6OjoIDMzk9jYWDIyMoRUzOFw0NnZSWpqqmhcDAaDMCJaW1sTLoKxsbEizninUZFMfLNYLFy6dIlTp06RnZ0tHAzlkCi3201YWJiIXjebzRiNxl3nRqVSkZKSQmlpKdvb27tQNPnadnR0YDabcTgcrK6ukp2dTWdnJ5cvXxaZErKq4KuvvmJzc5OMjAyio6M5cOAA0dHRdHV14fF4BAm3vb2d7e1ttra29ozhfD6fSGp1Op1sbm6iUChIS0tjZmaGvLw8YfW8vr6O3+/npz/9KSdOnCA+Pp6HTV2MzO2PDAAoFQr+5k8vovwOEnhwcDD3Bm2sbz4fFTQGq59J4AvRqsiK1JMXHUqCUYdarRLPlvPnz/PR0zm2lPvP+v2Azwfnciw73ruEWql4JuL3Q6x/EwdCtVJBTpSei3mRvFocw6X8KA6mWPBuuXflnf8+JUmSSCK8evWqyDaXg3iys7P3eFb/PjUyMsIHH3xAYWEh58+fR5ICMamtra2cPn1a7GAlSaKzs1PMRZuamqibUuHYft7NLRFvCeP//pv/RjzkGhoauHnzpmh0Tpw4weXLl8nJydl1rpqamrDb7Zw5c+Z734SLi4s8ffqUsbExAWd6PB6SkpKoOnaU1sYaDuZlMNLTzuJswLY4NDSUsrIyQkND6ezsJDc3V+xGDQaDkDIZjUYOHz4sZuTfBeWHhoayvb3N2toacXFx/OxnP8PlcvHRRx+Rn5/P1atXhUyspaUFvV4vdqERkTGYI2PQaIPY3nI/l0y4M0cAILe4nPKqs2i03/juK5VKIiKjiU1IZnSgm+SkJN544w2ampp4+vQpAH/yJ39CU1MTUVFRrK2tcf/+faKiohgbGyM9PZ2zZ8+KnHOTycTQ0BAOh4OlpSWUavVzw5V8Ph/L8zOsL8/hdrvF+42KTeTUpdfR6oJ3XetgvZ7oxDQeN9czOz1FZGQkGxsb5OXlCZfD9fV1ent70Wg0gWz2woOUnzhHcUUVCanZRMfEUJCXw8mXXuLs2bOUlpaSkZFBTEwMRmOAUyI3ABEREYJ7IEPBZrOZ3NxcrFar+FlFRQULCwtsbGyIhVy2OZYrOjqaoaEhBgYGdi3wSqVSWHtvb2+Tm5tLXFwcT58+ZWNjY1fOgVyydK+1tZX+/n6uX7/OysoKtbW1pKWlcfToUZ4+fcrjx49JTw/Ij/Py8ujv78fpdKJSqbBarcTGxorFWavVUlhYiNfrZWxsTJgDybP4zs5O+vv72drawufzERYWRnV1teAhyMeQCYYjIyO7gqnUarWYgyckJOwaHUCgYcrMzKSgoGBPZPLW1hY9PT14vV62trbwer1iPCEjb319fVy8eBGTycTDhw9ZW1sjMzNTLOjt7e28+eabqFQqYYq0068EAmNKj8cjxn1Op1OQfzUa5ofNyQAAIABJREFUDUlJSUxOTvLuu+8KIyCfz4fFYhHmUyaTCaVvi5uPBve975VKBa+cLOT1cwf3fc3OGl5yMLH67BE0BHbvlcnGFzL90el01NfXExUVRXx8PLesg2yqdDwvETQyVMPprB+mUuBF6geVTZCcnMzAwADd3d2UlJQ8MzzmRUreMVZUVGA0Gqmrq+Pll19mamqKp0+fUlBQ8EyJzovW3Nwc77//PklJSVy/fl3scNra2pifnxeSQoVCIaRIMvu/vLycnmknM/ZnkFa+LqVC4urhNJKCHXz++ed88cUXLC4uUlBQwCuvvMKxY8cEeWhn+f1+Pv30U7Kysp458/2u6unpEXNNuUpKSnjttdf49NNPcbvdDA4OEhERwcbGhrA3ra+vp7e3l9DQUN555x0yMjJErKxMZvurv/or1tfX6evrQ63REh2XSGi4ie2tTTyevYu17FVQXFzMmTNnWFxc5De/+Q1ZWVnC0VGj0RATEyN4CTEJybx08TXySitISs8hPaeQpPQcNtZt2NcCGu5vM/53NgK6ED0vXbgu5pM7Szb50arVXK4+z/j4ODdv3hSow8mTJwUSZLVaSf7autZmsxEXF0dubi5hYWHMzs7S0dHB/Pw8ly5dCnhNbKyTV1K+7/0gSRLtTY+YmZrY5YVwsvo1tEG6PTts+f37UDLS30VYWBh2u13I1uSFZ3NzE4VSzblXf0RsYipabVBgTq7REhxmJDg8gihTGMpnIBbBwcF0dHQI//ni4mKsVivR0dHCE6CoqEjID2V3vosXL9LZ2UloaCjDw8M0NDSwsrISsLz+WjIWHR1NbW0twcHBIrsDAg2iWq3m0aNHJCQkCDLZ6OgoMzMzRERE7BkF6nQ60tPTaW5uZmRkhFdffZXFxUVqa2tJSUnh2LFj9PT00NLSQmpqKmazmYKCAqamppifn8doNNLU1IRerxcuiZIUyFGIiYmhu7sblUrF0NAQDQ0NDA8Pk52dzfXr1ykvL2dkZITa2lp8Pp8wKpJLJhhubW0xMTEhxlByql5TU5OQdX77Gut0OnJzc8nKymJu7hu7dfm7AwE0Jj09nfHxcWGeND09zcDAANXV1VgsFiG5zMrKEkmRly9fJjs7m4MHDwql1M7a3NyksrKSqakpcnJyWFpaEveU1+sVfIWqqiosFgtPnjwBArkHY2Nj6PV6bt68ychQL85tJXOrz/AvACTJz88uZZMYa37mWOnbZQpRc6//+Wq1Pz+WRGjQd4+hFQqFGAllZ2fzsLae9aBI9v2OAhdzI8mO+v5Baz+U+kE1AwqFgqSkJOrr65/Z6b9oyfahMTExFBQUMDw8zPDwMG+88QZWq5WRkRERZfp9a3V1lffeew+j0cjbb7+9q6m4f/8+sbGxIuVNLtmQZGtri6amJkLVXtqW9kcn/H4oD+pnuLeD8PBwTp48yeXLl4UF5341NzdHQ0MDp06d2gMzPq9WVlb44osvaGj4xsVPoVCIDIePPvqImZkZwsPDef3111lcXGRra4u3336bwsJCoqKi6OrqErG33d3dbG9vC1jR4/F8zequpeTQcY6eeYXU7AJSMnPJLjxImMHI3PQ4vh1NSHBwMOHh4YyOjmK1Wuns7ESn05GRkSEMjXp6evjggw9QqVSYo+I4efE1tNrdSXpqjZbkjByWF+ZwOex7uAk7K6+kHEtM/HMRleiYOKRtB3/3d38nRhcDAwOUlZXh8Xhoa2tDq9VSUFDA48ePKS0tFVB0aGioIOBFRkYSFBTEzMwMKpUK18YasYlpuxZ7n8+LJCmwzU9y4fRxiouLxQ4uONRAXmnlc/XW+tBwRvu7WF4OeCHIM+uJiQkOHjzI2toalS9dwBBh+Vb+wdd/3w9erw/9Mx6eISEh1NfX4/P5WFtb4/z581itVkwmE0tLS6yuropmXCaN2u12Dh06RH9/P3a7nb/8y79Er9fT29srFlK1Wk1KSgobGxu0tLRQXFy8CzmQ3fQeP35McXGxGJ2trq7S19dHbm7unu9ISEgIycnJwmDn1VdfZWFhgdraWpKTk6mqqmJwcJDGxkYSExOJiIggLy+P9fV1hoeHiY2NFUhGSkrKrh2+w+FgenpanLfg4GBOnjxJXFycMDGSJIna2lqGhoZISkrahUzudDCcnJzEbrcLp0qTyUR3dzfd3d1EREQ808AsNDSU9PR0mpqaMBgMu4KCAGH+tL29zVtvvcXAwADLy8ssLCxw6tQpYmJiqKurY2JiQvhgHDp0CAiMJu7evfvMqG35M58+fVpIbedt2zzo2uA/3erlQec6/3K7kampScK1Hvz+gAfF8vIyHR0dKJVK3njjDf7kjZe5X9PE/Oo2CoWERAByN4YG8d+/VcLW2hSNjY0MDAywvb2N0Wjc34ApWINWpeDpjH0Xm1/+758dSqA4fv+UyGd9xvn5eUpLS2m8dxu3OQOPX9qDPCgkCA1S8YsjSWhVv5+M/YdQP6hmABBM+EePHgkJz/ctjUZDb28vXq+X7OxsIVsymUwcPnyYuro6lpeXycnJ+V5QusPh4B//8R9RKBT80R/90S6FgNPp5PPPP+fQoUPExOy2uFxYWKCxsZGnT58G0tHUXpT4GHcE7b5pv2ayXkiy89qJPC5fvszhw4eJiop6ocbl8ePHQm/8Iq9fXFzk7t273L59m6WlpV06fbPZjN/vp7a2FkmS8Hq9/MVf/AV2u50HDx5QXV0tPmddXR0OhwOz2YzNZsPr9YqdoBz3OzMzw7GXL5OSmYviWx714UYzMQkpjAx8Y/krzxYTEhLo7u4WM9m+vj7a2tqoq6ujr69PuOKduPhqAC5/xi4Z/ERExtL3tDXgIf416vDtSs7I/doCeH8inw94/2//k3CYDAkJEYu9bECVmZlJa2sraWlpgvzY29uLWq0WGunt7W3Gx8eJjY0NWJn2dLEwPcam24U2KJjtrU3mpsZprbtPZ1szHR0dtLW1CavViMiY544W5JocGcSzvUl4eDg/+clPsFgsNDY2cvz4cc6eu4BPE/rc78CW10+4TrWH/KRUKunr60Oj0eBwOIiOjhZWxQ6HA7/fT2RkJGlpaYJIKCs95PGOSqXi+PHjwk52bm6OxsZG2trahNZ+bW1tl1+HvCtvaWlhbm6O/Px8wQ3Y3Nykq6uLgwcP7rEADwsLE2OGxcVFrl+/ztzcHLW1tSQlJXHs2DHGx8epr68Xzx0ZPpczCXp6epifnxcz99/97ncsLy9TXl4uAmu0Wi2tra2CdCijg+np6cJaPSgoaJc9Mex2MBweHhahPrIxUHNzMwsLC8THx+8K2pHPSV1dHefPnyc/P1+E8uy6jl+PEM6cOcPAwAALCwtIksSBAwdITEykoaGBhYUFoqKiKCwsBKC3t1eMwRQKBRkZGSwvLxMVFSXMsrq7u7FYLNS3j/PLOhuLdi8yNWfV7qZ9aIX1TRW5CcE4HQ7UajVhYWFi/JeSkkxpRgQa9zinjx8iIthDTjS89x9+zuXz36QSyrbVDQ0NzMzMoFAoMJlMe55z2VF6sqNCsLs9rDq3USslSuPD+bMjiVQkv/gGCQIW4Z2dnYE1o7aGSxXZTLo1bGx5UeBHoZDw+8EcouF/fjkdS6j2uw/6A64fXDMAAS/72dlZrFYrRUVF+3aCz6vl5WUGBwepqKggNDQUu92O1Wrl+PHjREdH8/DhQ3w+376M+2/X1tYW//zP/4zD4eCP/uiP9uSQ9/f309vby4ULF9BqtbhcLp48ecKdO3f46quvWF5eFqSz06dPY1HZ8a+OsOnXsL4loZT8JIe6eSVlg79+8wSHDh363tyGzz//XGSyP69mZ2f57LPP+Oyzz3C73aSkpIgdBAQe9Ovr6wQFBXHx4kWGhobIyckhJyeHX//615hMJs6ePYtsKfrZZ58JX4OrV69y5swZ1tbWWFxcFCOHmIRkisqP7Suf0wWHoFJKJMRGMT09TX5+Pg6Hg1/+8pfExsby4x//mJKSErKysoRboVwGk4WCg4efu0vWBumYmRhmw77+zJ0OQGR0HObo2H2bAQCX00Hn40YAOjs76ejoABDQPwSaP5/Px8rKikBM3G43AwMDgkkuvwc5O16tVrO0uMjs1DjLs+M8aa5jYmQAv3ebzc1NcnJySExMJDExkdTUVOLjE9Hqv/vh1vOkGadjIyCjOnRIWKpWVFSg0YWy8R2EK4AQjeKZLp5zc3Osra3hcrmYmpqitLSUtrY20UhubW2J5DrZmnZpaYlXXnkFq9XK9PQ0R48eRaFQYDabKSoqIjc3F7fbTVtbG9vb2wGvix1BRrBbbqjX60lMTCQ9PZ3Hjx+zvb3N6OioSELcWQaDgejoaGpqalhbW+PKlSuiIUhMTOTYsWPMzMxQW1uLxWLBYrGQlJSEyWSitbUVk8kkeEFra2scO3aMa9eukZWVRU5ODkajke7ubnQ6HQMDA0xNTZGWliZc80pKSnA6nTx69IjJyUlSUlL2yAllB8Pl5WXm5+cJDg5mbW0No9EocguAXaMDhUJBTU0NKSkpFBcXU1ZWhl6vZ3Bw9zze5XLR1dVFVFQUdrudsbEx4SmRlpaG1WrF7XZTWFiIVqvl17/+tUDSlEolERERbG9v84tf/IKioiIeP36M3+9ncmqWf6qx7ZsTM7/qJkjlI8aoJiIigj/90z/F5XIJzsLRo0eZnhglROHgZGUuKwvTxMYlkhAfGIVaLBby8/MpKysjPDycyclJmpubaWlpYXV1VZgmydc7KlTLsTQT14qiuVYYzZEUI2b9919DPB4PT548ITMzkydPnlBWlE95lJLRtnrKinLJiQ7nSkEUPzmUgCH49x87/1DqB9kMyN1/a2srMzMz5Ofnf28ynM/no7W1lcLCQnQ6nZAt2e12jh07hlqt5uHDh+IB8bzyer385je/YWZmhh/96EdERkbueU1jY6PQaD948IBPPvmEwcFBYmNjOXXqFJcuXRJSpa6uLvr7+1FtrpIb7uBI9Ab/w+ul/Hc3TuBzLFFXV8fQ0BBms3lP07Ff2Ww27t+/T1VV1TPfHwRS0m7fvs29e/fwer2cOXOG7OxsampqdkXrGo1GqqurOXfuHDabjcePH1NdXc3AwADt7e288cYbgivw8ccf4/f7OXv2LFeuXMFoNNLe3k5ra+suuWHhwSOEmyKes9D6SUhIwuNaZ2hoiMjISD755BPMZjNvv/02Go2Gzs5O/uVf/oXNzUBKopxetrK2QWrW8xsggKnxYWzL+9thb7pcZOaX7vvvPp+Pwe525qbGCQ4OJiUlhdzcXCYmJtBoNJjNgdmmw+HgypUrnD17liNHjnDs2DHW1tZYXl5Gr9dz48YN2tvbCQ4O5q/+6q8oLy+nsrJSQNFhYWHCSljeUefm5lJVVSVkcNGRZtZc2/j2yY3w+/2sLi/Q86QZ2QLaYgkwnTs6OqioqGBxeQWF9rtnseE6FSrl3r/hdDp58uQJZrOZ1dVVYmNjGRsbIyEhgcXFRaGukNEI2bc+LCyMiIgIxsbG9iz0ISEhZGVlUVZWRlBQEBMTEyLqWKPREBERIZqHjY0N6uvrycnJwWKxCPWCnGuQnp6+5z3LcPvDhw/Z3Nykurqa2dlZ0RAcPXqUpaUlHj16hNFoJCoqis3NTRYWFgT3QaPRCFRj5zguOjqarKwsAWlvbGzsUhsolUoyMjJISEgQRkUy4rWzdhIMZVKmJEk4nU4iIyPp6uqiq6tLfBZJkmhubiYmJoakpCQUCgWLi4siTvvbtZNf0NvbS25uLiaTidraWpRKJV1dXRgMhl0y0gMHDtDZ2clLL71EfHy8yBJJTk5mcl1Dfefss/6UqHW3n9KUIBwOB1arlZycHPLy8sSz7tixY/z9R4/4+89HuNu+xj992s77nzSjUEgcyEsUkse4uDiRMaFSqejr6xNEXpfLRXh4+L4BR9+3goKCqK+vJyYmhsHBQQoLCxkYGEDpXuPPXj1HcVwYcYagH7xk8EXrB9kMQADqlwkuwcHBwpXsRUuv11NfX4/ZbCY2NhaNRoNGoxFqhdzcXBFukpiYuO+M3e/388knn9DX18ebb75JUlLSntfMz89z9+5d3G43HR0dSJLE4cOHuXLlCqWlpZjNZmZmZnj48CG/+93v6O/vJzo6mjNnznDhwgUcDgeNjY2srq5y8eJFsrKyGBwcpK6ujqWlpT2mRc+q9vZ2xsbGuHTp0i6IVHYtu3XrFg8ePEChUPDyyy9TXV2NJEn88pe/FGMACDwsf/GLXwgntS+//BKlUkllZSUffPABeXl5BAUF8atf/YrBwUEkSaKsrIyXXnqJyclJfvWrX9HR0YHRaMTlcokGI7voIPqw/WWdgQVNQul10d3dzcTEBCaTiXfffReVSsWdO3d48OABEBglvfnmm0RHR/Pxxx9TVFyMwfLd90dPewtup2PXz4KCgjh9+jRDQ0O4XQ7CjCbCjRF7Flifz8fWppu2uvu8/tqr+Hw+hoaGGBkZEa85deqU8OQvKysjNjZW6Ko9Hg89PT3Ex8czMjKCQqHAbrdjMBiIiYkRznLyXNXj8XDq1ClGRkYwGAysrq5SWvpNoyJJErPTU6h0oQQGTTver98Pfj+N9++gUiDgZjnnfX5+no6ODnq6u8gpPPjckZJSArNe/cyGQ2bbJycnY7PZGB8fF26TKysr+P1+oqKiiIuLY2FhgfX1dRQKBSsrK1y7dk1AvvKMemep1WoSExNJS0ujra0NpVJJW1sbT548YXt7G7PZTFZWFt3d3fT19VFcXEx0dDQul4vp6Wmmp6eJjIwUDdDOioqKElbdMu9jZmaGuro64uPjRf7CV199xdOnT2lsbESn01FZWcny8nIAydLpaGpqEk2IXHq9nqKiIpaWlpibmyMoKAir1SrGBrLDoBwR/ejRI2Ez/m1S806C4djYGCEhIQKx02q1NDU1MT8/T3x8PN3d3RiNRtLS0nC73fzqV78iOTlZ+ANkZWXtMqH65lbx097eTmRkJDVNTwmOyuHpwBS93R0Eqb/hRpjNZtbW1rh69aogLssJj7NOPY+7xp7rLOvc9PHW2VwcDoeQgw4NDZGcnMzq6ir/+TdNfN6+zvqOMKT1DRdf1PcwPLnI5ZNFuxUzXzfjFRUVJCcn43a7efLkCQ0NDYyOjgovjWclxr5oqVQq2tvbhSFaYWEhDQ0N5Ofnk5qa+nsf94daP9hmAAILk9PpFN3/izBK5ZIZvi6XS8DmMTExAQOJr2HE9PR0JicnaWpqIjMzkzG7jzs9izSP21h2bBEbFkRdzUNaWlq4cuXKrtml7C0ujwF8Ph8ZGRlcv35dzLrlbPRPPvmEuro6XC4X5eXlXL16lYMHD2I2m1Gr1WRlZREbG0tbWxstLS0kJgasfeVddkNDA5ubm8Lt7ll1//594ZkOgS/58PAwt27doqamhqCgIM6fP8+FCxeIjo5mfHyc9957T0gIJUnCYrEQGxsrUhTtdju3b9+mqqqKvr4+oQ6wWq2kpKSQlZXF5OQkFy5c4P79+3z++eeEh4dTWFhIf3+/iDL1+XzExCcTZjQ9F4LXqBRs2lfo6elBq9Xy05/+FKfTyXvvvcfw8DAA+fn5vPXWW+j1ev7pn/4Jo9HI6vIS4RHRBAU/O9nM7/OxtrrMU2vACnmn7j4hIQGFQiEIUdNjQ2iDgjGao3Yda2VpntrPP8bt3KC6uprs7GwqKytZX18X4TB9fX1i8ff7/cI73+Px8OGHH6LT6ZiZmWFtbY1r167h8Xjo7u6mrKyMO3fuiChUOeDm2rVrOJ1OQZArKSnZNS+ur33E/Ow00bGJu8xQVEoF9oUJHjfXi3GKrAuXRxkvvfQS58+dQxccjGvbty/yFqFXo9M8W9Wj0+lobm7GbDYLj3tJCiRrBgcHo1Qq8Xg85OXlodFoaG9vx+v14nQ6SU9PZ2tri6mpKRISEvZN9wwLC8PhcDA1NcVbb72Fx+PBarXS2NjI+vo6xcXFPHnyRBjqpKWlCWvwvr4+8vPznzluk/39Hz58iE6n4+zZs6Ih8Hg8jI2N4XA4cLvdFBUV8c4775CUlCSkhzabjZiYGBoaGtBoNMTHf0M8ValU5ObmotPp6OnpITQ0lP7+/l1jA7VaTW5uLhERETQ3N9PW1iaSVXfWToLhxMQE6+vrhISEsLKyQmRkJEtLSzQ2NqJQKAgLCyMrK4sHDx4wOTnJO++8I0zQwsPDeeONN4QR2E7PgHWnh//t7xr5qttBTdsYPRMOWoddzNs8pEZqOH3qJVpaWjh8+PCuRXBqaoqZmRmchNH8dPS5zYBapeAvbhxlYmKCsLAwga7Mz88zs+Tko2bbvr/bNTRDUVYCWSl7TeMkScJgMIjvo8ViYXFxkZaWFhobG1lYWEClUmEwGH4vwvjY2Bhra2usr6+TkJBAb2+vMH37r61+0M0ABOSGO7v/73NB19bW6O7u5vDhw0JuZbFYqK2txWAwEBsbS1ZWFh09A7w/6OXuiIPhJQejy05aJ9e53TXH3GAn1S8d5uDBg2I3uHMMEBMTQ1xcHMvLy/zsZz8jLCyMiYkJvvrqK27dusXQ0BDx8fGcPXuW8+fP75kTyhURESFsTWtqalhcXKSyspJDhw4hSRJNTU08fvxYyOl2PrxdLhd37twR5MX+/n5u3rxJQ0MDer2e6upqzp49S2RkJKurq9y5c4d79+7tMuF57bXXGBsbIzIyUsCrzc3NTE5OUlxczN27d4W74PXr1zl8+DC3bt3CZDLR2NjIysoKp06dEh06BHYUsswpOEhLXMrz1SFB0ha//fDXbG1tiZx5machuw0eP34cpVLJhx9+yPLystBTV5YdwKvYe179Ph9+oP7eJzjsayQkJGCz2cTDMCwsjN7eXpFz4Pf7mZkYYainHdfGGgvTEzxprqWztR5dUED6lZOTg16vZ3Z2lrt376JUKomMjMTlcgkS5dzcHMvLy8Lytb+/n7feeouOjg40Gg2XLl3CYrGIrIYnT55QVVVFc3OzeG8Oh4NDhw6Jh31oaCgJCQmBz+X3c+fOHeJjo/G61mhuqKWspBBjiBq110VdzcNdkbhyYAwEFqt33nknQNbVKLC2tmGyRO9KV5QkMASrMQarnsvFGB8fZ2tri9XVVYqLixkeHsbj8ZCamsrKygrLy8tUVlYSEREhFiLZaOfcuXM0NjYyNzdHWVnZvvdFQkICra2tbG1tceXKFQ4ePIhWqxUOg7ILZFxcnEAMZAShq6uLuKxCvuhfoWVijTn7JjFhWjQqBYmJiXg8Hh4+fEhoaCgmk4mRkRHGxsYICwvj2rVrQv3h9XrFd7ewsJDp6Wkh2bNarayvr5Oeni6eT/L8PzU1VRgvra+v7xobAIKwNzk5yaNHj3A6nUKWurN2EgwHBgZQq9Vsb2/jdruJiYlhaWmJlZUVdDodDx8+5Pjx42RmZuL1eunv72d5eZnDhw9jsVjo7+8nLi4ukD7phX+qWWV+bS+PZtXhZXxxm/JsAzabjevXr+9CL5aWlujt7SUlKZ7bdUP7Xj+VUsErJ4t49eUDwhCts7OTiooKTp8+zXufdjC+sH/an1KpYGVtg7culu/7msDrlOJ8lpaWEhISwsjIiHCFlBspvV7/wmPnxcVFBgcH8Xg8BAcHY7fbvzON9g+1fvDNgFKpJDExUZiNPCtAZb+SJInW1lYRSQoBEpEcunHgwAG0Wi03Z3XMuRUi2ELucH1+WA+J43hOHN1tzfzud78TBiPyGODAgQNYrVYh67l16xYNDQ1sbW0JD/DS0lIiIvZCz98uebdgsViwWq20trZisVgoKyujuLiY9fV16urq6O3txWg0il1ET08PfX19ZGZmcuvWLVpaWjCZTLzyyiucPHlSQHxffPEFt27dEhCuXOfOnaOkpISamhoR0+r3+7l58yZhYWG0tLQgSRIXL16kuroao9HIo0ePGBgYwG63U1xczJEjR3jw4AFLS0sYDAaxMMrhTYsLcxjNFsIMpj3nwe/3sTg3zW9/+fcAIvSnvb1dkDzfffddoTlvaGjAarUKxvq7776LOcKITqNgy+PDu4PItLI0T8OXn7AwG0hjk+fb8ud3OByEhobi9Xp3mRNptRpmpyZYnJvB5dwQ3vmyyY7ZbOb999/HZDIJh8ULFy5w6dIlIiMj6enpYWtrC6vVKposj8fDxMQEXq8Xo9FIeno6i4uLdHR0iMVIRl9Onz5NfX09kZGRqFQqbDYbLpdLjAoWFxdpaGjgxIkT9PX1sely4Pds8dX9L7l3755oBNLT01lZWcHj8RATE8PG15n3MoQuSRK/ev8fmB4fBr8Ps8lI5xMr6XFmIo3f/dBcWVmhv78fs9mMTqcTYw5Za+7z+YiJiSEyMlKgHB6Ph6WlJQ4dOsT09LRwq9sP+ZOTImUpoMViITExkYqKCoGkyMFPHo/nG0Lhk3ZGQ/O4Neahd36D4WUnbZNrfNqzgFGnJjUimNjYWMbHx3n8+DFDQ0NkZmYSFBTEwsICBQUFIifh4cOHAtFQqVTk5+djt9vp7u4W44rJyUkyMzN3LZgyUjY9Pc3S0pJISNw5NpAbDJ1OR0NDQ6CBiYsjLGy3Oc63CYazs7MYDAYWFxdFyFFfXx8qlYpz584RHByM0WikoaEBlUqFQqEQ0k6VSsXVq1e59aiP1sG1fa/vhtuHtLVKRXGWQB3lmp2dDaAki9NMLm+z7no2g1CS4P/5X98hIyWOxsZG4uPjSUxMpKamJrDRaJlmeHJ/Lo/f72dr28NfvnNy39d8u7RarXDMzM7Oxu/309XVRVNTk/huGgyGZ27Mdpbb7aa1s49tpY5Nl5P01JTvTKP9Q60ffDMAgTmcbDbyvPn+s36vqamJ8PDwXRbHcjb79vY2ntBoPny68GzPaUlC8kNn3wDbk11CDSCPAdRqNQMDA9TX12Oz2RgbGyMlJYVz587x8ssvk5Ryyi6dAAAgAElEQVSU9HspISIjIykqKmJ+fp6amhpWVlbIysqioKBAwIW1tbVMTU1hsVh48OABbrdbcBEuX77MiRMnMBqN2O12vvzyS373u9+xvr5ObGzsrnS7Q4cOcfz4cfx+P/fv3xdSzHv37omZoN/v5+rVq5SUlLCxscGnn35KS0sLWq2WP/7jP8bhcHD79m30ej1er5eNjQ0MBgOXL1+mo6MjkLQnSaQnxTE9PU24yfLNzsfvJ1gt8eDTD9nc3BRIwubmJpIkcf78ec6fPy++tOPj4/z2t78FArbHr7/+uoDO1UoF4ToVeq0SjcLHp7/9FU+aanBsrIvRwLdDn+Rm49shSXq9XkDs5eXlpKWlMTw8jNFoZHt7m6GhIebn57l+/TotLS2EhoZy7do1JEkiIiKCx48fC3h8Y2NDhMtoNBpMJhO9vb0cOHBAmPekpaXR09ODQqEgMzOTc+fO4XQ6qampoby8nL6+PtbX1yktLUWr1dLR0cH4+DghISG0t7djt9uZmpoiJiaGqqoqkXaXk5PDwsICr732mgjY8fl8DAwMBAJ4tEHcb+7Ase1jbW6CA4U5fPbJTUpLil/IBVT2VkhLS2N8fJzXX39dEHVVKpWQlubk5BAWFibY8JIkERQURGVlJa2trSwtLVFUVLTv34mOjmZ4eJi+vj5KS0tFuqPFYqGkpERIUMfHx2lqasLn8zFjLGAS0zdN/tf9r88PrZNrOGaGePDJh6yurgrJ6ZkzZzhx4gRTU1PU1dWRkJBAYWEhoaGhPHz4EJvNJiSHMnpltVqFBW9XVxfp6em7OD4ajYaCggIk6ZuExN7e3l1jA3mhz83NZWBggNra2kCI1ddjrJ21k2A4MDAgpLzyd0ej0Qhvh+TkZObn53E6nczOzlJZWYnZbBbcqX/+coSZ+f0hekkCr89PpM4hyNZut5sHDx7w6NEj0ZDHhXmYW/Nhc3hRSKBUKfD5/GjVCm4cj+bHb55HpVIxOjqK3W7nwoULjIyM0NHRwYJLx+DY/HMzCuKjjfz89arvuBuf9f4DGQbp6elUVlYSHx+Pw+GgtbWVhoYGJicnkSQJo9G4B43pnrPz3lMbA+pkVkJTmNLEodCbyE8woVP/foZ4P+T6g2gGIGA2ImebFxcXv5CDoEKhYHx8HJvNJrSzEIBM/X4/9fX1LIUkM27b2n/eJUl4tWH8h59fEQiDw+GguTmAFLS2tgJw5MgRXn/9dYqKijAajf+fYSSNRkNeXh5Go5Hm5mbB2k5OTqaoqAiz2cyTJ09oamoSi+/bb7/N0aNHMRgMbGxs8ODBAz7++GNWVlaoqqoSCo2goCBh6Xrp0iUkSWJ7e5va2lrRCMjz75CQEGJiYjh9+jQtLS188MEHrKys4PV6RSiSnPW9srJCWloaKysrWCwWHj58iFarFQTF/Px8Ht6/S39XG/NTY4z0dVGYlcStj36N2+WiqqqK0dFRsWvX6XTExMQQFRUldsd/+7d/Kxz/zp49+0yXyk23i/ff+wfmZme+voSSYLJvb2/v8RhYWloSr4MAerTTda26upqMjAzq6uqQJInl5WXm5uaEt//KygqJiYkUFBSI46ysrNDb28v8/DyvvPIKoaGhzMzMkJmZKUJc2tvbWVxcxOFwsL6+jtvtxuPxcOHCBQwGA6mpqYyNjdHT0yNcH/1+PyMjI9TX1+P1epmbm8Pr9VJVVcWNGzcoLCzEbDZz//59gWJ4PB5efvllsrKyvgmP8vm4P+7ig8FtprUJLAYnMKeNQ1KqsY10Uvh15PV3lawqSUpKYnh4WKRoTk9PExsbi8vlYmFhgUOHDqHX68UYQaFQsLCwwMmTJ+nu7mZmZoby8vJ9v9eSJBEbG0ttba3Y9e0sOYisq6uLjIwMhqbm6ZCSYD+Oit/PtM3JmSwLr732GkeOHGF2dpa6ujpSUlI4fPiwaAgSExPFfL+mpkY49smopTz3l5UHVquV+Pj4XedPkiSSk5OJj48XuQ7PGhvIRkUAtbW1DA8P7zEqkmsnwVCO5JabpPj4eJHLkJyczPDwsCBeZmdni8altmeNlfX9IXoAnVZBaVrAHGphYYF79+4xOTnJ4cOHmZiYCFg3KyUOZoRTnhuHZ8tJaV4K/+6dM/zv/+1FRvvaCAoKEiO67u5ujhw5QmpqKk1NTQQFaWnsnt/37ysUEn/+9kscKXlxVPhZJTfqubm5lJeXYzKZmJubo6mpiebmZpaXl9FqtRgMBh5PrfPv7w2x6vbuPAALLj91I6scSTX+V9cQ/ME0A5IkkZKSQnNzM4uLi+Tm5r7QgitnkB8+fHhXhx0XF0dnZydjLjVrhDyX/OIHXisO7Ey+/PJLPv30UyYmJkhPT8doNOLxeLhx48bvhQI8r2Rr1p3hJ2traywtLVFTU4PD4RDjCY/HQ3h4OAaDgZqaGn7729+ysLDAkSNHePXVVwH47W9/S2hoKE6nk/j4eG7cuCHOydTUFO3t7UxMTIiGJz09PWAWdOwYt27d4unTpwI29fl89Pf3s7GxgWy9fPXqVbRaLUNDQ9jtdl566SUSEhIE4z4xMZGRkRHCwkJZs62wvrbK9NQU6+vrxMXFCehfoVAQHBxMTk6O0BPbbDZu376Nx+Ph8uXLVFRUPPP6r6+v8w//8A+COX3x4kUmJibY3t5GF6InzGBEISnwenY3BTqdTiQaxsfHCxY2wMzMDAcPHqS/v5/V1VW8Xi+5ubmEhoYK2FOSpD0727a2NqKiojh69Cgff/wxR44c4eLFi1RWVmKz2Zj6+rPLLo0qlYqIiAhOnz4tzmlaWhqtra24XG7iUzKJTsrCEJVAbFIaSYlJ5GRmMDQ0uOv+W15exmq1iqZUr9cLGL6vrw+vz8doaB5zukQ2d8RY+yUlg8ubuNWhVCaFY34Bwy+1Wk1XVxchISHMz88TExPDgQMHaGxsZHNzE5fLhdfrJT4+XhiIdXd3i1FQXFwcaWlpdHV1CT7GfqXX63E6nTQ1NVFUVLQH4pVDenp7e8l66Qpdi8+OjQZEFv2fXazEoA8Wjpvj4+M0NjaSkZFBeXk5k5OT1NfXk5CQQFZWlrBKlq145Tl1YmIiVquVoKAgwsLCqK+vJzw8fI9s2WQykZ+fL6KLQ0JChO2wPDZQKBSkpKSQlpZGZ2cn9fX16HS6PUZF8A3BcHBwELvdjt/vF7HUERER6HQ6uru7USgU6PV6VlZWKCkpITo6mrq6OuY21Mwtb+y7K1dIkGTWkBYVaNKWlpYICgrixtvv8vFXPbx/b5DWYTeTS9uoFV7++k9vEBPuJypki5/+6CpGQzh2u53W1lYOHDggshxycnIwm82EhYUx0Gll0aXDtrG5p1FXKhVYjKH85//lLYKD/vWeryqVSuTHyPfS4OBggJv1pJ2bc3o8/mdHIW96fGxseilL/NcLvfsh1B9MMwABeMxkMvHo0aMX8geAb+RPqampuzp1hUKBwWCgqb2LNd3+x5EAk9rLyMMPaW1tRalUcuzYMa5cuUJBQQFfffUVqampgjn+/0dptVoyMzNZXl6mq6uL0dFREhISeOutt9jY2MDtdpOdnU1DQwNNTU3Mzs5y6NAhXn31VdLT07HZbLz//vtCmmQwGPjxj38siFwPHjzgzp07+P1+Tpw4QWRkJJOTk9hsNsLCwoRU8M033yQ2NpZ79+6xubmJSqVic3OTAwcOcO3aNZ4+fUpNTQ1KpZKf//zn5ObmCumSJElCcra5uUlKSgqrq6tsbW2hVquZm5sjODiYH/3oRwwMDODxeITRkM1mE+OGpKQkKisr97iwQWB+/fd///fY7XZ8Ph+5ubmcOXMGbbCehMwiyqvOkJ5bRHbRQaLiEllfXcbpsCNJEsePHxeKhZ2NgCRJuySAAwMDAGRmZlJTU0NRUREhISHYbDYOHDggfq+vr4+RkRGys7MZHh7Gbrfz6quvolKpUCqVZGZmYrVa8Xq9lJSUiPn65uYmi4uLLCws0N7ezt27d9ne9nD8wnVyig4SrA8jSBdMsD6M8IgovJIK+/I85eXfEPDGx8fp6ekhJSWFxcVF4uPjBdemvr4eU3oxTz2R+8axbqpDiQrykZv4YpHfMzMzLCwsoNPp8Pv9FBQU0NPTw/r6OpIkERISItxATSYTTU1NwllvY2ODEydO0Nrayuzs7J6m/duVkJDA48ePWV5eFqqXnSXSDRedrCi++2F9LseC/uvIdLkhGBoaoqWlRfjz72wI0tPTiY+Pp76+ntHRUXJycgRbPSsri/b2dtxuN4mJicKuOTk5edciHhQURFFREZubmwwNDWGxWOju7t41NgD2GBVNTU09k4C8trbGgwcP8Pv9nDt3TjhDyn4DqampAnmSiY4yf6RvcJSBmf2TA/3A2SI9YbpvdsELqy7+4v+4x4PWcewuH85NHysbXjonNvGipvqlYqHQkn0kmpubRV5FQ0MDERERxMfHExkZycrKCgblKn6tmck5GwqFJEi0OanRfPIf/x3x0d/PPfD7lE6nIzk5WYwDRzYUDLr3V675gUmbm+q8SFTfkab4h1R/UM0AgMViYW1tjcbGRvLy8r5Tf6/X62lpaUGn0+1xG4yIiGBhtI9hr+G5cKJlpYeStBiqq6uF6YZarWZlZYVHjx5RVVW1S2v8r1kul4uGhgY++ugjFhYWyMvLQ6VSMTExgSRJ9PT0YDQaGRsbC1j7hofjdDrx+XxCPvWP//iPSJIkNMo///nPCQoKovX/Ze89w6M803zP31tJqlIqpZKEcs5CEgIEAmGCAZExGBxwG9tjT2+72560Z87MnOtcu33OmWt2dvs6E3qm29M9ttuhmzbGGGOMRQYhoZwzyrGUY0kqhXr3Q/l9jFCAnp6eXZ/2/4sNqFRvvVX1PPdz3/9QXMxHH31EV1cXCQkJIjwnOzsbsJNnFB12VlYWMzMzvPvuu8IExcPDg2eeeQZPT0/OnDlDW1ub8OVXyEYOjnpGLLOExSTiYHDFap1Gkm1MT08L8yBltn369Gk8PDwoKSlh+quxQW1trWDcBwQEMDg4SF5eHiMjI3h6egrSWV9fH++++65wTNNoNHznO9/Bhpo5nRGDi+uiBVnv5ExYdAL9PV1MTY6zbt06wfp+UHYFX7PmFSmUssgaDAZOnjxJd3c3ZrOZjRs3AvZu1NmzZzEajQwPD9Pe3s6ePXsWtbZnZ2dFq1+JDp6fn8fJyYmenh7a2tro7+/Hy8uLvUdP4uLuLRQxyjUBaLUOeHh6scb0tSRNmZ3Hx8fT2NhIYmKi8Om4desWZtcohudUK3fDZBsz8zK74vxW+olFULpv0dHRdHR0sGHDBiYmJujp6RGW1AMDA2zatAmtVsvQ0JAoBBWugOKYp3QAV4JGo8HJyUmYBD3MH1Ja93mFxQwbAlb4LXboVDInk33RPDBq0mg0xMbGUltbS0lJCQkJCaSmptLR0UFubi5BQUGEhoYSEhJCfn4+jY2NxMbGotVqcXJyIiEhgYaGBnp7e0lMTKSwsJDBwUEiIyMXjbRUKhURERF4e3tTWVmJk5MTY2NjS8YGSuEYEBBASUkJBQUFuLu7LzIq+vzzz4UN+MmTJ0lJSWFgYICuri68vLwYGBgQVtDwtYXwneoRfn7xawvw5ZASqmdTrLvwypBlmV/eHWV0ajFZUPksFVe3kxQXhm1qQKiCdDodsiyTl5dHcnKyXY44NUV8fLwwmKuprmRDjAd/9eYpQgO8yVwXwV+8msV/f/Mwnsb/mPAfZf00y85U9Uys2i22ybAzyksUkv8r4BtXDIC9+q+srKS5uVkEgawExTJXCZx4+N8C/ddQlXudMSd7C058AL7aDGKM8H88t52E+PhFlpcA1dXVNDc3c+DAgd/K3GI5WCwWcnJyOHfuHO3t7SQnJ/P000+TkpJCamoqGo2G3Nxc4XSWlpbG008/zeaMDNqnnblYYub8zTKqy4vR2qaZmZlBrVbz6quvMjQ0xK9//WsqKiqIj48XkaW1tbWilTw3N0dgYCCvvPIKAQEBlJWV8atf/Yq5uTkkSWL79u3s27ePgoICvvjiC0wmE/v27aO0tJQnnngCT09PxqbnMU8s4OMfhLuXNx7evkTGJ+NpWkNDTQWyzYZarebYsWNs375dLJaVlZWMj49jtVq5fv06Wq2WgIAATp8+zYYNGzAYDFRWVpKbm0tfXx+zs7OcO3eO+fl5dDod8/PzZGZmEhERgXl8lnmbvOQzIkn2UBQvX38aq0vx8/MT8crr1q2jp6cHR0dHsYguLCzQ19cnvC+U0ZCnpyc9PT20traSkZEBwBdffMHIyAg7duygvLxcKDsevIa8vDza2trw8PBgYGBAyP6Ua9+wYQMuLi709Q8QmbRxxdOyJEk4GJwxGr7OD8jPzxcn58bGRjEftdls3LhxgzHPWMZXTnX+ijgrczBpzSo/9DVUKhXFxcVERUVRV1dHWloaBoOBkpISYc09Pz8v/AQcHR2Fla3Cct+yZQv37t2jp6eHjIyMVb/TPj4+tLa2ChLmw/fG2dkZJ2meErMVm3qF1rIs4z7eQkfJTfR6vVBWgH30ERMTQ2VlJRUVFaK4fbAgUBQLhYWF1NbWEhMTg4ODgyAL9vb2UltbS1paGjU1NUKp8PAo0WQyERsbS0NDAxaLBWdnZ+7du7dobAAsMSoaHh4m5KsUwqtXr5KWliZSUV1cXEhISBC+KrOzs3h4eGCxWNBoNMzNzXHheik/+bRm5fdUgu3xBo5sCeL7r7/Otm3biI+P53peNberVyccNncM8p2DaZSXl7Nx40bUajVr1qyhrKyM4eFh/Pz8qKurE5JvpWV/+/ZtAnw9OXnoCTJSIwhe82gF1u8CvWNWCjpWVlgoeHqt3zc6mOhhfCNfiYODA0899RTd3d3cuXPnkT8fFhZGd3f3Iha5AqPRSGqgG+HmO7hOdKCyzSMhY1RbCbPU818PJKFfpiUN0NTUtGzm+G+DiYkJsrOz+bu/+zsKCgpIS0vjzTffJCsrC1dXV+bm5rh37x737t0Tj7F9tak2mqdI/ME5vv9uDTc7teT2G3mrxoP3G41MzUns2bOHK1eu8OGHH2IwGHjttdc4fPgwLi4uQop28+ZNJEnCxcWFF198EUmS+PWvf83FixeFKuCVV17B39+ff/mXf6G8vJy9e/dy+vRpYfARGhqKxbrAwIR9x7HH3KpFQJGnzxo27chCp9Pxx3/8x0uyFJQFMz8/XxgzHT9+XFjBpqen88Ybb3Dw4EG6u7u5ePGiGDcEBgYKt7i5BRszcysYpgOSSoWbuyeeJl9u374t/l6RGMbHxzM7O4tGoxGdggelrcqoQq/XMzMzgyzLdHR0UFFRwc6dO0WB+GB07cTEBPn5+dy+fZuFhYVFrnBHjhxBlmUMBgNxcXHs2bOHl1/97iOjvCVJWvQ6FWMh5fmVU6bSNXFxUK2Syg7IMo6qle/bwzCZTCLKGaCjowN/f3/0er0wqdHpdKLzEhISgtFoxMXFBQcHB8rKyrDZbKxbt04QKx/1evft28fQ0NCi78GD2LQpnU2OfUjyPKpFL9buzug4N853NoVhMpk4f/48P/3pT6mrqxPvs4uLCy+88ALz8/N88MEHovjz9/fnww8/pKOjA19fX1566SWsVivvvPOOIJ3qdDpOnjzJunXrKC4uJiEhgdHRUX7+858vygBR4OXlxR/8wR8QFxfH4OAgvr6+3Lx5U3hsKDAYDBw/fpyjR4/S2NjIT37yEy5cuEBAQAAxMTEAizI7oqOjef3110lLS6O/v3+R10Rp2/xKUyLAfvI1GbWMDA9TUlJCZ2cn9fX11LaPPHQ/F0OWob7VTFhkLFarVbznWq1WkEUNBgNTU1OCuAsQHBzMli1buHnzJj09PSs/wX8A1ge5oVnlRaokWLvG5bGikL9J+EZ2BgChwb1z5w5hYWG4ublhnbcxt2BDo1qcR+/o6EhBQQEBAQGinT80NMTdu3f59NNPMZvN6OQ5YowqfvidvTybFkhGoIHy219iNLot8k5XsLCwwOeff05ycvKyFsW/KZRsgU8//VSwr48fP05MTIw47RYVFXH27FkhC5uamiI2Npa4uDi+uHmPPz3Xy+jUHLJs/zLLXy3543MaOqcccBwox2qd4fDhwzz55JO4uLjQ2D3Cn/7zFX6c3Ur1iBNTCxqMulmeefoppqenefvttzGbzWi1WtRqNUlJSZjNZrKzs/H19eXUqVNEREQgSRI3btwQJ5j+8dkVg0skScLo4YVqYYaE+MVz36GhIbFRxsfH097ezsmTJ5fwQ1QqFaOjo5SXl39VbNilVUNDQyQlJRETE8PsvMzEzKODeHo72xh5ILNAiVzev38/ExMTwpdBpVLR29srNgxvb2/8/f0ZHra7Jqanp/Pxxx/j6urKnj17+Pjjj1GpVFitVubm5rh69SrZ2dm0tLQgyzIZGRn09PSg1WpZWFhg+/btWK1WKisrWb9+vT3QyPZ4r8FVr0artidFXr16FUAQy3bv3i3uV3FxMdhsDGhXH2uluU2zIebxPteSJAm2+sLCgmhtm81m0b6emZlhbGyMTZs2oVKpmJmZoaWlRdwbb29v0tLSyM3NFZyX1eDs7Mz09DT5+fkkJSUtm+QXHx5Ey91LODq5MKXSsyCDu16LaaKFoPEauttbOHHiBImJicJ9sLGxEVdXVzw8PNDr9URERFBQUEBTUxNJSUkkJibS3t5OXl4ewcHB+Pn5ERsbS0VFBSUlJURGRmIwGJAkicjISLRaLXl5eYSHh4tC3s/Pb1mnwZiYGFxcXARHZ2RkZMnYQJIkfHx8SExMpKamhpGREQIDAwkODqa0tJS1a9cu8id40MGwtbUVi8WCWq3hs6IRVoNKAmdHFSHeOlpaWigrK6O1tZXOwVnaB1drK9kR5TmNq4udVKqMDE0mEw0NDQwODjI5OYnJZFq0tgYHB9PY2Eh1dTXJycmPLIJ/V9Bp7CO0GvPkkn+TsN+bH2wLxdPp35cw/v81vrHFAHzNTr9e00W2WcvP87s4X9lHXusoOrVEqIde6JmVzIDp6WkuX77M1atXxcZx6NAhAgIChM2uu7s7BoOBvr4+GhoaWL9+/ZJ2VXt7O2VlZWJT/bdiaGiIq1evcvHiRUZGRtiyZQvHjh0TC8nCwgKlpaWcPXuW2tpaYmNjOXHiBGvWrOHu3bts376d1NRUvmy0Udg8gm0ZBixITM5rSPA3oLaOMDg4iIeHBx/cbOTkj+5S1zvNxLyGiXk1HRZHKkfdCDRMc+/mF8zNzREVFcXatWtpampicnKS3t5e9u7dS1ZWluBszMzMcPnyZTZs2ICv3xoGJ5dPBlQgyzLYFghc8zVJraWlhQ8++ABJkoQxTWZm5pLxDtizGD755BPUajUeHh689tprdHZ2Cm96uw2sG1qnR5PIGmvKsEyMiz/PzMyg1WrZt2+fiHtV3gtZlnF3dxd8isTERMbHx6mqqsLBwYGqqiqefvppysrKhDxzZGSE9vZ2fHx8hIQtMjISo9FIa2sr8/PzODs709PTI8yGDAYDAQEBqCWJ0anV76UEeH+VHzA0NCR8D5QNJSMjg87OTj777DN73LCrAwvugUzMystmsxts02xymyQ6MvKR907B4OAg9+/fJzQ0lK6uLtLS0pibm6OoqIh169YJs6GQkBDc3d0xGo3cu3cPnU6HwWBgZGSEtLQ0+vr66O7uJjg4+JF+IgEBAZSWljI4OLhsUqdOp8PPy0jj3UucSg/jjX3rOJLoS6K/kdJie15AS0sLW7ZsISUlhZCQEBFj3Nrairu7+1cxu6Hk5eXR0dFBUlISCQkJtLW1kZeXR0hICD4+PsTFxVFXV0dhYSFhYWG4uLiIVr+Xlxd5eXl4eHjg7u7OnTt30Ov1S/JWFPlkREQENTU19rhzZ2fy8vJQqVSLxgY2m42cnBxhLa4keSqhQw/DxcWFdevWUVlZiWVqityG1eWEkgTBJgNRAc6im+Dj48ORw4f48PPiVR/r5aImymuWiYkJxsbGCAgIEIFKHh4eZF+7Q00vvP9lLR9fraC1a4jwIG+MrgaCg4PJy8tjYmLid0rKfhTifJxRSxINAxZsD3xJPA1a/nRHGHG+//Y1//+v+EYXA5IkUTtrJGfUhdHpOZSwlknrPEWdY4xMzbEu0E0keDU1NQn3vh07dnDo0CGioqJwcnLCZDLR0tKyyNTEzc2NvLw8fH19lxAElVx6Jcr3N0V/fz/Z2dlcunSJyclJtm3bxtGjRwkLCxNJf+Xl5Zw9e5aqqioiIyN5+umnSU1NRa/XU1ZWRldXF/v370etVvPmvxYxPr1yxa5RScTHxvDmsztoamri/PUi/ufdma82A+X67WFBNlkmp2mSDX6zPHfyadavX89HH33EwsICgYGBPP/884SFhS163Y2NjdTU1LB//350OkdGpx9dDHS0NFJdUSqCc65cuSIkXJ2dnfj4+HDs2LEl9zc/P59Lly6JeNMXX3xR2DgfOXKE9PR0+vv7yb17h5CIGHSO+mXfI1mWmZ6apDT3xpJ/Cw0NRa/Xi26HzWYTi6LiVaDE2Cpx1Qphq6amRmQzhIWFMTQ0xM6dO8nKyqK/v5+KigoOHz5MdnY2er0eJycn9u/fL0hxWq2WiooK1q9fj0ajZsEmY51fns4kyzJuBg3OX7Us29vbqampISAgAJvNxtzcHPfv3+fatWtC/fHdP/xDdsT50ztmpXtsMZM8JcCVyLFynB11ovX8OJidnaW0tJSkpCQqKyvZuHGj2PCVUynYuTDKSV6RfE5PTzMyMkJcXBwxMTHk5+djNptJS0tb9Tk1Gg0uLi7cuXNnxXwDheORl5dLXGwMTk5OuLi44OrqSm1trXjumJgY3N3dSU5Oxt/fn+bmZu7evSuihpWEPbPZTEJCwpKCwNvbm/j4eO7fv8+9e/cIDg4W/vUmk4ng4GAKCnZQugQAACAASURBVAqQZZmoqCiRVRIeHr7ks+ni4sLatWsxm810dHQQGBhIRUXFIrVBdnY2/f39vPLKKyJNz2KxCNXGcp93RdHT1HSfJvMclpmVR0EycGpfEl6uWiYnJ8V7195cS5N5limrbUWC3Qt7ozGovv5cVVVV0dvbS0BAAE09k/zZj+/Q2GVhcGyGzt4R8sqb+emvb5MY6U9yXCgGg4Hbt28vu+7+R0GSJOJ8XdgXayLIXU+inwv74ky8vDEQP9flx8bfdHyji4HO0Wn+Lqfzqz8t/fC3DE3TWnqX/BuXBVv7pZdeYtu2bfj4+CwiHima/pycHBF57ObmRktLC11dXUusOK9evUpgYOBvbE3Z29vL5cuXuXz5MlarlR07dnDkyBGCg4NFqE9VVRVnz56lvLyc0NBQnn7aviE/aDxy5coV4UEA8DfnKpiZW7mdLMsyqpkhDGMN9Pf3k9NvZGBaK0YJiyGxIKs4vGcbYR5q3nvvPaxWK1u3buXQoUPLKjjy8vJYWFhg69atSBKMT8+vysaVJAlzexNjo/YWu+IAODo6Snd3N7IsYzQahVYd7Ce9O3fuCEOdNWvW8MILL+Do6Mj58+fR6/VkZWVhNBpJTEy0y/qaGvEwrRHP+cANQZIkCm5fYXR4AK1Ox5qgMNy9fJBlmbWJCWRnZxMWFkZ6ejqVlZUAIo0xKDyalPQnmJUcGJ+as/vzDw2wsLCAwWBgZmZGzGu7uroEa/6TTz7B399ftINnZ2fJzMwkKSmJvr4+ysvLycrKIj8/X3QHDDrVVyOwBzwBvrp+nWTDz91RvLa6ujra29sJCQmhsbGR0dFRbDYb+/btIzAwkMbGRnbt2oWDRs3mUHe2R3oQ5mnAVxpHrrvOfzmVRWNdjYhNflw4ODhw7949kbgZGBjImjVraGxsxGazCRLm4OCgMBeSJElIRhWnwoSEBJqbm+nt7V0xZOhBmEwm2traqKmpWZZMCHaOQm1tLXV1daSkpKBSqfDz82NiYoLe3l76+vqEkZFiTJOamira2srGnZaWRmFhISMjI8THxxMfH09ra6soCLy8vESRkJubi7+/v+huKGE6FRUV4h7k5+cLI6qHCcharVbE9FZUVODr68vg4CBlZWU4ODhw69Ytdu3aRVhYGE5OTiQnJ5OTk8PAwAAtLS0rGhW5u7uTn5+Pycud8pblSXKSBEYnNX/+Uib3GxsF+VDBxnh/atonmbIufH2M+Op/Dm4O5sWD69iwYYNQxoC9A3rjzj3+9B/vMD+/uCNlH2vKnL9WzsmsNOKiwzGbzRQWFpKUlPTvysn6TaFVqwj20BPh7YSvq8P/MnHFy+EbXQx8UmGmeXBqVYmUTa3l9O4N7Ny5k/z8fEJDQ/HxWV4/7eLiwuTkJIWFhcJcR/ELj4iIELO4yclJrl69yubNm1f8XQ+js7OTS5cucfXqVRYWFti9e7cYTyhSttraWs6dO0dJSQmBgYEcO3aM9PT0JZ7tExMTXLlyhS1btohZ+udF7fQMW1iuKAL7RhjpPInbfD8qlYrsLiNW28ozOZUEI0MDWJpy0Gg0mEwmjh8/vuIJ+/PPPycuLk6cdGRgehXy3sT4KG4Odo/90dFR9uzZw/bt25menmZgYED83ubmZioqKigsLOTu3bu0tbUBds6IcnJsb2+noKCAw4cPC2MbsM+VDY46bl67grdfAFrd14vKzMw0Bbez6WiuJyV9G1t2HyYsKp6g8GiiE1KZs6kYHujl6ePHycnJYWRkBEdHR7RaHZt3HSA+JR0nFzdUag1anQMBoZGERcfxRMZGcu7cISMjQ2ymSrvc3d2d0tJSDh06xO3bt1Gr1SwsLHD06FE0Gg0BAQEiBc/Dw0N0B9RqNc4OavQ6++dEJcHY8ADFuTfYumHtog0wLy+PoaEh+vr6mJ+fJzIykpdeeglfX19aWlqEiZQCJ52GEA8DqslB7tdUsmXLFhHMojgqPg4cHBwoLy/H2dmZ8XG7/XN4eLgIC0tISKC3t1fkOMTHx+Ph4SFGGmq1mu7ubjZu3Ii/vz+lpaUMDQ2talEMX7fW7969i0ajWZa/o8gN7969y8zMjAjiCg8Pp6mpCavVyv379xdJFRWr47S0NDw8PKitraWqqoqAgADu37+PxWIhJiZmUUEQGhqKh4cH8fHxdHd3k5OTg8lkEqdbg8FAQkIC9+/fp7GxkczMTKqrq6mrqxOZCA+/tqCgIIKDgwWp0tnZmdLSUgwGA8eOHRPvvUqloqCgwM7X6e8nLy9POHg++J3VarX09PQwb+lnZtZGz8hiIqEEOOokTu/0pavtPg4ODmzfvp2WlhZR6P7Zn7zB957bQWiAF+2dXWiYZ12ML68djich0IH6+noqKiro7u4WXU5Jkihunqa1b2W3V8Vw6cnNcYSFhVFSUkJXV5ewcv4Wv1t8o4uBi9X9mCdWdxnTOjhyfF0wrq6u1NfXMz8/v2r7MyAgQHirR0dH4+npSXV1tVjAwH76qq+v58CBA6u6DsqyTFtbGxcvXuTmzZuo1Wr27t3LgQMHWLNmjSgCGhoaOHfuHEVFRfj5+YlUwJW4CFVVVTQ1NXHw4EHB4i4tLqSsd+WzuITMy+s0vPTCs2RlZfEvV5uYnFm5lS8j46qa5tUD62hubmbfvn0rtux6e3vJz89nx44dgujkqFUxZpnGxlfM9UVfZpnrn31Ec1Mjk5OTPPfcc8THxzM4OMj169dJT08Xi8DLL79McnIyAwMDQvHg5OSEWq0WqXX19fVIksTg4CAdHR309/djsVgYGRnh7NmzOOo07NiyAZVtjvaWRgrv3qDo7jU0ko2EtC1EJ65bQlbSOToSHpOAuaOF3Ny7ghAXs3YDIZFxSzT/kiSh1TnQNzBEZ2ujMBgCxLipr68Pk8lEWFgYOTk5ACQlJYnu0oM22Tt37qSkpAS9Xi9OrFq1CmdHDa56DV98dg4nvQMJCQkATE1NcevWLbFpKPLIzMxM/PzsfgFK9K7ih/AgBgcHqa2tZcuWLbS0tDA1NSVscR8XSgfE19eX3t5e4ThXVFTE2rVrqa+vR6vV0tfXJzgTIyMjmM1mLBYLNpsNNzc3oqOjRWt5/fr1j7Qed3Jywmq1cu/evWXJhGDfRHU6Hbdv38bf3x9PT0+h9S8pKUGr1VJXV0d8fPyixysdw7S0NBFFPDs7K7TyDxYE9+7dE5yI+Ph4BgYGuH37Nu7u7uLQ8KD0sLS0VJBIi4qKCA4OXhJOBIhOV3t7u4janpubo6enZ5FJUUlJCWvWrOGpp55icnKS27dv093dvcSoqKHB3h0MNWkJ9tYxv2DPH3A1qEgLN/DKvijk2XHxPPX19QQFBeHh4SG+W/FxsSTHBOK0YCbQZYr/+ien2bNzKykpKWRkZJCamkp4eDgmk4ne3l4kSeJ2zfgSf4IHIcsyE5YZ/vBEJlqtFpPJxO3bt0Wn9lv8bvGNLgYKO0bpGVsqFxSQZZge4/61X4s2tuL0prSeFS25Aq1Wi06nIycnh8jISFxdXVGr1eTl5ZGYmIjBYCA3Nxe1Wr0i41mWZZqamrhw4QI5OTk4OjoK4x4fHx/hld/U1MQnn3xib9uZTBw9epStW7cuuyA8iJs3b+Lq6ipiXy9fvsxQew1DVi1DVt2i3oD9jC6x23+MMNc5EhMTcXZ2prpjhLrO0UXkmMWQeONIKlpLNwsLC2RlZa1YnZeUlGA2m8nKyloU4dp2v5aK8nJCwsKRZXu3wVWvpqe5huqKMpydnTl9+jS+vr5MTk7y/vvvExgYyP79+7l79y5ubm7ExMSIuGiAhIQEXnrpJTZt2kRGRgY6nY7W1lbS0tLQ6/UMDw/T1NQkfNmVOX9rayvDQwPUVlcw0NeLj8nEgiyx8Ynl40glSYWMREtzM+budgYHB9HpHMh48iDqFTwlJEnCQe+Ev8lIYMDX5DCdTkd9fT2Dg4Ps379fmCpNTU1x5MiRRZ0fxbt+cHCQoKCgRd0BBfPz81y+fFm0snNzc/n4449F4iHYkyjLy8vZtGmTmF1XV1czNze3LCFzaGhIxH0reR4POio+DsbHx6msrCQ1NZWysjLS09MxGo0UFhbi5eXF4OAg7u7uTE1N0dnZSWpqqjAF0+l0uLq60t/fz7p163B1daWmpkacwB8FxQujv79fFEgPw9/fHpRVXFxMUlISOp0OR0dH1qxZQ0lJCSqVipaWFpKSkpYUh8pYSvmcdXR00NnZKVwmk5OTaWlp4d69e4SGhuLm5kZsbCxjY2PcunULZ2dnwZxXq9XEx8d/xWXIY+3atcKEysvLC29v7yXX7uDgQExMjHCtDAwMpL+/n9LSUqE2qKioEDbeUVFR+Pv7U1JSQmFhIe7u7nh7ezMyMsKXX36JzWbD0dERZweZGH8H0sL1pEU48/SBTJoa64X+XznVT0xMkJmZSWdnJ+3t7QQHBzMxI3Pu8l3MQ5Ps2ZWJs5N9LCFJkvBckGWZqakp+vr6qO+ZZ+QRxGJPoxPfPbkNsHsrzMzMcPfuXaKjo3F2/o8xH/p9xTe6GJBlyG9fzQBD4mCCL3s2xGMymYT0rKenh8rKSoqKisjJyaGqqoqWlhbMZjPj4+OYTCa6urpobW0lJSUFb29vysormFXr0bl4UlldR3hIIGFhi53SZFmmvr6e8+fPc+/ePVxdXTlw4ABPPvmkMDWRZZnW1lbOnz9Pbm4uRqORI0eO8MQTT4hFezVYrVYuXbrEhg0bCAgIoKCggDt37iBJ8OwTMWxISaCmY0jI0QKcZjm9Xs//9ebT1NfXk5eXh7u7O+viwvjXaw3L3zdkXPQ6fvRiCtevfMmOHTuWMJ8fxNWrV1mzZs2SRbi8vJyezjZ2P5GBh5MWo0FDRUkhV7K/BOCVV14R5LwzZ84wPT3NqVOnBIHI0dGRuro6mpubkWWZlJQUDh8+LBZqm83GhQsXCAkJ4ejRo8TExJCSkkJaWpqYVW/fvh1PT09BpJuYmADsZKiohBS8fP1XLHIkScLFzR2T0cDBgwfxCwjCwWUpSe3hxwSu8cHhoRCT/Px8pqen2bx5M9nZ2RgM9vjchwtKlUqFu7s7OTk5rFu3TigSHnQv7OzspKysDJPJxGeffUZzczOpqans3r2b0lJ7KExERATV1dVs375dnArLy8vRaDTLtv+VYmDTpk3CXnjDhtXz45dDSUkJycnJ1NTUEBISgqenJ2azmZ6eHoKDg+nv72dmZgaLxYJWqyU+Pp6amhphTTw2NkZERARhYWEUFRU9lkUxfE0mzMnJESf/h6G43Sm/NyEhAUn6OrGuqamJ6elpRkdHVyThqdVqAgMD2bhxI52dnXR0dFBQUIDNZmPnzp10dHQsKgiio6OZnp7m1q1baLVakZ4qSRIRERGCB6MEHinjoweVAwpu3bpFV1cX+/btE+oVJycncnNzUalUjI+PCwdFsJMnlbHB7du3GRkZoba2ltHRMcpbp/iidJyrlRMUNU8zPrVARlo8Xe3Ndknr/Dw2mw0fHx8cHBywWCzU19cTERFBa2cf/+OdPH741lWKG0eo7rTyr+fu0Ws2w3Q/+fn3uHLlCrdv36aqqorx8XE7Z0vS09JrWXFMoFarOPZkKnu3fK0MCQkJoa6ubhHf41v8bvCNLgb8XB3IbxvBMruwrETK1VHDG9sjWOPjLch+eXl57N69m8OHDxMZGYm/vz+Ojo5MTk7S1tZGRUUFZWVlTE1Nibzy0TkNPgkZqF28GZqcxT0gHLWLCYODBmcHe/VcU1PDJ598Ik5Bhw4dEhuR8qVub2/n008/5c6dO7i4uHD48GF27Njx2JHMYG/xKaz9rq4uzp8/D0BaWhqZmVsx1+fjO13PoSRXEg3dPJcRxHBnA2lpaaSnpwsdv4eTmsz1CVwu7UKFLIiEEjIaSeZPtzmhmh5geHiYI0eOrKj5nZyc5MqVK2zevHmJF0Bubi4eHh7ExcUxPz/PxYsXycvLIzIyUigxVCoVt27dorKykmeffVbYrObk5GCxWAQBbuPGjezbt2/RYlBUVERNTQ0nTpwQp+v5+XnOnDnD4OAgp0+fJjY2lrCwMObm5qiursbV1ZXXXnuNyMhIdE5GHPTOSKssMBqNhtT4SPR6PS6ubkxYH23G4+KoQfeAM5mShgf20/PExAQWi4Xdu3cvO3rx9PQUDnZRUVGLugM2m40rV64wODhIZ2cn8fHxnDhxQszkq6ur8fHxwc3NjdbWVhF6pNwvFxeXZUmvw8PDVFdXs2nTJvr6+ujq6nqk1v9hGAwG8vLyCAgIoLe3V5gOzc7OUlxcTHp6OhUVFcLxr7a2VpDklBGewWDAarUSGxuLSqWiqakJlUpFSEjII5/f29ubjo4OqqurVyQT6nQ6vL29l7Sfg4KCMJvNjIyMiGtfrTWtVqtZu3atsF3u6emhtLSUuLg4Zmdnyc/PJywsDFdXVyIiIpBlmZs3by7KKpAkicDAQLy9vbl79y56vZ74+Hju3LnD6OgoERER4jUMDQ3x6aefsmXLFjZv3iyspgcGBoiIiKC4uJi5uTl0Ot0inoVWqyUuLg53d3fy8vLo7x/g4/wRCu5PMzm9gE2G+QUwj81zvaQLf3cVjpoFNm7cyObNm6mvr2dycpLw8HBGR0fp6O7jvTtj9I7OLVpzZ+cWKK7tobPbTFqsH5GRkWzcuJGdO3eya9cuRkdHUS9MUtg4wYJtpe+QzHd2hRAd8XX0uyKpfJjv8S3+/fGNLgbUKomNwUZqzZMMT82hkuxFgAz4ujrwX3ZH4O389axMrVbT0tKCxWIhJSUFo9EodL1JSUmkp6ezefNm4uLiCAoKYmhoCK3RF4/w5K83DEXnK0PfuJWK4nwuX/xUMH6PHDnCtm3bFsUYd3V1ceHCBW7etFufHjx4kF27dgnt7eOgvmuUqrZh8otKcXW0Z6m/9957yLJMamoqRqORjz/+GIvFwoED+zmwbw+N9XUYjUYsFgsTExPEx8cTGxuLg4MDt2/fRjNlJlw/xoLNhkqjw0k9y8G1Hmx2bkE91YfZbGbTpk2LXPceRm1tLQ0NDRw8eHARf0KWZbKzs4mNjcXT05MPP/yQlpYWjhw5gsFgoLu7m8zMTJqbm7l48SLbt28Xi9jk5CR5eXkiRTAzM3PRpgb2DslHH31EfHy8aHvLssz58+dpbm7mueeeE4t5d3c3Z86cQavV8vrrr+Pm5oaHhwfWeRs2lXbF90CWZTRqCXeDfWatUasYmrCuWjwAeDlrUT3gYPbll1+KVMmuri48PDzQaDTs27dvxedWwnACAwPp7OzEwcFBZB50dHTg7OzMq6++Smpqqphx19XV0dbWRkREBLOzs0xNTS3iB+Tl5WEymZZdUEdGRqiqqhIFo6K//02gUqlEyJSrqysDAwOkpKQIi93IyEhaW1vx8vKyx95qNHR3d7Nt2zbu3buHu7s7Go2Gzs5O0tLSCAkJIS8v77EsiuFrMqFyUl6pgFDkhrm5uaL9rJzUa2pqkCSJ+vp6goODV41xliSJqKgoRkdH6evrIywsjMrKSqxWK46OjpSWloqCIDQ0FK1Wy61bt5ienhZGXWBXRISEhFBQUMDExARbtmyhoKCAtrY2oqKi0Gq1XLhwgbm5OY4dO4ZarUav15OcnMzExATV1dWEh4czNDTE2NjYkuuWJElEnufVjVLcPL3s67HZoNk8y//9l6dJT9+ITqfDy8uL0dFRkX2S12ChuW92xZTDzkErf/3nL5G6Nh5vb2/0erusV6/XU1ZSyDNHd3PlXiMgiZGWRq1CkuA/vZDO3FgH+fn5zM7O4ufnh1arXcT3WElC+i1+e3yjiwEAvVbNzihP1q5xxctZR7TJmafW+nJ6QwBu+qXEo7GxMaqrq4Uv9sNQq9W4uLjg4+NDZFQU4zpvVOqlM2L7Y2XmJR2ddaXidyvjhb6+Pjo6Orhx44ZoEe7fv589e/bg5eX12EVAfkM/z/4/N/jhmTJ+daeZ601zNIw50lqVj5NqhsjISMxmM7W1taxfv54TJ07g729vfbe3tzM2NkZKSoqYTer1etzc3Ojs7KSvrw9nHQQbLPzlqUyME7Xs3xSNXmufES4sLJCenr6q1jcnJwetVkt6evqivx8dHSUvL4+YmBg+/fRTMQKIjIwURLa4uDjef/99goKCOHDgAJIkMTo6yjvvvCNsVXft2kVmZuaS+5Wbm0tLSwsnT54UxLsvv/ySiooKjh8/TuRXhjmTk5O89dZbyLIsxhIKZqYmmUO36pjA3aBBr1OLP9tkmZk52wqqChuuejvBT8HQ0BCXLl1i586dTE5OMjQ0xMzMDBkZGas6V+r1ehYWFigsLBTZ9DU1NYJfsXnz5iUn/JKSEvr6+oRLpIODg5CeAty+fZvQ0NBln3dkZET4A4yNjVFfX7/sfX8U+vv7aW1tJT4+XnAW9Ho9jY2NWK1WjEajcHXcsWMHRUVF+Pj4YLPZRCdIkiQMBgNBQUFYLBY6OjoeO6XUyclJOP0lJiauGGQWEhJCfX09dXV1wu1Oo9EQEhJCUVERBoNBqCCWIyQqUAqCvr4+mpubhTKkvb0dm81GRUWFKAiCgoJwdnbm1q1bjI2NERUVJe6vwo+pqKigra2N3bt3U11dTVVVFWq1mvz8fA4dOrToHqhUKqKjozEajRQVFaHVapFlmbKysiUmRbm5udTX13OheBzr3MpE49l5GWlmiIqi2+Tm5lJXV8fCwgLe3t4sLCzwyb0hZlfwvAB7q9/VWc+29VGL/t7NzY2qqiq83Rz44Z99B61WzeSUFW93Z47tXsfPfvgCx7I2s27dOmRZpqCgQESa+/n5ERQUZI9xL2+geMrIP93t4KOyHoo7xtCpJYLcl/cS+RaPj298MQBfVb7OOuJ9XUjwc8HX1WHFD4YSqhIdHf1I58DJeRX9lpW1+5IkoXM0cGBHBnExUfj5+aHT6RgcHBQRtuPj4+J5x8fH6e3tZXR0VHjeK3rr5ZDf0M++//NLeoenF7XkxmcWqBrWE2XSMjPchclk4plnnmHt2rWL9MoDAwPcv3+fo0ePCtLa5OQkZ86cYX5+nr1799LX12fXzQcFMT09jc1mIzMzk6KiIpHxvdKCqFgyr127dskpTDG/aWtrw2g08uKLLwpiVFVVFbOzszQ0NGC1Wjl16hQ6nY6BgQHeffddZmZmWFhYQKVScerUqSXPa7FY+Pjjj1m/fr1QeOTm5nL37l32798vOgzz8/P88z//MzMzMxw9enTJiXhu1kpBfgG+AUs3R5vNhiQv4Gd0XPT+GHRqesz9aB0Mglyl/Hd8eIBw/8XdnmvXrjExMcGhQ4e4efMmVqsVlUrFU0899UiWvCRJVFVVMTIyIjpAW7ZsoaioaFmOya1bt7BYLKSnp1NTU4OPjw9RUfZFWZZlrl+/Tlxc3LL22mNjY1RUVLBx40YsFgt1dXVs2bLlN57RKgZMGRkZlJWViehwRWK4YcMGysrKcHR0xMvLCzc3N4qKisQIQafTYTQaRehOYGCg6A487tgiICCA8vJyzGbzivLIh+WGSvHo7OyMu7s7FRUVqNVqmpublyUUPghJkoiJiaGzs5OioiL27t1LRkYGk5OTwjtCid9W+Ay3bt1iYGCAmJgYcY8V6aFCgN29ezddXV1UVlbi6+vL3r3Lk119fX2Jjo4WvhWxsbEUFRUJk6Lp6Wk++ugjrHM2btVYljz+QahUsMbbheNZm9m0aRO7du1i+/btrFu3jvT0dP7bTy+v2BWw31eJ8EBv9m9bfN8lSWJubo7i4mKe3LmNPVsSePXprbx2IpM9GXEimVCr1RIWFkZKSgpWq5W8vDxKS0vRaDQYQtby+YALXWNW5m32DvDo9BwFHWP0T8yyPsjt24Lgt8DvHRvD398frVZLS0vLI392buHxwlp0jgZCQ0MJDQ1lamqK7u5uXFxc2L9/Py+//DJHjhwhKSkJjUZDU1MTX3zxBb/4xS/40Y9+xN/+7d/y9ttvc+HCBfLy8mhsbGR4eBibzcZ/ereA+QUZ20PfPmW+/1mzA0ePHuXFF19c1u/A29ubqakp5ubmWLt2LSUlJVy8eJHY2Fi+973vkZKSQnx8PCqVimvXrjEzM8PAwIAIurHZbGg0Gs6cOSPCex5EZ2cnVqtVbDji+r6q7AGioqJ46aWXFikkpqenmZ6epqOjg2PHjglzkrfffpu5uTnm5uZWJVPm5OQgSZJoY5eXl3P9+nUyMzOF94Asy7z33ntMTEywadOmRSdkBVqtlurSe9imhnkwfEyWbfR3t5H9yQfMzi5Wq0iSRGSAFzc+/4i2+7VYxkfoartPa00xJTlXFpmSjI+PU1FRQXp6uigMJckek7qamU5/fz9nzpzhF7/4heBChIeHCzKlkgL38D1XQo88PT0ZGRlZxEVRgpRWOikrG5LNZhPjntnZVWS7K0AZzSit8vb2dgAiIyOZnp4WNr0KZ2D37t3IskxLSwsGgwF3d3cmJycZGRmhpaUFR0dHoqKiGB8fFx4Tj4JOp2PPnj00NjbS0LA8SRbs9rpPPvkkhYWFQq0CkJiYyMaNG7FarfT393Pp0qVFkdbLQaPRcPLkSUwmEx9++CHz8/McP36cl19+GQcHB+7cucM//MM/UF1dTUJCAidOnKChoWHJd8vJyYkXX3yR8PBwPv/8czw8PJBlWRQVq70WpdtZV1dHbGwsvb29vPXWW5w7dw6bzUZgoD+P2islSUVyUiJbt24Vaiplg1WpVPh4rq50kmXw817+u5ucnMzCwgJVVVWrXwT2oiwrK4sf/OAHREZG8sWV6/xzfg+yJC0ySlPeldvNw9xtGX7k7/0WK+P3rhhQq9UEBwcLe9TVYNA9XlDGjGWc8+fP85Of/ISuri4OHjwo3OcCAwNZu3Ytu3bt4plnnuH73/8+f/VXf8X3vvc9Tpw4waZNm3B3d6evr49bt27xq1/9qXsisgAAIABJREFUin/8x3/kT//r31LaPLSkEFAgIzE0o2HOsGbFalg5iefk5FBSUgJATEwMhw8fFif9np4ewsLCyMrKYnBwkL6+PnJycggPDxfRooODg1y8eHHJgtjY2IiTk5PQsYNdl3zu3Dna2tpwd3fn+PHjS07ASp799u3bCQ4Opq2tjXfffVc8/vjx43h6eooUvAehhO1s3rwZg8FAY2Mjn332GampqTzxxBPi57744gs6OzsJCwtj9+7dy94f5brmLKN462W+PPce1z87Q6iXnoRwfybGx/jiiy+WPM7R0ZGwIH/u3fiCC7/8OUwNIy1YmZlZPIvNz89Hq9Wyfv168vPz8fT0RJZlYRv7MEZGRsTnqK+vj6NHj/KDH/yAiIgIBgYGRIiRv7//Esc6JRBIpVKh1WqZm5tbVAwoUtqVipAHPe9/m2LAaDTi5OREd3c3QUFBohhQiLqdnZ0EBQUJ8yGFSFlVVUVQUBDj4+PMzMzg5uZmD1XCLpMEyM7OfuzrUIijX3755bKFrIINGzYQGRnJhQsXhO0uwJNPPklAQICwhi4qKnrkc+p0Op577jlcXV15//33RYjQm2++ibe3NxMTE5w7d4633noLSZJ49tlnaW9v58MPP8RqtSLLMo0DFrIbR3BJeILQxDTu37+Pn58fKSkpfPbZZ1y9enXFwsTJyQlZlnnyySdpaGjAaDTi4OBAZ6fdpfXE8WM8sT5qEZ/lYSws2Ni3bWWzqZee2ox6lcfbbDZOHVzqYwH2DT4qKoqysrIVH/8wjEYjhw8fJnHvM9gkFSubqsEXtQPL/tu3eDz83hUDYI807ujoEBr0leDqqMHpEQXB/OQw//KTf6K1tZWsrCy+//3vk5qaumpbUfHUj42NJTMzk6NHj/Laa6/xF3/xF/zRH/0Rp06dIirp8WRd3cOrt/0ACgoKSExMZNOmTTQ3NzM1ZQ8pkWWZrq4uAgMD2bDB7tIoyzLDw8NER0ezfft2GhoayMzMpKqqaklcbFNTE5GRkWIjGR8f55133qGxsVHonR8uVMbHxxkaGsJoNLJlyxYaGxv54IMPUKvVIiY2Li5ObFoPv0e3bt3C0dFRGBOdPXuW6Oho9u/fL56ruLiY4uJijEYjzz///Ir3RSkGZmdnuXTpc8ZHhjB3d2BbmMdoNAoJ13InGaVlLcsyaWlpODo6LoqPnZ6epri4mPXr1zM8PEx7ezsqlQpfX1+sVqvYJMHuKHnp0iV+/OMf09LSwr59+/j+978v2tN79+7FYrFgMpkYGBhYVuapuDZ6enqKKN0HiwHlPV+pGFA6A7IsL7ovvykkSSIgIICuri6Cg4Pp7OwURYri+BcdHS04DcrMPiQkhO7ubqanp/Hw8ECn09HQ0MD4+DhGoxF/f3/MZvOiyOdHXce+ffsYHx8XSo6Vfu7w4cMAXLhwQWy0arWap59+WkgWs7OzF71nK0Gv14uxl9KZcnR05OWXX8bX1xcHBwdUKhVnzpzh1q1b7Ny5E7PZzE/fO8P/fqGWv/y8gV8UdvFOYTcXRn1pN22kyzyI1Wpl586d5OXlcfbs2WULHKXAT05O5vTp00xMTIiYYMUldEO4A7YVzEUkCRJC3VkbvbKK4vXnthO0xhONevmt4+UjGwjxX5ljlJKSQm9vr7Aff1wMzKpRr9LWkGVoG16eGPktHg+/l8VAaGgo8/PzomJeCZIkEefnvGx+t2yzMTc7w/2im+zevZsf/OAHXwXL/NszrpUWcnh4ONs2pTz6AYCvcWnbV5Zl8vPz+dnPfiZIRgcOHCAjIwNAtPCV06aiYVfsc9VqNdnZ2UiShMlk4v79+2zevJlr167R3NwM2E+iAwMDYtba3d3Nz372MywWC88//zxTU1NLRhc2m41z584B9lZsdXU1Z86cQafTYbPZeP7558VcX2mPP3haU0J+tm3bxtjYGL/85S+F45qymXV0dHDp0iV0Oh2vvfbaqjNvtVqNSqWira2Nuro6tm/fDiAWKiWh7tKlS2KDVaBwQQBqampEMaBsJoWFhciyTHp6OgUFBTg7OzMwMEBGRgZubm7U1dUxPT3NtWvXRPt4+/btvPHGG0tMhjw9Pdm0aRP9/f0Ai3ziFQwMDIj3S3FqfJBRrnQGftdjAvja3CcoKIj5+XnhTx8REUFPTw9BQUHYbDZ8fX2pra1FkiQOHDjA1NQUTk5OaLVaBgYG0Gg0oqOldAcuX7782Nfh6enJ5s2byc3NZXh45Rayk5MThw8fpqmpicLCQvH3Li4uHD9+nImJCZydnTl79uyi930lODs788ILL2Cz2Xj//feZmprC0dGRU6dO4eHhwejoKPv378dms/Hll1/i4mkiX4qk/avNTObr9veEo4nxmCzqGxoE/6epqYl33nlHeGYoUIqBmZkZAgMDFyU5xsbG2hUB02b2pbigVklI2Al/ysYe7ufM7gTtsp8vBe6uBm688ycc2Ja0qMNgdHHk8CY/vGwtXLp0aVFh/CAiIyNxdnb+jboDALoVio8HoVV/yxf4bfB7WQz4+PhgMBgeizdgNGhZH2zE00krFnrZZmOoq5mukmt89w9eIj09/ZFksN8UsQFGEoPdly1EwN4sC/VxYX3kYreywcFB3nnnHbKzs0lJSSEqKkos6k5OTqSmplJYWIjVaqWrqwtJksRJU9kwYmNjSU5O5tKlS0J5YDKZCA8P5+OPP2Z4eJjGxkaRyldVVcU777yD0Wjk1VdfFdfyMPv7xo0bdHZ2Issyo6OjfPLJJ0IJ8J3vfGcRCVEhdz64Cd+4cQN3d3ciIiL44IMPcHFx4ZlnnhH3fmJigvfffx9Jknj55ZdX3PgehEajoaamhrVr17Jx40a0Wi1dXV3i3/fv3y+CkJSxhSzLXLlyRSgT8vLycHBwQJZl5ubsoUUFBQWkpKSI4Ck3NzecnZ2FO1xlZSV///d/T2FhIenp6bz55pts2bJlxc/R1q1bxSbd0NCwZLFVigFFCubo6LiI9PmozsC/15gA7LwBhSCr0+nEiVop9AYHB4WfxMDAAIODg3h6epKZmYnFYhGR0V5eXpSWlrKwsEBAQADu7u7CKvlxsXXrVpydnbl8+fKqc//IyEg2bNjA1atXBWcGIDg4mD179jA+Po7NZuOjjz56ZEcR7IXYCy+8gMViEWMAvV7PCy+8gNFo5MaNGxw8eJCTJ0/SIXswp3JAlpYuxzLQZZFJyzrJwMAAd+7c4fjx40xOTvLzn/8cs9ksfrazf4Larhku3Kigq6efwsJCEThVV1cnvA2Sgh3561eS2JVs5Nl963nl+Bb++rsZPLPZBb1O9ciN2tfLlV/96A9o+vK/8/lPXufqv/4R7df/hl/++C/IysqisrKSf/qnf6KmpmbJPVepVCQnJ1NVVbXq+OZhrA9yY2EV2oZKgo3Bj44r/xYr4/eyGJAkidDQ0MfiDQCobVYG6wsou/QeZZc/pCX3AhEeGno72x/rpPBvvca/eXGDPbxjuc4EMv/5UMSiRTw3N5e33noLi8XC6dOnycrKEq1lBZs3bxbBOUpMsLL4FxQUoFKp0Ol0HDhwgIMHD9LS0oJer+fatWscPHgQg8HAmTNnaGhoIDAwkNzcXD755BMSEhJ48cUXcXZ2xmw2o1arF0kSGxsbyc3NFSE5VVVVwgr69OnTS1rfSjEwNmZPVuvs7KShoYGMjAzOnDkDwPPPPy82/Pn5ed566y3m5+c5duzYYwVIKbHEWq1WWCkrp1oFjo6OHD16lM7OTnJzcwG4f/8+bW1t7N27l/DwcCYnJ0XRMjMzQ2lpKTMzM2zevJmioiLUajX9/f2kpqZSUlIi1BRhYWG88cYb7Ny5c1X5Gtjn0cprmpubE90dBX19fdhsNry8vJaQB8FeDGi12hU7Vw+OCX7bYmDNGjuPpaenh8DAQDo6OgD7idnPz4+mpiZiYmIwm83odDpqa2sByMjIwMvLC1mWMZlMjI+PMzk5KUiAyhjr2rVrj30tCpmwqalpVTIh2HkCnp6enDt3btFGtXHjRuLj45mdncVsNj8WoRDAy8uLU6dOMTQ0xK9+9Svm5uZEQeDm5sb777+Pu7s7s95RD2V3LIZKgoYJNa+88gqyLPPZZ59x8OBBnJycePvtt7l+p5BdL/9P9nz3X/iseILv/Y9zxB36b9yoGicmJpa6ujq8vb3FNScmJjIy0ENGjAt/9+dP8Xf/+QT/24tH0Wq1GI1GSkpKluXrPAw/bzd2pseyJTUCnVaDSqVi48aNvP766wQEBPDxxx/zy1/+UnSqFKSkpDAzM0NdXd0jn0NBgp8LYZ6GZTcsia/cZuMfLzTuWyyP38tiACAwJIyaUYkzxZ1k1w8wNrO0Sp2enub69ev8/d//PSUlJWxIS2VHZgZ9vT0YjUZhpvK7wrYEPz79qycJ91vM4A0xOfMHyQv0VlxlZGSEgYEB3n77ba5du0ZaWhrf/e53hZbc29ubyclJcep3dXVl7dq15Ofn09nZKdjf4+PjVFdXYzKZxFw2NTWV06dPo1KpmJyc5MaNGzzzzDOMjY0J86a7d+/y5JNPcvjwYbHRmM1mTCaT2GDGxsb49NNPiYiIEMWTTqdDp9Px0ksvLbtxKy3u8fFxsQH4+PhQWVnJxMQEp06dEgoFWZZ55513sFgsbN26dVF7dDXk5uZis9mIiIgQlr3+/v6LOgNgPx1mZGRw69YtOjs7uXr1KqGhoURERNjn+Tp3ztRP0ei7jR9ea+fj0k6i4tfi5ORESUkJvr6+zM/PU15ezuXLl4mKihLM+d/Eb318fBxXV1e0Wi337t0T3QFZlsVs2Nvbm9HR0SXFwPT09KoKhn/PMcH/y957xzdx5/n/z1Gx3Ivce7dl02xTTQsdU5JQQoeQbCBl77Zf299eyffudu9277d77XubAimUhEAIIYQWauhgwPTiBu4V44osWWW+fygzWFiSZVqyF78ejzwgaCzNjMYz78/7/SoajUa29I6Pj6eiokJ+uKSkpFBaWkpqaipGo5GoqCj5oaBUKnnuuecAZHJhSEiITCTMzMzEy8uLy5cvu7U6l6DT6UhJSemVTKhSqZg/fz53795l//798r8LgsBzzz2HVqvF09OTixcvyvvUGyIjI1m6dCnV1dV8+umnWCwWvLy8ePHFF/H392f9+vW0dbo+z1YR7nVZCA4O5gc/+AFBQUFs2bKFMWPGEBwey6K/2sCpS/ZdTpNF5HRxJ7//6BQjRozAz88PDw8PwsLC5LGWVECXl5fj6enJuHHjuHv3Li0tLZSUlLh1fI7g7+/PokWLWLRoEQ0NDfzxj3/kxIkTMmlWq9USFxfPwYJCdl1v4KubjdS3u8iYARSCwF88E4uX2Xb/UAq2/wA0KgV/PTmJeG3vncB+OMf/Cp+BvuJo6V3eutDKXU04Nxv1FFS2sfNaAxaryIAIX4xGI8ePH+ezzz6jqqqKESNGsGDBAtLSbF4Ct2/f5ubNm2RnZ5Ofn09OTo7L9MJHQWK4H69N1zFjaCzTsqP5s5mZ/PPyYYwfquPy5cvk5+eTn5+PWq1m8eLFPciLoihy7tw50tLSZLmeFG4jOdSFh4dz9OhR6uvrGTRoEKWlpTK/wN/fn8GDB3Pt2jUqKirw8fEhKCiImpoaDAYDixcvJisry44oePToUVn7bLFY+PjjjzGZTISFhXHp0iXANrJ4+eWXHbqJmS1W9l+u49PTNdxshLaOe5TfOI82KIja2lqWL19up2DYsWMHxcXFpKamyg+T3lBbW8u2bdvw8vIiKipK5j50dXVRUFBATk6OXdJbfHw8xcXFnDt3jtbWVhYtWoSvry+f32jhlD6Ye4IXFpUnLUYLLaogKgnC914dtwuv0dHRgSiKJCYmsmDBAoYNG0ZzczPFxcWMGDHCLW10e3s7hw8fZsKECRQXF2O1WlEqlSQkJNDa2ioXpdOmTePYsWPExsbaOUdeu3YNg8HgNHyos7NTThcMCgri6NGjJCUlOfQkcPf8VldXM3z4cM6dO4dOp5Ojis+ePUt2djalpaX4+flRUVHB4MGDZUOs2tpa6uvrCQwMxMPDQ06w9Pb2lmOtpWN3BxKp8cSJE/L34Aw+Pj54enpy5MgRoqKi5IwDpVIp5xpIIUpS/kBvCAgIICoqiqNHj9LU1IROp8PDw4MBAwZw8+ZNqro86VI6f5ApBMiO8Sc7JkBOPWxoaODYsWNcr1dzsajRqeqovtXC6IERVFfYXDknTZqEXq+noqKCkJAQ/Pz8OHr0KAqFghEjRnD58mUEQeDevXt9irB2hJCQEHJycujq6uLYsWPcvHmTiIgI9Gj4pEzBDZOWS9VtnK9qY/f1RiqaO8mO8UfthB9w9PBBukrPsnzGOAJ9vYjTejMlLZg/H59AXFB/IfCo+N51Bs5VtvJfR8swmEUQBKyibS5nEWHrpTr+sOMM//mf/8mJEyfIzs7mJz/5CVOmTJFXVYIgMGPGDJqampDyt7uTjp4EBEEgJzmEZ0fEMyItDEEQ6OjoQKVS0dnZiZeXFy+//LJdmI0EKRuh+6ggKChI7hxERkZiNBo5f/48Q4cOJTw8HL1ebzeX9fX15fXXX5ftVCVSl2QX3B0Wi4WGhgZ5tX/w4EGqq6sJCQnh8uXLcvdg2bJlDq1eb1S1MOTH2/jB/5ymoMmP3df1/Hj9DT64FcPVW/UsWLDA7jjPnDnDxYsX0Wq1LFmyxK3zaTKZ2LZtG2FhYQQFBdmtFqVxxYPdAaVSKZPctFotERERnCprYfuVb+bL8rxXAEHgXpeVD6/rEb85T88995ysQwcbL6O5uVkmBfYGqdU+cOBA2e1R6g5I3630sG1tbXXYGXDFoeg+JhAEAQ8Pj4fuDICNN9DQ0EBwcLDsyCf9u6enp6wqaGhoQKVS2bWM58yZgyAIGI1G6urq8PT0lFfiubm5qFQqTp065VarXoJWq2XMmDGcPHmyV0XC8OHDHcoNg4ODmTNnDs3Nzfj7+7Nlyxa3x4QpKSnMnz+fa9euyWMGaWQQLzQ5De8BW2dgStr9kZtareaFF15g5MiRbD983WkhADbL9s17zjFjxgwSExNRKpXy9SN1X3Jycjh06BCbN29mzJgxGAwGiouLe7T3HwYajYbp06ezevVqlEol7364kb/8/AqN31Beuu95fkULvz1Q6vB7ra6uJj8/n0kTJzIqNZKXR8by2ug4pulC8VK7JwHvh2t8r4oBURTZdL7GiVLVhtN3FOgGDObHP/4x06dPt4uXlRAREUFOTg4nTpxg0KBBnD179pFunH2BxWLh66+/5t1330UQBObOnUtXVxeff/65Q+26SqVCq9XaFQOAvCKvrKykoKAAk8nEyJEjZW8Cqe0swcvLS04llG5kycnJbNu2ze69m5qasFgsREREUFhYyKlTpwgODqa8vBy1Wi2fT0cWx80dRma8uZeqJhub2Yogk4aaDQq218UTGXt/VVdWVsbevXvRaDS8+uqrbruPHThwgJaWFubNm4eHh4ddMeDn5ydnCDyI69evo1AouHv3Ljdu3GDH1Xqno14r0KXyQQhLJioqiqysLLvXExIS5FRGd1BeXo5Wq8XX15fx48fj7e0t2+52VxK0trYiiqJDzoC7YwJA9ip4WEjjp/r6emJiYuRi4EGJYVtbG7GxsXbnwcvLC51OR2dnJwqFgtDQUC5evIjJZEKpVJKVlYXRaHTLvKY7xo4di5+fX69kQkluKAgC27dvt9s2IyODMWPG0NLSgiiKfPrpp26PLDIzM3n22WcpKCjgwIEDiKKIt7c3v1g6m1DLXR609pMurfmDI4h9YOWrUCiYPn06xl4+WhRFfAKCZTMuuP+7vWzZMhQKBZcvX2bMmDHU1tZy7NgxAgMDEQTBLW8FdxEZGcmqVasIypqCwapwGJ1uFeFqXQdXazvs/91qZefOnURERNhlbfTj8eJ7VQzUt3dR3tzpsgoXFSrCBo7q1ap40qRJKBQKDAYDRqOxz1KZh0FNTQ1r1qzh2LFjjB07ltWrVzN48GAWLVrErVu3HBoDgW2O/ODDvbm5GV9fX06cOMHp06cZOHAg/v7+cieh+/aSBOrChQt2q8uamhq8vLxY/9En/OcXlxj+8+0M+sVe1hZHse54DZu2bsfLy4vm5mYUCgWRkZEMGTIEb29vh5K/9YeKaWo3YHFwpxARaGw3sfnYfWnjxo0bUSgUvPLKK3YtfVcoLS0lPz+fKVOmEBoa6vChFxMTY0ciBBvv4fTp04wZMwadTscXX+6k5I7epTWrIFqpM9pMhx4sVJRKJWlpaW4XAxUVFXL8rbTaEkWRU6dOUVdXJz80HckKwVYMuOoMdCeiAo/cGQgJCUGj0VBVVSWbD0nXpiQxDA0NRaPR4OnpSXV1tZ1yZPLkyfLfm5ubMRgMXLt2DbD97gmCwKFDh/q0T2q1mry8PEpLS3s97z4+PsyZM4fS0tIeZM1JkyaRmJiIxWKhtra2T3LH7Oxspk+fzsmTJ2X/A19fH363OJcUSxVq6/3ZeVSAhj8fG8/inEhnb0dUuGsGvQjkDrN332xsbMTDw4P4+HhWrVqFTqfjxIkTpKSkEBQUJBeU586d6xM3ozcoFApKjV4uyZJKAY7ftpeB5ufnU1dXx+zZs/sjjJ8gvldnVm9ynjNgt11X79t5e3szceJErl+/TlJSEqdPn3aLgfswMJvNHDx4kLVr1yIIAqtXr2bixIlyyz0pKYk5c+Zw6dIlDh482OPnQ0JC7FbvVquVqqoqMjMzuXv3Lm1tbbKJjkqlIjAwUN7eYDDw8ccfk5+fz4wZM2RyXm5uLhEREdTfbeN/Cjz51UcXuFnVwj2jleYuFf/2xU3W3tDSrLedy7i4OJYtW0ZXV5fTFernp8tcP1wF+OJMOSaTiTVr1mCxWFiwYIHczegNer2e7du3k5SUxIgRNlOnBzsDYBsV1NTU2HVaDh8+jEajYcyYMTz77LOoXJhKdd9hlVotd1QehE6no6Ghode2tcFgoL6+Xi4GAAYMGEBsbCwmk4nbt29jsVhkWSH0LAbcJRBKD+xHLQakOX11dTXx8fF0dnbK15QkMSwrKyM1NZWmpiaUSqXdAzo4OJioqChEUaSjo4PIyEh5VODl5UVKSgqtra1uGQF1R3p6OmlpaXz11Ve9Hl9KSgojR47kwIEDdhI+hULB/Pnz0Wg0+Pn5UVBQII/O3MGoUaN45plnOHTokLz69vP14e+XTWVc10Wym0/wL1Oi+I+5mUxIDXbZ8Vo1f6xLR0EQWP6cfYjYnTt35LA0Dw8P5s6dy6xZs7h27Romk4lhw4bRYbCw/2Iz8ZP/hoARP2HAc2/y7+sPcK/TNdGvN9wzur63SmRJCa2trRw6dIjhw4c7NNvqx+PD96oYCPP1wB1fiugA1zIvCdKMva2tjZaWFlki9ThRVVXFO++8w8mTJ5kwYQKrVq1ymN42aNAgpk2bxokTJ3qsZEJDQ2lra8NotP0iNzQ0YDKZ5Djj7rI1sBUPd+7coampibVr11JdXc3y5csZMWIEDQ0N+Pv7c+rUKebPn89VSzqNBltRcv85bvMPb+1SsbsygJSUFJYsWYKHh4fLdvW9XnqeoggdBjPvv/8+er2eiRMnotPp3DqPoiiya9cuzGaz3AIGW/HjqDNgNpvleX5tbS2XLl1iwoQJaDQavL29mTvnebwNTQgu+kwiAkPjg53K+VJSUlCpVNy8edPlvkvmWN3TBiWjHrhvzCTJCv39/XuQSHvrDDw4JnjUYgDuKzNiYmJQKBTyg7u7xFDiDcTFxfVYrQ8bNkwuTiwWC9XV1bIh1MNYFEuQHB2PHj3a67ZTpkwhJCSEbdu29cgQWLhwIe3t7YSGhsr21+7imWeeYeTIkezevZvLly8DtgXGyhdfROul4ovNG91yW3x90XjSE8JROiHd/e1rM4mNsB8ZScWABEEQGDZsGD/4wQ/o7Ozk65MFbDjWwZmSTu62GegyWbhVeYe//Y8vmPzyv9PW8fBOfxH+GpdjWkGASL/7Xb49e/bg6enJpEmTHvoz++EevlfFgK9GxehE50Y+CgGi/DWkh/XkCTjcXqFgxowZNDY2EhISwsmTJ/tEanIFk8nEvn37eP/99/Hw8OC1115j/PjxLm2Oc3Nzyc3NZe/evXJLFe5nFEgrs8rKShQKBWazGaPRSFdXF0VFRfL2ISEh1NXVsXbtWgBWrVpFUlISnZ2dVFZWMnz4cCwWC7v3H+H4LaNdcEh3iAiUtnszcsIM+YHoqhjISgxG5WKVo1II+FlbqKurQ6fTMX78eKfbPojLly9z/fp1Zs+ebReapFarezz0IiIiUCgUVFVVyQZDEjNaQnJyMmMiVU6PHdGKpqud58cOcbpParWa1NTUXlvW5eXlcpped4SFhdkxvv2DtNTfbSMg0H47k8mExWJx2Rl43GMCsBVVer2ejo4OoqKi7FbxKSkplJSUkJycjEKhwNfXl8rKSjtXvczMTNRqNZ6enjQ0NODr6yuvpLVaLZGRkdTW1rptUSwhKCiIsWPHcurUqR7jswchyQ2bm5vZt2+f3WvR0dHy739gYCBbtmzp4QroDIIgMH36dLKysti+fbtcEPr4+PDiiy/i7e3NunXret0/f18vDrz/M5bNHoFHNyKdv5eCv101gV++mme3vSiK8v3qQURFRfHqq6+yq6CDNn1Xjy6dVRS5WlzN3//fL906RkeYrgvtlSw5Kc2m4Lh58yaFhYXk5eX16sPRj0fH96oYAFgxPJogL3WPgkAh2B42Pxqf0KcYzPj4eAYNGkR7ezu1tbV9bls6QkVFBW+//baNPTtpEq+88orMQu8NU6dOZdCgQXz++eeyqZL0iy8VA1VVVURERHD27FnCwsKIi4vj2LFjiKKIKIq0t7fLrdlVq1bJ8qrSUhvTd9AgW6rZvlNX3Up2vFJxfxbsqhhYPS0dsxPfdADWQwopAAAgAElEQVSzVSSWckJCQli4cKFb5wNs/ILdu3czePDgHh4EjsYEarWaiIgIqqurZYOhqVOn9phXvjJ7HMlm22rw/vUkgiiithpJuHOWtm9Mk5xBp9NRXV3tkpUu8QUcXZeZmZkY1H6UB+fw2rZitnXEs5+BrMuvov2bTktv7oPw+McEYK/MiI+P78Eb6OzspKmpicTERFpbW1EoFHaFkUajkQsC+CZl8upV2V9B6g7s3bu3z/s2duxYAgIC2L17d68FfGhoKNOmTePcuXM9jItycnLIysqitbVVdih0ROR1BEEQePbZZ9HpdGzdulV2RJWSC728vNwqCLQBPrzz5nI+++0LvDg+kPf/7ln+66djMd+5JiudLFaRc5WtbMwvp1ITi9Un2OF7FVc0cau2w+m4zmIVWb/9FB36hxsXjE/WkhXt36OElv5/cXYkkf6eGI1G9uzZQ2pqKhkZGQ/1Wf3oG753xYDW24N/fVbHtPRQNN/k1kpWlv/6rI7UUPe6At0xZcoU2Uzk5MmTD71vXV1d7Nmzhw8++ABvb29ef/31PmfKS0zo+Ph4Nm/eTF1dHWq1mqCgILvOQEhICEVFReTm5jJu3Diqq6spKSlh165dXL16VT6u7hV5cXExYWFhBAQEMGrUKHx93KvWPbrlA7sqBkakhfHX820r6e7JaNLfx4c1ExeoZPXq1W4XbFarlc8//xwvLy9mzJjR43VnrPno6Gg7gyHJh6A7VCoVv3g+l/SG46R56kkL9SbA1EyWqo60msPEhfjx8ccfu2wfp6WloVAonI4KJG//7nyB7rhW00pJ+DjavCNlhrYJBbuuN/DLLwtpM5h7zSWAJzMm8Pb2RqvVysWAFE0M9yWGxcXFpKenU1lZSXx8fI8uSVZWFu3t7QQEBNDc3IzFYpG9KuLi4ggICLAL33IXKpWKvLw8bt++7dZ4b9iwYaSlpbFjxw671b8UiBQaGopSqewzoVChUDBv3jwSEhL45JNPZBXLgwVBb92PkpISTh47zLyZ41gybzoLFyyQu4QbvzzID7de5V8PlPLljbvUB6Tz35cM/Hpfid18HuBSYU8VzYPoNJoorXy4hEClQuCvJyexMDsS727Ts+hAT348PoEXsmxkycOHD9PZ2cnMmTP7tDjrx8Pje1cMAAR5q1mVG8uHSwezZtEgNizP4hcTkx7auMLf359nnnmGzs5OiouL3daOd0dZWRlvv/02BQUFTJs2jZdfftlhK88dKJVKFi5ciFar5aOPPqKlpUXmAUg35La2Nnx9fRk0aBDJycmEh4ezbds2Lly4wPTp0wHsbkBWq5WSkhLi4uI4efIk77//Pr6WZjyVrldBXh5KRuvu8xF6k7j93aJsPv6LiYxIC0XAVqiNSNHyQnwjueEdrF69uk8GTydPnqSiooK5c+c6bDU6KwZiYmK4e/cud+7cYerUqU5vSGFhYTw3YSTqwoNM1FQSV3uCOJqICA3mpZdeIiIigo0bN/ZQJ0jw9PQkKSnJ6aiguroai8XisBiwiiJfVgo2T/sHfO2tIjR0GNlUUONWZ+DBMcGjSgslSCTC2NhYBEGgrKwM6CkxFEWRwMBAysvL7YJy4uPjCQoKkrtTarWas2fPUXlXT2lDB2PHT0QURYfE2d6QlpZGeno6X331lcyncQbJhVChUNilG0r7tHDhQkwmE8HBwZw/f56CggK390OlUrFw4UIiIiL46KOP5GwEaWTg6enpsiBobGxk69atpKSkMHXqVHl/p02bxujJM9jR4Mvde7bCzioiXyuXatr47UF7Xb/Gw72gtatXLj30SFStVLAgK5IfxHUwpOk47ywcyL/PyWB8sk3uXFNTQ35+PhMmTHDoRdKPJ4PvZTEgQa1UEOStljsEj4JRo0YRFBSEUqnsk0Wx0Whk165drFu3Dn9/f9544w1yc3MfWUKj0WhYunQparWajRs3ygoBaeVRUVHByJEjUSqVNDY20tHRgcFgIC8vj1GjRuHj4yO3Jzs6Ojhw4AB6vZ5z585x+PBhAgMDWbzwBaYlK8DJFFAQ4PW8DPy9bQ9vs9nsUk0g4bkR8ez/x5m0frKShnVLmOJ3nURfPYsXL3boWOgMtbW1HD58mNGjR9uR77rD2UNP4lkkJSXZuR06wogRI0hOTub06dNER0dTVlbG8OHD5e8gPDycDRs2yOl9D0Kn01FeXu5wdVteXo5Go3Fo2Xy1tp0Oq8qpVMsqwtclTbS02x6uT3tMALZiQMqqiIiIkM2T4L7EUKlUEhUVJRcB3bskgiCQlZVFZWUlfn5+FHf68lFdDDP+cILn/+sUP9zZxBWSOXfxykPJ4PLy8ujs7OTIkSO9bttdbnj69Gm714KCgpg3bx4NDQ1ERkaye/duh14VzuDh4cHSpUsJDAxkw4YNcsqir68vK1euRKPROCwI9Ho9mzZtwt/fn/nz5/e4b1Spo0ChdshtsYpwva6DG/X3df2TRupQq5zzkgQBIrTeFF89y0cffeQy4bA3tLY0ExHgRbCPh10xunPnTsLCwvo9BZ4yvtfFwOOE1HaU2pjuEIlKS0t56623uHTpEjNmzGDlypV9etj1Bl9fX5YvX45e38mhgtvsLBL59dYr3Nb7ISiUDB06lKKiIt577z25pVtcXAwg/339+vX84Q9/4PTp0ygUCp5//nn+4i/+goULF5Kens74WBPZWtuxKgXbSl7xTXGwaGwS/7DkPunOnRVqdwgCvP/+exgMBiZPnuywVe8MJpOJzz//nNDQUDma2BHUajVWq7XHnFdqHbvD1ZDY2FarldbWVjw8PBg82Kbt1mg0LFu2jJCQEDZs2GAnUZOg0+kQRdFhkE5FRQWxsbEOi8PqFkMPo5oHYbKINLQbUCqVLpM1n8SYAGzFgNVqpba2VuYNSJAkhqWlpeh0OsrKyoiPj+/Rth8yZAgmk4kqTTJnLOm0c7+Dp++yUGgK55AxgyPH+z6iCwwMZNy4cZw5c8atjl5ycjKjRo3i4MGDPb7L1NRUJkyYQG1trZwf0N3BsDdIMceenp62zIJveCQPFgRSoWCxWNiyZQtGo5ElS5Y49No4fusurlg9SgFOld3n9IQE+bJ6wVinnTBRhP/z47msWLGC2tpaOdvgYdDS0tJj5X/27Flqa2uZPXu2S7J0Px4/+ouBx4i0tDSSkpIQRZGvT5zmQlUrBZWtPUKQDAYDO3bsYOPGjWi1Wt544w23Per7CpPCix13Unj7sg+nGwP44koHW29rWVMcw+a9J9m0aROJiYm88sorjB49muLiYj744AMqKyupra2VJWyhoaFkZmaSlZWFRqPBarWydetWGurrmBLZzKr0elZPS2VubgKTUz342fAu1v5ovJyVDn0vBj799FMaGxsZMGAAY8eO7dNxHzx4kLt37zJv3jyn0j5AHjl07w5IBkNBQUG9krckXL58GV9fX5l42X2UodFo5Cz79evX20Xkgm3FGR8f34M3YLVaqaysdMoXEKwmlwYuEixGmxWxq+vrSagJwFZMqVQqmTfQ0tIiJ1H6+voSEREhjwq6uroIDQ3l9u3bdl2SgIAAQuNS2F8rFQH2xyECzfiw7phjK9veMHr0aAIDA3t1JpQwefJkQkJCeqQbAowfP57U1FTa29uxWq1yOJG78PHxYcWKFQBs2LBBXnn7+vry4osv4uHhIXcIdu3aRWVlJYsWLeqhNJFgMLsm+Ir09FX5l5/NZVGeLcNCpVSgUipQKmzxx2/+2WxefD6X5ORkXn/9dbRaLevWrZMJyH3Bg8VAW1sbhw4dYtiwYbKDZT+eHvqLgceMaXkzqAkayPqaQH69v5TfHCjl1U+u8H+PldFpslBcXMwf//hHrl27xuzZs1mxYoXTX+RHhdli5flf7+NKhW2FISJgFW030uZOKz/fXE7a4JEMHDiQL774gt27dwM2HXJGRgZKpZJly5aRmppKQ0ODvDIXRZEvvviCwsJCBEFgzpw5RPkJjA9tYt1PJ/DrZdmo9D0lX30pBo4ePcqNGzcICwtj/vz5fTpuyTVuypQpva7spdVy95u6ZDA0YMAAqqure73JtbS0cPPmTTkAp7Kysof9s7TqCwgIYP369T1e1+l0lJaW2s2u6+vr6erqcloMRKs7EUTnN3sBSAnxRtF1z61zrlAo7IoBk8n0yEZa0gigurpaPg5HEsPg4GCCgoIwGAwOuyR3fZJcStIACo3BfbYoBltXb8aMGZSVlcnk2d62nz9/Pi0tLT18DiSLcG9vb9mBsa9eCAEBAaxYsYLOzk42btwoqyf8/PxYuXIlarWaNWvWcOHCBZ599lmn1wdAdIBrXb8IxATac2k81Co++M1L5G/+JT9eMYlls0fyq9dmUrj7H/nrVfelin5+frz44ouMHTuWQ4cO9WlsIHXRut/79uzZg4eHh537ZD+eHvqLgccIqyiy9kILTX4JiML9FpdFtCUl/nRTPhs/3kR4eDg//OEPGTp06BNlyu4tqOJqebNDe1+rCCarwAcHi/nss89obW1l8uTJTJ48Gb1eT0pKChaLhZaWFnl0kJKSgiiK7N27l8uXL6NUKlmyZAlDhgxhwoQJXLhwgZqaGlJTU1Gr1T3ave4WA4WFhRw+fBgvLy9eeeWVPp2jzs5OvvjiCxITE92aOUrFgLQK7m4wJDnnSW1ZZzhz5gweHh40NDSQnJxMUFAQ27Zt67EilIJpfH19e0jGdDodFotFPtdge2gqlUqnzmv6liZC2m85HRWIwOKcqF7dByUIgmDHGQAeG4mwqqoKb29vQkND7YqB1NRUOjs7qa2tRafTcfv2bYcGRF0qP5cGTyCgx7PPFsUSUlJSyMjIYN++fb2SCeG+3PD8+fM9OjpeXl4sXLiQtrY2oqKiOHv2bJ/tyoODg1mxYgUtLS1s2rRJ/h78/PwYO3YsRqNRthR2hd50/QIwIcWxzHBQWjS//skc3n5zGb98dUYP8yKwFZCTJk1i2bJlfRobSNHkUmegsLCQmzdv9nsKfIvoLwYeIy5Vt3Ghuo0H25hge/g2WTSkjHuWpUuXuhV9+qjYcabcTqL3IEQESg1B/OhHP2L16tWMHj2aUaNsuQylpbYMgMbGRoqLi4mJicHb25uvv/6a/Px8lEolK1askOe+w4YNIzQ0lL1796JSqUhLS3NYDCiVSpdqgDt37rBlyxaUSmWflQOSy6DJZJKT73pD987AgwZDzhIMu0PKpUhLS6O+vp5Ro0bJRDJHDyZvb287UxmpexIYGEhkZKTdg6WiooLo6GinY47GxkZi9aWkqVttV5woyg6bnmoFP30mgaxo/14TCyU82BkAHhtvoK2tjba2th68gQdTDCWDotLSUnlFDBDko0FwucYFT4X4UBbFEqZPn47RaOTrr792a/thw4aRnp7eQ24INuOq2bNny9kMu3btcqoocYbw8HCWLl1KbW2t7F/Q0NDAnj17SE5OxtfXlw8//NBluuCElGCGxvTU9Uu3hdW5cQR5O+eSuIuUlBRee+01t8cG3TM0urq62L17N6mpqWRmZj7yvvTj4dBfDDxGHC5pcupuCLYSocTo89R0sx0GM1YXJj4AFpR2pEWVSkXO8FFsOlHJxtuR5P32LP+wt5VycwRHjp3g6NGjqFQqXn75ZbtViUKhIC8vj8rKSq5du0ZmZiZ1dXV2q2pJVujs+I1GI2vXrsVqtbJ06dI+j0+uXLnCtWvXmDVrlp3LoCu0dAm0eYZxo/4eNwqL7AyGvLy8CA4OdnkTl9L0urq60Gq1JCcnExkZyaRJkzh58qRs/NQdkmRMo9Gwfv16+caYkZFBUVERZrMZURTtwokcobGxEdFqZUo0rIxtJ66jkPlDIvjRuHjeWzyYsUm277U3OacER8XA4+oMAHJOQVNTk0ys6y4xjI2NxdvbG7PZjNVqtXPFnDE4AquLYkApCDybZVNcPIxFMdja8+PHj+fMmTM9eB2OIJkGKZXKHumGYCM+Dhs2jKqqKrRaLZs3b+4ToRAgNjaWxYsXc/v2bbZs2cLHH39MUFAQCxYsYOXKlahUKtatW+e0IFAqBP5ycjIrhkcT7HP/oZ8e5suvpiYzNf3h5MuO4O/v7/bYoHuGxuHDh9Hr9f2eAt8y+ouBx4i790wOozkliECT/tFvru4iIzbQZYiJgIi3pZVPPvlEnmHf7TDyV9sb2FcTRK1eTWOHmep7av5wsJFX117BKqh55ZVXHLauk5KS0Ol07N+/n4SEBNRqtZ0tsquHkiiKrFmzBqPRyLRp00hKSurTsUoug4MGDXIaDNQdtW0G3txTxD98XUd52Ej+p6CVfzrZAvFD5W4H3G9xO4LVauXMmTOkpqZSXFxsl044evRoEhIS+Pzzz2XTn+6QGOLSzbylpYWMjAxMJhOlpaVy1ryzYkAURRoaGjCbzYSGhnK3ppzhoQILs6N4JiXYTi7bWy6BBEdjgsfRGfDz88Pf318mEUJP3kB1dTWdnZ2kpaVRVlZGTEyM3ahAF+nHjEHhOJKxCoj4eqp4dbKOiIgIamtrex3tOENubi5ardYtZ0K4Lze8deuWQ0lxXl4eUVG2UY3FYmHr1q19IhTC/SCyoqIi7t27x6JFi9BoNPj7+7Ny5UoUCoV8DTmCSiHw3MBw3l4wkA+WDmbD8iH808w0smMef3eyt7GBKIrcrO8gv6oDS1AsdfUNnDlzpt9T4DuA/mLgMSLE18NlZ0AhQIiP+23vR8VLk1NdKs9EBLK1bRQWFvLHP/6R3//+9yz+5+0UVrdi62MI8nYANZ0aGoNzHQYlSZg6dSr37t0jPz+/x6jA1ez6k08+oampicGDB8sJiu7CarWyfft2NBoNM2fO7HX7Ox1d/GpnIdfr7VdpJkHNFTGKz6/cXxVGR0dTX1/vcIVcVFREc3Mz3t7eKJVKsrKy5NckYqXJZGLnzp0OHywSIUy6mXeYBVojc/j16VZ+vKuckvAxlJv9HHI+9Hq93EYPCgqS29GO4C5n4EmNCeB+UeXn54dWq3UqMUxPT+fOnTvEx8dTUlJi9/m/mT+Q8XHqbtwB25/+6PnbZwKICPBk2rRpwMN3B5RKJTNnzqSiokIOEOoNycnJ5ObmcvDgQTlIqfv7LViwAFEUCQgIoLKyskfGQW8QRZHS0lIEQcBsNpOfny9fT/7+/rz00ksoFAo+/PBDpwUB2K5JP40KL/WTl+w5Ghtcqm7lzz+7xt/uLmL/HR+u+2XxV19VYglPZ9SoUb2/aT+eKPqLgceIiSnBLjsDVhGGhj69Ux4b4svvX7GR6LpzB6RO3OKxCYxN8cfHx4eUlBQa27s4dUvv8OEDtqJgy8kqWvXOHxBarZbc3FxOnDhBQkKC3ajg3j3HrPbDhw9TVFREZGQkc+bM6fNxnjp1ivLycqcugw9i2+U6OrosTr+rLRdqZTlod538gzh9+jQxMTEUFxczZMiQHp8dEBDA7NmzuX79umyh+yCk1V2Hwoe/2V1CpToKvVWF0QKdHkG8fbqG3x++1eM76a6JN5lMmEwmh2Qyd42e4MkXA1Is9IO8ge4Sw+TkZJkjYTab7QiVapWC3y0dzmzVOYYri8lR3GKS8jKvprZx7fRBDAYDiYmJ+Pv7U1xc7LAj4w6SkpIYMGAA+/fvt+MtuMKkSZMICwvrkW4Itu/4hRdeoK6ujoSEBPLz87l48aLb+3Py5EkuXrzInDlzyMvL4/Tp03aJi+52CJ42uo8Ndpy4xD/vK6Gh3f566kLFNY9UTpW7zvDox5NHfzHwGDE4yo/hcQEOJ5sCEGht58LuTZw4ceKxpRv2htXTdHzxq6mMzby/mk+PDuC/Xx3Nu3/+DMuXL0OtVtPS0sLQyfOdp/B9A4PJwtVy54QlsIXAeHp6cuvWLbtRgaN29fXr1zl69Cg+Pj68/PLLfZ4Z1tXVcejQIXJzc0lISOh1e4tV5OuSpl6LthO3bMcYHh6OSqXqwRuQQqmio6Pp6OhgxIgRDt9rwIABZGVlsWfPHqetaz9/fyrDRmDmgRTEb87F2YpWdt+wN8RpbGy0rfT8/KitrUWtVjt0SnQnl+D+xz2ZMQHYx0LHx8fT0NBg97CWJIZKpZLk5GQqKiqIjIzsQUL19fUlJTacBEUjg/zaCVXpiY6Ooquri8OHDwMwYcIERFF8aGUBwLRp0+zesze4khsCJCQkMGXKFG7dukViYiI7d+506kjZHYWFhRw4cICxY8cyePBgRo4cycSJE/n666/tosoDAgJYuXIlAOvWrZO9HL5tSGODruSxiKKDIc831/i6/Cqni5B+PB30FwOPEYIg8PMJiTw7MMxuZqtSCExJD+E/l+WSO2okBw4cYMOGDS6T6h4nJg+JZtffT6f54xe5s3E55/4wl5enpKFQ2B4mNpdCPSdPHHfr/VyNQsBmsjNlyhRu3LhBdHS0fEN/kDPQ0NDA1q1bZeWAK4c8RzCbzWzbto3Q0FC3884NZitdFtc3HYUCmjtN3/xdQVRUVA/ewJkzZwgICKC6uprExETZvtgR8vLy8PHx4fPPP3eo279U3cYdvdmpgZAI7L7WaFdANjY2olarCQsLo7y8nJiYGIeObX3xdujeGXhQcvmo6B4LLXUwulsTSxLDmpoaObgoOTmZ4uLiHittyZpZyjSoqqpiwoQJsnvdkCFD8PDw4OLFiw9lUQz380bOnj3r0DXSEUJCQpg+fTrnz593mDWRm5tLRkYGVVVVBAcHs3nzZpe6/Pr6erZt24ZOp7O7vseNGyeHEHXvMAQEBPDSSy8B8OGHH35nCoLaVgPVHVaXBlnNnWau1bkX/9yPJ4P+YuAxQ61U8OLwGNYuHsSbean8w/RU3ls8iNdGx+Hj6cHUqVNZsWIFd+7c4e2333aaVvdE9k2lwNNBEElwcDBLly7Ft6seZS9XhEZhZe/md1m3bp1Lyd3gwYOJjo6mpaWFuro6mpqa0Ov1+PjYUiE7Ozt57733EEVRNuPpKySXwblz57p0GewOT5Wi1ywKq9WWbinhQRJhe3s7V65cQafTUVVV5bQrIEGj0TB37lyqq6vt2rsSSu7oey2wGu910WG8TzyTPAqCg4Ndqg6kYqCv0kKlUolSqXxsxYAUC11VVUVgYCABAQFyaBHYSwzT0tIQBEHOjSgpKbF7Lw8PD7mLIYoilZWV5OTkEBISwu7duxEEgVGjRmE2m3tkCPQFo0aNIjg42G0yIcDQoUNJT0/nyy+/7FHsS4miAQEBmM1mzGaz7FBYVFbPp1+d58vDl2nr6KSjo4NNmzah1WqZO3euXcdMEASmTp1KdnY2O3bssCs8vosdglaDewVZm5vb9ePJoL8YeELwUisZGOnHoCg/fDT2D6qkpCRef/11OWZ4586dj0XC9SiIjo7mxSUvMDiw3emgQAAWjQwjRBtIWVkZ7733Hr/73e/Yu3dvj/msIAjk5eXR3NxCVac3P/yfr9lRHsiW863UNHWwZs0aurq6mDlzplvt/Qdx69YtTp8+zeTJkx2G+DiDUiEwIUXrmuipEBibeF/WGB0dTVtbm6wlP3v2LCqVinv37hEQEEBaWlqvnxsbG8szzzzD0aNHe0Qaq3qrBKTtlPe3a2xsxGQyodFoMBgMTs1npO+lr6ZD8PgsiSV0L6ri4+PtOgMKhYKkpCRKSkrw8fEhNjaW6upqwsLCeqyyW1tb8fPzo6ioSOZ0VFdXM2vWLKqqqrhw4YIc/f0oIzmJTFhZWemU8/EgpHRDZ3JDjUbDwoUL6ejoICwsjCs3yxi54B8ZMvefePFvPmDhz98lfsovWfbTf8dkMrN48WKHXhuSTXhmZiZbt26VfUHAJtdbuXIloiiybt26p9aBdIbukkbX2z09cnU/eqK/GPiW4O3tzcKFC5k1axaXLl3i3Xffdbsd+aSQmprK/79qDIm+ttWkRDqUHlaLxiXx3z+ZyY9+9CN+9rOfMWTIECwWC2fOnOF3v/sdb731FleuXJFvgH7aML5sTGLTrVD2XGvjRqsP735dje6HW/m61ER2djbDhw/v8352dnayfft2EhMTH4qFPG9wBH4aldOCYGlOFH6e9ws4SSdfVVWFyWTi/PnzDBgwgBs3bjBs2DC3EybHjRtHTEwM27Zts3O5y47xd8lhEID0UB+ZBa7X67l37x6iKNLV1YVCoXDq5a7X6xEEwS1iZffOADyZYuDu3bvo9Xri4uKora21Ow+SxPDevXvodDpu3bpFeno6hYWFdu3+5uZmoqOj0ev1xMbGAjaPifj4eAYPHsyBAwcwmUwMGjQIg8HglsWwMyQmJjJw4ED279/vNiHR29ubuXPncvv2bU6e7BmeFBoayvPPP8+1m7f4+EQb18vsbbsNRjP7ztdzrSnQZcdMoVAwd+5ckpKS2Lx5s12RKRUEVquVDz/88FstCEJ9NQyI8HX6+yYA4X4e6MJ8nup+9cMe/cXAtwgp7e7VV19FqVSydu1aTp069dTIhY4wclgO//PyIBbG1zMlM4DJg6NYNiGFA/80kzV/Pg7lNw8+f39/5syZwy9/+UuWLl1KdHQ0jY2NbNu2jd/85jds2bKFZf+2n5Im28PFKgrfZCPYbJv31QbjFZvjalecYvfu3ZhMJp5//vmHMikJ9vHgN7PTGRJlb0wU5KXitdFxPD/IvtPg7++Pn58f1dXVXLlyBb1eLz9cc3LcPwbp5q3X69mzZ4/87wlab4ZE+Tm9WYrA3CH3CaDdcw1aWlqIjIx0yreQ3AfdOU9PuhiQvCmqq6tJSEiQW/wSHpQYms1mvL296erq4tatW/J2zc3NREZGEhUVxZ07d1CpVLLqYOrUqVitVg4ePMiUKVMAHolICDYyodlsdptMCLbuX25uLocOHXKoRMnMzKTWqKX1XpdT+e/mry5y85brBYJSqWThwoVERkby0Ucf2S0oAgMDeemll7Bard96h+DlkTGolYoe17iAjUrwam5cvyUeJ0oAACAASURBVOHQtwzlm2+++ea3vRPfd/j4+JCVlYXRaOTIkSNUVVWRlJTUJyvex4m4uDg0lnYsNRf46YLRrMzLISbEuXNicHAwOTk5jB49GrDNsy/damR7odLJjU5AqRCobLrH8gnuxxKDbQV45MgRnnvuOZfufL3BV6NifLKWianBZMf4My09hJUjYkgJdbw6qays5M6dO7IhTllZGenp6QwaNKhPn+vl5YW/vz9HjhwhJCREDlIaGhvA9boOmvQmm6XwN3HQCPCDkTE8080/vqSkhJKSEjw8PNDr9aSnp5OcnOzw827evEl7e3uvvAaAgoIC/P395UCqS5cu4enpSXp6ep+O0Rk8PT05e/Ysvr6+ZGRkcO7cOby8vGSDKY1GQ2FhIUajkZycHK5fv44gCFgsFoxGIzqdDoPBwJEjR8jOziYkJIT8/Hzi4uJobGwkKysLf39/PDw8OHbsGJmZmTJnJSkp6aEtwDUaDSqViuPHj5OWloafn59bP5eQkEBhYSFXr14lKyurB8Hz5//2BR0uZLpKpQI/Hw0TR7g+/0qlkszMTIqKijh79izp6enyWEj6/i5cuMDly5fJyMhwGHX8pBHopWZorD/VLQYaOu4fc3KwNz8en8DgKPccQ/vx5NDfGfiOQKVSMX36dJYvX05dXR1vvfWWnR3r04QgCEyfPp2MjAw+++wzu9muK6jVaiZNmsQvfvELQgdMdDmXt1hFjl+v557Bfa5Ea2sru3btYuDAgX1+CDtDqK8HWdH+6MJ9XeY4RERFc7PRQEmHEk1IDK2trW49YB1h8ODBDBgwgF27dt2P89Wo+KdZafzdtBQmpgaTmxDE/CERvPXCQGZm2icvNjY24uHhQVBQEB0dHS6LIndzCcD2vT/YGXicXBZBEGTegCAIPfwGwNYdKC21RRHrdDqKiorQ6XQUFhbKwVlgM1oaOHAgCoWCkBCbpa7Ukh82bBiRkZHs2rWLqVOnAg9vQiRhxIgRhIaGsmvXLrc7d0qlkvnz59Pa2urw85taXSf8CQI03nXPvliKyfby8mL9+vV2xMGgoCBWrlyJ2Wxm3bp1PXIUnhYStN68OSONtxYM4J9npvFf8zL57XM6Bka6V1z148mivxj4jiE5OZk33niD6OhoNm3aJLfEnzaklnZMTAybNm2yM7lxB2qNl0srZAldveStSxBFsU8ug48T+wvv8F6ZN6WhI6kIHc7HVT5UxE7G4PFwK01BEJg1axYeHh52ckOFIDAk2p/Xx8Tz8wmJLMqOIsS3Z3dI8hiQOkeuigF3cwngyY8JwDYqkGKh4+Pjqa6utru+U1NT0ev1ssSws7NTjja+ffu27MEfFBSEl5cXGRkZlJWVoVKpZKKhQqFg5syZ1NXVUVlZSVhYGDU1NQ9tUQz3yYTV1dV9SiAMCQkhLy+PgoKCHkTIqFDX149oFR0mBTqDt7c3K1asQKFQsGHDBrschO9KQQA2DoEu3JeogP50wu8S+ouB7yB8fHxYsmQJM2bM4MKFC6xZs8at4JTHDZVKxaJFiwgICOCjjz7q08wxOykYcy96/tgQHwLdZBCfOnWKsrIy5syZ4/ZK93Fg1/UG3jlZwT2T/bG0Cd783e4iqloezuXOy8uLuXPnUl5e7pBk5gqSksBsNhMWFubyfLibSwC2h+iTVBOAjURoNBply2Gr1Won25QkhsXFxURFReHn50d9fT1BQUHcuHGD5uZm1Gq1XOBkZWVx584dwsPD6ejokPkUMTEx5OTkcOjQIcaOHQvQZxvgB9GdoNgXd8OcnBx0Ol0PueEr88e6LJitIiyd3XsMd3f4+/uzYsUKjEYjGzdutHNQ1Gq1rFy5EpPJ9K0XBP347qG/GPiOQhAERowYwerVqxEEgTVr1nDmzJmnTi709PRk2bJlCILAxo0b3b4JTsuOJibY2yWD+I0ZGW6Rhurr6zl06BCjRo0iMTGxD3v/aOg0Wfj4vGOXOBHosljZfKEnOcxdJCQkMGbMGA4fPuyWGx3Y2v4dHR1YLJZeRwTS9u52Bh4cE6jV6ifSGQCbMkMqZLqPCrpLDAVBID09naKiIjIyMrh58ybNzc0EBgbK141kPyzNwbsXVpMnT0ahUFBcXIyvry9FRUUPbVEsoTtB0V1I6YYqlcpObvj6ovGkxYejdGLu8f+9mkd8lNbha66g1WpZvnw5ra2tfPzxx3R1dVF+t5NPCmr4olhPwjPz0HdZbHkYfUxR7Mf/XvQXA99xhIWFsXr1aoYOHcrevXvZtGmTS9eyJwHJpbCjo4NPPvnErbGFUqHg31dkohKsdgWB9OxP8tWT5lHTa3EjuQwGBwczefLkRzmMPiO/vAWjizGGVYQz5S10mvqWQtcdEydOJDw8nG3btrn14O2uJGhvb3fqLyDhu9YZ0Gg0hIWFybyBuLi4HpwUSWIokSNbWlqIiIhAr9dTW1trF22tUCgYMmSIbBd97do1WYbo7e3N1KlTuXLlCgMHDkQUxT4pAhzB19eXiRMncv78eZfR1g/CkdzQ39eLgx/8jKWzRqBW3ScX+nur+P1fzuNXrz38OCw8PJzly5dTW9/ILz46yS++uMG2y3XsvdnAR5eauBAynhoxoL8g6IeM/mLgTwAqlYoZM2awdOlSampqeOutt3q4sj1phISEsGTJEmpqati2bZtDW93uaG5u5uqJPfxqvILX83SE+GlQC1Yyonx4640xvLU6hzOnT3Ho0CGXBcGhQ4doampi3rx5brsMPi60dJp7dQa0itD+CM5pSqWSefPm0dra6lYbu3sxAK75AlarFYPB8J3iDICtO9DdfKiystIu1leSGJaUlJCYmIhGo6GpqYmAgACampp6RN1KSpyAgABMJhOFhYV2r8XExFBSUoJarebChQsPbVEsYfjw4YSHh7N79+5efw+6IzExkdGjR3Po0CG5E6QN8OHd/7Oc8oP/wuEPf85Xb7/BT2aFo1X0jaPjCNHR0VgHzaRWtBH0rCJYvtldk0Wk2HcADRbP/oKgH0B/MfAnhdTUVF5//XVZU7x3795HvrH1BbGxsSxYsIDCwkKXFq1Go5FNmzah0Wh446WF/O7lURS9NZ+fZlby3g90rJiYyujcUUybNo3jx4/z9ddfO3yf27dvc+rUKSZNmtQnl8HHhWAftUszIAClgJ1B0cNAIpmdP3++V3vqxsZGPD098fT0JCgoCH9/55KsvrgPgmM1wZMoBmJiYmhsbMRoNBIfH4/ZbLYbk/j5+ckphkqlkpSUFFlVYDAYehQDWq2W+Ph4BEFAoVBw/vx5u2OaNWsWTU1NREdHYzab7QJ+HgYSQbGmpqZPZEJAvpY/++wzu3Mb5O/NqCFJjB85gBdemE9hYSHHj7uXFeIMta0GLjWanGYCCAJYk3IxGAysX7++vyD4nqO/GPgTg6+vL0uXLmX69OmcO3eOtWvX9lgtPkmkpaUxe/Zszp8/z7Fjx3q8brVa+eyzz2hra2Pp0qXyg0itVqNQKOxmtrm5uUyePJmjR4/28Ow3GAxs376dhIQEcnNzn+xBOcHwuEA0CnDmCqMQYExS0GPJh8/JySE9PZ0dO3a4JHY1NjaiVCoRRdEtvgC4l0sAT2dMALZiQBRFampqiIiIwMPDw6XEMD09ndraWtmTwVEBnJWVRUtLC1ar1U51ALaQpBEjRsijiceRGhoXF0dWVhYHDx6U8x/cgdQJam9vZ+/evQ63SUtLY/z48Rw+fNjOZrivyK9odZUNhFWEG40GFi9bQWdnJ+vXr3/qI8h+fHfQXwz8CUIKYlm1ahVWq5V3332Xs2fPPjVyYU5ODhMnTuTw4cMUFBTYvbZ//35KSkpYsGCBrP+W9tnLy6sHgWvs2LHye3VfCe3evRuj0cicOXO+NWcyD6VAqqnM4cpKIYC3Wsmi7KjH8lkSyUypVPLFF184/S4lJYHRaOy1GOhLYiE4HhNYrVa7Fv7jQGhoKBqNhqqqKhQKBXFxcQ6LAUlimJqaikKhkOWtjorfzMxM1Gq1HLD04HU5YcIEPD098fPzo7Ozs0c08sNgypQpWK1WDhw40KefkzpBFy5ccLofzzzzDElJSXz22Weyt0Jf0WWxunWD9w+0qQw6OztZt26dXUFgsYqYLO6PQvrxp4v+YuBPGBEREaxevZqsrCx2797N5s2b+7RKeRSMGzeOYcOGsXPnTnlGW1BQwOnTp8nLy3PoiOfl5WUndZIwfvx4xo8fz8GDBzl16hRXr17lypUrzJw586Fd4x4HKisrEaqvsCTdk3A/ewnkoEg//mV2OuF+j8/NzcfHh+eff57S0lKHrWyDwUB7e7u8WneHPAiPNiaAxxdj3P1zJL8BQCYRdv/s2NhYNBoNxcXFeHp6kpCQIFsSl5WV9SiWPDw8GDBggFx0Xrx40e79PD09mTZtmizt64sawBl8fHyYNGkSFy5ccJng6QjZ2dlkZGTw5ZdfOkwWVCgUzJs3D41Gw6effvpQ48C4IC96UfeiwUx1eSnBwcFyQbB+/XrO327k1/tKWLzuAkvWX+THn13jq5uNWHqbm/XjTxb9dsR/4lAqlaSlpREZGUl+fj7nz58nIiLCjnH9JCAIAikpKTQ0NHD8+HE8PT3Zs2cPQ4cOZcKECQ5X81evXkWtVqPT6Xq8lpCQgMVi4fDhwxQXF5ORkeH0fZ4WvvrqK0RRZOW8mczMDGN4XCBjEoNYlB3FjMywR+YKOIJWq8VgMHD8+HHS09Px9fWVX6urq5Nn1J6enkyZMsXl+amsrKSwsJDJkye7dR5v3LiB2Wxm8ODBgM3x8cqVKwwfPtytoKO+oKmpicLCQnJzcxEEgfPnz5Oeni5b/QqCQG1tLbW1teTk5NDV1cXly5fRaDTo9XpSUlJ68CW8vLwoKCjAZDLR1dVFZGSkXXcqLCyM8vJyOjo60Ov1j2RRLCEyMpKioiJKSkrIzs52+3oVBIGkpCQKCgqoqKhg8ODBPX5WrVYTHx/PsWPHaG9v77MtdIS/hgNFdzA6WdkLQIKllsJT+7ly5QpeXl6MGTOGr67WsKPGg4aOLqRHf7vRQkFVG9WtBkYlBH6rv5f9eDLo7wz8L0F6ejpvvPEGYWFhbNiwgX379j1xcqG0egkNDWXPnj1ERUWRl5fn9EbhrDMAtpvjxIkT8ff3x2w2ExUV9a3ecFpaWrh58yYjR45EEATbzTvYm4GRfoQ6cAV8nJgyZQrBwcFs27bN7jvs7gIpEeZcQQpUcjdV0dGYAB5/ZwBsvIF79+7R0tJCdHQ0KpXK4aigu8RQFEW8vb3x8fFx2F6Pi4sjICAAURTRarU9RgWCIDBz5kz5nD6qCRHYztmsWbOora21Iy66A8l4qqyszKnxVGRkJLNmzaKgoIDz5wu4WN3Ge6creedEBftuNrqUtaoUAj+fkIhKITgMCEoP8+HNlTN55ZVXiIqKYv/+/by38RNu+2UAOCTPnipr4Vjpwzs59uO7i/5i4H8RJD+AqVOncubMGd577z3u3LnzRD/TbDZjNBpRKpW0tbW5HFN4enq6NH05c+YMbW1t6HQ69u/f3+eb6+PEmTNn0Gg0DBky5Kl/tkqlYt68eTQ1NdnNoyUlAeCW+VJfPAbg6Y0JwD4WWqlUEhMT47AYAFuKoRRAZLFY0Ol03Lhxo8eoQBAEcnJyMIoqqoUwDhS2cOmB1L/Q0FDGjBlje9+qBjYeLeLj0xXk37r70JybmJgYsrOzOXToUJ8JeImJibLxlDPfguzsbHRZw/iPc638874S9t1s5FDxHd49VcnqT65woarnmEFCZoQfv3tWx7gkLWqlrSII9fVg+bBo/n56Kp5q27mfP38+P/3pT/FJH2UrApwpEIA9N54eYbkfTw/9xcD/MgiCwOjRo1m1ahUmk4l33nmH8+fPPxFyodVqZevWrej1elasWAHQwwK1OxwRCCU0NDRw8OBBRo4cycKFCxk+fDg7d+7ss3TrccBoNHLhwgWGDh36rSVHhoeHM2XKFM6cOSN7Sty5c0fuBvTGF4C+uQ+CYzUBPJliwNvbG61Wa+c3UFFRYff53SWGYLu2Ozo6SEtLk9MIu6PLbGVfQwBfmoexs05LviWVZe9f4aW1Z6ntZhudO2YsV0hhp3kY/7qvnH/ZWcgP3j/P7P84wdVq5w9WV5AMsfpKJoTejaesosgZMRGD2jYWsYjIXACj2cpvD96istl5kR0b5MWPxifw8YosNq/M5q0FA3luYBjmLgMNDQ3cvn2bK1eucO3aNZqMCpcKBBGobHH8+92PP208XReXfjw1REZG8uqrr/LVV1+xc+dOSkpKePbZZ/v0cOgNX331Fbdu3WL58uXEx8ezfPly3n//fT755BOWL1/ewyTIWWdAchnUarXyHHzGjBlYrVZ27Nghu8w9LVy8eBGTyfTQqYSPCyNHjqSkpIRNO/fjPwROGlOxhqTh1dXGzXYVYeEiChd37r4kFsLT7QyAbUUtrYbj4+M5cuQIjY2NsoQQbN2BgoICzGYzXV1dcrHg5eXF9evXiYyMBGxBVn+55TKHbjQiPrDGuVDRyoo1Z9n6Z6MI9Pbgd3tvUWgKk+fh0p+Vdzv5wXvn2fLDkSSEOI6ydgYfHx8mT57Mrl27yMnJITY21u2fldIN33nnHfbs2cPzzz9v9/ql6jYqmg0OV+sitmJh57UGXhsdK9tVd3R0cO/ePfnP7n+XOBMPGiapVCraQ4aAOuL/tXfncVHe96LHP88zC8MyICAwLAICIoJRVFwhVaMmEk1Mok1qctS22dOe3Jym5/aevk57TnvvOT299za5bU9ac5ukcWtMjJqYBBONaxKXoIKiIaKyKPsAwzozMMtz/hgZRWaAQXDj93698ooyMw8zDM7zfX6/7+J1ZQDATy2uIe9EIhi4g2m1Wh544AFSUlL46KOPWLt2LQ8//PCQ9PfPz8/n66+/ZsmSJe559BEREaxcuZINGzawfft2li9f3mO/2lvOwL59+zAajTz99NPuAKK7WYzT6eTDDz9EluUhG1vcF6fTydGjR0lPT++zoc+NIEkSyTMX8uEXlVDegiK5fjZm7Sj+88uLnKpp58d3J3gNCMxmc68GPX25kTkD4OqQd/r0aex2O3FxcciyTHl5ea9gYM8XR9h6sIg6h564IIWSkhLGjx9PcXEx99xzD5IkcaqyhT3feF6+djgV6ls7efdoJbmTDGw97nk53qm4rrTf+qKcXz+c4fPrmTp1KgUFBXzyySc888wzA87VAAgPDyc3N5cdO3aQkpJCRsaV759/sQWVhNfKAKcC+8/WYty7zmOVRWBgIEFBQQQGBhIbG+v+87X/12q1FNW08evPvHc3lSXIHju8ycnCzSGCgRFgwoQJxMbGsn37dtavX092djbz589HpRpcs5zS0lJ27tzJjBkzyMrK6nFbfHw8y5cv57333uPTTz8lNzfXvbTt7++P3W7HZrOh0WgA3MlTCxcuxGAw9DhWd+290+lk+/btyLLc40NyOJSUlGAymVi+fPmwfp+BsNoc/OloLUgyPT7iL/88D15oYlK0nnnjwj0+3mw2u6+cB+LabYLu92g4VwacTic1NTWMGTOG2NhYLl686F6Rabfa+cuxNj62Z7FjbwMwEW2bQlGhkV+syKKwsNC9kvBxYS0qWfJa+uZU4L2jFTQ0NiBLnpPjwBU4fHyyll89lO5zAmt3Z8I33niD/Px8Zs70beJgZmYm58+f5+OPPyYuLs5d6TCQOn9JpWbJkiW9TvLd7+FATYzWMy4igAsN5l4/IwnQqGSWpEd6fKxwexPrPSNE92jTBQsWcPjwYd566y0aGxt9Pk5jYyNbtmwhKSmJ++67z+N90tLSWLJkCfn5+T0aCXUvWXdvFXR3GUxISPDaZVCSJB588EEmTpzItm3b+m3Xe72OHDniPjHdbF+WmbDYnHjL9pBwjVj2xtecgWu3CSRJQqPRDGgw1WBERUWhVqt75A1UVFSgKAqdNgdPvnWMHYU1XN06p8spccoawWuHTWi1fu6qgrrmdpz91MA3tls5fuobFKXvk2uX3YmtvwJ9L2JjY5k6dSr79u3zub2vJEksXboUrVbL9u3b3e9FYnhAn22xZQmSI4KYNm0aaWlpxMXFERoa6nMg4DqWxM8XppAWFeQ+tupyUBSsU/OLe1MwBA9dbw3h1iGCgRFElmVycnL44Q9/iNVq5fXXX6egoGDAyYUWi4W//e1vBAUFsWLFij6XQadNm8bcuXPZu3cvhYWFKIpCcW0nBU1BrN93jlqTmZ07d2K1WnnooYf6PJYsyzz00ENMmDCBLVu29BhEM5RqamqoqKhg1qxZw3J8X5U1mlH1k8xVbrJ4fP8URcFsNvucQHjtPvJwtSQG1155dHR0j7yB9vZ2mpqa+OhkDWeq27ycBCX2X2jDHhzLkSNHeOWVV6g6dxq8hk0ACnqVjWi9BoW+r/jDg7Ror2NfvHt08mCSCbvLDSsqKvjqq68AmJd8pRLAE6cC90+IGPTzvZZep+bXuan8x9LxPDLJwNKMSH4ybyxrH53oDhKEO48IBkag2NhYnn32WTIyMtixYwfvv/9+r8Q+p6LQZrW765gdDgdbtmzBYrGwcuXKATWhmTt3LlOnTuWt93aS+ffv8fgfj/F5TRj/Y1MRqc+9x//ZWcmCRfcNaF9blmUefvhhxo8fz5YtWzh37tzgXnwfjh49SkhIiMemSDeD1suc+6tpZMnjcnZnZyeKoviUQHjtNgEMbzAArq2C7pWBMWPGIEkSFRUVbD1W1WdWu4STr2tdr7OtrY2xcl2/J/lUbSOjOspQoeAtcJAleHR63GBfDuCqlFi4cCEnT57sVS45EImJieTk5LB//36qqqoI9FPz0tyxyBIex4HfMy6cOcOwj58SEcj3psawanosc8aGohnA76Nw+xLv7gil1WpZtmwZK1asoLS0lLVr11JRUYHN4WTryVqefbeIH7xzilUbT/IvO0t488M9VFRU8OijjxIWFjag7yFJEpNnzmNzRTSl9d39B1yfYE4Fipr1/PHgwEu5urOuU1JSePfdd69riMu12traKCoqYsaMGT4lfg2naWNC+mwnK0uuYUqe+NqKGHpvE8CNCQZaWlpoa2vDz88Pg8FARUUFdS2d3uZDAaAgIweGIcsyYWFh6CUrs8La3bdeTUIhjHZibZeIjQxjqroM1+9h7/slRwaxJrv/ss3+TJkyhdjYWPLy8gY122HevHkYDAa2bt1KZ2cnMxJG8R8PpJGTFIpOLaOWJVJGB/DS3ESez44XHQGF63ZrfOoJN01GRgbPPfccoaGh/HXden76bj6bT1RjslzpfPdNbRu7msOJn72ExMREn47/Wl4xnQ7J41WbAmw7XE5R+cA7mqlUKlasWEFSUhKbN2+mrKzMp+fjTX5+Pmq1mqlTpw7J8YZChiGIlNEBvbrHXe3BiZ5HOw8mGLjR2wTQs/kQXMkbiAj26/M6X8KJ09yMoig0NTUxb948/ufKWUxVlxGkunLyVeEgRVXLA+GVxEZHYTQaSZTqeCCijjD5SoMsjaSQLNfwrwvCCRqCNtPd3Q7r6+vJz8/3+fHdgW97e7t7umFSeAAvfmcsG1dlsnnNFH6zNI2cpDARCAhDQgQDAiEhIaxevZrwKQupsqp7LaAqSCDBp1USbZ2+tTh+5+CFPoebqGWJLV+V+nRMtVrNo48+SkJCAu+8886glmKvZrPZOH78OJmZmUPeg/96SJLEPy1MJlbvOjm5krlc17RalcRP5yeRPNrzyd7X8cVwc4KB4OBg9Hp9j2CgpaWF3PTQfjIAZBKlOndFzP79+3nzzTcZp6pjsfQ196oL+H5iIx8+N5ks7SVGBfm7mxQZDAZ0zRd4LKqKn2VaeCLqIrv+YSZTVOV8uW/3kL22mJgYsrKy2LdvX59jqb0JCwsjNzeXwsJCjp08zSdn6vnPL8p5/dBFTlS24LxBU0qFkUEEAwLgOhGcswX30WxEwu5UOHjet77kreZ+TiQSmDp8P9mo1Woee+wx4uLi2LRpExcvXvT5GN2Kioowm80+l4LdCCH+GtYkOxlbd5iF48KYlxLOD2bG8ZfH7mJGgvdci8FuE9zonAHo2Xyoeyxzht5MSoQ/kseQQCFOaiBcamPx4sWoVCo0Go17OV6SIESyoDXXU1pSTExMDNXV1YBr1HFaWhqSJNHa2sqlktMEYSYiLIQxCWM5Vi+xeu0hHv7jYf7bpkK+KGm4ru6d99xzD2q1mt27BxdkZGZmEpw6nd8et/D215UcvNDE3pIG/n33Bf7xw28xmYen0kMYeUQwILjVtnb2ebssQVWLb61I4yP6zj52OJxYGyu5dOmSzx+6Go2GlStXEhMTw6ZNm3weIwuurPsjR44wfvz4AedC3GgNDQ3E6mw8k53I8zkJ3J8eSaBf30vZZrMZjUbTqwtkX7ytDAxXaWG3uLg4qqurcTqdBAQEEBkZSfWlChbqzpLs19pjm0SFgwnqWmaqziFJ8PHHH+NwOLDZbIwZM4YXX3zRfV+9Xs/Ro0fdgaJKpXL3tZg2bRovvPACfn5+NDU1sfWjT/mgeSz5jnEUVLZzrq6d/WeNPL++gJ++ewr7AGr9PfH392fhwoUUFRVRXl7u8+PLGi0c7jSgIF/uNnil+dClZgv/tvu8WCEQhoQIBgS3gbQZ9df41qjoqXvH950VLknEq2p46623eO211/jyyy99WlLVaDQ8/vjjGAwGNm7c6HXYizelpaUYjcZbppzQk4aGBiIifCsd87XHAHgOBjQazQ1ZGbB2OSi6UEm71U5CQgLffvstpvpqXvvhbN74bhw5qmK+o/6GZxOqmSiVob5cand1Lf306dN7vP/Jycnu5z5q1CgcDgdms5muri7Onj3LgQMHCA0NJSQkhNfzWylrcG2tdOe3dJ//d52u582D5YN+fZmZmUTHjeH/f3acl7adYeX68s3lTgAAEYFJREFUAp7afIr1+ZU09rMq9uHpOtcfPPwjcipQ3mThdI3vWxCCcC0RDAhuOWPD+kxWcygwe+zA29sCPHVvGlOTR6O65sDdn22/WT2df/7HF1m1ahUxMTEcOHCAV199lU2bNnHmzJkBjWHWarU8/vjjREREsHHjRmpqagb8/I4cOYLBYBjQ4J+bpb6+ntGjR/v0GF8nFsLN2SYwtnXy5rFWPrDP4Il1Z5n9b/tYX6KhxqJi9uzZnD9/nk8/2EK0bCIrXk9DjWv1Jzo6mtDQUGw2G3ZUXHBE8Q9bvuXl7WWckVJoU3Ts27cPcJW4Pv300+7AISgoiPT0dCorXStSVc1Wqp2hXksTFWDD4YvY7INbHehyKFwIn0GJJpHKFis2h0Kzxc7HZ+p5+YPiPocMHbvU0mfDIZUExy4ObriSIFxNBAOC2wMTI9GoZI8BgSzB1LhgUnwc4BLgp+aTX97Hj+5PR+9/5SpuQtwo1r00lx8tyUCSJJKSknjkkUd4+eWXuf/++7FYLLz//vu88sor5OXlUVNT0+c2gp+fH0888QRhYWFs2LCh10Q7T4xGI+fPn2fWrFm3bEa2zWbDZDLdtJWB4QwG6lutPPbno3xQWOvuMqgocKZBYa/9Lj4vKOXAgQPu12EymVi0aBHTpk2jqamJZcuW0abo2GnL5IQziVpnCJcsWoq7IvjUPoXzDgNz5sxh7ty5BAQEuPMRLBYL06ZNY/ny5URHR9Ph57ki42rNZhvljd7Hc/dl28laSpu7LkfAV37PnAqYbQ5+t7/M/bvd0dFBWVkZR44cYceOHXTZ+g+Gbf10XhSEgRCzCQS3mBAdv7wvhf+7rwyT2YZKwr1POT0+hB/fnTio4wbpNPz76un88ntTuNTQgU6rIi480OMJWKfTkZWVRVZWFkajkcLCQk6dOkV+fj5RUVFkZmZy1113ERjYOyjR6XSsWrWK9evXs2HDBtasWdNj6M21jh49SmBg4LDPO7ge3S2jfQ0GzGYzQUG+dYu70cHAK5+do7G9q1e1iXI5bXBfSzS56hq0Wi0dHR08++yzBAUF0dzcTEFBAV8fO85BezqdaLn6JNt9hV/gTGJytZn6v/2Njo4O94qRw+HgT3/6k/v+FufQde+7ls3h5NNvjV57JjgVqGy28vsN27DXl9HR0QG4EmQjIiII00XQ5NB6XbVwKK6SQ0G4XiIYEHoYHxnE2u9O5ERlC+VNFrQqmaz4EGJDrr/kTqdVMy4mZMD3j4iIYNGiRSxYsIDz589TWFjI7t272b17N6mpqWRmZjJu3LgeTYK6A4J169axfv161qxZ4/FEajabOXnyJDk5OT4l2d1oRqNrEt9gVgZ8fUxf2wSKogzp6kmrxcanRXV9lJ1KdKAjMn02Yc4mTCYTu3btwmKxYDabkWWZXaeqMOO9W6SEk92lNu4Pa/A4LVOv12O1WjE4Oi5n5Xl/faGBGhK9lHH2pclso6Orn6ZDikK7HET2tGlERkYSFRVFWJirodLBC038wUu+ggToNDI5SWKKoHD9bt1PQeGmUckS0+NHee1ud6PJskxqaiqpqamYzWaKioooLCxk8+bNBAYGMmnSJKZMmeI++fn7+7N69Wp3QPD973+f8PBwbHYnxZUmnE5ovHgGRVF6TV281RiNRvR6vc/9D3ydSwC9Vwbq2jo5ZFRRGTaZ9V9fYn5qBPGhvuUheFPTYsU+gOXto2cukCS7hjEVFxcjy7K7t0C9EoKEE8XLbqeCTI1D7x4YFBYWRnZ2trsroM1mw2azERagIVllodTs7/UKfPWchEG141X3lYTTTZKYkTWV+Wm9g7e7k0I5XdPG3nONPaYtuloTS7w8P8nnpF5B8EQEA8JtJSAggJkzZzJz5kxqa2spKCigsLCQw4cPExsbS2ZmJhMnTiQgIIDVq1fz9ttv89e312GJzuaNPaU0trnKJ7Wywn1pKai1t06TIU+MRqPPV/jdQ4p8TSDsnk3gdDp5t7CWrSdrXU17A+P4pLiBj75pYP64MJ6bk9ArIdRXwQPs8qfBgUqlQlEUoqOjCQgIQFEUSkpKUMkq6CenT5Zl1Go1VquVhIQEzp496+5HYNWOoknlj7HLygT7WVrUE2iw69wn3e6RyEsmG/jhILfIwgI0xIfquGSy9jl9ckqc5xUzSZJ4PjueyTF68oqNlDdZ0MgSMxNHsTQjkjGjhiY4EwQRDAi3LYPBQG5uLosWLaKkpITCwkLy8vL47LPPSEtLIzMzkyeeeIJlv9jC8aPfcPUycJdT4pNiK4/+dg9b/2kh6lt0CIvRaCQlJcWnx9hsNhwOh88rA93bAJ9928DWk64ETAVAkt1XpPvPNRHsp2bVdQ7ziR7lT0ZsMMXVrV6z5VU4mJ0Uis2ixmQyYTQa3cv9siyTHCxTYvT+vkkoRMgd7pN/QUEBAQEBZGYv5NUDdTQ06t33VUsKSVSzZu5Uvq6209TRxZjwAFZkxTLzOlr+SpLEisnRvLLfc9tsSYKcsaFEBGn7PEZ2UhjZSbdmHwzhziCCAeG2p1arSU9PJz09nba2Nk6dOkVhYSEbN26kWQrleF2wx8c5FdhzqpoPjlawYs7YG/ys+2e322lqahpUvgD41ooYLq8MANtOea/EUIC8YiOPTI4mUHt9y9MvLkzhuXUnvN4+QVVFzaUaxowZ4976OXToEJ9//jlpaWmcLy1HRzCdeB5LrCCRrFxyN02KjIzkkrGF/3WwFavSM7nSrkiUEEN5u5o/r5l0Xa/rWnPGhtJo7mJ9fpX7WUq40hSmxQXz3BAMRhKE63VrXg4JwiDp9Xqys7N54YUXePLJJzlvjbjcu80zlSzx18/P3sBnOHCNjY0oijKoSgLwrRUxuIIBqya4x5AqT2wOhTND0Ogme1w4v/veJPeWQffWg0pSmOJfxzNzx+JwOCgvL6elpYXW1lYOHTpERkYGJpOJLquZebpzqHHAVWOJpct7BxnyRWJUzWi1WuLj42ltbeWs3YDVqfKSGyCx9XgVF+rbPdx2fR7IiGLtdyfy2JRo5iaHsXhCJL9ZOp6fLUgeULMvQRhuYmVAuCNJkkRcXBxOXShOvF/pOpwK5cPw4T8UBltJMNhgQJIkFGlgJ6auQbbnvda9E6OYlxbB3uJ6qkwWQgI0zBoTwNtv/YWPivUctk3BjB+aegdfvLqDVLVCVVUVzc3NhIeH89KqVUSte4eCJi0XHaE4FJlQqZ37UgOZkjCOffsqiYiIwGQyYbVaKXNGek0SBFdA8snJWl5c5NvWzECEB2pZPjl6yI8rCENBBAPCHS0yxN+dCOaJJEHkEJRNDgej0UhQUJDPy/3Xs03gZ2tHJV3pf+/N2CGsbdeqZRbfZXD/3dxp52vtdEprulcoJDqR+dYexQV7OPPtp7krMYHJkyezbds2zKY6xkswXn3JfYx7Mh/hxIkTREVFsXjxYmpqajh48CA2U98feRKDG5wlCLc7EQwId7Tv3Z3Mlq88J2+Bq+Pd380bdwOf0cANppIAXCsDKpUKrdZ7UponNpsNlWInuK0CU2C8x374sgQTooKGpO+EN6/tvUB5s4Nr6/4VJGyoOGJPRV9+koqKChITE1m2bBl79uyhsc1KHWHYFYnNnx1C016LJMGbb74JuFY+AmU77U51r2N3cyoK0SJDXxiBRDAg3NEWZcZyd4aBr4rrcF6zOqCSJcbFhLDyO8k36dl5Vtls4WR1GydMaiYYon1u+NNdVjjQxyiKwokTJ9i1axcAj941mjyTP5XNPcvhZMk1UvnHdw9fwpvV5mBLfpXXCgMFmRYCaVWNIsTZTFVVFaVlFZx0JHJBiXL3HDjeDKGygaen+HPpm3z0ej0Gg4FvztRwhjF9ZJHAg1PEUr4w8ohgQLijybLE+z9bwEtvHOG9L0vd2wUSrkDhzy/kENDPOOAbpa3Tzu8PlFNY1eqq79ckcL5J4sxH3/Ly/CSi9H4DOo4vcwmqqqrIy8vjUk0dfvGTMDa1ooxO4l9mRrL/fCO7zzbQ2GEjWKfmnnHh5KZHEKLT9H/gQaoyWTD317EPha6ACAxBOurr6ymQxlOmhPU6wTc7/Xn1uJ3loSE0Nzdhs9l4/t4cfnfMTkWDBYeHHsE/WpCM4RbdNhKE4SQpvg6RF4TbVK3JzBff1KIoMH1cBGOj9P0/6AZxOBV+/slZyhrNva6KZQlC/TX87qEJBA0gcNm2bRttbW2sWbPG633MZjN79+7l+PHjdEZPoswvAZsTUJwgyeg0Mj+YEceCVN+mJV6vyiYLi1/5st/7LQitZ9H4ECzqEH71Ze9Ww90kFNK0Dfxk0ViysrLQaDS0WGy88mkJOwprsF1OjogZpePZeUksz4odstciCLeTW+OSSBBuAENoAN/NTrrZT8Oj45dauNDgeSqeU3H1uN9T0siyu/qfsNdX90FFUSgoKODzzz/H6XQSPTOXXTXqK538LlcTWG1O/vzVRfzUMjk3sNlNbKiOsaMDKG8we13KlyWYnhBERUUF++v8kYjtoyWxRKUczezZs91fC/HX8KuHM/hpbirlDWZ0GhXJEYHI19lVURBuZyIYEIRbwFdlph6956+lAHu+rWNWJGg0GtRqtfs/jUaDJEk0tHdx4EITx6yjCVfrqGmxEn3Vknd1dTV5eXlUVVUxefJk5t2zgJ98UgZ47yuw6Xg1c8aGIt+gEc+SJPH8/CT++5bTXm6HR6bF8ncPpQNQv62IkoLaPqsf2jvtHvMu9DoNd3lpAywII40IBgThFtDeafcaCHQzNreydu32Xl9XgIZR46nVX66KkEdTaYa/3/YNCYqRDKma1pYWWlpa8PPzIzU1FT8/Pz44cIxWa98nQ2N7F6WNZlJG9x4ZPVzunxxNXVsnr352DrjSJtnhVFiUEcnPl16ZVJgQoUfpo48EgCFYN6QTFwXhTiSCAUG4BcSE6CiqafMaEMgSJEeF8mTuk9jtdux2OzabDbvdztFaG6crr773lRNfBaOxtjZjaKskPDycwMBA2tvbaW5upkYJBv/+r4z7T+gbej/ISeT+SQY+PFFDpclMiL+GJZOjSYvumefxYGY0v9993lUj6oEswWMzrm+OgiCMBCIYEIRbwILUcHYWG73e7lRg6aQY4uJ6zq53OBX+cKYIr0v9kkRjcDK/WpPL6FE9ZzRcNFn4yQfF/T43wwCrGIZaVLCOZ+b1PTNitN6Pny4ex2/zSlwVGFfdJkswLiqIx2eNGdbnKQh3AtEUWxBuAYlhATw8yZUc6GlBe1biKGYkjOr19bImc7+zBOzIVLT1vnKOD/UnZXQA3vLmZAkmxeiJvEnBwECtmpPA//7uRBJHXymn1GlkvjdzDOuemn7LlI4Kwq1M/CsRhFvE41NjiA7W8cGpWqpbOwEIDdCwND2SpRmRHpP4uuwDqwz2Nkvguex4/jmvhC67s8cWhSxBgEbFU7fJVfX9k6PJnWSg0mSh0+YkJtSfgOucqigII4noMyAItxhFUTBZbDicEBagcU/z86TVauepzaf6TT78wyPpxHhpplPVbGVzQTVHK5pxKqCSIDsplMemxAy40ZEgCLc3EQwIwm3u/x0o41CZyWNAIEuQHhXEv+am9nsci81Be6cdvZ8anUZcVQvCSCJyBgThNveDmXFE6f16zRWSJQjWqXkhZ2CzBPw1KiKC/EQgIAgjkFgZEIQ7QEennbxiI7vPNmAy29BfniWwJD2S0IDhmyUgCMKdQQQDgiAIgjDCiW0CQRAEQRjhRDAgCIIgCCOcCAYEQRAEYYQTwYAgCIIgjHAiGBAEQRCEEU4EA4IgCIIwwolgQBAEQRBGOBEMCIIgCMIIJ4IBQRAEQRjhRDAgCIIgCCOcCAYEQRAEYYQTwYAgCIIgjHAiGBAEQRCEEU4EA4IgCIIwwolgQBAEQRBGOBEMCIIgCMIIJ4IBQRAEQRjhRDAgCIIgCCOcCAYEQRAEYYQTwYAgCIIgjHAiGBAEQRCEEe6/ADZ2RFXf3bevAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "parts = community.best_partition(G0)\n", "values = [parts.get(node) for node in G0.nodes()]\n", @@ -1071,7 +850,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1090,18 +869,7 @@ "id": "1fRxbnx9t958", "outputId": "218dbef6-4e29-4f14-b603-6bcdce7c8878" }, - "outputs": [ - { - "data": { - "text/plain": [ - "24" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# community found does not reflect the circles\n", "set(parts.values())\n", @@ -1110,96 +878,11 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": { "id": "qOho3z8Ew1yb" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "54 present in circle0 found in circle11\n", - "298 present in circle0 found in circle11\n", - "97 present in circle0 found in circle11\n", - "183 present in circle0 found in circle15\n", - "173 present in circle1 found in circle16\n", - "125 present in circle4 found in circle15\n", - "55 present in circle4 found in circle15\n", - "122 present in circle4 found in circle15\n", - "280 present in circle4 found in circle15\n", - "236 present in circle4 found in circle15\n", - "69 present in circle4 found in circle15\n", - "258 present in circle4 found in circle16\n", - "23 present in circle5 found in circle15\n", - "52 present in circle6 found in circle17\n", - "93 present in circle6 found in circle19\n", - "17 present in circle6 found in circle19\n", - "137 present in circle6 found in circle19\n", - "343 present in circle6 found in circle19\n", - "326 present in circle6 found in circle19\n", - "214 present in circle6 found in circle19\n", - "115 present in circle6 found in circle19\n", - "312 present in circle6 found in circle19\n", - "41 present in circle6 found in circle19\n", - "20 present in circle6 found in circle19\n", - "282 present in circle8 found in circle20\n", - "146 present in circle9 found in circle15\n", - "54 present in circle11 found in circle0\n", - "298 present in circle11 found in circle0\n", - "97 present in circle11 found in circle0\n", - "308 present in circle11 found in circle15\n", - "183 present in circle15 found in circle0\n", - "125 present in circle15 found in circle4\n", - "55 present in circle15 found in circle4\n", - "122 present in circle15 found in circle4\n", - "280 present in circle15 found in circle4\n", - "236 present in circle15 found in circle4\n", - "69 present in circle15 found in circle4\n", - "23 present in circle15 found in circle5\n", - "146 present in circle15 found in circle9\n", - "308 present in circle15 found in circle11\n", - "251 present in circle15 found in circle16\n", - "281 present in circle15 found in circle16\n", - "135 present in circle15 found in circle16\n", - "197 present in circle15 found in circle16\n", - "36 present in circle15 found in circle16\n", - "9 present in circle15 found in circle16\n", - "309 present in circle15 found in circle16\n", - "139 present in circle15 found in circle16\n", - "127 present in circle15 found in circle16\n", - "172 present in circle15 found in circle17\n", - "294 present in circle15 found in circle17\n", - "105 present in circle15 found in circle17\n", - "173 present in circle16 found in circle1\n", - "258 present in circle16 found in circle4\n", - "251 present in circle16 found in circle15\n", - "281 present in circle16 found in circle15\n", - "135 present in circle16 found in circle15\n", - "197 present in circle16 found in circle15\n", - "36 present in circle16 found in circle15\n", - "9 present in circle16 found in circle15\n", - "309 present in circle16 found in circle15\n", - "139 present in circle16 found in circle15\n", - "127 present in circle16 found in circle15\n", - "52 present in circle17 found in circle6\n", - "172 present in circle17 found in circle15\n", - "294 present in circle17 found in circle15\n", - "105 present in circle17 found in circle15\n", - "93 present in circle19 found in circle6\n", - "17 present in circle19 found in circle6\n", - "137 present in circle19 found in circle6\n", - "343 present in circle19 found in circle6\n", - "326 present in circle19 found in circle6\n", - "214 present in circle19 found in circle6\n", - "115 present in circle19 found in circle6\n", - "312 present in circle19 found in circle6\n", - "41 present in circle19 found in circle6\n", - "20 present in circle19 found in circle6\n", - "282 present in circle20 found in circle8\n" - ] - } - ], + "outputs": [], "source": [ "# a node can be present in more than one list??\n", "for i in circles:\n", @@ -1214,23 +897,12 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": { "cellView": "form", "id": "oo535vsIy684" }, - "outputs": [ - { - "data": { - "text/plain": [ - "0.7368407345348218" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "#@title \n", "nx.average_shortest_path_length(G0)\n", @@ -1278,7 +950,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "metadata": { "id": "baistC-ZdaRf" }, @@ -1391,7 +1063,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "metadata": { "id": "2C3TwPVTdgeM" }, @@ -1404,7 +1076,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1423,23 +1095,25 @@ "id": "oZIj_NqvVzmU", "outputId": "990227b3-7f01-4ef6-d036-9346c7ae5eca" }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'features': array([1., 1., 1., ..., 0., 0., 0.])}" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# check features has been correctly assigned\n", "G.nodes[0]" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# dump the graph on file\n", + "import pickle\n", + "\n", + "with open('test.gpickle', 'wb') as f:\n", + " pickle.dump(G, f, pickle.HIGHEST_PROTOCOL)" + ] + }, { "cell_type": "markdown", "metadata": { @@ -1454,7 +1128,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1473,29 +1147,7 @@ "id": "WsOOcDbfQifV", "outputId": "62d42e17-456d-4155-d91d-2bd39b79cde9" }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2024-06-25 20:21:13.886590: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n", - "2024-06-25 20:21:13.886605: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n", - "2024-06-25 20:21:14.774001: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory\n", - "2024-06-25 20:21:14.774018: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)\n", - "2024-06-25 20:21:14.774029: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (pelican): /proc/driver/nvidia/version does not exist\n", - "2024-06-25 20:21:14.774220: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA\n", - "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "** Sampled 8823 positive and 8823 negative edges. **\n", - "** Sampled 7941 positive and 7941 negative edges. **\n" - ] - } - ], + "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "from stellargraph.data import EdgeSplitter\n", @@ -1531,7 +1183,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1550,16 +1202,7 @@ "id": "47_TddSbY0RN", "outputId": "d0eb3606-649c-417c-93a3-1bdf188006c6" }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Computing transition probabilities: 100%|███████████████████████████| 4039/4039 [00:27<00:00, 145.58it/s]\n", - "Generating walks (CPU: 1): 100%|█████████████████████████████████████████| 10/10 [01:22<00:00, 8.26s/it]\n" - ] - } - ], + "outputs": [], "source": [ "from node2vec import Node2Vec\n", "from node2vec.edges import HadamardEmbedder \n", @@ -1576,7 +1219,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1595,17 +1238,7 @@ "id": "HRq-PlbKcNvq", "outputId": "61f7c1e0-ed5d-49bf-e0b3-d0092f66beff" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Precision: 0.9639303482587065\n", - "Recall: 0.9662246401450754\n", - "F1-Score: 0.9650761306390445\n" - ] - } - ], + "outputs": [], "source": [ "from sklearn.ensemble import RandomForestClassifier \n", "from sklearn import metrics \n", @@ -1619,35 +1252,72 @@ "print('F1-Score:', metrics.f1_score(labels_test, y_pred)) " ] }, + { + "cell_type": "markdown", + "metadata": { + "id": "ogTjZBNOwJ5y" + }, + "source": [ + "##### graphSAGE" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "R4Vk5GnxcWF2" + }, + "outputs": [], + "source": [ + "# graphSAGE no feats" + ] + }, { "cell_type": "code", - "execution_count": 36, + "execution_count": null, "metadata": { "id": "xK_GZyC5x6eE" }, "outputs": [], "source": [ "eye = np.eye(graph_train.number_of_nodes())\n", - "features = {n: {\"fake\": eye[n], \"features\": G.nodes[n][\"features\"]} for n in G.nodes()}\n", - "nx.set_node_attributes(graph_train, features)\n", + "fake_features = {n:eye[n] for n in G.nodes()}\n", + "nx.set_node_attributes(graph_train, fake_features, \"fake\")\n", "\n", "eye = np.eye(graph_test.number_of_nodes())\n", - "features = {n: {\"fake\": eye[n], \"features\": G.nodes[n][\"features\"]} for n in G.nodes()}\n", - "nx.set_node_attributes(graph_test, features)" + "fake_features = {n:eye[n] for n in G.nodes()}\n", + "nx.set_node_attributes(graph_test, fake_features, \"fake\")" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": { - "id": "ogTjZBNOwJ5y" + "colab": { + "base_uri": "https://localhost:8080/" + }, + "executionInfo": { + "elapsed": 808, + "status": "ok", + "timestamp": 1616266963123, + "user": { + "displayName": "Aldo Marzullo", + "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GjBD_mZewcZ8LCqkD20Nku4DR5OCGFqYkxawoUjgg=s64", + "userId": "17245895923239449231" + }, + "user_tz": -60 + }, + "id": "Ntt0Mcpwy-G0", + "outputId": "be140ce5-81f3-4ba7-df33-61a1a1b1e15a" }, + "outputs": [], "source": [ - "##### graphSAGE" + "graph_train.nodes[0]" ] }, { "cell_type": "code", - "execution_count": 37, + "execution_count": null, "metadata": { "id": "RGn0XYjexmy9" }, @@ -1670,7 +1340,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1689,23 +1359,7 @@ "id": "Fv96b9CTwNaP", "outputId": "f39489eb-87c5-427c-b0a5-3d93aa25d0c4" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "link_classification: using 'ip' method to combine node embeddings into edge embeddings\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/keras/optimizer_v2/adam.py:105: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", - " super(Adam, self).__init__(name, **kwargs)\n" - ] - } - ], + "outputs": [], "source": [ "from stellargraph.layer import GraphSAGE, link_classification\n", "from tensorflow import keras\n", @@ -1732,7 +1386,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1751,34 +1405,7 @@ "id": "e-7QmsWQ3AVB", "outputId": "cf9996ad-ca77-4dbb-e6cd-1c8fa78d3d26" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/10\n", - "249/249 [==============================] - 26s 101ms/step - loss: 0.2307 - acc: 0.6123 - val_loss: 0.1914 - val_acc: 0.7301\n", - "Epoch 2/10\n", - "249/249 [==============================] - 28s 111ms/step - loss: 0.1943 - acc: 0.7320 - val_loss: 0.1823 - val_acc: 0.7474\n", - "Epoch 3/10\n", - "249/249 [==============================] - 18s 73ms/step - loss: 0.1840 - acc: 0.7549 - val_loss: 0.1781 - val_acc: 0.7605\n", - "Epoch 4/10\n", - "249/249 [==============================] - 18s 73ms/step - loss: 0.1793 - acc: 0.7669 - val_loss: 0.1760 - val_acc: 0.7640\n", - "Epoch 5/10\n", - "249/249 [==============================] - 28s 112ms/step - loss: 0.1756 - acc: 0.7791 - val_loss: 0.1737 - val_acc: 0.7777\n", - "Epoch 6/10\n", - "249/249 [==============================] - 27s 108ms/step - loss: 0.1734 - acc: 0.7866 - val_loss: 0.1730 - val_acc: 0.7832\n", - "Epoch 7/10\n", - "249/249 [==============================] - 18s 73ms/step - loss: 0.1706 - acc: 0.7950 - val_loss: 0.1723 - val_acc: 0.7834\n", - "Epoch 8/10\n", - "249/249 [==============================] - 26s 103ms/step - loss: 0.1701 - acc: 0.7971 - val_loss: 0.1721 - val_acc: 0.7877\n", - "Epoch 9/10\n", - "249/249 [==============================] - 28s 111ms/step - loss: 0.1684 - acc: 0.8024 - val_loss: 0.1721 - val_acc: 0.7904\n", - "Epoch 10/10\n", - "249/249 [==============================] - 18s 71ms/step - loss: 0.1681 - acc: 0.8020 - val_loss: 0.1715 - val_acc: 0.7922\n" - ] - } - ], + "outputs": [], "source": [ "epochs = 10\n", "history = model.fit(train_flow, epochs=epochs, validation_data=test_flow)" @@ -1786,7 +1413,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1805,17 +1432,7 @@ "id": "KIFkkB2K2HpW", "outputId": "1c60f2ab-6ce2-402d-877e-00486598e2e7" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Precision: 0.5011997046880767\n", - "Recall: 0.6839189019015237\n", - "F1-Score: 0.5784736645896575\n" - ] - } - ], + "outputs": [], "source": [ "from sklearn import metrics \n", "y_pred = np.round(model.predict(train_flow)).flatten()\n", @@ -1826,7 +1443,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1845,17 +1462,7 @@ "id": "UwClat8v0avH", "outputId": "8ff471d3-301e-42ae-f4ef-35945e7d12c7" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Precision: 0.7080003229191895\n", - "Recall: 0.9939929729117081\n", - "F1-Score: 0.8269684111268271\n" - ] - } - ], + "outputs": [], "source": [ "y_pred = np.round(model.predict(test_flow)).flatten()\n", "print('Precision:', metrics.precision_score(labels_test, y_pred)) \n", @@ -1864,17 +1471,19 @@ ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": { "id": "7J8aSb7MfkQ1" }, + "outputs": [], "source": [ - "##### graphSAGE + feats" + "# graphSAGE + feats" ] }, { "cell_type": "code", - "execution_count": 42, + "execution_count": null, "metadata": { "id": "16lpkK-98W39" }, @@ -1892,7 +1501,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1911,49 +1520,7 @@ "id": "9HFwHmGq8dCD", "outputId": "d3a73f88-c4eb-44a2-e303-e7b3530b4d58" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "link_classification: using 'ip' method to combine node embeddings into edge embeddings\n", - "Epoch 1/10\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/keras/optimizer_v2/adam.py:105: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", - " super(Adam, self).__init__(name, **kwargs)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "249/249 [==============================] - 17s 64ms/step - loss: 0.1756 - acc: 0.8207 - val_loss: 0.1676 - val_acc: 0.8508\n", - "Epoch 2/10\n", - "249/249 [==============================] - 15s 59ms/step - loss: 0.1714 - acc: 0.8435 - val_loss: 0.1668 - val_acc: 0.8494\n", - "Epoch 3/10\n", - "249/249 [==============================] - 10s 39ms/step - loss: 0.1692 - acc: 0.8593 - val_loss: 0.1668 - val_acc: 0.8665\n", - "Epoch 4/10\n", - "249/249 [==============================] - 10s 42ms/step - loss: 0.1683 - acc: 0.8665 - val_loss: 0.1668 - val_acc: 0.8759\n", - "Epoch 5/10\n", - "249/249 [==============================] - 10s 40ms/step - loss: 0.1673 - acc: 0.8761 - val_loss: 0.1668 - val_acc: 0.8826\n", - "Epoch 6/10\n", - "249/249 [==============================] - 10s 40ms/step - loss: 0.1670 - acc: 0.8802 - val_loss: 0.1670 - val_acc: 0.8846\n", - "Epoch 7/10\n", - "249/249 [==============================] - 14s 56ms/step - loss: 0.1666 - acc: 0.8826 - val_loss: 0.1669 - val_acc: 0.8841\n", - "Epoch 8/10\n", - "249/249 [==============================] - 16s 66ms/step - loss: 0.1664 - acc: 0.8852 - val_loss: 0.1669 - val_acc: 0.8850\n", - "Epoch 9/10\n", - "249/249 [==============================] - 16s 63ms/step - loss: 0.1661 - acc: 0.8836 - val_loss: 0.1667 - val_acc: 0.8854\n", - "Epoch 10/10\n", - "249/249 [==============================] - 10s 40ms/step - loss: 0.1660 - acc: 0.8829 - val_loss: 0.1667 - val_acc: 0.8847\n" - ] - } - ], + "outputs": [], "source": [ "layer_sizes = [20, 20]\n", "graphsage = GraphSAGE(\n", @@ -1980,7 +1547,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1999,17 +1566,7 @@ "id": "ypxwoPvL83Rr", "outputId": "76fe25d5-e08e-4d25-aae1-9a30c382455a" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Precision: 0.5021852237252862\n", - "Recall: 0.6077320236746002\n", - "F1-Score: 0.54994017434904\n" - ] - } - ], + "outputs": [], "source": [ "from sklearn import metrics \n", "y_pred = np.round(model.predict(train_flow)).flatten()\n", @@ -2020,7 +1577,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -2039,17 +1596,7 @@ "id": "X8ZcWyByNvO7", "outputId": "0b75eda5-1d3c-4d22-e0f7-e777e1d63c58" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Precision: 0.8138243730915148\n", - "Recall: 0.996826476255242\n", - "F1-Score: 0.8960774325012736\n" - ] - } - ], + "outputs": [], "source": [ "y_pred = np.round(model.predict(test_flow)).flatten()\n", "print('Precision:', metrics.precision_score(labels_test, y_pred)) \n", @@ -2068,7 +1615,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": null, "metadata": { "executionInfo": { "elapsed": 10866, @@ -2128,7 +1675,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -2147,17 +1694,7 @@ "id": "E5XIoZ53q4_q", "outputId": "d0184893-a242-45dd-e9d8-38e6d4b1f3e6" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Precision: 0.964245810055866\n", - "Recall: 0.9781253541879179\n", - "F1-Score: 0.9711359927980644\n" - ] - } - ], + "outputs": [], "source": [ "from sklearn.ensemble import RandomForestClassifier \n", "from sklearn import metrics \n", @@ -2174,9 +1711,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "id": "O1YkgCx5rh25" - }, + "metadata": {}, "outputs": [], "source": [] } diff --git a/Chapter06/02_Social_network_analysis.ipynb b/Chapter06/02_Social_network_analysis.ipynb new file mode 100644 index 0000000..10b7246 --- /dev/null +++ b/Chapter06/02_Social_network_analysis.ipynb @@ -0,0 +1,812 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "G-iq6EXuNk18" + }, + "source": [ + "# Link prediction on social network using DGL" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "xqMpPrND8SeA" + }, + "outputs": [], + "source": [ + "# !pip uninstall -y dgl\n", + "# !pip install dgl==2.2.1 -f https://data.dgl.ai/wheels/torch-2.3/repo.html" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "XK8GxEU285LJ" + }, + "outputs": [], + "source": [ + "# import the social network graph\n", + "import pickle\n", + "with open('test.gpickle', 'rb') as f:\n", + " Gnx = pickle.load(f)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2BFI_Tus_9Rv" + }, + "outputs": [], + "source": [ + "import dgl\n", + "\n", + "# convert the graph from networkx to dgl. We are now ready to start learning\n", + "G = dgl.from_networkx(Gnx)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "u88BLEDkJpJd" + }, + "source": [ + "In the code above, we are implementing a GraphSAGE model to perform link prediction on a graph using the Deep Graph Library (DGL) and PyTorch. We start by setting up the computational device and initializing the node features as identity matrices. The graph's edges are then split into training and testing sets to evaluate the model's performance on unseen data. Negative edges are sampled to serve as negative examples during training. We define a GraphSAGE model with two layers that aggregate neighbor information and a dot-product-based edge predictor to compute edge scores. The model is trained using binary cross-entropy loss, optimized with the Adam optimizer. After training for a specified number of epochs, we evaluate the model's performance using common metrics on the test set." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "xO0n7SsKKDUP" + }, + "outputs": [], + "source": [ + "import dgl\n", + "import torch\n", + "import torch.nn.functional as F\n", + "from dgl.nn import SAGEConv\n", + "from sklearn.metrics import f1_score, precision_score, recall_score\n", + "import numpy as np\n", + "import scipy.sparse as sp\n", + "from torch import nn\n", + "import itertools\n", + "import dgl.function as fn\n", + "\n", + "# Set the computation device to GPU if available, otherwise CPU\n", + "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", + "\n", + "# Assuming graph G is pre-defined and moving it to the computation device\n", + "graph = G.to(device)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xhgraf86KGMz" + }, + "source": [ + "Once the graph is loaded, we need to perform the following steps:\n", + "- assign the fake features (i.e. the identity matrix)\n", + "- splitting edges into training edges (90%) and test edges (10%)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "T3lgwzSHD9Ka" + }, + "outputs": [], + "source": [ + "# Assigning a unique identity feature to each node\n", + "# This helps the model to have initial distinguishable features for each node\n", + "node_features = torch.eye(graph.number_of_nodes()).to(device)\n", + "graph.ndata['features'] = node_features\n", + "\n", + "# Splitting edges into training and test sets\n", + "# This helps in evaluating the model performance on unseen data\n", + "src_nodes, dst_nodes = graph.edges()\n", + "edge_ids = np.arange(graph.number_of_edges())\n", + "np.random.shuffle(edge_ids)\n", + "\n", + "# Define the number of test edges (10% of total edges)\n", + "test_edge_count = int(0.1 * len(edge_ids))\n", + "train_edge_count = len(edge_ids) - test_edge_count" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Jce-FNxeKqcn" + }, + "source": [ + "Next, we need to find negative (i.e. non existent) edges. This because we may want to train the model whether an edge exists.. or not!\n", + "We will be doing this by defining an adjacency matrix and randomly picking negative edges.\n", + "\n", + "Finally, we create a test graph for model evaluation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "_1_fmldeKo86" + }, + "outputs": [], + "source": [ + "# Splitting edges into positive training and testing sets\n", + "# Positive edges simulate the real edges in the graph\n", + "test_pos_src, test_pos_dst = src_nodes[edge_ids[:test_edge_count]], dst_nodes[edge_ids[:test_edge_count]]\n", + "train_pos_src, train_pos_dst = src_nodes[edge_ids[test_edge_count:]], dst_nodes[edge_ids[test_edge_count:]]\n", + "\n", + "# Creating an adjacency matrix and finding negative edges\n", + "# Negative edges are non-existent edges in the graph used for negative sampling\n", + "adj_matrix = sp.coo_matrix((np.ones(len(src_nodes)), (src_nodes.numpy(), dst_nodes.numpy())), shape=(graph.number_of_nodes(), graph.number_of_nodes()))\n", + "neg_adj_matrix = 1 - adj_matrix.toarray() - np.eye(graph.number_of_nodes())\n", + "neg_src, neg_dst = np.where(neg_adj_matrix != 0)\n", + "neg_edge_ids = np.random.choice(len(neg_src), size=graph.number_of_edges(), replace=False)\n", + "\n", + "# Splitting negative edges into training and testing sets\n", + "# These edges serve as negative samples during training and testing\n", + "test_neg_src, test_neg_dst = neg_src[neg_edge_ids[:test_edge_count]], neg_dst[neg_edge_ids[:test_edge_count]]\n", + "train_neg_src, train_neg_dst = neg_src[neg_edge_ids[test_edge_count:]], neg_dst[neg_edge_ids[test_edge_count:]]\n", + "\n", + "# Creating a training graph by removing test edges\n", + "# This prevents the model from training on test data and helps evaluate its generalization capability\n", + "train_graph = dgl.remove_edges(graph, edge_ids[:test_edge_count])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GPAANUqWLX5z" + }, + "source": [ + "We are now ready to train the model.\n", + "The next steps are the followings:-\n", + "- create a GNN model (we choose a GraphSAGE model in this case)\n", + "- attach an edge predictor (in this case we choose to compute the \"existence\" score for an edge by taking the dot product of the embeddings of the two end nodes\n", + "- implement the train loop which computes the predictions, the loss value, and applies backpropagate to update the model weights." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XV_OfWU3LWJx", + "outputId": "7a68eda0-e744-4f74-8317-3dc06e351b2e" + }, + "outputs": [], + "source": [ + "# Building the GraphSAGE model\n", + "# This model consists of two GraphSAGE layers, each computes new node representations by averaging neighbor information\n", + "# DGL provides dgl.nn.SAGEConv that conveniently creates a GraphSAGE layer\n", + "class GraphSAGENetwork(nn.Module):\n", + " def __init__(self, in_feats, hidden_feats):\n", + " super(GraphSAGENetwork, self).__init__()\n", + " self.conv1 = SAGEConv(in_feats, hidden_feats, aggregator_type='mean')\n", + " self.conv2 = SAGEConv(hidden_feats, hidden_feats, aggregator_type='mean')\n", + "\n", + " def forward(self, g, features):\n", + " h = self.conv1(g, features)\n", + " h = F.relu(h)\n", + " h = self.conv2(g, h)\n", + " return h\n", + "\n", + "# Defining the edge predictor using dot product\n", + "# This predictor computes the score for an edge by taking the dot product of the embeddings of the two end nodes\n", + "class DotProductPredictor(nn.Module):\n", + " def forward(self, graph, node_embeddings):\n", + " with graph.local_scope():\n", + " graph.ndata['h'] = node_embeddings\n", + " graph.apply_edges(dgl.function.u_dot_v('h', 'h', 'score'))\n", + " return graph.edata['score'][:, 0]\n", + "\n", + "# Initialize the GraphSAGE model and the predictor\n", + "sage_model = GraphSAGENetwork(graph.ndata['features'].shape[1], 16).to(device)\n", + "predictor = DotProductPredictor().to(device)\n", + "\n", + "# Function to compute the loss\n", + "# This combines the positive and negative scores and uses binary cross-entropy loss to measure performance\n", + "def compute_loss(pos_scores, neg_scores):\n", + " scores = torch.cat([pos_scores, neg_scores])\n", + " labels = torch.cat([torch.ones_like(pos_scores), torch.zeros_like(neg_scores)])\n", + " return F.binary_cross_entropy_with_logits(scores, labels)\n", + "\n", + "# Optimizer setup\n", + "# Using Adam optimizer to update model parameters based on the gradients computed during backpropagation\n", + "optimizer = torch.optim.Adam(itertools.chain(sage_model.parameters(), predictor.parameters()), lr=0.01)\n", + "\n", + "# Training loop\n", + "# The model is trained for a specified number of epochs\n", + "for epoch in range(100):\n", + " sage_model.train()\n", + "\n", + " # Compute node embeddings\n", + " node_embeddings = sage_model(train_graph, train_graph.ndata['features'])\n", + "\n", + " # Compute scores for positive and negative edges\n", + " pos_scores = predictor(dgl.graph((train_pos_src, train_pos_dst), num_nodes=graph.number_of_nodes()).to(device), node_embeddings)\n", + " neg_scores = predictor(dgl.graph((train_neg_src, train_neg_dst), num_nodes=graph.number_of_nodes()).to(device), node_embeddings)\n", + "\n", + " # Compute loss\n", + " loss = compute_loss(pos_scores, neg_scores)\n", + "\n", + " # Backward pass: compute gradients and update model parameters\n", + " optimizer.zero_grad()\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " # Print loss every 5 epochs\n", + " if epoch % 5 == 0:\n", + " print(f'Epoch {epoch}, Loss: {loss.item()}')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CfpuLRMBMKq5" + }, + "source": [ + "Let's evaluate the model by means of f1-score, precision and recall." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qkEwfrhPJUzW", + "outputId": "89ce9634-98b0-433c-ecec-2c944de83a97" + }, + "outputs": [], + "source": [ + "\n", + "def normalize(scores):\n", + " return (scores - scores.min()) / (scores.max() - scores.min())\n", + "\n", + "# Define the score computation to evaluate model performance on classification tasks\n", + "def compute_scores(positive_scores, negative_scores):\n", + " scores = torch.cat([positive_scores, negative_scores]).numpy()\n", + " labels = torch.cat([torch.ones(positive_scores.shape[0]), torch.zeros(negative_scores.shape[0])]).numpy()\n", + " return (f1_score(labels, scores),\n", + " precision_score(labels, scores),\n", + " recall_score(labels, scores))\n", + "\n", + "test_pos_graph = dgl.graph((test_pos_src, test_pos_dst), num_nodes=graph.number_of_nodes()).to(device)\n", + "test_neg_graph = dgl.graph((test_neg_src, test_neg_dst), num_nodes=graph.number_of_nodes()).to(device)\n", + "test_node_embeddings = sage_model(graph, graph.ndata['features'])\n", + "\n", + "# Evaluate model performance using proper metrics\n", + "with torch.no_grad():\n", + " test_pos_scores = predictor(test_pos_graph, test_node_embeddings)\n", + " test_neg_scores = predictor(test_neg_graph, test_node_embeddings)\n", + "\n", + " pos_test_scores = predictor(test_pos_graph, node_embeddings)\n", + " neg_test_scores = predictor(test_neg_graph, node_embeddings)\n", + "\n", + " pos_test_scores = (normalize(pos_test_scores) > 0.5) * 1\n", + " neg_test_scores = (normalize(neg_test_scores) > 0.5) * 1\n", + "\n", + " f1, prec, rec = compute_scores(pos_test_scores, neg_test_scores)\n", + " print(f'F1 Score: {f1}')\n", + " print(f'Precision: {prec}')\n", + " print(f'Recall: {rec}')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "kQVSkOiHNCv2" + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pSeHwaf0In_Z" + }, + "source": [ + "## Dealing with large graphs\n", + "In the previous example we have seen how to predict link using DGL. However, you may have noticed that we computed the probability of all edges at once during training, which, in case of large graphs, is not feasible.\n", + "\n", + "To overcome this issue, we can use some functionalities provided by graph machine learning libraries, including DGL. In the next example, instead of fitting the whole graph in memory, we will be iterating over the edges in minibatches.\n", + "\n", + "For readability we are not going to implement the validation and testing part, however it can be done as we have done above!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "H_fLo8j8InGq" + }, + "outputs": [], + "source": [ + "# DGL provides dgl.dataloading.EdgeDataLoader to iterate over edges for edge classification or link prediction tasks.\n", + "# For link prediction, we also need to specify a negative sampler\n", + "# builtin negative samplers ( non-existing edges) such as dgl.dataloading.negative_sampler.Uniform can be used for this purpose.\n", + "\n", + "# load 5 negative sample per each positive sample (existing edges)\n", + "negative_sampler = dgl.dataloading.negative_sampler.Uniform(5)\n", + "\n", + "# define the edge loader\n", + "sampler = dgl.dataloading.MultiLayerFullNeighborSampler(2)\n", + "sampler = dgl.dataloading.as_edge_prediction_sampler(\n", + " sampler, negative_sampler=negative_sampler)\n", + "\n", + "dataloader = dgl.dataloading.DataLoader(\n", + " # The following arguments are specific to NodeDataLoader.\n", + " graph, # The graph\n", + " torch.arange(graph.number_of_edges()), # The edges to iterate over\n", + " sampler, # The neighbor sampler\n", + " device=device, # Put the MFGs on CPU or GPU\n", + " # The following arguments are inherited from PyTorch DataLoader.\n", + " batch_size=128, # Batch size\n", + " shuffle=True, # Whether to shuffle the nodes for every epoch\n", + " drop_last=False, # Whether to drop the last incomplete batch\n", + " num_workers=0 # Number of sampler processes\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cgzvBz4sInOq", + "outputId": "812c2a79-7f6c-4565-88ac-cdb55380b0fa" + }, + "outputs": [], + "source": [ + "input_nodes, pos_graph, neg_graph, mfgs = next(iter(dataloader))\n", + "print('Number of input nodes:', len(input_nodes))\n", + "print('Positive graph # nodes:', pos_graph.number_of_nodes(), '# edges:', pos_graph.number_of_edges())\n", + "print('Negative graph # nodes:', neg_graph.number_of_nodes(), '# edges:', neg_graph.number_of_edges())\n", + "\n", + "print(mfgs)\n", + "# Notice that the last element is a list of message flow graphs (MFGs) storing the computation dependencies for each GNN layer.\n", + "# The MFGs are used to compute the GNN outputs of the nodes involved in positive/negative graph.\n", + "# Check more on https://docs.dgl.ai/en/0.8.x/generated/dgl.dataloading.BlockSampler.html" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jg23gAE7MopC", + "outputId": "3c132fb5-cef4-4361-cb96-3e13580994df" + }, + "outputs": [], + "source": [ + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "from dgl.nn import SAGEConv\n", + "\n", + "class GraphSAGENetwork(nn.Module):\n", + " def __init__(self, in_feats, hidden_feats):\n", + " super(GraphSAGENetwork, self).__init__()\n", + " self.conv1 = SAGEConv(in_feats, hidden_feats, aggregator_type='mean')\n", + " self.conv2 = SAGEConv(hidden_feats, hidden_feats, aggregator_type='mean')\n", + "\n", + " def forward(self, g, features):\n", + " h = self.conv1(g[0], features)\n", + " h = F.relu(h)\n", + " h = self.conv2(g[1], h)\n", + " return h\n", + "\n", + "# Defining the edge predictor using dot product\n", + "# This predictor computes the score for an edge by taking the dot product of the embeddings of the two end nodes\n", + "class DotProductPredictor(nn.Module):\n", + " def forward(self, graph, node_embeddings):\n", + " with graph.local_scope():\n", + " graph.ndata['h'] = node_embeddings\n", + " graph.apply_edges(dgl.function.u_dot_v('h', 'h', 'score'))\n", + " return graph.edata['score'][:, 0]\n", + "\n", + "# Initialize the GraphSAGE model and the predictor\n", + "sage_model = GraphSAGENetwork(graph.ndata['features'].shape[1], 16).to(device)\n", + "predictor = DotProductPredictor().to(device)\n", + "\n", + "# Optimizer setup\n", + "# Using Adam optimizer to update model parameters based on the gradients computed during backpropagation\n", + "optimizer = torch.optim.Adam(itertools.chain(sage_model.parameters(), predictor.parameters()), lr=0.01)\n", + "\n", + "# Training loop\n", + "# The model is trained for a specified number of epochs\n", + "for epoch in range(5):\n", + " total_loss = total_examples = 0\n", + " for (input_nodes, pos_graph, neg_graph, mfgs) in dataloader:\n", + " sage_model.train()\n", + "\n", + " input_features = mfgs[0].srcdata['features']\n", + "\n", + " # Compute node embeddings\n", + " node_embeddings = sage_model(mfgs, input_features)\n", + "\n", + " # Compute scores for positive and negative edges\n", + " pos_scores = predictor(pos_graph, node_embeddings)\n", + " neg_scores = predictor(neg_graph, node_embeddings)\n", + "\n", + " # Compute loss\n", + " loss = compute_loss(pos_scores, neg_scores)\n", + "\n", + " # Backward pass: compute gradients and update model parameters\n", + " optimizer.zero_grad()\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " total_loss += float(loss) * (len(pos_scores) + len(neg_scores))\n", + " total_examples += (len(pos_scores) + len(neg_scores))\n", + "\n", + " print(f\"Epoch: {epoch:03d}, Loss: {total_loss / total_examples:.4f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "72eyir3cInRH" + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5cPGcLx3NtA8" + }, + "source": [ + "# Link prediction on social network using PyG\n", + "We will now replicate the example using another popular library for graph machine learning: Pytorch Geometric" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_Smng0hRNtbZ", + "outputId": "21f31f79-a12c-49b2-9212-b0a5a0d901b6" + }, + "outputs": [], + "source": [ + "!pip install torch_geometric\n", + "\n", + "# Optional dependencies:\n", + "!pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.3.0+cpu.html" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "UuygURxWN-jf", + "outputId": "ec9e85a6-97b1-4569-cafe-d74115ef13a6" + }, + "outputs": [], + "source": [ + "from torch_geometric.utils.convert import from_networkx\n", + "import torch_geometric.transforms as T\n", + "from torch_geometric.loader import LinkNeighborLoader\n", + "from torch_geometric.nn import SAGEConv\n", + "import torch.nn.functional as F\n", + "\n", + "# Convert the graph into PyTorch geometric\n", + "G = from_networkx(Gnx)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "AGEAdLxMO8-w" + }, + "outputs": [], + "source": [ + "# let's add fake features\n", + "G.x = torch.eye(G.num_nodes)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pBliMBhdOr1C" + }, + "outputs": [], + "source": [ + "# we first split the set of edges into training (80%), validation (10%),\n", + "# and testing edges (10%). We also generate fixed negative (non existing)\n", + "# edges for evaluation with a ratio of 2:1.\n", + "# We can leverage the `RandomLinkSplit()` transform to perform all the steps:\n", + "transform = T.RandomLinkSplit(\n", + " num_val=0.1,\n", + " num_test=0.1,\n", + " disjoint_train_ratio=0.3,\n", + " neg_sampling_ratio=2.0,\n", + " add_negative_train_samples=False\n", + ")\n", + "train_data, val_data, test_data = transform(G)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "stNh0Op1P9nG" + }, + "source": [ + "Similar to what we have done above, we will be using a mini-batch loader: our graph is quite small, so it is perfectly fine to load it in memory while training. However, for larger graphs, since computing the probability of all edges is usually not feasible, a mini-batch loader is required to load parts of the graph step by step.\n", + "\n", + "PyG makes use of the loader.LinkNeighborLoader to sample multiple hops from both ends of a link and creates a subgraph from it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wy3Gvd0bPm5f" + }, + "outputs": [], + "source": [ + "# Define seed edges:\n", + "edge_label_index = train_data.edge_label_index\n", + "edge_label = train_data.edge_label\n", + "train_loader = LinkNeighborLoader(\n", + " data=train_data,\n", + " num_neighbors=[20, 20],\n", + " neg_sampling_ratio=2.0,\n", + " edge_label_index=edge_label_index,\n", + " edge_label=edge_label,\n", + " batch_size=128,\n", + " shuffle=True,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "zk2gPxT0QGhq" + }, + "outputs": [], + "source": [ + "# Building the GraphSAGE model\n", + "# This model consists of two GraphSAGE layers, each computes new node representations by averaging neighbor information\n", + "class GraphSAGENetwork(nn.Module):\n", + " def __init__(self, in_feats, hidden_feats):\n", + " super(GraphSAGENetwork, self).__init__()\n", + " self.conv1 = SAGEConv(in_feats, hidden_feats)\n", + " self.conv2 = SAGEConv(hidden_feats, hidden_feats)\n", + "\n", + " def forward(self, x, edge_index):\n", + " h = self.conv1(x, edge_index)\n", + " h = F.relu(h)\n", + " h = self.conv2(h, edge_index)\n", + " return h\n", + "\n", + "# Defining the edge predictor using dot product\n", + "# This predictor computes the score for an edge by taking the dot product of the embeddings of the two end nodes\n", + "class DotProductPredictor(nn.Module):\n", + " def forward(self, z, edge_index):\n", + " src, dst = edge_index\n", + " return (z[src] * z[dst]).sum(dim=-1)\n", + "\n", + "# Initialize the GraphSAGE model and the predictor\n", + "sage_model = GraphSAGENetwork(G.num_features, 16).to(device)\n", + "predictor = DotProductPredictor().to(device)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ZDjttEQvQnn3" + }, + "outputs": [], + "source": [ + "# Function to compute the loss\n", + "# This combines the positive and negative scores and uses binary cross-entropy loss to measure performance\n", + "def compute_loss(pred, ground_truth):\n", + " loss = F.binary_cross_entropy_with_logits(pred, ground_truth)\n", + " return loss\n", + "\n", + "# Function to compute the prediction score\n", + "def compute_scores(labels, scores):\n", + " return (f1_score(labels, scores),\n", + " precision_score(labels, scores),\n", + " recall_score(labels, scores))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "acSDECu0Q_Ja", + "outputId": "68eceb76-9708-42c4-be1d-8454df84e356" + }, + "outputs": [], + "source": [ + "from tqdm import tqdm\n", + "\n", + "# Optimizer setup\n", + "# Using Adam optimizer to update model parameters based on the gradients computed during backpropagation\n", + "optimizer = torch.optim.Adam(itertools.chain(sage_model.parameters(), predictor.parameters()), lr=0.01)\n", + "\n", + "# Training loop\n", + "# The model is trained for a specified number of epochs\n", + "for epoch in range(1):\n", + " sage_model.train()\n", + " total_loss = total_examples = 0\n", + "\n", + " for batch in tqdm(train_loader):\n", + " optimizer.zero_grad()\n", + " batch.to(device)\n", + "\n", + " # Compute node embeddings\n", + " node_embeddings = sage_model(batch.x, batch.edge_index)\n", + " scores = predictor(node_embeddings, batch.edge_label_index)\n", + "\n", + " # Compute loss\n", + " loss = compute_loss(scores, batch.edge_label)\n", + "\n", + " # Backward pass: compute gradients and update model parameters\n", + " loss.backward()\n", + " optimizer.step()\n", + " total_loss += float(loss) * scores.numel()\n", + " total_examples += scores.numel()\n", + "\n", + " print(f\"Epoch: {epoch:03d}, Loss: {total_loss / total_examples:.4f}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_bc8WNOFVd_6" + }, + "source": [ + "Let's evaluate the model. For doing this we will be creating a proper linkneighborloader" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "20mj7rUxQpD0", + "outputId": "635a3bd2-983c-46e9-b8af-7701fe312e09" + }, + "outputs": [], + "source": [ + "# Define the validation seed edges:\n", + "edge_label_index = val_data.edge_label_index\n", + "edge_label = val_data.edge_label\n", + "val_loader = LinkNeighborLoader(\n", + " data=val_data,\n", + " num_neighbors=[20, 20],\n", + " edge_label_index=edge_label_index,\n", + " edge_label=edge_label,\n", + " batch_size=128,\n", + " shuffle=False,\n", + ")\n", + "sampled_data = next(iter(val_loader))\n", + "sampled_data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8Oz9AzOrVs2i", + "outputId": "3559ce46-8876-4f38-da29-e883104390c7" + }, + "outputs": [], + "source": [ + "preds = []\n", + "ground_truths = []\n", + "\n", + "for batch in tqdm(val_loader):\n", + " with torch.no_grad():\n", + " batch.to(device)\n", + "\n", + " # compute predictions\n", + " node_embeddings = sage_model(batch.x, batch.edge_index)\n", + " scores = predictor(node_embeddings, batch.edge_label_index)\n", + "\n", + " preds.append(scores)\n", + " ground_truths.append(batch.edge_label)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "yaV6LzVpZXaW", + "outputId": "44b93179-7a0c-4ef1-f918-e2b6a93d8735" + }, + "outputs": [], + "source": [ + "def normalize(scores):\n", + " return (scores - scores.min()) / (scores.max() - scores.min())\n", + "\n", + "pred = torch.cat(preds, dim=0).cpu().numpy()\n", + "ground_truth = torch.cat(ground_truths, dim=0).cpu().numpy()\n", + "\n", + "pred = normalize(pred) > 0.5\n", + "ground_truth = normalize(ground_truth) > 0.5\n", + "\n", + "f1, prec, rec = compute_scores(ground_truth, pred)\n", + "\n", + "print(f'F1 Score: {f1}')\n", + "print(f'Precision: {prec}')\n", + "print(f'Recall: {rec}')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "k072d2xfahBN" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "chap6", + "language": "python", + "name": "chap6" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Chapter06/poetry.lock b/Chapter06/poetry.lock index c1d6ed4..26c785c 100644 --- a/Chapter06/poetry.lock +++ b/Chapter06/poetry.lock @@ -11,6 +11,157 @@ files = [ {file = "absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308"}, ] +[[package]] +name = "aiohappyeyeballs" +version = "2.4.3" +description = "Happy Eyeballs for asyncio" +optional = false +python-versions = ">=3.8" +files = [ + {file = "aiohappyeyeballs-2.4.3-py3-none-any.whl", hash = "sha256:8a7a83727b2756f394ab2895ea0765a0a8c475e3c71e98d43d76f22b4b435572"}, + {file = "aiohappyeyeballs-2.4.3.tar.gz", hash = "sha256:75cf88a15106a5002a8eb1dab212525c00d1f4c0fa96e551c9fbe6f09a621586"}, +] + +[[package]] +name = "aiohttp" +version = "3.10.10" +description = "Async http client/server framework (asyncio)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "aiohttp-3.10.10-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:be7443669ae9c016b71f402e43208e13ddf00912f47f623ee5994e12fc7d4b3f"}, + {file = "aiohttp-3.10.10-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7b06b7843929e41a94ea09eb1ce3927865387e3e23ebe108e0d0d09b08d25be9"}, + {file = "aiohttp-3.10.10-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:333cf6cf8e65f6a1e06e9eb3e643a0c515bb850d470902274239fea02033e9a8"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:274cfa632350225ce3fdeb318c23b4a10ec25c0e2c880eff951a3842cf358ac1"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d9e5e4a85bdb56d224f412d9c98ae4cbd032cc4f3161818f692cd81766eee65a"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2b606353da03edcc71130b52388d25f9a30a126e04caef1fd637e31683033abd"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab5a5a0c7a7991d90446a198689c0535be89bbd6b410a1f9a66688f0880ec026"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:578a4b875af3e0daaf1ac6fa983d93e0bbfec3ead753b6d6f33d467100cdc67b"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:8105fd8a890df77b76dd3054cddf01a879fc13e8af576805d667e0fa0224c35d"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3bcd391d083f636c06a68715e69467963d1f9600f85ef556ea82e9ef25f043f7"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:fbc6264158392bad9df19537e872d476f7c57adf718944cc1e4495cbabf38e2a"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:e48d5021a84d341bcaf95c8460b152cfbad770d28e5fe14a768988c461b821bc"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:2609e9ab08474702cc67b7702dbb8a80e392c54613ebe80db7e8dbdb79837c68"}, + {file = "aiohttp-3.10.10-cp310-cp310-win32.whl", hash = "sha256:84afcdea18eda514c25bc68b9af2a2b1adea7c08899175a51fe7c4fb6d551257"}, + {file = "aiohttp-3.10.10-cp310-cp310-win_amd64.whl", hash = "sha256:9c72109213eb9d3874f7ac8c0c5fa90e072d678e117d9061c06e30c85b4cf0e6"}, + {file = "aiohttp-3.10.10-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:c30a0eafc89d28e7f959281b58198a9fa5e99405f716c0289b7892ca345fe45f"}, + {file = "aiohttp-3.10.10-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:258c5dd01afc10015866114e210fb7365f0d02d9d059c3c3415382ab633fcbcb"}, + {file = "aiohttp-3.10.10-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:15ecd889a709b0080f02721255b3f80bb261c2293d3c748151274dfea93ac871"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3935f82f6f4a3820270842e90456ebad3af15810cf65932bd24da4463bc0a4c"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:413251f6fcf552a33c981c4709a6bba37b12710982fec8e558ae944bfb2abd38"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1720b4f14c78a3089562b8875b53e36b51c97c51adc53325a69b79b4b48ebcb"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:679abe5d3858b33c2cf74faec299fda60ea9de62916e8b67e625d65bf069a3b7"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:79019094f87c9fb44f8d769e41dbb664d6e8fcfd62f665ccce36762deaa0e911"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:fe2fb38c2ed905a2582948e2de560675e9dfbee94c6d5ccdb1301c6d0a5bf092"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:a3f00003de6eba42d6e94fabb4125600d6e484846dbf90ea8e48a800430cc142"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:1bbb122c557a16fafc10354b9d99ebf2f2808a660d78202f10ba9d50786384b9"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:30ca7c3b94708a9d7ae76ff281b2f47d8eaf2579cd05971b5dc681db8caac6e1"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:df9270660711670e68803107d55c2b5949c2e0f2e4896da176e1ecfc068b974a"}, + {file = "aiohttp-3.10.10-cp311-cp311-win32.whl", hash = "sha256:aafc8ee9b742ce75044ae9a4d3e60e3d918d15a4c2e08a6c3c3e38fa59b92d94"}, + {file = "aiohttp-3.10.10-cp311-cp311-win_amd64.whl", hash = "sha256:362f641f9071e5f3ee6f8e7d37d5ed0d95aae656adf4ef578313ee585b585959"}, + {file = "aiohttp-3.10.10-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:9294bbb581f92770e6ed5c19559e1e99255e4ca604a22c5c6397b2f9dd3ee42c"}, + {file = "aiohttp-3.10.10-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a8fa23fe62c436ccf23ff930149c047f060c7126eae3ccea005f0483f27b2e28"}, + {file = "aiohttp-3.10.10-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5c6a5b8c7926ba5d8545c7dd22961a107526562da31a7a32fa2456baf040939f"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:007ec22fbc573e5eb2fb7dec4198ef8f6bf2fe4ce20020798b2eb5d0abda6138"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9627cc1a10c8c409b5822a92d57a77f383b554463d1884008e051c32ab1b3742"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:50edbcad60d8f0e3eccc68da67f37268b5144ecc34d59f27a02f9611c1d4eec7"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a45d85cf20b5e0d0aa5a8dca27cce8eddef3292bc29d72dcad1641f4ed50aa16"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0b00807e2605f16e1e198f33a53ce3c4523114059b0c09c337209ae55e3823a8"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f2d4324a98062be0525d16f768a03e0bbb3b9fe301ceee99611dc9a7953124e6"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:438cd072f75bb6612f2aca29f8bd7cdf6e35e8f160bc312e49fbecab77c99e3a"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:baa42524a82f75303f714108fea528ccacf0386af429b69fff141ffef1c534f9"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a7d8d14fe962153fc681f6366bdec33d4356f98a3e3567782aac1b6e0e40109a"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c1277cd707c465cd09572a774559a3cc7c7a28802eb3a2a9472588f062097205"}, + {file = "aiohttp-3.10.10-cp312-cp312-win32.whl", hash = "sha256:59bb3c54aa420521dc4ce3cc2c3fe2ad82adf7b09403fa1f48ae45c0cbde6628"}, + {file = "aiohttp-3.10.10-cp312-cp312-win_amd64.whl", hash = "sha256:0e1b370d8007c4ae31ee6db7f9a2fe801a42b146cec80a86766e7ad5c4a259cf"}, + {file = "aiohttp-3.10.10-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ad7593bb24b2ab09e65e8a1d385606f0f47c65b5a2ae6c551db67d6653e78c28"}, + {file = "aiohttp-3.10.10-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1eb89d3d29adaf533588f209768a9c02e44e4baf832b08118749c5fad191781d"}, + {file = "aiohttp-3.10.10-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3fe407bf93533a6fa82dece0e74dbcaaf5d684e5a51862887f9eaebe6372cd79"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50aed5155f819873d23520919e16703fc8925e509abbb1a1491b0087d1cd969e"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4f05e9727ce409358baa615dbeb9b969db94324a79b5a5cea45d39bdb01d82e6"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3dffb610a30d643983aeb185ce134f97f290f8935f0abccdd32c77bed9388b42"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa6658732517ddabe22c9036479eabce6036655ba87a0224c612e1ae6af2087e"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:741a46d58677d8c733175d7e5aa618d277cd9d880301a380fd296975a9cdd7bc"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:e00e3505cd80440f6c98c6d69269dcc2a119f86ad0a9fd70bccc59504bebd68a"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ffe595f10566f8276b76dc3a11ae4bb7eba1aac8ddd75811736a15b0d5311414"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:bdfcf6443637c148c4e1a20c48c566aa694fa5e288d34b20fcdc58507882fed3"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d183cf9c797a5291e8301790ed6d053480ed94070637bfaad914dd38b0981f67"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:77abf6665ae54000b98b3c742bc6ea1d1fb31c394bcabf8b5d2c1ac3ebfe7f3b"}, + {file = "aiohttp-3.10.10-cp313-cp313-win32.whl", hash = "sha256:4470c73c12cd9109db8277287d11f9dd98f77fc54155fc71a7738a83ffcc8ea8"}, + {file = "aiohttp-3.10.10-cp313-cp313-win_amd64.whl", hash = "sha256:486f7aabfa292719a2753c016cc3a8f8172965cabb3ea2e7f7436c7f5a22a151"}, + {file = "aiohttp-3.10.10-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:1b66ccafef7336a1e1f0e389901f60c1d920102315a56df85e49552308fc0486"}, + {file = "aiohttp-3.10.10-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:acd48d5b80ee80f9432a165c0ac8cbf9253eaddb6113269a5e18699b33958dbb"}, + {file = "aiohttp-3.10.10-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3455522392fb15ff549d92fbf4b73b559d5e43dc522588f7eb3e54c3f38beee7"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45c3b868724137f713a38376fef8120c166d1eadd50da1855c112fe97954aed8"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:da1dee8948d2137bb51fbb8a53cce6b1bcc86003c6b42565f008438b806cccd8"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c5ce2ce7c997e1971b7184ee37deb6ea9922ef5163c6ee5aa3c274b05f9e12fa"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28529e08fde6f12eba8677f5a8608500ed33c086f974de68cc65ab218713a59d"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f7db54c7914cc99d901d93a34704833568d86c20925b2762f9fa779f9cd2e70f"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:03a42ac7895406220124c88911ebee31ba8b2d24c98507f4a8bf826b2937c7f2"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:7e338c0523d024fad378b376a79faff37fafb3c001872a618cde1d322400a572"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:038f514fe39e235e9fef6717fbf944057bfa24f9b3db9ee551a7ecf584b5b480"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:64f6c17757251e2b8d885d728b6433d9d970573586a78b78ba8929b0f41d045a"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:93429602396f3383a797a2a70e5f1de5df8e35535d7806c9f91df06f297e109b"}, + {file = "aiohttp-3.10.10-cp38-cp38-win32.whl", hash = "sha256:c823bc3971c44ab93e611ab1a46b1eafeae474c0c844aff4b7474287b75fe49c"}, + {file = "aiohttp-3.10.10-cp38-cp38-win_amd64.whl", hash = "sha256:54ca74df1be3c7ca1cf7f4c971c79c2daf48d9aa65dea1a662ae18926f5bc8ce"}, + {file = "aiohttp-3.10.10-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:01948b1d570f83ee7bbf5a60ea2375a89dfb09fd419170e7f5af029510033d24"}, + {file = "aiohttp-3.10.10-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9fc1500fd2a952c5c8e3b29aaf7e3cc6e27e9cfc0a8819b3bce48cc1b849e4cc"}, + {file = "aiohttp-3.10.10-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f614ab0c76397661b90b6851a030004dac502e48260ea10f2441abd2207fbcc7"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00819de9e45d42584bed046314c40ea7e9aea95411b38971082cad449392b08c"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:05646ebe6b94cc93407b3bf34b9eb26c20722384d068eb7339de802154d61bc5"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:998f3bd3cfc95e9424a6acd7840cbdd39e45bc09ef87533c006f94ac47296090"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9010c31cd6fa59438da4e58a7f19e4753f7f264300cd152e7f90d4602449762"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7ea7ffc6d6d6f8a11e6f40091a1040995cdff02cfc9ba4c2f30a516cb2633554"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:ef9c33cc5cbca35808f6c74be11eb7f5f6b14d2311be84a15b594bd3e58b5527"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ce0cdc074d540265bfeb31336e678b4e37316849d13b308607efa527e981f5c2"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:597a079284b7ee65ee102bc3a6ea226a37d2b96d0418cc9047490f231dc09fe8"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:7789050d9e5d0c309c706953e5e8876e38662d57d45f936902e176d19f1c58ab"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e7f8b04d83483577fd9200461b057c9f14ced334dcb053090cea1da9c8321a91"}, + {file = "aiohttp-3.10.10-cp39-cp39-win32.whl", hash = "sha256:c02a30b904282777d872266b87b20ed8cc0d1501855e27f831320f471d54d983"}, + {file = "aiohttp-3.10.10-cp39-cp39-win_amd64.whl", hash = "sha256:edfe3341033a6b53a5c522c802deb2079eee5cbfbb0af032a55064bd65c73a23"}, + {file = "aiohttp-3.10.10.tar.gz", hash = "sha256:0631dd7c9f0822cc61c88586ca76d5b5ada26538097d0f1df510b082bad3411a"}, +] + +[package.dependencies] +aiohappyeyeballs = ">=2.3.0" +aiosignal = ">=1.1.2" +async-timeout = {version = ">=4.0,<5.0", markers = "python_version < \"3.11\""} +attrs = ">=17.3.0" +frozenlist = ">=1.1.1" +multidict = ">=4.5,<7.0" +yarl = ">=1.12.0,<2.0" + +[package.extras] +speedups = ["Brotli", "aiodns (>=3.2.0)", "brotlicffi"] + +[[package]] +name = "aiosignal" +version = "1.3.1" +description = "aiosignal: a list of registered asynchronous callbacks" +optional = false +python-versions = ">=3.7" +files = [ + {file = "aiosignal-1.3.1-py3-none-any.whl", hash = "sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17"}, + {file = "aiosignal-1.3.1.tar.gz", hash = "sha256:54cd96e15e1649b75d6c87526a6ff0b6c1b0dd3459f43d9ca11d48c339b68cfc"}, +] + +[package.dependencies] +frozenlist = ">=1.1.0" + +[[package]] +name = "annotated-types" +version = "0.7.0" +description = "Reusable constraint types to use with typing.Annotated" +optional = false +python-versions = ">=3.8" +files = [ + {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, + {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} + [[package]] name = "appnope" version = "0.1.4" @@ -55,6 +206,36 @@ files = [ six = ">=1.6.1,<2.0" wheel = ">=0.23.0,<1.0" +[[package]] +name = "async-timeout" +version = "4.0.3" +description = "Timeout context manager for asyncio programs" +optional = false +python-versions = ">=3.7" +files = [ + {file = "async-timeout-4.0.3.tar.gz", hash = "sha256:4640d96be84d82d02ed59ea2b7105a0f7b33abe8703703cd0ab0bf87c427522f"}, + {file = "async_timeout-4.0.3-py3-none-any.whl", hash = "sha256:7405140ff1230c310e51dc27b3145b9092d659ce68ff733fb0cefe3ee42be028"}, +] + +[[package]] +name = "attrs" +version = "24.2.0" +description = "Classes Without Boilerplate" +optional = false +python-versions = ">=3.7" +files = [ + {file = "attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2"}, + {file = "attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346"}, +] + +[package.extras] +benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] + [[package]] name = "backcall" version = "0.2.0" @@ -68,85 +249,100 @@ files = [ [[package]] name = "cachetools" -version = "5.3.3" +version = "5.5.0" description = "Extensible memoizing collections and decorators" optional = false python-versions = ">=3.7" files = [ - {file = "cachetools-5.3.3-py3-none-any.whl", hash = "sha256:0abad1021d3f8325b2fc1d2e9c8b9c9d57b04c3932657a72465447332c24d945"}, - {file = "cachetools-5.3.3.tar.gz", hash = "sha256:ba29e2dfa0b8b556606f097407ed1aa62080ee108ab0dc5ec9d6a723a007d105"}, + {file = "cachetools-5.5.0-py3-none-any.whl", hash = "sha256:02134e8439cdc2ffb62023ce1debca2944c3f289d66bb17ead3ab3dede74b292"}, + {file = "cachetools-5.5.0.tar.gz", hash = "sha256:2cc24fb4cbe39633fb7badd9db9ca6295d766d9c2995f245725a46715d050f2a"}, ] [[package]] name = "certifi" -version = "2024.6.2" +version = "2024.8.30" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.6.2-py3-none-any.whl", hash = "sha256:ddc6c8ce995e6987e7faf5e3f1b02b302836a0e5d98ece18392cb1a36c72ad56"}, - {file = "certifi-2024.6.2.tar.gz", hash = "sha256:3cd43f1c6fa7dedc5899d69d3ad0398fd018ad1a17fba83ddaf78aa46c747516"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] name = "cffi" -version = "1.16.0" +version = "1.17.1" description = "Foreign Function Interface for Python calling C code." optional = false python-versions = ">=3.8" files = [ - {file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088"}, - {file = "cffi-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614"}, - {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743"}, - {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d"}, - {file = "cffi-1.16.0-cp310-cp310-win32.whl", hash = "sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a"}, - {file = "cffi-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1"}, - {file = "cffi-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404"}, - {file = "cffi-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e"}, - {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc"}, - {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb"}, - {file = "cffi-1.16.0-cp311-cp311-win32.whl", hash = "sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab"}, - {file = "cffi-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba"}, - {file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"}, - {file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"}, - {file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"}, - {file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"}, - {file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"}, - {file = "cffi-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324"}, - {file = "cffi-1.16.0-cp38-cp38-win32.whl", hash = "sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a"}, - {file = "cffi-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36"}, - {file = "cffi-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed"}, - {file = "cffi-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098"}, - {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000"}, - {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe"}, - {file = "cffi-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4"}, - {file = "cffi-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8"}, - {file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, ] [package.dependencies] @@ -165,101 +361,116 @@ files = [ [[package]] name = "charset-normalizer" -version = "3.3.2" +version = "3.4.0" description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." optional = false python-versions = ">=3.7.0" files = [ - {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, - {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:4f9fc98dad6c2eaa32fc3af1417d95b5e3d08aff968df0cd320066def971f9a6"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0de7b687289d3c1b3e8660d0741874abe7888100efe14bd0f9fd7141bcbda92b"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5ed2e36c3e9b4f21dd9422f6893dec0abf2cca553af509b10cd630f878d3eb99"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40d3ff7fc90b98c637bda91c89d51264a3dcf210cade3a2c6f838c7268d7a4ca"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1110e22af8ca26b90bd6364fe4c763329b0ebf1ee213ba32b68c73de5752323d"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:86f4e8cca779080f66ff4f191a685ced73d2f72d50216f7112185dc02b90b9b7"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f683ddc7eedd742e2889d2bfb96d69573fde1d92fcb811979cdb7165bb9c7d3"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:27623ba66c183eca01bf9ff833875b459cad267aeeb044477fedac35e19ba907"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f606a1881d2663630ea5b8ce2efe2111740df4b687bd78b34a8131baa007f79b"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0b309d1747110feb25d7ed6b01afdec269c647d382c857ef4663bbe6ad95a912"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:136815f06a3ae311fae551c3df1f998a1ebd01ddd424aa5603a4336997629e95"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:14215b71a762336254351b00ec720a8e85cada43b987da5a042e4ce3e82bd68e"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:79983512b108e4a164b9c8d34de3992f76d48cadc9554c9e60b43f308988aabe"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-win32.whl", hash = "sha256:c94057af19bc953643a33581844649a7fdab902624d2eb739738a30e2b3e60fc"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:55f56e2ebd4e3bc50442fbc0888c9d8c94e4e06a933804e2af3e89e2f9c1c749"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0d99dd8ff461990f12d6e42c7347fd9ab2532fb70e9621ba520f9e8637161d7c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c57516e58fd17d03ebe67e181a4e4e2ccab1168f8c2976c6a334d4f819fe5944"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6dba5d19c4dfab08e58d5b36304b3f92f3bd5d42c1a3fa37b5ba5cdf6dfcbcee"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf4475b82be41b07cc5e5ff94810e6a01f276e37c2d55571e3fe175e467a1a1c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ce031db0408e487fd2775d745ce30a7cd2923667cf3b69d48d219f1d8f5ddeb6"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ff4e7cdfdb1ab5698e675ca622e72d58a6fa2a8aa58195de0c0061288e6e3ea"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3710a9751938947e6327ea9f3ea6332a09bf0ba0c09cae9cb1f250bd1f1549bc"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82357d85de703176b5587dbe6ade8ff67f9f69a41c0733cf2425378b49954de5"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:47334db71978b23ebcf3c0f9f5ee98b8d65992b65c9c4f2d34c2eaf5bcaf0594"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8ce7fd6767a1cc5a92a639b391891bf1c268b03ec7e021c7d6d902285259685c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f1a2f519ae173b5b6a2c9d5fa3116ce16e48b3462c8b96dfdded11055e3d6365"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:63bc5c4ae26e4bc6be6469943b8253c0fd4e4186c43ad46e713ea61a0ba49129"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:bcb4f8ea87d03bc51ad04add8ceaf9b0f085ac045ab4d74e73bbc2dc033f0236"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-win32.whl", hash = "sha256:9ae4ef0b3f6b41bad6366fb0ea4fc1d7ed051528e113a60fa2a65a9abb5b1d99"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cee4373f4d3ad28f1ab6290684d8e2ebdb9e7a1b74fdc39e4c211995f77bec27"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0713f3adb9d03d49d365b70b84775d0a0d18e4ab08d12bc46baa6132ba78aaf6"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:de7376c29d95d6719048c194a9cf1a1b0393fbe8488a22008610b0361d834ecf"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a51b48f42d9358460b78725283f04bddaf44a9358197b889657deba38f329db"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b295729485b06c1a0683af02a9e42d2caa9db04a373dc38a6a58cdd1e8abddf1"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee803480535c44e7f5ad00788526da7d85525cfefaf8acf8ab9a310000be4b03"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d59d125ffbd6d552765510e3f31ed75ebac2c7470c7274195b9161a32350284"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8cda06946eac330cbe6598f77bb54e690b4ca93f593dee1568ad22b04f347c15"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07afec21bbbbf8a5cc3651aa96b980afe2526e7f048fdfb7f1014d84acc8b6d8"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6b40e8d38afe634559e398cc32b1472f376a4099c75fe6299ae607e404c033b2"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b8dcd239c743aa2f9c22ce674a145e0a25cb1566c495928440a181ca1ccf6719"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:84450ba661fb96e9fd67629b93d2941c871ca86fc38d835d19d4225ff946a631"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:44aeb140295a2f0659e113b31cfe92c9061622cadbc9e2a2f7b8ef6b1e29ef4b"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1db4e7fefefd0f548d73e2e2e041f9df5c59e178b4c72fbac4cc6f535cfb1565"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-win32.whl", hash = "sha256:5726cf76c982532c1863fb64d8c6dd0e4c90b6ece9feb06c9f202417a31f7dd7"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:b197e7094f232959f8f20541ead1d9862ac5ebea1d58e9849c1bf979255dfac9"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:dd4eda173a9fcccb5f2e2bd2a9f423d180194b1bf17cf59e3269899235b2a114"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e9e3c4c9e1ed40ea53acf11e2a386383c3304212c965773704e4603d589343ed"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92a7e36b000bf022ef3dbb9c46bfe2d52c047d5e3f3343f43204263c5addc250"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54b6a92d009cbe2fb11054ba694bc9e284dad30a26757b1e372a1fdddaf21920"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ffd9493de4c922f2a38c2bf62b831dcec90ac673ed1ca182fe11b4d8e9f2a64"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:35c404d74c2926d0287fbd63ed5d27eb911eb9e4a3bb2c6d294f3cfd4a9e0c23"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e7fdd52961feb4c96507aa649550ec2a0d527c086d284749b2f582f2d40a2e0d"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:92db3c28b5b2a273346bebb24857fda45601aef6ae1c011c0a997106581e8a88"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ab973df98fc99ab39080bfb0eb3a925181454d7c3ac8a1e695fddfae696d9e90"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:4b67fdab07fdd3c10bb21edab3cbfe8cf5696f453afce75d815d9d7223fbe88b"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:aa41e526a5d4a9dfcfbab0716c7e8a1b215abd3f3df5a45cf18a12721d31cb5d"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ffc519621dce0c767e96b9c53f09c5d215578e10b02c285809f76509a3931482"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-win32.whl", hash = "sha256:f19c1585933c82098c2a520f8ec1227f20e339e33aca8fa6f956f6691b784e67"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:707b82d19e65c9bd28b81dde95249b07bf9f5b90ebe1ef17d9b57473f8a64b7b"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:dbe03226baf438ac4fda9e2d0715022fd579cb641c4cf639fa40d53b2fe6f3e2"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd9a8bd8900e65504a305bf8ae6fa9fbc66de94178c420791d0293702fce2df7"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8831399554b92b72af5932cdbbd4ddc55c55f631bb13ff8fe4e6536a06c5c51"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a14969b8691f7998e74663b77b4c36c0337cb1df552da83d5c9004a93afdb574"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dcaf7c1524c0542ee2fc82cc8ec337f7a9f7edee2532421ab200d2b920fc97cf"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425c5f215d0eecee9a56cdb703203dda90423247421bf0d67125add85d0c4455"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:d5b054862739d276e09928de37c79ddeec42a6e1bfc55863be96a36ba22926f6"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:f3e73a4255342d4eb26ef6df01e3962e73aa29baa3124a8e824c5d3364a65748"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:2f6c34da58ea9c1a9515621f4d9ac379871a8f21168ba1b5e09d74250de5ad62"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:f09cb5a7bbe1ecae6e87901a2eb23e0256bb524a79ccc53eb0b7629fbe7677c4"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:0099d79bdfcf5c1f0c2c72f91516702ebf8b0b8ddd8905f97a8aecf49712c621"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-win32.whl", hash = "sha256:9c98230f5042f4945f957d006edccc2af1e03ed5e37ce7c373f00a5a4daa6149"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-win_amd64.whl", hash = "sha256:62f60aebecfc7f4b82e3f639a7d1433a20ec32824db2199a11ad4f5e146ef5ee"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:af73657b7a68211996527dbfeffbb0864e043d270580c5aef06dc4b659a4b578"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cab5d0b79d987c67f3b9e9c53f54a61360422a5a0bc075f43cab5621d530c3b6"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9289fd5dddcf57bab41d044f1756550f9e7cf0c8e373b8cdf0ce8773dc4bd417"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b493a043635eb376e50eedf7818f2f322eabbaa974e948bd8bdd29eb7ef2a51"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9fa2566ca27d67c86569e8c85297aaf413ffab85a8960500f12ea34ff98e4c41"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8e538f46104c815be19c975572d74afb53f29650ea2025bbfaef359d2de2f7f"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fd30dc99682dc2c603c2b315bded2799019cea829f8bf57dc6b61efde6611c8"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2006769bd1640bdf4d5641c69a3d63b71b81445473cac5ded39740a226fa88ab"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:dc15e99b2d8a656f8e666854404f1ba54765871104e50c8e9813af8a7db07f12"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:ab2e5bef076f5a235c3774b4f4028a680432cded7cad37bba0fd90d64b187d19"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:4ec9dd88a5b71abfc74e9df5ebe7921c35cbb3b641181a531ca65cdb5e8e4dea"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:43193c5cda5d612f247172016c4bb71251c784d7a4d9314677186a838ad34858"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:aa693779a8b50cd97570e5a0f343538a8dbd3e496fa5dcb87e29406ad0299654"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-win32.whl", hash = "sha256:7706f5850360ac01d80c89bcef1640683cc12ed87f42579dab6c5d3ed6888613"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:c3e446d253bd88f6377260d07c895816ebf33ffffd56c1c792b13bff9c3e1ade"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:980b4f289d1d90ca5efcf07958d3eb38ed9c0b7676bf2831a54d4f66f9c27dfa"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f28f891ccd15c514a0981f3b9db9aa23d62fe1a99997512b0491d2ed323d229a"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8aacce6e2e1edcb6ac625fb0f8c3a9570ccc7bfba1f63419b3769ccf6a00ed0"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd7af3717683bea4c87acd8c0d3d5b44d56120b26fd3f8a692bdd2d5260c620a"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5ff2ed8194587faf56555927b3aa10e6fb69d931e33953943bc4f837dfee2242"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e91f541a85298cf35433bf66f3fab2a4a2cff05c127eeca4af174f6d497f0d4b"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:309a7de0a0ff3040acaebb35ec45d18db4b28232f21998851cfa709eeff49d62"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:285e96d9d53422efc0d7a17c60e59f37fbf3dfa942073f666db4ac71e8d726d0"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5d447056e2ca60382d460a604b6302d8db69476fd2015c81e7c35417cfabe4cd"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:20587d20f557fe189b7947d8e7ec5afa110ccf72a3128d61a2a387c3313f46be"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:130272c698667a982a5d0e626851ceff662565379baf0ff2cc58067b81d4f11d"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:ab22fbd9765e6954bc0bcff24c25ff71dcbfdb185fcdaca49e81bac68fe724d3"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7782afc9b6b42200f7362858f9e73b1f8316afb276d316336c0ec3bd73312742"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-win32.whl", hash = "sha256:2de62e8801ddfff069cd5c504ce3bc9672b23266597d4e4f50eda28846c322f2"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:95c3c157765b031331dd4db3c775e58deaee050a3042fcad72cbc4189d7c8dca"}, + {file = "charset_normalizer-3.4.0-py3-none-any.whl", hash = "sha256:fe9f97feb71aa9896b81973a7bbada8c49501dc73e58a10fcef6663af95e5079"}, + {file = "charset_normalizer-3.4.0.tar.gz", hash = "sha256:223217c3d4f82c3ac5e29032b3f1c2eb0fb591b72161f86d93f5719079dae93e"}, ] [[package]] @@ -348,33 +559,37 @@ files = [ [[package]] name = "debugpy" -version = "1.8.1" +version = "1.8.7" description = "An implementation of the Debug Adapter Protocol for Python" optional = false python-versions = ">=3.8" files = [ - {file = "debugpy-1.8.1-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:3bda0f1e943d386cc7a0e71bfa59f4137909e2ed947fb3946c506e113000f741"}, - {file = "debugpy-1.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dda73bf69ea479c8577a0448f8c707691152e6c4de7f0c4dec5a4bc11dee516e"}, - {file = "debugpy-1.8.1-cp310-cp310-win32.whl", hash = "sha256:3a79c6f62adef994b2dbe9fc2cc9cc3864a23575b6e387339ab739873bea53d0"}, - {file = "debugpy-1.8.1-cp310-cp310-win_amd64.whl", hash = "sha256:7eb7bd2b56ea3bedb009616d9e2f64aab8fc7000d481faec3cd26c98a964bcdd"}, - {file = "debugpy-1.8.1-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:016a9fcfc2c6b57f939673c874310d8581d51a0fe0858e7fac4e240c5eb743cb"}, - {file = "debugpy-1.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd97ed11a4c7f6d042d320ce03d83b20c3fb40da892f994bc041bbc415d7a099"}, - {file = "debugpy-1.8.1-cp311-cp311-win32.whl", hash = "sha256:0de56aba8249c28a300bdb0672a9b94785074eb82eb672db66c8144fff673146"}, - {file = "debugpy-1.8.1-cp311-cp311-win_amd64.whl", hash = "sha256:1a9fe0829c2b854757b4fd0a338d93bc17249a3bf69ecf765c61d4c522bb92a8"}, - {file = "debugpy-1.8.1-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:3ebb70ba1a6524d19fa7bb122f44b74170c447d5746a503e36adc244a20ac539"}, - {file = "debugpy-1.8.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2e658a9630f27534e63922ebf655a6ab60c370f4d2fc5c02a5b19baf4410ace"}, - {file = "debugpy-1.8.1-cp312-cp312-win32.whl", hash = "sha256:caad2846e21188797a1f17fc09c31b84c7c3c23baf2516fed5b40b378515bbf0"}, - {file = "debugpy-1.8.1-cp312-cp312-win_amd64.whl", hash = "sha256:edcc9f58ec0fd121a25bc950d4578df47428d72e1a0d66c07403b04eb93bcf98"}, - {file = "debugpy-1.8.1-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:7a3afa222f6fd3d9dfecd52729bc2e12c93e22a7491405a0ecbf9e1d32d45b39"}, - {file = "debugpy-1.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d915a18f0597ef685e88bb35e5d7ab968964b7befefe1aaea1eb5b2640b586c7"}, - {file = "debugpy-1.8.1-cp38-cp38-win32.whl", hash = "sha256:92116039b5500633cc8d44ecc187abe2dfa9b90f7a82bbf81d079fcdd506bae9"}, - {file = "debugpy-1.8.1-cp38-cp38-win_amd64.whl", hash = "sha256:e38beb7992b5afd9d5244e96ad5fa9135e94993b0c551ceebf3fe1a5d9beb234"}, - {file = "debugpy-1.8.1-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:bfb20cb57486c8e4793d41996652e5a6a885b4d9175dd369045dad59eaacea42"}, - {file = "debugpy-1.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efd3fdd3f67a7e576dd869c184c5dd71d9aaa36ded271939da352880c012e703"}, - {file = "debugpy-1.8.1-cp39-cp39-win32.whl", hash = "sha256:58911e8521ca0c785ac7a0539f1e77e0ce2df753f786188f382229278b4cdf23"}, - {file = "debugpy-1.8.1-cp39-cp39-win_amd64.whl", hash = "sha256:6df9aa9599eb05ca179fb0b810282255202a66835c6efb1d112d21ecb830ddd3"}, - {file = "debugpy-1.8.1-py2.py3-none-any.whl", hash = "sha256:28acbe2241222b87e255260c76741e1fbf04fdc3b6d094fcf57b6c6f75ce1242"}, - {file = "debugpy-1.8.1.zip", hash = "sha256:f696d6be15be87aef621917585f9bb94b1dc9e8aced570db1b8a6fc14e8f9b42"}, + {file = "debugpy-1.8.7-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:95fe04a573b8b22896c404365e03f4eda0ce0ba135b7667a1e57bd079793b96b"}, + {file = "debugpy-1.8.7-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:628a11f4b295ffb4141d8242a9bb52b77ad4a63a2ad19217a93be0f77f2c28c9"}, + {file = "debugpy-1.8.7-cp310-cp310-win32.whl", hash = "sha256:85ce9c1d0eebf622f86cc68618ad64bf66c4fc3197d88f74bb695a416837dd55"}, + {file = "debugpy-1.8.7-cp310-cp310-win_amd64.whl", hash = "sha256:29e1571c276d643757ea126d014abda081eb5ea4c851628b33de0c2b6245b037"}, + {file = "debugpy-1.8.7-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:caf528ff9e7308b74a1749c183d6808ffbedbb9fb6af78b033c28974d9b8831f"}, + {file = "debugpy-1.8.7-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cba1d078cf2e1e0b8402e6bda528bf8fda7ccd158c3dba6c012b7897747c41a0"}, + {file = "debugpy-1.8.7-cp311-cp311-win32.whl", hash = "sha256:171899588bcd412151e593bd40d9907133a7622cd6ecdbdb75f89d1551df13c2"}, + {file = "debugpy-1.8.7-cp311-cp311-win_amd64.whl", hash = "sha256:6e1c4ffb0c79f66e89dfd97944f335880f0d50ad29525dc792785384923e2211"}, + {file = "debugpy-1.8.7-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:4d27d842311353ede0ad572600c62e4bcd74f458ee01ab0dd3a1a4457e7e3706"}, + {file = "debugpy-1.8.7-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:703c1fd62ae0356e194f3e7b7a92acd931f71fe81c4b3be2c17a7b8a4b546ec2"}, + {file = "debugpy-1.8.7-cp312-cp312-win32.whl", hash = "sha256:2f729228430ef191c1e4df72a75ac94e9bf77413ce5f3f900018712c9da0aaca"}, + {file = "debugpy-1.8.7-cp312-cp312-win_amd64.whl", hash = "sha256:45c30aaefb3e1975e8a0258f5bbd26cd40cde9bfe71e9e5a7ac82e79bad64e39"}, + {file = "debugpy-1.8.7-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:d050a1ec7e925f514f0f6594a1e522580317da31fbda1af71d1530d6ea1f2b40"}, + {file = "debugpy-1.8.7-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2f4349a28e3228a42958f8ddaa6333d6f8282d5edaea456070e48609c5983b7"}, + {file = "debugpy-1.8.7-cp313-cp313-win32.whl", hash = "sha256:11ad72eb9ddb436afb8337891a986302e14944f0f755fd94e90d0d71e9100bba"}, + {file = "debugpy-1.8.7-cp313-cp313-win_amd64.whl", hash = "sha256:2efb84d6789352d7950b03d7f866e6d180284bc02c7e12cb37b489b7083d81aa"}, + {file = "debugpy-1.8.7-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:4b908291a1d051ef3331484de8e959ef3e66f12b5e610c203b5b75d2725613a7"}, + {file = "debugpy-1.8.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da8df5b89a41f1fd31503b179d0a84a5fdb752dddd5b5388dbd1ae23cda31ce9"}, + {file = "debugpy-1.8.7-cp38-cp38-win32.whl", hash = "sha256:b12515e04720e9e5c2216cc7086d0edadf25d7ab7e3564ec8b4521cf111b4f8c"}, + {file = "debugpy-1.8.7-cp38-cp38-win_amd64.whl", hash = "sha256:93176e7672551cb5281577cdb62c63aadc87ec036f0c6a486f0ded337c504596"}, + {file = "debugpy-1.8.7-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:90d93e4f2db442f8222dec5ec55ccfc8005821028982f1968ebf551d32b28907"}, + {file = "debugpy-1.8.7-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b6db2a370e2700557a976eaadb16243ec9c91bd46f1b3bb15376d7aaa7632c81"}, + {file = "debugpy-1.8.7-cp39-cp39-win32.whl", hash = "sha256:a6cf2510740e0c0b4a40330640e4b454f928c7b99b0c9dbf48b11efba08a8cda"}, + {file = "debugpy-1.8.7-cp39-cp39-win_amd64.whl", hash = "sha256:6a9d9d6d31846d8e34f52987ee0f1a904c7baa4912bf4843ab39dadf9b8f3e0d"}, + {file = "debugpy-1.8.7-py2.py3-none-any.whl", hash = "sha256:57b00de1c8d2c84a61b90880f7e5b6deaf4c312ecbde3a0e8912f2a56c4ac9ae"}, + {file = "debugpy-1.8.7.zip", hash = "sha256:18b8f731ed3e2e1df8e9cdaa23fb1fc9c24e570cd0081625308ec51c82efe42e"}, ] [[package]] @@ -388,20 +603,63 @@ files = [ {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, ] +[[package]] +name = "dgl" +version = "2.4.0" +description = "Deep Graph Library" +optional = false +python-versions = "*" +files = [ + {file = "dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:bf4d4d0d9300e79281e38627844651fe6355946d933e21d6a8828ce7d7539d00"}, +] + +[package.dependencies] +networkx = ">=2.1" +numpy = ">=1.14.0" +packaging = "*" +pandas = "*" +psutil = ">=5.8.0" +pydantic = ">=2.0" +pyyaml = "*" +requests = ">=2.19.0" +scipy = ">=1.1.0" +torch = "<=2.4.0" +tqdm = "*" + +[package.source] +type = "url" +url = "https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl" + [[package]] name = "executing" -version = "2.0.1" +version = "2.1.0" description = "Get the currently executing AST node of a frame, and other information" optional = false -python-versions = ">=3.5" +python-versions = ">=3.8" files = [ - {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, - {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, + {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, + {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, ] [package.extras] tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] +[[package]] +name = "filelock" +version = "3.16.1" +description = "A platform independent file lock." +optional = false +python-versions = ">=3.8" +files = [ + {file = "filelock-3.16.1-py3-none-any.whl", hash = "sha256:2082e5703d51fbf98ea75855d9d5527e33d8ff23099bec374a134febee6946b0"}, + {file = "filelock-3.16.1.tar.gz", hash = "sha256:c249fbfcd5db47e5e2d6d62198e565475ee65e4831e2561c8e313fa7eb961435"}, +] + +[package.extras] +docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4.1)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.2)", "pytest (>=8.3.3)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.4)"] +typing = ["typing-extensions (>=4.12.2)"] + [[package]] name = "flatbuffers" version = "2.0.7" @@ -413,6 +671,131 @@ files = [ {file = "flatbuffers-2.0.7.tar.gz", hash = "sha256:0ae7d69c5b82bf41962ca5fde9cc43033bc9501311d975fd5a25e8a7d29c1245"}, ] +[[package]] +name = "frozenlist" +version = "1.4.1" +description = "A list-like structure which implements collections.abc.MutableSequence" +optional = false +python-versions = ">=3.8" +files = [ + {file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:f9aa1878d1083b276b0196f2dfbe00c9b7e752475ed3b682025ff20c1c1f51ac"}, + {file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:29acab3f66f0f24674b7dc4736477bcd4bc3ad4b896f5f45379a67bce8b96868"}, + {file = "frozenlist-1.4.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:74fb4bee6880b529a0c6560885fce4dc95936920f9f20f53d99a213f7bf66776"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:590344787a90ae57d62511dd7c736ed56b428f04cd8c161fcc5e7232c130c69a"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:068b63f23b17df8569b7fdca5517edef76171cf3897eb68beb01341131fbd2ad"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c849d495bf5154cd8da18a9eb15db127d4dba2968d88831aff6f0331ea9bd4c"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9750cc7fe1ae3b1611bb8cfc3f9ec11d532244235d75901fb6b8e42ce9229dfe"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9b2de4cf0cdd5bd2dee4c4f63a653c61d2408055ab77b151c1957f221cabf2a"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0633c8d5337cb5c77acbccc6357ac49a1770b8c487e5b3505c57b949b4b82e98"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:27657df69e8801be6c3638054e202a135c7f299267f1a55ed3a598934f6c0d75"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:f9a3ea26252bd92f570600098783d1371354d89d5f6b7dfd87359d669f2109b5"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:4f57dab5fe3407b6c0c1cc907ac98e8a189f9e418f3b6e54d65a718aaafe3950"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e02a0e11cf6597299b9f3bbd3f93d79217cb90cfd1411aec33848b13f5c656cc"}, + {file = "frozenlist-1.4.1-cp310-cp310-win32.whl", hash = "sha256:a828c57f00f729620a442881cc60e57cfcec6842ba38e1b19fd3e47ac0ff8dc1"}, + {file = "frozenlist-1.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:f56e2333dda1fe0f909e7cc59f021eba0d2307bc6f012a1ccf2beca6ba362439"}, + {file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a0cb6f11204443f27a1628b0e460f37fb30f624be6051d490fa7d7e26d4af3d0"}, + {file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b46c8ae3a8f1f41a0d2ef350c0b6e65822d80772fe46b653ab6b6274f61d4a49"}, + {file = "frozenlist-1.4.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fde5bd59ab5357e3853313127f4d3565fc7dad314a74d7b5d43c22c6a5ed2ced"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:722e1124aec435320ae01ee3ac7bec11a5d47f25d0ed6328f2273d287bc3abb0"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2471c201b70d58a0f0c1f91261542a03d9a5e088ed3dc6c160d614c01649c106"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c757a9dd70d72b076d6f68efdbb9bc943665ae954dad2801b874c8c69e185068"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f146e0911cb2f1da549fc58fc7bcd2b836a44b79ef871980d605ec392ff6b0d2"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f9c515e7914626b2a2e1e311794b4c35720a0be87af52b79ff8e1429fc25f19"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c302220494f5c1ebeb0912ea782bcd5e2f8308037b3c7553fad0e48ebad6ad82"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:442acde1e068288a4ba7acfe05f5f343e19fac87bfc96d89eb886b0363e977ec"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:1b280e6507ea8a4fa0c0a7150b4e526a8d113989e28eaaef946cc77ffd7efc0a"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:fe1a06da377e3a1062ae5fe0926e12b84eceb8a50b350ddca72dc85015873f74"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:db9e724bebd621d9beca794f2a4ff1d26eed5965b004a97f1f1685a173b869c2"}, + {file = "frozenlist-1.4.1-cp311-cp311-win32.whl", hash = "sha256:e774d53b1a477a67838a904131c4b0eef6b3d8a651f8b138b04f748fccfefe17"}, + {file = "frozenlist-1.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:fb3c2db03683b5767dedb5769b8a40ebb47d6f7f45b1b3e3b4b51ec8ad9d9825"}, + {file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1979bc0aeb89b33b588c51c54ab0161791149f2461ea7c7c946d95d5f93b56ae"}, + {file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cc7b01b3754ea68a62bd77ce6020afaffb44a590c2289089289363472d13aedb"}, + {file = "frozenlist-1.4.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c9c92be9fd329ac801cc420e08452b70e7aeab94ea4233a4804f0915c14eba9b"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c3894db91f5a489fc8fa6a9991820f368f0b3cbdb9cd8849547ccfab3392d86"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba60bb19387e13597fb059f32cd4d59445d7b18b69a745b8f8e5db0346f33480"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8aefbba5f69d42246543407ed2461db31006b0f76c4e32dfd6f42215a2c41d09"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:780d3a35680ced9ce682fbcf4cb9c2bad3136eeff760ab33707b71db84664e3a"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9acbb16f06fe7f52f441bb6f413ebae6c37baa6ef9edd49cdd567216da8600cd"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:23b701e65c7b36e4bf15546a89279bd4d8675faabc287d06bbcfac7d3c33e1e6"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:3e0153a805a98f5ada7e09826255ba99fb4f7524bb81bf6b47fb702666484ae1"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:dd9b1baec094d91bf36ec729445f7769d0d0cf6b64d04d86e45baf89e2b9059b"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:1a4471094e146b6790f61b98616ab8e44f72661879cc63fa1049d13ef711e71e"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5667ed53d68d91920defdf4035d1cdaa3c3121dc0b113255124bcfada1cfa1b8"}, + {file = "frozenlist-1.4.1-cp312-cp312-win32.whl", hash = "sha256:beee944ae828747fd7cb216a70f120767fc9f4f00bacae8543c14a6831673f89"}, + {file = "frozenlist-1.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:64536573d0a2cb6e625cf309984e2d873979709f2cf22839bf2d61790b448ad5"}, + {file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:20b51fa3f588ff2fe658663db52a41a4f7aa6c04f6201449c6c7c476bd255c0d"}, + {file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:410478a0c562d1a5bcc2f7ea448359fcb050ed48b3c6f6f4f18c313a9bdb1826"}, + {file = "frozenlist-1.4.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c6321c9efe29975232da3bd0af0ad216800a47e93d763ce64f291917a381b8eb"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48f6a4533887e189dae092f1cf981f2e3885175f7a0f33c91fb5b7b682b6bab6"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6eb73fa5426ea69ee0e012fb59cdc76a15b1283d6e32e4f8dc4482ec67d1194d"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbeb989b5cc29e8daf7f976b421c220f1b8c731cbf22b9130d8815418ea45887"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:32453c1de775c889eb4e22f1197fe3bdfe457d16476ea407472b9442e6295f7a"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693945278a31f2086d9bf3df0fe8254bbeaef1fe71e1351c3bd730aa7d31c41b"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:1d0ce09d36d53bbbe566fe296965b23b961764c0bcf3ce2fa45f463745c04701"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3a670dc61eb0d0eb7080890c13de3066790f9049b47b0de04007090807c776b0"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:dca69045298ce5c11fd539682cff879cc1e664c245d1c64da929813e54241d11"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:a06339f38e9ed3a64e4c4e43aec7f59084033647f908e4259d279a52d3757d09"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b7f2f9f912dca3934c1baec2e4585a674ef16fe00218d833856408c48d5beee7"}, + {file = "frozenlist-1.4.1-cp38-cp38-win32.whl", hash = "sha256:e7004be74cbb7d9f34553a5ce5fb08be14fb33bc86f332fb71cbe5216362a497"}, + {file = "frozenlist-1.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:5a7d70357e7cee13f470c7883a063aae5fe209a493c57d86eb7f5a6f910fae09"}, + {file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:bfa4a17e17ce9abf47a74ae02f32d014c5e9404b6d9ac7f729e01562bbee601e"}, + {file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b7e3ed87d4138356775346e6845cccbe66cd9e207f3cd11d2f0b9fd13681359d"}, + {file = "frozenlist-1.4.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c99169d4ff810155ca50b4da3b075cbde79752443117d89429595c2e8e37fed8"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edb678da49d9f72c9f6c609fbe41a5dfb9a9282f9e6a2253d5a91e0fc382d7c0"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6db4667b187a6742b33afbbaf05a7bc551ffcf1ced0000a571aedbb4aa42fc7b"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55fdc093b5a3cb41d420884cdaf37a1e74c3c37a31f46e66286d9145d2063bd0"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82e8211d69a4f4bc360ea22cd6555f8e61a1bd211d1d5d39d3d228b48c83a897"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89aa2c2eeb20957be2d950b85974b30a01a762f3308cd02bb15e1ad632e22dc7"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9d3e0c25a2350080e9319724dede4f31f43a6c9779be48021a7f4ebde8b2d742"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7268252af60904bf52c26173cbadc3a071cece75f873705419c8681f24d3edea"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:0c250a29735d4f15321007fb02865f0e6b6a41a6b88f1f523ca1596ab5f50bd5"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:96ec70beabbd3b10e8bfe52616a13561e58fe84c0101dd031dc78f250d5128b9"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:23b2d7679b73fe0e5a4560b672a39f98dfc6f60df63823b0a9970525325b95f6"}, + {file = "frozenlist-1.4.1-cp39-cp39-win32.whl", hash = "sha256:a7496bfe1da7fb1a4e1cc23bb67c58fab69311cc7d32b5a99c2007b4b2a0e932"}, + {file = "frozenlist-1.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:e6a20a581f9ce92d389a8c7d7c3dd47c81fd5d6e655c8dddf341e14aa48659d0"}, + {file = "frozenlist-1.4.1-py3-none-any.whl", hash = "sha256:04ced3e6a46b4cfffe20f9ae482818e34eba9b5fb0ce4056e4cc9b6e212d09b7"}, + {file = "frozenlist-1.4.1.tar.gz", hash = "sha256:c037a86e8513059a2613aaba4d817bb90b9d9b6b69aace3ce9c877e8c8ed402b"}, +] + +[[package]] +name = "fsspec" +version = "2024.9.0" +description = "File-system specification" +optional = false +python-versions = ">=3.8" +files = [ + {file = "fsspec-2024.9.0-py3-none-any.whl", hash = "sha256:a0947d552d8a6efa72cc2c730b12c41d043509156966cca4fb157b0f2a0c574b"}, + {file = "fsspec-2024.9.0.tar.gz", hash = "sha256:4b0afb90c2f21832df142f292649035d80b421f60a9e1c027802e5a0da2b04e8"}, +] + +[package.extras] +abfs = ["adlfs"] +adl = ["adlfs"] +arrow = ["pyarrow (>=1)"] +dask = ["dask", "distributed"] +dev = ["pre-commit", "ruff"] +doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] +dropbox = ["dropbox", "dropboxdrivefs", "requests"] +full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] +fuse = ["fusepy"] +gcs = ["gcsfs"] +git = ["pygit2"] +github = ["requests"] +gs = ["gcsfs"] +gui = ["panel"] +hdfs = ["pyarrow (>=1)"] +http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)"] +libarchive = ["libarchive-c"] +oci = ["ocifs"] +s3 = ["s3fs"] +sftp = ["paramiko"] +smb = ["smbprotocol"] +ssh = ["paramiko"] +test = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "numpy", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "requests"] +test-downstream = ["aiobotocore (>=2.5.4,<3.0.0)", "dask-expr", "dask[dataframe,test]", "moto[server] (>4,<5)", "pytest-timeout", "xarray"] +test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"] +tqdm = ["tqdm"] + [[package]] name = "gast" version = "0.4.0" @@ -476,13 +859,13 @@ test-win = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytes [[package]] name = "google-auth" -version = "2.30.0" +version = "2.35.0" description = "Google Authentication Library" optional = false python-versions = ">=3.7" files = [ - {file = "google-auth-2.30.0.tar.gz", hash = "sha256:ab630a1320f6720909ad76a7dbdb6841cdf5c66b328d690027e4867bdfb16688"}, - {file = "google_auth-2.30.0-py2.py3-none-any.whl", hash = "sha256:8df7da660f62757388b8a7f249df13549b3373f24388cb5d2f1dd91cc18180b5"}, + {file = "google_auth-2.35.0-py2.py3-none-any.whl", hash = "sha256:25df55f327ef021de8be50bad0dfd4a916ad0de96da86cd05661c9297723ad3f"}, + {file = "google_auth-2.35.0.tar.gz", hash = "sha256:f4c64ed4e01e8e8b646ef34c018f8bf3338df0c8e37d8b3bba40e7f574a3278a"}, ] [package.dependencies] @@ -492,7 +875,7 @@ rsa = ">=3.1.4,<5" [package.extras] aiohttp = ["aiohttp (>=3.6.2,<4.0.0.dev0)", "requests (>=2.20.0,<3.0.0.dev0)"] -enterprise-cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"] +enterprise-cert = ["cryptography", "pyopenssl"] pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] reauth = ["pyu2f (>=0.1.5)"] requests = ["requests (>=2.20.0,<3.0.0.dev0)"] @@ -532,61 +915,70 @@ six = "*" [[package]] name = "grpcio" -version = "1.64.1" +version = "1.66.2" description = "HTTP/2-based RPC framework" optional = false python-versions = ">=3.8" files = [ - {file = "grpcio-1.64.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:55697ecec192bc3f2f3cc13a295ab670f51de29884ca9ae6cd6247df55df2502"}, - {file = "grpcio-1.64.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:3b64ae304c175671efdaa7ec9ae2cc36996b681eb63ca39c464958396697daff"}, - {file = "grpcio-1.64.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:bac71b4b28bc9af61efcdc7630b166440bbfbaa80940c9a697271b5e1dabbc61"}, - {file = "grpcio-1.64.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6c024ffc22d6dc59000faf8ad781696d81e8e38f4078cb0f2630b4a3cf231a90"}, - {file = "grpcio-1.64.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7cd5c1325f6808b8ae31657d281aadb2a51ac11ab081ae335f4f7fc44c1721d"}, - {file = "grpcio-1.64.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:0a2813093ddb27418a4c99f9b1c223fab0b053157176a64cc9db0f4557b69bd9"}, - {file = "grpcio-1.64.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2981c7365a9353f9b5c864595c510c983251b1ab403e05b1ccc70a3d9541a73b"}, - {file = "grpcio-1.64.1-cp310-cp310-win32.whl", hash = "sha256:1262402af5a511c245c3ae918167eca57342c72320dffae5d9b51840c4b2f86d"}, - {file = "grpcio-1.64.1-cp310-cp310-win_amd64.whl", hash = "sha256:19264fc964576ddb065368cae953f8d0514ecc6cb3da8903766d9fb9d4554c33"}, - {file = "grpcio-1.64.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:58b1041e7c870bb30ee41d3090cbd6f0851f30ae4eb68228955d973d3efa2e61"}, - {file = "grpcio-1.64.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:bbc5b1d78a7822b0a84c6f8917faa986c1a744e65d762ef6d8be9d75677af2ca"}, - {file = "grpcio-1.64.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:5841dd1f284bd1b3d8a6eca3a7f062b06f1eec09b184397e1d1d43447e89a7ae"}, - {file = "grpcio-1.64.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8caee47e970b92b3dd948371230fcceb80d3f2277b3bf7fbd7c0564e7d39068e"}, - {file = "grpcio-1.64.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:73819689c169417a4f978e562d24f2def2be75739c4bed1992435d007819da1b"}, - {file = "grpcio-1.64.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6503b64c8b2dfad299749cad1b595c650c91e5b2c8a1b775380fcf8d2cbba1e9"}, - {file = "grpcio-1.64.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1de403fc1305fd96cfa75e83be3dee8538f2413a6b1685b8452301c7ba33c294"}, - {file = "grpcio-1.64.1-cp311-cp311-win32.whl", hash = "sha256:d4d29cc612e1332237877dfa7fe687157973aab1d63bd0f84cf06692f04c0367"}, - {file = "grpcio-1.64.1-cp311-cp311-win_amd64.whl", hash = "sha256:5e56462b05a6f860b72f0fa50dca06d5b26543a4e88d0396259a07dc30f4e5aa"}, - {file = "grpcio-1.64.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:4657d24c8063e6095f850b68f2d1ba3b39f2b287a38242dcabc166453e950c59"}, - {file = "grpcio-1.64.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:62b4e6eb7bf901719fce0ca83e3ed474ae5022bb3827b0a501e056458c51c0a1"}, - {file = "grpcio-1.64.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:ee73a2f5ca4ba44fa33b4d7d2c71e2c8a9e9f78d53f6507ad68e7d2ad5f64a22"}, - {file = "grpcio-1.64.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:198908f9b22e2672a998870355e226a725aeab327ac4e6ff3a1399792ece4762"}, - {file = "grpcio-1.64.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39b9d0acaa8d835a6566c640f48b50054f422d03e77e49716d4c4e8e279665a1"}, - {file = "grpcio-1.64.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:5e42634a989c3aa6049f132266faf6b949ec2a6f7d302dbb5c15395b77d757eb"}, - {file = "grpcio-1.64.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b1a82e0b9b3022799c336e1fc0f6210adc019ae84efb7321d668129d28ee1efb"}, - {file = "grpcio-1.64.1-cp312-cp312-win32.whl", hash = "sha256:55260032b95c49bee69a423c2f5365baa9369d2f7d233e933564d8a47b893027"}, - {file = "grpcio-1.64.1-cp312-cp312-win_amd64.whl", hash = "sha256:c1a786ac592b47573a5bb7e35665c08064a5d77ab88a076eec11f8ae86b3e3f6"}, - {file = "grpcio-1.64.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:a011ac6c03cfe162ff2b727bcb530567826cec85eb8d4ad2bfb4bd023287a52d"}, - {file = "grpcio-1.64.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:4d6dab6124225496010bd22690f2d9bd35c7cbb267b3f14e7a3eb05c911325d4"}, - {file = "grpcio-1.64.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:a5e771d0252e871ce194d0fdcafd13971f1aae0ddacc5f25615030d5df55c3a2"}, - {file = "grpcio-1.64.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2c3c1b90ab93fed424e454e93c0ed0b9d552bdf1b0929712b094f5ecfe7a23ad"}, - {file = "grpcio-1.64.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20405cb8b13fd779135df23fabadc53b86522d0f1cba8cca0e87968587f50650"}, - {file = "grpcio-1.64.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:0cc79c982ccb2feec8aad0e8fb0d168bcbca85bc77b080d0d3c5f2f15c24ea8f"}, - {file = "grpcio-1.64.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:a3a035c37ce7565b8f4f35ff683a4db34d24e53dc487e47438e434eb3f701b2a"}, - {file = "grpcio-1.64.1-cp38-cp38-win32.whl", hash = "sha256:1257b76748612aca0f89beec7fa0615727fd6f2a1ad580a9638816a4b2eb18fd"}, - {file = "grpcio-1.64.1-cp38-cp38-win_amd64.whl", hash = "sha256:0a12ddb1678ebc6a84ec6b0487feac020ee2b1659cbe69b80f06dbffdb249122"}, - {file = "grpcio-1.64.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:75dbbf415026d2862192fe1b28d71f209e2fd87079d98470db90bebe57b33179"}, - {file = "grpcio-1.64.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e3d9f8d1221baa0ced7ec7322a981e28deb23749c76eeeb3d33e18b72935ab62"}, - {file = "grpcio-1.64.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:5f8b75f64d5d324c565b263c67dbe4f0af595635bbdd93bb1a88189fc62ed2e5"}, - {file = "grpcio-1.64.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c84ad903d0d94311a2b7eea608da163dace97c5fe9412ea311e72c3684925602"}, - {file = "grpcio-1.64.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:940e3ec884520155f68a3b712d045e077d61c520a195d1a5932c531f11883489"}, - {file = "grpcio-1.64.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f10193c69fc9d3d726e83bbf0f3d316f1847c3071c8c93d8090cf5f326b14309"}, - {file = "grpcio-1.64.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ac15b6c2c80a4d1338b04d42a02d376a53395ddf0ec9ab157cbaf44191f3ffdd"}, - {file = "grpcio-1.64.1-cp39-cp39-win32.whl", hash = "sha256:03b43d0ccf99c557ec671c7dede64f023c7da9bb632ac65dbc57f166e4970040"}, - {file = "grpcio-1.64.1-cp39-cp39-win_amd64.whl", hash = "sha256:ed6091fa0adcc7e4ff944090cf203a52da35c37a130efa564ded02b7aff63bcd"}, - {file = "grpcio-1.64.1.tar.gz", hash = "sha256:8d51dd1c59d5fa0f34266b80a3805ec29a1f26425c2a54736133f6d87fc4968a"}, + {file = "grpcio-1.66.2-cp310-cp310-linux_armv7l.whl", hash = "sha256:fe96281713168a3270878255983d2cb1a97e034325c8c2c25169a69289d3ecfa"}, + {file = "grpcio-1.66.2-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:73fc8f8b9b5c4a03e802b3cd0c18b2b06b410d3c1dcbef989fdeb943bd44aff7"}, + {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:03b0b307ba26fae695e067b94cbb014e27390f8bc5ac7a3a39b7723fed085604"}, + {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d69ce1f324dc2d71e40c9261d3fdbe7d4c9d60f332069ff9b2a4d8a257c7b2b"}, + {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05bc2ceadc2529ab0b227b1310d249d95d9001cd106aa4d31e8871ad3c428d73"}, + {file = "grpcio-1.66.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8ac475e8da31484efa25abb774674d837b343afb78bb3bcdef10f81a93e3d6bf"}, + {file = "grpcio-1.66.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0be4e0490c28da5377283861bed2941d1d20ec017ca397a5df4394d1c31a9b50"}, + {file = "grpcio-1.66.2-cp310-cp310-win32.whl", hash = "sha256:4e504572433f4e72b12394977679161d495c4c9581ba34a88d843eaf0f2fbd39"}, + {file = "grpcio-1.66.2-cp310-cp310-win_amd64.whl", hash = "sha256:2018b053aa15782db2541ca01a7edb56a0bf18c77efed975392583725974b249"}, + {file = "grpcio-1.66.2-cp311-cp311-linux_armv7l.whl", hash = "sha256:2335c58560a9e92ac58ff2bc5649952f9b37d0735608242973c7a8b94a6437d8"}, + {file = "grpcio-1.66.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:45a3d462826f4868b442a6b8fdbe8b87b45eb4f5b5308168c156b21eca43f61c"}, + {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:a9539f01cb04950fd4b5ab458e64a15f84c2acc273670072abe49a3f29bbad54"}, + {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ce89f5876662f146d4c1f695dda29d4433a5d01c8681fbd2539afff535da14d4"}, + {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d25a14af966438cddf498b2e338f88d1c9706f3493b1d73b93f695c99c5f0e2a"}, + {file = "grpcio-1.66.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6001e575b8bbd89eee11960bb640b6da6ae110cf08113a075f1e2051cc596cae"}, + {file = "grpcio-1.66.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4ea1d062c9230278793820146c95d038dc0f468cbdd172eec3363e42ff1c7d01"}, + {file = "grpcio-1.66.2-cp311-cp311-win32.whl", hash = "sha256:38b68498ff579a3b1ee8f93a05eb48dc2595795f2f62716e797dc24774c1aaa8"}, + {file = "grpcio-1.66.2-cp311-cp311-win_amd64.whl", hash = "sha256:6851de821249340bdb100df5eacfecfc4e6075fa85c6df7ee0eb213170ec8e5d"}, + {file = "grpcio-1.66.2-cp312-cp312-linux_armv7l.whl", hash = "sha256:802d84fd3d50614170649853d121baaaa305de7b65b3e01759247e768d691ddf"}, + {file = "grpcio-1.66.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:80fd702ba7e432994df208f27514280b4b5c6843e12a48759c9255679ad38db8"}, + {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:12fda97ffae55e6526825daf25ad0fa37483685952b5d0f910d6405c87e3adb6"}, + {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:950da58d7d80abd0ea68757769c9db0a95b31163e53e5bb60438d263f4bed7b7"}, + {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e636ce23273683b00410f1971d209bf3689238cf5538d960adc3cdfe80dd0dbd"}, + {file = "grpcio-1.66.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:a917d26e0fe980b0ac7bfcc1a3c4ad6a9a4612c911d33efb55ed7833c749b0ee"}, + {file = "grpcio-1.66.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:49f0ca7ae850f59f828a723a9064cadbed90f1ece179d375966546499b8a2c9c"}, + {file = "grpcio-1.66.2-cp312-cp312-win32.whl", hash = "sha256:31fd163105464797a72d901a06472860845ac157389e10f12631025b3e4d0453"}, + {file = "grpcio-1.66.2-cp312-cp312-win_amd64.whl", hash = "sha256:ff1f7882e56c40b0d33c4922c15dfa30612f05fb785074a012f7cda74d1c3679"}, + {file = "grpcio-1.66.2-cp313-cp313-linux_armv7l.whl", hash = "sha256:3b00efc473b20d8bf83e0e1ae661b98951ca56111feb9b9611df8efc4fe5d55d"}, + {file = "grpcio-1.66.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1caa38fb22a8578ab8393da99d4b8641e3a80abc8fd52646f1ecc92bcb8dee34"}, + {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_aarch64.whl", hash = "sha256:c408f5ef75cfffa113cacd8b0c0e3611cbfd47701ca3cdc090594109b9fcbaed"}, + {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c806852deaedee9ce8280fe98955c9103f62912a5b2d5ee7e3eaa284a6d8d8e7"}, + {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f145cc21836c332c67baa6fc81099d1d27e266401565bf481948010d6ea32d46"}, + {file = "grpcio-1.66.2-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:73e3b425c1e155730273f73e419de3074aa5c5e936771ee0e4af0814631fb30a"}, + {file = "grpcio-1.66.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:9c509a4f78114cbc5f0740eb3d7a74985fd2eff022971bc9bc31f8bc93e66a3b"}, + {file = "grpcio-1.66.2-cp313-cp313-win32.whl", hash = "sha256:20657d6b8cfed7db5e11b62ff7dfe2e12064ea78e93f1434d61888834bc86d75"}, + {file = "grpcio-1.66.2-cp313-cp313-win_amd64.whl", hash = "sha256:fb70487c95786e345af5e854ffec8cb8cc781bcc5df7930c4fbb7feaa72e1cdf"}, + {file = "grpcio-1.66.2-cp38-cp38-linux_armv7l.whl", hash = "sha256:a18e20d8321c6400185b4263e27982488cb5cdd62da69147087a76a24ef4e7e3"}, + {file = "grpcio-1.66.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:02697eb4a5cbe5a9639f57323b4c37bcb3ab2d48cec5da3dc2f13334d72790dd"}, + {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:99a641995a6bc4287a6315989ee591ff58507aa1cbe4c2e70d88411c4dcc0839"}, + {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ed71e81782966ffead60268bbda31ea3f725ebf8aa73634d5dda44f2cf3fb9c"}, + {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbd27c24a4cc5e195a7f56cfd9312e366d5d61b86e36d46bbe538457ea6eb8dd"}, + {file = "grpcio-1.66.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d9a9724a156c8ec6a379869b23ba3323b7ea3600851c91489b871e375f710bc8"}, + {file = "grpcio-1.66.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d8d4732cc5052e92cea2f78b233c2e2a52998ac40cd651f40e398893ad0d06ec"}, + {file = "grpcio-1.66.2-cp38-cp38-win32.whl", hash = "sha256:7b2c86457145ce14c38e5bf6bdc19ef88e66c5fee2c3d83285c5aef026ba93b3"}, + {file = "grpcio-1.66.2-cp38-cp38-win_amd64.whl", hash = "sha256:e88264caad6d8d00e7913996030bac8ad5f26b7411495848cc218bd3a9040b6c"}, + {file = "grpcio-1.66.2-cp39-cp39-linux_armv7l.whl", hash = "sha256:c400ba5675b67025c8a9f48aa846f12a39cf0c44df5cd060e23fda5b30e9359d"}, + {file = "grpcio-1.66.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:66a0cd8ba6512b401d7ed46bb03f4ee455839957f28b8d61e7708056a806ba6a"}, + {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:06de8ec0bd71be123eec15b0e0d457474931c2c407869b6c349bd9bed4adbac3"}, + {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb57870449dfcfac428afbb5a877829fcb0d6db9d9baa1148705739e9083880e"}, + {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b672abf90a964bfde2d0ecbce30f2329a47498ba75ce6f4da35a2f4532b7acbc"}, + {file = "grpcio-1.66.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:ad2efdbe90c73b0434cbe64ed372e12414ad03c06262279b104a029d1889d13e"}, + {file = "grpcio-1.66.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9c3a99c519f4638e700e9e3f83952e27e2ea10873eecd7935823dab0c1c9250e"}, + {file = "grpcio-1.66.2-cp39-cp39-win32.whl", hash = "sha256:78fa51ebc2d9242c0fc5db0feecc57a9943303b46664ad89921f5079e2e4ada7"}, + {file = "grpcio-1.66.2-cp39-cp39-win_amd64.whl", hash = "sha256:728bdf36a186e7f51da73be7f8d09457a03061be848718d0edf000e709418987"}, + {file = "grpcio-1.66.2.tar.gz", hash = "sha256:563588c587b75c34b928bc428548e5b00ea38c46972181a4d8b75ba7e3f24231"}, ] [package.extras] -protobuf = ["grpcio-tools (>=1.64.1)"] +protobuf = ["grpcio-tools (>=1.66.2)"] [[package]] name = "h5py" @@ -623,43 +1015,50 @@ numpy = ">=1.17.3" [[package]] name = "idna" -version = "3.7" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.6" files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + [[package]] name = "importlib-metadata" -version = "7.2.1" +version = "8.5.0" description = "Read metadata from Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "importlib_metadata-7.2.1-py3-none-any.whl", hash = "sha256:ffef94b0b66046dd8ea2d619b701fe978d9264d38f3998bc4c27ec3b146a87c8"}, - {file = "importlib_metadata-7.2.1.tar.gz", hash = "sha256:509ecb2ab77071db5137c655e24ceb3eee66e7bbc6574165d0d114d9fc4bbe68"}, + {file = "importlib_metadata-8.5.0-py3-none-any.whl", hash = "sha256:45e54197d28b7a7f1559e60b95e7c567032b602131fbd588f1497f47880aa68b"}, + {file = "importlib_metadata-8.5.0.tar.gz", hash = "sha256:71522656f0abace1d072b9e5481a48f07c138e00f079c38c8f883823f9c26bd7"}, ] [package.dependencies] -zipp = ">=0.5" +zipp = ">=3.20" [package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +enabler = ["pytest-enabler (>=2.2)"] perf = ["ipython"] -test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] +test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-perf (>=0.9.2)"] +type = ["pytest-mypy"] [[package]] name = "ipykernel" -version = "6.29.4" +version = "6.29.5" description = "IPython Kernel for Jupyter" optional = false python-versions = ">=3.8" files = [ - {file = "ipykernel-6.29.4-py3-none-any.whl", hash = "sha256:1181e653d95c6808039c509ef8e67c4126b3b3af7781496c7cbfb5ed938a27da"}, - {file = "ipykernel-6.29.4.tar.gz", hash = "sha256:3d44070060f9475ac2092b760123fadf105d2e2493c24848b6691a7c4f42af5c"}, + {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, + {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, ] [package.dependencies] @@ -742,6 +1141,23 @@ docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alab qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] +[[package]] +name = "jinja2" +version = "3.1.4" +description = "A very fast and expressive template engine." +optional = false +python-versions = ">=3.7" +files = [ + {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, + {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, +] + +[package.dependencies] +MarkupSafe = ">=2.0" + +[package.extras] +i18n = ["Babel (>=2.7)"] + [[package]] name = "joblib" version = "1.4.2" @@ -755,13 +1171,13 @@ files = [ [[package]] name = "jupyter-client" -version = "8.6.2" +version = "8.6.3" description = "Jupyter protocol implementation and client libraries" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"}, - {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"}, + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, ] [package.dependencies] @@ -828,115 +1244,125 @@ tests = ["Pillow", "keras", "pandas", "pytest", "pytest-cov", "pytest-xdist", "t [[package]] name = "kiwisolver" -version = "1.4.5" +version = "1.4.7" description = "A fast implementation of the Cassowary constraint solver" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, - {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, - {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, - {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, - {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, - {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, - {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, - {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, - {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, - {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, - {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, - {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8a9c83f75223d5e48b0bc9cb1bf2776cf01563e00ade8775ffe13b0b6e1af3a6"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:58370b1ffbd35407444d57057b57da5d6549d2d854fa30249771775c63b5fe17"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa0abdf853e09aff551db11fce173e2177d00786c688203f52c87ad7fcd91ef9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8d53103597a252fb3ab8b5845af04c7a26d5e7ea8122303dd7a021176a87e8b9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:88f17c5ffa8e9462fb79f62746428dd57b46eb931698e42e990ad63103f35e6c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88a9ca9c710d598fd75ee5de59d5bda2684d9db36a9f50b6125eaea3969c2599"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4d742cb7af1c28303a51b7a27aaee540e71bb8e24f68c736f6f2ffc82f2bf05"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28c7fea2196bf4c2f8d46a0415c77a1c480cc0724722f23d7410ffe9842c407"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e968b84db54f9d42046cf154e02911e39c0435c9801681e3fc9ce8a3c4130278"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0c18ec74c0472de033e1bebb2911c3c310eef5649133dd0bedf2a169a1b269e5"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8f0ea6da6d393d8b2e187e6a5e3fb81f5862010a40c3945e2c6d12ae45cfb2ad"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:f106407dda69ae456dd1227966bf445b157ccc80ba0dff3802bb63f30b74e895"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84ec80df401cfee1457063732d90022f93951944b5b58975d34ab56bb150dfb3"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win32.whl", hash = "sha256:71bb308552200fb2c195e35ef05de12f0c878c07fc91c270eb3d6e41698c3bcc"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_amd64.whl", hash = "sha256:44756f9fd339de0fb6ee4f8c1696cfd19b2422e0d70b4cefc1cc7f1f64045a8c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_arm64.whl", hash = "sha256:78a42513018c41c2ffd262eb676442315cbfe3c44eed82385c2ed043bc63210a"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d2b0e12a42fb4e72d509fc994713d099cbb15ebf1103545e8a45f14da2dfca54"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a8781ac3edc42ea4b90bc23e7d37b665d89423818e26eb6df90698aa2287c95"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46707a10836894b559e04b0fd143e343945c97fd170d69a2d26d640b4e297935"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef97b8df011141c9b0f6caf23b29379f87dd13183c978a30a3c546d2c47314cb"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab58c12a2cd0fc769089e6d38466c46d7f76aced0a1f54c77652446733d2d02"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:803b8e1459341c1bb56d1c5c010406d5edec8a0713a0945851290a7930679b51"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9a9e8a507420fe35992ee9ecb302dab68550dedc0da9e2880dd88071c5fb052"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18077b53dc3bb490e330669a99920c5e6a496889ae8c63b58fbc57c3d7f33a18"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6af936f79086a89b3680a280c47ea90b4df7047b5bdf3aa5c524bbedddb9e545"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3abc5b19d24af4b77d1598a585b8a719beb8569a71568b66f4ebe1fb0449460b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:933d4de052939d90afbe6e9d5273ae05fb836cc86c15b686edd4b3560cc0ee36"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:65e720d2ab2b53f1f72fb5da5fb477455905ce2c88aaa671ff0a447c2c80e8e3"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3bf1ed55088f214ba6427484c59553123fdd9b218a42bbc8c6496d6754b1e523"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win32.whl", hash = "sha256:4c00336b9dd5ad96d0a558fd18a8b6f711b7449acce4c157e7343ba92dd0cf3d"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_amd64.whl", hash = "sha256:929e294c1ac1e9f615c62a4e4313ca1823ba37326c164ec720a803287c4c499b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_arm64.whl", hash = "sha256:e33e8fbd440c917106b237ef1a2f1449dfbb9b6f6e1ce17c94cd6a1e0d438376"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:5360cc32706dab3931f738d3079652d20982511f7c0ac5711483e6eab08efff2"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:942216596dc64ddb25adb215c3c783215b23626f8d84e8eff8d6d45c3f29f75a"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:48b571ecd8bae15702e4f22d3ff6a0f13e54d3d00cd25216d5e7f658242065ee"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad42ba922c67c5f219097b28fae965e10045ddf145d2928bfac2eb2e17673640"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:612a10bdae23404a72941a0fc8fa2660c6ea1217c4ce0dbcab8a8f6543ea9e7f"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9e838bba3a3bac0fe06d849d29772eb1afb9745a59710762e4ba3f4cb8424483"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:22f499f6157236c19f4bbbd472fa55b063db77a16cd74d49afe28992dff8c258"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693902d433cf585133699972b6d7c42a8b9f8f826ebcaf0132ff55200afc599e"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4e77f2126c3e0b0d055f44513ed349038ac180371ed9b52fe96a32aa071a5107"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:657a05857bda581c3656bfc3b20e353c232e9193eb167766ad2dc58b56504948"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4bfa75a048c056a411f9705856abfc872558e33c055d80af6a380e3658766038"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:34ea1de54beef1c104422d210c47c7d2a4999bdecf42c7b5718fbe59a4cac383"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:90da3b5f694b85231cf93586dad5e90e2d71b9428f9aad96952c99055582f520"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win32.whl", hash = "sha256:18e0cca3e008e17fe9b164b55735a325140a5a35faad8de92dd80265cd5eb80b"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_amd64.whl", hash = "sha256:58cb20602b18f86f83a5c87d3ee1c766a79c0d452f8def86d925e6c60fbf7bfb"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_arm64.whl", hash = "sha256:f5a8b53bdc0b3961f8b6125e198617c40aeed638b387913bf1ce78afb1b0be2a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:2e6039dcbe79a8e0f044f1c39db1986a1b8071051efba3ee4d74f5b365f5226e"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a1ecf0ac1c518487d9d23b1cd7139a6a65bc460cd101ab01f1be82ecf09794b6"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7ab9ccab2b5bd5702ab0803676a580fffa2aa178c2badc5557a84cc943fcf750"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f816dd2277f8d63d79f9c8473a79fe54047bc0467754962840782c575522224d"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf8bcc23ceb5a1b624572a1623b9f79d2c3b337c8c455405ef231933a10da379"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dea0bf229319828467d7fca8c7c189780aa9ff679c94539eed7532ebe33ed37c"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c06a4c7cf15ec739ce0e5971b26c93638730090add60e183530d70848ebdd34"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5337ec7809bcd0f424c6b705ecf97941c46279cf5ed92311782c7c9c2026f07f"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4c26ed10c4f6fa6ddb329a5120ba3b6db349ca192ae211e882970bfc9d91420b"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c619b101e6de2222c1fcb0531e1b17bbffbe54294bfba43ea0d411d428618c27"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:073a36c8273647592ea332e816e75ef8da5c303236ec0167196793eb1e34657a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3ce6b2b0231bda412463e152fc18335ba32faf4e8c23a754ad50ffa70e4091ee"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win32.whl", hash = "sha256:f4c9aee212bc89d4e13f58be11a56cc8036cabad119259d12ace14b34476fd07"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_amd64.whl", hash = "sha256:8a3ec5aa8e38fc4c8af308917ce12c536f1c88452ce554027e55b22cbbfbff76"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_arm64.whl", hash = "sha256:76c8094ac20ec259471ac53e774623eb62e6e1f56cd8690c67ce6ce4fcb05650"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5d5abf8f8ec1f4e22882273c423e16cae834c36856cac348cfbfa68e01c40f3a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:aeb3531b196ef6f11776c21674dba836aeea9d5bd1cf630f869e3d90b16cfade"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b7d755065e4e866a8086c9bdada157133ff466476a2ad7861828e17b6026e22c"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08471d4d86cbaec61f86b217dd938a83d85e03785f51121e791a6e6689a3be95"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7bbfcb7165ce3d54a3dfbe731e470f65739c4c1f85bb1018ee912bae139e263b"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d34eb8494bea691a1a450141ebb5385e4b69d38bb8403b5146ad279f4b30fa3"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9242795d174daa40105c1d86aba618e8eab7bf96ba8c3ee614da8302a9f95503"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a0f64a48bb81af7450e641e3fe0b0394d7381e342805479178b3d335d60ca7cf"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8e045731a5416357638d1700927529e2b8ab304811671f665b225f8bf8d8f933"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4322872d5772cae7369f8351da1edf255a604ea7087fe295411397d0cfd9655e"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e1631290ee9271dffe3062d2634c3ecac02c83890ada077d225e081aca8aab89"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:edcfc407e4eb17e037bca59be0e85a2031a2ac87e4fed26d3e9df88b4165f92d"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:4d05d81ecb47d11e7f8932bd8b61b720bf0b41199358f3f5e36d38e28f0532c5"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win32.whl", hash = "sha256:b38ac83d5f04b15e515fd86f312479d950d05ce2368d5413d46c088dda7de90a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win_amd64.whl", hash = "sha256:d83db7cde68459fc803052a55ace60bea2bae361fc3b7a6d5da07e11954e4b09"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3f9362ecfca44c863569d3d3c033dbe8ba452ff8eed6f6b5806382741a1334bd"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e8df2eb9b2bac43ef8b082e06f750350fbbaf2887534a5be97f6cf07b19d9583"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f32d6edbc638cde7652bd690c3e728b25332acbadd7cad670cc4a02558d9c417"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e2e6c39bd7b9372b0be21456caab138e8e69cc0fc1190a9dfa92bd45a1e6e904"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dda56c24d869b1193fcc763f1284b9126550eaf84b88bbc7256e15028f19188a"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79849239c39b5e1fd906556c474d9b0439ea6792b637511f3fe3a41158d89ca8"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5e3bc157fed2a4c02ec468de4ecd12a6e22818d4f09cde2c31ee3226ffbefab2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3da53da805b71e41053dc670f9a820d1157aae77b6b944e08024d17bcd51ef88"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:8705f17dfeb43139a692298cb6637ee2e59c0194538153e83e9ee0c75c2eddde"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:82a5c2f4b87c26bb1a0ef3d16b5c4753434633b83d365cc0ddf2770c93829e3c"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce8be0466f4c0d585cdb6c1e2ed07232221df101a4c6f28821d2aa754ca2d9e2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:409afdfe1e2e90e6ee7fc896f3df9a7fec8e793e58bfa0d052c8a82f99c37abb"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5b9c3f4ee0b9a439d2415012bd1b1cc2df59e4d6a9939f4d669241d30b414327"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win32.whl", hash = "sha256:a79ae34384df2b615eefca647a2873842ac3b596418032bef9a7283675962644"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_amd64.whl", hash = "sha256:cf0438b42121a66a3a667de17e779330fc0f20b0d97d59d2f2121e182b0505e4"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_arm64.whl", hash = "sha256:764202cc7e70f767dab49e8df52c7455e8de0df5d858fa801a11aa0d882ccf3f"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:94252291e3fe68001b1dd747b4c0b3be12582839b95ad4d1b641924d68fd4643"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:5b7dfa3b546da08a9f622bb6becdb14b3e24aaa30adba66749d38f3cc7ea9706"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3de6481f4ed8b734da5df134cd5a6a64fe32124fe83dde1e5b5f29fe30b1e6"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a91b5f9f1205845d488c928e8570dcb62b893372f63b8b6e98b863ebd2368ff2"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40fa14dbd66b8b8f470d5fc79c089a66185619d31645f9b0773b88b19f7223c4"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:eb542fe7933aa09d8d8f9d9097ef37532a7df6497819d16efe4359890a2f417a"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bfa1acfa0c54932d5607e19a2c24646fb4c1ae2694437789129cf099789a3b00"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:eee3ea935c3d227d49b4eb85660ff631556841f6e567f0f7bda972df6c2c9935"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f3160309af4396e0ed04db259c3ccbfdc3621b5559b5453075e5de555e1f3a1b"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a17f6a29cf8935e587cc8a4dbfc8368c55edc645283db0ce9801016f83526c2d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10849fb2c1ecbfae45a693c070e0320a91b35dd4bcf58172c023b994283a124d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:ac542bf38a8a4be2dc6b15248d36315ccc65f0743f7b1a76688ffb6b5129a5c2"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8b01aac285f91ca889c800042c35ad3b239e704b150cfd3382adfc9dcc780e39"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:48be928f59a1f5c8207154f935334d374e79f2b5d212826307d072595ad76a2e"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f37cfe618a117e50d8c240555331160d73d0411422b59b5ee217843d7b693608"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:599b5c873c63a1f6ed7eead644a8a380cfbdf5db91dcb6f85707aaab213b1674"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:801fa7802e5cfabe3ab0c81a34c323a319b097dfb5004be950482d882f3d7225"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0c6c43471bc764fad4bc99c5c2d6d16a676b1abf844ca7c8702bdae92df01ee0"}, + {file = "kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60"}, ] [[package]] @@ -957,15 +1383,36 @@ files = [ {file = "libclang-18.1.1.tar.gz", hash = "sha256:a1214966d08d73d971287fc3ead8dfaf82eb07fb197680d8b3859dbbbbf78250"}, ] +[[package]] +name = "lightning-utilities" +version = "0.11.7" +description = "Lightning toolbox for across the our ecosystem." +optional = false +python-versions = ">=3.8" +files = [ + {file = "lightning_utilities-0.11.7-py3-none-any.whl", hash = "sha256:84eebbc700edbfaa6c005458fc911a7fe7f99f02970b00cb322b4d2767deba98"}, + {file = "lightning_utilities-0.11.7.tar.gz", hash = "sha256:7e8458a9f0bfb51ffe6c5ab3957aa37b2792fe8281dd9f1b66aa513a558ec4ce"}, +] + +[package.dependencies] +packaging = ">=17.1" +setuptools = "*" +typing-extensions = "*" + +[package.extras] +cli = ["fire"] +docs = ["requests (>=2.0.0)"] +typing = ["mypy (>=1.0.0)", "types-setuptools"] + [[package]] name = "markdown" -version = "3.6" +version = "3.7" description = "Python implementation of John Gruber's Markdown." optional = false python-versions = ">=3.8" files = [ - {file = "Markdown-3.6-py3-none-any.whl", hash = "sha256:48f276f4d8cfb8ce6527c8f79e2ee29708508bf4d40aa410fbc3b4ee832c850f"}, - {file = "Markdown-3.6.tar.gz", hash = "sha256:ed4f41f6daecbeeb96e576ce414c41d2d876daa9a16cb35fa8ed8c2ddfad0224"}, + {file = "Markdown-3.7-py3-none-any.whl", hash = "sha256:7eb6df5690b81a1d7942992c97fad2938e956e79df20cbc6186e9c3a77b1c803"}, + {file = "markdown-3.7.tar.gz", hash = "sha256:2ae2471477cfd02dbbf038d5d9bc226d40def84b4fe2986e49b59b6b472bbed2"}, ] [package.dependencies] @@ -1090,6 +1537,127 @@ files = [ [package.dependencies] traitlets = "*" +[[package]] +name = "mpmath" +version = "1.3.0" +description = "Python library for arbitrary-precision floating-point arithmetic" +optional = false +python-versions = "*" +files = [ + {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, + {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, +] + +[package.extras] +develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"] +docs = ["sphinx"] +gmpy = ["gmpy2 (>=2.1.0a4)"] +tests = ["pytest (>=4.6)"] + +[[package]] +name = "multidict" +version = "6.1.0" +description = "multidict implementation" +optional = false +python-versions = ">=3.8" +files = [ + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + [[package]] name = "nest-asyncio" version = "1.6.0" @@ -1182,6 +1750,148 @@ files = [ {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, ] +[[package]] +name = "nvidia-cublas-cu12" +version = "12.1.3.1" +description = "CUBLAS native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728"}, + {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-win_amd64.whl", hash = "sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906"}, +] + +[[package]] +name = "nvidia-cuda-cupti-cu12" +version = "12.1.105" +description = "CUDA profiling tools runtime libs." +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e"}, + {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4"}, +] + +[[package]] +name = "nvidia-cuda-nvrtc-cu12" +version = "12.1.105" +description = "NVRTC native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2"}, + {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed"}, +] + +[[package]] +name = "nvidia-cuda-runtime-cu12" +version = "12.1.105" +description = "CUDA Runtime native Libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40"}, + {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344"}, +] + +[[package]] +name = "nvidia-cudnn-cu12" +version = "8.9.2.26" +description = "cuDNN runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl", hash = "sha256:5ccb288774fdfb07a7e7025ffec286971c06d8d7b4fb162525334616d7629ff9"}, +] + +[package.dependencies] +nvidia-cublas-cu12 = "*" + +[[package]] +name = "nvidia-cufft-cu12" +version = "11.0.2.54" +description = "CUFFT native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl", hash = "sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56"}, + {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-win_amd64.whl", hash = "sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253"}, +] + +[[package]] +name = "nvidia-curand-cu12" +version = "10.3.2.106" +description = "CURAND native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0"}, + {file = "nvidia_curand_cu12-10.3.2.106-py3-none-win_amd64.whl", hash = "sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a"}, +] + +[[package]] +name = "nvidia-cusolver-cu12" +version = "11.4.5.107" +description = "CUDA solver native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd"}, + {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-win_amd64.whl", hash = "sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5"}, +] + +[package.dependencies] +nvidia-cublas-cu12 = "*" +nvidia-cusparse-cu12 = "*" +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-cusparse-cu12" +version = "12.1.0.106" +description = "CUSPARSE native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c"}, + {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-win_amd64.whl", hash = "sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a"}, +] + +[package.dependencies] +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-nccl-cu12" +version = "2.18.1" +description = "NVIDIA Collective Communication Library (NCCL) Runtime" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nccl_cu12-2.18.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:1a6c4acefcbebfa6de320f412bf7866de856e786e0462326ba1bac40de0b5e71"}, +] + +[[package]] +name = "nvidia-nvjitlink-cu12" +version = "12.6.77" +description = "Nvidia JIT LTO Library" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-manylinux2014_aarch64.whl", hash = "sha256:3bf10d85bb1801e9c894c6e197e44dd137d2a0a9e43f8450e9ad13f2df0dd52d"}, + {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-manylinux2014_x86_64.whl", hash = "sha256:9ae346d16203ae4ea513be416495167a0101d33d2d14935aa9c1829a3fb45142"}, + {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-win_amd64.whl", hash = "sha256:410718cd44962bed862a31dd0318620f6f9a8b28a6291967bcfcb446a6516771"}, +] + +[[package]] +name = "nvidia-nvtx-cu12" +version = "12.1.105" +description = "NVIDIA Tools Extension" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5"}, + {file = "nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82"}, +] + [[package]] name = "nxt_gem" version = "2.0.1" @@ -1223,22 +1933,15 @@ signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] [[package]] name = "opt-einsum" -version = "3.3.0" -description = "Optimizing numpys einsum function" +version = "3.4.0" +description = "Path optimization of einsum functions." optional = false -python-versions = ">=3.5" +python-versions = ">=3.8" files = [ - {file = "opt_einsum-3.3.0-py3-none-any.whl", hash = "sha256:2455e59e3947d3c275477df7f5205b30635e266fe6dc300e3d9f9646bfcea147"}, - {file = "opt_einsum-3.3.0.tar.gz", hash = "sha256:59f6475f77bbc37dcf7cd748519c0ec60722e91e63ca114e68821c0c54a46549"}, + {file = "opt_einsum-3.4.0-py3-none-any.whl", hash = "sha256:69bb92469f86a1565195ece4ac0323943e83477171b91d24c35afe028a90d7cd"}, + {file = "opt_einsum-3.4.0.tar.gz", hash = "sha256:96ca72f1b886d148241348783498194c577fa30a8faac108586b14f1ba4473ac"}, ] -[package.dependencies] -numpy = ">=1.7" - -[package.extras] -docs = ["numpydoc", "sphinx (==1.2.3)", "sphinx-rtd-theme", "sphinxcontrib-napoleon"] -tests = ["pytest", "pytest-cov", "pytest-pep8"] - [[package]] name = "packaging" version = "24.1" @@ -1353,36 +2056,240 @@ files = [ {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, ] +[[package]] +name = "pillow" +version = "10.4.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"}, + {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"}, + {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"}, + {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"}, + {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"}, + {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"}, + {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"}, + {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"}, + {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"}, + {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"}, + {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"}, + {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"}, + {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"}, + {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"}, + {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"}, + {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"}, + {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"}, + {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"}, + {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"}, + {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] +fpx = ["olefile"] +mic = ["olefile"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] +typing = ["typing-extensions"] +xmp = ["defusedxml"] + [[package]] name = "platformdirs" -version = "4.2.2" +version = "4.3.6" description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." optional = false python-versions = ">=3.8" files = [ - {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, - {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, + {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, + {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, ] [package.extras] -docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] -type = ["mypy (>=1.8)"] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] [[package]] name = "prompt-toolkit" -version = "3.0.47" +version = "3.0.48" description = "Library for building powerful interactive command lines in Python" optional = false python-versions = ">=3.7.0" files = [ - {file = "prompt_toolkit-3.0.47-py3-none-any.whl", hash = "sha256:0d7bfa67001d5e39d02c224b663abc33687405033a8c422d0d675a5a13361d10"}, - {file = "prompt_toolkit-3.0.47.tar.gz", hash = "sha256:1e1b29cb58080b1e69f207c893a1a7bf16d127a5c30c9d17a25a5d77792e5360"}, + {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, + {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, ] [package.dependencies] wcwidth = "*" +[[package]] +name = "propcache" +version = "0.2.0" +description = "Accelerated property cache" +optional = false +python-versions = ">=3.8" +files = [ + {file = "propcache-0.2.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:c5869b8fd70b81835a6f187c5fdbe67917a04d7e52b6e7cc4e5fe39d55c39d58"}, + {file = "propcache-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:952e0d9d07609d9c5be361f33b0d6d650cd2bae393aabb11d9b719364521984b"}, + {file = "propcache-0.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:33ac8f098df0585c0b53009f039dfd913b38c1d2edafed0cedcc0c32a05aa110"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:97e48e8875e6c13909c800fa344cd54cc4b2b0db1d5f911f840458a500fde2c2"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:388f3217649d6d59292b722d940d4d2e1e6a7003259eb835724092a1cca0203a"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f571aea50ba5623c308aa146eb650eebf7dbe0fd8c5d946e28343cb3b5aad577"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3dfafb44f7bb35c0c06eda6b2ab4bfd58f02729e7c4045e179f9a861b07c9850"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a3ebe9a75be7ab0b7da2464a77bb27febcb4fab46a34f9288f39d74833db7f61"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d2f0d0f976985f85dfb5f3d685697ef769faa6b71993b46b295cdbbd6be8cc37"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:a3dc1a4b165283bd865e8f8cb5f0c64c05001e0718ed06250d8cac9bec115b48"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:9e0f07b42d2a50c7dd2d8675d50f7343d998c64008f1da5fef888396b7f84630"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:e63e3e1e0271f374ed489ff5ee73d4b6e7c60710e1f76af5f0e1a6117cd26394"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:56bb5c98f058a41bb58eead194b4db8c05b088c93d94d5161728515bd52b052b"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7665f04d0c7f26ff8bb534e1c65068409bf4687aa2534faf7104d7182debb336"}, + {file = "propcache-0.2.0-cp310-cp310-win32.whl", hash = "sha256:7cf18abf9764746b9c8704774d8b06714bcb0a63641518a3a89c7f85cc02c2ad"}, + {file = "propcache-0.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:cfac69017ef97db2438efb854edf24f5a29fd09a536ff3a992b75990720cdc99"}, + {file = "propcache-0.2.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:63f13bf09cc3336eb04a837490b8f332e0db41da66995c9fd1ba04552e516354"}, + {file = "propcache-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:608cce1da6f2672a56b24a015b42db4ac612ee709f3d29f27a00c943d9e851de"}, + {file = "propcache-0.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:466c219deee4536fbc83c08d09115249db301550625c7fef1c5563a584c9bc87"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc2db02409338bf36590aa985a461b2c96fce91f8e7e0f14c50c5fcc4f229016"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a6ed8db0a556343d566a5c124ee483ae113acc9a557a807d439bcecc44e7dfbb"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:91997d9cb4a325b60d4e3f20967f8eb08dfcb32b22554d5ef78e6fd1dda743a2"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c7dde9e533c0a49d802b4f3f218fa9ad0a1ce21f2c2eb80d5216565202acab4"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffcad6c564fe6b9b8916c1aefbb37a362deebf9394bd2974e9d84232e3e08504"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:97a58a28bcf63284e8b4d7b460cbee1edaab24634e82059c7b8c09e65284f178"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:945db8ee295d3af9dbdbb698cce9bbc5c59b5c3fe328bbc4387f59a8a35f998d"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:39e104da444a34830751715f45ef9fc537475ba21b7f1f5b0f4d71a3b60d7fe2"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:c5ecca8f9bab618340c8e848d340baf68bcd8ad90a8ecd7a4524a81c1764b3db"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:c436130cc779806bdf5d5fae0d848713105472b8566b75ff70048c47d3961c5b"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:191db28dc6dcd29d1a3e063c3be0b40688ed76434622c53a284e5427565bbd9b"}, + {file = "propcache-0.2.0-cp311-cp311-win32.whl", hash = "sha256:5f2564ec89058ee7c7989a7b719115bdfe2a2fb8e7a4543b8d1c0cc4cf6478c1"}, + {file = "propcache-0.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:6e2e54267980349b723cff366d1e29b138b9a60fa376664a157a342689553f71"}, + {file = "propcache-0.2.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:2ee7606193fb267be4b2e3b32714f2d58cad27217638db98a60f9efb5efeccc2"}, + {file = "propcache-0.2.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:91ee8fc02ca52e24bcb77b234f22afc03288e1dafbb1f88fe24db308910c4ac7"}, + {file = "propcache-0.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2e900bad2a8456d00a113cad8c13343f3b1f327534e3589acc2219729237a2e8"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f52a68c21363c45297aca15561812d542f8fc683c85201df0bebe209e349f793"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e41d67757ff4fbc8ef2af99b338bfb955010444b92929e9e55a6d4dcc3c4f09"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a64e32f8bd94c105cc27f42d3b658902b5bcc947ece3c8fe7bc1b05982f60e89"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:55346705687dbd7ef0d77883ab4f6fabc48232f587925bdaf95219bae072491e"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:00181262b17e517df2cd85656fcd6b4e70946fe62cd625b9d74ac9977b64d8d9"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6994984550eaf25dd7fc7bd1b700ff45c894149341725bb4edc67f0ffa94efa4"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:56295eb1e5f3aecd516d91b00cfd8bf3a13991de5a479df9e27dd569ea23959c"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:439e76255daa0f8151d3cb325f6dd4a3e93043e6403e6491813bcaaaa8733887"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:f6475a1b2ecb310c98c28d271a30df74f9dd436ee46d09236a6b750a7599ce57"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:3444cdba6628accf384e349014084b1cacd866fbb88433cd9d279d90a54e0b23"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4a9d9b4d0a9b38d1c391bb4ad24aa65f306c6f01b512e10a8a34a2dc5675d348"}, + {file = "propcache-0.2.0-cp312-cp312-win32.whl", hash = "sha256:69d3a98eebae99a420d4b28756c8ce6ea5a29291baf2dc9ff9414b42676f61d5"}, + {file = "propcache-0.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:ad9c9b99b05f163109466638bd30ada1722abb01bbb85c739c50b6dc11f92dc3"}, + {file = "propcache-0.2.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ecddc221a077a8132cf7c747d5352a15ed763b674c0448d811f408bf803d9ad7"}, + {file = "propcache-0.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0e53cb83fdd61cbd67202735e6a6687a7b491c8742dfc39c9e01e80354956763"}, + {file = "propcache-0.2.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92fe151145a990c22cbccf9ae15cae8ae9eddabfc949a219c9f667877e40853d"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6a21ef516d36909931a2967621eecb256018aeb11fc48656e3257e73e2e247a"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3f88a4095e913f98988f5b338c1d4d5d07dbb0b6bad19892fd447484e483ba6b"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a5b3bb545ead161be780ee85a2b54fdf7092815995661947812dde94a40f6fb"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67aeb72e0f482709991aa91345a831d0b707d16b0257e8ef88a2ad246a7280bf"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3c997f8c44ec9b9b0bcbf2d422cc00a1d9b9c681f56efa6ca149a941e5560da2"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:2a66df3d4992bc1d725b9aa803e8c5a66c010c65c741ad901e260ece77f58d2f"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:3ebbcf2a07621f29638799828b8d8668c421bfb94c6cb04269130d8de4fb7136"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:1235c01ddaa80da8235741e80815ce381c5267f96cc49b1477fdcf8c047ef325"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:3947483a381259c06921612550867b37d22e1df6d6d7e8361264b6d037595f44"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d5bed7f9805cc29c780f3aee05de3262ee7ce1f47083cfe9f77471e9d6777e83"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e4a91d44379f45f5e540971d41e4626dacd7f01004826a18cb048e7da7e96544"}, + {file = "propcache-0.2.0-cp313-cp313-win32.whl", hash = "sha256:f902804113e032e2cdf8c71015651c97af6418363bea8d78dc0911d56c335032"}, + {file = "propcache-0.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:8f188cfcc64fb1266f4684206c9de0e80f54622c3f22a910cbd200478aeae61e"}, + {file = "propcache-0.2.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:53d1bd3f979ed529f0805dd35ddaca330f80a9a6d90bc0121d2ff398f8ed8861"}, + {file = "propcache-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:83928404adf8fb3d26793665633ea79b7361efa0287dfbd372a7e74311d51ee6"}, + {file = "propcache-0.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:77a86c261679ea5f3896ec060be9dc8e365788248cc1e049632a1be682442063"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:218db2a3c297a3768c11a34812e63b3ac1c3234c3a086def9c0fee50d35add1f"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7735e82e3498c27bcb2d17cb65d62c14f1100b71723b68362872bca7d0913d90"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:20a617c776f520c3875cf4511e0d1db847a076d720714ae35ffe0df3e440be68"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67b69535c870670c9f9b14a75d28baa32221d06f6b6fa6f77a0a13c5a7b0a5b9"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4569158070180c3855e9c0791c56be3ceeb192defa2cdf6a3f39e54319e56b89"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:db47514ffdbd91ccdc7e6f8407aac4ee94cc871b15b577c1c324236b013ddd04"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_armv7l.whl", hash = "sha256:2a60ad3e2553a74168d275a0ef35e8c0a965448ffbc3b300ab3a5bb9956c2162"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:662dd62358bdeaca0aee5761de8727cfd6861432e3bb828dc2a693aa0471a563"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:25a1f88b471b3bc911d18b935ecb7115dff3a192b6fef46f0bfaf71ff4f12418"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:f60f0ac7005b9f5a6091009b09a419ace1610e163fa5deaba5ce3484341840e7"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:74acd6e291f885678631b7ebc85d2d4aec458dd849b8c841b57ef04047833bed"}, + {file = "propcache-0.2.0-cp38-cp38-win32.whl", hash = "sha256:d9b6ddac6408194e934002a69bcaadbc88c10b5f38fb9307779d1c629181815d"}, + {file = "propcache-0.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:676135dcf3262c9c5081cc8f19ad55c8a64e3f7282a21266d05544450bffc3a5"}, + {file = "propcache-0.2.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:25c8d773a62ce0451b020c7b29a35cfbc05de8b291163a7a0f3b7904f27253e6"}, + {file = "propcache-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:375a12d7556d462dc64d70475a9ee5982465fbb3d2b364f16b86ba9135793638"}, + {file = "propcache-0.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1ec43d76b9677637a89d6ab86e1fef70d739217fefa208c65352ecf0282be957"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f45eec587dafd4b2d41ac189c2156461ebd0c1082d2fe7013571598abb8505d1"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc092ba439d91df90aea38168e11f75c655880c12782facf5cf9c00f3d42b562"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fa1076244f54bb76e65e22cb6910365779d5c3d71d1f18b275f1dfc7b0d71b4d"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:682a7c79a2fbf40f5dbb1eb6bfe2cd865376deeac65acf9beb607505dced9e12"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e40876731f99b6f3c897b66b803c9e1c07a989b366c6b5b475fafd1f7ba3fb8"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:363ea8cd3c5cb6679f1c2f5f1f9669587361c062e4899fce56758efa928728f8"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:140fbf08ab3588b3468932974a9331aff43c0ab8a2ec2c608b6d7d1756dbb6cb"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e70fac33e8b4ac63dfc4c956fd7d85a0b1139adcfc0d964ce288b7c527537fea"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:b33d7a286c0dc1a15f5fc864cc48ae92a846df287ceac2dd499926c3801054a6"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:f6d5749fdd33d90e34c2efb174c7e236829147a2713334d708746e94c4bde40d"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:22aa8f2272d81d9317ff5756bb108021a056805ce63dd3630e27d042c8092798"}, + {file = "propcache-0.2.0-cp39-cp39-win32.whl", hash = "sha256:73e4b40ea0eda421b115248d7e79b59214411109a5bc47d0d48e4c73e3b8fcf9"}, + {file = "propcache-0.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:9517d5e9e0731957468c29dbfd0f976736a0e55afaea843726e887f36fe017df"}, + {file = "propcache-0.2.0-py3-none-any.whl", hash = "sha256:2ccc28197af5313706511fab3a8b66dcd6da067a1331372c82ea1cb74285e036"}, + {file = "propcache-0.2.0.tar.gz", hash = "sha256:df81779732feb9d01e5d513fad0122efb3d53bbc75f61b2a4f29a020bc985e70"}, +] + [[package]] name = "protobuf" version = "3.20.3" @@ -1456,13 +2363,13 @@ files = [ [[package]] name = "pure-eval" -version = "0.2.2" +version = "0.2.3" description = "Safely evaluate AST nodes without side effects" optional = false python-versions = "*" files = [ - {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, - {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, + {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, + {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, ] [package.extras] @@ -1470,24 +2377,24 @@ tests = ["pytest"] [[package]] name = "pyasn1" -version = "0.6.0" +version = "0.6.1" description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" optional = false python-versions = ">=3.8" files = [ - {file = "pyasn1-0.6.0-py2.py3-none-any.whl", hash = "sha256:cca4bb0f2df5504f02f6f8a775b6e416ff9b0b3b16f7ee80b5a3153d9b804473"}, - {file = "pyasn1-0.6.0.tar.gz", hash = "sha256:3a35ab2c4b5ef98e17dfdec8ab074046fbda76e281c5a706ccd82328cfc8f64c"}, + {file = "pyasn1-0.6.1-py3-none-any.whl", hash = "sha256:0d632f46f2ba09143da3a8afe9e33fb6f92fa2320ab7e886e2d0f7672af84629"}, + {file = "pyasn1-0.6.1.tar.gz", hash = "sha256:6f580d2bdd84365380830acf45550f2511469f673cb4a5ae3857a3170128b034"}, ] [[package]] name = "pyasn1-modules" -version = "0.4.0" +version = "0.4.1" description = "A collection of ASN.1-based protocols modules" optional = false python-versions = ">=3.8" files = [ - {file = "pyasn1_modules-0.4.0-py3-none-any.whl", hash = "sha256:be04f15b66c206eed667e0bb5ab27e2b1855ea54a842e5037738099e8ca4ae0b"}, - {file = "pyasn1_modules-0.4.0.tar.gz", hash = "sha256:831dbcea1b177b28c9baddf4c6d1013c24c3accd14a1873fffaa6a2e905f17b6"}, + {file = "pyasn1_modules-0.4.1-py3-none-any.whl", hash = "sha256:49bfa96b45a292b711e986f222502c1c9a5e1f4e568fc30e2574a6c7d07838fd"}, + {file = "pyasn1_modules-0.4.1.tar.gz", hash = "sha256:c28e2dbf9c06ad61c71a075c7e0f9fd0f1b0bb2d2ad4377f240d33ac2ab60a7c"}, ] [package.dependencies] @@ -1504,6 +2411,146 @@ files = [ {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, ] +[[package]] +name = "pydantic" +version = "2.9.2" +description = "Data validation using Python type hints" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"}, + {file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"}, +] + +[package.dependencies] +annotated-types = ">=0.6.0" +pydantic-core = "2.23.4" +typing-extensions = {version = ">=4.6.1", markers = "python_version < \"3.13\""} + +[package.extras] +email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] + +[[package]] +name = "pydantic-core" +version = "2.23.4" +description = "Core functionality for Pydantic validation and serialization" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"}, + {file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"}, + {file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"}, + {file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"}, + {file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"}, + {file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"}, + {file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"}, + {file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"}, + {file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"}, + {file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"}, + {file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"}, + {file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"}, + {file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"}, + {file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"}, +] + +[package.dependencies] +typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" + +[[package]] +name = "pyg-lib" +version = "0.4.0+pt21cpu" +description = "Low-Level Graph Neural Network Operators for PyG" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyg_lib-0.4.0+pt21cpu-cp38-cp38-linux_x86_64.whl", hash = "sha256:fcf82fb62f40a9c0b82c47bbbd641ed22bc39c10ecd310dbdfcf79b329b3127f"}, +] + +[package.extras] +dev = ["pre-commit"] +test = ["pytest", "pytest-cov"] +triton = ["triton"] + +[package.source] +type = "url" +url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/pyg_lib-0.4.0%2Bpt21cpu-cp38-cp38-linux_x86_64.whl" + [[package]] name = "pygments" version = "2.18.0" @@ -1520,13 +2567,13 @@ windows-terminal = ["colorama (>=0.4.6)"] [[package]] name = "pyparsing" -version = "3.1.2" +version = "3.1.4" description = "pyparsing module - Classes and methods to define and execute parsing grammars" optional = false python-versions = ">=3.6.8" files = [ - {file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"}, - {file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"}, + {file = "pyparsing-3.1.4-py3-none-any.whl", hash = "sha256:a6a7ee4235a3f944aa1fa2249307708f893fe5717dc603503c6c7969c070fb7c"}, + {file = "pyparsing-3.1.4.tar.gz", hash = "sha256:f86ec8d1a83f11977c9a6ea7598e8c27fc5cddfa5b07ea2241edbbde1d7bc032"}, ] [package.extras] @@ -1562,133 +2609,220 @@ numpy = "*" [[package]] name = "pytz" -version = "2024.1" +version = "2024.2" description = "World timezone definitions, modern and historical" optional = false python-versions = "*" files = [ - {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, - {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, + {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, + {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, ] [[package]] name = "pywin32" -version = "306" +version = "308" description = "Python for Window Extensions" optional = false python-versions = "*" files = [ - {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, - {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, - {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, - {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, - {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, - {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, - {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, - {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, - {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, - {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, - {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, - {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, - {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, - {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, + {file = "pywin32-308-cp310-cp310-win32.whl", hash = "sha256:796ff4426437896550d2981b9c2ac0ffd75238ad9ea2d3bfa67a1abd546d262e"}, + {file = "pywin32-308-cp310-cp310-win_amd64.whl", hash = "sha256:4fc888c59b3c0bef905ce7eb7e2106a07712015ea1c8234b703a088d46110e8e"}, + {file = "pywin32-308-cp310-cp310-win_arm64.whl", hash = "sha256:a5ab5381813b40f264fa3495b98af850098f814a25a63589a8e9eb12560f450c"}, + {file = "pywin32-308-cp311-cp311-win32.whl", hash = "sha256:5d8c8015b24a7d6855b1550d8e660d8daa09983c80e5daf89a273e5c6fb5095a"}, + {file = "pywin32-308-cp311-cp311-win_amd64.whl", hash = "sha256:575621b90f0dc2695fec346b2d6302faebd4f0f45c05ea29404cefe35d89442b"}, + {file = "pywin32-308-cp311-cp311-win_arm64.whl", hash = "sha256:100a5442b7332070983c4cd03f2e906a5648a5104b8a7f50175f7906efd16bb6"}, + {file = "pywin32-308-cp312-cp312-win32.whl", hash = "sha256:587f3e19696f4bf96fde9d8a57cec74a57021ad5f204c9e627e15c33ff568897"}, + {file = "pywin32-308-cp312-cp312-win_amd64.whl", hash = "sha256:00b3e11ef09ede56c6a43c71f2d31857cf7c54b0ab6e78ac659497abd2834f47"}, + {file = "pywin32-308-cp312-cp312-win_arm64.whl", hash = "sha256:9b4de86c8d909aed15b7011182c8cab38c8850de36e6afb1f0db22b8959e3091"}, + {file = "pywin32-308-cp313-cp313-win32.whl", hash = "sha256:1c44539a37a5b7b21d02ab34e6a4d314e0788f1690d65b48e9b0b89f31abbbed"}, + {file = "pywin32-308-cp313-cp313-win_amd64.whl", hash = "sha256:fd380990e792eaf6827fcb7e187b2b4b1cede0585e3d0c9e84201ec27b9905e4"}, + {file = "pywin32-308-cp313-cp313-win_arm64.whl", hash = "sha256:ef313c46d4c18dfb82a2431e3051ac8f112ccee1a34f29c263c583c568db63cd"}, + {file = "pywin32-308-cp37-cp37m-win32.whl", hash = "sha256:1f696ab352a2ddd63bd07430080dd598e6369152ea13a25ebcdd2f503a38f1ff"}, + {file = "pywin32-308-cp37-cp37m-win_amd64.whl", hash = "sha256:13dcb914ed4347019fbec6697a01a0aec61019c1046c2b905410d197856326a6"}, + {file = "pywin32-308-cp38-cp38-win32.whl", hash = "sha256:5794e764ebcabf4ff08c555b31bd348c9025929371763b2183172ff4708152f0"}, + {file = "pywin32-308-cp38-cp38-win_amd64.whl", hash = "sha256:3b92622e29d651c6b783e368ba7d6722b1634b8e70bd376fd7610fe1992e19de"}, + {file = "pywin32-308-cp39-cp39-win32.whl", hash = "sha256:7873ca4dc60ab3287919881a7d4f88baee4a6e639aa6962de25a98ba6b193341"}, + {file = "pywin32-308-cp39-cp39-win_amd64.whl", hash = "sha256:71b3322d949b4cc20776436a9c9ba0eeedcbc9c650daa536df63f0ff111bb920"}, +] + +[[package]] +name = "pyyaml" +version = "6.0.2" +description = "YAML parser and emitter for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, + {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, + {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, + {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, + {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, + {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, + {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, + {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, + {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, ] [[package]] name = "pyzmq" -version = "26.0.3" +version = "26.2.0" description = "Python bindings for 0MQ" optional = false python-versions = ">=3.7" files = [ - {file = "pyzmq-26.0.3-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:44dd6fc3034f1eaa72ece33588867df9e006a7303725a12d64c3dff92330f625"}, - {file = "pyzmq-26.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:acb704195a71ac5ea5ecf2811c9ee19ecdc62b91878528302dd0be1b9451cc90"}, - {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dbb9c997932473a27afa93954bb77a9f9b786b4ccf718d903f35da3232317de"}, - {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6bcb34f869d431799c3ee7d516554797f7760cb2198ecaa89c3f176f72d062be"}, - {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38ece17ec5f20d7d9b442e5174ae9f020365d01ba7c112205a4d59cf19dc38ee"}, - {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:ba6e5e6588e49139a0979d03a7deb9c734bde647b9a8808f26acf9c547cab1bf"}, - {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3bf8b000a4e2967e6dfdd8656cd0757d18c7e5ce3d16339e550bd462f4857e59"}, - {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:2136f64fbb86451dbbf70223635a468272dd20075f988a102bf8a3f194a411dc"}, - {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e8918973fbd34e7814f59143c5f600ecd38b8038161239fd1a3d33d5817a38b8"}, - {file = "pyzmq-26.0.3-cp310-cp310-win32.whl", hash = "sha256:0aaf982e68a7ac284377d051c742610220fd06d330dcd4c4dbb4cdd77c22a537"}, - {file = "pyzmq-26.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:f1a9b7d00fdf60b4039f4455afd031fe85ee8305b019334b72dcf73c567edc47"}, - {file = "pyzmq-26.0.3-cp310-cp310-win_arm64.whl", hash = "sha256:80b12f25d805a919d53efc0a5ad7c0c0326f13b4eae981a5d7b7cc343318ebb7"}, - {file = "pyzmq-26.0.3-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:a72a84570f84c374b4c287183debc776dc319d3e8ce6b6a0041ce2e400de3f32"}, - {file = "pyzmq-26.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7ca684ee649b55fd8f378127ac8462fb6c85f251c2fb027eb3c887e8ee347bcd"}, - {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e222562dc0f38571c8b1ffdae9d7adb866363134299264a1958d077800b193b7"}, - {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f17cde1db0754c35a91ac00b22b25c11da6eec5746431d6e5092f0cd31a3fea9"}, - {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b7c0c0b3244bb2275abe255d4a30c050d541c6cb18b870975553f1fb6f37527"}, - {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:ac97a21de3712afe6a6c071abfad40a6224fd14fa6ff0ff8d0c6e6cd4e2f807a"}, - {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:88b88282e55fa39dd556d7fc04160bcf39dea015f78e0cecec8ff4f06c1fc2b5"}, - {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:72b67f966b57dbd18dcc7efbc1c7fc9f5f983e572db1877081f075004614fcdd"}, - {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f4b6cecbbf3b7380f3b61de3a7b93cb721125dc125c854c14ddc91225ba52f83"}, - {file = "pyzmq-26.0.3-cp311-cp311-win32.whl", hash = "sha256:eed56b6a39216d31ff8cd2f1d048b5bf1700e4b32a01b14379c3b6dde9ce3aa3"}, - {file = "pyzmq-26.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:3191d312c73e3cfd0f0afdf51df8405aafeb0bad71e7ed8f68b24b63c4f36500"}, - {file = "pyzmq-26.0.3-cp311-cp311-win_arm64.whl", hash = "sha256:b6907da3017ef55139cf0e417c5123a84c7332520e73a6902ff1f79046cd3b94"}, - {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:068ca17214038ae986d68f4a7021f97e187ed278ab6dccb79f837d765a54d753"}, - {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:7821d44fe07335bea256b9f1f41474a642ca55fa671dfd9f00af8d68a920c2d4"}, - {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eeb438a26d87c123bb318e5f2b3d86a36060b01f22fbdffd8cf247d52f7c9a2b"}, - {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:69ea9d6d9baa25a4dc9cef5e2b77b8537827b122214f210dd925132e34ae9b12"}, - {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7daa3e1369355766dea11f1d8ef829905c3b9da886ea3152788dc25ee6079e02"}, - {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:6ca7a9a06b52d0e38ccf6bca1aeff7be178917893f3883f37b75589d42c4ac20"}, - {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1b7d0e124948daa4d9686d421ef5087c0516bc6179fdcf8828b8444f8e461a77"}, - {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:e746524418b70f38550f2190eeee834db8850088c834d4c8406fbb9bc1ae10b2"}, - {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:6b3146f9ae6af82c47a5282ac8803523d381b3b21caeae0327ed2f7ecb718798"}, - {file = "pyzmq-26.0.3-cp312-cp312-win32.whl", hash = "sha256:2b291d1230845871c00c8462c50565a9cd6026fe1228e77ca934470bb7d70ea0"}, - {file = "pyzmq-26.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:926838a535c2c1ea21c903f909a9a54e675c2126728c21381a94ddf37c3cbddf"}, - {file = "pyzmq-26.0.3-cp312-cp312-win_arm64.whl", hash = "sha256:5bf6c237f8c681dfb91b17f8435b2735951f0d1fad10cc5dfd96db110243370b"}, - {file = "pyzmq-26.0.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0c0991f5a96a8e620f7691e61178cd8f457b49e17b7d9cfa2067e2a0a89fc1d5"}, - {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dbf012d8fcb9f2cf0643b65df3b355fdd74fc0035d70bb5c845e9e30a3a4654b"}, - {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:01fbfbeb8249a68d257f601deb50c70c929dc2dfe683b754659569e502fbd3aa"}, - {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c8eb19abe87029c18f226d42b8a2c9efdd139d08f8bf6e085dd9075446db450"}, - {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:5344b896e79800af86ad643408ca9aa303a017f6ebff8cee5a3163c1e9aec987"}, - {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:204e0f176fd1d067671157d049466869b3ae1fc51e354708b0dc41cf94e23a3a"}, - {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a42db008d58530efa3b881eeee4991146de0b790e095f7ae43ba5cc612decbc5"}, - {file = "pyzmq-26.0.3-cp37-cp37m-win32.whl", hash = "sha256:8d7a498671ca87e32b54cb47c82a92b40130a26c5197d392720a1bce1b3c77cf"}, - {file = "pyzmq-26.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:3b4032a96410bdc760061b14ed6a33613ffb7f702181ba999df5d16fb96ba16a"}, - {file = "pyzmq-26.0.3-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2cc4e280098c1b192c42a849de8de2c8e0f3a84086a76ec5b07bfee29bda7d18"}, - {file = "pyzmq-26.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5bde86a2ed3ce587fa2b207424ce15b9a83a9fa14422dcc1c5356a13aed3df9d"}, - {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:34106f68e20e6ff253c9f596ea50397dbd8699828d55e8fa18bd4323d8d966e6"}, - {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ebbbd0e728af5db9b04e56389e2299a57ea8b9dd15c9759153ee2455b32be6ad"}, - {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6b1d1c631e5940cac5a0b22c5379c86e8df6a4ec277c7a856b714021ab6cfad"}, - {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e891ce81edd463b3b4c3b885c5603c00141151dd9c6936d98a680c8c72fe5c67"}, - {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:9b273ecfbc590a1b98f014ae41e5cf723932f3b53ba9367cfb676f838038b32c"}, - {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b32bff85fb02a75ea0b68f21e2412255b5731f3f389ed9aecc13a6752f58ac97"}, - {file = "pyzmq-26.0.3-cp38-cp38-win32.whl", hash = "sha256:f6c21c00478a7bea93caaaef9e7629145d4153b15a8653e8bb4609d4bc70dbfc"}, - {file = "pyzmq-26.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:3401613148d93ef0fd9aabdbddb212de3db7a4475367f49f590c837355343972"}, - {file = "pyzmq-26.0.3-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:2ed8357f4c6e0daa4f3baf31832df8a33334e0fe5b020a61bc8b345a3db7a606"}, - {file = "pyzmq-26.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c1c8f2a2ca45292084c75bb6d3a25545cff0ed931ed228d3a1810ae3758f975f"}, - {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:b63731993cdddcc8e087c64e9cf003f909262b359110070183d7f3025d1c56b5"}, - {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b3cd31f859b662ac5d7f4226ec7d8bd60384fa037fc02aee6ff0b53ba29a3ba8"}, - {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:115f8359402fa527cf47708d6f8a0f8234f0e9ca0cab7c18c9c189c194dbf620"}, - {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:715bdf952b9533ba13dfcf1f431a8f49e63cecc31d91d007bc1deb914f47d0e4"}, - {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:e1258c639e00bf5e8a522fec6c3eaa3e30cf1c23a2f21a586be7e04d50c9acab"}, - {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:15c59e780be8f30a60816a9adab900c12a58d79c1ac742b4a8df044ab2a6d920"}, - {file = "pyzmq-26.0.3-cp39-cp39-win32.whl", hash = "sha256:d0cdde3c78d8ab5b46595054e5def32a755fc028685add5ddc7403e9f6de9879"}, - {file = "pyzmq-26.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:ce828058d482ef860746bf532822842e0ff484e27f540ef5c813d516dd8896d2"}, - {file = "pyzmq-26.0.3-cp39-cp39-win_arm64.whl", hash = "sha256:788f15721c64109cf720791714dc14afd0f449d63f3a5487724f024345067381"}, - {file = "pyzmq-26.0.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2c18645ef6294d99b256806e34653e86236eb266278c8ec8112622b61db255de"}, - {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7e6bc96ebe49604df3ec2c6389cc3876cabe475e6bfc84ced1bf4e630662cb35"}, - {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:971e8990c5cc4ddcff26e149398fc7b0f6a042306e82500f5e8db3b10ce69f84"}, - {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8416c23161abd94cc7da80c734ad7c9f5dbebdadfdaa77dad78244457448223"}, - {file = "pyzmq-26.0.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:082a2988364b60bb5de809373098361cf1dbb239623e39e46cb18bc035ed9c0c"}, - {file = "pyzmq-26.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d57dfbf9737763b3a60d26e6800e02e04284926329aee8fb01049635e957fe81"}, - {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:77a85dca4c2430ac04dc2a2185c2deb3858a34fe7f403d0a946fa56970cf60a1"}, - {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4c82a6d952a1d555bf4be42b6532927d2a5686dd3c3e280e5f63225ab47ac1f5"}, - {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4496b1282c70c442809fc1b151977c3d967bfb33e4e17cedbf226d97de18f709"}, - {file = "pyzmq-26.0.3-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:e4946d6bdb7ba972dfda282f9127e5756d4f299028b1566d1245fa0d438847e6"}, - {file = "pyzmq-26.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:03c0ae165e700364b266876d712acb1ac02693acd920afa67da2ebb91a0b3c09"}, - {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:3e3070e680f79887d60feeda051a58d0ac36622e1759f305a41059eff62c6da7"}, - {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6ca08b840fe95d1c2bd9ab92dac5685f949fc6f9ae820ec16193e5ddf603c3b2"}, - {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e76654e9dbfb835b3518f9938e565c7806976c07b37c33526b574cc1a1050480"}, - {file = "pyzmq-26.0.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:871587bdadd1075b112e697173e946a07d722459d20716ceb3d1bd6c64bd08ce"}, - {file = "pyzmq-26.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d0a2d1bd63a4ad79483049b26514e70fa618ce6115220da9efdff63688808b17"}, - {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0270b49b6847f0d106d64b5086e9ad5dc8a902413b5dbbb15d12b60f9c1747a4"}, - {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:703c60b9910488d3d0954ca585c34f541e506a091a41930e663a098d3b794c67"}, - {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74423631b6be371edfbf7eabb02ab995c2563fee60a80a30829176842e71722a"}, - {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:4adfbb5451196842a88fda3612e2c0414134874bffb1c2ce83ab4242ec9e027d"}, - {file = "pyzmq-26.0.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3516119f4f9b8671083a70b6afaa0a070f5683e431ab3dc26e9215620d7ca1ad"}, - {file = "pyzmq-26.0.3.tar.gz", hash = "sha256:dba7d9f2e047dfa2bca3b01f4f84aa5246725203d6284e3790f2ca15fba6b40a"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea"}, + {file = "pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6"}, + {file = "pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b"}, + {file = "pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e"}, + {file = "pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0"}, + {file = "pyzmq-26.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3b55a4229ce5da9497dd0452b914556ae58e96a4381bb6f59f1305dfd7e53fc8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cb3a6460cdea8fe8194a76de8895707e61ded10ad0be97188cc8463ffa7e3a8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ab5cad923cc95c87bffee098a27856c859bd5d0af31bd346035aa816b081fe1"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ed69074a610fad1c2fda66180e7b2edd4d31c53f2d1872bc2d1211563904cd9"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cccba051221b916a4f5e538997c45d7d136a5646442b1231b916d0164067ea27"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0eaa83fc4c1e271c24eaf8fb083cbccef8fde77ec8cd45f3c35a9a123e6da097"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9edda2df81daa129b25a39b86cb57dfdfe16f7ec15b42b19bfac503360d27a93"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win32.whl", hash = "sha256:ea0eb6af8a17fa272f7b98d7bebfab7836a0d62738e16ba380f440fceca2d951"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:4ff9dc6bc1664bb9eec25cd17506ef6672d506115095411e237d571e92a58231"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2eb7735ee73ca1b0d71e0e67c3739c689067f055c764f73aac4cc8ecf958ee3f"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a534f43bc738181aa7cbbaf48e3eca62c76453a40a746ab95d4b27b1111a7d2"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:aedd5dd8692635813368e558a05266b995d3d020b23e49581ddd5bbe197a8ab6"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8be4700cd8bb02cc454f630dcdf7cfa99de96788b80c51b60fe2fe1dac480289"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fcc03fa4997c447dce58264e93b5aa2d57714fbe0f06c07b7785ae131512732"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:402b190912935d3db15b03e8f7485812db350d271b284ded2b80d2e5704be780"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8685fa9c25ff00f550c1fec650430c4b71e4e48e8d852f7ddcf2e48308038640"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:76589c020680778f06b7e0b193f4b6dd66d470234a16e1df90329f5e14a171cd"}, + {file = "pyzmq-26.2.0-cp38-cp38-win32.whl", hash = "sha256:8423c1877d72c041f2c263b1ec6e34360448decfb323fa8b94e85883043ef988"}, + {file = "pyzmq-26.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:76589f2cd6b77b5bdea4fca5992dc1c23389d68b18ccc26a53680ba2dc80ff2f"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b1d464cb8d72bfc1a3adc53305a63a8e0cac6bc8c5a07e8ca190ab8d3faa43c2"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4da04c48873a6abdd71811c5e163bd656ee1b957971db7f35140a2d573f6949c"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d049df610ac811dcffdc147153b414147428567fbbc8be43bb8885f04db39d98"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c811cfcd6a9bf680236c40c6f617187515269ab2912f3d7e8c0174898e2519db"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6835dd60355593de10350394242b5757fbbd88b25287314316f266e24c61d073"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc6bee759a6bddea5db78d7dcd609397449cb2d2d6587f48f3ca613b19410cfc"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c530e1eecd036ecc83c3407f77bb86feb79916d4a33d11394b8234f3bd35b940"}, + {file = "pyzmq-26.2.0-cp39-cp39-win32.whl", hash = "sha256:367b4f689786fca726ef7a6c5ba606958b145b9340a5e4808132cc65759abd44"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e6fa2e3e683f34aea77de8112f6483803c96a44fd726d7358b9888ae5bb394ec"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:7445be39143a8aa4faec43b076e06944b8f9d0701b669df4af200531b21e40bb"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2ea4ad4e6a12e454de05f2949d4beddb52460f3de7c8b9d5c46fbb7d7222e02c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fc4f7a173a5609631bb0c42c23d12c49df3966f89f496a51d3eb0ec81f4519d6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:878206a45202247781472a2d99df12a176fef806ca175799e1c6ad263510d57c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17c412bad2eb9468e876f556eb4ee910e62d721d2c7a53c7fa31e643d35352e6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0d987a3ae5a71c6226b203cfd298720e0086c7fe7c74f35fa8edddfbd6597eed"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:39887ac397ff35b7b775db7201095fc6310a35fdbae85bac4523f7eb3b840e20"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fdb5b3e311d4d4b0eb8b3e8b4d1b0a512713ad7e6a68791d0923d1aec433d919"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:226af7dcb51fdb0109f0016449b357e182ea0ceb6b47dfb5999d569e5db161d5"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bed0e799e6120b9c32756203fb9dfe8ca2fb8467fed830c34c877e25638c3fc"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:29c7947c594e105cb9e6c466bace8532dc1ca02d498684128b339799f5248277"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cdeabcff45d1c219636ee2e54d852262e5c2e085d6cb476d938aee8d921356b3"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35cffef589bcdc587d06f9149f8d5e9e8859920a071df5a2671de2213bef592a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18c8dc3b7468d8b4bdf60ce9d7141897da103c7a4690157b32b60acb45e333e6"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7133d0a1677aec369d67dd78520d3fa96dd7f3dcec99d66c1762870e5ea1a50a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a96179a24b14fa6428cbfc08641c779a53f8fcec43644030328f44034c7f1f4"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4f78c88905461a9203eac9faac157a2a0dbba84a0fd09fd29315db27be40af9f"}, + {file = "pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f"}, ] [package.dependencies] @@ -1833,18 +2967,23 @@ test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeo [[package]] name = "setuptools" -version = "70.1.1" +version = "75.1.0" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "setuptools-70.1.1-py3-none-any.whl", hash = "sha256:a58a8fde0541dab0419750bcc521fbdf8585f6e5cb41909df3a472ef7b81ca95"}, - {file = "setuptools-70.1.1.tar.gz", hash = "sha256:937a48c7cdb7a21eb53cd7f9b59e525503aa8abaf3584c730dc5f7a5bec3a650"}, + {file = "setuptools-75.1.0-py3-none-any.whl", hash = "sha256:35ab7fd3bcd95e6b7fd704e4a1539513edad446c097797f2985e0e4b960772f2"}, + {file = "setuptools-75.1.0.tar.gz", hash = "sha256:d59a21b17a275fb872a9c3dae73963160ae079f1049ed956880cd7c09b120538"}, ] [package.extras] -docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] -testing = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.10.0)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.1)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.collections", "jaraco.functools", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] [[package]] name = "six" @@ -1859,13 +2998,13 @@ files = [ [[package]] name = "smart-open" -version = "7.0.4" +version = "7.0.5" description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)" optional = false python-versions = "<4.0,>=3.7" files = [ - {file = "smart_open-7.0.4-py3-none-any.whl", hash = "sha256:4e98489932b3372595cddc075e6033194775165702887216b65eba760dfd8d47"}, - {file = "smart_open-7.0.4.tar.gz", hash = "sha256:62b65852bdd1d1d516839fcb1f6bc50cd0f16e05b4ec44b52f43d38bcb838524"}, + {file = "smart_open-7.0.5-py3-none-any.whl", hash = "sha256:8523ed805c12dff3eaa50e9c903a6cb0ae78800626631c5fe7ea073439847b89"}, + {file = "smart_open-7.0.5.tar.gz", hash = "sha256:d3672003b1dbc85e2013e4983b88eb9a5ccfd389b0d4e5015f39a9ee5620ec18"}, ] [package.dependencies] @@ -1878,7 +3017,7 @@ gcs = ["google-cloud-storage (>=2.6.0)"] http = ["requests"] s3 = ["boto3"] ssh = ["paramiko"] -test = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "paramiko", "pytest", "pytest-rerunfailures", "requests", "responses", "zstandard"] +test = ["awscli", "azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "numpy", "paramiko", "pyopenssl", "pytest", "pytest-benchmark", "pytest-rerunfailures", "requests", "responses", "zstandard"] webhdfs = ["requests"] zst = ["zstandard"] @@ -1928,6 +3067,23 @@ igraph = ["python-igraph"] neo4j = ["py2neo"] test = ["black (>=19.3b0)", "commonmark (==0.9.1)", "coverage (>=4.4,<5.0)", "nbconvert (>=5.5.0)", "papermill (>=2.0.0)", "pytest (==5.3.1)", "pytest-benchmark (>=3.1)", "pytest-cov (>=2.6.0)", "rdflib", "treon (>=0.1.2)"] +[[package]] +name = "sympy" +version = "1.13.3" +description = "Computer algebra system (CAS) in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "sympy-1.13.3-py3-none-any.whl", hash = "sha256:54612cf55a62755ee71824ce692986f23c88ffa77207b30c1368eda4a7060f73"}, + {file = "sympy-1.13.3.tar.gz", hash = "sha256:b27fd2c6530e0ab39e275fc9b683895367e51d5da91baa8d3d64db2565fec4d9"}, +] + +[package.dependencies] +mpmath = ">=1.1.0,<1.4" + +[package.extras] +dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] + [[package]] name = "tensorboard" version = "2.14.0" @@ -2080,6 +3236,175 @@ files = [ {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, ] +[[package]] +name = "torch" +version = "2.1.2" +description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "torch-2.1.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:3a871edd6c02dae77ad810335c0833391c1a4ce49af21ea8cf0f6a5d2096eea8"}, + {file = "torch-2.1.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:bef6996c27d8f6e92ea4e13a772d89611da0e103b48790de78131e308cf73076"}, + {file = "torch-2.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:0e13034fd5fb323cbbc29e56d0637a3791e50dd589616f40c79adfa36a5a35a1"}, + {file = "torch-2.1.2-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:d9b535cad0df3d13997dbe8bd68ac33e0e3ae5377639c9881948e40794a61403"}, + {file = "torch-2.1.2-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:f9a55d55af02826ebfbadf4e9b682f0f27766bc33df8236b48d28d705587868f"}, + {file = "torch-2.1.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:a6ebbe517097ef289cc7952783588c72de071d4b15ce0f8b285093f0916b1162"}, + {file = "torch-2.1.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:8f32ce591616a30304f37a7d5ea80b69ca9e1b94bba7f308184bf616fdaea155"}, + {file = "torch-2.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:e0ee6cf90c8970e05760f898d58f9ac65821c37ffe8b04269ec787aa70962b69"}, + {file = "torch-2.1.2-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:76d37967c31c99548ad2c4d3f2cf191db48476f2e69b35a0937137116da356a1"}, + {file = "torch-2.1.2-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:e2d83f07b4aac983453ea5bf8f9aa9dacf2278a8d31247f5d9037f37befc60e4"}, + {file = "torch-2.1.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:f41fe0c7ecbf903a568c73486139a75cfab287a0f6c17ed0698fdea7a1e8641d"}, + {file = "torch-2.1.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:e3225f47d50bb66f756fe9196a768055d1c26b02154eb1f770ce47a2578d3aa7"}, + {file = "torch-2.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:33d59cd03cb60106857f6c26b36457793637512998666ee3ce17311f217afe2b"}, + {file = "torch-2.1.2-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:8e221deccd0def6c2badff6be403e0c53491805ed9915e2c029adbcdb87ab6b5"}, + {file = "torch-2.1.2-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:05b18594f60a911a0c4f023f38a8bda77131fba5fd741bda626e97dcf5a3dd0a"}, + {file = "torch-2.1.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:9ca96253b761e9aaf8e06fb30a66ee301aecbf15bb5a303097de1969077620b6"}, + {file = "torch-2.1.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:d93ba70f67b08c2ae5598ee711cbc546a1bc8102cef938904b8c85c2089a51a0"}, + {file = "torch-2.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:255b50bc0608db177e6a3cc118961d77de7e5105f07816585fa6f191f33a9ff3"}, + {file = "torch-2.1.2-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6984cd5057c0c977b3c9757254e989d3f1124f4ce9d07caa6cb637783c71d42a"}, + {file = "torch-2.1.2-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:bc195d7927feabc0eb7c110e457c955ed2ab616f3c7c28439dd4188cf589699f"}, +] + +[package.dependencies] +filelock = "*" +fsspec = "*" +jinja2 = "*" +networkx = "*" +nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cudnn-cu12 = {version = "8.9.2.26", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nccl-cu12 = {version = "2.18.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +sympy = "*" +triton = {version = "2.1.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +typing-extensions = "*" + +[package.extras] +dynamo = ["jinja2"] +opt-einsum = ["opt-einsum (>=3.3)"] + +[[package]] +name = "torch-geometric" +version = "2.6.1" +description = "Graph Neural Network Library for PyTorch" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torch_geometric-2.6.1-py3-none-any.whl", hash = "sha256:8faeb353f9655f7dbec44c5e0b44c721773bdfb279994da96b9b8b12fd30f427"}, + {file = "torch_geometric-2.6.1.tar.gz", hash = "sha256:1f18f9d0fc4d2239d526221e4f22606a4a3895b5d965a9856d27610a3df662c6"}, +] + +[package.dependencies] +aiohttp = "*" +fsspec = "*" +jinja2 = "*" +numpy = "*" +psutil = ">=5.8.0" +pyparsing = "*" +requests = "*" +tqdm = "*" + +[package.extras] +benchmark = ["matplotlib", "networkx", "pandas", "protobuf (<4.21)", "wandb"] +dev = ["ipython", "matplotlib-inline", "pre-commit", "torch_geometric[test]"] +full = ["ase", "captum (<0.7.0)", "graphviz", "h5py", "matplotlib", "networkx", "numba (<0.60.0)", "opt_einsum", "pandas", "pgmpy", "pynndescent", "pytorch-memlab", "rdflib", "rdkit", "scikit-image", "scikit-learn", "scipy", "statsmodels", "sympy", "tabulate", "torch_geometric[graphgym,modelhub]", "torchmetrics", "trimesh"] +graphgym = ["protobuf (<4.21)", "pytorch-lightning (<2.3.0)", "yacs"] +modelhub = ["huggingface_hub"] +test = ["onnx", "onnxruntime", "pytest", "pytest-cov"] + +[[package]] +name = "torch-sparse" +version = "0.6.18+pt21cpu" +description = "PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torch_sparse-0.6.18+pt21cpu-cp38-cp38-linux_x86_64.whl", hash = "sha256:fe2ea180baa399ebb1d695cad1b36e1ffb543e04af30f7880edfa626fbf69e9e"}, +] + +[package.dependencies] +scipy = "*" + +[package.extras] +test = ["pytest", "pytest-cov"] + +[package.source] +type = "url" +url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl" + +[[package]] +name = "torchmetrics" +version = "1.4.3" +description = "PyTorch native Metrics" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torchmetrics-1.4.3-py3-none-any.whl", hash = "sha256:76e67490231acef7f70cf36ab129df72fb2b0256dada7051001ab3b9f8699bf4"}, + {file = "torchmetrics-1.4.3.tar.gz", hash = "sha256:5554a19167e91f543afe82ff58a01059c8eec854359ad22896449c2c8fb0ad89"}, +] + +[package.dependencies] +lightning-utilities = ">=0.8.0" +numpy = ">1.20.0" +packaging = ">17.1" +torch = ">=1.10.0" +typing-extensions = {version = "*", markers = "python_version < \"3.9\""} + +[package.extras] +all = ["SciencePlots (>=2.0.0)", "gammatone (>1.0.0)", "ipadic (>=1.0.0)", "matplotlib (>=3.6.0)", "mecab-python3 (>=1.0.6)", "mypy (==1.11.2)", "nltk (>=3.8.2)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "regex (>=2021.9.24)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "torch (==2.4.1)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +audio = ["gammatone (>1.0.0)", "pesq (>=0.0.4)", "pystoi (>=0.3.0)", "torchaudio (>=0.10.0)"] +detection = ["pycocotools (>2.0.0)", "torchvision (>=0.8)"] +dev = ["SciencePlots (>=2.0.0)", "bert-score (==0.3.13)", "dython (==0.7.6)", "dython (>=0.7.8,<0.8.0)", "fairlearn", "fast-bss-eval (>=0.1.0)", "faster-coco-eval (==1.5.*)", "gammatone (>1.0.0)", "huggingface-hub (<0.26)", "ipadic (>=1.0.0)", "jiwer (>=2.3.0)", "kornia (>=0.6.7)", "lpips (<=0.1.4)", "matplotlib (>=3.6.0)", "mecab-ko (>=1.0.0)", "mecab-ko-dic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "mir-eval (>=0.6)", "monai (==1.3.2)", "mypy (==1.11.2)", "netcal (>1.0.0)", "nltk (>=3.8.2)", "numpy (<2.2.0)", "pandas (>1.4.0)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "pytorch-msssim (==1.0.0)", "regex (>=2021.9.24)", "rouge-score (>0.1.0)", "sacrebleu (>=2.3.0)", "scikit-image (>=0.19.0)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "sewar (>=0.4.4)", "statsmodels (>0.13.5)", "torch (==2.4.1)", "torch-complex (<0.5.0)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +image = ["scipy (>1.0.0)", "torch-fidelity (<=0.4.0)", "torchvision (>=0.8)"] +multimodal = ["piq (<=0.8.0)", "transformers (>=4.42.3)"] +text = ["ipadic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "nltk (>=3.8.2)", "regex (>=2021.9.24)", "sentencepiece (>=0.2.0)", "tqdm (>=4.41.0)", "transformers (>4.4.0)"] +typing = ["mypy (==1.11.2)", "torch (==2.4.1)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +visual = ["SciencePlots (>=2.0.0)", "matplotlib (>=3.6.0)"] + +[[package]] +name = "torchvision" +version = "0.16.2" +description = "image and video datasets and models for torch deep learning" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torchvision-0.16.2-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:bc86f2800cb2c0c1a09c581409cdd6bff66e62f103dc83fc63f73346264c3756"}, + {file = "torchvision-0.16.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b024bd412df6d3a007dcebf311a894eb3c5c21e1af80d12be382bbcb097a7c3a"}, + {file = "torchvision-0.16.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:e89f10f3c8351972b6e3fda95bc3e479ea8dbfc9dfcfd2c32902dbad4ba5cfc5"}, + {file = "torchvision-0.16.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:96c7583700112a410bdc4e1e4f118c429dab49c29c9a31a2cc3579bc9b08b19d"}, + {file = "torchvision-0.16.2-cp310-cp310-win_amd64.whl", hash = "sha256:9f4032ebb3277fb07ff6a9b818d50a547fb8fcd89d958cfd9e773322454bb688"}, + {file = "torchvision-0.16.2-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:67b1aaf8b8cb02ce75dd445f291a27c8036a502f8c0aa76e28c37a0faac2e153"}, + {file = "torchvision-0.16.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bef30d03e1d1c629761f4dca51d3b7d8a0dc0acce6f4068ab2a1634e8e7b64e0"}, + {file = "torchvision-0.16.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:e59cc7b2bd1ab5c0ce4ae382e4e37be8f1c174e8b5de2f6a23c170de9ae28495"}, + {file = "torchvision-0.16.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:e130b08cc9b3cc73a6c59d6edf032394a322f9579bfd21d14bc2e1d0999aa758"}, + {file = "torchvision-0.16.2-cp311-cp311-win_amd64.whl", hash = "sha256:8692ab1e48807e9604046a6f4beeb67b523294cee1b00828654bb0df2cfce2b2"}, + {file = "torchvision-0.16.2-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:b82732dcf876a37c852772342aa6ee3480c03bb3e2a802ae109fc5f7e28d26e9"}, + {file = "torchvision-0.16.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4b065143d1a720fe8a9077fd4be35d491f98819ec80b3dbbc3ec64d0b707a906"}, + {file = "torchvision-0.16.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:bc5f274e4ecd1b86062063cdf4fd385a1d39d147a3a2685fbbde9ff08bb720b8"}, + {file = "torchvision-0.16.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:335959c43b371c0474af34c1ef2a52efdc7603c45700d29e4475eeb02984170c"}, + {file = "torchvision-0.16.2-cp38-cp38-win_amd64.whl", hash = "sha256:7fd22d86e08eba321af70cad291020c2cdeac069b00ce88b923ca52e06174769"}, + {file = "torchvision-0.16.2-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:56115268b37f0b75364e3654e47ad9abc66ac34c1f9e5e3dfa89a22d6a40017a"}, + {file = "torchvision-0.16.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:82805f8445b094f9d1e770390ee6cc86855e89955e08ce34af2e2274fc0e5c45"}, + {file = "torchvision-0.16.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:3f4bd5fcbc361476e2e78016636ac7d5509e59d9962521f06eb98e6803898182"}, + {file = "torchvision-0.16.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:8199acdf8ab066a28b84a5b6f4d97b58976d9e164b1acc3a9d14fccfaf74bb3a"}, + {file = "torchvision-0.16.2-cp39-cp39-win_amd64.whl", hash = "sha256:41dd4fa9f176d563fe9f1b9adef3b7e582cdfb60ce8c9bc51b094a025be687c9"}, +] + +[package.dependencies] +numpy = "*" +pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" +requests = "*" +torch = "2.1.2" + +[package.extras] +scipy = ["scipy"] + [[package]] name = "tornado" version = "6.4.1" @@ -2102,13 +3427,13 @@ files = [ [[package]] name = "tqdm" -version = "4.66.4" +version = "4.66.5" description = "Fast, Extensible Progress Meter" optional = false python-versions = ">=3.7" files = [ - {file = "tqdm-4.66.4-py3-none-any.whl", hash = "sha256:b75ca56b413b030bc3f00af51fd2c1a1a5eac6a0c1cca83cbb37a5c52abce644"}, - {file = "tqdm-4.66.4.tar.gz", hash = "sha256:e4d936c9de8727928f3be6079590e97d9abfe8d39a590be678eb5919ffc186bb"}, + {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, + {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, ] [package.dependencies] @@ -2135,6 +3460,31 @@ files = [ docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] +[[package]] +name = "triton" +version = "2.1.0" +description = "A language and compiler for custom Deep Learning operations" +optional = false +python-versions = "*" +files = [ + {file = "triton-2.1.0-0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:66439923a30d5d48399b08a9eae10370f6c261a5ec864a64983bae63152d39d7"}, + {file = "triton-2.1.0-0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:919b06453f0033ea52c13eaf7833de0e57db3178d23d4e04f9fc71c4f2c32bf8"}, + {file = "triton-2.1.0-0-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ae4bb8a91de790e1866405211c4d618379781188f40d5c4c399766914e84cd94"}, + {file = "triton-2.1.0-0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:39f6fb6bdccb3e98f3152e3fbea724f1aeae7d749412bbb1fa9c441d474eba26"}, + {file = "triton-2.1.0-0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:21544e522c02005a626c8ad63d39bdff2f31d41069592919ef281e964ed26446"}, + {file = "triton-2.1.0-0-pp37-pypy37_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:143582ca31dd89cd982bd3bf53666bab1c7527d41e185f9e3d8a3051ce1b663b"}, + {file = "triton-2.1.0-0-pp38-pypy38_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:82fc5aeeedf6e36be4e4530cbdcba81a09d65c18e02f52dc298696d45721f3bd"}, + {file = "triton-2.1.0-0-pp39-pypy39_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:81a96d110a738ff63339fc892ded095b31bd0d205e3aace262af8400d40b6fa8"}, +] + +[package.dependencies] +filelock = "*" + +[package.extras] +build = ["cmake (>=3.18)", "lit"] +tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)"] +tutorials = ["matplotlib", "pandas", "tabulate"] + [[package]] name = "typing-extensions" version = "4.12.2" @@ -2148,24 +3498,24 @@ files = [ [[package]] name = "tzdata" -version = "2024.1" +version = "2024.2" description = "Provider of IANA time zone data" optional = false python-versions = ">=2" files = [ - {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, - {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, + {file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"}, + {file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"}, ] [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -2187,13 +3537,13 @@ files = [ [[package]] name = "werkzeug" -version = "3.0.3" +version = "3.0.4" description = "The comprehensive WSGI web application library." optional = false python-versions = ">=3.8" files = [ - {file = "werkzeug-3.0.3-py3-none-any.whl", hash = "sha256:fc9645dc43e03e4d630d23143a04a7f947a9a3b5727cd535fdfe155a17cc48c8"}, - {file = "werkzeug-3.0.3.tar.gz", hash = "sha256:097e5bfda9f0aba8da6b8545146def481d06aa7d3266e7448e2cccf67dd8bd18"}, + {file = "werkzeug-3.0.4-py3-none-any.whl", hash = "sha256:02c9eb92b7d6c06f31a782811505d2157837cea66aaede3e217c7c27c039476c"}, + {file = "werkzeug-3.0.4.tar.gz", hash = "sha256:34f2371506b250df4d4f84bfe7b0921e4762525762bbd936614909fe25cd7306"}, ] [package.dependencies] @@ -2204,13 +3554,13 @@ watchdog = ["watchdog (>=2.3)"] [[package]] name = "wheel" -version = "0.43.0" +version = "0.44.0" description = "A built-package format for Python" optional = false python-versions = ">=3.8" files = [ - {file = "wheel-0.43.0-py3-none-any.whl", hash = "sha256:55c570405f142630c6b9f72fe09d9b67cf1477fcf543ae5b8dcb1f5b7377da81"}, - {file = "wheel-0.43.0.tar.gz", hash = "sha256:465ef92c69fa5c5da2d1cf8ac40559a8c940886afcef87dcf14b9470862f1d85"}, + {file = "wheel-0.44.0-py3-none-any.whl", hash = "sha256:2376a90c98cc337d18623527a97c31797bd02bad0033d41547043a1cbfbe448f"}, + {file = "wheel-0.44.0.tar.gz", hash = "sha256:a29c3f2817e95ab89aa4660681ad547c0e9547f20e75b0562fe7723c9a2a9d49"}, ] [package.extras] @@ -2295,22 +3645,138 @@ files = [ {file = "wrapt-1.16.0.tar.gz", hash = "sha256:5f370f952971e7d17c7d1ead40e49f32345a7f7a5373571ef44d800d06b1899d"}, ] +[[package]] +name = "yarl" +version = "1.15.2" +description = "Yet another URL library" +optional = false +python-versions = ">=3.8" +files = [ + {file = "yarl-1.15.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e4ee8b8639070ff246ad3649294336b06db37a94bdea0d09ea491603e0be73b8"}, + {file = "yarl-1.15.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a7cf963a357c5f00cb55b1955df8bbe68d2f2f65de065160a1c26b85a1e44172"}, + {file = "yarl-1.15.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:43ebdcc120e2ca679dba01a779333a8ea76b50547b55e812b8b92818d604662c"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3433da95b51a75692dcf6cc8117a31410447c75a9a8187888f02ad45c0a86c50"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:38d0124fa992dbacd0c48b1b755d3ee0a9f924f427f95b0ef376556a24debf01"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ded1b1803151dd0f20a8945508786d57c2f97a50289b16f2629f85433e546d47"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ace4cad790f3bf872c082366c9edd7f8f8f77afe3992b134cfc810332206884f"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c77494a2f2282d9bbbbcab7c227a4d1b4bb829875c96251f66fb5f3bae4fb053"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b7f227ca6db5a9fda0a2b935a2ea34a7267589ffc63c8045f0e4edb8d8dcf956"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:31561a5b4d8dbef1559b3600b045607cf804bae040f64b5f5bca77da38084a8a"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3e52474256a7db9dcf3c5f4ca0b300fdea6c21cca0148c8891d03a025649d935"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:0e1af74a9529a1137c67c887ed9cde62cff53aa4d84a3adbec329f9ec47a3936"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:15c87339490100c63472a76d87fe7097a0835c705eb5ae79fd96e343473629ed"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:74abb8709ea54cc483c4fb57fb17bb66f8e0f04438cff6ded322074dbd17c7ec"}, + {file = "yarl-1.15.2-cp310-cp310-win32.whl", hash = "sha256:ffd591e22b22f9cb48e472529db6a47203c41c2c5911ff0a52e85723196c0d75"}, + {file = "yarl-1.15.2-cp310-cp310-win_amd64.whl", hash = "sha256:1695497bb2a02a6de60064c9f077a4ae9c25c73624e0d43e3aa9d16d983073c2"}, + {file = "yarl-1.15.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9fcda20b2de7042cc35cf911702fa3d8311bd40055a14446c1e62403684afdc5"}, + {file = "yarl-1.15.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0545de8c688fbbf3088f9e8b801157923be4bf8e7b03e97c2ecd4dfa39e48e0e"}, + {file = "yarl-1.15.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fbda058a9a68bec347962595f50546a8a4a34fd7b0654a7b9697917dc2bf810d"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1ac2bc069f4a458634c26b101c2341b18da85cb96afe0015990507efec2e417"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cd126498171f752dd85737ab1544329a4520c53eed3997f9b08aefbafb1cc53b"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3db817b4e95eb05c362e3b45dafe7144b18603e1211f4a5b36eb9522ecc62bcf"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:076b1ed2ac819933895b1a000904f62d615fe4533a5cf3e052ff9a1da560575c"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f8cfd847e6b9ecf9f2f2531c8427035f291ec286c0a4944b0a9fce58c6446046"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:32b66be100ac5739065496c74c4b7f3015cef792c3174982809274d7e51b3e04"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:34a2d76a1984cac04ff8b1bfc939ec9dc0914821264d4a9c8fd0ed6aa8d4cfd2"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:0afad2cd484908f472c8fe2e8ef499facee54a0a6978be0e0cff67b1254fd747"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:c68e820879ff39992c7f148113b46efcd6ec765a4865581f2902b3c43a5f4bbb"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:98f68df80ec6ca3015186b2677c208c096d646ef37bbf8b49764ab4a38183931"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3c56ec1eacd0a5d35b8a29f468659c47f4fe61b2cab948ca756c39b7617f0aa5"}, + {file = "yarl-1.15.2-cp311-cp311-win32.whl", hash = "sha256:eedc3f247ee7b3808ea07205f3e7d7879bc19ad3e6222195cd5fbf9988853e4d"}, + {file = "yarl-1.15.2-cp311-cp311-win_amd64.whl", hash = "sha256:0ccaa1bc98751fbfcf53dc8dfdb90d96e98838010fc254180dd6707a6e8bb179"}, + {file = "yarl-1.15.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:82d5161e8cb8f36ec778fd7ac4d740415d84030f5b9ef8fe4da54784a1f46c94"}, + {file = "yarl-1.15.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:fa2bea05ff0a8fb4d8124498e00e02398f06d23cdadd0fe027d84a3f7afde31e"}, + {file = "yarl-1.15.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:99e12d2bf587b44deb74e0d6170fec37adb489964dbca656ec41a7cd8f2ff178"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:243fbbbf003754fe41b5bdf10ce1e7f80bcc70732b5b54222c124d6b4c2ab31c"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:856b7f1a7b98a8c31823285786bd566cf06226ac4f38b3ef462f593c608a9bd6"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:553dad9af802a9ad1a6525e7528152a015b85fb8dbf764ebfc755c695f488367"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:30c3ff305f6e06650a761c4393666f77384f1cc6c5c0251965d6bfa5fbc88f7f"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:353665775be69bbfc6d54c8d134bfc533e332149faeddd631b0bc79df0897f46"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f4fe99ce44128c71233d0d72152db31ca119711dfc5f2c82385ad611d8d7f897"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:9c1e3ff4b89cdd2e1a24c214f141e848b9e0451f08d7d4963cb4108d4d798f1f"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:711bdfae4e699a6d4f371137cbe9e740dc958530cb920eb6f43ff9551e17cfbc"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4388c72174868884f76affcdd3656544c426407e0043c89b684d22fb265e04a5"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:f0e1844ad47c7bd5d6fa784f1d4accc5f4168b48999303a868fe0f8597bde715"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:a5cafb02cf097a82d74403f7e0b6b9df3ffbfe8edf9415ea816314711764a27b"}, + {file = "yarl-1.15.2-cp312-cp312-win32.whl", hash = "sha256:156ececdf636143f508770bf8a3a0498de64da5abd890c7dbb42ca9e3b6c05b8"}, + {file = "yarl-1.15.2-cp312-cp312-win_amd64.whl", hash = "sha256:435aca062444a7f0c884861d2e3ea79883bd1cd19d0a381928b69ae1b85bc51d"}, + {file = "yarl-1.15.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:416f2e3beaeae81e2f7a45dc711258be5bdc79c940a9a270b266c0bec038fb84"}, + {file = "yarl-1.15.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:173563f3696124372831007e3d4b9821746964a95968628f7075d9231ac6bb33"}, + {file = "yarl-1.15.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:9ce2e0f6123a60bd1a7f5ae3b2c49b240c12c132847f17aa990b841a417598a2"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eaea112aed589131f73d50d570a6864728bd7c0c66ef6c9154ed7b59f24da611"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4ca3b9f370f218cc2a0309542cab8d0acdfd66667e7c37d04d617012485f904"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23ec1d3c31882b2a8a69c801ef58ebf7bae2553211ebbddf04235be275a38548"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75119badf45f7183e10e348edff5a76a94dc19ba9287d94001ff05e81475967b"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:78e6fdc976ec966b99e4daa3812fac0274cc28cd2b24b0d92462e2e5ef90d368"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:8657d3f37f781d987037f9cc20bbc8b40425fa14380c87da0cb8dfce7c92d0fb"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:93bed8a8084544c6efe8856c362af08a23e959340c87a95687fdbe9c9f280c8b"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:69d5856d526802cbda768d3e6246cd0d77450fa2a4bc2ea0ea14f0d972c2894b"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:ccad2800dfdff34392448c4bf834be124f10a5bc102f254521d931c1c53c455a"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:a880372e2e5dbb9258a4e8ff43f13888039abb9dd6d515f28611c54361bc5644"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:c998d0558805860503bc3a595994895ca0f7835e00668dadc673bbf7f5fbfcbe"}, + {file = "yarl-1.15.2-cp313-cp313-win32.whl", hash = "sha256:533a28754e7f7439f217550a497bb026c54072dbe16402b183fdbca2431935a9"}, + {file = "yarl-1.15.2-cp313-cp313-win_amd64.whl", hash = "sha256:5838f2b79dc8f96fdc44077c9e4e2e33d7089b10788464609df788eb97d03aad"}, + {file = "yarl-1.15.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fbbb63bed5fcd70cd3dd23a087cd78e4675fb5a2963b8af53f945cbbca79ae16"}, + {file = "yarl-1.15.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e2e93b88ecc8f74074012e18d679fb2e9c746f2a56f79cd5e2b1afcf2a8a786b"}, + {file = "yarl-1.15.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:af8ff8d7dc07ce873f643de6dfbcd45dc3db2c87462e5c387267197f59e6d776"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:66f629632220a4e7858b58e4857927dd01a850a4cef2fb4044c8662787165cf7"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:833547179c31f9bec39b49601d282d6f0ea1633620701288934c5f66d88c3e50"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2aa738e0282be54eede1e3f36b81f1e46aee7ec7602aa563e81e0e8d7b67963f"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a13a07532e8e1c4a5a3afff0ca4553da23409fad65def1b71186fb867eeae8d"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c45817e3e6972109d1a2c65091504a537e257bc3c885b4e78a95baa96df6a3f8"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:670eb11325ed3a6209339974b276811867defe52f4188fe18dc49855774fa9cf"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_armv7l.whl", hash = "sha256:d417a4f6943112fae3924bae2af7112562285848d9bcee737fc4ff7cbd450e6c"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:bc8936d06cd53fddd4892677d65e98af514c8d78c79864f418bbf78a4a2edde4"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:954dde77c404084c2544e572f342aef384240b3e434e06cecc71597e95fd1ce7"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:5bc0df728e4def5e15a754521e8882ba5a5121bd6b5a3a0ff7efda5d6558ab3d"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:b71862a652f50babab4a43a487f157d26b464b1dedbcc0afda02fd64f3809d04"}, + {file = "yarl-1.15.2-cp38-cp38-win32.whl", hash = "sha256:63eab904f8630aed5a68f2d0aeab565dcfc595dc1bf0b91b71d9ddd43dea3aea"}, + {file = "yarl-1.15.2-cp38-cp38-win_amd64.whl", hash = "sha256:2cf441c4b6e538ba0d2591574f95d3fdd33f1efafa864faa077d9636ecc0c4e9"}, + {file = "yarl-1.15.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a32d58f4b521bb98b2c0aa9da407f8bd57ca81f34362bcb090e4a79e9924fefc"}, + {file = "yarl-1.15.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:766dcc00b943c089349d4060b935c76281f6be225e39994c2ccec3a2a36ad627"}, + {file = "yarl-1.15.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:bed1b5dbf90bad3bfc19439258c97873eab453c71d8b6869c136346acfe497e7"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed20a4bdc635f36cb19e630bfc644181dd075839b6fc84cac51c0f381ac472e2"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d538df442c0d9665664ab6dd5fccd0110fa3b364914f9c85b3ef9b7b2e157980"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c6cf1d92edf936ceedc7afa61b07e9d78a27b15244aa46bbcd534c7458ee1b"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce44217ad99ffad8027d2fde0269ae368c86db66ea0571c62a000798d69401fb"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b47a6000a7e833ebfe5886b56a31cb2ff12120b1efd4578a6fcc38df16cc77bd"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:e52f77a0cd246086afde8815039f3e16f8d2be51786c0a39b57104c563c5cbb0"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:f9ca0e6ce7774dc7830dc0cc4bb6b3eec769db667f230e7c770a628c1aa5681b"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:136f9db0f53c0206db38b8cd0c985c78ded5fd596c9a86ce5c0b92afb91c3a19"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:173866d9f7409c0fb514cf6e78952e65816600cb888c68b37b41147349fe0057"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:6e840553c9c494a35e449a987ca2c4f8372668ee954a03a9a9685075228e5036"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:458c0c65802d816a6b955cf3603186de79e8fdb46d4f19abaec4ef0a906f50a7"}, + {file = "yarl-1.15.2-cp39-cp39-win32.whl", hash = "sha256:5b48388ded01f6f2429a8c55012bdbd1c2a0c3735b3e73e221649e524c34a58d"}, + {file = "yarl-1.15.2-cp39-cp39-win_amd64.whl", hash = "sha256:81dadafb3aa124f86dc267a2168f71bbd2bfb163663661ab0038f6e4b8edb810"}, + {file = "yarl-1.15.2-py3-none-any.whl", hash = "sha256:0d3105efab7c5c091609abacad33afff33bdff0035bece164c98bcf5a85ef90a"}, + {file = "yarl-1.15.2.tar.gz", hash = "sha256:a39c36f4218a5bb668b4f06874d676d35a035ee668e6e7e3538835c703634b84"}, +] + +[package.dependencies] +idna = ">=2.0" +multidict = ">=4.0" +propcache = ">=0.2.0" + [[package]] name = "zipp" -version = "3.19.2" +version = "3.20.2" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false python-versions = ">=3.8" files = [ - {file = "zipp-3.19.2-py3-none-any.whl", hash = "sha256:f091755f667055f2d02b32c53771a7a6c8b47e1fdbc4b72a8b9072b3eef8015c"}, - {file = "zipp-3.19.2.tar.gz", hash = "sha256:bf1dcf6450f873a13e952a29504887c89e6de7506209e5b1bcc3460135d4de19"}, + {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, + {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, ] [package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-ignore-flaky"] +type = ["pytest-mypy"] [metadata] lock-version = "2.0" python-versions = "~3.8" -content-hash = "22709a13a9a841c80093d21804a5254349fe8074ccd255b63d287efbe16d4e0f" +content-hash = "5447090a9e0c7bb4bf1e43596846c94e85705571a6c554f14de5f16f63528eb0" diff --git a/Chapter06/pyproject.toml b/Chapter06/pyproject.toml index 2c337f5..c6ea021 100644 --- a/Chapter06/pyproject.toml +++ b/Chapter06/pyproject.toml @@ -8,6 +8,11 @@ packages = [] [tool.setuptools] py-modules = [] +# [[tool.poetry.source]] +# name = "torch-wheels" +# url = "https://data.pyg.org/whl/torch-2.1.0+cpu.html" +# priority = "supplemental" + [tool.poetry.dependencies] python = "~3.8" ipykernel = ">=6.0.0" @@ -20,11 +25,19 @@ chardet = "==5.2.0" tensorflow = "^2.6.0" tensorflow-io-gcs-filesystem = "==0.21.0" # This needs pinning - see https://stackoverflow.com/a/76477590 protobuf= "^3.20" +torch = "^2.1.0" +torch_geometric = "^2.5.2" +torchvision = "^0.16.0" +torchmetrics="^1.3.0" +# torch-sparse = {version = "^0.6.18", source = "torch-wheels"} +torch-sparse = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl"} +pyg-lib = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/pyg_lib-0.4.0%2Bpt21cpu-cp38-cp38-linux_x86_64.whl"} python-louvain = "==0.16" # communities = "==2.2.0" nxt-gem = { git="https://github.com/palash1992/GEM.git", branch="master" } # This is what is holding us back to python 3.8 stellargraph = "^1.2.1" +dgl = {url = "https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl"} [build-system] requires = ["poetry-core"] diff --git a/Chapter06/requirements.txt b/Chapter06/requirements.txt index 394c2c3..8eb8b77 100644 --- a/Chapter06/requirements.txt +++ b/Chapter06/requirements.txt @@ -1,82 +1,115 @@ absl-py==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +aiohappyeyeballs==2.4.3 ; python_version >= "3.8" and python_version < "3.9" +aiohttp==3.10.10 ; python_version >= "3.8" and python_version < "3.9" +aiosignal==1.3.1 ; python_version >= "3.8" and python_version < "3.9" +annotated-types==0.7.0 ; python_version >= "3.8" and python_version < "3.9" appnope==0.1.4 ; python_version >= "3.8" and python_version < "3.9" and (platform_system == "Darwin" or sys_platform == "darwin") asttokens==2.4.1 ; python_version >= "3.8" and python_version < "3.9" astunparse==1.6.3 ; python_version >= "3.8" and python_version < "3.9" +async-timeout==4.0.3 ; python_version >= "3.8" and python_version < "3.9" +attrs==24.2.0 ; python_version >= "3.8" and python_version < "3.9" backcall==0.2.0 ; python_version >= "3.8" and python_version < "3.9" -cachetools==5.3.3 ; python_version >= "3.8" and python_version < "3.9" -certifi==2024.6.2 ; python_version >= "3.8" and python_version < "3.9" -cffi==1.16.0 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +cachetools==5.5.0 ; python_version >= "3.8" and python_version < "3.9" +certifi==2024.8.30 ; python_version >= "3.8" and python_version < "3.9" +cffi==1.17.1 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" chardet==5.2.0 ; python_version >= "3.8" and python_version < "3.9" -charset-normalizer==3.3.2 ; python_version >= "3.8" and python_version < "3.9" +charset-normalizer==3.4.0 ; python_version >= "3.8" and python_version < "3.9" colorama==0.4.6 ; python_version >= "3.8" and python_version < "3.9" and (sys_platform == "win32" or platform_system == "Windows") comm==0.2.2 ; python_version >= "3.8" and python_version < "3.9" cycler==0.12.1 ; python_version >= "3.8" and python_version < "3.9" cython==0.29.14 ; python_version >= "3.8" and python_version < "3.9" -debugpy==1.8.1 ; python_version >= "3.8" and python_version < "3.9" +debugpy==1.8.7 ; python_version >= "3.8" and python_version < "3.9" decorator==5.1.1 ; python_version >= "3.8" and python_version < "3.9" -executing==2.0.1 ; python_version >= "3.8" and python_version < "3.9" +dgl @ https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl ; python_version >= "3.8" and python_version < "3.9" +executing==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +filelock==3.16.1 ; python_version >= "3.8" and python_version < "3.9" flatbuffers==2.0.7 ; python_version >= "3.8" and python_version < "3.9" +frozenlist==1.4.1 ; python_version >= "3.8" and python_version < "3.9" +fsspec==2024.9.0 ; python_version >= "3.8" and python_version < "3.9" gast==0.4.0 ; python_version >= "3.8" and python_version < "3.9" gensim==3.8.3 ; python_version >= "3.8" and python_version < "3.9" google-auth-oauthlib==1.0.0 ; python_version >= "3.8" and python_version < "3.9" -google-auth==2.30.0 ; python_version >= "3.8" and python_version < "3.9" +google-auth==2.35.0 ; python_version >= "3.8" and python_version < "3.9" google-pasta==0.2.0 ; python_version >= "3.8" and python_version < "3.9" -grpcio==1.64.1 ; python_version >= "3.8" and python_version < "3.9" +grpcio==1.66.2 ; python_version >= "3.8" and python_version < "3.9" h5py==3.11.0 ; python_version >= "3.8" and python_version < "3.9" -idna==3.7 ; python_version >= "3.8" and python_version < "3.9" -importlib-metadata==7.2.1 ; python_version >= "3.8" and python_version < "3.9" -ipykernel==6.29.4 ; python_version >= "3.8" and python_version < "3.9" +idna==3.10 ; python_version >= "3.8" and python_version < "3.9" +importlib-metadata==8.5.0 ; python_version >= "3.8" and python_version < "3.9" +ipykernel==6.29.5 ; python_version >= "3.8" and python_version < "3.9" ipython==8.12.3 ; python_version >= "3.8" and python_version < "3.9" jedi==0.19.1 ; python_version >= "3.8" and python_version < "3.9" +jinja2==3.1.4 ; python_version >= "3.8" and python_version < "3.9" joblib==1.4.2 ; python_version >= "3.8" and python_version < "3.9" -jupyter-client==8.6.2 ; python_version >= "3.8" and python_version < "3.9" +jupyter-client==8.6.3 ; python_version >= "3.8" and python_version < "3.9" jupyter-core==5.7.2 ; python_version >= "3.8" and python_version < "3.9" keras-preprocessing==1.1.2 ; python_version >= "3.8" and python_version < "3.9" keras==2.7.0 ; python_version >= "3.8" and python_version < "3.9" -kiwisolver==1.4.5 ; python_version >= "3.8" and python_version < "3.9" +kiwisolver==1.4.7 ; python_version >= "3.8" and python_version < "3.9" libclang==18.1.1 ; python_version >= "3.8" and python_version < "3.9" -markdown==3.6 ; python_version >= "3.8" and python_version < "3.9" +lightning-utilities==0.11.7 ; python_version >= "3.8" and python_version < "3.9" +markdown==3.7 ; python_version >= "3.8" and python_version < "3.9" markupsafe==2.1.5 ; python_version >= "3.8" and python_version < "3.9" matplotlib-inline==0.1.7 ; python_version >= "3.8" and python_version < "3.9" matplotlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" +mpmath==1.3.0 ; python_version >= "3.8" and python_version < "3.9" +multidict==6.1.0 ; python_version >= "3.8" and python_version < "3.9" nest-asyncio==1.6.0 ; python_version >= "3.8" and python_version < "3.9" networkx==2.5 ; python_version >= "3.8" and python_version < "3.9" node2vec==0.3.3 ; python_version >= "3.8" and python_version < "3.9" numpy==1.24.4 ; python_version >= "3.8" and python_version < "3.9" +nvidia-cublas-cu12==12.1.3.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-cupti-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-nvrtc-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-runtime-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cudnn-cu12==8.9.2.26 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cufft-cu12==11.0.2.54 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-curand-cu12==10.3.2.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cusolver-cu12==11.4.5.107 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cusparse-cu12==12.1.0.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nccl-cu12==2.18.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nvjitlink-cu12==12.6.77 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nvtx-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" nxt-gem @ git+https://github.com/palash1992/GEM.git@ae8e92d34213f5785757b4a0943bd7d8d337adb3 ; python_version >= "3.8" and python_version < "3.9" oauthlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" -opt-einsum==3.3.0 ; python_version >= "3.8" and python_version < "3.9" +opt-einsum==3.4.0 ; python_version >= "3.8" and python_version < "3.9" packaging==24.1 ; python_version >= "3.8" and python_version < "3.9" pandas==2.0.3 ; python_version >= "3.8" and python_version < "3.9" parso==0.8.4 ; python_version >= "3.8" and python_version < "3.9" pexpect==4.9.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" pickleshare==0.7.5 ; python_version >= "3.8" and python_version < "3.9" -platformdirs==4.2.2 ; python_version >= "3.8" and python_version < "3.9" -prompt-toolkit==3.0.47 ; python_version >= "3.8" and python_version < "3.9" +pillow==10.4.0 ; python_version >= "3.8" and python_version < "3.9" +platformdirs==4.3.6 ; python_version >= "3.8" and python_version < "3.9" +prompt-toolkit==3.0.48 ; python_version >= "3.8" and python_version < "3.9" +propcache==0.2.0 ; python_version >= "3.8" and python_version < "3.9" protobuf==3.20.3 ; python_version >= "3.8" and python_version < "3.9" psutil==6.0.0 ; python_version >= "3.8" and python_version < "3.9" ptyprocess==0.7.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" -pure-eval==0.2.2 ; python_version >= "3.8" and python_version < "3.9" -pyasn1-modules==0.4.0 ; python_version >= "3.8" and python_version < "3.9" -pyasn1==0.6.0 ; python_version >= "3.8" and python_version < "3.9" +pure-eval==0.2.3 ; python_version >= "3.8" and python_version < "3.9" +pyasn1-modules==0.4.1 ; python_version >= "3.8" and python_version < "3.9" +pyasn1==0.6.1 ; python_version >= "3.8" and python_version < "3.9" pycparser==2.22 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +pydantic-core==2.23.4 ; python_version >= "3.8" and python_version < "3.9" +pydantic==2.9.2 ; python_version >= "3.8" and python_version < "3.9" +pyg-lib @ https://data.pyg.org/whl/torch-2.1.0%2Bcpu/pyg_lib-0.4.0%2Bpt21cpu-cp38-cp38-linux_x86_64.whl ; python_version >= "3.8" and python_version < "3.9" pygments==2.18.0 ; python_version >= "3.8" and python_version < "3.9" -pyparsing==3.1.2 ; python_version >= "3.8" and python_version < "3.9" +pyparsing==3.1.4 ; python_version >= "3.8" and python_version < "3.9" python-dateutil==2.9.0.post0 ; python_version >= "3.8" and python_version < "3.9" python-louvain==0.16 ; python_version >= "3.8" and python_version < "3.9" -pytz==2024.1 ; python_version >= "3.8" and python_version < "3.9" -pywin32==306 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" -pyzmq==26.0.3 ; python_version >= "3.8" and python_version < "3.9" +pytz==2024.2 ; python_version >= "3.8" and python_version < "3.9" +pywin32==308 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" +pyyaml==6.0.2 ; python_version >= "3.8" and python_version < "3.9" +pyzmq==26.2.0 ; python_version >= "3.8" and python_version < "3.9" requests-oauthlib==2.0.0 ; python_version >= "3.8" and python_version < "3.9" requests==2.32.3 ; python_version >= "3.8" and python_version < "3.9" rsa==4.9 ; python_version >= "3.8" and python_version < "3.9" scikit-learn==0.24.0 ; python_version >= "3.8" and python_version < "3.9" scipy==1.10.1 ; python_version >= "3.8" and python_version < "3.9" -setuptools==70.1.1 ; python_version >= "3.8" and python_version < "3.9" +setuptools==75.1.0 ; python_version >= "3.8" and python_version < "3.9" six==1.16.0 ; python_version >= "3.8" and python_version < "3.9" -smart-open==7.0.4 ; python_version >= "3.8" and python_version < "3.9" +smart-open==7.0.5 ; python_version >= "3.8" and python_version < "3.9" stack-data==0.6.3 ; python_version >= "3.8" and python_version < "3.9" stellargraph==1.2.1 ; python_version >= "3.8" and python_version < "3.9" +sympy==1.13.3 ; python_version >= "3.8" and python_version < "3.9" tensorboard-data-server==0.7.2 ; python_version >= "3.8" and python_version < "3.9" tensorboard==2.14.0 ; python_version >= "3.8" and python_version < "3.9" tensorflow-estimator==2.7.0 ; python_version >= "3.8" and python_version < "3.9" @@ -85,14 +118,21 @@ tensorflow==2.7.2 ; python_version >= "3.8" and python_version < "3.9" termcolor==2.4.0 ; python_version >= "3.8" and python_version < "3.9" theano==1.0.5 ; python_version >= "3.8" and python_version < "3.9" threadpoolctl==3.5.0 ; python_version >= "3.8" and python_version < "3.9" +torch-geometric==2.6.1 ; python_version >= "3.8" and python_version < "3.9" +torch-sparse @ https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl ; python_version >= "3.8" and python_version < "3.9" +torch==2.1.2 ; python_version >= "3.8" and python_version < "3.9" +torchmetrics==1.4.3 ; python_version >= "3.8" and python_version < "3.9" +torchvision==0.16.2 ; python_version >= "3.8" and python_version < "3.9" tornado==6.4.1 ; python_version >= "3.8" and python_version < "3.9" -tqdm==4.66.4 ; python_version >= "3.8" and python_version < "3.9" +tqdm==4.66.5 ; python_version >= "3.8" and python_version < "3.9" traitlets==5.14.3 ; python_version >= "3.8" and python_version < "3.9" +triton==2.1.0 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" typing-extensions==4.12.2 ; python_version >= "3.8" and python_version < "3.9" -tzdata==2024.1 ; python_version >= "3.8" and python_version < "3.9" -urllib3==2.2.2 ; python_version >= "3.8" and python_version < "3.9" +tzdata==2024.2 ; python_version >= "3.8" and python_version < "3.9" +urllib3==2.2.3 ; python_version >= "3.8" and python_version < "3.9" wcwidth==0.2.13 ; python_version >= "3.8" and python_version < "3.9" -werkzeug==3.0.3 ; python_version >= "3.8" and python_version < "3.9" -wheel==0.43.0 ; python_version >= "3.8" and python_version < "3.9" +werkzeug==3.0.4 ; python_version >= "3.8" and python_version < "3.9" +wheel==0.44.0 ; python_version >= "3.8" and python_version < "3.9" wrapt==1.16.0 ; python_version >= "3.8" and python_version < "3.9" -zipp==3.19.2 ; python_version >= "3.8" and python_version < "3.9" +yarl==1.15.2 ; python_version >= "3.8" and python_version < "3.9" +zipp==3.20.2 ; python_version >= "3.8" and python_version < "3.9" From 8c716d49e77e3493974d727a352ba32699d4444a Mon Sep 17 00:00:00 2001 From: Enrico Deusebio Date: Wed, 16 Oct 2024 22:31:15 +0200 Subject: [PATCH 15/31] [Chapter02] Adding CNN models to Image Classification --- .../01_ImageClassification_TensorFlow.ipynb | 59 +++++++++- .../02_ImageClassification_Pytorch.ipynb | 110 +++++++++++++++++- 2 files changed, 162 insertions(+), 7 deletions(-) diff --git a/ChapterNN/01_ImageClassification_TensorFlow.ipynb b/ChapterNN/01_ImageClassification_TensorFlow.ipynb index a81dd61..bad94bf 100644 --- a/ChapterNN/01_ImageClassification_TensorFlow.ipynb +++ b/ChapterNN/01_ImageClassification_TensorFlow.ipynb @@ -180,7 +180,7 @@ "id": "a8c64c99-cbab-4503-8a1d-84f80c6f2af7", "metadata": {}, "source": [ - "### More advanced model" + "### Classification beyond fully connected layers" ] }, { @@ -188,13 +188,15 @@ "id": "c4649c36-1157-438b-bff0-01e980aa7da3", "metadata": {}, "source": [ - "For a slightly more complex and deeper network, try to train the model below" + "For a slightly more complex and deeper network, try to train the model below that uses Convolution Neural Network (CNNs)" ] }, { - "cell_type": "raw", - "id": "e9af3bfc-7b19-4441-9dc4-46df1b3739cc", + "cell_type": "code", + "execution_count": null, + "id": "915392b5-805c-4536-89ac-2e5fb930dfdc", "metadata": {}, + "outputs": [], "source": [ "input_img = tf.keras.layers.Input(shape=(28, 28, 1))\n", "\n", @@ -211,6 +213,53 @@ "\n", "model = tf.keras.Model(input_img, x)" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b1c72892-976c-4763-9c90-ed5472438394", + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "36ffd4c2-72b7-4fb3-83a3-0e2f87237e9e", + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(optimizer=optimizer,\n", + " loss=loss_fn,\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "93bdddf0-dcbb-4f58-9805-112af7f3bb69", + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(\n", + " x_train, \n", + " y_train, \n", + " validation_data=(x_test, y_test), \n", + " epochs=20, \n", + " batch_size=128,\n", + " shuffle=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "99111fb3-8f59-45e0-8c61-cb24c99b7778", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -229,7 +278,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.18" + "version": "3.8.14" } }, "nbformat": 4, diff --git a/ChapterNN/02_ImageClassification_Pytorch.ipynb b/ChapterNN/02_ImageClassification_Pytorch.ipynb index 0c3b17a..a0c7844 100644 --- a/ChapterNN/02_ImageClassification_Pytorch.ipynb +++ b/ChapterNN/02_ImageClassification_Pytorch.ipynb @@ -215,10 +215,116 @@ " print(f\"Accuracy on validation set: {float(accuracy(preds, labels))}\")" ] }, + { + "cell_type": "markdown", + "id": "15e22f40-9f03-4b89-8233-5306d7a4061b", + "metadata": {}, + "source": [ + "### Classification beyond fully connected layers" + ] + }, + { + "cell_type": "markdown", + "id": "d8519786-c1bc-4bd3-b3dd-09fca96928d8", + "metadata": {}, + "source": [ + "For a slightly more complex and deeper network, try to train the model below that uses Convolution Neural Network (CNNs)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8ab7e5b5-ceac-4d3b-bd61-1c3274d090d5", + "metadata": {}, + "outputs": [], + "source": [ + "class CNNModel(nn.Module): \n", + " def __init__(self): \n", + " super(CNNModel, self).__init__() \n", + " # 1 input channel (grayscale), 32 output filters \n", + " self.conv1 = nn.Conv2d(1, 32, kernel_size=3) \n", + " self.pool = nn.MaxPool2d(2, 2) # Pooling with a 2x2 window \n", + " self.conv2 = nn.Conv2d(32, 64, kernel_size=3) \n", + " self.fc1 = nn.Linear(64 * 5 * 5, 64) \n", + " # 64 filters output, 5x5 feature map \n", + " \n", + " self.fc2 = nn.Linear(64, 10) # 10 output classes \n", + "\n", + " def forward(self, x): \n", + " x = self.pool(F.relu(self.conv1(x))) \n", + " x = self.pool(F.relu(self.conv2(x))) \n", + " x = x.view(-1, 64 * 5 * 5) \n", + " x = F.relu(self.fc1(x)) \n", + " x = self.fc2(x) \n", + " return F.log_softmax(x, dim=1) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a110e26e-73a2-42ef-8146-880e05656778", + "metadata": {}, + "outputs": [], + "source": [ + "model = CNNModel()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "44762dd1-fcbf-4e9a-bfdf-f55d284bf78c", + "metadata": {}, + "outputs": [], + "source": [ + "import torch.optim as optim\n", + "\n", + "criterion = nn.CrossEntropyLoss()\n", + "optimizer = optim.Adam(model.parameters())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bd76b705-2b7f-45c4-99c8-32984d239af9", + "metadata": {}, + "outputs": [], + "source": [ + "from torchmetrics.classification import MulticlassAccuracy\n", + "\n", + "accuracy = MulticlassAccuracy(num_classes=len(train_dataset.classes))\n", + "\n", + "for epoch in range(20): # loop over the dataset multiple times\n", + "\n", + " running_loss = 0.0\n", + " for i, data in enumerate(trainloader, 0):\n", + " # get the inputs; data is a list of [inputs, labels]\n", + " inputs, labels = data\n", + "\n", + " # zero the parameter gradients\n", + " optimizer.zero_grad()\n", + "\n", + " # forward + backward + optimize\n", + " outputs = model(inputs)\n", + " loss = criterion(outputs, labels)\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " # print statistics\n", + " running_loss += loss.item()\n", + " if i % 200 == 199: # print every 2000 mini-batches\n", + " print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}') \n", + " running_loss = 0.0\n", + "\n", + " # Evaluate accuracy\n", + " for inputs, labels in testloader:\n", + " preds = model(inputs)\n", + " print(f\"Accuracy on validation set: {float(accuracy(preds, labels))}\")" + ] + }, { "cell_type": "code", "execution_count": null, - "id": "4e53fcbf-19c3-46f2-b4bb-90dc307c24e4", + "id": "246b2cef-831a-4efe-83b3-f3125a9cd439", "metadata": {}, "outputs": [], "source": [] @@ -240,7 +346,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.18" + "version": "3.8.14" } }, "nbformat": 4, From 8e21c5e3eb360e9603d35fbca347bdb097f33bf9 Mon Sep 17 00:00:00 2001 From: Enrico Deusebio Date: Wed, 16 Oct 2024 23:50:05 +0200 Subject: [PATCH 16/31] [MISC] Restructuring files based on chapter for new edition --- .github/workflows/ci.yaml | 4 +- .../01_ImageClassification_TensorFlow.ipynb | 4 +- .../02_ImageClassification_Pytorch.ipynb | 4 +- .../03_Autoencoders.ipynb | 4 +- .../04_GraphAutoEncoder_PyGeometric.ipynb | 4 +- .../05_GraphAutoEncoder_StellarGraph.ipynb | 4 +- Chapter03/poetry.lock | 3057 +++++++++----- Chapter03/pyproject.toml | 20 +- Chapter03/requirements.txt | 179 +- .../01_Shallow_Embeddings.ipynb | 6 +- .../02_Autoencoders.ipynb | 4 +- ...03_Structural_deep_neural_embeddings.ipynb | 4 +- .../04_Graph_Neural_Network.ipynb | 4 +- Chapter04/poetry.lock | 3599 +++++------------ Chapter04/pyproject.toml | 26 +- Chapter04/requirements.txt | 188 +- .../01_Feature_based_methods.ipynb | 4 +- .../02_Shallow_embeddings.ipynb | 4 +- ...regularization_graph_neural_training.ipynb | 4 +- .../04_Graph_Neural_Networks.ipynb | 4 +- Chapter05/poetry.lock | 2849 +++++++++---- Chapter05/pyproject.toml | 29 +- Chapter05/requirements.txt | 111 +- .../01_link_prediction.ipynb | 4 +- .../02_community_detection_algorithms.ipynb | 4 +- Chapter06/poetry.lock | 2589 +++--------- Chapter06/pyproject.toml | 32 +- Chapter06/requirements.txt | 101 +- .../01_Social_network_analysis.ipynb | 4 +- .../02_Social_network_analysis.ipynb | 4 +- {ChapterNN => Chapter07}/poetry.lock | 1326 ++++-- Chapter07/pyproject.toml | 44 + Chapter07/requirements.txt | 156 +- .../01_nlp_graph_creation.ipynb | 0 ...supervised_classification-embeddings.ipynb | 0 ...ised_classsification_graphSAGE-TFIDF.ipynb | 0 Chapter08/requirements.txt | 18 + .../subject_object_extraction.py | 0 .../01_Credit_card_edges_classification.ipynb | 0 Chapter09/dataset/movieCreationQuery.txt | 508 --- .../01_Neo4j_bindings.ipynb | 0 ChapterNN/pyproject.toml | 27 - ChapterNN/requirements.txt | 125 - docker/Dockerfile | 12 +- 44 files changed, 7281 insertions(+), 7789 deletions(-) rename {ChapterNN => Chapter03}/01_ImageClassification_TensorFlow.ipynb (99%) rename {ChapterNN => Chapter03}/02_ImageClassification_Pytorch.ipynb (99%) rename {ChapterNN => Chapter03}/03_Autoencoders.ipynb (99%) rename {ChapterNN => Chapter03}/04_GraphAutoEncoder_PyGeometric.ipynb (98%) rename {ChapterNN => Chapter03}/05_GraphAutoEncoder_StellarGraph.ipynb (98%) rename {Chapter03 => Chapter04}/01_Shallow_Embeddings.ipynb (99%) rename {Chapter03 => Chapter04}/02_Autoencoders.ipynb (99%) rename {Chapter03 => Chapter04}/03_Structural_deep_neural_embeddings.ipynb (99%) rename {Chapter03 => Chapter04}/04_Graph_Neural_Network.ipynb (99%) rename {Chapter04 => Chapter05}/01_Feature_based_methods.ipynb (99%) rename {Chapter04 => Chapter05}/02_Shallow_embeddings.ipynb (99%) rename {Chapter04 => Chapter05}/03_Graph_regularization_graph_neural_training.ipynb (99%) rename {Chapter04 => Chapter05}/04_Graph_Neural_Networks.ipynb (99%) rename {Chapter05 => Chapter06}/01_link_prediction.ipynb (99%) rename {Chapter05 => Chapter06}/02_community_detection_algorithms.ipynb (99%) rename {Chapter06 => Chapter07}/01_Social_network_analysis.ipynb (99%) rename {Chapter06 => Chapter07}/02_Social_network_analysis.ipynb (99%) rename {ChapterNN => Chapter07}/poetry.lock (66%) create mode 100644 Chapter07/pyproject.toml rename {Chapter07 => Chapter08}/01_nlp_graph_creation.ipynb (100%) rename {Chapter07 => Chapter08}/02_supervised_classification-embeddings.ipynb (100%) rename {Chapter07 => Chapter08}/03_supervised_classsification_graphSAGE-TFIDF.ipynb (100%) create mode 100644 Chapter08/requirements.txt rename {Chapter07 => Chapter08}/subject_object_extraction.py (100%) rename {Chapter08 => Chapter09}/01_Credit_card_edges_classification.ipynb (100%) delete mode 100644 Chapter09/dataset/movieCreationQuery.txt rename {Chapter09 => Chapter10}/01_Neo4j_bindings.ipynb (100%) delete mode 100644 ChapterNN/pyproject.toml delete mode 100644 ChapterNN/requirements.txt diff --git a/.github/workflows/ci.yaml b/.github/workflows/ci.yaml index 9a564c1..7d87fc6 100644 --- a/.github/workflows/ci.yaml +++ b/.github/workflows/ci.yaml @@ -23,12 +23,12 @@ jobs: folder: Chapter03 - name: chap4 folder: Chapter04 - - name: chap-nn - folder: ChapterNN - name: chap5 folder: Chapter05 - name: chap6 folder: Chapter06 + - name: chap7 + folder: Chapter07 runs-on: ubuntu-latest name: Image ${{ matrix.chapter.name }} steps: diff --git a/ChapterNN/01_ImageClassification_TensorFlow.ipynb b/Chapter03/01_ImageClassification_TensorFlow.ipynb similarity index 99% rename from ChapterNN/01_ImageClassification_TensorFlow.ipynb rename to Chapter03/01_ImageClassification_TensorFlow.ipynb index bad94bf..09ce577 100644 --- a/ChapterNN/01_ImageClassification_TensorFlow.ipynb +++ b/Chapter03/01_ImageClassification_TensorFlow.ipynb @@ -264,9 +264,9 @@ ], "metadata": { "kernelspec": { - "display_name": "chap-nn", + "display_name": "chap3", "language": "python", - "name": "chap-nn" + "name": "chap3" }, "language_info": { "codemirror_mode": { diff --git a/ChapterNN/02_ImageClassification_Pytorch.ipynb b/Chapter03/02_ImageClassification_Pytorch.ipynb similarity index 99% rename from ChapterNN/02_ImageClassification_Pytorch.ipynb rename to Chapter03/02_ImageClassification_Pytorch.ipynb index a0c7844..9606fde 100644 --- a/ChapterNN/02_ImageClassification_Pytorch.ipynb +++ b/Chapter03/02_ImageClassification_Pytorch.ipynb @@ -332,9 +332,9 @@ ], "metadata": { "kernelspec": { - "display_name": "chap-nn", + "display_name": "chap3", "language": "python", - "name": "chap-nn" + "name": "chap3" }, "language_info": { "codemirror_mode": { diff --git a/ChapterNN/03_Autoencoders.ipynb b/Chapter03/03_Autoencoders.ipynb similarity index 99% rename from ChapterNN/03_Autoencoders.ipynb rename to Chapter03/03_Autoencoders.ipynb index af8b3e0..fef7b60 100644 --- a/ChapterNN/03_Autoencoders.ipynb +++ b/Chapter03/03_Autoencoders.ipynb @@ -605,9 +605,9 @@ ], "metadata": { "kernelspec": { - "display_name": "chap-nn", + "display_name": "chap3", "language": "python", - "name": "chap-nn" + "name": "chap3" }, "language_info": { "codemirror_mode": { diff --git a/ChapterNN/04_GraphAutoEncoder_PyGeometric.ipynb b/Chapter03/04_GraphAutoEncoder_PyGeometric.ipynb similarity index 98% rename from ChapterNN/04_GraphAutoEncoder_PyGeometric.ipynb rename to Chapter03/04_GraphAutoEncoder_PyGeometric.ipynb index 5de12fb..6610add 100644 --- a/ChapterNN/04_GraphAutoEncoder_PyGeometric.ipynb +++ b/Chapter03/04_GraphAutoEncoder_PyGeometric.ipynb @@ -166,9 +166,9 @@ ], "metadata": { "kernelspec": { - "display_name": "chap-nn", + "display_name": "chap3", "language": "python", - "name": "chap-nn" + "name": "chap3" }, "language_info": { "codemirror_mode": { diff --git a/ChapterNN/05_GraphAutoEncoder_StellarGraph.ipynb b/Chapter03/05_GraphAutoEncoder_StellarGraph.ipynb similarity index 98% rename from ChapterNN/05_GraphAutoEncoder_StellarGraph.ipynb rename to Chapter03/05_GraphAutoEncoder_StellarGraph.ipynb index 887b9a8..c93b1bf 100644 --- a/ChapterNN/05_GraphAutoEncoder_StellarGraph.ipynb +++ b/Chapter03/05_GraphAutoEncoder_StellarGraph.ipynb @@ -189,9 +189,9 @@ "metadata": { "kernelspec": { - "display_name": "chap-nn", + "display_name": "chap3", "language": "python", - "name": "chap-nn" + "name": "chap3" }, "language_info": { "codemirror_mode": { diff --git a/Chapter03/poetry.lock b/Chapter03/poetry.lock index 38ed5db..d4e663c 100644 --- a/Chapter03/poetry.lock +++ b/Chapter03/poetry.lock @@ -1,28 +1,162 @@ -# This file is automatically @generated by Poetry 1.5.1 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. [[package]] name = "absl-py" -version = "0.15.0" +version = "2.1.0" description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py." optional = false -python-versions = "*" +python-versions = ">=3.7" files = [ - {file = "absl-py-0.15.0.tar.gz", hash = "sha256:72d782fbeafba66ba3e525d46bccac949b9a174dbf66233e50ece09ee688dc81"}, - {file = "absl_py-0.15.0-py3-none-any.whl", hash = "sha256:ea907384af023a7e681368bedb896159ab100c7db593efbbd5cde22af11270cd"}, + {file = "absl-py-2.1.0.tar.gz", hash = "sha256:7820790efbb316739cde8b4e19357243fc3608a152024288513dd968d7d959ff"}, + {file = "absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308"}, +] + +[[package]] +name = "aiohappyeyeballs" +version = "2.4.3" +description = "Happy Eyeballs for asyncio" +optional = false +python-versions = ">=3.8" +files = [ + {file = "aiohappyeyeballs-2.4.3-py3-none-any.whl", hash = "sha256:8a7a83727b2756f394ab2895ea0765a0a8c475e3c71e98d43d76f22b4b435572"}, + {file = "aiohappyeyeballs-2.4.3.tar.gz", hash = "sha256:75cf88a15106a5002a8eb1dab212525c00d1f4c0fa96e551c9fbe6f09a621586"}, +] + +[[package]] +name = "aiohttp" +version = "3.10.8" +description = "Async http client/server framework (asyncio)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "aiohttp-3.10.8-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a1ba7bc139592339ddeb62c06486d0fa0f4ca61216e14137a40d626c81faf10c"}, + {file = "aiohttp-3.10.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:85e4d7bd05d18e4b348441e7584c681eff646e3bf38f68b2626807f3add21aa2"}, + {file = "aiohttp-3.10.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:69de056022e7abf69cb9fec795515973cc3eeaff51e3ea8d72a77aa933a91c52"}, + {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee3587506898d4a404b33bd19689286ccf226c3d44d7a73670c8498cd688e42c"}, + {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fe285a697c851734285369614443451462ce78aac2b77db23567507484b1dc6f"}, + {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:10c7932337285a6bfa3a5fe1fd4da90b66ebfd9d0cbd1544402e1202eb9a8c3e"}, + {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cd9716ef0224fe0d0336997eb242f40619f9f8c5c57e66b525a1ebf9f1d8cebe"}, + {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ceacea31f8a55cdba02bc72c93eb2e1b77160e91f8abd605969c168502fd71eb"}, + {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:9721554bfa9e15f6e462da304374c2f1baede3cb06008c36c47fa37ea32f1dc4"}, + {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:22cdeb684d8552490dd2697a5138c4ecb46f844892df437aaf94f7eea99af879"}, + {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:e56bb7e31c4bc79956b866163170bc89fd619e0581ce813330d4ea46921a4881"}, + {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:3a95d2686bc4794d66bd8de654e41b5339fab542b2bca9238aa63ed5f4f2ce82"}, + {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d82404a0e7b10e0d7f022cf44031b78af8a4f99bd01561ac68f7c24772fed021"}, + {file = "aiohttp-3.10.8-cp310-cp310-win32.whl", hash = "sha256:4e10b04542d27e21538e670156e88766543692a0a883f243ba8fad9ddea82e53"}, + {file = "aiohttp-3.10.8-cp310-cp310-win_amd64.whl", hash = "sha256:680dbcff5adc7f696ccf8bf671d38366a1f620b5616a1d333d0cb33956065395"}, + {file = "aiohttp-3.10.8-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:33a68011a38020ed4ff41ae0dbf4a96a202562ecf2024bdd8f65385f1d07f6ef"}, + {file = "aiohttp-3.10.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6c7efa6616a95e3bd73b8a69691012d2ef1f95f9ea0189e42f338fae080c2fc6"}, + {file = "aiohttp-3.10.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ddb9b9764cfb4459acf01c02d2a59d3e5066b06a846a364fd1749aa168efa2be"}, + {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c7f270f4ca92760f98a42c45a58674fff488e23b144ec80b1cc6fa2effed377"}, + {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6984dda9d79064361ab58d03f6c1e793ea845c6cfa89ffe1a7b9bb400dfd56bd"}, + {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3f6d47e392c27206701565c8df4cac6ebed28fdf6dcaea5b1eea7a4631d8e6db"}, + {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a72f89aea712c619b2ca32c6f4335c77125ede27530ad9705f4f349357833695"}, + {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c36074b26f3263879ba8e4dbd33db2b79874a3392f403a70b772701363148b9f"}, + {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e32148b4a745e70a255a1d44b5664de1f2e24fcefb98a75b60c83b9e260ddb5b"}, + {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:5aa1a073514cf59c81ad49a4ed9b5d72b2433638cd53160fd2f3a9cfa94718db"}, + {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:d3a79200a9d5e621c4623081ddb25380b713c8cf5233cd11c1aabad990bb9381"}, + {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:e45fdfcb2d5bcad83373e4808825b7512953146d147488114575780640665027"}, + {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f78e2a78432c537ae876a93013b7bc0027ba5b93ad7b3463624c4b6906489332"}, + {file = "aiohttp-3.10.8-cp311-cp311-win32.whl", hash = "sha256:f8179855a4e4f3b931cb1764ec87673d3fbdcca2af496c8d30567d7b034a13db"}, + {file = "aiohttp-3.10.8-cp311-cp311-win_amd64.whl", hash = "sha256:ef9b484604af05ca745b6108ca1aaa22ae1919037ae4f93aaf9a37ba42e0b835"}, + {file = "aiohttp-3.10.8-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:ab2d6523575fc98896c80f49ac99e849c0b0e69cc80bf864eed6af2ae728a52b"}, + {file = "aiohttp-3.10.8-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f5d5d5401744dda50b943d8764508d0e60cc2d3305ac1e6420935861a9d544bc"}, + {file = "aiohttp-3.10.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:de23085cf90911600ace512e909114385026b16324fa203cc74c81f21fd3276a"}, + {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4618f0d2bf523043866a9ff8458900d8eb0a6d4018f251dae98e5f1fb699f3a8"}, + {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:21c1925541ca84f7b5e0df361c0a813a7d6a56d3b0030ebd4b220b8d232015f9"}, + {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:497a7d20caea8855c5429db3cdb829385467217d7feb86952a6107e033e031b9"}, + {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c887019dbcb4af58a091a45ccf376fffe800b5531b45c1efccda4bedf87747ea"}, + {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40d2d719c3c36a7a65ed26400e2b45b2d9ed7edf498f4df38b2ae130f25a0d01"}, + {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:57359785f27394a8bcab0da6dcd46706d087dfebf59a8d0ad2e64a4bc2f6f94f"}, + {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:a961ee6f2cdd1a2be4735333ab284691180d40bad48f97bb598841bfcbfb94ec"}, + {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:fe3d79d6af839ffa46fdc5d2cf34295390894471e9875050eafa584cb781508d"}, + {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:9a281cba03bdaa341c70b7551b2256a88d45eead149f48b75a96d41128c240b3"}, + {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c6769d71bfb1ed60321363a9bc05e94dcf05e38295ef41d46ac08919e5b00d19"}, + {file = "aiohttp-3.10.8-cp312-cp312-win32.whl", hash = "sha256:a3081246bab4d419697ee45e555cef5cd1def7ac193dff6f50be761d2e44f194"}, + {file = "aiohttp-3.10.8-cp312-cp312-win_amd64.whl", hash = "sha256:ab1546fc8e00676febc81c548a876c7bde32f881b8334b77f84719ab2c7d28dc"}, + {file = "aiohttp-3.10.8-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:b1a012677b8e0a39e181e218de47d6741c5922202e3b0b65e412e2ce47c39337"}, + {file = "aiohttp-3.10.8-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:2df786c96c57cd6b87156ba4c5f166af7b88f3fc05f9d592252fdc83d8615a3c"}, + {file = "aiohttp-3.10.8-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8885ca09d3a9317219c0831276bfe26984b17b2c37b7bf70dd478d17092a4772"}, + {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4dbf252ac19860e0ab56cd480d2805498f47c5a2d04f5995d8d8a6effd04b48c"}, + {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3b2036479b6b94afaaca7d07b8a68dc0e67b0caf5f6293bb6a5a1825f5923000"}, + {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:365783e1b7c40b59ed4ce2b5a7491bae48f41cd2c30d52647a5b1ee8604c68ad"}, + {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:270e653b5a4b557476a1ed40e6b6ce82f331aab669620d7c95c658ef976c9c5e"}, + {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8960fabc20bfe4fafb941067cda8e23c8c17c98c121aa31c7bf0cdab11b07842"}, + {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f21e8f2abed9a44afc3d15bba22e0dfc71e5fa859bea916e42354c16102b036f"}, + {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:fecd55e7418fabd297fd836e65cbd6371aa4035a264998a091bbf13f94d9c44d"}, + {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:badb51d851358cd7535b647bb67af4854b64f3c85f0d089c737f75504d5910ec"}, + {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:e860985f30f3a015979e63e7ba1a391526cdac1b22b7b332579df7867848e255"}, + {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:71462f8eeca477cbc0c9700a9464e3f75f59068aed5e9d4a521a103692da72dc"}, + {file = "aiohttp-3.10.8-cp313-cp313-win32.whl", hash = "sha256:177126e971782769b34933e94fddd1089cef0fe6b82fee8a885e539f5b0f0c6a"}, + {file = "aiohttp-3.10.8-cp313-cp313-win_amd64.whl", hash = "sha256:98a4eb60e27033dee9593814ca320ee8c199489fbc6b2699d0f710584db7feb7"}, + {file = "aiohttp-3.10.8-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ffef3d763e4c8fc97e740da5b4d0f080b78630a3914f4e772a122bbfa608c1db"}, + {file = "aiohttp-3.10.8-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:597128cb7bc5f068181b49a732961f46cb89f85686206289d6ccb5e27cb5fbe2"}, + {file = "aiohttp-3.10.8-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f23a6c1d09de5de89a33c9e9b229106cb70dcfdd55e81a3a3580eaadaa32bc92"}, + {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da57af0c54a302b7c655fa1ccd5b1817a53739afa39924ef1816e7b7c8a07ccb"}, + {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e7a6af57091056a79a35104d6ec29d98ec7f1fb7270ad9c6fff871b678d1ff8"}, + {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:32710d6b3b6c09c60c794d84ca887a3a2890131c0b02b3cefdcc6709a2260a7c"}, + {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b91f4f62ad39a8a42d511d66269b46cb2fb7dea9564c21ab6c56a642d28bff5"}, + {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:471a8c47344b9cc309558b3fcc469bd2c12b49322b4b31eb386c4a2b2d44e44a"}, + {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:fc0e7f91705445d79beafba9bb3057dd50830e40fe5417017a76a214af54e122"}, + {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:85431c9131a9a0f65260dc7a65c800ca5eae78c4c9931618f18c8e0933a0e0c1"}, + {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:b91557ee0893da52794b25660d4f57bb519bcad8b7df301acd3898f7197c5d81"}, + {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:4954e6b06dd0be97e1a5751fc606be1f9edbdc553c5d9b57d72406a8fbd17f9d"}, + {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:a087c84b4992160ffef7afd98ef24177c8bd4ad61c53607145a8377457385100"}, + {file = "aiohttp-3.10.8-cp38-cp38-win32.whl", hash = "sha256:e1f0f7b27171b2956a27bd8f899751d0866ddabdd05cbddf3520f945130a908c"}, + {file = "aiohttp-3.10.8-cp38-cp38-win_amd64.whl", hash = "sha256:c4916070e12ae140110aa598031876c1bf8676a36a750716ea0aa5bd694aa2e7"}, + {file = "aiohttp-3.10.8-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5284997e3d88d0dfb874c43e51ae8f4a6f4ca5b90dcf22995035187253d430db"}, + {file = "aiohttp-3.10.8-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9443d9ebc5167ce1fbb552faf2d666fb22ef5716a8750be67efd140a7733738c"}, + {file = "aiohttp-3.10.8-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b667e2a03407d79a76c618dc30cedebd48f082d85880d0c9c4ec2faa3e10f43e"}, + {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98fae99d5c2146f254b7806001498e6f9ffb0e330de55a35e72feb7cb2fa399b"}, + {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8296edd99d0dd9d0eb8b9e25b3b3506eef55c1854e9cc230f0b3f885f680410b"}, + {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1ce46dfb49cfbf9e92818be4b761d4042230b1f0e05ffec0aad15b3eb162b905"}, + {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c38cfd355fd86c39b2d54651bd6ed7d63d4fe3b5553f364bae3306e2445f847"}, + {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:713dff3f87ceec3bde4f3f484861464e722cf7533f9fa6b824ec82bb5a9010a7"}, + {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:21a72f4a9c69a8567a0aca12042f12bba25d3139fd5dd8eeb9931f4d9e8599cd"}, + {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:6d1ad868624f6cea77341ef2877ad4e71f7116834a6cd7ec36ec5c32f94ee6ae"}, + {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:a78ba86d5a08207d1d1ad10b97aed6ea48b374b3f6831d02d0b06545ac0f181e"}, + {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:aff048793d05e1ce05b62e49dccf81fe52719a13f4861530706619506224992b"}, + {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d088ca05381fd409793571d8e34eca06daf41c8c50a05aeed358d2d340c7af81"}, + {file = "aiohttp-3.10.8-cp39-cp39-win32.whl", hash = "sha256:ee97c4e54f457c366e1f76fbbf3e8effee9de57dae671084a161c00f481106ce"}, + {file = "aiohttp-3.10.8-cp39-cp39-win_amd64.whl", hash = "sha256:d95ae4420669c871667aad92ba8cce6251d61d79c1a38504621094143f94a8b4"}, + {file = "aiohttp-3.10.8.tar.gz", hash = "sha256:21f8225f7dc187018e8433c9326be01477fb2810721e048b33ac49091b19fb4a"}, ] [package.dependencies] -six = "*" +aiohappyeyeballs = ">=2.3.0" +aiosignal = ">=1.1.2" +async-timeout = {version = ">=4.0,<5.0", markers = "python_version < \"3.11\""} +attrs = ">=17.3.0" +frozenlist = ">=1.1.1" +multidict = ">=4.5,<7.0" +yarl = ">=1.12.0,<2.0" + +[package.extras] +speedups = ["Brotli", "aiodns (>=3.2.0)", "brotlicffi"] + +[[package]] +name = "aiosignal" +version = "1.3.1" +description = "aiosignal: a list of registered asynchronous callbacks" +optional = false +python-versions = ">=3.7" +files = [ + {file = "aiosignal-1.3.1-py3-none-any.whl", hash = "sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17"}, + {file = "aiosignal-1.3.1.tar.gz", hash = "sha256:54cd96e15e1649b75d6c87526a6ff0b6c1b0dd3459f43d9ca11d48c339b68cfc"}, +] + +[package.dependencies] +frozenlist = ">=1.1.0" [[package]] name = "appnope" -version = "0.1.3" +version = "0.1.4" description = "Disable App Nap on macOS >= 10.9" optional = false -python-versions = "*" +python-versions = ">=3.6" files = [ - {file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"}, - {file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"}, + {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, + {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, ] [[package]] @@ -58,6 +192,36 @@ files = [ six = ">=1.6.1,<2.0" wheel = ">=0.23.0,<1.0" +[[package]] +name = "async-timeout" +version = "4.0.3" +description = "Timeout context manager for asyncio programs" +optional = false +python-versions = ">=3.7" +files = [ + {file = "async-timeout-4.0.3.tar.gz", hash = "sha256:4640d96be84d82d02ed59ea2b7105a0f7b33abe8703703cd0ab0bf87c427522f"}, + {file = "async_timeout-4.0.3-py3-none-any.whl", hash = "sha256:7405140ff1230c310e51dc27b3145b9092d659ce68ff733fb0cefe3ee42be028"}, +] + +[[package]] +name = "attrs" +version = "24.2.0" +description = "Classes Without Boilerplate" +optional = false +python-versions = ">=3.7" +files = [ + {file = "attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2"}, + {file = "attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346"}, +] + +[package.extras] +benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] + [[package]] name = "backcall" version = "0.2.0" @@ -71,90 +235,116 @@ files = [ [[package]] name = "cachetools" -version = "5.3.2" +version = "5.5.0" description = "Extensible memoizing collections and decorators" optional = false python-versions = ">=3.7" files = [ - {file = "cachetools-5.3.2-py3-none-any.whl", hash = "sha256:861f35a13a451f94e301ce2bec7cac63e881232ccce7ed67fab9b5df4d3beaa1"}, - {file = "cachetools-5.3.2.tar.gz", hash = "sha256:086ee420196f7b2ab9ca2db2520aca326318b68fe5ba8bc4d49cca91add450f2"}, + {file = "cachetools-5.5.0-py3-none-any.whl", hash = "sha256:02134e8439cdc2ffb62023ce1debca2944c3f289d66bb17ead3ab3dede74b292"}, + {file = "cachetools-5.5.0.tar.gz", hash = "sha256:2cc24fb4cbe39633fb7badd9db9ca6295d766d9c2995f245725a46715d050f2a"}, ] [[package]] name = "certifi" -version = "2023.11.17" +version = "2024.8.30" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2023.11.17-py3-none-any.whl", hash = "sha256:e036ab49d5b79556f99cfc2d9320b34cfbe5be05c5871b51de9329f0603b0474"}, - {file = "certifi-2023.11.17.tar.gz", hash = "sha256:9b469f3a900bf28dc19b8cfbf8019bf47f7fdd1a65a1d4ffb98fc14166beb4d1"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] name = "cffi" -version = "1.16.0" +version = "1.17.1" description = "Foreign Function Interface for Python calling C code." optional = false python-versions = ">=3.8" files = [ - {file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088"}, - {file = "cffi-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614"}, - {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743"}, - {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d"}, - {file = "cffi-1.16.0-cp310-cp310-win32.whl", hash = "sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a"}, - {file = "cffi-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1"}, - {file = "cffi-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404"}, - {file = "cffi-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e"}, - {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc"}, - {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb"}, - {file = "cffi-1.16.0-cp311-cp311-win32.whl", hash = "sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab"}, - {file = "cffi-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba"}, - {file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"}, - {file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"}, - {file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"}, - {file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"}, - {file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"}, - {file = "cffi-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324"}, - {file = "cffi-1.16.0-cp38-cp38-win32.whl", hash = "sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a"}, - {file = "cffi-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36"}, - {file = "cffi-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed"}, - {file = "cffi-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098"}, - {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000"}, - {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe"}, - {file = "cffi-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4"}, - {file = "cffi-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8"}, - {file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, ] [package.dependencies] pycparser = "*" +[[package]] +name = "chardet" +version = "5.2.0" +description = "Universal encoding detector for Python 3" +optional = false +python-versions = ">=3.7" +files = [ + {file = "chardet-5.2.0-py3-none-any.whl", hash = "sha256:e1cf59446890a00105fe7b7912492ea04b6e6f06d4b742b2c788469e34c82970"}, + {file = "chardet-5.2.0.tar.gz", hash = "sha256:1b3b6ff479a8c414bc3fa2c0852995695c4a026dcd6d0633b2dd092ca39c1cf7"}, +] + [[package]] name = "charset-normalizer" version = "3.3.2" @@ -267,13 +457,13 @@ files = [ [[package]] name = "comm" -version = "0.2.0" +version = "0.2.2" description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." optional = false python-versions = ">=3.8" files = [ - {file = "comm-0.2.0-py3-none-any.whl", hash = "sha256:2da8d9ebb8dd7bfc247adaff99f24dce705638a8042b85cb995066793e391001"}, - {file = "comm-0.2.0.tar.gz", hash = "sha256:a517ea2ca28931c7007a7a99c562a0fa5883cfb48963140cf642c41c948498be"}, + {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, + {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, ] [package.dependencies] @@ -297,72 +487,35 @@ files = [ docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] tests = ["pytest", "pytest-cov", "pytest-xdist"] -[[package]] -name = "cython" -version = "0.29.14" -description = "The Cython compiler for writing C extensions for the Python language." -optional = false -python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" -files = [ - {file = "Cython-0.29.14-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:47e5e1502d52ef03387cf9d3b3241007961a84a466e58a3b74028e1dd4957f8c"}, - {file = "Cython-0.29.14-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:1dcdaa319558eb924294a554dcf6c12383ec947acc7e779e8d3622409a7f7d28"}, - {file = "Cython-0.29.14-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:7bc18fc5a170f2c1cef5387a3d997c28942918bbee0f700e73fd2178ee8d474d"}, - {file = "Cython-0.29.14-cp27-cp27m-win32.whl", hash = "sha256:89458b49976b1dee5d89ab4ac943da3717b4292bf624367e862e4ee172fcce99"}, - {file = "Cython-0.29.14-cp27-cp27m-win_amd64.whl", hash = "sha256:c0b24bfe3431b3cb7ced323bca813dbd13aca973a1475b512d3331fd0de8ec60"}, - {file = "Cython-0.29.14-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7f89eff20e4a7a64b55210dac17aea711ed8a3f2e78f2ff784c0e984302583dd"}, - {file = "Cython-0.29.14-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:6c53338c1811f8c6d7f8cb7abd874810b15045e719e8207f957035c9177b4213"}, - {file = "Cython-0.29.14-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:521340844cf388d109ceb61397f3fd5250ccb622a1a8e93559e8de76c80940a9"}, - {file = "Cython-0.29.14-cp34-cp34m-manylinux1_i686.whl", hash = "sha256:75c2dda47dcc3c77449712b1417bb6b89ec3b7b02e18c64262494dceffdf455e"}, - {file = "Cython-0.29.14-cp34-cp34m-manylinux1_x86_64.whl", hash = "sha256:05eb79efc8029d487251c8a2702a909a8ba33c332e06d2f3980866541bd81253"}, - {file = "Cython-0.29.14-cp34-cp34m-win32.whl", hash = "sha256:1fc5bdda28f25fec44e4721677458aa509d743cd350862270309d61aa148d6ff"}, - {file = "Cython-0.29.14-cp34-cp34m-win_amd64.whl", hash = "sha256:0c70e842e52e2f50cc43bad43b5e5bc515f30821a374e544abb0e0746f2350ff"}, - {file = "Cython-0.29.14-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:094d28a34c3fa992ae02aea1edbe6ff89b3cc5870b6ee38b5baeb805dc57b013"}, - {file = "Cython-0.29.14-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:280573a01d9348d44a42d6a9c651d9f7eb1fe9217df72555b2a118f902996a10"}, - {file = "Cython-0.29.14-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:773c5a98e463b52f7e8197254b39b703a5ea1972aef3a94b3b921515d77dd041"}, - {file = "Cython-0.29.14-cp35-cp35m-win32.whl", hash = "sha256:986f871c0fa649b293061236b93782d25c293a8dd8117c7ba05f8a61bdc261ae"}, - {file = "Cython-0.29.14-cp35-cp35m-win_amd64.whl", hash = "sha256:78c3068dcba300d473fef57cdf523e34b37de522f5a494ef9ee1ac9b4b8bbe3f"}, - {file = "Cython-0.29.14-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:f3818e578e687cdb21dc4aa4a3bc6278c656c9c393e9eda14dd04943f478863d"}, - {file = "Cython-0.29.14-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:bb487881608ebd293592553c618f0c83316f4f13a64cb18605b1d2fb9fd3da3e"}, - {file = "Cython-0.29.14-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:03f6bbb380ad0acb744fb06e42996ea217e9d00016ca0ff6f2e7d60f580d0360"}, - {file = "Cython-0.29.14-cp36-cp36m-win32.whl", hash = "sha256:b8ab3ab38afc47d8f4fe629b836243544351cef681b6bdb1dc869028d6fdcbfb"}, - {file = "Cython-0.29.14-cp36-cp36m-win_amd64.whl", hash = "sha256:298ceca7b0f0da4205fcb0b7c9ac9e120e2dafffd5019ba1618e84ef89434b5a"}, - {file = "Cython-0.29.14-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:fe666645493d72712c46e4fbe8bec094b06aec3c337400479e9704439c9d9586"}, - {file = "Cython-0.29.14-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:4074a8bff0040035673cc6dd365a762476d6bff4d03d8ce6904e3e53f9a25dc8"}, - {file = "Cython-0.29.14-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:a14aa436586c41633339415de82a41164691d02d3e661038da533be5d40794a5"}, - {file = "Cython-0.29.14-cp37-cp37m-win32.whl", hash = "sha256:41e7068e95fbf9ec94b41437f989caf9674135e770a39cdb9c00de459bafd1bc"}, - {file = "Cython-0.29.14-cp37-cp37m-win_amd64.whl", hash = "sha256:05e8cfd3a3a6087aec49a1ae08a89171db991956209406d1e5576f9db70ece52"}, - {file = "Cython-0.29.14-cp38-cp38-manylinux1_i686.whl", hash = "sha256:e8fab9911fd2fa8e5af407057cb8bdf87762f983cba483fa3234be20a9a0af77"}, - {file = "Cython-0.29.14-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:d4039bb7f234ad32267c55e72fd49fb56078ea102f9d9d8559f6ec34d4887630"}, - {file = "Cython-0.29.14-cp38-cp38-win32.whl", hash = "sha256:c7894c06205166d360ab2915ae306d1f7403e9ce3d3aaeff4095eaf98e42ce66"}, - {file = "Cython-0.29.14-cp38-cp38-win_amd64.whl", hash = "sha256:a0f495a4fe5278aab278feee35e6102efecde5176a8a74dd28c28e3fc5c8d7c7"}, - {file = "Cython-0.29.14.tar.gz", hash = "sha256:e4d6bb8703d0319eb04b7319b12ea41580df44fd84d83ccda13ea463c6801414"}, -] - [[package]] name = "debugpy" -version = "1.8.0" +version = "1.8.6" description = "An implementation of the Debug Adapter Protocol for Python" optional = false python-versions = ">=3.8" files = [ - {file = "debugpy-1.8.0-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:7fb95ca78f7ac43393cd0e0f2b6deda438ec7c5e47fa5d38553340897d2fbdfb"}, - {file = "debugpy-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef9ab7df0b9a42ed9c878afd3eaaff471fce3fa73df96022e1f5c9f8f8c87ada"}, - {file = "debugpy-1.8.0-cp310-cp310-win32.whl", hash = "sha256:a8b7a2fd27cd9f3553ac112f356ad4ca93338feadd8910277aff71ab24d8775f"}, - {file = "debugpy-1.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:5d9de202f5d42e62f932507ee8b21e30d49aae7e46d5b1dd5c908db1d7068637"}, - {file = "debugpy-1.8.0-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:ef54404365fae8d45cf450d0544ee40cefbcb9cb85ea7afe89a963c27028261e"}, - {file = "debugpy-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60009b132c91951354f54363f8ebdf7457aeb150e84abba5ae251b8e9f29a8a6"}, - {file = "debugpy-1.8.0-cp311-cp311-win32.whl", hash = "sha256:8cd0197141eb9e8a4566794550cfdcdb8b3db0818bdf8c49a8e8f8053e56e38b"}, - {file = "debugpy-1.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:a64093656c4c64dc6a438e11d59369875d200bd5abb8f9b26c1f5f723622e153"}, - {file = "debugpy-1.8.0-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:b05a6b503ed520ad58c8dc682749113d2fd9f41ffd45daec16e558ca884008cd"}, - {file = "debugpy-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c6fb41c98ec51dd010d7ed650accfd07a87fe5e93eca9d5f584d0578f28f35f"}, - {file = "debugpy-1.8.0-cp38-cp38-win32.whl", hash = "sha256:46ab6780159eeabb43c1495d9c84cf85d62975e48b6ec21ee10c95767c0590aa"}, - {file = "debugpy-1.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:bdc5ef99d14b9c0fcb35351b4fbfc06ac0ee576aeab6b2511702e5a648a2e595"}, - {file = "debugpy-1.8.0-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:61eab4a4c8b6125d41a34bad4e5fe3d2cc145caecd63c3fe953be4cc53e65bf8"}, - {file = "debugpy-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:125b9a637e013f9faac0a3d6a82bd17c8b5d2c875fb6b7e2772c5aba6d082332"}, - {file = "debugpy-1.8.0-cp39-cp39-win32.whl", hash = "sha256:57161629133113c97b387382045649a2b985a348f0c9366e22217c87b68b73c6"}, - {file = "debugpy-1.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:e3412f9faa9ade82aa64a50b602544efcba848c91384e9f93497a458767e6926"}, - {file = "debugpy-1.8.0-py2.py3-none-any.whl", hash = "sha256:9c9b0ac1ce2a42888199df1a1906e45e6f3c9555497643a85e0bf2406e3ffbc4"}, - {file = "debugpy-1.8.0.zip", hash = "sha256:12af2c55b419521e33d5fb21bd022df0b5eb267c3e178f1d374a63a2a6bdccd0"}, + {file = "debugpy-1.8.6-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:30f467c5345d9dfdcc0afdb10e018e47f092e383447500f125b4e013236bf14b"}, + {file = "debugpy-1.8.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d73d8c52614432f4215d0fe79a7e595d0dd162b5c15233762565be2f014803b"}, + {file = "debugpy-1.8.6-cp310-cp310-win32.whl", hash = "sha256:e3e182cd98eac20ee23a00653503315085b29ab44ed66269482349d307b08df9"}, + {file = "debugpy-1.8.6-cp310-cp310-win_amd64.whl", hash = "sha256:e3a82da039cfe717b6fb1886cbbe5c4a3f15d7df4765af857f4307585121c2dd"}, + {file = "debugpy-1.8.6-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:67479a94cf5fd2c2d88f9615e087fcb4fec169ec780464a3f2ba4a9a2bb79955"}, + {file = "debugpy-1.8.6-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fb8653f6cbf1dd0a305ac1aa66ec246002145074ea57933978346ea5afdf70b"}, + {file = "debugpy-1.8.6-cp311-cp311-win32.whl", hash = "sha256:cdaf0b9691879da2d13fa39b61c01887c34558d1ff6e5c30e2eb698f5384cd43"}, + {file = "debugpy-1.8.6-cp311-cp311-win_amd64.whl", hash = "sha256:43996632bee7435583952155c06881074b9a742a86cee74e701d87ca532fe833"}, + {file = "debugpy-1.8.6-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:db891b141fc6ee4b5fc6d1cc8035ec329cabc64bdd2ae672b4550c87d4ecb128"}, + {file = "debugpy-1.8.6-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:567419081ff67da766c898ccf21e79f1adad0e321381b0dfc7a9c8f7a9347972"}, + {file = "debugpy-1.8.6-cp312-cp312-win32.whl", hash = "sha256:c9834dfd701a1f6bf0f7f0b8b1573970ae99ebbeee68314116e0ccc5c78eea3c"}, + {file = "debugpy-1.8.6-cp312-cp312-win_amd64.whl", hash = "sha256:e4ce0570aa4aca87137890d23b86faeadf184924ad892d20c54237bcaab75d8f"}, + {file = "debugpy-1.8.6-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:df5dc9eb4ca050273b8e374a4cd967c43be1327eeb42bfe2f58b3cdfe7c68dcb"}, + {file = "debugpy-1.8.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0a85707c6a84b0c5b3db92a2df685b5230dd8fb8c108298ba4f11dba157a615a"}, + {file = "debugpy-1.8.6-cp38-cp38-win32.whl", hash = "sha256:538c6cdcdcdad310bbefd96d7850be1cd46e703079cc9e67d42a9ca776cdc8a8"}, + {file = "debugpy-1.8.6-cp38-cp38-win_amd64.whl", hash = "sha256:22140bc02c66cda6053b6eb56dfe01bbe22a4447846581ba1dd6df2c9f97982d"}, + {file = "debugpy-1.8.6-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:c1cef65cffbc96e7b392d9178dbfd524ab0750da6c0023c027ddcac968fd1caa"}, + {file = "debugpy-1.8.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1e60bd06bb3cc5c0e957df748d1fab501e01416c43a7bdc756d2a992ea1b881"}, + {file = "debugpy-1.8.6-cp39-cp39-win32.whl", hash = "sha256:f7158252803d0752ed5398d291dee4c553bb12d14547c0e1843ab74ee9c31123"}, + {file = "debugpy-1.8.6-cp39-cp39-win_amd64.whl", hash = "sha256:3358aa619a073b620cd0d51d8a6176590af24abcc3fe2e479929a154bf591b51"}, + {file = "debugpy-1.8.6-py2.py3-none-any.whl", hash = "sha256:b48892df4d810eff21d3ef37274f4c60d32cdcafc462ad5647239036b0f0649f"}, + {file = "debugpy-1.8.6.zip", hash = "sha256:c931a9371a86784cee25dec8d65bc2dc7a21f3f1552e3833d9ef8f919d22280a"}, ] [[package]] @@ -378,99 +531,236 @@ files = [ [[package]] name = "executing" -version = "2.0.1" +version = "2.1.0" description = "Get the currently executing AST node of a frame, and other information" optional = false -python-versions = ">=3.5" +python-versions = ">=3.8" files = [ - {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, - {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, + {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, + {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, ] [package.extras] tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] +[[package]] +name = "filelock" +version = "3.16.1" +description = "A platform independent file lock." +optional = false +python-versions = ">=3.8" +files = [ + {file = "filelock-3.16.1-py3-none-any.whl", hash = "sha256:2082e5703d51fbf98ea75855d9d5527e33d8ff23099bec374a134febee6946b0"}, + {file = "filelock-3.16.1.tar.gz", hash = "sha256:c249fbfcd5db47e5e2d6d62198e565475ee65e4831e2561c8e313fa7eb961435"}, +] + +[package.extras] +docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4.1)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.2)", "pytest (>=8.3.3)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.4)"] +typing = ["typing-extensions (>=4.12.2)"] + [[package]] name = "flatbuffers" -version = "1.12" +version = "2.0.7" description = "The FlatBuffers serialization format for Python" optional = false python-versions = "*" files = [ - {file = "flatbuffers-1.12-py2.py3-none-any.whl", hash = "sha256:9e9ef47fa92625c4721036e7c4124182668dc6021d9e7c73704edd395648deb9"}, - {file = "flatbuffers-1.12.tar.gz", hash = "sha256:63bb9a722d5e373701913e226135b28a6f6ac200d5cc7b4d919fa38d73b44610"}, + {file = "flatbuffers-2.0.7-py2.py3-none-any.whl", hash = "sha256:71e135d533be527192819aaab757c5e3d109cb10fbb01e687f6bdb7a61ad39d1"}, + {file = "flatbuffers-2.0.7.tar.gz", hash = "sha256:0ae7d69c5b82bf41962ca5fde9cc43033bc9501311d975fd5a25e8a7d29c1245"}, +] + +[[package]] +name = "frozenlist" +version = "1.4.1" +description = "A list-like structure which implements collections.abc.MutableSequence" +optional = false +python-versions = ">=3.8" +files = [ + {file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:f9aa1878d1083b276b0196f2dfbe00c9b7e752475ed3b682025ff20c1c1f51ac"}, + {file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:29acab3f66f0f24674b7dc4736477bcd4bc3ad4b896f5f45379a67bce8b96868"}, + {file = "frozenlist-1.4.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:74fb4bee6880b529a0c6560885fce4dc95936920f9f20f53d99a213f7bf66776"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:590344787a90ae57d62511dd7c736ed56b428f04cd8c161fcc5e7232c130c69a"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:068b63f23b17df8569b7fdca5517edef76171cf3897eb68beb01341131fbd2ad"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c849d495bf5154cd8da18a9eb15db127d4dba2968d88831aff6f0331ea9bd4c"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9750cc7fe1ae3b1611bb8cfc3f9ec11d532244235d75901fb6b8e42ce9229dfe"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9b2de4cf0cdd5bd2dee4c4f63a653c61d2408055ab77b151c1957f221cabf2a"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0633c8d5337cb5c77acbccc6357ac49a1770b8c487e5b3505c57b949b4b82e98"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:27657df69e8801be6c3638054e202a135c7f299267f1a55ed3a598934f6c0d75"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:f9a3ea26252bd92f570600098783d1371354d89d5f6b7dfd87359d669f2109b5"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:4f57dab5fe3407b6c0c1cc907ac98e8a189f9e418f3b6e54d65a718aaafe3950"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e02a0e11cf6597299b9f3bbd3f93d79217cb90cfd1411aec33848b13f5c656cc"}, + {file = "frozenlist-1.4.1-cp310-cp310-win32.whl", hash = "sha256:a828c57f00f729620a442881cc60e57cfcec6842ba38e1b19fd3e47ac0ff8dc1"}, + {file = "frozenlist-1.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:f56e2333dda1fe0f909e7cc59f021eba0d2307bc6f012a1ccf2beca6ba362439"}, + {file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a0cb6f11204443f27a1628b0e460f37fb30f624be6051d490fa7d7e26d4af3d0"}, + {file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b46c8ae3a8f1f41a0d2ef350c0b6e65822d80772fe46b653ab6b6274f61d4a49"}, + {file = "frozenlist-1.4.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fde5bd59ab5357e3853313127f4d3565fc7dad314a74d7b5d43c22c6a5ed2ced"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:722e1124aec435320ae01ee3ac7bec11a5d47f25d0ed6328f2273d287bc3abb0"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2471c201b70d58a0f0c1f91261542a03d9a5e088ed3dc6c160d614c01649c106"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c757a9dd70d72b076d6f68efdbb9bc943665ae954dad2801b874c8c69e185068"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f146e0911cb2f1da549fc58fc7bcd2b836a44b79ef871980d605ec392ff6b0d2"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f9c515e7914626b2a2e1e311794b4c35720a0be87af52b79ff8e1429fc25f19"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c302220494f5c1ebeb0912ea782bcd5e2f8308037b3c7553fad0e48ebad6ad82"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:442acde1e068288a4ba7acfe05f5f343e19fac87bfc96d89eb886b0363e977ec"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:1b280e6507ea8a4fa0c0a7150b4e526a8d113989e28eaaef946cc77ffd7efc0a"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:fe1a06da377e3a1062ae5fe0926e12b84eceb8a50b350ddca72dc85015873f74"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:db9e724bebd621d9beca794f2a4ff1d26eed5965b004a97f1f1685a173b869c2"}, + {file = "frozenlist-1.4.1-cp311-cp311-win32.whl", hash = "sha256:e774d53b1a477a67838a904131c4b0eef6b3d8a651f8b138b04f748fccfefe17"}, + {file = "frozenlist-1.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:fb3c2db03683b5767dedb5769b8a40ebb47d6f7f45b1b3e3b4b51ec8ad9d9825"}, + {file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1979bc0aeb89b33b588c51c54ab0161791149f2461ea7c7c946d95d5f93b56ae"}, + {file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cc7b01b3754ea68a62bd77ce6020afaffb44a590c2289089289363472d13aedb"}, + {file = "frozenlist-1.4.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c9c92be9fd329ac801cc420e08452b70e7aeab94ea4233a4804f0915c14eba9b"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c3894db91f5a489fc8fa6a9991820f368f0b3cbdb9cd8849547ccfab3392d86"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba60bb19387e13597fb059f32cd4d59445d7b18b69a745b8f8e5db0346f33480"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8aefbba5f69d42246543407ed2461db31006b0f76c4e32dfd6f42215a2c41d09"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:780d3a35680ced9ce682fbcf4cb9c2bad3136eeff760ab33707b71db84664e3a"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9acbb16f06fe7f52f441bb6f413ebae6c37baa6ef9edd49cdd567216da8600cd"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:23b701e65c7b36e4bf15546a89279bd4d8675faabc287d06bbcfac7d3c33e1e6"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:3e0153a805a98f5ada7e09826255ba99fb4f7524bb81bf6b47fb702666484ae1"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:dd9b1baec094d91bf36ec729445f7769d0d0cf6b64d04d86e45baf89e2b9059b"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:1a4471094e146b6790f61b98616ab8e44f72661879cc63fa1049d13ef711e71e"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5667ed53d68d91920defdf4035d1cdaa3c3121dc0b113255124bcfada1cfa1b8"}, + {file = "frozenlist-1.4.1-cp312-cp312-win32.whl", hash = "sha256:beee944ae828747fd7cb216a70f120767fc9f4f00bacae8543c14a6831673f89"}, + {file = "frozenlist-1.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:64536573d0a2cb6e625cf309984e2d873979709f2cf22839bf2d61790b448ad5"}, + {file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:20b51fa3f588ff2fe658663db52a41a4f7aa6c04f6201449c6c7c476bd255c0d"}, + {file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:410478a0c562d1a5bcc2f7ea448359fcb050ed48b3c6f6f4f18c313a9bdb1826"}, + {file = "frozenlist-1.4.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c6321c9efe29975232da3bd0af0ad216800a47e93d763ce64f291917a381b8eb"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48f6a4533887e189dae092f1cf981f2e3885175f7a0f33c91fb5b7b682b6bab6"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6eb73fa5426ea69ee0e012fb59cdc76a15b1283d6e32e4f8dc4482ec67d1194d"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbeb989b5cc29e8daf7f976b421c220f1b8c731cbf22b9130d8815418ea45887"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:32453c1de775c889eb4e22f1197fe3bdfe457d16476ea407472b9442e6295f7a"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693945278a31f2086d9bf3df0fe8254bbeaef1fe71e1351c3bd730aa7d31c41b"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:1d0ce09d36d53bbbe566fe296965b23b961764c0bcf3ce2fa45f463745c04701"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3a670dc61eb0d0eb7080890c13de3066790f9049b47b0de04007090807c776b0"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:dca69045298ce5c11fd539682cff879cc1e664c245d1c64da929813e54241d11"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:a06339f38e9ed3a64e4c4e43aec7f59084033647f908e4259d279a52d3757d09"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b7f2f9f912dca3934c1baec2e4585a674ef16fe00218d833856408c48d5beee7"}, + {file = "frozenlist-1.4.1-cp38-cp38-win32.whl", hash = "sha256:e7004be74cbb7d9f34553a5ce5fb08be14fb33bc86f332fb71cbe5216362a497"}, + {file = "frozenlist-1.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:5a7d70357e7cee13f470c7883a063aae5fe209a493c57d86eb7f5a6f910fae09"}, + {file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:bfa4a17e17ce9abf47a74ae02f32d014c5e9404b6d9ac7f729e01562bbee601e"}, + {file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b7e3ed87d4138356775346e6845cccbe66cd9e207f3cd11d2f0b9fd13681359d"}, + {file = "frozenlist-1.4.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c99169d4ff810155ca50b4da3b075cbde79752443117d89429595c2e8e37fed8"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edb678da49d9f72c9f6c609fbe41a5dfb9a9282f9e6a2253d5a91e0fc382d7c0"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6db4667b187a6742b33afbbaf05a7bc551ffcf1ced0000a571aedbb4aa42fc7b"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55fdc093b5a3cb41d420884cdaf37a1e74c3c37a31f46e66286d9145d2063bd0"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82e8211d69a4f4bc360ea22cd6555f8e61a1bd211d1d5d39d3d228b48c83a897"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89aa2c2eeb20957be2d950b85974b30a01a762f3308cd02bb15e1ad632e22dc7"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9d3e0c25a2350080e9319724dede4f31f43a6c9779be48021a7f4ebde8b2d742"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7268252af60904bf52c26173cbadc3a071cece75f873705419c8681f24d3edea"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:0c250a29735d4f15321007fb02865f0e6b6a41a6b88f1f523ca1596ab5f50bd5"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:96ec70beabbd3b10e8bfe52616a13561e58fe84c0101dd031dc78f250d5128b9"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:23b2d7679b73fe0e5a4560b672a39f98dfc6f60df63823b0a9970525325b95f6"}, + {file = "frozenlist-1.4.1-cp39-cp39-win32.whl", hash = "sha256:a7496bfe1da7fb1a4e1cc23bb67c58fab69311cc7d32b5a99c2007b4b2a0e932"}, + {file = "frozenlist-1.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:e6a20a581f9ce92d389a8c7d7c3dd47c81fd5d6e655c8dddf341e14aa48659d0"}, + {file = "frozenlist-1.4.1-py3-none-any.whl", hash = "sha256:04ced3e6a46b4cfffe20f9ae482818e34eba9b5fb0ce4056e4cc9b6e212d09b7"}, + {file = "frozenlist-1.4.1.tar.gz", hash = "sha256:c037a86e8513059a2613aaba4d817bb90b9d9b6b69aace3ce9c877e8c8ed402b"}, +] + +[[package]] +name = "fsspec" +version = "2024.9.0" +description = "File-system specification" +optional = false +python-versions = ">=3.8" +files = [ + {file = "fsspec-2024.9.0-py3-none-any.whl", hash = "sha256:a0947d552d8a6efa72cc2c730b12c41d043509156966cca4fb157b0f2a0c574b"}, + {file = "fsspec-2024.9.0.tar.gz", hash = "sha256:4b0afb90c2f21832df142f292649035d80b421f60a9e1c027802e5a0da2b04e8"}, ] +[package.extras] +abfs = ["adlfs"] +adl = ["adlfs"] +arrow = ["pyarrow (>=1)"] +dask = ["dask", "distributed"] +dev = ["pre-commit", "ruff"] +doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] +dropbox = ["dropbox", "dropboxdrivefs", "requests"] +full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] +fuse = ["fusepy"] +gcs = ["gcsfs"] +git = ["pygit2"] +github = ["requests"] +gs = ["gcsfs"] +gui = ["panel"] +hdfs = ["pyarrow (>=1)"] +http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)"] +libarchive = ["libarchive-c"] +oci = ["ocifs"] +s3 = ["s3fs"] +sftp = ["paramiko"] +smb = ["smbprotocol"] +ssh = ["paramiko"] +test = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "numpy", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "requests"] +test-downstream = ["aiobotocore (>=2.5.4,<3.0.0)", "dask-expr", "dask[dataframe,test]", "moto[server] (>4,<5)", "pytest-timeout", "xarray"] +test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"] +tqdm = ["tqdm"] + [[package]] name = "gast" -version = "0.3.3" +version = "0.4.0" description = "Python AST that abstracts the underlying Python version" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ - {file = "gast-0.3.3-py2.py3-none-any.whl", hash = "sha256:8f46f5be57ae6889a4e16e2ca113b1703ef17f2b0abceb83793eaba9e1351a45"}, - {file = "gast-0.3.3.tar.gz", hash = "sha256:b881ef288a49aa81440d2c5eb8aeefd4c2bb8993d5f50edae7413a85bfdb3b57"}, + {file = "gast-0.4.0-py3-none-any.whl", hash = "sha256:b7adcdd5adbebf1adf17378da5ba3f543684dbec47b1cda1f3997e573cd542c4"}, + {file = "gast-0.4.0.tar.gz", hash = "sha256:40feb7b8b8434785585ab224d1568b857edb18297e5a3047f1ba012bc83b42c1"}, ] [[package]] name = "gensim" -version = "3.8.3" +version = "4.3.3" description = "Python framework for fast Vector Space Modelling" optional = false -python-versions = "*" +python-versions = ">=3.8" files = [ - {file = "gensim-3.8.3-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:61eed1d6b5fbe6dda0586ea447ebc2dc7890a7f70c2ed953d5abc3fe3cfb94bb"}, - {file = "gensim-3.8.3-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:3af62709369331c85552fd26caa21504baa64accc426dc094172f5c688750013"}, - {file = "gensim-3.8.3-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:8ff471921b3b10ffb3ae6cbb598dd9c07d9dc030dee5aa167e7682b549c42f87"}, - {file = "gensim-3.8.3-cp27-cp27m-win32.whl", hash = "sha256:440700e29b494bc2e1d52e14b69a821f46ab09ecf85cf36c8988f18e1d6c7a8b"}, - {file = "gensim-3.8.3-cp27-cp27m-win_amd64.whl", hash = "sha256:f8ea67bf8c47ee55cb1b32c97fa1474b7d6d22959dd8097c019a5d9c9df34f5f"}, - {file = "gensim-3.8.3-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7a90549dfc8ee3822fcad6da957de07d927e4e90ef42b3699543dee35ab2da13"}, - {file = "gensim-3.8.3-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:7629b33cf35f672efdd5269381f7e301958ee2638f27dfc63b80c5bfeaa827d3"}, - {file = "gensim-3.8.3-cp35-cp35m-macosx_10_9_intel.whl", hash = "sha256:6711b6d3a0007530ee7de7adc30a4c48a1d26ec6312ac50e1d1e0a1d54f9de5b"}, - {file = "gensim-3.8.3-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:ef2ddeceff482aee17c1e185f63bf027c8de8f595fdd9fd2d2503de96008f3b7"}, - {file = "gensim-3.8.3-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:41dcf6ecdc9acc657157967c791b8cbaba90ee6391f64efd28339b72f5e0c327"}, - {file = "gensim-3.8.3-cp35-cp35m-win32.whl", hash = "sha256:685a7657278161628821c8f873c5d7d2ffc0c28866648e39f76b450e4c7d5390"}, - {file = "gensim-3.8.3-cp35-cp35m-win_amd64.whl", hash = "sha256:b61a7c841a752c84b685674aa0d610289faad38795b325176481abe19b487e98"}, - {file = "gensim-3.8.3-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a61179df454a0d4b06a111c4ede0536f61c8121b4c0d0d02d23560a2fd4b3aff"}, - {file = "gensim-3.8.3-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:cc387d0d8bddbf3609ab95b3453296e4c9ff92c35e9799a17d86b1571d77a5fc"}, - {file = "gensim-3.8.3-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:b36e6330471061cfd78aad751e24c6b4f56d575697af0fbab42655128927d296"}, - {file = "gensim-3.8.3-cp36-cp36m-win32.whl", hash = "sha256:1e3d66c2eec494376fc599701d9c2868549aed6e93e47177e39217f0188e2d88"}, - {file = "gensim-3.8.3-cp36-cp36m-win_amd64.whl", hash = "sha256:91fa62d61b21f1878f140b10520f9de4a26a52672fbe407edfc7e09ca2eff235"}, - {file = "gensim-3.8.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:637fc5969f3cef4b7c8fd3e78e31ef09565c5566d5ceabf076b4170eb6444a80"}, - {file = "gensim-3.8.3-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:22f45fd239cacd0e3715ac447a2c8a5eea02e730ec1f701c55b359e9298e63a8"}, - {file = "gensim-3.8.3-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:d79370f78e9013b9d1e867c85ecc678d46a7ae0f01a8ca29e8f4291e5373b170"}, - {file = "gensim-3.8.3-cp37-cp37m-win32.whl", hash = "sha256:9c214b341f5304b906c79844e2787c13b46505df9dc70afca79a9a7dc0894478"}, - {file = "gensim-3.8.3-cp37-cp37m-win_amd64.whl", hash = "sha256:fe98277a7b3b4987b40c928056bbaae1d0715022cf27bba89d05cd0d4fe51a84"}, - {file = "gensim-3.8.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a47903d104469a7a8b6f22ad5ef74681b19c4f4b71ff2c2893271b53161a43e4"}, - {file = "gensim-3.8.3-cp38-cp38-manylinux1_i686.whl", hash = "sha256:05bfc02e102a34c9c795095b688b1b4aaa2529c624821368c9c3ea6a16536f77"}, - {file = "gensim-3.8.3-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:a8807ebf324dd11e1298a91a92d6e57c7bdabb91d0d5240bf1efa0c0eacd86f0"}, - {file = "gensim-3.8.3-cp38-cp38-win32.whl", hash = "sha256:90115d12ee545c21cc75521ef1bb3dd66aae8a378e9c2eb029c9f22df173c125"}, - {file = "gensim-3.8.3-cp38-cp38-win_amd64.whl", hash = "sha256:4e34cf2e50f3eab3e303da46089ea4972567bf216e28f7535ada155770784ac8"}, - {file = "gensim-3.8.3.tar.gz", hash = "sha256:786adb0571f75114e9c5f7a31dd2e6eb39a9791f22c8757621545e2ded3ea367"}, + {file = "gensim-4.3.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4e72840adfbea35c5804fd559bc0cb6bc9f439926220a37d852b7ce76eb325c1"}, + {file = "gensim-4.3.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4019263c9d9afae7c669f880c17e09461e77a71afce04ed4d79cf71a4cad2848"}, + {file = "gensim-4.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dea62d3e2ada547687bde6cbba37efa50b534db77e9d44fd5802676bb072c9d9"}, + {file = "gensim-4.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fac93ef5e44982defef9d3c1e4cd00245506b8a29cec19ec5e00f0221b8144c"}, + {file = "gensim-4.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:7c3409f755fb8d62da99cea65e7a40a99d21f8fd86443a3aaf2d90eb68995021"}, + {file = "gensim-4.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:99e7b70352aecc6c1674dde82b75f453e7a5d1cc71ac1cfbc460bf1fe20501b7"}, + {file = "gensim-4.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:32a4cac3f3c38af2069eab9524609fc92ebaeb2692b7280cfda365a3517a280a"}, + {file = "gensim-4.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c071b4329ed1be02446eb7ef637b94c68cf0080c15c57fbcde667fce2e49c3fe"}, + {file = "gensim-4.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d662bf96e3d741b6ab61a54be842a7cbf5e45193008b2f4225c758cafd7f9cdc"}, + {file = "gensim-4.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:a54bd53a0e6f991abb837f126663353657270e75be53287e8a568ada0b35b1b0"}, + {file = "gensim-4.3.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9a65ed1a8c1fc83890b4eb2a45ae2b32e82a0209c970c8c74694d0374c2415cb"}, + {file = "gensim-4.3.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4db485e08a0287e0fd6a029d89b90913d1df38f1dcd34cd2ab758873ba9255f3"}, + {file = "gensim-4.3.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7198987116373ab99f034b292a04ac841531d12b56345851c98b40a3fcd93a85"}, + {file = "gensim-4.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6237a50de4da7a037b19b2b6c430b6537243dcdedebf94afeb089e951953e601"}, + {file = "gensim-4.3.3-cp312-cp312-win_amd64.whl", hash = "sha256:c910c2d5a71f532273166a3a82762959973f0513b221a495fa5a2a07652ee66d"}, + {file = "gensim-4.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d7efa5e35d3f0ec02e6e8343b623c2c863be99e8c26866cf0bebd24fb10198c"}, + {file = "gensim-4.3.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2e8eaf5ef576f4d45e98cf87e7edda9afb469dff954a923402dc1ffc35195901"}, + {file = "gensim-4.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9161e52a6ec2a0580df66e9fac4ff7fc43efdc40674fbd4dd9e914796cc68bc3"}, + {file = "gensim-4.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a200d6ac522cdf91e6048e1a368318c6b1b6e0c79009dfd408345ea2b9d3c096"}, + {file = "gensim-4.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:065547124a93948926b88cb854e1c09750e9a4c7be92f55858159aa8a23359c3"}, + {file = "gensim-4.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688a13b9bba839fedc7f3da6806d5701a756ed940839702ba6d7f494e917baef"}, + {file = "gensim-4.3.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c560d28133cca58078221d60fce346f98f2c5e93d2ad42942f32c0d60903f65b"}, + {file = "gensim-4.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:832311f0c420c0841c98b9e6cc4d83ea362add6db917bf2d646de4bed48a29f7"}, + {file = "gensim-4.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1049f5bc2a84b21a1cb9976741826c0ebf25cfdff4a888361db4b4a697d99f0d"}, + {file = "gensim-4.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:e99b236b6638a30d7f878e2e21a94dab2f6d4b4fd3c242f44dca1341940cb0cb"}, + {file = "gensim-4.3.3.tar.gz", hash = "sha256:84852076a6a3d88d7dac5be245e24c21c3b819b565e14c1b61fa3e5ee76dcf57"}, ] [package.dependencies] -Cython = "0.29.14" -numpy = ">=1.11.3" -scipy = ">=0.18.1" -six = ">=1.5.0" +numpy = ">=1.18.5,<2.0" +scipy = ">=1.7.0,<1.14.0" smart-open = ">=1.8.1" [package.extras] distributed = ["Pyro4 (>=4.27)"] -docs = ["Morfessor (==2.0.2a4)", "Pyro4", "Pyro4 (>=4.27)", "annoy", "cython", "matplotlib", "memory-profiler", "mock", "nltk", "nmslib", "pandas", "plotly", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "sphinx (<=2.4.4)", "sphinx-gallery", "sphinxcontrib-napoleon", "sphinxcontrib.programoutput", "statsmodels", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] -test = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] -test-win = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +docs = ["POT", "Pyro4", "Pyro4 (>=4.27)", "annoy", "matplotlib", "memory-profiler", "nltk", "pandas", "pytest", "pytest-cov", "scikit-learn", "sphinx (==5.1.1)", "sphinx-gallery (==0.11.1)", "sphinxcontrib-napoleon (==0.7)", "sphinxcontrib.programoutput (==0.17)", "statsmodels", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test = ["POT", "pytest", "pytest-cov", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test-win = ["POT", "pytest", "pytest-cov", "testfixtures"] [[package]] name = "google-auth" -version = "2.25.2" +version = "2.35.0" description = "Google Authentication Library" optional = false python-versions = ">=3.7" files = [ - {file = "google-auth-2.25.2.tar.gz", hash = "sha256:42f707937feb4f5e5a39e6c4f343a17300a459aaf03141457ba505812841cc40"}, - {file = "google_auth-2.25.2-py2.py3-none-any.whl", hash = "sha256:473a8dfd0135f75bb79d878436e568f2695dce456764bf3a02b6f8c540b1d256"}, + {file = "google_auth-2.35.0-py2.py3-none-any.whl", hash = "sha256:25df55f327ef021de8be50bad0dfd4a916ad0de96da86cd05661c9297723ad3f"}, + {file = "google_auth-2.35.0.tar.gz", hash = "sha256:f4c64ed4e01e8e8b646ef34c018f8bf3338df0c8e37d8b3bba40e7f574a3278a"}, ] [package.dependencies] @@ -480,24 +770,24 @@ rsa = ">=3.1.4,<5" [package.extras] aiohttp = ["aiohttp (>=3.6.2,<4.0.0.dev0)", "requests (>=2.20.0,<3.0.0.dev0)"] -enterprise-cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"] +enterprise-cert = ["cryptography", "pyopenssl"] pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] reauth = ["pyu2f (>=0.1.5)"] requests = ["requests (>=2.20.0,<3.0.0.dev0)"] [[package]] name = "google-auth-oauthlib" -version = "0.4.6" +version = "1.0.0" description = "Google Authentication Library" optional = false python-versions = ">=3.6" files = [ - {file = "google-auth-oauthlib-0.4.6.tar.gz", hash = "sha256:a90a072f6993f2c327067bf65270046384cda5a8ecb20b94ea9a687f1f233a7a"}, - {file = "google_auth_oauthlib-0.4.6-py2.py3-none-any.whl", hash = "sha256:3f2a6e802eebbb6fb736a370fbf3b055edcb6b52878bf2f26330b5e041316c73"}, + {file = "google-auth-oauthlib-1.0.0.tar.gz", hash = "sha256:e375064964820b47221a7e1b7ee1fd77051b6323c3f9e3e19785f78ab67ecfc5"}, + {file = "google_auth_oauthlib-1.0.0-py2.py3-none-any.whl", hash = "sha256:95880ca704928c300f48194d1770cf5b1462835b6e49db61445a520f793fd5fb"}, ] [package.dependencies] -google-auth = ">=1.0.0" +google-auth = ">=2.15.0" requests-oauthlib = ">=0.7.0" [package.extras] @@ -520,139 +810,150 @@ six = "*" [[package]] name = "grpcio" -version = "1.32.0" +version = "1.66.2" description = "HTTP/2-based RPC framework" optional = false -python-versions = "*" +python-versions = ">=3.8" files = [ - {file = "grpcio-1.32.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:3afb058b6929eba07dba9ae6c5b555aa1d88cb140187d78cc510bd72d0329f28"}, - {file = "grpcio-1.32.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:a8004b34f600a8a51785e46859cd88f3386ef67cccd1cfc7598e3d317608c643"}, - {file = "grpcio-1.32.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:e6786f6f7be0937614577edcab886ddce91b7c1ea972a07ef9972e9f9ecbbb78"}, - {file = "grpcio-1.32.0-cp27-cp27m-win32.whl", hash = "sha256:e467af6bb8f5843f5a441e124b43474715cfb3981264e7cd227343e826dcc3ce"}, - {file = "grpcio-1.32.0-cp27-cp27m-win_amd64.whl", hash = "sha256:1376a60f9bfce781b39973f100b5f67e657b5be479f2fd8a7d2a408fc61c085c"}, - {file = "grpcio-1.32.0-cp27-cp27mu-linux_armv7l.whl", hash = "sha256:ce617e1c4a39131f8527964ac9e700eb199484937d7a0b3e52655a3ba50d5fb9"}, - {file = "grpcio-1.32.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:99bac0e2c820bf446662365df65841f0c2a55b0e2c419db86eaf5d162ddae73e"}, - {file = "grpcio-1.32.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:6d869a3e8e62562b48214de95e9231c97c53caa7172802236cd5d60140d7cddd"}, - {file = "grpcio-1.32.0-cp35-cp35m-linux_armv7l.whl", hash = "sha256:182c64ade34c341398bf71ec0975613970feb175090760ab4f51d1e9a5424f05"}, - {file = "grpcio-1.32.0-cp35-cp35m-macosx_10_7_intel.whl", hash = "sha256:9c0d8f2346c842088b8cbe3e14985b36e5191a34bf79279ba321a4bf69bd88b7"}, - {file = "grpcio-1.32.0-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:4775bc35af9cd3b5033700388deac2e1d611fa45f4a8dcb93667d94cb25f0444"}, - {file = "grpcio-1.32.0-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:be98e3198ec765d0a1e27f69d760f69374ded8a33b953dcfe790127731f7e690"}, - {file = "grpcio-1.32.0-cp35-cp35m-manylinux2014_i686.whl", hash = "sha256:378fe80ec5d9353548eb2a8a43ea03747a80f2e387c4f177f2b3ff6c7d898753"}, - {file = "grpcio-1.32.0-cp35-cp35m-manylinux2014_x86_64.whl", hash = "sha256:f7d508691301027033215d3662dab7e178f54d5cca2329f26a71ae175d94b83f"}, - {file = "grpcio-1.32.0-cp35-cp35m-win32.whl", hash = "sha256:25959a651420dd4a6fd7d3e8dee53f4f5fd8c56336a64963428e78b276389a59"}, - {file = "grpcio-1.32.0-cp35-cp35m-win_amd64.whl", hash = "sha256:ac7028d363d2395f3d755166d0161556a3f99500a5b44890421ccfaaf2aaeb08"}, - {file = "grpcio-1.32.0-cp36-cp36m-linux_armv7l.whl", hash = "sha256:c31e8a219650ddae1cd02f5a169e1bffe66a429a8255d3ab29e9363c73003b62"}, - {file = "grpcio-1.32.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:e28e4c0d4231beda5dee94808e3a224d85cbaba3cfad05f2192e6f4ec5318053"}, - {file = "grpcio-1.32.0-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:f03dfefa9075dd1c6c5cc27b1285c521434643b09338d8b29e1d6a27b386aa82"}, - {file = "grpcio-1.32.0-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:c4966d746dccb639ef93f13560acbe9630681c07f2b320b7ec03fe2c8f0a1f15"}, - {file = "grpcio-1.32.0-cp36-cp36m-manylinux2014_i686.whl", hash = "sha256:ec10d5f680b8e95a06f1367d73c5ddcc0ed04a3f38d6e4c9346988fb0cea2ffa"}, - {file = "grpcio-1.32.0-cp36-cp36m-manylinux2014_x86_64.whl", hash = "sha256:28677f057e2ef11501860a7bc15de12091d40b95dd0fddab3c37ff1542e6b216"}, - {file = "grpcio-1.32.0-cp36-cp36m-win32.whl", hash = "sha256:0f3f09269ffd3fded430cd89ba2397eabbf7e47be93983b25c187cdfebb302a7"}, - {file = "grpcio-1.32.0-cp36-cp36m-win_amd64.whl", hash = "sha256:4396b1d0f388ae875eaf6dc05cdcb612c950fd9355bc34d38b90aaa0665a0d4b"}, - {file = "grpcio-1.32.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1ada89326a364a299527c7962e5c362dbae58c67b283fe8383c4d952b26565d5"}, - {file = "grpcio-1.32.0-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:1d384a61f96a1fc6d5d3e0b62b0a859abc8d4c3f6d16daba51ebf253a3e7df5d"}, - {file = "grpcio-1.32.0-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:e811ce5c387256609d56559d944a974cc6934a8eea8c76e7c86ec388dc06192d"}, - {file = "grpcio-1.32.0-cp37-cp37m-manylinux2014_i686.whl", hash = "sha256:07b430fa68e5eecd78e2ad529ab80f6a234b55fc1b675fe47335ccbf64c6c6c8"}, - {file = "grpcio-1.32.0-cp37-cp37m-manylinux2014_x86_64.whl", hash = "sha256:0e3edd8cdb71809d2455b9dbff66b4dd3d36c321e64bfa047da5afdfb0db332b"}, - {file = "grpcio-1.32.0-cp37-cp37m-win32.whl", hash = "sha256:6f7947dad606c509d067e5b91a92b250aa0530162ab99e4737090f6b17eb12c4"}, - {file = "grpcio-1.32.0-cp37-cp37m-win_amd64.whl", hash = "sha256:7cda998b7b551503beefc38db9be18c878cfb1596e1418647687575cdefa9273"}, - {file = "grpcio-1.32.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c58825a3d8634cd634d8f869afddd4d5742bdb59d594aea4cea17b8f39269a55"}, - {file = "grpcio-1.32.0-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:ef9bd7fdfc0a063b4ed0efcab7906df5cae9bbcf79d05c583daa2eba56752b00"}, - {file = "grpcio-1.32.0-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:1ce6f5ff4f4a548c502d5237a071fa617115df58ea4b7bd41dac77c1ab126e9c"}, - {file = "grpcio-1.32.0-cp38-cp38-manylinux2014_i686.whl", hash = "sha256:f12900be4c3fd2145ba94ab0d80b7c3d71c9e6414cfee2f31b1c20188b5c281f"}, - {file = "grpcio-1.32.0-cp38-cp38-manylinux2014_x86_64.whl", hash = "sha256:f53f2dfc8ff9a58a993e414a016c8b21af333955ae83960454ad91798d467c7b"}, - {file = "grpcio-1.32.0-cp38-cp38-win32.whl", hash = "sha256:5bddf9d53c8df70061916c3bfd2f468ccf26c348bb0fb6211531d895ed5e4c72"}, - {file = "grpcio-1.32.0-cp38-cp38-win_amd64.whl", hash = "sha256:14c0f017bfebbc18139551111ac58ecbde11f4bc375b73a53af38927d60308b6"}, - {file = "grpcio-1.32.0.tar.gz", hash = "sha256:01d3046fe980be25796d368f8fc5ff34b7cf5e1444f3789a017a7fe794465639"}, + {file = "grpcio-1.66.2-cp310-cp310-linux_armv7l.whl", hash = "sha256:fe96281713168a3270878255983d2cb1a97e034325c8c2c25169a69289d3ecfa"}, + {file = "grpcio-1.66.2-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:73fc8f8b9b5c4a03e802b3cd0c18b2b06b410d3c1dcbef989fdeb943bd44aff7"}, + {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:03b0b307ba26fae695e067b94cbb014e27390f8bc5ac7a3a39b7723fed085604"}, + {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d69ce1f324dc2d71e40c9261d3fdbe7d4c9d60f332069ff9b2a4d8a257c7b2b"}, + {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05bc2ceadc2529ab0b227b1310d249d95d9001cd106aa4d31e8871ad3c428d73"}, + {file = "grpcio-1.66.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8ac475e8da31484efa25abb774674d837b343afb78bb3bcdef10f81a93e3d6bf"}, + {file = "grpcio-1.66.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0be4e0490c28da5377283861bed2941d1d20ec017ca397a5df4394d1c31a9b50"}, + {file = "grpcio-1.66.2-cp310-cp310-win32.whl", hash = "sha256:4e504572433f4e72b12394977679161d495c4c9581ba34a88d843eaf0f2fbd39"}, + {file = "grpcio-1.66.2-cp310-cp310-win_amd64.whl", hash = "sha256:2018b053aa15782db2541ca01a7edb56a0bf18c77efed975392583725974b249"}, + {file = "grpcio-1.66.2-cp311-cp311-linux_armv7l.whl", hash = "sha256:2335c58560a9e92ac58ff2bc5649952f9b37d0735608242973c7a8b94a6437d8"}, + {file = "grpcio-1.66.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:45a3d462826f4868b442a6b8fdbe8b87b45eb4f5b5308168c156b21eca43f61c"}, + {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:a9539f01cb04950fd4b5ab458e64a15f84c2acc273670072abe49a3f29bbad54"}, + {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ce89f5876662f146d4c1f695dda29d4433a5d01c8681fbd2539afff535da14d4"}, + {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d25a14af966438cddf498b2e338f88d1c9706f3493b1d73b93f695c99c5f0e2a"}, + {file = "grpcio-1.66.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6001e575b8bbd89eee11960bb640b6da6ae110cf08113a075f1e2051cc596cae"}, + {file = "grpcio-1.66.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4ea1d062c9230278793820146c95d038dc0f468cbdd172eec3363e42ff1c7d01"}, + {file = "grpcio-1.66.2-cp311-cp311-win32.whl", hash = "sha256:38b68498ff579a3b1ee8f93a05eb48dc2595795f2f62716e797dc24774c1aaa8"}, + {file = "grpcio-1.66.2-cp311-cp311-win_amd64.whl", hash = "sha256:6851de821249340bdb100df5eacfecfc4e6075fa85c6df7ee0eb213170ec8e5d"}, + {file = "grpcio-1.66.2-cp312-cp312-linux_armv7l.whl", hash = "sha256:802d84fd3d50614170649853d121baaaa305de7b65b3e01759247e768d691ddf"}, + {file = "grpcio-1.66.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:80fd702ba7e432994df208f27514280b4b5c6843e12a48759c9255679ad38db8"}, + {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:12fda97ffae55e6526825daf25ad0fa37483685952b5d0f910d6405c87e3adb6"}, + {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:950da58d7d80abd0ea68757769c9db0a95b31163e53e5bb60438d263f4bed7b7"}, + {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e636ce23273683b00410f1971d209bf3689238cf5538d960adc3cdfe80dd0dbd"}, + {file = "grpcio-1.66.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:a917d26e0fe980b0ac7bfcc1a3c4ad6a9a4612c911d33efb55ed7833c749b0ee"}, + {file = "grpcio-1.66.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:49f0ca7ae850f59f828a723a9064cadbed90f1ece179d375966546499b8a2c9c"}, + {file = "grpcio-1.66.2-cp312-cp312-win32.whl", hash = "sha256:31fd163105464797a72d901a06472860845ac157389e10f12631025b3e4d0453"}, + {file = "grpcio-1.66.2-cp312-cp312-win_amd64.whl", hash = "sha256:ff1f7882e56c40b0d33c4922c15dfa30612f05fb785074a012f7cda74d1c3679"}, + {file = "grpcio-1.66.2-cp313-cp313-linux_armv7l.whl", hash = "sha256:3b00efc473b20d8bf83e0e1ae661b98951ca56111feb9b9611df8efc4fe5d55d"}, + {file = "grpcio-1.66.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1caa38fb22a8578ab8393da99d4b8641e3a80abc8fd52646f1ecc92bcb8dee34"}, + {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_aarch64.whl", hash = "sha256:c408f5ef75cfffa113cacd8b0c0e3611cbfd47701ca3cdc090594109b9fcbaed"}, + {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c806852deaedee9ce8280fe98955c9103f62912a5b2d5ee7e3eaa284a6d8d8e7"}, + {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f145cc21836c332c67baa6fc81099d1d27e266401565bf481948010d6ea32d46"}, + {file = "grpcio-1.66.2-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:73e3b425c1e155730273f73e419de3074aa5c5e936771ee0e4af0814631fb30a"}, + {file = "grpcio-1.66.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:9c509a4f78114cbc5f0740eb3d7a74985fd2eff022971bc9bc31f8bc93e66a3b"}, + {file = "grpcio-1.66.2-cp313-cp313-win32.whl", hash = "sha256:20657d6b8cfed7db5e11b62ff7dfe2e12064ea78e93f1434d61888834bc86d75"}, + {file = "grpcio-1.66.2-cp313-cp313-win_amd64.whl", hash = "sha256:fb70487c95786e345af5e854ffec8cb8cc781bcc5df7930c4fbb7feaa72e1cdf"}, + {file = "grpcio-1.66.2-cp38-cp38-linux_armv7l.whl", hash = "sha256:a18e20d8321c6400185b4263e27982488cb5cdd62da69147087a76a24ef4e7e3"}, + {file = "grpcio-1.66.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:02697eb4a5cbe5a9639f57323b4c37bcb3ab2d48cec5da3dc2f13334d72790dd"}, + {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:99a641995a6bc4287a6315989ee591ff58507aa1cbe4c2e70d88411c4dcc0839"}, + {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ed71e81782966ffead60268bbda31ea3f725ebf8aa73634d5dda44f2cf3fb9c"}, + {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbd27c24a4cc5e195a7f56cfd9312e366d5d61b86e36d46bbe538457ea6eb8dd"}, + {file = "grpcio-1.66.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d9a9724a156c8ec6a379869b23ba3323b7ea3600851c91489b871e375f710bc8"}, + {file = "grpcio-1.66.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d8d4732cc5052e92cea2f78b233c2e2a52998ac40cd651f40e398893ad0d06ec"}, + {file = "grpcio-1.66.2-cp38-cp38-win32.whl", hash = "sha256:7b2c86457145ce14c38e5bf6bdc19ef88e66c5fee2c3d83285c5aef026ba93b3"}, + {file = "grpcio-1.66.2-cp38-cp38-win_amd64.whl", hash = "sha256:e88264caad6d8d00e7913996030bac8ad5f26b7411495848cc218bd3a9040b6c"}, + {file = "grpcio-1.66.2-cp39-cp39-linux_armv7l.whl", hash = "sha256:c400ba5675b67025c8a9f48aa846f12a39cf0c44df5cd060e23fda5b30e9359d"}, + {file = "grpcio-1.66.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:66a0cd8ba6512b401d7ed46bb03f4ee455839957f28b8d61e7708056a806ba6a"}, + {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:06de8ec0bd71be123eec15b0e0d457474931c2c407869b6c349bd9bed4adbac3"}, + {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb57870449dfcfac428afbb5a877829fcb0d6db9d9baa1148705739e9083880e"}, + {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b672abf90a964bfde2d0ecbce30f2329a47498ba75ce6f4da35a2f4532b7acbc"}, + {file = "grpcio-1.66.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:ad2efdbe90c73b0434cbe64ed372e12414ad03c06262279b104a029d1889d13e"}, + {file = "grpcio-1.66.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9c3a99c519f4638e700e9e3f83952e27e2ea10873eecd7935823dab0c1c9250e"}, + {file = "grpcio-1.66.2-cp39-cp39-win32.whl", hash = "sha256:78fa51ebc2d9242c0fc5db0feecc57a9943303b46664ad89921f5079e2e4ada7"}, + {file = "grpcio-1.66.2-cp39-cp39-win_amd64.whl", hash = "sha256:728bdf36a186e7f51da73be7f8d09457a03061be848718d0edf000e709418987"}, + {file = "grpcio-1.66.2.tar.gz", hash = "sha256:563588c587b75c34b928bc428548e5b00ea38c46972181a4d8b75ba7e3f24231"}, ] -[package.dependencies] -six = ">=1.5.2" - [package.extras] -protobuf = ["grpcio-tools (>=1.32.0)"] +protobuf = ["grpcio-tools (>=1.66.2)"] [[package]] name = "h5py" -version = "2.10.0" +version = "3.11.0" description = "Read and write HDF5 files from Python" optional = false -python-versions = "*" +python-versions = ">=3.8" files = [ - {file = "h5py-2.10.0-cp27-cp27m-macosx_10_6_intel.whl", hash = "sha256:ecf4d0b56ee394a0984de15bceeb97cbe1fe485f1ac205121293fc44dcf3f31f"}, - {file = "h5py-2.10.0-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:86868dc07b9cc8cb7627372a2e6636cdc7a53b7e2854ad020c9e9d8a4d3fd0f5"}, - {file = "h5py-2.10.0-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:aac4b57097ac29089f179bbc2a6e14102dd210618e94d77ee4831c65f82f17c0"}, - {file = "h5py-2.10.0-cp27-cp27m-win32.whl", hash = "sha256:7be5754a159236e95bd196419485343e2b5875e806fe68919e087b6351f40a70"}, - {file = "h5py-2.10.0-cp27-cp27m-win_amd64.whl", hash = "sha256:13c87efa24768a5e24e360a40e0bc4c49bcb7ce1bb13a3a7f9902cec302ccd36"}, - {file = "h5py-2.10.0-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:79b23f47c6524d61f899254f5cd5e486e19868f1823298bc0c29d345c2447172"}, - {file = "h5py-2.10.0-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:cbf28ae4b5af0f05aa6e7551cee304f1d317dbed1eb7ac1d827cee2f1ef97a99"}, - {file = "h5py-2.10.0-cp34-cp34m-manylinux1_i686.whl", hash = "sha256:c0d4b04bbf96c47b6d360cd06939e72def512b20a18a8547fa4af810258355d5"}, - {file = "h5py-2.10.0-cp34-cp34m-manylinux1_x86_64.whl", hash = "sha256:549ad124df27c056b2e255ea1c44d30fb7a17d17676d03096ad5cd85edb32dc1"}, - {file = "h5py-2.10.0-cp35-cp35m-macosx_10_6_intel.whl", hash = "sha256:a5f82cd4938ff8761d9760af3274acf55afc3c91c649c50ab18fcff5510a14a5"}, - {file = "h5py-2.10.0-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:3dad1730b6470fad853ef56d755d06bb916ee68a3d8272b3bab0c1ddf83bb99e"}, - {file = "h5py-2.10.0-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:063947eaed5f271679ed4ffa36bb96f57bc14f44dd4336a827d9a02702e6ce6b"}, - {file = "h5py-2.10.0-cp35-cp35m-win32.whl", hash = "sha256:c54a2c0dd4957776ace7f95879d81582298c5daf89e77fb8bee7378f132951de"}, - {file = "h5py-2.10.0-cp35-cp35m-win_amd64.whl", hash = "sha256:6998be619c695910cb0effe5eb15d3a511d3d1a5d217d4bd0bebad1151ec2262"}, - {file = "h5py-2.10.0-cp36-cp36m-macosx_10_6_intel.whl", hash = "sha256:ff7d241f866b718e4584fa95f520cb19405220c501bd3a53ee11871ba5166ea2"}, - {file = "h5py-2.10.0-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:54817b696e87eb9e403e42643305f142cd8b940fe9b3b490bbf98c3b8a894cf4"}, - {file = "h5py-2.10.0-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:d3c59549f90a891691991c17f8e58c8544060fdf3ccdea267100fa5f561ff62f"}, - {file = "h5py-2.10.0-cp36-cp36m-win32.whl", hash = "sha256:d7ae7a0576b06cb8e8a1c265a8bc4b73d05fdee6429bffc9a26a6eb531e79d72"}, - {file = "h5py-2.10.0-cp36-cp36m-win_amd64.whl", hash = "sha256:bffbc48331b4a801d2f4b7dac8a72609f0b10e6e516e5c480a3e3241e091c878"}, - {file = "h5py-2.10.0-cp37-cp37m-macosx_10_6_intel.whl", hash = "sha256:51ae56894c6c93159086ffa2c94b5b3388c0400548ab26555c143e7cfa05b8e5"}, - {file = "h5py-2.10.0-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:16ead3c57141101e3296ebeed79c9c143c32bdd0e82a61a2fc67e8e6d493e9d1"}, - {file = "h5py-2.10.0-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:f0e25bb91e7a02efccb50aba6591d3fe2c725479e34769802fcdd4076abfa917"}, - {file = "h5py-2.10.0-cp37-cp37m-win32.whl", hash = "sha256:f23951a53d18398ef1344c186fb04b26163ca6ce449ebd23404b153fd111ded9"}, - {file = "h5py-2.10.0-cp37-cp37m-win_amd64.whl", hash = "sha256:8bb1d2de101f39743f91512a9750fb6c351c032e5cd3204b4487383e34da7f75"}, - {file = "h5py-2.10.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:64f74da4a1dd0d2042e7d04cf8294e04ddad686f8eba9bb79e517ae582f6668d"}, - {file = "h5py-2.10.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:d35f7a3a6cefec82bfdad2785e78359a0e6a5fbb3f605dd5623ce88082ccd681"}, - {file = "h5py-2.10.0-cp38-cp38-win32.whl", hash = "sha256:6ef7ab1089e3ef53ca099038f3c0a94d03e3560e6aff0e9d6c64c55fb13fc681"}, - {file = "h5py-2.10.0-cp38-cp38-win_amd64.whl", hash = "sha256:769e141512b54dee14ec76ed354fcacfc7d97fea5a7646b709f7400cf1838630"}, - {file = "h5py-2.10.0.tar.gz", hash = "sha256:84412798925dc870ffd7107f045d7659e60f5d46d1c70c700375248bf6bf512d"}, + {file = "h5py-3.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1625fd24ad6cfc9c1ccd44a66dac2396e7ee74940776792772819fc69f3a3731"}, + {file = "h5py-3.11.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c072655ad1d5fe9ef462445d3e77a8166cbfa5e599045f8aa3c19b75315f10e5"}, + {file = "h5py-3.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77b19a40788e3e362b54af4dcf9e6fde59ca016db2c61360aa30b47c7b7cef00"}, + {file = "h5py-3.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:ef4e2f338fc763f50a8113890f455e1a70acd42a4d083370ceb80c463d803972"}, + {file = "h5py-3.11.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bbd732a08187a9e2a6ecf9e8af713f1d68256ee0f7c8b652a32795670fb481ba"}, + {file = "h5py-3.11.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75bd7b3d93fbeee40860fd70cdc88df4464e06b70a5ad9ce1446f5f32eb84007"}, + {file = "h5py-3.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52c416f8eb0daae39dabe71415cb531f95dce2d81e1f61a74537a50c63b28ab3"}, + {file = "h5py-3.11.0-cp311-cp311-win_amd64.whl", hash = "sha256:083e0329ae534a264940d6513f47f5ada617da536d8dccbafc3026aefc33c90e"}, + {file = "h5py-3.11.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a76cae64080210389a571c7d13c94a1a6cf8cb75153044fd1f822a962c97aeab"}, + {file = "h5py-3.11.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f3736fe21da2b7d8a13fe8fe415f1272d2a1ccdeff4849c1421d2fb30fd533bc"}, + {file = "h5py-3.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa6ae84a14103e8dc19266ef4c3e5d7c00b68f21d07f2966f0ca7bdb6c2761fb"}, + {file = "h5py-3.11.0-cp312-cp312-win_amd64.whl", hash = "sha256:21dbdc5343f53b2e25404673c4f00a3335aef25521bd5fa8c707ec3833934892"}, + {file = "h5py-3.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:754c0c2e373d13d6309f408325343b642eb0f40f1a6ad21779cfa9502209e150"}, + {file = "h5py-3.11.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:731839240c59ba219d4cb3bc5880d438248533366f102402cfa0621b71796b62"}, + {file = "h5py-3.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ec9df3dd2018904c4cc06331951e274f3f3fd091e6d6cc350aaa90fa9b42a76"}, + {file = "h5py-3.11.0-cp38-cp38-win_amd64.whl", hash = "sha256:55106b04e2c83dfb73dc8732e9abad69d83a436b5b82b773481d95d17b9685e1"}, + {file = "h5py-3.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f4e025e852754ca833401777c25888acb96889ee2c27e7e629a19aee288833f0"}, + {file = "h5py-3.11.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6c4b760082626120031d7902cd983d8c1f424cdba2809f1067511ef283629d4b"}, + {file = "h5py-3.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67462d0669f8f5459529de179f7771bd697389fcb3faab54d63bf788599a48ea"}, + {file = "h5py-3.11.0-cp39-cp39-win_amd64.whl", hash = "sha256:d9c944d364688f827dc889cf83f1fca311caf4fa50b19f009d1f2b525edd33a3"}, + {file = "h5py-3.11.0.tar.gz", hash = "sha256:7b7e8f78072a2edec87c9836f25f34203fd492a4475709a18b417a33cfb21fa9"}, ] [package.dependencies] -numpy = ">=1.7" -six = "*" +numpy = ">=1.17.3" [[package]] name = "idna" -version = "3.6" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.6" files = [ - {file = "idna-3.6-py3-none-any.whl", hash = "sha256:c05567e9c24a6b9faaa835c4821bad0590fbb9d5779e7caa6e1cc4978e7eb24f"}, - {file = "idna-3.6.tar.gz", hash = "sha256:9ecdbbd083b06798ae1e86adcbfe8ab1479cf864e4ee30fe4e46a003d12491ca"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + [[package]] name = "importlib-metadata" -version = "7.0.0" +version = "8.5.0" description = "Read metadata from Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "importlib_metadata-7.0.0-py3-none-any.whl", hash = "sha256:d97503976bb81f40a193d41ee6570868479c69d5068651eb039c40d850c59d67"}, - {file = "importlib_metadata-7.0.0.tar.gz", hash = "sha256:7fc841f8b8332803464e5dc1c63a2e59121f46ca186c0e2e182e80bf8c1319f7"}, + {file = "importlib_metadata-8.5.0-py3-none-any.whl", hash = "sha256:45e54197d28b7a7f1559e60b95e7c567032b602131fbd588f1497f47880aa68b"}, + {file = "importlib_metadata-8.5.0.tar.gz", hash = "sha256:71522656f0abace1d072b9e5481a48f07c138e00f079c38c8f883823f9c26bd7"}, ] [package.dependencies] -zipp = ">=0.5" +zipp = ">=3.20" [package.extras] -docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +enabler = ["pytest-enabler (>=2.2)"] perf = ["ipython"] -testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)", "pytest-ruff"] +test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-perf (>=0.9.2)"] +type = ["pytest-mypy"] [[package]] name = "ipykernel" -version = "6.27.1" +version = "6.29.5" description = "IPython Kernel for Jupyter" optional = false python-versions = ">=3.8" files = [ - {file = "ipykernel-6.27.1-py3-none-any.whl", hash = "sha256:dab88b47f112f9f7df62236511023c9bdeef67abc73af7c652e4ce4441601686"}, - {file = "ipykernel-6.27.1.tar.gz", hash = "sha256:7d5d594b6690654b4d299edba5e872dc17bb7396a8d0609c97cb7b8a1c605de6"}, + {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, + {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, ] [package.dependencies] @@ -666,7 +967,7 @@ matplotlib-inline = ">=0.1" nest-asyncio = "*" packaging = "*" psutil = "*" -pyzmq = ">=20" +pyzmq = ">=24" tornado = ">=6.1" traitlets = ">=5.4.0" @@ -675,7 +976,7 @@ cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] pyqt5 = ["pyqt5"] pyside6 = ["pyside6"] -test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov", "pytest-timeout"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] [[package]] name = "ipython" @@ -735,26 +1036,43 @@ docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alab qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] +[[package]] +name = "jinja2" +version = "3.1.4" +description = "A very fast and expressive template engine." +optional = false +python-versions = ">=3.7" +files = [ + {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, + {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, +] + +[package.dependencies] +MarkupSafe = ">=2.0" + +[package.extras] +i18n = ["Babel (>=2.7)"] + [[package]] name = "joblib" -version = "1.3.2" +version = "1.4.2" description = "Lightweight pipelining with Python functions" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "joblib-1.3.2-py3-none-any.whl", hash = "sha256:ef4331c65f239985f3f2220ecc87db222f08fd22097a3dd5698f693875f8cbb9"}, - {file = "joblib-1.3.2.tar.gz", hash = "sha256:92f865e621e17784e7955080b6d042489e3b8e294949cc44c6eac304f59772b1"}, + {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, + {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, ] [[package]] name = "jupyter-client" -version = "8.6.0" +version = "8.6.3" description = "Jupyter protocol implementation and client libraries" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_client-8.6.0-py3-none-any.whl", hash = "sha256:909c474dbe62582ae62b758bca86d6518c85234bdee2d908c778db6d72f39d99"}, - {file = "jupyter_client-8.6.0.tar.gz", hash = "sha256:0642244bb83b4764ae60d07e010e15f0e2d275ec4e918a8f7b80fbbef3ca60c7"}, + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, ] [package.dependencies] @@ -767,17 +1085,17 @@ traitlets = ">=5.3" [package.extras] docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] -test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] [[package]] name = "jupyter-core" -version = "5.5.1" +version = "5.7.2" description = "Jupyter core package. A base package on which Jupyter projects rely." optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_core-5.5.1-py3-none-any.whl", hash = "sha256:220dfb00c45f0d780ce132bb7976b58263f81a3ada6e90a9b6823785a424f739"}, - {file = "jupyter_core-5.5.1.tar.gz", hash = "sha256:1553311a97ccd12936037f36b9ab4d6ae8ceea6ad2d5c90d94a909e752178e40"}, + {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, + {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, ] [package.dependencies] @@ -787,30 +1105,18 @@ traitlets = ">=5.3" [package.extras] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] -test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] +test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] [[package]] -name = "karateclub" -version = "1.0.19" -description = "A general purpose library for community detection, network embedding, and graph mining research." +name = "keras" +version = "2.7.0" +description = "Deep learning for humans." optional = false python-versions = "*" files = [ - {file = "karateclub-1.0.19.tar.gz", hash = "sha256:0e43f9072f028f471f935a47746c71d24df0472eb5fafd77be9f5619a1e0f804"}, + {file = "keras-2.7.0-py2.py3-none-any.whl", hash = "sha256:0c33ae1f728064ca0d35dfba999e9c316f03623bf5688c82fb83cc74a80ea248"}, ] -[package.dependencies] -gensim = "*" -networkx = "*" -numpy = "*" -pandas = "*" -pygsp = "*" -python-louvain = "*" -scikit-learn = "*" -scipy = "*" -six = "*" -tqdm = "*" - [[package]] name = "keras-preprocessing" version = "1.1.2" @@ -833,126 +1139,175 @@ tests = ["Pillow", "keras", "pandas", "pytest", "pytest-cov", "pytest-xdist", "t [[package]] name = "kiwisolver" -version = "1.4.5" +version = "1.4.7" description = "A fast implementation of the Cassowary constraint solver" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" +files = [ + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8a9c83f75223d5e48b0bc9cb1bf2776cf01563e00ade8775ffe13b0b6e1af3a6"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:58370b1ffbd35407444d57057b57da5d6549d2d854fa30249771775c63b5fe17"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa0abdf853e09aff551db11fce173e2177d00786c688203f52c87ad7fcd91ef9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8d53103597a252fb3ab8b5845af04c7a26d5e7ea8122303dd7a021176a87e8b9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:88f17c5ffa8e9462fb79f62746428dd57b46eb931698e42e990ad63103f35e6c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88a9ca9c710d598fd75ee5de59d5bda2684d9db36a9f50b6125eaea3969c2599"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4d742cb7af1c28303a51b7a27aaee540e71bb8e24f68c736f6f2ffc82f2bf05"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28c7fea2196bf4c2f8d46a0415c77a1c480cc0724722f23d7410ffe9842c407"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e968b84db54f9d42046cf154e02911e39c0435c9801681e3fc9ce8a3c4130278"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0c18ec74c0472de033e1bebb2911c3c310eef5649133dd0bedf2a169a1b269e5"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8f0ea6da6d393d8b2e187e6a5e3fb81f5862010a40c3945e2c6d12ae45cfb2ad"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:f106407dda69ae456dd1227966bf445b157ccc80ba0dff3802bb63f30b74e895"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84ec80df401cfee1457063732d90022f93951944b5b58975d34ab56bb150dfb3"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win32.whl", hash = "sha256:71bb308552200fb2c195e35ef05de12f0c878c07fc91c270eb3d6e41698c3bcc"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_amd64.whl", hash = "sha256:44756f9fd339de0fb6ee4f8c1696cfd19b2422e0d70b4cefc1cc7f1f64045a8c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_arm64.whl", hash = "sha256:78a42513018c41c2ffd262eb676442315cbfe3c44eed82385c2ed043bc63210a"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d2b0e12a42fb4e72d509fc994713d099cbb15ebf1103545e8a45f14da2dfca54"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a8781ac3edc42ea4b90bc23e7d37b665d89423818e26eb6df90698aa2287c95"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46707a10836894b559e04b0fd143e343945c97fd170d69a2d26d640b4e297935"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef97b8df011141c9b0f6caf23b29379f87dd13183c978a30a3c546d2c47314cb"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab58c12a2cd0fc769089e6d38466c46d7f76aced0a1f54c77652446733d2d02"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:803b8e1459341c1bb56d1c5c010406d5edec8a0713a0945851290a7930679b51"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9a9e8a507420fe35992ee9ecb302dab68550dedc0da9e2880dd88071c5fb052"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18077b53dc3bb490e330669a99920c5e6a496889ae8c63b58fbc57c3d7f33a18"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6af936f79086a89b3680a280c47ea90b4df7047b5bdf3aa5c524bbedddb9e545"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3abc5b19d24af4b77d1598a585b8a719beb8569a71568b66f4ebe1fb0449460b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:933d4de052939d90afbe6e9d5273ae05fb836cc86c15b686edd4b3560cc0ee36"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:65e720d2ab2b53f1f72fb5da5fb477455905ce2c88aaa671ff0a447c2c80e8e3"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3bf1ed55088f214ba6427484c59553123fdd9b218a42bbc8c6496d6754b1e523"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win32.whl", hash = "sha256:4c00336b9dd5ad96d0a558fd18a8b6f711b7449acce4c157e7343ba92dd0cf3d"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_amd64.whl", hash = "sha256:929e294c1ac1e9f615c62a4e4313ca1823ba37326c164ec720a803287c4c499b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_arm64.whl", hash = "sha256:e33e8fbd440c917106b237ef1a2f1449dfbb9b6f6e1ce17c94cd6a1e0d438376"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:5360cc32706dab3931f738d3079652d20982511f7c0ac5711483e6eab08efff2"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:942216596dc64ddb25adb215c3c783215b23626f8d84e8eff8d6d45c3f29f75a"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:48b571ecd8bae15702e4f22d3ff6a0f13e54d3d00cd25216d5e7f658242065ee"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad42ba922c67c5f219097b28fae965e10045ddf145d2928bfac2eb2e17673640"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:612a10bdae23404a72941a0fc8fa2660c6ea1217c4ce0dbcab8a8f6543ea9e7f"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9e838bba3a3bac0fe06d849d29772eb1afb9745a59710762e4ba3f4cb8424483"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:22f499f6157236c19f4bbbd472fa55b063db77a16cd74d49afe28992dff8c258"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693902d433cf585133699972b6d7c42a8b9f8f826ebcaf0132ff55200afc599e"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4e77f2126c3e0b0d055f44513ed349038ac180371ed9b52fe96a32aa071a5107"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:657a05857bda581c3656bfc3b20e353c232e9193eb167766ad2dc58b56504948"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4bfa75a048c056a411f9705856abfc872558e33c055d80af6a380e3658766038"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:34ea1de54beef1c104422d210c47c7d2a4999bdecf42c7b5718fbe59a4cac383"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:90da3b5f694b85231cf93586dad5e90e2d71b9428f9aad96952c99055582f520"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win32.whl", hash = "sha256:18e0cca3e008e17fe9b164b55735a325140a5a35faad8de92dd80265cd5eb80b"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_amd64.whl", hash = "sha256:58cb20602b18f86f83a5c87d3ee1c766a79c0d452f8def86d925e6c60fbf7bfb"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_arm64.whl", hash = "sha256:f5a8b53bdc0b3961f8b6125e198617c40aeed638b387913bf1ce78afb1b0be2a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:2e6039dcbe79a8e0f044f1c39db1986a1b8071051efba3ee4d74f5b365f5226e"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a1ecf0ac1c518487d9d23b1cd7139a6a65bc460cd101ab01f1be82ecf09794b6"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7ab9ccab2b5bd5702ab0803676a580fffa2aa178c2badc5557a84cc943fcf750"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f816dd2277f8d63d79f9c8473a79fe54047bc0467754962840782c575522224d"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf8bcc23ceb5a1b624572a1623b9f79d2c3b337c8c455405ef231933a10da379"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dea0bf229319828467d7fca8c7c189780aa9ff679c94539eed7532ebe33ed37c"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c06a4c7cf15ec739ce0e5971b26c93638730090add60e183530d70848ebdd34"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5337ec7809bcd0f424c6b705ecf97941c46279cf5ed92311782c7c9c2026f07f"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4c26ed10c4f6fa6ddb329a5120ba3b6db349ca192ae211e882970bfc9d91420b"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c619b101e6de2222c1fcb0531e1b17bbffbe54294bfba43ea0d411d428618c27"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:073a36c8273647592ea332e816e75ef8da5c303236ec0167196793eb1e34657a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3ce6b2b0231bda412463e152fc18335ba32faf4e8c23a754ad50ffa70e4091ee"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win32.whl", hash = "sha256:f4c9aee212bc89d4e13f58be11a56cc8036cabad119259d12ace14b34476fd07"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_amd64.whl", hash = "sha256:8a3ec5aa8e38fc4c8af308917ce12c536f1c88452ce554027e55b22cbbfbff76"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_arm64.whl", hash = "sha256:76c8094ac20ec259471ac53e774623eb62e6e1f56cd8690c67ce6ce4fcb05650"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5d5abf8f8ec1f4e22882273c423e16cae834c36856cac348cfbfa68e01c40f3a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:aeb3531b196ef6f11776c21674dba836aeea9d5bd1cf630f869e3d90b16cfade"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b7d755065e4e866a8086c9bdada157133ff466476a2ad7861828e17b6026e22c"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08471d4d86cbaec61f86b217dd938a83d85e03785f51121e791a6e6689a3be95"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7bbfcb7165ce3d54a3dfbe731e470f65739c4c1f85bb1018ee912bae139e263b"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d34eb8494bea691a1a450141ebb5385e4b69d38bb8403b5146ad279f4b30fa3"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9242795d174daa40105c1d86aba618e8eab7bf96ba8c3ee614da8302a9f95503"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a0f64a48bb81af7450e641e3fe0b0394d7381e342805479178b3d335d60ca7cf"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8e045731a5416357638d1700927529e2b8ab304811671f665b225f8bf8d8f933"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4322872d5772cae7369f8351da1edf255a604ea7087fe295411397d0cfd9655e"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e1631290ee9271dffe3062d2634c3ecac02c83890ada077d225e081aca8aab89"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:edcfc407e4eb17e037bca59be0e85a2031a2ac87e4fed26d3e9df88b4165f92d"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:4d05d81ecb47d11e7f8932bd8b61b720bf0b41199358f3f5e36d38e28f0532c5"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win32.whl", hash = "sha256:b38ac83d5f04b15e515fd86f312479d950d05ce2368d5413d46c088dda7de90a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win_amd64.whl", hash = "sha256:d83db7cde68459fc803052a55ace60bea2bae361fc3b7a6d5da07e11954e4b09"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3f9362ecfca44c863569d3d3c033dbe8ba452ff8eed6f6b5806382741a1334bd"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e8df2eb9b2bac43ef8b082e06f750350fbbaf2887534a5be97f6cf07b19d9583"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f32d6edbc638cde7652bd690c3e728b25332acbadd7cad670cc4a02558d9c417"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e2e6c39bd7b9372b0be21456caab138e8e69cc0fc1190a9dfa92bd45a1e6e904"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dda56c24d869b1193fcc763f1284b9126550eaf84b88bbc7256e15028f19188a"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79849239c39b5e1fd906556c474d9b0439ea6792b637511f3fe3a41158d89ca8"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5e3bc157fed2a4c02ec468de4ecd12a6e22818d4f09cde2c31ee3226ffbefab2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3da53da805b71e41053dc670f9a820d1157aae77b6b944e08024d17bcd51ef88"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:8705f17dfeb43139a692298cb6637ee2e59c0194538153e83e9ee0c75c2eddde"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:82a5c2f4b87c26bb1a0ef3d16b5c4753434633b83d365cc0ddf2770c93829e3c"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce8be0466f4c0d585cdb6c1e2ed07232221df101a4c6f28821d2aa754ca2d9e2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:409afdfe1e2e90e6ee7fc896f3df9a7fec8e793e58bfa0d052c8a82f99c37abb"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5b9c3f4ee0b9a439d2415012bd1b1cc2df59e4d6a9939f4d669241d30b414327"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win32.whl", hash = "sha256:a79ae34384df2b615eefca647a2873842ac3b596418032bef9a7283675962644"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_amd64.whl", hash = "sha256:cf0438b42121a66a3a667de17e779330fc0f20b0d97d59d2f2121e182b0505e4"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_arm64.whl", hash = "sha256:764202cc7e70f767dab49e8df52c7455e8de0df5d858fa801a11aa0d882ccf3f"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:94252291e3fe68001b1dd747b4c0b3be12582839b95ad4d1b641924d68fd4643"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:5b7dfa3b546da08a9f622bb6becdb14b3e24aaa30adba66749d38f3cc7ea9706"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3de6481f4ed8b734da5df134cd5a6a64fe32124fe83dde1e5b5f29fe30b1e6"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a91b5f9f1205845d488c928e8570dcb62b893372f63b8b6e98b863ebd2368ff2"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40fa14dbd66b8b8f470d5fc79c089a66185619d31645f9b0773b88b19f7223c4"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:eb542fe7933aa09d8d8f9d9097ef37532a7df6497819d16efe4359890a2f417a"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bfa1acfa0c54932d5607e19a2c24646fb4c1ae2694437789129cf099789a3b00"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:eee3ea935c3d227d49b4eb85660ff631556841f6e567f0f7bda972df6c2c9935"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f3160309af4396e0ed04db259c3ccbfdc3621b5559b5453075e5de555e1f3a1b"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a17f6a29cf8935e587cc8a4dbfc8368c55edc645283db0ce9801016f83526c2d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10849fb2c1ecbfae45a693c070e0320a91b35dd4bcf58172c023b994283a124d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:ac542bf38a8a4be2dc6b15248d36315ccc65f0743f7b1a76688ffb6b5129a5c2"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8b01aac285f91ca889c800042c35ad3b239e704b150cfd3382adfc9dcc780e39"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:48be928f59a1f5c8207154f935334d374e79f2b5d212826307d072595ad76a2e"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f37cfe618a117e50d8c240555331160d73d0411422b59b5ee217843d7b693608"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:599b5c873c63a1f6ed7eead644a8a380cfbdf5db91dcb6f85707aaab213b1674"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:801fa7802e5cfabe3ab0c81a34c323a319b097dfb5004be950482d882f3d7225"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0c6c43471bc764fad4bc99c5c2d6d16a676b1abf844ca7c8702bdae92df01ee0"}, + {file = "kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60"}, +] + +[[package]] +name = "libclang" +version = "18.1.1" +description = "Clang Python Bindings, mirrored from the official LLVM repo: https://github.com/llvm/llvm-project/tree/main/clang/bindings/python, to make the installation process easier." +optional = false +python-versions = "*" +files = [ + {file = "libclang-18.1.1-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:6f14c3f194704e5d09769108f03185fce7acaf1d1ae4bbb2f30a72c2400cb7c5"}, + {file = "libclang-18.1.1-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:83ce5045d101b669ac38e6da8e58765f12da2d3aafb3b9b98d88b286a60964d8"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2010_x86_64.whl", hash = "sha256:c533091d8a3bbf7460a00cb6c1a71da93bffe148f172c7d03b1c31fbf8aa2a0b"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2014_aarch64.whl", hash = "sha256:54dda940a4a0491a9d1532bf071ea3ef26e6dbaf03b5000ed94dd7174e8f9592"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2014_armv7l.whl", hash = "sha256:cf4a99b05376513717ab5d82a0db832c56ccea4fd61a69dbb7bccf2dfb207dbe"}, + {file = "libclang-18.1.1-py2.py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:69f8eb8f65c279e765ffd28aaa7e9e364c776c17618af8bff22a8df58677ff4f"}, + {file = "libclang-18.1.1-py2.py3-none-win_amd64.whl", hash = "sha256:4dd2d3b82fab35e2bf9ca717d7b63ac990a3519c7e312f19fa8e86dcc712f7fb"}, + {file = "libclang-18.1.1-py2.py3-none-win_arm64.whl", hash = "sha256:3f0e1f49f04d3cd198985fea0511576b0aee16f9ff0e0f0cad7f9c57ec3c20e8"}, + {file = "libclang-18.1.1.tar.gz", hash = "sha256:a1214966d08d73d971287fc3ead8dfaf82eb07fb197680d8b3859dbbbbf78250"}, +] + +[[package]] +name = "lightning-utilities" +version = "0.11.7" +description = "Lightning toolbox for across the our ecosystem." +optional = false +python-versions = ">=3.8" files = [ - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, - {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, - {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, - {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, - {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, - {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, - {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, - {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, - {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, - {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, - {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, - {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, + {file = "lightning_utilities-0.11.7-py3-none-any.whl", hash = "sha256:84eebbc700edbfaa6c005458fc911a7fe7f99f02970b00cb322b4d2767deba98"}, + {file = "lightning_utilities-0.11.7.tar.gz", hash = "sha256:7e8458a9f0bfb51ffe6c5ab3957aa37b2792fe8281dd9f1b66aa513a558ec4ce"}, ] +[package.dependencies] +packaging = ">=17.1" +setuptools = "*" +typing-extensions = "*" + +[package.extras] +cli = ["fire"] +docs = ["requests (>=2.0.0)"] +typing = ["mypy (>=1.0.0)", "types-setuptools"] + [[package]] name = "markdown" -version = "3.5.1" +version = "3.7" description = "Python implementation of John Gruber's Markdown." optional = false python-versions = ">=3.8" files = [ - {file = "Markdown-3.5.1-py3-none-any.whl", hash = "sha256:5874b47d4ee3f0b14d764324d2c94c03ea66bee56f2d929da9f2508d65e722dc"}, - {file = "Markdown-3.5.1.tar.gz", hash = "sha256:b65d7beb248dc22f2e8a31fb706d93798093c308dc1aba295aedeb9d41a813bd"}, + {file = "Markdown-3.7-py3-none-any.whl", hash = "sha256:7eb6df5690b81a1d7942992c97fad2938e956e79df20cbc6186e9c3a77b1c803"}, + {file = "markdown-3.7.tar.gz", hash = "sha256:2ae2471477cfd02dbbf038d5d9bc226d40def84b4fe2986e49b59b6b472bbed2"}, ] [package.dependencies] @@ -964,61 +1319,71 @@ testing = ["coverage", "pyyaml"] [[package]] name = "markupsafe" -version = "2.1.3" +version = "2.1.5" description = "Safely add untrusted strings to HTML/XML markup." optional = false python-versions = ">=3.7" files = [ - {file = "MarkupSafe-2.1.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:cd0f502fe016460680cd20aaa5a76d241d6f35a1c3350c474bac1273803893fa"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e09031c87a1e51556fdcb46e5bd4f59dfb743061cf93c4d6831bf894f125eb57"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68e78619a61ecf91e76aa3e6e8e33fc4894a2bebe93410754bd28fce0a8a4f9f"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65c1a9bcdadc6c28eecee2c119465aebff8f7a584dd719facdd9e825ec61ab52"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:525808b8019e36eb524b8c68acdd63a37e75714eac50e988180b169d64480a00"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:962f82a3086483f5e5f64dbad880d31038b698494799b097bc59c2edf392fce6"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:aa7bd130efab1c280bed0f45501b7c8795f9fdbeb02e965371bbef3523627779"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c9c804664ebe8f83a211cace637506669e7890fec1b4195b505c214e50dd4eb7"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-win32.whl", hash = "sha256:10bbfe99883db80bdbaff2dcf681dfc6533a614f700da1287707e8a5d78a8431"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-win_amd64.whl", hash = "sha256:1577735524cdad32f9f694208aa75e422adba74f1baee7551620e43a3141f559"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ad9e82fb8f09ade1c3e1b996a6337afac2b8b9e365f926f5a61aacc71adc5b3c"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3c0fae6c3be832a0a0473ac912810b2877c8cb9d76ca48de1ed31e1c68386575"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b076b6226fb84157e3f7c971a47ff3a679d837cf338547532ab866c57930dbee"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfce63a9e7834b12b87c64d6b155fdd9b3b96191b6bd334bf37db7ff1fe457f2"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:338ae27d6b8745585f87218a3f23f1512dbf52c26c28e322dbe54bcede54ccb9"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e4dd52d80b8c83fdce44e12478ad2e85c64ea965e75d66dbeafb0a3e77308fcc"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:df0be2b576a7abbf737b1575f048c23fb1d769f267ec4358296f31c2479db8f9"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5bbe06f8eeafd38e5d0a4894ffec89378b6c6a625ff57e3028921f8ff59318ac"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-win32.whl", hash = "sha256:dd15ff04ffd7e05ffcb7fe79f1b98041b8ea30ae9234aed2a9168b5797c3effb"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:134da1eca9ec0ae528110ccc9e48041e0828d79f24121a1a146161103c76e686"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8e254ae696c88d98da6555f5ace2279cf7cd5b3f52be2b5cf97feafe883b58d2"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0932dc158471523c9637e807d9bfb93e06a95cbf010f1a38b98623b929ef2b"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9402b03f1a1b4dc4c19845e5c749e3ab82d5078d16a2a4c2cd2df62d57bb0707"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca379055a47383d02a5400cb0d110cef0a776fc644cda797db0c5696cfd7e18e"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b7ff0f54cb4ff66dd38bebd335a38e2c22c41a8ee45aa608efc890ac3e3931bc"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c011a4149cfbcf9f03994ec2edffcb8b1dc2d2aede7ca243746df97a5d41ce48"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:56d9f2ecac662ca1611d183feb03a3fa4406469dafe241673d521dd5ae92a155"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-win32.whl", hash = "sha256:8758846a7e80910096950b67071243da3e5a20ed2546e6392603c096778d48e0"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-win_amd64.whl", hash = "sha256:787003c0ddb00500e49a10f2844fac87aa6ce977b90b0feaaf9de23c22508b24"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:2ef12179d3a291be237280175b542c07a36e7f60718296278d8593d21ca937d4"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2c1b19b3aaacc6e57b7e25710ff571c24d6c3613a45e905b1fde04d691b98ee0"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8afafd99945ead6e075b973fefa56379c5b5c53fd8937dad92c662da5d8fd5ee"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c41976a29d078bb235fea9b2ecd3da465df42a562910f9022f1a03107bd02be"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d080e0a5eb2529460b30190fcfcc4199bd7f827663f858a226a81bc27beaa97e"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:69c0f17e9f5a7afdf2cc9fb2d1ce6aabdb3bafb7f38017c0b77862bcec2bbad8"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:504b320cd4b7eff6f968eddf81127112db685e81f7e36e75f9f84f0df46041c3"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:42de32b22b6b804f42c5d98be4f7e5e977ecdd9ee9b660fda1a3edf03b11792d"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-win32.whl", hash = "sha256:ceb01949af7121f9fc39f7d27f91be8546f3fb112c608bc4029aef0bab86a2a5"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-win_amd64.whl", hash = "sha256:1b40069d487e7edb2676d3fbdb2b0829ffa2cd63a2ec26c4938b2d34391b4ecc"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:8023faf4e01efadfa183e863fefde0046de576c6f14659e8782065bcece22198"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6b2b56950d93e41f33b4223ead100ea0fe11f8e6ee5f641eb753ce4b77a7042b"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9dcdfd0eaf283af041973bff14a2e143b8bd64e069f4c383416ecd79a81aab58"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05fb21170423db021895e1ea1e1f3ab3adb85d1c2333cbc2310f2a26bc77272e"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:282c2cb35b5b673bbcadb33a585408104df04f14b2d9b01d4c345a3b92861c2c"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ab4a0df41e7c16a1392727727e7998a467472d0ad65f3ad5e6e765015df08636"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7ef3cb2ebbf91e330e3bb937efada0edd9003683db6b57bb108c4001f37a02ea"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0a4e4a1aff6c7ac4cd55792abf96c915634c2b97e3cc1c7129578aa68ebd754e"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-win32.whl", hash = "sha256:fec21693218efe39aa7f8599346e90c705afa52c5b31ae019b2e57e8f6542bb2"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-win_amd64.whl", hash = "sha256:3fd4abcb888d15a94f32b75d8fd18ee162ca0c064f35b11134be77050296d6ba"}, - {file = "MarkupSafe-2.1.3.tar.gz", hash = "sha256:af598ed32d6ae86f1b747b82783958b1a4ab8f617b06fe68795c7f026abbdcad"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl", hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl", hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl", hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5"}, + {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, ] [[package]] @@ -1055,138 +1420,346 @@ python-dateutil = ">=2.1" [[package]] name = "matplotlib-inline" -version = "0.1.6" +version = "0.1.7" description = "Inline Matplotlib backend for Jupyter" optional = false -python-versions = ">=3.5" +python-versions = ">=3.8" files = [ - {file = "matplotlib-inline-0.1.6.tar.gz", hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"}, - {file = "matplotlib_inline-0.1.6-py3-none-any.whl", hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311"}, + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, ] [package.dependencies] traitlets = "*" +[[package]] +name = "mpmath" +version = "1.3.0" +description = "Python library for arbitrary-precision floating-point arithmetic" +optional = false +python-versions = "*" +files = [ + {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, + {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, +] + +[package.extras] +develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"] +docs = ["sphinx"] +gmpy = ["gmpy2 (>=2.1.0a4)"] +tests = ["pytest (>=4.6)"] + +[[package]] +name = "multidict" +version = "6.1.0" +description = "multidict implementation" +optional = false +python-versions = ">=3.8" +files = [ + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + [[package]] name = "nest-asyncio" -version = "1.5.8" +version = "1.6.0" description = "Patch asyncio to allow nested event loops" optional = false python-versions = ">=3.5" files = [ - {file = "nest_asyncio-1.5.8-py3-none-any.whl", hash = "sha256:accda7a339a70599cb08f9dd09a67e0c2ef8d8d6f4c07f96ab203f2ae254e48d"}, - {file = "nest_asyncio-1.5.8.tar.gz", hash = "sha256:25aa2ca0d2a5b5531956b9e273b45cf664cae2b145101d73b86b199978d48fdb"}, + {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, + {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, ] [[package]] name = "networkx" -version = "2.5" +version = "3.1" description = "Python package for creating and manipulating graphs and networks" optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "networkx-2.5-py3-none-any.whl", hash = "sha256:8c5812e9f798d37c50570d15c4a69d5710a18d77bafc903ee9c5fba7454c616c"}, - {file = "networkx-2.5.tar.gz", hash = "sha256:7978955423fbc9639c10498878be59caf99b44dc304c2286162fd24b458c1602"}, + {file = "networkx-3.1-py3-none-any.whl", hash = "sha256:4f33f68cb2afcf86f28a45f43efc27a9386b535d567d2127f8f61d51dec58d36"}, + {file = "networkx-3.1.tar.gz", hash = "sha256:de346335408f84de0eada6ff9fafafff9bcda11f0a0dfaa931133debb146ab61"}, ] -[package.dependencies] -decorator = ">=4.3.0" - [package.extras] -all = ["lxml", "matplotlib", "numpy", "pandas", "pydot", "pygraphviz", "pytest", "pyyaml", "scipy"] -gdal = ["gdal"] -lxml = ["lxml"] -matplotlib = ["matplotlib"] -numpy = ["numpy"] -pandas = ["pandas"] -pydot = ["pydot"] -pygraphviz = ["pygraphviz"] -pytest = ["pytest"] -pyyaml = ["pyyaml"] -scipy = ["scipy"] +default = ["matplotlib (>=3.4)", "numpy (>=1.20)", "pandas (>=1.3)", "scipy (>=1.8)"] +developer = ["mypy (>=1.1)", "pre-commit (>=3.2)"] +doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.13)", "sphinx (>=6.1)", "sphinx-gallery (>=0.12)", "texext (>=0.6.7)"] +extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.10)", "sympy (>=1.10)"] +test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"] [[package]] -name = "node2vec" -version = "0.3.3" -description = "Implementation of the node2vec algorithm." +name = "numpy" +version = "1.24.4" +description = "Fundamental package for array computing in Python" optional = false -python-versions = "*" +python-versions = ">=3.8" +files = [ + {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, + {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, + {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, + {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, + {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, + {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, + {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, + {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, + {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, + {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, + {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, + {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, + {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, + {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, + {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, + {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, + {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, + {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, + {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, + {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, + {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, + {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, + {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, + {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, + {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, +] + +[[package]] +name = "nvidia-cublas-cu12" +version = "12.1.3.1" +description = "CUBLAS native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728"}, + {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-win_amd64.whl", hash = "sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906"}, +] + +[[package]] +name = "nvidia-cuda-cupti-cu12" +version = "12.1.105" +description = "CUDA profiling tools runtime libs." +optional = false +python-versions = ">=3" files = [ - {file = "node2vec-0.3.3.tar.gz", hash = "sha256:a122796952137bc91df5e9a51525180d510e1f4e4208eb4a21329137c38354d8"}, + {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e"}, + {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4"}, +] + +[[package]] +name = "nvidia-cuda-nvrtc-cu12" +version = "12.1.105" +description = "NVRTC native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2"}, + {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed"}, +] + +[[package]] +name = "nvidia-cuda-runtime-cu12" +version = "12.1.105" +description = "CUDA Runtime native Libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40"}, + {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344"}, +] + +[[package]] +name = "nvidia-cudnn-cu12" +version = "8.9.2.26" +description = "cuDNN runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl", hash = "sha256:5ccb288774fdfb07a7e7025ffec286971c06d8d7b4fb162525334616d7629ff9"}, ] [package.dependencies] -gensim = "*" -joblib = ">=0.13.2" -networkx = "*" -numpy = "*" -tqdm = "*" +nvidia-cublas-cu12 = "*" [[package]] -name = "numpy" -version = "1.19.5" -description = "NumPy is the fundamental package for array computing with Python." +name = "nvidia-cufft-cu12" +version = "11.0.2.54" +description = "CUFFT native runtime libraries" optional = false -python-versions = ">=3.6" +python-versions = ">=3" files = [ - {file = "numpy-1.19.5-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:cc6bd4fd593cb261332568485e20a0712883cf631f6f5e8e86a52caa8b2b50ff"}, - {file = "numpy-1.19.5-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:aeb9ed923be74e659984e321f609b9ba54a48354bfd168d21a2b072ed1e833ea"}, - {file = "numpy-1.19.5-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:8b5e972b43c8fc27d56550b4120fe6257fdc15f9301914380b27f74856299fea"}, - {file = "numpy-1.19.5-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:43d4c81d5ffdff6bae58d66a3cd7f54a7acd9a0e7b18d97abb255defc09e3140"}, - {file = "numpy-1.19.5-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:a4646724fba402aa7504cd48b4b50e783296b5e10a524c7a6da62e4a8ac9698d"}, - {file = "numpy-1.19.5-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:2e55195bc1c6b705bfd8ad6f288b38b11b1af32f3c8289d6c50d47f950c12e76"}, - {file = "numpy-1.19.5-cp36-cp36m-win32.whl", hash = "sha256:39b70c19ec771805081578cc936bbe95336798b7edf4732ed102e7a43ec5c07a"}, - {file = "numpy-1.19.5-cp36-cp36m-win_amd64.whl", hash = "sha256:dbd18bcf4889b720ba13a27ec2f2aac1981bd41203b3a3b27ba7a33f88ae4827"}, - {file = "numpy-1.19.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:603aa0706be710eea8884af807b1b3bc9fb2e49b9f4da439e76000f3b3c6ff0f"}, - {file = "numpy-1.19.5-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:cae865b1cae1ec2663d8ea56ef6ff185bad091a5e33ebbadd98de2cfa3fa668f"}, - {file = "numpy-1.19.5-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:36674959eed6957e61f11c912f71e78857a8d0604171dfd9ce9ad5cbf41c511c"}, - {file = "numpy-1.19.5-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:06fab248a088e439402141ea04f0fffb203723148f6ee791e9c75b3e9e82f080"}, - {file = "numpy-1.19.5-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:6149a185cece5ee78d1d196938b2a8f9d09f5a5ebfbba66969302a778d5ddd1d"}, - {file = "numpy-1.19.5-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:50a4a0ad0111cc1b71fa32dedd05fa239f7fb5a43a40663269bb5dc7877cfd28"}, - {file = "numpy-1.19.5-cp37-cp37m-win32.whl", hash = "sha256:d051ec1c64b85ecc69531e1137bb9751c6830772ee5c1c426dbcfe98ef5788d7"}, - {file = "numpy-1.19.5-cp37-cp37m-win_amd64.whl", hash = "sha256:a12ff4c8ddfee61f90a1633a4c4afd3f7bcb32b11c52026c92a12e1325922d0d"}, - {file = "numpy-1.19.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cf2402002d3d9f91c8b01e66fbb436a4ed01c6498fffed0e4c7566da1d40ee1e"}, - {file = "numpy-1.19.5-cp38-cp38-manylinux1_i686.whl", hash = "sha256:1ded4fce9cfaaf24e7a0ab51b7a87be9038ea1ace7f34b841fe3b6894c721d1c"}, - {file = "numpy-1.19.5-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:012426a41bc9ab63bb158635aecccc7610e3eff5d31d1eb43bc099debc979d94"}, - {file = "numpy-1.19.5-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:759e4095edc3c1b3ac031f34d9459fa781777a93ccc633a472a5468587a190ff"}, - {file = "numpy-1.19.5-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:a9d17f2be3b427fbb2bce61e596cf555d6f8a56c222bd2ca148baeeb5e5c783c"}, - {file = "numpy-1.19.5-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:99abf4f353c3d1a0c7a5f27699482c987cf663b1eac20db59b8c7b061eabd7fc"}, - {file = "numpy-1.19.5-cp38-cp38-win32.whl", hash = "sha256:384ec0463d1c2671170901994aeb6dce126de0a95ccc3976c43b0038a37329c2"}, - {file = "numpy-1.19.5-cp38-cp38-win_amd64.whl", hash = "sha256:811daee36a58dc79cf3d8bdd4a490e4277d0e4b7d103a001a4e73ddb48e7e6aa"}, - {file = "numpy-1.19.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c843b3f50d1ab7361ca4f0b3639bf691569493a56808a0b0c54a051d260b7dbd"}, - {file = "numpy-1.19.5-cp39-cp39-manylinux1_i686.whl", hash = "sha256:d6631f2e867676b13026e2846180e2c13c1e11289d67da08d71cacb2cd93d4aa"}, - {file = "numpy-1.19.5-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:7fb43004bce0ca31d8f13a6eb5e943fa73371381e53f7074ed21a4cb786c32f8"}, - {file = "numpy-1.19.5-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:2ea52bd92ab9f768cc64a4c3ef8f4b2580a17af0a5436f6126b08efbd1838371"}, - {file = "numpy-1.19.5-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:400580cbd3cff6ffa6293df2278c75aef2d58d8d93d3c5614cd67981dae68ceb"}, - {file = "numpy-1.19.5-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:df609c82f18c5b9f6cb97271f03315ff0dbe481a2a02e56aeb1b1a985ce38e60"}, - {file = "numpy-1.19.5-cp39-cp39-win32.whl", hash = "sha256:ab83f24d5c52d60dbc8cd0528759532736b56db58adaa7b5f1f76ad551416a1e"}, - {file = "numpy-1.19.5-cp39-cp39-win_amd64.whl", hash = "sha256:0eef32ca3132a48e43f6a0f5a82cb508f22ce5a3d6f67a8329c81c8e226d3f6e"}, - {file = "numpy-1.19.5-pp36-pypy36_pp73-manylinux2010_x86_64.whl", hash = "sha256:a0d53e51a6cb6f0d9082decb7a4cb6dfb33055308c4c44f53103c073f649af73"}, - {file = "numpy-1.19.5.zip", hash = "sha256:a76f502430dd98d7546e1ea2250a7360c065a5fdea52b2dffe8ae7180909b6f4"}, -] - -[[package]] -name = "nxt-gem" -version = "2.0.1" -description = "nxt_gem: A Python module for Graph Embedding Methods" + {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl", hash = "sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56"}, + {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-win_amd64.whl", hash = "sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253"}, +] + +[[package]] +name = "nvidia-curand-cu12" +version = "10.3.2.106" +description = "CURAND native runtime libraries" optional = false -python-versions = "*" -files = [] -develop = false +python-versions = ">=3" +files = [ + {file = "nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0"}, + {file = "nvidia_curand_cu12-10.3.2.106-py3-none-win_amd64.whl", hash = "sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a"}, +] + +[[package]] +name = "nvidia-cusolver-cu12" +version = "11.4.5.107" +description = "CUDA solver native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd"}, + {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-win_amd64.whl", hash = "sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5"}, +] [package.dependencies] -matplotlib = ">=2.0.0" -networkx = ">=2.4" -numpy = ">=1.12.0" -scikit-learn = ">=0.21.2" -scipy = ">=0.19.0" -theano = ">=0.9.0" +nvidia-cublas-cu12 = "*" +nvidia-cusparse-cu12 = "*" +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-cusparse-cu12" +version = "12.1.0.106" +description = "CUSPARSE native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c"}, + {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-win_amd64.whl", hash = "sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a"}, +] + +[package.dependencies] +nvidia-nvjitlink-cu12 = "*" -[package.source] -type = "git" -url = "https://github.com/palash1992/GEM.git" -reference = "master" -resolved_reference = "ae8e92d34213f5785757b4a0943bd7d8d337adb3" +[[package]] +name = "nvidia-nccl-cu12" +version = "2.18.1" +description = "NVIDIA Collective Communication Library (NCCL) Runtime" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nccl_cu12-2.18.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:1a6c4acefcbebfa6de320f412bf7866de856e786e0462326ba1bac40de0b5e71"}, +] + +[[package]] +name = "nvidia-nvjitlink-cu12" +version = "12.6.77" +description = "Nvidia JIT LTO Library" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-manylinux2014_aarch64.whl", hash = "sha256:3bf10d85bb1801e9c894c6e197e44dd137d2a0a9e43f8450e9ad13f2df0dd52d"}, + {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-manylinux2014_x86_64.whl", hash = "sha256:9ae346d16203ae4ea513be416495167a0101d33d2d14935aa9c1829a3fb45142"}, + {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-win_amd64.whl", hash = "sha256:410718cd44962bed862a31dd0318620f6f9a8b28a6291967bcfcb446a6516771"}, +] + +[[package]] +name = "nvidia-nvtx-cu12" +version = "12.1.105" +description = "NVIDIA Tools Extension" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5"}, + {file = "nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82"}, +] [[package]] name = "oauthlib" @@ -1206,126 +1779,103 @@ signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] [[package]] name = "opt-einsum" -version = "3.3.0" -description = "Optimizing numpys einsum function" +version = "3.4.0" +description = "Path optimization of einsum functions." optional = false -python-versions = ">=3.5" +python-versions = ">=3.8" files = [ - {file = "opt_einsum-3.3.0-py3-none-any.whl", hash = "sha256:2455e59e3947d3c275477df7f5205b30635e266fe6dc300e3d9f9646bfcea147"}, - {file = "opt_einsum-3.3.0.tar.gz", hash = "sha256:59f6475f77bbc37dcf7cd748519c0ec60722e91e63ca114e68821c0c54a46549"}, + {file = "opt_einsum-3.4.0-py3-none-any.whl", hash = "sha256:69bb92469f86a1565195ece4ac0323943e83477171b91d24c35afe028a90d7cd"}, + {file = "opt_einsum-3.4.0.tar.gz", hash = "sha256:96ca72f1b886d148241348783498194c577fa30a8faac108586b14f1ba4473ac"}, ] -[package.dependencies] -numpy = ">=1.7" - -[package.extras] -docs = ["numpydoc", "sphinx (==1.2.3)", "sphinx-rtd-theme", "sphinxcontrib-napoleon"] -tests = ["pytest", "pytest-cov", "pytest-pep8"] - [[package]] name = "packaging" -version = "23.2" +version = "24.1" description = "Core utilities for Python packages" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, - {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, + {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, + {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, ] [[package]] name = "pandas" -version = "1.3.3" -description = "Powerful data structures for data analysis, time series, and statistics" -optional = false -python-versions = ">=3.7.1" -files = [ - {file = "pandas-1.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68408a39a54ebadb9014ee5a4fae27b2fe524317bc80adf56c9ac59e8f8ea431"}, - {file = "pandas-1.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86b16b1b920c4cb27fdd65a2c20258bcd9c794be491290660722bb0ea765054d"}, - {file = "pandas-1.3.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:37d63e78e87eb3791da7be4100a65da0383670c2b59e493d9e73098d7a879226"}, - {file = "pandas-1.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:53e2fb11f86f6253bb1df26e3aeab3bf2e000aaa32a953ec394571bec5dc6fd6"}, - {file = "pandas-1.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7326b37de08d42dd3fff5b7ef7691d0fd0bf2428f4ba5a2bdc3b3247e9a52e4c"}, - {file = "pandas-1.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2f29b4da6f6ae7c68f4b3708d9d9e59fa89b2f9e87c2b64ce055cbd39f729e"}, - {file = "pandas-1.3.3-cp37-cp37m-win32.whl", hash = "sha256:3f5020613c1d8e304840c34aeb171377dc755521bf5e69804991030c2a48aec3"}, - {file = "pandas-1.3.3-cp37-cp37m-win_amd64.whl", hash = "sha256:c399200631db9bd9335d013ec7fce4edb98651035c249d532945c78ad453f23a"}, - {file = "pandas-1.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a800df4e101b721e94d04c355e611863cc31887f24c0b019572e26518cbbcab6"}, - {file = "pandas-1.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3334a5a9eeaca953b9db1b2b165dcdc5180b5011f3bec3a57a3580c9c22eae68"}, - {file = "pandas-1.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49fd2889d8116d7acef0709e4c82b8560a8b22b0f77471391d12c27596e90267"}, - {file = "pandas-1.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7557b39c8e86eb0543a17a002ac1ea0f38911c3c17095bc9350d0a65b32d801c"}, - {file = "pandas-1.3.3-cp38-cp38-win32.whl", hash = "sha256:629138b7cf81a2e55aa29ce7b04c1cece20485271d1f6c469c6a0c03857db6a4"}, - {file = "pandas-1.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:45649503e167d45360aa7c52f18d1591a6d5c70d2f3a26bc90a3297a30ce9a66"}, - {file = "pandas-1.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ebbed7312547a924df0cbe133ff1250eeb94cdff3c09a794dc991c5621c8c735"}, - {file = "pandas-1.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a9f1b54d7efc9df05320b14a48fb18686f781aa66cc7b47bb62fabfc67a0985c"}, - {file = "pandas-1.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9bc59855598cb57f68fdabd4897d3ed2bc3a3b3bef7b868a0153c4cd03f3207"}, - {file = "pandas-1.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4def2ef2fb7fcd62f2aa51bacb817ee9029e5c8efe42fe527ba21f6a3ddf1a9f"}, - {file = "pandas-1.3.3-cp39-cp39-win32.whl", hash = "sha256:f7d84f321674c2f0f31887ee6d5755c54ca1ea5e144d6d54b3bbf566dd9ea0cc"}, - {file = "pandas-1.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:e574c2637c9d27f322e911650b36e858c885702c5996eda8a5a60e35e6648cf2"}, - {file = "pandas-1.3.3.tar.gz", hash = "sha256:272c8cb14aa9793eada6b1ebe81994616e647b5892a370c7135efb2924b701df"}, -] - -[package.dependencies] -numpy = ">=1.17.3" -python-dateutil = ">=2.7.3" -pytz = ">=2017.3" - -[package.extras] -test = ["hypothesis (>=3.58)", "pytest (>=6.0)", "pytest-xdist"] - -[[package]] -name = "pandas" -version = "1.4.4" +version = "2.0.3" description = "Powerful data structures for data analysis, time series, and statistics" optional = false python-versions = ">=3.8" files = [ - {file = "pandas-1.4.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:799e6a25932df7e6b1f8dabf63de064e2205dc309abb75956126a0453fd88e97"}, - {file = "pandas-1.4.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7cd1d69a387f7d5e1a5a06a87574d9ef2433847c0e78113ab51c84d3a8bcaeaa"}, - {file = "pandas-1.4.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:94f2ed1fd51e545ebf71da1e942fe1822ee01e10d3dd2a7276d01351333b7c6b"}, - {file = "pandas-1.4.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4591cadd06fbbbd16fafc2de6e840c1aaefeae3d5864b688004777ef1bbdede3"}, - {file = "pandas-1.4.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0022fe6a313df1c4869b5edc012d734c6519a6fffa3cf70930f32e6a1078e49"}, - {file = "pandas-1.4.4-cp310-cp310-win_amd64.whl", hash = "sha256:785e878a6e6d8ddcdb8c181e600855402750052497d7fc6d6b508894f6b8830b"}, - {file = "pandas-1.4.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c4bb8b0ab9f94207d07e401d24baebfc63057246b1a5e0cd9ee50df85a656871"}, - {file = "pandas-1.4.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:51c424ca134fdaeac9a4acd719d1ab48046afc60943a489028f0413fdbe9ef1c"}, - {file = "pandas-1.4.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ce35f947202b0b99c660221d82beb91d2e6d553d55a40b30128204e3e2c63848"}, - {file = "pandas-1.4.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee6f1848148ed3204235967613b0a32be2d77f214e9623f554511047705c1e04"}, - {file = "pandas-1.4.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7cc960959be28d064faefc0cb2aef854d46b827c004ebea7e79b5497ed83e7d"}, - {file = "pandas-1.4.4-cp38-cp38-win32.whl", hash = "sha256:9d805bce209714b1c1fa29bfb1e42ad87e4c0a825e4b390c56a3e71593b7e8d8"}, - {file = "pandas-1.4.4-cp38-cp38-win_amd64.whl", hash = "sha256:afbddad78a98ec4d2ce08b384b81730de1ccc975b99eb663e6dac43703f36d98"}, - {file = "pandas-1.4.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a08ceb59db499864c58a9bf85ab6219d527d91f14c0240cc25fa2c261032b2a7"}, - {file = "pandas-1.4.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0959c41004e3d2d16f39c828d6da66ebee329836a7ecee49fb777ac9ad8a7501"}, - {file = "pandas-1.4.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87b4194f344dcd14c0f885cecb22005329b38bda10f1aaf7b9596a00ec8a4768"}, - {file = "pandas-1.4.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d2a7a3c1fea668d56bd91edbd5f2732e0af8feb9d2bf8d9bfacb2dea5fa9536"}, - {file = "pandas-1.4.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a981cfabf51c318a562deb4ae7deec594c07aee7cf18b4594a92c23718ec8275"}, - {file = "pandas-1.4.4-cp39-cp39-win32.whl", hash = "sha256:050aada67a5ec6699a7879e769825b510018a95fb9ac462bb1867483d0974a97"}, - {file = "pandas-1.4.4-cp39-cp39-win_amd64.whl", hash = "sha256:8d4d2fe2863ecddb0ba1979bdda26c8bc2ea138f5a979abe3ba80c0fa4015c91"}, - {file = "pandas-1.4.4.tar.gz", hash = "sha256:ab6c0d738617b675183e5f28db32b5148b694ad9bba0a40c3ea26d96b431db67"}, + {file = "pandas-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8"}, + {file = "pandas-2.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f"}, + {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183"}, + {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0"}, + {file = "pandas-2.0.3-cp310-cp310-win32.whl", hash = "sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210"}, + {file = "pandas-2.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e"}, + {file = "pandas-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8"}, + {file = "pandas-2.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26"}, + {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d"}, + {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df"}, + {file = "pandas-2.0.3-cp311-cp311-win32.whl", hash = "sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd"}, + {file = "pandas-2.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b"}, + {file = "pandas-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061"}, + {file = "pandas-2.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5"}, + {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089"}, + {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0"}, + {file = "pandas-2.0.3-cp38-cp38-win32.whl", hash = "sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02"}, + {file = "pandas-2.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78"}, + {file = "pandas-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b"}, + {file = "pandas-2.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e"}, + {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b"}, + {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641"}, + {file = "pandas-2.0.3-cp39-cp39-win32.whl", hash = "sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682"}, + {file = "pandas-2.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc"}, + {file = "pandas-2.0.3.tar.gz", hash = "sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c"}, ] [package.dependencies] -numpy = [ - {version = ">=1.18.5", markers = "(platform_machine != \"aarch64\" and platform_machine != \"arm64\") and python_version < \"3.10\""}, - {version = ">=1.19.2", markers = "platform_machine == \"aarch64\" and python_version < \"3.10\""}, -] -python-dateutil = ">=2.8.1" +numpy = {version = ">=1.20.3", markers = "python_version < \"3.10\""} +python-dateutil = ">=2.8.2" pytz = ">=2020.1" +tzdata = ">=2022.1" [package.extras] -test = ["hypothesis (>=5.5.3)", "pytest (>=6.0)", "pytest-xdist (>=1.31)"] +all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] +aws = ["s3fs (>=2021.08.0)"] +clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] +compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] +computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] +feather = ["pyarrow (>=7.0.0)"] +fss = ["fsspec (>=2021.07.0)"] +gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] +hdf5 = ["tables (>=3.6.1)"] +html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] +mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] +parquet = ["pyarrow (>=7.0.0)"] +performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] +plot = ["matplotlib (>=3.6.1)"] +postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] +spss = ["pyreadstat (>=1.1.2)"] +sql-other = ["SQLAlchemy (>=1.4.16)"] +test = ["hypothesis (>=6.34.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.6.3)"] [[package]] name = "parso" -version = "0.8.3" +version = "0.8.4" description = "A Python Parser" optional = false python-versions = ">=3.6" files = [ - {file = "parso-0.8.3-py2.py3-none-any.whl", hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"}, - {file = "parso-0.8.3.tar.gz", hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0"}, + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, ] [package.extras] -qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] -testing = ["docopt", "pytest (<6.0.0)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["docopt", "pytest"] [[package]] name = "pexpect" @@ -1352,30 +1902,128 @@ files = [ {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, ] +[[package]] +name = "pillow" +version = "10.4.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"}, + {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"}, + {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"}, + {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"}, + {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"}, + {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"}, + {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"}, + {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"}, + {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"}, + {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"}, + {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"}, + {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"}, + {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"}, + {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"}, + {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"}, + {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"}, + {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"}, + {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"}, + {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"}, + {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] +fpx = ["olefile"] +mic = ["olefile"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] +typing = ["typing-extensions"] +xmp = ["defusedxml"] + [[package]] name = "platformdirs" -version = "4.1.0" -description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." +version = "4.3.6" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." optional = false python-versions = ">=3.8" files = [ - {file = "platformdirs-4.1.0-py3-none-any.whl", hash = "sha256:11c8f37bcca40db96d8144522d925583bdb7a31f7b0e37e3ed4318400a8e2380"}, - {file = "platformdirs-4.1.0.tar.gz", hash = "sha256:906d548203468492d432bcb294d4bc2fff751bf84971fbb2c10918cc206ee420"}, + {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, + {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, ] [package.extras] -docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.1)", "sphinx-autodoc-typehints (>=1.24)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)"] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] [[package]] name = "prompt-toolkit" -version = "3.0.43" +version = "3.0.48" description = "Library for building powerful interactive command lines in Python" optional = false python-versions = ">=3.7.0" files = [ - {file = "prompt_toolkit-3.0.43-py3-none-any.whl", hash = "sha256:a11a29cb3bf0a28a387fe5122cdb649816a957cd9261dcedf8c9f1fef33eacf6"}, - {file = "prompt_toolkit-3.0.43.tar.gz", hash = "sha256:3527b7af26106cbc65a040bcc84839a3566ec1b051bb0bfe953631e704b0ff7d"}, + {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, + {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, ] [package.dependencies] @@ -1414,27 +2062,28 @@ files = [ [[package]] name = "psutil" -version = "5.9.7" +version = "6.0.0" description = "Cross-platform lib for process and system monitoring in Python." optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" -files = [ - {file = "psutil-5.9.7-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:0bd41bf2d1463dfa535942b2a8f0e958acf6607ac0be52265ab31f7923bcd5e6"}, - {file = "psutil-5.9.7-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:5794944462509e49d4d458f4dbfb92c47539e7d8d15c796f141f474010084056"}, - {file = "psutil-5.9.7-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:fe361f743cb3389b8efda21980d93eb55c1f1e3898269bc9a2a1d0bb7b1f6508"}, - {file = "psutil-5.9.7-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:e469990e28f1ad738f65a42dcfc17adaed9d0f325d55047593cb9033a0ab63df"}, - {file = "psutil-5.9.7-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:3c4747a3e2ead1589e647e64aad601981f01b68f9398ddf94d01e3dc0d1e57c7"}, - {file = "psutil-5.9.7-cp27-none-win32.whl", hash = "sha256:1d4bc4a0148fdd7fd8f38e0498639ae128e64538faa507df25a20f8f7fb2341c"}, - {file = "psutil-5.9.7-cp27-none-win_amd64.whl", hash = "sha256:4c03362e280d06bbbfcd52f29acd79c733e0af33d707c54255d21029b8b32ba6"}, - {file = "psutil-5.9.7-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ea36cc62e69a13ec52b2f625c27527f6e4479bca2b340b7a452af55b34fcbe2e"}, - {file = "psutil-5.9.7-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1132704b876e58d277168cd729d64750633d5ff0183acf5b3c986b8466cd0284"}, - {file = "psutil-5.9.7-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe8b7f07948f1304497ce4f4684881250cd859b16d06a1dc4d7941eeb6233bfe"}, - {file = "psutil-5.9.7-cp36-cp36m-win32.whl", hash = "sha256:b27f8fdb190c8c03914f908a4555159327d7481dac2f01008d483137ef3311a9"}, - {file = "psutil-5.9.7-cp36-cp36m-win_amd64.whl", hash = "sha256:44969859757f4d8f2a9bd5b76eba8c3099a2c8cf3992ff62144061e39ba8568e"}, - {file = "psutil-5.9.7-cp37-abi3-win32.whl", hash = "sha256:c727ca5a9b2dd5193b8644b9f0c883d54f1248310023b5ad3e92036c5e2ada68"}, - {file = "psutil-5.9.7-cp37-abi3-win_amd64.whl", hash = "sha256:f37f87e4d73b79e6c5e749440c3113b81d1ee7d26f21c19c47371ddea834f414"}, - {file = "psutil-5.9.7-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:032f4f2c909818c86cea4fe2cc407f1c0f0cde8e6c6d702b28b8ce0c0d143340"}, - {file = "psutil-5.9.7.tar.gz", hash = "sha256:3f02134e82cfb5d089fddf20bb2e03fd5cd52395321d1c8458a9e58500ff417c"}, +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "psutil-6.0.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a021da3e881cd935e64a3d0a20983bda0bb4cf80e4f74fa9bfcb1bc5785360c6"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:1287c2b95f1c0a364d23bc6f2ea2365a8d4d9b726a3be7294296ff7ba97c17f0"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:a9a3dbfb4de4f18174528d87cc352d1f788b7496991cca33c6996f40c9e3c92c"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:6ec7588fb3ddaec7344a825afe298db83fe01bfaaab39155fa84cf1c0d6b13c3"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:1e7c870afcb7d91fdea2b37c24aeb08f98b6d67257a5cb0a8bc3ac68d0f1a68c"}, + {file = "psutil-6.0.0-cp27-none-win32.whl", hash = "sha256:02b69001f44cc73c1c5279d02b30a817e339ceb258ad75997325e0e6169d8b35"}, + {file = "psutil-6.0.0-cp27-none-win_amd64.whl", hash = "sha256:21f1fb635deccd510f69f485b87433460a603919b45e2a324ad65b0cc74f8fb1"}, + {file = "psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c588a7e9b1173b6e866756dde596fd4cad94f9399daf99ad8c3258b3cb2b47a0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ed2440ada7ef7d0d608f20ad89a04ec47d2d3ab7190896cd62ca5fc4fe08bf0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd9a97c8e94059b0ef54a7d4baf13b405011176c3b6ff257c247cae0d560ecd"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e8d0054fc88153ca0544f5c4d554d42e33df2e009c4ff42284ac9ebdef4132"}, + {file = "psutil-6.0.0-cp36-cp36m-win32.whl", hash = "sha256:fc8c9510cde0146432bbdb433322861ee8c3efbf8589865c8bf8d21cb30c4d14"}, + {file = "psutil-6.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:34859b8d8f423b86e4385ff3665d3f4d94be3cdf48221fbe476e883514fdb71c"}, + {file = "psutil-6.0.0-cp37-abi3-win32.whl", hash = "sha256:a495580d6bae27291324fe60cea0b5a7c23fa36a7cd35035a16d93bdcf076b9d"}, + {file = "psutil-6.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:33ea5e1c975250a720b3a6609c490db40dae5d83a4eb315170c4fe0d8b1f34b3"}, + {file = "psutil-6.0.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:ffe7fc9b6b36beadc8c322f84e1caff51e8703b88eee1da46d1e3a6ae11b4fd0"}, + {file = "psutil-6.0.0.tar.gz", hash = "sha256:8faae4f310b6d969fa26ca0545338b21f73c6b15db7c4a8d934a5482faa818f2"}, ] [package.extras] @@ -1453,13 +2102,13 @@ files = [ [[package]] name = "pure-eval" -version = "0.2.2" +version = "0.2.3" description = "Safely evaluate AST nodes without side effects" optional = false python-versions = "*" files = [ - {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, - {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, + {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, + {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, ] [package.extras] @@ -1467,85 +2116,63 @@ tests = ["pytest"] [[package]] name = "pyasn1" -version = "0.5.1" +version = "0.6.1" description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +python-versions = ">=3.8" files = [ - {file = "pyasn1-0.5.1-py2.py3-none-any.whl", hash = "sha256:4439847c58d40b1d0a573d07e3856e95333f1976294494c325775aeca506eb58"}, - {file = "pyasn1-0.5.1.tar.gz", hash = "sha256:6d391a96e59b23130a5cfa74d6fd7f388dbbe26cc8f1edf39fdddf08d9d6676c"}, + {file = "pyasn1-0.6.1-py3-none-any.whl", hash = "sha256:0d632f46f2ba09143da3a8afe9e33fb6f92fa2320ab7e886e2d0f7672af84629"}, + {file = "pyasn1-0.6.1.tar.gz", hash = "sha256:6f580d2bdd84365380830acf45550f2511469f673cb4a5ae3857a3170128b034"}, ] [[package]] name = "pyasn1-modules" -version = "0.3.0" +version = "0.4.1" description = "A collection of ASN.1-based protocols modules" optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +python-versions = ">=3.8" files = [ - {file = "pyasn1_modules-0.3.0-py2.py3-none-any.whl", hash = "sha256:d3ccd6ed470d9ffbc716be08bd90efbd44d0734bc9303818f7336070984a162d"}, - {file = "pyasn1_modules-0.3.0.tar.gz", hash = "sha256:5bd01446b736eb9d31512a30d46c1ac3395d676c6f3cafa4c03eb54b9925631c"}, + {file = "pyasn1_modules-0.4.1-py3-none-any.whl", hash = "sha256:49bfa96b45a292b711e986f222502c1c9a5e1f4e568fc30e2574a6c7d07838fd"}, + {file = "pyasn1_modules-0.4.1.tar.gz", hash = "sha256:c28e2dbf9c06ad61c71a075c7e0f9fd0f1b0bb2d2ad4377f240d33ac2ab60a7c"}, ] [package.dependencies] -pyasn1 = ">=0.4.6,<0.6.0" +pyasn1 = ">=0.4.6,<0.7.0" [[package]] name = "pycparser" -version = "2.21" +version = "2.22" description = "C parser in Python" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +python-versions = ">=3.8" files = [ - {file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, - {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, ] [[package]] name = "pygments" -version = "2.17.2" +version = "2.18.0" description = "Pygments is a syntax highlighting package written in Python." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "pygments-2.17.2-py3-none-any.whl", hash = "sha256:b27c2826c47d0f3219f29554824c30c5e8945175d888647acd804ddd04af846c"}, - {file = "pygments-2.17.2.tar.gz", hash = "sha256:da46cec9fd2de5be3a8a784f434e4c4ab670b4ff54d605c4c2717e9d49c4c367"}, + {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, + {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, ] [package.extras] -plugins = ["importlib-metadata"] windows-terminal = ["colorama (>=0.4.6)"] -[[package]] -name = "pygsp" -version = "0.5.1" -description = "Graph Signal Processing in Python" -optional = false -python-versions = "*" -files = [ - {file = "PyGSP-0.5.1-py2.py3-none-any.whl", hash = "sha256:884765260256f143a92053c420797053fda0f4eba1573471526fb4e62a4c4cde"}, - {file = "PyGSP-0.5.1.tar.gz", hash = "sha256:4874ad88793d622d4f578b40c6617a99b1f02bc6c6c4077f0e48cd71c7275800"}, -] - -[package.dependencies] -numpy = "*" -scipy = "*" - -[package.extras] -alldeps = ["PyOpenGL", "PyQt5", "PySide", "matplotlib", "pyflann", "pyflann3", "pyqtgraph", "pyunlocbox", "scikit-image"] -doc = ["numpydoc", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-bibtex"] -pkg = ["twine", "wheel"] -test = ["coverage", "coveralls", "flake8"] - [[package]] name = "pyparsing" -version = "3.1.1" +version = "3.1.4" description = "pyparsing module - Classes and methods to define and execute parsing grammars" optional = false python-versions = ">=3.6.8" files = [ - {file = "pyparsing-3.1.1-py3-none-any.whl", hash = "sha256:32c7c0b711493c72ff18a981d24f28aaf9c1fb7ed5e9667c9e84e3db623bdbfb"}, - {file = "pyparsing-3.1.1.tar.gz", hash = "sha256:ede28a1a32462f5a9705e07aea48001a08f7cf81a021585011deba701581a0db"}, + {file = "pyparsing-3.1.4-py3-none-any.whl", hash = "sha256:a6a7ee4235a3f944aa1fa2249307708f893fe5717dc603503c6c7969c070fb7c"}, + {file = "pyparsing-3.1.4.tar.gz", hash = "sha256:f86ec8d1a83f11977c9a6ea7598e8c27fc5cddfa5b07ea2241edbbde1d7bc032"}, ] [package.extras] @@ -1553,41 +2180,27 @@ diagrams = ["jinja2", "railroad-diagrams"] [[package]] name = "python-dateutil" -version = "2.8.2" +version = "2.9.0.post0" description = "Extensions to the standard Python datetime module" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" files = [ - {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, - {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, + {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, + {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, ] [package.dependencies] six = ">=1.5" -[[package]] -name = "python-louvain" -version = "0.16" -description = "Louvain algorithm for community detection" -optional = false -python-versions = "*" -files = [ - {file = "python-louvain-0.16.tar.gz", hash = "sha256:b7ba2df5002fd28d3ee789a49532baad11fe648e4f2117cf0798e7520a1da56b"}, -] - -[package.dependencies] -networkx = "*" -numpy = "*" - [[package]] name = "pytz" -version = "2023.3.post1" +version = "2024.2" description = "World timezone definitions, modern and historical" optional = false python-versions = "*" files = [ - {file = "pytz-2023.3.post1-py2.py3-none-any.whl", hash = "sha256:ce42d816b81b68506614c11e8937d3aa9e41007ceb50bfdcb0749b921bf646c7"}, - {file = "pytz-2023.3.post1.tar.gz", hash = "sha256:7b4fddbeb94a1eba4b557da24f19fdf9db575192544270a9101d8509f9f43d7b"}, + {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, + {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, ] [[package]] @@ -1615,104 +2228,120 @@ files = [ [[package]] name = "pyzmq" -version = "25.1.2" +version = "26.2.0" description = "Python bindings for 0MQ" optional = false -python-versions = ">=3.6" +python-versions = ">=3.7" files = [ - {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:e624c789359f1a16f83f35e2c705d07663ff2b4d4479bad35621178d8f0f6ea4"}, - {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:49151b0efece79f6a79d41a461d78535356136ee70084a1c22532fc6383f4ad0"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9a5f194cf730f2b24d6af1f833c14c10f41023da46a7f736f48b6d35061e76e"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:faf79a302f834d9e8304fafdc11d0d042266667ac45209afa57e5efc998e3872"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f51a7b4ead28d3fca8dda53216314a553b0f7a91ee8fc46a72b402a78c3e43d"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:0ddd6d71d4ef17ba5a87becf7ddf01b371eaba553c603477679ae817a8d84d75"}, - {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:246747b88917e4867e2367b005fc8eefbb4a54b7db363d6c92f89d69abfff4b6"}, - {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:00c48ae2fd81e2a50c3485de1b9d5c7c57cd85dc8ec55683eac16846e57ac979"}, - {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:5a68d491fc20762b630e5db2191dd07ff89834086740f70e978bb2ef2668be08"}, - {file = "pyzmq-25.1.2-cp310-cp310-win32.whl", hash = "sha256:09dfe949e83087da88c4a76767df04b22304a682d6154de2c572625c62ad6886"}, - {file = "pyzmq-25.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:fa99973d2ed20417744fca0073390ad65ce225b546febb0580358e36aa90dba6"}, - {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:82544e0e2d0c1811482d37eef297020a040c32e0687c1f6fc23a75b75db8062c"}, - {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:01171fc48542348cd1a360a4b6c3e7d8f46cdcf53a8d40f84db6707a6768acc1"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc69c96735ab501419c432110016329bf0dea8898ce16fab97c6d9106dc0b348"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3e124e6b1dd3dfbeb695435dff0e383256655bb18082e094a8dd1f6293114642"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7598d2ba821caa37a0f9d54c25164a4fa351ce019d64d0b44b45540950458840"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:d1299d7e964c13607efd148ca1f07dcbf27c3ab9e125d1d0ae1d580a1682399d"}, - {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4e6f689880d5ad87918430957297c975203a082d9a036cc426648fcbedae769b"}, - {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:cc69949484171cc961e6ecd4a8911b9ce7a0d1f738fcae717177c231bf77437b"}, - {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9880078f683466b7f567b8624bfc16cad65077be046b6e8abb53bed4eeb82dd3"}, - {file = "pyzmq-25.1.2-cp311-cp311-win32.whl", hash = "sha256:4e5837af3e5aaa99a091302df5ee001149baff06ad22b722d34e30df5f0d9097"}, - {file = "pyzmq-25.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:25c2dbb97d38b5ac9fd15586e048ec5eb1e38f3d47fe7d92167b0c77bb3584e9"}, - {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:11e70516688190e9c2db14fcf93c04192b02d457b582a1f6190b154691b4c93a"}, - {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:313c3794d650d1fccaaab2df942af9f2c01d6217c846177cfcbc693c7410839e"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b3cbba2f47062b85fe0ef9de5b987612140a9ba3a9c6d2543c6dec9f7c2ab27"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fc31baa0c32a2ca660784d5af3b9487e13b61b3032cb01a115fce6588e1bed30"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:02c9087b109070c5ab0b383079fa1b5f797f8d43e9a66c07a4b8b8bdecfd88ee"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:f8429b17cbb746c3e043cb986328da023657e79d5ed258b711c06a70c2ea7537"}, - {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:5074adeacede5f810b7ef39607ee59d94e948b4fd954495bdb072f8c54558181"}, - {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:7ae8f354b895cbd85212da245f1a5ad8159e7840e37d78b476bb4f4c3f32a9fe"}, - {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b264bf2cc96b5bc43ce0e852be995e400376bd87ceb363822e2cb1964fcdc737"}, - {file = "pyzmq-25.1.2-cp312-cp312-win32.whl", hash = "sha256:02bbc1a87b76e04fd780b45e7f695471ae6de747769e540da909173d50ff8e2d"}, - {file = "pyzmq-25.1.2-cp312-cp312-win_amd64.whl", hash = "sha256:ced111c2e81506abd1dc142e6cd7b68dd53747b3b7ae5edbea4578c5eeff96b7"}, - {file = "pyzmq-25.1.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:7b6d09a8962a91151f0976008eb7b29b433a560fde056ec7a3db9ec8f1075438"}, - {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:967668420f36878a3c9ecb5ab33c9d0ff8d054f9c0233d995a6d25b0e95e1b6b"}, - {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5edac3f57c7ddaacdb4d40f6ef2f9e299471fc38d112f4bc6d60ab9365445fb0"}, - {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:0dabfb10ef897f3b7e101cacba1437bd3a5032ee667b7ead32bbcdd1a8422fe7"}, - {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:2c6441e0398c2baacfe5ba30c937d274cfc2dc5b55e82e3749e333aabffde561"}, - {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:16b726c1f6c2e7625706549f9dbe9b06004dfbec30dbed4bf50cbdfc73e5b32a"}, - {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:a86c2dd76ef71a773e70551a07318b8e52379f58dafa7ae1e0a4be78efd1ff16"}, - {file = "pyzmq-25.1.2-cp36-cp36m-win32.whl", hash = "sha256:359f7f74b5d3c65dae137f33eb2bcfa7ad9ebefd1cab85c935f063f1dbb245cc"}, - {file = "pyzmq-25.1.2-cp36-cp36m-win_amd64.whl", hash = "sha256:55875492f820d0eb3417b51d96fea549cde77893ae3790fd25491c5754ea2f68"}, - {file = "pyzmq-25.1.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b8c8a419dfb02e91b453615c69568442e897aaf77561ee0064d789705ff37a92"}, - {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8807c87fa893527ae8a524c15fc505d9950d5e856f03dae5921b5e9aa3b8783b"}, - {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5e319ed7d6b8f5fad9b76daa0a68497bc6f129858ad956331a5835785761e003"}, - {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:3c53687dde4d9d473c587ae80cc328e5b102b517447456184b485587ebd18b62"}, - {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:9add2e5b33d2cd765ad96d5eb734a5e795a0755f7fc49aa04f76d7ddda73fd70"}, - {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e690145a8c0c273c28d3b89d6fb32c45e0d9605b2293c10e650265bf5c11cfec"}, - {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:00a06faa7165634f0cac1abb27e54d7a0b3b44eb9994530b8ec73cf52e15353b"}, - {file = "pyzmq-25.1.2-cp37-cp37m-win32.whl", hash = "sha256:0f97bc2f1f13cb16905a5f3e1fbdf100e712d841482b2237484360f8bc4cb3d7"}, - {file = "pyzmq-25.1.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6cc0020b74b2e410287e5942e1e10886ff81ac77789eb20bec13f7ae681f0fdd"}, - {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:bef02cfcbded83473bdd86dd8d3729cd82b2e569b75844fb4ea08fee3c26ae41"}, - {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e10a4b5a4b1192d74853cc71a5e9fd022594573926c2a3a4802020360aa719d8"}, - {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8c5f80e578427d4695adac6fdf4370c14a2feafdc8cb35549c219b90652536ae"}, - {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5dde6751e857910c1339890f3524de74007958557593b9e7e8c5f01cd919f8a7"}, - {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea1608dd169da230a0ad602d5b1ebd39807ac96cae1845c3ceed39af08a5c6df"}, - {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0f513130c4c361201da9bc69df25a086487250e16b5571ead521b31ff6b02220"}, - {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:019744b99da30330798bb37df33549d59d380c78e516e3bab9c9b84f87a9592f"}, - {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2e2713ef44be5d52dd8b8e2023d706bf66cb22072e97fc71b168e01d25192755"}, - {file = "pyzmq-25.1.2-cp38-cp38-win32.whl", hash = "sha256:07cd61a20a535524906595e09344505a9bd46f1da7a07e504b315d41cd42eb07"}, - {file = "pyzmq-25.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb7e49a17fb8c77d3119d41a4523e432eb0c6932187c37deb6fbb00cc3028088"}, - {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:94504ff66f278ab4b7e03e4cba7e7e400cb73bfa9d3d71f58d8972a8dc67e7a6"}, - {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6dd0d50bbf9dca1d0bdea219ae6b40f713a3fb477c06ca3714f208fd69e16fd8"}, - {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:004ff469d21e86f0ef0369717351073e0e577428e514c47c8480770d5e24a565"}, - {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c0b5ca88a8928147b7b1e2dfa09f3b6c256bc1135a1338536cbc9ea13d3b7add"}, - {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c9a79f1d2495b167119d02be7448bfba57fad2a4207c4f68abc0bab4b92925b"}, - {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:518efd91c3d8ac9f9b4f7dd0e2b7b8bf1a4fe82a308009016b07eaa48681af82"}, - {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1ec23bd7b3a893ae676d0e54ad47d18064e6c5ae1fadc2f195143fb27373f7f6"}, - {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db36c27baed588a5a8346b971477b718fdc66cf5b80cbfbd914b4d6d355e44e2"}, - {file = "pyzmq-25.1.2-cp39-cp39-win32.whl", hash = "sha256:39b1067f13aba39d794a24761e385e2eddc26295826530a8c7b6c6c341584289"}, - {file = "pyzmq-25.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:8e9f3fabc445d0ce320ea2c59a75fe3ea591fdbdeebec5db6de530dd4b09412e"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a8c1d566344aee826b74e472e16edae0a02e2a044f14f7c24e123002dcff1c05"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:759cfd391a0996345ba94b6a5110fca9c557ad4166d86a6e81ea526c376a01e8"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c61e346ac34b74028ede1c6b4bcecf649d69b707b3ff9dc0fab453821b04d1e"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cb8fc1f8d69b411b8ec0b5f1ffbcaf14c1db95b6bccea21d83610987435f1a4"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:3c00c9b7d1ca8165c610437ca0c92e7b5607b2f9076f4eb4b095c85d6e680a1d"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:df0c7a16ebb94452d2909b9a7b3337940e9a87a824c4fc1c7c36bb4404cb0cde"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:45999e7f7ed5c390f2e87ece7f6c56bf979fb213550229e711e45ecc7d42ccb8"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ac170e9e048b40c605358667aca3d94e98f604a18c44bdb4c102e67070f3ac9b"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1b604734bec94f05f81b360a272fc824334267426ae9905ff32dc2be433ab96"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:a793ac733e3d895d96f865f1806f160696422554e46d30105807fdc9841b9f7d"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0806175f2ae5ad4b835ecd87f5f85583316b69f17e97786f7443baaf54b9bb98"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:ef12e259e7bc317c7597d4f6ef59b97b913e162d83b421dd0db3d6410f17a244"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ea253b368eb41116011add00f8d5726762320b1bda892f744c91997b65754d73"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b9b1f2ad6498445a941d9a4fee096d387fee436e45cc660e72e768d3d8ee611"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:8b14c75979ce932c53b79976a395cb2a8cd3aaf14aef75e8c2cb55a330b9b49d"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:889370d5174a741a62566c003ee8ddba4b04c3f09a97b8000092b7ca83ec9c49"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a18fff090441a40ffda8a7f4f18f03dc56ae73f148f1832e109f9bffa85df15"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99a6b36f95c98839ad98f8c553d8507644c880cf1e0a57fe5e3a3f3969040882"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4345c9a27f4310afbb9c01750e9461ff33d6fb74cd2456b107525bbeebcb5be3"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:3516e0b6224cf6e43e341d56da15fd33bdc37fa0c06af4f029f7d7dfceceabbc"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:146b9b1f29ead41255387fb07be56dc29639262c0f7344f570eecdcd8d683314"}, - {file = "pyzmq-25.1.2.tar.gz", hash = "sha256:93f1aa311e8bb912e34f004cf186407a4e90eec4f0ecc0efd26056bf7eda0226"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea"}, + {file = "pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6"}, + {file = "pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b"}, + {file = "pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e"}, + {file = "pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0"}, + {file = "pyzmq-26.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3b55a4229ce5da9497dd0452b914556ae58e96a4381bb6f59f1305dfd7e53fc8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cb3a6460cdea8fe8194a76de8895707e61ded10ad0be97188cc8463ffa7e3a8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ab5cad923cc95c87bffee098a27856c859bd5d0af31bd346035aa816b081fe1"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ed69074a610fad1c2fda66180e7b2edd4d31c53f2d1872bc2d1211563904cd9"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cccba051221b916a4f5e538997c45d7d136a5646442b1231b916d0164067ea27"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0eaa83fc4c1e271c24eaf8fb083cbccef8fde77ec8cd45f3c35a9a123e6da097"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9edda2df81daa129b25a39b86cb57dfdfe16f7ec15b42b19bfac503360d27a93"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win32.whl", hash = "sha256:ea0eb6af8a17fa272f7b98d7bebfab7836a0d62738e16ba380f440fceca2d951"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:4ff9dc6bc1664bb9eec25cd17506ef6672d506115095411e237d571e92a58231"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2eb7735ee73ca1b0d71e0e67c3739c689067f055c764f73aac4cc8ecf958ee3f"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a534f43bc738181aa7cbbaf48e3eca62c76453a40a746ab95d4b27b1111a7d2"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:aedd5dd8692635813368e558a05266b995d3d020b23e49581ddd5bbe197a8ab6"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8be4700cd8bb02cc454f630dcdf7cfa99de96788b80c51b60fe2fe1dac480289"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fcc03fa4997c447dce58264e93b5aa2d57714fbe0f06c07b7785ae131512732"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:402b190912935d3db15b03e8f7485812db350d271b284ded2b80d2e5704be780"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8685fa9c25ff00f550c1fec650430c4b71e4e48e8d852f7ddcf2e48308038640"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:76589c020680778f06b7e0b193f4b6dd66d470234a16e1df90329f5e14a171cd"}, + {file = "pyzmq-26.2.0-cp38-cp38-win32.whl", hash = "sha256:8423c1877d72c041f2c263b1ec6e34360448decfb323fa8b94e85883043ef988"}, + {file = "pyzmq-26.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:76589f2cd6b77b5bdea4fca5992dc1c23389d68b18ccc26a53680ba2dc80ff2f"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b1d464cb8d72bfc1a3adc53305a63a8e0cac6bc8c5a07e8ca190ab8d3faa43c2"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4da04c48873a6abdd71811c5e163bd656ee1b957971db7f35140a2d573f6949c"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d049df610ac811dcffdc147153b414147428567fbbc8be43bb8885f04db39d98"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c811cfcd6a9bf680236c40c6f617187515269ab2912f3d7e8c0174898e2519db"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6835dd60355593de10350394242b5757fbbd88b25287314316f266e24c61d073"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc6bee759a6bddea5db78d7dcd609397449cb2d2d6587f48f3ca613b19410cfc"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c530e1eecd036ecc83c3407f77bb86feb79916d4a33d11394b8234f3bd35b940"}, + {file = "pyzmq-26.2.0-cp39-cp39-win32.whl", hash = "sha256:367b4f689786fca726ef7a6c5ba606958b145b9340a5e4808132cc65759abd44"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e6fa2e3e683f34aea77de8112f6483803c96a44fd726d7358b9888ae5bb394ec"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:7445be39143a8aa4faec43b076e06944b8f9d0701b669df4af200531b21e40bb"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2ea4ad4e6a12e454de05f2949d4beddb52460f3de7c8b9d5c46fbb7d7222e02c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fc4f7a173a5609631bb0c42c23d12c49df3966f89f496a51d3eb0ec81f4519d6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:878206a45202247781472a2d99df12a176fef806ca175799e1c6ad263510d57c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17c412bad2eb9468e876f556eb4ee910e62d721d2c7a53c7fa31e643d35352e6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0d987a3ae5a71c6226b203cfd298720e0086c7fe7c74f35fa8edddfbd6597eed"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:39887ac397ff35b7b775db7201095fc6310a35fdbae85bac4523f7eb3b840e20"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fdb5b3e311d4d4b0eb8b3e8b4d1b0a512713ad7e6a68791d0923d1aec433d919"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:226af7dcb51fdb0109f0016449b357e182ea0ceb6b47dfb5999d569e5db161d5"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bed0e799e6120b9c32756203fb9dfe8ca2fb8467fed830c34c877e25638c3fc"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:29c7947c594e105cb9e6c466bace8532dc1ca02d498684128b339799f5248277"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cdeabcff45d1c219636ee2e54d852262e5c2e085d6cb476d938aee8d921356b3"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35cffef589bcdc587d06f9149f8d5e9e8859920a071df5a2671de2213bef592a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18c8dc3b7468d8b4bdf60ce9d7141897da103c7a4690157b32b60acb45e333e6"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7133d0a1677aec369d67dd78520d3fa96dd7f3dcec99d66c1762870e5ea1a50a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a96179a24b14fa6428cbfc08641c779a53f8fcec43644030328f44034c7f1f4"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4f78c88905461a9203eac9faac157a2a0dbba84a0fd09fd29315db27be40af9f"}, + {file = "pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f"}, ] [package.dependencies] @@ -1720,13 +2349,13 @@ cffi = {version = "*", markers = "implementation_name == \"pypy\""} [[package]] name = "requests" -version = "2.31.0" +version = "2.32.3" description = "Python HTTP for Humans." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"}, - {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"}, + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, ] [package.dependencies] @@ -1741,13 +2370,13 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "requests-oauthlib" -version = "1.3.1" +version = "2.0.0" description = "OAuthlib authentication support for Requests." optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +python-versions = ">=3.4" files = [ - {file = "requests-oauthlib-1.3.1.tar.gz", hash = "sha256:75beac4a47881eeb94d5ea5d6ad31ef88856affe2332b9aafb52c6452ccf0d7a"}, - {file = "requests_oauthlib-1.3.1-py2.py3-none-any.whl", hash = "sha256:2577c501a2fb8d05a304c09d090d6e47c306fef15809d102b327cf8364bddab5"}, + {file = "requests-oauthlib-2.0.0.tar.gz", hash = "sha256:b3dffaebd884d8cd778494369603a9e7b58d29111bf6b41bdc2dcd87203af4e9"}, + {file = "requests_oauthlib-2.0.0-py2.py3-none-any.whl", hash = "sha256:7dd8a5c40426b779b0868c404bdef9768deccf22749cde15852df527e6269b36"}, ] [package.dependencies] @@ -1773,49 +2402,50 @@ pyasn1 = ">=0.1.3" [[package]] name = "scikit-learn" -version = "0.24.0" +version = "1.3.2" description = "A set of python modules for machine learning and data mining" optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "scikit-learn-0.24.0.tar.gz", hash = "sha256:076369634ee72b5a5941440661e2f306ff4ac30903802dc52031c7e9199ac640"}, - {file = "scikit_learn-0.24.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:890d7d588f65acb0c4f6c083347c9076916bda5e6bd8400f06244b1afc1009af"}, - {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:e534f5f3796db6781c87e9835dcd51b7854c8c5a379c9210b93605965c1941fd"}, - {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:d7fe05fcb44eadd6d6c874c768f085f5de1239db3a3b7be4d3d23d12e4120589"}, - {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:7f654befc5ad413690cc58f3f34a3e906caf825195ce0fda00a8e9565e1403e6"}, - {file = "scikit_learn-0.24.0-cp36-cp36m-win32.whl", hash = "sha256:afeb06dc69847927634e58579b9cdc72e1390b79497336b2324b1b173f33bd47"}, - {file = "scikit_learn-0.24.0-cp36-cp36m-win_amd64.whl", hash = "sha256:26f66b3726b54dfb76ea51c5d9c2431ed17ebc066cb4527662b9e851a3e7ba61"}, - {file = "scikit_learn-0.24.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c08b27cb78ee8d2dc781a7affed09859441f5b624f9f92da59ac0791c8774dfc"}, - {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:905d8934d1e27a686698864a5863ff2c0e13a2ae1adb78a8a848aacc8a49927d"}, - {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:d819d625832fb2969911a243e009cfa135cb8ef1e150866e417d6e9d75290087"}, - {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:18f7131e62265bf2691ed1d0303c640313894ccfe4278427478c6b2f45094b53"}, - {file = "scikit_learn-0.24.0-cp37-cp37m-win32.whl", hash = "sha256:b0d13fd56d26cf3de0314a4fd48037108c638fe126d813f5c1222bb0f08b6a76"}, - {file = "scikit_learn-0.24.0-cp37-cp37m-win_amd64.whl", hash = "sha256:c912247e42114f389858ae05d63f4359d4e667ea72aaabee191aee9ad3f9774a"}, - {file = "scikit_learn-0.24.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:758619e49cd7c17282e6cc60d5cc73c02c072b47c9a10010bb3bb47e0d976e50"}, - {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:66f27bf21202a850bcd7b6303916e4907f6e22ec59a14974ede4955aed5c7ed0"}, - {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:5e6e3c042cea83f2e20a45e563b8eabc1f8f72446251fe23ebefdf111a173a33"}, - {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:2a5348585aa793bc8cc5a72f8e9067c9380834b0aadbd55f924843b071f13282"}, - {file = "scikit_learn-0.24.0-cp38-cp38-win32.whl", hash = "sha256:743b6edd98c98991be46c08e6b21df3861d5ae915f91d59f988384d93f7263e7"}, - {file = "scikit_learn-0.24.0-cp38-cp38-win_amd64.whl", hash = "sha256:2951f87d35e72f007701c6e028aa230f6df6212a3194677c0c950486066a454d"}, - {file = "scikit_learn-0.24.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:44e452ea8491225c5783d49577aad0f36202dfd52aec7f82c0fdfe5fbd5f7400"}, - {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:800aaf63f8838c00e85db2267dd226f89858594843fd03932a9eda95746d2c40"}, - {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:3eeff086f7329521d27249a082ea3c48c085cedb110db5f65968ab55c3ba2e09"}, - {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:4395e91b3548005f4a645018435b5a94f8cce232b5b70753020e606c6a750656"}, - {file = "scikit_learn-0.24.0-cp39-cp39-win32.whl", hash = "sha256:80ca024154b84b6ac4cfc86930ba13fdc348a209753bf2c16129db6f9eb8a80b"}, - {file = "scikit_learn-0.24.0-cp39-cp39-win_amd64.whl", hash = "sha256:490436b44b3a1957cb625e871764b0aa330b34cc416aea4abc6c38ca63d0d682"}, + {file = "scikit-learn-1.3.2.tar.gz", hash = "sha256:a2f54c76accc15a34bfb9066e6c7a56c1e7235dda5762b990792330b52ccfb05"}, + {file = "scikit_learn-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e326c0eb5cf4d6ba40f93776a20e9a7a69524c4db0757e7ce24ba222471ee8a1"}, + {file = "scikit_learn-1.3.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:535805c2a01ccb40ca4ab7d081d771aea67e535153e35a1fd99418fcedd1648a"}, + {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1215e5e58e9880b554b01187b8c9390bf4dc4692eedeaf542d3273f4785e342c"}, + {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ee107923a623b9f517754ea2f69ea3b62fc898a3641766cb7deb2f2ce450161"}, + {file = "scikit_learn-1.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:35a22e8015048c628ad099da9df5ab3004cdbf81edc75b396fd0cff8699ac58c"}, + {file = "scikit_learn-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6fb6bc98f234fda43163ddbe36df8bcde1d13ee176c6dc9b92bb7d3fc842eb66"}, + {file = "scikit_learn-1.3.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:18424efee518a1cde7b0b53a422cde2f6625197de6af36da0b57ec502f126157"}, + {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3271552a5eb16f208a6f7f617b8cc6d1f137b52c8a1ef8edf547db0259b2c9fb"}, + {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc4144a5004a676d5022b798d9e573b05139e77f271253a4703eed295bde0433"}, + {file = "scikit_learn-1.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:67f37d708f042a9b8d59551cf94d30431e01374e00dc2645fa186059c6c5d78b"}, + {file = "scikit_learn-1.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:8db94cd8a2e038b37a80a04df8783e09caac77cbe052146432e67800e430c028"}, + {file = "scikit_learn-1.3.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:61a6efd384258789aa89415a410dcdb39a50e19d3d8410bd29be365bcdd512d5"}, + {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb06f8dce3f5ddc5dee1715a9b9f19f20d295bed8e3cd4fa51e1d050347de525"}, + {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b2de18d86f630d68fe1f87af690d451388bb186480afc719e5f770590c2ef6c"}, + {file = "scikit_learn-1.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:0402638c9a7c219ee52c94cbebc8fcb5eb9fe9c773717965c1f4185588ad3107"}, + {file = "scikit_learn-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a19f90f95ba93c1a7f7924906d0576a84da7f3b2282ac3bfb7a08a32801add93"}, + {file = "scikit_learn-1.3.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:b8692e395a03a60cd927125eef3a8e3424d86dde9b2370d544f0ea35f78a8073"}, + {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15e1e94cc23d04d39da797ee34236ce2375ddea158b10bee3c343647d615581d"}, + {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:785a2213086b7b1abf037aeadbbd6d67159feb3e30263434139c98425e3dcfcf"}, + {file = "scikit_learn-1.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:64381066f8aa63c2710e6b56edc9f0894cc7bf59bd71b8ce5613a4559b6145e0"}, + {file = "scikit_learn-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c43290337f7a4b969d207e620658372ba3c1ffb611f8bc2b6f031dc5c6d1d03"}, + {file = "scikit_learn-1.3.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:dc9002fc200bed597d5d34e90c752b74df516d592db162f756cc52836b38fe0e"}, + {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d08ada33e955c54355d909b9c06a4789a729977f165b8bae6f225ff0a60ec4a"}, + {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:763f0ae4b79b0ff9cca0bf3716bcc9915bdacff3cebea15ec79652d1cc4fa5c9"}, + {file = "scikit_learn-1.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:ed932ea780517b00dae7431e031faae6b49b20eb6950918eb83bd043237950e0"}, ] [package.dependencies] -joblib = ">=0.11" -numpy = ">=1.13.3" -scipy = ">=0.19.1" +joblib = ">=1.1.1" +numpy = ">=1.17.3,<2.0" +scipy = ">=1.5.0" threadpoolctl = ">=2.0.0" [package.extras] -benchmark = ["matplotlib (>=2.1.1)", "memory-profiler (>=0.57.0)", "pandas (>=0.25.0)"] -docs = ["Pillow (>=7.1.2)", "matplotlib (>=2.1.1)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.0.0)", "pandas (>=0.25.0)", "scikit-image (>=0.13)", "seaborn (>=0.9.0)", "sphinx (>=3.2.0)", "sphinx-gallery (>=0.7.0)", "sphinx-prompt (>=1.3.0)"] -examples = ["matplotlib (>=2.1.1)", "pandas (>=0.25.0)", "scikit-image (>=0.13)", "seaborn (>=0.9.0)"] -tests = ["flake8 (>=3.8.2)", "matplotlib (>=2.1.1)", "mypy (>=0.770)", "pandas (>=0.25.0)", "pyamg (>=4.0.0)", "pytest (>=5.0.1)", "pytest-cov (>=2.9.0)", "scikit-image (>=0.13)"] +benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.10.1)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] +examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"] +tests = ["black (>=23.3.0)", "matplotlib (>=3.1.3)", "mypy (>=1.3)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.0.272)", "scikit-image (>=0.16.2)"] [[package]] name = "scipy" @@ -1857,51 +2487,59 @@ test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeo [[package]] name = "setuptools" -version = "69.0.2" +version = "75.1.0" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "setuptools-69.0.2-py3-none-any.whl", hash = "sha256:1e8fdff6797d3865f37397be788a4e3cba233608e9b509382a2777d25ebde7f2"}, - {file = "setuptools-69.0.2.tar.gz", hash = "sha256:735896e78a4742605974de002ac60562d286fa8051a7e2299445e8e8fbb01aa6"}, + {file = "setuptools-75.1.0-py3-none-any.whl", hash = "sha256:35ab7fd3bcd95e6b7fd704e4a1539513edad446c097797f2985e0e4b960772f2"}, + {file = "setuptools-75.1.0.tar.gz", hash = "sha256:d59a21b17a275fb872a9c3dae73963160ae079f1049ed956880cd7c09b120538"}, ] [package.extras] -docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] -testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-ruff", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] -testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.1)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.collections", "jaraco.functools", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] [[package]] name = "six" -version = "1.15.0" +version = "1.16.0" description = "Python 2 and 3 compatibility utilities" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" files = [ - {file = "six-1.15.0-py2.py3-none-any.whl", hash = "sha256:8b74bedcbbbaca38ff6d7491d76f2b06b3592611af620f8426e82dddb04a5ced"}, - {file = "six-1.15.0.tar.gz", hash = "sha256:30639c035cdb23534cd4aa2dd52c3bf48f06e5f4a941509c8bafd8ce11080259"}, + {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, + {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, ] [[package]] name = "smart-open" -version = "6.4.0" +version = "7.0.4" description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)" optional = false -python-versions = ">=3.6,<4.0" +python-versions = "<4.0,>=3.7" files = [ - {file = "smart_open-6.4.0-py3-none-any.whl", hash = "sha256:8d3ef7e6997e8e42dd55c74166ed21e6ac70664caa32dd940b26d54a8f6b4142"}, - {file = "smart_open-6.4.0.tar.gz", hash = "sha256:be3c92c246fbe80ebce8fbacb180494a481a77fcdcb7c1aadb2ea5b9c2bee8b9"}, + {file = "smart_open-7.0.4-py3-none-any.whl", hash = "sha256:4e98489932b3372595cddc075e6033194775165702887216b65eba760dfd8d47"}, + {file = "smart_open-7.0.4.tar.gz", hash = "sha256:62b65852bdd1d1d516839fcb1f6bc50cd0f16e05b4ec44b52f43d38bcb838524"}, ] +[package.dependencies] +wrapt = "*" + [package.extras] -all = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "paramiko", "requests"] +all = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "paramiko", "requests", "zstandard"] azure = ["azure-common", "azure-core", "azure-storage-blob"] gcs = ["google-cloud-storage (>=2.6.0)"] http = ["requests"] s3 = ["boto3"] ssh = ["paramiko"] -test = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "paramiko", "pytest", "pytest-rerunfailures", "requests", "responses"] +test = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "paramiko", "pytest", "pytest-rerunfailures", "requests", "responses", "zstandard"] webhdfs = ["requests"] +zst = ["zstandard"] [[package]] name = "stack-data" @@ -1924,198 +2562,359 @@ tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] [[package]] name = "stellargraph" -version = "1.3.0b0" +version = "1.2.1" description = "Python library for machine learning on graphs" optional = false python-versions = ">=3.6.0, <3.9.0" -files = [] -develop = false +files = [ + {file = "stellargraph-1.2.1-py3-none-any.whl", hash = "sha256:984a839de4645c9703b8f34a065307498feef38e5160a8f9d7764318a3d4621d"}, + {file = "stellargraph-1.2.1.tar.gz", hash = "sha256:804200a7992465bb5f10da95a3b7748014b0a159f1e79a95517c12a9ff2faed2"}, +] [package.dependencies] +gensim = ">=3.4.0" matplotlib = ">=2.2" networkx = ">=2.2" numpy = ">=1.14" pandas = ">=0.24" -scikit_learn = ">=0.20" +scikit-learn = ">=0.20" scipy = ">=1.1.0" tensorflow = ">=2.1.0" [package.extras] -demos = ["gensim (>=4.0.0)", "jupyter", "mplleaflet (==0.0.5)", "numba", "rdflib", "seaborn"] +demos = ["jupyter", "mplleaflet (==0.0.5)", "numba", "rdflib", "seaborn"] igraph = ["python-igraph"] neo4j = ["py2neo"] test = ["black (>=19.3b0)", "commonmark (==0.9.1)", "coverage (>=4.4,<5.0)", "nbconvert (>=5.5.0)", "papermill (>=2.0.0)", "pytest (==5.3.1)", "pytest-benchmark (>=3.1)", "pytest-cov (>=2.6.0)", "rdflib", "treon (>=0.1.2)"] -[package.source] -type = "git" -url = "https://github.com/stellargraph/stellargraph.git" -reference = "develop" -resolved_reference = "3c2c8c18ab4c5c16660f350d8e23d7dc39e738de" +[[package]] +name = "sympy" +version = "1.13.3" +description = "Computer algebra system (CAS) in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "sympy-1.13.3-py3-none-any.whl", hash = "sha256:54612cf55a62755ee71824ce692986f23c88ffa77207b30c1368eda4a7060f73"}, + {file = "sympy-1.13.3.tar.gz", hash = "sha256:b27fd2c6530e0ab39e275fc9b683895367e51d5da91baa8d3d64db2565fec4d9"}, +] + +[package.dependencies] +mpmath = ">=1.1.0,<1.4" + +[package.extras] +dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] [[package]] name = "tensorboard" -version = "2.11.2" +version = "2.14.0" description = "TensorBoard lets you watch Tensors Flow" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "tensorboard-2.11.2-py3-none-any.whl", hash = "sha256:cbaa2210c375f3af1509f8571360a19ccc3ded1d9641533414874b5deca47e89"}, + {file = "tensorboard-2.14.0-py3-none-any.whl", hash = "sha256:3667f9745d99280836ad673022362c840f60ed8fefd5a3e30bf071f5a8fd0017"}, ] [package.dependencies] absl-py = ">=0.4" google-auth = ">=1.6.3,<3" -google-auth-oauthlib = ">=0.4.1,<0.5" -grpcio = ">=1.24.3" +google-auth-oauthlib = ">=0.5,<1.1" +grpcio = ">=1.48.2" markdown = ">=2.6.8" numpy = ">=1.12.0" -protobuf = ">=3.9.2,<4" +protobuf = ">=3.19.6" requests = ">=2.21.0,<3" setuptools = ">=41.0.0" -tensorboard-data-server = ">=0.6.0,<0.7.0" -tensorboard-plugin-wit = ">=1.6.0" +tensorboard-data-server = ">=0.7.0,<0.8.0" werkzeug = ">=1.0.1" wheel = ">=0.26" [[package]] name = "tensorboard-data-server" -version = "0.6.1" +version = "0.7.2" description = "Fast data loading for TensorBoard" optional = false -python-versions = ">=3.6" -files = [ - {file = "tensorboard_data_server-0.6.1-py3-none-any.whl", hash = "sha256:809fe9887682d35c1f7d1f54f0f40f98bb1f771b14265b453ca051e2ce58fca7"}, - {file = "tensorboard_data_server-0.6.1-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:fa8cef9be4fcae2f2363c88176638baf2da19c5ec90addb49b1cde05c95c88ee"}, - {file = "tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl", hash = "sha256:d8237580755e58eff68d1f3abefb5b1e39ae5c8b127cc40920f9c4fb33f4b98a"}, -] - -[[package]] -name = "tensorboard-plugin-wit" -version = "1.8.1" -description = "What-If Tool TensorBoard plugin." -optional = false -python-versions = "*" +python-versions = ">=3.7" files = [ - {file = "tensorboard_plugin_wit-1.8.1-py3-none-any.whl", hash = "sha256:ff26bdd583d155aa951ee3b152b3d0cffae8005dc697f72b44a8e8c2a77a8cbe"}, + {file = "tensorboard_data_server-0.7.2-py3-none-any.whl", hash = "sha256:7e0610d205889588983836ec05dc098e80f97b7e7bbff7e994ebb78f578d0ddb"}, + {file = "tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:9fe5d24221b29625dbc7328b0436ca7fc1c23de4acf4d272f1180856e32f9f60"}, + {file = "tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl", hash = "sha256:ef687163c24185ae9754ed5650eb5bc4d84ff257aabdc33f0cc6f74d8ba54530"}, ] [[package]] name = "tensorflow" -version = "2.4.0" +version = "2.7.2" description = "TensorFlow is an open source machine learning framework for everyone." optional = false python-versions = "*" files = [ - {file = "tensorflow-2.4.0-cp36-cp36m-macosx_10_11_x86_64.whl", hash = "sha256:576ace48dca1d3c211a3a102ea3a79eda3536a590dcd3d74898122227968b4ac"}, - {file = "tensorflow-2.4.0-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:1069f32e9fb51d5a62e93437e0047c712ff97133a322738814c56f49c762557f"}, - {file = "tensorflow-2.4.0-cp36-cp36m-win_amd64.whl", hash = "sha256:6a41bb0fa5c1d0b5bfdf5e3ec1327bd592904eb2c0c06501c8e7bae4a1122b1a"}, - {file = "tensorflow-2.4.0-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:f9908c04d58d4f216477b98cfbed9d87635d205bd6ddccd597a56fce9ef4eed5"}, - {file = "tensorflow-2.4.0-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:fb694f2e3e5b8f80f9fefb0beaba856001a4160895a10eb50e7fbaa6b9ef1002"}, - {file = "tensorflow-2.4.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d091adf8d6eae8bd47b1a72bf35a8aebb08147687e17d522eb531826a67f6a3b"}, - {file = "tensorflow-2.4.0-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:1754279cd1f91971d14671a776074b877483c04b27a0a2eaefdca0332d80980c"}, - {file = "tensorflow-2.4.0-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:dcd8f2e501a791c937fa19b31ea963470fc20d30cb763c3cc4740dc3c44aefe9"}, - {file = "tensorflow-2.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:7adcf41f57fdb12cd6792df02fb3cd16bddbe449cd7140faaa2bf2b3d5b5c4df"}, + {file = "tensorflow-2.7.2-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:050c2ef8d432eb60f2cb6fc75d751fcb3008af6a86ad1147faea30cb59c275b1"}, + {file = "tensorflow-2.7.2-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:3c72b8653a539789ef36f8c1ad8266b9e676dff2293f0f7a68d9b26fc77a37f3"}, + {file = "tensorflow-2.7.2-cp37-cp37m-win_amd64.whl", hash = "sha256:1db663f9f59ba54a294b1f6530f131e90c7a0e6ea49fda5b2c6900e57b0c306a"}, + {file = "tensorflow-2.7.2-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:cb66d4a998af1ca979d6da33e925281596f52e5a9ba67b2295c53677f8379eee"}, + {file = "tensorflow-2.7.2-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:d4dbfab1568564b30bab876424fafd74c8a8715238b76284b5dd1cfe86c7881b"}, + {file = "tensorflow-2.7.2-cp38-cp38-win_amd64.whl", hash = "sha256:b9a7f344b93b953cab4c3f6ec3b6c1799eb538b6a1978d3a4b579d7a81ee7439"}, + {file = "tensorflow-2.7.2-cp39-cp39-macosx_10_11_x86_64.whl", hash = "sha256:99a85258505130b1f3ce203f11b3bb3c95442edefec96c0b221ce0d6541a92c8"}, + {file = "tensorflow-2.7.2-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:bb2115796e2e7738de1844aead493bc1f1122ff1fae65fc691bb1ce5a0fdd2aa"}, + {file = "tensorflow-2.7.2-cp39-cp39-win_amd64.whl", hash = "sha256:3e35d046d0be677239b5e832854bcb291ca79388fa406d9d7547bc3377a7efbb"}, ] [package.dependencies] -absl-py = ">=0.10,<1.0" -astunparse = ">=1.6.3,<1.7.0" -flatbuffers = ">=1.12.0,<1.13.0" -gast = "0.3.3" -google-pasta = ">=0.2,<1.0" -grpcio = ">=1.32.0,<1.33.0" -h5py = ">=2.10.0,<2.11.0" -keras-preprocessing = ">=1.1.2,<1.2.0" -numpy = ">=1.19.2,<1.20.0" -opt-einsum = ">=3.3.0,<3.4.0" +absl-py = ">=0.4.0" +astunparse = ">=1.6.0" +flatbuffers = ">=1.12,<3.0" +gast = ">=0.2.1,<0.5.0" +google-pasta = ">=0.1.1" +grpcio = ">=1.24.3,<2.0" +h5py = ">=2.9.0" +keras = ">=2.7.0rc0,<2.8" +keras-preprocessing = ">=1.1.1" +libclang = ">=9.0.1" +numpy = ">=1.14.5" +opt-einsum = ">=2.3.2" protobuf = ">=3.9.2" -six = ">=1.15.0,<1.16.0" -tensorboard = ">=2.4,<3.0" -tensorflow-estimator = ">=2.4.0rc0,<2.5.0" -termcolor = ">=1.1.0,<1.2.0" -typing-extensions = ">=3.7.4,<3.8.0" -wheel = ">=0.35,<1.0" -wrapt = ">=1.12.1,<1.13.0" +six = ">=1.12.0" +tensorboard = ">=2.6,<3.0" +tensorflow-estimator = ">=2.7.0rc0,<2.8" +tensorflow-io-gcs-filesystem = ">=0.21.0" +termcolor = ">=1.1.0" +typing-extensions = ">=3.6.6" +wheel = ">=0.32.0,<1.0" +wrapt = ">=1.11.0" [[package]] name = "tensorflow-estimator" -version = "2.4.0" +version = "2.7.0" description = "TensorFlow Estimator." optional = false python-versions = "*" files = [ - {file = "tensorflow_estimator-2.4.0-py2.py3-none-any.whl", hash = "sha256:5b7b7bf2debe19a8794adacc43e8ba6459daa4efaf54d3302623994a359b17f0"}, + {file = "tensorflow_estimator-2.7.0-py2.py3-none-any.whl", hash = "sha256:325b5a224864379242b7b76c6987ca544239be82579d33e68ec7c2bda57abc9d"}, +] + +[[package]] +name = "tensorflow-io-gcs-filesystem" +version = "0.21.0" +description = "TensorFlow IO" +optional = false +python-versions = ">=3.6, <3.10" +files = [ + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:db8659cce2b45a6689cf041c7745b60338d8158fc394627f916029980aa04e0d"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d5ce0de3c91fb3a47bd91e25081bcd3b3491d515ee45e6d2c63e899ab5e7739e"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-win_amd64.whl", hash = "sha256:8fc48d4a6f06a97b8a866d849844189ecd1d830de9b152276ea579d9772c0533"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:c28ca0dd37d1bb2110a62e9e7f7b0bbdf295add83b38fbe507082fd89f0ebc61"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7c54f1f334076a5514b9f7f537afe4c36fce4233f792ce6ada76651bfad9f2eb"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-win_amd64.whl", hash = "sha256:e22fcc4e6e924842fefc570f7fd0f6fd33e458154be8891b5a7bfd8380c6aa8c"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:95555c647c8330daf712a38d2b158f7a21d5ad77e8fd438360060b37cb8ca1fb"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b12f9d66c8433bb4a67d9cc6cdb14cf11c42d9fe65bdbe09128b6579a80f80e8"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-win_amd64.whl", hash = "sha256:e447d9c03dd7396292ba10dd39a3c6a2cfcb9332b67457592119c5e5d3e38cfe"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:020581f962e7156054c790d649ecc80518d7874e0def5b2f58f965a1998d45e3"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:603f73d61670954833b6ed87199a4a919e2a5dc015f34b20fdd235a611f37e81"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-win_amd64.whl", hash = "sha256:8c95c0ef2de4611a528ef210c233481dd7628c57ff3ef7f08c0f9708125d3ff8"}, ] [[package]] name = "termcolor" -version = "1.1.0" -description = "ANSII Color formatting for output in terminal." +version = "2.4.0" +description = "ANSI color formatting for output in terminal" optional = false -python-versions = "*" +python-versions = ">=3.8" files = [ - {file = "termcolor-1.1.0.tar.gz", hash = "sha256:1d6d69ce66211143803fbc56652b41d73b4a400a2891d7bf7a1cdf4c02de613b"}, + {file = "termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63"}, + {file = "termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a"}, ] +[package.extras] +tests = ["pytest", "pytest-cov"] + [[package]] -name = "theano" -version = "1.0.5" -description = "Optimizing compiler for evaluating mathematical expressions on CPUs and GPUs." +name = "threadpoolctl" +version = "3.5.0" +description = "threadpoolctl" optional = false -python-versions = "*" +python-versions = ">=3.8" files = [ - {file = "Theano-1.0.5.tar.gz", hash = "sha256:6e9439dd53ba995fcae27bf20626074bfc2fff446899dc5c53cb28c1f9202e89"}, + {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, + {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, +] + +[[package]] +name = "torch" +version = "2.1.2" +description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "torch-2.1.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:3a871edd6c02dae77ad810335c0833391c1a4ce49af21ea8cf0f6a5d2096eea8"}, + {file = "torch-2.1.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:bef6996c27d8f6e92ea4e13a772d89611da0e103b48790de78131e308cf73076"}, + {file = "torch-2.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:0e13034fd5fb323cbbc29e56d0637a3791e50dd589616f40c79adfa36a5a35a1"}, + {file = "torch-2.1.2-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:d9b535cad0df3d13997dbe8bd68ac33e0e3ae5377639c9881948e40794a61403"}, + {file = "torch-2.1.2-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:f9a55d55af02826ebfbadf4e9b682f0f27766bc33df8236b48d28d705587868f"}, + {file = "torch-2.1.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:a6ebbe517097ef289cc7952783588c72de071d4b15ce0f8b285093f0916b1162"}, + {file = "torch-2.1.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:8f32ce591616a30304f37a7d5ea80b69ca9e1b94bba7f308184bf616fdaea155"}, + {file = "torch-2.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:e0ee6cf90c8970e05760f898d58f9ac65821c37ffe8b04269ec787aa70962b69"}, + {file = "torch-2.1.2-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:76d37967c31c99548ad2c4d3f2cf191db48476f2e69b35a0937137116da356a1"}, + {file = "torch-2.1.2-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:e2d83f07b4aac983453ea5bf8f9aa9dacf2278a8d31247f5d9037f37befc60e4"}, + {file = "torch-2.1.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:f41fe0c7ecbf903a568c73486139a75cfab287a0f6c17ed0698fdea7a1e8641d"}, + {file = "torch-2.1.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:e3225f47d50bb66f756fe9196a768055d1c26b02154eb1f770ce47a2578d3aa7"}, + {file = "torch-2.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:33d59cd03cb60106857f6c26b36457793637512998666ee3ce17311f217afe2b"}, + {file = "torch-2.1.2-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:8e221deccd0def6c2badff6be403e0c53491805ed9915e2c029adbcdb87ab6b5"}, + {file = "torch-2.1.2-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:05b18594f60a911a0c4f023f38a8bda77131fba5fd741bda626e97dcf5a3dd0a"}, + {file = "torch-2.1.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:9ca96253b761e9aaf8e06fb30a66ee301aecbf15bb5a303097de1969077620b6"}, + {file = "torch-2.1.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:d93ba70f67b08c2ae5598ee711cbc546a1bc8102cef938904b8c85c2089a51a0"}, + {file = "torch-2.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:255b50bc0608db177e6a3cc118961d77de7e5105f07816585fa6f191f33a9ff3"}, + {file = "torch-2.1.2-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6984cd5057c0c977b3c9757254e989d3f1124f4ce9d07caa6cb637783c71d42a"}, + {file = "torch-2.1.2-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:bc195d7927feabc0eb7c110e457c955ed2ab616f3c7c28439dd4188cf589699f"}, ] [package.dependencies] -numpy = ">=1.9.1" -scipy = ">=0.14" -six = ">=1.9.0" +filelock = "*" +fsspec = "*" +jinja2 = "*" +networkx = "*" +nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cudnn-cu12 = {version = "8.9.2.26", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nccl-cu12 = {version = "2.18.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +sympy = "*" +triton = {version = "2.1.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +typing-extensions = "*" [package.extras] -doc = ["Sphinx (>=0.5.1)", "pygments"] -test = ["flake8", "nose (>=1.3.0)", "parameterized"] +dynamo = ["jinja2"] +opt-einsum = ["opt-einsum (>=3.3)"] [[package]] -name = "threadpoolctl" -version = "3.2.0" -description = "threadpoolctl" +name = "torch-geometric" +version = "2.6.1" +description = "Graph Neural Network Library for PyTorch" optional = false python-versions = ">=3.8" files = [ - {file = "threadpoolctl-3.2.0-py3-none-any.whl", hash = "sha256:2b7818516e423bdaebb97c723f86a7c6b0a83d3f3b0970328d66f4d9104dc032"}, - {file = "threadpoolctl-3.2.0.tar.gz", hash = "sha256:c96a0ba3bdddeaca37dc4cc7344aafad41cdb8c313f74fdfe387a867bba93355"}, + {file = "torch_geometric-2.6.1-py3-none-any.whl", hash = "sha256:8faeb353f9655f7dbec44c5e0b44c721773bdfb279994da96b9b8b12fd30f427"}, + {file = "torch_geometric-2.6.1.tar.gz", hash = "sha256:1f18f9d0fc4d2239d526221e4f22606a4a3895b5d965a9856d27610a3df662c6"}, ] +[package.dependencies] +aiohttp = "*" +fsspec = "*" +jinja2 = "*" +numpy = "*" +psutil = ">=5.8.0" +pyparsing = "*" +requests = "*" +tqdm = "*" + +[package.extras] +benchmark = ["matplotlib", "networkx", "pandas", "protobuf (<4.21)", "wandb"] +dev = ["ipython", "matplotlib-inline", "pre-commit", "torch_geometric[test]"] +full = ["ase", "captum (<0.7.0)", "graphviz", "h5py", "matplotlib", "networkx", "numba (<0.60.0)", "opt_einsum", "pandas", "pgmpy", "pynndescent", "pytorch-memlab", "rdflib", "rdkit", "scikit-image", "scikit-learn", "scipy", "statsmodels", "sympy", "tabulate", "torch_geometric[graphgym,modelhub]", "torchmetrics", "trimesh"] +graphgym = ["protobuf (<4.21)", "pytorch-lightning (<2.3.0)", "yacs"] +modelhub = ["huggingface_hub"] +test = ["onnx", "onnxruntime", "pytest", "pytest-cov"] + +[[package]] +name = "torchmetrics" +version = "1.4.2" +description = "PyTorch native Metrics" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torchmetrics-1.4.2-py3-none-any.whl", hash = "sha256:87b9eca51ff6f93985a0f9db509f646cb45425b016f4d2f383d8c28d40dde5b6"}, + {file = "torchmetrics-1.4.2.tar.gz", hash = "sha256:7a40cbec85e5645090812b87601696b4adf158294ec8c407ae58a71710938b87"}, +] + +[package.dependencies] +lightning-utilities = ">=0.8.0" +numpy = ">1.20.0" +packaging = ">17.1" +torch = ">=1.10.0" +typing-extensions = {version = "*", markers = "python_version < \"3.9\""} + +[package.extras] +all = ["SciencePlots (>=2.0.0)", "gammatone (>1.0.0)", "ipadic (>=1.0.0)", "matplotlib (>=3.6.0)", "mecab-python3 (>=1.0.6)", "mypy (==1.11.2)", "nltk (>=3.8.2)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "regex (>=2021.9.24)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "torch (==2.4.1)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +audio = ["gammatone (>1.0.0)", "pesq (>=0.0.4)", "pystoi (>=0.3.0)", "torchaudio (>=0.10.0)"] +detection = ["pycocotools (>2.0.0)", "torchvision (>=0.8)"] +dev = ["SciencePlots (>=2.0.0)", "bert-score (==0.3.13)", "dython (>=0.7.6,<0.8.0)", "fairlearn", "fast-bss-eval (>=0.1.0)", "faster-coco-eval (==1.5.*)", "gammatone (>1.0.0)", "huggingface-hub (<0.25)", "ipadic (>=1.0.0)", "jiwer (>=2.3.0)", "kornia (>=0.6.7)", "lpips (<=0.1.4)", "matplotlib (>=3.6.0)", "mecab-ko (>=1.0.0)", "mecab-ko-dic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "mir-eval (>=0.6)", "monai (==1.3.2)", "mypy (==1.11.2)", "netcal (>1.0.0)", "nltk (>=3.8.2)", "numpy (<2.2.0)", "pandas (>1.4.0)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "pytorch-msssim (==1.0.0)", "regex (>=2021.9.24)", "rouge-score (>0.1.0)", "sacrebleu (>=2.3.0)", "scikit-image (>=0.19.0)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "sewar (>=0.4.4)", "statsmodels (>0.13.5)", "torch (==2.4.1)", "torch-complex (<0.5.0)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +image = ["scipy (>1.0.0)", "torch-fidelity (<=0.4.0)", "torchvision (>=0.8)"] +multimodal = ["piq (<=0.8.0)", "transformers (>=4.42.3)"] +text = ["ipadic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "nltk (>=3.8.2)", "regex (>=2021.9.24)", "sentencepiece (>=0.2.0)", "tqdm (>=4.41.0)", "transformers (>4.4.0)"] +typing = ["mypy (==1.11.2)", "torch (==2.4.1)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +visual = ["SciencePlots (>=2.0.0)", "matplotlib (>=3.6.0)"] + +[[package]] +name = "torchvision" +version = "0.16.2" +description = "image and video datasets and models for torch deep learning" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torchvision-0.16.2-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:bc86f2800cb2c0c1a09c581409cdd6bff66e62f103dc83fc63f73346264c3756"}, + {file = "torchvision-0.16.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b024bd412df6d3a007dcebf311a894eb3c5c21e1af80d12be382bbcb097a7c3a"}, + {file = "torchvision-0.16.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:e89f10f3c8351972b6e3fda95bc3e479ea8dbfc9dfcfd2c32902dbad4ba5cfc5"}, + {file = "torchvision-0.16.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:96c7583700112a410bdc4e1e4f118c429dab49c29c9a31a2cc3579bc9b08b19d"}, + {file = "torchvision-0.16.2-cp310-cp310-win_amd64.whl", hash = "sha256:9f4032ebb3277fb07ff6a9b818d50a547fb8fcd89d958cfd9e773322454bb688"}, + {file = "torchvision-0.16.2-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:67b1aaf8b8cb02ce75dd445f291a27c8036a502f8c0aa76e28c37a0faac2e153"}, + {file = "torchvision-0.16.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bef30d03e1d1c629761f4dca51d3b7d8a0dc0acce6f4068ab2a1634e8e7b64e0"}, + {file = "torchvision-0.16.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:e59cc7b2bd1ab5c0ce4ae382e4e37be8f1c174e8b5de2f6a23c170de9ae28495"}, + {file = "torchvision-0.16.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:e130b08cc9b3cc73a6c59d6edf032394a322f9579bfd21d14bc2e1d0999aa758"}, + {file = "torchvision-0.16.2-cp311-cp311-win_amd64.whl", hash = "sha256:8692ab1e48807e9604046a6f4beeb67b523294cee1b00828654bb0df2cfce2b2"}, + {file = "torchvision-0.16.2-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:b82732dcf876a37c852772342aa6ee3480c03bb3e2a802ae109fc5f7e28d26e9"}, + {file = "torchvision-0.16.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4b065143d1a720fe8a9077fd4be35d491f98819ec80b3dbbc3ec64d0b707a906"}, + {file = "torchvision-0.16.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:bc5f274e4ecd1b86062063cdf4fd385a1d39d147a3a2685fbbde9ff08bb720b8"}, + {file = "torchvision-0.16.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:335959c43b371c0474af34c1ef2a52efdc7603c45700d29e4475eeb02984170c"}, + {file = "torchvision-0.16.2-cp38-cp38-win_amd64.whl", hash = "sha256:7fd22d86e08eba321af70cad291020c2cdeac069b00ce88b923ca52e06174769"}, + {file = "torchvision-0.16.2-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:56115268b37f0b75364e3654e47ad9abc66ac34c1f9e5e3dfa89a22d6a40017a"}, + {file = "torchvision-0.16.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:82805f8445b094f9d1e770390ee6cc86855e89955e08ce34af2e2274fc0e5c45"}, + {file = "torchvision-0.16.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:3f4bd5fcbc361476e2e78016636ac7d5509e59d9962521f06eb98e6803898182"}, + {file = "torchvision-0.16.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:8199acdf8ab066a28b84a5b6f4d97b58976d9e164b1acc3a9d14fccfaf74bb3a"}, + {file = "torchvision-0.16.2-cp39-cp39-win_amd64.whl", hash = "sha256:41dd4fa9f176d563fe9f1b9adef3b7e582cdfb60ce8c9bc51b094a025be687c9"}, +] + +[package.dependencies] +numpy = "*" +pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" +requests = "*" +torch = "2.1.2" + +[package.extras] +scipy = ["scipy"] + [[package]] name = "tornado" -version = "6.4" +version = "6.4.1" description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." optional = false -python-versions = ">= 3.8" +python-versions = ">=3.8" files = [ - {file = "tornado-6.4-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:02ccefc7d8211e5a7f9e8bc3f9e5b0ad6262ba2fbb683a6443ecc804e5224ce0"}, - {file = "tornado-6.4-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:27787de946a9cffd63ce5814c33f734c627a87072ec7eed71f7fc4417bb16263"}, - {file = "tornado-6.4-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f7894c581ecdcf91666a0912f18ce5e757213999e183ebfc2c3fdbf4d5bd764e"}, - {file = "tornado-6.4-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e43bc2e5370a6a8e413e1e1cd0c91bedc5bd62a74a532371042a18ef19e10579"}, - {file = "tornado-6.4-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0251554cdd50b4b44362f73ad5ba7126fc5b2c2895cc62b14a1c2d7ea32f212"}, - {file = "tornado-6.4-cp38-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:fd03192e287fbd0899dd8f81c6fb9cbbc69194d2074b38f384cb6fa72b80e9c2"}, - {file = "tornado-6.4-cp38-abi3-musllinux_1_1_i686.whl", hash = "sha256:88b84956273fbd73420e6d4b8d5ccbe913c65d31351b4c004ae362eba06e1f78"}, - {file = "tornado-6.4-cp38-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:71ddfc23a0e03ef2df1c1397d859868d158c8276a0603b96cf86892bff58149f"}, - {file = "tornado-6.4-cp38-abi3-win32.whl", hash = "sha256:6f8a6c77900f5ae93d8b4ae1196472d0ccc2775cc1dfdc9e7727889145c45052"}, - {file = "tornado-6.4-cp38-abi3-win_amd64.whl", hash = "sha256:10aeaa8006333433da48dec9fe417877f8bcc21f48dda8d661ae79da357b2a63"}, - {file = "tornado-6.4.tar.gz", hash = "sha256:72291fa6e6bc84e626589f1c29d90a5a6d593ef5ae68052ee2ef000dfd273dee"}, + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8"}, + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698"}, + {file = "tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d"}, + {file = "tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7"}, + {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"}, ] [[package]] name = "tqdm" -version = "4.66.1" +version = "4.66.5" description = "Fast, Extensible Progress Meter" optional = false python-versions = ">=3.7" files = [ - {file = "tqdm-4.66.1-py3-none-any.whl", hash = "sha256:d302b3c5b53d47bce91fea46679d9c3c6508cf6332229aa1e7d8653723793386"}, - {file = "tqdm-4.66.1.tar.gz", hash = "sha256:d88e651f9db8d8551a62556d3cff9e3034274ca5d66e93197cf2490e2dcb69c7"}, + {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, + {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, ] [package.dependencies] @@ -2129,67 +2928,103 @@ telegram = ["requests"] [[package]] name = "traitlets" -version = "5.14.0" +version = "5.14.3" description = "Traitlets Python configuration system" optional = false python-versions = ">=3.8" files = [ - {file = "traitlets-5.14.0-py3-none-any.whl", hash = "sha256:f14949d23829023013c47df20b4a76ccd1a85effb786dc060f34de7948361b33"}, - {file = "traitlets-5.14.0.tar.gz", hash = "sha256:fcdaa8ac49c04dfa0ed3ee3384ef6dfdb5d6f3741502be247279407679296772"}, + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, ] [package.extras] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] -test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<7.5)", "pytest-mock", "pytest-mypy-testing"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] [[package]] -name = "typing-extensions" -version = "3.7.4.3" -description = "Backported and Experimental Type Hints for Python 3.5+" +name = "triton" +version = "2.1.0" +description = "A language and compiler for custom Deep Learning operations" optional = false python-versions = "*" files = [ - {file = "typing_extensions-3.7.4.3-py2-none-any.whl", hash = "sha256:dafc7639cde7f1b6e1acc0f457842a83e722ccca8eef5270af2d74792619a89f"}, - {file = "typing_extensions-3.7.4.3-py3-none-any.whl", hash = "sha256:7cb407020f00f7bfc3cb3e7881628838e69d8f3fcab2f64742a5e76b2f841918"}, - {file = "typing_extensions-3.7.4.3.tar.gz", hash = "sha256:99d4073b617d30288f569d3f13d2bd7548c3a7e4c8de87db09a9d29bb3a4a60c"}, + {file = "triton-2.1.0-0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:66439923a30d5d48399b08a9eae10370f6c261a5ec864a64983bae63152d39d7"}, + {file = "triton-2.1.0-0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:919b06453f0033ea52c13eaf7833de0e57db3178d23d4e04f9fc71c4f2c32bf8"}, + {file = "triton-2.1.0-0-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ae4bb8a91de790e1866405211c4d618379781188f40d5c4c399766914e84cd94"}, + {file = "triton-2.1.0-0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:39f6fb6bdccb3e98f3152e3fbea724f1aeae7d749412bbb1fa9c441d474eba26"}, + {file = "triton-2.1.0-0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:21544e522c02005a626c8ad63d39bdff2f31d41069592919ef281e964ed26446"}, + {file = "triton-2.1.0-0-pp37-pypy37_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:143582ca31dd89cd982bd3bf53666bab1c7527d41e185f9e3d8a3051ce1b663b"}, + {file = "triton-2.1.0-0-pp38-pypy38_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:82fc5aeeedf6e36be4e4530cbdcba81a09d65c18e02f52dc298696d45721f3bd"}, + {file = "triton-2.1.0-0-pp39-pypy39_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:81a96d110a738ff63339fc892ded095b31bd0d205e3aace262af8400d40b6fa8"}, +] + +[package.dependencies] +filelock = "*" + +[package.extras] +build = ["cmake (>=3.18)", "lit"] +tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)"] +tutorials = ["matplotlib", "pandas", "tabulate"] + +[[package]] +name = "typing-extensions" +version = "4.12.2" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, +] + +[[package]] +name = "tzdata" +version = "2024.2" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"}, + {file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"}, ] [[package]] name = "urllib3" -version = "2.1.0" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.1.0-py3-none-any.whl", hash = "sha256:55901e917a5896a349ff771be919f8bd99aff50b79fe58fec595eb37bbc56bb3"}, - {file = "urllib3-2.1.0.tar.gz", hash = "sha256:df7aa8afb0148fa78488e7899b2c59b5f4ffcfa82e6c54ccb9dd37c1d7b52d54"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +h2 = ["h2 (>=4,<5)"] socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] zstd = ["zstandard (>=0.18.0)"] [[package]] name = "wcwidth" -version = "0.2.12" +version = "0.2.13" description = "Measures the displayed width of unicode strings in a terminal" optional = false python-versions = "*" files = [ - {file = "wcwidth-0.2.12-py2.py3-none-any.whl", hash = "sha256:f26ec43d96c8cbfed76a5075dac87680124fa84e0855195a6184da9c187f133c"}, - {file = "wcwidth-0.2.12.tar.gz", hash = "sha256:f01c104efdf57971bcb756f054dd58ddec5204dd15fa31d6503ea57947d97c02"}, + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, ] [[package]] name = "werkzeug" -version = "3.0.1" +version = "3.0.4" description = "The comprehensive WSGI web application library." optional = false python-versions = ">=3.8" files = [ - {file = "werkzeug-3.0.1-py3-none-any.whl", hash = "sha256:90a285dc0e42ad56b34e696398b8122ee4c681833fb35b8334a095d82c56da10"}, - {file = "werkzeug-3.0.1.tar.gz", hash = "sha256:507e811ecea72b18a404947aded4b3390e1db8f826b494d76550ef45bb3b1dcc"}, + {file = "werkzeug-3.0.4-py3-none-any.whl", hash = "sha256:02c9eb92b7d6c06f31a782811505d2157837cea66aaede3e217c7c27c039476c"}, + {file = "werkzeug-3.0.4.tar.gz", hash = "sha256:34f2371506b250df4d4f84bfe7b0921e4762525762bbd936614909fe25cd7306"}, ] [package.dependencies] @@ -2200,13 +3035,13 @@ watchdog = ["watchdog (>=2.3)"] [[package]] name = "wheel" -version = "0.42.0" +version = "0.44.0" description = "A built-package format for Python" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "wheel-0.42.0-py3-none-any.whl", hash = "sha256:177f9c9b0d45c47873b619f5b650346d632cdc35fb5e4d25058e09c9e581433d"}, - {file = "wheel-0.42.0.tar.gz", hash = "sha256:c45be39f7882c9d34243236f2d63cbd58039e360f85d0913425fbd7ceea617a8"}, + {file = "wheel-0.44.0-py3-none-any.whl", hash = "sha256:2376a90c98cc337d18623527a97c31797bd02bad0033d41547043a1cbfbe448f"}, + {file = "wheel-0.44.0.tar.gz", hash = "sha256:a29c3f2817e95ab89aa4660681ad547c0e9547f20e75b0562fe7723c9a2a9d49"}, ] [package.extras] @@ -2214,30 +3049,208 @@ test = ["pytest (>=6.0.0)", "setuptools (>=65)"] [[package]] name = "wrapt" -version = "1.12.1" +version = "1.16.0" description = "Module for decorators, wrappers and monkey patching." optional = false -python-versions = "*" +python-versions = ">=3.6" +files = [ + {file = "wrapt-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ffa565331890b90056c01db69c0fe634a776f8019c143a5ae265f9c6bc4bd6d4"}, + {file = "wrapt-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e4fdb9275308292e880dcbeb12546df7f3e0f96c6b41197e0cf37d2826359020"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb2dee3874a500de01c93d5c71415fcaef1d858370d405824783e7a8ef5db440"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a88e6010048489cda82b1326889ec075a8c856c2e6a256072b28eaee3ccf487"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac83a914ebaf589b69f7d0a1277602ff494e21f4c2f743313414378f8f50a4cf"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:73aa7d98215d39b8455f103de64391cb79dfcad601701a3aa0dddacf74911d72"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:807cc8543a477ab7422f1120a217054f958a66ef7314f76dd9e77d3f02cdccd0"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bf5703fdeb350e36885f2875d853ce13172ae281c56e509f4e6eca049bdfb136"}, + {file = "wrapt-1.16.0-cp310-cp310-win32.whl", hash = "sha256:f6b2d0c6703c988d334f297aa5df18c45e97b0af3679bb75059e0e0bd8b1069d"}, + {file = "wrapt-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:decbfa2f618fa8ed81c95ee18a387ff973143c656ef800c9f24fb7e9c16054e2"}, + {file = "wrapt-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1a5db485fe2de4403f13fafdc231b0dbae5eca4359232d2efc79025527375b09"}, + {file = "wrapt-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75ea7d0ee2a15733684badb16de6794894ed9c55aa5e9903260922f0482e687d"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a452f9ca3e3267cd4d0fcf2edd0d035b1934ac2bd7e0e57ac91ad6b95c0c6389"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:43aa59eadec7890d9958748db829df269f0368521ba6dc68cc172d5d03ed8060"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72554a23c78a8e7aa02abbd699d129eead8b147a23c56e08d08dfc29cfdddca1"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d2efee35b4b0a347e0d99d28e884dfd82797852d62fcd7ebdeee26f3ceb72cf3"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6dcfcffe73710be01d90cae08c3e548d90932d37b39ef83969ae135d36ef3956"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:eb6e651000a19c96f452c85132811d25e9264d836951022d6e81df2fff38337d"}, + {file = "wrapt-1.16.0-cp311-cp311-win32.whl", hash = "sha256:66027d667efe95cc4fa945af59f92c5a02c6f5bb6012bff9e60542c74c75c362"}, + {file = "wrapt-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:aefbc4cb0a54f91af643660a0a150ce2c090d3652cf4052a5397fb2de549cd89"}, + {file = "wrapt-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5eb404d89131ec9b4f748fa5cfb5346802e5ee8836f57d516576e61f304f3b7b"}, + {file = "wrapt-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9090c9e676d5236a6948330e83cb89969f433b1943a558968f659ead07cb3b36"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94265b00870aa407bd0cbcfd536f17ecde43b94fb8d228560a1e9d3041462d73"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2058f813d4f2b5e3a9eb2eb3faf8f1d99b81c3e51aeda4b168406443e8ba809"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98b5e1f498a8ca1858a1cdbffb023bfd954da4e3fa2c0cb5853d40014557248b"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:14d7dc606219cdd7405133c713f2c218d4252f2a469003f8c46bb92d5d095d81"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:49aac49dc4782cb04f58986e81ea0b4768e4ff197b57324dcbd7699c5dfb40b9"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:418abb18146475c310d7a6dc71143d6f7adec5b004ac9ce08dc7a34e2babdc5c"}, + {file = "wrapt-1.16.0-cp312-cp312-win32.whl", hash = "sha256:685f568fa5e627e93f3b52fda002c7ed2fa1800b50ce51f6ed1d572d8ab3e7fc"}, + {file = "wrapt-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:dcdba5c86e368442528f7060039eda390cc4091bfd1dca41e8046af7c910dda8"}, + {file = "wrapt-1.16.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:d462f28826f4657968ae51d2181a074dfe03c200d6131690b7d65d55b0f360f8"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a33a747400b94b6d6b8a165e4480264a64a78c8a4c734b62136062e9a248dd39"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b3646eefa23daeba62643a58aac816945cadc0afaf21800a1421eeba5f6cfb9c"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ebf019be5c09d400cf7b024aa52b1f3aeebeff51550d007e92c3c1c4afc2a40"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:0d2691979e93d06a95a26257adb7bfd0c93818e89b1406f5a28f36e0d8c1e1fc"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:1acd723ee2a8826f3d53910255643e33673e1d11db84ce5880675954183ec47e"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:bc57efac2da352a51cc4658878a68d2b1b67dbe9d33c36cb826ca449d80a8465"}, + {file = "wrapt-1.16.0-cp36-cp36m-win32.whl", hash = "sha256:da4813f751142436b075ed7aa012a8778aa43a99f7b36afe9b742d3ed8bdc95e"}, + {file = "wrapt-1.16.0-cp36-cp36m-win_amd64.whl", hash = "sha256:6f6eac2360f2d543cc875a0e5efd413b6cbd483cb3ad7ebf888884a6e0d2e966"}, + {file = "wrapt-1.16.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a0ea261ce52b5952bf669684a251a66df239ec6d441ccb59ec7afa882265d593"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bd2d7ff69a2cac767fbf7a2b206add2e9a210e57947dd7ce03e25d03d2de292"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9159485323798c8dc530a224bd3ffcf76659319ccc7bbd52e01e73bd0241a0c5"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a86373cf37cd7764f2201b76496aba58a52e76dedfaa698ef9e9688bfd9e41cf"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:73870c364c11f03ed072dda68ff7aea6d2a3a5c3fe250d917a429c7432e15228"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b935ae30c6e7400022b50f8d359c03ed233d45b725cfdd299462f41ee5ffba6f"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:db98ad84a55eb09b3c32a96c576476777e87c520a34e2519d3e59c44710c002c"}, + {file = "wrapt-1.16.0-cp37-cp37m-win32.whl", hash = "sha256:9153ed35fc5e4fa3b2fe97bddaa7cbec0ed22412b85bcdaf54aeba92ea37428c"}, + {file = "wrapt-1.16.0-cp37-cp37m-win_amd64.whl", hash = "sha256:66dfbaa7cfa3eb707bbfcd46dab2bc6207b005cbc9caa2199bcbc81d95071a00"}, + {file = "wrapt-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1dd50a2696ff89f57bd8847647a1c363b687d3d796dc30d4dd4a9d1689a706f0"}, + {file = "wrapt-1.16.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:44a2754372e32ab315734c6c73b24351d06e77ffff6ae27d2ecf14cf3d229202"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e9723528b9f787dc59168369e42ae1c3b0d3fadb2f1a71de14531d321ee05b0"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbed418ba5c3dce92619656802cc5355cb679e58d0d89b50f116e4a9d5a9603e"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:941988b89b4fd6b41c3f0bfb20e92bd23746579736b7343283297c4c8cbae68f"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6a42cd0cfa8ffc1915aef79cb4284f6383d8a3e9dcca70c445dcfdd639d51267"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1ca9b6085e4f866bd584fb135a041bfc32cab916e69f714a7d1d397f8c4891ca"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d5e49454f19ef621089e204f862388d29e6e8d8b162efce05208913dde5b9ad6"}, + {file = "wrapt-1.16.0-cp38-cp38-win32.whl", hash = "sha256:c31f72b1b6624c9d863fc095da460802f43a7c6868c5dda140f51da24fd47d7b"}, + {file = "wrapt-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:490b0ee15c1a55be9c1bd8609b8cecd60e325f0575fc98f50058eae366e01f41"}, + {file = "wrapt-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9b201ae332c3637a42f02d1045e1d0cccfdc41f1f2f801dafbaa7e9b4797bfc2"}, + {file = "wrapt-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2076fad65c6736184e77d7d4729b63a6d1ae0b70da4868adeec40989858eb3fb"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5cd603b575ebceca7da5a3a251e69561bec509e0b46e4993e1cac402b7247b8"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b47cfad9e9bbbed2339081f4e346c93ecd7ab504299403320bf85f7f85c7d46c"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8212564d49c50eb4565e502814f694e240c55551a5f1bc841d4fcaabb0a9b8a"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5f15814a33e42b04e3de432e573aa557f9f0f56458745c2074952f564c50e664"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db2e408d983b0e61e238cf579c09ef7020560441906ca990fe8412153e3b291f"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:edfad1d29c73f9b863ebe7082ae9321374ccb10879eeabc84ba3b69f2579d537"}, + {file = "wrapt-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed867c42c268f876097248e05b6117a65bcd1e63b779e916fe2e33cd6fd0d3c3"}, + {file = "wrapt-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:eb1b046be06b0fce7249f1d025cd359b4b80fc1c3e24ad9eca33e0dcdb2e4a35"}, + {file = "wrapt-1.16.0-py3-none-any.whl", hash = "sha256:6906c4100a8fcbf2fa735f6059214bb13b97f75b1a61777fcf6432121ef12ef1"}, + {file = "wrapt-1.16.0.tar.gz", hash = "sha256:5f370f952971e7d17c7d1ead40e49f32345a7f7a5373571ef44d800d06b1899d"}, +] + +[[package]] +name = "yarl" +version = "1.13.1" +description = "Yet another URL library" +optional = false +python-versions = ">=3.8" files = [ - {file = "wrapt-1.12.1.tar.gz", hash = "sha256:b62ffa81fb85f4332a4f609cab4ac40709470da05643a082ec1eb88e6d9b97d7"}, + {file = "yarl-1.13.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:82e692fb325013a18a5b73a4fed5a1edaa7c58144dc67ad9ef3d604eccd451ad"}, + {file = "yarl-1.13.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df4e82e68f43a07735ae70a2d84c0353e58e20add20ec0af611f32cd5ba43fb4"}, + {file = "yarl-1.13.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ec9dd328016d8d25702a24ee274932aebf6be9787ed1c28d021945d264235b3c"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5820bd4178e6a639b3ef1db8b18500a82ceab6d8b89309e121a6859f56585b05"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86c438ce920e089c8c2388c7dcc8ab30dfe13c09b8af3d306bcabb46a053d6f7"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3de86547c820e4f4da4606d1c8ab5765dd633189791f15247706a2eeabc783ae"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ca53632007c69ddcdefe1e8cbc3920dd88825e618153795b57e6ebcc92e752a"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d4ee1d240b84e2f213565f0ec08caef27a0e657d4c42859809155cf3a29d1735"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c49f3e379177f4477f929097f7ed4b0622a586b0aa40c07ac8c0f8e40659a1ac"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:5c5e32fef09ce101fe14acd0f498232b5710effe13abac14cd95de9c274e689e"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:ab9524e45ee809a083338a749af3b53cc7efec458c3ad084361c1dbf7aaf82a2"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:b1481c048fe787f65e34cb06f7d6824376d5d99f1231eae4778bbe5c3831076d"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:31497aefd68036d8e31bfbacef915826ca2e741dbb97a8d6c7eac66deda3b606"}, + {file = "yarl-1.13.1-cp310-cp310-win32.whl", hash = "sha256:1fa56f34b2236f5192cb5fceba7bbb09620e5337e0b6dfe2ea0ddbd19dd5b154"}, + {file = "yarl-1.13.1-cp310-cp310-win_amd64.whl", hash = "sha256:1bbb418f46c7f7355084833051701b2301092e4611d9e392360c3ba2e3e69f88"}, + {file = "yarl-1.13.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:216a6785f296169ed52cd7dcdc2612f82c20f8c9634bf7446327f50398732a51"}, + {file = "yarl-1.13.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:40c6e73c03a6befb85b72da213638b8aaa80fe4136ec8691560cf98b11b8ae6e"}, + {file = "yarl-1.13.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2430cf996113abe5aee387d39ee19529327205cda975d2b82c0e7e96e5fdabdc"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fb4134cc6e005b99fa29dbc86f1ea0a298440ab6b07c6b3ee09232a3b48f495"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:309c104ecf67626c033845b860d31594a41343766a46fa58c3309c538a1e22b2"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f90575e9fe3aae2c1e686393a9689c724cd00045275407f71771ae5d690ccf38"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d2e1626be8712333a9f71270366f4a132f476ffbe83b689dd6dc0d114796c74"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5b66c87da3c6da8f8e8b648878903ca54589038a0b1e08dde2c86d9cd92d4ac9"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:cf1ad338620249f8dd6d4b6a91a69d1f265387df3697ad5dc996305cf6c26fb2"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:9915300fe5a0aa663c01363db37e4ae8e7c15996ebe2c6cce995e7033ff6457f"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:703b0f584fcf157ef87816a3c0ff868e8c9f3c370009a8b23b56255885528f10"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:1d8e3ca29f643dd121f264a7c89f329f0fcb2e4461833f02de6e39fef80f89da"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:7055bbade838d68af73aea13f8c86588e4bcc00c2235b4b6d6edb0dbd174e246"}, + {file = "yarl-1.13.1-cp311-cp311-win32.whl", hash = "sha256:a3442c31c11088e462d44a644a454d48110f0588de830921fd201060ff19612a"}, + {file = "yarl-1.13.1-cp311-cp311-win_amd64.whl", hash = "sha256:81bad32c8f8b5897c909bf3468bf601f1b855d12f53b6af0271963ee67fff0d2"}, + {file = "yarl-1.13.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:f452cc1436151387d3d50533523291d5f77c6bc7913c116eb985304abdbd9ec9"}, + {file = "yarl-1.13.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:9cec42a20eae8bebf81e9ce23fb0d0c729fc54cf00643eb251ce7c0215ad49fe"}, + {file = "yarl-1.13.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d959fe96e5c2712c1876d69af0507d98f0b0e8d81bee14cfb3f6737470205419"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b8c837ab90c455f3ea8e68bee143472ee87828bff19ba19776e16ff961425b57"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:94a993f976cdcb2dc1b855d8b89b792893220db8862d1a619efa7451817c836b"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2b2442a415a5f4c55ced0fade7b72123210d579f7d950e0b5527fc598866e62c"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3fdbf0418489525231723cdb6c79e7738b3cbacbaed2b750cb033e4ea208f220"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b7f6e699304717fdc265a7e1922561b02a93ceffdaefdc877acaf9b9f3080b8"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:bcd5bf4132e6a8d3eb54b8d56885f3d3a38ecd7ecae8426ecf7d9673b270de43"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:2a93a4557f7fc74a38ca5a404abb443a242217b91cd0c4840b1ebedaad8919d4"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:22b739f99c7e4787922903f27a892744189482125cc7b95b747f04dd5c83aa9f"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:2db874dd1d22d4c2c657807562411ffdfabec38ce4c5ce48b4c654be552759dc"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4feaaa4742517eaceafcbe74595ed335a494c84634d33961214b278126ec1485"}, + {file = "yarl-1.13.1-cp312-cp312-win32.whl", hash = "sha256:bbf9c2a589be7414ac4a534d54e4517d03f1cbb142c0041191b729c2fa23f320"}, + {file = "yarl-1.13.1-cp312-cp312-win_amd64.whl", hash = "sha256:d07b52c8c450f9366c34aa205754355e933922c79135125541daae6cbf31c799"}, + {file = "yarl-1.13.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:95c6737f28069153c399d875317f226bbdea939fd48a6349a3b03da6829fb550"}, + {file = "yarl-1.13.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:cd66152561632ed4b2a9192e7f8e5a1d41e28f58120b4761622e0355f0fe034c"}, + {file = "yarl-1.13.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6a2acde25be0cf9be23a8f6cbd31734536a264723fca860af3ae5e89d771cd71"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a18595e6a2ee0826bf7dfdee823b6ab55c9b70e8f80f8b77c37e694288f5de1"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a31d21089894942f7d9a8df166b495101b7258ff11ae0abec58e32daf8088813"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:45f209fb4bbfe8630e3d2e2052535ca5b53d4ce2d2026bed4d0637b0416830da"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f722f30366474a99745533cc4015b1781ee54b08de73260b2bbe13316079851"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3bf60444269345d712838bb11cc4eadaf51ff1a364ae39ce87a5ca8ad3bb2c8"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:942c80a832a79c3707cca46bd12ab8aa58fddb34b1626d42b05aa8f0bcefc206"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:44b07e1690f010c3c01d353b5790ec73b2f59b4eae5b0000593199766b3f7a5c"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:396e59b8de7e4d59ff5507fb4322d2329865b909f29a7ed7ca37e63ade7f835c"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:3bb83a0f12701c0b91112a11148b5217617982e1e466069d0555be9b372f2734"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:c92b89bffc660f1274779cb6fbb290ec1f90d6dfe14492523a0667f10170de26"}, + {file = "yarl-1.13.1-cp313-cp313-win32.whl", hash = "sha256:269c201bbc01d2cbba5b86997a1e0f73ba5e2f471cfa6e226bcaa7fd664b598d"}, + {file = "yarl-1.13.1-cp313-cp313-win_amd64.whl", hash = "sha256:1d0828e17fa701b557c6eaed5edbd9098eb62d8838344486248489ff233998b8"}, + {file = "yarl-1.13.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8be8cdfe20787e6a5fcbd010f8066227e2bb9058331a4eccddec6c0db2bb85b2"}, + {file = "yarl-1.13.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:08d7148ff11cb8e886d86dadbfd2e466a76d5dd38c7ea8ebd9b0e07946e76e4b"}, + {file = "yarl-1.13.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4afdf84610ca44dcffe8b6c22c68f309aff96be55f5ea2fa31c0c225d6b83e23"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0d12fe78dcf60efa205e9a63f395b5d343e801cf31e5e1dda0d2c1fb618073d"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:298c1eecfd3257aa16c0cb0bdffb54411e3e831351cd69e6b0739be16b1bdaa8"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c14c16831b565707149c742d87a6203eb5597f4329278446d5c0ae7a1a43928e"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a9bacedbb99685a75ad033fd4de37129449e69808e50e08034034c0bf063f99"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:658e8449b84b92a4373f99305de042b6bd0d19bf2080c093881e0516557474a5"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:373f16f38721c680316a6a00ae21cc178e3a8ef43c0227f88356a24c5193abd6"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:45d23c4668d4925688e2ea251b53f36a498e9ea860913ce43b52d9605d3d8177"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:f7917697bcaa3bc3e83db91aa3a0e448bf5cde43c84b7fc1ae2427d2417c0224"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:5989a38ba1281e43e4663931a53fbf356f78a0325251fd6af09dd03b1d676a09"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:11b3ca8b42a024513adce810385fcabdd682772411d95bbbda3b9ed1a4257644"}, + {file = "yarl-1.13.1-cp38-cp38-win32.whl", hash = "sha256:dcaef817e13eafa547cdfdc5284fe77970b891f731266545aae08d6cce52161e"}, + {file = "yarl-1.13.1-cp38-cp38-win_amd64.whl", hash = "sha256:7addd26594e588503bdef03908fc207206adac5bd90b6d4bc3e3cf33a829f57d"}, + {file = "yarl-1.13.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a0ae6637b173d0c40b9c1462e12a7a2000a71a3258fa88756a34c7d38926911c"}, + {file = "yarl-1.13.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:576365c9f7469e1f6124d67b001639b77113cfd05e85ce0310f5f318fd02fe85"}, + {file = "yarl-1.13.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:78f271722423b2d4851cf1f4fa1a1c4833a128d020062721ba35e1a87154a049"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d74f3c335cfe9c21ea78988e67f18eb9822f5d31f88b41aec3a1ec5ecd32da5"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1891d69a6ba16e89473909665cd355d783a8a31bc84720902c5911dbb6373465"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fb382fd7b4377363cc9f13ba7c819c3c78ed97c36a82f16f3f92f108c787cbbf"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c8854b9f80693d20cec797d8e48a848c2fb273eb6f2587b57763ccba3f3bd4b"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bbf2c3f04ff50f16404ce70f822cdc59760e5e2d7965905f0e700270feb2bbfc"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:fb9f59f3848edf186a76446eb8bcf4c900fe147cb756fbbd730ef43b2e67c6a7"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ef9b85fa1bc91c4db24407e7c4da93a5822a73dd4513d67b454ca7064e8dc6a3"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:098b870c18f1341786f290b4d699504e18f1cd050ed179af8123fd8232513424"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:8c723c91c94a3bc8033dd2696a0f53e5d5f8496186013167bddc3fb5d9df46a3"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:44a4c40a6f84e4d5955b63462a0e2a988f8982fba245cf885ce3be7618f6aa7d"}, + {file = "yarl-1.13.1-cp39-cp39-win32.whl", hash = "sha256:84bbcdcf393139f0abc9f642bf03f00cac31010f3034faa03224a9ef0bb74323"}, + {file = "yarl-1.13.1-cp39-cp39-win_amd64.whl", hash = "sha256:fc2931ac9ce9c61c9968989ec831d3a5e6fcaaff9474e7cfa8de80b7aff5a093"}, + {file = "yarl-1.13.1-py3-none-any.whl", hash = "sha256:6a5185ad722ab4dd52d5fb1f30dcc73282eb1ed494906a92d1a228d3f89607b0"}, + {file = "yarl-1.13.1.tar.gz", hash = "sha256:ec8cfe2295f3e5e44c51f57272afbd69414ae629ec7c6b27f5a410efc78b70a0"}, ] +[package.dependencies] +idna = ">=2.0" +multidict = ">=4.0" + [[package]] name = "zipp" -version = "3.17.0" +version = "3.20.2" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false python-versions = ">=3.8" files = [ - {file = "zipp-3.17.0-py3-none-any.whl", hash = "sha256:0e923e726174922dce09c53c59ad483ff7bbb8e572e00c7f7c46b88556409f31"}, - {file = "zipp-3.17.0.tar.gz", hash = "sha256:84e64a1c28cf7e91ed2078bb8cc8c259cb19b76942096c8d7b84947690cabaf0"}, + {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, + {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, ] [package.extras] -docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] -testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy (>=0.9.1)", "pytest-ruff"] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-ignore-flaky"] +type = ["pytest-mypy"] [metadata] lock-version = "2.0" python-versions = "~3.8" -content-hash = "771516ece2620e992a3d0c44cf8fda7f65a198370eacae06a23748331976df95" +content-hash = "96067e895d3606373b258e77ec97a4a18d7269ec92ebd9bc00c244ff19239192" diff --git a/Chapter03/pyproject.toml b/Chapter03/pyproject.toml index a435b47..3822235 100644 --- a/Chapter03/pyproject.toml +++ b/Chapter03/pyproject.toml @@ -1,5 +1,5 @@ [tool.poetry] -name = "Graph Machine Learning - Chapter 3" +name = "Graph Machine Learning (2nd Edition) - Chapter 3" version = "1.0.0" description = "" authors = ["Enrico Deusebio "] @@ -11,16 +11,16 @@ py-modules = [] [tool.poetry.dependencies] python = "~3.8" ipykernel = ">=6.0.0" -networkx = "==2.5" matplotlib = "==3.2.2" -node2vec = "==0.3.3" -karateclub = "==1.0.19" -gensim = "==3.8.3" -scikit-learn = "==0.24.0" -tensorflow = "==2.4.0" -nxt-gem = { git="https://github.com/palash1992/GEM.git", branch="master" } -# This is what is holding us back to python 3.8 -stellargraph = { git="https://github.com/stellargraph/stellargraph.git", branch="develop" } +tensorflow = "^2.6.0" +tensorflow-io-gcs-filesystem = "==0.21.0" # This needs pinning - see https://stackoverflow.com/a/76477590 +stellargraph= "^1.2.1" +protobuf= "^3.20" +torch = "^2.1.0" +chardet = "==5.2.0" +torch_geometric = "^2.5.2" +torchvision = "^0.16.0" +torchmetrics="^1.3.0" [build-system] requires = ["poetry-core"] diff --git a/Chapter03/requirements.txt b/Chapter03/requirements.txt index 99b00bc..15027ec 100644 --- a/Chapter03/requirements.txt +++ b/Chapter03/requirements.txt @@ -1,96 +1,125 @@ -absl-py==0.15.0 ; python_version >= "3.8" and python_version < "3.9" -appnope==0.1.3 ; python_version >= "3.8" and python_version < "3.9" and (platform_system == "Darwin" or sys_platform == "darwin") +absl-py==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +aiohappyeyeballs==2.4.3 ; python_version >= "3.8" and python_version < "3.9" +aiohttp==3.10.8 ; python_version >= "3.8" and python_version < "3.9" +aiosignal==1.3.1 ; python_version >= "3.8" and python_version < "3.9" +appnope==0.1.4 ; python_version >= "3.8" and python_version < "3.9" and (platform_system == "Darwin" or sys_platform == "darwin") asttokens==2.4.1 ; python_version >= "3.8" and python_version < "3.9" astunparse==1.6.3 ; python_version >= "3.8" and python_version < "3.9" +async-timeout==4.0.3 ; python_version >= "3.8" and python_version < "3.9" +attrs==24.2.0 ; python_version >= "3.8" and python_version < "3.9" backcall==0.2.0 ; python_version >= "3.8" and python_version < "3.9" -cachetools==5.3.2 ; python_version >= "3.8" and python_version < "3.9" -certifi==2023.11.17 ; python_version >= "3.8" and python_version < "3.9" -cffi==1.16.0 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +cachetools==5.5.0 ; python_version >= "3.8" and python_version < "3.9" +certifi==2024.8.30 ; python_version >= "3.8" and python_version < "3.9" +cffi==1.17.1 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +chardet==5.2.0 ; python_version >= "3.8" and python_version < "3.9" charset-normalizer==3.3.2 ; python_version >= "3.8" and python_version < "3.9" colorama==0.4.6 ; python_version >= "3.8" and python_version < "3.9" and (sys_platform == "win32" or platform_system == "Windows") -comm==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +comm==0.2.2 ; python_version >= "3.8" and python_version < "3.9" cycler==0.12.1 ; python_version >= "3.8" and python_version < "3.9" -cython==0.29.14 ; python_version >= "3.8" and python_version < "3.9" -debugpy==1.8.0 ; python_version >= "3.8" and python_version < "3.9" +debugpy==1.8.6 ; python_version >= "3.8" and python_version < "3.9" decorator==5.1.1 ; python_version >= "3.8" and python_version < "3.9" -executing==2.0.1 ; python_version >= "3.8" and python_version < "3.9" -flatbuffers==1.12 ; python_version >= "3.8" and python_version < "3.9" -gast==0.3.3 ; python_version >= "3.8" and python_version < "3.9" -gensim==3.8.3 ; python_version >= "3.8" and python_version < "3.9" -google-auth-oauthlib==0.4.6 ; python_version >= "3.8" and python_version < "3.9" -google-auth==2.25.2 ; python_version >= "3.8" and python_version < "3.9" +executing==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +filelock==3.16.1 ; python_version >= "3.8" and python_version < "3.9" +flatbuffers==2.0.7 ; python_version >= "3.8" and python_version < "3.9" +frozenlist==1.4.1 ; python_version >= "3.8" and python_version < "3.9" +fsspec==2024.9.0 ; python_version >= "3.8" and python_version < "3.9" +gast==0.4.0 ; python_version >= "3.8" and python_version < "3.9" +gensim==4.3.3 ; python_version >= "3.8" and python_version < "3.9" +google-auth-oauthlib==1.0.0 ; python_version >= "3.8" and python_version < "3.9" +google-auth==2.35.0 ; python_version >= "3.8" and python_version < "3.9" google-pasta==0.2.0 ; python_version >= "3.8" and python_version < "3.9" -grpcio==1.32.0 ; python_version >= "3.8" and python_version < "3.9" -h5py==2.10.0 ; python_version >= "3.8" and python_version < "3.9" -idna==3.6 ; python_version >= "3.8" and python_version < "3.9" -importlib-metadata==7.0.0 ; python_version >= "3.8" and python_version < "3.9" -ipykernel==6.27.1 ; python_version >= "3.8" and python_version < "3.9" +grpcio==1.66.2 ; python_version >= "3.8" and python_version < "3.9" +h5py==3.11.0 ; python_version >= "3.8" and python_version < "3.9" +idna==3.10 ; python_version >= "3.8" and python_version < "3.9" +importlib-metadata==8.5.0 ; python_version >= "3.8" and python_version < "3.9" +ipykernel==6.29.5 ; python_version >= "3.8" and python_version < "3.9" ipython==8.12.3 ; python_version >= "3.8" and python_version < "3.9" jedi==0.19.1 ; python_version >= "3.8" and python_version < "3.9" -joblib==1.3.2 ; python_version >= "3.8" and python_version < "3.9" -jupyter-client==8.6.0 ; python_version >= "3.8" and python_version < "3.9" -jupyter-core==5.5.1 ; python_version >= "3.8" and python_version < "3.9" -karateclub==1.0.19 ; python_version >= "3.8" and python_version < "3.9" +jinja2==3.1.4 ; python_version >= "3.8" and python_version < "3.9" +joblib==1.4.2 ; python_version >= "3.8" and python_version < "3.9" +jupyter-client==8.6.3 ; python_version >= "3.8" and python_version < "3.9" +jupyter-core==5.7.2 ; python_version >= "3.8" and python_version < "3.9" keras-preprocessing==1.1.2 ; python_version >= "3.8" and python_version < "3.9" -kiwisolver==1.4.5 ; python_version >= "3.8" and python_version < "3.9" -markdown==3.5.1 ; python_version >= "3.8" and python_version < "3.9" -markupsafe==2.1.3 ; python_version >= "3.8" and python_version < "3.9" -matplotlib-inline==0.1.6 ; python_version >= "3.8" and python_version < "3.9" +keras==2.7.0 ; python_version >= "3.8" and python_version < "3.9" +kiwisolver==1.4.7 ; python_version >= "3.8" and python_version < "3.9" +libclang==18.1.1 ; python_version >= "3.8" and python_version < "3.9" +lightning-utilities==0.11.7 ; python_version >= "3.8" and python_version < "3.9" +markdown==3.7 ; python_version >= "3.8" and python_version < "3.9" +markupsafe==2.1.5 ; python_version >= "3.8" and python_version < "3.9" +matplotlib-inline==0.1.7 ; python_version >= "3.8" and python_version < "3.9" matplotlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" -nest-asyncio==1.5.8 ; python_version >= "3.8" and python_version < "3.9" -networkx==2.5 ; python_version >= "3.8" and python_version < "3.9" -node2vec==0.3.3 ; python_version >= "3.8" and python_version < "3.9" -numpy==1.19.5 ; python_version >= "3.8" and python_version < "3.9" -nxt-gem @ git+https://github.com/palash1992/GEM.git@master ; python_version >= "3.8" and python_version < "3.9" +mpmath==1.3.0 ; python_version >= "3.8" and python_version < "3.9" +multidict==6.1.0 ; python_version >= "3.8" and python_version < "3.9" +nest-asyncio==1.6.0 ; python_version >= "3.8" and python_version < "3.9" +networkx==3.1 ; python_version >= "3.8" and python_version < "3.9" +numpy==1.24.4 ; python_version >= "3.8" and python_version < "3.9" +nvidia-cublas-cu12==12.1.3.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-cupti-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-nvrtc-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-runtime-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cudnn-cu12==8.9.2.26 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cufft-cu12==11.0.2.54 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-curand-cu12==10.3.2.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cusolver-cu12==11.4.5.107 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cusparse-cu12==12.1.0.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nccl-cu12==2.18.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nvjitlink-cu12==12.6.77 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nvtx-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" oauthlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" -opt-einsum==3.3.0 ; python_version >= "3.8" and python_version < "3.9" -packaging==23.2 ; python_version >= "3.8" and python_version < "3.9" -pandas==1.4.4 ; python_version >= "3.8" and python_version < "3.9" -parso==0.8.3 ; python_version >= "3.8" and python_version < "3.9" +opt-einsum==3.4.0 ; python_version >= "3.8" and python_version < "3.9" +packaging==24.1 ; python_version >= "3.8" and python_version < "3.9" +pandas==2.0.3 ; python_version >= "3.8" and python_version < "3.9" +parso==0.8.4 ; python_version >= "3.8" and python_version < "3.9" pexpect==4.9.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" pickleshare==0.7.5 ; python_version >= "3.8" and python_version < "3.9" -platformdirs==4.1.0 ; python_version >= "3.8" and python_version < "3.9" -prompt-toolkit==3.0.43 ; python_version >= "3.8" and python_version < "3.9" +pillow==10.4.0 ; python_version >= "3.8" and python_version < "3.9" +platformdirs==4.3.6 ; python_version >= "3.8" and python_version < "3.9" +prompt-toolkit==3.0.48 ; python_version >= "3.8" and python_version < "3.9" protobuf==3.20.3 ; python_version >= "3.8" and python_version < "3.9" -psutil==5.9.7 ; python_version >= "3.8" and python_version < "3.9" +psutil==6.0.0 ; python_version >= "3.8" and python_version < "3.9" ptyprocess==0.7.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" -pure-eval==0.2.2 ; python_version >= "3.8" and python_version < "3.9" -pyasn1-modules==0.3.0 ; python_version >= "3.8" and python_version < "3.9" -pyasn1==0.5.1 ; python_version >= "3.8" and python_version < "3.9" -pycparser==2.21 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" -pygments==2.17.2 ; python_version >= "3.8" and python_version < "3.9" -pygsp==0.5.1 ; python_version >= "3.8" and python_version < "3.9" -pyparsing==3.1.1 ; python_version >= "3.8" and python_version < "3.9" -python-dateutil==2.8.2 ; python_version >= "3.8" and python_version < "3.9" -python-louvain==0.16 ; python_version >= "3.8" and python_version < "3.9" -pytz==2023.3.post1 ; python_version >= "3.8" and python_version < "3.9" +pure-eval==0.2.3 ; python_version >= "3.8" and python_version < "3.9" +pyasn1-modules==0.4.1 ; python_version >= "3.8" and python_version < "3.9" +pyasn1==0.6.1 ; python_version >= "3.8" and python_version < "3.9" +pycparser==2.22 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +pygments==2.18.0 ; python_version >= "3.8" and python_version < "3.9" +pyparsing==3.1.4 ; python_version >= "3.8" and python_version < "3.9" +python-dateutil==2.9.0.post0 ; python_version >= "3.8" and python_version < "3.9" +pytz==2024.2 ; python_version >= "3.8" and python_version < "3.9" pywin32==306 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" -pyzmq==25.1.2 ; python_version >= "3.8" and python_version < "3.9" -requests-oauthlib==1.3.1 ; python_version >= "3.8" and python_version < "3.9" -requests==2.31.0 ; python_version >= "3.8" and python_version < "3.9" +pyzmq==26.2.0 ; python_version >= "3.8" and python_version < "3.9" +requests-oauthlib==2.0.0 ; python_version >= "3.8" and python_version < "3.9" +requests==2.32.3 ; python_version >= "3.8" and python_version < "3.9" rsa==4.9 ; python_version >= "3.8" and python_version < "3.9" -scikit-learn==0.24.0 ; python_version >= "3.8" and python_version < "3.9" +scikit-learn==1.3.2 ; python_version >= "3.8" and python_version < "3.9" scipy==1.10.1 ; python_version >= "3.8" and python_version < "3.9" -setuptools==69.0.2 ; python_version >= "3.8" and python_version < "3.9" -six==1.15.0 ; python_version >= "3.8" and python_version < "3.9" -smart-open==6.4.0 ; python_version >= "3.8" and python_version < "3.9" +setuptools==75.1.0 ; python_version >= "3.8" and python_version < "3.9" +six==1.16.0 ; python_version >= "3.8" and python_version < "3.9" +smart-open==7.0.4 ; python_version >= "3.8" and python_version < "3.9" stack-data==0.6.3 ; python_version >= "3.8" and python_version < "3.9" -stellargraph @ git+https://github.com/stellargraph/stellargraph.git@develop ; python_version >= "3.8" and python_version < "3.9" -tensorboard-data-server==0.6.1 ; python_version >= "3.8" and python_version < "3.9" -tensorboard-plugin-wit==1.8.1 ; python_version >= "3.8" and python_version < "3.9" -tensorboard==2.11.2 ; python_version >= "3.8" and python_version < "3.9" -tensorflow-estimator==2.4.0 ; python_version >= "3.8" and python_version < "3.9" -tensorflow==2.4.0 ; python_version >= "3.8" and python_version < "3.9" -termcolor==1.1.0 ; python_version >= "3.8" and python_version < "3.9" -theano==1.0.5 ; python_version >= "3.8" and python_version < "3.9" -threadpoolctl==3.2.0 ; python_version >= "3.8" and python_version < "3.9" -tornado==6.4 ; python_version >= "3.8" and python_version < "3.9" -tqdm==4.66.1 ; python_version >= "3.8" and python_version < "3.9" -traitlets==5.14.0 ; python_version >= "3.8" and python_version < "3.9" -typing-extensions==3.7.4.3 ; python_version >= "3.8" and python_version < "3.9" -urllib3==2.1.0 ; python_version >= "3.8" and python_version < "3.9" -wcwidth==0.2.12 ; python_version >= "3.8" and python_version < "3.9" -werkzeug==3.0.1 ; python_version >= "3.8" and python_version < "3.9" -wheel==0.42.0 ; python_version >= "3.8" and python_version < "3.9" -wrapt==1.12.1 ; python_version >= "3.8" and python_version < "3.9" -zipp==3.17.0 ; python_version >= "3.8" and python_version < "3.9" +stellargraph==1.2.1 ; python_version >= "3.8" and python_version < "3.9" +sympy==1.13.3 ; python_version >= "3.8" and python_version < "3.9" +tensorboard-data-server==0.7.2 ; python_version >= "3.8" and python_version < "3.9" +tensorboard==2.14.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow-estimator==2.7.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow-io-gcs-filesystem==0.21.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow==2.7.2 ; python_version >= "3.8" and python_version < "3.9" +termcolor==2.4.0 ; python_version >= "3.8" and python_version < "3.9" +threadpoolctl==3.5.0 ; python_version >= "3.8" and python_version < "3.9" +torch-geometric==2.6.1 ; python_version >= "3.8" and python_version < "3.9" +torch==2.1.2 ; python_version >= "3.8" and python_version < "3.9" +torchmetrics==1.4.2 ; python_version >= "3.8" and python_version < "3.9" +torchvision==0.16.2 ; python_version >= "3.8" and python_version < "3.9" +tornado==6.4.1 ; python_version >= "3.8" and python_version < "3.9" +tqdm==4.66.5 ; python_version >= "3.8" and python_version < "3.9" +traitlets==5.14.3 ; python_version >= "3.8" and python_version < "3.9" +triton==2.1.0 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +typing-extensions==4.12.2 ; python_version >= "3.8" and python_version < "3.9" +tzdata==2024.2 ; python_version >= "3.8" and python_version < "3.9" +urllib3==2.2.3 ; python_version >= "3.8" and python_version < "3.9" +wcwidth==0.2.13 ; python_version >= "3.8" and python_version < "3.9" +werkzeug==3.0.4 ; python_version >= "3.8" and python_version < "3.9" +wheel==0.44.0 ; python_version >= "3.8" and python_version < "3.9" +wrapt==1.16.0 ; python_version >= "3.8" and python_version < "3.9" +yarl==1.13.1 ; python_version >= "3.8" and python_version < "3.9" +zipp==3.20.2 ; python_version >= "3.8" and python_version < "3.9" diff --git a/Chapter03/01_Shallow_Embeddings.ipynb b/Chapter04/01_Shallow_Embeddings.ipynb similarity index 99% rename from Chapter03/01_Shallow_Embeddings.ipynb rename to Chapter04/01_Shallow_Embeddings.ipynb index 78d3554..6c6cbc8 100644 --- a/Chapter03/01_Shallow_Embeddings.ipynb +++ b/Chapter04/01_Shallow_Embeddings.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Chapter 3 - Shallow Embeddings" + "# Chapter 4 - Shallow Embeddings" ] }, { @@ -563,9 +563,9 @@ ], "metadata": { "kernelspec": { - "display_name": "chap3", + "display_name": "chap4", "language": "python", - "name": "chap3" + "name": "chap4" }, "language_info": { "codemirror_mode": { diff --git a/Chapter03/02_Autoencoders.ipynb b/Chapter04/02_Autoencoders.ipynb similarity index 99% rename from Chapter03/02_Autoencoders.ipynb rename to Chapter04/02_Autoencoders.ipynb index 8d2e26d..f718c9e 100644 --- a/Chapter03/02_Autoencoders.ipynb +++ b/Chapter04/02_Autoencoders.ipynb @@ -605,9 +605,9 @@ ], "metadata": { "kernelspec": { - "display_name": "chap3", + "display_name": "chap4", "language": "python", - "name": "chap3" + "name": "chap4" }, "language_info": { "codemirror_mode": { diff --git a/Chapter03/03_Structural_deep_neural_embeddings.ipynb b/Chapter04/03_Structural_deep_neural_embeddings.ipynb similarity index 99% rename from Chapter03/03_Structural_deep_neural_embeddings.ipynb rename to Chapter04/03_Structural_deep_neural_embeddings.ipynb index 7be79cb..a136955 100644 --- a/Chapter03/03_Structural_deep_neural_embeddings.ipynb +++ b/Chapter04/03_Structural_deep_neural_embeddings.ipynb @@ -303,9 +303,9 @@ ], "metadata": { "kernelspec": { - "display_name": "chap3", + "display_name": "chap4", "language": "python", - "name": "chap3" + "name": "chap4" }, "language_info": { "codemirror_mode": { diff --git a/Chapter03/04_Graph_Neural_Network.ipynb b/Chapter04/04_Graph_Neural_Network.ipynb similarity index 99% rename from Chapter03/04_Graph_Neural_Network.ipynb rename to Chapter04/04_Graph_Neural_Network.ipynb index 4f1183f..527a609 100644 --- a/Chapter03/04_Graph_Neural_Network.ipynb +++ b/Chapter04/04_Graph_Neural_Network.ipynb @@ -545,9 +545,9 @@ "toc_visible": true }, "kernelspec": { - "display_name": "chap3", + "display_name": "chap4", "language": "python", - "name": "chap3" + "name": "chap4" }, "language_info": { "codemirror_mode": { diff --git a/Chapter04/poetry.lock b/Chapter04/poetry.lock index 0e13afb..38ed5db 100644 --- a/Chapter04/poetry.lock +++ b/Chapter04/poetry.lock @@ -1,176 +1,28 @@ -# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.5.1 and should not be changed by hand. [[package]] name = "absl-py" -version = "2.1.0" +version = "0.15.0" description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py." optional = false -python-versions = ">=3.7" -files = [ - {file = "absl-py-2.1.0.tar.gz", hash = "sha256:7820790efbb316739cde8b4e19357243fc3608a152024288513dd968d7d959ff"}, - {file = "absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308"}, -] - -[[package]] -name = "aiohappyeyeballs" -version = "2.4.3" -description = "Happy Eyeballs for asyncio" -optional = false -python-versions = ">=3.8" -files = [ - {file = "aiohappyeyeballs-2.4.3-py3-none-any.whl", hash = "sha256:8a7a83727b2756f394ab2895ea0765a0a8c475e3c71e98d43d76f22b4b435572"}, - {file = "aiohappyeyeballs-2.4.3.tar.gz", hash = "sha256:75cf88a15106a5002a8eb1dab212525c00d1f4c0fa96e551c9fbe6f09a621586"}, -] - -[[package]] -name = "aiohttp" -version = "3.10.10" -description = "Async http client/server framework (asyncio)" -optional = false -python-versions = ">=3.8" -files = [ - {file = "aiohttp-3.10.10-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:be7443669ae9c016b71f402e43208e13ddf00912f47f623ee5994e12fc7d4b3f"}, - {file = "aiohttp-3.10.10-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7b06b7843929e41a94ea09eb1ce3927865387e3e23ebe108e0d0d09b08d25be9"}, - {file = "aiohttp-3.10.10-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:333cf6cf8e65f6a1e06e9eb3e643a0c515bb850d470902274239fea02033e9a8"}, - {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:274cfa632350225ce3fdeb318c23b4a10ec25c0e2c880eff951a3842cf358ac1"}, - {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d9e5e4a85bdb56d224f412d9c98ae4cbd032cc4f3161818f692cd81766eee65a"}, - {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2b606353da03edcc71130b52388d25f9a30a126e04caef1fd637e31683033abd"}, - {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab5a5a0c7a7991d90446a198689c0535be89bbd6b410a1f9a66688f0880ec026"}, - {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:578a4b875af3e0daaf1ac6fa983d93e0bbfec3ead753b6d6f33d467100cdc67b"}, - {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:8105fd8a890df77b76dd3054cddf01a879fc13e8af576805d667e0fa0224c35d"}, - {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3bcd391d083f636c06a68715e69467963d1f9600f85ef556ea82e9ef25f043f7"}, - {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:fbc6264158392bad9df19537e872d476f7c57adf718944cc1e4495cbabf38e2a"}, - {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:e48d5021a84d341bcaf95c8460b152cfbad770d28e5fe14a768988c461b821bc"}, - {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:2609e9ab08474702cc67b7702dbb8a80e392c54613ebe80db7e8dbdb79837c68"}, - {file = "aiohttp-3.10.10-cp310-cp310-win32.whl", hash = "sha256:84afcdea18eda514c25bc68b9af2a2b1adea7c08899175a51fe7c4fb6d551257"}, - {file = "aiohttp-3.10.10-cp310-cp310-win_amd64.whl", hash = "sha256:9c72109213eb9d3874f7ac8c0c5fa90e072d678e117d9061c06e30c85b4cf0e6"}, - {file = "aiohttp-3.10.10-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:c30a0eafc89d28e7f959281b58198a9fa5e99405f716c0289b7892ca345fe45f"}, - {file = "aiohttp-3.10.10-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:258c5dd01afc10015866114e210fb7365f0d02d9d059c3c3415382ab633fcbcb"}, - {file = "aiohttp-3.10.10-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:15ecd889a709b0080f02721255b3f80bb261c2293d3c748151274dfea93ac871"}, - {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3935f82f6f4a3820270842e90456ebad3af15810cf65932bd24da4463bc0a4c"}, - {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:413251f6fcf552a33c981c4709a6bba37b12710982fec8e558ae944bfb2abd38"}, - {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1720b4f14c78a3089562b8875b53e36b51c97c51adc53325a69b79b4b48ebcb"}, - {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:679abe5d3858b33c2cf74faec299fda60ea9de62916e8b67e625d65bf069a3b7"}, - {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:79019094f87c9fb44f8d769e41dbb664d6e8fcfd62f665ccce36762deaa0e911"}, - {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:fe2fb38c2ed905a2582948e2de560675e9dfbee94c6d5ccdb1301c6d0a5bf092"}, - {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:a3f00003de6eba42d6e94fabb4125600d6e484846dbf90ea8e48a800430cc142"}, - {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:1bbb122c557a16fafc10354b9d99ebf2f2808a660d78202f10ba9d50786384b9"}, - {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:30ca7c3b94708a9d7ae76ff281b2f47d8eaf2579cd05971b5dc681db8caac6e1"}, - {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:df9270660711670e68803107d55c2b5949c2e0f2e4896da176e1ecfc068b974a"}, - {file = "aiohttp-3.10.10-cp311-cp311-win32.whl", hash = "sha256:aafc8ee9b742ce75044ae9a4d3e60e3d918d15a4c2e08a6c3c3e38fa59b92d94"}, - {file = "aiohttp-3.10.10-cp311-cp311-win_amd64.whl", hash = "sha256:362f641f9071e5f3ee6f8e7d37d5ed0d95aae656adf4ef578313ee585b585959"}, - {file = "aiohttp-3.10.10-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:9294bbb581f92770e6ed5c19559e1e99255e4ca604a22c5c6397b2f9dd3ee42c"}, - {file = "aiohttp-3.10.10-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a8fa23fe62c436ccf23ff930149c047f060c7126eae3ccea005f0483f27b2e28"}, - {file = "aiohttp-3.10.10-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5c6a5b8c7926ba5d8545c7dd22961a107526562da31a7a32fa2456baf040939f"}, - {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:007ec22fbc573e5eb2fb7dec4198ef8f6bf2fe4ce20020798b2eb5d0abda6138"}, - {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9627cc1a10c8c409b5822a92d57a77f383b554463d1884008e051c32ab1b3742"}, - {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:50edbcad60d8f0e3eccc68da67f37268b5144ecc34d59f27a02f9611c1d4eec7"}, - {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a45d85cf20b5e0d0aa5a8dca27cce8eddef3292bc29d72dcad1641f4ed50aa16"}, - {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0b00807e2605f16e1e198f33a53ce3c4523114059b0c09c337209ae55e3823a8"}, - {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f2d4324a98062be0525d16f768a03e0bbb3b9fe301ceee99611dc9a7953124e6"}, - {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:438cd072f75bb6612f2aca29f8bd7cdf6e35e8f160bc312e49fbecab77c99e3a"}, - {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:baa42524a82f75303f714108fea528ccacf0386af429b69fff141ffef1c534f9"}, - {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a7d8d14fe962153fc681f6366bdec33d4356f98a3e3567782aac1b6e0e40109a"}, - {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c1277cd707c465cd09572a774559a3cc7c7a28802eb3a2a9472588f062097205"}, - {file = "aiohttp-3.10.10-cp312-cp312-win32.whl", hash = "sha256:59bb3c54aa420521dc4ce3cc2c3fe2ad82adf7b09403fa1f48ae45c0cbde6628"}, - {file = "aiohttp-3.10.10-cp312-cp312-win_amd64.whl", hash = "sha256:0e1b370d8007c4ae31ee6db7f9a2fe801a42b146cec80a86766e7ad5c4a259cf"}, - {file = "aiohttp-3.10.10-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ad7593bb24b2ab09e65e8a1d385606f0f47c65b5a2ae6c551db67d6653e78c28"}, - {file = "aiohttp-3.10.10-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1eb89d3d29adaf533588f209768a9c02e44e4baf832b08118749c5fad191781d"}, - {file = "aiohttp-3.10.10-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3fe407bf93533a6fa82dece0e74dbcaaf5d684e5a51862887f9eaebe6372cd79"}, - {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50aed5155f819873d23520919e16703fc8925e509abbb1a1491b0087d1cd969e"}, - {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4f05e9727ce409358baa615dbeb9b969db94324a79b5a5cea45d39bdb01d82e6"}, - {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3dffb610a30d643983aeb185ce134f97f290f8935f0abccdd32c77bed9388b42"}, - {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa6658732517ddabe22c9036479eabce6036655ba87a0224c612e1ae6af2087e"}, - {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:741a46d58677d8c733175d7e5aa618d277cd9d880301a380fd296975a9cdd7bc"}, - {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:e00e3505cd80440f6c98c6d69269dcc2a119f86ad0a9fd70bccc59504bebd68a"}, - {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ffe595f10566f8276b76dc3a11ae4bb7eba1aac8ddd75811736a15b0d5311414"}, - {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:bdfcf6443637c148c4e1a20c48c566aa694fa5e288d34b20fcdc58507882fed3"}, - {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d183cf9c797a5291e8301790ed6d053480ed94070637bfaad914dd38b0981f67"}, - {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:77abf6665ae54000b98b3c742bc6ea1d1fb31c394bcabf8b5d2c1ac3ebfe7f3b"}, - {file = "aiohttp-3.10.10-cp313-cp313-win32.whl", hash = "sha256:4470c73c12cd9109db8277287d11f9dd98f77fc54155fc71a7738a83ffcc8ea8"}, - {file = "aiohttp-3.10.10-cp313-cp313-win_amd64.whl", hash = "sha256:486f7aabfa292719a2753c016cc3a8f8172965cabb3ea2e7f7436c7f5a22a151"}, - {file = "aiohttp-3.10.10-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:1b66ccafef7336a1e1f0e389901f60c1d920102315a56df85e49552308fc0486"}, - {file = "aiohttp-3.10.10-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:acd48d5b80ee80f9432a165c0ac8cbf9253eaddb6113269a5e18699b33958dbb"}, - {file = "aiohttp-3.10.10-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3455522392fb15ff549d92fbf4b73b559d5e43dc522588f7eb3e54c3f38beee7"}, - {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45c3b868724137f713a38376fef8120c166d1eadd50da1855c112fe97954aed8"}, - {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:da1dee8948d2137bb51fbb8a53cce6b1bcc86003c6b42565f008438b806cccd8"}, - {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c5ce2ce7c997e1971b7184ee37deb6ea9922ef5163c6ee5aa3c274b05f9e12fa"}, - {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28529e08fde6f12eba8677f5a8608500ed33c086f974de68cc65ab218713a59d"}, - {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f7db54c7914cc99d901d93a34704833568d86c20925b2762f9fa779f9cd2e70f"}, - {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:03a42ac7895406220124c88911ebee31ba8b2d24c98507f4a8bf826b2937c7f2"}, - {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:7e338c0523d024fad378b376a79faff37fafb3c001872a618cde1d322400a572"}, - {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:038f514fe39e235e9fef6717fbf944057bfa24f9b3db9ee551a7ecf584b5b480"}, - {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:64f6c17757251e2b8d885d728b6433d9d970573586a78b78ba8929b0f41d045a"}, - {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:93429602396f3383a797a2a70e5f1de5df8e35535d7806c9f91df06f297e109b"}, - {file = "aiohttp-3.10.10-cp38-cp38-win32.whl", hash = "sha256:c823bc3971c44ab93e611ab1a46b1eafeae474c0c844aff4b7474287b75fe49c"}, - {file = "aiohttp-3.10.10-cp38-cp38-win_amd64.whl", hash = "sha256:54ca74df1be3c7ca1cf7f4c971c79c2daf48d9aa65dea1a662ae18926f5bc8ce"}, - {file = "aiohttp-3.10.10-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:01948b1d570f83ee7bbf5a60ea2375a89dfb09fd419170e7f5af029510033d24"}, - {file = "aiohttp-3.10.10-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9fc1500fd2a952c5c8e3b29aaf7e3cc6e27e9cfc0a8819b3bce48cc1b849e4cc"}, - {file = "aiohttp-3.10.10-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f614ab0c76397661b90b6851a030004dac502e48260ea10f2441abd2207fbcc7"}, - {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00819de9e45d42584bed046314c40ea7e9aea95411b38971082cad449392b08c"}, - {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:05646ebe6b94cc93407b3bf34b9eb26c20722384d068eb7339de802154d61bc5"}, - {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:998f3bd3cfc95e9424a6acd7840cbdd39e45bc09ef87533c006f94ac47296090"}, - {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9010c31cd6fa59438da4e58a7f19e4753f7f264300cd152e7f90d4602449762"}, - {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7ea7ffc6d6d6f8a11e6f40091a1040995cdff02cfc9ba4c2f30a516cb2633554"}, - {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:ef9c33cc5cbca35808f6c74be11eb7f5f6b14d2311be84a15b594bd3e58b5527"}, - {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ce0cdc074d540265bfeb31336e678b4e37316849d13b308607efa527e981f5c2"}, - {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:597a079284b7ee65ee102bc3a6ea226a37d2b96d0418cc9047490f231dc09fe8"}, - {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:7789050d9e5d0c309c706953e5e8876e38662d57d45f936902e176d19f1c58ab"}, - {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e7f8b04d83483577fd9200461b057c9f14ced334dcb053090cea1da9c8321a91"}, - {file = "aiohttp-3.10.10-cp39-cp39-win32.whl", hash = "sha256:c02a30b904282777d872266b87b20ed8cc0d1501855e27f831320f471d54d983"}, - {file = "aiohttp-3.10.10-cp39-cp39-win_amd64.whl", hash = "sha256:edfe3341033a6b53a5c522c802deb2079eee5cbfbb0af032a55064bd65c73a23"}, - {file = "aiohttp-3.10.10.tar.gz", hash = "sha256:0631dd7c9f0822cc61c88586ca76d5b5ada26538097d0f1df510b082bad3411a"}, -] - -[package.dependencies] -aiohappyeyeballs = ">=2.3.0" -aiosignal = ">=1.1.2" -async-timeout = {version = ">=4.0,<5.0", markers = "python_version < \"3.11\""} -attrs = ">=17.3.0" -frozenlist = ">=1.1.1" -multidict = ">=4.5,<7.0" -yarl = ">=1.12.0,<2.0" - -[package.extras] -speedups = ["Brotli", "aiodns (>=3.2.0)", "brotlicffi"] - -[[package]] -name = "aiosignal" -version = "1.3.1" -description = "aiosignal: a list of registered asynchronous callbacks" -optional = false -python-versions = ">=3.7" -files = [ - {file = "aiosignal-1.3.1-py3-none-any.whl", hash = "sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17"}, - {file = "aiosignal-1.3.1.tar.gz", hash = "sha256:54cd96e15e1649b75d6c87526a6ff0b6c1b0dd3459f43d9ca11d48c339b68cfc"}, -] - -[package.dependencies] -frozenlist = ">=1.1.0" - -[[package]] -name = "annotated-types" -version = "0.7.0" -description = "Reusable constraint types to use with typing.Annotated" -optional = false -python-versions = ">=3.8" +python-versions = "*" files = [ - {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, - {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, + {file = "absl-py-0.15.0.tar.gz", hash = "sha256:72d782fbeafba66ba3e525d46bccac949b9a174dbf66233e50ece09ee688dc81"}, + {file = "absl_py-0.15.0-py3-none-any.whl", hash = "sha256:ea907384af023a7e681368bedb896159ab100c7db593efbbd5cde22af11270cd"}, ] [package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} +six = "*" [[package]] name = "appnope" -version = "0.1.4" +version = "0.1.3" description = "Disable App Nap on macOS >= 10.9" optional = false -python-versions = ">=3.6" +python-versions = "*" files = [ - {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, - {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, + {file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"}, + {file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"}, ] [[package]] @@ -206,36 +58,6 @@ files = [ six = ">=1.6.1,<2.0" wheel = ">=0.23.0,<1.0" -[[package]] -name = "async-timeout" -version = "4.0.3" -description = "Timeout context manager for asyncio programs" -optional = false -python-versions = ">=3.7" -files = [ - {file = "async-timeout-4.0.3.tar.gz", hash = "sha256:4640d96be84d82d02ed59ea2b7105a0f7b33abe8703703cd0ab0bf87c427522f"}, - {file = "async_timeout-4.0.3-py3-none-any.whl", hash = "sha256:7405140ff1230c310e51dc27b3145b9092d659ce68ff733fb0cefe3ee42be028"}, -] - -[[package]] -name = "attrs" -version = "24.2.0" -description = "Classes Without Boilerplate" -optional = false -python-versions = ">=3.7" -files = [ - {file = "attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2"}, - {file = "attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346"}, -] - -[package.extras] -benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] -cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] -dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] -docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] -tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] -tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] - [[package]] name = "backcall" version = "0.2.0" @@ -249,228 +71,187 @@ files = [ [[package]] name = "cachetools" -version = "5.5.0" +version = "5.3.2" description = "Extensible memoizing collections and decorators" optional = false python-versions = ">=3.7" files = [ - {file = "cachetools-5.5.0-py3-none-any.whl", hash = "sha256:02134e8439cdc2ffb62023ce1debca2944c3f289d66bb17ead3ab3dede74b292"}, - {file = "cachetools-5.5.0.tar.gz", hash = "sha256:2cc24fb4cbe39633fb7badd9db9ca6295d766d9c2995f245725a46715d050f2a"}, + {file = "cachetools-5.3.2-py3-none-any.whl", hash = "sha256:861f35a13a451f94e301ce2bec7cac63e881232ccce7ed67fab9b5df4d3beaa1"}, + {file = "cachetools-5.3.2.tar.gz", hash = "sha256:086ee420196f7b2ab9ca2db2520aca326318b68fe5ba8bc4d49cca91add450f2"}, ] [[package]] name = "certifi" -version = "2024.8.30" +version = "2023.11.17" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, - {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, + {file = "certifi-2023.11.17-py3-none-any.whl", hash = "sha256:e036ab49d5b79556f99cfc2d9320b34cfbe5be05c5871b51de9329f0603b0474"}, + {file = "certifi-2023.11.17.tar.gz", hash = "sha256:9b469f3a900bf28dc19b8cfbf8019bf47f7fdd1a65a1d4ffb98fc14166beb4d1"}, ] [[package]] name = "cffi" -version = "1.17.1" +version = "1.16.0" description = "Foreign Function Interface for Python calling C code." optional = false python-versions = ">=3.8" files = [ - {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, - {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, - {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, - {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, - {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, - {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, - {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, - {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, - {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, - {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, - {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, - {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, - {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, - {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, - {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, - {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, - {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, - {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, - {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, - {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, - {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, - {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, - {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, - {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, - {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, - {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, - {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, - {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, - {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, - {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, - {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, - {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, - {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, - {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, - {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, - {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, - {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, - {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, - {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, - {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, - {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, - {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, - {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, - {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, - {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, - {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, - {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, - {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, - {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, - {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, - {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, - {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, - {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, - {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, - {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, - {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, - {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, - {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, - {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, - {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, - {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, - {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, - {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, - {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, - {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, - {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, - {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, + {file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088"}, + {file = "cffi-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614"}, + {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743"}, + {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d"}, + {file = "cffi-1.16.0-cp310-cp310-win32.whl", hash = "sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a"}, + {file = "cffi-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1"}, + {file = "cffi-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404"}, + {file = "cffi-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e"}, + {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc"}, + {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb"}, + {file = "cffi-1.16.0-cp311-cp311-win32.whl", hash = "sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab"}, + {file = "cffi-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba"}, + {file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"}, + {file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"}, + {file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"}, + {file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"}, + {file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"}, + {file = "cffi-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324"}, + {file = "cffi-1.16.0-cp38-cp38-win32.whl", hash = "sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a"}, + {file = "cffi-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36"}, + {file = "cffi-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed"}, + {file = "cffi-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098"}, + {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000"}, + {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe"}, + {file = "cffi-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4"}, + {file = "cffi-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8"}, + {file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"}, ] [package.dependencies] pycparser = "*" -[[package]] -name = "chardet" -version = "5.2.0" -description = "Universal encoding detector for Python 3" -optional = false -python-versions = ">=3.7" -files = [ - {file = "chardet-5.2.0-py3-none-any.whl", hash = "sha256:e1cf59446890a00105fe7b7912492ea04b6e6f06d4b742b2c788469e34c82970"}, - {file = "chardet-5.2.0.tar.gz", hash = "sha256:1b3b6ff479a8c414bc3fa2c0852995695c4a026dcd6d0633b2dd092ca39c1cf7"}, -] - [[package]] name = "charset-normalizer" -version = "3.4.0" +version = "3.3.2" description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." optional = false python-versions = ">=3.7.0" files = [ - {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:4f9fc98dad6c2eaa32fc3af1417d95b5e3d08aff968df0cd320066def971f9a6"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0de7b687289d3c1b3e8660d0741874abe7888100efe14bd0f9fd7141bcbda92b"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5ed2e36c3e9b4f21dd9422f6893dec0abf2cca553af509b10cd630f878d3eb99"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40d3ff7fc90b98c637bda91c89d51264a3dcf210cade3a2c6f838c7268d7a4ca"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1110e22af8ca26b90bd6364fe4c763329b0ebf1ee213ba32b68c73de5752323d"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:86f4e8cca779080f66ff4f191a685ced73d2f72d50216f7112185dc02b90b9b7"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f683ddc7eedd742e2889d2bfb96d69573fde1d92fcb811979cdb7165bb9c7d3"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:27623ba66c183eca01bf9ff833875b459cad267aeeb044477fedac35e19ba907"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f606a1881d2663630ea5b8ce2efe2111740df4b687bd78b34a8131baa007f79b"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0b309d1747110feb25d7ed6b01afdec269c647d382c857ef4663bbe6ad95a912"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:136815f06a3ae311fae551c3df1f998a1ebd01ddd424aa5603a4336997629e95"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:14215b71a762336254351b00ec720a8e85cada43b987da5a042e4ce3e82bd68e"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:79983512b108e4a164b9c8d34de3992f76d48cadc9554c9e60b43f308988aabe"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-win32.whl", hash = "sha256:c94057af19bc953643a33581844649a7fdab902624d2eb739738a30e2b3e60fc"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:55f56e2ebd4e3bc50442fbc0888c9d8c94e4e06a933804e2af3e89e2f9c1c749"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0d99dd8ff461990f12d6e42c7347fd9ab2532fb70e9621ba520f9e8637161d7c"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c57516e58fd17d03ebe67e181a4e4e2ccab1168f8c2976c6a334d4f819fe5944"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6dba5d19c4dfab08e58d5b36304b3f92f3bd5d42c1a3fa37b5ba5cdf6dfcbcee"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf4475b82be41b07cc5e5ff94810e6a01f276e37c2d55571e3fe175e467a1a1c"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ce031db0408e487fd2775d745ce30a7cd2923667cf3b69d48d219f1d8f5ddeb6"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ff4e7cdfdb1ab5698e675ca622e72d58a6fa2a8aa58195de0c0061288e6e3ea"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3710a9751938947e6327ea9f3ea6332a09bf0ba0c09cae9cb1f250bd1f1549bc"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82357d85de703176b5587dbe6ade8ff67f9f69a41c0733cf2425378b49954de5"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:47334db71978b23ebcf3c0f9f5ee98b8d65992b65c9c4f2d34c2eaf5bcaf0594"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8ce7fd6767a1cc5a92a639b391891bf1c268b03ec7e021c7d6d902285259685c"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f1a2f519ae173b5b6a2c9d5fa3116ce16e48b3462c8b96dfdded11055e3d6365"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:63bc5c4ae26e4bc6be6469943b8253c0fd4e4186c43ad46e713ea61a0ba49129"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:bcb4f8ea87d03bc51ad04add8ceaf9b0f085ac045ab4d74e73bbc2dc033f0236"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-win32.whl", hash = "sha256:9ae4ef0b3f6b41bad6366fb0ea4fc1d7ed051528e113a60fa2a65a9abb5b1d99"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cee4373f4d3ad28f1ab6290684d8e2ebdb9e7a1b74fdc39e4c211995f77bec27"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0713f3adb9d03d49d365b70b84775d0a0d18e4ab08d12bc46baa6132ba78aaf6"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:de7376c29d95d6719048c194a9cf1a1b0393fbe8488a22008610b0361d834ecf"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a51b48f42d9358460b78725283f04bddaf44a9358197b889657deba38f329db"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b295729485b06c1a0683af02a9e42d2caa9db04a373dc38a6a58cdd1e8abddf1"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee803480535c44e7f5ad00788526da7d85525cfefaf8acf8ab9a310000be4b03"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d59d125ffbd6d552765510e3f31ed75ebac2c7470c7274195b9161a32350284"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8cda06946eac330cbe6598f77bb54e690b4ca93f593dee1568ad22b04f347c15"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07afec21bbbbf8a5cc3651aa96b980afe2526e7f048fdfb7f1014d84acc8b6d8"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6b40e8d38afe634559e398cc32b1472f376a4099c75fe6299ae607e404c033b2"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b8dcd239c743aa2f9c22ce674a145e0a25cb1566c495928440a181ca1ccf6719"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:84450ba661fb96e9fd67629b93d2941c871ca86fc38d835d19d4225ff946a631"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:44aeb140295a2f0659e113b31cfe92c9061622cadbc9e2a2f7b8ef6b1e29ef4b"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1db4e7fefefd0f548d73e2e2e041f9df5c59e178b4c72fbac4cc6f535cfb1565"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-win32.whl", hash = "sha256:5726cf76c982532c1863fb64d8c6dd0e4c90b6ece9feb06c9f202417a31f7dd7"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:b197e7094f232959f8f20541ead1d9862ac5ebea1d58e9849c1bf979255dfac9"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:dd4eda173a9fcccb5f2e2bd2a9f423d180194b1bf17cf59e3269899235b2a114"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e9e3c4c9e1ed40ea53acf11e2a386383c3304212c965773704e4603d589343ed"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92a7e36b000bf022ef3dbb9c46bfe2d52c047d5e3f3343f43204263c5addc250"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54b6a92d009cbe2fb11054ba694bc9e284dad30a26757b1e372a1fdddaf21920"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ffd9493de4c922f2a38c2bf62b831dcec90ac673ed1ca182fe11b4d8e9f2a64"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:35c404d74c2926d0287fbd63ed5d27eb911eb9e4a3bb2c6d294f3cfd4a9e0c23"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e7fdd52961feb4c96507aa649550ec2a0d527c086d284749b2f582f2d40a2e0d"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:92db3c28b5b2a273346bebb24857fda45601aef6ae1c011c0a997106581e8a88"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ab973df98fc99ab39080bfb0eb3a925181454d7c3ac8a1e695fddfae696d9e90"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:4b67fdab07fdd3c10bb21edab3cbfe8cf5696f453afce75d815d9d7223fbe88b"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:aa41e526a5d4a9dfcfbab0716c7e8a1b215abd3f3df5a45cf18a12721d31cb5d"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ffc519621dce0c767e96b9c53f09c5d215578e10b02c285809f76509a3931482"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-win32.whl", hash = "sha256:f19c1585933c82098c2a520f8ec1227f20e339e33aca8fa6f956f6691b784e67"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:707b82d19e65c9bd28b81dde95249b07bf9f5b90ebe1ef17d9b57473f8a64b7b"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:dbe03226baf438ac4fda9e2d0715022fd579cb641c4cf639fa40d53b2fe6f3e2"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd9a8bd8900e65504a305bf8ae6fa9fbc66de94178c420791d0293702fce2df7"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8831399554b92b72af5932cdbbd4ddc55c55f631bb13ff8fe4e6536a06c5c51"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a14969b8691f7998e74663b77b4c36c0337cb1df552da83d5c9004a93afdb574"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dcaf7c1524c0542ee2fc82cc8ec337f7a9f7edee2532421ab200d2b920fc97cf"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425c5f215d0eecee9a56cdb703203dda90423247421bf0d67125add85d0c4455"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:d5b054862739d276e09928de37c79ddeec42a6e1bfc55863be96a36ba22926f6"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:f3e73a4255342d4eb26ef6df01e3962e73aa29baa3124a8e824c5d3364a65748"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:2f6c34da58ea9c1a9515621f4d9ac379871a8f21168ba1b5e09d74250de5ad62"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:f09cb5a7bbe1ecae6e87901a2eb23e0256bb524a79ccc53eb0b7629fbe7677c4"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:0099d79bdfcf5c1f0c2c72f91516702ebf8b0b8ddd8905f97a8aecf49712c621"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-win32.whl", hash = "sha256:9c98230f5042f4945f957d006edccc2af1e03ed5e37ce7c373f00a5a4daa6149"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-win_amd64.whl", hash = "sha256:62f60aebecfc7f4b82e3f639a7d1433a20ec32824db2199a11ad4f5e146ef5ee"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:af73657b7a68211996527dbfeffbb0864e043d270580c5aef06dc4b659a4b578"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cab5d0b79d987c67f3b9e9c53f54a61360422a5a0bc075f43cab5621d530c3b6"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9289fd5dddcf57bab41d044f1756550f9e7cf0c8e373b8cdf0ce8773dc4bd417"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b493a043635eb376e50eedf7818f2f322eabbaa974e948bd8bdd29eb7ef2a51"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9fa2566ca27d67c86569e8c85297aaf413ffab85a8960500f12ea34ff98e4c41"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8e538f46104c815be19c975572d74afb53f29650ea2025bbfaef359d2de2f7f"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fd30dc99682dc2c603c2b315bded2799019cea829f8bf57dc6b61efde6611c8"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2006769bd1640bdf4d5641c69a3d63b71b81445473cac5ded39740a226fa88ab"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:dc15e99b2d8a656f8e666854404f1ba54765871104e50c8e9813af8a7db07f12"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:ab2e5bef076f5a235c3774b4f4028a680432cded7cad37bba0fd90d64b187d19"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:4ec9dd88a5b71abfc74e9df5ebe7921c35cbb3b641181a531ca65cdb5e8e4dea"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:43193c5cda5d612f247172016c4bb71251c784d7a4d9314677186a838ad34858"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:aa693779a8b50cd97570e5a0f343538a8dbd3e496fa5dcb87e29406ad0299654"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-win32.whl", hash = "sha256:7706f5850360ac01d80c89bcef1640683cc12ed87f42579dab6c5d3ed6888613"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:c3e446d253bd88f6377260d07c895816ebf33ffffd56c1c792b13bff9c3e1ade"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:980b4f289d1d90ca5efcf07958d3eb38ed9c0b7676bf2831a54d4f66f9c27dfa"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f28f891ccd15c514a0981f3b9db9aa23d62fe1a99997512b0491d2ed323d229a"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8aacce6e2e1edcb6ac625fb0f8c3a9570ccc7bfba1f63419b3769ccf6a00ed0"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd7af3717683bea4c87acd8c0d3d5b44d56120b26fd3f8a692bdd2d5260c620a"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5ff2ed8194587faf56555927b3aa10e6fb69d931e33953943bc4f837dfee2242"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e91f541a85298cf35433bf66f3fab2a4a2cff05c127eeca4af174f6d497f0d4b"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:309a7de0a0ff3040acaebb35ec45d18db4b28232f21998851cfa709eeff49d62"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:285e96d9d53422efc0d7a17c60e59f37fbf3dfa942073f666db4ac71e8d726d0"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5d447056e2ca60382d460a604b6302d8db69476fd2015c81e7c35417cfabe4cd"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:20587d20f557fe189b7947d8e7ec5afa110ccf72a3128d61a2a387c3313f46be"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:130272c698667a982a5d0e626851ceff662565379baf0ff2cc58067b81d4f11d"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:ab22fbd9765e6954bc0bcff24c25ff71dcbfdb185fcdaca49e81bac68fe724d3"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7782afc9b6b42200f7362858f9e73b1f8316afb276d316336c0ec3bd73312742"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-win32.whl", hash = "sha256:2de62e8801ddfff069cd5c504ce3bc9672b23266597d4e4f50eda28846c322f2"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:95c3c157765b031331dd4db3c775e58deaee050a3042fcad72cbc4189d7c8dca"}, - {file = "charset_normalizer-3.4.0-py3-none-any.whl", hash = "sha256:fe9f97feb71aa9896b81973a7bbada8c49501dc73e58a10fcef6663af95e5079"}, - {file = "charset_normalizer-3.4.0.tar.gz", hash = "sha256:223217c3d4f82c3ac5e29032b3f1c2eb0fb591b72161f86d93f5719079dae93e"}, + {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, + {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, ] [[package]] @@ -486,13 +267,13 @@ files = [ [[package]] name = "comm" -version = "0.2.2" +version = "0.2.0" description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." optional = false python-versions = ">=3.8" files = [ - {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, - {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, + {file = "comm-0.2.0-py3-none-any.whl", hash = "sha256:2da8d9ebb8dd7bfc247adaff99f24dce705638a8042b85cb995066793e391001"}, + {file = "comm-0.2.0.tar.gz", hash = "sha256:a517ea2ca28931c7007a7a99c562a0fa5883cfb48963140cf642c41c948498be"}, ] [package.dependencies] @@ -516,39 +297,72 @@ files = [ docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] tests = ["pytest", "pytest-cov", "pytest-xdist"] +[[package]] +name = "cython" +version = "0.29.14" +description = "The Cython compiler for writing C extensions for the Python language." +optional = false +python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "Cython-0.29.14-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:47e5e1502d52ef03387cf9d3b3241007961a84a466e58a3b74028e1dd4957f8c"}, + {file = "Cython-0.29.14-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:1dcdaa319558eb924294a554dcf6c12383ec947acc7e779e8d3622409a7f7d28"}, + {file = "Cython-0.29.14-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:7bc18fc5a170f2c1cef5387a3d997c28942918bbee0f700e73fd2178ee8d474d"}, + {file = "Cython-0.29.14-cp27-cp27m-win32.whl", hash = "sha256:89458b49976b1dee5d89ab4ac943da3717b4292bf624367e862e4ee172fcce99"}, + {file = "Cython-0.29.14-cp27-cp27m-win_amd64.whl", hash = "sha256:c0b24bfe3431b3cb7ced323bca813dbd13aca973a1475b512d3331fd0de8ec60"}, + {file = "Cython-0.29.14-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7f89eff20e4a7a64b55210dac17aea711ed8a3f2e78f2ff784c0e984302583dd"}, + {file = "Cython-0.29.14-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:6c53338c1811f8c6d7f8cb7abd874810b15045e719e8207f957035c9177b4213"}, + {file = "Cython-0.29.14-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:521340844cf388d109ceb61397f3fd5250ccb622a1a8e93559e8de76c80940a9"}, + {file = "Cython-0.29.14-cp34-cp34m-manylinux1_i686.whl", hash = "sha256:75c2dda47dcc3c77449712b1417bb6b89ec3b7b02e18c64262494dceffdf455e"}, + {file = "Cython-0.29.14-cp34-cp34m-manylinux1_x86_64.whl", hash = "sha256:05eb79efc8029d487251c8a2702a909a8ba33c332e06d2f3980866541bd81253"}, + {file = "Cython-0.29.14-cp34-cp34m-win32.whl", hash = "sha256:1fc5bdda28f25fec44e4721677458aa509d743cd350862270309d61aa148d6ff"}, + {file = "Cython-0.29.14-cp34-cp34m-win_amd64.whl", hash = "sha256:0c70e842e52e2f50cc43bad43b5e5bc515f30821a374e544abb0e0746f2350ff"}, + {file = "Cython-0.29.14-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:094d28a34c3fa992ae02aea1edbe6ff89b3cc5870b6ee38b5baeb805dc57b013"}, + {file = "Cython-0.29.14-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:280573a01d9348d44a42d6a9c651d9f7eb1fe9217df72555b2a118f902996a10"}, + {file = "Cython-0.29.14-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:773c5a98e463b52f7e8197254b39b703a5ea1972aef3a94b3b921515d77dd041"}, + {file = "Cython-0.29.14-cp35-cp35m-win32.whl", hash = "sha256:986f871c0fa649b293061236b93782d25c293a8dd8117c7ba05f8a61bdc261ae"}, + {file = "Cython-0.29.14-cp35-cp35m-win_amd64.whl", hash = "sha256:78c3068dcba300d473fef57cdf523e34b37de522f5a494ef9ee1ac9b4b8bbe3f"}, + {file = "Cython-0.29.14-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:f3818e578e687cdb21dc4aa4a3bc6278c656c9c393e9eda14dd04943f478863d"}, + {file = "Cython-0.29.14-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:bb487881608ebd293592553c618f0c83316f4f13a64cb18605b1d2fb9fd3da3e"}, + {file = "Cython-0.29.14-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:03f6bbb380ad0acb744fb06e42996ea217e9d00016ca0ff6f2e7d60f580d0360"}, + {file = "Cython-0.29.14-cp36-cp36m-win32.whl", hash = "sha256:b8ab3ab38afc47d8f4fe629b836243544351cef681b6bdb1dc869028d6fdcbfb"}, + {file = "Cython-0.29.14-cp36-cp36m-win_amd64.whl", hash = "sha256:298ceca7b0f0da4205fcb0b7c9ac9e120e2dafffd5019ba1618e84ef89434b5a"}, + {file = "Cython-0.29.14-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:fe666645493d72712c46e4fbe8bec094b06aec3c337400479e9704439c9d9586"}, + {file = "Cython-0.29.14-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:4074a8bff0040035673cc6dd365a762476d6bff4d03d8ce6904e3e53f9a25dc8"}, + {file = "Cython-0.29.14-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:a14aa436586c41633339415de82a41164691d02d3e661038da533be5d40794a5"}, + {file = "Cython-0.29.14-cp37-cp37m-win32.whl", hash = "sha256:41e7068e95fbf9ec94b41437f989caf9674135e770a39cdb9c00de459bafd1bc"}, + {file = "Cython-0.29.14-cp37-cp37m-win_amd64.whl", hash = "sha256:05e8cfd3a3a6087aec49a1ae08a89171db991956209406d1e5576f9db70ece52"}, + {file = "Cython-0.29.14-cp38-cp38-manylinux1_i686.whl", hash = "sha256:e8fab9911fd2fa8e5af407057cb8bdf87762f983cba483fa3234be20a9a0af77"}, + {file = "Cython-0.29.14-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:d4039bb7f234ad32267c55e72fd49fb56078ea102f9d9d8559f6ec34d4887630"}, + {file = "Cython-0.29.14-cp38-cp38-win32.whl", hash = "sha256:c7894c06205166d360ab2915ae306d1f7403e9ce3d3aaeff4095eaf98e42ce66"}, + {file = "Cython-0.29.14-cp38-cp38-win_amd64.whl", hash = "sha256:a0f495a4fe5278aab278feee35e6102efecde5176a8a74dd28c28e3fc5c8d7c7"}, + {file = "Cython-0.29.14.tar.gz", hash = "sha256:e4d6bb8703d0319eb04b7319b12ea41580df44fd84d83ccda13ea463c6801414"}, +] + [[package]] name = "debugpy" -version = "1.8.7" +version = "1.8.0" description = "An implementation of the Debug Adapter Protocol for Python" optional = false python-versions = ">=3.8" files = [ - {file = "debugpy-1.8.7-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:95fe04a573b8b22896c404365e03f4eda0ce0ba135b7667a1e57bd079793b96b"}, - {file = "debugpy-1.8.7-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:628a11f4b295ffb4141d8242a9bb52b77ad4a63a2ad19217a93be0f77f2c28c9"}, - {file = "debugpy-1.8.7-cp310-cp310-win32.whl", hash = "sha256:85ce9c1d0eebf622f86cc68618ad64bf66c4fc3197d88f74bb695a416837dd55"}, - {file = "debugpy-1.8.7-cp310-cp310-win_amd64.whl", hash = "sha256:29e1571c276d643757ea126d014abda081eb5ea4c851628b33de0c2b6245b037"}, - {file = "debugpy-1.8.7-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:caf528ff9e7308b74a1749c183d6808ffbedbb9fb6af78b033c28974d9b8831f"}, - {file = "debugpy-1.8.7-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cba1d078cf2e1e0b8402e6bda528bf8fda7ccd158c3dba6c012b7897747c41a0"}, - {file = "debugpy-1.8.7-cp311-cp311-win32.whl", hash = "sha256:171899588bcd412151e593bd40d9907133a7622cd6ecdbdb75f89d1551df13c2"}, - {file = "debugpy-1.8.7-cp311-cp311-win_amd64.whl", hash = "sha256:6e1c4ffb0c79f66e89dfd97944f335880f0d50ad29525dc792785384923e2211"}, - {file = "debugpy-1.8.7-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:4d27d842311353ede0ad572600c62e4bcd74f458ee01ab0dd3a1a4457e7e3706"}, - {file = "debugpy-1.8.7-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:703c1fd62ae0356e194f3e7b7a92acd931f71fe81c4b3be2c17a7b8a4b546ec2"}, - {file = "debugpy-1.8.7-cp312-cp312-win32.whl", hash = "sha256:2f729228430ef191c1e4df72a75ac94e9bf77413ce5f3f900018712c9da0aaca"}, - {file = "debugpy-1.8.7-cp312-cp312-win_amd64.whl", hash = "sha256:45c30aaefb3e1975e8a0258f5bbd26cd40cde9bfe71e9e5a7ac82e79bad64e39"}, - {file = "debugpy-1.8.7-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:d050a1ec7e925f514f0f6594a1e522580317da31fbda1af71d1530d6ea1f2b40"}, - {file = "debugpy-1.8.7-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2f4349a28e3228a42958f8ddaa6333d6f8282d5edaea456070e48609c5983b7"}, - {file = "debugpy-1.8.7-cp313-cp313-win32.whl", hash = "sha256:11ad72eb9ddb436afb8337891a986302e14944f0f755fd94e90d0d71e9100bba"}, - {file = "debugpy-1.8.7-cp313-cp313-win_amd64.whl", hash = "sha256:2efb84d6789352d7950b03d7f866e6d180284bc02c7e12cb37b489b7083d81aa"}, - {file = "debugpy-1.8.7-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:4b908291a1d051ef3331484de8e959ef3e66f12b5e610c203b5b75d2725613a7"}, - {file = "debugpy-1.8.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da8df5b89a41f1fd31503b179d0a84a5fdb752dddd5b5388dbd1ae23cda31ce9"}, - {file = "debugpy-1.8.7-cp38-cp38-win32.whl", hash = "sha256:b12515e04720e9e5c2216cc7086d0edadf25d7ab7e3564ec8b4521cf111b4f8c"}, - {file = "debugpy-1.8.7-cp38-cp38-win_amd64.whl", hash = "sha256:93176e7672551cb5281577cdb62c63aadc87ec036f0c6a486f0ded337c504596"}, - {file = "debugpy-1.8.7-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:90d93e4f2db442f8222dec5ec55ccfc8005821028982f1968ebf551d32b28907"}, - {file = "debugpy-1.8.7-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b6db2a370e2700557a976eaadb16243ec9c91bd46f1b3bb15376d7aaa7632c81"}, - {file = "debugpy-1.8.7-cp39-cp39-win32.whl", hash = "sha256:a6cf2510740e0c0b4a40330640e4b454f928c7b99b0c9dbf48b11efba08a8cda"}, - {file = "debugpy-1.8.7-cp39-cp39-win_amd64.whl", hash = "sha256:6a9d9d6d31846d8e34f52987ee0f1a904c7baa4912bf4843ab39dadf9b8f3e0d"}, - {file = "debugpy-1.8.7-py2.py3-none-any.whl", hash = "sha256:57b00de1c8d2c84a61b90880f7e5b6deaf4c312ecbde3a0e8912f2a56c4ac9ae"}, - {file = "debugpy-1.8.7.zip", hash = "sha256:18b8f731ed3e2e1df8e9cdaa23fb1fc9c24e570cd0081625308ec51c82efe42e"}, + {file = "debugpy-1.8.0-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:7fb95ca78f7ac43393cd0e0f2b6deda438ec7c5e47fa5d38553340897d2fbdfb"}, + {file = "debugpy-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef9ab7df0b9a42ed9c878afd3eaaff471fce3fa73df96022e1f5c9f8f8c87ada"}, + {file = "debugpy-1.8.0-cp310-cp310-win32.whl", hash = "sha256:a8b7a2fd27cd9f3553ac112f356ad4ca93338feadd8910277aff71ab24d8775f"}, + {file = "debugpy-1.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:5d9de202f5d42e62f932507ee8b21e30d49aae7e46d5b1dd5c908db1d7068637"}, + {file = "debugpy-1.8.0-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:ef54404365fae8d45cf450d0544ee40cefbcb9cb85ea7afe89a963c27028261e"}, + {file = "debugpy-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60009b132c91951354f54363f8ebdf7457aeb150e84abba5ae251b8e9f29a8a6"}, + {file = "debugpy-1.8.0-cp311-cp311-win32.whl", hash = "sha256:8cd0197141eb9e8a4566794550cfdcdb8b3db0818bdf8c49a8e8f8053e56e38b"}, + {file = "debugpy-1.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:a64093656c4c64dc6a438e11d59369875d200bd5abb8f9b26c1f5f723622e153"}, + {file = "debugpy-1.8.0-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:b05a6b503ed520ad58c8dc682749113d2fd9f41ffd45daec16e558ca884008cd"}, + {file = "debugpy-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c6fb41c98ec51dd010d7ed650accfd07a87fe5e93eca9d5f584d0578f28f35f"}, + {file = "debugpy-1.8.0-cp38-cp38-win32.whl", hash = "sha256:46ab6780159eeabb43c1495d9c84cf85d62975e48b6ec21ee10c95767c0590aa"}, + {file = "debugpy-1.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:bdc5ef99d14b9c0fcb35351b4fbfc06ac0ee576aeab6b2511702e5a648a2e595"}, + {file = "debugpy-1.8.0-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:61eab4a4c8b6125d41a34bad4e5fe3d2cc145caecd63c3fe953be4cc53e65bf8"}, + {file = "debugpy-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:125b9a637e013f9faac0a3d6a82bd17c8b5d2c875fb6b7e2772c5aba6d082332"}, + {file = "debugpy-1.8.0-cp39-cp39-win32.whl", hash = "sha256:57161629133113c97b387382045649a2b985a348f0c9366e22217c87b68b73c6"}, + {file = "debugpy-1.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:e3412f9faa9ade82aa64a50b602544efcba848c91384e9f93497a458767e6926"}, + {file = "debugpy-1.8.0-py2.py3-none-any.whl", hash = "sha256:9c9b0ac1ce2a42888199df1a1906e45e6f3c9555497643a85e0bf2406e3ffbc4"}, + {file = "debugpy-1.8.0.zip", hash = "sha256:12af2c55b419521e33d5fb21bd022df0b5eb267c3e178f1d374a63a2a6bdccd0"}, ] [[package]] @@ -562,265 +376,101 @@ files = [ {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, ] -[[package]] -name = "dgl" -version = "2.4.0" -description = "Deep Graph Library" -optional = false -python-versions = "*" -files = [ - {file = "dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:bf4d4d0d9300e79281e38627844651fe6355946d933e21d6a8828ce7d7539d00"}, -] - -[package.dependencies] -networkx = ">=2.1" -numpy = ">=1.14.0" -packaging = "*" -pandas = "*" -psutil = ">=5.8.0" -pydantic = ">=2.0" -pyyaml = "*" -requests = ">=2.19.0" -scipy = ">=1.1.0" -torch = "<=2.4.0" -tqdm = "*" - -[package.source] -type = "url" -url = "https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl" - [[package]] name = "executing" -version = "2.1.0" +version = "2.0.1" description = "Get the currently executing AST node of a frame, and other information" optional = false -python-versions = ">=3.8" +python-versions = ">=3.5" files = [ - {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, - {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, + {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, + {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, ] [package.extras] tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] -[[package]] -name = "filelock" -version = "3.16.1" -description = "A platform independent file lock." -optional = false -python-versions = ">=3.8" -files = [ - {file = "filelock-3.16.1-py3-none-any.whl", hash = "sha256:2082e5703d51fbf98ea75855d9d5527e33d8ff23099bec374a134febee6946b0"}, - {file = "filelock-3.16.1.tar.gz", hash = "sha256:c249fbfcd5db47e5e2d6d62198e565475ee65e4831e2561c8e313fa7eb961435"}, -] - -[package.extras] -docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4.1)"] -testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.2)", "pytest (>=8.3.3)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.4)"] -typing = ["typing-extensions (>=4.12.2)"] - [[package]] name = "flatbuffers" -version = "2.0.7" +version = "1.12" description = "The FlatBuffers serialization format for Python" optional = false python-versions = "*" files = [ - {file = "flatbuffers-2.0.7-py2.py3-none-any.whl", hash = "sha256:71e135d533be527192819aaab757c5e3d109cb10fbb01e687f6bdb7a61ad39d1"}, - {file = "flatbuffers-2.0.7.tar.gz", hash = "sha256:0ae7d69c5b82bf41962ca5fde9cc43033bc9501311d975fd5a25e8a7d29c1245"}, + {file = "flatbuffers-1.12-py2.py3-none-any.whl", hash = "sha256:9e9ef47fa92625c4721036e7c4124182668dc6021d9e7c73704edd395648deb9"}, + {file = "flatbuffers-1.12.tar.gz", hash = "sha256:63bb9a722d5e373701913e226135b28a6f6ac200d5cc7b4d919fa38d73b44610"}, ] -[[package]] -name = "frozenlist" -version = "1.4.1" -description = "A list-like structure which implements collections.abc.MutableSequence" -optional = false -python-versions = ">=3.8" -files = [ - {file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:f9aa1878d1083b276b0196f2dfbe00c9b7e752475ed3b682025ff20c1c1f51ac"}, - {file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:29acab3f66f0f24674b7dc4736477bcd4bc3ad4b896f5f45379a67bce8b96868"}, - {file = "frozenlist-1.4.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:74fb4bee6880b529a0c6560885fce4dc95936920f9f20f53d99a213f7bf66776"}, - {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:590344787a90ae57d62511dd7c736ed56b428f04cd8c161fcc5e7232c130c69a"}, - {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:068b63f23b17df8569b7fdca5517edef76171cf3897eb68beb01341131fbd2ad"}, - {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c849d495bf5154cd8da18a9eb15db127d4dba2968d88831aff6f0331ea9bd4c"}, - {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9750cc7fe1ae3b1611bb8cfc3f9ec11d532244235d75901fb6b8e42ce9229dfe"}, - {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9b2de4cf0cdd5bd2dee4c4f63a653c61d2408055ab77b151c1957f221cabf2a"}, - {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0633c8d5337cb5c77acbccc6357ac49a1770b8c487e5b3505c57b949b4b82e98"}, - {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:27657df69e8801be6c3638054e202a135c7f299267f1a55ed3a598934f6c0d75"}, - {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:f9a3ea26252bd92f570600098783d1371354d89d5f6b7dfd87359d669f2109b5"}, - {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:4f57dab5fe3407b6c0c1cc907ac98e8a189f9e418f3b6e54d65a718aaafe3950"}, - {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e02a0e11cf6597299b9f3bbd3f93d79217cb90cfd1411aec33848b13f5c656cc"}, - {file = "frozenlist-1.4.1-cp310-cp310-win32.whl", hash = "sha256:a828c57f00f729620a442881cc60e57cfcec6842ba38e1b19fd3e47ac0ff8dc1"}, - {file = "frozenlist-1.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:f56e2333dda1fe0f909e7cc59f021eba0d2307bc6f012a1ccf2beca6ba362439"}, - {file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a0cb6f11204443f27a1628b0e460f37fb30f624be6051d490fa7d7e26d4af3d0"}, - {file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b46c8ae3a8f1f41a0d2ef350c0b6e65822d80772fe46b653ab6b6274f61d4a49"}, - {file = "frozenlist-1.4.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fde5bd59ab5357e3853313127f4d3565fc7dad314a74d7b5d43c22c6a5ed2ced"}, - {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:722e1124aec435320ae01ee3ac7bec11a5d47f25d0ed6328f2273d287bc3abb0"}, - {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2471c201b70d58a0f0c1f91261542a03d9a5e088ed3dc6c160d614c01649c106"}, - {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c757a9dd70d72b076d6f68efdbb9bc943665ae954dad2801b874c8c69e185068"}, - {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f146e0911cb2f1da549fc58fc7bcd2b836a44b79ef871980d605ec392ff6b0d2"}, - {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f9c515e7914626b2a2e1e311794b4c35720a0be87af52b79ff8e1429fc25f19"}, - {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c302220494f5c1ebeb0912ea782bcd5e2f8308037b3c7553fad0e48ebad6ad82"}, - {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:442acde1e068288a4ba7acfe05f5f343e19fac87bfc96d89eb886b0363e977ec"}, - {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:1b280e6507ea8a4fa0c0a7150b4e526a8d113989e28eaaef946cc77ffd7efc0a"}, - {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:fe1a06da377e3a1062ae5fe0926e12b84eceb8a50b350ddca72dc85015873f74"}, - {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:db9e724bebd621d9beca794f2a4ff1d26eed5965b004a97f1f1685a173b869c2"}, - {file = "frozenlist-1.4.1-cp311-cp311-win32.whl", hash = "sha256:e774d53b1a477a67838a904131c4b0eef6b3d8a651f8b138b04f748fccfefe17"}, - {file = "frozenlist-1.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:fb3c2db03683b5767dedb5769b8a40ebb47d6f7f45b1b3e3b4b51ec8ad9d9825"}, - {file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1979bc0aeb89b33b588c51c54ab0161791149f2461ea7c7c946d95d5f93b56ae"}, - {file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cc7b01b3754ea68a62bd77ce6020afaffb44a590c2289089289363472d13aedb"}, - {file = "frozenlist-1.4.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c9c92be9fd329ac801cc420e08452b70e7aeab94ea4233a4804f0915c14eba9b"}, - {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c3894db91f5a489fc8fa6a9991820f368f0b3cbdb9cd8849547ccfab3392d86"}, - {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba60bb19387e13597fb059f32cd4d59445d7b18b69a745b8f8e5db0346f33480"}, - {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8aefbba5f69d42246543407ed2461db31006b0f76c4e32dfd6f42215a2c41d09"}, - {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:780d3a35680ced9ce682fbcf4cb9c2bad3136eeff760ab33707b71db84664e3a"}, - {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9acbb16f06fe7f52f441bb6f413ebae6c37baa6ef9edd49cdd567216da8600cd"}, - {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:23b701e65c7b36e4bf15546a89279bd4d8675faabc287d06bbcfac7d3c33e1e6"}, - {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:3e0153a805a98f5ada7e09826255ba99fb4f7524bb81bf6b47fb702666484ae1"}, - {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:dd9b1baec094d91bf36ec729445f7769d0d0cf6b64d04d86e45baf89e2b9059b"}, - {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:1a4471094e146b6790f61b98616ab8e44f72661879cc63fa1049d13ef711e71e"}, - {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5667ed53d68d91920defdf4035d1cdaa3c3121dc0b113255124bcfada1cfa1b8"}, - {file = "frozenlist-1.4.1-cp312-cp312-win32.whl", hash = "sha256:beee944ae828747fd7cb216a70f120767fc9f4f00bacae8543c14a6831673f89"}, - {file = "frozenlist-1.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:64536573d0a2cb6e625cf309984e2d873979709f2cf22839bf2d61790b448ad5"}, - {file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:20b51fa3f588ff2fe658663db52a41a4f7aa6c04f6201449c6c7c476bd255c0d"}, - {file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:410478a0c562d1a5bcc2f7ea448359fcb050ed48b3c6f6f4f18c313a9bdb1826"}, - {file = "frozenlist-1.4.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c6321c9efe29975232da3bd0af0ad216800a47e93d763ce64f291917a381b8eb"}, - {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48f6a4533887e189dae092f1cf981f2e3885175f7a0f33c91fb5b7b682b6bab6"}, - {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6eb73fa5426ea69ee0e012fb59cdc76a15b1283d6e32e4f8dc4482ec67d1194d"}, - {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbeb989b5cc29e8daf7f976b421c220f1b8c731cbf22b9130d8815418ea45887"}, - {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:32453c1de775c889eb4e22f1197fe3bdfe457d16476ea407472b9442e6295f7a"}, - {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693945278a31f2086d9bf3df0fe8254bbeaef1fe71e1351c3bd730aa7d31c41b"}, - {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:1d0ce09d36d53bbbe566fe296965b23b961764c0bcf3ce2fa45f463745c04701"}, - {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3a670dc61eb0d0eb7080890c13de3066790f9049b47b0de04007090807c776b0"}, - {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:dca69045298ce5c11fd539682cff879cc1e664c245d1c64da929813e54241d11"}, - {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:a06339f38e9ed3a64e4c4e43aec7f59084033647f908e4259d279a52d3757d09"}, - {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b7f2f9f912dca3934c1baec2e4585a674ef16fe00218d833856408c48d5beee7"}, - {file = "frozenlist-1.4.1-cp38-cp38-win32.whl", hash = "sha256:e7004be74cbb7d9f34553a5ce5fb08be14fb33bc86f332fb71cbe5216362a497"}, - {file = "frozenlist-1.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:5a7d70357e7cee13f470c7883a063aae5fe209a493c57d86eb7f5a6f910fae09"}, - {file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:bfa4a17e17ce9abf47a74ae02f32d014c5e9404b6d9ac7f729e01562bbee601e"}, - {file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b7e3ed87d4138356775346e6845cccbe66cd9e207f3cd11d2f0b9fd13681359d"}, - {file = "frozenlist-1.4.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c99169d4ff810155ca50b4da3b075cbde79752443117d89429595c2e8e37fed8"}, - {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edb678da49d9f72c9f6c609fbe41a5dfb9a9282f9e6a2253d5a91e0fc382d7c0"}, - {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6db4667b187a6742b33afbbaf05a7bc551ffcf1ced0000a571aedbb4aa42fc7b"}, - {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55fdc093b5a3cb41d420884cdaf37a1e74c3c37a31f46e66286d9145d2063bd0"}, - {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82e8211d69a4f4bc360ea22cd6555f8e61a1bd211d1d5d39d3d228b48c83a897"}, - {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89aa2c2eeb20957be2d950b85974b30a01a762f3308cd02bb15e1ad632e22dc7"}, - {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9d3e0c25a2350080e9319724dede4f31f43a6c9779be48021a7f4ebde8b2d742"}, - {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7268252af60904bf52c26173cbadc3a071cece75f873705419c8681f24d3edea"}, - {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:0c250a29735d4f15321007fb02865f0e6b6a41a6b88f1f523ca1596ab5f50bd5"}, - {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:96ec70beabbd3b10e8bfe52616a13561e58fe84c0101dd031dc78f250d5128b9"}, - {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:23b2d7679b73fe0e5a4560b672a39f98dfc6f60df63823b0a9970525325b95f6"}, - {file = "frozenlist-1.4.1-cp39-cp39-win32.whl", hash = "sha256:a7496bfe1da7fb1a4e1cc23bb67c58fab69311cc7d32b5a99c2007b4b2a0e932"}, - {file = "frozenlist-1.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:e6a20a581f9ce92d389a8c7d7c3dd47c81fd5d6e655c8dddf341e14aa48659d0"}, - {file = "frozenlist-1.4.1-py3-none-any.whl", hash = "sha256:04ced3e6a46b4cfffe20f9ae482818e34eba9b5fb0ce4056e4cc9b6e212d09b7"}, - {file = "frozenlist-1.4.1.tar.gz", hash = "sha256:c037a86e8513059a2613aaba4d817bb90b9d9b6b69aace3ce9c877e8c8ed402b"}, -] - -[[package]] -name = "fsspec" -version = "2024.9.0" -description = "File-system specification" -optional = false -python-versions = ">=3.8" -files = [ - {file = "fsspec-2024.9.0-py3-none-any.whl", hash = "sha256:a0947d552d8a6efa72cc2c730b12c41d043509156966cca4fb157b0f2a0c574b"}, - {file = "fsspec-2024.9.0.tar.gz", hash = "sha256:4b0afb90c2f21832df142f292649035d80b421f60a9e1c027802e5a0da2b04e8"}, -] - -[package.extras] -abfs = ["adlfs"] -adl = ["adlfs"] -arrow = ["pyarrow (>=1)"] -dask = ["dask", "distributed"] -dev = ["pre-commit", "ruff"] -doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] -dropbox = ["dropbox", "dropboxdrivefs", "requests"] -full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] -fuse = ["fusepy"] -gcs = ["gcsfs"] -git = ["pygit2"] -github = ["requests"] -gs = ["gcsfs"] -gui = ["panel"] -hdfs = ["pyarrow (>=1)"] -http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)"] -libarchive = ["libarchive-c"] -oci = ["ocifs"] -s3 = ["s3fs"] -sftp = ["paramiko"] -smb = ["smbprotocol"] -ssh = ["paramiko"] -test = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "numpy", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "requests"] -test-downstream = ["aiobotocore (>=2.5.4,<3.0.0)", "dask-expr", "dask[dataframe,test]", "moto[server] (>4,<5)", "pytest-timeout", "xarray"] -test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"] -tqdm = ["tqdm"] - [[package]] name = "gast" -version = "0.4.0" +version = "0.3.3" description = "Python AST that abstracts the underlying Python version" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ - {file = "gast-0.4.0-py3-none-any.whl", hash = "sha256:b7adcdd5adbebf1adf17378da5ba3f543684dbec47b1cda1f3997e573cd542c4"}, - {file = "gast-0.4.0.tar.gz", hash = "sha256:40feb7b8b8434785585ab224d1568b857edb18297e5a3047f1ba012bc83b42c1"}, + {file = "gast-0.3.3-py2.py3-none-any.whl", hash = "sha256:8f46f5be57ae6889a4e16e2ca113b1703ef17f2b0abceb83793eaba9e1351a45"}, + {file = "gast-0.3.3.tar.gz", hash = "sha256:b881ef288a49aa81440d2c5eb8aeefd4c2bb8993d5f50edae7413a85bfdb3b57"}, ] [[package]] name = "gensim" -version = "4.3.3" +version = "3.8.3" description = "Python framework for fast Vector Space Modelling" optional = false -python-versions = ">=3.8" +python-versions = "*" files = [ - {file = "gensim-4.3.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4e72840adfbea35c5804fd559bc0cb6bc9f439926220a37d852b7ce76eb325c1"}, - {file = "gensim-4.3.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4019263c9d9afae7c669f880c17e09461e77a71afce04ed4d79cf71a4cad2848"}, - {file = "gensim-4.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dea62d3e2ada547687bde6cbba37efa50b534db77e9d44fd5802676bb072c9d9"}, - {file = "gensim-4.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fac93ef5e44982defef9d3c1e4cd00245506b8a29cec19ec5e00f0221b8144c"}, - {file = "gensim-4.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:7c3409f755fb8d62da99cea65e7a40a99d21f8fd86443a3aaf2d90eb68995021"}, - {file = "gensim-4.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:99e7b70352aecc6c1674dde82b75f453e7a5d1cc71ac1cfbc460bf1fe20501b7"}, - {file = "gensim-4.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:32a4cac3f3c38af2069eab9524609fc92ebaeb2692b7280cfda365a3517a280a"}, - {file = "gensim-4.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c071b4329ed1be02446eb7ef637b94c68cf0080c15c57fbcde667fce2e49c3fe"}, - {file = "gensim-4.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d662bf96e3d741b6ab61a54be842a7cbf5e45193008b2f4225c758cafd7f9cdc"}, - {file = "gensim-4.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:a54bd53a0e6f991abb837f126663353657270e75be53287e8a568ada0b35b1b0"}, - {file = "gensim-4.3.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9a65ed1a8c1fc83890b4eb2a45ae2b32e82a0209c970c8c74694d0374c2415cb"}, - {file = "gensim-4.3.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4db485e08a0287e0fd6a029d89b90913d1df38f1dcd34cd2ab758873ba9255f3"}, - {file = "gensim-4.3.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7198987116373ab99f034b292a04ac841531d12b56345851c98b40a3fcd93a85"}, - {file = "gensim-4.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6237a50de4da7a037b19b2b6c430b6537243dcdedebf94afeb089e951953e601"}, - {file = "gensim-4.3.3-cp312-cp312-win_amd64.whl", hash = "sha256:c910c2d5a71f532273166a3a82762959973f0513b221a495fa5a2a07652ee66d"}, - {file = "gensim-4.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d7efa5e35d3f0ec02e6e8343b623c2c863be99e8c26866cf0bebd24fb10198c"}, - {file = "gensim-4.3.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2e8eaf5ef576f4d45e98cf87e7edda9afb469dff954a923402dc1ffc35195901"}, - {file = "gensim-4.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9161e52a6ec2a0580df66e9fac4ff7fc43efdc40674fbd4dd9e914796cc68bc3"}, - {file = "gensim-4.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a200d6ac522cdf91e6048e1a368318c6b1b6e0c79009dfd408345ea2b9d3c096"}, - {file = "gensim-4.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:065547124a93948926b88cb854e1c09750e9a4c7be92f55858159aa8a23359c3"}, - {file = "gensim-4.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688a13b9bba839fedc7f3da6806d5701a756ed940839702ba6d7f494e917baef"}, - {file = "gensim-4.3.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c560d28133cca58078221d60fce346f98f2c5e93d2ad42942f32c0d60903f65b"}, - {file = "gensim-4.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:832311f0c420c0841c98b9e6cc4d83ea362add6db917bf2d646de4bed48a29f7"}, - {file = "gensim-4.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1049f5bc2a84b21a1cb9976741826c0ebf25cfdff4a888361db4b4a697d99f0d"}, - {file = "gensim-4.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:e99b236b6638a30d7f878e2e21a94dab2f6d4b4fd3c242f44dca1341940cb0cb"}, - {file = "gensim-4.3.3.tar.gz", hash = "sha256:84852076a6a3d88d7dac5be245e24c21c3b819b565e14c1b61fa3e5ee76dcf57"}, + {file = "gensim-3.8.3-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:61eed1d6b5fbe6dda0586ea447ebc2dc7890a7f70c2ed953d5abc3fe3cfb94bb"}, + {file = "gensim-3.8.3-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:3af62709369331c85552fd26caa21504baa64accc426dc094172f5c688750013"}, + {file = "gensim-3.8.3-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:8ff471921b3b10ffb3ae6cbb598dd9c07d9dc030dee5aa167e7682b549c42f87"}, + {file = "gensim-3.8.3-cp27-cp27m-win32.whl", hash = "sha256:440700e29b494bc2e1d52e14b69a821f46ab09ecf85cf36c8988f18e1d6c7a8b"}, + {file = "gensim-3.8.3-cp27-cp27m-win_amd64.whl", hash = "sha256:f8ea67bf8c47ee55cb1b32c97fa1474b7d6d22959dd8097c019a5d9c9df34f5f"}, + {file = "gensim-3.8.3-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7a90549dfc8ee3822fcad6da957de07d927e4e90ef42b3699543dee35ab2da13"}, + {file = "gensim-3.8.3-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:7629b33cf35f672efdd5269381f7e301958ee2638f27dfc63b80c5bfeaa827d3"}, + {file = "gensim-3.8.3-cp35-cp35m-macosx_10_9_intel.whl", hash = "sha256:6711b6d3a0007530ee7de7adc30a4c48a1d26ec6312ac50e1d1e0a1d54f9de5b"}, + {file = "gensim-3.8.3-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:ef2ddeceff482aee17c1e185f63bf027c8de8f595fdd9fd2d2503de96008f3b7"}, + {file = "gensim-3.8.3-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:41dcf6ecdc9acc657157967c791b8cbaba90ee6391f64efd28339b72f5e0c327"}, + {file = "gensim-3.8.3-cp35-cp35m-win32.whl", hash = "sha256:685a7657278161628821c8f873c5d7d2ffc0c28866648e39f76b450e4c7d5390"}, + {file = "gensim-3.8.3-cp35-cp35m-win_amd64.whl", hash = "sha256:b61a7c841a752c84b685674aa0d610289faad38795b325176481abe19b487e98"}, + {file = "gensim-3.8.3-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a61179df454a0d4b06a111c4ede0536f61c8121b4c0d0d02d23560a2fd4b3aff"}, + {file = "gensim-3.8.3-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:cc387d0d8bddbf3609ab95b3453296e4c9ff92c35e9799a17d86b1571d77a5fc"}, + {file = "gensim-3.8.3-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:b36e6330471061cfd78aad751e24c6b4f56d575697af0fbab42655128927d296"}, + {file = "gensim-3.8.3-cp36-cp36m-win32.whl", hash = "sha256:1e3d66c2eec494376fc599701d9c2868549aed6e93e47177e39217f0188e2d88"}, + {file = "gensim-3.8.3-cp36-cp36m-win_amd64.whl", hash = "sha256:91fa62d61b21f1878f140b10520f9de4a26a52672fbe407edfc7e09ca2eff235"}, + {file = "gensim-3.8.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:637fc5969f3cef4b7c8fd3e78e31ef09565c5566d5ceabf076b4170eb6444a80"}, + {file = "gensim-3.8.3-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:22f45fd239cacd0e3715ac447a2c8a5eea02e730ec1f701c55b359e9298e63a8"}, + {file = "gensim-3.8.3-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:d79370f78e9013b9d1e867c85ecc678d46a7ae0f01a8ca29e8f4291e5373b170"}, + {file = "gensim-3.8.3-cp37-cp37m-win32.whl", hash = "sha256:9c214b341f5304b906c79844e2787c13b46505df9dc70afca79a9a7dc0894478"}, + {file = "gensim-3.8.3-cp37-cp37m-win_amd64.whl", hash = "sha256:fe98277a7b3b4987b40c928056bbaae1d0715022cf27bba89d05cd0d4fe51a84"}, + {file = "gensim-3.8.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a47903d104469a7a8b6f22ad5ef74681b19c4f4b71ff2c2893271b53161a43e4"}, + {file = "gensim-3.8.3-cp38-cp38-manylinux1_i686.whl", hash = "sha256:05bfc02e102a34c9c795095b688b1b4aaa2529c624821368c9c3ea6a16536f77"}, + {file = "gensim-3.8.3-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:a8807ebf324dd11e1298a91a92d6e57c7bdabb91d0d5240bf1efa0c0eacd86f0"}, + {file = "gensim-3.8.3-cp38-cp38-win32.whl", hash = "sha256:90115d12ee545c21cc75521ef1bb3dd66aae8a378e9c2eb029c9f22df173c125"}, + {file = "gensim-3.8.3-cp38-cp38-win_amd64.whl", hash = "sha256:4e34cf2e50f3eab3e303da46089ea4972567bf216e28f7535ada155770784ac8"}, + {file = "gensim-3.8.3.tar.gz", hash = "sha256:786adb0571f75114e9c5f7a31dd2e6eb39a9791f22c8757621545e2ded3ea367"}, ] [package.dependencies] -numpy = ">=1.18.5,<2.0" -scipy = ">=1.7.0,<1.14.0" +Cython = "0.29.14" +numpy = ">=1.11.3" +scipy = ">=0.18.1" +six = ">=1.5.0" smart-open = ">=1.8.1" [package.extras] distributed = ["Pyro4 (>=4.27)"] -docs = ["POT", "Pyro4", "Pyro4 (>=4.27)", "annoy", "matplotlib", "memory-profiler", "nltk", "pandas", "pytest", "pytest-cov", "scikit-learn", "sphinx (==5.1.1)", "sphinx-gallery (==0.11.1)", "sphinxcontrib-napoleon (==0.7)", "sphinxcontrib.programoutput (==0.17)", "statsmodels", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] -test = ["POT", "pytest", "pytest-cov", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] -test-win = ["POT", "pytest", "pytest-cov", "testfixtures"] +docs = ["Morfessor (==2.0.2a4)", "Pyro4", "Pyro4 (>=4.27)", "annoy", "cython", "matplotlib", "memory-profiler", "mock", "nltk", "nmslib", "pandas", "plotly", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "sphinx (<=2.4.4)", "sphinx-gallery", "sphinxcontrib-napoleon", "sphinxcontrib.programoutput", "statsmodels", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test-win = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] [[package]] name = "google-auth" -version = "2.35.0" +version = "2.25.2" description = "Google Authentication Library" optional = false python-versions = ">=3.7" files = [ - {file = "google_auth-2.35.0-py2.py3-none-any.whl", hash = "sha256:25df55f327ef021de8be50bad0dfd4a916ad0de96da86cd05661c9297723ad3f"}, - {file = "google_auth-2.35.0.tar.gz", hash = "sha256:f4c64ed4e01e8e8b646ef34c018f8bf3338df0c8e37d8b3bba40e7f574a3278a"}, + {file = "google-auth-2.25.2.tar.gz", hash = "sha256:42f707937feb4f5e5a39e6c4f343a17300a459aaf03141457ba505812841cc40"}, + {file = "google_auth-2.25.2-py2.py3-none-any.whl", hash = "sha256:473a8dfd0135f75bb79d878436e568f2695dce456764bf3a02b6f8c540b1d256"}, ] [package.dependencies] @@ -830,24 +480,24 @@ rsa = ">=3.1.4,<5" [package.extras] aiohttp = ["aiohttp (>=3.6.2,<4.0.0.dev0)", "requests (>=2.20.0,<3.0.0.dev0)"] -enterprise-cert = ["cryptography", "pyopenssl"] +enterprise-cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"] pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] reauth = ["pyu2f (>=0.1.5)"] requests = ["requests (>=2.20.0,<3.0.0.dev0)"] [[package]] name = "google-auth-oauthlib" -version = "1.0.0" +version = "0.4.6" description = "Google Authentication Library" optional = false python-versions = ">=3.6" files = [ - {file = "google-auth-oauthlib-1.0.0.tar.gz", hash = "sha256:e375064964820b47221a7e1b7ee1fd77051b6323c3f9e3e19785f78ab67ecfc5"}, - {file = "google_auth_oauthlib-1.0.0-py2.py3-none-any.whl", hash = "sha256:95880ca704928c300f48194d1770cf5b1462835b6e49db61445a520f793fd5fb"}, + {file = "google-auth-oauthlib-0.4.6.tar.gz", hash = "sha256:a90a072f6993f2c327067bf65270046384cda5a8ecb20b94ea9a687f1f233a7a"}, + {file = "google_auth_oauthlib-0.4.6-py2.py3-none-any.whl", hash = "sha256:3f2a6e802eebbb6fb736a370fbf3b055edcb6b52878bf2f26330b5e041316c73"}, ] [package.dependencies] -google-auth = ">=2.15.0" +google-auth = ">=1.0.0" requests-oauthlib = ">=0.7.0" [package.extras] @@ -870,150 +520,139 @@ six = "*" [[package]] name = "grpcio" -version = "1.66.2" +version = "1.32.0" description = "HTTP/2-based RPC framework" optional = false -python-versions = ">=3.8" +python-versions = "*" files = [ - {file = "grpcio-1.66.2-cp310-cp310-linux_armv7l.whl", hash = "sha256:fe96281713168a3270878255983d2cb1a97e034325c8c2c25169a69289d3ecfa"}, - {file = "grpcio-1.66.2-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:73fc8f8b9b5c4a03e802b3cd0c18b2b06b410d3c1dcbef989fdeb943bd44aff7"}, - {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:03b0b307ba26fae695e067b94cbb014e27390f8bc5ac7a3a39b7723fed085604"}, - {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d69ce1f324dc2d71e40c9261d3fdbe7d4c9d60f332069ff9b2a4d8a257c7b2b"}, - {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05bc2ceadc2529ab0b227b1310d249d95d9001cd106aa4d31e8871ad3c428d73"}, - {file = "grpcio-1.66.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8ac475e8da31484efa25abb774674d837b343afb78bb3bcdef10f81a93e3d6bf"}, - {file = "grpcio-1.66.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0be4e0490c28da5377283861bed2941d1d20ec017ca397a5df4394d1c31a9b50"}, - {file = "grpcio-1.66.2-cp310-cp310-win32.whl", hash = "sha256:4e504572433f4e72b12394977679161d495c4c9581ba34a88d843eaf0f2fbd39"}, - {file = "grpcio-1.66.2-cp310-cp310-win_amd64.whl", hash = "sha256:2018b053aa15782db2541ca01a7edb56a0bf18c77efed975392583725974b249"}, - {file = "grpcio-1.66.2-cp311-cp311-linux_armv7l.whl", hash = "sha256:2335c58560a9e92ac58ff2bc5649952f9b37d0735608242973c7a8b94a6437d8"}, - {file = "grpcio-1.66.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:45a3d462826f4868b442a6b8fdbe8b87b45eb4f5b5308168c156b21eca43f61c"}, - {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:a9539f01cb04950fd4b5ab458e64a15f84c2acc273670072abe49a3f29bbad54"}, - {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ce89f5876662f146d4c1f695dda29d4433a5d01c8681fbd2539afff535da14d4"}, - {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d25a14af966438cddf498b2e338f88d1c9706f3493b1d73b93f695c99c5f0e2a"}, - {file = "grpcio-1.66.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6001e575b8bbd89eee11960bb640b6da6ae110cf08113a075f1e2051cc596cae"}, - {file = "grpcio-1.66.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4ea1d062c9230278793820146c95d038dc0f468cbdd172eec3363e42ff1c7d01"}, - {file = "grpcio-1.66.2-cp311-cp311-win32.whl", hash = "sha256:38b68498ff579a3b1ee8f93a05eb48dc2595795f2f62716e797dc24774c1aaa8"}, - {file = "grpcio-1.66.2-cp311-cp311-win_amd64.whl", hash = "sha256:6851de821249340bdb100df5eacfecfc4e6075fa85c6df7ee0eb213170ec8e5d"}, - {file = "grpcio-1.66.2-cp312-cp312-linux_armv7l.whl", hash = "sha256:802d84fd3d50614170649853d121baaaa305de7b65b3e01759247e768d691ddf"}, - {file = "grpcio-1.66.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:80fd702ba7e432994df208f27514280b4b5c6843e12a48759c9255679ad38db8"}, - {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:12fda97ffae55e6526825daf25ad0fa37483685952b5d0f910d6405c87e3adb6"}, - {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:950da58d7d80abd0ea68757769c9db0a95b31163e53e5bb60438d263f4bed7b7"}, - {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e636ce23273683b00410f1971d209bf3689238cf5538d960adc3cdfe80dd0dbd"}, - {file = "grpcio-1.66.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:a917d26e0fe980b0ac7bfcc1a3c4ad6a9a4612c911d33efb55ed7833c749b0ee"}, - {file = "grpcio-1.66.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:49f0ca7ae850f59f828a723a9064cadbed90f1ece179d375966546499b8a2c9c"}, - {file = "grpcio-1.66.2-cp312-cp312-win32.whl", hash = "sha256:31fd163105464797a72d901a06472860845ac157389e10f12631025b3e4d0453"}, - {file = "grpcio-1.66.2-cp312-cp312-win_amd64.whl", hash = "sha256:ff1f7882e56c40b0d33c4922c15dfa30612f05fb785074a012f7cda74d1c3679"}, - {file = "grpcio-1.66.2-cp313-cp313-linux_armv7l.whl", hash = "sha256:3b00efc473b20d8bf83e0e1ae661b98951ca56111feb9b9611df8efc4fe5d55d"}, - {file = "grpcio-1.66.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1caa38fb22a8578ab8393da99d4b8641e3a80abc8fd52646f1ecc92bcb8dee34"}, - {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_aarch64.whl", hash = "sha256:c408f5ef75cfffa113cacd8b0c0e3611cbfd47701ca3cdc090594109b9fcbaed"}, - {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c806852deaedee9ce8280fe98955c9103f62912a5b2d5ee7e3eaa284a6d8d8e7"}, - {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f145cc21836c332c67baa6fc81099d1d27e266401565bf481948010d6ea32d46"}, - {file = "grpcio-1.66.2-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:73e3b425c1e155730273f73e419de3074aa5c5e936771ee0e4af0814631fb30a"}, - {file = "grpcio-1.66.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:9c509a4f78114cbc5f0740eb3d7a74985fd2eff022971bc9bc31f8bc93e66a3b"}, - {file = "grpcio-1.66.2-cp313-cp313-win32.whl", hash = "sha256:20657d6b8cfed7db5e11b62ff7dfe2e12064ea78e93f1434d61888834bc86d75"}, - {file = "grpcio-1.66.2-cp313-cp313-win_amd64.whl", hash = "sha256:fb70487c95786e345af5e854ffec8cb8cc781bcc5df7930c4fbb7feaa72e1cdf"}, - {file = "grpcio-1.66.2-cp38-cp38-linux_armv7l.whl", hash = "sha256:a18e20d8321c6400185b4263e27982488cb5cdd62da69147087a76a24ef4e7e3"}, - {file = "grpcio-1.66.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:02697eb4a5cbe5a9639f57323b4c37bcb3ab2d48cec5da3dc2f13334d72790dd"}, - {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:99a641995a6bc4287a6315989ee591ff58507aa1cbe4c2e70d88411c4dcc0839"}, - {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ed71e81782966ffead60268bbda31ea3f725ebf8aa73634d5dda44f2cf3fb9c"}, - {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbd27c24a4cc5e195a7f56cfd9312e366d5d61b86e36d46bbe538457ea6eb8dd"}, - {file = "grpcio-1.66.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d9a9724a156c8ec6a379869b23ba3323b7ea3600851c91489b871e375f710bc8"}, - {file = "grpcio-1.66.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d8d4732cc5052e92cea2f78b233c2e2a52998ac40cd651f40e398893ad0d06ec"}, - {file = "grpcio-1.66.2-cp38-cp38-win32.whl", hash = "sha256:7b2c86457145ce14c38e5bf6bdc19ef88e66c5fee2c3d83285c5aef026ba93b3"}, - {file = "grpcio-1.66.2-cp38-cp38-win_amd64.whl", hash = "sha256:e88264caad6d8d00e7913996030bac8ad5f26b7411495848cc218bd3a9040b6c"}, - {file = "grpcio-1.66.2-cp39-cp39-linux_armv7l.whl", hash = "sha256:c400ba5675b67025c8a9f48aa846f12a39cf0c44df5cd060e23fda5b30e9359d"}, - {file = "grpcio-1.66.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:66a0cd8ba6512b401d7ed46bb03f4ee455839957f28b8d61e7708056a806ba6a"}, - {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:06de8ec0bd71be123eec15b0e0d457474931c2c407869b6c349bd9bed4adbac3"}, - {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb57870449dfcfac428afbb5a877829fcb0d6db9d9baa1148705739e9083880e"}, - {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b672abf90a964bfde2d0ecbce30f2329a47498ba75ce6f4da35a2f4532b7acbc"}, - {file = "grpcio-1.66.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:ad2efdbe90c73b0434cbe64ed372e12414ad03c06262279b104a029d1889d13e"}, - {file = "grpcio-1.66.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9c3a99c519f4638e700e9e3f83952e27e2ea10873eecd7935823dab0c1c9250e"}, - {file = "grpcio-1.66.2-cp39-cp39-win32.whl", hash = "sha256:78fa51ebc2d9242c0fc5db0feecc57a9943303b46664ad89921f5079e2e4ada7"}, - {file = "grpcio-1.66.2-cp39-cp39-win_amd64.whl", hash = "sha256:728bdf36a186e7f51da73be7f8d09457a03061be848718d0edf000e709418987"}, - {file = "grpcio-1.66.2.tar.gz", hash = "sha256:563588c587b75c34b928bc428548e5b00ea38c46972181a4d8b75ba7e3f24231"}, + {file = "grpcio-1.32.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:3afb058b6929eba07dba9ae6c5b555aa1d88cb140187d78cc510bd72d0329f28"}, + {file = "grpcio-1.32.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:a8004b34f600a8a51785e46859cd88f3386ef67cccd1cfc7598e3d317608c643"}, + {file = "grpcio-1.32.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:e6786f6f7be0937614577edcab886ddce91b7c1ea972a07ef9972e9f9ecbbb78"}, + {file = "grpcio-1.32.0-cp27-cp27m-win32.whl", hash = "sha256:e467af6bb8f5843f5a441e124b43474715cfb3981264e7cd227343e826dcc3ce"}, + {file = "grpcio-1.32.0-cp27-cp27m-win_amd64.whl", hash = "sha256:1376a60f9bfce781b39973f100b5f67e657b5be479f2fd8a7d2a408fc61c085c"}, + {file = "grpcio-1.32.0-cp27-cp27mu-linux_armv7l.whl", hash = "sha256:ce617e1c4a39131f8527964ac9e700eb199484937d7a0b3e52655a3ba50d5fb9"}, + {file = "grpcio-1.32.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:99bac0e2c820bf446662365df65841f0c2a55b0e2c419db86eaf5d162ddae73e"}, + {file = "grpcio-1.32.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:6d869a3e8e62562b48214de95e9231c97c53caa7172802236cd5d60140d7cddd"}, + {file = "grpcio-1.32.0-cp35-cp35m-linux_armv7l.whl", hash = "sha256:182c64ade34c341398bf71ec0975613970feb175090760ab4f51d1e9a5424f05"}, + {file = "grpcio-1.32.0-cp35-cp35m-macosx_10_7_intel.whl", hash = "sha256:9c0d8f2346c842088b8cbe3e14985b36e5191a34bf79279ba321a4bf69bd88b7"}, + {file = "grpcio-1.32.0-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:4775bc35af9cd3b5033700388deac2e1d611fa45f4a8dcb93667d94cb25f0444"}, + {file = "grpcio-1.32.0-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:be98e3198ec765d0a1e27f69d760f69374ded8a33b953dcfe790127731f7e690"}, + {file = "grpcio-1.32.0-cp35-cp35m-manylinux2014_i686.whl", hash = "sha256:378fe80ec5d9353548eb2a8a43ea03747a80f2e387c4f177f2b3ff6c7d898753"}, + {file = "grpcio-1.32.0-cp35-cp35m-manylinux2014_x86_64.whl", hash = "sha256:f7d508691301027033215d3662dab7e178f54d5cca2329f26a71ae175d94b83f"}, + {file = "grpcio-1.32.0-cp35-cp35m-win32.whl", hash = "sha256:25959a651420dd4a6fd7d3e8dee53f4f5fd8c56336a64963428e78b276389a59"}, + {file = "grpcio-1.32.0-cp35-cp35m-win_amd64.whl", hash = "sha256:ac7028d363d2395f3d755166d0161556a3f99500a5b44890421ccfaaf2aaeb08"}, + {file = "grpcio-1.32.0-cp36-cp36m-linux_armv7l.whl", hash = "sha256:c31e8a219650ddae1cd02f5a169e1bffe66a429a8255d3ab29e9363c73003b62"}, + {file = "grpcio-1.32.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:e28e4c0d4231beda5dee94808e3a224d85cbaba3cfad05f2192e6f4ec5318053"}, + {file = "grpcio-1.32.0-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:f03dfefa9075dd1c6c5cc27b1285c521434643b09338d8b29e1d6a27b386aa82"}, + {file = "grpcio-1.32.0-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:c4966d746dccb639ef93f13560acbe9630681c07f2b320b7ec03fe2c8f0a1f15"}, + {file = "grpcio-1.32.0-cp36-cp36m-manylinux2014_i686.whl", hash = "sha256:ec10d5f680b8e95a06f1367d73c5ddcc0ed04a3f38d6e4c9346988fb0cea2ffa"}, + {file = "grpcio-1.32.0-cp36-cp36m-manylinux2014_x86_64.whl", hash = "sha256:28677f057e2ef11501860a7bc15de12091d40b95dd0fddab3c37ff1542e6b216"}, + {file = "grpcio-1.32.0-cp36-cp36m-win32.whl", hash = "sha256:0f3f09269ffd3fded430cd89ba2397eabbf7e47be93983b25c187cdfebb302a7"}, + {file = "grpcio-1.32.0-cp36-cp36m-win_amd64.whl", hash = "sha256:4396b1d0f388ae875eaf6dc05cdcb612c950fd9355bc34d38b90aaa0665a0d4b"}, + {file = "grpcio-1.32.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1ada89326a364a299527c7962e5c362dbae58c67b283fe8383c4d952b26565d5"}, + {file = "grpcio-1.32.0-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:1d384a61f96a1fc6d5d3e0b62b0a859abc8d4c3f6d16daba51ebf253a3e7df5d"}, + {file = "grpcio-1.32.0-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:e811ce5c387256609d56559d944a974cc6934a8eea8c76e7c86ec388dc06192d"}, + {file = "grpcio-1.32.0-cp37-cp37m-manylinux2014_i686.whl", hash = "sha256:07b430fa68e5eecd78e2ad529ab80f6a234b55fc1b675fe47335ccbf64c6c6c8"}, + {file = "grpcio-1.32.0-cp37-cp37m-manylinux2014_x86_64.whl", hash = "sha256:0e3edd8cdb71809d2455b9dbff66b4dd3d36c321e64bfa047da5afdfb0db332b"}, + {file = "grpcio-1.32.0-cp37-cp37m-win32.whl", hash = "sha256:6f7947dad606c509d067e5b91a92b250aa0530162ab99e4737090f6b17eb12c4"}, + {file = "grpcio-1.32.0-cp37-cp37m-win_amd64.whl", hash = "sha256:7cda998b7b551503beefc38db9be18c878cfb1596e1418647687575cdefa9273"}, + {file = "grpcio-1.32.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c58825a3d8634cd634d8f869afddd4d5742bdb59d594aea4cea17b8f39269a55"}, + {file = "grpcio-1.32.0-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:ef9bd7fdfc0a063b4ed0efcab7906df5cae9bbcf79d05c583daa2eba56752b00"}, + {file = "grpcio-1.32.0-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:1ce6f5ff4f4a548c502d5237a071fa617115df58ea4b7bd41dac77c1ab126e9c"}, + {file = "grpcio-1.32.0-cp38-cp38-manylinux2014_i686.whl", hash = "sha256:f12900be4c3fd2145ba94ab0d80b7c3d71c9e6414cfee2f31b1c20188b5c281f"}, + {file = "grpcio-1.32.0-cp38-cp38-manylinux2014_x86_64.whl", hash = "sha256:f53f2dfc8ff9a58a993e414a016c8b21af333955ae83960454ad91798d467c7b"}, + {file = "grpcio-1.32.0-cp38-cp38-win32.whl", hash = "sha256:5bddf9d53c8df70061916c3bfd2f468ccf26c348bb0fb6211531d895ed5e4c72"}, + {file = "grpcio-1.32.0-cp38-cp38-win_amd64.whl", hash = "sha256:14c0f017bfebbc18139551111ac58ecbde11f4bc375b73a53af38927d60308b6"}, + {file = "grpcio-1.32.0.tar.gz", hash = "sha256:01d3046fe980be25796d368f8fc5ff34b7cf5e1444f3789a017a7fe794465639"}, ] +[package.dependencies] +six = ">=1.5.2" + [package.extras] -protobuf = ["grpcio-tools (>=1.66.2)"] +protobuf = ["grpcio-tools (>=1.32.0)"] [[package]] name = "h5py" -version = "3.11.0" +version = "2.10.0" description = "Read and write HDF5 files from Python" optional = false -python-versions = ">=3.8" +python-versions = "*" files = [ - {file = "h5py-3.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1625fd24ad6cfc9c1ccd44a66dac2396e7ee74940776792772819fc69f3a3731"}, - {file = "h5py-3.11.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c072655ad1d5fe9ef462445d3e77a8166cbfa5e599045f8aa3c19b75315f10e5"}, - {file = "h5py-3.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77b19a40788e3e362b54af4dcf9e6fde59ca016db2c61360aa30b47c7b7cef00"}, - {file = "h5py-3.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:ef4e2f338fc763f50a8113890f455e1a70acd42a4d083370ceb80c463d803972"}, - {file = "h5py-3.11.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bbd732a08187a9e2a6ecf9e8af713f1d68256ee0f7c8b652a32795670fb481ba"}, - {file = "h5py-3.11.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75bd7b3d93fbeee40860fd70cdc88df4464e06b70a5ad9ce1446f5f32eb84007"}, - {file = "h5py-3.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52c416f8eb0daae39dabe71415cb531f95dce2d81e1f61a74537a50c63b28ab3"}, - {file = "h5py-3.11.0-cp311-cp311-win_amd64.whl", hash = "sha256:083e0329ae534a264940d6513f47f5ada617da536d8dccbafc3026aefc33c90e"}, - {file = "h5py-3.11.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a76cae64080210389a571c7d13c94a1a6cf8cb75153044fd1f822a962c97aeab"}, - {file = "h5py-3.11.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f3736fe21da2b7d8a13fe8fe415f1272d2a1ccdeff4849c1421d2fb30fd533bc"}, - {file = "h5py-3.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa6ae84a14103e8dc19266ef4c3e5d7c00b68f21d07f2966f0ca7bdb6c2761fb"}, - {file = "h5py-3.11.0-cp312-cp312-win_amd64.whl", hash = "sha256:21dbdc5343f53b2e25404673c4f00a3335aef25521bd5fa8c707ec3833934892"}, - {file = "h5py-3.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:754c0c2e373d13d6309f408325343b642eb0f40f1a6ad21779cfa9502209e150"}, - {file = "h5py-3.11.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:731839240c59ba219d4cb3bc5880d438248533366f102402cfa0621b71796b62"}, - {file = "h5py-3.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ec9df3dd2018904c4cc06331951e274f3f3fd091e6d6cc350aaa90fa9b42a76"}, - {file = "h5py-3.11.0-cp38-cp38-win_amd64.whl", hash = "sha256:55106b04e2c83dfb73dc8732e9abad69d83a436b5b82b773481d95d17b9685e1"}, - {file = "h5py-3.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f4e025e852754ca833401777c25888acb96889ee2c27e7e629a19aee288833f0"}, - {file = "h5py-3.11.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6c4b760082626120031d7902cd983d8c1f424cdba2809f1067511ef283629d4b"}, - {file = "h5py-3.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67462d0669f8f5459529de179f7771bd697389fcb3faab54d63bf788599a48ea"}, - {file = "h5py-3.11.0-cp39-cp39-win_amd64.whl", hash = "sha256:d9c944d364688f827dc889cf83f1fca311caf4fa50b19f009d1f2b525edd33a3"}, - {file = "h5py-3.11.0.tar.gz", hash = "sha256:7b7e8f78072a2edec87c9836f25f34203fd492a4475709a18b417a33cfb21fa9"}, + {file = "h5py-2.10.0-cp27-cp27m-macosx_10_6_intel.whl", hash = "sha256:ecf4d0b56ee394a0984de15bceeb97cbe1fe485f1ac205121293fc44dcf3f31f"}, + {file = "h5py-2.10.0-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:86868dc07b9cc8cb7627372a2e6636cdc7a53b7e2854ad020c9e9d8a4d3fd0f5"}, + {file = "h5py-2.10.0-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:aac4b57097ac29089f179bbc2a6e14102dd210618e94d77ee4831c65f82f17c0"}, + {file = "h5py-2.10.0-cp27-cp27m-win32.whl", hash = "sha256:7be5754a159236e95bd196419485343e2b5875e806fe68919e087b6351f40a70"}, + {file = "h5py-2.10.0-cp27-cp27m-win_amd64.whl", hash = "sha256:13c87efa24768a5e24e360a40e0bc4c49bcb7ce1bb13a3a7f9902cec302ccd36"}, + {file = "h5py-2.10.0-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:79b23f47c6524d61f899254f5cd5e486e19868f1823298bc0c29d345c2447172"}, + {file = "h5py-2.10.0-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:cbf28ae4b5af0f05aa6e7551cee304f1d317dbed1eb7ac1d827cee2f1ef97a99"}, + {file = "h5py-2.10.0-cp34-cp34m-manylinux1_i686.whl", hash = "sha256:c0d4b04bbf96c47b6d360cd06939e72def512b20a18a8547fa4af810258355d5"}, + {file = "h5py-2.10.0-cp34-cp34m-manylinux1_x86_64.whl", hash = "sha256:549ad124df27c056b2e255ea1c44d30fb7a17d17676d03096ad5cd85edb32dc1"}, + {file = "h5py-2.10.0-cp35-cp35m-macosx_10_6_intel.whl", hash = "sha256:a5f82cd4938ff8761d9760af3274acf55afc3c91c649c50ab18fcff5510a14a5"}, + {file = "h5py-2.10.0-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:3dad1730b6470fad853ef56d755d06bb916ee68a3d8272b3bab0c1ddf83bb99e"}, + {file = "h5py-2.10.0-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:063947eaed5f271679ed4ffa36bb96f57bc14f44dd4336a827d9a02702e6ce6b"}, + {file = "h5py-2.10.0-cp35-cp35m-win32.whl", hash = "sha256:c54a2c0dd4957776ace7f95879d81582298c5daf89e77fb8bee7378f132951de"}, + {file = "h5py-2.10.0-cp35-cp35m-win_amd64.whl", hash = "sha256:6998be619c695910cb0effe5eb15d3a511d3d1a5d217d4bd0bebad1151ec2262"}, + {file = "h5py-2.10.0-cp36-cp36m-macosx_10_6_intel.whl", hash = "sha256:ff7d241f866b718e4584fa95f520cb19405220c501bd3a53ee11871ba5166ea2"}, + {file = "h5py-2.10.0-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:54817b696e87eb9e403e42643305f142cd8b940fe9b3b490bbf98c3b8a894cf4"}, + {file = "h5py-2.10.0-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:d3c59549f90a891691991c17f8e58c8544060fdf3ccdea267100fa5f561ff62f"}, + {file = "h5py-2.10.0-cp36-cp36m-win32.whl", hash = "sha256:d7ae7a0576b06cb8e8a1c265a8bc4b73d05fdee6429bffc9a26a6eb531e79d72"}, + {file = "h5py-2.10.0-cp36-cp36m-win_amd64.whl", hash = "sha256:bffbc48331b4a801d2f4b7dac8a72609f0b10e6e516e5c480a3e3241e091c878"}, + {file = "h5py-2.10.0-cp37-cp37m-macosx_10_6_intel.whl", hash = "sha256:51ae56894c6c93159086ffa2c94b5b3388c0400548ab26555c143e7cfa05b8e5"}, + {file = "h5py-2.10.0-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:16ead3c57141101e3296ebeed79c9c143c32bdd0e82a61a2fc67e8e6d493e9d1"}, + {file = "h5py-2.10.0-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:f0e25bb91e7a02efccb50aba6591d3fe2c725479e34769802fcdd4076abfa917"}, + {file = "h5py-2.10.0-cp37-cp37m-win32.whl", hash = "sha256:f23951a53d18398ef1344c186fb04b26163ca6ce449ebd23404b153fd111ded9"}, + {file = "h5py-2.10.0-cp37-cp37m-win_amd64.whl", hash = "sha256:8bb1d2de101f39743f91512a9750fb6c351c032e5cd3204b4487383e34da7f75"}, + {file = "h5py-2.10.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:64f74da4a1dd0d2042e7d04cf8294e04ddad686f8eba9bb79e517ae582f6668d"}, + {file = "h5py-2.10.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:d35f7a3a6cefec82bfdad2785e78359a0e6a5fbb3f605dd5623ce88082ccd681"}, + {file = "h5py-2.10.0-cp38-cp38-win32.whl", hash = "sha256:6ef7ab1089e3ef53ca099038f3c0a94d03e3560e6aff0e9d6c64c55fb13fc681"}, + {file = "h5py-2.10.0-cp38-cp38-win_amd64.whl", hash = "sha256:769e141512b54dee14ec76ed354fcacfc7d97fea5a7646b709f7400cf1838630"}, + {file = "h5py-2.10.0.tar.gz", hash = "sha256:84412798925dc870ffd7107f045d7659e60f5d46d1c70c700375248bf6bf512d"}, ] [package.dependencies] -numpy = ">=1.17.3" +numpy = ">=1.7" +six = "*" [[package]] name = "idna" -version = "3.10" +version = "3.6" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.6" +python-versions = ">=3.5" files = [ - {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, - {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, + {file = "idna-3.6-py3-none-any.whl", hash = "sha256:c05567e9c24a6b9faaa835c4821bad0590fbb9d5779e7caa6e1cc4978e7eb24f"}, + {file = "idna-3.6.tar.gz", hash = "sha256:9ecdbbd083b06798ae1e86adcbfe8ab1479cf864e4ee30fe4e46a003d12491ca"}, ] -[package.extras] -all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] - [[package]] name = "importlib-metadata" -version = "8.5.0" +version = "7.0.0" description = "Read metadata from Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "importlib_metadata-8.5.0-py3-none-any.whl", hash = "sha256:45e54197d28b7a7f1559e60b95e7c567032b602131fbd588f1497f47880aa68b"}, - {file = "importlib_metadata-8.5.0.tar.gz", hash = "sha256:71522656f0abace1d072b9e5481a48f07c138e00f079c38c8f883823f9c26bd7"}, + {file = "importlib_metadata-7.0.0-py3-none-any.whl", hash = "sha256:d97503976bb81f40a193d41ee6570868479c69d5068651eb039c40d850c59d67"}, + {file = "importlib_metadata-7.0.0.tar.gz", hash = "sha256:7fc841f8b8332803464e5dc1c63a2e59121f46ca186c0e2e182e80bf8c1319f7"}, ] [package.dependencies] -zipp = ">=3.20" +zipp = ">=0.5" [package.extras] -check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] -cover = ["pytest-cov"] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -enabler = ["pytest-enabler (>=2.2)"] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] perf = ["ipython"] -test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-perf (>=0.9.2)"] -type = ["pytest-mypy"] +testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)", "pytest-ruff"] [[package]] name = "ipykernel" -version = "6.29.5" +version = "6.27.1" description = "IPython Kernel for Jupyter" optional = false python-versions = ">=3.8" files = [ - {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, - {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, + {file = "ipykernel-6.27.1-py3-none-any.whl", hash = "sha256:dab88b47f112f9f7df62236511023c9bdeef67abc73af7c652e4ce4441601686"}, + {file = "ipykernel-6.27.1.tar.gz", hash = "sha256:7d5d594b6690654b4d299edba5e872dc17bb7396a8d0609c97cb7b8a1c605de6"}, ] [package.dependencies] @@ -1027,7 +666,7 @@ matplotlib-inline = ">=0.1" nest-asyncio = "*" packaging = "*" psutil = "*" -pyzmq = ">=24" +pyzmq = ">=20" tornado = ">=6.1" traitlets = ">=5.4.0" @@ -1036,7 +675,7 @@ cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] pyqt5 = ["pyqt5"] pyside6 = ["pyside6"] -test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov", "pytest-timeout"] [[package]] name = "ipython" @@ -1096,43 +735,26 @@ docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alab qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] -[[package]] -name = "jinja2" -version = "3.1.4" -description = "A very fast and expressive template engine." -optional = false -python-versions = ">=3.7" -files = [ - {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, - {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, -] - -[package.dependencies] -MarkupSafe = ">=2.0" - -[package.extras] -i18n = ["Babel (>=2.7)"] - [[package]] name = "joblib" -version = "1.4.2" +version = "1.3.2" description = "Lightweight pipelining with Python functions" optional = false -python-versions = ">=3.8" +python-versions = ">=3.7" files = [ - {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, - {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, + {file = "joblib-1.3.2-py3-none-any.whl", hash = "sha256:ef4331c65f239985f3f2220ecc87db222f08fd22097a3dd5698f693875f8cbb9"}, + {file = "joblib-1.3.2.tar.gz", hash = "sha256:92f865e621e17784e7955080b6d042489e3b8e294949cc44c6eac304f59772b1"}, ] [[package]] name = "jupyter-client" -version = "8.6.3" +version = "8.6.0" description = "Jupyter protocol implementation and client libraries" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, - {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, + {file = "jupyter_client-8.6.0-py3-none-any.whl", hash = "sha256:909c474dbe62582ae62b758bca86d6518c85234bdee2d908c778db6d72f39d99"}, + {file = "jupyter_client-8.6.0.tar.gz", hash = "sha256:0642244bb83b4764ae60d07e010e15f0e2d275ec4e918a8f7b80fbbef3ca60c7"}, ] [package.dependencies] @@ -1145,17 +767,17 @@ traitlets = ">=5.3" [package.extras] docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] -test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] [[package]] name = "jupyter-core" -version = "5.7.2" +version = "5.5.1" description = "Jupyter core package. A base package on which Jupyter projects rely." optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, - {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, + {file = "jupyter_core-5.5.1-py3-none-any.whl", hash = "sha256:220dfb00c45f0d780ce132bb7976b58263f81a3ada6e90a9b6823785a424f739"}, + {file = "jupyter_core-5.5.1.tar.gz", hash = "sha256:1553311a97ccd12936037f36b9ab4d6ae8ceea6ad2d5c90d94a909e752178e40"}, ] [package.dependencies] @@ -1165,18 +787,30 @@ traitlets = ">=5.3" [package.extras] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] -test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] +test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] [[package]] -name = "keras" -version = "2.7.0" -description = "Deep learning for humans." +name = "karateclub" +version = "1.0.19" +description = "A general purpose library for community detection, network embedding, and graph mining research." optional = false python-versions = "*" files = [ - {file = "keras-2.7.0-py2.py3-none-any.whl", hash = "sha256:0c33ae1f728064ca0d35dfba999e9c316f03623bf5688c82fb83cc74a80ea248"}, + {file = "karateclub-1.0.19.tar.gz", hash = "sha256:0e43f9072f028f471f935a47746c71d24df0472eb5fafd77be9f5619a1e0f804"}, ] +[package.dependencies] +gensim = "*" +networkx = "*" +numpy = "*" +pandas = "*" +pygsp = "*" +python-louvain = "*" +scikit-learn = "*" +scipy = "*" +six = "*" +tqdm = "*" + [[package]] name = "keras-preprocessing" version = "1.1.2" @@ -1199,175 +833,126 @@ tests = ["Pillow", "keras", "pandas", "pytest", "pytest-cov", "pytest-xdist", "t [[package]] name = "kiwisolver" -version = "1.4.7" +version = "1.4.5" description = "A fast implementation of the Cassowary constraint solver" optional = false -python-versions = ">=3.8" -files = [ - {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8a9c83f75223d5e48b0bc9cb1bf2776cf01563e00ade8775ffe13b0b6e1af3a6"}, - {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:58370b1ffbd35407444d57057b57da5d6549d2d854fa30249771775c63b5fe17"}, - {file = "kiwisolver-1.4.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa0abdf853e09aff551db11fce173e2177d00786c688203f52c87ad7fcd91ef9"}, - {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8d53103597a252fb3ab8b5845af04c7a26d5e7ea8122303dd7a021176a87e8b9"}, - {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:88f17c5ffa8e9462fb79f62746428dd57b46eb931698e42e990ad63103f35e6c"}, - {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88a9ca9c710d598fd75ee5de59d5bda2684d9db36a9f50b6125eaea3969c2599"}, - {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4d742cb7af1c28303a51b7a27aaee540e71bb8e24f68c736f6f2ffc82f2bf05"}, - {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28c7fea2196bf4c2f8d46a0415c77a1c480cc0724722f23d7410ffe9842c407"}, - {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e968b84db54f9d42046cf154e02911e39c0435c9801681e3fc9ce8a3c4130278"}, - {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0c18ec74c0472de033e1bebb2911c3c310eef5649133dd0bedf2a169a1b269e5"}, - {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8f0ea6da6d393d8b2e187e6a5e3fb81f5862010a40c3945e2c6d12ae45cfb2ad"}, - {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:f106407dda69ae456dd1227966bf445b157ccc80ba0dff3802bb63f30b74e895"}, - {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84ec80df401cfee1457063732d90022f93951944b5b58975d34ab56bb150dfb3"}, - {file = "kiwisolver-1.4.7-cp310-cp310-win32.whl", hash = "sha256:71bb308552200fb2c195e35ef05de12f0c878c07fc91c270eb3d6e41698c3bcc"}, - {file = "kiwisolver-1.4.7-cp310-cp310-win_amd64.whl", hash = "sha256:44756f9fd339de0fb6ee4f8c1696cfd19b2422e0d70b4cefc1cc7f1f64045a8c"}, - {file = "kiwisolver-1.4.7-cp310-cp310-win_arm64.whl", hash = "sha256:78a42513018c41c2ffd262eb676442315cbfe3c44eed82385c2ed043bc63210a"}, - {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d2b0e12a42fb4e72d509fc994713d099cbb15ebf1103545e8a45f14da2dfca54"}, - {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a8781ac3edc42ea4b90bc23e7d37b665d89423818e26eb6df90698aa2287c95"}, - {file = "kiwisolver-1.4.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46707a10836894b559e04b0fd143e343945c97fd170d69a2d26d640b4e297935"}, - {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef97b8df011141c9b0f6caf23b29379f87dd13183c978a30a3c546d2c47314cb"}, - {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab58c12a2cd0fc769089e6d38466c46d7f76aced0a1f54c77652446733d2d02"}, - {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:803b8e1459341c1bb56d1c5c010406d5edec8a0713a0945851290a7930679b51"}, - {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9a9e8a507420fe35992ee9ecb302dab68550dedc0da9e2880dd88071c5fb052"}, - {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18077b53dc3bb490e330669a99920c5e6a496889ae8c63b58fbc57c3d7f33a18"}, - {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6af936f79086a89b3680a280c47ea90b4df7047b5bdf3aa5c524bbedddb9e545"}, - {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3abc5b19d24af4b77d1598a585b8a719beb8569a71568b66f4ebe1fb0449460b"}, - {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:933d4de052939d90afbe6e9d5273ae05fb836cc86c15b686edd4b3560cc0ee36"}, - {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:65e720d2ab2b53f1f72fb5da5fb477455905ce2c88aaa671ff0a447c2c80e8e3"}, - {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3bf1ed55088f214ba6427484c59553123fdd9b218a42bbc8c6496d6754b1e523"}, - {file = "kiwisolver-1.4.7-cp311-cp311-win32.whl", hash = "sha256:4c00336b9dd5ad96d0a558fd18a8b6f711b7449acce4c157e7343ba92dd0cf3d"}, - {file = "kiwisolver-1.4.7-cp311-cp311-win_amd64.whl", hash = "sha256:929e294c1ac1e9f615c62a4e4313ca1823ba37326c164ec720a803287c4c499b"}, - {file = "kiwisolver-1.4.7-cp311-cp311-win_arm64.whl", hash = "sha256:e33e8fbd440c917106b237ef1a2f1449dfbb9b6f6e1ce17c94cd6a1e0d438376"}, - {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:5360cc32706dab3931f738d3079652d20982511f7c0ac5711483e6eab08efff2"}, - {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:942216596dc64ddb25adb215c3c783215b23626f8d84e8eff8d6d45c3f29f75a"}, - {file = "kiwisolver-1.4.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:48b571ecd8bae15702e4f22d3ff6a0f13e54d3d00cd25216d5e7f658242065ee"}, - {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad42ba922c67c5f219097b28fae965e10045ddf145d2928bfac2eb2e17673640"}, - {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:612a10bdae23404a72941a0fc8fa2660c6ea1217c4ce0dbcab8a8f6543ea9e7f"}, - {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9e838bba3a3bac0fe06d849d29772eb1afb9745a59710762e4ba3f4cb8424483"}, - {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:22f499f6157236c19f4bbbd472fa55b063db77a16cd74d49afe28992dff8c258"}, - {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693902d433cf585133699972b6d7c42a8b9f8f826ebcaf0132ff55200afc599e"}, - {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4e77f2126c3e0b0d055f44513ed349038ac180371ed9b52fe96a32aa071a5107"}, - {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:657a05857bda581c3656bfc3b20e353c232e9193eb167766ad2dc58b56504948"}, - {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4bfa75a048c056a411f9705856abfc872558e33c055d80af6a380e3658766038"}, - {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:34ea1de54beef1c104422d210c47c7d2a4999bdecf42c7b5718fbe59a4cac383"}, - {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:90da3b5f694b85231cf93586dad5e90e2d71b9428f9aad96952c99055582f520"}, - {file = "kiwisolver-1.4.7-cp312-cp312-win32.whl", hash = "sha256:18e0cca3e008e17fe9b164b55735a325140a5a35faad8de92dd80265cd5eb80b"}, - {file = "kiwisolver-1.4.7-cp312-cp312-win_amd64.whl", hash = "sha256:58cb20602b18f86f83a5c87d3ee1c766a79c0d452f8def86d925e6c60fbf7bfb"}, - {file = "kiwisolver-1.4.7-cp312-cp312-win_arm64.whl", hash = "sha256:f5a8b53bdc0b3961f8b6125e198617c40aeed638b387913bf1ce78afb1b0be2a"}, - {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:2e6039dcbe79a8e0f044f1c39db1986a1b8071051efba3ee4d74f5b365f5226e"}, - {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a1ecf0ac1c518487d9d23b1cd7139a6a65bc460cd101ab01f1be82ecf09794b6"}, - {file = "kiwisolver-1.4.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7ab9ccab2b5bd5702ab0803676a580fffa2aa178c2badc5557a84cc943fcf750"}, - {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f816dd2277f8d63d79f9c8473a79fe54047bc0467754962840782c575522224d"}, - {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf8bcc23ceb5a1b624572a1623b9f79d2c3b337c8c455405ef231933a10da379"}, - {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dea0bf229319828467d7fca8c7c189780aa9ff679c94539eed7532ebe33ed37c"}, - {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c06a4c7cf15ec739ce0e5971b26c93638730090add60e183530d70848ebdd34"}, - {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1"}, - {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5337ec7809bcd0f424c6b705ecf97941c46279cf5ed92311782c7c9c2026f07f"}, - {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4c26ed10c4f6fa6ddb329a5120ba3b6db349ca192ae211e882970bfc9d91420b"}, - {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c619b101e6de2222c1fcb0531e1b17bbffbe54294bfba43ea0d411d428618c27"}, - {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:073a36c8273647592ea332e816e75ef8da5c303236ec0167196793eb1e34657a"}, - {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3ce6b2b0231bda412463e152fc18335ba32faf4e8c23a754ad50ffa70e4091ee"}, - {file = "kiwisolver-1.4.7-cp313-cp313-win32.whl", hash = "sha256:f4c9aee212bc89d4e13f58be11a56cc8036cabad119259d12ace14b34476fd07"}, - {file = "kiwisolver-1.4.7-cp313-cp313-win_amd64.whl", hash = "sha256:8a3ec5aa8e38fc4c8af308917ce12c536f1c88452ce554027e55b22cbbfbff76"}, - {file = "kiwisolver-1.4.7-cp313-cp313-win_arm64.whl", hash = "sha256:76c8094ac20ec259471ac53e774623eb62e6e1f56cd8690c67ce6ce4fcb05650"}, - {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5d5abf8f8ec1f4e22882273c423e16cae834c36856cac348cfbfa68e01c40f3a"}, - {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:aeb3531b196ef6f11776c21674dba836aeea9d5bd1cf630f869e3d90b16cfade"}, - {file = "kiwisolver-1.4.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b7d755065e4e866a8086c9bdada157133ff466476a2ad7861828e17b6026e22c"}, - {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08471d4d86cbaec61f86b217dd938a83d85e03785f51121e791a6e6689a3be95"}, - {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7bbfcb7165ce3d54a3dfbe731e470f65739c4c1f85bb1018ee912bae139e263b"}, - {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d34eb8494bea691a1a450141ebb5385e4b69d38bb8403b5146ad279f4b30fa3"}, - {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9242795d174daa40105c1d86aba618e8eab7bf96ba8c3ee614da8302a9f95503"}, - {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a0f64a48bb81af7450e641e3fe0b0394d7381e342805479178b3d335d60ca7cf"}, - {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8e045731a5416357638d1700927529e2b8ab304811671f665b225f8bf8d8f933"}, - {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4322872d5772cae7369f8351da1edf255a604ea7087fe295411397d0cfd9655e"}, - {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e1631290ee9271dffe3062d2634c3ecac02c83890ada077d225e081aca8aab89"}, - {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:edcfc407e4eb17e037bca59be0e85a2031a2ac87e4fed26d3e9df88b4165f92d"}, - {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:4d05d81ecb47d11e7f8932bd8b61b720bf0b41199358f3f5e36d38e28f0532c5"}, - {file = "kiwisolver-1.4.7-cp38-cp38-win32.whl", hash = "sha256:b38ac83d5f04b15e515fd86f312479d950d05ce2368d5413d46c088dda7de90a"}, - {file = "kiwisolver-1.4.7-cp38-cp38-win_amd64.whl", hash = "sha256:d83db7cde68459fc803052a55ace60bea2bae361fc3b7a6d5da07e11954e4b09"}, - {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3f9362ecfca44c863569d3d3c033dbe8ba452ff8eed6f6b5806382741a1334bd"}, - {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e8df2eb9b2bac43ef8b082e06f750350fbbaf2887534a5be97f6cf07b19d9583"}, - {file = "kiwisolver-1.4.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f32d6edbc638cde7652bd690c3e728b25332acbadd7cad670cc4a02558d9c417"}, - {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e2e6c39bd7b9372b0be21456caab138e8e69cc0fc1190a9dfa92bd45a1e6e904"}, - {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dda56c24d869b1193fcc763f1284b9126550eaf84b88bbc7256e15028f19188a"}, - {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79849239c39b5e1fd906556c474d9b0439ea6792b637511f3fe3a41158d89ca8"}, - {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5e3bc157fed2a4c02ec468de4ecd12a6e22818d4f09cde2c31ee3226ffbefab2"}, - {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3da53da805b71e41053dc670f9a820d1157aae77b6b944e08024d17bcd51ef88"}, - {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:8705f17dfeb43139a692298cb6637ee2e59c0194538153e83e9ee0c75c2eddde"}, - {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:82a5c2f4b87c26bb1a0ef3d16b5c4753434633b83d365cc0ddf2770c93829e3c"}, - {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce8be0466f4c0d585cdb6c1e2ed07232221df101a4c6f28821d2aa754ca2d9e2"}, - {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:409afdfe1e2e90e6ee7fc896f3df9a7fec8e793e58bfa0d052c8a82f99c37abb"}, - {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5b9c3f4ee0b9a439d2415012bd1b1cc2df59e4d6a9939f4d669241d30b414327"}, - {file = "kiwisolver-1.4.7-cp39-cp39-win32.whl", hash = "sha256:a79ae34384df2b615eefca647a2873842ac3b596418032bef9a7283675962644"}, - {file = "kiwisolver-1.4.7-cp39-cp39-win_amd64.whl", hash = "sha256:cf0438b42121a66a3a667de17e779330fc0f20b0d97d59d2f2121e182b0505e4"}, - {file = "kiwisolver-1.4.7-cp39-cp39-win_arm64.whl", hash = "sha256:764202cc7e70f767dab49e8df52c7455e8de0df5d858fa801a11aa0d882ccf3f"}, - {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:94252291e3fe68001b1dd747b4c0b3be12582839b95ad4d1b641924d68fd4643"}, - {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:5b7dfa3b546da08a9f622bb6becdb14b3e24aaa30adba66749d38f3cc7ea9706"}, - {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3de6481f4ed8b734da5df134cd5a6a64fe32124fe83dde1e5b5f29fe30b1e6"}, - {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a91b5f9f1205845d488c928e8570dcb62b893372f63b8b6e98b863ebd2368ff2"}, - {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40fa14dbd66b8b8f470d5fc79c089a66185619d31645f9b0773b88b19f7223c4"}, - {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:eb542fe7933aa09d8d8f9d9097ef37532a7df6497819d16efe4359890a2f417a"}, - {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bfa1acfa0c54932d5607e19a2c24646fb4c1ae2694437789129cf099789a3b00"}, - {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:eee3ea935c3d227d49b4eb85660ff631556841f6e567f0f7bda972df6c2c9935"}, - {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f3160309af4396e0ed04db259c3ccbfdc3621b5559b5453075e5de555e1f3a1b"}, - {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a17f6a29cf8935e587cc8a4dbfc8368c55edc645283db0ce9801016f83526c2d"}, - {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10849fb2c1ecbfae45a693c070e0320a91b35dd4bcf58172c023b994283a124d"}, - {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:ac542bf38a8a4be2dc6b15248d36315ccc65f0743f7b1a76688ffb6b5129a5c2"}, - {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8b01aac285f91ca889c800042c35ad3b239e704b150cfd3382adfc9dcc780e39"}, - {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:48be928f59a1f5c8207154f935334d374e79f2b5d212826307d072595ad76a2e"}, - {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f37cfe618a117e50d8c240555331160d73d0411422b59b5ee217843d7b693608"}, - {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:599b5c873c63a1f6ed7eead644a8a380cfbdf5db91dcb6f85707aaab213b1674"}, - {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:801fa7802e5cfabe3ab0c81a34c323a319b097dfb5004be950482d882f3d7225"}, - {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0c6c43471bc764fad4bc99c5c2d6d16a676b1abf844ca7c8702bdae92df01ee0"}, - {file = "kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60"}, -] - -[[package]] -name = "libclang" -version = "18.1.1" -description = "Clang Python Bindings, mirrored from the official LLVM repo: https://github.com/llvm/llvm-project/tree/main/clang/bindings/python, to make the installation process easier." -optional = false -python-versions = "*" -files = [ - {file = "libclang-18.1.1-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:6f14c3f194704e5d09769108f03185fce7acaf1d1ae4bbb2f30a72c2400cb7c5"}, - {file = "libclang-18.1.1-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:83ce5045d101b669ac38e6da8e58765f12da2d3aafb3b9b98d88b286a60964d8"}, - {file = "libclang-18.1.1-py2.py3-none-manylinux2010_x86_64.whl", hash = "sha256:c533091d8a3bbf7460a00cb6c1a71da93bffe148f172c7d03b1c31fbf8aa2a0b"}, - {file = "libclang-18.1.1-py2.py3-none-manylinux2014_aarch64.whl", hash = "sha256:54dda940a4a0491a9d1532bf071ea3ef26e6dbaf03b5000ed94dd7174e8f9592"}, - {file = "libclang-18.1.1-py2.py3-none-manylinux2014_armv7l.whl", hash = "sha256:cf4a99b05376513717ab5d82a0db832c56ccea4fd61a69dbb7bccf2dfb207dbe"}, - {file = "libclang-18.1.1-py2.py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:69f8eb8f65c279e765ffd28aaa7e9e364c776c17618af8bff22a8df58677ff4f"}, - {file = "libclang-18.1.1-py2.py3-none-win_amd64.whl", hash = "sha256:4dd2d3b82fab35e2bf9ca717d7b63ac990a3519c7e312f19fa8e86dcc712f7fb"}, - {file = "libclang-18.1.1-py2.py3-none-win_arm64.whl", hash = "sha256:3f0e1f49f04d3cd198985fea0511576b0aee16f9ff0e0f0cad7f9c57ec3c20e8"}, - {file = "libclang-18.1.1.tar.gz", hash = "sha256:a1214966d08d73d971287fc3ead8dfaf82eb07fb197680d8b3859dbbbbf78250"}, -] - -[[package]] -name = "lightning-utilities" -version = "0.11.7" -description = "Lightning toolbox for across the our ecosystem." -optional = false -python-versions = ">=3.8" +python-versions = ">=3.7" files = [ - {file = "lightning_utilities-0.11.7-py3-none-any.whl", hash = "sha256:84eebbc700edbfaa6c005458fc911a7fe7f99f02970b00cb322b4d2767deba98"}, - {file = "lightning_utilities-0.11.7.tar.gz", hash = "sha256:7e8458a9f0bfb51ffe6c5ab3957aa37b2792fe8281dd9f1b66aa513a558ec4ce"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, + {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, ] -[package.dependencies] -packaging = ">=17.1" -setuptools = "*" -typing-extensions = "*" - -[package.extras] -cli = ["fire"] -docs = ["requests (>=2.0.0)"] -typing = ["mypy (>=1.0.0)", "types-setuptools"] - [[package]] name = "markdown" -version = "3.7" +version = "3.5.1" description = "Python implementation of John Gruber's Markdown." optional = false python-versions = ">=3.8" files = [ - {file = "Markdown-3.7-py3-none-any.whl", hash = "sha256:7eb6df5690b81a1d7942992c97fad2938e956e79df20cbc6186e9c3a77b1c803"}, - {file = "markdown-3.7.tar.gz", hash = "sha256:2ae2471477cfd02dbbf038d5d9bc226d40def84b4fe2986e49b59b6b472bbed2"}, + {file = "Markdown-3.5.1-py3-none-any.whl", hash = "sha256:5874b47d4ee3f0b14d764324d2c94c03ea66bee56f2d929da9f2508d65e722dc"}, + {file = "Markdown-3.5.1.tar.gz", hash = "sha256:b65d7beb248dc22f2e8a31fb706d93798093c308dc1aba295aedeb9d41a813bd"}, ] [package.dependencies] @@ -1379,71 +964,61 @@ testing = ["coverage", "pyyaml"] [[package]] name = "markupsafe" -version = "2.1.5" +version = "2.1.3" description = "Safely add untrusted strings to HTML/XML markup." optional = false python-versions = ">=3.7" files = [ - {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl", hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl", hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl", hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5"}, - {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:cd0f502fe016460680cd20aaa5a76d241d6f35a1c3350c474bac1273803893fa"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e09031c87a1e51556fdcb46e5bd4f59dfb743061cf93c4d6831bf894f125eb57"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68e78619a61ecf91e76aa3e6e8e33fc4894a2bebe93410754bd28fce0a8a4f9f"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65c1a9bcdadc6c28eecee2c119465aebff8f7a584dd719facdd9e825ec61ab52"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:525808b8019e36eb524b8c68acdd63a37e75714eac50e988180b169d64480a00"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:962f82a3086483f5e5f64dbad880d31038b698494799b097bc59c2edf392fce6"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:aa7bd130efab1c280bed0f45501b7c8795f9fdbeb02e965371bbef3523627779"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c9c804664ebe8f83a211cace637506669e7890fec1b4195b505c214e50dd4eb7"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-win32.whl", hash = "sha256:10bbfe99883db80bdbaff2dcf681dfc6533a614f700da1287707e8a5d78a8431"}, + {file = "MarkupSafe-2.1.3-cp310-cp310-win_amd64.whl", hash = "sha256:1577735524cdad32f9f694208aa75e422adba74f1baee7551620e43a3141f559"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ad9e82fb8f09ade1c3e1b996a6337afac2b8b9e365f926f5a61aacc71adc5b3c"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3c0fae6c3be832a0a0473ac912810b2877c8cb9d76ca48de1ed31e1c68386575"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b076b6226fb84157e3f7c971a47ff3a679d837cf338547532ab866c57930dbee"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfce63a9e7834b12b87c64d6b155fdd9b3b96191b6bd334bf37db7ff1fe457f2"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:338ae27d6b8745585f87218a3f23f1512dbf52c26c28e322dbe54bcede54ccb9"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e4dd52d80b8c83fdce44e12478ad2e85c64ea965e75d66dbeafb0a3e77308fcc"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:df0be2b576a7abbf737b1575f048c23fb1d769f267ec4358296f31c2479db8f9"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5bbe06f8eeafd38e5d0a4894ffec89378b6c6a625ff57e3028921f8ff59318ac"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-win32.whl", hash = "sha256:dd15ff04ffd7e05ffcb7fe79f1b98041b8ea30ae9234aed2a9168b5797c3effb"}, + {file = "MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:134da1eca9ec0ae528110ccc9e48041e0828d79f24121a1a146161103c76e686"}, + {file = "MarkupSafe-2.1.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8e254ae696c88d98da6555f5ace2279cf7cd5b3f52be2b5cf97feafe883b58d2"}, + {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0932dc158471523c9637e807d9bfb93e06a95cbf010f1a38b98623b929ef2b"}, + {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9402b03f1a1b4dc4c19845e5c749e3ab82d5078d16a2a4c2cd2df62d57bb0707"}, + {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca379055a47383d02a5400cb0d110cef0a776fc644cda797db0c5696cfd7e18e"}, + {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b7ff0f54cb4ff66dd38bebd335a38e2c22c41a8ee45aa608efc890ac3e3931bc"}, + {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c011a4149cfbcf9f03994ec2edffcb8b1dc2d2aede7ca243746df97a5d41ce48"}, + {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:56d9f2ecac662ca1611d183feb03a3fa4406469dafe241673d521dd5ae92a155"}, + {file = "MarkupSafe-2.1.3-cp37-cp37m-win32.whl", hash = "sha256:8758846a7e80910096950b67071243da3e5a20ed2546e6392603c096778d48e0"}, + {file = "MarkupSafe-2.1.3-cp37-cp37m-win_amd64.whl", hash = "sha256:787003c0ddb00500e49a10f2844fac87aa6ce977b90b0feaaf9de23c22508b24"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:2ef12179d3a291be237280175b542c07a36e7f60718296278d8593d21ca937d4"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2c1b19b3aaacc6e57b7e25710ff571c24d6c3613a45e905b1fde04d691b98ee0"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8afafd99945ead6e075b973fefa56379c5b5c53fd8937dad92c662da5d8fd5ee"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c41976a29d078bb235fea9b2ecd3da465df42a562910f9022f1a03107bd02be"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d080e0a5eb2529460b30190fcfcc4199bd7f827663f858a226a81bc27beaa97e"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:69c0f17e9f5a7afdf2cc9fb2d1ce6aabdb3bafb7f38017c0b77862bcec2bbad8"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:504b320cd4b7eff6f968eddf81127112db685e81f7e36e75f9f84f0df46041c3"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:42de32b22b6b804f42c5d98be4f7e5e977ecdd9ee9b660fda1a3edf03b11792d"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-win32.whl", hash = "sha256:ceb01949af7121f9fc39f7d27f91be8546f3fb112c608bc4029aef0bab86a2a5"}, + {file = "MarkupSafe-2.1.3-cp38-cp38-win_amd64.whl", hash = "sha256:1b40069d487e7edb2676d3fbdb2b0829ffa2cd63a2ec26c4938b2d34391b4ecc"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:8023faf4e01efadfa183e863fefde0046de576c6f14659e8782065bcece22198"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6b2b56950d93e41f33b4223ead100ea0fe11f8e6ee5f641eb753ce4b77a7042b"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9dcdfd0eaf283af041973bff14a2e143b8bd64e069f4c383416ecd79a81aab58"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05fb21170423db021895e1ea1e1f3ab3adb85d1c2333cbc2310f2a26bc77272e"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:282c2cb35b5b673bbcadb33a585408104df04f14b2d9b01d4c345a3b92861c2c"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ab4a0df41e7c16a1392727727e7998a467472d0ad65f3ad5e6e765015df08636"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7ef3cb2ebbf91e330e3bb937efada0edd9003683db6b57bb108c4001f37a02ea"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0a4e4a1aff6c7ac4cd55792abf96c915634c2b97e3cc1c7129578aa68ebd754e"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-win32.whl", hash = "sha256:fec21693218efe39aa7f8599346e90c705afa52c5b31ae019b2e57e8f6542bb2"}, + {file = "MarkupSafe-2.1.3-cp39-cp39-win_amd64.whl", hash = "sha256:3fd4abcb888d15a94f32b75d8fd18ee162ca0c064f35b11134be77050296d6ba"}, + {file = "MarkupSafe-2.1.3.tar.gz", hash = "sha256:af598ed32d6ae86f1b747b82783958b1a4ab8f617b06fe68795c7f026abbdcad"}, ] [[package]] @@ -1480,148 +1055,27 @@ python-dateutil = ">=2.1" [[package]] name = "matplotlib-inline" -version = "0.1.7" +version = "0.1.6" description = "Inline Matplotlib backend for Jupyter" optional = false -python-versions = ">=3.8" +python-versions = ">=3.5" files = [ - {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, - {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, + {file = "matplotlib-inline-0.1.6.tar.gz", hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"}, + {file = "matplotlib_inline-0.1.6-py3-none-any.whl", hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311"}, ] [package.dependencies] traitlets = "*" -[[package]] -name = "mpmath" -version = "1.3.0" -description = "Python library for arbitrary-precision floating-point arithmetic" -optional = false -python-versions = "*" -files = [ - {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, - {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, -] - -[package.extras] -develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"] -docs = ["sphinx"] -gmpy = ["gmpy2 (>=2.1.0a4)"] -tests = ["pytest (>=4.6)"] - -[[package]] -name = "multidict" -version = "6.1.0" -description = "multidict implementation" -optional = false -python-versions = ">=3.8" -files = [ - {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, - {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, - {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, - {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, - {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, - {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, - {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, - {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, - {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, - {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, - {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, - {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, - {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, - {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, - {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, - {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, - {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, - {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, - {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, - {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, - {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, - {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, - {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, - {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, - {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, - {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, - {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, - {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, - {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, - {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, - {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, - {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, - {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, - {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, - {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, - {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, - {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, - {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, - {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, - {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, - {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, - {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, - {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, - {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, - {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, - {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, - {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, - {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, - {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, - {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, - {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, - {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, - {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, - {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, - {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, - {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, - {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, - {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, - {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, - {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, - {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, - {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, - {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, - {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, - {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, - {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, - {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, - {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, - {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, - {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, - {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, - {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, - {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, - {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, - {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, - {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, - {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, - {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, - {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, - {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, - {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, - {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, - {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, - {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, - {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, - {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, - {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, - {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, - {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, - {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, - {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, - {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, -] - -[package.dependencies] -typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} - [[package]] name = "nest-asyncio" -version = "1.6.0" +version = "1.5.8" description = "Patch asyncio to allow nested event loops" optional = false python-versions = ">=3.5" files = [ - {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, - {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, + {file = "nest_asyncio-1.5.8-py3-none-any.whl", hash = "sha256:accda7a339a70599cb08f9dd09a67e0c2ef8d8d6f4c07f96ab203f2ae254e48d"}, + {file = "nest_asyncio-1.5.8.tar.gz", hash = "sha256:25aa2ca0d2a5b5531956b9e273b45cf664cae2b145101d73b86b199978d48fdb"}, ] [[package]] @@ -1652,203 +1106,87 @@ pyyaml = ["pyyaml"] scipy = ["scipy"] [[package]] -name = "neural-structured-learning" -version = "1.3.1" -description = "Neural Structured Learning is an open-source TensorFlow framework to train neural networks with structured signals" +name = "node2vec" +version = "0.3.3" +description = "Implementation of the node2vec algorithm." optional = false python-versions = "*" files = [ - {file = "neural-structured-learning-1.3.1.tar.gz", hash = "sha256:b3bbb76a2c2947d9c20bfa55c4f5a6aec5330aba51d6814cacf04089462f10aa"}, - {file = "neural_structured_learning-1.3.1-py2.py3-none-any.whl", hash = "sha256:5b0de29e48a848528252444ac30a13281bada130dee7e0940ddcff30613e02ce"}, + {file = "node2vec-0.3.3.tar.gz", hash = "sha256:a122796952137bc91df5e9a51525180d510e1f4e4208eb4a21329137c38354d8"}, ] [package.dependencies] -absl-py = "*" -attrs = "*" -scipy = "*" -six = "*" +gensim = "*" +joblib = ">=0.13.2" +networkx = "*" +numpy = "*" +tqdm = "*" [[package]] name = "numpy" -version = "1.21.6" +version = "1.19.5" description = "NumPy is the fundamental package for array computing with Python." optional = false -python-versions = ">=3.7,<3.11" -files = [ - {file = "numpy-1.21.6-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8737609c3bbdd48e380d463134a35ffad3b22dc56295eff6f79fd85bd0eeeb25"}, - {file = "numpy-1.21.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:fdffbfb6832cd0b300995a2b08b8f6fa9f6e856d562800fea9182316d99c4e8e"}, - {file = "numpy-1.21.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3820724272f9913b597ccd13a467cc492a0da6b05df26ea09e78b171a0bb9da6"}, - {file = "numpy-1.21.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f17e562de9edf691a42ddb1eb4a5541c20dd3f9e65b09ded2beb0799c0cf29bb"}, - {file = "numpy-1.21.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f30427731561ce75d7048ac254dbe47a2ba576229250fb60f0fb74db96501a1"}, - {file = "numpy-1.21.6-cp310-cp310-win32.whl", hash = "sha256:d4bf4d43077db55589ffc9009c0ba0a94fa4908b9586d6ccce2e0b164c86303c"}, - {file = "numpy-1.21.6-cp310-cp310-win_amd64.whl", hash = "sha256:d136337ae3cc69aa5e447e78d8e1514be8c3ec9b54264e680cf0b4bd9011574f"}, - {file = "numpy-1.21.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6aaf96c7f8cebc220cdfc03f1d5a31952f027dda050e5a703a0d1c396075e3e7"}, - {file = "numpy-1.21.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:67c261d6c0a9981820c3a149d255a76918278a6b03b6a036800359aba1256d46"}, - {file = "numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a6be4cb0ef3b8c9250c19cc122267263093eee7edd4e3fa75395dfda8c17a8e2"}, - {file = "numpy-1.21.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7c4068a8c44014b2d55f3c3f574c376b2494ca9cc73d2f1bd692382b6dffe3db"}, - {file = "numpy-1.21.6-cp37-cp37m-win32.whl", hash = "sha256:7c7e5fa88d9ff656e067876e4736379cc962d185d5cd808014a8a928d529ef4e"}, - {file = "numpy-1.21.6-cp37-cp37m-win_amd64.whl", hash = "sha256:bcb238c9c96c00d3085b264e5c1a1207672577b93fa666c3b14a45240b14123a"}, - {file = "numpy-1.21.6-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:82691fda7c3f77c90e62da69ae60b5ac08e87e775b09813559f8901a88266552"}, - {file = "numpy-1.21.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:643843bcc1c50526b3a71cd2ee561cf0d8773f062c8cbaf9ffac9fdf573f83ab"}, - {file = "numpy-1.21.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:357768c2e4451ac241465157a3e929b265dfac85d9214074985b1786244f2ef3"}, - {file = "numpy-1.21.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9f411b2c3f3d76bba0865b35a425157c5dcf54937f82bbeb3d3c180789dd66a6"}, - {file = "numpy-1.21.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4aa48afdce4660b0076a00d80afa54e8a97cd49f457d68a4342d188a09451c1a"}, - {file = "numpy-1.21.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6a96eef20f639e6a97d23e57dd0c1b1069a7b4fd7027482a4c5c451cd7732f4"}, - {file = "numpy-1.21.6-cp38-cp38-win32.whl", hash = "sha256:5c3c8def4230e1b959671eb959083661b4a0d2e9af93ee339c7dada6759a9470"}, - {file = "numpy-1.21.6-cp38-cp38-win_amd64.whl", hash = "sha256:bf2ec4b75d0e9356edea834d1de42b31fe11f726a81dfb2c2112bc1eaa508fcf"}, - {file = "numpy-1.21.6-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4391bd07606be175aafd267ef9bea87cf1b8210c787666ce82073b05f202add1"}, - {file = "numpy-1.21.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:67f21981ba2f9d7ba9ade60c9e8cbaa8cf8e9ae51673934480e45cf55e953673"}, - {file = "numpy-1.21.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ee5ec40fdd06d62fe5d4084bef4fd50fd4bb6bfd2bf519365f569dc470163ab0"}, - {file = "numpy-1.21.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:1dbe1c91269f880e364526649a52eff93ac30035507ae980d2fed33aaee633ac"}, - {file = "numpy-1.21.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d9caa9d5e682102453d96a0ee10c7241b72859b01a941a397fd965f23b3e016b"}, - {file = "numpy-1.21.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58459d3bad03343ac4b1b42ed14d571b8743dc80ccbf27444f266729df1d6f5b"}, - {file = "numpy-1.21.6-cp39-cp39-win32.whl", hash = "sha256:7f5ae4f304257569ef3b948810816bc87c9146e8c446053539947eedeaa32786"}, - {file = "numpy-1.21.6-cp39-cp39-win_amd64.whl", hash = "sha256:e31f0bb5928b793169b87e3d1e070f2342b22d5245c755e2b81caa29756246c3"}, - {file = "numpy-1.21.6-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dd1c8f6bd65d07d3810b90d02eba7997e32abbdf1277a481d698969e921a3be0"}, - {file = "numpy-1.21.6.zip", hash = "sha256:ecb55251139706669fdec2ff073c98ef8e9a84473e51e716211b41aa0f18e656"}, -] - -[[package]] -name = "nvidia-cublas-cu12" -version = "12.1.3.1" -description = "CUBLAS native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728"}, - {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-win_amd64.whl", hash = "sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906"}, -] - -[[package]] -name = "nvidia-cuda-cupti-cu12" -version = "12.1.105" -description = "CUDA profiling tools runtime libs." -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e"}, - {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4"}, -] - -[[package]] -name = "nvidia-cuda-nvrtc-cu12" -version = "12.1.105" -description = "NVRTC native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2"}, - {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed"}, -] - -[[package]] -name = "nvidia-cuda-runtime-cu12" -version = "12.1.105" -description = "CUDA Runtime native Libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40"}, - {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344"}, -] - -[[package]] -name = "nvidia-cudnn-cu12" -version = "8.9.2.26" -description = "cuDNN runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl", hash = "sha256:5ccb288774fdfb07a7e7025ffec286971c06d8d7b4fb162525334616d7629ff9"}, -] - -[package.dependencies] -nvidia-cublas-cu12 = "*" - -[[package]] -name = "nvidia-cufft-cu12" -version = "11.0.2.54" -description = "CUFFT native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl", hash = "sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56"}, - {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-win_amd64.whl", hash = "sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253"}, -] - -[[package]] -name = "nvidia-curand-cu12" -version = "10.3.2.106" -description = "CURAND native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0"}, - {file = "nvidia_curand_cu12-10.3.2.106-py3-none-win_amd64.whl", hash = "sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a"}, -] - -[[package]] -name = "nvidia-cusolver-cu12" -version = "11.4.5.107" -description = "CUDA solver native runtime libraries" -optional = false -python-versions = ">=3" +python-versions = ">=3.6" files = [ - {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd"}, - {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-win_amd64.whl", hash = "sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5"}, -] - -[package.dependencies] -nvidia-cublas-cu12 = "*" -nvidia-cusparse-cu12 = "*" -nvidia-nvjitlink-cu12 = "*" - -[[package]] -name = "nvidia-cusparse-cu12" -version = "12.1.0.106" -description = "CUSPARSE native runtime libraries" + {file = "numpy-1.19.5-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:cc6bd4fd593cb261332568485e20a0712883cf631f6f5e8e86a52caa8b2b50ff"}, + {file = "numpy-1.19.5-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:aeb9ed923be74e659984e321f609b9ba54a48354bfd168d21a2b072ed1e833ea"}, + {file = "numpy-1.19.5-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:8b5e972b43c8fc27d56550b4120fe6257fdc15f9301914380b27f74856299fea"}, + {file = "numpy-1.19.5-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:43d4c81d5ffdff6bae58d66a3cd7f54a7acd9a0e7b18d97abb255defc09e3140"}, + {file = "numpy-1.19.5-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:a4646724fba402aa7504cd48b4b50e783296b5e10a524c7a6da62e4a8ac9698d"}, + {file = "numpy-1.19.5-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:2e55195bc1c6b705bfd8ad6f288b38b11b1af32f3c8289d6c50d47f950c12e76"}, + {file = "numpy-1.19.5-cp36-cp36m-win32.whl", hash = "sha256:39b70c19ec771805081578cc936bbe95336798b7edf4732ed102e7a43ec5c07a"}, + {file = "numpy-1.19.5-cp36-cp36m-win_amd64.whl", hash = "sha256:dbd18bcf4889b720ba13a27ec2f2aac1981bd41203b3a3b27ba7a33f88ae4827"}, + {file = "numpy-1.19.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:603aa0706be710eea8884af807b1b3bc9fb2e49b9f4da439e76000f3b3c6ff0f"}, + {file = "numpy-1.19.5-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:cae865b1cae1ec2663d8ea56ef6ff185bad091a5e33ebbadd98de2cfa3fa668f"}, + {file = "numpy-1.19.5-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:36674959eed6957e61f11c912f71e78857a8d0604171dfd9ce9ad5cbf41c511c"}, + {file = "numpy-1.19.5-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:06fab248a088e439402141ea04f0fffb203723148f6ee791e9c75b3e9e82f080"}, + {file = "numpy-1.19.5-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:6149a185cece5ee78d1d196938b2a8f9d09f5a5ebfbba66969302a778d5ddd1d"}, + {file = "numpy-1.19.5-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:50a4a0ad0111cc1b71fa32dedd05fa239f7fb5a43a40663269bb5dc7877cfd28"}, + {file = "numpy-1.19.5-cp37-cp37m-win32.whl", hash = "sha256:d051ec1c64b85ecc69531e1137bb9751c6830772ee5c1c426dbcfe98ef5788d7"}, + {file = "numpy-1.19.5-cp37-cp37m-win_amd64.whl", hash = "sha256:a12ff4c8ddfee61f90a1633a4c4afd3f7bcb32b11c52026c92a12e1325922d0d"}, + {file = "numpy-1.19.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cf2402002d3d9f91c8b01e66fbb436a4ed01c6498fffed0e4c7566da1d40ee1e"}, + {file = "numpy-1.19.5-cp38-cp38-manylinux1_i686.whl", hash = "sha256:1ded4fce9cfaaf24e7a0ab51b7a87be9038ea1ace7f34b841fe3b6894c721d1c"}, + {file = "numpy-1.19.5-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:012426a41bc9ab63bb158635aecccc7610e3eff5d31d1eb43bc099debc979d94"}, + {file = "numpy-1.19.5-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:759e4095edc3c1b3ac031f34d9459fa781777a93ccc633a472a5468587a190ff"}, + {file = "numpy-1.19.5-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:a9d17f2be3b427fbb2bce61e596cf555d6f8a56c222bd2ca148baeeb5e5c783c"}, + {file = "numpy-1.19.5-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:99abf4f353c3d1a0c7a5f27699482c987cf663b1eac20db59b8c7b061eabd7fc"}, + {file = "numpy-1.19.5-cp38-cp38-win32.whl", hash = "sha256:384ec0463d1c2671170901994aeb6dce126de0a95ccc3976c43b0038a37329c2"}, + {file = "numpy-1.19.5-cp38-cp38-win_amd64.whl", hash = "sha256:811daee36a58dc79cf3d8bdd4a490e4277d0e4b7d103a001a4e73ddb48e7e6aa"}, + {file = "numpy-1.19.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c843b3f50d1ab7361ca4f0b3639bf691569493a56808a0b0c54a051d260b7dbd"}, + {file = "numpy-1.19.5-cp39-cp39-manylinux1_i686.whl", hash = "sha256:d6631f2e867676b13026e2846180e2c13c1e11289d67da08d71cacb2cd93d4aa"}, + {file = "numpy-1.19.5-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:7fb43004bce0ca31d8f13a6eb5e943fa73371381e53f7074ed21a4cb786c32f8"}, + {file = "numpy-1.19.5-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:2ea52bd92ab9f768cc64a4c3ef8f4b2580a17af0a5436f6126b08efbd1838371"}, + {file = "numpy-1.19.5-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:400580cbd3cff6ffa6293df2278c75aef2d58d8d93d3c5614cd67981dae68ceb"}, + {file = "numpy-1.19.5-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:df609c82f18c5b9f6cb97271f03315ff0dbe481a2a02e56aeb1b1a985ce38e60"}, + {file = "numpy-1.19.5-cp39-cp39-win32.whl", hash = "sha256:ab83f24d5c52d60dbc8cd0528759532736b56db58adaa7b5f1f76ad551416a1e"}, + {file = "numpy-1.19.5-cp39-cp39-win_amd64.whl", hash = "sha256:0eef32ca3132a48e43f6a0f5a82cb508f22ce5a3d6f67a8329c81c8e226d3f6e"}, + {file = "numpy-1.19.5-pp36-pypy36_pp73-manylinux2010_x86_64.whl", hash = "sha256:a0d53e51a6cb6f0d9082decb7a4cb6dfb33055308c4c44f53103c073f649af73"}, + {file = "numpy-1.19.5.zip", hash = "sha256:a76f502430dd98d7546e1ea2250a7360c065a5fdea52b2dffe8ae7180909b6f4"}, +] + +[[package]] +name = "nxt-gem" +version = "2.0.1" +description = "nxt_gem: A Python module for Graph Embedding Methods" optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c"}, - {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-win_amd64.whl", hash = "sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a"}, -] +python-versions = "*" +files = [] +develop = false [package.dependencies] -nvidia-nvjitlink-cu12 = "*" - -[[package]] -name = "nvidia-nccl-cu12" -version = "2.18.1" -description = "NVIDIA Collective Communication Library (NCCL) Runtime" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_nccl_cu12-2.18.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:1a6c4acefcbebfa6de320f412bf7866de856e786e0462326ba1bac40de0b5e71"}, -] - -[[package]] -name = "nvidia-nvjitlink-cu12" -version = "12.6.77" -description = "Nvidia JIT LTO Library" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-manylinux2014_aarch64.whl", hash = "sha256:3bf10d85bb1801e9c894c6e197e44dd137d2a0a9e43f8450e9ad13f2df0dd52d"}, - {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-manylinux2014_x86_64.whl", hash = "sha256:9ae346d16203ae4ea513be416495167a0101d33d2d14935aa9c1829a3fb45142"}, - {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-win_amd64.whl", hash = "sha256:410718cd44962bed862a31dd0318620f6f9a8b28a6291967bcfcb446a6516771"}, -] +matplotlib = ">=2.0.0" +networkx = ">=2.4" +numpy = ">=1.12.0" +scikit-learn = ">=0.21.2" +scipy = ">=0.19.0" +theano = ">=0.9.0" -[[package]] -name = "nvidia-nvtx-cu12" -version = "12.1.105" -description = "NVIDIA Tools Extension" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5"}, - {file = "nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82"}, -] +[package.source] +type = "git" +url = "https://github.com/palash1992/GEM.git" +reference = "master" +resolved_reference = "ae8e92d34213f5785757b4a0943bd7d8d337adb3" [[package]] name = "oauthlib" @@ -1868,103 +1206,126 @@ signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] [[package]] name = "opt-einsum" -version = "3.4.0" -description = "Path optimization of einsum functions." +version = "3.3.0" +description = "Optimizing numpys einsum function" optional = false -python-versions = ">=3.8" +python-versions = ">=3.5" files = [ - {file = "opt_einsum-3.4.0-py3-none-any.whl", hash = "sha256:69bb92469f86a1565195ece4ac0323943e83477171b91d24c35afe028a90d7cd"}, - {file = "opt_einsum-3.4.0.tar.gz", hash = "sha256:96ca72f1b886d148241348783498194c577fa30a8faac108586b14f1ba4473ac"}, + {file = "opt_einsum-3.3.0-py3-none-any.whl", hash = "sha256:2455e59e3947d3c275477df7f5205b30635e266fe6dc300e3d9f9646bfcea147"}, + {file = "opt_einsum-3.3.0.tar.gz", hash = "sha256:59f6475f77bbc37dcf7cd748519c0ec60722e91e63ca114e68821c0c54a46549"}, ] +[package.dependencies] +numpy = ">=1.7" + +[package.extras] +docs = ["numpydoc", "sphinx (==1.2.3)", "sphinx-rtd-theme", "sphinxcontrib-napoleon"] +tests = ["pytest", "pytest-cov", "pytest-pep8"] + [[package]] name = "packaging" -version = "24.1" +version = "23.2" description = "Core utilities for Python packages" optional = false -python-versions = ">=3.8" +python-versions = ">=3.7" files = [ - {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, - {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, + {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, + {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, +] + +[[package]] +name = "pandas" +version = "1.3.3" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.7.1" +files = [ + {file = "pandas-1.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68408a39a54ebadb9014ee5a4fae27b2fe524317bc80adf56c9ac59e8f8ea431"}, + {file = "pandas-1.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86b16b1b920c4cb27fdd65a2c20258bcd9c794be491290660722bb0ea765054d"}, + {file = "pandas-1.3.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:37d63e78e87eb3791da7be4100a65da0383670c2b59e493d9e73098d7a879226"}, + {file = "pandas-1.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:53e2fb11f86f6253bb1df26e3aeab3bf2e000aaa32a953ec394571bec5dc6fd6"}, + {file = "pandas-1.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7326b37de08d42dd3fff5b7ef7691d0fd0bf2428f4ba5a2bdc3b3247e9a52e4c"}, + {file = "pandas-1.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2f29b4da6f6ae7c68f4b3708d9d9e59fa89b2f9e87c2b64ce055cbd39f729e"}, + {file = "pandas-1.3.3-cp37-cp37m-win32.whl", hash = "sha256:3f5020613c1d8e304840c34aeb171377dc755521bf5e69804991030c2a48aec3"}, + {file = "pandas-1.3.3-cp37-cp37m-win_amd64.whl", hash = "sha256:c399200631db9bd9335d013ec7fce4edb98651035c249d532945c78ad453f23a"}, + {file = "pandas-1.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a800df4e101b721e94d04c355e611863cc31887f24c0b019572e26518cbbcab6"}, + {file = "pandas-1.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3334a5a9eeaca953b9db1b2b165dcdc5180b5011f3bec3a57a3580c9c22eae68"}, + {file = "pandas-1.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49fd2889d8116d7acef0709e4c82b8560a8b22b0f77471391d12c27596e90267"}, + {file = "pandas-1.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7557b39c8e86eb0543a17a002ac1ea0f38911c3c17095bc9350d0a65b32d801c"}, + {file = "pandas-1.3.3-cp38-cp38-win32.whl", hash = "sha256:629138b7cf81a2e55aa29ce7b04c1cece20485271d1f6c469c6a0c03857db6a4"}, + {file = "pandas-1.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:45649503e167d45360aa7c52f18d1591a6d5c70d2f3a26bc90a3297a30ce9a66"}, + {file = "pandas-1.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ebbed7312547a924df0cbe133ff1250eeb94cdff3c09a794dc991c5621c8c735"}, + {file = "pandas-1.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a9f1b54d7efc9df05320b14a48fb18686f781aa66cc7b47bb62fabfc67a0985c"}, + {file = "pandas-1.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9bc59855598cb57f68fdabd4897d3ed2bc3a3b3bef7b868a0153c4cd03f3207"}, + {file = "pandas-1.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4def2ef2fb7fcd62f2aa51bacb817ee9029e5c8efe42fe527ba21f6a3ddf1a9f"}, + {file = "pandas-1.3.3-cp39-cp39-win32.whl", hash = "sha256:f7d84f321674c2f0f31887ee6d5755c54ca1ea5e144d6d54b3bbf566dd9ea0cc"}, + {file = "pandas-1.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:e574c2637c9d27f322e911650b36e858c885702c5996eda8a5a60e35e6648cf2"}, + {file = "pandas-1.3.3.tar.gz", hash = "sha256:272c8cb14aa9793eada6b1ebe81994616e647b5892a370c7135efb2924b701df"}, ] +[package.dependencies] +numpy = ">=1.17.3" +python-dateutil = ">=2.7.3" +pytz = ">=2017.3" + +[package.extras] +test = ["hypothesis (>=3.58)", "pytest (>=6.0)", "pytest-xdist"] + [[package]] name = "pandas" -version = "2.0.3" +version = "1.4.4" description = "Powerful data structures for data analysis, time series, and statistics" optional = false python-versions = ">=3.8" files = [ - {file = "pandas-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8"}, - {file = "pandas-2.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f"}, - {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183"}, - {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0"}, - {file = "pandas-2.0.3-cp310-cp310-win32.whl", hash = "sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210"}, - {file = "pandas-2.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e"}, - {file = "pandas-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8"}, - {file = "pandas-2.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26"}, - {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d"}, - {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df"}, - {file = "pandas-2.0.3-cp311-cp311-win32.whl", hash = "sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd"}, - {file = "pandas-2.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b"}, - {file = "pandas-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061"}, - {file = "pandas-2.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5"}, - {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089"}, - {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0"}, - {file = "pandas-2.0.3-cp38-cp38-win32.whl", hash = "sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02"}, - {file = "pandas-2.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78"}, - {file = "pandas-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b"}, - {file = "pandas-2.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e"}, - {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b"}, - {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641"}, - {file = "pandas-2.0.3-cp39-cp39-win32.whl", hash = "sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682"}, - {file = "pandas-2.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc"}, - {file = "pandas-2.0.3.tar.gz", hash = "sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c"}, + {file = "pandas-1.4.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:799e6a25932df7e6b1f8dabf63de064e2205dc309abb75956126a0453fd88e97"}, + {file = "pandas-1.4.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7cd1d69a387f7d5e1a5a06a87574d9ef2433847c0e78113ab51c84d3a8bcaeaa"}, + {file = "pandas-1.4.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:94f2ed1fd51e545ebf71da1e942fe1822ee01e10d3dd2a7276d01351333b7c6b"}, + {file = "pandas-1.4.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4591cadd06fbbbd16fafc2de6e840c1aaefeae3d5864b688004777ef1bbdede3"}, + {file = "pandas-1.4.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0022fe6a313df1c4869b5edc012d734c6519a6fffa3cf70930f32e6a1078e49"}, + {file = "pandas-1.4.4-cp310-cp310-win_amd64.whl", hash = "sha256:785e878a6e6d8ddcdb8c181e600855402750052497d7fc6d6b508894f6b8830b"}, + {file = "pandas-1.4.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c4bb8b0ab9f94207d07e401d24baebfc63057246b1a5e0cd9ee50df85a656871"}, + {file = "pandas-1.4.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:51c424ca134fdaeac9a4acd719d1ab48046afc60943a489028f0413fdbe9ef1c"}, + {file = "pandas-1.4.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ce35f947202b0b99c660221d82beb91d2e6d553d55a40b30128204e3e2c63848"}, + {file = "pandas-1.4.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee6f1848148ed3204235967613b0a32be2d77f214e9623f554511047705c1e04"}, + {file = "pandas-1.4.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7cc960959be28d064faefc0cb2aef854d46b827c004ebea7e79b5497ed83e7d"}, + {file = "pandas-1.4.4-cp38-cp38-win32.whl", hash = "sha256:9d805bce209714b1c1fa29bfb1e42ad87e4c0a825e4b390c56a3e71593b7e8d8"}, + {file = "pandas-1.4.4-cp38-cp38-win_amd64.whl", hash = "sha256:afbddad78a98ec4d2ce08b384b81730de1ccc975b99eb663e6dac43703f36d98"}, + {file = "pandas-1.4.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a08ceb59db499864c58a9bf85ab6219d527d91f14c0240cc25fa2c261032b2a7"}, + {file = "pandas-1.4.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0959c41004e3d2d16f39c828d6da66ebee329836a7ecee49fb777ac9ad8a7501"}, + {file = "pandas-1.4.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87b4194f344dcd14c0f885cecb22005329b38bda10f1aaf7b9596a00ec8a4768"}, + {file = "pandas-1.4.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d2a7a3c1fea668d56bd91edbd5f2732e0af8feb9d2bf8d9bfacb2dea5fa9536"}, + {file = "pandas-1.4.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a981cfabf51c318a562deb4ae7deec594c07aee7cf18b4594a92c23718ec8275"}, + {file = "pandas-1.4.4-cp39-cp39-win32.whl", hash = "sha256:050aada67a5ec6699a7879e769825b510018a95fb9ac462bb1867483d0974a97"}, + {file = "pandas-1.4.4-cp39-cp39-win_amd64.whl", hash = "sha256:8d4d2fe2863ecddb0ba1979bdda26c8bc2ea138f5a979abe3ba80c0fa4015c91"}, + {file = "pandas-1.4.4.tar.gz", hash = "sha256:ab6c0d738617b675183e5f28db32b5148b694ad9bba0a40c3ea26d96b431db67"}, ] [package.dependencies] -numpy = {version = ">=1.20.3", markers = "python_version < \"3.10\""} -python-dateutil = ">=2.8.2" +numpy = [ + {version = ">=1.18.5", markers = "(platform_machine != \"aarch64\" and platform_machine != \"arm64\") and python_version < \"3.10\""}, + {version = ">=1.19.2", markers = "platform_machine == \"aarch64\" and python_version < \"3.10\""}, +] +python-dateutil = ">=2.8.1" pytz = ">=2020.1" -tzdata = ">=2022.1" [package.extras] -all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] -aws = ["s3fs (>=2021.08.0)"] -clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] -compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] -computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] -excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] -feather = ["pyarrow (>=7.0.0)"] -fss = ["fsspec (>=2021.07.0)"] -gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] -hdf5 = ["tables (>=3.6.1)"] -html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] -mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] -output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] -parquet = ["pyarrow (>=7.0.0)"] -performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] -plot = ["matplotlib (>=3.6.1)"] -postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] -spss = ["pyreadstat (>=1.1.2)"] -sql-other = ["SQLAlchemy (>=1.4.16)"] -test = ["hypothesis (>=6.34.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] -xml = ["lxml (>=4.6.3)"] +test = ["hypothesis (>=5.5.3)", "pytest (>=6.0)", "pytest-xdist (>=1.31)"] [[package]] name = "parso" -version = "0.8.4" +version = "0.8.3" description = "A Python Parser" optional = false python-versions = ">=3.6" files = [ - {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, - {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, + {file = "parso-0.8.3-py2.py3-none-any.whl", hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"}, + {file = "parso-0.8.3.tar.gz", hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0"}, ] [package.extras] -qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] -testing = ["docopt", "pytest"] +qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] +testing = ["docopt", "pytest (<6.0.0)"] [[package]] name = "pexpect" @@ -1991,240 +1352,35 @@ files = [ {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, ] -[[package]] -name = "pillow" -version = "10.4.0" -description = "Python Imaging Library (Fork)" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"}, - {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"}, - {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"}, - {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"}, - {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"}, - {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"}, - {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"}, - {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"}, - {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"}, - {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"}, - {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"}, - {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"}, - {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"}, - {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"}, - {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"}, - {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"}, - {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"}, - {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"}, - {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"}, - {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"}, - {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"}, - {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"}, - {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"}, - {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"}, - {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"}, - {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"}, - {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"}, - {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"}, - {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"}, - {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"}, - {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"}, - {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"}, - {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"}, - {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"}, - {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"}, - {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"}, - {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"}, - {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"}, - {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"}, - {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"}, - {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"}, - {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"}, - {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"}, - {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"}, - {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"}, - {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"}, - {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"}, - {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"}, - {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"}, - {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"}, - {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"}, - {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"}, - {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"}, - {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"}, - {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"}, - {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"}, - {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"}, - {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"}, - {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"}, - {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"}, - {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"}, - {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"}, - {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"}, - {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"}, - {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"}, - {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"}, -] - -[package.extras] -docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] -fpx = ["olefile"] -mic = ["olefile"] -tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] -typing = ["typing-extensions"] -xmp = ["defusedxml"] - [[package]] name = "platformdirs" -version = "4.3.6" -description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." +version = "4.1.0" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." optional = false python-versions = ">=3.8" files = [ - {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, - {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, + {file = "platformdirs-4.1.0-py3-none-any.whl", hash = "sha256:11c8f37bcca40db96d8144522d925583bdb7a31f7b0e37e3ed4318400a8e2380"}, + {file = "platformdirs-4.1.0.tar.gz", hash = "sha256:906d548203468492d432bcb294d4bc2fff751bf84971fbb2c10918cc206ee420"}, ] [package.extras] -docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] -type = ["mypy (>=1.11.2)"] +docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.1)", "sphinx-autodoc-typehints (>=1.24)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)"] [[package]] name = "prompt-toolkit" -version = "3.0.48" +version = "3.0.43" description = "Library for building powerful interactive command lines in Python" optional = false python-versions = ">=3.7.0" files = [ - {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, - {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, + {file = "prompt_toolkit-3.0.43-py3-none-any.whl", hash = "sha256:a11a29cb3bf0a28a387fe5122cdb649816a957cd9261dcedf8c9f1fef33eacf6"}, + {file = "prompt_toolkit-3.0.43.tar.gz", hash = "sha256:3527b7af26106cbc65a040bcc84839a3566ec1b051bb0bfe953631e704b0ff7d"}, ] [package.dependencies] wcwidth = "*" -[[package]] -name = "propcache" -version = "0.2.0" -description = "Accelerated property cache" -optional = false -python-versions = ">=3.8" -files = [ - {file = "propcache-0.2.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:c5869b8fd70b81835a6f187c5fdbe67917a04d7e52b6e7cc4e5fe39d55c39d58"}, - {file = "propcache-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:952e0d9d07609d9c5be361f33b0d6d650cd2bae393aabb11d9b719364521984b"}, - {file = "propcache-0.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:33ac8f098df0585c0b53009f039dfd913b38c1d2edafed0cedcc0c32a05aa110"}, - {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:97e48e8875e6c13909c800fa344cd54cc4b2b0db1d5f911f840458a500fde2c2"}, - {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:388f3217649d6d59292b722d940d4d2e1e6a7003259eb835724092a1cca0203a"}, - {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f571aea50ba5623c308aa146eb650eebf7dbe0fd8c5d946e28343cb3b5aad577"}, - {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3dfafb44f7bb35c0c06eda6b2ab4bfd58f02729e7c4045e179f9a861b07c9850"}, - {file = "propcache-0.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a3ebe9a75be7ab0b7da2464a77bb27febcb4fab46a34f9288f39d74833db7f61"}, - {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d2f0d0f976985f85dfb5f3d685697ef769faa6b71993b46b295cdbbd6be8cc37"}, - {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:a3dc1a4b165283bd865e8f8cb5f0c64c05001e0718ed06250d8cac9bec115b48"}, - {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:9e0f07b42d2a50c7dd2d8675d50f7343d998c64008f1da5fef888396b7f84630"}, - {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:e63e3e1e0271f374ed489ff5ee73d4b6e7c60710e1f76af5f0e1a6117cd26394"}, - {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:56bb5c98f058a41bb58eead194b4db8c05b088c93d94d5161728515bd52b052b"}, - {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7665f04d0c7f26ff8bb534e1c65068409bf4687aa2534faf7104d7182debb336"}, - {file = "propcache-0.2.0-cp310-cp310-win32.whl", hash = "sha256:7cf18abf9764746b9c8704774d8b06714bcb0a63641518a3a89c7f85cc02c2ad"}, - {file = "propcache-0.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:cfac69017ef97db2438efb854edf24f5a29fd09a536ff3a992b75990720cdc99"}, - {file = "propcache-0.2.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:63f13bf09cc3336eb04a837490b8f332e0db41da66995c9fd1ba04552e516354"}, - {file = "propcache-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:608cce1da6f2672a56b24a015b42db4ac612ee709f3d29f27a00c943d9e851de"}, - {file = "propcache-0.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:466c219deee4536fbc83c08d09115249db301550625c7fef1c5563a584c9bc87"}, - {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc2db02409338bf36590aa985a461b2c96fce91f8e7e0f14c50c5fcc4f229016"}, - {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a6ed8db0a556343d566a5c124ee483ae113acc9a557a807d439bcecc44e7dfbb"}, - {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:91997d9cb4a325b60d4e3f20967f8eb08dfcb32b22554d5ef78e6fd1dda743a2"}, - {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c7dde9e533c0a49d802b4f3f218fa9ad0a1ce21f2c2eb80d5216565202acab4"}, - {file = "propcache-0.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffcad6c564fe6b9b8916c1aefbb37a362deebf9394bd2974e9d84232e3e08504"}, - {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:97a58a28bcf63284e8b4d7b460cbee1edaab24634e82059c7b8c09e65284f178"}, - {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:945db8ee295d3af9dbdbb698cce9bbc5c59b5c3fe328bbc4387f59a8a35f998d"}, - {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:39e104da444a34830751715f45ef9fc537475ba21b7f1f5b0f4d71a3b60d7fe2"}, - {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:c5ecca8f9bab618340c8e848d340baf68bcd8ad90a8ecd7a4524a81c1764b3db"}, - {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:c436130cc779806bdf5d5fae0d848713105472b8566b75ff70048c47d3961c5b"}, - {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:191db28dc6dcd29d1a3e063c3be0b40688ed76434622c53a284e5427565bbd9b"}, - {file = "propcache-0.2.0-cp311-cp311-win32.whl", hash = "sha256:5f2564ec89058ee7c7989a7b719115bdfe2a2fb8e7a4543b8d1c0cc4cf6478c1"}, - {file = "propcache-0.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:6e2e54267980349b723cff366d1e29b138b9a60fa376664a157a342689553f71"}, - {file = "propcache-0.2.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:2ee7606193fb267be4b2e3b32714f2d58cad27217638db98a60f9efb5efeccc2"}, - {file = "propcache-0.2.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:91ee8fc02ca52e24bcb77b234f22afc03288e1dafbb1f88fe24db308910c4ac7"}, - {file = "propcache-0.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2e900bad2a8456d00a113cad8c13343f3b1f327534e3589acc2219729237a2e8"}, - {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f52a68c21363c45297aca15561812d542f8fc683c85201df0bebe209e349f793"}, - {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e41d67757ff4fbc8ef2af99b338bfb955010444b92929e9e55a6d4dcc3c4f09"}, - {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a64e32f8bd94c105cc27f42d3b658902b5bcc947ece3c8fe7bc1b05982f60e89"}, - {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:55346705687dbd7ef0d77883ab4f6fabc48232f587925bdaf95219bae072491e"}, - {file = "propcache-0.2.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:00181262b17e517df2cd85656fcd6b4e70946fe62cd625b9d74ac9977b64d8d9"}, - {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6994984550eaf25dd7fc7bd1b700ff45c894149341725bb4edc67f0ffa94efa4"}, - {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:56295eb1e5f3aecd516d91b00cfd8bf3a13991de5a479df9e27dd569ea23959c"}, - {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:439e76255daa0f8151d3cb325f6dd4a3e93043e6403e6491813bcaaaa8733887"}, - {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:f6475a1b2ecb310c98c28d271a30df74f9dd436ee46d09236a6b750a7599ce57"}, - {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:3444cdba6628accf384e349014084b1cacd866fbb88433cd9d279d90a54e0b23"}, - {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4a9d9b4d0a9b38d1c391bb4ad24aa65f306c6f01b512e10a8a34a2dc5675d348"}, - {file = "propcache-0.2.0-cp312-cp312-win32.whl", hash = "sha256:69d3a98eebae99a420d4b28756c8ce6ea5a29291baf2dc9ff9414b42676f61d5"}, - {file = "propcache-0.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:ad9c9b99b05f163109466638bd30ada1722abb01bbb85c739c50b6dc11f92dc3"}, - {file = "propcache-0.2.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ecddc221a077a8132cf7c747d5352a15ed763b674c0448d811f408bf803d9ad7"}, - {file = "propcache-0.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0e53cb83fdd61cbd67202735e6a6687a7b491c8742dfc39c9e01e80354956763"}, - {file = "propcache-0.2.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92fe151145a990c22cbccf9ae15cae8ae9eddabfc949a219c9f667877e40853d"}, - {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6a21ef516d36909931a2967621eecb256018aeb11fc48656e3257e73e2e247a"}, - {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3f88a4095e913f98988f5b338c1d4d5d07dbb0b6bad19892fd447484e483ba6b"}, - {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a5b3bb545ead161be780ee85a2b54fdf7092815995661947812dde94a40f6fb"}, - {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67aeb72e0f482709991aa91345a831d0b707d16b0257e8ef88a2ad246a7280bf"}, - {file = "propcache-0.2.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3c997f8c44ec9b9b0bcbf2d422cc00a1d9b9c681f56efa6ca149a941e5560da2"}, - {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:2a66df3d4992bc1d725b9aa803e8c5a66c010c65c741ad901e260ece77f58d2f"}, - {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:3ebbcf2a07621f29638799828b8d8668c421bfb94c6cb04269130d8de4fb7136"}, - {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:1235c01ddaa80da8235741e80815ce381c5267f96cc49b1477fdcf8c047ef325"}, - {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:3947483a381259c06921612550867b37d22e1df6d6d7e8361264b6d037595f44"}, - {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d5bed7f9805cc29c780f3aee05de3262ee7ce1f47083cfe9f77471e9d6777e83"}, - {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e4a91d44379f45f5e540971d41e4626dacd7f01004826a18cb048e7da7e96544"}, - {file = "propcache-0.2.0-cp313-cp313-win32.whl", hash = "sha256:f902804113e032e2cdf8c71015651c97af6418363bea8d78dc0911d56c335032"}, - {file = "propcache-0.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:8f188cfcc64fb1266f4684206c9de0e80f54622c3f22a910cbd200478aeae61e"}, - {file = "propcache-0.2.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:53d1bd3f979ed529f0805dd35ddaca330f80a9a6d90bc0121d2ff398f8ed8861"}, - {file = "propcache-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:83928404adf8fb3d26793665633ea79b7361efa0287dfbd372a7e74311d51ee6"}, - {file = "propcache-0.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:77a86c261679ea5f3896ec060be9dc8e365788248cc1e049632a1be682442063"}, - {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:218db2a3c297a3768c11a34812e63b3ac1c3234c3a086def9c0fee50d35add1f"}, - {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7735e82e3498c27bcb2d17cb65d62c14f1100b71723b68362872bca7d0913d90"}, - {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:20a617c776f520c3875cf4511e0d1db847a076d720714ae35ffe0df3e440be68"}, - {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67b69535c870670c9f9b14a75d28baa32221d06f6b6fa6f77a0a13c5a7b0a5b9"}, - {file = "propcache-0.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4569158070180c3855e9c0791c56be3ceeb192defa2cdf6a3f39e54319e56b89"}, - {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:db47514ffdbd91ccdc7e6f8407aac4ee94cc871b15b577c1c324236b013ddd04"}, - {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_armv7l.whl", hash = "sha256:2a60ad3e2553a74168d275a0ef35e8c0a965448ffbc3b300ab3a5bb9956c2162"}, - {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:662dd62358bdeaca0aee5761de8727cfd6861432e3bb828dc2a693aa0471a563"}, - {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:25a1f88b471b3bc911d18b935ecb7115dff3a192b6fef46f0bfaf71ff4f12418"}, - {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:f60f0ac7005b9f5a6091009b09a419ace1610e163fa5deaba5ce3484341840e7"}, - {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:74acd6e291f885678631b7ebc85d2d4aec458dd849b8c841b57ef04047833bed"}, - {file = "propcache-0.2.0-cp38-cp38-win32.whl", hash = "sha256:d9b6ddac6408194e934002a69bcaadbc88c10b5f38fb9307779d1c629181815d"}, - {file = "propcache-0.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:676135dcf3262c9c5081cc8f19ad55c8a64e3f7282a21266d05544450bffc3a5"}, - {file = "propcache-0.2.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:25c8d773a62ce0451b020c7b29a35cfbc05de8b291163a7a0f3b7904f27253e6"}, - {file = "propcache-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:375a12d7556d462dc64d70475a9ee5982465fbb3d2b364f16b86ba9135793638"}, - {file = "propcache-0.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1ec43d76b9677637a89d6ab86e1fef70d739217fefa208c65352ecf0282be957"}, - {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f45eec587dafd4b2d41ac189c2156461ebd0c1082d2fe7013571598abb8505d1"}, - {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc092ba439d91df90aea38168e11f75c655880c12782facf5cf9c00f3d42b562"}, - {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fa1076244f54bb76e65e22cb6910365779d5c3d71d1f18b275f1dfc7b0d71b4d"}, - {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:682a7c79a2fbf40f5dbb1eb6bfe2cd865376deeac65acf9beb607505dced9e12"}, - {file = "propcache-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e40876731f99b6f3c897b66b803c9e1c07a989b366c6b5b475fafd1f7ba3fb8"}, - {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:363ea8cd3c5cb6679f1c2f5f1f9669587361c062e4899fce56758efa928728f8"}, - {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:140fbf08ab3588b3468932974a9331aff43c0ab8a2ec2c608b6d7d1756dbb6cb"}, - {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e70fac33e8b4ac63dfc4c956fd7d85a0b1139adcfc0d964ce288b7c527537fea"}, - {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:b33d7a286c0dc1a15f5fc864cc48ae92a846df287ceac2dd499926c3801054a6"}, - {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:f6d5749fdd33d90e34c2efb174c7e236829147a2713334d708746e94c4bde40d"}, - {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:22aa8f2272d81d9317ff5756bb108021a056805ce63dd3630e27d042c8092798"}, - {file = "propcache-0.2.0-cp39-cp39-win32.whl", hash = "sha256:73e4b40ea0eda421b115248d7e79b59214411109a5bc47d0d48e4c73e3b8fcf9"}, - {file = "propcache-0.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:9517d5e9e0731957468c29dbfd0f976736a0e55afaea843726e887f36fe017df"}, - {file = "propcache-0.2.0-py3-none-any.whl", hash = "sha256:2ccc28197af5313706511fab3a8b66dcd6da067a1331372c82ea1cb74285e036"}, - {file = "propcache-0.2.0.tar.gz", hash = "sha256:df81779732feb9d01e5d513fad0122efb3d53bbc75f61b2a4f29a020bc985e70"}, -] - [[package]] name = "protobuf" version = "3.20.3" @@ -2258,28 +1414,27 @@ files = [ [[package]] name = "psutil" -version = "6.0.0" +version = "5.9.7" description = "Cross-platform lib for process and system monitoring in Python." optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" -files = [ - {file = "psutil-6.0.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a021da3e881cd935e64a3d0a20983bda0bb4cf80e4f74fa9bfcb1bc5785360c6"}, - {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:1287c2b95f1c0a364d23bc6f2ea2365a8d4d9b726a3be7294296ff7ba97c17f0"}, - {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:a9a3dbfb4de4f18174528d87cc352d1f788b7496991cca33c6996f40c9e3c92c"}, - {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:6ec7588fb3ddaec7344a825afe298db83fe01bfaaab39155fa84cf1c0d6b13c3"}, - {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:1e7c870afcb7d91fdea2b37c24aeb08f98b6d67257a5cb0a8bc3ac68d0f1a68c"}, - {file = "psutil-6.0.0-cp27-none-win32.whl", hash = "sha256:02b69001f44cc73c1c5279d02b30a817e339ceb258ad75997325e0e6169d8b35"}, - {file = "psutil-6.0.0-cp27-none-win_amd64.whl", hash = "sha256:21f1fb635deccd510f69f485b87433460a603919b45e2a324ad65b0cc74f8fb1"}, - {file = "psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c588a7e9b1173b6e866756dde596fd4cad94f9399daf99ad8c3258b3cb2b47a0"}, - {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ed2440ada7ef7d0d608f20ad89a04ec47d2d3ab7190896cd62ca5fc4fe08bf0"}, - {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd9a97c8e94059b0ef54a7d4baf13b405011176c3b6ff257c247cae0d560ecd"}, - {file = "psutil-6.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e8d0054fc88153ca0544f5c4d554d42e33df2e009c4ff42284ac9ebdef4132"}, - {file = "psutil-6.0.0-cp36-cp36m-win32.whl", hash = "sha256:fc8c9510cde0146432bbdb433322861ee8c3efbf8589865c8bf8d21cb30c4d14"}, - {file = "psutil-6.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:34859b8d8f423b86e4385ff3665d3f4d94be3cdf48221fbe476e883514fdb71c"}, - {file = "psutil-6.0.0-cp37-abi3-win32.whl", hash = "sha256:a495580d6bae27291324fe60cea0b5a7c23fa36a7cd35035a16d93bdcf076b9d"}, - {file = "psutil-6.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:33ea5e1c975250a720b3a6609c490db40dae5d83a4eb315170c4fe0d8b1f34b3"}, - {file = "psutil-6.0.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:ffe7fc9b6b36beadc8c322f84e1caff51e8703b88eee1da46d1e3a6ae11b4fd0"}, - {file = "psutil-6.0.0.tar.gz", hash = "sha256:8faae4f310b6d969fa26ca0545338b21f73c6b15db7c4a8d934a5482faa818f2"}, +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" +files = [ + {file = "psutil-5.9.7-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:0bd41bf2d1463dfa535942b2a8f0e958acf6607ac0be52265ab31f7923bcd5e6"}, + {file = "psutil-5.9.7-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:5794944462509e49d4d458f4dbfb92c47539e7d8d15c796f141f474010084056"}, + {file = "psutil-5.9.7-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:fe361f743cb3389b8efda21980d93eb55c1f1e3898269bc9a2a1d0bb7b1f6508"}, + {file = "psutil-5.9.7-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:e469990e28f1ad738f65a42dcfc17adaed9d0f325d55047593cb9033a0ab63df"}, + {file = "psutil-5.9.7-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:3c4747a3e2ead1589e647e64aad601981f01b68f9398ddf94d01e3dc0d1e57c7"}, + {file = "psutil-5.9.7-cp27-none-win32.whl", hash = "sha256:1d4bc4a0148fdd7fd8f38e0498639ae128e64538faa507df25a20f8f7fb2341c"}, + {file = "psutil-5.9.7-cp27-none-win_amd64.whl", hash = "sha256:4c03362e280d06bbbfcd52f29acd79c733e0af33d707c54255d21029b8b32ba6"}, + {file = "psutil-5.9.7-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ea36cc62e69a13ec52b2f625c27527f6e4479bca2b340b7a452af55b34fcbe2e"}, + {file = "psutil-5.9.7-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1132704b876e58d277168cd729d64750633d5ff0183acf5b3c986b8466cd0284"}, + {file = "psutil-5.9.7-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe8b7f07948f1304497ce4f4684881250cd859b16d06a1dc4d7941eeb6233bfe"}, + {file = "psutil-5.9.7-cp36-cp36m-win32.whl", hash = "sha256:b27f8fdb190c8c03914f908a4555159327d7481dac2f01008d483137ef3311a9"}, + {file = "psutil-5.9.7-cp36-cp36m-win_amd64.whl", hash = "sha256:44969859757f4d8f2a9bd5b76eba8c3099a2c8cf3992ff62144061e39ba8568e"}, + {file = "psutil-5.9.7-cp37-abi3-win32.whl", hash = "sha256:c727ca5a9b2dd5193b8644b9f0c883d54f1248310023b5ad3e92036c5e2ada68"}, + {file = "psutil-5.9.7-cp37-abi3-win_amd64.whl", hash = "sha256:f37f87e4d73b79e6c5e749440c3113b81d1ee7d26f21c19c47371ddea834f414"}, + {file = "psutil-5.9.7-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:032f4f2c909818c86cea4fe2cc407f1c0f0cde8e6c6d702b28b8ce0c0d143340"}, + {file = "psutil-5.9.7.tar.gz", hash = "sha256:3f02134e82cfb5d089fddf20bb2e03fd5cd52395321d1c8458a9e58500ff417c"}, ] [package.extras] @@ -2298,13 +1453,13 @@ files = [ [[package]] name = "pure-eval" -version = "0.2.3" +version = "0.2.2" description = "Safely evaluate AST nodes without side effects" optional = false python-versions = "*" files = [ - {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, - {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, + {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, + {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, ] [package.extras] @@ -2312,184 +1467,85 @@ tests = ["pytest"] [[package]] name = "pyasn1" -version = "0.6.1" +version = "0.5.1" description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" optional = false -python-versions = ">=3.8" +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" files = [ - {file = "pyasn1-0.6.1-py3-none-any.whl", hash = "sha256:0d632f46f2ba09143da3a8afe9e33fb6f92fa2320ab7e886e2d0f7672af84629"}, - {file = "pyasn1-0.6.1.tar.gz", hash = "sha256:6f580d2bdd84365380830acf45550f2511469f673cb4a5ae3857a3170128b034"}, + {file = "pyasn1-0.5.1-py2.py3-none-any.whl", hash = "sha256:4439847c58d40b1d0a573d07e3856e95333f1976294494c325775aeca506eb58"}, + {file = "pyasn1-0.5.1.tar.gz", hash = "sha256:6d391a96e59b23130a5cfa74d6fd7f388dbbe26cc8f1edf39fdddf08d9d6676c"}, ] [[package]] name = "pyasn1-modules" -version = "0.4.1" +version = "0.3.0" description = "A collection of ASN.1-based protocols modules" optional = false -python-versions = ">=3.8" +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" files = [ - {file = "pyasn1_modules-0.4.1-py3-none-any.whl", hash = "sha256:49bfa96b45a292b711e986f222502c1c9a5e1f4e568fc30e2574a6c7d07838fd"}, - {file = "pyasn1_modules-0.4.1.tar.gz", hash = "sha256:c28e2dbf9c06ad61c71a075c7e0f9fd0f1b0bb2d2ad4377f240d33ac2ab60a7c"}, + {file = "pyasn1_modules-0.3.0-py2.py3-none-any.whl", hash = "sha256:d3ccd6ed470d9ffbc716be08bd90efbd44d0734bc9303818f7336070984a162d"}, + {file = "pyasn1_modules-0.3.0.tar.gz", hash = "sha256:5bd01446b736eb9d31512a30d46c1ac3395d676c6f3cafa4c03eb54b9925631c"}, ] [package.dependencies] -pyasn1 = ">=0.4.6,<0.7.0" +pyasn1 = ">=0.4.6,<0.6.0" [[package]] name = "pycparser" -version = "2.22" +version = "2.21" description = "C parser in Python" optional = false -python-versions = ">=3.8" +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ - {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, - {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, + {file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, + {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, ] [[package]] -name = "pydantic" -version = "2.9.2" -description = "Data validation using Python type hints" +name = "pygments" +version = "2.17.2" +description = "Pygments is a syntax highlighting package written in Python." optional = false -python-versions = ">=3.8" +python-versions = ">=3.7" files = [ - {file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"}, - {file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"}, + {file = "pygments-2.17.2-py3-none-any.whl", hash = "sha256:b27c2826c47d0f3219f29554824c30c5e8945175d888647acd804ddd04af846c"}, + {file = "pygments-2.17.2.tar.gz", hash = "sha256:da46cec9fd2de5be3a8a784f434e4c4ab670b4ff54d605c4c2717e9d49c4c367"}, ] -[package.dependencies] -annotated-types = ">=0.6.0" -pydantic-core = "2.23.4" -typing-extensions = {version = ">=4.6.1", markers = "python_version < \"3.13\""} - [package.extras] -email = ["email-validator (>=2.0.0)"] -timezone = ["tzdata"] +plugins = ["importlib-metadata"] +windows-terminal = ["colorama (>=0.4.6)"] [[package]] -name = "pydantic-core" -version = "2.23.4" -description = "Core functionality for Pydantic validation and serialization" +name = "pygsp" +version = "0.5.1" +description = "Graph Signal Processing in Python" optional = false -python-versions = ">=3.8" +python-versions = "*" files = [ - {file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"}, - {file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"}, - {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"}, - {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"}, - {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"}, - {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"}, - {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"}, - {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"}, - {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"}, - {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"}, - {file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"}, - {file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"}, - {file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"}, - {file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"}, - {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"}, - {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"}, - {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"}, - {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"}, - {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"}, - {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"}, - {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"}, - {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"}, - {file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"}, - {file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"}, - {file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"}, - {file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"}, - {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"}, - {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"}, - {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"}, - {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"}, - {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"}, - {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"}, - {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"}, - {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"}, - {file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"}, - {file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"}, - {file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"}, - {file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"}, - {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"}, - {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"}, - {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"}, - {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"}, - {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"}, - {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"}, - {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"}, - {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"}, - {file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"}, - {file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"}, - {file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"}, - {file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"}, - {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"}, - {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"}, - {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"}, - {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"}, - {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"}, - {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"}, - {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"}, - {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"}, - {file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"}, - {file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"}, - {file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"}, - {file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"}, - {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"}, - {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"}, - {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"}, - {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"}, - {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"}, - {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"}, - {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"}, - {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"}, - {file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"}, - {file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"}, - {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"}, - {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"}, - {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"}, - {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"}, - {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"}, - {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"}, - {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"}, - {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"}, - {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"}, - {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"}, - {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"}, - {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"}, - {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"}, - {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"}, - {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"}, - {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"}, - {file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"}, + {file = "PyGSP-0.5.1-py2.py3-none-any.whl", hash = "sha256:884765260256f143a92053c420797053fda0f4eba1573471526fb4e62a4c4cde"}, + {file = "PyGSP-0.5.1.tar.gz", hash = "sha256:4874ad88793d622d4f578b40c6617a99b1f02bc6c6c4077f0e48cd71c7275800"}, ] [package.dependencies] -typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" - -[[package]] -name = "pygments" -version = "2.18.0" -description = "Pygments is a syntax highlighting package written in Python." -optional = false -python-versions = ">=3.8" -files = [ - {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, - {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, -] +numpy = "*" +scipy = "*" [package.extras] -windows-terminal = ["colorama (>=0.4.6)"] +alldeps = ["PyOpenGL", "PyQt5", "PySide", "matplotlib", "pyflann", "pyflann3", "pyqtgraph", "pyunlocbox", "scikit-image"] +doc = ["numpydoc", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-bibtex"] +pkg = ["twine", "wheel"] +test = ["coverage", "coveralls", "flake8"] [[package]] name = "pyparsing" -version = "3.1.4" +version = "3.1.1" description = "pyparsing module - Classes and methods to define and execute parsing grammars" optional = false python-versions = ">=3.6.8" files = [ - {file = "pyparsing-3.1.4-py3-none-any.whl", hash = "sha256:a6a7ee4235a3f944aa1fa2249307708f893fe5717dc603503c6c7969c070fb7c"}, - {file = "pyparsing-3.1.4.tar.gz", hash = "sha256:f86ec8d1a83f11977c9a6ea7598e8c27fc5cddfa5b07ea2241edbbde1d7bc032"}, + {file = "pyparsing-3.1.1-py3-none-any.whl", hash = "sha256:32c7c0b711493c72ff18a981d24f28aaf9c1fb7ed5e9667c9e84e3db623bdbfb"}, + {file = "pyparsing-3.1.1.tar.gz", hash = "sha256:ede28a1a32462f5a9705e07aea48001a08f7cf81a021585011deba701581a0db"}, ] [package.extras] @@ -2497,234 +1553,166 @@ diagrams = ["jinja2", "railroad-diagrams"] [[package]] name = "python-dateutil" -version = "2.9.0.post0" +version = "2.8.2" description = "Extensions to the standard Python datetime module" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" files = [ - {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, - {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, + {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, + {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, ] [package.dependencies] six = ">=1.5" +[[package]] +name = "python-louvain" +version = "0.16" +description = "Louvain algorithm for community detection" +optional = false +python-versions = "*" +files = [ + {file = "python-louvain-0.16.tar.gz", hash = "sha256:b7ba2df5002fd28d3ee789a49532baad11fe648e4f2117cf0798e7520a1da56b"}, +] + +[package.dependencies] +networkx = "*" +numpy = "*" + [[package]] name = "pytz" -version = "2024.2" +version = "2023.3.post1" description = "World timezone definitions, modern and historical" optional = false python-versions = "*" files = [ - {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, - {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, + {file = "pytz-2023.3.post1-py2.py3-none-any.whl", hash = "sha256:ce42d816b81b68506614c11e8937d3aa9e41007ceb50bfdcb0749b921bf646c7"}, + {file = "pytz-2023.3.post1.tar.gz", hash = "sha256:7b4fddbeb94a1eba4b557da24f19fdf9db575192544270a9101d8509f9f43d7b"}, ] [[package]] name = "pywin32" -version = "307" +version = "306" description = "Python for Window Extensions" optional = false python-versions = "*" files = [ - {file = "pywin32-307-cp310-cp310-win32.whl", hash = "sha256:f8f25d893c1e1ce2d685ef6d0a481e87c6f510d0f3f117932781f412e0eba31b"}, - {file = "pywin32-307-cp310-cp310-win_amd64.whl", hash = "sha256:36e650c5e5e6b29b5d317385b02d20803ddbac5d1031e1f88d20d76676dd103d"}, - {file = "pywin32-307-cp310-cp310-win_arm64.whl", hash = "sha256:0c12d61e0274e0c62acee79e3e503c312426ddd0e8d4899c626cddc1cafe0ff4"}, - {file = "pywin32-307-cp311-cp311-win32.whl", hash = "sha256:fec5d27cc893178fab299de911b8e4d12c5954e1baf83e8a664311e56a272b75"}, - {file = "pywin32-307-cp311-cp311-win_amd64.whl", hash = "sha256:987a86971753ed7fdd52a7fb5747aba955b2c7fbbc3d8b76ec850358c1cc28c3"}, - {file = "pywin32-307-cp311-cp311-win_arm64.whl", hash = "sha256:fd436897c186a2e693cd0437386ed79f989f4d13d6f353f8787ecbb0ae719398"}, - {file = "pywin32-307-cp312-cp312-win32.whl", hash = "sha256:07649ec6b01712f36debf39fc94f3d696a46579e852f60157a729ac039df0815"}, - {file = "pywin32-307-cp312-cp312-win_amd64.whl", hash = "sha256:00d047992bb5dcf79f8b9b7c81f72e0130f9fe4b22df613f755ab1cc021d8347"}, - {file = "pywin32-307-cp312-cp312-win_arm64.whl", hash = "sha256:b53658acbfc6a8241d72cc09e9d1d666be4e6c99376bc59e26cdb6223c4554d2"}, - {file = "pywin32-307-cp313-cp313-win32.whl", hash = "sha256:ea4d56e48dc1ab2aa0a5e3c0741ad6e926529510516db7a3b6981a1ae74405e5"}, - {file = "pywin32-307-cp313-cp313-win_amd64.whl", hash = "sha256:576d09813eaf4c8168d0bfd66fb7cb3b15a61041cf41598c2db4a4583bf832d2"}, - {file = "pywin32-307-cp313-cp313-win_arm64.whl", hash = "sha256:b30c9bdbffda6a260beb2919f918daced23d32c79109412c2085cbc513338a0a"}, - {file = "pywin32-307-cp37-cp37m-win32.whl", hash = "sha256:5101472f5180c647d4525a0ed289ec723a26231550dbfd369ec19d5faf60e511"}, - {file = "pywin32-307-cp37-cp37m-win_amd64.whl", hash = "sha256:05de55a7c110478dc4b202230e98af5e0720855360d2b31a44bb4e296d795fba"}, - {file = "pywin32-307-cp38-cp38-win32.whl", hash = "sha256:13d059fb7f10792542082f5731d5d3d9645320fc38814759313e5ee97c3fac01"}, - {file = "pywin32-307-cp38-cp38-win_amd64.whl", hash = "sha256:7e0b2f93769d450a98ac7a31a087e07b126b6d571e8b4386a5762eb85325270b"}, - {file = "pywin32-307-cp39-cp39-win32.whl", hash = "sha256:55ee87f2f8c294e72ad9d4261ca423022310a6e79fb314a8ca76ab3f493854c6"}, - {file = "pywin32-307-cp39-cp39-win_amd64.whl", hash = "sha256:e9d5202922e74985b037c9ef46778335c102b74b95cec70f629453dbe7235d87"}, -] - -[[package]] -name = "pyyaml" -version = "6.0.2" -description = "YAML parser and emitter for Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, - {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, - {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, - {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, - {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, - {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, - {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, - {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, - {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, - {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, - {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, - {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, - {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, - {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, - {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, - {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, - {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, - {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, - {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, - {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, - {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, - {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, - {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, - {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, - {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, - {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, - {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, - {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, - {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, - {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, - {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, - {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, - {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, - {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, - {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, - {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, - {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, - {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, - {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, - {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, - {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, - {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, - {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, - {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, - {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, - {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, - {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, - {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, - {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, - {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, - {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, - {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, - {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, + {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, + {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, + {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, + {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, + {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, + {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, + {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, + {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, + {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, + {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, + {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, + {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, + {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, + {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, ] [[package]] name = "pyzmq" -version = "26.2.0" +version = "25.1.2" description = "Python bindings for 0MQ" optional = false -python-versions = ">=3.7" +python-versions = ">=3.6" files = [ - {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629"}, - {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b"}, - {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764"}, - {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c"}, - {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a"}, - {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88"}, - {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f"}, - {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282"}, - {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea"}, - {file = "pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2"}, - {file = "pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971"}, - {file = "pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa"}, - {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218"}, - {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4"}, - {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef"}, - {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317"}, - {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf"}, - {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e"}, - {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37"}, - {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3"}, - {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6"}, - {file = "pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4"}, - {file = "pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5"}, - {file = "pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003"}, - {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9"}, - {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52"}, - {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08"}, - {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5"}, - {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae"}, - {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711"}, - {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6"}, - {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3"}, - {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b"}, - {file = "pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7"}, - {file = "pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a"}, - {file = "pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b"}, - {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726"}, - {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3"}, - {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50"}, - {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb"}, - {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187"}, - {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b"}, - {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18"}, - {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115"}, - {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e"}, - {file = "pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5"}, - {file = "pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad"}, - {file = "pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797"}, - {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a"}, - {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc"}, - {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5"}, - {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672"}, - {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797"}, - {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386"}, - {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306"}, - {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6"}, - {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0"}, - {file = "pyzmq-26.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3b55a4229ce5da9497dd0452b914556ae58e96a4381bb6f59f1305dfd7e53fc8"}, - {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cb3a6460cdea8fe8194a76de8895707e61ded10ad0be97188cc8463ffa7e3a8"}, - {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ab5cad923cc95c87bffee098a27856c859bd5d0af31bd346035aa816b081fe1"}, - {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ed69074a610fad1c2fda66180e7b2edd4d31c53f2d1872bc2d1211563904cd9"}, - {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cccba051221b916a4f5e538997c45d7d136a5646442b1231b916d0164067ea27"}, - {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0eaa83fc4c1e271c24eaf8fb083cbccef8fde77ec8cd45f3c35a9a123e6da097"}, - {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9edda2df81daa129b25a39b86cb57dfdfe16f7ec15b42b19bfac503360d27a93"}, - {file = "pyzmq-26.2.0-cp37-cp37m-win32.whl", hash = "sha256:ea0eb6af8a17fa272f7b98d7bebfab7836a0d62738e16ba380f440fceca2d951"}, - {file = "pyzmq-26.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:4ff9dc6bc1664bb9eec25cd17506ef6672d506115095411e237d571e92a58231"}, - {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2eb7735ee73ca1b0d71e0e67c3739c689067f055c764f73aac4cc8ecf958ee3f"}, - {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a534f43bc738181aa7cbbaf48e3eca62c76453a40a746ab95d4b27b1111a7d2"}, - {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:aedd5dd8692635813368e558a05266b995d3d020b23e49581ddd5bbe197a8ab6"}, - {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8be4700cd8bb02cc454f630dcdf7cfa99de96788b80c51b60fe2fe1dac480289"}, - {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fcc03fa4997c447dce58264e93b5aa2d57714fbe0f06c07b7785ae131512732"}, - {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:402b190912935d3db15b03e8f7485812db350d271b284ded2b80d2e5704be780"}, - {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8685fa9c25ff00f550c1fec650430c4b71e4e48e8d852f7ddcf2e48308038640"}, - {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:76589c020680778f06b7e0b193f4b6dd66d470234a16e1df90329f5e14a171cd"}, - {file = "pyzmq-26.2.0-cp38-cp38-win32.whl", hash = "sha256:8423c1877d72c041f2c263b1ec6e34360448decfb323fa8b94e85883043ef988"}, - {file = "pyzmq-26.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:76589f2cd6b77b5bdea4fca5992dc1c23389d68b18ccc26a53680ba2dc80ff2f"}, - {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b1d464cb8d72bfc1a3adc53305a63a8e0cac6bc8c5a07e8ca190ab8d3faa43c2"}, - {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4da04c48873a6abdd71811c5e163bd656ee1b957971db7f35140a2d573f6949c"}, - {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d049df610ac811dcffdc147153b414147428567fbbc8be43bb8885f04db39d98"}, - {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9"}, - {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c811cfcd6a9bf680236c40c6f617187515269ab2912f3d7e8c0174898e2519db"}, - {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6835dd60355593de10350394242b5757fbbd88b25287314316f266e24c61d073"}, - {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc6bee759a6bddea5db78d7dcd609397449cb2d2d6587f48f3ca613b19410cfc"}, - {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c530e1eecd036ecc83c3407f77bb86feb79916d4a33d11394b8234f3bd35b940"}, - {file = "pyzmq-26.2.0-cp39-cp39-win32.whl", hash = "sha256:367b4f689786fca726ef7a6c5ba606958b145b9340a5e4808132cc65759abd44"}, - {file = "pyzmq-26.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e6fa2e3e683f34aea77de8112f6483803c96a44fd726d7358b9888ae5bb394ec"}, - {file = "pyzmq-26.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:7445be39143a8aa4faec43b076e06944b8f9d0701b669df4af200531b21e40bb"}, - {file = "pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072"}, - {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1"}, - {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d"}, - {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca"}, - {file = "pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c"}, - {file = "pyzmq-26.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2ea4ad4e6a12e454de05f2949d4beddb52460f3de7c8b9d5c46fbb7d7222e02c"}, - {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fc4f7a173a5609631bb0c42c23d12c49df3966f89f496a51d3eb0ec81f4519d6"}, - {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:878206a45202247781472a2d99df12a176fef806ca175799e1c6ad263510d57c"}, - {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17c412bad2eb9468e876f556eb4ee910e62d721d2c7a53c7fa31e643d35352e6"}, - {file = "pyzmq-26.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0d987a3ae5a71c6226b203cfd298720e0086c7fe7c74f35fa8edddfbd6597eed"}, - {file = "pyzmq-26.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:39887ac397ff35b7b775db7201095fc6310a35fdbae85bac4523f7eb3b840e20"}, - {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fdb5b3e311d4d4b0eb8b3e8b4d1b0a512713ad7e6a68791d0923d1aec433d919"}, - {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:226af7dcb51fdb0109f0016449b357e182ea0ceb6b47dfb5999d569e5db161d5"}, - {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bed0e799e6120b9c32756203fb9dfe8ca2fb8467fed830c34c877e25638c3fc"}, - {file = "pyzmq-26.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:29c7947c594e105cb9e6c466bace8532dc1ca02d498684128b339799f5248277"}, - {file = "pyzmq-26.2.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cdeabcff45d1c219636ee2e54d852262e5c2e085d6cb476d938aee8d921356b3"}, - {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35cffef589bcdc587d06f9149f8d5e9e8859920a071df5a2671de2213bef592a"}, - {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18c8dc3b7468d8b4bdf60ce9d7141897da103c7a4690157b32b60acb45e333e6"}, - {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7133d0a1677aec369d67dd78520d3fa96dd7f3dcec99d66c1762870e5ea1a50a"}, - {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a96179a24b14fa6428cbfc08641c779a53f8fcec43644030328f44034c7f1f4"}, - {file = "pyzmq-26.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4f78c88905461a9203eac9faac157a2a0dbba84a0fd09fd29315db27be40af9f"}, - {file = "pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f"}, + {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:e624c789359f1a16f83f35e2c705d07663ff2b4d4479bad35621178d8f0f6ea4"}, + {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:49151b0efece79f6a79d41a461d78535356136ee70084a1c22532fc6383f4ad0"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9a5f194cf730f2b24d6af1f833c14c10f41023da46a7f736f48b6d35061e76e"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:faf79a302f834d9e8304fafdc11d0d042266667ac45209afa57e5efc998e3872"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f51a7b4ead28d3fca8dda53216314a553b0f7a91ee8fc46a72b402a78c3e43d"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:0ddd6d71d4ef17ba5a87becf7ddf01b371eaba553c603477679ae817a8d84d75"}, + {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:246747b88917e4867e2367b005fc8eefbb4a54b7db363d6c92f89d69abfff4b6"}, + {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:00c48ae2fd81e2a50c3485de1b9d5c7c57cd85dc8ec55683eac16846e57ac979"}, + {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:5a68d491fc20762b630e5db2191dd07ff89834086740f70e978bb2ef2668be08"}, + {file = "pyzmq-25.1.2-cp310-cp310-win32.whl", hash = "sha256:09dfe949e83087da88c4a76767df04b22304a682d6154de2c572625c62ad6886"}, + {file = "pyzmq-25.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:fa99973d2ed20417744fca0073390ad65ce225b546febb0580358e36aa90dba6"}, + {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:82544e0e2d0c1811482d37eef297020a040c32e0687c1f6fc23a75b75db8062c"}, + {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:01171fc48542348cd1a360a4b6c3e7d8f46cdcf53a8d40f84db6707a6768acc1"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc69c96735ab501419c432110016329bf0dea8898ce16fab97c6d9106dc0b348"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3e124e6b1dd3dfbeb695435dff0e383256655bb18082e094a8dd1f6293114642"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7598d2ba821caa37a0f9d54c25164a4fa351ce019d64d0b44b45540950458840"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:d1299d7e964c13607efd148ca1f07dcbf27c3ab9e125d1d0ae1d580a1682399d"}, + {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4e6f689880d5ad87918430957297c975203a082d9a036cc426648fcbedae769b"}, + {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:cc69949484171cc961e6ecd4a8911b9ce7a0d1f738fcae717177c231bf77437b"}, + {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9880078f683466b7f567b8624bfc16cad65077be046b6e8abb53bed4eeb82dd3"}, + {file = "pyzmq-25.1.2-cp311-cp311-win32.whl", hash = "sha256:4e5837af3e5aaa99a091302df5ee001149baff06ad22b722d34e30df5f0d9097"}, + {file = "pyzmq-25.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:25c2dbb97d38b5ac9fd15586e048ec5eb1e38f3d47fe7d92167b0c77bb3584e9"}, + {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:11e70516688190e9c2db14fcf93c04192b02d457b582a1f6190b154691b4c93a"}, + {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:313c3794d650d1fccaaab2df942af9f2c01d6217c846177cfcbc693c7410839e"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b3cbba2f47062b85fe0ef9de5b987612140a9ba3a9c6d2543c6dec9f7c2ab27"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fc31baa0c32a2ca660784d5af3b9487e13b61b3032cb01a115fce6588e1bed30"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:02c9087b109070c5ab0b383079fa1b5f797f8d43e9a66c07a4b8b8bdecfd88ee"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:f8429b17cbb746c3e043cb986328da023657e79d5ed258b711c06a70c2ea7537"}, + {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:5074adeacede5f810b7ef39607ee59d94e948b4fd954495bdb072f8c54558181"}, + {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:7ae8f354b895cbd85212da245f1a5ad8159e7840e37d78b476bb4f4c3f32a9fe"}, + {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b264bf2cc96b5bc43ce0e852be995e400376bd87ceb363822e2cb1964fcdc737"}, + {file = "pyzmq-25.1.2-cp312-cp312-win32.whl", hash = "sha256:02bbc1a87b76e04fd780b45e7f695471ae6de747769e540da909173d50ff8e2d"}, + {file = "pyzmq-25.1.2-cp312-cp312-win_amd64.whl", hash = "sha256:ced111c2e81506abd1dc142e6cd7b68dd53747b3b7ae5edbea4578c5eeff96b7"}, + {file = "pyzmq-25.1.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:7b6d09a8962a91151f0976008eb7b29b433a560fde056ec7a3db9ec8f1075438"}, + {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:967668420f36878a3c9ecb5ab33c9d0ff8d054f9c0233d995a6d25b0e95e1b6b"}, + {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5edac3f57c7ddaacdb4d40f6ef2f9e299471fc38d112f4bc6d60ab9365445fb0"}, + {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:0dabfb10ef897f3b7e101cacba1437bd3a5032ee667b7ead32bbcdd1a8422fe7"}, + {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:2c6441e0398c2baacfe5ba30c937d274cfc2dc5b55e82e3749e333aabffde561"}, + {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:16b726c1f6c2e7625706549f9dbe9b06004dfbec30dbed4bf50cbdfc73e5b32a"}, + {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:a86c2dd76ef71a773e70551a07318b8e52379f58dafa7ae1e0a4be78efd1ff16"}, + {file = "pyzmq-25.1.2-cp36-cp36m-win32.whl", hash = "sha256:359f7f74b5d3c65dae137f33eb2bcfa7ad9ebefd1cab85c935f063f1dbb245cc"}, + {file = "pyzmq-25.1.2-cp36-cp36m-win_amd64.whl", hash = "sha256:55875492f820d0eb3417b51d96fea549cde77893ae3790fd25491c5754ea2f68"}, + {file = "pyzmq-25.1.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b8c8a419dfb02e91b453615c69568442e897aaf77561ee0064d789705ff37a92"}, + {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8807c87fa893527ae8a524c15fc505d9950d5e856f03dae5921b5e9aa3b8783b"}, + {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5e319ed7d6b8f5fad9b76daa0a68497bc6f129858ad956331a5835785761e003"}, + {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:3c53687dde4d9d473c587ae80cc328e5b102b517447456184b485587ebd18b62"}, + {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:9add2e5b33d2cd765ad96d5eb734a5e795a0755f7fc49aa04f76d7ddda73fd70"}, + {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e690145a8c0c273c28d3b89d6fb32c45e0d9605b2293c10e650265bf5c11cfec"}, + {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:00a06faa7165634f0cac1abb27e54d7a0b3b44eb9994530b8ec73cf52e15353b"}, + {file = "pyzmq-25.1.2-cp37-cp37m-win32.whl", hash = "sha256:0f97bc2f1f13cb16905a5f3e1fbdf100e712d841482b2237484360f8bc4cb3d7"}, + {file = "pyzmq-25.1.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6cc0020b74b2e410287e5942e1e10886ff81ac77789eb20bec13f7ae681f0fdd"}, + {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:bef02cfcbded83473bdd86dd8d3729cd82b2e569b75844fb4ea08fee3c26ae41"}, + {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e10a4b5a4b1192d74853cc71a5e9fd022594573926c2a3a4802020360aa719d8"}, + {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8c5f80e578427d4695adac6fdf4370c14a2feafdc8cb35549c219b90652536ae"}, + {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5dde6751e857910c1339890f3524de74007958557593b9e7e8c5f01cd919f8a7"}, + {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea1608dd169da230a0ad602d5b1ebd39807ac96cae1845c3ceed39af08a5c6df"}, + {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0f513130c4c361201da9bc69df25a086487250e16b5571ead521b31ff6b02220"}, + {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:019744b99da30330798bb37df33549d59d380c78e516e3bab9c9b84f87a9592f"}, + {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2e2713ef44be5d52dd8b8e2023d706bf66cb22072e97fc71b168e01d25192755"}, + {file = "pyzmq-25.1.2-cp38-cp38-win32.whl", hash = "sha256:07cd61a20a535524906595e09344505a9bd46f1da7a07e504b315d41cd42eb07"}, + {file = "pyzmq-25.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb7e49a17fb8c77d3119d41a4523e432eb0c6932187c37deb6fbb00cc3028088"}, + {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:94504ff66f278ab4b7e03e4cba7e7e400cb73bfa9d3d71f58d8972a8dc67e7a6"}, + {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6dd0d50bbf9dca1d0bdea219ae6b40f713a3fb477c06ca3714f208fd69e16fd8"}, + {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:004ff469d21e86f0ef0369717351073e0e577428e514c47c8480770d5e24a565"}, + {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c0b5ca88a8928147b7b1e2dfa09f3b6c256bc1135a1338536cbc9ea13d3b7add"}, + {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c9a79f1d2495b167119d02be7448bfba57fad2a4207c4f68abc0bab4b92925b"}, + {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:518efd91c3d8ac9f9b4f7dd0e2b7b8bf1a4fe82a308009016b07eaa48681af82"}, + {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1ec23bd7b3a893ae676d0e54ad47d18064e6c5ae1fadc2f195143fb27373f7f6"}, + {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db36c27baed588a5a8346b971477b718fdc66cf5b80cbfbd914b4d6d355e44e2"}, + {file = "pyzmq-25.1.2-cp39-cp39-win32.whl", hash = "sha256:39b1067f13aba39d794a24761e385e2eddc26295826530a8c7b6c6c341584289"}, + {file = "pyzmq-25.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:8e9f3fabc445d0ce320ea2c59a75fe3ea591fdbdeebec5db6de530dd4b09412e"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a8c1d566344aee826b74e472e16edae0a02e2a044f14f7c24e123002dcff1c05"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:759cfd391a0996345ba94b6a5110fca9c557ad4166d86a6e81ea526c376a01e8"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c61e346ac34b74028ede1c6b4bcecf649d69b707b3ff9dc0fab453821b04d1e"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cb8fc1f8d69b411b8ec0b5f1ffbcaf14c1db95b6bccea21d83610987435f1a4"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:3c00c9b7d1ca8165c610437ca0c92e7b5607b2f9076f4eb4b095c85d6e680a1d"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:df0c7a16ebb94452d2909b9a7b3337940e9a87a824c4fc1c7c36bb4404cb0cde"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:45999e7f7ed5c390f2e87ece7f6c56bf979fb213550229e711e45ecc7d42ccb8"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ac170e9e048b40c605358667aca3d94e98f604a18c44bdb4c102e67070f3ac9b"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1b604734bec94f05f81b360a272fc824334267426ae9905ff32dc2be433ab96"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:a793ac733e3d895d96f865f1806f160696422554e46d30105807fdc9841b9f7d"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0806175f2ae5ad4b835ecd87f5f85583316b69f17e97786f7443baaf54b9bb98"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:ef12e259e7bc317c7597d4f6ef59b97b913e162d83b421dd0db3d6410f17a244"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ea253b368eb41116011add00f8d5726762320b1bda892f744c91997b65754d73"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b9b1f2ad6498445a941d9a4fee096d387fee436e45cc660e72e768d3d8ee611"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:8b14c75979ce932c53b79976a395cb2a8cd3aaf14aef75e8c2cb55a330b9b49d"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:889370d5174a741a62566c003ee8ddba4b04c3f09a97b8000092b7ca83ec9c49"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a18fff090441a40ffda8a7f4f18f03dc56ae73f148f1832e109f9bffa85df15"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99a6b36f95c98839ad98f8c553d8507644c880cf1e0a57fe5e3a3f3969040882"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4345c9a27f4310afbb9c01750e9461ff33d6fb74cd2456b107525bbeebcb5be3"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:3516e0b6224cf6e43e341d56da15fd33bdc37fa0c06af4f029f7d7dfceceabbc"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:146b9b1f29ead41255387fb07be56dc29639262c0f7344f570eecdcd8d683314"}, + {file = "pyzmq-25.1.2.tar.gz", hash = "sha256:93f1aa311e8bb912e34f004cf186407a4e90eec4f0ecc0efd26056bf7eda0226"}, ] [package.dependencies] @@ -2732,13 +1720,13 @@ cffi = {version = "*", markers = "implementation_name == \"pypy\""} [[package]] name = "requests" -version = "2.32.3" +version = "2.31.0" description = "Python HTTP for Humans." optional = false -python-versions = ">=3.8" +python-versions = ">=3.7" files = [ - {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, - {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, + {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"}, + {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"}, ] [package.dependencies] @@ -2753,13 +1741,13 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "requests-oauthlib" -version = "2.0.0" +version = "1.3.1" description = "OAuthlib authentication support for Requests." optional = false -python-versions = ">=3.4" +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ - {file = "requests-oauthlib-2.0.0.tar.gz", hash = "sha256:b3dffaebd884d8cd778494369603a9e7b58d29111bf6b41bdc2dcd87203af4e9"}, - {file = "requests_oauthlib-2.0.0-py2.py3-none-any.whl", hash = "sha256:7dd8a5c40426b779b0868c404bdef9768deccf22749cde15852df527e6269b36"}, + {file = "requests-oauthlib-1.3.1.tar.gz", hash = "sha256:75beac4a47881eeb94d5ea5d6ad31ef88856affe2332b9aafb52c6452ccf0d7a"}, + {file = "requests_oauthlib-1.3.1-py2.py3-none-any.whl", hash = "sha256:2577c501a2fb8d05a304c09d090d6e47c306fef15809d102b327cf8364bddab5"}, ] [package.dependencies] @@ -2785,50 +1773,49 @@ pyasn1 = ">=0.1.3" [[package]] name = "scikit-learn" -version = "1.3.2" +version = "0.24.0" description = "A set of python modules for machine learning and data mining" optional = false -python-versions = ">=3.8" +python-versions = ">=3.6" files = [ - {file = "scikit-learn-1.3.2.tar.gz", hash = "sha256:a2f54c76accc15a34bfb9066e6c7a56c1e7235dda5762b990792330b52ccfb05"}, - {file = "scikit_learn-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e326c0eb5cf4d6ba40f93776a20e9a7a69524c4db0757e7ce24ba222471ee8a1"}, - {file = "scikit_learn-1.3.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:535805c2a01ccb40ca4ab7d081d771aea67e535153e35a1fd99418fcedd1648a"}, - {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1215e5e58e9880b554b01187b8c9390bf4dc4692eedeaf542d3273f4785e342c"}, - {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ee107923a623b9f517754ea2f69ea3b62fc898a3641766cb7deb2f2ce450161"}, - {file = "scikit_learn-1.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:35a22e8015048c628ad099da9df5ab3004cdbf81edc75b396fd0cff8699ac58c"}, - {file = "scikit_learn-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6fb6bc98f234fda43163ddbe36df8bcde1d13ee176c6dc9b92bb7d3fc842eb66"}, - {file = "scikit_learn-1.3.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:18424efee518a1cde7b0b53a422cde2f6625197de6af36da0b57ec502f126157"}, - {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3271552a5eb16f208a6f7f617b8cc6d1f137b52c8a1ef8edf547db0259b2c9fb"}, - {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc4144a5004a676d5022b798d9e573b05139e77f271253a4703eed295bde0433"}, - {file = "scikit_learn-1.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:67f37d708f042a9b8d59551cf94d30431e01374e00dc2645fa186059c6c5d78b"}, - {file = "scikit_learn-1.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:8db94cd8a2e038b37a80a04df8783e09caac77cbe052146432e67800e430c028"}, - {file = "scikit_learn-1.3.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:61a6efd384258789aa89415a410dcdb39a50e19d3d8410bd29be365bcdd512d5"}, - {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb06f8dce3f5ddc5dee1715a9b9f19f20d295bed8e3cd4fa51e1d050347de525"}, - {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b2de18d86f630d68fe1f87af690d451388bb186480afc719e5f770590c2ef6c"}, - {file = "scikit_learn-1.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:0402638c9a7c219ee52c94cbebc8fcb5eb9fe9c773717965c1f4185588ad3107"}, - {file = "scikit_learn-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a19f90f95ba93c1a7f7924906d0576a84da7f3b2282ac3bfb7a08a32801add93"}, - {file = "scikit_learn-1.3.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:b8692e395a03a60cd927125eef3a8e3424d86dde9b2370d544f0ea35f78a8073"}, - {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15e1e94cc23d04d39da797ee34236ce2375ddea158b10bee3c343647d615581d"}, - {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:785a2213086b7b1abf037aeadbbd6d67159feb3e30263434139c98425e3dcfcf"}, - {file = "scikit_learn-1.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:64381066f8aa63c2710e6b56edc9f0894cc7bf59bd71b8ce5613a4559b6145e0"}, - {file = "scikit_learn-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c43290337f7a4b969d207e620658372ba3c1ffb611f8bc2b6f031dc5c6d1d03"}, - {file = "scikit_learn-1.3.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:dc9002fc200bed597d5d34e90c752b74df516d592db162f756cc52836b38fe0e"}, - {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d08ada33e955c54355d909b9c06a4789a729977f165b8bae6f225ff0a60ec4a"}, - {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:763f0ae4b79b0ff9cca0bf3716bcc9915bdacff3cebea15ec79652d1cc4fa5c9"}, - {file = "scikit_learn-1.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:ed932ea780517b00dae7431e031faae6b49b20eb6950918eb83bd043237950e0"}, + {file = "scikit-learn-0.24.0.tar.gz", hash = "sha256:076369634ee72b5a5941440661e2f306ff4ac30903802dc52031c7e9199ac640"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:890d7d588f65acb0c4f6c083347c9076916bda5e6bd8400f06244b1afc1009af"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:e534f5f3796db6781c87e9835dcd51b7854c8c5a379c9210b93605965c1941fd"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:d7fe05fcb44eadd6d6c874c768f085f5de1239db3a3b7be4d3d23d12e4120589"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:7f654befc5ad413690cc58f3f34a3e906caf825195ce0fda00a8e9565e1403e6"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-win32.whl", hash = "sha256:afeb06dc69847927634e58579b9cdc72e1390b79497336b2324b1b173f33bd47"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-win_amd64.whl", hash = "sha256:26f66b3726b54dfb76ea51c5d9c2431ed17ebc066cb4527662b9e851a3e7ba61"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c08b27cb78ee8d2dc781a7affed09859441f5b624f9f92da59ac0791c8774dfc"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:905d8934d1e27a686698864a5863ff2c0e13a2ae1adb78a8a848aacc8a49927d"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:d819d625832fb2969911a243e009cfa135cb8ef1e150866e417d6e9d75290087"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:18f7131e62265bf2691ed1d0303c640313894ccfe4278427478c6b2f45094b53"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-win32.whl", hash = "sha256:b0d13fd56d26cf3de0314a4fd48037108c638fe126d813f5c1222bb0f08b6a76"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-win_amd64.whl", hash = "sha256:c912247e42114f389858ae05d63f4359d4e667ea72aaabee191aee9ad3f9774a"}, + {file = "scikit_learn-0.24.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:758619e49cd7c17282e6cc60d5cc73c02c072b47c9a10010bb3bb47e0d976e50"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:66f27bf21202a850bcd7b6303916e4907f6e22ec59a14974ede4955aed5c7ed0"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:5e6e3c042cea83f2e20a45e563b8eabc1f8f72446251fe23ebefdf111a173a33"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:2a5348585aa793bc8cc5a72f8e9067c9380834b0aadbd55f924843b071f13282"}, + {file = "scikit_learn-0.24.0-cp38-cp38-win32.whl", hash = "sha256:743b6edd98c98991be46c08e6b21df3861d5ae915f91d59f988384d93f7263e7"}, + {file = "scikit_learn-0.24.0-cp38-cp38-win_amd64.whl", hash = "sha256:2951f87d35e72f007701c6e028aa230f6df6212a3194677c0c950486066a454d"}, + {file = "scikit_learn-0.24.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:44e452ea8491225c5783d49577aad0f36202dfd52aec7f82c0fdfe5fbd5f7400"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:800aaf63f8838c00e85db2267dd226f89858594843fd03932a9eda95746d2c40"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:3eeff086f7329521d27249a082ea3c48c085cedb110db5f65968ab55c3ba2e09"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:4395e91b3548005f4a645018435b5a94f8cce232b5b70753020e606c6a750656"}, + {file = "scikit_learn-0.24.0-cp39-cp39-win32.whl", hash = "sha256:80ca024154b84b6ac4cfc86930ba13fdc348a209753bf2c16129db6f9eb8a80b"}, + {file = "scikit_learn-0.24.0-cp39-cp39-win_amd64.whl", hash = "sha256:490436b44b3a1957cb625e871764b0aa330b34cc416aea4abc6c38ca63d0d682"}, ] [package.dependencies] -joblib = ">=1.1.1" -numpy = ">=1.17.3,<2.0" -scipy = ">=1.5.0" +joblib = ">=0.11" +numpy = ">=1.13.3" +scipy = ">=0.19.1" threadpoolctl = ">=2.0.0" [package.extras] -benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"] -docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.10.1)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] -examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"] -tests = ["black (>=23.3.0)", "matplotlib (>=3.1.3)", "mypy (>=1.3)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.0.272)", "scikit-image (>=0.16.2)"] +benchmark = ["matplotlib (>=2.1.1)", "memory-profiler (>=0.57.0)", "pandas (>=0.25.0)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=2.1.1)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.0.0)", "pandas (>=0.25.0)", "scikit-image (>=0.13)", "seaborn (>=0.9.0)", "sphinx (>=3.2.0)", "sphinx-gallery (>=0.7.0)", "sphinx-prompt (>=1.3.0)"] +examples = ["matplotlib (>=2.1.1)", "pandas (>=0.25.0)", "scikit-image (>=0.13)", "seaborn (>=0.9.0)"] +tests = ["flake8 (>=3.8.2)", "matplotlib (>=2.1.1)", "mypy (>=0.770)", "pandas (>=0.25.0)", "pyamg (>=4.0.0)", "pytest (>=5.0.1)", "pytest-cov (>=2.9.0)", "scikit-image (>=0.13)"] [[package]] name = "scipy" @@ -2870,59 +1857,51 @@ test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeo [[package]] name = "setuptools" -version = "75.1.0" +version = "69.0.2" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "setuptools-75.1.0-py3-none-any.whl", hash = "sha256:35ab7fd3bcd95e6b7fd704e4a1539513edad446c097797f2985e0e4b960772f2"}, - {file = "setuptools-75.1.0.tar.gz", hash = "sha256:d59a21b17a275fb872a9c3dae73963160ae079f1049ed956880cd7c09b120538"}, + {file = "setuptools-69.0.2-py3-none-any.whl", hash = "sha256:1e8fdff6797d3865f37397be788a4e3cba233608e9b509382a2777d25ebde7f2"}, + {file = "setuptools-69.0.2.tar.gz", hash = "sha256:735896e78a4742605974de002ac60562d286fa8051a7e2299445e8e8fbb01aa6"}, ] [package.extras] -check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] -core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.collections", "jaraco.functools", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] -cover = ["pytest-cov"] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] -enabler = ["pytest-enabler (>=2.2)"] -test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] -type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] +testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-ruff", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] +testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.1)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] [[package]] name = "six" -version = "1.16.0" +version = "1.15.0" description = "Python 2 and 3 compatibility utilities" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" files = [ - {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, - {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, + {file = "six-1.15.0-py2.py3-none-any.whl", hash = "sha256:8b74bedcbbbaca38ff6d7491d76f2b06b3592611af620f8426e82dddb04a5ced"}, + {file = "six-1.15.0.tar.gz", hash = "sha256:30639c035cdb23534cd4aa2dd52c3bf48f06e5f4a941509c8bafd8ce11080259"}, ] [[package]] name = "smart-open" -version = "7.0.5" +version = "6.4.0" description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)" optional = false -python-versions = "<4.0,>=3.7" +python-versions = ">=3.6,<4.0" files = [ - {file = "smart_open-7.0.5-py3-none-any.whl", hash = "sha256:8523ed805c12dff3eaa50e9c903a6cb0ae78800626631c5fe7ea073439847b89"}, - {file = "smart_open-7.0.5.tar.gz", hash = "sha256:d3672003b1dbc85e2013e4983b88eb9a5ccfd389b0d4e5015f39a9ee5620ec18"}, + {file = "smart_open-6.4.0-py3-none-any.whl", hash = "sha256:8d3ef7e6997e8e42dd55c74166ed21e6ac70664caa32dd940b26d54a8f6b4142"}, + {file = "smart_open-6.4.0.tar.gz", hash = "sha256:be3c92c246fbe80ebce8fbacb180494a481a77fcdcb7c1aadb2ea5b9c2bee8b9"}, ] -[package.dependencies] -wrapt = "*" - [package.extras] -all = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "paramiko", "requests", "zstandard"] +all = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "paramiko", "requests"] azure = ["azure-common", "azure-core", "azure-storage-blob"] gcs = ["google-cloud-storage (>=2.6.0)"] http = ["requests"] s3 = ["boto3"] ssh = ["paramiko"] -test = ["awscli", "azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "numpy", "paramiko", "pyopenssl", "pytest", "pytest-benchmark", "pytest-rerunfailures", "requests", "responses", "zstandard"] +test = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "paramiko", "pytest", "pytest-rerunfailures", "requests", "responses"] webhdfs = ["requests"] -zst = ["zstandard"] [[package]] name = "stack-data" @@ -2945,359 +1924,198 @@ tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] [[package]] name = "stellargraph" -version = "1.2.1" +version = "1.3.0b0" description = "Python library for machine learning on graphs" optional = false python-versions = ">=3.6.0, <3.9.0" -files = [ - {file = "stellargraph-1.2.1-py3-none-any.whl", hash = "sha256:984a839de4645c9703b8f34a065307498feef38e5160a8f9d7764318a3d4621d"}, - {file = "stellargraph-1.2.1.tar.gz", hash = "sha256:804200a7992465bb5f10da95a3b7748014b0a159f1e79a95517c12a9ff2faed2"}, -] +files = [] +develop = false [package.dependencies] -gensim = ">=3.4.0" matplotlib = ">=2.2" networkx = ">=2.2" numpy = ">=1.14" pandas = ">=0.24" -scikit-learn = ">=0.20" +scikit_learn = ">=0.20" scipy = ">=1.1.0" tensorflow = ">=2.1.0" [package.extras] -demos = ["jupyter", "mplleaflet (==0.0.5)", "numba", "rdflib", "seaborn"] +demos = ["gensim (>=4.0.0)", "jupyter", "mplleaflet (==0.0.5)", "numba", "rdflib", "seaborn"] igraph = ["python-igraph"] neo4j = ["py2neo"] test = ["black (>=19.3b0)", "commonmark (==0.9.1)", "coverage (>=4.4,<5.0)", "nbconvert (>=5.5.0)", "papermill (>=2.0.0)", "pytest (==5.3.1)", "pytest-benchmark (>=3.1)", "pytest-cov (>=2.6.0)", "rdflib", "treon (>=0.1.2)"] -[[package]] -name = "sympy" -version = "1.13.3" -description = "Computer algebra system (CAS) in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "sympy-1.13.3-py3-none-any.whl", hash = "sha256:54612cf55a62755ee71824ce692986f23c88ffa77207b30c1368eda4a7060f73"}, - {file = "sympy-1.13.3.tar.gz", hash = "sha256:b27fd2c6530e0ab39e275fc9b683895367e51d5da91baa8d3d64db2565fec4d9"}, -] - -[package.dependencies] -mpmath = ">=1.1.0,<1.4" - -[package.extras] -dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] +[package.source] +type = "git" +url = "https://github.com/stellargraph/stellargraph.git" +reference = "develop" +resolved_reference = "3c2c8c18ab4c5c16660f350d8e23d7dc39e738de" [[package]] name = "tensorboard" -version = "2.14.0" +version = "2.11.2" description = "TensorBoard lets you watch Tensors Flow" optional = false -python-versions = ">=3.8" +python-versions = ">=3.7" files = [ - {file = "tensorboard-2.14.0-py3-none-any.whl", hash = "sha256:3667f9745d99280836ad673022362c840f60ed8fefd5a3e30bf071f5a8fd0017"}, + {file = "tensorboard-2.11.2-py3-none-any.whl", hash = "sha256:cbaa2210c375f3af1509f8571360a19ccc3ded1d9641533414874b5deca47e89"}, ] [package.dependencies] absl-py = ">=0.4" google-auth = ">=1.6.3,<3" -google-auth-oauthlib = ">=0.5,<1.1" -grpcio = ">=1.48.2" +google-auth-oauthlib = ">=0.4.1,<0.5" +grpcio = ">=1.24.3" markdown = ">=2.6.8" numpy = ">=1.12.0" -protobuf = ">=3.19.6" +protobuf = ">=3.9.2,<4" requests = ">=2.21.0,<3" setuptools = ">=41.0.0" -tensorboard-data-server = ">=0.7.0,<0.8.0" +tensorboard-data-server = ">=0.6.0,<0.7.0" +tensorboard-plugin-wit = ">=1.6.0" werkzeug = ">=1.0.1" wheel = ">=0.26" [[package]] name = "tensorboard-data-server" -version = "0.7.2" +version = "0.6.1" description = "Fast data loading for TensorBoard" optional = false -python-versions = ">=3.7" +python-versions = ">=3.6" +files = [ + {file = "tensorboard_data_server-0.6.1-py3-none-any.whl", hash = "sha256:809fe9887682d35c1f7d1f54f0f40f98bb1f771b14265b453ca051e2ce58fca7"}, + {file = "tensorboard_data_server-0.6.1-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:fa8cef9be4fcae2f2363c88176638baf2da19c5ec90addb49b1cde05c95c88ee"}, + {file = "tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl", hash = "sha256:d8237580755e58eff68d1f3abefb5b1e39ae5c8b127cc40920f9c4fb33f4b98a"}, +] + +[[package]] +name = "tensorboard-plugin-wit" +version = "1.8.1" +description = "What-If Tool TensorBoard plugin." +optional = false +python-versions = "*" files = [ - {file = "tensorboard_data_server-0.7.2-py3-none-any.whl", hash = "sha256:7e0610d205889588983836ec05dc098e80f97b7e7bbff7e994ebb78f578d0ddb"}, - {file = "tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:9fe5d24221b29625dbc7328b0436ca7fc1c23de4acf4d272f1180856e32f9f60"}, - {file = "tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl", hash = "sha256:ef687163c24185ae9754ed5650eb5bc4d84ff257aabdc33f0cc6f74d8ba54530"}, + {file = "tensorboard_plugin_wit-1.8.1-py3-none-any.whl", hash = "sha256:ff26bdd583d155aa951ee3b152b3d0cffae8005dc697f72b44a8e8c2a77a8cbe"}, ] [[package]] name = "tensorflow" -version = "2.7.2" +version = "2.4.0" description = "TensorFlow is an open source machine learning framework for everyone." optional = false python-versions = "*" files = [ - {file = "tensorflow-2.7.2-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:050c2ef8d432eb60f2cb6fc75d751fcb3008af6a86ad1147faea30cb59c275b1"}, - {file = "tensorflow-2.7.2-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:3c72b8653a539789ef36f8c1ad8266b9e676dff2293f0f7a68d9b26fc77a37f3"}, - {file = "tensorflow-2.7.2-cp37-cp37m-win_amd64.whl", hash = "sha256:1db663f9f59ba54a294b1f6530f131e90c7a0e6ea49fda5b2c6900e57b0c306a"}, - {file = "tensorflow-2.7.2-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:cb66d4a998af1ca979d6da33e925281596f52e5a9ba67b2295c53677f8379eee"}, - {file = "tensorflow-2.7.2-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:d4dbfab1568564b30bab876424fafd74c8a8715238b76284b5dd1cfe86c7881b"}, - {file = "tensorflow-2.7.2-cp38-cp38-win_amd64.whl", hash = "sha256:b9a7f344b93b953cab4c3f6ec3b6c1799eb538b6a1978d3a4b579d7a81ee7439"}, - {file = "tensorflow-2.7.2-cp39-cp39-macosx_10_11_x86_64.whl", hash = "sha256:99a85258505130b1f3ce203f11b3bb3c95442edefec96c0b221ce0d6541a92c8"}, - {file = "tensorflow-2.7.2-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:bb2115796e2e7738de1844aead493bc1f1122ff1fae65fc691bb1ce5a0fdd2aa"}, - {file = "tensorflow-2.7.2-cp39-cp39-win_amd64.whl", hash = "sha256:3e35d046d0be677239b5e832854bcb291ca79388fa406d9d7547bc3377a7efbb"}, + {file = "tensorflow-2.4.0-cp36-cp36m-macosx_10_11_x86_64.whl", hash = "sha256:576ace48dca1d3c211a3a102ea3a79eda3536a590dcd3d74898122227968b4ac"}, + {file = "tensorflow-2.4.0-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:1069f32e9fb51d5a62e93437e0047c712ff97133a322738814c56f49c762557f"}, + {file = "tensorflow-2.4.0-cp36-cp36m-win_amd64.whl", hash = "sha256:6a41bb0fa5c1d0b5bfdf5e3ec1327bd592904eb2c0c06501c8e7bae4a1122b1a"}, + {file = "tensorflow-2.4.0-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:f9908c04d58d4f216477b98cfbed9d87635d205bd6ddccd597a56fce9ef4eed5"}, + {file = "tensorflow-2.4.0-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:fb694f2e3e5b8f80f9fefb0beaba856001a4160895a10eb50e7fbaa6b9ef1002"}, + {file = "tensorflow-2.4.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d091adf8d6eae8bd47b1a72bf35a8aebb08147687e17d522eb531826a67f6a3b"}, + {file = "tensorflow-2.4.0-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:1754279cd1f91971d14671a776074b877483c04b27a0a2eaefdca0332d80980c"}, + {file = "tensorflow-2.4.0-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:dcd8f2e501a791c937fa19b31ea963470fc20d30cb763c3cc4740dc3c44aefe9"}, + {file = "tensorflow-2.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:7adcf41f57fdb12cd6792df02fb3cd16bddbe449cd7140faaa2bf2b3d5b5c4df"}, ] [package.dependencies] -absl-py = ">=0.4.0" -astunparse = ">=1.6.0" -flatbuffers = ">=1.12,<3.0" -gast = ">=0.2.1,<0.5.0" -google-pasta = ">=0.1.1" -grpcio = ">=1.24.3,<2.0" -h5py = ">=2.9.0" -keras = ">=2.7.0rc0,<2.8" -keras-preprocessing = ">=1.1.1" -libclang = ">=9.0.1" -numpy = ">=1.14.5" -opt-einsum = ">=2.3.2" +absl-py = ">=0.10,<1.0" +astunparse = ">=1.6.3,<1.7.0" +flatbuffers = ">=1.12.0,<1.13.0" +gast = "0.3.3" +google-pasta = ">=0.2,<1.0" +grpcio = ">=1.32.0,<1.33.0" +h5py = ">=2.10.0,<2.11.0" +keras-preprocessing = ">=1.1.2,<1.2.0" +numpy = ">=1.19.2,<1.20.0" +opt-einsum = ">=3.3.0,<3.4.0" protobuf = ">=3.9.2" -six = ">=1.12.0" -tensorboard = ">=2.6,<3.0" -tensorflow-estimator = ">=2.7.0rc0,<2.8" -tensorflow-io-gcs-filesystem = ">=0.21.0" -termcolor = ">=1.1.0" -typing-extensions = ">=3.6.6" -wheel = ">=0.32.0,<1.0" -wrapt = ">=1.11.0" +six = ">=1.15.0,<1.16.0" +tensorboard = ">=2.4,<3.0" +tensorflow-estimator = ">=2.4.0rc0,<2.5.0" +termcolor = ">=1.1.0,<1.2.0" +typing-extensions = ">=3.7.4,<3.8.0" +wheel = ">=0.35,<1.0" +wrapt = ">=1.12.1,<1.13.0" [[package]] name = "tensorflow-estimator" -version = "2.7.0" +version = "2.4.0" description = "TensorFlow Estimator." optional = false python-versions = "*" files = [ - {file = "tensorflow_estimator-2.7.0-py2.py3-none-any.whl", hash = "sha256:325b5a224864379242b7b76c6987ca544239be82579d33e68ec7c2bda57abc9d"}, -] - -[[package]] -name = "tensorflow-io-gcs-filesystem" -version = "0.21.0" -description = "TensorFlow IO" -optional = false -python-versions = ">=3.6, <3.10" -files = [ - {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:db8659cce2b45a6689cf041c7745b60338d8158fc394627f916029980aa04e0d"}, - {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d5ce0de3c91fb3a47bd91e25081bcd3b3491d515ee45e6d2c63e899ab5e7739e"}, - {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-win_amd64.whl", hash = "sha256:8fc48d4a6f06a97b8a866d849844189ecd1d830de9b152276ea579d9772c0533"}, - {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:c28ca0dd37d1bb2110a62e9e7f7b0bbdf295add83b38fbe507082fd89f0ebc61"}, - {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7c54f1f334076a5514b9f7f537afe4c36fce4233f792ce6ada76651bfad9f2eb"}, - {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-win_amd64.whl", hash = "sha256:e22fcc4e6e924842fefc570f7fd0f6fd33e458154be8891b5a7bfd8380c6aa8c"}, - {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:95555c647c8330daf712a38d2b158f7a21d5ad77e8fd438360060b37cb8ca1fb"}, - {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b12f9d66c8433bb4a67d9cc6cdb14cf11c42d9fe65bdbe09128b6579a80f80e8"}, - {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-win_amd64.whl", hash = "sha256:e447d9c03dd7396292ba10dd39a3c6a2cfcb9332b67457592119c5e5d3e38cfe"}, - {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:020581f962e7156054c790d649ecc80518d7874e0def5b2f58f965a1998d45e3"}, - {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:603f73d61670954833b6ed87199a4a919e2a5dc015f34b20fdd235a611f37e81"}, - {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-win_amd64.whl", hash = "sha256:8c95c0ef2de4611a528ef210c233481dd7628c57ff3ef7f08c0f9708125d3ff8"}, + {file = "tensorflow_estimator-2.4.0-py2.py3-none-any.whl", hash = "sha256:5b7b7bf2debe19a8794adacc43e8ba6459daa4efaf54d3302623994a359b17f0"}, ] [[package]] name = "termcolor" -version = "2.4.0" -description = "ANSI color formatting for output in terminal" -optional = false -python-versions = ">=3.8" -files = [ - {file = "termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63"}, - {file = "termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a"}, -] - -[package.extras] -tests = ["pytest", "pytest-cov"] - -[[package]] -name = "threadpoolctl" -version = "3.5.0" -description = "threadpoolctl" -optional = false -python-versions = ">=3.8" -files = [ - {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, - {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, -] - -[[package]] -name = "torch" -version = "2.1.2" -description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" +version = "1.1.0" +description = "ANSII Color formatting for output in terminal." optional = false -python-versions = ">=3.8.0" -files = [ - {file = "torch-2.1.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:3a871edd6c02dae77ad810335c0833391c1a4ce49af21ea8cf0f6a5d2096eea8"}, - {file = "torch-2.1.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:bef6996c27d8f6e92ea4e13a772d89611da0e103b48790de78131e308cf73076"}, - {file = "torch-2.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:0e13034fd5fb323cbbc29e56d0637a3791e50dd589616f40c79adfa36a5a35a1"}, - {file = "torch-2.1.2-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:d9b535cad0df3d13997dbe8bd68ac33e0e3ae5377639c9881948e40794a61403"}, - {file = "torch-2.1.2-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:f9a55d55af02826ebfbadf4e9b682f0f27766bc33df8236b48d28d705587868f"}, - {file = "torch-2.1.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:a6ebbe517097ef289cc7952783588c72de071d4b15ce0f8b285093f0916b1162"}, - {file = "torch-2.1.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:8f32ce591616a30304f37a7d5ea80b69ca9e1b94bba7f308184bf616fdaea155"}, - {file = "torch-2.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:e0ee6cf90c8970e05760f898d58f9ac65821c37ffe8b04269ec787aa70962b69"}, - {file = "torch-2.1.2-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:76d37967c31c99548ad2c4d3f2cf191db48476f2e69b35a0937137116da356a1"}, - {file = "torch-2.1.2-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:e2d83f07b4aac983453ea5bf8f9aa9dacf2278a8d31247f5d9037f37befc60e4"}, - {file = "torch-2.1.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:f41fe0c7ecbf903a568c73486139a75cfab287a0f6c17ed0698fdea7a1e8641d"}, - {file = "torch-2.1.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:e3225f47d50bb66f756fe9196a768055d1c26b02154eb1f770ce47a2578d3aa7"}, - {file = "torch-2.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:33d59cd03cb60106857f6c26b36457793637512998666ee3ce17311f217afe2b"}, - {file = "torch-2.1.2-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:8e221deccd0def6c2badff6be403e0c53491805ed9915e2c029adbcdb87ab6b5"}, - {file = "torch-2.1.2-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:05b18594f60a911a0c4f023f38a8bda77131fba5fd741bda626e97dcf5a3dd0a"}, - {file = "torch-2.1.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:9ca96253b761e9aaf8e06fb30a66ee301aecbf15bb5a303097de1969077620b6"}, - {file = "torch-2.1.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:d93ba70f67b08c2ae5598ee711cbc546a1bc8102cef938904b8c85c2089a51a0"}, - {file = "torch-2.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:255b50bc0608db177e6a3cc118961d77de7e5105f07816585fa6f191f33a9ff3"}, - {file = "torch-2.1.2-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6984cd5057c0c977b3c9757254e989d3f1124f4ce9d07caa6cb637783c71d42a"}, - {file = "torch-2.1.2-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:bc195d7927feabc0eb7c110e457c955ed2ab616f3c7c28439dd4188cf589699f"}, -] - -[package.dependencies] -filelock = "*" -fsspec = "*" -jinja2 = "*" -networkx = "*" -nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cudnn-cu12 = {version = "8.9.2.26", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-nccl-cu12 = {version = "2.18.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -sympy = "*" -triton = {version = "2.1.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -typing-extensions = "*" - -[package.extras] -dynamo = ["jinja2"] -opt-einsum = ["opt-einsum (>=3.3)"] - -[[package]] -name = "torch-geometric" -version = "2.6.1" -description = "Graph Neural Network Library for PyTorch" -optional = false -python-versions = ">=3.8" +python-versions = "*" files = [ - {file = "torch_geometric-2.6.1-py3-none-any.whl", hash = "sha256:8faeb353f9655f7dbec44c5e0b44c721773bdfb279994da96b9b8b12fd30f427"}, - {file = "torch_geometric-2.6.1.tar.gz", hash = "sha256:1f18f9d0fc4d2239d526221e4f22606a4a3895b5d965a9856d27610a3df662c6"}, + {file = "termcolor-1.1.0.tar.gz", hash = "sha256:1d6d69ce66211143803fbc56652b41d73b4a400a2891d7bf7a1cdf4c02de613b"}, ] -[package.dependencies] -aiohttp = "*" -fsspec = "*" -jinja2 = "*" -numpy = "*" -psutil = ">=5.8.0" -pyparsing = "*" -requests = "*" -tqdm = "*" - -[package.extras] -benchmark = ["matplotlib", "networkx", "pandas", "protobuf (<4.21)", "wandb"] -dev = ["ipython", "matplotlib-inline", "pre-commit", "torch_geometric[test]"] -full = ["ase", "captum (<0.7.0)", "graphviz", "h5py", "matplotlib", "networkx", "numba (<0.60.0)", "opt_einsum", "pandas", "pgmpy", "pynndescent", "pytorch-memlab", "rdflib", "rdkit", "scikit-image", "scikit-learn", "scipy", "statsmodels", "sympy", "tabulate", "torch_geometric[graphgym,modelhub]", "torchmetrics", "trimesh"] -graphgym = ["protobuf (<4.21)", "pytorch-lightning (<2.3.0)", "yacs"] -modelhub = ["huggingface_hub"] -test = ["onnx", "onnxruntime", "pytest", "pytest-cov"] - [[package]] -name = "torchmetrics" -version = "1.4.3" -description = "PyTorch native Metrics" +name = "theano" +version = "1.0.5" +description = "Optimizing compiler for evaluating mathematical expressions on CPUs and GPUs." optional = false -python-versions = ">=3.8" +python-versions = "*" files = [ - {file = "torchmetrics-1.4.3-py3-none-any.whl", hash = "sha256:76e67490231acef7f70cf36ab129df72fb2b0256dada7051001ab3b9f8699bf4"}, - {file = "torchmetrics-1.4.3.tar.gz", hash = "sha256:5554a19167e91f543afe82ff58a01059c8eec854359ad22896449c2c8fb0ad89"}, + {file = "Theano-1.0.5.tar.gz", hash = "sha256:6e9439dd53ba995fcae27bf20626074bfc2fff446899dc5c53cb28c1f9202e89"}, ] [package.dependencies] -lightning-utilities = ">=0.8.0" -numpy = ">1.20.0" -packaging = ">17.1" -torch = ">=1.10.0" -typing-extensions = {version = "*", markers = "python_version < \"3.9\""} +numpy = ">=1.9.1" +scipy = ">=0.14" +six = ">=1.9.0" [package.extras] -all = ["SciencePlots (>=2.0.0)", "gammatone (>1.0.0)", "ipadic (>=1.0.0)", "matplotlib (>=3.6.0)", "mecab-python3 (>=1.0.6)", "mypy (==1.11.2)", "nltk (>=3.8.2)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "regex (>=2021.9.24)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "torch (==2.4.1)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] -audio = ["gammatone (>1.0.0)", "pesq (>=0.0.4)", "pystoi (>=0.3.0)", "torchaudio (>=0.10.0)"] -detection = ["pycocotools (>2.0.0)", "torchvision (>=0.8)"] -dev = ["SciencePlots (>=2.0.0)", "bert-score (==0.3.13)", "dython (==0.7.6)", "dython (>=0.7.8,<0.8.0)", "fairlearn", "fast-bss-eval (>=0.1.0)", "faster-coco-eval (==1.5.*)", "gammatone (>1.0.0)", "huggingface-hub (<0.26)", "ipadic (>=1.0.0)", "jiwer (>=2.3.0)", "kornia (>=0.6.7)", "lpips (<=0.1.4)", "matplotlib (>=3.6.0)", "mecab-ko (>=1.0.0)", "mecab-ko-dic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "mir-eval (>=0.6)", "monai (==1.3.2)", "mypy (==1.11.2)", "netcal (>1.0.0)", "nltk (>=3.8.2)", "numpy (<2.2.0)", "pandas (>1.4.0)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "pytorch-msssim (==1.0.0)", "regex (>=2021.9.24)", "rouge-score (>0.1.0)", "sacrebleu (>=2.3.0)", "scikit-image (>=0.19.0)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "sewar (>=0.4.4)", "statsmodels (>0.13.5)", "torch (==2.4.1)", "torch-complex (<0.5.0)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] -image = ["scipy (>1.0.0)", "torch-fidelity (<=0.4.0)", "torchvision (>=0.8)"] -multimodal = ["piq (<=0.8.0)", "transformers (>=4.42.3)"] -text = ["ipadic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "nltk (>=3.8.2)", "regex (>=2021.9.24)", "sentencepiece (>=0.2.0)", "tqdm (>=4.41.0)", "transformers (>4.4.0)"] -typing = ["mypy (==1.11.2)", "torch (==2.4.1)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] -visual = ["SciencePlots (>=2.0.0)", "matplotlib (>=3.6.0)"] +doc = ["Sphinx (>=0.5.1)", "pygments"] +test = ["flake8", "nose (>=1.3.0)", "parameterized"] [[package]] -name = "torchvision" -version = "0.16.2" -description = "image and video datasets and models for torch deep learning" +name = "threadpoolctl" +version = "3.2.0" +description = "threadpoolctl" optional = false python-versions = ">=3.8" files = [ - {file = "torchvision-0.16.2-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:bc86f2800cb2c0c1a09c581409cdd6bff66e62f103dc83fc63f73346264c3756"}, - {file = "torchvision-0.16.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b024bd412df6d3a007dcebf311a894eb3c5c21e1af80d12be382bbcb097a7c3a"}, - {file = "torchvision-0.16.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:e89f10f3c8351972b6e3fda95bc3e479ea8dbfc9dfcfd2c32902dbad4ba5cfc5"}, - {file = "torchvision-0.16.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:96c7583700112a410bdc4e1e4f118c429dab49c29c9a31a2cc3579bc9b08b19d"}, - {file = "torchvision-0.16.2-cp310-cp310-win_amd64.whl", hash = "sha256:9f4032ebb3277fb07ff6a9b818d50a547fb8fcd89d958cfd9e773322454bb688"}, - {file = "torchvision-0.16.2-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:67b1aaf8b8cb02ce75dd445f291a27c8036a502f8c0aa76e28c37a0faac2e153"}, - {file = "torchvision-0.16.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bef30d03e1d1c629761f4dca51d3b7d8a0dc0acce6f4068ab2a1634e8e7b64e0"}, - {file = "torchvision-0.16.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:e59cc7b2bd1ab5c0ce4ae382e4e37be8f1c174e8b5de2f6a23c170de9ae28495"}, - {file = "torchvision-0.16.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:e130b08cc9b3cc73a6c59d6edf032394a322f9579bfd21d14bc2e1d0999aa758"}, - {file = "torchvision-0.16.2-cp311-cp311-win_amd64.whl", hash = "sha256:8692ab1e48807e9604046a6f4beeb67b523294cee1b00828654bb0df2cfce2b2"}, - {file = "torchvision-0.16.2-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:b82732dcf876a37c852772342aa6ee3480c03bb3e2a802ae109fc5f7e28d26e9"}, - {file = "torchvision-0.16.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4b065143d1a720fe8a9077fd4be35d491f98819ec80b3dbbc3ec64d0b707a906"}, - {file = "torchvision-0.16.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:bc5f274e4ecd1b86062063cdf4fd385a1d39d147a3a2685fbbde9ff08bb720b8"}, - {file = "torchvision-0.16.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:335959c43b371c0474af34c1ef2a52efdc7603c45700d29e4475eeb02984170c"}, - {file = "torchvision-0.16.2-cp38-cp38-win_amd64.whl", hash = "sha256:7fd22d86e08eba321af70cad291020c2cdeac069b00ce88b923ca52e06174769"}, - {file = "torchvision-0.16.2-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:56115268b37f0b75364e3654e47ad9abc66ac34c1f9e5e3dfa89a22d6a40017a"}, - {file = "torchvision-0.16.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:82805f8445b094f9d1e770390ee6cc86855e89955e08ce34af2e2274fc0e5c45"}, - {file = "torchvision-0.16.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:3f4bd5fcbc361476e2e78016636ac7d5509e59d9962521f06eb98e6803898182"}, - {file = "torchvision-0.16.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:8199acdf8ab066a28b84a5b6f4d97b58976d9e164b1acc3a9d14fccfaf74bb3a"}, - {file = "torchvision-0.16.2-cp39-cp39-win_amd64.whl", hash = "sha256:41dd4fa9f176d563fe9f1b9adef3b7e582cdfb60ce8c9bc51b094a025be687c9"}, + {file = "threadpoolctl-3.2.0-py3-none-any.whl", hash = "sha256:2b7818516e423bdaebb97c723f86a7c6b0a83d3f3b0970328d66f4d9104dc032"}, + {file = "threadpoolctl-3.2.0.tar.gz", hash = "sha256:c96a0ba3bdddeaca37dc4cc7344aafad41cdb8c313f74fdfe387a867bba93355"}, ] -[package.dependencies] -numpy = "*" -pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" -requests = "*" -torch = "2.1.2" - -[package.extras] -scipy = ["scipy"] - [[package]] name = "tornado" -version = "6.4.1" +version = "6.4" description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." optional = false -python-versions = ">=3.8" +python-versions = ">= 3.8" files = [ - {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8"}, - {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14"}, - {file = "tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4"}, - {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842"}, - {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3"}, - {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f"}, - {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4"}, - {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698"}, - {file = "tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d"}, - {file = "tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7"}, - {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"}, + {file = "tornado-6.4-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:02ccefc7d8211e5a7f9e8bc3f9e5b0ad6262ba2fbb683a6443ecc804e5224ce0"}, + {file = "tornado-6.4-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:27787de946a9cffd63ce5814c33f734c627a87072ec7eed71f7fc4417bb16263"}, + {file = "tornado-6.4-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f7894c581ecdcf91666a0912f18ce5e757213999e183ebfc2c3fdbf4d5bd764e"}, + {file = "tornado-6.4-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e43bc2e5370a6a8e413e1e1cd0c91bedc5bd62a74a532371042a18ef19e10579"}, + {file = "tornado-6.4-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0251554cdd50b4b44362f73ad5ba7126fc5b2c2895cc62b14a1c2d7ea32f212"}, + {file = "tornado-6.4-cp38-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:fd03192e287fbd0899dd8f81c6fb9cbbc69194d2074b38f384cb6fa72b80e9c2"}, + {file = "tornado-6.4-cp38-abi3-musllinux_1_1_i686.whl", hash = "sha256:88b84956273fbd73420e6d4b8d5ccbe913c65d31351b4c004ae362eba06e1f78"}, + {file = "tornado-6.4-cp38-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:71ddfc23a0e03ef2df1c1397d859868d158c8276a0603b96cf86892bff58149f"}, + {file = "tornado-6.4-cp38-abi3-win32.whl", hash = "sha256:6f8a6c77900f5ae93d8b4ae1196472d0ccc2775cc1dfdc9e7727889145c45052"}, + {file = "tornado-6.4-cp38-abi3-win_amd64.whl", hash = "sha256:10aeaa8006333433da48dec9fe417877f8bcc21f48dda8d661ae79da357b2a63"}, + {file = "tornado-6.4.tar.gz", hash = "sha256:72291fa6e6bc84e626589f1c29d90a5a6d593ef5ae68052ee2ef000dfd273dee"}, ] [[package]] name = "tqdm" -version = "4.66.5" +version = "4.66.1" description = "Fast, Extensible Progress Meter" optional = false python-versions = ">=3.7" files = [ - {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, - {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, + {file = "tqdm-4.66.1-py3-none-any.whl", hash = "sha256:d302b3c5b53d47bce91fea46679d9c3c6508cf6332229aa1e7d8653723793386"}, + {file = "tqdm-4.66.1.tar.gz", hash = "sha256:d88e651f9db8d8551a62556d3cff9e3034274ca5d66e93197cf2490e2dcb69c7"}, ] [package.dependencies] @@ -3311,103 +2129,67 @@ telegram = ["requests"] [[package]] name = "traitlets" -version = "5.14.3" +version = "5.14.0" description = "Traitlets Python configuration system" optional = false python-versions = ">=3.8" files = [ - {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, - {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, + {file = "traitlets-5.14.0-py3-none-any.whl", hash = "sha256:f14949d23829023013c47df20b4a76ccd1a85effb786dc060f34de7948361b33"}, + {file = "traitlets-5.14.0.tar.gz", hash = "sha256:fcdaa8ac49c04dfa0ed3ee3384ef6dfdb5d6f3741502be247279407679296772"}, ] [package.extras] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] -test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] - -[[package]] -name = "triton" -version = "2.1.0" -description = "A language and compiler for custom Deep Learning operations" -optional = false -python-versions = "*" -files = [ - {file = "triton-2.1.0-0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:66439923a30d5d48399b08a9eae10370f6c261a5ec864a64983bae63152d39d7"}, - {file = "triton-2.1.0-0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:919b06453f0033ea52c13eaf7833de0e57db3178d23d4e04f9fc71c4f2c32bf8"}, - {file = "triton-2.1.0-0-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ae4bb8a91de790e1866405211c4d618379781188f40d5c4c399766914e84cd94"}, - {file = "triton-2.1.0-0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:39f6fb6bdccb3e98f3152e3fbea724f1aeae7d749412bbb1fa9c441d474eba26"}, - {file = "triton-2.1.0-0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:21544e522c02005a626c8ad63d39bdff2f31d41069592919ef281e964ed26446"}, - {file = "triton-2.1.0-0-pp37-pypy37_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:143582ca31dd89cd982bd3bf53666bab1c7527d41e185f9e3d8a3051ce1b663b"}, - {file = "triton-2.1.0-0-pp38-pypy38_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:82fc5aeeedf6e36be4e4530cbdcba81a09d65c18e02f52dc298696d45721f3bd"}, - {file = "triton-2.1.0-0-pp39-pypy39_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:81a96d110a738ff63339fc892ded095b31bd0d205e3aace262af8400d40b6fa8"}, -] - -[package.dependencies] -filelock = "*" - -[package.extras] -build = ["cmake (>=3.18)", "lit"] -tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)"] -tutorials = ["matplotlib", "pandas", "tabulate"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<7.5)", "pytest-mock", "pytest-mypy-testing"] [[package]] name = "typing-extensions" -version = "4.12.2" -description = "Backported and Experimental Type Hints for Python 3.8+" +version = "3.7.4.3" +description = "Backported and Experimental Type Hints for Python 3.5+" optional = false -python-versions = ">=3.8" -files = [ - {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, - {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, -] - -[[package]] -name = "tzdata" -version = "2024.2" -description = "Provider of IANA time zone data" -optional = false -python-versions = ">=2" +python-versions = "*" files = [ - {file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"}, - {file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"}, + {file = "typing_extensions-3.7.4.3-py2-none-any.whl", hash = "sha256:dafc7639cde7f1b6e1acc0f457842a83e722ccca8eef5270af2d74792619a89f"}, + {file = "typing_extensions-3.7.4.3-py3-none-any.whl", hash = "sha256:7cb407020f00f7bfc3cb3e7881628838e69d8f3fcab2f64742a5e76b2f841918"}, + {file = "typing_extensions-3.7.4.3.tar.gz", hash = "sha256:99d4073b617d30288f569d3f13d2bd7548c3a7e4c8de87db09a9d29bb3a4a60c"}, ] [[package]] name = "urllib3" -version = "2.2.3" +version = "2.1.0" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, - {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, + {file = "urllib3-2.1.0-py3-none-any.whl", hash = "sha256:55901e917a5896a349ff771be919f8bd99aff50b79fe58fec595eb37bbc56bb3"}, + {file = "urllib3-2.1.0.tar.gz", hash = "sha256:df7aa8afb0148fa78488e7899b2c59b5f4ffcfa82e6c54ccb9dd37c1d7b52d54"}, ] [package.extras] brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] -h2 = ["h2 (>=4,<5)"] socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] zstd = ["zstandard (>=0.18.0)"] [[package]] name = "wcwidth" -version = "0.2.13" +version = "0.2.12" description = "Measures the displayed width of unicode strings in a terminal" optional = false python-versions = "*" files = [ - {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, - {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, + {file = "wcwidth-0.2.12-py2.py3-none-any.whl", hash = "sha256:f26ec43d96c8cbfed76a5075dac87680124fa84e0855195a6184da9c187f133c"}, + {file = "wcwidth-0.2.12.tar.gz", hash = "sha256:f01c104efdf57971bcb756f054dd58ddec5204dd15fa31d6503ea57947d97c02"}, ] [[package]] name = "werkzeug" -version = "3.0.4" +version = "3.0.1" description = "The comprehensive WSGI web application library." optional = false python-versions = ">=3.8" files = [ - {file = "werkzeug-3.0.4-py3-none-any.whl", hash = "sha256:02c9eb92b7d6c06f31a782811505d2157837cea66aaede3e217c7c27c039476c"}, - {file = "werkzeug-3.0.4.tar.gz", hash = "sha256:34f2371506b250df4d4f84bfe7b0921e4762525762bbd936614909fe25cd7306"}, + {file = "werkzeug-3.0.1-py3-none-any.whl", hash = "sha256:90a285dc0e42ad56b34e696398b8122ee4c681833fb35b8334a095d82c56da10"}, + {file = "werkzeug-3.0.1.tar.gz", hash = "sha256:507e811ecea72b18a404947aded4b3390e1db8f826b494d76550ef45bb3b1dcc"}, ] [package.dependencies] @@ -3418,13 +2200,13 @@ watchdog = ["watchdog (>=2.3)"] [[package]] name = "wheel" -version = "0.44.0" +version = "0.42.0" description = "A built-package format for Python" optional = false -python-versions = ">=3.8" +python-versions = ">=3.7" files = [ - {file = "wheel-0.44.0-py3-none-any.whl", hash = "sha256:2376a90c98cc337d18623527a97c31797bd02bad0033d41547043a1cbfbe448f"}, - {file = "wheel-0.44.0.tar.gz", hash = "sha256:a29c3f2817e95ab89aa4660681ad547c0e9547f20e75b0562fe7723c9a2a9d49"}, + {file = "wheel-0.42.0-py3-none-any.whl", hash = "sha256:177f9c9b0d45c47873b619f5b650346d632cdc35fb5e4d25058e09c9e581433d"}, + {file = "wheel-0.42.0.tar.gz", hash = "sha256:c45be39f7882c9d34243236f2d63cbd58039e360f85d0913425fbd7ceea617a8"}, ] [package.extras] @@ -3432,209 +2214,30 @@ test = ["pytest (>=6.0.0)", "setuptools (>=65)"] [[package]] name = "wrapt" -version = "1.16.0" +version = "1.12.1" description = "Module for decorators, wrappers and monkey patching." optional = false -python-versions = ">=3.6" -files = [ - {file = "wrapt-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ffa565331890b90056c01db69c0fe634a776f8019c143a5ae265f9c6bc4bd6d4"}, - {file = "wrapt-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e4fdb9275308292e880dcbeb12546df7f3e0f96c6b41197e0cf37d2826359020"}, - {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb2dee3874a500de01c93d5c71415fcaef1d858370d405824783e7a8ef5db440"}, - {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a88e6010048489cda82b1326889ec075a8c856c2e6a256072b28eaee3ccf487"}, - {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac83a914ebaf589b69f7d0a1277602ff494e21f4c2f743313414378f8f50a4cf"}, - {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:73aa7d98215d39b8455f103de64391cb79dfcad601701a3aa0dddacf74911d72"}, - {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:807cc8543a477ab7422f1120a217054f958a66ef7314f76dd9e77d3f02cdccd0"}, - {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bf5703fdeb350e36885f2875d853ce13172ae281c56e509f4e6eca049bdfb136"}, - {file = "wrapt-1.16.0-cp310-cp310-win32.whl", hash = "sha256:f6b2d0c6703c988d334f297aa5df18c45e97b0af3679bb75059e0e0bd8b1069d"}, - {file = "wrapt-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:decbfa2f618fa8ed81c95ee18a387ff973143c656ef800c9f24fb7e9c16054e2"}, - {file = "wrapt-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1a5db485fe2de4403f13fafdc231b0dbae5eca4359232d2efc79025527375b09"}, - {file = "wrapt-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75ea7d0ee2a15733684badb16de6794894ed9c55aa5e9903260922f0482e687d"}, - {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a452f9ca3e3267cd4d0fcf2edd0d035b1934ac2bd7e0e57ac91ad6b95c0c6389"}, - {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:43aa59eadec7890d9958748db829df269f0368521ba6dc68cc172d5d03ed8060"}, - {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72554a23c78a8e7aa02abbd699d129eead8b147a23c56e08d08dfc29cfdddca1"}, - {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d2efee35b4b0a347e0d99d28e884dfd82797852d62fcd7ebdeee26f3ceb72cf3"}, - {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6dcfcffe73710be01d90cae08c3e548d90932d37b39ef83969ae135d36ef3956"}, - {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:eb6e651000a19c96f452c85132811d25e9264d836951022d6e81df2fff38337d"}, - {file = "wrapt-1.16.0-cp311-cp311-win32.whl", hash = "sha256:66027d667efe95cc4fa945af59f92c5a02c6f5bb6012bff9e60542c74c75c362"}, - {file = "wrapt-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:aefbc4cb0a54f91af643660a0a150ce2c090d3652cf4052a5397fb2de549cd89"}, - {file = "wrapt-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5eb404d89131ec9b4f748fa5cfb5346802e5ee8836f57d516576e61f304f3b7b"}, - {file = "wrapt-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9090c9e676d5236a6948330e83cb89969f433b1943a558968f659ead07cb3b36"}, - {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94265b00870aa407bd0cbcfd536f17ecde43b94fb8d228560a1e9d3041462d73"}, - {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2058f813d4f2b5e3a9eb2eb3faf8f1d99b81c3e51aeda4b168406443e8ba809"}, - {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98b5e1f498a8ca1858a1cdbffb023bfd954da4e3fa2c0cb5853d40014557248b"}, - {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:14d7dc606219cdd7405133c713f2c218d4252f2a469003f8c46bb92d5d095d81"}, - {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:49aac49dc4782cb04f58986e81ea0b4768e4ff197b57324dcbd7699c5dfb40b9"}, - {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:418abb18146475c310d7a6dc71143d6f7adec5b004ac9ce08dc7a34e2babdc5c"}, - {file = "wrapt-1.16.0-cp312-cp312-win32.whl", hash = "sha256:685f568fa5e627e93f3b52fda002c7ed2fa1800b50ce51f6ed1d572d8ab3e7fc"}, - {file = "wrapt-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:dcdba5c86e368442528f7060039eda390cc4091bfd1dca41e8046af7c910dda8"}, - {file = "wrapt-1.16.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:d462f28826f4657968ae51d2181a074dfe03c200d6131690b7d65d55b0f360f8"}, - {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a33a747400b94b6d6b8a165e4480264a64a78c8a4c734b62136062e9a248dd39"}, - {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b3646eefa23daeba62643a58aac816945cadc0afaf21800a1421eeba5f6cfb9c"}, - {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ebf019be5c09d400cf7b024aa52b1f3aeebeff51550d007e92c3c1c4afc2a40"}, - {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:0d2691979e93d06a95a26257adb7bfd0c93818e89b1406f5a28f36e0d8c1e1fc"}, - {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:1acd723ee2a8826f3d53910255643e33673e1d11db84ce5880675954183ec47e"}, - {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:bc57efac2da352a51cc4658878a68d2b1b67dbe9d33c36cb826ca449d80a8465"}, - {file = "wrapt-1.16.0-cp36-cp36m-win32.whl", hash = "sha256:da4813f751142436b075ed7aa012a8778aa43a99f7b36afe9b742d3ed8bdc95e"}, - {file = "wrapt-1.16.0-cp36-cp36m-win_amd64.whl", hash = "sha256:6f6eac2360f2d543cc875a0e5efd413b6cbd483cb3ad7ebf888884a6e0d2e966"}, - {file = "wrapt-1.16.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a0ea261ce52b5952bf669684a251a66df239ec6d441ccb59ec7afa882265d593"}, - {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bd2d7ff69a2cac767fbf7a2b206add2e9a210e57947dd7ce03e25d03d2de292"}, - {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9159485323798c8dc530a224bd3ffcf76659319ccc7bbd52e01e73bd0241a0c5"}, - {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a86373cf37cd7764f2201b76496aba58a52e76dedfaa698ef9e9688bfd9e41cf"}, - {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:73870c364c11f03ed072dda68ff7aea6d2a3a5c3fe250d917a429c7432e15228"}, - {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b935ae30c6e7400022b50f8d359c03ed233d45b725cfdd299462f41ee5ffba6f"}, - {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:db98ad84a55eb09b3c32a96c576476777e87c520a34e2519d3e59c44710c002c"}, - {file = "wrapt-1.16.0-cp37-cp37m-win32.whl", hash = "sha256:9153ed35fc5e4fa3b2fe97bddaa7cbec0ed22412b85bcdaf54aeba92ea37428c"}, - {file = "wrapt-1.16.0-cp37-cp37m-win_amd64.whl", hash = "sha256:66dfbaa7cfa3eb707bbfcd46dab2bc6207b005cbc9caa2199bcbc81d95071a00"}, - {file = "wrapt-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1dd50a2696ff89f57bd8847647a1c363b687d3d796dc30d4dd4a9d1689a706f0"}, - {file = "wrapt-1.16.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:44a2754372e32ab315734c6c73b24351d06e77ffff6ae27d2ecf14cf3d229202"}, - {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e9723528b9f787dc59168369e42ae1c3b0d3fadb2f1a71de14531d321ee05b0"}, - {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbed418ba5c3dce92619656802cc5355cb679e58d0d89b50f116e4a9d5a9603e"}, - {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:941988b89b4fd6b41c3f0bfb20e92bd23746579736b7343283297c4c8cbae68f"}, - {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6a42cd0cfa8ffc1915aef79cb4284f6383d8a3e9dcca70c445dcfdd639d51267"}, - {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1ca9b6085e4f866bd584fb135a041bfc32cab916e69f714a7d1d397f8c4891ca"}, - {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d5e49454f19ef621089e204f862388d29e6e8d8b162efce05208913dde5b9ad6"}, - {file = "wrapt-1.16.0-cp38-cp38-win32.whl", hash = "sha256:c31f72b1b6624c9d863fc095da460802f43a7c6868c5dda140f51da24fd47d7b"}, - {file = "wrapt-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:490b0ee15c1a55be9c1bd8609b8cecd60e325f0575fc98f50058eae366e01f41"}, - {file = "wrapt-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9b201ae332c3637a42f02d1045e1d0cccfdc41f1f2f801dafbaa7e9b4797bfc2"}, - {file = "wrapt-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2076fad65c6736184e77d7d4729b63a6d1ae0b70da4868adeec40989858eb3fb"}, - {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5cd603b575ebceca7da5a3a251e69561bec509e0b46e4993e1cac402b7247b8"}, - {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b47cfad9e9bbbed2339081f4e346c93ecd7ab504299403320bf85f7f85c7d46c"}, - {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8212564d49c50eb4565e502814f694e240c55551a5f1bc841d4fcaabb0a9b8a"}, - {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5f15814a33e42b04e3de432e573aa557f9f0f56458745c2074952f564c50e664"}, - {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db2e408d983b0e61e238cf579c09ef7020560441906ca990fe8412153e3b291f"}, - {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:edfad1d29c73f9b863ebe7082ae9321374ccb10879eeabc84ba3b69f2579d537"}, - {file = "wrapt-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed867c42c268f876097248e05b6117a65bcd1e63b779e916fe2e33cd6fd0d3c3"}, - {file = "wrapt-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:eb1b046be06b0fce7249f1d025cd359b4b80fc1c3e24ad9eca33e0dcdb2e4a35"}, - {file = "wrapt-1.16.0-py3-none-any.whl", hash = "sha256:6906c4100a8fcbf2fa735f6059214bb13b97f75b1a61777fcf6432121ef12ef1"}, - {file = "wrapt-1.16.0.tar.gz", hash = "sha256:5f370f952971e7d17c7d1ead40e49f32345a7f7a5373571ef44d800d06b1899d"}, -] - -[[package]] -name = "yarl" -version = "1.14.0" -description = "Yet another URL library" -optional = false -python-versions = ">=3.8" +python-versions = "*" files = [ - {file = "yarl-1.14.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1bfc25aa6a7c99cf86564210f79a0b7d4484159c67e01232b116e445b3036547"}, - {file = "yarl-1.14.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0cf21f46a15d445417de8fc89f2568852cf57fe8ca1ab3d19ddb24d45c0383ae"}, - {file = "yarl-1.14.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1dda53508df0de87b6e6b0a52d6718ff6c62a5aca8f5552748404963df639269"}, - {file = "yarl-1.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:587c3cc59bc148a9b1c07a019346eda2549bc9f468acd2f9824d185749acf0a6"}, - {file = "yarl-1.14.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3007a5b75cb50140708420fe688c393e71139324df599434633019314ceb8b59"}, - {file = "yarl-1.14.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:06ff23462398333c78b6f4f8d3d70410d657a471c2c5bbe6086133be43fc8f1a"}, - {file = "yarl-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:689a99a42ee4583fcb0d3a67a0204664aa1539684aed72bdafcbd505197a91c4"}, - {file = "yarl-1.14.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b0547ab1e9345dc468cac8368d88ea4c5bd473ebc1d8d755347d7401982b5dd8"}, - {file = "yarl-1.14.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:742aef0a99844faaac200564ea6f5e08facb285d37ea18bd1a5acf2771f3255a"}, - {file = "yarl-1.14.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:176110bff341b6730f64a1eb3a7070e12b373cf1c910a9337e7c3240497db76f"}, - {file = "yarl-1.14.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:46a9772a1efa93f9cd170ad33101c1817c77e0e9914d4fe33e2da299d7cf0f9b"}, - {file = "yarl-1.14.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:ee2c68e4f2dd1b1c15b849ba1c96fac105fca6ffdb7c1e8be51da6fabbdeafb9"}, - {file = "yarl-1.14.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:047b258e00b99091b6f90355521f026238c63bd76dcf996d93527bb13320eefd"}, - {file = "yarl-1.14.0-cp310-cp310-win32.whl", hash = "sha256:0aa92e3e30a04f9462a25077db689c4ac5ea9ab6cc68a2e563881b987d42f16d"}, - {file = "yarl-1.14.0-cp310-cp310-win_amd64.whl", hash = "sha256:d9baec588f015d0ee564057aa7574313c53a530662ffad930b7886becc85abdf"}, - {file = "yarl-1.14.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:07f9eaf57719d6721ab15805d85f4b01a5b509a0868d7320134371bcb652152d"}, - {file = "yarl-1.14.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c14b504a74e58e2deb0378b3eca10f3d076635c100f45b113c18c770b4a47a50"}, - {file = "yarl-1.14.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:16a682a127930f3fc4e42583becca6049e1d7214bcad23520c590edd741d2114"}, - {file = "yarl-1.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:73bedd2be05f48af19f0f2e9e1353921ce0c83f4a1c9e8556ecdcf1f1eae4892"}, - {file = "yarl-1.14.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f3ab950f8814f3b7b5e3eebc117986f817ec933676f68f0a6c5b2137dd7c9c69"}, - {file = "yarl-1.14.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b693c63e7e64b524f54aa4888403c680342d1ad0d97be1707c531584d6aeeb4f"}, - {file = "yarl-1.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85cb3e40eaa98489f1e2e8b29f5ad02ee1ee40d6ce6b88d50cf0f205de1d9d2c"}, - {file = "yarl-1.14.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f24f08b6c9b9818fd80612c97857d28f9779f0d1211653ece9844fc7b414df2"}, - {file = "yarl-1.14.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:29a84a46ec3ebae7a1c024c055612b11e9363a8a23238b3e905552d77a2bc51b"}, - {file = "yarl-1.14.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:5cd5dad8366e0168e0fd23d10705a603790484a6dbb9eb272b33673b8f2cce72"}, - {file = "yarl-1.14.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a152751af7ef7b5d5fa6d215756e508dd05eb07d0cf2ba51f3e740076aa74373"}, - {file = "yarl-1.14.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:3d569f877ed9a708e4c71a2d13d2940cb0791da309f70bd970ac1a5c088a0a92"}, - {file = "yarl-1.14.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:6a615cad11ec3428020fb3c5a88d85ce1b5c69fd66e9fcb91a7daa5e855325dd"}, - {file = "yarl-1.14.0-cp311-cp311-win32.whl", hash = "sha256:bab03192091681d54e8225c53f270b0517637915d9297028409a2a5114ff4634"}, - {file = "yarl-1.14.0-cp311-cp311-win_amd64.whl", hash = "sha256:985623575e5c4ea763056ffe0e2d63836f771a8c294b3de06d09480538316b13"}, - {file = "yarl-1.14.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:fc2c80bc87fba076e6cbb926216c27fba274dae7100a7b9a0983b53132dd99f2"}, - {file = "yarl-1.14.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:55c144d363ad4626ca744556c049c94e2b95096041ac87098bb363dcc8635e8d"}, - {file = "yarl-1.14.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b03384eed107dbeb5f625a99dc3a7de8be04fc8480c9ad42fccbc73434170b20"}, - {file = "yarl-1.14.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f72a0d746d38cb299b79ce3d4d60ba0892c84bbc905d0d49c13df5bace1b65f8"}, - {file = "yarl-1.14.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8648180b34faaea4aa5b5ca7e871d9eb1277033fa439693855cf0ea9195f85f1"}, - {file = "yarl-1.14.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9557c9322aaa33174d285b0c1961fb32499d65ad1866155b7845edc876c3c835"}, - {file = "yarl-1.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f50eb3837012a937a2b649ec872b66ba9541ad9d6f103ddcafb8231cfcafd22"}, - {file = "yarl-1.14.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8892fa575ac9b1b25fae7b221bc4792a273877b9b56a99ee2d8d03eeb3dbb1d2"}, - {file = "yarl-1.14.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e6a2c5c5bb2556dfbfffffc2bcfb9c235fd2b566d5006dfb2a37afc7e3278a07"}, - {file = "yarl-1.14.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:ab3abc0b78a5dfaa4795a6afbe7b282b6aa88d81cf8c1bb5e394993d7cae3457"}, - {file = "yarl-1.14.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:47eede5d11d669ab3759b63afb70d28d5328c14744b8edba3323e27dc52d298d"}, - {file = "yarl-1.14.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:fe4d2536c827f508348d7b40c08767e8c7071614250927233bf0c92170451c0a"}, - {file = "yarl-1.14.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0fd7b941dd1b00b5f0acb97455fea2c4b7aac2dd31ea43fb9d155e9bc7b78664"}, - {file = "yarl-1.14.0-cp312-cp312-win32.whl", hash = "sha256:99ff3744f5fe48288be6bc402533b38e89749623a43208e1d57091fc96b783b9"}, - {file = "yarl-1.14.0-cp312-cp312-win_amd64.whl", hash = "sha256:1ca3894e9e9f72da93544f64988d9c052254a338a9f855165f37f51edb6591de"}, - {file = "yarl-1.14.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:5d02d700705d67e09e1f57681f758f0b9d4412eeb70b2eb8d96ca6200b486db3"}, - {file = "yarl-1.14.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:30600ba5db60f7c0820ef38a2568bb7379e1418ecc947a0f76fd8b2ff4257a97"}, - {file = "yarl-1.14.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:e85d86527baebb41a214cc3b45c17177177d900a2ad5783dbe6f291642d4906f"}, - {file = "yarl-1.14.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37001e5d4621cef710c8dc1429ca04e189e572f128ab12312eab4e04cf007132"}, - {file = "yarl-1.14.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4f4547944d4f5cfcdc03f3f097d6f05bbbc915eaaf80a2ee120d0e756de377d"}, - {file = "yarl-1.14.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75ff4c819757f9bdb35de049a509814d6ce851fe26f06eb95a392a5640052482"}, - {file = "yarl-1.14.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68ac1a09392ed6e3fd14be880d39b951d7b981fd135416db7d18a6208c536561"}, - {file = "yarl-1.14.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:96952f642ac69075e44c7d0284528938fdff39422a1d90d3e45ce40b72e5e2d9"}, - {file = "yarl-1.14.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a56fbe3d7f3bce1d060ea18d2413a2ca9ca814eea7cedc4d247b5f338d54844e"}, - {file = "yarl-1.14.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:7e2637d75e92763d1322cb5041573279ec43a80c0f7fbbd2d64f5aee98447b17"}, - {file = "yarl-1.14.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:9abe80ae2c9d37c17599557b712e6515f4100a80efb2cda15f5f070306477cd2"}, - {file = "yarl-1.14.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:217a782020b875538eebf3948fac3a7f9bbbd0fd9bf8538f7c2ad7489e80f4e8"}, - {file = "yarl-1.14.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b9cfef3f14f75bf6aba73a76caf61f9d00865912a04a4393c468a7ce0981b519"}, - {file = "yarl-1.14.0-cp313-cp313-win32.whl", hash = "sha256:d8361c7d04e6a264481f0b802e395f647cd3f8bbe27acfa7c12049efea675bd1"}, - {file = "yarl-1.14.0-cp313-cp313-win_amd64.whl", hash = "sha256:bc24f968b82455f336b79bf37dbb243b7d76cd40897489888d663d4e028f5069"}, - {file = "yarl-1.14.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:91d875f75fabf76b3018c5f196bf3d308ed2b49ddcb46c1576d6b075754a1393"}, - {file = "yarl-1.14.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:4009def9be3a7e5175db20aa2d7307ecd00bbf50f7f0f989300710eee1d0b0b9"}, - {file = "yarl-1.14.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:582cedde49603f139be572252a318b30dc41039bc0b8165f070f279e5d12187f"}, - {file = "yarl-1.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dbd9ff43a04f8ffe8a959a944c2dca10d22f5f99fc6a459f49c3ebfb409309d9"}, - {file = "yarl-1.14.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b9f805e37ed16cc212fdc538a608422d7517e7faf539bedea4fe69425bc55d76"}, - {file = "yarl-1.14.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:95e16e9eaa2d7f5d87421b8fe694dd71606aa61d74b824c8d17fc85cc51983d1"}, - {file = "yarl-1.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:816d24f584edefcc5ca63428f0b38fee00b39fe64e3c5e558f895a18983efe96"}, - {file = "yarl-1.14.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cd2660c01367eb3ef081b8fa0a5da7fe767f9427aa82023a961a5f28f0d4af6c"}, - {file = "yarl-1.14.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:94b2bb9bcfd5be9d27004ea4398fb640373dd0c1a9e219084f42c08f77a720ab"}, - {file = "yarl-1.14.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:c2089a9afef887664115f7fa6d3c0edd6454adaca5488dba836ca91f60401075"}, - {file = "yarl-1.14.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:2192f718db4a8509f63dd6d950f143279211fa7e6a2c612edc17d85bf043d36e"}, - {file = "yarl-1.14.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:8385ab36bf812e9d37cf7613999a87715f27ef67a53f0687d28c44b819df7cb0"}, - {file = "yarl-1.14.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:b4c1ecba93e7826dc71ddba75fb7740cdb52e7bd0be9f03136b83f54e6a1f511"}, - {file = "yarl-1.14.0-cp38-cp38-win32.whl", hash = "sha256:e749af6c912a7bb441d105c50c1a3da720474e8acb91c89350080dd600228f0e"}, - {file = "yarl-1.14.0-cp38-cp38-win_amd64.whl", hash = "sha256:147e36331f6f63e08a14640acf12369e041e0751bb70d9362df68c2d9dcf0c87"}, - {file = "yarl-1.14.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a9f917966d27f7ce30039fe8d900f913c5304134096554fd9bea0774bcda6d1"}, - {file = "yarl-1.14.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8a2f8fb7f944bcdfecd4e8d855f84c703804a594da5123dd206f75036e536d4d"}, - {file = "yarl-1.14.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8f4e475f29a9122f908d0f1f706e1f2fc3656536ffd21014ff8a6f2e1b14d1d8"}, - {file = "yarl-1.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8089d4634d8fa2b1806ce44fefa4979b1ab2c12c0bc7ef3dfa45c8a374811348"}, - {file = "yarl-1.14.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1b16f6c75cffc2dc0616ea295abb0e1967601bd1fb1e0af6a1de1c6c887f3439"}, - {file = "yarl-1.14.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:498b3c55087b9d762636bca9b45f60d37e51d24341786dc01b81253f9552a607"}, - {file = "yarl-1.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3f8bfc1db82589ef965ed234b87de30d140db8b6dc50ada9e33951ccd8ec07a"}, - {file = "yarl-1.14.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:625f207b1799e95e7c823f42f473c1e9dbfb6192bd56bba8695656d92be4535f"}, - {file = "yarl-1.14.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:781e2495e408a81e4eaeedeb41ba32b63b1980dddf8b60dbbeff6036bcd35049"}, - {file = "yarl-1.14.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:659603d26d40dd4463200df9bfbc339fbfaed3fe32e5c432fe1dc2b5d4aa94b4"}, - {file = "yarl-1.14.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:4e0d45ebf975634468682c8bec021618b3ad52c37619e5c938f8f831fa1ac5c0"}, - {file = "yarl-1.14.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:a2e4725a08cb2b4794db09e350c86dee18202bb8286527210e13a1514dc9a59a"}, - {file = "yarl-1.14.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:19268b4fec1d7760134f2de46ef2608c2920134fb1fa61e451f679e41356dc55"}, - {file = "yarl-1.14.0-cp39-cp39-win32.whl", hash = "sha256:337912bcdcf193ade64b9aae5a4017a0a1950caf8ca140362e361543c6773f21"}, - {file = "yarl-1.14.0-cp39-cp39-win_amd64.whl", hash = "sha256:b6d0147574ce2e7b812c989e50fa72bbc5338045411a836bd066ce5fc8ac0bce"}, - {file = "yarl-1.14.0-py3-none-any.whl", hash = "sha256:c8ed4034f0765f8861620c1f2f2364d2e58520ea288497084dae880424fc0d9f"}, - {file = "yarl-1.14.0.tar.gz", hash = "sha256:88c7d9d58aab0724b979ab5617330acb1c7030b79379c8138c1c8c94e121d1b3"}, + {file = "wrapt-1.12.1.tar.gz", hash = "sha256:b62ffa81fb85f4332a4f609cab4ac40709470da05643a082ec1eb88e6d9b97d7"}, ] -[package.dependencies] -idna = ">=2.0" -multidict = ">=4.0" -propcache = ">=0.2.0" - [[package]] name = "zipp" -version = "3.20.2" +version = "3.17.0" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false python-versions = ">=3.8" files = [ - {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, - {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, + {file = "zipp-3.17.0-py3-none-any.whl", hash = "sha256:0e923e726174922dce09c53c59ad483ff7bbb8e572e00c7f7c46b88556409f31"}, + {file = "zipp-3.17.0.tar.gz", hash = "sha256:84e64a1c28cf7e91ed2078bb8cc8c259cb19b76942096c8d7b84947690cabaf0"}, ] [package.extras] -check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] -cover = ["pytest-cov"] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -enabler = ["pytest-enabler (>=2.2)"] -test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-ignore-flaky"] -type = ["pytest-mypy"] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] +testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy (>=0.9.1)", "pytest-ruff"] [metadata] lock-version = "2.0" python-versions = "~3.8" -content-hash = "efa0179eba359fcaefc59bcf838d3ddb4dc246ee64c0190fea65ca3f732b19ef" +content-hash = "771516ece2620e992a3d0c44cf8fda7f65a198370eacae06a23748331976df95" diff --git a/Chapter04/pyproject.toml b/Chapter04/pyproject.toml index f7f9698..4d42f64 100644 --- a/Chapter04/pyproject.toml +++ b/Chapter04/pyproject.toml @@ -1,5 +1,5 @@ [tool.poetry] -name = "Graph Machine Learning - Chapter 4" +name = "Graph Machine Learning (2nd Edition) - Chapter 4" version = "1.0.0" description = "" authors = ["Enrico Deusebio "] @@ -11,23 +11,17 @@ py-modules = [] [tool.poetry.dependencies] python = "~3.8" ipykernel = ">=6.0.0" +networkx = "==2.5" matplotlib = "==3.2.2" -numpy = "==1.21.6" -neural-structured-learning = "==1.3.1" -networkx = "==2.5" -tensorflow = "^2.6.0" -tensorflow-io-gcs-filesystem = "==0.21.0" # This needs pinning - see https://stackoverflow.com/a/76477590 -stellargraph= "^1.2.1" -protobuf= "^3.20" -torch = "^2.1.0" -chardet = "==5.2.0" -torch_geometric = "^2.5.2" -torchvision = "^0.16.0" -torchmetrics="^1.3.0" -# dgl = https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl -dgl = {url = "https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl"} +node2vec = "==0.3.3" +karateclub = "==1.0.19" +gensim = "==3.8.3" +scikit-learn = "==0.24.0" +tensorflow = "==2.4.0" +nxt-gem = { git="https://github.com/palash1992/GEM.git", branch="master" } +# This is what is holding us back to python 3.8 +stellargraph = { git="https://github.com/stellargraph/stellargraph.git", branch="develop" } [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api" - diff --git a/Chapter04/requirements.txt b/Chapter04/requirements.txt index 104a080..99b00bc 100644 --- a/Chapter04/requirements.txt +++ b/Chapter04/requirements.txt @@ -1,132 +1,96 @@ -absl-py==2.1.0 ; python_version >= "3.8" and python_version < "3.9" -aiohappyeyeballs==2.4.3 ; python_version >= "3.8" and python_version < "3.9" -aiohttp==3.10.10 ; python_version >= "3.8" and python_version < "3.9" -aiosignal==1.3.1 ; python_version >= "3.8" and python_version < "3.9" -annotated-types==0.7.0 ; python_version >= "3.8" and python_version < "3.9" -appnope==0.1.4 ; python_version >= "3.8" and python_version < "3.9" and (platform_system == "Darwin" or sys_platform == "darwin") +absl-py==0.15.0 ; python_version >= "3.8" and python_version < "3.9" +appnope==0.1.3 ; python_version >= "3.8" and python_version < "3.9" and (platform_system == "Darwin" or sys_platform == "darwin") asttokens==2.4.1 ; python_version >= "3.8" and python_version < "3.9" astunparse==1.6.3 ; python_version >= "3.8" and python_version < "3.9" -async-timeout==4.0.3 ; python_version >= "3.8" and python_version < "3.9" -attrs==24.2.0 ; python_version >= "3.8" and python_version < "3.9" backcall==0.2.0 ; python_version >= "3.8" and python_version < "3.9" -cachetools==5.5.0 ; python_version >= "3.8" and python_version < "3.9" -certifi==2024.8.30 ; python_version >= "3.8" and python_version < "3.9" -cffi==1.17.1 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" -chardet==5.2.0 ; python_version >= "3.8" and python_version < "3.9" -charset-normalizer==3.4.0 ; python_version >= "3.8" and python_version < "3.9" +cachetools==5.3.2 ; python_version >= "3.8" and python_version < "3.9" +certifi==2023.11.17 ; python_version >= "3.8" and python_version < "3.9" +cffi==1.16.0 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +charset-normalizer==3.3.2 ; python_version >= "3.8" and python_version < "3.9" colorama==0.4.6 ; python_version >= "3.8" and python_version < "3.9" and (sys_platform == "win32" or platform_system == "Windows") -comm==0.2.2 ; python_version >= "3.8" and python_version < "3.9" +comm==0.2.0 ; python_version >= "3.8" and python_version < "3.9" cycler==0.12.1 ; python_version >= "3.8" and python_version < "3.9" -debugpy==1.8.7 ; python_version >= "3.8" and python_version < "3.9" +cython==0.29.14 ; python_version >= "3.8" and python_version < "3.9" +debugpy==1.8.0 ; python_version >= "3.8" and python_version < "3.9" decorator==5.1.1 ; python_version >= "3.8" and python_version < "3.9" -dgl @ https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl ; python_version >= "3.8" and python_version < "3.9" -executing==2.1.0 ; python_version >= "3.8" and python_version < "3.9" -filelock==3.16.1 ; python_version >= "3.8" and python_version < "3.9" -flatbuffers==2.0.7 ; python_version >= "3.8" and python_version < "3.9" -frozenlist==1.4.1 ; python_version >= "3.8" and python_version < "3.9" -fsspec==2024.9.0 ; python_version >= "3.8" and python_version < "3.9" -gast==0.4.0 ; python_version >= "3.8" and python_version < "3.9" -gensim==4.3.3 ; python_version >= "3.8" and python_version < "3.9" -google-auth-oauthlib==1.0.0 ; python_version >= "3.8" and python_version < "3.9" -google-auth==2.35.0 ; python_version >= "3.8" and python_version < "3.9" +executing==2.0.1 ; python_version >= "3.8" and python_version < "3.9" +flatbuffers==1.12 ; python_version >= "3.8" and python_version < "3.9" +gast==0.3.3 ; python_version >= "3.8" and python_version < "3.9" +gensim==3.8.3 ; python_version >= "3.8" and python_version < "3.9" +google-auth-oauthlib==0.4.6 ; python_version >= "3.8" and python_version < "3.9" +google-auth==2.25.2 ; python_version >= "3.8" and python_version < "3.9" google-pasta==0.2.0 ; python_version >= "3.8" and python_version < "3.9" -grpcio==1.66.2 ; python_version >= "3.8" and python_version < "3.9" -h5py==3.11.0 ; python_version >= "3.8" and python_version < "3.9" -idna==3.10 ; python_version >= "3.8" and python_version < "3.9" -importlib-metadata==8.5.0 ; python_version >= "3.8" and python_version < "3.9" -ipykernel==6.29.5 ; python_version >= "3.8" and python_version < "3.9" +grpcio==1.32.0 ; python_version >= "3.8" and python_version < "3.9" +h5py==2.10.0 ; python_version >= "3.8" and python_version < "3.9" +idna==3.6 ; python_version >= "3.8" and python_version < "3.9" +importlib-metadata==7.0.0 ; python_version >= "3.8" and python_version < "3.9" +ipykernel==6.27.1 ; python_version >= "3.8" and python_version < "3.9" ipython==8.12.3 ; python_version >= "3.8" and python_version < "3.9" jedi==0.19.1 ; python_version >= "3.8" and python_version < "3.9" -jinja2==3.1.4 ; python_version >= "3.8" and python_version < "3.9" -joblib==1.4.2 ; python_version >= "3.8" and python_version < "3.9" -jupyter-client==8.6.3 ; python_version >= "3.8" and python_version < "3.9" -jupyter-core==5.7.2 ; python_version >= "3.8" and python_version < "3.9" +joblib==1.3.2 ; python_version >= "3.8" and python_version < "3.9" +jupyter-client==8.6.0 ; python_version >= "3.8" and python_version < "3.9" +jupyter-core==5.5.1 ; python_version >= "3.8" and python_version < "3.9" +karateclub==1.0.19 ; python_version >= "3.8" and python_version < "3.9" keras-preprocessing==1.1.2 ; python_version >= "3.8" and python_version < "3.9" -keras==2.7.0 ; python_version >= "3.8" and python_version < "3.9" -kiwisolver==1.4.7 ; python_version >= "3.8" and python_version < "3.9" -libclang==18.1.1 ; python_version >= "3.8" and python_version < "3.9" -lightning-utilities==0.11.7 ; python_version >= "3.8" and python_version < "3.9" -markdown==3.7 ; python_version >= "3.8" and python_version < "3.9" -markupsafe==2.1.5 ; python_version >= "3.8" and python_version < "3.9" -matplotlib-inline==0.1.7 ; python_version >= "3.8" and python_version < "3.9" +kiwisolver==1.4.5 ; python_version >= "3.8" and python_version < "3.9" +markdown==3.5.1 ; python_version >= "3.8" and python_version < "3.9" +markupsafe==2.1.3 ; python_version >= "3.8" and python_version < "3.9" +matplotlib-inline==0.1.6 ; python_version >= "3.8" and python_version < "3.9" matplotlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" -mpmath==1.3.0 ; python_version >= "3.8" and python_version < "3.9" -multidict==6.1.0 ; python_version >= "3.8" and python_version < "3.9" -nest-asyncio==1.6.0 ; python_version >= "3.8" and python_version < "3.9" +nest-asyncio==1.5.8 ; python_version >= "3.8" and python_version < "3.9" networkx==2.5 ; python_version >= "3.8" and python_version < "3.9" -neural-structured-learning==1.3.1 ; python_version >= "3.8" and python_version < "3.9" -numpy==1.21.6 ; python_version >= "3.8" and python_version < "3.9" -nvidia-cublas-cu12==12.1.3.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cuda-cupti-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cuda-nvrtc-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cuda-runtime-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cudnn-cu12==8.9.2.26 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cufft-cu12==11.0.2.54 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-curand-cu12==10.3.2.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cusolver-cu12==11.4.5.107 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cusparse-cu12==12.1.0.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-nccl-cu12==2.18.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-nvjitlink-cu12==12.6.77 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-nvtx-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +node2vec==0.3.3 ; python_version >= "3.8" and python_version < "3.9" +numpy==1.19.5 ; python_version >= "3.8" and python_version < "3.9" +nxt-gem @ git+https://github.com/palash1992/GEM.git@master ; python_version >= "3.8" and python_version < "3.9" oauthlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" -opt-einsum==3.4.0 ; python_version >= "3.8" and python_version < "3.9" -packaging==24.1 ; python_version >= "3.8" and python_version < "3.9" -pandas==2.0.3 ; python_version >= "3.8" and python_version < "3.9" -parso==0.8.4 ; python_version >= "3.8" and python_version < "3.9" +opt-einsum==3.3.0 ; python_version >= "3.8" and python_version < "3.9" +packaging==23.2 ; python_version >= "3.8" and python_version < "3.9" +pandas==1.4.4 ; python_version >= "3.8" and python_version < "3.9" +parso==0.8.3 ; python_version >= "3.8" and python_version < "3.9" pexpect==4.9.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" pickleshare==0.7.5 ; python_version >= "3.8" and python_version < "3.9" -pillow==10.4.0 ; python_version >= "3.8" and python_version < "3.9" -platformdirs==4.3.6 ; python_version >= "3.8" and python_version < "3.9" -prompt-toolkit==3.0.48 ; python_version >= "3.8" and python_version < "3.9" -propcache==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +platformdirs==4.1.0 ; python_version >= "3.8" and python_version < "3.9" +prompt-toolkit==3.0.43 ; python_version >= "3.8" and python_version < "3.9" protobuf==3.20.3 ; python_version >= "3.8" and python_version < "3.9" -psutil==6.0.0 ; python_version >= "3.8" and python_version < "3.9" +psutil==5.9.7 ; python_version >= "3.8" and python_version < "3.9" ptyprocess==0.7.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" -pure-eval==0.2.3 ; python_version >= "3.8" and python_version < "3.9" -pyasn1-modules==0.4.1 ; python_version >= "3.8" and python_version < "3.9" -pyasn1==0.6.1 ; python_version >= "3.8" and python_version < "3.9" -pycparser==2.22 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" -pydantic-core==2.23.4 ; python_version >= "3.8" and python_version < "3.9" -pydantic==2.9.2 ; python_version >= "3.8" and python_version < "3.9" -pygments==2.18.0 ; python_version >= "3.8" and python_version < "3.9" -pyparsing==3.1.4 ; python_version >= "3.8" and python_version < "3.9" -python-dateutil==2.9.0.post0 ; python_version >= "3.8" and python_version < "3.9" -pytz==2024.2 ; python_version >= "3.8" and python_version < "3.9" -pywin32==307 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" -pyyaml==6.0.2 ; python_version >= "3.8" and python_version < "3.9" -pyzmq==26.2.0 ; python_version >= "3.8" and python_version < "3.9" -requests-oauthlib==2.0.0 ; python_version >= "3.8" and python_version < "3.9" -requests==2.32.3 ; python_version >= "3.8" and python_version < "3.9" +pure-eval==0.2.2 ; python_version >= "3.8" and python_version < "3.9" +pyasn1-modules==0.3.0 ; python_version >= "3.8" and python_version < "3.9" +pyasn1==0.5.1 ; python_version >= "3.8" and python_version < "3.9" +pycparser==2.21 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +pygments==2.17.2 ; python_version >= "3.8" and python_version < "3.9" +pygsp==0.5.1 ; python_version >= "3.8" and python_version < "3.9" +pyparsing==3.1.1 ; python_version >= "3.8" and python_version < "3.9" +python-dateutil==2.8.2 ; python_version >= "3.8" and python_version < "3.9" +python-louvain==0.16 ; python_version >= "3.8" and python_version < "3.9" +pytz==2023.3.post1 ; python_version >= "3.8" and python_version < "3.9" +pywin32==306 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" +pyzmq==25.1.2 ; python_version >= "3.8" and python_version < "3.9" +requests-oauthlib==1.3.1 ; python_version >= "3.8" and python_version < "3.9" +requests==2.31.0 ; python_version >= "3.8" and python_version < "3.9" rsa==4.9 ; python_version >= "3.8" and python_version < "3.9" -scikit-learn==1.3.2 ; python_version >= "3.8" and python_version < "3.9" +scikit-learn==0.24.0 ; python_version >= "3.8" and python_version < "3.9" scipy==1.10.1 ; python_version >= "3.8" and python_version < "3.9" -setuptools==75.1.0 ; python_version >= "3.8" and python_version < "3.9" -six==1.16.0 ; python_version >= "3.8" and python_version < "3.9" -smart-open==7.0.5 ; python_version >= "3.8" and python_version < "3.9" +setuptools==69.0.2 ; python_version >= "3.8" and python_version < "3.9" +six==1.15.0 ; python_version >= "3.8" and python_version < "3.9" +smart-open==6.4.0 ; python_version >= "3.8" and python_version < "3.9" stack-data==0.6.3 ; python_version >= "3.8" and python_version < "3.9" -stellargraph==1.2.1 ; python_version >= "3.8" and python_version < "3.9" -sympy==1.13.3 ; python_version >= "3.8" and python_version < "3.9" -tensorboard-data-server==0.7.2 ; python_version >= "3.8" and python_version < "3.9" -tensorboard==2.14.0 ; python_version >= "3.8" and python_version < "3.9" -tensorflow-estimator==2.7.0 ; python_version >= "3.8" and python_version < "3.9" -tensorflow-io-gcs-filesystem==0.21.0 ; python_version >= "3.8" and python_version < "3.9" -tensorflow==2.7.2 ; python_version >= "3.8" and python_version < "3.9" -termcolor==2.4.0 ; python_version >= "3.8" and python_version < "3.9" -threadpoolctl==3.5.0 ; python_version >= "3.8" and python_version < "3.9" -torch-geometric==2.6.1 ; python_version >= "3.8" and python_version < "3.9" -torch==2.1.2 ; python_version >= "3.8" and python_version < "3.9" -torchmetrics==1.4.3 ; python_version >= "3.8" and python_version < "3.9" -torchvision==0.16.2 ; python_version >= "3.8" and python_version < "3.9" -tornado==6.4.1 ; python_version >= "3.8" and python_version < "3.9" -tqdm==4.66.5 ; python_version >= "3.8" and python_version < "3.9" -traitlets==5.14.3 ; python_version >= "3.8" and python_version < "3.9" -triton==2.1.0 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -typing-extensions==4.12.2 ; python_version >= "3.8" and python_version < "3.9" -tzdata==2024.2 ; python_version >= "3.8" and python_version < "3.9" -urllib3==2.2.3 ; python_version >= "3.8" and python_version < "3.9" -wcwidth==0.2.13 ; python_version >= "3.8" and python_version < "3.9" -werkzeug==3.0.4 ; python_version >= "3.8" and python_version < "3.9" -wheel==0.44.0 ; python_version >= "3.8" and python_version < "3.9" -wrapt==1.16.0 ; python_version >= "3.8" and python_version < "3.9" -yarl==1.14.0 ; python_version >= "3.8" and python_version < "3.9" -zipp==3.20.2 ; python_version >= "3.8" and python_version < "3.9" +stellargraph @ git+https://github.com/stellargraph/stellargraph.git@develop ; python_version >= "3.8" and python_version < "3.9" +tensorboard-data-server==0.6.1 ; python_version >= "3.8" and python_version < "3.9" +tensorboard-plugin-wit==1.8.1 ; python_version >= "3.8" and python_version < "3.9" +tensorboard==2.11.2 ; python_version >= "3.8" and python_version < "3.9" +tensorflow-estimator==2.4.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow==2.4.0 ; python_version >= "3.8" and python_version < "3.9" +termcolor==1.1.0 ; python_version >= "3.8" and python_version < "3.9" +theano==1.0.5 ; python_version >= "3.8" and python_version < "3.9" +threadpoolctl==3.2.0 ; python_version >= "3.8" and python_version < "3.9" +tornado==6.4 ; python_version >= "3.8" and python_version < "3.9" +tqdm==4.66.1 ; python_version >= "3.8" and python_version < "3.9" +traitlets==5.14.0 ; python_version >= "3.8" and python_version < "3.9" +typing-extensions==3.7.4.3 ; python_version >= "3.8" and python_version < "3.9" +urllib3==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +wcwidth==0.2.12 ; python_version >= "3.8" and python_version < "3.9" +werkzeug==3.0.1 ; python_version >= "3.8" and python_version < "3.9" +wheel==0.42.0 ; python_version >= "3.8" and python_version < "3.9" +wrapt==1.12.1 ; python_version >= "3.8" and python_version < "3.9" +zipp==3.17.0 ; python_version >= "3.8" and python_version < "3.9" diff --git a/Chapter04/01_Feature_based_methods.ipynb b/Chapter05/01_Feature_based_methods.ipynb similarity index 99% rename from Chapter04/01_Feature_based_methods.ipynb rename to Chapter05/01_Feature_based_methods.ipynb index 72d5b63..38ebc24 100644 --- a/Chapter04/01_Feature_based_methods.ipynb +++ b/Chapter05/01_Feature_based_methods.ipynb @@ -213,9 +213,9 @@ "provenance": [] }, "kernelspec": { - "display_name": "chap4", + "display_name": "chap5", "language": "python", - "name": "chap4" + "name": "chap5" }, "language_info": { "codemirror_mode": { diff --git a/Chapter04/02_Shallow_embeddings.ipynb b/Chapter05/02_Shallow_embeddings.ipynb similarity index 99% rename from Chapter04/02_Shallow_embeddings.ipynb rename to Chapter05/02_Shallow_embeddings.ipynb index 2143123..f72c486 100644 --- a/Chapter04/02_Shallow_embeddings.ipynb +++ b/Chapter05/02_Shallow_embeddings.ipynb @@ -429,9 +429,9 @@ ], "metadata": { "kernelspec": { - "display_name": "chap4", + "display_name": "chap5", "language": "python", - "name": "chap4" + "name": "chap5" }, "language_info": { "codemirror_mode": { diff --git a/Chapter04/03_Graph_regularization_graph_neural_training.ipynb b/Chapter05/03_Graph_regularization_graph_neural_training.ipynb similarity index 99% rename from Chapter04/03_Graph_regularization_graph_neural_training.ipynb rename to Chapter05/03_Graph_regularization_graph_neural_training.ipynb index 8570922..9b17dad 100644 --- a/Chapter04/03_Graph_regularization_graph_neural_training.ipynb +++ b/Chapter05/03_Graph_regularization_graph_neural_training.ipynb @@ -1486,9 +1486,9 @@ ], "metadata": { "kernelspec": { - "display_name": "chap4", + "display_name": "chap5", "language": "python", - "name": "chap4" + "name": "chap5" }, "language_info": { "codemirror_mode": { diff --git a/Chapter04/04_Graph_Neural_Networks.ipynb b/Chapter05/04_Graph_Neural_Networks.ipynb similarity index 99% rename from Chapter04/04_Graph_Neural_Networks.ipynb rename to Chapter05/04_Graph_Neural_Networks.ipynb index beda937..271d478 100644 --- a/Chapter04/04_Graph_Neural_Networks.ipynb +++ b/Chapter05/04_Graph_Neural_Networks.ipynb @@ -1137,9 +1137,9 @@ "provenance": [] }, "kernelspec": { - "display_name": "chap4", + "display_name": "chap5", "language": "python", - "name": "chap4" + "name": "chap5" }, "language_info": { "codemirror_mode": { diff --git a/Chapter05/poetry.lock b/Chapter05/poetry.lock index 3eda7a1..0e13afb 100644 --- a/Chapter05/poetry.lock +++ b/Chapter05/poetry.lock @@ -11,6 +11,157 @@ files = [ {file = "absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308"}, ] +[[package]] +name = "aiohappyeyeballs" +version = "2.4.3" +description = "Happy Eyeballs for asyncio" +optional = false +python-versions = ">=3.8" +files = [ + {file = "aiohappyeyeballs-2.4.3-py3-none-any.whl", hash = "sha256:8a7a83727b2756f394ab2895ea0765a0a8c475e3c71e98d43d76f22b4b435572"}, + {file = "aiohappyeyeballs-2.4.3.tar.gz", hash = "sha256:75cf88a15106a5002a8eb1dab212525c00d1f4c0fa96e551c9fbe6f09a621586"}, +] + +[[package]] +name = "aiohttp" +version = "3.10.10" +description = "Async http client/server framework (asyncio)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "aiohttp-3.10.10-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:be7443669ae9c016b71f402e43208e13ddf00912f47f623ee5994e12fc7d4b3f"}, + {file = "aiohttp-3.10.10-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7b06b7843929e41a94ea09eb1ce3927865387e3e23ebe108e0d0d09b08d25be9"}, + {file = "aiohttp-3.10.10-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:333cf6cf8e65f6a1e06e9eb3e643a0c515bb850d470902274239fea02033e9a8"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:274cfa632350225ce3fdeb318c23b4a10ec25c0e2c880eff951a3842cf358ac1"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d9e5e4a85bdb56d224f412d9c98ae4cbd032cc4f3161818f692cd81766eee65a"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2b606353da03edcc71130b52388d25f9a30a126e04caef1fd637e31683033abd"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab5a5a0c7a7991d90446a198689c0535be89bbd6b410a1f9a66688f0880ec026"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:578a4b875af3e0daaf1ac6fa983d93e0bbfec3ead753b6d6f33d467100cdc67b"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:8105fd8a890df77b76dd3054cddf01a879fc13e8af576805d667e0fa0224c35d"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3bcd391d083f636c06a68715e69467963d1f9600f85ef556ea82e9ef25f043f7"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:fbc6264158392bad9df19537e872d476f7c57adf718944cc1e4495cbabf38e2a"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:e48d5021a84d341bcaf95c8460b152cfbad770d28e5fe14a768988c461b821bc"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:2609e9ab08474702cc67b7702dbb8a80e392c54613ebe80db7e8dbdb79837c68"}, + {file = "aiohttp-3.10.10-cp310-cp310-win32.whl", hash = "sha256:84afcdea18eda514c25bc68b9af2a2b1adea7c08899175a51fe7c4fb6d551257"}, + {file = "aiohttp-3.10.10-cp310-cp310-win_amd64.whl", hash = "sha256:9c72109213eb9d3874f7ac8c0c5fa90e072d678e117d9061c06e30c85b4cf0e6"}, + {file = "aiohttp-3.10.10-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:c30a0eafc89d28e7f959281b58198a9fa5e99405f716c0289b7892ca345fe45f"}, + {file = "aiohttp-3.10.10-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:258c5dd01afc10015866114e210fb7365f0d02d9d059c3c3415382ab633fcbcb"}, + {file = "aiohttp-3.10.10-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:15ecd889a709b0080f02721255b3f80bb261c2293d3c748151274dfea93ac871"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3935f82f6f4a3820270842e90456ebad3af15810cf65932bd24da4463bc0a4c"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:413251f6fcf552a33c981c4709a6bba37b12710982fec8e558ae944bfb2abd38"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1720b4f14c78a3089562b8875b53e36b51c97c51adc53325a69b79b4b48ebcb"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:679abe5d3858b33c2cf74faec299fda60ea9de62916e8b67e625d65bf069a3b7"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:79019094f87c9fb44f8d769e41dbb664d6e8fcfd62f665ccce36762deaa0e911"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:fe2fb38c2ed905a2582948e2de560675e9dfbee94c6d5ccdb1301c6d0a5bf092"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:a3f00003de6eba42d6e94fabb4125600d6e484846dbf90ea8e48a800430cc142"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:1bbb122c557a16fafc10354b9d99ebf2f2808a660d78202f10ba9d50786384b9"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:30ca7c3b94708a9d7ae76ff281b2f47d8eaf2579cd05971b5dc681db8caac6e1"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:df9270660711670e68803107d55c2b5949c2e0f2e4896da176e1ecfc068b974a"}, + {file = "aiohttp-3.10.10-cp311-cp311-win32.whl", hash = "sha256:aafc8ee9b742ce75044ae9a4d3e60e3d918d15a4c2e08a6c3c3e38fa59b92d94"}, + {file = "aiohttp-3.10.10-cp311-cp311-win_amd64.whl", hash = "sha256:362f641f9071e5f3ee6f8e7d37d5ed0d95aae656adf4ef578313ee585b585959"}, + {file = "aiohttp-3.10.10-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:9294bbb581f92770e6ed5c19559e1e99255e4ca604a22c5c6397b2f9dd3ee42c"}, + {file = "aiohttp-3.10.10-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a8fa23fe62c436ccf23ff930149c047f060c7126eae3ccea005f0483f27b2e28"}, + {file = "aiohttp-3.10.10-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5c6a5b8c7926ba5d8545c7dd22961a107526562da31a7a32fa2456baf040939f"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:007ec22fbc573e5eb2fb7dec4198ef8f6bf2fe4ce20020798b2eb5d0abda6138"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9627cc1a10c8c409b5822a92d57a77f383b554463d1884008e051c32ab1b3742"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:50edbcad60d8f0e3eccc68da67f37268b5144ecc34d59f27a02f9611c1d4eec7"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a45d85cf20b5e0d0aa5a8dca27cce8eddef3292bc29d72dcad1641f4ed50aa16"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0b00807e2605f16e1e198f33a53ce3c4523114059b0c09c337209ae55e3823a8"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f2d4324a98062be0525d16f768a03e0bbb3b9fe301ceee99611dc9a7953124e6"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:438cd072f75bb6612f2aca29f8bd7cdf6e35e8f160bc312e49fbecab77c99e3a"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:baa42524a82f75303f714108fea528ccacf0386af429b69fff141ffef1c534f9"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a7d8d14fe962153fc681f6366bdec33d4356f98a3e3567782aac1b6e0e40109a"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c1277cd707c465cd09572a774559a3cc7c7a28802eb3a2a9472588f062097205"}, + {file = "aiohttp-3.10.10-cp312-cp312-win32.whl", hash = "sha256:59bb3c54aa420521dc4ce3cc2c3fe2ad82adf7b09403fa1f48ae45c0cbde6628"}, + {file = "aiohttp-3.10.10-cp312-cp312-win_amd64.whl", hash = "sha256:0e1b370d8007c4ae31ee6db7f9a2fe801a42b146cec80a86766e7ad5c4a259cf"}, + {file = "aiohttp-3.10.10-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ad7593bb24b2ab09e65e8a1d385606f0f47c65b5a2ae6c551db67d6653e78c28"}, + {file = "aiohttp-3.10.10-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1eb89d3d29adaf533588f209768a9c02e44e4baf832b08118749c5fad191781d"}, + {file = "aiohttp-3.10.10-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3fe407bf93533a6fa82dece0e74dbcaaf5d684e5a51862887f9eaebe6372cd79"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50aed5155f819873d23520919e16703fc8925e509abbb1a1491b0087d1cd969e"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4f05e9727ce409358baa615dbeb9b969db94324a79b5a5cea45d39bdb01d82e6"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3dffb610a30d643983aeb185ce134f97f290f8935f0abccdd32c77bed9388b42"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa6658732517ddabe22c9036479eabce6036655ba87a0224c612e1ae6af2087e"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:741a46d58677d8c733175d7e5aa618d277cd9d880301a380fd296975a9cdd7bc"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:e00e3505cd80440f6c98c6d69269dcc2a119f86ad0a9fd70bccc59504bebd68a"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ffe595f10566f8276b76dc3a11ae4bb7eba1aac8ddd75811736a15b0d5311414"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:bdfcf6443637c148c4e1a20c48c566aa694fa5e288d34b20fcdc58507882fed3"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d183cf9c797a5291e8301790ed6d053480ed94070637bfaad914dd38b0981f67"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:77abf6665ae54000b98b3c742bc6ea1d1fb31c394bcabf8b5d2c1ac3ebfe7f3b"}, + {file = "aiohttp-3.10.10-cp313-cp313-win32.whl", hash = "sha256:4470c73c12cd9109db8277287d11f9dd98f77fc54155fc71a7738a83ffcc8ea8"}, + {file = "aiohttp-3.10.10-cp313-cp313-win_amd64.whl", hash = "sha256:486f7aabfa292719a2753c016cc3a8f8172965cabb3ea2e7f7436c7f5a22a151"}, + {file = "aiohttp-3.10.10-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:1b66ccafef7336a1e1f0e389901f60c1d920102315a56df85e49552308fc0486"}, + {file = "aiohttp-3.10.10-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:acd48d5b80ee80f9432a165c0ac8cbf9253eaddb6113269a5e18699b33958dbb"}, + {file = "aiohttp-3.10.10-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3455522392fb15ff549d92fbf4b73b559d5e43dc522588f7eb3e54c3f38beee7"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45c3b868724137f713a38376fef8120c166d1eadd50da1855c112fe97954aed8"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:da1dee8948d2137bb51fbb8a53cce6b1bcc86003c6b42565f008438b806cccd8"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c5ce2ce7c997e1971b7184ee37deb6ea9922ef5163c6ee5aa3c274b05f9e12fa"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28529e08fde6f12eba8677f5a8608500ed33c086f974de68cc65ab218713a59d"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f7db54c7914cc99d901d93a34704833568d86c20925b2762f9fa779f9cd2e70f"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:03a42ac7895406220124c88911ebee31ba8b2d24c98507f4a8bf826b2937c7f2"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:7e338c0523d024fad378b376a79faff37fafb3c001872a618cde1d322400a572"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:038f514fe39e235e9fef6717fbf944057bfa24f9b3db9ee551a7ecf584b5b480"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:64f6c17757251e2b8d885d728b6433d9d970573586a78b78ba8929b0f41d045a"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:93429602396f3383a797a2a70e5f1de5df8e35535d7806c9f91df06f297e109b"}, + {file = "aiohttp-3.10.10-cp38-cp38-win32.whl", hash = "sha256:c823bc3971c44ab93e611ab1a46b1eafeae474c0c844aff4b7474287b75fe49c"}, + {file = "aiohttp-3.10.10-cp38-cp38-win_amd64.whl", hash = "sha256:54ca74df1be3c7ca1cf7f4c971c79c2daf48d9aa65dea1a662ae18926f5bc8ce"}, + {file = "aiohttp-3.10.10-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:01948b1d570f83ee7bbf5a60ea2375a89dfb09fd419170e7f5af029510033d24"}, + {file = "aiohttp-3.10.10-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9fc1500fd2a952c5c8e3b29aaf7e3cc6e27e9cfc0a8819b3bce48cc1b849e4cc"}, + {file = "aiohttp-3.10.10-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f614ab0c76397661b90b6851a030004dac502e48260ea10f2441abd2207fbcc7"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00819de9e45d42584bed046314c40ea7e9aea95411b38971082cad449392b08c"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:05646ebe6b94cc93407b3bf34b9eb26c20722384d068eb7339de802154d61bc5"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:998f3bd3cfc95e9424a6acd7840cbdd39e45bc09ef87533c006f94ac47296090"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9010c31cd6fa59438da4e58a7f19e4753f7f264300cd152e7f90d4602449762"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7ea7ffc6d6d6f8a11e6f40091a1040995cdff02cfc9ba4c2f30a516cb2633554"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:ef9c33cc5cbca35808f6c74be11eb7f5f6b14d2311be84a15b594bd3e58b5527"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ce0cdc074d540265bfeb31336e678b4e37316849d13b308607efa527e981f5c2"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:597a079284b7ee65ee102bc3a6ea226a37d2b96d0418cc9047490f231dc09fe8"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:7789050d9e5d0c309c706953e5e8876e38662d57d45f936902e176d19f1c58ab"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e7f8b04d83483577fd9200461b057c9f14ced334dcb053090cea1da9c8321a91"}, + {file = "aiohttp-3.10.10-cp39-cp39-win32.whl", hash = "sha256:c02a30b904282777d872266b87b20ed8cc0d1501855e27f831320f471d54d983"}, + {file = "aiohttp-3.10.10-cp39-cp39-win_amd64.whl", hash = "sha256:edfe3341033a6b53a5c522c802deb2079eee5cbfbb0af032a55064bd65c73a23"}, + {file = "aiohttp-3.10.10.tar.gz", hash = "sha256:0631dd7c9f0822cc61c88586ca76d5b5ada26538097d0f1df510b082bad3411a"}, +] + +[package.dependencies] +aiohappyeyeballs = ">=2.3.0" +aiosignal = ">=1.1.2" +async-timeout = {version = ">=4.0,<5.0", markers = "python_version < \"3.11\""} +attrs = ">=17.3.0" +frozenlist = ">=1.1.1" +multidict = ">=4.5,<7.0" +yarl = ">=1.12.0,<2.0" + +[package.extras] +speedups = ["Brotli", "aiodns (>=3.2.0)", "brotlicffi"] + +[[package]] +name = "aiosignal" +version = "1.3.1" +description = "aiosignal: a list of registered asynchronous callbacks" +optional = false +python-versions = ">=3.7" +files = [ + {file = "aiosignal-1.3.1-py3-none-any.whl", hash = "sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17"}, + {file = "aiosignal-1.3.1.tar.gz", hash = "sha256:54cd96e15e1649b75d6c87526a6ff0b6c1b0dd3459f43d9ca11d48c339b68cfc"}, +] + +[package.dependencies] +frozenlist = ">=1.1.0" + +[[package]] +name = "annotated-types" +version = "0.7.0" +description = "Reusable constraint types to use with typing.Annotated" +optional = false +python-versions = ">=3.8" +files = [ + {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, + {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} + [[package]] name = "appnope" version = "0.1.4" @@ -55,6 +206,36 @@ files = [ six = ">=1.6.1,<2.0" wheel = ">=0.23.0,<1.0" +[[package]] +name = "async-timeout" +version = "4.0.3" +description = "Timeout context manager for asyncio programs" +optional = false +python-versions = ">=3.7" +files = [ + {file = "async-timeout-4.0.3.tar.gz", hash = "sha256:4640d96be84d82d02ed59ea2b7105a0f7b33abe8703703cd0ab0bf87c427522f"}, + {file = "async_timeout-4.0.3-py3-none-any.whl", hash = "sha256:7405140ff1230c310e51dc27b3145b9092d659ce68ff733fb0cefe3ee42be028"}, +] + +[[package]] +name = "attrs" +version = "24.2.0" +description = "Classes Without Boilerplate" +optional = false +python-versions = ">=3.7" +files = [ + {file = "attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2"}, + {file = "attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346"}, +] + +[package.extras] +benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] + [[package]] name = "backcall" version = "0.2.0" @@ -68,100 +249,100 @@ files = [ [[package]] name = "cachetools" -version = "5.4.0" +version = "5.5.0" description = "Extensible memoizing collections and decorators" optional = false python-versions = ">=3.7" files = [ - {file = "cachetools-5.4.0-py3-none-any.whl", hash = "sha256:3ae3b49a3d5e28a77a0be2b37dbcb89005058959cb2323858c2657c4a8cab474"}, - {file = "cachetools-5.4.0.tar.gz", hash = "sha256:b8adc2e7c07f105ced7bc56dbb6dfbe7c4a00acce20e2227b3f355be89bc6827"}, + {file = "cachetools-5.5.0-py3-none-any.whl", hash = "sha256:02134e8439cdc2ffb62023ce1debca2944c3f289d66bb17ead3ab3dede74b292"}, + {file = "cachetools-5.5.0.tar.gz", hash = "sha256:2cc24fb4cbe39633fb7badd9db9ca6295d766d9c2995f245725a46715d050f2a"}, ] [[package]] name = "certifi" -version = "2024.7.4" +version = "2024.8.30" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, - {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] name = "cffi" -version = "1.17.0" +version = "1.17.1" description = "Foreign Function Interface for Python calling C code." optional = false python-versions = ">=3.8" files = [ - {file = "cffi-1.17.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f9338cc05451f1942d0d8203ec2c346c830f8e86469903d5126c1f0a13a2bcbb"}, - {file = "cffi-1.17.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0ce71725cacc9ebf839630772b07eeec220cbb5f03be1399e0457a1464f8e1a"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c815270206f983309915a6844fe994b2fa47e5d05c4c4cef267c3b30e34dbe42"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6bdcd415ba87846fd317bee0774e412e8792832e7805938987e4ede1d13046d"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a98748ed1a1df4ee1d6f927e151ed6c1a09d5ec21684de879c7ea6aa96f58f2"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0a048d4f6630113e54bb4b77e315e1ba32a5a31512c31a273807d0027a7e69ab"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24aa705a5f5bd3a8bcfa4d123f03413de5d86e497435693b638cbffb7d5d8a1b"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:856bf0924d24e7f93b8aee12a3a1095c34085600aa805693fb7f5d1962393206"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:4304d4416ff032ed50ad6bb87416d802e67139e31c0bde4628f36a47a3164bfa"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:331ad15c39c9fe9186ceaf87203a9ecf5ae0ba2538c9e898e3a6967e8ad3db6f"}, - {file = "cffi-1.17.0-cp310-cp310-win32.whl", hash = "sha256:669b29a9eca6146465cc574659058ed949748f0809a2582d1f1a324eb91054dc"}, - {file = "cffi-1.17.0-cp310-cp310-win_amd64.whl", hash = "sha256:48b389b1fd5144603d61d752afd7167dfd205973a43151ae5045b35793232aa2"}, - {file = "cffi-1.17.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c5d97162c196ce54af6700949ddf9409e9833ef1003b4741c2b39ef46f1d9720"}, - {file = "cffi-1.17.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ba5c243f4004c750836f81606a9fcb7841f8874ad8f3bf204ff5e56332b72b9"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bb9333f58fc3a2296fb1d54576138d4cf5d496a2cc118422bd77835e6ae0b9cb"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:435a22d00ec7d7ea533db494da8581b05977f9c37338c80bc86314bec2619424"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d1df34588123fcc88c872f5acb6f74ae59e9d182a2707097f9e28275ec26a12d"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:df8bb0010fdd0a743b7542589223a2816bdde4d94bb5ad67884348fa2c1c67e8"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b5b9712783415695663bd463990e2f00c6750562e6ad1d28e072a611c5f2a6"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ffef8fd58a36fb5f1196919638f73dd3ae0db1a878982b27a9a5a176ede4ba91"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e67d26532bfd8b7f7c05d5a766d6f437b362c1bf203a3a5ce3593a645e870b8"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:45f7cd36186db767d803b1473b3c659d57a23b5fa491ad83c6d40f2af58e4dbb"}, - {file = "cffi-1.17.0-cp311-cp311-win32.whl", hash = "sha256:a9015f5b8af1bb6837a3fcb0cdf3b874fe3385ff6274e8b7925d81ccaec3c5c9"}, - {file = "cffi-1.17.0-cp311-cp311-win_amd64.whl", hash = "sha256:b50aaac7d05c2c26dfd50c3321199f019ba76bb650e346a6ef3616306eed67b0"}, - {file = "cffi-1.17.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aec510255ce690d240f7cb23d7114f6b351c733a74c279a84def763660a2c3bc"}, - {file = "cffi-1.17.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2770bb0d5e3cc0e31e7318db06efcbcdb7b31bcb1a70086d3177692a02256f59"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:db9a30ec064129d605d0f1aedc93e00894b9334ec74ba9c6bdd08147434b33eb"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a47eef975d2b8b721775a0fa286f50eab535b9d56c70a6e62842134cf7841195"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f3e0992f23bbb0be00a921eae5363329253c3b86287db27092461c887b791e5e"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6107e445faf057c118d5050560695e46d272e5301feffda3c41849641222a828"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb862356ee9391dc5a0b3cbc00f416b48c1b9a52d252d898e5b7696a5f9fe150"}, - {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:c1c13185b90bbd3f8b5963cd8ce7ad4ff441924c31e23c975cb150e27c2bf67a"}, - {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:17c6d6d3260c7f2d94f657e6872591fe8733872a86ed1345bda872cfc8c74885"}, - {file = "cffi-1.17.0-cp312-cp312-win32.whl", hash = "sha256:c3b8bd3133cd50f6b637bb4322822c94c5ce4bf0d724ed5ae70afce62187c492"}, - {file = "cffi-1.17.0-cp312-cp312-win_amd64.whl", hash = "sha256:dca802c8db0720ce1c49cce1149ff7b06e91ba15fa84b1d59144fef1a1bc7ac2"}, - {file = "cffi-1.17.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:6ce01337d23884b21c03869d2f68c5523d43174d4fc405490eb0091057943118"}, - {file = "cffi-1.17.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cab2eba3830bf4f6d91e2d6718e0e1c14a2f5ad1af68a89d24ace0c6b17cced7"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:14b9cbc8f7ac98a739558eb86fabc283d4d564dafed50216e7f7ee62d0d25377"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b00e7bcd71caa0282cbe3c90966f738e2db91e64092a877c3ff7f19a1628fdcb"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:41f4915e09218744d8bae14759f983e466ab69b178de38066f7579892ff2a555"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4760a68cab57bfaa628938e9c2971137e05ce48e762a9cb53b76c9b569f1204"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:011aff3524d578a9412c8b3cfaa50f2c0bd78e03eb7af7aa5e0df59b158efb2f"}, - {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:a003ac9edc22d99ae1286b0875c460351f4e101f8c9d9d2576e78d7e048f64e0"}, - {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ef9528915df81b8f4c7612b19b8628214c65c9b7f74db2e34a646a0a2a0da2d4"}, - {file = "cffi-1.17.0-cp313-cp313-win32.whl", hash = "sha256:70d2aa9fb00cf52034feac4b913181a6e10356019b18ef89bc7c12a283bf5f5a"}, - {file = "cffi-1.17.0-cp313-cp313-win_amd64.whl", hash = "sha256:b7b6ea9e36d32582cda3465f54c4b454f62f23cb083ebc7a94e2ca6ef011c3a7"}, - {file = "cffi-1.17.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:964823b2fc77b55355999ade496c54dde161c621cb1f6eac61dc30ed1b63cd4c"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:516a405f174fd3b88829eabfe4bb296ac602d6a0f68e0d64d5ac9456194a5b7e"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dec6b307ce928e8e112a6bb9921a1cb00a0e14979bf28b98e084a4b8a742bd9b"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4094c7b464cf0a858e75cd14b03509e84789abf7b79f8537e6a72152109c76e"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2404f3de742f47cb62d023f0ba7c5a916c9c653d5b368cc966382ae4e57da401"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3aa9d43b02a0c681f0bfbc12d476d47b2b2b6a3f9287f11ee42989a268a1833c"}, - {file = "cffi-1.17.0-cp38-cp38-win32.whl", hash = "sha256:0bb15e7acf8ab35ca8b24b90af52c8b391690ef5c4aec3d31f38f0d37d2cc499"}, - {file = "cffi-1.17.0-cp38-cp38-win_amd64.whl", hash = "sha256:93a7350f6706b31f457c1457d3a3259ff9071a66f312ae64dc024f049055f72c"}, - {file = "cffi-1.17.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1a2ddbac59dc3716bc79f27906c010406155031a1c801410f1bafff17ea304d2"}, - {file = "cffi-1.17.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6327b572f5770293fc062a7ec04160e89741e8552bf1c358d1a23eba68166759"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbc183e7bef690c9abe5ea67b7b60fdbca81aa8da43468287dae7b5c046107d4"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bdc0f1f610d067c70aa3737ed06e2726fd9d6f7bfee4a351f4c40b6831f4e82"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6d872186c1617d143969defeadac5a904e6e374183e07977eedef9c07c8953bf"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0d46ee4764b88b91f16661a8befc6bfb24806d885e27436fdc292ed7e6f6d058"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f76a90c345796c01d85e6332e81cab6d70de83b829cf1d9762d0a3da59c7932"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0e60821d312f99d3e1569202518dddf10ae547e799d75aef3bca3a2d9e8ee693"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:eb09b82377233b902d4c3fbeeb7ad731cdab579c6c6fda1f763cd779139e47c3"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:24658baf6224d8f280e827f0a50c46ad819ec8ba380a42448e24459daf809cf4"}, - {file = "cffi-1.17.0-cp39-cp39-win32.whl", hash = "sha256:0fdacad9e0d9fc23e519efd5ea24a70348305e8d7d85ecbb1a5fa66dc834e7fb"}, - {file = "cffi-1.17.0-cp39-cp39-win_amd64.whl", hash = "sha256:7cbc78dc018596315d4e7841c8c3a7ae31cc4d638c9b627f87d52e8abaaf2d29"}, - {file = "cffi-1.17.0.tar.gz", hash = "sha256:f3157624b7558b914cb039fd1af735e5e8049a87c817cc215109ad1c8779df76"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, ] [package.dependencies] @@ -180,101 +361,116 @@ files = [ [[package]] name = "charset-normalizer" -version = "3.3.2" +version = "3.4.0" description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." optional = false python-versions = ">=3.7.0" files = [ - {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, - {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:4f9fc98dad6c2eaa32fc3af1417d95b5e3d08aff968df0cd320066def971f9a6"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0de7b687289d3c1b3e8660d0741874abe7888100efe14bd0f9fd7141bcbda92b"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5ed2e36c3e9b4f21dd9422f6893dec0abf2cca553af509b10cd630f878d3eb99"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40d3ff7fc90b98c637bda91c89d51264a3dcf210cade3a2c6f838c7268d7a4ca"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1110e22af8ca26b90bd6364fe4c763329b0ebf1ee213ba32b68c73de5752323d"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:86f4e8cca779080f66ff4f191a685ced73d2f72d50216f7112185dc02b90b9b7"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f683ddc7eedd742e2889d2bfb96d69573fde1d92fcb811979cdb7165bb9c7d3"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:27623ba66c183eca01bf9ff833875b459cad267aeeb044477fedac35e19ba907"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f606a1881d2663630ea5b8ce2efe2111740df4b687bd78b34a8131baa007f79b"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0b309d1747110feb25d7ed6b01afdec269c647d382c857ef4663bbe6ad95a912"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:136815f06a3ae311fae551c3df1f998a1ebd01ddd424aa5603a4336997629e95"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:14215b71a762336254351b00ec720a8e85cada43b987da5a042e4ce3e82bd68e"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:79983512b108e4a164b9c8d34de3992f76d48cadc9554c9e60b43f308988aabe"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-win32.whl", hash = "sha256:c94057af19bc953643a33581844649a7fdab902624d2eb739738a30e2b3e60fc"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:55f56e2ebd4e3bc50442fbc0888c9d8c94e4e06a933804e2af3e89e2f9c1c749"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0d99dd8ff461990f12d6e42c7347fd9ab2532fb70e9621ba520f9e8637161d7c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c57516e58fd17d03ebe67e181a4e4e2ccab1168f8c2976c6a334d4f819fe5944"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6dba5d19c4dfab08e58d5b36304b3f92f3bd5d42c1a3fa37b5ba5cdf6dfcbcee"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf4475b82be41b07cc5e5ff94810e6a01f276e37c2d55571e3fe175e467a1a1c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ce031db0408e487fd2775d745ce30a7cd2923667cf3b69d48d219f1d8f5ddeb6"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ff4e7cdfdb1ab5698e675ca622e72d58a6fa2a8aa58195de0c0061288e6e3ea"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3710a9751938947e6327ea9f3ea6332a09bf0ba0c09cae9cb1f250bd1f1549bc"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82357d85de703176b5587dbe6ade8ff67f9f69a41c0733cf2425378b49954de5"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:47334db71978b23ebcf3c0f9f5ee98b8d65992b65c9c4f2d34c2eaf5bcaf0594"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8ce7fd6767a1cc5a92a639b391891bf1c268b03ec7e021c7d6d902285259685c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f1a2f519ae173b5b6a2c9d5fa3116ce16e48b3462c8b96dfdded11055e3d6365"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:63bc5c4ae26e4bc6be6469943b8253c0fd4e4186c43ad46e713ea61a0ba49129"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:bcb4f8ea87d03bc51ad04add8ceaf9b0f085ac045ab4d74e73bbc2dc033f0236"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-win32.whl", hash = "sha256:9ae4ef0b3f6b41bad6366fb0ea4fc1d7ed051528e113a60fa2a65a9abb5b1d99"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cee4373f4d3ad28f1ab6290684d8e2ebdb9e7a1b74fdc39e4c211995f77bec27"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0713f3adb9d03d49d365b70b84775d0a0d18e4ab08d12bc46baa6132ba78aaf6"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:de7376c29d95d6719048c194a9cf1a1b0393fbe8488a22008610b0361d834ecf"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a51b48f42d9358460b78725283f04bddaf44a9358197b889657deba38f329db"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b295729485b06c1a0683af02a9e42d2caa9db04a373dc38a6a58cdd1e8abddf1"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee803480535c44e7f5ad00788526da7d85525cfefaf8acf8ab9a310000be4b03"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d59d125ffbd6d552765510e3f31ed75ebac2c7470c7274195b9161a32350284"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8cda06946eac330cbe6598f77bb54e690b4ca93f593dee1568ad22b04f347c15"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07afec21bbbbf8a5cc3651aa96b980afe2526e7f048fdfb7f1014d84acc8b6d8"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6b40e8d38afe634559e398cc32b1472f376a4099c75fe6299ae607e404c033b2"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b8dcd239c743aa2f9c22ce674a145e0a25cb1566c495928440a181ca1ccf6719"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:84450ba661fb96e9fd67629b93d2941c871ca86fc38d835d19d4225ff946a631"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:44aeb140295a2f0659e113b31cfe92c9061622cadbc9e2a2f7b8ef6b1e29ef4b"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1db4e7fefefd0f548d73e2e2e041f9df5c59e178b4c72fbac4cc6f535cfb1565"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-win32.whl", hash = "sha256:5726cf76c982532c1863fb64d8c6dd0e4c90b6ece9feb06c9f202417a31f7dd7"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:b197e7094f232959f8f20541ead1d9862ac5ebea1d58e9849c1bf979255dfac9"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:dd4eda173a9fcccb5f2e2bd2a9f423d180194b1bf17cf59e3269899235b2a114"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e9e3c4c9e1ed40ea53acf11e2a386383c3304212c965773704e4603d589343ed"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92a7e36b000bf022ef3dbb9c46bfe2d52c047d5e3f3343f43204263c5addc250"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54b6a92d009cbe2fb11054ba694bc9e284dad30a26757b1e372a1fdddaf21920"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ffd9493de4c922f2a38c2bf62b831dcec90ac673ed1ca182fe11b4d8e9f2a64"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:35c404d74c2926d0287fbd63ed5d27eb911eb9e4a3bb2c6d294f3cfd4a9e0c23"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e7fdd52961feb4c96507aa649550ec2a0d527c086d284749b2f582f2d40a2e0d"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:92db3c28b5b2a273346bebb24857fda45601aef6ae1c011c0a997106581e8a88"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ab973df98fc99ab39080bfb0eb3a925181454d7c3ac8a1e695fddfae696d9e90"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:4b67fdab07fdd3c10bb21edab3cbfe8cf5696f453afce75d815d9d7223fbe88b"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:aa41e526a5d4a9dfcfbab0716c7e8a1b215abd3f3df5a45cf18a12721d31cb5d"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ffc519621dce0c767e96b9c53f09c5d215578e10b02c285809f76509a3931482"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-win32.whl", hash = "sha256:f19c1585933c82098c2a520f8ec1227f20e339e33aca8fa6f956f6691b784e67"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:707b82d19e65c9bd28b81dde95249b07bf9f5b90ebe1ef17d9b57473f8a64b7b"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:dbe03226baf438ac4fda9e2d0715022fd579cb641c4cf639fa40d53b2fe6f3e2"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd9a8bd8900e65504a305bf8ae6fa9fbc66de94178c420791d0293702fce2df7"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8831399554b92b72af5932cdbbd4ddc55c55f631bb13ff8fe4e6536a06c5c51"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a14969b8691f7998e74663b77b4c36c0337cb1df552da83d5c9004a93afdb574"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dcaf7c1524c0542ee2fc82cc8ec337f7a9f7edee2532421ab200d2b920fc97cf"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425c5f215d0eecee9a56cdb703203dda90423247421bf0d67125add85d0c4455"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:d5b054862739d276e09928de37c79ddeec42a6e1bfc55863be96a36ba22926f6"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:f3e73a4255342d4eb26ef6df01e3962e73aa29baa3124a8e824c5d3364a65748"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:2f6c34da58ea9c1a9515621f4d9ac379871a8f21168ba1b5e09d74250de5ad62"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:f09cb5a7bbe1ecae6e87901a2eb23e0256bb524a79ccc53eb0b7629fbe7677c4"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:0099d79bdfcf5c1f0c2c72f91516702ebf8b0b8ddd8905f97a8aecf49712c621"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-win32.whl", hash = "sha256:9c98230f5042f4945f957d006edccc2af1e03ed5e37ce7c373f00a5a4daa6149"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-win_amd64.whl", hash = "sha256:62f60aebecfc7f4b82e3f639a7d1433a20ec32824db2199a11ad4f5e146ef5ee"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:af73657b7a68211996527dbfeffbb0864e043d270580c5aef06dc4b659a4b578"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cab5d0b79d987c67f3b9e9c53f54a61360422a5a0bc075f43cab5621d530c3b6"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9289fd5dddcf57bab41d044f1756550f9e7cf0c8e373b8cdf0ce8773dc4bd417"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b493a043635eb376e50eedf7818f2f322eabbaa974e948bd8bdd29eb7ef2a51"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9fa2566ca27d67c86569e8c85297aaf413ffab85a8960500f12ea34ff98e4c41"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8e538f46104c815be19c975572d74afb53f29650ea2025bbfaef359d2de2f7f"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fd30dc99682dc2c603c2b315bded2799019cea829f8bf57dc6b61efde6611c8"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2006769bd1640bdf4d5641c69a3d63b71b81445473cac5ded39740a226fa88ab"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:dc15e99b2d8a656f8e666854404f1ba54765871104e50c8e9813af8a7db07f12"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:ab2e5bef076f5a235c3774b4f4028a680432cded7cad37bba0fd90d64b187d19"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:4ec9dd88a5b71abfc74e9df5ebe7921c35cbb3b641181a531ca65cdb5e8e4dea"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:43193c5cda5d612f247172016c4bb71251c784d7a4d9314677186a838ad34858"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:aa693779a8b50cd97570e5a0f343538a8dbd3e496fa5dcb87e29406ad0299654"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-win32.whl", hash = "sha256:7706f5850360ac01d80c89bcef1640683cc12ed87f42579dab6c5d3ed6888613"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:c3e446d253bd88f6377260d07c895816ebf33ffffd56c1c792b13bff9c3e1ade"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:980b4f289d1d90ca5efcf07958d3eb38ed9c0b7676bf2831a54d4f66f9c27dfa"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f28f891ccd15c514a0981f3b9db9aa23d62fe1a99997512b0491d2ed323d229a"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8aacce6e2e1edcb6ac625fb0f8c3a9570ccc7bfba1f63419b3769ccf6a00ed0"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd7af3717683bea4c87acd8c0d3d5b44d56120b26fd3f8a692bdd2d5260c620a"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5ff2ed8194587faf56555927b3aa10e6fb69d931e33953943bc4f837dfee2242"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e91f541a85298cf35433bf66f3fab2a4a2cff05c127eeca4af174f6d497f0d4b"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:309a7de0a0ff3040acaebb35ec45d18db4b28232f21998851cfa709eeff49d62"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:285e96d9d53422efc0d7a17c60e59f37fbf3dfa942073f666db4ac71e8d726d0"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5d447056e2ca60382d460a604b6302d8db69476fd2015c81e7c35417cfabe4cd"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:20587d20f557fe189b7947d8e7ec5afa110ccf72a3128d61a2a387c3313f46be"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:130272c698667a982a5d0e626851ceff662565379baf0ff2cc58067b81d4f11d"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:ab22fbd9765e6954bc0bcff24c25ff71dcbfdb185fcdaca49e81bac68fe724d3"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7782afc9b6b42200f7362858f9e73b1f8316afb276d316336c0ec3bd73312742"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-win32.whl", hash = "sha256:2de62e8801ddfff069cd5c504ce3bc9672b23266597d4e4f50eda28846c322f2"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:95c3c157765b031331dd4db3c775e58deaee050a3042fcad72cbc4189d7c8dca"}, + {file = "charset_normalizer-3.4.0-py3-none-any.whl", hash = "sha256:fe9f97feb71aa9896b81973a7bbada8c49501dc73e58a10fcef6663af95e5079"}, + {file = "charset_normalizer-3.4.0.tar.gz", hash = "sha256:223217c3d4f82c3ac5e29032b3f1c2eb0fb591b72161f86d93f5719079dae93e"}, ] [[package]] @@ -305,20 +501,6 @@ traitlets = ">=4" [package.extras] test = ["pytest"] -[[package]] -name = "communities" -version = "2.2.0" -description = "Library for detecting community structure in graphs" -optional = false -python-versions = ">=3" -files = [ - {file = "communities-2.2.0.tar.gz", hash = "sha256:4e4c9dca36046c256309c2d42039afd45c52c6ddbeb9bd86ff69fa1fe3c7e2bd"}, -] - -[package.dependencies] -networkx = "*" -numpy = "*" - [[package]] name = "cycler" version = "0.12.1" @@ -334,76 +516,39 @@ files = [ docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] tests = ["pytest", "pytest-cov", "pytest-xdist"] -[[package]] -name = "cython" -version = "0.29.14" -description = "The Cython compiler for writing C extensions for the Python language." -optional = false -python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" -files = [ - {file = "Cython-0.29.14-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:47e5e1502d52ef03387cf9d3b3241007961a84a466e58a3b74028e1dd4957f8c"}, - {file = "Cython-0.29.14-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:1dcdaa319558eb924294a554dcf6c12383ec947acc7e779e8d3622409a7f7d28"}, - {file = "Cython-0.29.14-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:7bc18fc5a170f2c1cef5387a3d997c28942918bbee0f700e73fd2178ee8d474d"}, - {file = "Cython-0.29.14-cp27-cp27m-win32.whl", hash = "sha256:89458b49976b1dee5d89ab4ac943da3717b4292bf624367e862e4ee172fcce99"}, - {file = "Cython-0.29.14-cp27-cp27m-win_amd64.whl", hash = "sha256:c0b24bfe3431b3cb7ced323bca813dbd13aca973a1475b512d3331fd0de8ec60"}, - {file = "Cython-0.29.14-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7f89eff20e4a7a64b55210dac17aea711ed8a3f2e78f2ff784c0e984302583dd"}, - {file = "Cython-0.29.14-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:6c53338c1811f8c6d7f8cb7abd874810b15045e719e8207f957035c9177b4213"}, - {file = "Cython-0.29.14-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:521340844cf388d109ceb61397f3fd5250ccb622a1a8e93559e8de76c80940a9"}, - {file = "Cython-0.29.14-cp34-cp34m-manylinux1_i686.whl", hash = "sha256:75c2dda47dcc3c77449712b1417bb6b89ec3b7b02e18c64262494dceffdf455e"}, - {file = "Cython-0.29.14-cp34-cp34m-manylinux1_x86_64.whl", hash = "sha256:05eb79efc8029d487251c8a2702a909a8ba33c332e06d2f3980866541bd81253"}, - {file = "Cython-0.29.14-cp34-cp34m-win32.whl", hash = "sha256:1fc5bdda28f25fec44e4721677458aa509d743cd350862270309d61aa148d6ff"}, - {file = "Cython-0.29.14-cp34-cp34m-win_amd64.whl", hash = "sha256:0c70e842e52e2f50cc43bad43b5e5bc515f30821a374e544abb0e0746f2350ff"}, - {file = "Cython-0.29.14-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:094d28a34c3fa992ae02aea1edbe6ff89b3cc5870b6ee38b5baeb805dc57b013"}, - {file = "Cython-0.29.14-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:280573a01d9348d44a42d6a9c651d9f7eb1fe9217df72555b2a118f902996a10"}, - {file = "Cython-0.29.14-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:773c5a98e463b52f7e8197254b39b703a5ea1972aef3a94b3b921515d77dd041"}, - {file = "Cython-0.29.14-cp35-cp35m-win32.whl", hash = "sha256:986f871c0fa649b293061236b93782d25c293a8dd8117c7ba05f8a61bdc261ae"}, - {file = "Cython-0.29.14-cp35-cp35m-win_amd64.whl", hash = "sha256:78c3068dcba300d473fef57cdf523e34b37de522f5a494ef9ee1ac9b4b8bbe3f"}, - {file = "Cython-0.29.14-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:f3818e578e687cdb21dc4aa4a3bc6278c656c9c393e9eda14dd04943f478863d"}, - {file = "Cython-0.29.14-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:bb487881608ebd293592553c618f0c83316f4f13a64cb18605b1d2fb9fd3da3e"}, - {file = "Cython-0.29.14-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:03f6bbb380ad0acb744fb06e42996ea217e9d00016ca0ff6f2e7d60f580d0360"}, - {file = "Cython-0.29.14-cp36-cp36m-win32.whl", hash = "sha256:b8ab3ab38afc47d8f4fe629b836243544351cef681b6bdb1dc869028d6fdcbfb"}, - {file = "Cython-0.29.14-cp36-cp36m-win_amd64.whl", hash = "sha256:298ceca7b0f0da4205fcb0b7c9ac9e120e2dafffd5019ba1618e84ef89434b5a"}, - {file = "Cython-0.29.14-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:fe666645493d72712c46e4fbe8bec094b06aec3c337400479e9704439c9d9586"}, - {file = "Cython-0.29.14-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:4074a8bff0040035673cc6dd365a762476d6bff4d03d8ce6904e3e53f9a25dc8"}, - {file = "Cython-0.29.14-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:a14aa436586c41633339415de82a41164691d02d3e661038da533be5d40794a5"}, - {file = "Cython-0.29.14-cp37-cp37m-win32.whl", hash = "sha256:41e7068e95fbf9ec94b41437f989caf9674135e770a39cdb9c00de459bafd1bc"}, - {file = "Cython-0.29.14-cp37-cp37m-win_amd64.whl", hash = "sha256:05e8cfd3a3a6087aec49a1ae08a89171db991956209406d1e5576f9db70ece52"}, - {file = "Cython-0.29.14-cp38-cp38-manylinux1_i686.whl", hash = "sha256:e8fab9911fd2fa8e5af407057cb8bdf87762f983cba483fa3234be20a9a0af77"}, - {file = "Cython-0.29.14-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:d4039bb7f234ad32267c55e72fd49fb56078ea102f9d9d8559f6ec34d4887630"}, - {file = "Cython-0.29.14-cp38-cp38-win32.whl", hash = "sha256:c7894c06205166d360ab2915ae306d1f7403e9ce3d3aaeff4095eaf98e42ce66"}, - {file = "Cython-0.29.14-cp38-cp38-win_amd64.whl", hash = "sha256:a0f495a4fe5278aab278feee35e6102efecde5176a8a74dd28c28e3fc5c8d7c7"}, - {file = "Cython-0.29.14.tar.gz", hash = "sha256:e4d6bb8703d0319eb04b7319b12ea41580df44fd84d83ccda13ea463c6801414"}, -] - [[package]] name = "debugpy" -version = "1.8.5" +version = "1.8.7" description = "An implementation of the Debug Adapter Protocol for Python" optional = false python-versions = ">=3.8" files = [ - {file = "debugpy-1.8.5-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:7e4d594367d6407a120b76bdaa03886e9eb652c05ba7f87e37418426ad2079f7"}, - {file = "debugpy-1.8.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4413b7a3ede757dc33a273a17d685ea2b0c09dbd312cc03f5534a0fd4d40750a"}, - {file = "debugpy-1.8.5-cp310-cp310-win32.whl", hash = "sha256:dd3811bd63632bb25eda6bd73bea8e0521794cda02be41fa3160eb26fc29e7ed"}, - {file = "debugpy-1.8.5-cp310-cp310-win_amd64.whl", hash = "sha256:b78c1250441ce893cb5035dd6f5fc12db968cc07f91cc06996b2087f7cefdd8e"}, - {file = "debugpy-1.8.5-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:606bccba19f7188b6ea9579c8a4f5a5364ecd0bf5a0659c8a5d0e10dcee3032a"}, - {file = "debugpy-1.8.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db9fb642938a7a609a6c865c32ecd0d795d56c1aaa7a7a5722d77855d5e77f2b"}, - {file = "debugpy-1.8.5-cp311-cp311-win32.whl", hash = "sha256:4fbb3b39ae1aa3e5ad578f37a48a7a303dad9a3d018d369bc9ec629c1cfa7408"}, - {file = "debugpy-1.8.5-cp311-cp311-win_amd64.whl", hash = "sha256:345d6a0206e81eb68b1493ce2fbffd57c3088e2ce4b46592077a943d2b968ca3"}, - {file = "debugpy-1.8.5-cp312-cp312-macosx_12_0_universal2.whl", hash = "sha256:5b5c770977c8ec6c40c60d6f58cacc7f7fe5a45960363d6974ddb9b62dbee156"}, - {file = "debugpy-1.8.5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0a65b00b7cdd2ee0c2cf4c7335fef31e15f1b7056c7fdbce9e90193e1a8c8cb"}, - {file = "debugpy-1.8.5-cp312-cp312-win32.whl", hash = "sha256:c9f7c15ea1da18d2fcc2709e9f3d6de98b69a5b0fff1807fb80bc55f906691f7"}, - {file = "debugpy-1.8.5-cp312-cp312-win_amd64.whl", hash = "sha256:28ced650c974aaf179231668a293ecd5c63c0a671ae6d56b8795ecc5d2f48d3c"}, - {file = "debugpy-1.8.5-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:3df6692351172a42af7558daa5019651f898fc67450bf091335aa8a18fbf6f3a"}, - {file = "debugpy-1.8.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cd04a73eb2769eb0bfe43f5bfde1215c5923d6924b9b90f94d15f207a402226"}, - {file = "debugpy-1.8.5-cp38-cp38-win32.whl", hash = "sha256:8f913ee8e9fcf9d38a751f56e6de12a297ae7832749d35de26d960f14280750a"}, - {file = "debugpy-1.8.5-cp38-cp38-win_amd64.whl", hash = "sha256:a697beca97dad3780b89a7fb525d5e79f33821a8bc0c06faf1f1289e549743cf"}, - {file = "debugpy-1.8.5-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:0a1029a2869d01cb777216af8c53cda0476875ef02a2b6ff8b2f2c9a4b04176c"}, - {file = "debugpy-1.8.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e84c276489e141ed0b93b0af648eef891546143d6a48f610945416453a8ad406"}, - {file = "debugpy-1.8.5-cp39-cp39-win32.whl", hash = "sha256:ad84b7cde7fd96cf6eea34ff6c4a1b7887e0fe2ea46e099e53234856f9d99a34"}, - {file = "debugpy-1.8.5-cp39-cp39-win_amd64.whl", hash = "sha256:7b0fe36ed9d26cb6836b0a51453653f8f2e347ba7348f2bbfe76bfeb670bfb1c"}, - {file = "debugpy-1.8.5-py2.py3-none-any.whl", hash = "sha256:55919dce65b471eff25901acf82d328bbd5b833526b6c1364bd5133754777a44"}, - {file = "debugpy-1.8.5.zip", hash = "sha256:b2112cfeb34b4507399d298fe7023a16656fc553ed5246536060ca7bd0e668d0"}, + {file = "debugpy-1.8.7-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:95fe04a573b8b22896c404365e03f4eda0ce0ba135b7667a1e57bd079793b96b"}, + {file = "debugpy-1.8.7-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:628a11f4b295ffb4141d8242a9bb52b77ad4a63a2ad19217a93be0f77f2c28c9"}, + {file = "debugpy-1.8.7-cp310-cp310-win32.whl", hash = "sha256:85ce9c1d0eebf622f86cc68618ad64bf66c4fc3197d88f74bb695a416837dd55"}, + {file = "debugpy-1.8.7-cp310-cp310-win_amd64.whl", hash = "sha256:29e1571c276d643757ea126d014abda081eb5ea4c851628b33de0c2b6245b037"}, + {file = "debugpy-1.8.7-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:caf528ff9e7308b74a1749c183d6808ffbedbb9fb6af78b033c28974d9b8831f"}, + {file = "debugpy-1.8.7-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cba1d078cf2e1e0b8402e6bda528bf8fda7ccd158c3dba6c012b7897747c41a0"}, + {file = "debugpy-1.8.7-cp311-cp311-win32.whl", hash = "sha256:171899588bcd412151e593bd40d9907133a7622cd6ecdbdb75f89d1551df13c2"}, + {file = "debugpy-1.8.7-cp311-cp311-win_amd64.whl", hash = "sha256:6e1c4ffb0c79f66e89dfd97944f335880f0d50ad29525dc792785384923e2211"}, + {file = "debugpy-1.8.7-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:4d27d842311353ede0ad572600c62e4bcd74f458ee01ab0dd3a1a4457e7e3706"}, + {file = "debugpy-1.8.7-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:703c1fd62ae0356e194f3e7b7a92acd931f71fe81c4b3be2c17a7b8a4b546ec2"}, + {file = "debugpy-1.8.7-cp312-cp312-win32.whl", hash = "sha256:2f729228430ef191c1e4df72a75ac94e9bf77413ce5f3f900018712c9da0aaca"}, + {file = "debugpy-1.8.7-cp312-cp312-win_amd64.whl", hash = "sha256:45c30aaefb3e1975e8a0258f5bbd26cd40cde9bfe71e9e5a7ac82e79bad64e39"}, + {file = "debugpy-1.8.7-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:d050a1ec7e925f514f0f6594a1e522580317da31fbda1af71d1530d6ea1f2b40"}, + {file = "debugpy-1.8.7-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2f4349a28e3228a42958f8ddaa6333d6f8282d5edaea456070e48609c5983b7"}, + {file = "debugpy-1.8.7-cp313-cp313-win32.whl", hash = "sha256:11ad72eb9ddb436afb8337891a986302e14944f0f755fd94e90d0d71e9100bba"}, + {file = "debugpy-1.8.7-cp313-cp313-win_amd64.whl", hash = "sha256:2efb84d6789352d7950b03d7f866e6d180284bc02c7e12cb37b489b7083d81aa"}, + {file = "debugpy-1.8.7-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:4b908291a1d051ef3331484de8e959ef3e66f12b5e610c203b5b75d2725613a7"}, + {file = "debugpy-1.8.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da8df5b89a41f1fd31503b179d0a84a5fdb752dddd5b5388dbd1ae23cda31ce9"}, + {file = "debugpy-1.8.7-cp38-cp38-win32.whl", hash = "sha256:b12515e04720e9e5c2216cc7086d0edadf25d7ab7e3564ec8b4521cf111b4f8c"}, + {file = "debugpy-1.8.7-cp38-cp38-win_amd64.whl", hash = "sha256:93176e7672551cb5281577cdb62c63aadc87ec036f0c6a486f0ded337c504596"}, + {file = "debugpy-1.8.7-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:90d93e4f2db442f8222dec5ec55ccfc8005821028982f1968ebf551d32b28907"}, + {file = "debugpy-1.8.7-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b6db2a370e2700557a976eaadb16243ec9c91bd46f1b3bb15376d7aaa7632c81"}, + {file = "debugpy-1.8.7-cp39-cp39-win32.whl", hash = "sha256:a6cf2510740e0c0b4a40330640e4b454f928c7b99b0c9dbf48b11efba08a8cda"}, + {file = "debugpy-1.8.7-cp39-cp39-win_amd64.whl", hash = "sha256:6a9d9d6d31846d8e34f52987ee0f1a904c7baa4912bf4843ab39dadf9b8f3e0d"}, + {file = "debugpy-1.8.7-py2.py3-none-any.whl", hash = "sha256:57b00de1c8d2c84a61b90880f7e5b6deaf4c312ecbde3a0e8912f2a56c4ac9ae"}, + {file = "debugpy-1.8.7.zip", hash = "sha256:18b8f731ed3e2e1df8e9cdaa23fb1fc9c24e570cd0081625308ec51c82efe42e"}, ] [[package]] @@ -417,20 +562,63 @@ files = [ {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, ] +[[package]] +name = "dgl" +version = "2.4.0" +description = "Deep Graph Library" +optional = false +python-versions = "*" +files = [ + {file = "dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:bf4d4d0d9300e79281e38627844651fe6355946d933e21d6a8828ce7d7539d00"}, +] + +[package.dependencies] +networkx = ">=2.1" +numpy = ">=1.14.0" +packaging = "*" +pandas = "*" +psutil = ">=5.8.0" +pydantic = ">=2.0" +pyyaml = "*" +requests = ">=2.19.0" +scipy = ">=1.1.0" +torch = "<=2.4.0" +tqdm = "*" + +[package.source] +type = "url" +url = "https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl" + [[package]] name = "executing" -version = "2.0.1" +version = "2.1.0" description = "Get the currently executing AST node of a frame, and other information" optional = false -python-versions = ">=3.5" +python-versions = ">=3.8" files = [ - {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, - {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, + {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, + {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, ] [package.extras] tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] +[[package]] +name = "filelock" +version = "3.16.1" +description = "A platform independent file lock." +optional = false +python-versions = ">=3.8" +files = [ + {file = "filelock-3.16.1-py3-none-any.whl", hash = "sha256:2082e5703d51fbf98ea75855d9d5527e33d8ff23099bec374a134febee6946b0"}, + {file = "filelock-3.16.1.tar.gz", hash = "sha256:c249fbfcd5db47e5e2d6d62198e565475ee65e4831e2561c8e313fa7eb961435"}, +] + +[package.extras] +docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4.1)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.2)", "pytest (>=8.3.3)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.4)"] +typing = ["typing-extensions (>=4.12.2)"] + [[package]] name = "flatbuffers" version = "2.0.7" @@ -442,6 +630,131 @@ files = [ {file = "flatbuffers-2.0.7.tar.gz", hash = "sha256:0ae7d69c5b82bf41962ca5fde9cc43033bc9501311d975fd5a25e8a7d29c1245"}, ] +[[package]] +name = "frozenlist" +version = "1.4.1" +description = "A list-like structure which implements collections.abc.MutableSequence" +optional = false +python-versions = ">=3.8" +files = [ + {file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:f9aa1878d1083b276b0196f2dfbe00c9b7e752475ed3b682025ff20c1c1f51ac"}, + {file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:29acab3f66f0f24674b7dc4736477bcd4bc3ad4b896f5f45379a67bce8b96868"}, + {file = "frozenlist-1.4.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:74fb4bee6880b529a0c6560885fce4dc95936920f9f20f53d99a213f7bf66776"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:590344787a90ae57d62511dd7c736ed56b428f04cd8c161fcc5e7232c130c69a"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:068b63f23b17df8569b7fdca5517edef76171cf3897eb68beb01341131fbd2ad"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c849d495bf5154cd8da18a9eb15db127d4dba2968d88831aff6f0331ea9bd4c"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9750cc7fe1ae3b1611bb8cfc3f9ec11d532244235d75901fb6b8e42ce9229dfe"}, + {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9b2de4cf0cdd5bd2dee4c4f63a653c61d2408055ab77b151c1957f221cabf2a"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0633c8d5337cb5c77acbccc6357ac49a1770b8c487e5b3505c57b949b4b82e98"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:27657df69e8801be6c3638054e202a135c7f299267f1a55ed3a598934f6c0d75"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:f9a3ea26252bd92f570600098783d1371354d89d5f6b7dfd87359d669f2109b5"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:4f57dab5fe3407b6c0c1cc907ac98e8a189f9e418f3b6e54d65a718aaafe3950"}, + {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e02a0e11cf6597299b9f3bbd3f93d79217cb90cfd1411aec33848b13f5c656cc"}, + {file = "frozenlist-1.4.1-cp310-cp310-win32.whl", hash = "sha256:a828c57f00f729620a442881cc60e57cfcec6842ba38e1b19fd3e47ac0ff8dc1"}, + {file = "frozenlist-1.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:f56e2333dda1fe0f909e7cc59f021eba0d2307bc6f012a1ccf2beca6ba362439"}, + {file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a0cb6f11204443f27a1628b0e460f37fb30f624be6051d490fa7d7e26d4af3d0"}, + {file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b46c8ae3a8f1f41a0d2ef350c0b6e65822d80772fe46b653ab6b6274f61d4a49"}, + {file = "frozenlist-1.4.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fde5bd59ab5357e3853313127f4d3565fc7dad314a74d7b5d43c22c6a5ed2ced"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:722e1124aec435320ae01ee3ac7bec11a5d47f25d0ed6328f2273d287bc3abb0"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2471c201b70d58a0f0c1f91261542a03d9a5e088ed3dc6c160d614c01649c106"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c757a9dd70d72b076d6f68efdbb9bc943665ae954dad2801b874c8c69e185068"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f146e0911cb2f1da549fc58fc7bcd2b836a44b79ef871980d605ec392ff6b0d2"}, + {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f9c515e7914626b2a2e1e311794b4c35720a0be87af52b79ff8e1429fc25f19"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c302220494f5c1ebeb0912ea782bcd5e2f8308037b3c7553fad0e48ebad6ad82"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:442acde1e068288a4ba7acfe05f5f343e19fac87bfc96d89eb886b0363e977ec"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:1b280e6507ea8a4fa0c0a7150b4e526a8d113989e28eaaef946cc77ffd7efc0a"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:fe1a06da377e3a1062ae5fe0926e12b84eceb8a50b350ddca72dc85015873f74"}, + {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:db9e724bebd621d9beca794f2a4ff1d26eed5965b004a97f1f1685a173b869c2"}, + {file = "frozenlist-1.4.1-cp311-cp311-win32.whl", hash = "sha256:e774d53b1a477a67838a904131c4b0eef6b3d8a651f8b138b04f748fccfefe17"}, + {file = "frozenlist-1.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:fb3c2db03683b5767dedb5769b8a40ebb47d6f7f45b1b3e3b4b51ec8ad9d9825"}, + {file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1979bc0aeb89b33b588c51c54ab0161791149f2461ea7c7c946d95d5f93b56ae"}, + {file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cc7b01b3754ea68a62bd77ce6020afaffb44a590c2289089289363472d13aedb"}, + {file = "frozenlist-1.4.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c9c92be9fd329ac801cc420e08452b70e7aeab94ea4233a4804f0915c14eba9b"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c3894db91f5a489fc8fa6a9991820f368f0b3cbdb9cd8849547ccfab3392d86"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba60bb19387e13597fb059f32cd4d59445d7b18b69a745b8f8e5db0346f33480"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8aefbba5f69d42246543407ed2461db31006b0f76c4e32dfd6f42215a2c41d09"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:780d3a35680ced9ce682fbcf4cb9c2bad3136eeff760ab33707b71db84664e3a"}, + {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9acbb16f06fe7f52f441bb6f413ebae6c37baa6ef9edd49cdd567216da8600cd"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:23b701e65c7b36e4bf15546a89279bd4d8675faabc287d06bbcfac7d3c33e1e6"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:3e0153a805a98f5ada7e09826255ba99fb4f7524bb81bf6b47fb702666484ae1"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:dd9b1baec094d91bf36ec729445f7769d0d0cf6b64d04d86e45baf89e2b9059b"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:1a4471094e146b6790f61b98616ab8e44f72661879cc63fa1049d13ef711e71e"}, + {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5667ed53d68d91920defdf4035d1cdaa3c3121dc0b113255124bcfada1cfa1b8"}, + {file = "frozenlist-1.4.1-cp312-cp312-win32.whl", hash = "sha256:beee944ae828747fd7cb216a70f120767fc9f4f00bacae8543c14a6831673f89"}, + {file = "frozenlist-1.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:64536573d0a2cb6e625cf309984e2d873979709f2cf22839bf2d61790b448ad5"}, + {file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:20b51fa3f588ff2fe658663db52a41a4f7aa6c04f6201449c6c7c476bd255c0d"}, + {file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:410478a0c562d1a5bcc2f7ea448359fcb050ed48b3c6f6f4f18c313a9bdb1826"}, + {file = "frozenlist-1.4.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c6321c9efe29975232da3bd0af0ad216800a47e93d763ce64f291917a381b8eb"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48f6a4533887e189dae092f1cf981f2e3885175f7a0f33c91fb5b7b682b6bab6"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6eb73fa5426ea69ee0e012fb59cdc76a15b1283d6e32e4f8dc4482ec67d1194d"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbeb989b5cc29e8daf7f976b421c220f1b8c731cbf22b9130d8815418ea45887"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:32453c1de775c889eb4e22f1197fe3bdfe457d16476ea407472b9442e6295f7a"}, + {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693945278a31f2086d9bf3df0fe8254bbeaef1fe71e1351c3bd730aa7d31c41b"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:1d0ce09d36d53bbbe566fe296965b23b961764c0bcf3ce2fa45f463745c04701"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3a670dc61eb0d0eb7080890c13de3066790f9049b47b0de04007090807c776b0"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:dca69045298ce5c11fd539682cff879cc1e664c245d1c64da929813e54241d11"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:a06339f38e9ed3a64e4c4e43aec7f59084033647f908e4259d279a52d3757d09"}, + {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b7f2f9f912dca3934c1baec2e4585a674ef16fe00218d833856408c48d5beee7"}, + {file = "frozenlist-1.4.1-cp38-cp38-win32.whl", hash = "sha256:e7004be74cbb7d9f34553a5ce5fb08be14fb33bc86f332fb71cbe5216362a497"}, + {file = "frozenlist-1.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:5a7d70357e7cee13f470c7883a063aae5fe209a493c57d86eb7f5a6f910fae09"}, + {file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:bfa4a17e17ce9abf47a74ae02f32d014c5e9404b6d9ac7f729e01562bbee601e"}, + {file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b7e3ed87d4138356775346e6845cccbe66cd9e207f3cd11d2f0b9fd13681359d"}, + {file = "frozenlist-1.4.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c99169d4ff810155ca50b4da3b075cbde79752443117d89429595c2e8e37fed8"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edb678da49d9f72c9f6c609fbe41a5dfb9a9282f9e6a2253d5a91e0fc382d7c0"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6db4667b187a6742b33afbbaf05a7bc551ffcf1ced0000a571aedbb4aa42fc7b"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55fdc093b5a3cb41d420884cdaf37a1e74c3c37a31f46e66286d9145d2063bd0"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82e8211d69a4f4bc360ea22cd6555f8e61a1bd211d1d5d39d3d228b48c83a897"}, + {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89aa2c2eeb20957be2d950b85974b30a01a762f3308cd02bb15e1ad632e22dc7"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9d3e0c25a2350080e9319724dede4f31f43a6c9779be48021a7f4ebde8b2d742"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7268252af60904bf52c26173cbadc3a071cece75f873705419c8681f24d3edea"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:0c250a29735d4f15321007fb02865f0e6b6a41a6b88f1f523ca1596ab5f50bd5"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:96ec70beabbd3b10e8bfe52616a13561e58fe84c0101dd031dc78f250d5128b9"}, + {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:23b2d7679b73fe0e5a4560b672a39f98dfc6f60df63823b0a9970525325b95f6"}, + {file = "frozenlist-1.4.1-cp39-cp39-win32.whl", hash = "sha256:a7496bfe1da7fb1a4e1cc23bb67c58fab69311cc7d32b5a99c2007b4b2a0e932"}, + {file = "frozenlist-1.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:e6a20a581f9ce92d389a8c7d7c3dd47c81fd5d6e655c8dddf341e14aa48659d0"}, + {file = "frozenlist-1.4.1-py3-none-any.whl", hash = "sha256:04ced3e6a46b4cfffe20f9ae482818e34eba9b5fb0ce4056e4cc9b6e212d09b7"}, + {file = "frozenlist-1.4.1.tar.gz", hash = "sha256:c037a86e8513059a2613aaba4d817bb90b9d9b6b69aace3ce9c877e8c8ed402b"}, +] + +[[package]] +name = "fsspec" +version = "2024.9.0" +description = "File-system specification" +optional = false +python-versions = ">=3.8" +files = [ + {file = "fsspec-2024.9.0-py3-none-any.whl", hash = "sha256:a0947d552d8a6efa72cc2c730b12c41d043509156966cca4fb157b0f2a0c574b"}, + {file = "fsspec-2024.9.0.tar.gz", hash = "sha256:4b0afb90c2f21832df142f292649035d80b421f60a9e1c027802e5a0da2b04e8"}, +] + +[package.extras] +abfs = ["adlfs"] +adl = ["adlfs"] +arrow = ["pyarrow (>=1)"] +dask = ["dask", "distributed"] +dev = ["pre-commit", "ruff"] +doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] +dropbox = ["dropbox", "dropboxdrivefs", "requests"] +full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] +fuse = ["fusepy"] +gcs = ["gcsfs"] +git = ["pygit2"] +github = ["requests"] +gs = ["gcsfs"] +gui = ["panel"] +hdfs = ["pyarrow (>=1)"] +http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)"] +libarchive = ["libarchive-c"] +oci = ["ocifs"] +s3 = ["s3fs"] +sftp = ["paramiko"] +smb = ["smbprotocol"] +ssh = ["paramiko"] +test = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "numpy", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "requests"] +test-downstream = ["aiobotocore (>=2.5.4,<3.0.0)", "dask-expr", "dask[dataframe,test]", "moto[server] (>4,<5)", "pytest-timeout", "xarray"] +test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"] +tqdm = ["tqdm"] + [[package]] name = "gast" version = "0.4.0" @@ -455,63 +768,59 @@ files = [ [[package]] name = "gensim" -version = "3.8.3" +version = "4.3.3" description = "Python framework for fast Vector Space Modelling" optional = false -python-versions = "*" +python-versions = ">=3.8" files = [ - {file = "gensim-3.8.3-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:61eed1d6b5fbe6dda0586ea447ebc2dc7890a7f70c2ed953d5abc3fe3cfb94bb"}, - {file = "gensim-3.8.3-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:3af62709369331c85552fd26caa21504baa64accc426dc094172f5c688750013"}, - {file = "gensim-3.8.3-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:8ff471921b3b10ffb3ae6cbb598dd9c07d9dc030dee5aa167e7682b549c42f87"}, - {file = "gensim-3.8.3-cp27-cp27m-win32.whl", hash = "sha256:440700e29b494bc2e1d52e14b69a821f46ab09ecf85cf36c8988f18e1d6c7a8b"}, - {file = "gensim-3.8.3-cp27-cp27m-win_amd64.whl", hash = "sha256:f8ea67bf8c47ee55cb1b32c97fa1474b7d6d22959dd8097c019a5d9c9df34f5f"}, - {file = "gensim-3.8.3-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7a90549dfc8ee3822fcad6da957de07d927e4e90ef42b3699543dee35ab2da13"}, - {file = "gensim-3.8.3-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:7629b33cf35f672efdd5269381f7e301958ee2638f27dfc63b80c5bfeaa827d3"}, - {file = "gensim-3.8.3-cp35-cp35m-macosx_10_9_intel.whl", hash = "sha256:6711b6d3a0007530ee7de7adc30a4c48a1d26ec6312ac50e1d1e0a1d54f9de5b"}, - {file = "gensim-3.8.3-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:ef2ddeceff482aee17c1e185f63bf027c8de8f595fdd9fd2d2503de96008f3b7"}, - {file = "gensim-3.8.3-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:41dcf6ecdc9acc657157967c791b8cbaba90ee6391f64efd28339b72f5e0c327"}, - {file = "gensim-3.8.3-cp35-cp35m-win32.whl", hash = "sha256:685a7657278161628821c8f873c5d7d2ffc0c28866648e39f76b450e4c7d5390"}, - {file = "gensim-3.8.3-cp35-cp35m-win_amd64.whl", hash = "sha256:b61a7c841a752c84b685674aa0d610289faad38795b325176481abe19b487e98"}, - {file = "gensim-3.8.3-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a61179df454a0d4b06a111c4ede0536f61c8121b4c0d0d02d23560a2fd4b3aff"}, - {file = "gensim-3.8.3-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:cc387d0d8bddbf3609ab95b3453296e4c9ff92c35e9799a17d86b1571d77a5fc"}, - {file = "gensim-3.8.3-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:b36e6330471061cfd78aad751e24c6b4f56d575697af0fbab42655128927d296"}, - {file = "gensim-3.8.3-cp36-cp36m-win32.whl", hash = "sha256:1e3d66c2eec494376fc599701d9c2868549aed6e93e47177e39217f0188e2d88"}, - {file = "gensim-3.8.3-cp36-cp36m-win_amd64.whl", hash = "sha256:91fa62d61b21f1878f140b10520f9de4a26a52672fbe407edfc7e09ca2eff235"}, - {file = "gensim-3.8.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:637fc5969f3cef4b7c8fd3e78e31ef09565c5566d5ceabf076b4170eb6444a80"}, - {file = "gensim-3.8.3-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:22f45fd239cacd0e3715ac447a2c8a5eea02e730ec1f701c55b359e9298e63a8"}, - {file = "gensim-3.8.3-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:d79370f78e9013b9d1e867c85ecc678d46a7ae0f01a8ca29e8f4291e5373b170"}, - {file = "gensim-3.8.3-cp37-cp37m-win32.whl", hash = "sha256:9c214b341f5304b906c79844e2787c13b46505df9dc70afca79a9a7dc0894478"}, - {file = "gensim-3.8.3-cp37-cp37m-win_amd64.whl", hash = "sha256:fe98277a7b3b4987b40c928056bbaae1d0715022cf27bba89d05cd0d4fe51a84"}, - {file = "gensim-3.8.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a47903d104469a7a8b6f22ad5ef74681b19c4f4b71ff2c2893271b53161a43e4"}, - {file = "gensim-3.8.3-cp38-cp38-manylinux1_i686.whl", hash = "sha256:05bfc02e102a34c9c795095b688b1b4aaa2529c624821368c9c3ea6a16536f77"}, - {file = "gensim-3.8.3-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:a8807ebf324dd11e1298a91a92d6e57c7bdabb91d0d5240bf1efa0c0eacd86f0"}, - {file = "gensim-3.8.3-cp38-cp38-win32.whl", hash = "sha256:90115d12ee545c21cc75521ef1bb3dd66aae8a378e9c2eb029c9f22df173c125"}, - {file = "gensim-3.8.3-cp38-cp38-win_amd64.whl", hash = "sha256:4e34cf2e50f3eab3e303da46089ea4972567bf216e28f7535ada155770784ac8"}, - {file = "gensim-3.8.3.tar.gz", hash = "sha256:786adb0571f75114e9c5f7a31dd2e6eb39a9791f22c8757621545e2ded3ea367"}, + {file = "gensim-4.3.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4e72840adfbea35c5804fd559bc0cb6bc9f439926220a37d852b7ce76eb325c1"}, + {file = "gensim-4.3.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4019263c9d9afae7c669f880c17e09461e77a71afce04ed4d79cf71a4cad2848"}, + {file = "gensim-4.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dea62d3e2ada547687bde6cbba37efa50b534db77e9d44fd5802676bb072c9d9"}, + {file = "gensim-4.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fac93ef5e44982defef9d3c1e4cd00245506b8a29cec19ec5e00f0221b8144c"}, + {file = "gensim-4.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:7c3409f755fb8d62da99cea65e7a40a99d21f8fd86443a3aaf2d90eb68995021"}, + {file = "gensim-4.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:99e7b70352aecc6c1674dde82b75f453e7a5d1cc71ac1cfbc460bf1fe20501b7"}, + {file = "gensim-4.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:32a4cac3f3c38af2069eab9524609fc92ebaeb2692b7280cfda365a3517a280a"}, + {file = "gensim-4.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c071b4329ed1be02446eb7ef637b94c68cf0080c15c57fbcde667fce2e49c3fe"}, + {file = "gensim-4.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d662bf96e3d741b6ab61a54be842a7cbf5e45193008b2f4225c758cafd7f9cdc"}, + {file = "gensim-4.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:a54bd53a0e6f991abb837f126663353657270e75be53287e8a568ada0b35b1b0"}, + {file = "gensim-4.3.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9a65ed1a8c1fc83890b4eb2a45ae2b32e82a0209c970c8c74694d0374c2415cb"}, + {file = "gensim-4.3.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4db485e08a0287e0fd6a029d89b90913d1df38f1dcd34cd2ab758873ba9255f3"}, + {file = "gensim-4.3.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7198987116373ab99f034b292a04ac841531d12b56345851c98b40a3fcd93a85"}, + {file = "gensim-4.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6237a50de4da7a037b19b2b6c430b6537243dcdedebf94afeb089e951953e601"}, + {file = "gensim-4.3.3-cp312-cp312-win_amd64.whl", hash = "sha256:c910c2d5a71f532273166a3a82762959973f0513b221a495fa5a2a07652ee66d"}, + {file = "gensim-4.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d7efa5e35d3f0ec02e6e8343b623c2c863be99e8c26866cf0bebd24fb10198c"}, + {file = "gensim-4.3.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2e8eaf5ef576f4d45e98cf87e7edda9afb469dff954a923402dc1ffc35195901"}, + {file = "gensim-4.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9161e52a6ec2a0580df66e9fac4ff7fc43efdc40674fbd4dd9e914796cc68bc3"}, + {file = "gensim-4.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a200d6ac522cdf91e6048e1a368318c6b1b6e0c79009dfd408345ea2b9d3c096"}, + {file = "gensim-4.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:065547124a93948926b88cb854e1c09750e9a4c7be92f55858159aa8a23359c3"}, + {file = "gensim-4.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688a13b9bba839fedc7f3da6806d5701a756ed940839702ba6d7f494e917baef"}, + {file = "gensim-4.3.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c560d28133cca58078221d60fce346f98f2c5e93d2ad42942f32c0d60903f65b"}, + {file = "gensim-4.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:832311f0c420c0841c98b9e6cc4d83ea362add6db917bf2d646de4bed48a29f7"}, + {file = "gensim-4.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1049f5bc2a84b21a1cb9976741826c0ebf25cfdff4a888361db4b4a697d99f0d"}, + {file = "gensim-4.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:e99b236b6638a30d7f878e2e21a94dab2f6d4b4fd3c242f44dca1341940cb0cb"}, + {file = "gensim-4.3.3.tar.gz", hash = "sha256:84852076a6a3d88d7dac5be245e24c21c3b819b565e14c1b61fa3e5ee76dcf57"}, ] [package.dependencies] -Cython = "0.29.14" -numpy = ">=1.11.3" -scipy = ">=0.18.1" -six = ">=1.5.0" +numpy = ">=1.18.5,<2.0" +scipy = ">=1.7.0,<1.14.0" smart-open = ">=1.8.1" [package.extras] distributed = ["Pyro4 (>=4.27)"] -docs = ["Morfessor (==2.0.2a4)", "Pyro4", "Pyro4 (>=4.27)", "annoy", "cython", "matplotlib", "memory-profiler", "mock", "nltk", "nmslib", "pandas", "plotly", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "sphinx (<=2.4.4)", "sphinx-gallery", "sphinxcontrib-napoleon", "sphinxcontrib.programoutput", "statsmodels", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] -test = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] -test-win = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +docs = ["POT", "Pyro4", "Pyro4 (>=4.27)", "annoy", "matplotlib", "memory-profiler", "nltk", "pandas", "pytest", "pytest-cov", "scikit-learn", "sphinx (==5.1.1)", "sphinx-gallery (==0.11.1)", "sphinxcontrib-napoleon (==0.7)", "sphinxcontrib.programoutput (==0.17)", "statsmodels", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test = ["POT", "pytest", "pytest-cov", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test-win = ["POT", "pytest", "pytest-cov", "testfixtures"] [[package]] name = "google-auth" -version = "2.33.0" +version = "2.35.0" description = "Google Authentication Library" optional = false python-versions = ">=3.7" files = [ - {file = "google_auth-2.33.0-py2.py3-none-any.whl", hash = "sha256:8eff47d0d4a34ab6265c50a106a3362de6a9975bb08998700e389f857e4d39df"}, - {file = "google_auth-2.33.0.tar.gz", hash = "sha256:d6a52342160d7290e334b4d47ba390767e4438ad0d45b7630774533e82655b95"}, + {file = "google_auth-2.35.0-py2.py3-none-any.whl", hash = "sha256:25df55f327ef021de8be50bad0dfd4a916ad0de96da86cd05661c9297723ad3f"}, + {file = "google_auth-2.35.0.tar.gz", hash = "sha256:f4c64ed4e01e8e8b646ef34c018f8bf3338df0c8e37d8b3bba40e7f574a3278a"}, ] [package.dependencies] @@ -521,7 +830,7 @@ rsa = ">=3.1.4,<5" [package.extras] aiohttp = ["aiohttp (>=3.6.2,<4.0.0.dev0)", "requests (>=2.20.0,<3.0.0.dev0)"] -enterprise-cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"] +enterprise-cert = ["cryptography", "pyopenssl"] pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] reauth = ["pyu2f (>=0.1.5)"] requests = ["requests (>=2.20.0,<3.0.0.dev0)"] @@ -561,61 +870,70 @@ six = "*" [[package]] name = "grpcio" -version = "1.65.4" +version = "1.66.2" description = "HTTP/2-based RPC framework" optional = false python-versions = ">=3.8" files = [ - {file = "grpcio-1.65.4-cp310-cp310-linux_armv7l.whl", hash = "sha256:0e85c8766cf7f004ab01aff6a0393935a30d84388fa3c58d77849fcf27f3e98c"}, - {file = "grpcio-1.65.4-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:e4a795c02405c7dfa8affd98c14d980f4acea16ea3b539e7404c645329460e5a"}, - {file = "grpcio-1.65.4-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:d7b984a8dd975d949c2042b9b5ebcf297d6d5af57dcd47f946849ee15d3c2fb8"}, - {file = "grpcio-1.65.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:644a783ce604a7d7c91412bd51cf9418b942cf71896344b6dc8d55713c71ce82"}, - {file = "grpcio-1.65.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5764237d751d3031a36fafd57eb7d36fd2c10c658d2b4057c516ccf114849a3e"}, - {file = "grpcio-1.65.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:ee40d058cf20e1dd4cacec9c39e9bce13fedd38ce32f9ba00f639464fcb757de"}, - {file = "grpcio-1.65.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4482a44ce7cf577a1f8082e807a5b909236bce35b3e3897f839f2fbd9ae6982d"}, - {file = "grpcio-1.65.4-cp310-cp310-win32.whl", hash = "sha256:66bb051881c84aa82e4f22d8ebc9d1704b2e35d7867757f0740c6ef7b902f9b1"}, - {file = "grpcio-1.65.4-cp310-cp310-win_amd64.whl", hash = "sha256:870370524eff3144304da4d1bbe901d39bdd24f858ce849b7197e530c8c8f2ec"}, - {file = "grpcio-1.65.4-cp311-cp311-linux_armv7l.whl", hash = "sha256:85e9c69378af02e483bc626fc19a218451b24a402bdf44c7531e4c9253fb49ef"}, - {file = "grpcio-1.65.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2bd672e005afab8bf0d6aad5ad659e72a06dd713020554182a66d7c0c8f47e18"}, - {file = "grpcio-1.65.4-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:abccc5d73f5988e8f512eb29341ed9ced923b586bb72e785f265131c160231d8"}, - {file = "grpcio-1.65.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:886b45b29f3793b0c2576201947258782d7e54a218fe15d4a0468d9a6e00ce17"}, - {file = "grpcio-1.65.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be952436571dacc93ccc7796db06b7daf37b3b56bb97e3420e6503dccfe2f1b4"}, - {file = "grpcio-1.65.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:8dc9ddc4603ec43f6238a5c95400c9a901b6d079feb824e890623da7194ff11e"}, - {file = "grpcio-1.65.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:ade1256c98cba5a333ef54636095f2c09e6882c35f76acb04412f3b1aa3c29a5"}, - {file = "grpcio-1.65.4-cp311-cp311-win32.whl", hash = "sha256:280e93356fba6058cbbfc6f91a18e958062ef1bdaf5b1caf46c615ba1ae71b5b"}, - {file = "grpcio-1.65.4-cp311-cp311-win_amd64.whl", hash = "sha256:d2b819f9ee27ed4e3e737a4f3920e337e00bc53f9e254377dd26fc7027c4d558"}, - {file = "grpcio-1.65.4-cp312-cp312-linux_armv7l.whl", hash = "sha256:926a0750a5e6fb002542e80f7fa6cab8b1a2ce5513a1c24641da33e088ca4c56"}, - {file = "grpcio-1.65.4-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:2a1d4c84d9e657f72bfbab8bedf31bdfc6bfc4a1efb10b8f2d28241efabfaaf2"}, - {file = "grpcio-1.65.4-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:17de4fda50967679677712eec0a5c13e8904b76ec90ac845d83386b65da0ae1e"}, - {file = "grpcio-1.65.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3dee50c1b69754a4228e933696408ea87f7e896e8d9797a3ed2aeed8dbd04b74"}, - {file = "grpcio-1.65.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74c34fc7562bdd169b77966068434a93040bfca990e235f7a67cdf26e1bd5c63"}, - {file = "grpcio-1.65.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:24a2246e80a059b9eb981e4c2a6d8111b1b5e03a44421adbf2736cc1d4988a8a"}, - {file = "grpcio-1.65.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:18c10f0d054d2dce34dd15855fcca7cc44ec3b811139437543226776730c0f28"}, - {file = "grpcio-1.65.4-cp312-cp312-win32.whl", hash = "sha256:d72962788b6c22ddbcdb70b10c11fbb37d60ae598c51eb47ec019db66ccfdff0"}, - {file = "grpcio-1.65.4-cp312-cp312-win_amd64.whl", hash = "sha256:7656376821fed8c89e68206a522522317787a3d9ed66fb5110b1dff736a5e416"}, - {file = "grpcio-1.65.4-cp38-cp38-linux_armv7l.whl", hash = "sha256:4934077b33aa6fe0b451de8b71dabde96bf2d9b4cb2b3187be86e5adebcba021"}, - {file = "grpcio-1.65.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:0cef8c919a3359847c357cb4314e50ed1f0cca070f828ee8f878d362fd744d52"}, - {file = "grpcio-1.65.4-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:a925446e6aa12ca37114840d8550f308e29026cdc423a73da3043fd1603a6385"}, - {file = "grpcio-1.65.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cf53e6247f1e2af93657e62e240e4f12e11ee0b9cef4ddcb37eab03d501ca864"}, - {file = "grpcio-1.65.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdb34278e4ceb224c89704cd23db0d902e5e3c1c9687ec9d7c5bb4c150f86816"}, - {file = "grpcio-1.65.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:e6cbdd107e56bde55c565da5fd16f08e1b4e9b0674851d7749e7f32d8645f524"}, - {file = "grpcio-1.65.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:626319a156b1f19513156a3b0dbfe977f5f93db63ca673a0703238ebd40670d7"}, - {file = "grpcio-1.65.4-cp38-cp38-win32.whl", hash = "sha256:3d1bbf7e1dd1096378bd83c83f554d3b93819b91161deaf63e03b7022a85224a"}, - {file = "grpcio-1.65.4-cp38-cp38-win_amd64.whl", hash = "sha256:a99e6dffefd3027b438116f33ed1261c8d360f0dd4f943cb44541a2782eba72f"}, - {file = "grpcio-1.65.4-cp39-cp39-linux_armv7l.whl", hash = "sha256:874acd010e60a2ec1e30d5e505b0651ab12eb968157cd244f852b27c6dbed733"}, - {file = "grpcio-1.65.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b07f36faf01fca5427d4aa23645e2d492157d56c91fab7e06fe5697d7e171ad4"}, - {file = "grpcio-1.65.4-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:b81711bf4ec08a3710b534e8054c7dcf90f2edc22bebe11c1775a23f145595fe"}, - {file = "grpcio-1.65.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88fcabc332a4aef8bcefadc34a02e9ab9407ab975d2c7d981a8e12c1aed92aa1"}, - {file = "grpcio-1.65.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9ba3e63108a8749994f02c7c0e156afb39ba5bdf755337de8e75eb685be244b"}, - {file = "grpcio-1.65.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:8eb485801957a486bf5de15f2c792d9f9c897a86f2f18db8f3f6795a094b4bb2"}, - {file = "grpcio-1.65.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:075f3903bc1749ace93f2b0664f72964ee5f2da5c15d4b47e0ab68e4f442c257"}, - {file = "grpcio-1.65.4-cp39-cp39-win32.whl", hash = "sha256:0a0720299bdb2cc7306737295d56e41ce8827d5669d4a3cd870af832e3b17c4d"}, - {file = "grpcio-1.65.4-cp39-cp39-win_amd64.whl", hash = "sha256:a146bc40fa78769f22e1e9ff4f110ef36ad271b79707577bf2a31e3e931141b9"}, - {file = "grpcio-1.65.4.tar.gz", hash = "sha256:2a4f476209acffec056360d3e647ae0e14ae13dcf3dfb130c227ae1c594cbe39"}, + {file = "grpcio-1.66.2-cp310-cp310-linux_armv7l.whl", hash = "sha256:fe96281713168a3270878255983d2cb1a97e034325c8c2c25169a69289d3ecfa"}, + {file = "grpcio-1.66.2-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:73fc8f8b9b5c4a03e802b3cd0c18b2b06b410d3c1dcbef989fdeb943bd44aff7"}, + {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:03b0b307ba26fae695e067b94cbb014e27390f8bc5ac7a3a39b7723fed085604"}, + {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d69ce1f324dc2d71e40c9261d3fdbe7d4c9d60f332069ff9b2a4d8a257c7b2b"}, + {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05bc2ceadc2529ab0b227b1310d249d95d9001cd106aa4d31e8871ad3c428d73"}, + {file = "grpcio-1.66.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8ac475e8da31484efa25abb774674d837b343afb78bb3bcdef10f81a93e3d6bf"}, + {file = "grpcio-1.66.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0be4e0490c28da5377283861bed2941d1d20ec017ca397a5df4394d1c31a9b50"}, + {file = "grpcio-1.66.2-cp310-cp310-win32.whl", hash = "sha256:4e504572433f4e72b12394977679161d495c4c9581ba34a88d843eaf0f2fbd39"}, + {file = "grpcio-1.66.2-cp310-cp310-win_amd64.whl", hash = "sha256:2018b053aa15782db2541ca01a7edb56a0bf18c77efed975392583725974b249"}, + {file = "grpcio-1.66.2-cp311-cp311-linux_armv7l.whl", hash = "sha256:2335c58560a9e92ac58ff2bc5649952f9b37d0735608242973c7a8b94a6437d8"}, + {file = "grpcio-1.66.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:45a3d462826f4868b442a6b8fdbe8b87b45eb4f5b5308168c156b21eca43f61c"}, + {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:a9539f01cb04950fd4b5ab458e64a15f84c2acc273670072abe49a3f29bbad54"}, + {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ce89f5876662f146d4c1f695dda29d4433a5d01c8681fbd2539afff535da14d4"}, + {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d25a14af966438cddf498b2e338f88d1c9706f3493b1d73b93f695c99c5f0e2a"}, + {file = "grpcio-1.66.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6001e575b8bbd89eee11960bb640b6da6ae110cf08113a075f1e2051cc596cae"}, + {file = "grpcio-1.66.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4ea1d062c9230278793820146c95d038dc0f468cbdd172eec3363e42ff1c7d01"}, + {file = "grpcio-1.66.2-cp311-cp311-win32.whl", hash = "sha256:38b68498ff579a3b1ee8f93a05eb48dc2595795f2f62716e797dc24774c1aaa8"}, + {file = "grpcio-1.66.2-cp311-cp311-win_amd64.whl", hash = "sha256:6851de821249340bdb100df5eacfecfc4e6075fa85c6df7ee0eb213170ec8e5d"}, + {file = "grpcio-1.66.2-cp312-cp312-linux_armv7l.whl", hash = "sha256:802d84fd3d50614170649853d121baaaa305de7b65b3e01759247e768d691ddf"}, + {file = "grpcio-1.66.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:80fd702ba7e432994df208f27514280b4b5c6843e12a48759c9255679ad38db8"}, + {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:12fda97ffae55e6526825daf25ad0fa37483685952b5d0f910d6405c87e3adb6"}, + {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:950da58d7d80abd0ea68757769c9db0a95b31163e53e5bb60438d263f4bed7b7"}, + {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e636ce23273683b00410f1971d209bf3689238cf5538d960adc3cdfe80dd0dbd"}, + {file = "grpcio-1.66.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:a917d26e0fe980b0ac7bfcc1a3c4ad6a9a4612c911d33efb55ed7833c749b0ee"}, + {file = "grpcio-1.66.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:49f0ca7ae850f59f828a723a9064cadbed90f1ece179d375966546499b8a2c9c"}, + {file = "grpcio-1.66.2-cp312-cp312-win32.whl", hash = "sha256:31fd163105464797a72d901a06472860845ac157389e10f12631025b3e4d0453"}, + {file = "grpcio-1.66.2-cp312-cp312-win_amd64.whl", hash = "sha256:ff1f7882e56c40b0d33c4922c15dfa30612f05fb785074a012f7cda74d1c3679"}, + {file = "grpcio-1.66.2-cp313-cp313-linux_armv7l.whl", hash = "sha256:3b00efc473b20d8bf83e0e1ae661b98951ca56111feb9b9611df8efc4fe5d55d"}, + {file = "grpcio-1.66.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1caa38fb22a8578ab8393da99d4b8641e3a80abc8fd52646f1ecc92bcb8dee34"}, + {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_aarch64.whl", hash = "sha256:c408f5ef75cfffa113cacd8b0c0e3611cbfd47701ca3cdc090594109b9fcbaed"}, + {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c806852deaedee9ce8280fe98955c9103f62912a5b2d5ee7e3eaa284a6d8d8e7"}, + {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f145cc21836c332c67baa6fc81099d1d27e266401565bf481948010d6ea32d46"}, + {file = "grpcio-1.66.2-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:73e3b425c1e155730273f73e419de3074aa5c5e936771ee0e4af0814631fb30a"}, + {file = "grpcio-1.66.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:9c509a4f78114cbc5f0740eb3d7a74985fd2eff022971bc9bc31f8bc93e66a3b"}, + {file = "grpcio-1.66.2-cp313-cp313-win32.whl", hash = "sha256:20657d6b8cfed7db5e11b62ff7dfe2e12064ea78e93f1434d61888834bc86d75"}, + {file = "grpcio-1.66.2-cp313-cp313-win_amd64.whl", hash = "sha256:fb70487c95786e345af5e854ffec8cb8cc781bcc5df7930c4fbb7feaa72e1cdf"}, + {file = "grpcio-1.66.2-cp38-cp38-linux_armv7l.whl", hash = "sha256:a18e20d8321c6400185b4263e27982488cb5cdd62da69147087a76a24ef4e7e3"}, + {file = "grpcio-1.66.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:02697eb4a5cbe5a9639f57323b4c37bcb3ab2d48cec5da3dc2f13334d72790dd"}, + {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:99a641995a6bc4287a6315989ee591ff58507aa1cbe4c2e70d88411c4dcc0839"}, + {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ed71e81782966ffead60268bbda31ea3f725ebf8aa73634d5dda44f2cf3fb9c"}, + {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbd27c24a4cc5e195a7f56cfd9312e366d5d61b86e36d46bbe538457ea6eb8dd"}, + {file = "grpcio-1.66.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d9a9724a156c8ec6a379869b23ba3323b7ea3600851c91489b871e375f710bc8"}, + {file = "grpcio-1.66.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d8d4732cc5052e92cea2f78b233c2e2a52998ac40cd651f40e398893ad0d06ec"}, + {file = "grpcio-1.66.2-cp38-cp38-win32.whl", hash = "sha256:7b2c86457145ce14c38e5bf6bdc19ef88e66c5fee2c3d83285c5aef026ba93b3"}, + {file = "grpcio-1.66.2-cp38-cp38-win_amd64.whl", hash = "sha256:e88264caad6d8d00e7913996030bac8ad5f26b7411495848cc218bd3a9040b6c"}, + {file = "grpcio-1.66.2-cp39-cp39-linux_armv7l.whl", hash = "sha256:c400ba5675b67025c8a9f48aa846f12a39cf0c44df5cd060e23fda5b30e9359d"}, + {file = "grpcio-1.66.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:66a0cd8ba6512b401d7ed46bb03f4ee455839957f28b8d61e7708056a806ba6a"}, + {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:06de8ec0bd71be123eec15b0e0d457474931c2c407869b6c349bd9bed4adbac3"}, + {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb57870449dfcfac428afbb5a877829fcb0d6db9d9baa1148705739e9083880e"}, + {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b672abf90a964bfde2d0ecbce30f2329a47498ba75ce6f4da35a2f4532b7acbc"}, + {file = "grpcio-1.66.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:ad2efdbe90c73b0434cbe64ed372e12414ad03c06262279b104a029d1889d13e"}, + {file = "grpcio-1.66.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9c3a99c519f4638e700e9e3f83952e27e2ea10873eecd7935823dab0c1c9250e"}, + {file = "grpcio-1.66.2-cp39-cp39-win32.whl", hash = "sha256:78fa51ebc2d9242c0fc5db0feecc57a9943303b46664ad89921f5079e2e4ada7"}, + {file = "grpcio-1.66.2-cp39-cp39-win_amd64.whl", hash = "sha256:728bdf36a186e7f51da73be7f8d09457a03061be848718d0edf000e709418987"}, + {file = "grpcio-1.66.2.tar.gz", hash = "sha256:563588c587b75c34b928bc428548e5b00ea38c46972181a4d8b75ba7e3f24231"}, ] [package.extras] -protobuf = ["grpcio-tools (>=1.65.4)"] +protobuf = ["grpcio-tools (>=1.66.2)"] [[package]] name = "h5py" @@ -652,33 +970,40 @@ numpy = ">=1.17.3" [[package]] name = "idna" -version = "3.7" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.6" files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + [[package]] name = "importlib-metadata" -version = "8.2.0" +version = "8.5.0" description = "Read metadata from Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "importlib_metadata-8.2.0-py3-none-any.whl", hash = "sha256:11901fa0c2f97919b288679932bb64febaeacf289d18ac84dd68cb2e74213369"}, - {file = "importlib_metadata-8.2.0.tar.gz", hash = "sha256:72e8d4399996132204f9a16dcc751af254a48f8d1b20b9ff0f98d4a8f901e73d"}, + {file = "importlib_metadata-8.5.0-py3-none-any.whl", hash = "sha256:45e54197d28b7a7f1559e60b95e7c567032b602131fbd588f1497f47880aa68b"}, + {file = "importlib_metadata-8.5.0.tar.gz", hash = "sha256:71522656f0abace1d072b9e5481a48f07c138e00f079c38c8f883823f9c26bd7"}, ] [package.dependencies] -zipp = ">=0.5" +zipp = ">=3.20" [package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +enabler = ["pytest-enabler (>=2.2)"] perf = ["ipython"] -test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] +test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-perf (>=0.9.2)"] +type = ["pytest-mypy"] [[package]] name = "ipykernel" @@ -771,6 +1096,23 @@ docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alab qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] +[[package]] +name = "jinja2" +version = "3.1.4" +description = "A very fast and expressive template engine." +optional = false +python-versions = ">=3.7" +files = [ + {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, + {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, +] + +[package.dependencies] +MarkupSafe = ">=2.0" + +[package.extras] +i18n = ["Babel (>=2.7)"] + [[package]] name = "joblib" version = "1.4.2" @@ -784,13 +1126,13 @@ files = [ [[package]] name = "jupyter-client" -version = "8.6.2" +version = "8.6.3" description = "Jupyter protocol implementation and client libraries" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"}, - {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"}, + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, ] [package.dependencies] @@ -825,28 +1167,6 @@ traitlets = ">=5.3" docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] -[[package]] -name = "karateclub" -version = "1.0.19" -description = "A general purpose library for community detection, network embedding, and graph mining research." -optional = false -python-versions = "*" -files = [ - {file = "karateclub-1.0.19.tar.gz", hash = "sha256:0e43f9072f028f471f935a47746c71d24df0472eb5fafd77be9f5619a1e0f804"}, -] - -[package.dependencies] -gensim = "*" -networkx = "*" -numpy = "*" -pandas = "*" -pygsp = "*" -python-louvain = "*" -scikit-learn = "*" -scipy = "*" -six = "*" -tqdm = "*" - [[package]] name = "keras" version = "2.7.0" @@ -879,115 +1199,125 @@ tests = ["Pillow", "keras", "pandas", "pytest", "pytest-cov", "pytest-xdist", "t [[package]] name = "kiwisolver" -version = "1.4.5" +version = "1.4.7" description = "A fast implementation of the Cassowary constraint solver" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, - {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, - {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, - {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, - {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, - {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, - {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, - {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, - {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, - {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, - {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, - {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8a9c83f75223d5e48b0bc9cb1bf2776cf01563e00ade8775ffe13b0b6e1af3a6"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:58370b1ffbd35407444d57057b57da5d6549d2d854fa30249771775c63b5fe17"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa0abdf853e09aff551db11fce173e2177d00786c688203f52c87ad7fcd91ef9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8d53103597a252fb3ab8b5845af04c7a26d5e7ea8122303dd7a021176a87e8b9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:88f17c5ffa8e9462fb79f62746428dd57b46eb931698e42e990ad63103f35e6c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88a9ca9c710d598fd75ee5de59d5bda2684d9db36a9f50b6125eaea3969c2599"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4d742cb7af1c28303a51b7a27aaee540e71bb8e24f68c736f6f2ffc82f2bf05"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28c7fea2196bf4c2f8d46a0415c77a1c480cc0724722f23d7410ffe9842c407"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e968b84db54f9d42046cf154e02911e39c0435c9801681e3fc9ce8a3c4130278"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0c18ec74c0472de033e1bebb2911c3c310eef5649133dd0bedf2a169a1b269e5"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8f0ea6da6d393d8b2e187e6a5e3fb81f5862010a40c3945e2c6d12ae45cfb2ad"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:f106407dda69ae456dd1227966bf445b157ccc80ba0dff3802bb63f30b74e895"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84ec80df401cfee1457063732d90022f93951944b5b58975d34ab56bb150dfb3"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win32.whl", hash = "sha256:71bb308552200fb2c195e35ef05de12f0c878c07fc91c270eb3d6e41698c3bcc"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_amd64.whl", hash = "sha256:44756f9fd339de0fb6ee4f8c1696cfd19b2422e0d70b4cefc1cc7f1f64045a8c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_arm64.whl", hash = "sha256:78a42513018c41c2ffd262eb676442315cbfe3c44eed82385c2ed043bc63210a"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d2b0e12a42fb4e72d509fc994713d099cbb15ebf1103545e8a45f14da2dfca54"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a8781ac3edc42ea4b90bc23e7d37b665d89423818e26eb6df90698aa2287c95"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46707a10836894b559e04b0fd143e343945c97fd170d69a2d26d640b4e297935"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef97b8df011141c9b0f6caf23b29379f87dd13183c978a30a3c546d2c47314cb"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab58c12a2cd0fc769089e6d38466c46d7f76aced0a1f54c77652446733d2d02"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:803b8e1459341c1bb56d1c5c010406d5edec8a0713a0945851290a7930679b51"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9a9e8a507420fe35992ee9ecb302dab68550dedc0da9e2880dd88071c5fb052"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18077b53dc3bb490e330669a99920c5e6a496889ae8c63b58fbc57c3d7f33a18"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6af936f79086a89b3680a280c47ea90b4df7047b5bdf3aa5c524bbedddb9e545"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3abc5b19d24af4b77d1598a585b8a719beb8569a71568b66f4ebe1fb0449460b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:933d4de052939d90afbe6e9d5273ae05fb836cc86c15b686edd4b3560cc0ee36"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:65e720d2ab2b53f1f72fb5da5fb477455905ce2c88aaa671ff0a447c2c80e8e3"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3bf1ed55088f214ba6427484c59553123fdd9b218a42bbc8c6496d6754b1e523"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win32.whl", hash = "sha256:4c00336b9dd5ad96d0a558fd18a8b6f711b7449acce4c157e7343ba92dd0cf3d"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_amd64.whl", hash = "sha256:929e294c1ac1e9f615c62a4e4313ca1823ba37326c164ec720a803287c4c499b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_arm64.whl", hash = "sha256:e33e8fbd440c917106b237ef1a2f1449dfbb9b6f6e1ce17c94cd6a1e0d438376"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:5360cc32706dab3931f738d3079652d20982511f7c0ac5711483e6eab08efff2"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:942216596dc64ddb25adb215c3c783215b23626f8d84e8eff8d6d45c3f29f75a"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:48b571ecd8bae15702e4f22d3ff6a0f13e54d3d00cd25216d5e7f658242065ee"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad42ba922c67c5f219097b28fae965e10045ddf145d2928bfac2eb2e17673640"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:612a10bdae23404a72941a0fc8fa2660c6ea1217c4ce0dbcab8a8f6543ea9e7f"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9e838bba3a3bac0fe06d849d29772eb1afb9745a59710762e4ba3f4cb8424483"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:22f499f6157236c19f4bbbd472fa55b063db77a16cd74d49afe28992dff8c258"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693902d433cf585133699972b6d7c42a8b9f8f826ebcaf0132ff55200afc599e"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4e77f2126c3e0b0d055f44513ed349038ac180371ed9b52fe96a32aa071a5107"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:657a05857bda581c3656bfc3b20e353c232e9193eb167766ad2dc58b56504948"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4bfa75a048c056a411f9705856abfc872558e33c055d80af6a380e3658766038"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:34ea1de54beef1c104422d210c47c7d2a4999bdecf42c7b5718fbe59a4cac383"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:90da3b5f694b85231cf93586dad5e90e2d71b9428f9aad96952c99055582f520"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win32.whl", hash = "sha256:18e0cca3e008e17fe9b164b55735a325140a5a35faad8de92dd80265cd5eb80b"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_amd64.whl", hash = "sha256:58cb20602b18f86f83a5c87d3ee1c766a79c0d452f8def86d925e6c60fbf7bfb"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_arm64.whl", hash = "sha256:f5a8b53bdc0b3961f8b6125e198617c40aeed638b387913bf1ce78afb1b0be2a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:2e6039dcbe79a8e0f044f1c39db1986a1b8071051efba3ee4d74f5b365f5226e"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a1ecf0ac1c518487d9d23b1cd7139a6a65bc460cd101ab01f1be82ecf09794b6"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7ab9ccab2b5bd5702ab0803676a580fffa2aa178c2badc5557a84cc943fcf750"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f816dd2277f8d63d79f9c8473a79fe54047bc0467754962840782c575522224d"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf8bcc23ceb5a1b624572a1623b9f79d2c3b337c8c455405ef231933a10da379"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dea0bf229319828467d7fca8c7c189780aa9ff679c94539eed7532ebe33ed37c"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c06a4c7cf15ec739ce0e5971b26c93638730090add60e183530d70848ebdd34"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5337ec7809bcd0f424c6b705ecf97941c46279cf5ed92311782c7c9c2026f07f"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4c26ed10c4f6fa6ddb329a5120ba3b6db349ca192ae211e882970bfc9d91420b"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c619b101e6de2222c1fcb0531e1b17bbffbe54294bfba43ea0d411d428618c27"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:073a36c8273647592ea332e816e75ef8da5c303236ec0167196793eb1e34657a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3ce6b2b0231bda412463e152fc18335ba32faf4e8c23a754ad50ffa70e4091ee"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win32.whl", hash = "sha256:f4c9aee212bc89d4e13f58be11a56cc8036cabad119259d12ace14b34476fd07"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_amd64.whl", hash = "sha256:8a3ec5aa8e38fc4c8af308917ce12c536f1c88452ce554027e55b22cbbfbff76"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_arm64.whl", hash = "sha256:76c8094ac20ec259471ac53e774623eb62e6e1f56cd8690c67ce6ce4fcb05650"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5d5abf8f8ec1f4e22882273c423e16cae834c36856cac348cfbfa68e01c40f3a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:aeb3531b196ef6f11776c21674dba836aeea9d5bd1cf630f869e3d90b16cfade"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b7d755065e4e866a8086c9bdada157133ff466476a2ad7861828e17b6026e22c"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08471d4d86cbaec61f86b217dd938a83d85e03785f51121e791a6e6689a3be95"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7bbfcb7165ce3d54a3dfbe731e470f65739c4c1f85bb1018ee912bae139e263b"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d34eb8494bea691a1a450141ebb5385e4b69d38bb8403b5146ad279f4b30fa3"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9242795d174daa40105c1d86aba618e8eab7bf96ba8c3ee614da8302a9f95503"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a0f64a48bb81af7450e641e3fe0b0394d7381e342805479178b3d335d60ca7cf"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8e045731a5416357638d1700927529e2b8ab304811671f665b225f8bf8d8f933"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4322872d5772cae7369f8351da1edf255a604ea7087fe295411397d0cfd9655e"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e1631290ee9271dffe3062d2634c3ecac02c83890ada077d225e081aca8aab89"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:edcfc407e4eb17e037bca59be0e85a2031a2ac87e4fed26d3e9df88b4165f92d"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:4d05d81ecb47d11e7f8932bd8b61b720bf0b41199358f3f5e36d38e28f0532c5"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win32.whl", hash = "sha256:b38ac83d5f04b15e515fd86f312479d950d05ce2368d5413d46c088dda7de90a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win_amd64.whl", hash = "sha256:d83db7cde68459fc803052a55ace60bea2bae361fc3b7a6d5da07e11954e4b09"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3f9362ecfca44c863569d3d3c033dbe8ba452ff8eed6f6b5806382741a1334bd"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e8df2eb9b2bac43ef8b082e06f750350fbbaf2887534a5be97f6cf07b19d9583"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f32d6edbc638cde7652bd690c3e728b25332acbadd7cad670cc4a02558d9c417"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e2e6c39bd7b9372b0be21456caab138e8e69cc0fc1190a9dfa92bd45a1e6e904"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dda56c24d869b1193fcc763f1284b9126550eaf84b88bbc7256e15028f19188a"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79849239c39b5e1fd906556c474d9b0439ea6792b637511f3fe3a41158d89ca8"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5e3bc157fed2a4c02ec468de4ecd12a6e22818d4f09cde2c31ee3226ffbefab2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3da53da805b71e41053dc670f9a820d1157aae77b6b944e08024d17bcd51ef88"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:8705f17dfeb43139a692298cb6637ee2e59c0194538153e83e9ee0c75c2eddde"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:82a5c2f4b87c26bb1a0ef3d16b5c4753434633b83d365cc0ddf2770c93829e3c"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce8be0466f4c0d585cdb6c1e2ed07232221df101a4c6f28821d2aa754ca2d9e2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:409afdfe1e2e90e6ee7fc896f3df9a7fec8e793e58bfa0d052c8a82f99c37abb"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5b9c3f4ee0b9a439d2415012bd1b1cc2df59e4d6a9939f4d669241d30b414327"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win32.whl", hash = "sha256:a79ae34384df2b615eefca647a2873842ac3b596418032bef9a7283675962644"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_amd64.whl", hash = "sha256:cf0438b42121a66a3a667de17e779330fc0f20b0d97d59d2f2121e182b0505e4"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_arm64.whl", hash = "sha256:764202cc7e70f767dab49e8df52c7455e8de0df5d858fa801a11aa0d882ccf3f"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:94252291e3fe68001b1dd747b4c0b3be12582839b95ad4d1b641924d68fd4643"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:5b7dfa3b546da08a9f622bb6becdb14b3e24aaa30adba66749d38f3cc7ea9706"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3de6481f4ed8b734da5df134cd5a6a64fe32124fe83dde1e5b5f29fe30b1e6"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a91b5f9f1205845d488c928e8570dcb62b893372f63b8b6e98b863ebd2368ff2"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40fa14dbd66b8b8f470d5fc79c089a66185619d31645f9b0773b88b19f7223c4"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:eb542fe7933aa09d8d8f9d9097ef37532a7df6497819d16efe4359890a2f417a"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bfa1acfa0c54932d5607e19a2c24646fb4c1ae2694437789129cf099789a3b00"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:eee3ea935c3d227d49b4eb85660ff631556841f6e567f0f7bda972df6c2c9935"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f3160309af4396e0ed04db259c3ccbfdc3621b5559b5453075e5de555e1f3a1b"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a17f6a29cf8935e587cc8a4dbfc8368c55edc645283db0ce9801016f83526c2d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10849fb2c1ecbfae45a693c070e0320a91b35dd4bcf58172c023b994283a124d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:ac542bf38a8a4be2dc6b15248d36315ccc65f0743f7b1a76688ffb6b5129a5c2"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8b01aac285f91ca889c800042c35ad3b239e704b150cfd3382adfc9dcc780e39"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:48be928f59a1f5c8207154f935334d374e79f2b5d212826307d072595ad76a2e"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f37cfe618a117e50d8c240555331160d73d0411422b59b5ee217843d7b693608"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:599b5c873c63a1f6ed7eead644a8a380cfbdf5db91dcb6f85707aaab213b1674"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:801fa7802e5cfabe3ab0c81a34c323a319b097dfb5004be950482d882f3d7225"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0c6c43471bc764fad4bc99c5c2d6d16a676b1abf844ca7c8702bdae92df01ee0"}, + {file = "kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60"}, ] [[package]] @@ -1008,15 +1338,36 @@ files = [ {file = "libclang-18.1.1.tar.gz", hash = "sha256:a1214966d08d73d971287fc3ead8dfaf82eb07fb197680d8b3859dbbbbf78250"}, ] +[[package]] +name = "lightning-utilities" +version = "0.11.7" +description = "Lightning toolbox for across the our ecosystem." +optional = false +python-versions = ">=3.8" +files = [ + {file = "lightning_utilities-0.11.7-py3-none-any.whl", hash = "sha256:84eebbc700edbfaa6c005458fc911a7fe7f99f02970b00cb322b4d2767deba98"}, + {file = "lightning_utilities-0.11.7.tar.gz", hash = "sha256:7e8458a9f0bfb51ffe6c5ab3957aa37b2792fe8281dd9f1b66aa513a558ec4ce"}, +] + +[package.dependencies] +packaging = ">=17.1" +setuptools = "*" +typing-extensions = "*" + +[package.extras] +cli = ["fire"] +docs = ["requests (>=2.0.0)"] +typing = ["mypy (>=1.0.0)", "types-setuptools"] + [[package]] name = "markdown" -version = "3.6" +version = "3.7" description = "Python implementation of John Gruber's Markdown." optional = false python-versions = ">=3.8" files = [ - {file = "Markdown-3.6-py3-none-any.whl", hash = "sha256:48f276f4d8cfb8ce6527c8f79e2ee29708508bf4d40aa410fbc3b4ee832c850f"}, - {file = "Markdown-3.6.tar.gz", hash = "sha256:ed4f41f6daecbeeb96e576ce414c41d2d876daa9a16cb35fa8ed8c2ddfad0224"}, + {file = "Markdown-3.7-py3-none-any.whl", hash = "sha256:7eb6df5690b81a1d7942992c97fad2938e956e79df20cbc6186e9c3a77b1c803"}, + {file = "markdown-3.7.tar.gz", hash = "sha256:2ae2471477cfd02dbbf038d5d9bc226d40def84b4fe2986e49b59b6b472bbed2"}, ] [package.dependencies] @@ -1141,6 +1492,127 @@ files = [ [package.dependencies] traitlets = "*" +[[package]] +name = "mpmath" +version = "1.3.0" +description = "Python library for arbitrary-precision floating-point arithmetic" +optional = false +python-versions = "*" +files = [ + {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, + {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, +] + +[package.extras] +develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"] +docs = ["sphinx"] +gmpy = ["gmpy2 (>=2.1.0a4)"] +tests = ["pytest (>=4.6)"] + +[[package]] +name = "multidict" +version = "6.1.0" +description = "multidict implementation" +optional = false +python-versions = ">=3.8" +files = [ + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + [[package]] name = "nest-asyncio" version = "1.6.0" @@ -1180,81 +1652,203 @@ pyyaml = ["pyyaml"] scipy = ["scipy"] [[package]] -name = "node2vec" -version = "0.3.3" -description = "Implementation of the node2vec algorithm." +name = "neural-structured-learning" +version = "1.3.1" +description = "Neural Structured Learning is an open-source TensorFlow framework to train neural networks with structured signals" optional = false python-versions = "*" files = [ - {file = "node2vec-0.3.3.tar.gz", hash = "sha256:a122796952137bc91df5e9a51525180d510e1f4e4208eb4a21329137c38354d8"}, + {file = "neural-structured-learning-1.3.1.tar.gz", hash = "sha256:b3bbb76a2c2947d9c20bfa55c4f5a6aec5330aba51d6814cacf04089462f10aa"}, + {file = "neural_structured_learning-1.3.1-py2.py3-none-any.whl", hash = "sha256:5b0de29e48a848528252444ac30a13281bada130dee7e0940ddcff30613e02ce"}, ] [package.dependencies] -gensim = "*" -joblib = ">=0.13.2" -networkx = "*" -numpy = "*" -tqdm = "*" +absl-py = "*" +attrs = "*" +scipy = "*" +six = "*" [[package]] name = "numpy" -version = "1.24.4" -description = "Fundamental package for array computing in Python" +version = "1.21.6" +description = "NumPy is the fundamental package for array computing with Python." +optional = false +python-versions = ">=3.7,<3.11" +files = [ + {file = "numpy-1.21.6-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8737609c3bbdd48e380d463134a35ffad3b22dc56295eff6f79fd85bd0eeeb25"}, + {file = "numpy-1.21.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:fdffbfb6832cd0b300995a2b08b8f6fa9f6e856d562800fea9182316d99c4e8e"}, + {file = "numpy-1.21.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3820724272f9913b597ccd13a467cc492a0da6b05df26ea09e78b171a0bb9da6"}, + {file = "numpy-1.21.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f17e562de9edf691a42ddb1eb4a5541c20dd3f9e65b09ded2beb0799c0cf29bb"}, + {file = "numpy-1.21.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f30427731561ce75d7048ac254dbe47a2ba576229250fb60f0fb74db96501a1"}, + {file = "numpy-1.21.6-cp310-cp310-win32.whl", hash = "sha256:d4bf4d43077db55589ffc9009c0ba0a94fa4908b9586d6ccce2e0b164c86303c"}, + {file = "numpy-1.21.6-cp310-cp310-win_amd64.whl", hash = "sha256:d136337ae3cc69aa5e447e78d8e1514be8c3ec9b54264e680cf0b4bd9011574f"}, + {file = "numpy-1.21.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6aaf96c7f8cebc220cdfc03f1d5a31952f027dda050e5a703a0d1c396075e3e7"}, + {file = "numpy-1.21.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:67c261d6c0a9981820c3a149d255a76918278a6b03b6a036800359aba1256d46"}, + {file = "numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a6be4cb0ef3b8c9250c19cc122267263093eee7edd4e3fa75395dfda8c17a8e2"}, + {file = "numpy-1.21.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7c4068a8c44014b2d55f3c3f574c376b2494ca9cc73d2f1bd692382b6dffe3db"}, + {file = "numpy-1.21.6-cp37-cp37m-win32.whl", hash = "sha256:7c7e5fa88d9ff656e067876e4736379cc962d185d5cd808014a8a928d529ef4e"}, + {file = "numpy-1.21.6-cp37-cp37m-win_amd64.whl", hash = "sha256:bcb238c9c96c00d3085b264e5c1a1207672577b93fa666c3b14a45240b14123a"}, + {file = "numpy-1.21.6-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:82691fda7c3f77c90e62da69ae60b5ac08e87e775b09813559f8901a88266552"}, + {file = "numpy-1.21.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:643843bcc1c50526b3a71cd2ee561cf0d8773f062c8cbaf9ffac9fdf573f83ab"}, + {file = "numpy-1.21.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:357768c2e4451ac241465157a3e929b265dfac85d9214074985b1786244f2ef3"}, + {file = "numpy-1.21.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9f411b2c3f3d76bba0865b35a425157c5dcf54937f82bbeb3d3c180789dd66a6"}, + {file = "numpy-1.21.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4aa48afdce4660b0076a00d80afa54e8a97cd49f457d68a4342d188a09451c1a"}, + {file = "numpy-1.21.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6a96eef20f639e6a97d23e57dd0c1b1069a7b4fd7027482a4c5c451cd7732f4"}, + {file = "numpy-1.21.6-cp38-cp38-win32.whl", hash = "sha256:5c3c8def4230e1b959671eb959083661b4a0d2e9af93ee339c7dada6759a9470"}, + {file = "numpy-1.21.6-cp38-cp38-win_amd64.whl", hash = "sha256:bf2ec4b75d0e9356edea834d1de42b31fe11f726a81dfb2c2112bc1eaa508fcf"}, + {file = "numpy-1.21.6-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4391bd07606be175aafd267ef9bea87cf1b8210c787666ce82073b05f202add1"}, + {file = "numpy-1.21.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:67f21981ba2f9d7ba9ade60c9e8cbaa8cf8e9ae51673934480e45cf55e953673"}, + {file = "numpy-1.21.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ee5ec40fdd06d62fe5d4084bef4fd50fd4bb6bfd2bf519365f569dc470163ab0"}, + {file = "numpy-1.21.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:1dbe1c91269f880e364526649a52eff93ac30035507ae980d2fed33aaee633ac"}, + {file = "numpy-1.21.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d9caa9d5e682102453d96a0ee10c7241b72859b01a941a397fd965f23b3e016b"}, + {file = "numpy-1.21.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58459d3bad03343ac4b1b42ed14d571b8743dc80ccbf27444f266729df1d6f5b"}, + {file = "numpy-1.21.6-cp39-cp39-win32.whl", hash = "sha256:7f5ae4f304257569ef3b948810816bc87c9146e8c446053539947eedeaa32786"}, + {file = "numpy-1.21.6-cp39-cp39-win_amd64.whl", hash = "sha256:e31f0bb5928b793169b87e3d1e070f2342b22d5245c755e2b81caa29756246c3"}, + {file = "numpy-1.21.6-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dd1c8f6bd65d07d3810b90d02eba7997e32abbdf1277a481d698969e921a3be0"}, + {file = "numpy-1.21.6.zip", hash = "sha256:ecb55251139706669fdec2ff073c98ef8e9a84473e51e716211b41aa0f18e656"}, +] + +[[package]] +name = "nvidia-cublas-cu12" +version = "12.1.3.1" +description = "CUBLAS native runtime libraries" optional = false -python-versions = ">=3.8" +python-versions = ">=3" files = [ - {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, - {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, - {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, - {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, - {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, - {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, - {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, - {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, - {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, - {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, - {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, -] - -[[package]] -name = "nxt_gem" -version = "2.0.1" -description = "nxt_gem: A Python module for Graph Embedding Methods" + {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728"}, + {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-win_amd64.whl", hash = "sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906"}, +] + +[[package]] +name = "nvidia-cuda-cupti-cu12" +version = "12.1.105" +description = "CUDA profiling tools runtime libs." optional = false -python-versions = "*" -files = [] -develop = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e"}, + {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4"}, +] + +[[package]] +name = "nvidia-cuda-nvrtc-cu12" +version = "12.1.105" +description = "NVRTC native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2"}, + {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed"}, +] + +[[package]] +name = "nvidia-cuda-runtime-cu12" +version = "12.1.105" +description = "CUDA Runtime native Libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40"}, + {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344"}, +] + +[[package]] +name = "nvidia-cudnn-cu12" +version = "8.9.2.26" +description = "cuDNN runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl", hash = "sha256:5ccb288774fdfb07a7e7025ffec286971c06d8d7b4fb162525334616d7629ff9"}, +] [package.dependencies] -matplotlib = ">=2.0.0" -networkx = ">=2.4" -numpy = ">=1.12.0" -scikit-learn = ">=0.21.2" -scipy = ">=0.19.0" -theano = ">=0.9.0" +nvidia-cublas-cu12 = "*" -[package.source] -type = "git" -url = "https://github.com/palash1992/GEM.git" -reference = "master" -resolved_reference = "ae8e92d34213f5785757b4a0943bd7d8d337adb3" +[[package]] +name = "nvidia-cufft-cu12" +version = "11.0.2.54" +description = "CUFFT native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl", hash = "sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56"}, + {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-win_amd64.whl", hash = "sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253"}, +] + +[[package]] +name = "nvidia-curand-cu12" +version = "10.3.2.106" +description = "CURAND native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0"}, + {file = "nvidia_curand_cu12-10.3.2.106-py3-none-win_amd64.whl", hash = "sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a"}, +] + +[[package]] +name = "nvidia-cusolver-cu12" +version = "11.4.5.107" +description = "CUDA solver native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd"}, + {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-win_amd64.whl", hash = "sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5"}, +] + +[package.dependencies] +nvidia-cublas-cu12 = "*" +nvidia-cusparse-cu12 = "*" +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-cusparse-cu12" +version = "12.1.0.106" +description = "CUSPARSE native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c"}, + {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-win_amd64.whl", hash = "sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a"}, +] + +[package.dependencies] +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-nccl-cu12" +version = "2.18.1" +description = "NVIDIA Collective Communication Library (NCCL) Runtime" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nccl_cu12-2.18.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:1a6c4acefcbebfa6de320f412bf7866de856e786e0462326ba1bac40de0b5e71"}, +] + +[[package]] +name = "nvidia-nvjitlink-cu12" +version = "12.6.77" +description = "Nvidia JIT LTO Library" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-manylinux2014_aarch64.whl", hash = "sha256:3bf10d85bb1801e9c894c6e197e44dd137d2a0a9e43f8450e9ad13f2df0dd52d"}, + {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-manylinux2014_x86_64.whl", hash = "sha256:9ae346d16203ae4ea513be416495167a0101d33d2d14935aa9c1829a3fb45142"}, + {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-win_amd64.whl", hash = "sha256:410718cd44962bed862a31dd0318620f6f9a8b28a6291967bcfcb446a6516771"}, +] + +[[package]] +name = "nvidia-nvtx-cu12" +version = "12.1.105" +description = "NVIDIA Tools Extension" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5"}, + {file = "nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82"}, +] [[package]] name = "oauthlib" @@ -1274,22 +1868,15 @@ signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] [[package]] name = "opt-einsum" -version = "3.3.0" -description = "Optimizing numpys einsum function" +version = "3.4.0" +description = "Path optimization of einsum functions." optional = false -python-versions = ">=3.5" +python-versions = ">=3.8" files = [ - {file = "opt_einsum-3.3.0-py3-none-any.whl", hash = "sha256:2455e59e3947d3c275477df7f5205b30635e266fe6dc300e3d9f9646bfcea147"}, - {file = "opt_einsum-3.3.0.tar.gz", hash = "sha256:59f6475f77bbc37dcf7cd748519c0ec60722e91e63ca114e68821c0c54a46549"}, + {file = "opt_einsum-3.4.0-py3-none-any.whl", hash = "sha256:69bb92469f86a1565195ece4ac0323943e83477171b91d24c35afe028a90d7cd"}, + {file = "opt_einsum-3.4.0.tar.gz", hash = "sha256:96ca72f1b886d148241348783498194c577fa30a8faac108586b14f1ba4473ac"}, ] -[package.dependencies] -numpy = ">=1.7" - -[package.extras] -docs = ["numpydoc", "sphinx (==1.2.3)", "sphinx-rtd-theme", "sphinxcontrib-napoleon"] -tests = ["pytest", "pytest-cov", "pytest-pep8"] - [[package]] name = "packaging" version = "24.1" @@ -1404,36 +1991,240 @@ files = [ {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, ] +[[package]] +name = "pillow" +version = "10.4.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"}, + {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"}, + {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"}, + {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"}, + {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"}, + {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"}, + {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"}, + {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"}, + {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"}, + {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"}, + {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"}, + {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"}, + {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"}, + {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"}, + {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"}, + {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"}, + {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"}, + {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"}, + {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"}, + {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] +fpx = ["olefile"] +mic = ["olefile"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] +typing = ["typing-extensions"] +xmp = ["defusedxml"] + [[package]] name = "platformdirs" -version = "4.2.2" +version = "4.3.6" description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." optional = false python-versions = ">=3.8" files = [ - {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, - {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, + {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, + {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, ] [package.extras] -docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] -type = ["mypy (>=1.8)"] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] [[package]] name = "prompt-toolkit" -version = "3.0.47" +version = "3.0.48" description = "Library for building powerful interactive command lines in Python" optional = false python-versions = ">=3.7.0" files = [ - {file = "prompt_toolkit-3.0.47-py3-none-any.whl", hash = "sha256:0d7bfa67001d5e39d02c224b663abc33687405033a8c422d0d675a5a13361d10"}, - {file = "prompt_toolkit-3.0.47.tar.gz", hash = "sha256:1e1b29cb58080b1e69f207c893a1a7bf16d127a5c30c9d17a25a5d77792e5360"}, + {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, + {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, ] [package.dependencies] wcwidth = "*" +[[package]] +name = "propcache" +version = "0.2.0" +description = "Accelerated property cache" +optional = false +python-versions = ">=3.8" +files = [ + {file = "propcache-0.2.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:c5869b8fd70b81835a6f187c5fdbe67917a04d7e52b6e7cc4e5fe39d55c39d58"}, + {file = "propcache-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:952e0d9d07609d9c5be361f33b0d6d650cd2bae393aabb11d9b719364521984b"}, + {file = "propcache-0.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:33ac8f098df0585c0b53009f039dfd913b38c1d2edafed0cedcc0c32a05aa110"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:97e48e8875e6c13909c800fa344cd54cc4b2b0db1d5f911f840458a500fde2c2"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:388f3217649d6d59292b722d940d4d2e1e6a7003259eb835724092a1cca0203a"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f571aea50ba5623c308aa146eb650eebf7dbe0fd8c5d946e28343cb3b5aad577"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3dfafb44f7bb35c0c06eda6b2ab4bfd58f02729e7c4045e179f9a861b07c9850"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a3ebe9a75be7ab0b7da2464a77bb27febcb4fab46a34f9288f39d74833db7f61"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d2f0d0f976985f85dfb5f3d685697ef769faa6b71993b46b295cdbbd6be8cc37"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:a3dc1a4b165283bd865e8f8cb5f0c64c05001e0718ed06250d8cac9bec115b48"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:9e0f07b42d2a50c7dd2d8675d50f7343d998c64008f1da5fef888396b7f84630"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:e63e3e1e0271f374ed489ff5ee73d4b6e7c60710e1f76af5f0e1a6117cd26394"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:56bb5c98f058a41bb58eead194b4db8c05b088c93d94d5161728515bd52b052b"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7665f04d0c7f26ff8bb534e1c65068409bf4687aa2534faf7104d7182debb336"}, + {file = "propcache-0.2.0-cp310-cp310-win32.whl", hash = "sha256:7cf18abf9764746b9c8704774d8b06714bcb0a63641518a3a89c7f85cc02c2ad"}, + {file = "propcache-0.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:cfac69017ef97db2438efb854edf24f5a29fd09a536ff3a992b75990720cdc99"}, + {file = "propcache-0.2.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:63f13bf09cc3336eb04a837490b8f332e0db41da66995c9fd1ba04552e516354"}, + {file = "propcache-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:608cce1da6f2672a56b24a015b42db4ac612ee709f3d29f27a00c943d9e851de"}, + {file = "propcache-0.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:466c219deee4536fbc83c08d09115249db301550625c7fef1c5563a584c9bc87"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc2db02409338bf36590aa985a461b2c96fce91f8e7e0f14c50c5fcc4f229016"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a6ed8db0a556343d566a5c124ee483ae113acc9a557a807d439bcecc44e7dfbb"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:91997d9cb4a325b60d4e3f20967f8eb08dfcb32b22554d5ef78e6fd1dda743a2"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c7dde9e533c0a49d802b4f3f218fa9ad0a1ce21f2c2eb80d5216565202acab4"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffcad6c564fe6b9b8916c1aefbb37a362deebf9394bd2974e9d84232e3e08504"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:97a58a28bcf63284e8b4d7b460cbee1edaab24634e82059c7b8c09e65284f178"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:945db8ee295d3af9dbdbb698cce9bbc5c59b5c3fe328bbc4387f59a8a35f998d"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:39e104da444a34830751715f45ef9fc537475ba21b7f1f5b0f4d71a3b60d7fe2"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:c5ecca8f9bab618340c8e848d340baf68bcd8ad90a8ecd7a4524a81c1764b3db"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:c436130cc779806bdf5d5fae0d848713105472b8566b75ff70048c47d3961c5b"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:191db28dc6dcd29d1a3e063c3be0b40688ed76434622c53a284e5427565bbd9b"}, + {file = "propcache-0.2.0-cp311-cp311-win32.whl", hash = "sha256:5f2564ec89058ee7c7989a7b719115bdfe2a2fb8e7a4543b8d1c0cc4cf6478c1"}, + {file = "propcache-0.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:6e2e54267980349b723cff366d1e29b138b9a60fa376664a157a342689553f71"}, + {file = "propcache-0.2.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:2ee7606193fb267be4b2e3b32714f2d58cad27217638db98a60f9efb5efeccc2"}, + {file = "propcache-0.2.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:91ee8fc02ca52e24bcb77b234f22afc03288e1dafbb1f88fe24db308910c4ac7"}, + {file = "propcache-0.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2e900bad2a8456d00a113cad8c13343f3b1f327534e3589acc2219729237a2e8"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f52a68c21363c45297aca15561812d542f8fc683c85201df0bebe209e349f793"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e41d67757ff4fbc8ef2af99b338bfb955010444b92929e9e55a6d4dcc3c4f09"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a64e32f8bd94c105cc27f42d3b658902b5bcc947ece3c8fe7bc1b05982f60e89"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:55346705687dbd7ef0d77883ab4f6fabc48232f587925bdaf95219bae072491e"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:00181262b17e517df2cd85656fcd6b4e70946fe62cd625b9d74ac9977b64d8d9"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6994984550eaf25dd7fc7bd1b700ff45c894149341725bb4edc67f0ffa94efa4"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:56295eb1e5f3aecd516d91b00cfd8bf3a13991de5a479df9e27dd569ea23959c"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:439e76255daa0f8151d3cb325f6dd4a3e93043e6403e6491813bcaaaa8733887"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:f6475a1b2ecb310c98c28d271a30df74f9dd436ee46d09236a6b750a7599ce57"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:3444cdba6628accf384e349014084b1cacd866fbb88433cd9d279d90a54e0b23"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4a9d9b4d0a9b38d1c391bb4ad24aa65f306c6f01b512e10a8a34a2dc5675d348"}, + {file = "propcache-0.2.0-cp312-cp312-win32.whl", hash = "sha256:69d3a98eebae99a420d4b28756c8ce6ea5a29291baf2dc9ff9414b42676f61d5"}, + {file = "propcache-0.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:ad9c9b99b05f163109466638bd30ada1722abb01bbb85c739c50b6dc11f92dc3"}, + {file = "propcache-0.2.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ecddc221a077a8132cf7c747d5352a15ed763b674c0448d811f408bf803d9ad7"}, + {file = "propcache-0.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0e53cb83fdd61cbd67202735e6a6687a7b491c8742dfc39c9e01e80354956763"}, + {file = "propcache-0.2.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92fe151145a990c22cbccf9ae15cae8ae9eddabfc949a219c9f667877e40853d"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6a21ef516d36909931a2967621eecb256018aeb11fc48656e3257e73e2e247a"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3f88a4095e913f98988f5b338c1d4d5d07dbb0b6bad19892fd447484e483ba6b"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a5b3bb545ead161be780ee85a2b54fdf7092815995661947812dde94a40f6fb"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67aeb72e0f482709991aa91345a831d0b707d16b0257e8ef88a2ad246a7280bf"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3c997f8c44ec9b9b0bcbf2d422cc00a1d9b9c681f56efa6ca149a941e5560da2"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:2a66df3d4992bc1d725b9aa803e8c5a66c010c65c741ad901e260ece77f58d2f"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:3ebbcf2a07621f29638799828b8d8668c421bfb94c6cb04269130d8de4fb7136"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:1235c01ddaa80da8235741e80815ce381c5267f96cc49b1477fdcf8c047ef325"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:3947483a381259c06921612550867b37d22e1df6d6d7e8361264b6d037595f44"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d5bed7f9805cc29c780f3aee05de3262ee7ce1f47083cfe9f77471e9d6777e83"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e4a91d44379f45f5e540971d41e4626dacd7f01004826a18cb048e7da7e96544"}, + {file = "propcache-0.2.0-cp313-cp313-win32.whl", hash = "sha256:f902804113e032e2cdf8c71015651c97af6418363bea8d78dc0911d56c335032"}, + {file = "propcache-0.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:8f188cfcc64fb1266f4684206c9de0e80f54622c3f22a910cbd200478aeae61e"}, + {file = "propcache-0.2.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:53d1bd3f979ed529f0805dd35ddaca330f80a9a6d90bc0121d2ff398f8ed8861"}, + {file = "propcache-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:83928404adf8fb3d26793665633ea79b7361efa0287dfbd372a7e74311d51ee6"}, + {file = "propcache-0.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:77a86c261679ea5f3896ec060be9dc8e365788248cc1e049632a1be682442063"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:218db2a3c297a3768c11a34812e63b3ac1c3234c3a086def9c0fee50d35add1f"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7735e82e3498c27bcb2d17cb65d62c14f1100b71723b68362872bca7d0913d90"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:20a617c776f520c3875cf4511e0d1db847a076d720714ae35ffe0df3e440be68"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67b69535c870670c9f9b14a75d28baa32221d06f6b6fa6f77a0a13c5a7b0a5b9"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4569158070180c3855e9c0791c56be3ceeb192defa2cdf6a3f39e54319e56b89"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:db47514ffdbd91ccdc7e6f8407aac4ee94cc871b15b577c1c324236b013ddd04"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_armv7l.whl", hash = "sha256:2a60ad3e2553a74168d275a0ef35e8c0a965448ffbc3b300ab3a5bb9956c2162"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:662dd62358bdeaca0aee5761de8727cfd6861432e3bb828dc2a693aa0471a563"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:25a1f88b471b3bc911d18b935ecb7115dff3a192b6fef46f0bfaf71ff4f12418"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:f60f0ac7005b9f5a6091009b09a419ace1610e163fa5deaba5ce3484341840e7"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:74acd6e291f885678631b7ebc85d2d4aec458dd849b8c841b57ef04047833bed"}, + {file = "propcache-0.2.0-cp38-cp38-win32.whl", hash = "sha256:d9b6ddac6408194e934002a69bcaadbc88c10b5f38fb9307779d1c629181815d"}, + {file = "propcache-0.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:676135dcf3262c9c5081cc8f19ad55c8a64e3f7282a21266d05544450bffc3a5"}, + {file = "propcache-0.2.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:25c8d773a62ce0451b020c7b29a35cfbc05de8b291163a7a0f3b7904f27253e6"}, + {file = "propcache-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:375a12d7556d462dc64d70475a9ee5982465fbb3d2b364f16b86ba9135793638"}, + {file = "propcache-0.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1ec43d76b9677637a89d6ab86e1fef70d739217fefa208c65352ecf0282be957"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f45eec587dafd4b2d41ac189c2156461ebd0c1082d2fe7013571598abb8505d1"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc092ba439d91df90aea38168e11f75c655880c12782facf5cf9c00f3d42b562"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fa1076244f54bb76e65e22cb6910365779d5c3d71d1f18b275f1dfc7b0d71b4d"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:682a7c79a2fbf40f5dbb1eb6bfe2cd865376deeac65acf9beb607505dced9e12"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e40876731f99b6f3c897b66b803c9e1c07a989b366c6b5b475fafd1f7ba3fb8"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:363ea8cd3c5cb6679f1c2f5f1f9669587361c062e4899fce56758efa928728f8"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:140fbf08ab3588b3468932974a9331aff43c0ab8a2ec2c608b6d7d1756dbb6cb"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e70fac33e8b4ac63dfc4c956fd7d85a0b1139adcfc0d964ce288b7c527537fea"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:b33d7a286c0dc1a15f5fc864cc48ae92a846df287ceac2dd499926c3801054a6"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:f6d5749fdd33d90e34c2efb174c7e236829147a2713334d708746e94c4bde40d"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:22aa8f2272d81d9317ff5756bb108021a056805ce63dd3630e27d042c8092798"}, + {file = "propcache-0.2.0-cp39-cp39-win32.whl", hash = "sha256:73e4b40ea0eda421b115248d7e79b59214411109a5bc47d0d48e4c73e3b8fcf9"}, + {file = "propcache-0.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:9517d5e9e0731957468c29dbfd0f976736a0e55afaea843726e887f36fe017df"}, + {file = "propcache-0.2.0-py3-none-any.whl", hash = "sha256:2ccc28197af5313706511fab3a8b66dcd6da067a1331372c82ea1cb74285e036"}, + {file = "propcache-0.2.0.tar.gz", hash = "sha256:df81779732feb9d01e5d513fad0122efb3d53bbc75f61b2a4f29a020bc985e70"}, +] + [[package]] name = "protobuf" version = "3.20.3" @@ -1521,24 +2312,24 @@ tests = ["pytest"] [[package]] name = "pyasn1" -version = "0.6.0" +version = "0.6.1" description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" optional = false python-versions = ">=3.8" files = [ - {file = "pyasn1-0.6.0-py2.py3-none-any.whl", hash = "sha256:cca4bb0f2df5504f02f6f8a775b6e416ff9b0b3b16f7ee80b5a3153d9b804473"}, - {file = "pyasn1-0.6.0.tar.gz", hash = "sha256:3a35ab2c4b5ef98e17dfdec8ab074046fbda76e281c5a706ccd82328cfc8f64c"}, + {file = "pyasn1-0.6.1-py3-none-any.whl", hash = "sha256:0d632f46f2ba09143da3a8afe9e33fb6f92fa2320ab7e886e2d0f7672af84629"}, + {file = "pyasn1-0.6.1.tar.gz", hash = "sha256:6f580d2bdd84365380830acf45550f2511469f673cb4a5ae3857a3170128b034"}, ] [[package]] name = "pyasn1-modules" -version = "0.4.0" +version = "0.4.1" description = "A collection of ASN.1-based protocols modules" optional = false python-versions = ">=3.8" files = [ - {file = "pyasn1_modules-0.4.0-py3-none-any.whl", hash = "sha256:be04f15b66c206eed667e0bb5ab27e2b1855ea54a842e5037738099e8ca4ae0b"}, - {file = "pyasn1_modules-0.4.0.tar.gz", hash = "sha256:831dbcea1b177b28c9baddf4c6d1013c24c3accd14a1873fffaa6a2e905f17b6"}, + {file = "pyasn1_modules-0.4.1-py3-none-any.whl", hash = "sha256:49bfa96b45a292b711e986f222502c1c9a5e1f4e568fc30e2574a6c7d07838fd"}, + {file = "pyasn1_modules-0.4.1.tar.gz", hash = "sha256:c28e2dbf9c06ad61c71a075c7e0f9fd0f1b0bb2d2ad4377f240d33ac2ab60a7c"}, ] [package.dependencies] @@ -1556,49 +2347,149 @@ files = [ ] [[package]] -name = "pygments" -version = "2.18.0" -description = "Pygments is a syntax highlighting package written in Python." +name = "pydantic" +version = "2.9.2" +description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, - {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, + {file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"}, + {file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"}, ] +[package.dependencies] +annotated-types = ">=0.6.0" +pydantic-core = "2.23.4" +typing-extensions = {version = ">=4.6.1", markers = "python_version < \"3.13\""} + [package.extras] -windows-terminal = ["colorama (>=0.4.6)"] +email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] -name = "pygsp" -version = "0.5.1" -description = "Graph Signal Processing in Python" +name = "pydantic-core" +version = "2.23.4" +description = "Core functionality for Pydantic validation and serialization" optional = false -python-versions = "*" +python-versions = ">=3.8" files = [ - {file = "PyGSP-0.5.1-py2.py3-none-any.whl", hash = "sha256:884765260256f143a92053c420797053fda0f4eba1573471526fb4e62a4c4cde"}, - {file = "PyGSP-0.5.1.tar.gz", hash = "sha256:4874ad88793d622d4f578b40c6617a99b1f02bc6c6c4077f0e48cd71c7275800"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"}, + {file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"}, + {file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"}, + {file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"}, + {file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"}, + {file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"}, + {file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"}, + {file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"}, + {file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"}, + {file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"}, + {file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"}, + {file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"}, + {file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"}, + {file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"}, ] [package.dependencies] -numpy = "*" -scipy = "*" +typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" + +[[package]] +name = "pygments" +version = "2.18.0" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, + {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, +] [package.extras] -alldeps = ["PyOpenGL", "PyQt5", "PySide", "matplotlib", "pyflann", "pyflann3", "pyqtgraph", "pyunlocbox", "scikit-image"] -doc = ["numpydoc", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-bibtex"] -pkg = ["twine", "wheel"] -test = ["coverage", "coveralls", "flake8"] +windows-terminal = ["colorama (>=0.4.6)"] [[package]] name = "pyparsing" -version = "3.1.2" +version = "3.1.4" description = "pyparsing module - Classes and methods to define and execute parsing grammars" optional = false python-versions = ">=3.6.8" files = [ - {file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"}, - {file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"}, + {file = "pyparsing-3.1.4-py3-none-any.whl", hash = "sha256:a6a7ee4235a3f944aa1fa2249307708f893fe5717dc603503c6c7969c070fb7c"}, + {file = "pyparsing-3.1.4.tar.gz", hash = "sha256:f86ec8d1a83f11977c9a6ea7598e8c27fc5cddfa5b07ea2241edbbde1d7bc032"}, ] [package.extras] @@ -1618,170 +2509,222 @@ files = [ [package.dependencies] six = ">=1.5" -[[package]] -name = "python-louvain" -version = "0.16" -description = "Louvain algorithm for community detection" -optional = false -python-versions = "*" -files = [ - {file = "python-louvain-0.16.tar.gz", hash = "sha256:b7ba2df5002fd28d3ee789a49532baad11fe648e4f2117cf0798e7520a1da56b"}, -] - -[package.dependencies] -networkx = "*" -numpy = "*" - [[package]] name = "pytz" -version = "2024.1" +version = "2024.2" description = "World timezone definitions, modern and historical" optional = false python-versions = "*" files = [ - {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, - {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, + {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, + {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, ] [[package]] name = "pywin32" -version = "306" +version = "307" description = "Python for Window Extensions" optional = false python-versions = "*" files = [ - {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, - {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, - {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, - {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, - {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, - {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, - {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, - {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, - {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, - {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, - {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, - {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, - {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, - {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, + {file = "pywin32-307-cp310-cp310-win32.whl", hash = "sha256:f8f25d893c1e1ce2d685ef6d0a481e87c6f510d0f3f117932781f412e0eba31b"}, + {file = "pywin32-307-cp310-cp310-win_amd64.whl", hash = "sha256:36e650c5e5e6b29b5d317385b02d20803ddbac5d1031e1f88d20d76676dd103d"}, + {file = "pywin32-307-cp310-cp310-win_arm64.whl", hash = "sha256:0c12d61e0274e0c62acee79e3e503c312426ddd0e8d4899c626cddc1cafe0ff4"}, + {file = "pywin32-307-cp311-cp311-win32.whl", hash = "sha256:fec5d27cc893178fab299de911b8e4d12c5954e1baf83e8a664311e56a272b75"}, + {file = "pywin32-307-cp311-cp311-win_amd64.whl", hash = "sha256:987a86971753ed7fdd52a7fb5747aba955b2c7fbbc3d8b76ec850358c1cc28c3"}, + {file = "pywin32-307-cp311-cp311-win_arm64.whl", hash = "sha256:fd436897c186a2e693cd0437386ed79f989f4d13d6f353f8787ecbb0ae719398"}, + {file = "pywin32-307-cp312-cp312-win32.whl", hash = "sha256:07649ec6b01712f36debf39fc94f3d696a46579e852f60157a729ac039df0815"}, + {file = "pywin32-307-cp312-cp312-win_amd64.whl", hash = "sha256:00d047992bb5dcf79f8b9b7c81f72e0130f9fe4b22df613f755ab1cc021d8347"}, + {file = "pywin32-307-cp312-cp312-win_arm64.whl", hash = "sha256:b53658acbfc6a8241d72cc09e9d1d666be4e6c99376bc59e26cdb6223c4554d2"}, + {file = "pywin32-307-cp313-cp313-win32.whl", hash = "sha256:ea4d56e48dc1ab2aa0a5e3c0741ad6e926529510516db7a3b6981a1ae74405e5"}, + {file = "pywin32-307-cp313-cp313-win_amd64.whl", hash = "sha256:576d09813eaf4c8168d0bfd66fb7cb3b15a61041cf41598c2db4a4583bf832d2"}, + {file = "pywin32-307-cp313-cp313-win_arm64.whl", hash = "sha256:b30c9bdbffda6a260beb2919f918daced23d32c79109412c2085cbc513338a0a"}, + {file = "pywin32-307-cp37-cp37m-win32.whl", hash = "sha256:5101472f5180c647d4525a0ed289ec723a26231550dbfd369ec19d5faf60e511"}, + {file = "pywin32-307-cp37-cp37m-win_amd64.whl", hash = "sha256:05de55a7c110478dc4b202230e98af5e0720855360d2b31a44bb4e296d795fba"}, + {file = "pywin32-307-cp38-cp38-win32.whl", hash = "sha256:13d059fb7f10792542082f5731d5d3d9645320fc38814759313e5ee97c3fac01"}, + {file = "pywin32-307-cp38-cp38-win_amd64.whl", hash = "sha256:7e0b2f93769d450a98ac7a31a087e07b126b6d571e8b4386a5762eb85325270b"}, + {file = "pywin32-307-cp39-cp39-win32.whl", hash = "sha256:55ee87f2f8c294e72ad9d4261ca423022310a6e79fb314a8ca76ab3f493854c6"}, + {file = "pywin32-307-cp39-cp39-win_amd64.whl", hash = "sha256:e9d5202922e74985b037c9ef46778335c102b74b95cec70f629453dbe7235d87"}, +] + +[[package]] +name = "pyyaml" +version = "6.0.2" +description = "YAML parser and emitter for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, + {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, + {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, + {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, + {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, + {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, + {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, + {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, + {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, ] [[package]] name = "pyzmq" -version = "26.1.0" +version = "26.2.0" description = "Python bindings for 0MQ" optional = false python-versions = ">=3.7" files = [ - {file = "pyzmq-26.1.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:263cf1e36862310bf5becfbc488e18d5d698941858860c5a8c079d1511b3b18e"}, - {file = "pyzmq-26.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d5c8b17f6e8f29138678834cf8518049e740385eb2dbf736e8f07fc6587ec682"}, - {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:75a95c2358fcfdef3374cb8baf57f1064d73246d55e41683aaffb6cfe6862917"}, - {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f99de52b8fbdb2a8f5301ae5fc0f9e6b3ba30d1d5fc0421956967edcc6914242"}, - {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7bcbfbab4e1895d58ab7da1b5ce9a327764f0366911ba5b95406c9104bceacb0"}, - {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:77ce6a332c7e362cb59b63f5edf730e83590d0ab4e59c2aa5bd79419a42e3449"}, - {file = "pyzmq-26.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:ba0a31d00e8616149a5ab440d058ec2da621e05d744914774c4dde6837e1f545"}, - {file = "pyzmq-26.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8b88641384e84a258b740801cd4dbc45c75f148ee674bec3149999adda4a8598"}, - {file = "pyzmq-26.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2fa76ebcebe555cce90f16246edc3ad83ab65bb7b3d4ce408cf6bc67740c4f88"}, - {file = "pyzmq-26.1.0-cp310-cp310-win32.whl", hash = "sha256:fbf558551cf415586e91160d69ca6416f3fce0b86175b64e4293644a7416b81b"}, - {file = "pyzmq-26.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:a7b8aab50e5a288c9724d260feae25eda69582be84e97c012c80e1a5e7e03fb2"}, - {file = "pyzmq-26.1.0-cp310-cp310-win_arm64.whl", hash = "sha256:08f74904cb066e1178c1ec706dfdb5c6c680cd7a8ed9efebeac923d84c1f13b1"}, - {file = "pyzmq-26.1.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:46d6800b45015f96b9d92ece229d92f2aef137d82906577d55fadeb9cf5fcb71"}, - {file = "pyzmq-26.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5bc2431167adc50ba42ea3e5e5f5cd70d93e18ab7b2f95e724dd8e1bd2c38120"}, - {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b3bb34bebaa1b78e562931a1687ff663d298013f78f972a534f36c523311a84d"}, - {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3f6329340cef1c7ba9611bd038f2d523cea79f09f9c8f6b0553caba59ec562"}, - {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:471880c4c14e5a056a96cd224f5e71211997d40b4bf5e9fdded55dafab1f98f2"}, - {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:ce6f2b66799971cbae5d6547acefa7231458289e0ad481d0be0740535da38d8b"}, - {file = "pyzmq-26.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0a1f6ea5b1d6cdbb8cfa0536f0d470f12b4b41ad83625012e575f0e3ecfe97f0"}, - {file = "pyzmq-26.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:b45e6445ac95ecb7d728604bae6538f40ccf4449b132b5428c09918523abc96d"}, - {file = "pyzmq-26.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:94c4262626424683feea0f3c34951d39d49d354722db2745c42aa6bb50ecd93b"}, - {file = "pyzmq-26.1.0-cp311-cp311-win32.whl", hash = "sha256:a0f0ab9df66eb34d58205913f4540e2ad17a175b05d81b0b7197bc57d000e829"}, - {file = "pyzmq-26.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:8efb782f5a6c450589dbab4cb0f66f3a9026286333fe8f3a084399149af52f29"}, - {file = "pyzmq-26.1.0-cp311-cp311-win_arm64.whl", hash = "sha256:f133d05aaf623519f45e16ab77526e1e70d4e1308e084c2fb4cedb1a0c764bbb"}, - {file = "pyzmq-26.1.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:3d3146b1c3dcc8a1539e7cc094700b2be1e605a76f7c8f0979b6d3bde5ad4072"}, - {file = "pyzmq-26.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d9270fbf038bf34ffca4855bcda6e082e2c7f906b9eb8d9a8ce82691166060f7"}, - {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:995301f6740a421afc863a713fe62c0aaf564708d4aa057dfdf0f0f56525294b"}, - {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e7eca8b89e56fb8c6c26dd3e09bd41b24789022acf1cf13358e96f1cafd8cae3"}, - {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d4feb2e83dfe9ace6374a847e98ee9d1246ebadcc0cb765482e272c34e5820"}, - {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:d4fafc2eb5d83f4647331267808c7e0c5722c25a729a614dc2b90479cafa78bd"}, - {file = "pyzmq-26.1.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:58c33dc0e185dd97a9ac0288b3188d1be12b756eda67490e6ed6a75cf9491d79"}, - {file = "pyzmq-26.1.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:68a0a1d83d33d8367ddddb3e6bb4afbb0f92bd1dac2c72cd5e5ddc86bdafd3eb"}, - {file = "pyzmq-26.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2ae7c57e22ad881af78075e0cea10a4c778e67234adc65c404391b417a4dda83"}, - {file = "pyzmq-26.1.0-cp312-cp312-win32.whl", hash = "sha256:347e84fc88cc4cb646597f6d3a7ea0998f887ee8dc31c08587e9c3fd7b5ccef3"}, - {file = "pyzmq-26.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:9f136a6e964830230912f75b5a116a21fe8e34128dcfd82285aa0ef07cb2c7bd"}, - {file = "pyzmq-26.1.0-cp312-cp312-win_arm64.whl", hash = "sha256:a4b7a989c8f5a72ab1b2bbfa58105578753ae77b71ba33e7383a31ff75a504c4"}, - {file = "pyzmq-26.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:d416f2088ac8f12daacffbc2e8918ef4d6be8568e9d7155c83b7cebed49d2322"}, - {file = "pyzmq-26.1.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:ecb6c88d7946166d783a635efc89f9a1ff11c33d680a20df9657b6902a1d133b"}, - {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:471312a7375571857a089342beccc1a63584315188560c7c0da7e0a23afd8a5c"}, - {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0e6cea102ffa16b737d11932c426f1dc14b5938cf7bc12e17269559c458ac334"}, - {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec7248673ffc7104b54e4957cee38b2f3075a13442348c8d651777bf41aa45ee"}, - {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:0614aed6f87d550b5cecb03d795f4ddbb1544b78d02a4bd5eecf644ec98a39f6"}, - {file = "pyzmq-26.1.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:e8746ce968be22a8a1801bf4a23e565f9687088580c3ed07af5846580dd97f76"}, - {file = "pyzmq-26.1.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:7688653574392d2eaeef75ddcd0b2de5b232d8730af29af56c5adf1df9ef8d6f"}, - {file = "pyzmq-26.1.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:8d4dac7d97f15c653a5fedcafa82626bd6cee1450ccdaf84ffed7ea14f2b07a4"}, - {file = "pyzmq-26.1.0-cp313-cp313-win32.whl", hash = "sha256:ccb42ca0a4a46232d716779421bbebbcad23c08d37c980f02cc3a6bd115ad277"}, - {file = "pyzmq-26.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e1e5d0a25aea8b691a00d6b54b28ac514c8cc0d8646d05f7ca6cb64b97358250"}, - {file = "pyzmq-26.1.0-cp313-cp313-win_arm64.whl", hash = "sha256:fc82269d24860cfa859b676d18850cbb8e312dcd7eada09e7d5b007e2f3d9eb1"}, - {file = "pyzmq-26.1.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:416ac51cabd54f587995c2b05421324700b22e98d3d0aa2cfaec985524d16f1d"}, - {file = "pyzmq-26.1.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:ff832cce719edd11266ca32bc74a626b814fff236824aa1aeaad399b69fe6eae"}, - {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:393daac1bcf81b2a23e696b7b638eedc965e9e3d2112961a072b6cd8179ad2eb"}, - {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9869fa984c8670c8ab899a719eb7b516860a29bc26300a84d24d8c1b71eae3ec"}, - {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b3b8e36fd4c32c0825b4461372949ecd1585d326802b1321f8b6dc1d7e9318c"}, - {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:3ee647d84b83509b7271457bb428cc347037f437ead4b0b6e43b5eba35fec0aa"}, - {file = "pyzmq-26.1.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:45cb1a70eb00405ce3893041099655265fabcd9c4e1e50c330026e82257892c1"}, - {file = "pyzmq-26.1.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:5cca7b4adb86d7470e0fc96037771981d740f0b4cb99776d5cb59cd0e6684a73"}, - {file = "pyzmq-26.1.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:91d1a20bdaf3b25f3173ff44e54b1cfbc05f94c9e8133314eb2962a89e05d6e3"}, - {file = "pyzmq-26.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c0665d85535192098420428c779361b8823d3d7ec4848c6af3abb93bc5c915bf"}, - {file = "pyzmq-26.1.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:96d7c1d35ee4a495df56c50c83df7af1c9688cce2e9e0edffdbf50889c167595"}, - {file = "pyzmq-26.1.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b281b5ff5fcc9dcbfe941ac5c7fcd4b6c065adad12d850f95c9d6f23c2652384"}, - {file = "pyzmq-26.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5384c527a9a004445c5074f1e20db83086c8ff1682a626676229aafd9cf9f7d1"}, - {file = "pyzmq-26.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:754c99a9840839375ee251b38ac5964c0f369306eddb56804a073b6efdc0cd88"}, - {file = "pyzmq-26.1.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:9bdfcb74b469b592972ed881bad57d22e2c0acc89f5e8c146782d0d90fb9f4bf"}, - {file = "pyzmq-26.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:bd13f0231f4788db619347b971ca5f319c5b7ebee151afc7c14632068c6261d3"}, - {file = "pyzmq-26.1.0-cp37-cp37m-win32.whl", hash = "sha256:c5668dac86a869349828db5fc928ee3f58d450dce2c85607067d581f745e4fb1"}, - {file = "pyzmq-26.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:ad875277844cfaeca7fe299ddf8c8d8bfe271c3dc1caf14d454faa5cdbf2fa7a"}, - {file = "pyzmq-26.1.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:65c6e03cc0222eaf6aad57ff4ecc0a070451e23232bb48db4322cc45602cede0"}, - {file = "pyzmq-26.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:038ae4ffb63e3991f386e7fda85a9baab7d6617fe85b74a8f9cab190d73adb2b"}, - {file = "pyzmq-26.1.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:bdeb2c61611293f64ac1073f4bf6723b67d291905308a7de9bb2ca87464e3273"}, - {file = "pyzmq-26.1.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:61dfa5ee9d7df297c859ac82b1226d8fefaf9c5113dc25c2c00ecad6feeeb04f"}, - {file = "pyzmq-26.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3292d384537b9918010769b82ab3e79fca8b23d74f56fc69a679106a3e2c2cf"}, - {file = "pyzmq-26.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f9499c70c19ff0fbe1007043acb5ad15c1dec7d8e84ab429bca8c87138e8f85c"}, - {file = "pyzmq-26.1.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d3dd5523ed258ad58fed7e364c92a9360d1af8a9371e0822bd0146bdf017ef4c"}, - {file = "pyzmq-26.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:baba2fd199b098c5544ef2536b2499d2e2155392973ad32687024bd8572a7d1c"}, - {file = "pyzmq-26.1.0-cp38-cp38-win32.whl", hash = "sha256:ddbb2b386128d8eca92bd9ca74e80f73fe263bcca7aa419f5b4cbc1661e19741"}, - {file = "pyzmq-26.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:79e45a4096ec8388cdeb04a9fa5e9371583bcb826964d55b8b66cbffe7b33c86"}, - {file = "pyzmq-26.1.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:add52c78a12196bc0fda2de087ba6c876ea677cbda2e3eba63546b26e8bf177b"}, - {file = "pyzmq-26.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:98c03bd7f3339ff47de7ea9ac94a2b34580a8d4df69b50128bb6669e1191a895"}, - {file = "pyzmq-26.1.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dcc37d9d708784726fafc9c5e1232de655a009dbf97946f117aefa38d5985a0f"}, - {file = "pyzmq-26.1.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5a6ed52f0b9bf8dcc64cc82cce0607a3dfed1dbb7e8c6f282adfccc7be9781de"}, - {file = "pyzmq-26.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:451e16ae8bea3d95649317b463c9f95cd9022641ec884e3d63fc67841ae86dfe"}, - {file = "pyzmq-26.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:906e532c814e1d579138177a00ae835cd6becbf104d45ed9093a3aaf658f6a6a"}, - {file = "pyzmq-26.1.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:05bacc4f94af468cc82808ae3293390278d5f3375bb20fef21e2034bb9a505b6"}, - {file = "pyzmq-26.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:57bb2acba798dc3740e913ffadd56b1fcef96f111e66f09e2a8db3050f1f12c8"}, - {file = "pyzmq-26.1.0-cp39-cp39-win32.whl", hash = "sha256:f774841bb0e8588505002962c02da420bcfb4c5056e87a139c6e45e745c0e2e2"}, - {file = "pyzmq-26.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:359c533bedc62c56415a1f5fcfd8279bc93453afdb0803307375ecf81c962402"}, - {file = "pyzmq-26.1.0-cp39-cp39-win_arm64.whl", hash = "sha256:7907419d150b19962138ecec81a17d4892ea440c184949dc29b358bc730caf69"}, - {file = "pyzmq-26.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:b24079a14c9596846bf7516fe75d1e2188d4a528364494859106a33d8b48be38"}, - {file = "pyzmq-26.1.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59d0acd2976e1064f1b398a00e2c3e77ed0a157529779e23087d4c2fb8aaa416"}, - {file = "pyzmq-26.1.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:911c43a4117915203c4cc8755e0f888e16c4676a82f61caee2f21b0c00e5b894"}, - {file = "pyzmq-26.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b10163e586cc609f5f85c9b233195554d77b1e9a0801388907441aaeb22841c5"}, - {file = "pyzmq-26.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:28a8b2abb76042f5fd7bd720f7fea48c0fd3e82e9de0a1bf2c0de3812ce44a42"}, - {file = "pyzmq-26.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bef24d3e4ae2c985034439f449e3f9e06bf579974ce0e53d8a507a1577d5b2ab"}, - {file = "pyzmq-26.1.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:2cd0f4d314f4a2518e8970b6f299ae18cff7c44d4a1fc06fc713f791c3a9e3ea"}, - {file = "pyzmq-26.1.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:fa25a620eed2a419acc2cf10135b995f8f0ce78ad00534d729aa761e4adcef8a"}, - {file = "pyzmq-26.1.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef3b048822dca6d231d8a8ba21069844ae38f5d83889b9b690bf17d2acc7d099"}, - {file = "pyzmq-26.1.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:9a6847c92d9851b59b9f33f968c68e9e441f9a0f8fc972c5580c5cd7cbc6ee24"}, - {file = "pyzmq-26.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c9b9305004d7e4e6a824f4f19b6d8f32b3578aad6f19fc1122aaf320cbe3dc83"}, - {file = "pyzmq-26.1.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:63c1d3a65acb2f9c92dce03c4e1758cc552f1ae5c78d79a44e3bb88d2fa71f3a"}, - {file = "pyzmq-26.1.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d36b8fffe8b248a1b961c86fbdfa0129dfce878731d169ede7fa2631447331be"}, - {file = "pyzmq-26.1.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:67976d12ebfd61a3bc7d77b71a9589b4d61d0422282596cf58c62c3866916544"}, - {file = "pyzmq-26.1.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:998444debc8816b5d8d15f966e42751032d0f4c55300c48cc337f2b3e4f17d03"}, - {file = "pyzmq-26.1.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e5c88b2f13bcf55fee78ea83567b9fe079ba1a4bef8b35c376043440040f7edb"}, - {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d906d43e1592be4b25a587b7d96527cb67277542a5611e8ea9e996182fae410"}, - {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:80b0c9942430d731c786545da6be96d824a41a51742e3e374fedd9018ea43106"}, - {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:314d11564c00b77f6224d12eb3ddebe926c301e86b648a1835c5b28176c83eab"}, - {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:093a1a3cae2496233f14b57f4b485da01b4ff764582c854c0f42c6dd2be37f3d"}, - {file = "pyzmq-26.1.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3c397b1b450f749a7e974d74c06d69bd22dd362142f370ef2bd32a684d6b480c"}, - {file = "pyzmq-26.1.0.tar.gz", hash = "sha256:6c5aeea71f018ebd3b9115c7cb13863dd850e98ca6b9258509de1246461a7e7f"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea"}, + {file = "pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6"}, + {file = "pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b"}, + {file = "pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e"}, + {file = "pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0"}, + {file = "pyzmq-26.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3b55a4229ce5da9497dd0452b914556ae58e96a4381bb6f59f1305dfd7e53fc8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cb3a6460cdea8fe8194a76de8895707e61ded10ad0be97188cc8463ffa7e3a8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ab5cad923cc95c87bffee098a27856c859bd5d0af31bd346035aa816b081fe1"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ed69074a610fad1c2fda66180e7b2edd4d31c53f2d1872bc2d1211563904cd9"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cccba051221b916a4f5e538997c45d7d136a5646442b1231b916d0164067ea27"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0eaa83fc4c1e271c24eaf8fb083cbccef8fde77ec8cd45f3c35a9a123e6da097"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9edda2df81daa129b25a39b86cb57dfdfe16f7ec15b42b19bfac503360d27a93"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win32.whl", hash = "sha256:ea0eb6af8a17fa272f7b98d7bebfab7836a0d62738e16ba380f440fceca2d951"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:4ff9dc6bc1664bb9eec25cd17506ef6672d506115095411e237d571e92a58231"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2eb7735ee73ca1b0d71e0e67c3739c689067f055c764f73aac4cc8ecf958ee3f"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a534f43bc738181aa7cbbaf48e3eca62c76453a40a746ab95d4b27b1111a7d2"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:aedd5dd8692635813368e558a05266b995d3d020b23e49581ddd5bbe197a8ab6"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8be4700cd8bb02cc454f630dcdf7cfa99de96788b80c51b60fe2fe1dac480289"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fcc03fa4997c447dce58264e93b5aa2d57714fbe0f06c07b7785ae131512732"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:402b190912935d3db15b03e8f7485812db350d271b284ded2b80d2e5704be780"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8685fa9c25ff00f550c1fec650430c4b71e4e48e8d852f7ddcf2e48308038640"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:76589c020680778f06b7e0b193f4b6dd66d470234a16e1df90329f5e14a171cd"}, + {file = "pyzmq-26.2.0-cp38-cp38-win32.whl", hash = "sha256:8423c1877d72c041f2c263b1ec6e34360448decfb323fa8b94e85883043ef988"}, + {file = "pyzmq-26.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:76589f2cd6b77b5bdea4fca5992dc1c23389d68b18ccc26a53680ba2dc80ff2f"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b1d464cb8d72bfc1a3adc53305a63a8e0cac6bc8c5a07e8ca190ab8d3faa43c2"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4da04c48873a6abdd71811c5e163bd656ee1b957971db7f35140a2d573f6949c"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d049df610ac811dcffdc147153b414147428567fbbc8be43bb8885f04db39d98"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c811cfcd6a9bf680236c40c6f617187515269ab2912f3d7e8c0174898e2519db"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6835dd60355593de10350394242b5757fbbd88b25287314316f266e24c61d073"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc6bee759a6bddea5db78d7dcd609397449cb2d2d6587f48f3ca613b19410cfc"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c530e1eecd036ecc83c3407f77bb86feb79916d4a33d11394b8234f3bd35b940"}, + {file = "pyzmq-26.2.0-cp39-cp39-win32.whl", hash = "sha256:367b4f689786fca726ef7a6c5ba606958b145b9340a5e4808132cc65759abd44"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e6fa2e3e683f34aea77de8112f6483803c96a44fd726d7358b9888ae5bb394ec"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:7445be39143a8aa4faec43b076e06944b8f9d0701b669df4af200531b21e40bb"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2ea4ad4e6a12e454de05f2949d4beddb52460f3de7c8b9d5c46fbb7d7222e02c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fc4f7a173a5609631bb0c42c23d12c49df3966f89f496a51d3eb0ec81f4519d6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:878206a45202247781472a2d99df12a176fef806ca175799e1c6ad263510d57c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17c412bad2eb9468e876f556eb4ee910e62d721d2c7a53c7fa31e643d35352e6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0d987a3ae5a71c6226b203cfd298720e0086c7fe7c74f35fa8edddfbd6597eed"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:39887ac397ff35b7b775db7201095fc6310a35fdbae85bac4523f7eb3b840e20"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fdb5b3e311d4d4b0eb8b3e8b4d1b0a512713ad7e6a68791d0923d1aec433d919"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:226af7dcb51fdb0109f0016449b357e182ea0ceb6b47dfb5999d569e5db161d5"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bed0e799e6120b9c32756203fb9dfe8ca2fb8467fed830c34c877e25638c3fc"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:29c7947c594e105cb9e6c466bace8532dc1ca02d498684128b339799f5248277"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cdeabcff45d1c219636ee2e54d852262e5c2e085d6cb476d938aee8d921356b3"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35cffef589bcdc587d06f9149f8d5e9e8859920a071df5a2671de2213bef592a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18c8dc3b7468d8b4bdf60ce9d7141897da103c7a4690157b32b60acb45e333e6"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7133d0a1677aec369d67dd78520d3fa96dd7f3dcec99d66c1762870e5ea1a50a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a96179a24b14fa6428cbfc08641c779a53f8fcec43644030328f44034c7f1f4"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4f78c88905461a9203eac9faac157a2a0dbba84a0fd09fd29315db27be40af9f"}, + {file = "pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f"}, ] [package.dependencies] @@ -1842,49 +2785,50 @@ pyasn1 = ">=0.1.3" [[package]] name = "scikit-learn" -version = "0.24.0" +version = "1.3.2" description = "A set of python modules for machine learning and data mining" optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "scikit-learn-0.24.0.tar.gz", hash = "sha256:076369634ee72b5a5941440661e2f306ff4ac30903802dc52031c7e9199ac640"}, - {file = "scikit_learn-0.24.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:890d7d588f65acb0c4f6c083347c9076916bda5e6bd8400f06244b1afc1009af"}, - {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:e534f5f3796db6781c87e9835dcd51b7854c8c5a379c9210b93605965c1941fd"}, - {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:d7fe05fcb44eadd6d6c874c768f085f5de1239db3a3b7be4d3d23d12e4120589"}, - {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:7f654befc5ad413690cc58f3f34a3e906caf825195ce0fda00a8e9565e1403e6"}, - {file = "scikit_learn-0.24.0-cp36-cp36m-win32.whl", hash = "sha256:afeb06dc69847927634e58579b9cdc72e1390b79497336b2324b1b173f33bd47"}, - {file = "scikit_learn-0.24.0-cp36-cp36m-win_amd64.whl", hash = "sha256:26f66b3726b54dfb76ea51c5d9c2431ed17ebc066cb4527662b9e851a3e7ba61"}, - {file = "scikit_learn-0.24.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c08b27cb78ee8d2dc781a7affed09859441f5b624f9f92da59ac0791c8774dfc"}, - {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:905d8934d1e27a686698864a5863ff2c0e13a2ae1adb78a8a848aacc8a49927d"}, - {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:d819d625832fb2969911a243e009cfa135cb8ef1e150866e417d6e9d75290087"}, - {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:18f7131e62265bf2691ed1d0303c640313894ccfe4278427478c6b2f45094b53"}, - {file = "scikit_learn-0.24.0-cp37-cp37m-win32.whl", hash = "sha256:b0d13fd56d26cf3de0314a4fd48037108c638fe126d813f5c1222bb0f08b6a76"}, - {file = "scikit_learn-0.24.0-cp37-cp37m-win_amd64.whl", hash = "sha256:c912247e42114f389858ae05d63f4359d4e667ea72aaabee191aee9ad3f9774a"}, - {file = "scikit_learn-0.24.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:758619e49cd7c17282e6cc60d5cc73c02c072b47c9a10010bb3bb47e0d976e50"}, - {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:66f27bf21202a850bcd7b6303916e4907f6e22ec59a14974ede4955aed5c7ed0"}, - {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:5e6e3c042cea83f2e20a45e563b8eabc1f8f72446251fe23ebefdf111a173a33"}, - {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:2a5348585aa793bc8cc5a72f8e9067c9380834b0aadbd55f924843b071f13282"}, - {file = "scikit_learn-0.24.0-cp38-cp38-win32.whl", hash = "sha256:743b6edd98c98991be46c08e6b21df3861d5ae915f91d59f988384d93f7263e7"}, - {file = "scikit_learn-0.24.0-cp38-cp38-win_amd64.whl", hash = "sha256:2951f87d35e72f007701c6e028aa230f6df6212a3194677c0c950486066a454d"}, - {file = "scikit_learn-0.24.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:44e452ea8491225c5783d49577aad0f36202dfd52aec7f82c0fdfe5fbd5f7400"}, - {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:800aaf63f8838c00e85db2267dd226f89858594843fd03932a9eda95746d2c40"}, - {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:3eeff086f7329521d27249a082ea3c48c085cedb110db5f65968ab55c3ba2e09"}, - {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:4395e91b3548005f4a645018435b5a94f8cce232b5b70753020e606c6a750656"}, - {file = "scikit_learn-0.24.0-cp39-cp39-win32.whl", hash = "sha256:80ca024154b84b6ac4cfc86930ba13fdc348a209753bf2c16129db6f9eb8a80b"}, - {file = "scikit_learn-0.24.0-cp39-cp39-win_amd64.whl", hash = "sha256:490436b44b3a1957cb625e871764b0aa330b34cc416aea4abc6c38ca63d0d682"}, + {file = "scikit-learn-1.3.2.tar.gz", hash = "sha256:a2f54c76accc15a34bfb9066e6c7a56c1e7235dda5762b990792330b52ccfb05"}, + {file = "scikit_learn-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e326c0eb5cf4d6ba40f93776a20e9a7a69524c4db0757e7ce24ba222471ee8a1"}, + {file = "scikit_learn-1.3.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:535805c2a01ccb40ca4ab7d081d771aea67e535153e35a1fd99418fcedd1648a"}, + {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1215e5e58e9880b554b01187b8c9390bf4dc4692eedeaf542d3273f4785e342c"}, + {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ee107923a623b9f517754ea2f69ea3b62fc898a3641766cb7deb2f2ce450161"}, + {file = "scikit_learn-1.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:35a22e8015048c628ad099da9df5ab3004cdbf81edc75b396fd0cff8699ac58c"}, + {file = "scikit_learn-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6fb6bc98f234fda43163ddbe36df8bcde1d13ee176c6dc9b92bb7d3fc842eb66"}, + {file = "scikit_learn-1.3.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:18424efee518a1cde7b0b53a422cde2f6625197de6af36da0b57ec502f126157"}, + {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3271552a5eb16f208a6f7f617b8cc6d1f137b52c8a1ef8edf547db0259b2c9fb"}, + {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc4144a5004a676d5022b798d9e573b05139e77f271253a4703eed295bde0433"}, + {file = "scikit_learn-1.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:67f37d708f042a9b8d59551cf94d30431e01374e00dc2645fa186059c6c5d78b"}, + {file = "scikit_learn-1.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:8db94cd8a2e038b37a80a04df8783e09caac77cbe052146432e67800e430c028"}, + {file = "scikit_learn-1.3.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:61a6efd384258789aa89415a410dcdb39a50e19d3d8410bd29be365bcdd512d5"}, + {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb06f8dce3f5ddc5dee1715a9b9f19f20d295bed8e3cd4fa51e1d050347de525"}, + {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b2de18d86f630d68fe1f87af690d451388bb186480afc719e5f770590c2ef6c"}, + {file = "scikit_learn-1.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:0402638c9a7c219ee52c94cbebc8fcb5eb9fe9c773717965c1f4185588ad3107"}, + {file = "scikit_learn-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a19f90f95ba93c1a7f7924906d0576a84da7f3b2282ac3bfb7a08a32801add93"}, + {file = "scikit_learn-1.3.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:b8692e395a03a60cd927125eef3a8e3424d86dde9b2370d544f0ea35f78a8073"}, + {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15e1e94cc23d04d39da797ee34236ce2375ddea158b10bee3c343647d615581d"}, + {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:785a2213086b7b1abf037aeadbbd6d67159feb3e30263434139c98425e3dcfcf"}, + {file = "scikit_learn-1.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:64381066f8aa63c2710e6b56edc9f0894cc7bf59bd71b8ce5613a4559b6145e0"}, + {file = "scikit_learn-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c43290337f7a4b969d207e620658372ba3c1ffb611f8bc2b6f031dc5c6d1d03"}, + {file = "scikit_learn-1.3.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:dc9002fc200bed597d5d34e90c752b74df516d592db162f756cc52836b38fe0e"}, + {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d08ada33e955c54355d909b9c06a4789a729977f165b8bae6f225ff0a60ec4a"}, + {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:763f0ae4b79b0ff9cca0bf3716bcc9915bdacff3cebea15ec79652d1cc4fa5c9"}, + {file = "scikit_learn-1.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:ed932ea780517b00dae7431e031faae6b49b20eb6950918eb83bd043237950e0"}, ] [package.dependencies] -joblib = ">=0.11" -numpy = ">=1.13.3" -scipy = ">=0.19.1" +joblib = ">=1.1.1" +numpy = ">=1.17.3,<2.0" +scipy = ">=1.5.0" threadpoolctl = ">=2.0.0" [package.extras] -benchmark = ["matplotlib (>=2.1.1)", "memory-profiler (>=0.57.0)", "pandas (>=0.25.0)"] -docs = ["Pillow (>=7.1.2)", "matplotlib (>=2.1.1)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.0.0)", "pandas (>=0.25.0)", "scikit-image (>=0.13)", "seaborn (>=0.9.0)", "sphinx (>=3.2.0)", "sphinx-gallery (>=0.7.0)", "sphinx-prompt (>=1.3.0)"] -examples = ["matplotlib (>=2.1.1)", "pandas (>=0.25.0)", "scikit-image (>=0.13)", "seaborn (>=0.9.0)"] -tests = ["flake8 (>=3.8.2)", "matplotlib (>=2.1.1)", "mypy (>=0.770)", "pandas (>=0.25.0)", "pyamg (>=4.0.0)", "pytest (>=5.0.1)", "pytest-cov (>=2.9.0)", "scikit-image (>=0.13)"] +benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.10.1)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] +examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"] +tests = ["black (>=23.3.0)", "matplotlib (>=3.1.3)", "mypy (>=1.3)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.0.272)", "scikit-image (>=0.16.2)"] [[package]] name = "scipy" @@ -1926,19 +2870,23 @@ test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeo [[package]] name = "setuptools" -version = "72.2.0" +version = "75.1.0" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "setuptools-72.2.0-py3-none-any.whl", hash = "sha256:f11dd94b7bae3a156a95ec151f24e4637fb4fa19c878e4d191bfb8b2d82728c4"}, - {file = "setuptools-72.2.0.tar.gz", hash = "sha256:80aacbf633704e9c8bfa1d99fa5dd4dc59573efcf9e4042c13d3bcef91ac2ef9"}, + {file = "setuptools-75.1.0-py3-none-any.whl", hash = "sha256:35ab7fd3bcd95e6b7fd704e4a1539513edad446c097797f2985e0e4b960772f2"}, + {file = "setuptools-75.1.0.tar.gz", hash = "sha256:d59a21b17a275fb872a9c3dae73963160ae079f1049ed956880cd7c09b120538"}, ] [package.extras] -core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "ordered-set (>=3.1.1)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.collections", "jaraco.functools", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] -test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.11.*)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (<0.4)", "pytest-ruff (>=0.2.1)", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] [[package]] name = "six" @@ -1953,13 +2901,13 @@ files = [ [[package]] name = "smart-open" -version = "7.0.4" +version = "7.0.5" description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)" optional = false python-versions = "<4.0,>=3.7" files = [ - {file = "smart_open-7.0.4-py3-none-any.whl", hash = "sha256:4e98489932b3372595cddc075e6033194775165702887216b65eba760dfd8d47"}, - {file = "smart_open-7.0.4.tar.gz", hash = "sha256:62b65852bdd1d1d516839fcb1f6bc50cd0f16e05b4ec44b52f43d38bcb838524"}, + {file = "smart_open-7.0.5-py3-none-any.whl", hash = "sha256:8523ed805c12dff3eaa50e9c903a6cb0ae78800626631c5fe7ea073439847b89"}, + {file = "smart_open-7.0.5.tar.gz", hash = "sha256:d3672003b1dbc85e2013e4983b88eb9a5ccfd389b0d4e5015f39a9ee5620ec18"}, ] [package.dependencies] @@ -1972,7 +2920,7 @@ gcs = ["google-cloud-storage (>=2.6.0)"] http = ["requests"] s3 = ["boto3"] ssh = ["paramiko"] -test = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "paramiko", "pytest", "pytest-rerunfailures", "requests", "responses", "zstandard"] +test = ["awscli", "azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "numpy", "paramiko", "pyopenssl", "pytest", "pytest-benchmark", "pytest-rerunfailures", "requests", "responses", "zstandard"] webhdfs = ["requests"] zst = ["zstandard"] @@ -1997,33 +2945,47 @@ tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] [[package]] name = "stellargraph" -version = "1.3.0b0" +version = "1.2.1" description = "Python library for machine learning on graphs" optional = false python-versions = ">=3.6.0, <3.9.0" -files = [] -develop = false +files = [ + {file = "stellargraph-1.2.1-py3-none-any.whl", hash = "sha256:984a839de4645c9703b8f34a065307498feef38e5160a8f9d7764318a3d4621d"}, + {file = "stellargraph-1.2.1.tar.gz", hash = "sha256:804200a7992465bb5f10da95a3b7748014b0a159f1e79a95517c12a9ff2faed2"}, +] [package.dependencies] +gensim = ">=3.4.0" matplotlib = ">=2.2" networkx = ">=2.2" numpy = ">=1.14" pandas = ">=0.24" -scikit_learn = ">=0.20" +scikit-learn = ">=0.20" scipy = ">=1.1.0" tensorflow = ">=2.1.0" [package.extras] -demos = ["gensim (>=4.0.0)", "jupyter", "mplleaflet (==0.0.5)", "numba", "rdflib", "seaborn"] +demos = ["jupyter", "mplleaflet (==0.0.5)", "numba", "rdflib", "seaborn"] igraph = ["python-igraph"] neo4j = ["py2neo"] test = ["black (>=19.3b0)", "commonmark (==0.9.1)", "coverage (>=4.4,<5.0)", "nbconvert (>=5.5.0)", "papermill (>=2.0.0)", "pytest (==5.3.1)", "pytest-benchmark (>=3.1)", "pytest-cov (>=2.6.0)", "rdflib", "treon (>=0.1.2)"] -[package.source] -type = "git" -url = "https://github.com/stellargraph/stellargraph.git" -reference = "develop" -resolved_reference = "3c2c8c18ab4c5c16660f350d8e23d7dc39e738de" +[[package]] +name = "sympy" +version = "1.13.3" +description = "Computer algebra system (CAS) in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "sympy-1.13.3-py3-none-any.whl", hash = "sha256:54612cf55a62755ee71824ce692986f23c88ffa77207b30c1368eda4a7060f73"}, + {file = "sympy-1.13.3.tar.gz", hash = "sha256:b27fd2c6530e0ab39e275fc9b683895367e51d5da91baa8d3d64db2565fec4d9"}, +] + +[package.dependencies] +mpmath = ">=1.1.0,<1.4" + +[package.extras] +dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] [[package]] name = "tensorboard" @@ -2148,35 +3110,165 @@ files = [ tests = ["pytest", "pytest-cov"] [[package]] -name = "theano" -version = "1.0.5" -description = "Optimizing compiler for evaluating mathematical expressions on CPUs and GPUs." +name = "threadpoolctl" +version = "3.5.0" +description = "threadpoolctl" optional = false -python-versions = "*" +python-versions = ">=3.8" files = [ - {file = "Theano-1.0.5.tar.gz", hash = "sha256:6e9439dd53ba995fcae27bf20626074bfc2fff446899dc5c53cb28c1f9202e89"}, + {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, + {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, +] + +[[package]] +name = "torch" +version = "2.1.2" +description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "torch-2.1.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:3a871edd6c02dae77ad810335c0833391c1a4ce49af21ea8cf0f6a5d2096eea8"}, + {file = "torch-2.1.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:bef6996c27d8f6e92ea4e13a772d89611da0e103b48790de78131e308cf73076"}, + {file = "torch-2.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:0e13034fd5fb323cbbc29e56d0637a3791e50dd589616f40c79adfa36a5a35a1"}, + {file = "torch-2.1.2-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:d9b535cad0df3d13997dbe8bd68ac33e0e3ae5377639c9881948e40794a61403"}, + {file = "torch-2.1.2-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:f9a55d55af02826ebfbadf4e9b682f0f27766bc33df8236b48d28d705587868f"}, + {file = "torch-2.1.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:a6ebbe517097ef289cc7952783588c72de071d4b15ce0f8b285093f0916b1162"}, + {file = "torch-2.1.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:8f32ce591616a30304f37a7d5ea80b69ca9e1b94bba7f308184bf616fdaea155"}, + {file = "torch-2.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:e0ee6cf90c8970e05760f898d58f9ac65821c37ffe8b04269ec787aa70962b69"}, + {file = "torch-2.1.2-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:76d37967c31c99548ad2c4d3f2cf191db48476f2e69b35a0937137116da356a1"}, + {file = "torch-2.1.2-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:e2d83f07b4aac983453ea5bf8f9aa9dacf2278a8d31247f5d9037f37befc60e4"}, + {file = "torch-2.1.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:f41fe0c7ecbf903a568c73486139a75cfab287a0f6c17ed0698fdea7a1e8641d"}, + {file = "torch-2.1.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:e3225f47d50bb66f756fe9196a768055d1c26b02154eb1f770ce47a2578d3aa7"}, + {file = "torch-2.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:33d59cd03cb60106857f6c26b36457793637512998666ee3ce17311f217afe2b"}, + {file = "torch-2.1.2-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:8e221deccd0def6c2badff6be403e0c53491805ed9915e2c029adbcdb87ab6b5"}, + {file = "torch-2.1.2-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:05b18594f60a911a0c4f023f38a8bda77131fba5fd741bda626e97dcf5a3dd0a"}, + {file = "torch-2.1.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:9ca96253b761e9aaf8e06fb30a66ee301aecbf15bb5a303097de1969077620b6"}, + {file = "torch-2.1.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:d93ba70f67b08c2ae5598ee711cbc546a1bc8102cef938904b8c85c2089a51a0"}, + {file = "torch-2.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:255b50bc0608db177e6a3cc118961d77de7e5105f07816585fa6f191f33a9ff3"}, + {file = "torch-2.1.2-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6984cd5057c0c977b3c9757254e989d3f1124f4ce9d07caa6cb637783c71d42a"}, + {file = "torch-2.1.2-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:bc195d7927feabc0eb7c110e457c955ed2ab616f3c7c28439dd4188cf589699f"}, ] [package.dependencies] -numpy = ">=1.9.1" -scipy = ">=0.14" -six = ">=1.9.0" +filelock = "*" +fsspec = "*" +jinja2 = "*" +networkx = "*" +nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cudnn-cu12 = {version = "8.9.2.26", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nccl-cu12 = {version = "2.18.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +sympy = "*" +triton = {version = "2.1.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +typing-extensions = "*" [package.extras] -doc = ["Sphinx (>=0.5.1)", "pygments"] -test = ["flake8", "nose (>=1.3.0)", "parameterized"] +dynamo = ["jinja2"] +opt-einsum = ["opt-einsum (>=3.3)"] [[package]] -name = "threadpoolctl" -version = "3.5.0" -description = "threadpoolctl" +name = "torch-geometric" +version = "2.6.1" +description = "Graph Neural Network Library for PyTorch" optional = false python-versions = ">=3.8" files = [ - {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, - {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, + {file = "torch_geometric-2.6.1-py3-none-any.whl", hash = "sha256:8faeb353f9655f7dbec44c5e0b44c721773bdfb279994da96b9b8b12fd30f427"}, + {file = "torch_geometric-2.6.1.tar.gz", hash = "sha256:1f18f9d0fc4d2239d526221e4f22606a4a3895b5d965a9856d27610a3df662c6"}, ] +[package.dependencies] +aiohttp = "*" +fsspec = "*" +jinja2 = "*" +numpy = "*" +psutil = ">=5.8.0" +pyparsing = "*" +requests = "*" +tqdm = "*" + +[package.extras] +benchmark = ["matplotlib", "networkx", "pandas", "protobuf (<4.21)", "wandb"] +dev = ["ipython", "matplotlib-inline", "pre-commit", "torch_geometric[test]"] +full = ["ase", "captum (<0.7.0)", "graphviz", "h5py", "matplotlib", "networkx", "numba (<0.60.0)", "opt_einsum", "pandas", "pgmpy", "pynndescent", "pytorch-memlab", "rdflib", "rdkit", "scikit-image", "scikit-learn", "scipy", "statsmodels", "sympy", "tabulate", "torch_geometric[graphgym,modelhub]", "torchmetrics", "trimesh"] +graphgym = ["protobuf (<4.21)", "pytorch-lightning (<2.3.0)", "yacs"] +modelhub = ["huggingface_hub"] +test = ["onnx", "onnxruntime", "pytest", "pytest-cov"] + +[[package]] +name = "torchmetrics" +version = "1.4.3" +description = "PyTorch native Metrics" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torchmetrics-1.4.3-py3-none-any.whl", hash = "sha256:76e67490231acef7f70cf36ab129df72fb2b0256dada7051001ab3b9f8699bf4"}, + {file = "torchmetrics-1.4.3.tar.gz", hash = "sha256:5554a19167e91f543afe82ff58a01059c8eec854359ad22896449c2c8fb0ad89"}, +] + +[package.dependencies] +lightning-utilities = ">=0.8.0" +numpy = ">1.20.0" +packaging = ">17.1" +torch = ">=1.10.0" +typing-extensions = {version = "*", markers = "python_version < \"3.9\""} + +[package.extras] +all = ["SciencePlots (>=2.0.0)", "gammatone (>1.0.0)", "ipadic (>=1.0.0)", "matplotlib (>=3.6.0)", "mecab-python3 (>=1.0.6)", "mypy (==1.11.2)", "nltk (>=3.8.2)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "regex (>=2021.9.24)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "torch (==2.4.1)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +audio = ["gammatone (>1.0.0)", "pesq (>=0.0.4)", "pystoi (>=0.3.0)", "torchaudio (>=0.10.0)"] +detection = ["pycocotools (>2.0.0)", "torchvision (>=0.8)"] +dev = ["SciencePlots (>=2.0.0)", "bert-score (==0.3.13)", "dython (==0.7.6)", "dython (>=0.7.8,<0.8.0)", "fairlearn", "fast-bss-eval (>=0.1.0)", "faster-coco-eval (==1.5.*)", "gammatone (>1.0.0)", "huggingface-hub (<0.26)", "ipadic (>=1.0.0)", "jiwer (>=2.3.0)", "kornia (>=0.6.7)", "lpips (<=0.1.4)", "matplotlib (>=3.6.0)", "mecab-ko (>=1.0.0)", "mecab-ko-dic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "mir-eval (>=0.6)", "monai (==1.3.2)", "mypy (==1.11.2)", "netcal (>1.0.0)", "nltk (>=3.8.2)", "numpy (<2.2.0)", "pandas (>1.4.0)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "pytorch-msssim (==1.0.0)", "regex (>=2021.9.24)", "rouge-score (>0.1.0)", "sacrebleu (>=2.3.0)", "scikit-image (>=0.19.0)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "sewar (>=0.4.4)", "statsmodels (>0.13.5)", "torch (==2.4.1)", "torch-complex (<0.5.0)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +image = ["scipy (>1.0.0)", "torch-fidelity (<=0.4.0)", "torchvision (>=0.8)"] +multimodal = ["piq (<=0.8.0)", "transformers (>=4.42.3)"] +text = ["ipadic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "nltk (>=3.8.2)", "regex (>=2021.9.24)", "sentencepiece (>=0.2.0)", "tqdm (>=4.41.0)", "transformers (>4.4.0)"] +typing = ["mypy (==1.11.2)", "torch (==2.4.1)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +visual = ["SciencePlots (>=2.0.0)", "matplotlib (>=3.6.0)"] + +[[package]] +name = "torchvision" +version = "0.16.2" +description = "image and video datasets and models for torch deep learning" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torchvision-0.16.2-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:bc86f2800cb2c0c1a09c581409cdd6bff66e62f103dc83fc63f73346264c3756"}, + {file = "torchvision-0.16.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b024bd412df6d3a007dcebf311a894eb3c5c21e1af80d12be382bbcb097a7c3a"}, + {file = "torchvision-0.16.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:e89f10f3c8351972b6e3fda95bc3e479ea8dbfc9dfcfd2c32902dbad4ba5cfc5"}, + {file = "torchvision-0.16.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:96c7583700112a410bdc4e1e4f118c429dab49c29c9a31a2cc3579bc9b08b19d"}, + {file = "torchvision-0.16.2-cp310-cp310-win_amd64.whl", hash = "sha256:9f4032ebb3277fb07ff6a9b818d50a547fb8fcd89d958cfd9e773322454bb688"}, + {file = "torchvision-0.16.2-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:67b1aaf8b8cb02ce75dd445f291a27c8036a502f8c0aa76e28c37a0faac2e153"}, + {file = "torchvision-0.16.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bef30d03e1d1c629761f4dca51d3b7d8a0dc0acce6f4068ab2a1634e8e7b64e0"}, + {file = "torchvision-0.16.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:e59cc7b2bd1ab5c0ce4ae382e4e37be8f1c174e8b5de2f6a23c170de9ae28495"}, + {file = "torchvision-0.16.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:e130b08cc9b3cc73a6c59d6edf032394a322f9579bfd21d14bc2e1d0999aa758"}, + {file = "torchvision-0.16.2-cp311-cp311-win_amd64.whl", hash = "sha256:8692ab1e48807e9604046a6f4beeb67b523294cee1b00828654bb0df2cfce2b2"}, + {file = "torchvision-0.16.2-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:b82732dcf876a37c852772342aa6ee3480c03bb3e2a802ae109fc5f7e28d26e9"}, + {file = "torchvision-0.16.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4b065143d1a720fe8a9077fd4be35d491f98819ec80b3dbbc3ec64d0b707a906"}, + {file = "torchvision-0.16.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:bc5f274e4ecd1b86062063cdf4fd385a1d39d147a3a2685fbbde9ff08bb720b8"}, + {file = "torchvision-0.16.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:335959c43b371c0474af34c1ef2a52efdc7603c45700d29e4475eeb02984170c"}, + {file = "torchvision-0.16.2-cp38-cp38-win_amd64.whl", hash = "sha256:7fd22d86e08eba321af70cad291020c2cdeac069b00ce88b923ca52e06174769"}, + {file = "torchvision-0.16.2-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:56115268b37f0b75364e3654e47ad9abc66ac34c1f9e5e3dfa89a22d6a40017a"}, + {file = "torchvision-0.16.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:82805f8445b094f9d1e770390ee6cc86855e89955e08ce34af2e2274fc0e5c45"}, + {file = "torchvision-0.16.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:3f4bd5fcbc361476e2e78016636ac7d5509e59d9962521f06eb98e6803898182"}, + {file = "torchvision-0.16.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:8199acdf8ab066a28b84a5b6f4d97b58976d9e164b1acc3a9d14fccfaf74bb3a"}, + {file = "torchvision-0.16.2-cp39-cp39-win_amd64.whl", hash = "sha256:41dd4fa9f176d563fe9f1b9adef3b7e582cdfb60ce8c9bc51b094a025be687c9"}, +] + +[package.dependencies] +numpy = "*" +pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" +requests = "*" +torch = "2.1.2" + +[package.extras] +scipy = ["scipy"] + [[package]] name = "tornado" version = "6.4.1" @@ -2232,6 +3324,31 @@ files = [ docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] +[[package]] +name = "triton" +version = "2.1.0" +description = "A language and compiler for custom Deep Learning operations" +optional = false +python-versions = "*" +files = [ + {file = "triton-2.1.0-0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:66439923a30d5d48399b08a9eae10370f6c261a5ec864a64983bae63152d39d7"}, + {file = "triton-2.1.0-0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:919b06453f0033ea52c13eaf7833de0e57db3178d23d4e04f9fc71c4f2c32bf8"}, + {file = "triton-2.1.0-0-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ae4bb8a91de790e1866405211c4d618379781188f40d5c4c399766914e84cd94"}, + {file = "triton-2.1.0-0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:39f6fb6bdccb3e98f3152e3fbea724f1aeae7d749412bbb1fa9c441d474eba26"}, + {file = "triton-2.1.0-0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:21544e522c02005a626c8ad63d39bdff2f31d41069592919ef281e964ed26446"}, + {file = "triton-2.1.0-0-pp37-pypy37_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:143582ca31dd89cd982bd3bf53666bab1c7527d41e185f9e3d8a3051ce1b663b"}, + {file = "triton-2.1.0-0-pp38-pypy38_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:82fc5aeeedf6e36be4e4530cbdcba81a09d65c18e02f52dc298696d45721f3bd"}, + {file = "triton-2.1.0-0-pp39-pypy39_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:81a96d110a738ff63339fc892ded095b31bd0d205e3aace262af8400d40b6fa8"}, +] + +[package.dependencies] +filelock = "*" + +[package.extras] +build = ["cmake (>=3.18)", "lit"] +tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)"] +tutorials = ["matplotlib", "pandas", "tabulate"] + [[package]] name = "typing-extensions" version = "4.12.2" @@ -2245,24 +3362,24 @@ files = [ [[package]] name = "tzdata" -version = "2024.1" +version = "2024.2" description = "Provider of IANA time zone data" optional = false python-versions = ">=2" files = [ - {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, - {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, + {file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"}, + {file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"}, ] [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -2284,13 +3401,13 @@ files = [ [[package]] name = "werkzeug" -version = "3.0.3" +version = "3.0.4" description = "The comprehensive WSGI web application library." optional = false python-versions = ">=3.8" files = [ - {file = "werkzeug-3.0.3-py3-none-any.whl", hash = "sha256:fc9645dc43e03e4d630d23143a04a7f947a9a3b5727cd535fdfe155a17cc48c8"}, - {file = "werkzeug-3.0.3.tar.gz", hash = "sha256:097e5bfda9f0aba8da6b8545146def481d06aa7d3266e7448e2cccf67dd8bd18"}, + {file = "werkzeug-3.0.4-py3-none-any.whl", hash = "sha256:02c9eb92b7d6c06f31a782811505d2157837cea66aaede3e217c7c27c039476c"}, + {file = "werkzeug-3.0.4.tar.gz", hash = "sha256:34f2371506b250df4d4f84bfe7b0921e4762525762bbd936614909fe25cd7306"}, ] [package.dependencies] @@ -2392,22 +3509,132 @@ files = [ {file = "wrapt-1.16.0.tar.gz", hash = "sha256:5f370f952971e7d17c7d1ead40e49f32345a7f7a5373571ef44d800d06b1899d"}, ] +[[package]] +name = "yarl" +version = "1.14.0" +description = "Yet another URL library" +optional = false +python-versions = ">=3.8" +files = [ + {file = "yarl-1.14.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1bfc25aa6a7c99cf86564210f79a0b7d4484159c67e01232b116e445b3036547"}, + {file = "yarl-1.14.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0cf21f46a15d445417de8fc89f2568852cf57fe8ca1ab3d19ddb24d45c0383ae"}, + {file = "yarl-1.14.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1dda53508df0de87b6e6b0a52d6718ff6c62a5aca8f5552748404963df639269"}, + {file = "yarl-1.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:587c3cc59bc148a9b1c07a019346eda2549bc9f468acd2f9824d185749acf0a6"}, + {file = "yarl-1.14.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3007a5b75cb50140708420fe688c393e71139324df599434633019314ceb8b59"}, + {file = "yarl-1.14.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:06ff23462398333c78b6f4f8d3d70410d657a471c2c5bbe6086133be43fc8f1a"}, + {file = "yarl-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:689a99a42ee4583fcb0d3a67a0204664aa1539684aed72bdafcbd505197a91c4"}, + {file = "yarl-1.14.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b0547ab1e9345dc468cac8368d88ea4c5bd473ebc1d8d755347d7401982b5dd8"}, + {file = "yarl-1.14.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:742aef0a99844faaac200564ea6f5e08facb285d37ea18bd1a5acf2771f3255a"}, + {file = "yarl-1.14.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:176110bff341b6730f64a1eb3a7070e12b373cf1c910a9337e7c3240497db76f"}, + {file = "yarl-1.14.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:46a9772a1efa93f9cd170ad33101c1817c77e0e9914d4fe33e2da299d7cf0f9b"}, + {file = "yarl-1.14.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:ee2c68e4f2dd1b1c15b849ba1c96fac105fca6ffdb7c1e8be51da6fabbdeafb9"}, + {file = "yarl-1.14.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:047b258e00b99091b6f90355521f026238c63bd76dcf996d93527bb13320eefd"}, + {file = "yarl-1.14.0-cp310-cp310-win32.whl", hash = "sha256:0aa92e3e30a04f9462a25077db689c4ac5ea9ab6cc68a2e563881b987d42f16d"}, + {file = "yarl-1.14.0-cp310-cp310-win_amd64.whl", hash = "sha256:d9baec588f015d0ee564057aa7574313c53a530662ffad930b7886becc85abdf"}, + {file = "yarl-1.14.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:07f9eaf57719d6721ab15805d85f4b01a5b509a0868d7320134371bcb652152d"}, + {file = "yarl-1.14.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c14b504a74e58e2deb0378b3eca10f3d076635c100f45b113c18c770b4a47a50"}, + {file = "yarl-1.14.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:16a682a127930f3fc4e42583becca6049e1d7214bcad23520c590edd741d2114"}, + {file = "yarl-1.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:73bedd2be05f48af19f0f2e9e1353921ce0c83f4a1c9e8556ecdcf1f1eae4892"}, + {file = "yarl-1.14.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f3ab950f8814f3b7b5e3eebc117986f817ec933676f68f0a6c5b2137dd7c9c69"}, + {file = "yarl-1.14.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b693c63e7e64b524f54aa4888403c680342d1ad0d97be1707c531584d6aeeb4f"}, + {file = "yarl-1.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85cb3e40eaa98489f1e2e8b29f5ad02ee1ee40d6ce6b88d50cf0f205de1d9d2c"}, + {file = "yarl-1.14.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f24f08b6c9b9818fd80612c97857d28f9779f0d1211653ece9844fc7b414df2"}, + {file = "yarl-1.14.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:29a84a46ec3ebae7a1c024c055612b11e9363a8a23238b3e905552d77a2bc51b"}, + {file = "yarl-1.14.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:5cd5dad8366e0168e0fd23d10705a603790484a6dbb9eb272b33673b8f2cce72"}, + {file = "yarl-1.14.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a152751af7ef7b5d5fa6d215756e508dd05eb07d0cf2ba51f3e740076aa74373"}, + {file = "yarl-1.14.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:3d569f877ed9a708e4c71a2d13d2940cb0791da309f70bd970ac1a5c088a0a92"}, + {file = "yarl-1.14.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:6a615cad11ec3428020fb3c5a88d85ce1b5c69fd66e9fcb91a7daa5e855325dd"}, + {file = "yarl-1.14.0-cp311-cp311-win32.whl", hash = "sha256:bab03192091681d54e8225c53f270b0517637915d9297028409a2a5114ff4634"}, + {file = "yarl-1.14.0-cp311-cp311-win_amd64.whl", hash = "sha256:985623575e5c4ea763056ffe0e2d63836f771a8c294b3de06d09480538316b13"}, + {file = "yarl-1.14.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:fc2c80bc87fba076e6cbb926216c27fba274dae7100a7b9a0983b53132dd99f2"}, + {file = "yarl-1.14.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:55c144d363ad4626ca744556c049c94e2b95096041ac87098bb363dcc8635e8d"}, + {file = "yarl-1.14.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b03384eed107dbeb5f625a99dc3a7de8be04fc8480c9ad42fccbc73434170b20"}, + {file = "yarl-1.14.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f72a0d746d38cb299b79ce3d4d60ba0892c84bbc905d0d49c13df5bace1b65f8"}, + {file = "yarl-1.14.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8648180b34faaea4aa5b5ca7e871d9eb1277033fa439693855cf0ea9195f85f1"}, + {file = "yarl-1.14.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9557c9322aaa33174d285b0c1961fb32499d65ad1866155b7845edc876c3c835"}, + {file = "yarl-1.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f50eb3837012a937a2b649ec872b66ba9541ad9d6f103ddcafb8231cfcafd22"}, + {file = "yarl-1.14.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8892fa575ac9b1b25fae7b221bc4792a273877b9b56a99ee2d8d03eeb3dbb1d2"}, + {file = "yarl-1.14.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e6a2c5c5bb2556dfbfffffc2bcfb9c235fd2b566d5006dfb2a37afc7e3278a07"}, + {file = "yarl-1.14.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:ab3abc0b78a5dfaa4795a6afbe7b282b6aa88d81cf8c1bb5e394993d7cae3457"}, + {file = "yarl-1.14.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:47eede5d11d669ab3759b63afb70d28d5328c14744b8edba3323e27dc52d298d"}, + {file = "yarl-1.14.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:fe4d2536c827f508348d7b40c08767e8c7071614250927233bf0c92170451c0a"}, + {file = "yarl-1.14.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0fd7b941dd1b00b5f0acb97455fea2c4b7aac2dd31ea43fb9d155e9bc7b78664"}, + {file = "yarl-1.14.0-cp312-cp312-win32.whl", hash = "sha256:99ff3744f5fe48288be6bc402533b38e89749623a43208e1d57091fc96b783b9"}, + {file = "yarl-1.14.0-cp312-cp312-win_amd64.whl", hash = "sha256:1ca3894e9e9f72da93544f64988d9c052254a338a9f855165f37f51edb6591de"}, + {file = "yarl-1.14.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:5d02d700705d67e09e1f57681f758f0b9d4412eeb70b2eb8d96ca6200b486db3"}, + {file = "yarl-1.14.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:30600ba5db60f7c0820ef38a2568bb7379e1418ecc947a0f76fd8b2ff4257a97"}, + {file = "yarl-1.14.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:e85d86527baebb41a214cc3b45c17177177d900a2ad5783dbe6f291642d4906f"}, + {file = "yarl-1.14.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37001e5d4621cef710c8dc1429ca04e189e572f128ab12312eab4e04cf007132"}, + {file = "yarl-1.14.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4f4547944d4f5cfcdc03f3f097d6f05bbbc915eaaf80a2ee120d0e756de377d"}, + {file = "yarl-1.14.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75ff4c819757f9bdb35de049a509814d6ce851fe26f06eb95a392a5640052482"}, + {file = "yarl-1.14.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68ac1a09392ed6e3fd14be880d39b951d7b981fd135416db7d18a6208c536561"}, + {file = "yarl-1.14.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:96952f642ac69075e44c7d0284528938fdff39422a1d90d3e45ce40b72e5e2d9"}, + {file = "yarl-1.14.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a56fbe3d7f3bce1d060ea18d2413a2ca9ca814eea7cedc4d247b5f338d54844e"}, + {file = "yarl-1.14.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:7e2637d75e92763d1322cb5041573279ec43a80c0f7fbbd2d64f5aee98447b17"}, + {file = "yarl-1.14.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:9abe80ae2c9d37c17599557b712e6515f4100a80efb2cda15f5f070306477cd2"}, + {file = "yarl-1.14.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:217a782020b875538eebf3948fac3a7f9bbbd0fd9bf8538f7c2ad7489e80f4e8"}, + {file = "yarl-1.14.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b9cfef3f14f75bf6aba73a76caf61f9d00865912a04a4393c468a7ce0981b519"}, + {file = "yarl-1.14.0-cp313-cp313-win32.whl", hash = "sha256:d8361c7d04e6a264481f0b802e395f647cd3f8bbe27acfa7c12049efea675bd1"}, + {file = "yarl-1.14.0-cp313-cp313-win_amd64.whl", hash = "sha256:bc24f968b82455f336b79bf37dbb243b7d76cd40897489888d663d4e028f5069"}, + {file = "yarl-1.14.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:91d875f75fabf76b3018c5f196bf3d308ed2b49ddcb46c1576d6b075754a1393"}, + {file = "yarl-1.14.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:4009def9be3a7e5175db20aa2d7307ecd00bbf50f7f0f989300710eee1d0b0b9"}, + {file = "yarl-1.14.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:582cedde49603f139be572252a318b30dc41039bc0b8165f070f279e5d12187f"}, + {file = "yarl-1.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dbd9ff43a04f8ffe8a959a944c2dca10d22f5f99fc6a459f49c3ebfb409309d9"}, + {file = "yarl-1.14.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b9f805e37ed16cc212fdc538a608422d7517e7faf539bedea4fe69425bc55d76"}, + {file = "yarl-1.14.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:95e16e9eaa2d7f5d87421b8fe694dd71606aa61d74b824c8d17fc85cc51983d1"}, + {file = "yarl-1.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:816d24f584edefcc5ca63428f0b38fee00b39fe64e3c5e558f895a18983efe96"}, + {file = "yarl-1.14.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cd2660c01367eb3ef081b8fa0a5da7fe767f9427aa82023a961a5f28f0d4af6c"}, + {file = "yarl-1.14.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:94b2bb9bcfd5be9d27004ea4398fb640373dd0c1a9e219084f42c08f77a720ab"}, + {file = "yarl-1.14.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:c2089a9afef887664115f7fa6d3c0edd6454adaca5488dba836ca91f60401075"}, + {file = "yarl-1.14.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:2192f718db4a8509f63dd6d950f143279211fa7e6a2c612edc17d85bf043d36e"}, + {file = "yarl-1.14.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:8385ab36bf812e9d37cf7613999a87715f27ef67a53f0687d28c44b819df7cb0"}, + {file = "yarl-1.14.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:b4c1ecba93e7826dc71ddba75fb7740cdb52e7bd0be9f03136b83f54e6a1f511"}, + {file = "yarl-1.14.0-cp38-cp38-win32.whl", hash = "sha256:e749af6c912a7bb441d105c50c1a3da720474e8acb91c89350080dd600228f0e"}, + {file = "yarl-1.14.0-cp38-cp38-win_amd64.whl", hash = "sha256:147e36331f6f63e08a14640acf12369e041e0751bb70d9362df68c2d9dcf0c87"}, + {file = "yarl-1.14.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a9f917966d27f7ce30039fe8d900f913c5304134096554fd9bea0774bcda6d1"}, + {file = "yarl-1.14.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8a2f8fb7f944bcdfecd4e8d855f84c703804a594da5123dd206f75036e536d4d"}, + {file = "yarl-1.14.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8f4e475f29a9122f908d0f1f706e1f2fc3656536ffd21014ff8a6f2e1b14d1d8"}, + {file = "yarl-1.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8089d4634d8fa2b1806ce44fefa4979b1ab2c12c0bc7ef3dfa45c8a374811348"}, + {file = "yarl-1.14.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1b16f6c75cffc2dc0616ea295abb0e1967601bd1fb1e0af6a1de1c6c887f3439"}, + {file = "yarl-1.14.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:498b3c55087b9d762636bca9b45f60d37e51d24341786dc01b81253f9552a607"}, + {file = "yarl-1.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3f8bfc1db82589ef965ed234b87de30d140db8b6dc50ada9e33951ccd8ec07a"}, + {file = "yarl-1.14.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:625f207b1799e95e7c823f42f473c1e9dbfb6192bd56bba8695656d92be4535f"}, + {file = "yarl-1.14.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:781e2495e408a81e4eaeedeb41ba32b63b1980dddf8b60dbbeff6036bcd35049"}, + {file = "yarl-1.14.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:659603d26d40dd4463200df9bfbc339fbfaed3fe32e5c432fe1dc2b5d4aa94b4"}, + {file = "yarl-1.14.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:4e0d45ebf975634468682c8bec021618b3ad52c37619e5c938f8f831fa1ac5c0"}, + {file = "yarl-1.14.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:a2e4725a08cb2b4794db09e350c86dee18202bb8286527210e13a1514dc9a59a"}, + {file = "yarl-1.14.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:19268b4fec1d7760134f2de46ef2608c2920134fb1fa61e451f679e41356dc55"}, + {file = "yarl-1.14.0-cp39-cp39-win32.whl", hash = "sha256:337912bcdcf193ade64b9aae5a4017a0a1950caf8ca140362e361543c6773f21"}, + {file = "yarl-1.14.0-cp39-cp39-win_amd64.whl", hash = "sha256:b6d0147574ce2e7b812c989e50fa72bbc5338045411a836bd066ce5fc8ac0bce"}, + {file = "yarl-1.14.0-py3-none-any.whl", hash = "sha256:c8ed4034f0765f8861620c1f2f2364d2e58520ea288497084dae880424fc0d9f"}, + {file = "yarl-1.14.0.tar.gz", hash = "sha256:88c7d9d58aab0724b979ab5617330acb1c7030b79379c8138c1c8c94e121d1b3"}, +] + +[package.dependencies] +idna = ">=2.0" +multidict = ">=4.0" +propcache = ">=0.2.0" + [[package]] name = "zipp" -version = "3.20.0" +version = "3.20.2" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false python-versions = ">=3.8" files = [ - {file = "zipp-3.20.0-py3-none-any.whl", hash = "sha256:58da6168be89f0be59beb194da1250516fdaa062ccebd30127ac65d30045e10d"}, - {file = "zipp-3.20.0.tar.gz", hash = "sha256:0145e43d89664cfe1a2e533adc75adafed82fe2da404b4bbb6b026c0157bdb31"}, + {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, + {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, ] [package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-ignore-flaky"] +type = ["pytest-mypy"] [metadata] lock-version = "2.0" python-versions = "~3.8" -content-hash = "b805b28040247e202be1de83ad9f1b46bc862e2a0676c296d8d5475e9c766d9a" +content-hash = "efa0179eba359fcaefc59bcf838d3ddb4dc246ee64c0190fea65ca3f732b19ef" diff --git a/Chapter05/pyproject.toml b/Chapter05/pyproject.toml index 503e223..5fd476d 100644 --- a/Chapter05/pyproject.toml +++ b/Chapter05/pyproject.toml @@ -1,28 +1,33 @@ [tool.poetry] -name = "Graph Machine Learning - Chapter 5" +name = "Graph Machine Learning (2nd Edition) - Chapter 5" version = "1.0.0" description = "" authors = ["Enrico Deusebio "] packages = [] +[tool.setuptools] +py-modules = [] + [tool.poetry.dependencies] python = "~3.8" ipykernel = ">=6.0.0" -networkx = "==2.5" matplotlib = "==3.2.2" -node2vec = "==0.3.3" -karateclub = "==1.0.19" -gensim = "==3.8.3" -communities = "==2.2.0" -scikit-learn = "==0.24.0" -chardet = "==5.2.0" +numpy = "==1.21.6" +neural-structured-learning = "==1.3.1" +networkx = "==2.5" tensorflow = "^2.6.0" tensorflow-io-gcs-filesystem = "==0.21.0" # This needs pinning - see https://stackoverflow.com/a/76477590 +stellargraph= "^1.2.1" protobuf= "^3.20" -nxt-gem = { git="https://github.com/palash1992/GEM.git", branch="master" } -# This is what is holding us back to python 3.8 -stellargraph = { git="https://github.com/stellargraph/stellargraph.git", branch="develop" } +torch = "^2.1.0" +chardet = "==5.2.0" +torch_geometric = "^2.5.2" +torchvision = "^0.16.0" +torchmetrics="^1.3.0" +# dgl = https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl +dgl = {url = "https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl"} [build-system] requires = ["poetry-core"] -build-backend = "poetry.core.masonry.api" \ No newline at end of file +build-backend = "poetry.core.masonry.api" + diff --git a/Chapter05/requirements.txt b/Chapter05/requirements.txt index 797e6cf..104a080 100644 --- a/Chapter05/requirements.txt +++ b/Chapter05/requirements.txt @@ -1,101 +1,132 @@ absl-py==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +aiohappyeyeballs==2.4.3 ; python_version >= "3.8" and python_version < "3.9" +aiohttp==3.10.10 ; python_version >= "3.8" and python_version < "3.9" +aiosignal==1.3.1 ; python_version >= "3.8" and python_version < "3.9" +annotated-types==0.7.0 ; python_version >= "3.8" and python_version < "3.9" appnope==0.1.4 ; python_version >= "3.8" and python_version < "3.9" and (platform_system == "Darwin" or sys_platform == "darwin") asttokens==2.4.1 ; python_version >= "3.8" and python_version < "3.9" astunparse==1.6.3 ; python_version >= "3.8" and python_version < "3.9" +async-timeout==4.0.3 ; python_version >= "3.8" and python_version < "3.9" +attrs==24.2.0 ; python_version >= "3.8" and python_version < "3.9" backcall==0.2.0 ; python_version >= "3.8" and python_version < "3.9" -cachetools==5.4.0 ; python_version >= "3.8" and python_version < "3.9" -certifi==2024.7.4 ; python_version >= "3.8" and python_version < "3.9" -cffi==1.17.0 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +cachetools==5.5.0 ; python_version >= "3.8" and python_version < "3.9" +certifi==2024.8.30 ; python_version >= "3.8" and python_version < "3.9" +cffi==1.17.1 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" chardet==5.2.0 ; python_version >= "3.8" and python_version < "3.9" -charset-normalizer==3.3.2 ; python_version >= "3.8" and python_version < "3.9" +charset-normalizer==3.4.0 ; python_version >= "3.8" and python_version < "3.9" colorama==0.4.6 ; python_version >= "3.8" and python_version < "3.9" and (sys_platform == "win32" or platform_system == "Windows") comm==0.2.2 ; python_version >= "3.8" and python_version < "3.9" -communities==2.2.0 ; python_version >= "3.8" and python_version < "3.9" cycler==0.12.1 ; python_version >= "3.8" and python_version < "3.9" -cython==0.29.14 ; python_version >= "3.8" and python_version < "3.9" -debugpy==1.8.5 ; python_version >= "3.8" and python_version < "3.9" +debugpy==1.8.7 ; python_version >= "3.8" and python_version < "3.9" decorator==5.1.1 ; python_version >= "3.8" and python_version < "3.9" -executing==2.0.1 ; python_version >= "3.8" and python_version < "3.9" +dgl @ https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl ; python_version >= "3.8" and python_version < "3.9" +executing==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +filelock==3.16.1 ; python_version >= "3.8" and python_version < "3.9" flatbuffers==2.0.7 ; python_version >= "3.8" and python_version < "3.9" +frozenlist==1.4.1 ; python_version >= "3.8" and python_version < "3.9" +fsspec==2024.9.0 ; python_version >= "3.8" and python_version < "3.9" gast==0.4.0 ; python_version >= "3.8" and python_version < "3.9" -gensim==3.8.3 ; python_version >= "3.8" and python_version < "3.9" +gensim==4.3.3 ; python_version >= "3.8" and python_version < "3.9" google-auth-oauthlib==1.0.0 ; python_version >= "3.8" and python_version < "3.9" -google-auth==2.33.0 ; python_version >= "3.8" and python_version < "3.9" +google-auth==2.35.0 ; python_version >= "3.8" and python_version < "3.9" google-pasta==0.2.0 ; python_version >= "3.8" and python_version < "3.9" -grpcio==1.65.4 ; python_version >= "3.8" and python_version < "3.9" +grpcio==1.66.2 ; python_version >= "3.8" and python_version < "3.9" h5py==3.11.0 ; python_version >= "3.8" and python_version < "3.9" -idna==3.7 ; python_version >= "3.8" and python_version < "3.9" -importlib-metadata==8.2.0 ; python_version >= "3.8" and python_version < "3.9" +idna==3.10 ; python_version >= "3.8" and python_version < "3.9" +importlib-metadata==8.5.0 ; python_version >= "3.8" and python_version < "3.9" ipykernel==6.29.5 ; python_version >= "3.8" and python_version < "3.9" ipython==8.12.3 ; python_version >= "3.8" and python_version < "3.9" jedi==0.19.1 ; python_version >= "3.8" and python_version < "3.9" +jinja2==3.1.4 ; python_version >= "3.8" and python_version < "3.9" joblib==1.4.2 ; python_version >= "3.8" and python_version < "3.9" -jupyter-client==8.6.2 ; python_version >= "3.8" and python_version < "3.9" +jupyter-client==8.6.3 ; python_version >= "3.8" and python_version < "3.9" jupyter-core==5.7.2 ; python_version >= "3.8" and python_version < "3.9" -karateclub==1.0.19 ; python_version >= "3.8" and python_version < "3.9" keras-preprocessing==1.1.2 ; python_version >= "3.8" and python_version < "3.9" keras==2.7.0 ; python_version >= "3.8" and python_version < "3.9" -kiwisolver==1.4.5 ; python_version >= "3.8" and python_version < "3.9" +kiwisolver==1.4.7 ; python_version >= "3.8" and python_version < "3.9" libclang==18.1.1 ; python_version >= "3.8" and python_version < "3.9" -markdown==3.6 ; python_version >= "3.8" and python_version < "3.9" +lightning-utilities==0.11.7 ; python_version >= "3.8" and python_version < "3.9" +markdown==3.7 ; python_version >= "3.8" and python_version < "3.9" markupsafe==2.1.5 ; python_version >= "3.8" and python_version < "3.9" matplotlib-inline==0.1.7 ; python_version >= "3.8" and python_version < "3.9" matplotlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" +mpmath==1.3.0 ; python_version >= "3.8" and python_version < "3.9" +multidict==6.1.0 ; python_version >= "3.8" and python_version < "3.9" nest-asyncio==1.6.0 ; python_version >= "3.8" and python_version < "3.9" networkx==2.5 ; python_version >= "3.8" and python_version < "3.9" -node2vec==0.3.3 ; python_version >= "3.8" and python_version < "3.9" -numpy==1.24.4 ; python_version >= "3.8" and python_version < "3.9" -nxt-gem @ git+https://github.com/palash1992/GEM.git@ae8e92d34213f5785757b4a0943bd7d8d337adb3 ; python_version >= "3.8" and python_version < "3.9" +neural-structured-learning==1.3.1 ; python_version >= "3.8" and python_version < "3.9" +numpy==1.21.6 ; python_version >= "3.8" and python_version < "3.9" +nvidia-cublas-cu12==12.1.3.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-cupti-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-nvrtc-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-runtime-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cudnn-cu12==8.9.2.26 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cufft-cu12==11.0.2.54 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-curand-cu12==10.3.2.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cusolver-cu12==11.4.5.107 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cusparse-cu12==12.1.0.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nccl-cu12==2.18.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nvjitlink-cu12==12.6.77 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nvtx-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" oauthlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" -opt-einsum==3.3.0 ; python_version >= "3.8" and python_version < "3.9" +opt-einsum==3.4.0 ; python_version >= "3.8" and python_version < "3.9" packaging==24.1 ; python_version >= "3.8" and python_version < "3.9" pandas==2.0.3 ; python_version >= "3.8" and python_version < "3.9" parso==0.8.4 ; python_version >= "3.8" and python_version < "3.9" pexpect==4.9.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" pickleshare==0.7.5 ; python_version >= "3.8" and python_version < "3.9" -platformdirs==4.2.2 ; python_version >= "3.8" and python_version < "3.9" -prompt-toolkit==3.0.47 ; python_version >= "3.8" and python_version < "3.9" +pillow==10.4.0 ; python_version >= "3.8" and python_version < "3.9" +platformdirs==4.3.6 ; python_version >= "3.8" and python_version < "3.9" +prompt-toolkit==3.0.48 ; python_version >= "3.8" and python_version < "3.9" +propcache==0.2.0 ; python_version >= "3.8" and python_version < "3.9" protobuf==3.20.3 ; python_version >= "3.8" and python_version < "3.9" psutil==6.0.0 ; python_version >= "3.8" and python_version < "3.9" ptyprocess==0.7.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" pure-eval==0.2.3 ; python_version >= "3.8" and python_version < "3.9" -pyasn1-modules==0.4.0 ; python_version >= "3.8" and python_version < "3.9" -pyasn1==0.6.0 ; python_version >= "3.8" and python_version < "3.9" +pyasn1-modules==0.4.1 ; python_version >= "3.8" and python_version < "3.9" +pyasn1==0.6.1 ; python_version >= "3.8" and python_version < "3.9" pycparser==2.22 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +pydantic-core==2.23.4 ; python_version >= "3.8" and python_version < "3.9" +pydantic==2.9.2 ; python_version >= "3.8" and python_version < "3.9" pygments==2.18.0 ; python_version >= "3.8" and python_version < "3.9" -pygsp==0.5.1 ; python_version >= "3.8" and python_version < "3.9" -pyparsing==3.1.2 ; python_version >= "3.8" and python_version < "3.9" +pyparsing==3.1.4 ; python_version >= "3.8" and python_version < "3.9" python-dateutil==2.9.0.post0 ; python_version >= "3.8" and python_version < "3.9" -python-louvain==0.16 ; python_version >= "3.8" and python_version < "3.9" -pytz==2024.1 ; python_version >= "3.8" and python_version < "3.9" -pywin32==306 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" -pyzmq==26.1.0 ; python_version >= "3.8" and python_version < "3.9" +pytz==2024.2 ; python_version >= "3.8" and python_version < "3.9" +pywin32==307 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" +pyyaml==6.0.2 ; python_version >= "3.8" and python_version < "3.9" +pyzmq==26.2.0 ; python_version >= "3.8" and python_version < "3.9" requests-oauthlib==2.0.0 ; python_version >= "3.8" and python_version < "3.9" requests==2.32.3 ; python_version >= "3.8" and python_version < "3.9" rsa==4.9 ; python_version >= "3.8" and python_version < "3.9" -scikit-learn==0.24.0 ; python_version >= "3.8" and python_version < "3.9" +scikit-learn==1.3.2 ; python_version >= "3.8" and python_version < "3.9" scipy==1.10.1 ; python_version >= "3.8" and python_version < "3.9" -setuptools==72.2.0 ; python_version >= "3.8" and python_version < "3.9" +setuptools==75.1.0 ; python_version >= "3.8" and python_version < "3.9" six==1.16.0 ; python_version >= "3.8" and python_version < "3.9" -smart-open==7.0.4 ; python_version >= "3.8" and python_version < "3.9" +smart-open==7.0.5 ; python_version >= "3.8" and python_version < "3.9" stack-data==0.6.3 ; python_version >= "3.8" and python_version < "3.9" -stellargraph @ git+https://github.com/stellargraph/stellargraph.git@3c2c8c18ab4c5c16660f350d8e23d7dc39e738de ; python_version >= "3.8" and python_version < "3.9" +stellargraph==1.2.1 ; python_version >= "3.8" and python_version < "3.9" +sympy==1.13.3 ; python_version >= "3.8" and python_version < "3.9" tensorboard-data-server==0.7.2 ; python_version >= "3.8" and python_version < "3.9" tensorboard==2.14.0 ; python_version >= "3.8" and python_version < "3.9" tensorflow-estimator==2.7.0 ; python_version >= "3.8" and python_version < "3.9" tensorflow-io-gcs-filesystem==0.21.0 ; python_version >= "3.8" and python_version < "3.9" tensorflow==2.7.2 ; python_version >= "3.8" and python_version < "3.9" termcolor==2.4.0 ; python_version >= "3.8" and python_version < "3.9" -theano==1.0.5 ; python_version >= "3.8" and python_version < "3.9" threadpoolctl==3.5.0 ; python_version >= "3.8" and python_version < "3.9" +torch-geometric==2.6.1 ; python_version >= "3.8" and python_version < "3.9" +torch==2.1.2 ; python_version >= "3.8" and python_version < "3.9" +torchmetrics==1.4.3 ; python_version >= "3.8" and python_version < "3.9" +torchvision==0.16.2 ; python_version >= "3.8" and python_version < "3.9" tornado==6.4.1 ; python_version >= "3.8" and python_version < "3.9" tqdm==4.66.5 ; python_version >= "3.8" and python_version < "3.9" traitlets==5.14.3 ; python_version >= "3.8" and python_version < "3.9" +triton==2.1.0 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" typing-extensions==4.12.2 ; python_version >= "3.8" and python_version < "3.9" -tzdata==2024.1 ; python_version >= "3.8" and python_version < "3.9" -urllib3==2.2.2 ; python_version >= "3.8" and python_version < "3.9" +tzdata==2024.2 ; python_version >= "3.8" and python_version < "3.9" +urllib3==2.2.3 ; python_version >= "3.8" and python_version < "3.9" wcwidth==0.2.13 ; python_version >= "3.8" and python_version < "3.9" -werkzeug==3.0.3 ; python_version >= "3.8" and python_version < "3.9" +werkzeug==3.0.4 ; python_version >= "3.8" and python_version < "3.9" wheel==0.44.0 ; python_version >= "3.8" and python_version < "3.9" wrapt==1.16.0 ; python_version >= "3.8" and python_version < "3.9" -zipp==3.20.0 ; python_version >= "3.8" and python_version < "3.9" +yarl==1.14.0 ; python_version >= "3.8" and python_version < "3.9" +zipp==3.20.2 ; python_version >= "3.8" and python_version < "3.9" diff --git a/Chapter05/01_link_prediction.ipynb b/Chapter06/01_link_prediction.ipynb similarity index 99% rename from Chapter05/01_link_prediction.ipynb rename to Chapter06/01_link_prediction.ipynb index f725c17..07d75a1 100644 --- a/Chapter05/01_link_prediction.ipynb +++ b/Chapter06/01_link_prediction.ipynb @@ -384,9 +384,9 @@ ], "metadata": { "kernelspec": { - "display_name": "chap5", + "display_name": "chap6", "language": "python", - "name": "chap5" + "name": "chap6" }, "language_info": { "codemirror_mode": { diff --git a/Chapter05/02_community_detection_algorithms.ipynb b/Chapter06/02_community_detection_algorithms.ipynb similarity index 99% rename from Chapter05/02_community_detection_algorithms.ipynb rename to Chapter06/02_community_detection_algorithms.ipynb index 006aeb5..8dc2767 100644 --- a/Chapter05/02_community_detection_algorithms.ipynb +++ b/Chapter06/02_community_detection_algorithms.ipynb @@ -563,9 +563,9 @@ ], "metadata": { "kernelspec": { - "display_name": "chap5", + "display_name": "chap6", "language": "python", - "name": "chap5" + "name": "chap6" }, "language_info": { "codemirror_mode": { diff --git a/Chapter06/poetry.lock b/Chapter06/poetry.lock index 26c785c..3eda7a1 100644 --- a/Chapter06/poetry.lock +++ b/Chapter06/poetry.lock @@ -11,157 +11,6 @@ files = [ {file = "absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308"}, ] -[[package]] -name = "aiohappyeyeballs" -version = "2.4.3" -description = "Happy Eyeballs for asyncio" -optional = false -python-versions = ">=3.8" -files = [ - {file = "aiohappyeyeballs-2.4.3-py3-none-any.whl", hash = "sha256:8a7a83727b2756f394ab2895ea0765a0a8c475e3c71e98d43d76f22b4b435572"}, - {file = "aiohappyeyeballs-2.4.3.tar.gz", hash = "sha256:75cf88a15106a5002a8eb1dab212525c00d1f4c0fa96e551c9fbe6f09a621586"}, -] - -[[package]] -name = "aiohttp" -version = "3.10.10" -description = "Async http client/server framework (asyncio)" -optional = false -python-versions = ">=3.8" -files = [ - {file = "aiohttp-3.10.10-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:be7443669ae9c016b71f402e43208e13ddf00912f47f623ee5994e12fc7d4b3f"}, - {file = "aiohttp-3.10.10-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7b06b7843929e41a94ea09eb1ce3927865387e3e23ebe108e0d0d09b08d25be9"}, - {file = "aiohttp-3.10.10-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:333cf6cf8e65f6a1e06e9eb3e643a0c515bb850d470902274239fea02033e9a8"}, - {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:274cfa632350225ce3fdeb318c23b4a10ec25c0e2c880eff951a3842cf358ac1"}, - {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d9e5e4a85bdb56d224f412d9c98ae4cbd032cc4f3161818f692cd81766eee65a"}, - {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2b606353da03edcc71130b52388d25f9a30a126e04caef1fd637e31683033abd"}, - {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab5a5a0c7a7991d90446a198689c0535be89bbd6b410a1f9a66688f0880ec026"}, - {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:578a4b875af3e0daaf1ac6fa983d93e0bbfec3ead753b6d6f33d467100cdc67b"}, - {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:8105fd8a890df77b76dd3054cddf01a879fc13e8af576805d667e0fa0224c35d"}, - {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3bcd391d083f636c06a68715e69467963d1f9600f85ef556ea82e9ef25f043f7"}, - {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:fbc6264158392bad9df19537e872d476f7c57adf718944cc1e4495cbabf38e2a"}, - {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:e48d5021a84d341bcaf95c8460b152cfbad770d28e5fe14a768988c461b821bc"}, - {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:2609e9ab08474702cc67b7702dbb8a80e392c54613ebe80db7e8dbdb79837c68"}, - {file = "aiohttp-3.10.10-cp310-cp310-win32.whl", hash = "sha256:84afcdea18eda514c25bc68b9af2a2b1adea7c08899175a51fe7c4fb6d551257"}, - {file = "aiohttp-3.10.10-cp310-cp310-win_amd64.whl", hash = "sha256:9c72109213eb9d3874f7ac8c0c5fa90e072d678e117d9061c06e30c85b4cf0e6"}, - {file = "aiohttp-3.10.10-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:c30a0eafc89d28e7f959281b58198a9fa5e99405f716c0289b7892ca345fe45f"}, - {file = "aiohttp-3.10.10-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:258c5dd01afc10015866114e210fb7365f0d02d9d059c3c3415382ab633fcbcb"}, - {file = "aiohttp-3.10.10-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:15ecd889a709b0080f02721255b3f80bb261c2293d3c748151274dfea93ac871"}, - {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3935f82f6f4a3820270842e90456ebad3af15810cf65932bd24da4463bc0a4c"}, - {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:413251f6fcf552a33c981c4709a6bba37b12710982fec8e558ae944bfb2abd38"}, - {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1720b4f14c78a3089562b8875b53e36b51c97c51adc53325a69b79b4b48ebcb"}, - {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:679abe5d3858b33c2cf74faec299fda60ea9de62916e8b67e625d65bf069a3b7"}, - {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:79019094f87c9fb44f8d769e41dbb664d6e8fcfd62f665ccce36762deaa0e911"}, - {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:fe2fb38c2ed905a2582948e2de560675e9dfbee94c6d5ccdb1301c6d0a5bf092"}, - {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:a3f00003de6eba42d6e94fabb4125600d6e484846dbf90ea8e48a800430cc142"}, - {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:1bbb122c557a16fafc10354b9d99ebf2f2808a660d78202f10ba9d50786384b9"}, - {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:30ca7c3b94708a9d7ae76ff281b2f47d8eaf2579cd05971b5dc681db8caac6e1"}, - {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:df9270660711670e68803107d55c2b5949c2e0f2e4896da176e1ecfc068b974a"}, - {file = "aiohttp-3.10.10-cp311-cp311-win32.whl", hash = "sha256:aafc8ee9b742ce75044ae9a4d3e60e3d918d15a4c2e08a6c3c3e38fa59b92d94"}, - {file = "aiohttp-3.10.10-cp311-cp311-win_amd64.whl", hash = "sha256:362f641f9071e5f3ee6f8e7d37d5ed0d95aae656adf4ef578313ee585b585959"}, - {file = "aiohttp-3.10.10-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:9294bbb581f92770e6ed5c19559e1e99255e4ca604a22c5c6397b2f9dd3ee42c"}, - {file = "aiohttp-3.10.10-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a8fa23fe62c436ccf23ff930149c047f060c7126eae3ccea005f0483f27b2e28"}, - {file = "aiohttp-3.10.10-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5c6a5b8c7926ba5d8545c7dd22961a107526562da31a7a32fa2456baf040939f"}, - {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:007ec22fbc573e5eb2fb7dec4198ef8f6bf2fe4ce20020798b2eb5d0abda6138"}, - {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9627cc1a10c8c409b5822a92d57a77f383b554463d1884008e051c32ab1b3742"}, - {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:50edbcad60d8f0e3eccc68da67f37268b5144ecc34d59f27a02f9611c1d4eec7"}, - {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a45d85cf20b5e0d0aa5a8dca27cce8eddef3292bc29d72dcad1641f4ed50aa16"}, - {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0b00807e2605f16e1e198f33a53ce3c4523114059b0c09c337209ae55e3823a8"}, - {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f2d4324a98062be0525d16f768a03e0bbb3b9fe301ceee99611dc9a7953124e6"}, - {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:438cd072f75bb6612f2aca29f8bd7cdf6e35e8f160bc312e49fbecab77c99e3a"}, - {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:baa42524a82f75303f714108fea528ccacf0386af429b69fff141ffef1c534f9"}, - {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a7d8d14fe962153fc681f6366bdec33d4356f98a3e3567782aac1b6e0e40109a"}, - {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c1277cd707c465cd09572a774559a3cc7c7a28802eb3a2a9472588f062097205"}, - {file = "aiohttp-3.10.10-cp312-cp312-win32.whl", hash = "sha256:59bb3c54aa420521dc4ce3cc2c3fe2ad82adf7b09403fa1f48ae45c0cbde6628"}, - {file = "aiohttp-3.10.10-cp312-cp312-win_amd64.whl", hash = "sha256:0e1b370d8007c4ae31ee6db7f9a2fe801a42b146cec80a86766e7ad5c4a259cf"}, - {file = "aiohttp-3.10.10-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ad7593bb24b2ab09e65e8a1d385606f0f47c65b5a2ae6c551db67d6653e78c28"}, - {file = "aiohttp-3.10.10-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1eb89d3d29adaf533588f209768a9c02e44e4baf832b08118749c5fad191781d"}, - {file = "aiohttp-3.10.10-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3fe407bf93533a6fa82dece0e74dbcaaf5d684e5a51862887f9eaebe6372cd79"}, - {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50aed5155f819873d23520919e16703fc8925e509abbb1a1491b0087d1cd969e"}, - {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4f05e9727ce409358baa615dbeb9b969db94324a79b5a5cea45d39bdb01d82e6"}, - {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3dffb610a30d643983aeb185ce134f97f290f8935f0abccdd32c77bed9388b42"}, - {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa6658732517ddabe22c9036479eabce6036655ba87a0224c612e1ae6af2087e"}, - {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:741a46d58677d8c733175d7e5aa618d277cd9d880301a380fd296975a9cdd7bc"}, - {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:e00e3505cd80440f6c98c6d69269dcc2a119f86ad0a9fd70bccc59504bebd68a"}, - {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ffe595f10566f8276b76dc3a11ae4bb7eba1aac8ddd75811736a15b0d5311414"}, - {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:bdfcf6443637c148c4e1a20c48c566aa694fa5e288d34b20fcdc58507882fed3"}, - {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d183cf9c797a5291e8301790ed6d053480ed94070637bfaad914dd38b0981f67"}, - {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:77abf6665ae54000b98b3c742bc6ea1d1fb31c394bcabf8b5d2c1ac3ebfe7f3b"}, - {file = "aiohttp-3.10.10-cp313-cp313-win32.whl", hash = "sha256:4470c73c12cd9109db8277287d11f9dd98f77fc54155fc71a7738a83ffcc8ea8"}, - {file = "aiohttp-3.10.10-cp313-cp313-win_amd64.whl", hash = "sha256:486f7aabfa292719a2753c016cc3a8f8172965cabb3ea2e7f7436c7f5a22a151"}, - {file = "aiohttp-3.10.10-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:1b66ccafef7336a1e1f0e389901f60c1d920102315a56df85e49552308fc0486"}, - {file = "aiohttp-3.10.10-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:acd48d5b80ee80f9432a165c0ac8cbf9253eaddb6113269a5e18699b33958dbb"}, - {file = "aiohttp-3.10.10-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3455522392fb15ff549d92fbf4b73b559d5e43dc522588f7eb3e54c3f38beee7"}, - {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45c3b868724137f713a38376fef8120c166d1eadd50da1855c112fe97954aed8"}, - {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:da1dee8948d2137bb51fbb8a53cce6b1bcc86003c6b42565f008438b806cccd8"}, - {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c5ce2ce7c997e1971b7184ee37deb6ea9922ef5163c6ee5aa3c274b05f9e12fa"}, - {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28529e08fde6f12eba8677f5a8608500ed33c086f974de68cc65ab218713a59d"}, - {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f7db54c7914cc99d901d93a34704833568d86c20925b2762f9fa779f9cd2e70f"}, - {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:03a42ac7895406220124c88911ebee31ba8b2d24c98507f4a8bf826b2937c7f2"}, - {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:7e338c0523d024fad378b376a79faff37fafb3c001872a618cde1d322400a572"}, - {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:038f514fe39e235e9fef6717fbf944057bfa24f9b3db9ee551a7ecf584b5b480"}, - {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:64f6c17757251e2b8d885d728b6433d9d970573586a78b78ba8929b0f41d045a"}, - {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:93429602396f3383a797a2a70e5f1de5df8e35535d7806c9f91df06f297e109b"}, - {file = "aiohttp-3.10.10-cp38-cp38-win32.whl", hash = "sha256:c823bc3971c44ab93e611ab1a46b1eafeae474c0c844aff4b7474287b75fe49c"}, - {file = "aiohttp-3.10.10-cp38-cp38-win_amd64.whl", hash = "sha256:54ca74df1be3c7ca1cf7f4c971c79c2daf48d9aa65dea1a662ae18926f5bc8ce"}, - {file = "aiohttp-3.10.10-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:01948b1d570f83ee7bbf5a60ea2375a89dfb09fd419170e7f5af029510033d24"}, - {file = "aiohttp-3.10.10-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9fc1500fd2a952c5c8e3b29aaf7e3cc6e27e9cfc0a8819b3bce48cc1b849e4cc"}, - {file = "aiohttp-3.10.10-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f614ab0c76397661b90b6851a030004dac502e48260ea10f2441abd2207fbcc7"}, - {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00819de9e45d42584bed046314c40ea7e9aea95411b38971082cad449392b08c"}, - {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:05646ebe6b94cc93407b3bf34b9eb26c20722384d068eb7339de802154d61bc5"}, - {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:998f3bd3cfc95e9424a6acd7840cbdd39e45bc09ef87533c006f94ac47296090"}, - {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9010c31cd6fa59438da4e58a7f19e4753f7f264300cd152e7f90d4602449762"}, - {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7ea7ffc6d6d6f8a11e6f40091a1040995cdff02cfc9ba4c2f30a516cb2633554"}, - {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:ef9c33cc5cbca35808f6c74be11eb7f5f6b14d2311be84a15b594bd3e58b5527"}, - {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ce0cdc074d540265bfeb31336e678b4e37316849d13b308607efa527e981f5c2"}, - {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:597a079284b7ee65ee102bc3a6ea226a37d2b96d0418cc9047490f231dc09fe8"}, - {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:7789050d9e5d0c309c706953e5e8876e38662d57d45f936902e176d19f1c58ab"}, - {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e7f8b04d83483577fd9200461b057c9f14ced334dcb053090cea1da9c8321a91"}, - {file = "aiohttp-3.10.10-cp39-cp39-win32.whl", hash = "sha256:c02a30b904282777d872266b87b20ed8cc0d1501855e27f831320f471d54d983"}, - {file = "aiohttp-3.10.10-cp39-cp39-win_amd64.whl", hash = "sha256:edfe3341033a6b53a5c522c802deb2079eee5cbfbb0af032a55064bd65c73a23"}, - {file = "aiohttp-3.10.10.tar.gz", hash = "sha256:0631dd7c9f0822cc61c88586ca76d5b5ada26538097d0f1df510b082bad3411a"}, -] - -[package.dependencies] -aiohappyeyeballs = ">=2.3.0" -aiosignal = ">=1.1.2" -async-timeout = {version = ">=4.0,<5.0", markers = "python_version < \"3.11\""} -attrs = ">=17.3.0" -frozenlist = ">=1.1.1" -multidict = ">=4.5,<7.0" -yarl = ">=1.12.0,<2.0" - -[package.extras] -speedups = ["Brotli", "aiodns (>=3.2.0)", "brotlicffi"] - -[[package]] -name = "aiosignal" -version = "1.3.1" -description = "aiosignal: a list of registered asynchronous callbacks" -optional = false -python-versions = ">=3.7" -files = [ - {file = "aiosignal-1.3.1-py3-none-any.whl", hash = "sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17"}, - {file = "aiosignal-1.3.1.tar.gz", hash = "sha256:54cd96e15e1649b75d6c87526a6ff0b6c1b0dd3459f43d9ca11d48c339b68cfc"}, -] - -[package.dependencies] -frozenlist = ">=1.1.0" - -[[package]] -name = "annotated-types" -version = "0.7.0" -description = "Reusable constraint types to use with typing.Annotated" -optional = false -python-versions = ">=3.8" -files = [ - {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, - {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, -] - -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "appnope" version = "0.1.4" @@ -206,36 +55,6 @@ files = [ six = ">=1.6.1,<2.0" wheel = ">=0.23.0,<1.0" -[[package]] -name = "async-timeout" -version = "4.0.3" -description = "Timeout context manager for asyncio programs" -optional = false -python-versions = ">=3.7" -files = [ - {file = "async-timeout-4.0.3.tar.gz", hash = "sha256:4640d96be84d82d02ed59ea2b7105a0f7b33abe8703703cd0ab0bf87c427522f"}, - {file = "async_timeout-4.0.3-py3-none-any.whl", hash = "sha256:7405140ff1230c310e51dc27b3145b9092d659ce68ff733fb0cefe3ee42be028"}, -] - -[[package]] -name = "attrs" -version = "24.2.0" -description = "Classes Without Boilerplate" -optional = false -python-versions = ">=3.7" -files = [ - {file = "attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2"}, - {file = "attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346"}, -] - -[package.extras] -benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] -cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] -dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] -docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] -tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] -tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] - [[package]] name = "backcall" version = "0.2.0" @@ -249,100 +68,100 @@ files = [ [[package]] name = "cachetools" -version = "5.5.0" +version = "5.4.0" description = "Extensible memoizing collections and decorators" optional = false python-versions = ">=3.7" files = [ - {file = "cachetools-5.5.0-py3-none-any.whl", hash = "sha256:02134e8439cdc2ffb62023ce1debca2944c3f289d66bb17ead3ab3dede74b292"}, - {file = "cachetools-5.5.0.tar.gz", hash = "sha256:2cc24fb4cbe39633fb7badd9db9ca6295d766d9c2995f245725a46715d050f2a"}, + {file = "cachetools-5.4.0-py3-none-any.whl", hash = "sha256:3ae3b49a3d5e28a77a0be2b37dbcb89005058959cb2323858c2657c4a8cab474"}, + {file = "cachetools-5.4.0.tar.gz", hash = "sha256:b8adc2e7c07f105ced7bc56dbb6dfbe7c4a00acce20e2227b3f355be89bc6827"}, ] [[package]] name = "certifi" -version = "2024.8.30" +version = "2024.7.4" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, - {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, + {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, + {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, ] [[package]] name = "cffi" -version = "1.17.1" +version = "1.17.0" description = "Foreign Function Interface for Python calling C code." optional = false python-versions = ">=3.8" files = [ - {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, - {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, - {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, - {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, - {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, - {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, - {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, - {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, - {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, - {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, - {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, - {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, - {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, - {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, - {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, - {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, - {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, - {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, - {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, - {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, - {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, - {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, - {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, - {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, - {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, - {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, - {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, - {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, - {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, - {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, - {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, - {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, - {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, - {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, - {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, - {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, - {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, - {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, - {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, - {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, - {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, - {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, - {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, - {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, - {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, - {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, - {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, - {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, - {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, - {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, - {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, - {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, - {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, - {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, - {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, - {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, - {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, - {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, - {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, - {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, - {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, - {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, - {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, - {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, - {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, - {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, - {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, + {file = "cffi-1.17.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f9338cc05451f1942d0d8203ec2c346c830f8e86469903d5126c1f0a13a2bcbb"}, + {file = "cffi-1.17.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0ce71725cacc9ebf839630772b07eeec220cbb5f03be1399e0457a1464f8e1a"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c815270206f983309915a6844fe994b2fa47e5d05c4c4cef267c3b30e34dbe42"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6bdcd415ba87846fd317bee0774e412e8792832e7805938987e4ede1d13046d"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a98748ed1a1df4ee1d6f927e151ed6c1a09d5ec21684de879c7ea6aa96f58f2"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0a048d4f6630113e54bb4b77e315e1ba32a5a31512c31a273807d0027a7e69ab"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24aa705a5f5bd3a8bcfa4d123f03413de5d86e497435693b638cbffb7d5d8a1b"}, + {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:856bf0924d24e7f93b8aee12a3a1095c34085600aa805693fb7f5d1962393206"}, + {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:4304d4416ff032ed50ad6bb87416d802e67139e31c0bde4628f36a47a3164bfa"}, + {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:331ad15c39c9fe9186ceaf87203a9ecf5ae0ba2538c9e898e3a6967e8ad3db6f"}, + {file = "cffi-1.17.0-cp310-cp310-win32.whl", hash = "sha256:669b29a9eca6146465cc574659058ed949748f0809a2582d1f1a324eb91054dc"}, + {file = "cffi-1.17.0-cp310-cp310-win_amd64.whl", hash = "sha256:48b389b1fd5144603d61d752afd7167dfd205973a43151ae5045b35793232aa2"}, + {file = "cffi-1.17.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c5d97162c196ce54af6700949ddf9409e9833ef1003b4741c2b39ef46f1d9720"}, + {file = "cffi-1.17.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ba5c243f4004c750836f81606a9fcb7841f8874ad8f3bf204ff5e56332b72b9"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bb9333f58fc3a2296fb1d54576138d4cf5d496a2cc118422bd77835e6ae0b9cb"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:435a22d00ec7d7ea533db494da8581b05977f9c37338c80bc86314bec2619424"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d1df34588123fcc88c872f5acb6f74ae59e9d182a2707097f9e28275ec26a12d"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:df8bb0010fdd0a743b7542589223a2816bdde4d94bb5ad67884348fa2c1c67e8"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b5b9712783415695663bd463990e2f00c6750562e6ad1d28e072a611c5f2a6"}, + {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ffef8fd58a36fb5f1196919638f73dd3ae0db1a878982b27a9a5a176ede4ba91"}, + {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e67d26532bfd8b7f7c05d5a766d6f437b362c1bf203a3a5ce3593a645e870b8"}, + {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:45f7cd36186db767d803b1473b3c659d57a23b5fa491ad83c6d40f2af58e4dbb"}, + {file = "cffi-1.17.0-cp311-cp311-win32.whl", hash = "sha256:a9015f5b8af1bb6837a3fcb0cdf3b874fe3385ff6274e8b7925d81ccaec3c5c9"}, + {file = "cffi-1.17.0-cp311-cp311-win_amd64.whl", hash = "sha256:b50aaac7d05c2c26dfd50c3321199f019ba76bb650e346a6ef3616306eed67b0"}, + {file = "cffi-1.17.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aec510255ce690d240f7cb23d7114f6b351c733a74c279a84def763660a2c3bc"}, + {file = "cffi-1.17.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2770bb0d5e3cc0e31e7318db06efcbcdb7b31bcb1a70086d3177692a02256f59"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:db9a30ec064129d605d0f1aedc93e00894b9334ec74ba9c6bdd08147434b33eb"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a47eef975d2b8b721775a0fa286f50eab535b9d56c70a6e62842134cf7841195"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f3e0992f23bbb0be00a921eae5363329253c3b86287db27092461c887b791e5e"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6107e445faf057c118d5050560695e46d272e5301feffda3c41849641222a828"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb862356ee9391dc5a0b3cbc00f416b48c1b9a52d252d898e5b7696a5f9fe150"}, + {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:c1c13185b90bbd3f8b5963cd8ce7ad4ff441924c31e23c975cb150e27c2bf67a"}, + {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:17c6d6d3260c7f2d94f657e6872591fe8733872a86ed1345bda872cfc8c74885"}, + {file = "cffi-1.17.0-cp312-cp312-win32.whl", hash = "sha256:c3b8bd3133cd50f6b637bb4322822c94c5ce4bf0d724ed5ae70afce62187c492"}, + {file = "cffi-1.17.0-cp312-cp312-win_amd64.whl", hash = "sha256:dca802c8db0720ce1c49cce1149ff7b06e91ba15fa84b1d59144fef1a1bc7ac2"}, + {file = "cffi-1.17.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:6ce01337d23884b21c03869d2f68c5523d43174d4fc405490eb0091057943118"}, + {file = "cffi-1.17.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cab2eba3830bf4f6d91e2d6718e0e1c14a2f5ad1af68a89d24ace0c6b17cced7"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:14b9cbc8f7ac98a739558eb86fabc283d4d564dafed50216e7f7ee62d0d25377"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b00e7bcd71caa0282cbe3c90966f738e2db91e64092a877c3ff7f19a1628fdcb"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:41f4915e09218744d8bae14759f983e466ab69b178de38066f7579892ff2a555"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4760a68cab57bfaa628938e9c2971137e05ce48e762a9cb53b76c9b569f1204"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:011aff3524d578a9412c8b3cfaa50f2c0bd78e03eb7af7aa5e0df59b158efb2f"}, + {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:a003ac9edc22d99ae1286b0875c460351f4e101f8c9d9d2576e78d7e048f64e0"}, + {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ef9528915df81b8f4c7612b19b8628214c65c9b7f74db2e34a646a0a2a0da2d4"}, + {file = "cffi-1.17.0-cp313-cp313-win32.whl", hash = "sha256:70d2aa9fb00cf52034feac4b913181a6e10356019b18ef89bc7c12a283bf5f5a"}, + {file = "cffi-1.17.0-cp313-cp313-win_amd64.whl", hash = "sha256:b7b6ea9e36d32582cda3465f54c4b454f62f23cb083ebc7a94e2ca6ef011c3a7"}, + {file = "cffi-1.17.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:964823b2fc77b55355999ade496c54dde161c621cb1f6eac61dc30ed1b63cd4c"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:516a405f174fd3b88829eabfe4bb296ac602d6a0f68e0d64d5ac9456194a5b7e"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dec6b307ce928e8e112a6bb9921a1cb00a0e14979bf28b98e084a4b8a742bd9b"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4094c7b464cf0a858e75cd14b03509e84789abf7b79f8537e6a72152109c76e"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2404f3de742f47cb62d023f0ba7c5a916c9c653d5b368cc966382ae4e57da401"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3aa9d43b02a0c681f0bfbc12d476d47b2b2b6a3f9287f11ee42989a268a1833c"}, + {file = "cffi-1.17.0-cp38-cp38-win32.whl", hash = "sha256:0bb15e7acf8ab35ca8b24b90af52c8b391690ef5c4aec3d31f38f0d37d2cc499"}, + {file = "cffi-1.17.0-cp38-cp38-win_amd64.whl", hash = "sha256:93a7350f6706b31f457c1457d3a3259ff9071a66f312ae64dc024f049055f72c"}, + {file = "cffi-1.17.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1a2ddbac59dc3716bc79f27906c010406155031a1c801410f1bafff17ea304d2"}, + {file = "cffi-1.17.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6327b572f5770293fc062a7ec04160e89741e8552bf1c358d1a23eba68166759"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbc183e7bef690c9abe5ea67b7b60fdbca81aa8da43468287dae7b5c046107d4"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bdc0f1f610d067c70aa3737ed06e2726fd9d6f7bfee4a351f4c40b6831f4e82"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6d872186c1617d143969defeadac5a904e6e374183e07977eedef9c07c8953bf"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0d46ee4764b88b91f16661a8befc6bfb24806d885e27436fdc292ed7e6f6d058"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f76a90c345796c01d85e6332e81cab6d70de83b829cf1d9762d0a3da59c7932"}, + {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0e60821d312f99d3e1569202518dddf10ae547e799d75aef3bca3a2d9e8ee693"}, + {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:eb09b82377233b902d4c3fbeeb7ad731cdab579c6c6fda1f763cd779139e47c3"}, + {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:24658baf6224d8f280e827f0a50c46ad819ec8ba380a42448e24459daf809cf4"}, + {file = "cffi-1.17.0-cp39-cp39-win32.whl", hash = "sha256:0fdacad9e0d9fc23e519efd5ea24a70348305e8d7d85ecbb1a5fa66dc834e7fb"}, + {file = "cffi-1.17.0-cp39-cp39-win_amd64.whl", hash = "sha256:7cbc78dc018596315d4e7841c8c3a7ae31cc4d638c9b627f87d52e8abaaf2d29"}, + {file = "cffi-1.17.0.tar.gz", hash = "sha256:f3157624b7558b914cb039fd1af735e5e8049a87c817cc215109ad1c8779df76"}, ] [package.dependencies] @@ -361,116 +180,101 @@ files = [ [[package]] name = "charset-normalizer" -version = "3.4.0" +version = "3.3.2" description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." optional = false python-versions = ">=3.7.0" files = [ - {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:4f9fc98dad6c2eaa32fc3af1417d95b5e3d08aff968df0cd320066def971f9a6"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0de7b687289d3c1b3e8660d0741874abe7888100efe14bd0f9fd7141bcbda92b"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5ed2e36c3e9b4f21dd9422f6893dec0abf2cca553af509b10cd630f878d3eb99"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40d3ff7fc90b98c637bda91c89d51264a3dcf210cade3a2c6f838c7268d7a4ca"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1110e22af8ca26b90bd6364fe4c763329b0ebf1ee213ba32b68c73de5752323d"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:86f4e8cca779080f66ff4f191a685ced73d2f72d50216f7112185dc02b90b9b7"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f683ddc7eedd742e2889d2bfb96d69573fde1d92fcb811979cdb7165bb9c7d3"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:27623ba66c183eca01bf9ff833875b459cad267aeeb044477fedac35e19ba907"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f606a1881d2663630ea5b8ce2efe2111740df4b687bd78b34a8131baa007f79b"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0b309d1747110feb25d7ed6b01afdec269c647d382c857ef4663bbe6ad95a912"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:136815f06a3ae311fae551c3df1f998a1ebd01ddd424aa5603a4336997629e95"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:14215b71a762336254351b00ec720a8e85cada43b987da5a042e4ce3e82bd68e"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:79983512b108e4a164b9c8d34de3992f76d48cadc9554c9e60b43f308988aabe"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-win32.whl", hash = "sha256:c94057af19bc953643a33581844649a7fdab902624d2eb739738a30e2b3e60fc"}, - {file = "charset_normalizer-3.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:55f56e2ebd4e3bc50442fbc0888c9d8c94e4e06a933804e2af3e89e2f9c1c749"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0d99dd8ff461990f12d6e42c7347fd9ab2532fb70e9621ba520f9e8637161d7c"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c57516e58fd17d03ebe67e181a4e4e2ccab1168f8c2976c6a334d4f819fe5944"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6dba5d19c4dfab08e58d5b36304b3f92f3bd5d42c1a3fa37b5ba5cdf6dfcbcee"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf4475b82be41b07cc5e5ff94810e6a01f276e37c2d55571e3fe175e467a1a1c"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ce031db0408e487fd2775d745ce30a7cd2923667cf3b69d48d219f1d8f5ddeb6"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ff4e7cdfdb1ab5698e675ca622e72d58a6fa2a8aa58195de0c0061288e6e3ea"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3710a9751938947e6327ea9f3ea6332a09bf0ba0c09cae9cb1f250bd1f1549bc"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82357d85de703176b5587dbe6ade8ff67f9f69a41c0733cf2425378b49954de5"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:47334db71978b23ebcf3c0f9f5ee98b8d65992b65c9c4f2d34c2eaf5bcaf0594"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8ce7fd6767a1cc5a92a639b391891bf1c268b03ec7e021c7d6d902285259685c"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f1a2f519ae173b5b6a2c9d5fa3116ce16e48b3462c8b96dfdded11055e3d6365"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:63bc5c4ae26e4bc6be6469943b8253c0fd4e4186c43ad46e713ea61a0ba49129"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:bcb4f8ea87d03bc51ad04add8ceaf9b0f085ac045ab4d74e73bbc2dc033f0236"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-win32.whl", hash = "sha256:9ae4ef0b3f6b41bad6366fb0ea4fc1d7ed051528e113a60fa2a65a9abb5b1d99"}, - {file = "charset_normalizer-3.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cee4373f4d3ad28f1ab6290684d8e2ebdb9e7a1b74fdc39e4c211995f77bec27"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0713f3adb9d03d49d365b70b84775d0a0d18e4ab08d12bc46baa6132ba78aaf6"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:de7376c29d95d6719048c194a9cf1a1b0393fbe8488a22008610b0361d834ecf"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a51b48f42d9358460b78725283f04bddaf44a9358197b889657deba38f329db"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b295729485b06c1a0683af02a9e42d2caa9db04a373dc38a6a58cdd1e8abddf1"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee803480535c44e7f5ad00788526da7d85525cfefaf8acf8ab9a310000be4b03"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d59d125ffbd6d552765510e3f31ed75ebac2c7470c7274195b9161a32350284"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8cda06946eac330cbe6598f77bb54e690b4ca93f593dee1568ad22b04f347c15"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07afec21bbbbf8a5cc3651aa96b980afe2526e7f048fdfb7f1014d84acc8b6d8"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6b40e8d38afe634559e398cc32b1472f376a4099c75fe6299ae607e404c033b2"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b8dcd239c743aa2f9c22ce674a145e0a25cb1566c495928440a181ca1ccf6719"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:84450ba661fb96e9fd67629b93d2941c871ca86fc38d835d19d4225ff946a631"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:44aeb140295a2f0659e113b31cfe92c9061622cadbc9e2a2f7b8ef6b1e29ef4b"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1db4e7fefefd0f548d73e2e2e041f9df5c59e178b4c72fbac4cc6f535cfb1565"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-win32.whl", hash = "sha256:5726cf76c982532c1863fb64d8c6dd0e4c90b6ece9feb06c9f202417a31f7dd7"}, - {file = "charset_normalizer-3.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:b197e7094f232959f8f20541ead1d9862ac5ebea1d58e9849c1bf979255dfac9"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:dd4eda173a9fcccb5f2e2bd2a9f423d180194b1bf17cf59e3269899235b2a114"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e9e3c4c9e1ed40ea53acf11e2a386383c3304212c965773704e4603d589343ed"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92a7e36b000bf022ef3dbb9c46bfe2d52c047d5e3f3343f43204263c5addc250"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54b6a92d009cbe2fb11054ba694bc9e284dad30a26757b1e372a1fdddaf21920"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ffd9493de4c922f2a38c2bf62b831dcec90ac673ed1ca182fe11b4d8e9f2a64"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:35c404d74c2926d0287fbd63ed5d27eb911eb9e4a3bb2c6d294f3cfd4a9e0c23"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e7fdd52961feb4c96507aa649550ec2a0d527c086d284749b2f582f2d40a2e0d"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:92db3c28b5b2a273346bebb24857fda45601aef6ae1c011c0a997106581e8a88"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ab973df98fc99ab39080bfb0eb3a925181454d7c3ac8a1e695fddfae696d9e90"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:4b67fdab07fdd3c10bb21edab3cbfe8cf5696f453afce75d815d9d7223fbe88b"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:aa41e526a5d4a9dfcfbab0716c7e8a1b215abd3f3df5a45cf18a12721d31cb5d"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ffc519621dce0c767e96b9c53f09c5d215578e10b02c285809f76509a3931482"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-win32.whl", hash = "sha256:f19c1585933c82098c2a520f8ec1227f20e339e33aca8fa6f956f6691b784e67"}, - {file = "charset_normalizer-3.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:707b82d19e65c9bd28b81dde95249b07bf9f5b90ebe1ef17d9b57473f8a64b7b"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:dbe03226baf438ac4fda9e2d0715022fd579cb641c4cf639fa40d53b2fe6f3e2"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd9a8bd8900e65504a305bf8ae6fa9fbc66de94178c420791d0293702fce2df7"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8831399554b92b72af5932cdbbd4ddc55c55f631bb13ff8fe4e6536a06c5c51"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a14969b8691f7998e74663b77b4c36c0337cb1df552da83d5c9004a93afdb574"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dcaf7c1524c0542ee2fc82cc8ec337f7a9f7edee2532421ab200d2b920fc97cf"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425c5f215d0eecee9a56cdb703203dda90423247421bf0d67125add85d0c4455"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:d5b054862739d276e09928de37c79ddeec42a6e1bfc55863be96a36ba22926f6"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:f3e73a4255342d4eb26ef6df01e3962e73aa29baa3124a8e824c5d3364a65748"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:2f6c34da58ea9c1a9515621f4d9ac379871a8f21168ba1b5e09d74250de5ad62"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:f09cb5a7bbe1ecae6e87901a2eb23e0256bb524a79ccc53eb0b7629fbe7677c4"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:0099d79bdfcf5c1f0c2c72f91516702ebf8b0b8ddd8905f97a8aecf49712c621"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-win32.whl", hash = "sha256:9c98230f5042f4945f957d006edccc2af1e03ed5e37ce7c373f00a5a4daa6149"}, - {file = "charset_normalizer-3.4.0-cp37-cp37m-win_amd64.whl", hash = "sha256:62f60aebecfc7f4b82e3f639a7d1433a20ec32824db2199a11ad4f5e146ef5ee"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:af73657b7a68211996527dbfeffbb0864e043d270580c5aef06dc4b659a4b578"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cab5d0b79d987c67f3b9e9c53f54a61360422a5a0bc075f43cab5621d530c3b6"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9289fd5dddcf57bab41d044f1756550f9e7cf0c8e373b8cdf0ce8773dc4bd417"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b493a043635eb376e50eedf7818f2f322eabbaa974e948bd8bdd29eb7ef2a51"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9fa2566ca27d67c86569e8c85297aaf413ffab85a8960500f12ea34ff98e4c41"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8e538f46104c815be19c975572d74afb53f29650ea2025bbfaef359d2de2f7f"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fd30dc99682dc2c603c2b315bded2799019cea829f8bf57dc6b61efde6611c8"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2006769bd1640bdf4d5641c69a3d63b71b81445473cac5ded39740a226fa88ab"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:dc15e99b2d8a656f8e666854404f1ba54765871104e50c8e9813af8a7db07f12"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:ab2e5bef076f5a235c3774b4f4028a680432cded7cad37bba0fd90d64b187d19"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:4ec9dd88a5b71abfc74e9df5ebe7921c35cbb3b641181a531ca65cdb5e8e4dea"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:43193c5cda5d612f247172016c4bb71251c784d7a4d9314677186a838ad34858"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:aa693779a8b50cd97570e5a0f343538a8dbd3e496fa5dcb87e29406ad0299654"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-win32.whl", hash = "sha256:7706f5850360ac01d80c89bcef1640683cc12ed87f42579dab6c5d3ed6888613"}, - {file = "charset_normalizer-3.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:c3e446d253bd88f6377260d07c895816ebf33ffffd56c1c792b13bff9c3e1ade"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:980b4f289d1d90ca5efcf07958d3eb38ed9c0b7676bf2831a54d4f66f9c27dfa"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f28f891ccd15c514a0981f3b9db9aa23d62fe1a99997512b0491d2ed323d229a"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8aacce6e2e1edcb6ac625fb0f8c3a9570ccc7bfba1f63419b3769ccf6a00ed0"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd7af3717683bea4c87acd8c0d3d5b44d56120b26fd3f8a692bdd2d5260c620a"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5ff2ed8194587faf56555927b3aa10e6fb69d931e33953943bc4f837dfee2242"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e91f541a85298cf35433bf66f3fab2a4a2cff05c127eeca4af174f6d497f0d4b"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:309a7de0a0ff3040acaebb35ec45d18db4b28232f21998851cfa709eeff49d62"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:285e96d9d53422efc0d7a17c60e59f37fbf3dfa942073f666db4ac71e8d726d0"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5d447056e2ca60382d460a604b6302d8db69476fd2015c81e7c35417cfabe4cd"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:20587d20f557fe189b7947d8e7ec5afa110ccf72a3128d61a2a387c3313f46be"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:130272c698667a982a5d0e626851ceff662565379baf0ff2cc58067b81d4f11d"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:ab22fbd9765e6954bc0bcff24c25ff71dcbfdb185fcdaca49e81bac68fe724d3"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7782afc9b6b42200f7362858f9e73b1f8316afb276d316336c0ec3bd73312742"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-win32.whl", hash = "sha256:2de62e8801ddfff069cd5c504ce3bc9672b23266597d4e4f50eda28846c322f2"}, - {file = "charset_normalizer-3.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:95c3c157765b031331dd4db3c775e58deaee050a3042fcad72cbc4189d7c8dca"}, - {file = "charset_normalizer-3.4.0-py3-none-any.whl", hash = "sha256:fe9f97feb71aa9896b81973a7bbada8c49501dc73e58a10fcef6663af95e5079"}, - {file = "charset_normalizer-3.4.0.tar.gz", hash = "sha256:223217c3d4f82c3ac5e29032b3f1c2eb0fb591b72161f86d93f5719079dae93e"}, + {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, + {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, ] [[package]] @@ -501,6 +305,20 @@ traitlets = ">=4" [package.extras] test = ["pytest"] +[[package]] +name = "communities" +version = "2.2.0" +description = "Library for detecting community structure in graphs" +optional = false +python-versions = ">=3" +files = [ + {file = "communities-2.2.0.tar.gz", hash = "sha256:4e4c9dca36046c256309c2d42039afd45c52c6ddbeb9bd86ff69fa1fe3c7e2bd"}, +] + +[package.dependencies] +networkx = "*" +numpy = "*" + [[package]] name = "cycler" version = "0.12.1" @@ -559,37 +377,33 @@ files = [ [[package]] name = "debugpy" -version = "1.8.7" +version = "1.8.5" description = "An implementation of the Debug Adapter Protocol for Python" optional = false python-versions = ">=3.8" files = [ - {file = "debugpy-1.8.7-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:95fe04a573b8b22896c404365e03f4eda0ce0ba135b7667a1e57bd079793b96b"}, - {file = "debugpy-1.8.7-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:628a11f4b295ffb4141d8242a9bb52b77ad4a63a2ad19217a93be0f77f2c28c9"}, - {file = "debugpy-1.8.7-cp310-cp310-win32.whl", hash = "sha256:85ce9c1d0eebf622f86cc68618ad64bf66c4fc3197d88f74bb695a416837dd55"}, - {file = "debugpy-1.8.7-cp310-cp310-win_amd64.whl", hash = "sha256:29e1571c276d643757ea126d014abda081eb5ea4c851628b33de0c2b6245b037"}, - {file = "debugpy-1.8.7-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:caf528ff9e7308b74a1749c183d6808ffbedbb9fb6af78b033c28974d9b8831f"}, - {file = "debugpy-1.8.7-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cba1d078cf2e1e0b8402e6bda528bf8fda7ccd158c3dba6c012b7897747c41a0"}, - {file = "debugpy-1.8.7-cp311-cp311-win32.whl", hash = "sha256:171899588bcd412151e593bd40d9907133a7622cd6ecdbdb75f89d1551df13c2"}, - {file = "debugpy-1.8.7-cp311-cp311-win_amd64.whl", hash = "sha256:6e1c4ffb0c79f66e89dfd97944f335880f0d50ad29525dc792785384923e2211"}, - {file = "debugpy-1.8.7-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:4d27d842311353ede0ad572600c62e4bcd74f458ee01ab0dd3a1a4457e7e3706"}, - {file = "debugpy-1.8.7-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:703c1fd62ae0356e194f3e7b7a92acd931f71fe81c4b3be2c17a7b8a4b546ec2"}, - {file = "debugpy-1.8.7-cp312-cp312-win32.whl", hash = "sha256:2f729228430ef191c1e4df72a75ac94e9bf77413ce5f3f900018712c9da0aaca"}, - {file = "debugpy-1.8.7-cp312-cp312-win_amd64.whl", hash = "sha256:45c30aaefb3e1975e8a0258f5bbd26cd40cde9bfe71e9e5a7ac82e79bad64e39"}, - {file = "debugpy-1.8.7-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:d050a1ec7e925f514f0f6594a1e522580317da31fbda1af71d1530d6ea1f2b40"}, - {file = "debugpy-1.8.7-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2f4349a28e3228a42958f8ddaa6333d6f8282d5edaea456070e48609c5983b7"}, - {file = "debugpy-1.8.7-cp313-cp313-win32.whl", hash = "sha256:11ad72eb9ddb436afb8337891a986302e14944f0f755fd94e90d0d71e9100bba"}, - {file = "debugpy-1.8.7-cp313-cp313-win_amd64.whl", hash = "sha256:2efb84d6789352d7950b03d7f866e6d180284bc02c7e12cb37b489b7083d81aa"}, - {file = "debugpy-1.8.7-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:4b908291a1d051ef3331484de8e959ef3e66f12b5e610c203b5b75d2725613a7"}, - {file = "debugpy-1.8.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da8df5b89a41f1fd31503b179d0a84a5fdb752dddd5b5388dbd1ae23cda31ce9"}, - {file = "debugpy-1.8.7-cp38-cp38-win32.whl", hash = "sha256:b12515e04720e9e5c2216cc7086d0edadf25d7ab7e3564ec8b4521cf111b4f8c"}, - {file = "debugpy-1.8.7-cp38-cp38-win_amd64.whl", hash = "sha256:93176e7672551cb5281577cdb62c63aadc87ec036f0c6a486f0ded337c504596"}, - {file = "debugpy-1.8.7-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:90d93e4f2db442f8222dec5ec55ccfc8005821028982f1968ebf551d32b28907"}, - {file = "debugpy-1.8.7-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b6db2a370e2700557a976eaadb16243ec9c91bd46f1b3bb15376d7aaa7632c81"}, - {file = "debugpy-1.8.7-cp39-cp39-win32.whl", hash = "sha256:a6cf2510740e0c0b4a40330640e4b454f928c7b99b0c9dbf48b11efba08a8cda"}, - {file = "debugpy-1.8.7-cp39-cp39-win_amd64.whl", hash = "sha256:6a9d9d6d31846d8e34f52987ee0f1a904c7baa4912bf4843ab39dadf9b8f3e0d"}, - {file = "debugpy-1.8.7-py2.py3-none-any.whl", hash = "sha256:57b00de1c8d2c84a61b90880f7e5b6deaf4c312ecbde3a0e8912f2a56c4ac9ae"}, - {file = "debugpy-1.8.7.zip", hash = "sha256:18b8f731ed3e2e1df8e9cdaa23fb1fc9c24e570cd0081625308ec51c82efe42e"}, + {file = "debugpy-1.8.5-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:7e4d594367d6407a120b76bdaa03886e9eb652c05ba7f87e37418426ad2079f7"}, + {file = "debugpy-1.8.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4413b7a3ede757dc33a273a17d685ea2b0c09dbd312cc03f5534a0fd4d40750a"}, + {file = "debugpy-1.8.5-cp310-cp310-win32.whl", hash = "sha256:dd3811bd63632bb25eda6bd73bea8e0521794cda02be41fa3160eb26fc29e7ed"}, + {file = "debugpy-1.8.5-cp310-cp310-win_amd64.whl", hash = "sha256:b78c1250441ce893cb5035dd6f5fc12db968cc07f91cc06996b2087f7cefdd8e"}, + {file = "debugpy-1.8.5-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:606bccba19f7188b6ea9579c8a4f5a5364ecd0bf5a0659c8a5d0e10dcee3032a"}, + {file = "debugpy-1.8.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db9fb642938a7a609a6c865c32ecd0d795d56c1aaa7a7a5722d77855d5e77f2b"}, + {file = "debugpy-1.8.5-cp311-cp311-win32.whl", hash = "sha256:4fbb3b39ae1aa3e5ad578f37a48a7a303dad9a3d018d369bc9ec629c1cfa7408"}, + {file = "debugpy-1.8.5-cp311-cp311-win_amd64.whl", hash = "sha256:345d6a0206e81eb68b1493ce2fbffd57c3088e2ce4b46592077a943d2b968ca3"}, + {file = "debugpy-1.8.5-cp312-cp312-macosx_12_0_universal2.whl", hash = "sha256:5b5c770977c8ec6c40c60d6f58cacc7f7fe5a45960363d6974ddb9b62dbee156"}, + {file = "debugpy-1.8.5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0a65b00b7cdd2ee0c2cf4c7335fef31e15f1b7056c7fdbce9e90193e1a8c8cb"}, + {file = "debugpy-1.8.5-cp312-cp312-win32.whl", hash = "sha256:c9f7c15ea1da18d2fcc2709e9f3d6de98b69a5b0fff1807fb80bc55f906691f7"}, + {file = "debugpy-1.8.5-cp312-cp312-win_amd64.whl", hash = "sha256:28ced650c974aaf179231668a293ecd5c63c0a671ae6d56b8795ecc5d2f48d3c"}, + {file = "debugpy-1.8.5-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:3df6692351172a42af7558daa5019651f898fc67450bf091335aa8a18fbf6f3a"}, + {file = "debugpy-1.8.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cd04a73eb2769eb0bfe43f5bfde1215c5923d6924b9b90f94d15f207a402226"}, + {file = "debugpy-1.8.5-cp38-cp38-win32.whl", hash = "sha256:8f913ee8e9fcf9d38a751f56e6de12a297ae7832749d35de26d960f14280750a"}, + {file = "debugpy-1.8.5-cp38-cp38-win_amd64.whl", hash = "sha256:a697beca97dad3780b89a7fb525d5e79f33821a8bc0c06faf1f1289e549743cf"}, + {file = "debugpy-1.8.5-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:0a1029a2869d01cb777216af8c53cda0476875ef02a2b6ff8b2f2c9a4b04176c"}, + {file = "debugpy-1.8.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e84c276489e141ed0b93b0af648eef891546143d6a48f610945416453a8ad406"}, + {file = "debugpy-1.8.5-cp39-cp39-win32.whl", hash = "sha256:ad84b7cde7fd96cf6eea34ff6c4a1b7887e0fe2ea46e099e53234856f9d99a34"}, + {file = "debugpy-1.8.5-cp39-cp39-win_amd64.whl", hash = "sha256:7b0fe36ed9d26cb6836b0a51453653f8f2e347ba7348f2bbfe76bfeb670bfb1c"}, + {file = "debugpy-1.8.5-py2.py3-none-any.whl", hash = "sha256:55919dce65b471eff25901acf82d328bbd5b833526b6c1364bd5133754777a44"}, + {file = "debugpy-1.8.5.zip", hash = "sha256:b2112cfeb34b4507399d298fe7023a16656fc553ed5246536060ca7bd0e668d0"}, ] [[package]] @@ -603,63 +417,20 @@ files = [ {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, ] -[[package]] -name = "dgl" -version = "2.4.0" -description = "Deep Graph Library" -optional = false -python-versions = "*" -files = [ - {file = "dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:bf4d4d0d9300e79281e38627844651fe6355946d933e21d6a8828ce7d7539d00"}, -] - -[package.dependencies] -networkx = ">=2.1" -numpy = ">=1.14.0" -packaging = "*" -pandas = "*" -psutil = ">=5.8.0" -pydantic = ">=2.0" -pyyaml = "*" -requests = ">=2.19.0" -scipy = ">=1.1.0" -torch = "<=2.4.0" -tqdm = "*" - -[package.source] -type = "url" -url = "https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl" - [[package]] name = "executing" -version = "2.1.0" +version = "2.0.1" description = "Get the currently executing AST node of a frame, and other information" optional = false -python-versions = ">=3.8" +python-versions = ">=3.5" files = [ - {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, - {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, + {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, + {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, ] [package.extras] tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] -[[package]] -name = "filelock" -version = "3.16.1" -description = "A platform independent file lock." -optional = false -python-versions = ">=3.8" -files = [ - {file = "filelock-3.16.1-py3-none-any.whl", hash = "sha256:2082e5703d51fbf98ea75855d9d5527e33d8ff23099bec374a134febee6946b0"}, - {file = "filelock-3.16.1.tar.gz", hash = "sha256:c249fbfcd5db47e5e2d6d62198e565475ee65e4831e2561c8e313fa7eb961435"}, -] - -[package.extras] -docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4.1)"] -testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.2)", "pytest (>=8.3.3)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.4)"] -typing = ["typing-extensions (>=4.12.2)"] - [[package]] name = "flatbuffers" version = "2.0.7" @@ -671,131 +442,6 @@ files = [ {file = "flatbuffers-2.0.7.tar.gz", hash = "sha256:0ae7d69c5b82bf41962ca5fde9cc43033bc9501311d975fd5a25e8a7d29c1245"}, ] -[[package]] -name = "frozenlist" -version = "1.4.1" -description = "A list-like structure which implements collections.abc.MutableSequence" -optional = false -python-versions = ">=3.8" -files = [ - {file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:f9aa1878d1083b276b0196f2dfbe00c9b7e752475ed3b682025ff20c1c1f51ac"}, - {file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:29acab3f66f0f24674b7dc4736477bcd4bc3ad4b896f5f45379a67bce8b96868"}, - {file = "frozenlist-1.4.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:74fb4bee6880b529a0c6560885fce4dc95936920f9f20f53d99a213f7bf66776"}, - {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:590344787a90ae57d62511dd7c736ed56b428f04cd8c161fcc5e7232c130c69a"}, - {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:068b63f23b17df8569b7fdca5517edef76171cf3897eb68beb01341131fbd2ad"}, - {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c849d495bf5154cd8da18a9eb15db127d4dba2968d88831aff6f0331ea9bd4c"}, - {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9750cc7fe1ae3b1611bb8cfc3f9ec11d532244235d75901fb6b8e42ce9229dfe"}, - {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9b2de4cf0cdd5bd2dee4c4f63a653c61d2408055ab77b151c1957f221cabf2a"}, - {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0633c8d5337cb5c77acbccc6357ac49a1770b8c487e5b3505c57b949b4b82e98"}, - {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:27657df69e8801be6c3638054e202a135c7f299267f1a55ed3a598934f6c0d75"}, - {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:f9a3ea26252bd92f570600098783d1371354d89d5f6b7dfd87359d669f2109b5"}, - {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:4f57dab5fe3407b6c0c1cc907ac98e8a189f9e418f3b6e54d65a718aaafe3950"}, - {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e02a0e11cf6597299b9f3bbd3f93d79217cb90cfd1411aec33848b13f5c656cc"}, - {file = "frozenlist-1.4.1-cp310-cp310-win32.whl", hash = "sha256:a828c57f00f729620a442881cc60e57cfcec6842ba38e1b19fd3e47ac0ff8dc1"}, - {file = "frozenlist-1.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:f56e2333dda1fe0f909e7cc59f021eba0d2307bc6f012a1ccf2beca6ba362439"}, - {file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a0cb6f11204443f27a1628b0e460f37fb30f624be6051d490fa7d7e26d4af3d0"}, - {file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b46c8ae3a8f1f41a0d2ef350c0b6e65822d80772fe46b653ab6b6274f61d4a49"}, - {file = "frozenlist-1.4.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fde5bd59ab5357e3853313127f4d3565fc7dad314a74d7b5d43c22c6a5ed2ced"}, - {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:722e1124aec435320ae01ee3ac7bec11a5d47f25d0ed6328f2273d287bc3abb0"}, - {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2471c201b70d58a0f0c1f91261542a03d9a5e088ed3dc6c160d614c01649c106"}, - {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c757a9dd70d72b076d6f68efdbb9bc943665ae954dad2801b874c8c69e185068"}, - {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f146e0911cb2f1da549fc58fc7bcd2b836a44b79ef871980d605ec392ff6b0d2"}, - {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f9c515e7914626b2a2e1e311794b4c35720a0be87af52b79ff8e1429fc25f19"}, - {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c302220494f5c1ebeb0912ea782bcd5e2f8308037b3c7553fad0e48ebad6ad82"}, - {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:442acde1e068288a4ba7acfe05f5f343e19fac87bfc96d89eb886b0363e977ec"}, - {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:1b280e6507ea8a4fa0c0a7150b4e526a8d113989e28eaaef946cc77ffd7efc0a"}, - {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:fe1a06da377e3a1062ae5fe0926e12b84eceb8a50b350ddca72dc85015873f74"}, - {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:db9e724bebd621d9beca794f2a4ff1d26eed5965b004a97f1f1685a173b869c2"}, - {file = "frozenlist-1.4.1-cp311-cp311-win32.whl", hash = "sha256:e774d53b1a477a67838a904131c4b0eef6b3d8a651f8b138b04f748fccfefe17"}, - {file = "frozenlist-1.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:fb3c2db03683b5767dedb5769b8a40ebb47d6f7f45b1b3e3b4b51ec8ad9d9825"}, - {file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1979bc0aeb89b33b588c51c54ab0161791149f2461ea7c7c946d95d5f93b56ae"}, - {file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cc7b01b3754ea68a62bd77ce6020afaffb44a590c2289089289363472d13aedb"}, - {file = "frozenlist-1.4.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c9c92be9fd329ac801cc420e08452b70e7aeab94ea4233a4804f0915c14eba9b"}, - {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c3894db91f5a489fc8fa6a9991820f368f0b3cbdb9cd8849547ccfab3392d86"}, - {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba60bb19387e13597fb059f32cd4d59445d7b18b69a745b8f8e5db0346f33480"}, - {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8aefbba5f69d42246543407ed2461db31006b0f76c4e32dfd6f42215a2c41d09"}, - {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:780d3a35680ced9ce682fbcf4cb9c2bad3136eeff760ab33707b71db84664e3a"}, - {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9acbb16f06fe7f52f441bb6f413ebae6c37baa6ef9edd49cdd567216da8600cd"}, - {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:23b701e65c7b36e4bf15546a89279bd4d8675faabc287d06bbcfac7d3c33e1e6"}, - {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:3e0153a805a98f5ada7e09826255ba99fb4f7524bb81bf6b47fb702666484ae1"}, - {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:dd9b1baec094d91bf36ec729445f7769d0d0cf6b64d04d86e45baf89e2b9059b"}, - {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:1a4471094e146b6790f61b98616ab8e44f72661879cc63fa1049d13ef711e71e"}, - {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5667ed53d68d91920defdf4035d1cdaa3c3121dc0b113255124bcfada1cfa1b8"}, - {file = "frozenlist-1.4.1-cp312-cp312-win32.whl", hash = "sha256:beee944ae828747fd7cb216a70f120767fc9f4f00bacae8543c14a6831673f89"}, - {file = "frozenlist-1.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:64536573d0a2cb6e625cf309984e2d873979709f2cf22839bf2d61790b448ad5"}, - {file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:20b51fa3f588ff2fe658663db52a41a4f7aa6c04f6201449c6c7c476bd255c0d"}, - {file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:410478a0c562d1a5bcc2f7ea448359fcb050ed48b3c6f6f4f18c313a9bdb1826"}, - {file = "frozenlist-1.4.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c6321c9efe29975232da3bd0af0ad216800a47e93d763ce64f291917a381b8eb"}, - {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48f6a4533887e189dae092f1cf981f2e3885175f7a0f33c91fb5b7b682b6bab6"}, - {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6eb73fa5426ea69ee0e012fb59cdc76a15b1283d6e32e4f8dc4482ec67d1194d"}, - {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbeb989b5cc29e8daf7f976b421c220f1b8c731cbf22b9130d8815418ea45887"}, - {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:32453c1de775c889eb4e22f1197fe3bdfe457d16476ea407472b9442e6295f7a"}, - {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693945278a31f2086d9bf3df0fe8254bbeaef1fe71e1351c3bd730aa7d31c41b"}, - {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:1d0ce09d36d53bbbe566fe296965b23b961764c0bcf3ce2fa45f463745c04701"}, - {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3a670dc61eb0d0eb7080890c13de3066790f9049b47b0de04007090807c776b0"}, - {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:dca69045298ce5c11fd539682cff879cc1e664c245d1c64da929813e54241d11"}, - {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:a06339f38e9ed3a64e4c4e43aec7f59084033647f908e4259d279a52d3757d09"}, - {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b7f2f9f912dca3934c1baec2e4585a674ef16fe00218d833856408c48d5beee7"}, - {file = "frozenlist-1.4.1-cp38-cp38-win32.whl", hash = "sha256:e7004be74cbb7d9f34553a5ce5fb08be14fb33bc86f332fb71cbe5216362a497"}, - {file = "frozenlist-1.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:5a7d70357e7cee13f470c7883a063aae5fe209a493c57d86eb7f5a6f910fae09"}, - {file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:bfa4a17e17ce9abf47a74ae02f32d014c5e9404b6d9ac7f729e01562bbee601e"}, - {file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b7e3ed87d4138356775346e6845cccbe66cd9e207f3cd11d2f0b9fd13681359d"}, - {file = "frozenlist-1.4.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c99169d4ff810155ca50b4da3b075cbde79752443117d89429595c2e8e37fed8"}, - {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edb678da49d9f72c9f6c609fbe41a5dfb9a9282f9e6a2253d5a91e0fc382d7c0"}, - {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6db4667b187a6742b33afbbaf05a7bc551ffcf1ced0000a571aedbb4aa42fc7b"}, - {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55fdc093b5a3cb41d420884cdaf37a1e74c3c37a31f46e66286d9145d2063bd0"}, - {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82e8211d69a4f4bc360ea22cd6555f8e61a1bd211d1d5d39d3d228b48c83a897"}, - {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89aa2c2eeb20957be2d950b85974b30a01a762f3308cd02bb15e1ad632e22dc7"}, - {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9d3e0c25a2350080e9319724dede4f31f43a6c9779be48021a7f4ebde8b2d742"}, - {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7268252af60904bf52c26173cbadc3a071cece75f873705419c8681f24d3edea"}, - {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:0c250a29735d4f15321007fb02865f0e6b6a41a6b88f1f523ca1596ab5f50bd5"}, - {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:96ec70beabbd3b10e8bfe52616a13561e58fe84c0101dd031dc78f250d5128b9"}, - {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:23b2d7679b73fe0e5a4560b672a39f98dfc6f60df63823b0a9970525325b95f6"}, - {file = "frozenlist-1.4.1-cp39-cp39-win32.whl", hash = "sha256:a7496bfe1da7fb1a4e1cc23bb67c58fab69311cc7d32b5a99c2007b4b2a0e932"}, - {file = "frozenlist-1.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:e6a20a581f9ce92d389a8c7d7c3dd47c81fd5d6e655c8dddf341e14aa48659d0"}, - {file = "frozenlist-1.4.1-py3-none-any.whl", hash = "sha256:04ced3e6a46b4cfffe20f9ae482818e34eba9b5fb0ce4056e4cc9b6e212d09b7"}, - {file = "frozenlist-1.4.1.tar.gz", hash = "sha256:c037a86e8513059a2613aaba4d817bb90b9d9b6b69aace3ce9c877e8c8ed402b"}, -] - -[[package]] -name = "fsspec" -version = "2024.9.0" -description = "File-system specification" -optional = false -python-versions = ">=3.8" -files = [ - {file = "fsspec-2024.9.0-py3-none-any.whl", hash = "sha256:a0947d552d8a6efa72cc2c730b12c41d043509156966cca4fb157b0f2a0c574b"}, - {file = "fsspec-2024.9.0.tar.gz", hash = "sha256:4b0afb90c2f21832df142f292649035d80b421f60a9e1c027802e5a0da2b04e8"}, -] - -[package.extras] -abfs = ["adlfs"] -adl = ["adlfs"] -arrow = ["pyarrow (>=1)"] -dask = ["dask", "distributed"] -dev = ["pre-commit", "ruff"] -doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] -dropbox = ["dropbox", "dropboxdrivefs", "requests"] -full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] -fuse = ["fusepy"] -gcs = ["gcsfs"] -git = ["pygit2"] -github = ["requests"] -gs = ["gcsfs"] -gui = ["panel"] -hdfs = ["pyarrow (>=1)"] -http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)"] -libarchive = ["libarchive-c"] -oci = ["ocifs"] -s3 = ["s3fs"] -sftp = ["paramiko"] -smb = ["smbprotocol"] -ssh = ["paramiko"] -test = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "numpy", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "requests"] -test-downstream = ["aiobotocore (>=2.5.4,<3.0.0)", "dask-expr", "dask[dataframe,test]", "moto[server] (>4,<5)", "pytest-timeout", "xarray"] -test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"] -tqdm = ["tqdm"] - [[package]] name = "gast" version = "0.4.0" @@ -859,13 +505,13 @@ test-win = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytes [[package]] name = "google-auth" -version = "2.35.0" +version = "2.33.0" description = "Google Authentication Library" optional = false python-versions = ">=3.7" files = [ - {file = "google_auth-2.35.0-py2.py3-none-any.whl", hash = "sha256:25df55f327ef021de8be50bad0dfd4a916ad0de96da86cd05661c9297723ad3f"}, - {file = "google_auth-2.35.0.tar.gz", hash = "sha256:f4c64ed4e01e8e8b646ef34c018f8bf3338df0c8e37d8b3bba40e7f574a3278a"}, + {file = "google_auth-2.33.0-py2.py3-none-any.whl", hash = "sha256:8eff47d0d4a34ab6265c50a106a3362de6a9975bb08998700e389f857e4d39df"}, + {file = "google_auth-2.33.0.tar.gz", hash = "sha256:d6a52342160d7290e334b4d47ba390767e4438ad0d45b7630774533e82655b95"}, ] [package.dependencies] @@ -875,7 +521,7 @@ rsa = ">=3.1.4,<5" [package.extras] aiohttp = ["aiohttp (>=3.6.2,<4.0.0.dev0)", "requests (>=2.20.0,<3.0.0.dev0)"] -enterprise-cert = ["cryptography", "pyopenssl"] +enterprise-cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"] pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] reauth = ["pyu2f (>=0.1.5)"] requests = ["requests (>=2.20.0,<3.0.0.dev0)"] @@ -915,70 +561,61 @@ six = "*" [[package]] name = "grpcio" -version = "1.66.2" +version = "1.65.4" description = "HTTP/2-based RPC framework" optional = false python-versions = ">=3.8" files = [ - {file = "grpcio-1.66.2-cp310-cp310-linux_armv7l.whl", hash = "sha256:fe96281713168a3270878255983d2cb1a97e034325c8c2c25169a69289d3ecfa"}, - {file = "grpcio-1.66.2-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:73fc8f8b9b5c4a03e802b3cd0c18b2b06b410d3c1dcbef989fdeb943bd44aff7"}, - {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:03b0b307ba26fae695e067b94cbb014e27390f8bc5ac7a3a39b7723fed085604"}, - {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d69ce1f324dc2d71e40c9261d3fdbe7d4c9d60f332069ff9b2a4d8a257c7b2b"}, - {file = "grpcio-1.66.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05bc2ceadc2529ab0b227b1310d249d95d9001cd106aa4d31e8871ad3c428d73"}, - {file = "grpcio-1.66.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8ac475e8da31484efa25abb774674d837b343afb78bb3bcdef10f81a93e3d6bf"}, - {file = "grpcio-1.66.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0be4e0490c28da5377283861bed2941d1d20ec017ca397a5df4394d1c31a9b50"}, - {file = "grpcio-1.66.2-cp310-cp310-win32.whl", hash = "sha256:4e504572433f4e72b12394977679161d495c4c9581ba34a88d843eaf0f2fbd39"}, - {file = "grpcio-1.66.2-cp310-cp310-win_amd64.whl", hash = "sha256:2018b053aa15782db2541ca01a7edb56a0bf18c77efed975392583725974b249"}, - {file = "grpcio-1.66.2-cp311-cp311-linux_armv7l.whl", hash = "sha256:2335c58560a9e92ac58ff2bc5649952f9b37d0735608242973c7a8b94a6437d8"}, - {file = "grpcio-1.66.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:45a3d462826f4868b442a6b8fdbe8b87b45eb4f5b5308168c156b21eca43f61c"}, - {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:a9539f01cb04950fd4b5ab458e64a15f84c2acc273670072abe49a3f29bbad54"}, - {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ce89f5876662f146d4c1f695dda29d4433a5d01c8681fbd2539afff535da14d4"}, - {file = "grpcio-1.66.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d25a14af966438cddf498b2e338f88d1c9706f3493b1d73b93f695c99c5f0e2a"}, - {file = "grpcio-1.66.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6001e575b8bbd89eee11960bb640b6da6ae110cf08113a075f1e2051cc596cae"}, - {file = "grpcio-1.66.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4ea1d062c9230278793820146c95d038dc0f468cbdd172eec3363e42ff1c7d01"}, - {file = "grpcio-1.66.2-cp311-cp311-win32.whl", hash = "sha256:38b68498ff579a3b1ee8f93a05eb48dc2595795f2f62716e797dc24774c1aaa8"}, - {file = "grpcio-1.66.2-cp311-cp311-win_amd64.whl", hash = "sha256:6851de821249340bdb100df5eacfecfc4e6075fa85c6df7ee0eb213170ec8e5d"}, - {file = "grpcio-1.66.2-cp312-cp312-linux_armv7l.whl", hash = "sha256:802d84fd3d50614170649853d121baaaa305de7b65b3e01759247e768d691ddf"}, - {file = "grpcio-1.66.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:80fd702ba7e432994df208f27514280b4b5c6843e12a48759c9255679ad38db8"}, - {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:12fda97ffae55e6526825daf25ad0fa37483685952b5d0f910d6405c87e3adb6"}, - {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:950da58d7d80abd0ea68757769c9db0a95b31163e53e5bb60438d263f4bed7b7"}, - {file = "grpcio-1.66.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e636ce23273683b00410f1971d209bf3689238cf5538d960adc3cdfe80dd0dbd"}, - {file = "grpcio-1.66.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:a917d26e0fe980b0ac7bfcc1a3c4ad6a9a4612c911d33efb55ed7833c749b0ee"}, - {file = "grpcio-1.66.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:49f0ca7ae850f59f828a723a9064cadbed90f1ece179d375966546499b8a2c9c"}, - {file = "grpcio-1.66.2-cp312-cp312-win32.whl", hash = "sha256:31fd163105464797a72d901a06472860845ac157389e10f12631025b3e4d0453"}, - {file = "grpcio-1.66.2-cp312-cp312-win_amd64.whl", hash = "sha256:ff1f7882e56c40b0d33c4922c15dfa30612f05fb785074a012f7cda74d1c3679"}, - {file = "grpcio-1.66.2-cp313-cp313-linux_armv7l.whl", hash = "sha256:3b00efc473b20d8bf83e0e1ae661b98951ca56111feb9b9611df8efc4fe5d55d"}, - {file = "grpcio-1.66.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1caa38fb22a8578ab8393da99d4b8641e3a80abc8fd52646f1ecc92bcb8dee34"}, - {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_aarch64.whl", hash = "sha256:c408f5ef75cfffa113cacd8b0c0e3611cbfd47701ca3cdc090594109b9fcbaed"}, - {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c806852deaedee9ce8280fe98955c9103f62912a5b2d5ee7e3eaa284a6d8d8e7"}, - {file = "grpcio-1.66.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f145cc21836c332c67baa6fc81099d1d27e266401565bf481948010d6ea32d46"}, - {file = "grpcio-1.66.2-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:73e3b425c1e155730273f73e419de3074aa5c5e936771ee0e4af0814631fb30a"}, - {file = "grpcio-1.66.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:9c509a4f78114cbc5f0740eb3d7a74985fd2eff022971bc9bc31f8bc93e66a3b"}, - {file = "grpcio-1.66.2-cp313-cp313-win32.whl", hash = "sha256:20657d6b8cfed7db5e11b62ff7dfe2e12064ea78e93f1434d61888834bc86d75"}, - {file = "grpcio-1.66.2-cp313-cp313-win_amd64.whl", hash = "sha256:fb70487c95786e345af5e854ffec8cb8cc781bcc5df7930c4fbb7feaa72e1cdf"}, - {file = "grpcio-1.66.2-cp38-cp38-linux_armv7l.whl", hash = "sha256:a18e20d8321c6400185b4263e27982488cb5cdd62da69147087a76a24ef4e7e3"}, - {file = "grpcio-1.66.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:02697eb4a5cbe5a9639f57323b4c37bcb3ab2d48cec5da3dc2f13334d72790dd"}, - {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:99a641995a6bc4287a6315989ee591ff58507aa1cbe4c2e70d88411c4dcc0839"}, - {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ed71e81782966ffead60268bbda31ea3f725ebf8aa73634d5dda44f2cf3fb9c"}, - {file = "grpcio-1.66.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbd27c24a4cc5e195a7f56cfd9312e366d5d61b86e36d46bbe538457ea6eb8dd"}, - {file = "grpcio-1.66.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d9a9724a156c8ec6a379869b23ba3323b7ea3600851c91489b871e375f710bc8"}, - {file = "grpcio-1.66.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d8d4732cc5052e92cea2f78b233c2e2a52998ac40cd651f40e398893ad0d06ec"}, - {file = "grpcio-1.66.2-cp38-cp38-win32.whl", hash = "sha256:7b2c86457145ce14c38e5bf6bdc19ef88e66c5fee2c3d83285c5aef026ba93b3"}, - {file = "grpcio-1.66.2-cp38-cp38-win_amd64.whl", hash = "sha256:e88264caad6d8d00e7913996030bac8ad5f26b7411495848cc218bd3a9040b6c"}, - {file = "grpcio-1.66.2-cp39-cp39-linux_armv7l.whl", hash = "sha256:c400ba5675b67025c8a9f48aa846f12a39cf0c44df5cd060e23fda5b30e9359d"}, - {file = "grpcio-1.66.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:66a0cd8ba6512b401d7ed46bb03f4ee455839957f28b8d61e7708056a806ba6a"}, - {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:06de8ec0bd71be123eec15b0e0d457474931c2c407869b6c349bd9bed4adbac3"}, - {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb57870449dfcfac428afbb5a877829fcb0d6db9d9baa1148705739e9083880e"}, - {file = "grpcio-1.66.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b672abf90a964bfde2d0ecbce30f2329a47498ba75ce6f4da35a2f4532b7acbc"}, - {file = "grpcio-1.66.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:ad2efdbe90c73b0434cbe64ed372e12414ad03c06262279b104a029d1889d13e"}, - {file = "grpcio-1.66.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9c3a99c519f4638e700e9e3f83952e27e2ea10873eecd7935823dab0c1c9250e"}, - {file = "grpcio-1.66.2-cp39-cp39-win32.whl", hash = "sha256:78fa51ebc2d9242c0fc5db0feecc57a9943303b46664ad89921f5079e2e4ada7"}, - {file = "grpcio-1.66.2-cp39-cp39-win_amd64.whl", hash = "sha256:728bdf36a186e7f51da73be7f8d09457a03061be848718d0edf000e709418987"}, - {file = "grpcio-1.66.2.tar.gz", hash = "sha256:563588c587b75c34b928bc428548e5b00ea38c46972181a4d8b75ba7e3f24231"}, + {file = "grpcio-1.65.4-cp310-cp310-linux_armv7l.whl", hash = "sha256:0e85c8766cf7f004ab01aff6a0393935a30d84388fa3c58d77849fcf27f3e98c"}, + {file = "grpcio-1.65.4-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:e4a795c02405c7dfa8affd98c14d980f4acea16ea3b539e7404c645329460e5a"}, + {file = "grpcio-1.65.4-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:d7b984a8dd975d949c2042b9b5ebcf297d6d5af57dcd47f946849ee15d3c2fb8"}, + {file = "grpcio-1.65.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:644a783ce604a7d7c91412bd51cf9418b942cf71896344b6dc8d55713c71ce82"}, + {file = "grpcio-1.65.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5764237d751d3031a36fafd57eb7d36fd2c10c658d2b4057c516ccf114849a3e"}, + {file = "grpcio-1.65.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:ee40d058cf20e1dd4cacec9c39e9bce13fedd38ce32f9ba00f639464fcb757de"}, + {file = "grpcio-1.65.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4482a44ce7cf577a1f8082e807a5b909236bce35b3e3897f839f2fbd9ae6982d"}, + {file = "grpcio-1.65.4-cp310-cp310-win32.whl", hash = "sha256:66bb051881c84aa82e4f22d8ebc9d1704b2e35d7867757f0740c6ef7b902f9b1"}, + {file = "grpcio-1.65.4-cp310-cp310-win_amd64.whl", hash = "sha256:870370524eff3144304da4d1bbe901d39bdd24f858ce849b7197e530c8c8f2ec"}, + {file = "grpcio-1.65.4-cp311-cp311-linux_armv7l.whl", hash = "sha256:85e9c69378af02e483bc626fc19a218451b24a402bdf44c7531e4c9253fb49ef"}, + {file = "grpcio-1.65.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2bd672e005afab8bf0d6aad5ad659e72a06dd713020554182a66d7c0c8f47e18"}, + {file = "grpcio-1.65.4-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:abccc5d73f5988e8f512eb29341ed9ced923b586bb72e785f265131c160231d8"}, + {file = "grpcio-1.65.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:886b45b29f3793b0c2576201947258782d7e54a218fe15d4a0468d9a6e00ce17"}, + {file = "grpcio-1.65.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be952436571dacc93ccc7796db06b7daf37b3b56bb97e3420e6503dccfe2f1b4"}, + {file = "grpcio-1.65.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:8dc9ddc4603ec43f6238a5c95400c9a901b6d079feb824e890623da7194ff11e"}, + {file = "grpcio-1.65.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:ade1256c98cba5a333ef54636095f2c09e6882c35f76acb04412f3b1aa3c29a5"}, + {file = "grpcio-1.65.4-cp311-cp311-win32.whl", hash = "sha256:280e93356fba6058cbbfc6f91a18e958062ef1bdaf5b1caf46c615ba1ae71b5b"}, + {file = "grpcio-1.65.4-cp311-cp311-win_amd64.whl", hash = "sha256:d2b819f9ee27ed4e3e737a4f3920e337e00bc53f9e254377dd26fc7027c4d558"}, + {file = "grpcio-1.65.4-cp312-cp312-linux_armv7l.whl", hash = "sha256:926a0750a5e6fb002542e80f7fa6cab8b1a2ce5513a1c24641da33e088ca4c56"}, + {file = "grpcio-1.65.4-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:2a1d4c84d9e657f72bfbab8bedf31bdfc6bfc4a1efb10b8f2d28241efabfaaf2"}, + {file = "grpcio-1.65.4-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:17de4fda50967679677712eec0a5c13e8904b76ec90ac845d83386b65da0ae1e"}, + {file = "grpcio-1.65.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3dee50c1b69754a4228e933696408ea87f7e896e8d9797a3ed2aeed8dbd04b74"}, + {file = "grpcio-1.65.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74c34fc7562bdd169b77966068434a93040bfca990e235f7a67cdf26e1bd5c63"}, + {file = "grpcio-1.65.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:24a2246e80a059b9eb981e4c2a6d8111b1b5e03a44421adbf2736cc1d4988a8a"}, + {file = "grpcio-1.65.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:18c10f0d054d2dce34dd15855fcca7cc44ec3b811139437543226776730c0f28"}, + {file = "grpcio-1.65.4-cp312-cp312-win32.whl", hash = "sha256:d72962788b6c22ddbcdb70b10c11fbb37d60ae598c51eb47ec019db66ccfdff0"}, + {file = "grpcio-1.65.4-cp312-cp312-win_amd64.whl", hash = "sha256:7656376821fed8c89e68206a522522317787a3d9ed66fb5110b1dff736a5e416"}, + {file = "grpcio-1.65.4-cp38-cp38-linux_armv7l.whl", hash = "sha256:4934077b33aa6fe0b451de8b71dabde96bf2d9b4cb2b3187be86e5adebcba021"}, + {file = "grpcio-1.65.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:0cef8c919a3359847c357cb4314e50ed1f0cca070f828ee8f878d362fd744d52"}, + {file = "grpcio-1.65.4-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:a925446e6aa12ca37114840d8550f308e29026cdc423a73da3043fd1603a6385"}, + {file = "grpcio-1.65.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cf53e6247f1e2af93657e62e240e4f12e11ee0b9cef4ddcb37eab03d501ca864"}, + {file = "grpcio-1.65.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdb34278e4ceb224c89704cd23db0d902e5e3c1c9687ec9d7c5bb4c150f86816"}, + {file = "grpcio-1.65.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:e6cbdd107e56bde55c565da5fd16f08e1b4e9b0674851d7749e7f32d8645f524"}, + {file = "grpcio-1.65.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:626319a156b1f19513156a3b0dbfe977f5f93db63ca673a0703238ebd40670d7"}, + {file = "grpcio-1.65.4-cp38-cp38-win32.whl", hash = "sha256:3d1bbf7e1dd1096378bd83c83f554d3b93819b91161deaf63e03b7022a85224a"}, + {file = "grpcio-1.65.4-cp38-cp38-win_amd64.whl", hash = "sha256:a99e6dffefd3027b438116f33ed1261c8d360f0dd4f943cb44541a2782eba72f"}, + {file = "grpcio-1.65.4-cp39-cp39-linux_armv7l.whl", hash = "sha256:874acd010e60a2ec1e30d5e505b0651ab12eb968157cd244f852b27c6dbed733"}, + {file = "grpcio-1.65.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b07f36faf01fca5427d4aa23645e2d492157d56c91fab7e06fe5697d7e171ad4"}, + {file = "grpcio-1.65.4-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:b81711bf4ec08a3710b534e8054c7dcf90f2edc22bebe11c1775a23f145595fe"}, + {file = "grpcio-1.65.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88fcabc332a4aef8bcefadc34a02e9ab9407ab975d2c7d981a8e12c1aed92aa1"}, + {file = "grpcio-1.65.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9ba3e63108a8749994f02c7c0e156afb39ba5bdf755337de8e75eb685be244b"}, + {file = "grpcio-1.65.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:8eb485801957a486bf5de15f2c792d9f9c897a86f2f18db8f3f6795a094b4bb2"}, + {file = "grpcio-1.65.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:075f3903bc1749ace93f2b0664f72964ee5f2da5c15d4b47e0ab68e4f442c257"}, + {file = "grpcio-1.65.4-cp39-cp39-win32.whl", hash = "sha256:0a0720299bdb2cc7306737295d56e41ce8827d5669d4a3cd870af832e3b17c4d"}, + {file = "grpcio-1.65.4-cp39-cp39-win_amd64.whl", hash = "sha256:a146bc40fa78769f22e1e9ff4f110ef36ad271b79707577bf2a31e3e931141b9"}, + {file = "grpcio-1.65.4.tar.gz", hash = "sha256:2a4f476209acffec056360d3e647ae0e14ae13dcf3dfb130c227ae1c594cbe39"}, ] [package.extras] -protobuf = ["grpcio-tools (>=1.66.2)"] +protobuf = ["grpcio-tools (>=1.65.4)"] [[package]] name = "h5py" @@ -1015,40 +652,33 @@ numpy = ">=1.17.3" [[package]] name = "idna" -version = "3.10" +version = "3.7" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.6" +python-versions = ">=3.5" files = [ - {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, - {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, + {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, + {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, ] -[package.extras] -all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] - [[package]] name = "importlib-metadata" -version = "8.5.0" +version = "8.2.0" description = "Read metadata from Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "importlib_metadata-8.5.0-py3-none-any.whl", hash = "sha256:45e54197d28b7a7f1559e60b95e7c567032b602131fbd588f1497f47880aa68b"}, - {file = "importlib_metadata-8.5.0.tar.gz", hash = "sha256:71522656f0abace1d072b9e5481a48f07c138e00f079c38c8f883823f9c26bd7"}, + {file = "importlib_metadata-8.2.0-py3-none-any.whl", hash = "sha256:11901fa0c2f97919b288679932bb64febaeacf289d18ac84dd68cb2e74213369"}, + {file = "importlib_metadata-8.2.0.tar.gz", hash = "sha256:72e8d4399996132204f9a16dcc751af254a48f8d1b20b9ff0f98d4a8f901e73d"}, ] [package.dependencies] -zipp = ">=3.20" +zipp = ">=0.5" [package.extras] -check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] -cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -enabler = ["pytest-enabler (>=2.2)"] perf = ["ipython"] -test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-perf (>=0.9.2)"] -type = ["pytest-mypy"] +test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] [[package]] name = "ipykernel" @@ -1141,23 +771,6 @@ docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alab qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] -[[package]] -name = "jinja2" -version = "3.1.4" -description = "A very fast and expressive template engine." -optional = false -python-versions = ">=3.7" -files = [ - {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, - {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, -] - -[package.dependencies] -MarkupSafe = ">=2.0" - -[package.extras] -i18n = ["Babel (>=2.7)"] - [[package]] name = "joblib" version = "1.4.2" @@ -1171,13 +784,13 @@ files = [ [[package]] name = "jupyter-client" -version = "8.6.3" +version = "8.6.2" description = "Jupyter protocol implementation and client libraries" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, - {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, + {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"}, + {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"}, ] [package.dependencies] @@ -1212,6 +825,28 @@ traitlets = ">=5.3" docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] +[[package]] +name = "karateclub" +version = "1.0.19" +description = "A general purpose library for community detection, network embedding, and graph mining research." +optional = false +python-versions = "*" +files = [ + {file = "karateclub-1.0.19.tar.gz", hash = "sha256:0e43f9072f028f471f935a47746c71d24df0472eb5fafd77be9f5619a1e0f804"}, +] + +[package.dependencies] +gensim = "*" +networkx = "*" +numpy = "*" +pandas = "*" +pygsp = "*" +python-louvain = "*" +scikit-learn = "*" +scipy = "*" +six = "*" +tqdm = "*" + [[package]] name = "keras" version = "2.7.0" @@ -1244,125 +879,115 @@ tests = ["Pillow", "keras", "pandas", "pytest", "pytest-cov", "pytest-xdist", "t [[package]] name = "kiwisolver" -version = "1.4.7" +version = "1.4.5" description = "A fast implementation of the Cassowary constraint solver" optional = false -python-versions = ">=3.8" +python-versions = ">=3.7" files = [ - {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8a9c83f75223d5e48b0bc9cb1bf2776cf01563e00ade8775ffe13b0b6e1af3a6"}, - {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:58370b1ffbd35407444d57057b57da5d6549d2d854fa30249771775c63b5fe17"}, - {file = "kiwisolver-1.4.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa0abdf853e09aff551db11fce173e2177d00786c688203f52c87ad7fcd91ef9"}, - {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8d53103597a252fb3ab8b5845af04c7a26d5e7ea8122303dd7a021176a87e8b9"}, - {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:88f17c5ffa8e9462fb79f62746428dd57b46eb931698e42e990ad63103f35e6c"}, - {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88a9ca9c710d598fd75ee5de59d5bda2684d9db36a9f50b6125eaea3969c2599"}, - {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4d742cb7af1c28303a51b7a27aaee540e71bb8e24f68c736f6f2ffc82f2bf05"}, - {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28c7fea2196bf4c2f8d46a0415c77a1c480cc0724722f23d7410ffe9842c407"}, - {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e968b84db54f9d42046cf154e02911e39c0435c9801681e3fc9ce8a3c4130278"}, - {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0c18ec74c0472de033e1bebb2911c3c310eef5649133dd0bedf2a169a1b269e5"}, - {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8f0ea6da6d393d8b2e187e6a5e3fb81f5862010a40c3945e2c6d12ae45cfb2ad"}, - {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:f106407dda69ae456dd1227966bf445b157ccc80ba0dff3802bb63f30b74e895"}, - {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84ec80df401cfee1457063732d90022f93951944b5b58975d34ab56bb150dfb3"}, - {file = "kiwisolver-1.4.7-cp310-cp310-win32.whl", hash = "sha256:71bb308552200fb2c195e35ef05de12f0c878c07fc91c270eb3d6e41698c3bcc"}, - {file = "kiwisolver-1.4.7-cp310-cp310-win_amd64.whl", hash = "sha256:44756f9fd339de0fb6ee4f8c1696cfd19b2422e0d70b4cefc1cc7f1f64045a8c"}, - {file = "kiwisolver-1.4.7-cp310-cp310-win_arm64.whl", hash = "sha256:78a42513018c41c2ffd262eb676442315cbfe3c44eed82385c2ed043bc63210a"}, - {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d2b0e12a42fb4e72d509fc994713d099cbb15ebf1103545e8a45f14da2dfca54"}, - {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a8781ac3edc42ea4b90bc23e7d37b665d89423818e26eb6df90698aa2287c95"}, - {file = "kiwisolver-1.4.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46707a10836894b559e04b0fd143e343945c97fd170d69a2d26d640b4e297935"}, - {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef97b8df011141c9b0f6caf23b29379f87dd13183c978a30a3c546d2c47314cb"}, - {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab58c12a2cd0fc769089e6d38466c46d7f76aced0a1f54c77652446733d2d02"}, - {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:803b8e1459341c1bb56d1c5c010406d5edec8a0713a0945851290a7930679b51"}, - {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9a9e8a507420fe35992ee9ecb302dab68550dedc0da9e2880dd88071c5fb052"}, - {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18077b53dc3bb490e330669a99920c5e6a496889ae8c63b58fbc57c3d7f33a18"}, - {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6af936f79086a89b3680a280c47ea90b4df7047b5bdf3aa5c524bbedddb9e545"}, - {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3abc5b19d24af4b77d1598a585b8a719beb8569a71568b66f4ebe1fb0449460b"}, - {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:933d4de052939d90afbe6e9d5273ae05fb836cc86c15b686edd4b3560cc0ee36"}, - {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:65e720d2ab2b53f1f72fb5da5fb477455905ce2c88aaa671ff0a447c2c80e8e3"}, - {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3bf1ed55088f214ba6427484c59553123fdd9b218a42bbc8c6496d6754b1e523"}, - {file = "kiwisolver-1.4.7-cp311-cp311-win32.whl", hash = "sha256:4c00336b9dd5ad96d0a558fd18a8b6f711b7449acce4c157e7343ba92dd0cf3d"}, - {file = "kiwisolver-1.4.7-cp311-cp311-win_amd64.whl", hash = "sha256:929e294c1ac1e9f615c62a4e4313ca1823ba37326c164ec720a803287c4c499b"}, - {file = "kiwisolver-1.4.7-cp311-cp311-win_arm64.whl", hash = "sha256:e33e8fbd440c917106b237ef1a2f1449dfbb9b6f6e1ce17c94cd6a1e0d438376"}, - {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:5360cc32706dab3931f738d3079652d20982511f7c0ac5711483e6eab08efff2"}, - {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:942216596dc64ddb25adb215c3c783215b23626f8d84e8eff8d6d45c3f29f75a"}, - {file = "kiwisolver-1.4.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:48b571ecd8bae15702e4f22d3ff6a0f13e54d3d00cd25216d5e7f658242065ee"}, - {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad42ba922c67c5f219097b28fae965e10045ddf145d2928bfac2eb2e17673640"}, - {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:612a10bdae23404a72941a0fc8fa2660c6ea1217c4ce0dbcab8a8f6543ea9e7f"}, - {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9e838bba3a3bac0fe06d849d29772eb1afb9745a59710762e4ba3f4cb8424483"}, - {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:22f499f6157236c19f4bbbd472fa55b063db77a16cd74d49afe28992dff8c258"}, - {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693902d433cf585133699972b6d7c42a8b9f8f826ebcaf0132ff55200afc599e"}, - {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4e77f2126c3e0b0d055f44513ed349038ac180371ed9b52fe96a32aa071a5107"}, - {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:657a05857bda581c3656bfc3b20e353c232e9193eb167766ad2dc58b56504948"}, - {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4bfa75a048c056a411f9705856abfc872558e33c055d80af6a380e3658766038"}, - {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:34ea1de54beef1c104422d210c47c7d2a4999bdecf42c7b5718fbe59a4cac383"}, - {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:90da3b5f694b85231cf93586dad5e90e2d71b9428f9aad96952c99055582f520"}, - {file = "kiwisolver-1.4.7-cp312-cp312-win32.whl", hash = "sha256:18e0cca3e008e17fe9b164b55735a325140a5a35faad8de92dd80265cd5eb80b"}, - {file = "kiwisolver-1.4.7-cp312-cp312-win_amd64.whl", hash = "sha256:58cb20602b18f86f83a5c87d3ee1c766a79c0d452f8def86d925e6c60fbf7bfb"}, - {file = "kiwisolver-1.4.7-cp312-cp312-win_arm64.whl", hash = "sha256:f5a8b53bdc0b3961f8b6125e198617c40aeed638b387913bf1ce78afb1b0be2a"}, - {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:2e6039dcbe79a8e0f044f1c39db1986a1b8071051efba3ee4d74f5b365f5226e"}, - {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a1ecf0ac1c518487d9d23b1cd7139a6a65bc460cd101ab01f1be82ecf09794b6"}, - {file = "kiwisolver-1.4.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7ab9ccab2b5bd5702ab0803676a580fffa2aa178c2badc5557a84cc943fcf750"}, - {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f816dd2277f8d63d79f9c8473a79fe54047bc0467754962840782c575522224d"}, - {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf8bcc23ceb5a1b624572a1623b9f79d2c3b337c8c455405ef231933a10da379"}, - {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dea0bf229319828467d7fca8c7c189780aa9ff679c94539eed7532ebe33ed37c"}, - {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c06a4c7cf15ec739ce0e5971b26c93638730090add60e183530d70848ebdd34"}, - {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1"}, - {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5337ec7809bcd0f424c6b705ecf97941c46279cf5ed92311782c7c9c2026f07f"}, - {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4c26ed10c4f6fa6ddb329a5120ba3b6db349ca192ae211e882970bfc9d91420b"}, - {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c619b101e6de2222c1fcb0531e1b17bbffbe54294bfba43ea0d411d428618c27"}, - {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:073a36c8273647592ea332e816e75ef8da5c303236ec0167196793eb1e34657a"}, - {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3ce6b2b0231bda412463e152fc18335ba32faf4e8c23a754ad50ffa70e4091ee"}, - {file = "kiwisolver-1.4.7-cp313-cp313-win32.whl", hash = "sha256:f4c9aee212bc89d4e13f58be11a56cc8036cabad119259d12ace14b34476fd07"}, - {file = "kiwisolver-1.4.7-cp313-cp313-win_amd64.whl", hash = "sha256:8a3ec5aa8e38fc4c8af308917ce12c536f1c88452ce554027e55b22cbbfbff76"}, - {file = "kiwisolver-1.4.7-cp313-cp313-win_arm64.whl", hash = "sha256:76c8094ac20ec259471ac53e774623eb62e6e1f56cd8690c67ce6ce4fcb05650"}, - {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5d5abf8f8ec1f4e22882273c423e16cae834c36856cac348cfbfa68e01c40f3a"}, - {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:aeb3531b196ef6f11776c21674dba836aeea9d5bd1cf630f869e3d90b16cfade"}, - {file = "kiwisolver-1.4.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b7d755065e4e866a8086c9bdada157133ff466476a2ad7861828e17b6026e22c"}, - {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08471d4d86cbaec61f86b217dd938a83d85e03785f51121e791a6e6689a3be95"}, - {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7bbfcb7165ce3d54a3dfbe731e470f65739c4c1f85bb1018ee912bae139e263b"}, - {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d34eb8494bea691a1a450141ebb5385e4b69d38bb8403b5146ad279f4b30fa3"}, - {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9242795d174daa40105c1d86aba618e8eab7bf96ba8c3ee614da8302a9f95503"}, - {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a0f64a48bb81af7450e641e3fe0b0394d7381e342805479178b3d335d60ca7cf"}, - {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8e045731a5416357638d1700927529e2b8ab304811671f665b225f8bf8d8f933"}, - {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4322872d5772cae7369f8351da1edf255a604ea7087fe295411397d0cfd9655e"}, - {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e1631290ee9271dffe3062d2634c3ecac02c83890ada077d225e081aca8aab89"}, - {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:edcfc407e4eb17e037bca59be0e85a2031a2ac87e4fed26d3e9df88b4165f92d"}, - {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:4d05d81ecb47d11e7f8932bd8b61b720bf0b41199358f3f5e36d38e28f0532c5"}, - {file = "kiwisolver-1.4.7-cp38-cp38-win32.whl", hash = "sha256:b38ac83d5f04b15e515fd86f312479d950d05ce2368d5413d46c088dda7de90a"}, - {file = "kiwisolver-1.4.7-cp38-cp38-win_amd64.whl", hash = "sha256:d83db7cde68459fc803052a55ace60bea2bae361fc3b7a6d5da07e11954e4b09"}, - {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3f9362ecfca44c863569d3d3c033dbe8ba452ff8eed6f6b5806382741a1334bd"}, - {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e8df2eb9b2bac43ef8b082e06f750350fbbaf2887534a5be97f6cf07b19d9583"}, - {file = "kiwisolver-1.4.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f32d6edbc638cde7652bd690c3e728b25332acbadd7cad670cc4a02558d9c417"}, - {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e2e6c39bd7b9372b0be21456caab138e8e69cc0fc1190a9dfa92bd45a1e6e904"}, - {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dda56c24d869b1193fcc763f1284b9126550eaf84b88bbc7256e15028f19188a"}, - {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79849239c39b5e1fd906556c474d9b0439ea6792b637511f3fe3a41158d89ca8"}, - {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5e3bc157fed2a4c02ec468de4ecd12a6e22818d4f09cde2c31ee3226ffbefab2"}, - {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3da53da805b71e41053dc670f9a820d1157aae77b6b944e08024d17bcd51ef88"}, - {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:8705f17dfeb43139a692298cb6637ee2e59c0194538153e83e9ee0c75c2eddde"}, - {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:82a5c2f4b87c26bb1a0ef3d16b5c4753434633b83d365cc0ddf2770c93829e3c"}, - {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce8be0466f4c0d585cdb6c1e2ed07232221df101a4c6f28821d2aa754ca2d9e2"}, - {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:409afdfe1e2e90e6ee7fc896f3df9a7fec8e793e58bfa0d052c8a82f99c37abb"}, - {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5b9c3f4ee0b9a439d2415012bd1b1cc2df59e4d6a9939f4d669241d30b414327"}, - {file = "kiwisolver-1.4.7-cp39-cp39-win32.whl", hash = "sha256:a79ae34384df2b615eefca647a2873842ac3b596418032bef9a7283675962644"}, - {file = "kiwisolver-1.4.7-cp39-cp39-win_amd64.whl", hash = "sha256:cf0438b42121a66a3a667de17e779330fc0f20b0d97d59d2f2121e182b0505e4"}, - {file = "kiwisolver-1.4.7-cp39-cp39-win_arm64.whl", hash = "sha256:764202cc7e70f767dab49e8df52c7455e8de0df5d858fa801a11aa0d882ccf3f"}, - {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:94252291e3fe68001b1dd747b4c0b3be12582839b95ad4d1b641924d68fd4643"}, - {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:5b7dfa3b546da08a9f622bb6becdb14b3e24aaa30adba66749d38f3cc7ea9706"}, - {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3de6481f4ed8b734da5df134cd5a6a64fe32124fe83dde1e5b5f29fe30b1e6"}, - {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a91b5f9f1205845d488c928e8570dcb62b893372f63b8b6e98b863ebd2368ff2"}, - {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40fa14dbd66b8b8f470d5fc79c089a66185619d31645f9b0773b88b19f7223c4"}, - {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:eb542fe7933aa09d8d8f9d9097ef37532a7df6497819d16efe4359890a2f417a"}, - {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bfa1acfa0c54932d5607e19a2c24646fb4c1ae2694437789129cf099789a3b00"}, - {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:eee3ea935c3d227d49b4eb85660ff631556841f6e567f0f7bda972df6c2c9935"}, - {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f3160309af4396e0ed04db259c3ccbfdc3621b5559b5453075e5de555e1f3a1b"}, - {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a17f6a29cf8935e587cc8a4dbfc8368c55edc645283db0ce9801016f83526c2d"}, - {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10849fb2c1ecbfae45a693c070e0320a91b35dd4bcf58172c023b994283a124d"}, - {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:ac542bf38a8a4be2dc6b15248d36315ccc65f0743f7b1a76688ffb6b5129a5c2"}, - {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8b01aac285f91ca889c800042c35ad3b239e704b150cfd3382adfc9dcc780e39"}, - {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:48be928f59a1f5c8207154f935334d374e79f2b5d212826307d072595ad76a2e"}, - {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f37cfe618a117e50d8c240555331160d73d0411422b59b5ee217843d7b693608"}, - {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:599b5c873c63a1f6ed7eead644a8a380cfbdf5db91dcb6f85707aaab213b1674"}, - {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:801fa7802e5cfabe3ab0c81a34c323a319b097dfb5004be950482d882f3d7225"}, - {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0c6c43471bc764fad4bc99c5c2d6d16a676b1abf844ca7c8702bdae92df01ee0"}, - {file = "kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, + {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, ] [[package]] @@ -1383,36 +1008,15 @@ files = [ {file = "libclang-18.1.1.tar.gz", hash = "sha256:a1214966d08d73d971287fc3ead8dfaf82eb07fb197680d8b3859dbbbbf78250"}, ] -[[package]] -name = "lightning-utilities" -version = "0.11.7" -description = "Lightning toolbox for across the our ecosystem." -optional = false -python-versions = ">=3.8" -files = [ - {file = "lightning_utilities-0.11.7-py3-none-any.whl", hash = "sha256:84eebbc700edbfaa6c005458fc911a7fe7f99f02970b00cb322b4d2767deba98"}, - {file = "lightning_utilities-0.11.7.tar.gz", hash = "sha256:7e8458a9f0bfb51ffe6c5ab3957aa37b2792fe8281dd9f1b66aa513a558ec4ce"}, -] - -[package.dependencies] -packaging = ">=17.1" -setuptools = "*" -typing-extensions = "*" - -[package.extras] -cli = ["fire"] -docs = ["requests (>=2.0.0)"] -typing = ["mypy (>=1.0.0)", "types-setuptools"] - [[package]] name = "markdown" -version = "3.7" +version = "3.6" description = "Python implementation of John Gruber's Markdown." optional = false python-versions = ">=3.8" files = [ - {file = "Markdown-3.7-py3-none-any.whl", hash = "sha256:7eb6df5690b81a1d7942992c97fad2938e956e79df20cbc6186e9c3a77b1c803"}, - {file = "markdown-3.7.tar.gz", hash = "sha256:2ae2471477cfd02dbbf038d5d9bc226d40def84b4fe2986e49b59b6b472bbed2"}, + {file = "Markdown-3.6-py3-none-any.whl", hash = "sha256:48f276f4d8cfb8ce6527c8f79e2ee29708508bf4d40aa410fbc3b4ee832c850f"}, + {file = "Markdown-3.6.tar.gz", hash = "sha256:ed4f41f6daecbeeb96e576ce414c41d2d876daa9a16cb35fa8ed8c2ddfad0224"}, ] [package.dependencies] @@ -1537,127 +1141,6 @@ files = [ [package.dependencies] traitlets = "*" -[[package]] -name = "mpmath" -version = "1.3.0" -description = "Python library for arbitrary-precision floating-point arithmetic" -optional = false -python-versions = "*" -files = [ - {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, - {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, -] - -[package.extras] -develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"] -docs = ["sphinx"] -gmpy = ["gmpy2 (>=2.1.0a4)"] -tests = ["pytest (>=4.6)"] - -[[package]] -name = "multidict" -version = "6.1.0" -description = "multidict implementation" -optional = false -python-versions = ">=3.8" -files = [ - {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, - {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, - {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, - {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, - {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, - {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, - {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, - {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, - {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, - {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, - {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, - {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, - {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, - {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, - {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, - {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, - {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, - {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, - {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, - {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, - {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, - {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, - {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, - {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, - {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, - {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, - {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, - {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, - {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, - {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, - {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, - {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, - {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, - {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, - {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, - {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, - {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, - {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, - {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, - {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, - {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, - {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, - {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, - {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, - {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, - {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, - {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, - {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, - {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, - {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, - {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, - {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, - {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, - {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, - {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, - {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, - {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, - {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, - {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, - {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, - {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, - {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, - {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, - {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, - {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, - {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, - {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, - {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, - {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, - {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, - {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, - {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, - {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, - {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, - {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, - {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, - {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, - {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, - {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, - {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, - {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, - {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, - {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, - {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, - {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, - {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, - {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, - {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, - {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, - {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, - {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, - {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, -] - -[package.dependencies] -typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} - [[package]] name = "nest-asyncio" version = "1.6.0" @@ -1750,148 +1233,6 @@ files = [ {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, ] -[[package]] -name = "nvidia-cublas-cu12" -version = "12.1.3.1" -description = "CUBLAS native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728"}, - {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-win_amd64.whl", hash = "sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906"}, -] - -[[package]] -name = "nvidia-cuda-cupti-cu12" -version = "12.1.105" -description = "CUDA profiling tools runtime libs." -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e"}, - {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4"}, -] - -[[package]] -name = "nvidia-cuda-nvrtc-cu12" -version = "12.1.105" -description = "NVRTC native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2"}, - {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed"}, -] - -[[package]] -name = "nvidia-cuda-runtime-cu12" -version = "12.1.105" -description = "CUDA Runtime native Libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40"}, - {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344"}, -] - -[[package]] -name = "nvidia-cudnn-cu12" -version = "8.9.2.26" -description = "cuDNN runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl", hash = "sha256:5ccb288774fdfb07a7e7025ffec286971c06d8d7b4fb162525334616d7629ff9"}, -] - -[package.dependencies] -nvidia-cublas-cu12 = "*" - -[[package]] -name = "nvidia-cufft-cu12" -version = "11.0.2.54" -description = "CUFFT native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl", hash = "sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56"}, - {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-win_amd64.whl", hash = "sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253"}, -] - -[[package]] -name = "nvidia-curand-cu12" -version = "10.3.2.106" -description = "CURAND native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0"}, - {file = "nvidia_curand_cu12-10.3.2.106-py3-none-win_amd64.whl", hash = "sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a"}, -] - -[[package]] -name = "nvidia-cusolver-cu12" -version = "11.4.5.107" -description = "CUDA solver native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd"}, - {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-win_amd64.whl", hash = "sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5"}, -] - -[package.dependencies] -nvidia-cublas-cu12 = "*" -nvidia-cusparse-cu12 = "*" -nvidia-nvjitlink-cu12 = "*" - -[[package]] -name = "nvidia-cusparse-cu12" -version = "12.1.0.106" -description = "CUSPARSE native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c"}, - {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-win_amd64.whl", hash = "sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a"}, -] - -[package.dependencies] -nvidia-nvjitlink-cu12 = "*" - -[[package]] -name = "nvidia-nccl-cu12" -version = "2.18.1" -description = "NVIDIA Collective Communication Library (NCCL) Runtime" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_nccl_cu12-2.18.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:1a6c4acefcbebfa6de320f412bf7866de856e786e0462326ba1bac40de0b5e71"}, -] - -[[package]] -name = "nvidia-nvjitlink-cu12" -version = "12.6.77" -description = "Nvidia JIT LTO Library" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-manylinux2014_aarch64.whl", hash = "sha256:3bf10d85bb1801e9c894c6e197e44dd137d2a0a9e43f8450e9ad13f2df0dd52d"}, - {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-manylinux2014_x86_64.whl", hash = "sha256:9ae346d16203ae4ea513be416495167a0101d33d2d14935aa9c1829a3fb45142"}, - {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-win_amd64.whl", hash = "sha256:410718cd44962bed862a31dd0318620f6f9a8b28a6291967bcfcb446a6516771"}, -] - -[[package]] -name = "nvidia-nvtx-cu12" -version = "12.1.105" -description = "NVIDIA Tools Extension" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5"}, - {file = "nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82"}, -] - [[package]] name = "nxt_gem" version = "2.0.1" @@ -1933,15 +1274,22 @@ signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] [[package]] name = "opt-einsum" -version = "3.4.0" -description = "Path optimization of einsum functions." +version = "3.3.0" +description = "Optimizing numpys einsum function" optional = false -python-versions = ">=3.8" +python-versions = ">=3.5" files = [ - {file = "opt_einsum-3.4.0-py3-none-any.whl", hash = "sha256:69bb92469f86a1565195ece4ac0323943e83477171b91d24c35afe028a90d7cd"}, - {file = "opt_einsum-3.4.0.tar.gz", hash = "sha256:96ca72f1b886d148241348783498194c577fa30a8faac108586b14f1ba4473ac"}, + {file = "opt_einsum-3.3.0-py3-none-any.whl", hash = "sha256:2455e59e3947d3c275477df7f5205b30635e266fe6dc300e3d9f9646bfcea147"}, + {file = "opt_einsum-3.3.0.tar.gz", hash = "sha256:59f6475f77bbc37dcf7cd748519c0ec60722e91e63ca114e68821c0c54a46549"}, ] +[package.dependencies] +numpy = ">=1.7" + +[package.extras] +docs = ["numpydoc", "sphinx (==1.2.3)", "sphinx-rtd-theme", "sphinxcontrib-napoleon"] +tests = ["pytest", "pytest-cov", "pytest-pep8"] + [[package]] name = "packaging" version = "24.1" @@ -2056,240 +1404,36 @@ files = [ {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, ] -[[package]] -name = "pillow" -version = "10.4.0" -description = "Python Imaging Library (Fork)" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"}, - {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"}, - {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"}, - {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"}, - {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"}, - {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"}, - {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"}, - {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"}, - {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"}, - {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"}, - {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"}, - {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"}, - {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"}, - {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"}, - {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"}, - {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"}, - {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"}, - {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"}, - {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"}, - {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"}, - {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"}, - {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"}, - {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"}, - {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"}, - {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"}, - {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"}, - {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"}, - {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"}, - {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"}, - {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"}, - {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"}, - {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"}, - {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"}, - {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"}, - {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"}, - {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"}, - {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"}, - {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"}, - {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"}, - {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"}, - {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"}, - {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"}, - {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"}, - {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"}, - {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"}, - {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"}, - {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"}, - {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"}, - {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"}, - {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"}, - {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"}, - {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"}, - {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"}, - {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"}, - {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"}, - {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"}, - {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"}, - {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"}, - {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"}, - {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"}, - {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"}, - {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"}, - {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"}, - {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"}, - {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"}, - {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"}, -] - -[package.extras] -docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] -fpx = ["olefile"] -mic = ["olefile"] -tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] -typing = ["typing-extensions"] -xmp = ["defusedxml"] - [[package]] name = "platformdirs" -version = "4.3.6" +version = "4.2.2" description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." optional = false python-versions = ">=3.8" files = [ - {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, - {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, + {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, + {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, ] [package.extras] -docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] -type = ["mypy (>=1.11.2)"] +docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] +type = ["mypy (>=1.8)"] [[package]] name = "prompt-toolkit" -version = "3.0.48" +version = "3.0.47" description = "Library for building powerful interactive command lines in Python" optional = false python-versions = ">=3.7.0" files = [ - {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, - {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, + {file = "prompt_toolkit-3.0.47-py3-none-any.whl", hash = "sha256:0d7bfa67001d5e39d02c224b663abc33687405033a8c422d0d675a5a13361d10"}, + {file = "prompt_toolkit-3.0.47.tar.gz", hash = "sha256:1e1b29cb58080b1e69f207c893a1a7bf16d127a5c30c9d17a25a5d77792e5360"}, ] [package.dependencies] wcwidth = "*" -[[package]] -name = "propcache" -version = "0.2.0" -description = "Accelerated property cache" -optional = false -python-versions = ">=3.8" -files = [ - {file = "propcache-0.2.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:c5869b8fd70b81835a6f187c5fdbe67917a04d7e52b6e7cc4e5fe39d55c39d58"}, - {file = "propcache-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:952e0d9d07609d9c5be361f33b0d6d650cd2bae393aabb11d9b719364521984b"}, - {file = "propcache-0.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:33ac8f098df0585c0b53009f039dfd913b38c1d2edafed0cedcc0c32a05aa110"}, - {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:97e48e8875e6c13909c800fa344cd54cc4b2b0db1d5f911f840458a500fde2c2"}, - {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:388f3217649d6d59292b722d940d4d2e1e6a7003259eb835724092a1cca0203a"}, - {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f571aea50ba5623c308aa146eb650eebf7dbe0fd8c5d946e28343cb3b5aad577"}, - {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3dfafb44f7bb35c0c06eda6b2ab4bfd58f02729e7c4045e179f9a861b07c9850"}, - {file = "propcache-0.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a3ebe9a75be7ab0b7da2464a77bb27febcb4fab46a34f9288f39d74833db7f61"}, - {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d2f0d0f976985f85dfb5f3d685697ef769faa6b71993b46b295cdbbd6be8cc37"}, - {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:a3dc1a4b165283bd865e8f8cb5f0c64c05001e0718ed06250d8cac9bec115b48"}, - {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:9e0f07b42d2a50c7dd2d8675d50f7343d998c64008f1da5fef888396b7f84630"}, - {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:e63e3e1e0271f374ed489ff5ee73d4b6e7c60710e1f76af5f0e1a6117cd26394"}, - {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:56bb5c98f058a41bb58eead194b4db8c05b088c93d94d5161728515bd52b052b"}, - {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7665f04d0c7f26ff8bb534e1c65068409bf4687aa2534faf7104d7182debb336"}, - {file = "propcache-0.2.0-cp310-cp310-win32.whl", hash = "sha256:7cf18abf9764746b9c8704774d8b06714bcb0a63641518a3a89c7f85cc02c2ad"}, - {file = "propcache-0.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:cfac69017ef97db2438efb854edf24f5a29fd09a536ff3a992b75990720cdc99"}, - {file = "propcache-0.2.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:63f13bf09cc3336eb04a837490b8f332e0db41da66995c9fd1ba04552e516354"}, - {file = "propcache-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:608cce1da6f2672a56b24a015b42db4ac612ee709f3d29f27a00c943d9e851de"}, - {file = "propcache-0.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:466c219deee4536fbc83c08d09115249db301550625c7fef1c5563a584c9bc87"}, - {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc2db02409338bf36590aa985a461b2c96fce91f8e7e0f14c50c5fcc4f229016"}, - {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a6ed8db0a556343d566a5c124ee483ae113acc9a557a807d439bcecc44e7dfbb"}, - {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:91997d9cb4a325b60d4e3f20967f8eb08dfcb32b22554d5ef78e6fd1dda743a2"}, - {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c7dde9e533c0a49d802b4f3f218fa9ad0a1ce21f2c2eb80d5216565202acab4"}, - {file = "propcache-0.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffcad6c564fe6b9b8916c1aefbb37a362deebf9394bd2974e9d84232e3e08504"}, - {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:97a58a28bcf63284e8b4d7b460cbee1edaab24634e82059c7b8c09e65284f178"}, - {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:945db8ee295d3af9dbdbb698cce9bbc5c59b5c3fe328bbc4387f59a8a35f998d"}, - {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:39e104da444a34830751715f45ef9fc537475ba21b7f1f5b0f4d71a3b60d7fe2"}, - {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:c5ecca8f9bab618340c8e848d340baf68bcd8ad90a8ecd7a4524a81c1764b3db"}, - {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:c436130cc779806bdf5d5fae0d848713105472b8566b75ff70048c47d3961c5b"}, - {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:191db28dc6dcd29d1a3e063c3be0b40688ed76434622c53a284e5427565bbd9b"}, - {file = "propcache-0.2.0-cp311-cp311-win32.whl", hash = "sha256:5f2564ec89058ee7c7989a7b719115bdfe2a2fb8e7a4543b8d1c0cc4cf6478c1"}, - {file = "propcache-0.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:6e2e54267980349b723cff366d1e29b138b9a60fa376664a157a342689553f71"}, - {file = "propcache-0.2.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:2ee7606193fb267be4b2e3b32714f2d58cad27217638db98a60f9efb5efeccc2"}, - {file = "propcache-0.2.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:91ee8fc02ca52e24bcb77b234f22afc03288e1dafbb1f88fe24db308910c4ac7"}, - {file = "propcache-0.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2e900bad2a8456d00a113cad8c13343f3b1f327534e3589acc2219729237a2e8"}, - {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f52a68c21363c45297aca15561812d542f8fc683c85201df0bebe209e349f793"}, - {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e41d67757ff4fbc8ef2af99b338bfb955010444b92929e9e55a6d4dcc3c4f09"}, - {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a64e32f8bd94c105cc27f42d3b658902b5bcc947ece3c8fe7bc1b05982f60e89"}, - {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:55346705687dbd7ef0d77883ab4f6fabc48232f587925bdaf95219bae072491e"}, - {file = "propcache-0.2.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:00181262b17e517df2cd85656fcd6b4e70946fe62cd625b9d74ac9977b64d8d9"}, - {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6994984550eaf25dd7fc7bd1b700ff45c894149341725bb4edc67f0ffa94efa4"}, - {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:56295eb1e5f3aecd516d91b00cfd8bf3a13991de5a479df9e27dd569ea23959c"}, - {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:439e76255daa0f8151d3cb325f6dd4a3e93043e6403e6491813bcaaaa8733887"}, - {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:f6475a1b2ecb310c98c28d271a30df74f9dd436ee46d09236a6b750a7599ce57"}, - {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:3444cdba6628accf384e349014084b1cacd866fbb88433cd9d279d90a54e0b23"}, - {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4a9d9b4d0a9b38d1c391bb4ad24aa65f306c6f01b512e10a8a34a2dc5675d348"}, - {file = "propcache-0.2.0-cp312-cp312-win32.whl", hash = "sha256:69d3a98eebae99a420d4b28756c8ce6ea5a29291baf2dc9ff9414b42676f61d5"}, - {file = "propcache-0.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:ad9c9b99b05f163109466638bd30ada1722abb01bbb85c739c50b6dc11f92dc3"}, - {file = "propcache-0.2.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ecddc221a077a8132cf7c747d5352a15ed763b674c0448d811f408bf803d9ad7"}, - {file = "propcache-0.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0e53cb83fdd61cbd67202735e6a6687a7b491c8742dfc39c9e01e80354956763"}, - {file = "propcache-0.2.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92fe151145a990c22cbccf9ae15cae8ae9eddabfc949a219c9f667877e40853d"}, - {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6a21ef516d36909931a2967621eecb256018aeb11fc48656e3257e73e2e247a"}, - {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3f88a4095e913f98988f5b338c1d4d5d07dbb0b6bad19892fd447484e483ba6b"}, - {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a5b3bb545ead161be780ee85a2b54fdf7092815995661947812dde94a40f6fb"}, - {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67aeb72e0f482709991aa91345a831d0b707d16b0257e8ef88a2ad246a7280bf"}, - {file = "propcache-0.2.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3c997f8c44ec9b9b0bcbf2d422cc00a1d9b9c681f56efa6ca149a941e5560da2"}, - {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:2a66df3d4992bc1d725b9aa803e8c5a66c010c65c741ad901e260ece77f58d2f"}, - {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:3ebbcf2a07621f29638799828b8d8668c421bfb94c6cb04269130d8de4fb7136"}, - {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:1235c01ddaa80da8235741e80815ce381c5267f96cc49b1477fdcf8c047ef325"}, - {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:3947483a381259c06921612550867b37d22e1df6d6d7e8361264b6d037595f44"}, - {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d5bed7f9805cc29c780f3aee05de3262ee7ce1f47083cfe9f77471e9d6777e83"}, - {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e4a91d44379f45f5e540971d41e4626dacd7f01004826a18cb048e7da7e96544"}, - {file = "propcache-0.2.0-cp313-cp313-win32.whl", hash = "sha256:f902804113e032e2cdf8c71015651c97af6418363bea8d78dc0911d56c335032"}, - {file = "propcache-0.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:8f188cfcc64fb1266f4684206c9de0e80f54622c3f22a910cbd200478aeae61e"}, - {file = "propcache-0.2.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:53d1bd3f979ed529f0805dd35ddaca330f80a9a6d90bc0121d2ff398f8ed8861"}, - {file = "propcache-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:83928404adf8fb3d26793665633ea79b7361efa0287dfbd372a7e74311d51ee6"}, - {file = "propcache-0.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:77a86c261679ea5f3896ec060be9dc8e365788248cc1e049632a1be682442063"}, - {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:218db2a3c297a3768c11a34812e63b3ac1c3234c3a086def9c0fee50d35add1f"}, - {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7735e82e3498c27bcb2d17cb65d62c14f1100b71723b68362872bca7d0913d90"}, - {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:20a617c776f520c3875cf4511e0d1db847a076d720714ae35ffe0df3e440be68"}, - {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67b69535c870670c9f9b14a75d28baa32221d06f6b6fa6f77a0a13c5a7b0a5b9"}, - {file = "propcache-0.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4569158070180c3855e9c0791c56be3ceeb192defa2cdf6a3f39e54319e56b89"}, - {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:db47514ffdbd91ccdc7e6f8407aac4ee94cc871b15b577c1c324236b013ddd04"}, - {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_armv7l.whl", hash = "sha256:2a60ad3e2553a74168d275a0ef35e8c0a965448ffbc3b300ab3a5bb9956c2162"}, - {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:662dd62358bdeaca0aee5761de8727cfd6861432e3bb828dc2a693aa0471a563"}, - {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:25a1f88b471b3bc911d18b935ecb7115dff3a192b6fef46f0bfaf71ff4f12418"}, - {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:f60f0ac7005b9f5a6091009b09a419ace1610e163fa5deaba5ce3484341840e7"}, - {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:74acd6e291f885678631b7ebc85d2d4aec458dd849b8c841b57ef04047833bed"}, - {file = "propcache-0.2.0-cp38-cp38-win32.whl", hash = "sha256:d9b6ddac6408194e934002a69bcaadbc88c10b5f38fb9307779d1c629181815d"}, - {file = "propcache-0.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:676135dcf3262c9c5081cc8f19ad55c8a64e3f7282a21266d05544450bffc3a5"}, - {file = "propcache-0.2.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:25c8d773a62ce0451b020c7b29a35cfbc05de8b291163a7a0f3b7904f27253e6"}, - {file = "propcache-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:375a12d7556d462dc64d70475a9ee5982465fbb3d2b364f16b86ba9135793638"}, - {file = "propcache-0.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1ec43d76b9677637a89d6ab86e1fef70d739217fefa208c65352ecf0282be957"}, - {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f45eec587dafd4b2d41ac189c2156461ebd0c1082d2fe7013571598abb8505d1"}, - {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc092ba439d91df90aea38168e11f75c655880c12782facf5cf9c00f3d42b562"}, - {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fa1076244f54bb76e65e22cb6910365779d5c3d71d1f18b275f1dfc7b0d71b4d"}, - {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:682a7c79a2fbf40f5dbb1eb6bfe2cd865376deeac65acf9beb607505dced9e12"}, - {file = "propcache-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e40876731f99b6f3c897b66b803c9e1c07a989b366c6b5b475fafd1f7ba3fb8"}, - {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:363ea8cd3c5cb6679f1c2f5f1f9669587361c062e4899fce56758efa928728f8"}, - {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:140fbf08ab3588b3468932974a9331aff43c0ab8a2ec2c608b6d7d1756dbb6cb"}, - {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e70fac33e8b4ac63dfc4c956fd7d85a0b1139adcfc0d964ce288b7c527537fea"}, - {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:b33d7a286c0dc1a15f5fc864cc48ae92a846df287ceac2dd499926c3801054a6"}, - {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:f6d5749fdd33d90e34c2efb174c7e236829147a2713334d708746e94c4bde40d"}, - {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:22aa8f2272d81d9317ff5756bb108021a056805ce63dd3630e27d042c8092798"}, - {file = "propcache-0.2.0-cp39-cp39-win32.whl", hash = "sha256:73e4b40ea0eda421b115248d7e79b59214411109a5bc47d0d48e4c73e3b8fcf9"}, - {file = "propcache-0.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:9517d5e9e0731957468c29dbfd0f976736a0e55afaea843726e887f36fe017df"}, - {file = "propcache-0.2.0-py3-none-any.whl", hash = "sha256:2ccc28197af5313706511fab3a8b66dcd6da067a1331372c82ea1cb74285e036"}, - {file = "propcache-0.2.0.tar.gz", hash = "sha256:df81779732feb9d01e5d513fad0122efb3d53bbc75f61b2a4f29a020bc985e70"}, -] - [[package]] name = "protobuf" version = "3.20.3" @@ -2377,24 +1521,24 @@ tests = ["pytest"] [[package]] name = "pyasn1" -version = "0.6.1" +version = "0.6.0" description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" optional = false python-versions = ">=3.8" files = [ - {file = "pyasn1-0.6.1-py3-none-any.whl", hash = "sha256:0d632f46f2ba09143da3a8afe9e33fb6f92fa2320ab7e886e2d0f7672af84629"}, - {file = "pyasn1-0.6.1.tar.gz", hash = "sha256:6f580d2bdd84365380830acf45550f2511469f673cb4a5ae3857a3170128b034"}, + {file = "pyasn1-0.6.0-py2.py3-none-any.whl", hash = "sha256:cca4bb0f2df5504f02f6f8a775b6e416ff9b0b3b16f7ee80b5a3153d9b804473"}, + {file = "pyasn1-0.6.0.tar.gz", hash = "sha256:3a35ab2c4b5ef98e17dfdec8ab074046fbda76e281c5a706ccd82328cfc8f64c"}, ] [[package]] name = "pyasn1-modules" -version = "0.4.1" +version = "0.4.0" description = "A collection of ASN.1-based protocols modules" optional = false python-versions = ">=3.8" files = [ - {file = "pyasn1_modules-0.4.1-py3-none-any.whl", hash = "sha256:49bfa96b45a292b711e986f222502c1c9a5e1f4e568fc30e2574a6c7d07838fd"}, - {file = "pyasn1_modules-0.4.1.tar.gz", hash = "sha256:c28e2dbf9c06ad61c71a075c7e0f9fd0f1b0bb2d2ad4377f240d33ac2ab60a7c"}, + {file = "pyasn1_modules-0.4.0-py3-none-any.whl", hash = "sha256:be04f15b66c206eed667e0bb5ab27e2b1855ea54a842e5037738099e8ca4ae0b"}, + {file = "pyasn1_modules-0.4.0.tar.gz", hash = "sha256:831dbcea1b177b28c9baddf4c6d1013c24c3accd14a1873fffaa6a2e905f17b6"}, ] [package.dependencies] @@ -2412,168 +1556,49 @@ files = [ ] [[package]] -name = "pydantic" -version = "2.9.2" -description = "Data validation using Python type hints" +name = "pygments" +version = "2.18.0" +description = "Pygments is a syntax highlighting package written in Python." optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"}, - {file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"}, + {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, + {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, ] -[package.dependencies] -annotated-types = ">=0.6.0" -pydantic-core = "2.23.4" -typing-extensions = {version = ">=4.6.1", markers = "python_version < \"3.13\""} - [package.extras] -email = ["email-validator (>=2.0.0)"] -timezone = ["tzdata"] +windows-terminal = ["colorama (>=0.4.6)"] [[package]] -name = "pydantic-core" -version = "2.23.4" -description = "Core functionality for Pydantic validation and serialization" +name = "pygsp" +version = "0.5.1" +description = "Graph Signal Processing in Python" optional = false -python-versions = ">=3.8" +python-versions = "*" files = [ - {file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"}, - {file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"}, - {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"}, - {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"}, - {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"}, - {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"}, - {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"}, - {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"}, - {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"}, - {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"}, - {file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"}, - {file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"}, - {file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"}, - {file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"}, - {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"}, - {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"}, - {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"}, - {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"}, - {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"}, - {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"}, - {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"}, - {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"}, - {file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"}, - {file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"}, - {file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"}, - {file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"}, - {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"}, - {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"}, - {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"}, - {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"}, - {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"}, - {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"}, - {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"}, - {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"}, - {file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"}, - {file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"}, - {file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"}, - {file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"}, - {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"}, - {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"}, - {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"}, - {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"}, - {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"}, - {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"}, - {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"}, - {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"}, - {file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"}, - {file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"}, - {file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"}, - {file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"}, - {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"}, - {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"}, - {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"}, - {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"}, - {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"}, - {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"}, - {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"}, - {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"}, - {file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"}, - {file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"}, - {file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"}, - {file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"}, - {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"}, - {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"}, - {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"}, - {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"}, - {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"}, - {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"}, - {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"}, - {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"}, - {file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"}, - {file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"}, - {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"}, - {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"}, - {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"}, - {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"}, - {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"}, - {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"}, - {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"}, - {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"}, - {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"}, - {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"}, - {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"}, - {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"}, - {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"}, - {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"}, - {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"}, - {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"}, - {file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"}, + {file = "PyGSP-0.5.1-py2.py3-none-any.whl", hash = "sha256:884765260256f143a92053c420797053fda0f4eba1573471526fb4e62a4c4cde"}, + {file = "PyGSP-0.5.1.tar.gz", hash = "sha256:4874ad88793d622d4f578b40c6617a99b1f02bc6c6c4077f0e48cd71c7275800"}, ] [package.dependencies] -typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" - -[[package]] -name = "pyg-lib" -version = "0.4.0+pt21cpu" -description = "Low-Level Graph Neural Network Operators for PyG" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pyg_lib-0.4.0+pt21cpu-cp38-cp38-linux_x86_64.whl", hash = "sha256:fcf82fb62f40a9c0b82c47bbbd641ed22bc39c10ecd310dbdfcf79b329b3127f"}, -] +numpy = "*" +scipy = "*" [package.extras] -dev = ["pre-commit"] -test = ["pytest", "pytest-cov"] -triton = ["triton"] - -[package.source] -type = "url" -url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/pyg_lib-0.4.0%2Bpt21cpu-cp38-cp38-linux_x86_64.whl" - -[[package]] -name = "pygments" -version = "2.18.0" -description = "Pygments is a syntax highlighting package written in Python." -optional = false -python-versions = ">=3.8" -files = [ - {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, - {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, -] - -[package.extras] -windows-terminal = ["colorama (>=0.4.6)"] +alldeps = ["PyOpenGL", "PyQt5", "PySide", "matplotlib", "pyflann", "pyflann3", "pyqtgraph", "pyunlocbox", "scikit-image"] +doc = ["numpydoc", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-bibtex"] +pkg = ["twine", "wheel"] +test = ["coverage", "coveralls", "flake8"] [[package]] name = "pyparsing" -version = "3.1.4" +version = "3.1.2" description = "pyparsing module - Classes and methods to define and execute parsing grammars" optional = false python-versions = ">=3.6.8" files = [ - {file = "pyparsing-3.1.4-py3-none-any.whl", hash = "sha256:a6a7ee4235a3f944aa1fa2249307708f893fe5717dc603503c6c7969c070fb7c"}, - {file = "pyparsing-3.1.4.tar.gz", hash = "sha256:f86ec8d1a83f11977c9a6ea7598e8c27fc5cddfa5b07ea2241edbbde1d7bc032"}, + {file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"}, + {file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"}, ] [package.extras] @@ -2609,220 +1634,154 @@ numpy = "*" [[package]] name = "pytz" -version = "2024.2" +version = "2024.1" description = "World timezone definitions, modern and historical" optional = false python-versions = "*" files = [ - {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, - {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, + {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, + {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, ] [[package]] name = "pywin32" -version = "308" +version = "306" description = "Python for Window Extensions" optional = false python-versions = "*" files = [ - {file = "pywin32-308-cp310-cp310-win32.whl", hash = "sha256:796ff4426437896550d2981b9c2ac0ffd75238ad9ea2d3bfa67a1abd546d262e"}, - {file = "pywin32-308-cp310-cp310-win_amd64.whl", hash = "sha256:4fc888c59b3c0bef905ce7eb7e2106a07712015ea1c8234b703a088d46110e8e"}, - {file = "pywin32-308-cp310-cp310-win_arm64.whl", hash = "sha256:a5ab5381813b40f264fa3495b98af850098f814a25a63589a8e9eb12560f450c"}, - {file = "pywin32-308-cp311-cp311-win32.whl", hash = "sha256:5d8c8015b24a7d6855b1550d8e660d8daa09983c80e5daf89a273e5c6fb5095a"}, - {file = "pywin32-308-cp311-cp311-win_amd64.whl", hash = "sha256:575621b90f0dc2695fec346b2d6302faebd4f0f45c05ea29404cefe35d89442b"}, - {file = "pywin32-308-cp311-cp311-win_arm64.whl", hash = "sha256:100a5442b7332070983c4cd03f2e906a5648a5104b8a7f50175f7906efd16bb6"}, - {file = "pywin32-308-cp312-cp312-win32.whl", hash = "sha256:587f3e19696f4bf96fde9d8a57cec74a57021ad5f204c9e627e15c33ff568897"}, - {file = "pywin32-308-cp312-cp312-win_amd64.whl", hash = "sha256:00b3e11ef09ede56c6a43c71f2d31857cf7c54b0ab6e78ac659497abd2834f47"}, - {file = "pywin32-308-cp312-cp312-win_arm64.whl", hash = "sha256:9b4de86c8d909aed15b7011182c8cab38c8850de36e6afb1f0db22b8959e3091"}, - {file = "pywin32-308-cp313-cp313-win32.whl", hash = "sha256:1c44539a37a5b7b21d02ab34e6a4d314e0788f1690d65b48e9b0b89f31abbbed"}, - {file = "pywin32-308-cp313-cp313-win_amd64.whl", hash = "sha256:fd380990e792eaf6827fcb7e187b2b4b1cede0585e3d0c9e84201ec27b9905e4"}, - {file = "pywin32-308-cp313-cp313-win_arm64.whl", hash = "sha256:ef313c46d4c18dfb82a2431e3051ac8f112ccee1a34f29c263c583c568db63cd"}, - {file = "pywin32-308-cp37-cp37m-win32.whl", hash = "sha256:1f696ab352a2ddd63bd07430080dd598e6369152ea13a25ebcdd2f503a38f1ff"}, - {file = "pywin32-308-cp37-cp37m-win_amd64.whl", hash = "sha256:13dcb914ed4347019fbec6697a01a0aec61019c1046c2b905410d197856326a6"}, - {file = "pywin32-308-cp38-cp38-win32.whl", hash = "sha256:5794e764ebcabf4ff08c555b31bd348c9025929371763b2183172ff4708152f0"}, - {file = "pywin32-308-cp38-cp38-win_amd64.whl", hash = "sha256:3b92622e29d651c6b783e368ba7d6722b1634b8e70bd376fd7610fe1992e19de"}, - {file = "pywin32-308-cp39-cp39-win32.whl", hash = "sha256:7873ca4dc60ab3287919881a7d4f88baee4a6e639aa6962de25a98ba6b193341"}, - {file = "pywin32-308-cp39-cp39-win_amd64.whl", hash = "sha256:71b3322d949b4cc20776436a9c9ba0eeedcbc9c650daa536df63f0ff111bb920"}, -] - -[[package]] -name = "pyyaml" -version = "6.0.2" -description = "YAML parser and emitter for Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, - {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, - {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, - {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, - {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, - {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, - {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, - {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, - {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, - {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, - {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, - {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, - {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, - {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, - {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, - {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, - {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, - {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, - {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, - {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, - {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, - {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, - {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, - {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, - {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, - {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, - {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, - {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, - {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, - {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, - {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, - {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, - {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, - {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, - {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, - {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, - {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, - {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, - {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, - {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, - {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, - {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, - {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, - {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, - {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, - {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, - {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, - {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, - {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, - {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, - {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, - {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, - {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, + {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, + {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, + {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, + {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, + {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, + {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, + {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, + {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, + {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, + {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, + {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, + {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, + {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, + {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, ] [[package]] name = "pyzmq" -version = "26.2.0" +version = "26.1.0" description = "Python bindings for 0MQ" optional = false python-versions = ">=3.7" files = [ - {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629"}, - {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b"}, - {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764"}, - {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c"}, - {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a"}, - {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88"}, - {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f"}, - {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282"}, - {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea"}, - {file = "pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2"}, - {file = "pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971"}, - {file = "pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa"}, - {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218"}, - {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4"}, - {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef"}, - {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317"}, - {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf"}, - {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e"}, - {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37"}, - {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3"}, - {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6"}, - {file = "pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4"}, - {file = "pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5"}, - {file = "pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003"}, - {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9"}, - {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52"}, - {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08"}, - {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5"}, - {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae"}, - {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711"}, - {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6"}, - {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3"}, - {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b"}, - {file = "pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7"}, - {file = "pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a"}, - {file = "pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b"}, - {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726"}, - {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3"}, - {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50"}, - {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb"}, - {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187"}, - {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b"}, - {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18"}, - {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115"}, - {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e"}, - {file = "pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5"}, - {file = "pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad"}, - {file = "pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797"}, - {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a"}, - {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc"}, - {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5"}, - {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672"}, - {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797"}, - {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386"}, - {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306"}, - {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6"}, - {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0"}, - {file = "pyzmq-26.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3b55a4229ce5da9497dd0452b914556ae58e96a4381bb6f59f1305dfd7e53fc8"}, - {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cb3a6460cdea8fe8194a76de8895707e61ded10ad0be97188cc8463ffa7e3a8"}, - {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ab5cad923cc95c87bffee098a27856c859bd5d0af31bd346035aa816b081fe1"}, - {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ed69074a610fad1c2fda66180e7b2edd4d31c53f2d1872bc2d1211563904cd9"}, - {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cccba051221b916a4f5e538997c45d7d136a5646442b1231b916d0164067ea27"}, - {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0eaa83fc4c1e271c24eaf8fb083cbccef8fde77ec8cd45f3c35a9a123e6da097"}, - {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9edda2df81daa129b25a39b86cb57dfdfe16f7ec15b42b19bfac503360d27a93"}, - {file = "pyzmq-26.2.0-cp37-cp37m-win32.whl", hash = "sha256:ea0eb6af8a17fa272f7b98d7bebfab7836a0d62738e16ba380f440fceca2d951"}, - {file = "pyzmq-26.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:4ff9dc6bc1664bb9eec25cd17506ef6672d506115095411e237d571e92a58231"}, - {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2eb7735ee73ca1b0d71e0e67c3739c689067f055c764f73aac4cc8ecf958ee3f"}, - {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a534f43bc738181aa7cbbaf48e3eca62c76453a40a746ab95d4b27b1111a7d2"}, - {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:aedd5dd8692635813368e558a05266b995d3d020b23e49581ddd5bbe197a8ab6"}, - {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8be4700cd8bb02cc454f630dcdf7cfa99de96788b80c51b60fe2fe1dac480289"}, - {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fcc03fa4997c447dce58264e93b5aa2d57714fbe0f06c07b7785ae131512732"}, - {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:402b190912935d3db15b03e8f7485812db350d271b284ded2b80d2e5704be780"}, - {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8685fa9c25ff00f550c1fec650430c4b71e4e48e8d852f7ddcf2e48308038640"}, - {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:76589c020680778f06b7e0b193f4b6dd66d470234a16e1df90329f5e14a171cd"}, - {file = "pyzmq-26.2.0-cp38-cp38-win32.whl", hash = "sha256:8423c1877d72c041f2c263b1ec6e34360448decfb323fa8b94e85883043ef988"}, - {file = "pyzmq-26.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:76589f2cd6b77b5bdea4fca5992dc1c23389d68b18ccc26a53680ba2dc80ff2f"}, - {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b1d464cb8d72bfc1a3adc53305a63a8e0cac6bc8c5a07e8ca190ab8d3faa43c2"}, - {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4da04c48873a6abdd71811c5e163bd656ee1b957971db7f35140a2d573f6949c"}, - {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d049df610ac811dcffdc147153b414147428567fbbc8be43bb8885f04db39d98"}, - {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9"}, - {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c811cfcd6a9bf680236c40c6f617187515269ab2912f3d7e8c0174898e2519db"}, - {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6835dd60355593de10350394242b5757fbbd88b25287314316f266e24c61d073"}, - {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc6bee759a6bddea5db78d7dcd609397449cb2d2d6587f48f3ca613b19410cfc"}, - {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c530e1eecd036ecc83c3407f77bb86feb79916d4a33d11394b8234f3bd35b940"}, - {file = "pyzmq-26.2.0-cp39-cp39-win32.whl", hash = "sha256:367b4f689786fca726ef7a6c5ba606958b145b9340a5e4808132cc65759abd44"}, - {file = "pyzmq-26.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e6fa2e3e683f34aea77de8112f6483803c96a44fd726d7358b9888ae5bb394ec"}, - {file = "pyzmq-26.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:7445be39143a8aa4faec43b076e06944b8f9d0701b669df4af200531b21e40bb"}, - {file = "pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072"}, - {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1"}, - {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d"}, - {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca"}, - {file = "pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c"}, - {file = "pyzmq-26.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2ea4ad4e6a12e454de05f2949d4beddb52460f3de7c8b9d5c46fbb7d7222e02c"}, - {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fc4f7a173a5609631bb0c42c23d12c49df3966f89f496a51d3eb0ec81f4519d6"}, - {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:878206a45202247781472a2d99df12a176fef806ca175799e1c6ad263510d57c"}, - {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17c412bad2eb9468e876f556eb4ee910e62d721d2c7a53c7fa31e643d35352e6"}, - {file = "pyzmq-26.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0d987a3ae5a71c6226b203cfd298720e0086c7fe7c74f35fa8edddfbd6597eed"}, - {file = "pyzmq-26.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:39887ac397ff35b7b775db7201095fc6310a35fdbae85bac4523f7eb3b840e20"}, - {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fdb5b3e311d4d4b0eb8b3e8b4d1b0a512713ad7e6a68791d0923d1aec433d919"}, - {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:226af7dcb51fdb0109f0016449b357e182ea0ceb6b47dfb5999d569e5db161d5"}, - {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bed0e799e6120b9c32756203fb9dfe8ca2fb8467fed830c34c877e25638c3fc"}, - {file = "pyzmq-26.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:29c7947c594e105cb9e6c466bace8532dc1ca02d498684128b339799f5248277"}, - {file = "pyzmq-26.2.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cdeabcff45d1c219636ee2e54d852262e5c2e085d6cb476d938aee8d921356b3"}, - {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35cffef589bcdc587d06f9149f8d5e9e8859920a071df5a2671de2213bef592a"}, - {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18c8dc3b7468d8b4bdf60ce9d7141897da103c7a4690157b32b60acb45e333e6"}, - {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7133d0a1677aec369d67dd78520d3fa96dd7f3dcec99d66c1762870e5ea1a50a"}, - {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a96179a24b14fa6428cbfc08641c779a53f8fcec43644030328f44034c7f1f4"}, - {file = "pyzmq-26.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4f78c88905461a9203eac9faac157a2a0dbba84a0fd09fd29315db27be40af9f"}, - {file = "pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f"}, + {file = "pyzmq-26.1.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:263cf1e36862310bf5becfbc488e18d5d698941858860c5a8c079d1511b3b18e"}, + {file = "pyzmq-26.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d5c8b17f6e8f29138678834cf8518049e740385eb2dbf736e8f07fc6587ec682"}, + {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:75a95c2358fcfdef3374cb8baf57f1064d73246d55e41683aaffb6cfe6862917"}, + {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f99de52b8fbdb2a8f5301ae5fc0f9e6b3ba30d1d5fc0421956967edcc6914242"}, + {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7bcbfbab4e1895d58ab7da1b5ce9a327764f0366911ba5b95406c9104bceacb0"}, + {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:77ce6a332c7e362cb59b63f5edf730e83590d0ab4e59c2aa5bd79419a42e3449"}, + {file = "pyzmq-26.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:ba0a31d00e8616149a5ab440d058ec2da621e05d744914774c4dde6837e1f545"}, + {file = "pyzmq-26.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8b88641384e84a258b740801cd4dbc45c75f148ee674bec3149999adda4a8598"}, + {file = "pyzmq-26.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2fa76ebcebe555cce90f16246edc3ad83ab65bb7b3d4ce408cf6bc67740c4f88"}, + {file = "pyzmq-26.1.0-cp310-cp310-win32.whl", hash = "sha256:fbf558551cf415586e91160d69ca6416f3fce0b86175b64e4293644a7416b81b"}, + {file = "pyzmq-26.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:a7b8aab50e5a288c9724d260feae25eda69582be84e97c012c80e1a5e7e03fb2"}, + {file = "pyzmq-26.1.0-cp310-cp310-win_arm64.whl", hash = "sha256:08f74904cb066e1178c1ec706dfdb5c6c680cd7a8ed9efebeac923d84c1f13b1"}, + {file = "pyzmq-26.1.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:46d6800b45015f96b9d92ece229d92f2aef137d82906577d55fadeb9cf5fcb71"}, + {file = "pyzmq-26.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5bc2431167adc50ba42ea3e5e5f5cd70d93e18ab7b2f95e724dd8e1bd2c38120"}, + {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b3bb34bebaa1b78e562931a1687ff663d298013f78f972a534f36c523311a84d"}, + {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3f6329340cef1c7ba9611bd038f2d523cea79f09f9c8f6b0553caba59ec562"}, + {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:471880c4c14e5a056a96cd224f5e71211997d40b4bf5e9fdded55dafab1f98f2"}, + {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:ce6f2b66799971cbae5d6547acefa7231458289e0ad481d0be0740535da38d8b"}, + {file = "pyzmq-26.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0a1f6ea5b1d6cdbb8cfa0536f0d470f12b4b41ad83625012e575f0e3ecfe97f0"}, + {file = "pyzmq-26.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:b45e6445ac95ecb7d728604bae6538f40ccf4449b132b5428c09918523abc96d"}, + {file = "pyzmq-26.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:94c4262626424683feea0f3c34951d39d49d354722db2745c42aa6bb50ecd93b"}, + {file = "pyzmq-26.1.0-cp311-cp311-win32.whl", hash = "sha256:a0f0ab9df66eb34d58205913f4540e2ad17a175b05d81b0b7197bc57d000e829"}, + {file = "pyzmq-26.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:8efb782f5a6c450589dbab4cb0f66f3a9026286333fe8f3a084399149af52f29"}, + {file = "pyzmq-26.1.0-cp311-cp311-win_arm64.whl", hash = "sha256:f133d05aaf623519f45e16ab77526e1e70d4e1308e084c2fb4cedb1a0c764bbb"}, + {file = "pyzmq-26.1.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:3d3146b1c3dcc8a1539e7cc094700b2be1e605a76f7c8f0979b6d3bde5ad4072"}, + {file = "pyzmq-26.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d9270fbf038bf34ffca4855bcda6e082e2c7f906b9eb8d9a8ce82691166060f7"}, + {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:995301f6740a421afc863a713fe62c0aaf564708d4aa057dfdf0f0f56525294b"}, + {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e7eca8b89e56fb8c6c26dd3e09bd41b24789022acf1cf13358e96f1cafd8cae3"}, + {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d4feb2e83dfe9ace6374a847e98ee9d1246ebadcc0cb765482e272c34e5820"}, + {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:d4fafc2eb5d83f4647331267808c7e0c5722c25a729a614dc2b90479cafa78bd"}, + {file = "pyzmq-26.1.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:58c33dc0e185dd97a9ac0288b3188d1be12b756eda67490e6ed6a75cf9491d79"}, + {file = "pyzmq-26.1.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:68a0a1d83d33d8367ddddb3e6bb4afbb0f92bd1dac2c72cd5e5ddc86bdafd3eb"}, + {file = "pyzmq-26.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2ae7c57e22ad881af78075e0cea10a4c778e67234adc65c404391b417a4dda83"}, + {file = "pyzmq-26.1.0-cp312-cp312-win32.whl", hash = "sha256:347e84fc88cc4cb646597f6d3a7ea0998f887ee8dc31c08587e9c3fd7b5ccef3"}, + {file = "pyzmq-26.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:9f136a6e964830230912f75b5a116a21fe8e34128dcfd82285aa0ef07cb2c7bd"}, + {file = "pyzmq-26.1.0-cp312-cp312-win_arm64.whl", hash = "sha256:a4b7a989c8f5a72ab1b2bbfa58105578753ae77b71ba33e7383a31ff75a504c4"}, + {file = "pyzmq-26.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:d416f2088ac8f12daacffbc2e8918ef4d6be8568e9d7155c83b7cebed49d2322"}, + {file = "pyzmq-26.1.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:ecb6c88d7946166d783a635efc89f9a1ff11c33d680a20df9657b6902a1d133b"}, + {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:471312a7375571857a089342beccc1a63584315188560c7c0da7e0a23afd8a5c"}, + {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0e6cea102ffa16b737d11932c426f1dc14b5938cf7bc12e17269559c458ac334"}, + {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec7248673ffc7104b54e4957cee38b2f3075a13442348c8d651777bf41aa45ee"}, + {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:0614aed6f87d550b5cecb03d795f4ddbb1544b78d02a4bd5eecf644ec98a39f6"}, + {file = "pyzmq-26.1.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:e8746ce968be22a8a1801bf4a23e565f9687088580c3ed07af5846580dd97f76"}, + {file = "pyzmq-26.1.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:7688653574392d2eaeef75ddcd0b2de5b232d8730af29af56c5adf1df9ef8d6f"}, + {file = "pyzmq-26.1.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:8d4dac7d97f15c653a5fedcafa82626bd6cee1450ccdaf84ffed7ea14f2b07a4"}, + {file = "pyzmq-26.1.0-cp313-cp313-win32.whl", hash = "sha256:ccb42ca0a4a46232d716779421bbebbcad23c08d37c980f02cc3a6bd115ad277"}, + {file = "pyzmq-26.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e1e5d0a25aea8b691a00d6b54b28ac514c8cc0d8646d05f7ca6cb64b97358250"}, + {file = "pyzmq-26.1.0-cp313-cp313-win_arm64.whl", hash = "sha256:fc82269d24860cfa859b676d18850cbb8e312dcd7eada09e7d5b007e2f3d9eb1"}, + {file = "pyzmq-26.1.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:416ac51cabd54f587995c2b05421324700b22e98d3d0aa2cfaec985524d16f1d"}, + {file = "pyzmq-26.1.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:ff832cce719edd11266ca32bc74a626b814fff236824aa1aeaad399b69fe6eae"}, + {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:393daac1bcf81b2a23e696b7b638eedc965e9e3d2112961a072b6cd8179ad2eb"}, + {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9869fa984c8670c8ab899a719eb7b516860a29bc26300a84d24d8c1b71eae3ec"}, + {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b3b8e36fd4c32c0825b4461372949ecd1585d326802b1321f8b6dc1d7e9318c"}, + {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:3ee647d84b83509b7271457bb428cc347037f437ead4b0b6e43b5eba35fec0aa"}, + {file = "pyzmq-26.1.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:45cb1a70eb00405ce3893041099655265fabcd9c4e1e50c330026e82257892c1"}, + {file = "pyzmq-26.1.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:5cca7b4adb86d7470e0fc96037771981d740f0b4cb99776d5cb59cd0e6684a73"}, + {file = "pyzmq-26.1.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:91d1a20bdaf3b25f3173ff44e54b1cfbc05f94c9e8133314eb2962a89e05d6e3"}, + {file = "pyzmq-26.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c0665d85535192098420428c779361b8823d3d7ec4848c6af3abb93bc5c915bf"}, + {file = "pyzmq-26.1.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:96d7c1d35ee4a495df56c50c83df7af1c9688cce2e9e0edffdbf50889c167595"}, + {file = "pyzmq-26.1.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b281b5ff5fcc9dcbfe941ac5c7fcd4b6c065adad12d850f95c9d6f23c2652384"}, + {file = "pyzmq-26.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5384c527a9a004445c5074f1e20db83086c8ff1682a626676229aafd9cf9f7d1"}, + {file = "pyzmq-26.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:754c99a9840839375ee251b38ac5964c0f369306eddb56804a073b6efdc0cd88"}, + {file = "pyzmq-26.1.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:9bdfcb74b469b592972ed881bad57d22e2c0acc89f5e8c146782d0d90fb9f4bf"}, + {file = "pyzmq-26.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:bd13f0231f4788db619347b971ca5f319c5b7ebee151afc7c14632068c6261d3"}, + {file = "pyzmq-26.1.0-cp37-cp37m-win32.whl", hash = "sha256:c5668dac86a869349828db5fc928ee3f58d450dce2c85607067d581f745e4fb1"}, + {file = "pyzmq-26.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:ad875277844cfaeca7fe299ddf8c8d8bfe271c3dc1caf14d454faa5cdbf2fa7a"}, + {file = "pyzmq-26.1.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:65c6e03cc0222eaf6aad57ff4ecc0a070451e23232bb48db4322cc45602cede0"}, + {file = "pyzmq-26.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:038ae4ffb63e3991f386e7fda85a9baab7d6617fe85b74a8f9cab190d73adb2b"}, + {file = "pyzmq-26.1.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:bdeb2c61611293f64ac1073f4bf6723b67d291905308a7de9bb2ca87464e3273"}, + {file = "pyzmq-26.1.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:61dfa5ee9d7df297c859ac82b1226d8fefaf9c5113dc25c2c00ecad6feeeb04f"}, + {file = "pyzmq-26.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3292d384537b9918010769b82ab3e79fca8b23d74f56fc69a679106a3e2c2cf"}, + {file = "pyzmq-26.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f9499c70c19ff0fbe1007043acb5ad15c1dec7d8e84ab429bca8c87138e8f85c"}, + {file = "pyzmq-26.1.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d3dd5523ed258ad58fed7e364c92a9360d1af8a9371e0822bd0146bdf017ef4c"}, + {file = "pyzmq-26.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:baba2fd199b098c5544ef2536b2499d2e2155392973ad32687024bd8572a7d1c"}, + {file = "pyzmq-26.1.0-cp38-cp38-win32.whl", hash = "sha256:ddbb2b386128d8eca92bd9ca74e80f73fe263bcca7aa419f5b4cbc1661e19741"}, + {file = "pyzmq-26.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:79e45a4096ec8388cdeb04a9fa5e9371583bcb826964d55b8b66cbffe7b33c86"}, + {file = "pyzmq-26.1.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:add52c78a12196bc0fda2de087ba6c876ea677cbda2e3eba63546b26e8bf177b"}, + {file = "pyzmq-26.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:98c03bd7f3339ff47de7ea9ac94a2b34580a8d4df69b50128bb6669e1191a895"}, + {file = "pyzmq-26.1.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dcc37d9d708784726fafc9c5e1232de655a009dbf97946f117aefa38d5985a0f"}, + {file = "pyzmq-26.1.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5a6ed52f0b9bf8dcc64cc82cce0607a3dfed1dbb7e8c6f282adfccc7be9781de"}, + {file = "pyzmq-26.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:451e16ae8bea3d95649317b463c9f95cd9022641ec884e3d63fc67841ae86dfe"}, + {file = "pyzmq-26.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:906e532c814e1d579138177a00ae835cd6becbf104d45ed9093a3aaf658f6a6a"}, + {file = "pyzmq-26.1.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:05bacc4f94af468cc82808ae3293390278d5f3375bb20fef21e2034bb9a505b6"}, + {file = "pyzmq-26.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:57bb2acba798dc3740e913ffadd56b1fcef96f111e66f09e2a8db3050f1f12c8"}, + {file = "pyzmq-26.1.0-cp39-cp39-win32.whl", hash = "sha256:f774841bb0e8588505002962c02da420bcfb4c5056e87a139c6e45e745c0e2e2"}, + {file = "pyzmq-26.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:359c533bedc62c56415a1f5fcfd8279bc93453afdb0803307375ecf81c962402"}, + {file = "pyzmq-26.1.0-cp39-cp39-win_arm64.whl", hash = "sha256:7907419d150b19962138ecec81a17d4892ea440c184949dc29b358bc730caf69"}, + {file = "pyzmq-26.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:b24079a14c9596846bf7516fe75d1e2188d4a528364494859106a33d8b48be38"}, + {file = "pyzmq-26.1.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59d0acd2976e1064f1b398a00e2c3e77ed0a157529779e23087d4c2fb8aaa416"}, + {file = "pyzmq-26.1.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:911c43a4117915203c4cc8755e0f888e16c4676a82f61caee2f21b0c00e5b894"}, + {file = "pyzmq-26.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b10163e586cc609f5f85c9b233195554d77b1e9a0801388907441aaeb22841c5"}, + {file = "pyzmq-26.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:28a8b2abb76042f5fd7bd720f7fea48c0fd3e82e9de0a1bf2c0de3812ce44a42"}, + {file = "pyzmq-26.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bef24d3e4ae2c985034439f449e3f9e06bf579974ce0e53d8a507a1577d5b2ab"}, + {file = "pyzmq-26.1.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:2cd0f4d314f4a2518e8970b6f299ae18cff7c44d4a1fc06fc713f791c3a9e3ea"}, + {file = "pyzmq-26.1.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:fa25a620eed2a419acc2cf10135b995f8f0ce78ad00534d729aa761e4adcef8a"}, + {file = "pyzmq-26.1.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef3b048822dca6d231d8a8ba21069844ae38f5d83889b9b690bf17d2acc7d099"}, + {file = "pyzmq-26.1.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:9a6847c92d9851b59b9f33f968c68e9e441f9a0f8fc972c5580c5cd7cbc6ee24"}, + {file = "pyzmq-26.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c9b9305004d7e4e6a824f4f19b6d8f32b3578aad6f19fc1122aaf320cbe3dc83"}, + {file = "pyzmq-26.1.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:63c1d3a65acb2f9c92dce03c4e1758cc552f1ae5c78d79a44e3bb88d2fa71f3a"}, + {file = "pyzmq-26.1.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d36b8fffe8b248a1b961c86fbdfa0129dfce878731d169ede7fa2631447331be"}, + {file = "pyzmq-26.1.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:67976d12ebfd61a3bc7d77b71a9589b4d61d0422282596cf58c62c3866916544"}, + {file = "pyzmq-26.1.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:998444debc8816b5d8d15f966e42751032d0f4c55300c48cc337f2b3e4f17d03"}, + {file = "pyzmq-26.1.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e5c88b2f13bcf55fee78ea83567b9fe079ba1a4bef8b35c376043440040f7edb"}, + {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d906d43e1592be4b25a587b7d96527cb67277542a5611e8ea9e996182fae410"}, + {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:80b0c9942430d731c786545da6be96d824a41a51742e3e374fedd9018ea43106"}, + {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:314d11564c00b77f6224d12eb3ddebe926c301e86b648a1835c5b28176c83eab"}, + {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:093a1a3cae2496233f14b57f4b485da01b4ff764582c854c0f42c6dd2be37f3d"}, + {file = "pyzmq-26.1.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3c397b1b450f749a7e974d74c06d69bd22dd362142f370ef2bd32a684d6b480c"}, + {file = "pyzmq-26.1.0.tar.gz", hash = "sha256:6c5aeea71f018ebd3b9115c7cb13863dd850e98ca6b9258509de1246461a7e7f"}, ] [package.dependencies] @@ -2967,23 +1926,19 @@ test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeo [[package]] name = "setuptools" -version = "75.1.0" +version = "72.2.0" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "setuptools-75.1.0-py3-none-any.whl", hash = "sha256:35ab7fd3bcd95e6b7fd704e4a1539513edad446c097797f2985e0e4b960772f2"}, - {file = "setuptools-75.1.0.tar.gz", hash = "sha256:d59a21b17a275fb872a9c3dae73963160ae079f1049ed956880cd7c09b120538"}, + {file = "setuptools-72.2.0-py3-none-any.whl", hash = "sha256:f11dd94b7bae3a156a95ec151f24e4637fb4fa19c878e4d191bfb8b2d82728c4"}, + {file = "setuptools-72.2.0.tar.gz", hash = "sha256:80aacbf633704e9c8bfa1d99fa5dd4dc59573efcf9e4042c13d3bcef91ac2ef9"}, ] [package.extras] -check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] -core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.collections", "jaraco.functools", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] -cover = ["pytest-cov"] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "ordered-set (>=3.1.1)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] -enabler = ["pytest-enabler (>=2.2)"] -test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] -type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.11.*)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (<0.4)", "pytest-ruff (>=0.2.1)", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] [[package]] name = "six" @@ -2998,13 +1953,13 @@ files = [ [[package]] name = "smart-open" -version = "7.0.5" +version = "7.0.4" description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)" optional = false python-versions = "<4.0,>=3.7" files = [ - {file = "smart_open-7.0.5-py3-none-any.whl", hash = "sha256:8523ed805c12dff3eaa50e9c903a6cb0ae78800626631c5fe7ea073439847b89"}, - {file = "smart_open-7.0.5.tar.gz", hash = "sha256:d3672003b1dbc85e2013e4983b88eb9a5ccfd389b0d4e5015f39a9ee5620ec18"}, + {file = "smart_open-7.0.4-py3-none-any.whl", hash = "sha256:4e98489932b3372595cddc075e6033194775165702887216b65eba760dfd8d47"}, + {file = "smart_open-7.0.4.tar.gz", hash = "sha256:62b65852bdd1d1d516839fcb1f6bc50cd0f16e05b4ec44b52f43d38bcb838524"}, ] [package.dependencies] @@ -3017,7 +1972,7 @@ gcs = ["google-cloud-storage (>=2.6.0)"] http = ["requests"] s3 = ["boto3"] ssh = ["paramiko"] -test = ["awscli", "azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "numpy", "paramiko", "pyopenssl", "pytest", "pytest-benchmark", "pytest-rerunfailures", "requests", "responses", "zstandard"] +test = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "paramiko", "pytest", "pytest-rerunfailures", "requests", "responses", "zstandard"] webhdfs = ["requests"] zst = ["zstandard"] @@ -3042,47 +1997,33 @@ tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] [[package]] name = "stellargraph" -version = "1.2.1" +version = "1.3.0b0" description = "Python library for machine learning on graphs" optional = false python-versions = ">=3.6.0, <3.9.0" -files = [ - {file = "stellargraph-1.2.1-py3-none-any.whl", hash = "sha256:984a839de4645c9703b8f34a065307498feef38e5160a8f9d7764318a3d4621d"}, - {file = "stellargraph-1.2.1.tar.gz", hash = "sha256:804200a7992465bb5f10da95a3b7748014b0a159f1e79a95517c12a9ff2faed2"}, -] +files = [] +develop = false [package.dependencies] -gensim = ">=3.4.0" matplotlib = ">=2.2" networkx = ">=2.2" numpy = ">=1.14" pandas = ">=0.24" -scikit-learn = ">=0.20" +scikit_learn = ">=0.20" scipy = ">=1.1.0" tensorflow = ">=2.1.0" [package.extras] -demos = ["jupyter", "mplleaflet (==0.0.5)", "numba", "rdflib", "seaborn"] +demos = ["gensim (>=4.0.0)", "jupyter", "mplleaflet (==0.0.5)", "numba", "rdflib", "seaborn"] igraph = ["python-igraph"] neo4j = ["py2neo"] test = ["black (>=19.3b0)", "commonmark (==0.9.1)", "coverage (>=4.4,<5.0)", "nbconvert (>=5.5.0)", "papermill (>=2.0.0)", "pytest (==5.3.1)", "pytest-benchmark (>=3.1)", "pytest-cov (>=2.6.0)", "rdflib", "treon (>=0.1.2)"] -[[package]] -name = "sympy" -version = "1.13.3" -description = "Computer algebra system (CAS) in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "sympy-1.13.3-py3-none-any.whl", hash = "sha256:54612cf55a62755ee71824ce692986f23c88ffa77207b30c1368eda4a7060f73"}, - {file = "sympy-1.13.3.tar.gz", hash = "sha256:b27fd2c6530e0ab39e275fc9b683895367e51d5da91baa8d3d64db2565fec4d9"}, -] - -[package.dependencies] -mpmath = ">=1.1.0,<1.4" - -[package.extras] -dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] +[package.source] +type = "git" +url = "https://github.com/stellargraph/stellargraph.git" +reference = "develop" +resolved_reference = "3c2c8c18ab4c5c16660f350d8e23d7dc39e738de" [[package]] name = "tensorboard" @@ -3236,175 +2177,6 @@ files = [ {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, ] -[[package]] -name = "torch" -version = "2.1.2" -description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" -optional = false -python-versions = ">=3.8.0" -files = [ - {file = "torch-2.1.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:3a871edd6c02dae77ad810335c0833391c1a4ce49af21ea8cf0f6a5d2096eea8"}, - {file = "torch-2.1.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:bef6996c27d8f6e92ea4e13a772d89611da0e103b48790de78131e308cf73076"}, - {file = "torch-2.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:0e13034fd5fb323cbbc29e56d0637a3791e50dd589616f40c79adfa36a5a35a1"}, - {file = "torch-2.1.2-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:d9b535cad0df3d13997dbe8bd68ac33e0e3ae5377639c9881948e40794a61403"}, - {file = "torch-2.1.2-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:f9a55d55af02826ebfbadf4e9b682f0f27766bc33df8236b48d28d705587868f"}, - {file = "torch-2.1.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:a6ebbe517097ef289cc7952783588c72de071d4b15ce0f8b285093f0916b1162"}, - {file = "torch-2.1.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:8f32ce591616a30304f37a7d5ea80b69ca9e1b94bba7f308184bf616fdaea155"}, - {file = "torch-2.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:e0ee6cf90c8970e05760f898d58f9ac65821c37ffe8b04269ec787aa70962b69"}, - {file = "torch-2.1.2-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:76d37967c31c99548ad2c4d3f2cf191db48476f2e69b35a0937137116da356a1"}, - {file = "torch-2.1.2-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:e2d83f07b4aac983453ea5bf8f9aa9dacf2278a8d31247f5d9037f37befc60e4"}, - {file = "torch-2.1.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:f41fe0c7ecbf903a568c73486139a75cfab287a0f6c17ed0698fdea7a1e8641d"}, - {file = "torch-2.1.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:e3225f47d50bb66f756fe9196a768055d1c26b02154eb1f770ce47a2578d3aa7"}, - {file = "torch-2.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:33d59cd03cb60106857f6c26b36457793637512998666ee3ce17311f217afe2b"}, - {file = "torch-2.1.2-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:8e221deccd0def6c2badff6be403e0c53491805ed9915e2c029adbcdb87ab6b5"}, - {file = "torch-2.1.2-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:05b18594f60a911a0c4f023f38a8bda77131fba5fd741bda626e97dcf5a3dd0a"}, - {file = "torch-2.1.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:9ca96253b761e9aaf8e06fb30a66ee301aecbf15bb5a303097de1969077620b6"}, - {file = "torch-2.1.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:d93ba70f67b08c2ae5598ee711cbc546a1bc8102cef938904b8c85c2089a51a0"}, - {file = "torch-2.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:255b50bc0608db177e6a3cc118961d77de7e5105f07816585fa6f191f33a9ff3"}, - {file = "torch-2.1.2-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6984cd5057c0c977b3c9757254e989d3f1124f4ce9d07caa6cb637783c71d42a"}, - {file = "torch-2.1.2-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:bc195d7927feabc0eb7c110e457c955ed2ab616f3c7c28439dd4188cf589699f"}, -] - -[package.dependencies] -filelock = "*" -fsspec = "*" -jinja2 = "*" -networkx = "*" -nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cudnn-cu12 = {version = "8.9.2.26", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-nccl-cu12 = {version = "2.18.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -sympy = "*" -triton = {version = "2.1.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -typing-extensions = "*" - -[package.extras] -dynamo = ["jinja2"] -opt-einsum = ["opt-einsum (>=3.3)"] - -[[package]] -name = "torch-geometric" -version = "2.6.1" -description = "Graph Neural Network Library for PyTorch" -optional = false -python-versions = ">=3.8" -files = [ - {file = "torch_geometric-2.6.1-py3-none-any.whl", hash = "sha256:8faeb353f9655f7dbec44c5e0b44c721773bdfb279994da96b9b8b12fd30f427"}, - {file = "torch_geometric-2.6.1.tar.gz", hash = "sha256:1f18f9d0fc4d2239d526221e4f22606a4a3895b5d965a9856d27610a3df662c6"}, -] - -[package.dependencies] -aiohttp = "*" -fsspec = "*" -jinja2 = "*" -numpy = "*" -psutil = ">=5.8.0" -pyparsing = "*" -requests = "*" -tqdm = "*" - -[package.extras] -benchmark = ["matplotlib", "networkx", "pandas", "protobuf (<4.21)", "wandb"] -dev = ["ipython", "matplotlib-inline", "pre-commit", "torch_geometric[test]"] -full = ["ase", "captum (<0.7.0)", "graphviz", "h5py", "matplotlib", "networkx", "numba (<0.60.0)", "opt_einsum", "pandas", "pgmpy", "pynndescent", "pytorch-memlab", "rdflib", "rdkit", "scikit-image", "scikit-learn", "scipy", "statsmodels", "sympy", "tabulate", "torch_geometric[graphgym,modelhub]", "torchmetrics", "trimesh"] -graphgym = ["protobuf (<4.21)", "pytorch-lightning (<2.3.0)", "yacs"] -modelhub = ["huggingface_hub"] -test = ["onnx", "onnxruntime", "pytest", "pytest-cov"] - -[[package]] -name = "torch-sparse" -version = "0.6.18+pt21cpu" -description = "PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations" -optional = false -python-versions = ">=3.8" -files = [ - {file = "torch_sparse-0.6.18+pt21cpu-cp38-cp38-linux_x86_64.whl", hash = "sha256:fe2ea180baa399ebb1d695cad1b36e1ffb543e04af30f7880edfa626fbf69e9e"}, -] - -[package.dependencies] -scipy = "*" - -[package.extras] -test = ["pytest", "pytest-cov"] - -[package.source] -type = "url" -url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl" - -[[package]] -name = "torchmetrics" -version = "1.4.3" -description = "PyTorch native Metrics" -optional = false -python-versions = ">=3.8" -files = [ - {file = "torchmetrics-1.4.3-py3-none-any.whl", hash = "sha256:76e67490231acef7f70cf36ab129df72fb2b0256dada7051001ab3b9f8699bf4"}, - {file = "torchmetrics-1.4.3.tar.gz", hash = "sha256:5554a19167e91f543afe82ff58a01059c8eec854359ad22896449c2c8fb0ad89"}, -] - -[package.dependencies] -lightning-utilities = ">=0.8.0" -numpy = ">1.20.0" -packaging = ">17.1" -torch = ">=1.10.0" -typing-extensions = {version = "*", markers = "python_version < \"3.9\""} - -[package.extras] -all = ["SciencePlots (>=2.0.0)", "gammatone (>1.0.0)", "ipadic (>=1.0.0)", "matplotlib (>=3.6.0)", "mecab-python3 (>=1.0.6)", "mypy (==1.11.2)", "nltk (>=3.8.2)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "regex (>=2021.9.24)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "torch (==2.4.1)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] -audio = ["gammatone (>1.0.0)", "pesq (>=0.0.4)", "pystoi (>=0.3.0)", "torchaudio (>=0.10.0)"] -detection = ["pycocotools (>2.0.0)", "torchvision (>=0.8)"] -dev = ["SciencePlots (>=2.0.0)", "bert-score (==0.3.13)", "dython (==0.7.6)", "dython (>=0.7.8,<0.8.0)", "fairlearn", "fast-bss-eval (>=0.1.0)", "faster-coco-eval (==1.5.*)", "gammatone (>1.0.0)", "huggingface-hub (<0.26)", "ipadic (>=1.0.0)", "jiwer (>=2.3.0)", "kornia (>=0.6.7)", "lpips (<=0.1.4)", "matplotlib (>=3.6.0)", "mecab-ko (>=1.0.0)", "mecab-ko-dic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "mir-eval (>=0.6)", "monai (==1.3.2)", "mypy (==1.11.2)", "netcal (>1.0.0)", "nltk (>=3.8.2)", "numpy (<2.2.0)", "pandas (>1.4.0)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "pytorch-msssim (==1.0.0)", "regex (>=2021.9.24)", "rouge-score (>0.1.0)", "sacrebleu (>=2.3.0)", "scikit-image (>=0.19.0)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "sewar (>=0.4.4)", "statsmodels (>0.13.5)", "torch (==2.4.1)", "torch-complex (<0.5.0)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] -image = ["scipy (>1.0.0)", "torch-fidelity (<=0.4.0)", "torchvision (>=0.8)"] -multimodal = ["piq (<=0.8.0)", "transformers (>=4.42.3)"] -text = ["ipadic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "nltk (>=3.8.2)", "regex (>=2021.9.24)", "sentencepiece (>=0.2.0)", "tqdm (>=4.41.0)", "transformers (>4.4.0)"] -typing = ["mypy (==1.11.2)", "torch (==2.4.1)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] -visual = ["SciencePlots (>=2.0.0)", "matplotlib (>=3.6.0)"] - -[[package]] -name = "torchvision" -version = "0.16.2" -description = "image and video datasets and models for torch deep learning" -optional = false -python-versions = ">=3.8" -files = [ - {file = "torchvision-0.16.2-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:bc86f2800cb2c0c1a09c581409cdd6bff66e62f103dc83fc63f73346264c3756"}, - {file = "torchvision-0.16.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b024bd412df6d3a007dcebf311a894eb3c5c21e1af80d12be382bbcb097a7c3a"}, - {file = "torchvision-0.16.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:e89f10f3c8351972b6e3fda95bc3e479ea8dbfc9dfcfd2c32902dbad4ba5cfc5"}, - {file = "torchvision-0.16.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:96c7583700112a410bdc4e1e4f118c429dab49c29c9a31a2cc3579bc9b08b19d"}, - {file = "torchvision-0.16.2-cp310-cp310-win_amd64.whl", hash = "sha256:9f4032ebb3277fb07ff6a9b818d50a547fb8fcd89d958cfd9e773322454bb688"}, - {file = "torchvision-0.16.2-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:67b1aaf8b8cb02ce75dd445f291a27c8036a502f8c0aa76e28c37a0faac2e153"}, - {file = "torchvision-0.16.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bef30d03e1d1c629761f4dca51d3b7d8a0dc0acce6f4068ab2a1634e8e7b64e0"}, - {file = "torchvision-0.16.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:e59cc7b2bd1ab5c0ce4ae382e4e37be8f1c174e8b5de2f6a23c170de9ae28495"}, - {file = "torchvision-0.16.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:e130b08cc9b3cc73a6c59d6edf032394a322f9579bfd21d14bc2e1d0999aa758"}, - {file = "torchvision-0.16.2-cp311-cp311-win_amd64.whl", hash = "sha256:8692ab1e48807e9604046a6f4beeb67b523294cee1b00828654bb0df2cfce2b2"}, - {file = "torchvision-0.16.2-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:b82732dcf876a37c852772342aa6ee3480c03bb3e2a802ae109fc5f7e28d26e9"}, - {file = "torchvision-0.16.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4b065143d1a720fe8a9077fd4be35d491f98819ec80b3dbbc3ec64d0b707a906"}, - {file = "torchvision-0.16.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:bc5f274e4ecd1b86062063cdf4fd385a1d39d147a3a2685fbbde9ff08bb720b8"}, - {file = "torchvision-0.16.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:335959c43b371c0474af34c1ef2a52efdc7603c45700d29e4475eeb02984170c"}, - {file = "torchvision-0.16.2-cp38-cp38-win_amd64.whl", hash = "sha256:7fd22d86e08eba321af70cad291020c2cdeac069b00ce88b923ca52e06174769"}, - {file = "torchvision-0.16.2-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:56115268b37f0b75364e3654e47ad9abc66ac34c1f9e5e3dfa89a22d6a40017a"}, - {file = "torchvision-0.16.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:82805f8445b094f9d1e770390ee6cc86855e89955e08ce34af2e2274fc0e5c45"}, - {file = "torchvision-0.16.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:3f4bd5fcbc361476e2e78016636ac7d5509e59d9962521f06eb98e6803898182"}, - {file = "torchvision-0.16.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:8199acdf8ab066a28b84a5b6f4d97b58976d9e164b1acc3a9d14fccfaf74bb3a"}, - {file = "torchvision-0.16.2-cp39-cp39-win_amd64.whl", hash = "sha256:41dd4fa9f176d563fe9f1b9adef3b7e582cdfb60ce8c9bc51b094a025be687c9"}, -] - -[package.dependencies] -numpy = "*" -pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" -requests = "*" -torch = "2.1.2" - -[package.extras] -scipy = ["scipy"] - [[package]] name = "tornado" version = "6.4.1" @@ -3460,31 +2232,6 @@ files = [ docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] -[[package]] -name = "triton" -version = "2.1.0" -description = "A language and compiler for custom Deep Learning operations" -optional = false -python-versions = "*" -files = [ - {file = "triton-2.1.0-0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:66439923a30d5d48399b08a9eae10370f6c261a5ec864a64983bae63152d39d7"}, - {file = "triton-2.1.0-0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:919b06453f0033ea52c13eaf7833de0e57db3178d23d4e04f9fc71c4f2c32bf8"}, - {file = "triton-2.1.0-0-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ae4bb8a91de790e1866405211c4d618379781188f40d5c4c399766914e84cd94"}, - {file = "triton-2.1.0-0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:39f6fb6bdccb3e98f3152e3fbea724f1aeae7d749412bbb1fa9c441d474eba26"}, - {file = "triton-2.1.0-0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:21544e522c02005a626c8ad63d39bdff2f31d41069592919ef281e964ed26446"}, - {file = "triton-2.1.0-0-pp37-pypy37_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:143582ca31dd89cd982bd3bf53666bab1c7527d41e185f9e3d8a3051ce1b663b"}, - {file = "triton-2.1.0-0-pp38-pypy38_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:82fc5aeeedf6e36be4e4530cbdcba81a09d65c18e02f52dc298696d45721f3bd"}, - {file = "triton-2.1.0-0-pp39-pypy39_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:81a96d110a738ff63339fc892ded095b31bd0d205e3aace262af8400d40b6fa8"}, -] - -[package.dependencies] -filelock = "*" - -[package.extras] -build = ["cmake (>=3.18)", "lit"] -tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)"] -tutorials = ["matplotlib", "pandas", "tabulate"] - [[package]] name = "typing-extensions" version = "4.12.2" @@ -3498,24 +2245,24 @@ files = [ [[package]] name = "tzdata" -version = "2024.2" +version = "2024.1" description = "Provider of IANA time zone data" optional = false python-versions = ">=2" files = [ - {file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"}, - {file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"}, + {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, + {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, ] [[package]] name = "urllib3" -version = "2.2.3" +version = "2.2.2" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, - {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, + {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, + {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, ] [package.extras] @@ -3537,13 +2284,13 @@ files = [ [[package]] name = "werkzeug" -version = "3.0.4" +version = "3.0.3" description = "The comprehensive WSGI web application library." optional = false python-versions = ">=3.8" files = [ - {file = "werkzeug-3.0.4-py3-none-any.whl", hash = "sha256:02c9eb92b7d6c06f31a782811505d2157837cea66aaede3e217c7c27c039476c"}, - {file = "werkzeug-3.0.4.tar.gz", hash = "sha256:34f2371506b250df4d4f84bfe7b0921e4762525762bbd936614909fe25cd7306"}, + {file = "werkzeug-3.0.3-py3-none-any.whl", hash = "sha256:fc9645dc43e03e4d630d23143a04a7f947a9a3b5727cd535fdfe155a17cc48c8"}, + {file = "werkzeug-3.0.3.tar.gz", hash = "sha256:097e5bfda9f0aba8da6b8545146def481d06aa7d3266e7448e2cccf67dd8bd18"}, ] [package.dependencies] @@ -3645,138 +2392,22 @@ files = [ {file = "wrapt-1.16.0.tar.gz", hash = "sha256:5f370f952971e7d17c7d1ead40e49f32345a7f7a5373571ef44d800d06b1899d"}, ] -[[package]] -name = "yarl" -version = "1.15.2" -description = "Yet another URL library" -optional = false -python-versions = ">=3.8" -files = [ - {file = "yarl-1.15.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e4ee8b8639070ff246ad3649294336b06db37a94bdea0d09ea491603e0be73b8"}, - {file = "yarl-1.15.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a7cf963a357c5f00cb55b1955df8bbe68d2f2f65de065160a1c26b85a1e44172"}, - {file = "yarl-1.15.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:43ebdcc120e2ca679dba01a779333a8ea76b50547b55e812b8b92818d604662c"}, - {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3433da95b51a75692dcf6cc8117a31410447c75a9a8187888f02ad45c0a86c50"}, - {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:38d0124fa992dbacd0c48b1b755d3ee0a9f924f427f95b0ef376556a24debf01"}, - {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ded1b1803151dd0f20a8945508786d57c2f97a50289b16f2629f85433e546d47"}, - {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ace4cad790f3bf872c082366c9edd7f8f8f77afe3992b134cfc810332206884f"}, - {file = "yarl-1.15.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c77494a2f2282d9bbbbcab7c227a4d1b4bb829875c96251f66fb5f3bae4fb053"}, - {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b7f227ca6db5a9fda0a2b935a2ea34a7267589ffc63c8045f0e4edb8d8dcf956"}, - {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:31561a5b4d8dbef1559b3600b045607cf804bae040f64b5f5bca77da38084a8a"}, - {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3e52474256a7db9dcf3c5f4ca0b300fdea6c21cca0148c8891d03a025649d935"}, - {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:0e1af74a9529a1137c67c887ed9cde62cff53aa4d84a3adbec329f9ec47a3936"}, - {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:15c87339490100c63472a76d87fe7097a0835c705eb5ae79fd96e343473629ed"}, - {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:74abb8709ea54cc483c4fb57fb17bb66f8e0f04438cff6ded322074dbd17c7ec"}, - {file = "yarl-1.15.2-cp310-cp310-win32.whl", hash = "sha256:ffd591e22b22f9cb48e472529db6a47203c41c2c5911ff0a52e85723196c0d75"}, - {file = "yarl-1.15.2-cp310-cp310-win_amd64.whl", hash = "sha256:1695497bb2a02a6de60064c9f077a4ae9c25c73624e0d43e3aa9d16d983073c2"}, - {file = "yarl-1.15.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9fcda20b2de7042cc35cf911702fa3d8311bd40055a14446c1e62403684afdc5"}, - {file = "yarl-1.15.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0545de8c688fbbf3088f9e8b801157923be4bf8e7b03e97c2ecd4dfa39e48e0e"}, - {file = "yarl-1.15.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fbda058a9a68bec347962595f50546a8a4a34fd7b0654a7b9697917dc2bf810d"}, - {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1ac2bc069f4a458634c26b101c2341b18da85cb96afe0015990507efec2e417"}, - {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cd126498171f752dd85737ab1544329a4520c53eed3997f9b08aefbafb1cc53b"}, - {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3db817b4e95eb05c362e3b45dafe7144b18603e1211f4a5b36eb9522ecc62bcf"}, - {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:076b1ed2ac819933895b1a000904f62d615fe4533a5cf3e052ff9a1da560575c"}, - {file = "yarl-1.15.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f8cfd847e6b9ecf9f2f2531c8427035f291ec286c0a4944b0a9fce58c6446046"}, - {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:32b66be100ac5739065496c74c4b7f3015cef792c3174982809274d7e51b3e04"}, - {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:34a2d76a1984cac04ff8b1bfc939ec9dc0914821264d4a9c8fd0ed6aa8d4cfd2"}, - {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:0afad2cd484908f472c8fe2e8ef499facee54a0a6978be0e0cff67b1254fd747"}, - {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:c68e820879ff39992c7f148113b46efcd6ec765a4865581f2902b3c43a5f4bbb"}, - {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:98f68df80ec6ca3015186b2677c208c096d646ef37bbf8b49764ab4a38183931"}, - {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3c56ec1eacd0a5d35b8a29f468659c47f4fe61b2cab948ca756c39b7617f0aa5"}, - {file = "yarl-1.15.2-cp311-cp311-win32.whl", hash = "sha256:eedc3f247ee7b3808ea07205f3e7d7879bc19ad3e6222195cd5fbf9988853e4d"}, - {file = "yarl-1.15.2-cp311-cp311-win_amd64.whl", hash = "sha256:0ccaa1bc98751fbfcf53dc8dfdb90d96e98838010fc254180dd6707a6e8bb179"}, - {file = "yarl-1.15.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:82d5161e8cb8f36ec778fd7ac4d740415d84030f5b9ef8fe4da54784a1f46c94"}, - {file = "yarl-1.15.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:fa2bea05ff0a8fb4d8124498e00e02398f06d23cdadd0fe027d84a3f7afde31e"}, - {file = "yarl-1.15.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:99e12d2bf587b44deb74e0d6170fec37adb489964dbca656ec41a7cd8f2ff178"}, - {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:243fbbbf003754fe41b5bdf10ce1e7f80bcc70732b5b54222c124d6b4c2ab31c"}, - {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:856b7f1a7b98a8c31823285786bd566cf06226ac4f38b3ef462f593c608a9bd6"}, - {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:553dad9af802a9ad1a6525e7528152a015b85fb8dbf764ebfc755c695f488367"}, - {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:30c3ff305f6e06650a761c4393666f77384f1cc6c5c0251965d6bfa5fbc88f7f"}, - {file = "yarl-1.15.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:353665775be69bbfc6d54c8d134bfc533e332149faeddd631b0bc79df0897f46"}, - {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f4fe99ce44128c71233d0d72152db31ca119711dfc5f2c82385ad611d8d7f897"}, - {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:9c1e3ff4b89cdd2e1a24c214f141e848b9e0451f08d7d4963cb4108d4d798f1f"}, - {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:711bdfae4e699a6d4f371137cbe9e740dc958530cb920eb6f43ff9551e17cfbc"}, - {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4388c72174868884f76affcdd3656544c426407e0043c89b684d22fb265e04a5"}, - {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:f0e1844ad47c7bd5d6fa784f1d4accc5f4168b48999303a868fe0f8597bde715"}, - {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:a5cafb02cf097a82d74403f7e0b6b9df3ffbfe8edf9415ea816314711764a27b"}, - {file = "yarl-1.15.2-cp312-cp312-win32.whl", hash = "sha256:156ececdf636143f508770bf8a3a0498de64da5abd890c7dbb42ca9e3b6c05b8"}, - {file = "yarl-1.15.2-cp312-cp312-win_amd64.whl", hash = "sha256:435aca062444a7f0c884861d2e3ea79883bd1cd19d0a381928b69ae1b85bc51d"}, - {file = "yarl-1.15.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:416f2e3beaeae81e2f7a45dc711258be5bdc79c940a9a270b266c0bec038fb84"}, - {file = "yarl-1.15.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:173563f3696124372831007e3d4b9821746964a95968628f7075d9231ac6bb33"}, - {file = "yarl-1.15.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:9ce2e0f6123a60bd1a7f5ae3b2c49b240c12c132847f17aa990b841a417598a2"}, - {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eaea112aed589131f73d50d570a6864728bd7c0c66ef6c9154ed7b59f24da611"}, - {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4ca3b9f370f218cc2a0309542cab8d0acdfd66667e7c37d04d617012485f904"}, - {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23ec1d3c31882b2a8a69c801ef58ebf7bae2553211ebbddf04235be275a38548"}, - {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75119badf45f7183e10e348edff5a76a94dc19ba9287d94001ff05e81475967b"}, - {file = "yarl-1.15.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:78e6fdc976ec966b99e4daa3812fac0274cc28cd2b24b0d92462e2e5ef90d368"}, - {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:8657d3f37f781d987037f9cc20bbc8b40425fa14380c87da0cb8dfce7c92d0fb"}, - {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:93bed8a8084544c6efe8856c362af08a23e959340c87a95687fdbe9c9f280c8b"}, - {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:69d5856d526802cbda768d3e6246cd0d77450fa2a4bc2ea0ea14f0d972c2894b"}, - {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:ccad2800dfdff34392448c4bf834be124f10a5bc102f254521d931c1c53c455a"}, - {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:a880372e2e5dbb9258a4e8ff43f13888039abb9dd6d515f28611c54361bc5644"}, - {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:c998d0558805860503bc3a595994895ca0f7835e00668dadc673bbf7f5fbfcbe"}, - {file = "yarl-1.15.2-cp313-cp313-win32.whl", hash = "sha256:533a28754e7f7439f217550a497bb026c54072dbe16402b183fdbca2431935a9"}, - {file = "yarl-1.15.2-cp313-cp313-win_amd64.whl", hash = "sha256:5838f2b79dc8f96fdc44077c9e4e2e33d7089b10788464609df788eb97d03aad"}, - {file = "yarl-1.15.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fbbb63bed5fcd70cd3dd23a087cd78e4675fb5a2963b8af53f945cbbca79ae16"}, - {file = "yarl-1.15.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e2e93b88ecc8f74074012e18d679fb2e9c746f2a56f79cd5e2b1afcf2a8a786b"}, - {file = "yarl-1.15.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:af8ff8d7dc07ce873f643de6dfbcd45dc3db2c87462e5c387267197f59e6d776"}, - {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:66f629632220a4e7858b58e4857927dd01a850a4cef2fb4044c8662787165cf7"}, - {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:833547179c31f9bec39b49601d282d6f0ea1633620701288934c5f66d88c3e50"}, - {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2aa738e0282be54eede1e3f36b81f1e46aee7ec7602aa563e81e0e8d7b67963f"}, - {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a13a07532e8e1c4a5a3afff0ca4553da23409fad65def1b71186fb867eeae8d"}, - {file = "yarl-1.15.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c45817e3e6972109d1a2c65091504a537e257bc3c885b4e78a95baa96df6a3f8"}, - {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:670eb11325ed3a6209339974b276811867defe52f4188fe18dc49855774fa9cf"}, - {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_armv7l.whl", hash = "sha256:d417a4f6943112fae3924bae2af7112562285848d9bcee737fc4ff7cbd450e6c"}, - {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:bc8936d06cd53fddd4892677d65e98af514c8d78c79864f418bbf78a4a2edde4"}, - {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:954dde77c404084c2544e572f342aef384240b3e434e06cecc71597e95fd1ce7"}, - {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:5bc0df728e4def5e15a754521e8882ba5a5121bd6b5a3a0ff7efda5d6558ab3d"}, - {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:b71862a652f50babab4a43a487f157d26b464b1dedbcc0afda02fd64f3809d04"}, - {file = "yarl-1.15.2-cp38-cp38-win32.whl", hash = "sha256:63eab904f8630aed5a68f2d0aeab565dcfc595dc1bf0b91b71d9ddd43dea3aea"}, - {file = "yarl-1.15.2-cp38-cp38-win_amd64.whl", hash = "sha256:2cf441c4b6e538ba0d2591574f95d3fdd33f1efafa864faa077d9636ecc0c4e9"}, - {file = "yarl-1.15.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a32d58f4b521bb98b2c0aa9da407f8bd57ca81f34362bcb090e4a79e9924fefc"}, - {file = "yarl-1.15.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:766dcc00b943c089349d4060b935c76281f6be225e39994c2ccec3a2a36ad627"}, - {file = "yarl-1.15.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:bed1b5dbf90bad3bfc19439258c97873eab453c71d8b6869c136346acfe497e7"}, - {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed20a4bdc635f36cb19e630bfc644181dd075839b6fc84cac51c0f381ac472e2"}, - {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d538df442c0d9665664ab6dd5fccd0110fa3b364914f9c85b3ef9b7b2e157980"}, - {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c6cf1d92edf936ceedc7afa61b07e9d78a27b15244aa46bbcd534c7458ee1b"}, - {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce44217ad99ffad8027d2fde0269ae368c86db66ea0571c62a000798d69401fb"}, - {file = "yarl-1.15.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b47a6000a7e833ebfe5886b56a31cb2ff12120b1efd4578a6fcc38df16cc77bd"}, - {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:e52f77a0cd246086afde8815039f3e16f8d2be51786c0a39b57104c563c5cbb0"}, - {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:f9ca0e6ce7774dc7830dc0cc4bb6b3eec769db667f230e7c770a628c1aa5681b"}, - {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:136f9db0f53c0206db38b8cd0c985c78ded5fd596c9a86ce5c0b92afb91c3a19"}, - {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:173866d9f7409c0fb514cf6e78952e65816600cb888c68b37b41147349fe0057"}, - {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:6e840553c9c494a35e449a987ca2c4f8372668ee954a03a9a9685075228e5036"}, - {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:458c0c65802d816a6b955cf3603186de79e8fdb46d4f19abaec4ef0a906f50a7"}, - {file = "yarl-1.15.2-cp39-cp39-win32.whl", hash = "sha256:5b48388ded01f6f2429a8c55012bdbd1c2a0c3735b3e73e221649e524c34a58d"}, - {file = "yarl-1.15.2-cp39-cp39-win_amd64.whl", hash = "sha256:81dadafb3aa124f86dc267a2168f71bbd2bfb163663661ab0038f6e4b8edb810"}, - {file = "yarl-1.15.2-py3-none-any.whl", hash = "sha256:0d3105efab7c5c091609abacad33afff33bdff0035bece164c98bcf5a85ef90a"}, - {file = "yarl-1.15.2.tar.gz", hash = "sha256:a39c36f4218a5bb668b4f06874d676d35a035ee668e6e7e3538835c703634b84"}, -] - -[package.dependencies] -idna = ">=2.0" -multidict = ">=4.0" -propcache = ">=0.2.0" - [[package]] name = "zipp" -version = "3.20.2" +version = "3.20.0" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false python-versions = ">=3.8" files = [ - {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, - {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, + {file = "zipp-3.20.0-py3-none-any.whl", hash = "sha256:58da6168be89f0be59beb194da1250516fdaa062ccebd30127ac65d30045e10d"}, + {file = "zipp-3.20.0.tar.gz", hash = "sha256:0145e43d89664cfe1a2e533adc75adafed82fe2da404b4bbb6b026c0157bdb31"}, ] [package.extras] -check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] -cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -enabler = ["pytest-enabler (>=2.2)"] -test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-ignore-flaky"] -type = ["pytest-mypy"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] [metadata] lock-version = "2.0" python-versions = "~3.8" -content-hash = "5447090a9e0c7bb4bf1e43596846c94e85705571a6c554f14de5f16f63528eb0" +content-hash = "b805b28040247e202be1de83ad9f1b46bc862e2a0676c296d8d5475e9c766d9a" diff --git a/Chapter06/pyproject.toml b/Chapter06/pyproject.toml index c6ea021..ae7f351 100644 --- a/Chapter06/pyproject.toml +++ b/Chapter06/pyproject.toml @@ -1,44 +1,28 @@ [tool.poetry] -name = "Graph Machine Learning - Chapter 6" +name = "Graph Machine Learning (2nd Edition) - Chapter 6" version = "1.0.0" description = "" authors = ["Enrico Deusebio "] packages = [] -[tool.setuptools] -py-modules = [] - -# [[tool.poetry.source]] -# name = "torch-wheels" -# url = "https://data.pyg.org/whl/torch-2.1.0+cpu.html" -# priority = "supplemental" - [tool.poetry.dependencies] python = "~3.8" ipykernel = ">=6.0.0" -matplotlib = "==3.2.2" networkx = "==2.5" -scikit-learn = "==0.24.0" -gensim = "==3.8.3" +matplotlib = "==3.2.2" node2vec = "==0.3.3" +karateclub = "==1.0.19" +gensim = "==3.8.3" +communities = "==2.2.0" +scikit-learn = "==0.24.0" chardet = "==5.2.0" tensorflow = "^2.6.0" tensorflow-io-gcs-filesystem = "==0.21.0" # This needs pinning - see https://stackoverflow.com/a/76477590 protobuf= "^3.20" -torch = "^2.1.0" -torch_geometric = "^2.5.2" -torchvision = "^0.16.0" -torchmetrics="^1.3.0" -# torch-sparse = {version = "^0.6.18", source = "torch-wheels"} -torch-sparse = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl"} -pyg-lib = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/pyg_lib-0.4.0%2Bpt21cpu-cp38-cp38-linux_x86_64.whl"} -python-louvain = "==0.16" -# communities = "==2.2.0" nxt-gem = { git="https://github.com/palash1992/GEM.git", branch="master" } # This is what is holding us back to python 3.8 -stellargraph = "^1.2.1" -dgl = {url = "https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl"} +stellargraph = { git="https://github.com/stellargraph/stellargraph.git", branch="develop" } [build-system] requires = ["poetry-core"] -build-backend = "poetry.core.masonry.api" +build-backend = "poetry.core.masonry.api" \ No newline at end of file diff --git a/Chapter06/requirements.txt b/Chapter06/requirements.txt index 8eb8b77..797e6cf 100644 --- a/Chapter06/requirements.txt +++ b/Chapter06/requirements.txt @@ -1,115 +1,85 @@ absl-py==2.1.0 ; python_version >= "3.8" and python_version < "3.9" -aiohappyeyeballs==2.4.3 ; python_version >= "3.8" and python_version < "3.9" -aiohttp==3.10.10 ; python_version >= "3.8" and python_version < "3.9" -aiosignal==1.3.1 ; python_version >= "3.8" and python_version < "3.9" -annotated-types==0.7.0 ; python_version >= "3.8" and python_version < "3.9" appnope==0.1.4 ; python_version >= "3.8" and python_version < "3.9" and (platform_system == "Darwin" or sys_platform == "darwin") asttokens==2.4.1 ; python_version >= "3.8" and python_version < "3.9" astunparse==1.6.3 ; python_version >= "3.8" and python_version < "3.9" -async-timeout==4.0.3 ; python_version >= "3.8" and python_version < "3.9" -attrs==24.2.0 ; python_version >= "3.8" and python_version < "3.9" backcall==0.2.0 ; python_version >= "3.8" and python_version < "3.9" -cachetools==5.5.0 ; python_version >= "3.8" and python_version < "3.9" -certifi==2024.8.30 ; python_version >= "3.8" and python_version < "3.9" -cffi==1.17.1 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +cachetools==5.4.0 ; python_version >= "3.8" and python_version < "3.9" +certifi==2024.7.4 ; python_version >= "3.8" and python_version < "3.9" +cffi==1.17.0 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" chardet==5.2.0 ; python_version >= "3.8" and python_version < "3.9" -charset-normalizer==3.4.0 ; python_version >= "3.8" and python_version < "3.9" +charset-normalizer==3.3.2 ; python_version >= "3.8" and python_version < "3.9" colorama==0.4.6 ; python_version >= "3.8" and python_version < "3.9" and (sys_platform == "win32" or platform_system == "Windows") comm==0.2.2 ; python_version >= "3.8" and python_version < "3.9" +communities==2.2.0 ; python_version >= "3.8" and python_version < "3.9" cycler==0.12.1 ; python_version >= "3.8" and python_version < "3.9" cython==0.29.14 ; python_version >= "3.8" and python_version < "3.9" -debugpy==1.8.7 ; python_version >= "3.8" and python_version < "3.9" +debugpy==1.8.5 ; python_version >= "3.8" and python_version < "3.9" decorator==5.1.1 ; python_version >= "3.8" and python_version < "3.9" -dgl @ https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl ; python_version >= "3.8" and python_version < "3.9" -executing==2.1.0 ; python_version >= "3.8" and python_version < "3.9" -filelock==3.16.1 ; python_version >= "3.8" and python_version < "3.9" +executing==2.0.1 ; python_version >= "3.8" and python_version < "3.9" flatbuffers==2.0.7 ; python_version >= "3.8" and python_version < "3.9" -frozenlist==1.4.1 ; python_version >= "3.8" and python_version < "3.9" -fsspec==2024.9.0 ; python_version >= "3.8" and python_version < "3.9" gast==0.4.0 ; python_version >= "3.8" and python_version < "3.9" gensim==3.8.3 ; python_version >= "3.8" and python_version < "3.9" google-auth-oauthlib==1.0.0 ; python_version >= "3.8" and python_version < "3.9" -google-auth==2.35.0 ; python_version >= "3.8" and python_version < "3.9" +google-auth==2.33.0 ; python_version >= "3.8" and python_version < "3.9" google-pasta==0.2.0 ; python_version >= "3.8" and python_version < "3.9" -grpcio==1.66.2 ; python_version >= "3.8" and python_version < "3.9" +grpcio==1.65.4 ; python_version >= "3.8" and python_version < "3.9" h5py==3.11.0 ; python_version >= "3.8" and python_version < "3.9" -idna==3.10 ; python_version >= "3.8" and python_version < "3.9" -importlib-metadata==8.5.0 ; python_version >= "3.8" and python_version < "3.9" +idna==3.7 ; python_version >= "3.8" and python_version < "3.9" +importlib-metadata==8.2.0 ; python_version >= "3.8" and python_version < "3.9" ipykernel==6.29.5 ; python_version >= "3.8" and python_version < "3.9" ipython==8.12.3 ; python_version >= "3.8" and python_version < "3.9" jedi==0.19.1 ; python_version >= "3.8" and python_version < "3.9" -jinja2==3.1.4 ; python_version >= "3.8" and python_version < "3.9" joblib==1.4.2 ; python_version >= "3.8" and python_version < "3.9" -jupyter-client==8.6.3 ; python_version >= "3.8" and python_version < "3.9" +jupyter-client==8.6.2 ; python_version >= "3.8" and python_version < "3.9" jupyter-core==5.7.2 ; python_version >= "3.8" and python_version < "3.9" +karateclub==1.0.19 ; python_version >= "3.8" and python_version < "3.9" keras-preprocessing==1.1.2 ; python_version >= "3.8" and python_version < "3.9" keras==2.7.0 ; python_version >= "3.8" and python_version < "3.9" -kiwisolver==1.4.7 ; python_version >= "3.8" and python_version < "3.9" +kiwisolver==1.4.5 ; python_version >= "3.8" and python_version < "3.9" libclang==18.1.1 ; python_version >= "3.8" and python_version < "3.9" -lightning-utilities==0.11.7 ; python_version >= "3.8" and python_version < "3.9" -markdown==3.7 ; python_version >= "3.8" and python_version < "3.9" +markdown==3.6 ; python_version >= "3.8" and python_version < "3.9" markupsafe==2.1.5 ; python_version >= "3.8" and python_version < "3.9" matplotlib-inline==0.1.7 ; python_version >= "3.8" and python_version < "3.9" matplotlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" -mpmath==1.3.0 ; python_version >= "3.8" and python_version < "3.9" -multidict==6.1.0 ; python_version >= "3.8" and python_version < "3.9" nest-asyncio==1.6.0 ; python_version >= "3.8" and python_version < "3.9" networkx==2.5 ; python_version >= "3.8" and python_version < "3.9" node2vec==0.3.3 ; python_version >= "3.8" and python_version < "3.9" numpy==1.24.4 ; python_version >= "3.8" and python_version < "3.9" -nvidia-cublas-cu12==12.1.3.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cuda-cupti-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cuda-nvrtc-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cuda-runtime-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cudnn-cu12==8.9.2.26 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cufft-cu12==11.0.2.54 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-curand-cu12==10.3.2.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cusolver-cu12==11.4.5.107 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cusparse-cu12==12.1.0.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-nccl-cu12==2.18.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-nvjitlink-cu12==12.6.77 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-nvtx-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" nxt-gem @ git+https://github.com/palash1992/GEM.git@ae8e92d34213f5785757b4a0943bd7d8d337adb3 ; python_version >= "3.8" and python_version < "3.9" oauthlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" -opt-einsum==3.4.0 ; python_version >= "3.8" and python_version < "3.9" +opt-einsum==3.3.0 ; python_version >= "3.8" and python_version < "3.9" packaging==24.1 ; python_version >= "3.8" and python_version < "3.9" pandas==2.0.3 ; python_version >= "3.8" and python_version < "3.9" parso==0.8.4 ; python_version >= "3.8" and python_version < "3.9" pexpect==4.9.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" pickleshare==0.7.5 ; python_version >= "3.8" and python_version < "3.9" -pillow==10.4.0 ; python_version >= "3.8" and python_version < "3.9" -platformdirs==4.3.6 ; python_version >= "3.8" and python_version < "3.9" -prompt-toolkit==3.0.48 ; python_version >= "3.8" and python_version < "3.9" -propcache==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +platformdirs==4.2.2 ; python_version >= "3.8" and python_version < "3.9" +prompt-toolkit==3.0.47 ; python_version >= "3.8" and python_version < "3.9" protobuf==3.20.3 ; python_version >= "3.8" and python_version < "3.9" psutil==6.0.0 ; python_version >= "3.8" and python_version < "3.9" ptyprocess==0.7.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" pure-eval==0.2.3 ; python_version >= "3.8" and python_version < "3.9" -pyasn1-modules==0.4.1 ; python_version >= "3.8" and python_version < "3.9" -pyasn1==0.6.1 ; python_version >= "3.8" and python_version < "3.9" +pyasn1-modules==0.4.0 ; python_version >= "3.8" and python_version < "3.9" +pyasn1==0.6.0 ; python_version >= "3.8" and python_version < "3.9" pycparser==2.22 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" -pydantic-core==2.23.4 ; python_version >= "3.8" and python_version < "3.9" -pydantic==2.9.2 ; python_version >= "3.8" and python_version < "3.9" -pyg-lib @ https://data.pyg.org/whl/torch-2.1.0%2Bcpu/pyg_lib-0.4.0%2Bpt21cpu-cp38-cp38-linux_x86_64.whl ; python_version >= "3.8" and python_version < "3.9" pygments==2.18.0 ; python_version >= "3.8" and python_version < "3.9" -pyparsing==3.1.4 ; python_version >= "3.8" and python_version < "3.9" +pygsp==0.5.1 ; python_version >= "3.8" and python_version < "3.9" +pyparsing==3.1.2 ; python_version >= "3.8" and python_version < "3.9" python-dateutil==2.9.0.post0 ; python_version >= "3.8" and python_version < "3.9" python-louvain==0.16 ; python_version >= "3.8" and python_version < "3.9" -pytz==2024.2 ; python_version >= "3.8" and python_version < "3.9" -pywin32==308 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" -pyyaml==6.0.2 ; python_version >= "3.8" and python_version < "3.9" -pyzmq==26.2.0 ; python_version >= "3.8" and python_version < "3.9" +pytz==2024.1 ; python_version >= "3.8" and python_version < "3.9" +pywin32==306 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" +pyzmq==26.1.0 ; python_version >= "3.8" and python_version < "3.9" requests-oauthlib==2.0.0 ; python_version >= "3.8" and python_version < "3.9" requests==2.32.3 ; python_version >= "3.8" and python_version < "3.9" rsa==4.9 ; python_version >= "3.8" and python_version < "3.9" scikit-learn==0.24.0 ; python_version >= "3.8" and python_version < "3.9" scipy==1.10.1 ; python_version >= "3.8" and python_version < "3.9" -setuptools==75.1.0 ; python_version >= "3.8" and python_version < "3.9" +setuptools==72.2.0 ; python_version >= "3.8" and python_version < "3.9" six==1.16.0 ; python_version >= "3.8" and python_version < "3.9" -smart-open==7.0.5 ; python_version >= "3.8" and python_version < "3.9" +smart-open==7.0.4 ; python_version >= "3.8" and python_version < "3.9" stack-data==0.6.3 ; python_version >= "3.8" and python_version < "3.9" -stellargraph==1.2.1 ; python_version >= "3.8" and python_version < "3.9" -sympy==1.13.3 ; python_version >= "3.8" and python_version < "3.9" +stellargraph @ git+https://github.com/stellargraph/stellargraph.git@3c2c8c18ab4c5c16660f350d8e23d7dc39e738de ; python_version >= "3.8" and python_version < "3.9" tensorboard-data-server==0.7.2 ; python_version >= "3.8" and python_version < "3.9" tensorboard==2.14.0 ; python_version >= "3.8" and python_version < "3.9" tensorflow-estimator==2.7.0 ; python_version >= "3.8" and python_version < "3.9" @@ -118,21 +88,14 @@ tensorflow==2.7.2 ; python_version >= "3.8" and python_version < "3.9" termcolor==2.4.0 ; python_version >= "3.8" and python_version < "3.9" theano==1.0.5 ; python_version >= "3.8" and python_version < "3.9" threadpoolctl==3.5.0 ; python_version >= "3.8" and python_version < "3.9" -torch-geometric==2.6.1 ; python_version >= "3.8" and python_version < "3.9" -torch-sparse @ https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl ; python_version >= "3.8" and python_version < "3.9" -torch==2.1.2 ; python_version >= "3.8" and python_version < "3.9" -torchmetrics==1.4.3 ; python_version >= "3.8" and python_version < "3.9" -torchvision==0.16.2 ; python_version >= "3.8" and python_version < "3.9" tornado==6.4.1 ; python_version >= "3.8" and python_version < "3.9" tqdm==4.66.5 ; python_version >= "3.8" and python_version < "3.9" traitlets==5.14.3 ; python_version >= "3.8" and python_version < "3.9" -triton==2.1.0 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" typing-extensions==4.12.2 ; python_version >= "3.8" and python_version < "3.9" -tzdata==2024.2 ; python_version >= "3.8" and python_version < "3.9" -urllib3==2.2.3 ; python_version >= "3.8" and python_version < "3.9" +tzdata==2024.1 ; python_version >= "3.8" and python_version < "3.9" +urllib3==2.2.2 ; python_version >= "3.8" and python_version < "3.9" wcwidth==0.2.13 ; python_version >= "3.8" and python_version < "3.9" -werkzeug==3.0.4 ; python_version >= "3.8" and python_version < "3.9" +werkzeug==3.0.3 ; python_version >= "3.8" and python_version < "3.9" wheel==0.44.0 ; python_version >= "3.8" and python_version < "3.9" wrapt==1.16.0 ; python_version >= "3.8" and python_version < "3.9" -yarl==1.15.2 ; python_version >= "3.8" and python_version < "3.9" -zipp==3.20.2 ; python_version >= "3.8" and python_version < "3.9" +zipp==3.20.0 ; python_version >= "3.8" and python_version < "3.9" diff --git a/Chapter06/01_Social_network_analysis.ipynb b/Chapter07/01_Social_network_analysis.ipynb similarity index 99% rename from Chapter06/01_Social_network_analysis.ipynb rename to Chapter07/01_Social_network_analysis.ipynb index b883c39..33b41b6 100644 --- a/Chapter06/01_Social_network_analysis.ipynb +++ b/Chapter07/01_Social_network_analysis.ipynb @@ -1725,9 +1725,9 @@ "provenance": [] }, "kernelspec": { - "display_name": "chap6", + "display_name": "chap7", "language": "python", - "name": "chap6" + "name": "chap7" }, "language_info": { "codemirror_mode": { diff --git a/Chapter06/02_Social_network_analysis.ipynb b/Chapter07/02_Social_network_analysis.ipynb similarity index 99% rename from Chapter06/02_Social_network_analysis.ipynb rename to Chapter07/02_Social_network_analysis.ipynb index 10b7246..e346a1f 100644 --- a/Chapter06/02_Social_network_analysis.ipynb +++ b/Chapter07/02_Social_network_analysis.ipynb @@ -790,9 +790,9 @@ "provenance": [] }, "kernelspec": { - "display_name": "chap6", + "display_name": "chap7", "language": "python", - "name": "chap6" + "name": "chap7" }, "language_info": { "codemirror_mode": { diff --git a/ChapterNN/poetry.lock b/Chapter07/poetry.lock similarity index 66% rename from ChapterNN/poetry.lock rename to Chapter07/poetry.lock index d4e663c..26c785c 100644 --- a/ChapterNN/poetry.lock +++ b/Chapter07/poetry.lock @@ -24,102 +24,102 @@ files = [ [[package]] name = "aiohttp" -version = "3.10.8" +version = "3.10.10" description = "Async http client/server framework (asyncio)" optional = false python-versions = ">=3.8" files = [ - {file = "aiohttp-3.10.8-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a1ba7bc139592339ddeb62c06486d0fa0f4ca61216e14137a40d626c81faf10c"}, - {file = "aiohttp-3.10.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:85e4d7bd05d18e4b348441e7584c681eff646e3bf38f68b2626807f3add21aa2"}, - {file = "aiohttp-3.10.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:69de056022e7abf69cb9fec795515973cc3eeaff51e3ea8d72a77aa933a91c52"}, - {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee3587506898d4a404b33bd19689286ccf226c3d44d7a73670c8498cd688e42c"}, - {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fe285a697c851734285369614443451462ce78aac2b77db23567507484b1dc6f"}, - {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:10c7932337285a6bfa3a5fe1fd4da90b66ebfd9d0cbd1544402e1202eb9a8c3e"}, - {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cd9716ef0224fe0d0336997eb242f40619f9f8c5c57e66b525a1ebf9f1d8cebe"}, - {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ceacea31f8a55cdba02bc72c93eb2e1b77160e91f8abd605969c168502fd71eb"}, - {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:9721554bfa9e15f6e462da304374c2f1baede3cb06008c36c47fa37ea32f1dc4"}, - {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:22cdeb684d8552490dd2697a5138c4ecb46f844892df437aaf94f7eea99af879"}, - {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:e56bb7e31c4bc79956b866163170bc89fd619e0581ce813330d4ea46921a4881"}, - {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:3a95d2686bc4794d66bd8de654e41b5339fab542b2bca9238aa63ed5f4f2ce82"}, - {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d82404a0e7b10e0d7f022cf44031b78af8a4f99bd01561ac68f7c24772fed021"}, - {file = "aiohttp-3.10.8-cp310-cp310-win32.whl", hash = "sha256:4e10b04542d27e21538e670156e88766543692a0a883f243ba8fad9ddea82e53"}, - {file = "aiohttp-3.10.8-cp310-cp310-win_amd64.whl", hash = "sha256:680dbcff5adc7f696ccf8bf671d38366a1f620b5616a1d333d0cb33956065395"}, - {file = "aiohttp-3.10.8-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:33a68011a38020ed4ff41ae0dbf4a96a202562ecf2024bdd8f65385f1d07f6ef"}, - {file = "aiohttp-3.10.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6c7efa6616a95e3bd73b8a69691012d2ef1f95f9ea0189e42f338fae080c2fc6"}, - {file = "aiohttp-3.10.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ddb9b9764cfb4459acf01c02d2a59d3e5066b06a846a364fd1749aa168efa2be"}, - {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c7f270f4ca92760f98a42c45a58674fff488e23b144ec80b1cc6fa2effed377"}, - {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6984dda9d79064361ab58d03f6c1e793ea845c6cfa89ffe1a7b9bb400dfd56bd"}, - {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3f6d47e392c27206701565c8df4cac6ebed28fdf6dcaea5b1eea7a4631d8e6db"}, - {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a72f89aea712c619b2ca32c6f4335c77125ede27530ad9705f4f349357833695"}, - {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c36074b26f3263879ba8e4dbd33db2b79874a3392f403a70b772701363148b9f"}, - {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e32148b4a745e70a255a1d44b5664de1f2e24fcefb98a75b60c83b9e260ddb5b"}, - {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:5aa1a073514cf59c81ad49a4ed9b5d72b2433638cd53160fd2f3a9cfa94718db"}, - {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:d3a79200a9d5e621c4623081ddb25380b713c8cf5233cd11c1aabad990bb9381"}, - {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:e45fdfcb2d5bcad83373e4808825b7512953146d147488114575780640665027"}, - {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f78e2a78432c537ae876a93013b7bc0027ba5b93ad7b3463624c4b6906489332"}, - {file = "aiohttp-3.10.8-cp311-cp311-win32.whl", hash = "sha256:f8179855a4e4f3b931cb1764ec87673d3fbdcca2af496c8d30567d7b034a13db"}, - {file = "aiohttp-3.10.8-cp311-cp311-win_amd64.whl", hash = "sha256:ef9b484604af05ca745b6108ca1aaa22ae1919037ae4f93aaf9a37ba42e0b835"}, - {file = "aiohttp-3.10.8-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:ab2d6523575fc98896c80f49ac99e849c0b0e69cc80bf864eed6af2ae728a52b"}, - {file = "aiohttp-3.10.8-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f5d5d5401744dda50b943d8764508d0e60cc2d3305ac1e6420935861a9d544bc"}, - {file = "aiohttp-3.10.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:de23085cf90911600ace512e909114385026b16324fa203cc74c81f21fd3276a"}, - {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4618f0d2bf523043866a9ff8458900d8eb0a6d4018f251dae98e5f1fb699f3a8"}, - {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:21c1925541ca84f7b5e0df361c0a813a7d6a56d3b0030ebd4b220b8d232015f9"}, - {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:497a7d20caea8855c5429db3cdb829385467217d7feb86952a6107e033e031b9"}, - {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c887019dbcb4af58a091a45ccf376fffe800b5531b45c1efccda4bedf87747ea"}, - {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40d2d719c3c36a7a65ed26400e2b45b2d9ed7edf498f4df38b2ae130f25a0d01"}, - {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:57359785f27394a8bcab0da6dcd46706d087dfebf59a8d0ad2e64a4bc2f6f94f"}, - {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:a961ee6f2cdd1a2be4735333ab284691180d40bad48f97bb598841bfcbfb94ec"}, - {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:fe3d79d6af839ffa46fdc5d2cf34295390894471e9875050eafa584cb781508d"}, - {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:9a281cba03bdaa341c70b7551b2256a88d45eead149f48b75a96d41128c240b3"}, - {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c6769d71bfb1ed60321363a9bc05e94dcf05e38295ef41d46ac08919e5b00d19"}, - {file = "aiohttp-3.10.8-cp312-cp312-win32.whl", hash = "sha256:a3081246bab4d419697ee45e555cef5cd1def7ac193dff6f50be761d2e44f194"}, - {file = "aiohttp-3.10.8-cp312-cp312-win_amd64.whl", hash = "sha256:ab1546fc8e00676febc81c548a876c7bde32f881b8334b77f84719ab2c7d28dc"}, - {file = "aiohttp-3.10.8-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:b1a012677b8e0a39e181e218de47d6741c5922202e3b0b65e412e2ce47c39337"}, - {file = "aiohttp-3.10.8-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:2df786c96c57cd6b87156ba4c5f166af7b88f3fc05f9d592252fdc83d8615a3c"}, - {file = "aiohttp-3.10.8-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8885ca09d3a9317219c0831276bfe26984b17b2c37b7bf70dd478d17092a4772"}, - {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4dbf252ac19860e0ab56cd480d2805498f47c5a2d04f5995d8d8a6effd04b48c"}, - {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3b2036479b6b94afaaca7d07b8a68dc0e67b0caf5f6293bb6a5a1825f5923000"}, - {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:365783e1b7c40b59ed4ce2b5a7491bae48f41cd2c30d52647a5b1ee8604c68ad"}, - {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:270e653b5a4b557476a1ed40e6b6ce82f331aab669620d7c95c658ef976c9c5e"}, - {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8960fabc20bfe4fafb941067cda8e23c8c17c98c121aa31c7bf0cdab11b07842"}, - {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f21e8f2abed9a44afc3d15bba22e0dfc71e5fa859bea916e42354c16102b036f"}, - {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:fecd55e7418fabd297fd836e65cbd6371aa4035a264998a091bbf13f94d9c44d"}, - {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:badb51d851358cd7535b647bb67af4854b64f3c85f0d089c737f75504d5910ec"}, - {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:e860985f30f3a015979e63e7ba1a391526cdac1b22b7b332579df7867848e255"}, - {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:71462f8eeca477cbc0c9700a9464e3f75f59068aed5e9d4a521a103692da72dc"}, - {file = "aiohttp-3.10.8-cp313-cp313-win32.whl", hash = "sha256:177126e971782769b34933e94fddd1089cef0fe6b82fee8a885e539f5b0f0c6a"}, - {file = "aiohttp-3.10.8-cp313-cp313-win_amd64.whl", hash = "sha256:98a4eb60e27033dee9593814ca320ee8c199489fbc6b2699d0f710584db7feb7"}, - {file = "aiohttp-3.10.8-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ffef3d763e4c8fc97e740da5b4d0f080b78630a3914f4e772a122bbfa608c1db"}, - {file = "aiohttp-3.10.8-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:597128cb7bc5f068181b49a732961f46cb89f85686206289d6ccb5e27cb5fbe2"}, - {file = "aiohttp-3.10.8-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f23a6c1d09de5de89a33c9e9b229106cb70dcfdd55e81a3a3580eaadaa32bc92"}, - {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da57af0c54a302b7c655fa1ccd5b1817a53739afa39924ef1816e7b7c8a07ccb"}, - {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e7a6af57091056a79a35104d6ec29d98ec7f1fb7270ad9c6fff871b678d1ff8"}, - {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:32710d6b3b6c09c60c794d84ca887a3a2890131c0b02b3cefdcc6709a2260a7c"}, - {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b91f4f62ad39a8a42d511d66269b46cb2fb7dea9564c21ab6c56a642d28bff5"}, - {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:471a8c47344b9cc309558b3fcc469bd2c12b49322b4b31eb386c4a2b2d44e44a"}, - {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:fc0e7f91705445d79beafba9bb3057dd50830e40fe5417017a76a214af54e122"}, - {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:85431c9131a9a0f65260dc7a65c800ca5eae78c4c9931618f18c8e0933a0e0c1"}, - {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:b91557ee0893da52794b25660d4f57bb519bcad8b7df301acd3898f7197c5d81"}, - {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:4954e6b06dd0be97e1a5751fc606be1f9edbdc553c5d9b57d72406a8fbd17f9d"}, - {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:a087c84b4992160ffef7afd98ef24177c8bd4ad61c53607145a8377457385100"}, - {file = "aiohttp-3.10.8-cp38-cp38-win32.whl", hash = "sha256:e1f0f7b27171b2956a27bd8f899751d0866ddabdd05cbddf3520f945130a908c"}, - {file = "aiohttp-3.10.8-cp38-cp38-win_amd64.whl", hash = "sha256:c4916070e12ae140110aa598031876c1bf8676a36a750716ea0aa5bd694aa2e7"}, - {file = "aiohttp-3.10.8-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5284997e3d88d0dfb874c43e51ae8f4a6f4ca5b90dcf22995035187253d430db"}, - {file = "aiohttp-3.10.8-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9443d9ebc5167ce1fbb552faf2d666fb22ef5716a8750be67efd140a7733738c"}, - {file = "aiohttp-3.10.8-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b667e2a03407d79a76c618dc30cedebd48f082d85880d0c9c4ec2faa3e10f43e"}, - {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98fae99d5c2146f254b7806001498e6f9ffb0e330de55a35e72feb7cb2fa399b"}, - {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8296edd99d0dd9d0eb8b9e25b3b3506eef55c1854e9cc230f0b3f885f680410b"}, - {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1ce46dfb49cfbf9e92818be4b761d4042230b1f0e05ffec0aad15b3eb162b905"}, - {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c38cfd355fd86c39b2d54651bd6ed7d63d4fe3b5553f364bae3306e2445f847"}, - {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:713dff3f87ceec3bde4f3f484861464e722cf7533f9fa6b824ec82bb5a9010a7"}, - {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:21a72f4a9c69a8567a0aca12042f12bba25d3139fd5dd8eeb9931f4d9e8599cd"}, - {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:6d1ad868624f6cea77341ef2877ad4e71f7116834a6cd7ec36ec5c32f94ee6ae"}, - {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:a78ba86d5a08207d1d1ad10b97aed6ea48b374b3f6831d02d0b06545ac0f181e"}, - {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:aff048793d05e1ce05b62e49dccf81fe52719a13f4861530706619506224992b"}, - {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d088ca05381fd409793571d8e34eca06daf41c8c50a05aeed358d2d340c7af81"}, - {file = "aiohttp-3.10.8-cp39-cp39-win32.whl", hash = "sha256:ee97c4e54f457c366e1f76fbbf3e8effee9de57dae671084a161c00f481106ce"}, - {file = "aiohttp-3.10.8-cp39-cp39-win_amd64.whl", hash = "sha256:d95ae4420669c871667aad92ba8cce6251d61d79c1a38504621094143f94a8b4"}, - {file = "aiohttp-3.10.8.tar.gz", hash = "sha256:21f8225f7dc187018e8433c9326be01477fb2810721e048b33ac49091b19fb4a"}, + {file = "aiohttp-3.10.10-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:be7443669ae9c016b71f402e43208e13ddf00912f47f623ee5994e12fc7d4b3f"}, + {file = "aiohttp-3.10.10-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7b06b7843929e41a94ea09eb1ce3927865387e3e23ebe108e0d0d09b08d25be9"}, + {file = "aiohttp-3.10.10-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:333cf6cf8e65f6a1e06e9eb3e643a0c515bb850d470902274239fea02033e9a8"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:274cfa632350225ce3fdeb318c23b4a10ec25c0e2c880eff951a3842cf358ac1"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d9e5e4a85bdb56d224f412d9c98ae4cbd032cc4f3161818f692cd81766eee65a"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2b606353da03edcc71130b52388d25f9a30a126e04caef1fd637e31683033abd"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab5a5a0c7a7991d90446a198689c0535be89bbd6b410a1f9a66688f0880ec026"}, + {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:578a4b875af3e0daaf1ac6fa983d93e0bbfec3ead753b6d6f33d467100cdc67b"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:8105fd8a890df77b76dd3054cddf01a879fc13e8af576805d667e0fa0224c35d"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3bcd391d083f636c06a68715e69467963d1f9600f85ef556ea82e9ef25f043f7"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:fbc6264158392bad9df19537e872d476f7c57adf718944cc1e4495cbabf38e2a"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:e48d5021a84d341bcaf95c8460b152cfbad770d28e5fe14a768988c461b821bc"}, + {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:2609e9ab08474702cc67b7702dbb8a80e392c54613ebe80db7e8dbdb79837c68"}, + {file = "aiohttp-3.10.10-cp310-cp310-win32.whl", hash = "sha256:84afcdea18eda514c25bc68b9af2a2b1adea7c08899175a51fe7c4fb6d551257"}, + {file = "aiohttp-3.10.10-cp310-cp310-win_amd64.whl", hash = "sha256:9c72109213eb9d3874f7ac8c0c5fa90e072d678e117d9061c06e30c85b4cf0e6"}, + {file = "aiohttp-3.10.10-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:c30a0eafc89d28e7f959281b58198a9fa5e99405f716c0289b7892ca345fe45f"}, + {file = "aiohttp-3.10.10-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:258c5dd01afc10015866114e210fb7365f0d02d9d059c3c3415382ab633fcbcb"}, + {file = "aiohttp-3.10.10-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:15ecd889a709b0080f02721255b3f80bb261c2293d3c748151274dfea93ac871"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3935f82f6f4a3820270842e90456ebad3af15810cf65932bd24da4463bc0a4c"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:413251f6fcf552a33c981c4709a6bba37b12710982fec8e558ae944bfb2abd38"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1720b4f14c78a3089562b8875b53e36b51c97c51adc53325a69b79b4b48ebcb"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:679abe5d3858b33c2cf74faec299fda60ea9de62916e8b67e625d65bf069a3b7"}, + {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:79019094f87c9fb44f8d769e41dbb664d6e8fcfd62f665ccce36762deaa0e911"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:fe2fb38c2ed905a2582948e2de560675e9dfbee94c6d5ccdb1301c6d0a5bf092"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:a3f00003de6eba42d6e94fabb4125600d6e484846dbf90ea8e48a800430cc142"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:1bbb122c557a16fafc10354b9d99ebf2f2808a660d78202f10ba9d50786384b9"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:30ca7c3b94708a9d7ae76ff281b2f47d8eaf2579cd05971b5dc681db8caac6e1"}, + {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:df9270660711670e68803107d55c2b5949c2e0f2e4896da176e1ecfc068b974a"}, + {file = "aiohttp-3.10.10-cp311-cp311-win32.whl", hash = "sha256:aafc8ee9b742ce75044ae9a4d3e60e3d918d15a4c2e08a6c3c3e38fa59b92d94"}, + {file = "aiohttp-3.10.10-cp311-cp311-win_amd64.whl", hash = "sha256:362f641f9071e5f3ee6f8e7d37d5ed0d95aae656adf4ef578313ee585b585959"}, + {file = "aiohttp-3.10.10-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:9294bbb581f92770e6ed5c19559e1e99255e4ca604a22c5c6397b2f9dd3ee42c"}, + {file = "aiohttp-3.10.10-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a8fa23fe62c436ccf23ff930149c047f060c7126eae3ccea005f0483f27b2e28"}, + {file = "aiohttp-3.10.10-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5c6a5b8c7926ba5d8545c7dd22961a107526562da31a7a32fa2456baf040939f"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:007ec22fbc573e5eb2fb7dec4198ef8f6bf2fe4ce20020798b2eb5d0abda6138"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9627cc1a10c8c409b5822a92d57a77f383b554463d1884008e051c32ab1b3742"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:50edbcad60d8f0e3eccc68da67f37268b5144ecc34d59f27a02f9611c1d4eec7"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a45d85cf20b5e0d0aa5a8dca27cce8eddef3292bc29d72dcad1641f4ed50aa16"}, + {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0b00807e2605f16e1e198f33a53ce3c4523114059b0c09c337209ae55e3823a8"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f2d4324a98062be0525d16f768a03e0bbb3b9fe301ceee99611dc9a7953124e6"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:438cd072f75bb6612f2aca29f8bd7cdf6e35e8f160bc312e49fbecab77c99e3a"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:baa42524a82f75303f714108fea528ccacf0386af429b69fff141ffef1c534f9"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a7d8d14fe962153fc681f6366bdec33d4356f98a3e3567782aac1b6e0e40109a"}, + {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c1277cd707c465cd09572a774559a3cc7c7a28802eb3a2a9472588f062097205"}, + {file = "aiohttp-3.10.10-cp312-cp312-win32.whl", hash = "sha256:59bb3c54aa420521dc4ce3cc2c3fe2ad82adf7b09403fa1f48ae45c0cbde6628"}, + {file = "aiohttp-3.10.10-cp312-cp312-win_amd64.whl", hash = "sha256:0e1b370d8007c4ae31ee6db7f9a2fe801a42b146cec80a86766e7ad5c4a259cf"}, + {file = "aiohttp-3.10.10-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ad7593bb24b2ab09e65e8a1d385606f0f47c65b5a2ae6c551db67d6653e78c28"}, + {file = "aiohttp-3.10.10-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1eb89d3d29adaf533588f209768a9c02e44e4baf832b08118749c5fad191781d"}, + {file = "aiohttp-3.10.10-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3fe407bf93533a6fa82dece0e74dbcaaf5d684e5a51862887f9eaebe6372cd79"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50aed5155f819873d23520919e16703fc8925e509abbb1a1491b0087d1cd969e"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4f05e9727ce409358baa615dbeb9b969db94324a79b5a5cea45d39bdb01d82e6"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3dffb610a30d643983aeb185ce134f97f290f8935f0abccdd32c77bed9388b42"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa6658732517ddabe22c9036479eabce6036655ba87a0224c612e1ae6af2087e"}, + {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:741a46d58677d8c733175d7e5aa618d277cd9d880301a380fd296975a9cdd7bc"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:e00e3505cd80440f6c98c6d69269dcc2a119f86ad0a9fd70bccc59504bebd68a"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ffe595f10566f8276b76dc3a11ae4bb7eba1aac8ddd75811736a15b0d5311414"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:bdfcf6443637c148c4e1a20c48c566aa694fa5e288d34b20fcdc58507882fed3"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d183cf9c797a5291e8301790ed6d053480ed94070637bfaad914dd38b0981f67"}, + {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:77abf6665ae54000b98b3c742bc6ea1d1fb31c394bcabf8b5d2c1ac3ebfe7f3b"}, + {file = "aiohttp-3.10.10-cp313-cp313-win32.whl", hash = "sha256:4470c73c12cd9109db8277287d11f9dd98f77fc54155fc71a7738a83ffcc8ea8"}, + {file = "aiohttp-3.10.10-cp313-cp313-win_amd64.whl", hash = "sha256:486f7aabfa292719a2753c016cc3a8f8172965cabb3ea2e7f7436c7f5a22a151"}, + {file = "aiohttp-3.10.10-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:1b66ccafef7336a1e1f0e389901f60c1d920102315a56df85e49552308fc0486"}, + {file = "aiohttp-3.10.10-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:acd48d5b80ee80f9432a165c0ac8cbf9253eaddb6113269a5e18699b33958dbb"}, + {file = "aiohttp-3.10.10-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3455522392fb15ff549d92fbf4b73b559d5e43dc522588f7eb3e54c3f38beee7"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45c3b868724137f713a38376fef8120c166d1eadd50da1855c112fe97954aed8"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:da1dee8948d2137bb51fbb8a53cce6b1bcc86003c6b42565f008438b806cccd8"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c5ce2ce7c997e1971b7184ee37deb6ea9922ef5163c6ee5aa3c274b05f9e12fa"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28529e08fde6f12eba8677f5a8608500ed33c086f974de68cc65ab218713a59d"}, + {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f7db54c7914cc99d901d93a34704833568d86c20925b2762f9fa779f9cd2e70f"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:03a42ac7895406220124c88911ebee31ba8b2d24c98507f4a8bf826b2937c7f2"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:7e338c0523d024fad378b376a79faff37fafb3c001872a618cde1d322400a572"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:038f514fe39e235e9fef6717fbf944057bfa24f9b3db9ee551a7ecf584b5b480"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:64f6c17757251e2b8d885d728b6433d9d970573586a78b78ba8929b0f41d045a"}, + {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:93429602396f3383a797a2a70e5f1de5df8e35535d7806c9f91df06f297e109b"}, + {file = "aiohttp-3.10.10-cp38-cp38-win32.whl", hash = "sha256:c823bc3971c44ab93e611ab1a46b1eafeae474c0c844aff4b7474287b75fe49c"}, + {file = "aiohttp-3.10.10-cp38-cp38-win_amd64.whl", hash = "sha256:54ca74df1be3c7ca1cf7f4c971c79c2daf48d9aa65dea1a662ae18926f5bc8ce"}, + {file = "aiohttp-3.10.10-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:01948b1d570f83ee7bbf5a60ea2375a89dfb09fd419170e7f5af029510033d24"}, + {file = "aiohttp-3.10.10-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9fc1500fd2a952c5c8e3b29aaf7e3cc6e27e9cfc0a8819b3bce48cc1b849e4cc"}, + {file = "aiohttp-3.10.10-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f614ab0c76397661b90b6851a030004dac502e48260ea10f2441abd2207fbcc7"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00819de9e45d42584bed046314c40ea7e9aea95411b38971082cad449392b08c"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:05646ebe6b94cc93407b3bf34b9eb26c20722384d068eb7339de802154d61bc5"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:998f3bd3cfc95e9424a6acd7840cbdd39e45bc09ef87533c006f94ac47296090"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9010c31cd6fa59438da4e58a7f19e4753f7f264300cd152e7f90d4602449762"}, + {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7ea7ffc6d6d6f8a11e6f40091a1040995cdff02cfc9ba4c2f30a516cb2633554"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:ef9c33cc5cbca35808f6c74be11eb7f5f6b14d2311be84a15b594bd3e58b5527"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ce0cdc074d540265bfeb31336e678b4e37316849d13b308607efa527e981f5c2"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:597a079284b7ee65ee102bc3a6ea226a37d2b96d0418cc9047490f231dc09fe8"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:7789050d9e5d0c309c706953e5e8876e38662d57d45f936902e176d19f1c58ab"}, + {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e7f8b04d83483577fd9200461b057c9f14ced334dcb053090cea1da9c8321a91"}, + {file = "aiohttp-3.10.10-cp39-cp39-win32.whl", hash = "sha256:c02a30b904282777d872266b87b20ed8cc0d1501855e27f831320f471d54d983"}, + {file = "aiohttp-3.10.10-cp39-cp39-win_amd64.whl", hash = "sha256:edfe3341033a6b53a5c522c802deb2079eee5cbfbb0af032a55064bd65c73a23"}, + {file = "aiohttp-3.10.10.tar.gz", hash = "sha256:0631dd7c9f0822cc61c88586ca76d5b5ada26538097d0f1df510b082bad3411a"}, ] [package.dependencies] @@ -148,6 +148,20 @@ files = [ [package.dependencies] frozenlist = ">=1.1.0" +[[package]] +name = "annotated-types" +version = "0.7.0" +description = "Reusable constraint types to use with typing.Annotated" +optional = false +python-versions = ">=3.8" +files = [ + {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, + {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} + [[package]] name = "appnope" version = "0.1.4" @@ -347,101 +361,116 @@ files = [ [[package]] name = "charset-normalizer" -version = "3.3.2" +version = "3.4.0" description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." optional = false python-versions = ">=3.7.0" files = [ - {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, - {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:4f9fc98dad6c2eaa32fc3af1417d95b5e3d08aff968df0cd320066def971f9a6"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0de7b687289d3c1b3e8660d0741874abe7888100efe14bd0f9fd7141bcbda92b"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5ed2e36c3e9b4f21dd9422f6893dec0abf2cca553af509b10cd630f878d3eb99"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40d3ff7fc90b98c637bda91c89d51264a3dcf210cade3a2c6f838c7268d7a4ca"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1110e22af8ca26b90bd6364fe4c763329b0ebf1ee213ba32b68c73de5752323d"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:86f4e8cca779080f66ff4f191a685ced73d2f72d50216f7112185dc02b90b9b7"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f683ddc7eedd742e2889d2bfb96d69573fde1d92fcb811979cdb7165bb9c7d3"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:27623ba66c183eca01bf9ff833875b459cad267aeeb044477fedac35e19ba907"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f606a1881d2663630ea5b8ce2efe2111740df4b687bd78b34a8131baa007f79b"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0b309d1747110feb25d7ed6b01afdec269c647d382c857ef4663bbe6ad95a912"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:136815f06a3ae311fae551c3df1f998a1ebd01ddd424aa5603a4336997629e95"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:14215b71a762336254351b00ec720a8e85cada43b987da5a042e4ce3e82bd68e"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:79983512b108e4a164b9c8d34de3992f76d48cadc9554c9e60b43f308988aabe"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-win32.whl", hash = "sha256:c94057af19bc953643a33581844649a7fdab902624d2eb739738a30e2b3e60fc"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:55f56e2ebd4e3bc50442fbc0888c9d8c94e4e06a933804e2af3e89e2f9c1c749"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0d99dd8ff461990f12d6e42c7347fd9ab2532fb70e9621ba520f9e8637161d7c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c57516e58fd17d03ebe67e181a4e4e2ccab1168f8c2976c6a334d4f819fe5944"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6dba5d19c4dfab08e58d5b36304b3f92f3bd5d42c1a3fa37b5ba5cdf6dfcbcee"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf4475b82be41b07cc5e5ff94810e6a01f276e37c2d55571e3fe175e467a1a1c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ce031db0408e487fd2775d745ce30a7cd2923667cf3b69d48d219f1d8f5ddeb6"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ff4e7cdfdb1ab5698e675ca622e72d58a6fa2a8aa58195de0c0061288e6e3ea"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3710a9751938947e6327ea9f3ea6332a09bf0ba0c09cae9cb1f250bd1f1549bc"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82357d85de703176b5587dbe6ade8ff67f9f69a41c0733cf2425378b49954de5"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:47334db71978b23ebcf3c0f9f5ee98b8d65992b65c9c4f2d34c2eaf5bcaf0594"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8ce7fd6767a1cc5a92a639b391891bf1c268b03ec7e021c7d6d902285259685c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f1a2f519ae173b5b6a2c9d5fa3116ce16e48b3462c8b96dfdded11055e3d6365"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:63bc5c4ae26e4bc6be6469943b8253c0fd4e4186c43ad46e713ea61a0ba49129"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:bcb4f8ea87d03bc51ad04add8ceaf9b0f085ac045ab4d74e73bbc2dc033f0236"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-win32.whl", hash = "sha256:9ae4ef0b3f6b41bad6366fb0ea4fc1d7ed051528e113a60fa2a65a9abb5b1d99"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cee4373f4d3ad28f1ab6290684d8e2ebdb9e7a1b74fdc39e4c211995f77bec27"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0713f3adb9d03d49d365b70b84775d0a0d18e4ab08d12bc46baa6132ba78aaf6"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:de7376c29d95d6719048c194a9cf1a1b0393fbe8488a22008610b0361d834ecf"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a51b48f42d9358460b78725283f04bddaf44a9358197b889657deba38f329db"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b295729485b06c1a0683af02a9e42d2caa9db04a373dc38a6a58cdd1e8abddf1"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee803480535c44e7f5ad00788526da7d85525cfefaf8acf8ab9a310000be4b03"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d59d125ffbd6d552765510e3f31ed75ebac2c7470c7274195b9161a32350284"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8cda06946eac330cbe6598f77bb54e690b4ca93f593dee1568ad22b04f347c15"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07afec21bbbbf8a5cc3651aa96b980afe2526e7f048fdfb7f1014d84acc8b6d8"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6b40e8d38afe634559e398cc32b1472f376a4099c75fe6299ae607e404c033b2"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b8dcd239c743aa2f9c22ce674a145e0a25cb1566c495928440a181ca1ccf6719"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:84450ba661fb96e9fd67629b93d2941c871ca86fc38d835d19d4225ff946a631"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:44aeb140295a2f0659e113b31cfe92c9061622cadbc9e2a2f7b8ef6b1e29ef4b"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1db4e7fefefd0f548d73e2e2e041f9df5c59e178b4c72fbac4cc6f535cfb1565"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-win32.whl", hash = "sha256:5726cf76c982532c1863fb64d8c6dd0e4c90b6ece9feb06c9f202417a31f7dd7"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:b197e7094f232959f8f20541ead1d9862ac5ebea1d58e9849c1bf979255dfac9"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:dd4eda173a9fcccb5f2e2bd2a9f423d180194b1bf17cf59e3269899235b2a114"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e9e3c4c9e1ed40ea53acf11e2a386383c3304212c965773704e4603d589343ed"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92a7e36b000bf022ef3dbb9c46bfe2d52c047d5e3f3343f43204263c5addc250"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54b6a92d009cbe2fb11054ba694bc9e284dad30a26757b1e372a1fdddaf21920"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ffd9493de4c922f2a38c2bf62b831dcec90ac673ed1ca182fe11b4d8e9f2a64"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:35c404d74c2926d0287fbd63ed5d27eb911eb9e4a3bb2c6d294f3cfd4a9e0c23"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e7fdd52961feb4c96507aa649550ec2a0d527c086d284749b2f582f2d40a2e0d"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:92db3c28b5b2a273346bebb24857fda45601aef6ae1c011c0a997106581e8a88"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ab973df98fc99ab39080bfb0eb3a925181454d7c3ac8a1e695fddfae696d9e90"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:4b67fdab07fdd3c10bb21edab3cbfe8cf5696f453afce75d815d9d7223fbe88b"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:aa41e526a5d4a9dfcfbab0716c7e8a1b215abd3f3df5a45cf18a12721d31cb5d"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ffc519621dce0c767e96b9c53f09c5d215578e10b02c285809f76509a3931482"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-win32.whl", hash = "sha256:f19c1585933c82098c2a520f8ec1227f20e339e33aca8fa6f956f6691b784e67"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:707b82d19e65c9bd28b81dde95249b07bf9f5b90ebe1ef17d9b57473f8a64b7b"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:dbe03226baf438ac4fda9e2d0715022fd579cb641c4cf639fa40d53b2fe6f3e2"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd9a8bd8900e65504a305bf8ae6fa9fbc66de94178c420791d0293702fce2df7"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8831399554b92b72af5932cdbbd4ddc55c55f631bb13ff8fe4e6536a06c5c51"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a14969b8691f7998e74663b77b4c36c0337cb1df552da83d5c9004a93afdb574"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dcaf7c1524c0542ee2fc82cc8ec337f7a9f7edee2532421ab200d2b920fc97cf"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425c5f215d0eecee9a56cdb703203dda90423247421bf0d67125add85d0c4455"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:d5b054862739d276e09928de37c79ddeec42a6e1bfc55863be96a36ba22926f6"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:f3e73a4255342d4eb26ef6df01e3962e73aa29baa3124a8e824c5d3364a65748"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:2f6c34da58ea9c1a9515621f4d9ac379871a8f21168ba1b5e09d74250de5ad62"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:f09cb5a7bbe1ecae6e87901a2eb23e0256bb524a79ccc53eb0b7629fbe7677c4"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:0099d79bdfcf5c1f0c2c72f91516702ebf8b0b8ddd8905f97a8aecf49712c621"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-win32.whl", hash = "sha256:9c98230f5042f4945f957d006edccc2af1e03ed5e37ce7c373f00a5a4daa6149"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-win_amd64.whl", hash = "sha256:62f60aebecfc7f4b82e3f639a7d1433a20ec32824db2199a11ad4f5e146ef5ee"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:af73657b7a68211996527dbfeffbb0864e043d270580c5aef06dc4b659a4b578"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cab5d0b79d987c67f3b9e9c53f54a61360422a5a0bc075f43cab5621d530c3b6"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9289fd5dddcf57bab41d044f1756550f9e7cf0c8e373b8cdf0ce8773dc4bd417"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b493a043635eb376e50eedf7818f2f322eabbaa974e948bd8bdd29eb7ef2a51"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9fa2566ca27d67c86569e8c85297aaf413ffab85a8960500f12ea34ff98e4c41"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8e538f46104c815be19c975572d74afb53f29650ea2025bbfaef359d2de2f7f"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fd30dc99682dc2c603c2b315bded2799019cea829f8bf57dc6b61efde6611c8"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2006769bd1640bdf4d5641c69a3d63b71b81445473cac5ded39740a226fa88ab"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:dc15e99b2d8a656f8e666854404f1ba54765871104e50c8e9813af8a7db07f12"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:ab2e5bef076f5a235c3774b4f4028a680432cded7cad37bba0fd90d64b187d19"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:4ec9dd88a5b71abfc74e9df5ebe7921c35cbb3b641181a531ca65cdb5e8e4dea"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:43193c5cda5d612f247172016c4bb71251c784d7a4d9314677186a838ad34858"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:aa693779a8b50cd97570e5a0f343538a8dbd3e496fa5dcb87e29406ad0299654"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-win32.whl", hash = "sha256:7706f5850360ac01d80c89bcef1640683cc12ed87f42579dab6c5d3ed6888613"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:c3e446d253bd88f6377260d07c895816ebf33ffffd56c1c792b13bff9c3e1ade"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:980b4f289d1d90ca5efcf07958d3eb38ed9c0b7676bf2831a54d4f66f9c27dfa"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f28f891ccd15c514a0981f3b9db9aa23d62fe1a99997512b0491d2ed323d229a"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8aacce6e2e1edcb6ac625fb0f8c3a9570ccc7bfba1f63419b3769ccf6a00ed0"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd7af3717683bea4c87acd8c0d3d5b44d56120b26fd3f8a692bdd2d5260c620a"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5ff2ed8194587faf56555927b3aa10e6fb69d931e33953943bc4f837dfee2242"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e91f541a85298cf35433bf66f3fab2a4a2cff05c127eeca4af174f6d497f0d4b"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:309a7de0a0ff3040acaebb35ec45d18db4b28232f21998851cfa709eeff49d62"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:285e96d9d53422efc0d7a17c60e59f37fbf3dfa942073f666db4ac71e8d726d0"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5d447056e2ca60382d460a604b6302d8db69476fd2015c81e7c35417cfabe4cd"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:20587d20f557fe189b7947d8e7ec5afa110ccf72a3128d61a2a387c3313f46be"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:130272c698667a982a5d0e626851ceff662565379baf0ff2cc58067b81d4f11d"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:ab22fbd9765e6954bc0bcff24c25ff71dcbfdb185fcdaca49e81bac68fe724d3"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7782afc9b6b42200f7362858f9e73b1f8316afb276d316336c0ec3bd73312742"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-win32.whl", hash = "sha256:2de62e8801ddfff069cd5c504ce3bc9672b23266597d4e4f50eda28846c322f2"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:95c3c157765b031331dd4db3c775e58deaee050a3042fcad72cbc4189d7c8dca"}, + {file = "charset_normalizer-3.4.0-py3-none-any.whl", hash = "sha256:fe9f97feb71aa9896b81973a7bbada8c49501dc73e58a10fcef6663af95e5079"}, + {file = "charset_normalizer-3.4.0.tar.gz", hash = "sha256:223217c3d4f82c3ac5e29032b3f1c2eb0fb591b72161f86d93f5719079dae93e"}, ] [[package]] @@ -487,35 +516,80 @@ files = [ docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] tests = ["pytest", "pytest-cov", "pytest-xdist"] +[[package]] +name = "cython" +version = "0.29.14" +description = "The Cython compiler for writing C extensions for the Python language." +optional = false +python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "Cython-0.29.14-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:47e5e1502d52ef03387cf9d3b3241007961a84a466e58a3b74028e1dd4957f8c"}, + {file = "Cython-0.29.14-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:1dcdaa319558eb924294a554dcf6c12383ec947acc7e779e8d3622409a7f7d28"}, + {file = "Cython-0.29.14-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:7bc18fc5a170f2c1cef5387a3d997c28942918bbee0f700e73fd2178ee8d474d"}, + {file = "Cython-0.29.14-cp27-cp27m-win32.whl", hash = "sha256:89458b49976b1dee5d89ab4ac943da3717b4292bf624367e862e4ee172fcce99"}, + {file = "Cython-0.29.14-cp27-cp27m-win_amd64.whl", hash = "sha256:c0b24bfe3431b3cb7ced323bca813dbd13aca973a1475b512d3331fd0de8ec60"}, + {file = "Cython-0.29.14-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7f89eff20e4a7a64b55210dac17aea711ed8a3f2e78f2ff784c0e984302583dd"}, + {file = "Cython-0.29.14-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:6c53338c1811f8c6d7f8cb7abd874810b15045e719e8207f957035c9177b4213"}, + {file = "Cython-0.29.14-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:521340844cf388d109ceb61397f3fd5250ccb622a1a8e93559e8de76c80940a9"}, + {file = "Cython-0.29.14-cp34-cp34m-manylinux1_i686.whl", hash = "sha256:75c2dda47dcc3c77449712b1417bb6b89ec3b7b02e18c64262494dceffdf455e"}, + {file = "Cython-0.29.14-cp34-cp34m-manylinux1_x86_64.whl", hash = "sha256:05eb79efc8029d487251c8a2702a909a8ba33c332e06d2f3980866541bd81253"}, + {file = "Cython-0.29.14-cp34-cp34m-win32.whl", hash = "sha256:1fc5bdda28f25fec44e4721677458aa509d743cd350862270309d61aa148d6ff"}, + {file = "Cython-0.29.14-cp34-cp34m-win_amd64.whl", hash = "sha256:0c70e842e52e2f50cc43bad43b5e5bc515f30821a374e544abb0e0746f2350ff"}, + {file = "Cython-0.29.14-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:094d28a34c3fa992ae02aea1edbe6ff89b3cc5870b6ee38b5baeb805dc57b013"}, + {file = "Cython-0.29.14-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:280573a01d9348d44a42d6a9c651d9f7eb1fe9217df72555b2a118f902996a10"}, + {file = "Cython-0.29.14-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:773c5a98e463b52f7e8197254b39b703a5ea1972aef3a94b3b921515d77dd041"}, + {file = "Cython-0.29.14-cp35-cp35m-win32.whl", hash = "sha256:986f871c0fa649b293061236b93782d25c293a8dd8117c7ba05f8a61bdc261ae"}, + {file = "Cython-0.29.14-cp35-cp35m-win_amd64.whl", hash = "sha256:78c3068dcba300d473fef57cdf523e34b37de522f5a494ef9ee1ac9b4b8bbe3f"}, + {file = "Cython-0.29.14-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:f3818e578e687cdb21dc4aa4a3bc6278c656c9c393e9eda14dd04943f478863d"}, + {file = "Cython-0.29.14-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:bb487881608ebd293592553c618f0c83316f4f13a64cb18605b1d2fb9fd3da3e"}, + {file = "Cython-0.29.14-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:03f6bbb380ad0acb744fb06e42996ea217e9d00016ca0ff6f2e7d60f580d0360"}, + {file = "Cython-0.29.14-cp36-cp36m-win32.whl", hash = "sha256:b8ab3ab38afc47d8f4fe629b836243544351cef681b6bdb1dc869028d6fdcbfb"}, + {file = "Cython-0.29.14-cp36-cp36m-win_amd64.whl", hash = "sha256:298ceca7b0f0da4205fcb0b7c9ac9e120e2dafffd5019ba1618e84ef89434b5a"}, + {file = "Cython-0.29.14-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:fe666645493d72712c46e4fbe8bec094b06aec3c337400479e9704439c9d9586"}, + {file = "Cython-0.29.14-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:4074a8bff0040035673cc6dd365a762476d6bff4d03d8ce6904e3e53f9a25dc8"}, + {file = "Cython-0.29.14-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:a14aa436586c41633339415de82a41164691d02d3e661038da533be5d40794a5"}, + {file = "Cython-0.29.14-cp37-cp37m-win32.whl", hash = "sha256:41e7068e95fbf9ec94b41437f989caf9674135e770a39cdb9c00de459bafd1bc"}, + {file = "Cython-0.29.14-cp37-cp37m-win_amd64.whl", hash = "sha256:05e8cfd3a3a6087aec49a1ae08a89171db991956209406d1e5576f9db70ece52"}, + {file = "Cython-0.29.14-cp38-cp38-manylinux1_i686.whl", hash = "sha256:e8fab9911fd2fa8e5af407057cb8bdf87762f983cba483fa3234be20a9a0af77"}, + {file = "Cython-0.29.14-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:d4039bb7f234ad32267c55e72fd49fb56078ea102f9d9d8559f6ec34d4887630"}, + {file = "Cython-0.29.14-cp38-cp38-win32.whl", hash = "sha256:c7894c06205166d360ab2915ae306d1f7403e9ce3d3aaeff4095eaf98e42ce66"}, + {file = "Cython-0.29.14-cp38-cp38-win_amd64.whl", hash = "sha256:a0f495a4fe5278aab278feee35e6102efecde5176a8a74dd28c28e3fc5c8d7c7"}, + {file = "Cython-0.29.14.tar.gz", hash = "sha256:e4d6bb8703d0319eb04b7319b12ea41580df44fd84d83ccda13ea463c6801414"}, +] + [[package]] name = "debugpy" -version = "1.8.6" +version = "1.8.7" description = "An implementation of the Debug Adapter Protocol for Python" optional = false python-versions = ">=3.8" files = [ - {file = "debugpy-1.8.6-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:30f467c5345d9dfdcc0afdb10e018e47f092e383447500f125b4e013236bf14b"}, - {file = "debugpy-1.8.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d73d8c52614432f4215d0fe79a7e595d0dd162b5c15233762565be2f014803b"}, - {file = "debugpy-1.8.6-cp310-cp310-win32.whl", hash = "sha256:e3e182cd98eac20ee23a00653503315085b29ab44ed66269482349d307b08df9"}, - {file = "debugpy-1.8.6-cp310-cp310-win_amd64.whl", hash = "sha256:e3a82da039cfe717b6fb1886cbbe5c4a3f15d7df4765af857f4307585121c2dd"}, - {file = "debugpy-1.8.6-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:67479a94cf5fd2c2d88f9615e087fcb4fec169ec780464a3f2ba4a9a2bb79955"}, - {file = "debugpy-1.8.6-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fb8653f6cbf1dd0a305ac1aa66ec246002145074ea57933978346ea5afdf70b"}, - {file = "debugpy-1.8.6-cp311-cp311-win32.whl", hash = "sha256:cdaf0b9691879da2d13fa39b61c01887c34558d1ff6e5c30e2eb698f5384cd43"}, - {file = "debugpy-1.8.6-cp311-cp311-win_amd64.whl", hash = "sha256:43996632bee7435583952155c06881074b9a742a86cee74e701d87ca532fe833"}, - {file = "debugpy-1.8.6-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:db891b141fc6ee4b5fc6d1cc8035ec329cabc64bdd2ae672b4550c87d4ecb128"}, - {file = "debugpy-1.8.6-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:567419081ff67da766c898ccf21e79f1adad0e321381b0dfc7a9c8f7a9347972"}, - {file = "debugpy-1.8.6-cp312-cp312-win32.whl", hash = "sha256:c9834dfd701a1f6bf0f7f0b8b1573970ae99ebbeee68314116e0ccc5c78eea3c"}, - {file = "debugpy-1.8.6-cp312-cp312-win_amd64.whl", hash = "sha256:e4ce0570aa4aca87137890d23b86faeadf184924ad892d20c54237bcaab75d8f"}, - {file = "debugpy-1.8.6-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:df5dc9eb4ca050273b8e374a4cd967c43be1327eeb42bfe2f58b3cdfe7c68dcb"}, - {file = "debugpy-1.8.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0a85707c6a84b0c5b3db92a2df685b5230dd8fb8c108298ba4f11dba157a615a"}, - {file = "debugpy-1.8.6-cp38-cp38-win32.whl", hash = "sha256:538c6cdcdcdad310bbefd96d7850be1cd46e703079cc9e67d42a9ca776cdc8a8"}, - {file = "debugpy-1.8.6-cp38-cp38-win_amd64.whl", hash = "sha256:22140bc02c66cda6053b6eb56dfe01bbe22a4447846581ba1dd6df2c9f97982d"}, - {file = "debugpy-1.8.6-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:c1cef65cffbc96e7b392d9178dbfd524ab0750da6c0023c027ddcac968fd1caa"}, - {file = "debugpy-1.8.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1e60bd06bb3cc5c0e957df748d1fab501e01416c43a7bdc756d2a992ea1b881"}, - {file = "debugpy-1.8.6-cp39-cp39-win32.whl", hash = "sha256:f7158252803d0752ed5398d291dee4c553bb12d14547c0e1843ab74ee9c31123"}, - {file = "debugpy-1.8.6-cp39-cp39-win_amd64.whl", hash = "sha256:3358aa619a073b620cd0d51d8a6176590af24abcc3fe2e479929a154bf591b51"}, - {file = "debugpy-1.8.6-py2.py3-none-any.whl", hash = "sha256:b48892df4d810eff21d3ef37274f4c60d32cdcafc462ad5647239036b0f0649f"}, - {file = "debugpy-1.8.6.zip", hash = "sha256:c931a9371a86784cee25dec8d65bc2dc7a21f3f1552e3833d9ef8f919d22280a"}, + {file = "debugpy-1.8.7-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:95fe04a573b8b22896c404365e03f4eda0ce0ba135b7667a1e57bd079793b96b"}, + {file = "debugpy-1.8.7-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:628a11f4b295ffb4141d8242a9bb52b77ad4a63a2ad19217a93be0f77f2c28c9"}, + {file = "debugpy-1.8.7-cp310-cp310-win32.whl", hash = "sha256:85ce9c1d0eebf622f86cc68618ad64bf66c4fc3197d88f74bb695a416837dd55"}, + {file = "debugpy-1.8.7-cp310-cp310-win_amd64.whl", hash = "sha256:29e1571c276d643757ea126d014abda081eb5ea4c851628b33de0c2b6245b037"}, + {file = "debugpy-1.8.7-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:caf528ff9e7308b74a1749c183d6808ffbedbb9fb6af78b033c28974d9b8831f"}, + {file = "debugpy-1.8.7-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cba1d078cf2e1e0b8402e6bda528bf8fda7ccd158c3dba6c012b7897747c41a0"}, + {file = "debugpy-1.8.7-cp311-cp311-win32.whl", hash = "sha256:171899588bcd412151e593bd40d9907133a7622cd6ecdbdb75f89d1551df13c2"}, + {file = "debugpy-1.8.7-cp311-cp311-win_amd64.whl", hash = "sha256:6e1c4ffb0c79f66e89dfd97944f335880f0d50ad29525dc792785384923e2211"}, + {file = "debugpy-1.8.7-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:4d27d842311353ede0ad572600c62e4bcd74f458ee01ab0dd3a1a4457e7e3706"}, + {file = "debugpy-1.8.7-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:703c1fd62ae0356e194f3e7b7a92acd931f71fe81c4b3be2c17a7b8a4b546ec2"}, + {file = "debugpy-1.8.7-cp312-cp312-win32.whl", hash = "sha256:2f729228430ef191c1e4df72a75ac94e9bf77413ce5f3f900018712c9da0aaca"}, + {file = "debugpy-1.8.7-cp312-cp312-win_amd64.whl", hash = "sha256:45c30aaefb3e1975e8a0258f5bbd26cd40cde9bfe71e9e5a7ac82e79bad64e39"}, + {file = "debugpy-1.8.7-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:d050a1ec7e925f514f0f6594a1e522580317da31fbda1af71d1530d6ea1f2b40"}, + {file = "debugpy-1.8.7-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2f4349a28e3228a42958f8ddaa6333d6f8282d5edaea456070e48609c5983b7"}, + {file = "debugpy-1.8.7-cp313-cp313-win32.whl", hash = "sha256:11ad72eb9ddb436afb8337891a986302e14944f0f755fd94e90d0d71e9100bba"}, + {file = "debugpy-1.8.7-cp313-cp313-win_amd64.whl", hash = "sha256:2efb84d6789352d7950b03d7f866e6d180284bc02c7e12cb37b489b7083d81aa"}, + {file = "debugpy-1.8.7-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:4b908291a1d051ef3331484de8e959ef3e66f12b5e610c203b5b75d2725613a7"}, + {file = "debugpy-1.8.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da8df5b89a41f1fd31503b179d0a84a5fdb752dddd5b5388dbd1ae23cda31ce9"}, + {file = "debugpy-1.8.7-cp38-cp38-win32.whl", hash = "sha256:b12515e04720e9e5c2216cc7086d0edadf25d7ab7e3564ec8b4521cf111b4f8c"}, + {file = "debugpy-1.8.7-cp38-cp38-win_amd64.whl", hash = "sha256:93176e7672551cb5281577cdb62c63aadc87ec036f0c6a486f0ded337c504596"}, + {file = "debugpy-1.8.7-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:90d93e4f2db442f8222dec5ec55ccfc8005821028982f1968ebf551d32b28907"}, + {file = "debugpy-1.8.7-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b6db2a370e2700557a976eaadb16243ec9c91bd46f1b3bb15376d7aaa7632c81"}, + {file = "debugpy-1.8.7-cp39-cp39-win32.whl", hash = "sha256:a6cf2510740e0c0b4a40330640e4b454f928c7b99b0c9dbf48b11efba08a8cda"}, + {file = "debugpy-1.8.7-cp39-cp39-win_amd64.whl", hash = "sha256:6a9d9d6d31846d8e34f52987ee0f1a904c7baa4912bf4843ab39dadf9b8f3e0d"}, + {file = "debugpy-1.8.7-py2.py3-none-any.whl", hash = "sha256:57b00de1c8d2c84a61b90880f7e5b6deaf4c312ecbde3a0e8912f2a56c4ac9ae"}, + {file = "debugpy-1.8.7.zip", hash = "sha256:18b8f731ed3e2e1df8e9cdaa23fb1fc9c24e570cd0081625308ec51c82efe42e"}, ] [[package]] @@ -529,6 +603,33 @@ files = [ {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, ] +[[package]] +name = "dgl" +version = "2.4.0" +description = "Deep Graph Library" +optional = false +python-versions = "*" +files = [ + {file = "dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:bf4d4d0d9300e79281e38627844651fe6355946d933e21d6a8828ce7d7539d00"}, +] + +[package.dependencies] +networkx = ">=2.1" +numpy = ">=1.14.0" +packaging = "*" +pandas = "*" +psutil = ">=5.8.0" +pydantic = ">=2.0" +pyyaml = "*" +requests = ">=2.19.0" +scipy = ">=1.1.0" +torch = "<=2.4.0" +tqdm = "*" + +[package.source] +type = "url" +url = "https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl" + [[package]] name = "executing" version = "2.1.0" @@ -708,49 +809,53 @@ files = [ [[package]] name = "gensim" -version = "4.3.3" +version = "3.8.3" description = "Python framework for fast Vector Space Modelling" optional = false -python-versions = ">=3.8" +python-versions = "*" files = [ - {file = "gensim-4.3.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4e72840adfbea35c5804fd559bc0cb6bc9f439926220a37d852b7ce76eb325c1"}, - {file = "gensim-4.3.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4019263c9d9afae7c669f880c17e09461e77a71afce04ed4d79cf71a4cad2848"}, - {file = "gensim-4.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dea62d3e2ada547687bde6cbba37efa50b534db77e9d44fd5802676bb072c9d9"}, - {file = "gensim-4.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fac93ef5e44982defef9d3c1e4cd00245506b8a29cec19ec5e00f0221b8144c"}, - {file = "gensim-4.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:7c3409f755fb8d62da99cea65e7a40a99d21f8fd86443a3aaf2d90eb68995021"}, - {file = "gensim-4.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:99e7b70352aecc6c1674dde82b75f453e7a5d1cc71ac1cfbc460bf1fe20501b7"}, - {file = "gensim-4.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:32a4cac3f3c38af2069eab9524609fc92ebaeb2692b7280cfda365a3517a280a"}, - {file = "gensim-4.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c071b4329ed1be02446eb7ef637b94c68cf0080c15c57fbcde667fce2e49c3fe"}, - {file = "gensim-4.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d662bf96e3d741b6ab61a54be842a7cbf5e45193008b2f4225c758cafd7f9cdc"}, - {file = "gensim-4.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:a54bd53a0e6f991abb837f126663353657270e75be53287e8a568ada0b35b1b0"}, - {file = "gensim-4.3.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9a65ed1a8c1fc83890b4eb2a45ae2b32e82a0209c970c8c74694d0374c2415cb"}, - {file = "gensim-4.3.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4db485e08a0287e0fd6a029d89b90913d1df38f1dcd34cd2ab758873ba9255f3"}, - {file = "gensim-4.3.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7198987116373ab99f034b292a04ac841531d12b56345851c98b40a3fcd93a85"}, - {file = "gensim-4.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6237a50de4da7a037b19b2b6c430b6537243dcdedebf94afeb089e951953e601"}, - {file = "gensim-4.3.3-cp312-cp312-win_amd64.whl", hash = "sha256:c910c2d5a71f532273166a3a82762959973f0513b221a495fa5a2a07652ee66d"}, - {file = "gensim-4.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d7efa5e35d3f0ec02e6e8343b623c2c863be99e8c26866cf0bebd24fb10198c"}, - {file = "gensim-4.3.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2e8eaf5ef576f4d45e98cf87e7edda9afb469dff954a923402dc1ffc35195901"}, - {file = "gensim-4.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9161e52a6ec2a0580df66e9fac4ff7fc43efdc40674fbd4dd9e914796cc68bc3"}, - {file = "gensim-4.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a200d6ac522cdf91e6048e1a368318c6b1b6e0c79009dfd408345ea2b9d3c096"}, - {file = "gensim-4.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:065547124a93948926b88cb854e1c09750e9a4c7be92f55858159aa8a23359c3"}, - {file = "gensim-4.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688a13b9bba839fedc7f3da6806d5701a756ed940839702ba6d7f494e917baef"}, - {file = "gensim-4.3.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c560d28133cca58078221d60fce346f98f2c5e93d2ad42942f32c0d60903f65b"}, - {file = "gensim-4.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:832311f0c420c0841c98b9e6cc4d83ea362add6db917bf2d646de4bed48a29f7"}, - {file = "gensim-4.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1049f5bc2a84b21a1cb9976741826c0ebf25cfdff4a888361db4b4a697d99f0d"}, - {file = "gensim-4.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:e99b236b6638a30d7f878e2e21a94dab2f6d4b4fd3c242f44dca1341940cb0cb"}, - {file = "gensim-4.3.3.tar.gz", hash = "sha256:84852076a6a3d88d7dac5be245e24c21c3b819b565e14c1b61fa3e5ee76dcf57"}, + {file = "gensim-3.8.3-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:61eed1d6b5fbe6dda0586ea447ebc2dc7890a7f70c2ed953d5abc3fe3cfb94bb"}, + {file = "gensim-3.8.3-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:3af62709369331c85552fd26caa21504baa64accc426dc094172f5c688750013"}, + {file = "gensim-3.8.3-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:8ff471921b3b10ffb3ae6cbb598dd9c07d9dc030dee5aa167e7682b549c42f87"}, + {file = "gensim-3.8.3-cp27-cp27m-win32.whl", hash = "sha256:440700e29b494bc2e1d52e14b69a821f46ab09ecf85cf36c8988f18e1d6c7a8b"}, + {file = "gensim-3.8.3-cp27-cp27m-win_amd64.whl", hash = "sha256:f8ea67bf8c47ee55cb1b32c97fa1474b7d6d22959dd8097c019a5d9c9df34f5f"}, + {file = "gensim-3.8.3-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7a90549dfc8ee3822fcad6da957de07d927e4e90ef42b3699543dee35ab2da13"}, + {file = "gensim-3.8.3-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:7629b33cf35f672efdd5269381f7e301958ee2638f27dfc63b80c5bfeaa827d3"}, + {file = "gensim-3.8.3-cp35-cp35m-macosx_10_9_intel.whl", hash = "sha256:6711b6d3a0007530ee7de7adc30a4c48a1d26ec6312ac50e1d1e0a1d54f9de5b"}, + {file = "gensim-3.8.3-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:ef2ddeceff482aee17c1e185f63bf027c8de8f595fdd9fd2d2503de96008f3b7"}, + {file = "gensim-3.8.3-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:41dcf6ecdc9acc657157967c791b8cbaba90ee6391f64efd28339b72f5e0c327"}, + {file = "gensim-3.8.3-cp35-cp35m-win32.whl", hash = "sha256:685a7657278161628821c8f873c5d7d2ffc0c28866648e39f76b450e4c7d5390"}, + {file = "gensim-3.8.3-cp35-cp35m-win_amd64.whl", hash = "sha256:b61a7c841a752c84b685674aa0d610289faad38795b325176481abe19b487e98"}, + {file = "gensim-3.8.3-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a61179df454a0d4b06a111c4ede0536f61c8121b4c0d0d02d23560a2fd4b3aff"}, + {file = "gensim-3.8.3-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:cc387d0d8bddbf3609ab95b3453296e4c9ff92c35e9799a17d86b1571d77a5fc"}, + {file = "gensim-3.8.3-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:b36e6330471061cfd78aad751e24c6b4f56d575697af0fbab42655128927d296"}, + {file = "gensim-3.8.3-cp36-cp36m-win32.whl", hash = "sha256:1e3d66c2eec494376fc599701d9c2868549aed6e93e47177e39217f0188e2d88"}, + {file = "gensim-3.8.3-cp36-cp36m-win_amd64.whl", hash = "sha256:91fa62d61b21f1878f140b10520f9de4a26a52672fbe407edfc7e09ca2eff235"}, + {file = "gensim-3.8.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:637fc5969f3cef4b7c8fd3e78e31ef09565c5566d5ceabf076b4170eb6444a80"}, + {file = "gensim-3.8.3-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:22f45fd239cacd0e3715ac447a2c8a5eea02e730ec1f701c55b359e9298e63a8"}, + {file = "gensim-3.8.3-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:d79370f78e9013b9d1e867c85ecc678d46a7ae0f01a8ca29e8f4291e5373b170"}, + {file = "gensim-3.8.3-cp37-cp37m-win32.whl", hash = "sha256:9c214b341f5304b906c79844e2787c13b46505df9dc70afca79a9a7dc0894478"}, + {file = "gensim-3.8.3-cp37-cp37m-win_amd64.whl", hash = "sha256:fe98277a7b3b4987b40c928056bbaae1d0715022cf27bba89d05cd0d4fe51a84"}, + {file = "gensim-3.8.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a47903d104469a7a8b6f22ad5ef74681b19c4f4b71ff2c2893271b53161a43e4"}, + {file = "gensim-3.8.3-cp38-cp38-manylinux1_i686.whl", hash = "sha256:05bfc02e102a34c9c795095b688b1b4aaa2529c624821368c9c3ea6a16536f77"}, + {file = "gensim-3.8.3-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:a8807ebf324dd11e1298a91a92d6e57c7bdabb91d0d5240bf1efa0c0eacd86f0"}, + {file = "gensim-3.8.3-cp38-cp38-win32.whl", hash = "sha256:90115d12ee545c21cc75521ef1bb3dd66aae8a378e9c2eb029c9f22df173c125"}, + {file = "gensim-3.8.3-cp38-cp38-win_amd64.whl", hash = "sha256:4e34cf2e50f3eab3e303da46089ea4972567bf216e28f7535ada155770784ac8"}, + {file = "gensim-3.8.3.tar.gz", hash = "sha256:786adb0571f75114e9c5f7a31dd2e6eb39a9791f22c8757621545e2ded3ea367"}, ] [package.dependencies] -numpy = ">=1.18.5,<2.0" -scipy = ">=1.7.0,<1.14.0" +Cython = "0.29.14" +numpy = ">=1.11.3" +scipy = ">=0.18.1" +six = ">=1.5.0" smart-open = ">=1.8.1" [package.extras] distributed = ["Pyro4 (>=4.27)"] -docs = ["POT", "Pyro4", "Pyro4 (>=4.27)", "annoy", "matplotlib", "memory-profiler", "nltk", "pandas", "pytest", "pytest-cov", "scikit-learn", "sphinx (==5.1.1)", "sphinx-gallery (==0.11.1)", "sphinxcontrib-napoleon (==0.7)", "sphinxcontrib.programoutput (==0.17)", "statsmodels", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] -test = ["POT", "pytest", "pytest-cov", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] -test-win = ["POT", "pytest", "pytest-cov", "testfixtures"] +docs = ["Morfessor (==2.0.2a4)", "Pyro4", "Pyro4 (>=4.27)", "annoy", "cython", "matplotlib", "memory-profiler", "mock", "nltk", "nmslib", "pandas", "plotly", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "sphinx (<=2.4.4)", "sphinx-gallery", "sphinxcontrib-napoleon", "sphinxcontrib.programoutput", "statsmodels", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test-win = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] [[package]] name = "google-auth" @@ -1566,21 +1671,47 @@ files = [ [[package]] name = "networkx" -version = "3.1" +version = "2.5" description = "Python package for creating and manipulating graphs and networks" optional = false -python-versions = ">=3.8" +python-versions = ">=3.6" files = [ - {file = "networkx-3.1-py3-none-any.whl", hash = "sha256:4f33f68cb2afcf86f28a45f43efc27a9386b535d567d2127f8f61d51dec58d36"}, - {file = "networkx-3.1.tar.gz", hash = "sha256:de346335408f84de0eada6ff9fafafff9bcda11f0a0dfaa931133debb146ab61"}, + {file = "networkx-2.5-py3-none-any.whl", hash = "sha256:8c5812e9f798d37c50570d15c4a69d5710a18d77bafc903ee9c5fba7454c616c"}, + {file = "networkx-2.5.tar.gz", hash = "sha256:7978955423fbc9639c10498878be59caf99b44dc304c2286162fd24b458c1602"}, ] +[package.dependencies] +decorator = ">=4.3.0" + [package.extras] -default = ["matplotlib (>=3.4)", "numpy (>=1.20)", "pandas (>=1.3)", "scipy (>=1.8)"] -developer = ["mypy (>=1.1)", "pre-commit (>=3.2)"] -doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.13)", "sphinx (>=6.1)", "sphinx-gallery (>=0.12)", "texext (>=0.6.7)"] -extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.10)", "sympy (>=1.10)"] -test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"] +all = ["lxml", "matplotlib", "numpy", "pandas", "pydot", "pygraphviz", "pytest", "pyyaml", "scipy"] +gdal = ["gdal"] +lxml = ["lxml"] +matplotlib = ["matplotlib"] +numpy = ["numpy"] +pandas = ["pandas"] +pydot = ["pydot"] +pygraphviz = ["pygraphviz"] +pytest = ["pytest"] +pyyaml = ["pyyaml"] +scipy = ["scipy"] + +[[package]] +name = "node2vec" +version = "0.3.3" +description = "Implementation of the node2vec algorithm." +optional = false +python-versions = "*" +files = [ + {file = "node2vec-0.3.3.tar.gz", hash = "sha256:a122796952137bc91df5e9a51525180d510e1f4e4208eb4a21329137c38354d8"}, +] + +[package.dependencies] +gensim = "*" +joblib = ">=0.13.2" +networkx = "*" +numpy = "*" +tqdm = "*" [[package]] name = "numpy" @@ -1761,6 +1892,29 @@ files = [ {file = "nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82"}, ] +[[package]] +name = "nxt_gem" +version = "2.0.1" +description = "nxt_gem: A Python module for Graph Embedding Methods" +optional = false +python-versions = "*" +files = [] +develop = false + +[package.dependencies] +matplotlib = ">=2.0.0" +networkx = ">=2.4" +numpy = ">=1.12.0" +scikit-learn = ">=0.21.2" +scipy = ">=0.19.0" +theano = ">=0.9.0" + +[package.source] +type = "git" +url = "https://github.com/palash1992/GEM.git" +reference = "master" +resolved_reference = "ae8e92d34213f5785757b4a0943bd7d8d337adb3" + [[package]] name = "oauthlib" version = "3.2.2" @@ -2029,6 +2183,113 @@ files = [ [package.dependencies] wcwidth = "*" +[[package]] +name = "propcache" +version = "0.2.0" +description = "Accelerated property cache" +optional = false +python-versions = ">=3.8" +files = [ + {file = "propcache-0.2.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:c5869b8fd70b81835a6f187c5fdbe67917a04d7e52b6e7cc4e5fe39d55c39d58"}, + {file = "propcache-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:952e0d9d07609d9c5be361f33b0d6d650cd2bae393aabb11d9b719364521984b"}, + {file = "propcache-0.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:33ac8f098df0585c0b53009f039dfd913b38c1d2edafed0cedcc0c32a05aa110"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:97e48e8875e6c13909c800fa344cd54cc4b2b0db1d5f911f840458a500fde2c2"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:388f3217649d6d59292b722d940d4d2e1e6a7003259eb835724092a1cca0203a"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f571aea50ba5623c308aa146eb650eebf7dbe0fd8c5d946e28343cb3b5aad577"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3dfafb44f7bb35c0c06eda6b2ab4bfd58f02729e7c4045e179f9a861b07c9850"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a3ebe9a75be7ab0b7da2464a77bb27febcb4fab46a34f9288f39d74833db7f61"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d2f0d0f976985f85dfb5f3d685697ef769faa6b71993b46b295cdbbd6be8cc37"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:a3dc1a4b165283bd865e8f8cb5f0c64c05001e0718ed06250d8cac9bec115b48"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:9e0f07b42d2a50c7dd2d8675d50f7343d998c64008f1da5fef888396b7f84630"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:e63e3e1e0271f374ed489ff5ee73d4b6e7c60710e1f76af5f0e1a6117cd26394"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:56bb5c98f058a41bb58eead194b4db8c05b088c93d94d5161728515bd52b052b"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7665f04d0c7f26ff8bb534e1c65068409bf4687aa2534faf7104d7182debb336"}, + {file = "propcache-0.2.0-cp310-cp310-win32.whl", hash = "sha256:7cf18abf9764746b9c8704774d8b06714bcb0a63641518a3a89c7f85cc02c2ad"}, + {file = "propcache-0.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:cfac69017ef97db2438efb854edf24f5a29fd09a536ff3a992b75990720cdc99"}, + {file = "propcache-0.2.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:63f13bf09cc3336eb04a837490b8f332e0db41da66995c9fd1ba04552e516354"}, + {file = "propcache-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:608cce1da6f2672a56b24a015b42db4ac612ee709f3d29f27a00c943d9e851de"}, + {file = "propcache-0.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:466c219deee4536fbc83c08d09115249db301550625c7fef1c5563a584c9bc87"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc2db02409338bf36590aa985a461b2c96fce91f8e7e0f14c50c5fcc4f229016"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a6ed8db0a556343d566a5c124ee483ae113acc9a557a807d439bcecc44e7dfbb"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:91997d9cb4a325b60d4e3f20967f8eb08dfcb32b22554d5ef78e6fd1dda743a2"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c7dde9e533c0a49d802b4f3f218fa9ad0a1ce21f2c2eb80d5216565202acab4"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffcad6c564fe6b9b8916c1aefbb37a362deebf9394bd2974e9d84232e3e08504"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:97a58a28bcf63284e8b4d7b460cbee1edaab24634e82059c7b8c09e65284f178"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:945db8ee295d3af9dbdbb698cce9bbc5c59b5c3fe328bbc4387f59a8a35f998d"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:39e104da444a34830751715f45ef9fc537475ba21b7f1f5b0f4d71a3b60d7fe2"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:c5ecca8f9bab618340c8e848d340baf68bcd8ad90a8ecd7a4524a81c1764b3db"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:c436130cc779806bdf5d5fae0d848713105472b8566b75ff70048c47d3961c5b"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:191db28dc6dcd29d1a3e063c3be0b40688ed76434622c53a284e5427565bbd9b"}, + {file = "propcache-0.2.0-cp311-cp311-win32.whl", hash = "sha256:5f2564ec89058ee7c7989a7b719115bdfe2a2fb8e7a4543b8d1c0cc4cf6478c1"}, + {file = "propcache-0.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:6e2e54267980349b723cff366d1e29b138b9a60fa376664a157a342689553f71"}, + {file = "propcache-0.2.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:2ee7606193fb267be4b2e3b32714f2d58cad27217638db98a60f9efb5efeccc2"}, + {file = "propcache-0.2.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:91ee8fc02ca52e24bcb77b234f22afc03288e1dafbb1f88fe24db308910c4ac7"}, + {file = "propcache-0.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2e900bad2a8456d00a113cad8c13343f3b1f327534e3589acc2219729237a2e8"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f52a68c21363c45297aca15561812d542f8fc683c85201df0bebe209e349f793"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e41d67757ff4fbc8ef2af99b338bfb955010444b92929e9e55a6d4dcc3c4f09"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a64e32f8bd94c105cc27f42d3b658902b5bcc947ece3c8fe7bc1b05982f60e89"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:55346705687dbd7ef0d77883ab4f6fabc48232f587925bdaf95219bae072491e"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:00181262b17e517df2cd85656fcd6b4e70946fe62cd625b9d74ac9977b64d8d9"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6994984550eaf25dd7fc7bd1b700ff45c894149341725bb4edc67f0ffa94efa4"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:56295eb1e5f3aecd516d91b00cfd8bf3a13991de5a479df9e27dd569ea23959c"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:439e76255daa0f8151d3cb325f6dd4a3e93043e6403e6491813bcaaaa8733887"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:f6475a1b2ecb310c98c28d271a30df74f9dd436ee46d09236a6b750a7599ce57"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:3444cdba6628accf384e349014084b1cacd866fbb88433cd9d279d90a54e0b23"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4a9d9b4d0a9b38d1c391bb4ad24aa65f306c6f01b512e10a8a34a2dc5675d348"}, + {file = "propcache-0.2.0-cp312-cp312-win32.whl", hash = "sha256:69d3a98eebae99a420d4b28756c8ce6ea5a29291baf2dc9ff9414b42676f61d5"}, + {file = "propcache-0.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:ad9c9b99b05f163109466638bd30ada1722abb01bbb85c739c50b6dc11f92dc3"}, + {file = "propcache-0.2.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ecddc221a077a8132cf7c747d5352a15ed763b674c0448d811f408bf803d9ad7"}, + {file = "propcache-0.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0e53cb83fdd61cbd67202735e6a6687a7b491c8742dfc39c9e01e80354956763"}, + {file = "propcache-0.2.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92fe151145a990c22cbccf9ae15cae8ae9eddabfc949a219c9f667877e40853d"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6a21ef516d36909931a2967621eecb256018aeb11fc48656e3257e73e2e247a"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3f88a4095e913f98988f5b338c1d4d5d07dbb0b6bad19892fd447484e483ba6b"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a5b3bb545ead161be780ee85a2b54fdf7092815995661947812dde94a40f6fb"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67aeb72e0f482709991aa91345a831d0b707d16b0257e8ef88a2ad246a7280bf"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3c997f8c44ec9b9b0bcbf2d422cc00a1d9b9c681f56efa6ca149a941e5560da2"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:2a66df3d4992bc1d725b9aa803e8c5a66c010c65c741ad901e260ece77f58d2f"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:3ebbcf2a07621f29638799828b8d8668c421bfb94c6cb04269130d8de4fb7136"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:1235c01ddaa80da8235741e80815ce381c5267f96cc49b1477fdcf8c047ef325"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:3947483a381259c06921612550867b37d22e1df6d6d7e8361264b6d037595f44"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d5bed7f9805cc29c780f3aee05de3262ee7ce1f47083cfe9f77471e9d6777e83"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e4a91d44379f45f5e540971d41e4626dacd7f01004826a18cb048e7da7e96544"}, + {file = "propcache-0.2.0-cp313-cp313-win32.whl", hash = "sha256:f902804113e032e2cdf8c71015651c97af6418363bea8d78dc0911d56c335032"}, + {file = "propcache-0.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:8f188cfcc64fb1266f4684206c9de0e80f54622c3f22a910cbd200478aeae61e"}, + {file = "propcache-0.2.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:53d1bd3f979ed529f0805dd35ddaca330f80a9a6d90bc0121d2ff398f8ed8861"}, + {file = "propcache-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:83928404adf8fb3d26793665633ea79b7361efa0287dfbd372a7e74311d51ee6"}, + {file = "propcache-0.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:77a86c261679ea5f3896ec060be9dc8e365788248cc1e049632a1be682442063"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:218db2a3c297a3768c11a34812e63b3ac1c3234c3a086def9c0fee50d35add1f"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7735e82e3498c27bcb2d17cb65d62c14f1100b71723b68362872bca7d0913d90"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:20a617c776f520c3875cf4511e0d1db847a076d720714ae35ffe0df3e440be68"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67b69535c870670c9f9b14a75d28baa32221d06f6b6fa6f77a0a13c5a7b0a5b9"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4569158070180c3855e9c0791c56be3ceeb192defa2cdf6a3f39e54319e56b89"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:db47514ffdbd91ccdc7e6f8407aac4ee94cc871b15b577c1c324236b013ddd04"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_armv7l.whl", hash = "sha256:2a60ad3e2553a74168d275a0ef35e8c0a965448ffbc3b300ab3a5bb9956c2162"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:662dd62358bdeaca0aee5761de8727cfd6861432e3bb828dc2a693aa0471a563"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:25a1f88b471b3bc911d18b935ecb7115dff3a192b6fef46f0bfaf71ff4f12418"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:f60f0ac7005b9f5a6091009b09a419ace1610e163fa5deaba5ce3484341840e7"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:74acd6e291f885678631b7ebc85d2d4aec458dd849b8c841b57ef04047833bed"}, + {file = "propcache-0.2.0-cp38-cp38-win32.whl", hash = "sha256:d9b6ddac6408194e934002a69bcaadbc88c10b5f38fb9307779d1c629181815d"}, + {file = "propcache-0.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:676135dcf3262c9c5081cc8f19ad55c8a64e3f7282a21266d05544450bffc3a5"}, + {file = "propcache-0.2.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:25c8d773a62ce0451b020c7b29a35cfbc05de8b291163a7a0f3b7904f27253e6"}, + {file = "propcache-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:375a12d7556d462dc64d70475a9ee5982465fbb3d2b364f16b86ba9135793638"}, + {file = "propcache-0.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1ec43d76b9677637a89d6ab86e1fef70d739217fefa208c65352ecf0282be957"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f45eec587dafd4b2d41ac189c2156461ebd0c1082d2fe7013571598abb8505d1"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc092ba439d91df90aea38168e11f75c655880c12782facf5cf9c00f3d42b562"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fa1076244f54bb76e65e22cb6910365779d5c3d71d1f18b275f1dfc7b0d71b4d"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:682a7c79a2fbf40f5dbb1eb6bfe2cd865376deeac65acf9beb607505dced9e12"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e40876731f99b6f3c897b66b803c9e1c07a989b366c6b5b475fafd1f7ba3fb8"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:363ea8cd3c5cb6679f1c2f5f1f9669587361c062e4899fce56758efa928728f8"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:140fbf08ab3588b3468932974a9331aff43c0ab8a2ec2c608b6d7d1756dbb6cb"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e70fac33e8b4ac63dfc4c956fd7d85a0b1139adcfc0d964ce288b7c527537fea"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:b33d7a286c0dc1a15f5fc864cc48ae92a846df287ceac2dd499926c3801054a6"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:f6d5749fdd33d90e34c2efb174c7e236829147a2713334d708746e94c4bde40d"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:22aa8f2272d81d9317ff5756bb108021a056805ce63dd3630e27d042c8092798"}, + {file = "propcache-0.2.0-cp39-cp39-win32.whl", hash = "sha256:73e4b40ea0eda421b115248d7e79b59214411109a5bc47d0d48e4c73e3b8fcf9"}, + {file = "propcache-0.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:9517d5e9e0731957468c29dbfd0f976736a0e55afaea843726e887f36fe017df"}, + {file = "propcache-0.2.0-py3-none-any.whl", hash = "sha256:2ccc28197af5313706511fab3a8b66dcd6da067a1331372c82ea1cb74285e036"}, + {file = "propcache-0.2.0.tar.gz", hash = "sha256:df81779732feb9d01e5d513fad0122efb3d53bbc75f61b2a4f29a020bc985e70"}, +] + [[package]] name = "protobuf" version = "3.20.3" @@ -2150,6 +2411,146 @@ files = [ {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, ] +[[package]] +name = "pydantic" +version = "2.9.2" +description = "Data validation using Python type hints" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"}, + {file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"}, +] + +[package.dependencies] +annotated-types = ">=0.6.0" +pydantic-core = "2.23.4" +typing-extensions = {version = ">=4.6.1", markers = "python_version < \"3.13\""} + +[package.extras] +email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] + +[[package]] +name = "pydantic-core" +version = "2.23.4" +description = "Core functionality for Pydantic validation and serialization" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"}, + {file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"}, + {file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"}, + {file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"}, + {file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"}, + {file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"}, + {file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"}, + {file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"}, + {file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"}, + {file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"}, + {file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"}, + {file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"}, + {file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"}, + {file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"}, +] + +[package.dependencies] +typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" + +[[package]] +name = "pyg-lib" +version = "0.4.0+pt21cpu" +description = "Low-Level Graph Neural Network Operators for PyG" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyg_lib-0.4.0+pt21cpu-cp38-cp38-linux_x86_64.whl", hash = "sha256:fcf82fb62f40a9c0b82c47bbbd641ed22bc39c10ecd310dbdfcf79b329b3127f"}, +] + +[package.extras] +dev = ["pre-commit"] +test = ["pytest", "pytest-cov"] +triton = ["triton"] + +[package.source] +type = "url" +url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/pyg_lib-0.4.0%2Bpt21cpu-cp38-cp38-linux_x86_64.whl" + [[package]] name = "pygments" version = "2.18.0" @@ -2192,6 +2593,20 @@ files = [ [package.dependencies] six = ">=1.5" +[[package]] +name = "python-louvain" +version = "0.16" +description = "Louvain algorithm for community detection" +optional = false +python-versions = "*" +files = [ + {file = "python-louvain-0.16.tar.gz", hash = "sha256:b7ba2df5002fd28d3ee789a49532baad11fe648e4f2117cf0798e7520a1da56b"}, +] + +[package.dependencies] +networkx = "*" +numpy = "*" + [[package]] name = "pytz" version = "2024.2" @@ -2205,25 +2620,91 @@ files = [ [[package]] name = "pywin32" -version = "306" +version = "308" description = "Python for Window Extensions" optional = false python-versions = "*" files = [ - {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, - {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, - {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, - {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, - {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, - {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, - {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, - {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, - {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, - {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, - {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, - {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, - {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, - {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, + {file = "pywin32-308-cp310-cp310-win32.whl", hash = "sha256:796ff4426437896550d2981b9c2ac0ffd75238ad9ea2d3bfa67a1abd546d262e"}, + {file = "pywin32-308-cp310-cp310-win_amd64.whl", hash = "sha256:4fc888c59b3c0bef905ce7eb7e2106a07712015ea1c8234b703a088d46110e8e"}, + {file = "pywin32-308-cp310-cp310-win_arm64.whl", hash = "sha256:a5ab5381813b40f264fa3495b98af850098f814a25a63589a8e9eb12560f450c"}, + {file = "pywin32-308-cp311-cp311-win32.whl", hash = "sha256:5d8c8015b24a7d6855b1550d8e660d8daa09983c80e5daf89a273e5c6fb5095a"}, + {file = "pywin32-308-cp311-cp311-win_amd64.whl", hash = "sha256:575621b90f0dc2695fec346b2d6302faebd4f0f45c05ea29404cefe35d89442b"}, + {file = "pywin32-308-cp311-cp311-win_arm64.whl", hash = "sha256:100a5442b7332070983c4cd03f2e906a5648a5104b8a7f50175f7906efd16bb6"}, + {file = "pywin32-308-cp312-cp312-win32.whl", hash = "sha256:587f3e19696f4bf96fde9d8a57cec74a57021ad5f204c9e627e15c33ff568897"}, + {file = "pywin32-308-cp312-cp312-win_amd64.whl", hash = "sha256:00b3e11ef09ede56c6a43c71f2d31857cf7c54b0ab6e78ac659497abd2834f47"}, + {file = "pywin32-308-cp312-cp312-win_arm64.whl", hash = "sha256:9b4de86c8d909aed15b7011182c8cab38c8850de36e6afb1f0db22b8959e3091"}, + {file = "pywin32-308-cp313-cp313-win32.whl", hash = "sha256:1c44539a37a5b7b21d02ab34e6a4d314e0788f1690d65b48e9b0b89f31abbbed"}, + {file = "pywin32-308-cp313-cp313-win_amd64.whl", hash = "sha256:fd380990e792eaf6827fcb7e187b2b4b1cede0585e3d0c9e84201ec27b9905e4"}, + {file = "pywin32-308-cp313-cp313-win_arm64.whl", hash = "sha256:ef313c46d4c18dfb82a2431e3051ac8f112ccee1a34f29c263c583c568db63cd"}, + {file = "pywin32-308-cp37-cp37m-win32.whl", hash = "sha256:1f696ab352a2ddd63bd07430080dd598e6369152ea13a25ebcdd2f503a38f1ff"}, + {file = "pywin32-308-cp37-cp37m-win_amd64.whl", hash = "sha256:13dcb914ed4347019fbec6697a01a0aec61019c1046c2b905410d197856326a6"}, + {file = "pywin32-308-cp38-cp38-win32.whl", hash = "sha256:5794e764ebcabf4ff08c555b31bd348c9025929371763b2183172ff4708152f0"}, + {file = "pywin32-308-cp38-cp38-win_amd64.whl", hash = "sha256:3b92622e29d651c6b783e368ba7d6722b1634b8e70bd376fd7610fe1992e19de"}, + {file = "pywin32-308-cp39-cp39-win32.whl", hash = "sha256:7873ca4dc60ab3287919881a7d4f88baee4a6e639aa6962de25a98ba6b193341"}, + {file = "pywin32-308-cp39-cp39-win_amd64.whl", hash = "sha256:71b3322d949b4cc20776436a9c9ba0eeedcbc9c650daa536df63f0ff111bb920"}, +] + +[[package]] +name = "pyyaml" +version = "6.0.2" +description = "YAML parser and emitter for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, + {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, + {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, + {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, + {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, + {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, + {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, + {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, + {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, ] [[package]] @@ -2402,50 +2883,49 @@ pyasn1 = ">=0.1.3" [[package]] name = "scikit-learn" -version = "1.3.2" +version = "0.24.0" description = "A set of python modules for machine learning and data mining" optional = false -python-versions = ">=3.8" +python-versions = ">=3.6" files = [ - {file = "scikit-learn-1.3.2.tar.gz", hash = "sha256:a2f54c76accc15a34bfb9066e6c7a56c1e7235dda5762b990792330b52ccfb05"}, - {file = "scikit_learn-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e326c0eb5cf4d6ba40f93776a20e9a7a69524c4db0757e7ce24ba222471ee8a1"}, - {file = "scikit_learn-1.3.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:535805c2a01ccb40ca4ab7d081d771aea67e535153e35a1fd99418fcedd1648a"}, - {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1215e5e58e9880b554b01187b8c9390bf4dc4692eedeaf542d3273f4785e342c"}, - {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ee107923a623b9f517754ea2f69ea3b62fc898a3641766cb7deb2f2ce450161"}, - {file = "scikit_learn-1.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:35a22e8015048c628ad099da9df5ab3004cdbf81edc75b396fd0cff8699ac58c"}, - {file = "scikit_learn-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6fb6bc98f234fda43163ddbe36df8bcde1d13ee176c6dc9b92bb7d3fc842eb66"}, - {file = "scikit_learn-1.3.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:18424efee518a1cde7b0b53a422cde2f6625197de6af36da0b57ec502f126157"}, - {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3271552a5eb16f208a6f7f617b8cc6d1f137b52c8a1ef8edf547db0259b2c9fb"}, - {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc4144a5004a676d5022b798d9e573b05139e77f271253a4703eed295bde0433"}, - {file = "scikit_learn-1.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:67f37d708f042a9b8d59551cf94d30431e01374e00dc2645fa186059c6c5d78b"}, - {file = "scikit_learn-1.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:8db94cd8a2e038b37a80a04df8783e09caac77cbe052146432e67800e430c028"}, - {file = "scikit_learn-1.3.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:61a6efd384258789aa89415a410dcdb39a50e19d3d8410bd29be365bcdd512d5"}, - {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb06f8dce3f5ddc5dee1715a9b9f19f20d295bed8e3cd4fa51e1d050347de525"}, - {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b2de18d86f630d68fe1f87af690d451388bb186480afc719e5f770590c2ef6c"}, - {file = "scikit_learn-1.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:0402638c9a7c219ee52c94cbebc8fcb5eb9fe9c773717965c1f4185588ad3107"}, - {file = "scikit_learn-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a19f90f95ba93c1a7f7924906d0576a84da7f3b2282ac3bfb7a08a32801add93"}, - {file = "scikit_learn-1.3.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:b8692e395a03a60cd927125eef3a8e3424d86dde9b2370d544f0ea35f78a8073"}, - {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15e1e94cc23d04d39da797ee34236ce2375ddea158b10bee3c343647d615581d"}, - {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:785a2213086b7b1abf037aeadbbd6d67159feb3e30263434139c98425e3dcfcf"}, - {file = "scikit_learn-1.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:64381066f8aa63c2710e6b56edc9f0894cc7bf59bd71b8ce5613a4559b6145e0"}, - {file = "scikit_learn-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c43290337f7a4b969d207e620658372ba3c1ffb611f8bc2b6f031dc5c6d1d03"}, - {file = "scikit_learn-1.3.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:dc9002fc200bed597d5d34e90c752b74df516d592db162f756cc52836b38fe0e"}, - {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d08ada33e955c54355d909b9c06a4789a729977f165b8bae6f225ff0a60ec4a"}, - {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:763f0ae4b79b0ff9cca0bf3716bcc9915bdacff3cebea15ec79652d1cc4fa5c9"}, - {file = "scikit_learn-1.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:ed932ea780517b00dae7431e031faae6b49b20eb6950918eb83bd043237950e0"}, + {file = "scikit-learn-0.24.0.tar.gz", hash = "sha256:076369634ee72b5a5941440661e2f306ff4ac30903802dc52031c7e9199ac640"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:890d7d588f65acb0c4f6c083347c9076916bda5e6bd8400f06244b1afc1009af"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:e534f5f3796db6781c87e9835dcd51b7854c8c5a379c9210b93605965c1941fd"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:d7fe05fcb44eadd6d6c874c768f085f5de1239db3a3b7be4d3d23d12e4120589"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:7f654befc5ad413690cc58f3f34a3e906caf825195ce0fda00a8e9565e1403e6"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-win32.whl", hash = "sha256:afeb06dc69847927634e58579b9cdc72e1390b79497336b2324b1b173f33bd47"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-win_amd64.whl", hash = "sha256:26f66b3726b54dfb76ea51c5d9c2431ed17ebc066cb4527662b9e851a3e7ba61"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c08b27cb78ee8d2dc781a7affed09859441f5b624f9f92da59ac0791c8774dfc"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:905d8934d1e27a686698864a5863ff2c0e13a2ae1adb78a8a848aacc8a49927d"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:d819d625832fb2969911a243e009cfa135cb8ef1e150866e417d6e9d75290087"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:18f7131e62265bf2691ed1d0303c640313894ccfe4278427478c6b2f45094b53"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-win32.whl", hash = "sha256:b0d13fd56d26cf3de0314a4fd48037108c638fe126d813f5c1222bb0f08b6a76"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-win_amd64.whl", hash = "sha256:c912247e42114f389858ae05d63f4359d4e667ea72aaabee191aee9ad3f9774a"}, + {file = "scikit_learn-0.24.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:758619e49cd7c17282e6cc60d5cc73c02c072b47c9a10010bb3bb47e0d976e50"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:66f27bf21202a850bcd7b6303916e4907f6e22ec59a14974ede4955aed5c7ed0"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:5e6e3c042cea83f2e20a45e563b8eabc1f8f72446251fe23ebefdf111a173a33"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:2a5348585aa793bc8cc5a72f8e9067c9380834b0aadbd55f924843b071f13282"}, + {file = "scikit_learn-0.24.0-cp38-cp38-win32.whl", hash = "sha256:743b6edd98c98991be46c08e6b21df3861d5ae915f91d59f988384d93f7263e7"}, + {file = "scikit_learn-0.24.0-cp38-cp38-win_amd64.whl", hash = "sha256:2951f87d35e72f007701c6e028aa230f6df6212a3194677c0c950486066a454d"}, + {file = "scikit_learn-0.24.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:44e452ea8491225c5783d49577aad0f36202dfd52aec7f82c0fdfe5fbd5f7400"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:800aaf63f8838c00e85db2267dd226f89858594843fd03932a9eda95746d2c40"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:3eeff086f7329521d27249a082ea3c48c085cedb110db5f65968ab55c3ba2e09"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:4395e91b3548005f4a645018435b5a94f8cce232b5b70753020e606c6a750656"}, + {file = "scikit_learn-0.24.0-cp39-cp39-win32.whl", hash = "sha256:80ca024154b84b6ac4cfc86930ba13fdc348a209753bf2c16129db6f9eb8a80b"}, + {file = "scikit_learn-0.24.0-cp39-cp39-win_amd64.whl", hash = "sha256:490436b44b3a1957cb625e871764b0aa330b34cc416aea4abc6c38ca63d0d682"}, ] [package.dependencies] -joblib = ">=1.1.1" -numpy = ">=1.17.3,<2.0" -scipy = ">=1.5.0" +joblib = ">=0.11" +numpy = ">=1.13.3" +scipy = ">=0.19.1" threadpoolctl = ">=2.0.0" [package.extras] -benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"] -docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.10.1)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] -examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"] -tests = ["black (>=23.3.0)", "matplotlib (>=3.1.3)", "mypy (>=1.3)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.0.272)", "scikit-image (>=0.16.2)"] +benchmark = ["matplotlib (>=2.1.1)", "memory-profiler (>=0.57.0)", "pandas (>=0.25.0)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=2.1.1)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.0.0)", "pandas (>=0.25.0)", "scikit-image (>=0.13)", "seaborn (>=0.9.0)", "sphinx (>=3.2.0)", "sphinx-gallery (>=0.7.0)", "sphinx-prompt (>=1.3.0)"] +examples = ["matplotlib (>=2.1.1)", "pandas (>=0.25.0)", "scikit-image (>=0.13)", "seaborn (>=0.9.0)"] +tests = ["flake8 (>=3.8.2)", "matplotlib (>=2.1.1)", "mypy (>=0.770)", "pandas (>=0.25.0)", "pyamg (>=4.0.0)", "pytest (>=5.0.1)", "pytest-cov (>=2.9.0)", "scikit-image (>=0.13)"] [[package]] name = "scipy" @@ -2518,13 +2998,13 @@ files = [ [[package]] name = "smart-open" -version = "7.0.4" +version = "7.0.5" description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)" optional = false python-versions = "<4.0,>=3.7" files = [ - {file = "smart_open-7.0.4-py3-none-any.whl", hash = "sha256:4e98489932b3372595cddc075e6033194775165702887216b65eba760dfd8d47"}, - {file = "smart_open-7.0.4.tar.gz", hash = "sha256:62b65852bdd1d1d516839fcb1f6bc50cd0f16e05b4ec44b52f43d38bcb838524"}, + {file = "smart_open-7.0.5-py3-none-any.whl", hash = "sha256:8523ed805c12dff3eaa50e9c903a6cb0ae78800626631c5fe7ea073439847b89"}, + {file = "smart_open-7.0.5.tar.gz", hash = "sha256:d3672003b1dbc85e2013e4983b88eb9a5ccfd389b0d4e5015f39a9ee5620ec18"}, ] [package.dependencies] @@ -2537,7 +3017,7 @@ gcs = ["google-cloud-storage (>=2.6.0)"] http = ["requests"] s3 = ["boto3"] ssh = ["paramiko"] -test = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "paramiko", "pytest", "pytest-rerunfailures", "requests", "responses", "zstandard"] +test = ["awscli", "azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "numpy", "paramiko", "pyopenssl", "pytest", "pytest-benchmark", "pytest-rerunfailures", "requests", "responses", "zstandard"] webhdfs = ["requests"] zst = ["zstandard"] @@ -2726,6 +3206,25 @@ files = [ [package.extras] tests = ["pytest", "pytest-cov"] +[[package]] +name = "theano" +version = "1.0.5" +description = "Optimizing compiler for evaluating mathematical expressions on CPUs and GPUs." +optional = false +python-versions = "*" +files = [ + {file = "Theano-1.0.5.tar.gz", hash = "sha256:6e9439dd53ba995fcae27bf20626074bfc2fff446899dc5c53cb28c1f9202e89"}, +] + +[package.dependencies] +numpy = ">=1.9.1" +scipy = ">=0.14" +six = ">=1.9.0" + +[package.extras] +doc = ["Sphinx (>=0.5.1)", "pygments"] +test = ["flake8", "nose (>=1.3.0)", "parameterized"] + [[package]] name = "threadpoolctl" version = "3.5.0" @@ -2819,15 +3318,35 @@ graphgym = ["protobuf (<4.21)", "pytorch-lightning (<2.3.0)", "yacs"] modelhub = ["huggingface_hub"] test = ["onnx", "onnxruntime", "pytest", "pytest-cov"] +[[package]] +name = "torch-sparse" +version = "0.6.18+pt21cpu" +description = "PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torch_sparse-0.6.18+pt21cpu-cp38-cp38-linux_x86_64.whl", hash = "sha256:fe2ea180baa399ebb1d695cad1b36e1ffb543e04af30f7880edfa626fbf69e9e"}, +] + +[package.dependencies] +scipy = "*" + +[package.extras] +test = ["pytest", "pytest-cov"] + +[package.source] +type = "url" +url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl" + [[package]] name = "torchmetrics" -version = "1.4.2" +version = "1.4.3" description = "PyTorch native Metrics" optional = false python-versions = ">=3.8" files = [ - {file = "torchmetrics-1.4.2-py3-none-any.whl", hash = "sha256:87b9eca51ff6f93985a0f9db509f646cb45425b016f4d2f383d8c28d40dde5b6"}, - {file = "torchmetrics-1.4.2.tar.gz", hash = "sha256:7a40cbec85e5645090812b87601696b4adf158294ec8c407ae58a71710938b87"}, + {file = "torchmetrics-1.4.3-py3-none-any.whl", hash = "sha256:76e67490231acef7f70cf36ab129df72fb2b0256dada7051001ab3b9f8699bf4"}, + {file = "torchmetrics-1.4.3.tar.gz", hash = "sha256:5554a19167e91f543afe82ff58a01059c8eec854359ad22896449c2c8fb0ad89"}, ] [package.dependencies] @@ -2841,7 +3360,7 @@ typing-extensions = {version = "*", markers = "python_version < \"3.9\""} all = ["SciencePlots (>=2.0.0)", "gammatone (>1.0.0)", "ipadic (>=1.0.0)", "matplotlib (>=3.6.0)", "mecab-python3 (>=1.0.6)", "mypy (==1.11.2)", "nltk (>=3.8.2)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "regex (>=2021.9.24)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "torch (==2.4.1)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] audio = ["gammatone (>1.0.0)", "pesq (>=0.0.4)", "pystoi (>=0.3.0)", "torchaudio (>=0.10.0)"] detection = ["pycocotools (>2.0.0)", "torchvision (>=0.8)"] -dev = ["SciencePlots (>=2.0.0)", "bert-score (==0.3.13)", "dython (>=0.7.6,<0.8.0)", "fairlearn", "fast-bss-eval (>=0.1.0)", "faster-coco-eval (==1.5.*)", "gammatone (>1.0.0)", "huggingface-hub (<0.25)", "ipadic (>=1.0.0)", "jiwer (>=2.3.0)", "kornia (>=0.6.7)", "lpips (<=0.1.4)", "matplotlib (>=3.6.0)", "mecab-ko (>=1.0.0)", "mecab-ko-dic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "mir-eval (>=0.6)", "monai (==1.3.2)", "mypy (==1.11.2)", "netcal (>1.0.0)", "nltk (>=3.8.2)", "numpy (<2.2.0)", "pandas (>1.4.0)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "pytorch-msssim (==1.0.0)", "regex (>=2021.9.24)", "rouge-score (>0.1.0)", "sacrebleu (>=2.3.0)", "scikit-image (>=0.19.0)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "sewar (>=0.4.4)", "statsmodels (>0.13.5)", "torch (==2.4.1)", "torch-complex (<0.5.0)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +dev = ["SciencePlots (>=2.0.0)", "bert-score (==0.3.13)", "dython (==0.7.6)", "dython (>=0.7.8,<0.8.0)", "fairlearn", "fast-bss-eval (>=0.1.0)", "faster-coco-eval (==1.5.*)", "gammatone (>1.0.0)", "huggingface-hub (<0.26)", "ipadic (>=1.0.0)", "jiwer (>=2.3.0)", "kornia (>=0.6.7)", "lpips (<=0.1.4)", "matplotlib (>=3.6.0)", "mecab-ko (>=1.0.0)", "mecab-ko-dic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "mir-eval (>=0.6)", "monai (==1.3.2)", "mypy (==1.11.2)", "netcal (>1.0.0)", "nltk (>=3.8.2)", "numpy (<2.2.0)", "pandas (>1.4.0)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.3.0)", "pytorch-msssim (==1.0.0)", "regex (>=2021.9.24)", "rouge-score (>0.1.0)", "sacrebleu (>=2.3.0)", "scikit-image (>=0.19.0)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "sewar (>=0.4.4)", "statsmodels (>0.13.5)", "torch (==2.4.1)", "torch-complex (<0.5.0)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (>=4.41.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] image = ["scipy (>1.0.0)", "torch-fidelity (<=0.4.0)", "torchvision (>=0.8)"] multimodal = ["piq (<=0.8.0)", "transformers (>=4.42.3)"] text = ["ipadic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "nltk (>=3.8.2)", "regex (>=2021.9.24)", "sentencepiece (>=0.2.0)", "tqdm (>=4.41.0)", "transformers (>4.4.0)"] @@ -3128,108 +3647,115 @@ files = [ [[package]] name = "yarl" -version = "1.13.1" +version = "1.15.2" description = "Yet another URL library" optional = false python-versions = ">=3.8" files = [ - {file = "yarl-1.13.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:82e692fb325013a18a5b73a4fed5a1edaa7c58144dc67ad9ef3d604eccd451ad"}, - {file = "yarl-1.13.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df4e82e68f43a07735ae70a2d84c0353e58e20add20ec0af611f32cd5ba43fb4"}, - {file = "yarl-1.13.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ec9dd328016d8d25702a24ee274932aebf6be9787ed1c28d021945d264235b3c"}, - {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5820bd4178e6a639b3ef1db8b18500a82ceab6d8b89309e121a6859f56585b05"}, - {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86c438ce920e089c8c2388c7dcc8ab30dfe13c09b8af3d306bcabb46a053d6f7"}, - {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3de86547c820e4f4da4606d1c8ab5765dd633189791f15247706a2eeabc783ae"}, - {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ca53632007c69ddcdefe1e8cbc3920dd88825e618153795b57e6ebcc92e752a"}, - {file = "yarl-1.13.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d4ee1d240b84e2f213565f0ec08caef27a0e657d4c42859809155cf3a29d1735"}, - {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c49f3e379177f4477f929097f7ed4b0622a586b0aa40c07ac8c0f8e40659a1ac"}, - {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:5c5e32fef09ce101fe14acd0f498232b5710effe13abac14cd95de9c274e689e"}, - {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:ab9524e45ee809a083338a749af3b53cc7efec458c3ad084361c1dbf7aaf82a2"}, - {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:b1481c048fe787f65e34cb06f7d6824376d5d99f1231eae4778bbe5c3831076d"}, - {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:31497aefd68036d8e31bfbacef915826ca2e741dbb97a8d6c7eac66deda3b606"}, - {file = "yarl-1.13.1-cp310-cp310-win32.whl", hash = "sha256:1fa56f34b2236f5192cb5fceba7bbb09620e5337e0b6dfe2ea0ddbd19dd5b154"}, - {file = "yarl-1.13.1-cp310-cp310-win_amd64.whl", hash = "sha256:1bbb418f46c7f7355084833051701b2301092e4611d9e392360c3ba2e3e69f88"}, - {file = "yarl-1.13.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:216a6785f296169ed52cd7dcdc2612f82c20f8c9634bf7446327f50398732a51"}, - {file = "yarl-1.13.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:40c6e73c03a6befb85b72da213638b8aaa80fe4136ec8691560cf98b11b8ae6e"}, - {file = "yarl-1.13.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2430cf996113abe5aee387d39ee19529327205cda975d2b82c0e7e96e5fdabdc"}, - {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fb4134cc6e005b99fa29dbc86f1ea0a298440ab6b07c6b3ee09232a3b48f495"}, - {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:309c104ecf67626c033845b860d31594a41343766a46fa58c3309c538a1e22b2"}, - {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f90575e9fe3aae2c1e686393a9689c724cd00045275407f71771ae5d690ccf38"}, - {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d2e1626be8712333a9f71270366f4a132f476ffbe83b689dd6dc0d114796c74"}, - {file = "yarl-1.13.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5b66c87da3c6da8f8e8b648878903ca54589038a0b1e08dde2c86d9cd92d4ac9"}, - {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:cf1ad338620249f8dd6d4b6a91a69d1f265387df3697ad5dc996305cf6c26fb2"}, - {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:9915300fe5a0aa663c01363db37e4ae8e7c15996ebe2c6cce995e7033ff6457f"}, - {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:703b0f584fcf157ef87816a3c0ff868e8c9f3c370009a8b23b56255885528f10"}, - {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:1d8e3ca29f643dd121f264a7c89f329f0fcb2e4461833f02de6e39fef80f89da"}, - {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:7055bbade838d68af73aea13f8c86588e4bcc00c2235b4b6d6edb0dbd174e246"}, - {file = "yarl-1.13.1-cp311-cp311-win32.whl", hash = "sha256:a3442c31c11088e462d44a644a454d48110f0588de830921fd201060ff19612a"}, - {file = "yarl-1.13.1-cp311-cp311-win_amd64.whl", hash = "sha256:81bad32c8f8b5897c909bf3468bf601f1b855d12f53b6af0271963ee67fff0d2"}, - {file = "yarl-1.13.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:f452cc1436151387d3d50533523291d5f77c6bc7913c116eb985304abdbd9ec9"}, - {file = "yarl-1.13.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:9cec42a20eae8bebf81e9ce23fb0d0c729fc54cf00643eb251ce7c0215ad49fe"}, - {file = "yarl-1.13.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d959fe96e5c2712c1876d69af0507d98f0b0e8d81bee14cfb3f6737470205419"}, - {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b8c837ab90c455f3ea8e68bee143472ee87828bff19ba19776e16ff961425b57"}, - {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:94a993f976cdcb2dc1b855d8b89b792893220db8862d1a619efa7451817c836b"}, - {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2b2442a415a5f4c55ced0fade7b72123210d579f7d950e0b5527fc598866e62c"}, - {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3fdbf0418489525231723cdb6c79e7738b3cbacbaed2b750cb033e4ea208f220"}, - {file = "yarl-1.13.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b7f6e699304717fdc265a7e1922561b02a93ceffdaefdc877acaf9b9f3080b8"}, - {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:bcd5bf4132e6a8d3eb54b8d56885f3d3a38ecd7ecae8426ecf7d9673b270de43"}, - {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:2a93a4557f7fc74a38ca5a404abb443a242217b91cd0c4840b1ebedaad8919d4"}, - {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:22b739f99c7e4787922903f27a892744189482125cc7b95b747f04dd5c83aa9f"}, - {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:2db874dd1d22d4c2c657807562411ffdfabec38ce4c5ce48b4c654be552759dc"}, - {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4feaaa4742517eaceafcbe74595ed335a494c84634d33961214b278126ec1485"}, - {file = "yarl-1.13.1-cp312-cp312-win32.whl", hash = "sha256:bbf9c2a589be7414ac4a534d54e4517d03f1cbb142c0041191b729c2fa23f320"}, - {file = "yarl-1.13.1-cp312-cp312-win_amd64.whl", hash = "sha256:d07b52c8c450f9366c34aa205754355e933922c79135125541daae6cbf31c799"}, - {file = "yarl-1.13.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:95c6737f28069153c399d875317f226bbdea939fd48a6349a3b03da6829fb550"}, - {file = "yarl-1.13.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:cd66152561632ed4b2a9192e7f8e5a1d41e28f58120b4761622e0355f0fe034c"}, - {file = "yarl-1.13.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6a2acde25be0cf9be23a8f6cbd31734536a264723fca860af3ae5e89d771cd71"}, - {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a18595e6a2ee0826bf7dfdee823b6ab55c9b70e8f80f8b77c37e694288f5de1"}, - {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a31d21089894942f7d9a8df166b495101b7258ff11ae0abec58e32daf8088813"}, - {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:45f209fb4bbfe8630e3d2e2052535ca5b53d4ce2d2026bed4d0637b0416830da"}, - {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f722f30366474a99745533cc4015b1781ee54b08de73260b2bbe13316079851"}, - {file = "yarl-1.13.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3bf60444269345d712838bb11cc4eadaf51ff1a364ae39ce87a5ca8ad3bb2c8"}, - {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:942c80a832a79c3707cca46bd12ab8aa58fddb34b1626d42b05aa8f0bcefc206"}, - {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:44b07e1690f010c3c01d353b5790ec73b2f59b4eae5b0000593199766b3f7a5c"}, - {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:396e59b8de7e4d59ff5507fb4322d2329865b909f29a7ed7ca37e63ade7f835c"}, - {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:3bb83a0f12701c0b91112a11148b5217617982e1e466069d0555be9b372f2734"}, - {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:c92b89bffc660f1274779cb6fbb290ec1f90d6dfe14492523a0667f10170de26"}, - {file = "yarl-1.13.1-cp313-cp313-win32.whl", hash = "sha256:269c201bbc01d2cbba5b86997a1e0f73ba5e2f471cfa6e226bcaa7fd664b598d"}, - {file = "yarl-1.13.1-cp313-cp313-win_amd64.whl", hash = "sha256:1d0828e17fa701b557c6eaed5edbd9098eb62d8838344486248489ff233998b8"}, - {file = "yarl-1.13.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8be8cdfe20787e6a5fcbd010f8066227e2bb9058331a4eccddec6c0db2bb85b2"}, - {file = "yarl-1.13.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:08d7148ff11cb8e886d86dadbfd2e466a76d5dd38c7ea8ebd9b0e07946e76e4b"}, - {file = "yarl-1.13.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4afdf84610ca44dcffe8b6c22c68f309aff96be55f5ea2fa31c0c225d6b83e23"}, - {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0d12fe78dcf60efa205e9a63f395b5d343e801cf31e5e1dda0d2c1fb618073d"}, - {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:298c1eecfd3257aa16c0cb0bdffb54411e3e831351cd69e6b0739be16b1bdaa8"}, - {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c14c16831b565707149c742d87a6203eb5597f4329278446d5c0ae7a1a43928e"}, - {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a9bacedbb99685a75ad033fd4de37129449e69808e50e08034034c0bf063f99"}, - {file = "yarl-1.13.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:658e8449b84b92a4373f99305de042b6bd0d19bf2080c093881e0516557474a5"}, - {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:373f16f38721c680316a6a00ae21cc178e3a8ef43c0227f88356a24c5193abd6"}, - {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:45d23c4668d4925688e2ea251b53f36a498e9ea860913ce43b52d9605d3d8177"}, - {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:f7917697bcaa3bc3e83db91aa3a0e448bf5cde43c84b7fc1ae2427d2417c0224"}, - {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:5989a38ba1281e43e4663931a53fbf356f78a0325251fd6af09dd03b1d676a09"}, - {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:11b3ca8b42a024513adce810385fcabdd682772411d95bbbda3b9ed1a4257644"}, - {file = "yarl-1.13.1-cp38-cp38-win32.whl", hash = "sha256:dcaef817e13eafa547cdfdc5284fe77970b891f731266545aae08d6cce52161e"}, - {file = "yarl-1.13.1-cp38-cp38-win_amd64.whl", hash = "sha256:7addd26594e588503bdef03908fc207206adac5bd90b6d4bc3e3cf33a829f57d"}, - {file = "yarl-1.13.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a0ae6637b173d0c40b9c1462e12a7a2000a71a3258fa88756a34c7d38926911c"}, - {file = "yarl-1.13.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:576365c9f7469e1f6124d67b001639b77113cfd05e85ce0310f5f318fd02fe85"}, - {file = "yarl-1.13.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:78f271722423b2d4851cf1f4fa1a1c4833a128d020062721ba35e1a87154a049"}, - {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d74f3c335cfe9c21ea78988e67f18eb9822f5d31f88b41aec3a1ec5ecd32da5"}, - {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1891d69a6ba16e89473909665cd355d783a8a31bc84720902c5911dbb6373465"}, - {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fb382fd7b4377363cc9f13ba7c819c3c78ed97c36a82f16f3f92f108c787cbbf"}, - {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c8854b9f80693d20cec797d8e48a848c2fb273eb6f2587b57763ccba3f3bd4b"}, - {file = "yarl-1.13.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bbf2c3f04ff50f16404ce70f822cdc59760e5e2d7965905f0e700270feb2bbfc"}, - {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:fb9f59f3848edf186a76446eb8bcf4c900fe147cb756fbbd730ef43b2e67c6a7"}, - {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ef9b85fa1bc91c4db24407e7c4da93a5822a73dd4513d67b454ca7064e8dc6a3"}, - {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:098b870c18f1341786f290b4d699504e18f1cd050ed179af8123fd8232513424"}, - {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:8c723c91c94a3bc8033dd2696a0f53e5d5f8496186013167bddc3fb5d9df46a3"}, - {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:44a4c40a6f84e4d5955b63462a0e2a988f8982fba245cf885ce3be7618f6aa7d"}, - {file = "yarl-1.13.1-cp39-cp39-win32.whl", hash = "sha256:84bbcdcf393139f0abc9f642bf03f00cac31010f3034faa03224a9ef0bb74323"}, - {file = "yarl-1.13.1-cp39-cp39-win_amd64.whl", hash = "sha256:fc2931ac9ce9c61c9968989ec831d3a5e6fcaaff9474e7cfa8de80b7aff5a093"}, - {file = "yarl-1.13.1-py3-none-any.whl", hash = "sha256:6a5185ad722ab4dd52d5fb1f30dcc73282eb1ed494906a92d1a228d3f89607b0"}, - {file = "yarl-1.13.1.tar.gz", hash = "sha256:ec8cfe2295f3e5e44c51f57272afbd69414ae629ec7c6b27f5a410efc78b70a0"}, + {file = "yarl-1.15.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e4ee8b8639070ff246ad3649294336b06db37a94bdea0d09ea491603e0be73b8"}, + {file = "yarl-1.15.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a7cf963a357c5f00cb55b1955df8bbe68d2f2f65de065160a1c26b85a1e44172"}, + {file = "yarl-1.15.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:43ebdcc120e2ca679dba01a779333a8ea76b50547b55e812b8b92818d604662c"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3433da95b51a75692dcf6cc8117a31410447c75a9a8187888f02ad45c0a86c50"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:38d0124fa992dbacd0c48b1b755d3ee0a9f924f427f95b0ef376556a24debf01"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ded1b1803151dd0f20a8945508786d57c2f97a50289b16f2629f85433e546d47"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ace4cad790f3bf872c082366c9edd7f8f8f77afe3992b134cfc810332206884f"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c77494a2f2282d9bbbbcab7c227a4d1b4bb829875c96251f66fb5f3bae4fb053"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b7f227ca6db5a9fda0a2b935a2ea34a7267589ffc63c8045f0e4edb8d8dcf956"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:31561a5b4d8dbef1559b3600b045607cf804bae040f64b5f5bca77da38084a8a"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3e52474256a7db9dcf3c5f4ca0b300fdea6c21cca0148c8891d03a025649d935"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:0e1af74a9529a1137c67c887ed9cde62cff53aa4d84a3adbec329f9ec47a3936"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:15c87339490100c63472a76d87fe7097a0835c705eb5ae79fd96e343473629ed"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:74abb8709ea54cc483c4fb57fb17bb66f8e0f04438cff6ded322074dbd17c7ec"}, + {file = "yarl-1.15.2-cp310-cp310-win32.whl", hash = "sha256:ffd591e22b22f9cb48e472529db6a47203c41c2c5911ff0a52e85723196c0d75"}, + {file = "yarl-1.15.2-cp310-cp310-win_amd64.whl", hash = "sha256:1695497bb2a02a6de60064c9f077a4ae9c25c73624e0d43e3aa9d16d983073c2"}, + {file = "yarl-1.15.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9fcda20b2de7042cc35cf911702fa3d8311bd40055a14446c1e62403684afdc5"}, + {file = "yarl-1.15.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0545de8c688fbbf3088f9e8b801157923be4bf8e7b03e97c2ecd4dfa39e48e0e"}, + {file = "yarl-1.15.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fbda058a9a68bec347962595f50546a8a4a34fd7b0654a7b9697917dc2bf810d"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1ac2bc069f4a458634c26b101c2341b18da85cb96afe0015990507efec2e417"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cd126498171f752dd85737ab1544329a4520c53eed3997f9b08aefbafb1cc53b"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3db817b4e95eb05c362e3b45dafe7144b18603e1211f4a5b36eb9522ecc62bcf"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:076b1ed2ac819933895b1a000904f62d615fe4533a5cf3e052ff9a1da560575c"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f8cfd847e6b9ecf9f2f2531c8427035f291ec286c0a4944b0a9fce58c6446046"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:32b66be100ac5739065496c74c4b7f3015cef792c3174982809274d7e51b3e04"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:34a2d76a1984cac04ff8b1bfc939ec9dc0914821264d4a9c8fd0ed6aa8d4cfd2"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:0afad2cd484908f472c8fe2e8ef499facee54a0a6978be0e0cff67b1254fd747"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:c68e820879ff39992c7f148113b46efcd6ec765a4865581f2902b3c43a5f4bbb"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:98f68df80ec6ca3015186b2677c208c096d646ef37bbf8b49764ab4a38183931"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3c56ec1eacd0a5d35b8a29f468659c47f4fe61b2cab948ca756c39b7617f0aa5"}, + {file = "yarl-1.15.2-cp311-cp311-win32.whl", hash = "sha256:eedc3f247ee7b3808ea07205f3e7d7879bc19ad3e6222195cd5fbf9988853e4d"}, + {file = "yarl-1.15.2-cp311-cp311-win_amd64.whl", hash = "sha256:0ccaa1bc98751fbfcf53dc8dfdb90d96e98838010fc254180dd6707a6e8bb179"}, + {file = "yarl-1.15.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:82d5161e8cb8f36ec778fd7ac4d740415d84030f5b9ef8fe4da54784a1f46c94"}, + {file = "yarl-1.15.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:fa2bea05ff0a8fb4d8124498e00e02398f06d23cdadd0fe027d84a3f7afde31e"}, + {file = "yarl-1.15.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:99e12d2bf587b44deb74e0d6170fec37adb489964dbca656ec41a7cd8f2ff178"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:243fbbbf003754fe41b5bdf10ce1e7f80bcc70732b5b54222c124d6b4c2ab31c"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:856b7f1a7b98a8c31823285786bd566cf06226ac4f38b3ef462f593c608a9bd6"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:553dad9af802a9ad1a6525e7528152a015b85fb8dbf764ebfc755c695f488367"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:30c3ff305f6e06650a761c4393666f77384f1cc6c5c0251965d6bfa5fbc88f7f"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:353665775be69bbfc6d54c8d134bfc533e332149faeddd631b0bc79df0897f46"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f4fe99ce44128c71233d0d72152db31ca119711dfc5f2c82385ad611d8d7f897"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:9c1e3ff4b89cdd2e1a24c214f141e848b9e0451f08d7d4963cb4108d4d798f1f"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:711bdfae4e699a6d4f371137cbe9e740dc958530cb920eb6f43ff9551e17cfbc"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4388c72174868884f76affcdd3656544c426407e0043c89b684d22fb265e04a5"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:f0e1844ad47c7bd5d6fa784f1d4accc5f4168b48999303a868fe0f8597bde715"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:a5cafb02cf097a82d74403f7e0b6b9df3ffbfe8edf9415ea816314711764a27b"}, + {file = "yarl-1.15.2-cp312-cp312-win32.whl", hash = "sha256:156ececdf636143f508770bf8a3a0498de64da5abd890c7dbb42ca9e3b6c05b8"}, + {file = "yarl-1.15.2-cp312-cp312-win_amd64.whl", hash = "sha256:435aca062444a7f0c884861d2e3ea79883bd1cd19d0a381928b69ae1b85bc51d"}, + {file = "yarl-1.15.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:416f2e3beaeae81e2f7a45dc711258be5bdc79c940a9a270b266c0bec038fb84"}, + {file = "yarl-1.15.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:173563f3696124372831007e3d4b9821746964a95968628f7075d9231ac6bb33"}, + {file = "yarl-1.15.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:9ce2e0f6123a60bd1a7f5ae3b2c49b240c12c132847f17aa990b841a417598a2"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eaea112aed589131f73d50d570a6864728bd7c0c66ef6c9154ed7b59f24da611"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4ca3b9f370f218cc2a0309542cab8d0acdfd66667e7c37d04d617012485f904"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23ec1d3c31882b2a8a69c801ef58ebf7bae2553211ebbddf04235be275a38548"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75119badf45f7183e10e348edff5a76a94dc19ba9287d94001ff05e81475967b"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:78e6fdc976ec966b99e4daa3812fac0274cc28cd2b24b0d92462e2e5ef90d368"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:8657d3f37f781d987037f9cc20bbc8b40425fa14380c87da0cb8dfce7c92d0fb"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:93bed8a8084544c6efe8856c362af08a23e959340c87a95687fdbe9c9f280c8b"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:69d5856d526802cbda768d3e6246cd0d77450fa2a4bc2ea0ea14f0d972c2894b"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:ccad2800dfdff34392448c4bf834be124f10a5bc102f254521d931c1c53c455a"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:a880372e2e5dbb9258a4e8ff43f13888039abb9dd6d515f28611c54361bc5644"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:c998d0558805860503bc3a595994895ca0f7835e00668dadc673bbf7f5fbfcbe"}, + {file = "yarl-1.15.2-cp313-cp313-win32.whl", hash = "sha256:533a28754e7f7439f217550a497bb026c54072dbe16402b183fdbca2431935a9"}, + {file = "yarl-1.15.2-cp313-cp313-win_amd64.whl", hash = "sha256:5838f2b79dc8f96fdc44077c9e4e2e33d7089b10788464609df788eb97d03aad"}, + {file = "yarl-1.15.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fbbb63bed5fcd70cd3dd23a087cd78e4675fb5a2963b8af53f945cbbca79ae16"}, + {file = "yarl-1.15.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e2e93b88ecc8f74074012e18d679fb2e9c746f2a56f79cd5e2b1afcf2a8a786b"}, + {file = "yarl-1.15.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:af8ff8d7dc07ce873f643de6dfbcd45dc3db2c87462e5c387267197f59e6d776"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:66f629632220a4e7858b58e4857927dd01a850a4cef2fb4044c8662787165cf7"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:833547179c31f9bec39b49601d282d6f0ea1633620701288934c5f66d88c3e50"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2aa738e0282be54eede1e3f36b81f1e46aee7ec7602aa563e81e0e8d7b67963f"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a13a07532e8e1c4a5a3afff0ca4553da23409fad65def1b71186fb867eeae8d"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c45817e3e6972109d1a2c65091504a537e257bc3c885b4e78a95baa96df6a3f8"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:670eb11325ed3a6209339974b276811867defe52f4188fe18dc49855774fa9cf"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_armv7l.whl", hash = "sha256:d417a4f6943112fae3924bae2af7112562285848d9bcee737fc4ff7cbd450e6c"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:bc8936d06cd53fddd4892677d65e98af514c8d78c79864f418bbf78a4a2edde4"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:954dde77c404084c2544e572f342aef384240b3e434e06cecc71597e95fd1ce7"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:5bc0df728e4def5e15a754521e8882ba5a5121bd6b5a3a0ff7efda5d6558ab3d"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:b71862a652f50babab4a43a487f157d26b464b1dedbcc0afda02fd64f3809d04"}, + {file = "yarl-1.15.2-cp38-cp38-win32.whl", hash = "sha256:63eab904f8630aed5a68f2d0aeab565dcfc595dc1bf0b91b71d9ddd43dea3aea"}, + {file = "yarl-1.15.2-cp38-cp38-win_amd64.whl", hash = "sha256:2cf441c4b6e538ba0d2591574f95d3fdd33f1efafa864faa077d9636ecc0c4e9"}, + {file = "yarl-1.15.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a32d58f4b521bb98b2c0aa9da407f8bd57ca81f34362bcb090e4a79e9924fefc"}, + {file = "yarl-1.15.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:766dcc00b943c089349d4060b935c76281f6be225e39994c2ccec3a2a36ad627"}, + {file = "yarl-1.15.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:bed1b5dbf90bad3bfc19439258c97873eab453c71d8b6869c136346acfe497e7"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed20a4bdc635f36cb19e630bfc644181dd075839b6fc84cac51c0f381ac472e2"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d538df442c0d9665664ab6dd5fccd0110fa3b364914f9c85b3ef9b7b2e157980"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c6cf1d92edf936ceedc7afa61b07e9d78a27b15244aa46bbcd534c7458ee1b"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce44217ad99ffad8027d2fde0269ae368c86db66ea0571c62a000798d69401fb"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b47a6000a7e833ebfe5886b56a31cb2ff12120b1efd4578a6fcc38df16cc77bd"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:e52f77a0cd246086afde8815039f3e16f8d2be51786c0a39b57104c563c5cbb0"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:f9ca0e6ce7774dc7830dc0cc4bb6b3eec769db667f230e7c770a628c1aa5681b"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:136f9db0f53c0206db38b8cd0c985c78ded5fd596c9a86ce5c0b92afb91c3a19"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:173866d9f7409c0fb514cf6e78952e65816600cb888c68b37b41147349fe0057"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:6e840553c9c494a35e449a987ca2c4f8372668ee954a03a9a9685075228e5036"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:458c0c65802d816a6b955cf3603186de79e8fdb46d4f19abaec4ef0a906f50a7"}, + {file = "yarl-1.15.2-cp39-cp39-win32.whl", hash = "sha256:5b48388ded01f6f2429a8c55012bdbd1c2a0c3735b3e73e221649e524c34a58d"}, + {file = "yarl-1.15.2-cp39-cp39-win_amd64.whl", hash = "sha256:81dadafb3aa124f86dc267a2168f71bbd2bfb163663661ab0038f6e4b8edb810"}, + {file = "yarl-1.15.2-py3-none-any.whl", hash = "sha256:0d3105efab7c5c091609abacad33afff33bdff0035bece164c98bcf5a85ef90a"}, + {file = "yarl-1.15.2.tar.gz", hash = "sha256:a39c36f4218a5bb668b4f06874d676d35a035ee668e6e7e3538835c703634b84"}, ] [package.dependencies] idna = ">=2.0" multidict = ">=4.0" +propcache = ">=0.2.0" [[package]] name = "zipp" @@ -3253,4 +3779,4 @@ type = ["pytest-mypy"] [metadata] lock-version = "2.0" python-versions = "~3.8" -content-hash = "96067e895d3606373b258e77ec97a4a18d7269ec92ebd9bc00c244ff19239192" +content-hash = "5447090a9e0c7bb4bf1e43596846c94e85705571a6c554f14de5f16f63528eb0" diff --git a/Chapter07/pyproject.toml b/Chapter07/pyproject.toml new file mode 100644 index 0000000..cb4d1d6 --- /dev/null +++ b/Chapter07/pyproject.toml @@ -0,0 +1,44 @@ +[tool.poetry] +name = "Graph Machine Learning (2nd Edition) - Chapter 7" +version = "1.0.0" +description = "" +authors = ["Enrico Deusebio "] +packages = [] + +[tool.setuptools] +py-modules = [] + +# [[tool.poetry.source]] +# name = "torch-wheels" +# url = "https://data.pyg.org/whl/torch-2.1.0+cpu.html" +# priority = "supplemental" + +[tool.poetry.dependencies] +python = "~3.8" +ipykernel = ">=6.0.0" +matplotlib = "==3.2.2" +networkx = "==2.5" +scikit-learn = "==0.24.0" +gensim = "==3.8.3" +node2vec = "==0.3.3" +chardet = "==5.2.0" +tensorflow = "^2.6.0" +tensorflow-io-gcs-filesystem = "==0.21.0" # This needs pinning - see https://stackoverflow.com/a/76477590 +protobuf= "^3.20" +torch = "^2.1.0" +torch_geometric = "^2.5.2" +torchvision = "^0.16.0" +torchmetrics="^1.3.0" +# torch-sparse = {version = "^0.6.18", source = "torch-wheels"} +torch-sparse = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl"} +pyg-lib = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/pyg_lib-0.4.0%2Bpt21cpu-cp38-cp38-linux_x86_64.whl"} +python-louvain = "==0.16" +# communities = "==2.2.0" +nxt-gem = { git="https://github.com/palash1992/GEM.git", branch="master" } +# This is what is holding us back to python 3.8 +stellargraph = "^1.2.1" +dgl = {url = "https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl"} + +[build-system] +requires = ["poetry-core"] +build-backend = "poetry.core.masonry.api" diff --git a/Chapter07/requirements.txt b/Chapter07/requirements.txt index 14814ef..8eb8b77 100644 --- a/Chapter07/requirements.txt +++ b/Chapter07/requirements.txt @@ -1,18 +1,138 @@ -networkx==2.4  -scikit-learn==0.24.0 -stellargraph==1.2.1 -spacy==3.0.3 -pandas==1.1.3 -numpy==1.19.2 -node2vec==0.3.3 -Keras==2.0.2 -tensorflow==2.4.1 -communities==2.2.0 -gensim==3.8.3 -matplotlib==3.3.4 -nltk==3.5 -langdetect==1.0.9 -fasttext==0.9.2 -python-louvain==0.15 -click==7.1.2 -smart-open==3.0.0 +absl-py==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +aiohappyeyeballs==2.4.3 ; python_version >= "3.8" and python_version < "3.9" +aiohttp==3.10.10 ; python_version >= "3.8" and python_version < "3.9" +aiosignal==1.3.1 ; python_version >= "3.8" and python_version < "3.9" +annotated-types==0.7.0 ; python_version >= "3.8" and python_version < "3.9" +appnope==0.1.4 ; python_version >= "3.8" and python_version < "3.9" and (platform_system == "Darwin" or sys_platform == "darwin") +asttokens==2.4.1 ; python_version >= "3.8" and python_version < "3.9" +astunparse==1.6.3 ; python_version >= "3.8" and python_version < "3.9" +async-timeout==4.0.3 ; python_version >= "3.8" and python_version < "3.9" +attrs==24.2.0 ; python_version >= "3.8" and python_version < "3.9" +backcall==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +cachetools==5.5.0 ; python_version >= "3.8" and python_version < "3.9" +certifi==2024.8.30 ; python_version >= "3.8" and python_version < "3.9" +cffi==1.17.1 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +chardet==5.2.0 ; python_version >= "3.8" and python_version < "3.9" +charset-normalizer==3.4.0 ; python_version >= "3.8" and python_version < "3.9" +colorama==0.4.6 ; python_version >= "3.8" and python_version < "3.9" and (sys_platform == "win32" or platform_system == "Windows") +comm==0.2.2 ; python_version >= "3.8" and python_version < "3.9" +cycler==0.12.1 ; python_version >= "3.8" and python_version < "3.9" +cython==0.29.14 ; python_version >= "3.8" and python_version < "3.9" +debugpy==1.8.7 ; python_version >= "3.8" and python_version < "3.9" +decorator==5.1.1 ; python_version >= "3.8" and python_version < "3.9" +dgl @ https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl ; python_version >= "3.8" and python_version < "3.9" +executing==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +filelock==3.16.1 ; python_version >= "3.8" and python_version < "3.9" +flatbuffers==2.0.7 ; python_version >= "3.8" and python_version < "3.9" +frozenlist==1.4.1 ; python_version >= "3.8" and python_version < "3.9" +fsspec==2024.9.0 ; python_version >= "3.8" and python_version < "3.9" +gast==0.4.0 ; python_version >= "3.8" and python_version < "3.9" +gensim==3.8.3 ; python_version >= "3.8" and python_version < "3.9" +google-auth-oauthlib==1.0.0 ; python_version >= "3.8" and python_version < "3.9" +google-auth==2.35.0 ; python_version >= "3.8" and python_version < "3.9" +google-pasta==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +grpcio==1.66.2 ; python_version >= "3.8" and python_version < "3.9" +h5py==3.11.0 ; python_version >= "3.8" and python_version < "3.9" +idna==3.10 ; python_version >= "3.8" and python_version < "3.9" +importlib-metadata==8.5.0 ; python_version >= "3.8" and python_version < "3.9" +ipykernel==6.29.5 ; python_version >= "3.8" and python_version < "3.9" +ipython==8.12.3 ; python_version >= "3.8" and python_version < "3.9" +jedi==0.19.1 ; python_version >= "3.8" and python_version < "3.9" +jinja2==3.1.4 ; python_version >= "3.8" and python_version < "3.9" +joblib==1.4.2 ; python_version >= "3.8" and python_version < "3.9" +jupyter-client==8.6.3 ; python_version >= "3.8" and python_version < "3.9" +jupyter-core==5.7.2 ; python_version >= "3.8" and python_version < "3.9" +keras-preprocessing==1.1.2 ; python_version >= "3.8" and python_version < "3.9" +keras==2.7.0 ; python_version >= "3.8" and python_version < "3.9" +kiwisolver==1.4.7 ; python_version >= "3.8" and python_version < "3.9" +libclang==18.1.1 ; python_version >= "3.8" and python_version < "3.9" +lightning-utilities==0.11.7 ; python_version >= "3.8" and python_version < "3.9" +markdown==3.7 ; python_version >= "3.8" and python_version < "3.9" +markupsafe==2.1.5 ; python_version >= "3.8" and python_version < "3.9" +matplotlib-inline==0.1.7 ; python_version >= "3.8" and python_version < "3.9" +matplotlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" +mpmath==1.3.0 ; python_version >= "3.8" and python_version < "3.9" +multidict==6.1.0 ; python_version >= "3.8" and python_version < "3.9" +nest-asyncio==1.6.0 ; python_version >= "3.8" and python_version < "3.9" +networkx==2.5 ; python_version >= "3.8" and python_version < "3.9" +node2vec==0.3.3 ; python_version >= "3.8" and python_version < "3.9" +numpy==1.24.4 ; python_version >= "3.8" and python_version < "3.9" +nvidia-cublas-cu12==12.1.3.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-cupti-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-nvrtc-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-runtime-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cudnn-cu12==8.9.2.26 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cufft-cu12==11.0.2.54 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-curand-cu12==10.3.2.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cusolver-cu12==11.4.5.107 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cusparse-cu12==12.1.0.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nccl-cu12==2.18.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nvjitlink-cu12==12.6.77 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nvtx-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nxt-gem @ git+https://github.com/palash1992/GEM.git@ae8e92d34213f5785757b4a0943bd7d8d337adb3 ; python_version >= "3.8" and python_version < "3.9" +oauthlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" +opt-einsum==3.4.0 ; python_version >= "3.8" and python_version < "3.9" +packaging==24.1 ; python_version >= "3.8" and python_version < "3.9" +pandas==2.0.3 ; python_version >= "3.8" and python_version < "3.9" +parso==0.8.4 ; python_version >= "3.8" and python_version < "3.9" +pexpect==4.9.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" +pickleshare==0.7.5 ; python_version >= "3.8" and python_version < "3.9" +pillow==10.4.0 ; python_version >= "3.8" and python_version < "3.9" +platformdirs==4.3.6 ; python_version >= "3.8" and python_version < "3.9" +prompt-toolkit==3.0.48 ; python_version >= "3.8" and python_version < "3.9" +propcache==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +protobuf==3.20.3 ; python_version >= "3.8" and python_version < "3.9" +psutil==6.0.0 ; python_version >= "3.8" and python_version < "3.9" +ptyprocess==0.7.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" +pure-eval==0.2.3 ; python_version >= "3.8" and python_version < "3.9" +pyasn1-modules==0.4.1 ; python_version >= "3.8" and python_version < "3.9" +pyasn1==0.6.1 ; python_version >= "3.8" and python_version < "3.9" +pycparser==2.22 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +pydantic-core==2.23.4 ; python_version >= "3.8" and python_version < "3.9" +pydantic==2.9.2 ; python_version >= "3.8" and python_version < "3.9" +pyg-lib @ https://data.pyg.org/whl/torch-2.1.0%2Bcpu/pyg_lib-0.4.0%2Bpt21cpu-cp38-cp38-linux_x86_64.whl ; python_version >= "3.8" and python_version < "3.9" +pygments==2.18.0 ; python_version >= "3.8" and python_version < "3.9" +pyparsing==3.1.4 ; python_version >= "3.8" and python_version < "3.9" +python-dateutil==2.9.0.post0 ; python_version >= "3.8" and python_version < "3.9" +python-louvain==0.16 ; python_version >= "3.8" and python_version < "3.9" +pytz==2024.2 ; python_version >= "3.8" and python_version < "3.9" +pywin32==308 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" +pyyaml==6.0.2 ; python_version >= "3.8" and python_version < "3.9" +pyzmq==26.2.0 ; python_version >= "3.8" and python_version < "3.9" +requests-oauthlib==2.0.0 ; python_version >= "3.8" and python_version < "3.9" +requests==2.32.3 ; python_version >= "3.8" and python_version < "3.9" +rsa==4.9 ; python_version >= "3.8" and python_version < "3.9" +scikit-learn==0.24.0 ; python_version >= "3.8" and python_version < "3.9" +scipy==1.10.1 ; python_version >= "3.8" and python_version < "3.9" +setuptools==75.1.0 ; python_version >= "3.8" and python_version < "3.9" +six==1.16.0 ; python_version >= "3.8" and python_version < "3.9" +smart-open==7.0.5 ; python_version >= "3.8" and python_version < "3.9" +stack-data==0.6.3 ; python_version >= "3.8" and python_version < "3.9" +stellargraph==1.2.1 ; python_version >= "3.8" and python_version < "3.9" +sympy==1.13.3 ; python_version >= "3.8" and python_version < "3.9" +tensorboard-data-server==0.7.2 ; python_version >= "3.8" and python_version < "3.9" +tensorboard==2.14.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow-estimator==2.7.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow-io-gcs-filesystem==0.21.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow==2.7.2 ; python_version >= "3.8" and python_version < "3.9" +termcolor==2.4.0 ; python_version >= "3.8" and python_version < "3.9" +theano==1.0.5 ; python_version >= "3.8" and python_version < "3.9" +threadpoolctl==3.5.0 ; python_version >= "3.8" and python_version < "3.9" +torch-geometric==2.6.1 ; python_version >= "3.8" and python_version < "3.9" +torch-sparse @ https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl ; python_version >= "3.8" and python_version < "3.9" +torch==2.1.2 ; python_version >= "3.8" and python_version < "3.9" +torchmetrics==1.4.3 ; python_version >= "3.8" and python_version < "3.9" +torchvision==0.16.2 ; python_version >= "3.8" and python_version < "3.9" +tornado==6.4.1 ; python_version >= "3.8" and python_version < "3.9" +tqdm==4.66.5 ; python_version >= "3.8" and python_version < "3.9" +traitlets==5.14.3 ; python_version >= "3.8" and python_version < "3.9" +triton==2.1.0 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +typing-extensions==4.12.2 ; python_version >= "3.8" and python_version < "3.9" +tzdata==2024.2 ; python_version >= "3.8" and python_version < "3.9" +urllib3==2.2.3 ; python_version >= "3.8" and python_version < "3.9" +wcwidth==0.2.13 ; python_version >= "3.8" and python_version < "3.9" +werkzeug==3.0.4 ; python_version >= "3.8" and python_version < "3.9" +wheel==0.44.0 ; python_version >= "3.8" and python_version < "3.9" +wrapt==1.16.0 ; python_version >= "3.8" and python_version < "3.9" +yarl==1.15.2 ; python_version >= "3.8" and python_version < "3.9" +zipp==3.20.2 ; python_version >= "3.8" and python_version < "3.9" diff --git a/Chapter07/01_nlp_graph_creation.ipynb b/Chapter08/01_nlp_graph_creation.ipynb similarity index 100% rename from Chapter07/01_nlp_graph_creation.ipynb rename to Chapter08/01_nlp_graph_creation.ipynb diff --git a/Chapter07/02_supervised_classification-embeddings.ipynb b/Chapter08/02_supervised_classification-embeddings.ipynb similarity index 100% rename from Chapter07/02_supervised_classification-embeddings.ipynb rename to Chapter08/02_supervised_classification-embeddings.ipynb diff --git a/Chapter07/03_supervised_classsification_graphSAGE-TFIDF.ipynb b/Chapter08/03_supervised_classsification_graphSAGE-TFIDF.ipynb similarity index 100% rename from Chapter07/03_supervised_classsification_graphSAGE-TFIDF.ipynb rename to Chapter08/03_supervised_classsification_graphSAGE-TFIDF.ipynb diff --git a/Chapter08/requirements.txt b/Chapter08/requirements.txt new file mode 100644 index 0000000..14814ef --- /dev/null +++ b/Chapter08/requirements.txt @@ -0,0 +1,18 @@ +networkx==2.4  +scikit-learn==0.24.0 +stellargraph==1.2.1 +spacy==3.0.3 +pandas==1.1.3 +numpy==1.19.2 +node2vec==0.3.3 +Keras==2.0.2 +tensorflow==2.4.1 +communities==2.2.0 +gensim==3.8.3 +matplotlib==3.3.4 +nltk==3.5 +langdetect==1.0.9 +fasttext==0.9.2 +python-louvain==0.15 +click==7.1.2 +smart-open==3.0.0 diff --git a/Chapter07/subject_object_extraction.py b/Chapter08/subject_object_extraction.py similarity index 100% rename from Chapter07/subject_object_extraction.py rename to Chapter08/subject_object_extraction.py diff --git a/Chapter08/01_Credit_card_edges_classification.ipynb b/Chapter09/01_Credit_card_edges_classification.ipynb similarity index 100% rename from Chapter08/01_Credit_card_edges_classification.ipynb rename to Chapter09/01_Credit_card_edges_classification.ipynb diff --git a/Chapter09/dataset/movieCreationQuery.txt b/Chapter09/dataset/movieCreationQuery.txt deleted file mode 100644 index 9617449..0000000 --- a/Chapter09/dataset/movieCreationQuery.txt +++ /dev/null @@ -1,508 +0,0 @@ -CREATE (TheMatrix:Movie {title:'The Matrix', released:1999, tagline:'Welcome to the Real World'}) -CREATE (Keanu:Person {name:'Keanu Reeves', born:1964}) -CREATE (Carrie:Person {name:'Carrie-Anne Moss', born:1967}) -CREATE (Laurence:Person {name:'Laurence Fishburne', born:1961}) -CREATE (Hugo:Person {name:'Hugo Weaving', born:1960}) -CREATE (LillyW:Person {name:'Lilly Wachowski', born:1967}) -CREATE (LanaW:Person {name:'Lana Wachowski', born:1965}) -CREATE (JoelS:Person {name:'Joel Silver', born:1952}) -CREATE -(Keanu)-[:ACTED_IN {roles:['Neo']}]->(TheMatrix), -(Carrie)-[:ACTED_IN {roles:['Trinity']}]->(TheMatrix), -(Laurence)-[:ACTED_IN {roles:['Morpheus']}]->(TheMatrix), -(Hugo)-[:ACTED_IN {roles:['Agent Smith']}]->(TheMatrix), -(LillyW)-[:DIRECTED]->(TheMatrix), -(LanaW)-[:DIRECTED]->(TheMatrix), -(JoelS)-[:PRODUCED]->(TheMatrix) - -CREATE (Emil:Person {name:"Emil Eifrem", born:1978}) -CREATE (Emil)-[:ACTED_IN {roles:["Emil"]}]->(TheMatrix) - -CREATE (TheMatrixReloaded:Movie {title:'The Matrix Reloaded', released:2003, tagline:'Free your mind'}) -CREATE -(Keanu)-[:ACTED_IN {roles:['Neo']}]->(TheMatrixReloaded), -(Carrie)-[:ACTED_IN {roles:['Trinity']}]->(TheMatrixReloaded), -(Laurence)-[:ACTED_IN {roles:['Morpheus']}]->(TheMatrixReloaded), -(Hugo)-[:ACTED_IN {roles:['Agent Smith']}]->(TheMatrixReloaded), -(LillyW)-[:DIRECTED]->(TheMatrixReloaded), -(LanaW)-[:DIRECTED]->(TheMatrixReloaded), -(JoelS)-[:PRODUCED]->(TheMatrixReloaded) - -CREATE (TheMatrixRevolutions:Movie {title:'The Matrix Revolutions', released:2003, tagline:'Everything that has a beginning has an end'}) -CREATE -(Keanu)-[:ACTED_IN {roles:['Neo']}]->(TheMatrixRevolutions), -(Carrie)-[:ACTED_IN {roles:['Trinity']}]->(TheMatrixRevolutions), -(Laurence)-[:ACTED_IN {roles:['Morpheus']}]->(TheMatrixRevolutions), -(Hugo)-[:ACTED_IN {roles:['Agent Smith']}]->(TheMatrixRevolutions), -(LillyW)-[:DIRECTED]->(TheMatrixRevolutions), -(LanaW)-[:DIRECTED]->(TheMatrixRevolutions), -(JoelS)-[:PRODUCED]->(TheMatrixRevolutions) - -CREATE (TheDevilsAdvocate:Movie {title:"The Devil's Advocate", released:1997, tagline:'Evil has its winning ways'}) -CREATE (Charlize:Person {name:'Charlize Theron', born:1975}) -CREATE (Al:Person {name:'Al Pacino', born:1940}) -CREATE (Taylor:Person {name:'Taylor Hackford', born:1944}) -CREATE -(Keanu)-[:ACTED_IN {roles:['Kevin Lomax']}]->(TheDevilsAdvocate), -(Charlize)-[:ACTED_IN {roles:['Mary Ann Lomax']}]->(TheDevilsAdvocate), -(Al)-[:ACTED_IN {roles:['John Milton']}]->(TheDevilsAdvocate), -(Taylor)-[:DIRECTED]->(TheDevilsAdvocate) - -CREATE (AFewGoodMen:Movie {title:"A Few Good Men", released:1992, tagline:"In the heart of the nation's capital, in a courthouse of the U.S. government, one man will stop at nothing to keep his honor, and one will stop at nothing to find the truth."}) -CREATE (TomC:Person {name:'Tom Cruise', born:1962}) -CREATE (JackN:Person {name:'Jack Nicholson', born:1937}) -CREATE (DemiM:Person {name:'Demi Moore', born:1962}) -CREATE (KevinB:Person {name:'Kevin Bacon', born:1958}) -CREATE (KieferS:Person {name:'Kiefer Sutherland', born:1966}) -CREATE (NoahW:Person {name:'Noah Wyle', born:1971}) -CREATE (CubaG:Person {name:'Cuba Gooding Jr.', born:1968}) -CREATE (KevinP:Person {name:'Kevin Pollak', born:1957}) -CREATE (JTW:Person {name:'J.T. Walsh', born:1943}) -CREATE (JamesM:Person {name:'James Marshall', born:1967}) -CREATE (ChristopherG:Person {name:'Christopher Guest', born:1948}) -CREATE (RobR:Person {name:'Rob Reiner', born:1947}) -CREATE (AaronS:Person {name:'Aaron Sorkin', born:1961}) -CREATE -(TomC)-[:ACTED_IN {roles:['Lt. Daniel Kaffee']}]->(AFewGoodMen), -(JackN)-[:ACTED_IN {roles:['Col. Nathan R. Jessup']}]->(AFewGoodMen), -(DemiM)-[:ACTED_IN {roles:['Lt. Cdr. JoAnne Galloway']}]->(AFewGoodMen), -(KevinB)-[:ACTED_IN {roles:['Capt. Jack Ross']}]->(AFewGoodMen), -(KieferS)-[:ACTED_IN {roles:['Lt. Jonathan Kendrick']}]->(AFewGoodMen), -(NoahW)-[:ACTED_IN {roles:['Cpl. Jeffrey Barnes']}]->(AFewGoodMen), -(CubaG)-[:ACTED_IN {roles:['Cpl. Carl Hammaker']}]->(AFewGoodMen), -(KevinP)-[:ACTED_IN {roles:['Lt. Sam Weinberg']}]->(AFewGoodMen), -(JTW)-[:ACTED_IN {roles:['Lt. Col. Matthew Andrew Markinson']}]->(AFewGoodMen), -(JamesM)-[:ACTED_IN {roles:['Pfc. Louden Downey']}]->(AFewGoodMen), -(ChristopherG)-[:ACTED_IN {roles:['Dr. Stone']}]->(AFewGoodMen), -(AaronS)-[:ACTED_IN {roles:['Man in Bar']}]->(AFewGoodMen), -(RobR)-[:DIRECTED]->(AFewGoodMen), -(AaronS)-[:WROTE]->(AFewGoodMen) - -CREATE (TopGun:Movie {title:"Top Gun", released:1986, tagline:'I feel the need, the need for speed.'}) -CREATE (KellyM:Person {name:'Kelly McGillis', born:1957}) -CREATE (ValK:Person {name:'Val Kilmer', born:1959}) -CREATE (AnthonyE:Person {name:'Anthony Edwards', born:1962}) -CREATE (TomS:Person {name:'Tom Skerritt', born:1933}) -CREATE (MegR:Person {name:'Meg Ryan', born:1961}) -CREATE (TonyS:Person {name:'Tony Scott', born:1944}) -CREATE (JimC:Person {name:'Jim Cash', born:1941}) -CREATE -(TomC)-[:ACTED_IN {roles:['Maverick']}]->(TopGun), -(KellyM)-[:ACTED_IN {roles:['Charlie']}]->(TopGun), -(ValK)-[:ACTED_IN {roles:['Iceman']}]->(TopGun), -(AnthonyE)-[:ACTED_IN {roles:['Goose']}]->(TopGun), -(TomS)-[:ACTED_IN {roles:['Viper']}]->(TopGun), -(MegR)-[:ACTED_IN {roles:['Carole']}]->(TopGun), -(TonyS)-[:DIRECTED]->(TopGun), -(JimC)-[:WROTE]->(TopGun) - -CREATE (JerryMaguire:Movie {title:'Jerry Maguire', released:2000, tagline:'The rest of his life begins now.'}) -CREATE (ReneeZ:Person {name:'Renee Zellweger', born:1969}) -CREATE (KellyP:Person {name:'Kelly Preston', born:1962}) -CREATE (JerryO:Person {name:"Jerry O'Connell", born:1974}) -CREATE (JayM:Person {name:'Jay Mohr', born:1970}) -CREATE (BonnieH:Person {name:'Bonnie Hunt', born:1961}) -CREATE (ReginaK:Person {name:'Regina King', born:1971}) -CREATE (JonathanL:Person {name:'Jonathan Lipnicki', born:1996}) -CREATE (CameronC:Person {name:'Cameron Crowe', born:1957}) -CREATE -(TomC)-[:ACTED_IN {roles:['Jerry Maguire']}]->(JerryMaguire), -(CubaG)-[:ACTED_IN {roles:['Rod Tidwell']}]->(JerryMaguire), -(ReneeZ)-[:ACTED_IN {roles:['Dorothy Boyd']}]->(JerryMaguire), -(KellyP)-[:ACTED_IN {roles:['Avery Bishop']}]->(JerryMaguire), -(JerryO)-[:ACTED_IN {roles:['Frank Cushman']}]->(JerryMaguire), -(JayM)-[:ACTED_IN {roles:['Bob Sugar']}]->(JerryMaguire), -(BonnieH)-[:ACTED_IN {roles:['Laurel Boyd']}]->(JerryMaguire), -(ReginaK)-[:ACTED_IN {roles:['Marcee Tidwell']}]->(JerryMaguire), -(JonathanL)-[:ACTED_IN {roles:['Ray Boyd']}]->(JerryMaguire), -(CameronC)-[:DIRECTED]->(JerryMaguire), -(CameronC)-[:PRODUCED]->(JerryMaguire), -(CameronC)-[:WROTE]->(JerryMaguire) - -CREATE (StandByMe:Movie {title:"Stand By Me", released:1986, tagline:"For some, it's the last real taste of innocence, and the first real taste of life. But for everyone, it's the time that memories are made of."}) -CREATE (RiverP:Person {name:'River Phoenix', born:1970}) -CREATE (CoreyF:Person {name:'Corey Feldman', born:1971}) -CREATE (WilW:Person {name:'Wil Wheaton', born:1972}) -CREATE (JohnC:Person {name:'John Cusack', born:1966}) -CREATE (MarshallB:Person {name:'Marshall Bell', born:1942}) -CREATE -(WilW)-[:ACTED_IN {roles:['Gordie Lachance']}]->(StandByMe), -(RiverP)-[:ACTED_IN {roles:['Chris Chambers']}]->(StandByMe), -(JerryO)-[:ACTED_IN {roles:['Vern Tessio']}]->(StandByMe), -(CoreyF)-[:ACTED_IN {roles:['Teddy Duchamp']}]->(StandByMe), -(JohnC)-[:ACTED_IN {roles:['Denny Lachance']}]->(StandByMe), -(KieferS)-[:ACTED_IN {roles:['Ace Merrill']}]->(StandByMe), -(MarshallB)-[:ACTED_IN {roles:['Mr. Lachance']}]->(StandByMe), -(RobR)-[:DIRECTED]->(StandByMe) - -CREATE (AsGoodAsItGets:Movie {title:'As Good as It Gets', released:1997, tagline:'A comedy from the heart that goes for the throat.'}) -CREATE (HelenH:Person {name:'Helen Hunt', born:1963}) -CREATE (GregK:Person {name:'Greg Kinnear', born:1963}) -CREATE (JamesB:Person {name:'James L. Brooks', born:1940}) -CREATE -(JackN)-[:ACTED_IN {roles:['Melvin Udall']}]->(AsGoodAsItGets), -(HelenH)-[:ACTED_IN {roles:['Carol Connelly']}]->(AsGoodAsItGets), -(GregK)-[:ACTED_IN {roles:['Simon Bishop']}]->(AsGoodAsItGets), -(CubaG)-[:ACTED_IN {roles:['Frank Sachs']}]->(AsGoodAsItGets), -(JamesB)-[:DIRECTED]->(AsGoodAsItGets) - -CREATE (WhatDreamsMayCome:Movie {title:'What Dreams May Come', released:1998, tagline:'After life there is more. The end is just the beginning.'}) -CREATE (AnnabellaS:Person {name:'Annabella Sciorra', born:1960}) -CREATE (MaxS:Person {name:'Max von Sydow', born:1929}) -CREATE (WernerH:Person {name:'Werner Herzog', born:1942}) -CREATE (Robin:Person {name:'Robin Williams', born:1951}) -CREATE (VincentW:Person {name:'Vincent Ward', born:1956}) -CREATE -(Robin)-[:ACTED_IN {roles:['Chris Nielsen']}]->(WhatDreamsMayCome), -(CubaG)-[:ACTED_IN {roles:['Albert Lewis']}]->(WhatDreamsMayCome), -(AnnabellaS)-[:ACTED_IN {roles:['Annie Collins-Nielsen']}]->(WhatDreamsMayCome), -(MaxS)-[:ACTED_IN {roles:['The Tracker']}]->(WhatDreamsMayCome), -(WernerH)-[:ACTED_IN {roles:['The Face']}]->(WhatDreamsMayCome), -(VincentW)-[:DIRECTED]->(WhatDreamsMayCome) - -CREATE (SnowFallingonCedars:Movie {title:'Snow Falling on Cedars', released:1999, tagline:'First loves last. Forever.'}) -CREATE (EthanH:Person {name:'Ethan Hawke', born:1970}) -CREATE (RickY:Person {name:'Rick Yune', born:1971}) -CREATE (JamesC:Person {name:'James Cromwell', born:1940}) -CREATE (ScottH:Person {name:'Scott Hicks', born:1953}) -CREATE -(EthanH)-[:ACTED_IN {roles:['Ishmael Chambers']}]->(SnowFallingonCedars), -(RickY)-[:ACTED_IN {roles:['Kazuo Miyamoto']}]->(SnowFallingonCedars), -(MaxS)-[:ACTED_IN {roles:['Nels Gudmundsson']}]->(SnowFallingonCedars), -(JamesC)-[:ACTED_IN {roles:['Judge Fielding']}]->(SnowFallingonCedars), -(ScottH)-[:DIRECTED]->(SnowFallingonCedars) - -CREATE (YouveGotMail:Movie {title:"You've Got Mail", released:1998, tagline:'At odds in life... in love on-line.'}) -CREATE (ParkerP:Person {name:'Parker Posey', born:1968}) -CREATE (DaveC:Person {name:'Dave Chappelle', born:1973}) -CREATE (SteveZ:Person {name:'Steve Zahn', born:1967}) -CREATE (TomH:Person {name:'Tom Hanks', born:1956}) -CREATE (NoraE:Person {name:'Nora Ephron', born:1941}) -CREATE -(TomH)-[:ACTED_IN {roles:['Joe Fox']}]->(YouveGotMail), -(MegR)-[:ACTED_IN {roles:['Kathleen Kelly']}]->(YouveGotMail), -(GregK)-[:ACTED_IN {roles:['Frank Navasky']}]->(YouveGotMail), -(ParkerP)-[:ACTED_IN {roles:['Patricia Eden']}]->(YouveGotMail), -(DaveC)-[:ACTED_IN {roles:['Kevin Jackson']}]->(YouveGotMail), -(SteveZ)-[:ACTED_IN {roles:['George Pappas']}]->(YouveGotMail), -(NoraE)-[:DIRECTED]->(YouveGotMail) - -CREATE (SleeplessInSeattle:Movie {title:'Sleepless in Seattle', released:1993, tagline:'What if someone you never met, someone you never saw, someone you never knew was the only someone for you?'}) -CREATE (RitaW:Person {name:'Rita Wilson', born:1956}) -CREATE (BillPull:Person {name:'Bill Pullman', born:1953}) -CREATE (VictorG:Person {name:'Victor Garber', born:1949}) -CREATE (RosieO:Person {name:"Rosie O'Donnell", born:1962}) -CREATE -(TomH)-[:ACTED_IN {roles:['Sam Baldwin']}]->(SleeplessInSeattle), -(MegR)-[:ACTED_IN {roles:['Annie Reed']}]->(SleeplessInSeattle), -(RitaW)-[:ACTED_IN {roles:['Suzy']}]->(SleeplessInSeattle), -(BillPull)-[:ACTED_IN {roles:['Walter']}]->(SleeplessInSeattle), -(VictorG)-[:ACTED_IN {roles:['Greg']}]->(SleeplessInSeattle), -(RosieO)-[:ACTED_IN {roles:['Becky']}]->(SleeplessInSeattle), -(NoraE)-[:DIRECTED]->(SleeplessInSeattle) - -CREATE (JoeVersustheVolcano:Movie {title:'Joe Versus the Volcano', released:1990, tagline:'A story of love, lava and burning desire.'}) -CREATE (JohnS:Person {name:'John Patrick Stanley', born:1950}) -CREATE (Nathan:Person {name:'Nathan Lane', born:1956}) -CREATE -(TomH)-[:ACTED_IN {roles:['Joe Banks']}]->(JoeVersustheVolcano), -(MegR)-[:ACTED_IN {roles:['DeDe', 'Angelica Graynamore', 'Patricia Graynamore']}]->(JoeVersustheVolcano), -(Nathan)-[:ACTED_IN {roles:['Baw']}]->(JoeVersustheVolcano), -(JohnS)-[:DIRECTED]->(JoeVersustheVolcano) - -CREATE (WhenHarryMetSally:Movie {title:'When Harry Met Sally', released:1998, tagline:'Can two friends sleep together and still love each other in the morning?'}) -CREATE (BillyC:Person {name:'Billy Crystal', born:1948}) -CREATE (CarrieF:Person {name:'Carrie Fisher', born:1956}) -CREATE (BrunoK:Person {name:'Bruno Kirby', born:1949}) -CREATE -(BillyC)-[:ACTED_IN {roles:['Harry Burns']}]->(WhenHarryMetSally), -(MegR)-[:ACTED_IN {roles:['Sally Albright']}]->(WhenHarryMetSally), -(CarrieF)-[:ACTED_IN {roles:['Marie']}]->(WhenHarryMetSally), -(BrunoK)-[:ACTED_IN {roles:['Jess']}]->(WhenHarryMetSally), -(RobR)-[:DIRECTED]->(WhenHarryMetSally), -(RobR)-[:PRODUCED]->(WhenHarryMetSally), -(NoraE)-[:PRODUCED]->(WhenHarryMetSally), -(NoraE)-[:WROTE]->(WhenHarryMetSally) - -CREATE (ThatThingYouDo:Movie {title:'That Thing You Do', released:1996, tagline:'In every life there comes a time when that thing you dream becomes that thing you do'}) -CREATE (LivT:Person {name:'Liv Tyler', born:1977}) -CREATE -(TomH)-[:ACTED_IN {roles:['Mr. White']}]->(ThatThingYouDo), -(LivT)-[:ACTED_IN {roles:['Faye Dolan']}]->(ThatThingYouDo), -(Charlize)-[:ACTED_IN {roles:['Tina']}]->(ThatThingYouDo), -(TomH)-[:DIRECTED]->(ThatThingYouDo) - -CREATE (TheReplacements:Movie {title:'The Replacements', released:2000, tagline:'Pain heals, Chicks dig scars... Glory lasts forever'}) -CREATE (Brooke:Person {name:'Brooke Langton', born:1970}) -CREATE (Gene:Person {name:'Gene Hackman', born:1930}) -CREATE (Orlando:Person {name:'Orlando Jones', born:1968}) -CREATE (Howard:Person {name:'Howard Deutch', born:1950}) -CREATE -(Keanu)-[:ACTED_IN {roles:['Shane Falco']}]->(TheReplacements), -(Brooke)-[:ACTED_IN {roles:['Annabelle Farrell']}]->(TheReplacements), -(Gene)-[:ACTED_IN {roles:['Jimmy McGinty']}]->(TheReplacements), -(Orlando)-[:ACTED_IN {roles:['Clifford Franklin']}]->(TheReplacements), -(Howard)-[:DIRECTED]->(TheReplacements) - -CREATE (RescueDawn:Movie {title:'RescueDawn', released:2006, tagline:"Based on the extraordinary true story of one man's fight for freedom"}) -CREATE (ChristianB:Person {name:'Christian Bale', born:1974}) -CREATE (ZachG:Person {name:'Zach Grenier', born:1954}) -CREATE -(MarshallB)-[:ACTED_IN {roles:['Admiral']}]->(RescueDawn), -(ChristianB)-[:ACTED_IN {roles:['Dieter Dengler']}]->(RescueDawn), -(ZachG)-[:ACTED_IN {roles:['Squad Leader']}]->(RescueDawn), -(SteveZ)-[:ACTED_IN {roles:['Duane']}]->(RescueDawn), -(WernerH)-[:DIRECTED]->(RescueDawn) - -CREATE (TheBirdcage:Movie {title:'The Birdcage', released:1996, tagline:'Come as you are'}) -CREATE (MikeN:Person {name:'Mike Nichols', born:1931}) -CREATE -(Robin)-[:ACTED_IN {roles:['Armand Goldman']}]->(TheBirdcage), -(Nathan)-[:ACTED_IN {roles:['Albert Goldman']}]->(TheBirdcage), -(Gene)-[:ACTED_IN {roles:['Sen. Kevin Keeley']}]->(TheBirdcage), -(MikeN)-[:DIRECTED]->(TheBirdcage) - -CREATE (Unforgiven:Movie {title:'Unforgiven', released:1992, tagline:"It's a hell of a thing, killing a man"}) -CREATE (RichardH:Person {name:'Richard Harris', born:1930}) -CREATE (ClintE:Person {name:'Clint Eastwood', born:1930}) -CREATE -(RichardH)-[:ACTED_IN {roles:['English Bob']}]->(Unforgiven), -(ClintE)-[:ACTED_IN {roles:['Bill Munny']}]->(Unforgiven), -(Gene)-[:ACTED_IN {roles:['Little Bill Daggett']}]->(Unforgiven), -(ClintE)-[:DIRECTED]->(Unforgiven) - -CREATE (JohnnyMnemonic:Movie {title:'Johnny Mnemonic', released:1995, tagline:'The hottest data on earth. In the coolest head in town'}) -CREATE (Takeshi:Person {name:'Takeshi Kitano', born:1947}) -CREATE (Dina:Person {name:'Dina Meyer', born:1968}) -CREATE (IceT:Person {name:'Ice-T', born:1958}) -CREATE (RobertL:Person {name:'Robert Longo', born:1953}) -CREATE -(Keanu)-[:ACTED_IN {roles:['Johnny Mnemonic']}]->(JohnnyMnemonic), -(Takeshi)-[:ACTED_IN {roles:['Takahashi']}]->(JohnnyMnemonic), -(Dina)-[:ACTED_IN {roles:['Jane']}]->(JohnnyMnemonic), -(IceT)-[:ACTED_IN {roles:['J-Bone']}]->(JohnnyMnemonic), -(RobertL)-[:DIRECTED]->(JohnnyMnemonic) - -CREATE (CloudAtlas:Movie {title:'Cloud Atlas', released:2012, tagline:'Everything is connected'}) -CREATE (HalleB:Person {name:'Halle Berry', born:1966}) -CREATE (JimB:Person {name:'Jim Broadbent', born:1949}) -CREATE (TomT:Person {name:'Tom Tykwer', born:1965}) -CREATE (DavidMitchell:Person {name:'David Mitchell', born:1969}) -CREATE (StefanArndt:Person {name:'Stefan Arndt', born:1961}) -CREATE -(TomH)-[:ACTED_IN {roles:['Zachry', 'Dr. Henry Goose', 'Isaac Sachs', 'Dermot Hoggins']}]->(CloudAtlas), -(Hugo)-[:ACTED_IN {roles:['Bill Smoke', 'Haskell Moore', 'Tadeusz Kesselring', 'Nurse Noakes', 'Boardman Mephi', 'Old Georgie']}]->(CloudAtlas), -(HalleB)-[:ACTED_IN {roles:['Luisa Rey', 'Jocasta Ayrs', 'Ovid', 'Meronym']}]->(CloudAtlas), -(JimB)-[:ACTED_IN {roles:['Vyvyan Ayrs', 'Captain Molyneux', 'Timothy Cavendish']}]->(CloudAtlas), -(TomT)-[:DIRECTED]->(CloudAtlas), -(LillyW)-[:DIRECTED]->(CloudAtlas), -(LanaW)-[:DIRECTED]->(CloudAtlas), -(DavidMitchell)-[:WROTE]->(CloudAtlas), -(StefanArndt)-[:PRODUCED]->(CloudAtlas) - -CREATE (TheDaVinciCode:Movie {title:'The Da Vinci Code', released:2006, tagline:'Break The Codes'}) -CREATE (IanM:Person {name:'Ian McKellen', born:1939}) -CREATE (AudreyT:Person {name:'Audrey Tautou', born:1976}) -CREATE (PaulB:Person {name:'Paul Bettany', born:1971}) -CREATE (RonH:Person {name:'Ron Howard', born:1954}) -CREATE -(TomH)-[:ACTED_IN {roles:['Dr. Robert Langdon']}]->(TheDaVinciCode), -(IanM)-[:ACTED_IN {roles:['Sir Leight Teabing']}]->(TheDaVinciCode), -(AudreyT)-[:ACTED_IN {roles:['Sophie Neveu']}]->(TheDaVinciCode), -(PaulB)-[:ACTED_IN {roles:['Silas']}]->(TheDaVinciCode), -(RonH)-[:DIRECTED]->(TheDaVinciCode) - -CREATE (VforVendetta:Movie {title:'V for Vendetta', released:2006, tagline:'Freedom! Forever!'}) -CREATE (NatalieP:Person {name:'Natalie Portman', born:1981}) -CREATE (StephenR:Person {name:'Stephen Rea', born:1946}) -CREATE (JohnH:Person {name:'John Hurt', born:1940}) -CREATE (BenM:Person {name: 'Ben Miles', born:1967}) -CREATE -(Hugo)-[:ACTED_IN {roles:['V']}]->(VforVendetta), -(NatalieP)-[:ACTED_IN {roles:['Evey Hammond']}]->(VforVendetta), -(StephenR)-[:ACTED_IN {roles:['Eric Finch']}]->(VforVendetta), -(JohnH)-[:ACTED_IN {roles:['High Chancellor Adam Sutler']}]->(VforVendetta), -(BenM)-[:ACTED_IN {roles:['Dascomb']}]->(VforVendetta), -(JamesM)-[:DIRECTED]->(VforVendetta), -(LillyW)-[:PRODUCED]->(VforVendetta), -(LanaW)-[:PRODUCED]->(VforVendetta), -(JoelS)-[:PRODUCED]->(VforVendetta), -(LillyW)-[:WROTE]->(VforVendetta), -(LanaW)-[:WROTE]->(VforVendetta) - -CREATE (SpeedRacer:Movie {title:'Speed Racer', released:2008, tagline:'Speed has no limits'}) -CREATE (EmileH:Person {name:'Emile Hirsch', born:1985}) -CREATE (JohnG:Person {name:'John Goodman', born:1960}) -CREATE (SusanS:Person {name:'Susan Sarandon', born:1946}) -CREATE (MatthewF:Person {name:'Matthew Fox', born:1966}) -CREATE (ChristinaR:Person {name:'Christina Ricci', born:1980}) -CREATE (Rain:Person {name:'Rain', born:1982}) -CREATE -(EmileH)-[:ACTED_IN {roles:['Speed Racer']}]->(SpeedRacer), -(JohnG)-[:ACTED_IN {roles:['Pops']}]->(SpeedRacer), -(SusanS)-[:ACTED_IN {roles:['Mom']}]->(SpeedRacer), -(MatthewF)-[:ACTED_IN {roles:['Racer X']}]->(SpeedRacer), -(ChristinaR)-[:ACTED_IN {roles:['Trixie']}]->(SpeedRacer), -(Rain)-[:ACTED_IN {roles:['Taejo Togokahn']}]->(SpeedRacer), -(BenM)-[:ACTED_IN {roles:['Cass Jones']}]->(SpeedRacer), -(LillyW)-[:DIRECTED]->(SpeedRacer), -(LanaW)-[:DIRECTED]->(SpeedRacer), -(LillyW)-[:WROTE]->(SpeedRacer), -(LanaW)-[:WROTE]->(SpeedRacer), -(JoelS)-[:PRODUCED]->(SpeedRacer) - -CREATE (NinjaAssassin:Movie {title:'Ninja Assassin', released:2009, tagline:'Prepare to enter a secret world of assassins'}) -CREATE (NaomieH:Person {name:'Naomie Harris'}) -CREATE -(Rain)-[:ACTED_IN {roles:['Raizo']}]->(NinjaAssassin), -(NaomieH)-[:ACTED_IN {roles:['Mika Coretti']}]->(NinjaAssassin), -(RickY)-[:ACTED_IN {roles:['Takeshi']}]->(NinjaAssassin), -(BenM)-[:ACTED_IN {roles:['Ryan Maslow']}]->(NinjaAssassin), -(JamesM)-[:DIRECTED]->(NinjaAssassin), -(LillyW)-[:PRODUCED]->(NinjaAssassin), -(LanaW)-[:PRODUCED]->(NinjaAssassin), -(JoelS)-[:PRODUCED]->(NinjaAssassin) - -CREATE (TheGreenMile:Movie {title:'The Green Mile', released:1999, tagline:"Walk a mile you'll never forget."}) -CREATE (MichaelD:Person {name:'Michael Clarke Duncan', born:1957}) -CREATE (DavidM:Person {name:'David Morse', born:1953}) -CREATE (SamR:Person {name:'Sam Rockwell', born:1968}) -CREATE (GaryS:Person {name:'Gary Sinise', born:1955}) -CREATE (PatriciaC:Person {name:'Patricia Clarkson', born:1959}) -CREATE (FrankD:Person {name:'Frank Darabont', born:1959}) -CREATE -(TomH)-[:ACTED_IN {roles:['Paul Edgecomb']}]->(TheGreenMile), -(MichaelD)-[:ACTED_IN {roles:['John Coffey']}]->(TheGreenMile), -(DavidM)-[:ACTED_IN {roles:['Brutus "Brutal" Howell']}]->(TheGreenMile), -(BonnieH)-[:ACTED_IN {roles:['Jan Edgecomb']}]->(TheGreenMile), -(JamesC)-[:ACTED_IN {roles:['Warden Hal Moores']}]->(TheGreenMile), -(SamR)-[:ACTED_IN {roles:['"Wild Bill" Wharton']}]->(TheGreenMile), -(GaryS)-[:ACTED_IN {roles:['Burt Hammersmith']}]->(TheGreenMile), -(PatriciaC)-[:ACTED_IN {roles:['Melinda Moores']}]->(TheGreenMile), -(FrankD)-[:DIRECTED]->(TheGreenMile) - -CREATE (FrostNixon:Movie {title:'Frost/Nixon', released:2008, tagline:'400 million people were waiting for the truth.'}) -CREATE (FrankL:Person {name:'Frank Langella', born:1938}) -CREATE (MichaelS:Person {name:'Michael Sheen', born:1969}) -CREATE (OliverP:Person {name:'Oliver Platt', born:1960}) -CREATE -(FrankL)-[:ACTED_IN {roles:['Richard Nixon']}]->(FrostNixon), -(MichaelS)-[:ACTED_IN {roles:['David Frost']}]->(FrostNixon), -(KevinB)-[:ACTED_IN {roles:['Jack Brennan']}]->(FrostNixon), -(OliverP)-[:ACTED_IN {roles:['Bob Zelnick']}]->(FrostNixon), -(SamR)-[:ACTED_IN {roles:['James Reston, Jr.']}]->(FrostNixon), -(RonH)-[:DIRECTED]->(FrostNixon) - -CREATE (Hoffa:Movie {title:'Hoffa', released:1992, tagline:"He didn't want law. He wanted justice."}) -CREATE (DannyD:Person {name:'Danny DeVito', born:1944}) -CREATE (JohnR:Person {name:'John C. Reilly', born:1965}) -CREATE -(JackN)-[:ACTED_IN {roles:['Hoffa']}]->(Hoffa), -(DannyD)-[:ACTED_IN {roles:['Robert "Bobby" Ciaro']}]->(Hoffa), -(JTW)-[:ACTED_IN {roles:['Frank Fitzsimmons']}]->(Hoffa), -(JohnR)-[:ACTED_IN {roles:['Peter "Pete" Connelly']}]->(Hoffa), -(DannyD)-[:DIRECTED]->(Hoffa) - -CREATE (Apollo13:Movie {title:'Apollo 13', released:1995, tagline:'Houston, we have a problem.'}) -CREATE (EdH:Person {name:'Ed Harris', born:1950}) -CREATE (BillPax:Person {name:'Bill Paxton', born:1955}) -CREATE -(TomH)-[:ACTED_IN {roles:['Jim Lovell']}]->(Apollo13), -(KevinB)-[:ACTED_IN {roles:['Jack Swigert']}]->(Apollo13), -(EdH)-[:ACTED_IN {roles:['Gene Kranz']}]->(Apollo13), -(BillPax)-[:ACTED_IN {roles:['Fred Haise']}]->(Apollo13), -(GaryS)-[:ACTED_IN {roles:['Ken Mattingly']}]->(Apollo13), -(RonH)-[:DIRECTED]->(Apollo13) - -CREATE (Twister:Movie {title:'Twister', released:1996, tagline:"Don't Breathe. Don't Look Back."}) -CREATE (PhilipH:Person {name:'Philip Seymour Hoffman', born:1967}) -CREATE (JanB:Person {name:'Jan de Bont', born:1943}) -CREATE -(BillPax)-[:ACTED_IN {roles:['Bill Harding']}]->(Twister), -(HelenH)-[:ACTED_IN {roles:['Dr. Jo Harding']}]->(Twister), -(ZachG)-[:ACTED_IN {roles:['Eddie']}]->(Twister), -(PhilipH)-[:ACTED_IN {roles:['Dustin "Dusty" Davis']}]->(Twister), -(JanB)-[:DIRECTED]->(Twister) - -CREATE (CastAway:Movie {title:'Cast Away', released:2000, tagline:'At the edge of the world, his journey begins.'}) -CREATE (RobertZ:Person {name:'Robert Zemeckis', born:1951}) -CREATE -(TomH)-[:ACTED_IN {roles:['Chuck Noland']}]->(CastAway), -(HelenH)-[:ACTED_IN {roles:['Kelly Frears']}]->(CastAway), -(RobertZ)-[:DIRECTED]->(CastAway) - -CREATE (OneFlewOvertheCuckoosNest:Movie {title:"One Flew Over the Cuckoo's Nest", released:1975, tagline:"If he's crazy, what does that make you?"}) -CREATE (MilosF:Person {name:'Milos Forman', born:1932}) -CREATE -(JackN)-[:ACTED_IN {roles:['Randle McMurphy']}]->(OneFlewOvertheCuckoosNest), -(DannyD)-[:ACTED_IN {roles:['Martini']}]->(OneFlewOvertheCuckoosNest), -(MilosF)-[:DIRECTED]->(OneFlewOvertheCuckoosNest) - -CREATE (SomethingsGottaGive:Movie {title:"Something's Gotta Give", released:2003}) -CREATE (DianeK:Person {name:'Diane Keaton', born:1946}) -CREATE (NancyM:Person {name:'Nancy Meyers', born:1949}) -CREATE -(JackN)-[:ACTED_IN {roles:['Harry Sanborn']}]->(SomethingsGottaGive), -(DianeK)-[:ACTED_IN {roles:['Erica Barry']}]->(SomethingsGottaGive), -(Keanu)-[:ACTED_IN {roles:['Julian Mercer']}]->(SomethingsGottaGive), -(NancyM)-[:DIRECTED]->(SomethingsGottaGive), -(NancyM)-[:PRODUCED]->(SomethingsGottaGive), -(NancyM)-[:WROTE]->(SomethingsGottaGive) - -CREATE (BicentennialMan:Movie {title:'Bicentennial Man', released:1999, tagline:"One robot's 200 year journey to become an ordinary man."}) -CREATE (ChrisC:Person {name:'Chris Columbus', born:1958}) -CREATE -(Robin)-[:ACTED_IN {roles:['Andrew Marin']}]->(BicentennialMan), -(OliverP)-[:ACTED_IN {roles:['Rupert Burns']}]->(BicentennialMan), -(ChrisC)-[:DIRECTED]->(BicentennialMan) - -CREATE (CharlieWilsonsWar:Movie {title:"Charlie Wilson's War", released:2007, tagline:"A stiff drink. A little mascara. A lot of nerve. Who said they couldn't bring down the Soviet empire."}) -CREATE (JuliaR:Person {name:'Julia Roberts', born:1967}) -CREATE -(TomH)-[:ACTED_IN {roles:['Rep. Charlie Wilson']}]->(CharlieWilsonsWar), -(JuliaR)-[:ACTED_IN {roles:['Joanne Herring']}]->(CharlieWilsonsWar), -(PhilipH)-[:ACTED_IN {roles:['Gust Avrakotos']}]->(CharlieWilsonsWar), -(MikeN)-[:DIRECTED]->(CharlieWilsonsWar) - -CREATE (ThePolarExpress:Movie {title:'The Polar Express', released:2004, tagline:'This Holiday Season... Believe'}) -CREATE -(TomH)-[:ACTED_IN {roles:['Hero Boy', 'Father', 'Conductor', 'Hobo', 'Scrooge', 'Santa Claus']}]->(ThePolarExpress), -(RobertZ)-[:DIRECTED]->(ThePolarExpress) - -CREATE (ALeagueofTheirOwn:Movie {title:'A League of Their Own', released:1992, tagline:'Once in a lifetime you get a chance to do something different.'}) -CREATE (Madonna:Person {name:'Madonna', born:1954}) -CREATE (GeenaD:Person {name:'Geena Davis', born:1956}) -CREATE (LoriP:Person {name:'Lori Petty', born:1963}) -CREATE (PennyM:Person {name:'Penny Marshall', born:1943}) -CREATE -(TomH)-[:ACTED_IN {roles:['Jimmy Dugan']}]->(ALeagueofTheirOwn), -(GeenaD)-[:ACTED_IN {roles:['Dottie Hinson']}]->(ALeagueofTheirOwn), -(LoriP)-[:ACTED_IN {roles:['Kit Keller']}]->(ALeagueofTheirOwn), -(RosieO)-[:ACTED_IN {roles:['Doris Murphy']}]->(ALeagueofTheirOwn), -(Madonna)-[:ACTED_IN {roles:['"All the Way" Mae Mordabito']}]->(ALeagueofTheirOwn), -(BillPax)-[:ACTED_IN {roles:['Bob Hinson']}]->(ALeagueofTheirOwn), -(PennyM)-[:DIRECTED]->(ALeagueofTheirOwn) - -CREATE (PaulBlythe:Person {name:'Paul Blythe'}) -CREATE (AngelaScope:Person {name:'Angela Scope'}) -CREATE (JessicaThompson:Person {name:'Jessica Thompson'}) -CREATE (JamesThompson:Person {name:'James Thompson'}) - -CREATE -(JamesThompson)-[:FOLLOWS]->(JessicaThompson), -(AngelaScope)-[:FOLLOWS]->(JessicaThompson), -(PaulBlythe)-[:FOLLOWS]->(AngelaScope) - -CREATE -(JessicaThompson)-[:REVIEWED {summary:'An amazing journey', rating:95}]->(CloudAtlas), -(JessicaThompson)-[:REVIEWED {summary:'Silly, but fun', rating:65}]->(TheReplacements), -(JamesThompson)-[:REVIEWED {summary:'The coolest football movie ever', rating:100}]->(TheReplacements), -(AngelaScope)-[:REVIEWED {summary:'Pretty funny at times', rating:62}]->(TheReplacements), -(JessicaThompson)-[:REVIEWED {summary:'Dark, but compelling', rating:85}]->(Unforgiven), -(JessicaThompson)-[:REVIEWED {summary:"Slapstick redeemed only by the Robin Williams and Gene Hackman's stellar performances", rating:45}]->(TheBirdcage), -(JessicaThompson)-[:REVIEWED {summary:'A solid romp', rating:68}]->(TheDaVinciCode), -(JamesThompson)-[:REVIEWED {summary:'Fun, but a little far fetched', rating:65}]->(TheDaVinciCode), -(JessicaThompson)-[:REVIEWED {summary:'You had me at Jerry', rating:92}]->(JerryMaguire) - -WITH TomH as a -MATCH (a)-[:ACTED_IN]->(m)<-[:DIRECTED]-(d) RETURN a,m,d LIMIT 10; diff --git a/Chapter09/01_Neo4j_bindings.ipynb b/Chapter10/01_Neo4j_bindings.ipynb similarity index 100% rename from Chapter09/01_Neo4j_bindings.ipynb rename to Chapter10/01_Neo4j_bindings.ipynb diff --git a/ChapterNN/pyproject.toml b/ChapterNN/pyproject.toml deleted file mode 100644 index ff6ee97..0000000 --- a/ChapterNN/pyproject.toml +++ /dev/null @@ -1,27 +0,0 @@ -[tool.poetry] -name = "Graph Machine Learning - Chapter NN" -version = "1.0.0" -description = "" -authors = ["Enrico Deusebio "] -packages = [] - -[tool.setuptools] -py-modules = [] - -[tool.poetry.dependencies] -python = "~3.8" -ipykernel = ">=6.0.0" -matplotlib = "==3.2.2" -tensorflow = "^2.6.0" -tensorflow-io-gcs-filesystem = "==0.21.0" # This needs pinning - see https://stackoverflow.com/a/76477590 -stellargraph= "^1.2.1" -protobuf= "^3.20" -torch = "^2.1.0" -chardet = "==5.2.0" -torch_geometric = "^2.5.2" -torchvision = "^0.16.0" -torchmetrics="^1.3.0" - -[build-system] -requires = ["poetry-core"] -build-backend = "poetry.core.masonry.api" diff --git a/ChapterNN/requirements.txt b/ChapterNN/requirements.txt deleted file mode 100644 index 15027ec..0000000 --- a/ChapterNN/requirements.txt +++ /dev/null @@ -1,125 +0,0 @@ -absl-py==2.1.0 ; python_version >= "3.8" and python_version < "3.9" -aiohappyeyeballs==2.4.3 ; python_version >= "3.8" and python_version < "3.9" -aiohttp==3.10.8 ; python_version >= "3.8" and python_version < "3.9" -aiosignal==1.3.1 ; python_version >= "3.8" and python_version < "3.9" -appnope==0.1.4 ; python_version >= "3.8" and python_version < "3.9" and (platform_system == "Darwin" or sys_platform == "darwin") -asttokens==2.4.1 ; python_version >= "3.8" and python_version < "3.9" -astunparse==1.6.3 ; python_version >= "3.8" and python_version < "3.9" -async-timeout==4.0.3 ; python_version >= "3.8" and python_version < "3.9" -attrs==24.2.0 ; python_version >= "3.8" and python_version < "3.9" -backcall==0.2.0 ; python_version >= "3.8" and python_version < "3.9" -cachetools==5.5.0 ; python_version >= "3.8" and python_version < "3.9" -certifi==2024.8.30 ; python_version >= "3.8" and python_version < "3.9" -cffi==1.17.1 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" -chardet==5.2.0 ; python_version >= "3.8" and python_version < "3.9" -charset-normalizer==3.3.2 ; python_version >= "3.8" and python_version < "3.9" -colorama==0.4.6 ; python_version >= "3.8" and python_version < "3.9" and (sys_platform == "win32" or platform_system == "Windows") -comm==0.2.2 ; python_version >= "3.8" and python_version < "3.9" -cycler==0.12.1 ; python_version >= "3.8" and python_version < "3.9" -debugpy==1.8.6 ; python_version >= "3.8" and python_version < "3.9" -decorator==5.1.1 ; python_version >= "3.8" and python_version < "3.9" -executing==2.1.0 ; python_version >= "3.8" and python_version < "3.9" -filelock==3.16.1 ; python_version >= "3.8" and python_version < "3.9" -flatbuffers==2.0.7 ; python_version >= "3.8" and python_version < "3.9" -frozenlist==1.4.1 ; python_version >= "3.8" and python_version < "3.9" -fsspec==2024.9.0 ; python_version >= "3.8" and python_version < "3.9" -gast==0.4.0 ; python_version >= "3.8" and python_version < "3.9" -gensim==4.3.3 ; python_version >= "3.8" and python_version < "3.9" -google-auth-oauthlib==1.0.0 ; python_version >= "3.8" and python_version < "3.9" -google-auth==2.35.0 ; python_version >= "3.8" and python_version < "3.9" -google-pasta==0.2.0 ; python_version >= "3.8" and python_version < "3.9" -grpcio==1.66.2 ; python_version >= "3.8" and python_version < "3.9" -h5py==3.11.0 ; python_version >= "3.8" and python_version < "3.9" -idna==3.10 ; python_version >= "3.8" and python_version < "3.9" -importlib-metadata==8.5.0 ; python_version >= "3.8" and python_version < "3.9" -ipykernel==6.29.5 ; python_version >= "3.8" and python_version < "3.9" -ipython==8.12.3 ; python_version >= "3.8" and python_version < "3.9" -jedi==0.19.1 ; python_version >= "3.8" and python_version < "3.9" -jinja2==3.1.4 ; python_version >= "3.8" and python_version < "3.9" -joblib==1.4.2 ; python_version >= "3.8" and python_version < "3.9" -jupyter-client==8.6.3 ; python_version >= "3.8" and python_version < "3.9" -jupyter-core==5.7.2 ; python_version >= "3.8" and python_version < "3.9" -keras-preprocessing==1.1.2 ; python_version >= "3.8" and python_version < "3.9" -keras==2.7.0 ; python_version >= "3.8" and python_version < "3.9" -kiwisolver==1.4.7 ; python_version >= "3.8" and python_version < "3.9" -libclang==18.1.1 ; python_version >= "3.8" and python_version < "3.9" -lightning-utilities==0.11.7 ; python_version >= "3.8" and python_version < "3.9" -markdown==3.7 ; python_version >= "3.8" and python_version < "3.9" -markupsafe==2.1.5 ; python_version >= "3.8" and python_version < "3.9" -matplotlib-inline==0.1.7 ; python_version >= "3.8" and python_version < "3.9" -matplotlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" -mpmath==1.3.0 ; python_version >= "3.8" and python_version < "3.9" -multidict==6.1.0 ; python_version >= "3.8" and python_version < "3.9" -nest-asyncio==1.6.0 ; python_version >= "3.8" and python_version < "3.9" -networkx==3.1 ; python_version >= "3.8" and python_version < "3.9" -numpy==1.24.4 ; python_version >= "3.8" and python_version < "3.9" -nvidia-cublas-cu12==12.1.3.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cuda-cupti-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cuda-nvrtc-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cuda-runtime-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cudnn-cu12==8.9.2.26 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cufft-cu12==11.0.2.54 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-curand-cu12==10.3.2.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cusolver-cu12==11.4.5.107 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-cusparse-cu12==12.1.0.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-nccl-cu12==2.18.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-nvjitlink-cu12==12.6.77 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -nvidia-nvtx-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -oauthlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" -opt-einsum==3.4.0 ; python_version >= "3.8" and python_version < "3.9" -packaging==24.1 ; python_version >= "3.8" and python_version < "3.9" -pandas==2.0.3 ; python_version >= "3.8" and python_version < "3.9" -parso==0.8.4 ; python_version >= "3.8" and python_version < "3.9" -pexpect==4.9.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" -pickleshare==0.7.5 ; python_version >= "3.8" and python_version < "3.9" -pillow==10.4.0 ; python_version >= "3.8" and python_version < "3.9" -platformdirs==4.3.6 ; python_version >= "3.8" and python_version < "3.9" -prompt-toolkit==3.0.48 ; python_version >= "3.8" and python_version < "3.9" -protobuf==3.20.3 ; python_version >= "3.8" and python_version < "3.9" -psutil==6.0.0 ; python_version >= "3.8" and python_version < "3.9" -ptyprocess==0.7.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" -pure-eval==0.2.3 ; python_version >= "3.8" and python_version < "3.9" -pyasn1-modules==0.4.1 ; python_version >= "3.8" and python_version < "3.9" -pyasn1==0.6.1 ; python_version >= "3.8" and python_version < "3.9" -pycparser==2.22 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" -pygments==2.18.0 ; python_version >= "3.8" and python_version < "3.9" -pyparsing==3.1.4 ; python_version >= "3.8" and python_version < "3.9" -python-dateutil==2.9.0.post0 ; python_version >= "3.8" and python_version < "3.9" -pytz==2024.2 ; python_version >= "3.8" and python_version < "3.9" -pywin32==306 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" -pyzmq==26.2.0 ; python_version >= "3.8" and python_version < "3.9" -requests-oauthlib==2.0.0 ; python_version >= "3.8" and python_version < "3.9" -requests==2.32.3 ; python_version >= "3.8" and python_version < "3.9" -rsa==4.9 ; python_version >= "3.8" and python_version < "3.9" -scikit-learn==1.3.2 ; python_version >= "3.8" and python_version < "3.9" -scipy==1.10.1 ; python_version >= "3.8" and python_version < "3.9" -setuptools==75.1.0 ; python_version >= "3.8" and python_version < "3.9" -six==1.16.0 ; python_version >= "3.8" and python_version < "3.9" -smart-open==7.0.4 ; python_version >= "3.8" and python_version < "3.9" -stack-data==0.6.3 ; python_version >= "3.8" and python_version < "3.9" -stellargraph==1.2.1 ; python_version >= "3.8" and python_version < "3.9" -sympy==1.13.3 ; python_version >= "3.8" and python_version < "3.9" -tensorboard-data-server==0.7.2 ; python_version >= "3.8" and python_version < "3.9" -tensorboard==2.14.0 ; python_version >= "3.8" and python_version < "3.9" -tensorflow-estimator==2.7.0 ; python_version >= "3.8" and python_version < "3.9" -tensorflow-io-gcs-filesystem==0.21.0 ; python_version >= "3.8" and python_version < "3.9" -tensorflow==2.7.2 ; python_version >= "3.8" and python_version < "3.9" -termcolor==2.4.0 ; python_version >= "3.8" and python_version < "3.9" -threadpoolctl==3.5.0 ; python_version >= "3.8" and python_version < "3.9" -torch-geometric==2.6.1 ; python_version >= "3.8" and python_version < "3.9" -torch==2.1.2 ; python_version >= "3.8" and python_version < "3.9" -torchmetrics==1.4.2 ; python_version >= "3.8" and python_version < "3.9" -torchvision==0.16.2 ; python_version >= "3.8" and python_version < "3.9" -tornado==6.4.1 ; python_version >= "3.8" and python_version < "3.9" -tqdm==4.66.5 ; python_version >= "3.8" and python_version < "3.9" -traitlets==5.14.3 ; python_version >= "3.8" and python_version < "3.9" -triton==2.1.0 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" -typing-extensions==4.12.2 ; python_version >= "3.8" and python_version < "3.9" -tzdata==2024.2 ; python_version >= "3.8" and python_version < "3.9" -urllib3==2.2.3 ; python_version >= "3.8" and python_version < "3.9" -wcwidth==0.2.13 ; python_version >= "3.8" and python_version < "3.9" -werkzeug==3.0.4 ; python_version >= "3.8" and python_version < "3.9" -wheel==0.44.0 ; python_version >= "3.8" and python_version < "3.9" -wrapt==1.16.0 ; python_version >= "3.8" and python_version < "3.9" -yarl==1.13.1 ; python_version >= "3.8" and python_version < "3.9" -zipp==3.20.2 ; python_version >= "3.8" and python_version < "3.9" diff --git a/docker/Dockerfile b/docker/Dockerfile index 71229ae..f9eb2e3 100644 --- a/docker/Dockerfile +++ b/docker/Dockerfile @@ -55,14 +55,14 @@ RUN conda create -n chap5 python=3.8 RUN conda run -n chap5 pip install -r Chapter05/requirements.txt RUN conda run -n chap5 python -m ipykernel install --name chap5 --user -FROM base as chap-nn -RUN ls -d -1 */ | grep -v -e ChapterNN | xargs rm -rf -RUN conda create -n chap-nn python=3.8 -RUN conda run -n chap-nn pip install -r ChapterNN/requirements.txt -RUN conda run -n chap-nn python -m ipykernel install --name chap-nn --user - FROM base as chap6 RUN ls -d -1 */ | grep -v -e Chapter06 | xargs rm -rf RUN conda create -n chap6 python=3.8 RUN conda run -n chap6 pip install -r Chapter06/requirements.txt RUN conda run -n chap6 python -m ipykernel install --name chap6 --user + +FROM base as chap7 +RUN ls -d -1 */ | grep -v -e Chapter07 | xargs rm -rf +RUN conda create -n chap7 python=3.8 +RUN conda run -n chap7 pip install -r Chapter07/requirements.txt +RUN conda run -n chap7 python -m ipykernel install --name chap7 --user From 513387bb0dd22e5af4b53618b2620e97deb18f61 Mon Sep 17 00:00:00 2001 From: deusebio Date: Thu, 24 Oct 2024 19:27:52 +0200 Subject: [PATCH 17/31] [Chapter4] Restyling figures for shallow embeddings (#12) --- Chapter04/01_Shallow_Embeddings.ipynb | 494 +++++++++++++++----------- 1 file changed, 280 insertions(+), 214 deletions(-) diff --git a/Chapter04/01_Shallow_Embeddings.ipynb b/Chapter04/01_Shallow_Embeddings.ipynb index 6c6cbc8..f81d013 100644 --- a/Chapter04/01_Shallow_Embeddings.ipynb +++ b/Chapter04/01_Shallow_Embeddings.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 41, "metadata": {}, "outputs": [], "source": [ @@ -18,7 +18,7 @@ "\n", "sys.path.append(f\"{os.getcwd()}/..\")\n", "\n", - "from utils import draw_graph" + "from utils import draw_graph, FIGURES_DIR" ] }, { @@ -30,12 +30,12 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 42, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVTU96H//9cMqywuuIAKCCNxXyOuISgqyuIW9eYmvU2aNDbeNG3vac9N2ntO12/a297b054uaX+NsbdNk6Y3N65RFgFRXHFXgrsiuIILCIKsM5/fHzZUo+Iyw3yG4fk4J+cMM5/5zCscAq+835/3+2MxDMMQAAAA8JisZgcAAABAx0ahBAAAgFMolAAAAHAKhRIAAABOoVACAADAKRRKAAAAOIVCCQAAAKdQKAEAAOAUCiUAAACcQqEEAACAUyiUAAAAcAqFEgAAAE6hUAIAAMApFEoAAAA4hUIJAAAAp1AoAQAA4BQKJQAAAJxCoQQAAIBTKJQAAABwCoUSAAAATqFQAgAAwCkUSgAAADiFQgkAAACnUCgBAADgFAolAAAAnEKhBAAApjMMQ7/97W8VEhIii8WizZs3mx0Jj8DX7AAAAKBzKykp0Ze//GUVFBSYHQWPiRFKAABgis9GJUeNGqUDBw5o0qRJZkfCY6JQAgAAU/zoRz/SN77xDSUkJKi4uFizZ882OxIeE1PeAADANMuXL9crr7xidgw4iUIJAABM8YMf/EAWi8XsGHABprwBAIApKJPeg0IJAAAAp1AoAQAA4BQKJQAAAJxCoQQAAIBTKJQAAABwCoUSAAAATqFQAgAAwCkUSgAAADiFQgkAAACnUCgBAADgFAolAAAAnEKhBAAAgFN8zQ4AAAA6rw8++KD1cVFRUevj3NxcnT9/XpIUHh6u5ORkt2fDw7MYhmGYHQIAAHROFovlgcdMnTpVmzdvbv8weGyMUAIAANMwruUduIYSAAAATqFQAgAAwCkUSgAAADiFQgkAAACnUCgBAADgFAolAAAAnEKhBAAAgFMolAAAAHAKhRIAAABOoVACAADAKRRKAAAAOIVCCQAAAKdQKAEAAOAUCiUAAPAIDc12XbnRqIZmu9lR8Ih8zQ4AAAA6tz2llVq+rUS5RyrkMCSrRUoeFq6vJNgUHxNmdjw8BIthGIbZIQAAQOf0fmGZvr+2WFarRXbHPyqJj9Uih8PQWwtG6IsTB5iYEA+DQgkAAEyxp7RSz76zU20VEYukj5dOZqTSw3ENJQAAMMXybSWyWi1tHmO1WrR82xk3JcLjolACAAC3a2i2K/dIxR3T3PdidxjKOVLOQh0PR6EEAABud6OhRQ/okq0cxq3j4bkolAAAwO1CA331gNnuVlbLrePhuSiUAADA7QL9fJQ8LFw+D2iVPlaLZg2LUKCfj5uS4XFQKAEAgCmWJNjkeMC8t8NhaElCrJsS4XFRKAEAgCniB/TQM1FNkgz5fG6g0sdya8ugtxaMYMugDoBCCQAATLF//351u1Kkn8/qq+RhEa3XVFpkaEQPhz5eOplNzTsIrnAFAABud/nyZWVnZ2vcuHGakzRO/6RbWwndaGhR4dZNOnX8qMYNmGN2TDwkRigBAIBbNTc3a8WKFQoLC9Ps2bNbnw/081Hv0AANeWKgampqVFlZaWJKPAoKJQAAcKvs7GxVVVVp0aJF8vPzu+v1AQMGyGq1qqSkxIR0eBwUSgAA4DaHDx/W/v37lZqaqj59+tzzGH9/f0VGRlIoOxAKJQAAcIuqqiqtW7dOw4cP19ixY9s8NjY2VqWlpXI4HG5KB2dQKAEAQLuz2+1auXKlgoKCNGfOHFksbW9obrPZ1NDQoEuXLrkpIZxBoQQAAO0uPz9fly5d0qJFixQYGPjA4/v37y9/f3+mvTsICiUAAGhXp06d0o4dOzRjxgz179//od7j4+OjmJgYnTlzpp3TwRUolAAAoN3cuHFDq1evVlxcnCZPnvxI742NjdXZs2fV3NzcTungKhRKAADQLhwOh1avXi2r1aoFCxY88LrJz7PZbLLb7Tp79mw7JYSrUCgBAEC72LZtm86cOaOFCxcqODj4kd/fu3dvhYSEcB1lB0ChBAAALnf27Flt3rxZTz/9tGJjYx/rHBaLRbGxsVxH2QFQKAEAgEvV19dr5cqVioqK0rRp05w6l81m06VLl3Tz5k3XhEO7oFACAACXMQxDn3zyiZqamrRw4UJZrc5Vjc9GN0tLS12QDu2FQgkAAFxmz549OnbsmObPn69u3bo5fb5u3bqpZ8+eXEfp4SiUAADAJcrLy5WTk6MJEyZoyJAhLjuvzWajUHo4CiUAAHBaU1OTVqxYod69eys5Odml57bZbKqqqlJVVZVLzwvXoVACAACnZWVlqaamRosWLZKvr69Lzx0TEyOLxcJqbw9GoQQAAE4pKirSwYMHlZ6erl69ern8/IGBgerXrx/T3h6MQgkAAB7btWvXtH79eo0ePVqjR49ut8/5bD9KwzDa7TPw+CiUAADgsbS0tGjFihUKDQ1VWlpau36WzWbTzZs3VVFR0a6fg8dDoQQAAI8lLy9PV65c0eLFi+Xv79+unxUVFSVfX1+mvT0UhRIAADyy48ePa9euXUpOTlbfvn3b/fN8fX01YMAAFuZ4KAolAAB4JDU1NVq7dq0GDx6sCRMmuO1zY2NjVVZWppaWFrd9Jh4OhRIAADw0h8OhlStXys/PT/PmzZPFYnHbZ9tsNjU3N+v8+fNu+0w8HAolAAB4aAUFBTp37pwWLlyooKAgt352RESEunTpwnWUHohCCQAAHsqZM2e0ZcsWTZs2TQMGDHD751ssltbtg+BZKJQAAOCB6urqtHr1asXExCghIcG0HDabTRcuXFBDQ4NpGXA3CiUAAGiTYRhau3at7Ha7Fi5cKKvVvPpgs9lkGIbKyspMy4C7USgBAECbCgsLdfLkSS1YsEChoaGmZunRo4e6d+/OdZQehkIJAADu6+LFi8rLy9PkyZP1xBNPmB1H0q1RSgqlZ6FQAgCAe2psbNSKFSsUERGhGTNmmB2nVWxsrK5evaqamhqzo+DvKJQAAOAuhmFo/fr1unnzphYvXiwfHx+zI7WKjY2VJFZ7exAKJQAAuMvBgwdVXFysOXPmqEePHmbHuUNwcLAiIiIolB6EQgkAAO5w5coVZWZmauzYsRoxYoTZce4pNjZWJSUlMgzD7CgQhRIAANymublZK1asUPfu3ZWammp2nPuy2Wy6ceOGrl69anYUiEIJAABuk5OTo8rKSi1evFh+fn5mx7mv6Oho+fj4tLna+8qVK/rud7+rESNGKCQkRD179tSUKVP0+9//Xs3NzW5M6/0olAAAQJJ05MgR7d27V7Nnz1Z4eLjZcdrk7++vqKio+15HuWvXLo0ePVo/+clPFBkZqf/6r//Sd77zHV2/fl2vv/66EhISdOXKFTen9l4USgAATFZRUaG3335b8+bNU1RUlAICAhQSEqInnnhCL774ojZt2tTuGa5fv65PPvlEw4YN07hx49r981zhs/t6OxyOO54vKyvT3LlzdenSJX3rW99Sdna2Xn/9db3xxhvat2+fnnrqKe3evVvPPPMMI5UuQqEEAMBES5cuVXR0tL7+9a/r4MGDeu655/Sb3/xGP/nJTzRw4EC9//77mj59up5//nk1Nja2Swa73a6VK1eqS5cumjt3riwWS7t8jqvZbDY1NTXpwoULdzz/xhtv6MqVK4qOjtZ//ud/3vFaly5dtGzZMlksFm3fvl3Lly93Z2SvZTFYHgUAgGkCAwPV2NiouXPn6n//938VFBR0x+t/+MMf9Nprr0mSnn/+eX344Ycuz5CXl6edO3fq5ZdfVmRkpMvP314cDof++7//W1OmTFFiYqIk6cSJExoyZIgMw9B3v/tdvfXWW/d879NPP61t27YpKipKZWVlHaZEeypGKAEAMFlwcLD++Mc/3lUmJelf//VflZKSIkn629/+pl27drn0s0+fPq3t27dr+vTpHapMSpLValVMTMwdC3NWrFjRupVQW3f3mTlzpiTp3LlzLv+edkYUSgAATDZ58mT17t37vq8vWrSo9fEnn3ziss+tra3V6tWrNXDgQE2ZMsVl53Unm82mc+fOqampSZLuuN507Nix933fk08+2fo4Pz+//QJ2Er5mBwAAoDNbvXq1oqKi2jwmOjq69fHZs2dd8rmGYWj16tWSpAULFnTYKV+bzSaHw6GzZ88qLi5OxcXFkqTQ0FB169btvu+7/Xt++PDhds/p7SiUAACY6GE2D6+urm59HBwc7JLP3b59u0pKSvTCCy8oJCTEJec0Q8+ePRUaGqqSkhJFRUWpvLxckh647dHtr5eWlrZnxE6BKW8AADzc7XstPv30006f79y5c8rPz1dCQoJsNpvT5zOTxWKRzWZTSUmJbty40fp8YGBgm+/r0qVL6+Pb34fHQ6EEAMDDrVmzRtKtUbWFCxc6da6GhgatXLlSkZGRmjZtmgvSmS82NlYVFRW6du1a63P+/v5tvuf212/evNlu2ToLCiUAAB6suLhYO3fulCS99dZbd4ysPSrDMPTJJ5+osbFRCxculI+Pj6timuqzUdbLly+3PvfZIp37uf31e62ux6OhUAIA4KEMw9A3vvENSbeutVyyZIlT59u3b5+OHj2qefPmqXv37q6I6BFCQ0PVu3fvOwplQ0NDm++pr6+/4/1wDoUSAAAP9bOf/UybNm3SoEGD9MEHHzi1EruiokLZ2dmKj4/X0KFDXZjSM8TGxurcuXOKiIiQdOvfty23vz5gwIB2zdYZUCgBAPBAK1eu1He/+13169dPWVlZCgsLe+xzNTU1acWKFerVq5dmz57twpSew2azqbq6WoMGDZJ0a6HN7avjP+/8+fOtj4cPH97u+bwdhRIAAA+Tk5Ojf/mXf1GfPn20ceNGp1diZ2dnq7q6WosXL5avr3fuGBgTEyOLxXJHOTx48OB9j9+/f3/r4+nTp7drts6AQgkAgAfZuHGjFixYoG7duik/P19Dhgxx6nyffvqpDhw4oLS0NPXq1ctFKT1PQECAIiMjNXjw4NbnNm7ceN/j8/LyJEmRkZGaNGlSu+fzdhRKAAA8REFBgebNm6fg4GBt3LjR6WsdKysrtX79eo0cOVKjR492UUrPFRsbq8bGxtZbVb7//vv3XO197Ngxbdu2TZL0ne98p8PeJciTUCgBAPAA27dv15w5c9SlSxdt3LhRI0aMuOuYpUuXat68eQ91PrvdrpUrVyokJETp6emdojTZbDbV19frzTffVM+ePVVaWqrvfve7dxxTX1+vV199VYZhaPLkyXr11VdNSutdvPNCCgAAOpDCwkKlpqbKz89Pubm5GjVq1D2PO378+EPfJjAvL0/l5eV65ZVXFBAQ4MK0nisyMlJ+fn5qbm7WunXr9Mwzz+jnP/+5Pv30U82dO1c3b97Un/70Jx05ckTx8fFas2aN/Pz8zI7tFSiUAACYaO/evUpJSVFtba1+/vOfq7q6Wps3b77nsdevX3+oc544cUKFhYWaPXu2+vXr58K0ns3Hx0cDBgxovUd5UVGRfvWrX2nNmjV644035O/vryFDhui3v/2tli5dSpl0IYthGIbZIQAA6IwqKysVFxenqqqqh37PgAED2hylrKmp0TvvvKPIyEg999xznWKq+3Y7d+5Ufn6+vv3tb3vtinZPxDWUAACYpKam5pHK5IM4HA6tXr1aPj4+mj9/fqcrk9Kt6yhbWlp07tw5s6N0KhRKAABMEhMTI8MwHumftkYnt27dqrKyMi1cuLDT3p+6T58+Cg4OVklJidlROhUKJQAAXqCsrEwFBQVKTExUTEyM2XFMY7FYFBsbS6F0MwolAAAd3M2bN7Vq1SpFR0crMTHR7Dimi42N1aVLl1RfX292lE6DQgkAQAdmGIbWrl2r5uZmLVy4UFYrf9ptNtsDLw+Aa/FTBwBAB7Z7926dOHFCCxYsUNeuXc2O4xG6d++usLAwpr3diEIJAEAHdenSJeXm5mrixIkaNGiQ2XE8SmxsrM6cOWN2jE6DQgkAQAfU2NioFStWqE+fPpo5c6bZcTyOzWbTtWvXVF1dbXaUToFCCQBAB5SZmana2lotXryYDbzvITY2VpKY9nYTCiUAAB3MoUOHVFRUpDlz5igsLMzsOB6pS5cu6tu3L9PebkKhBACgA7l69aoyMjI0ZswYjRw50uw4Hs1ms6mkpETcZbr9USgBAOggWlpatGLFCnXt2lWpqalmx/F4NptNdXV1unLlitlRvB6FEgCADiInJ0dXr17V4sWL5e/vb3YcjxcVFSUfHx+uo3QDCiUAAB3AsWPHtGfPHs2ePVsRERFmx+kQ/Pz8FB0dreOnSnTlRqMamu1mR/JaLAsDAMDDVVdXa+3atRo6dKji4+PNjtNh7Cmt1CeV4dpX0awfHM6T1SIlDwvXVxJsio9hMZMrWQyuVAUAwKM0NNt1o6FFoYG+8vex6M9//rNqamq0dOlSdenSxex4HcL7hWX6/tpiWS2S/bam42O1yOEw9NaCEfrixAHmBfQyFEoAADzEntJKLd9WotwjFXIYktUijellVd/qI/rOkmcVFRVldsQOYU9ppZ59Z6faKjgWSR8vncxIpYtwDSUAAB7g/cIyPfvOTuUdvSzH35uQw5AOXGlRRtMQFVx0mBuwA1m+rURWq6XNY6xWi5ZvY49KV+EaSgAATLantFLfX1ssQ5Ldcee4mvH3sZ/vrSnWkPDQDj+iZhiGHA6H7Ha77Hb7HY/v9fXDHHP71/VNLco53Njm6KR06/ucc6RcDc12Bfr5uOXf3ZtRKAEAMNlnI2qfL5O3+2xE7bNCaRjGY5cuZ4ubM+dyOFw30mq1WuXj4yMfH5/Wxw3yl6HYh3q/w5BuNLRQKF2AaygBADBRQ7Ndw36QrTa6ZCuLDL0UXCSLo8Wld3+5vZB9vqC19dy9Ct3jfv2o77FarbJY7p7WfpTvp9UiHflRCoXSBRihBADARDcaWh6q/EiSIYsmPZ2knsF+LittFovlnsWsowr081HysHDlHb3c5oivj9Wi5KHhlEkXoVACAGCi0EBfWS166BG1qVMmUIIeYEmCTTmHK9o8xuEwtCTh4abG8WCs8gYAwCQNDQ3alJejKEuVLA9YRuJjtWjWsAjK5EMYHxOmtxaMkEW3vm+387FaZJH01oIRHX6BkyfhGkoAANzMMAwVFRUpNzdXTU1Nihj5lN7aUcu+iS62t7RSy7edUc6R8tZ9PWcNi9CShFi+jy5GoQQAwI3Ky8uVmZmpc+fOacSIEUpOTlbXrl31wa4yfW9N8V2rvbmzi/Nuv/MQI7ztg0IJAIAbNDQ0KD8/X3v37lWvXr2Umpqq2Ng7r+FjRA0dFYUSAIB2ZBiGDh06pNzcXLW0tGjq1KmaOHGifHzuP1LGiBo6GgolAADt5NKlS8rMzNT58+c1cuRIJScnKzQ01OxYgMtRKAEAcLH6+nrl5+dr37596tWrl9LS0hQTE2N2LKDdUCgBAHARwzB08OBB5eXlqaWlRdOmTdOECRPanN4GvAEbmwMA4AK3T2+PGjVKM2fOZHobnQYjlAAAOOGz6e29e/eqT58+SktL04ABbO+DzoVCCQDAYzAMQwcOHFBeXp4cDkfr9LbVyk3o0Pkw5Q0AwCO6ePGiMjMzdeHCBY0aNUrJyckKCQkxOxZgGkYoAQB4SDdv3mxdvR0eHq60tDRFR0ebHQswHYUSAIAHMAxD+/fv18aNG+VwOJSUlKTx48czvQ38HVPeAAC04cKFC8rMzNTFixc1evRozZw5k+lt4HMYoQQA4B5u3rypjRs3av/+/YqIiFBqairT28B9UCgBALiNw+HQ/v37lZ+fL4fDoenTpys+Pp7pbaANTHkDAPB358+fV2Zmpi5duqQxY8Zo5syZCg4ONjsW4PEYoQQAdHp1dXXauHGjDhw4oIiICKWlpSkqKsrsWECHQaEEAHRaDodD+/btU35+viRp+vTpGjduHNPbwCNiyhsAvNj169eVkZHROvp25swZ1dbWKiQkRE888YSSk5P12muvdcrROKa3AddhhBIAvNSOHTs0ffp0NTY2ymKxaMGCBZo0aZK6du2qkydP6i9/+YuuXr2q4OBgvffee1q0aJHZkd2irq5OeXl5OnjwoPr27au0tDRFRkaaHQvo0CiUAOClsrOzlZqaKqvVqoyMDKWkpNzxemVlpRITE3X48GH5+/vr0KFDGjJkiElp25/D4dDevXu1adMmSdKMGTP05JNPMr0NuAD/FQGAl3vppZfuKpOSFBYWpp///OeSpKamJr377rvujuY2586d07vvvqusrCwNHTpUX//619kKCHAhrqEEAC/VrVs3jRs3rs2p7Pj4+NbHR44ccUcst7p9ertfv35asmSJ+vfvb3YswOtQKAHAS02ePFl79+5t85jbF6F06dKlvSO5jcPh0J49e7Rp0yZZrVbNmTNHY8eOZUQSaCcUSgDoxPbt29f6OCkpycQkrnP27FllZmaqoqJCTz75pGbMmKGgoCCzYwFejUU5ANBJNTU1KTk5WVu2bNHIkSO1a9euDj1KWVtbq7y8PB06dEj9+vVTWloa09uAm1AoAaCTaGxs1PXr13Xt2jUVFhbq17/+tYqKivTss89q2bJl6tatm9kRH8vnp7dnzpypsWPHymKxmB0N6DSY8gaATuJvf/ubXn755davo6Oj9eGHH+q5557rsOWrrKxMWVlZqqio0Lhx4zR9+nSmtwETMEIJAJ3EpUuXdPjwYdXV1enEiRP64IMPVFRUpEGDBum3v/2tZs2aZXbEh3bjxg3l5eWpqKhI/fv3V1pamvr162d2LKDTolACQCflcDj0zW9+U7/5zW9ktVr117/+Vc8995zZsdrkcDi0e/dubdq0Sb6+vpoxYwbT24AHoFACQCfmcDg0atQoHT58WKGhoSotLVVYWJjZse6prKxMmZmZunz5suLj4zV9+vQOvYgI8CZsyAUAnZjVatUXvvAFSbemkVesWGFyorvduHFDq1at0p///Gf5+/vr1VdfVXp6OmUS8CAsygGATm7w4MGtj4uLi01Mcie73a7du3dr8+bN8vX11bx58zRmzBimtwEPRKEEAC+VlZWloKAgTZ06tc3jfH3/8aegpaWlvWM9lNLSUmVmZurq1auKj49XUlISI5KAB6NQAoCXeu211xQSEvLAUceTJ0+2Po6Ojm7vWG2qqalRbm6uiouLFRUVpVdffVURERGmZgLwYBRKAPBiR48eVWlpqWJiYu75usPh0Pvvv9/6dXp6upuS3clut2vXrl0qKCiQr6+v5s+fr9GjRzO9DXQQFEoA8GIOh0MvvPCCPv7447tG+ux2u772ta+pqKhIkvTyyy9r5MiRbs945swZZWZm6tq1axo/frySkpIUGBjo9hwAHh/bBgGAl5o/f74++eQTSVJQUJCef/55DR48WD179lRpaak++ugjnThxQtKtMvnOO+/Iz8/PbflqamqUk5Ojw4cPKzo6WqmpqUxvAx0UhRIAvFhxcbFWr16tLVu26Pjx47p69aqam5sVGhoqm82mKVOm6MUXX1R8fLzbMtntdhUWFqqgoED+/v5KTk7WqFGjmN4GOjAKJQDAbUpKSpSVlaVr165pwoQJmjZtGtPbgBegUAIA2l11dbVycnJ05MgRRUdHKy0tTeHh4WbHAuAiFEoAQLux2+3auXOntmzZooCAACUnJ2vkyJFMbwNehlXeAIB2cfr0aWVlZamyslITJ07UtGnTFBAQYHYsAO2AEUoAgEtVV1drw4YNOnr0qAYMGKC0tDT16dPH7FgA2hGFEgDgEi0tLdq5c6e2bt2qgIAAzZo1SyNGjGB6G+gEmPIGADjt1KlTysrKUlVVFdPbQCfECCUA4LFdv35dGzZs0LFjxxQTE6PU1FSmt4FOiEIJAHhkLS0t2rFjh7Zu3aouXbpo1qxZGj58ONPbQCfFlDcA4JGcPHlS2dnZun79uiZOnKipU6cyvQ10coxQAgAeyvXr15Wdna3jx48rNjZWqamp6t27t9mxAHgACiUAoE0tLS3avn27tm3bpi5dumj27NkaNmwY09sAWjHlDQC4rxMnTig7O1vV1dWaNGmSpk6dKn9/f7NjAfAwjFACAO5SVVWlDRs26Pjx47LZbEpNTVWvXr3MjgXAQ1EoAaCTaWi260ZDi0IDfRXo53PHa83Nzdq+fbu2b9+uoKAgzZo1i+ltAA/ElDcAdBJ7Siu1fFuJco9UyGFIVouUPCxcX0mwKT4mTCdOnFBWVpZqamo0efJkJSYmMr0N4KEwQgkAncD7hWX6/tpiWa0W2R3/+LXvY7XI4TA0v3+9elw7zPQ2gMdCoQQAL7entFLPvrNTbf+yN/Tz2f20eOpYprcBPDKr2QEAAO1r+bYSWa1tl0Qfq1UbzxuUSQCPhUIJAF6sodmu3CMVd0xz34vdYSjnSLkamu1uSgbAm1AoAcCL3Who0QO6ZCuHcet4AHhUFEoA8GKhgb56wGx3K6vl1vEA8KgolADgpWpqarRuzSpFWapkfcCSHB+rRbOGRdy1LyUAPAwKJQB4Gbvdrh07dujtt9/W2bNn9dr0wTLU9jClw2FoSUKsmxIC8DbMbQCAFykrK1NGRoauXr2q8ePHKykpSYGBgWoJKdP31tx/H8q3FoxQfEyYickBdGTsQwkAXqC2tla5ubkqKipSZGSk0tLS1Ldv3zuO2VtaqeXbzijnSHnrnXJmDYvQkoRYyiQAp1AoAaADczgc2rdvnzZu3Cir1aqZM2dq7Ni2Nydv617eAPA4KJQA0EFduHBBGRkZunTpksaOHauZM2cqKCjI7FgAOiEKJQB0MPX19dq4caP27duniIgIpaWlKSoqyuxYADoxCiUAdBCGYejgwYPKy8uT3W5XUlKSxo8fL6uVDTsAmItV3gDQAVRUVCgjI0Pnzp3TyJEjlZycrNDQULNjAYAkRigBwKM1NjZq8+bN2rVrl3r27Km0tDTFxrJfJADPQqEEAA9kGIaOHDmiDRs2qKGhQYmJiZo8ebJ8fFiVDcDzMOUNAB7m6tWrysrKUklJia2t61cAACAASURBVIYMGaLZs2ere/fuZscCgPtihBIAPERzc7O2bt2q7du3q2vXrkpNTdWgQYPMjgUAD8QIJQB4gOPHjys7O1s3btxQQkKCEhIS5OfnZ3YsAHgojFACgImuX7+u7OxsHT9+XAMHDlRqaqp69uxpdiwAeCQUSgAwQUtLi3bu3KktW7aoS5cuSklJ0dChQ9u8ZSIAeCqmvAHAzUpKSpSZmanKykpNmjRJU6dOVUBAgNmxAOCxMUIJAG5y48YN5eTkqLi4WNHR0UpPT1efPn3MjgUATqNQAkA7czgc2r17tzZt2iRfX1/NmjVLo0aNYnobgNdgyhsA2tHZs2eVmZmpiooKxcfHa/r06erSpYvZsQDApRihBIB2UFdXp7y8PB08eFD9+vVTenq6+vXrZ3YsAGgXVrMDAPA+b775piwWiywWi374wx+aHcetDMPQvn379Pbbb+vYsWNKT0/XK6+8QpkE4NWY8gbgUvv379cvf/lLs2OY4uLFi8rMzNSFCxc0ZswYzZw5U8HBwWbHAoB2R6EE4DItLS1asmSJ7Ha72VHcqqGhQfn5+dq7d6969+6tl19+WdHR0WbHAgC3oVACcJlf/OIXOnDggObPn6+1a9eaHafdGYahTz/9VDk5OWpublZycrImTJggHx8fs6MBgFtRKAG4xKlTp/SjH/1I48eP1ze+8Q2vL5SXL19WZmamysrKNHz4cM2aNUtdu3Y1OxYAmIJCCcAlli5dqubmZr377ruqqqoyO067aWpqUkFBgQoLC9W9e3d98Ytf1MCBA82OBQCmolACcNof//hH5efn69vf/rZGjx6tzZs3mx3J5QzD0NGjR7VhwwbdvHlTU6dO1ZQpU+Try69RAOA3IQCnlJeX64033tDAgQP1gx/8wOw47aKyslJZWVk6deqUBg0apJSUFPXo0cPsWADgMSiUAJzyta99TVVVVfr444+97g4wLS0t2rZtm7Zt26aQkBA999xzGjx4sNmxAMDjUCgBPLa1a9dq5cqVeumllzRjxgyz47jUyZMnlZWVperqak2ZMkWJiYny8/MzOxYAeCQKJYDHUlNTo69+9avq06ePfvGLX5gdx2Wqq6u1YcMGHT16VLGxsfrCF76gXr16mR0LADwahRLAY3nzzTd18eJFffjhhwoLCzM7jtPsdrsKCwtVUFCggIAALVq0SMOHD5fFYjE7GgB4PAolgEe2detWLVu2TKmpqXr++efNjuO00tJSZWZm6urVq5owYYKSkpIUEBBgdiwA6DAolAAeSVNTk77yla/I399f/+///T9dvXr1rmOqq6tbH9+8efOOY7p16+Yx1yLW1tYqNzdXRUVFioyM1KuvvqqIiAizYwFAh2MxDMMwOwSAjqO0tFSxsbGP/f5NmzZp2rRprgv0GBwOh/bu3av8/HxZrVYlJydrzJgxTG8DwGOiUAJ4JA0NDdq2bVubxxw6dEj//u//Lkl64YUX9OKLL7a+Nm7cOFP3cDx//rwyMjJUXl6uJ598UjNmzFBQUJBpeQDAGzDlDeCRBAYGaubMmW0ec/vdY2w22wOPd4ebN29q48aN2r9/vyIiIvTKK68oMjLS7FgA4BUolAC8mmEYOnDggPLy8uRwOJSamqr4+HhZrVazowGA16BQAvBa5eXlysjI0Pnz5zVq1CglJycrJCTE7FgA4HUolABcoqioSEVFRZKko0eP3vH8Bx98IEkKDw9XcnJyu2dpbGzUpk2btHv3bvXq1Utf+tKXFBMT0+6fCwCdFYtyALjED3/4Q/3oRz9q85ipU6dq8+bN7ZbBMAwVFxcrJydHjY2Nmjp1qiZNmiQfH592+0wAAIUSgJe4evWqMjMzdebMGQ0dOlSzZ89Wt27dzI4FAJ0ChRJAh9bc3KwtW7Zox44d6tatm1JTU/XEE0+YHQsAOhWuoQTQYR0/flxZWVmqra3V008/rYSEhDu2LAIAuAcjlAA6nKqqKmVnZ+vEiROKi4tTamqqwsLCzI4FAJ0WhRJAh9HS0qIdO3Zo69atCgoKUkpKioYMGcItEwHAZMwNAegQTp8+rczMTF2/fl2TJk3S1KlT5e/vb3YsAIAYoQTg4WpqapSTk6PDhw9rwIABSktLU58+fcyOBQC4DYUSgEey2+3avXu3Nm/eLD8/P82aNUsjR45kehsAPBBT3gA8ztmzZ5WRkaErV64oPj5e06dPV2BgoNmxAAD3wQglAI9RV1envLw8HTx4UP3791d6err69u1rdiwAwANQKAGYzuFwaP/+/dq4caMkaebMmXryySeZ3gaADoIpbwCmunjxojIyMnTx4kWNGTNGM2fOVHBwsNmxAACPgBFKAKaor69Xfn6+9u7dq/DwcKWlpSk6OtrsWACAx0ChBOBWhmGoqKhIOTk5amlpUVJSkiZMmCCr1Wp2NADAY2LKG4DLNDTbdaOhRaGBvgr087nr9cuXLysjI0Nnz57ViBEjNGvWLIWGhpqQFADgSoxQAnDantJKLd9WotwjFXIYktUiJQ8L11cSbIqPCVNjY6MKCgpUWFiosLAwpaWlyWazmR0bAOAiFEoATnm/sEzfX1ssq9Uiu+Mfv058rBY5HIa+OiFMPmd2qr6+XomJiZo8ebJ8fZkcAQBvQqEE8Nj2lFbq2Xd2qu1fIob+Na5e/7ooWd27d3dTMgCAO3EVPIDHtnxbiazWtveK9LFYVBpgo0wCgBejUAJ4LA3NduUeqbhjmvte7IaUc6RcDc12NyUDALgbhRLAY7nR0KIHdMlWDuPW8QAA70ShBPBYQgN99YDZ7lZWy63jAQDeiUIJ4LFcu1yuuC71ssjR5nE+VotmDYu4576UAADvwJABgEfS0NCg/Px87dmzRxO6R+vEzS5tHu9wGFqSEOumdAAAM1AoATwUwzB0+PBhbdiwQY2NjZo1a5YmTpyoIXvO6Xtr7r8P5VsLRig+JszE5ACA9sY+lAAeqLKyUpmZmTp9+rSGDBmilJQUdevWrfX1vaWVWr7tjHKOlLfeKWfWsAgtSYilTAJAJ0ChBHBfLS0t2rFjh7Zu3arg4GClpqZq8ODB9z3+QffyBgB4JwolgHsqLS1VRkaGrl27psmTJ2vq1Kny9/c3OxYAwANRKAHcoa6uTrm5uTp06JCioqKUnp6u8PBws2MBADwYhRKApFuLbg4cOKC8vDwZhqHk5GSNHTtWFstDbjYJAOi0WOUNQJcvX1ZGRobOnj2rUaNGadasWQoODjY7FgCgg2CEEujEmpubVVBQoJ07d6pHjx5KT09XbCx7RgIAHg0jlEAndeLECWVlZenGjRtKTEzUU089JV9ffiUAAB4dI5RAJ1NTU6Ps7GwdPXpUNptN6enpCgtjr0gAwOOjUAKdhMPh0O7du7Vp0yb5+fkpJSVFw4cPZ9ENAMBpzG8BncCFCxe0fv16lZeXKz4+XjNmzFBgYKDZsQAAXoIRSsCLNTQ0KD8/X3v27FFERITS09MVGRlpdiwAgJehUAJeyDAMHT58WBs2bFBTU5OSkpI0YcIEWa1Ws6MBALwQU96Al6msrFRmZqZOnz6toUOHKiUlRV27djU7FgDAizFCCXiJlpYW7dixQ1u2bFFISIjS0tI0aNAgs2MBADoBRigBL1BaWqqMjAxVVlZq8uTJSkxMlL+/v9mxAACdBCOUQAdWV1en3NxcHTp0SFFRUUpPT1d4eLjZsQAAnQyFEuiADMPQgQMHlJubK0lKTk7W2LFj2VMSAGAKpryBDuby5ctav369zp07p9GjRys5OVnBwcFmxwIAdGKMUMJjTZs2TQUFBQ88Ljg4WLW1tW5IZK6mpiYVFBSosLBQPXr00Jw5cxQTE2N2LAAAGKEEOoITJ04oMzNTtbW1mjp1qqZMmSJfX/7zBQB4Bv4iwaMtWLBAP/3pT9s8xps3666pqVF2draOHj2qgQMH6sUXX1RYWJjZsQAAuAOFEh6tW7duGjJkiNkx3M7hcGj37t3atGmT/P39tWjRIg0fPpxFNwAAj0ShbCdHjhzR//zP/2jDhg06f/68GhsbFRERoZiYGCUmJio1NVUTJ040OyY80IULF7R+/XqVl5dr/Pjxmj59ugIDA82OBQDAfVEoXcwwDP3gBz/QT3/6U/Xv31/PPvusnnjiCdXW1mrz5s1at26dNm3apPXr12vv3r1mx4UHaWho0MaNG7V3715FRERoyZIl6t+/v9mxAAB4IAqli33rW9/Sr371K73wwgtatmzZHSNL3/zmN7Vs2TItXbrUxIQdV1NTk+rr69W1a1evmvo1DEOHDx/Whg0b1NTUpNmzZ2vChAlefW0oAMC7sG2QC61fv15z587VqFGjtG/fvnuuwjUMQyNGjFDfvn2Vl5dnQsqOY9q0aerevbvGjx+vP//5zzp9+rQMw5CPj4+GDRumuXPn6t/+7d/Up08fs6M+tsrKSmVmZur06dMaOnSoUlJS1LVrV7NjAQDwSCiULmIYhgYNGqRTp07pww8/1PPPP292pA7vs30oQ0JCtGTJEk2ZMkVdunTRsWPHtGzZMp08eVLdu3fXhx9+qNTUVLPjPpKWlhZt375dW7duVUhIiNLS0jRo0CCzYwEA8FgolC6yefNmJSUlyWq1qqqqilEmF5g2bZrKysqUn5+v2NjYO15raGjQ3LlzlZeXp4CAAG3ZskUTJkwwKemjOXPmjDIyMlRVVaXJkycrMTFR/v7+ZscCAOCxUShd5Gtf+5p+97vfKTY2ViUlJa3POxwO1dXVKTQ01MR0HVN5ebmCgoLuW84vXrwom82mxsZGjR8/Xrt373ZzwkdTV1en3NxcHTp0SFFRUZozZ06Hnq4HAOAzXPXvIp+t2I6OjpbdbteyZcs0YcIE+fv7q2vXrgoICFBiYqLee+89ORwOk9N2DBEREW2O9Pbr108pKSmSpD179ujQoUPuivZIDMPQ/v379fbbb+vEiROaO3euXn75ZcokAMBrUChdpLi4WNKtEcnk5GS9/vrrGjdunP7v//5Pq1ev1quvvqrCwkK99NJLmjNnjm7evGlyYu8QHx/f+nj79u0mJrm3iooK/elPf9K6des0ePBgvf7663ryySe9apU6AABsG+QCN2/eVF1dnSRp69atkqQ1a9Zo/vz5rccsWLBAaWlpSk9PV1ZWll577TW99957puT1JreP8l26dMnEJHdqampSQUGBCgsLFRYWpi996UuKiYkxOxYAAO2CEUoXuHHjxh1fp6en31EmP5Oamqp/+qd/kiT95S9/0cGDB92Sz5vdfvmAj4+PiUn+4cSJE/r973+v3bt3a+rUqVq6dCllEgDg1SiULtDS0nLH14sXL77vsc8991zr47/+9a/tlqmjW7dunX784x/rQWvGysvLWx/37du3vWO1qaamRh999JH+9re/qVevXnrttdeUmJh4z/1IAQDwJvylc4GQkJA7vh4xYsR9jx0zZkzrY09flWymlStX6r333tOSJUsUERFx3+MKCwtbHyckJLgj2l0cDod27dqlzZs3y9/fX4sXL9awYcO4ThIA0GlQKF0gNDRU/v7+ampqkiR17979vsf27Nmz9fHly5fbPVtHl5WVpZdffvmer508ebL1bkNTpkzR8OHD3RlNknThwgWtX79e5eXlGj9+vKZPn37H7TYBAOgMmPJ2AavVqiFDhrR+/fkp8NvdPoXrKdf8ebL/+I//0IkTJ+56vrKyUs8//7zsdruCgoL0u9/9zq25GhoalJGRoeXLl0uSlixZorS0NMokAKBTYoTSRSZMmKCioiJJt7aKub1g3u7KlSutj/v16+eWbB3RsGHD5Ofnp4qKCo0ZM0bPPfecxo8fL39/fx09elR/+ctfdOXKFYWHh+ujjz6641KC9mQYhg4fPqwNGzaoqalJKSkpGj9+vKxW/t8MANB5UShdZNGiRa2jVXv37tXUqVPvedz+/ftbHycmJrolW0f05ptv6sUXX9SqVauUm5urLVu26KOPPlJzc7N69OihUaNGac6cOXrllVfcdheiyspKZWRkqKSkREOHDlVKSgq32AQAQNx60WXsdrvGjBmj4uJijRkzRvv377/nooy5c+dq/fr1CggI0OnTp9W/f38T0uJRtLS0aPv27dq6datCQ0OVmpqqQYMGmR0LAACPwTydi/j4+Oj3v/+9/Pz8dPDgQf3sZz+765gPP/xQ69evlyT9+Mc/pkx2AGfOnNEf/vAHbdmyRZMmTdJXv/pVyiQAAJ/DCKWLffzxx/ryl7+s2tpapaSkaM6cOfLx8dGmTZv08ccfy2Kx6Ic//KG+973vmR0Vbairq1NOTo6KiooUHR2t9PR07r0NAMB9UCjbQVlZmX79618rKytL586dk8PhUGRkpJKSkvT1r3+9zX0qYS7DMLR//37l5eXJYrEoOTlZY8aMYU9JAADaQKEE/q6iokIZGRk6d+6cxowZo+TkZAUFBZkdCwAAj0ehRKfX1NSkgoIC7dy5Uz179lR6ejr33gYA4BFQKNGpHT9+XFlZWaqrq1NiYqKmTJnChvMAADwiCiU6perqamVnZ+vYsWMaOHCg0tLSFBYWZnYsAAA6JAolOhWHw6Fdu3Zp06ZNCggIUEpKioYNG8aiGwAAnMCdctBpnD9/XuvXr1dFRYUmTJigpKQk7r0NAIALMEIJr9fQ0KCNGzdq79696tu3r+bMmcN91AEAcCEKJbyWYRgqLi7Whg0b1NzcrOnTp2v8+PGyWrlBFAAArsSUN7zStWvXlJmZqZKSEg0bNkyzZ89W165dzY4FAIBXYoQSXqWlpUXbt2/X1q1bFRoaqrS0ND3xxBNmxwIAwKsxQokOo6HZrhsNLQoN9FWg3917RZ45c0YZGRmqqqrSlClTlJiYKD8/PxOSAgDQuTBCCY+3p7RSy7eVKPdIhRyGZLVIycPC9ZUEm+JjwlRXV6ecnBwVFRUpOjpa6enp6tOnj9mxAQDoNCiU8GjvF5bp+2uLZbVaZHf840fVx2qRw2HoK2O7yufMDlksFiUnJ2vMmDHsKQkAgJtRKOGx9pRW6tl3dqrtH1BD/zbcrqULkxUUFOSmZAAA4HbsnwKPtXxbiazWtkcbfSwWHVckZRIAABOxKKcdPWgRCW6x2+1qbGxUY2Ojmpqa1NjYqJq6euUcrnjA6KRkN6ScI+VqaLbzPQYAwCQUynbwoEUk3uCzEvhZAfx8Ifz8120dZ7fb7zp/veErQ2MeKovDkG40tFAoAQAwCddQutiDFpG8tWCEvjhxgCnZ7Hb7QxfAth7frwTezs/PTwEBAQoICJC/v3/r49u/vt/zAQEBMqy+mvSLHXI8xE+n1SId+VEKhRIAAJMwQulCe0or9f21xTKkO8qkbvv6e2uKNSQ89KFHKj9fAp0ZEWxpaWnzs+5XArt3737PEthWUXTF7Q2Th4Ur7+jlu76Xt/OxWpQ8NJwyCQCAiSiULvTZIpK2CpDFIv33J3v1+uiAh5oSftgS+Ply17Vr1weOArZHCXSlJQk2bThc0eYxDoehJQmxbkoEAADuhULpIg3N9tZrJtviMKQ9l5pU2FSsoAA/ryuBrvRkVDel9Lqu7Kvd5GO13vcSAm+5LhUAgI6KQukiNxpaHup6P0kyZNGXl76u3qEB7RuqgysoKFC/utP6/xb9s9Yeq1XOkfJ/LHIaGq4lCbGUSQAAPACF0kVCA31lteihF5GEBvKtb8vZs2e1bds2TZs2TYnxg5UazzZMAAB4Ku+dL3WzQD8fJQ8Ll8+DNuK2WjRrWASFqA0NDQ1atWqVIiMjlZCQ0Pp8oJ+PeocG8L0DAMDDUChdaEmCTY4HDFGyiOTBsrKyVF9fr2eeecarrxEFAMBb8NfahcbHhOmtBSNkke4aqfSxWmSRWETyAMXFxSoqKlJaWpp69OhhdhwAAPAQuJDPxb44cYCGhIdq+bYzrYtILDI0Y3AfvZo4kDLZhurqaq1fv14jRozQqFGjzI4DAAAeEoWyHcTHhCk+JkwNzXaVXbysD/70rl6Y9JwGUSbvy+FwaPXq1QoICFB6eroslravRQUAAJ6DKe92FOjno0HREerVo5tOnTpldhyPtmPHDpWVlemZZ55RYGCg2XEAAMAjoFC2M4vFori4OAplGy5evKhNmzbpqaeeUkxMjNlxAADAI6JQukFcXJyqqqp07do1s6N4nObmZq1atUrh4eFKSkoyOw4AAHgMFEo3iI2NlY+PD6OU97BhwwZVV1dr4cKF8vFhf0kAADoiCqUb+Pv7Kzo6mkL5OcePH9e+ffs0a9Ys9erVy+w4AADgMVEo3SQuLk6lpaVqbm42O4pHqK2t1SeffKJBgwYpPj7e7DgAAMAJFEo3iYuLU0tLi8rKysyOYjrDMPTJJ5/IYrFo3rx5bBEEAEAHR6F0k969e6tr165Me0vas2ePTp48qfnz5ys4ONjsOAAAwEkUSjdh+6Bbrly5otzcXI0fP15PPPGE2XEAAIALUCjdKC4uTteuXVNVVZXZUUzR0tKilStXqnv37kpOTjY7DgAAcBEKpRvZbDZZrdZOO0qZn5+vK1euaNGiRfLz8zM7DgAAcBEKpRsFBAQoKiqqUxbKM2fOaOfOnZo+fboiIiLMjgMAAFyIQulmcXFxOnPmjFpaWsyO4jb19fVavXq1YmJiNGXKFLPjAAAAF6NQullcXJyam5t19uxZs6O4hWEYWr9+vZqbm7VgwQK2CAIAwAtRKN0sPDxcISEhnWba+9ChQzpy5IjmzJmjbt26mR0HAAC0Awqlm3Wm7YOqqqqUlZWl0aNHa/jw4WbHAQAA7YRCaYK4uDhduXJF1dXVZkdpNw6HQ6tWrVJQUJBSU1PNjgMAANoRhdIENptNFovFq0cpt27dqgsXLmjhwoUKCAgwOw4AAGhHFEoTdOnSRZGRkV5bKM+fP6+CggI9/fTTioqKMjsOAABoZxRKk8TFxamkpER2u93sKC7V2NioVatWqV+/fpo6darZcQAAgBtQKE0SFxenpqYmnTt3zuwoLpWdna3a2lotXLhQVis/XgAAdAb8xTdJ3759FRwc7FXT3keOHNHBgweVmpqqsLAws+MAAAA3oVCaxGKxaODAgV5TKGtqarRu3ToNHTpUY8aMMTsOAABwIwqlieLi4lRRUaEbN26YHcUphmFozZo18vPz05w5c7gbDgAAnQyF0kQDBw6UpA4/SllYWKgzZ85o/vz5CgoKMjsOAABwMwqliYKCgtS/f/8OXSjLy8u1ceNGTZo0qbUgAwCAzoVCabLPtg9yOBxmR3lkzc3NWrVqlXr27KkZM2aYHQcAAJiEQmmyuLg4NTQ06Pz582ZHeWR5eXmqrKzUokWL5Ovra3YcAABgEgqlyfr166cuXbp0uGnvU6dOaffu3UpOTlafPn3MjgMAAExEoTSZ1WrtcNsH1dXVac2aNRo4cKAmTJhgdhwAAGAyCqUHiIuL06VLl1RbW2t2lAcyDEPr1q2TYRiaP38+WwQBAAAKpSf4bHX06dOnTU7yYPv379fx48c1d+5chYaGmh0HAAB4AAqlBwgJCVHfvn09ftr72rVr2rBhg5588kkNGTLE7DgAAMBDUCg9RFxcnE6fPn3X9kEvvfSSLBbLI/2zYMECl+ez2+1atWqVQkNDNXv2bJefHwAAdFwUSg8RFxen+vp6Xbx40elzhYeHuyDRnTZv3qzy8nItXLhQ/v7+Lj8/AADouNg80ENERkYqMDBQp06dUmRk5F2vHz169IHnSElJUVlZmV566SWXZisrK9O2bduUlJSk/v37u/TcAACg46NQegir1SqbzaZTp05p2rRpd73+oGsWd+zYobKyMo0cOVKTJ092Wa6GhgatXr1a0dHRSkhIcNl5AQCA92DK24PExcXpwoULunnzZutzgwYN0lNPPfXA9y5btkyS9Oqrr7o0U2ZmphoaGvTMM8/IauXHBQAA3M1iGIZhdgjccuPGDf3yl7/UwoULNXLkyId+X3V1tfr27SuLxaKLFy+qW7duLsnz6aefatWqVXrmmWc0atQol5wTAAB4H4acPEhoaKjCw8Mfefug999/X/X19frnf/5nl5XJ69evKyMjQyNGjKBMAgCANlEoPcxn2wc9ysDxu+++K8l1090Oh0OrV69WYGCg0tPTXXJOAADgvSiUHiYuLk51dXW6dOnSQx1fWFiooqIijRo1SpMmTXJJhu3bt+vs2bNasGCBAgMDXXJOAADgvSiUHiYqKkr+/v4PPe3t6sU4Fy9e1ObNm/XUU08pJibGJecEAADejULpYXx8fFq3D3qQmpoaffTRRwoKCtIXv/hFpz+7qalJq1atUnh4uJKSkpw+HwAA6BwolB4oLi5O58+fV319fZvHffDBB7p586bLFuNs2LBB1dXVWrhwoXx8fJw+HwAA6BwolB4oLi5OhmGopKSkzeM+m+5eunSp05957Ngx7d+/X7Nnz1avXr2cPh8AAOg8KJQeqFu3burdu3eb0967du3SoUOHNHr0aE2cONGpz6utrdW6des0aNAgjRs3zqlzAQCAzodC6aHi4uJ06tSp+24f5KrFOIZhaO3atbJYLJo3b54sFotT5wMAAJ0PhdJDxcXFqba2VhUVFXe99tlinODgYKcX4+zevVunTp3S/PnzFRwc7NS5AAD/f3t38xrVegdw/DfJjIoh2iRqBatO7JGiXjCLGghIFr5cssgiyaIu7FLoH3L/gW5LhRaKIBRjFgHlBl0EIeXmgrrQLBSTGixegyEkGBLHzNyFKH2xvuSJkxzm81lOzjn5wWy+nOfMc6AxCcot6tChQ1EqlT647H3lypV49epVXLhwIXbt2rXu//HixYsYGxuLU6dOxdGjR1PGBQAamKDcoorFYnR2dn4wKN+9GSflxzhv3ryJ4eHhaG9vj/Pnz6/7OgAAgnILy7IsZmdnY3V19f1nk5OTcffu3Th58mR0d3ev+9q3b9+OOGYEgAAABRhJREFUubm5GBoailKptBHjAgANSlBuYVmWRbVa/Y/tgzZiq6AnT57ExMREnD17Nvbv3588JwDQ2ATlFtbW1hYdHR3vl72Xlpbi6tWr0dLSEhcvXlzXNZeXl2NkZCQ6Ozujp6dnI8cFABpUcbMH4OOyLIupqamo1WrR2toaS0tL675WrVaL0dHRqFQqMTAwYIsgAGBDuEO5xWVZFouLizE3N5d8rXv37sXU1FT09/cn/TocAODfCcotrlwuR7FY/Ohbcz7H/Px83Lx5M7q6uuLEiRMbNB0AgKDc8orFYpTL5aSgrFarcf369WhpaYm+vr4NnA4AQFDmQpZl8fTp03j9+vW6zh8fH49nz57F4OBgbN++fYOnAwAanaDMgSzLYm1tLaanp7/43NnZ2RgfH4/e3t44ePDgV5gOAGh0gjIHOjo6oq2t7YuXvVdXV2N4eDgOHDgQvb29X2k6AKDRCcqcyLIsHj9+HLVa7bPPuXHjRiwvL8fg4GA0NfmqAYCvQ2XkRJZlsbCwEC9fvvys4x88eBD379+Pvr6+aG9v/8rTAQCNTFDmRLlcjubm5s9a9l5cXIzR0dE4duxYdHV11WE6AKCRCcqc2LZtWxw+fPiTQVmr1WJkZCRKpVL09/d7Gw4A8NUJyhzJsixmZmaiUqn832MmJiZieno6BgYGYufOnXWcDgBoVIIyR95tHzQzM/PBvz9//jxu3boVPT09ceTIkfoOBwA0LEGZI3v27Indu3d/cNm7UqnEtWvXYu/evXHmzJlNmA4AaFSCMkcKhcL77YP+29jYWCwsLMTQ0FAUi8VNmA4AaFSCMmeyLIv5+fn4109zMbe0GiuVtXj06FFMTk7GuXPnYt++fZs9IgDQYNzKypmXTW1x+/Wv469//CFqEdFUiCgXF+Pcr34T3d3dmz0eANCA3KHMkb/945/x+7/8GLPVX8S79+VUaxHTldb483RrXPnh6abOBwA0pkLtS97lx6aZnJmP3/1pIj72ZRUi4u9/6Inflr0ZBwCoH3coc+LynSfR1PTxTcqbmgpx+c50nSYCAHhLUObASmUtxh7+FGvVj99MXqvW4vuHz2OlslanyQAABGUuLK28iU+05HvV2tvjAQDqRVDmQOuOYnxitfu9psLb4wEA6kVQ5sCOUnOcP/7LaP5EVTY3FeLb4/tjR6m5TpMBAAjK3Lh0+khUP7HuXa3W4tLpzjpNBADwlqDMiVPl9vhu4JsoRPzPncrmpkIUIuK7gW9sGQQA1J19KHPmx5n5uHxnOr5/+DyqtbfPTH57fH9cOt0pJgGATSEoc2qlshZLK2+idUfRM5MAwKYSlAAAJPEMJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEkEJQAASQQlAABJBCUAAEl+Bl3CVYgnalhYAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde1RUZ57v/8+uAkQBEVQEEcW7eEEj3hMvUVG8ofHWsdOdk6STeDIzp1dmziQ9c6Z/q7vPWbN6Jpme02cuvZJ0Zs10J909BtQgKl6jMdEoRkVEvGACahAVgiL3S9X+/ZGR1qiI1K7aBfV+rTVrKlW7nv1lloMfv89+nscwTdMUAAAA0EEOuwsAAABA50agBAAAgEcIlAAAAPAIgRIAAAAeIVACAADAIwRKAAAAeIRACQAAAI8QKAEAAOARAiUAAAA8QqAEAACARwiUAAAA8AiBEgAAAB4hUAIAAMAjBEoAAAB4hEAJAAAAjxAoAQAA4BECJQAAADxCoAQAAIBHCJQAAADwCIESAAAAHiFQAgAAwCMESgAAAHiEQAkAAACPECgBAADgEQIlAAAAPEKgBAAAgEcIlAAAAPAIgRIAAAAeIVACAADAIwRKAAAAeIRACQAAAI8QKAEAAOARAiUAAAA8QqAEAACARwiUAADAcuXl5frxj3+ssWPHKjw8XL1799aMGTP0q1/9Ss3NzXaXB4sZpmmadhcBAAC6jiNHjuipp55SWVmZFi5cqGXLlqmurk7//u//rjNnzmjKlCnaunWr+vbta3epsAiBEgAAWObixYuaPHmyysvL9Rd/8Rf6xS9+0fpZfX29UlNTdfDgQT3++OPat2+fgoODbawWViFQAgAAy6xdu1YZGRkaOHCgzp8/r27dut31eWFhocaOHSvTNPWrX/1Kr7zyik2Vwko8QwkAACxx/vx5ZWZmSpKeffbZe8KkJI0ePVqPP/64JOnnP/+56Gt1DQRKAABgiczMzNaAOG/evAdeN3/+fEnS5cuXdeTIEZ/UBu8iUAIAAEvs27ev9fVjjz32wOsmTpzY+vqjjz7yak3wDQIlAACwREFBgSQpIiJCkZGRD7wuISGh9fXp06e9Xhe8j0AJAAA81tjYqKtXr0qS+vXr1+a1d35eUlLizbLgIwRKAADgserq6tbXoaGhbV7bvXv3+34PnReBEgAAeKy+vr71dUhISJvX3vl5XV2d12qC7xAoAQCAx+7sOjY1NbV57Z2f9+jRw2s1wXcIlAAAwGMRERGtrxsaGtq89s5u5p3fQ+dFoAQAAB7r1q2bYmNjJUnXrl1r89o7Px80aJBX64JvECgBAIAlxowZI+mbhTZVVVUPvO6rr7665zvo3AiUAADAEk8++WTr67y8vAded/z48dbXc+fO9WpN8A0CJQAAsMTq1atbX+/du/eB1+3Zs0eSNGDAAE2bNs3rdcH7CJQAAMASI0eO1KpVqyRJ77333n1Xe589e1affvqpJOmv/uqvZBiGT2uEdxAoAQCAZf7hH/5BvXv3VklJiX784x/f9Vl9fb1efvllmaap6dOn6+WXX7apSljNME3TtLsIAADQdXz22Wd66qmndO3aNaWlpWnZsmWqq6vTv//7v6uwsFCTJk3Stm3bFBMTY3epsAiBEgAAWO769ev65S9/qQ8//FAXL15USEiIRo0apWeeeUbr169XcHCw3SXCQgRKAADgVW63KYeDZyW7siC7CwAAAF1LQWmVMo5dVm5xpS6U16jZZSrYaWhY33BNGRytNSkJGhsfaXeZsBAdSgAAYImSilq9vjFfuSWVcjoMudz3Rozb709JjNYbq5KV2CfMhkphNQIlAADwWFZeqV7LzJfLNO8bJL/N6TDkNAy9uTpZyyfE+6BCeBOBEgAAeCQrr1SvbshTRwKFIemX35lAqOzk2IcSAAB0WHFFrV7LzO9QmJQkU9Jrmfkqqai1siz4GIESAAB02I82fjPN7QmXaer1jfkWVQQ7ECgBAECHnCqtUm5JZbuemWyLy20qt6RSBaVVFlUGXyNQAgCADsk8dllBFu0v6XQYyjh22ZKx4HsESgAA0CG5xZVq8bA7eZvLbepoyQ1LxoLvESgBAECHXCivsXS8ouvVlo4H3yFQAgCAR+Z2m2p2WbvzYLPLlNuijid8i0AJAAAemcNhKNhp7fncwU6DM787KQIlAADokGF9wy0db3hMhKXjwXcIlAAAoEOmDI6W08JV3pMToywZC75HoAQAAB2yJiXB4z0ob3O5Ta1JSbBkLPgegRIAAHTI2PhITUn0vEvpdBiakhitsfGRFlUGXyNQAgCADntjVbKchoeB0jD0xqpkiyqCHQiUAACgwxL7hOlHc/pL6tjUtyHpzdXJSuwTZmld8C0CJQAA6LCqqipVntil1f1rFOJ0tHv625CpEKehX35ngpZPiPdylfA2AiUAAOiQlpYWffDBBwoODtbPXlimXa/OUsrAb1ZqPyhY3n6/n6NGP5kSTJjsIoLsLgAAAHQ+pmlq27Ztun79ul544QWFhYUpLEz6YP10FZRWKePYZR0tuaGi69VqdpkKdhoaHhOhyYlRWpOSoK8v5OnAgQO6Pm28YmJi7P5x4CHDNE3OOAIAAI/k888/17Zt27RixQqNHz++zWvdbvOeE3BaWlr01ltvKSwsTM8995wMDxf2wF5MeQMAgEdy6dIl5eTkaMqUKQ8Nk5Lue5xiUFCQlixZokuXLikvL88bZcKHCJQAAKDdqqurlZGRoQEDBmjBggUejTV48GAlJydr9+7dqqurs6hC2IFACQAA2sXlcumDDz6QYRhas2aNnE6nx2OmpqbKNE3t3r3bggphFwIlAABol5ycHJWVlWnt2rUKDw+3ZMzw8HDNmzdPeXl5unTpkiVjwvcIlAAA4KGOHz+uY8eOafHixRowYIClY6ekpCg+Pl5bt26Vy+WydGz4BoESAAC06auvvtL27duVkpKiiRMnWj6+YRhaunSpKioqdPjwYcvHh/cRKAEAwAPV1NTogw8+UFxcnNLS0rx2n9jYWE2dOlX79+/XzZs3vXYfeAeBEgAA3JfL5VJGRoZM09TatWsVFOTd81DmzJmj7t27KycnR2yT3bkQKAEAwH3t2rVLX331ldasWaOIiAiv369bt25atGiRzp8/r3Pnznn9frAOgRIAANzj5MmTys3NVVpamgYOHOiz+44aNUrDhw9XTk6OmpqafHZfeIZACQAA7nLlyhVt3bpVEyZM0KRJk3x6b8MwtGjRItXV1Wn//v0+vTc6jkAJAABa1dbW6oMPPlBMTIyWLFliyxnbUVFRmj17tg4fPqxr1655NJZpmvrnf/5nhYeHyzAMQqqXECgBAIAkye12a+PGjWpubvbJIpy2TJ8+XX369NHWrVs7vEDnyy+/1JNPPqkf/vCHqq2ttbhC3IlACQAAJEl79uxRSUmJ1qxZo8jISFtrcTqdWrJkib766isdP378kb57uyuZnJysEydOaNq0aV6qErcRKAEAgE6dOqXPPvtMCxcuVGJiot3lSJIGDRqkCRMmaM+ePY/UYfzZz36mH/7wh3riiSdUUFCghQsXerFKSARKAAAC3tWrV7VlyxYlJydrypQpdpdzl9TUVBmGod27dz/S9959913t2LFDCQkJXqoMd7Lv4QgAAGC7+vp6bdiwQX369NHSpUttWYTTlh49emj+/PnKzs7W+PHjNXjw4Id+5yc/+Ynf/RxdHR1KAAAC1O1FOI2NjfrOd76j4OBgu0u6r8cee0wJCQnatm2bWlpaHno9YdL3CJQAAASojz76SF9++aVWr16tXr162V3OAxmGoSVLlujGjRs6dOiQ3eXgPgiUAAAEoMLCQh08eFDz58/XkCFD7C7nofr166dp06bpk08+0Y0bN+wuB99CoAQAIMBcv35dH374ocaMGaPp06fbXU67zZ49W2FhYdq+fXuH96aEdxAoAQAIIA0NDdqwYYOioqKUnp7eqZ43DAkJ0aJFi3ThwgWdOXPG7nJwBwIlAAABwjRNbdq0SXV1dfrOd76jkJAQu0t6ZCNHjtSoUaO0Y8cONTY22l0O/guBEgCAALF//34VFRVp1apVio6OtrucDktLS1NDQ4P27dtndyn4LwRKAAACwNmzZ3XgwAHNnTtXw4YNs7scj0RGRmrOnDnKzc1VWVmZ3eVABEoAALq8iooKbd68WUlJSXriiSfsLscSU6dOVUxMjLZu3Sq32213OQGPQAkAQBfW2NioDRs2qGfPnlq+fHmnWoTTFqfTqSVLlujKlSs6duyY3eUEPAIlAABdlGma+vDDD1VdXa2nn35a3bp1s7skSyUkJGjixInau3evampq7C4noBEoAQDwgWvXrulf/uVflJ6eroSEBHXr1k3h4eEaPny4nn32Wa8sMPnkk0909uxZrVy5Ur1797Z8fH8wf/58OZ1O7dy50+5SAhqBEgAAL1u/fr0GDhyo//E//ofy8vL09NNP65/+6Z/0t3/7txo6dKjee+89zZ07V+vWrbNsK5yioiLt27dPs2fP1ogRIywZ0x91795dCxYsUEFBgb788ku7ywlYhslW8wAAeFVoaKgaGxu1bNky/ed//qd69Ohx1+dvvfWWXnnlFUnSunXr9Pvf/96j+1VWVuqdd97RoEGD9PTTT3eZ5yYfxDRN/eY3v1F1dbVeeeUVBQUF6f3332/9fNOmTdq8ebMk6X/9r/+lpKQkSd8c55iammpLzV0NgRIAAC8LDQ1VUFCQiouL1bdv3/tes2jRIu3YsUOSdPjwYU2dOrVD92pqatK7774rt9utF198UaGhoR2uuzMpLy/XW2+9pZkzZ2rOnDntCtGzZ8/W/v37vV9cAAiyuwAAAALB9OnTHxgmJWnVqlWtgXLLli0dCpSmaSorK0tVVVUBFSYlqW/fvnr88cf16aefaty4cTr11U1lHLus3OJKXSivUbPLVLDT0LC+4ZoyOFprUhI0Nj7S7rK7DAIlAABetnnzZiUkJLR5zcCBA1tfX7p0qUP3OXTokAoLC7V27do2w2tXNXPmTH2Sd1Yrf/WJLtYFy+kw5HL/cSK22WXqzNVqnb9eo998dlFTEqP1xqpkJfYJs7HqroFFOQAAeNmiRYs0duzYNq+pqqpqfR0W9ugB54svvtDevXs1c+bM1mcEA83209f1/teJulT3Tb/szjB5p9vvH7t0Qwt+eUBZeaU+q7GrokMJAIAfKC4ubn09c+bMR/rujRs3lJmZqaFDh2rOnDkWV9Y5ZOWV6tUNefomKrZvEZLLbcolU69uyJMkLZ8Q77X6ujo6lAAA+IEPP/xQ0jcrj1euXNnu7zU3N2vDhg3q3r27Vq5cKYcj8P5qL66o1WuZ+eroKmNT0muZ+SqpqLWyrIASeH/qAADwMwUFBfrss88kSf/n//wfde/evV3fM01T2dnZqqys1He+8512f6+r+dHGfLk83LTGZZp6fWO+RRUFHgIlAAA2Mk1TP/zhDyV986zliy++2O7vHj58WKdOndLy5cvVr18/b5Xo106VVim3pPKBz0u2l8ttKrekUgWlVQ+/GPcgUAIAYKO/+7u/0759+zRixAi9//777d6EvLi4WLt379aMGTM0ZswYL1fpvzKPXVaQw5qN250OQxnHLlsyVqAhUAIAYJONGzfqxz/+sfr376+cnBxFR0e363tVVVXKzMzU4MGDNW/ePC9X6d9yiyvV4mF38jaX29TRkhuWjBVoCJQAANhg165deuaZZxQTE6O9e/dqyJAh7fre7UU4ISEhWrVqVUAuwrnThfIaS8crul5t6XiBIrD/FAIAYIO9e/dqxYoVioyM1EcffaRRo0a163umaWrbtm0qLy/X2rVr7zkTPNC43aaaXdaeIN3sMuW2qOMZSNiHEgAAH/r444+Vnp6usLAw7d2795E2IT969KhOnjypp556SnFxcV6s0v/V19fr6tWrchqSlZky2GnIYdEzmYGEQAkAgI8cPHhQS5cuVffu3bV37977np6zfv16lZWVacuWLXe9f/HiRe3cuVNTp05VcnKyr0q2nWmaqqmpUVlZmcrKynT16lWVlZW1niwUaYxRpWnddknDYyIsGyuQECgBAPCBw4cPa9GiRQoODtbu3bsfGArPnTunkpKSu967deuWMjIylJCQoNTUVB9Uaw/TNHXz5s17wmNt7TcbjoeGhiouLk6jR49WXFyc4uLi5Dp4Vb/LveTxtkHSN6u8JydGeTxOICJQAgDgZZ9//rnS0tJUU1OjN998U1VVVdq/f/99r7158+Zd/93S0qIPPvhATqdTa9askdPp9EHF3ud2u1VRUdEaHG+Hx8bGRklSRESEYmNjlZKSotjYWMXFxSkyMvKebZXWTgrWbw9ftKQml9vUmpQES8YKNIZperi1PAAAeKDKykoNGzZMN260fzuaQYMGtXYps7OzdfLkST3//POKj++cZ023tLTo+vXrd3Uer127ppaWFklSVFSU4uLiWoNjbGyswsPD2z3+2rc/07FLNzzqUjodhlIGRumD9dM7PEYgo0MJAIAX3bp165HC5J2OHTum48ePa/ny5Z0mTDY2NuratWt3TVmXl5fL7XbLMAz16dNHcXFxGjNmTGt4DA0N9eieb6xK1oJfHpCrw6d5S07D0BurAufZVKvRoQQAwCZut/nAFcWXL1/Wf/zHf2jixIlasmSJjytrn7q6unued6ysrJQkOZ1O9evX766uY79+/RQcHOyVWrLySvXqhrwORUpD0i+/M0HLJ3SO0O6P6FACAOAjBaVVyjh2WbnFlbpQXqNml6lgp6FhfcM1ZXC01qQkaGx8pKqrq/XBBx8oPj5eaWlpdpct0zRVXV19T3i8deuWJCkkJESxsbEaNmxY62KZPn36+PR5z9th8LXMfLlMs13T306HIadh6M3VyYRJD9GhBADAy0oqavX6xnzlllTK6TDuG3Zuvz85MUpTzSI56r7Wyy+//EjPElrBNE1VVlbes1imrq5OktSjR4+7uo5xcXGKjo5u9xnk3vYo/7eeOjhaf78yWYl9wmyotGshUAIA4EVZeaWP1DX75gg7t/6/1EF6fq53n+lzuVytK63vDJBNTU2SpJ49e96zWKZnz55+Ex7bcrsbfLTkhoquV7d2g4fHRGhyYlRrNxjWIFACAOAl/vRcX3Nz831XWrtcLklSdHT0PeExLKzrdO7ael4VniNQAgDgBcUVtVr4ywNqcrk7PEaI06Fdr8565CnZhoaG1qnq2/+7oqJCpmnKMAzFxMTcFRxjY2PVrVu3DtcJECgBAPACX+2NWFNTc094vL1NUVBQ0F0rrePi4hQTE6OgINbkwlr8iQIAwGKnSquUW1Lp8Tgut6nckkoVlFZpTP+eqqqqumexTHV1tSSpW7duio2N1YgRI+5aae1wODyuA3gYOpQAAFjsJ1sK9Lsjl9RiwfnSDkOa3KteKfpS9fX1kqSwsLB7nneMiorqFItl0DXRoQQAwGK5xZWWhElJcpvS5YYQ/cnsqa2dx/DwcMIj/AqBEgAAi10or7F0vPKmIM2ePdvSMQEr8WAFAAAWcrtNNbusfZqs2WXKbVHHE/AGAiUAABZyOAwFO62djg52GuyhCL9GoAQAwGLD+lp7XOLwmAhLxwOsRqAEAMBiUwZHy2lRR9HpMDQ5McqSsQBvIVACAGCxNSkJHm1ofieX29SalARLxgK8hUAJAICFWlpaVH7+uPo5qmV06BTvP3I6DE1JjNbY+EiLqgO8g0AJAIBFLl++rLfffluffvqp/nxGXwU7nR6N5zQMvbEq2aLqAO9hH0oAADzU1NSkvXv3Kjc3V/3799fLL7+sfv36qXt8qV7dkNehPqUh6c3VyUrsE2Z1uYDlOHoRAAAPfPHFF8rOzlZtba3mzp2rqVOn3nV+dlZeqV7LzJfLNNv1XKXTYchpGHpzdbKWT4j3ZumAZQiUAAB0QH19vXbu3KmTJ09q8ODBWrZsmaKi7r8au6SiVq9vzFduSaWcDuO+wfL2+1MHR+vvV9KZROdCoAQA4BGYpqnCwkLl5OSopaVFCxcu1IQJE9p1tnZBaZUyjl3W0ZIbKrperWaXqWCnoeExEZqcGKU1KQkswEGnRKAEAKCdqqurtW3bNp07d05JSUlatGiRIiI6vum4221yAg66BAIlAAAPYZqmjh8/rt27dysoKEiLFy/W6NGj7S4L8Bus8gYAoA2VlZXKzs5WSUmJJkyYoAULFqh79+52lwX4FTqUAADch9vt1uHDh7Vv3z6Fh4dr2bJlGjJkiN1lAX6JDiUAAN9y9epVbdmyRVevXtXUqVP15JNPKiQkxO6yAL9FhxIAgP/S0tKiAwcO6ODBg+rdu7fS09M1YMAAu8sC/B4dSgAAJF26dEnZ2dmqrKzUrFmz9MQTT8jp4dGJQKCgQwkACGiNjY3au3evjh49qgEDBmjZsmWKiYmxuyygUyFQAgACVlFRkbZu3ar6+nrNnTtXU6ZMuevYRADtw5Q3ACDg1NXVaefOncrPz9eQIUO0dOnSBx6bCODh6FACAAKGaZo6ffq0cnJy5Ha7tXDhQo0fP75dxyYCeDA6lACAgHDr1i1t27ZN58+f1+jRo7Vo0SKFh4fbXRbQJdChBAB0aaZp6tixY9q9e7dCQkK0ePFiJSUl2V0W0KXQoQQAdFlff/21srOzdfHiRT322GNKTU3l2ETAC+hQAgC6HLfbrUOHDmn//v3q2bOnli5dyrGJgBfRoQQAdCllZWXasmWLrl27pmnTpunJJ59UcHCw3WUBXRodSgBAl9Dc3KyPP/5Yhw4dUt++fZWenq74+Hi7ywICAoESANDpXbx4UdnZ2bp586ZmzpzJsYmAjxEoAQCdVmNjo/bs2aPPP/9cAwYMUHp6uvr27Wt3WUDAIVACADql8+fPa9u2baqvr9e8efM0efJkjk0EbMKiHABAp1JbW6sdO3aooKBAQ4cO1dKlS9WrVy+7ywICGh1KAECnYJqmTp06pR07dkiSFi5cqOTkZI5NBPwAHUoAgN+rqqrStm3bVFRUpDFjxigtLY1jEwE/QocSAOC3TNPU559/rj179qhbt25asmSJRo4caXdZAL6FDiUAwC9VVFQoOztbly5d0sSJE5WamqrQ0FC7ywJwH3QoAaCLuHnzprZt26a9e/fqxIkTKi4uVk1NjcLDwzV8+HClpqbqlVdeUUJCgt2ltsnlcunQoUP6+OOPFRkZqWXLlikxMdHusgC0gUAJAF3AoUOHNHfuXDU2NsowDK1YsULTpk1Tz549VVRUpN/+9reqqKhQWFiYfvOb32jVqlV2l3xfV65c0ZYtW3T9+nVNnz5dc+bM4dhEoBMgUAJAF7Bjxw4tWrRIDodD27ZtU1pa2l2fV1ZWatasWTp9+rRCQkJ08uRJjRo1yqZq79Xc3Kz9+/frs88+U0xMjNLT09W/f3+7ywLQTuwACwBdyHPPPXdPmJSk6Ohovfnmm5KkpqYm/frXv/Z1aQ9UUlKit956S0eOHNGTTz6pl156iTAJdDIsygGALiAyMlIpKSltTmVPmjSp9XVhYaEvympTQ0ODdu/erePHjyshIUHr1q1Tnz597C4LQAcQKAGgC5g+fbo+//zzNq8JCwtrfd29e3dvl9Smc+fOadu2bWpsbNTixYs1adIkNigHOjECJQAEiGPHjrW+fvLJJ22poba2Vjk5OTp9+rSGDRumpUuXKjIy0pZaAFiHRTkAEACampqUmpqqAwcOaNy4cTpy5IhPu5SmaSo/P187d+6UJKWlpWncuHF0JYEugg4lAHRBjY2Nunnzpr7++msdPnxY/+///T/l5+dr7dq1euedd3waJm/evKmtW7fqiy++0NixY5WWlnbX9DuAzo9ACQBd0B/+8Ac9//zzrf89cOBA/f73v9fTTz/ts66gaZrKzc3V3r17FRoaqnXr1mnEiBE+uTcA32LKGwC6oLKyMp0+fVq1tbU6f/683n//feXn52vEiBH653/+Zy1YsMCr9y8vL1d2drYuX76sSZMmaf78+erWrZtX7wnAPgRKAAgAbrdbf/7nf65/+qd/ksPh0O9+9zs9/fTTlt/H5XLp4MGDOnDggCIjI5Wenq5BgwZZfh8A/oVACQABwu12Kzk5WadPn1ZERIRKSkoUHR1t2fh3Hps4Y8YMzZ49m2MTgQDBSTkAECAcDoe++93vSpKqq6uVmZlpybjNzc3atWuX3n33XRmGoZdeeknz588nTAIBhEU5ABBARo4c2fq6oKDA4/GKi4uVnZ2tW7duae7cuZo+fbqcTqfH4wLoXAiUANAF5OTkqEePHpo9e3ab1wUF/fHXfktLS4fv19DQoF27dunEiRMaNGiQnnnmGfXu3bvD4wHo3AiUANAFvPLKKwoPD39o17GoqKj19cCBAzt0r7Nnz2rbtm1qamrSkiVLlJKSwgblQIAjUAJAF3HmzBmVlJQoMTHxvp+73W699957rf+9ZMmSRxq/pqZGOTk5Kiws1IgRI7RkyRL17NnTk5IBdBEESgDoItxut77//e8rIyNDsbGxd33mcrn0Z3/2Z8rPz5ckPf/88xo3bly7xjVNUydPntTOnTvlcDi0atUqjRkzhq4kgFYESgDoAsaPH6+LFy/q008/1dChQ7Vu3TqNHDlSvXv3VklJiTZs2KDz589L+iZMvv322+0a985jE5OTk7Vw4UL16NHDmz8KgE6IfSgBoIsoKCjQ5s2bdeDAAZ07d04VFRVqbm5WRESEhgwZohkzZujZZ5/VpEmTHjqW2+1Wbm6uPvroI3Xv3l1Lly7V8OHDffBTAOiM6FACQBcxduxYKSpBLeOfUlBxpS6U16jZZSrYaahv33BFDY5WaFzCQ8cpLy/Xli1b9NVXX2ny5MmaN28exyYCaBMdSgDoAkoqavX6xnzlllTK6TDkct/7q/32+1MSo/XGqmQl9gm763OXy6VPP/1UBw4cUFRUlNLT0zu8EhxAYCFQAkAnl5VXqtcy8+UyzfsGyW9zOgw5DUNvrk7W8gnxkqTS0lJt2bJFFRUVevzxxzVr1qy79qwEgLYQKAGgE8vKK9WrG/LUkV/khqR/WDVW4V+f1ZEjRxQbG6v09MumexQAACAASURBVPR7VogDwMMQKAGgkyquqNXCXx5Qk8vd4TGccmtVj7NaPneGpk+fLofDYWGFAAIF8xkA0En9aOM309yeMGXoQvRUPf744xZVBSAQ8U9RAOiETpVWKbeksl3PTLbFLUPHv6pWQWmVRZUBCEQESgDohDKPXVaQw5qTapwOQxnHLlsyFoDARKAEgE4ot7hSLR52J29zuU0dLblhyVgAAhOBEgA6oQvlNZaOV3S92tLxAAQWAiUAdDJut6lml7UbdDS7TLkt6ngCCDwESgDoZBwOQ8FOa56fvC3Yachh0TOZAAIPgRIAOqFhfcMtHW94TISl4wEILARKAOiEpgyOltPCVd6TE6MsGQtAYCJQAkAntCYlweM9KG9zuU2tSUmwZCwAgYlACQCd0Jj+PTWqd5CMDp3i/UdOh6EpidEaGx9pUWUAAhGBEgA6merqar3//vsaU31CTsOzaW+nYeiNVckWVQYgUHGWNwB0IoWFhdq6daucTqf+5Nk1mlUdqlc35HWoT2lIenN1shL7hFldJoAAQ6AEgE6gsbFRO3bsUF5enpKSkrR06VL16NFDQ//r89cy8+UyzXY9V+l0GHIaht5cnazlE+K9WziAgGCYpslOtgDgxy5fvqzNmzertrZWaWlpmjBhgoxvTXWXVNTq9Y35yi2plNNh3DdY3n5/6uBo/f1KOpMArEOgBAA/5XK5dODAAX3yySeKj4/XU089pejo6Da/U1BapYxjl3W05IaKrler2WUq2GloeEyEJidGaU1KAgtwAFiOQAkAfujrr7/W5s2bdeXKFc2ePVszZ86Uw/Ho6yjdbpMTcAB4HYESAPyIaZo6ceKEduzYoYiICD311FMaMGCA3WUBQJtYlAMAfqK2tlbZ2dk6d+6cHnvsMaWlpSkkJMTusgDgoehQAoAfKCoqUlZWltxut9LT0zVq1Ci7SwKAdqNDCQA2am5u1u7du3X06FENGzZM6enpioiIsLssAHgkdCgBwCZlZWXatGmTbt68qdTUVE2ePPme7YAAoDMgUAKAj7ndbh06dEj79u1TTEyMVq5cqb59+9pdFgB0GFPeAOBDVVVV2rx5sy5evKgZM2boySefVFAQv4oBdG50KAHAR06dOqVt27apW7dueuqpp5SYmGh3SQBgCf5ZDABe1tDQoO3bt+vUqVMaO3aslixZotDQULvLAgDL0KEEAC8qKSnRhx9+qIaGBi1ZskTjxo2zuyQAsBwdSgDwApfLpX379ungwYMaNGiQVqxYoV69etldFgB4BR1KALBYeXm5Nm3apOvXr+vJJ5/UjBkzOnQONwB0FgRKALCIaZo6evSodu/erV69emnlypWKi4uzuywA8DqmvAHAAjU1NcrKytKFCxc0efJkpaamKjg42O6yAMAn6FACgIfOnj2r7OxsGYah5cuXa/jw4XaXBAA+RYcSADqoqalJO3fu1PHjxzVy5EgtW7ZMYWFhdpcFAD5HhxIAOqC0tFSbNm1SdXW1Fi5cqIkTJ3ION4CARaAEgEfgdrv1ySef6OOPP1ZcXJxWrlyp3r17210WANiKKW8AaKcbN25o06ZNKi0t1cyZMzVr1iw5nU67ywIA29GhBICHME1TJ0+eVE5Ojnr06KGVK1cqISHB7rIAwG/QoQSANtTV1Wnr1q06c+aMJkyYoLS0NHXr1s3usgDAr9ChBIAH+OKLL5SVlaXm5mYtW7ZMo0ePtrskAPBLdCgB4FtaWlq0Z88eHTlyREOGDNHy5cvVs2dPu8sCAL9FhxIA7nDt2jVt2rRJX3/9tebPn6+pU6eyHRAAPASBEgD0zcKbw4cPa+/everdu7dWrlypfv362V0WAHQKTHkDCHi3bt3Shx9+qOLiYk2bNk3z5s1TUBC/HgGgvehQAghop0+f1tatWxUcHKwVK1ZoyJAhdpcEAJ0O/wQHEJAaGxuVk5OjkydPavTo0Vq6dKm6d+9ud1kA0CnRoQQQcC5duqTNmzerrq5OixcvVnJyMgtvAMADDrsLANB1vP766zIMQ4Zh6Kc//and5dzD5XLpo48+0n/8x38oIiJC//2//3eNHz+eMAkAHmLKG4Aljh8/rn/8x3+0u4wH+vrrr7Vp0yZdvXpVc+bM0RNPPCGHg39TA4AVCJQAPNbS0qIXX3xRLpfL7lLuYZqmjh07pl27dqlnz5564YUXFB8fb3dZANClECgBeOwXv/iFTpw4oeXLlysrK8vuclrV1tZqy5YtOn/+vFJSUrRgwQKFhITYXRYAdDkESgAeuXDhgn72s59p8uTJ+uEPf+g3gfL8+fPasmWLTNPU008/rZEjR9pdEgB0WQRKAB5Zv369mpub9etf/1o3btywuxw1Nzdr165d+vzzzzV8+HClp6crPDzc7rIAoEsjUALosH/7t3/TRx99pB/96EcaP3689u/fb2s9V65c0aZNm1RVVaXFixdr0qRJrOAGAB8gUALokKtXr+q1117T0KFD9ZOf/MTWWtxutw4ePKj9+/erX79+Wr9+vfr06WNrTQAQSAiUADrkz/7sz3Tjxg1lZGTYesLMzZs3tXnzZl26dElPPPGE5syZI6fTaVs9ABCICJQAHllWVpY2btyo5557TvPmzbOlBtM0derUKW3fvl2hoaF67rnnNGjQIFtqAYBAR6AE8Ehu3bqlP/mTP1FMTIx+8Ytf2FJDfX29tm/froKCAiUnJ2vRokUKDQ21pRYAAIESwCN6/fXXdeXKFf3+979XdHS0z+9fXFysDz/8UE1NTVq1apXGjh3r8xoAAHcjUAJot08++UTvvPOOFi1apHXr1vn03i0tLdq3b58OHTqkxMRErVixQpGRkT6tAQBwfwRKAO3S1NSkl156SSEhIfrf//t/q6Ki4p5rqqqqWl/X1dXddU1kZKSCg4M7dO/r169r06ZNKi8vV2pqqqZPn852QADgRwzTNE27iwDg/0pKSjR48OAOf3/fvn2aM2fOI33HNE3l5uZq9+7dio6O1sqVKxUbG9vhGgAA3kGgBNAuDQ0N+vTTT9u85uTJk/rLv/xLSdL3v/99Pfvss62fpaSkKCoqqt33q66uVlZWlr744gtNmTJF8+fP73CHEwDgXUx5A2iX0NBQzZ8/v81rgoL++CtlyJAhD73+Qc6cOaPs7Gw5nU4988wzGjZsWIfGAQD4BoESgN9oampSTk6O8vLyNGrUKC1btkw9evSwuywAwEMQKAH4ha+++kqbNm1STU2N0tPTNWHCBBbeAEAnQaAE4JH8/Hzl5+dL+maq+s7333//fUlSv379lJqaet/vu91uHThwQAcOHFB8fLy+973v2bK/JQCg41iUA8AjP/3pT/Wzn/2szWtmz56t/fv33/N+ZWWlNm3apCtXrmjWrFmaNWuWHA6HlyoFAHgLgRJAhxSUVinj2GXlFlfqQnmNml2mgp2GhvUN15TB0VqTkqCx8fffeNw0TZ04cUI7duxQeHi4Vq5cqQEDBvj4JwAAWIVACeCRlFTU6vWN+cotqZTTYcjlvvdXyO33pyRG641VyUrsE9b6WV1dnbKzs3X27Fk99thjWrhwobp16+bLHwEAYDECJYB2y8or1WuZ+XKZ5n2D5Lc5HYachqE3Vydr+YR4XbhwQVlZWXK5XFq2bJmSkpJ8UDUAwNsIlADaJSuvVK9uyFNHfmEYkp4bZUglRzV06FAtX75cERERVpcIALAJgRLAQxVX1GrhLw+oyeXu4AimHDL1f+f3VvpczuEGgK6G5ZQAHupHG7+Z5u44Q4bh0O8uGIRJAOiCCJQA2nSqtEq5JZXtemayLS5Tyi2pVEFplUWVAQD8BYESQJsyj11WkMOarqLTYSjj2GVLxgIA+A8CJYA25RZXqsXD7uRtLrepoyU3LBkLAOA/CJQA2nShvMbS8YquV1s6HgDAfgRKAA/kdptqdlm7EUSzy5Tboo4nAMA/ECgBPJDDYSjYae2q7GCnIYdFz2QCAPwDgRJAm4b1Dbd0vOExbGgOAF0NgRJAm6YMjpbTwlXekxOjLBkLAOA/CJQA2rQmJcHjPShvc7lNrUlJsGQsAID/IFACaNPY+EiNjwuT0aFTvP/I6TA0JTFaY+MjLaoMAOAvCJQAHsg0TR06dEgjbuTK01lvp2HojVXJ1hQGAPArBEoA91VfX6///M//1O7du7VgxmP6h9Xj1dFMaUh6c3WyEvuEWVkiAMBPBNldAAD/89VXXykzM1NNTU1at26dRowYIUlyOBx6LTNfLtNs13OVTochp2HozdXJWj4h3ttlAwBsYpimyQ7DACR9M8X92Wefae/everfv79Wr16tyMi7n3ksqajV6xvzlVtSKafDuG+wvP3+1MHR+vuVdCYBoKsjUAKQ9M0U94cffqjz589rxowZmjt3rpxO5wOvLyitUsaxyzpackNF16vV7DIV7DQ0PCZCkxOjtCYlgQU4ABAgCJQAWqe4GxsbtWLFCo0cOfKRx3C7TU7AAYAARaAEAphpmjp8+LD27NnzwCluAAAehkU5QICqr69XVlaWzp07p+nTp2vevHltTnEDAPAgdCiBAGTFFDcAALcRKIEAwhQ3AMAbmPIGAgRT3AAAb6FDCQQAprgBAN5EoAS6MNM0deTIEe3evVtxcXFavXq1evXqZXdZAIAuhilvoItiihsA4Ct0KIEuqLS0VBkZGUxxAwB8gkAJdCFMcQMA7MCUN9BF1NfXa8uWLTp79qymTZum+fPnM8UNAPAJOpRAF1BaWqrMzEw1NDRo+fLlGjVqlN0lAQACCIES6MSY4gYA+AOmvIFOiiluAIC/oEMJdEJMcQMA/AmBEuhETNNUbm6udu3axRQ3AMBvMOUNdBINDQ3KyspiihsA4HfoUAKdAFPcAAB/RqAE/NidU9yxsbFavXq1oqKi7C4LAIC7MOUN+Kk7p7inTp2q1NRUprgBAH6JDiXgh25PcdfX12vFihVMcQMA/BqBEvAjTHEDADojprwBP9HQ0KAtW7bozJkzTHEDADoVOpSAH7hy5YoyMjJUX1+v5cuXKykpye6SAABoNwIlYCOmuAEAXQFT3oBNvj3FPX/+fAUF8f+SAIDOhw4lYIMrV64oMzNTdXV1THEDADo9AiXgQ6Zp6ujRo9q1a5f69evHFDcAoEtgfg3wEaa4AQBdFR1KwAeY4gYAdGUESsCLmOIGAAQC5tvQacyZM0cff/zxQ68LCwtTTU2NDypqW0NDg7Kzs1VYWKgpU6YoNTWVKW4AQJfE326AF5SVlSkjI0N1dXVau3YtU9wAgC6NQIlOZcWKFfr5z3/e5jUOh8NH1dzLNE19/vnn2rlzp2JiYvT973+fKW4AQJdHoESnEhkZqVGjRtldxn0xxQ0ACFT8bQdY4M4p7jVr1mj06NF2lwQAgM8QKAEPfHuK+3vf+56io6PtLgsAAJ8iUKLTampqUn19vXr27CnDMHx+/8bGRmVnZ+v06dOaPHmyFixYwBQ3ACAg2bd6AeiAmzdv6m//9m81fPhwhYaGqlevXgoODlZycrL+5m/+RtevX/dJHWVlZXr77bd14cIFrVmzRosXLyZMAgACFhubo9O4vQ9leHi4XnzxRc2YMUPdu3fX2bNn9c4776ioqEi9evXS73//ey1atMgrNXx7inv16tVMcQMAAh6BEp3GnDlzdPHiRX300UcaPHjwXZ81NDRo2bJl2rNnj7p166YDBw5oypQplt6fKW4AAO6PQIlO4+rVq+rRo4d69ux538+vXLmiIUOGqLGxUZMnT1Zubq5l9y4rK1NmZqZqamqUnp6uMWPGWDY2AACdHYESXcqKFSuUlZUlScrLy9P48eM9Gs80TR07dkw7duxQ3759tWbNGqa4AQD4FhbloEuZNGlS6+uDBw96NFZjY6M2btyobdu2aeLEifrBD35AmAQA4D54AAxdSkxMTOvrsrKyDo9z5xT36tWrmeIGAKANBEp0KW63u/W10+l85O9/e4p7/fr1dCUBAHgIAiU6hezsbJ08eVJ/8zd/0+Ym5levXm19HRcX90j3uHMV96RJk7Rw4UJWcQMA0A78bYlOYePGjfrNb36jF198UbGxsQ+87vDhw62vn3jiiXaPf/XqVWVkZDDFDQBAB7AoB51KTk7OAz8rKirSnj17JEkzZsxoVyi8vVH5u+++q5CQEK1fv54wCQDAI6JDiU7lr//6r/X4449rxIgRd71fWVmpdevWyeVyqUePHvrXf/3Xh47V2NiorVu3qqCggCluAAA8wN+e6BRGjx6t4OBgXbt2TRMmTNDTTz+tyZMnKyQkRGfOnNFvf/tblZeXq1+/ftqwYYMmTJjQ5nh3TnGvWrVKY8eO9dFPAgBA18PG5ug0rl69qk2bNmn37t06deqUysrK1NzcrKioKI0bN05Lly7VD37wA0VERDxwjG+v4l69erV69+7tw58CAICuhw4lOo3Y2FjNWv6Mrg2YpYbiShnlNWp2mQp2GgruG64bg6N18ZZbYx+QJ5niBgDAO+hQolMoqajV6xvzlVtSKafDkMt97x/b2+9PSYzWG6uSldgnrPWzO6e4ly1bxhQ3AAAWIlDC72Xlleq1zHy5TPO+QfLbnA5DTsPQm6uTlT6+v44fP66cnBymuAEA8BICJfxaVl6pXt2Qp478ITUkfXdwk0LK8pniBgDAiwiU8FvFFbVa+MsDanK5H37xfZlyyNRb6QO0YPpjltYGAAD+iI3N4bd+tPGbae6OM2QYDr2b32BZTQAA4F4ESvilU6VVyi2pbNczk21xmVJuSaUKSqssqgwAAHwbgRJ+KfPYZQU5DEvGcjoMZRy7bMlYAADgXgRKCzz33HMyDOOR/mfFihV2l+3Xcosr1eJhd/I2l9vU0ZIblowFAADuRaC0Sb9+/ewuwa9dKK+xdLyi69WWjgcAAP6IPVQsdObMmYdek5aWposXL+q5557zfkGdlNttqtll7eYDzS5Tbrcph0XT6AAA4I8IlBYaNWpUm58fOnRIFy9e1Lhx4zR9+nQfVdX5OByGgp2GpaEy2GkQJgEA8BKmvC0wYsQIPf744w+97p133pEkvfzyy94uqdMb3LuHpeMNj3nAAd8AAMBjbGzuI1VVVYqLi5NhGLpy5YoiIyPtLsnv3LhxQ2fOnNGZM2eUWWzorCtGpjzvKjodhr43daB+ls753QAAeANT3j7y3nvvqb6+Xs8//zxh8g4VFRUqLCzUmTNndPXqVQUFBWnYsGF6ef5Q/fnOa5bcw+U2tSYlwZKxAADAvQiUPvLrX/9aEtPdpmnq+vXrrSGyvLxcwcHBGjFihJ544gkNHz5cISEhkqQ/nPtMxy7d8Ghzc6fDUMrAKI2NJ8QDAOAtTHn7wOHDhzV9+nQlJyfr5MmTdpfjc6Zp6sqVK63T2ZWVlerWrZtGjhyppKQkDR06VMHBwfd8r6SiVgs8OstbCnE6tOvVWUrsE+bJjwAAANpAh9IHAnExjmmaunz5cmuIrKqqUvfu3TVq1CilpaVpyJAhcjqdbY6R2CdMb65O1qsb8tSRf/UYkt5cnUyYBADAy+hQetmtW7cUFxcnSV1+MY7b7dbFixdVWFios2fPqqamRuHh4Ro1apRGjx6tQYMGyeF49I0FsvJK9T8/yJPLNNu1SMfpMOQ0DL25OlnLJ8R35EcBAACPgA6ll73//vuqq6vrsotxXC6XiouLVVhYqHPnzqmurk49e/bUmDFjNHr0aCUkJMgwPFup/fiAbnqq22md7D5O52+45XQY932u8vb7kwZF6e9X0pkEAMBXCJRednu6e/369TZXYp3m5mZ98cUXOnPmjM6dO6fGxkZFRUXpscceU1JSkvr37+9xiLzNNE1t375dCVGh+vmfpOrstVplHLusoyU3VHS9Ws0uU8FOQ8NjIjQ5MUprUhJYgAMAgI8RKL3oyJEjOnnypMaPH6+pU6faXY5HmpqaVFRUpDNnzuj8+fNqbm5W3759NXXqVCUlJalfv36Whcg7nT59WsXFxXrmmWcUFBSksfGRdwVGjlMEAMB+BEov6uyLcRoaGnT+/HmdOXNGFy5cUEtLi2JjY/XEE09o9OjR6tOnj1fv39jYqJ07dyopKUnDhg277zWESQAA7MeiHC+5deuW+vfvL+mbxTg9e/a0uaL2qaur07lz51RYWKgvv/xSbrdb8fHxSkpK0ujRoxUVFeWzWnbs2KHjx4/rT//0T7vk86cAAHQVdCi95He/+51qa2v1wgsv+H2YrKmpad3ep6SkRKZpauDAgVqwYIFGjRplS5i7du2acnNzNW/ePMIkAAB+jkDpJbdPxvHXxThVVVWtIfLSpUsyDEODBw/W4sWLNWrUKIWHh9tWm2ma2rZtm3r37q1p06bZVgcAAGgfAqUXHD16VCdOnND48eM1ZcoUu8tpVVlZ2RoiS0tL5XQ6NWTIEKWnp2vkyJHq0aOH3SVKkk6ePKnLly/rv/23//bQzc8BAID9CJRe4E9bBZWXl7eem33t2jUFBQVp2LBheuqppzRixAiFhobaXeJd6uvrtXv3bo0bN06JiYl2lwMAANqBRTkWq66uVv/+/VvPrw4Pj/DpSmTTNHXt2rXWEFlRUaGQkBCNGDGidbV0SEiIz+p5VFu3blVBQYH+9E//VBEREXaXAwAA2oFAabGC0iplHLus3OJKXSivad14e1jfcE0ZHO2VjbdN01RpaWnrdPaNGzcUGhqqkSNHKikpSUOHDlVQkP83o0tLS/Xuu+8qLS2t0+/bCQBAICFQWqSkolavb8xXbknlQ48GnJIYrTdWeXY0oNvt1uXLl1tD5K1bt9SjRw+NGjVKSUlJGjx4cKd6/tDtduvf/u3f5Ha79dJLL3XozG8AAGAPAqUFsvJK9Vpmvlymed8g+W1OhyGnYejN1claPiG+3fdxu90qKSlRYWGhzp49q9raWoWHhyspKUlJSUkaNGhQpw1iR48e1fbt2/XCCy8oISHB7nIAAMAj8P95UD+XlVeqVzfk6VFSucttyiVTr27Ik6Q2Q2VLS4uKi4tVWFioc+fOqb6+XpGRkRo3bpxGjx6tAQMGeOXIQ1+qra3VRx99pMcee4wwCQBAJ0Sg9EBxRa1ey8x/pDB5J1PSa5n5Gj+g113T383Nzbpw4ULrudmNjY2Kjo7WxIkTNXr0aMXFxXX6EHmnPXv2yDAMzZ8/3+5SAABABxAoPfCjjd9Mc3vCZZp6fWO+3ntuooqKinTmzBkVFRWpublZMTExmjZtmpKSkhQTE9OlQuRtly5dUl5enpYuXeo3+2ACAIBHwzOUHXSqtErL/uVTy8ZbEXpWUapRXFxc6zORffr0sWx8f+R2u/X2228rODhYP/jBD7pkYAYAIBDQoeygzGOXFeQw1NKORTgP45Cputjx+snaFEVFRVlQXedw5MgRlZeX68UXXyRMAgDQiXXOJcF+ILe40pIwKUluGfqqsVtAhcnq6mrt379fkyZNUv/+/e0uBwAAeIBA2UEXymssHa/oerWl4/m7Xbt2KTg4WHPnzrW7FAAA4CECZQe43aaaXdY+etrsMuW2qOPp77788ksVFBQoNTXV784SBwAAj45A2QEOh6Fgp7XP/AU7DZ+e+W2XlpYWbd++XQMHDlRycrLd5QAAAAsQKDtoWN9wS8cbHhNh6Xj+6rPPPlNlZaWWLFnCQhwAALoIAmUHTRkcLadFHUWnw9DkxK6/IOfmzZs6cOCApk2bppiYGLvLAQAAFiFQdtCalIR2ndvdHi63qTUpXf/IwR07dqh79+6aPXu23aUAAAALESg7aGx8pKYket6ldDoMTUmM1tj4SIsq80/nz5/XuXPntHDhQnXr1s3ucgAAgIUIlB54Y1WynB4+B+g0DL2xqmsvTmlublZOTo6GDBmi0aNH210OAACwGIHSA4l9wvTm6mR1NFIakt5cnazEPmFWluV3Pv30U1VXV2vx4sUsxAEAoAvi6EUPLZ8QL0l6LTNfLtNs13OVDkOS6db/fDym9ftd1ddff62DBw9qxowZ6t27t93lAAAAL6BDaYHlE+K169VZShn4zUrtBz1Xefv9yYnR+qvkFt08uUelpaU+q9PXTNNUTk6OwsPDNXPmTLvLAQAAXmKYphkYx7P4SEFplTKOXdbRkhsqul6tZpepYKeh4TERmpwYpTUpCRobH6mWlhb99re/VWVlpV566SVFRna9RTmFhYXKyMjQ008/rZEjR9pdDgAA8BICpZe53eYDT8Cpra3Vr3/9a4WGhuqFF15QSEiIj6vznqamJv3rv/6rYmNjtW7dOrvLAQAAXsSUt5e1dZxiWFiY1q1bpxs3bmjTpk1yu90+rMy7Pv74Y9XV1SktLc3uUgAAgJcRKG3Wr18/rVq1SufPn9fevXvtLscS169f1+HDhzVz5kxFRXX9E4AAAAh0BEo/MGLECKWmpurQoUM6ceKE3eV4xDRNbd++Xb169dKMGTPsLgcAAPgAgdJPTJs2TRMnTtTWrVtVUlJidzkddurUKV28eFGLFy9WUBC7UgEAEAgIlH7CMAwtXrxYAwcO1AcffKDKykq7S3pkDQ0N2rVrl0aPHq2hQ4faXQ4AAPARAqUfcTqdWrt2rbp3764//OEPamhosLukR7Jv3z41NTVp4cKFdpcCAAB8iEDpZ7p3767vfve7qqmpUWZmpldXfhcWFuov//IvNW7cOEVFRalHjx4aMmSI5s6dq5/+9Kc6cuRIu8cqKyvT0aNHNWfOHPXs2dNrNQMAAP/DPpR+6ssvv9T777+vSZMmafHixZaObZqmfvKTn+jnP/+54uPjtXbtWg0fPlw1NTXav3+/srOzZZqmUlJS9Pnnn7drvP+/vfuNieJM4Dj+m13+GP/QqtgookClVqhutCpqoiYYt1HQaE8o+AJDTFpfWJPTpF7jvfFlr76xb5oLL0j8C4oEvaC0DVZJjWlpa/c48IxKSgMmoMZqQVLFmbkXi33XNgAACS9JREFUd2xEoFKe6emO309CMrs7++SZ6ItvZueZKS8v14MHD7Rt2zYFg0FP5wsAAJ5vrJp4Tr366qvKy8vT6dOnlZycrJycHM/G3rVrl/bv36+SkhKVlZVpzJgx0c927typsrIybdu2bcTj/fDDD+ro6FBpaSkxCQDAC4ifvJ9jixYt0pIlS/TZZ5+ptbXVkzFra2u1f/9+hUIhlZeXD4jJfu+++66ys7P18ssvP3W83t5e1dfXKxQKKS0tzZM5AgCA2EJQPufeeustzZo1S1VVVbp165bRWK7raufOnZKkDz/8cNjb+liWpZaWFtXX1z91zLNnz8pxHIXDYaO5AQCA2EVQPucCgYAKCgqUlJSkiooK9fb2jnqshoYGXb9+XYFAQPn5+cZz6+jo0KVLl7Rq1SqNHz/eeDwAABCbCMoYkJiYqM2bN+vBgwc6fvy4bNse1TgnTpyQJKWlpQ1Yie04jrq7u3/XWI7j6PTp05o2bZoWLVo0qvkAAAB/IChjxMSJE1VUVKSOjg7V1tZqNIvz+1dsz5w5U7Ztq6ysTDk5OUpISFBSUpISExO1cuVKHThw4Km3K/ruu+/U2dmpvLw8BQL8NwIA4EVGCcSQmTNnav369YpEIrp48eLv/n5zc7MkRa953L59uxYuXKjjx4+rpqZG7733nr7++muVlpZq3bp1w/683tPToy+//FJvvvmmUlNTjY4JAADEPu5DGYPOnj2rCxcuqLi4WK+//vqIvtPb26tx48YNeO/kyZPasGHDgPfq6uqUn58v13W1ZcsWHThwYNBYNTU1unbtmt5//32NHTt29AcCAAB8gTOUMWjVqlXKyspSdXW1Ojs7R/SdJ6+RzM/PHxSTkrR27VoVFhZKkg4ePKhIJDLg87a2NjU1NWn16tXEJAAAkERQxiTLsrRx40YlJyeroqJiRAtqHj16NOB1QUHBsPsWFxdHt48cORLdtm1bZ86cUWpqqhYsWDCKmQMAAD8iKGNUQkKCiouL5bqujh07pr6+vt/c/8nb+sydO3fYfefPnx/dbmxsjG5/8803un37tvLz82VZ1ihnDgAA/IagjGFJSUkqLi5WV1eXTp069ZsrvydMmKCEhITo6996Cs7kyZOj2zdv3pQk/fLLLzp//rwWL16sqVOnejB7AADgFwRljEtJSdHbb7+tlpYWNTQ0DLtfIBDQnDlzoq+f/An8cY+Haf+zuT///HMlJiYqNzfXg1kDAAA/ISh9IDs7W7m5uWpoaIjeGmgoOTk50e2urq5h93v8EY8pKSlqbW3V5cuXFQ6Hh3z2NwAAeLERlD6xYsUKhUIhnTx5Uh0dHUPus2nTpuh2/03Oh3Lp0qXo9vLly3XmzBmlp6dr3rx53k0YAAD4BkHpE5Zlaf369UpJSVFlZaXu3bs3aJ9wOBxdjHP48OFhr7k8dOiQpP8+8vGNN97Q3bt3lZeXx0IcAAAwJILSR+Li4lRUVKS4uDhVVFTo4cOHAz4PBoP69NNPFR8fr0gkoo8++mjQGEePHlVtba0kac+ePbpy5YqWLl2qKVOm/F+OAQAAxB6elONDXV1dKi8vV0ZGht55551Bz9quqqrS1q1b1dPTozVr1mjdunUKBoM6d+6cqqqqZFmW9u7dq8zMTHV2dmr79u0DVogDAAA8jqD0qatXr6qyslLLli1TOBwe9PlPP/2kTz75RHV1dWpvb5fjOEpNTVVubq527Nih+Ph4VVZWqrCwUNnZ2c/gCAAAQKyIe9YTwB9j9uzZCofD+uKLL5ScnDzgyTbNN+6p6p/d+nfaRj3atFrJtqv4oKVZU8ZrasYkPZowTfU1h5SZmamsrKxneBQAACAWcIbSx1zXVW1trSKRiEpKSqTxU7S7ukmNbXcUDFiyncH/9P3vTw106+9bV2j+rOnPYOYAACCWEJQ+Z9u2Dh8+rK/af1XDrzPkuBoyJJ8UsKS4QED7CkLaMJ+oBAAAw2OVt88Fg0GNzVqp+vvT1Wc7I4pJSXJc6aHt6M/HIjoVufEHzxIAAMQygtLnfrx9X3/9xxVJ1v/+fh9X0gcnmtR2+77XUwMAAD5BUPrcX6qbZBte1WC7rnZXN3k0IwAA4DcEpY/968Y9NbbdGfHP3MOxHVeNbXfUfGPw03cAAAAISh878X274gLePC4xGLBU9X27J2MBAAB/ISh9rPHHO3pkeHayn+24+rbtZ0/GAgAA/kJQ+tj1Wz2ejnftZren4wEAAH8gKH3KcVz12d7eYrTPduV4dMYTAAD4B0HpU4GApfigN9dP9osPWgp4dE0mAADwD4LSxzKnjPd0vNdemeDpeAAAwB8ISh/LyZikoIervBenT/RkLAAA4C8EpY8VLpxhfA/KfrbjqnDhDE/GAgAA/kJQ+tjc6S8pJ938LGUwYCknfZLmTn/Jo5kBAAA/ISh97uNNIQUtw6C0LH28KeTRjAAAgN8QlD6XnjxO+wpCGm1SWpL2FYSUnjzOy2kBAAAfiXvWE8Afb8P86ZKkD040yXbdEV1XGQxYClqW9hWEot8HAAAYiuW6LneqfkG03b6v3dVNamy7o2DAGjIs+99fkjFJf/sTZyYBAMDTEZQvoOYb91T1fbu+bftZ1252q892FR+09NorE7Q4faIKF85gAQ4AABgxghJyHJcn4AAAgFEjKAEAAGCEVd4AAAAwQlACAADACEEJAAAAIwQlAAAAjBCUAAAAMEJQAgAAwAhBCQAAACMEJQAAAIwQlAAAADBCUAIAAMAIQQkAAAAjBCUAAACMEJQAAAAwQlACAADACEEJAAAAIwQlAAAAjBCUAAAAMEJQAgAAwAhBCQAAACMEJQAAAIwQlAAAADBCUAIAAMAIQQkAAAAjBCUAAACMEJQAAAAwQlACAADACEEJAAAAIwQlAAAAjBCUAAAAMEJQAgAAwAhBCQAAACMEJQAAAIwQlAAAADBCUAIAAMAIQQkAAAAjBCUAAACMEJQAAAAwQlACAADACEEJAAAAIwQlAAAAjBCUAAAAMEJQAgAAwAhBCQAAACMEJQAAAIwQlAAAADBCUAIAAMAIQQkAAAAjBCUAAACMEJQAAAAwQlACAADACEEJAAAAIwQlAAAAjBCUAAAAMEJQAgAAwAhBCQAAACMEJQAAAIz8Bz17gQKcQu+qAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -48,12 +48,12 @@ "import networkx as nx\n", "\n", "G = nx.barbell_graph(m1=3, m2=2)\n", - "draw_graph(G)" + "draw_graph(G, node_size=200)" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 43, "metadata": {}, "outputs": [], "source": [ @@ -63,7 +63,97 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3yV9d3/8dd19jnJyQ6EhACBsGXJUEFEAUFtraN2auuovXtbe/fuvlvbX1u1d23t3WWHtduqtdZdrVZA2bJFNgkjjCyy58nZ1++PkNRAck4WJMD7+XjkAZxrfc8JmLffz3cYpmmaiIiIiIj0kmWgGyAiIiIi5zYFShERERHpEwVKEREREekTBUoRERER6RMFShERERHpEwVKEREREekTBUoRERER6RMFShERERHpEwVKEREREekTBUoRERER6RMFShERERHpEwVKEREREekTBUoRERER6RMFShERERHpEwVKEREREekTBUoRERER6RMFShERERHpEwVKEREREekTBUoRERER6RMFShERERHpEwVKEREREekTBUoRERER6RMFShERERHpEwVKEREREekTBUoRERER6RMFShERERHpEwVKEREREekTBUoRERER6RMFShERERHpEwVKEREREekTBUoRERER6RMFShERERHpEwVKEREREekTBUoRERER6RMFShERERHpEwVKEREREekTBUoRERER6RMFShERERHpEwVKEREREekTBUoRERER6RMFShERERHpEwVKEREREekTBUoRERER6RMFShERERHpEwVKEREREekTBUoRERER6RMFShERERHpEwVKEREREekTBUoRERER6RMFShERERHpEwVKEREREekT20A3QERERDoyTZPGYJimYISoaWIY4LJZSXbasVmMgW6eyGkUKEVERAaBSNSkuLGFI/U+av0hombn53kdNoZ7XYxK8eC2Wc9uI0W6YJim2cVfWRERkXNLMBKltMlPbUuIGn8QX6ith8/AY7OS5raT6nKQnejCaRsco76ipklhTTOFNU2Eu0qRnTCA4V4XU4ck4VSwlAGmQCkiIue8hkCIAzXNHG9sIWq2hq3Ofri1vd4WxsamJZLisp/Vtr5XfSDE1rI66gPhXl1vADaLwYysZIZ73f3bOJEeUKAUEZFzVtQ0KahuYn91E9B5iOxKW7gcl5bAxHQv1rM8NvFEc4ANJTWYZs/a3ZUJ6YlMTE/EMDTGUs4+BUoRETkn+cMR1hfX9Lp3770S7VYuz03DYz87UwsqfQHWHa/plyD5XhPTE5mY4e3nu4rENzgGkIiIiPSAPxxh1bFqGvohTAI0hyKsPFpNc6h/7heLPxxhQ0ltv4dJgH3VTZQ3+c/AnUViUw+liIicUyJRk5VHq2gMhvs1lBmA225l0agM7JYz099imiYbS2opbw7EbPsvvv4FVr309y6Pf/jeL/GR//pKp8ecVgtX52XisKrPSM4eLRskIiLnlP3VTTQE4/ckBgN+nv31z/jHHx/l8vfdxH/94GcxzzcBXyjC7ooGZmSl9FNrOypvDlDWHOjWud6UVLypaZ0f6+J1aJ3pvq+qkWlDk3vVRpHeUKAUEZFzRp0/REFNU9zzdm1cz2Pf+R8a62oIh0I9ekZRfQvDk9xkepy9bWaXDtY2dzkD/VTX3npnl72QsZjAkXofkzK82M9QL2XUNKkPhKnzh2gIhAidXO7IbjVIdtpJddrxOm1YNEHogqFAKSIi54z91U1xA9naV1/kt/d/g1u/+HUcThe/+uaXevQMA9hX1UTmiP4NlE3BMJW+YL/esysRE441tDAmNaFf79scDFNU76OoztceIk+NjG3fG4fVwugUD3lagP2CoEApIiLnhJZwhLImf9zevaHDR/DzV1eRNjSLt154psfPMYGqliCNwTBeR//9mCw7y5Nlypr8/RYow1GTvVWNnfawdvX9CEai7K9uoqC6ifHpiUxIT1SP5XlMgVJERM4JxQ0t3SoVj5s+s8/PMoCj9T4uykzq873a1PlD3S53AxTt38ND99zOod07aayrJSk1jYmz5vCBO+8hf8q0uNfX+kOYJ3cJ6oualiCbS+vwhSNAz9fMNGntWS5p9HNJdgpJzoFbSF7OHE0BExGRMyISNaluCXKotpl3T9SztayOd8rr2FPZQEljC83BMD1ZaKS65eyUi6E1BNW09GzsZTw1/lCPwti+rZuZvWgpP/3HmzyxdT+ff/gXHDtQwH0fu56VL3Y9A7xNKGrSEo72vsG0rpe55ng1LSfDZF80BcOsOlZNrb9/P1cZHNRDKSIi/arOH+JQ7b+3QYSux9l5HVbGpCaQm+SOu1TP2Q4idf3Uw2eaJtFolEAPwt31d3yaD332C2SNGNX+2pRL5/H1X/2Jz193Bb/59teYNPtShg4fEfM+gUgUj7134xdr/UHWF9fQg+3FYzJp/Z+MdceruXJkRr8OJ5CBp++miIj0C384wvYT9ZQ1Bbo9zq4xGOHdEw3srmxk+pAkcpPcnQY40+x7b1tPhU2TlWvXEQ0GCIfDRCKRDr+e+vtYxwAmffBOrPbulXtHTZjc6etZI0Yx/fIr2bZqBWtfeYFb7vlCzPv0dqnpcNRkU2kd3bn88N5dvPLn37J3ywbqqqrwJCYyNHckE2fO4cP3fhl3YuK/23Py3ptLa7lqZIbGVJ5HFChFRKTPShr9vFNeR/hkd1ZPY0w4arK1vJ7iRj+zhqWctih3ZIC24Ni1ew9GOIjVasVms7V/tf3Z4XC0/76rc2w2G4ZhcNRq6ZeF2IeNzAOg+NCBuOf2dn/yvVWN+ELxy9z/evpx/vzQd7nlnv/m1i9+neT0DIoPHeB393+Df/zpMa699a4OgRJa/27UB8IcqGlmfHpi5zeWc44CpYiI9MnhumbePdHQL/c60Rxg1bEqrshNx/WepWZ6mYv6zG6z4nZ78Xg8eDweEhISOv3V4/Fgs9kIh8NUV1dTWVlJZWUlJSUlVFZWUlNTw8gF15EwZFifS+jRaGtPbdz7mCZHDxSQm5NDSkpKt5/rC4U5WNsc97zdm97m9w/cxye/9m0+cOdn2l/Pm3gRn3voZzz02TuwxtgbfV91I3kpHu3oc55QoBQRkV473tDSb2ESWnuvmoMR1h2vYcHI9PZxlQZgtxjtax+eFabJ6JEjafE14/P5KCsrw+fz0dzc3F7GjsVms5GQkEBSUhIXXXQRbq8bXzcy3f53tvCjz9/Nz/+5msTk03fsKTtaBEDO6PyY9wk1N/Diq88D4Ha7ycnJaf/Kzs4mIaHzJYUO1/m6NRv9Lw8/gDvRy7W33nnasey8Mfzi9bUxr4+acKy+hfy0/l0rUwaGAqWIiPRKcyjMtvK6Lo/v3vQ237n9lrj3mTz7Mh544vn2P5tAQzDMrooGLj65BaJhGKS67FScpYXBAVpqqzm2by/p6em43W5cLhcejweA+vr69vM8Hg+JiYm4XC7sdjsWi6V1Ek4gQHNzMxUVFRw/fhxvdT2j5i+N+9xwKERdVSXvrlvF5e+7scOx0qJD7Fi/Gpvdzvzrb+7yHgYwbvgwrv/qVykpKaGkpITS0lK2bNnC6tWrAUhJSekQMrOysrDZ7RTV+eKGyeMHCzm0ZyczrliI3eGI+566cqiuWYHyPKFAKSIiPWaaJtvK6rs1aSM7b0zn94ialB09TM6YsZ0eP1LfQo7XzdCE1h1rUl0OKn3BfhmHGI8ZjRKor6a+vr5DeARITEwkLy+PkSNHMn78eIYOHRqznGyaJgUHDrKzvKZbs8bbjv/ugW8SDAS4+IqFeLxeCrZv4/cP3gfAp7/zUMwZ3iZQV1SAMW0KY8eOZezYse1tqaur6xAy33rrLcLhMIZhkJ2XT9qcq+J+Pvvf2QJAZvZw3l23ihd++0sO79lJJBIme9RoFnzgFt73ybux2mLHjOZQhJZwRDvpnAcUKEVEpMfKmwNUdXNdyK5Kn5tWvM7Dn/sU1378ji6v3VFRzxXDktizZw+7Dhwiacb83jS3xwyLBVtzHe973/sYPnw4KSkpVFdXtwex4uJiVq1axapVqzqUk4cPH05OTg5ut5uWlhbeffdddh46SvKkmdiH5HZrHOOk2Zfy4JMvsv61l3n5j4/yuwe+QTQSISUjk4kzL+G/fvBIzIXNzWiUltoqdi1/nTVvvI7L5SItLY3k5OQO4z5zcnIYO3YsLpcLv9/f+v6aQ0S6EXrLjh4G4N11q1j3z5f4j29/nxm/+D1Bv59nH/0Zjz/8ALs2refrv/4zVmvssFjnD+FOVKA81xlmb9cUEBGRC9a649VxewuPHyzk2V//hC/95DedHv/O7R8C4P7Hn435rCOr/knTiVLGjBlD6swr8Bvx+0I+OCG7y2P3fv+nLLz5I10eN02TYFMDhf9s3bYxPz+fuXPnMmrUqA5Bq6WlpT1ctgXNlpYWABwOB6FQiJRRY8mZswDoxiSafjTCbCZYU8HBgwcpLi4mFArh8XhwOp2Ew2F8Ph+RyOmzuIfPupyU0RMw4qwJ+ptvf43lf38SgP984Edc/eFbOxz/ys1LKNq7m8/c/zBLPnJbl/cxgIkZXiZotvc5T4FSRER6pDkY5o2iyj7d41jhfr74gYV87Rd/4JKrr+3yPDMaxRVsZn5eFklJSZQ0trCptOtxm/1lUoqT4l3vsGXLFoLB1p5Yr9fLpZdeyowZM3C73R3OD4VC7N69m40bN1JRUYHD4SA1bxxDZsztl8XRu8sARia728eeAoTDYfbs2cPGjRspLy8nPT2dmTNnkpeXh9/vp7GxkebmZpqammj0DiGalN6jQPnX7Qdxuj0djr/6l9/zp+9/+7TxsZ21d2xaQr9ucSkDQyVvERHpke6WumN5/ak/kZk9nFkLl8Q8z7BYMD1JBINB9u3bR0VlJaY7HRJT4oae3jCAVJed8UNSmbB4MVdeeSW7d+9m7dq11NTUsHz5clasWMHkyZOZM2cObrebbdu28e677+L3+8nPz2f+/PmUVtfROCTvrIZJ04wSDfjZsWk5W/3+9kXVQ6FQhwXWq6urWbZsWaf3yJl9BSlJaaftbHSqttnnSalpp4VJgKHDcwEoPXI4dpuBQ7XNNAXDjEjykJXo1GLn5ygFShER6ZFaf6hby8p0pbmhnjWvPM+HPvvFuOPrAIJRk8f+8EfC/pbW2dbeJIbNvxYLtn4PlQaQ74aKior2IJaYmMjixYspLy9n//79VFRUsHv3bnbv3g2AxWIhIyODUaNGUVtby4svvcToxTfgInaZOxjw89Lvf83aV16gsrSEhORkpl42n49+/qtxt1Q8lRmNYgYDmEW7SfF6saWmYrPZsNvt7Yurv/f3gUCAw4cPc+jQISKRCKNHj2b69On4vJkUt8Rf0Hx4/jigdUZ6LN0J0xETypoClDYFcFktjEtPZEyK56wOEZC+U6AUEZEeqfOH+jTT+s3nniYajbLolo93+5rLFy8l2WqydetWSkpKyDqyFyN/Gpgm9EPwME0TTJPDa99gR9nxHl0bjUapqKigoqICgJwpM3GlpMcMRAF/C/ff+RGOFuzj3u//hJkLFlF2tIhffP2/+cpNS3jwiee73H6x0zb4Gjm2fjl33nYraWlp3bpm+vTpFBQUsGXLFoqKijh06BApI/PJvWxh3GunXTYfi8WCr6mRxrpavCmpHY5XFLd+hsPzO5/Bf6q2v0/+SJSdFQ0cb2hh1rAU7fd9DtF3SkREeqQvi4tHo1Fe/+ufmf/+m04LIbG8s2MHDceL2v+8b9tmEo4fZ9QV12BYrH3rqTRNiEap3L6eay6/FI9nYXuPntVq5cSJE+zatYvCwkKsVitTp05l1qxZpKSk8Prrr7N79+720rZpmiSPnhC3ZPz3X/6Ygu1bufv//S9zr7keaN2/+6uP/J7/unY+P/vq5/jxSyti9+CaJhgwIdXDyNxk/vg2PP3003zqU5/C5XJ1OLWpqYmioiIOHjxIaWkptbW1nU7Kaamt6tZHljpkKPOuu4G1r77Iyhf/3mGnHIDVLz8HwOIe/E/De9X5Q7x5pJK5OWkMOblslAxuCpQiItIjfekP3LZqORXFx7jutj/07EKztbQ8bNgw0tLSSEpKIiUlBZs9TIlhJxDtfZtSXHZGu0yeKT7CtmiQj3/844RCIXbu3MnWrVuprKwkPT2dpUuXMm3aNJxOJ/v37+fFF1+ksrKS8ePHM3r0aPbt20dlSwirO/ZC3YEWH//665+x2R1ceeOHOxzLGjGKqZfN5911q3hn9ZvMjjXG1DAo3ryaXYcLyMzMZMiQIRw6dIjHH3+c6dOnc+zYMcrLy6mrq2vfrrHj5QZJSUnk5eUxduxYcnNzSUxM5NUD5a3/0xCn5/fO+x7g0J6d/P2XPyZ9aBazFi7B19DAc7/5OYf27GTxh25l3nU3xLxHV0xa8/L64houz00j06NQOdhplreIiPTImmNVVLXEHjvXle/e+WHCoRDfe/LFHl1XtOqfNJ8ope1HljstkyGTL8abPaK97N39MXcmYOCwGIxLSyA/LRGLYVBUVMQTTzxBWloaDQ0NhMNhJk6cyKxZsxg1ahQAhw8f5q233qK0tJTRo0ezcOFCcnJy2u+8oaiMskAUjK57TLeuXM5D99xO/pTp/PDZ1047/tyjP+Ppnz/M4g99nHse/L8u72MAyWaA2j3bOH78OI2NjZ0GxzYul4vc3Fzy8vLIzc1t3Rmnk4XH91c1sreqsVtDCZobG3jhsUfYuPx1qkpLcLhc5E28iCUfue20XX56y2oYXJ2XiceutSoHM/VQiohIj6S4HFS39Hwc5fGDhezasI4v/+yxHj8zL2sIOdOnkDUsm2qrmyNNoX+Pn+zBGErTNImEglTs2kr1wb1sO1mqtlgsmKaJaZpUV1fjdrvJz88nLS2NyspKysrK2LNnD6WlpeTk5PDJT36SvLy80+7vt9jBiB22jxTsBWDIyZnQp2qbkHNk/97Y7wUoq2vi4MnJQaey2WwYhkHo5MSZtkk50WiUcDh8Wvg0TZMDBw6wZt3bpF+2GMOIH+ASvEl84ivf4hNf+Vbcc9+rsrSYL16/kJbmJu5//DkuumRul+dGTZN3yuuYNzxNE3UGMQVKERHpkRSnrVeTcl578o+kDR3GJYu7XneyU+EQNZUVFBQWMuKKa3AlW1uDRS/ChWEY2OwOsi+eS2ZaKmX7d9HQ0EAkEsFisbTvw93S0sK+ffs6vUdJSQlPPPEEVqsVh8OBw+HA7Xbj8XjwzLwK4oznrKtsnbyTmNz5GNKEk0vy1FVVxH0/ruRUDIuFBI+HESNGMHz4cIYPH87evXvZtGkTH/vYx8jKyuqw+Prq1asJhUIYhsGQIUPIycnB6XRSVFREeXk5I0aMIMcBpeG4j++1R7/1FVqam7p1rglU+IIUN/rJTXLHPV8GhgKliIj0SG/GszU3NrDmH89x03/8V9z9nTswTbK9bt53x52sPFqFLxyhb6M4gZOTZ2yjJuKormbOhAnMmjWLjIwMoHXi0DPPPENhYSEACQkJ5OXl4fF42hcAb2lpwe/3EwwGaWxspK6uDovNxuTZ8ScHBfytu+nY7PZOj9sdjtbzTu66E/OtWCzc87n/IjM1pcPrOTk51NbW8txzz3HXXXcxceJEJk6c2P7+KisrKSkpoaCggF27drX3Yrb1ajYW7cc5fAJBw9rve6cve+ZJDu3ZSc7ofEoOH+z2dQdqmhUoBzEFShER6RG33cqwRCflTYFuh423nv8bkXCEqz/c9TZ8nTIM1r7yPCVzF2J4EulzmGy/rQGmSdas+cwZkU6auzXENTQ0sHr1ag4cOIDV2toT+olPfIKhQ4fGvF80GqWh2cdbpY1xn+10tYairtZwDJ3cmcfp7l548vlaaLBa8Hg87WMiLRYLN998M3/60594+umnufvuu0lMTGw/ZhgGBw4coLCwkIyMDObPn4/X623vxdy5YwfBHbsYc/WNWO2Oflvvs7K0mCd+9CB3ffNBVr7wTI8CZV0gRK0/RKqr8yAuA0uBUkREemxMSgJlTYFun3/9Hf/B9Xf8R4+eYUajRH2NTJo5B787dpjctXEda155gX1bN1NVVoJhMRiSk8vFCxZx4933kpyWfvpFhoEBbCmrY+7QBDasX8/mzZtxOBwsXryYKVOm8MQTT/C3v/2Nu+++m4SErmdvWywWkhITgPiBMiVzCABN9bWdHm+ub91aMjUzdoht85c//4loONTeDpvNhtPpxOVy4XA4aG5u5rHHHuPSSy/F5XJRUFDAgQMHSElJ4cYbb2TKlClYTgbGtnGhpmnS0NDAoZJyjpi2k8NV+x4qH/3WVxh/8WyuuunDrHzhmR5dawAljS0KlIOUAqWIiPRYpsfBsAQn5c3d76XsKcMwqDu4F2PKnJjb8b3+1J/4/YPfZOT4SXzm/h+Qf9F0fM2NrH3lBZ7++cOs+cfzPPjEC2TnjTntWhNoCob567I1VO7ZxsyZM7nqqqva13H8+Mc/zh/+8Aeefvppbr/9duydlKmj0Sjl5eUUFhYSSc3F6jp9K8L3yju5YHnb4t+nOlF8DICR4yfGvA+AEQ0zc8Z0mpqaOpTiA4EAzc3N7RNvmpqaWLFiRYdr6+rq+Mc//sHrr7+Ow+HA5XLhdrtJTEzE6/WSnJxMamoqM5MdHPQb1Afj76ATy/K/P8WBndv56Stv9ep6k9ZdmmRwUqAUEZEeMwyDGVnJLCuqJNyHhc5jGZuWyJgFCzlU54t5XtDvx2Z3cN9vHidjWOsSPu7ERG68+14a6+t46Xe/4o/f/zbf+t1TnV5vGAbp4yZzYs87bN68mV27dpGTk0N2djY5OTnceOONPPPMM7zwwgvccsstVFdXU1hYyOHDhzlx4gQ+37/bl3vZIpJz82KWiC+6ZC4uj4ejBfvw+3y4PB0D6P53tgAw66rY+5wDZHkTuOy667o83tjYyOrVq9m+fTvRaJT09HTGjBnT6VhQ05VA1Okl6s0kkJRCjcXG4doQwZLDtNRW4XAnkDJqLMbJxdZ7MuO6qqyEvzz8AJ/82rfbv0e9UesPndX90aX7FChFRKRXXDYrc4alsKGktl97KQ0g1WVnXFoibxyuiDubOyVzCJe/78ZOg8rsq5bw0u9+xc4Na4lEIl3uPGOx2fnof9yLpaGqfRzh1q1bWbNmDQBWq5X9+/fzve99r9Pr23r4Io21YIyO2V6n28M1t97JS7/7Fate+jvXfPyO9mPlx4+yc8NacseO5+IFi2LeByD95NjPUwUCATZs2MCGDRsAmD9/PqZpsmbNGhYsWMCUKVMACEWjHKtv4WBtM82h1h7IU/dpd6emk5wzEgyDSChI84lynIlJOBKT4ravzaP/76uMmTKNqz98a7ev6Uw4ap5cRVQGGwVKERHptaxEF3OyU9hcWtdvoTLFZWfe8DQqfEHC3dh7Y8EHPsiCD3yw02Meb2voaZuEE0txU4CE6mpKS0upqKjo0PPY2TaF7127MhgMkpqayjCPnWDcFsOH7/0S+7Zs5Mkff5/k9EwuXrCQsqNF/PLr/43T5eYLP/pl7G0XAUyTYZ6OJfhQKMTmzZtZv349oVCI2bNnc/nll+PxeDBNk7q6Ol5++WWcTieWpDT2NYQItX8urTHttE/pPYHeaneQOCQbAH9JEa6c09fiPNWKZ59i/zub+ek/VsY9tzuiphlzCIQMDAVKERHpUiAcpS4QIhCOYNK6a0miw0aS09b+Qz3H6+byXAsbjlURMunTjOCRSW6mDU3CZrFQ6w+e1lvWU22ziCdcPCfuckXVLQHW/utfQMdyrsXSOoM6Go22h0ybzYbH4yESieDz+TBNk5qaGlwuF6lDRxLxJMfsWXW63Hz38Wd56Xe/4qmfPMTPv/o5PF4v0+ZewVce+T1ZuSNjttWMRqkvLuKR5//E0KFDSU5Opra2loqKCiKRCAkJCSQnJ7N///72ZYFCoVDrmErDYHXhcdLHejGj0R5/v9rOd2aPintudXkpj//wAW790n1dLuTeU1aFyUFJWy+KiEgHjcEwh+uaKWnw4490vpVfW1k6L8XDcK+bcCjIr3/zGMNnzsWamdPtINh2nstmYWZWCkMT/r3G5drj1VT6utPf17UffPYOtq5cznf//GzM3VjaFPzzGaItzTidTgKBAOFwuH0B8KysLIYMGcK+ffsoLS3luuuuIzk5GZ/PR2VVFTUhiKRk4kjJ6FObu8OMRjnwr+cJNHScKe71esnKyiIxMRG73X7al81up9yejM/q7JdxiPHGM771wjP86r4vdvt+8XbNcdssXDume7Pf5exSoBQREaB1tvO7J+qp8PWsZ9BmMaCymN2rlnPvvZ/F7kmkqN5HUV0zwUjrXcxoFDCxWDoulJ3hdjAmNYFhic7Typj/LCwlYPY+9Gxfu5LvffpWPnDnZ7j9f77TrWsOr/wnvorS9nJzNBqNuT82gDM5ldxLr8KdmtGrHr/emJSRSLCkiGXLltHc3Nz+usViYcaMGcyePRuLxUJDQwONjY00NDTQ0NBAS2o2lvSsfp3U0ttJMt/+xAfZs2VD3BD5XjmJLi7J6XyHIRlYKnmLiFzgTNPkUJ2P3ZUN7cMMe9LTEI6amGnZTLnhY1hcCXjsViZneJmYlsD6LdvYtmc/WaNGM2HiROx2O06rhRSnnRSXDdsp4SsUCrF79262bNlC0qyrcCQk9uo9lR45zC++/t9cuuR93NaDfabz8vLwjh6Bw+HotIev7SsUCvHSSy+RMmYiqROmA62f2ZkOkwbgjIZ485knqKqsJCMjg/z8fBobGyktLcXv97Nt2za2bdvW4TqPx0PG6PEkZwyLef+9Wzfx6uO/pWjfHuoqK/CmppIzOp/rbvsUsxd2Puv8bM64TnNrDcrBSoFSROQCZpom28rrOdYQf5u/WAzDIGxz8tbRKuYNTyPFYeHVV19lx44dzJ07l0VXXta+eHZnqqur2bJlCzt27MDv9zN27FgSEjz0ZtXBipJiHrjro0y4eA5f+L9fxZ/c8h7+lhashLFYLB3WZPR6vSQmJrbvRAMw/5ZbOd4SPWPrcJ7KNKP4aqvZvfJVoid32amuriYYDJKUlMTo0Tc+XAYAACAASURBVKOx2WxUVVVRVlZGWwFy1KhRLFi0mF0tVkIxlnh67ck/8ofvfYsRYyfw3w//gryJk6k+Uc5TP3mIH3z2Dq677S4+9a3OZ7mfDQZo68VBTCVvEZELlGmavFNez9E+hslTWYDa7esoPVTI9ddfz9SpUzs9LxqNUlBQwNatWzl8+DAej4cZM2Ywc+ZMUlNTWX+8mhM9HENZdrSI7975YSbNupTPPfSzHoVJgKI3nsdOa5m7qanptNndHo8Hr9dLav4k7Llje3Tv3morKTeUHqNs82qys4YyceJERo8eTVpaWqdB3efzsWXLFjZs2EAgEGDIRTMZMvniLnsTw6EQd152Eb6mRn747GvkT5nefizgb+E/Fsyiqb6WR15bQ87o/F6/l4ri49yz+JJOj02efRkPPPF8p8cMIMfrYk62yt2DlXooRUQuUEX1vn4PkwCRaJSEiTP5xPx5jMjJPu14Y2Mj77zzDtu2baOxsZHc3FxuuukmJk2a1N4D2NLSQripHgxX3HUo2xw/WMj9d36EmVcu4jP3P9whaL38h0eZd90HYi6qbcEkZ0gGhYWFOBwOZs2axUUXXYTD4aCxsbH9qz4QIjD89F133uvgrh1sWfkGuzeup6L4OI11tSRnZDBi7ASWfvSTzLrq6m69J9M0iYZD1OzZRrIZJDtrKKWlpRw5cgSAzMzMDouwDx06FKvVisfjYcGCBVx++eW8s307RxzpMUvTzQ31+Jpat43MzR/X4ZjT5SZrxEgO7qrlyP49fQqUQ4bn8vz+0l5dOy6td8Mf5OxQoBQRuQA1h8LsqmiIe17rmLrfUfDuVprqaklMTmHynMu45Z4vMmLs+E6vMSwWbC43lRY3I06+ZpomR44cYevWrezfvx+r1crUqVOZNWsWWVlZRKNRSktLOXjwIIcOHaKkpITEYbmMuuKabr2fI/v3cP9dH2XetR/gU9/63mnh6S8/epAxF03rMlCa0ShN1SdI8nh4//vfT3V1Ndu3b2fTpk1kZ2e3jq30evEHAgQzRxFvde2H7vkkzQ0N3HXfA1xy9bU43R4O793F7x64j4fuuZ1bPvsFPvb5r8V8T6GWZpqOHWRa7jA++KEb2wNyNBqlurqakpISiouLKS0tZefOnUSjUaxWK5mZme3LHDU0NBByexk1f2nMZyWnZ5AxLJuqslKOHyzs0EMZDPgpP3YUgJRu7i/e38anJ5KiPbwHNZW8RUQuQBtKaihvir0P9yt//i2P//B+Jsycw13fuJ9ho8ZQWnSI3z/4TY7s38N9jz3BlEvnxXzOZVleju3fw9atW6mqqiIjI4PZs2czdepUAoEAhw4dav8KBAJYLBYsFkvrcj0WCxNu/AQ2hzPmMw7u2sGDd3+MUDDQZc/f+tf+EXc2ceO+7ZTsfZdQqOuRmxljJjBs9hUx2wPwqcunsfRjt/Phe7/U4fVDu3fytVuuwe5w8vjmvThdp48JNE2TSDDAvpefhGgUi8XSPo6zbSxn2+/dbjctLS1UVVVx7NgxysvLT2t/9ozLSBs7Oe6EoT1bNvKTL36GpNR0/vOBhxk1cTLV5WU89ZOH2Ljsn+RPmc73//ZKj4cR9IUBJDltXDUyQ4uZD3IKlCIiF5jmUJg3DlfGPOdY4X6+fONiXAmJPLpiI4nJKe3HGmtr+M9Fl+BJ9PLI62txJyR0fhMzSv3xIoo3rmTixIlMnz6daDTK4cOHKSwspLa2dQ1FwzA49UeR1+slNzeX1AnTaHB4Y7b1j9//Nv/8y+/jvu9YgTISDFCx7nW8CQk4HA78fj91dXXU19djGAZZWVlYLBZcE2fhTsuMG872bt1E7pixeFPTOrze0tzMbTNbx14+vmlvh8/1VGNdUewt/y61NzQ0UFtbS11dHc3NzZ3u3uN0OvF6vaSnp5OQkEA0GiWUMw4jMblbs7ErS4t5/IcPsOGNV9tfS0pLZ+417+fjX/wGCd7ub7fYVwbgsVu5ckQ6TtvZC7HSOyp5i4hcYIrqfHHXmXz7X68QjUaZPOey00KPNzWNqXPns3nFv1j/2kss/lAX+zMbFpJzR5Nrj1B0oJCnnnqq89MMg8zMTEaPHs2YMWPIycnB7W7tufOFIiwrqiDG5GTuuu8B7rrvgRjvJr4p2elMuOee016vr6+noKCA/fv3U1pdy7iM7pV8J83qfOJJwfYtAIy5aFrMMGkAdYaTvEST2tpaqqurOX78OI2NreMc09LSyMnJITMzk6SkJGw2G01NTR3GelZXV9PY2MjoUVOwdSNMbnlrGb/8xhcZkjOc//3rS4wcP5nqE6Ws+Ptf8TU1EPD5zmqgTHHZmZuTqjB5jlCgFBG5wJQ1+eMudVNbWQFAasaQTo+nDckCYPvaVV0HSgDDYM+RYupK/z0Rw+12M2zYMMaOHUteXh6ZmZkA7b1wRUVF7QtxNzY24ncn4x4zuftvsAcMwOuwdTnhIzk5mTlz5jBnzhwKK+vYXe3r9iShNpFIhPqqSnZuXMeT//e/jJk8lS/95NGY15jAiUYfbz33J6xWK1lZWeTn5zN06FDS09NxOByEw2EikUj7r06nE5vNhtfr7fB6rcMRt40VJcX89Mv3YBgWvvnbJ0nJaP2eDB89ltv/59v8zy3X8qUbFvGjF94gM3t43PuNTHK3L0XVkzJo2yc7OdNLfmqCytznEAVKEZELSCRq0hg8vVR6qqS0dABqqyo6PV5fXQVA8aHCmPcxoxGSs3IY6rIybNgwPB4PgUCAhoYGjh49yq5du2hoaKC5ublD2dtms5GUlERSUhJew8DqbyLiTOhxmOuOmVnJmNEogVMC2qm/lgUMMHr+Y/OjU0cRjUSwWK1c/eHb+MjnvkxyevztGS02O47EJIJNDZSUlFBSUtKt551a2p5402isjti9fOtfe4lASwuzFy5pD5Pvvd/l77uRxx9+gL//8sfc+/2fxm3D6NQE8tMSOFjTzPHGFqImXfaKt71uNQxGJrvJT00g0aF4cq7Rd0xE5AJSH+jeUuGzFy7hhcceYc/mDTTV13Uoz/qaGtmz+W0AmurrYt/IsGBNTKZg02oKCgqA1nF+SUlJJCQkkJaWxvDhw0lISMDtduN2u3G5XFitViKRSHugC0b8FEedhCy2fgmVpmmCaXJ8w5s88reibl0zetEHSMjM6vGznt1znIbaaor27ubJH3+fe5fM5e5vf58rb7gl7rVJQ7KoD7TEnCjkdDpxuVztn53H48HlcrV/1doshOM8p6L4OACpXcziTh3S+vqhPbvithnAabXgsVuZOSyFKUOSKGvyU+sPUdMSwheOYJomFsMgwW4l1W0n1eVgWKIT+1nYtlLODAVKEZELSCASe1/qNuOmXcx1t93Fa0/+kR/ceyd3feN+svPyKT9WxJ9/cH/cmddtDMPA5nJjtVoxTRPTNAkEAlRWVlJZGXti0KksdgejFlyDJ31on7b7M6NRTDNK9bsbMJrqSE1NbW/re389laOTGdndlZSazrR5Cxg77WI+f+0V/PLr/0360GFxZ8mPHpOPNy+3PSye+qvT6Yy5AxHAltJaihtjD3NomzxUU1He6fHaihMAHXYK6ordYuC2/btNDquFkckeRibHvVTOYQqUIiIXkJ6MZ/vUt77H2GkXs+xvf+H/feKDhEMhskaOYsEHPsi1t93Jw5/7FJ7E2DOwgfZtDKE1rLV9tQUhi8XS4bVYv+fwHkItTdhzRoMBhtH9Hq22HWeMliaMkoMMcdsxRoxob9epv576+4DD3udtFj2JXuZffxP/+ONveONvf4kbKKdcdBHD+7jdYIrLzvFGf8xzZi9cwvO/+Tm7N71NfXVVh5K8aZqse+1lAKbOjb9kUqrLflb395bBQYFSROQC0p3Zvu91xfU3c8X1N5/2+qqXnwNg2KjRce+RnprKR7785R49N56GQIiC6qb2nrdYs9bbjiU77YxNS2BEUhbGxZ0vyh7L+uIaTjQHet/ok4YObw2xlSXH457rsPa9BJyV6GJXZWPMc8ZOncH1d3yGV/78GP/7mU/wqW8+yMjxk6guL+W5R3/God07GDF2Ajd9+t64zxuW6Opzm+Xco0ApInIB8Tr75z/7JYcOADB++qyY5xlA8hnY4STJaWd2dipTwxGON/qpbglSe3J8XhurYZDqspPqspPtdZHWx56zFJediubYi8FDa9j+80Pf4U8bdnf6vJqT5WNvSvx9qftjdxivw0amx0GVLxiz7Xd8/TtMnDWH5c88yQ8+ewdNDfU4nC5y8sbw8S98nfd98m5cHk/MZ1kMGNHHHlU5NylQiohcQMItPizRCFFL/LX9dry9hmEj8hgyPPe0Y++uW4XFamV+J72X72UCqc4zt2We02YlPzWB/NTWxdWjpknUNDEwsBhdj4fsjVRn90re0UiExrpadm96+7SSdsDfwvqT5eNZC5fEvI/bZumXHkqA/NQEKn3BuOddsvhaLll8ba+eYQCjkj3Y+6nNcm7Rd11E5DxmmiZlZWWsWrWK3/72t/zkJz+htuQoZjT+5Jy/PPwAL/3h16e9vm3VCg7v3cV1t32KITnx1yRMc5+9PZgthoHNYsFqMfp9HF+Gx4GlG7dse+7Pvnovq156ltqKE7Q0N1OwfSv/++nbKD92hBlXLOTqGOt3GvRv6TgrwcmwBGes7cf7zGG1MCkj/phaOT9p60URkfNMKBSiqKiIgoICDhw4QGNjI06nk/z8fMaNG0fK8FFsrWyOe58v37iY4wcL+cz9P+Sype8nGomwcflrPP7DB5g85zK+/NPHsMdZNDvJYWPRqIzzZpLGtrI6jjW0xOypjITD7Nywlrdf/wf7tm2h+kQpkXCYhKRk8iZMZv71N7Pghlvizs5ePCqDpH7s3fWHIywrqiQca9uhPrgsJ1XjJy9gCpQiIueBxsZGCgsLKSws5PDhw4TDYdLS0hg3bhzjxo1jxIgRWK2tZW7TNHnjcGWH8YadWfbMk2xa/hrHDhTQUFONy5NA3sTJLPzgR5n//pu6FRJnDE0mLyX2uLtzSZ0/xFtHq87oMwwg3e3gihHp/X7vSl+Adcdr+jxb/VQT0hPVO3mBU6AUETkHmaZJeXk5BQUFFBYWUlZWhmEYjBgxoj1Epqendxn6ihta2FwWZ1HyPjAAj93K4lGZWLtTJz6H7DhRz6E63xm7vwEs6ufeyfc60RxgQ0kNptmzZaS6MiE9kYnpiedNL7T0jgKliMg5Il4pe+zYse3rPcZjmiabSmspa4o/a7m3rhyRTpo7/j7S55pwNMryokr84egZ+ewuyvAyLr3zvcX7S70/xJbyOhoC8fbQ6ZwB2CwGM4Ym93mdTDk/KFCKiAxiPSll95Q/HOGtI1UEIv0fjM73EmidP8SaY9WE+/lHaHaii0uyU85Kb1/UNCmsaaKwurnH72O418XUIUm4bL37uyfnHwVKEZFBJFYpe+zYsYwfPz5mKbunmoJhVh+rJtiPoXJ0sodpQ5PO+xJoTUuQdcU1RKJmv3x22YlO5mSnYjnLn1s4alLc2MKROh91gRBdzdlJtFvJTXIzKsWDW0FSTqFAKSIywPqzlN0bzcEwG0pqaQj2rvwJ/96NZmJ6IhMuoPF0TcEwW8vqqPGHenV926c0KcPLuLSEAf/coqZJYzBMUzBC1DSxGOCyWUl22rDFmZUuFzYFShGRAXAmS9m9ETVNCqqb2F/dBPR8skai3crs7BRSXeffmMl4TNPkUJ2PfVWNhLq5JE9bAE932ZmRlXzGJuCInC0KlCIiZ8HZLmX3VlMwTFGdj6J6H+Go2eke2e99LdVlZ0xqAsO9rrNeqh1sIlGTksYWiup81PpDdLV0vNNqITvRxegUzxnZllJkIChQioicIQNdyu6LSNSkqiVInT9ErT+IPxwlarbO7E1y2khx2Ul3Ofptb/DzTdQ0aQiEaQyGiURNDKM1SKa47JrIIuclBUoRkX402ErZIiJngwKliEgfdFXKzs3NZdy4cYOmlC0iciYpUIqI9NC5XMoWETkTFChFRLpBpWwRka4pUIqIdEKlbBGR7lOgFBE5qa2U3dYTeWopOz8/H4/HM9DNFBEZdBQoReSC1lkpOzU1tb0XUqVsEZH4FChF5IKiUraISP9ToBSR855K2SIiZ5YCpYicl1TKFhE5exQoReS8oFK2iMjAUaAUkXOWStkiIoODAqWInFNUyhYRGXwUKEVkUFMpW0Rk8FOgFJFBR6VsEZFziwKliAwKKmWLiJy7FChFZEC8t5R94MABSktLVcoWETlHKVCKyFmjUraIyPlJgVJEziiVskVEzn8KlCLSr+KVsseNG0dGRoZK2SIi5xEFShHpM5WyRUQubAqUItIrKmWLiEgbBUoR6RaVskVEpCsKlCLSJZWyRUSkOxQoRaSDWKXscePGMXLkSJWyRUSkAwVKkT4yo1GilZVEysowm5owo1EMux1LejrWYcOweL0D3cSY2krZbSFSpWwREekpBUqRXjBNk8ixYwQ2byZcWAjhcOsBi6XthNYvwEhKwnHxxTguvnjQhEuVskVEpD8pUIr0UKSsDN/LLxM9caI1QEaj8S862btnnzUL9+LFGA7HGW7l6VTKFhGRM0WBUqSbzGiUwKpVBNatO/lCL/7pGAaG14vnppuwjRrVr+07lUrZIiJytihQinSDGQ7je+45wgUFfb/ZyQDn/uAHcUye3Pf7vYdK2SIiMhAUKEXiMKNRfM8+2xom+/Ofi2Hg+chHsI8f36fbqJQtIiIDTYFSJI7Ahg34ly07Mze32/F+7nNYkpK6fYlK2SIiMtgoUIrEEKmupunRRyESAcAfCvGjNWt4ZP16bpkyhUdvuinm9csPHOCR9evZUVaGaZpMHjqUey69lBvaSt2GgTUvj4TbbosZAFXKFhGRwcw20A0QGcz8b7zRXuZeU1TEF195hWqfj1A3Znb/esMG7nvjDe6YOZM/3HILNouF/1uzhtuffZb/qajgG1ddBaZJ5PBhwoWFp5W+20rZBw4c4NChQ+2l7EmTJqmULSIig4oCpUgXorW1hA8cAOC5Xbv40quv8u1Fi3DZ7Xzu5ZdjXrv3xAn+37JlXJydzU/f//723sfvX3MNO8vL+eHq1SzOz2d2bi4YBoFNm7CNG9dlKfvKK69UKVtERAYtBUqRLgS3bWudkW2ajExJYdO99zIsKYmntm+Pe+2vNmwgYprcPnPmaQHwzpkzWXfkCI+8/TZPfOQjrb2URUX84cc/pqS5ub2Ufckll6iULSIi5wQFSpEuhA4caC93z87N7dG1/yosBOCSTq67dMQIoHV8ZTgSwWa1YgIzMzNZePPNKmWLiMg5xzLQDRAZjMxwmGhVVa+uLW1ooNrnA2Bkauppx7OTknBYrfjDYQ5WVwNgWCyMT0lh9OjRCpMiInLOUaAU6US0srJ7Wyp2oqKpCQCXzYbbbj/tuGEYJLtcAJw4eS7RKJHS0t41VkREZIApUIp0wmxp6fW1vlAIAEeMnkbnyWMtJ8/t6zNFREQGkgKlSD/znOyVDJ5cu7IzgZPHOvRgaklYERE5RylQinTG4ej1pUMSEwHwh8MdeiDbmKZJvd8PQJbX2/664XT2+pkiIiIDSYFSpBPWzMxeX5udlET6yaV+jtbWnna8tKGBYCSC22ZjTFpa64uGgXXYsF4/U0REZCApUIp0wnA6sXQyQ7u7rhk3DoDNx4+fdmzTydcWjx2L7T3jLBUoRUTkXKVAKdIFW14eWHr3T+Rzc+diNQz+8s47mKeMjfzztm0AfH7u3H+/aJpYR47sdVtFREQGkgKlSBccs2b1eumgiUOG8OCSJWwtKeHL//wnlU1N1Pp8fOuNN1hTVMT/LFjQYbF0y9ChWLOz+6vpIiIiZ5Vhntp9IiIAhEIhqh55BFdTExYg5bvf7fLcX91wA7fOmHHa68sKC3nk7bfZUVqKCUweOpTPXnopN0ye3OE89/XX47j44v59AyIiImeJAqXIKUzTZNeuXbz55pskNzVxczSKEf+y3jEMLOnpJP7nf2JohxwRETlHaS9vkfc4duwYb7zxBqWlpUyaNIlFixbh3LSJ4JYtZ2ydSM/NNytMiojIOU2BUgSora1lxYoV7N27l+zsbO68805GjBgBgLloEeEjR1q3Y+znUOlavFizu0VE5Jynkrdc0Px+P2vWrGHz5s0kJCSwaNEipkyZgmF0LHJHm5tpfvxxolVV/RYqnVdcgeuqq/rlXiIiIgNJgVIuSNFolG3btrFq1SpCoRDz5s1j7ty52N+7FeIpzJYWfC+8QPjgwd4/2GIBw8C1dCnO2bN7fx8REZFBRIFSLiimaXLw4EGWLVtGVVUV06dPZ+HChXjfswVivOtDO3fS8tprEAx2/8EWC0SjWIcPx33jjVjT03v5DkRERAYfBUq5YJw4cYLly5dz6NAhRo0axdKlS8nKyurVvUy/n+COHQQ3byZaU9P6osXSWg43TWgrmZ/8vW38eJyzZ2PNyzutnC4iInKuU6CU815TUxMrV65k+/btpKamsmTJEsaNG9cvwc40TaJVVUTKyoiUlmI2N2NGIhh2O5b0dKzDhmHNycFycm9vERGR85ECpZy3wuEwGzduZO3atVgsFhYsWMDs2bOxaokeERGRfqVlg+S8Y5ome/bsYcWKFTQ2NjJ79mwWLFiA2+0e6KaJiIicl9RDKeeV4uJi3njjDYqLixk/fjxXX3016ZoAIyIickYpUMp5oa6ujjfffJPdu3eTlZXFkiVLyMvLG+hmiYiIXBAUKOWcFggEWLduHRs2bMDtdrNw4UKmTZuGxWIZ6KaJiIhcMDSGUs5J0WiU7du3s3LlSgKBAPPmzWPevHk4HI6BbpqIiMgFR4FSzjmHDh1i2bJlVFRUMHXqVBYuXEhycvJAN0tEROSCpZK3nDMqKytZvnw5Bw4cYMSIESxdupTs7OyBbpaIiMgFT4FSBj2fz8eqVavYunUrKSkpLF68mIkTJ2rHGRERkUFCgVIGrXA4zObNm1mzZg0AV1xxBXPmzMFm00gNERGRwUQ/mWXQMU2Tffv2sWLFCurq6pg1axYLFiwgISFhoJsmIiIinVAPpQwqJSUlLFu2jGPHjjF27FiuvvpqMjMzB7pZIiIiEoMCpQwKDQ0NvPnmm+zcuZMhQ4awZMkSxowZM9DNEhERkW5QoJQBFQwGWb9+PW+//TZOp5OrrrqKGTNmaGFyERGRc4jGUMqAiEaj7Nixg7feeouWlhYuu+wyLr/8cpxO50A3TURERHpIgVLOuqKiIpYtW0Z5eTkXXXQRixYtIiUlZaCbJSIiIr2kkrecNdXV1SxfvpyCggKGDx/OkiVLyM3NHehmiYiISB8pUMoZ19LSwurVq9myZQter5fFixczefJkLUwuIiJynlCglDMmEomwZcsWVq9eTTQaZf78+Vx66aVamFxEROQ8o5/s0u9M06SgoIDly5dTW1vLxRdfzJVXXkliYuJAN01ERETOAPVQSr8qKytj2bJlHDlyhNGjR7NkyRKGDh060M0SERGRM0iBUvpFY2Mjb731Fu+++y4ZGRksWbKE/Px8jZMUERG5AChQSp+EQiHefvtt1q9fj91u58orr2TmzJlamFxEROQCojGU0iumabJz507efPNNfD4fl1xyCfPnz8flcg1000REROQsU6CUHjt69CjLli2jtLSUSZMmsWjRItLS0ga6WSIiIjJAVPKWbqupqWHFihXs27eP7Oxsli5dyogRIwa6WSIiIjLAFCglLr/fz5o1a9i0aROJiYksWrSIKVOmaMKNiIiIAAqUEkMkEmHbtm2sWrWKcDjM5ZdfzmWXXYbdbh/opomIiMggojGUchrTNDlw4ADLly+nqqqK6dOns3DhQrxe70A3TURERAYh9VBKBydOnGDZsmUcPnyYUaNGsXTpUrKysga6WSIiIjKIKVAOYqZpEq2uJlpXB5EIWK1YkpOxpKdj9PM6j01NTaxcuZLt27eTmprKkiVLGDdunMZJioiISFwKlIOMGQoR2r2b4I4dREpLIRQ6/SSbDWtWFvZp03BMmYLhdPb6eaFQiI0bN7Ju3TosFgtXXnkls2bNwmq19uFdiIiIyIVEgXKQMMNhAuvWEdiwAYJBMAzozrfGbscxezauK6/E6MFkGdM02b17N2+++SaNjY3Mnj2bBQsW4Ha7+/AuRERE5EKkQDkIREpL8b34ItGqqt7dwDAwkpPx3HQTtm6sC3n8+HGWLVtGcXEx48eP5+qrryY9Pb13zxYREZELngLlAAvt24fvuedaeyP78q04OdbRfcMNOKZN6/SUuro6VqxYwZ49e8jKymLJkiXk5eX1/pkiIiIiKFAOqND+/fj+/ve+BclOuG+6CcfUqe1/DgQCrF27lo0bN+J2u1m4cCHTpk3D0s8Te0REROTCpHUoB0ikpubfPZP9rOXll7EOHYqRmck777zDypUrCQaDzJs3j3nz5uFwOPr9mSIiInLhUg/lADBNk+Y//rF1Fnc0CoA/FOJHa9bwyPr13DJlCo/edFPc+yw/cIAvvfoqx+vrqfvud/99wDAIJyfzrN3OicpKpk6dyqJFi0hKSjpD70hEREQuZOqhHACh7duJFBe3/3lNURFffOUVqn0+QicDZiyVTU1841//4s1Dh6htaTn9BNPEWlfH5JQUPvDpT5Odnd2fzRcRERHpQIPozjLTNFuXBjrpuV27uO1vf+OeSy/le0uXxr3eFwwy51e/wgQ233tvzHOnRaMMGzasr00WERERiUk9lGdZ5PjxDssDjUxJYdO99zIsKYmntm+Pe71hGPz25pu5euzY2OcBZkMD4YMHscc5V0RERKQv1EN5loX274f3zK6enZvLsB6MbXTb7XHDZDuLpfV5IiIiImeQAuVZFikpaZ+Ic8ZFox3GaoqIiIicCQqUZ5FpmkTKys7qM6NVVZiRyFl9poiIiFxY9w4UHQAAIABJREFUFCjPpkiE/8/efYfXedf3/3/eZ2vraG/LK97b8hLZCSEkNCRAyGpaKJQmYdPyLW35Qn+dV4GW0QQodPEtZDtphiFx4iR2ZEfetryHrGFJ1t5HZ973748THVuxPDRsrdfDly9L59zjcx9dvvzyZ7w/hEJX956mieX3X917ioiIyJSiQHk1Xa2h7g9SD6WIiIhcQQqUV5NjbBbVG07nmNxXREREpgYFyqvIsNkwUlKu7j3j4sDjuar3FBERkalFgfIqsxcUgGFcvfvl5WFcxfuJiIjI1KNAeZU5Cguv3s0MA/vVvJ+IiIhMSQqUV5lz0aKr10NpWbiWLr069xIREZEpy7AsyxrrRkw1vhdeIHTgQGzVd+p3v3vBYx+/6y4eXLZswGuPvPACT+7bN+jxpdOm8epnPgM2G47Zs0m4775Ra7eIiIjIYBQox0CkpYWen/70ypYRMgwSP/c57Hl5V+4eIiIiImjIe0zYMzLw3HTTFb2H+0MfUpgUERGRq0KBcoy41q6NLpgZ7fmUhoEtJwf3ddeN7nVFRERELkCBcowYNhsJDzyALStr9EKlYWBLSyPhoYcwxqiIuoiIiEw9mkM5xiy/n95nnyVSWTnia9kLC4m/7z5s8fGj0DIRERGRy6NAOQ5YlkVo9276XnsNwmEYyo/EMMBmw3PLLbhWr1YRcxEREbnqFCjHEbO7m+COHQR37sTq6zs7FH7Oj8gCTMAO4HbjWrECd0kJttTUMWixiIiIiALluGRFIoQrK4nU1RGpr8dsa8OKRDDsdozUVLZXV5M6Zw7LPv5xzZUUERGRMac0Mg4ZdjvO2bNxzp496PtNTz3FaZ+P5QqTIiIiMg5olfcEVFhYyOnTpzGvZGF0ERERkcukQDkBFRYWEgqFOHPmzFg3RURERESBciLKy8vDbrdTW1s71k0RERERUaCciBwOB7m5uQqUIiIiMi4oUE5QhYWFCpQiIiIyLihQTlBFRUV0dXXR2dk51k0RERGRKU6BcoIqLCwEoKamZoxbIiIiIlOdAuUElZCQQFpamoa9RUREZMwpUE5gmkcpIiIi44EC5QRWWFhIY2MjgUBgrJsiIiIiU5gC5QRWVFSEZVnU1dWNdVNERERkClOgnMAyMjLweDxamCMiIiJjSoFyAjMMI7avt4iIiMhYUaCc4PoX5pimOdZNERERkSlKgXKCKywsJBgM0tTUNNZNERERkSlKgXKCy8/Px2azqXyQiIiIjBkFygnO6XSSk5OjQCkiIiJjRoFyElCBcxERERlLCpSTQFFRER0dHXR3d491U0RERGQKUqCcBAoLCwFUj1JERETGhALlJJCUlERqaqqGvUVERGRMKFBOEppHKSIiImNFgXKSKCws5MyZM4RCobFuioiIiEwxCpSTRFFREaZpUldXN9ZNERERkSlGgXKSyMzMxO12a2GOiIiIXHUKlJOEzWajoKBA8yhFRETkqlOgnEQKCws5ffo0lmWNdVNERERkClGgnEQKCwvx+/00NzePdVNERERkClGgnEQKCgowDEPD3iIiInJVKVBOIi6Xi5ycHAVKERERuaoUKCcZLcwRERGRq02BcpIpKiqira2Nnp6esW6KiIiITBEKlJNMYWEhgHopRURE5KpRoJxkUlJSSE5Opra2FtPnI9LSQqSpCbO9Hcs0x7p5IiIiMgkZlooWThpWOEzo4EGq33yTpN5e4j4YIO127NnZ2IuKcC1bhj0ra2waKiIiIpOKAuUkYAWDBLZsIbBjBwQCWIBxsRNsNjBN7EVFeG68EUdx8dVpqIiIiExKCpQTXLi6Gt8LL2B1dcFQf5SGAZaFq6QEzy23YLhcV6aRIiIiMqkpUE5ggfJy/L/7XSwYDpthYEtLI+Hhh7ElJ49eA0VERGRKUKCcoALvvYf/tddG74KGgZGcTOIf/RG2pKTRu66IiIhMelrlPQGFjh8f3TAJYFlYXV34nnxSq8FFRERkSBxj3QAZGsvvp+9//3fAMLc/FOJ7mzfz47IyPrloET+9++5Bzz3d2cmv9+zhjRMnONrcTF8oRHp8PCWFhfzJ6tWUFhcTaWgguG0b7tLSq/lYIiIiMoEpUE4wfW++ieXzxcLk5lOn+NrLL9Pq8xG6SM9iR18fy370I+w2G39966383rx5JLrd7Dx9mj999VXu+K//4h8+8hEeWbMG/6ZNOOfPx+b1Xq3HEhERkQlMQ94TiOnzEdqzJxYmn6uo4KGnnuKRNWv429tuu+i5EdMkZJr8+Q038IXVq8lNTibJ7ebGmTP5n/vuw24Y/N/XX+d0ZydYVrQEkYiIiMhlUKCcQEJ798I5vZDTUlMpf+wxPrdq1cXrTgIOu52lubl8fMGC896bl5VFsddLyDTZcuoUWBbB3buxQqFRfgIRERGZjDTkPYEEKyoGlAcqeX/f7suR4vHw9he+cMH3kz2egS8EAoQrK3HOmTPkdoqIiMjUoh7KCcKKRDCbmq7ItcORCJVtbdgNg7XTpkVftNmINDRckfuJiIjI5KJAOUGYTU0DhrtH02+PHaPT7+fTS5ZQ3L8QxzSJ1NVdkfuJiIjI5KJAOUGYXV1X5Lq9wSDffv11pqWm8o8f+cjAe3Z2XpF7ioiIyOSiQDlRXIHeyYhp8sgLL9AbDPL8Qw+dP48yEhn1e4qIiMjko0A5Udjto3o50zT5yssvs722lhcffphZGRnnH+TQmi0RERG5NCWGCcKWljZq14qYJo+8+CJbq6rY8JnPMCM9/fyDDAPbYCFTRERE5AMUKCcIW3p6tMcwHB7RdUKRCJ97/nn2NTSw4bOfpSg1NfbeG8ePA3DL7NkAOHJzR3QvERERmRo05D1BGIaBPT8/uof3MAXCYR56+mkONTay4TOfGRAmAZ4/cIDnDxyIfmNZ2AsKRtJkERERmSLUQzmBuJYupa+6eljn+kMh7n/ySd6qrOTa4mL+6rXXzjtmZ10dpdOmYQFWfDz2oqIRtlhERESmAsOyztl6RcY1KxSi6wc/gEAg9lrqd797weMfv+suHly2DID9DQ1c9/OfX/Ie9y9ZwhN3300Z0DxtGqWlpcyaNQtjBD2jIiIiMrkpUE4w/s2bCbz11pW9icdDw2238e7OndTV1ZGVlcW6detYuHAh9lFebS4iIiITnwLlBGNFIvT8279hNjcP2Nd7NMV/8pM4FyzAsiyqq6spKyvjxIkTpKSksGbNGpYvX47L5boi9xYREZGJR4FyAoo0NtLzi1+MfuFxw8Axbx4Jn/rUeW81NjZSVlbGgQMH8Hg8lJSUsGrVKhISEka3DSIiIjLhKFBOUKETJ/A9+WS0l3I0foSGgb2oiISHHsK4SEHzjo4Otm3bxp49e7Asi2XLlrF27Vq8/XuAi4iIyJSjQDmBhSsr6X366WhtyhFuzeiYM4f4T3wCw+m8rON9Ph/bt29n+/bt+P1+FixYQGlpKTk5OSNqh4iIiEw8CpQTnNnVRd9LLxE+eTJao3IoP07DAIeDuNtvx7l06bBWcgeDQfbu3cu2bdvo6Ohg5syZlJaWUlxcrJXhIiIiU4QC5SRgWRbhw4cJvPcekdras8XPB/vR2mzR3kyXC9fy5bjXrsWWnDziNpimycGDBykrK6OxsZG8vDxKS0uZO3cuNpvq54uIiExmCpSTTKSxkdDRo0Tq64nU1WH19UUDpMOBLSMDR34+9sJCnPPmXfbw9lBYlsXJkycpKyujqqqKtLQ01q1bx5IlS3BcZG6miIiITFwKlHLF1NXVUVZWxuHDh0lISGD16tWUlJTg8XjGumkiIiIyihQo5YprbW1l69at7Nu3D7vdzooVK1izZg3JozDULiIiImNPgVKumu7ubsrLy9m5cyehUIjFixdTWlpKRkbGWDdNRERERkCBUq66QCDAzp07ee+99+jp6WHOnDmUlpZSWFg41k0TERGRYVCglDETDofZv38/W7dupbW1laKiIkpLS5k9e7ZKDomIiEwgCpQy5izL4ujRo5SVlXH69GmysrJYt24dCxcuxG63j3XzRERE5BIUKGXcsCyLmpoaysrKOH78OMnJyaxdu5bly5fjcrnGunkiIiJyAQqUMi41NjaydetWDhw4gMvlYtWqVaxatYqEhISxbpqIiIh8gAKljGudnZ1s27aN3bt3Y1kWS5cuZd26dXi93rFumoiIiLxPgVImBJ/Px44dO9i+fTt9fX0sWLCAdevWkZubO9ZNExERmfIUKGVCCYVC7Nmzh23bttHR0cHMmTMpLS2luLhYK8NFRETGiAKlTEimaXLw4EHKyspobGwkLy+PdevWMW/ePGw221g3T0REZEpRoJQJzbIsTp48SVlZGVVVVaSlpbF27VqWLl2Kw+EY6+aJiIhMCQqUMmnU1dWxdetWDh06REJCAqtXr6akpASPxzPWTRMREZnUFChl0mltbWXr1q3s27cPu93OihUrWLNmDcnJyWPdNBERkUlJgVImrZ6eHsrLy9mxYwehUIjFixezbt06MjMzx7ppIiIik4oCpUx6gUCAXbt28d5779Hd3c2cOXMoLS2lsLBwrJsmIiIyKShQypQRDoepqKhg69attLS0UFRURGlpKbNnz1bJIRERkRFQoJQpx7Isjh49SllZGadPnyYzM5PS0lIWLlyI3W4f6+aJiIhMOAqUMmVZlkVNTQ1lZWUcP36c5ORk1qxZw4oVK3C5XGPdPBERkQlDgVIEaGpqYuvWrVRUVOByuSgpKWH16tUkJCSMddNERETGPQVKkXN0dnaybds2du/ejWVZLF26lHXr1uH1ese6aSIiIuOWAqXIIPr6+ti+fTvbt2+nr6+P+fPnU1paSm5u7lg3TUREZNxRoBS5iFAoxN69e9m6dSsdHR3MmDGD0tJSpk+frpXhIiIi71OgFLkMpmly6NAhysrKOHPmDLm5uZSWljJv3jxsNttYN09ERGRMKVCKDIFlWVRWVlJWVsapU6fwer2sW7eOJUuW4HQ6x7p5IiIiY0KBUmSY6uvrKSsr4/Dhw8THx7N69WpWrlxJXFzcWDdNRETkqlKgFBmhtrY2tm7dyt69e7Hb7Sxfvpy1a9eSnJw81k0TERG5KhQoRUZJT08P5eXl7Ny5k2AwyOLFi1m3bh2ZmZlX5H6WZRGpqyNSW0ukoYFIYyNWMIhhs2EkJmLPy8Oel4dj5kxs8fFXpA0iIiKgQCky6gKBALt27eK9996ju7uba665htLSUoqKikbl+lYoRHDvXoLl5ZitrdC/2vyDf5VtNjBNsNlwLlyIa9UqHPn5o9IGERGRcylQilwhkUiEiooKysrKaGlpobCwkNLSUq655pphlxwKV1Xhe/FFrM7OoZ34frh0rlxJ3K23YmhrSRERGUUKlCJXmGVZHDt2jLKyMmpra8nMzGTdunUsWrQIu91+2dfwv/EGwa1boz2Sw/1raxgYSUkk3H8/9pyc4V1DRETkAxQoRa6impoaysrKOHbsGMnJyaxZs4bly5fjdrsveI5lWfS9/DKhPXtGpxGGAU4nCQ8/rCFwEREZFQqUImOgqamJrVu3UlFRgcvloqSkhNWrV5OQkHDesf433iBQVja6DTAMcLlI+sIXsGmfchERGSEFSpEx1NnZyXvvvceuXbuwLIulS5eydu1a0tLSAAjX1ND7n/8ZO94fCvG9zZv5cVkZn1y0iJ/effeg123q6WHDkSO8fvw4R5ubqe/qIt7loiAlhXsWLOAPV64kJT4ee0EBCX/4h9pGUkRERkSBUmQc6OvrY8eOHZSXl9PX18f8+fMpXb2ahPXrowtwLIvNp07xtZdfptXno8Pv5/4lSy4YKL+7cSM/LCvjEwsX8s3rr2daaipnenr4SVkZ/75zJ3MyMnjz858n0e3G89GP4i4pucpPLCIik4k2IRYZB+Li4rjuuuv46le/yu233059fT1b/+M/MDs6wLJ4rqKCh556ikfWrOFvb7vtsq45Iy2Nf7vnHuZkZuJxOin2evn+HXewIDuboy0tvHjoEACBt9/GikSu5OOJiMgkp0ApMo44nU5KSkp47LHHuO6cnXampaZS/thjfG7VKi5ncPrh5cv5f5/+NHbbwL/ihmEw8/3h9E6/HwDL5yN85MioPYOIiEw9jrFugIgMoqkJV1dX7NuSwsIhnT4jPX3Q1wPhMHsbGrAbBtdPnx590TAI7N6Nc8GCYTdXRESmNgVKkXEoXFs7qtfr9Ps50tTE9zdvpqOvj3+96y4W9tehtCwitbVYlqXFOSIiMiwKlCLjUKSh4ezWiSP0pf/9X/7f+zUsl+Xl8dQDD7Bu2rSBB4VCmG1t2C/QsykiInIxmkMpMg5FmppGJUwC/OSuuzjzl3/JtkcfZUV+Pnf+13/xx+vX0xMIDDjObGkZlfuJiMjUox5KkfEoGBzVy3mcTuZlZfH9O+7AAH6xYwd2wxhQdsgKhUb1niIiMnWoh1JkPLrMPb6H47Pv15x8Zv9+ut5f6Q1gXMF7iojI5KZAKTIO2ZKSrti1p6WmAhCxLOrPWUluDLLto4iIyOVQoBQZh+y5udFFOcOU/Td/w0vvFy7/oDPd3bGv0+LjAbCAZkAbZ4mIyHBoDqXIOGTPyxvRopxAJMKGo0f5vfnzz3vv13v3ArAiP5+sxEQAOoH/+s//JC4ujuLiYoqLi5k+fToZGRkqJSQiIpekQCkyDjmmTweHA8LhYV/jqX37SPF4+KOVKylMTaWxu5v/2buXH5WVkRYXx48+9rHogYZB5tq1/OE113Dq1Cmqqqp47bXXME2TxMTEWLicPn06qampCpgiInIew9IYl8i41PfqqwR37471VKZ+97sXPPbxu+7iwWXLYt8fb2lh/YEDbDx+nBOtrXQHAsS9v5/3LbNm8ejatbHeSYCkr3wF2/tzKwGCwSC1tbWxgFlfX49lWaSkpMTCZXFxMcnnbA8pIiJTlwKlyDgVaW6m54knruxNDAPHNdeQcN99Fz3M7/dTXV0dC5iNjY0ApKenDwiY8e/PyRQRkalFgVJkHOvbuJHgtm1wpf6aOp0kPfYYtpSUIZ3W29tLVVVVLGC2trYCkJ2dHQuX06ZNw+PxXIlWi4jIOKNAKTKOWeEwPT/9KWZ7+xUJlXF33olrxYoRX6erqysWLk+dOkVnZyeGYZCXlxebg1lUVITT6RyFVouIyHijQCkyzkVaW+n993/H8vtHNVQ6V64k7qMfHfVFNpZl0dHRwalTp2K/e3t7sdlsFBYWxgJmQUEBdhVTFxGZFBQoRSaASHMzvf/931g+36iEyisVJgdjWRYtLS2xcFlVVYXf78fpdFJUVBQLmLm5udhGUHtTRETGjgKlyARhdnfT9/LLhI8fH94FDAMcDuJuvx3n0qVjVv7HNE0aGxtjAbO6uppQKITb7R5QAzMrK0slikREJggFSpEJxLIsQvv349+0CaurKxoSL/VX+P1Q5pg7l7iPfATbOCv1E4lEqK+vj/Ve1tTUEIlEiI+PH1ADMy0tTQFTRGScUqAUmYAsyyJ84gTBXbuI1NRg9fWdf5BhYMvIwDlvHq4VK8ZdkLyQcDg8oAZmXV0dpmmSlJQ0oERR6jl1M0VEZGwpUIpMcJZlYXV3Y7a0YIVCYLNhxMdjz87GcEz8zbACgQA1NTWxgNnQ0ACA1+sd0IOZeE6hdhERuboUKEVkQunr6xtQA7O5uRmAzMzMWMAsLi4mLi5ujFsqIjJ1KFCKyITW09MTC5inTp2ivb0dgNzc3AE1MN1u9xi3VERk8lKgFJFJpaOjY0DA7O7uxmazkZ+fHwuYhYWFOCbBdAARkfFCgVJEJi3LsmhraxtQA9Pn82G32yksLIzNv8zLy1ORdRGREVCgFJEpw7IsmpqaYuGyqqqKQCCA0+lk2rRpsYCZnZ2tIusiIkOgQCkiU5ZpmjQ0NMQCZnV1NeFwGI/HM2AFeUZGhmpgiohchAKliMj7wuEwdXV1sYBZW1uLaZokJCQMqIHp9XoVMEVEzqFAKSJyAaFQaEANzPr6eizLIiUlJRYup0+fTvIEKRovInKlKFCKiFwmv99PdXV1bBV5Y2MjAOnp6QNqYCYkJIxxS0VEri4FShGRYert7aW6ujq2iry1tRWA7OzsWMCcNm0aHo9njFsqInJlKVCKiIySrq6uATUwOzs7MQyDvLy8ATUwXS7XWDdVRGRUKVCKiFwBlmXR0dExoAZmT08PNpuNgoKC2CKf/Px8FVkXkQlPgVJE5CqwLIuWlpZYuDx16hR+vx+Hw0FRUVEsYObm5qoGpohMOAqUIiJjwLIszpw5M6AGZjAYxO12DyiynpWVpRJFIjLuKVCKiIwDkUiE+vr6WMCsqakhEokQHx9PcXFxbA5menq6AqaIjDsKlCIi41A4HOb06dOxOZh1dXWYpklSUtKAGpipqalj3VQREQVKEZGJIBgMxoqsnzp1ioaGBgC8Xu+AbSITExPHuKUiMhUpUIqITEB9fX0DamA2NzcDkJmZOaDIelxc3Bi3VESmAgVKEZFJoKenJ7Z6vKqqira2NgBycnJivZdFRUW43e4xbqkIBK0gLZEW+sw+LCwchoM0expJRpLmCE9QCpQiIpNQZ2dnLFxWVlbS3d2NYRjk5+fHAmZBQQFOp3OsmypTRGekk4pABSdCJ+g0Owc9xm24yXfks9C9kGmOadgMldCaKBQoRUQmOcuyaGtrG1AD0+fzYbfbKSwsjAXMvLw87Hb7WDd3xHymj9ZIK0ErCERDSoY9A49NW2COhY5IB+/43qEqXIWBgcXFY0f/MYlGIqVxpcxxzVGv5QSgQCkiMsVYlkVTU1MsYFZVVREIBHA6nQNqYGZnZ0+IIuuWZXEmcoYKfwU14Rp6rd5Bj0s0Eil2FrPYvZhMR+ZVbuXUY1kW+wP72dK3BRPzkkHyQqY7pnNzws0k2BJGuYUymhQoRUSmONM0aWhoGFADMxQK4fF4BtTAzMzMHHc9RadDp3nb9zatZuuQer9y7DncEH8D2Y7sq9TSK8+0oqHNhm3Mf06mZfJ67+scDR0d8bUMDOKMOD6R9AnS7Gmj0Dq5EhQoRURkgEgkQl1dXWwF+enTp4lEIiQkJAyogen1escsuAStIGW+MvYH919WkPwgg2i7V3pWssqzCocxsfZTNy2TqlAVNeEazoTP0BJpIUIEABs20u3p5NhzKHAWMNM5E7tx9aYyWJbFa72vjUqY7Gdg4DE83Jt0L6l21V4djxQoRUTkokKhELW1tbGAWV9fj2VZpKSkDAiYycnJV6U9PtPH+u71tJltwx5GPVeeI4+7Eu/CZbhGoXVXVsgKsde/l72BvfgsHzZsmJiDHtv/nsfwsMi9iOXu5VdlHulu/2629G0Z9esaGHhtXh5IfuCqBmS5PAqUIiIyJH6/f0CR9cbGRgDS09MH1MBMSBj9OW9+08+z3c/SbraPSpiEaFDJsedwT9I947qnsi5Ux2u+1+gxe4bVI+sxPNyacCvTndOvUAuhPdLO/3T9TyzkhvwhXv/+62z6ySaWf3I5Dz7+4KDnHX/3OI//3uMXvK630Mt39n0HgFWeVayNWzv6jZcRGb9/c0REZFzyeDxcc801XHPNNQD4fL4BNTB37doFQFZWVmyBz7Rp0/B4RtY7ZlkWG30bRzVMAlhEF/Vs9m3mpoSbRu26o8WyLHb4d7DNv21Yw/sQfcY+q4+Xel5imXsZ18Zde0WmK7zleyvWvuNbjvPM15+ht7WXSChyyXNtDhsZ0zMGfS8lNyX29Q7/Dua55o3J0LdpmQStIBEiOAwHLlxjPl91vFCgFBGREYmPj2f+/PnMnz8fgO7u7ljv5ZEjRygvL8cwDHJzc2MBs7CwEJdraEPMx0LHqAxVxr6/3N6vwfzywV9y4LcHKLm/hAcffxALi4pgBbNcsyhyFg2pXVfae/732O7fDjAqQXpPYA9BK8jN8TePahhqi7RRG64FYNfzu3j2G89y57fvxOlx8uSXnrzk+Sm5KfxF+V9c1r32B/ZzXfx1I2rv5bAsi/pIPSeCJ2gINwyYqwrRklTZ9mxyHDljFnLHCwVKEREZVUlJSSxevJjFixcD0N7eHuu93LdvH2VlZdhsNgoKCmIBMz8/H4fjwv8kBa0gb/nein0/1N6vc+18ZicHfnvgvNcNDDb2buQzKZ8ZNwW1DwYOxsLkqF43eJAUWwolcSWjds39gbMLpNKL0vnWtm+RkptC+W/KR+0eEA3VBwIHWBu3FqdxZQrzW5bF4eBhdvl30Wa2XXCuasAKUBOuoTZcy3b/doocRazyrCLfmX9F2jWeKVCKiMgV5fV68Xq9LF++HMuyaGlpiQXM8vJy3nnnHRwOB0VFRbE5mHl5eQNqYB4NHiVgBYDh9X7162rsYv231lNcUkzVjqoB71lY9Fg9nAqdYqZr5qg8+0h0mV287Xs79v1Qe2T9XX7eeuItKjZU0FrVGl1IlZNC0fIiPvTZD2GsNih2Fo9aTc4TwROxHtTikuJRueaFhAhRH65nmnPaqF+7K9LF677XqQvXxV670MKnfv3PXRuupaanhiXuJayLWzchFnqNFgVKERG5agzDIDMzk8zMTFatWoVlWTQ2NsaGyN999102bdqEy+WK1cAsnl7Mvrh9sWuMpPfrmW88Q/7CfFbeu/K8QAnRXsp9gX3jIlC+2ftmbHh1qD2yzZXNPPHxJ8ialcV9P7yP3Pm59HX2seWXW9j4g41kTM9gxuoZvN77Og8kPzDioe8+s++CBeUvV8gf4qXvvETFhgo66jqwu+zkzsul5NMlrHl4zYD/YBgYNIYbRz1Q1oRqeLnn5QHD2kPRHyz3B/ZTFarinsR7SLZfneoHY02BUkRExoxhGOTk5JCTk8PatWuJRCKxIuunTp1i06ZNROIipHzm7KKM4fZ+7Xx2J8fePsY33/0mJ7eeHPQYC4vacC0hK3TFhlMvR3O4mZpwDTD0HtlwIMwv7v8ou1LzAAAgAElEQVQFiRmJ/PHTf4zdGS2x4/Q4ueMv76DxaCOJ6YlYWLSYLdSEa0YczJoiTSM6H6CnuYe+rj4+95vPkT4tnc6GTt744Rs88/VnOPDbA/zR//xR7FlG657nqg5V81LPS5fsjbwcFhZdZhfPdD/Dvcn3kmyb/KFSgVJERMYNu91OQUEBBQUFXHvttYTDYbaf2c4Odozout1N3az/8/Xc8e07yCjOuGCg7NccaSbPkTeie47ESOYjbvvVNpqON/HwLx8eEMD6ffZXn419bWCwz7/vkoHSNE1M0yQSiQz4s//rRqsRRlAaMm9+Hl98+YvMKp0Vey19Wjqf/pdP01LZwqGNh9j0k03c+vVbgWhg85m+4d/wA9oj7bzc8/KohMl+FhY+y8eL3S/yQPID47ok1WiY3E8nIiITmsPhgHSw+S9cwPtyPPunz5IzJ4drP3/tZR3fFG4adqC0LOuSAexif4bNMIcyDmHZhjcfccfT0fA9+9rZl24rFqdCp/jRz36E5bcu2N5Lcc1zEX9r/JDaea6EtIQBYfJcH/qjD3F8y3HKf10eC5TAsIelP6h/m0gTk2Obj7Hr2V1UvldJ++l2DJtBWmEa8z88n5u/fDOJGYkXvM6Op3fw4l+9iCveFauZaWHRbrZT7i+nNK50VNo7XilQiojIuOYzfSMql7Pr+V0cfuMwf7b5zwbMw7sgE7ZXbGf/4f1DDoP9v0fClmYj+aHhDZGG/CFO7z+N0+PEDJs8/dWnObTxED0tPSRmJDL3prl8+M8+THpR+tmTDChaWkSKLwWbzYbdbsdms2Gz2QiFQrHfwWCQYDBIIBAgEAjg9/vx+/309fVhha/cHikZM6K1KVtOtRAOhnG4otFltKYkVAQqOBM5w5ZfbuH5bz5P3oI8PvWDT1G0rAh/t59dz+1iw99tYOczO/nSK18ia1bWgPNbqlp49uvPUru3Fl+HD1f8+Qtxdvp3Mts5myxH1nnvTRYKlCIiMq6NJEx2N3Wz/v+s5/Zv3X5eELjg/SyL9o52AlXRVeU2mw3DMDAMIxa0+kOX2+3GbrfjcDhwOp04HA5cLhdutzv2Z1xcHB6PB5fLhcvlwul04nQ6zwtv/V+f5CSbI5uH9bytVa2YYRO7w84/3/LPLLhtAV965UskZydz8LWDPPWVp6jYUMGXX/0yOXNz3n9gCCQG6G7spqenh+7u6J8+n48PbqYXFxdHUlISiYmJeL1eEhMTSUxMBC9sZ/TLGwFY5tk29C8esiIW9Ufrebb2WbKzs2O/U1JShrTAyLRMdvijPbqhvhB2l53PP/l5vAVeADxJHm7+8s342n28+aM3Wf+t9fzJs38SO7+lqoXvXfc9Vt2/irv+9i7+6UP/NOh9DAz2+PdwW+JtQ37+iUKBUkRExjWH4Rj2DjHP/umzpBenc8OjN1z+SQY4bU4cCWf/iewfxo5EIoRCIQKBAJZlnRe4huLcgHpuoHSscMAiYBilMPu6+oBoT2VaYRr3/vO9sfeW3b2MrsYuXviLF3jqK0/x1de+Gn0206Kxt5HElmg4LCwsjAXF/t9JSUkkJCRgtw+cKBkOhzl9+jQnTp6ADIY9j/IHN/+ANQ+tofQz5w8LN59sBiBjekZsTqhhM8hyZOHz+di2bRt+vx8AT4qHzJxMMtIzyEvPIzc7l6ysLJzOwXszq0JVsdXpydnJLP/E8liYPNfCjyzkzR+9ybF3jmFGTGz26A/H4XLwyPpHKF5ZTGtN6wWfz8LiWOgY15nXEWeLG8InM3EoUIqIyLjmtXmHPX9y/yv7Afh65tcHfX/HkzvY8WS0h6p/1xzDZmC1W/h8vgHD13FxcaSnp+P1eklNTSU1NRWv10tycjIJCQmYponP54sNA/cPCfv9/tgwcf+wcf8wcjgcJhQKEYlECIfDhMNhLNPCYUVD9EisuHfFea+temAVL/zFC1TtqKK1ppX0onQMw8CT4MHr9eJ2u/F4PNjtdizLioVnm81GJBLB6XTS0dER28u9urqaUChEfHw8iTMSCaYEGU6ze1p6qHi1YtBAueWXW6Jtv3/V2RcNuG3ZbRjLDA4HDlMbqKXZbCZsC9P9/q/KSCWRtgiRbRHimuLIIYfsrGxycnLIzs4mOTmZo8Gjsf+srLx3JSvvXTlo+zzJ0W1DDcMY8J+I1LxUUvMub3ccE5MToRMsci+63I9lQlGgFBGRcW0k885+2PbDQV8v/005T37xyViI/KC+ur5YmExOTiYlJQW3241hGPT29lJfX09nZ+eAcJGUlBQLmf2BMycnh9TUVJKTky9v/iawrW8bO/07hxWi471nF8YM1tMWlxxHfGo8vg4fzSeaSS9Kx7IsOts7OVNxZsj3MwwDu91OOBymd28vzhuGN6/RMAyObDrC0197mhsevYH0onQ6Gjp441/eoHJbJXNvmstNX47us25g4LV5edv3NjXhmrO91x/4eA27gSPTgTPDiWmYNPQ2UL2nmt63e8GK7kkf91AcVvyle5mbjkdLFM1YMwO7Y3jdsDZsNIYbFShFRETGQqY9Ezv2UVvVeym2oI0UewpttAHRYd329vZYj6VhGGRlZbFkyRK8Xi/x8fEYhkFnZycdHR20t7dTWVlJT0/P2WvabKSkpAzo2Tz3z4SEhNjcvyRb0rB7ZDOmZ+BwOwgHwkSCF/+8+u9ns9lYvXA1K5evJBQK0dPTQ1VVFTU1NTQ0NMSeIz4+noSEBDweDw6HI9a7GutlrY5gBSwMd/S6X0376oD7ndsbfP+/3s/qB1bH3vvSK19i74t7OfC7A/z49h/T19mHO9FN3oI8Pv0vn2b176+OBXILi7ZIG23hNrBdeo6tZUTftxIsnB9yMvNDM5nfNp+Ohg4q4isu63Pd8fQODMPgw3/24cs6fjAmJmfCQw/tE4UCpYiIjGtOw8kc1xwOBw+PaIHO5bBMC98+HxlxGSy/ZTkej4eamhoqKysxTRObzYbX68Vut1NbW8u+ffuwLAu73U52djZ5eXksW7aM/Px8UlJS6O7upr29PRY0Ozo6OHPmDIcPH47N+wNwOp2xgOnJ88Di4bXf7rAz+9rZHH7jMK3V58/p83f58XVE6zdmz8mOPrNhsatzFzubd0IL+Ov8hOvCJCcnM3v2bGbMmMH06dNJSEi46L2rqqp4qeIlzBXR0H2h3uHBeAu83PjFG7nxizde9Lj+HmHDMIY1tA7QYrawOWUz/gN+4rj0fMbDbxzmwG8PcONjNzL7Q5cuxXQxXWbXiM4fzxQoRURk3FviXsKh4KHY90Pp/TrXTz72E06WnRz0vG/v/TbpRencMu0WjjQf4Y033sAV72JWySxWPLiCXkcvHT0d9HT10NncSfBMELfhJishi8SERCKRCFVVVezcuROIhsTc3Fzy8vLIy8tjxYoVpKWlxXoG/X7/gKDZ/2f94XqsBRaGfXiJ6fo/uZ7Dbxxmx1M7uPGxgQFt+1PRldhzb547YO6fPcWOlWTBDEi0JWJ2mQT2BzjdeBrLsggEAuTn55OVlXXe0H13dzcbN26koqICm91GYmEitixbrGdwNI10i0iILujBgrhrLx0mm0828+vHfs2Sjy3hY9/92IjvPZqF08cbBUoRERn3shxZTHdMpypchYU1pN6vc33p5S9d8D0Dg/mu+ayYs4KCmQWkdKdQaVZSb6unzqrDMA1IBiPFwF3oxkl0vmBPVw+NuxoJHA+QHJfMokWLSE1NxTAMWltbOXLkCO+99x4QnbfXHzLz8/PJy8sjOzv7vKD02+7fcix0bFi9cHNvmssNj97A20+8zTNff4bbvnkbcSlxHHr9EBv+bgPp09K570f3nf/8trM3syXZiCuNIxKOULe9jn2vRntiHQ5HLCDn5eXR0tLCtm3bYvNNr5l9DdcWXMuLoRcJE77iPcrDZsClmtZW28YT9zzBjNUz+P1f/H5sZfdI2EeyndA4Z1gjqXkgIiJylfSavfyq81cECY76tS3TwggY3Om8kwOeA1SFq4ZcqshhOsg8lUnLjhaam6KlbrKyspg+fTr5+fk4HA6am5upr6+nvr6e7u5uABISEmIBLSsri/b2dnbW7ISPnL32B3tkz3WhHtndz+/m3X9/l7oDdURCEdKK0lh0xyJu/vLNxKde5q42FmDAbPts5nXM40zdGerq6qiurj5vjuicOXNYtmwZBQUFdDg7WN+9ngiRUQuVw93FZuczO9nyiy00HGnA7rBTtKyIW752y0V3EmqubOaJjz/BzHUzeeDxBy4rTLbWtPI3S/8Gb6E3tlPOB6Xb0nko5aHLe+AJRoFSREQmjOPB42zo3TCq17QsCwMD46CBeY2JzTmy4doZzhmss9ZRX1VPZWUllZWVdHV1YbPZKCgoYPr06cyYMYPk5GQaGxupq6vj9OnT1NbWEg6HgeiWkyn3pRDxRoY9V3BUWZDUm8QttlvYu2sve/bswePx4Pf7SUtLIykpicbGxti80LS0NDLnZNK2rI2QPTTiZzh3F5uP/93Hz9vFJt4bP+guNi/8xQu887N3uO2bt3H9I9cT7A3y0ndeYs/6Pdz34/tY/eD5QfzMkTM8cc8TzL91Pvf+y70Dhvg3/WQTy+5eNugK+ksFShs25rvmc3PCzSP7MMYpDXmLiMiEMds1mxvMG3i77+1Ru6aBQehICOdCJ4ZljHju36nQKTpsHXxiwSdYtGgRlmXR1tZGZWUlp06dory8nHfeeQeXy0VBQQGmaVJXV4dlWSxcuJCCggK6urqo3VtL1/Vdw55LOaoM6Irv4umTT+Pb48NmsxEOh7njjjtYsWJFrD5jW1sbdXV11NXVUV9bT9ueNlxrXbgXucHk8ou1W9HV21bQwnAaw9rF5tDGQ7zzs3dY8ntLuP3PbwcgPiWeB594kNq9tTz3Z88x+7rZpBWmxc6pO1DHT+/5KcvuXsY9/3jPeVMRXvrOSxQuKxw0UF6KiUm2I3vI500UCpQiIjKhLPEswWW4eNP3JibmsIdUDQwcOJjnmsf+efv7Xxyx/rI2z3U+x32p9+EyXKSnp5Oenk5JSQmmaXLkyBHKysqorKyMnRcfHx/bznH16tXcmnwrO/t2UuYvG1F7Qv4Qr3//dTb9ZBPLP7l80Lqb/Xpaenjzx29y8LWDtNe2Y3PYyJ2Xy7o/XMeq+1fhmu0idCpE6EgI0zR59dVX2bhxY7RHMjMztlJ9zpw5LF68mEgkQm1tLVXbq2jNbMUsMjHsBlYkWjfy3MBmRazoPE4DnD1OMtoyOFN4BstmDWsXm7f+9S0A1v3BugHH2512Vj+4mlf+v1fY/PPNfPxvPw5AzZ4afvaJnxEOhulp6eFXn/vViD73D7JhY6Zz5qheczxRoBQRkQlnnnseuY5cXu99nYZIw5DmO/YfW+QoYpVnFet71g95fl5bbRsVr1Zw+M3DNJ9sputMF55kD+nT0im5r4RV96+izdXGf+z7D653X88111yD3W6nvr6esrIyDh8+THx8PDfffDNLliyhqakp1oO5f3803Kanp5ORmUH8gnh8eb5hhd3jW47zzNefobe1l0jo4nUpG4818vhdjxMOhPnEP32CuTfPJdgbZOt/b+XJLz7Jqe2nuPef7yXp5iQ+vPbDnKg4QWVlJe3t7Zw5c4bGxkaAQbejNAwDp9NJXGocPq+PuPw4nDlOIq4IETOCGTSJtERwdjlJCaSQEknBl+PDskWvNdRdbPxdfk6UncAwDIpLis87Z8aaGQAc+N2BaKC0onMt+0sq7Xlhz2V8ulEfrBzQXtsem/Ma230JgzmuOZN220VQoBQRkQkq1Z7Kp5I+xcnQSfYF9nE6fBqI9gR9sDzLua9Nc0xjiWcJRfYinut5jnd++Q7PffM58hbk8akffOq8+Xk7n9l53vy8l7/7Mnte2MN1f3wdn/r+p0jOTqa1upUNf7eBZ7/xLHte2MOjLz5KYFqA9evX43jJgdvtprOzE6/Xy0c/+lGWLl2KwxH9ZzgpKYkZM2bEVoUfOnSIxsZGWltb4QjEXR+He4k7tkjmcux6fhfPfuNZ7vz2nTg9Tp780pMXPf7Xj/6arsYu7vvxfaz4ZHTbxgRvAnf85R20nGph239vY97N81j00UW8eOxF/Duj8yXtdjseTzTU9fX1YVkWcXFxZGRkkJ6ejsPhoLe3l46ODtra2gg2BQkejS6s6u+RNQyDcChMX6iPLrqopZa4tDhcEdclh/wH28Wm/lA9lmmRmJmIO9F93jnp09IBaD3VSqA3gDvBzT3/cA/3/MM9l/fhnuNilQPOtcy9bMjXnkgUKEVEZMIyDINZrlnMcs2iPdJOXbiOxnAjzZFmAlYAAI/hIduRTaY9k0JHIcn2ZCC6wKch0kCwLzjk+XkAs6+dzT3/eDaA5MzJ4eFfPMx3Fn6HE++e4GTZSWZ/aDaJNyXS8asOAoFoe5KSknC5XFiWRW9vb2zhzrmLd4qKirjhhhuYMWMGHo+HqqoqDlUconV2K7gGlvi5kPSidL617Vuk5KZQ/pvyix7bWt1Kze4aABZ/7Pyq6svvWc6e9Xt46/G3WHznYhKXJfLA/AdIS0mL7RQEEIlEqKys5NChQxw5coTa2lpSUlLIz8+nqKgIu93O6dOnsdvtRCIRTNMkGAzicrkGvAZgz7Zf1pzLwXax6W6KrqC/0Gr2uNRoT6FlWXQ3d+NOOD90jqYSTwmZjswreo+xpkApIiKTgtfuxWv3stC98LKO3xfYh4ExrPl5H/7Gh3F4zv8n1OF2kFaYRm9rL32dfdHexFT46B98lKX5Szlw4ADl5eW88MILvPjii7Eh2qysLObPn8+MGTOYNm0aLpdrwHXT09NZwQp6I738au+vCBQGMBzRId4LhcvBhnovpOtMV6z98Snnh7CU3BQAqrZX4e/240ny4MvwUegqjB3j8/loamqivb0du91OZmYmjY2NdHZ20tnZCZzd+3vlypXMmjWL7OxsEhMTY4HUsix8Ph/t7e287HmZoHHxElEX2sUm2Bc9z+EaPOY43GdfD/lCl/x8hqt/3/FVnlVX7B7jhQKliIhMOf29mTD0+XkAufNzBz2+t72XxuONuBPdsUBnWAZHrCMcfvIwNTU1RCKR2L7YXV1dBAIBnE4nGRkZFBUVnRcmLcvC7/fT2dlJXV0dTa80MXPOTKzpFl2JXYRSQhgJI1tN1D9HNBwI4+v0nRcqu5u7Y21pPNZI8fJi9jfsp+pIFU1NTTQ1NcXqUtpsNjIyMsjKymL27Nmkp6eTkpJCa2srr7zyCqZpUl5eTkVFBfn5+eTk5JCQkEBfXx89PT20tLTQ2dmJde/Fdwu62C42rrjoZxgOhgc9Nxw4+7oz3jnET+vyGBgkGAncnXQ3dmPyFjTvp0ApIiJTTn+YvJTB5ucNpretl9P7T7Ph7zbgTnDzwL8+QHJ2dGjdMixanC1kO7K55ZZbmDlzJhkZGdF5g+Ewhw4dYteuXbzyyits2LCBzMxMkpOTCYfDdHV10dXVRSg0sBetuaGZFF8K2cnZJCcnE5cax55Ze4Zd8ihzZibZ12TTeKyR/S/vZ81Dawa8f2DDgdjXvnYflmFR46vBv9OP2+3G6XTi9XqxLItIJBLbw/zgwYODLtKBaI/m8ePHOX78+KDvJ0eSMS4wYfRSu9gkZSVF7/H+IpsP6uvoA6L/UUjKTBr0mJFKtaVyT9I9JNoGL7g+2ShQiojIlNMYbhx08c4HDTY/74OeuPsJjr1zDIA5N8zhkecfIW9B3oBjbAk2ZsybQV9HH1u3bqWrq4vOzs7zwqJpmjQ1NdHY2Ijb7SYnJ4clS5bg9UaH49evX8+qVatYunQpwWCQUChEMBik0+occf3MT//w0/z0Ez/lpf/7Ek6Pk7k3zyXsD7P9ye3sf2U/rgQXwd6zQ9B2r51wOBwrxn4hTqcTp9OJYRj09vaSk5ODaZr4/X56enpicyZtNhumaeLxeJg9ezZdji46rc7zFiFdzi42efPzMGwGvS29sUU352qtbgUgfXr6qM6f7K8gsNy9nLVxa3EYUydmTZ0nFREReV9zpPmSYfJC8/M+6NEXHiXQG6DpRBObfryJ7133Pa5/5Ho+9t2PDejVfHP3m9ib7bhcLhwOB3a7Ha/XG9uJpb93LxwOEwgECAQCVFdXU11dPeB+5eXllJcPXGRjS7eR/GDyUD+GAWasmcE33vwGG/9lI//7f/+XXz/6axLSEphz4xy+tvFr/PC2HxLsDZ6dBuA0WLFiRSwYdnV10dHREZ3XaRhkZmaSn59Peno6kUiE/fv34/P5OHPmDHa7ncLCQlauXMmMGTPIycmhvb2d/fv3c/ToUQ4ePIgr1YV7sXvAsPfl7mLjSfYwq3QWx7ccp2pHFXNumDPgWSvLo/U/F37k8ubbXkx/L6qFxXTndEo8JeQ4ckZ83YlGgVJERKac/hXgF3Kx+XmDcSe4KVxSyB/8+x8Q6A3w9hNv4050x3ZoATBcRiwo9rN5bThnOrFn2XHkODDiooW9XREXjg4H4cYwkYYIwRNBeL8j0+GIliDqD6UOhwOb14Yf//A+jHPkzM3h93/+++e9bkbM6CIjiJVPstvs3HnnnQOOC4fDnD59moMHD1JdXc3+/fuJRM7Wv3Q4HMyYMYMZM2bgdrvp7u5m8+bN1NbW0tcXvX5mZiZLly4l7A1TY6+JnTvUXWxu+tJNHN9ynG3/vW1AoIyEImz/zXacHifXfeG6kXxcAOTacyl2FjPXPZck25UZPp8IFChFRETOcan5eZdS+tlSDr1+iLL/KBsQKFNTU4mfFo/b48bKt+gp6qEvuY9YPfZz85EN7Jl2HJkOrIUWiTcn0negj/zOfKoqqvD5fMyZM4dly5Yxa9Ys/Pj5RecvRv7wF9ByqoVIKELmzEwS0hIACPWE+NnTP8Pr9eJyuQgEAnR0dNDU1IRlWSQnJ7No0SKKiooIBAK89tpruN1uTp48ybFjx2LX9ng8ZGRkUFxczIIFC8jOzsYwDIJWkF90/IIw4WHtYjPvlnlc94Xr2Pzzzfzun35HweICdj23i0OvHyLQE8DutPPzT/38gsXrG481Uv6bco69c4zmk82Eg2GSs5KZWTqTGx+7kfyF+RgY9Fl9LPMsm1LD24OZ2k8vIiJTksfwDPr65czPu5T0omjR7J6WHoK+IK746IrjJE8SYU+Y5gXNWAUWlmlFh0svskC7f/cf02biXuimlVbmzJgDR+F07WmOHDlCQkICCxcuxLPKg98Yfi9lc2UznQ2dzCqddd57RzYdAaDk0yX9DSOuN45AIMDRo0fPW3hjt9sxTZOTJ09y8ODB2DxRm83G/PnzycnJwe124/P5aGhooK6ujnfffZd3332XuLg48vLyor/n5FEbXzvsXWzu+Yd7KFxayIa/38Dv/vF3GDaD/IX5fORbH6FgUcEFi9fXH6rne9d+j7jUOO7++7uZe9Nc7C47x985zvP/53l2P7+bP/j3P2DJx5bQbrazy7+L1XGrh/yZTyYKlCIiMuVkObJoijQNmEd5ufPz2mrb+PtVf89XfvsVCpcWnnftzjPRmovOOCfOuLMlaTKzM6lcURkLkJdTnHwAW3SeZV1+HaFIiN6jvQD09vZSXl5OfEY8zunOoV/3fQdfO8jr33+dvz741zg9Z9sd6Anwzk/fITU/lev/5Hog2o7Oyk6yU7KZP38+cXFxdPg7qOmrocfVg+E1sBzRuZTuPjfGGYNIU4Tupm4OHTpEQ0MDaWlppKWlMX36dFasWIHH46G7u5szZ85QX1/P7t276dvfR9JDScPexQaiIbi7qZtX/+5V/mrnXw2oN3qh4vXhQBjLsvjk9z7J8nuWx45f8ntLcMW7+Pm9P+fprzzNvFvm4YpzsSewhxWeFVO6l3LqPrmIiExZ2fZs9rM/9v1Q5udZlkU4EObAbw8MGii3/2Y7AAtuW3D2On44knsELM679pC8f6qryEXeo3ncFLmJcF+Y7u5udnXuosVoGf61iZYE+vUjv+Zj3/0YydnJ1FXU8eJfvUiwL8gj6x+JbWNo2AzyI/m0drZSZ9bhWuzCOT+6ktttuQe01YYNx1xHdG6o6SKrLQtXtYuuxi6OHTtGR0fHgJXeXq+XtLQ0Fi5ciNPp5OC+g5jLzBF9bkMtXu+Kd1G0vIiFt5+/aGfOTXNwepz4OnzU7qll5rqZBKwAJ0InmOuaO+w2TnQKlCIiMuUUOAtiXw91fl5/sNn4Lxsx7AYr711JSk4KbTVtvPOzd9j13C7Sp6Xz8b/5OEB0aNttYDNssSHskbKwaLFaeM/1Hnel3UVtbS1dW7qgGDinCs5X07464LwdT+5gx5M7ALj/X+9n9QNnh2lnlc6i5P4SqndW80/X/hOWaZFWmMaCjyzg8099ngRvQux5Ig0RTp08Rfyt8STmJUafsT/wfSD3mZix14K2IHUZdRgZBuvi1kX3t7ags7OTtrY2WltbaWtro729nSNHjkR32DEgMTcRe7Z92L2vQy1enzMnh6+/8fVBj7fZbLgSXIT8Z8s9GRgcCxxToBQREZlKkm3JFDuKqQ5XD3l+XlphGt/Y9A32vLiHAxsO8Pbjb0fnSia4yJqVxUf/8qNc9/nrzgYVm4FlWrFQFfKHeP37r7PpJ5tY/snlPPj4g4Pe56+X/DXtte2XbM8/r/9nuvZ34fF4oAI8yz2xPbB/2PbDy/g0ogoWF1ywLecybAYz02dS+3BtbMrAUIKe9f6vLb4tbKnZgmubi3grnri4uP+/vbuNjeq68zj+vXfuPHnGNk+DxzS2weHJmGCWQJwSUBJBFDZAIkoSGqJoIyW7qRZtlbQvVlltpXS10qrpVt2tVmmbVGmTVRvlgWQJTRuyS5UQIG3BBGoK4UmBYPDYsTG2Z2zP490Xgwcb28HjO6YBfh/Lkj3n3jNnzJsf59zzP/h8Pnw+X+5koClTpjB37lw+2f0J8TvjmJ7vn7wAAA6fSURBVBPMMYfKkYy2eH2/aHuUWHsMX7GPGxbckPtMkXSkoOO62ihQiojIdanOV8fJ6MkxPZ9XsbBi2OXuS9l2duNNfwg69uExXvvWa8TaY6ST6cvcnV2q7Q+ml+ps7sRluUguSmKcMPB7/CwvX06Dq4Eeu6dgs6GDZCDdmebUxFOXv/YyDMOAKZBZlaGooYhkR5Lm5mba2tpypYba2trYuXNn9vrNBoH7ArhCLmePDVxiNMXrB9r76l4A7vj7O3KPAAD02r3EMjECZqBgY7uaKFCKiMh1qcqqys1Sjkv4gkG7uBs2N/D6t19nzXfW4Pa5eeUfXrns/au/s3rQsnS/VCLFMzc9w5INS/AEPZSvKueBmQ9kS/Akp/Bm9M1CfxSws8vdrokFPJfagIwnQ3RplNpTtWx/ZzslJSXU1tbS0NBAMplk8eLF1NTUkEwmifXGON5xnNMTT+fud2K0xev7dUY6ee/f36Pq5iru+vZdQ9qjmagCpYiIyPXEMAxWBFbwcufLJEle/oYxvcnFHydXTubpj56mtLyUP/zqDyPfc8H8VfOZXDV52LZ9b+4j1h5j2WPLMEyDtkltfP8H32fShEn4/X7M6SaZv/rik4DyZRhGbikdRr90D9DV0sUHP/2AQ9sO0dHUgWEaTKqcxII1C7j9iduxgzY74juorKyku7ubnTt3smDBAlasWEFJyeATgG6yb6K5r5m9fXs5aZ+8+J+BPMNlvsXrEz0JfvHoLwhMCfD4rx4fdnn8cqcvXcsUKEVE5LoVNIOsCqzi17FfF3SW0sDAg4c4F0/Fmb5kel59rP/e+hHbPnzhQ2rvrs0FTtNvYlVZtJ24sMv7NHhjXvzL/NkNMw6eOzQwMDEJmkG66MLGzmvpvv1UOz+864f0dvbyte99jYX3LgTgwNsH2PyPm/njK3/kqf99iuCsIJ8d+wxPzMOsWbNIJpNs2bIld7pQIpEYctKQ4TfwzPXgCmdPGjKLByRemxFDZr7F65N9SV78mxeJdcTY9NYmikPDn4jjooCzt1cZBUoREbmuVXuqWcUq3o29C+A4WBoYhF1hzqXPFWJ4Q5zcc5LTH59m7VsXZ9XstI0ZMglEAlRVVVFWVobb7ab5WDNNlU1k3JmxhUobvH1eZrlm0ehpBPJfut/+o+1E26Ise2wZtz16W+71pY8u5czBM+x6cRfvP/c+q/95NUXLi7C2WvT29uL1evH5fJSWluLxePB6vV/47fF46I5109LWQmuklSNVR0hOSA553jLf4vWJngQ/e/hnRNuifPOdbw45UWegUlfp5f6i1ywFShERue7N9szGb/jZFts25g0tBgY2NvM981nkW8RLXS+Nw0hhx/M7CM8JM/v22Rff2zSovqWaB+5+ANu2SafTxONx5sTn0BXvYl9iH03eptEtD2fANmxIQl9DH+cbztO9rhur3MIwjbyX7vt3qofnhoe0ldeUA9D0p6Zs8CuGNX+3hunu6V/YZyKRoLW1lUgkQiQSoaWlhdbWVhKJBADBYJBgaZBUaWrQZx1t8fp+fd19PP/150n2Jdn09qZc6STIPnYw8SsTmVE/A4BisxivMaBm03VGgVJERASocFfwSOkj7OzZycHEwVxAvJz+64JmkJVFK6l0V3ImeWZcxtgZ6eTA2wdY92/rLh0EZ6NnefaFZ4nH47lC4YMu8Rt45nnwzPFgThq+/I6dskm3prE+tZjYOZHQpBD+1X4OfOVA7pp8l+4r6io4/H+HiXwytKxO8+FmILubPfsxDBrjjblAads2XV1dtLS05IJjJBLh3Lns7K9hGIRCIcrKypg7dy7hcJhwOEwgEOBI4khu1hnyK14P0HO+h5/c/xNclotNb20astt+1893MfO2mcyon4GBwTTXtLz+LtcaBUoREZELvIaXFYEVLPEv4WD8II3xRvrs7PnYxoUvGLz5osKqoM5bx3T3dEwjO+OVIjUu49v98924/e6LZ2oP4PK4WLRoEYFAgKKiInw+X24peODSsGVZpEnTnm4nmomSIYMLFwE7QG+kl6aOJpqiTZw+e5pPj3+KZ56HoulFY95RveLJFZzce5KPXv6I8try7DOUBhzYcoDf//fvMS2T5X+7HMg+bnAqforf7vwtrS2ttLS00NvbC4DP56OsrIxZs2ZRVlZGOBwmFAphWcNHmWp3NRYWKVJ5F6+PnYvx3LrnONN4htq7a3n1qVeHXNNypCV37rmNTY23Zmx/oGuEAqWIiMglSswSlvqX8lXfV+nKdNGabuVc+hwpUpiY+A0/U62phFwh3IZ7yP3jsTkjlUix+6Xd1G+sxxsYurSajCfZtWsXkJ256y8SPrBg+HCv+f1+vD4vls9iamgqFTdU4HK5sG2bjo4Otke3c9Y+O+ZA6Q14+cYb3+D9595n6zNbef1brwPgcru4cemN3PNP91BRd7GmZ9pMc+zsMcLBMPX19blZx5KSkrzqT7oNN/O98zkQP5B38foTH53gTGN2lvnP2/582etLzBIqrcpRj+1apEApIiIyAsMwKHWV5r3ZImiOvHFjrPb/z36in0dZ9viyoY02hIpCrH14LX19fbnv3t7eQb93dHQM+r3/qMFLeTyeXOBM35WG4Tc1j0pnpJOXH3+Zpj81cd+/3MdN99wEwOHth2n8TSOxjtiQe9Y+spYZ7hljf9MLFnoX0hhvzLt4/YLVC/I6ZegW3y0FLbZ+NVKgFBERKbBSsxQ37oLWt9zx/A5qVtYQqg4NaTMNk8qiSmZOmTnq/mzbJpFIDAqdw/38qfdTR+N+9clXObH7BOufXc/SR5fmXr/loVvo7erlha+/wPpn17P88eW5toSdcPSe/UpdpSzzL+OD3g8K0t+lDAwqrArmeeaNS/9XEwVKERGRAjMMg6nWVM6kCrM55+Tek3y27zOeeO2JYdszZCizyvLq0zCM3HOVX+SXXb+kLd2WV9/9ulu7OfTeIQBuvv/mIe2LH1jMW0+/xdZntlL/cD0evwcAky8u5ZOPOm8dx5PHOZs6W/Bao27crAysvO5nJ4EC/ouJiIhIzhzPnIL19eELHxK6McTcFXOHbXfhumypnbHyG/4x39t+qh0Ay2tRNKFoSHtgUgDLa5HoSdB6rDX3eiHL7xiGwdrgWiabk3Obqhz3iYELF+uK11FsOnge4BqiGUoREZFxMMczhx09Owbt+H5y0pODrtnzyh72vLIHgIf+66Fhz+3ubu1m/5b93Pvde4edCTMwqPHUjFsNxKmu7EzrWI4VDEzO1m1MxVPEOmKD6jhCdjd1Kp79+ww8yjDkGrqs74TX8HJ/8f28HXubs6mzjvoyMPAZPu4L3pf3rPC1TIFSRERkHHgMD3XeOvbF9+WWWvPZ6NGveGoxP4j84AuvWehbOKYxjkaZVUYmPrYzqkPVIcJzwkSORPj4zY9Z9tjgDUUNbzQAUFpeStncbDgLGAH85thnRUfiNb2sD65nf3w/u3p3YV/4Gq3+eqOz3bO5o+gOfKbv8jddRxQoRURExkm9v56jyaNEM9GCPr830BLfEia7Jo9L3wA3WDdgYo5phhJgw39u4Mfrf8zW727F5XYx/6/nA3DwNwd551/fweV2seE/NmCaJgYG1e7qQg5/ENMwWeRbRLW7mn19+ziUOESa9Iifr3+J3MamwqpgkW8RVe6qcRvf1cywR6oZICIiIo6dSZ7hjegbBe/XwGCiOZGNJRtxGYWveznQu9F3OZo8mgvFly7dDzTc0n3byTZ+96PfcfSDo5w/ex7btikNlzLztpncuelOyueV567dWLyRkFXYJe+RxO04xxPHiaQiRNIRzqfP5wJmkVlE2BWmzCrjRveNTHBNuCJjulopUIqIiIyzg/GDbO/ZXrD+DAyKjCIeLHmQErOkYP2OpDnVzGvdr43rexgYhF1hHix5cFzfR8aHdnmLiIiMs/ne+awsWgngeKexgUGxWcyDxVcmTAKUW+XUeGoKtkt6JHcW3Tmu/cv4UaAUERG5Amq9tWwo3kCpmd+pO/36w9w8zzw2lmykxHVlwmS/2/234zf84xYq6331V2ypWwpPS94iIiJXUMpO0dDXwP74fvrsvtzu4ZH0t4ddYW713/oX3RTSnGpmc/dmMmQKtsnIwKDSqmRtcO24Pwsq40eBUkRE5C8gbac5kTyR3RSSjtCd6R7UbmIyxTWFadY05nnmfWlm704nT7MluqVgobLKqmJNcA2WocIzVzMFShERkS+BeCZOj91DhgwWFkEz+KWdsfs89TnbYttoz7SP6f7+WdfFvsXc6rv1S/s5ZfQUKEVERCRvaTvNnr497O3bS5r0qO7pD5KTzcmsDKwkbIXHeZRypShQioiIyJjF7TiH44dpjDdyLnMu9/rAouAAFhYz3DOo89UxzTVt2GMk5eqlQCkiIiIFEbfjtKXaaM+0k7JT2XqZZhFTXVOZYE5QiLyGKVCKiIiIiCOqQykiIiIijihQioiIiIgjCpQiIiIi4ogCpYiIiIg4okApIiIiIo4oUIqIiIiIIwqUIiIiIuKIAqWIiIiIOKJAKSIiIiKOKFCKiIiIiCMKlCIiIiLiiAKliIiIiDiiQCkiIiIijihQioiIiIgjCpQiIiIi4ogCpYiIiIg4okApIiIiIo4oUIqIiIiIIwqUIiIiIuKIAqWIiIiIOKJAKSIiIiKOKFCKiIiIiCMKlCIiIiLiiAKliIiIiDiiQCkiIiIijihQioiIiIgjCpQiIiIi4ogCpYiIiIg4okApIiIiIo4oUIqIiIiIIwqUIiIiIuKIAqWIiIiIOKJAKSIiIiKOKFCKiIiIiCMKlCIiIiLiiAKliIiIiDiiQCkiIiIijihQioiIiIgjCpQiIiIi4ogCpYiIiIg4okApIiIiIo4oUIqIiIiIIwqUIiIiIuKIAqWIiIiIOKJAKSIiIiKOKFCKiIiIiCMKlCIiIiLiiAKliIiIiDiiQCkiIiIijihQioiIiIgjCpQiIiIi4ogCpYiIiIg48v95JjG6RcNDCwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "G = nx.barbell_graph(m1=10, m2=4)\n", + "\n", + "def get_color(x: int):\n", + " if x<10:\n", + " return \"lightblue\", \"steelblue\"\n", + " elif x<14:\n", + " return \"lightcoral\", \"red\"\n", + " else:\n", + " return \"lightgreen\", \"limegreen\"\n", + "\n", + "color_code = lambda x: get_color(x) # for x in G.nodes()\n", + "\n", + "edge_color_code = lambda x, y: (color_code(x)[0], color_code(y)[1])\n", + "\n", + "def plot_embeddings(V):\n", + "\n", + " fig, ax = plt.subplots(figsize=(5,5))\n", + " \n", + " for x in range(V.shape[0]):\n", + "\n", + " color = color_code(x)\n", + " ax.scatter(V[x, 0],V[x, 1], s=1)\n", + " ax.text(V[x, 0], V[x, 1], str(x),\n", + " ha=\"center\", va=\"center\", \n", + " bbox=dict(boxstyle=\"circle,pad=0.3\",\n", + " fc=color[0], ec=color[1], lw=2))\n", + " return fig, ax\n", + "\n", + "def plot_edge_embeddings(V, edges):\n", + " fig, ax = plt.subplots(figsize=(5,5))\n", + " \n", + " for x in range(V.shape[0]):\n", + " source, target = edges[x] \n", + " color = edge_color_code(source, target)\n", + " ax.scatter(V[x, 0],V[x, 1], s=1)\n", + " ax.text(V[x, 0], V[x, 1], str(x),\n", + " ha=\"center\", va=\"center\", \n", + " bbox=dict(boxstyle=\"circle,pad=0.3\",\n", + " fc=color[0], ec=color[1], lw=2))\n", + " return fig, ax\n", + " \n", + "def draw_graph(G, node_names={}, filename=None, node_size=50, layout = None, plot_weight=False):\n", + " pos_nodes = nx.spring_layout(G) if layout is None else layout(G)\n", + " node_names = {k: k for k, v in G.nodes.items()} if not node_names else node_names\n", + " node_colors = [color_code(x)[0] for x in G.nodes()]\n", + " nx.draw(G, pos_nodes, with_labels=False, node_size=node_size, edge_color='gray', node_color=node_colors)\n", + "\n", + " pos_attrs = {}\n", + " for node, coords in pos_nodes.items():\n", + " pos_attrs[node] = (coords[0], coords[1])\n", + "\n", + " nx.draw_networkx_labels(G, pos_attrs, labels=node_names, font_family='serif', font_size=15)\n", + "\n", + " if plot_weight:\n", + " edge_labels=dict([((a,b,),d[\"weight\"]) for a,b,d in G.edges(data=True)])\n", + " nx.draw_networkx_edge_labels(G, pos_nodes, edge_labels=edge_labels)\n", + "\n", + " plt.axis('off')\n", + " axis = plt.gca()\n", + " axis.set_xlim([1.2*x for x in axis.get_xlim()])\n", + " axis.set_ylim([1.2*y for y in axis.get_ylim()])\n", + "\n", + " if filename:\n", + " plt.savefig(FIGURES_DIR / filename, format=\"png\")\n", + "\n", + "\n", + "\n", + "draw_graph(G, node_size=400, filename= \"barbell.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -76,67 +166,65 @@ { "data": { "text/plain": [ - "array([[-1.03077980e-03, 2.68426785e-03],\n", - " [-1.03025945e-03, 2.68460448e-03],\n", - " [-1.02760993e-03, 2.68534017e-03],\n", - " [-1.03205430e-03, 2.67494168e-03],\n", - " [-1.03178048e-03, 2.68544277e-03],\n", - " [-1.12239241e-03, 2.83922108e-03],\n", - " [-1.12715323e-03, 2.43305859e-03],\n", - " [-3.63980215e-04, 2.62185261e-03],\n", - " [-2.83050254e-05, 2.27283979e-03],\n", - " [-3.30170855e-03, 7.36306655e-04],\n", - " [-6.26812458e-04, 5.30977808e-04],\n", - " [-1.61917602e-03, 5.30227981e-03],\n", - " [-5.78304899e-03, 8.07947201e-03],\n", - " [-6.23030032e-03, 3.57951159e-03],\n", - " [-3.90898274e-03, -1.12185980e-03],\n", - " [-3.90618929e-03, -1.12356134e-03],\n", - " [-3.91752050e-03, -1.11604704e-03],\n", - " [-3.88566530e-03, -1.13049236e-03],\n", - " [-3.90606086e-03, -1.11985706e-03],\n", - " [-4.01302483e-03, -9.72348151e-04],\n", - " [-4.23035142e-03, -1.44549997e-03],\n", - " [-2.30814232e-03, -1.27055933e-03],\n", - " [-3.09483368e-03, -4.32427499e-04],\n", - " [-7.22826108e-03, -2.55303964e-03]])" + "array([[ 2.95850890e-03, 1.53587266e-05],\n", + " [ 2.95633484e-03, 1.65974931e-05],\n", + " [ 2.96335880e-03, 1.86992083e-05],\n", + " [ 2.96369483e-03, -1.15516559e-05],\n", + " [ 2.99888702e-03, -3.13947500e-06],\n", + " [ 2.83273191e-03, 4.45982842e-05],\n", + " [ 3.20303266e-03, -1.02110718e-05],\n", + " [ 2.34517829e-03, -2.48212379e-04],\n", + " [ 7.51771759e-04, 2.20302979e-03],\n", + " [ 8.08401156e-03, 7.73875139e-04],\n", + " [ 6.82307744e-03, 1.21123721e-03],\n", + " [ 7.74028818e-03, 3.57769367e-03],\n", + " [ 8.92395437e-03, 5.95435897e-03],\n", + " [-2.24327522e-03, 6.34222630e-03],\n", + " [-8.50338290e-03, 7.76064514e-04],\n", + " [-8.50440132e-03, 7.74746187e-04],\n", + " [-8.50836606e-03, 7.83177466e-04],\n", + " [-8.48239084e-03, 7.61556817e-04],\n", + " [-8.53850058e-03, 7.64439345e-04],\n", + " [-8.45672279e-03, 8.42846869e-04],\n", + " [-8.26616668e-03, 1.18857751e-03],\n", + " [-9.16950282e-03, -1.30328692e-03],\n", + " [-8.02977677e-03, 1.70413675e-03],\n", + " [-8.65218628e-03, 2.57665364e-03]])" ] }, - "execution_count": 6, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3iUZb7/8fczk15JT4YWAgkhYKjSBaQ3FUWKCi4K1t11Lz2756zt6JbjcetZy/7WRXY5oCLKKkgRCL0YQEILSQg9IZCeEFInZWZ+f8TMkkPRNUAKn9d15eIJc8/z3DP553Pd5XsbDofDgYiIiIjI92Rq7g6IiIiISOumQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIiJNokApIiIiIk2iQCkiIiIiTaJAKSIiIrfUvHnzMAzjX/qZNm1ac3dbrkOBUkRERFq8sLCw5u6CXIdLc3dAREREmk9JSQnr1q1jy5YtHDp0iLNnz1JeXo6Pjw/R0dGMGzeOZ555ho4dO97wZx87duxb20ycOJHMzEzmzZt3w58vN47hcDgczd0JERERufUSExMZPXo01dXVzmnlwYMH4+fnx8mTJ1m6dCmFhYV4e3uzZMkSpk+ffkOeO2/ePJYsWcK3RZDExESGDRvGHXfcQXJy8g15ttwcGqEUERG5TZWWllJdXY3JZGLdunVMnDix0esvv/wyI0aMIDU1lYcffpgjR44QGxvb5OfGxMQwbNiwb223cOFCAJ588skmP1NuLq2hFBERuc3NmzfvijAJEBgYyO9+9zsAampqeP/992/I81566SV279593TaXLl3i008/xcvLi7lz596Q58rNo0ApIiJym/L396d///7XncoeMGCA8zotLe1WdAuADz74gKqqKmbNmoW/v/8te658P5ryFhERuU0NGTKEpKSk67bx9vZ2Xnt6et7sLjk1jIZqurt10AiliIiIXNOBAwec13ffffcteebevXtJTk4mPj6ewYMH35JnStMoUIqIiMhV1dTU8MorrwBwxx13sGDBglvyXG3GaX1UNkhEREQAqK6upqSkhKKiIvbu3ctbb71FcnIyM2fOZOHChbdkLWNpaSkREREAZGdna/1kK6ERShEREQHg448/Jjw8nJ49ezJ//nxKSkpYtmwZy5cvv2XB7sMPP6SysvKmbsZxOBy88847+Pj4YBgG27dvvynPuZ0oUIqIiAgAEyZMYNOmTaxatYrf/va3tGvXjocffpjY2FgSEhJuSR8aprufeuqpm3L/M2fOcPfdd/Pcc89RUVFxU55xO9KUt4iIiFyV3W7n+eef5+2338ZkMvHRRx8xe/bsm/a8ffv2MXjwYHr37s3hw4dv6L0dDgfvvvsuL774Imazmbi4OPbu3QvAtm3bGDVq1A193u1GI5QiIiJyVSaTif/5n/+hZ8+e2O12nnzySYqLi2/a827mZpxf/OIXPPfccwwfPpyUlBQmTJhww59xO1OgFBERkWsymUw8/PDDAJSVlfGPf/zjpjyntLSUTz75BG9vb+bMmXNTnrFo0SI2bNhAx44db8r9b2cqbC4iIiLX1b17d+d1SkrKTXnGRx99REVFBY8//jh+fn43/P6vvfYahmHc8PtKPQVKERGRNqygoIC33nqLVatWkZGRgbu7O927d2fOnDl07NgRPz8/Ro4ced17uLj8My7U1dXdlH42nIxzszbjKEzeXAqUIiIibdS+ffu4//77ycnJYcKECTzzzDNUVlayePFifvjDH+Lm5kZUVBTHjh277n1OnjzpvO7UqdMN7+f+/fs5dOgQvXv3ZuDAgTf8/nLzKVCKiIi0QZmZmdxzzz0UFBTwwgsv8Ic//MH52o9+9CPGjRvHV199RXp6OidPniQ6Ovqq97Hb7XzwwQfO36dMmXLD+3qzSwXJzadNOSIiIm3Qz372MwoKCujUqRNvvPFGo9c8PT2dIQ5g0qRJ5ObmXnEPm83GD3/4Q5KTkwF47LHHuOOOO25oP/fv38+SJUswmUy8+OKLeHl5ERUVxejRo3n99dfZt2/fDX2e3BwaoRQREWljTpw44dyN/eijj+Lu7n5Fm7i4OAIDAykuLub06dN07dqVhx56iO7duxMUFERGRgaffPIJJ06cAOrD5F//+tcb1keHw8Frr73Gf//3f9O+fXtmzpxJdHQ05eXlbN++nTVr1rBt2zbWrl1LUlLSDXuu3BwKlCIiIm3MP/7xDxrOLRkzZsw12z333HO8/vrrAPTs2ZOEhASWLVtGbW0tvr6+REVF8eMf/5hHH32UAQMG3NA+vvDCC/zpT39i7ty5LFy4EA8PD6y1NsqsdTzzo+dYuvhvmgJvRRQoRURE2pht27Y5r/v27XvNdv369XNeT5s2jZdeeumm9qvB2rVr+dOf/kR8fDx///vfOXS+lEW7U9iUlofdASYDxvboS5fo7rRr1+6W9EmaRoFSRESkjWmoFenr64u/v/81211e4Ds1NfWm9wvqp7qff/55AH7+85/zcdIF/vOLFEwmA/s3h0HbHbAlvQDH9D8wb1qvW9IvaRptyhEREWlDqqurnRtswsLCrtv28tczMjKc19ZaGwVl1VhrbTe8fzt27ODUqVOYTCbCew3hP79IwQHYGtLkN2x2Bw7g1VUpJGXcvOMe5cbQCKWIiEgbUlZW5rz28PC4bltPT89G79ufUcyi3WcaTT2PiwvjieFRDIgMvCH9a9gs1LlzZ5YfKcRkMurDo8OOo8aKyd2rUXuTyWDR7rM37PlycyhQioiItCFVVVXOazc3t+u2vfz1vOJSZv51zxVTz5uP5ZOQmsevpvVizqDOTeqb3W7n66+/BiA4JISNR7MpS95E+ZGN1OSeBocdzC64R3THp/d4vHvdjc1uIiEtF2utDQ9Xc5OeLzePAqWIiEgbcvmoY01NzXXbXv76xRoDT64+9Qz1U8+xYb5XjBTW1tZSUVHh/CkvL3deV1ZWXvH74cOHAcjJzaNg+atUn0/Fp/d4/AfPAMPAmnGEssMbqD6fSsWxnYTc/yK4elBmrVOgbMEUKEVERNoQX19f57XVar1u28tHM03untdpCYYBv1qRyEMdyxsFyKuFVk9PT7y9vfH29sbHx4fg4GC8vb1xcXHhtddeA+D8uUwAQh54Ba+Ywc73esUMwbPrAPJX/ALrmQMUb/x/hEx9AU8llhZNfx4REZE2xN3dnfDwcHJzc8nLy7tu28tfN/uFXret3QHJxXBvSA1BQUF07tzZGRov//Hy8sJsvnIk0Wq1NipnBBDYrQ/eMYNw/J+2nl0H4BU7nMr0XVSkbKX7oLv5f++k0rdvX/r3709g4PdbT/nhhx86rxtO/wHYtGkT58+fB+o3Ko0bN+573f92pkApIiLSxvTs2ZPc3FzKysq4dOnSNUsHNYQoALfgTt96XwcGJzOyyHc3ERQU5PwxmUx4e3vj4eFxRZjMzs4mKSmJlJQUiosb79Yed/dd7MW46rO8e9xFZfouALrWnaN37+kcPHiQxMREunXrxoABA4iOjsZk+u4Fa+bOnXvV/7/8aMqRI0cqUH4PCpQiIiJtzN13382WLVsAOHz4MCNHjrxqu4MHDzqvPTrHf+t9DeCRmdMpKymmsLCQoqIizp49S0VFhbONn58fQUFBABQXF3Pp0iV8fHwYMmQINpuNP/zhD86282fcg3n3Kb6q6YTJgMuXb7qHRzmv884eZ8KECYwePZrU1FSSkpJYvnw5/v7+9OvXj379+uHj4/Ot/W84PUhuPAVKERGRNubBBx/klVdeAWDLli3XDJSbN28GwDswFM/2sdivc08DO51MJRw+UMykSZMYOnSo87WqqipnuDx27BiZmZnY7f+8W3l5Obt27cJms2E2m7HZ6utbJiYmMjg4kB9PupP/+mwvKSUmHBiYDBjdtyuLv3l/Tk4OAK6urvTp04c+ffo4Rz537drFjh076NGjBwMGDKBz584YxtVHPS/XcMzjf7/+Mv/zx/qQ+9prrzmPopR/jeFQXBcREWk18vLyWLFiBQkJCRw6dIj8/HxcXV2JiIhgyJAhPPbYY9x99908+OCDfPbZZ0RGRnL8+PErSgilp6cTFxeHw+HgRz9/nTX0h2tMPzeY7peBX00hAL1792b06NF4e3tz7NgxDhw4QEZGBl5eXs61jn5+fuzbt4/t27djGAYdOnTg5ZdfJisrC4Af/vCHhISE4OfnR01NDeVV1djMbsyZOR1vDzciIyMBCA8P5/Tp03h5eV3Rp6qqKo4cOUJSUhJFRUWEhIQwYMAA4uPjr1qH8/Jam1U5p8hd8kJ9uSIUKJvC/Lq+ORERkVbhqaee4gc/+AFr166lqqqK2bNn88gjjzBy5EiKior4/PPPWbJkCcePH+dXv/oVH3/8MTk5OVRXVzdaF1hVVcWsWbPIzMxk0KBBDB3QB3NtJeft7TCbDC4fajK+Gbd8fUoP/m3WGACysrLIy8tj79697Nmzh5SUFPz8/BgzZgz33HMP3bp1o66ujpUrV7J//3569uzJ3Llz6d+/P2lpac6p9ilTpjBt2jR8fX25cOECDlsdLg4baSlH2bJli7NmZVhYGGazGU9PT+x2O25ubri41E+yurq60qFDB+688046d+5MSUkJe/fuZd++fZSUlODv7++cDv9gbybPfnSQs0WV2Gw2Cv7xK2zl/1zXGditD7PunXjz/oBtmKa8RUREWoklS5ZQU1PDPffcw/LlyxuN2P3kJz/hvffe45lnnmH58uUYhsGaNWu4//77+d3vfsfRo0e55557qKysZPHixaSlpTFgwADmzp1LUVERIyzePD9xMH//KoONqTnOqef4QBOWsnT88mswmbrQoUMHOnXqRGZmfdmf2tpaXF1diY6OJjY2FrPZTHJyMuvXr8dsNjNr1ixiY2Od/XzggQdYtGgRUF9eqHfv3gCkpaVRV1eHzWbjBz/4AV988YXzPXFxcVy6dIlVq1Y5/8/X15fg4GDnxqDg4GCCg4OZMWMGZWVlHDx40PnToUMHvDrfwX9uKXAe81j69Upq8k7jGT2YqpN7Adiank9SRrFO5fkeNOUtIiLSSnh4eODi4sLZs2cJCQm5aptJkyaxYcMGAPbu3UuXLl3405/+xKpVq8jMzMTNzY3Y2FgeeeQRunfvTmJiIiaTiaeeeorQ0PrSQctXfEZxWSWPz30Yw17HH//4R2pqavD29qaiooKIiAj69++PYRhs2bKF6upq7HY7Xl5e+Pj4kJeXR69evZg0adIV09SJiYncf//95Ofn06dPHw4ePIhhGPz+97/HZrNhtVpZsGABTz/9NGvXrsXd3Z3Tp0+Tl5fHmjVrGDp0KKGhoRQVFVFUVOTcHNSwLtPFxYXAwECCg4MJDAyktraWrKwsPszw5Jy9HQ4Mai9mk/O3H+Ma0ol2I+eRv/xlANoNf5hZT73Ae3P636w/YZulEUoREZFWZMiQIdcMkwDTp093BsrVq1fzX//1X7zxxhuNSuNA/RrKTz75BIBRo0Y5wySAh6sZD2rJOX+OpKQkZ/Hympoa5s2bR+fO/zyCsUePHmzevJmDBw86i537+vrSo0ePRqf2QP2u7+3bt/PCCy/w6quvcvjwYd58801efPFF6urqcHd3x2q1snz5ctauXQvAr3/9a9q3b0/79u3Jz89nz549zJkzxzmyCfVHOl66dMkZLhv+PXfuHOXl5dQ5DM7Z++H4Zo1o8YZ3cdjrCJr4Y+zWcud9HA6Hjnn8nhQoRUREWomVK1fSsWPH67bp1Omf9STPnTvnvG7Y1ezr4UJZSTGff/45bm5uBAUFMWzYMGe7qqoqCgsLycvLY+nSpQQHBzNhwgQOHDhAYWEhx48fbxQobTYblZWVQH1R9ZqaGkwmEytWrMBisTBmzBiioqJwOBysWbMGLy8vnn32WaKionj88cd56aWX2LlzJy4uLvj4+HD06FHS0tIwmUy8/vrr/PSnP3U+a/z48RQUFLBixQoWLFiAj48PlZWVjX4cDgeenp4EBgbi6elJeXk5uSWVOArqw2TZkQSsmcn4DX4Qt7AorJn/LHAO9aWLdMzjv06BUkREpJWYNGnSt7a5dOmS89rb27vRrma7A0wGRLlXEO/qR0DdRe677z4Mw+D8+fMcOHCAlJQU6urq8PDw4JFHHnGW4bFYLCxevJg9e/bQs2dPLBYLqampfPnllxiGwYMPPkhsbCx79+5lx44deHl5YbVa+eCDD4iKisJisZCRkcHcuXNxc3NjxowZDBw4kLfeeov169dz+vRpDMPA19eXcePG8dRTT9G+fXu2bdtGZWUlVVVVzrPBq6ureffdd6/6+d3c3PDy8sLLyws3N7f60dXaKgwc1JWXULLt77i0i8B/2ENXfb/JAF8PxaN/lb4xERGRNuTs2bPOayOiBzP/ugeTyXAWDbc74LTVi1PWSB7tEcP58+dZtWoVubm5+Pv7M2LECC5evMiFCxecZXugfuQzLi6O9PR0Vq5cSUhIiLP00OTJk/H29gZg2LBhxMbG8uWXX3LmzBmCgoLIycnhzJkzeHh4cOTIEQ4dOuQcUezYsSOPPPKIcw1kg4aRyobjHL28vPD29iY4OJjIyEgOHTpEcHAwY8aMwcfHBy8vLzw9PZ31Kc+cOeMcOTUMg0iXUr7e9Bfs1nKCp/0ck6v7Fd+dYRiMjwvX6OT3oEApIiLShjTshA4MDuXLso4YrvW7mi/XsJZw6bEaCk9v565YC6NHj6Zr166YTCYSEhKcAc9utzvDX48ePTh27BhFRUVcvHiR6OhoXFxcWLVqVaNp54Y1lwBFRUXOa6vVSnJyMr6+vkRERNC+fXu8vLyocxhs3ZVIbNdIaqrq12BOnz4dV1fXaxYpj4mJYdmyZZw8eZKgoCCSk5PJzc119tvd3Z2uXbvi6+tbH0yPb6PyeCLed4zFM7LPVe/pcDhYMLzL9/zmb28KlCIiIm1ESkoKe/bsAaDnvQu44O5xRZi8nAkoCOxFx47enD17lrS0NCorK8nJyaGiooLf/OY3WK3Wq77XbrdTUFCAn58fXl5ehIWFOUcSL/85deoUO3bsACAkJITIyEgOHz7MP/7xD9LPnOPs2bNUlV3CMLtg9g0molscU8eO5KGH3K76XIfDQU5OjrNYe0OtSgB/f39iYmK48847KSoqYtOmTZw5c4bY2Fj+8Ic/4O7tS8Do+Rg4nKH6cqNjQ1Uy6HtSoBQREWkDHA4Hzz33HAATJk7keOgQHNcJkwB2DJJya5k791EyMs5ety3Ur0/ctWsXu3btora2Fi8vL37wgx9gMpmu2r60tJS9e/fSp08fBg4cyNq1a9m6dSsrV67kzJkzYHbBp9cYAsOisFdXUHXmIFlfJ/CX/ZvJLyziH3+tPxKxqqqKkydPcuTIEc6dO0ddXR1QP0Xt6emJ1Wrl4Ycfplu3buTl5bF+/XrOnj1LVFQUs2bNYsGCBRQVFfHLX/6S9r3DWfr1BTJt7XAAlw+Axndo9x2+abkaBUoREZE24M0332Tbtm3ExMTw9nt/Z/x7B7/T+xwY2L9jSWqTyYSbmxu9evVi7969ZGdnk5iYyPDhw6+8r8PB2rVrcXV1Zfz48Xh6evL444/Tr1+/b8KkKxFzf49beFfne/yHzOTitsWU7vuMzxb+kcc8XOjXrQPFxf88zcbd3Z3o6Gj69etHly5dcDgcLF26lJUrV9K1a1dSUlIIDAzkoYceIjo6mj//+c+sWbOGwYMH8/LLL/P222/z/J1dCAoN5svN2xj12EAmLPtOH1+uQ4FSRESklfvss8945ZVXsFgsrF+/HoslFJMB3zJACYDxzeRvbGwsDzzwAO3atXOWDjKZTNjtdvz8/HA4HFit1kYn2ABs2bKFnTt34uvri4+Pj3MTTXl5OSdPnmTYsGHk5+fj7e3N4cOHSU6uL9Pj13dSozDZoN1dcyhP2YK9ooRPl31E5I+eICAggLi4OOLj4wkJCWm0rtJmsxEVFUVWVhYpKSmMHj2aIUOGYDab2blzJ6+//jqurq688847fP3112RnZzNmzBjOnz+Pqbqcqop/1qGsrKyksLDQ+bu/vz+urq7/4l/j9qSTckRERFqxhIQE7r33XgICAti2bZvzmMOnPkxi87H8b1lD6WBsj1DSFr5AYGAg8+fPJyMjg5KSEqD+nOyYmBi6du1K586dCQgIwGazUVFRwenTp1mzZo2zTE9sbCyVlZVUVFRQWlpKQUHBFc9LTEwkISEBgOB7f4Z33Mir9ivvk1exnj0EwNnMLCI7dbiijcPh4MSJEyQkJHDx4kV69OjByZMniYmJYfr06ezfv59ly5bx1ltv/Wtf6GW2bdvGqFGjvvf7bycaoRQREWmltmzZwrRp0/D392fr1q2NzsxeMDyKjal5132/HWiXdwibzUZgYCDdu3fn5MmTuLi4YLPZ6NOnD1lZWaSmpgLg4+NDp06d6NSpE507dyYuLo6zZ89SUlJCYGAgEyZMwOFw8Mknn1BZWckzzzyDyWRynqBTXFzsDJSGq8c1+3X5a5+uXM0PZk8nLCzM+X95eXkkJCRw5swZ5zrJ0NBQ0tLSWLFiBXV1dRw/fpwxY8YwZcoUDMOgtLSUVatWMXToULp160ZycjLp6el0797dWTx97ty5PProo87nXH4aj1yfAqWIiEgrtGPHDu699168vb3ZsmULPXr0aPR6/07tmBBYzMbigG92Nf9z40z9dLiD4e4X6OJj59OcHGcQjImJoVOnTmzevJlJkyZhGAZWq5WsrCwyMzM5d+4cmzZtwmaz4ebmRm1tLT4+PiQkJBAVFUV2djbHjx9n5syZeHl5kZ+fT1paGmlpaY2mk2uLsiB60FU/W21RFgCGuxcmRx3vvfce8fHxDBw4kMOHD3PgwAECAgKYPXs2MTExzinwuLg4YmNjSU9Pp2vXrkydOtX5WkJCAj179mT+/Pm4urri4lIfgfr16+d8blRUFGPHjr0Bf53bjwKliIhIK/PVV18xdepUPD092bJlC7169bqizYwZM0hJSWHK7CfJbRfHoQI7dkf9mskurmX84uGRnNpTyIULFzCZTFitVvz9/Rk7diwZGRlYrVbsdjtmsxkPDw+io6OJjo4GoK6ujgsXLpCZmcnhw4e5ePEiAO+++y4mkwlfX192797NqlWrGtWk7NOnD4mJiWRkZFB2YC2+/aZicms8Ull5Yi91RecBsMTfRYCvNzFRkaSmppKcnIzZbGbEiBHcddddmM2NC5CnpqaSnp5Ou3btOHfuHHl5eYSHh1NbW8vhw4fp27evc02kzWa74v3y/V19n7+IiIi0SHv37mXSpEm4urqyadMm4uPjr2jTEKDy8/PpFe7Fp8+NJ+0XE9n/0lh2PTeQEaYTuF06j6+vL3V1dTgcDvz9/Z0jnYMGDeLNN9/E3d2d+Ph4Xn75ZfLz8533d3FxoXPnzowYMYKnnnrKeYoN1NenLCsrIzs7m5qaGtzc3IiMjGTKlCk8++yz7N69m+69+mArKyR36QtUHk+ktiSXmrwzXNqzgsLVvwPAq/swfvtfr1FdXc2hQ4eoqanB398fs9nMnj172LVrF9XV1c4+paen8/nnnxMfH8/TTz9NUFAQy5cvp6KigtTUVKqqqhgwYICzvd1uv2a5I/nXaVOOiIhIK5GUlMTYsWMpLS3ld7/7Hf37979quyNHjvDmm29itVpJTU3FYrE0ev39998nNzcXV1dXxowZw5w5czhx4gTe3t6MHTsWNzc3XFxc6N69Ox999BEnT56kXbt2LFu2jEmTJlFdXc3x48c5cuQI58+fbzQKCThL+lRXVzunyi/f6FNTU8OB7Eo2rPiQupKcRu/1ih6Id/x45o0fyB2eJZw5cwaLxYKnpydnzpzB3d3deZyjh4cHI0aMwN/fnxUrVhAbG8v06dMxmUxcunSJ999/n6CgIGfNzDlz5gCQnJzMhx9+SH5+Pu3bt+eNN94A4P777+eBBx4AICwsjHHjxjX9j3abUKAUERFpBYqLi+nWrZtzevm7CAsLIzc31/m71Wpl48aNHD58GIBp06bRu3dvRowYQVpaGk888QTPP/88qamp7Ny5Ew8PDyZMmMDPfvYzNm/ejKurKz/+8Y/x8/Nz3tPNzQ2LxUJmZiaurq6YTCaioqKYMWNGo75kZ2ezYsUKLly4wMaNG0lOTsbHrx1hd06iLKAb9rparGcPUpW6nYiOnRkzYij9+/dn/PjxznWSJSUl7Nu3j4MHD1JXV4e/v7/z+wgPD2f+/PnOtZEAWVlZ/O///i92u51Zs2Y5Ny29/vrr/OIXv7judzdy5Ei2b9/+nb/r250CpYiISCuQkZFBly7/2jnTnTt3JiMjA4BTp06xevVqqqurmTBhAvv378fLy4u5c+eSm5uLYRisXLmS8vJyRo0axbp16wgJCaGgoICysjL+9Kc/YbPZaN++PS+99BJxcXHccccdBAYG8vnnn3PixAlqamro378/Bw4cYObMmc6NQrm5uXz88cdUVFSwaNEiMjMz6dmzJ4sXL+bixYvsStxLLWZcsXH21AmWLauvNP7rX/+a//iP/7hiraPVauXgwYN89dVXVFZWOutlhoaGMnbsWLp16+bcjLN48WLOnTvH+PHjGTJkiPMea9asITc3lyeeeOL7/knkMtqUIyIi0gpERkbybWNAhYWF/PnPf8YwDBYsWIDFYsFqtZKQkMChQ4eIiori3nvvdRbs/vzzz8nNzSU8PN9AyUUAACAASURBVByHw8GECRP49NNPWbduHYCzlqSvry8xMTEcO3aMCxcuMGzYMGdJnfT0dFJSUpg2bRqnTp3i+PHjREdHs27dOiIjI8nKyuKzzz4jKCiI1NRUMjMzAXj77be58847qaqqYs+ePXi4QF2dgyFDhnD8+HGSkpJ49dVXKSwspHfv3s5SRR06dMDDw4NOnTqxfft2QkJCMJlM5OXlcfHiRZYtW0anTp0YO3YswcHBZGdn07FjRzZt2kRoaChdu9YXU7fW2am0u2CtteHhqs05TaVAKSIi0opZa22UWevw9XBxBsEhQ4ZgsVg4ffo0q1evxmq1MnXqVPr169eoxM6mTZtYs2YNZrOZnJwc5xnZDfr378+oUaOoqanh8OHDHDt2DIBdu3bRu3dvqqqqWLduHdHR0cTHxxMZGcm7775LQEAA586d48MPPyQnJ4eYmBimTZvGz3/+cwD8/Py4++67yc/PZ82aNQB4enpSVlbGiBEjKCoqIikpCbvdTlFRER4eHuzfv5+dO3diGAZBQUFcvHiRgIAAHn74Yfz9/cnIyGDPnj2cPHmS8+fP8/e//52goCBsNhszZsxg9erVrFixggETZ7EipYiEVDMOQnnrtQ2MiwvjieFRDIgMvFV/tjZHgVJERKQV2p9RzKLdZ9iUlofdUV9bsqNh5k6/UIYOHcqaNWs4ePAgXbp04d5776Vdu3Y4HA7Onz/P/v37OXv2LGVlZZSVlQH1IS8qKor+/ftTXl7OJ598wvHjxxk+fLizaPmqVasA2LBhA7Nnz2b37t3U1tY66z36+/szdOhQdu/ejcVi4fz588TGxjJjxgwKCgqc6x07duzI+vXrSUpKwsvLC4Bhw4axe/duCgoKiIqKcn7O4uJiZs2ahcPhoLCwkKNHj5KYmAjUj8i+9dZbBAcH07lzZ3r16sWQIUNISUnh8OHDFBUVAbB+/XrGjRvHS4s38N4nqZhNpm8OnKw/nnLzsXwSUvP41bRezBnU+db8AdsYBUoREZFW5oO9mfznFymYTIbzvG67A845/MksCaD4rU/pRg5TpkyhZ8+eHDp0iJSUFPLz87HZbED9buuOHTuSk5ND//79mThxovP+2dnZABiGwZIlS5g3b16j59vtdv7yl79gt9u55557Gm3SGTBgAF999RXnz58nODiYnJwcamtrG5XoKSwsJDk5mbFjx2Iymdi4cSMBAQGEhIRQVFSEu7u7s21DfxtGVg8cOEBoaCiPPvoo1dXVzmLr586d48CBA0D9Gdzt27cnKysLs9nMsWPH2J6axeaa7oBxxXGUDb+/uiqF2DBfjVR+DwqUIiIircj+jGL+84sUHHBFMGo4DWdrWQjduniyfft25zS4YRi0a9eO6OhoBgwYQEhICAC//OUv+eMf/8ioUaPw8KgvMt4Q/qZMmcKGDRtYsmQJOTn/LO8zfvx4KisrsdvtHDt2jJiYGHx8fCgtLWXZsmXO8Ddy5EhWr17N5s2b6datGx4eHlitVkpLS3n22Wfx8/Nj8+bNAAQEBBAUFORcY9mgU6dOQP1I5dKlS/Hx8WHOnDl4eHjg4eFBfHy8sxZnZWWlM1weOlR/FrjNZsPFxYXUyrBvTgwyrvndmkwGi3afVaD8HhQoRUREWpFFu89gMl05ynY5AwcbM2uZ5FtH165d6dOnD3Fxcc6g6HA4sNvtOBwOjh07xqZNm9i4caPzLO7a2lrnvaZPn84nn3zinO6G+hFKgLvvvpu9e/fy5z//md69e3P06FFMJhNTpkzhq6++Ytu2bcTExJCUlERSUhI9e/bkwIEDVFVVsXz5ckaMGMH58/Wn4ly4cIHa2lqKiorYtm2b81kxMTHs2rWLxMREzGYzPXv25MiRIzgcjkY/DZ/H4XBQV1eH1WqlS5cueHp6UnjxEufOtrtumIT6gJ6QlquNOt+DygaJiIi0EtZaG3GvbeA6WdLJwMHjvimYsV8RuC63cuVKjhw5wn333Uffvn2veq+ioiLeffddHA4HHTt2ZP78+d+r/wUFBSxcuJDa2loCAgJ47LHHGk2XAxw9epTPPvsMqF9r+fjjjztHPM1mMyaTCcMwGv383/+rrq6muroaX1/f+pN7amFJaY8r+nMt+18aS4iv+7c3FCeNUIqIiLQSZda67xQmARwY+ASEYAn0wd/f31kq6P+GsQMHDnDkyBE2b97M1KlTGTp0KJWVlaxbt45Ro0bh5eXF448/jsPhwNXVlSlTphAaGsrkyZMxDIO0tDT27dtHUFAQJSUleHl50aVLF9LT06mtrcXFxYX77ruPlStXMnHiRMaNG8eCBQsoLCxk8eLF9OvXDx8fH0aNGsXGjRvZsGEDUD/V/e6775KRkYHNZuOxxx7D39//qp+1urqa3NxccnNzyc7OJiUlBcMwnBuODJPLt053NzAZ4OuhePSv0jcmIiLSSvh6uGAy+M4jlK7UcfLkSWw2G4ZhEBISgsViISIiAovFQlhYGMOHD2fDhg1UVFTw7LPP8sgjjxAfH8/Bgwc5d+4ca9asoaCggLCwMJ555hmgfso7ODiY7du3k5SUxNChQxk7diyHDh1i/fr1JCcnExERwaRJk1i6dCm5ubmMHDmSbdu2MX/+fI4fP87f/vY3vvzyS/bt20dVVRUJCQmEhYXRq1cvZs+ejaurK+np6ZjN5kZhsqysjNzcXHJycsjLyyMnJ8e5e9xsNuPl5YXdbsfHx4fy8nJcXV2JiYlhSL43+y5UXXepgNlkMK5HmKa7vwdNeYuIiLQiT32YxOZj+d+6hrKT6SJjPTKIj4+nR48elJWVkZ2d7QxidrsdwzAIDQ3Fw8ODr7/+mm3btlFZWUlhYSFWq5WAgAD69OnD1KlTGTNmDJ9//jnDhw8nKSkJh8NBTU0NU6ZMoVOnTiQkJHDq1Ck6d+5McHAwBw8exGKxYLFYOHjwIE8//TSfffYZdrudJ5980nn6ze9//3sAfvrTnwL154z7+/uzfPlyUlJSKCoqorS0FE9PT0JCQujRowf9+vXDy8uLiIgIwsPD8fPzo7S0lHPnzpGdnY1hGPTo0YO4uDiio6Nxc3Njf0YxM/6657rfrQGseGqINuV8DxqhFBERaUUWDI8iITXvW1oZzOwdQvHxDA4fPszhw4fp2bMnw4cPJzw8nLq6OvLz850BMzs7m4iICGbPng1AaGgo+fn59O3blwEDBtCuXTsWLVpE586d6d+/P2lpaRQXFxMYGEhOTg7r1q2jXbt2zJw5k9jYWAzDoE+fPqxcuZJDhw7h6urK1q1bue+++3j//ffZtWsXo0aNwlpro8RqJ8DXk5ycHHJzc8nKyuLVV18lLy8PX19f+vbtS3h4OHa7ncTERNatW0dWVhYrVqygqKiI1NRULly4gIuLCx07dgTqzyhv2PndoLfFhzF+BWwpDcZsMjUK5GaTgd3u4FfTeilMfk8aoRQREWllPtyXyaurUq7Y7X15MJozqDOlpaVs2bKF5ORk53nXUVFRDB8+nMjISOdmF4C6ujp27tzJrl276N69O6npJ5zna7sY9c/o0qUL2dnZuLq60qVLF44ePYphGIwaNYqhQ4fi4tJ4nKqmpoaNGzdy8OBBAGbNmsW5c+dY9dVRcvx7cLjAjgPjmxHVErrWnmXVov/h4sWLRERE8G//9m88/fTTeHt7A5CTk8PEiRNJTk4mPDycp556yjkSGRMTw6ZNmzhx4gQ/+clPrjj/e926dRw5coRBUx9mRXIRCWm5zoLw4+PCWTC8i8JkEyhQioiItEJJGcUs2n32OwWjvLw8Nm/ezKlTp3B1daW2tpaIiAiGDRtGjx49nOWE6urq+Pff/ZVT5s4cvcg3YQ86mS4yOKASr4qcRvd1d3entraWdu3acd9999G+fXtnkHM4HJSXl5Obm8vRo0c5evQoAOl1Ieyp6/TNJpl/Fjs3G1CwaSFlSasBeOONN/D19eXRRx8lLS2NtLQ0srKyKC4u5u233wbgN7/5Df/+7/8OgNVq5Y9//CNDhw5l1KhRjfp56tQpPvroIyZPnsydd95Z3/6yIyu1ZrLpFChFRERasX8lGJ05c4bNmzeTk5ODl5cXlZWVBAQEMGTIEPr06cPyA9m8+kXKFTui63+HUd55dLGdJzw8nK5du1JeXk5mZiYlJSX17QwDb29vTCYTVquVmpoaADw8PPDz8+NobiVffnNazf/lcNg5/9bD2K3leHr78s5b/8OFCxdwOByYTCa6detGz549iYmJYdiwYRw8eJAOHTpw7tw5DMPg66+/ZsOGDTz//PP4+vo671tVVcVf/vIXQkJCmDNnTqNRWblxtIZSRESkFfNwNX/nEbaoqCieeOIJUlJS2LJlizNcffnllyzbtI+VZV0Ariiv0/D79oowJo/rzfBYC7m5udTU1ODr60t5eTl1dXU4HA6qq6sxDMMZJs1mM4GBgbRv355VRZUYNXC1kay64mzs1nIA3IM7Ogue33vvvfTo0cN5ig9A7969OXjwIOfPn2fv3r0MHjyY/fv306NHj0ZhEurP8a6treW+++5TmLyJFChFRERuI4ZhcMcdd9CjRw/279/Pzp07cXV1Jc0W/u1HEwJ/3pLOsV31xzkGBgYSGhrKkCFDcDgcJCYmYrFYmDBhAnV1dRQUFJCfn09hYSGp6Sc4UdHtmve3VZU5r2vc/Ogc1Y3MM6fo2rVrozDZ8NwGX3/9NRERERQWFjJ58uRG7VJTUzl69CgPPPDAFQXU5cZSoBQREbkNubi4OKe6t+7Yxfs7ar618Lcdg3P2dtQ5DFwMB8XFxRQXF5Oenu5sk5mZycKFC694b5XD5fph1fWfJ9PYbbVcqqwf4ayoqLgiDF5+NGRaWhoWi4Xg4GAiIyOd/19WVsa6deuIi4ujV69e1/1c0nQKlCIiIrcxT09PBg4biWPH5u/U3oHBmIlTCPJ2w2QyYTKZnEcimkwmcnJy2LJlC5GRkYwdOxYXFxdMJhM1NgefvvX1NYuyu7QLB8MEDjt1F3OwltUXKy8vL7+ibUZGhvM6NzeX9PR0JkyY4JzSdjgcrFmzBrPZzJQpUzTVfQsoUIqIiNzm/pUTeEwGDO7f55rrNqOioggODubTTz9lz5493H///c5d5OPiwq5ZlN3k7oV7hziqs1Kou5hNdlYmgYGBVFRUNGpXXV3Nzp07nb9nZ2djNpsb1Z08ePAgJ0+e5KGHHsLLy+u7fAXSRKZvbyIiIiJtmYermXFxYZhN1x/JM7ATHwiOuprrtuvevTvTp08nNTWVL774ArvdDtQXZbdfJ7X6D53lvN68eTNubm5XBMo333zTuasc6kcw4+PjnessL168yMaNG+nbty8xMTHX7afcOObXX3/99ebuhIiIiDSvcD8PPk3K+tZ2g4zTpB/cg7e3N2FhYdecTg4JCSEoKIgdO3Zw6dIlunfvTvsAL4J93dmWno/ZaLzb28CBa0AEY3taSDuQ6NzQExoaSmRkJCdPnuSNN97gt7/9LVOnTuXEiRMAhIWF8fOf/xwfHx/sdjuffPIJDoeD2bNnX1FoXW4e1aEUERER4Pon8NjsDu7yuECcWxEBAQHk5eXRsWNHJk+eTHh4+DXvmZyczMqVK+nfv79zPWNDUfaNqTk4MDAZ0NEo5qlR0Tw8bjDr1q3jmWeeISurccCNiYnhlVdeoU+fPs4p7tGjR7NlyxYAEhMT2bRpE/PmzaNz58434RuSa1F0FxEREQDmDOpMbJjvFSfwjOsRxoLhXYgL9WDnzp3s378fT09PSkpKWLhwIQMGDGD06NFXlPcBiI+Px2azsXr1akwmE5MmTWJAZCADIgPJKyzm7b+8z7CB/SgpMlN+NhmHYxBTpkzh17/+NRkZGdjtdsaNG0f79u2du7gvX0M5bNgwAPLz89m6dStDhgxRmGwGCpQiIiLi1BD2rnUCz8SJExk4cCBbt24lNTUVHx8fDh06RFpaGmPHjqV3795XTIP37dsXu93O2rVrMZvNjB8/HsMwCAsOZNxdg9i9ezeTJ09mzZo1XLhwgQ4dOhAcHExOTg7+/v7O0NjgzJkzzuvJkydjs9lYuXIlgYGBjB49+uZ+QXJV2pQjIiIiV/BwNRPi637V3dyBgYE8+OCDzJ8/n8DAQOrq6gD44osvWLx4Mbm5uVe8p3///kyaNIm9e/eyefNmGlbcDRs2DG9vb06ePElAQAD79+8HIDg4mOrq6is25QDs2bMHgPDwcAYNGsSOHTvIz8/n/vvv17rJZqJAKSIiIt9Lhw4dmDdvHrNnz8bT0xOon3peuHAh69evx2q1Nmo/cOBAJkyYQGJiItu2bQPA1dWVsWPHkp6eTnh4OCtWrCA1NZXg4GAcDgcVFRVcvt2jYfoc4LHHHuPChQvs3r2bkSNHEhERcYs+ufxfivEiIiLyvRmGQffu3YmOjubQoUNs27aNmpoakpKSSElJYfz48cTHxzunwQcPHozNZmPz5s2YzWZGjhxJr169+Prrr0lOTubjjz+moqKCDz/8EKgvUl5VVeWsJ/nBBx+Qm5tLUFAQ//Ef/8HSpUuxWCwMHz682b4DUdkgERERuQEMw8BisTBgwADMZjNZWVnU1tZy7Ngxzpw5Q0REBD4+PgB06tQJs9nMtm3bMJvNdO7cmdDQUBISEkhKSuLs2bPMnDmTkydPYrfb6dOnD97e3uzatYtHHnkEgEWLFpGXl0dmZiZz5szB29u7OT/+bU+BUkRERG4Ys9lMZGQk/fr1o6amhuzsbMrLy0lKSqKqqoqOHTvi4uLi3Im9fft23Nzc6NmzJydPnmTjxo3YbDaWLFlCdXU1hYWFZGVl8c477/DSSy/h6+vLY489xv3338+GDRuYMGEC0dHRzfypRXUoRURE5KYpLCxk8+bNHD9+HMMwcHd3Z+LEic46klu3bmX37t1MnDiRLl268OMf/5iMjAxycnK4dOkS5eXlBAYG0rNnT6ZOncqlS5cYO3YsBw4cICQkhDlz5uis7hZAgVJERERuunPnzrF+/XrnDvDw8HCmTZtGaGgomzZtYs+ePUyePJnKykp27NiBw+Fg0KBB7Nu3j4kTJzJoUH15oR07dhATE8Pp06d55pln8Pf3b+ZPJqBd3iIiInILdOrUiSeffJIZM2bg6+tLbm4u7733HmvWrOGuu+5i0KBBfPnll3h6euLj44PZbKa4uBioP5/bbreTlJREhw4dSEtLY9KkSQqTLYhGKEVEROSWstls7N+/n61bt1JbW4urqyvjx48nNzeXAwcO0L9/fw4cOICLiwvWWhsdukQzZEAfVv7jU9zd3YmKimLGjBma6m5BFChFRESkWVRXV7N161b279+Pw+EgICCA0NBQjh8/TrlnGF9f8uGcvR0ODAwcRLqU0s/rIr98bp52dbcwCpQiIiLSrEpLS1m9ejWnT58GIMOlI9vKQzFw4LhsdZ6BHQcmfj2tF3MG6bzulkSBUkRERFqEnJwc3lq2luWFEcC1p7MNYMVTQxgQGXjL+ibXp005IiIi0iJERERwMawv5m9ZG2kyGSzaffYW9Uq+CwVKERERaRGstTY2peVh+5a5U5vdQUJaLtZa263pmHwrBUoRERFpEcqsddi/40I8u6O+vbQMCpQiIiLSIvh6uGD6jpWATEZ9e2kZFChFRESkRfBwNTMuLgzzt6RKs8lgfFw4Hq7mW9Qz+TYKlCIiItJiLBgehf1b5r3tdgcLhne5RT2S70KBUkRERFqMOyMD+dW0XhhwxUil2WRgAL+a1kslg1oY1aEUERGRFicpo5hFu8+SkJaL3QEGDu7q4sdz4xUmWyIFShEREWmxrLU2LlXVsPDdtxg98i6GDRvW3F2Sq9D2KBEREWmxPFzNeLh60tESTk5OTnN3R65BayhFRESkxYuIiCA7O7u5uyHXoEApIiIiLZ7FYuHixYtUVVU1d1fkKhQoRUREpMWzWCwAGqVsoRQoRUREpMULDAzE3d1dgbKFUqAUERGRFs8wDCIiIrQxp4VSoBQREZFWwWKxaISyhVKgFBERkVYhIiKCS5cuUVFR0dxdkf9DgVJERERahYaNOZr2bnkUKEVERKRVCAgIwMPDQ9PeLZACpYiIiLQKhmFgsVg0QtkCKVCKiIhIq6ETc1omBUoRERFpNSwWC6WlpZSXlzd3V+QyCpQiIiLSaujEnJZJgVJERERaDX9/fzw9PbWOsoVRoBQREZFWo2FjjkYoWxYFShEREWlVtDGn5VGgFBERkVbFYrFQXl5OWVlZc3dFvqFAKSIiIq2KNua0PAqUIiIi0qr4+fnh7e2tQNmCKFCKiIhIq2IYBhEREdrp3YIoUIqIiEir07DT2+FwNHdXBAVKERERaYUsFgsVFRWUlpY2d1cEBUoRERFphRo25mjau2VQoBQREZFWx9fXFx8fH23MaSEUKEVERKRV0ok5LYcCpYiIiLRKDSfmaGNO81OgFBERkVbJYrFQVVXFpUuXmrsrtz0FShEREWmVdGJOy6FAKSIiIq2Sj48Pvr6+CpQtgAKliIiItFoWi0Wlg1oABUoRERFptXRiTsugQCkiIiKtlsViwWq1UlJS0txdua0pUIqIiEirFRERAWhjTnNToBQREZFWy9vbG39/fwXKZqZAKSIiIq2aTsxpfgqUIiIi0qpFRESQk5OjjTnNSIFSREREWjWLxUJ1dTXFxcXN3ZXblgKliIiItGramNP8FChFRESkVfPy8qJdu3YKlM1IgVJERERaPZ2Y07wUKEVERKTVawiU2pjTPBQoRUREpNWzWCzU1NRQVFTU3F25LSlQioiISKunjTnNS4FSREREWj0PDw8CAwMVKJuJAqWIiIi0CdqY03wUKEVERKRNaDgxx263N3dXbjsKlCIiItImWCwWamtrKSwsbO6u3HYUKEVERKRN0Mac5qNAKSIiIm2Cu7s7QUFBWkfZDBQoRUREpM2wWCwaoWwGCpQiIiLSZlgsFnJzc7Ux5xZToBQREZE2IyIigrq6OgoKCpq7K7cVBUoRERFpM7Qxp3koUIqIiEib4ebmRkhIiALlLaZAKSIiIm2KTsy59RQoRUREpE2JiIggNzcXm83W3F25bShQioiISJtisViw2Wzk5+c3d1duGwqUIiIi0qaEh4djGIamvW8hBUoRERFpU1xdXbUx5xZToBQREZE2Ryfm3FoKlCIiItLmREREkJeXR11dXXN35bagQCkiIiJtjsViwW63a2POLaJAKSIiIm1OWFgYJpNJ0963iAKliIiItHoOh4N33nkHHx8fDMPgq6++IjQ09DsHyqNHj7JgwQKioqLw8PDAYrFwzz33sHbt2pvc87bBpbk7ICIiItIUZ86c4fHHH2fHjh2N/j8iIuI7lQ56//33+dGPfoTD4eDRRx9l4MCBZGRksHDhQtauXcv8+fNZuHAhJpPG4a5FgVJERERaJYfDwbvvvsuLL76I2Wxm8ODB7N271/m6xWLhyJEj1NXV4eJy9cizdu1ann76aRwOB6tWreLee+91vjZ//nyGDBnC3/72N4KCgvjNb35z0z9Ta6WoLSIiIq3SL37xC5577jmGDx9OSkoKEyZMaPR6w8acvLy8q76/urqaZ599FrvdzsyZMxuFSYCuXbvyy1/+EoDf//73pKam3pwP0gYoUIqIiEirtWjRIjZs2EDHjh2veC00NPS6G3OWLl1KVlYWAE888cRV28yZMwdPT0/sdjtvvvnmjet4G6MpbxEREWmVXnvtNQzDuObrLi4uhIWFXTNQrlixAgA3Nzfuuuuuq7bx8fFh0KBBbN++ndWrV1NTU4Obm1vTO9/GaIRSREREWqXrhckGERERVw2UNpuNnTt3AhAXF3fdkNivXz8ASktLSUpK+p69bdsUKEVERKTNslgsFBQUUFtb2+j/T506RXV1NcBVp8svd/nrWkd5dQqUIiIi0mZZLBYcDge5ubmN/j8jI8N5HRYW9v/Zu/O4KOu9/+OvmWFYZEcFWVRAwdz39VhuuZTimmaaZmpZ3WbWr06nPB4zO7be9zG18nisLE0trQR3cMHcUXNDVAbZZEcQZF9mrt8fHEYRFGVxAD/Px4NHF8x1XfOZMcc33/We97j98duvE7dIoBRCCCFEg+Xs7IxGoynX7Z2VlWU8trS0vOc9rKysKrxO3CKBUgghhBANlkajwcXFpdwC53l5ecbjyibZ3P54bm5uzRbYQEigFEIIIUSD5ubmVq6F8vZWx8LCwntef/vjjRo1qtniGggJlEIIIYRo0Nzc3Lh+/XqZYGhra2s8zs/Pv+f1t7dm3n6duEUCpRBCCCEatIom5nh6ehqP77aTTkWPt2zZssbrawgkUAohhBCiQWvatClmZmZlur1bt26NhYUFgHG3nLuJi4szHrdv3752iqznJFAKIYQQokFTq9U0a9asTKDUaDTG3XEuXbp0z3GUf/75J1DS3d2jR4/aLbaekkAphBBCiAbP1dW13EzviRMnAlBQUMDhw4crvC47O5sTJ04A4OfnZ2zVFGVJoBRCCCFEg1c6Mad0dxyA6dOn4+HhAcCaNWsqvG7Dhg3k5uaiVqv529/+9lBqrY8kUAohhBCiwXNzcwMo00ppaWnJV199hUqlYtOmTWzfvr3MNZGRkSxcuBCAN998k44dOz68gusZM1MXIIQQQghRVevXrzcenz9/3ngcFBRknEzj4uLCkCFD0Gq1JCQklJnhPXr0aL7++mveeOMNxo8fz4wZM+jZsycxMTGsWrWKtLQ0ZsyYwWefffbQXlN9pFIURTF1EUIIIYQQVaFSqSo9Z8CAAQQHB/Pdd99hb2/PhAkTyp1z/vx5li1bxv79+0lKSsLBwYEePXowZ84c/Pz8aqP0BkVaKIUQQghRbz1Iu5ibmxs6na7Cxzp16sR3331XU2U9cmQMpRBCCCEeCW5ubqSnp5ORlUNqVgH5RXpTl9RgSAulEEIIIR4JYjy3OQAAIABJREFUKQZb9he24oePgzEooFbB0HYuvNTfmx6eTqYur16TMZRCCCGEaPDWHY/hH/6hgILCrXGXGrUKg0FhydgOPN9btlWsKgmUQgghhGjQTkanM+nfx7hX4FEBm+f0lZbKKpIxlEIIIYRo0NYcjkStvvdscLVaxZrDUQ+pooZHAqUQQgghGqz8Ij1BYcnoDffukNUbFALDkmSiThVJoBRCCCFEg5WVX0wlWdLIoJScLx6cBEohhBBCNFi2lmZU0tttpFaVnC8enARKIYQQQjRYlloNQ9u5oKkkVWrUKoa1a4alVvOQKmtYJFAKIYQQokGb3d8bQyX93gaDwuz+Xg+pooZHAqUQQgghGrSenk4sGdsBABWGMo9p1CpUwJKxHWTJoGqQgQJCCCGEaPCe792Sa+eP80eKlis5Frd2ymnrwuz+XhImq0kCpRBCCCEavKKiIgwpESwcNIhuPXuTlV+MraWZjJmsIRIohRBCCNHgxcTEUFxcjI+PD5ZajQTJGiZjKIUQQgjR4Ol0Ouzt7WnSpImpS2mQJFAKIYQQokFTFAWdToePjw8q1X0uSikeiARKIYQQQjRoaWlp3LhxAx8fH1OX0mBJoBRCCCFEg6bT6dBoNHh6epq6lAZLAqUQQgghGrSIiAg8PT0xNzc3dSkNlgRKIYQQQjRYhYWFREdHS3d3LZNAKYQQQogGKzIyEoPBIIGylkmgFEIIIUSDpdPpcHJywslJdsKpTRIohRBCCNEgKYpCRESEtE4+BBIohRBCCNEgpaSkcPPmTQmUD4EESiGEEEI0SDqdDq1WS8uWLU1dSoMngVIIIYQQDVJERAReXl6YmZmZupQGTwKlEEIIIRqc/Px8YmNjpbv7IZFAKYQQQogG5+rVqyiKQuvWrU1dyiNBAqUQQgghGpyIiAiaNm2Kg4ODqUt5JEigFEIIIUSDoigKOp1OursfIgmUQgghhGhQEhMTycnJkUD5EEmgFEIIIUSDotPpMDc3p3nz5qYu5ZEhgVIIIYQQDUpERAStWrVCo9GYupRHhgRKIYQQQjQYubm5xMXFSXf3QyaBUgghhBANRkREBIAsF/SQSaAUQgghRIMRERGBq6srtra2pi7lkSKBUgghhBANgsFgICIiQlonTUACpRBCCCEahPj4ePLy8mT8pAlIoBRCCCFEg6DT6bCyssLd3d3UpTxyJFAKIYQQokEo7e5WqyXePGzyjgshhBCi3svKyiIxMVHGT5qIBEohhBBC1HuyXJBpSaAUQgghRL0XERGBh4cHjRo1MnUpjyQJlEIIIYSo1/R6PVevXpXWSROSQCmEEEKIeu3atWsUFBTIckEmJIFSCCGEEPWaTqfD2toaV1dXU5fyyJJAKYQQQoh6TafT4ePjg0qlMnUpjywJlEIIIYSotzIyMkhNTZXxkyYmgVIIIYQQ9VZERAQqlYpWrVqZupRHmgRKIYQQQtRbOp2OFi1aYGlpaepSHmkSKIUQQghRLxUXFxMVFSXd3XWABEohhBBC1EsxMTEUFRXJckF1gARKIYQQQtRLOp0OOzs7nJ2dTV3KI08CpRBCCCHqJZ1OR+vWrWW5oDpAAqUQQggh6p20tDTS09Olu7uOkEAphBBCiHonIiICtVqNt7e3qUsRSKAUQgghRD2k0+nw9PTE3Nzc1KUIJFAKIYQQop4pLCwkOjpalguqQyRQCiGEEKJeiY6ORq/Xy/jJOkQCpRBCCCHqFZ1Oh6OjI40bNzZ1KeK/JFAKIYQQot5QFEWWC6qDJFAKIYQQot64fv06mZmZ0t1dx0igFEIIIUS9odPpMDMzw9PT09SliNtIoBRCCCFEvaHT6fDy8kKr1Zq6FHEbCZRCCCGEqFWKorBixQpsbGxQqVQEBwc/8D2ys7N5+eWXefHFF5k6dWrNFymqxczUBQghhBCi4YqMjGTmzJkcPHiwyvfYt28fs2bNIiYmpgYrEzVJWiiFEEIIUeNKWyU7derEmTNn6NOnzwPfIzs7m1dffZWhQ4dibm6Oi4tLLVQqaoIESiGEEELUuMWLFzNv3jz69+9PaGgow4cPf+B7jBo1itWrVzN//nzOnj2LtbV1LVQqaoJ0eQshhBCiVqxZs4ZZs2ZV+XoXFxcOHTpEv379SEpKQq/X12B1oiZJoBRCCCFEjVu0aFG1Fx7ftGmT8R46nQ61WjpW6yr5kxFCCCFEjauJXWxuv4dOp8PS0rLa9xS1QwKlEEIIIeq03Nxc4uLiaNSokalLEXchgVIIIYQQddrVq1dRFAUrKytTlyLuQgKlEEIIIeq0iIgIXFxc0Gg0pi5F3IUESiGEEELUWQaDgYiICHx8fExdirgHCZRCCCGEqLMSEhLIzc2VQFnHSaAUQgghRJ1VOrvbw8PD1KWIe5BAKYQQQog6KyIiglatWskalHWc/OkIIYQQok7Kzs4mISFBurvrAQmUQgghhKiTIiIiAGjdurWJKxGVkUAphBBCiDopIiICNzc3rK2tTV2KqIQESiGEEELUObJcUP0igVIIIYQQdc61a9coKCiQQFlPmJm6ACGEEEI0TOvXrzcenz9/3ngcFBREXFwcAC4uLgwdOrTctTqdDr1ez/79+1GpVAAkJydXeO9OnTrRqVOnGq9f3D+VoiiKqYsQQgghRMNTGgTvZcCAAQQHB5f7+apVq0hNTeUf//hHpfdYtGgRH3zwQRUqFDVFWiiFEEIIUSuq2mZ18+ZNkpOTmTBhAgsXLqzhqkRtkDGUQgghhKhTdDodKpWKVq1amboUcZ8kUAohhBCizsgv0nPm0lVc3DywsrIydTniPskYSiGEEEKY3MnodNYcjiQoLBmDAipgWHsXXurvTQ9PJ1OXJyohgVIIIYQQJrXueAz/8A9FrVahN9yKJRq1CoNBYcnYDjzfu6UJKxSVkUAphBBCCJM5GZ3OpH8f415hRAVsntNXWirrMBlDKYQQQgiTWXM4ErX63ssLqdUq1hyOekgViaqQQCmEEEIIk8gv0hMUllymm7sieoNCYFgS+UX6h1SZeFASKIUQQghhEln5xVSSJY0MSsn5om6SQCmEEEIIk7A2V1P5Xjol1CqwtZT9WOoq+ZMRQgghxEOXkpLC1q1baaFuxDXF8Z4tlRq1iqFtXbDUah5egeKBSAulEEIIIR4ag8HAoUOHWL16NcXFxbw7tieVrTdjMCjM7u/1cAoUVSItlEIIIYR4KFJTU9m6dSuJiYn069ePgQMHYmZmxhKDJQu33nsdSlkyqG6TdSiFEEIIUasMBgNHjx4lODgYR0dHxowZg4eHR5lzTkWns+ZwFIFhSRiUkjGTw9o1Y3Z/LwmT9YAESiGEEELUmtTUVPz9/UlISKBv374MGjQIM7O7d5DmF+nJyi/G1tJMxkzWIxIohRBCCFHjDAYDx44d48CBAzg4ODB27NhyrZKi4ZAxlEIIIYSoUdevX8ff35+4uDhjq6RWqzV1WaIWSQulEEIIIWqEwWDg+PHj7N+/H3t7e8aOHUvz5s1NXZZ4CKSFUgghhBDVlpaWhr+/P9euXaNPnz4MHjxYWiUfIdJCKYQQQogqMxgMnDhxgv3792NnZ8eYMWNo0aKFqcsSD5m0UAohhBCiSm5vlezduzdDhgyRVslHlLRQCiGEEOKBKIrCiRMn2LdvH7a2towZM4aWLVuauixhQtJCKYQQQoj7lp6ejr+/P7GxsfTq1YshQ4Zgbm5u6rKEiUkLpRBCCCEqpSgKISEh7Nu3D2tra8aMGYOnp6epyxJ1hLRQCiGEEOKebty4gb+/PzExMfTs2ZMnn3xSWiVFGdJCKYQQQogKKYrCyZMn2bt3L9bW1owePRovLy9TlyXqIGmhFEIIIUQ5N27cICAggOjoaHr06MHQoUOlVVLclbRQCiGEEMJIURROnTpFUFAQjRo1YvTo0Xh7e5u6LFHHSQulEEIIIQDIyMggICCAqKgounfvztChQ7GwsDB1WaIekBZKIYQQ4hGnKAqnT58mKCgIS0tLRo8eTatWrUxdlqhHpIVSCCGEeIRlZmYSEBBAZGQk3bp1Y9iwYdIqKR6YtFAKIYQQjyBFUfjzzz8JDAzE0tISPz8/WrdubeqyRD0lLZRCCCHEIyYzM5Nt27Zx9epVunbtyrBhw7C0tDR1WaIekxZKIYQQ4hGhKApnzpwhMDAQc3Nz/Pz88PHxMXVZogGQFkohhBDiEXDz5k22bdtGREQEXbp0Yfjw4dIqKWqMtFAKIYQQDZiiKJw9e5Y9e/ZIq6SoNdJCKYQQQjRQN2/eZPv27eh0Ojp37szw4cOxsrIydVmiAZIWSiGEEKKBURSFc+fOsWfPHszMzPDz88PX19fUZYkGTG3qAoQQQghTUxSFFStWYGNjg0qlIjg4+L6uCwsL44MPPmDgwIE4Ozuj1WpxcHCga9euvPXWW4SHh9du4RXIyspi06ZN+Pv74+vry2uvvSZhUtQ6aaEUQgjxSIuMjGTmzJkcPHjQ+LMDBw4wcODAu16TlJTE9OnTCQoKAqB3794MHz6cFi1akJSUxKZNmwgNDUWr1bJ06VLefvvt2n4ZKIrC+fPn2b17N2ZmZowaNYo2bdrU+vMKAdJC+cir6m/lAGlpaXz00Uf07duXxo0bY2FhgYeHBxMmTGDnzp21V7QQQtSA0s+/Tp06cebMGfr06XPf10ZHRxvD5EcffcSxY8dYvHgxs2bNYsGCBZw9e5apU6dSVFTEO++8w+rVq2vrZQCQnZ3Nzz//zNatW/Hx8eHVV1+VMCkeKgmUdURycjIrV65k9OjRNG/eHAsLC2xsbPDx8WH69OkcOHDgge6XkpLChAkTUKlUeHp6VnhOZGQkgwYNYt68eeTk5DzQ/Xfv3o2vry8LFy6ksLCQv/3tb3z99ddMmjSJvXv3MnLkSKZPn45er3+g+wohxMOyePFi5s2bR//+/QkNDWX48OEPfI/evXvz/vvvo1Kpyvxco9Hw73//m8aNGwPw7rvvkp+fXyN13660VfKrr74iLi6OZ599lvHjx9OoUaMafy4h7kVmedcBc+bMYe3atRQWFtK8eXMmT55M69atyc/PZ9euXaxbt45169YxefJk1q5dW+keqz///DNz587l+vXrFT6uKAorV67kvffeQ6PR0KdPH44fP37f9R4/fpyxY8dSUFDAtGnTWLt2LWr1rd9NXnvtNfr168e6deuws7Nj5cqV931vIYR4mNasWcOsWbOqfL2fn1+5MFnK2tqaESNG8NNPP5GRkcGhQ4cYOnRolZ/rTtnZ2ezYsYPLly/ToUMHnnrqKQmSwnQUYXIWFhYKoPj5+Sk5OTnlHv/mm28UQAGU55577q73SU5OVsaPH68ASs+ePRUnJycFUFq2bFnmvEWLFimAMnz4cCU2Ntb4PaAcOHDgnrUaDAala9euCqDY2dkpmZmZFZ5XWrNKpVJOnjxZ6XsghBAPm8FgKPP9g3wW3rhxQ9m2bZuSkJBwz/Pee+894z3XrFlT3ZIVRSmp+/z588qnn36qfPbZZ0pYWFiN3FeI6pAu7zrC2tqab7/9tsLfLl955RVGjBgBwMaNGzlx4kSF9+jVqxc7duxg6dKlHDt2DFtb27s+35o1a9i9ezfNmzd/oDrPnj3LmTNnABgxYgR2dnYVnvfcc8+hVqtRFIVly5Y90HMIIcTDcLeWxfvh4ODAqFGjcHV1ved5mZmZxmNra+sqP1+pnJwcNm/ezG+//Ya3tzevvfYabdu2rfZ9hagu6fKuI/r27UvTpk3v+viECRPYvXs3AAEBAfTu3bvcOW3atGHnzp20a9funs+1aNGiKn+QhoSEGI87dOhw1/Ps7e1p2bIlUVFRBAQEUFhYiLm5eZWeUwgh6quoqCigJLz+5S9/qda9Ll68aJzwOHHixEo/64V4mCRQ1gG///57pS2FLVq0MB7HxsZWeM7u3bvvKyhW57fytLQ04/HdWidLOTk5ERUVRVZWFpcuXaJz585Vfl4hhKhvMjMzjRMqR40a9cA9QqVycnLYuXMnYWFhtGvXjqeffrpGWjuFqEkSKOuAp556qtJz7qfbpDpB8X7d3iVf2YzFoqIi43FYWJgESiHEI2XdunXk5+ej1Wr5+OOPq3SPsLAwduzYgaIoPPPMM7Rv376GqxSiZkigrCdKu00AHn/8cZPV4ePjYzy+evXqPc+NiYkxHt9txrkQQjREqampfPjhhwAsWbLkgYNgbm4uO3fu5OLFi7Rt25ann34aGxub2ihViBohgbKe2Lp1KwAuLi6MHz/eZHU88cQT2NjYkJ2dTWBgIIqiVNgyGhISUqZVNSsr62GWKYQQJmMwGHjhhRdITU1l4sSJ/PWvf32g6y9dusSOHTswGAxMmDCB9u3bP5QeKCGqQ2Z51wOhoaEcO3YMKPlN18rKymS12Nra8sYbbwAlLZDffPNNuXP0ej0LFiwo8zONRvNQ6hNCCFN766232LVrFwMHDuTHH3+87zCYm5vLr7/+yi+//ELz5s157bXX6NChg4RJUS9IC2UdpygK8+bNA0rGWs6ePdvEFcEHH3zAmTNn2LlzJ2+88QbXrl1j6tSpODk5ceXKFT7++GOCg4MZPnw4e/bsASqfwCOEEA3B4sWL+fLLL+nfvz/btm3D0tLyvq67fPky27dvR6/XM378eAmSot6RFso67pNPPuHAgQP4+vqyfv36OvEBY2ZmRkBAAP/6179wc3Pjk08+oWPHjri7uzNkyBAKCgo4dOgQI0eONF5zryWRhBCiIVi6dCkffPABffv2ZefOnfc15jEvL4/ffvuNn3/+GQ8PD1577TU6duxYJz7rhXgQ0kJZh/3666/8/e9/x83NjV27duHk5GTqkow0Gg3z589n/vz5REVFkZCQgJmZGa1ataJJkyYABAYGGs/v2LGjqUoVQoha98UXX7BgwQJ69+7N7t2777mxRKkrV66wfft2iouLGTdunARJUa9JoKyjAgMDmTp1Ks7Ozuzbtw9vb29Tl3RXXl5eeHl5lft5ZGQkUNLdffvscCGEaEi+/PJL3nnnHXr06MGePXsqHOLTo0cP/Pz8WLRoEXl5eezevZvz58/j6+vLqFGj7iuAClGXSaCsg/bt28fYsWOxt7dn//79PPbYY6YuqYzk5GQ2b95MYGAgZ86cISUlBa1Wi6urK3379uXFF19k0KBBxl11xo0bh1pddnTFyZMn2bx5M4cOHSI8PJybN29ia2uLr68vQ4cO5ZVXXsHd3d0UL08IIe7b119/zfz58+natSuBgYHY29tXeN7p06fp0KED4eHhbNu2jaKiIsaOHUunTp2kVVI0CBIoa4CiKKxcuZL33nuPnJwcDhw4wMCBA+/r2rS0NFatWsXOnTu5dOkSN2/eRK/XY2ZmxpgxY+764WQqc+bMYe3atRQWFuLh4cHkyZNp3bo1+fn57Nq1i3Xr1rFu3TpGjhzJpUuXAJg5c6bx+kuXLjFjxgxj2HzyySeZP38+bm5uxMTEsG7dOj766COWLVvGqlWrmDp1qklepxBCVGb16tXMnTsXBwcH/v73v3Pu3Ll7nh8bG8vGjRvx8fFh1KhRMllRNCyKqJarV68qAwYMUADj14EDB+7r2kOHDinOzs4KoLi4uCjPPfecYmFhoVhZWSkeHh4KoNjb2ys7duwwXvPyyy8rfn5+93X/li1bKoDSsmXLe563aNGi+67dwsLCeO7atWvLPf7NN9+UeS/Gjx9f5vGNGzcaH1u3bl2563NycpTBgwcrgKJWq5WdO3dW+jqFEKKq1q1bZ/waN26c8fPp/fffN/48MDCw3HX79u1TVCpVmc+7yr66deumnDlzRjEYDCZ4pULULgmUVWQwGJTly5cr1tbWip2dndKnT58HCpRJSUmKg4ODAiht27ZVdu/erdja2iqOjo7Kn3/+qeTk5CgDBw5UAMXS0lLR6XSKoijKgAEDKg2IpWorUJqbmyuA0r59eyU7O7vcOY899pjxfncGwtJAOWnSpLs+x7Vr1xStVqsAymOPPXbPeoQQojruJwgOGDCg3HXff//9A4VJQJkyZcrDf4FCPCTS5V1FixcvZvHixQwfPpz//Oc/fPvttxw/fvy+r1+9ejUZGRkAzJo1i2effZbs7Gw+//xzMjMzCQkJYerUqQQHB5Ofn8/bb7/N/PnzjddU1/r1643H58+fNx4HBQURFxcHlOzKM3To0HLXenl5ceXKFeOWYC+++CItWrQgJSUFf39/Ll++bDz38OHDFe5VPnr06LvW5uHhQa9evThy5AiXL19Gp9PJpB4hRK1QFKVK182YMYMZM2bc9fGIiAgCAgIoLCxk2LBhdO3aVcZKigZNAmU1rFmzhlmzZlXp2pMnTxqPP/roI+M2hW+//XaF5/v7++Pv7w9Ay5YtKzwnMjKSo0ePGr/Pyckx/vf2ANmvXz+mTZtW4T2WLl1qPB4wYEC5QPn7779jZWVFWFgY+/bt4+LFiyxfvpy8vDyaNWtG9+7dWbBgAf/85z+BkjFDt3viiSfYtm1bpfuRt2jRgiNHjhjvIYFSCFFX5BfpycovxtbSDEtt2V3A8vPzjRMWW7VqhZ+fX50bCy9EbZBAWUWLFi2q1m+bhYWFxuOaanX8448/ePHFF8v9/Pr162UC5Pfff1/l38pLWxsHDhzIa6+9VuE5mzdvNh5bW1uXeczNzQ03N7dKn+f2fcDvvIcQQpjCyeh01hyOJCgsGYMCahUMbefCS/296eHpxNWrVwkICCA/P59Ro0bRrVs3aZUUjwwJlFVU3Q+JTp06GbclPHHiBL169Sp3TnJyMs2aNQPg6aefZseOHfe8Z2VdMNVxr9/I7xQVFWU8rqwlsrJ72Nra0qVLlyrdQwghasq64zH8wz8UtVqF4b+/jxsU2HsphcCLyUzyNtAo4U+8vb0ZPXq0tEqKR45svWgir776qnFbrk8++aTCc27/+csvv1zmsfwiPalZBeQX6WuvSEp+I5+z/hTtFu2m59K9tFu0mznrT3EqOv2u12zduhUoGYM5fvz4B37O8PBw45JDM2bMuO+9cIUQojacjE7nH/6hKIDeULZ3R29QUICfI1W06j2U559/XsKkeCRJC6WJeHl5ERQUxJQpU/j9998ZM2YMb775Jt7e3ly7do3vv/+eb7/9Fo1Gw5IlSxgzZgxQeZdLTarsN/IlYzvwfO+y4zlDQ0M5duwYAEuWLMHKyuqBn3f16tUAODo68ve//716L0IIIappzeFI1GpVuTB5O41axeHrFjwvXdziESUtlCbUp08fwsLC+Oc//8nBgwcZNGgQLVu2pH///qxfv55XX32VkJAQ3nvvPaAk4E369zH2XkoxBjy9QeHXH9fQy9cdlUpFcHBwpc/r6emJSqWq9Gt6X0+iPxlF5NKR3Dzpb7y+9DfyhVtDy7RUKorCvHnzgJKxlrNnz37g9+Ty5cusXLkSgG+++QZnZ+cHvocQ1aUoCitWrMDGxua+/14BREdHs3LlSp555hl8fX2xsbHB3NwcFxcXBg8ezPLly8nNza3d4kWNyi/SExSWfM8wCaA3QGBYUq33GglRV0kLpQmFhITwyiuvcObMGfr06cOMGTNo0aIFycnJbNq0ibVr15KZmcmSJUtIUzuU63IpykgibccyCq6FGu95JekmA2uhVo21Q7mfqdUq1hyOMraMfvLJJxw4cABfX1/Wr1//wONMc3Nzee655ygoKODtt9/m2WefrZHahXgQkZGRzJw5k4MHDz7QdV988QXvvPMOAI0aNWLatGm0b98eg8HAuXPnWL9+PQcOHOBf//oXu3btqnNbqory9Ho9V2PjqSRLGhkUyMovrnScuRANkQRKEzl27BhDhgwhLy+PadOmsXbt2jL7Xc+YMYMFCxawdOlSdu7cyaA3v0StblLSOqgoZJ3eTsbBH0CtxtytDYUJVwDYcSGROZPv/rwGgwFFUejWrRv/+te/KCwspKCgwPhVWFhIdm4+S88Y0GdnkLxxAWqLRlj59Cl3L71BMf5GviNgK3//+99xc3Nj165dODk9WPe7Xq9n2rRpnD17lilTpvDpp5/e97VKNba+vJPBYOAvf/mLcU3R6txL1C+3/3+k0Wjo06fPA60te/36dQBcXV05fvw4LVq0KPP4vHnz6NevH9HR0YwePZrQ0FDMzc1r9DWIqlMUhRs3bhAfH098fDwJCQkkJiaSX6RHRTcUKv8FWa0CW0v5Z1U8muT/fBNQFIXZs2eTl5eHjY0NK1euLBMmS3344Yds2rSJyMhIti37G24vrUKl1pB5eAOZRzZi6dWNxk+9Tva5QGOgDIlKZ+u2HSjFheTn55f7KiwsJDMzE5VKxYEDB8o8n7m5OZaWlhSbWaFt3ILcK8cBBesOg1FrLSp8LQYFAnbsYvrUqTg7O7Nv3z68vb0f+P14+eWX+e2333jmmWf44YcfKnw/KlLV1qS7WbFixQOFCNFwVHezglKffvppuTAJ0KVLF15//XU+++wzdDode/bswc/PryZKF1WQk5NTJjzGx8eTl5cHlIzfdnd3p23btri7u5McnMy+K6mVjqEc2tZFWifFI0sCpQmcPXuWsLAwAAYNGoSdnV2F52k0Gvz8/Pjyyy8pvpFIfsx5rLy6AuD01DxsOw+r8LqrsfE4NdJiaWmJg4MDlpaWZb6OHj2Ki4sLL730kvFnFhYWxMXFcf78ec6FhoHiTva5kmWNbLoMv+trKYg5y4wv/4m9vT379+9/4G48RVF45ZVX+O677xg3bhwbN27EzKzy/y2r25pUkdjYWJkE9IirzmYFHh4edO/enWHDKv57CdCjRw/jcVhYmATKh6SwsJDExMQy4bF0/d9GjRrh7u5Or169cHd3x93dnUaNGpW5/qUnbAi6lHLP5zAYFGb396q11yBEXSeB0gTCw8ONx56envc818vr1gdUUUoUVl5dse8/5Z7jE9v7tuLxfn3uuiDQEAM9AAAgAElEQVR46fqXUNJNd+zYMS5cuEBmZiYODg707dWDHZuOEJOZjIV7W8ybVlxjQex5UrYswc7aiqCgINq2bXvP11KR119/ndWrVzN69Gh+/vnn+wqTUHOtSbd75ZVXyMvLY+TIkZWu+SkanupuVjB37lzmzp17z3Nu/ztZlRUQROUMBgMpKSnG1sf4+HhSU1NRFAWtVourqytt27bFzc0Nd3d3HBwcKv1z7+npxJKxHVi4NbTcbG+NWoXBoLBkbIcaX2lDiPpEAqUJ3N6dW9mONQaDwXisouT4Xh9+zdTZnDh6mBNHD2NnZ0fbtm3p1atXmTGN2dnZhIaGcv78eRITE7G0tKRdu3Z07tyZJk2a8Pvvv5NyZAsANl1GVPg8+XFhpGxZgpWFOZMnT+bw4cNYWVnRunVrY31z5swhMTGRgICACu/x5ptv8tVXXzFy5Eg2b96MVqst83hiYiJ+fn68/PLL5dbhhOq1Jt3pp59+YteuXbz11lvY2tpKoHwEPYwdTU6fPm08HjRoUK0/X0OnKAoZGRllwmNiYiLFxcWoVCqcnZ3x8PCgd+/euLu707Rp0/seTnOn53u35DEXW9YcjiIwLOnWsm1tXZjd30vCpHjkSaA0gdtbJa9evXrPcyMjI43Hatumld77ucfbMPqJnpw4cYK4uDhOnDjBiRMnsLKywtnZGb1eT1xcHGq1Gl9fXx5//HF8fHwwMzMjOTmZNWvWkJKSwrWIy1hYWdPosb+gUYH+ttxbmHCZlF8WodWoeOP1ucycOZPDhw+zYcMGvL29GTp0KM2aNePKlStER0dXWOdf//pXli1bxogRI/j1118rnJxQUFDA6dOnSUhIKPdYdVuTbpeWlsabb76Jp6cnH374IZ9//nmN3FeI2127do0VK1YAMGvWLDp27GjiiuqfnJwcY5d16VfpuEcHB4cy4x6bNWtW45Oeeng60cPT6YF2DhPiUSGB0gS6d++Om5sbCQkJHDhwgLS0NBo3blzuvKKiIuOuMxqNhqmDu7E1qaSlUimzhOittKc7+Qfqgb2ZMWMGxcXFHD16lJMnT5KdnU1MTIzxXq1ataJ79+54eXmh0Wi4ePEi/v7+ODk5odFoKCoqone3bgxtkUWqkyd7LiaioKIwUUfqz/+AonwWLPiApKQkVqxYwdChQ1Gr1Zw6dYp9+/bRunVr0tMr3k1nwYIFfP7557Ro0YI33njDuBD6nZKSku76HtZka9L8+fNJTU3lxx9/lH3DRY3Jzs4mKyuL+Ph49u3bx//+7/8alwF7//33TV1enfcg4x7d3Nwe6t9dS61GgqQQd5BAaQJqtZqPP/6YF154gfz8fGbOnMmWLVvKdPkqisKrr75KXFwcULKM0KevjEP1v6uJ1Hpx4QbGLhdHTRGZ/73Ozc2NTZs20bJlS9LS0sjOzqZx48Z0794dR0dHLl26xNWrVwkPDyc8PByNRoONjQ2ZmZm0bduWMWPG0K5dO6Ak+L76zLCSe275jdj4JJauWkxxQcnCzIsWLTLWu3z58gpfq4uLCwUFBVhYlMwSX7t2LUuXLgVKJsE89dRTNfrePqg9e/awfv16pkyZwogRFXfvC1EVc+fO5YcffjB+37dvX5YtW0avXr1MWFXddOe4x4SEBFJSUlAUBTMzM9zc3HjssceMk2buZ9yjEOLhkkBZDevXrzcenz9/3ngcFBRkDIIuLi4MHTq03LXTp08nJSWF999/n4CAADp06MDzzz+Ph4cHKSkprFu3josXLwLwwgsvsHr1av744w8aGzJZPOcJsnILWLFqNTOnTWH5zWZ89UfJfW/evImjoyMxMTE0bdqUSZMm4eHhYfzw7dy5MwaDgZiYGE6cOEF4eDiZmSVx9PLlyxw7dozIyEiaN2/O448/jpubGwAWGhXqolwy/9tCcL8KCgpYsWIFgwYNomvXrnftAjeFnJwc5syZQ+PGjVm2bJmpyxENzF//+lemTp1KZmYmp0+f5vvvv6d37948+eSTfPPNN7Ru3drUJZrEneMeExISSEhIKDPu0c3NjZ49e+Lu7o6zs3OVxz0KIR4eCZTVMG3atAp/XtoCBzBgwIAKAyXA22+/zejRo1m9ejXbt29nyZIlFBUVASWtmM7OzixcuJC5c+eSk5PDsWPH6NWrF3Z2duj1N7BSFRMTGUF8fLzxnjY2Njz33HPcvHmTXbt2ERwczMSJE7G0tDSeo1arsbKyIjk5GSsrK/r3709SUhKXL18mMDAQKGmdTE5OJjg42LgUkJOTE4qicPbsWfz9/Zk3bx6Ojo5ASffejz/+SG5uLtOmTcPFxQWAzMxM9u/fz/bt2zlx4gRTp06t0fGP1bFgwQJiYmJYu3YtTZtWPj5ViAfRrl07Y2v/M888w7vvvoufnx979+6ld+/eHD16lDZt2pi4ytp357jHhIQE4/aTpeMeBw0ahLu7O66urrLYuxD1lATKKpozZw7m5uYUFhbSvHlznn32WVq3bk1+fj67du0yLs3j6upapsv3TqX7/YaHh9OoUSOGDRuGSqVCq9USGBjIvHnzSE1NpW/fvqhUKvr27Ut4eLhxtujRo0fL3K+goABfX18AGjduzC+//MK3337LlClTjOHvwoULBAQE0LRpU1544QUcHEq2VYyLi2PhwoVYWlrSoUMHMjIyOHjwIAcPHsTMzAxLS0tCQkI4fPgwmzZt4quvviIzM9O4FEfPnj1xdXVl7dq1TJs2DTc3N+zt7Rk3bhxduvdkR+A+fvxpI9aW5uTm5nLmzBlCQ0NJTk5Gr9fTuHFjunTpwsSJE5k2bdp9LyFUFSEhIaxYsYInn3ySF154odaeR4hSDg4ObNiwgVatWpGens7MmTM5cuSIqcuqUUVFRcZxj6VfpeMerayscHd3N7Y8Puxxj0KI2iWBsop++OEHCgsL8fPzY9OmTWUWwn3jjTdYtWoVr776Kps2bUKlUrFhw4YK7/P111+zePFiLC0tmTt3LnZ2dowZM4b27dsTEhLCgAED+PDDDxk1ahRjxoxh1apV5ObmGifxjBkzBkVRjJN3UlNTiYuLw8PDAy8vL2bNmsWGDRtYs2YNkyZN4vLlyxw/fpxOnToxatSoMuM2lyxZgl6vp1evXrz99tukp6cTGhrKxYsXKSgoYOPGjbz77rvo9XocHR3p2LEjzzzzDAaDgV27drFx40YAevXqRVFREdOnTyfZYMOaw5EEhSVjUJpwI2gLN09vB0paU6dPn06HDh3IyckhJCSELVu2sGvXLpYvX86uXbto1qxZjf/ZFRUVMXv2bCwsLFi1alWN31+Iu2nevDkDBw4kKCiIo0ePEh4ebvwFsL4xGAykpqaWCY+3j3t0dXWVcY9CPEIkUFaDtbU13377bbldFaBkkWx/f392797Nxo0beeONN+jdu3eZ5SZu3kjj3XffBaB37964ubkxefJknJ2dAfDx8WH8+PFs2LCBwMBAunfvTr9+/ejUqRPW1tb83//9X4XP7e/vz//8z/8A0KRJE2bPns3GjRtZu3YtACNGjKBXr15lPtxTU1PZsqVk7cnZs2djb2+Pvb09Xl5ejBw5kk2bNnHu3Dn0ej2+vr5MmjQJMzMzbty4QatWrfjoo48YMWIEb775JiEhIajVai4XN+VwgUfJwr//nYhenFsyXlPbtCUjZ7+Jm3U2bdq04S9/+QsWFhbs3r2bp59+mrNnz/Lss8/W2JaKt/v000+5cOECn3zyCa1atarx+wtxL23atCEoKAiA0NDQehEoS8c93t51nZiYSFFRUYXjHps2bYpGI7OghXiUSKCshr59+95z7N2ECRPYvXs3AKt+/JnvdJr/ttSVzM62D/2V7OxsAPz8/HjppZcAOHXqFBcuXCA2NtY4FrGwsJDi4mLjtm6lY5BuX/gcSiYBXb9+vUzLR0ZGBpmZmWg0GvR6vXHdtlKKovD555+Tnp6Op6cnU6ZMKfO4Wq02bg9pbW3NTz/9RGJiIn/++SeKohAdHU1ERAQAHTp0IDQ0lOPHjxPt+wwWblS4/63TsFc5obRm4GPmHDt2jD///JOBAwcybNgwJk6cyC+//MIff/zBhQsXanS9vvDwcD766CN8fX154YUXuH79erlzSt9bKBkDevs5TZo0qbFaRMORm5vLzp07y4ybvJvbh3IUFxfXdmlVkpubW26f6zvHPbZp00bGPQohjCRQVtHvv/9O8+bN73lOixYtjMebD57FxeFJY0udQYGLR0omwNg3dmbEiBEEBASg0+kwGAy0atWK8ePHExoaipOTE+np6WzZsoWPPvoIuLXbzp2Bsl+/fpw9e5bt27czf/58zp8/z/bt23FxcWHmzJmcP3+eAwcOkJ6ezujRozEzM+PcuXPs3LkTKJlodPsEnlKlrZl9+/Y17kfcpEkT9u7dS7t27dDpdOTl5dG6dWtCQ0MByNOdwMKt7N7eZg6uWLi3xcK9LWq1irN5Tnw6dy779+9nx44dhISElFn4PSwsrEYD5dGjRykoKCA8PBxXV9dKzx87dmyZ7yvb2Ug8mlJSUpg4cSL/8z//w8qVK+95rk6nMx7f/hlhKrePeywNjzdu3ABujXvs0aOHsetaxj0KISoigbKK7mf9xNLleABUWosyLXXFWdcpSi+ZnV3o5M1Xv+ymi7stTz75JB06dMDGxoa4uDjCw8Pp2rUr+/bt48qVKyQkJODm5mYMeHcGSnt7e3x8fNDpdKxbt47o6Gi6dOnCyJEjMTMz4/HHH8fBwYGAgADS09N58skn2bJlC5cvX8bKyoqpU6cSHR2NXq+nuLjY+N/r168zY8YMBg4cyOHDh40tnYqicOPGDR577DEyMzNJTk6+9Rpvlm/9cxww3XisNygEhiWx7NkujBs3jt69exMUFGQMpFDz+x0PHz7c2N14Nz/++CPr1q0D4IsvvqBz5841WoNouPbs2YNer79rd29cXBx79+4FwNnZmZ49ez7M8sqNe0xISCA5ObnMuEdfX19jeHR0dJRxj0KI+yKBshZFRUUZjy2aty/zWFFqjPFYa9eEtCadefxxd/R6PRERERQXF3Ps2DFsbGyMs7ChZGHwTp06GZcXOnbsGBcuXDA+vmPHDlq2bAlAdHQ0FhYWXLlyhbCwMPR6PXq93nhufHw8P/zwAyEhIej1ejp16sSmTZvu+no8PDyIiYkhLi4OMzMzNBoNWq3WuIacmZlZmX98VNqKZ7bfzqBAVn4xlloNbm5uTJ8+nW3btgElO/pkZGRw8+ZNY5d7dbm6ulbaMnn48GHjcffu3Rk4cGCNPLdo+CIiIpg/fz6ff/55uZb+tLQ0Jk6cSEFBAQCfffZZrY4zVBSFzMzMcvtcl457bNq0aZnWRxn3KISoDgmUtei3338HQG3tQCPffmUeK85MMR6rrR0JSchnw8+bMVOV7VI1MzMjJyfH+P3Fixdp3LgxJ0+eJD09naioKK5du2Z8XKfTERMTg16vx9ramsGDB9OqVSs0Go0xBJb+Nz4+nuPHjxuXIFq6dCnt27cvd56ZmRl79+4lKiqK1157rUx9V69eZf369XTo0IHIyMgye5PfGaIrokIh4nIoth3bY2lpyblz59i+vWQW+OzZs0lOTmbFihX07dvXOHFHiNpS1c0KbGxs8Pb2JjIykpUrV7J161YmTpyIt7c3FhYWXLhwgZ9++on09HSsrKz49NNPa3y5qtzc3HL7XJeOe7S3t8fd3Z2BAwfKuEchRK2QQFlLQkNDOXH8OAAOjz+P+o7WOkPhrYkxKo0WBRVFaDDj1iB9tVpN48aNy0z8cXV1ZdiwYbzyyisVPq+/v7/x2NPT0zgj+87Z4MXFxQQHB5OWlkZ6ejotWrTA3t7eOAnoTmq1usz4wcLCQnQ6HSdPngQwdiNfvnwZAAsbB6x9+9zl3fnv68aAe1ESWzYd4Pv/ZJGWlsbu3bvRarWsXLmS2bNnU1BQwOHDh8tM3OnWrZvsnCFqRVU3K2jSpAkRERFlFvFfv369cdhL6TJbQ4YMYcaMGZWOv65MUVERSUlJZcJj6bhHS0vLMi2Pbm5u2NjYVOv5hBCiMhIoa4GiKMybNw8AK+/u2HQeXv6c4oJb32i0qFDQUtIdbW1tTU5ODt7e3tja2pbphvrzzz/58ccf+eCDDwDQarU4OjpSUFBAZmYmbm5udOvWDUdHR06fPk1YWBgHDhxg5MiRZZ7/yJEj3LhxA19fX9asWUOzZs3Yvn07aWlpPPnkk+UCm0qlQq/Xc+bMGc6cOUNcXJwxYJqZmWEwGHj88ceNdfUZ+CTR2nuPf1RQk7RjOf93+daYSR8fH0aPHo2HhweJiYk0a9aMIUOG0KNHDw4cOMCOHTs4ceIEQ4cO5cSJE8Yu9gfd+vJOQUFBxvGfd7tXp06d6NSpU6X3EvVXdSZdqVQqhgwZwpAhQ2qwIhn3KISoH1SKTFutcR9//DHvv/8+vr6+9Hnzaw5fKyi3dE7mid/IOPAdAE6DZzLimed52i6Bq1evlvlHTaPRcPnyZX766SegZA3F2bNnk5mZybp16/D29iYpKYnc3FxsbW0pLi4us+xNKTunJjSyc6SJvS2NLMw4deoUbm5uxMXFMXXqVFq1akVISAh79uzB19eX8ePHY25uTmZmJpcuXeLw4cNlut4tLCxo3749PXv2xMLCgi+//JKAgADOnDlDmzZt2L59O8dSzVgYEIoaMHDrHziNWoXBoLBkbAfaml0nNTWVK1eusHfvXvbu3UtBQQHt2rXjqaeeonnz5nTr1o1OnTphZ2dHYmIigYGBREdHG8PrvQwYMIDg4OBKzxs4cGCla14uWrTovp5TPDpuX1fWUlv98Yd3jnss3ee6dMx06XqPpeHR2dlZxj0KIeoECZQ17Ndff2XSpEk0a9aMQ4cOkaZ2YNK/j3Hnm5x1Zhfpe74CwOGJ53l76tO8+fwYQkND2bVrF56enly7dg29Xs+xY8eMWzmOHz+eyZMn4+Xlxc6dOzE3N8fc3JxJkybh4eEBlHRn37x5k5s3b/JT4HECY4qJNTigoEKFQgt1Bu3NknFRZxvrsbCwwM7ODrVaTUpKClqtFjMzs3LhtHPnznTr1o3mzZuXaQUZN24cW7duxdnZmSNHjtC6dWuuXLnClxu2c71xJ04mFqCgQq2CYe2aMbu/Fz08ncq9fzExMQwePJjIyEgcHR2ZNWuWsbuutBuvbdu2xMTEEBQUxPXr1+ncuTODBw+usYk7QlTmZHT6bTtAlawrO7SdCy/1967w/+u7ycvLK7feY+kvbqXjHksDpKurq4whFkLUWdLlXYMCAwOZOnUqzs7O7Nu3D29vb7yBJWM7sHBrKGq1ythSaWbvbLyuo10R2oxrrFq1Cr1eT4cOHZgwYQIFBQVcuXKF4/8diwnQtGlT4uPjCQsLA0rGMvr4+JCRkYGjoyPW1taYmZnh5OTEjvAs1kTZAgrKf1sIFVTEGuyJKXSgr1ks707oh1qt5tq1a8THx5OamoqiKBQWFlJYWFjuNcbHx5OVlYWdnR12dnbY2try66+/4u/vj62tLb/99hutW7cG4PTp03T1sKNfPzc2bf6VOXPfoIm9zT1bclq2bMmGDRvo06cPN27cIDw8nBkzZnDp0iXjP7zbtm3D29ubYcOGkZGRQXBwMBcvXqx04k5NtyaJR9O64zH8w7/k7/Pt68ruvZRC4MVkloztwPO9W5a77s5xjwkJCaSnpwO3xj12795dxj0KIeolaaGsIfv27cPPzw9bW1uCg4Np27ZtmcdPRafzn0NXCQxLRkGFIes6176aAZTsx/3DDz/w/fffk5mZyeOPP05oaCjvv/8+OTk5PPHEE/zxxx8ALFu2jIyMDON9HRwc0Gg0pKWlASVjBr28vDh6MZr//f4XCuIuoc9JB7UZGhtHtE4eWLboiJVPb7QOLrzZEYoSLpOTk4NarcZgMKBWq/H09CQ9PZ3s7GwGDBhAfHw80dHRdO7c2dj6mZmZydmzZ9m4cSNWVla88MILuLi44OjoiJWVFXFxcfj4+GBpacmFCxd46aWXcHBwwMrKqtIxXr6+vuh0OrRaLTdu3MDS0pLo6GjOnDnDlStXjDuMmJub4+vri1ar5cKFC1hYWJSbuFNTrUlCnIxOr7DH4XYq4OeX++BprS+3z7XBYECj0eDq6mrstpZxj0KIhkACZQ04ePAgTz/9NI0aNeLAgQN06NChwvP0ej0fLPknQ0aMpE/3LrRr40NUVBSurq5ERkayfPly8vPz+e6774iJubVOpaurK4mJibRu3Zp3332XpKQkOnbsyPnz543jLVu0aIGTkxMZGRl88cUXXLhwAXNXXxr59EZt7YghN4Pcy0coTC5Z1seu1zicBr9IS81NBpuX/MzT05OOHTvStm1bLC0tKSoq4vfff+fSpUt4e3uTmprKW2+9BUBOTg6LFy9m2bJl2NjYsGXLFhITE4mNjaVLly5ERkaSlpaGjY0NWVlZZd4HMzMzYwvn3b4mT55sXD7o9OnTdOvWrcz7GBUVxcmTJ7l69apxbc1GjRphbW1NamoqTZo0KZm4k2bOPwIulmkdhrLjOCtqTRKiInPWn2LvpZQKtxMtpUahpSaTgdqS7UhL13uUcY9CiIZMuryr6ciRI4waNQorKyv27dtXYZicM2cOiYmJ+Pv7Y6ZSsDNXYanVMHnyZD7++GMSExPZtGkTf/zxB8HBwahUKpo3b25cXzIxMREoCY1ZWVnMnDkTNzc3wsPD6datG/b29ly8eNG4VElsbCxOQ1/BtvuoMnXY951EasDn5IaVTD5RUBNdbMeZyxfYtX0bBQUFLFmyhPj4eLRaLVqtlmbNmpGXl0dkZCQajYYLFy6Qm5tLnz63lgS6cePGXWe2jhw5kv/3//4fp0+fZujQoezfvx9PT0+sra25efMmN27cICYmhqysrDK7/ty+nmVQUBDp6ellAmezZs2YPHkyBoOBiIgIQkJCiI6ONo75zMjIYNlP29hZ2AZQlQsApd8v3BrKYy620lJZyxRFQVEUDAZDtb9q6j73e6/ScwqKDQSGNzYOH7kbAyqi9Q5MnjENz+buMu5RCPFIkEBZDcePH+epp55Cq9USFBR01yVlrly5QnR0NCqVCrVabWxRmzdvHsuXLycnJ4dFixYRGxvL8OHD+c9//sOKFSv4/PPPjfcwNzdnzJgxzJo1y7iXrlqtRqvV0qNHD3r06MG8efOIjY2l/8DBXLsjTJZy6D+F/KgzqLSWFGUkkbZjGVuv3Vq25+bNm8ZZpaVfpd3Ler2e3377jdjY2Pt+j6KioggJCaGoqIj169fzxRdfMGXKFMaOHYtWq8XZ2Rl3d3c0Gg2KoqDX6ykqKuLbb7813kNRFM6dO0dubm6Z0KnRaLC1tTWGzF69epGXl0dcXBzp6elcLHZBddv40Yqo1SrWHI6qtUD5IEHKVIGrus97v6HsYVGr1TXyVfr3tfTLoFdXGiZLKYCTi4RJIcSjQwJlFZ06dYoRI0aQnZ3N559/TmZm5l2Xp7l9zGPpOEWAZs2a8cknn/D6668TFxfH66+/zvLlywHKLUQ+btw4XnnllTK7W6hUKuO9IiMjWbVqFSqVirFjRrMyueIgpXVyx2PeT2Sd3k7it3NBraZt23ZculQyyefpp5+ucKvBgwcPcujQIaKjo41LGM2cOZPp06dTXFxs/IqOjubSpUsEBASQl5fHokWLSEtLK7Pk0NmzZ43v3Z3BtaioiOjoaGPrrKurKwUFBcbt6m6n1+vJyMggMzMTlUplDG8AxYrKOLP9XvQGhT0XE9nw82Y01HzAM2WQujMQPeiXVqut0v2q+7zVuV9tjkPML9Kz+Nxu7tHbfevPQgW2lvLxKoR4dMgnXhWkp6czbNgw4y4Yb7/9dqXXlO6vrdFoyuynPXXqVLZs2cIff/zB6tWr0Wg0tGvXjh07dhjPGTBgAO3bt+fHH39k4sSJ2NvbA7fCaVJSEgsXLqSoqAhXV1fyc7Jpoc64a6DKPLyBzCMbsfLqRv/n5qI/vt4YKBMTE1EUpcw/zEVFRYSFhREbG8umTZuMs7/Nzc1RFAWNRoNGo8HCwoJmzZpx8uRJ1Go11tbWTJo0ic2bN2NjY2PcHSQsLIz4+HjeeeedcmPJoqOjGTZsmPG9+s9//kO/fv2MoTM/P5+srCyysrLIzs4mNzeX3Nxc8vLyyM/Pp6CggMLCQvKKeIDWJBWZuQXYmZcEFzMzsxoPSbUdslQqlUzqqGWWWg1D27lUOoZSo1YxtK2LrCQghHikSKCsgtKxf1VxewslQHBwMH5+frz88sssXbqUDRs2kJGRUSYcfPDBB/j4+LB582b+/e9/M378eDw8PCgsLOTUqVMcOnSIvXv3AiUteu3bt6ddE2/e2nENRV+EotejNrcsU4fTU/Ow7TyUxywiSHS61d27Z88e0tPT6dGjB507d6awsJBNmzYRGxvL+vXrycu7tWXkqlWrWLVq1V1fa2mILigowMLCAmdnZ+MEo/fee48ffvgBPz8/vL29KS4u5vjx4/z222/k5eVha2vLG2+8QWFhIdu2bSM7O5usrCzy8/PLvZ+2trbY2Pz/9u49KKozT+P49xxuDd0tggoIKygXI4rxgkg0XsJOJE6S2Rm1cHQ1o5khSU1qN1VTs1smWzuZyU5mdzNVu0m2Nru1MZnUVGLiqMFsTIy5eCEqxhEFRZAVDF5QuQURGmiaps/+QTiRGA0zHZ0weT5VFtj9nu6Xhj+eet/z/n4uYmNj8Xg8tLe3E9br/dLtbvs1DLh/9UoFAPlShfNSea+y8bpjAgGLwnkTbtKMRES+HhQo/wjjx4//o7cyrwyUjY2NHDt2jLvvvpucnBxM0+T06dP4fD7Kysp444037OuSkpJ44IEHePXVV9mwYYO9xQv9hcybm5uB/i3rvLw8fv3rX9P18is0nT8HWBgRUTiSb2XE7NX2WTcAABNeSURBVO8RM28llmGwNLmX702ZyVMH37ffJzExkcjISN599107pEZERDBp0qRBYXIo/H4/Xq8Xj8eDy+XC7/fz2muvsWfPHvbv309NTQ3PPfccXq8X0zSJjIwkMTGRtLQ0srOzGTNmDJcuXcLtdjNmzBg7OA58dblcNDQ0UFpaypkzZ+z5maaJKzKC5N5rr9IO0GqS/CFyxsd+YV1ZGFw5QIe8ROSbRoHyJrPMUFq7/Hh7+9i1axcxMTHMnDnTbq3W09NDUlISfX19dqD0eDzs2rWLw4cP26eYB7alk5OTSU9P58knnwT6C49PnTqVzs5OHnnkEcrrGqnrjuDkkRK6az6iu+Yjpv/V/dw+I4uRzR6ysv6GnJwctm/fDvSXAzp37hyhoaH4/X5M06Szs5OwsDCefPJJ1q1bR0hICKZp8swzz5CSksLRo0eJiYkhIiKChoYG4uPj7QLpTz31FNAfnk+dOkVERASjRo1i1apVdih0u91XhcWIiIgv3ML1er2UlZWxc+dOGhsb7XDucDhIS0vDsiw+/vhjwsPDeXBhOv+4+5Pr/j60miR/qNW5KUyKd/PCvjreq2r4rLZpZvw1O0CJiPy5U6C8SQaKa7/XnI5V3I354Q7GGX08/K25tLe3s2nTJlpaWrjllluora0d1PJwy5YtTJjQH3rGjBlDdnY2TqeToqIiLl68iGma9tiXXnqJUaNGcejQITweD2zdyl3x8fTlZVL9f/P5z2f+jfI3X2LRLX+P5XTyzjvvDJrnokWLaG9vp6amZlCovHz5MpZl8atf/coe+/rrr9Pd3U1VVZU939DQUCZOnEh2djYTJkzg2/d+l/d2F3Nr5kTuvmvRoENFQ2FZFo2NjRw6dIiamppBNS1jY2OZNGkSWVlZlJeXc/jwYRwOB4sXLyY7O5vQ0FCs6DNaTZKv3KzxscwaH6vuSyIin1KgvAmubNU2sP0asOCcNZJ17zfy9v4yZkX3UFhYiM/n49SpU5SWltrXR0VFsXDhQqZNm0ZMTIz9+IcffkhXV5ddAHzAo48+yoQJE3j++edJSEigoaGBJUuW8O38O9mycQMNDQ288MILPPLII9TW1nLw4EH72ivDq9/vx+FwEBISQnd3N5ZlYZqmvdW+d+9eEhMTWbduHSNHjqSkpISmpiYOHz5MVVUVUaOTeLFxHKExEzFK4J3Lx4bUnaa3t5fq6mrKysqor6+3V29DQ0NJTk5m+vTpTJ06ld7eXkpKSnjppZcwTZOFCxeSm5s7KLRqNUluJEdYiIKkiAgKlDfcodOtPP6/x7HgqpOhgU/D5YddY5k9MYSXX37ZLq9z5T2ay5cv/8JSPiEhIaSkpAzqqgMwYsQI1q9fT0NDg71tvHXrVqD/oExDQwOXLl3iwoULJCUl2YEN+kPb4sWLmTx5Mk6n0179/Oijj/jggw+YPXs2lZWVAGRkZFBQUIDL5cLpdDJjxgzcbjfRt97Jtt88TVfLeXy/e5yEtU8T4nBdt9dxa2sr5eXlVFVV2W0kAZxOJ5mZmeTk5JCUlIRhGPh8PkpKSigpKSEQCJCbm8vcuXOJjIz8wt+BVpNERERuLAXKG+yFfR9ftd36eQYWm4+1sCjSS0ZGBjk5OYNWKI8fP47P57NPOg987enpoaGhgZaWFnvsQCkfj8dDWFgYvb29LFiwgHHjxuF2u4mPj7dXJBMSEhg9erRduBzgO9/5Drm5uVfNcSBY5ufns2jRInJzc/nkk0+orq62y/gA9I5MpiwymZhvPUDLG/+Cv+0i7SWbiPnLHw7qTpMxxsmoQBtHjhyhrq7OPr1tGAZxcXFMmTKFmTNn4nK57Dn4/X77VHtPTw/Z2dnMnz9/0Jjr0WqSiIjIjaFAeQN5e/t4v6rxSwshW5icDcQQHtlCXV3dVfcKlpeXY1kWTqfTDoUul4uysjJiYmLIzs5m48aNQP/2eEtLC36/n8jISDIyMsjLy7NfKzEx0f6+qamJ+fPnD5rLQI3Lz7vyVLlhGMydOxeAe++9l507d7J//37CwsJ492wfBhZRE2/DjBxBoLsdz7H3GZm3FsPoD6UGFute3EHepz3Ew8LC7JPdGRkZhIYO/rMMBAKUl5dTXFxMR0cH06dPZ+HChdecq4iIiNxcCpQ3UIfXP6SuGtBfXLu1o4tIw3/Vc36/n9bWVlpbW6967tKlS3ah8YGxA4XTu7u7OXv2LM8++6xdCLuiosIeW1FRwdixYwcd6nn33Xc5d+7coOLZhmHQ1tZGIBCgqKho0OOmaXLixAmio6NJzbiF9fv6sDAwTAiPm4D3zFEC3g56P6knfHQy0L/VfyYwkltnzGLO7Gzi4+O/8ES3ZVlUVlaye/duWltbmTJlCnfccQejR48e2ocqIiIiN4UC5Q3kdoRiGgwpVBrAfSsKcIT197RuaWmhuLgY6N+aXrZs2aB2gJZlUVJSQnh4ONOmTeO3v/0t9fX1eL1e+vr67N7YhmGQkZFBWFgYlmVRW1trv6fD4SA5OXlQQAsPD8fhcFz1XgPb4u3t7YMe7+npoauri+joaKpPncYi2X4t0znS/r7P0wqjP3vOwmBe3p2McV/d69iyLE6ePMnu3btpbGxk4sSJFBQUkJCQMOTPXkRERG4eBcobaKit2gwsks1LbHujiMzMTLKysoi9ontNQ0MDMTExJCUlDbqusrKSyMhIcnNzWbVqFU899RR+v5/GxkaSk5MpKCjg7bff5vjx4yxdupT09HRee+01+/qHH36YZcuWDTrUExUVRUFBwVVzPHLkCNu2bWPNmjWDVhO3bduG1+tlzpw5lJYdHdydxvqsI9DAdveAa/U6rqurY9euXdTX15OSksIPf/hDu2WjiIiIfD0pUN5gQ2nVZgErZsRzS2wSlZWVlJeXc+DAAfv52NhY3nnnHX70ox8NCnNXdt358Y9/zLPPPovX6+Xo0aMUFBSQkZHBgw8+yNatW9mwYQPp6els2bIFgMmTJ7N06dKr5lJdXW13trnSwPtalsVzzz2HaZqkpqZy5MgRAHbs2AFAavgI6nrdBCzo83zWnjLE9VlA/qLuNPX19ezatYu6ujoSExNZvXo1qamp6k8tIiIyDJhfPkSCMdCqzaA/SF0pxDQwgL/OCKGp8gD19fX84Ac/4IEHHiA+Pt4e193dzfnz5ykuLh5UTujKQJmSkkJhYSEAhw4dsh+Piopi5cqVjB8/nqeffto+/b1+/fpr3re4bdu2a/48RUVFPP744zz++OP2afHRo0eTn5/PT3/6U/71/nwCFlj+XnxNH/fPMyqa0NjPVlev7E7T2NjIxo0befHFF/F4PHz/+9+nsLCQtLQ0hUkREZFhQiuUN8FQimt//PEt/OxnP2P79u1MmzbNrkcJ/TUam5ubOXr0KJs2bWL58uVMnToVwzDs4GhZFhkZGcydO5cDBw5wzz33sHbtWrKzszlw4AA7d+6kvr6eiIgI7rvvPpKTk79wri6Xi5MnT9LU1MSoUaOorq7m8OHD9rZ4ZWUllmXR2tpKb28vU6ZMYeXKlfb14aeOMif0DO8fO4nV0989xzXtLgzDGNSdJnVEfzitqKggJiaGJUuWkJWVNeiAkIiIiAwPhnXlkpfccNcrrj2UFbmMjAzuv/9+fD4fDocDp9PJfffdR1NTE6+++ipOp5PZs2ezfv16iouLuXjxIiEhIaSlpbFs2TLWrFnDnj17uHDhAvn5+cyePZsnnniCJ554AoCXX36ZU6dOERoaSl9fn70iGhERQU9PD2vXrmXhwoWcOXOGlJQU3njjDaZPnw7AyZMn2bhxIyNGjODnT/wT7W2XCBv1FyT84N8JdUSRPzmBFTPi6Pi4nLKyMlwuFwsWLGDGjBmEhKg+pIiIyHClQPk1Y1kWFRUVbN++HYfDwZIlS0hJ6e8q8+GHH1JcXExhYSFtbW3s2LGDjo4OLMuyi5jfdddd3HbbbZw/f56NGzdimiYrVqxg7Nix9nv09fXx2GOPUVtby7hx46itrWX79u0AzJ8/3z71HRcXx4oVK8jOzubMmTO8/vrrPPbYYxQUFPDmm28CMHbsWFatWkVcXBz79u2jra2Njz76CJ/PR05ODhs2bmLkmLGYfT2UHjzAoUOHCA8PZ/78+cyaNYuwsLCb/AmLiIjIV02B8muqra2NrVu3cvbsWW6//Xby8vLsAzGjRo1i1apV/G5LEc1tHUxKG0/J3mL72ri4OFpaWkhISGDlypVXHbAZ6Mn9ZVJTU6mtrcUwDCorK9myZQuPPvoogUCAdevW0dXVxenTp6msrKS5uRnTNElISCAnJ4cVK1awdOlSu9/2wYMHMQyDOXPmcNtttxERcXW5IBERERmeFCi/xgKBACUlJezevZu4uDiWLl3KJ598wn+89jaXE7IpOevpLyKORbLZxkN3pBNorOXUqf4ONKZpMnHiRLKyskhNTeXEiROUlZVx8eJFu/j5QLDz+/1897vfZerUqQC8+eablJWVsXjxYnJzc6mqqmLz5s2sW7eO8vJy3n//fX7yk5/g9/v5zW9+Q1RUFGvXrsXhcADg8/n4/e9/z/79+/H7/cyePZvbb7+dqKioP8EnKSIiIjeSDuV8jZmmybx580hLS6OoqIjnn3+eQNrtbPfdgvFpmIT+IuFnAyP5h10tzA1r52+/nc/kyZMpLy+ntLSU6urqQa87cuRIMjMzyc3NJTo6Gp/Px1tvvUVRURHnzp0jPz+fu+++m4qKCnbu3MmsWbPs+zsDgQClpaVkZmZiGAavvPIKoaGhrF69GofDgd/v58iRI+zdu5euri5mzpzJggULcLvdN/3zExERkZsj5Be/+MUv/tSTkOtzu93MmDGDYxc7+a9jPvr76nz+AE//Y+cCI0k02zm89wNqamrw+XyYponT6bTvszQMg9jYWEaMGEF0dDShoaFMmjQJp9PJvn37qK2tJSMjA5fLRU1NDd3d3ThHjKSs6iSJY8dSdriUO++8k7feeovOzk7WrFmD2+22T6FXVlaSmZnJ8uXLufXWW7W9LSIi8mdOW97DyEOvlPJBVSN91/mNGQRINtv4tvs8ycnJ5OTkkJ6ejmEYWJZFY2Mjx48f5/jx41y+fBm3282UKVPIysoiMTGRCxcusHnzZnw+H0uWLOG/t7zHYU80ZwMxWPR39UlzdLIwvo/QS2dYs2YNly5dYs+ePbS0tJCZmUleXh5jxoy5aZ+LiIiI/GkpUA4T3t4+Jv98x5D7gh/8u7mMjom+5uEby7Kor6/n+PHjVFZW0tnZSWxsLFOmTCE9PZ29e/fyVvVlDviTP22n+NnrmFgEgPuzIknw1NLQ0EB6ejp5eXkkJiZ+NT+wiIiIDBsKlMNEc0cPOf/8wZDHr4goJ9Lw43Q6cblcuN1uXC6X/W/g/263m6ioKM6fP09FRQUnTpygp6cH34hxbGiK4+qt9StZ3D+ujbX3zLdLG4mIiMg3jw7lDBNuRyimwZBWKE0DVi1fRq+3i46ODjweDx6Ph+bmZurq6vB4PPYp7wERERG4XC4SEhKwLIsNZ52frkxeO1CGGAYXR0xSmBQREfmGU6AcJhxhISyaHM8HJ5rou06qDDENFmXGM3XypGuOsSwLr9drh80rv3Z2dtJ6uYNT3qjrhkmAPgveq2rE29t3VdcfERER+eZQoBxGCuel8l5l43XHBAIWhfMmXHeMYRhERkYSGRlJXFzcVc83d/TwqyFurwcs6PD6FShFRES+wb68XYp8beSMj+WX38vCoH8l8kohpoEB/PJ7WcwaHxvU+wxsrw+FafSPFxERkW8uBcphZnVuCpsfmsOizHg79JkGLMqMZ/NDc1idG/z9jAPb658PrZ8XYhrkT07Q6qSIiMg3nE55D2Pe3j46vH7cjtCvPNQdOt3K8v85wPX+OAxg80Nzgl4RFRERkeFNK5TDmCMshDHuiBuyQnizttdFRERk+NMKpVxX6elWXthXx3tVDQSs/u31/MkJFM6boDApIiIigAKlDNGN3F4XERGR4U2BUkRERESConsoRURERCQoCpQiIiIiEhQFShEREREJigKliIiIiARFgVJEREREgqJAKSIiIiJBUaAUERERkaAoUIqIiIhIUBQoRURERCQoCpQiIiIiEhQFShEREREJigKliIiIiARFgVJEREREgqJAKSIiIiJBUaAUERERkaAoUIqIiIhIUBQoRURERCQoCpQiIiIiEhQFShEREREJigKliIiIiARFgVJEREREgqJAKSIiIiJBUaAUERERkaAoUIqIiIhIUBQoRURERCQoCpQiIiIiEhQFShEREREJigKliIiIiARFgVJEREREgqJAKSIiIiJBUaAUERERkaAoUIqIiIhIUBQoRURERCQoCpQiIiIiEhQFShEREREJigKliIiIiARFgVJEREREgqJAKSIiIiJBUaAUERERkaAoUIqIiIhIUBQoRURERCQoCpQiIiIiEhQFShEREREJigKliIiIiARFgVJEREREgqJAKSIiIiJBUaAUERERkaAoUIqIiIhIUBQoRURERCQoCpQiIiIiEhQFShEREREJigKliIiIiARFgVJEREREgqJAKSIiIiJBUaAUERERkaAoUIqIiIhIUBQoRURERCQo/w9eu4HHEiEivgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ "from gem.embedding.gf import GraphFactorization\n", "\n", - "G = nx.barbell_graph(m1=10, m2=4)\n", - "draw_graph(G)\n", - "\n", "gf = GraphFactorization(d=2, data_set=None,max_iter=10000, eta=1*10**-4, regu=1.0)\n", "gf.learn_embedding(G)" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAMtCAYAAABze4tXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXiU9b3//9c9M0kmCZnsZIEAQRA0LFGWgOIGnIOAHunx9IC2ajmox/OrFETrJWrBtlq+tVo37Be1PdX2fC0ca6uWzSWxFRVBdsImArInBMjGJJNkZu7fH2MiERICuSczmTwf1zVXmns+9+d+D73Sa179bIZpmqYAAAAAAO1iC3UBAAAAABAJCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWMAR6gLCld/v15EjR5SQkCDDMEJdDgAAAIAQMU1T1dXVys7Ols3W8vgU4aoFR44cUU5OTqjLAAAAABAmDh48qJ49e7b4PuGqBQkJCZIC/4AulyvE1QAAAAAIlaqqKuXk5DRlhJYQrlrQOBXQ5XIRrgAAAACcc7kQG1oAAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABRyhLgCAdUzT1EnPSXl8HjX4GhRlj5LT7lSKM+WcJ4oDAACgfQhXQCdW7inXmpI12n5iu7aWbdX2E9tV4605o12cI06Xpl6qwemDdWnqpSrILFCyMzkEFQMAAEQuwhXQyZimqc1lm7V412K9u+9deU2vHIZDXtPb4j013hqtK12nTcc2NbW/Pvd6TRs4TUPShjCqBQAAYAHDNE0z1EWEo6qqKiUmJqqyslIulyvU5QCSpKIDRVq4caF2V+yW3bDLZ/ouuK/G+/sn9dfMy2bqul7XWVgpAABA5GhrNiBctYBwhXBS4anQL9b8Qiu+WiFDhkxZ92fb2N/EPhP1cMHDSnImWdY3AABAJGhrNmC3QCDMFR4o1I1v3aj39r8nSZYGq9P7e3f/u7rxrRtVeKDQ0v4BAAC6CsIVEKZM09QrW17R7A9nq7Kusl1TANvCb/pVWVep2R/O1m+3/lYMagMAAJwfwhUQhkzT1HMbntPzG58P/G7xaFWLz/36OY3PJmABAAC0HeEKCEO/3fpb/a74d12+BgAAgM6EcAWEmcIDhU0jVqH23IbnVHSgKNRlAAAAdAqEKyCMVHgq9Ninj8lQeJw7ZcjQ/E/nq8JTEepSAAAAwh6HCANh5BdrfqHq+mpL11j5PD4dX3FctXtqVbuvVj63Tz1m9FDyVclNbUy/qYpPKlS1vkq1B2rlO+VTdHq0EgsSZU40tWDtAv3y6l9aVhMAAEAkYuQKCBNFB4q04qsVlu8K6Kv2qeztMtUdrZMzx3nWNv56vw7/7rC81V6lXJuirFuzFNs3Vsf+ekz7nt6nZXuX6cMDH1paFwAAQKRh5AoIA6ZpauHGhZYfECxJjiSHBjw7QFFJUardV6s9P91zRhvDYajvI30V1z+u6VrKtSmKTovWsb8eU832Gr2Q/IKuzblWhhEeUxYBAADCDSNXQBjYXLZZuyt2B2XLdVuUTVFJUa23cdiaBatGrssDJ5B7jni0u2K3thzfYnl9AAAAkYJwBYSBxbsWy27YQ13GGbyVXkmSPcEuu2HX4p2LQ1wRAABA+CJcASFW7inXu/vetXytlRXKVpTJFmtTwuAE+UyfVu5bqXJPeajLAgAACEuEKyDE1pSskdf0hrqMMxz72zG5t7mV8d0M2eMDo2pe06u1JWtDXBkAAEB4IlwBIbb9xHY5jPDaW6ZyTaWO/eWYkq9OVurY1KbrDsOh7Se2h7AyAACA8EW4AkJsa9nWsBq5OlV8SodeOaSEIQnKviO72Xte06utx7eGqDIAAIDwRrgCQsg0zbAaCarZU6MDLxxQbJ9Y5fwwR4b9zG3Xt5/YLtO0fldDAACAzo5wBYTQSc9J1XhrQl2GpMB26/uf2a+otCj1vq+3bNFn/58Hd4NbJz0nO7g6AACA8BdeCz2ALsbj83TIc058cEK+Gp+8FYHph9WbqtVQ3iBJSh2fKhnS/qf2y+f2KW1imqo3Vze7P7p7tOL6fXMOVp2vrkPqBgAA6EwIV0AINfgaOuQ5x1ccV8OJb55Vtb5KVeurJElJo5MCtZwMvF/6RukZ9yddmdQsXNX76oNZLgAAQKdEuAJCKMoe1SHPGfD0gHO2GfTqoDb3F22Pbk85AAAAESnoa65efPFF9enTR06nUwUFBVq7tvUzct544w0NHDhQTqdTgwcP1vLly5u9b5qm5s2bp6ysLMXGxmr8+PHavXt3szZffPGFbrrpJqWlpcnlcmnMmDH68MMPLf9sQHs57c5Ql3BBYuwxoS4BAAAg7AQ1XC1ZskRz5szR/PnztWHDBg0dOlQTJkzQsWPHztr+008/1S233KIZM2Zo48aNmjJliqZMmaLi4uKmNk8++aSef/55LVq0SGvWrFF8fLwmTJggj+ebtSs33HCDvF6vioqKtH79eg0dOlQ33HCDSkpKgvlxgfOW4kxRnCPu3A3DSHxUvFKcKaEuAwAAIOwYZhD3VC4oKNCIESO0cOFCSZLf71dOTo5mzpyphx566Iz2U6dOldvt1tKlS5uujRo1Svn5+Vq0aJFM01R2drbuv/9+PfDAA5KkyspKZWRk6NVXX9W0adN0/Phxpaen66OPPtJVV10lSaqurpbL5dL777+v8ePHt6n2qqoqJSYmqrKyUi6Xq73/FECLpq+crnWl60JdRpuNyByh/57w36EuAwAAoMO0NRsEbeSqvr5e69evbxZmbDabxo8fr9WrV5/1ntWrV58RfiZMmNDUft++fSopKWnWJjExUQUFBU1tUlNTNWDAAP3hD3+Q2+2W1+vVSy+9pO7du2vYsGEt1ltXV6eqqqpmL6AjDE4fLIfROZY/OgyHBqcNDnUZAAAAYSlo4er48ePy+XzKyMhodj0jI6PF6XklJSWttm/82VobwzD0wQcfaOPGjUpISJDT6dSvf/1rrVy5UsnJyS3Wu2DBAiUmJja9cnJyzu8DAxfo0tRL5TW9oS6jTbymV5emXhrqMgAAAMJSxB0ibJqmfvjDH6p79+5atWqV1q5dqylTpujGG2/U0aNHW7xv7ty5qqysbHodPHiwA6tGV1aQWdCpRq5GZo4MdRkAAABhKWjhKi0tTXa7XaWlzc/MKS0tVWZm5lnvyczMbLV948/W2hQVFWnp0qVavHixrrzySl1++eX6zW9+o9jYWL322mst1hsTEyOXy9XsBXSEZGeyJuROkN2wh7qUVtkNu67PvV7JzpZHgAEAALqyoIWr6OhoDRs2TIWFhU3X/H6/CgsLNXr06LPeM3r06GbtJen9999vap+bm6vMzMxmbaqqqrRmzZqmNjU1NZIC67tOZ7PZ5Pf72//BgCCYNmCafKYv1GW0ymf6NG3gtFCXAQAAELaCOi1wzpw5euWVV/Taa69px44d+q//+i+53W5Nnz5dknT77bdr7ty5Te1nzZqllStX6umnn9bOnTv12GOPad26dbr33nslBdZTzZ49W48//rjeeecdbd26Vbfffruys7M1ZcoUSYGAlpycrDvuuEObN2/WF198oR//+Mfat2+fJk+eHMyPC1ywoelD1T+pvwwZoS7lrAwZujj5Yg1JGxLqUgAAAMJWUBd6TJ06VWVlZZo3b55KSkqUn5+vlStXNm1IceDAgWYjTFdccYVef/11Pfroo3r44YfVv39/vfXWWxo0aFBTmwcffFBut1t33323KioqNGbMGK1cuVJOZ+Aw1rS0NK1cuVKPPPKIxo4dq4aGBuXl5entt9/W0KFDg/lxgQtmGIZmXjZTP/rwR6Eu5axMmbo3/14ZRniGPwAAgHAQ1HOuOjPOuUIoPPiPB/Xe/vfCaoqgzbDp+j7X65dX/zLUpQAAAIREyM+5AnD+Hi54WAnRCWEzPdCQIVe0S3NHzj13YwAAgC6OcAWEkSRnkh674jGZCo8BZVOmfnrFT5XkTAp1KQAAAGGPcAWEmXG9xulHl4XH2qtZl8/S2F5jQ10GAABAp0C4AsLQnYPv1J2D7wx5DTMGzQhpDQAAAJ0J4QoIQ4Zh6EeX/UizLp8V+L2D1mA1PmfW5bM06/JZ7A4IAABwHghXQJgyDEN3Dr5Tz133nBJjEmUzgvvnajNsSoxJ1HPXPRfyUTMAAIDOiHAFhLmxvcbqb1P+pgm9J0iyfhSrsb/r+1yvpd9ZyhorAACAC8Q5Vy3gnCuEo6IDRVq4caF2V+yW3bC36zysxvv7J/XXzMtm6rpe11lYKQAAQORoazZwdGBNANppbK+xui7nOm05vkWLdy7Wyn0r5TW9chgOeU3vOe9vbOewOTSxz0RNGzhNg9MGs7YKAADAAoxctYCRK3QG5Z5yrS1Zq20ntqn4eLG2Hd+mGm/NGe3iHHHKS8vT4LTBujT1Uo3MHKlkZ3IIKgYAAOh82poNCFctIFyhMzJNUyc9J1Xnq1O9r17R9mjF2GOU4kxhdAoAAOACMS0Q6IIMw1BqbGqoywAAAOiS2C0QAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwQNDD1Ysvvqg+ffrI6XSqoKBAa9eubbX9G2+8oYEDB8rpdGrw4MFavnx5s/dN09S8efOUlZWl2NhYjR8/Xrt37z6jn2XLlqmgoECxsbFKTk7WlClTLP1cAAAAAHC6oIarJUuWaM6cOZo/f742bNigoUOHasKECTp27NhZ23/66ae65ZZbNGPGDG3cuFFTpkzRlClTVFxc3NTmySef1PPPP69FixZpzZo1io+P14QJE+TxeJravPnmm7rttts0ffp0bd68WZ988oluvfXWYH5UAAAAAF2cYZqmGazOCwoKNGLECC1cuFCS5Pf7lZOTo5kzZ+qhhx46o/3UqVPldru1dOnSpmujRo1Sfn6+Fi1aJNM0lZ2drfvvv18PPPCAJKmyslIZGRl69dVXNW3aNHm9XvXp00c//elPNWPGjAuuvaqqSomJiaqsrJTL5brgfgAAAAB0bm3NBkEbuaqvr9f69es1fvz4bx5ms2n8+PFavXr1We9ZvXp1s/aSNGHChKb2+/btU0lJSbM2iYmJKigoaGqzYcMGHT58WDabTZdddpmysrI0ceLEZqNfZ1NXV6eqqqpmLwAAAABoq6CFq+PHj8vn8ykjI6PZ9YyMDJWUlJz1npKSklbbN/5src3evXslSY899pgeffRRLV26VMnJybr22mt18uTJFutdsGCBEhMTm145OTnn8WkBAAAAdHURt1ug3++XJD3yyCO6+eabNWzYMP3+97+XYRh64403Wrxv7ty5qqysbHodPHiwo0oGAAAAEAGCFq7S0tJkt9tVWlra7HppaakyMzPPek9mZmar7Rt/ttYmKytLknTppZc2vR8TE6O+ffvqwIEDLdYbExMjl8vV7AUAAAAAbRW0cBUdHa1hw4apsLCw6Zrf71dhYaFGjx591ntGjx7drL0kvf/++03tc3NzlZmZ2axNVVWV1qxZ09Rm2LBhiomJ0a5du5raNDQ06KuvvlLv3r0t+3wAAAAAcDpHMDufM2eO7rjjDg0fPlwjR47Us88+K7fbrenTp0uSbr/9dvXo0UMLFiyQJM2aNUvXXHONnn76aU2ePFmLFy/WunXr9PLLL0uSDMPQ7Nmz9fjjj6t///7Kzc3VT37yE2VnZzedY+VyuXTPPfdo/vz5ysnJUe/evfWrX/1KkvTd7343mB8XAAAAQBcW1HA1depUlZWVad68eSopKVF+fr5WrlzZtCHFgQMHZLN9M3h2xRVX6PXXX9ejjz6qhx9+WP3799dbb72lQYMGNbV58MEH5Xa7dffdd6uiokJjxozRypUr5XQ6m9r86le/ksPh0G233aba2loVFBSoqKhIycnJwfy4AAAAALqwoJ5z1ZlxzhUAAAAAKQzOuQIAAACAroRwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAUeoCwAAAECYM03JfVxqqJF8DZI9SoqKk+LTJMMIdXVA2CBcAQAAoDn3CWnfP6Sjm6TD66Ujm6T6U2e2i+4mZedLPYZJWflS7jVSfGrH1wuECcIVAAAAAqNThz6X1r4ibfuL5PdKNkfgZ0vqT0lffSwd+Oyb9oNulkbcJfUczqgWuhzCFQAAQFe3c5lU9Lh0bLtks0t+X+B6a8HqdI3t/F6p+E1pyxKpe5409lFp4KTg1AyEITa0AAAA6KpqTkp/niEtvlUq2xm41hisLlRj0CrbIS2+JdB/zcn29Ql0EoQrAACArmjHUumFYdK2vwZ+N/3W9t/Y37a/Bp6zY6m1/QNhiHAFAADQlZim9NFT0pLvSbUVktnOkapzPs8XeM6S70mrng48H4hQhCsAAICuwjSlwp9KRT//+oLFo1Ut+vo5hT8LvAhYiFCEKwAAgK5i1dPSx8+EtoaPfx14ARGIcAUAANAV7Fh62ohViBX+LLBDIRBhCFcAAACRruak9M5MSeFy7pRNevtedhFExOGcKwAAgEi3/MeSp1KSdWudTtWb+tUndVpz2Ke1h30q90i/v8mpH+RHN2u39rBPr26q15rDPm0p9cvrl8z5rkA9Kx6Ubv6tZTUBocbIFQAAQCTbuUwq/rPluwIerzH1s4/qteO4X0Mz7S22W767Qb/d0CBDUt/k0756mj5p6xvSzuWW1gWEEuEKAAAgUpmmVPS4ZFj/lS+rm6Gj93fT/tkJ+tU/OVts91/Do1X5UILW3d1N/9T3WyHMsAXqY/dARAjCFQAAQKQ69Ll0bLv1BwRLinEYyux27q+SGd1sio1qYa2X6ZeObZMOrbO4OiA0CFcAAACRau0rkq3lKXthweaQPn8l1FUAliBcAQAARCL3CWnbXyS/tWutLOf3SsVvBuoFOjnCFQAAQCTa949AcOkM/F7pq49CXQXQboQrAACASHR0U2DKXWdgc0hHNoW6CqDdCFcAAACR6ND6zjVydXh9qKsA2o1wBQAAEGlMMzBy1Zkc2cSW7Oj0CFcAAACRxn1cqj8V6irOT311oG6gE+skE3EBAADQZg01HfKYhWvrVeExdaQ6cI7W377w6lBVYPRp5shoJToN7a/w649bGiRJ644E2j3+UZ0kqXeioduGRn/Tobe2Q+oGgoVwBQAAEGl8DR3ymKc+rdP+ym+m8v1lh1d/2RFY5/X9IVFKdBraV+HXTz6sa3Zf4+/X9LZ/K1zVB79oIIgIVwAAAJHGHtUhj/lqdsI521zbxyFzvqttHTqiz90GCGOsuQIAAIg0UXGhruDCOGJDXQHQLoQrAACASBOfJkV3C3UV5yc6IVA30IkRrgAAACKNYUhZ+aGu4vxk5wfqBjoxwhUAAEAk6jlMsnWS5fU2h9RjWKirANqNcAUAABCJsvIlvzfUVbSN3xsYuQI6OcIVAABAJMq9pnONXPW5OtRVAO1GuAIAAIhE8alS3r9KNnuoK2mdzSENujlQL9DJEa4AAAAi1ci7JL8v1FW0zu+VRtwV6ioASxCuAAAAIlXPEVL3PMkI0698hk3KGCT1HB7qSgBLhOlfGgAAANrNMKSxj0qmP9SVnJ3pl657hC3YETEIVwAAAJFs4CRp0L9JRpitvTLs0uDvBuoDIgThCgAAINJN+pXkTFT4fPWzBeqZ+GSoCwEsFS5/YQAAAAiWuBTpX16QFC7TA/3STQsDdQERhHAFAADQFVxygzT2J6GuImDcPGng5FBXAViOcAUAANBVXHW/NGZOaGsYMyf0NQBBQrgCAADoKgwjMGo0bt7XFzrqq+DXzxk3Xxo/n90BEbEIVwAAAF2JYQRGsKa9LsUmBX8XQcMeeM6016WrGLFCZCNcAQAAdEUDJ0sz10t53wn8bvVBw439DfrXwHNYY4UugHAFAADQVcWlSP/2u8CoUvolgWs2R/v6bLw//RJp2p+km3/LroDoMtr51wMAAIBOb+BkacAk6dA66fNXpOI3Jb83EJT83nPf39jOFiUNulkaeZfUYxhrq9DlEK4AAAAQCEI5IwKvCQukrz6SjmyUDm8I/Kw/deY90d2k7MsCQSo7X+pztRSf2vG1A2GCcAUAAIDm4lMDa7Ea12OZpuQ+LnlrJW+95IiWHLFSfBqjU8BpCFcAAABonWFI3dJDXQUQ9tjQAgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACzQIeHqxRdfVJ8+feR0OlVQUKC1a9e22v6NN97QwIED5XQ6NXjwYC1fvrzZ+6Zpat68ecrKylJsbKzGjx+v3bt3n7Wvuro65efnyzAMbdq0ybLPBAAAAACnC3q4WrJkiebMmaP58+drw4YNGjp0qCZMmKBjx46dtf2nn36qW265RTNmzNDGjRs1ZcoUTZkyRcXFxU1tnnzyST3//PNatGiR1qxZo/j4eE2YMEEej+eM/h588EFlZ2cH7fMBAAAAgCQZpmmawXxAQUGBRowYoYULF0qS/H6/cnJyNHPmTD300ENntJ86darcbreWLl3adG3UqFHKz8/XokWLZJqmsrOzdf/99+uBBx6QJFVWViojI0Ovvvqqpk2b1nTfihUrNGfOHL355pvKy8vTxo0blZ+f36a6q6qqlJiYqMrKSrlcrvb8EwAAAADoxNqaDYI6clVfX6/169dr/Pjx3zzQZtP48eO1evXqs96zevXqZu0lacKECU3t9+3bp5KSkmZtEhMTVVBQ0KzP0tJS3XXXXfrjH/+ouLi4c9ZaV1enqqqqZi8AAAAAaKughqvjx4/L5/MpIyOj2fWMjAyVlJSc9Z6SkpJW2zf+bK2NaZr6wQ9+oHvuuUfDhw9vU60LFixQYmJi0ysnJ6dN9wEAAACAFKG7Bb7wwguqrq7W3Llz23zP3LlzVVlZ2fQ6ePBgECsEAAAAEGmCGq7S0tJkt9tVWlra7HppaakyMzPPek9mZmar7Rt/ttamqKhIq1evVkxMjBwOh/r16ydJGj58uO64446zPjcmJkYul6vZCwAAAADaKqjhKjo6WsOGDVNhYWHTNb/fr8LCQo0ePfqs94wePbpZe0l6//33m9rn5uYqMzOzWZuqqiqtWbOmqc3zzz+vzZs3a9OmTdq0aVPTVu5LlizRE088YelnBAAAAABJcgT7AXPmzNEdd9yh4cOHa+TIkXr22Wfldrs1ffp0SdLtt9+uHj16aMGCBZKkWbNm6ZprrtHTTz+tyZMna/HixVq3bp1efvllSZJhGJo9e7Yef/xx9e/fX7m5ufrJT36i7OxsTZkyRZLUq1evZjV069ZNknTRRbIaL88AACAASURBVBepZ8+ewf7IAAAAALqgoIerqVOnqqysTPPmzVNJSYny8/O1cuXKpg0pDhw4IJvtmwG0K664Qq+//roeffRRPfzww+rfv7/eeustDRo0qKnNgw8+KLfbrbvvvlsVFRUaM2aMVq5cKafTGeyPgy7INE35Tp6Uv9Yjs6FeRlS0bLFO2VNSZBhGqMsDAABAmAj6OVedFedcdV3e8nLVfPaZPNu2qXbLVnm2FcvvrjmjnS0+Ts68QYodMljOvDzFjRolR3JyCCoGAABAMLU1GwR95AroDEzTVO2mTSp//U+qWrFC8nolhyPwswV+d41q1q5VzYYNTe1dkyYp5dZb5Bw6lFEtAACALoZwhS6vurBQZc8+p7rduyW7XfL5Am+0EqyaaWzn9apq2TJVvfOOYi6+WOmzZylh7NjgFA0AAICwE5HnXAFt4S0v1+H7H9ChH96rui+/DFxsDFYX6uv763bv1qH/74c6fP8D8paXt7NSAAAAdAaEK3RJ1R98oL0TJ6lq5crABauXHn7dX9WKFdo7cZKqP/jA2v4BAAAQdghX6FJM09TxRS/p0L0z5ausbP9I1bn4/fJVVurQvTN1/KWXxf4xAAAAkYtwhS7DNE2V/foZlT37bOOFjnqwJKnsmWdU9syzBCwAAIAIRbhCl3HipZd14pVXQlvDyy/rxMuhrQEAAADBQbhCl1D9wQffjFiFWNkzz6i6sDDUZQAAAMBibMWOiOctL9fRR38iGYYlUwHdfr/+++QJba31aIunVlV+v57IzNR3EpOatXujokJ/q6rUvvp6Vfn96u5waERsnH6Ylib7I48q9vLLOXQYAAAggjByhYhX+vgT8lVXW7bGqsLn1f89cUJ76us0MMbZYrsddR71jIrSf6SkaF5Ghm50ubTKfUr/vv8rHT1xQqVPPGFJPQAAAAgPjFwholUXFqpq2TJL+0y3O/SPi/op3eFQsadW/75//1nbzcvIPOPauG4J+u7+r/R2RYXuWrpMrkmTOGgYAAAgQjByhYhlmqbKnn0uMB3QQtE2m9IdF/b/S/SIipIkVft9kmGo7Nnn2D0QAAAgQhCuELFqN21S3e7dHbflegsqfD6d8HpV7KnVI0ePSpJGxcVLpqm6L76QZ/PmkNYHAAAAazAtEBGr/PU/SXZ78A8KPodr93yp+q8DXpLdroe7d9cV8fGBN+12nXz9T+qRnx/CCgEAAGAFRq4Qkbzl5apasSLkwUqSXurZU4t69NSD6d2V5XCo1n/aSJrPp6rly+UtLw9dgQAAALAEI1eISDWffSZ5vaEuQ5JUEBcYpbpa0thu3XTTV/sUZ7Ppe43bsHu9qlmzRq7rrw9dkQAAAGg3Rq4QkTzbtkkXuOlEMPWKjtYlMU4trar85qLDEagXAAAAnVr4ffsELFC7ZUvYjFx9m8f0N63BkiR5vYF6AQAA0KkxcoWIY5pmyEeCvKapyrOs99pSW6vddXUa5Gx++LCneBtbsgMAAHRyjFwh4vhOnpTfXRPUZ/y/8nJV+3069vXo2N9PnVLp1//5e0nJMiWN3fOlJrpc6hcdo1ibod11dfprZaW62Wy6JzWtWX9+t1u+kyflSE0Nat0AAAAIHsIVIo6/1hP0Z/z+5AkdOW3a4funTun9U6ckSTe6XEp3ROnfkpK0tqZG71VXy+P3q7vDoUkul+5JTVWPqOgz+jQ9wa8bAAAAwUO4QsQxG+qD/owPLup3zjZzu2ecV5/++uDXDQAAgOBhzRUijnGWUaHOwBbdOesGAABAAOEKEccW6zx3ozBkODtn3QAAAAggXCHi2FNSZIuPC3UZ58UWHy97SkqoywAAAEA7EK4QcQzDkDMvL9RlnBfnoDwZhhHqMgAAANAOhCtEpNghQyRHJ9mvxeEI1AsAAIBOjXCFiOTMy5NO2yo9rHm9nW6kDQAAAGciXCEixY0a1alGruIKCkJdBQAAANqJcIWI5EhOlmviRMluD3UprbPb5Zo0SY7k5FBXAgAAgHYiXCFiJd96i+TzhbqM1vl8Srn1llBXAQAAAAsQrhCxYvPzFXPxxVK47sJnGIoZMEDOoUNDXQkAAAAsQLhCxDIMQ+mzZ0mmGepSzs40lT7rR2zBDgAAECEIV4hoCWPHyjV5cvitvbLZ5LphshLGjg11JQAAALAI4QoRL+PRR2RPSAif6YGGIbvLpYxHHgl1JQAAALAQ4QoRz5GcrKzHfx4+0wNNU1lPPM4OgQAAABGGcIUuIWH8eKXPnh3qMiRJ6ffdp4Rx40JdBgAAACxGuEKXkfqfdyv17rtDW8Pddyv17rtCWgMAAACCwxHqAoCOYhiG0u+bLVt8vMqeeSawBqsjpgp+/Zz0OXOURrACAACIWIxcoUsxDENp/3m3er64UPbERMkW5D8Bm032xET1fHEhwQoAACDCEa7QJSWMG6e+K5bLNXFi4ILVOwl+3Z9r0kRdtHIFa6wAAAC6AMIVuixHcrJ6PP2Uer64UDH9+wcutvc8rK/vj+nfXz1/86J6PPWU7ElJ7awUAAAAnQFrrtDlJYwbp25jx8qzebNOvv4nVS1fLnm9ksMR+Hkuje0cDrkmT1LKrbfKOWSIjHA5VwsAAAAdwjDNcDn8J7xUVVUpMTFRlZWVcrlcoS4HHchbXq6aNWvkKS5W7dat8hRvk9/tPqOdLT5ezkF5ih0yRM68PMUVFHB2FQAAQARqazYgXLWAcIVGpmnKd/KkTI9H/vp62aKjZTidsqekMDoFAADQBbQ1GzAtEDgHwzDkSE0NdRkAAAAIc4QrAAAARDTTNFVbVamGujr5vF7ZHQ5FxcQo1pXILBRYinAFAACAiFJTVamD27aodO+XOvrlFyrd+6UaPLVntItyxiqjbz9l9btYGX37KSdviOJciSGoGJGCcAUAAIBOzzRNHd29U5veXaZdq1fJ7/PJZrfL7/O1eE+Dp1aHtm/VkV3bm9oPuOJq5f/zZGX1H8CoFs4b4QoAAACd2peff6ZPlvxRxw/ul2Gzy/QHAlVrwep0je38Pp92fvKRdqz6UGm9+ujKqbep3/CCoNWNyMNugS1gt0AAAIDwVltdpaLfL9LOTz6SYRiy8mttY38Dr7xaY6ffo9gEvg92ZewWCAAAgIi1+/PVeu+l51X39VmUVo8XNPa3a/XH+mrLJv3zf85U/xGjLX0GIo8t1AUAAAAAbWWaptb89X/1zlNPyHPqlEy/P7jP8/vlOVWtd556Qmv++r+WhzhEFkauAAAA0CmYpqmP//Sa1r7958YLHfVgSdLHi/+gek+txky7nc0ucFaMXAEAAKBTWPvWG98Eq1DW8NYbIa0B4YtwBQAAgLC3+/PV+njxH0JdhqTACNaXn38W6jIQhghXAAAACGu11VV676XnpXCZimcYevel51RbXRXqShBmWHMFAACAsFb0+0WBXQEtXGP15bETWvT3s48+zRx3hXqnJrd8s2mqzu1W0e9f0uQf/diymtD5Ea4AAAAQtr78/DPt/OSjoPU/pn8f5aQkNruW1i3+nPeZfr92fvIPDRh9lfqNGBWs8tDJEK4AAAAQlkzT1CdL/mj5AcGny01L0dCcrAu615S0+Df/R1c89iON7T3W2sLQKbHmCgAAAGHp6O6dOn5wf9DPlvI0eOW7gPOyDEmxNV6tfL5I9y+9XxWeCuuLQ6fCyBUAAADC0qZ3l8mw2WX6fUF7xv9+vll1Xp9shqHctGTdMPQS5aQknUcPhrJKPfKvuEZ37Z6te26+TeN6jQtavcFmmqbcbrcaGhrk8/lkt9sVFRWl+Ph4zvZqA8IVAAAAwk5NVaV2rV4VtGDlsBka3DNTl2R2V3xMtEqrqvX3XXv14oerNXPsFeqRnHjuTiRJpvwNXyim/hpdu+t2vfY/f9OeSXt119A7O0UYcbvd2rdvn44eParDhw/ryJEjqq+vP6NddHS0srOz1aNHD2VlZSk3N1fx8edem9bVGGawx1k7qaqqKiUmJqqyslIulyvU5QAAAHQpu1av0tJnf9mhzzxe7dbT732kvumpuuvqked1b1T8DbJHXyxJ2pD9ngZPytSsYbPCMmCZpqlDhw5p7dq12rZtm/x+v2w2m/xtmBrZ2M5ms2nQoEEaMWKEevbsGZaf00ptzQaMXAEAACDslO79Uja7XX5f8KYEfltaQrzysjO19XCJ/H5TNltbA4NNfm9pU7i6/Mg/a827f9PvYn6nOwffGbyCL8DOnTtVVFSkY8eONQtUbQlWp7fz+/0qLi7Wli1b1L17d40dO1YDBw4MWt2dBRtaAAAAIOwc/XJXhwarRklxTvn8ftX7vOdxl19+39FmVwoO3qi3PyhU0YEiawu8QDU1Nfrzn/+sxYsXq6ysTFLbA1VLGu8vKyvT4sWL9ec//1k1NTXtrrUzI1wBAAAgrJimqdK9e0Ly7BPuGjnsNkU7zm+Cl+k91nxXQ9OvcV/cosc//EXIdxHcsWOHXnjhBW3bti1QmsWrghr727Ztm1544QXt2LHD0v47E6YFAgAAIKzUVlWqwVMb1Gec8tSpmzOm2bUjFVXafqRUAzO7y2YY2nPshP62ebuOVFTLf1ogcTljNO9fxn+rx3rJrJWMuMCvhk1R/lgN2/HPWrB2gX55dceuH5MCoWfVqlUqKuqY0TPTNFVbW6slS5Zo3LhxGjNmTMSvxfo2whUAAADCSkNdXdCf8cfPNirKblOf1GR1i4lRadUpfbb3gKLsdk0aMkCStGLrLh0qrzrj3ipPndbtO6ThuT2bv2F+ayqhYVefiuFasf4VfdjnQ13X67pgfZwzmKapwsJCffzxxx32zNMVFhaqrq5O48aN61IBi2mBAAAACCs+7/msd7owg7Iz5K5r0Edf7NNfNhRr88EjGtwzU7PHj1GGK0GSlJUU2BXu4ow0dXd1kxTYwl2S/rKh+Iw+TZ1ljZjp1zVfTtILG14I+mHIp1u1alXIglWjjz/+OOQ1dDRGrgAAABBW7Oe53ulCXHVxrq66OLfVNjEOu2yGoasu7qP//nidJCk5Lk5lp9yq9/lUUVOrpLjYpvaG7Gd2YtgU5+uhyoP12nJ8i4amD7X0c5zNjh07Omwq4LkUFhYqPT29y+wkSLgCAABAWImKiTl3ow5wuKJKqd3itHzLLuVlZ6j4cOkZ758ermSc/au14fdp9L4xWrxzcdDDVU1Njd555x3L+nvrrbe0efPmFt+/7777znkm7Ntvv61evXopLi7OsrrCFeEKAAAAYSXWlagoZ2zQN7U4l6paj0xTKq+p1fhL+qn4cKmqPJ5m738jWjJiz+xEkmmzK8s9TH/44jGVjyhXsjM5aDUvX75cHo/n3A3baNiwYerbt2+za6ZpatmyZUpKSjpnsJIkj8ejFStW6Oabb7asrnBFuAIAAEBYMQxDGX0v0qHtZ65rulAxtjjZbQ7ZZJdfPvn8XtX5Wz+Tqd7rU2WtRz2TE/XHzzZKkuq8PhmSTEkNvm/OiTIc3VvfuMGwK/dYrtaWrNWEPhMs+ERn2rlzp4qLrfs3k6ScnBzl5OQ0u3bgwAE1NDRo8ODBberDNE1t3bpVeXl5ET89kHAFAACAsJPVb4CO7NpxQQcJR9tilRHbW8nRGUqNyVJyTKaibGdONWzw16m8rkQn6o6qvL5UpbX7Ve//ZrTM09Agu83Qd4cP1vYjpVpR/IUkyWG3qcHnV5S9cW84m2z2rFZrMvw+DSjJ0fYT24MSrkzTVFFRkQzDCPrGGVu3bpWkNocrKRCYi4qKNGDAgIjePZBwBQAAgLCT0bffeQer1Jhs9XNdpl7xl8hm2OU3fTJka/HLfJQtRunOXkpz9mxqf+DUDn1ZvVE7j+9WbYNX3ZzRMk1pzd6DkqTEWKfcdfWSpGh74wYWftkcGa3WZho2pdT01ubja8/rM7XVoUOHdOzYsaD0fTqfz6dt27YpJydHSUlJbb7PNE0dO3ZMhw4dOmMkLJIQrgAAABB2cvKGyGa3tylgZcf10+Dkq5UUnS6/6ZPNCISexp+tMQyjaZc/m2FXr26XqE/CIJk1RZL+rlOeev36/VVN7StPW2dVfLhUw/r0lGSTzXGOwGAYijJytP34qzJN0/LRm7Vr18pms8nv95+7cTvs2bNHtbW15zVq1chms+nzzz+P6HDFOVcAAAAIO3GuRA0YfZUMW8sBKdrm1Kj0G3VVxs1yRaVKalugak3j/Zdl5euhq+9uuj6iT+DAYJczRo2xaHDPTEmGbFEDZNjOvpnF6UxbrHw10knPyXbV+G1ut1vbtm0LerCSAlMCbTab8vLyzvtev9+v4uJiud3uIFQWHghXAAAACEv5EybL9J995KpHXH9N6nmXcuIDGyTYDGu/1qbFp+hAxZGm3/eWVUqSqj11MiUZkvqmp0gy5XC2fXv1JHeU6nx1lta6b9++DglW9fX12rVrl/r163fB26r7/X599dVX1hYWRghXAAAACEtZ/QcqrVefM6bQXZI4SmMy/lXRNqfloep0K3Z/Mx3whLtaUmCXwMafftOUYUuTcY7NLE7nbHCo3ldvYZXS0aNHZbMF/2v9zp07z2uXwLOx2Ww6cuTIuRt2UoQrAAAAhCXDMHTl1Nua7X43OPlqDUm55uv3g/tV9ufjZ+uq3sOVHp8ih82uRGeCLuvRT9OvHK6n/n2yUuLj5Ii98rzWT9n8XkXboy2t89ChQx02JTA6OloDBgy44D78fr8OHz5sYVXhhQ0tAAAAELb6DS/QwCuv1q7VH2tgwkhdmjS6w55906XjdNOl4864vuXkP7Sjco1sUQNkj77ovPqsi2pQjP3MbeEvlGmaOnr0qGX9tcTtdmvv3r0aNGiQoqKi2tXXkSNHgrKpRzggXAEAACCsjZ1+jzw7KzTEdU2oS5EkDUm5RpUNVToRdX712L218nXzK8WZYlktbrdb9fXWTjM8m8YNM9ozJbBRfX293G63unXrZkFl4YVpgQAAAAhr0bZYjUybKNMM/tS3tjBNv0amT1S0/dw7BJ52k+LdB5TTK8/SEZuGhgbL+mrN1q1bFR8fr759+1rSn9frtaSfcMPIFQAAAMJaxTt7ZDRIsniN1daSXfr1J7/X54e2qs5br15J2fre0Bv1H8P/rdX7DMOmKBkaHGtqQ03bDjo2TL+85n4NTh9iRelNfOd50PKFmjFjhqX9tRSuTNNUQ8MJ+XwemWaDDCNKdrtTUVGpnWIaIeEKAAAAYat22wnVbi6zvN9/7Fur/3hzrvK699esK+5QfFSs9lcc1tHqtj3LZhjKiTZ0pN6vEq95zvamza7jcQc1JPW69pbejN3evnO9QsXhCMSQ+vqTKi9frerqYlVWbVZ1dbF8vjPPwbLb45WQMEiJrqFKSBik5OTRio62bnqlVQhXAAAACEumaaryva8Ch0qdO7+0WXWdW/ct+4XGXjRKL035+QVv526apgbG2lVSfe4pbobfp33pe3Rn5sgLelZL2ru5RGiYqq3dpkOH39SxY8tkml4ZhkOm2fK/o8/nVkXFGlVWrm9qn9H9BvXs+X25XPlhM6pFuAIAAEBYqj9QLW9pjeX9vrX9A5W5T+rBq+6SzbCppr5WzqiY8w5ZhmEo0S4l2w2V+1pOf4bfp/Sydeo+5QolO5PbW34z8fHxio6O7pBNLayQknpQubmbtX3H/8gw7DLNwLTG1oLV6RrbmaZXpcf+ppLStxQfP0AX9Z2j9PTxQau7rdjQAgAAAGHp1OojQfm2+vFX65QQHa+SU8d1zSvf04BnJuiSZyZq7rtPy+OtO6++/Kap3JjWizRtdp2IXqXvjLijPWWflWEYyspq+yHGoeJw1GnAwFXKy/u7YmMrJKkpWF2oxvvd7i+0Zet/qnjbbDU0lLe71vYgXAEAACDs+NwNqt1yXArCBoH7yg/Ja/o04y8P65rckXp5ys81dcgk/c+mt3X/8v9zXn3ZDEM9ogxFtzQrzfQr/tQh7bjC1JA0azezaNSzZ0/ZbOH7tT419YCGj3hb6en7JUmGYeEcT0mNc0ZLS5dr9Wf/pLKy9yzuv+2YFggAAICwU7enQvJb/SU8wN1Qq9oGj76ff5N+Nn6WJGnigGvU4GvQ/2x6Rw+M+Q/lpuS0uT+bYSjNYehIw1nqNWzqdnKppkz5cdDWBWVlZcnvD49t6pszlZNTrD65m2SaUvCXRfnU0FChLVv/Sxf1fUC9e9/T4WuxwjfiAgAAoMuqP3xKsgXni7HTESNJuunScc2u33RpYM3O+iPbzqs/v2kqyX6WWk2fMkrXquT6WF3Xe+yFFdsGubm5YThyZapPn43qk7tJUkcEq2+eK0l79j6lPXuflmkGJ6C3JNz+WwAAAABUf6A6aCNXGd1SJUnpcc238k6LC2w2UempPq/+DOnMcGX65fDWqsrxtr5/93MXXGtbxMfHKy8vL6wCVk5OsXJ6nV9Itdr+/f9X+/cv6tBnhs9/AwAAAIC+Pkj28Kmg9T8kc4AkqeRU8zOtSk8dlySlxCWdV3+GYSjJ8a1wZdjUe9//U+78uUpynl9/F2LkyJFhMzUwNfVA04hVqO3Z+5TKyt7vsOcRrgAAABBW/O4GmfXt20muNTcMDBzku3jLsmbX/7R5mRw2u0bnXHbefUYZzTe16Lv3bdV8P1fXDfqXdtXaVj179lT37t1Dft6Tw1Gn/hd/Jqtn4x061KDHf16qaVP3a/KkfZr+g4P64x/K5fGcK1Aa2rFzboftIsiGFgAAAAgrZn1wR2AGZVysqYMnacnW5fL6fRqVk6/PDmzS0l0f6oejvq/MhLQL6tf+9c/e+99VXUGFvjP9WeuKPgfDMDR27FgtXry4w555Nhf1WyuHo97SNVbHjnl17w8PKz7eppumJCohwaYd2z167bVyfbG7Tj//eWYrd5tqaKjSri9+pkF5z1hXVAsIVwAAAAgrpi/409sWTHhAPVwZ+t+tK/TuF6vUIzFD88feqztH/PsF92kzpL573pJ9WKUm/+zVDh9FGjhwoAYNGqRt27Z1+EYOUuCA4O7dv7K83w/er9apU349+1y2+vSJliTdcINLfr/0/vunVF3tU0KCvZUefCotfUcZ3ScH/aBhwhUAAADCimEP/sqVKLtD942ZrvvGTLesz4t3vi779WkqePB5y/o8X5MmTdKePXtUW1vbwU821ad3cLZcd9cEwnZycvMAlZJql80mOb693u2sDO3Z+2ulpY37/9m78/i4yrr//68zW5bJvrZJ05XSLV2g0NIKQkuxLQhWESkiICL49RYEARW4WfR786PcKCqLwK1wg6AsooKlQIFfiyi0tFC6Bro33bM1yySTZbbr+0ealJguSXsmM0nez8cjj5Az1znnM32EzLznus7nRDX06porEREREYkrlqd3vkUddtM8pv6kezchtltycjIXXdQz13l9XmpqFd6U2qi0XJ84MQmAX/6ykq1bW6ioCPHuuw289pqPeV9NIympK78vBr9/Ez5fdBttaOZKREREROKKw+vG8jij2tTCbpbHwYALL4h1GQCMGTOGmTNnsnTp0h4758CCTUQiFg6H/csRp0xJ5ttXZ/LC87UsX9bYvv2bl2fwne9kHWXPjizLyZ49fyQ9vfsNS7pK4UpERERE4oplWbgLUwjsqIt1KV3mGZQa8059n3fWWWcRCAR4//33o34ul6uZ3NzSqASrNgPyXYyfkMhZZ3lJS3Oy4sNGXni+lqwsJ/PmpXfpGMaEKa9YxMiR/4nH0/VQ1h0KVyIiIiISdzyDUwns9EXtRsK2clh4ilJjXUUHlmVx7rnnkpCQwJIlS6J6royMsqgGq3eXNvDrX1fxzB+KyM1tjS9nneXFGMOTv69mxowU0tOP1tDiEGNC1NR+SH7e+VGptXcuaBURERGRPs1TmNI7ghVAxOAuTIl1FZ1YlsVZZ53F/PnzSUpKitrMWkpqNZFI9GbtFi70cdJJnvZg1WbadC/NzYatW1u6fCzLclHv22B3ie0UrkREREQk7iSMyGjtbd4bOKzWeuPU6NGjueGGGxg3bhyA7SErNbUKy4peEK6pCXO47vyhUOs5w924NM+YEHW+tTZV1pnClYiIiIjEHafXTdKEnPh/t+qwSJqYg9PrjnUlR5WcnMzXv/515s+fT25uLgAOx4n947bub0hNrY5Kl8A2gwa52ba1hT27Ax22v7u0AYcDhg/3dOt49fUbonYfMF1zJSIiIiJxKWVaAU1rKmNdxtFFDCnTCmJdRZeNHj2aUaNGsWfPHj766CM2bNhAJBLB4XAQiRz75s1t4xwOB8XFxZx66ki2bf9jVGv+xqXprFzZyE037WfevDRS0xys+LCRlSubmHt+Kjk53Ys04XADweABPJ4c22tVuBIRERGRuOQZnIprQDKh8kaIx8uvLHDle+OumcWxWJZFUVERRUVFzJ49m9LSUvbt28fevXvZt28fgUCg0z4ej4eCggIKCwspKChg6NCheL1empr2sG17dOudMCGJhx8p4Nk/1LBwoQ+fL8yAAW6+851MLp1/fMsxw+GuX6fVHQpXIiIiIhKXLMsi/UtDOfDsp7Eu5fAMpH9pSFy1YO8ur9fLuHHj2q/HMsbg9/sJhUKEQiFcLhculwuv13vY52lMsEfqHD06kfsWDLTteMZ0DpB2ULgSERERkbiVNDabpIm5NK2rjK/ZKwuSJuaSNDY71pXYyrIsUlK63vnQsuL7WrMjsazuXafVVfF+iaCIiIiI9HMZF43AkeSCeJkgssCR5CLjwhGxriTmnM7EWJdwXJzOhKgcV+FKREREROKa0+sm8+KR8TNzZSDz4pPjvkNgT3C7s3E6vbEuo1uczhTc7ujMOCpciYiIiEjcSxqXQ9rsIbEuA4C02UNJGte3lgMeL8uySE0tjnUZ3ZKaWhy16+QUrkRERESkV0g9p4jUc4rioIZBMa0h3qSnTcSyekcrB8tykZ42MWrH7x3/CiIiIiLSTdYrbQAAIABJREFU71mWRdrsIVgJTnxvlbZeg9UTSwUPnidtzlDSYhzu4lFqajHGhGJdRpcYEyI1LXozbQpXIiIiItJrWJZF2owi3HnJ1Px1M5GmUHQD1sHmFZkXn6ylgEeQmTkNy3L1ioBlWS4yM86I2vG1LFBEREREep2kcdnk33IaSRNyWzfYfQnNweMlTcxlwK2nKVgdhceTRV7eBViWM9alHJVlOcnP+zIeT1bUzqFwJSIiIiK9ktPrJvuy0WRfMRZXfnLrRscJpqyD+7vyk8m+cizZ80fjSFZXwGMpGvQtjAnHuoyjMibMoEHfiuo5tCxQRERERHq1pHHZJI7NIrC7nobl+2haWwUR0xqUIl1YM9g2zmGRNDGXlGkD8RSlRq2jXF+UlnYKXu8o/P7NxE/P/M+zSPGOIi1tUlTPonAlIiIiIr2eZVkkDE4jYXAa4S8HadlWS2BvA8Hd9QT2NmBaOs+qWAlOPIUpeIpScRemkDAiQ/euOk6WZTFi+M2sW/+9WJdyBIbhw38U9cCscCUiIiIifYrT6yZ5Qi7JB6/HMsYQ8QcxwQgmFMFyObDcDhxet2anbJSbO4v8/AspL38DiKclgk7y8y8gN3dW1M+kcCUiIiIifZplWThTPLEuo18YdfI9VFe/TzBYS3wsD7Rwu9MYdfLdPXK2Hmlo8dvf/pahQ4eSmJjI1KlTWbly5VHHv/zyy4wePZrExETGjx/PG2+80eFxYwx33303AwcOJCkpiVmzZrFly5b2x0tLS7nmmmsYNmwYSUlJjBgxgnvuuYdAIBCV5yciIiIiIuB2ZzJm9H3ER7ACMIwZvQC3O7NHzhb1cPXSSy9x8803c8899/DJJ58wceJEZs+eTUVFxWHHL1u2jMsuu4xrrrmG1atXM2/ePObNm8eGDRvaxzzwwAM8/PDDPPHEE6xYsQKv18vs2bNpbm4GYOPGjUQiEf7nf/6HkpISfv3rX/PEE09wxx13RPvpioiIiIj0a7m5X2LE8FtiXQYAI4bfSm7ueT12PssYE9VYOXXqVE4//XQeffRRACKRCEVFRdxwww3cdtttncZfeuml+P1+Fi1a1L7tjDPOYNKkSTzxxBMYYygoKOCWW27h1ltvBaCuro78/HyeeeYZ5s+ff9g6fvGLX/D444+zffv2LtXt8/lIT0+nrq6OtLS07j5tEREREZF+yxjDtu0PsnPn4zGrYciQ7zNi+C22XFfX1WwQ1ZmrQCDAqlWrmDXr0MVjDoeDWbNmsXz58sPus3z58g7jAWbPnt0+fseOHZSVlXUYk56eztSpU494TGgNYFlZR75hWEtLCz6fr8OXiIiIiIh0X2v3wFsYMfzWti09dWYARgz/MSeNuLXHG5ZENVxVVVURDofJz8/vsD0/P5+ysrLD7lNWVnbU8W3fu3PMrVu38sgjj/C97x25NeSCBQtIT09v/yoqKjr6kxMRERERkSOyLIuhQ7/PhPFP4HZnAM4on9GJ253BhPFPMHTo/4nyuQ6vRxpaxNLevXuZM2cOl1xyCddee+0Rx91+++3U1dW1f+3evbsHqxQRERER6Ztyc89j2hnvkJ9//sEtds8mtR4vP/8Cpp3x//foNVb/Lqqt2HNycnA6nZSXl3fYXl5ezoABAw67z4ABA446vu17eXk5AwcO7DBm0qSOd1zet28fM2bMYPr06fzud787aq0JCQkkJCR07YmJiIiIiEiXud2ZFI/7Dfl5F7Bt+6/x+zdhWU6MOf77YbXt7/WezIjhN/fIfayOJaozVx6Ph8mTJ7NkyZL2bZFIhCVLljBt2rTD7jNt2rQO4wHeeeed9vHDhg1jwIABHcb4fD5WrFjR4Zh79+7lnHPOYfLkyTz99NM4HH1+kk5EREREJK7l5p7H1Cmvc9rkv5CfdyGW1TrX0/b9WD4/Pj//Ik6b/FemTnk9LoIV9MBNhG+++WauuuoqTjvtNKZMmcJvfvMb/H4/V199NQBXXnklhYWFLFiwAIAbb7yRs88+mwcffJALLriAF198kY8//rh95smyLG666SbuvfdeRo4cybBhw7jrrrsoKChg3rx5wKFgNWTIEH75y19SWVnZXs+RZsxERERERCT6LMsiPf0U0tNPYeTI/6Sm9kPqfeup862jvn494bC/0z5Op5fU1PGkp00kNa2YzIwz8HiO3KwuVqIeri699FIqKyu5++67KSsrY9KkSSxevLi9IcWuXbs6zCpNnz6d559/njvvvJM77riDkSNH8uqrr1JcXNw+5ic/+Ql+v5/rrruO2tpazjzzTBYvXkxiYiLQOtO1detWtm7dyqBBgzrUE+XO8yIiIiIi0kUeTxb5eeeTn9d6PZYxhmDwAOFwC8YEsCwPTmcCbnd2j3f+Ox5Rv89Vb6X7XImIiIiICMTJfa5ERERERET6C4UrERERERERGyhciYiIiIiI2EDhSkRERERExAYKVyIiIiIiIjZQuBIREREREbGBwpWIiIiIiIgNFK5ERERERERsoHAlIiIiIiJiA4UrERERERERGyhciYiIiIiI2EDhSkRERERExAYKVyIiIiIiIjZQuBIREREREbGBwpWIiIiIiIgNFK5ERERERERsoHAlIiIiIiJiA4UrERERERERGyhciYiIiIiI2EDhSkRERERExAYKVyIiIiIiIjZQuBIREREREbGBwpWIiIiIiIgNFK5ERERERERsoHAlIiIiIiJiA4UrERERERERGyhciYiIiIiI2EDhSkRERERExAYKVyIiIiIiIjZQuBIREREREbGBwpWIiIiIiIgNFK5ERERERERsoHAlIiIiIiJiA4UrERERERERGyhciYiIiIiI2EDhSkRERERExAYKVyIiIiIiIjZQuBIREREREbGBwpWIiIiIiIgNFK5ERERERERsoHAlIiIiIiJiA4UrERERERERGyhciYiIiIiI2EDhSkRERERExAYKVyIiIiIiIjZQuBIREREREbGBwpWIiIiIiIgNFK5ERERERERsoHAlIiIiIiJiA4UrERERERERGyhciYiIiIiI2EDhSkRERERExAYKVyIiIiIiIjZwxboAERER6cgYQ1UwRFM4QtAY3JZFktNBjtuFZVmxLk9ERI5A4UpERCTGDgRCvF9bz7r6Jlb7Gllb34g/HOk0zut0MDE1mVPSkpmQmsSZGalke/RSLiISL/QXWUREJAaMMazyNfL03ir+XlFDyIDLgpA58j7+cIRltQ2srGtoHz8vL5OrC3M4NS1Zs1oiIjGmcCUiItLDFlfWcf+O/Wz0N+O0IHwwUB0tWH1e6HPjX6mo4S/lNYzxJnLb8IHMzkmPTtEiInJMamghIiLSQ6qDIb5fUsq3N+xgs78ZOBSsjlfb/pv8zVy1fgffLymlOhg6wUpFROR4KFyJiIj0gDcra/nCis9YWFELQOcrqk5M2/EWVtRy5orPeLOy1uYziIjIsShciYiIRJExhodKy7l6Qyl1wTDhKJ8vDNQGw1y9oZSHd5ZjzAlOjYmISJcpXImIiESJMYb7tu9nwY79gP2zVUfSdp77tu9nwfb9ClgiIj1E4UpERCRKHt5ZwSO7KmJbw67Y1yAi0l8oXImIiETBm5W17TNWsXbf9v0srqyLdRkiIn2eWrGLiIjYrDoY4uZNu7EAuxbkBTd/SsNTvyVYshaMwT12Ainfuwn3SaOOua8D+NGmXUzJGEOWWy/9IiLRopkrERERm/3n5j34gmEbg9VnVP/wO4T378F75XV4r7iO0N5d1Pzou4R2lR5z/wjgC4a5c/MemyoSEZHDUbgSERGx0eLKOl6pqLW1K2DD049hJSSQ9cgf8H7jSrzzryLrkWcgEqHhqUe6dIww8LeKWt6q0vJAEZFoUbgSERGxiTGG+3fst/3FNbh+NZ5Tp+JIz2jf5szOxT1xMi0f/otIU2OXjuMA7lf3QJFeyRhDVUMLu6sb2V7ZwO7qRqoaWvT/c5zRwmsRERGbrPI1stHfbPtxTTCAlZDQabuVkAjBIKEdW/GMnXDM40SAz/zNfOJrZHK61/Y6RcQ+1f4Ay7ZVsX5vHWt317J+Tx3+QOc5ca/HyfhB6UwsymB8YTrTR+SQ5fXEoGIBhSsRERHbPL23CqcFYZs/SHYVDSX46XpMOIzldAJggkGCn60HIFLV9VbrTqu1ToUrkfhjjOGTXbU8t7yURev2E4oYXA6LUOTIf1T8gTAfbq/m49Ka9vEXTizgimlDOKUoA8uyeu4JiJYFioiI2OFAIMTfK2psD1YASRddQnjPTny//Dmh0m2Edmyl7v47iVRXAWBaWrp8rLCBVytqOBAI2V+oiBy3t0vKmPObf3Hx48t47WCwAo4arD7v8+MXrt3H1x5bxtyH/sU7n5ZHrWbpTDNXIiIiNni/tp5QlC59SL7oEiKV5fhf+gPNb70GgGvUWLyXfhv/n57ESkru1vFCBj6obeCivIxjDxaRqKrxB7hnYQkL1+6jbZIp3MVAdSRt+28qr+faZz/mookF/PyicWRquWDUKVyJiIjYYF19Ey6LqAWslGuuJ/kbVxIq3YblTcE9fCT1T7Z2CnQNGtytY7ksWFffqHAlEmNvlZRx21/X4WtqnUm2uzdF2/FeX7ePf22p5P6LJzB73AB7TyIdaFmgiIiIDT7xNUYtWLVxpKbhGX8K7uEjAQisWoEjNx/n4GHdOk7IwGpf1zoMioj9jDH89t2tfO+5VdQ2BQlHueNf2EBtU5DvPbeK3767VR0Go0jhSkRE5AQZY1hX37NhpfndtwhtKiH54m9iObr/cr62vlFvsERiwBjDA29t4hdvbTr4c0+dt/X7Lw6eW///R4eWBYqIiJygqmAIfzgSteMH1q7C/9zv8Jw2DUdaOsFP19O0eCGeKdNJvvibx3XMhnCEqmCIXI/b5mpF5Gge+8c2Hv/HtpjX4E1w8YMZJ8W0jr5I4UpEROQENUUxWAE4cvLA4cT/0h8wjY04BxaS8p3/IPmSK7Ccx/9S3nyCF82LSPe8VVLWPmMVa794axMj81L4kq7BspXClYiIyAkKRnl5jauwiMwHHrP9uIFIdEOhiBxS4w9w21/XYQHx8LGGZcFP/7qO04dmqYugjRSuRERETpC7l96k03Mc12qJyPG5Z2EJvqaQrcEqEmjCt+JvtOzfRGD/ZiLNDWSffxMp42d1Ghus2k310t/TsudTLKeLpBGnY879Lj97rYSH5p9iY1X9m8KViIjICUpy9s6QkujonaFQpLd5u6SMhWv32X7cSJOPumUv4EzLxZ03jJZd6w87LuSrouz5n+JI8JLxxSsxwWZ8K//GvspSXvX8ii9PKOC8sfm219cfKVyJiIicoBy3C6/TEdWmFnZLcTrIcettgEi0GWN48O3NWJb9nQGd3iwG/eA5nCmZtOzfQtmzPzrsuLoP/4wJtpD/7d/gSssDwDPwZCpeuhP/hiU8+HYWs8bkYfXSWfh40js/ahMREYkjlmUxITU51mV0y8TUZL2REukBn+yqZVN5fVRarlsuN86UzGOOa9y0jKQRp7cHK4CkoZNwZRXi/+xfbCyrZ/XuWvsL7IcUrkRERGxwaloyrl6SVVwWnJLWu8KgSG/13PJSnDFcghuqryLSWItnYOe26wkDTyZQvh2nw+K55TtjUF3fo3AlIiJigwmpSYTioQVYF4QMvW6mTaQ3qvYHWLRuP+EY3vYg3FADtC4h/HdObyaR5npCgQCvrd1HtT/Q0+X1OQpXIiIiNjgzI7VXzVx9ISMl1mWI9HnLtlURivH95EyoBQDL2fmG4ZbL0z4mFDEs33agR2vrixSuREREbJDtcfGVvEyccR6wnBbMy8sk26NmFiLRtn5vHa4Yd+W0XAkAmHCw02MmFGgf43JYrN9b16O19UUKVyIiIja5ujCHcJwvDQyb1jpFJPrW7qqN+cxVW8OLsL+602Nhfw2OxFQsl5tQxLBWTS1OmMKViIiITSanJTPGmxi3L64OYKw3kVPVzEIk6owxcTET5ErNwZGcTmD/1k6PtezfjCd/WPvP6/fWYaLR1rAfide//yIiIr2OZVncNnwg8Xq3qwjw0+ED1YJdpAcc8AfwB8KxLgOA5JOn07TtI0K+yvZtTaVrCFXvJXnUme3bGlpCHFBTixOiBdciIiI2mp2TzlfzMlhYUUt8vK1q5QS+kpfB7Jz0WJci0i809VCw8q16jUiLn3BD67K/pq0rCdVXAZA2+UIcCV7Sp32Dxk0fUP7CHaSedhEm0IRv5d9w5w4lZfx5HY7XHIynv1y9j8KViIiIzf6/kwfxj5p66oLhuJjFcgDpbif3njwo1qWI9BvBcM/83+9b+QphX0X7z42bl8HmZQCkjJuBI8GLKy2X/MsWULP0SWrfewbL4SJpxOlkzrwGy9Wxi2AgFA9/tXovhSsRERGbZbld/GpUEVdvKI11KUDrcsBfjRpMllsv+yI9xe3smatvBn3/f7s0zpM7hPxL/+vY41y6auhE6F9PREQkCubmZnD7sIGxLgOAO4YPZE6ulgOK9KQkjzPWJRyXRHfvrDteKFyJiIhEyQ+H5PHDwXmxrWFwHjfEuAaR/ijb68HbywJWSoKLbK8n1mX0agpXIiIiUWJZFrcPH8gdw1tnsHrqRbftPP85fCB3jChQd0CRGLAsi/GFvWvGeHxhuv5enCCFKxERkSiyLIsfDsnnmeJhpLudRPtzbCeQ4XbyTPEwbhiSH+WzicjRTBycgcvRO8KKy2ExsSgj1mX0egpXIiIiPWBObjofTB3DRXmtb17sfgFuO95X8jL4YOoYXWMlEgfGF6YTivSOm/KGIqbXzbTFI4UrERGRHpLldvH4uKE8UzyMUd5EAJwn+KF22/6jvIn8YfwwHhs3lEx1BRSJC9NH5PSqmatpI7JjXUavp7++IiIiPWxObjqzc9L4xNfI03ureLWihpABlwWhLnzI3TbObVnMy8vg6sIcTklL1rUSInEmy+vhyxMG8tq6/YTjeAbL6bC4cGIBWWpmccIUrkRERGLAsiwmp3uZnO7l5ycV8kFtA2vrG1nja2RNfSP+w9yA1Ot0MCk1mVPSkpmQmswXMlLI9uilXCSeXTFtKK+u2RfrMo4qHDFcMW1IrMvoE/QXWUREJMayPS4uystovx7LGENVMERzxBCIRPA4HCQ6LHLcLs1OifQypw7OYPSAVDaV12PicPLKsmBUfiqnqJmFLXTNlYiISJyxLItcj5uiRA8jkhMpSvSQ63ErWIn0QpZlccuXRsVlsAIwBm750ij9fbGJwpWIiIiISBSdNzafiyYW4IyzAOO04CuTCjhvrG7bYBeFKxERERGRKPv5ReNIS3IRL/nKsiAtyc3PLhwX61L6FIUrEREREZEoy/R6uP/iCXGzPNAY+O+LJ5CpDoG2UrgSEREREekBs8cN4MezR8W6DAB+PHsUXxo3INZl9DkKVyIiIiIiPeQ/zhnBf5wzot/X0FepFbuIiIiISA+xLIsfzx6FN8HFL97ahGXRI0sF287zkzmj+I9zTor+CfspzVyJiIiIiPQgy7L4wYyT+N0Vk8lIcuOMcpMLpwUZSW5+d8VkBasoU7gSEREREYmBL40bwNJbzuGCCQUAtncSbDvelycW8O6t5+gaqx6gZYEiIiIiIjGS6fXw8GWn8OUJA/nVO5vZWFaP02ERjhz/WsG2/Uflp3LLl0bpPlY9SOFKRERERCTGvjRuAOeNzWf17lqeW76T19buIxQxuBwWoS4ErbZxLofFRRMLuGLaECYVZWDFy421+gnLmHjpth9ffD4f6enp1NXVkZaWFutyRERERKQfqfYHWL7tAOv21rJudx3r9tbibwl3GudNcDKhMIOJRRmML0xn2ohssnTvKtt1NRto5kpEREREJM5keT1cMGEgF0wYCIAxhgP+AM3BMIFQBI/LQaLbSbbXo9mpOKJwJSIiIiIS5yzLIiclIdZlyDGoW6CIiIiIiIgNFK5ERERERERsoHAlIiIiIiJiA4UrERERERERGyhciYiIiIiI2EDhSkRERERExAY9Eq5++9vfMnToUBITE5k6dSorV6486viXX36Z0aNHk5iYyPjx43njjTc6PG6M4e6772bgwIEkJSUxa9YstmzZ0mFMdXU1l19+OWlpaWRkZHDNNdfQ0NBg+3MTERERERGBHghXL730EjfffDP33HMPn3zyCRMnTmT27NlUVFQcdvyyZcu47LLLuOaaa1i9ejXz5s1j3rx5bNiwoX3MAw88wMMPP8wTTzzBihUr8Hq9zJ49m+bm5vYxl19+OSUlJbzzzjssWrSIf/7zn1x33XXRfroiIiIiItJPWcYYE80TTJ06ldNPP51HH30UgEgkQlFRETfccAO33XZbp/GXXnopfr+fRYsWtW8744wzmDRpEk888QTGGAoKCrjlllu49dZbAairqyM/P59nnnmG+fPn89lnnzF27Fg++ugjTjvtNAAWL17M+eefz549eygoKDhm3T6fj/T0dOrq6khLS7Pjn0JERERERHqhrmaDqM5cBQIBVq1axaxZsw6d0OFg1qxZLF++/LD7LF++vMN4gNmzZ7eP37FjB2VlZR3GpKenM3Xq1PYxy5cvJyMjoz1YAcyaNQuHw8GKFSsOe96WlhZ8Pl+HLxERERERka6KariqqqoiHA6Tn5/fYXt+fj5lZWWH3aesrOyo49u+H2tMXl5eh8ddLhdZWVlHPO+CBQtIT09v/yoqKurisxQREREREVG3wHa33347dXV17V+7d++OdUkiIiIiItKLRDVc5eTk4HQ6KS8v77C9vLycAQMGHHafAQMGHHV82/djjfn3hhmhUIjq6uojnjchIYG0tLQOXyIiIiIiIl0V1XDl8XiYPHkyS5Ysad8WiURYsmQJ06ZNO+w+06ZN6zAe4J133mkfP2zYMAYMGNBhjM/nY8WKFe1jpk2bRm1tLatWrWofs3TpUiKRCFOnTrXt+YmIiIiIiLRxRfsEN998M1dddRWnnXYaU6ZM4Te/+Q1+v5+rr74agCuvvJLCwkIWLFgAwI033sjZZ5/Ngw8+yAUXXMCLL77Ixx9/zO9+9zsALMvipptu4t5772XkyJEMGzaMu+66i4KCAubNmwfAmDFjmDNnDtdeey1PPPEEwWCQ66+/nvnz53epU6CIiIiIiEh3RT1cXXrppVRWVnL33XdTVlbGpEmTWLx4cXtDil27duFwHJpAmz59Os8//zx33nknd9xxByNHjuTVV1+luLi4fcxPfvIT/H4/1113HbW1tZx55pksXryYxMTE9jF/+tOfuP766zn33HNxOBxcfPHFPPzww9F+uiIiIiIi0k9F/T5XvZXucyUiIn2FMYbq5mqaw80Ew0HcTjeJzkSyErOwLCvW5YmIxL2uZoOoz1yJiIhIz6pprmFF2Qo+PfAp6yvX8+mBT2kMNXYal+xKZmz2WMbnjmds9limDphKZmJmDCoWEekbFK5ERET6AGMMayvX8uKmF3lrx1uETAiX5SJkQkfcpzHUyMflH7OmYk37+DnD5jB/9Hwm5EzQrJaISDdpWeARaFmgiIj0Fkt3LeXR1Y+ypXYLTstJ2ISP+1ht+4/MGMkNp9zAjMEzbKxURKR36mo2ULg6AoUrERGJd7XNtdy34j7eLH0TCwuDfS/pbcebO3Qud0y9g4zEDNuOLSLS23Q1G0T1PlciIiISHUt2LeHCVy/k7Z1vA9garD5/vLd2vsWFr17Ikl1LjrGHiIgoXImIiPQixhh+v+733PTuTdS11J3QEsCuiJgIdS113PTuTTy5/km04EVE5MgUrkRERHoJYwwPffIQD69uvW+j3bNVRzzvwfO0nVsBS0Tk8BSuREREeokn1z/JUxue6vc1iIjEK4UrERGRXmDJriXtM1ax9tAnD7F019JYlyEiEnd0nysREZE4V9tcy8+W/czWjoCN2xup/aAW/2d+AlUBXCkukkYkkX9xPgkDEgAwEUPtB7X4Vvlo2tVEuCGMJ9dDxtQM7rLu4tRvnKougiIin6OZKxERkTh334r7qA/U23qNVdUbVfg+9uEd62Xg5QPJPCeTxk2NbLtnG817mgGIBCLsfWovofoQWedkMfCbA0kankT5K+WsXbCW+1bcZ1s9IiJ9gWauRERE4tjSXUt5s/RN24+bMzuHxP+TiMN16HPW9CnpbL1zK5WvV1L0vSIsl8Xw/xxO8sjk9jFZ52ThyfFQ8UoFL7/+MnOHzdWNhkVEDtLMlYiISJwyxvDo6kexsGw/dvLI5A7BCiBhQAIJhQm07GsBwOFydAhWbdJObb2BZsu+Fh5Z/Yi6B4qIHKRwJSIiEqfWVq5lS+2Wnmu5bgwhXwhX6tEXtoTqQgA4U51sqd3Cuqp1PVGeiEjcU7gSERGJUy9uehGn5eyx89UtryNUEyJ9SvpRx1W+WYkjyUHq+FSclpMXN77YQxWKiMQ3hSsREZE4VNNcw1s73iJswj1yvpZ9Lex7bh9JJyWRceaROwBWvFaBv8RP/iX5OL1OwibM4h2LqWmu6ZE6RUTimcKViIhIHFpRtoKQCfXIuYK1QUp/XYozycngHwzGchz+Gq+6FXVU/K2CzC9mkj0zu317yIRYWbayR2oVEYlnClciIiJx6NMDn+Kyot/UN9wYZuevdhJpjDDkliG4M92HHdewoYE9v99D6oRUCq4q6PCYy3Lx6YFPo16riEi8U7gSERGJQ+sr10d95ioSiLDzNztpKWthyI+GkFiYeNhxjdsa2fXILpKGJlH0gyIsZ8eZrZAJsb5qfVRrFRHpDRSuRERE4owxJuozQSZi2P34bhq3NTL4B4NJPqlzy3WA5n3N7Pz1Ttw5bob8aAgOz+HfOnx64FO1ZBeRfk83ERYREYkz1c3VNIYao3qOshfKqF9dT+qkVML+MLXLajs8njE9g3BTmJ2/3EnYHyZnbg71a+s7jPHkedpDmT/op7q5muyZIgiTAAAgAElEQVSkbERE+iuFKxERkTjTHG6O+jmadjUBUL+mnvo19Z0ez5ieQbghTLA6CED5y+Wdx3who8OMV0u4JUrVioj0DgpXIiIicSYYDkb9HMNvH37MMZ5cD8XPFHf5mIFw4ERKEhHp9XTNlYiISJxxOw/fsS/eeZyeWJcgIhJTClciIiJxJtF5+K598S7BmRDrEkREYkrhSkREJM5kJWaR7Dp897545XV7yUrMinUZIiIxpXAlIiISZyzLYmz22FiX0S1js8diWdaxB4qI9GEKVyIiInFofO54XFbv6DvlslyMzxkf6zJERGJO4UpERCQOjc0eS8iEYl1Gl4RMqNfNtImIRIPClYiISByaOmBqr5q5mjJgSqzLEBGJOYUrERGROJSZmMnsYbNxWs5Yl3JUTsvJnGFzyEzMjHUpIiIxp3AlIiISp+aPmk/YhGNdxlGFTZj5o+fHugwRkbigcCUiIhKnJuZOZGTGSCziswufhcXJmSczIWdCrEsREYkLClciIiJxyrIsbjjlBgwm1qUclsFw/aTr1YJdROQghSsREYkpYwyVgSC7mlrY1tjMrqYWKgNBjInPQNHTZgyewdyhc+Pu2iuH5eD8YeczY/CMWJciIhI3ekcbIhER6TMOBEK8X1vPuvomVvsaWVvfiD8c6TTO63QwMTWZU9KSmZCaxJkZqWR7+ufL1h1T72D5/uXUtdTFxSyWhUWaJ43bp9we61JEROJK/3yVEhGRHmWMYZWvkaf3VvH3ihpCBlwWhI6SE/zhCMtqG1hZ19A+fl5eJlcX5nBqWnK/WoqWkZjBz6b/jJvevSnWpQCtywF/Pv3nZCRmxLoUEZG4omWBIiISVYsr65jx0Sa+/MkWXj0YrODowerzPj/+lYoaLvhkCzM/2sRbVXXRKThOnTv4XH54yg9jXQYAN556IzMHz4x1GSIicUfhSkREoqI6GOL7JaV8e8MONvubAQif4Iq2tv03+Zu5av0Ovl9SSnUwdIKV9h7fHf9dvjv+uzGv4Zria2Jag4hIvFK4EhER271ZWcsXVnzGwopaADpfUXVi2o63sKKWM1d8xpuVtTafIT5ZlsUPT/khN556Y+vPPdSive08N556IzeeemO/WpIpItIdClciImIbYwwPlZZz9YZS6oJhon372zBQGwxz9YZSHt5Z3i86DFqWxXfHf5eHZjxEekI6Diu6L+UOy0F6QjoPzXgo5rNmIiLxTuFKRERsYYzhvu37WbBjP2D/bNWRtJ3nvu37WbB9f78IWAAzB8/ktXmvMXvIbMD+Way2480ZOodFX12ka6xERLpA3QJFRMQWD++s4JFdFbGtYVcFKS4nPxySH9M6ekpGYgYPnP0Ac4bN4dHVj7KldgtOy0nYHP+cYdv+J2WcxA2n3KD7WImIdINl+stHfN3k8/lIT0+nrq6OtLS0WJcjIhLX3qys5eoNpbEuo90zxcOYk5se6zJ6lDGGdVXreHHjiyzesZiQCeGyXITMsRt+tI1zOVzMHTqX+aPnMz5nvK6tEhE5qKvZQOHqCBSuRES6pjoY4gsrPqM2GI6D29u2rndPdzv5YOoYstz9c4FGTXMNK8tWUnKghA1VGyipKqEx1NhpXLIrmXE54xifM56x2WOZMmAKmYmZMahYRCS+KVydIIUrEZGu+X5JKQsram1rXhFpaqTxpT8Q/GwDwY0bMPU+0n7yc5LmXNRpbOMrL9L49z8T3r8HR1oGiTO+RMrVP8CVlMRX8jJ4bNxQm6rq3YwxVDdX0xJuIRAO4HF6SHAmkJWYpdkpEZEu6Go26J8f6YmIiC0WV9bxSoW9bdBNXS3+Z3+HI28ArhEnE1zz8WHH1f/uIRpffIaEL84i+WuXEdq5ncZXXiJUup3MBx7jbxW1XJhbw9w8zcRYlkV2UnasyxAR6fMUrkRE5LgYY7h/x34c2NsZ0JGVQ85f3sGZlUNwUwnV3/9WpzHhA5U0vvxHEs+7gPTb723f7ho0hPpH/puWZe+ROO0s7lz3PubAauZ+4y7N0IiISNSpFbuIiByXVb5GNvqbbW+5bnk8OLNyjjomWLIOwiESZ8zusD1xZuvPze++hbEc7HUWsSt3GX9+YRYfLV9qc6UiIiIdKVyJiMhxeXpvFc4YTQaZYAAAKyGxw/a2n4ObPwPAYUK8w1yy83dywHc9zz51I42NnRs7iIiI2EHhSkREuu1AIMTfK2oIx6glkqtoKACBDWs6bA+sXw1ApKr1flsRy8WHfIEGKwWXq4XCYYt48YUrKSkp6dF6RUSkf1C4EhGRbnu/tp5QDHvNuk8eg3vMeBpffIamN/9OuGwfLSvex/ere8HlwrS0tI8NWy4+pZi2S66GDFvNyo/u4L333kMNc0VExE5qaCEiIt22rr4Jl0VMA1b6z35J3X/9FN8vfta6weEk+ZJvEVi7ivDu0vZxThNiByOYyvL2bYMHb2DL1ocJBoOce+65anYhIiK2ULgSEZFu+8TXGNNgBeDMzSPr4acJ7dlJpPoAzkGDcWblUHnJeTgHDWkfF8bJNk7qtP+wYWsoKXmBhIQEzjrrrJ4sXURE+iiFKxER6RZjDOvqY98U4nA3G/Z+5wdEDlSROPtzNxy2LLaFh7FwkY/XF/nYvTtIQoLFiBEerr3uXd57L4/c3FxGjx4duycj8ccY8FdBsBHCQXC6wZ0M3hzQTKeIHIHClYiIdEtVMIQ/bHcD9u5ru9kwDgdEWuvx/+9vAWh8/n9xDRpC0pzWkLXnqst4eF9V+76BgGHNmmZ+8B87gPu56677mTFjBkuXql17v+U/ADveg/1rYO8q2LcGAg2dx3lSoGASFE6GgZNg2Nng1Q2aRaSVwpWIiHRLUw8Eq8ZXXiTSUE/kQCUALcvfI1xZDkDyV+fjSEnF/9IfcI8/leD6Tzru7EmAwKGGFs3/eJvIvj0A5OU5cTgsystDtPWymDo1iRUrmhg0aFDUn5fEGWNgz0ew8vdQ8jeIhMDhav1+JIEGKH0fdn14aHzxxXD6tTDoNM1qifRz6hYoIiLdEuyBDnv+Pz+L/+nHaFr4MgAt/1qK/+nH8D/9GKahHgD3qHFE6utaw9Tn7nflHDy0w7EaX/4jOBxYFjz8SAE+X5irrspsPYYbduwIYlmQk5PNxo0bo/7cJE5sfB0enw5PnQclfz0UqI4WrD7v8+M3/BWemgWPfwE2vhGdekWkV9DMlYiIdIu7Bz6Zz33h2G9Qk+Zc1L7sL7iphOrvf6vTmIi/geDGDWBZGAOXf3M34TC8/roPAJfLoro6xIQJiRQWBli6dCmjRo1S98C+rLEa3vgxbPgLWAc/Y46ET+yYbUGr8jN48TIo/jqc/wtIzjqx44pIr6OZKxER6ZYkZ+956Qjv29O69OvgbFv44HvoqqrW/2huNoRCMHNmKgMLNlFRUcGePXtiVa5E22eL4JHJUPJK68/G5iWubccreaX1PJ8tsvf4IhL3es8rpIiIxIUctwtvLwlYpulgV0NjcDo/t90c+u52W5x9TjK5uaW43S189NFHPV+oRJcx8M9fwkuXQ1MtmBOcqTrm+cKt53npcvjXg4d+4USkz+sdr44iIhI3LMtiQmpyrMvoEishAQBXWgrGwBe/6OXuu/O49rrM9jGFhS5SUpw4HIb09DI2bNiA3++PVcliN2Ngyc9h6X8d3NBTnS4PnmfJ/239UsAS6RcUrkREpNtOTUvG1QsuS3Jk5wIQ8jUwcKCLu+/J54tnp3D22SntY2pqWmcxIhGLlJQDRCIRSktLY1GuRMO/HoT3fx3bGt7/VeuXiPR5ClciItJtE1KTCPWCD+KdOXlwcPbq3HNTKCsLUlYWpLLy0LKwxsYIwaDBsgypaVU4HA727dsXq5LFTp8t+tyMVYwt+b+tHQpFpE9Tt0AREem2MzNScVn0ioDlyMgkUl7Gs8/W8uyztZ0eDwZh584AJ52UQEpKNZFImL1798agUrFVYzUsvAGwgHj4RXXA36+HwdPURVCkD1O4EhGRLjHGcMAfoCkQJhiOcF6yl7drfITdjpjdOPXfbzYMEKmuaq23pRmHCXHKd85l1YI/YVnwxS8mk5jo4J//9NPU1PqGe+BAFwMGuAFwuYK43c3s27cPY4xasvdmb/wYmuuwM1h9tDfMH9YGeLc0TGlthOwkizMGObl3ZgInZx/qmLJyb5hn1gRYsTfMuvIIoQiYe9Ja63nzJ3Dxk7bVJCLxReFKREQOq9ofYNm2KtbvrWPt7lrW76nDH+jYZc0NuJwWkTQ3Jt1DJN1NJCsBPM7DH9Rm/j8/S6R8f4dtpvoAAPWP/4rgzu2MdX2I09nahv2f/2zEsjr2Frjl1hxSUg6tknc4wrS0BPD7/aSkpCC90MbXW+9jZbP//qCFD3aHuWSsmwn5DsoaDI+uDHDq//j58LteivNaf+/f2BLkyU+CTMh3MDzTweYDB5tbmDCsfxnGfQ1Gn297fSISewpXIiLSzhjDJ7tqeW55KYvW7ScUMbgcFqHIkT/9t8IGR00AagO4DBgLIgOSCA1OwaS7ozqrlfvCG5TPPOXwDwZaaH71JZYA06cnUVLSgs8XIfK5ZnHnn5/CpEkdOx86HK0DQqFQlKqWqDIGlt7beoNgm+9jdfM0D89f7MTjPPQ7fek4F+Mf93P/+wH++LUkAL5/moeffiGBJLfF9W80HQpX0FrX0nth1NyYzfiKSPQoXImICABvl5Tx4Nub2VRej9NhET4YqI4WrNpY0L76yjLgKGsiYX8TkRQXoZFpRPKSolZ3/tLVR3zsZrOAyXzcreNFIq2zWApXvdSej6Di06gcenpR57dNI7OdjMtz8FnVoVnd/JSj9AszEagogT0fQ9Hp0ShTRGJI4UpEpJ+r8Qe4Z2EJC9fua/8gPdyFQHU0VlvQagjhWV1NeEASwTHpPbZc0GHCnMEH3Q5WAJFIa40ul14ie6WVvweHEyJRvlHwQcYYyhsM4/K60YDZ4YKPfq9wJdIHqRW7iEg/9lZJGTMf/Aevr2u9bsnu+5y2LXpylDWR8H4FjvIme09wuHOaCMn4uZKnur1vKOQmGEwEFK56Jf8BKPlbjwUrgD+tD7K33nDpOHfXd4qEYMNfW+sVkT5F4UpEpB8yxvDbd7fyvedWUdsUJGx3qvo3FkAwgmdNNc7t9fanuM8xloNreYxUGrq3n4GGhizAwuPx4PV6o1OgRM+O91qDSw/ZWBXmB280M22Qk6smdiNcQWudpf+MTmEiEjMKVyIi/Ywxhgfe2sQv3tp08OeeOW/bLJZ7iw/XFl/UTvwN80dO46Nu72eMRb0vB4CCggK1Ye+N9q9pXXLXA8oaIlzwfCPpCRZ/+UYSTkc3f18cLti3JjrFiUjMKFyJiPQzj/1jG4//Y1tMa3DtaMC5o3szS11xkfkrF/HKce3rcBgaGrJxOBwUFhbaXJn0iD2remTmqq7ZMPdPjdQ2w+JvJVOQehxvpyIh2LvK/uJEJKYUrkRE+pG3SsraZ6xizb3Fh6PixK/Bsg62277U/JFLeZ7jnW+KRCxqa/OJRCIUFBSccF3Sw4xpnbmKsuaQ4cIXGtl8IMKiy5IYm3sCTVr2rem5qWMR6REKVyIi/USNP8Btf1133OHDbgZwb6iFwPE3H3CYMF4a+JG5/7hnrKA1WFVWDiUUSsThcDB06NDjPpbEiL8KAvbPhn5eOGK49C9NLN8T5uVLkph2mNbs3RKob61bRPoMtUISEekn7llYgq8phJ2fk7fs34x/wxKad64n5CvHkZhGQsEoMr54Be6sjkvrglW7qV76e1r2fIrldJE04nQyZn4X98YEghOyunVey0QwloMz+ICreIqUbjav+HcOh2H/vlE4HA6Ki4vVzKI3CjZG/RS3vN3Cwk0hLjzZRXWT4Y/rAh0e/9YEDwA7ayM8ty4IwMf7WmdW7/1nCwBD0i2umOg5tFMo+h00RaTnKFyJiPQDb5eUsXDtPtuP6/vwL7Ts/Yzk0Wfizh1K2F9D/SeL2P/MjQy44pd4cocCEPJVUfb8T3EkeMn44pWYYDO+lX8jUFnKwCt/hWNAUpduNOwwISKWi0Hs4hLzwnHdx+rfGQN+fwb19TlAhNNP172HeqVwMOqnWFPWOsv62uYQr23ufG1XW7jaURvhrndbOjzW9vPZQ5z/Fq46BjQR6d0UrkRE+jhjDA++vRnLsv/yjtTTv0rORT/Gch5qQ+0dfRb7/vd6fB/+hZwLbwWg7sM/Y4It5H/7N7jS8gDwDDyZipfupGH9ErzpXyaQmwj/3qHPGJyECVsunCbENN7nPLOYEWyxbXmjZcHO0klYloO8vDwGDRpk05GlRzm72Qr9OPzj212b0TxnqAtzT1rXDuryHHuMiPQaClciIn3cJ7tq2VReH5VjJw4a02mbO6sQT85gggd2t29r3LSMpBGntwcrgKShk3BlFdK48V+kTpqDVRfEZBx6o5lomhjOVkawlWFmG2PZQCr2Pg9jLCorhlBdXQQYZsyYoRbsvZU7OdYVHB/XsWdsRaT3ULgSEenjnlteitNhEY70TFcyYwxhfy3unMEAhOqriDTW4hl4UqexCQNPpmnbxzisMGfsWsLF6a/jIoSHFtLwRbX5hjEQCnnYtm0KlmVRXFzM6NGjo3hGiSpvDnhSot7Uwlae1Na6RaTPULdAEZE+rNofYNG6/T0WrAD8n/6DcMMBvGPOAiDcUAOA09u5aYXTm0mkuZ5wMMLasnGkBHzkUkl6lIMVtC4H3Lx5GqFQAomJicydOzfKZ5SosiwYOCnWVXRPwaTOS2FFpFdTuBIR6cOWbasi1IPBKnhgN9VvP05CwWi8xecCYEKtF/Jbh7kmxjp4vYkJtRAxTjZWj+yxWnfsmET1gSIAvvKVr5Cc3EuXlckhgyaDo5csynG4oHByrKsQEZspXImI9GHr99bhcvTMJ+Phhhoq/vJzHAlecubdjuVovbmq5UoAwBymm5s52CnNciXgtMLs9BX1SK27dhWzZ3cxAOeee66WA/YVAydBpHMXv7gUCbXOXIlIn9JLPt4REZHjsXZXbY/MXEVa/JS/fA+RZj/5l/83rtTs9secKZkAhP3VnfYL+2twJKZiudyEjWF73ZCo1WhM6wqsHTtOaQ9WZ555JmeeeWbUzik9bNjZrTNCvSFgOVww9IuxrkJEbKaZKxGRPsoYw/q9ddE/TyhAxV/+L6GaveR9/W48BxtZtHGl5uBITiewf2unfVv2b8aTP+zgTxY7fYNtbxcPrV0BQ6EESkrO6TBjNWvWLHUH7Eu82TDua3Bw1jRuOVxQfHFrvSLSpyhciYj0UQf8AfyBcFTPYSJhKv/+37Ts20juV24jobBza3aA5JOn07TtI0K+yvZtTaVrCFXvJXnUoZmj5nAi9YEU++o7GNQqK4bw8UdfoaZ6MElJScyfP5+zzjrLtvNIHJlyLUSi+3t/wiIhOP3aWFchIlGgZYEiIn1UU5SDFUDN0qdo2rqCpJOmEG5uoKHk3Q6Pp4ybAUD6tG/QuOkDyl+4g9TTLsIEmvCt/Bvu3KGkjD+vwz6BiJtIxMLhOP4prLb9/f4MdpZOoqZmMMYYxo8vZu7cuWpe0ZcNOh3yxkHlZ2Aisa6mM8sBeWNh0GmxrkREokDhSkSkjwqGo//GMlCxHYCmrStp2rqy0+Nt4cqVlkv+ZQuoWfokte89g+VwkTTidDJnXoPl6thFMLL1aupyXyM9bysOhyESsbAsc9SO1ca0Lv1rHe+gsnIo+/edjN+fRyRiyMvLZebMmWpc0R9YFsy8E168LNaVHJ6JwIz/VAt2kT5K4UpEpI9yO6O/8nvAN+/v8lhP7hDyL/2vY44768qrGeC+lg3vvsfGPYtoSdpBSloVKSkHcLk6NyoIhVw0NGRT78uhoSEbX91AAkEPDoeD4uJipkyZQmFhoa6t6k9Gnw/FX4eSV8DE0RJBywnFX2utT0T6JIUrEZE+KskT5xf1H0Gi24krxcOkC89jEufh9/vZsWMHe0t3Ubp9I9W+CiImQCTiIBJxEgwmAhYej4eCggJGjSqkoKCAoUOH4vV6Y/10JFbO/wVsWwpNtUA8LA90QGI6zH0g1oWISBQpXImI9FHZXg9ejzPqTS3slJLgItvr6bDN6/VSXFxMcXExcD7GGPx+P6FQiFAohMvlwuVy4fV6NTslhyRnwUWPwEuXx7qSgyLwlUdb6xKRPkvdAkVE+ijLshhfmB7rMrplfGH6MQOSZVmkpKSQkZFBTk4OGRkZpKSkKFhJZ2O+DDPvinUVrc69G0ZfEOsqRCTKFK5ERPqwiYMzcDl6R+hwOSwmFmXEugzpa866Bc68ObY1nHlz7GsQkR6hcCUi0oeNL0wnFInCXXmjIBQxvW6mTXoBy2qdNTr37oMbeuqtz8HznHsPzLpH3QFF+gmFKxGRPmz6iJxeNXM1bUR2rMuQvsiyWmew5j8PSRmtXfuiej5n63nmPw9nacZKpD9RuBIR6cOyvB6+PGEgzjgPWE6HxYUTC8j6t2YWIrYafQHcsArGfbX1Z8vmt0Ftxyv+Wut5dI2VSL+jcCUi0sddMW0o4ThfGhiOGK6YNiTWZUh/kJwFX3+qdVYpd0zrNscJNk9u2z93DMx/AS5+Ul0BRfoptWIXEenjTh2cwej/1969R0dV3v8e/8wlV2ASAiEXrl4gSORi4UeI7SoIAYRQWotHFyhVK6KCLSp6Cgcr0F+tlXLEttoCtSjtMrCkR6kX0CpaFYggGAUjtxao3BKQXCaQ68w854+Y+RETbrIneyZ5v9aaxXLvZ+/5PvM10Q9772dSO2hPcYVMGGYsh0PKSOmga1jMAi2pb66UMV46vE366E/SZ/9PCvjqg1Kg6ZdVN9EwzhklXT1JGnqX1HUwz1YBbRzhCgBaOYfDodljMnTXX7bZXUqzjJFmj8lgKXW0PIdD6v5f9a+xj0sH35eOFkhHPq7/s/ZU02Oi20vp19QHqfRBUq/vSu14VhBAPcIVALQBo/ulaOLAdL2+45j8YXT5yuWQJgxM1+h+KXaXgrauXaf6Z7EanscyRjr9peSrkny1kjtacsdJ7TpzdQrAWRGuAKCNWDgxUx/sO6GyqrqwuD3Q4ZA8cVFa8L1Mu0sBmnI4pPbJdlcBIMKwoAUAtBEd20Xr15MGhEWwkuovDDwxaYA6skIgAKCVIFwBQBsyNjNVD4/NsLsMSdLDYzM0JjPV7jIAALAM4QoA2pgZI67QjBFXtPkaAACwGs9cAUAb43A49PDYDLWLces3b+6Rw6EWuVWw4X3+9/UZmjHiytC/IQAALYwrVwDQBjkcDs287kotnzpYiXFRcoV48TOXQ0qMi9LyqYMJVgCAVotwBQBt2JjMVL0ze4RyB6RLsn6F6YbzTRiYrncfGsEzVgCAVo3bAgGgjevYLlq/m3yNJgxI05Nv7dXuogq5nA75A9/8XsGG4zNSOmj2mAy+xwoA0CYQrgAAkuqvYo3ul6KCQ2X6a/5/9OqnR+ULGLmdDvkuIGg1jHM7HZo4MF1Ts3tqUPdEOfjCVQBAG+EwJly+8SS8eL1eJSQkqLy8XB6Px+5yAKDFlZyuVf6/T2rHkTLtOFSuHUfKdLrG32RcuxiXBnRN1MDuierfNUHZV3RSEt9dBQBoRS40G3DlCgDQrKR20codkKbcAWmSJGOMTp6uVXWdX7W+gKLdTsVGudSpXTRXpwAAEOEKAHCBHA6HOrePsbsMAADCFqsFAgAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWCFm4Kikp0S233CKPx6PExETdeeedOnXq1DmPqa6u1syZM9WpUye1b99ekyZNUnFxcaMxX3zxhXJzcxUfH68uXbro4Ycfls/nC+5/6aWXNHr0aCUnJ8vj8Sg7O1tvvvlmSOYIAAAAAA1CFq5uueUWFRYW6q233tJrr72m999/X9OnTz/nMQ888IBeffVVrVmzRu+9956OHj2qH/7wh8H9fr9fubm5qq2t1ebNm7Vy5Uo9//zzevTRR4Nj3n//fY0ePVrr1q3T9u3bdd111+l73/ueCgoKQjVVAAAAAJDDGGOsPumuXbvUr18/ffTRRxoyZIgk6Y033tD48eN1+PBhpaenNzmmvLxcycnJysvL04033ihJ2r17t6666irl5+dr2LBhWr9+vSZMmKCjR48qJSVFkrR06VL97Gc/04kTJxQdHd1sPZmZmbr55psbhbDz8Xq9SkhIUHl5uTwez8V+BAAAAABaiQvNBiG5cpWfn6/ExMRgsJKknJwcOZ1Obdmypdljtm/frrq6OuXk5AS39e3bVz169FB+fn7wvP379w8GK0kaO3asvF6vCgsLmz1vIBBQRUWFkpKSzllzTU2NvF5voxcAAAAAXKiQhKuioiJ16dKl0Ta3262kpCQVFRWd9Zjo6GglJiY22p6SkhI8pqioqFGwatjfsK85ixcv1qlTp3TTTTeds+bHH39cCQkJwVf37t3POR4AAAAAznRR4WrOnDlyOBznfO3evTtUtV60vLw8LVy4UC+++GKTsPd1c+fOVXl5efB16NChFqoSAAAAQGvgvpjBs2fP1u23337OMZdffrlSU1N1/PjxRtt9Pp9KSkqUmpra7HGpqamqra1VWVlZo6tXxcXFwWNSU1O1devWRsc1rCb49fOuXr1a06ZN05o1axrdang2MTExiomJOe84AAAAAGjORYWr5ORkJScnn3dcdna2ysrKtH37dg0ePFiS9M477ygQCCgrK6vZYwYPHqyoqCht2LBBkyZNkiTt2bNHX3zxhbKzs4Pnfeyxx3T8+PHglai33npLHo9H/fr1C55r1apV+vGPf6zVq1crNzf3YqYIAAAAAN9ISFYLlKRx48apuLhYS5cuVV1dne644w4NGTJEeXl5kqQjR45o1KhR+ofVKIoAABYVSURBVMtf/qKhQ4dKku69916tW7dOzz//vDwej37yk59IkjZv3iypfin2QYMGKT09XYsWLVJRUZGmTp2qadOm6Ve/+pWk+lsBb7vtNv32t79ttIx7XFycEhISLrh+VgsEAAAAINm8WqAkvfDCC+rbt69GjRql8ePH6zvf+Y6WL18e3F9XV6c9e/aosrIyuG3JkiWaMGGCJk2apO9+97tKTU3VSy+9FNzvcrn02muvyeVyKTs7W7feeqt+9KMf6Re/+EVwzPLly+Xz+TRz5kylpaUFX7NmzQrVVAEAAAAgdFeuIh1XrgAAAABIYXDlCgAAAADaEsIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYwG13ATg7Y4z8JSUKVFXL1NXKERUtZ1ysXElJcjgcdpcHAAAA4AyEqzDiKy1V5YcfqrqwUFU7dqq68DMFTlc2GedsF6/YzKsVN6C/YjMzFT9smNwdO9pQMQAAAIAGhCubGWNU9cknKs1bJe/69ZLPJ7nd9X+eReB0pSq3blXlxx8Hx3vGj1fSlMmKHTiQq1oAAACADQhXNqrYsEEnnvqtavbtk1wuye+v33GOYNVIwzifT97XX5f3lVcU06ePku+fpQ4jR4amaAAAAADNYkELG/hKS3Vk9kM6PPM+1fzrX/UbG4LVN/XV8TX79unwjJk6Mvsh+UpLL7FSAAAAABeKcNXCKt5+W/vHjZf3jTfqNxhj7Rt8dT7v+vXaP268Kt5+29rzAwAAAGgW4aqFGGP05dJlOnzfT+QvL7/0K1XnEwjIX16uw/f9RF8uWy5jdYgDAAAA0AjhqgUYY3TiySU68dRTDRta6o0lSSeWLNGJJU8RsAAAAIAQIly1gJPLluvkn/5kbw3Ll+vkcntrAAAAAFozwlWIVbz99v9csbLZiSVLVLFhg91lAAAAAK0S4SqEfKWlOvbIz6Vw+d4ph0PH5j3CKoIAAABACPA9VyFU/MvH5K+osOwZq51VVfq7t1xbKit1tK5OCS6XBsbFaVbnZPWKjg6OW1NWple95TpQWytvIKAubrf+Ky5eMzt3UlevV8WPPaauixdbUhMAAACAeoSrEKnYsEHe11+39Jx/LinRx1WVGtvBo4yYGH3p9+mF0lJNOnhAq3v2Uu+YGEnSrppqdYuK0nXt28vjculIXZ3WlJXpvdOn9HKvXtJrr8szfjxfNAwAAABYyGFYQq5ZXq9XCQkJKi8vl8fjuahjjTE6MPH79V8QbOHHW1BVqczYOEWfcZvhwdpa/eDgAY1p30GL0tPPemxhdbX+138O6oHOybqrc2fF9O6ty/6+Vo5wuWURAAAACFMXmg145ioEqj75RDX79lm+5Po1cfGNgpUk9YqO1pXR0dpfW3POY7tGRUmSKgJ+yRjV7N2r6k8/tbQ+AAAAoC0jXIVAad4qyeVqkfcyxuik36+OrqZ3eJb5/Trp8+mz6irNO3ZMkjQsvl39TpdLJXmrWqRGAAAAoC3gmSuL+UpL5V2/XvL7W+T9XvV6Vezz6b7OnZvsG/Hvf6n2q6tniS6X/k+XLrq23Vfhyu+Xd906pcydI3fHji1SKwAAANCaEa4sVvnhh5LP1yLvtb+mRr88XqxBsXH6gSehyf5l3bqpJmC0v7ZWr3rLVRX42m2KPp8qt2yR5/rrW6ReAAAAoDUjXFmsurBQcrtDHrBO+Hy698hhtXc69VTXdLmaWZgi66tbAL8raWT79vr+wQOKdzp1S8OVKrdb1YWFhCsAAADAAjxzZbGqHTtCHqwq/H7dffiQvH6/lnfrri7uqPMe0yM6WlfFxOo1b/n/bPT56usFAAAAcMm4cmUhY0z9lasQqgkENOPIYf2ntlZ/7t5DV3713VYXotoEgs9gBbd9VihjDEuyAwAAAJeIK1cW8peUKHC6MnTnN0YPHjuqT6uq9GR6Vw2Ki2syxmeMyptZTGNHVZX21dTo6tjYRtsDp0/LX1ISspoBAACAtoIrVxYKVFWH9PyLThzXu6dO6bp27VXu9+uV8vJG+ycmJKgyENDIf/9L4zweXRkdozinQ/tqavRyebnaO526p1PTVQVNdWjrBgAAANoCwpWFTF1tSM+/+6sQ9O7pU3r39Kkm+ycmJCjW6dSNiYnaWlmpf1RUqDoQUBe3W+M9Ht3TqZO6RkU3OS5QG9q6AQAAgLaAcGUhRzPBxUore/Q875hoh0Nzu6Rc1Hmd0aGtGwAAAGgLeObKQs642PMPCkOO2MisGwAAAAgnhCsLuZKS5GwXb3cZF8XZrp1cSUl2lwEAAABEPMKVhRwOh2IzM+0u46LEXp3JMuwAAACABQhXFosbMEByR8ijbG53fb0AAAAALhnhymKxmZmSz2d3GRfG54u4K20AAABAuCJcWSx+2LCIunIVn5VldxUAAABAq0C4spi7Y0d5xo2TXC67Szk3l0ue8ePl7tjR7koAAACAVoFwFQIdp0yW/H67yzg3v19JUybbXQUAAADQahCuQiBu0CDF9OkjhesqfA6HYjIyFDtwoN2VAAAAAK0G4SoEHA6Hku+fJRljdynNM0bJs37KEuwAAACAhQhXIdJh5Eh5cnPD79krp1OeCbnqMHKk3ZUAAAAArQrhKoRSHpknV4cO4XN7oMMhl8ejlHnz7K4EAAAAaHUIVyHk7thRab/87/C5PdAYpT32S1YIBAAAAEKAcBViHXJylHz//XaXIUlKfuABdRg1yu4yAAAAgFaJcNUCOt09XZ2mT7e3hunT1Wn6XbbWAAAAALRmbrsLaAscDoeSH7hfznbtdGLJkvpnsFriVsGv3if5wQfVmWAFAAAAhBRXrlqIw+FQ57unq9szT8uVkCA5Q/zRO51yJSSo2zNPE6wAAACAFkC4amEdRo3S5evXyTNuXP0Gq1cS/Op8nvHjdMUb63nGCgAAAGghhCsbuDt2VNf/u1jdnnlaMb1712+81O/D+ur4mN691e0Pz6jr4sVyJSZeYqUAAAAALhTPXNmow6hRaj9ypKo//VQleavkXbdO8vkkt7v+z/NpGOd2y5M7XklTpih2wAA5wuV7tQAAAIA2xGFMuHwJU3jxer1KSEhQeXm5PB5Pi7ynr7RUlVu2qPqzz1S1c6eqPytU4PTpJuOc7dop9upMxQ0YoNjMTMVnZfHdVQAAAECIXGg2IFydhR3h6uuMMfKXlMhUVytQWytndLQcsbFyJSVxdQoAAABoIReaDbgtMIw5HA65O3WyuwwAAAAAF4AFLQAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMACbrsLCFfGGEmS1+u1uRIAAAAAdmrIBA0Z4WwIV2dRUVEhSerevbvNlQAAAAAIBxUVFUpISDjrfoc5X/xqowKBgI4ePaoOHTrI4XDYXU5IeL1ede/eXYcOHZLH47G7nDaLPoQH+hAe6EN4oA/hgT7Yjx6Eh3DogzFGFRUVSk9Pl9N59ieruHJ1Fk6nU926dbO7jBbh8Xj4hREG6EN4oA/hgT6EB/oQHuiD/ehBeLC7D+e6YtWABS0AAAAAwAKEKwAAAACwgGvBggUL7C4C9nG5XBoxYoTcbu4QtRN9CA/0ITzQh/BAH8IDfbAfPQgPkdIHFrQAAAAAAAtwWyAAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcNWKlJSU6JZbbpHH41FiYqLuvPNOnTp16pzHVFdXa+bMmerUqZPat2+vSZMmqbi4uNGYL774Qrm5uYqPj1eXLl308MMPy+fzBffffvvtcjgcTV6ZmZkhmWe4s6sPklRTU6N58+apZ8+eiomJUa9evbRixQrL5xgJ7OrDP//5z2Z/HoqKikIyz3Bn589Dg02bNsntdmvQoEGWzSvS2NWHjRs36tvf/rY6deqkuLg49e3bV0uWLAnJHCOBXX146aWXNHr0aCUnJ8vj8Sg7O1tvvvlmSOYY7uzqwbFjxzRlyhT16dNHTqdT999/f0jmF66eeeYZ9erVS7GxscrKytLWrVvPOX7NmjXq27evYmNj1b9/f61bt67RfmOMHn30UaWlpSkuLk45OTnat29fozHfpNeWMGg1rr/+ejNw4EDz4Ycfmg8++MBceeWVZvLkyec85p577jHdu3c3GzZsMNu2bTPDhg0z1157bXC/z+czV199tcnJyTEFBQVm3bp1pnPnzmbu3LnBMWVlZebYsWPB16FDh0xSUpKZP39+qKYa1uzqgzHGTJw40WRlZZm33nrLHDhwwGzevNls3LgxJPMMd3b14d133zWSzJ49exr9XPj9/pDNNZzZ+fNgjDGlpaXm8ssvN2PGjDEDBw60fH6Rwq4+fPzxxyYvL8989tln5sCBA+avf/2riY+PN8uWLQvZXMOZXX2YNWuWeeKJJ8zWrVvN3r17zdy5c01UVJT5+OOPQzbXcGVXDw4cOGB++tOfmpUrV5pBgwaZWbNmhWyO4Wb16tUmOjrarFixwhQWFpq77rrLJCYmmuLi4mbHb9q0ybhcLrNo0SLz+eefm0ceecRERUWZnTt3Bsf8+te/NgkJCWbt2rXm008/NRMnTjSXXXaZqaqqCo75Jr22AuGqlfj888+NJPPRRx8Ft61fv944HA5z5MiRZo8pKyszUVFRZs2aNcFtu3btMpJMfn6+McaYdevWGafTaYqKioJj/vjHPxqPx2NqamqaPe/LL79sHA6HOXjwoBVTiyh29mH9+vUmISHBnDx5MhRTiyh29qEhXJWWloZiahElHH4v3XzzzeaRRx4x8+fPb7PhKhz6cKYbbrjB3HrrrZc6rYgTbn3o16+fWbhw4aVOK6KESw+GDx/epsLV0KFDzcyZM4P/7Pf7TXp6unn88cebHX/TTTeZ3NzcRtuysrLM3XffbYwxJhAImNTUVPOb3/wmuL+srMzExMSYVatWGWO+Wa+twm2BrUR+fr4SExM1ZMiQ4LacnBw5nU5t2bKl2WO2b9+uuro65eTkBLf17dtXPXr0UH5+fvC8/fv3V0pKSnDM2LFj5fV6VVhY2Ox5//znPysnJ0c9e/a0YmoRxc4+vPLKKxoyZIgWLVqkrl27qk+fPnrooYdUVVUViqmGtXD4eRg0aJDS0tI0evRobdq0ycrpRQy7+/Dcc89p//79mj9/vtVTiyh29+FMBQUF2rx5s4YPH27F1CJKOPUhEAiooqJCSUlJVkwtYoRTD9qK2tpabd++vdHn53Q6lZOTE/z8vi4/P7/ReKn+82wYf+DAARUVFTUak5CQoKysrEY9udheW8Ud0rOjxRQVFalLly6NtrndbiUlJZ31WY+ioiJFR0crMTGx0faUlJTgMUVFRY1+WTTsb9j3dUePHtX69euVl5f3jecSyezsw/79+7Vx40bFxsbq5Zdf1pdffqkZM2bo5MmTeu655yyZX6Swsw9paWlaunSphgwZopqaGj377LMaMWKEtmzZom9961uWzC9S2NmHffv2ac6cOfrggw/kdrft/9SFw38funXrphMnTsjn82nBggWaNm3aJc0pEoVDHxosXrxYp06d0k033fSN5hKpwqkHbcWXX34pv9/f7Oeze/fuZo852+d55ufdsO1cYy6211bhylWYmzNnTrMPx5/5Otu/nHZYuXKlEhMT9YMf/MDuUiwVCX0IBAJyOBx64YUXNHToUI0fP15PPvmkVq5c2WquXkVCHzIyMnT33Xdr8ODBuvbaa7VixQpde+21reoh/nDvg9/v15QpU7Rw4UL16dPHtjpCLdz7cKYPPvhA27Zt09KlS/XUU09p1apVdpdkmUjqgyTl5eVp4cKFevHFF5v8z2ekirQeoHVr23+dFwFmz56t22+//ZxjLr/8cqWmpur48eONtvt8PpWUlCg1NbXZ41JTU1VbW6uysrJGfyNTXFwcPCY1NbXJii4NK+R8/bzGGK1YsUJTp05VdHT0Bc0vUkRCH9LS0tS1a1clJCQEx1x11VUyxujw4cPq3bv3hU02jEVCH5ozdOhQbdy48Zx1R5Jw70NFRYW2bdumgoIC3XfffZLq//LBGCO3261//OMfGjly5EXNORyFex/OdNlll0mS+vfvr+LiYi1YsECTJ08+/yQjQCT1YfXq1Zo2bZrWrFnT5LarSBZJPWhrOnfuLJfL1WR1xTM/v69LTU095/iGP4uLi5WWltZoTMOqsN+k15YJ6RNdaDEND+5t27YtuO3NN9+8oIc0//a3vwW37d69u9mHNM9c0WXZsmXG4/GY6urqRudreJD/zNVc2ho7+7Bs2TITFxdnKioqgmPWrl1rnE6nqaystHSe4S4cfh7OlJOTY2644YZLnVbEsasPfr/f7Ny5s9Hr3nvvNRkZGWbnzp3m1KlTIZpxeAq3n4eFCxeanj17XuKsIo/dfcjLyzOxsbFm7dq1Vk8tYtjdgwZtcUGL++67L/jPfr/fdO3a9ZwLWkyYMKHRtuzs7CYLWixevDi4v7y8vNkFLS6m11YhXLUi119/vbnmmmvMli1bzMaNG03v3r0bLTl5+PBhk5GRYbZs2RLcds8995gePXqYd955x2zbts1kZ2eb7Ozs4P6G5UXHjBljPvnkE/PGG2+Y5OTkZpc8vvXWW01WVlZoJxkB7OpDRUWF6datm7nxxhtNYWGhee+990zv3r3NtGnTWmbiYcauPixZssSsXbvW7Nu3z+zcudPMmjXLOJ1O8/bbb7fMxMOM3b+XGrTl1QKNsa8PTz/9tHnllVfM3r17zd69e82zzz5rOnToYObNm9cyEw8zdvXhhRdeMG632zzzzDONviKirKysZSYeRuz8nVRQUGAKCgrM4MGDzZQpU0xBQYEpLCwM/aRttnr1ahMTE2Oef/558/nnn5vp06ebxMTE4OqKU6dONXPmzAmO37Rpk3G73Wbx4sVm165dZv78+c0uxZ6YmGj+/ve/mx07dpjvf//7zS7Ffq5ehwrhqhU5efKkmTx5smnfvr3xeDzmjjvuaHQV48CBA0aSeffdd4PbqqqqzIwZM0zHjh1NfHy8ueGGG8yxY8canffgwYNm3LhxJi4uznTu3NnMnj3b1NXVNRpTVlZm4uLizPLly0M6x0hgZx927dplcnJyTFxcnOnWrZt58MEH29xVqwZ29eGJJ54wV1xxhYmNjTVJSUlmxIgR5p133gn5fMOVnT8PZ2rr4cquPvzud78zmZmZJj4+3ng8HnPNNdeYP/zhD232e9/s6sPw4cONpCav2267LdRTDjt2/k5qrgdt5Sru73//e9OjRw8THR1thg4daj788MPgvuHDhzf5d/HFF180ffr0MdHR0SYzM9O8/vrrjfYHAgHz85//3KSkpJiYmBgzatQos2fPnkZjztfrUHEYY0xobzwEAAAAgNaP1QIBAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALPD/AYA6Ajm4N5YRAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "(
,\n", + " )" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdQAAAGsCAYAAABkVlbAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxTZb7H8U+SNkn3FbpAoaUUCgKtFihlUECrVRGnXmUQZgQRN1RGREVABL2jg5dlZBjQjjojjCOKoAIiokzdGKhFoGzKUjbZukOTkrZJmpz7RyBt7CKlSSnwe79eeTU55zlPnqPAt+ecZ1EpiqIghBBCiBZRX+oGCCGEEFcCCVQhhBDCDSRQhRBCCDeQQBVCCCHcQAJVCCGEcAMJVCGEEMINJFCFEEIIN/C61A1oq+x2O6dOnSIgIACVSnWpmyOEEOISUBSFiooKoqOjUaubvgaVQG3EqVOniImJudTNEEII0QYcP36cjh07NllGArURAQEBgOM/YmBg4CVujRBCiEvBaDQSExPjzISmSKA24vxt3sDAQAlUIYS4yl3Ioz8JVCFaS1kZbNvmeBUWQk0N6PXQvTukpEDv3qDVXupWCiEukgSqEJ5ktcKaNfD66/DVV02X9feHMWNgwgTo1at12ieEcBsZNiOEp3z3HfToAffc8+thCnD2rCN4e/eG0aMdV7RCiMuGXKEK4W5WKzz7LPz1ry6bbaGh1CQkYIuOxh4aiqLRoDKb0RQWojl5Eu/9+1FZrY7C778P2dmwZAncdlvrn4MQotkkUIVwJ4sFRoxw3OY9pyYmBvOQIdTExUED49hscXEAVFVXo92xA90336CurobiYhg+HJYuhd//vtVOQQhxcSRQhXAXRYH77nOGqaLRUJ2ejiU1tcEgrUevxzJgANZrrsHn00/xPnAAbDbHc9XAQEe4CiHaLHmGKoS7/OMf8OGHACheXph+/3ssaWkXFqZ1KAEBVN57L+a+fR0b7HYYNw6KitzdYiGEG0mgCuEOx47B5MnOj5X33IOtS5eLr0+tpvr227EmJjo+l5U5ev8qSgsbKoTwFAlUIdzhlVegogIAS3IyNeeDsCXUaqqGD8fu6+v4/MknkJvb8nqFEB4hgSpESxkM8O9/A6BotVRlZLitasXPj+r09NoNr7/utrqFEO4lnZKEaKlly6CyEgBLUhL4+Dh3bTp6lIWbN7Pz1CkKz57l3yNHckePHs79s7/+mo/37OGk0Yi3RkNyVBQv3HQTfetMwm3t3Rv7l186ev4uXw4LF0JwcOudnxDigsgVqhAt9d//Ot9ak5JcdlVarfSOiGDusGENHto1LIy5t9/O5gkTWP/AA3QKDuZ/3n2XUpOptpC3N9bzMydZLLB1q9tPQQjRcnKFKkRLbdsGOIbJ2CIjXXbdnJDAzQkJjR46ok8fl8+vZGTwbl4ePxYVMbhOpyZbx461QbptG9S9DSyEaBPkClWIlqipgQMHALC3awdeF/87qqWmhqXbthGo09ErIsJln0tQ//TTRX+HEMJz5ApViJaoqnIOZVHqPDttjvX79zN+5UoqrVYiAwJYNWYMYX5+LmVc6q57O1gI0WbIFaoQLVH3itRuv6gqro+LY+Ojj/Ll+PHc1LUr969YQcnZs66F6tbdgqtgIYTnSKAK0RJ6vWPZNUBdXn5RVfhptXQJC6NfTAyLfvtbvNRq3s3LcymjPnOm9kO7dhfdXCGE50igCtESKhVcey0AaoMBlRtux9oVBXNNjcs2zalTtR+uu67F3yGEcD+5dyRES6WkwMaNAHgdPOgydOas2czh06edn38uL2dXQQEhPj6E+voy/7vvuK17dyICAjhdWclbW7ZQYDSSec01Ll/hfeiQ6/cJIVwpCmzf7hjGtm0b7NvnGB/u5QUREY5fRPv2hZtvdiw24QESqEK01F13wYIFAGi3bnUJ1LxTpxi+dKnz8/NffAHAqKQkXrvjDg6UlvL+zp2UVVYS6uPDtR068PkDD9CjfXvnMerSUryOHHF8iI+H82NShRBQXe2YqWzxYtixo/FyX37p+Onv71gVauJEqDPJijuoFEVm226I0WgkKCgIg8FAoId+mxFXCEWB3r3hxx8BODt2rHONU3fw+fhjtLt2OT7MmwdPP+22uoW4rOXmOlZi2ru33i4FwNsb7HZUNlv9YzUamD4dZswArbbRr2hOFkigNkICVTTLP/4BDz4IgD04mIoJE0Cna3G1XgcO4LdsmeNDYCAcOQKhoS2uV4jLmqLAn/8MM2e69ICv6dABa1IStg4dsEVEOG73KgoqoxFNQQFe+flod+1CZbXW1tWnD3z6KXTq1OBXSaC6gQSqaBa7HYYOhe++A8DaoweVI0Y0ey3UutRlZfj94x+oz80TzD/+AQ884I7WCnH5UhSYOhXmzHFuqomKonrYMMeMYr+muhpdTg66jRtRnQ/jmBjH393Y2HrFJVDdQAJVNNuhQ47fds9PlH/NNVT99rdN3k5qjLqwEL/33kN9bkk4br0V1q1z9CoW4mq2YAE89ZTzY/WQIZivv95xC7cZ1AUF+K5YgeZ8p8GuXR2dmX7x731zskCGzQjhLvHx8NFHjuc2gPbHH/HPykJz7NiF12Gzodu4Ef+33qoN0z59HCvaSJiKq91PP8Fzzzk/Vt5xB+YhQ5odpgD2qChMDzyALTzcseHgQXj22RY1T65QGyFXqOKirVsH99zjmJbwHGt8PJZ+/aiJj3cGbl2qigq8d+5Eu20bmrqTOPTtC59/Duf/0gtxtbLbIS0NtmwBwJyWRrUb1h5WnTlDwOuv1z5X/c9/4KabnPvllq8bSKCKFtm3z9H78PvvXTYrajX2du2wh4WhaDSoqqvRFBWhNhpdj1er4Zln4KWXHLMxCXG1++ILx6MPwBYWxtlHH23wl9OLof3hB3w++8zxYehQ+Oor5742d8t38eLFxMbGotfrSU1NZcu53zAas2LFChITE9Hr9fTu3Zt169a57FcUhZkzZxIVFYWPjw/p6enk5+fXq+ezzz4jNTUVHx8fQkJCyMzMdOt5CdGoxETHAPO//tWlo4PKbkdTVIT3Tz+h3b0b7/z8+mGakQGbN8P//Z+EqRDnvf668231TTc5w3TT0aOMXLaMxHnzCH7xRdbWGUJjtdmYtWEDA19/nehXXiFx3jwe+fhjCn7xd86SkoItLMzx4euvGxyGcyE8HqjLly9n8uTJzJo1i+3bt5OUlERGRgbFxcUNlt+8eTOjRo1i/Pjx5OXlkZmZSWZmJnv27HGWmTNnDgsXLiQrK4vc3Fz8/PzIyMigurraWeajjz7ivvvuY9y4cezcuZNNmzYxevRoT5+uELU0GvjjHx3PZj77DMaOdUzK8MuevwEBMHgwTJsG+fmwfj2kpl6aNgvRFpWVwdq1ANgDAqjp3t25q9JqpXdEBHOHDat3WKXVys6CAp694Qa+feQR3h05koNlZYx6/33Xgmo1lr59az//618X1UyP3/JNTU2lX79+LFq0CAC73U5MTAwTJ05k6tSp9cqPHDkSk8nE2nP/8QAGDBhAcnIyWVlZKIpCdHQ0Tz/9NM888wwABoOBiIgIlixZwr333ktNTQ2xsbG89NJLjB8//oLaaTabMZvNzs9Go5GYmBi55Svcr7ISSkrAagVfX4iMbNHwGiGueF9+6bhzA5hTU6m+7bYGiwW/+CL/HjmSO5qYAWn7yZPc+NZb7J40iZjgYOd2ldFI4F/+4vhw442QnQ20oVu+FouFbdu2kZ6eXvuFajXp6enk5OQ0eExOTo5LeYCMjAxn+SNHjlBYWOhSJigoiNTUVGeZ7du3c/LkSdRqNddeey1RUVHcdtttLle5vzR79myCgoKcr5iYmIs+byGa5OsLnTs7uulHR0uYCvFrtm1zvrVFR7eoKmN1NSog6BePU5TAQOznVo5i+3bnOsfN4dG/yaWlpdhsNiIiIly2R0REUFhY2OAxhYWFTZY//7OpMocPHwbgxRdfZMaMGaxdu5aQkBCGDBnC6ToTldc1bdo0DAaD83X8+PFmnq0QQgiPOD+XNWCrM891c1Vbrcz6z3+4p3dvAhvon+Csu7zc8WqmK/JXY/u52S+ef/557r77blJSUnjnnXdQqVSsWLGiwWN0Oh2BgYEuLyGEEG1AncdxF9uz12qzcf+KFSiKwvwGnrfWq7vud14gjwZqeHg4Go2GoqIil+1FRUVERkY2eExkZGST5c//bKpMVFQUAD179nTu1+l0dOnShWPNGWQvhBDi0qs729gv1gq+EOfD9LjBwKoxYxq8Oq1X98XMcNbsI5pBq9WSkpJC9rmHu+C4eszOziYtLa3BY9LS0lzKA2zYsMFZPi4ujsjISJcyRqOR3NxcZ5mUlBR0Oh379+93lrFarRw9epTOnTu77fyEEEK0gjr/bmtKSpp16PkwPVxWxuoxYwj19W20rLPugACo02HpQnl8PdTJkyczduxY+vbtS//+/VmwYAEmk4lx48YBMGbMGDp06MDs2bMBePLJJxk8eDDz589n2LBhfPDBB2zdupU333wTAJVKxaRJk3j55ZdJSEggLi6OF154gejoaOc408DAQB599FFmzZpFTEwMnTt3Zu7cuQCMGDHC06cshBDCnVJSnG81J09i7d3b+fms2czhOn1jfi4vZ1dBASE+PkQGBDDmww/ZVVDAB6NHY7PbKTo3pWeIjw9ar9oIVJ09Wzsm/LrrLqqzoMcDdeTIkZSUlDBz5kwKCwtJTk5m/fr1zk5Fx44dQ12n4QMHDmTZsmXMmDGD6dOnk5CQwKpVq+hVZ1HlKVOmYDKZePjhhykvL2fQoEGsX78efZ3L+Llz5+Ll5cV9991HVVUVqampfPXVV4SEhHj6lIUQQrhTnUD13reP6ltucQZe3qlTDF+61Ln/+S++AGBUUhJThwzh83N3Kq/PynKp8tOxY7m+zrrF3nUnc+jX76KaKVMPNkKmHhRCiDbk1lsd0w8CptGjqenWzX11Kwr+b7yB5vyEQ3l5kJwMtKFxqEIIIYRbPPaY860+O/uiOic1xnvnztowHTjQGabNJYEqhBCi7Rs2DM49O9UUFaHbuNEt1aqMRnzWr6/dMG3aRdclgSqEEKLt02hgyRLn2qe6b7/Fu4nZ7y5IVRV+y5ahOj8P/O9/D3fccdHVSaAKIYS4PFx3HcycCYAK8PnoI7S5uY61UptJXVaG/5IlaM7P2texIyxc2KLmebyXrxBCCOE2L7wAJ07AW2+hUhR8Pv8c7337qBo2DHt4+K8fX1OD9ocf0Gdnozr/HLZdO8cE/KGhLWqaBKoQQojLh0oFWVkQGAjz5wPgdeQIAYsWYY2Px5qUhK1jR+whIY6yANXVaAoL8crPR5uXh7qysra+Ll1g3TqosyTcRTdNhs00TIbNCCFEG7dhA4wfDw0sZqJotSh6PdhsqEwmVA0d/8QT8Oqr4OfX6FfIsBkhhBBXvptvhj17YM4cqDNJA4DKYkFtNKL+ZZh6e8O998L338Pf/tZkmDaXXKE2Qq5QhRDiMmKzwVdfwaZNjvVT9+2DykpHgLZv7+jQlJICw4dDI4uzNKQ5WSDPUIUQQlz+NBrHFevNN1+yJsgtXyGEEMINJFCFEEIIN5BAFUIIIdxAAlUIIYRwAwlUIYQQwg0kUIUQQgg3kEAVQggh3EACVQghhHADCVQhhBDCDSRQhRBCCDeQQBVCCCHcQAJVCCGEcAMJVCGEEMINJFCFEEIIN5BAFUIIIdxAAlUIIYRwAwlUIYQQwg0kUIUQQgg3kEAVQggh3EACVQghhHADCVQhhBDCDSRQhRBCCDeQQBVCCCHcQAJVCCGEcINWCdTFixcTGxuLXq8nNTWVLVu2NFl+xYoVJCYmotfr6d27N+vWrXPZrygKM2fOJCoqCh8fH9LT08nPz3cpExsbi0qlcnm9+uqrbj83IYQQAlohUJcvX87kyZOZNWsW27dvJykpiYyMDIqLixssv3nzZkaNGsX48ePJy8sjMzOTzMxM9uzZ4ywzZ84cFi5cSFZWFrm5ufj5+ZGRkUF1dbVLXf/7v/9LQUGB8zVx4kSPnqsQQoirmOJh/fv3Vx5//HHnZ5vNpkRHRyuzZ89usPzvfvc7ZdiwYS7bUlNTlUceeURRFEWx2+1KZGSkMnfuXOf+8vJyRafTKe+//75zW+fOnZXXXnvtotttMBgUQDEYDBddhxBCiMtbc7LAo1eoFouFbdu2kZ6e7tymVqtJT08nJyenwWNycnJcygNkZGQ4yx85coTCwkKXMkFBQaSmptar89VXXyUsLIxrr72WuXPnUlNT02hbzWYzRqPR5SWEEEJcKC9PVl5aWorNZiMiIsJle0REBPv27WvwmMLCwgbLFxYWOvef39ZYGYA//vGPXHfddYSGhrJ582amTZtGQUEBf/nLXxr83tmzZ/PSSy817wSFEEKIczwaqJfS5MmTne/79OmDVqvlkUceYfbs2eh0unrlp02b5nKM0WgkJiamVdoqhBDi8ufRW77h4eFoNBqKiopcthcVFREZGdngMZGRkU2WP/+zOXUCpKamUlNTw9GjRxvcr9PpCAwMdHkJIYQQF8qjgarVaklJSSE7O9u5zW63k52dTVpaWoPHpKWluZQH2LBhg7N8XFwckZGRLmWMRiO5ubmN1gmwY8cO1Go17du3b8kpCSGEEA3y+C3fyZMnM3bsWPr27Uv//v1ZsGABJpOJcePGATBmzBg6dOjA7NmzAXjyyScZPHgw8+fPZ9iwYXzwwQds3bqVN998EwCVSsWkSZN4+eWXSUhIIC4ujhdeeIHo6GgyMzMBR8em3Nxchg4dSkBAADk5OTz11FP84Q9/ICQkxNOnLIQQ4irk8UAdOXIkJSUlzJw5k8LCQpKTk1m/fr2zU9GxY8dQq2svlAcOHMiyZcuYMWMG06dPJyEhgVWrVtGrVy9nmSlTpmAymXj44YcpLy9n0KBBrF+/Hr1eDzhu337wwQe8+OKLmM1m4uLieOqpp1yekQohhBDupFIURbnUjWiLjEYjQUFBGAwGeZ4qhBBXqeZkgczlK4QQQriBBKoQQgjhBhKoQgghhBtIoAohhBBuIIEqhBBCuIEEqhBCCOEGEqhCCCGEG0igCiGEEG4ggSqEEEK4gQSqEEII4QYSqEIIIYQbSKAKIYQQbiCBKoQQQriBBKoQQgjhBhKoQgghhBtIoAohhBBuIIEqhBBCuIEEqhBCCOEGEqhCCCGEG0igCiGEEG4ggSqEEEK4gQSqEEII4QYSqEIIIYQbSKAKIYQQbiCBKoQQQriBBKoQQgjhBhKoQgghhBtIoAohhBBuIIEqhBBCuIEEqhBCCOEGEqhCCCGEG0igCiGEEG4ggSqEEEK4gQSqEEII4QYSqEIIIYQbtEqgLl68mNjYWPR6PampqWzZsqXJ8itWrCAxMRG9Xk/v3r1Zt26dy35FUZg5cyZRUVH4+PiQnp5Ofn5+g3WZzWaSk5NRqVTs2LHDbeckhBBC1OXxQF2+fDmTJ09m1qxZbN++naSkJDIyMiguLm6w/ObNmxk1ahTjx48nLy+PzMxMMjMz2bNnj7PMnDlzWLhwIVlZWeTm5uLn50dGRgbV1dX16psyZQrR0dEeOz8hhBACAMXD+vfvrzz++OPOzzabTYmOjlZmz57dYPnf/e53yrBhw1y2paamKo888oiiKIpit9uVyMhIZe7cuc795eXlik6nU95//32X49atW6ckJiYqP/74owIoeXl5F9xug8GgAIrBYLjgY4QQQlxZmpMFHr1CtVgsbNu2jfT0dOc2tVpNeno6OTk5DR6Tk5PjUh4gIyPDWf7IkSMUFha6lAkKCiI1NdWlzqKiIh566CHeffddfH19f7WtZrMZo9Ho8hJCCCEulEcDtbS0FJvNRkREhMv2iIgICgsLGzymsLCwyfLnfzZVRlEU7r//fh599FH69u17QW2dPXs2QUFBzldMTMwFHSeEEELAFdrL929/+xsVFRVMmzbtgo+ZNm0aBoPB+Tp+/LgHWyiEEOJK49FADQ8PR6PRUFRU5LK9qKiIyMjIBo+JjIxssvz5n02V+eqrr8jJyUGn0+Hl5UXXrl0B6Nu3L2PHjm3we3U6HYGBgS4vIYQQ4kJ5NFC1Wi0pKSlkZ2c7t9ntdrKzs0lLS2vwmLS0NJfyABs2bHCWj4uLIzIy0qWM0WgkNzfXWWbhwoXs3LmTHTt2sGPHDuewm+XLl/PKK6+49RyFEEIIAC9Pf8HkyZMZO3Ysffv2pX///ixYsACTycS4ceMAGDNmDB06dGD27NkAPPnkkwwePJj58+czbNgwPvjgA7Zu3cqbb74JgEqlYtKkSbz88sskJCQQFxfHCy+8QHR0NJmZmQB06tTJpQ3+/v4AxMfH07FjR0+fshBCiF+jKGA0QnU1eHlBUJDj52XM460fOXIkJSUlzJw5k8LCQpKTk1m/fr2zU9GxY8dQq2svlAcOHMiyZcuYMWMG06dPJyEhgVWrVtGrVy9nmSlTpmAymXj44YcpLy9n0KBBrF+/Hr1e7+nTEUIIcbFOnIClS2HzZti2Deo+utPrISkJ+vaFe+6BwYNBpbp0bb0IKkVRlEvdiLbIaDQSFBSEwWCQ56lCCNESeXnwpz/B6tVgt1/YMT16wOTJ8MADoL50/WebkwVXZC9fIYQQbYDFArNmQf/+8MknLmFq1+upiY3F2q0b1q5dsYWGuh67dy889BDcdBMcPtzKDb84l/cNayGEEG3T6dNwxx1QZ8Idu78/lpQUrH36YA8NrX9Lt6oK74MH0f7wA17Hjjm2ffMN9OkDq1bBLyb9aWvklm8j5JavEEJcpPJyuPFGx61eQFGrMV9/Pebrr7/gjkeaw4fxXb0atcHg2KDVwtq1cPPNnmp1g+SWrxBCiEtDUWD0aGeY2v38MI0fj3no0Gb14rV16ULFY49hTUx0bLBY4K674NAhT7TaLSRQhRBCuM8778DnnwNg9/XFdP/92Dp0uLi6dDoqR4yoDVWTydFJ6UI7NrUyCVQhhBDuUVICTz3l/FiVmYm9XbuW1anRUHnXXdiDgx2fv/sO3n67ZXV6iASqEEII93j7bcdkDYAlKYmabt3cU69OR+Vvf1v7+S9/cdxabmOkl68QQoiWs9kgKwsABagePNi5a9PRoyzcvJmdp05RePYs/x45kjt69HDuX/PTT7yzdSs7Cgo4U1XFd488Qp+oKNfq4+Ko6dwZr59/hv374euvHR2f2hC5QhVCCNFyP/wA54a61HTtilJnXGml1UrviAjmDhvW4KGVVisDOnXipV8ZFmPp16/2w4cftrzNbiZXqEIIIVpu61bn21/e6r05IYGbExIaPfTepCQAfj5zpsmvsCYkoAAqcExd2MbIFaoQQoiWqxNwtuhoz3yHToc9LMzxftcux1CaNkQCVQghRMsVFDjf2s6Hngc4A9VicczG1IZIoAohhGi5mpra956czF6jqX1vtXruey6CBKoQQoiWq7N8psps9tz31K3bx8dz33MRJFCFEEK0XJ2OSJq665y6k6LU1h0aCh68tXwxpJevEEKIlktJcb7VnDxJTZ1evWfNZg7Xed75c3k5uwoKCPHxISY4mDOVlRw3GCisqADgYFkZABH+/kQEBDiPUxkMqE2m2u9rYwuQS6AKIYRoubQ051vv3bsxDx7sDLy8U6cYvnSpc//zX3wBwKikJN646y7W7d/P46tXO/c/sHIlAM8NHsy0oUOd27W7dzf4fW2FLN/WCFm+TQghmmnIEPj2WwDO3ncftvh499VtsxGwcKFjOTeVCg4ehC5d3Fd/I2T5NiGEEK3vscecb32++MK1528L6TZvrl0b9bbbWiVMm0sCVQghhHvcdRckJwOgKS5Gd+5qtaXURUXovvnm3Ac1zJzplnrdTQJVCCGEe3h7O9ZDPbeQuH7jRrzrTEl4MVSnT+P33nuobDbHhmeegdTUlrbUIyRQhRBCuE9yMvz5z86PvmvXosvOvqjbv5rDh/H/5z9Rn1sSjmuvhZdecldL3U56+QohhHCvZ55xLDY+dy5w7kr1wAGqMjKwxcX96nAXlcGA7rvv0NWdAL9nT1i/3mUCibZGAlUIIYR7qVTwf/8H4eHw/PNQU4OmqAj/f/0LW3g41qQkaqKjsUdGouh0YLOhPn0azalTeOfn47V/P6q6A1CGDIGVK9vcRA6/JMNmGiHDZoQQwg3y8uD++x2rwzSXry/MmQMTJnh2fuAmyLAZIYQQbcO11zoWH3//fbj++gs7JioKZs2C/Hx4/PFLFqbNJVeojZArVCGE8IADByAnx7F+6v79UFXl6B0cEQF9+zqmFBw40LGtDWhOFsgzVCGEEK2nWzfHa+zYS90St7s8rqOFEEKINk4CVQghhHADCVQhhBDCDSRQhRBCCDeQQBVCCCHcQAJVCCGEcAMJVCGEEMINWiVQFy9eTGxsLHq9ntTUVLZs2dJk+RUrVpCYmIher6d3796sW7fOZb+iKMycOZOoqCh8fHxIT08nPz/fpcydd95Jp06d0Ov1REVFcd9993Hq1Cm3n5sQQggBrRCoy5cvZ/LkycyaNYvt27eTlJRERkYGxcXFDZbfvHkzo0aNYvz48eTl5ZGZmUlmZiZ79uxxlpkzZw4LFy4kKyuL3Nxc/Pz8yMjIoLq62llm6NChfPjhh+zfv5+PPvqIQ4cOcc8993j6dIUQQlylPD71YGpqKv369WPRokUA2O12YmJimDhxIlOnTq1XfuTIkZhMJtauXevcNmDAAJKTk8nKykJRFKKjo3n66ad55plnADAYDERERLBkyRLuvffeBtuxZs0aMjMzMZvNeF/AlFYy9aAQQog2Mzm+xWJh27ZtpKen136hWk16ejo5OTkNHpOTk+NSHiAjI8NZ/siRIxQWFrqUCQoKIjU1tdE6T58+zXvvvcfAgQMbDVOz2YzRaHR5CSGEEBfKo4FaWlqKzWYjIiLCZXtERASFhYUNHlNYWNhk+fM/L6TO5557Dj8/P8LCwjh27BirV69utK2zZ88mKCjI+YqJibmwkxRCCCG4wnv5Pvvss+Tl5fHll1+i0WgYM2YMjd3hnjZtGgaDwfk6fvx4K7dWCAwhIjgAACAASURBVCHE5cyjq82Eh4ej0WgoKipy2V5UVERkZGSDx0RGRjZZ/vzPoqIioqKiXMokJyfX+/7w8HC6detGjx49iImJ4fvvvyctLa3e9+p0OnQ6XfNPUgghhMDDV6harZaUlBSys7Od2+x2O9nZ2Q2GGkBaWppLeYANGzY4y8fFxREZGelSxmg0kpub22id578XHM9KhRBCCHfz+HqokydPZuzYsfTt25f+/fuzYMECTCYT48aNA2DMmDF06NCB2bNnA/Dkk08yePBg5s+fz7Bhw/jggw/YunUrb775JgAqlYpJkybx8ssvk5CQQFxcHC+88ALR0dFkZmYCkJubyw8//MCgQYMICQnh0KFDvPDCC8THxzcZupeCVbFSZi3DarfipfYi3Cscb3XbWFhXCCHEhfN4oI4cOZKSkhJmzpxJYWEhycnJrF+/3tmp6NixY6jVtRfKAwcOZNmyZcyYMYPp06eTkJDAqlWr6NWrl7PMlClTMJlMPPzww5SXlzNo0CDWr1+PXq8HwNfXl48//phZs2ZhMpmIiori1ltvZcaMGW3itu7eyr18WvYpe0x7OFh1ELNSe9XsrfKmq09Xevr2ZFjoMPr49UGlUl3C1gohhLgQHh+HernyxDjUjYaNvFXwFj9W/njBx3T36c64yHGkB6dLsAohRCtrThZIoDbCnYFqrDEy78Q8Pjv9Wb19AV4BBGuD8VJ5YVNsGKwGDFZDvXI3Bt/I1JiphHmHtagtQgghLlxzssDjt3yvdsfNx3ks/zFOWWrnEQ7RhtA9oDuxfrFoNdp6x1jtVo6ZjrG/Yj+l5lIAvir/il2mXSzuupiuPl1brf1CCCEujFyhNsIdV6inzKcYf2A8xVbHvMXeam/6hfYj3j/+gm/fHjUdJbc0F7Pd8Zw12CuYtxPeJs4n7qLaJIQQ4sK1makHr2ZWu5XJhyc7wzTYO5g7O9xJ14CuzXoWGusXy50d7yRM67jVW15TzqTDk6iyVXmk3UIIIS6OBKqHvF34NvlVjiXlAr0DuSXqFvy8/C6qLh+NDzdH3UyoNhSAE+YTLDq1yG1tFUII0XISqB5wtPoo7xS+A4AKFTe0uwG9Rt+iOrVqLTe0vwGNSgPAByUfsLdyb4vbKoQQwj0kUD1gRckKbNgA6BXci1BdqFvqDfQOJDmkdnrFD4o/cEu9QgghWk56+bpZla2KT8s+BUCj0tAzsKdz34bXNrBr7S6K84vx1nsT2z+W4bOGE5FQu3LO8qeWc+DbAxgLjWj9tMT1j3OU6eYo0z2gO7vLd2OxW/jyzJdM6jiJEK+Q1j1JIYQQ9cgVqpttP7sdk90EODoU6TS1MzMd2nSIQeMHMemLSUz4eAJ2q52su7Mwm2pnSopJimH0otFM/X4qj658FEVReOPuN7DbHHMRe6m9iPePB8CiWMg15rbi2QkhhGiMBKqb1X2uGeUT5bLv0ZWPkjo6lageUXTo1YHRi0dz5sQZTuw84Swz8P6BxA+MJ6xTGDFJMQx7fhjlJ8s5fex0g/XKc1QhhGgbJFDdbF/lPuf780NdGlNldAx98Q32bXC/2WQm971cwjqHEdwhuLZeXW29db9PCCHEpSPPUN3MYKudNtDf27/Rcna7nU+mf0JcahxRPV2vZP/7j/+y5sU1WEwW2ie0Z8LHE/DS1v6v8tH4oFFpHFMV2upPUyiEEKL1yRWqm9kUm/O9isYncFj57EoK9hYw9u2x9faljEjh2W+eZeLaibSLb8eSB5Zgrba6lDlft12xu6nlQgghWkIC1c18NbW3b822hhczXzllJT998RNPrHnC5VbueT6BPrSLb0f8wHjGLRlHcX4xuz7b5dxfY6+hRqkBQK9u2fhWIYQQ7iGB6mZd9F2c709bTrvsUxSFlVNWsvuz3Ty++nHCOl/AyjGK47gac41z0xnLGed7mShfCCHaBnmG6mY9fWvHnRZXF9PBt4Pz88pnV7Jt5TYefO9BdP46jEVGAPSBerQ+WkqPlpL3SR6JQxPxD/en/GQ5//nrf/DWe9Pz5jr1moud73v49miFsxJCCPFrJFDd7Fr/a1GhQkHh0NlDJIUkoVY5bgRs+ucmABYNd52Hd9SiUaSOTsVb583hnMN8m/UtVeVVBLQLIH5gPE+uf5KAdgGA42r1YMVB57Ep/imtdGZCNE+5ycyx0rOYrTY0ajVRIb5EBvs0a3EIIS4nEqhuFqGNYFDgIDYaN1Jpq+SY6Rix/rEALDi9oMljg6KCeOTDR5osU1Bd4FyA/Fr/a+ni06XJ8kK0pqPFFazd9jPfHyiixFhdb7+/3pukzqEMS+nMtV3CUUu4iiuIBKoHjGg3go3GjQD8cPoHonyiXGZMulg19hpyS2tnRhoRPqLFdQrhDqXGav62bjff5xc3We5stZVN+4vYtL+Izu38mTy8D4kdZOpMcWWQTkkeMDBwIGmBaYBjbt/cslxauo67oihsPb2VipoKAJL8kkgPSW9xW4Voqf/uLeDhrG9dwtRLoyKqnT+9EtqR0jOSpO4RdIoKRK+r/R3+55KzPPXOZpZ+vb/Ffz+EaAvkCtUDVCoVMzrN4Hc//Q6T3cRR01G0ai2pYakX9fxIURTyzuRxoOIAADqVjpmdZzqXchPiUtmw8wTz1+zkfBz66r1IToykW2wYOm39P582u8LPp8rJ21tI6Zkq7Aos++9Byist/PH2XvJ8VVzW5ArVQyK1kbwY+yLqc/+JD1Qc4D9F/+Fszdlm1VNlq+Lb4m/ZY9jj3Da101Ri9bHubK4QzbbzaBl/+bQ2TONjQhiR0ZPe3do3GKYAGrWKLh1DuOumRPr1iuZ8fq7bfoz3/3uwwWOEuFxIoHrQjcE38lLnl9Dg+MeloKqAT098ys4zO6msqWzy2GpbNXvK97D6xGqOVR5zbn8u5jnuDLvTo+0W4tdUWWqY/+lO7OfS9Jqu7bhpQKzLLd2mqNUqrusZyY2psc5t//4un0OFRg+0VojWIbd8Pez2sNsJ9Q7lpZ9fothajFWxsrN8J7vKdxGhjyBMF0awdzBeai9sio1ySzllljKKqoqwUzutYIhXCM93ep6hwUMv4dkI4fD+xoMUlTsWd4hq589vru14Ubdru3YK5bShmry9hdjsCn/7fDcLxv3G3c0VolVIoLaCAYED+LDHh7x28jU+LfsUO3YUFAqrCymsLmzyWBUqbgm5hWc7PkuIt/SGFJee2WpjXZ7jrolarWJwv871wtRms/Hhovl8t+YjyktLCGkfwdC7fsc9EybVK5vSM5IjJ8spN1az90Q5B06V0y26/pScQrR1EqitJMArgJmdZ/JQ1EN8UvoJn5Z9SrG18SEGYV5h3B56O3e3u5sYXUwrtlSIpm3aV0hFlWOxhviYEIL86w8JW/XWYr54fykTX/0rMV27c2jPThZNfwpf/wCGjXnQpaxGo6ZPQnu+2+YI6XXbj0mgisuSBGori9JG8Vj0YzwW/RgllhL2Vu7lpOUkVsWKl8qLKG0UPXx7EOEdIT0eRZu0u85i991iQxsssz9vK/1uyiBliGNoV/uOMWz8bBUHd+9osHzXziH8N+84drvCnmOnGywjRFsngXoJtdO2o5223aVuhhDNcrCgdg3e9qF+DZbpfm1fNnz4b04dOUR0XDxH9/3Ivu1buH/qiw2W9/bSEBrkQ+mZSk6Umag01+B7gR2chGgr5E+sEKJZio2Ozkj+vt5ovRseHnPXw09Qaargj7ffgFqjwW6zMXrSVG4Y/j+N1hsSqKf0TCUKUFZRja/O3xPNF8JjJFCFEM1iOzdWRq1ufNTd5s/XsPHTj5k0bzExXbtzZN+PvPPnWc7OSQ3RqGsfcZz/DiEuJxKoQohm8dV6UVFlpdpcg6IoDT7r/9fcP3HXQ08waFgmAJ2796D01Ak+fvNvjQZqVZ01f30amRhCiLZMJnYQQjRLbHvHUoIWqw2jydJgGXNVNapfXMGq1RqUJq48S884Jjvx1XnRLsjHTa0VovVIoAohmqVbVJDz/fE6HZTq6jv0Zj7KWsi2b/5D8Ynj5G74nE+X/J3Um29tsHxZeRWmc0NxukYGyrJu4rIkt3yFEM3ym8RI3v0uH4CfDpVyTdd29W77PjjjZd5fOIc3/3caxrIyQtpHcPPI+xjx2FMN1vnToRLn++t7RHmu8UJ4kEqRdZMaZDQaCQoKwmAwEBgYeKmbI0Sb8vTSHOd40euvi6Fn14sf/lV6ppJP/rMPuwJ6bw3LnroJP523u5oqRIs0Jwta5Zbv4sWLiY2NRa/Xk5qaypYtW5osv2LFChITE9Hr9fTu3Zt169a57FcUhZkzZxIVFYWPjw/p6enk5+c79x89epTx48cTFxeHj48P8fHxzJo1C4ul4ec9Qojm+f31Cc733+86yZlzQ2may2K18fWWn52T7P9PapyEqbhseTxQly9fzuTJk5k1axbbt28nKSmJjIwMiosbnnZv8+bNjBo1ivHjx5OXl0dmZiaZmZns2VO7fNmcOXNYuHAhWVlZ5Obm4ufnR0ZGBtXV1QDs27cPu93O3//+d3788Udee+01srKymD59uqdPV4irwnVdwrntWseUmNYaO2u/OchpQ/NC1Wyp4fONh5zHxbYLYNT1Xd3eViFai8dv+aamptKvXz8WLVoEgN1uJyYmhokTJzJ16tR65UeOHInJZGLt2rXObQMGDCA5OZmsrCwURSE6Opqnn36aZ555BgCDwUBERARLlizh3nvvbbAdc+fO5Y033uDw4cMX1O62esu32l7NKfMpzIoZL7wI14YT4iWT5ovWV2mu4dl/5XDw3JJrGo2K/r2i6ZXQHrW68U5FiqJwvNDId1uPOTsi+eu9mT82zdmDWIi2ojlZ4NFOSRaLhW3btjFt2jTnNrVaTXp6Ojk5OQ0ek5OTw+TJk122ZWRksGrVKgCOHDlCYWEh6enpzv1BQUGkpqaSk5PTaKAaDAZCQxuedxTAbDZjNpudn43GtrMu44+mH1ldtppdpl0crjqMDZvL/ihtFD19e3JzyM0MCR6Ct0pumQnP89V58effp/L8si3kFxiw2RRydp5k14FiEruE0zEigLBgH7y9NNjtCmeMVRSWmth3pJTSM7VXs4E+3vz596kSpuKy59FALS0txWazERER4bI9IiKCffv2NXhMYWFhg+ULCwud+89va6zMLx08eJC//e1vzJs3r9G2zp49m5deeqnpE2plm42beePUG/xU+VOT5QosBRRYCsguzybcO5zft/89o9uPxkslnbiFZwX5apk3No13vtrH6i1HUQBTlZVtPxaw7ccCwLHEm72R8afXdQnnqTv60F7GnYorwBX/L+7Jkye59dZbGTFiBA899FCj5aZNm+ZyZWw0GomJuTTLplXYKnjtxGusLlvtsl2FimBtMCHeIXipvbArdoxWI6ctp6lRHLPMlFpL+evJv/LlmS95sfOLdPWRZ1LCs/TeGiZkXMMNPaP4cNMhcvOLqRufDYVpQlQQ/5Max9Be0bKqkrhieDRQw8PD0Wg0FBUVuWwvKioiMjKywWMiIyObLH/+Z1FREVFRUS5lkpOTXY47deoUQ4cOZeDAgbz55ptNtlWn06HT1V/XsbUVWYp4LP8xjpqPOreFaENIDEwk1i8Wb3X927l2xU5hdSEHjAc4XnkcBYW9lXsZs28Mc7rMYVDQoFY8A3G1uiYmlJfuDaWovJIfDpWQX2Dg55IKzFY7XhoVUcG+JEQFkRQbJuudiiuSRwNVq9WSkpJCdnY2mZmOOT3tdjvZ2dk88cQTDR6TlpZGdnY2kyZNcm7bsGEDaWlpAMTFxREZGUl2drYzQI1GI7m5uUyYMMF5zMmTJxk6dCgpKSm88847TU7k3VaUWkt5JP8RjpuPA+Cl8qJvaF8SAhKa/C1erVIT7RNNtE80JdUlbC7djMFqwKyYefrw0yyIX0BaYFprnYa4ykUE+3JHSudL3QwhWp3HU2by5Mm89dZbLF26lL179zJhwgRMJhPjxo0DYMyYMS6dlp588knWr1/P/Pnz2bdvHy+++CJbt251BrBKpWLSpEm8/PLLrFmzht27dzNmzBiio6OdoX3y5EmGDBlCp06dmDdvHiUlJRQWFjb6jLUtsCt2ph2Z5gzTAK8AhncYTrfAbs26JdZO3447ou+gs5/jH7QapYbnDj9HgaXAI+0WQgjh4PFnqCNHjqSkpISZM2dSWFhIcnIy69evd3YqOnbsmMvV48CBA1m2bBkzZsxg+vTpJCQksGrVKnr16uUsM2XKFEwmEw8//DDl5eUMGjSI9evXo9frAccV7cGDBzl48CAdO3Z0aU9bnRjqw5IP2X52OwC+Gl9uiboFP6+GF2/+NRq1huvbXY9dsXO88jgmu4k//fwnFnddLM+rhBDCQ2TqwUa05jjU09bTDP9xONV2x8QUt0TeQqRPw8+Ym8Nis7Dm5BoqbY5VPP4c+2cyQjNaXK8QQlwt2tzUg6Jpq8tWO8M0ISDBLWEKoNVoGRA+wPl5eclyt9QrhBCivit+2ExbZ1NsfFT6kfNzr6DaW9sbXtvArrW7KM4vxlvvTWz/WIbPGk5EguN2uemMifWvrmff1/soP1GOX5gfvYf15vbpt+MT6BjX18GnA8HewZRby9lp2sn+yv109+3euicphBBXAblCvcQOVx12dhiK9okmwLt2tphDmw4xaPwgJn0xiQkfT8ButZN1dxZmk2NGJ2OBEUOBgd/+7295btNzjF48mn3Z+/hg4gfOOlQqFd0Cuzk/bzJuaqUzE0KIq4tcoV5ie6v2Ot9H6l1v9T668lGXz6MXj2ZGtxmc2HmC+IHxRPWM4oF/PeDcHx4XzrDnh/Huo+9iq7Gh8dLUq3dv5V6EEEK4n1yhXmL7KmunYAzThTVZturcElm+wb5NltEH6J1hChDoHeichrDu9wkhhHAfCdRLzFhTOwl/U8Nk7HY7n0z/hLjUOKJ6RjVY5mzZWb6c9yUDxw502a5WqfH1coSw0dZ2Jv0XQogriQTqJaZwYaOWVj67koK9BYx9e2yD+6uN1bw58k0iukdw63O31tuvwjH+VEZJCSGEZ0igXmK+mtrbt2abucEyK6es5KcvfuKJNU8Q3KH+HKjVFdVkjchCH6Bn/Lvj0XhrXPYrikK1rbre9wkhhHAfCdRLrKu+djWYMkuZyz5FUVg5ZSW7P9vN46sfJ6xz/Wes1cZq3rj7DTRaDQ++9yDe+vqT55tsJsx2R1jL6jNCCOEZEqiXWE+/ns73xdXFLvtWPruSrR9u5b4370Pnr8NYZMRYZMRSZQFqw9RSaWHUwlFUV1Q7y9htdmc9JdUltd/n2xMhhBDuJ8NmLrFuPt0I0ARQYavgWOUxqm3V6DWOOYk3/dMxZnTR8EUux4xaNIrU0akc33Wcn7f9DMDLKS+7lHlhxwuEdXJc0eZX5Du39/Xv67FzEUKIq5kE6iWmU+u4M+xO3it+D7ti54DxAH1C+gCw4PSCJo9NGJTwq2VOm09TWO1YZaeTrhN9AyRQhRDCE+SWbxtwd/jdzl64uw27MVgMbqnXrtjZXLrZ+fme8HtQq+R/uRBCeIL869oGdNZ35t529wKOuX03lW6ixl7T4np3nNnBactpALrou3BPu3taXKcQQoiGyS3fNuLx6MfZaNzICfMJSs2lfF30NUMihuCtrt9r90LsLt/NHsMeANSomdV5Fjq1zp1NFkJcTc6cgdxc2LYNfvwRzp4FjQbCw+G66yAlxfHT6+qNlav3zNsYH40Pr8a9yiMHHsFkN1FQXcC6U+v4TbvfEK4Lv+B6qm3V5Jbl8rPpZ+e2pzo+RS+/Xk0cJYQQjfj+e3j9dVi+HCyWpst26AAPPwwPPQRRDc/odiWTW75tSAdtB4aHDnc+TzVYDXx+6nM2l2zmtPl0k8dW2arYXb6bNSfWuITpxOiJjG4/2qPtFkJcgYqLYcQISEuDd9/99TAFOHkSZs2CLl3gtdfAZvN8O9sQlSJz0TWoOau0t5RdsfNR6UcsPLmQSntlo+WCvYMJ04URqg3FS+2FXbFjtBopM5dRai7FTu3Y0yBNEFNjpnJL6C0ebbsQ4gr0+ecwZgyUljo32X18sPbqhS0mBltUFIqPD9jtqA0GNKdO4XX4MF4HDqCqGym/+Q2sWHFZX602JwskUBvRWoFaai3l+SPPs/XsVpft7XXtUalUlJpLsSkX/lueChXpwek8G/MsYd5Nr14jhBD1rFwJo0ZBjaNjpN3Hh+r0dKx9+oB30306VAYDuv/+F90PP9RujI+Hr7+GmBhPttpjJFDdoDUCtchSxCP5j3DcfNy5Ld4/nmuCriFY65iz12q3cvjsYQ5WHOS05XSTk+nrVXrmd5nPgKABHmmvEOIKl50Nt97qDFNrt25U3Xknir9/s6rRHD2K7yefoDacGwLYvbujQ1NQkLtb7HESqG7g6UA11hgZt38cR81HAcek9QPbDSTaJ7rRY2rsNZyxnMFoNWJTbKhVaix2C/uM+zhbcxaAdt7tWNp9KRHaCLe3WQhxBSsvh169HM9BAUtyMlV33gnqi+tqozIY8FuyBM2ZM44NDz4Ib73lrta2muZkgXRKukTmnZjnDNMArwBui76tyTAF8FJ70U7fjviAeLoFdqNrQFd6BvXk9ujbCdWGAlBiLeFPx/4ky7QJIZrn6aedYWrt0qVFYQqgBAVhuu8+FK3WseHtt+GLL9zR0jZLAvUS+M7wHZ+d/gwAb7U36ZHpTS4u/mv0Gj3pkenOpdlyjDmsLlvtlrYKIa4Chw7BO+8AoGi1LQ7T85TQUKpvqdMxctasFtfZlkmgtjJFUVh0snay+36h/QjwDmhxvXqNnrTwNOfnNwrewKpYW1yvEOIq8Pe/w7m7WuZBg1CCa9dd3nT0KCOXLSNx3jyCX3yRtXv3uhyqKAqvfPUV3efNI/Lll/nt0qUcKqtditKSkoIt4twjqPMTQ1yhJFBb2Q7TDg5VHwIgXBdOvH88ABte28D8m+bzXKfnmNFtBm//4W2K8otcjrVWW1n57Eqmx09nSswU/jnmn1QUVzj3d/DtQIyvoyddqbWUb8q/aZ2TEkJcvuz22qtTjQbLdde57K60WukdEcHcYcMaPPyvmzbx99xc/nLHHfznwQfx1Wr5n3ffpdp67hd6lQpzv361B/zznx45jbZAArWVfVL6ifN9YmAiKpVjEodDmw4xaPwgJn0xiQkfT8ButZN1dxZmk7n22Oc/Yc/6Pdz/zv1M/HQihkID/xzj+oczMTCxwe8SQogGHTzoHG9aEx9fr0fvzQkJzLjpJob36FHvUEVReOP773n2hhsYlphIr8hIsu66i8KKCj7bt89Zztq7N8q5f+vIyfHcuVxiEqitbKdpJwAalYbOfp2d2x9d+Sipo1OJ6hFFh14dGL14NGdOnOHEzhMAVBmryP13LpkvZ9Lthm7EJMcwetFojmw5wtEfjjrridRHOp+l7jbtxq7UTvYghBD1bK0dA2/r0KFZh/585gxFZ88yuEsX57YgvZ6Ujh3ZcuJEbUGdDnv4uSlUd++G6uoWNbmtkkBtRcYaIyfMjj9kIdoQNCpNo2WrjFUA+AY7wvH4juPYrDa6DenmLBPRLYKQjiEugapSqQjTOSZ0qLRX8rO5dhpCIYSo58AB51vns84LVHTWMVyv/S+uatv7+VF8bp+z7shIx5uaGjhy5CIa2vZJoLaiuuF2fphLQ+x2O59M/4S41Diiejqm7KoorkCj1eAb5OtSNqB9AMZio8u2unUfrT7qhpYLIa5Yda4WFZ3nVqRyDp/5xXdeSSRQW5HZXvs8tKll2VY+u5KCvQWMfXvsRX1P3brrfqcQQtRTZ7k1VTMns484d2X6y6vRYpOp3lWryl7n8dOvTGF4uZJAbUV1b/E2NvHCyikr+emLn3hizRMEd6jtuh7QPgCbxUalwXXy/IriCgLbu87eUfe5qZdKVugTQjShzsT16tNNr2r1S51DQojw9+fbOrdwjdXVbDtxgv4dO7qUVdcZSsP5279XGPnXthWFe9Wua2qscb1NqygKHz33Ebs/280Ta54grLPrxPYxyTFovDXkf5tP0p1JABTlF3HmxBli+8W6lK2oqR1KIxPkCyGa1Lev863m1Kl6u8+azRyuE7Q/l5ezq6CAEB8fYoKDmTBgAPO++4740FA6h4TwyldfERkQwLDE2hEH2O1oCgoc72NjHYuSX4EkUFtRB10H/DX+nLWdpcxc5rJv5bMr2bZyGw++9yA6fx3GIkfg6gP1aH20+AT6kPqHVFbNWIVviC/6AD0fPfcRsf1i6wXq+bpVqOju071Vzk0IcZnq08dx27emBq+DBx1rmGpq76blnTrF8KVLnZ+fPzd94KikJN646y6e/M1vMFksTPr0UwzV1Qzo1ImP/vAH9HVu62qOHkV1flxqSkrrnNclIIHaitQqNT18e/BDxQ9U2aooM5c5e+Ru+ucmABYNX+RyzKhFo0gdnQrAXa/chVqt5p2x71BjqSHxxkTumXuPS3lTjYkzFsdk1LH6WOcQGiGEaJCPD9x5J3z8MeqzZ/Hat4+aa65x7r4+Lo7yF19s9HCVSsXzN97I8zfe2GgZl+XcRo50R6vbJAnUVtbXvy8/VDj+cB2oOECazjFd4ILTC371WG+9N/fMvadeiNaVX5HvXOLt5uCb3dBiIcQVb8IE+PhjAPTffsvZ7t1dOiu1hObkSbzOT/IQGQmZmW6pty1qlU5JixcvJjY2Fr1eT2pqKlu2bGmy/IoVK0hMTESv19O7d2/WrVvnsl9RFGbOnElUVBQ+Pj6kp6eTn5/vUuaVV15h4MCB+Pr6ElxnXspL6YT5BCtKVjg/Hz57GKPV2MQRzVNVU8U+o+MPrgYNd4Xf5ba6hRBXsBtvhORkADTFxei++8499dbU4LN6NarznTD/+McrtocvtEKgLl++nMmTJzNr1iy2b99OvffITAAAIABJREFUUlISGRkZFBcXN1h+8+bNjBo1ivHjx5OXl0dmZiaZmZns2bPHWWbOnDksXLiQrKwscnNz8fPzIyMjg+o6Y5ssFgsjRoxgwoQJnj7FC1Jhq+Cx/McorSl1brMpNjaVbHLLbEaKovB92fdY7BYAMkIzaK9t3+J6hRBXAbXaMcfuuatS3caNeP1iEvxms9vxWbMGzfl/65OT4ZlnGi2uKAo7j5ax9Jv9vPD+Fh58/RvuX/Q1j/79O175aDsrNh/iWElFo8e3BR5fYDw1NZV+/fqxaJHj2aDdbicmJoaJEycyderUeuVHjhyJyWRi7dq1zm0DBgwgOTmZrKwsFEUhOjqap59+mmfO/c8xGAxERESwZMkS7r33Xpf6lixZwqRJkygvL2+ynWazGbO5dsym0WgkJibGbQuM/+nnP7GqbBUAgV6B2LE7FwVPDEykX2g/57y+F2N3+W7yzuQBEOIVwooeKwjxDmlxu4UQV5GXXoJzz0sVtZqqO+/EmpQEzf23yWLBZ80atOcvhLRa2LIFkpLqFbXZFT7PO8YnuUc4UWb61ar7dA7l3t90JSW+XfPadJHazALjFouFbdu2kZ6eXvuFajXp6enk/H97dx4XVb3/D/x1ZoZZWIYBBhhAUGRT3DAXxCw1MTRb7Pott2tWZrZYmZZX+5reupVmWd26ltfft7J7Tb1pZVYumWtXEYXABQFRUdZhn2Gf9fP7Y+TAOAMMNiOg7+fjwUPmnM/5nM9nDvD2nPl83p82EiQnJydblQeApKQkvnxeXh7UarVVGW9vb8THx7dZpyNWr14Nb29v/is0NPSG67peSk0KH0xFnAiJqkTcqbwTHCw/pNk12UipTIGJdW5SNWCZc5penc4HUwBYHrqcgikhpPNefx147DEAlkQM7jt3wv2bb8DVOn5nKMzLg+dnn7UEU6EQ+M9/7AbTosp6vPqvZHyy+5xNMBWJBJCKhRAIrIP5matVeG3LSXzw42nUN3WvJSpdOiipoqICJpMJgdflhwwMDER2q5UIWlOr1XbLq9Vqfn/ztrbK3Ijly5dj8eLF/OvmO1Rn+KiwZcDRcN/h8HTzhKebJxKUCThecRyAZYBSaVMp7vS/E0qJY3O0NHoNjlccR4Wu5THyi8EvYoLPBKe0mxBym2l+9CuVAhs3AgDcsrIgunABhoEDoR86FKbgYMsdZytcbS1Ely9DfOoURK2T4stkwLZtllHE18ksqMKKrafQoDPy24L8PdEv3A8qpSe8PMTgOA5mM0N1TROKSmtw/nIFtLWWJ4n7MgqRXaTB6tnx8POSuuDN6Dwa5XuNRCKBxAV5LHMacnChyZJ82kvkhSivKH4fd5aD4TcDRA+LwLlx0Bq02F28G4HSQER7RUMlVUEmklnV12RqQllTGXJrc1HUWGS1z0/kh8cCH3N6HwghtxGh0LLgeGIi8NxzQEUFOJMJ4tOnIT59GozjYFYqwWQygDEINBoI7N3B3nmnZZ3VqCibXRdLtFix5RQa9JZgKveUYOyIMAT7e9mUFQg4+Clk8FPIMCg6ANmXK5F8uhAGoxlXy+uwbHMKPnh8NLxkXT/YyaUBValUQigUorTUeqHs0tJSqNpIPaVSqdot3/xvaWkpglqlzCotLUXctVFq3cmiS4v472PkMVafk+rqdVAZVVBeVSLdkA73/pY5o6VNpShtsrwHMqEM7kJ3cByHRlMj6o22nzEIOSFMzIRKYyWyG7PR39123UJCCOmURx4Bxo4F1qyxBMZr41A4xiAsL2/7uIEDLaN5n3zSKkFEM53BhNXfpfPBtFegF+4d3Rdubm2vvtWM4zj0j1AiOMATPx+9iNp6PfIr6vDZvkwsndr1f/9d+hmqWCzGsGHDcODAAX6b2WzGgQMHkJCQYPeYhIQEq/IAsH//fr58eHg4VCqVVZmamhqkpKS0WWdXUevUKDO0jGbu49HHan/sxFhM+d8piJ8Yj+zHsxFSEgK5m/WH3o2mRlTqK1Ghq7AJph4iD9zhcwfiFC0/SJn1mc7vCCHk9hQQAHzwAVBUBHz1lSVIDhliPUfV2xsYP94ygvfIEeDMGWD+fLvBFAD+feQCCqssf8v8fdyRdGeEQ8G0NW8vKe4fGwXxteMOnC3CiQulHRzlei5/5Lt48WLMnTsXw4cPx8iRI/HRRx+hvr4eTzzxBADgscceQ0hICFavXg0AeOmllzB27FisW7cOU6ZMwbZt25CamoqN157ncxyHRYsW4a233kJUVBTCw8Px+uuvIzg4GFNbTRjOz89HVVUV8vPzYTKZkJGRAQCIjIyE53WrILjKuoJ1/PcyoQzuonayFhkB/2p/3JNwD9RNalwouICz6WfhN9IPBlg+eHfj3FBztgbuOneMv288gmXBEHAClDW1BO2shj841J0QQq7n7m4ZrHRtwBIYAwwGy2eunUgAUdtowK5r6zcLBRzGx/eGSGR7X9dYV4etH69Fyq97UFNZifD+A/Dk//4NkYNabh7knhKMHtoLh09alsXc+t+LGBXdufVcnc3lAXX69OkoLy/HypUroVarERcXh7179/KDivLz8yEQtLyho0ePxpYtW7BixQq89tpriIqKws6dOzFw4EC+zNKlS1FfX4+nn34aGo0GY8aMwd69eyGVtnwwvXLlSnzVKv/k0KFDAQCHDh3CuHHjXNxrwMAMOFxzmH/t7ebt0HEcxyFIFoSA8AAc/p/D8BzmiUc+eARidzGObDiClDdSEDM+Br3+p2UlB4W4JXFFkb7IXrWEEOI8HGczMMkR+88UQme0zLvv11cJH7nMbrlPX1+C/NwcvPjuJ/ANCMTRXd/ijSem46OfD8MvsOWjvujevjh7oQyVmkZkF2mQW6JFVJBjf2tdweXzUHuqzsw9siezPhOP5bQMEOrl3gv3BLad63KR7yI8+e8nMXjKYH5bQUYBtr64FcXniiEQChA9NhqcgANjDM9sf4YvZ2ZmbL6yGQAQ5xGHz2M+73R7CSHE1V75Khln8y0r1zw6qb/dgKprasSfh0Vj2fovMWxcy/TIV/+UhKF334NZi/5iVf78pXL8llYAAJg1JhJzxzt3QZDOxAIa5esi5xrOWb02mTs/xzQ0LhRLjy5FY00jTHoTPJWe+CDxA4QNDbMqZ2Qtw87bW7icEEK6ipkxXFJbUq16uru1eXdqNppgNpngdt2sC7FUiuw027S1oaqWIJer1jqxxZ1HC4y7yPWDg7SGG7/QMrkMnkpPlF8qR0FGAQZOHmi1X6tvqdtHRAkdCCHdT5m2kR/Zq1S0PZ5E5umJmLhh2PHpR6gqVcNkMuHIrm9xISMN1eW2A4883cWQiC2Dk66UdW1qQrpDdZFak/WFbTA1oNHYaDWvVFenQ3ley/DzqqtVKDxbCA8fD/j08kHGzgx4KC3fl5wvwXfLv8Og+wah3z39rOqu1LesrRoiDnFRjwgh5MY16Vue0kkk7YeeF9d+gvWvLcb8sXdAIBSib+wgjJkyFZcyz9iU5TgOErEIOr0JjfrOPwl0JgqoLtKcVrC1qw1X0U/eEgzzM/Kx/sH1/OudKyzpCUfMHIHZ62dDW6rFzhU7UVteC3mgHCOmj8C9r95rU29+fT7/fR9pHyf2ghBCnEPYKoWgydT+giCqsD742+bv0NTQgMa6WvgEBGLdywsQGNrbbnmz2VKfSHjj+dCdgQKqi3gJbTN+XKi5gBivluQOUWOi2l0HdeyCsRi7YGy759HoNVA3taRc7C+jpA6EkO7H31sGAQeYGaCpaer4AABSd3dI3d1Rp9Ug479HMOeVFTZldHoT6hosUwsDvduZmngTUEB1kQhZBP+9l8gLtcZaaAwaXK67jAiviHaOdBxjzCopPgCESp2X1J8QQpxF6iZEqNITV8vrUKVthN5g4hMzXC/9t8MAGILDI6C+mod/vfc3hPSNxD1/mm5TtqyqJeFNVNAfXxnsj6CA6iKt0/95ijxRa7R8pnqq6hSCZEHtJ3lwUF59HgoaCvjXPkIfiAWdnxtGCCE3w+DefrhaXgczA3KvVmFApP0l2BrqavD1B6tRqS6Bp0KBURPvw6yXl0FkZ3HynLyWMSSDwvxc1nZHUEB1kVj3WIg5MfRMjwpdBXq798bVhqvQm/U4VHoIE4Mm/qHgV95UjhMVJ6y2JfoktlGaEEK63uShYfgx1ZLZ6MyFMsT08bObKenOyQ/izsm2K9Rcr7qmCXmF1QAAb3cxRvfr2kxJNG3GRTyEHpjiOwWAJWuSr9gXMqFlhG+lvhK/lPyCOkPdDdVdUF+A/er9VvNPAWCa/7Q/1mhCCHGhCJUcg3v7AgBq6nQ4da74husymxkOn7oK87XURFOGhUEs6lxOYGejgOpCj/g/wn9/TnsOY/zHQCKwTFau0ldhV9Eu5NTkwMzaH/HWrMnUhGPlx3Co7JBNMI2RxSBKZrtMEiGEdCcvTB4IN6El9Jy5UIasyxUdHGHLbGY4mpqPsmuLkof4emD6nZFObeeNoIDqQjHuMVZ3qec05zBRNREeQg8AlgxHKZUp+K7gO5yuPo1KXSVMzHoelc6kQ3FjMY6VH8OOgh24VHfJ7rleDX3VtZ0hhBAnCPP3wpP3tKQHPJqaj5QzRR1OpWnW0GjAvmOXkHPF8tmpSMBhyYODIe3kijWuQLl82/BHc/ny9RhrMO38NFQZLfkr+3j0wUi/kUivTkduba5NeQEE8BB5QMgJoTfr0WBq6PAcM/1n4pXQV264jYQQcjMxxrDx1yx8dyKP36aQSxEXE4iIUB+7n6s2NBmQfbkSZy6UQnctgYNQwGH5w0NxV2yQTXln6UwsoIDaBmcFVAA4VXsKz+c+DxMsPwQBkgDc6X8nGowNOF9zHoUNhWDo+DIIOSHMzGxVNkISga/6fwWZwH5eTEII6Y4YY9iefBlfHcqB0dzyN00kEkCpcIevtxQioQA6gwmV1Q2o0jaiVTEoPMR45cEhGBEZ4NJ2UkB1AmcGVAA4qj2KVy69wgdVESfCAO8BiPaKhgkm5Nfno0pXhUp9JRpNjTAzM4ScEHI3OSQCCbQGLT/1pllvSW98Hv05fNwofy8hpGfKK63B338+i6wijUPlOQDjBgbj2aQB8HZ3/TRBCqhO4OyACgDpdelYenkp//gXsKQoDJYFQylRwlfsC7FQDDMzo9ZQiyp9FYobi1FntB0NPNprNN4OfxtyUddOZCaEkD+KMYacYg1+Ss3H6auVKNM2Wu0XcEAvP0/ERwXg/mG9ofK5eRmRKKA6gSsCKmBJkr+ucB12Vu68oePFnBgrwlbgPt/7+BSGhBByK9HU66DWNMBgYpYMS34ekIq7Jm0CBVQncFVAbVaiK8GXpV/ix8ofoWf6DssrRUo8qXoS9/vdz48SJoQQ4loUUJ3A1QG1mZmZkdeUh6Pao8ioy0CFoQImmCAVSBEiDsFo+WjEecYhWBxMd6SEEHKTdSYWUOrBLibgBIiQRVgl0yeEENLzUGIHQgghxAkooBJCCCFOQAGVEEIIcQIKqIQQQogT0KAkQshtx2RmKKioQ26JFlV1OjDG4CF1Q4RKjr6B8m6RaJ30PBRQCSG3jcLKOvyUlo/9pwtQ12S0W4bjgCG9/TD9zggMDVfSdDXiMAqohJBbns5gwqbDOfj+RF6Hy1AwBmRcqUTGlUoIOA4Px/fBvAn9IRRQYCXto4BKCLmllVQ3YMXWkyi8thg1AAiFHMJU3gjwdYfcSwKO49DQaEBZZT2uFGugN1jW5jQzhm9P5OHbE3kI9nFHfHQgEqIDMbi3L925EhuUKakNNytTEiHEdUqqG7Dkq+OorNUBsKyfObS/CgMi/SGVtNxPGIwm/H5ejazLFfxam+0JU3pi5phIjB9IGcxudZQpiRBy29MbTVi57RQfTH3kUkwc3Rc+cqlVuZLyOhw+dRU1dTqr7RwHyD0lEAkFaNIZUd9o4PflV9Th3Z0ZOJxZjEX3D4Kvp3Wd5PZEAZUQckvafCQX+RWWpQ8VcikeGB8NmcT6T96lgmocPJHHL1wtEHCICPVBv3A/BPh6QCRqmVnY2GRAUVktMi9WQH2t3pTcMiz68jje/fMoBN3EJcVI90QBlRByyynTNmJ78mUAliA5MSHcJpgWqGtw4EQemj/0Uik9MG5Eb3h72b/blEndEBnmi8gwX+QVafBbWj4am4wo1TTiL5tP4OMn74TCQ+LSfpHujRI7EEJuOT+nXYX5WqQcEhMAX2+Z1f4mnRF7DmXywTQm3A8PjItuM5heLzxEgWkT+/OPj0s1jfh49znQkJTbGwVUQsgthTGGX04XAgAEHDAgMsCmzPGMQjCh5W4yLEiOu4eFQdDJaTEeMjdMGRvJD246lq3Gf7PUf7D1pCejgEoIuaWU1zSh6toAo+AAL3jI3Kz219brcTG/CgAgdhPi7uG97QbTytIS/P3VhZgbPwAzh/TFyw/cg4tnT1uV8ZCJMeaOUP71tmMX6S71NnZTAur69evRp08fSKVSxMfH4+TJk+2W3759O/r16wepVIpBgwZh9+7dVvsZY1i5ciWCgoIgk8mQmJiI3NxcqzJVVVWYPXs25HI5FAoF5s2bh7q6Oqf3jRDSvVws0fLf+/vaDhTKulzBP+odFB1gE3ABoE6rwf/OfAhCkQgr/t9mfPTzYcz9y0p4envblO3bSwGlj+WR8kV1DXKKtTZlyO3B5QH1P//5DxYvXoxVq1bh999/x5AhQ5CUlISysjK75Y8fP46ZM2di3rx5SE9Px9SpUzF16lScO3eOL7N27Vp8/PHH2LBhA1JSUuDh4YGkpCQ0NTXxZWbPno3MzEzs378fP/30E44ePYqnn37a1d0lhHSx6vqW6S9yO4OECq4FXI4D+vf1s1vH9/+3HsqgYCxc/RGiBg9FYK8wxI0ZB1VYH5uyHMchNsKff33qov2/beTW5/LEDvHx8RgxYgT+8Y9/AADMZjNCQ0PxwgsvYNmyZTblp0+fjvr6evz000/8tlGjRiEuLg4bNmwAYwzBwcFYsmQJXnnlFQCAVqtFYGAgNm3ahBkzZiArKwuxsbE4deoUhg8fDgDYu3cv7rvvPhQWFiI4OLjDdlNiB0J6pp/SruKT3Zb/gI8e2gsxffzgJhKA4ziYTGZ88f1pmM0MPnIpHp0Ua7eOl6aMRdyYcahUlyDzVDL8AlVImvk4Jj462255bZ0O23ZnAgDiowLw5owRrukcuek6Ewtceoeq1+uRlpaGxMTElhMKBEhMTERycrLdY5KTk63KA0BSUhJfPi8vD2q12qqMt7c34uPj+TLJyclQKBR8MAWAxMRECAQCpKSk2D2vTqdDTU2N1RchpOfQG004cKYQ+68NSAKA4+mF+PL70/jXD2fw85FcpJwpgvnapFM/haytqlBakI99W/+FoN7heP3/tuDeGXPxxduv49D339gtL/cQw+3anNXmua/k9uPSeagVFRUwmUwIDAy02h4YGIjs7Gy7x6jVarvl1Wo1v795W3tlAgKsR/aJRCL4+vryZa63evVqvPHGGw72jBDSXZjMZuxIzsO3Jy5D26C3W6ZJb0JhaS0KS2v5bYJ2UgYyZkbEgMGYvXg5AKBv7CAU5Gbjl23/xviHH7Upz3EcxG5CGIxm6Awdpy4ktyYa5XvN8uXLodVq+a+CgoKubhIhpAMFFXVY9MVxfHEw2yqYioQcAnzdEaqSI9jf0ypvb7NLBdW4XFhtt16FfwB6RUZbbQuJiEJFSZHd8owxGE2WhPpuQvqzerty6R2qUqmEUChEaWmp1fbS0lKoVCq7x6hUqnbLN/9bWlqKoKAgqzJxcXF8mesHPRmNRlRVVbV5XolEAomEspwQ0lPklmix/OsU1F7LsctxQN9ePoiNVELl52k1FYYxhpo6HbLzKvkE+CYzw/7jebhzqBEDo/yt6u43dASK8y5ZbSu5chn+wSF229LQaOCT6gfZGVlMbg8u/a+UWCzGsGHDcODAAX6b2WzGgQMHkJCQYPeYhIQEq/IAsH//fr58eHg4VCqVVZmamhqkpKTwZRISEqDRaJCWlsaXOXjwIMxmM+Lj453WP0JI11BXN+C1VsFU4SXBQ/fEIDEhHMH+XjbzSjmOg7eXFPGDQzB9UizCeyn4fcfSC/h5qc0eePxpXDj9O77d8DFKrubhtx+/w/5vNmPS7Cfst6fV0nBRKtupNeT24PJcvosXL8bcuXMxfPhwjBw5Eh999BHq6+vxxBOWH8zHHnsMISEhWL16NQDgpZdewtixY7Fu3TpMmTIF27ZtQ2pqKjZu3AjA8ouxaNEivPXWW4iKikJ4eDhef/11BAcHY+rUqQCA/v37Y9KkSZg/fz42bNgAg8GAhQsXYsaMGQ6N8CWEdF9mxrDux9OouRZMVUoPTL4rEmI3oUPHy6RumJgQjpNni5GRbXka9ltaAYKUnvBwFwMAIgfFYeknn+PrD1Zj+6cfIqBXKJ5Y/ibufuBPduvMulzBfz80XPlHukd6MJcH1OnTp6O8vBwrV66EWq1GXFwc9u7dyw8qys/Ph0DQcqM8evRobNmyBStWrMBrr72GqKgo7Ny5EwMHDuTLLF26FPX19Xj66aeh0WgwZswY7N27F1JpSx7Or7/+GgsXLsSECRMgEAgwbdo0fPzxx67uLiHExfZlFODMVcsdpae7GJPGOB5Mm3Ech5GDglHXoMfF/GroDSb89/cCJI2J4MsMHz8Rw8dP7LCukvI6FF0b7BTk446hfSmg3q5ogfE20DxUQrofxhie+uwICq89Yp0yNhK9Aq1/P5+5ZyTKiwttjp00ay7mr1xttU2nN+KbvVloaLLc7c6YHOtwgnzAsjD5t79kQ3st1eFzkwbgoRF9OtMl0s3RAuOEkFvS6SuVfDAN9ve0CaYA8O6OPTCbWqau5Odm480nZyAh6QGbshKxCIOiA5ByxjJ69/ylCiTE9XKoLQajGb8cu8wH0/69FLh/WO9O94ncOmh8NyGkx0hr9VllvzYerXr7+sHHP4D/Sjv8K1RhfTBgpP2BkDHhfmieklqgdiyhS5W2EbsO5fDzWj0kIix5YAiEnVyxhtxa6A6VENJj5LZKfB/k79lheYNej6O7vsUDjy8A10YiB5lEBB+5DFXaRlTXNCEtswSxEUrIpNZJ8xljqNI2IvNiBXKuVPIZl9zFIvxt5giEKjtuD7m1UUAlhPQYxVWWx70SsdDuKjHXO3lgL+pra+xmN2rNT2EJqACQmlmC1MwSyD0l8PWWQigQQKc3okLTiCad0eq4MKUnlj0chwiaKkNAAZUQ0oMYmrMRiYRt3nG2dmDHVgy9azx8A+0ndGnWnIe3tZo6HWrqdHZKAzKxEA+N6IPZd0dBLOrcCGNy66KASgjpMZrT+ukNJjDG2g2qZUWFOJv8G1795P86rNdgNHdYxttdjMggbyREB2DCoF5wt5POkNze6CeCENJj9PLzQKm2EXqDCXUNBnh5iNsse+i7bZD7KTFsbGKbZZpVahoAWBLm//2J0Qjx84DETYiqOh1MZgapmxAKD7FDd8Xk9kWjfAkhPUZUUMtnlSXltW2WM5vNOPj9fzBu6iMQitq/b2hoMqC6pgkAEB7ghegQBTykbhAJBQjwliHIxx0+nhIKpqRDFFAJIT3G8IiWJPat0/1d78zxo6goLsKEP83osM7sy5VoTm8zLMK//cKEtIMCKiGkxxgY5ove16bLqCvqkd9qGk1rcWPG4dvsYgSHR9jd36yxyYCzuZaVqTgAU+4Ic2p7ye2FAiohpMfgOA6PJLQEySOp+TZTWRzFGMNvvxfwx98VGwSVDy29Rm4cBVRCSI+SODiEfzTb0GjA7qMXOx1UGWM4nlGIvEINAEAuc8NzSQOc3lZye6GASgjpUTiOw8v3D4KvpwQAUF7dgO9+zUZRWduDlFqra9Bjz2+XcC633FIfgJfvHwyfa/URcqNotZk20GozhHRvV8pqsfzrFFS1Sr4QFiTHgEh/BPt7QdQqWYPZbEkbmJ1XiQtXKvl5pwIOePmBwbh3SOhNbz/pGToTCyigtoECKiHdn7q6Ae/vOo2z+VVW2zkOUHhJIRGLYDKbUV3TBON1yRv8vCR4+f7BGBEZcDObTHoYCqhOQAGVkJ7BzBh+Sr2K/xy/hIpr80nbI3ET4t4hvfD4+Bh4SjvOB0xub7QeKiHktiHgODw4og+mDAtDyoUyJF8oRW6JFlfL62C+dr8Q6C1DZJA3hvT2xYTBvSiQEpeggEoIuSUIBQKM7qfC6H6WRPiMMRhMZoiEAggoyxG5CSigEkJuSRzH0Uow5KaiaTOEEEKIE1BAJYQQQpyAAiohhBDiBBRQCSGEECeggEoIIYQ4AQVUQgghxAkooBJCCCFOQAGVEEIIcQIKqIQQQogTUEAlhBBCnIACKiGEEOIEFFAJIYQQJ6CASgghhDgBBVRCCCHECSigEkIIIU5AAZUQQghxApcF1KqqKsyePRtyuRwKhQLz5s1DXV1du8c0NTXh+eefh5+fHzw9PTFt2jSUlpZalcnPz8eUKVPg7u6OgIAAvPrqqzAajfz+kpISzJo1C9HR0RAIBFi0aJFL+kcIIYS05rKAOnv2bGRmZmL//v346aefcPToUTz99NPtHvPyyy/jxx9/xPbt23HkyBEUFxfjT3/6E7/fZDJhypQp0Ov1OH78OL766its2rQJK1eu5MvodDr4+/tjxYoVGDJkiKu6RwghhFhjLnD+/HkGgJ06dYrftmfPHsZxHCsqKrJ7jEajYW5ubmz79u38tqysLAaAJScnM8YY2717NxMIBEytVvNlPvvsMyaXy5lOp7Opc+zYseyll166oT5otVoGgGm12hs6nhBCSM/XmVggckWQTk5OhkKhwPDhw/ltiYmJEAgESElJwcMPP2xzTFpaGgwGAxITE/lt/fr1Q1hYGJKTkzFq1CgkJydj0KBBCAwM5MskJSXh2WefRWZmJoYOHXof7u91AAAV7UlEQVTDbdbpdNDpdPzrmpqaG6qnzlSHnIYcZDVkQa1Xw8AMEAvECBYHI9Y9FtHu0ZAJZDfcTkIIId2TSwKqWq1GQECA9YlEIvj6+kKtVrd5jFgshkKhsNoeGBjIH6NWq62CafP+5n1/xOrVq/HGG2/c0LGMMZyqPYXtFdtxRHMEJpjaLCviREhUJOIR/0cwxGMIOI670SYTQgjpRjr1GeqyZcvAcVy7X9nZ2a5qq0stX74cWq2W/yooKHDouMuNlzE3Zy6evfgsDmoOthtMAcDIjNhbvRfzLszDM7nPoEhX5IzmE0II6WKdukNdsmQJHn/88XbL9O3bFyqVCmVlZVbbjUYjqqqqoFKp7B6nUqmg1+uh0Wis7lJLS0v5Y1QqFU6ePGl1XPMo4LbqdZREIoFEInG4PGMMm8s2Y33xehiYgd8uE8oQ6h4KX7EvFGIFhJwQRmaERq9Bpa4SBQ0F0Jktj5ZT61IxPWs6lvRagoeVto/BCSGE9BydCqj+/v7w9/fvsFxCQgI0Gg3S0tIwbNgwAMDBgwdhNpsRHx9v95hhw4bBzc0NBw4cwLRp0wAAOTk5yM/PR0JCAl/v22+/jbKyMv6R8v79+yGXyxEbG9uZrvwhjDGsK1yHreVb+W3ebt6I84lDqHsoBJztjX+g1PJo2mQ24Ur9FWRoMlBvrEejuRFv5b+FCkMF5gfNv2l9IIQQ4lwu+Qy1f//+mDRpEubPn48NGzbAYDBg4cKFmDFjBoKDgwEARUVFmDBhAv71r39h5MiR8Pb2xrx587B48WL4+vpCLpfjhRdeQEJCAkaNGgUAuPfeexEbG4s5c+Zg7dq1UKvVWLFiBZ5//nmru8uMjAwAQF1dHcrLy5GRkQGxWOy0oPtZyWdWwXSA9wDEKeIgFAg7PFYoECLCKwJhHmFIrUpFbm0uAGBDyQZ4CD0wK2CWU9pICCHk5uIYY8wVFVdVVWHhwoX48ccfIRAIMG3aNHz88cfw9PQEAFy5cgXh4eE4dOgQxo0bB8CS2GHJkiXYunUrdDodkpKS8Omnn1o9zr169SqeffZZHD58GB4eHpg7dy7WrFkDkajl/wb2Bvr07t0bV65ccbj9NTU18Pb2hlarhVwu57en1qZiQe4C/vVo5WhEekU6XO/1MrWZSKtKAwAIIcTmfpsR7R59w/URQghxnrZigT0uC6g9nb03sdHUiOlZ01GktwwkusPnDgxUDPzD50qrSkOmNhMAECOLwVf9voIb5/aH6yWEEPLHdCagUi7fTthRsYMPpgGSAAzwHuCUeuN84qBwswzEymnMwb6qfU6plxBCyM1DAdVBZmbGjood/OtRylFOm0Mq5ISIV7YM1tpevt0p9RJCCLl5XDIo6VaUWpuKQl0hACBIGgSFuGVqz/4P9+PMT2dQllsGN6kb+ozsgwdWPYDAqJYkFMc3HUfat2koPF0IXZ0O7+S9A3dvd35/gCQAPmIfVOurca7hHHIbchHlHnXzOkgIIeQPoTtUB2XUZ/DfR3hFWO27dOwSxswbg0X7FuHZ756F2WDGhmkboKtvSWWob9Sj/4T+mLh4ot36OY5DhGdLven16U7uASGEEFeiO1QHZTVk8d8rJUqrfc/seMbq9az1s7AiegUKTxciYrQlSI57dhwAIPe/uW2ew1/SMsc3u6FnZpwihJDbFd2hOuhy02UAlly8XiKvdss21jQCANwV7u2Wu56P2MfmfIQQQnoGCqgOajI3AQDEAnG7g5HMZjO+f+17hMeHIyg2qFPnEAlEEHKW5BCNpsYbbywhhJCbjgKqg4SwBDqG9qft7nh1B0qySjD3/+Z2+hyMMTRPC24OrIQQQnoGCqgOUogso3qbTE0wmA12y+xYugPn953Hwl0LoQhR2C3TngZTA8wwAwB8RD4dlCaEENKdUEB1UD/3fgAsd6jV+mqrfYwx7Fi6A2d/Povnf3gefr39bugclbpKm/MRQgjpGSigOqi/e3/+++LGYqt9O17dgdRvUjFn4xxIPCWoKa1BTWkN9I16vkxNaQ0Kzxai4nIFAKDkfAkKzxaivrrebr2tz0cIIaT7o1y+bbg+f2OpvhQPnHsAJpggE8owLXQav0zbIt9FduuY+Y+ZiJ9lyYC0Z80e7Ftrm1KwuYzBbMD2/O0wMiOkAin2DtoLL2H7o4kJIYS4Vmdy+dI8VAcFigNxt/fdOKQ9hEZTIy7WXkS03LIqzEdVH3V4/ORlkzF52eQ292dps2BkRgDAfb73UTAlhJAehh75dkLrtUrTqtJQZ6xzSr3V+mqc0ZwBAAggwHT/6U6plxBCyM1DAbUT7vC6Aw/5PQQAMDADjpYdbXPEr6OaTE04WnaUH907J3AOImU3vr4qIYSQrkEBtZNe7vUyAt0sSe8rdBX4Vf0rmkxNN1RXvbEev5T8Aq1BCwAIl4ZjQdCCDo4ihBDSHVFA7SQvoRf+HvF3/jPOcl05dhXuQn59vsN1MMZwqfYSdhXtgsagAQAo3ZT4KOIjSAQSl7SbEEKIa9Eo3zZ0NLIrpyEHCy8uRJWxit+mlCgR4xWDMI8wuAncbI7RmXS4Wn8VObU5VnNZg8RB+DTyU4RJw1zTGUIIITekM6N8KaC2wZE3scJQgXfy38ER7RGbfXI3ORRuCgg5IYzMCI1eg1pjrU25Kb5TsKTXEniLvJ3eB0IIIX8MBVQncPRNZIzhl+pf8GXpl8htbHtptusNdB+IeUHzcLf33c5oLiGEEBegeag3EcdxSPJNwr0+9+JM/Rn8XPUzzjecx8XGizCwlhHAEk6CKFkUBngMwAN+D1AmJEIIucVQQHUSjuMwxHMIhngOAQAYzAZUGithMBvgJnCD0k0JEUdvNyGE3KroL7yLuAncoBKruroZhBBCbhIKqG1o/mi5pqami1tCCCGkqzTHAEeGG1FAbUNtrWVEbmhoaBe3hBBCSFerra2Ft3f7szFolG8bzGYzcnJyEBsbi4KCgg5Hd3VXNTU1CA0NpT50oZ7efoD60B309PYDPbMPjDHU1tYiODgYAkH7uZDoDrUNAoEAISEhAAC5XN5jLn5bqA9dr6e3H6A+dAc9vf1Az+tDR3emzSj1ICGEEOIEFFAJIYQQJxD+9a9//WtXN6I7EwqFGDduHESinvt0nPrQ9Xp6+wHqQ3fQ09sP3Bp9aAsNSiKEEEKcgB75EkIIIU5AAZUQQghxAgqohBBCiBNQQCWEEEKcgAIqIYQQ4gS3dECtqqrC7NmzIZfLoVAoMG/ePNTV1bV7TFNTE55//nn4+fnB09MT06ZNQ2lpqVWZF198EcOGDYNEIkFcXJzdes6cOYO77roLUqkUoaGhWLt2rU2Z7du3o1+/fpBKpRg0aBB279590/qQn5+PKVOmwN3dHQEBAXj11VdhNBr5/Y8//jg4jrP5GjBgAF/mr3/9q83+fv36dYv2Hz582G771Wq1VT3r169Hnz59IJVKER8fj5MnT9q0p6v68N1332HixInw9/eHXC5HQkIC9u3bZ1VHW9fAkX611tHPImMMK1euRFBQEGQyGRITE5Gbm9vp98mR3wvAsevizPZfuXIF8+bNQ3h4OGQyGSIiIrBq1Sro9XqrMvZ+pk6cONEt+gAAffr0sWnfmjVrrMo4eg26og9t/d5yHIdTp04B6Px1uKnYLWzSpElsyJAh7MSJE+y3335jkZGRbObMme0e88wzz7DQ0FB24MABlpqaykaNGsVGjx5tVeaFF15g//jHP9icOXPYkCFDbOrQarUsMDCQzZ49m507d45t3bqVyWQy9s9//pMvc+zYMSYUCtnatWvZ+fPn2YoVK5ibmxs7e/asy/tgNBrZwIEDWWJiIktPT2e7d+9mSqWSLV++nC+j0WhYSUkJ/1VQUMB8fX3ZqlWr+DKrVq1iAwYMsCpXXl7eLdp/6NAhBoDl5ORYtc9kMvFltm3bxsRiMfviiy9YZmYmmz9/PlMoFKy0tLRb9OGll15i7777Ljt58iS7cOECW758OXNzc2O///57u9dg48aNDvWrmSM/i2vWrGHe3t5s586d7PTp0+zBBx9k4eHhrLGx0eH3yZHfi85cF2e2f8+ePezxxx9n+/btY5cuXWI//PADCwgIYEuWLOHryMvLYwDYr7/+avV+6/V6mzZ1RR8YY6x3797szTfftGpfXV1dp69BV/VBp9NZtb2kpIQ99dRTLDw8nJnN5k5fh5vtlg2o58+fZwDYqVOn+G179uxhHMexoqIiu8doNBrm5ubGtm/fzm/LyspiAFhycrJN+VWrVtkNqJ9++inz8fFhOp2O3/aXv/yFxcTE8K8fffRRNmXKFKvj4uPj2YIFC1zeh927dzOBQMDUajVf5rPPPmNyudyqza19//33jOM4duXKlQ773x3a3xxQq6ur22zfyJEj2fPPP8+/NplMLDg4mK1evbpb9MGe2NhY9sYbb/Cv7V0DR/rVWkc/i2azmalUKvbee+9Z9VEikbCtW7cyxhx7nxz5veiq9tuzdu1aFh4ezr9u/kOenp7e5jFd3YfevXuzDz/8sM12OXoNurIPren1eubv78/efPNNfltnrsPNdss+8k1OToZCocDw4cP5bYmJiRAIBEhJSbF7TFpaGgwGAxITE/lt/fr1Q1hYGJKTkzt17rvvvhtisZjflpSUhJycHFRXV/NlWp+nuUzr87iqD8nJyRg0aBACAwOtzl1TU4PMzEy79X7++edITExE7969rbbn5uYiODgYffv2xezZs5Gfn9+t2h8XF4egoCBMnDgRx44d47fr9XqkpaVZnUcgECAxMbHbXgOz2Yza2lr4+vpabW99DWbMmOFQv1rr6GcxLy8ParXaqoy3tzfi4+Ot+tPR++TI74Wj18XZ7bdHq9XavNcA8OCDDyIgIABjxozBrl27bPZ3dR/WrFkDPz8/DB06FO+9957VxwiOXIPu0Idmu3btQmVlJZ544gmbfR1dh65wywZUtVqNgIAAq20ikQi+vr42n6O1PkYsFkOhUFhtDwwMbPOYtupp/YeyuY7mfe2VaX0eV/XBkfa1VlxcjD179uCpp56y2h4fH49NmzZh7969+Oyzz5CXl4e77rqLX0u2K9sfFBSEDRs24Ntvv8W3336L0NBQjBs3Dr///jsAoKKiAiaTqcdcAwB4//33UVdXh0cffZTfdv01uHjxIkwmEzw9Pdvt1/Xtbe99aP63ozIdvU+O9NnR6+Ls9l/v4sWL+OSTT7BgwQJ+m6enJ9atW4ft27fj559/xpgxYzB16lSbP+Zd2YcXX3wR27Ztw6FDh7BgwQK88847WLp0aYfnaX2Oru5Da59//jmSkpLQq1cvfpuj16Er9LhkisuWLcO7777bbpmsrKyb1Jobs2zZMhgMBsyaNQuzZs2y2c9xXLfqw1dffQWFQoGpU6cC6PgayOXyLm9/TEwMYmJi+NejR4/GpUuX8OGHH+Lf//433nnnHX67Pd3tGmzZsgVvvPEGfvjhB6vANXnyZP77wYMHIywsDLGxsTh48KDN3QJxTFFRESZNmoRHHnkE8+fP57crlUosXryYfz1ixAgUFxfjvffew4MPPtgVTbXRun2DBw+GWCzGggULsHr1akgkki5sWecVFhZi3759+Oabb6y2d+fr0OPuUJcsWYKsrKx2v/r27QuVSoWysjKrY41GI6qqqqBSqezWrVKpoNfrodForLaXlpa2eUxb9Vw/orP5tUqlwpIlS6BSqbBs2TKrdj/33HOIjo52eR86al9rjDF88cUXmDNnDv+YqL1rMGDAAMyfP7/btL+1kSNH4uLFiwCA5cuXQyAQ4JNPPrFq/0MPPYTx48d3q2uwbds2PPXUU/jmm286DJIREREAgJycnDbPba+99trSuq2t29dWmY7eJ0f6rFQqIRQK2z2XK9rfrLi4GOPHj8fo0aOxceNGu+drLT4+nv+ZatbVfbi+fUajEVeuXGn3PK3P0V368OWXX8LPz8+hIGnvOnSJrv4Q11WaB0mkpqby2/bt2+fQYJIdO3bw27Kzs294UFLrUWfLly+3GZR0//33Wx2XkJBgd1CSs/vQPCCm9Wi9f/7zn0wul7Ompiar+poH91w/+tie2tpa5uPjw/7+9793m/a3lpiYyB5++GH+9ciRI9nChQv51yaTiYWEhNgdlNRVfdiyZQuTSqVs586dbfartdraWiYUCtldd93Vbr9a6+hnsXkwyfvvv8/v12q1dgcltfc+OfJ7wZhj18XZ7WeMscLCQhYVFcVmzJjBjEaj3XNd76mnnmJDhw612d5Vfbje5s2bmUAgYFVVVYwxx69BV/fBbDaz8PBwq1HW7WnrOtxst2xAZcwyjH/o0KEsJSWF/fe//2VRUVFWw/gLCwtZTEwMS0lJ4bc988wzLCwsjB08eJClpqayhIQElpCQYFVvbm4uS09PZwsWLGDR0dEsPT2dpaen8yPnNBoNCwwMZHPmzGHnzp1j27ZtY+7u7jbTZkQiEXv//fdZVlYWW7VqVZvTZpzdh+YpG/feey/LyMhge/fuZf7+/lZTNpr9+c9/ZvHx8Xbf3yVLlrDDhw+zvLw8duzYMZaYmMiUSiUrKyvr8vZ/+OGHbOfOnSw3N5edPXuWvfTSS0wgELBff/2VL7Nt2zYmkUjYpk2b2Pnz59nTTz/NFAqF1cjbruzD119/zUQiEVu/fr3V9ACNRtPuNfDy8mq3X3PmzGHLli3j63DkZ3HNmjVMoVCwH374gZ05c4Y99NBDdqfNtPc+OfJ74ch1cUX7CwsLWWRkJJswYQIrLCy0er+bbdq0iW3ZsoVlZWWxrKws9vbbbzOBQMC++OILdr2u6MPx48fZhx9+yDIyMtilS5fY5s2bmb+/P3vsscc6fQ26qg/Nfv31VwaAZWVl2bSrM9fhZrulA2plZSWbOXMm8/T0ZHK5nD3xxBOstraW3988/PrQoUP8tsbGRvbcc88xHx8f5u7uzh5++GGrXyrGGBs7diwDYPOVl5fHlzl9+jQbM2YMk0gkLCQkhK1Zs8amfd988w2Ljo5mYrGYDRgwgP388883rQ9XrlxhkydPZjKZjCmVSrZkyRJmMBisymg0GiaTydjGjRvtvr/Tp09nQUFBTCwWs5CQEDZ9+nR28eLFbtH+d999l0VERDCpVMp8fX3ZuHHj2MGDB2368Mknn7CwsDAmFovZyJEj2YkTJ2zKdFUf2vo5mzt3bofXoL1+jR071qoOxjr+WTSbzez1119ngYGBTCKRsAkTJrCcnJxOvU+MOfZ70dF1cUX7v/zyS7vvdeuHeJs2bWL9+/dn7u7uTC6Xs5EjR1pNjerqPqSlpbH4+Hjm7e3NpFIp69+/P3vnnXdsnto4eg26og/NZs6caTP/v1lnr8PNROuhEkIIIU7Q4wYlEUIIId0RBVRCCCHECSigEkIIIU5AAZUQQghxAgqohBBCiBNQQCWEEEKcgAIqIYQQ4gQUUAkhhBAnoIBKCCGEOAEFVEIIIcQJKKASQgghTvD/AeJtawB+kefWAAAAAElFTkSuQmCC", + "text/plain": [ + "
" ] }, "metadata": {}, @@ -144,15 +232,9 @@ } ], "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "fig, ax = plt.subplots(figsize=(10,10))\n", + "V=np.matrix(gf.get_embedding())\n", "\n", - "for x in G.nodes():\n", - " \n", - " v = gf.get_embedding()[x]\n", - " ax.scatter(v[0],v[1], s=1000)\n", - " ax.annotate(str(x), (v[0],v[1]), fontsize=12)" + "plot_embeddings(V)" ] }, { @@ -164,41 +246,27 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVhU96E+8PfMsAz7ooILmyguqLiAIhG3KLjggqBJ82ti4hbjvUmapG2apk3VmGbp0zbJTZqrhNgbNak3ssYNRQWFuIEoqwu7oLKogCD7zPn9YZ0rUQGZgTPL+3mePD04Z868+Fh5Pee7CKIoiiAiIiIi6iGZ1AGIiIiISL+xUBIRERGRRlgoiYiIiEgjLJREREREpBEWSiIiIiLSCAslEREREWmEhZKIiIiINMJCSUREREQaYaEkIiIiIo2wUBIRERGRRlgoiYiIiEgjLJREREREpBEWSiIiIiLSCAslEREREWmEhZKIiIiINMJCSUREREQaYaEkIiIiIo2wUBIRERGRRlgoiYiIiEgjLJREREREpBEWSiIiIiLSCAslEREREWmEhZKIiIiINMJCSUREREQaYaEkIiIiIo2wUBIRERGRRlgoiYiIiEgjLJREREREpBEWSiIiIiLSCAslEREREWmEhZKIiIiINMJCSUSkJaIo4osvvoC1tTUEQUBycvITX6OhoQEbNmyATCaDIAjaD0lE1AtMpA5ARGQIioqKsHr1ahw/frzH1zh69CjWrFmD0tJSLSYjIup9vENJRKSB+3clfXx8cP78eUydOvWJr3H/rmRQUBDMzMwwdOjQXkhKRNR7WCiJiDSwefNmvP766wgMDEROTg7mzZv3xNdYtGgRIiIi8MYbbyAzMxNubm69kJSIqPfwkTcRkYYiIyOxZs2aHr/f2dkZKSkpeOqpp7SYioio77BQEhFpYOPGjRpPntm9ezcn4BCRXuMjbyIiDWijCLJMEpG+Y6EkIiIiIo2wUBIRERGRRlgoiYiIiEgjLJREREREpBEWSiIiIiLSCAslEREREWmEhZKIiIiINMJCSUREREQaYaEkIiIiIo2wUBIRERGRRlgoiYiIiEgjLJREREREpBETqQMQEem7Xbt2qY+zsrLUx4mJiSgvLwcAODs7Iygo6JHvr6ysRGJiYoevH3VtHx8f+Pj4aC03EZG2CKIoilKHICLSZ4IgdHnOzJkzkZyc/MjXkpOTMXv27C6vsXHjRmzatOkJ0xER9T4WSiIiIiLSCMdQEhEREZFGWCiJjJQoivjiiy9gbW0NQRAe+zj25/Ly8rBp0ybMmjULTk5OMDU1hb29PSZOnIi33noLV65c6d3gRESkc/jIm8gIFRUVYfXq1Th+/Lj615KSkjBr1qzHvqeiogIrV65UTx7x9/fHvHnz4ObmhoqKCuzevRs5OTkwNTXFhx9+iN/85je9/W0QEZGOYKEkMiKiKOLLL7/E73//e8jlcnh7e+P06dMAui6Up0+fRkBAAADggw8+wLvvvtthMopSqcSLL76I7777DgCwbds2vPzyy733zRARkc7gI28iI7J582a8/vrrCAwMRE5ODubNm/fE1/D393+oTAKAXC7Htm3b0K9fPwDA7373OzQ3N2slNxER6TYWSiIjExkZiYSEBLi6uvbo/YsXL37sMjlWVlaYP38+AKC2thYpKSk9zklERPqDC5sTGZGNGzd2a83ERxk1ahT27t0LX1/fTs9zc3NTH1+9erVHn0VERPqFhZLIiPS0TAKAvb09Fi1a1OV5dXV16mMrK6sefx4REekPPvImIq0qLi4GcK+8Tps2TeI0RETUF1goiUhr6urqkJSUBABYtGhRj8dpEhGRfmGhJCKt2blzJ5qbm2FqaoqPPvpI6jhERNRHWCiJSCuqq6vx/vvvAwC2bNmCMWPGSJyIiIj6CgslEWlMpVLhxRdfRHV1NVasWIG3335b6khERNSHWCiJSGNvvfUWDh48iFmzZmHHjh0azSYnIiL9w0JJRBrZvHkzPv/8cwQGBmLv3r1QKBRSRyIioj7GQklEPfbhhx9i06ZNCAgIwIEDB2BtbS11JCIikgALJRH1yF//+lf84Q9/gL+/PxISEmBjYyN1JCIikggLJRE9sc8//xy//e1v4efnh0OHDsHW1vahc/z8/LB582YJ0um+5jYlqutb0NymlDoKEZFWcOtFInoiX331Fd544w1MnDgRhw8fhp2d3SPPO3fuHMaOHdvH6XRbWsltRKYWITGvEioRkAlAkLcz1gV6ws/DUep4REQ9xkJJRN0WERGBV199Ffb29vjjH/+IzMxMqSPpjZ2nS/Gn+BzIZAJU4r1fU4nAkYtVOJxbiS2hY/G8v7u0IYmIeoiFksjI7Nq1S32clZWlPk5MTER5eTkAwNnZGUFBQR3ed+zYMbzyyisQRRG1tbUIDw/vm8AGIK3kNv4UnwMRgPJ+m/y3+1+/F5eDUc42vFNJRHqJhZLIyLzwwguP/PUPP/xQfTxz5syHCuXVq1chiuLP30bdEJlaBJlMeKhMPkgmExCZWsxCSUR6SRD5E4KIqNc0tynhvTEBnXRJNZkA5G2eD4WpvPeDERFpEWd5ExH1ElEUcfVGVbfKJHBvTGV9c3vvhiIi6gV85E1EpEUNDQ0oKipCcXExioqKcLuuHgImQUTX21HKBMBGwb+WiUj/8G8uIiINtLS0oKSkRF0gq6urAQBOTk7w9vbG0KFDUXGqFseu3Ox8DCVEPD1iAB93E5FeYqEkInoC7e3tKC8vVxfIa9euQRRF2NnZwdPTE9OnT8fQoUM7bEP5stltHLlU3el1VQBsrp/FpUt2GDVqVC9/F0RE2sVJOUREnRBFEZWVlSgqKkJRURGuXr2KtrY2WFhYYOjQoRg6dCg8PT3h4OAAQXj8Y+1dZ0rxXlzOQ7O95TIBKpWI9xZ4wfJ6Bi5fvoxJkyZh3rx5MDMz64tvkYhIYyyUREQ/U1NTox4HWVxcjMbGRpiYmMDd3V1dIAcOHNhpgXyU9JLbiEwtxuG8CvVOOcHeA7E2cCj8PBwhiiIyMjLU21mGhYVh8ODBvfRdEhFpDwslERm9u3fvqh9hFxcXo7a2FoIgYMiQIeoC6eLiAhMT7YwSam5Tor65HTYKk0eOmbx58yZiYmJQWVmJWbNmYdq0aZDJuCgHEekuFkoiMjqtra0oLS1VF8jKykoAwIABA9QF0t3dHQqFQrKMSqUSycnJSE1Nhbu7O0JDQ2Fvby9ZHiKizrBQEpHBUyqVuHbtmrpAlpeXQ6VSwdbWFp6enuqxkDY2NlJHfUhJSQliY2PR0tKCkJAQjBs3TupIREQPYaEkIoMjiiKqqqrUBbK0tBStra1QKBQdJtI4Ojo+8ThIKTQ3N2P//v3IycmBj48PFixYIOndUyKin2OhJCKDUFtb22Eizd27dyGXyx+aSKOvYxFFUUR2djYOHDgAhUKBsLAwuLm5SR2LiAgACyUR6anGxkZ1eSwqKkJNTQ0EQcCgQYPg6ekJT09PuLq6am0ija6ora1FTEwMysvLERgYiJkzZ0Iu52LoRCQtFkoi0gttbW0oLS1VF8iKigoAQL9+/dTjID08PGBhYSFx0t6nUqmQmpqK5ORkDB48GMuWLUO/fv2kjkVERoyFkoh0kkqlwrVr19QFsry8HEqlEtbW1uoC6enpCVtbW6mjSqa8vBwxMTFoaGjA/PnzMXHiRL0YE0pEhoeFkoh0giiKqK6uVhfI0tJStLS0wNzcHB4eHuoC2b9/f5amB7S2tiIhIQHnz5/H6NGjsWjRIlhaWkodi4iMDAslEUmmrq6uw4LiDQ0NkMvlcHV1VRfIwYMH6+1Emr508eJF7N27FyYmJggNDYWnp6fUkTQmiiK+/PJL/P73v8fdu3eRlJSEWbNmdfv92dnZ+Pzzz3Hs2DFcv34djo6O8PX1xfr167Fo0aLeC05khFgoiajPNDU1oaSkRF0gb926BQAYNGiQukC6ubnB1NRU4qT66c6dO4iPj0dRURGmTp2KOXPm6O2kpKKiIqxevRrHjx9X/9qTFMqvv/4ar776KkRRxMqVKzFlyhSUlJQgIiICt27dwpo1axAREcF/rBBpCQslEXWqq20CO9PW1oaysjJ1gbx+/ToAwNHRUV0gPTw8+IhWi0RRxOnTp3H06FH0798fYWFhcHJykjpWtz14V1Iul8Pb2xunT58G0P1CuW/fPixduhSiKCIuLg5LlixRv1ZYWIiAgABUV1fj7bffxieffNJb3wqRUWGhJKJHSiu5jcjUIiTmVUIlAjIBCPJ2xrpAT/h5OD7yPSqVCjdu3FAXyKtXr0KpVMLKyqrDjjTcQrD3VVRUICYmBjU1NZg7dy6mTJmiF2NPN23ahM2bN2PevHn4+uuv8c0332Dz5s0AulcoW1pa4OXlhbKyMjz77LPYvXv3Q+ds3boVGzZsgEwmQ1ZWFsaMGdMb3wqRUdHPZyFE1Kt2ni7Fn+JzIJMJUP37n5wqEThysQqHcyuxJXQsnvd3hyiKuHXrlrpAlpSUoLm5GWZmZvDw8MDcuXPh6emJAQMG6EWZMSQDBw7EunXrkJiYiISEBBQUFGDp0qWwtraWOlqXIiMjsWbNmh69d8eOHSgrKwMArFu37pHnPP/883jrrbfQ1NSEjz/+GDt37uxxViK6h3coiaiDtJLbeGbbKXT1F8Pr3u1AdSHq6+shk8kemkjDxbZ1R35+PuLj4yGKIpYsWYKRI0dKHemxRFHs8I+P+3csge7doQwODkZiYiLMzMxQX18PMzOzR543e/ZsJCcnw9bWFtXV1Y89j4i6h3coiaiDyNQiyGQClKrHV0oBKhwqbsWvp47F0KFD4e7uzh/IOszLywsbNmzAjz/+iN27d8PX1xfz5s3TyclPmtzJViqVOHHiBADA29u70z+TkyZNQnJyMu7cuYP09HQ89dRTPf5cIgI4vY2I1JrblEjMq+y0TAKACBnymy0xY/YceHl5sUzqASsrK/ziF79ASEgIMjMzsW3bNty4cUPqWFpVUFCAlpYWAICrq2un5z74em5ubq/mIjIGLJREpFbf3I4uuqSaSrx3PukPQRDg5+eH9evXw9TUFJGRkUhNTYVKpZI6mlaUlJSoj52dnTs998HXH3wfEfUMCyURqdkoTCDr5hNHmXDvfNI//fv3x9q1axEQEICjR49ix44dqKurkzqWxurr69XHCoWi03Mf3PP9wfcRUc+wUBKRmsJUjiBvZ8i7KJVymYBg74FPvC4l6Q65XI65c+fixRdfRE1NDbZu3YqcnBypY2mkqalJfdzVMIwHX29sbOy1TETGgoWSiDp40d8Vyi4Wf1CpRKwNHNpHiag3eXh44JVXXsGwYcMQHR2NuLg49ThEffPgXcfW1tZOz33wdS6sT6Q5FkoiUhNFEZU5JxFofg3AvTuRD5LLBAgAtoSOfezi5qR/LCwsEB4ejtDQUFy8eBFbt25Vr+WoT2xsbNTHzc3NnZ774N3MB99HRD3DQklEahcuXEBWVhbeDgtA1PoABI12Vo+plAlA0Ghn7FkfgOf93aUNSlonCALGjx+PV155BdbW1vjnP/+JpKQkvZqw4+HhoT6urKzs9NwHX3d3559nIk1xRD0RAbj3A/bAgQOYOHEifHx8AAB+Ho4a7eVN+sfBwQGrVq3CiRMncOLECRQWFiIsLAyOjrp/R3r48OEwNzdHS0tLl3dYy8vL1cfcepFIc7xDSURobW1FVFQUHB0dsWDBgg6vKUzlGGBjzjJpRGQyGWbNmoXVq1ejsbER27Ztw4ULF6DrG6vJ5XJMnz4dAHDx4sVOx1FmZGQAuPe428/Pr0/yERkyFkoiIyeKIvbv34+6ujqsWLFCJ3dPIWm4uLhg/fr18Pb2Rnx8PKKiojqMPdRFK1asAAC0tLQgNTX1kec0NDTgzJkzAIDFixfD3Ny8z/IRGSoWSiIjd/78eWRlZWHx4sXo37+/1HFIx5ibm2Pp0qVYvnw5ioqK8N///d8oLi6WOtZjrVy5Ei4uLgCAyMjIR57z/fffo7GxETKZDO+8805fxiMyWCyUREassrISBw8exKRJkzBu3Dip45AOGzNmDDZs2ID+/ftjx44dOHz4MNrbdW+nJIVCgX/84x8QBAG7d+/Gvn37OrxeVFSE9957DwDw5ptv8s89kZYIoq4PiiGiXtHS0oKvv/4aJiYmWLNmDR91U7eIoohTp07h6NGjcHJyQlhYGAYMGKDVz9i1a5f6OCYmBrGxsQCAd999F6NHjwZwb+vEoKCgx15j69at+NWvfgVRFPHSSy9h8uTJKC0txdatW3Hr1i289NJL+OabbyCT8b4KkTawUBIZIVEUERsbi8uXL+Pll19Gv379pI5EeubGjRuIiYlBbW0tgoOD4efnB0Ho5r6dXejOdWbOnInk5OROz8nKysJnn32GY8eOoaKiAvb29uq9zBcvXqyVrER0DwslkRE6d+4c9u3bh7CwMD7yox5ra2vD4cOHkZ6eDi8vLyxZsgTW1tZSxyIiCbBQEhmZiooKREZGYsKECVi0aJHUccgAXLlyBfHx8RAEAUuWLMGIESOkjkREfYyFksiItLS0ICIiAqampli7di1MTLi3AWlHQ0MDfvzxR+Tn58PPzw/BwcEcl0tkRFgoiYyEKIqIiYnBlStXOG6SeoUoikhPT8fhw4dhb2+P8PBwDBw4UOpYRNQHWCiJjER6ejr279+P8PBwjB07Vuo4ZMCqq6sRExODqqoqzJkzBwEBAVqbsENEuomFksgI3LhxA9988w0mTpyIkJAQqeOQEWhvb8exY8dw6tQpDB06FKGhobC1tZU6FhH1EhZKIgN3f9ykmZkZ1qxZw3GT1KeKi4sRGxuLtrY2LF68GN7e3lJHIqJewEJJZMBEUUR0dDTy8/Oxfv16ODo6Sh2JjFBTUxP27duHvLw8TJgwAfPnz+f+2UQGhoWSyIClpaXhwIEDWL58OcaMGSN1HDJioigiMzMTBw8ehJWVFcLCwtR7bhOR/mOhJDJQ98dNTpo0CQsXLpQ6DhEA4Pbt24iJicH169cxc+ZMTJ8+ndsfEhkAFkoiA9Tc3IyIiAgoFAqsXr2a4yZJpyiVSpw4cQIpKSlwcXHBsmXL4ODgIHUsItIACyWRgRFFEVFRUSgsLMTLL7/McZOks8rKyhATE4PGxkYsXLgQPj4+XF6ISE+xUBIZmLNnz+LgwYNYsWIFZ9SSzmtpacHBgweRmZmJMWPGICQkBBYWFlLHIqInxEJJZECuX7+O7du3w9fXFwsWLJA6DlG35eTkYP/+/TAzM8OyZcvg4eEhdSQiegIslEQGorm5Gdu2bYOlpSVWrVrFcZOkd+rq6hAbG4vS0lJMmzYNs2fPhlwulzoWEXUDCyWRARBFEXv27EFRURHWr1/PCQ6kt1QqFU6ePImkpCQ4OzsjLCwM/fv3lzoWEXWBhZLIAJw5cwYJCQl45plnMHr0aKnjEGns+vXriImJQV1dHebNmwdfX19O2CHSYSyURHru2rVr2L59OyZPnoz58+dLHYdIa9ra2nDo0CGcO3cOI0aMwJIlS2BlZSV1LCJ6BBZKIj324LjJ1atXc7wZGaTLly/jxx9/hCAIWLp0Kby8vB46p7lNifrmdtgoTKAw5f8PiPoaCyWRnhJFET/88ANKSkrw8ssvc9wkGbSGhgbEx8ejoKAAkydPRlBQEExNTZFWchuRqUVIzKuESgRkAhDk7Yx1gZ7w8+AarER9hYWSSE+dPn0ahw4dwrPPPotRo0ZJHYeo14miiLNnzyIxMRGOjo4Qh0/HX5OuQiYToFT9348yuUyASiViS+hYPO/vLmFiIuPBQkmkh+6Pm5wyZQrmzZsndRyiPlVVVYXPv9+H7yqdADx+oo4AYM/6AN6pJOoDMqkDENGTaWpqwp49ezBo0CDMnTtX6jhEfc7JyQnVjuMg62LWt0wmIDK1uI9SERk3FkoiPSKKIuLj49HS0oLly5dzEg4ZpeY2JY5cqoKqi+drSpWIw3kVaG5T9k0wIiPGQkmkR06fPo3Lly8jNDQU9vb2UschkkR9c3uXZfI+lXjvfCLqXSyURHqivLwcR44cQUBAAEaOHCl1HCLJ2ChMIOvmGucy4d75RNS7WCiJ9EBTUxOioqIwePBgzJkzR+o4RJJSmMoR5O0MeRetUi4TEOw9kOtSEvUBFkoiHSeKIuLi4jhukugBawM9oeriubdKJWJt4NA+SkRk3FgoiXTcqVOncOXKFSxbtgx2dnZSxyHSCZM9HLEldCwE4KE7lQJEACLeXzKGSwYR9REWSiIdVlZWhqNHj+Kpp57CiBEjpI5DpFOe93fHnvUBCBrtrB5TKROA6UPtEGJ2Ge5tV6UNSGREOFKZSEc1NjYiKioKQ4YMwdNPPy11HCKd5OfhCD8Px4f28k5KakdycjI8PT3h4uIidUwig8c7lEQ66P64yba2NoSHh3PcJFEXFKZyDLAxV0/AmTlzJoYMGYLo6Gg0NzdLnI7I8LFQEumgkydPIj8/n+MmiXpIJpMhLCwMTU1NOHDggNRxiAweCyWRjrk/bnLatGnw8vKSOg6R3nJwcEBISAiys7ORmZkpdRwig8ZCSaRD7o+bdHFxwezZs6WOQ6T3xo0bh/Hjx+PAgQO4ffu21HGIDBYLJZGOeHDcJNebJNKeBQsWwMrKCjExMVAqua83UW9goSTSET/99JN63KStra3UcYgMhrm5OcLDw3Hjxg0kJydLHYfIILFQksESRRFffPEFrK2tIQhCt3+QlJSU4Msvv8Ty5csxYsQIWFtbw8zMDM7Oznj66afxX//1X2hsbNRq1qtXr+LYsWMcN0nUS4YMGYLZs2cjNTUVxcXFUschMjiCKIqd711FpIeKioqwevVqHD9+XP1rSUlJmDVrVqfv++tf/4rf/va3AABLS0u88MILGDNmDFQqFTIzM7Fr1y60tbXBw8MDBw8exKhRozTOevfuXWzbtg0ODg548cUXIZPx33lEvUEURezcuRM3b97EK6+8AktLS6kjERkM/uQig3L/rqSPjw/Onz+PqVOnPtH7b968CQAYNGgQLl68iK1bt+K1117Dr371K2zfvh1nz56FhYUFSkpKsGTJErS2tmqcNy4uDkqlEuHh4SyTRL1IEASEhoaivb0de/fuBe+nEGkPf3qRQdm8eTNef/11BAYGIicnB/PmzevRdT755BO4ubk99OsTJkzAa6+9BgDIz8/HoUOHNMqbmpqKgoICjpsk6iO2trZYsmQJLl26hHPnzkkdh8hgsFCSwYmMjERCQgJcXV2f+L0uLi7w9fVFcHDwY8/x8/NTH+fl5fUoIwCUlpYiKSkJgYGBGD58eI+vQ0RPZtSoUfDz88OhQ4dQXV0tdRwig8BCSQZl48aNWLNmTY/f/+qrryI9PR3Ozs6PPcfKykp9bGFh0aPPuXv3LqKjo+Hm5sb1JokkEBwcDAcHB0RFRaG9vV3qOER6j4WSDIogCL3+GQ8+JutJGRRFEbGxsRw3SSQhU1NThIeH49atW0hMTJQ6DpHe408yoidQVlaGL774AgCwZs0ajBs37omvkZKSgsLCQoSFhcHGxkbbEYmom5ydnREcHIyzZ8/iypUrUsch0msslESdaGhowI0bN5Ceno5PPvkEvr6+qKurw5YtWxAREfHE1yspKUFycjKmT5+OYcOG9UJiInoSkydPxogRIxAfH4/6+nqp4xDpLRZKok68+uqrGDx4MCZPnox33nkHw4cPR0pKCv74xz8+8aPqhoYGREdHw93dvcv1MImobwiCgCVLlkAmkyE+Pp5LCRH1EAslUSfefvttHD58GHv27ME777yDoqIi+Pv7IygoCAUFBd2+jkqlQmxsLERRRFhYGMdNEukQKysrhIaGorCwEKdOnZI6DpFe4k81ok54e3sjKCgIy5cvx0cffYRLly4hMDAQR44cgb+/Py5fvtyt66SkpKCoqIjjJol01LBhw/DUU0/h6NGjuHHjhtRxiPQOCyXRE7C3t8f3338PU1NT3L59G6tXr+7yPcXFxTh+/DhmzJgBT0/PPkhJRD3x9NNPw9nZGdHR0RrvgkVkbFgoiZ6Qq6uregzkyZMnO50d2tDQgJiYGLi7u2PmzJl9lJCIekIulyM8PBx37txBQkKC1HGI9AoLJVEPjBw5Un2ck5PzyHNUKhViYmIgiiLXmyTSE/369cOCBQtw/vx55ObmSh2HSG/wJxzRvzU2NiIqKqpb2ymamJiojx+3y8aJEydQXFyM8PBwWFtbay0nEfWuCRMmYMyYMdi7dy9qa2uljkOkF1goif6tqqoKK1aswFdffdXlufn5+epjNze3h16/P25y5syZGDp0qFZzElHvEgQBixYtgkKhQGxsLFQqldSRiHQeCyXRzxw6dAhKpfKxr5eXl+PIkSMAACcnJ0yePLnD6/fXmxw6dChmzJjRq1mJqHcoFAqEhYWhrKwMKSkpUsch0nkslEQ/U1BQgDfeeAPNzc0PvXbr1i2sWLECLS0tAIC//OUvkMvl6tdVKhWio6MhCALXmyTSc25ubpgxYwaOHz+Oq1evSh2HSKeZdH0KkX7ZtWuX+jgrK0t9nJiYiPLycgD39vANCgrq8D5ra2t4enqiqKgIX375JeLi4rBixQp4enrC3Nwc2dnZ+O6773D79m1YWFjgk08+wYsvvtjhGsePH0dpaSleeOEFjpskMgAzZsxAUVERYmJi8Morr0ChUEgdiUgnCSL3mSIDIwhCl+fMnDkTycnJD/26KIo4duwY9u3bhzNnzqCgoAB1dXUAAAcHB4waNQpz5szBSy+9BFdX1w7vLSoqws6dOzFr1iwuEURkQGpra7F161YMHz4c4eHh3fo7hsjYsFASaUF9fT22bdsGZ2dn/PKXv+SjbiIDk5ubi6ioKCxduhQTJkyQOg6RzuFPPSINcdwkkeEbM2YMJkyYgAMHDuDWrVtSxyHSOfzJR6Sh5ORkXL16FeHh4bCyspI6DhH1kgULFsDGxgbR0dGdrgRBZIxYKIk0UFhYiJSUFMyaNQseHh5SxyGiXmRmZobw8HBUVlbi2LFjUsch0ikslEQ9VF9fj5iYGAwbNh7N9HoAACAASURBVAzTp0+XOg4R9YHBgwdjzpw5OHnyJIqKiqSOQ6QzWCiJeuD+uEm5XI5ly5Zx1ieREQkICICnpydiY2Nx9+5dqeMQ6QQWSqIe4LhJIuMlCAJCQ0OhUqnw448/goulELFQEj2xgoICpKSkYPbs2XB3d5c6DhFJwMbGBkuXLsWVK1eQlpYmdRwiybFQEj2BO3fuIDY2FsOHD0dgYKDUcYhIQiNGjMDkyZNx+PBhVFVVSR2HSFIslETd9OC4ydDQUI6bJCIEBwejX79+iIqKQltbm9RxiCTDQknUTUlJSSgrK8Py5cs5bpKIAAAmJiYIDw9HTU0NEhMTpY5DJBkWSqJuyM/PR2pqKp5++mm4ublJHYeIdIiTkxOCg4ORlpaGy5cvSx2HSBIslERduD9u0svLC9OmTZM6DhHpID8/P4wcORLx8fGor6+XOg5Rn2OhJOqEUqlEVFQUTE1NOW6SiB5LEAQsWbIEJiYmiI2N5VJCZHRYKIk6kZSUhPLycoSHh8PS0lLqOESkwywtLREaGori4mKcPHlS6jhEfYqFkugxrly5gp9++glz5szhuEki6hZPT09MmzYNx44dw/Xr16WOQ9RnWCiJHqGurg5xcXHw8vLCU089JXUcItIjs2fPxsCBAxEdHY2Wlhap4xD1CRZKop/huEki0oRcLkd4eDgaGhqQkJAgdRyiPsFCSUavuU2J6voWNLcpAUD9qGr58uUcN0lEPeLo6IiFCxfiwoULyMnJkToOUa8zkToAkVTSSm4jMrUIiXmVUImATAAC3KxgdyMLz8+bA1dXV6kjEpEe8/HxQUFBAfbt2wcXFxfY29tLHYmo1/AOJRmlnadL8cy2UzhysQqqf6/uoRKBk6UNONA6EkWywdIGJCK9JwgCQkJCYGFhgejoaKhUKqkjEfUaFkoyOmklt/Gn+ByIAJSqjmvFiRAACHgvPhfpJbclyUdEhkOhUCAsLAzXrl3D8ePHpY5D1GtYKMnoRKYWQSbrfKKNTCYgMrW4jxIRkSFzdXXFrFmzkJKSgtLSUqnjEPUKFkoyKs1tSiTmVT50Z/LnlCoRh/Mq1BN1iIg0ERgYCFdXV8TExKCpqUnqOERax0JJRqW+uR1ddEk1lXjvfCIiTclkMoSFhaG1tRX79u3j1oxkcFgoyajYKEzQxdNuNZlw73wiIm2ws7PD4sWLkZeXh/Pnz0sdh0irWCjJqChM5Qjydoa8i1YplwkI9h4Iham8j5IRkTHw9vbGxIkTkZCQgJs3b0odh0hrWCjJ6KwN9ISqi+feKpWItYFD+ygRERmT+fPnw9bWFtHR0Whv57AaMgwslGR0Jns4YkvoWACAgI7rwsllAgQAW0LHws/DUYJ0RGTozMzMEB4ejurqahw7dkzqOERawUJJRumXU9zwbL9rGOcgqsdUygQgaLQz9qwPwPP+7tIGJCKDNmjQIMyZMwenTp1CQUGB1HGINMYZB2SUCgoKYHn3Bv6xegEGDByM+uZ22ChMOGaSiPrM1KlTUVhYiLi4OGzYsAFWVlZSRyLqMd6hJKOUlpaGgQMHwsXFBQpTOQbYmLNMElGfEgQBoaGhAID4+Pg+XUqora0N27dvx8KFCzFw4ECYmZnByckJM2fOxNatWzm2k54YCyUZnZqaGuTn52Py5MkQhG6uIURE1Ausra2xdOlS5Ofn4+zZs33ymYWFhfD19cWaNWuQmZmJdevWYevWrXjttddw7do1bNiwAVOmTEFlZWWf5CHDwEfeZHTS09OhUCgwbtw4qaMQEcHLywv+/v5ITEyEh4cHnJ2de+2zbt++jaCgIBQXF2Ps2LE4ceIEHBwc1K//+te/RnBwMH766ScsWLAAp0+fhpmZWa/lIcPBO5RkVNra2nD+/HlMmDABpqamUschIgIAzJ07F/3790dUVBTa2tp67XO2bNmC4uJiAMAXX3zRoUwCgKWlJSIjIwEA58+fx5dfftlrWciwsFCSUcnNzUVTUxP8/PykjkJEpGZiYoLw8HDU1tbi0KFDvfIZKpUK3377LQDA2dkZs2bNeuR5o0aNwqRJkwAAn376KbeJpG5hoSSjkpaWhmHDhqFfv35SRyEi6mDAgAGYP38+zp07h4sXL2r9+vn5+aipqQEAjBkzptNzx48fDwAoLy/H6dOntZ7lvry8PPzmN7/BuHHj4ODgAEtLS3h6euLpp5/Gpk2bcObMmV77bNIujqEko3Ht2jVcv34dv/jFL6SOQkT0SJMmTUJBQQH27t2LIUOGwNbWVmvXvnXrlvq4q+s6Ov7fxg5nz55FQECA1nIAgCiK2LhxIz766CMMGTIEzzzzDLy8vNDQ0IDk5GTs3bsXSUlJ2LdvH9LT07X62dQ7eIeSjEZaWhrs7Ozg5eUldRQiokcSBAGLFy+GiYkJYmNjoVKpun5TN1laWqqPm5ubOz33wXGceXl5Wstw31tvvYUtW7bgueeew6VLl/CXv/wF69atw5tvvon4+Hhs3bpV659JvYuFkoxCY2MjcnJy4OfnB5mMf+yJSHdZWloiLCwMJSUl+Omnn7R2XU9PT8jl99bbLSws7PTckpIS9fHNmze1lgEA9u3bh88++ww+Pj7Yvn07FArFQ+esW7cO3t7esLe31+pnU+/hT1YyChkZGQCgHmhORKTLPDw8EBgYiKSkJJSXl2vlmra2tpg2bRqAe+Mpi4qKHnleS0sLTpw4of66vr5eK58P3HvU/eabbwIA3nnnHZiYPHrknSAIyM3NxZEjR7T22dS7WCjJ4KlUKqSnp2Ps2LEdHvkQEemyWbNmYfDgwYiJiUFLS4tWrvnHP/5RffzOO+888pyPP/4YtbW16q/v39XUhuPHj6OgoAAymQwhISFauy5Jj4WSDF5+fj7q6uowefJkqaMQEXWbXC5HeHg47t69iwMHDmjlmkFBQfjggw8AAHv27EF4eDhOnjyJGzduICMjA6+99ho2bdqERYsWqd+jzYlBUVFRAAB3d/cO11WpVFq9E0p9j4WSDF5aWhoGDx6MIUOGSB2FiOiJODg4ICQkBFlZWcjKytLKNf/whz9g3759mDx5MmJiYjBt2jQMHjwYvr6+OHz4MHbs2IEPP/xQff6AAQO08rkA1DO23dzcoFQqERERgSlTpsDMzAy2trYwNzfHjBkz8O2332p1QhL1Pi4bRAbt1q1bKCwsxNKlS6WOQkTUIz4+PigsLMT+/fvh6ur60O42PRESEoKQkBBUV1ejqKgI7e3tGDJkCDw8PACgwxhKbW5Tm5OTA+DeHcmgoCCkpKRg7dq1eOeddyCTyXD06FFs27YNKSkp+N///V9ERUVxqJKeYKEkg5aeng4LCwuMHTtW6ihERD22cOFClJWVITo6GqtWrdLauMYBAwY88g7kgxN2fH19tfJZjY2NuHv3LgAgJSUFABAXF9fhH/yhoaFYuHAhQkJCcPDgQWzYsEG9uw/pNj7yJoPV1taGCxcuYOLEiY+dSUhEpA/Mzc0RFhaG69ev4/jx473+eWfPngVwb7a5tgrlz8dIhoSEPPLp0YIFC7BixQoAwI4dO3DhwgWtfD71LhZKMljZ2dlobm7mvt1EZBBcXFwwe/ZspKSkdFgn8knU19cjLi4OxcXFjz1HqVRi//79AIBVq1ZBEIQefdbPtbe3d/h6+fLljz33wR3NvvvuO618PvUuFkoySKIoIi0tDSNGjNDKeCMiIl0wbdo0eHh4IDY2Fk1NTU/8/tLSUixbtgyffPLJY8/ZtWsXrl69CldXV/zmN7/RJG4H1tbWHb7ubCjShAkT1Mf375aSbmOhJINUXl6OiooKLhVERAZFJpNh2bJlaGtrw969eyGKYo+us3PnzkduqZiSkoJXX30VlpaW+Ne//qXVCTE2NjYwMzNTf93ZLjj9+vVTH1dVVT3R57z99tsQBAGCIGDTpk1PnJN6hgPLyCClpaXB0dERw4YNkzoKEZFW2draYvHixfjhhx+QkZHRozGOjY2NmDJlClavXo2xY8eiqakJx48fx48//oghQ4Zgx44d6l11tEUmk2HUqFHq5Y9+/gj8QQ8W5SeZgJSRkYG///3vPQ9JPcZCSQanoaEBubm5mDt3rtbG/hAR6ZLRo0fD19cXCQkJcHNz6/ZakcOHD8f333+Po0ePIi0tDbt370ZtbS369euHkSNH4tNPP8WqVaseejytLVOmTFEXysrKSowaNeqR51VXV6uPBw8e3K1rt7e3Y+3atVAqlZoHpSfGR95kcDIyMiCTyTqMwSEiMjTz5s2Dvb09oqOjO73b9yCFQoHnnnsOkZGRyMzMRFVVFVpbW3Hjxg0kJyfjtdde67UyCQDh4eHq4/uLnD9KRkaG+njGjBnduvbf/vY3nD9/nusOS4SFkgyKSqXCuXPnMG7cOFhYWEgdh4io15iamiI8PBw3b97EkSNHpI7TLUFBQerJOLt27XrsGNCdO3cCuLdc0qpVq7q8bkFBATZv3ozJkyfj9ddf115g6jYWSjIoly9fxp07dzgZh4iMwsCBAzF37lycOXMG+fn5Usfpklwux1dffQVTU1NcuHABH3/88UPnfP/999i3bx8A4IMPPujWtrnr169HW1sbvv76a8hkrDZS4O86GZS0tDS4uLhg0KBBUkchIuoT/v7+GD58OOLj49HQ0CB1nC5Nnz4d3333HaytrfHuu+9iwYIF+Mc//oGtW7fi2WefxfPPPw+ZTIb333+/W8sWffPNNzh27Bh+/etfY/z48X3wHdCjsFCSwbh58yaKi4t5d5KIjIogCAgNDQUAxMfH93gpob60YsUK5OTk4M0330RJSQl+97vf4a233sL58+exbt06ZGZm4r333uvyOhUVFfjtb3+LYcOGYePGjX2QnB6Hs7zJYKSlpcHS0hLe3t5SRyEi6lNWVlYIDQ3Fd999h9OnTyMgIEDqSF1yd3fH3//+d42W+Xn11VdRU1ODPXv2cNy8xHiHkgxCa2srMjMzMWnSJO7bTURGafjw4Zg6dSqOHDmCGzduSB2n18XHxyM6OhovvfQS5syZI3Uco8dCSQYhKysLra2t3LebiIzanDlz4OTkhOjoaLS2tkodp9fcuXMH//Ef/wEnJyf87W9/kzoOgYWSDMD9fbtHjhwJOzs7qeMQEUnGxMQE4eHhuHPnDg4dOiR1nF7z9ttv4/r16/jss8/g6OgodRwCCyUZgKtXr6KqqoqTcYiIAPTv3x/z589HRkbGI/fr1ncpKSmIiIjAggUL8Nxzz0kdh/6Ng81I76WlpaFfv34YOnSo1FGIiHTCxIkTUVhYiL1792LIkCEG8/SmtbUV69atg5mZGd5//33cvHnzoXPq6urUx42NjR3OsbOzg6mpaZ9kNTaCqA/rCxA9Rn19PT777DMEBwfD399f6jhERDqjqakJW7duhYODA1auXGkQC36XlJRodPMgKSkJs2bN0l4gUuMdStJr586dg1wu52K2REQ/Y2FhgbCwMHz77bdITU3t9p7YumzgwIFITEzs9JzMzEz1gugvvPACVq5cqX6NPyt6Dwsl6S2lUolz587Bx8cHCoVC6jhERDrH3d0d06dPR3JyMoYOHQpXV1epI2lEoVBg7ty5nZ7z4NJxnp6eXZ5P2qH/97/JaF26dAkNDQ2cjENE1ImZM2diyJAhiImJQXNzs9RxyECxUJLeSktLg5ubG5ydnaWOQkSks2QyGcLCwtDU1IT9+/c/0daM7e3t+Oc//4kFCxZg0KBBMDMzg7W1NUaNGoWXX34Z58+f78XkpE/4yJv0UlVVFUpLSxEeHi51FCIinefg4ICQkBDExMRg+PDh3RpLWFFRgZCQEGRkZMDMzAwvvvgiJkyYgLq6OiQkJODrr7/GN998g02bNnVr3+3elJWVhaysLADAxYsXO/z6rl27AADOzs4ICgqSJJ8x4Cxv0kv79+/HpUuX8MYbb0Aul0sdh4hIL8TFxeHixYtYv359pwuCi6KIwMBAnDx5Eubm5jh16hQmTpzY4Zzf/e53+Mtf/gIA2LlzJ55//vlezd6ZTZs2YfPmzZ2eM3PmTCQnJ/dNICPEQkl6p6WlBX//+98xdepUzJ49W+o4RER6o6WlBREREVAoFFi9ejXkcjma25Sob26HjcIECtN7/0BPSUlRzwp/44038Omnnz7yWu7u7qisrIS3tzdyc3P79Hsh3cJH3qR3MjMz0dbWBl9fX6mjEBHpFXNzc4SFhWH79u2IiD2KC82OSMyrhEoEZAIQ5O2MdYGeSEtLU7/ncWv8mpubY/z48Th8+DDy8vJw584d2Nra9tW3QjqGk3JIr9zft3v06NH8i4uIqAeGDBkCpedT+ORcK478u0wCgEoEjlyswoptp3CmsFJ9vqWl5WOvZWVlpT6+e/dul589a9YsCILQ5X/W1tY9/wZJEiyUpFdKSkpw8+ZNLhVERNRDaSW38W1OMwAByp8NelOqRIgAkqst1L926dKlx17r/gQYW1tbODk59UJa0hd85E16JS0tDQMGDIC7u7vUUYiI9FJkahFkMgFK1eOnUFgN84Wjqxdul+Xjiy++wH/+5392uBsJAPHx8eqyeX88ZneEhobio48+6vQcQ9gm0tiwUJLeuHPnDi5duoQFCxZAEASp4xAR6Z3mNqV6zGRnVJDBKvQ9jM/9HyQdOwZ/f39s2bIF48ePx507d5CQkID3338fALB8+XJ8+OGH3c5gZ2eHUaNGdcj080lBpH9YKElvpKenw9TUFD4+PlJHISLSS/XN7V2WyftkVo74/aY/Y1loGj799FOEhYV1eH3x4sVYu3YtlixZ0qMsaSW3EZla9MhJQX4ej1/SiHQTCyXpBaVSiYyMDIwfPx7m5uZSxyEi0ks2ChPIBHSrVCobbuP19W/j0sU82NraYu7cufDw8ICZmRny8/Nx6NAhVFRUoKWlBQsXLoSlpWW3nx7tPF2KP8XnQCYTHpoUdDi3EltCx+J5fw5t0icslKQX8vLycPfuXU7GISLSgMJUjiBvZxy5WNXpGEqx6Q5u7voNymur4OLigq+++goDBw5EXV0damtrMWHCBLi6uuKf//wnnnnmGSxatAgBAQFwcHCAg4MD7O3t1cf3vzY1NQUA3GxowZ/icyACaG9rhdjWCsH8Xhm9n+m9uByMcrbhnUo9wkJJeiEtLQ0eHh4YMGCA1FGIiPTa2kBPHM6t7PSc2yd2orm2CgCwYsUKZGRkQKFQwNvbG35+fnB3d8e6devQ2tqKXbt2ISEhAStXroSVlRVqampQWFiImpoaKJVK9TWtra1RUVGB2upmtFb/L+qzj6C9pgKACAgymPZ3g8XwKbD1WwIzGwdEphazUOoR7pRDOq+iogLbtm3DihUr4O3tLXUcIiK9t+tMKd6Ly3lotrcAFVSiiIrPn0NrcyNsbW1RW1uLmzdvIjs7G9nZ2aitrYWtrS3GjRuH8vJyrFq1CgDw7rvv4s9//rP6WqIooqGhATU1Ner//vPVV5GXmwvBzALWPsEwdxkNwcQMbbfK0XAhAe011yEzt0L/Jb+F1XA/5G2ez4k6eoJ3KEnnpaWlwcbGpsOsQCIi6rnn/d0xytkGkanFOJxXAZUICBDhLquDR3MBvm1uBHBv4fKbN29iwIABePrppzF79myUlZUhOzsbGRkZKC4uVl/z3LlzHT5DEATY2NjAxsYGbm5uAAB7B0fI7Zzh/NyfYWo/8P9OHj4Ftr6LUBX1PppLLqAq5s8Y+MuPUd8894kK5UsvvYRvv/32iX4vli5diri4uCd6Dz2MCz2RTmtqakJ2djZ8fX25LhkRkRb5eThi6/O+yN00D//PIgvPm2dgtlkhXCza1ecIgoDt27ejtLRU/bWbmxtCQkLw61//GsHBwepzCwsL8e233yIjIwPNzc2P/Mzvvv8XXNZ80bFM3v8sEzP0C3kTkJsCyjbcTtwKG0Xv3/dydnbu9c8wBrxDSTrtwoULUCqV3LebiKiXWJiZoJ+VGRoaWiGXy9G/f3+YmZmhtbUVNTU1cHJyws6dOxEaGoqxY8eq3yeXy6FSqdRfjx8/HjKZDPv27cOBAwcwYsQIjBs3Dl5eXjAxuVc3PFyHYN7EoThysRJK1UNRYGLTDxaevmjKP43WG/m4nJeD8ePHP/H3dH8Hn87Mnz8fpaWleOmll574+vQwFkrSWaIoIj09Hd7e3tzXlYioF1lZWaGpqQlKpRI3b97E+PHjkZaWhqamJjQ2NsLb2xvR0dG4c+cOAgIC1MsD/fDDD+prrFy5EkuWLEF9fT1ycnKQnZ2NH374AQqFAqNHj4aPjw/c3d2x+ikPHMqtAPDoJYbMBg5HU/5pAEBcXFyPCmVXQ6ROnjyJ0tJSjBs3DgEBAU98fXoYCyXprMLCQty+fRtLly6VOgoRkUGzsLCAhYUFGhoaIJfLsXr1aly4cAFtbW3405/+hKSkJNjZ2SExMRG1tbWYP38+fvjhB3WhfOqpp7B48WIAgI2NDQICAhAQEIDq6mr1ZJ7z58/D1tYWjo6OCDC5i1PtbpABUD1QLAWoILeyV3997NgxBAYGYvbs2d0a9jRixAhMmzaty/MiIiIAAC+//PKT/DZRJzjLm3TWv/71L9TV1WH9+vXcapGIqBft2bMHN27cQG1tLRwcHNDe3o6WlhZ88MEHuHv3LiwtLbF27VrY2toiIyMDlZWV6kk4gYGBiI2NRf/+/R97fVEUUVZWhjNnziAvLw8AUKmyxhUMQWGrNUQIECBipFUzZFl7cXDPDgDAqlWr4OHhARcXF4SHh8POzk7j77Wurg6DBg2CIAi4fv26Vq5JvENJOqq2thZXrlzBokWLWCaJiHqZpaUlgHvFr6mpCU1NTXjmmWfQ3t6OnJwcnD17Fv/zP/+DpqYmyOVyWFhYwNfXF2+++Saee+65Lu8eCoKAjIwM7Ny5E/PmzUNLSwtsBQHOdy4jwFyAYGYJsbURv1gWjv888qX6ff7+/li4cCGio6OxdetWhIaGYuTIkRp9rzt37kRTUxNWrVrFMqlFnDZLOik9PR3m5uYYN26c1FGIiAyepaUl2traANxbXcPR0RHZ2dlYtmwZRo8ejYiICLz11ls4ceIEmpqakJOTg1/84he4desWampquvUZX331Ffbu3YsRI0agvr4eixYtAgCYCCJsze79b0xMDCoqKtTvCQwMhKurK9avXw93d3fs3r0bCQkJaG9vf+j6zW1KVNe3oLlN+dBrD/r6668B8HG3trFQks5pb29HRkYGJkyYADMzM6njEBEZPAsLCzQ3N8PGxgaCIMDJyQmXL1+Gu7s7PD09kZeXB39/fyQmJuLq1asYPHgw1qxZA5lMhu3bt6OsrKzT65eWlqKq6t7OO3FxcejXrx8cHf9vF5zRo0dDoVBAoVAgPz8fAODm5obCwkKUlJRAoVDg2Wefxfz585Geno7t27fj9u3bAIC0kttYvysd3hsTMPnDI/DemID1u9KRXnL7oRynT59GVlYWfHx8MHXqVG399hFYKEkH5ebmoqmpift2ExH1EUtLS7S3t2PQoEEwNzdHe3s7BEFAVlYWFixYgLq6Opibm8PFxQVRUVG4e/cuHBwcsGbNGvTv3x87dux47FI9LS0tiIuLU6/WsWPHDjg5OXW4symTyeDo6IivvvoKKpUK5ubmWLx4sXpty88++wxHjhyBh4cH1qxZg5aWFmzbtg1/iTmFZ7adwpGLVbi/4Y9KBI5crMKKbaew60xphyycjNN75Js2bdokdQiiB+3btw8DBgzgvx6JiPpIfX09srOz4eXlhfLyctTX18PLywuFhYWYOXMm2tracPr0aSxbtgw5OTkoLS2Fj48PzMzMMG7cONy8eRPJycmwsLCAi4tLh2vv378f169fh4eHB1JTU9Hc3Iz9+/cjPz8f165dQ2VlJTIzMxEREYGKigo4Oztj9+7duHv3LsaNG4fg4GAolUpkZWXh9OnTKCsrw9ixY1HWbIatOe0ABPx8evH9r5MuVSFweH8MtrfAnTt3sGrVKpiamuLbb7+FQqHom99cI8FJOaRTrl+/jmvXruHZZ5+VOgoRkdG4PynH3t4e7e3taG9vh5ubG/Ly8lBeXo4ZM2YgOzsbP/30E5YvX44dO3YgKSkJc+bMgYmJCcLDw2Fra4uEhATU1tYiODgYgiDg0qVLuHDhApYsWaJeT/LGjRuorKzEmTNncOvWLbS3t8PW1hZjxoyBtbU1vvzySwwfPhyWlpY4fvw4/P39ERISgvnz56OgoADZ2dlITU3F4UZ3CLBEZ0vVyGQCIlOL4efhiF27dqGxsZGTcXoJCyXplLS0NNjZ2WHEiBFSRyEiMhr3C+X9/zUxMUFLSwvs7OyQkZGBpUuXYt68edizZw8mTZqEOXPm4MiRI3BxccHIkSMhCAKCg4NhZ2eHhIQE3LlzB0FBQdi7dy9GjhyJCRMm4PLlywCAjRs3YtCgQdi9ezcaGhpw7do1TJ8+HdOnT8fHH3+sfhQeEBCA9PR0HD16FMuXL4dcLsfIkSMxcuRI1DU0IvLPSZ2WSQBQqkQczqtAc5tS/bh7/fr1vfObaOQ4hpJ0RmNjI3JycrhvNxFRH7tfJAHA2toatra2KC4uxsSJE5Gbm4uWlhaMHj0anp6eSEhIwJQpUzBq1CjExsaqJ8cA95b5eeaZZ3DlyhVERERAFEUsXrwYgiAgLS0NLi4uGDRoEACgpqZGPa5SJpPB1NQUgwYNQnl5OQDA1NQUs2fPRm5uLq5du9Yhb6so77JM3qcSgeSUk8jMzMT48ePh7++vwe8UPQ5/apPOOH/+PERRxKRJk6SOQkRkVExNTSGXy9HU1IRBgwZBJpOhrKwMY8aMQVtbG3JzcyEIgnqCzsmTJ7F06VJYWVnhhx9+UC85BNybsT116lQ0NTXBxMQEra2tuHXrFoqKiuDn5wfg3nqXNTU1sLKyAgD1TQQXF5cOM8bHWTs6gQAAIABJREFUjx8PJycnHD58GA/uw2JtLoesm0sUywRg985/AuBknN7EQkk6QaVSIT09HWPGjFH/BUNERH1DEARYWlqisbERgwYNQkNDA5RKJerq6jBs2DCcP38eANC/f38EBAQgNTVVvfj5rVu3cODAAXXhq6mpwdmzZ+Ht7Q0TExN88803SE5OhqWlJcaMGQMAaGhoQFtb20OF0tXVFTX/n737Do+yShs//n0mM8kkk8Kk9wSSQBICREqoAWGlSRGsSFFQfqusu+r67rvqqgu+brHs+65i32VdmhALIiC9ExJKQgIhBUJI720SUieZmef3x+w8EulSgnI+18XlMHOeZ87MLuTmPufct8FAc3Oz8vz48eMpLi7m9OnTmM1mTpw4wcp//4sgyYDqCnlKO5XE3T2d+fqrL9HpdMydO/emfH+CCCiF20ReXh4NDQ2iVJAgCEI3OT+gbG9vR6fTkZ+fz8CBAyktLaWmpgaA0aNH4+TkxLZt2/Dx8WHq1KkcP36c9PR0LBYL69evx8nJienTp/Pkk0/i5uZGZmYmISEhqNXWoxu2fZK2pfbzA0qgS5YyLCyMkJAQNm3axN///nelBNELU2K79AG/GItFxrsqhZaWFh555BFcXV1v7JcmKERAKdwWUlJS8PPzIyAgoLunIgiCcEeyBZT+/v6ANRtZUFBAnz59cHJyIi0tDQB7e3smTpxIbm4up0+fZsCAAQwaNIgtW7awbds2SkpKmDFjBg4ODuh0OmJjYwE4deoUqampAMq+S1vpHjs7OwBcXV1xc3NTAsra2lo2b95MaWkpra2tuLu786tf/Yo5c+YQYN/OcHURICNh6fJZ7FQSEvDGjBh2fLMGEIdxbjZxylvodvX19eTl5TF9+nTRt1sQBKGbODk50dbWhrOzM+np6fz1r3/FaDQSHBxM//79ycjI4J577sHOzo6oqCjCwsLYtm0bvXr1YtKkSRQXF5OSksLQoUMJCQkBrHsl09PTCQ8PR6/Xs3nzZhobG5EkCWdnZ+Xv/PMPYgYGBnLmzBlqa2s5c+YMOp2O+Ph4qqurKSoqwtXVlTNnzrB582ZitGqGhQbxTXYDxRY9MhISMmMjPHn67gjkmrOkp6czYMAA4uLiuuV7vVOIDKXQ7VJTU3F0dCQmJqa7pyIIgnDHcnR0pKioiHHjxrFhwwaMRiMAlZWV3HXXXbS2tiqlf2wHdM6dO0dSUhJg3QsvSRK1tbXKfsry8nIqKiqIi4tj8uTJjB8/noMHD3Ly5En0ej1ms7XvtkqlwmQycfz4cYqLi6mtraWxsZH77ruP559/njFjxjBhwgTa29vZvn07CQkJSJLE3LlzaS/N5h5tIf+a5MZcXRZzHdL47+E9GBzqLkoF3UIiQyl0q87OTtLT07nrrrvQaDTdPR1BEIQ7kizLbNu2jX/84x9otVqioqKUVooVFRV4e3sTGBhIeno60dHRAHh4eDBixAgOHjzIuXPnaGhoYPLkyWzZsoXExERGjx5NSkoKPXr0ICwsDEmSGDFiBK6urqxbtw6TyUR7ezsAZ86cYd++fTQ3NxMUFERTUxNTpkwhODhYmaObmxsDBgxQlt6nTZuG2Wymvb2diIgIHNQqnNUW1FonysvL8ff3JyEhAZ1Ox5w5c27xN3rnERlKoVtlZmbS3t4uDuMIgiB0o9dff50PPviAkJAQMjMzGTt2rPJaeXk5AHfddRd5eXk0NjYqr8XHx+Pg4EB6ejrjxo1jyJAhjBkzhr1795KdnU1mZiaDBw/usqQdExODg4MDbW1t7N27F7AGlH369OFXv/oV8+fPR6PRdDmYA9DS0qJkSD09PRk4cCDJyckAxMXFYbFYsLOzw9/fn/LyclxcXGhqaqK5uVkcxrkFREApdBtZlklJSSEiIgK9Xt/d0xEEQbijLVmyhDlz5uDr64uLi4vyfFNTEw0NDfTt2xeNRsPx48eV1yyW7w/D2P4eHzNmDOHh4Xz77bfIssxdd92ljJFlmdOnT2M0GjGbzZhMJsBaEH3q1Kl4eXmhUqkICAhQCpwDGI1GVqxYQUtLC+7u7tTW1lJUVER+fj4ajYZevXphsVhQqVRKQCn/sMG3cFOJgFLoNmVlZVRUVIjspCAIQjdbvHixsizc2tqKg4OD8pokSeTn5+Pg4EDfvn2VJhQA27ZtU/p+79ixg87OTiRJYsaMGZjNZhwcHLC3t1f2R3766ackJCQA1vJDw4YNA6yVPs6ePau8Z1BQECUlJciyjNlsZu3atdTW1qLX63nyySdxd3dn06ZNyLJM3759UalUXQLK1tbWLplU4eYTAaXQbVJSUtDr9YSHh3f3VARBEO5otsLmYA0oz6+4YSsfBDBw4EAaGxvJz88nOzubEydOMHnyZKZPn97lgE5FRQUWiwWj0cjy5ct599132bBhA66urowZMwawZiVte+fd3d1Zs2aNkv0MCgqipaWF+vp6vv32W4qKitBoNMybNw8nJyfGjRtHXV0dgFKWyHYoyFb2yLZUL9wa4lCO0C1aWlrIyspi3LhxolSQIAjCbeD8gPJ8vr6+5Ofn09ZhwsHNCzcPL44ePUpJSQmRkZEMGDBAOXBz8OBB+vfvz8GDB3F0dMRoNFJWVkZoaCjz58/H09OTgwcP4uDggKOjY5cl77KyMjZs2EBDQ4NS4mfr1q2cPXsWSZKYNWuWsqxu67AjSZJSDF2WZVQqldKLvKysTDlAJNx8IqAUukVaWhqSJHXZWyMIgiB0n0sFlE12ruytd+TjJduxyCARQnCFgUE6J56ZOlVJCowaNYr09HSWLVtGW1sbDg4OjB49mpqaGnJzc5X9lgaDAb1ejyRJXcoGTZ06lR49erBnzx4aGxtxcnJSlsEnT55Mz549lTnZTnrLsszJkycZMGCAsuQN4O/vT0VFxU38toQfEgGlcMtZLBaOHTtGTEwMjo6O3T0dQRAEAdBoNNjZ2V0QUH5ytBbHkH5K12wZKLa4UdTUg4GZtcwa5MDJkyc5fPgwLS0tgLXzzbPPPouTkxOdnZ0sXbqU//7v/wZg37591NbW8swzz6DVanFzc6O4uJglS5YQHx+Pm5ubcqAHYNCgQV322re1tZGVlQVAaGgoe/bsITo6+oKAMikpCVmWxSrYLSL2UAq3XG5uLo2NjeIwjiAIwm3Eto/yhwElWJsbdv29CpB49dtMXnznUzZu3EiPHj2YPXs2kiRhZ2en7I9MSUnhlVdeYeXKlaxatQo3Nzdmz57NBx98wC9+8QsaGhr47LPPiIqKYt26dTg5OXU5of3DnxUnTpzAYrHQo0cPpkyZQnNzM0eOHLkgoDQajUqLR+HmExlK4ZZLSUkhICBA2TgtCIIg3B4uFVBeioTMWU0Iy/7fI3h6epKRkYEsy5hMJg4ePMjYsWM5d+4cRqMRlUrFo48+SkREBFOnTmXQoEF4e3sTGRnJunXrOHv2LLNnz2bRokX4+Pig0WhoaWlh5cqVPP7443h7eyPLMseOHUOlUtGvXz88PT0ZNGgQBw8eJDIyUslG2n6+lJWV4eHhcVO+K6ErkaEUbqm6ujry8/NFdlIQBOE2ZOvnbTJbrjwYa+Yyo17C2c16WCY1NZWePXsycuRIkpKSumQI58+fz8MPPwxYu6QBmM1m7B11/PKZ5wHo6Ojg2LFjAMybNw+tVoskSXz22WcUFBRQUlJCbW0tFotFaddrOzVeXl6uZCgdHR3R6/XipPctJAJK4ZZKSUnBycmJvn37dvdUBEEQhB+wZSiNpqsLKAEsMjS1m6isrKSkpIQhQ4YQHx+Ps7MzW7duxdXVlUGDBvHAAw8QGRkJQGJiIgdyylh+VsNq40DeL3RX7ldUUcP999+Pj48PwcHBeHl5ERAQwOrVq9m9ezf29vZ4eXnh7e0NWE98jxw5kpqami6F1gMCAkRAeQuJJW/hluno6OD48eMMHjwYtVr8X08QBOF24+joSG1tLQ7qq883Scj848P3cHLQYG9vj4ODA7IsM2nSJL744gsGDRpEamoqAEePHkWSJLKM7ny4Mh0VamQkJM33hdRr7dxJadDSB2s9ysTERH73u9+xceNGMjMzkSRJSUrU1NTw3nvvsX79evLy8lCr1axYsYK5c+cSExPD6dOnu+ytFG4e8VNduGVOnjxJR0cHgwcP7u6pCIIgCBdhy1Cq7a4uAJOQCbFrxGRs45yxDYBVq1YB4OXlhaurKxs3bsTFxQU/Pz8MBgOtOj/21foCYMsndlTmKffUBvfntW8zifRxISgoiI6ODurq6ggMDCQzMxNZlqmtreXQoUM88MADVFRUMHHiRGJjY6mpqaGgoIBnnnmGAQMGMGHCBGpqavDx8blxX5JwUSJkF24JW9/u3r1706NHj+6ejiAIgnARtj2UV9sHW0Yi2q6SuLg4JEkiIiICe3t7ABoaGjAajbS1tbFs2TLefPNNTpw4QUqTK3bnHRqXzZ00HFgNgMYrFOcBE1CpJJYdLMDf3x+VSkVxcTFpaWm4uLjg5uZGUlISkyZNoqKighdeeIFt27YxY8YMxo4dy3/9138xcuRITpw4QUJCAkVFRTf8exIuJDKUwi1RUlJCVVUV48eP7+6pCIIgCJfg5OSEyWTqshcRrJnI80sHWX8Pz43wpSM7k5MnTxIVFcVDDz2E2WymuLiYM2fOcObMGYxGo3LvhqYWzrbYYzYaMLc10VF2inOpG+msKcQpMh6PSb9GpXHAbJHZkV2JmVj8/PzIzc2luroaOzs7xo0bx44dOzh37hzu7u784Q9/AKyJCw8PDyoqKnjxxRe57777KCkpYcWKFUrnHeHmERlK4ZZISUnB3d2dXr16dfdUBEEQhEuwdcuxncIG+OWgHgSrDEj/KW1uXeZuYEFQA8asXfj7+9PW1sagQYMAa1Hznj17MmHCBJ555hkWLVqEVqulo6ODdjM0Zx+g9P15VCz7FXVbl2IxtuA5/b/xvO/3qLQ65X1th30CAwMpKSnB0dERs9mMg4MD27ZtA6y9xVevXq2c/HZ2diYsLIzCwkJGjBgBwNq1a6864yr8eCKgFG665uZmsrOzGTJkiOhYIAiCcJtavXo1W7du5cSJE2RkZCjPnys5jUfOen5Rt4nh5ev4bHIPJruUMSi4h9LlBlAykT/k7e3NfffdR1tbGxrMOPa6C+9Zf8Lr/lfpMXYBKgcdtRvfofyfT9NWkKZcJwHNBuv+x46ODrRaLUFBQWzfvl0JEJ977jk0Gg2fffYZra2tqFQqxo8fT319vdLH22AwkJycfJO+NcFGLHkLN92xY8ews7MjNja2u6ciCIIgXMK8efMu+vx7772nPI6IiKDtkQcZNmwYiYmJPPzww6xduxY7OzvS0tKIioq66D369OlDYGAgpaWl9HJVUew8QFlCd42biWHXP2k6tonqL5fgOe2/cIkeTaj6HCv//S8la2owGBg2bBhr165V7hsfH4+9vT1ffPEFxcXF+Pv74+PjQ2xsLIWFhcq4TZs2MXLkyOv9ioTLEBlK4aay9e3u168fWq22u6cjCIIgXIIsyxiNRpYsWaJ0vDn/uWXLlvGnP/2Juro6hg4dikaj4cCBA6jVamRZJi8vj8bGxoveW5Ik/Pz8ABjgUIfc5TUV+nv+HxrPYJAt1G37gM62JiJVFWi12i6Zz5MnT5Keng6gHNBxdHRk7ty5ODk5UVZWxqFDh7j77rvR6b5fPk9LP05Nk5H2TvON/+IEQASUdxxZlnn//fdxdnZGkiT27dv3o+9lsVgYPnw4kiRd8l6nTp2iqalJdMYRBEH4CdBoNKjV6i7tFw0GAwBNTU14eHhQW1uLVqslLi6OsrIyoqOjmTFjBgDr1q276H1ra2tJS7MuZ3vIDSwc4IwESP8pHCRJKnTRdwMgd7Qx3qGAF594kN69e2M2fx8EVlZWUldXB1gLmp8+fRqz2YxarcbT0xNPT0927NhBcnIyo0ePVq47kFXMkL/sInrxNp5anUpqoejxfaOJgPIOkp+fz9ixY3n22WdpaWm57vu9//77HD58+LJjUlJSCAoKwtfX97rfTxAEQbi5JEm6oJ+3LaBsbGxEr9crvbn1emu7RVmW6devH/7+/pSUlHD06NEu92xqamLVqlXKvkcnJydCTaX8372BBKsalMM+Gnd/5RrntkpCQkJQq9U4Ozsrz7u7f99Rx2KxkJCQwNtvv813332H0WjEz8+Pe++9l5SUFPYUtn0/tsP62CLDrpxqHvr0EKuPiHJCN5IIKO8Atqxk//79SU9PZ9iwYdd9z+LiYl599dXLjqmpqaGwsFBkJwVBEH5CHB0duwSU9fX1F3Q3q6urIyMjA1dXV3JycmhubmbChAkAbN26lTNnzgDQ3t7OSy+9RHZ2NhaLhaCgIKZPn87Zs2fprDjNOPt85jqkcfC/RvHi6O8TDyaTCaPRyMmTJ/H19VUOdN51113KGBcXF5ydnZX+35WVleTk5GAwGOg1dDxbqr9f8pY7v182N1usJY9e+zZTZCpvIBFQ3gFef/11nn32WUaNGkVmZiYTJ0687ns+/fTTtLW1MWXKlEuOSUlJQafTKSftBEEQhNufrbi5jcFgQK/XY2dnpzyfn59PQUEBo0ePxs7OjqSkJIKDg3F3d8fFxYWvv/6a0tJS1q5dy5o1a9iwYQMajYbw8HB69+5NREQEubm5SJKEWpLxd3fBfF7QFxwcTGZmJiaTidbWVsLDw9FoNMpyN1gD3xdeeIGnn36acePGoVarMZlMHDp0iH8eOAtmkzL2/NaONrbi6cKNIQLKO8SyZcvYtm0bQUFB132vzz//nK1bt/Lcc89dso2i0WjkxIkTDBw4EDs7u+t+T0EQBOHWuNiSt7u7Oz4+PtTU1ODi4kJOTg5OTk4MGDCAoUOHkpqaSktLC3fddRetra306NGDFStWUFJSgizL1NXVUV1djV6vR5IkJkyYgNlsRpZlJfv4+eefK+85btw4jh07RmhoKOXl5cTExBAQEKAsv4M1+ylJEj4+PsTHx+Pl5cWAAQOYeO80ii09sJi+r6Wpsne84HPaiqeLgzo3hggo7wCLFy/mySefvCH3qqur47e//S2hoaH8z//8zyXHZWRk0NnZKfp2C4Ig/MRcLKDU6/X4+flRUVGBh4cHlZWVDBw4ELVazbBhw1CpVCQnJxMbG4vFYkGj0WAymZBlGa1Wi8ViYf369ZhM1qyh7b9g3bf5zDPPKLUvBw4cSG1tLRUVFbi5uaFWq+nTpw9BQUFUVlYqe/Krqqq6zNtisWBvb09YZF9kJCwtDcprdm7eF/2stuLpwvUTdSjvADeymPjzzz9PTU0NK1eu7FKS4Xy2vt2RkZG4urresPcWBEEQbr7z91BaLBYaGhqUJe+0tDQCAwOxWCxKZxxHR0eGDh3K4cOHGTlyJB4eHpSVlQHWrjkBAQFUVVVRXFzMqFGjePTRR3FycqK4uBiDwUBWVpaylL1gwQKmTJnC8ePHcXFxoaqqioiICBwcHAgKCiIxMZHevXtTWVlJU1MTjY2NuLm5KXM1GAzs2LwBCSdMTbXKZ7L3DL7oZ1VJ4KIVodCNIL5F4apt376d1atXM3v2bCZNmnTJcUVFRdTU1DB58uRbODtBEAThRrBlKGVZ5ty5c1gsFvR6PTqdTlm+BnB1daWqqoqvvvqKrVu3kpSUxOLFi5EkCRcXF/r168fChQuZMWMG06dP5+DBgwDs2LGDqqoqTCYT9vb26PV65syZw/PPP8/gwYMpKSkhMzOT4OBgzp49y6hRowAIDAwEoF+/fhw4cACAtLQ0goKCyMzMpLa2lpqaGvz8/Bjs24NdSWeVz6QN6X/B57RTSYyP8kGrEduybgQRUApXpaWlhaeeegoPDw/efffdy45NSUnB09OT0NDQWzM5QRAE4YZxcnLCbDbT2dmp7Fl0d3fHzc0NlUqlZC8XLFhAQkICHR0dBAUFMXr0aGRZxmQycfbsWfbv38/+/fuZOHEiQ4YMYfLkybzwwguAtexcaGgoaWlpqNVqnJyc6N/fGvTV1NQAUF1djb29PREREYA1E+rl5YW39/fL13/+85+Jj4/Hw8MDBwcHoqKimD59Ok7bD7Gp4DgAdi6e2PtHXvA5LRaZhaN63qRv8c4j9lAKV+WVV16hqKiI//3f/8XLy+uS486dO0dOTo7o2y0IgvATZWt12NraqgSUtr2M9vb2aDQaACWYnDZtGjt37mTw4MEMHjyY6dOn89FHHynFzrdv386WLVtoamoiOzublpYW6uvrlb2Qrq6utLS0kJiYCFizjr6+vjQ1NREcHIxGo0GWZSorK5EkidraWqXFY2ZmJvPnz+eZZ55Bq9Wi0+lIT0/n8KbPMZZmW+c+7MEuP4/sVBIS8MaMGAaHfl/XUrg+IqAUrujo0aO8//773HPPPTz++OOXHXvs2DE0Gg0DBgy4RbMTBEEQbqTzA8r6+nolmGxpacFoNOLg4IC9vT1g7Vbz5ptvsm7dOmRZxsvLC4PBQFRUFLGxsUr/7LS0NJqbm1m/fj3Hj1szhz4+PgBotVpGjRpFcnIyp0+fpqysTMlWtre3s3//fj766CM+/fRTGhoasFgsfPjhh3h4eFBVVcWHH36IJElYLBaqq6tZt24dmzZtAmRiYgcRPTAOWzipkmB8lA9fPTWcuUNDbt2XegcQS97CZXV2drJw4UIcHBz45JNPLjvWbDZz/Phx+vfvj4PDhTW/BEEQhNvf+QGl7UAOoPTQbm1txcfHB1mWGTJkCN999x2dnZ1ERkYyZcoUli5dyqlTpwgNDSUiIoKkpCQAJbO4b98+dDqdcrBTo9EwcuRITpw4wZYtW9DpdOTm5gJQWlpKVVUVUVFRTJgwATc3Nz7++GOCgoLYtGkTM2fO5J133uHkyZM4ODjQ2trK8ePHqampYfDgwbz33nvs3LmTp341HTutMy5atdgzeZOIDKVwWW+99RYnT55k8eLFhIWFXXZscXExzc3NojOOIAjCT9gPM5R6vR6LxUJqairh4eFYLBZ0Oh2LFi0iLi6OtrY2wsLCePDBB3F2dmbIkCEcPXqU6OjoLuWBGhoamDVrFmBNVtj2YtpKDPXq1Ytz587R0tJCYWEhrq6uqFQqhg8fzsyZM4mIiMDLywtHR0dKSkoYPnw4GRkZvPzyy+Tm5rJlyxYSExNxdnbm3XffJTk5mZaWFlxcXPDxdMfLxUEEkzeRyFAKl5Sbm8uf/vQnevfuzeOPP05tbe0FY86vVZaenk5ERAQqlYra2lo8PT1v5XQFQRCEG0Cj0aBWq5U9lFFRUeTl5dHY2MjMmTPJy8tDkiQ8PDyQZZng4GBmzZqlNLEYMWIEKSkpyvK0jV6vV1avLBYLmzdvBqCiooK//e1vylhbx5v77ruPrKws0tLSlI48kiQRFBREaWkpAN7e3syePRutVossy6jVan79618rpYRKSkoIDg4We/pvARFQCpeUnJyM0WgkNzcXPz+/K45///33AXj22WcBaz1KQRAE4afHycmJc+fO0d7ejl6vJyUlBX9/f0JCQvDy8lI64Hh7ezN37twuvb51Oh1DhgwhNTVVOcADMHbsWCoqKjCZTEqRdLAGlxMmTODEiRNoNBpKSkrQaDSEhobi7OxMWloa2dnZ9OvXD0CpR2mxWMjJyeGbb77B3d2duro6YmNjlWDSZDJRXl5O3759b+E3d+cSAaVwSRMnTmTnzp2XHbNy5UpWrVoFwLRp03jmmWdEq0VBEISfOCcnJxoarJ1m7OzsyMvLY/r06ciyjNFopL29HYDx48d3CRptbFnKw4cPA+Ds7IxWq2XFihWANdgLDQ2lsLAQvV5Pz5492bZtGw8++CBVVVUYjUbq6+vx9vamZ8+eHD16tEtA2dHRweHDh9m1axf+/v6UlZWhUqnw8PBQ5lBeXo7ZbL4hLYeFKxMBpXBJfn5+V8xM2grVgrX36sSJE2/2tARBEISbzMnJiaamJgAKCgrQarXExMSwefNmGhsblXHnP/7h9Y6Ojpw+fRr4Pjtp6+W9aNEiCgoKKCwspLy8nO3bt6PT6XBycsJoNOLi4sLWrVuZO3cuQ4cOJSEhgbKyMgICAvD390eSJHbt2qUEpYMGDeLEiRNdlrZtmU5beSLh5hKHcoQbpnfv3t09BUEQBOEG0GidqD7Xjp29lpMnTxIbG0tSUhLHjh1TDu24urpesLe+urqaPXv2sHTpUpYuXQpAREQEAwcOZP78+XR2dtKrVy/g+37evr6+5Ofn07NnT3JycnB1dWXKlCnk5+eTk5NDREQEPXr04MiRIwCcPXsWWZZxdnamurqaoKAgJk+ejMViQaX6PqwpKSkhMDCwy3PCzSMylMJ1OX+fpO0vGUEQBOGnKaWwnmUH89mRpUUmFAmZYFUD7q1qyg/vx9HRkYULF/L+++/j6OhIbW0tDQ0NZGZmkpmZSVVVFVqtlqysLAoLCwkICGDmzJnY2dmRmppKQ0OD0kKxs7MTAE9PTyorKzl9+jRqtZrY2Fj69OlDnz592L59O+Hh4cTFxbFr1y569erFpk2b0Ov1NDY24uzszEMPPYSdnV2XgFKWZYqLi0XVkVtIBJR3iNWrVyuPMzIylMc7d+5UTsv5+Pgwfvz4K95r586dVFVVASj7Y354r/79+yuFaQVBEITb36rDRfxxQyYqlYQtVSAjUWLpwZ+PthGv9eWjRbNxcXHB3d2d1tZWamtree+991Cr1URGRjJ27FhOnDjBH/7wB/z9/fn666/Zvn07Li4uSh1L255Go9EIWPc6hoSE0NDQQGNjo1KibuLEiXz00UccOHCAUaNGsXv3bjZu3EifPn2UE+jTpk3D2dlZSW7YAsq6ujra2toIDg6+hd/gnU0ElHeIefPmXfT5v/zlL8rjMWPGXFVA+ec//5n9+/df9l6LFy8WAaUgCMJPREphPX/ckIkMmC1dK3Rf+1qDAAAgAElEQVRY/tNnJrE9kE2HszBXnqGurk55ffr06fTt2xd7e3t27NjBY489hre3N7t378bR0RGwlpjr7OzEyckJV1dXADo6OgCor69n3LhxZGdnc+7cOfbs2UNwcDB6vZ5Ro0Zx4MABpRamSqUiICCA3bt3A99nOW0lh2wBZXFxMZIkKdlQ4eYTGwvuELIsX/HXvn37rupe+/btQ5ZlGhoaeP3110lJSbngXkuWLLmpn0cQBEG4cZYdzEelunytRgmZT/edwWKxEB0drVT08PPzw97ent27dzNjxgzc3NzYs2cPkZGR1NfXA9aAT5KkLifCbQGlvb094eHh5OfnExsbS01NDevXr0eWZUaOHImTkxObN28mJCQEs9nM7t27GTFiBG5ubhQXFyv3B5RDOSUlJXh7e4uubbeQCCiFHy01NRV7e3uRiRQEQfgJa+80szO76oLM5A/JSJTI7jwyey5xcXGYzWbA2lJx//79TJ8+HZ1Ox+7du4mKigLAYDDg4uLCwIEDkWWZpqYmpeSQ7b99+vShsLCQ9vZ2hg0bxv33309OTg47d+6kuLiYtrY2ZFmmd+/eqFQqHBwcGDduXJcC5z/MUJaUlIhyQbeYCCiFH8VkMpGWlsaAAQOwt7fv7ukIgiAIP1JTu4krxJIKi2wdbyvFY29vz969e5k6dSqOjo7s3r2bmJgYZbzBYMDd3Z2VK1eyZs0aLBYLmZmZAMpe/P79+5OVlYW3tzfe3t5ERkYyceJEDh06xOeff07Pnj0JCwtj165dSlmh8vJygoKCKC8vx2QyddlD2dLSQl1dndg/eYuJgPI2UlVVxQcffMD06dMJCgrCwcEBZ2dnIiIieOyxx9i7d+8V75GSksLvf/97hg8fjoeHBxqNBnd3d4YNG8Zrr71GWVnZDZlrdnY2ra2t4gSdIAjCT5yLVs0VVrsVEjJffr6CrKws3N3dqays5MUXX0Sj0bBz584LVqxsvcBzc3Oprq5GpVJx7Ngx4PuA0t3dnVOnTnXpaOPr64tKpcJisTBw4EDAmoUMDw/H3d2dI0eOEBQUhMVioby8vEuGsqSkBEBkKG8xcSjnNvHUU0+xfPlyOjo6CAoKYtasWYSHh9Pe3s7WrVtZtWoVq1atYtasWSxfvvyCfSE5OTnMnz+fo0ePAnDPPffw/PPP4+/vT1FREatWreJPf/oT7777Lp988glz5sy5rvmmpKTQs2dP0a9bEAThJ06rsWN8tA+7cqovu+ytkiDMoYXaqgo2bdpEWVkZq1atwmg08tprr9HY2HjBXvzU1FSio6Opr69X9lzaSgQ1NzcDUFRURGdnp5LZLCoqYs2aNYSGhqJSqVi3bh1ms5mYmBgyMjIYMWIESUlJ3HPPPUqrRnd3d+scVSoKCwtxcXFRWjAKt4YIKG8TK1asoKOjg2nTppGQkNClpuNzzz3HJ598wqJFi0hISECSJNasWdPl+hMnTijB5KpVq5g7d26X11966SWmTZvGnj17eOyxx3B3d2fy5Mk/aq4VFRWUlpby8MMP/6jrBUEQhNvLwlG92JFVddkxsgx/fXw8EfpJ7Nq1i7feekvZB/mHP/zhiu/h4+NDbGwsaWlp7N27F4tkh9EikXUqF39/f9zd3SkqKuLzzz8nMDCQWbNmcfr0afLy8rC3t2fs2LGUlZVRUlKCWq3m2LFjBAYGUlJSorRllCSJkpISgoODu3TNEW4+seR9G9HpdPzrX/+6aIHwp59+mkmTJgGwdu1apWPADz388MMXBJNgLTq+YsUKNBoNFouFF1544UfP8+jRo7i6utKnT58ffQ9BEATh9jEk1J03ZsQgAXY/WP+WsC4nvzEjhsGh7ri5uTFo0CDa2tqu6T3s7OwYPXo0VRZn1pY4s7ItlgRjLK9l6NjRGsLmIzmsWbOGgIAAHn30UQwGA5s2bSIiIgIHBwe+/PJL7rnnHoqKiggJCeHYsWP4+/tTUlKiHBCSZZmKigqx3N0NRIbyNjJ8+HC8vLwu+foDDzzAtm3bANi4cSNDhw69YMz06dMveX1gYCBxcXEkJSVx6tQpzpw5Q0RExDXNsa2tjczMTOLj40U7K0EQhJ+RuUNDiPRxYdnBAnZkV2KRrcvcUS5m+jtUMSfuXmVsaGgobW1tvPXWWwDMmjULk8nEsWPHKCgoQJIk5aCMq6sr586d44knnmBjTgNbOvogISP/p76ljERaVScp355lik9P/uvR+zGZTCQkJNCjRw8efPBBDAYDn332Genp6fTp04fS0lLa2towmUy0trbS0NAAWPdsms1mcSCnG4iA8gaSZZkPPviAl19+mZaWFvbu3cvdd999VdeuX7+eoKAgdu7cyerVq0lKSqKiogKNRoOfnx99+vTBz89PGW+rvWUzevRoNm3aRHx8/GXfJzg4mKSkJOUe1xpQpqenI8sygwYNuqbrBEEQhNvf4FB3Boe6095ppqndhItWTU1lOZ999hk5OTlER0crY7VaLXq9noaGBurr6xk+fDh9+/alqamJjIwMkpOTaW1tpampCYC/LvuSLR19sB7t6ZoFNcsAEluqXHi8rInTB7fQ3t7OvHnzsLe3x8fHh4cffpjPP/+cmJgYjEYjer2e/Px8wNptB6wljDQaDT4+Prfi6xLOIwLKGyQ/P58nnnjioh1krsbw4cN54oknWL9+PXFxcSxYsABfX1+qq6v56quv2LBhQ5fxOp2uy+/9/f3x9/e/4vs0NjZe8h5XIsuyssH6Wq8VBEEQfjq0Gju0GushmqCgIHr27EliYiJRUVFd9ib6+fnR3NxMbW2t8pyLiwsjR46krq6OkpIS2traaGtrI6vDBwm4XIUilUrizW+OENtSwNy5c9Hr9cprYWFhTJ06lU2bNhEWFkZ+fj6yLOPm5qYElNXV1QQGBooVtG4gvvHrJMsy77//Pv379yc9PZ1hw4Zd8z1aW1uZOnUq69ev54MPPuDIkSO88sorPPnkk7z88sukpaUxe/bsLtdcKRN5KQUFBYD1D3xsbOw1XZuXl4fBYBClggRBEO4w8fHxVFZWkpeX1+V5Pz8/zGZzl4DSxmAw4OXlRXt7O6PH/oJiWX9BZvKHzBaZ9FoLY++ZQK9evS54feDAgYwcOZKzZ8+i0+mUzjslFVW0yWrKq2rE/sluIgLK6/T666/z7LPPMmrUKDIzM5k4ceI13+OPf/wjSUlJ/OpXv+KZZ5656JglS5agVlsTyj4+Ptx///3X/D65ubnk5OQAMH/+fLRa7TVdn5KSgq+vr+iNKgiCcIcJDQ0lMDCQxMREZW8kWANKi8VCTU3NBdcYDAY0Gg1msxkP3wDkqyyeLiNRUllLQUGBUl/yfL/4xS/o27cvra2tlBodWF/jyfsVoSQYY/nXub78K1dFamH9j/6swo8jAsobYNmyZWzbtu1H/asoPz+fpUuXIknSZcsuGI1GTCYTAG+88QaOjo7X/F7/+Mc/ANDr9bz66qvXdK3BYODMmTMMGTJElGIQBEG4w0iSRHx8PCUlJRQVFSnP2/b225a1bUwmE42NjZhMJtRqNT0D/bjaHx0SMrlZJ1i5ciVvv/023377LWfOnFFOckuSxIwZM6jQhbOlow/FFrcuB3wOFbfw0KeHWH2k6HJvI9xgYg/ldVq8ePF1BVgrV66ks7OTQYMGERAQcNExsizz7LPPAjB58mQWLlx4ze9z6tQpPvjgAwA+/vhjvL29r+n61NRUtFqtUutLEARBuLNERETg4+NDYmIioaGhgLUknbOzs7KP0pZYsZ26bm5uJiAgAJ3WnijnDk41abBcZtnbToLBfg5EeoVRUFCA0WjkxIkTnDhxAjs7O3r16kVsbCyN9p5srXEFuPCAz3+Ks7/2bSaRPi4MDnW/0V+FcBEioLxO15ut+/rrrwEuaFfV0dFBZ2cnOp2ON998k71799K7d29Wr159ze/Z2trKo48+itFo5He/+x2PPPLINV3f2dlJeno6sbGxyn4VQRAE4c5iy1J+/fXXlJaWKtuf/P39yc3N7RJQGgwGAOrq6oiNjcVgMBBqzCebyMu+h0WG/542iMGh7lgsFiorK8nPz+f06dOUl5dz5swZzpw5w56OMCR6XHZPpkolsexggQgobxERUHaj1tZWZU9jcHAwjY2NvP322yQkJFBQUIAsyzg6OtLW1oanpydbt25V2ktdLbPZzLx58zh+/DizZ89WaoZdi6ysLNra2sRhHEEQhDtcVFQUHh4eJCYm8uijjwIQEBDAmTNnuuyjtLVabGlpISgoiLS0NIIdO3lxVAhv7SlEJUmc3+VRJVk78diKp4O1jaKtgsmoUaMwmUyUlpaSnpHF8kPyVR3w2ZFdSXunWTmxLtw8Yg9lN8rKylI2HBcXF9OvXz8++eQT5s+fz8aNG3nxxRcxGo2AtbbW8uXLr+n+sizzy1/+km+++YYHH3yQFStW/KhSCikpKYSHh19zMCsIgiD8vKhUKkaNGkVubi5VVdZWjX5+fsiyTGVlpTLOYDAoXd/8/Pw4fvw4/fv3x6vxFA+4FXNPpDe2hjwSMCHal6+eGs7coSGXfG+1Wk1oaCijxt5zxWDSxiJDU7vpx31Y4ZqIgLIbnf+vuX//+9+0traSkpLCa6+9hqOjI0uXLsXT05Mnn3wSsB7G+fe//31V95ZlmaeffprPPvuMmTNnsnbtWuWU+LUoKyujvLxcZCcFQRAEAPr160ePHj1ITEwEvj+Yc/7PNIPBgEqlQq/XU1ZWRnNzM/7+/mRlZTF34nDenh7B/+uRw+8j6slcPJ5P5g666qVpF60a1VXu/FJJ1vHCzScCym5k6x5g89JLL9GrVy/279/P9OnT0el07N69m48++kjZq/Lyyy8rWcvL+c1vfsM//vEPpk+fzhdffHHNwWR7p5maJiNJR1Lo0aMH4eHh13S9IAiC8PNkZ2fHyJEjycrKora2FmdnZ7RaLc3NzUo1kvr6ekwmk7LcHRAQwLFjx/D19SU6OpovvvgCJwcN82c9gE5rf9XvXVtby/Yt3xEkGZAuWyLd2pN8QrSvWO6+RURA2Y1sf/BsHnzwQZKSkpg6dSqOjo7s3r2bmJgY7O3tlbqTVVVVzJgx47I9u3/729/y4YcfMmXKFL766qsLDtJUVFQwePBgpYzQ+VIK63lqdSrRi7cx5C+7eDFFTSKRpBU33IBPLAiCIPwcxMbG4uzsrLTy9fLyAqyBpCzLGAwGWltb8fDwIC8vD19fX0pLSxk/fjybNm2irq6OWbNmKcviV1JeXs6XX37Jhx9+yNmzZ5k/PBiusOxtscgsHNXzuj6ncPVEHrgbOTs7K491Oh2VlZVMnjwZjUbDzp07u5z8Pr+rje0gz8X8/ve/591332XSpEmsW7cOe/sL/+VnNBo5duyY0qrKZtXhIv64IROV6vvN0jIS6dVmHvr0EG/MiLns/hZBEAThzqBWqxkxYgS7du1izJgxBAUFUVJSQk1NDVqtVqkZ2djYiL29PXl5efTu3Zvy8nKysrJ46KGHrthvW5ZlCgsLOXjwIPn5+bi7uzNt2jT69++PWq1G41XEa99af2aZzzvhY6eSsFjkLgd8hJtPBJTdyNPTU3ns5OTEpEmTaG5u5p133qGxsZF9+/Ypr58f/DU3N3cJRm1eeeUV3nnnHYKDg3nuuec4dOjQBWNkWWbFihWAtcvP3Xffzd13301KYT1/3JCJDF3+YAIUfbAA87lq5r0J867ys/3973/n+eefv8rRgiAIwk/NoEGDOHjwIElJSYSHh5OcnExZWRk6nQ6wBp25ubl4eXlRUVHBqFGj2Lx5M/Hx8URHR1/yvrIsc/r0aQ4ePEhZWRm+vr48+OCDREVFdTlYOndoCJE+Liw7WMCO7EossnXP5PgoHxaO6imCyVtMBJTd6Pw/ULW1tUo7q9/97neXva6uru6CgHL58uX85S9/AawnxidPnnxNc1l2MP+Cf+Vdjyv9y1MQBEH4abO3t2fo0KEcOHCAgQMHAtbkh235W6/XU1NTg9FopG/fvuzatYvevXszduzYi97PbDaTmZlJUlISNTU1hISEMGfOHMLCwi5Zf3lwqDuDQ91p7zTT1G7CRasWeya7iQgou5Feryc8PJy8vLwuvVF/jMLCwh99bXunmZ3ZVVwulrT3i8Bz6gtIEmz+dTwOF/kDW1lZybhx43Bzc2PGjBk/ej6CIAjCT0NcXBzJyclkZGSgVqupq6ujvr4eSZIwm804OTlhMpkoKyvDxcWF+++//4Lg0NY8Izk5mcbGRnr37s20adOuqZ2xVmMnAsluJg7ldLMHHnhAeZyamoosyxf9tWjRImVcYmLiBQHkkiVLLnnt4sWLAZg4cSLFxcXK722a2k2XDSYBJLUDGo8g1O5B+IeGExkZecGv5ORkZFlm3rx5P6rXuCAIgvDTotVqiYuL49ixY7i6utLS0kJlZSWyLFNfX09rayuurq60trYya9YsHBwclGvb29tJTEzk3XffZdu2bQQHB/P000/z6KOPXlMwKdweRIaymy1atIj33nuP9vZ2Vq1axaBBgy4Y09rayjfffANY63+NHDnymt9n2bJlSj3LH7LV9LpUUOngF4GdTg9cuqaXLMssW7YMgF/+8pfXPD9BEAThp2nYsGEcPnwYlUpFpwUKKuswyRJqScbBwYG6ujpmz56Nh4cHYD0HcPjwYVJTUzGZTMTGxjJy5Ej0en03fxLheoiAspuFhISwePFiXn75ZT7++GNmzpzJmDFjlNdlWeaFF16gqqoKjUbDJ598cs29vBcvXnzZawrycgmxa6TQ5IJ8kaS118yXAevJufFRPhddVti5cycFBQWMGDGCmJiYa5qfIAiC8NPl5OSEW9hAvjpZR5E5BNkoISETrGqgr6WKORPiCQ8Pp6GhgaSkJI4fP45KpWLw4MEMGzYMFxeX7v4Iwg0gAsobYPXq1crjjIwM5fHOnTspLS0FrIdUxo8ff9HrX3rpJerr6/nb3/7G+PHjmT9/PnFxcTQ1NfHll19y+PBhXF1dWbNmDSNGjLjm+V0umExKSsJkMjFQ50VBo+tl73O5ml62mpZPPfXUNc9PEARB+OladbiIvx03A65KS0QZiWKLG0UdPejX6kr1+vWcPHkSR0dH4uPjGTJkiNga9TMjydd7GkS4qozhmDFjupQBupjk5GQ+/vhjDhw4QGVlJVqtlvDwcKZMmcJvfvMb5eTc9VqyZAmvv/46AE888QTx8fEUFRVRYBfIvhYfJOQumcrza3pdrA5lVVUVQUFBODs7U1ZWJv6SEARBuEOkFNbz8KeHrtCzRuahHiU8ePdABg4ceEGzDeHnQWQob4AbFZOPGDHiR2Ugr4XFYqGoqEj5fVhYGEVFRWg0Gh65yx/d4WwyTd4UW/TISFdV0+vf//43nZ2d4jCOIAjCHeZqSs6pJIlz/kMYOnTwLZyZcKuJgPIO0tjYyPr16ykoKFCey83NpWfPnjzwwANs3LiRYCcL3u35mGSJTuyYN+sh+kb2vuQ9xWEcQRCEO9PVlJwD64HPnTlVtHeaRWmfnzFRNugOkZWVxSeffILBYOjSxhFgwoQJnDt3jtbWVtrb23FwcEAtyThKJkzGtsved/fu3Zw9e5aRI0fSt2/fm/kRBEEQhNvI1ZScs7HI1vHCz5cIKH/mjEYjGzZs4OuvvyYsLIynn34ao9GovB4eHk5cXByHDh1S6n75+fkB1r2hLS0tl72/7TCOyE4KgiDcWWwl567GpUrOCT8fIqD8GSstLeXTTz8lOzub++67jwceeICioiJycnKUMcOHD+fUqVMYDAZl/2NAQAAAKpXqsgFldXU13377LXq9nocffvjmfhhBEAThtqLV2DE+2ge7K0SVdiqJCdG+Yrn7Z078c+FnyGKxcPDgQfbt24e/vz9z587F3d2ds2fP8tVXX3U5YadSqUhOTiY0NJSSkhIAPD09gStnKG2HcR577DG0Wu3N/VCCIAjCbWfhqF7syKq67JjLlZwTfj5EhvJnpqGhgRUrVrBv3z7i4+NZsGAB7u7uFBcXk5CQgE6nw2w2K+OrqqooLy8nOjqatrY21Go1zs7OwOUzlOIwjiAIgjAk1J03ZsQgwQWZSjuVhAS8MSPmklVChJ8PkaH8GcnMzOS7775Dq9Xy+OOPExJirRlZUVHBmjVrcHFxwWAw0KdPH/bu3QvAyZMnCQoKor29HUmSCAwMpLOzE7h8QLlnzx7y8vIYNWoU0dHRt+YDCoIgCLeduUNDiPRxYdnBAnZkV2KRuaqSc8LPiwgor0JVVRVfffUVO3bsID09nerqajQaDX5+fgwfPpwFCxYwduzYy94jOzubzZs3c+DAATIzM6mqqsJsNuPh4UFsbCwPPfQQ8+bNQ62+9v9JjEYjW7ZsISMjg5iYGKZMmaIsQdfU1LB69Wp0Oh0Gg4ERI0aQlJSkXFtWVsYjjzxCamoqKpWK4OBgOjo6gMsHlOIwjiAIgmAzONSdwaHutHeaaWo34aJViz2TdxgRUF7BU089xfLly+no6CAoKIhZs2YRHh5Oe3s7W7duZdWqVaxatYpZs2axfPlyHBwcLrjHb37zGz744AMA9Ho9jz/+OL1796alpYWjR4/y9ddfs3XrVpYuXcrWrVvx9fW96vmVlJTwzTff0NraysyZM+nfv7/yWkNDA6tWrUKr1dLS0kJ4eDi/+MUvugSUzs7O9OrVi/Xr1wMQFBSEwWBAkiQloJRluUs3oJqaGuUwzkMPPXTN36kgCILw86TV2IlA8g4lAsorWLFiBR0dHUybNo2EhAScnJyU15577jk++eQTFi1aREJCApIksWbNmgvuUVNTA0BMTAwHDhxAr9d3eX3btm3ce++9HD9+nEceeYT9+/dfcV4Wi4XExET2799PQEAAjz32WJf7NjU1sXLlSuzsrH+wnZ2duf/++1Gpum6bjY6OprCwUPl9YGAgVVVVqFQqJEnCbDZjNBq7HLqxBdiLFi0Sh3EEQRAEQRCHcq6GTqfjX//6V5dg0ubpp59m0qRJAKxdu5YjR45c8j4fffTRBcEkwKRJk5RM34EDBzh58uRl52MwGFi+fDn79+9n9OjRLFiwoMt9W1tbWbVqFSaTiR49etDS0oKdnR1ff/01q1evJiMjQxlbXFzMsmXLyMnJob6+Hq1WS0dHhxKIAhcse//zn/8ExHK3IAiCIAhWIkN5FYYPH46Xl9clX3/ggQfYtm0bABs3bmTo0KFdXg8LC2PEiBEMHz78kvcYPHgwX375JWDdb9mvX7+LjsvIyGDLli04OjqyYMECpRi5jdFoZPXq1bS0tBAZGUl6ejqzZ88mIiLiovd76623lMcxMTEASkBpW+ZuaWnBw8MDgL1793LmzBlxGEcQBEEQBIUIKK9g/fr1FwRtPxQcHKw8Li4uvuD1P//5z1d8H51Opzy2FRi3kWWZv//977zyyiu0t7fzP//zP/z2t79FVqmpaTIqm587OztZu3Yt9fX1jBw5kj179hAXF8cXX3zBiBEjyMnJoampCa1Wi5ubG7Nnz+aRRx7hu+++A2DmzJkAl81Qjh07Flm+yl5bgiAIgiDcEURAeQWTJ0++4pjGxkbl8fmB4bU4duwYAA4ODowYMUJ5Pj8/nzlz5nD48GHlOa+IATz71Ul2Zlcp5RnuifImtO0s1JYzefJktmzZgkajYf78+VRXV+Pj48PChQsJDQ3lm2++ITs7m3feeYePPvqI+++/n7CwMCUwtgWUFosFlUpFc3Pzj/pMgiAIgiDcGcQeyhugoKBAeRwfH3/N1x8/fpzPP/8cgFdffRVPT09kWWbp0qX07duX9PR0wsLClPFLNmaxK6cay38ShRYZdmVX8Y8CZ9SRY9m7dy+Ojo688847VFdXExUVRVZWFm+//TZDhw4lPj6eI0eOcPfdd9PS0kJCQgLt7e24ubkB1oDSVr7Iycnpiv28BUEQBEG4s4mA8gb49ttvAfDx8eH++++/4vjGxkbKyspITk7m1VdfZdSoUWg0Gv75z3/y6quvAvDSSy/x3HPPERgYyOrVq5kzZ06Xe5gtXZedLUiAxEcpdZR1aKmvr6ehoQGAv/71r3h4eGCxWEhOTiYqKoqgoCD++te/AtDZ2UlaWpqyZ9KWoZRlGZ1OJwJKQRAEQRAuSyx5X6fMzEwOHToEwBtvvHHB/seLue+++7qUBrr33nv5v//7P/r06YMsy2RkZJCamsqsWbN45513CAwMJDMz86rmIwG1nv0xJG9TnrMdEjp9+jT19fXKXkmtVotarcZkMnUpHXR+QOns7CwCSkEQBEEQLksElNdBlmWeffZZwLrXcuHChVd13V/eepvSimram89xLOUIK1asIDo6mhkzZjB58mTKysr49a9/zb333qsUSjeZLVc3JyQS8xsJNxqV55ycnJBlmaSkJEJCQggMDAQgLy8Pe3t7TCYTJpNJGd/R0YGjoyMWiwWdTqdkOgVBEARBEC5GLHlfhzfffJO9e/fSu3dvVq9e3aWbzMWkFNbz1OpU5m6o4fdHJJZku9E+ZB6fb01UDsu8+OKL3H333cycORMHBwcsFgulpaXkFRRd9bwsMvSOilF+f+rUKYqLiykrK2PkyJHWMRYLx48fp7W1FYA+ffoo4217KGVZFnsoBUEQBEG4IpGh/JHWrVvHq6++ir+/P1u3bsXd3f2y41cdLuKPGzJRqaSuh2lyqtmeJdN7zP9v787Dq6rvfY+/1x4yz/OckDCEEJUZRSgCylAcUGmVq0VUvFaP1l6vbc/paR1q7fUeac9zrVRPq0UUsaiIKFoFmUeZDRAIJDsjkAQyJzvDzt7r/rGbhSkU7AnSop/X8/Rp9tprrb33evjj4+/3+35/t+Byzae+vp4FCxYQERFBSUkJJSUldHR0UFt9/Et/N5sBDz34AIte+T2tra08++yzzJo1i4SEBPr37w9AVbRUBhMAACAASURBVFUVa9assa65//77rb+/GCi1hlJERETORyOU/w2rVq3ijjvuICEhgTVr1pCdnX3O83eW1fP4igOYnFlM0/P6SOIEEpJTAX9Yfeedd2hsbGT06NHcc889jL967F/f9qwMTK7ODCN3YH9Wr15Nv379WL58Ob/4xS9wOp1UVlayZcsWvv/977N9+3ZsNhv33nsvN910k3WPL7YNCgsLo6OjA6/X+3c8IREREfkm0Qjl32nNmjXMnDmTyMhI1q5dS25u7nmveXmzC5vNOCNMfpGBiTcsATiGz+fj29/+tjU9DZx3Or2HCUQc38WWLQ7Gjh1LYWEh8+bNY9myZdx3333WeQ6Hg2uvvZakpCRSUlK48cYb2bt3L7W1tZimSWxsLElJSVZT97a2NiIiIs77+bW1tTzwwAO8++67ZGZm9ir2ERERka8nBcq/w4YNG7jxxhsJDQ1lzZo1DB48+LzXVB6v5r13l+FMHIAjKvFvnmdio90ItF47nc5z3tfAxOR0yLRh4gP+9dp+DCCYTz/9lI0bN/Lmm2+yf/9+hgwZwsMPP0xGRgZlZWX8+te/Zu3atZimiWmapKenc/vtt5ORkcFHH31ETU0Ne/fuZc6cOeTn53PXXXedN1AuXbqUhx56iFOnTp33uYiIiMjXhwLll7Rlyxauv/56goODWbNmjbXv9Rfdf//9nDhxgvfff986tntfAbXLnyVq4j1Ejjl3j0pP/el1kl/czhH8RTQ97hkaxpamBip80ZgYGJgMjbfRv7uCyNoWJs+eTW1tLXfddRcej4ehQ4eydetWq6XRnj17mDNnDk899RSmaeJwOFiyZAnjxo2jsbGR+vp6Ro0axYsvvsjKlSs5cOAADz/8MB988MFZv/cXRyVHjRqFz+ejvr7+/A9VREREvha0hvJL2L59O9OnT8fpdLJ69Wouv/zys55XVFREQUFBr2MhAf49sdtLdp3zMzpPHMVzyr8PeFZWFhUVFTQ3N1vvf3E3nurDe5kU4OKFCQH8j+AC5kUWcmNMLXOv/xZHjhyhqKiIX/7yl3g8HgICApgxYwaVlZXW9UePHiUtLQ2bzYZhGHR3d3P33Xfj9Xrp6uoCICAggJEjRzJ16lQAVq5cyWeffXbW7z569Gg+/PBDfvWrX7Ft2zbCw8PP+VtFRETk60UjlOexa9cupk2bRmtrK8899xxNTU2sX7/+rOeerV9jgMMfKDsrCmja9jYRY27BsNl7ndPdWEPd+88BYLfbuf322/nkk0/485//TFpaGnFxcb0CYWBgIGFhYURHhBFi82Iz/VXbd9xxB9nZ2bzyyisUFhYC0K9fP3Jzc3nzzTe55pprGDt2LC6XizFjxmCaJomJiVRXV1NcXMzatWutafyerRdvvfVWPvnkEwDef/99q0n6Fw0aNIiPPvqIvLy8v+fRioiIyNeEAuU51NfXM2XKFJqamgB47LHHzntNZmZmr9cJCQnEJSRyqraGxg2LaD2whpD+o3FEJQHQdaKYtkMbMD2dhISFs2jhH5k1axbt7e0cOXKEAwcOsG/fvl73tNvtZGdn4/P5sNls1qjiiRMnmDZtWq+p6QEDBnDHHXewceNG1q9fT3FxMV1dXYSFhXH77bcTGxvL888/D0BBQYG1Z3hPoOwpygGoqKg462/++OOPv3TRkIiIiHz9KFCeQ3NzMw0NDX26R15eHserKvnJ/3uNP7zxDl3VxbR+vhpflxvDZscWFEZgWh6jh13BmJx4kpOTAQgODubyyy+noKCA0NBQIiMjrXu2trZSUlJCY2OjFeScTifl5eWMHz+egQMHWucmJiZiGAYTJkwgJSWFpUuXYhgGNTU1DB06FJvt9KqHL0559xQF9YRpgNDQ0LP+RoVJERGRbzYFynPIysrCNP92q58vy+l08pvH7mX2rJn86x9X4fKEW8U0+VFeMtzF5CeFMHDgQD799FPa29uZPHkyW7ZsweVyMXLkSFauXNnrnjk5ORw6dAiPxwP41zwWFRVx9dVXM23aNJ555hkAjh8/XegzYMAAIiIiaG9vZ+/evSQnJ/da85mRkdFrDSWAy+Wy3h8/fnyfn4WIiIh8/ago5yLqF2byLfsR/t84O7cH7uPeiIP8cGQYqYGd1NbWEhwczJQpU9iyZQtLly5l7dq1DBkyhN27d/eaeo6Li+Pmm29mzJgxhISEANDZ2cmxY8d47rnnKC4utgpj1q5dS11dHQANDQ00NDQwbdo0ACorK1m6dCngD5CTJ0+mq6sLwzCw2/3rPHsq1iMiIrjllnNXqYuIiMg3kwLlRVReXo5hGCTFxxJsdJOZlkJtbS1XXXUVhmGwdu1aBg0axPTp0ykqKiIgIICjR4+Sk5PTazeelJQUAEzTJDAwELvdzrBhwwB/gcyxY8eYPHky4A+as2bNorW1laNHj2Kz2YiMjMTn87Fnzx5OnjwJwA9+8APi4+Pp6uoiICAAjw8qaurYvn07AFOnTrXaDomIiIh8kaa8L6Ly8nKSk5Ot6eTU1FR27drFzJkz2bFjBz6fjw8++ICQkBCcTic7duzA4XAQFxfH/v37rfu4XC4WL17M/v37aWtrY8CAATgcDux2O0FBQXR3d/PTn/6UmJgYXn31VdavX09WVhYjRowgPj6eZ599lg8++MCaDr/yyitJSUmhurqaAzXtrG7P4qWlFVR/uAGApMGjiM+7EtM0tV5SREREzqBAeZGYpkl5eTl5eXlWIUxqaiqbNm3C7XYzduxY1q9fb21VmJSUxPLlywF4++23e91rwYIFLFiwAPCvixwxYgRtbW2kpqZy8OBB4uPjGTlyJK+88gpjxozh9ddfp7a2lg0bNtDV1YXT6SQ6Opqbb76Zhx9+mGHDhrF06VL+90vvsaUzDYMwmra9TWdFAY6YVAKnPsqHnWGM2lLC3HH9L95DExERkUuCAuVF0tTURHNzM5mZmVYhTU9Fd2VlJWPGjGHr1q10dHRgGAbV1dUcOXKE4OBglixZQkREBA6Hg/DwcG677TYAPvroIyorKwkPD6e5uZm4uDgqKiqYNGmSNZJ455130tjYSHJyMi6Xizlz5rB06VKCg4Npbm5m48aNuFwu7EkD2VLWBhi0Ht5C48bF2MNiSPjuUxDkX4/55IdF5KfFMDIr5uI/QBEREfmnpTWUF0nPyGNmZqY1QhkQEEB8fDyVlZUYhmH1fjRNk4SEBAYMGEBaWhpz586lra2NY8eOWSEUsPpQhoeH09LSYjVWT01Ntc4JCQlh0qRJuFwuwsLCiIyMpLOzk+nTp/PYY48xc+ZMwsLCWLzzOAYm7aV7OPXBfOwhkSTOfgbnX/plAtgNeHnz6R17RERERECB8qIpLy8nISGB4OBga/TQNE3S0tKoqqpi1apVtLe3A/4QWFtby+HDhwF/c/RvfetbAOzYsYPa2lrA3zeyJ1A2Nzdb2zNWVVX1+uxhw4Zht9vx+XzWjjtpaWkEBwdzxRVXcNMts6jwReEuK+DksmewBYaSOPtXOGPTe93Ha8Kqwmo6PN6v6CmJiIjIpUhT3heYaZq88MIL/Nu//RttbW2sW7eOa665hoqKCmsXmp4RStM0SU9PZ+/evTz44INn3OvJJ58841h+fj4+n4877rgD0zSx2WxERERY+3ZHR0dTUVHB8OHDrWsaGhrwer243W727t1LXFyc1W4IoLndg7t8PyeXPY3hDCRx9i9xxqWf8dkAPhNaOroJctrP+r6IiIh88yhQXkAul4t77rmHDRs29Dre0tJCfX09kyZNAk7vLOPz+YiKivq7PqNnb+9FixaRmpqKzWYjMDAQgCFDhuB0Ojly5Eiva44ePYrdbicvL48DBw6Qn5+PaZqcOHGCgwcP8t4HK6l95w8YjkASZz9DQHzWGZ9b9/ELeFvrSfrO44QH6Z+NiIiInKZkcAF8cVTSbrdz5ZVXWv0bwT/dDaf3+e4JlF6vl3Xr1lnn/eQnP2Hu3LkcOnSINWvWMHz4cPbs2cN1113H6tWrmTFjBpdddhkJCQm89dZbuFwuEhISrPWZ2dnZ2Gw2duzYQXNzMxEREYA/UPbr14/x48ezf/9+Kioq+O1vf0tDQwMnT55k4R//iNPhIP62p3Ek9Dvrb/TUVeFtrmVKXpJGJ0VERKQXraG8AJ566il+8IMfMG7cOA4cOMDUqVN7vV9eXk5sbCxhYWHA6Snvbdu2WWsaAXJzc8nNzeWmm24iNzeXwMBAhg8fzpEjR0hISGDy5MmkpaUREBDA7NmzCQsLo6amht27dwP+gJqRkQFARUUF4G9s3hM4Fy9eDPgrzhMSErjiiitYvHgxHR0d3Pfwo3R3tNFRXnDW//k62zBNmDfu7IFTREREvrk0QnmBvPzyy9x7771nfa+8vNwanYTTI5SfffYZ4J/GBqx9w202G9dccw3Lli3jlltuYfny5URERFgN0QHsdjtJSUl0d3fT3t6Ow+GgubmZsLAwYmNjKSoqor6+nj179mCaJhUVFURHR9PR0UFERAS1tbU8+eSTNDU1AbDg/z513t8YHh131pZBLpeLrVu3Wq/b2tqs/+8JsQBjx47tteOPiIiIfD0oUF4ATzzxxN/cQaa9vZ2TJ08ybtw461hXVxfgD5b9+vVj7NixALS2tlrnDBkyhE2bNrF7924Mw6C5uZnq6mqSkk638TFNE6/XS0xMDPX19Rw4cAAAt9vNgQMHCAgIIDQ0lPDwcH7wgx+wZMkSoqKiGD16NM8//zwNDQ1/1+90Gr6zHt+4cSN33333GcdPnTrF9773Pev1woULFShFRES+hhQoL4BzbUfY0+KnZ4TSNE02b94MQFhYGLNmzbKmwOvq6qzr2tvbGT16NCtXrgQgJiaG999/n3nz5lnnt7S00NXVRU5ODk1NTdTW1rJ+/XqSkpJob2/nwQcf5JVXXmHIkCHYbDaqqqqYMGEC2dnZXH311aSnp5OQkIDL5WLw4MHcdNNNPPvss/Tv35/jNSfJHjSEz3dt58YZ0+ns7LS+91+bO3cuc+fO7dtDFBERkUuW1lB+xWpqaoiKiiIyMhKA7du3W3to33DDDQQHB1tV2oWFhTzwwAMkJCQQGhrKyJEj+eUvf8nChQtpbm6mqqqK7du309LSwmeffWaF1T179hAWFkZISAg+n4/wcP/ONocOHaKlpYUBAwZQU1ODx+MhPd3fDmjKlCm0tbXhcrlITU3lO9/5DgcPHgQgJyeHTncraXERpCTGc+LECUJDQ+no6MDrVQ9KERER6U0jlF+x6upqqyn5iRMnWL16tfVeT8js8fbbb5OVlcUjjzxi9ZtcsGABmzdv5mc/+xmpqak0NTWxevVqbDYbpmkSFxfHvHnz2Lp1K3v37uU73/kO77zzDg6Hg4MHD+J0OsnIyGD37t3Y7XZSUlIAKCgosNZs3nDDDRiGwb59+wCIiIjA6/USFhZGUlIS1dXV5ObmAv51kT3V4yIiIiKgEcqvXH19PZmZmXR1dbFkyRJM02TEiBHA6SKcHgMGDGDnzp38+7//OzfddBNXX30148eP5+GHHyYiIoJjx46xePFiQkJCyM7OxuFwkJaWRmBgIOHh4bS2tpKbm8sdd9yB1+vl2LFjZGZm4nA4qKysJCUlBYfDQUFBAWvXriUwMJCoqChWrVpFXV2dVXHeMwoZGhpKUlISNTU1BAcHA6cLbkRERER6KFB+xbwYZGZm8s4779Da2srAgQMZNmwY4G9s3mPv3r3cdttt1NTUsG/fPt544w1eeuklwD8FPW3aNMAfUN977z2Ki4sJDQ3Fbvf3hAwPD8c0Tdra2sjJyWHkyJGYpklNTQ1tbW1UVlaSnp5OaWkpy5cvx+Fw8MADDzB9+nRcLheffvqpVUXu8XgA/xrP5ORkvF4vnZ2dgAKliIiInElT3hfYzrJ6Pig4br1e3TWQ7y/eTVzdCQbFRDFr1ixOnToFnB6h7OzstHa8WbZsGaZpkpmZSVJSEl6vl+9///sEBwfz4Ycf0tbWxr59+7j22mtxOp1WgU7PNHRzczNut5tPP/2UDz/8kJqaGn784x9js9lITEwkNjaWYcOG8cwzzxAZGUlkZCT9+/enqKiIAQMGcOTIEStQhoaGsn//ft5++21efPFFTp06xUsvvcSECRN46KGHelWui4iIyDeXAuUF9Pr2ch5fcYDGk71H8Xae6MBkEMOu6N8rBBYXF7N582aOHj1Kd3c3QUFBhISEcNdddxEeHs78+fOtPbmvvfZaEhISKC0txe1209TURHBwsHWvnkKcRx99lPfee4+uri4iIyO59tprMU0Tt9tNSUkJn3/+OZ9//jkdHR28+uqrBAYGMmDAAIqLi62p7q6uLux2O88++yxPP/00TqeT6dOnY7PZcDgcrFy5krfeeouf//znPPXU+ftXioiIyNebAuUFsrOsnsdXHMDkzLWR5l9WFvzqkxKijXY6Kv3V1OvWrSMlJYWJEycyZMgQ9u/fz6ZNmwgLC+PEiRO43W5ycnIASE1NJTk5mdLSUsC/q05NTY3VSzI0NBSbzWaFycGDB3PPPfdYFeMHDhzgyiuvpK6ujt/+9rf86U9/wjAMlixZQnFxMWFhYda9Ozo62LdvH8uWLSMoKIgnnniCxMREWltbGTRoEI899hgTJkzgF7/4BUlJSTzwwAMX4xGLiIjIPymtobxAXt7swmb72/0o/Ux+u+qAtTvNrFmzuO+++xg7diyRkZGkp6fT1dVFbW0txcXFBAQEWG1+AGJjY62/Bw0ahNPppLS0lI6ODgzDICwsDNM0CQkJ4frrr2fw4MFUVlZSWFgInF4TOWHCBADefPNN1qxZQ3FxMePHj7fWUFZXV1v9Lx955BHGjRtHdXU1ISEhuN1uRo8ezSOPPALAj3/8Y06ePHlBnqGIiIhcmhQoL4AOj5fVhTV4feY5zzMxqDRjmHnrdwH/qCLACy+8wGuvvUZKSorVgLykpIR+/fpZRTcAVVVV1t8JCQkEBQXh9XqtVkQ96ygHDBpMRHQs+fn5dHd34/P5SExM5KGHHiItLY2oqCjrPgsXLsTpdDJ06FAGDhwIwJ/+9CerCGfevHkkJyfT1dVFQECAVZRz3333Af7dfZ5//vn//sMTERGRS54C5QXQ0tHNebKkxWdC4VEXcLo9z/z58/nVr36F0+kkKSmJsrIyqqqqrOlu8G+neOjQIcAfRHu2aczJyWHPnj28v+0gy0/GET3zp9QOv5tXmofwL2/uo8YXBsDNN99MYGAgs2fPZsiQIdZ9Dx8+TH5+PgEBAURHR2O32609xjMzM+nfv7+13WNPFXnP52ZlZQH+/pkiIiLyzaU1lBdAeJADm8GXCpUGJhvXfILDgCVLlpCQkIDb7aaiooI1a9YQFxfHokWL+Oijj3j88cdZt24d11xzDc899xwdHR0ATJs2jc2bN+Pz+UhLS2NzjY0fvF+K2e6ms7qE9i1/orv+OGWeduwhkSSnpjNy5EhmzJiBw+Hg8ssv7/Wdegp/PB4PHo/H2gKyp71RaGgoERERdHd399pvfPjw4ZSVlVFUVMTx48etpukiIiLyzaJAeQEEOe1cl5fIp4dqzzntbTdgRFIgOREZlJeX4/P5qK2txePxYJomc+bMweFwUFFRYV1TWFhIa2sr//Ef/wH4i3F+/etf89prr2G32yluMvmoNpx2125OvT8fX0cLAYk5RFw1C1tQOJ5T5RwrWM3111/P9773PRYuXEh5ebl1/8zMTI4cOUJKSgpdXV1WkQ9AYmKi9XdSUhL19fW0tbVhmiaGYfRa33nw4EEFShERkW8oBcoLJPXkLpoLijGBrpNl1vH2sn10t/hH/OyhUfzofz5AbuyV/OY3v2Hq1Kl0d3fz7rvvsm/fPmuP77CwMGsk8De/+Q1lZWV4vV7S0tK47777KCwsJC0tjYqKClYWu/GcKKJ22S/B6yF0yERir/9fGMbp1QwRw6dTt+Rfef3114mIiGDPnj3W59x4441s3LiRjo4Ourq6aGxstK5rbm62/k5KSrJCcGdnJ0FBQb0CZ1nZ6d8sIiIi3ywKlBfIE4+evXVO87a3rL/jMwZwsnA4uePHAxAdHc2gQYO46aab2LdvH5mZmYSEhFBSUmJdU11dzeDBgxk6dCizZ8+mra0Nl8tFXV0d3abBnppuTn38O/B6MAJDiJnyQK8wCeCITiNk7P+g45PfsWDBAuv45MmT+e53v8vBgwf58MMPiYyMtIpxAOrq6igrKyMrK4vk5GTrvdbWVoKCgqztGAFaWlr68PRERETkUqZAeYH09J7cVVbPy5tLWVVYjc/0r5nMcjRx65BorhqQyMqVK63Rxy/2q3z55Ze599572bFjBz/+8Y/ZsGEDAD/60Y+sc3bu3ElcXBxZWVlMmDCBxe+soKumlK4afwAN7jcCW2DIWb9f6OAJNKx60frMvLw85syZQ3BwMCNHjiQoKIhly5b1mvKOjY3lz3/+M/fffz/JycnW8ba2NuLi4qw2Q+AvGhIREZFvJgXKC2xkVgwjs2Lo8HhpbOvg9wueJzsznbLiPeRMe4hZs2bx7rvvAqf3zH7iiScwDH8Py5KSkl4jfz6fj/j4eO666y4qKipwuVy4XC527dqFE4OuE0XWuc74jL/5vexBIURGRtHY2IBhGEyfPp0RI0ZY7+fn51shtkf//v2pra1l586djB49muDgYNrb261K766uLuvckJCzB1kRERH5+lPboK9IkNNOUlQo/ftlWtsqrl+/niFDhnDrrbcCWGsXe8Kk1+ultLSU6Oho6z7l5eVcddVVhIeHM2TIEG644QYefvhhHn74YRyGSUTXKetcW8DZQ52BSfCRVTQ2+kcfTdPE4XCQkdE7gNrtduLj409fZxgMHz6cdevW4Xa7rfZBPYGyvb3dOrdn60cRERH55lGg/Irl5ORQVVXF1VdfTUFBAbW1tfTv3x+ApqYmXnvtNSugVVRU4PF4ehW7BAcHc8UVV5xx354m5unB3dYx0+s563dwl+7lyIoXrX2/AU6cOMHnn3/ea81kV1dXr8/esGEDo0aNwjAM1qxZQ3JyMl5sHK9vpcPjpaamxjo3MzPz73ouIiIi8vWhQPkVy8nJwev1EhUVRWRkJOvWrbNGJMePH09zczMLFy6kqamJkpISQkJCrLAIMHjwYByOM1cm9EyXp0UFWce8DSd6nWPgo71sH3XLniYoKLDXfTo7O1mxYgXz58/n3XffpaSkhM7OTmsUEqC+vp4333yTMWPG8PHuo7x00MvrHcN4ZL2bvCc+5v2t+61zv9gsXURERL5ZFCi/YrGxsURGRlJWVsbEiRM5fPgwJ074g19ERAT33HMPXq+XP/7xjxQVFZGTk2MFTvDv2f3XTNPkrbf81ePDhg0jLMy/G05X2W74S9GNgUn08Z00r/gV0VGR3H333b3WPJ48eZKwsDDi4uIoLS1l8eLFuN1uDMOwRimbmpoIDAzkj5uO8lHXIPbWdGPi/24+EyqPHgQgKSOb1NTUC/3oRERE5BKhQPkVMwyDnJwcSkpKyM/PJyEhgXXr1gH+gpuYmBjuvvtunE4np06dIjY21tqSEej1d4/33nvP6vs4ffp0HnnkEQA6m05xY8cadv70Wiad+oDCpf9BaEgwq1atYteuXb3uMXz4cNasWcOCBQt67X7jdrsZMGAA4J+CD8vIY6M7Gf945+mg62msprvRP+XdnjqSXWX1fX9YIiIicklSoLwI+vfvT11dHc3NzUyaNMkKgz0tfCIiIhgzZgwAW7duxeVyWdeePHmy170+/fRTCgoKrFFJp9PJk08+yeTJkwH43Qu/5X89cC+vL1qIYRg8/vjj/OQnP2HXrl299gbPzs7G7XbT3NzMY489xsyZMwF/AB4zZgxOpxOAn/2f35z1H0nr55/4z3cGETX6Jl7eXNrHpyQiIiKXKgXKi6Bfv34YhkFJSQkDBw4kLS0N6D36WFlZSUJCAikpKRw7dsw6Xltba/392WefsWXLFoKDg7nzzjsBsNlsOBwOFixYwNSpUwkKCuKNN97A4/HQ0dHBI488Qk1NDfPnzyc2NrbXfXt2xQkNDSU7OxvwV3pPnz6dRx99FICqHZ/QfqK41+/pPHGUlp0rAIi65i4IjmRVYTUdnjNHU0VEROTrT30oL4KgoCDS0tIoKSlhxIgRTJ48mUWLFllrKU3TpKSkhGHDhvUKfXB6hPLgwYN8/PHHOJ1O7r//fmt0s6dyu7m5mWHDhrFx48YzPr+goIAf/vCHvY49+eSTwOnq7J71ld3d3cTHx/Pss8/i8Rn85rn/S82SfyNs6FScsel4TlXS+vknmN0eIsbeRsSIGwD/msqWjm6CnPYL8chERETkEqJAeZHk5OSwbds2fD4fWVlZABw5cgSfz0dNTQ1ut5ucnBw+/vhjYmJirOtOnjxJSUkJy5Ytw263c9999xEZGUl9vX/NYk+gbGhoIDAwsFdvyL/HXzcpP378OFOmXMeS41E07/4Q9+HNeN1N2EMiCc4ZRfiIGQSl51vX2AwID9I/JxERkW8iJYCLJCcnh/Xr11NVVUVGRgYOh4O2tjb27dtHW1sbAQEBdHV1UVtb26vhuGmaLF68GIC77rrLajzeM13+xUDZv39/PB4PzzzzDHFxcTz44IMsWLCAqKgoSkpKWLRoEaWlpdx8883Wbj09vhhEly9fjtvtJigoiJGXDaYwIx+vyd9ktxlcNzhRo5MiIiLfUAqUF0lKSgrBwcGUlJSQkZGBzWYjKSmJDRs2EBUVRVZWFtu3byclJQWfz3fG9V9cewlY59hsNkpLS1m7di3XXnstdXV1AJw6dYrjx48zfPhwPv30Uzo6Oigt9RfOjB8/HvBXdB89epSioiKOHj1q3Ts3N5fLLruM9PR0JlY08t3fb4MvVHj/NZ/PZN64fn1+RiIiInJpUlHORWKz2cjOzqakpKTX65aWXid5swAAD4BJREFUFiorK4mLi6OsrIyrr766Vx9KgMjISI4cOcKKFSusIPnFQLly5Up+//vfc+jQISorKwF//8t169aRl5eHaZps2bIFgFGjRmGz2Xj11VeZP38+7733Hs3NzVa/S8MwmDFjBllZWdhsNk4WbucqR4X/PXoHXbvNwACenpnPyKwYRERE5JtJgfIiysnJ4fjx47S3t2MYBsHBwWRnZ2OaJtXV1URHR5Obm9ur+jspKQmfz8ctt9zC/v37eeutt+ju7u4VKHvWP77++uscPXqUlJQUJk2aRElJCbt27WLbtm1s2rSJ+Ph4JkyYQGNjIw6HgxkzZvDoo48yb948q6VQSEgINpsN0zSt/pWPzRzDY1cY9HO2YvtL1rUZcN3gRN6+/yruHKNtF0VERL7JNOV9EeXk5GCaJi6XC5vNhs/nIzQ0FPCvWxw6dCiLFy/mgw8+sK5pbGzkyJEjhIWFkZ6eTklJCW+88YY1bW2323G73QAUFxfz4IMPMn36dGpqati+fTt/+MMfOHbsGBkZGTz22GOMGDGC1atXM378+F77b3d1dWEYhvV91q1bx/bt25k+fTr5+fmsWrWKn10zhrHjJ9DS0U14kENrJkVERARQoLyoIiIiiI+Pp7i4GMMwME2TyspKgoODWb58OcuXLz/jmv/6r/8C/IFzwoQJvPbaayxZsoSPPvoI8I9Qjh07lm9/+9u0tbVx4MABli9fzltvvUVERARJSUncfvvtpKamkpmZyZVXXsnGjRspLy8/I1DabDbCwsLYuHEjmzZt4rrrrmP06NHs3LkTj8fDiBEjCHLaFSRFRESkFwXKiywnJ4eDB/17YLvdbhoaGjAMg6efftpqB5Sdnc2dd95praV8/vnnGThwINOmTQNg7ty5LFq0CIBt27Zx9OhRRo8eDcDEiRMZP348l19+Obt27WLnzp0kJiYycOBAtm7dytSpU0lPT6eioqLX9+qZNne73axbt46JEycyduxYTNNk586d5ObmEhkZeVGekYiIiFxatIbyIsvJyaGlpYVu06C8ph4vNux2OwkJCdTX1xMfH98rTAKkp6dTWVmJz+ejoqKCgoIC7Hb/KOHu3bvxer1ER0czYsQIoqKimDRpElFRURQUFJCbm8uJEyeIiIjA4/Fw8OBBMjMzrfv16OrqwufzUV1dzfjx4/nWt74FQFlZGSdPnmTUqFEX90GJiIjIJUMjlBfZSSJY58mhvC4Ks87AYBgDQzvJOVZGkt0gJSWlV5js6urC4XBw/Phx5s+fT3t7O6GhoSQmJuJyuYiOjqapqYmUlBSqq6tJT08H4PDhw7S3t3PNNdfgdrvZsWMH/fv3Z8+ePUyZMoWuri6qq6tJSUkB4MSJE5imSUZGBhMnTrQ+f+fOncTHx1vN2EVERET+mgLlRfT69nIeX3EAgyjMv/R1NDE40hZAEYO457JQCgo2MXToUOrq6igqKsLlcllV3/3792f06NGkpqZa782ePZuXXnoJl8uFz+fjiiuuAGDPnj1kZGQQHx/PxIkTWbhwIf369WP79u04HA7sdjsVFRWkpKTw+eefW+2Ghg4dagXapqYmDh8+zPTp089oZSQiIiLSQ1PeF8nOsnoeX3EAE/D9VZNwExtg8Mf9bmrNcBYtWsSHH35IV1cXkydP5l/+5V9wOp0kJiaSlpaGYRjWdHVAQAA+n4+wsDBM08Q0Terr6yktLWX48OEAZGRk0L9/f44cOUJoaCiff/45aWlplJeXc+DAAVasWEFYWBgA4eHh1vfatWsXAQEBVkgVERERORsFyovk5c0ubLZzj/IZmBTb/FPWd9xxB3PnzuWqq64iLi6O1NRUqqqqrHN7AmVzczMA2dnZ2Gw2PvnkE1atWkVgYCB5eXnW+RMnTqS+vp7k5GQKCgpIS0ujtLSUZcuWcdlllxESEgJgtQ3q7u5mz549XHHFFQQEBFy4ByEiIiJfOwqUF0GHx8vqwhq8vnNsiM1fpr/bg4mKTbB2tunRU5hjmv57/HWgbGxsJCsri/z8fIqKikhKSsLpdFrXp6SkkJubS01NDR0dHTQ0NNDZ2UlOTg433XSTVeXdM1JZWFiI2+1WMY6IiIiclwLlRdDS0c15sqTFZ8Loq8dTWlqKy+WyjqelpdHW1kZjY6P/vL8EyoaGBpxOJ8ePHycjI4Pc3FwAysvL2bRpkxVAwT9K2dLSQnh4OIWFhQAMGjQIm82Gx+MBsEYqd+zYQU5ODnFxcX378SIiIvK1p0B5EYQHOTjPbLfFwGTbpvWEh4fz8ccfW8ExLS0NwCqe6Tne2NhIeHg4nZ2dpKens3fvXpKTk7nmmmtYu3Ytq1evtkJlQkKCtX84QHx8vDWN7vF4rGKdY8eOcezYMY1OioiIyJeiQHkRBDntXJeXiP08qdJuM7g6M5yczHQ6Ojo4efIk//mf/8m6detoaWkhNja2V6A0DIPGxkacTieGYRAeHk5xcTEjRoxgwoQJTJs2jW3btvH+++/j8/moqqqyrrfb7TidTsrLywH/msnAwEDA3yooMjKSAQMGfIVPRURERL4u1DboIpk3LptVB2vOeY7XZ/LDaZcxMiuG66+/npdffpmGhga2b9/Oxo0bCQwM5PDhw4waNQqv14vNZqOhoQG73U5iYiKFhYU4HA7y8/MBGDNmDMHBwbz33ns0NjZy/PhxkpKSiIqK4tChQ9TV1dHZ2UljYyM+n4+goCBr+8aJEydis+m/N0REROT8lBguklFZMTw9Mx8Dzhip7Hl9laMcb81R/zG7nRtuuIHOzk6mTJnC7NmziY+Pp7W1lRdffJFNmzYB/invtrY20tLS2Lt3L/n5+dZII8Dll1/O1KlTKSsrwzAMvvOd7zBp0iS8Xi+dnZ0A1lrN4OBg9u7di2EYDBs27Kt+JCIiIvI1oUB5Ed05JpO377+K6wYnWmsqbQZcNziRt++/krnjcvj444/Zu3cv4K/MzsvLY9OmTWRnZ3PDDTcAMGnSJMLDw/F6vfh8PtxuNzU1NTQ1NVm9J3ucOnWKTZs2ERMTg2maLF26lMDAQEaOHIlhGL2mvYODg9m1axf5+flWcY6IiIjI+WjK+yIbmRXDyKwYOjxeWjq6CQ9yEOT078ttZvq3RPzggw8ICAhgyJAhTJw4kd/97nfs2rWLMWPGEBgYiGma5OXlWa1/AKu4ZsWKFeTn55OXl4fdbmfRokWEhIQwd+5cGhsbeeONN1i4cCE333wzu3fvxuPx4CqvpN100N7VTVNTE6NHj/6HPR8RERG59ChQ/oMEOe1WkOxhGAYzZszA4/Hw7rvv4nQ6GThwIEOHDmXTpk0MGzaMtLQ0qqqqSE1Nta4LDQ2lvb2dYcOG4fF42Lp1K+vXr8dmsxEYGMj1119PSEgIISEh3H333bz++uu89dZbBGfk88GRNipq/FtBGkUmA0NDmdEZSPLFfiAiIiJyybI/+eSTT/6jv4ScZhgGAwcOpLq6mk2bNpGenk5eXh5bt27FZrMRERHBoUOHSE5OtkYlo6KiaG9v58477+Tyyy9nyJAhHDx4EPBXg+/evZvDhw/jdrtJSEhgxIgRvL6tjD8dC6PZDPzL1o8ABo3dDt7aVUVceCCXp0X9Yx6CiIiIXFIM84udr+WfRnd3N2+++SaVlZXMmTOHwsJCdu/ezY033sg777zD8OHD2b9/Px6Ph5CQEHJycrjllltobW3l1Vdfpbu7m7lz5xIaGkpxcTGFhYUUFRXh8XjoikznjZrEc36+Abx9/1WMzIq5OD9YRERELlkqyvkn5XA4uO2220hOTuaNN96wekKWlZUB/i0XvV4vAG63m+HDh+N2u3nttdfo6upizpw5REVF4XQ6GTx4MLfeeis/+tGP+O53v0tBZxwG5/7vCJvN4OXNpV/pbxQREZGvBwXKf2IBAQHMnj2b6Oho3nnnHYYOHcrevXuJiYnhVEMzbV4b3aZBTEwMCQkJvP7667jdbubMmUNMzJkji06nk379B3KwyY7JuZuse30mqwqr6fB4v6qfJyIiIl8TmvK+BLjdbl599VXa29up6gxkvyeBko4QfyENJsMTHOQ7aghtr+Guu+4iMfHM6ezW1lZcLhefF7n4+R7nl/7snT+9lvjwwPOfKCIiIt9YqvK+BISEhPC9732PH76wjDUt/unqnhFGE4O9td3sJpYfTRxmhUmPx0N5eTkulwuXy0VNjX+Xnui4RAzSzzPh7Wcz/PuQi4iIiJyL0sIl4nCdh7XN8QBnTFf7/vL6uXWVBLXX4WisoLKyEq/XS3h4ONnZ2YwdO5bs7GzCwsI4uHgXnx6qxev727HSbjO4bnDiGa2NRERERP6aAuUl4uXNLmw245wh0MDH4l3H+Z95AVx33XVkZ2cTFxeHYfQOoF9mX3Gfz2TeuH4X5LuLiIjI15vWUF4COjxe8p74mHNkSYvNgMKnpp13ZHHxZ+X8/L0DZ4RUu83A5zN5emY+d47J7OtXFxERkW8AjVBeAlo6ur9UmATwmf7zzxco7xyTSW5iOC9vLmVVYTU+8/S+4vPG9VP/SREREfnSFCgvAeFBDmwGX3qE8ssW0pxrX3ERERGRL0t9KC8BQU471+UlYredu3ek3WYwJS/p7w6FQU478eGBCpMiIiLy36JAeYmYNy4b33mGKFVIIyIiIv8ICpSXiFFZMTw9Mx8DzhiptNsMDODpmfla+ygiIiIXnaq8LzG7yurPKKSZkpekQhoRERH5h1GgvESpkEZERET+WShQioiIiEifaA2liIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9IkCpYiIiIj0iQKliIiIiPSJAqWIiIiI9Mn/B+iazoN+mwtYAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import networkx as nx\n", "from karateclub.node_embedding.neighbourhood.grarep import GraRep\n", "\n", - "G = nx.barbell_graph(m1=10, m2=4)\n", - "draw_graph(G)\n", - "\n", "gr = GraRep(dimensions=2,order=3)\n", "gr.fit(G)" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 57, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAMtCAYAAABZy3r4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeZifdX3v/9d3ZpLMZJnJnrAESEoACZsgRCxaAjmHxeJytIpaj/a4nWNFkWovaet6bLHFteLRVq1cpz8tHK1aN9AScIcgIMiqAQLIlj0zWWYmmZn798ckgZCVZGa+M/k8Htc1V5zv3N/7foOQi2c+9/351qqqqgIAAFCIhnoPAAAAMJREEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAUpaneA+yvvr6+PP7445kwYUJqtVq9xwEAAOqkqqqsW7cuBx98cBoadr3eM+Ij6PHHH8+sWbPqPQYAADBM/P73v8+hhx66y5+P+AiaMGFCkv6/0NbW1jpPAwAA1EtHR0dmzZq1rRF2ZcRH0NZb4FpbW0UQAACwx8dkbIwAAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFKWp3gMA5ejq7MzPr/9G1q56Ip0b16dl7PhMnHJQzjjrlWluaan3eABAIUQQMGhu+OHVufvar2TCshWZurwzBy2vcsim5JBnHHfP6L/LE9NrWTm9JetmTMu8c/8sC855dV1mBgAOfLWqqqp6D7E/Ojo60tbWlvb29rS2ttZ7HCheV2dnvvKJt2fKr27Jc5b0pKkv6WlIGvuS2m7eVyXpbci24++d25SVp52a/3HJ56wSAQB7ZW/bQAQBA+aK916QY2+8PwetTHprSeN+/O7SU0uaquTxqck9p8/NRZd/Z+AGBQAOSHvbBjZGAPbbz677Rr7+kuNy9nfvz4xV/a/tTwAl/QGUJDNXJQu/uyRff8lx+dl139i/kwIARAQB++mz7/njjHnv+/OcJb1JkoYBXlveer7nLOnNmPe+P599zx8P7AUAgOKIIGCfdHV25stvnJ+F33sg4zr3f+VnTxqrZFxnsvB7D+RLb3x+ujo7B/eCAMABSwQBz1pXZ2eufvMZecFNHUmG7jeSrdf5w5vac9WbzxBCAMA+EUHAs/bV/3VmTrt1Y11nmH/rxvx//2tBXWcAAEYmEQQ8K599zx9vWwGqtz+8qT1XvPeCeo8BAIwwIgjYaz+77huZv+iB9NV7kC36kpx23f12jQMAnpWmeg8AjBxP/uOH8pyugfvTk/c/8US+09Gezc94vSXJrUcfkyTpq6q8/dFH89ONG3Z5nrl/8t/zuzWvHKCpAIADnZUgYK9c8d4Lctzvegd0F7hv7SSAkqQzySeWL+//31W12wBKkqmbavnse18ycIMBAAc0EQTsUVdnZ4698f701Qb2vOdNmJCvHjorH5o+PfccfUzOHjdu28+uXLM6STKqVstpLS3bXn/h2LFJkj962rGre3py7I1L7BYHAOwVEQTs0Vc+8fYctHLgPwj18oMPyXPHjcurJk3e4We9W34dXavlnu7uba8fMmp0kuTVrW3bXuvo68vBK5N/+eSfD+yAAMABSQQBezTlV7ekd4BXgfZk6+WWbd6c9X1PbcVwVfvaJMnbn3h8u+N7asnUm381VOMBACOYCBoAVVWlZ9WqbHr0sXQvXZpNjz6WnlWrUlUD/MfmUAc3/PDqPGdJz4A+C7Q3ZjX179uyordnj8eu6ulJU5U8Z0lPbvjh1YM9GgAwwtkdbh/0rFmTjTfdlK67707nb+5M1913pW/Djh8c2TBubJrnHZeWE45P87x5Gfv856dp0qQ6TAz77u5rv5Kzh2hP7AeedtvbNw4/IknS1bd9fY2t1bLxGX/AsGnLr019yd3XXpkF57x6MMcEAEY4EbSXqqpK5+23Z83X/i0d11yT9PQkTU39v+5C34aN2Xjzzdl4223bjm89//xMfu1r0nziianVhvj+ItgHE5atSE9Df2AMpms72vPQln+fxiUZv2UlqLnhqX9PaskOAbRVT1UljbVMWLZ8cAcFAEY8EbQX1i1alBWf/ky6lyxJGhuT3i2PbO8mgLaz9biennR8//vp+M53MuaoozLt4ndlwllnDc7QMECmLutM4yAH0O0bN+aSJ57Y9n1zw1N36k5rfOq3qSkNDVnd15e+JGOTjG5oyNotzwt19vVlfK0xU5fbIQ4A2D3PBO1Gz5o1eewv3pNH//wd6b7//v4XtwbQvtry/u4lS/Lo2/88j/3Fe9KzZs1+TgqDo6uzMwetqDKYa5aPdnXltb9/JEkys7Fxh5/PGDUqrVuiaGVfXyZuOebctrbtNkwY19CQWpKDlle2ygYAdksE7cK6667Lg+edn45rr+1/YaA3Odhyvo5rrsmD552fddddN7DnhwHw8+u/kZZNez5uX63v6ck5Dz+UJDm1pSXzmpt3OKanqnL8mDHbvm+t9f+21VwlW9diW5I0bLm9tGVT/9wAALsigp6hqqqs/MI/5dF3XJTe9vb9X/nZk76+9La359F3XJSV//TPdpRjWFm76ok9H7QfXvjgA9n6T/yvOjuzaMOGJMmqvr4c+9v78tzf/TbXtrfnF09b2XmoZ3OS5Gsd7dteu3TGjO3nXuO5IABg10TQ01RVlRWf/FRWfPrTW18YqgsnSVZ86lNZ8alPCyGGjc6N6wf1/N17+Ge9u6pyR+eOOy8+3bhaLa+cuP2ui53r23dxNACAjRG2s+qf/jmrvvjF+s7wz/+chnHjMvVtb63rHJAkLWPHD+r57zn6mL067q8POvhZnbdlfNu+jAMAFMJK0BbrrrvuqRWgOlvxqU9l3aJF9R4DMnHKQfUeYZ9MnDS93iMAAMNYrRrh9151dHSkra0t7e3taW1t3adz9KxZkwfPO7//GaAB+tuxoa8v/7J6Ve7s7MpvujrT0deXv505My9vm7jdcV9fuzbf7WjP0k2b0tHXl+lNTTl17NhcNHt2XnT99T5clbrq6uzMPfNPHtTNEQZa5+jk2MW3pbmlpd6jAABDbG/bwEpQkmUf/dv0rls3oM8Are3tyedXrcoDm7pzzJgdd7za6t7urhw6alT+x+TJ+cCMGbmgtTU/W78+r7zzztxx6aUDNg/si+aWljwxrZaR8iclVZInptcEEACwW8U/E7Ru0aJ0fP/7A37eaY1N+ckfHJlpTU25q6szr3r44Z0e94EZM3d47ezxE/InDz+Ur/77N3PUq17lA1Wpq5UzWnLYExvTNMgfmDoQehuSldMFEACwe0WvBFVVlRWf/kxSG/iPghzd0JBpTfvWmIeMGpUkWdfXlxWf/ozd4qirdTOmjYgASpKmvmTdDM8DAQC7V3QEdd5+e7qXLBm6rbB3Y21vb1b19OSurs789RP9n83y/LFj0/2736XrjjvqPB0lm3fun6VnhPxO0dOQzDv3jfUeAwAY5kbIf9oMjjVf+7eksbHeYyRJznzg/rzwgfvzqocfzq+7OvNX06fnBePGJY2NWf21f6v3eBRswTmvzr1zm9I78AumA6qnltw7tykLznl1vUcBAIa5YiOoZ82adFxzTdLbW+9RkiT/dOih+cIhh+Yvp03PQU1N6ezbsjrV25uOH/wgPWvW1HdAirbq1Oelsf4LprvVVCUrTzu13mMAACNAsRG08aabkp6eeo+xzfyx4/Ki8ePzxsmT86mDD8n/WbUyX90aPj092bh4cX0HpGh/9hf/J49PTfqG6WpQXy15fGryPy75XL1HAQBGgGIjqOvuu5N93LhgsB02enSeM6Y53+to73+hqal/XqiT5paW3HP63DQM09Wghiq55/S5tsYGAPZKsRHU+ZvfDKuVoGfqqvqyrm/Lllw9Pf3zQh1ddPl3ctdRjcPu2aDeWnLXUY256PLv1HsUAGCEKDKCqqoaFisrPVWV9p08k/Sbzs4s6e7Occ1Pfchq11132yqbupv5zg9lY3MyXHbM7kuysbl/LgCAvTU87wcbZL2rV6dvw8ZBv85X16zJur7eLN+y4vTj9euzbMv/ft3ESamSnPXA/TmvtTVHjh6TloZalnR351vt7Rnf0JD/OWXqtnP1bdiQ3tWr0zRlyqDPDbvywoWvzGfPvjILv/dAvUdJ0v+nODcvPDLvWPjKeo8CAIwgRUZQX2fXkFznK6tX5fGn3XL3n+vX5z/Xr0+SXNDammlNo/LKiRNz88aN+dG6denq68v0pqac39qa/zllSg4ZNXq781VdQzM37M5FH/9evrxyfl5wU0e9R8kvnt+Wd1z+3XqPAQCMMEVGULV505Bc57o/OHKPx1w6fcZen69v09DMDXvyus//OFe9+YzMv3XwV1R3ZfEpY/Onn7+hbtcHAEauIp8Jqj1jhWWkaBg9MufmwNPc0pILv/Tz/OL5bUmG7hmhrdf5xelteeNXb7UbHACwT4qMoIaW5j0fNAzVmkfm3ByYmlta8uYrb8qiC47MhpYM+q5xvbVkQ0uy6IIj8+av3DS4FwMADmhFRlDj5MlpGDe23mM8Kw3jxqVx8uR6jwE7eMfl30335f87985tTDLwH6i69Xz3zm1M9yc/5hkgAGC/FRlBtVotzfPm1XuMZ6X5uHmp1YbZB7TAFi9c+Mr8yXfuyqILjsyTWzYw7NnPf1y3vv/JKcl1F8zNn3znrrxwwUv376QAACk0gpKk5YQTkqYRsi9EU1P/vDDMvePy7+YP//O23PD603PvUU3p2fI7TE9DsqdPuaq2HLf1+HuObspP//sL8of/eZsPQgUABtQIqYCB1zxvXvK07auHtZ6eEbdyRbmaW1ry9r/+lyTJDT+8Ondfe2UmLFueqcs7c9DyKi072eSwc3TyxPRaVk5vyboZ0zPv3Dfm1ee8eognBwBKUWwEjX3+8/tXgkZCCDU1Zez8+fWeAp61Bee8OgueFjNdnZ35+fXfyNo1y9O5vj0t49sycdL0nHHWK3Oynd4AgCFSbAQ1TZqU1vPOS8cPfpD09tZ7nF1rbEzr+eenadKkek8C+625pSULX/z6eo8BABSu2GeCkmTSa18zvAMoSXp7M/m1r6n3FAAAcMAodiUoSVpOOiljjjoq3UuWJNWeHtuug1otY446Ks0nnljvSbapqiqd6zanZ1Nv+nqrNDTW0jS6MS0TRtm9DgCAEaHoCKrVapl28bvy6Nv/vN6j7FxVZdq73lnXuOhcvymP3rcmKx5Zl2UPdWTFw+uyuXvH1bNRYxoz7fAJmXFEa6YdNiGHHjMpLeNH12FiAADYvaIjKEkmnHVWWl/84nRce+3wujWuoSGt55+XCWedNeSXrqoqy5Z25M4fP5r7b1mevr4qDQ219PXterVsc3dvHv/d2jx5f/u244983vQcf+ahmTG71SoRAADDRq2qhuN9YHuvo6MjbW1taW9vT2tr6z6do2fNmjx43vnpbW8fHrfF1WppbGvLnGt+MOQbIjx4+4os/s6DWf34htQaaql2Ez57svX9Uw4Zl/kvmZPZJ04bwEkBAGB7e9sGRW+MsFXTpEk56KP/e3gEUJJUVQ76248OaQB1rd+cH3357lzzhTuz+okN/WPsRwA9/f2rHt+QH3z+zvzoy3ena/3m/Z4VAAD2hwjaYsLChZl28cX1HiNJMu3d786Es88esus9ePuKfPWDN+X+W5f1vzDQLbjlfPffuixf/eBNefD2FQN8AQAA2Hsi6GmmvO2tmfLWt9Z3hre+NVPe+pYhuVZVVbnlmodyzRfuTNfGzan6Bvl6fUnXxs255gt35tZrH8oIvxMTAIARSgQ9Ta1Wy7R3X5xp73731heG6sJJkmmXXJLpl7x7SDYRqKoqN337wSz+jwe3vDDol9zuOjd9+8Hc9B8PCiEAAIacCHqGWq2WqW97aw793BVpbGtLGgb5b1FDQxrb2nLo567I1CFaAUqSW699OLf98OEhu97O3DYMZgAAoDwiaBcmnH125lzzg7Sed17/CwO9OrPlfK3nn5c/uPaaIX8GaNsKUJ3d9O0HPSMEAMCQEkG70TRpUg75xMdz6OeuyJi5c/tfbGzcv5Nuef+YuXNz6P/5XA75+MfTOHHifk6697rWb84N/3pfMlw+tqeW3PCv99k1DgCAIVP8h6XujQlnn53xZ52VrjvuyOqv/Vs6fvCDpKcnaWrq/3VPth7X1JTWF5+fya99bZpPOKEuHyD606t/l+7OzQP6DFD35s5cd/vVeWj5fXl4xX3Z2L0uf3rme/P8o8/d5Xt6e3ty2TfekifXPpKXn/62zLp6cv7rm+YN3FAAALALImgv1Wq1tJx0Ug456aTMuPR92bh4cbruuiudd96ZrrvuTt+GDTu8p2HcuDQfNy8tJ5yQ5nnzMnb+/CH/8NOne/D2FVnyq2UDft71Xe255rZ/zaTx03PIlDlZ8vgde3zPj+/+VlavX56k/+OZlvxqWeY+b7oPVAUAYNCJoH3QNGlSWs89N63n9q90VFWV3tWrU3V1pW/TpjSMHp1ac3MaJ0+uy2rPzlRVlcXfebD/NrgB3pCtdezk/N3rv57WsZPz8Irf5vJvvn23x6/rXJNrb/3X/JeTLsz3b7my/8Vasvg7D+aIE6YOm79nAAAcmDwTNABqtVqapkzJqEMOyZjZszPqkEPSNGXKsPqP+WVLO7L68Q2DshX2qMbRaR07ea+P/4/FX8r0ibNy6tyFT71YJase25BlSzsGfkAAAHgaEVSIO3/8aGoN9Y+yh5bfl8W/+1Fecfrbd4jEWkMtd/740TpNBgBAKURQATrXb8r9tyxP1VffDyatqipf/8Vnc/IfnJk5M3fcBKHqq3L/LcvTuX5THaYDAKAUIqgAj963Jn11DqAkuem3P8zjq5fmZfN3/aGwfX1VHvvt2iGcCgCA0oigAqx4ZF0a6nwrXOemDfnOzV/KwhNelUnjp+/yuIaGWlY84rkgAAAGj93hCrDsoY66rwQtuuP/pbevJycfeWZWrXsySbJ2/YokycbudVm17sm0jZ2SpoyyOQIAAINKBB3gqqrKiofX1XuMrFm/PBu71+Vv/9+bdvjZj379tfzo11/L+17xTzl06pFZ/si6VFU1rHbXAwDgwCGCDnCd6zZnc3dvvcfImce9PCcc8Yfbvbauc22u+tmnMv+oc3LCES/IlAkzkySbu3rTuW5zxraOrseoAAAc4ETQAa5n09AE0E/u+nY6N61P+4ZVSZI7H74pazesTJL80byXZda0ozJr2lHbvWfrbXEHTT4iJ84+Y7uf9Wyuf7gBAHBgEkEHuL7eoXkWaNEd/y+r1y/b9v0dS3+WO5b+LEly6tyFaRkz/lmdr6+n/rvZAQBwYBJBB7iGxqF5ruYjr/vas37PlAkzc8XbFu30Zw1NngcCAGBw2CL7ANc0urHeI+yTplEjc24AAIY/EXSAa5kwKqPGjKygGNXcmJYJo+o9BgAABygRdICr1WqZdviEeo/xrEw/bILtsQEAGDQiqAAzjmhNQ8PIiIqGhlpmzG6t9xgAABzARFABph02IX19I2O3tb6+KtMOE0EAAAweEVSAQ4+ZNKJWgg45emK9xwAA4AAmggrQMn50jnze9NSGeQjVGmo58nnT0zJ+dL1HAQDgACaCCnH8mYemGua3xFV9VY4/89B6jwEAwAFOBBVixuzWTDlkXDJcF4NqyZRDxtkUAQCAQSeCClGr1TL/JXOS4boYVCXzXzLH1tgAAAw6EVSQ2SdOy9xTZ6Q2zP5frzUkc0+dkdknTqv3KAAAFGCY/ecwg+1Frz4qY1pGDZ/b4mrJmJZRedGrj6r3JAAAFEIEFaZ5/KgseP0xw+e2uCpZ8Ppj0jx+VL0nAQCgECKoQHNOmpb5L51T7zGSJM9/2ZzMOcltcAAADB0RVKhTzj08J597eF1nOPncw3PyOfWdAQCA8jTVewDqo1ar5fkvnZPRzY256dsP9j8jNBS3yG25zvNfNiennHvEEFwQAAC2J4IKVqvVcsq5R2TSzHG54V/vS3fn5lR9g3i9hv5NEBa8/hi3wAEAUDciiMw5aVoOPnJifnr177LkV8sGflVoy/mOPGVGXnThUWkeZxMEAADqRwSRpH/XuP/6pnk58pTpufm7D2bVYxtSa6il6tv3Gtr6/ikHj8v8l8zxOUAAAAwLIojtzDlpWmafODXLlnbkzh8/mvtvWZ6+vioNjbX09e45iBoaatuOn/u8GTnuzEMy44jW1GrD5YOJAAAonQhiB7VaLTPntGXmnLac8aq5eey3a7P84Y4sf6gjyx9el83dvTu8Z9SYxkw/fEJmzG7NtMNac8jRE9MyfnQdpgcAgN0TQexWy/jROfKU6TnylOlJkqqq0rluc3o296avp0pDUy1NoxrTMmGU1R4AAEYEEcSzUqvVMrbVCg8AACOXD0sFAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKIMaQT/96U9zwQUX5OCDD06tVsu3v/3t7X5eVVU+8IEP5KCDDkpLS0sWLlyYJUuWDOZIAABA4QY1gjZs2JATTzwxn/vc53b683/4h3/IP/7jP+YLX/hCFi9enHHjxuWcc85JV1fXYI4FAAAUrGkwT37eeeflvPPO2+nPqqrKpz/96fzN3/xNXvrSlyZJ/u///b+ZMWNGvv3tb+fCCy8czNEAAIBC1e2ZoKVLl+bJJ5/MwoULt73W1taW+fPn58Ybb9zl+7q7u9PR0bHdFwAAwN6qWwQ9+eSTSZIZM2Zs9/qMGTO2/WxnLrvssrS1tW37mjVr1qDOCQAAHFhG3O5wl156adrb27d9/f73v6/3SAAAwAhStwiaOXNmkmTZsmXbvb5s2bJtP9uZMWPGpLW1dbsvAACAvVW3CJo9e3ZmzpyZRYsWbXuto6Mjixcvzumnn16vsQAAgAPcoO4Ot379+tx///3bvl+6dGluv/32TJ48OYcddlguvvjifPSjH83cuXMze/bsvP/978/BBx+cl73sZYM5FgAAULBBjaBbbrklCxYs2Pb9JZdckiR5wxvekCuvvDJ/+Zd/mQ0bNuStb31r1q5dmzPOOCPXXnttmpubB3MsAACgYLWqqqp6D7E/Ojo60tbWlvb2ds8HAQBAwfa2DUbc7nAAAAD7QwQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQFBEEAAAURQQBAABFEUEAAEBRRBAAAFAUEQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARRFBAABAUUQQAABQlLpH0Ic+9KHUarXtvo455ph6jwUAABygmuo9QJLMmzcv11133bbvm5qGxVgAAMABaFjURlNTU2bOnFnvMQAAgALU/Xa4JFmyZEkOPvjgzJkzJ6973evyyCOP7PLY7u7udHR0bPcFAACwt+oeQfPnz8+VV16Za6+9Np///OezdOnSvPCFL8y6det2evxll12Wtra2bV+zZs0a4okBAICRrFZVVVXvIZ5u7dq1Ofzww/PJT34yb3rTm3b4eXd3d7q7u7d939HRkVmzZqW9vT2tra1DOSoAADCMdHR0pK2tbY9tMCyeCXq6iRMn5qijjsr999+/05+PGTMmY8aMGeKpAACAA0Xdb4d7pvXr1+eBBx7IQQcdVO9RAACAA1DdI+g973lPfvKTn+Shhx7KL3/5y7z85S9PY2NjXvOa19R7NAAA4ABU99vhHn300bzmNa/JqlWrMm3atJxxxhm56aabMm3atHqPBgAAHIDqHkFXXXVVvUcAAAAKUvfb4QAAAIaSCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIrSVO8BAACAEaiqkg0rk80bk97NSWPaOgcAACAASURBVOOoZNTYZNzUpFar93S7JYIAAIA927AqWfqT5Inbk8duTR6/Pdm0fsfjRo9PDj4pOeSU5KCTktl/lIybMvTz7oYIAgAAdq6qkkd/ldz8xeTubyZ9PUlDU/+vu7JpffLQz5NHbnrq+ONekZz6luTQ5w2LVSIRBAAA7Oi+7yfXfzRZfk/S0Jj09fa/vrsAerqtx/X1JHf9e/Kbq5Pp85Kz/iY55vzBmXkv2RgBAAB4ysbVyTfelFz12mTFff2vbQ2gfbU1iFbcm1z1mv7zb1y9f+fcDyIIAADod+/3ks+ektz9rf7vq76BPf/W8939rf7r3Pu9gT3/XhJBAABQuqpKfvrx5OrXJZ1rk2o/V372eL3e/utc/brkZ5/ov/4QEkEAAFCyqkoWfTi5/n9veWGAV392act1Fn2k/2sIQ0gEAQBAyX72ieTnn6rvDD//ZP/XEBFBAABQqnu/97QVoDpb9JH+HemGgAgCAIASbVydfOeiJPX/3J5+Dcl/vGNIdo3zOUEAAFCiH7w36WpPMnDP4qzfVOXyX3Rn8WO9ufmx3qzpSr7y0ua88aTR2x1382O9ufL2TVn8WG9+s6wvPX1J9cHW/nmu+cvkFV8asJl2xkoQAACU5r7vJ3d9Y8B3gVu5scpHfrop967sy4kzG3d53A+WbM6XbtucWpI5k56WJFVvcufXk/t+MKBzPZMIAgCAklRVcv1Hk9rAp8BB42t54i/G5+GLJ+Ty/9K8y+P+1/NGp/19E3LLW8fnv8x5RizVGvrnG8Td4kQQAACU5NFfJcvvGfgPQk0ypqmWmeP3nBgzxjekZdQunkWq+pLldyeP3jLA0z1FBAEAQElu/mLSsOtb1YaFhqbkV18cvNMP2pkBAIDhZcOq5O5vJn0D+yzQgOvrSe769/55B4EIAgCAUiz9SX9gjAR9PclDPx2UU4sgAAAoxRO3999qNhI0NCWP3z44px6UswIAAMPPo7eOrJWgx24dlFOLIAAAKEFV9a8EjSSP3z4oW2WLIAAAKMGGlcmm9fWe4tnZtK5/7gE2Qm4IBAAA9svmjUNymStu3pS1XVUeX9f/OUTf/V1PHu3oX8256LTRaWuu5eG1ffnX32xOktzyeP9xH/1pd5Lk8LZaXn/i6KdO2NM54DOKIAAAKEHv5iG5zMd/2Z2H25+6he2b9/bkm/f2P4f0pyeMSltzLUvX9uX9N3Rv976t3//R4Y3PiKBNAz6jCAIAgBI0jhqSyzx08YQ9HnPmEU2pPti6dydsGr3nY54lzwQBAEAJRo2t9wT7pqllwE8pggAAoATjpiajx9d7imdn9IT+uQeYCAIAgBLUaslBJ9V7imfn4JP65x5gIggAAEpx6ClJwwjZFqChKTnklME59aCcFQAAGH4OOinp66n3FHunr6d/JWgQiCAAACjF7D8aWStBR7xocE49KGcFAACGn3FTknn/LWlorPcku9fQlBz3iv55B+P0g3JWAABgeDrtLUlfb72n2L2+nuTUtwza6UUQAACU5NBTk+nzktowTYFaQzLjuOTQ5w3aJYbpXzkAADAoarXkrL9Jqr56T7JzVV+y4K8HZWvsrUQQAACU5pjzk+NemdSG2bNBtcbk+D/pn28QiSAAACjR+ZcnzW0ZPknQ0D/Pef8wFFcCAACKM3Zy8pLPJhkut8X1JS+9on+uQSaCAACgVM/54+Ss99d7in5nfyA55sVDcikRBAAAJXvhXyRnXFLfGc64ZEhnEEEAAFCyWq1/FebsD2x5YagSYct1zv5gsvCDg7ob3C6uDAAAFKtW618RuvBrScvEwd81rtbYf50Lv5a8cOhXoUQQAADQ75gXJxfdmsx7ef/3A/2BqlvPd9x/67/OED0D9EwiCAAAeMrYyckrv9y/SjPtOf2vNTTt3zm3vn/ac5IL/y15xZeGZBe4XdnPvxoAAOCAdMyLk6PPTx69JfnVF5O7/j3p6+kPmr6ePb9/63ENo5LjXpGc9pbkkFOG9NmfXRFBAADAztVqyaxT+7/OuSx56KfJ479OHrut/9dN63d8z+jxycHP7Q+eg09KjnhRMm7K0M++GyIIAADYs3FT+p8V2vq8UFUlG1YmPZ1Jz6akaXTS1JKMmzosVnt2RwQBAADPXq2WjJ9W7yn2iY0RAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCjDIoI+97nP5Ygjjkhzc3Pmz5+fm2++ud4jAQAAB6i6R9DVV1+dSy65JB/84Adz22235cQTT8w555yT5cuX13s0AADgAFSrqqqq5wDz58/PqaeemiuuuCJJ0tfXl1mzZuWiiy7K+973vh2O7+7uTnd397bvOzo6MmvWrLS3t6e1tXXI5gYAAIaXjo6OtLW17bEN6roStGnTptx6661ZuHDhttcaGhqycOHC3HjjjTt9z2WXXZa2trZtX7NmzRqqcQEAgANAXSNo5cqV6e3tzYwZM7Z7fcaMGXnyySd3+p5LL7007e3t275+//vfD8WoAADAAaKp3gM8W2PGjMmYMWPqPQYAADBC1XUlaOrUqWlsbMyyZcu2e33ZsmWZOXNmnaYCAAAOZHWNoNGjR+eUU07JokWLtr3W19eXRYsW5fTTT6/jZAAAwIGq7rfDXXLJJXnDG96Q5z3veTnttNPy6U9/Ohs2bMif/dmf1Xs0AADgAFT3CHr1q1+dFStW5AMf+ECefPLJnHTSSbn22mt32CwBAABgINT9c4L2197uBQ4AABzYRsTnBAEAAAw1EQQAABRFBAEAAEURQQAAQFFEEAAAUBQRBAAAFEUEAQAARan7h6UCAAAjT1VVWd21Ol29XdncuzmjGkelubE5k5snp1ar1Xu83RJBAADAHq3pWpPFTy7OPavuyZ0r7sw9q+7Jxp6NOxw3tmlsjp1ybI6fdnyOnXJs5s+cn0nNk+ow8a6JIAAAYKeqqsodK+7IVb+9Kj9c+sP0VD1pqjWlp+rZ5Xs29mzMLctuye3Lb992/Lmzz82Fx1yYE6aeMCxWiWpVVVX1HmJ/dHR0pK2tLe3t7Wltba33OAAAcEC4/pHrc8Wvr8iStUvSWGtMb9W7z+fa+v65E+fmoudelAWHLRjASZ+yt20gggAAgG3Wdq3N3y3+u1zz0DWppZYqA5cLW8933hHn5a/m/1UmNk8csHMne98GdocDAACSJIseWZQLvn1BfvTwj5JkQAPo6ef74cM/zAXfviCLHlk0oOffWyIIAAAKV1VVvvibL+biGy5Oe3f7ft36tjf6qr60d7fn4hsuzpfu/FKG+uY0EQQAAAWrqiqfue0z+cdf/2P/9wO8+rPL6265ztZrD2UIiSAAACjYl+78Ur5815eLmkEEAQBAoRY9smjbClC9fea2z+T6R64fkmuJIAAAKNDarrX50C8/lFrq/7k9Sf/OcR/85QeztmvtoF/Lh6UCAECB/m7x32XdpnUD+gxQb1dvVl6zMp0PdKZzaWd6N/TmkDcdkkkvnLTtmKqvytpfrE3HrR3pfKQzvet7M3ra6LTNb0t1XpXLbr4sf/+ivx+wmXbGShAAABTm+keuzzUPXTPgu8D1ruvNiv9Yke4nutM8q3mnx/Rt6stjX34sPet6MvnMyTnotQelZU5Lln9reZZ+Ymm+/+D3c8MjNwzoXM9kJQgAAApSVVWu+PUVA/5BqEnSNLEpR3/66IyaOCqdSzvzwIcf2OGYWlMtc/56TsbOHbvttclnTs7oqaOz/FvLs/GejfnspM/mzFlnplYbnFv1rAQBAEBB7lhxR5asXTIoW2E3jGrIqImjdn9MU8N2AbRV68mtSZKux7uyZO2S/GblbwZ8vm0zDNqZAQCAYeeq316VxlpjvcfYQU97T5KkcUJjGmuNueq+qwbtWiIIAAAKsaZrTX649IcD/izQQFhxzYo0tDRkwvET0lv15tql12ZN15pBuZYIAgCAQix+cnF6qp56j7GD5d9dng13b8iMP5mRxnH9q1Q9VU9ufvLmQbmeCAIAgELcs+qeNNWG195o7Yvbs/ybyzPpRZMy5awp215vqjXlnlX3DMo1RRAAABTizhV3DquVoPV3rc+jX3w0E06YkIPfcPB2P+upenLnyjsH5boiCAAAClBV1aCtrOyLjQ9szCOffSQtR7Rk1p/PSq1xx+2w71l1T6pqEHaxG/AzAgAAw87qrtXZ2LOx3mMk6d8G++FPPZxRU0fl8HcfnobRO8+SDZs3ZHXX6gG//vC6IRAAABgUXb1dQ3KdVdetSu/G3vSs7b/tbt3t67J5zeYkyZSFU5Ja8vDHH07vht5MPW9q1t2xbrv3j54+OmOPfOpzhLp7uwd8RhEEAAAF2Ny7eUius/Kaldm86qlrddzakY5bO5IkE0+f2D/L6v6fL/v6sh3eP/EPJ24XQZt6Nw34jCIIAAAKMKpx1JBc5+hPHL3HY4678ri9Pt/oxtH7M85OeSYIAAAK0NzYXO8R9smYxjEDfk4RBAAABZjcPDljm8bu+cBhZNyocZncPHnAzyuCAACgALVaLcdOObbeYzwrx045NrXajltn7y8RBAAAhTh+2vFpqo2MbQGaak05furxg3JuEQQAAIU4dsqx6al66j3GXumpegZt5UoEAQBAIebPnD+iVoJOm3naoJxbBAEAQCEmNU/KObPPSWOtsd6j7FZjrTHnzj43k5onDcr5RRAAABTkwqMvTG/VW+8xdqu36s2Fx1w4aOcXQQAAUJATp52YuRPnppaB33VtINRSy1GTjsoJU08YtGuIIAAAKEitVstFz70oVap6j7JTVaq846R3DMrW2FuJIAAAKMyCwxbkvCPOG3bPBjXUGnL+7POz4LAFg3udQT07AAAwLP3V/L/KhNEThs1tcbXU0jq6NZeedumgX0sEAQBAgSY2T8yHXvChYXNbXJUqH37BhzOxeeKgX0sEAQBAoc4+7Oy887nvrPcYSZJ3nfyunHXYWUNyLREEAAAFe/Pxb86bj39z3Wd403FvGrLriSAAAChYrVbLO5/7zrzr5Hf1fz9Ezwhtvc67Tn5X3nXyuwZ1N7hnEkEAAFC4Wq2WNx//5nxmwWfSNqYtDbXBzYSGWkPaxrTlMws+U5dVKBEEAAAkSc467Kx892XfzTmHn5Nk4FeFtp7v3CPOzfde/r0hewZohzmqqhoe20Hso46OjrS1taW9vT2tra31HgcAAA4I1z9yfa749RVZsnZJGmuN6a169/lcW98/d+LcXPTciwbtc4D2tg2aBuXqAADAiHbWYWdlwawF+c3K3+Sq+67KtUuvTU/Vk6ZaU3qqnj2+f+txTQ1NOe+I83LhMRfm+KnHD+mzP7tiJQgAANijNV1rcvOTN+fuVXfnrpV35e6Vd2djz8YdjhvbNDbzps7L8VOPz7FTjs1pM0/LpOZJQzLj3raBCAIAAJ61qqqyumt1unu7s6l3U0Y3js6YxjGZ3Dy5bqs9bocDAAAGTa1Wy5SWKfUeY5/YHQ4AACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCh1jaAjjjgitVptu6+Pfexj9RwJAAA4wDXVe4CPfOQjectb3rLt+wkTJtRxGgAA4EBX9wiaMGFCZs6cWe8xAACAQtT9maCPfexjmTJlSp773Ofm8ssvT09Pz26P7+7uTkdHx3ZfAAAAe6uuK0HvfOc7c/LJJ2fy5Mn55S9/mUsvvTRPPPFEPvnJT+7yPZdddlk+/OEPD+GUAADAgaRWVVU1kCd83/vel7//+7/f7TH33ntvjjnmmB1e/5d/+Ze87W1vy/r16zNmzJidvre7uzvd3d3bvu/o6MisWbPS3t6e1tbW/RseAAAYsTo6OtLW1rbHNhjwCFqxYkVWrVq122PmzJmT0aNH7/D63XffneOOOy733Xdfjj766L263t7+hQIAAAe2vW2DAb8dbtq0aZk2bdo+vff2229PQ0NDpk+fPsBTAQAA9KvbM0E33nhjFi9enAULFmTChAm58cYb8+53vzt/+qd/mkmTJtVrLAAA4ABXtwgaM2ZMrrrqqnzoQx9Kd3d3Zs+enXe/+9255JJL6jUSAABQgLpF0Mknn5ybbrqpXpcHAAAKVffPCQIAABhKIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAICiiCAAAKAoIggAACiKCAIAAIoiggAAgKKIIAAAoCgiCAAAKIoIAgAAiiKCAACAooggAACgKCIIAAAoiggCAACKIoIAAPj/27v36KjrO//jr+/M5DK5TRJICAECCDUaCkiUdUGP0tYGLKAiy9rtEcW1pUXQI1pWq/ZXd7sW26K16/Gybq1Y3bZbXKEoW7wCakGpgHIphnK/JYSYy+QyITOZz+8PTBSSkAlk8p3M9/k4J4eTmc98v+/DZ5Izr3y+n/cXcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcJSohaCHHnpIEydOVEpKijIzMzscc/DgQU2dOlUpKSnKzc3VokWLFAqFolUSAAAAAMgTrQM3Nzdr1qxZmjBhgp599tl2z7e0tGjq1KnKy8vT+vXrVVZWpptuukkJCQn6yU9+Eq2yAAAAADicZYwx0TzB0qVLdeedd6qmpuaUx//0pz9p2rRpOnr0qAYMGCBJevrpp3XPPffo+PHjSkxMjOj4fr9fPp9PtbW1ysjI6PH6AQAAAPQNkWYD2/YEbdiwQaNHj24LQJI0efJk+f1+7dixo9PXnThxQn6//5QvAAAAAIiUbSGovLz8lAAkqe378vLyTl+3ePFi+Xy+tq8hQ4ZEtU4AAAAA8aVbIejee++VZVln/Prkk0+iVask6Qc/+IFqa2vbvg4dOhTV8wEAAACIL91qjHD33Xdrzpw5Zxxz3nnnRXSsvLw8bdy48ZTHjh071vZcZ5KSkpSUlBTROQAAAADgdN0KQTk5OcrJyemRE0+YMEEPPfSQKioqlJubK0l64403lJGRoaKioh45BwAAAACcLmotsg8ePKiqqiodPHhQLS0t+uijjyRJI0eOVFpamkpKSlRUVKTZs2frZz/7mcrLy/XAAw9o/vz5rPQAAAAAiJqotcieM2eOnn/++XaPr1mzRpMmTZIkHThwQPPmzdPatWuVmpqqm2++WQ8//LA8nsizGS2yAQAAAEiRZ4Oo3yco2ghBAAAAAKQ+cJ8gAAAAALADIQgAAACAoxCCAAAAADgKIQgAAACAoxCCAAAAADgKIQgAAACAoxCCAAAAADgKIQgAAACAoxCCAAAAADiKx+4C0LcYY1QZDCnQElbQGCVYlrxul/oneGRZlt3lAQAAAF0iBOGMPm0O6b2aOm2tC2iLv1Ef1zWqoSXcblyq26Wx6Skal5GiMeleXZ6Zrn6JvL0AAAAQe/iUinaMMdrkb9RzRyr1x4pqhYzksaSQ6fw1DS1hra+p18ba+rbx1+Vm6ZZB/VWckcIqEQAAAGIGIQinWH28Vg/vK9MnDU1yW1LLZ8HnTAHoi0JfGL+8olovHavWhanJuve8gZrc3xedogEAAIBuoDECJElVwZDm7divOdv3aVdDk6TPA9DZan19aUOTbt62T/N27FdVMHSOlQIAAADnhhAE/el4jS77YKdWVtRIktrv+Dk3rcdbWVGjyz/YqT8dr+nhMwAAAACRIwQ5mDFGv9x/TLds36/aYItaony+Fkk1wRbdsn2//uPAMRlzjktNAAAAwFkgBDmUMUY/2VumxfvKJPX86k9nWs/zk71lWry3jCAEAACAXkcIcqj/OFChxw9W2FvDQftrAAAAgPMQghzoT8dr2laA7PaTvWVafbzW7jIAAADgIIQgh6kKhnRX6SHFyl17XJIWlh6kaxwAAAB6DSHIYe7fdVj+YIt6cidOcNdfVX3PfFVMu1wVUy9T9aJ5Cu4ujei1YUn+YIse2HW4BysCAAAAOkcIcpDVx2u1vKKmR7vABXftVNUd/6yWssNKvWmuUmfPVejIQVUv/LZCB/dHdIwWSS9X1Oi1Si6LAwAAQPQRghzCGKOH95X1+ITXP/ekrKQkZT/+vFL/8SalfvNmZT++VAqHVf/s4xEfxyXpYbrFAQAAoBcQghxik79RnzQ09Xgr7OC2LUosvlQuX2bbY+5+OUoYe7FOvP+uwoHGiI4TlrSzoUmb/ZGNBwAAAM4WIcghnjtSKXcUuiGYYLOspKR2j1tJyVIwqNC+3REfy22drBMAAACIJkKQA3zaHNIfK6rVEoUrzTxDhin4120yLZ/vNDLBoII7t0mSwpWR3weoxUgrKqr1aTOd4gAAABA9hCAHeK+mTqEobbXxXjNLLYcPyL/kXxXav0ehfbtV+/ADCledXNExJ05063ghI/25pj4apQIAAACSJI/dBSD6ttYF5LEUlSCUcs0shY8fU8P/PK+m116RJHkKi5R6wxw1/PevZHlTunU8jyVtrWvUNbmZXQ8GAAAAzgIhyAE2+xujthIkSWm3LlDKP96k0P49slLTlHDel1T3q5Od4TyDC7p1rJCRttAcAQAAAFFECIpzxhhtrYt+qHClZyhx9Li275s3fSBXzgC5C4Z3+1gf1zXKGCPLikInBwAAADgee4LiXGUwpIaWnm6MfWZNa15TqHSHUmZ+S5ar+2+x+pawKoM0RwAAAEB0sBIU5wJRDkDNH29SwwvPKPGSCXJl+BT86zYFVq9U4t9NVMrMb531cZvC3DQVAAAA0UEIinNBE90w4eqfK7ncavif52UaG+UeOEhp/3ybUmbNluU++7dXc7h3V68AAADgHISgOJcQ5X01nkFDlPWzJ3v8uIlncRkdAAAAEAk+acY5r7tvTnGyi6YIAAAAiI6++QkZEeuf4FFqHwtCaW6X+iewSAkAAIDo6FufjtFtlmVpTHr3blhqt7HpKbTHBgAAQNQQghygOCNFnj6SKTyWNC6jb4U2AAAA9C2EIAcYk+5VqI90nA4Z9bmVKwAAAPQthCAHuDwzvU+tBF2WmWZ3GQAAAIhjhCAH6Jfo0bW5WXLHeBByW9J1uVnql0hTBAAAAEQPIcghbhnUXy0xfklcizlZJwAAABBNhCCHuDgjRRemJsfshLskFaUmq5imCAAAAIiyWP1M3KcYY1RZf0KHqhq193i9DlU1qrL+hIyJnaUXy7J073kDFba7kE6EJd1z3kBaYwMAACDq2HxxFqoamrV+T6W2HanVx4dqtO1wrRqaW9qNS010a/Rgn8YOydToQT5NHNFf2amJNlR80uT+Ps3IzdTKihq1r9Y+bknX5mZqcn+f3aUAAADAAQhBETLGaPPBGr2wYb9e3VqmUNjI47IUCne+2tPQ3KL391bpw/3VbeOnj83X7AlDNW5Ipi2rHg+dP1hrq+tUG2yJiVUhlyRfglv/fv5gu0sBAACAQxCCIvD6jnI98voulR6rk9tlqeWz4HOmAPRFoS+MX/nxUS3fckQX5KXr7pJCfb1oQNTq7kh2gkePFg7RLdv39+p5OxOW9GhhgbITeCsCAACgd7An6AyqG5p1x++2aO4Lm7Srok6S2gLQ2Wp9femxOn3nNx/qjt9tUXVD8znX2h1X52TqB8MH9uo5O3PfeQM1JYfL4AAAANB7CEGdeG1Hub76yFqt2lomSerpHgetx1u19ai++shavbajvGdP0IU7hubqjoLcXj1nuxoKcnW7zTUAAADAeQhBpzHGMxDn5QAAF8JJREFU6Ik1u/XdFzapJhBUS5Q7vLUYqSYQ1Hdf2KQn1uzutY5ylmXpB+cN1H3nnVwR6q03Qut57j9voO4bkU83OAAAAPQ6QtAXGGP0s9dK9fPXSj/7vrfOe/Lfn3927t4MQncMHaClXx4uX4Jb7iifzy0pM8GtpV8ertuH9u5eKAAAAKAVIegLnly7R0+t3WN7DU/2cg1Tcnz686UX6prcTEk9/6ZoPd61uZn686UXsgcIAAAAtiIEfea1HeVtK0B2+/lrpXq9l/cIZSd49NSoYVr65eEqTE2WJLnP8Uq11tcXpibr+dHD9eSoYcqiCxwAAABsxidSnewCd+//bpUlqZeugDsjy5Lu+d+tGj8sW1m9fHPVKTk+Te6foc3+Rj13pFIrKqoVMpLHkkIR/Oe0jkuwLF2Xm6lbBvXXuIwU9v4AAAAgZhCCJP1o5Q75A6EeDUDh5oD8H7ysE2Wlai7bpXBTvfp9406ljb6q3dhg5SFVvf1fOnH4r7LcHnlHjJf52rf14Cs79MtvjuvBqiJjWZYu9qXqYl+q/nXkIP25pl4f1zXqI3+jPqprVENL+9usprpduig9ReMyUjQmPUWXZaapXyJvLwAAAMQex39KfX1HuVZ+fLTHjxsO+FW7/ndyZ+QoIXe4Thzc1uG4kL9S5b+9R66kVGVecZNMsEn+jS/r6PH9WpH4qKaNye/1G6p+Ub9Ej67JzWzbL2SMUWUwpKawUXM4rESXS8kuS/0TPKz2AAAAoE9wdAgyxuiR13fJsnq+E5w7NVuD578gd1qWTpT9TeW/WdjhuNr3/yATPKEBcx6TJ+PkPXMSB56viv95QA3b39Ijr2frqgtzYyZgWJalnMQEu8sAAAAAzpqjGyNsPlij0mN1UWmFbXkS5E7L6nJcY+l6eUeMbwtAkuQddpE82YPUsPNdfVJepy2Hanq+QAAAAMChHL0S9MKG/XK7LLWE7WmHEKqrVLixRokDR7Z7Lmng+Qrs+VBul6UXNhxQcUHXgQqIdU2BgDa/uUL1VccVam6QJzFVadk5Kr7qOiV7vXaXBwAAHMKxIaiqoVmvbi2zLQBJUkt9taSTl86dzp2apXBTnULNzXrl46P64bQiZfdypzjgXG1c/bIO7Fgll69aCVkVSk4/LndqSO5Utd2cNyDpnXcfVFNdjoLVuQrXZmnoqKn6uynX21k6AACIY44NQev3VCpkYwCSJBM6IUmy3O332FiexLYxIU+CNuz5VFPHDOzV+oCz0RQIaNWT98s1YIfS8vYoe5xROGzJsow629rm9oSUklkm4yuXy2VUG16n5S8+o3DFKE2d9++sEgEAgB7l2BC07UitPC7L1iBkeZIkSaYl2O45E2puG+NxWdp2pJYQhJi3bMlcec/frMxx1QqHLblcJ3++Wv89E8uSLOvz8Wl5u+XK/5vefOMdBUqLNWvRf0a1dgAA4ByODUEfH6yxfSWotXFCS0NVu+daGqrlSk6X5UlQKGz0Mc0REMM+fH25Dh1/StnFe9oajUQSfM6k9fXJqVXyXvymlv93iYbkzNMlJTPOtVwAAOBwjuwOZ4zRtiO1dpchT3p/uVJ8ai7b3e65E2W7lDhgeNv3247UykSjjR1wjpYtmatKc7/S8/ZKUqeXvJ2t1uOl5+1Vpblfy5bM7dkTAAAAx3FkCPq0oVkNzS12lyFJSjl/ogJ7/qKQ/3jbY4H9HylUdUQphZe3PVZ/IqRPG5rtKBHoUFMgoJeeukHZxW/J4znRdilbtFiWkcdzQtnFb+mlp76ppkAgqucDAADxy5GXwwV6KQD5N72i8IkGtdSfvNwtsHujQnWVkqSMi6fLlZQq34R/VGPpn3Xsd/cp/ZJrZJoD8m98WQk5w5Q2+uunHK8pGBvBDWgKBLTqxRuVVfiRpJ5f/elM63myCv+iVS/eqKk3vkjTBAAA0G2ODEHBlnCvnMe/cbla/BVt3zfuWi/tWi9JShv1FbmSUuXJyNGAf1qs6rd/pZp1S2W5PPKOGK+sr94qy3Nq17jmUO/UDXTl1aVz2gKQXTJHfKRXl96if5j3e1vrAAAAfY8jQ1CCu3euAhw879cRjUvMGaoBN/y463EeR169iBizbMlcZRd/aHcZkk6uCC1bMlezvv+M3aUAAIA+xJGfqr2J7q4HxaDkhL5ZN+LHh68vV/ro9xQrPTqMkdJHv6cPX19udykAAKAPceRKUL/URKUmumOmOUIk0pI86peaaHcZcLhDx59Sel5zj+0BmvudQ9q7t/19slr9/vcF6p/T+a8py5I8nmYdKntal4jW2QAAIDKOXAmyLEujB/nsLqNbRg/yyeqt3edAB5YtmauMgXt6tAtcXV3nf4iwLJ0xAH0+zigjf7eW/fy7PVYXAACIb44MQZI0tiBTHlffCBUel6WxQzLtLgMO1hQIyHv+5h6/DK415Ph8Ll15ZYrOL0xqe86YM4ekLzJG8hZupm02AACIiGND0OhBPoXCMbKxoQuhsOlzK1eIL6uevF/etOoeb4VdXhaSJI0f79U77zRq2rT0U56vro4sBFmW5E2r0qqnHujZAgEAQFxybAiaOKJ/n1oJmjCin91lwMFcA3YoHO75n5dA4GTb9zffbJAx0qOPVJ7y/JHDne8XOl04bMmVu6NH6wMAAPHJsSEoOzVR08YMlDvGg5DbZWn62Hxl0xQBNtm4+mWl5e2Ry9XzK6eh0Jmf//TTyJuXuFxGaXm7tXH1y+dYFQAAiHeODUGSNHvCMLXE+CVxLWGj2ROG2l0GHOzAjlVRCUCS2vYYeb2Wrp+ZoezsU38lHavoIiWdxuUy2r/j/3qqPAAAEKccHYKKCzJ1QV56j+9z6CmWJV2Ql65xNEWAjVy+6qhcCidJ4ZNXw2nhXf113bUZqqoKn/L8kcPN3TyeJU9GdU+VBwAA4pSjQ5BlWbq7pDBmbvx4OmOku0sKaY0NWyVkVfRoW+xWhw8H2372kpIsLVxY1vZc61v+2LHurQRZlpEnq6KnSgQAAHHK0SFIkr5eNEDXjM2XO8aChtuSrr0oX18vGmB3KXCwpkBAyenHo7JaWln5ecD50f+rOGX/T2s48vu7d0Njy5KSMo7TKhsAAJyR40OQJP3rNaOU4fXEzGVxliVleBP04PRRdpcCh9v85gq5Pd1bjYnU8OGJ6tf/819BliV96UunNgCZPTur28f1eILa/OaKc64PAADEL0KQpKzURD08c0zMXBZnjPTTmWOURUc42Ky+6njUju3zuVVb8/keIGOk3bs/3wPkdksVx1tUXx/u6OVn1FBd2fUgAADgWISgz0weladFkwvtLkOStGhyoUpG5dldBqBQc0NUj5+efuqvoC/+IaKlRVr6XLXq67t3SZwkBU/Un2tpAAAgjnnsLiCW3DZphBpOhPTk2j221nDbpBG2nR/4Ik9ialSPv+ylYVE5bkJSWlSOCwAA4gMrQV9gWZYWTS5sWxHqrT1Cref5lymF+pcpF9ANDjEjLTvH7hLOSmpWf7tLAAAAMYwQdBrLsjT/KyP1zOyLlelNkDvKecRtSZneBD0z+2LdNmlkdE8GdFPxVdepJdS3FoxDoQQVX3Wd3WUAAIAYRgjqRMmoPL199yRNHZMvqedXhVqPN21svtZ8fxJ7gBCTkr1eNdXlxEzTkK4YI53w5yjZ67W7FAAAEMMIQWeQlZqo//incXpm9sUqHJAuSXK7zi0Ntb6+cEC6/uumS/TLb45TZgpd4BC7gtW5MqZvXKJpjKVQda7dZQAAgBjXt65zsUnJqDx9vWiAthyq0QsbDuiVj48qFDbyuCyFwl3/ibx1nMdl6Zqx+Zo9YaguGpLJ3h/0CeHaLLlcfWMpyOUyCvm7f28hAADgLISgCFmWpeKCLBUXZOmH04q0Yc+n2nqkRlsP1WrrkRo1nGjfxjc1ya0xgzI1dkimRg/yacKIfsrm3j/oY4aOmqra8Lo+EYTCYUvDRn3D7jIAAECMs4zpK1f7d8zv98vn86m2tlYZGRm21GCM0acNzWoKtqg5FFaix6XkBLf6pSay2oO4sPzFyUrL2xPTQSgctlRfPlIzblxtdykAAMAmkWYDVoJ6gGVZ6p+WZHcZQNSEj42SK3+33WWckctlFK4YZXcZAACgD6AxAoAuTb3tIQXqs2O2S5wxUqA+W1Pn/bvdpQAAgD6AEASgS8lerwKlxb12A+HusiwpUFpMa2wAABARQhCAiMxa9J/yl42IuXbZxljyHx2pWYv+0+5SAABAH0EIAhCxITnzFAolxsxlccZIoVCihuR+z+5SAABAH0IIAhCxS0pmqG7b5TFzWZxlSXXbLtclJTPsLgUAAPQhhCAA3TLr+8+ouvQSu8uQJFWXjtes7z9jdxkAAKCPIQQB6LZpc5aqZs9FttZQs+ciTZvznK01AACAvokQBKDbkr1eTb3xRVWXjpekXtsj1Hqe6k/Ga+Z3/pducAAA4KwQggCclWSvV/8w7/eq2vw1hUJJUe8aZ4ylUChJVZu/pn+47fdRPRcAAIhvhCAA52TW959Rf+sh1ZWfJ6nnV4Vaj1dXNkI5nofZAwQAAM6Zx+4CAPR9l5TM0CWaoWVL5sp7/hZ506oUDltyuc4+EbW+vqkhW4HSYu4DBAAAeoxlTKzc8ePs+P1++Xw+1dbWKiMjw+5yAMdrCgS06qkH5MrdobS83XK5jMJhS5Zlztha25iTl7ydHO9SfflImYpR+sa8H7P3BwAARCTSbEAIAhA1G1e/rP07/k9uX5USMo8rOaNCbk+o3biWkEdN/lyFqnMV8mdp2Khv6O+mXG9DxQAAoC8jBAGIOU2BgDa/uUIN1ZUKnqhXQlKaUrP6q/iq61jtAQAA5yzSbMCeIAC9Jtnr1cTp/2R3GQAAwOHoDgcAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUTx2F3CujDGSJL/fb3MlAAAAAOzUmglaM0Jn+nwIqqurkyQNGTLE5koAAAAAxIK6ujr5fL5On7dMVzEpxoXDYR09elTp6emyLKvL8X6/X0OGDNGhQ4eUkZHRCxUiGpjH+MA8xgfmMT4wj/GBeYwPzOPZM8aorq5O+fn5crk63/nT51eCXC6XBg8e3O3XZWRk8KaKA8xjfGAe4wPzGB+Yx/jAPMYH5vHsnGkFqBWNEQAAAAA4CiEIAAAAgKO4H3zwwQftLqK3ud1uTZo0SR5Pn78a0NGYx/jAPMYH5jE+MI/xgXmMD8xjdPX5xggAAAAA0B1cDgcAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUeIyBL3zzjuaPn268vPzZVmWVqxY0enY733ve7IsS4899lgvVohIRDKPO3fu1DXXXCOfz6fU1FSNHz9eBw8etKFadKareayvr9eCBQs0ePBgeb1eFRUV6emnn7apWnRm8eLFGj9+vNLT05Wbm6vrrrtOpaWlp4xpamrS/Pnz1a9fP6WlpWnmzJk6duyYTRWjI13NY1VVlW6//XYVFhbK6/WqoKBAd9xxh2pra22sGqeL5OexlTFGV199dZefh9D7Ip3HDRs26Ktf/apSU1OVkZGhK664QoFAwIaK40tchqCGhgaNHTtWTzzxxBnHLV++XO+//77y8/N7qTJ0R1fzuGfPHl1++eW64IILtHbtWm3dulU//OEPlZyc3MuV4ky6mse77rpLq1ev1osvvqidO3fqzjvv1IIFC7Ry5cperhRnsm7dOs2fP1/vv/++3njjDQWDQZWUlKihoaFtzMKFC/XKK69o2bJlWrdunY4eParrr7/exqpxuq7m8ejRozp69KiWLFmi7du3a+nSpVq9erVuvfVWmyvHF0Xy89jqsccek2VZNlSJrkQyjxs2bNCUKVNUUlKijRs36i9/+YsWLFgglysuP8L3LhPnJJnly5e3e/zw4cNm0KBBZvv27Wbo0KHmF7/4hQ3VIVIdzeMNN9xgbrzxRpsqwtnoaB5HjRpl/u3f/u2Ux4qLi83999/fm6WhmyoqKowks27dOmOMMTU1NSYhIcEsW7asbczOnTuNJLNhwwa7ykQXTp/HjvzhD38wiYmJJhgM9mJl6I7O5nHLli1m0KBBpqysrNPPQ4gdHc3jpZdeah544AEbq4pfjoyR4XBYs2fP1qJFizRq1Ci7y8FZCIfDWrVqlc4//3xNnjxZubm5uvTSS1nq74MmTpyolStX6siRIzLGaM2aNdq1a5dKSkrsLg1n0Hp5VHZ2tiRp06ZNCgaDuuqqq9rGXHDBBSooKNCGDRtsqRFdO30eOxuTkZHBXetjWEfz2NjYqG9961t64oknlJeXZ1dp6IbT57GiokIffPCBcnNzNXHiRA0YMEBXXnml3nvvPTvLjBuODEE//elP5fF4dMcdd9hdCs5SRUWF6uvr9fDDD2vKlCl6/fXXNWPGDF1//fVat26d3eWhGx5//HEVFRVp8ODBSkxM1JQpU/TEE0/oiiuusLs0dCIcDuvOO+/UZZddpi9/+cuSpPLyciUmJiozM/OUsQMGDFB5ebkdZaILHc3j6SorK/XjH/9Yc+fO7eXqEKnO5nHhwoWaOHGirr32WhurQ6Q6mse9e/dKkh588EF95zvf0erVq1VcXKyvfe1r+tvf/mZnuXHBcX/W2bRpk375y19q8+bNXCPbh4XDYUnStddeq4ULF0qSLrroIq1fv15PP/20rrzySjvLQzc8/vjjev/997Vy5UoNHTpU77zzjubPn6/8/PxTVhUQO+bPn6/t27fz18g+rqt59Pv9mjp1qoqKivTggw/2bnGIWEfzuHLlSr399tvasmWLjZWhOzqax9bPOt/97nd1yy23SJLGjRunt956S7/+9a+1ePFiW2qNF45bCXr33XdVUVGhgoICeTweeTweHThwQHfffbeGDRtmd3mIUP/+/eXxeFRUVHTK4xdeeCHd4fqQQCCg++67T48++qimT5+uMWPGaMGCBbrhhhu0ZMkSu8tDBxYsWKBXX31Va9as0eDBg9sez8vLU3Nzs2pqak4Zf+zYMS7FiUGdzWOruro6TZkyRenp6Vq+fLkSEhJsqBJd6Wwe3377be3Zs0eZmZltn3UkaebMmZo0aZJN1aIznc3jwIEDJYnPOlHiuJWg2bNnt/vr8uTJkzV79uy2lI3Yl5iYqPHjx7drJblr1y4NHTrUpqrQXcFgUMFgsF2XG7fb3fYXMMQGY4xuv/12LV++XGvXrtXw4cNPef7iiy9WQkKC3nrrLc2cOVOSVFpaqoMHD2rChAl2lIwOdDWP0skVoMmTJyspKUkrV66k42YM6moe7733Xn37298+5bHRo0frF7/4haZPn96bpeIMuprHYcOGKT8/v8PPOldffXVvlhqX4jIE1dfXa/fu3W3f79u3Tx999JGys7NVUFCgfv36nTI+ISFBeXl5Kiws7O1ScQZdzeOiRYt0ww036IorrtBXvvIVrV69Wq+88orWrl1rX9Fop6t5vPLKK7Vo0SJ5vV4NHTpU69at029+8xs9+uijNlaN082fP1+//e1v9cc//lHp6elt+3x8Pp+8Xq98Pp9uvfVW3XXXXcrOzlZGRoZuv/12TZgwQX//939vc/Vo1dU8+v1+lZSUqLGxUS+++KL8fr/8fr8kKScnR263287y8Zmu5jEvL6/DFdiCgoIOgy/s0dU8WpalRYsW6Uc/+pHGjh2riy66SM8//7w++eQTvfTSSzZXHwds7U0XJWvWrDGS2n3dfPPNHY6nRXZsimQen332WTNy5EiTnJxsxo4da1asWGFfwehQV/NYVlZm5syZY/Lz801ycrIpLCw0jzzyiAmHw/YWjlN0NIeSzHPPPdc2JhAImNtuu81kZWWZlJQUM2PGDFNWVmZf0Winq3ns7OdVktm3b5+tteNzkfw8dvQaWmTHlkjncfHixWbw4MEmJSXFTJgwwbz77rv2FBxnLGOMiUa4AgAAAIBY5LjGCAAAAACcjRAEAAAAwFEIQQAAAAAchRAEAAAAwFEIQQAAAAAchRAEAAAAwFEIQQAAAAAchRAEAAAAwFEIQQAAAAAchRAEAAAAwFEIQQAAAAAc5f8DesEdG5XTZacAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAHDCAYAAABbMX/2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hUZf7+8fdMeicJKURCkxoQpIsiqHQQFV0XsbOuFVdRV7+6oqvbcG2Luqy4roqu/tQVBTuKiFhoglSld0gBAplJnSQz5/fHkEmGFFImDJlzv64r13XOmec88zmLmzvPaY/FMAwDERERk7D6uwAREZFTScEnIiKmouATERFTUfCJiIipKPhERMRUFHwiImIqCj4RETEVBZ+IiJiKgk9ERExFwSciIqai4BM5TcydOxeLxcLq1au9tttsNgYNGkR4eDgLFy5sdP/z589nzJgxpKWlERYWRtu2bfnVr37Fpk2bmlq6SIsS7O8CRKR2drud0aNHs2HDBubPn8/YsWMb3dfGjRuJj4/n7rvvpnXr1mRnZ/Pqq68yaNAgli9fTp8+fXxYucjpS8EncprKz89nzJgxrFu3jg8++IBx48Y1qb9HH3202rbf/va3tG3blhdffJE5c+Y0qX+RlkKnOkVOQwUFBYwdO5affvqJ999/nwkTJjTL9yQnJxMZGUleXl6z9C9yOtKIT+Q0U1hYyLhx4/jxxx+ZN28eF198sdfnDoeD/Pz8evXVunXratvy8vIoKysjOzubWbNmYbfbGTFihE9qF2kJFHwip5kbbriBzMxM3nvvPS655JJqn7/99ttMnTq1Xn3VNN3mOeecw9atWwGIjo5mxowZ3HTTTU0rWqQFUfCJnGZycnIIDw8nPT29xs/HjBnDokWLGt3/a6+9ht1uZ9euXbz22msUFxfjdDqxWnXlQ8xBwSdymnnppZe49957GTt2LN999x3dunXz+rxNmza0adOm0f0PGTLEs3zVVVfRo0cPAJ5++ulG9ynSkuhPPJHTTEZGBp999hnFxcWMGjWK/fv3e31eXFxMdnZ2vX5OJj4+nosuuoi33nqruQ5H5LSjEZ/IaWjQoEEsWLCACRMmMGrUKL777juSkpIAePfdd5t0je9ExcXF2Gy2JtUr0pIo+EROUyNGjODtt9/myiuvZOzYsSxZsoTY2NhGX+M7dOgQycnJXtv27NnD4sWLGTBggK/KFjntKfhETmOTJk3i5Zdf5je/+Q2XXHIJCxcubPQ1vrPOOosRI0Zw9tlnEx8fz/bt23nllVcoKyvjiSeeaIbqRU5PCj6R09zUqVM5evQov//977nyyiuZP38+wcEN/7/u7bffzqeffsrChQvJz88nOTmZ0aNH84c//IGzzjqrGSoXOT1ZjPpcBBAREQkQuqtTRERMRcEnIiKmouATERFTUfCJiIipKPhERMRUFHwiImIqLf45PpfLRWZmJjExMVgsFn+XIyIifmAYBvn5+aSlpZ10ppEWH3yZmZm1Tt8iIiLmsn//ftq2bVtnmxYffDExMYD7YGNjY/1cjYiI+IPdbic9Pd2TCXVp8cFXcXozNjZWwSciYnL1ueTV4oNPAseW/C3M2DeDPY49GHi/SS+UUEa2Gskj7R8hNCjUTxWKSCBQ8Inf3bH1DlYWrqyzTSmlfJb3GZ/lfYYFC39v/3dGJI44RRWKSCDR4wziNwuPLKT/T/1PGnonMjB4YO8DDP5pME6ns5mqE5FApRGf+MXYDWM5XH642vaU8BSSwpJICE0gLCgMwzAoKC8gtzSXrOIsCsoLPG3LKWfQ+kHMaDuDScmTTmX5ItKCKfjklBu2dhiFRqFn3YKF7rHd6R7bnZiQ2u/IMgyDzOJMNuRt4LCjMjT/cuAv2Jw2bmxzY3OWLSIBQsEnp9TYDWO9Qq9VSCvOSzqPxLDEk+5rsVg4I/IM0iLS2GLfwk/HfsJpuE91vpD1Aj3DezIwfmCz1S4igUHX+OSUWZS7yOv0ZnJYMmPTxtYr9KqyWCz0iOvByNSRBFsq/3a7bfdtPqtVRAKXgk9OmQf3PuhZjguJ46LUiwi1Nv7RhJTwFC5IucBr24QNExrdn4iYgzlPdZaXw5IlsGIFrFkDO3dCSQmEhkLbttC/PwwcCGPGQGSkv6sNCPdtv8+zbMHCeUnnNSn0KqRFpNE9tjtb7FsAyC7PbnKfIhLYzBV8ubkwZw689BLs319zm19+gS+/dC/Hx8PUqfC730GHDqeszED0Tf43nuWuMV1pHdYagEX/WMSGTzZwaPshQsJD6DCoAxP/OJGULime9u/e8y7blm7Dnm0nNCqUjoM6utt0dbfpG9+XPQV7KHGVADB181Re6/HaqTs4EWlRzHOq8/33oUcPmDGjWugZQUG4wsMxQkK89zl2DJ59FjIy4LnnwOU6hQUHjuxi71FY99junuWdP+xk6E1Dmf7FdG7/4HZcZS7mXDEHR6HD0ya9TzpX//NqHlzxILfNuw3DMHjxihdxOd3/HiHWEDrHdPa031C8oZmPSERaMothGMbJm52+7HY7cXFx2Gy2mt/VWVYGN98Mr7/u2WQA5V27UtarF860NFwJCWC1gmFgsdsJyswkZMsWQjZtwlL1AekLLoAPPnCPBKXepm6ZyoYidxi1DmvN+LTxtbYtOFLAjK4z+N0nv+PMc8+ssU3mz5k8ef6TzFgzg9Yd3SNHW6mNDw9+6Gmzpt8aHx6BiJzuTpoFVQT2qc6yMvjVr+Cjjyo3de9O8ZgxGDWFl8WCERdHeVwc5T16UDJ6NGFLlxK2apX782++gQsvhK+/hoSEU3MMAeDnop89y0lhSXW2LbYXAxDZquZrq45CByvfWkli+0RandHKsz02JJZQayilrlIAtuVvo2tM16aWLiIBKLBPdd5xhyf0jOBgiiZNomjy5JpDrwZGVBQl48dTcOONuKKi3BvXr4dLL3XfICP14qRy1JwQWvsfDC6Xi/l/mE/HwR1pk9HG67PvX/meB9If4P/S/4/Nizdz+we3Exxa+XebxWLx6vuZzGd8eAQiEkgCN/g+/hj+8x/AfQ2v8OqrKevTBxoxS7uzQwcKp06tDL/vv4dn9Iu1MeqaWWHe/fPI2pzFDf+5odpn/a/sz/3f3M/vPvkdSWcmMfc3cykrKfPuu8pdorllub4rWkQCSmAGn80Gt97qWS2eMAFnp05N6tLVujVFV12FURGcjz4KW7Y0qU8zqu2S8rwH5vHLF79w50d3ep3CrBARG0HSmUmcee6ZTJ07lUPbD7HhU++bWKpOZeSLRyVEJDAFZvDNnQtZWQCUdelCWd++PunWmZ5O6ZAh7pXSUvcdn9IgVV8yDe4gnPfAPDZ+upFpH04jsX093uJiuPcrd3ifbs4vy/cs94/u75N6RSTwBN7NLYYB//qXZ7Vk9GjP6c0f9uzh+WXLWJ+ZSXZBAW9OnszFPXp42s5csoQPNm3ioN1OSFAQZ7dpwyMjRjCgbdvK/oYPJ3T1aiylpfDWW/Dkk9Cq+ghFKkVboylwuQMv1+F9CnLe/fNYM28Nv33rt4RFh2HPsQMQHhtOaEQoR/YcYe38tXS/sDvRraPJO5jHV899RUh4CBmjMjz9lLvKsZXZPOvTz5h+Co5MRFqiwAu+Vatg2zYAyjt0wJVUeRdhUVkZZ6WkcG3fvlz37rvVdu2cmMhT48fTIT6e4vJy/rV8OZf/97/8dNddtK64vhcWRmmfPoT9+CMUFbkfb/jNb07JobVU1yVdx4s5LwKQVZKF03ASZAkC4IdXfwDgnxP/6bXPlH9OYfDVgwkJC2HX8l0snbOU4rxiYpJiOPPcM7l74d3EJFXO5JBVkuV1qjMoKKi5D0tEWqjADL7jyjIyvD4a1aULo7p0qXXXK3v39lr/65gx/HftWn7OyWF4lWuEZT17uoOv4vsUfHWamjrVE3wlzhL2F+6nQ3QHAGYdnVXnvnFt4rj1f7fW2QZgm32bZ9kaoGfwRcQ3Au83xJrKB5edaWmN7qa0vJzX16whNiyMXikpXp8527SpHFus0YPSJxMUFERwlb+xNto24jJ89xacwyWHOVh80LP+j/b/8FnfIhJ4Am/Et2ePZ9GZnNzg3Rdu3cpN8+ZRVFZGakwMC66/nsSK05wVwsIw4uKw2Gywe3cTCzaH17q8xnXbrwPgWOkxNuZtpE98nyb363Q5WXZkmde2oYlDm9yviASuwBvxlZZWLgc3PNfP79iR7267jS9vuokRnTtz43vvcbigoFo7z3s9q36f1CojJoNIKt/GsiFvAweKDjSpT8MwWJ673OumlifbP9mkPkUk8AVe8IVWeX6rEW9XiQoNpVNiIgPT0/nnpZcSbLXy37Vrq7WzVPQdqufF6uu7ft95lg0Mvjn0DXsL9zaqr3JXOT8c/oFdBbs821oFtWJE4ogm1ykigS3wgq99e89i0OHDdTSsH5dh4DgxQB0OLHl57uVGTFdkGAZHy46yv2Q/+x37sZXbTr5TgHix44ueZZfhYumhpXx/+HscTkcde3k7XHKYTzI/YVdhZehZsLC4z2Kf1ioigSnwrvH17w9vvAFAUGYmzjPO8HxU4HCw6+hRz/revDw2ZGURHxFBQmQkz3z7LeO6dSMlJoajRUW8vGoVWXY7l/Xs6fUVQdnZeF581r9+D0rnlefxSe4nrMpfxZaiLeSWez/PlhKSQo/IHpwbey7jEsYRGRSYE+AOih/EE64nvGZj31Wwi/2F++kU3YnOMZ2JD43HavH+m6zUVUpWcRbb7NvIKsny+syChdX9Vp+S+kWk5Qu84Bs0yLMY8ssvlA4c6Flfm5nJxCrTEz38xRcATOnTh39cfDHbjhzh7fXryS0qIiEigr5nnMHnv/kNPU64SSbk58rZBqjSf00OlR7ixawX+eLoFziM2kc1OWU55Nhy+Mb2Dc8dfI5LEi/hlja3EBtc9/QaLdGoxFF0CevCFduu8GwrM8rYmr+VrflbCbIEER8aT5g1DAODgvIC7GX2GvtKDE7ky95fnqrSRSQABN58fC4XdO8O27cDkD9tmtdD7E1WWkrsM89gcTggIgIOHqxxfj7DMPj46Mc8c+AZCpzeN8eEWkNJDE0kPCgcgCJnEbmOXMoN71OqSSFJPNzuYc6PO9939Z9mrvnlGraUNO6dp891eI6hCbqDU0TMPh+f1Qq33w733gtA+KJFFE2Z0qhZGWoStnSpO/QArr66xtBzGk7+uu+vfJhbOTFqqDWUM6PPpEtMF+JC4rCcUI9hGOSW5rLNvo3dhbtxGk4Olx1m+s7p/Db1t9zW5rZq+wSCtzLeAuDBHQ+yyL7opO2DCGJOxzn0i+/X3KWJSIAKvBEfQF4e9OgB2dkAFF12GWVnn93k7wo6cICoV17BYhjuuznXrXN/TxUuw8Vjex/j06OferZ1iu7EwISBhAWF1et7CssLWXFkhddD2Tel3sQdaXc0+RhaAlupjecPPs++0n2EEca5MecyOWWyXkMmIrUy94gP3C+NnjMHLrsMgIhPPsHVqhXORtyBWcGam0vkO++4Qw/gj3+sFnoAb+S84Qk9K1bOSzqPjtEdG/RdUcFRXJRyEZvtm1l91H3TxivZr9ApvBNjE8Y2+hhairjQOB7p+Ii/yxCRABV4jzNUuPRSuPFGwP3MXdSbbxKycaN79oYGCtq7l6jXXsNa8SD7OefAAw9Ua7ezeCdzsua4vxMLw5KHNTj0KlgsFjLiMhiUWHmzzpP7n+RI2ZFG9SciIm6BG3wAL70E48cD7vCLfP99Iv/3v8pn8E6muJjwhQu9Q69XL/jkkxrfCvO3fX+jzHDPCp4Rl0G7qHZNPoTusd1pH+V+NtHmtPGPA3oPpYhIUwR28IWGwvz5cO21nk0hmzcT89xzRL79NiGbNmE9etRrFGix2wneupWIBQuIfeYZwlasqHxm7/zzYelSSKw+Weovhb+wrnAdALEhsZzdqvKa4s5lO3l5yss8mvEo0xOmV5s5vKr/3fs/pidM55sXv/FsG5w4mDCr+/rgomOLOFza9AfzRUTMKjCv8VUVGgr//S9MnAjTpsGRI1gMg5CtWwnZuhVwv3fTCAnBUl7unmD2ROHh8Je/wPTpUMsNFvOOzPMsZ8RmEGStbOcodJDWK43B1wzm1etfrbXUDZ9sYM/qPcS1ifP++qBwusZ0ZaNtI06czM+dzy1tbmnI/woiInJcYI/4qvr1r+GXX+Dxx+GE6YosZWVYi4qqh15cHNx9N2zaBPfdV2voGYbBN3nfABBiCal2XS9jVAYTHp5A74t717C3W15mHu//3/tc99J1WIOr/7N0ia2cR7Diu0REpOECf8RXVVISPPooPPQQfPUVrFzpnk9vxw4oKXGPDtPT3a8hGzDAfX3wxCmJapBZmonN6X7fZnJ4MiHWkAaV5XK5eOv2t7jodxfRpkebGttEB0fTKqQVeWV57CjegcPl8Jz+FBGR+jNX8FUICYFx49w/PrClqPLNI4lh1a//nczi5xZjDbIy7NZhdbZLCEsgrywPJ052Fu8kIyqjzvYiIlKdeU51NqNj5cc8y9HB0Q3ad/+6/Xz70rdcPfvqk76ZJSY4xrN8tPxoHS1FRKQ25hzx+ZgLl2fZQsNeK7Zz+U4KDhfweO/HK/tzuvjwkQ9ZOmcpf1z/x8q+qwSjy3AhIiINp+DzgXBruGe51NWwGdkHTh5It+HdvLbNuXIOA349gEFXD/LaXuqs7LviBdciItIwCj4f6BheeRfn0dLqpyAdBQ4O76589u7o3qMc2HiAqPgo4tvGE5XgfQONNdhKTHIMKV1SvLZX7btTeCdflS8iYioKPh/oEtGFIIJw4uSI4wiGYXidlty3bh+zL5ntWV8wYwEAA6cM5JrZ19TrO5yGk1yHe/LapJAkWoe09uERiIiYh4LPB8Kt4WREZbCxcCO2MhtHHEdICq+cA7DL0C7MOjqr3v1Vva5XYX/hfs/r0M6OavpMEyIiZqW7On3k8taXe5a32Bs3sWptDMPw6vPypMvraC0iInVR8PnIqPhRxAa554DaXbibrOIsn/W9q2AXhxyHAGgf1p6B0QN91reIiNko+HwkwhrBrW1u9awvP7Ich9PR5H4LygpYdXSVZ/3uM+4OyJnYRUROFQWfD/066df0j+4PQEF5AYtzFjcp/ArKC1iUvYgyl/va3viE8QxvNdwntYqImJWCz4esFiuPtX+MxGD3a8uOOI7wedbnHHE0fPLYg0UH+Tzzc/LL8wHoENaB37f9vU/rFRExIwWfj6WFpTG7y2wSghMAsJfZ+Tzzc1blriK/LP+k+x8rPcb3h79ncc5iip3FAKSHpTO7y2ziguNOsreIiJyMxTCqzMLaAtntduLi4rDZbMTGxvq7HI/9Jft5aM9DbC7a7LW9TXgbksOTSQhLICIoAsMwKHIWcdRxlOySbA47vCeZHRwzmD93+DOJIQ1/+bWIiFk0JAsUfM2o3CjnjZw3+HfWvz3P4NVXlDWK6W2nMylxkm5mERE5CQXfaeZo2VEW5C7g/SPvk12aXWfbjuEdubL1lYxPHE9MUEydbUVExE3Bd5pyGS4OOg6yuWgz24u3U+gqxIKFmKAYukZ2pUdkD1JDUjXCExFpoIZkgV5ZdgpZLVbSw9NJD09nNKP9XY6IiCk1612d3377LRMnTiQtLQ2LxcKCBQu8PjcMg0cffZQ2bdoQERHByJEj2b59e3OWJCIiJteswVdYWEifPn2YPXt2jZ8/+eSTPP/888yZM4eVK1cSFRXFmDFjKCkpac6yRETExJr1VOe4ceMYN25cjZ8ZhsGsWbOYMWMGl156KQBvvPEGKSkpLFiwgKuuuqo5SxMREZPy2wPsu3fvJjs7m5EjR3q2xcXFMXjwYJYvX17rfg6HA7vd7vUjIiJSX34Lvuxs9239KSnes4ynpKR4PqvJzJkziYuL8/ykp6c3a50iIhJYWtwryx566CFsNpvnZ//+/f4uSUREWhC/BV9qaioAOTk5XttzcnI8n9UkLCyM2NhYrx8REZH68lvwdezYkdTUVBYvXuzZZrfbWblyJUOGDPFXWSIiEuCa9a7OgoICduzY4VnfvXs369atIyEhgXbt2jF9+nT+8pe/0KVLFzp27MgjjzxCWloal112WXOWJSIiJtaswbd69WouvPBCz/q9994LwA033MDcuXN54IEHKCws5JZbbiEvL4+hQ4eycOFCwsPDm7MsERExMb2rU0REWryGZEGLu6tTRESkKRR8IiJiKgo+ERExFQWfiIiYioJPRERMRcEnIiKmouATERFTUfCJiIipKPhERMRUFHwiImIqCj4RETEVBZ+IiJiKgk9ERExFwSciIqai4BMREVNR8ImIiKko+ERExFQUfCIiYioKPhERMRUFn4iImIqCT0RETEXBJyIipqLgExERU1HwiYiIqSj4RETEVBR8IiJiKgo+ERExFQWfiIiYioJPRERMRcEnIiKmouATERFTUfCJiIipKPhERMRUFHwiImIqCj4RETEVBZ+IiJiKgk9ERExFwSciIqai4BMREVNR8ImIiKko+ERExFQUfCIiYioKPhERMRUFn4iImIqCT0RETEXBJyIipqLgExERU1HwiYiIqSj4RETEVBR8IiJiKgo+ERExFQWfiIiYioJPRERMRcEnIiKm4vfge+yxx7BYLF4/3bt393dZIiISoIL9XQBAz549+eqrrzzrwcGnRVkiIhKATouECQ4OJjU11d9liIiICfj9VCfA9u3bSUtLo1OnTlxzzTXs27ev1rYOhwO73e71IyIiUl9+D77Bgwczd+5cFi5cyIsvvsju3bs5//zzyc/Pr7H9zJkziYuL8/ykp6ef4opFRKQlsxiGYfi7iKry8vJo3749zz77LDfddFO1zx0OBw6Hw7Nut9tJT0/HZrMRGxt7KksVEZHThN1uJy4url5ZcFpc46uqVatWdO3alR07dtT4eVhYGGFhYae4KhERCRR+P9V5ooKCAnbu3EmbNm38XYqIiAQgvwff73//e5YuXcqePXtYtmwZkyZNIigoiClTpvi7NBERCUB+P9V54MABpkyZQm5uLklJSQwdOpQVK1aQlJTk79JERCQA+T343nnnHX+XICIiJuL3U50iIiKnkoJPRERMRcEnIiKmouATERFTUfCJiIipKPhERMRUFHwiImIqCj4RETEVBZ+IiJiKgk9ERExFwSciIqai4BMREVNR8ImIiKko+ERExFQUfCIiYioKPhERMRUFn4iImIqCT0RETEXBJyIipqLgExERU1HwiYiIqSj4RETEVBR8IiJiKgo+ERExFQWfiIiYSrC/CxAREZMpL4fNm2HNGti0CQoLwWqFhATo2xf694d27cBiaZavV/CJiMipsXs3vPQSvPIKHDlSd9teveCOO+DaayEmxqdl6FSniIg0r6IimD4dzjwT/v73k4ceuEeCd9zhHvm9/joYhs/K0YhPRESaz48/wtVXw44dnk2G1Up5166Ut22Lq00bXJGRYBhYbTaCMjMJ3r2b4AMH3I3z8uDGG+G999wBmJjY5JIUfCIi0jyWLIGJE93X8AAjOBjH0KGUDhiAER1drbkrLY3yHj1wANbsbMK+/57QTZvcH376KQwfDl99BampTSrLYhg+HD/6gd1uJy4uDpvNRmxsrL/LERERgNWr4YILPKFX3rYtxZddhqt16wZ1E7xlCxEff4z1eD/07g3ffQcn/L5vSBboGp+IiPhWUZH79ObxsCrr2pXCG25ocOgBlHfvTsFNN+GKi3Nv2LAB7r+/SeUp+ERExLdmzIDt2wEoP+MMiq68EkJCGt2dkZBA4XXXYVT08e9/w6JFje5PwSciIr6zfz889xwARlAQxZdd1qTQq+Bq3ZqS0aMrN9x/f6Pv9NTNLSIi4jv//je4XAA4zjsPV1KS56Mf9uzh+WXLWJ+ZSXZBAW9OnszFPXp4Pv/ol194bfVq1mVlcay4mG9vvZXebdp4Pi/t35+QtWsJzsyE9ethxQoYMqTBJWrEJyIivuFywX/+A4BhsVA6YIDXx0VlZZyVksJTEybUuHtRWRnntGvH4yNH1ty/1UrpoEGV6y+91KgyNeITERHf2L4dsrMBKO/cGeOEuytHdenCqC5dat39qj59ANh77Fitbcp69sT49FMsZWXw7beNKlMjPhER8Y01azyLzvT05vmOkBCcFc/x7d4NR482uAsFn4iI+MbPP3sWnU18yLwuXn3/8kuD91fwiYiIbxQUeBaNiIhm+xojMrJypeLB9gZQ8ImIiG8EBVUuN+dLwY7fNVrtO+tJwSciIr5R5c0s1ry8Zvsar74b8dJq3dUpIiK+0a+fZzEoK4uy3r29Pi5wONhV5WaUvXl5bMjKIj4igvRWrThWVMR+m43s/HwAduTmApASHU1KlTn5grKy3AshIZCR0eAyFXwiIuIb/ft7FoN37XKf7qwyi/razEwmvv66Z/3hL74AYEqfPrw4aRKfbd3KtA8/9Hz+m3nzAPi/4cN56MILAbDYbFgr5vPr3RvCwhpcpoJPRER8IykJBg2CVasIyskh6MABr8cazu/YkbzHHqt192v69uWavn3r/IrQNWvwROnFFzeqTF3jExER37njDs9i2Hff+fQmF0tREaGrV7tXgoLgllsa1Y+CT0REfOfXv4bkZABCtm0jpGIiWR8IX7gQa1GRe+XKKyEtrVH9KPhERMR3IiLgX//yrIZ/+inWQ4ea3G3ITz8RumGDe6VVK3jmmUb3peATERHfuuIK98gPsJaUEPX661iPv8OzMUJ++omIjz+u3DBrVqNHe6DgExGR5vDyy567PK2FhUS//DKhP/zg/fD5SViKioiYN4/Ijz7CUnGt8O674frrm1Sa7uoUERHfi42FL7+E8eNh5UosTicRixYRum4dpYMGUVrHowiWY8cIXbOG0DVrsBYXV34wfbr7FGeVRyQaw2IYzflemeZnt9uJi4vDZrMRe8IUGCIi4mfFxTBjBvzjH153eBpWK67kZJxt2rjfvWkYWGw2gjIzCTpxWqL4eHj+ebjmmlpDryFZoOATEZHm98MPcP/9sHx5/fcJCXFfK3zyyZNe02tIFuhUp4iINL/zzoNly2DdOs7dU3oAACAASURBVPj3v92TyG7eXP2aX0QEnH02TJgAv/0tpKT4vJTTIvhmz57NU089RXZ2Nn369OGFF15gUNXp5UVEJDCcfXbl4w6Fhe7wKyhwP5CemAhdu0Jw80aT34Pv3Xff5d5772XOnDkMHjyYWbNmMWbMGLZu3Ury8YcgRUQkAEVFwYABp/xr/f44w7PPPsvNN9/M1KlTycjIYM6cOURGRvLqq6/6uzQREQlAfg2+0tJS1qxZw8iRIz3brFYrI0eOZHlDLoCKiIjUk19PdR45cgSn00nKCRcvU1JS2LJlS437OBwOHA6HZ91utzdrjSIiElj8fqqzoWbOnElcXJznJ73KlBciIiIn49fga926NUFBQeTk5Hhtz8nJITU1tcZ9HnroIWw2m+dn//79p6JUEREJEH4NvtDQUPr378/ixYs921wuF4sXL2bIkCE17hMWFkZsbKzXj4iISH35/XGGe++9lxtuuIEBAwYwaNAgZs2aRWFhIVOnTvV3aSIiEoD8HnyTJ0/m8OHDPProo2RnZ3P22WezcOHCaje8iIhIgCgpgfXrYc0a2LTJ/SC71QoJCdC3r3tWh27d3Nuagd7VKSIip8bWrfDiizB3Lthsdbft3Bluvx1uvNEdiCfRkCxocXd1iohIC5Of7w6x7t3huedOHnoAO3bAffdBhw7ud3v6cIzm91OdIiISwJYvhylTYO9ezyYjOJiy7t1xpqd7TUtkPT4tUfCuXQTv2eNunJ8Pt94K8+bBW29BUlKTS9KpThERaR6LF8PEie45+QAjJISS4cMp69fPHXZ1sB45Qtj33xO6bl3lxu7d4euvoU2bau01H5+IiPjX6tUwfDgUFQFQ3q4dRZddhlGP63VVBe/YQcSCBVgLCtwbevVyT28UE+PVTtf4RETEf4qL4dprPaFX1q0bhddf3+DQAyjv3JmCm27C1aqVe8OmTfDAA00qT8EnIiK+9eij7js4gfK0NIquvLJJc+wZ8fEUXncdRkiIe8OcOfDVV43uT8EnIiK+k50Ns2YBYAQFUTxpkk8mlnUlJlIyalTlhocfbnRfuqtTRER85z//gfJyABznnIOryl2YP+zZw/PLlrE+M5PsggLenDyZi3v0AKDM6eQvX3/Nou3b2XPsGLFhYQzv1InHRo6kzfFrdqUDBhD6008EZWfDqlXu64iNmMhWIz4REfENw4CXX3YvAqUDB3p9XFRWxlkpKTw1YUK1XYvKyliflcX9w4ax9NZb+e/kyezIzWXK229XNrJacVTt8z//aVSZGvGJiIhvHDwI+/YB4OzQAaPihpTjRnXpwqguXWrcNS48nAXXX++17anx47no5ZfZn5dH+vG+ynr1wvj0UywuF/zwQ6PK1IhPRER8Y80az2J527ZN7s5eUoIFdyh6hIVVnj795RfPnaMNoeATERHf2LLFs+iqZU7V+iopK+OPX33Fr846i9iqwQc4K/p2udyvNmsgBZ+IiPhGldGXERbW6G7KnE5ufO89DMPgmRquBxpVg7ARIz5d4xMREd+o+tiCy9WoLipCb7/Nxsc33FBttFet74pn+xpAIz4REfGNKqc3rceONXj3itDblZvLh9dfT0It7/O0Hj1auZKc3ODv0YhPRER8o18/z2JQZma1jwscDnZVCa29eXlsyMoiPiKC1JgYrv/f/9iQlcU7V1+N0+UiJz8fgPiICEIrRpOGUdl3UhI04iYaBZ+IiPhGr14QGgqlpQTv3Ol+kL3K6c+1mZlMfP11z/rDX3wBwJQ+fXjwggv4/Phrzs6fM8er249vuIHzO3YE3IFqPT7bA/37g8XS4DIVfCIi4hthYe5piN5/H2thISFbtlDWq5fn4/M7diTvscdq3b2uzyqE/vhj5cqvftWoMnWNT0REfOeOOzyLYd99B06nz7q2HjlCyMaN7pW4OPcEt43px2cViYiIXHghnH02AEE5Oe7w8wWXi4gFC7BUBOltt8FJJrOtjYJPRER8x2Jxv0MzKAiAsKVLCd62rWl9GgbhX35J8IED7vXOnd1THzWSgk9ERHyrf3/4wx8AsBgGke++S/DPPzeuL6eT8M8/J2zFCve61Qqvvtro0R4o+EREpDn88Y9w1VUAWJxOot57j4gPPsDSgDetWLOziX75ZcJWrarc+O9/w/nnN6k03dUpIiK+FxQE//2v+/GGN94AIHTDBkK2bKG0Tx9K+/bFlZLiOSXqUVpK8J49hK5eTfC2bViq9vef/8CNNza5NIthGEaTe/Eju91OXFwcNpuN2OOTFYqIyGnCMNzBd/fdYLN5fxQcjDM1FSMyElwurDYb1iNHsJwYS716wWuv1TnpbEOyQKc6RUSk+VgscMMN8PPPcMstXtfmLOXlBB84QMi2bYTs2EHQ4cPeoZeeDk880eiZ1mstSSM+ERE5ZWw2ePNNWLrUHWi7d1d+FhzsHt317w8XX+z+Ca7fFbmGZIGCT0RE/KeoCAoL3dfwoqPd1wQboSFZoJtbRETEfyIjm/RoQmPoGp+IiJiKgk9ERExFwSciIqai4BMREVNR8ImIiKko+ERExFQUfCIiYioKPhERMRUFn4iImIqCT0RETEXBJyIipqLgExERU1HwiYiIqSj4RETEVBR8IiJiKgo+ERExFQWfiIiYioJPRERMRcEnIiKmouATERFTUfCJiIipKPhERMRUFHwiImIqCj4RETEVBZ+IiJiKgk9EREzFr8HXoUMHLBaL188TTzzhz5JERCTABfu7gD/96U/cfPPNnvWYmBg/ViMiIoHO78EXExNDamqqv8sQERGT8Ps1vieeeILExET69u3LU089RXl5eZ3tHQ4Hdrvd60dERKS+/Driu+uuu+jXrx8JCQksW7aMhx56iKysLJ599tla95k5cyaPP/74KaxSREQCicUwDMOXHT744IP8/e9/r7PN5s2b6d69e7Xtr776KrfeeisFBQWEhYXVuK/D4cDhcHjW7XY76enp2Gw2YmNjm1a8iIi0SHa7nbi4uHplgc+D7/Dhw+Tm5tbZplOnToSGhlbb/vPPP9OrVy+2bNlCt27d6vV9DTlYEREJTA3JAp+f6kxKSiIpKalR+65btw6r1UpycrKPqxIREXHz2zW+5cuXs3LlSi688EJiYmJYvnw599xzD9deey3x8fH+KktERAKc34IvLCyMd955h8ceewyHw0HHjh255557uPfee/1VkoiImIDfgq9fv36sWLHCX18vIiIm5ffn+ERERE4lBZ+IiJiKgk9ERExFwSciIqai4BMREVNR8ImIiKko+ERExFQUfCIiYioKPhERMRUFn4iImIqCT0RETEXBJyIipqLgExERU1HwiYiIqSj4RETEVBR8IiJiKgo+ERExFQWfiIiYioJPRERMRcEnIiKmouATERFTUfCJiIipKPhERMRUFHwiImIqCj4RETEVBZ+IiJiKgk9ERExFwSciIqai4BMREVNR8ImIiKko+ERExFQUfCIiYioKPhERMRUFn4iImIqCT0RETEXBJyIipqLgExERU1HwiYiIqSj4RETEVBR8IiJiKgo+ERExFQWfiIiYioJPRERMRcEnIiKmouATERFTUfCJiIipKPhERMRUFHwiImIqCj4RETEVBZ+IiJiKgk9ERExFwSciIqai4BMREVNR8ImIiKk0W/D99a9/5dxzzyUyMpJWrVrV2Gbfvn1MmDCByMhIkpOTuf/++ykvL2+ukkRERAhuro5LS0u58sorGTJkCK+88kq1z51OJxMmTCA1NZVly5aRlZXF9ddfT0hICH/729+aqywRETE5i2EYRnN+wdy5c5k+fTp5eXle2z///HMuvvhiMjMzSUlJAWDOnDn83//9H4cPHyY0NLRe/dvtduLi4rDZbMTGxvq8fhEROf01JAv8do1v+fLlnHXWWZ7QAxgzZgx2u52ff/651v0cDgd2u93rR0REpL78FnzZ2dleoQd41rOzs2vdb+bMmcTFxXl+0tPTm7VOEREJLA0KvgcffBCLxVLnz5YtW5qrVgAeeughbDab52f//v3N+n0iIhJYGnRzy3333ceNN95YZ5tOnTrVq6/U1FRWrVrltS0nJ8fzWW3CwsIICwur13eIiIicqEHBl5SURFJSkk++eMiQIfz1r3/l0KFDJCcnA7Bo0SJiY2PJyMjwyXeIiIicqNkeZ9i3bx9Hjx5l3759OJ1O1q1bB0Dnzp2Jjo5m9OjRZGRkcN111/Hkk0+SnZ3NjBkzmDZtmkZ0IiLSbJrtcYYbb7yR119/vdr2JUuWcMEFFwCwd+9ebr/9dr755huioqK44YYbeOKJJwgOrn8e63EGERFpSBY0+3N8zU3BJyIiDcmCZjvVKbVzGQY5ecXYi0uxAK2iwkiKDcdisfi7NBGRgKfgO0UcZU6W/pLJ4o0H2ZZpo8jh/U7S2IgQureNZ3TvtgzplkJwkN4fLiLSHBR8zcxlGHyyei+vf7ONgpKyWtvZi8tYtf0Qq7YfIjEmjFtGZTA8o41GgSIiPqbga0ZHC0qY+cFaNuw96rU9MiKEpPhIoiNDMQyD/MJSDh8rouT4KDA338HMD9by/eYs7p3Yh8gw/TOJiPiKfqM2kyP2En7/xnKyjhV5tnVuF0+vLskkJ0RWG8kZhsHBQ/ls3HaIfVnu949+tzmbHFsxT1wzmKjwkFNav4hIoNKFpGbgKHPy8P9b5Qm9qIgQJgzvzIhzOpKSGFXj6UuLxULblFjGnd+ZkUM6EhYaBMC2TBt/em8NrpZ9862IyGlDwdcMXv9mK3sO5wMQGxXKZSO60Tal/o9anJkezyUXdiX8+CnOdXty+ejHPc1RqoiI6Sj4fGxntp0PVuwGIMhqYez5ZxId6T23YHFBAa/+7VFuvWggU/p04g9XTWTHxnVebRLiIhg1pKNn/dXFW8jNL2n+AxARCXAKPh/76Mc9VJyU7N+zDfGxEdXa/OuR+1i/7Fvu+vsLPPvRYvqcN5zHp04mNyfLq11acgwZZ7YGwFHuYuFazUQhItJUCj4fKnSUsWTTQQBCQ6z06lz9hd6OkmJWfPkZ1/9+Bj0HnkOb9h2Z/Lvfk9quA1+8/Ua19md3T6HikuBnP+3TtT4RkSZS8PnQtkwbjnIXAJ3S4wkJCarWxlXuxOV0EnLCi7hDw8PZsmZVtfYxUWGccfz64JH8Eq+7REVEpOEUfD60PcvmWU5NjK6xTUR0NN3O7s+8f83iaE42TqeTpR+9z7Z1azh2OKfGfVITo2r8DhERaTgFnw9l51WOxuLjwmttd9eTL2AYBjcP78dVvTvw2X9fYeiEy7BYa/7nqNpXtkZ8IiJNogfYfcjprLz+Vte7NlPbdeDPb35ASVERxQX5xCen8Mw9t5KS3r7G9kFVArHcpWt8IiJNoRGfD4WHVl7TKznhJdQ1to+MJD45hQJbHuu+X8rAi8bU2M5RWtlXeA3XDUVEpP7MPeJzuWDHDti5E0pKIDQU2raFjAwIafgrwtonxXiWj+QVk5YcU2O7td99AxikdTyT7L27eeOpP3NGp85cdPnkGtsfOVbsWe5QS58iIlI/5gs+hwPmzYO5c2HVKrDbq7cJC4O+feHqq+H66yEurl5dd2lT2e5Atp3eXZNrbFdUYOetZ2eSm51FdKtWnDNqPFff8yDBNYStYRgcyKmssep3iIhIw5kn+JxOeO45mDkTjhypu63DAStWuH8efBBuvx0efxyiourcrVNKLMlxERyyFbM/2469wEFsdFi1dueNu4Tzxl1Sr7KzjhRwzO5+Y0vP9HjiTngLjIiINIw5rvFt2wbnnw/33ecVeq6YGMq6daNk2DBKRoyg5IILKO3VC2dCQuW+RUXwzDPQpw98/32dXxNktTChXzvP+or1BzGa8MC5y2Wwcv1Bz/rF/Wu++UVEROov8Ed8y5bB+PFgcz//ZgBlPXtSOmgQznbtoJaJXq05OYSuXk3o2rVYysvd1wEvvBBef919CrQW4/u144OVu7EVlbL7YB7b9h6lW4fERpW+bks2h466H19omxDF0B6pjepHREQqBfaIb/VqGDPGE3rOhAQKp06l+MorcbZvX2voAbhSUiiZMIGC226jPD3dvbG8HK69Ft57r9b9YiNDuXNcL8/6tz/uZdeBYw0ufdP2Q/y4yf3uTgtw7yW9CQ3WHZ0iIk0VuMFns8Hll0NBAQBlnTpRcOut7sBrAFfr1hROnYpjwAD3BsOAG26A7dtr3WdYRhvGHz/l6TJg0bLdfLdmH6VlzpN+X3FJGYuW7eKHtQc8266/oCs90xPq2EtEROorcE913n8/7HfPZlCenk7RlCmNekQBAKuVkgkTsJSVEbp+PRQXw9SpsHQpBNU8CrtzXC/KnC4WrXcH2C87j7Bz/zG6dUykU9t4EuMiCA52/91RWubkyLEiduw7xvZ9Ryk//r5PgKuHdmbK0M6Nq1tERKqxGE25++I0YLfbiYuLw2azERt7fLLXH3+EQYMAMEJDyb/jDoxWrZr+ZaWlRL/4IkHHjp+6nDvXPfqrhcsw+Hj1Xl5ZvAXHCaM9iwUiwoIxDCiu4WH3mIgQ7hzbiwt6pTW9bhGRAFdjFtQiMEd8s2d7FktGjPCE3g979vD8smWsz8wku6CANydP5uIePTxtDcPgb0uW8MZPP2ErKWFwejrPXnwxZyYevzklNJTiSy4h+vXX3ev//GedwWe1WLh0YAcGnpnEm99u59tfsihzuo5/FxSVVA+8iNAgRpx1BtcM60JCdO3v+xQRkcYJvODLzYV33gHACA+ntG9fz0dFZWWclZLCtX37ct2771bb9bkffuCllSt5cdIk2rdqxV+XLOHy//6XldOmEX78NKmzQwecbdoQlJXlvnnmxx9h4MA6S0pLiOKBy87mllE9+G5zNtsy89iZbSe/pAwLEBcVSufUOLqf0YqhPVKJCmvkKdkWbtG6fcz6dFOt7yNtFRXK3NuHEhFRfXJfEZH6CrzgW7rU/QA6UNq7t/s1ZMeN6tKFUV261LibYRi8uGIF9w8bxoTu3QGYM2kSXZ96ik+3bOGKs85yN7RYcPTvT+Qnn7jXFy48afBVaBUVxsQB7QE9j1fV4//7kWVbD520XV5hKZc9/TUWYPZNQzgzTTf8iEjDBd5dnWvWeBbLO3So9257jx0jp6CA4Z06ebbFhYfTv21bVh044NXWWbXfKt8nDVNcXMzYP39ar9CrygDueGU5N//rm2apS0QCW+CN+Nav9yw60+p/Y0jO8ccekqO9J5BNjori0PHPKrgSEjBCQ7GUlsK6dU0o1rwOHrXxm9neb8IJDrLQuV0C7dPiSIqPJCI8BMMwyMsv4VBuEdv2HiX7SOW/xb7cQibO/IyPHxp/qssXkRYs8IIvL8+zaMQ000wGViuumBiCcnM9D8dL/RUXF1cLvW4dEzmn9xmEh534n6SFxFaRJLaKpMeZrcnJLWTpj3s97y8tLTe49InP+fDBcaeoehFp6QLvVGfVpzPqeDPLiVKOj/ROHN0dKiysNgr04nLV/pnUaNLTX3uWrVYLI4d05IKB7WsIvepSEqO4fFR3OreL92wrKXPx/KcbmqVWEQk8gRd8VZ7fsJwQYnVpHx9PSnQ0S3fv9myzl5Sw5sABBrVt693YMLAWFlb7Pjm5v85bQ9V7Ni8a3IEz0+NrbV+T4CArFw7qQPu0yimaPv1pv48qFJFAF3jBV3H3JbgfOaiiwOFgQ1YWG45v35uXx4asLPbn5WGxWLj9nHN4+ttv+WzLFn7OyeG2+fNJjYnx3OVZwXLsGJYS96k2evdu3uMJMN9uzvYsd+2QUC30nE4nbz/3JLePGMyUPp24Y9QQ3vvXP6rNcmG1Whg+oJ3XKPGmfy5p3uJFJCAE3jW+indqAsH79lHerZtnfW1mJhMrHj4HHv7iCwCm9OnDi5Mmcfd551FYWsr0jz/GVlLCOe3a8f6113qe4avab03fJ3X7fnOmZznIauGcPm2rtVnw8my+ePt1fvfEc6R37sbOTev55x/uITI6hgnX/9arbUR4CP0z2vDDWvdo78CxouY9ABEJCIEXfMOGQXAwlJcTsm4dJRde6F4Hzu/YkbzHHqt1V4vFwsMXXcTDF11U51eE/vRT5cqIEb6o2hT+vqDyDtgz0+OJqOGa3ta1qxk4Ygz9LxgJQHLbdL77dAE7NtZ892zXDgms2niQsuPvNy0uLtYD7iJSp8A71ZmaCpMmAWAtLCRk40afdh908GDliC8jwz3BrdRLaXnl6cp2Va7PVdWt7wA2Lv+ezN07Adiz5We2/LSKvsNq/mMkNCSI1NaVNx/9Zf76GtuJiFQIvBEfwLRpnjnzwr/8kvIuXTDqujOzvsrLifjoo8r1O+5o0J2jUql1q5pHZZNuuZOiwnzuGj8Ma1AQLqeTq6c/yLCJl9faV1J8JPuz7QCs33O0WeoVkcAReCM+gOHD4Ve/AsBaXEzEhx+C8+Rz4Z1M+OLFBOXkuFf69IGbb25yn2YVEV7z+0iXff4R3338AdOfns1T73/BnU88x4evzmHJ/P/V0Vfl32+1vedTRKRCYAYfuGdoaN0agJDt24mYP7/x4WcYhC1ZQtjy5e714GD3lERV3gMqDeOqJaDeeOrPTLr5ToZOuIz23XpwwaW/YuKNN/PBv1+oV1+B+x+0iPhK4P6eSE52z9JwPJxCN20i6pVXsB5q2HshLfn5RL7zDuFLl1ZufOEFOPtsX1ZrOnn5JTVudxSXYLF6/2dptQZh1DGSO1alr6jwwDx7LyK+E9i/JUaMgA8+cJ/2LCkhODOT6JdeonTAAEoHDsR1fERYE0t+PqFr1hC6ciXW4uLKD2bNgttuOwXFBx4LeB5eP5Rb6HVTSoUBF47i/TnPk9TmDNI7d2P35k18PPclLrriqlr7PXy08jGGW0b2qLWdiAgE6gzsJ1q1Cq6/HrZu9drsbNOG8rQ0XMnJ7pdOl5djPXKEoKwsgg4cwFL1dWTJyfDSS3DZZc14NIHtt7OXsP94SCW2iuCKUd2xnHBzUHFBAW8//yQrv/oce24u8ckpDJ1wGVfecQ8hNZxaPnKsiPcXbfGsf/HIhOY9CBE5LTVkBnZzBB9AcTH88Y/u05QlNZ9mq5HVClOmuEd6dYwQpX7G/PlTz/L4YZ1JT23aK98Wr9jNjn3HAPeIcqGCT8SUGhJ8gXuN70QREfDkk3DwIDzzDPTqVfejCB06wMMPw+7d8OabCj0fsVb5n/zb1fsoLWv83bZ7M22e0AO4a3zPppQmIiZhnhFfTfLz3fPp7djhHgWGhkJ6OvTrp6BrJkeLi5lSZXaGdm1iGX1uJ4KCGvY3WG5eMR9/sw1HqTs4NdoTMbeGZEFg39xyMjEx7jev6O0rp0xCRAR9OySydk8uAPuy7Hz27Q4uGNSBmKj6PR6y52Ae3/y41xN6APN/X/dr5kREKpjnVKecNp647hyiw4I865mHC3jvi19Yuzmb4pKyWvc7dLSQRct28cUPu7xC7+7xPfV+ThGpN3Of6hS/+vUzX2Ir8g46q9VCSmIUreMjiQwPxuUCW34Jh44WkpfvqNbH3eN7Mr5/h1NUsYicrnRXp7QY7y3bzn8Wb2vwfhbcpzc10hMRUPBJC/TAG8tZv/fkL5i2ADN+1ZehPdKavygRaTF0c4u0OE9eP8SzPPvzTSzacICychcWoFV0KPde3Jt+Zyb7r0ARCRga8YmISIunB9hFRERqoeATERFTafHX+CrO1Nrtdj9XIiIi/lKRAfW5etfigy8/Px+A9PR0P1ciIiL+lp+fT1xcXJ1tWvzNLS6Xi8zMTGJiYrymuLHb7aSnp7N///6AvelFxxgYdIyBQcfoX4ZhkJ+fT1paGlZr3VfxWvyIz2q10rZt21o/j42NPe3+gXxNxxgYdIyBQcfoPycb6VXQzS0iImIqCj4RETGVoMcee+wxfxfRXIKCgrjgggsIDm7xZ3RrpWMMDDrGwKBjbBla/M0tIiIiDaFTnSIiYioKPhERMRUFn4iImIqCT0RETKVFB9+3337LxIkTSUtLw2KxsGDBglrb3nbbbVgsFmbNmnUKK2y6+hzj5s2bueSSS4iLiyMqKoqBAweyb98+P1TbOCc7xoKCAu68807atm1LREQEGRkZzJkzx0/VNs7MmTMZOHAgMTExJCcnc9lll7F161avNiUlJUybNo3ExESio6O54ooryMnJ8VPFDXeyYzx69Ci/+93v6NatGxEREbRr14677roLm83mx6obpj7/jhUMw2DcuHEn/d10uqnvMS5fvpyLLrqIqKgoYmNjGTZsGMXFxX6ouOFadPAVFhbSp08fZs+eXWe7+fPns2LFCtLSWt6s3Sc7xp07dzJ06FC6d+/ON998w4YNG3jkkUcIDw8/xZU23smO8d5772XhwoW8+eabbN68menTp3PnnXfy0UcfneJKG2/p0qVMmzaNFStWsGjRIsrKyhg9ejSFhYWeNvfccw8ff/wx7733HkuXLiUzM5PLL7/cj1U3zMmOMTMzk8zMTJ5++mk2bdrE3LlzWbhwITfddJOfK6+/+vw7Vpg1a5bXaxRbivoc4/Llyxk7diyjR49m1apV/Pjjj9x5550nfVXYacMIEIAxf/78atsPHDhgnHHGGcamTZuM9u3bG//4xz/8UJ1v1HSMkydPNq699lo/VeR7NR1jz549jT/96U9e2/r162c8/PDDp7I0nzp06JABGEuXLjUMwzDy8vKMkJAQ47333vO02bx5swEYy5cv91eZTXLiMdbkf//7nxEaGmqUlZWdwsp8p7ZjXLt2rXHGGWcYWVlZtf5uailqOsbBgwcbM2bM8GNVTdNC4rlxXC4X1113Hffffz89e/b0dzk+53K5+PTTT+natStjxowhOTmZwYMHt6jTKvVx7rnn8tFHH3Hw4EEMw2DJkiVs27aN0aNH+7u0Rqs4vZeQkADAmjVrKCsrY+TIkZ423bt39pex9QAABStJREFUp127dixfvtwvNTbVicdYW5vY2NgW+zB0TcdYVFTE1VdfzezZs0lNTfVXaT5z4jEeOnSIlStXkpyczLnnnktKSgrDhw/n+++/92eZDRLQwff3v/+d4OBg7rrrLn+X0iwOHTpEQUEBTzzxBGPHjuXLL79k0qRJXH755SxdutTf5fnMCy+8QEZGBm3btiU0NJSxY8cye/Zshg0b5u/SGsXlcjF9+nTOO+88evXqBUB2djahoaG0atXKq21KSgrZ2dn+KLNJajrGEx05coQ///nP3HLLLae4Ot+o7Rjvuecezj33XC699FI/VucbNR3jrl27AHjssce4+eabWbhwIf369WPEiBFs377dn+XWW8v8M6se1qxZw3PPPcdPP/3UIs+z14fL5QLg0ksv5Z577gHg7LPPZtmyZcyZM4fhw4f7szyfeeGFF1ixYgUfffQR7du359tvv2XatGmkpaV5jZBaimnTprFp06YW9RdyQ53sGO12OxMmTCAjI4OW+tbEmo7xo48+4uuvv2bt2rV+rMx3ajrGit87t956K1OnTgWgb9++LF68mFdffZWZM2f6pdaGCNgR33fffcehQ4do164dwcHBBAcHs3fvXu677z46dOjg7/J8onXr1gQHB5ORkeG1vUePHi3qrs66FBcX84c//IFnn32WiRMn0rt3b+68804mT57M008/7e/yGuzOO+/kk08+YcmSJV7TaaWmplJaWkpeXp5X+5ycnBZ3uqy2Y6yQn5/P2LFjiYmJYf78+YSEhPihyqap7Ri//vprdu7cSatWrTy/dwCuuOIKLrjgAj9V+//bu2OXZOI4DOBPiKWCiUagEloQOIVBBN5StCgNDtHgJAU1FS7BQZtjU/UXRBTRJKS1uEhG/0BjSSC0uB9Rg9C34QUhvLjT96Xfe93zAQf1hOfhwO/98Hc4nO86xmIxAHD0986vXfEVi8W+1UAul0OxWOxdpTjd6OgoFhcX+7Yat1otJJNJRan+rW63i26327dbzOPx9K48nUBEUCqVcHV1hWaziZmZmS/vLywswOv1otFoYH19HQDw9PSEl5cXaJqmIvLArDoCf1Z6uVwOY2NjuL6+dtTuY8C64/7+Pra3t7+8Njc3h+PjY+Tz+Z+MOjSrjtPT04jH46bfO6urqz8ZdWiOHnyvr694fn7uPW+323h4eEAkEkEikcDExMSX471eL6LRKFKp1E9HHZpVR13XUSgUsLS0hJWVFdTrddzc3KDZbKoLPSCrjsvLy9B1HX6/H8lkEnd3dzg/P8fR0ZHC1IPZ3d3F5eUlarUagsFg73e7UCgEv9+PUCiEra0t7O3tIRKJYHx8HKVSCZqmIZPJKE5vj1VHwzCQzWbx9vaGi4sLGIYBwzAAAJOTk/B4PCrj22LVMRqNmq7QE4mE6YXA/8iq48jICHRdR7lcRjqdxvz8PM7OzvD4+IhKpaI4vU1K95T+pdvbWwHQ99jY2DA93om3M9jpeHJyIrOzs+Lz+SSdTku1WlUXeAhWHTudjmxubko8HhefzyepVEoODw/l4+NDbfABmPUDIKenp71j3t/fZWdnR8LhsAQCAVlbW5NOp6Mu9ICsOn53ngFIu91Wmt0uO+fR7DNOup3BbseDgwOZmpqSQCAgmqbJ/f29msBD4N8SERGRq/zazS1ERERmOPiIiMhVOPiIiMhVOPiIiMhVOPiIiMhVOPiIiMhVOPiIiMhVOPiIiMhVOPiIiMhVOPiIiMhVOPiIiMhVOPiIiMhVPgHkXfb7weH+swAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -206,17 +274,16 @@ } ], "source": [ - "import matplotlib.pyplot as plt\n", + "k=3\n", + "ida = (k-1)*2\n", + "idb = (k-1)*2+1\n", "\n", - "fig, ax = plt.subplots(figsize=(10,10))\n", + "V = np.matrix(gr.get_embedding())[:, [ida,idb]]\n", "\n", - "ida = 4\n", - "idb = 5\n", - "for x in G.nodes():\n", - " \n", - " v = gr.get_embedding()[x]\n", - " ax.scatter(v[ida],v[idb], s=1000)\n", - " ax.annotate(str(x), (v[ida],v[idb]), fontsize=12)" + "fig, ax = plot_embeddings(V)\n", + "ax.set_title(f\"K={k}\")\n", + "\n", + "plt.savefig(FIGURES_DIR / f\"K{k}.png\", format=\"png\")" ] }, { @@ -228,7 +295,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -241,41 +308,19 @@ { "data": { "text/plain": [ - "array([[-0.07024409, -0.07024348, -0.07024409, -0.07024348],\n", - " [-0.07024409, -0.07024348, -0.07024409, -0.07024348],\n", - " [-0.07024409, -0.07024348, -0.07024409, -0.07024348],\n", - " [-0.07024409, -0.07024348, -0.07024409, -0.07024348],\n", - " [-0.07024409, -0.07024348, -0.07024409, -0.07024348],\n", - " [-0.07024409, -0.07024348, -0.07024409, -0.07024348],\n", - " [-0.07024409, -0.07024348, -0.07024409, -0.07024348],\n", - " [-0.07024409, -0.07024348, -0.07024409, -0.07024348],\n", - " [-0.07024409, -0.07024348, -0.07024409, -0.07024348],\n", - " [-0.07104037, -0.07104201, -0.07104037, -0.07104201],\n", - " [-0.00797181, -0.00799433, -0.00797181, -0.00799433],\n", - " [-0.00079628, -0.00099787, -0.00079628, -0.00099787],\n", - " [ 0.00079628, -0.00099787, 0.00079628, -0.00099787],\n", - " [ 0.00797181, -0.00799433, 0.00797181, -0.00799433],\n", - " [ 0.07104037, -0.07104201, 0.07104037, -0.07104201],\n", - " [ 0.07024409, -0.07024348, 0.07024409, -0.07024348],\n", - " [ 0.07024409, -0.07024348, 0.07024409, -0.07024348],\n", - " [ 0.07024409, -0.07024348, 0.07024409, -0.07024348],\n", - " [ 0.07024409, -0.07024348, 0.07024409, -0.07024348],\n", - " [ 0.07024409, -0.07024348, 0.07024409, -0.07024348],\n", - " [ 0.07024409, -0.07024348, 0.07024409, -0.07024348],\n", - " [ 0.07024409, -0.07024348, 0.07024409, -0.07024348],\n", - " [ 0.07024409, -0.07024348, 0.07024409, -0.07024348],\n", - " [ 0.07024409, -0.07024348, 0.07024409, -0.07024348]])" + "(
,\n", + " )" ] }, - "execution_count": 10, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hUVf7H8fedSTKTSYYUEgIBUkhCiQk1dKRJX+kKCMKisiA23N+6a19Q11130dUFFFSUEkEEQUAEDIRQpUqRkgAhjQSSkF5nUub+/sjmymxCDegu+b6eh4c7ueeeW/76PN97zzmKqqoqQgghhBBC3Cbdr30BQgghhBDif5sESiGEEEIIUScSKIUQQgghRJ1IoBRCCCGEEHUigVIIIYQQQtSJBEohhBBCCFEnEiiFEEIIIUSdSKAUQgghhBB1IoFSCCGEEELUiQRKIYQQQghRJxIohRBCCCFEnUigFEIIIYQQdSKBUgghhBBC1IkESiGEEEIIUScSKIUQQgghRJ1IoBRCCCGEEHUigVIIIYQQQtSJBEohhBBCCFEnEiiFEEIIIUSdSKAUQgghhBB1IoFSCCGEEELUiQRKIYQQQghRJxIohRBCCCFEnUigFEIIIYQQdSKBUgghhBBC1IkESiGEEEIIUScSKIUQQgjxi8nIyGDBggWMGDGC5s2bYzAYcHV1JSQkhClTphATE3NL/WVmZjJ27FgURSEgIODuXLS4IUVVVfXXvgghhBBC3PtmzJjB0qVLKSsro3nz5owfP57g4GAsFgtbtmzh+++/B2DChAksXboUg8Fw3f6++uornnnmGbKysgDw9/cnKSnpbt+GqIUESiGEEELYycjIYM2aNURFRXHs2DEyMzNxdHSkSZMmdO/enccee4x+/fpdt4/Dhw+zZs0a9uzZw7lz5ygoKKCiogKAkJAQNm/eTHBwsN0xixYtYubMmQA88sgjrFy5sta+MzMzmTlzJuvWraNz585cuHCBnJwcCZS/IgmUQgghhNDUtYoYGxvL1KlTOXToEAADBgygd+/e+Pr6MmPGDGw2G6qq4urqyqJFi5g0aZLd8UOHDmXr1q0AHDhwgK5du9a4xoCAANLT05k9ezZ/+tOfCAoKIjk5WQLlr8jh174AIYQQQvz3WLZsGWVlZQwfPpxVq1ZhMpm0fbNmzdKqiKtWrUJRlBpVxBMnTmhhMjIykkcffVTb9/TTT9OjRw8URWHHjh1MmTIFT09Phg4dqrUZO3asFig3btxYa6Bs1aoVmzdvJjQ09I7eu7h9MihHCCGEEHZcXFz47LPP7MJktSeffJIhQ4YA8OWXX3Lw4MFa+xg3bpxdmAT45ptvmDdvHsuWLcPR0RGbzcb//d//2bXx8/PTtlNSUmrte+vWrRIm/8tIoBRCCCGEne7du+Pt7X3N/WPHjtW2N27cWGubESNG1Pjb0KFDCQsLo1mzZnTp0gWAuLg4zp8/r7XJz8/Xtl1cXGrtW1GU69+A+MXJK28hhBBCaL755huaN29+3TbXqyL27t2bb7/9lvvvv/+Gfezbt0/rIyQkBIDExEStzY36EP89JFAKIYQQQnP194zXcr0qoq+vL76+vrfdx/r16wHw8fFhzJgxN+xH/HeQV95CCCGEuCV3oopY3YfZbKZ9+/YAnDp1iv379wPw1ltv4ezsXMcrFb8UCZRCCCGEuCV1rSKeO3eO2NhYAKZOnYrRaERVVZ577jmgqko6bdq0O3fB4q6TQCmEEEKIm3YnqoiffPIJAB4eHrz22msAvPPOO8TExNCyZUu++OILGXjzP0YCpRBCCCFuyp2oIsbFxbFgwQIAFi5cSKNGjVi7di2vvfYavr6+bNmyBU9Pzzt63eLuk0AphBBCiJtS1ypiSUkJjzzyCFarlRdeeIHx48cTFRXFpEmTaNSoEdHR0bRo0eIuXb24myRQCiGEEOKG6lpFrKysZPLkyRw/fpyJEyfy97//nejoaEaNGoWbmxs7duygdevWd+nqxd0mgVIIIYQQ11XXKqKqqkyfPp1169bx0EMPsWzZMvbs2cOIESNwcXEhOjqaNm3a3KWrF78ECZRCCCGEuKa6VhFVVeXJJ5/k888/Z/To0dpyjQ8++CDOzs5ER0cTFhZW47gZM2bUutqO+O8kE5sLIYQQola7du2qcxXx2Wef5ZNPPmHEiBF89dVXHDlyhKFDh+Lo6Mi2bdto27ZtrcedPXuWpKSkOt6B+KVIoBRCCCFEDfv27bupKuLly5evuZ7373//ez788EN+85vfsGbNGk6cOMGQIUMoKipi7ty5JCQkMGHCBB588EGGDx9ud2xeXt5duS9xdyiqqqq/9kUIIYQQ4r/HgQMHGDRoEA4ODkRHR9OhQ4da2/Xt25ekpKRaK4l/+tOfmDt3LkOGDGH9+vUUFxcTHBxMbm7uTV+Hv79/rX0nJCTwww8/oKoq27ZtIzIyEgA3NzdtSiKAHj16XPN7z+zsbBYuXMh3333HuXPnKCoqwtvbm65du/LEE08wbNiwm75OIYFSCCGEqBdUVWXBggW8/PLLFBcXExMTQ9++fWu0O3LkCAMGDKCgoIC5c+fSqVMnu33btm3j1KlTZGdnU15ejk6n4ze/+Q39+vVjxIgRBAYG8uqrr/LXv/4VPz8/Pv74Y4xGI+np6TzyyCO3dM3XCpRLly7lscceu+HxS5YsYerUqTX+vnXrViZNmkROTg4dO3ZkwoQJeHp6cvr0aT777DMKCgqYPHkyS5YsQa/X39I111uqEEIIIe5pFy5cUPv06aMC2r+YmJga7bKzs1UPDw+7djf65+TkpG3/4Q9/UJcsWXJLxwPq7Nmzb/pebDabOm/ePNXFxUVt0KCB2q1bt+ve03/av3+/ajAYVECdPHmyWllZabf//Pnzqre3twqoTz/99E1fV30no7yFEEKIe5SqqsyfP5+2bdty7NgxunXrdt32BQUFt/RKGqBJkyZMnDhR+323B9K88cYbPPfcc/Tq1YtTp04xePDgmz5WVVWeeuoprFYrDRo0YMGCBeh09lEoODiYN998E4CPPvqII0eO3NHrv1dJoBRCCCHuUbcavgICAlBV1e7fH/7wBwCeeuqpGvtUVSUpKYk5c+bQsGFDXFxcmDNnTq3trvdvzpw5t3RfixcvZuvWrTRv3vyWjjt+/DjHjh0DYMiQITRo0KDWdo888gg6nQ5VVfnggw9u6Rz1lYzyFkIIIe5hixcv5oknnritYxMSEpg3bx6KovDKK69cs11ISAhZWVm3e4m3ZPbs2be85GO1Q4cOadu1jVqv5ubmhr+/P4mJiWzcuJGysjKcnJxu65z1hQRKIYQQ4h5Vl/AFsHz5csrLy+nUqRNNmza9g1d2++pyP9nZ2dr2taqT1Tw9PUlMTKSwsJDY2FjatWt32+etD+SVtxBCCHGPqkv4Avj6668Bakw+XlZWRnFxcZ36/jWYTCZt22KxXLdteXm5tn3mzJm7dk33CgmUQgghhKihpKSE2NhYAPz8/MjPz+fVV18lKCgIo9GIq6srbm5ujBo1ij179vzKV3tzQkJCtO0LFy5ct21ycrK2/Uu9zv9fJq+8hRBCCFHD6dOnsdlsAKSkpBAeHk5xcTHPP/88HTp0oKCggFWrVrFhwwY2bNjA66+/ro2O/m/Vu3dvXF1dKSoqIioqClVVa63iHjp0iPz8fO13YWHhL3mZ/5OkQimEEEKIGq5cuaJtL1myhJKSEg4fPszrr7/Ogw8+yMSJE9m4cSMvvvgiAG+99RZLliwBICMjgwULFjBixAiaN2+OwWDA1dWVkJAQpkyZQkxMzA3Pf+bMGebOncvw4cMJDAzEZDJhMBjw9fVl2LBhLFmyhIqKilu6J7PZzKxZs4CqCuTChQtrtKmsrOTVV1+1+5tMbn5jUqEUQgghRA3/WZV76aWXal3G8M0332TFihWkpqby8ssvs2/fPiIjIykrK6N58+ZMmDCB4OBgLBYLW7ZsITIyksjISCZMmMDSpUsxGAw1+nz22We1JRQ9PDz47W9/S8uWLSkuLubQoUN8/fXXbNmyhXnz5vHAAw/c0n3NmTOHY8eOsXnzZmbNmsXFixeZNGkSnp6enD17lr/97W/s3LmTwYMH8/333wM3HsAjJFAKIYQQohb/Wf176KGHam3n5OTEmDFjmDdvHhkZGdrI8OHDh7Nq1Sq7gTCzZs1i0aJFzJw5k1WrVqEoCitXrqzRZ3V1NCwsjN27d+Ph4WG3f+vWrQwbNozjx4/f8kTsDg4ObNy4kfnz5/P+++/zzjvv8M477wBVg5juv/9+9uzZw+HDh7VA6e3tfUvnqI/klbcQQgghanB1ddW2XVxcCAgIuGbb9u3ba9s2mw0XFxc+++wzuzBZ7cknn2TIkCEAfPnllxw8ePCa/X700Uc1wiRUTUr+8MMPA/aDZ26WXq/n+eefJzk5mYSEBPbu3cuBAwfIzMxk165ddOvWzS6ohoeH3/I56hsJlEIIIYSowcvLS9t2d3e/btuGDRva/e7evft1q3pjx47Vtjdu3Fhjf1BQED169KB79+4AWMoruVJoxVJeqbWJiIi4/g3cpMDAQHr27EnXrl3t7jkhIQGoet199ehwUTt55S2EEEKIGkJDQ7XtGw1+UVVV2x46dCh/+9vfrtvez89P205JSamx/+233wbgcFIOi/cmsO1MBjYVdAoMDPXhd71a4OLiclP3cbuqV9UZPXp0jfW+RU0SKIUQQghRg4eHB8HBwcTHx5OTk0NFRQUODrXHhqtHhHfu0vW6yxoCdlPyXCsYRh5I5s8bTqHTKdj+nVdtKmyPzSTqdAZ+p3cBVa+vKysra+2jNomJiZw4cYIHHngAs9lca5v4+HhtDs7HH3/8pvuuzyRyCyGEEKJW1a+my8vLOXHiRK1tDifl8P6qrdrvReecmPHFEY4k5Vyz38TERG37/vvvr7XPP284hQpU2lS7fZU2FWtGArs3fwNUzS15K7777jtGjx7Nd999d8021RXSMWPG3HL/9ZUESiGEEELUaubMmRiNRgAiIyNr7I88kMxDC2I4eyAaAEfvABybhrI9NpOHP97PFwdrHzCzfv16AHx8fBgzZkyN/Yv3JqDT/TzhuM1STEVhFpbUWHJ3R5L+xZ9Q9A70fuK12w58f/nLX2pdPvKDDz5g6dKlhISE8NFHH91W3/WRvPIWQgghRK38/f2ZPXs2L7/8MgsXLmT06NH06dMHqKoivr7+JDnRi6kszgOdA56Dn0ZRFK2q+Pr6U7T2MRMR4Kn1efLkSfbv3w/A//3f/5GSkkJJSQnFxcUUFxeTV1RC1GlHVH4OlJlr38J68ZT227FRIC6hfYnNLMU96+clFLdt20ZqaipQFVYHDhx4zXs7ffo0bdq04bHHHsPPz4/MzEw2bNjAwYMH6dWrFytXrsTHx+cOPMX6QVGv/pJWCCGEEPeUL774Qttet24d33xT9ar4lVdeoU2bNsCNw9ef/vQn3n33XRwcHJg6dSpdunThs5gzHNu1BWtaHIrBhNfwP2IK7mx3nE6BMHcb45sWaIFx/vz5JCYmEhwczKRJk7SlD41GIy4uLqgGV95LsB8hbk2Px1ZagK20EGtaHIU/fnvD++7Tpw87d+6s8ff09HTWrVtHdHQ0p0+fJiMjg9LSUho3bkynTp2YMGECDz30UK1LMoprk0AphBBC3MNuJhhdK3xd7YcffmDhwoXs3r2b9PR0yhUHHN2b4BzUGXPEcPQmt9rPj8pbbYtxczWxYcMGPvvsM/z9/Vm3bh1NmzbFZDJhMpnQ6/WoqsrhoycY/3WqXYXyP1UUZJGx6jUqclIJCAzk4IEDNGrU6Ib3Ke4eCZRCCCGEuCVXCq10/uv2m25/+JUB7I7axLhx42jcuDF79uypsYxjUlISUVFRXL58mUOG9sTm67FdJ1SWXz7LpWV/AGDixImsWLHi9m5G3BEyKEcIIYQQt8RsdEB3k2+EFVQ2fr2KSZMm0ahRI6Kjo+3CZHZ2NqtWrWLZsmUoisLUqVMZ39YL2w36dWrSCr+AIADWrFlT6wAb8cuRQCmEEEKIW2J01DMw1Af9DUKlTgHPywd5cvo0nJyc+PDDDwkODgagpKSELVu28NFHH5Gens6YMWOYNm0aOp2O5B938EiwDlBR/iNaVp1TZWTTUsLvaw1UTWt09uzZO3+j4qbJKG8hhBBC3LIJ7Rvx/el0uM5r6ZLkk1z+5p+YzWZefPFFTp48SUJCAj4+PqSmpqIoCv369aNbt244ODhQVFTE559/TmZmJjNH+5Gf8j2nK3xIsbmjoqCg0rahwtRu/vy0Yz0Hs7O1c91oNR9xd0mgFEIIIcQtqays5MKBKPqb9ewobISCajeIRsFGaWos2V/PwexiYufOnYSHh7N//3527dpFQkICiqKwd+9eYmJi+P7776msrGTNmjWkp6ezaNEiDAYDPm5utPTWYzBZcPXwxtPszOmfjvObroPxd6lk/vz52jmvXs5R/PLklbcQQghRD6iqyvz583F1dUVRlBuO6r5adnY2b7/9Nj179sTT0xODwcCzzz7Lj199QLOjiwjWXUGhaoyvAnhc/pGc1X/GyUHPxIkTqaio4PPPP2fbtm0EBATw+OOP079/fxISEjh48CCRkZGsWbOGixcv0rdvXwC2bq1afcff3x+zyYhBtdKtcydKS0uJjY2loqJCW/KxTZs2NG7c+E4+LnGLJFAKIYQQ97iEhAT69evHc889d8uDV/bu3UtoaCivvfYaFy5cYMyYMQwdOpTx48dTWFjIvqhNHJw/i35XNjDBcJwPeiqcWfUOFeVlDBs2jLKyMubNm8dPP/1Ey5YtadKkCRcuXKCiogJXV1dcXFzIzc3l7NmzmEwmcnNzAYiNjWXPnj20bt0ao9GIxWKhYcOGBAQE8P333zNx4kQAdDodXbp0Yfbs2bcUlgMCAlAU5Zb+ffDBB7f87OsLeeUthBBC3KNUVWXBggW8/PLL6PV6unXrxoEDB276+IyMDIYPH05eXh5t2rThu+++Y/Xq1TzwwANMmDCBPXv28Nvf/pakpCS+WL6MqVOnMnXyu1itVgC+/vpru/7mzZtX4xzNmjWjoKCAoKAgnJyc2L17N2azmcLCQqKjoxkzZgxt2rTB2dmZkpISoqKi2LRpE+Xl5bi7u/Pmm2+ycOFCli1bVreHdRNk5Zxrk0AphBBC3KPeeOMN3njjDQYPHsynn37KZ599dkuB8pNPPiEvLw+At99+mx07dmAwGBg1ahSKopCcnMy0adN47bXXKC8v5+DBg1r7m1VSUoKXlxfjx4/H0dGRQYMG0bJlSw4cOMC5c+fIy8tj27ZtlJSUsG7dOjw9PQkICKBfv34EBARoYTkwMJDExMRbOnfnzp1Zvnz5ddukp6fTv39/3NzcGDVq1C31X59IoBRCCCHuYYsXL+aJJ564rWMPHz6sbZeVlXHp0iUee+wxnJ2dsVgsJCUlMXjwYP7yl79gsVjIzMxkzpw5dOzYkeTkZDw8PEhOTqZjx45ERETw+eef4+XlxeTJk3FwcGDVqlWkpKRoYRKgQYMGlJaW0qpVK3r06IHNZiM3NxedTqdVK6Oionjvvff45JNPtLC8cOFC/va3vwFoFdIbMZlMtG7d+rpt1q1bh6qqTJ48GWdn59t6jvWBfEMphBBC3KNmz55922ESqkJktePHj/PAAw/QrFkzAM6fP4/NZsPd3R29Xg9UzQfZvXt3hg8fTpcuXbhw4QJdu3bl0KFDVFZWMmnSJNLT01mzZg07d+7k3LlzjBkzBg8PD+08ycnJWCwWALp27cozzzxDp06dsNlsfP3118ybNw+dTkd5eTlvvvkmW7dupXnz5jg5OWl9xMTE3HAaoc6dOxMeHn7dNqqqsnjxYgCmT59+C0+u/pFAKYQQQtyjbmYd7+tp27attm0ymejevbv2++TJkzg7O/Ppp59qA328vLy0c7Zr106rOnp6erJ582Z8fX0ZP3488fHx7N69mz59+hASEmJ3zri4OBwcql6gtmrVCp1Op00J9PjjjxMQEMDBgwfp168frq6u5OTk1LjuK1eusH79eq5eXdpSXsmVQiuW8kqganWdq6cdqs22bdtITEykR48ehIWF3dxDq6fklbcQQgghNJbySgotFZiNDkyfPp158+ZhtVo5cuQIiqJgsVjYvXs358+fx8nJiUuXLmnHduvWTQuXBoOBtm3bcvz4cUaMGMHKlSs5efIkzZo1w8HBgfLyciwWC6qqaiFUVVXi4uIAcHR0pEGDBgAYjUYA3N3dGTVqFA888ACbNm3i3LlzzJ8/n1atWtl9u9m7d29Onz5NgwYN8GgZweK9CWw7k4FNrVq9Z2CoD7/r1YKIAM/rPotPPvkEgBkzZtyhp3vvkkAphBBCCA4n5dQIXu0aKjz46AwORX3Dxo0b6dOnD23atMHFxYW8vDxKSkpYtWoVer2ekSNH0r59e7tpiTp37syRI0ewWq2EhoYSFRWFyWTCbDbToUMHoqOjMZvN9OzZE6gaAFNQUABAkyZNtH6qA6XFYsFsNmM2mxk7dizvvfce/v7+5OTkcPz4ca19s2bNaN26NR9s+pH9MeXodQq2fxcrbSpsj80k6nQGb40K49Gu/rU+j4yMDDZu3IiHhwcPP/zwHX3W9yIJlEIIIUQ9F3kgmT9vOIXuP4LX8axKVO9BPP3Ph9i3fC5RUVHs3r1bO85gMDBz5kymTZvG8ePHKSkpoaioSNvfqFEj/P39OXLkCKNHj2bevHmUlpYyffp0fHx8KC8vZ/v27ZhMJjp06EBcXByOjo6Ul5cTFBSk9XN1oKzm5ORE27ZtOXv2LLNmzSIuLo5du3YBVdMVdRz8MPsrqsJipe3nV99X/359/Sla+5hrrVQuWbKE8vJyGYxzkyRQCiGEEPXY4aQc/rzhFCo1g5eKDuuls/x5yYeUZSTQqVMnpk2bxpEjR3Bzc+P06dMsXbqU/Px82rZtS4MGDWpMnB4REcHatWs5fPgwNpvN7rvOvn37UlxczLfffovJZCIuLg5XV1dyc3PtRl8bDAag5ujtjh07cuTIEeLj4/H0/DkU+vn5seLIZRTc7JaE/E86ncLivYk1AqUMxrl1EiiFEEKIemzx3gR0OqVGmASwpsWS8eVrqBVWAjs/wG8nj2Tt2rUcOnQIi8WCo6MjRqORlStXsnbtWv7whz9gNBrtvots06YNRqORffv20alTJxITE3n//feJj4/n4MGDXLlyBVdXV9asWUPnzp1p3bo1iqJQUVFBUlISNptNC5IXLlzAarVis9mw2WxUVlbi5uZGdHQ0qamp2nU7GpxJLnCn5h3Zq7SpRJ1Jx1JeidFRr/09OjqaCxcu0LNnT+677766P+R6QAKlEEIIUU9Zyiu1byb/k6qqZG+Zj1phBZ2exKO7eO5wNO7u7oSHh+Pv709ZWRmnTp0iNzcXq9XKu+++ywsvvMDf//53VFXFZrPZTd/z448/EhMTw65du3B0dKRjx460b9+eK1eucPToUU6dOkWfPn3o168fS5curXFN15uUPSEhQds+cy4e1SPkmm2vZlOh0FJhFyirB+NIdfLmSaAUQggh6qlCS0WtYRKgPCOB8qyUqh+qDWwq7TtFMHrEcDw9PQkMDESn06HT6XjppZc4fvw4ZWVlrFy5ko8//hiz2QxUTY5eUlKC1WolLS1NC5PTp09n5syZGI1GdDodCxcu5P3332fXrl34+/vz7rvvav1X7+/SpQs9evRAp9Oh1+vR6XSUlZXx3nvvaVMLAfg380UpVq/7uruaTgGz8ec4lJmZyfr16/Hw8GDcuHG3/3DrGZmHUgghhKinzEYHdNfIXOW5aVf9UlAcjTw09mFUVaVdu3YMHTqUoUOHMnjwYKZOnaq1TEpKori4mO7du5OXl0d+fj6TJk3C19dXW+bw6aefxtfXl4sXLxIUFIS3tzcuLi4MHjwYgK+++oqioiIaNmyIh4cHbm5uODs7o6oqRqMRJycn9Ho9iqJgMBgIDQ0lLe3n602MP4e/Pg/dDV5663UKg0Ib21UnqwfjTJkyRRsMJG5MAqUQQghRTxkd9QwM9UFfW6pU7COCW7MgDI5Vf9uxYwf/+Mc/WLNmDUePHqWkpMSu7ZYtW/jpp584dOgQQ4YMoXnz5hw/flz7FvLpp5+md+/eHDp0iIyMDM6dO4eiKHTp0gWoGnzzzDPP2A3CMRqNdqO8oaqauHXrVmJjYykvL9f+Hh4ezuQuzbDd4P5tNpVpvQK13zIY5/bJK28hhBCiHpvWqwVRpzNq/N3BrZG27ejTgmeefpaS4gwUReG+++7DbDZz8eJFvv32WzZv3mx3bEJCAt9++y3t2rUjIiICgO3btwPg7e1NcHAwgYGBHD9+nM2bN+Pk5ETjps1JupSBh4cHubm5HD58mFWrVjFp0iQcHBwwGo1YrVbKy8s5c+YMP/74IxcvXsTBwQGbzT46urm5kXpsF8O8W7L5ihkFFfWqGppep2Czqbw1KsxuhPeOHTuIj4+nV69ehIaG1v3h1iNSoRRCCCHqsc4Bnrw1KgwF7CqVTo2D0btWhS1bVjKPjR6IqqqEhIRw/vx5Dh06ROPGjXnsscdITk626zMvLw+9Xk+TJk3Iz88nLS2Nc+fOAdCwYUMKCgrQ6/UMGzaMw0k5fHJG5W/xjVhZEo7Vu2q6oCtXrnDmzBnWrVunBcaLFy/yz3/+k/Xr12t9KIpCjx49CAz8udK4b98+wsPDaWZJZHKTLFo4FaP8+/W3ToGBbXxYM6N7jUnNZTDO7ZMKpRBCCFHPPdrVn9Y+ZhbvTeT705dRUdApCsH9Hubstx9TWVHO6NGjGTVqFCNHjkSn03H48GF++OEH3nzzTTIy7CucAQEBNGzYkO+//56tW7eSmZmp7XN3d+fo0aP07duXfZl6Npe1+ncFsYq+gbfWNsfoS2xsLP/85z8pLi5Gp9PRpEkTMjIyKCkpoXv37nTv3h2TycSOHTvszl/9naWProjnOnpQbCklv8TKY48+YvfNZLXq9b9lZZzbI4FSCCGEuId98cUX2vZPP/2kbW/btk2bu9HHx4eBAwcSEeDJok8/w1KpkJ+VTuR0DXEAACAASURBVLenR/OvihS2bdvGTz/9xOXLl9Hr9TRv3pzMzEy++uorjh07BoCLiwvFxcW4uLjQv39/fve732GxWEhISGDBggXaeV1cXNi7dy9JxXrm7C0AFLvR2HoXd2173aF4xncJwKe4SPuGMjMzk65du9KjRw9MJpPW9urvOMPDwzl69Cg9e/Zk79699OvXj/j4eEoK82sNkwBLly6lrKxMG3kubo0ESiGEEOIeNnny5Fr//te//lXb7tOnDwMHDgTAUQcNXIzkZ5TTsmVLevXqxdixY/n8889JTExk7ty5lJaWYjKZ8PPzY/r06dx///3aefr3709hYSGXL1+mSZMmhIaG0qJFC+1cgYGBVFZWsuSH5H+vZFP19Z2qqhT+uIm8PSt/vsjyUi6ZW+NrOYbFYkGv1zNr1ixcXFyAqrBc2/2NHTvW7vecOXPo0qULv/3tb6/5nD799FNAXnffLgmUQgghxD1MVW+0XkxNzs7OKIpCTk4OXbt2Zf/+/QwaNIiIiAiOHDnCmDFjCA8P1/rv3bs3AK1atWLcuHEkJibyySefEBISwv33309paanWd9u2bTGYXEmJd9cqk+V56WR/9wHWi6fsrqOyzMqJbJXf9elCetpFUlNTSUhI0M59rbBcG51OV2PpxmoxMTGcP39eBuPUgQRKIYQQQtjR6XQ0atSItLQ0Bg4cyA8//ICzszPDhg2jvLyc9evX4+LiQosWLXj77bfZu3cvXl5ePPXUUwQHB5OcnMyIESPYu3cvn3/+ObGxsVrfZWVltO/WETU+9eeq5K5loNPh5NuKsktnf74ORwMqCl169uHi+dOkpqayfv16nJ2dCQ4OJj8/Hzc3N4YPH86cOXNwdnZm+fLlFBYWMnXqVFasWEHHjh3p3LkzsbGxnD17trbbpV+/frcVvMXPZJS3EEIIIWrw9fXl0qVLODk5odPpsFgsFBYWMnz4cAIDA1m9ejWLFy9m9uzZmM1mXnvtNVxdXXF1daWiooLWrVvz1FNP8fDDD6PX//zdYlpaGi0Dm6Ogkr93JbnbP8bQLBTfJz7EObCj3TUoTs7aSjbOzs5A1YCb1atXc/78eSIjIwEYMmQIHTt2RFEUjEYjPj4+ZGZm4u7uzgMPPEDr1q1p3rw5ZWVlEhzvEgmUQgghhKihadOmZGZmkpCQQEVFBU5OTuzZswe9Xs/DDz9Meno6M2fOxGQysWLFCgICAlBVVfu+sbi4GEVRCA0NtXs1vW/fPj7+aAF+ujxAxXPoc/iMfxOHq0Z3V3N086aHnytGRz0GgwGAwYMH06hRI7788kuKi4sBMJlM2Gw2tm/fTlBQEG3atOHUqVM4OzvTpEkTAAwGA6qq2k2ALu4cCZRCCCGEqKFp06aoqsqxY8cwm8306tWLo0ePkpeXx969e/n4448xGAxMnz6dAQMGoCgKqqri6uoKQFFRkdZXWFiYtl1QUIDJZOI+hwzcek3E3G7QNa/BwcufBpePsHXrVhwdHYGqVXQUperbS53u5xhz9OhRsrOzGTBgAB07dqS0tBRfX1+tbXUgLSsru0NPSFxNAqUQQgghavD29kav15OYmEirVq3o0qULzs7OfPjhh4wYMQK9Xs8f//hHGjVqxKpVqwBqVCgBcnNz2bdvH56entrvyspKfHRF9HS6CKgotSySqDd78c6jffjtsF4cOXKEjRs3AvD999+TkZHBuHHjcHCoGgpSUlLCzp07adu2LQ0aNNCm/bk6PDo5OQFcc2COqBsZlCOEEEKIGvR6PV5eXmRkZNC6dWucnJwwm828+uqrODo68uSTT/LCCy+Qk5OjDYRxcnLi+eefZ/fu3QwePJiYmBj27duHyWSid+/erF+/noyMDMxmMxaLhUe7BeB+MJbTFY1IsXlgs/xc1Rz4QF8e7RYABODv78/q1asBuHTpEhMnTiQ4OBhvb29+//vf880335Cfn09iYiJZWVkAODg40LRpUwoKCpg5c6ZWoZRAeXdIhVIIIYQQtaquAAYEBHDgwAH++Mc/otfrmTx5Ms8//zwuLi40b96csWPHkpubS2FhIefOnSMjI0MLk82bN6e8vGpOy+rK4f79+7VX2D66Ivo7JRD9ZDsaF57Xzt23W4T2vaOPjw9+fn5AVRX0+PHjWCwWGjZsCFStE37hwgWee+451q9fzwsvvED//v3JyMjg97//PZ06deLSpUuABMq7RQKlEEIIIWpV/R3k/v37GTJkCEVFRdq8kocPH2bnzp3s3LmT9PR0SktLOX36NOfPn0dVVXQ6HQ4ODqSkpBAWFsYrr7zC3LlzAVi9ejWqqtqt3HMxKYHEhHjtd1xcHP/617/Yt28fUVFRnDhxAr1eT9u2bYmPj+fjjz/m4sWLALRs2ZKnn36a++67jwcffBAvLy9eeukl/vGPf+Dh4cHp06cZN24cpaWl8g3lXSKvvIUQQghRQ15eHvn5+ZSUlPDggw+Sn58PQFRUFADLli275rHu7u5YLBY6derE/fffj5ubGwDPPPMMKSkpzJ07l7/85S+0b98eb29vsrKyeOedd6ioqND66N27N15eXkRHR6OqKkFBQWRkZODh4cGTTz7J2rVrWbJkCbNmzWLUqFF4e3vz9ddfU1lZicViITg4mGbNmrF3715Wr15NQkICe/bsYeLEiXfxqdVfUqEUQgghRA1nz57VRlFXh8mbpaoqDRs25MEHH9TCZLVx48bx+OOPExYWRmxsLJs3byYuLo5WrVrZLY2Yk5NDkyZNUFUVX19fkpOTKS4u5vz58zg6OvLYY4/h6emJh4cHSUlJNG/enGHDhnHmzBnt+8mgoCC6du2K2WwG4NixY3ar9og7RyqUQgghhKjh7NmzBAYGoqoq//jHP1BVlenTp+Pu7o7NZuODDz7AarVSVlaGg4MDFRUVGAwGfve73xEZGUlOTg4ZGRn4+PjY9RsXF0f37t3x8/PDZDJRWlrKE088weLFi8nMzNTaJSYmUlRURNeuXRk8eDDFxcV8/PHHpKen869//YuWLVuSnZ1Nr169OHHiBIsWLWLkyJGYzWYKCws5fvw4HTt2pGPHjjRq1IjCwkJKS0s5d+4cXbt2/aUf5z1PKpRCCCGE0JTbILe0gvjEZFq3bk15eTklJSWMGTMGd3d38vPzWbNmDYWFhdr3iOHh4URERGAymWjYsCEdO1ateLNixQq76qbFYiExMRG9Xo+rqyslJSW4u7vTtGlT/Pz8SEtL09oWFRVx3333MXjwYBRFwdXVlcaNGxMUFES3bt04c+aM1ucjjzyCn58fq1atorCwED8/PzZt2kRsbCwdOnTAZDJp/WZkZPwSj7HekUAphBBCCA4n5TDjiyP8PcGHOSeMRFo6MPdAPkeScwHw8PBgx44dzJs3T1sT22Aw0Lx5c0aMGIGzszM2W9V8km5ubqiqiqIorFixAovFAkB8fDw2m4309HQCAwMBtP8jIiLIy8uzu6YWLVpoE5MDGI1GysvLtVfh7du35/Tp0yxevBij0Ujr1q2BqnkpW7Rowdq1a8nNzdXmxgQosFRgKa+8G4+wXpNAKYQQQtRzkQeSGffxfrbHZqJSFeBUFA6llbK5rBVxFd58/PHH7NmzB5vNRlhYGM8++ywjR47k4sWLJCUlaSvlANpqOSNHjqSwsJBVq1ZRUVFBXFwcbm5udssftmnTBoDQ0FBtmiKAhg0bkpiYaHedBoMBi8VCdHQ0QUFBXLx4ES8vLwYMGMCFCxeIi4vDycmJyspKkpOT8fDwYOXKleQWWbQ+PkvxIHT2VmZ8cYQjSTl354HWQ/INpRBCCFGPHU7K4c8bTqEClTbVbl91uNxf4YeHtZQ+oUEMHDhQW/XGw8ODxo0bExMTo31vCWgVQYPBwCOPPMLy5ctZt24dFy5cwGAwEBISos0LWT2/ZE5OjlbhBGjWrBkXLlzAZrNpg4OMRiMFBQWUlJTw0EMP0a1bN4xGI3FxcURERPDuu+8CVavxuLu7k5WVxdlKb86dPweAzuSGg2dTbCpsj80k6nQGb40K49Gu/nfj0dYrUqEUQggh6rHFexPQ6ZTrtlGABEd/xo8fr4VJAEVR6NevHykpKeTl5WmBsDpQFhUV4efnx9ixY4mNjaWsrIzCwkI6dOhATk4Obm5uODk5kZubS2RkpDbxOVStJV5aWqoFT6iaaL2kpIR27drRuHFjAM6dO0dCQgJZWVmUlZUxbtw4RowYgaIoZNhcifrxHKq1BADXdoO1V+iVNhUVeH39KalU3gFSoRRCCCHqKUt5JdvOZPAfhckaVBTOFhvZsWsPzk4OKIqCTqfT/vfw8ODs2bNUVlZy8uRJ7bj4+HgURcHBwQEvLy+ysrJwcnKioKAAVVXx9vYmPj6eb7/9FkVRaNmyJVu2bAGqqpsGg4FTp07h7u6OTqfTJjLv2bOnNmelqqo89thjvPLKKzg5OREQEIBer6ddu3YMfXUxuTs+B8ChYTPcuj1U4950OoXFexOJCPCssU/cPEWtrk8LIYQQol65Umil81+333T7KeZYnJVyVFXFZrNp/9fFiRMntO3Y2Fji4uIAuP/++/Hy8gKqvskMCgqqceyXX36pDRBydXWlbdu2+Pj4oKoqySkXOXbiBFRW4NQkBO/Rr+DQwLvWa9ApcOaNIRgd9XW6l/pMKpRCCCFEPWU2OqBTuGGFEkBB5TeDHqBrRIca+2w2G/PnzycvL4+XXnoJgMWLF+Pn50e/fv1ITU3lq6++QlEUAgMDSUhIAMDb25tvvvmm1vPt2bNH246IiGDgwIGkpKRQUVHBkCFDMBqNjBgxgvj4eLZt28b27duJjY3l8OHDVdMMmc2YgrpgCu2NqWV3FN21w6JNhUJLhQTKOpBAKYQQQtRTRkc9A0N92B6bWWNAztUUbPjp8vjp2GU6tgvD0dHRbr9OpyMkJITDhw9z4cIFQkNDMZvNWK1WXF1dSUlJQVEUWrVqxdixY3n77beBquUd09LS8PX1tevv4MGDREVFMW3aND755BMGDhzI9u3b6dy5M4cOHaJFixZ4e1dVGzt06EBISAhNmzalbdu2pKWlkZ2dTYWq8IW1ozaw6Hp0SlW4FrdPBuUIIYQQ9di0Xi2w3aBEqaLjPodMLl26xNy5c9m9ezdWq9WujaenJ4qiEBMTg81mw8XFheLiYlRV5dSpU6iqSkREhN1qOI6OjtoUQ1dr164der2ec+fO4ePjw8GDB3Fzc6N9+/ZA1WCfxMREoqOjWbx4MRs2bAAgNTWVgIAAHn74YV558Y8Muq8x+hvkSb1OYVBoY6lO1pF+zpw5c37tixBCCCHEr6OpuzNeZgMxcZnodQpXj6zQ6xRQ4S+jwujl70piYiI2m42kpCQOHjxIeXk5jRs3xtHRkUuXLpGQkEBxcTENGzbEarWSkZFBYGAg+/btw9XVlaFDh7JixQqKi4vp3Lkzubm5xMbGEh4ebjcHpYODA3l5eZw6dQpfX18uXrxI9+7dyczMJCUlhVOnTnH8+HGysrJo0qQJBQUFhIeHM2XKFFq2bIm3tzeOjo7oLAVsis2B61UpVXhnTDi+7s537yHXAxIohRBCiHqubTN3egV7kV9aTkJWESpV30xGNHbiX5O6MCSsCQ4ODhw9epSxY8ditVrJzs4mJSWFgwcPYrVa0el0JCYm0rJlS86cOUPz5s05n5BEaaWOtNSL3N+rJ7GxsZw7VzUn5OTJk2ndujUHDhwgOTmZsLAwbb5JqJqS6Mcff9Tmp0xKSuLy5cvaxOpjxoxh4MCBeHt7c+DAAQYMGGA3pVFGRgZb1q7EyWYl1eZ+zbD81qgwhoQ1+aUe9T1LRnkLIYQQQmMpr6TQUsHmDWuxlVuZOnUqCxYs4OWXX6a4uJiPPvqImTNnkpSUxNatW8nIyNDmdlRVlUmTJvHPyA2kurTkZK6CioKCSnsvhcb5Z9i0ZB6pqakA2oTokZGRhISEEBYWRkJCAomJieTm5mrXpNPpaNeuHcOGDeOvf/0rQ4cOpXPnzgD88MMPxMTE8OKLL2pVztzcXBYvXkxpaSmtWrWiRdcBfLY3iagz6djUqm8mB4U2ZlqvQJku6A6RL1CFEEIIoTE66jE66mkXFsqSJUvo3bs3e/fu1fZnZ2cDEBAQwIwZMzh16hTbt2+noKAAgNeXR7G/vBVKGXbLOB7PspF/+Dy5/w6TAGlpaZSXl2M2m4mLiyMuLg4vLy9CQkIICAhg06ZNlJSU4O/vT1ZWFg4ODhiNRrvvN+Pj4wkMDNTCZGFhIcuXL8dqteLh4cHo0aNxcnKic0BDLSybjQ7yzeQdJoNyhBBCCGFHVVV27NjBokWLOHbsGN26ddP2XblyRdtWFIXw8HCeffZZQkNDybC5sr/cj6oX5vbfLZbnZ5G35wu7v23bto2ffvoJPz8/wsLCgKopgoYOHUpRURElJSU4OzujqiqpqamUlpZiNBqxWKrW5i4rKyM5OVmbo7K0tJTIyEiKiorQ6XRMmDABJycn7XxGRz3eZoOEybtAKpRCCCGEsPPGG2/wxhtv0LZtW6ZMmUJhYSEHDhwAID8/H6vVisFg0No7ODgQEhLCguNWdIpS67yW2d9/iFpuxTkogtILRwAYNWoUI0eO1F6Zm81mtm7ditFoZOfOnbRv3x6z2cyBAwdQVZWEhAS7QFk9SCg4OJiysjK+/PJL8vLyqKioYOzYsdrUQuLukwqlEEIIIWpYvHgxy5Yto6ioqMYUQVevr12trBJSbO61hsmi0zFYEn7EHDECp8Yh2t/d3d21MAkwcOBAwsLC2LBhA1arlb59+9KpUycqKipwdXUlPj4eg8GgXU98fDweHh64u7uzZs0aLl26RGVlJV26dNEqnuKXIYFSCCGEEHZmz57NE088QatWrdDpdGRlZWn7HB0dSUtLq3GMpZJaJxGvLC0gN3oxejcf3O9/1G7ff44LVhSF/v37a7/Lyspwc3OjVatWVFZWcuHCBQwGAxaLBVVViY+PJygoiPXr15OQkIDBYMDX15dBgwbV9RGIWySBUgghhBB2qquGzs7OtGjRwu67yYYNG9ZaoXRx0qFQszyZu/1TbCX5NBz8FDono92+zZs3Ex8fbxcs9+7di8FgwNPTkxUrVlBYWEhERASlpaUUFhYCYLFYyMnJIS8vT5uvsvr19sMPP4xeL99I/tIkUAohhBDimkJDQ8nLy9N+e3l51VqhNDrq8dPlVc3v+G+lCT9SfDoGU2gfnFt0AuCqN9xkZ2ezYsUKFi1aRGxsLJmZmRw7dow+ffrw6KOPoqoqK1asoGnTptpKPCUlJVgsFuLj41EUhfj4eEJCQsjMzGTs2LE0aNDg7j0McU0SKIUQQghxTa1bt7b7ztHLy4uCggKKiors2imKwn0OGdoyjrYyC9lbP0Tn3ADPAdO1dle/5Q4JCUGv15OZmcnq1av59NNPMRqNdOzYkQYNGjBp0iTy8vJYvXo1ERERqKpKfn4+xZYydh08SrkN2rdvz/nz5+nXrx8tWrS4uw9DXJMESiGEEEJck7OzMx4eHtpvLy8vgBpVSp1Oh4+uiNeHtUQB8ncvp7IgE4/+T6A3uaFgA1T6t26kHdO9e3deeOEFBg0ahMlkoqKigtLSUubNm8eRI0do2LAhEyZMICUlhdTUVDJVM+uzvFmYFcJHl/34wtqRD44U49S0Db169folHoe4BgmUQgghhLiuq6ffcXFxwcXFpUagrK5iju/oy5yuThT8uAljQHtcwx9AAfx0ebzZ24O2zdztjjMajXTr1g13d3c8PDxo1qwZxcXFfPfdd8ydO5eUlBRGjBjBup+u8J21JSk2N7sJ05MqGvDJBRdWHEq5uw9BXJfMQymEEEKI66quSkJVcGzatGmNgTnVgdJqtfLen/+Ao4Oef732LKPHDWDzhrUkXUhgdK9RvHdwW43+Y2NjuXTpElOmTCEwMJDs7Gx2797NqVOniImJ4QoN2F8RQm0Tplf/fn39KVr7mGUpxV+JVCiFEEIIcV2Ojo52v319fbl06ZLd6GydripSvP/++5w8eZJ+/frR9r5QvM0GrqRfwmAwYDaba/RdWVlJdHQ0wcHBBAYGAlUjyUePHs2LL75I3759OV3hU+sI8qvpdAqL9ybW9VbFbZJAKYQQQoibVlpaStOmTSktLSU3N1f7u6IoZGVlMXfuXEJCQggPD8dms3H58mUyMzMxmUxkZWVRUlKiHZOfn090dDQXL16kQ4cONc7l5ORE1x69SK50Q71BZKm0qUSdScdSXnnnblbcNHnlLYQQQoiblpycTJ8+fYCqgTmenlWvmBVF4eLFi1itVs6fP897773He++9Z3fsrFmz7H6PGjVK2547d26Nic4BLmfl1rr6Tm1sKhRaKmSt7l+BBEohhBBC3LSkpCRMJhMeHh6kpaURHh4OVL3yDg4OZu3ateTl5bFz507GjRvHgQMHSElJYezYsbi4uLB8+XIiIyMBmDFjBlarlVGjRuHi4lLjXCUlJWxYuxoFv1pX4flPOgXMRok2vwZ56kIIIYS4aRkZGRQXF2vfUVZTFAWz2UyfPn2Ij4/n0qVL/OY3v+HcuXOYTCZGjhwJVK2EU62iooJJkyYxYMCAGuexWq2sWLGC8tJiIpo4ceSy9bqvvfU6hYFtfKQ6+SuRbyiFEEIIcUtiY2Np2rQply9fxmazAT+P8q6efNzNzQ2bzUZhYSGNGjWqtR+9Xl/r/JEVFRV89dVXZGdn07lzZ7yzT96wQmmzqUzrFVjHOxO3SwKlEEIIIW5akyZNOHPmDE2bNqWiooLMzEzg50Bps9m0QJmQkABAcHBwrX21a9cOo9F+fW+bzca6deu0gTq7du1iaERL/jIyDAXslnbk378V4K1RYTJl0K9IXnkLIYQQooYvvvhC2/7pp5+07fT0dM6ePUtpaSkJCQmkpaXRuHFjbdqg6gqlt7c3J0+eBCAnJ0fr7+q+Ll68qP29bdu2hIeHs2nTJuLi4mjXrh0HDhyga9euDB48GEVRaN24AYv3JhJ1Jh2bWvXN5MA2PkzrFShh8lemqLUNqRJCCCFEvXb1+t3XEhISwnvvvcfw4cO5dOkSn376KTNmzGDFihV06tSJEydOUFRUxLZt29i1a9d1+5o9ezY9e/bkhx9+oE2bNsTGxtKrVy/69+9f41os5ZUUWiowGx3km8n/ElKhFEIIIUQN16s3RUZGoqoq7u7u2hKM1aGvvLycoqIiGjRoQH5+Pj4+PuzcuVPr87PPPkNVVaZNm2YXFPft28f27dsJDAwkNjaWfv360bt371rPb3TUS5D8LyPfUAohhBDiloSGhpKUlISXlxeZmZmUl5drr7yLi4uBqlHaqqoSFBSkHXfmzBnS0tIYMGCAXZg8evQo27dvx9fXl8TERAYNGnTNMCn+O0mgFEIIIcQtad26NQAWiwVVVbl8+bIWEAsLCwFITU0FoH379sDPSyyGhIRoSyxCVcjctGkT3t7e2lRD3bt3/yVvR9wBEiiFEEIIcUtcXFwICAggNTUVBwcH0tLSagTK9PR09Ho9Xl5eAPz444/k5eXZzTmZkJDAunXrcHNz48qVK4wcOZKIiIhf/oZEnUmgFEIIIcQtq37t3ahRIy5duqQFyqKiIkwmE3l5edqyjFarlV27dtGuXTttTsrU1FRWrVqF0WgkPz+fhx56SKtmiv89EiiFEEIIccvatGkDgMFgIC0tTfuGsrCwEJPJhM1mo0WLFkDVgJuysjL69esHwJUrV1i5ciV6vZ7S0lLGjx/Pfffd9+vciLgjZJS3EEIIIW5Z9Wvv4uJicnNzsVqtQNWgnMrKSqDq+8mCggL2799Pt27daNCgAXl5eURGRlJRUYHNZmPixIl2A3fE/yapUAohhBDitoSGhnLlyhWgao1vqAqUFosFnU6nTRnk6OhIz549KSoqYvny5ZSWlgIwefJkCZP3CAmUQgghhLgt1a+9HRwc7AKl1WrFw8ODK1eucPz4cfr06QNUzV+Zn5+PTqdjypQp+Pv7/2rXLu4sCZRCCCGEuC0uLi74+/vj+P/s3Wd4lGX69/HvzGRSJp2QAimkkkYzdKRJlaZYAHVFqbqIurq7ulh2bWtbXfVZlT8CojQVUYSll4CUUKRDSIBMGgRCSCEhdZKZuZ8X2dwm0jFhQnJ+jsPDycw9M2eGiL9c5bz0evVMb4vFgtVqJTg4mPj4eDw8POjYsSOLFy8mNzcXe3t7JkyYQEBAgI2rF/VJAqUQQgghblpMTAzl5eVkZ2fXud/b25uTJ09y11138f3335OVlYWjoyOTJk2iVatWNqpWNBQJlEIIIYS4adHR0Wg0GnVdJFQfw3j48GFat27NsWPHSE9Px2AwMHnyZLy9vW1YrWgoEiiFEEIIcdNcXFzw9/cHwKxoKFfssHdyJjs7G0dHR06cOIGzszNTp07Fy8vLxtWKhiJtg4QQQgjxu+hbR7E5zYFTVg8UNGhMCqEOJeQYzxDq6swTTzyBm5ubrcsUDUgCpRBCCCFu2sLdmby2rRBwR6H6tBwFDWkmZ1KJ5B/d2kqYbAZkylsIIYQQN2VvRgH/WJGIAii/iRTVX2t4a20K+zIKbFKfuHUkUAohhBDipszdkYZWq7nqNVqthrk70m9RRcJWJFAKIYQQ4oZVVFnYmJSDxapc9TqLVWFD0jkqqiy3qDJhCxIohRBCCHHDiivMXCNLqqxK9fWi6ZJAKYQQQogb5upoxzVmu1VaTfX1oumSQCmEEEKIG+ao1zE4xhfdNVKlTqthSIwfjnrdLapM2IIESiGEEELclCm9Q7FeY97balWY0jvkFlUkbEUCpRBCCCFuStfgFrw1uh0AGuoGS51WgwZ4a3Q7ugS3sEF14laSBQ1CCCGEuGmPdm9D5uGdJOQ5crzEHqtSvWZycLQvU3qHSJhsJiRQCiGEEOKmVVVVoZxP5e8DB3JHl24UV5hx/3ZjIwAAIABJREFUdbSTNZPNjARKIYQQQty0jIwMLBYL4eHhOOp1EiSbKVlDKYQQQoibZjQacXd3p2XLlrYuRdiQBEohhBBC3DSj0Uh4eDgazXU2pRRNkgRKIYQQQtyUgoICCgoKCA8Pt3UpwsYkUAohhBDiphiNRrRaLSEh0meyuZNAKYQQQoibYjQaCQoKwsHBwdalCBuTQCmEEEKIG2Y2m8nIyJDpbgFIoBRCCCHETcjMzKSqqkoCpQAkUAohhBDiJhiNRlxdXfHx8bF1KaIRkEAphBBCiBsm7YJEbRIohRBCCHFDCgsLycvLk+luoZJAKYQQQogbYjQa0Wg0hIaG2roU0UhIoBRCCCHEDUlNTSUwMBBHR0dblyIaCQmUQgghhLhuFouFtLQ0me4WdUigFEIIIcR1O336NJWVlRIoRR0SKIUQQghx3VJSUnB2dsbPz8/WpYhGRAKlEEIIIa5bamqqtAsSl5BAKYQQQojrcvHiRXJycmS6W1xCAqUQQgghrktqaqq0CxKXJYFSCCGEENfFaDTi7++PwWCwdSmikZFAKYQQQohrslqtpKamEhYWZutSRCMkgVIIIYQQ15SVlYXJZCIiIsLWpYhGSAKlEEIIIa7JaDTi5OREq1atbF2KaIQkUAohhBDimoxGI+Hh4Wi1Eh3EpeSnQgghhBBXVVJSQnZ2tqyfFFckgVIIIYQQV5Wamgog/SfFFUmgFEIIIcRVGY1GWrVqhbOzs61LEY2UBEohhBBCXFFNuyAZnRRXI4FSCCGEEFd09uxZysvLJVCKq5JAKYQQQogrMhqNODo6EhAQYOtSRCMmgVIIIYQQV2Q0GgkNDZV2QeKq5KdDCCGEEJdVVlbGmTNnZLpbXJMESiGEEEJclrQLEtdLAqUQQgghLstoNOLr64urq6utSxGNnARKIYQQQlxCURRpFySumwRKIYQQQlwiOzub0tJSCZTiukigFEIIIcQljEYj9vb2BAYG2roUcRuQQCmEEEKIS9S0C9LpdLYuRdwGJFAKIYQQoo7y8nKysrJkultcNwmUQgghhKgjLS0NRVEkUIrrJoFSCCGEEHUYjUa8vb1xd3e3dSniNiGBUgghhBAqaRckboYESiGEEEKozp8/T3FxsQRKcUMkUAohhBBClZKSgl6vJygoyNaliNuIBEohhBBCqFJTUwkJCcHOzs7WpYjbiARKIYQQQgBgMpk4deqUTHeLGyaBUgghhBAApKenY7VaJVCKGyaBUgghhBBA9fpJLy8vPD09bV2KuM1IoBRCCCGE2i4oLCzM1qWI25AESiGEEEKQl5dHUVERERERti5F3IYkUAohhBACo9GInZ0dbdq0sXUp4jYkgVIIIYQQGI1GgoOD0ev1ti5F3IYkUAohhBDNXGVlJZmZmbJ+Utw0CZRCCCFEM5eRkYHFYpH1k+KmSaAUQgghmjmj0YiHhwctWrSwdSniNiWBUgghhGjGFEXBaDQSHh6ORqOxdTniNiWBUgghhGjGCgoKuHDhgpyOI34XCZRCCCFEM2Y0GtHpdISEhNi6FHEbk0AphBBCNGNGo5GgoCDs7e1tXYq4jUmgFEIIIZqpqqoqMjIyZLpb/G4SKIUQQohmKjMzE7PZLIFS/G4SKIUQQohmymg04ubmhre3t61LEbc5CZRCCCFEMyXtgkR9kUAphBBCNEMXLlwgPz9fprtFvZBAKYQQQjRDRqMRrVZLaGiorUsRTYAESiGEEKIZMhqNBAYG4uDgYOtSRBMggVIIIYRoZsxmM+np6TLdLeqNBEohhBCimTl16hRVVVUSKEW9kUAphBBCNDNGoxEXFxd8fX1tXYpoIiRQCiGEEM2MtAsS9U0CpRBCCNGMFBUVkZubK9Pdol5JoBRCCCGaEaPRiEajkXZBol5JoBRCCCGakdTUVAICAnBycrJ1KaIJkUAphBBCNBMWi4W0tDSZ7hb1TgKlEEII0UxkZWVhMpkkUIp6J4FSCCGEaCZSUlIwGAy0atXK1qWIJkYCpRBCCNFMpKamSrsg0SAkUAohhBDNQHFxMefOnZPpbtEg7GxdgGh4SUlJzJs3j/Xr16vrZ/z8/AgODqZv374MGzaM7t2727pMIYQQDSg1NRWAsLAwG1cimiIJlE2Yoii89tprvPvuu/j7+zN27FgiIiIoKSnh559/ZuXKlWzZsoVVq1axb98+W5crhBCiARmNRvz9/TEYDLYuRTRBEiibsD//+c988sknjB8/ntmzZ+Po6Kg+9vzzzzN79myefPJJG1YohBDiVrBaraSmptKtWzdblyKaKFlD2UStWrWKTz75hA4dOjBv3rw6YbLG1KlTiYmJwcPDwwYVCiGEuFXOnDlDRUUFERERti5FNFEyQtkEKYrC888/D8CMGTOws7v8H7NGo+HYsWO3sjQhhBA2YDQacXJyonXr1rYuRTRRMkLZyOTm5vLqq6/Srl07XFxc8PLyolevXsycOZOqqqrreo2tW7diNBrRarWMGDGigSsWQgjR2BmNRsLCwtBq5X/7omHIT1YjsmfPHjp27Mjbb79NQEAA77//PjNmzKCwsJDp06fTu3dvcnNzr/k6P/zwAwBt2rTBzc1Nvd9qtVJcXNxg9QshhGh8SktLOXv2rOzuFg1KAmUjkZmZyahRo8jOzubPf/4z69atY/r06bzwwgvs37+fO++8k19++YX77rvvmiOVNTu2g4KCsFgszJ49m27dumFvb4+bmxsODg707duX+fPnY7Vab8W3J4QQwkZq2gVJ/0nRkCRQNhIvvPACubm5BAUF8c4779R5zMnJidmzZ6PRaEhISGDu3LlXfa3ExESgekRy8ODBTJ8+nc6dO/P999/z008/8cQTT7B7924mTJjAyJEjKSsra7DvSwghhG0ZjUb8/PxwcXGxdSmiCdMoiqLYuojm7uTJk0RFRaEoCq+++ipvvfXWZa/r06cPO3bsIDAwkMzMzMsenVVWVoazs3Od+5YvX869995b5761a9cyYsQIFEXhscceY/78+fX3DQkhhGgUFEXhww8/JC4ujoEDB9q6HNGEyQhlI/DDDz9Qk+uv9h/8oEGDADh9+jR79uy57DW/XSM5YsSIS8IkwLBhwxgzZgwACxYs4NChQzdVuxBCiPqhKAqffvopLi4uaDQafv755+t6XkZGBp999hkPPvggbdu2xcXFBXt7e3x9fenduzebN2/G39+/YYsXzZ60DWoEtmzZot6+4447rnhdXFycenvz5s306NHjkmvMZnOdrx988MErvt5DDz3E999/D8DixYvp1KnTddcshBCi/qSlpTFp0iS2bt16Q8/78MMPeeGFFwAwGAyMHz+e2NhYrFYrhw8fZuHChZjNZo4fP87atWuJiopqiPKFkEDZGNSseXR1dcXd3f2K1wUGBqq3r9Q/8rdrZNq1a3fF16sdIH/55ZfrqlUIIUT9URSFzz77jJdeegmdTkePHj3YvXv3dT8/Ly8PgFatWrF7926CgoLqPB4YGMh7771HRkYG99xzD4mJidjb29fr9yAEyJS3zZlMJs6dOweAr6/vVa+t/XhGRsZlr3F1da3zl8XVTsHx8vJSb58/f/56yhVCCFGP3njjDZ599ll69+5NYmIiQ4cOvanXef/99y8Jk+Xl5eh0Oh5++GEAUlJSWL9+/e+uWYjLkUBpY7XXPF7ueMTanJycLvu82rRabZ0pjd9OgddWez+WTqe7Zq1CCCHq39y5c1m3bl2dWajrFRAQQOfOnRkyZMglj6WmpqIoCnfddZd6X1JS0u+qVYgrkUBpY+Xl5erta01D1H78aq1+unXrpt7Oycm54nW1m6TLcVxCCHHrvfbaa0yePPmmn//000+zb9++y85wGY1GfHx88Pb2Vu+rPTAhRH2SQGljtf/jrqysvOq1tR83GAxXvO6BBx5Qb9c0Ob+cAwcOqLf79u2r3i4sLGTx4sVMmjSJO+64Aw8PD+zs7PDw8KBr1668/PLLnD59+qq1CiGEuLbLtX+rD4qiYDQaCQ8PZ//+/er9tUcrhahPEihtzNXVVb1dUVFx1Wtrj2bWft5vDR48WN2Ms2jRIq7UanThwoUAODg4MHHiRAB27tyJn58fjz76KF9//TUhISG8/PLLfPbZZ0yePJmMjAzeffddoqOj+fHHH6/vmxRCCHFLnTt3jtLSUgwGA59++ikAkydPpn379jauTDRVEihtzMHBAT8/P+Dq09O/fbxNmzZXvE6n0zFz5kz0ej2HDh3ivffeu+Sab775hlWrVgHwz3/+U+1RdvHiRUwmE1qtljVr1rBs2TJefPFF/vjHP/Lvf/+bEydOEBsbS2lpKY888gjHjx+/4e9ZCCFEwygpKSE7O5tVq1axa9cu7rvvPoqKinjrrbeYPXu2rcsTTZgEykYgNjYWqN5oU1RUdMXrsrKyLnnOlfTp04fFixfj4uLCyy+/zLBhw/j888+ZNWsW48aN49FHH0Wr1fLmm2/y17/+9ZLnT5gwgbvvvvuS+1u0aMEHH3wAVE/Bz5kz57q+RyGEEA3v6aefpnXr1jzxxBOsX7+e8PBwtm/fzquvvopWK//LFw1HfroagdprWq52Yk3tNY8DBgy45uuOGTOGxMREnn/+eTIyMvjb3/7Gn//8Zw4ePMjUqVM5fPgwf//73+s8x93dnc6dO9dZh/lbXbp0UW/LjkEhhGg8XnzxRVatWsXYsWN5/PHHSUtLo3v37gwePBij0Wjr8kQTJo3NG4EHH3yQV199FYD4+Hj69et32es2bdoEVLeJuNwpOZfTpk0bPvroIz766KPrur5nz55X3cgD1DkrXHYMCiFE4xETE6P++09/+hMAo0aNYtOmTXTv3p2dO3cSGRlpyxJFEyUjlI1AZGSkOiK4cOHCy+72Pn78ODt27ABgxowZDbYz8HrIjkEhhGi8jEYjLVu2xMPDAw8PD7755hv0ej0FBQVMmjTJ1uWJJkoCZSPx4Ycf4uXlRUZGhjpaWaO8vJwnnngCRVHo2bMnTzzxhI2qrF43WVNf+/btmTJlis1qEUIIUVftdkE1AgMD6d+/P1DdyePkyZM2qk40ZRIoG4ng4GBWrlyJr68vH3zwAcOGDWPmzJl8+OGHdOnShe3bt9OlSxeWL1+OXq+/ZXWZTCZycnJISkpi3rx5dO3alW3btjF27Fi2b98uU95CCNGI5ObmUlxcXCdQAnWmuRMTE291WaIZkDWUjUjPnj05cuQIn3zyCcuXL+eFF17A3t6eqKgoPv30U5588slbGiYBvv32W7VHJUBQUBDffPMNDz30kE2n3YUQorkrKytjzZo1xMTEqGsnU1JSsLOzu6S1nJ3dr/+7v9qRvELcLBmhbGR8fHx45513SEpKorS0lAsXLrBr1y6efvrpWx4mAYYOHcrGjRtZvnw5//rXv/Dw8OCRRx4hKiqKDRs23PJ6hBBCVDt//jxjxoxh5syZ6n2pqamEhITUCZBQHTRrBAUF3bIaRfMhgbKe9e/fH41Gc81/XFxcbF3qdWnVqhWDBg3i3nvv5YUXXuDgwYM8++yznDx5kmHDhvHdd9/ZukQhhGjW1q9fj8ViwWQykZmZecl0d1ZWltolxMfHh65du9qiTNHESaAUN0Sr1fLxxx8TGxuL1WrliSeeoKCgwNZlCSFEs2U0Gnnuuec4ceIEVqu1TqDMz89nzJgxmEwmAP71r3+h0+lsVapowmQNZQMYPXo077777lWvuZ1PLNBqtTzyyCO88sorFBcX88MPP9h057kQQtzOFi1apN4+cuSIenvjxo3qCWm+vr4MHjy4zvNcXFwIDQ0lLS2Nzz77jO+++4527drh5eWFg4MDR48eZfHixRQUFODk5MT777/P448/fmu+KdHsSKBsAO7u7kRFRdm6jAYlOwaFEKJ+jB8//rL3v/POO+rtfv36XRIoW7ZsidFoZPPmzaxcuZIVK1Zw8OBBdu7cCYCnpyft27dn4MCBTJgwgcDAwIb7JkSzJ4FS1LF27VoMBsMVT+upITsGhRCifiiKctPP1Wg0DBw4kI4dO+Lp6ckjjzxCREREPVYnxPWRQCnqmDZtGi4uLtccdZQdg0II0XgYjUZ0Oh3BwcG2LkU0U7fvQr7bRGVlJUVFRb/rN9D6UFFlIbfYREWV5ZrXJicnk5GRccXHrVYrCxcuVL8eMWJEfZQohBDiJhmNRoKDg23SXk4IkEDZIAoLC3n77beJiIjA0dERDw8P9Ho9HTp04JVXXuH8+fO3rJa9GQU8uWgfMa+to+s7m4h5bR1PLtrHvowr78y2Wq2MHz+ec+fOXfKYxWJh+vTp6sLxiRMn0r59+warXwghxNVVVVWRkZFBWFiYrUsRzZhGsfXQWRPTv39/tm7diouLC1OmTKFXr144OTlx/PhxZs+eTUpKCh4eHnzzzTcMGzasQWtZuDuTf6xIRKvVYLH++ses02qwWhXeGt2OR7vXPU3h3nvv5b///S8ABoOBhx9+mMjISPWc8SVLlqjnwE6cOJEvvvhCfiMWQggbSklJ4ZtvvmH69Om0bNnS1uWIZkoCZT3r378/mZmZbN68mZCQkDqPVVRUMGrUKDZt2oSDgwPbtm2jW7duN/weOTk5LF26lA0bNnDw4EHOnz+PXq+nVatW9OzZk4kTJ+IS0pGxX+zian+4GmDpkz3pEtyizv2JiYn89NNPbNu2jRMnTpCXl0dVVRWurq6EhobSq1cvHnvsMbp06XLDtQshhKhfa9eu5cSJE/zpT3+SI3GFzUigrGfnzp3DYDDg5uZ22cfPnj1LaGgoJpOJrl278ssvv9zQ6z/55JN8/fXXVFZWEhgYyLhx4wgPD6eiooK1a9eyfv16AMJ6DMHa9yms2ivvu9JpNQyO9mXWo51vqAYhhBCNx6effkpISAgjR460dSmiGZNAaQOjR49mxYoVABw6dIiOHTteck1FlYXiCjOujnY46n891cDR0RGTycSoUaP47rvvMBgMdZ43a9Yspk2bBoAhph/e97xw1Vq0Gkh64+467yGEEOL2UFBQwKeffsq4ceOafP9j0bjJphwbqD1VnJCQUOex69lE4+zszJdffnlJmAT4wx/+QLeevQAoS9qK6eyJq9ZiVaC4QvpICiHE7choNKLVai9ZYiXErSZ9KG3Ax8dHvZ2dna3err2JpmYPjVWBTcnn2XAsh7dGtwOgZ8+eeHt7A1BWVkZGRgbp6elkZGSQl5eHd61F2WUpe3Bo/eupNr+l1YCro/wYCCHE7choNBIUFISDg4OtSxHNnCQJG7Bareptna56qnlvRgH/WJGIAnV2ZFPr678vT+Ttz+YR6efG+vXrycjIUFv7tGjRguDgYPr160enTp1YvbJ6p7blYu4V66hZQynT3UIIcfsxm82kp6fTv39/W5cihATK+rRy5UoOHz7MK6+8ctWddrX7O7Zq1QqAuTvSLmnv81saFP6bbmXAmf24ubkREhJC9+7dCQkJwd3dHagOq0uWLPn1Ofor/9ZqsSpM6S3TJEIIcTvKzMzEbDYTHh5u61KEkDWU9enHH3/k73//Ozk5OVe9bvfu3ert3r17U1FlYWNSzlXDJIAVDaesnkz941M899xzjB49mk6dOqlhsqysjEWLFrFnzx71OQ6BsWiw1nkdzf+aCfW0y6T89LHr+t5efPFFNBoNGo2G119//bqeI4QQomFUVFk4kJSCk4tbnWVUQtiKjFA2gLVr1zJx4sTLPpaSksKmTZsA6NWrF7GxseQWm7hGllQpgN7gdskIaHZ2NkuWLKGqqor8/HwAXFxcmPFAL1aeLOSU1RMFDRoUgrSFPNqlFRGeMWzevBmdTkevXr2u+J4HDhzgo48+ur4ChRBCNJi9GQXM3ZHGxqQcrApoiCB18X6m9g69pKewELeSjFA2gJdeekk9Taa2goICHn74YSwWCwaDgc8//xyo3hSjvc5etBoU9u7cxunTp9W1mEeOHGHevHkYDAbuvPNODhw4AFSfsR3j7cgA+zTejTMxvfVpZt7lyGCnDApO7qNHjx707t2bjRs31hnVrM1sNjNlyhQslmufAS6EEKLhLNydydgvdrEp+bw6CKGgYVPyecZ8sYtFezJtW6Bo1mSEsh7FxMSg1+vJycmhU6dOPPTQQ3Tt2hV7e3uSk5NZsGABubm5+Pr6smTJEjp16gSAo17H4BhfNiWfv+q0t04D7TwVjh05xN7dOzEYDBgMBvLy8mjXrh2jRo3i7rvvBiA8PJy33nqLDRs2oNPpaOHuSl5ONp3ax/LLrgQURWHfvn0MGDAAq9XKunXr0Gq1dO3atc57/vvf/+bgwYPce++9au9MIYQQt9b1btyM8nWVkUphExIo69GLL77IY489xrJly9i4cSPbtm1Tp6E9PT3p0KEDI0eOZPLkybi6utZ57pTeoaw/dvW1l1YF/j7mTuKCRpCSksKaNWvIy8sDICkpie+//54tW7bg7e3NSy+9RHh4ON999x1eXl5oNBqsVit+fn54enqi0+nYtWsX3bt3Z9CgQVgsFtasWYNOpyMuLg6obkfxxhtv0LVrV5599lkJlEIIYSPXs3FTq9Uwd0e6BEphExIo65mfnx9PPfUUTz311A09r0sbT0b4XGT1eVc0KCi1ViNoUbACQ1oUEhfkQXZ2NmvWrMFisTBhwgRcXV2ZNWsWS5cuxdXVlYcffhiTycTKlSuxWq2Ehoai1WpRFAWNRkN0dDQHDhzAZDKxf/9+evTowdChQ7FYLKxcuRKtVkunTp148sknqaqqYs6cOVy4cKGePykhhBDXo2bj5rXW2lusChuSzlFRZZF2cOKWk0DZSBw8eBCfiyd5pVtvFu07W2cTTfsWCt3dS6nKTuWLL74gPz8fPz8/xo4di5ubGxs2bODNN9/E29ubsWPH0qdPHwAOHz4MQGJiIm5ublRWVmI2m4mNjWXnzp2Ehoayc+dOunTpgp2dHcOHD8dqtbJixQpWrFjB5s2b+dvf/kbHjh3ZsCnelh+PEEI0W8UV5uveuFlz+pkESnGryaacRqC0tJSNGzfSsWNH/B1MPOB7gb8EneHdbjDB+Qg9Lcf464T7cXJy4vz583h4eDBhwgTc3NyIj49n9OjRuLu788wzzxAVFcV9993Hgw8+iIeHB1qtlnbt2nHhwgXKysr44IMP2L59OwaDAb1eT3FxsRo8NRoNI0eOpE2bNrz//vsEBgYyYsIzPLloH49/9Yta78ojZ+scBSmEEKLh3MjGTTn9TNiKBMpGYMOGDWg0GgYPHkxGRgbBwcE42Glx1lmIDA/FZDIxd+5cTCYTDg4O5Ofnk5CQwNatW7nnnntwdnbm888/x2KxMHz4cHQ6HYqiUFhYSMuWLbn77rvp2bMnjo6O9O7dm5KSEsrKyjhx4gROTk7Ex8eTk5OjTomvXLmS8vJywvqNZvz8Q2xKPo9S67fjtNxS2VEohBC3SM3GTd01UqVOq2FIjJ+MTgqbkEBpY+np6Rw5coRBgwYBkJubS3BwMDqdDqvVSnBwMFDdcmjChAlMmzYNvV7PggULGD58OE5OTqxevZr09HTatWtHSEj1yTenT59mxYoVLFiwAACttvqPuk+fPkyePJlHHnkEADc3N8rLy5k1axafffYZr7/+OsuWLWPEAw+RHjAEuHRHoaIoKFTvKJSRSiGEaHhTeode+/ALOf1M2JAEShsym82sXr2aoKAg7rjjDjIyMgAICQlBp9ORl5fHxo0bgeojFX19fXF3d6ddu3YsXrwYq9XKnDlzyM3NxWw2M2TIEPW1Dx06RF5eHmfOnAFQN+XUCA8Px93dncDAQCIiInBzc8Pb25uPP/4YZ2dnCoPvuuYPR82OQiGEEA2rc5AHQzwLAOWSkUqdVoMGeGt0O9nhLWxGFlo0ELPZzMKFC/n+++85dOgQ+fn52NvbExAQQN++fZk2bRpFRUVcuHCBcePGodFoSE9Px8vLCycnJ/Lz8ykuLqZLly6UlpaSnJxMUlISZrOZxx57jMrKSgYPHqy28unWrRv79+9X33/Dhg3qFDlUB8qaRuiAutv76NGjjBs3jnnz5rFr1y4uXrzIJ//5lE/O+nOtNeCyo1AIIW6NvXv34l+exqwHHmb58WI2JJ3DqlSvmRwc7cuU3iESJoVNSaBsAOfOnWPEiBEcOHAAe3t7Hn/8cTp16kRRURHr1q1jzpw5fPnll/Tv35+XX34Zb29vADIyMmjdujVff/01JSUl+Pn5MWJEdc/J5ORkfv75Z958802KioqA6tBYY/78+ZetpU2bNsClgRKqG7Hv3r0bq9VKVVUVP/zwA/369SM8pgPK2eLr+l5lR6EQQjSskpIStmzZQlxcHHd3acvdXapbCRVXmHF1tJO/f0WjIIGynimKwgMPPMCBAwdwcHBg165d3HHHHerjL730Ei+++CIffPABmzdvZvz48QAUFxeTn59PSUkJDg4OBAYGqqOLoaGh2NnZkZGRcdP9IH8bKK1WK/b29jg6OrJixQrmzJmDVqulbdu2bIvfgLUsGoVfp1WsprJfv0ezCUtZdajVasBRd539LIQQQtyw+Ph4tFotAwcOVO9z1OskSIpGRQJlPduxYwc7d+4EYNq0aXXCZI0xY8Ywc+ZMSktL+eCDD3j88ceJj6/u8+jt7c1DDz3EmjVrqKioAECn0xEVFYXFYmHLli3079+f0tJSPvvsMyIjIykqKiIzMxM3NzemTJnCxo0bOXLkCM8++yyenp4AmEwmFEVh06ZNnD17ljNnzlBZWQlATk4O58+fB2DOnDnX/B4v7lnGxT3L1K/3j66uSQghRP3Kysri0KFDjBgxAoPBYOtyhLgiCZT1bO/evert7t27X/J4WVkZP//8M+Hh4Rw+fJikpCS+/fZbUlJScHJyYsKECeh0OnQ6HRaLRX1ebGwsiYmJHDx4kH79+rFp0yYABg8ejJ2dHXPmzKGgoIAFCxZQUVHJ6KT3AAAgAElEQVSBTqfj+PHjnDlzhqysLHWa/PDhwwQEBNCnTx/8/f2xWq189dVXLF68mKqqKuLj4zEYDJwtVdhjDoT/jVJW5aRxYcs8AJxj78K5/UA0wN9HRNOxY8cG+jSFEKL5slqtrFmzBj8/P/VIXCEaKwmU9axm1A+47G+TmzZtwmKxEBQUpDYUP3LkCF5eXsTGxqLTVU9h/HaKOiwsDJ1Ox8WLF9m3b1+d31gLCgro3LkzmzdvJjc3V33O5s2badWqFTExMZjNZvbu3cuzzz6LXq9Xr1EUhRYtWuDp6UlMTIy603z4HXfQNlvhhwwdGhTKNb/u+dZ7tsIQ3Im3Rrfj0e5t6ueDE0IIUceBAwfIzs5m0qRJaus3IRorCZT1rEOHDurt48ePM2TYCHXhdM7ZLA4ePMjw4cOZO3cuAI6OjkyYMIElS5aoPSeBS0Yo9Xo9kZGRJCcns2nTJlxcXEhOTiY+Pl6dGnd3d1dHIt3d3Zk+fboaHo8ePcrevXvrtA6CX3d7Hz58mF9++QWNRoOiKPj6+uJ6cB3Pt4tjWVIhJ2o9J8DNjq+e7Ck7CoUQooGUlZWxefNmOnbsSGBgoK3LEeKaJFDWs6FDh9KhQweOHDnCm+//m5nnw0DviFYDYY6l9GwRzObNm0lNTQVg8uTJmEwmgDqBUqvVYjab1SnrM2fOcOrUKRRFobKyEo1Gg06no0ePHgQEBNC6dWucnJz46quvOHXqFEVFRaxdu5ZRo0ah0WjU325/GygtFgunT59WWwxNnTqVJUuWEB8fT0BAAF7OFu73KWDfmZMs+t9zop3LJUwKIUQD2rx5M1arVT30QojGTgJlPdPpdEx5ey4vPj2V0szDVM7/Mx59HkXvG8oxUwn7Nh+gOOFbAB544AE++OADNmzYgI+PDyaTibS0NLKysjh+/DglJSXMnTsXnU6Hn58foaGhHDlyBIC7776bTp06XfL+Fy5cUKfLDx48iMFgYNCgQWg01Wsha0+jFxYWMnfuXEpLS9HpdHTq1AkvLy/8/PzIzc3F3d2dpUuX4u7uTmZaqvq8Y8eOMX/+fHQ6Hb6+vgwePLghP1IhhGhWsrOz2b9/P0OHDsXFxcXW5QhxXSRQ1rO9GQV8lHAen4f+SdmJBAp/nk/uT+/UucYpvBuv/fkpxgztw969e0lMTATgP//5DwCenp44OjpitVp5+OGH8fPzw87OjmXLlqkbdg4fPnxJoDSbzRQXFxMQEICvry8HDhwgISEBg8FAixbVI4o1gfLYsWMsW7YMq9VKv379KCsrIzk5mZ49e5KcnIyDgwOLFy9m+fLll3yPSUlJTJgwAYB+/fpJoBRCiHqiKApr1qzBx8eHbt262bocIa6bBMp6NndHGtayC+St/z/KTuxC59YSj/4T0LcMQjFXUpF+gJLELbz73vsk79lCZGQkZrOZmJgYOnbsiL+/P87OzsTHx3P06FECAgKA6qbnR48eJS4ujgMHDpCRkUFhYSEeHh7qe6ekpAAQGRlJr169KCwsJCMjg40bN6o7zq1WK6tXr2bfvn3Y2dkxfvx4goODycjIYO/evSxfvhwHBwf69u2LyWQiLi6O/v37k5CQwIwZM1AUhc8//5zAwEDuvffeW/8BCyFEE3b48GGysrJ4/PHHZSOOuK3IT2s9qqiysG6/kbMLXqDsxE703kG0mvQp7j0exBDeDeeo3ngNexafB16l6PQJFixYQGlpKQAjR46kbdu2ODs7A9VT5zWjiRaLhTVr1hAYGKhOX9eMUtZ29OhRADp27IhWq2XMmDF4eXlhb2/Pnj17AFiwYAH79u3D09OT559/Xl23GRQUhKOjIxkZGQwZMoTOnTtjZ2eHk5MTlZWVODo6Ar9u4jl+/HidTUNCCCF+n4qKCjZt2kS7du3qrKkX4nYggbIeFVeYKdi6EHPhOQA8Bz6BzvHS9S9OoZ1xjr0LRVF4//330el0ODk51blGq9WqgW337t3k5eUxfPhwnJycCAsLw9HRkUOHDtXZZHP69Gns7e1xdXUFwMHBgYcffhi9Xo+dXfVgdF5eHrGxsTzzzDN12hpZrVYURUGn09GuXTsURcFqtVJaWkphYWGd+mJiYqioqFBbDAkhhPj9fv75ZyorK2UZkbgtSaCsR872WsqStwGgcTDg2KbDFa81tK2egjabzezfv/+S3dc1I5QXL15k69atdOvWDT8/P6A60NUEvVOnTgHV/S9LSkrw9fWt8zoeHh60b98es9kMVAfV3r17q5t0auzcuZPKykosFgvZ2dlkZWVhtVoxGAxkZWWpI5QAfn5+eHh4kJycfNXPo6qqinnz5jF8+HD8/Pywt7fHx8eHfv36MWvWLLUmIYRo7nJycvjll1/o168fbm5uti5HiBsmgbIeFRcWYK0oAcDOzeeS0FZDg0Ibr19HLpOSknj77bdZsGABKSkpWK1WtQ/l+vXrcXBwqHO0YWRkJFDdOP3QoUNUVFnYfSgJs1I9HV3DarXy7bffsnv3bnWEsmazTe0zwQsLC9m+fTvdu3fHYDCQlJREamoqBoOBO++8k8LCQrXhOtSd9q69a7y21NRUOnfuzOTJkzl8+DBTp05l1qxZPPPMM5w5c4Zp06bRrVs3cnJybvBTFkKIpkVRFNauXUuLFi3o0aOHrcsR4qbIppx6VHcBtXLF6xQ0dPeBff/72sXFBYPBQHp6Ounp6eh0Ojw9PamqqiIpKYn777+/zgihwWAgJCSEY+crWL2vhOf3rMOqgIY4zh7XoG9VQNsWdnz55ZdcvHiR1q1bM2jQIBYsWEB5eTnOzs4sXLiQSZMm4eLiwrp163BycuKuu+5S39PJyYnQ0FC6dOlCfHy82jC9RnR0NLt27eL06dO0aVP3tJyCggIGDx5Meno67dq1Y9u2beqZ4gB/+ctfGDJkCAkJCQwbNozdu3djb29/05+7EELczo4dO0ZmZiaPPvponV/ehbidyAhlPfLy8lLXL5qLzqOl7uidVgOgMMDtPL1ifg1hNT0gp0+fTrdu3XB0dCQvLw+oHg08evQoaWlpdUYDTzm0YUl+azLNblj/l10VNPxsLODBL3Yx7d+LuXjxIj179mTq1KlqYIuKiqK8vJyKigoWLVpEYmIiJ06cYOjQodjb2xMTE0NhYSHZ2dmEhYVhb2+Po6Mj+fn5FBcXq+8fEBCAq6vrZae933rrLdLT0wH49NNP64RJqA7ENScFHTx4kM8+++wmPm0hhLj9mUwmNmzYQFRUFGFhYbYuR4ibJoGyHmm1WoYPHw6AUllOVFXa/0Jk9TR3mH0JXz3SnihdrtpzEuCee+5h586dLFq0iJCQEP7yl78QEhICVB+5mJKSwsKFC3n33XdZsmQJK3Ym8uWhkv+9at0/Qsv/0mVCZSAdBoxmyJAh1e+v0bBnzx4mTZrEP/7xD1JSUigoKGD58uWEhIQQExMDVJ/WUxM+Q0ND1edqtVp27dqlvo9GoyEqKork5OQ66z+tVivz588HwNfXt85UfW1RUVHExcUB8PHHH1+yhlQIIZqDbdu2UV5eztChQ21dihC/iwTKevbaa6+pu6dPLv+UZQ+34SGHQ8wZ4kpvzXFifBxxcHBQ2/jExcXxyiuv8NRTT+Ht7c2SJUuYP38+mZmZQPX08JQpU4iNjUWj0XD8+HE+Wn2Iq02pA+i0WtZnVm96SUtL48EHH2Tt2rWUlZUBqO2JanaS1wQ6rVaLq6ur+m+o/g06ODiYffv2qc+H6s1BFy9e5OzZs+p9KSkp6vrM2NjYq9bYsWNHALKysti9e/dVrxVCiKYmLy+P3bt307t37zo9hYW4HUmgrGfR0dGsWLECb29vUlNTGdCvL1vXr2Ln9q3s37+f+++/n+eeew6o7v348ccfo9FoaNGiBY888gjjxo3jzJkz6vS2yWTC39+fBx98kBkzZjD24T9wyuqBwuU3/NSwWBXWH8vmo0/+Hx06dCAxMVFtkg7QvXt3qqqqcHJyIiMjg5UrV6IoCoqiUF5ejtVq5dy5c5jNZsxmM23btgWoE/yCgoLUTTw18vPz1dvX2qlYc3oPwC+//HKtj1YIIZqMmo047u7u3HnnnbYuR4jfTTblNIBBgwZx/PhxvvzyS1avXs3evXvZt2+fOur34IMPEhQUhLe3NwkJCcTExPDXv/5VnSqu7fXXX7/i+zhF9MDngVev+PiF7d/wl4RvGTp0KO+//z5/+tOfyMrKAiAxMZEWLVpQXl5O69atOXToEE5OTsTFxVFWVoa9vT1JSUnqCTvu7u506dKFX375hV69euHo6IhWq1WnvWsartfubVlRUXHVz6mqqkq9XTuUCiFEU3f8+HHS0tJ46KGH1C4cQtzOZISygbRo0YIXXniBLVu28OKLL7Jnzx4OHjzIM888w6xZs/Dz8yMuLg53d3e+++67mzp1Rud87SmSCZMm85///IfWrVvXuf/MmTOMHDmS+++/nzNnzhAaGsquXbvYtGmTGhSTkpIoLy8HwNHRkZ49e2I2m+uMJkZHR3PhwgW1/U9oaKi6SzE1NfWqtdVujF6zCUkIIZq6qqoq1q9fT0REhDr7I8TtTgJlA9NoNNjZ2VFVVUV4eDh2dnbs37+fsrIywsPDGTduHCUlJWqD8meffZZdu3axfv16pk+fzu7du1m9ejUzZszg2Wef5auvvsLFq7rBuUv7gVd8Xy0KnfoPJzgokG+//ZZZs2bVeTwwMJDIyEhiYmIYNGgQaWlpREREcOLECTw9PWnfvj0FBQWknzpDuWKHRu+Aq6srcXFx7N69m8rKSgBCQkJwcHBQd3u7ubmp0zcpKSmkpaVdtj6TycS2bdvUr2vvIBdCiKZsx44dlJSUMHTo0Cv2KxbidiOB8hbQ6/VUVlZib29PWFgYycnJ6HQ6AgMD8fLy4v7771f7PI4ePZoePXrQtm1bvL29iYiIYPjw4bz55pvce++9JCQkUJJ/Dr13MA7+0Vd8Tyvw1IAopk6dSlxcHA4ODnUeLy0t5ciRI1gsFnr16kVcXBxGoxGNRkN+fj4HThfxszmCcT9k8Z2pE/0/28+Ti/ZhaNMek8nEvn3VXTR1Oh2RkZF12ge9+uqv0/AzZsy4bH3vvfcehYWF6tfSe00I0RwUFBSQkJBAz5498fLysnU5QtQbCZS3gL29vbpeMCoqisLCQvz8/NDr9QBEREQQEBBAYGCgerxiTZP0mqlwvV6PxWJh7969ALSP60p158nfHNmo1aABHggyk7x9NQcOHGDYsGFMmzatznUFBQX89NNPvP3228yePRtfX198fX1RFIVzLhG8uCGbTLObuvnHqsCm5PNMXHSEYt9O7Nq1Sz06MTo6mtzcXHXaevDgwfzzn/8EYOnSpTzwwAPs3LmT7OxsDhw4wDPPPMPrr7/OyJEj1XrkqDEhRHOwfv16nJ2d6dOnj61LEaJeyUrgW0Cv16uBsma9jJOTk/p4cnIyXbt25d577+W///0vvr6+6oidxWLBbDbz9ddfk5qaSlJSEgaDgVlvvcCSzfvYe9GFU1ZPFDRoULizjSvPDmlH5zaeHDgQyNq1azlz5ozaH7PGuHHjcHZ25siRI5w7d461a9cCkGN1YW2eG6Dht4cq1vS4/D5dywj76qbkXbt2JSwsDL1eT1JSEn379gXglVdeoVOnTrzxxhssW7aMZcuWqa/Ttm1bFixYQKdOnVi1ahUA3t7e9fNhCyFEI3Xy5ElOnjzJmDFj5HQw0eRIoLwFagfKixcvAtVTzgCVlZWsW7eOyMhIRo8ezZw5c1iyZAkjRowAqjerzJ8/n4qKCrKzs6mqquLRRx+la9eulJaW4rp1Kxa0VCpaDHotPYI70yW4uh1P586d8ff3Z+nSpZfsIHdycqJv37707duXqqoqDh48yMaNGzlW5osG5aptiXRaDaedI0hISCAuLg69Xk/btm1JTk5WAyXAiBEjGDFiBLm5uaSlpWE2m/H39yc4OBigzhrK9u3b/85PWQghGi+z2cy6desICQkhOvrKy5WEuF3JlPctUDtQpqeno9FoyMnJoby8nK1bt1JeXs7dd9+No6Mj48aN48KFC2zfvh2AZcuWYTKZGDp0KAcPHgTgiSeeAMBoNALw9LQncXfQopgr2b9/PwUFBep7+/n58fjjj1914bder6d9+/aYzNb/jXZe/cfCYlVILNSRX3iRI0eOANXT3ufOnVObmtfm7e1N9+7dufPOO9UwCdTZsNO5c+ervqcQQtzOdu7cSVFREcOGDZONOKJJkkB5C9QOlBkZGfj7+2O1Wtm3bx+7d++mT58+6ikJPj4+jBo1Sg2LdnZ2TJkyBYAjR47QoUMHevToAUBOTg5ubm74+PjQvXt3tFotlZWVzJw5ky1btqjvuXPnzkv+AqsZKTWbzWRmZrJmzRoqFe01zt/5lVWB4IgoduzYgdVqJSIiAjs7u8ue7X0lNe2HgoODJVAKIZqsoqIitm/fTvfu3WV5j2iyZMr7FqgJlFarlczMTHr27ImiKOzatQtPT0969eqlXltSUkJ8fLz6dZ8+fWjdurW6c7pmdDIvLw+z2ayO+MXGxqqjmmFhYSQkJHD48GF69OjBnj17GDBgABs2bFBfd/ny5Zw6dYrCwkIsFgtarRaD3g6N6VqHOlbTamBAn14s+OpLjh07Rvv27dUd7O3btyc+Pp6OHTuqZ5L/lsViYfXq1QBMnDhRfmMXQjRZGzZswNHRkX79+tm6FCEajIxQ3gI1gfLcuXOYTCZCQkLw8PCgvLycwYMHq6ckpKSk8Mknn1BUVESnTp0ASEhI4PTp0yxZsgSDwcCjjz4KwKFDh4Bfz8P28fGhRYsWGAwG7OzsmDZtGt7e3qxfvx6dTkdubm6dmmraA/n7+zNp0iRcXV3pckdHBrT1umTn+G/ptBqGxPgREhRAeHg427dvR1EUoqOjycrK4tixY9x33328//77V3yNRYsWcerUKQIDA/nrX/96cx+sEEI0cmlpaSQlJTF48OBL2rcJ0ZRIoLwFagJleno6er0eLy8v0tPTgV/bAm3cuJFvvvkGgIceeohBgwYB1f0ZZ8yYQVlZGePGjcPd3R2oDp8ajUYdodRoNERHR2MymTh58iQJCQlkZ2er73H06NE6Nf3hD39gxIgRnDlzhpUrV1JUVFQdSnMPXXOE0mpVmNK7euSxb9++5Obmcvz4cSIjI9FqterayIULF172SMXt27fz9NNPYzAY+Pbbb+sc1yiEEE2FxWJh7dq1BAUFycZD0eTJlPctUBMoMzIyCAwMZNu2bVRVVdGyZUuSkpJISEjg7NmzuLq6MmXKFNzc3NQjD3v16sVHH30E/DrdrSgK+fn5eHp6kp+fT2ZmJqdOnSItLU0NqGlpaZhMJgIDA7nnnns4cuQIW7ZsUWvSaDR06dIFf39/Fi1aBMCmTZto4+LCy11CeWdjGlrAWmu3d/XubxjVupzObTyB6hN3goOD2b59O1FRUYSGhqqBsqysjG7dujFp0iTatWunbkL673//i7+/PwsWLFBP1RFCiKZmz5495Ofn88ADD8iyHtHkyQjlLaBo7bhQbiEt8zReXl7s3buX/v3706ZNG44dO8bZs2eJjIzkueeeUxt81/ShzMjI4Ny5c/j6+qLRaDh79iwbNmzAYrFQVFTEzJkzWbNmDfn5+bRv3x4nJyd0Oh0GgwGdTseYMWNo2bIlAwYMqPMXWnx8PAUFBbRq1YoWLarbDNUE0C4eFQy3P0G/cE+0/3uKVgOh+mIe9j6HV0ESO3bsUF+rT58+ZGdnk5qaqo6Szps3j8mTJxMWFsZ3333H008/zXvvvUdBQQEff/wxx44dk/VEQogmq7i4mK1bt9KlSxf1wAohmjIZoWxAezMKmLsjjQ3HTCiEokFh275Surr6q2d6Q3XLnNqnxsCvgbJm9LB3796sW7cOQA2GHTp0IDY2lsDAwDpNcvfu3Ut2djZDhw7F1dVVvb/m9B2AwsJCZs6cqa57dHd3p1u3bmzevJnExES6hwbw+ON3UlFlobjCjKujHXk52cyfPx9Pb2+2bNmijk6GhIQQEBDAtm3bGDt2LHq9ng4dOjBx4sQG+FSFEKLx27hxI3Z2dtx11122LkWIW0JGKBvIwt2ZjP1iF5uSz6trEhU0GMsd+ea8Lx+v3Ie9vT1ubm4oSvUVJpMJo9FIfHy82sw8Pj4ee3t7hg4diru7O05OTri7u6PT6Rg1ahRhYWF1wmRkZKQ67R0bG1unptojlKNHjyYiIoLExEQA4uLi6NmzJ4MGDcJsNnPmzBmSkpJw1OvwdnXAUa8jICCA++67j9zcXNzc3Pjxxx8pKSlBo9HQp08fTp8+TV5eHm3atLmh9kFCCNGUZGZmcvToUQYNGlTnVDQhmjIZoWwAezMK+MeKRBR+Pa6wRk3T8F3mIJ4Y1YGcxJ0cOXKEs2fPkpOTg6IoODs7ExQUxNGjR6mqqmLixIlMnTqVkpISvvjiCwoLC/Hx8bnsmpya87Sheh1l7c04586dU29/++23FBYW4uzsrL7O6dOnKSkpISAgADc3N5YuXUq3bt3q7ESPiYlh4MCBxMfH4+DgwI8//sj48eOJiIjAz8+P7du3Ex0dzfr16ykvL5e/TIUQzYrVamXt2rX4+/ur3TqEaA4kUDaAuTvS0Go1l4TJ2jTA699uZYB99QYWZ2dnRo4cSVBQEF5eXmg0Gp577jkA/vjHPwLg4uJCnz59WLt2bZ3p6xqlpaXEx8fTsmVLCgoKMBqNjB8//rLvP2/ePPV2dHQ0L730EqtWraK0tJR27doxatQogoODWb9+PadPn2bMmDF4elZvxLnzzjspKCjg0KFDZGZm8vPPPzNgwAD69OmjhlCr1crJkyfVtkZCCNEc7Nu3j5ycHKZMmSIbcUSzIlPe9ayiysLGpJyrhkmonv4+ZW3Bk089jYuLCy1btiQuLo6WLVui0WjUdZDh4eF069ZNfd6ZM2eA6tHGml6UNTZt2gTAgAEDsFqtpKSkYLFYUBQFRVH44IMPmDdvHq+//jrx8fGUlZXxxhtvsHDhQqKiovD19cVgMJCcnMz//d//4erqyqRJk6ioqOCLL75QWwBpNBpGjBhBcHAwOp2O7du3YzQaiY6OpmXLlhw4cIDAwECZ9hZCNCulpaVs3ryZuLg4/P39bV2OELeUBMp6Vlxh5hpZUqUAqzfE4+bmxtGjR7l48aK6nnL27NkA3HPPPXWek5GRgV6v54477mDVqlWcPXsWqJ6uPnToEAMHDiQyMhIHBwdMJpPai9JqtVJZWcmpU6cYPHgwAwYMIDMzE0VRCA0N5dy5c6SlpXH33Xczbdo0WrZsyZIlS/j5558ZM2YMYWFhLF26lLVr12I2m9HpdIwdOxZ3d3fs7OxYtmwZFy9epE+fPpw8eRJ/f3+MRiMmk6l+PlghhGjkNm3ahEajYeDAgbYuRYhbTgJlPXN1tFNb7VyLBgWlspy8vDzKysr4+OOP+fe//82cOXNYvHgx9vb29OrVSw2ZVquVixcv4uPjw/Dhw/H19eX777+nuLiY1atX07p1a+Li4tBqtcTExKDRaNRRyp9++omqqirCw8PVox5TU1Np0aIFnp6eJCQk4OHhQWxsLF5eXjzyyCOMGzeO8+fP8+WXX+Ll5cWQIUPYv38/X331FRcuXMDR0ZE//OEP6PV6KisrWbp0KdHR0Wp/TIvFQkpKSkN91EII0WhkZWVx6NAhBgwYIIc1iGZJ9/rrr79u6yKaEjudlqTsi2Tkl6FcZaRSi0KQ9gIR+kL69+9PZmYmbdu2/f/t3XtUlded//H3OYfDReQiogcULwgaRSQqRMRgxCSIRhKdsUlMk2iqMZo0v07bmbaTzGRSm07bWatrzWTVpGpMl81lakzbJOMNxQtGCuKNKBeNRMQogiBEbnI/z+8PxjMSFdEjHi6f1z8eeZ7z8IW1lA977+/ehIeH09TUxJQpU4iNjaWsrIzMzEy++uorTpw4QWVlJWPHjiU8PJzRo0dz8OBBcnNzuXjxIgsXLmy3j+WxY8e4fPkyp06doqCggH79+hEWFkZYWBgA27dvZ9SoUQwaNIjNmzfz4IMPEhISArRNawcGBhIdHY1hGGRkZHDx4kXi4+M5c+YM+/fvZ+DAgQwbNowRI0bwxRdfUFVVRXNzM2PHjmX//v0EBgZSX19/Tbe5iEhvYrfb+eijj+jfvz/JyclaOyl9kkYou8Dz8aOwd2IN5asL4ggKCmLLli0YhsHZs2d54IEHeOqpp/jxj3+Mn58fERERTJ8+HR8fH86cOQO07TP561//mo8++gibzUZlZSUDBgwgMDDQ8fzQ0FDHGd5FRUU89dRTeHp6OkY7v/nmGyorKwkLCyMjIwMvL6/rdiRarVYefPBBxzR4amoqAQEBhISEsHHjRlJSUggODubv/u7vANi/fz8eHh74+vri5uZGQUEBzc3Nd+pbKyLS7WRnZ1NSUsKcOXOu2zAp0hdohLILDPX3ItDHgz0nyrCYTe1GKi0mMDB4dqw7y+bcx/jx4xk3bhwlJSVcvHiR7OxsPDw8GDx4MNnZ2QQHB/Pggw8SERFBVlYWJpOJRYsWMXjwYKBtTWVLSwsNDQ2kp6eTm5vL2bNnKSsro7i4GLvdzgMPPMCkSZM4dOgQ/v7+hIeHk5+fT0FBAQkJCWzatIn4+HhCQ0Nv+DX169ePCRMmEBQURE5ODmVlZYwaNYq8vDwKCgqIjY3F29ub06dPU1BQwH333Ud+fj6tra0MGTKkXdgVEekt6uvr2bBhA+PHjyc2NtbV5Yi4jAJlF4kK8Sc+PJCq+mYKL9Zi0HZ84ayIIBaG2bn8ZQahoaH4+fnRv39/IiMjyczMxNfXl+zsbI4ePUpLSwsDBgxgzJgxNDc3s3v3boYNG8aMGTMICQnB09OTw4cPM3fuXAzDoKqqitDQUCorK8nNzcVut8JMVOIAACAASURBVANta3uKi4uprKzEYrEwfPhwDh48iJeXFw0NDZSUlLBgwQLHXpM38u1p8JycHPr160dDQwMHDx5k8uTJWCwWSkpKqK6uxmw2Y7FYMAyDcePG3YXvuojI3bVjxw5KS0t56qmn2h0yIdLXmAyjo5V+cidcfXyhp9WC3W5n/fr11NTUsHz5cjw9PQHYuHEjVVVVzJs3j88//5y8vDzc3d1JTEzEbDazadMm5s6dS0xMDK2traxZswYPDw+WLFlCS0sL7777LvX19RiGgdlsZu7cufzpT3/CZDIxcuRIioqKHCETwM/Pj9raWkaNGkViYiIDBw68pemaiooKUlJS+Oqrr/D29qauro4pU6Zw9uxZSkpKsNlslJWVYbVa+cGP/pHLzYbjeyAi0tOVlJSwdu1aZs2aRVxcnKvLEXEpjVDeBW4WM94ebrhZ2sLalYCXmZnJpUuXHKN3drudAwcOEB8fz+TJkzlx4gRms5mcnBxOnTqFYRjMnz8fq9VKZmYmeXl5PPXUU/j4+GCxWPDx8XGcD/7CCy8wZMgQioqK+Oabb3jiiScoLi5mxIgRTJw4kcLCQry8vKivr6eyspKDBw+SmZnJyZMnKSkpoaamBgAvL68bhsyrp8ELCwtpbm7m3Llz9O/fH7vdzqVLl7ho8uNv9cH8Zu951u4r5O20r8gvqSbY15Mh/jpFR0R6JsMw2LhxIx4eHsybN09rJ6XPU6B0ES8vL3x9fdm7dy+BgYEMHjwYPz8/MjMz8fPzIyQkhJycHGw2GwsWLODw4cMYhkFubi7Nzc3s27eP6OhoJk2aBLSdHfvxxx/j7+9PbW0t7u7uhIaG4ubmxvHjx3F3d6empgYfHx/c3d0d+1dOmDCBZ599lrCwMAIDA2ltbaW4uJijR49y+PBh0tPTyc/Pp7i4mEuXLtHS0oKnp6djevzb0+Dnzp2jrq4Ou91OfvNAdjWGUm14YNDW9WgARRWX2XjoLIE+HkSF+Lvk+y8i4oxjx45x4MABvvOd7xAQEODqckRcTkcvulBUVBQFBQVs2bKFYcOG4efnx6hRozhx4gSxsbFYLBZaW1vx9fWltbWVESNG4Ovry549ezCZTPj6+tLS0kJhYSEff/wxw4YN48knn+TAgQPs3r2b4OBgxowZg8lk4vjx4/j6+mK32yksLGTAgAFcuHCBadOm4eXlRWhoaLumnObmZi5cuEBpaSklJSWUlpaSm5tLa2srAAMGDCAoKIigoCCCg4MJCgriwQcf5N5772XLli3sP1VOZvNw2nbbbL+FxpVThF77NJexNh9iRuo/YxHpORoaGkhNTWX8+PEdNjOK9CUKlC505QjD1atX8+mnn7Jo0SLGjh3Lli1bqKurcwTK7OxsAKKjo+nXrx85OTmEhISwa9cu0tPTaWxsZPTo0Tz++OO4ubkRHx9PSUkJn3zyCcuWLcNms1FaWuoIoGfPnsXLy4uIiAgGDhx43dqsVishISGOfSmhbUr+4sWLlJSUOEJmRkaG4zQcb29vgoODGTJkCCXlgZgu2uloga7ZbGJd+mkFShHpUdLS0mhqamLWrFmuLkWk29CUt4tZrVaCgoLYu3cv7u7uREZGkpGRQWBgIBUVFRiGQWlpqaNZZ8OGDdhsNp577jmg7bQbgMbGRqxWKzabDYvFQnh4OHl5eeTl5TFhwgROnz4Nbu7UNUNNdRWtLc3Mnz8fHx+fTtdqMpnw9vYmKCiI8PBwJk6cyP3338+9997L8OHD8fHxoa6ujhMFp9hcEXDNyOS3GQYUXqxl+QNhjvWlIiLdWVlZGZ999hkJCQmMHj3a1eWIdBsKlN3AgAEDHOsiIyMjKS8v55tvvsHNzY2WlhbOnz9Pv379MAyDL7/8koULF5KdnU1aWhqxsbHMnz+f2tpaMjIyyM7Oxmw2M3ToUMLDw9m/fz9fX7aSWuHLjmobmZe8yWkNpsFrEPdFhDvdGHNlu6Ly8nIqKyuprq6mqrGVI5c7N+poAIvjRuLtocFyEeneDMPgL3/5CxaLhfnz56sRR+Qq2jaom7iy7U9LSwsTJ05kz549hIaP4WJVHRdLzjJuTDinT5/mvvvuAyAzM5OEhAQeeOABxzFflZWV7Nu3j6NHj+Lt7c20adPYVwpvH6jABO1GDC0msBvwxvxInokdcdPaiouLOXfuHKWlpVRUVFBTU0N9fb1jTeUVJpMJi7sn66oibjpCCW17c+avnK2thESk28vNzeUvf/kLTz/9NOHh4a4uR6RbUaDsRsrLy1m7di1ewyP57EQNX9v9MTBhwmBMvwYmuJcTf08wR48eZfbs2Tc8leFKsNx+5Cu2Nt0DHQQ7E/Dx8jiihvTn66+/pri4mAsXLlBZWUlNTQ0NDQ3t9q4EMJvNeHh44OPjw4ABAxg8eDBDhw5l+PDheHm1jXgu/+AQO4+XORpwrseMwfQwf/74fPwtf69ERO6mpqYmVq1axdChQ3nyySddXY5It6NA2c38csNe1h2tuWZE0YQdAxPTrF/zswVt6xZvZskfMkkrqMDeYaA0GGG+xEz3U+0+brFY8PT0xMfHh4CAAGw2m6NJpzOnQRwsquSJNZkdNuWAwSPuX5IcO46HHnoIDw+Pmz5XRMQVdu7cSVZWFi+99BIDBgxwdTki3Y4WrnUjB4sqefdoLW0xrz2DtrU6Gc0jaPYbdsNnVFdXc+bMGYrOFrOnoOXmjTGYOGP3Z2xkFMOCbQwbNowhQ4ZgsTg3BX3fyADemB/Ja5/mYjab2o1UWswm7HaDXzwWSTgD2bNnDydOnGD27NmMGzfOMYUvImIYBqtWreKVV16hrq6OPXv2kJCQcNP35efns3HjRtLS0sjPz+ebb77B29ub0NBQZs6cyYoVKxgzZkynarh48SKZmZlMnz5dYVLkBjRC2Y10ZprYYjYxI3wA/2+iJyUlJZSXl1NVVUVdXR1NTU2O++oNNzY0Tuz05z746sMM8rnzI4SHiipZl36aHfml2I3/O8/8+fhQx3ZBVVVVbNu2jS+//JLRo0fzyCOP4O+vDc9F+rrCwkKWLFnC3r17HR+7WaAsLS1l0aJFpKamAhAbG0tSUhLDhw+ntLSUDRs2kJubi9Vq5Ve/+hX/9E//1GENhmHw4YcfUlFRwUsvvYTVar0jX5tIb6NA2U00NLcS8XoKHWRJBxMGz3gcwc3UdrO7uzve3t74+fkRGBjIkCFDsA0JIf7NA5163t1ojPn2eebXc+LECbZt28bly5dJSEhg6tSpTo+UikjPc/WopMViISIigv379wM3D5T79+93nKv9y1/+kldffbXdrEdrayuLFy/mww8/BGDNmjW88MILN3zeiRMn+Oijj1i4cCH33HPPHfjqRHonTXl3EzUNLZ0Kf9A2TZ34yGPce08ofn5+N7wvMcLWqRHPxHG2Lu+y9rRabvo5xo4dS2hoKGlpaezatYtjx46RnJzMsGE3nuIXkd5n5cqVrFy5kqSkJN555x3effddR6DsrNjY2GvCJLStD1+zZg0pKSlUVFTws5/9jEWLFuHp6XnNM5qbm0lJSSE8PLzT0+MifZU20eomfDzdMHdy6aDZBFMmTegwTAI8Hz8K+01Sqt1u8Hx89zk6zMPDg6SkJJYtW4abmxt/+MMf2Lx5M/X19a4uTUTuonXr1pGSknLbv1A++uijN1yP7e3tzezZswG4dOkS+/btu+59f/vb36itrWX27Nla2y1yExqh7CY8rZY7PqLYmcaYN+ZHdsujD4ODg1m6dCmHDh1i165dnDhxgqSkJCIjI/Ufu0gv9/rrr9/2v/OxY8eyadMmoqOjO7xv+PDhjtdff/31Nde/+eYb0tPTiYuLu+ERtSLyfxQou5Hn40exI+9Ch/fc6ojiM7EjGGvzuaYxJnGcrV1jTHdkNpuZMmUKY8eOZfv27fz1r3/liy++YO7cuQQEdN+6RcQ5zvzS6O/vT3Jy8k3vq6qqcrz29va+5vr27dvx9vZm+vTpt12LSF+iQNmNdNWIYszIAGJGBnSqMaY78vX15fHHH+fkyZNs3bqV3//+90yfPp37779fTTsicltOnz4NtIXX+++/v921goICvvzyS77zne90at9dEVGg7Ha6ckSxM40x3dmYMWMYOXIke/fuJS0tjZycHJKTkxkxouOjI0VErlZVVcWePXsArmn8a2lpISUlhdDQUCIiIlxVokiPo0DZDfX0EcWu5O7uTmJiIlFRUWzevJn169czceJEEhMT6devn6vLE5Ee4P3336ehoQGr1cqvf/3rdtcyMzO5dOkSCxcu1HptkVugQNmN9fQRxa5ks9lYsmQJhw8fZufOnZw8eZJZs2YRFRWlHwIickPl5eX84he/AOCNN95g/PjxjmtVVVXs27ePKVOmMGjQIFeVKNIjKVBKj2UymYiJiXE07Xz66aeOpp3AwEBXlyci3Yzdbmfx4sWUl5fz+OOP89Of/rTd9R07duDh4dGpox1FpD3tQyk9Xv/+/VmwYAHPPPMMVVVVrF69mrS0NFpaWlxdmoh0Iz/+8Y/Ztm0bCQkJvPfee+1mMwoLC8nPzycxMREPjzt/DK1Ib6dAKb1GWFgYL774ItOmTWPfvn2sXr3a0ckpIn3bypUrefPNN4mPj2fTpk3tTsZpbW1l27ZtDB8+nAkTJriwSpGeS4FSehWr1cqDDz7IihUr8Pb25r333uOTTz6hrq7O1aWJiIv86le/4uc//zlxcXFs3bqV/v37t7t+4MABKioqmDNnjtZgi9wmBUrplQYNGsRzzz3HY489RkFBAatWreLIkSMYRicPTBeRXuG3v/0t//Iv/0JsbCwpKSn4+Pi0u15TU0NaWhoxMTEEBQW5qEqRnk+BUnotk8nEpEmT+P73v88999zDpk2bWL9+PeXl5a4uTUTugjfffJOf/OQnxMTEsH37dnx9fa+5Z9KkSezZs4eZM2e6oEKR3kOBUno9b29v5s+fz6JFi6irq2P16tXs2rWL5uZmV5cmIl3k7bff5oc//CGTJk1ix44d+Pn5XXPPmTNnOHXqFB4eHnh5ebmgSpHeQ9sGSZ8RGhrKihUrSE9PJz09nby8PB555BHCw8NdXZqI3EFr167l5Zdfxt/fn3/913/l6NGj19xjt9vZvHkzAAMHDrzbJYr0OgqU0qe4ubmRkJBAZGQkW7Zs4cMPPyQyMpKkpKRrFur3NIZhsGrVKl555RXq6urYs2fPLe2nl5OTw5tvvsnu3bs5f/48AQEBREdHs3z5cpKTk7uucJHr+OCDDxyvjx075nidmprKuXPngLYDDhITE9u9b/fu3axYsQLDMLh06RILFiy4OwWL9HEmQ10K0kcZhsGxY8fYsWMHra2tPPzww0RHR/fILs/CwkKWLFnC3r17HR+7lUD5zjvv8PLLL2MYBosWLWLKlCkUFRWxdu1aKioqWLp0KWvXrsVs1ioZuTs68+9wxowZpKWltfvY+vXr+d73vndLn2vx4sWsX7/+lt4jIu0pUEqfd/nyZXbu3El2djYhISEkJydjs9lcXVanXD0qabFYiIiIYP/+/UDnA+XmzZuZN28ehmHw6aef8thjjzmunTp1iri4OMrLy/npT3/Kf/zHf3TVlyJy1/zP//wPx48f5+WXX8bb29vV5Yj0ChpukD6vX79+PPbYYzz33HM0NjayZs0aUlNTaWpqcnVpN7Vy5Up+8IMfEB8fT25uLklJSbf0/sbGRl566SXsdjtPPPFEuzAJbZvFXzn3+Le//S15eXl3rHYRVyguLiY7O5uZM2cqTIrcQQqUIv9rxIgRLF++nJkzZ3LgwAHefvttTp486eqybmrdunWkpKQwbNiwW37ve++9x9mzZwFYtmzZde955pln8PLywm6385vf/MapWkVcyTAMtm7dSlBQEDExMa4uR6RXUaAUuYrFYmH69Om8+OKLBAYG8qc//YmNGzdSXV3t6tKu6/XXX2fp0qW3/f6PP/4YAHd3d6ZPn37de/r3709sbCzQNlXYE0ZuRa4nOzub8+fPM2fOHK0HFrnD9C9K5DoCAgJ4+umnWbBgAV9//TVvvfUWWVlZ2O12V5fWjjMNRK2trXz++ecARERE4O7ufsN7J0+eDEB1dTWHDh267c8p4ir19fXs3LmTqKgohg8f7upyRHodBUqRGzCZTERGRvLyyy8zYcIEUlJSePfddykpKXF1aXfEV199RWNjI8BNp8uvvq51lNIT7dmzx7Gbg4jceQqUIjfh6elJcnIyS5cupbW1lXfeeYeUlBRHGOupioqKHK9v1tV+9fWr3yfSE5SWlnLo0CESEhKuOctbRO4MBUqRTgoJCWHZsmU89NBDHDlyhLfffpsTJ064uqzbVlNT43jt6enZ4b1XH0t39ftEursrjTiBgYFMmTLF1eWI9FoKlCK3wGKxcP/99/PSSy9hs9n46KOP2LBhA1VVVa4u7ZbV19c7Xne0fvLb1y9fvtxlNYncaceOHePs2bPMmTMHi8Xi6nJEei0FSpHb4O/vz1NPPcXjjz/O+fPneeutt8jIyOh2TTsduXrU8Wad21df79evX5fVJHInNTY2kpqayvjx4wkNDXV1OSK9ms7yFrlNJpOJiIgIwsLC2L17N6mpqeTk5JCcnMzQoUNdXd5NXb2WrKGhocN7rx7N1Bo06SnS0tJoamq65rxvEbnzNEIp4iQPDw/mzJnDsmXLMJlMrFu3jq1bt940pLnayJEjHa8vXLjQ4b1XXx8xYkRXlSRyx5SVlZGVlcX06dPx8/NzdTkivZ4CpcgdMmTIEJ5//nmSkpI4evQob731Fnl5eRiG4erSris8PBwPDw8Ax2k5N3Lu3DnH6/Hjx3dpXSK3q6G5lfKaRuqbWti2bRsDBgwgLi7O1WWJ9Ama8ha5g8xmM1OnTiUiIoJt27bx5z//mfDwcB555BEGDBjg6vLauXIq0M6dOzl+/DhNTU03bM45cuQI0DbdrSPrpLs5WFTJuvRCUvMvYDfABAw3W/jRIzNwc9OPOZG7QSOUIl3A19eXJ598koULF1JWVsbbb79Neno6ra2tri6tnccffxxoa15IT0+/7j21tbVkZWUB8OijjzpGNUW6g/f3n+GJNZnsPF6G/X8nAwzgrN2fH20+ywdZZ1xan0hfoUAp0oXuuecevv/97xMTE8Pu3btZu3btTaeX76ZFixYREhICwLp16657z3//939z+fJlzGYz//zP/3w3yxPp0MGiSv7ts1wMoNXefmmJHRMG8NqnuRwqqnRJfSJ9iQKlSBdzd3cnKSmJF154AavVyh/+8Ac2bdrUrnPaVTw9PXnrrbcwmUxs2LCBzZs3t7teWFjIa6+9BsCPfvQjJkyY4IoyRa5rXXohZnPH59mbzSbWpZ++SxWJ9F0mo7t2DIj0Qna7ncOHD7Nr1y7c3NxISkoiMjISk6njH4od+eCDDxyv//rXv/LJJ58A8OqrrzJu3Dig7ejEjrZOWb16Nf/wD/+AYRg899xz3HfffZw5c4bVq1dTUVHBc889x7vvvovZrN9BpXtoaG4l4vUU7J34CWY2Qf7K2XhatbG5SFdRoBRxgZqaGrZv305eXh6jRo1i7ty5BAQE3NazOhNGZ8yYQVpaWof3HDt2jP/6r/9i9+7dlJaW4u/vT0xMDMuXL+fRRx+9rdpEukp5TSP3/Wpnp+8/+OrDDPLR+l+RrqJAKeJCBQUFbN26lZqaGqZPn87999+vrtQeyjAMVq1axSuvvEJdXR179uwhISHhlp5RW1vLT37yE9asWYNhGN12yylXMwyDgsIiktblYXDzX6g0QinS9fSTS8SFRo8ezUsvvcTevXv5/PPPyc3NZe7cue02HZfur7CwkCVLlrB3797bfsauXbtYunQpZ86oK/lG7HY7x48fJzMzk+LiYsK9xnGqwbvDaW+L2UTiOJvCpEgX04IoERezWq08/PDDLF++HC8vL/74xz/y2WefcfnyZVeXJjdhGAa/+93viIqKIjs7m6lTp97yM2pra3nxxRdJTEzE3d1dZ05fR1NTEwcOHOB3v/sdf/7zn7FarXz3u9/l3599iJsN4trtBs/H63sq0tUUKEW6icGDB/O9732P5ORkTpw4wapVq/jiiy807dmNrVy5kh/84AfEx8eTm5tLUlLSLT8jOTmZtWvX8sMf/pCjR48yfPjwLqi0Z6qtrWX37t3853/+JykpKYSEhLBs2TIWL17M6NGjmRI6kDfmR2KibSTyahazCRPwxvxIYkbe3vpkEek8TXmLdCMmk4no6GjuueceduzYwWeffcYXX3xBcnIygYGBri5PrmPdunUsXbr0tt9vs9nYt28f06ZNu4NV9Wzl5eVkZmZy7NgxzGYzkydPZurUqfj7+19z7zOxIxhr82Fd+ml25JdiN9rWTCaOs/F8fKjCpMhdokAp0g3179+fv//7v+fee+9l69at/P73vyc+Pp7p06eraacbef31153a8glgw4YNTj+jNzAMg6+//pqMjAxOnjxJ//79SUhIIDo6Gi8vrw7fGzMygJiRATQ0t1LT0IKPp5vWTIrcZfrJJNKNhYWF8eKLL7Jv3z7S09MdTTujRo1ydWlC57ZsuhvP6MmuNNpkZGRw/vx5Bg0axLx584iMjLzlX548rRYFSREXUaAU6ebc3NyYOXMmkZGRbNmyhffff5+oqChmzZqFt7e3q8sTuS1NTU1kZ2ezf/9+Ll26RGhoKN/97ncJDw/v8yFbpCdSoBTpIQYNGsTixYs5evQoO3bs4OTJkzz88MNMnjxZP4Clx6itrSUrK4tDhw7R2NhIZGQkTzzxBMHBwa4uTUScoEAp0oOYTCYmTpzImDFjSE1NZfPmzRw9epTk5GQGDx7s6vJEbujqRhuLxcLkyZOJjY29bqONiPQ8CpQiPVC/fv2YN28e9957L5s3b2bNmjXExcUxY8YMrFarq8sTAdoabc6cOUNGRgYFBQWORpuYmBg8PT1dXZ6I3EEKlCI92MiRI1mxYgV/+9vf2LdvH3l5ecydO5fw8HBXlyZ9mN1uJz8/n8zMTM6fP8/gwYOZN28eEyZMwGJR04xIb6RAKdLDubm5MWPGDEfTzocffsj48eNJSkrCx8fnuu/R9irSFa7XaPP0008TFhamdb4ivZwCpUgvMXDgQJ599llycnLYsWMHb731Fg899BDR0dGYzW2HYh0sqmRdeiGp+Rf+bwPoCBvL4kdpA2i5bTU1NRw4cECNNiJ9mAKlSC9iMpmIiopi9OjR7Ny5k61btzqadlKLGvm3z3Ixm03Y//c0R7sBO4+XsSPvAm/Mj+SZ2BGu/QKkRykrKyMzM5OcnBxHo83UqVPx8/NzdWkicpcpUIr0Ql5eXjz66KOOpp1f/P5DtjaNBaDV3v5s8Ct/f+3TXMbafDRSKR0yDIOioiIyMzMpKCjAx8eHmTNnEh0drUYbkT5MgVKkFxs+fDjLly/nyd/txHShGYMbr2Mzm02sSz+tQCnXdaXRJiMjg5KSEgYPHsz8+fOJjIxUo42IKFCK9HbNdjhS1tJhmIS2kcod+aU0NLeqUUccGhsbHY02VVVVjBo1imeeeYZRo0ap0UZEHBQoRXq5moYWvjXLfUN2A0orqhgZpFHKvq6mpoasrCwOHz5MU1MTkZGRxMXFERQU5OrSRKQbUqAU6eV8PN0wm+hUqDRh8O7qVQT4+TB06FCGDBni+NPDw6Pri+2BPvjgA8frY8eOOV6npqZy7tw5AGw2G4mJidd9/4ULF0hNTW339+s9OyoqiqioqDtW941cabQ5duwYbm5uREdHExsbq0YbEemQyTCMTo5diEhPtfyDQ+w8XnZNQ87VLGYTCaMD+McpvhQXF3P+/HnOnz9PU1MTAIGBge1Cps1mw81Nv5N2Ztp3xowZpKWlXfdaWloaM2fOvOkzXn/9dX7+85/fYnWdc6XRJiMjg6+++gofHx+mTp3K5MmT1WgjIp2iQCnSBxwsquSJNZl09I/dBHy8PK5dU47dbqeiooLi4mJHyCwtLcVut2OxWLDZbO1CZmBgoNbV9SCtra2ORpvS0lJsNhvTpk1j/PjxarQRkVuiQCnSR3yQdYbXPm3bh/LqkUqL2YTdbnR6H8qWlhYuXLjQLmRevHgRAHd3d0e4vBI0fX19FTK7mcbGRo4cOUJWVhZVVVWEhYURFxenRhsRuW0KlCJ9yKGiStaln2ZHfqnjpJxZEUE8Hx/q1HZBDQ0NjinyK0GzpqYGgP79+1+zHtPLy+tOfUlyC6qrqx2NNs3NzWq0EZE7RoFSpA+6G2d519TUtBvFPH/+PA0NDQAEBAS0C5lBQUFYrdYuqUPaGn2unGhjtVodjTa+vr6uLk1EegkFShG5KwzDoLKysl3ILCkpobW1FZPJhM1mazddPmjQIMcZ5HLrDMPg9OnTZGRkcOrUKXx9fYmNjSU6Olod+yJyxylQiojLtLa2UlZW1i5klpeXYxgGVquV4ODgdiHT399fa/xuorW1lby8PDIzM9VoIyJ3jQKliHQrTU1NlJSUOAJmcXExly5dAtrOKL96qnzo0KF4e3u7uOLu4Uqjzf79+6muriYsLIxp06YRGhqqEC4iXU6BUkS6vbq6Oke4vPLn5cuXAfDz82vXVT5kyBDc3d1dXPHd8+1GmwkTJhAXF4fNZnN1aSLShyhQikiPYxgGly5datdVXlJSQnNzMyaTiUGDBrXrKrfZbL1uuleNNiLSnShQikivYLfbKS8vbzeKWVZW5tiE/dvrMQMCAnrcVPD1Gm2unGijRhsRcSUFShHptZqbmyktLW0XMisrKwHw8PC4Zj2mj4+Piyu+viuNNhkZGVy4cIGgoCCmTZtGRERErxt5FZGeSYFSRPqU+vr6a9Zj1tbWAuDj43PNJuxdcZZ1Z/cBbWxs5PDhw2RlZVFdXU14eDhxcXFqtBGRbkeBUkT6NMMwrrsJe2NjIwADH7JF4QAAA8JJREFUBw68ZhN2Nze32/pcB4sqWZdeSGr+BcdJRYkRNpbFj2p3UlFVVRVZWVkcOXKE5uZmoqKimDp1qhptRKTbUqAUEfkWwzCoqKhoFzJLS0tpbW3FbDZjs9nahczAwMCbbsL+/v4z/NtnHZ+l/vAIDzIzM8nNzcVqtRITE8OUKVPUaCMi3Z4CpYhIJ7S0tFx3E3YAd3d3goOD221f5Ofn55iWPlhUyRNrMun4P1uDR9y/ZMwAC1OnTmXSpElqtBGRHkOBUkTkNjU2NjqmyK8EzerqagC8vb0dI5jvHIfMs3XtRia/zYzB1GH9+GBFgo6cFJEeR4FSROQOqq2tbdfwc+bcedZVRWBw8yYaswnyV87usFFHRKQ7UqAUEelCZdUNTPn1rk7ff/DVhxnko6luEelZNK8iItKFfL2smDu5w4/ZBD6et9dBLiLiSgqUIiJdyNNqITHChuUmqdJiNjErIkjT3SLSIylQioh0sefjR2HvoCEHwG43eD4+9C5VJCJyZylQioh0sftGBvDG/EhMcM1IpcVswgS8MT+y3ebmIiI9iZpyRETukkNFlaxLP82O/FLHSTmzIoJ4Pj5UYVJEejQFShGRu6yzZ3mLiPQUCpQiIiIi4hStoRQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOOX/A+jvzY1uUkxTAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcsAAAGsCAYAAACy84ylAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde3gU1eHG8e9u7iEkS0KSJZBwE01Q8ZJIiDeqiY2ArZZgkcYLmIpawBbQCtVe1F9LW2tpqVLqrRQFq1irhVJqBAsqETFWrZBEEZVLyCIJ2STktsnO74+FTZZcJoGsQPJ+nmced2bOmT0nAm9m5swZi2EYBiIiItIh68lugIiIyKlOYSkiImJCYSkiImJCYSkiImJCYSkiImJCYSkiImJCYSkiImIi8GQ34GRwu92UlpbSv39/LBbLyW6OiIicJIZhUF1dTUJCAlZrx+ePfTIsS0tLSUxMPNnNEBGRU8SePXsYMmRIh/v7ZFj2798f8PxwIiMjT3JrRETkZKmqqiIxMdGbCx3pk2F59NJrZGSkwlJERExvyfXJsBTpU+rq4P334d134aOPoLraszQ0QGAgREZCbKxnueACSE2FhIST3WqRU4rCUqS32rED/vhH+MtfPOHYHWlp8L3vwdSpEB7un/aJnEb06IhIb1NVBTNnwtlnw6OPdj8owXMWeuutMHw4/O1vPd9GkdOMzixFepM334TvfAf27PFuMoDWd2MMq5WmUaNoSkzEbbfjDg/H4nZjrawkYP9+Aj/9lICyMk/hAwdgyhTPGeYTT4DJIAiR3srSF99nWVVVRVRUFE6nUwN8pPdYvx6+9S2orwfACAwEw8DS3Oxdb7jkEhrT0jA6Cz3DIGDfPkI2bybo449bto8dC//+N9hs/uyFyFeqq3mgy7AivUFBgU9QNg0aBBaLNyibhgyh5o47aLjiis6DEsBioXnIEGqnTaM2JwcjNNSz/Z13YNIkz8AgkT7mKwnLxx57jGHDhhEaGkp6ejrvvPNOp+VXr15NcnIyoaGhnHvuuaxbt85nv2EY/OQnP2HQoEGEhYWRlZXFJ5984s8uiJy6Dh+GG2/0BqUrORlLQwMWl8uzfuaZHL7lFtwDB3bvuBYLrnPPpWbGDNxHB/ls2QIPPtiTrRc5Lfg9LJ9//nnmzZvHT3/6U9577z3OO+88srOzOXDgQLvlt2zZwrRp08jLy+O///0v1113Hddddx0fffSRt8yvf/1rlixZwrJly9i6dSv9+vUjOzub+iP/WIj0KQsWwK5dAJ77kDYbARUVnvXBg6m9/noICjruw7vj46nNzcU4OhXYr37lGQAk0of4/Z5leno6F110EY8++ijgmZc1MTGROXPmsGDBgjblp06dyuHDh1m7dq1327hx4zj//PNZtmwZhmGQkJDA/PnzufvuuwFwOp3Ex8ezfPlybrjhBtM26Z6l9BpffAEjRoDbjREYyOGbbqLf8uVYDAMjIICaO+7AHRvbI18VsmkToa+/7lm56ip49dUeOa7IyXRK3LNsbGyksLCQrKysli+0WsnKyqKgoKDdOgUFBT7lAbKzs73lP/vsM8rKynzKREVFkZ6e3uExGxoaqKqq8llEeoXHHwe3G4CGSy4hcNcuLEd+/224+OIeC0qAhksvpXnAAM9Kfj60Hvwj0sv5NSwPHjxIc3Mz8fHxPtvj4+MpOzo0/RhlZWWdlj/63+4cc9GiRURFRXkXTaIuvYLbDU8+CXgeB2lMTSW4sNCzbrHQmJbmU/ytzz9n6qpVJP/mN9h+9jPWFhV597mam/lpfj4XL11Kws9/TvJvfsPtL73E/ta/WAYE0HjRRS3rR75bpC/oE6NhFy5ciNPp9C57Wj2DJnLa2rnT8xwk0DRyJJamJqw1NZ71ESMwoqJ8ite6XJwbH8/Dkya1OVSty8UH+/dzz+WXs+n223lm6lR2lpcz7bnnfMq5zjuvZeXNN3u4QyKnLr9OSjBw4EACAgJwOBw+2x0OB3a7vd06dru90/JH/+twOBg0aJBPmfPPP7/dY4aEhBASEnLc/RA5JbUaZNM8ZAgBpaU+68e6atQorho1qt1DRYWG8vLNN/tse3jiRK584gn2VFaSeOTZSqNfP5oHDCDg0CHPfLNNTZ75ZUV6Ob+eWQYHB5OamsqGDRu829xuNxs2bCAjI6PdOhkZGT7lAfLz873lhw8fjt1u9ylTVVXF1q1bOzymSK/U6jJqs92O9csvfdZPVFV9PRY8Qdqa++gvqXV18PnnJ/w9IqcDv/9KOG/ePG655RbS0tIYO3Ysv/vd7zh8+DAzZswA4Oabb2bw4MEsWrQIgO9///uMHz+eRx55hEmTJvHXv/6Vd999l8cffxzwvEblBz/4Af/3f//HqFGjGD58OD/+8Y9JSEjguuuu83d3RE4dtbXej0ZoqPe5SgAjLOyEDl3vcvHT115jyrnnEnlMWBqt11u1QaQ383tYTp06lS+//JKf/OQnlJWVcf7557N+/XrvAJ3du3djtbac4F588cWsWrWK+++/nx/96EeMGjWKl19+mXPOOcdb5oc//CGHDx9m5syZVFZWcumll7J+/XpCj/lLLdKrBQS0fDaMlucgwTtC9ni4mpuZvno1hmHwSDv3N32OrUuw0kd8JX/SZ8+ezezZs9vd95///KfNtuuvv57rr7++w+NZLBYefPBBHtRMItKXtXosxHroEEarV2lZKytpPo5DHg3KPU4na265pc1Z5dFjt9cGkd6sT4yGFemVLrzQ+zFg/36aWw14az3Yp6uOBuWu8nJeuflmott7j6Xb3XLsIUMUltJn6BqKyOmqVVgGfvop9Vde6bOO2w2tLs3WNDSw68g0eABfVFby4f79DAgLw96/Pze/8AIf7t/PX7/zHZrdbhxH3oM5ICyM4COXWwP27sXS2Og5QGqqP3snckpRWIqcrgYMgPHjYdMmAsrLCSgtpWn4cAI/+4yAQ4cI3LWLpjPO8Bb/b2kp3/jLX7zr9/373wBMO+88Fnzta/yrpASAy5Yt8/maNbfcwmXDhwMQ3HpO2G99y189Eznl6H2WmhtWTmcvvOB5MTPQNGwYDWPH0u+FFzzrSUkcnj7d5+zyRFgPHiTij3/0vPYrOhr27oUTHHUrcrKdEnPDioifXXcdJCUBEPj551hqarzztwbu3k3wtm098z1uN2Evv+x9PyZ33KGglD5FYSlyOgsO9kymfkRYfj6NrSbnCM3PJ2D37hP7DsMgND+fwL17PetnnAH33XdixxQ5zSgsRU532dmQlweAxeUidONGXMnJnvWmJvo9+ywBR9532W3NzYS++iohR9/oY7HA009DeyNlRXoxhaVIb/CHP3gG+wCW+noCi4tpPjKfq6WxkX4rVhC6fj0cHcnaBdYvv6Tf00+3BCXAn/4El13Wo00XOR1ogI8G+EhvUVPjuYfZat5kIzAQS1OTd93drx+NF15I4wUXYAwY4DlTbK25mYAj9zqDiouxHJ2tx2r1BOV3v/tV9ETkK9PVPFBYKiylN3G54Je/hIce8nzuhDs8nOZBgzzzyBoG1spKAsrKWgbxHHXWWfDnP4NeVCC9kMKyEwpL6fU+/BAWLID16+F4/4rHxcGdd8K992rkq/RaXc0DTUog0huNGQPr1sGnn8ITT8CmTZ73T9bXd15v1CjPzDzf/Cbk5HhG24qIwlKkVxs50nNZFjwvat61C6qrPW8sGTAAQkLg8GHPenQ06EqLSLsUliJ9RWAgnHnmyW6FyGlJj46IiIiYUFiKiIiYUFiKiIiYUFiKiIiY0AAfkVOV2w0lJVBY6Hns49AhzzOT/fvDued6HvE45xwICjo57XM64b33PO3buRMaGjxtGTzY07a0NLDbT07bRHqYwlLkVHPwoGey8mXL4LPPOi8bG+uZRP2OO2DoUP+3zTDgzTdh6VL4299MZwnia1+D733PMw3fyQp1kR6gGXz0XJmcKtxueOwxz8w7tbXdq2u1wt13wwMPQGiof9r3+eeeuWFbzT3bZaNGeabMu+SSHm+WyInQdHedUFjKKae0FKZNg82bfTa7RoygedgwmhMScB/5s2o5fJiA/fsJ3LOHwJKSlsnOAZKT4fnnPTP49KTly2H2bM8EBke4w8NxpaTQPHgw7vh4jOBgaGoioLycgNJSAktKCCgvbzmGxQLz53smSQgI6Nn2iRwnhWUnFJZySvniC7jiCp9Lrg2pqTRefDHumJhOq1qqqwneto2Qt95qmQDdZvPMCZue3jPte/hh+OEPvavuyEjqMzNxnX22Z6KDjhgGAZ99RujGjS0vjga4/npYtarzuiJfEYVlJxSWcsooL4dx4zwDZAB3VBS1111H8/Dh3TqM9cABwl96iYCyMs8Gmw22bIGUlBNr3+OPw+23e1cbL7iAuuzs7l3qdbsJLiggdMOGlrPg6dM992WPfUWYyFesq3mgR0dETqY5c7xB2RwTQ01eXreDEsAdF0fNrbfSNGyYZ0NlJdx8s2c+2ONVUgLf/753tf7KK6m79tru3xO1Wmm85BJqp03DOHr5dflyeOGF42+byFdMYSlysvz97/DccwC4Q0M5fNNNGCdypSM4mMPTptE8cKBn/d134de/Pr5jNTfDjBnet5Q0XHQRDZdffvxtA5pGjfKE7VGzZsGBAyd0TJGvisJS5GQwDFi40LtaP2EChs124scNCaHuuuswjl7e/MUvoKqq+8dZswYKCgBojo6m/qqrTrxtgGvMGFyjR3tWysvhkUd65Lgi/qY77CInw+uvey5zAk1JSbhajV596/PPWbJlCx+UllJWU8OzU6dyTat7j4Zh8IvXX2fFe+/hrK8nPTGR315zDSOPDAZqHjKExgsvJKSw0DN69ZlnPGdx3bF0qfdj/dVXe99rada2Ra+/zksffcS+qiqCAgI4f9AgfpyZSdqQId4ydRMmEFhc7Ll/+dRT/n3cRaSH6MxS5GR44gnvx8axY30GutS6XJwbH8/Dkya1W/X3b73Fn7Zu5bfXXMNr3/0u4cHBTH7mGepbTRDQeNFF7X5Xl3z+OeTnA9A8YABNZ5zR5badERPDwxMnsuXOO1l/660k2WxMfuYZDrZ65MTo398zkhY8Z5cvv9y99omcBApLkZPhrbcAMIKDcSUn++y6atQo7s/M5BvtjGQ1DIM/vv0291x+OZOSkznHbmfZt75FWXU1/ywu9pZz2+00H51q7sMPPS987qotW7wfXWPGeCY86ELbAK4fM4avjRzJsOhoUuLi+Hl2NlUNDWx3OHzKuc47r2XlyM9C5FSmsBT5qh04AHv2ANA8aFC3njf84tAhHDU1jB8xwrstKjSU1CFDeKf1s4xA0+DBng+GAf/9b9fbV1jo/djc6vJpdzU2NfGXwkIiQ0I4Jz6+/bYd830ipyrdsxT5qrU6A2zu5kTjjpoaAOIiIny2x/Xrx4Ej+45ytz52URF0dTRrUdFxtw9gfUkJeS++SK3Lhb1/f16++WZi+vXzLRQWhjsqCqvT6fN9IqcqnVmKfNXq6rwfDT8ObDHCwlpWujPXbKuyx9O+y4YP54077uDVvDwyzziD6atX8+UxQe7Tvu7OgytyEigsRb5qrS+7tp7XtQvij5xRHnsWeeDw4TZnmxyd/g6698aPE2gfQL/gYEbExHBRYiKPXnstgVYrz7R3Gfho+/Q2EjkNKCxFvmpxcd6P1oqKblUdOmAA8RERbGo1j2xVfT2Fe/cy9pj7i9ZDh9r9TlOt7i92t33tcRsGDcfOJOR2Y62s7H7bRE4S3bMU+aqlpHieK6yvJ6C0tM3umoYGdrUKqS8qK/lw/34GhIWRaLNx57hx/GbzZkZGRzN0wAB+vnEj9v79mXTMqFqfY194Ydfbd+GFnonOgYD9+3EPGtSltkWHh/PI5s1MOOss4vv3p6K2lifeeYf9VVVcd/RRkSOsBw9iOfqoS3faJnKSKCxFvmqBgXD++fD22wQcOoS1vNzn7SL/LS3lG3/5i3f9vn//G4Bp553HH7/1Lb5/ySUcbmzkB2vW4KyvZ1xSEn+78UZCW1/ObGwk8IsvPJ+jomDkyK63Ly3N+zHok09wtQqzztq2+Jpr+PjgQZ774APKa2uJDgvjgsGD+dett5JyzNlj4JH5cAFITe1620ROEr11RG8dkZOh1WuvGjIyqM/O7tHDBxUWEr5mjWdlxgzPGz66qrERkpLA4cCwWKieO/fE5qw9lttNxKOPEnD0DLW4GM46q+eOL9INeuuIyKns1lshJASA4Pfew3I887d2xOUipPWD/t2d6i44GGbOBMBiGIS88UbPtQ0I+uijlqDMylJQymnBb2FZUVFBbm4ukZGR2Gw28vLyqGln+Hhr9fX1zJo1i5iYGCIiIsjJycFxzMwfd911F6mpqYSEhHD++ef7q/ki/hUTA7fcAoCloYGwf/zDM3lADwjduLEljC677Pguc95+Oxx5tCNk2zYCWg0oOhGW6mpC//Wvlg1z5/bIcUX8zW9hmZuby/bt28nPz2ft2rVs3ryZmUd+W+3I3LlzWbNmDatXr2bTpk2UlpYyefLkNuVuvfVWpk6d6q+mi3w1fvlLODJ4JmjnTkI2bz7hQwZu307wkbeFEBLieXnz8Rg8GBYt8q6Gv/QSltaja4+Hy0X46tVYjz5nOnUqTJx4YscU+Yr45Z5lUVERo0ePZtu2baQdGSywfv16Jk6cyN69e0lISGhTx+l0Ehsby6pVq5gyZQoAxcXFpKSkUFBQwLhx43zK/+xnP+Pll1/m/fff73b7dM9SThlr18I3vuFdrb/8chq+9jWf+Vi7Kuj99wl75RUsR/9KP/ww3H338bfN7YYrroAjIe6OiuJwbi7u43jUw1JbS/jzz7cMOoqLg+3b4ei7N0VOkpN6z7KgoACbzeYNSoCsrCysVitbt25tt05hYSEul4usrCzvtuTkZJKSkig4+pvycWpoaKCqqspnETklXHONJ9SOCN28mX7Ll2MtL+/yISyHDxP2wguEv/xyS1Dm5cH8+SfWNqsVXnwRjjySYnU6ifjTnwh+661uTVYQWFxMxGOPtQRl//6wbp2CUk4rfnl0pKysjLhjh4oHBhIdHU1ZWVmHdYKDg7Ed8wLc+Pj4Dut01aJFi3jggQdO6BgifnP33RAQAPPmARC4ezcRjz2GKyWFxtRUmpOS2k623txMQFkZQe+9R/CHH7Y8swhw553whz/4vPbruMXGet69efXV8MEHWJqbCcvPJ2TbNhpTU2k891yMqKi231VXR1BxMcHbthHY+nnPmBj417/0uIicdroVlgsWLOBXv/pVp2WKTsFJkRcuXMi8I/8Qgee0OzEx8SS2SOQYc+d6AmTGDNi1C4vbTfD27QRv345hteKOi8MdGQkWC5bDhwkoK8Ny7Kw4MTHw2GPw7W/3TFAeZbdDQQHcfz8sXgyGgbWyktANGwjdsAF3v3644+IwQkKgqYmAgwdbZudp7RvfgD/9yXufVuR00q2wnD9/PtOnT++0zIgRI7Db7Rw4cMBne1NTExUVFdg7eIuB3W6nsbGRyspKn7NLh8PRYZ2uCgkJIeTIMH2RU9bll3vePfmrX3lC5cjfIYvbTUBZGQEdXWGJiICbboKf/tRnqroeFRYGjzwCU6bAQw/B+vXe0bvWw4exdjZa9vzzPc+U3nBDz4a4yFeoW2EZGxtLbGysabmMjAwqKyspLCwk9cjllo0bN+J2u0lPT2+3TmpqKkFBQWzYsIGcnBwASkpK2L17NxkZGd1ppsjpq18/ePBBuO8+eOklzyXLwkLPg/ut7xOOGOE5E73iCsjNha9qoFpGhud+46efwl/+Am+/7Wlf6zlkw8M9AZmWBtOmQXq6QlJOe36bwWfChAk4HA6WLVuGy+VixowZpKWlserInJP79u0jMzOTFStWMHbsWADuvPNO1q1bx/Lly4mMjGTOnDkAbGn15vadO3dSU1PDsmXLeP3113n++ecBGD16NMHBwV1qm0bDymmnrg6qqz2BGRHhWU4VhgGVlVBf75nQICqqWy+0FjmZupoHfvsTvXLlSmbPnk1mZiZWq5WcnByWLFni3e9yuSgpKaG21bvsFi9e7C3b0NBAdnY2S5cu9Tnud7/7XTZt2uRdv+CCCwD47LPPGDZsmL+6I3JyhYV5Jwk45VgsMGDAyW6FiF9pblidWYqI9FmaG1ZERKSHKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERMKCxFRERM+DUsKyoqyM3NJTIyEpvNRl5eHjU1NZ3Wqa+vZ9asWcTExBAREUFOTg4Oh8O7/4MPPmDatGkkJiYSFhZGSkoKv//97/3ZDRER6eP8Gpa5ubls376d/Px81q5dy+bNm5k5c2andebOncuaNWtYvXo1mzZtorS0lMmTJ3v3FxYWEhcXx7PPPsv27du57777WLhwIY8++qg/uyIiIn2YxTAMwx8HLioqYvTo0Wzbto20tDQA1q9fz8SJE9m7dy8JCQlt6jidTmJjY1m1ahVTpkwBoLi4mJSUFAoKChg3bly73zVr1iyKiorYuHFjl9pWVVVFVFQUTqeTyMjI4+yhiIic7rqaB347sywoKMBms3mDEiArKwur1crWrVvbrVNYWIjL5SIrK8u7LTk5maSkJAoKCjr8LqfTSXR0dIf7GxoaqKqq8llERES6ym9hWVZWRlxcnM+2wMBAoqOjKSsr67BOcHAwNpvNZ3t8fHyHdbZs2cLzzz/f6eXdRYsWERUV5V0SExO72RsREenLuh2WCxYswGKxdLoUFxf7o61tfPTRR1x77bX89Kc/5etf/3qH5RYuXIjT6fQue/bs+UraJyIivUNgdyvMnz+f6dOnd1pmxIgR2O12Dhw44LO9qamJiooK7HZ7u/XsdjuNjY1UVlb6nF06HI42dXbs2EFmZiYzZ87k/vvv77Q9ISEhhISEdFpGRESkI90Oy9jYWGJjY03LZWRkUFlZSWFhIampqQBs3LgRt9tNenp6u3VSU1MJCgpiw4YN5OTkAFBSUsLu3bvJyMjwltu+fTtXXnklt9xyCz//+c+72wUREZFu8dtoWIAJEybgcDhYtmwZLpeLGTNmkJaWxqpVqwDYt28fmZmZrFixgrFjxwJw5513sm7dOpYvX05kZCRz5swBPPcmwXPp9corryQ7O5uHH37Y+10BAQFdCnHQaFgREfHoah50+8yyO1auXMns2bPJzMzEarWSk5PDkiVLvPtdLhclJSXU1tZ6ty1evNhbtqGhgezsbJYuXerd/+KLL/Lll1/y7LPP8uyzz3q3Dx06lM8//9yf3RERkT7Kr2eWpyqdWYqICJwCz1mKiIj0FgpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLEREREwpLERERE34Ny4qKCnJzc4mMjMRms5GXl0dNTU2nderr65k1axYxMTFERESQk5ODw+Hw7i8vL+fqq68mISGBkJAQEhMTmT17NlVVVf7sioiI9GF+Dcvc3Fy2b99Ofn4+a9euZfPmzcycObPTOnPnzmXNmjWsXr2aTZs2UVpayuTJk1sabLVy7bXX8o9//IOPP/6Y5cuX89prr3HHHXf4sysiItKHWQzDMPxx4KKiIkaPHs22bdtIS0sDYP369UycOJG9e/eSkJDQpo7T6SQ2NpZVq1YxZcoUAIqLi0lJSaGgoIBx48a1+11Llizh4YcfZs+ePV1qW1VVFVFRUTidTiIjI4+zhyIicrrrah747cyyoKAAm83mDUqArKwsrFYrW7dubbdOYWEhLpeLrKws77bk5GSSkpIoKChot05paSkvvfQS48eP77AtDQ0NVFVV+SwiIiJd5bewLCsrIy4uzmdbYGAg0dHRlJWVdVgnODgYm83msz0+Pr5NnWnTphEeHs7gwYOJjIzkySef7LAtixYtIioqyrskJiYeZ69ERKQv6nZYLliwAIvF0ulSXFzsj7b6WLx4Me+99x6vvPIKn376KfPmzeuw7MKFC3E6nd6lq5drRUREAAK7W2H+/PlMnz690zIjRozAbrdz4MABn+1NTU1UVFRgt9vbrWe322lsbKSystLn7NLhcLSpY7fbsdvtJCcnEx0dzWWXXcaPf/xjBg0a1Oa4ISEhhISEdLGHIiIivrodlrGxscTGxpqWy8jIoLKyksLCQlJTUwHYuHEjbreb9PT0duukpqYSFBTEhg0byMnJAaCkpITdu3eTkZHR4Xe53W7Ac29SRESkp/ltNCzAhAkTcDgcLFu2DJfLxYwZM0hLS2PVqlUA7Nu3j8zMTFasWMHYsWMBuPPOO1m3bh3Lly8nMjKSOXPmALBlyxYA1q1bh8Ph4KKLLiIiIoLt27dzzz33EB0dzZtvvtmldmk0rIiIQNfzoNtnlt2xcuVKZs+eTWZmJlarlZycHJYsWeLd73K5KCkpoba21rtt8eLF3rINDQ1kZ2ezdOlS7/6wsDCeeOIJ5s6dS0NDA4mJiUyePJkFCxb4sysiItKH+fXM8lSlM0sREYFT4DlLERGR3kJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKRnsLM4AACAASURBVCIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYkJhKSIiYsKvYVlRUUFubi6RkZHYbDby8vKoqanptE59fT2zZs0iJiaGiIgIcnJycDgc7ZYtLy9nyJAhWCwWKisr/dEFERER/4Zlbm4u27dvJz8/n7Vr17J582ZmzpzZaZ25c+eyZs0aVq9ezaZNmygtLWXy5Mntls3Ly2PMmDH+aLqIiEgLw0927NhhAMa2bdu82/71r38ZFovF2LdvX7t1KisrjaCgIGP16tXebUVFRQZgFBQU+JRdunSpMX78eGPDhg0GYBw6dKjLbXM6nQZgOJ3ObvZKRER6k67mgd/OLAsKCrDZbKSlpXm3ZWVlYbVa2bp1a7t1CgsLcblcZGVlebclJyeTlJREQUGBd9uOHTt48MEHWbFiBVareRcaGhqoqqryWURERLrKb2FZVlZGXFycz7bAwECio6MpKyvrsE5wcDA2m81ne3x8vLdOQ0MD06ZN4+GHHyYpKalLbVm0aBFRUVHeJTEx8Th6JCIifVW3w3LBggVYLJZOl+LiYn+0FYCFCxeSkpLCjTfe2K06TqfTu+zZs8dv7RMRkd4nsLsV5s+fz/Tp0zstM2LECOx2OwcOHPDZ3tTUREVFBXa7vd16drudxsZGKisrfc4uHQ6Ht87GjRv53//+x4svvgiAYRgADBw4kPvuu48HHnigzXFDQkIICQnpch9FRERa63ZYxsbGEhsba1ouIyODyspKCgsLSU1NBTxB53a7SU9Pb7dOamoqQUFBbNiwgZycHABKSkrYvXs3GRkZAPztb3+jrq7OW2fbtm3ceuutvPHGG4wcObK73RERETHV7bDsqpSUFK6++mpuu+02li1bhsvlYvbs2dxwww0kJCQAsG/fPjIzM1mxYgVjx44lKiqKvLw85s2bR3R0NJGRkcyZM4eMjAzGjRsH0CYQDx486P2+Y+91ioiI9AS/hSXAypUrmT17NpmZmVitVnJycliyZIl3v8vloqSkhNraWu+2xYsXe8s2NDSQnZ3N0qVL/dlMERGRTlmMozf9+pCqqiqioqJwOp1ERkae7OaIiMhJ0tU80NywIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJhSWIiIiJvwalhUVFeTm5hIZGYnNZiMvL4+amppO69TX1zNr1ixiYmKIiIggJycHh8PhU8ZisbRZ/vrXv/qzKyIi0of5NSxzc3PZvn07+fn5rF27ls2bNzNz5sxO68ydO5c1a9awevVqNm3aRGlpKZMnT25T7s9//jP79+/3Ltddd52/uiEiIn2cxTAMwx8HLioqYvTo0Wzbto20tDQA1q9fz8SJE9m7dy8JCQlt6jidTmJjY1m1ahVTpkwBoLi4mJSUFAoKChg3bpyn0RYLf//73487IKuqqoiKisLpdBIZGXmcPRQRkdNdV/PAb2eWBQUF2Gw2b1ACZGVlYbVa2bp1a7t1CgsLcblcZGVlebclJyeTlJREQUGBT9lZs2YxcOBAxo4dy9NPP01nmd/Q0EBVVZXPIiIi0lWB/jpwWVkZcXFxvl8WGEh0dDRlZWUd1gkODsZms/lsj4+P96nz4IMPcuWVVxIeHs6rr77K9773PWpqarjrrrvaPe6iRYt44IEHTrBHIiLSV3X7zHLBggXtDrBpvRQXF/ujrV4//vGPueSSS7jgggu49957+eEPf8jDDz/cYfmFCxfidDq9y549e/zaPhER6V26fWY5f/58pk+f3mmZESNGYLfbOXDggM/2pqYmKioqsNvt7daz2+00NjZSWVnpc3bpcDg6rAOQnp7OQw89RENDAyEhIW32h4SEtLtdRESkK7odlrGxscTGxpqWy8jIoLKyksLCQlJTUwHYuHEjbreb9PT0duukpqYSFBTEhg0byMnJAaCkpITdu3eTkZHR4Xe9//77DBgwQIEoIiJ+4bd7likpKVx99dXcdtttLFu2DJfLxezZs7nhhhu8I2H37dtHZmYmK1asYOzYsURFRZGXl8e8efOIjo4mMjKSOXPmkJGR4R0Ju2bNGhwOB+PGjSM0NJT8/Hx+8YtfcPfdd/urKyIi0sf5LSwBVq5cyezZs8nMzMRqtZKTk8OSJUu8+10uFyUlJdTW1nq3LV682Fu2oaGB7Oxsli5d6t0fFBTEY489xty5czEMgzPOOIPf/va33Hbbbf7sioiI9GF+e87yVKbnLEVEBE6B5yxFRER6C4WliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICb+FZUVFBbm5uURGRmKz2cjLy6OmpqbTOvX19cyaNYuYmBgiIiLIycnB4XC0Kbd8+XLGjBlDaGgocXFxzJo1y1/dEBER8V9Y5ubmsn37dvLz81m7di2bN29m5syZndaZO3cua9asYfXq1WzatInS0lImT57sU+a3v/0t9913HwsWLGD79u289tprZGdn+6sbIiIiWAzDMHr6oEVFRYwePZpt27aRlpYGwPr165k4cSJ79+4lISGhTR2n00lsbCyrVq1iypQpABQXF5OSkkJBQQHjxo3j0KFDDB48mDVr1pCZmXnc7auqqiIqKgqn00lkZORxH0dERE5vXc0Dv5xZFhQUYLPZvEEJkJWVhdVqZevWre3WKSwsxOVykZWV5d2WnJxMUlISBQUFAOTn5+N2u9m3bx8pKSkMGTKEb3/72+zZs6fT9jQ0NFBVVeWziIiIdJVfwrKsrIy4uDifbYGBgURHR1NWVtZhneDgYGw2m8/2+Ph4b51du3bhdrv5xS9+we9+9ztefPFFKioquOqqq2hsbOywPYsWLSIqKsq7JCYmnmAPRUSkL+lWWC5YsACLxdLpUlxc7K+24na7cblcLFmyhOzsbMaNG8dzzz3HJ598wuuvv95hvYULF+J0Or2L2ZmoiIhIa4HdKTx//nymT5/eaZkRI0Zgt9s5cOCAz/ampiYqKiqw2+3t1rPb7TQ2NlJZWelzdulwOLx1Bg0aBMDo0aO9+2NjYxk4cCC7d+/usE0hISGEhIR02m4REZGOdCssY2NjiY2NNS2XkZFBZWUlhYWFpKamArBx40bcbjfp6ent1klNTSUoKIgNGzaQk5MDQElJCbt37yYjIwOASy65xLt9yJAhgOcRlYMHDzJ06NDudEVERKTL/DIaFmDChAk4HA6WLVuGy+VixowZpKWlsWrVKgD27dtHZmYmK1asYOzYsQDceeedrFu3juXLlxMZGcmcOXMA2LJli/e41113HTt37uTxxx8nMjKShQsXsmvXLt5//32CgoK61DaNhhURETjJo2EBVq5cSXJyMpmZmUycOJFLL72Uxx9/3Lvf5XJRUlJCbW2td9vixYu55ppryMnJ4fLLL8dut/PSSy/5HHfFihWkp6czadIkxo8fT1BQEOvXr+9yUIqIiHSX384sT2U6sxQRETgFzixFRER6C4WliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiICYWliIiIicCT3QAREZGOOBud3Pf5fWyr2UYTTT77AgkktV8qi4YvIio4yq/tUFiKiMgp5/F9j/Mnx586LdNEE1sPb+XKj64E4Nb4W5k1eJZf2mMxDMPwy5FPYVVVVURFReF0OomMjOx2/Wc2lfDcGztp7uAnlxTTjye+97UTa6SISB9UVlPGpI8nndAx/n7m30mKSOpS2a7mgcKyG2E564nN7Cyr7nL5AAv8bf6VhIWFHU8zRUT6lHs/uZfXql9rs90WZCM+LJ6Y4BjCAjz/ntY111HRWIGj3sGhxkNt6oyPGM9vz/yt6XcqLDvR3bDcV+Hk1sfePO7vuzzFzn1TUo+7vohIbzezeCaFtYU+25LCkzg76mwGhgzEYrG0W88wDA42HGSHcwdf1H7hs29M6Bj+PPrPnX6vwrIT3QnL//xvD4te/tBnW3BQAGcOiybRHkmMLZzQ4ACa3QaHqupxHKyh5PNyKpz1PnXiokJ45q6sHu+LiMjp7v8++z/+fujv3vVQayjpA9MZ2m9ot46z+/Bu3j74NvXuln9/J0ZN5KGRD3VYR2HZia7+cEr2VXDX0wU+25IGRdK/XwjO6npcTW6sVgsR4cEMHBBOQmwEAweEYxgGX+x38kbhHmrrXN66idHhPDnrCr/1S0TkdFPXWMelH13qXe8X0I+vD/o6/YP6H9fxql3V5JflU9NU49226ZxNRARHtFteYdmJrv5wsh/6p/ez1QJYLLjdnf+4YgeEc86oWEYNjabR1cy/39rF/i9b/qc9+O0LST9r0An3QUSkN7jovYtw4wYgyBLEpMGTiAzq/sDL1qpd1awtXYvL7TlZsWJl24Xb2i3b1TzQpAQdmP6HjT7rbgPToAT48lAtr7/zBWs3fUJDYzMTLhvJwAEtA3x+8sJ7Pd5WEZHT0cc1H3uDEiA1OvWEgxKgf1B/Loq+yLvuxs2O6h0ndEydWXbwm0Trs8qjWt+rHDggnNDgQNxH71WW11DyWTkHK+t8yk+4bCQhQQG8mF/sDdvrM4bz3azR/umciMhpIuO9DBppBGBgyEAmDJrQ4UCe7jIMg/X71/Nlw5cABBDAOxe+06bcKXFmWVFRQW5uLpGRkdhsNvLy8qipqem0Tn19PbNmzSImJoaIiAhycnJwOBze/cuXL8disbS7HDhwoEfa/dDqd33WLRYYc1YcN37jHC65IJGkQVGEhwZhtVoIDLQSGx3OOaPimHxVMhMvP4OI8GAAGl3NrNu8k6ZmN2efEes93uqCz3qknSIip7OjQQmQHJnsDcr8xfk8kvkI9ybdy/1n3s+TNz6J4xOHT93n5z7PQxc+xD0J93DfqPt4MvdJHB+3lLFYLKREpnjXm2nmRM4N/RqWubm5bN++nfz8fNauXcvmzZuZOXNmp3Xmzp3LmjVrWL16NZs2baK0tJTJkyd790+dOpX9+/f7LNnZ2YwfP564uLgeafebxS0/8KBAK5PGjyLjvCEEBQZ0Ws9isZBoj+T67BSGxHtuTrua3LxW8BlnDY3ukbaJiPQGpXWl3s9BliCfka+fvvUpl+Zdyg/+/QPufOlO3C43y3KW0XC4wVsm8bxEvvPod1jw9gLuePEODMPgjzl/xN3cclk3sV8iQdYg7/ry0uXH3V6/XYYtKipi9OjRbNu2jbS0NADWr1/PxIkT2bt3LwkJCW3qOJ1OYmNjWbVqFVOmTAGguLiYlJQUCgoKGDduXJs6X375JYMHD+app57ipptu6lLbOjvt/sxRxR2PvwF4ziivGT+KhLjuj8pqanKzZtMnHCg/DMA5Z8Sy11FFZbXnf/aSWzM4a7ACVET6pluKbuGjuo8AiA+NJ3tQdodlaw7WcP+Z9zNn7RxGXjyy3TKl20v59WW/5v7C+xk4fKB3+6v7X6WsvgzwDPR5+4K3CbC0nPic9MuwBQUF2Gw2b1ACZGVlYbVa2bp1a7t1CgsLcblcZGW1PI+YnJxMUlISBQUF7dZZsWIF4eHh3nBtT0NDA1VVVT5LR557c6f38/nJ8e0GZV1NDU//4ifcfuVFTDtvBD+64Rvs/N/7PmUCA61cOXYogQGeywo7Pv0SW2Sod/9vXvF9dlNEpC8pqSvxfo4O7vzEoa7KMxYk3Bbe7v6Gww1sXbmVmKEx2AbbfPa1PrYbN286j2+CGb+FZVlZWZvLooGBgURHR1NWVtZhneDgYGw2387Gx8d3WOepp57iO9/5TqdTyi1atIioqCjvkpiY2G65ipp63iz2fE9oSCAXjm7/EY+lP57PB1s2c9ev/sBv/7GB8y4ZzwMzplLu2O9TLqp/KOee6fkZuA2oq2+ZMb+ytgERkb6qmWbv52BrcIfl3G43f//R3xmePpxBx/yb/OZTb/LDxB9yb+K9FG0o4s6X7iQw2Pf9ICEBIT7rLx186bja2+2wXLBgQYcDbI4uxcXFx9WY7iooKKCoqIi8vLxOyy1cuBCn0+ld9uzZ0/7xShw0Hxmxmjw8hsCAtj+ehvo63n51HTfffT9nXzSOQUOHM3XO3diThvHv51a0KZ8yIpajg7sqq1tmlQgM6Pz+p4hIb2ahZdSrQcd3A1+850X2F+3nlidvabMv9fpU7vnPPcxZO4fYkbEsv3U5rnqXTxm34fZZ/+DwB8c10Kfbr+iaP38+06dP77TMiBEjsNvtbUanNjU1UVFRgd1ub7ee3W6nsbGRyspKn7NLh8PRbp0nn3yS888/n9TUzuddDQkJISQkpNMyAB/vd3o/D01o/91o7qZm3M3NBB1zvODQUIoL2w5L7t8vmOioMMor62hobPlN6pzEAabtERHprcKsYdS4PU9H1Ljaf0rixR++yI5/72DOP+e0ubwKEBYZRlhkGLEjYxmaNpQfjfgRH/7zQ1JzWjKh9Uw+ANXN1ext3EtiSPtXGDvS7bCMjY0lNjbWtFxGRgaVlZUUFhZ6w2zjxo243W7S09PbrZOamkpQUBAbNmwgJycHgJKSEnbv3k1GRoZP2ZqaGl544QUWLVrU3S506DNHyxtFYmztX9YNi4jgrPNTeXHp7xgyYhRRA2N5858v8/H7hdiThrVbZ+CAcMpbPX8JMG+SnrMUkb7rhoE38OSBJwEobyz32WcYBn+792/875//Y/Y/ZhMzNMb8gIanXlOD7wuiyxvK2xT9rO6zboel3+5ZpqSkcPXVV3Pbbbfxzjvv8NZbbzF79mxuuOEG70jYffv2kZyczDvveM7IoqKiyMvLY968ebz++usUFhYyY8YMMjIy2oyEff7552lqauLGG2/ssTbXNXp+yEGB1k4fE7nr13/AMAxuG38hN4wZxrpnnuLSSddhsbb/4wwLafs7iV7bJSJ92cxBLY8ROl1On7PLF+95kXdfeJebHr+JkIgQqhxVVDmqaKzzPJd58POD5C/OZ8/7ezi09xCfbf2MP8/4M0GhQYy+quVE5HDTYZyuliuGR9W569psM9PtM8vuWLlyJbNnzyYzMxOr1UpOTg5Llizx7ne5XJSUlFBbW+vdtnjxYm/ZhoYGsrOzWbp0aZtjP/XUU0yePLnNYKATYT1yc9FtGBiG0eFMEvakYTz07EvU19ZSV1PNgLh4Hpl7O/GJ7c+Q7z7m+nhokGYZFJG+LeCYcRsfV3/MhdEXAvDW028B8Og3HvUpM+3RaaR/J52gkCB2Fexi07JN1FXW0T+2PyMvHsn313+f/rH9fY7Z3v3Q1o+OdJVfwzI6OppVq1Z1uH/YsGFtbrSGhoby2GOP8dhjj3V67C1btvRIG1sbGBnK519W09xsUFPbSP9+nd/nDA0PJzQ8nBpnJe+/uYmb7r6/3XKVVb6v6/rz97/WU00WETltjQkbw4d1nsfoPq7+mJSoFMICwvhdxe86rRc1KIrbX7i90zL1zfV8XPWxdz2IIFx4Bv8MCOz+mBGd4rQyalDLoJ4DFbUdlvvvG//hv2+8jmPvbj54axM/vWUKg0ecwZWTp7YpaxgGXx5qOVZ4sJVoXYIVEeHPKS0vZm50N7L14NYTmpKuta3lW2lwtzyi1y+gn/fzmeFndvt4fj2zPN2c3WqE6seflzOygxGrtTVVrPztIsrL9hNhszHuqol8Z+4CAoOC2pTdU1bl83zl3++d0PMNFxE5TWX0y6DgsGfSmd21u9lRtYOzo84+oWMWOYv44vAX3vWBwQOpaKwAICkkif4B3Z+VTWHZyoUjYomLCuOAs47d+6sor6wlpp0ZIy6Z8E0umfBN0+MZhsEHreaZvSPrrB5tr4jI6e7Rsx4l9b2WRz0KKwppNpo5N+rcbr+BxDAMtju3894h31chJvZL5GDjQQCusF1xXO3UZdhWAqwWvpHWMkjnP9u+8E5ScDyKdpVTeuTFzzERIXwzvf05DUVE+rIVI30ndHn/0Pu8WvYq1a7qDmq0VeOqIb8sv01Qfsv+LYqrPBPlWLCQMzDnuNqosDzGdWOHkTQwAoCDh+rY/O4Xx3UNvfRANVveb5kpaN43zyPA2jPvaRMR6U3OjjqbC0Iv8NnmqHfwyt5X2HxgM2V1ZTQbzW3qNRvNOOocvHHgDV7e+7J3wvSjJtsn82HNh9Q1ex4VGR81nsEhg4+rjXr5czuzzJeUVjLvz1toOnJWOWxwFJenDW33ecljGYbBx59X8OZ7u2lq9tSfcEEiP7hmTM92QkSkF9nbsJcp26d4R6wey4oVW7CNsADPAMm65joqGytx4263/A2Db+CLhi8oOOi5H9rP2o8XRr+APdh3NriT/taR09lZCTYWfOsC73OXn+9zsnr9Dj765IDPlHWtGYZB6YFq1r3xKf/Z9oU3KMeeEcusCed8ZW0XETkdDQkZwtwhczvc78ZNRWMF++r2sa9uHxWNFe0G5ch+I7lp2E3sqt/lDUqAeUPmtQnK7tCZZSe/Sbz9sYPf/OMDqutaftMJDLASH9OPgQPCCA0Jwu12c6iqHkf5YaoPN/rU//p5Q7hr0rkEtTMhu4iI+DIMg1/u+SUvHnyx23XP738+YwaOobaplrfL32Zv7V7vvty4XOYOntvugKGu5oHCspMfDnhe2/Xouo94q8TRabnWBvYPZc7Ecxh3ZvyJNlVEpE9xG25+s/c3PP/l895tgZZAhoUNo7G5kXqjHgODqMAo0gamERwQjGEYVDRW8En1J+yq2UWT0fK43s1xN3PX4Ls6HFmrsOxEd8LyqM8PVLO28AveLCrj0OG276IMCrCSMsTGpAuHckmKXWeTIiLHyTAM8g/l88s9v8TZ7Du3a5AliOiQaJ97lxUNFbgM33ud0YHRLExayJW2Kzv9LoVlJ44nLFsrr67nswPV1DU0ERBgIT4qjKGx/dt9/6WIiByfclc5f9r/J/5Z8U/q3fXmFYBwazjXxFzDzEEzuzStncKyEycaliIi8tWpbq7mn+X/5J3qdyiqLeKAy/ddyfFB8aSEpzAuchwToyf6TG1nRmHZCYWliMjpq7KpkprmGixYiAiIICowyrxSB7qaB5ruTkRETiu2QBu2wJ57PWNX9MmwPHoyXVVVdZJbIiIiJ9PRHDC7yNonw7K62jPfYGJi4kluiYiInAqqq6uJiur4cm6fvGfpdrspLS2lf//+3Z7V/mSpqqoiMTGRPXv2nNb3WXtDP3pDH6B39KM39AHUj5PJMAyqq6tJSEjAau34iYY+eWZptVoZMmTIyW7GcYmMjDxt/hB2pjf0ozf0AXpHP3pDH0D9OFk6O6M8Sg8GioiImFBYioiImAj42c9+9rOT3QjpmoCAAL72ta8RGHh6Xz3vDf3oDX2A3tGP3tAHUD9OdX1ygI+IiEh36DKsiIiICYWliIiICYWliIiICYWliIiICYWliIiICYXlKaKiooLc3FwiIyOx2Wzk5eVRU1PTaZ36+npmzZpFTEwMERER5OTk4HA42pRbvnw5Y8aMITQ0lLi4OGbNmuWvbvi1HwDl5eUMGTIEi8VCZWWlP7oA+KcfH3zwAdOmTSMxMZGwsDBSUlL4/e9/32Ntfuyxxxg2bBihoaGkp6fzzjvvdFp+9erVJCcnExoayrnnnsu6det89huGwU9+8hMGDRpEWFgYWVlZfPLJJz3W3o70ZD9cLhf33nsv5557Lv369SMhIYGbb76Z0tJSf3ejx/9/tHbHHXdgsVj43e9+19PN9uGPPhQVFfHNb36TqKgo+vXrx0UXXcTu3bv91YWeY8gp4eqrrzbOO+884+233zbeeOMN44wzzjCmTZvWaZ077rjDSExMNDZs2GC8++67xrhx44yLL77Yp8wjjzxiJCQkGCtXrjR27txpfPDBB8Yrr7xy2vXjqGuvvdaYMGGCARiHDh3yRxcMw/BPP5566injrrvuMv7zn/8Yn376qfHMM88YYWFhxh/+8IcTbu9f//pXIzg42Hj66aeN7du3G7fddpths9kMh8PRbvm33nrLCAgIMH79618bO3bsMO6//34jKCjI+N///uct88tf/tKIiooyXn75ZeODDz4wvvnNbxrDhw836urqTri9X1U/KisrjaysLOP55583iouLjYKCAmPs2LFGamqq3/rgj3609tJLLxnnnXeekZCQYCxevPi06sPONbI9vAAABz5JREFUnTuN6Oho45577jHee+89Y+fOncYrr7zS4TFPJQrLU8COHTsMwNi2bZt327/+9S/DYrEY+/bta7dOZWWlERQUZKxevdq7raioyACMgoICwzAMo6KiwggLCzNee+01/3bgCH/146ilS5ca48ePNzZs2ODXsPR3P1r73ve+Z1xxxRUn3OaxY8cas2bN8q43NzcbCQkJxqJFi9ot/+1vf9uYNGmSz7b09HTj9ttvNwzDMNxut2G3242HH37Yu7+ystIICQkxnnvuuRNub0d6uh/teeeddwzA+OKLL3qm0e3wVz/27t1rDB482Pjoo4+MoUOH+jUs/dGHqVOnGjfeeKN/Guxnugx7CigoKMBms/1/e/cX0lQfxgH861wzImqNua2SBVHW3EUGoe2qC1fzYjTXhTBQ+nMxIiIIERcVoy6iyAvLiyIopJv+MMIuvLBgI/zXwEE0WRMj+4tzqDQKyrN2nvfiZef16F5XuKPufZ8PHMZ+53d2nq9ze1B/82Dfvn3SmN1uh0qlQjgcznlMJBJBOp2G3W6Xxnbv3g2z2YyhoSEAwPPnzyGKIr58+QKLxYKKigo0Njbi06dPRZUDAGKxGC5fvoz79+8vemWAQlAyx3ypVAo6nW5J9QqCgEgkIju3SqWC3W7/13MPDQ3J5gOAw+GQ5o+PjyORSMjmbNy4EbW1tYvmWQolcuSSSqVQUlICrVaZiwcrlUMURTQ3N6O1tRVWq1WR2rOUyCCKInp6elBZWQmHwwGDwYDa2lp0d3crF6SAuFmuAolEAgaDQTamVquh0+mQSCT+9RiNRrPgBW80GqVj3r17B1EUceXKFXR0dCAQCGBmZgYHDx6EIAhFk2N2dhYejwfXr1+H2WwueN25alIix3yDg4N49OgRvF7vkuqdmppCJpOB0Wj87XMnEolF52dv/+Qxl0qJHPP9/PkTbW1t8Hg8il0VQ6kc165dg1qtxpkzZwpf9DxKZEgmk/j+/TuuXr2K+vp6PHv2DG63G0eOHMGLFy+UCVJA3CwV5PP5UFJSsugWj8cVO78oikin07h58yYcDgf279+PBw8eYGxsDKFQqGhynDt3DhaLBU1NTUt6nJXOMdfIyAhcLhf8fj8OHTq0LOf8v0un02hsbAQR4datWytdzh+JRCK4ceMGurq6iuYavPOJoggAcLlcOHv2LKqrq+Hz+eB0OnH79u0Vri6//9Z/ul1lWlpacOzYsUXnbN++HSaTCclkUjb+69cvzMzMwGQy5TzOZDJBEAR8/fpV9tPM5OSkdMzmzZsBAFVVVdL+8vJy6PX6P1p9ttI5gsEgotEoAoEAgL9XaQKAXq/H+fPncenSpaLIkRWLxVBXVwev14sLFy78Vu2L0ev1KC0tXbCCONe559a72Pzs7eTkpPR9lL1fXV295JpzUSJHVrZRfvjwAcFgUNFrLSqRo6+vD8lkUvablUwmg5aWFnR0dOD9+/erPoNer4darZa9HwGAxWJBf39/AatXyEr/0ZT9s6BkeHhYGuvt7f2tBSWBQEAai8fjsgUlo6OjBEC2wGd6eppUKhX19vYWTY63b99SNBqVtnv37hEAGhwcVGQVnVI5iIhGRkbIYDBQa2trQWuuqamh06dPS/czmQxt3bp10cUYTqdTNmaz2RYs8Glvb5f2p1KpZVngU8gcRESCIFBDQwNZrVZKJpPKFD5PoXNMTU3JXgPRaJS2bNlCbW1tFI/HiyJD9v78BT4NDQ15V5qvBtwsV4n6+nrau3cvhcNh6u/vp507d8q+gT5//ky7du2icDgsjZ08eZLMZjMFg0EaHh4mm81GNptN9rgul4usVisNDAxQNBolp9NJVVVVJAhCUeWYKxQKLctHRwqdIxqNUnl5OTU1NdHExIS0FeIN/OHDh1RWVkZdXV0Ui8XI6/WSVqulRCJBRETNzc3k8/mk+QMDA6RWq6m9vZ3evHlDfr8/50dHtFotPX36lF6/fk0ul2tZPjpSyByCINDhw4epoqKCXr16Jfu6z87OFk2OXJReDatEhidPntCaNWvozp07NDY2Rp2dnVRaWkp9fX2K5SgUbparxPT0NHk8Hlq/fj1t2LCBjh8/Tt++fZP2j4+PEwAKhULS2I8fP+jUqVO0adMmWrduHbndbpqYmJA9biqVohMnTpBWqyWdTkdut5s+fvxYdDnmWo5mqUQOv99PABZs27ZtK0jNnZ2dZDabSaPRUE1NDb18+VLad+DAATp69Khs/uPHj6myspI0Gg1ZrVbq6emR7RdFkS5evEhGo5HKysqorq6ORkdHC1LrcuXIPk+5trnP3WrPkYvSzZJImQx3796lHTt20Nq1a2nPnj3U3d2taIZC4etZMsYYY3nwaljGGGMsD26WjDHGWB7cLBljjLE8uFkyxhhjeXCzZIwxxvLgZskYY4zlwc2SMcYYy4ObJWOMMZYHN0vGGGMsD26WjDHGWB7cLBljjLE8/gJn646mKU/IgwAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -286,23 +331,40 @@ "import networkx as nx\n", "from gem.embedding.hope import HOPE\n", "\n", - "G = nx.barbell_graph(m1=10, m2=4)\n", - "draw_graph(G)\n", - "\n", "hp = HOPE(d=4, beta=0.01)\n", - "hp.learn_embedding(G)" + "V=np.matrix(hp.learn_embedding(G))[:, 2:]\n", + "\n", + "plot_embeddings(V)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## DeepWalk" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA08AAAMtCAYAAABHAkpLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde5xdBX3v/e+emWRynZncyBASFCiShLsJhBR9UJIaLiqWeI5grJdGUi2gAgcLgqKtlFpruaiISI88VKI+qFVBLsVwCrZGCBG5xCRQ1AMkTLgkmSG3ue7nj8BgyExYQzKZGfJ+v177lZl12fu39j/Dh7X22qVyuVwOAAAAO1TR1wMAAAAMBOIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFVPX1AH2ho6Mjq1evzsiRI1Mqlfp6HAAAoI+Uy+W88MILmTBhQioqdnxuaY+Mp9WrV2fSpEl9PQYAANBPPPnkk5k4ceIOt9kj42nkyJFJtr5BNTU1fTwNAADQV5qamjJp0qTORtiRPTKeXrpUr6amRjwBAACFPs7jhhEAAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAVU9fUAANDryuVk43NJ66akvTWpHJQMGpYMH5uUSimXy1m7ZW22tG9Ja3trBlUOypDKIRk9ZHShb5wHYM8gngB4/dn4fPL7u5Onf5OsWpqs/k3SsqFz9bqKitw7dEh+O3R4Hh5Rl99WtGdTuW27pxlWNSxTx0zNoeMOzdQxUzOjfkZGDRm1O48EgH5EPAHw+lAuJ08tSe77VrLsR0lHW1JRtfXfJOUkD1YPzvdqRuaO4cPSViqlqlxOW7Yk5a7PLm1q25T719yf3zzzm7SV21JVqsoJ+52Q0yaflsPGHuasFMAeRjwBMPCt+Fly1xeTZ36bVFQmHe1bl78YTncNG5qvjarNY4MHp7JcTvuL0bPlhfZs+t2mbP7d5mz+/dZH+4at+9YdW5f699Vvt/43G36Tf8g/ZN+375vrr78+x008LitWrMh9992X++67L0uWLMlDDz2UlpaWJMltt92WTZs25c4778z999+f//7v/86GDRtSU1OTN73pTZkzZ04+9rGPpb6+fve/bwD0SKlcLpf7eojdrampKbW1tWlsbExNTU1fjwPAa7VpbXLr+ckjP0hKFUm5Y5vV6ysq8vdjRuW2EcNTKpdTfsWZokc+/Ei3T113bF3W/9f6Ha6feMbETFoxKbf9w23dbjd06NBs3rx5h4dRU1OTa6+9Nu973/t2uB0Au15P2sCZJwAGpuW3JD89O9nSuPX3V4TTomFD8/mxo/NCxdYby74ynF5p0JhBqd67Ohse2dCj9Q8/9/DL2wwalEMPPTStra15+OGty18Kp2OPPTbvfOc7M3369IwZMybPPvtsfvSjH+Vb3/pWmpqaMm/evNTU1OTEE08s/h4AsFuJJwAGlnI5+cVXkrv+Llu/cWPbaConua62JleNruvybNMfG3fKuAzdb2iG7TcsVbVVaXm2JY+e/2jh9UkyeMLg7D1v7wzdb2j+1yn/Kx+b9rF84Qtf6Iynt73tbfn617+eqVOnbvf673jHO3LiiSfmz//8z9Pe3p6zzz47jz32mM9SAfRT4gmAgaNcThZ9IfnPy19csH04XTmqNv9SV7v191eJkPF/Pn6n1ifJsP2HZdj+w5IkVy+7Oi0VLfnjK+IvueSSLsPpJaecckpOPfXU/PCHP8zjjz+eBx54IG9+85tf9XUB2P18SS4AA8cvvvJH4bS962prOsOpr1z38HV54JkHerTP29/+9s6fH3/88V09EgC7iHgCYGBYfsuLl+p1bdGwoblqdN1uHKh7v3r6Vz3avrm5ufPnysrKXT0OALvIbomnr3/963njG9+YIUOGZMaMGbnvvvt2uP1NN92UyZMnZ8iQITn00ENz6623brO+XC7nc5/7XPbee+8MHTo0s2fPzmOPPdabhwBAX9q0duvNIdL1ZXjrKyry+bGjU+onN5AtdTNnd+6+++7On6dMmbKrxwFgF+n1ePr+97+fc889N5dcckl+/etf5/DDD8+cOXPyzDPPdLn9L3/5y5x++umZP39+HnjggbznPe/Je97znjzyyMu3k/3Hf/zHXHXVVbnmmmty7733Zvjw4ZkzZ062bNnS24cDQF+49fwX76rXdRz9/ZhReaGi4lU/47S7lLuZsysPPvhgfvaznyVJDj30UPEE0I/1ejz98z//c84444x85CMfydSpU3PNNddk2LBh+d//+393uf2VV16ZE044Ieeff36mTJmSv/u7v8ub3/zmfO1rX0uy9azTFVdckYsvvjinnHJKDjvssNxwww1ZvXp1fvzjH3f5nM3NzWlqatrmAcAAseJnW7/Hqdze5eq7hg3NbSOGd37xbX/zwJruP//U3Nycj370o2lv33psl1566e4aC4DXoFfjqaWlJUuXLs3s2bNffsGKisyePTuLFy/ucp/Fixdvs32SzJkzp3P73//+92loaNhmm9ra2syYMaPb57zssstSW1vb+Zg0adLOHhoAu0O5nNz1xa1fgNvV6iRfG1Xbby7X68qPHvtRuvs++rPOOiv3339/kuRDH/pQ3vWud+3O0QDooV6Np+eeey7t7e0ZP37bW72OHz8+DQ0NXe7T0NCww+1f+rcnz3nhhRemsbGx8/Hkk0++puMBYDd7aknyzG+3+wLclzxYPTiPDR7cby7X68pTG57KQ889tN3yyy67LNddd12S5KijjsrXv/713T0aAD20R3zPU3V1daqrq/t6DAB66r5vJRWVSUfXl+x9r2ZkKsvlfnvJXpJUlirzvRXfy+HjDu9c9s1vfjOf+cxnkiSTJ0/OrbfemuHDh/fViAAU1KtnnsaOHZvKysqsWbNmm+Vr1qxJfX19l/vU19fvcPuX/u3JcwIwAG18Pln2o27DaV1FRe4YPqxfh1OStJfbc/vvb8+6LeuSJN/97nfz13/910mSN7zhDbnzzjszduzYvhwRgIJ6NZ4GDx6cadOmZdGiRZ3LOjo6smjRosycObPLfWbOnLnN9kly5513dm6/3377pb6+fpttmpqacu+993b7nAAMQL+/O+lo63b1vUOHpK2fh9NL2sptua/hvvz0pz/NBz/4wXR0dGTvvffOokWLMnHixL4eD4CCev2yvXPPPTcf+tCHMn369Bx99NG54oorsnHjxnzkIx9Jknzwgx/MPvvsk8suuyxJ8slPfjLHHXdcvvKVr+Tkk0/O9773vdx///259tprkySlUimf+tSn8sUvfjEHHnhg9ttvv3z2s5/NhAkT8p73vKe3DweA3eXp3yQVVd0G1G8HD05VuTwgAqqqVJUf3/bjfPucb6etrS1jxozJnXfemQMOOKCvRwOgB3o9nt73vvfl2Wefzec+97k0NDTkiCOOyO233955w4cnnngiFRUvnwD70z/90yxcuDAXX3xxPvOZz+TAAw/Mj3/84xxyyCGd23z605/Oxo0bs2DBgqxfvz5vectbcvvtt2fIkCG9fTgA7C5PLd3hmaeHqwen+7X9S9OjTbnuK9elrbkttbW1ueOOO3LwwQf39VgA9FCp3N39U1/HmpqaUltbm8bGxtTU1PT1OAC8UrmcXDYxadnQ9eokx7xhYjZV7Nqrz1uebcmj5z+aJKk7ti4Tz5jYo/UvWfNva/LsT55Nkuz94b2z5v9bk45NHRk+fHjuuOOOHHvssbt0bgBeu560wR5xtz0ABpiNz3UbTkmytqJil4TTxkc3pmVNS+fv7RtevjlFyzMtabipIW1NL5/fGjJhyDbr1/1iXefzJMnwN229Y96WJ7Z0btewsCHllq3/n3LOSXPy+OOPp7a2ttuZ9tprr+y11147c1gA9BJnnpx5Auh/1v3f5MrDul29qqoyJ0zaZ6df5qlvPZX1/7V+p59nV7rkkkvy+c9/vq/HANhj9KQNevVuewDwmrS37nB1a/r/TSIAeP1x2R4A/U/loB2uHpRdc9HExDMmdvu5pd5wx9w7MmHEhN32egDsWs48AdD/DBq2w9VDOgbmFefVldV9PQIAO0E8AdD/DB+bDB7R7erRHR0Z1tGxGwfaecMHDc/oIaP7egwAdoJ4AqD/KZWSvY/ofnWSqc0tW29pPkBMHTM1pQHwhb4AdE88AdA/TZyWVHT/0dxDm1sGzAd3q0pVOXTsoX09BgA7STwB0D/tfUTS0dbt6qktLWkbIGdy2sptmTpmal+PAcBOEk8A9E/7HbfDM08zNm9J1QC5bK+qVJWj64/u6zEA2EniCYD+afiY5OBTk4rKLleP6ujInI2bUtnPA6qyVJkT9jsho4aM6utRANhJ4gmA/uvoM5KO9m5Xn9b0Qtr7+aV77eX2nDb5tL4eA4BdQDwB0H9NPCrZ6+Ck1PWfq8ObW3Jgc0tK/fTsUymlvGnUm3LY2MP6ehQAdgHxBED/VSolx1+clLv+TqdSkrPXN6bcT88+lVPOWUec5RblAK8T4gmA/m3ySckh701KXX/26e2bNufEDRv73WefKkoVOWm/k/L2fd/e16MAsIuIJwD6v5O+nAypTXd/tj7z/LqM7OjoN5fvlVJKzeCaXHj0hX09CgC7kHgCoP8bNjp591eTdH35Xl1HRz7/3Np+c/leOeV84U+/kLohdX09CgC7kHgCYGCY8s7k+M92u3rWps35xNr1u3Gg7n3yzZ/M8fse39djALCLiScABo63npe85dxuV3+0sSkfXd+4GwfqYoZDP5r5h8zv0xkA6B3iCYCBo1RKZn1u6yPJK/+MlZJ8Yl1jPvniGajd9RmoUrZeLvjJN38yn3zzJ91dD+B1SjwBMLCUSlvPQJ22MBlat91d+ErZegbqyjXPprajIxW9HFAVpYrUVtfmyrdfmY8e+tFefS0A+pZ4AmBgmnxycvbS5OA/3/r7K75I9/hNm3PzU09nzsZNW1fv4oh66WzTCW88Ibf8+S0+4wSwByiVy/3kvq67UVNTU2pra9PY2Jiampq+HgeAnbXiZ8ldlybPLEsqqpKOtm1W3zVsaL5WV5vHqgenslxO+05cVldZqkx7uT0H1h2Ys4882/c4AQxwPWkD8SSeAF4fyuXkqfuTJd9KHvnh1oD6o5AqJ3moenC+N3Jkbh8xLG2lUqrK5bQlWy8F3IGqUlXaym2pqqjKiW88MadNPi2Hjj3UZ5sAXgfE06sQTwCvcxufT/5wT7L6gWTVr7f+27Khc/W6iorcN6Q6y4aNyCMj6rKsoj2bym3bPc2wqmE5eOzBOXTsoZk6ZmqOrj86o4aM2p1HAkAvE0+vQjwB7GHK5WTjc0nb5qStJakanFQNTYaPTUqllMvlrN2yNs3tzWlpb8ngysGprqzO6CGjnV0CeJ3rSRtU7aaZAKDvlErJiHE7WF3KmKFjduNAAAxE7rYHAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAqr6egAAXn/K5XKe39iSzS3taW3vyKDKigwdXJkxwwenVCr19Xj9WrlcTvvatenYvCXl1paUBg1OxdAhqRw92nsH0MfEEwA7be3Glvzy8efy8KrGPPjk+jz8VGM2trRvt93wwZU5dGJtDp9Ul0P3qc2fHjA2o4cP7oOJ+4+2deuy6Ve/ypZly7L5oYezZdkj6di4abvtKoYPy5CDD8nQww7NkIMPzrBjjknVqFF9MDHAnqtULpfLfT3E7tbU1JTa2to0Njampqamr8cBGJDK5XJ+/cT6/OviP+SWh55OW0c5VRWltHW8+p+Vl7arqijlXYdPyF/MfEOOnFS3x5xZKZfL2fyb32Tdwu+m6bbbkra2pKpq67+v5qXtqqpSc9JJGf3+0zPk8MP3mPcOYFfrSRuIJ/EE0GP/vqwhX/n3R7NyzQuprCilvUAwJUn7xvVpfvrRtDz9aJqffiwtDY+lY3NTkmTCUSfk+uuvz59NHV94jttuuy3XXnttlixZkmeffTbjxo3LUUcdlQULFuTEE098TcfW215YtCjPXnFlmh97LKmsTNq3P0PXlefb2vLwli15eMvmPLxlSx7ZsiXrX9z31ImTcv3/e31GHn/8Dp9j+fLlWbRoUZYsWZKHH344zzzzTJ577rlUVlZm/PjxOeqoo/L+978/7373u8UYsMcQT69CPAG8Nus2tuSSny7LTx9cnVIp6elfkP/7pXd2u274IbMy9uRz8u7DJ+QL7z44o3ZwOV9HR0cWLFiQf/mXf+l2m49+9KP55je/mYqK/nFvpLZ167Lmi5em6Wc/y2t586auXNHtuvfU1Obv9947NSefnPEXX9Tt5Xwf+MAHcuONN77qax133HH54Q9/mDFjxvRoRoCBqCdt0D/+ogDQ792xrCHHf+U/8rOHnk7S83B6pcqacRnyxiO3W/6zh1bn+K/8R+5Y1tDtvhdddFFnOB155JH57ne/m/vuuy/f/e53c+SRW5/zuuuuy8UXX7xzQ+4iL/z85/ndiSel6fbbty7YyTdv76qqHDts+B8t2fp8Tbfdlt+deFJe+PnPu9yvqqoqM2bMyLnnnptvf/vbue2223L//ffnzjvvzFe/+tUccsghSZK7774773rXu9LR0bFTcwK83jjz5MwTwA6Vy+Vc/R+P58t3rHxNZ5v+2Ppf3JjBex+Y6r0PTOXwUWlrXJNV18xP8vKZp+TlEzPnzzkof/22A7a5hOzRRx/NwQcfnLa2tkyfPj333HNPhg4d2rl+06ZNOe6443L//fenqqoqy5cvz5/8yZ+89qF3QrlczvPfvDbPXnHFazrb9Me++tyzOXTI0BwyZEjGVlVlVWtL/ux3v0uSvKemJn+/94StG774OuPOOSdjFpyxzXvX1taWqqru7xXV3t6e//k//2d+9KMfJUl+8pOf5N3vfvdrnhlgIHDmCYBdolwu5x/vWJkv37Hyxd937vnq3jovw/7k6FQO3/Fd4l56nS+/+Np//P/5rrjiirS9eGOFr371q9uEU5IMGzYsX/3qV5NsjYXLL79854Z+jcrlcp7958u3htPWBTv1fGePHZe3jRiRsTuInz9+nWcvvzzPXn7FNu/djsIpSSorK3P++ed3/v6LX/zitQ8M8DokngDo1tX/8Xi+8R+P9/kMV784Q7lczk9+8pMkyeTJk3PMMcd0uc8xxxyTgw46KMnWsyd9cZHF89+8Ns9/61u7/XW3meHaa/P8tT2bYeTIkZ0/b9myZVePBDCgiScAunTHsobOM0597ct3rMy/L2vI73//+6xevTrJ1psa7MhL61etWpU//OEPvT3iNl74+c9fPuPUx569/PK8sGhR4e2/973vdf48efLk3hgJYMASTwBsZ93Gllzww4fSX25WXSolf/PDh3Lfrx/sXPZq/2H/x+uXL1/ea7O9Utu6dXn64s9uHbo/KJXy9EUXp23dum43ee6557J48eLMnz8/l156aZJk7NixmTdv3u6aEmBAeJULpwHYE13y02Vp2tyW/nJHoXI5adrcmmtvu79z2cSJE3e4z6RJkzp/fvLJJ3tttlda88VL0/7CCzv/AbFdpVxOe1NT1lx6afb5p3/qXPy2t70td999d5e7jB07Nv/2b/+Wurq63TUlwIDgzBMA2/j3ZQ356YOr095f/uP/Re3l5IHfPd35+4gRI3a4/fDhL9/Ke8OGDb021x97YdGird/jVPCLb3ebjo403fKzvHDXXa+66Sc+8YksX748b3nLW3bDYAADizNPAHQql8v5yr8/utO3JO817S2dPw4e3P2X6CZJdXV158+bN2/utZFeUi6X8+wVV+70Lcl7TamUZ6+4MiPe/vaUSqV8+9vfzsaNG1Mul7N+/frcf//9+cY3vpGvfe1r+d3vfpfrrrsu48eP7+upAfoV8QRAp18/sT4r17zQ12N0r/LlYGppadnBhklzc3Pnz6+8nXlv2Pyb36T5scd6/XVes3I5zY8+mi0PPpihRxyR/fbbb5vVb33rW/Pxj388/+N//I/ccsstOeqoo/LLX/7yVS+PBNiTuGwPgE7/uvgPqazoJzc66ELF4Jcj6NUuxdu4cWPnz692id+usG7hd5PKyl5/nZ1SWZm1C7/b7eohQ4bk29/+doYNG5Ynn3wyn/70p3fjcAD9n3gCIEmydmNLbnno6bR39MNLzl5UOXJs58+P/u4PO9z2j28S8cc3j+gNbevWpem22/rfZ51eqb09TbfeusM7740dOzbHHntskq3fkdXa2rq7pgPo98QTAEmSXz7+XNr6cTglyaCx+3b+/IslD+1w2xUrVnT+PGXKlF6bKUk2/epXSVtbr77GLtPWlk333rvDTcaNG5ck2bRpU5577rndMRXAgCCeAEiSPLyqMVX9+JK9JKmqHZ/KEaOTJEvv/a8dbnvPPfckSfbZZ5+88Y1v7NW5tixbllQNkI8RV1VtnXcHVq1a1fnz7rjkEWCgEE8AJEkefGJ9vz/zVCqVMvTAY5Ikzz75u/zqV7/qcrtf/epXnWeeTjnllJR6+QtrNz/00IA687T5oe7P2j311FNZvHhxkuQNb3hDRo4cubsmA+j3xBMAKZfLeXhVY1+PUUjN9FOS0tY/X2efffZ2tyHfvHlzzj777CRJVVVVPvWpT/XqPOVy+VXP5PQHf2hpya9evInGlkeWpdzF7dQbGxvz/ve/v/NOhh/84Ad364wA/d0AucYAgN70/MaWbGzp/ZsdbHlqWdrWvfxFt+2bmjp/blv3dDY8/PNtth9x6OztnmPQ6H1SM+PUNP3qB7n//vtz7LHH5m/+5m9ywAEH5PHHH8+XvvSlPPDAA0mS888/PwceeGAvHc2Lx7B2bTo2burV10iSpZs25YnWl2/Pvu6Pbk7xRGtr/q1x/Tbb/3lt3Ta/P9PWmr986skcVF2dWSNG5M8WLsw+b3pTqqqq0tDQkP/6r//Kv/zLv6ShoSFJcsghh+SCCy7oxSMCGHjEEwDZvBvCKUk2PPjv2fjIoi7XNa/6bZpX/XabZV3FU5LU/T8fTPvGxmx8+M488MADOe2007bbZv78+fniF7+480O/io7NW3r9NZLkh43r8+Ompi7X/Xrz5vz6FWfgXhlPL1nZ3JyVzc25+gMf6Pa1Tj755M5blgPwMvEEQFrbO/p6hB4plSoy9qRP5soL/yo3f/9fs2TJkjz33HMZO3ZsjjrqqPzVX/1VTjzxxN0yS7l1x1/W218cOXRYvjVxUhZv3JhlzVvy/F575Zm1a7Np06bU1NRkv/32yzHHHJPTTz+981blAGyrVO7qoufXuaamptTW1qaxsTE1NTV9PQ5An3ty7aa89R//T1+P0WP/+Tdvz8RRfXt2pOWpVXl8dtdnyPqzP1n08wzaZ5++HgOgz/WkDdwwAoAMHVzZ1yO8JkMG9f3cFUOH9PUIr0lpyMCcG6AviScAMmb44AwfYAE1oroqY4YP7usxUjl6dCqGD6zPBlUMH57K0aP7egyAAUc8AZBSqZRD96nt6zF65NB9anv9+5uKKJVKGXLwwX09Ro8MOeTgfvHeAQw04gmAJMnh+9alqmJg/Ad1VUUph0/q+m5yfWHoYYclVQPkHkxVVVvnBaDHxBMASbaeyWnrGBj3EGrrKPerM2VDDj44aWvr6zGKaWsbcGfKAPoL8QRAkuRPDxg7oM48zTxgTF+P0WnYMccMqDNPw2bM6OspAAYk8QRAkmT08MF552F7p7KfB1RlRSnvOnxCRveDm0W8pGrUqNSceGJS2c9vulFZmZqTTkrVqFF9PQnAgCSeAOj0FzPfmPZ+fulee0c5fzHzDX09xnZGvf/0pL29r8fYsfb2jH7/6X09BcCAJZ4A6PTmfesyuX5k+uuN2EqlZHL9yBzZj24W8ZKhRxyR6je9Kf35zas+6KAMOfzwvp4EYMASTwB0KpVKOe8dB6XcT08+lcvJee84qF/eZrtUKmXcpz6Z/vzmjfvkJ/rlewcwUIgnALbxZ1PH592HT0hlP/uP7MpScsoRE/JnU8f39SjdGnn88ak5+eT+99mniorUvPPkjDz++L6eBGBAE08AbOcL7z44NUOr+s0VaKVSUjN0UD7/rv5/i+3xF1+UypEj+8/le6VSKmtqMv6ii/p6EoABTzwBsJ1RwwfnH+Ye1m+uQCuXky/NPSyj+tEd9rpTNWpU9v7i3/Wfy/fK5ex96RfdYQ9gFxBPAHRpzsH1OX/OQX09RpLk/DkH5R0H1/f1GIWNnD074z71qb4eI0ky7pxzMnLWrL4eA+B1odfiae3atZk3b15qampSV1eX+fPnZ8OGDTvcZ8uWLTnzzDMzZsyYjBgxInPnzs2aNWu22eYTn/hEpk2blurq6hxxxBG9NT4ASf76bQfkr992wB4/w2sx5q8WZMyCBX07w4IFGbPgjD6dAeD1pNfiad68eVm2bFnuvPPO3HLLLbnnnnuy4FX+iJxzzjm5+eabc9NNN+Xuu+/O6tWrc+qpp2633V/+5V/mfe97X2+NDsCLSqVSzp9zUOcZqN31MZ6XXufTJxyUT58weUDeIa5UKmXcOZ/KuHPOeWnB7nrhJMm4c8/NXueeMyDfO4D+qlQu7/qLspcvX56pU6dmyZIlmT59epLk9ttvz0knnZSnnnoqEyZM2G6fxsbGjBs3LgsXLsx73/veJMmKFSsyZcqULF68OMccc8w223/+85/Pj3/84/zmN7/p8XxNTU2pra1NY2NjampqXsMRAux5/n1ZQ/7mhw+laXNr2nvx4zyVL94c4ktzDxtQl+rtyAuLFuXpiy5Oe1NT0tHRey9UUZHKmprsfekXXaoHUFBP2qBXzjwtXrw4dXV1neGUJLNnz05FRUXuvffeLvdZunRpWltbM3v27M5lkydPzr777pvFixfv1DzNzc1pamra5gFAz7zj4Prcdd7bcvJhW/8H2K4+ofHS873z8An5P//rba+bcEqSkbNmZf/bbknR6VgAACAASURBVE3NiSduXdBLb17NSSfmgNtvE04AvaRX4qmhoSF77bXXNsuqqqoyevToNDQ0dLvP4MGDU1e37bfGjx8/vtt9irrssstSW1vb+Zg0adJOPR/AnmrU8MG56vQjc+1fTMtB40cmSSordi4EXtr/oPEj860PTs+Vpx2ZumH9/656PVU1alT2+co/ZeLXv5bqAw/cunBnvw/qxf2rDzwwE6/+evb5p39K5Sv+jgKw61T1ZOMLLrggX/rSl3a4zfLly3dqoN5w4YUX5txzz+38vampSUAB7IR3HFyfP5s6Pg88uT7/uvj/5uYHV6eto5yqilLaOl79mr6XtquqKOXdh0/IX8x8Q46YVLdHfD5n5KxZGXH88dny4INZu/C7abr11qStLamq2vrvq3lpu6qq1Jx8Uka///0Zcthhe8R7B9DXehRP5513Xj784Q/vcJv9998/9fX1eeaZZ7ZZ3tbWlrVr16a+vuvLMOrr69PS0pL169dvc/ZpzZo13e5TVHV1daqrq3fqOQDYVqlUypv3HZU37zsqn33n1Cx+/Pk8tGp9HnqyMQ+tWp+Nze3b7TO8ujKH7VOXwyfV5dB9ajPzgDEZPQC+u2lXK5VKGXrEEdnniCMy/sILsunee7PlkUey+eGHs+WRZenYuHG7fSqGD8+QQw7O0MMOy5CDD86wGTN8dxPAbtajeBo3blzGjRv3qtvNnDkz69evz9KlSzNt2rQkyV133ZWOjo7MmDGjy32mTZuWQYMGZdGiRZk7d26SZOXKlXniiScyc+bMnowJwG42evjgnHzY3jn5sL2TJOVyOc9vbMmW1va0tHVkcFVFhgyqzJjhg50heYWqUaNSc8IJqTnhhCRb37v2tWtT3rIlHS0tqRg8OKUhQ1I5erT3DqCP9SieipoyZUpOOOGEnHHGGbnmmmvS2tqas846K6eddlrnnfZWrVqVWbNm5YYbbsjRRx+d2trazJ8/P+eee25Gjx6dmpqanH322Zk5c+Y2d9r77//+72zYsCENDQ3ZvHlz5932pk6dmsGD97z/ewnQH5VKpYwd4Yz/a1EqlVI1ZkxfjwFAF3olnpLkxhtvzFlnnZVZs2aloqIic+fOzVVXXdW5vrW1NStXrsymTZs6l11++eWd2zY3N2fOnDm5+uqrt3nej370o7n77rs7fz/yyCOTJL///e/zxje+sbcOBwAA2MP1yvc89Xe+5wkAAEj6wfc8AQAAvN6IJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAF9Go8rV27NvPmzUtNTU3q6uoyf/78bNiwYYf7bNmyJWeeeWbGjBmTESNGZO7cuVmzZk3n+gcffDCnn356Jk2alKFDh2bKlCm58sore/MwAAAAejee5s2bl2XLluXOO+/MLbfcknvuuScLFizY4T7nnHNObr755tx00025++67s3r16px66qmd65cuXZq99tor3/nOd7Js2bJcdNFFufDCC/O1r32tNw8FAADYw5XK5XK5N554+fLlmTp1apYsWZLp06cnSW6//facdNJJeeqppzJhwoTt9mlsbMy4ceOycOHCvPe9702SrFixIlOmTMnixYtzzDHHdPlaZ555ZpYvX5677rqr0GxNTU2pra1NY2NjampqXuMRAgAAA11P2qDXzjwtXrw4dXV1neGUJLNnz05FRUXuvffeLvdZunRpWltbM3v27M5lkydPzr777pvFixd3+1qNjY0ZPXp0t+ubm5vT1NS0zQMAAKAnei2eGhoastdee22zrKqqKqNHj05DQ0O3+wwePDh1dXXbLB8/fny3+/zyl7/M97///R1eDnjZZZeltra28zFp0qQeHg0AALCn63E8XXDBBSmVSjt8rFixojdm3c4jjzySU045JZdcckne8Y53dLvdhRdemMbGxs7Hk08+uVvmAwAAXj+qerrDeeedlw9/+MM73Gb//fdPfX19nnnmmW2Wt7W1Ze3atamvr+9yv/r6+rS0tGT9+vXbnH1as2bNdvv89re/zaxZs7JgwYJcfPHFO5ynuro61dXVO9wGAABgR3ocT+PGjcu4ceNedbuZM2dm/fr1Wbp0aaZNm5Ykueuuu9LR0ZEZM2Z0uc+0adMyaNCgLFq0KHPnzk2SrFy5Mk888URmzpzZud2yZcty/PHH50Mf+lAuvfTSnh4CAABAj/Xa3faS5MQTT8yaNWtyzTXXpLW1NR/5yEcyffr0LFy4MEmyatWqzJo1KzfccEOOPvroJMnHP/7x3Hrrrbn++utTU1OTs88+O8nWzzYlWy/VO/744zNnzpx8+ctf7nytysrKQlGXuNseAACwVU/aoMdnnnrixhtvzFlnnZVZs2aloqIic+fOzVVXXdW5vrW1NStXrsymTZs6l11++eWd2zY3N2fOnDm5+uqrO9f/4Ac/yLPPPpvvfOc7+c53vtO5/A1veEP+8Ic/9ObhAAAAe7BePfPUXznzBAAAJP3ke54AAABeT8QTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgAJ6NZ7Wrl2befPmpaamJnV1dZk/f342bNiww322bNmSM888M2PGjMmIESMyd+7crFmzpnP9888/nxNOOCETJkxIdXV1Jk2alLPOOitNTU29eSgAAMAerlfjad68eVm2bFnuvPPO3HLLLbnnnnuyYMGCHe5zzjnn5Oabb85NN92Uu+++O6tXr86pp5768sAVFTnllFPy05/+NI8++miuv/76/PznP8/HPvax3jwUAABgD1cql8vl3nji5cuXZ+rUqVmyZEmmT5+eJLn99ttz0kkn5amnnsqECRO226exsTHjxo3LwoUL8973vjdJsmLFikyZMiWLFy/OMccc0+VrXXXVVfnyl7+cJ598stBsTU1Nqa2tTWNjY2pqal7jEQIAAANdT9qg1848LV68OHV1dZ3hlCSzZ89ORUVF7r333i73Wbp0aVpbWzN79uzOZZMnT86+++6bxYsXd7nP6tWr86Mf/SjHHXdct7M0NzenqalpmwcAAEBP9Fo8NTQ0ZK+99tpmWVVVVUaPHp2GhoZu9xk8eHDq6uq2WT5+/Pjt9jn99NMzbNiw7LPPPqmpqcl1113X7SyXXXZZamtrOx+TJk16jUcFAADsqXocTxdccEFKpdIOHytWrOiNWbdx+eWX59e//nV+8pOf5PHHH8+5557b7bYXXnhhGhsbOx9FL+8DAAB4SVVPdzjvvPPy4Q9/eIfb7L///qmvr88zzzyzzfK2trasXbs29fX1Xe5XX1+flpaWrF+/fpuzT2vWrNlun/r6+tTX12fy5MkZPXp03vrWt+azn/1s9t577+2et7q6OtXV1QWPEAAAYHs9jqdx48Zl3Lhxr7rdzJkzs379+ixdujTTpk1Lktx1113p6OjIjBkzutxn2rRpGTRoUBYtWpS5c+cmSVauXJknnngiM2fO7Pa1Ojo6kmz9bBMAAEBv6LW77SXJiSeemDVr1uSaa65Ja2trPvKRj2T69OlZuHBhkmTVqlWZNWtWbrjhhhx99NFJko9//OO59dZbc/3116empiZnn312kuSXv/xlkuTWW2/NmjVrctRRR2XEiBFZtmxZzj///IwePTr/+Z//WWgud9sDAACSnrVBj8889cSNN96Ys846K7NmzUpFRUXmzp2bq666qnN9a2trVq5cmU2bNnUuu/zyyzu3bW5uzpw5c3L11Vd3rh86dGi+9a1v5Zxzzklzc3MmTZqUU089NRdccEFvHgoAALCH69UzT/2VM08AAEDST77nCQAA4PVEPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAooFfjae3atZk3b15qampSV1eX+fPnZ8OGDTvcZ8uWLTnzzDMzZsyYjBgxInPnzs2aNWu63Pb555/PxIkTUyqVsn79+t44BAAAgCS9HE/z5s3LsmXLcuedd+aWW27JPffckwULFuxwn3POOSc333xzbrrpptx9991ZvXp1Tj311C63nT9/fg477LDeGB0AAGAbpXK5XO6NJ16+fHmmTp2aJUuWZPr06UmS22+/PSeddFKeeuqpTJgwYbt9GhsbM27cuCxcuDDvfe97kyQrVqzIlClTsnjx4hxzzDGd237jG9/I97///Xzuc5/LrFmzsm7dutTV1RWarampKbW1tWlsbExNTc0uOFoAAGAg6kkb9NqZp8WLF6eurq4znJJk9uzZqaioyL333tvlPkuXLk1ra2tmz57duWzy5MnZd999s3jx4s5lv/3tb/O3f/u3ueGGG1JR8eqH0NzcnKampm0eAAAAPdFr8dTQ0JC99tprm2VVVVUZPXp0Ghoaut1n8ODB251BGj9+fOc+zc3NOf300/PlL385++67b6FZLrvsstTW1nY+Jk2a9BqOCAAA2JP1OJ4uuOCClEqlHT5WrFjRG7MmSS688MJMmTIlH/jAB3q0T2NjY+fjySef7LX5AACA16eqnu5w3nnn5cMf/vAOt9l///1TX1+fZ555ZpvlbW1tWbt2berr67vcr76+Pi0tLVm/fv02Z5/WrFnTuc9dd92Vhx9+OD/4wQ+SJC99ZGvs2LG56KKL8oUvfGG7562urk51dXXhYwQAAHilHsfTuHHjMm7cuFfdbubMmVm/fn2WLl2aadOmJdkaPh0dHZkxY0aX+0ybNi2DBg3KokWLMnfu3CTJypUr88QTT2TmzJlJkh/+8IfZvHlz5z5LlizJX/7lX+YXv/hFDjjggJ4eDgAAQCE9jqeipkyZkhNOOCFnnHFGrrnmmrS2tuass87Kaaed1nmnvVWrVmXWrFm54YYbcvTRR6e2tjbz58/Pueeem9GjR6empiZnn312Zs6c2XmnvVcG0nPPPdf5ekXvtgcAANBTvRZPSXLjjTfmrLPOyqxZs1JRUZG5c+fmqquu6lzf2tqalStXZtOmTZ3LLr/88s5tm5ubM2fOnFx99dW9OSYAAMCr6rXveerPfM8TAACQ9JPveQIAAHg9EU8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAAKEA8AQAAFCCeAAAAChBPAAAABYgnAACAAsQTAABAAeIJAACgAPEEAABQgHgCAAAoQDwBAAAUIJ4AAAAKEE8AAAAFiCcAAIACxBMAAEAB4gkAAKAA8QQAAFCAeAIAAChAPAEAABQgngAAAAoQTwAAAAWIJwAAgALEEwAAQAHiCQAAoADxBAAAUIB4AgAA/v/27jy8qurQ+/hvn5xMEE5CIAMBAkQZAnWEElJ9RSUWilQQLErRFi8XRFHfi9QK11Ztb6+0V6tW6/D6FuWhFQd4ndCKIuAABgQcikwyyEwSQshEpjOs9w/kwCEDO8POxPfzPOeRs/dae6+VRXT/XHuvDRsITwAAAABgA+EJAAAAAGxwNDwVFBRo8uTJ8ng8iouL09SpU1VaWlpnnYqKCs2cOVNdunRRTEyMJkyYoNzc3JAylmVV+7zyyitOdgUAAADAOc7R8DR58mRt3rxZy5cv1zvvvKNPPvlE06dPr7POrFmztHTpUi1evFgff/yxDh06pPHjx1cr9+KLL+rw4cPBz7hx45zqBgAAAADIMsYYJw68detWDRw4UOvXr9eQIUMkScuWLdPo0aN14MABpaSkVKtTVFSkhIQELVq0SDfccIMkadu2bUpPT1d2draGDRt2otGWpTfeeKPBgam4uFixsbEqKiqSx+NpYA8BAAAAtHX1yQaOzTxlZ2crLi4uGJwkKSsrSy6XS+vWrauxzsaNG+X1epWVlRXcNmDAAKWmpio7Ozuk7MyZM9W1a1cNHTpUL7zwgurKgJWVlSouLg75AAAAAEB9uJ06cE5OjhITE0NP5nYrPj5eOTk5tdaJiIhQXFxcyPakpKSQOr///e919dVXq0OHDvrggw90xx13qLS0VHfffXeNx503b55+97vfNbJHAAAAAM5l9Z55mjNnTo0LNpz+2bZtmxNtDfrtb3+ryy67TJdcconuu+8+/frXv9YjjzxSa/m5c+eqqKgo+Nm/f7+j7QMAAADQ/tR75mn27NmaMmVKnWXS0tKUnJysvLy8kO0+n08FBQVKTk6usV5ycrKqqqpUWFgYMvuUm5tbax1JysjI0H/913+psrJSkZGR1fZHRkbWuB0AAAAA7Kp3eEpISFBCQsJZy2VmZqqwsFAbN27U4MGDJUkrV65UIBBQRkZGjXUGDx6s8PBwrVixQhMmTJAkbd++Xfv27VNmZmat5/rqq6/UuXNnAhIAAAAAxzj2zFN6erpGjRqladOm6bnnnpPX69Wdd96pm266KbjS3sGDBzVixAgtXLhQQ4cOVWxsrKZOnap77rlH8fHx8ng8uuuuu5SZmRlcaW/p0qXKzc3VsGHDFBUVpeXLl+vhhx/Wr371K6e6AgAAAADOhSdJeumll3TnnXdqxIgRcrlcmjBhgp588sngfq/Xq+3bt6usrCy47fHHHw+Wrays1MiRI/XMM88E94eHh+vpp5/WrFmzZIzR+eefr8cee0zTpk1zsisAAAAAznGOveepNeM9TwAAAACkVvKeJwAAAABoTwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbHAtPBQUFmjx5sjwej+Li4jR16lSVlpbWWaeiokIzZ85Uly5dFBMTowkTJig3N7dauQULFujCCy9UVFSUEhMTNXPmTKe6AQAAAACSHAxPkydP1ubNm7V8+XK98847+uSTTzR9+vQ668yaNUtLly7V4sWL9fHHH+vQoUMaP358SJnHHntM999/v+bMmaPNmzfrww8/1MiRI53qBgAAAABIkixjjGnqg27dulUDBw7U+vXrNWTIEEnSsmXLNHr0aB04cEApKSnV6hQVFSkhIUGLFi3SDTfcIEnatm2b0tPTlZ2drWHDhunYsWPq3r27li5dqhEjRjS4fcXFxYqNjVVRUZE8Hk+DjwMAAACgbatPNnBk5ik7O1txcXHB4CRJWVlZcrlcWrduXY11Nm7cKK/Xq6ysrOC2AQMGKDU1VdnZ2ZKk5cuXKxAI6ODBg0pPT1ePHj00ceJE7d+/v872VFZWqri4OOQDAAAAAPXhSHjKyclRYmJiyDa32634+Hjl5OTUWiciIkJxcXEh25OSkoJ1du/erUAgoIcfflhPPPGElixZooKCAl1zzTWqqqqqtT3z5s1TbGxs8NOzZ89G9hAAAADAuaZe4WnOnDmyLKvOz7Zt25xqqwKBgLxer5588kmNHDlSw4YN08svv6wdO3Zo1apVtdabO3euioqKgp+zzVQBAAAAwJnc9Sk8e/ZsTZkypc4yaWlpSk5OVl5eXsh2n8+ngoICJScn11gvOTlZVVVVKiwsDJl9ys3NDdbp1q2bJGngwIHB/QkJCeratav27dtXa5siIyMVGRlZZ7sBAAAAoC71Ck8JCQlKSEg4a7nMzEwVFhZq48aNGjx4sCRp5cqVCgQCysjIqLHO4MGDFR4erhUrVmjChAmSpO3bt2vfvn3KzMyUJF122WXB7T169JB0Ykn0/Px89erVqz5dAQAAAIB6cWS1PUn6yU9+otzcXD333HPyer269dZbNWTIEC1atEiSdPDgQY0YMUILFy7U0KFDJUm33367/vnPf2rBggXyeDy66667JEmfffZZ8Ljjxo3Tzp079fzzz8vj8Wju3LnavXu3vvrqK4WHh9tqG6vtZaeiJQAAIABJREFUAQAAAJBawWp7kvTSSy9pwIABGjFihEaPHq3LL79czz//fHC/1+vV9u3bVVZWFtz2+OOPa8yYMZowYYKuuOIKJScn6/XXXw857sKFC5WRkaFrr71Ww4cPV3h4uJYtW2Y7OAEAAABAQzg289SaMfMEAAAAQGolM08AAAAA0J4QngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwwd3SDcAJFeXl+uLDN1VacES+quNyR3RUTHyCLs0ap6jo6JZuHgAAAFBvFeXlWr1yiQqPHlZ5WamiO8Qorks3XX71DW3yGtcyxpiWbkRzKy4uVmxsrIqKiuTxeFqkDZ8ve117N78rV+wxhXfOU1SnIwpz+6qV8/vcqihJkPdYogJFndVr0LUaOmp8C7QYAAAAqNuq91/V5mUvqlPuEXXNK1e3PKPoqurlyiOkw4mW8hOjVZKUoEGjbtVVI29s/garftmA8NSM4amivFzvPnO/XEmbFZO8Sy6XUSBgybKMLKv2esZIxljB8qU55yuQN0jX3v6HNpnYAQAA0H5UlJfrxT/foS7rNyh9h0/ugORzSWEBqY5LXBlJfpeC5bf2dSt/6A/1b/c83azXuISns2iJ8LT40emK7veFomOOKRA4EYTO5vjxgMZet6fe51q1apWuvPLK+jcSAAAAqIe/3vtTDczeqW75kt+Swmwmi1/u2aONlRUK1LL/4v7d9OW2Q7XW37Nnj/r06VOvtqampmrv3r3VttcnG/DMk8M2fPCG9h95VvGX7tLJmGonOEnSf/zvgw06Z9++fRtUDwAAALDj0w+XKOfJhzTiW78C308v2Q1OA7dvO2uZr7YfVpjL0pJFz+v6m6ZV279169b6NFeS1L1793rXOROr7Tlo8aPTlW/uV6fk3ZJU5615NSku9tf7nLGxsU3yFwMAAACoyVO/GqPIe3+r9B0nrlVtzgvUW8BIN0yarqd+Nabavuhabuuz6rjg/tGPftToNhGeHFBRXq4lz96o+EtXyO2ulGU17G/UeedFVtt24YWntnXoYCk6OvQvSGlpsUpLShp0PgAAAKA2FeXlmj8lQ1nv7FLHcvszTWc6efXay3LpvxKTtKX/AN0ZH19j2YCkpc99rL9NGaaK8vJT2wPVb/h77bXX9MADDwS/z549O2T/mjVrGtbg0xCemlhFebne/cfN6tx/g6T6zzad7uF53UK+R0db+uWUzsHvAwdGKSMjNHX7/UbP/mlsyF8uAAAAoDEqysv16r9frh+tLZbUuBCxuf8Abek/QO/166cJnTtX229JGhx16hr34+PHddnaIr3y75cHr3ELCgpC6vziF7/Qz372s5BtiYmJId/Xr1/fiFafQHhqYu8smKK48746azkjqUgeHVGCDqubjihBRfKorgB/zY9j9I+/Fwa/x8eH1VhuX/G/9M6CW+vZcgAAAKBmL91+pYZuLGu28z2QlBT8s/f7K+SMjWX6x+1XSaoehP7zP/+z2jE++OCDkO9+v1+NXSuPBSOa0OJHpyv+0g017itRJ23WBfpOadqlvvpO56nCqn6vZpQpVx/t0nnaoT7aLWl3cJ/LJX35ZUXw+/HjAe3aVVntGEfyfOo8br0WPzpdP/vV843vGAAAAM5ZT/1qjLK+n3FqLkd91d9/KkmXrS3SX+/9qXbviQrZHhl54tGW02/nW716dbX6O3fubNTiaoSnJrLhgzfU6YLVMubUrXpG0k7103KN0lpdJr/lVpjxya+wWu/nq7CitdUM0rcaIL/llvSP4L433wh9lmnNmprT/+Ecn4yROl2wWhs+eENDfnx9U3QRAAAA55hPP1yijBW7FFDz3rL2eH5+8M9Rp103ByQN/XCn/uYPvZbOysrS4cOHVVZ26vq4srL6JMPKlSsbFZ64ba+J7D/yrNzuqmAm2qAfaq4e00PWPGV/H5wknfjn2R6Esiz5vH4dX/KPusvV4kieT5Ylud1V2p/3XIOOAQAAAOQ8+ZA6VDgfGo4HTt1OZyRtqjx1t1VS2KlHVVySOlRIZfv3hNTftWtXSHCqzYwZM9S7d+8Gt5Pw1AQWPzpdnm67ZFlGJYrRX/UfetyaowPqKUkKWPWb4PPt26Oj025S6TN/blB7yitOTFdalpEnZacWP3Jbg44DAACAc9df7/2pfvCtv8Gr6tXHi4XHat13cYcOId/DjNSlshGrsjUCt+01UkV5uaL7fSFjpI3WUP1f3a4ydZQkGav+2TRwrEDHfn27Ank5DW5Tacmpez2NkaL7f6GK8nJF1bIePgAAAHC6ivJyDczeqYDl3HucGsO0THZi5qmx3n3mfkXFHNPb1ng9bt2n44pRwKp5FTw7Shc+HwxO0WMnhu60LEX/dMJZj1FVdepvuGVJ0TEFevfZ3zS4TQAAADi3vPjnO9Qtv/mC05DI6u83rUtkY94H1AiEp0aykjbrFTNZr1mTJTVstukk4/er4sN3JUmupG6KvObakP0dJvxcUSNGn/U4lZWhLw0LBCy5Ejc3uF0AAAA4t3RZv0H+ZswnUa7Qa+iBERF1lu9wRvkf/OAHss4IVC5X00cdwlMjfL7sda3qdpHecY1vkuP5D+6TOV4qSYocPEwV770VWiAiSoUP3HPW43i9Unn5qQDlchnFJO/U58teb5J2AgAAoP1a9f6rSt/ha5ZnnSTpnaJCrf7+5bcn/aVHjzrrWKe1rUOHKG3atEl/+9vfQsq0ufBUUFCgyZMny+PxKC4uTlOnTlVpaWmddSoqKjRz5kx16dJFMTExmjBhgnJzc4P7FyxYIMuyavzk5eU52Z1q3j6wVYtdP2+y4wWKi4J/dnXuInM8dGnyskXzZU4rU+txAlJRkT9km8tltGfzP5umoQAAAGi3Ni97Ue7A2cs1hU9KSvTrnNBn/e1MeMWEnYoxfq9Xb7/9tm67LXSRNJ/Pp8mTJzdFM4McDU+TJ0/W5s2btXz5cr3zzjv65JNPNH369DrrzJo1S0uXLtXixYv18ccf69ChQxo//tTMzo033qjDhw+HfEaOHKnhw4crMTHRye6EKPD69HLvq2SZpvubZZ22oEPgeMnZlzSvh0DAkttT+yomAAAAgCR1yj0iXzPcn/ZVWZlmHDrYoLqp4eHBP1d6/Zo4caJ8Z7xYNyYmRldddVWj2ngmx1bb27p1q5YtW6b169dryJAhkqSnnnpKo0eP1qOPPqqUlJRqdYqKijR//nwtWrRIV199tSTpxRdfVHp6utauXathw4YpOjpa0aeFjCNHjmjlypWaP3++U12p0f3fHlC5K7JRzzidyZ2SKrndks8n77++UPzzryhvzcdS1akXfEVkXK6qddXflny6AQMilJwcHrLNsozcnZt3Zg4AAABtT9fccoU5PPO0u6JCP9+/L/g9XJK3HvV7nvFMVGVlpcLDw+X1njrKtGnTNGfOnEa2NJRjmTI7O1txcXHB4CSdePOvy+XSunXraqyzceNGeb1eZWVlBbcNGDBAqampys7OrrHOwoUL1aFDB91www21tqWyslLFxcUhn8ZYdqRIb+QVNmpVvZpY0dGKuGSoJMm3e4eOzZkpq2PHkDL+w2dP5xdff0n1Y1tSpOeIKs64nxQAAAA4qaK8XN2OGFu3zjXUEZ9PP927J/g90rJ0W3x8vY7hVvUgEwiEJr6PPvpI+fn5DWtkLRwLTzk5OdVuo3O73YqPj1dOTs3vMMrJyVFERITi4uJCticlJdVaZ/78+fr5z38eMht1pnnz5ik2Njb46dmzZz17c4oxRn/87rAs48wTdB1/eZsUdmJC0LthrcyxgpD9/n3f1Vnf1a27dmbNUU2tc7u9+uLDN5uqqQAAAGhnVq9cougqZ89x1a6dodeqxujZglPXvEbStbt3B7+/XcPEx6aKCp05Oeb3hz7z/+WXX4Z8rysv2FXv8DRnzpxaF2w4+dm2bVujG2ZHdna2tm7dqqlTp9ZZbu7cuSoqKgp+9u/f3+Bzbiwu07bjFTIOrS0fMfBCee65Pxig6qvLc4u03+qtnepb4/7jx5o2fQMAAKD9KDx62PFznBl6KiX5z9h2en6r6Q7C/d763OR3wpnPRDVEva/QZ8+erSlTptRZJi0tTcnJydVWv/P5fCooKFBycnKN9ZKTk1VVVaXCwsKQ2afc3Nwa6/ztb3/TxRdfrMGDB9fZnsjISEXW88VbtXnxYL7CLMnv4NKN0T8ZJ/d5/VUwo/4r+bk6eeQyPi3XT9RXO6rt91bWvdohAAAAzl3lZW3jWvGS6Gj9s6Tk7AWbWL3DU0JCghISEs5aLjMzU4WFhdq4cWMw3KxcuVKBQEAZGRk11hk8eLDCw8O1YsUKTZgwQZK0fft27du3T5mZmSFlS0tL9dprr2nevHn17UKDHa3y6a28Y44Gp5PC+6UraeWXMn6fAkfzZbxehSUkyoo4EQLLl7+r4nm/kSTFzJiljhN/EawbsNxaay7TLXpRnRT6lyo8Msb5xgMAAKBNiu7g/LXilv4DzlrmoLdK13x/6944j6fa/smd4zW586nnpC7YuUN+v1+ZA0Zpxn2TFRFVPebcddddys/P1/Hjx/XKK69IkhITE0PWaDgbx1bbS09P16hRozRt2jQ999xz8nq9uvPOO3XTTTcFV9o7ePCgRowYoYULF2ro0KGKjY3V1KlTdc899yg+Pl4ej0d33XWXMjMzNWzYsJDjv/rqq/L5fLr55pud6kI1qwtL5Guml4WdZIW5FZZYfdbN9+3W4J/DB/yg2n6/5dYW8wNlKHShjY6duzZ9IwEAANAuxHXp1tJNaJCTzztlb1um7FuX1Vk2Pz9fkyZNkiQNHz5cb7/9tu3zOLqC+0svvaQBAwZoxIgRGj16tC6//HI9//zzwf1er1fbt29XWVlZcNvjjz+uMWPGaMKECbriiiuUnJys119/vdqx58+fr/Hjx1dbXMJJ/yopl9vJpUdsMn6/Kj5dIUlyJSYrfNBF1cqEGZ++03kh23y+cF2aNa5Z2ggAAIC25/Krb1B5xNnLtSbN2V7HZp4kKT4+XosWLap1f+/evWXOWLUuKipKTz/9tJ5++uk6j/3ZZ581SRvr44vismafeapJ+XtvKpB3YvXB6DETZIVVXzLdrzDt0vnB78ZIlcUJimqCVUYAAADQPkVFR+twgqU+B51drrypGEmHEy399bYVwW3d+8Vp3D2XVivbu3dv7d27V7169dKePXuC2+vzGqNmeHdw+2CM0b9Kys5esAn4j9T+MtuqLz5XydOPSpLCevRSx4m31FzQsrRb5wWXgTTGku9YYs1lAQAAgO/lJ0XL30ZSgt8l5SeGTg7k7SupNkHTVBydeWpP8r0+Hfc7/Krl7x2deoMiLhqsiIz/JXfvNFkREfLn5qhy9UpVrHhPCgRkeWIV++CfggtI1KTC6qBi41GsiuVyGfmKOzdL+wEAANB2lSQlyB3Y26zn3FhWpn3eUwuUHzvtnU37vF69UVQYUv762BOP7rgDUmGXrnKftnK5t8Kv8hKvOnia/n4+wpNN5c0UnCRJPp8q13ykyjUf1bg7rPd5ir3/vxV+Xv+zHqpKJ8JVIGCp96DRTdlKAAAAtEODRt0q3/sPyd2Ml7//r6hQb9Zy+9wX5eX6orw8ZNvJ8ORzSd6wESHhSZJ83jPfHNU0CE82eR2a+quJ51cPqHLDWnm3faNAQb5MeZlcsZ3lTuurqOHXKOqa0bLc4baO5ZNbgYCl0pzzdc3N4x1uOQAAANq6q0beqNf6/kEDv/UprBU8718bnyVt7etWdEX1pcYDDi1UQHiyKdxqvkfmoq4epairRzXJsdzyyeUyCuQNapLjAQAAoP07+sMhCtu+ttnO93C3FD3cLaVeddxG2tfvQkXX8K5cVw1LZJ++SERDtZFHwVpedFjb/FGFm0qVl8br2tv/0NJNAQAAQBtx6+xndKirFGilS+4FLOlQV8ldVPM7X93h1VejbgptMxG0gK7hbnVsYwEqypQp1ipW+fZLWaIcAAAAtkVFR2tLZl+5Wultey4jbRqSpnBX9cXTwqPCFN3J3iMu9T6vI0dthyzL0oWdOrR0M+wzRn20WyWHztfP7v0/Ld0aAAAAtDF3PfK2vukXJn8rm33yW9I3/cIUXjG7xv2JqZ1kOfTIDeGpHi71dFANt0+2SmHyq09gt3omzmjppgAAAKCNSr77IZVFSc248F6dApLKoqS9502pcb/LZSmpj8ex8xOe6uHCTtFyaOGOJue33EreE6khP76+pZsCAACANup/Zd2gtVed12pCg0vSZ1ekKbr80hr3BwJGCamEp1bh8rhObWbmyWX8mv2LmqcyAQAAALum/f51rRnmXCCpjzXDPAqvrP0a1+Wy1L1/nGPnJzzVQ5cIt8YmdlZYKw9QLuPX2IQ4dYlgJXoAAAA0TnRMhFKGPa11g1v2+f91gzuoNOKhWvdbLkvnD0lUdEyEY20gPNXTrd27yt/Kb90LWGH699Tklm4GAAAA2olLf9xXhR3/EJyBaq5noE6eZ3WmR8c7PVLj6nonmYDRBVf2cLQ9hKd6GuzpoPSOUa32B+eSNLBjlC71tKGVAQEAANCqJfXxKLlnvCqj5+n9kWk6Hi3HV+HzW9LxaOn9kWmqipxXd2FL6tK9o6OLRUiEp3qzLEtz0rq1mhVHzhSQdF9aN8eWZwQAAMC5x7IsZVyXJhkpvHK2Prlyqrb2PfEi2qZ+ke7J423tG6ZPh/97nc84BRkp47o0x6+BCU8NMLJrrK5PjJMz7y1uuDBJ4xPjNLJrbEs3BQAAAO1Mn4sS1PeHSbJcUnT5pcpLeVLvj0xTTpcT+32NzC0n6+d0kd4flaa8lCcVVXHJWetZLqnvD5PU56KExjXABlYUaKD/7tdDHx0rUZHX3ypmoVySYsPD9Id+zt7nCQAAgHPXFTf20/4tBaoo8wZnoTYNrNSXsf9Q6rf/UvoOn9wByeeSwgJSXXnKSPK7FCy/pZ9bB/peqLCimxVeUfuzTSEsKTI6XFfc2K8pundWhKcGig9367H+PXXrN3tauimSTtyu91j/VMWHM6QAAABwRlRMuK66ZYDee25TcFu4K1LhJVN1pJu0r88GhftXKO5ovrrmlatbnlF0VfXjlEdIhxMt5SdGq7BLV3nDRii6YoiiSlS/e+OMdNUtAxQVE97ovtlhGWNa+dpxTa+4uFixsbEqKiqSx9O4h8r+sidX87473EQta7j/TOumu3sltXQzAAAAcA7Y8N4erXtr91nLeQOV8sV8KRNWLKlMUgdZfo/cpZfUuXKeXcPGpWnwqN6NOkZ9sgHTFI10d69EHff79eS+vJZrQ2qi7kpNbLHzAwAA4NwyeFQveSv9+mLZ3jrLhbsiFV42rPqOJlh54dJRvXTpyF6NP1A9EJ4aybIszU3rphh3mB7efVguNc+69yfPc39aN93FjBMAAACakWVZGjY2TRFRYVr75u4TDzc1x/1s35+nKWacGoLw1AQsy9LdvZLUr0OUZm3fp2KvX34HzxemE4tDPNY/VaMSWFkPAAAAzc+yLA0e1Vudkztq1d+3qbLcK+PgLILlOrE4xFW3DFDaxc6vrFcTwlMTGpUQq6Fx6br/2wN6I6+wyWehTh5vbGKc/rtfD3VmcQgAAAC0sLSLE5Ryfpw+efVb7Vif2/SzUN8f7/zBSbripn6K6tg8i0PU2BQWjHDmLcTLjhTpT98d1tbjFQqzJH8jfson66d3jNKctG68xwkAAACt0u6vjujzpbt19OBxWS5LJtDwi+CT9bt076iM69Ice49TfbIB4cmh8CRJxhh9UVymFw/m6828Y/IZyW1JPhs/8ZPlwi1L4xLjdGv3rrrE08HxtyYDAAAAjWGMUe53xdr00QHt3JCnQMDIFWYpYGM2weWyguX7DknSD67srqTeHkevgQlPZ9Fc4el0R6t8WlNYqq9LyvRVcZm+KinTcX/1m/o6hrl0cacOusTTQRd26qDL4mLUJYLb8wAAAND2lJdW6eD2QuXtLVbenmLl7S2Rt7L66gDhkWFK7NVJSX08Skj1qHv/OEXHRDRLGwlPZ9ES4elMxhjle32qCBhVBQKKcLkU5bLUNdzN7BIAAADaJWOMyku88nn9CviMXG5L7vAwRXcKb7FrYN7z1AZYlqWEiJZ72A0AAABobpZlqYOneWaUnNAEr6cCAAAAgPaP8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwwd3SDWgJxhhJUnFxcQu3BAAAAEBLOpkJTmaEupyT4amkpESS1LNnzxZuCQAAAIDWoKSkRLGxsXWWsYydiNXOBAIBHTp0SJ06dZJlWS3dnHaruLhYPXv21P79++XxeFq6Oec0xqL1YCxaF8aj9WAsWg/GovVgLJqHMUYlJSVKSUmRy1X3U03n5MyTy+VSjx49WroZ5wyPx8MvfCvBWLQejEXrwni0HoxF68FYtB6MhfPONuN0EgtGAAAAAIANhCcAAAAAsCHsoYceeqilG4H2KywsTFdeeaXc7nPyDtFWhbFoPRiL1oXxaD0Yi9aDsWg9GIvW5ZxcMAIAAAAA6ovb9gAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8ocEKCgo0efJkeTwexcXFaerUqSotLa2zTkVFhWbOnKkuXbooJiZGEyZMUG5ubrVyCxYs0IUXXqioqCglJiZq5syZTnWj3XByPCTp6NGj6tGjhyzLUmFhoRNdaDecGIuvv/5akyZNUs+ePRUdHa309HT95S9/cborbc7TTz+t3r17KyoqShkZGfr888/rLL948WINGDBAUVFRuuCCC/TPf/4zZL8xRg888IC6deum6OhoZWVlaceOHU52od1oyrHwer267777dMEFF6hjx45KSUnRL37xCx06dMjpbrQbTf27cboZM2bIsiw98cQTTd3sdsmJsdi6dauuu+46xcbGqmPHjvrhD3+offv2OdWFc5sBGmjUqFHmoosuMmvXrjWffvqpOf/8882kSZPqrDNjxgzTs2dPs2LFCrNhwwYzbNgw86Mf/SikzJ///GeTkpJiXnrpJbNz507z9ddfm7feesvJrrQLTo3HSWPHjjU/+clPjCRz7NgxJ7rQbjgxFvPnzzd33323+eijj8yuXbvM3//+dxMdHW2eeuopp7vTZrzyyismIiLCvPDCC2bz5s1m2rRpJi4uzuTm5tZYfs2aNSYsLMz8z//8j9myZYv5zW9+Y8LDw82mTZuCZf74xz+a2NhY8+abb5qvv/7aXHfddaZPnz6mvLy8ubrVJjX1WBQWFpqsrCzz6quvmm3btpns7GwzdOhQM3jw4ObsVpvlxO/GSa+//rq56KKLTEpKinn88ced7kqb58RY7Ny508THx5t7773XfPHFF2bnzp3mrbfeqvWYaBzCExpky5YtRpJZv359cNt7771nLMsyBw8erLFOYWGhCQ8PN4sXLw5u27p1q5FksrOzjTHGFBQUmOjoaPPhhx8624F2xqnxOOmZZ54xw4cPNytWrCA8nYXTY3G6O+64w1x11VVN1/g2bujQoWbmzJnB736/36SkpJh58+bVWH7ixInm2muvDdmWkZFhbrvtNmOMMYFAwCQnJ5tHHnkkuL+wsNBERkaal19+2YEetB9NPRY1+fzzz40ks3fv3qZpdDvm1HgcOHDAdO/e3XzzzTemV69ehCcbnBiLG2+80dx8883ONBjVcNseGiQ7O1txcXEaMmRIcFtWVpZcLpfWrVtXY52NGzfK6/UqKysruG3AgAFKTU1Vdna2JGn58uUKBAI6ePCg0tPT1aNHD02cOFH79+93tkNtnFPjIUlbtmzR73//ey1cuFAuF//KOBsnx+JMRUVFio+Pb7rGt2FVVVXauHFjyM/Q5XIpKyur1p9hdnZ2SHlJGjlyZLD8d999p5ycnJAysbGxysjIqHNcznVOjEVNioqKZFmW4uLimqbh7ZRT4xEIBHTLLbfo3nvv1aBBg5xpfDvjxFgEAgG9++676tevn0aOHKnExERlZGTozTffdK4j5ziuhNAgOTk5SkxMDNnmdrsVHx+vnJycWutERERU+w9dUlJSsM7u3bsVCAT08MMP64knntCSJUtUUFCga665RlVVVc50ph1wajwqKys1adIkPfLII0pNTXWm8e2MU2Nxps8++0yvvvqqpk+f3jQNb+Py8/Pl9/uVlJQUsr2un2FOTk6d5U/+sz7HhDOLm43WAAAFSElEQVRjcaaKigrdd999mjRpkjweT9M0vJ1yajz+9Kc/ye126+677276RrdTToxFXl6eSktL9cc//lGjRo3SBx98oOuvv17jx4/Xxx9/7ExHznGEJ4SYM2eOLMuq87Nt2zbHzh8IBOT1evXkk09q5MiRGjZsmF5++WXt2LFDq1atcuy8rVVLj8fcuXOVnp6um2++2bFztBUtPRan++abbzR27Fg9+OCD+vGPf9ws5wRaC6/Xq4kTJ8oYo2effbalm3NO2rhxo/7yl79owYIFsiyrpZtzTgsEApKksWPHatasWbr44os1Z84cjRkzRs8991wLt659crd0A9C6zJ49W1OmTKmzTFpampKTk5WXlxey3efzqaCgQMnJyTXWS05OVlVVlQoLC0P+D3tubm6wTrdu3SRJAwcODO5PSEhQ165dz8lVY1p6PFauXKlNmzZpyZIlkk6sPCZJXbt21f3336/f/e53De1am9PSY3HSli1bNGLECE2fPl2/+c1vGtaZdqhr164KCwurtlpkTT/Dk5KTk+ssf/Kfubm5wX83nfx+8cUXN2Xz2xUnxuKkk8Fp7969WrlyJbNONjgxHp9++qny8vJC7kjw+/2aPXu2nnjiCe3Zs6dpO9FOODEWXbt2ldvtDrlukqT09HStXr26CVuPoJZ+6Apt08mH4jds2BDc9v7779t6KH7JkiXBbdu2bQt5KH779u1GUsiCEUePHjUul8u8//77DvWm7XNqPHbu3Gk2bdoU/LzwwgtGkvnss89YxacWTo2FMcZ88803JjEx0dx7773OdaANGzp0qLnzzjuD3/1+v+nevXudD2KPGTMmZFtmZma1BSMeffTR4P6ioiIWjLChqcfCGGOqqqrMuHHjzKBBg0xeXp4zDW+nmno88vPzQ/7bsGnTJpOSkmLuu+8+s23bNuc60g448buRmZlZbcGIcePGnXWVVzQM4QkNNmrUKHPJJZeYdevWmdWrV5u+ffuG/KIeOHDA9O/f36xbty64bcaMGSY1NdWsXLnSbNiwwWRmZprMzMyQ444dO9YMGjTIrFmzxmzatMmMGTPGDBw40FRVVTVb39oip8bjdKtWrWK1PRucGItNmzaZhIQEc/PNN5vDhw8HP1xEnvLKK6+YyMhIs2DBArNlyxYzffp0ExcXZ3Jycowxxtxyyy1mzpw5wfJr1qwxbrfbPProo2br1q3mwQcfrHGp8ri4OPPWW2+Zf/3rX2bs2LEsVW5DU49FVVWVue6660yPHj3MV199FfI7UFlZ2SJ9bEuc+N04E6vt2ePEWLz++usmPDzcPP/882bHjh3mqaeeMmFhYebTTz9t9v6dCwhPaLCjR4+aSZMmmZiYGOPxeMytt95qSkpKgvu/++47I8msWrUquK28vNzccccdpnPnzqZDhw7m+uuvN4cPHw45blFRkfm3f/s3ExcXZ+Lj4831119v9u3b11zdarOcGo/TEZ7scWIsHnzwQSOp2qdXr17N2LPW76mnnjKpqakmIiLCDB061Kxduza4b/jw4eaXv/xlSPnXXnvN9OvXz0RERJhBgwaZd999N2R/IBAwv/3tb01SUpKJjIw0I0aMMNu3b2+OrrR5TTkWJ39navqc/nuE2jX178aZCE/2OTEW8+fPN+eff76JiooyF110kXnzzTed7sY5yzLm+4cYAAAAAAC1YrU9AAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADAhv8PH2gwHmgnJvgAAAAASUVORK5CYII=", "text/plain": [ - "
" + "(
,\n", + " )" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAGsCAYAAABehumzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3iUVdr48e/MpPfeC4GEhBJa6EpvAuKCriLqoqu4rqJr2Xffn7rurrqvsq59XRXLrh27WBBUUOkg0iEQCJCQkEx6nSTT5/fHEyYTMxMyKZRwf64r15XnmfOcOWOZO6fdR2Wz2WwIIYQQvYj6XDdACCGE6G4S3IQQQvQ6EtyEEEL0OhLchBBC9DoS3IQQQvQ6EtyEEEL0OhLchBBC9Doe57oBHWG1WikuLiYwMBCVSnWumyOEEOIcsNls1NfXExcXh1rdft/sgghuxcXFJCYmnutmCCGEOA8UFhaSkJDQbpkLIrgFBgYCygcKCgo6x60RQghxLtTV1ZGYmGiPCe25IILb6aHIoKAgCW5CCHGR68j0lCwoEUII0etIcBNCCNHrXBDDkkIIcSEqqmpgb14FudpaiqoaMFmseHloSAz3p39cCMNTIogK9j3XzeyVJLgJIXoFo9lCflk9FXV6LFYbvt4epEQFEh7oc9bbsvN4OZ9tP8GuExVOX9+XXwm7ClCrYExaNFeP78ugxLCz3MreTYKbEOKCZTRb2JCtZc2eAo4U1WC2tj2eMizAm0sHxDAvK5mkyDOvsuuKuiYjy789xPcHijpU3mqDbUdL2Xa0lCtGJXPz1Ax8vdz7WrbZbOSV1XO0uIZjJXXUN5lQqSDYz4u02GAGxIcSH+7fmY/jliqdnvwyHXqTGY1aRXSwH4kRAWjU52ZvsupCOKy0rq6O4OBgamtrZbWkEAKAjYe0vPjNQWoajB1+ZvKgOO64bBDBfl7d3h5tdSP3v7udkpom+71Afy8yUiKIjQwgPMQXTw81RpOFypomisrqycmrpLHJZC+fEhXI49ePJizgzL1No9nCd/tOsWrnSfLK6tstOzAhlHkjk5k0KK5bg01+WT2rdp1k65ESKusNbV739tQwODGUOSOSGJcejeYMG6/PxJ1YIMFNCHFBMZgsPPPVftZnF7e6HxzgTVS4PyGB3qjVapoMJiqqmyir1GG2tHzNBft5cf+C4YzoG9FtbSqva+K+N7dRVqsENi9PDeOHJdC/T1i7y9YtVhuHjpWz40CRvY3JkQE8deM4gnxdB+Ccohqe/nIfBRU6t9o5MCGU++YNITEiwK3nfqlKp+ffa7LZklPS4WeiQ3y5e24mWX0jO/2+EtyEEL2SwWThLx/8rMxZNUuOC2ZYRjTR4f5OA4nBaOZIXiW7D5dgMFoA8NSo+cvVIxiTFt3lNlltNu5/9yd7m0KDfJgzMZUAN3qH1XV6Vm88hq5R6YVOHhTHA1cOd1p29e4CXlh9AMcR2Ohwf1ISQogM9SPAzwsbUK8zUFbVyPHCKqpq9fayXh5qHrxyBOPSO/fZtx8t5akv91Hv0OP00KiICvcnIsQPby8PLFYrNXV6SisbaHAoBzBvZDK3zxrYqV6cBDchRK+07LM99h6bp4eaiSOT6JcY2qFNvY1NJjbsPEmBtg5QvuRfuOVS+kR1bR5u1a6TvLD6IAABfp4smJaBn6+n2/XU6gysXJdjD8B/vTqLSzJiWpVZvbuA578+YL+OCPVjYlYikWGu59RsNhtFZfVs2lVInU4ZOtSoVfztmiy3g/vGQ1qWfbYHa3PY8PH2YMSAGPr3CcfbS+P0vU+V1rPncAna8pZe5qUZMTx41XC3A5w7sUD2uQkhLgibDmtbBba5k9JITWp/2M+Rn68nsy7pR7/EUACMZitPfbkPs8Xa6TaZLVbe25hrv540MrlTgQ2UYdXxw1vyJb6z4SiOfY9cba09iAIM6R/F/Gnp7QY2ULJ5JEQH8euZA0hNUj67xWrjH5/ttQ+jdkROUTVPrGwJbH3ig7nmsoFk9o9yGthOv3diTBDzJqdx6YhE1M3zfZtzSnh17eEOv3dnSHATQpz3jGYLL32Tbb+ekJVEdCdWAKrVKiaPTiY0SFmwkautZfXugk63a9uRUqqae0N94oJJiDnzyNJnr77AVRlx/Pfxv7Z5LS0pjKjmz5VXVk92YTUAJouVp77YZw8smf2jGDs03q3FIZ4eaqaM7kPfhBAAGo1mnlu1n44M3hnNFp76Yp99NWp6Sjgzx/fF17tjKztVKhWDUiO57NJ+9gD3+Y78VsPL3U2CmxDivLf5cIk9iCTFBtl7IL/UpNPx38f/ym1TR7FoaF8evHYexw7sbVXGQ6Nm0qhk+/WXP+d36AvemY2HtfbfB6WeeaHEsQN7WfvhuySnD3T6uhIEWha6bGqu/4cDReSXKysiw0N8GTMkvlPHf6nVKiaOTMK/uXe560RFhwLMp9vzKKxsACAy1I+JWUmdev/EmCDGDIm3X/9r9QF7wO5uEtyEEOe9NXtaelfDMmJcfrG+9Jc/sm/rRv7wxAs88+X3DL1kEo/8diGVpdpW5aLD/YmNVFYMFlY22HtI7srV1gLKgoq4M8zdNTU08Nz/3Mnv//4kAUHBLsslxbS8lqutxWaz8dXOk/Z7l45IdNpjs1gsvP/8P7l92hgWDe3LHTPG8fFLz7YJ3N5eHq0CjGPdzlisVlY1l1GpYPLoZHvvy1H2z9t5/PeLWTJhOFdlxPHTujVO68tMi7T3Tk9VNrDHxUb3rpLgJoQ4r1msVnKKagBl31hMhPPhSIO+ie3frWbx/zzEoFFjiU1OYeFd/0NMUh++ff/tNuX7J7dkBMkurHK7XXqjGW11IwBhwb5Ov/Advf7og2RNnsbQ8RPbLefj7UGgv7LS8kRpHUVVDfYgGhHq63I49vPXXuTb999iyV8e4/mvN/CbP/6Zz19/idXv/KdN2b4JIfj6KEOKW4+UojeaXbbn52PlVNQrqy2TYoMJc5EuzNDUSJ+MQdz618fb/XwqlYqh6VH2664MC7dHMpQIIc5rJ8t1GM3Koo+oMOfL/QGsZgtWiwVPb+9W9718fMjZtaNN+SiHIHE6eLij0SEg+Pq0v4hk89efc+LQAZ74ZHWH6vb19qC+wUiT0cLR4hr7/ZT4EJef/8ienYyaNousydMBiEpIZNPXn7cZlgXQaNQkxwaTk1eJ1WbjeGmdy/RfBwtaAn96n3CXbR4xcSojJk7t0OfrExeCt5cGg9FCdmE1NputU8Oc7ZGemxDivFZe17KiLyTQ22U534AA0odl8clLz1FVWoLFYmHDl59ydO8uqstL25QPccg5WVGnb/P6magdvoytTtJ+2evWFvHfx//K3U/9Gy/vjuW5PD0PpVbB8dKW7CMRoX4un0kfPpID2zZTnHccgPycbHJ272C4i4DjWNfxkjqX9eaWtAT+qHDX7+8OtVpFZPP7VzcY7D3D7iQ9NyHEec3qsFL/TEN/f/jnC7z44H3cOmkEao2GvgMzuXTufI5n729TVqVSfmw2ZWm8uwJ9vfD2UGMwW6lp58v5ePZ+aisr+NOVs1o+k8XCoZ3bWfPeG3ywPx+NpmUpvdVqo6Y5lVVEkC86fcsmaP92thks+N2dNDbU84c5E1FrNFgtFq67534mzrvSaXl/v5a6HN/jlyqaN4B7earxbydrirtCAn041Ry4K+r0RAZ17+kIEtyEEOc1P4fl5k1613NDADFJffj7u5+hb2ykSVdPaFQ0T997G9GJyW3K6o0WTq+18OvgknZHGrWKvjFBHD5Vowwh6k1OhyeHjJ3As1/+0Orevx+8l/i+qSxYsrRVYAOoqddjbh6GTYsJwjGct7ewcOuaL9n01Wfc89SLJKamk5eTzRuP/43QqGimLLim7QMOdbWbIszei+zmYUOHP1Q688fFmUhwE0Kc11IcViFW1DR26BkfPz98/PzQ1dawd/MGfvM/D7UpU1HdUlff6M5lPhqcGMbhU8qc2NGTVQx1ktLKNyCApP4Zrdvn60dgSGib+wBHHJbmD0oKa9WrqtMZXA5Nvv3k31lw651cOnc+AMnpA6goPsVnr77gNLjVOiQ6DvV33SM7fUqB0WTBYrGi0XTPbFaTwWHO0s2TEDpC5tyEEOe1ID8vYkKUIauyqkaa2hlC27NpPXs2/UjpqQL2bdnA3278NfF9U5l65cI2ZQuKW+aS0mJdL81vz6xhifbfD+aWYzJ3PtsJKF/4R/KU4OapUTMtM540h60BZVWug7uhSY/qF+ms1GoNNhe9onKH4N7e5z/9x4XVBlVuZDQ5k9N/XHioVSS6WAHbFdJzE0Kc9yYMiOXjbSewWm0cPlHJiIExTss16up475llVJZoCQgJYeyMOVx37/14eLYeLjSZLBw9qQQRbw81o1KjnFV3RokRAWT1i2TX8XJ0jUZ2HCjikuGJZ3zu0Xc+dXp/y+5Ce27JSYNiCfH3Jj0+BBXKKOLxwmpGZ8Y5nXscOWUGny7/F5Gx8cqw5OGDfPXmK0y96to2ZQ1GCyebg7uvl4bkds656x8XbD+frkBb5zLdV1NDAyUFefbrslOF5B0+SEBwCJFxCa3K1ukMVDcv4ukTFYiXh/P0XV0hwU0Icd6bm5XMJ9tOYAP2HSmhf58wp1n3L5l9BZfMvuKM9e04WIzRpPSypgyOJ7CT+SABbp85kDte24TRbOVgbjnhIX5kpLheMu/K3pwSjjdvJg/w8eTmqcqQZXigD6NSI9lxTAmgeUU19vyYjpY89H+8/69/8uqjD1BXWUloVDQzFv6Gq++4t03Zwycq7Dk1pw9JwKOdocbx6TG88t0hrDbluWEDYpxuIj9+cB9/u/HX9us3//EwAJPnX8Nd/3iuVdlDx1s2bk8YEOvyvbtCgpsQ4rwXG+rHjKEJfLfvFEaTlR935DNnQmqn5n8KtLUczC0HlJMBrhnfr0ttS4wI4LdTM3jlu0MAbPj5JA2NRpdB4JfMZis7DhRzILfMfu/O2YMId9iqcMWoPuw4prR5655C4qMC8fnFIhjfgABufvBRbn7w0Xbfr1ZnYFd2S8aWy7PaLrZxFBXsy5i0aLYdLaWhycS+nBJGDGwbkAaPGc+nOcVOamitpk7PwWPKZ/VQq7isAz3dzpA5NyHEBeG2mQOJaP7CLy7TsXZbHiazxa06CrS1rN16wn792ynpxHciAfMvLRjdh/mj+9ivd2Zr+XxdDnmnalzugbNYrOSerOKTtYdbBbbfTklnyuD4VmVH9otkdJoydNqoN/P9T/lYOnGagcFoZt3WE/Ze27yRyR068ue6Can21ZK7DpVQ2pxn0l1ms/KHiaX5YNZ5o/oQ4u9672JXyHluQogLxsGCKh547yd7xpIgfy8mjkom/gxf0EaThR0Hislu7v0AXJIRw5+vGuFWZv322Gw23tt0jPc2Hm11kKivjwfR4f6EB/vi4aHBZLJQUdNIaWWDfX4NlAUkt80cwLyRfZzWX1Gn57ZXNqBr3g4RFxXI1DF92t375qimXs+6bXlU1iiLQmJCfFl+28QOr1T87w85fLhF2SDu7aXhskv7EePGid5Gk4Xvtp6gqHlvW2yoH8tvm4iPZ8fn2+SwUiFEr7U3r4KHP9pJk0NgiAzzI71POFHh/oQG+qBWq2gymKmobqRAW0vuyapWKxkvzYjh/y0Y1iMLGY4U1/DMl/vtWfw7YkB8CPfNG0JSOws7QAnuD67YgcGkfHZvLw2jBsfRPzkMTxdBQm8wc+h4BbsPa+09pmA/L566cRxJ7gQns4U/r9jB/pNKOi6VCoZnxDB8YEy7c3YAp0rq2LCzwH7SuJ+XB/9cPNbtVaoS3IQQvVpRZQNPf7XP7Wz+3h5qbp6WwRWj+nT7pmRHVpuNPScq+GrnSfbmV7QKxKcF+Hgwsl8U80YmM6iDp4mDkuT50Y93UdNgtN/z8lSTEBNEZKgfAX5e2GxQ32CgvKqRwtI6e1ADpcf06LWj3ApspzUazDzy0U72OuzF8/HSkJ4STkJMEBEhfnh7abBabVTX6SmtbCAnr7LVnkJ/bw/+vmiUy1yW7ZHgJoTo9SxWG+v2n+KLHfkcL3WdGxHAx1PD1Mx4rh7Xl7gznFzd3aw2G6cqGyiuasBktuLpoSYpIoDYUL9OJwuuazTy4jfZ9pPJO2r+6D78dko6Pl3YNG2yWPlw8zFWbD7mdmaRoX3Cue/yIcS0kyOzPRLchBAXDZvNxlFtLdkFVeRqa6mo12Ox2vD18iAlKpDU2GBG9YvE/wyZ+y9EudpaVu06yfqDxehNzhfXBPp6MmNIAnOzkkgId7+35sqJ0jo+2nqcTYe09hO6XUmNCWL+6BSmDYnvUo9ZgpsQQlxELFYrBeU6jpXUUa83oVYp82ppscHEhfn36BBsTYOBn4+Vk6utJb+8niajGQ+1mugQX9Jig8lMCiMtNrhbjrSR4CaEEKLXcScWyD43IYQQvY5bwW3ZsmWMGjWKwMBAoqKimD9/PkeOHGn3mTfffBOVStXqx8enYwf2CSGEEJ3hVnDbsGEDS5cuZfv27axduxaTycTMmTNpaGh/t3pQUBBardb+c/LkyS41WgghhGiPW+tBv/nmm1bXb775JlFRUezatYuJEye6fE6lUhET4zyLtxBCiAufzWbDbLWhQjnItTsWkHRFlxIn19YqRyaEhbW/GU+n05GcnIzVamXEiBE8/vjjDBo0yGV5g8GAwdBykF5dXft7WIQQQpx9udpafjhQxJHiGo6X1Nm3I/h7e5AWG0xGfAgzhiZ06xaEjur0akmr1coVV1xBTU0Nmzdvdllu27Zt5ObmMmTIEGpra3nqqafYuHEj2dnZJCQkOH3m4Ycf5pFHHmlzX1ZLCiHEubf/ZCX/+T6HnKKaDpUfnhLB72YM6PSJ56edla0At99+O2vWrGHz5s0ug5QzJpOJAQMGsGjRIv7+9787LeOs55aYmCjBTQghziGj2cJr6w7z5c9t100E+nvh7+sF2KhrMNLY1PrEdA+1iusmpHHtpamdTlbtTnDr1LDknXfeyapVq9i4caNbgQ3A09OT4cOHc+zYMZdlvL298fbumWMQhBBCuE9vNPPXD3eyzyGvZFiwL4NTI0lJCGlzvlxDk5HjBdVkHyunrsGI2Wrj7Q1HKazU8adfDUWj7tmdaG4FN5vNxl133cXKlStZv349KSkpbr+hxWLhwIEDzJkzx+1nhRDiYmGxWskrrSe3pJaiygZMFiueGjXx4f6kxQSTEh3Y4wHiNKvNxqOf7LYHNg+NitGZ8QxOi3S5cMTf14sh6dEMSo1k16ES9uaUYLPBjweL8fXy4O65mT3aZreC29KlS1mxYgVffPEFgYGBlJSUABAcHIyvry8AixcvJj4+nmXLlgHw6KOPMnbsWFJTU6mpqeHJJ5/k5MmTLFmypJs/ihBCXPgq6/V8vauANXsKqNIZXJYLC/Bmzogk5oxIanVqd0/4Ykc+u443n17uqWHuxFSiOnjIq0ajZnRmHFHhfqzdmofVamP17gJGp0YxLj26x9rsVnB7+eWXAZg8eXKr+2+88QY33XQTAAUFBagd/pqorq7m1ltvpaSkhNDQULKysti6dSsDBw7sWsuFEKIXsdmUL/3X1h12ekTOL1XpDLy7MZfPtudx64wBzB6e2CPL70trGnnjhxz79YzxKR0ObI76xIUwISuJDc3zdf9afYChfcLx8+7Son2XJLekEEKcYwaThcc/28P2o6X2eyoVJMUGExsZQHiIL14eGoxmC5U1TWjLdRRoa3H89h7bP5oHrxyOtxsnW3fE6+sO8/G2EwAMSo3k0hGJbcp89soLbF+7mqITx/Dy8SF9+Eh+88c/E983tVU5m83GN5uPU6BVtnfdNWcwl2cld7gtPb6gRAghRPcwmi08/NFOdp+osN/LSAkna1AsAX5ebconRAcxND0aXaORndlajuQp82Dbj5by8Ec7eWThyG47YdxotvDt3kIA1GoVWQOdJ+PI/nkbl113E6mZw7BazLz37D94dMkinl+1AR+/lrPbVCoVowbH2YPbqp0n3Qpu7pDEyUIIcQ795/sce2Dz9FAze0I/Jo1KdhrYHAX4eTF5VDKzJ/TD00P5Kt99ooL/fJ/T7nPuyNXWUte8pD8lPgRfF2fi/eX1FUy9ciFJaen0yRjEncueo6K4iOPZ+9uUjQj1IypMCXh5ZfVU1uu7rb2OpOcmhBDnyIGCKr7YkQ+ARqNizsRUYiLcy+aRFBvMnImprFqfi8Vq44sd+Vw6IJbMJCVzVFltE+uzizlSVMOxklrqm0yoVBDk50VajJJFZMrgeEID2m6/ytXW2n+Pi+x4uxrrlZ5ZYHCI09djIwMpq2q0v0dPLIiR4CaEEOfI6+sOc3rabPTgOLcD22kxEQGMyoxj+74ibM313nv5EN5af4TtR0txdlC2Tm+muKqRDYe0/Of7HC4dEMtNU9KJDW0ZRjxV2ZIUPyzEt0NtsVqtvPH438gYMYqk/hlOy0SEttRVWKFjbP/uXzUpwU0IIc6BXG2tPX1VWLAPg9Oi2pT58IWn+OjFZ1rdi0vpxwtrNrUpm5kWxdH8Sqpq9eQU1bD0tU2YfxHVPDzUBPh6YgN0jUYsFuV1s9XG+uxith8t5ZZpGcwbmYxKpcJkttqf9ergQpXXHn2QgtwcHlvxucsyng5zgkaH9+hOEtyEEOIcWLf/lP33walRqF2kpEpMS+dv//3Qfq1xsVhErVYxoF8EW3Yr9Z4ObH6+ngzsG0HfhBCCA33s72O12qiua+JYQTU5eZXoDWb0JgsvfpNNfnk9d84ebJ/LA1oFOldee/RBdq1fy9/fXUl4TJzLciZzy1YHx/foThLchBDiHDhS3JJ0uG+i87kpAI1GQ2hk217dL9lsNkrKW4YRVSoY0j+KkYPj8NC0DSBqtYrwED/CQ/wYPiCGn/YXcei4srDl610FeHtqiAtr2c9WWdNEtIv9bTabjdf//md2rPuGR97+hOiEJAAamkyUVzdQU6vHbLGiVqsICvCmuKze/mxCJ/bMdYQENyGEOMusNhsnSpRFF0EB3nh7uf4q1p7MY8mE4Xh6e5M+LIvr73uAyLi2OX2PFVRzvLAaUALXzPF9SY4L7lB7vDw1TMhKIiYigB935GOzoWwOnz6gpR3l9QzsF+H0+dcefZBNq1Zy/4tv4Onjx659eRwv0lGtMzkt7ygquGNzee6STdxCiM5raoJ9+2D3bigpAbMZfH0hPR2ysqBvX6ULIVppMpqZ/8S3AMRFBTBvcn+n5XZv/AF9YwNxKf2oLivj4xefprKshOe+/BHfgJbFJ016Ex9+cwhDc2aTaWP7kJrU/jmbrhzMLWPLHmVoMyLIhyaDmQaDGY1axQ3zMtskSAa4KkMZggzrO5RB8+/GN+TMPc3TfL003Dp9AHNGJJ0xw4ps4hZC9ByrFdatg5deglWrwNJOqqjoaLjlFrjtNkhKOnttPM91NNyPmDjV/nuf9IH0Hzqc308dzZZvvmT6r6+zv3b4RKU9sPVNDHEZ2CpLtbz71GPs3vgjRn0TMUl9WPr4s6RmDrWXGZQaSX5xLUWl9VTU6RmeEs6evEosVht7DpcwbljbXuMnh4v4aX8x+46UtrofEepHfFQgEaG+eHlqMFusVNfqKanQcapUGZpsMlr41+qDbDtayp+vGoFvO71Yd0hwE0J03M6dcPPNcOBAx8qXlsLjj8M//gG//z088QQEnP1Tmc83Xp4avD01GEwW6huMHX7OPyiY2D59KTmZb79ntdo47JDdZExmvNNndbU1/HnRrxg8ZjwPvfYuQWHhaPNPEBDceuhSpVIxZkg8n61VNoNX1OnxUKswW23sP1pGn/gQYh32vNlsNrbsOUX2sXL7vbioAMYMiScqzMl8WnNsrNMZ2HO4hJzmDCs/Hyvnofd/5rHrRuPTDSnEJEOJEOLMLBZ46CEYO7ZVYLMGBmIcNoymOXNouOEGdIsX07BwIfpJkzClpmI7nUTdalV6epmZsHnzOfoQ5w+1SkVqjDKsVt9gRG8wd+i5poYGSgtPtlpgUlXbhK5RCZCJMUEEOdmMDbDy9ReJiI3jzmXPkTZkONEJSQy7dDIxSX3alI0M9SOyOYtIYWUDV4/ra3/t2y3HqahutF8fPl5hD2wqFYwflsDlk9KcBzYHQQHeTBqVzJyJqfZtBgcLqvj3moMd+CdxZtJzE0K0z2yGG26AD1uWo1tiYtBPnIg5PR00bf/KNg9QFiKo6uvx2rUL7y1bUJlMkJ8P06fDJ5/A5ZefrU9wXkqPDyG7eQHI8cJqBqVGtinz1hOPMHLKTCLjEqgqK+HDfz+FWq3m0ssX2Ms4Bpr46ECX77fzh+8Ydulknrr7d2T/vI3w6BhmLbqJGddc77R8fFQg5c1ZRFJjQxjaJ5x9+crw55c/HmXs0HgSogPZvr/I/szkUcn07xPu1j+HxJggLp+Uxlfrj2IyW1m77xQTBsQwJq1rG7ul5yaEcM1mgyVL7IHNplajnzIF3a23Yh440Glga/V4YCCGyZPR3X475uTmBLkGA1x1Ffz4Y0+3/rw2PbNl7urgsXKsTtKIVJZqefaPd3DX7Ak8fe/vCQwJZdmHqwgOawkg1XUtuRkjQvza1HFaaWEB377/NrHJKfzl9RXMvPZG/vvYX/hx5UdOy0e0ylSi42/XZDEgQdmyYDJb2bSrkM/WHbHvfxvQN8LtwHZaZJgf4x3m8pZ/dwhrF9c6Ss9NCOHaO+/AW28BYNNoaFy4EHN/5yv72mMNC6Nh8WJ8V67E6+BBMBqV3uDBgxAa2t2tviD0iwliUGIo2YXV1NTp2XeklOEDWmfdv++Z5Wesx2xxyCLi5fqPDZvNSr9BQ7j+vgcA6Dswk8LcHL774B2mLLimTXnHjCQGkwV/b0/+cf0YXv72EN80nxRwehGLj5eGsUPbzvX9fupoyotPtbl/2XU3cutfl7W6l54SzpH8KkoqdBRXNbLnRAVZ/dr2ZjtKem5CCOeKi+Huu+2XTQsWdCqw2Wk0NC1YgKlv35b67723i428sN06fQCnE5PszNZS5LC5uaMcM5tYLK6ziIRERpGQ2vrfX3y/NCq0RU7LOwbN05vAfbw8uOlM/FMAACAASURBVHfeEB67bjRhDnN7GX0jnKbneuKTNby+aa/956///QCAcbPmtSmrUqnI7N8SzL7b1zYoukOCmxDCuf/7P6hRsmgYMzMxDR7c9To1Gpp+9Sts3s1fjG+9BfvbHotysRiQEMpVY5Vgb7Xa+GbTMU6cqnarDsdUVlU1TS7LZQwfRXHe8Vb3tPkniIxzvrqyuralLsdkygAj+0XaTx0A6JfovPcdHBZOaGSU/WfX+nXEJPVh0OhxTssnx4XYA2lOkXv/HH5JgpsQoq26OmVIErB5eqKfPbvbqrYFB6OfMqXlxksvdVvdF6KbpqQzpjlpstliY+3WPL7fnkftGc45q63X8/32PI7kVdnvaSt0LsvPu+l3HN23m0+X/wvtyTw2ffUZaz96l8uu/63T8iUVLam80mLbZjo53pxhRaNWEdqBLCMmo5GNX37K1CuvdblZW6NWEd58+kBJTRP1TWfOcOKKzLkJIdpasQJ0yhelccgQbA6nKW/Jz+dfW7eyr7iYEp2Odxcu5PIBLWmabDYbj//4I2/v3k2tXs+YxESeufxy+oW3LDYwDhuGzw8/oDIa4d134emnwb9ncgye7zw0ah769Qie+mIfGw5pASWV1rGCauKjA4mNCCA8xBdPTw0mk4XKmia0FTqKStsOYeYV1aA3mJ1mEUnNHMb/vvAf3ntmGR+/9CxRCYn89oFHmTjvyjZl6xsMFDYHr4ggH+Kd5H+saTQAyqGpGhdJnx3t+P4bGurrnM7vOQoK8Ka0+aidukYjgb7OD0g9EwluQoi2Nm60/2oaPrzVS40mE5nR0dwwfDi/cdgecNrzW7bwyk8/8fKCBSSHhPDYjz9y5Tvv8NPSpfh4Nn9R+fhgGjgQr717oaFBSd81YUKPfqTzmZeHhgeuHM7otChe/jYbnV7Z91ZUWu80iDkK8PEkPS6YXScqsFhs7DtSypghzocaR06ZwcgpM87Ynt2HS+y/zx2RhNpJT8u+mLGD6Va+/+R9hk+YQlh0TLvlHKuz0fkVkzIsKYRoa+dOQFkhaYmNbfXSjLQ0Hpo2jXkOvbXTbDYbL2/fzp8mTmRuRgaDY2JYvmABJfX1fJ2T06qsOTGxzftdzFQqFdOHJPDfpVO4ZVoG0Wc4HDQ6xJdbpmXwxtLJLL1sMB7Nvad9R0opq2po99n2nCqpI+eEkjXEx1PDZcMTnZYL8vMCoKHR5HQbg6OyolMc2LaJ6Vdf1245gPrGlowtgb5eHW12G9JzE0K0ZjRCbi4AlqioM+5lc3SyuppSnY5JfVsyWgT7+JCVkMCOU6e4KjPTfr9V0MzO7nq7e4lgPy+uGd+PX4/rS1FlA7naWoqqGjCarXh5qIkP8yctNpj4cH97jyrIz4tFE9J4Z8NRbDb4dvMJ5k1OIyTIx633Lq9uZO22PPv1kukDCAtwXke/6CC01Y2YLVZq6/Xtzrv9+NkHBIVHkDVpervvb7PZ7JvSI4J8CPaT4CaE6C6NLRkvHOfaOqK0eZ4u6hf5I6P8/SnTtV7sYPN1+DLUuV4IcbFSq1QkRgSQGNGxXJzXXtKPncfKOFxUQ6PexBc/HOHSrCSXKxkd2Ww2juRVsnXvKfum7JH9Ipmb5TrZdXp8CJtzlOHLE6dqyHIR3KxWKz+s/JDJ869G49F+yDlVWm9//3Qni1jcIcOSQojWHHtqPXgilsqxbjd6h8I5D42aR68dRUqUkoJLb7Swblseqzceo0Bb63To0Gq1kXeqhq/W57JhZ4E9sAxKDOWhX49wOtd22uRBcfY9eodPVLTaF+do/9aNVBQXMe3Ka8/4GQ7mltl/nzak7ekD7pCemxCiNT8/8PYGgwF1Tc2ZyzuIbu6xlel0xAS25Dksa2ggM6b1QgKVY93hnUvbJFoL8vPiycXjeParfWxpPn6msKSOwpI6PD3URIT6EeDnhc1mo77BSGVNU5ugNH1IPHfNyTxjZv6oYF/GpEWz7WgpDU0mdmVrnS5kGXbpZD7NKT5j20+cqqZA27xCM9CHsf07fiacM9JzE0K0ptHAUOV8L01VFejb32/lKDk0lOiAADbktczb1On17Dp1itEJrf8S1xQ7fOGNGNG1Ngu7QF9P/nJ1Fg8sGE6kw5ybyWxFW64j92QVxwqqKa1saBXY4sL8eGThSP70q2EdPnLmpinpeDZvut53pJQCbW2n2lxbr2fTrkL79S3TMtCouxaeJLgJIdrKyrL/6nHiRKuXdAYD+7Va9muVPVkna2rYr9VSWFODSqXi9rFjeWrjRlbn5JBdWsrvV64kJjCQuRkZreppVa/D+4muU6lUBPp6EhfasTnT5MgAlkzLYGx/9zLx94kK5PqJaYAygv3dlhMcL3Qvs0h5dSNfrs+1H/szrn80UwbHuVWHMyqbrQcH1buJO0eLCyG6wTffQHNWElPfvjQuXmx/aVNeHvOakyk7WjR0KC8vWGDfxP3Wrl3U6vWMTUri6blzSY2IsJdVV1YS+MILykVKChw7Bl38S10o6ptMLP8um3X7neeMVKuV4/WcuTQjhrvmDCbE3/mZcM5YrDaWfbaHTYe19nupSaGMzowjsJ16DEYz+4+WsfdwCaenA/tEBvLkjWMJcrEFwJ1YIMFNCNGW1QppadDcu9ItWYIloWsT/I58v/gCrz17lIt//hP+9Kduq/tiVlbbxP3v/kSRwz63oABvBvSNID4qgLBgXzQaNRaLleo6PdpyHYdPVLQ+NifIh39cP6bDqzRBSbL8zFf7+f5AS0BVqZSz2uKjAokI9cPbS4PJbKW6Vk9JhY4Tp2paDYv2jwvm79eOajewSnATQnTd88/DPfcAYImMRPe734Fn51IhOfI4dgz/d99VLgICIC8PHHp1onOqdQbufXMr2uZ9Yl6easYNTSA9JdxlLkdQtgEcL6xmy55T9qHBiEAfnrlpHNHtnA/nrJ4fDhTx0reH0Ok7nhNSo1ax6NJUrr001T5/54o7sUDGAYQQzt1xh32hh6a8HN/Vq7u8NUBVXY3v55+33HjySQls3cBms/Hcqv32wBYc4M2vZw4go29Eu4ENlPm51KQwrp45wJ60uKJez5Nf7HPrwFCVSsW0IQn8545J3Di5PxFn2EDu5+XBFaOSWX7bRH4zqf8ZA5u7pOcmhHDtwAFlsYdJ+UvckJWFfs6cTu1LU1dU4P/uuy3bC6ZOhbVrZa6tG/xwoIgnPt8LgK+PB1dOzyCgE9k9mvQmVn5/hPoGJQXWHZcN4lej+nSqTRarlROl9eRqaymo0GEwWfDQqIgNVTKspMUGd3hV5mnuxALZ5yaEcC0zUzn6ZtEisNnw3rULj+JiGufPxxrdwZV1ViteP/+Mz7p1qJqDJOnp8MEHEti6gdVm492NufbrCVlJLgPbmvfe4Iv/vExNRTl9MgZyy0P/R9qQlsTYvj6eTBqZzKoNSn0fbD7G3BFJ9jPW3KFRq+1B7FyQ/7KEEO1buBDeew+aUydptFoCXnkF308+QZOf73rpnV6P188/E7B8Ob5r1rQEtsGD4ccfITLS+XPCLXvyKuwLSOIiA0iJD3FabsvqL3jzH49wzdL7ePKzb0lOH8jfl1xHbWVFq3Lx0YH0iVcCUpXOwNbmzeAXGum5CSHObNEiSE2Fm26CQ4dQWa14HTyI18GD2Ly9scTGYg0Lw6ZWozIY0JSUoK6oaJ1iC+D22+GJJ8Ahe4nomi05LcfTDEx1/QfDV2++yvSrr2PqVUoarNseeYLdG77n+0/f58rf3dWq7KDUSPKLlA3Zmw9rmTgwtk195zvpuQkhOmbUKOXctYcfbrUIRGUw4JGfj9fu3Xjv3InXgQNoystbB7Zx4+D775VTtyWwdavc4pasIIkxzuehTEYjx7P3M2R8y5l5arWaIeMmcHTvrjblYyMD0WiUhSi5JZ3LOnKuSXATQnSctzf87W9w6pRygvavfgXO9r95eMDw4bB0qRIQt25VFpCIbpdfrhxmGhzgjZeLBRr11VVYLRZCwlv37IIjIqipKG9TXqNWEd6c5b+4qhGDydLNre55MiwphHCftzdcf73yA1BWBiUlyqpKPz8l64iPe2eJCfdZrFaMzZn8fby79+vcsb4moxlvN1c2nmsS3IQQXRcVpfyIs8rxSJr2TsMODA1DrdFQU9m6l1ZbUUFIhPN5Osf6OrNa8ly78FoshBACUDZOn878X1Ovx9W2ZU8vL/oNGsKBbZvt96xWK/u3b6b/MOdJq0+n5PLz9sCvm3uFZ4MENyGEuICd3kdmMltb5Yj8pXk3/Y51H6/gx5Ufcep4Lq8+fD+GpkamOjlEVNdopKFJ2bqRGhPU7qGl56sLLxwLIYSwG5wUZt+LdiSvknHDnCe4vmTOr6itquSDF56kpryclAGDeOi195wOSx7Nr2xV/4VIgpsQQlzApg9J4I0fjmCyWMnJq2RYRjS+Ps4TXM+54Wbm3HBzu/UZjBayjykbu1XAZcMSu7vJZ4UMSwohxAUs2M+LqZnK4Z5Gk4VNuwtdzr11xPZ9p2hszuo/Lj3arZMBzicS3IQQ4gJ389QMgnyV3lreqRp2Hyo5wxPOHThaRk6eMiTp66Xh9zMHdlsbzzYJbkIIcYEL8ffmD3My7dc7s7Vs3FmAqYObr81mK9v2nmLr3lP2e7fNHHjB9tpA5tyEEKJXmDAwlt/VDeDVtYcBOHyiglOldQzLiCEtORRPj7absM0WKycKq9lzuISaeoP9/nWXpjJ7eNJZa3tPkOAmhBC9xFVj+xLg48mL32RjMFmobzCyaVcB2/edIjLMj/AQP7w81JjMVqpqmyirasTo0Lvz1Ki5ZVoGC8aknMNP0T0kuAkhRC8ya1gimUlhPPf1AfY1L+k3ma0Ul+koLtO5fG5AfAj3XD6EPlG9I7G1W3Nuy5YtY9SoUQQGBhIVFcX8+fM5cuTIGZ/7+OOPycjIwMfHh8zMTFavXt3pBgshhGhfXJg///zNWF645RJmDUsgPNDbablQf2+mDo7jmZvG8exvx/eawAZu9tw2bNjA0qVLGTVqFGazmQcffJCZM2dy6NAh/P39nT6zdetWFi1axLJly7j88stZsWIF8+fPZ/fu3QwePLhbPoQQQoi2+seFcF+ccnhplU5PYUUDRrMFTw81CWEBhAd6o7oAs490hMrWhQ0R5eXlREVFsWHDBiZOnOi0zMKFC2loaGDVqlX2e2PHjmXYsGEsX768Q+9TV1dHcHAwtbW1BAU5P69ICCFE7+ZOLOjSVoDaWuUQu7Aw1+lZtm3bxvTp01vdmzVrFtu2bXP5jMFgoK6urtWPEEII0VGdXlBitVq55557uOSSS9odXiwpKSE6OrrVvejoaEpKXG8yXLZsGY888khnmyaEEKIb2Ww2KusN5GprKajQKUObGjXxYf6kxQYTHeJ73g1vdjq4LV26lIMHD7J58+YzF3bTAw88wH333We/rqurIzHxwsxvJoQQF6omo5kfDhTx1c6T5JXVuywXG+rH5VnJzByWQJCv11lsoWudCm533nknq1atYuPGjSQ4O2LeQUxMDKWlpa3ulZaWEhMT4/IZb29vvL2dr+4RQgjR837KLeX5rw9Q6bC52xVtdSOvrTvM+5tz+f3MQUwfEn/Oe3JuBTebzcZdd93FypUrWb9+PSkpZ97oN27cOL7//nvuuece+721a9cybtw491srhBCiR1msNpZ/l82XP59sdT8qzI+4qEDCQ3zx8tRgNluprG2ipFxHcbmyf06nN/PUl/v4KbeU/50/DC8nWVHOFreC29KlS1mxYgVffPEFgYGB9nmz4OBgfH19AVi8eDHx8fEsW7YMgLvvvptJkybx9NNPM3fuXD744AN27tzJq6++2s0fRQghRFdYbTaeXbWftftackwmxAQxJjOOiNC2eSb7JoYCyingu7K1HCuoBmDT4RKajLt4eOFIPDXnJoWxW+/68ssvU1tby+TJk4mNjbX/fPjhh/YyBQUFaLVa+/X48eNZsWIFr776KkOHDuWTTz7h888/lz1uQghxnvl0+wl7YFOrYEJWEnMm9HMa2ByFBPowbWwKM8f3xcNDCSs7j5fz+rrDPd5mV7q0z+1skX1uQgjRswoqdNzx6iZMFisAM8an0Dch1O16tOU6vt6Yi8WihJanFo8lMzm8W9p41va5CSGE6B3+s+6wPbAN6R/VqcAGEBsZwOjBcfbrl7891KXDUztLgpsQQlzkSmoa+Sm3DAB/X09GOQSn0755/y3uvWIaN2T154as/jywcB67N/7gtL7BaVFEhCjrMI6X1nG4qKbnGu+CBDchhLjIfb+/iNN9q4H9IuzzZo7Co2O54Y8P8s9Pv+Gfn6xh8NhLeGLpbynIbZs8X61WMTgtyn7tuEDlbJHgJoQQF7mc4paeVb8k5+kUR02dSdakacT16UtcSj+uv/d+fPz8Obpvl9PyfRNDOL3VLUd6bkIIIc62Y1olT7C3l4Yg/zNnGLFYLGz++nP0jY2kDxvptIynh4bQIB8ATpbXYzRbnJbrKXJYqRBCXORqGowABPp7tZtZ5OSRwzy4aB5GgwEfP3/+99//ITG1v8vyQf7eVNXqsVht6PQmwgLO3qZu6bkJIcRF7/SMW/sps+JS+vHUyrX848OvmXXtYv59/90UHjvq+gGH6s72gkkJbkIIcZELbE52rGs0trts39PLi9jkFPoNHsINf3yQ5IyBfP326y7L6xpNgBLj/H08u7XNZyLDkkKA8mdlURHs2gUHDkB9PahUEBYGw4dDVpbyuxC9UL+YIHafqEBvMNPQZCLAr2OZ/W1WGyaj0elrFouVqtomABIjAvDxPLt5JiW4iYtbZSW88QYsXw7Hj7dfdswYuOMOuOYa8PE5O+0T4ixIjwth94kKAE6cqmFI/6g2Zd59+nGGT5xKZGw8TQ06Nq1aSfaOrfzl9RVO6zxZXIvVqvQC+8cF91zjXZBhSXFxMpvh8cchIQH+9KczBzaAn36CG2+EpCT48MOzP4kgRA+Z6rBp+9CxcizWtv9t11ZV8ML/+wN3zZ7Aw7+9hmMH9/KX11cw9JJJbcrabDYO5Jbbr6dltn80Wk+Qnpu4+Bw5AtdfrwxBOjAnJ2NOTMQSG4vNT0kUq66tRaPV4pGXh6ZMyeBAeTlcey189BG8/jqEdi5NkRDni6TIQIb1CWdvfiW1OgP7ckoZMbD1mZtLH3umw/XlnqyipEI5Bic+zJ9hKd2TW9IdEtzExWXPHpgxQxmOBGwqFcZRozCOGYM1vO3/gBbANGwY2GxoTp3Ce/NmPI80Z2T47DPIzYV16yCq7TCOEBeS307N4N43tmC1wa5DWmIi/YmLDHS7nqraJrbsaclIcuv0AajPwcGlMiwpLh5HjsDMmfbAZomIoOGWW9DPmeM0sLWiUmFJTKRx0SIarr4aa/P5hRw4ALNmQV1dDzdeiJ6VER/C1eP6AWC12liz6Tgni2vdqqOkQsdX63MxmpQN21MHxzEuPbrb29oREtzExcFshhtugApl0tycmIhuyRIsCe7PBZgHDaJhyRKsp4/c2LtXmbcT4gL3m8n9GZ0aCYDZbOWbzcdZ//NJGpqcr4g8TW8ws33fKb788Sh6gxmA/rHB3DUns8fb7Iqc5yYuDsuWwYMPAkqPTbdkSZdXPKrLywl47TVUp5dCf/edMuQpxAXMaLbwj5V72ZJTYr+nUkFyXDDxUYGEh/jh5anGZFaW+mvLdeQV1djPbwMYlBjKo9eOIqCb97a5EwskuIner6oK4uNBr8emUtFwyy2d6rE54/Xzz/h+/bVyMXgw7N8P52B+QYjuZLPZWLOnkFfXHqLJ2PGckJ4aNTdMTOPq8X3RqLt/YNCdWCALSkTv9+aboNcDYBw5stsCG4AxKwvPvXvxKCqCgwdh82aYMKHb6hfiXFCpVMwZkcSYtChW7TrJmt2FVDcYXJYP8PFg5tBELh+ZTHyY/1lsqWsS3ETvt3y5/VfjmDGtXtqSn8+/tm5lX3ExJTod7y5cyOUDBthf//LQId7YuZO9Wi3VTU1svO02hsTGtlSgVmMcMwaPzz5reS8JbqKXCA/04cbJ6Vw3IY3jJXXkams5VanDYLLgoVGTEO5PWmwwqTHBeJ/lDCRnIsFN9G7FxcpyfcCclIQ1IqLVy40mE5nR0dwwfDi/+fDDNo83mkyMTUpiwaBB/OGrr5y+hWngQGxff43KYID167v9Iwhxrnlq1GTEh5ARH3Kum9JhEtxE7+awUduSmNjm5RlpacxIS3P5+LVDhwJwsrra9Xt4eGCJjcUjP18JpiUlEBPjurwQosfJVgDRux08aP/V4jic2M1a1X3gQI+9jxCiYyS4id6tvt7+q7U5pVZPsPo7TKLrdD32PkKIjpHgJno3x+XIPbjrReVYdw8sgRZCuEf+LxS9m8MZbOpa91IJuUPlWLckUhbinJPgJnq34cPtv2q02h57G01xccvFsGE99j5CiI6R1ZKidxsxwv6rR36+MjTpkEFEZzBwoqrKfn2ypob9Wi2hvr4khoRQ3dhIYW0tJc1zd8eaky5HBwQQHahkTFc1NqIpLVUq6N8fJIuOEOecBDfRuwUHwyWXwJYtaMrL0RQUYElOtr+8p7iYeW+9Zb/+87ffArBo6FBeXrCA1UeOsPSLL+yv3/zJJwD8v0mTeGDKFAA89+5FZWlOUTR7dk9/IiFEB0huSdH7rVihHE4KmNLSaLzuuu7L/2g0EvjSS6hrapTrnBxIT++euoUQrbgTC2TOTfR+V11l31TtmZuLZzfuQ/P5/vuWwDZzpgQ2Ic4TEtxE7+ftDS++aL/0Wb0adXl5l6v1yMnB66efmiv1gRde6HKdQojuIcFNXByuvBIWLgRArdfj/9ZbqMvKOl2dR04Ofh9/jH1w87HHlMUkQojzggQ3cfF45RX71gC1TkfAa68pPS+rteN1GI34rFmD3wcftCwiue46uOeeHmiwEKKzZLWkuHgEByunZc+eDTt3ojKZ8F2zBq+9ezGMGYNp0CDwdH5ysKqxEc89e/DesaP1ZvDrrlPOi5OsJEKcV2S1pLj46HRw//2t5uEAbJ6eWGJjscTGYvP3B5sNVV0dmuJiNKWlqBx7eD4+8PjjcPfdEtiEOEvciQUS3MTF68cf4d57Yd8+95677DJ4/nmZYxPiLJOtAEJ0xJQpsGcPbN0KixdDUpLzcioVZGQogfDoUVizRgKbEOc5mXMTFzeVCsaNU34AysuVM+Dq65XhxtBQGDIEmlNtCSEuDBLchHAUGan06IQQFzQZlhRCCNHrSHATQgjR60hwE0II0etIcBNCCNHrSHATQgjR60hwE0II0etIcBNCCNHrSHATQgjR60hwE0II0etIcBNCCNHruB3cNm7cyLx584iLi0OlUvH555+3W379+vWoVKo2PyUlJZ1utBBCCNEet3NLNjQ0MHToUG6++WauvPLKDj935MiRVkcUREVFufvW4kJWUAA7dyo/hYVgMoG3N/TrB1lZMGoUyH8TQohu4nZwmz17NrNnz3b7jaKioggJCXH7OXEBMxjg00/hpZdgy5b2y6pUMHcu3HEHzJolB4AKIbrkrH2DDBs2jNjYWGbMmMGWM3zRGQwG6urqWv2IC8ymTTBoEFx//ZkDG4DNBqtWwZw5yvEzhw/3fBuFEL1Wjx95Exsby/Llyxk5ciQGg4HXX3+dyZMn89NPPzFixAinzyxbtoxHHnmkp5smeoLFAv/7v/Dss0rAOn07MhJTRgaWuDisERHYPDxQGY1oysrQFBfjmZ2N+vQfMTt2wPDh8MQTcPfd5+iDCCEuZCqbzeEbyN2HVSpWrlzJ/Pnz3Xpu0qRJJCUl8c477zh93WAwYDAY7Nd1dXUkJiZ26GhxcQ6ZzUpP7aOPWm4lJqKfNg1LcrIy9OiKxYLH0aP4rFuHprKy5f4DD8Bjj7X/rBDiolBXV0dwcHCHYsE5Oax09OjRbN682eXr3t7eeHt7n8UWiW5x2232wGZTq9FPn45x7NiOzZ9pNJgHDECXmorPDz/gvW2bcn/ZMuU07D/9qQcbLoTobc7JrP3evXuJjY09F28tesonn8B//wuATaOh8dprMY4f7/7CEE9P9LNm0TRnTsu9Bx+EPXu6sbFCiN7O7Z6bTqfj2LFj9uu8vDz27t1LWFgYSUlJPPDAAxQVFfH2228D8Nxzz5GSksKgQYPQ6/W8/vrr/PDDD3z33Xfd9ynEuVVRoaxybNY0bx7m/v27VKVx9GhU9fX4bNqkDHfedBP8/DN4eXWxsUKIi4HbwW3nzp1MmTLFfn3fffcBcOONN/Lmm2+i1WopKCiwv240GvnjH/9IUVERfn5+DBkyhHXr1rWqQ1zgnn8eyssBMGVkYBo6tFuqNUyahOfRo2hKS2H/fmXI84YbuqVuIUTv1qUFJWeLO5OI4iwzGiEpCUpLsanV1N99N7bgYAC25Ofzr61b2VdcTIlOx7sLF3L5gAEAmCwW/u+HH1ibm0t+dTVB3t5M6tuXh6dPJ9bh37EmP5+AN99ULsaNg61bz/YnFEKcJ9yJBbJTVnTN119DaSmg9NpOBzaARpOJzOhonpw7t81jjSYT+7Ra/jRxIhtuu413Fi7kWGUli95/v1U5S3IyltOZS7Ztg+zsnvssQohe45yslhS9iMMG7V8OR85IS2NGWprTx4J9fPh88eJW956cM4epr71GYU0Niaez2ahUGIcOxXftWuV661Zlc7gQQrRDem6ia3btsv9qiY/vUlV1ej0qlMDnqFW9Du8nhBCuSHATXXPkCADWgABsAQGdrkZvMvG3dev4dWYmQb8MbjExLRc5OZ1+DyHExUOCm+iaxkYAbF3YdG+yWLjp44+x2Ww87WR+Dse6m5o6/T5CiIuHzLmJrvFo/k/Iau3U46cDW2FtLV/deGObXlubuj09O/U+QoiLi/TcRNc0Z5pR19Yqm63dcDqwnais5IvFiwnz83Nafe91fAAAIABJREFUTl1V1XIRHd3ppgohLh4S3ETXNJ/soLJalc3WDnQGA/u1WvZrtQCcrKlhv1ZLYU0NJouFxR99xN7iYl696iosViul9fWU1tdj/EWQ1BQXt1xkZfXs5xFC9AoyLCm6ZuRIaE615pGb22pl457iYua99Zb9+s/ffgvAoqFDuX/yZNY0L0aZsHx5qyq/uvFGJqSk2K89cnNbXpTgJoToAMlQIrqmsBD69AGrFWtgIPX33AMaTbdVr9LpCHzmGVRWK0REKO/nbF5OCNHrSYYScfYkJsIVVwCgrq/Ha/fubq3ee9MmJbAB3HKLBDYhRIdIcBNd15w8G8Bn7VpU1dXdUq3m5Em8fvqpuWIfuP32bqlXCNH7SXATXTdhAtx6KwAqoxH/Dz8Evb5LVapqavD79FPs528/9hgkJ3etnUKIi4YEN9E9nnrKHnw0JSX4v/02qrq6TlWlLisj4I03UJ9+/pJL4O67u6ulQoiLgAQ30T2CgmD1amXRB+BRXEzgSy/huW8fdHTNksWC1+bNBLzyirJvDiA9HT77rFsXqQghej9ZLSm6V3Y2zJoFRUX2W5bISIwjR2IaMABbYCCoVC3lbTbUVVV4HjyI165dLb01gKFD4ZtvwDG3pBDiouVOLJDgJrpfZSX84Q+wYkWbl6z+/lgjI7F5eKAyGlGXlaH+5fycWg1//CM88gj4+p6lRgshzneyFUCcW+Hh8N578NVXymITB+qGBjzy8/E8dgyPgoLWgU2lgnnzlDPb/vlPCWxCiE6TDCWi51x+ufJz4IDSi/v5Z+U8tpqaljIxMUrWkTFj4De/UTaECyFEF0lwEz0vMxOWLVN+t9mUY3KMRuUoGxfJkoUQoiskuImzS6UCf3/lRwgheojMuQkhhOh1JLgJIYTodSS4CSGE6HUkuAkhhOh1JLgJIYTodSS4CSGE6HUkuAkhhOh1JLgJIYTodSS4CSGE6HUkuAkhhOh1JLgJIYTodSS4CSGE6HUkuAkhhOh1JLgJIYTodSS4CSGE6HUkuAkhhOh1JLgJIYTodSS4CSGE6HUkuAkhhOh1JLgJIYTodSS4CSGE6HUkuAkhhOh1JLgJIYTodSS4CSGE6HUkuAkhhOh1JLgJIYTodSS4CSGE6HUkuAkhhOh13A5uGzduZN68ecTFxaFSqfj888/P+Mz69esZMWIE3t7epKam8uabb3amrUIIIUSHuB3cGhoaGDp0KC+++GKHyufl5TF37lymTJnC3r17ueeee1iyZAnffvut240VQgghOsLD3Qdmz57N7NmzO1x++fLlpKSk8PTTTwMwYMAANm/ezLPPPsusWbPcfXshhBDijHp8zm3btm1Mnz691b1Zs2axbds2l88YDAbq6upa/QghhBAd1ePBraSkhOjo6Fb3oqOjqauro6mpyekzy5YtIzg42P6TmJjY080UQgjRi5yXqyUfeOABamtr7T+FhYXnuklCCCEuIG7PubkrJiaG0tLS/9/encdHVZ2PH//c2SfLZBmyAdkgLGFHhECkAopFrVu/lapUwfUnuLSWfhG0Vqmtta1LbcWKiqJV61cF3C1IUVFZZUcIS8ISErJvk2Uyk5m5vz/G3GRIgGwYMjxvX3l5595zz5yZ8OLh3POccwLOFRUVYbPZsFqtrd5jNpsxm81numlCCCGC1BnvuU2YMIE1a9YEnFu9ejUTJkw4028thBDiHNXu4FZTU8OOHTvYsWMH4E/137FjB7m5uYD/keLMmTO18rNnz+bQoUPcf//97Nu3j3/+85+88847/PrXv+6ijyCEEEIEandw27JlC6NHj2b06NEAzJ07l9GjR/Pwww8DUFBQoAU6gNTUVD755BNWr17NyJEjeeqpp1iyZIlMAxBCCHHGKKqqqt3diNNxOBxERERQVVWFzWbr7uYIIYToBu2JBWdltqQQQgjRGRLchBBCBB0JbkIIIYKOBDchhBBBR4KbEEKIoCPBTQghRNCR4CaEECLoSHATQggRdCS4CSGECDoS3IQQQgQdCW5CCCGCjgQ3IYQQQUeCmxBCiKAjwU0IIUTQkeAmhBAi6EhwE0IIEXQkuAkhhAg6EtyEEEIEHQluQgghgo4ENyGEEEFHgpsQQoigI8FNCCFE0JHgJoQQIuhIcBNCCBF0JLgJIYQIOhLchBBCBB0JbkIIIYKOobsbIHoQrxeysmDrVti9GxwOUBSIjoZRo2DMGOjf339OCCG6kQQ3cXp5efDii/DSS1BYeOqyAwbAnDlw880QFfWDNE8IIU4kjyXFyblc8NBDkJICf/jD6QMbwMGDMHcuJCXB88+Dz3fGmymEECeSnpto3Z49cP318N132ilVUfAMGIAnKQlfQgK+0FBQVXQOB/qCAgyHD2M4etRfuKYG7roLli2DN9+E+Phu+iBCiHORoqqq2t2NOB2Hw0FERARVVVXYbLbubk7w27oVLrkEKioAUHU6XJmZuMeNQz3N968rKcG8fj2m7dubTqalweefQ2LimWy1ECLItScWSHATgQ4cgAkToLwcAG9cHHU//Sm+dva89Dk5hLz/Prrqav+JgQNhwwZ/8okQQnRAe2KBjLmJJh4P3HSTFtg8SUnU3HpruwMbgLd/f2puvx1vYzA7cADuu68rWyuEECclwU00efpp2LwZAK/dTu2MGWA2d7g6NSKC2ptuQm2s4/XX4cMPu6KlQghxShLchF91tT8jElAB59VXg8XS6WrVqCicl17adGLBAjj7n4QLIXo4yZYUfm+84c9wBBpGj8ablKRdWnfkCP9Yv56dx49TWFPDG9ddxxXp6dr1x7/4ghXffUe+w4FRr2dUQgK/u/hizu/b11/fqFF4tm3DcOyYfxL42rUwefIP+vGEEOcW6bkJv5de0g5d48YFXKpraGB4XBxP/OQnrd6aZrfzxOWXs37OHFbeeitJkZH8z+uvU1pb6y+gKLib1/nii13efCGEaE56bsL/SHLHDsCfHelLSAi4fMmAAVwyYMBJb58+YkTA68emTeP17dvZU1TEpH79AGhIT0c1mVDcbli3ros/gBBCBJKem/AHtu/HwTzfP0rsKLfHw2tbt2IzmxkWF9d0wWDA25h1mZsLJSWdeh8hhDgV6bkJ2LtXO+xI2j/Ayv37uW3ZMuoaGogPD+f9mTOxh4YGlPEmJGDIzfW/yMqCmJgON1kIIU5Fem4C6uq0Q7WDGZI/Sk3l69mz+ey227g4LY2b332Xku8TVFqt2+ns0PsIIURbSHATYGjWge9gmn6oyUQ/u52xiYksuvpqDDodrzdfggsCF1E2yEMDIcSZI8FNQGysdqj7fnWSzvKpKi6PJ+Cc7vu1KgF5JCmEOKPkn88CzjtPO9QXFLS4XONycahZ0DtaWcmuggKirFaiQ0J46quvuGzQIOLCwymvq+OlzZspcDi4ZujQgHr0x4/7D8xmaDZPTgghupoEN+HfPTsiAqqqMBw5Am43mEza5e3Hj3Pla69pr3+7ahUAN4wcyd+uuIIDpaW8tXMnZXV1RFutjO7Th//ceivpJ/QI9Y0BcuRIMBp/kI8mhDg3SXAToNPBNdfAa6+huFwYv/uOhma9uR+lplK5cOFJb3/j+utP+xamLVuaXvzP/3SmtUIIcVoy5ib87rpLOzSvWwcNDV1WtVJdjWnrVv8LkwluvbXL6hZCiNZIcBN+48bBBRcAoC8rw/Lll11Tr6pi/egjFJfL//qmmySZRAhxxnUouD333HOkpKRgsVjIyMhg8/fbpLTm1VdfRVGUgB9LF6w2L86AF1/UxtpM69djaDa5u6NM69ZhPHDA/yIuDv7yl07XKYQQp9Pu4Pb2228zd+5cHnnkEbZt28bIkSOZNm0axcXFJ73HZrNRUFCg/Rw9erRTjRZnyJAh8OijACiqSsiyZRh37epYXT4f5rVrsf73v03nXngB7PYuaKgQQpxau4Pb008/zR133MEtt9zCkCFDWLx4MSEhIbzyyisnvUdRFOLj47WfuOZrDoqzy7x5MGsWAIrPR8iKFViXL0dptorJ6Sjl5YT+619Yvvii6eSf/gRXX93VrRVCiFa1K1vS7XazdetWHnjgAe2cTqdj6tSpbNiw4aT31dTUkJycjM/n47zzzuNPf/oTQ0+YA9Wcy+XC1ThGAzgcjvY0U3SGTgcvv+xP1V+yBADT7t0Y9+/HPWoU7vPOwxcb6y/XnNeLPi8P05YtGPfuRfF6m6795S9w//0/4IcQQpzr2hXcSktL8Xq9LXpecXFx7Nu3r9V7Bg0axCuvvMKIESOoqqriySefJDMzkz179tD3JCvQP/744/z+979vT9NEV9Lr/eNvF14Iv/wlVFaiuN2YN2/GvHkzqsmENz4e9fuFkRWHA31hYWBAA0hO9gfKiy/uhg8hhDiXnfFsyQkTJjBz5kxGjRrFpEmTWLFiBTExMbzwwgsnveeBBx6gqqpK+zl27NiZbqY4kaL4Mxv37oU77oCQkKZLbjeG3FyMWVkYs7Iw5OcHBrboaJg/H3bvlsAmhOgW7eq59erVC71eT1FRUcD5oqIi4tu4VYrRaGT06NFkZ2eftIzZbMZsNrenaeJMSUjw9+L++lf417/giy9g61Y48R8cAwbAmDFw2WXw85+DZMQKIbpRu3puJpOJMWPGsGbNGu2cz+djzZo1TJgwoU11eL1edu/eTcIJuz2Ls1xkpP8R5Xvv+Tcbrajw/z8vz7+T94ED8NZbMHOmBDYhRLdr9/Jbc+fOZdasWZx//vmMGzeOZ555htraWm655RYAZs6cSZ8+fXj88ccBePTRRxk/fjxpaWlUVlbyxBNPcPToUW6//fau/STihxUZ6f8RQoizULuD23XXXUdJSQkPP/wwhYWFjBo1ipUrV2pJJrm5ueiaZdJVVFRwxx13UFhYSFRUFGPGjGH9+vUMGTKk6z6FEEII0Yyiqh3cnfIH5HA4iIiIoKqqCpvN1t3NEUII0Q3aEwtkbUkhhBBBR4KbEEKIoCPBTQghRNCR4CaEECLoSHATQggRdCS4CSGECDoS3IQQQgQdCW5CCCGCjgQ3IYQQQafdy2+J9qnx1pDjzKHWWwsKhOvDSbOkYdVbu7tpQggRtCS4nQHZzmyWly5nk2MTua5cVAJXONOhI9WSynjbeK7tdS1JlqRuaqkQQgQnWVuyCx2oO8CTeU+ytWZru+67wHYBv+n7G5ItyWeoZUII0fO1JxZIz60LNKgNLC1cypKCJXhp2pFah44oUxR2sx2L3r/HWZ2njnJ3ORXuCq1Ht86xji1ZW7ir913MiJ2BTpGhUCGE6AwJbp1U76tn/qH5fOP4RjsXbghnsG0w/cP7Y9KZWr/PW092dTb7Hfup9dbiUl38Lf9v7KvbxyMpj2BUjD/URxBCiKAjwa0TGtSGgMCmoDAsYhgjokagV/SnvNeitzAschiDbIPYXrGdfY59APyn4j8APJryqPTghBCig+Rvz05YUrBEC2wGxcAl8ZcwOnr0aQNbc0adkXH2cUyOnYzu+1/Hfyr+w9slb5+RNgshxLlAglsHZdVlsbRwKeDvsV0UdxHx1vgO15cUmsSFsRdqr5/Nf5Zj9cc63U4hhDgXSXDroL8c+4uWPDI8cninAlujpNAkBoUPAsClung6/+lO1ymEEOciCW4dkFWXxe7a3QBEGCMYHjm8y+o+L/o8QvQhAHxd9TX5rvwuq1sIIc4VklDSAe+WvKsdp9vStTG21X9bza6Pd1F8sBijxUjKuBSufORK4gbEaeUb6hv44HcfsG3FNjxuD4OnDGb6k9MJjw0H/GNwjUkmKirLS5fzyz6//GE/oBBC9HDSc+uAjY6NgD+JJDUsVTufsy6HibdN5L5V9zFnxRx8DT4W/2wxrlqXVua9377Hdyu/4+alN3PvR/dSVVjFKzNfCag/LTwNBSXgvYQQQrSdBLd2Km8op6ihCAC72Y5R1zQfbfay2WTMyCAhPYE+w/ow47kZVORVkLczDwCnw8mmNzZxzR+vYeCFA0kclciMRTM4vPkwR749otVj1VuJMEYA/qW8XL6m4CiEEOL0JLi10wHnAe3YbrKfsqzT4QQgJNI/hnZsxzG8DV4GTh6olYkbGEdU36iA4AYQbY4GwIuXQ/WHuqLpQghxzpDg1k413hrt2Go4+cr+Pp+P9x58j9SMVBKGJABQXVyN3qQnJCIkoGx4bDiOYkfAuea7BtR6a7ui6UIIcc6Q4NZOJ67wfzLL5i2jIKuAWUtmdeh9Gsfc2vOeQggh/CS4tVOYPkw7dnqcrZZZdv8y9q7ayz0f3kNkn0jtfHhsOF63l7qquoDy1cXV2GIDV7h2epvqbv6eQgghTk+CWzsNtDaNl5W5ywKuqarKsvuXsfuT3dz9wd3YkwPH5BJHJaI36jm49qB2ruhgERV5FaSMTQkoW+by161HTz9Lvy7+FEIIEdxknls72Y12Yo2xFDcUU+Yqw+PzYND5v8Zl85axddlWbn/zdsxhZhxF/nE0i82CyWrCarOScWMG7z/0PiFRIVjCLSyfv5yUsSkBwa3eW09VQxUA/a39MevMP/jnFEKInkyCWweMt43nw7IP8ageDtceZkD4AADWvbIOgEVXLgoof8OiG8iYkQHATx/7KTqdjqWzlvoncV80mGufuDagfHZ1tjbONj58/Jn+OEIIEXRkJ+4O2FO7h5n7ZwIQaYzkij5XdNn2NB6fh/fz3qfOW4eCwntD3yPRnNgldQshRE/WnlggY24dMDR0KENDhgJQ2VDJd5XfdVnd2yu2U+f1J5xk2jIlsAkhRAdIcOug+Ynz0eNfU3JX5S6K6os6XWdeXR5ZjiwAzIqZ3/T9TafrFEKIc5GMuZ1EhaeCDY4N7Kvbx766fVR4KvCqXqw6K/2s/UgPSefy6Mv5qPwjfPj4vPBzLoq/iDhL3Okrb0VeXR5ri9dqr+/qfRfJluSu+jhCCHFOkeB2gj21e3i75G0+q/iMBrWh1TL7nPv4tPxTAEJ0IdT56mhQG/is4DNGRI5geOTwNo/BeXwedlTuIKsqS0si+XHUj7kh9oau+UBCCHEOkuD2vTpvHf/I/wfvlr7b6nWDYkBBwaN6AlYMqfM1TchWUdlZuZMjtUcYbBtMv7B+AQsrN+fyusipyWGfYx81nqYlvS6JvIRHkx/VttERQgjRfhLc8K+8PzdnLvnupo1BTToTaWFpJFgTsJvtWPQWALyql0p3JSWuEnKqc1pM5AaoaqhiU9kmtpRvIdoUjd1sx6q3oqJS56mj3F1OuascHz7tHqNiZHbCbG6Ku0kCmxBCdNI5H9wO1B1g9sHZVHn9k6YNioFRUaMYGD5Qm5zdnF7RYzfbsZvtDLYNpqS+hE1lmyh3l7co61W9lLhKKHGVnLIN48LHMa/vPPpZZSUSIYToCud0cCt2F3N39t1aYLOb7FwYeyHhxvA21xFjieHy3pezq3IXuyp3aedHhI6grKEsoDfYXJI5iQm2CVzb61oJakII0cXO2eCmqiqP5T5Gucff44oxxzA1fupJx8hORafoGBU1CovewuayzQDsr9vPW+lvEWmIJNuZTY23BgWFcEM4adY0wvVtD6BCCCHa55wNbp+Wf8o3jm8A/95pU+KmdCiwNTfYNhhHg4N9jn24VBe/P/p7Xh74MmPCx3RFk4UQQrTRORncfKqPJYVLtNfj7eO1hJHOOi/qPPLr8qn2VLOzdiffVn/LONu4Lqm7UYPawNdVX7O1eitZdVlkO7Nx+pwoKNgMNgZaB5Ieks7EiImMCh2Foiinr1QIIYLIORncNldvJteVC0CcJY7E0KYlrnLW5/D5s59zbOcxHIUObn39Vkb8ZIR23VXj4qNHP2L3J7upq6gjOimaC++8kAtuuQAAg87A6OjRfFX8FQDvlr7bZcGtxlvDv4v/zYrSFZQ0tJ6kUuGpYFP1JjZVb+LVolfpb+nP9bHXc5X9KgzKOfnrFkKcg87Jv+0+LvtYO04KSeJQzSEq3BW4vC4qQyqJuCmCtLvTWDV3VYtdsN9/6H0Ofn2QG1+4keikaPZ/vp9l85YRER/BsMuGaXVa9VacXidrK9fi8DiwGTq34PMGxwb+cPQPFDW0XOYr1BCKRefvedZ6aqn31WvXcupzeCz3MT4o/YCFyQtJtaZ2qh1CCNETnJPBbWftTu342/JvAy9G+H+OcYwhbw9hb8NeqIAB4QMIMYRwePNhxl4/lgET/dvcZN6cyfrX1nN021EtuOkUHUkhSeyv3o8XL1l1WWTYMjrUVlVVee74cywtWqqdU1DoG9KXAeED6GXuFfBIVVVV6rx1FDoLOVB9QJuG8F3dd8zYN4OFyQuZFj2tQ20RQoie4pxaONmn+nit8DWOu4+3+Z4GYwM7K3ey4tgKdlbsJGV8Ct+t/I7K45WoqsrBrw9SklPC4CmDA+6zm5t24c6qy+pQe1VV5am8pwICW7wlnmv6XsOUuCn0DenbYqxQURRCDaH0D+/PZb0vY1rCNGxGf6/Rrbr57ZHf8knZJx1qjxBC9BTnTM+tpKGEBw8/yLaabQHn4y3xxFvjsZvshBhCAHB6nZS7yimqL+K48zgqKj587KzcSdSvo4h7Po6FwxaiM+hQdArXPXMd/TP7B9QbZYrSjvNceR1q81slb/FWyVva6/Ojzyfdlt6uBJE4SxxX9L6CzWWbya7xb4L6+6O/J8GUwHnh53WoXUIIcbY7J4JbgauAOw/eGTChekD4AIZGDNV6Nc1FEUVva2+GMYxaTy1ZVVlkOfwLG1d4KvBO9/KLqb+gT1wfctbnsPz+5UTERzBo8iCtjubJG27V3eI9nF4nOfU51HprtflvqZZUbezsSP0RFuU37eid2SuTtPC0Dn1+g87AhF4T0Ct67VHpwqMLeTv9bax6a4fqFEKIs1nQB7cqTxV3Zd+lBbYQfQgTYyYSb41v0/2hhlDOt59Palgq35R8Q1VDFfpIPUfsR0hPSOdHQ39E/u58vlj0RUBwO3HdSIDDzsMsK13G5urNHKk/ElAGQI+eftZ+jA8fz5bqLbhUFwDptvQOB7ZGiqIw1j6WCncFxa5i8t35PF/wPHP7zu1UvUIIcTYK+jG3J449oaX924w2Lu99eZsDW3N2s51LEy7FbvKPpTm9TtaXrkdVVRS9guoLzKqsdFdqxwbFwOyDs7k261r+r+T/OFR/qEVgA/Di5aDzIK8Xv06W0z9OF6oPZXTU6Ha3tzU6RUdmTKa2MPPy0uVUe6u7pG4hhDibdCi4Pffcc6SkpGCxWMjIyGDz5s2nLP/uu+8yePBgLBYLw4cP59NPP+1QY9trbeVa/lPxHwCMOiNT46Zq42odYdabuTj+YkL0/joK6wv57PPP2PL2FoZfMTygbPPdAlaUruDb6qasTAWFaFM0aWFpDI8YzvCI4fQP60+kMRKFwPE0p9fJgeoDqKo/eOasz+GlG17i4SEPc1/0fez6ZBcnKtxfyEszXmJB8gLu73s/T138FBV5FYA/wKeF+XuB9b56SS4RQgSldj+WfPvtt5k7dy6LFy8mIyODZ555hmnTprF//35iY2NblF+/fj033HADjz/+OFdccQX//ve/ueaaa9i2bRvDhg3rkg/RmsYU+kbjoscRZgzrdL0WvYUJvSawpmgNAMejj3PZQ5dpk7gb3zu3Jld73dhLCzeEa/u8mfXmVut3ep1kV2ez37GfOm8dPnxsKd9CmauMC2IuwFXrovew3mT8IoNXZr7S4v7Sw6X84/J/MP7G8Vy24DIs4RYK9xViMDf9qgfZBrG/ej8A/yn/D9fHXt/p70UIIc4mitrYJWijjIwMxo4dy6JF/mQHn89HYmIi9957LwsWLGhR/rrrrqO2tpaPP26aOD1+/HhGjRrF4sWL2/SeDoeDiIgIqqqqsNnaNhl6W/U27jh4B+BfFPnShEtRFIXVf1vNro93UXywGKPFSMq4FK585EriBsRp977967c5sPYAjkIHplATqeNS/WUGNpX5suhLcuv8AexHMT8iNaxpcnReXR6fF32uvVZQGBYxjBFRI9q8V1uDr4HtFdvZ59innUsNTWVizEQtW/K+6PtarKDy2m2voTfquXHxjaes/71j71HtqcakmPhq1FfauKAQQpyt2hML2vVY0u12s3XrVqZOndpUgU7H1KlT2bBhQ6v3bNiwIaA8wLRp005aHsDlcuFwOAJ+2uv9sve148G2wVpAyFmXw8TbJnLfqvuYs2IOvgYfi3+2GFetSyufODKRGYtmsGDjAmYvm42qqjz/s+fxeX0BdTbKrs7Wjn2qjw2lTZ/NqBi5JP4SRkePbtcmpEadkXH2cUyJnYJO8f+aDtceZq9j70nv8fl87F29l5j+MTz/s+d5aOBDPD316VYfXTbOw3Orbg47D7e5XUII0RO0K7iVlpbi9XqJi4sLOB8XF0dhYWGr9xQWFrarPMDjjz9ORESE9pOYmHjSsiezo2YH4N9cNCk0STs/e9lsMmZkkJCeQJ9hfZjx3Awq8irI29k0Fy3z5kz6Z/bHnmQncWQiP/ntT6jMr6Q8t2lD0jhLnDb2VuIqwaf6A9+3Zd/i9DoB0KHjoviLOpTA0igxNJFJsZOaPlfFDqrcVa2WrSmpwVXjYs3f15B+cTqzl89mxBUjWDpzKdnrsgPKRhgjtOPChpP/LoQQoic6K7MlH3jgAaqqqrSfY8eOtet+h8ehpf5Hm6JP2WNyOvyBKCSy9UQTV62LTW9uwp5sJ7JPpHZeURR6mXsB4FE9OBoc5NXmaWNZACOjRhJniWtRZ3slhiSSbksH/Lt7N+4Zd6LGjM1hlw1j8l2T6Tu8L1Pvm8qQaUNYt3RdQNnm34nH5+l0G4UQ4mzSroSSXr16odfrKSoKXLy3qKiI+PjWeyfx8fHtKg9gNpsxm1tPuGiLo66j2nHzlUJO5PP5eO/B90jNSCVhSELAtW9e/oYPF36Iu9ZN7IBY5qyYg8FSa98eAAAb6ElEQVQU+HVFmaK0cbeD1QcDxseiTFEMjRja4c9wotFRozlWd4waTw0F9QUBUw0ahdpD0Rl0xA8K/G7jBsZxeGPgo0eP2hTQOruPnRBCnG3a1XMzmUyMGTOGNWvWaOd8Ph9r1qxhwoQJrd4zYcKEgPIAq1evPmn5ruDyNY2fneov7mXzllGQVcCsJbNaXBszfQzzvpzHvR/fS0z/GF699VUa6hsCyph0Ju24cQWTRkMjhmpjZav/tpqnLn6K+UnzeWjgQyy5cQlFBwMD/vpX1/Pslc8yP2k+90XfR11VXcB1g84QMM53oPpAizYbTAaSRidRnF0ccL4kp4SoxMAg3zw49jX3bVGXEEL0ZO1+LDl37lxeeuklXnvtNbKyspgzZw61tbXccsstAMycOZMHHnhAK/+rX/2KlStX8tRTT7Fv3z4WLlzIli1buOeee7ruU5yg+SO3xrGwEy27fxl7V+3lng/vCXjc2MhqsxLTP4b+mf255dVbKD5Y3CIxw6t6W63bpDORHJKsvW5LEovb6Sb94nQumXvJST9X/7D+6L7/lR2t9PdOy4+Wk7c7T5vHdtG9F7H9ve1seG0DJYdK+Pqlr9mzcg8Tb5uo1aOqKqWuUgBCdCEkm5MRQohg0u55btdddx0lJSU8/PDDFBYWMmrUKFauXKkljeTm5qLTNcXMzMxM/v3vf/PQQw/x4IMPMmDAAN5///0zOsctxhijHVc3BK7Aoaoqy+cvZ/cnu7nnw3uwJ9tPvL0l1X+fxxU4NlXtaX11jxhzDHpdU4CdvWx2wPUZz83goYEPkbczT1twefKcyQAc/ObgSZth1puJNkdT6irFqXOiC9Px/kP+rNCxN4zlF8/9ghFXjGD6U9P57zP/ZcUDK4hJi+GW126h3/h+Wj2lrlLqvP6eYXpIutbDFEKIYNGhtSXvueeek/a8vvzyyxbnpk+fzvTp0zvyVu2mqir5rnwMigGP6glYKQT8jyK3LtvK7W/ejjnMjKPIP83AYrNgspooPVLK9ve2M3jKYMJ6hVGZX8l///5fjBYjQy4ZElBXmaupbqvOitPnT05pvt1Na06XxHIq0aZordc1f/984qwtE1bG3zie8TeOP2kd+x1NSS9X2q9sdxuEEOJsF1QLJ++v28+jRx9ln7MpscPpdVLmKtMCzrpX/FmDi65cFHDvDYtuIGNGBkazkUMbDrF28VqclU7CY8Lpn9mfX638FeEx4Vr5Wk8tFW7/o8AIYwTptnQ2lm0E/Istn8ypkljaonndzccW26rUVcrhWn9ySYQ+gkuiTv4YVAgheqqgCG4+1cfLhS/zUsFLeGk5DrbfsZ/MmEwAnil/5pR1RSREcOc7d572PQ84DmgJJCmhKW1ua2MSy68+/ZV2rtZTS6mrlDJXGQVRBaT+NZVNNZuweW3YzXZ6mXp1ydJhHp+HdSXrtHbfGHejtsWOEEIEkx4f3Lyql0ePPsrH5U3Le0UaIxkaMZTNZZtpUBs4VHuIoRFDiTBFnKKmtqvz1Gnz2RQUBoQPoKi+Kfux3lvf6n2NSSz3fnIvtt42jtYeZb9jP4X1zSZRh0DUxVEccx+DZtvAxVniGBg+kHpPU90GXdt/fV7Vy1clX1HV4J8Anh6Szsy4mW2+XwghepIeH9z+cuwvWmBTUBgWOYwRkf41HCsbKtlTtQef6mNd6TouTbi008kTqqqysWwjbp8/8qSGpRJiCCHS1JRxWe4qb3FP8yQW4uHj/I+pbGg5V+1kiuqLKKovCsgEPdUcvuacHifflHxDQX0B4B8fXJi8MGBDVSGECCY9+m+31RWrWV66HPAHtgtjLyQ5tCmtfWTkSHJrc6n2VFPqKmVz2WYy7BnaOpMdsbtyN3l1/qW6LDoL50efD/jH3fSKHq/qpcRV4t/n7fv3aUxiue3N2zhiPsK+4/sC5sSFG8JJCU3BbrYTaYrUkmGq3FWUucs4WntU63E1Tj8wKIbTPlL0qT4O1xzm2/JvtWBsVsw83e9p0qyd2/xUCCHOZu3eFaA7tLYSdEVDBdOzplPh8Sd1ZPbKbHW36uL6YlYVrNKCSVpYGuPs49r1SA/8gWJ7xXb2VO3Rzk2OnaytW/nO3HcoOq+IiAv8jz4vjruYPiF9AP/q/QB95/Ul9vqmbYGiTFGMiRpDgjXhlAFXVVUK6wvZVr4tIPszTB9GlCmKel89XtWLgoJRZ8Sit+BTfRTXF1Pva3qMGW2I5q/9/srosK7Z/FQIIX5I7dkVoMf23JYWLdUCW1JIEv3D+rdaLtYSywUxF/BNyTcAZNdkU+wqZkKvCW1e97HCXcH6kvUBgWVM9BgtsO36eBdHthxBrVS14La3ai+9rb1RFIVnyp9hR8UOdlU2TQIfETmC4ZHD27RTgKIoJFgTuKz3Zeyp2sOOih2oqNR4a6hx1rTpM0yLmsa8xHlEGdr2KFMIIXqyHhncnD4nH5V9BIBO0Z32UWO/sH4oKKwrWYcPH44GB6sKVhFjjmFg+EDirfGE6EMC6nB6nBS7ijngOKCNVYH/8ef50eeTHuFfyLjyeCXL5y9n9rLZvDjjRfROPV6rl4L6Ag7XHqZfWD+K64sDAtsFvS6gf3jrwfhUdIqO4ZHDCTeE83XJ1wGPNnXoUL//rzURhgjMSsfX6xRCiJ6kRwa3NRVrcHj9k69TQlOwGqzatZz1OXz+7Occ23kMR6FD28wzNSyVKFMUb616i9Bh/rliJa4SSlwlgH/8zGqwoqDg9Dq1bWua03v1TIifQL8w/2ofPp+PN+e8yUX3XkRCegL4IGpfFKWj/ZOsN5dtJtoUzfrS9Vodo6NGdyiwNZcSlkKdt44t5VsACNWHclXfqzAoBm1eX0F9ATk1OTT4/OthvlPyDuuq1vFUv6cYEDKgU+8vhBBnux657tK2mm3acVpY4Dibq9ZF72G9ufav17a4L9IUyQ1jb2CkcSThSnjAtXpfPRXuCsrd5a0GNgCv3ss3Jd+wtmgtTq+TNX9fg06v48I7L9TKhBSFaPPe3D43qwpW4WjwB+Je5l5dtlNAui1de6xa660lpyYHRVEIMYSQGJrIOPs4rk28lvOjz9cefea787nj4B1k1WV1SRuEEOJs1SN7bo1/OSs07anWaMglQ1osk9VcZHwkkUQyQh1BsauYT//vU9Q4lbAhYbh9blRUjDojVr1Vy1CMNERS463Rtok5WneU40eOc3THUeY8N6fFI9EMewYV7gqqGqoCVhEZGz02YKeAXR/vovhgMUaLkZRxKVz5yJXEDfg+YFXUsvLPK9n3xT4q8yoJtYcy/CfDufzBy7HarCiKwjj7OD7K9z+e3e/Yz6DwQQFtMeqMDIkYQt+Qvnxd/DVl7jKqvdXck30Pbwx6gwRz+1dIEUKInqDHBTdVVTlUfwgAm9HW7qzHRoqiEOIIYff9u/nFP3/BmOQxAdcr3ZV8mP8hAJHmSC7tdSmHag6xs2InLp+LBl0DCb9L4NkHn6X8Y/+8Np/Xxwe/+4C1i9cyb+s8VhaspMbjT/iwm+zEWJoWdG7cKSBpdBI+r49P/vAJi3+2mAUbFmAONeMocFBVUMXVj15N/KB4yo+V8+5v3sVR4OCW1/w7MESZoog1x1LsKqaqoYpSV2nAezSyGW38OOHHrClcQ7GrmEpPJX/I/QPPpT3XqWkRQghxtupxjyU9qkfrQZl1nUuQ2Px/m7GEWRhxxYgW18z6pro9qgeTzsRg22Cu6nsVSSH+LElFr5D0uyRmfj2TeWvnEZEQwUX3XsTsZbMJMYQwMHygVkdqWGpA/bOXzSZjRgYJ6Qn0GdaHGc/NoCKvgryd/jl0CUMSuPVftzLs0mH0Su3FwAsH8pPf/oTvVn2H19O0xFjj+B+gjR+2xqgzMiVuCiF6/2LNm6o38V7Ze+35uoQQosfoccGteU/jZJmBbbXpzU2MmT4Go6XlhqbNp//pmn1NVr2VSbGTSLelf98gyLJmETEwAp1BR3hsuPZosXGsDWjx+PREbdkpwOlwYgm3oDc0TR9ovgNB810KWmPWm5nQq2mT2JcLXz7pnnRCCNGT9bjgZlAMhOn9iwjXemo7XE/OhhyKDxYz/qbWt4ZpXnfzHbfBH2DPjz5fSxxp8DWwoXRDizqa7/fWfHmuE7Vlp4Casho+e/IzMmdlBpxvXm+1p5rq4mrevPtNHh7yMPP6zGPxtYspyWnq0fUJ6UMfq39yeaG7kHVV607aLiGE6Kl6XHADGGQdBECdtw6np/XMxtPZ+MZGEkcl0mdYn1avN+6ZBhBtjm5xXVEUMuwZWPX+aQj5znzu3HintukoBO7UbVRa9g4bNe4UMGvJrFav1zvqefG6F4kbFMel8y8NuKZX9Fo2pMfnYcmNSyg7Usbtb9zO/375v0QlRvHPn/4zYNfvQbZB2vGHZR+etF1CCNFT9cjglh6Srh03n2AN4Kpxkbc7j7zd/rGr8qPl5O3OoyKvQitT76hn5wc7T9prO7Feu6n1zUfNejNjopsSURp3Cmjk8TXt3O1Tfa3W0bhTwD0f3kNkn5a9u/rqehZPX4wl3MJtr9+G3hi4oomqqlrdPrePo1uOMv3J6SSdl0TcgDimPzWdhvoGti1vmj7R29pb643urtvdaruEEKIn65HBbVLEJO24+a7SALk7cnly0pM8OelJAN5/6H2enPQknz7+qVZm24ptqKrKeT87r9X6az215NflA+AudvNY0mPcF30f90Xfx+JrFweUTQ5N1hYwzq3N1ba7cXvdAY8lG6cVNFJVlWX3L2P3J7u5+4O7sSe3DKD1jnqe/9nz6E16bn/z9lbHBqs91drYo8nnD1jNy+l0OgwmA4c2HWo6p+iINvl7o6UNpZQ0nDwRRQgheqIeNxUAYHTYaPpb+pNTn0OJq4RCZyHx1ngABkwccNoNSTNvziTz5syTXv+u6rumZJUd8OjuR7VrBnPgV6ZX9KSGpZLlyEJFpdRVSpwljjVFawIeS5a5ywIebzbuFHD7m7djDjPjKPInn1hsFkxWkxbY3E43N71wE/XV9dRX+wNnWK8wdHr/v0uaJ5H0jupNVN8oPn70Y37+t59jCjHx5fNfUnm8EkdhU3IL+KcRNO4jd6z+GDHGllMIhBCip+qRwU1RFK6PvZ7Hch8DYEPpBq7ocwVG3cnHtdqqqL6oqTfYAOwA252nXn26eSbkcedxdlTsoNwduKfbsbpjDAhvWvZq3Sv+RI5FVy4KKHfDohvImJHBsV3HOLr1KAB/HPPHgDK/2/E77El2rV6tHdZe3PqvW3nrl2/xYL8H0el1DJw0kPSp6Zy4+UPz+YEu1YUQQgSTHhncAK62X83HZR+zs3Yn1Z5qNpZuZGLMxE5NSq7z1PFN8Tfaa+Ubhez/ZPPQwIewRloZ8KMB/OS3PyE0OjTgvsZHfOB/TNrY6wvXhWPQGajwVJBfl09NQw1hRn+m5+l6l23pgTo9TnJrcwH/2pgJ1gT0o/Tc/9X9OB1OvG4vYb3CeHrq0ySNTgq4t/kY4KmSXYQQoifqkWNu4H8c+EjyI9pK94drD7OudF2H521VN1SzqmAVtV7/FIAYcwxDIoZw4/M3ctf7d3HlI1eSsy6HF37+Aj5vYHJI8wnfjYGtr7kvLw16ietirtPO76jY0aG2nczOyp348LclLTwtYPscq81KWK8wSnJKOLbjGMMuGxZwb/MxwFhjLEIIEUx6bM8NINmSzJ9S/8T9h+7Hi5dDNYcod5VzQcwFAZObT0VVVQ5WH2Rr+VYaVP8K+mGGMCbFTiLkZ00TqnsP6U3vob3543l/JPubbAZOalp95MRMyBtibuDuPndj1VmJNkTzRvEb1HhrOFR7iOTaZBJDEzv92Y87j3Og+gAAelVPfG08RMOO93cQ2iuUqL5RFOwtYMUDKxh++XAGXzQ44P5yl/+xaagulL7mvp1ujxBCnE16bM+t0eTIyfy535+1R2uVDZV8evxTviz6kgJnQYuxpkYNvgYOVh/k4+Mfs7FsoxbYbEYb0xKmEWJouVJIr5RehNpDKTkcmF3YuH4kwEURF/G/if+LVeef/2Y32vlN399o19eVrtMCS0dVuiv5uvhr7fXhPx/miz9/AUBVURVvzn6TxzMeZ8WCFYz9+VhmLpkZcH+Zq4w6bx3gn1bRuJizEEIEix7dc2t0UeRFvDboNRYeXcgB5wFUVHLrcsmty8WgGIg2RWMz2tApOhp8DdqK/Scu3xVdEc2PR/24xYokjSrzK6krryMiLiLgfPOMxQxbRov7roy+ki8qv+Crqq9w+9x8VvgZF8ZeSG9r73Z/1qL6Ir4s+lLbbSDBksBNL9ykjTVOunMSk+6cdKoqAqZPTIue1u42CCHE2S5o/sk+KGQQ/xr0L+7ufTd2Q9MjSY/qodhVTHZNNgeqD3C49jCVDZUBgS3cG072PdmEbQyjeE8xFXkVuGpcfPDwBxz59ghluWUcWHuAJTcuoVe/Xi0e8R13HteOm08wb6QoCo+lPMaIUP8CzW6fm/8W/peNpRtxeduWqej2ufm27FtWFazSAlu0KZpJcZPalURT5a7iUK1/zluoLpTLoi5r871CCNFTKOrJntudRRwOBxEREVRVVWGznTotH/yPHL+o/ILPKj5jV+0uyjyBCworKESaIjGVm1g7Zy11e+sCro+9YSzTn5zOyze+TP7ufJxVTmzxNgZPGczlD15OeGzTRqfVDdW8l+dfXT/eFM+HQz8MSOxortZby/zD89ngaFqHUq/oSQ1NJSU0BbvZHpCc4vK6KHOXkVuby6GaQ9puCABxljimxE7BpG+9l9kan+pjZcFKbWmxm+Nu5t4+97b5fiGE6E7tiQVBGdyaU1WV67OuJ7s+G/BvJJoWloZe13oAaq/1JevJrvHXfXfvu7k1/tZTlvepPpaVLuPv+X+n3lff4rpVb0Wv6PGq3lZ3BNcrekZHjWawbXC7xspUVWVz2WZtibBkczL/Tv+3trqKEEKc7doTC4LmseTJKIrCrLimBYl3V+7GS9ds83LceVwLbFadlWvs15z2Hp2i4+cxP+fd9He5PuZ6QnWBc+acXic1nppWA1uCJYEr+1zJkIgh7QpsXp+XDaUbtMCmR8/DyQ9LYBNCBK2g77mBv9dyd/bdbKreBEDfkL5Mjp3cqSzB6oZqVhas1ILQgsQFTI+Z3u566rx1fFn1JXtq95BVl0W+O58GXwNGnZEEUwJVnipyXbla+eTQZMbZx2m7EZxOSX0J60vXa/PaFBQeTX6Uy+2Xt7utQgjRneSxZCsKXAVcl3UdtT7/JO3EkEQmxkzs0JJdle5K/lv4Xy2dfmz4WP6Z9s8zklLvUT38KfdPfFD2gXZOr+hJCU0hLTwNu8kesJQWQL23ngJnAQeqD1BUX6SdNypGFiYv5NLowG1zhBCiJ5DgdhKbHZv5Zc4vAyZrZ/bK1BZdPh2f6iPLkcX2iu3axO1+ln68OPBFogxRHW7X6aiqyqqKVfz12F+p8gbuLqCgEGGMwKw3o6oqtZ5abZWV5oaEDOGR5EdIs6adsXYKIcSZJMHtFDY5NvGbQ7/B6Wsa00qwJDDINoje1t4tekHgHwc7VHOIA44DAdvYDLQOZFHaIuzGtq2G0lllDWUsLVzKR+UfUeOtOf0N+BNHrou5jp/F/AyDEhTTGoUQ5ygJbqeRW5/L74/+nh21gWs9Nk4RsBmaJnyXu8u1x4/Ny82IncGc3nO0lUh+SE6vk9WVq9lWvY2suiwO1x/WkmSsOiuDrIMYEjqEibaJjAsf16nFpIUQ4mwhwa0NGlPy3yx+kzxXXpvvywjP4P8l/D9GhY3qknZ0BZ/qw6260aPHoBgkmAkhgpIEt3bwqT42Vm9kdcVq9tbuDegFAYToQhgcMpjhocO5yn4VKZaULn1/IYQQbdOeWHDOD8LoFB2Ztkwybf6duet99VR4KvD4PJh1ZnoZe8nCwkII0cOc88HtRBadhQRTQnc3QwghRCf0iODW+OTU4XB0c0uEEEJ0l8YY0JbRtB4R3Kqr/en3iYmd3+RTCCFEz1ZdXU1ERMQpy/SIhBKfz8fx48cJDw8P2kxAh8NBYmIix44d6/KkmXONfJddQ77HriPfZddQVZXq6mp69+6NTnfqXIge0XPT6XT07du3u5vxg7DZbPKHv4vId9k15HvsOvJddt7pemyNJA1QCCFE0JHgJoQQIujoFy5cuLC7GyH89Ho9kydPxmDoEU+Lz2ryXXYN+R67jnyXP6wekVAihBBCtIc8lhRCCBF0JLgJIYQIOhLchBBCBB0JbkIIIYKOBDchhBBBR4LbWeiqq64iKSkJi8VCQkICN910E8ePH+/uZvU4R44c4bbbbiM1NRWr1Ur//v155JFHcLvd3d20Huexxx4jMzOTkJAQIiMju7s5Pcpzzz1HSkoKFouFjIwMNm/e3N1NOidIcDsLTZkyhXfeeYf9+/ezfPlycnJyuPbaa7u7WT3Ovn378Pl8vPDCC+zZs4e//e1vLF68mAcffLC7m9bjuN1upk+fzpw5c7q7KT3K22+/zdy5c3nkkUfYtm0bI0eOZNq0aRQXF3d304KezHPrAT788EOuueYaXC4XRqOxu5vToz3xxBM8//zzHDp0qLub0iO9+uqr3HfffVRWVnZ3U3qEjIwMxo4dy6JFiwD/IvCJiYnce++9LFiwoJtbF9yk53aWKy8v58033yQzM1MCWxeoqqoiOjq6u5shzgFut5utW7cydepU7ZxOp2Pq1Kls2LChG1t2bpDgdpaaP38+oaGh2O12cnNz+eCDD7q7ST1ednY2zz77LHfeeWd3N0WcA0pLS/F6vcTFxQWcj4uLo7CwsJtade6Q4PYDWbBgAYqinPJn3759Wvl58+axfft2PvvsM/R6PTNnzmzT7rPngvZ+lwD5+flceumlTJ8+nTvuuKObWn526cj3KERPIWNuP5CSkhLKyspOWaZfv36YTKYW5/Py8khMTGT9+vVMmDDhTDWxx2jvd3n8+HEmT57M+PHjefXVV0+7yeG5oiN/JmXMre3cbjchISEsW7aMa665Rjs/a9YsKisr5WnMGSbLU/9AYmJiiImJ6dC9Pp8PAJfL1ZVN6rHa813m5+czZcoUxowZw9KlSyWwNdOZP5Pi9EwmE2PGjGHNmjVacPP5fKxZs4Z77rmnm1sX/CS4nWU2bdrEt99+y8SJE4mKiiInJ4ff/e539O/fX3pt7ZSfn8/kyZNJTk7mySefpKSkRLsWHx/fjS3reXJzcykvLyc3Nxev18uOHTsASEtLIywsrJtbd/aaO3cus2bN4vzzz2fcuHE888wz1NbWcsstt3R304KfKs4qu3btUqdMmaJGR0erZrNZTUlJUWfPnq3m5eV1d9N6nKVLl6pAqz+ifWbNmtXq9/jFF190d9POes8++6yalJSkmkwmddy4cerGjRu7u0nnBBlzE0IIEXRkAEIIIUTQkeAmhBAi6EhwE0IIEXQkuAkhhAg6EtyEEEIEHQluQgghgo4ENyGEEEFHgpsQQoigI8FNCCFE0JHgJoQQIuhIcBNCCBF0/j9b8LwUNBRN/gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" ] }, "metadata": {}, @@ -310,61 +372,77 @@ } ], "source": [ - "import matplotlib.pyplot as plt\n", + "import networkx as nx\n", + "from karateclub.node_embedding.neighbourhood.deepwalk import DeepWalk\n", "\n", - "fig, ax = plt.subplots(figsize=(10,10))\n", + "dw = DeepWalk(dimensions=2)\n", + "dw.fit(G)\n", "\n", - "for x in G.nodes():\n", - " \n", - " v = hp.get_embedding()[x,2:]\n", - " ax.scatter(v[0],v[1], s=1000)\n", - " ax.annotate(str(x), (v[0],v[1]), fontsize=20)" + "V=np.matrix(dw.get_embedding())\n", + "\n", + "plot_embeddings(V)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## DeepWalk" + "## Node2Vec" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 60, "metadata": {}, "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3RUdf7/8eedSZn0TkI6LYZQBURK6NLLoqBIUxBWxVVk97u/76rrLpa17KorK6wNWETq0qSLwUDooUhCCzUJgSSQStokmXp/f2TnSkwIHfcr78c5Oedm5nM/9zP3r9f5VEVVVRUhhBBCCCFuke7nboAQQgghhPi/TQKlEEIIIYS4LRIohRBCCCHEbZFAKYQQQgghbosESiGEEEIIcVskUAohhBBCiNsigVIIIYQQQtwWCZRCCCGEEOK2SKAUQgghhBC3RQKlEEIIIYS4LRIohRBCCCHEbZFAKYQQQgghbosESiGEEEIIcVskUAohhBBCiNsigVIIIYQQQtwWCZRCCCGEEOK2SKAUQgghxF2lqiqzZ8/G09MTRVFISkq66Tq2bt3K008/TfPmzfHw8MDX15eWLVsycuRI/vGPf5CZmXnnGy5umNPP3QAhhBBC/HJlZGTwzDPPsGPHjlu6v6SkhGeeeYZvvvmGzp07M3nyZEJCQsjPz2flypWsW7eOdevWcfHiRT788MM73HpxoyRQCiGEEOKOU1WVOXPm8Oqrr6LX6+nSpQvJyck3VUdlZSXDhg1jz549zJkzh9/85je1vn/11VcZP348S5cuvZNNF7dAhryFEEIIcce9+eabTJ8+nfj4eI4fP87AgQNvuo4///nP7NmzhxdeeKFOmHR44403CAgIwMPD43abLG6D9FAKIYQQ4q6YN28eU6ZMuaV7MzIy+OSTT1AUhddee+2a5Vq0aEFhYeGtNlHcIRIohRBCCHHHzZw5E0VRbvn+r7/+GovFQseOHQkLC7uDLRN3gwx5CyGEEOKOu50wCbBq1SoA2rZtW+tzs9mM0Wi8rbrFnSeBUgghhBD/VSorKzl58iQAkZGRlJaW8sc//pFmzZphMBjw9PTEx8eHkSNHsmvXrp+5tQJkyFsIIYQQ/2VOnDiB3W4H4MKFC7Rp0waj0ciMGTN48MEHKSsrY/ny5dqWQX/605946623fuZW398kUAohhBDiv0pBQYF2vWDBAgICAjh48CBNmzbVPh83bhyvvPIKf/3rX3n77bdp0qQJkydP/jmaK5AhbyGEEEI0IC8vjzlz5jBixAgiIiJwdXXF09OTFi1a8NRTT7F9+/abrnPMmDEYDAYiIyN58skn2b17d63vy8vLa/3/yiuv1AqTDm+99Rbh4eFAzZ6UJpPpptsi7gwJlEIIIYSo13PPPUdkZCQvvfQSqampPPnkk3zyySe88847NGvWjEWLFtG3b1/Gjh173TB39XGLPXr04JNPPuGxxx5j48aN9OzZk5kzZ2rfW63WWveOHj263jpdXFx47LHHgJrg+/3339/iLxW3S4a8hRBCCFGvhQsXYjabGT58OMuXL8fd3V377uWXX+bzzz9n2rRpLF++HEVRrnlizaefflrr6MUXX3yR3r17AzVD17169eKtt94iJCSEadOm4enpqZX18PAgOjr6mm1s3769dn3gwAGGDh16i79W3A7poRRCCCHENXl4eDB//vxaYdLh+eefZ9CgQQAsW7aM/fv31ymTn5/PH/7wh2vW37lzZ15++WUA/vd//5eCggICAwO17319fRtsX0BAQK1niZ+HBEohhBBCXFPXrl0JCgq65vejRo3SrtevX1/n+3/84x9UVFQ0+Ixf//rXAFRUVPDJJ58QFxenfffT4e+fUlVVu9br9Q2WFXePBEohhBBC1Oubb77h448/brBMZGSkdn3hwoU63zs2KPfx8blmHc2aNdOGtVeuXImfnx/NmzcHoLi4uMFQefWK8NDQ0AbbKu4eCZRCCCGEqNfgwYNp3bp1g2VKS0u1aw8Pj1rf5eTkcObMGQAaN27cYD0dOnQA4PTp0+Tm5mo9nxaLhSNHjlzzvsOHD2vXPXv2bPAZ4u6RQCmEEEKIW5aZmald9+jRo9Z3x48f1669vb0brCciIkK7PnHiBNOmTcNgMACwaNGieu+prKxkzZo1ALRp04bu3bvfXOPFHSOBUgghhBC3bO3atQAEBwdrW/g4nD9/Xrv+ae/lTwUHB9e6LyoqSttK6LPPPqu1Shxq5k7+7ne/Iy8vD2dnZz7//PPbPj9c3DrZNkgIIYQQt+T48ePs27cPgLfffhs3N7da31+99+TVcx23bt1KdnY2UBMk+/fvX+tex8bmr7zyCsXFxXz44Yf079+fSZMm0blzZ8rLy1mxYgXJycl4e3uzdOlSunXrdrd+prgBEiiFEEIIcdNUVWX69OlAzVzLqVOn1imzfPly7frq4e93331Xu+7Vqxf9+/fHxcVF+6yyshKo2aw8MjKSbt26kZKSwty5c5k7dy46nQ5fX18mTpzIRx991OAq9Kvl5+czbdo01qxZQ1RUVK0eVHF7ZMhbCCGEEDft/fffZ/v27cTExLB48eJ6h5s/+OAD7frDDz9EVdU6f45eTLPZrJV1d3evdUrPhQsXeOGFF/j888+ZNWsW/fv3p7i4mEWLFjF9+vQbOnLx3//+N61atdLmXIo7S3oohRBCCHFTVq9ezeuvv05oaCjffvst/v7+9Zbz8vLSrqurqxuss6qqqtZ9d+qUnqt7JR966CHsdjvFxcU383PFDZAeSiGEEOI+oaoqs2fPxtPTE0VRas1xvJ6ioiLeeecdWrVqxejRo7Hb7ZSVlTFmzBhef/11cnNz69xz9ZGJeXl5DdZ/9fdRUVHA7Z/SAzUn8WzatIl3332Xffv21Qq54s6RQCmEEELcBzIyMujTpw/Tp0/HaDTe1L27d+8mLi6O119/nbS0NNzd3Zk5cyYvv/wyV65c4Z133iEuLo7NmzfXuq9Vq1ba9cWLFxt8hmORztX33e4pPQAPPPAAhw8f5tVXX5WTdO4iGfIWQgghfsFUVWXOnDlaoOrSpQvJyck3fH9eXh7Dhw+npKQERVHw9/cnKSlJ2/D8tddeY+jQoSQlJTFq1CiOHTumnXITHh5OixYtOHv2LKmpqQ0+x7FBeUxMDGFhYXzzzTe19qasz/VO6QHYsmWLbCd0D0gPpRBCCPEL9uabbzJ9+nTi4+M5fvw4AwcOvKn7v/zyS0pKSgDw9PRk27ZttU7PcXd3Z9asWUDNPMmfHtU4evRooGZvyYyMjHqfkZGRoW2Q7ih/u6f0OEiYvDckUAohhBC/cPPmzWPLli3X7fGrT0JCgna9evVq2rZtW6dM27ZtteDm2JfSYfr06VrYmzdv3jXbBzWh8OWXX77htjV0So+4t2TIWwghhPgFmzlz5i330h06dKjW8LjZbL7mQh6dTofNZqszPzMkJIT333+fl156iVmzZvHYY4/RqVOnWs9w9Gq+//77NGrU6Ibb19ApPeLekkAphBBC/ILdapgsLi5mwIABWK1W7bNhw4Zd9z7H/Mmrvfjii+Tl5fHOO+/Qu3dvnn32WVq2bElaWhpz587FZDLxxz/+kRdffPGG23e9U3rEvSWBUgghhBB1lJWVceXKlZu+79lnn63387fffpuBAwcye/ZsVqxYQUFBAUFBQQwdOpQXX3zxpoasb+SUHnFvSaAUQgghRB3R0dGoqgpAcnIy48aNIzMzkxEjRvDb3/6Wpk2bcvHiRRYsWMD8+fPR6/W8/fbb/OpXv7pmnfHx8cTHx992227klB5xb0mgFEIIIUSDunTpQlpaGn//+9/529/+VmvPR1dXV6ZNm8bUqVPp0KHDXW/LjZ7SI+4tCZRCCCGEaNCBAwd4/vnnSUlJoUuXLkyaNInIyEjy8vJYvnw5X331FaWlpbz99ts0bdr0rrUjISGB8ePH06hRIxITE+/qs8TNkUAphBBCiGvat28f/fr1o6qqiokTJ/LVV1+h0/246+CkSZP44x//yLvvvsvmzZvZunVrrVXcd0piYiIjR47Ex8eHbdu2ERsbe8efIW6d7EMphBBCiHqpqsrUqVOpqqrC09OTOXPm1AqTDm+99RZNmzalpKSEsWPHYrPZ7mg7duzYwYgRI/Dw8CAxMZGWLVve0frF7ZNAKYQQQoh6paamkpaWBkCfPn3w9vaut5xer2f48OEAnDt3jm3btt2xNuzZs4dhw4bh5uZGYmJivafnPPfcc4wYMeKOPVPcPAmUQgghhKjXmTNntOvo6OgGyzZp0kS7Pnr06B15fnJyMoMHD8bZ2ZmtW7fWe0oPwOnTp+/YM8WtkTmUQgghhKjX1cPbji2ErsVut2vXd2LI+9ChQwwaNIiKigo++OADSktLr3lKj+OscfHzkUAphBBCiHpd3SuZnp7eYNmMjAztOjIy8paeV22xUV5txVJZxoABAygtLQXg97///XXvjYqKuma79u7dq/3vOBrSaDSyePFi7fNu3brJqvHbIIFSCCGEEPXq2LEjoaGh5Obmsn37doqKiggICKhTzmKxaOdqu7i40K9fv5t6zsHzxczbncHWtDzsKthK827plJ767Ny5k8mTJ9f5vLCwkIkTJ2r/L1iwQALlbZA5lEIIIYSol06n47333gOgurqaZ555BovFUquMqqrMmDGD7OxsAP7nf/6HoKCgG37GouQsnvhiH9+fzMf+n1F1vU8wTV/bRPQrG1mUfB5VVa/7d/78+XrrnzRp0g3dP2nSpJt+P+JH0kMphBBC/MJdPbR79eKVrVu3akEwODiY/v3717n3qaeeIj8/n9dee43169fTunVrJkyYQHh4OPn5+axYsYLDhw8DMG3aNP7yl7/ccLsOni/mz+uOowI2e+05mo7//7T2OLHBXnSKlhNx/psp6vVm2QohhBDi/7QbOeu6V69e11z0AjUrvr/88kuSkpI4d+4cFRUVuLu7ExkZSffu3ZkyZQqdO3e+qXY9t/gQ35/MrxMmr6bXKfRvGcznEzreVN3i3pJAKYQQQoi7RlVV5syZw6uvvorRaGT79u307t2baouNuJlbuFaWzHp/2A3VP3ToUDZu3HgHWyxuhQx5CyGEEOKuyMjI4JlnnmHHjh11viuvtl4zTIr/eyRQCiGEEOKOurpXUq/X06VLF5KTk2uV8TI4oVNoMFT69noK95iuKApserEHrs76OmU8PT3vdPPFLZBAKYQQQog76s033+TNN99k4MCBzJ07l/nz59cJlAZnPV0jPNh7oQKV+ud46j38MQRF0r9lMO3atLoXTRe3SAKlEEIIIe64efPmMWXKlHq/q6ysZOPGjfhcvojKAw3WY7erTI1v0mAZ8fOTQCmEEEKIO+oPr71OhclGtcWG4SfD1JmZmSQnJ2MymYj2cOP3XcP5cEcOCmo9PZUqj0aY6Rjld+8aL26JBEohhBBC3BE/PfFGp0D/uGDUkiqtzI4dO2jSpAlNmzZl9OjRVFVVcSp5G+nO0ZyqcEFFQaFmYmW/xlZ8Co6ya1cAnTp1wm63y5zJ/1JyUo4QQgghblt9J97YVfj+ZD4rDl2sVbZfv35MmDABNzc3kpKSaOoNo4KLmeB6mPHux5ngWrNRetH5U/zwww8MHjwYDw8PvLy8cHNzo2fPnnz66aeYTCZUVWX27Nl4enqiKEqDe2k6REdHoyjKTf3NmjXrTr+yXxTpoRRCCCHEbbmRE28cBg8eTHx8PACXL1/m2LFjDB06lISEBJwUFXeDjsrKmnsSExMJDQ1l+PDhODs7069fP06dOsXnn3/Orl27mDVrFn5+fhw4cOCu/8bg4OC7/oz/yyRQCiGEEOK2zNudgU6nNHjijcPVwWzbtm34+/sTGRmJxWLB2dkZZ2dn7fsHH3yQCRMm8Jvf/IYFCxZQWlrKn//8Z5577jk6dOjA2bNn0el0dOrUiUOHDt1Umx966CG+/vrrBstcvnyZvn374uPjw8iRI2+q/vuNBEohhBDiPpCXl8fKlStJSEggJSWF/Px8nJ2dady4MV27dmXy5Mn06dOnwToOHjzIypUr2bVrF2fOnKGsrAwvLy8q3RphiG6P54ODcfIKbLAOs9UGQFZWFmfPnmX06NHk5uYC4ObmhouLC25ubixfvpyOHTuyZMkSsrKyePLJJ5k7dy6rVq3i3LlzlJSUAGC322uF0Bvl7u5ObGxsg2XWrFmDqqpMnDgRNze3m37G/UTmUAohhBC/cM899xyRkZG89NJLpKam8uSTT/LJJ5/wzjvv0KxZMxYtWkTfvn0ZO3YsJpOpzv0nT57k4YcfpnPnznzwwQd4enoyY8YMPv/8cyb/+nmsxhJK9/6b3LnTqDixvcG2VJptqKpKYmIijRs3Ji4ujosXL6LX6zEYDOj1egICAnBxcaFZs2aEh4ezd+9efH19efzxx8nKyiI9PZ0vv/ySgIAAAFJSUm7qfTz00EO0adOmwTKqqjJv3jwAnn322Zuq/34kPZRCCCHEL9zChQsxm80MHz6c5cuX4+7urn338ssv8/nnnzNt2jSWL1+OoigsXbq01v1HjhzR5ikuWrSICRMmaN9VW2ystnckb+VbVGcdpWjjx+gNXrg161RvW1J/OICfhysXL15kwoQJKIrCxYsXsdlsuLi4ABAYGEhBQQGKotC1a1dWrlxJTk4O0dHRDBo0CJvNRseOHWnfvj2JiYlUV1ff1PtYuXLldcts3bqVzMxMunXrRuvWrW+q/vuR9FAKIYQQ9wEPDw/mz59fK0w6PP/88wwaNAiAZcuWsX///nrreOKJJ2qFSag58aZLtC+BQ2eAzglUO8Xb5l2zHcUF+SQlJaHT6Thx4gQnT56koKAAAGdnZ5ycnPD396eoqAhVVYmNjcXPz499+/YBNb2LnTp1YtOmTXh4eNzSu7gRX375JVDTuyuuTwKlEEIIcR/o2rUrQUFB1/x+1KhR2vX69evrLTNixIha/6uqyvbt2/HPT0XvHYRraAwA1qJsLMU59dbRtm1bANq0acP58+dZsWKF9p3JZEKn0xEYGEh1dTWVlZXodDq6dOlCWlqaNm9y8ODBhIeHk5WVdQO//Obl5eWxfv16/Pz8ePzxx+/KM35pJFAKIYQQv3DffPMNH3/8cYNlIiMjtesLFy7U+q5nz55s2LCBYcOGaZ9ZrVbWrFnDzp07CdEbGRxYht77x8BqLavpddRRe+V3amoqsbGxjBw5kpdeeokOHTqgKDUn5OTm5pKVlcWHH35Iamoq+fn5ALRv3x6DwaCdB67X63niiSeoqKio8zvMVhsF5SaqLbbrvpdrWbBgARaLRRbj3ASZQymEEEL8wg0ePPi6ZUpLS7Xrnw4lh4aGEhoaqv1fWVnJsmXLyMmp6YXs0qUL/fr1Y/vCDzn9nzI6ZwMKKtHOZfRsG8zCPTWfV1RUaKvJFUWhpKQELy8v3N3d0ev1VFdX880336DT6Vi+fDlt27alVatWdOzYkf3799OrVy/c3NxwcnLSAqeLiwtmsxmApxccwDWxWjul59fxTekU7X/D70oW49wa6aEUQgghBJmZmdp1jx49rlmuqKiIL774gpycHJydnRkzZgwDBgzAbrdTfDkbAFdXV15o48TfOtvopT+Ln+uP97u5ueHnV3M2t91uJycnB0VRCAwMRK/XExYWhre3N8XFxaiqypkzZ1i4cCEpKSlYrVa+//57VFVl6dKllJeXA+AdHKHVr/7klJ7Hv9jH4v03PjSemJhIeno63bt3p1WrVjd83/1OeiiFEEIIwdq1a4GajceHDP8VBeUmvAxOGJz1Wpnz58+zdOlSLBYLjRo14sknn9TC4ffff68trnnooYdwUywMeqQvaUdTa4VVs9nMypUrGTNmDIWFhZhMJhRFISAggOLiYvT6muepqsqiRYvYv38/ZWVlnDhxgh9++IHDhw+TlJTE3LlzAYhu1oLioHZwMb3Ob3JstP6ntceJDfa6oZ5Kx2Ic6Z28ORIohRBCiPvc8ePHtVXUMUOn0PH9HdhVag0b64rPs3HjRlRV5cEHH2TIkCE4Of0YI7744gugZrh86NCh7N+/n5CQEDIyMjhz5oxWztXVlTVr1nDgwAFatGgBQHV1NYGBgZw6dQonJyfatWtHVlYWp06dIjY2lvHjxxMbG4uzszMrVqzgxIkTWK3WmqH4YS9T8sOeBn+fTqcwb3fmdQNlfn4+a9euxc/PjyeeeOKW3uX9SgKlEEIIcR9TVZXp06cD4Na0I9nB3bD/ZNj4uxN5dHXKIs5F4dFHH62zKXhaWhqbNm0CYPz48QQHB7Nq1SpWrVpV53mfffaZdt2iRQteeukliouLCQgIwGq14uTkxLp161i+fLnWC7l06VIKCwvR6XR4eHjQunVrZsyYwQNxrRm75hKq2nCgtNlVEtIuU22x1epx/SnHYpynnnoKg8Fw/ZcnNBIohRBCiPvY+++/z/bt23HyDyNg+O/56XHcjmHjfdZIpoweTJs2TWp9X1lZyeOPP47VauW5556jZcuWuLu788Ybb/D//t//w2KxMGvWLFxcXHj11VdRVRWTyURycjI7duzQFtPk5uZSWVlJTk4OCQkJ2Gw2evbsSXh4OHa7nerqaqqrq6mqqkJVVc6fP8/JzGxU2t/Q77SrUF5tvWaglMU4t0cCpRBCCHGfWr16Na+//jrufkEEjHkTnZvXNcvqdTpWHSumb5soqqurMZlMGI1Gpk6dSlpaGu3bt2fChAls27ZNO/Fm1apV2rxKs9nMe++9pwVIB8fWPxs3bgTg0qVLGI1G7XxunU5Ho0aNMBgMGAwGXF1d2bdvHwaDgb79B7Ji3okb+q06BbwM144927Zt49y5c8THxxMXF3dDdYofSaAUQggh7kMJCQmMHz+eRo0aoR8xE51PSIPlbXaV705cYuZbm3BSVFRVZf369aSkpBAXF8fw4cPZuXMnqqpiNBqBmrmRFRUVhISEcPnyZXx8fHj44YcxGAwUFBSwY8cOPDw8MBqNPP7442zYsIHu3bsTHx+Pqqq89957PPDAA3Tr1q1WW9zd3Vm9ejXurs609Yekn+x1+VN6nUL/lsENDnfLYpzbI9sGCSGEEPeZxMRERo4ciY+PD6s2bMHJP+L6NwEqCn0HDuHxxx/nzJkzpKSk0L9/f0aNGsWECRN4/vnnAXjkkUeAmv0hfXx8mDJlCl5eXhQXF9OhQwdatWqF1WrF09MTd3d3/Pz8+Oabb7BYLNpCH8fK76KiojrtiIuLw8vLiyVLlhBuPAMoDbbbbleZGt/kmt8XFBRoi3HkZJxbI4FSCCGEuI/s2LGDESNG4OHhQWJiIh3btUbXcB7T6BTo2ulBPv30U5YtW8aIESP4wx/+gLu7O82aNdOGr318fADIysqid+/eODk50bFjR2w2G6mpqQBkZ2cTHh5OcXExnTp1IiIiApvNRmVlpfa8wMDAegPlqVOnqKqqoqqqiuFd4gjXldYpAzU9kwrw9sjWDa7w/uqrrzCbzbIY5zZIoBRCCCHuE3v27GHYsGG4ubmRmJhI69atMTjr6R8XjP4/qbJoyxzyV71V514FO5G6EsaNeZx//vOfDB06lJUrV3Lu3DlatGiBXq/HaDRSXl7OY489xqFDh/Dy8tLO7u7evTuKorB3715sNhs5OTkEBgZis9lo1KiR1jN44MABrly5AoC/v3+tQGm1Wtm8eTMrV67k0qVLnDhxgi+//BJ74Y/7XFafT6Hi+HaMx7fT0prJyue6MuHhqAbfi2M1uQx33zqZQymEEELcB5KTkxk8eDDOzs5s3bpVC3oAU+ObknAiDwBLUTbW0vw696solG2fx469ScTExDBjxgxKS0u5fPky3bt3B2oW2Dh6IX18fIiJiUGnq+m7cnJyIiIiggsXLpCZmYnVasXd3R2AgIAAbUNzJycnFi1axDPPPENgYCAVFRXaAqBVq1aRn5/PkCFD6Ny5c72/s3TfSu26orwXnf76mwbfy/bt2zl79qwsxrlNEiiFEEKIX7hDhw4xaNAgKioq+OCDDygtLSUpKalWmXER5czfnYlqMtb6XEFFBYJTvuLA3iR8fHx45JFHWLZsGcuXL8dms3Hx4kUKCwtJTU3VVnUriqKdouPQp08fFi5cSFJSkhYg9Xo9Pj4+mEwmAHr16sXOnTtZsmQJAwcOBODgwYPs3r0bDw8PpkyZQuPGjdm8eTMHDx5EVVV0Oh2vvfYa69evp6SkhMjISFJTU/nd73533XfTp08fVLXhRT3i+iRQCiGEEL9gxcXFDBgwgNLSmnmGv//97697j5NPI6AmTEbqrtC0/BhffbcagNLSUj799NNa5b/66qs6dTg7O2sh0SE6OhqDwcClS5cIDQ3VNjTX6XRYrVagZv7lhAkT+Oqrr0hMTARqFhG1atWK4cOH4+rqyunTpzlw4ADNmzfn3Llz2kKeyspK3NzcCA8PZ/fu3ZSVlWnzOcXdJYFSCCGE+AUrKyvT5iTeqFBfN8a7HyfAxwOsZg5lZt/0c+sLlABt2rRhx44dJCQk8MMPP5CXl8eMGTMICAjA19eX8PBwpkyZwtChQ1m9uibENm/enFGjRqEoCmVlZaxbt44WLVpw/vx5dDodZrOZtLQ0qqqqCAoKIiwsDKhZ+COB8t6QQCmEEEL8gkVHR9/SkO5f//pX7OZq2rdvj8Vi4V//+hcLFy7EbDbzyCOPMHHiRH744Qet/NKlS8nIyMBqtRIYGIiiKPUGytLSUmbPnk1VVRXh4eGMHTuWhx9+mEOHDrFgwQKmTp3KunXr6NKlC56enlRUVFBYWAiA3W5nzZo1ODk5ERQUxNmzZ+nSpQsFBQXs3bsXk8mEu7s7np6e+Pr6kp2dTatWrW795YkbJqu8hRBCCFGHs7MzZrOZ9u3bU11dTUZGBqNHjyYhIYEHH3yQtLQ0mjZtqpXftWsXNpsNb29v3NzcKCgo4MyZM1y4cEErk5yczKRJk6iqqqJt27Y888wzvPDCC0yZMoWZM2fy7LPP4u3tzYYNG9i5cycvvvgi0dHRlJSUsG3bNnbt2sWFCxcYPnw4Bw4cQKfT0atXL7p168bly5epqKjQFvqEhYWRk5Nzz9/b/fsVN8wAACAASURBVEoCpRBCCCHqcHV1xWq1EhAQQFhYGKmpqcyePZuNGzcSHh7Ob37zG3r27KmV1+l0qKqKr68vTz/9NJGRkdhsNhYsWMDSpUu5dOkSL7zwAmazGVdXV4YMGYJOpyMwMBBAm0/Zq1cvoOYkn2PHjmkrxXfv3k1SUhI9evQgOzsbq9VKhw4dMBgMNGnShEaNGmGxWHBzcwMgPDycS5cuYbPZ7v3Luw9JoBRCCCFEHQaDAVVVtV7Kc+fOYTKZmDdvHm+99Raenp5aeAOwWCwAXLhwgcWLF+Pj40NgYCCjRo2iqKiIN998k5SUFAA6dOiAh4cHULNl0PHjx1m7di0Ar7/+uhZOZ82aRUBAAHa7XTvb28vLi71796IoCr179wZqVpR36tSpVjvCwsKwWq3k5eXd/ZclJFAKIYQQoi5HWDQajbRq1QqdTsewYcOYMmUKHh4e6PV6MjIytPKOVdr9+/enqKiIkydPUlFRQevWrXnhhRfw9//xpJpGjRrh6+sLwIYNG1i9ejUeHh7s37+fmTNnoig1m6wvWbKEQYMGsWbNGtLT04mLi2Pz5s1YrVbatWunhVKAyMhI8vPzmTVrFsOHD6dnz5688847REdHExoaypAhQ1iwYIHWTnFnyaIcIYQQQtThCGtGoxF/f39iY2M5evQoXbp04ezZs7Rr167WXpZRUVGoqkrz5s1p37498+fPp7i4mO+++45HHnkET09PrazNZtNOwDl58iRHjhxh48aNWCwWwsPDCQwM1HoWPT09OXr0KEePHqWsrIyWLVui1+uJiYmp1d4//OEPLFy4EABfX18mTZpEfn4+Tk5OVFVVsWrVKr799ls++eQTvv32W0JCQu7m67vvSA+lEEIIIepwBEDH+dzt2rUjPz+fo0ePYjQaad++PQ888IBWPjQ0FKgJou7u7nTq1Am9Xs+BAweYP39+rbqbNGlS639HmIyJiSE1NZXg4GDtu9jYWEaOHAnAqlWr+Oabb3B3d2f9+vXk5/94oo/jOjg4mAULFvDxxx8zYcIEOnXqxIoVK9i8eTOKopCamsqYMWPu1GsS/yGBUgghhBB1/DRQNmvWDE9PTw4cOICHhwdhYWF4eXlp5UtLS1EURVtlbTAYsNlsTJ48GZPJxOnTp7Wye/bsQafTER0dDYCqqri4uPCrX/0KNzc3srKyarXliSeeoE2bNgAcP36c2NhYvL29Wbx4sbZhu2Pxze9//3tOnz6N2WwmLCyM4uJiKisrGTRokHZe+M6dOzl27NidfmX3NQmUQgghhKjDYDAAUF5eDtSs4m7Tpg15eXm0aNECnU7H+fPntfKnT5/G3d1dm//o6uoKQGBgIM8++yy9evXCxcUFgNzcXGw2Gw899JB21nez5s3Rufvwh1df00IiQIsWLQgMDKRFixbaZ8nJyUyYMAG9Xs+iRYuorKwkODiYqKgoLcCmpKQQHh4OoG0f5Fi4A5CWlnZH39f9TgKlEEIIIepwBMqysjLtM8c8SU9PT/Lz87l8+bL2nc1mw2q1apuoOwKlyWTizJkzXL58mYcffhiAy5cvc/DgQRo1aoTSqDmxo2ZQ2vUFllW1Yd76HbXa4eXlhaenp9bzCTUryb28vJgwYQLV1dUsWbKEcePG8bvf/Y6AgABat25NcnIyPj4+uLu7a4Hy6kU8V69QF7dPAqUQQggh6nAEQseQN9TMU1QUhcuXL7Nt2zYtdAL4+/tjMplITk6udf93333HmjVrCAkJoXfv3vTt2xeALVu28OiUl/n0YDElga2wVZaRv+INqi8cw9Ckg1bv0aNHSUtLq3XqztVbDo0fP57CwkLS0tK0kNi1a1dKSko4deoUYWFhZGfXHB3pONnH1dWVbt263dkXdp+TVd5CCCGEqMMRFq8OlKdPnyY4OJj09HRUVa21uEZRFAIDA/n++++JiIigsrISgDNnzjB8+HAuXbpEZWUlCQkJvPDCCyz790p2r18KLHXUgGtEK0LG/xXTpbNUZx4GwGzwJzs7u9Z55D169NCuGzduzJNPPsnXX3+NqqrY7XYaN25MkyZN2Lt3LzExMSQnJ5OSksKSJUuAmr0uHRuqiztDAqUQQggh6nAESkcwLC8vJycnhyFDhrB582Y8PT1p1KiRVr66uppmzZphMBhYunSptt/jgAED6NChA19++SXh4eHo9Xp69epFdvRgjl0swlxejKLT4+Qbgt7dB4CqzBSt3isBrVGUfE6dOgWAj48PXbt2rdXWJk2aEBgYSGFhIVu2bGHw4MG0bt2aJUuWoKoqmzZt4q233sLZ2Zk5c+YwderUu/fi7lMSKIUQQghRh2PIurq6Gqjpnbx6Fbder69VvqqqCg8PD3x9fcnOzsbLywuLxYK7uztms5nLly/TsWNHAC4VFJFW5oPOJwSDT939IK0lNXMzFVd30vWhNL98TBu2Hjx4MIsWLSIuLo4+ffrU6mls0qQJBw8exMPDg5kzZ7Jjx4/zMePj45k3b16trY7EnSNzKIUQQghRhyNQWiwWbDYbp06dIioqit27dxMUFERpaWmt4XCLxcKhQ4c4deoUnTt31laHm0wmcnJyUFWViIgIrFYrhSXlqA0823zpDADuLbqiomNbYiIArVu3ZvHixYwYMYLs7Gw+/fRT1q9fT2lpKZWVlURHR9OnTx+SkpJ45pln+Oc//8moUaPo2bMnKSkpxMXF8cQTT8hxjHeB9FAKIYQQog6dToeTkxNWq5Xi4mIyMzNp06YN58+f5+mnn2bVqlWcOXOmzn1Tp04lODgYJycn9u7dS15eHpWVlbi6ulJSUsLChQuxVRtRUFFR6txvuZKLpegiAJ5t+1OWvJKSMzVzN0eOHInNZuPBBx+kTZs2HDp0iF27dnHkyBHsdjt6vZ5u3bphNBo5cOAAjz32GFVVVbi4uNB/0BAWLvgXK1eu5NChQyQnJ9cashe3R//GG2+88XM3QgghhBD/fQ4cOIDFYsHLy4uMjAyqq6uJjIykR48eVFRUkJCQQGZmJgDt27fnpZde0k7MiY6OZs+ePeTn51NRUYHdbmfu3LnMmTOHxsGNCI7tQEEVdXoqr2ybjyU/A/eYbjj7BlOc8Cn+/v5MnjwZg8HAvn37uHDhAlVVVTRv3lxboHPhwgWysrKw2+3Ex8dTVlbGrl27cAlryTfndSRVR1Lp24SKIwmUlJRw7Ox5Jjz5xL18nb9oMuQthBBCiHrpXAxUqU6cOpuOt7c3paWl9OvXD6jZk9Kx8MbB19cXqDn5Jjc3F2dnZ23+pNlsJioqCoDdu3czY2Br7D9Jk2UH12E89j1OfqG4t4ynYMNH+Pr5s2fPHv7nf/4HgA4darYUSkxM5NNPP+Wzzz6juLgYgObNm7N3715mz55NUFAQ+d4P8Emangt2H1QUXEMfwMmvJvB+t2Et85JO3p0Xdx+SIW8hhBBC1HLwfDHzdmeQcCkaFQXlrEqUkzPDm0ezdetWLly4QGpqKgUFBdo9GRkZLFiwgJycHEpLSwkJCUGn0+Hp6UlFRQUtW7bUjnPMy8tj4uB4Og54lJ25YK+8QuXZA5hzT+MaHodXhyEUbZqFweDGrh1JxMbGauE1JCSEIUOGYLFYyMrK4ty5c9oK8NOnT9O4cWMAln1/gM3mBwCl1tC6s38Y1iu5YLfy54UJtI8OplO0/z16s79cEiiFEEIIoVmUnMWf1x1Hp/sxiKkoZFm9mX1KR9b7j9V7365du9i1axdQs3hmw4YN7Nq1i6qqKioqKjhy5AiDBw9m/PjxpKenc+XKFZJWf01FhRG9hw9OITF4j3wFvZs3BavewNXFmX/N/ZzWrVsD4OTkhK+vL0VFRQA4OzvTvHlzmjdvjp+fHx999BFPPPEEdrudjIwMTljD65+nqftxdbqCnXm7MyVQ3gESKIUQQggB1PRM/nndcVTA9pPxaPU/s+SiXtnAG929ifF34ujRo+Tl5aEoCi4uLowaNYqmTZtqWwodPHiQgoICgoKCcHd3Z9euXbRp04Znn32Wnj17YrVaeffdd/H29ub537zE90k7GT18MK5OeqY8M5nRo0f/+HxVxc/Pj/fee4+PPvqI+fPnYzKZMJlMJCYmsnLlSgICAhg9ejQubh58sbf+RT/WK7natc4ziIS0y1RbbBic9XXKihsngVIIIYQQAMzbnYFOp9QJk1fTAQv2ZdHfLYuYmBicnJwoLCwkLCyMFi1a1Crr7OxMVVUVkZGRdOjQgRUrVmAymaisrCQlJYVz586hqipeXl7M+cfH/OlPf0JRFJ566imCgoL44osvtNBosViAmqH1kpIS5s2bpz3HsTBo69atxMbGYtEbUAmv03bTpbNYCi8A4BLSHL2nH3YVyqutEihvkwRKIYQQQlBtsbE1La/OQpmfsqNwwe5Hq7b+6LFhNBoxmUzk5uby+eefYzabtRBos9kAOHHiBCdOnNDq2L9/f60609LS+OyzzzCZTAwYMIDq6moyMjLQ6/V4eHjg4+ODs7MzBQUFmEwmPD09ef7553FxccHV1ZXPPvsMgPT0dKqqqnhpxjQ+fWtrrd9iLcmjcP0HNf8oOnx7TwZAp4CXQeLQ7ZI3KIQQQgjKq63XDZMOKgpnz1/Az80JFxcX7fOIiAhcXV1xdXXFxcWFY8eOkZOTw4gRIwgKCiI9PZ2kpCQUReGxxx5j9erVGAwG/vGPf1BVVQXAd999d93nR0REEBwcrP3v5uaGj48PpaWlvPrqq8yfPx97cBzlnmGAgvnSOYwnd6BaTOhcPfAf/BJu0e3Q6xT6twyW3sk7QAKlEEIIIfAyOKFTuKFQqVNg+rRntSD2l7/8BZvNxqBBg2odyejY+Lx9+/YoisKpU6fw9vbG39+fDRs2ABATE8OVK1duqq12u73W/0FBQfz973/H39+f+fPnc/jwYYpTEqmurkbR6dEZPHENj8OtSQc8WvfVzgy321Wmxje5qWeL+kmgFEIIIQQGZz3944L5/mT+deZQqvSNCdLCpNVqxWazYbPZOHv2LLGxsVrZsrKyWvcWFRURGBjIyJEj+fjjjwF45JFHSE9PZ9GiRTg7O9OhQwcGDRrEd999R3JyMmPGjNHqVFWV9957jz59+tSqt6qqCmdnZy5dukTnzp357W9/y7lz59ibryfJGIKCXVtUBKDXKdjtKm+PbC0rvO8Q2dhcCCGEEABMjW+K/TpdlHbAI3s/Bw8exG63a+d5+/v7c+TIkR/L2e1az6PZbAagsLCQgIAAysvLUdWa5xw6dIht27bh7e2N1WqlW7duAPTs2ROAnTt3anUqikJAQACFhYXaZzabjfz8fDIyMtDpdEyZMoVLly5RVFTE+1OHMjniCi29LOj+s+Bbp0D/lsGsfK4rEx6Ouo23Ja4mPZRCCCGEQFVVkjcs4dI/XsFUVUnj8e/hEtFG+75mOFxlTFOV+JAmbN68mSNHjtC5c2cAWrZsyb59+zAajbi5udG5c2d++OEHADp16sTgwYMpLi7moYce4uDBg0DNcLcjMBoMBtq3b4+3tzdQMy8yODiYS5cuYTabtbmaAQEB2sk4ly5dYu3atRiNRiIjI5k4cSKbNm0iIyODcePG1Qy/F6Tzt1GjaP5AS8qrrXgZnGTO5F0gPZRCCCHEfS4jI4M+ffowffp0TFWVAHSK8tN69RRU4qO9+Esvf9xzDxMcHMzkyZMxm82sXbsWqAmUAMePH2f27NlamASwWCyUlJRgt9vx9fXVVnwPGzYMFxcXFEWhurqa7t2712qX45xux4bpUBMoCwoK2L59O3PnzkWn06HX62nZsiW7d+8mNTWVESNG0KxZMw4fPoybmxuxsbEYnPUEeblKmLxLJFAKIYQQ9ylVVZk9ezZt27YlJSWFLl26aN/9rv8DpL05iGkhWUxwPcz/dvNnwqBudOnShS1btmAymXjuueeIiYkBYNWqVYSGhrJt2zZef/31Ws+xWCzaCTdlZWVYLBYiIiLIzs7GbDajqioeHh74+fnVui8uLg4nJydSUlK0z/R6PUajkd27d9OzZ0+efvppbDYbeXl57Nixg379+tGuXTusVitHjhyhffv2ODnJgOzdJoFSCCGEuE+9+eabTJ8+nfj4eI4fP87AgQNrfW9w1tPYzxNnHdpcyf79+xMTE8OqVasoKCggNDQUg8GAn58f2dnZ/Otf/6KqqopWrVpp9ZjNZgoLC3FyciItLQ2Adu3akZSURFBQEACVlZXs2LGj1vMVReGBBx7AaDSSk5PD9u3bSUpKAmDkyJH07t0bk8kEQGpqKp06ddJ6OU+ePElVVRUdOnS48y9O1CGBUgghhLiPzZs3jy1bthAREVHv997e3uh0OoxGIwA6nY7HHnsMf39/li1bRnFxMd7e3kycOBFnZ2fOnTvHww8/TGBgoFaHo4fSz8+PzMxMFKVmLD0/Px+z2UxMTAy9e/dm586dpKen13p+3759Afj666/ZvXu3tmjHISsrC4CoqCgGDx6s1X348GGioqJqtUPcPRIohRBCiPvUzJkzmTJlSoNlvLy8ALRACeDi4sLYsWNRVZXTp0/j5uZGcXExs2bNolGjRloIdHAESp3uP+eBR0Wxb98+GjduTGlpKT169KBHjx40a9aMNWvWUF5eDtSs4HasHDebzUydOpVHHnkET09PCgsLKS4uZvPmzQAMGTJEq7+oqIjz58/TsWPHO/CWxI2QQCmEEELcpxy9eQ3x9vbGZrNpQ95Xfz5u3DhMJhNXrlxhxowZFBQU8PHHH+Pk5FRrg/OMjAwKCgq0fSl9fX0pKirCYrEQHR1NeHg4iqLw6KOPotfrWbVqFbm5ucydO5fdu3fTpEnN5uO5ublAzcKcvLw8Fi9ejLOzs9YeB8diHMdCIXH3SaAUQgghxDU5eigdvYZXCwkJwdPTk8OHD7N48WLGjRvHuHHjcHZ2rrUQ5vLlyxiNRqqqqlAUhczMTCIiIigsLNRWcgN4eHjw6KOPcuHCBebOnQvAr3/9a8aNG4eiKOzbtw8APz8/0tPTsVgsdOrUCZ1Oh6urK1Cz0Xpqaipt27aVxTj3kARKIYQQQlyTo+fvpz2UDkajkS1btuDm5sbkyZO1U3Mcm5kDhIeHa9cuLi6UlpZitVoJDQ3Veh+hJnh+9913Ws9pnz59CAkJwcnJicjISIqKiigrKyM7Oxur1crYsWOBmj0rHfecPn2ayspKGe6+xyRQCiGEEOKaHIGysrJSO93GwWq1smnTJgoLC3n++efZu3cvhw8frnPWtsVi0a5NJhM6nY5Lly4RHx+PoijYbDZtX0mAqVOn0qJFC9atW0dpaSmAdtzi119/rW1B5OnpSVVVFe7u7lr9hw8fJjIyUls9Lu4NCZRCCCGEuCYPDw8URcFut9fqdYSaYxEPHDhAt27d+PDDD2nWrBkJCQnodDr8/X88I7ug1IhVVbReRDc3NwCSk5M5efKkNlcyPj6eX//614SGhjJy5EicnZ1ZvXo1NpuNqKgonJycKCoqol+/fkDNUY6VlZVafcXFxWRkZMhWQT8DCZRCCCGEuCZFUbTAdvVKb4vFwosvvoher+fDDz9Ep9MxevRo9Hp9TXB0/3GT8k2loSw2dWCbuSkuYS0xGo1069aNgoICVqxYQUVFBZMmTaJPnz7aYh53d3dGjx5NTk4O27Zt4/Dhw1itVgCCg4PR6XQUFRXV6qE8fPgwBoOBuLi4e/V6xH9IoBRCCCFEg+rbOuivf/0rJ0+epHfv3rRu3RoAV1dXXFxcOGUNIjGzslYdKgpZNh++SHcnUx9Oeno6VVVVREZGUlVVxdq1a8nIyKh1T0REBP369WPv3r1s2LCBdu3aATU9o/7+/hQVFWk9lDabTVuM41j5Le4dWf4khBBCiAb5+PiQl5enLcw5c+YMf/nLX4iKiqJdu3ZUVlZiMpkoLy/n2KUKdphDUK0m7X67qRJbZan2fxLBhHnm8eKzz9K4cWMKCgrYtGkTixYtol27dvTv3x8PDw8AIiMjUZSa4fJevXqRk5NDdnY2zZs3r9VDeebMGYxGowx3/0wkUAohhBCiQY4zth09lHv37sVkMpGVlcVHH33ERx991OD9BWv+Uuv/Jq9upDCgHY0bNwYgKCiIp59+mtTUVBISEjhz5gwDBgwgIiKCZcuW0bhxY4xGI2vWrKFLly5s3LiR6upqysvLqaqqws3NjR9++IHw8HCCg4PvwhsQ1yOBUgghhBAN+umQ98CBA9m6dSsHDhzg8uXLjBgxAoB9+w/yz+M2VBSMxxIxntgOgF+fZ3AObqrVZ1dh68k8qi02DM41cyYVReHBBx8kJiaGhIQE1q1bh5OTE56enowfP57i4mIWLFhAWFgYer2egoICqqurAVBVlfT0dK0d4t6TQCmEEEKIBjm2DnJs4dO4cWMaN25MSUkJYWFhPPLIIwAcP3cBQ3RND6Hp4gntfpeQ5hii2taq065CebVVC5QOHh4eDB06lJycHIqLiykrK+PAgQPEx8fTv39/vvvuO0JDQ8nNzcWqKljQcyHnEq6urrRq1equvQPRMAmUQgghhGiQI1A6jk50MBqNeHp6AjV7Ul7Jz0UhGLVODXUpqHz9ry9pEhFGeHi4NlytKAqrVq2ivLycyZMnc/bsWXbt2sXx48cZOnQosbGx7DlzmSPmZlyw+6Ki8O9Ulbb+bTiaW0GnaP/rP1zccRIohRBCCNGgax2/WFFRoc1ZzM3NRafa6NnMl92ZpXXquJpeBw+HudOqaQuys7M5ceIEdrsdJycnXF1dMRqN9OzZE19fX/r27Uvr1q3ZuHEjX3/9NWXB7Vhf2QwFFZWafS1VFI5fgce/2MfbI1sz4eGou/AWREMkUAohhBD3scWLF2vXR48e1a63bt1KdnY2AIGBgUDtbYOgJlA6eiizs7PJysqiiddRNh9Nx1xwXitXdT4Va3nN6TYujaJxbdSE3w1pr/UmWq1WLl26xI4dO0hPT8fNzY2dO3eyc+dOfHx8CA8Pp2XLlpi8w1nwg5ma/k2lVlts/+kW/dPa48QGe0lP5T0mgVIIIYS4j02cOLHez999913tulevXgwYMACT6cetgGw2G9XV1dr2PhcvXmTv3r0sWLCgTl1l+1Zo1z7dx/K3Z4fXCnxOTk4UFBSQnp5Onz596Nmzp3Zmt+Pv1KlTbK2KRsGnTpi8mk6nMG93pgTKe0wCpRBCCHEf++n53Nfy8ccfU1ZWhs1mQ6/Xa72Vnp6eqKrKxYsX+ec//0m/fv04dOgQ/9qwg5O2EM7bagKgToEBcSFMjW9SJ+ydPXuWjRs30rFjR3r06AHUzNuMi4vTTr0xVpv511tbrzs/02ZXSUi7XGsFubj7JFAKIYQQ4ro8PDwoKyvDaDTi7e2tbXLu4eFBSUkJRqORiIgIAFJTUwl1ruKhaDOZF1J4asqzhAcH1hvwcnJyWLlyJTExMQwZMkQ77/unKi0q9hvLvtdcQS7uHjl6UQghhBDX5ePjA6AFyat7KC9evAhAeHg4hYWF5OTkYLPZKC4u5sG2rWkeHlxvuCsuLmbp0qUEBwczatQodLprxxIvgxO6a49016JTasqLe0cCpRBCCCGuy9fXF/gxSF7dQ3nx4kUCAgJwd3fnyJEjKIqCv78/FRUVdO/evd76jEYjS5YswWAwMHbs2AbP31ZVlVMnjhGpL0G5zqC3XqcwIC5EeifvMQmUQgghhLguf/+aeY+OrYOMRiNubm7o9Xqys7OJiIjAbreTkpKCqqqYzWZiY2Np1KhRnbrMZjPLli3DZDIxYcIE3N3dr/nciooK/v3vf7Nu3TpGxHhCAwtyAOx2lanxTW79h4pbIv3BQgghhLgux3neV65cAWqCnoeHB2azmby8PDp16kRmZiZGoxFnZ2cqKiqIj4+vU4/dbmf16tXk5+czadIkrd76nDx5ko0bNwIwZsyYmoC6P4s/rT2OTqdgu2pSpV6nYLervD2ytazw/hlIoBRCCCHEdTk2N3cESscpOTk5OaiqSkREBDt37gTAxcWFiIgIwsLCatWhqiqbNm3i3LlzjB07ltDQ0HqfVV1dzbfffsvRo0eJjY1l2LBh2vZEEx6OIjbYi3m7M0lIu4xdrZkz2b9lcL0ryMW9IYFSCCGEENflOH7RMeTt6KG8ePEirq6ueHt7c/LkSaAmbNbXO7lz504OHz7Mr371K5o3b17vc9LT01m/fj0mk4mRI0fStm3bOiu/O0X70ynan//P3p2HR1WejR//nplMMtnIAiFkBwKBQEgCYQdFFGQTREFRK62iQqloN/vWtlptba22+rN9sb6KuLCoqCirAmHHsGaSEMhOEhISspN9n8yc3x9pjqTsbTLDcn+ui4uTzDkz9xxyhXue57nvp9lsoa65DXejg6yZtDNJKIUQQghxRUajEUVRtKKchoYGevfuTWFhIYGBgdr2iU5OTvj4+NC3b99O1yclJbFv3z4mT55MdHT0Bc/f2trKrl27iI+Pp1+/ftx7771aZfklYzLoJZG8TkhCKYQQQogrUhQFR0dHmpqagO9HKE+ePMno0aOJj48HoKWlhYkTJ3YaVTx16hRbtmzp1Lj8fAUFBWzcuJHa2lpmzJjBqFGjLtmPUlyfJKEUQgghxFUxGo00NDRgsVi0xLKpqQlPT09KS0vR6XT06tWLsLAw7ZqioiK+/PJLBg4ceEHjcovFwr59+zh48CD+/v488sgj9OzZ0+bvS/z3JKEUQgghxFVxdXWlpqam07Q3tCeN0F7Bff7oZFVVFZ9++im9e/dm/vz5nRqXl5aWsmHDBsrLy5k8eTITJky4bGNzcX2ThFIIIYQQV6Wj0ruiogKAmpoaevfuzcmTJ4H25udDhw4F2pPNtWvX4uTkxCOPPKI1LrdarRw6dIi9e/fSq1cvnnrqKfr06WOHdyO6kiSUQgghhLgqHbvlnDt3DoDy8nJ69uxJWVkZABMnnFqzMAAAIABJREFUTkSn02E2m7XG5U888YTWuLyyspKNGzdSUFDA+PHjmTx5Mg4OkorcDORfUQghhBBXpWO3nPLycqA9QdTr26usXVxciIqKwmq1sn79+k6Ny1VVxWQysXPnTtzc3Hj88ccJDg622/sQXU8SSiGEEEJclV69egHtiaSjoyOtra1acjlx4kT0ej1bt27l1KlTWuPy2tpaNm/eTE5ODjExMdx99904Ojra822IbiAJpRBCCCGuSkcFdl1dHXq9HoPBgNlsxsHBgZiYGL777jsSExOZM2cOAwYM4MSJE2zbtg2DwcAPfvCDSzYzFzc+SSiFEEIIcVU6inIaGxtRVRWr1QrAuHHjSE1NZe/evdxxxx0MGjSI9evXk5aWRkREBDNnzsTZ2dmeoYtuJgmlEEIIIa6KTqfDquiparKgs7Six4qiKPj6+vLVV18xYsQIfH19eeedd7BarcyfP1+r+hY3N0VVVdXeQQghhBDi+hafV8nKuFxiU0tQUVBQCdZVMy3EASpyCQ4Oxt3dnePHjxMWFsbs2bNxc3Ozd9jCRiShFEIIIcRlrTmSz+83paDTKVis36cNClZUFKZ6VjLUqZKmpiamTZvG8OHDZevEW4wklEIIIYS4pPi8Sh587zCXTxZUFgVV88zDs/Dy8rJRZOJ6InscCSGEEOKSVsblotNdfrRRpygU9RgsyeQtTBJKIYQQQlxUs9nCzrTSTtPcF2NVITatlGazxUaRieuNJJRCCCGEuKi65jaukEtqrGr7+eLWJAmlEEIIIS7K3ejAFWa7NTql/Xxxa5KEUgghhBAXZTTomTrEF/0Vskq9TuHuIX0wGvQ2ikxcbyShFEIIIcQlPTmxP9YrraG0qjw5sZ+NIhLXI0kohRBCCHFJo/p688rcCBRA+bfmQXqdggK8MjeCkX297RKfuD7IYgchhBBCXNajY0KwVhbyQdxpClQvrGr7msmp4b48ObGfJJNCEkohhBBCXJ6qqtSfTubpqF7MuW86dc1tuBsdZM2k0MiUtxBCCCEuKz8/n/LyckaOHInRoMfH3UmSSdGJJJRCCCGEuCyTyUTPnj3p108Kb8TFSUIphBBCiEuqr68nPT2dkSNHoihX2ZRS3HIkoRRCCCHEJSUlJaHT6YiKirJ3KOI6JgmlEEIIIS7KarWSkJBAREQEzs7O9g5HXMckoRRCCCHERZ06dYqamhpGjRpl71DEdU4SSiGEEEJclMlkwt/fH39/f3uHIq5zklAKIYQQ4gJVVVVkZ2czcuRIe4cibgCSUN5EVFVl+fLluLm5oSgK+/bts3dIQgghblAmkwmj0UhERIS9QxE3ANkp5yaRm5vLokWL2L9/v71DEUIIcYNra2vj+PHjREVFYTAY7B2OuAHICOUNrmNUMjIykqSkJMaOHWvvkIQQQtzg0tLSaGxslOlucdUkobzB/eEPf+DZZ59l4sSJpKSkMG3aNHuHJIQQ4gZnMpno168fvXr1snco4gYhCeVNYOXKlWzfvp2goCB7hyKEEOIGV1paSkFBgYxOimsiayhvcC+99JJshSWEEKLLxMfH4+bmxqBBg+wdiriByAjlDU6SSSGEEF2lpaWFkydPMmLECPR6vb3DETcQSSiFEEIIAcCJEycwm83ExMTYOxRxg5GEUgghhBCoqorJZGLQoEH06NHD3uGIG4wklEIIIYSgoKCAsrIyKcYR/xFJKIUQQgiByWTC29ub/v372zsUcQOShNIO2tra+Oijj5gxYwZ+fn44Ojri5ubG4MGDWbx4MUlJSfYOUQghxC2koaGB1NRUYmJipNhT/EekbZCNlZSUMGvWLBITE3F0dORHP/oR0dHR1NTUsH37dt5//30++OADXn75ZV588UV7hyuEEOIWkJSUhE6nIzo62t6hiBuUJJQ2pKoq8+bNIzExEScnJw4fPszw4cO1x3/zm9/w61//mr/+9a/8/ve/p1+/fjz66KPdHldpaSlffvklsbGxJCUlUVZWhsFgwM/Pj3HjxvH4448zefLkbo9DCCGE7VmtVhISEhg6dCguLi72DkfcoGTK24bi4uI4dOgQAEuXLu2UTHb44x//iK+vLwB/+ctfuj2mJUuWEBwczDPPPMPx48d56KGH+N///V/+/Oc/Exoaypo1a7jzzjt5+OGHaWlp6fZ4hBBC2FZOTg7V1dVSjCP+KzJCaUPx8fHa8ZgxYy56jpOTE1FRUcTGxpKWlkZtbW23tm9YtWoVra2tzJ49m3Xr1nX6dPrTn/6Ud999l6VLl7Ju3ToUReHTTz/ttliEEELYXnx8PH369CEgIMDeoYgbmIxQ2lBra6t2fLlpBVdXV+24oaGhW2PqeL0PPvjgojH9+Mc/Zvr06QB89tlnHD16tNvjEUIIYRvV1dWcOnWKUaNGSTGO+K9IQmlDkZGR2nFGRsYlz0tPTwegR48e9O7du9vjGjduHD4+Ppd8fN68edrx5s2buz0eIYQQtpGQkICTkxMRERH2DkXc4CShtKFp06ZpSeXy5csvOvq4adMmLdlctGhRt++lumHDBt56663LnhMcHKwdnzlzplvjEUIIYRttbW0kJSURFRWFo6OjvcMRNzhZQ2lDer2e7du3s3DhQnbv3s2YMWN45ZVXiIqKora2lu3bt/PHP/4RgPnz5/Pqq69e1fOuXbtWOz5x4oR2vHPnTgoLCwHw9fVl6tSpF1w7Y8aMKz5/TU2Ndnz+dLwQQogbV3p6Og0NDVKMI7qEJJQ25ufnx86dO1m/fj2/+c1vuP/++zs9Pnv2bJ588knmzJlz1c+5cOHCi37//IR00qRJF00or8bp06e149tuu+0/eg4hhBDXF5PJRN++fS+75EmIqyUJpY2VlJSwbNkyvv76awIDA3nttdcYOnQoTU1NxMbGsmbNGurq6ujRowd33HHHVT2nqqrdGvPGjRuB9lHOf0+AhRBC3HjKyso4c+YM8+fPt3co4iYhCaUNVVZWMmHCBHJzc4mIiODAgQN4eXlpjz/wwAPMmzePWbNmceedd/Luu++yePFiO0YMKSkpHD58GIBXXnkFZ2dnu8YjhBDiv2cymXB1dWXw4MH2DkXcJKQox4ZeeOEFcnNzAfjHP/7RKZnsMH36dBYuXIiqqixbtozs7Gxbh6lRVZVnn30WaF9r+eSTT9otFiGEEF2jtbWV5ORkRowY0e2Fn+LWIQmljVitVtatWwe0twO63FaGc+fOBcBsNvPRRx/ZJL6Lee2119i7dy9hYWGsXbtWepQJIcRN4MSJE5jNZmJiYuwdiriJSEJpI+Xl5VRVVQEQEhJy2eSsX79+2vH5Vdu29NVXX/HCCy/g7+/Ptm3b8Pb2tkscQgghuo6qqphMJsLCwvDw8LB3OOImIgmljeh039/qKxXRWK1W7dhisXRbTJcSGxvLD37wA3r37s3u3bvp37+/zWMQQgjR9QoLCyktLZVWQaLLSUJpIz179sTd3R2AvLy8yyaKHessoXNTcVvYvXs3c+fOxcPDgz179siCbSGEuImYTCa8vLwIDQ21dyjiJiMJpY3odDpmzpwJQH19PTt27LjkuV988YV23HGNLezfv585c+bg6urK7t27CQ8Pt9lrCyGE6F6NjY2kpqYSExMja+JFl5OE0oZeeuklXFxcAHj22WcpKiq64Jx169ZpCeX48eOZPXu2TWI7ePAg99xzD87Ozuzevfui+7ouWbLkmhquCyGEuH4kJSUBMHz4cDtHIm5G0ofShsLDw9m0aROPPPIIOTk5RERE8Nhjj2mNzXfu3MnmzZsBmDhxIhs2bLDJp8gjR44wY8YMDAYDO3fu1PYb/3eZmZnk5eV1ezxCCCG6lqqqJCQkMHToUG1gQ4iuJAmljU2ZMoWMjAw++OADvv32W9auXUt1dTUODg74+voyf/58HnroIe67775OhTzdxWQyMX36dOrr6/nb3/5GTU0N+/btu+i51dXV3R6PEEKIrpeTk0NVVRX33XefvUMRNylF7e59+8R1q7KykgEDBmjtjK5GSEiIjFIKIcQNZt26dVRXV7NkyRJZPym6hayhvIXV1tZeUzIphBDixlNTU0NWVhYjR46UZFJ0G5nyvoX17dv3ij0xhRBC3NgSEhIwGAyXXB8vRFeQEUohhBDiJmWxWEhMTCQyMhJHR0d7hyNuYpJQXueqq6v55JNPWLRoEcOHD8fT0xMHBwc8PT0ZNWoUv/3tbykoKLB3mEIIIa5DGRkZNDQ0MGrUKHuHIm5yUpRzHTt06BB33nknLS0tKIrC3LlzGTt2LD169ODUqVOsXr2aiooKXF1dWbVqFfPmzbN3yEIIIa4jq1atwmq18vjjj9s7FHGTkzWU17Ha2lpaWlrQ6XR88803TJ8+vdPjv/vd77j99ttJTU3lkUceITk5WbZKFEIIAUB5eTl5eXncf//99g5F3AJkyvsG8Nhjj12QTAJ4e3vzt7/9DYDW1lbef/99AJrNFsrrWmg2X3q/cCGEEDc3k8mEi4uLbKMrbEJGKK9jHh4exMTEXHYqe+TIkdrx4YRklqw1sTOtFKsKOgWmDvHlqYn9GdnX2xYhCyGEuA60traSnJzMqFGjcHCQ/+pF95OfsuvYuHHjMJlMlz3H1dVVO04ubqQ0vQzrv1bFWlXYlV5GbGopr8yN4NExId0ZrhBCiOtESkoKLS0txMTE2DsUcYuQKe8bXEJCgnbsFByJxdq5xspiVVGBFzemYMqrvKbnLi8v54UXXiAiIgI3Nzd69uzJ+PHjeeeddzCbzV0RvhBCiC6mqirx8fEMHDgQT09Pe4cjbhGSUHaRxx57DEVRrunP3Llz/6vXbG1t5YUXXgDA0acvblF3X/JcnU5hZdzpq37uo0ePEhUVxZ///GcCAwN5/fXXef7556murubpp59m4sSJlJeX/1fxCyGE6Hpnz56lpKSk05IoIbqbTHnbka+v7zWd39LSQnV1NefOnePIkSP84x//4MSJE7iG34b3tGXoDE6XvNZiVYlNK6HZbMFo0F/2dfLz85k9ezbl5eX84he/4M0339QeW7ZsGVOnTuXgwYPcd9997N27F4PBcE3vQwghRPcxmUx4enoyYMAAe4cibiGSUHax9PT0K54zffp08vPzeeyxx67puT/77LNOvcSCg4N594NVvJrlfVX7s1pVqGtuu2JC+atf/Yry8nKCg4N59dVXOz3m7OzMihUriIiI4ODBg6xcuZKlS5de0/sQQgjRPZqamkhNTWXSpEnodDIJKWxHEsoudqU+kIcOHSI/P59hw4Yxbty4a3ruadOmsXPnThoaGsjKymLt2rX8+Ikf4eAdgPfUJTj3G3HZ63UKuBsv/0+elZXF+vXrAfjhD3+Ik9OFo55DhgxhwoQJxMXF8Ze//IUf//jHV5XQCiGE6F7Hjx/HarUyfPhwe4cibjGSUHaRsLAwJkyYcMXzVqxYAcDixYuv+TX8/Pzw8/MDoKCgAC8vL1auXMnRo0cp++Jles3+Ja5DJl30Wp0Cdw/xveLo5Pr16+nYPOmuu+665HlTpkwhLi6OgoICjh49ytixY6/5/QghhOg6qqpiMpkYMmRIpw4gQtiCjId3kd/+9rfExcVd9pyamhq++OILXFxcWLhw4X/0OhUVFXz++ed8+OGHWCwW1qxZQ/+wwaBaObf9bSxNdRe9zqqq9G/No7W19bLPv3fvXu34cp9wR4z4fjR0z5491/guhBBCdLXc3FwqKytl325hF5JQ2tCaNWtoampiwYIFeHh4XNO1dXV1bN26lXfeeYfi4mLuu+8+Fi9ezMCBA5k1bSoAamsTTZnfdbpOQUUBnhnrg6X0FB9++CHV1dWXfJ2UlBQA3N3dLxtjUFCQdpyamnpN70UIIUTXM5lM9O7du9PvZyFsRaa8bahja8Tzp7ubzRbqmttwNzpcdDq6paWFQ4cOcfjwYfR6PVOnTu2080FdXR2Vld/3l3SqOIWCioqCgkqwrooldwzkkaljKBvXj88++4wVK1bw4IMP0rdv3wteq6SkBLhyBfr5j+fl5V3TfRBCCNG1amtryczMZMaMGbKmXdiFJJQ2cuTIEU6cOEFkZCRjx44lPq+SlXG5l9wm0WKxsHz5cjIyMggKCmLMmDFMnDgRo9GoPaeqqmzZsqVT2x5/qpjulIgZPZMnjuPY4SQq0quw3jWa3r1789RTT7F+/XpWr17N9OnTGTVqlPbLp67u++ny81/nYpydnbXj868TQghhewkJCTg4OBAZGWnvUMQtShJKGzm/GGfNkXx+vykFnU656DaJPxntjbHQxMsvv4yHhwcnTpy46PTz8ePHOXXqFD4+Ptr3evfujYOi4kAb4WEDOHLwO6qqqkhPT2fo0KG4uLjw6KOPEhsby7Zt2ygtLWXmzJno9Xqampq059E5GC7bs9LR0VE7bmxs7IpbJIQQ4j9gsVhITEwkMjLyop05hLAFWUNpA7W1tXz++ee4uLgw5LZZ/H5TCipccpvEfx47R72xN+7u7hQWFlJVVXXBc9bU1LB9+3YiIyPZsWOH9v3zq62NRiP+/v64uLgQFxenVW/rdDqmT5/OnDlzSE5OZtWqVdTX15NR3qxdm362kiEvbWfJWtNFt2w8v7jHxcXlP701Qggh/kuZmZnU19dLMY6wK0kobWDt2rU0NjayYMEC1p2oQKe7/PoWvaKQ7zwAvV6P1Wpl4cKF2tpGaJ/q3rx5M46Ojmzbto0TJ04AEB0dTXh4uDYF3tTUREREBM3NzZSUlJCTk9PpdYYPH86PfvQjKisreeYfX/DkZ98X16htrdqo6QPvHWbt0fxO154/munu7v6f3RghhBD/NZPJRFBQ0DXvviZEV5IpbxvomO5+7IkneeybUv5tYPICFhV2pBbT27cP+fn5xMXF0a9fP2bOnMnAgQMxm82YTCbOnDmjFcRER0cze/ZsnJ2dcXJywmw209jYSEREBLGxsXh4eBAXF3fBVlxBQUGMnLGAt9cmozgo6F29sDRUYWlorwTvGEV9cWMKg33dGdnXG4DS0lLtOUJCQrriNgkhhLhGFRUVnD59mvvuu8/eoYhbnCSU3ezo0aMkJycTFRVFeGQM1q27ruo6FYWHfvQEd06+g8TERHJycti1axebN2/GarXi6OiIl5cXo0ePJjo6Gn9/f6B968eO6egjR44QGBiIl5cXZrOZ/Px8Dh48SFBQEEajEaPRiJOTE58llqLX6bBYVQy9grE0VKG2NmFtbkBnbG+Oq9MprIw7rSWUhYWFWqxDhw7tylsmhBDiKplMpvblVEOG2DsUcYuThLKbnV+M4250QKdwxRFKaK/6/slTi7SiGFVVaW5uZu3atdTV1XHvvffS1tZGc3Mz27ZtQ1EUnJyctGlyi8VCVVUV9fX1NDQ0aEnmrl2dE9o2VSG2ZcS/ulWCMSSS5vxkAFrLcjEGDwPaRypj00q0Qp3ExETtOe68887/7iYJIYS4ZmazmeTkZEaMGKG1khPCXuQnsBt1FOO4urry6KOPYjTomTrEl13pZRcU5JxPQWVSqFenCmtFUTh+/DhFRUU89thj2jRzUVERLS0tGI1GIiMjqaiooLW1laqqKgYPHszUqVNpamrijTfeYPDgwaSlpbFgwQLc3Nxobm6muKqBNV9/P9roMmgC1QfWANCcl6wllNCeCNc1t2E06LXENDAwULZdFEIIO0hJSaG5uZmRI0faOxQhpCinO33yySc0NDSwYMECevToAcCTE/tjvcIQpQq4nY0nOTlZ+155eTm7d+9mzJgxndYsZmZm4uTkRHNzM4GBgbS0tODk5ISzs7PWzsfZ2ZmwsDCqqqrw8PAgNTWVwMBABgwYwKjoCM6vETL0DMRl0HgA6lP3olrM2mM6BdyNDmRkZGjbTD7//PPSRFcIIezAZDIxYMAAvLy87B2KEJJQdqeOnXGWLFmifW9UX29emRuBAujonFgqWAGVx4e5cFdkXzZu3MjWrVtpbW1l48aNeHp6ctddd3W6JjMzk969ewMQEBCgJZQuLi6dKrEjIiIoLi4mKiqK1NRUbXed1qYGBrub//Xa7bwmP4HOuQeWmlJttFKvU7h7SB/UtlYWL16MqqqMGzeu064/QgghbKOoqIiioiIZnRTXDZny7ibx8fEkJSURFRXF6NGjOz326JgQBvR05vmPd5Jv8dC2SexnqGewUoQ+t4lxTz1FUFAQ27ZtIysri/r6ehYtWtRpV5yqqipKS0u1T6iurq40Nzfj5OSExWLptGd3WFgYjo6OqKqq9aUMCAhg586dDLS4kEZ/7VwHT196z3+Rsq//TO3Rr2ktz8dlwGic1D6M/MsPSUtLY+TIkWzcuLFTPEIIIWwjPj4eDw8PBg4caO9QhABkhLLbdBTjnD86eb5e1DLZkM0rkQ38NLiER50S+fkoN3x19RgMBjZu3Eh0dDT33nsvdXV1F+xkA+2jk3q9nsbGRgIDAwEuOuUNYDAYCA8PJy0tjcjISJKSkti6dSteXl54W6qY6VNHe215+6ipU0A4/ovexnP8g1hqyqg/8DGr/+8tevTowfLlyzl06JA2MiqEEMJ2mpqaSElJYcSIEeh08t+4uD7IT2I3qKurY926dbi6uvKDH/zgoufk5OTQo0cPjAY93i4O+Hh7YjAYcHZ2pqWlhbKyMvbt28fBgwfx8fEhJCSETz/9lL1792K1tk9PZ2ZmEhISQmlpKQEBAQBagY6zs/MFCeiQIUM4d+4c8fHxAHh7e1NSUsLo0aPxa8jmf4Y7EKyr1pJKB1cPHvzxrzhkOk5LUyNVVVUcPnyYZcuWycikEELYSXJyMlarlREjRtg7FCE0MuXdDdzd3amrq7vsOTk5OfTv35/m5mYcHBzw8/OjpKSESZMmsX37dgICAoiLi0NRFJ566in69OnDd999x969eyksLGTmzJnk5+czbtw4cnNzCQwMxGq1YjabtfZBTU1NqKqKoiiUl5fz3XffAdCzZ09UVaWsrIw777yTzMxMvL29uSMimPL0o0REjaCipo7C06d4ZtqP6d3b2xa3TQghxBWoqorJZCI8PBw3Nzd7hyOERkYo7aC2tpby8nIGDBiA2WzGYDDg5+dHcXExI0eOxNHRkaKiIqB9P+6ePXuiKAq33367tg3jypUrUVUVR0dH9Ho9vr6+tLS0AGhT3larlaamJr777jvee+89mpqaMJlMLF26lJ/85Cfs27eP/Px8zp49y5w5c8jMzAQgIjyMgUG+OChqpy0fhRBC2FdeXh7nzp2TYhxx3ZGE0g469tTu378/bW1t2ghla2sr1dXVjBs3DqvVirOzM2azmZ07d2rX9u/fn8WLF2uterKysujTpw8ODg6dEkoXFxcAPv74Y/bu3cuYMWMYMWIE3377rfZcvXv3Jicnh5EjRxIUFKTFFRQUhI+PD4CW2AohhLA/k8mkLYMS4noiCaUd5OTkEBAQgLOzc6eEEtoTuObmZgBaW1u56667MJlMZGdna9e7urpisVgICAjQzm9tbdWuMxgMpKamAtDW1sYTTzzBhAkTeOSRR7T1l4C2xrJHjx6cO3eOhoYG3N3dcXFxwdPTE4CzZ892/w0RQghxRXV1daSnpxMTEyP9f8V1RxJKG7NareTm5hIaGgq0b53l4OCgJXFZWVkcPXqUkJAQLBYLzc3NhIaGsmnTJi0BzMvLo7W1lSlTpgBQXV3NypUrKSsrA2Djxo0cP34cgGnTptGzZ09++MMfkp+fz9SpU7VYamtr6d+/P/Hx8WRlZQHQt29fAK1RbkVFRfffFCGEEFeUmJiIg4MDUVFR9g5FiAtIQmljxcXFNDU1aQllxwglgK+vLxkZGQQGBrJgwQJ0Oh2HDh1i5syZtLW18c033wCQkZGBp6enNsX98MMPY7Va2bhxIwCOjo48/vjjQPsn2jfeeIPNmzcTFRXF888/r8Xi5eXF9OnTqaurIykpCfg+oXR1dUWn09Hc3Ex9fX333xghhBCXZLVaSUhIYNiwYRiNRnuHI8QFJKG0sZycHJycnLQ2P21tbVoLnvr6etra2rj33ntxdnZm+PDhmM1m0tPTmTVrFqmpqZw8eZKsrCwGDRrE2bNntcTParWiqu3tfgIDA+nTpw86nY79+/ezatUqVFVl1apVnaZJ9Ho9Pj4+hIWFUV5eDrSvn4T2vcM9PDwAKC0ttdn9EUIIcaGsrCzq6uqkGEdctyShtLGcnBz69euHXq8Hvp/yzs3N1dYrdjSqveOOO1AUhQMHDjB48GAiIiLYunUrdXV1DB48mIKCAhwcHFi9ejVubm7cfvvtKIpCYmIiH374IaqqcujQIbKzs/nlL39JVFQUp0+f1mKprKykpaWFfv36AeDg4ECvXr20x729vVEURRJKIYSws/j4eAICArT19kJcbyShtKHm5mYKCgq06W5oH6EE2Lx5szY6WFxcDICbmxsRERG0trYSHx/PzJkzgfaEs6Wlhby8POrr65kxYwaPP/44BoMBJycn7rvvPkpKSqitrWXHjh2Ehoby0ksv0dDQwNGjR7XXtlqtZGRkUF1djaIoFyzy9vLywsHBQRJKIYSwo3PnzpGbm8uoUaPsHYoQlySNzW3o9OnTqKqK2WzmueeeY8eOHWRnZ2O1WnF1dSUiIgJnZ2e8vLwYOnQoAJMnT+bkyZMcOHCAUaNGYTQaqa2tZd26dQDMmTOHyMhIoH2XHAcHB7Zv3463tzdffvklDQ0NLFu2DKPRyFdffdUpHg8PD1JSUqiqqkJRFMxmM9nZ2dresJ6enlgsFulFKYQQdpSQkICzs7P2/4IQ1yNJKG0oOzubw4cP86c//YmAgADmz59Pv379aG1t1RqQq6pKVlYWzz77LNA+Sjhw4EBOnTrFxo0bqa2tRafToaoqqqoyaNAg7fk7Wv/4+flpyeLo0aOpqalh5cqVFBUVMXr0aG2fcV9f307tiHr16kVcXFynhNJqtVIPGT7DAAAgAElEQVRRUdGpeEgIIYRtmM1mjh8/TnR0tPwOFtc1mfK2EVVVefPNN9mxYwcPP/wwGRkZvPDCC8TExDB37lz27dvHu+++C7T/AukosAEYP348gNZb8tHHFtHm4AJ6g1bQc/r0aTIzM3F0dGTu3Ln8/Oc/x8PDg4ceeoh58+ZRVFSEwWDQ+ksC+Pj4dJrmvv322zlz5gxnzpwB0M7tSCqFEELYVmpqKk1NTcTExNg7FCEuSxJKG/nss8/Yv38/gwYN4sMPP8RoNLJjxw4AxowZo+3ZPWDAABwdHamurkZVVU6ePMkXX3yBTqej1OrGd4Rz1/8dZ3VdOB83RPLAP2L5+sBxPvnkE4xGI0FBQbz44osUFRXxk5/8BJ1OR25uLgaDAS8vr0475RgMBlxcXNDpdPTp04eIiAh8fHyIi4sDvu9FCci0txBC2IHJZCI0NJSePXvaOxQhLkvGz21AVVV+/etfA/C73/0OBwcH0tPTycjIANp3qoH2Vj1JSUm8+eab5ObmkpWVRVZWFkOHDiVb8edbUyUK0DF2qaKQWGYmYVsh9wWGE+lSy+nTp1mxYgUzZszgnnvuYd++fSQlJTFr1iyio6OpqqrS4jKbzTQ3N2O1WrXRyokTJ7JhwwZKSkrw9fXFYDBIYY4QQthBcXExZ8+eZcGCBfYORYgrkhFKG9i/fz+FhYUoisK9995LQ0MDW7du1ZqIn78uxtXVFaPRyLZt2ygqKmLBggWEjLyTd01VgIJK50psFR2gsLHQyKnKNt577z0cHR354x//SENDA9XV1Xh7exMSEkJ1dXWnRd1HjhyhtraWhoYGqqqqMJvNRERE4OnpycGDB1EUBS8vL4xGoySUQohbnqqqLF++HDc3NxRFYd++fVd1XV5eHm+//Tbz588nLCwMNzc3HB0d8fX15c477+R///d/aWxsvOA6k8lEjx49CAsL6+J3IkTXkxFKG/jyyy8B6NOnD+7u7nz55Zeoqsr48ePJzMzU1kFWV1ezZcsWmpubcXd3Z+nSpTg7O7NkrQkdKlYuvXerosCBgmYKCwsBLmgv0VHkc749e/awZ88e7evQ0FDuuOMOxo8fz7Zt25g8eTKenp5UVFRQUlKCqqqyf6wQ4paUm5vLokWL2L9//zVd98Ybb/CrX/0KABcXFxYuXMjQoUOxWq0kJyezdu1a9u7dy1tvvcW2bdsYPHgw0N5m7uTJk0yYMEHrTSzE9UwSShs4dOgQ0L6tYXJyMmvWrCEvL4/f/va3WCwW3nzzTYYMGUJoaCjjx49n2LBh5OTkYDQaaTZb2JlWetlkEsCqQoEhgNffeJMRUZGUlZWxfft2oL21UEeBTXJyMs899xzQnnRGRkbS2toKtFd9A0RHR7N//34OHjyIp6cnJSUlNDU1UVdXp03PCyHErUBVVd5++21+85vfoNfrGTt2LEeOHLnq6zsKGv38/Dhy5AjBwcGdHn/22WcZP348eXl5zJkzh5SUFBwdHUlOTsZisTBixIgufT9CdBf52GMDHWslFUVh3rx5bNu2jYkTJ7J8+XIWLFjA+PHjOXHiBF999RWxsbH079+fxsZGamtrqW0yY1Wv8AL/ojg4ETJgMLfddhtVVVWMGzeO0NBQRo0axZQpU5gyZUqnSkEXFxeGDx/OmDFjCA0NZceOHTQ0NGAwGBg7dizJyck4OztT29BEk+rAmbPF3XF7hBDiuvWHP/yBZ599lokTJ5KSksK0adP+o+d5/fXXL0gmof0D/DPPPAPAqVOn2LFjB6qqYjKZGDx4MO7u7v9V/ELYiiSU3ajZbCG/tIrm5magfaQyNzeXTz/9lH/+85/4+/sTHh7O3Llz+eCDD1AUhR07dvD6668DsGXLFj5a8Q4KV5dRKqikJJl4/fXXqaio0KoCy8vLO7Uh0s5XFKqrqxk+fDhhYWHU1tby7rvvUlBQwKhRoyinB387XM3HDZGsa4lm9upslqw1Ycqr7KI7JIQQ17+VK1eyfft2bTezaxEYGEhMTAx33333Jc85f3/utLQ08vPzqaiokH27xQ1Fpry7QXxeJSvjctmZVoq5vqrTY5MmTWLSpEl88MEHFBUVAfD444/j4uLCF198wbZt21i3bh1LlizBycmJ6Oho+h6qJL/N47IjlXqdQiCVOCgqqgq9e/fWtnD85ptv2Lt3LwEBAZSVlWnXuLq60tbWRlBQEAEBAWRlZeHq6srHH3+MOuA2NjWEoqBqhUAqsCu9jNjUUl6ZG8GCEf6sWbOG9evXk5iYSGVlJZ6enoSHh/Pwww/z5JNPSiNeIcQN7aWXXvqv1o4vW7aMZcuWXfYcV1dX7djZ2RmTyUTPnj21wk0hbgTyv30XW3Mkn99vSkGnU7CqoFotnR73CBvFihUr6NmzJxMnTiQuLk7bgvH89Yl5eXncdtttREREEH74c06rHpd9XYtVZahjGQaDgba2Nh555BE8PDx47bXXMBqNlJWVkZubS2ZmpnbN6dOncXJy4oMPPtCmVgIDA7F49eVvx+u5WFW55V9Z7fMf7eQPP3qL7Mw0/P39eeqpp+jXrx9nz55l1apVLF26lBUrVrBt2zZtbaYQQtxobFGImJCQoB2PGTOG2NhYpk6dKkWQ4oYiCWUXis+r5PebUlD5PvHSGZw7nXOs1Z9x/oF4u1q0Yp2KigrGjx/PlClT+Pzzz4H2/mPFxcVkZGTQ19XCK9OH8uLmlH/1ofz+l0z7CCIsGuaKeqoes7n9E+4333zDww8/jIuLC/Hx8axdu/aCeNPS0khLS+Prr78mJCSERYsWkZSURILzCHSKcskRUUtTHaWfv0BbdSkREREcOHCgUxP0X/7yl9x9990cPHiQGTNmcOTIERwdHf/zGyuEEDepgoICli9fDsATTzxBS0sLOp2O6OhoO0cmxLWRhLILrYzLRadTtGQSQHFyBr0DWNoA0Btd2JbbzMJ+LQwYMICcnByWLl0KQG1trXZdfX09DQ0NpKenExYWxvThfYjfuZGz7oNILLOi0p5MBuuquCtAQZd7HAswePBggoODiY2NZdeuXeh0OqZNm8aLL76I1WrVWlXk5+ejKAr+/v4MGDCAmpoaiouLyc0vIPmcesHI5PlqDq6jrbq9L+Wbb/29UzIJ7cU+K1euJDw8nKSkJN5++21+8YtfdNFdFkKIG1d9fT11dXWcPXuW3bt38+abb1JTU8Mrr7zC888/z/Lly4mIiMBoNNo7VCGuiSSUXURr7/Nvo3qKosPgHYi5PA8A1apyxupFq6WYmqIirFYrb7/9NlarlYaGBu26juPKykoqKytJTk6mJ9Cz9hhDnBTM6DFgaV8zWQ4dE+sZGRlaVXnHCOi5c+fIycm5aNy5ubnk5+ej0+lQFIU2xeGyyaSqWmlI2Q2AztWT4WMmXvS8wYMHM2LECBITE3nrrbf4+c9/LtM3Qohb3rJly1i1apX29bhx4/j73//O6NGjyczMpLa29oI+wkLcCCSh7CJ1zW2XnCJ28g/TEkpLQzVqzyA8evXBoIOWlhbCwsLQ6XRaEQ1AcHAwer0ei8XCtGnTOHLkCEajkQkTJpCfn09CQgJz5sxhy5YtAFoVd3BwMNOnT8disfDll19iNpvx8vLioYceQq/XU19fz//93/8xevRojh07xi9+8YtObSl27d3Puti6SyaVbZVFWJvrAXDsFYy78dI/QlFRUSQmJlJYWMiRI0cYN27cVd9PIYS4Gf3P//wPP/jBD6ipqSEhIYGPPvqIMWPGMGXKFKZPn46/vz/+/v72DlOIayYJZRdxNzqgU7hoUukyaAL1ybEAtBafwiVkGPPmzCRu/16ampq0dhJffPGFds2cOXMwGAwYjUaCg4PZsWMHn376qTY9DvDyyy9fNBZnZ2caGxu5//77+fjjj9HpdFrSmJGRgaIoWK1WPD09L+hxFj1sKMG7tnPG6vGvbR07szTVacd9enljNOgveU+8vb2142PHjklCKYS45Q0ZMoQhQ4YAMH/+fH79618ze/Zsdu3axcGDB/nkk0/sHKEQ/xnpQ9lFjAY9U4f4otddOLJn7BuNwScEgIbUvQxybUZta6Wtra1TW501a9YA4OTkxEMPPURzczNtbW0kJibi7u6Oi4vLVcXS1tZGVlYWISEhBAUF0dDQoO3FnZ2dTUBAAMXFxRf0VKuurmbTpk0MdSi95AilzuCkHfu5XTqZBDCbzdpxWlraVcUuhBC3Ek9PTz799FMcHBxoamrib3/7m71DEuI/IgllF3pyYn+sFxmiVHR6vO9eCjoHWstOU7XnA958802Ki4u1hPLTTz9l69atAPzpT3+ivr59WrmlpYUTJ04wfPhwAObOncuePXt4+umnWb16NU8//TQvv/wyTz/9NL/61a9IS0vjtdde4+uvv+bcuXOEh4cD8PXXX9PS0kJubi79+/enuLiYwMBALcaUlBTeffdd6urqmD12COMczgAq/54fGzx7g9L+Y1NRdOay9yMvL0877th+TAghRGd+fn7069cPgMOHD5OVlWXniIS4dpJQdqFRfb15ZW4EClwwUukcNJRec57D6OLK0T3bWL16NevXr+fbb7/l/vvv59FHH0Wn0/HHP/6R5557jszMTK1/o9ls1vZz9fDwYOjQofj4+FBQUMCUKVNYvHgxPj4+9OjRg/DwcH7yk5/g5ubG559/jrNze9uiiooKtm7dSktLCx4eHlitVoKCgmhpaWHTpk189dVXDBw4kB//+MdYrVYGO5Rzn/tp7h7iqyWVCip9nVsZEtnezuLUqVPk5uZe9F60tLRw4MAB7eu6urqLnieEELe6tLS0Tt0yUlJS7BiNEP8ZSSi72KNjQvhyyTimhndOxCI8LSyI8uHo4UNaxfOuXbv45ptvOHDgAPfccw9JSUm8+OKLmM1mcnJyGDJkCIqi4O3tjYfH943NO3o6drQE8vPzw2g0YrFYOHv2LEajkQULFlBTU0NSUhLQXkmYkpKCk5MTjY2NGAwGLBYLK1asIDU1lXvvvZf777+fsrIyTCYTAAM99bz76EjS/jCdTx8I5lGnRGb2KGLRwke0WJ5//vmL3ofXXnuN6upq7Wu9/vLT40IIcbNpbGxk/fr1V1zyYzKZ8PT01L5ua2vr7tCE6HKSUHaDkX29effRGNL+MJ34307hWf98ngpX6OeukpOTw//7f/+PzMxMPvroI5YvX87PfvYzYmJi2L9/PyUlJZw+fRqz2UyvXr1QVfWCfmSnT58GYMSIEdoIZEcBzM6dOwHw8fFh7ty5nDnTPi09ePBgDAYDqqpy5swZ3Nzc+Oijj3BycmLJkiVER0djNpvZsGEDBoMBT09PysvLqa2txWjQExnWDwdFxd3dnaCgIP70pz8B8OWXXzJv3jwOHTpEcXExiYmJPPPMM7z88svcc889Wszn7wIkhBC3grKyMh544AHeeeedS55TUlJCQUEBLS0t2veCg4NtEZ4QXUoSym5kNOjxcXeif3AgRUVF3H777Zw4cUIrkLFYLPTq1Yuf/vSnBAYGUllZyXvvvcfOnTvx8vIiNzcXg8GgraeE9k+uHUmjp6cnNTU1qKqKTqfDYDCQn59PTU0NAOHh4Vo/s4yMDMxmMxaLhezsbKqqqhg7dixPPPEEPXv2BCA2Npa6ujrMZjMzZ85Er9drUy9ubm54enqi1+spLS3ld7/7HVu3bmXUqFF8/fXXTJgwAX9/f2JiYoiNjWX16tW8+uqrWtw+Pj7df8OFEOI6tGPHDiwWy0UfM5lMtLW1ceTIEQB69+4tfSjFDUkSShsICgqirKyMoUOH4uXlxZ49e4D2tZEODg64u7uzaNEiZs2ahV6vp6Kigrq6OpKTkwkNDaW2tlZrdJ6VlcXu3btZvnw5Y8eOxdPTE4PBwO9//3uOHj1KfX09u3bt0l578uTJANovK0VRUFWVyMhIpk6dqk1FZ2dnk5CQgJOTE2FhYQwcOJCwsLBOa3mCgoJobm6msrKS1tZWZs2axbFjxygrK+PIkSPExcVx+vRpMjMzWbhwIVVVVdq1w4YN696bLIQQ16ns7Gx+9rOf0dzc3On7LS0tHDlyRCuaBPjrX/8qS4TEDUn6UNpAUFAQqqpSUlLCnXfeyVdffcWZM2c6tQ1SFIWRI0fi6urKF198oa2haWxsBKCoqIimpibi4+NxcXEhJiaGu+66i5iYGDIyMvjrX//K5s2bcXZ2pqSkhNmzZ+Po6IjRaNT6TkL71HhZWRnZ2dk0NDTg6upKU1MTmzdvpmfPnlRWVnLXXXcB7UngF198QUVFBb169SIwMFBLMEtLS7W2Qz4+PhcdgTy/YCcmJqab7q4QQnSvtWvXascnTpzQjnfu3ElhYSEAvr6+TJ06tdN1bm5u9O/fn9zcXN5++202btzIAw88QP/+/XFycmLXrl1s2bKFpqYmnJ2def311/nRj35kmzclRBeThNIGevXqhdFopKCggNtvv52DBw+ya9euC/pQApw9exZnZ2cMBgO1tbUUFBQAEB8fT0VFBT4+Phw5coRvv/2WsLAw7r77bu655x4tKTSZTHz22WeMGTOGZcuWUV5eDrTvpKMoCm1tbXh5edHc3MzWrVt58MEH2b59Oy0tLbS1tREVFUXv3r0BGDhwIE5OTpw8eZLJkydribGiKJ0Syks5duwYAH379pWEUghxw1q4cOFFv3/+sp5JkyZdkFD26tWL7Oxs9uzZw9atWzl69Chr167VliUZjUb69u3Lww8/zGOPPXbF36lCXM9kytsGFEUhKCiIgoICFEXhrrvuoqCgQKu2Pl9mZiZBQUHU1tYyY8YM/Pz8gPYWPffddx+7du3SPt12TJGoqorVauWVV17ByckJi8XCa6+9xrFjx3j//fe1PbQnTZpEZWUlzs7O3HPPPWRkZLB9+3ZOnDhBv379aG1t5Y477tBicXBwIDw8nJSUFFRVxdfXF4PBgF6vZ8OGDVpx0MVYLBa++eYbAB5//HHZx1sIccNSVfWKf/bt23fRazt+57/11lscOnSIsrIyWlpayMrK4he/+AVbtmzhxRdflGRS3PAkobSRwMBACgsLUVWV0NBQQkJCaGpq6rRW5ty5c1RUVGC1WnFzcyMmJoYnnnhC60fZo0cPNm3axP79+3F0dKS1tRVA+zswMJDp06cD7SOdH330EdHR0bi5uaHX6xk9ejQAxcXFODs7M2TIEI4dO0ZISAi5ubmMGTOmU3siaJ/2rqyspKioCJ1Oh7+/PzU1Nbz66qu8/vrrl3y/a9eu5cyZMwQFBfHcc8913Y0UQoibgMlkwtvbm/79+9s7FCG6hCSUNhIcHExLSwtlZWUoisKUKVOwWq2ddpDJzMxEr9dTUFBAdHQ0er0ei8WiVXn7+PhgtVrZt28fZ8+e1fo8doxUOjk5ERoaqj1fcXExs2bNorW1FWdnZ4qLiwEICAhg/fr1NDY2oigK586dQ6fTMXHixAvi7tu3L66urpw8eRJAa4YO7VtFXqy/2nfffceyZctwcXHhs88+u+otI4UQ4lbQ0NBAWloaI0eOlNkbcdOQhNJG/P39URRFWxMZGBiIoijk5uZq7SQyMzPp1asXLS0t2s44e/bs0SoDp0yZwh133IFOp6OtrY3CwkK2bNmircc5efJkpy27qqqqOHnyJM3NzTg4OFBQUIDRaOShhx5CVVXy8vIYMWIE9fX1hISEaD0tz6fT6YiIiCA1NRWr1UpgYKC2R3djYyOjR4/m2WefZcWKFfzjH//g/vvvZ/LkyXh7e/Ptt98yYcKE7rupQghxA0pKSkKn0xEdHW3vUIToMpJQ2oijoyN9+vTRKgI71t00NTWRkJBAQ0MDBQUFtLa2EhoaipeXF4WFhRw9epQ77rgDJycnSkpKmDRpEk8++aTW7Dw5OVmrQDx58iSDBg3SXlNRFGJjY7XXKywsJDAwkLa2Ntra2lAUhezsbAwGAzk5OVoBz78bNmwY9fX15OXlERgYiLe3N/PmzWPevHmEhoaybt06li1bxmuvvUZlZSVvvfUWqampTJo0qTtvqRBC3HCsVismk4mhQ4de9EO8EDcqSShtqKMwB77fWis4OJgDBw6Qnp6OqqpUVVURExNDW1sbmzdvpk+fPowfP56SkhL++c9/oqoqfn5+DB8+XCvA6VhD6efn16lqvF+/ftTX1+Pi4kJdYzOZ+cX09gvQ2guNHz+empoawsLC8PLyYsOGDRdtvuvv74+XlxcnT57E1dUVX19fRowYwdNPP01ycjJlZWW0trZSXFzMvn37eOaZZ3Bzc7PBHRVCiBtLdnY2NTU10rxc3HQkobShoKAgKisraWho0BLKYcOG0dzczNGjR3F1dcXV1ZWwsDC+++47zp07x7333otOpyM1NZXPP/9c22XHYDBoz9GRRJ47d46vv/5ae71FixZRanXj29oAPqyLYHVdOIt3NrAyQ6Hf6Lu0FkXp6emMGzeO0tJS9u/ff0HciqIwbNgw0tPTaWtrIygoSGsdJIQQ4uqZTCb8/Pzw9/e3dyhCdClJKG2ooy1EQUGBtg7Rw8ODmJgYKioqaG5uZvjw4VRUVBAXF8fEiRO1Cu+OwpZNmzZRWFjIsWPHsFgszJ07V+t9VlxcTE5ODgChoaHElSp82zqIvDZ3VNoXfqtAgerFz7YWsD27gTlz5hAUFMSePXsYM2YMcXFx2rT8+SIiImhpaeHUqVMEBgbS2tpKSUlJt94vIYS4mVRVVXHq1CkpxhE3JUkobahHjx64u7tTUFDQaXSx45OqxWIhOjqaTZs20bNnT2677Tbt2o61Ns8//zx//etftTWUQ4cO1dZE7tu3D6vVisFgYPysB3kvoRpQUP/tn9mqtv99uC2YOqMP8+fPR6fTcebMGfz8/NiwYYM2jd7Bx8eHPn36kJKSQmBgIAA1NTUXbCUmhBDi4jq2t42IiLB3KEJ0OUkobUhRFIKDgzsllAaDgfz8fHQ6HYqicPz4cUpKSpgzZ06n9ZBDhgxBr9dTXV3NihUr2LdvH/Hx8axYsYK///3v/P3vf+fkyZP4+vryhz/8gXy3IVzp869eUfggLg83NzcWLFhASUkJnp6e1NbWsnPnzgvOHzZsGJmZmXh4eGixybS3EEJcWVtbG0lJSURFReHo6GjvcITocpJQ2lhgYCBFRUXayJ5OpyMjI0MbWTx48CBjxozRRgEB0tPTcXJy4pe//CULFy5kxowZJCYmEhsby89+9jN27txJQEAAb731FqdOneLnz/0PZ6xe2jT3pVhUiE0rodlsISAggFmzZpGWlsbgwYMxmUxkZ2d3Oj8iIgKLxUJmZqbW9kgSSiGEuLL09HQaGxsZOXKkvUMRolvIXt42FhQUhMVioaysDIDKykqampowGo0YjUaqq6uJjIwEwGw2s2PHDhISEhg8eDBDhw7l9OnTPPPMMxQVFfH++++zePFijh07RkVFBY899hhnzpwh/mQG6lXGY1WhrrkNo0HP8OHDOXv2LElJSfj7+7N582aWLl2qTbf36NGDkJAQUlJSCAoKIj8/X9ZRCiHEVTCZTPTt2xcfHx97hyJEt5ARShvr06cPDg4O2q41HUU0/v7+VFdX4+bmxoEDBygpKWHFihUkJycza9YsHnzwQa1KvLm5GScnJwDq6uooLy+nurqaN954g9WrV5N3KgPlKlNKnQLuxu8/V8yYMYOAgABqampobW3l22+/7XT+sGHDyM3NpVevXqiqytmzZ7vitgghxE2rtLSUM2fOyOikuKlJQmljer2egIAAzpaU0aQ6kJZ5Cmiv/B4x4v+3d+dBUZ35+sCf0w1NIzsCDaJsIiJbi0KrEaPGJRrRuE8mccGJiZOpW5nM/CYzc+/cuWpyK3dqKjUz907dVGK8cSO7+xKNaDBRo2lA2UQwIIvKLrtAd0Of3x+EjkQFpIHT3TyfKqta+5zTX1qWh/c97/udgvnz5yM/Px/vv/8+5HI5Xn75ZdOKQD8/PwDA999/b2p5+Omnn+LOnTvo6OiARqPBSy+9hN/95tcItm+GrI+bKGUQMT/cB0r7H/uJy+VyrFmzBoIgwNnZGbm5ucjNzTU9P2nSJAiCgObmZgBdWxUZjcbBfIuIiGxKeno6nJ2dER4eLnUpREOGU97DLK2kDkfqfJBZY4QIXwg6EYF2jYhTNmHmzJk4efIkAMDJyQkvvvgi7O3tIYoiKioqkJ+fDwA4ePAgZLKu3wWioqJQWVkJf39/zJ07FwBQXl6OcKEcN0XXXmsxAhhdm4WqqgDT9kQA4OLigjVr1mDPnj3w9PTEiRMnEBAQAFdXV4waNQqhoaHIz8+Hq6srmpqaUFdXBy8vryF4t4iIrJtOp0N2djamTZsGuVze9wlEVoojlMNo3+VSrH3vErJrxfv2hRRQ2uGK/Q0B+O07B1FeXo4nn3wSzc3NuHTpEo4fP46///3veP/995GWloZRo0Zh3Lhx+N3vfgeZTIaxY8eis7PTtI0Q0DWCGeBowB/nBQEQHxiplMsEACJm2JXB3XAX77//Pq5cuQJR/HGaPCAgAIsXL0ZdXR1EUcTRo0dNz0dHR+P27dumEMr7KImIHi4nJwcGgwFTp06VuhSiIcVAOUzSSurwH0dyIaJrdfX9uveJPHfPFz4R01FVVQVBEJCamoqioiJERkZi48aN+N3vfofIyEi0trbC0dERCoUCOp0OOp3OdE8l0NXaKyQkBOPFcix3LsaTIe6meyplArBgkgqfb5mB36+cAaPRCJlMhmPHjuHgwYPQ6XSm60ydOhWTJ0+GwWBAUVER0tPTAQBhYWGwt7c3jZKWl5cP4TtHRGSdRFFEeno6wsLC4ObmJnU5REOKU97DZOeFm5DJBHQaH71YRoCID74twYYQPaZMmYKMjAzMmzevxya4Y8aMQVpamilE/jRQtrW14c6dO1i8eDHOnTuHRVOj0dBwC9GqaryQ9CLcnZQ/3jMZNDy3Kh0AACAASURBVBohISE4cuQIiouLkZeXhzt37mDNmjXw8/ODIAhYsmQJqqurUVNTg9OnTyMkJASjR49GeHi4qaNOWVnZ0L1xRERW6vbt26iqqsL8+fOlLoVoyHGEchi0GzqRklfVa5gEukYqb4meeGFDEhITEzFhwgSkpqais7PTdEz3wpzKykpToDQYDKZAWVRUBFEUIYoiWltbMWbMGBQUFGDBU3Pg6+7UYwEO0NX6cf369XjmmWcgk8nQ1NSEnTt3Ii0tDaIows7ODmvXrjVtZH7w4EEYjUZER0ejvr4eMpkMtbW1g/huERFZt3ZDJ2qadfhWmw4PDw+MHz9e6pKIhhwD5TBobu9AH1nSxCgCx788g+zsbMTGxqKurg5Xr141Pe/t7Q07OzuUl5fDwcEBbW1tAGC6h7KwsBA+Pj64du0agoKCkJ6eDl9fX0RHRz/yNQVBQHx8PF555RWMGTMGRqMRX3zxBT777DO0t7fDzc0Na9euRUdHB8rLy3HhwgWEhITA0dERSqUSOp3OVAcR0UiVVlKHLcnpiNh6CvFvncEf0+3xjTgRGaX1UpdGNOTk27Zt2yZ1EbZOLhPwzrnCfu0MKUDERH0hsjOv4tq1axAEAYWFhWhsbERzczNEUUR5eblpFNJgMKC+vh5TpkyBu7s7Tpw4gaCgIBQUFGDSpEm4du0ali9fDk9Pzz5f29HREWq1Gg4ODigpKUFtbS0yMzMRGBiIgIAAODo6orCwEKWlpZg4cSI6OztRXl4Oo9GIkJAQeHh4mP9mERFZoX2XS/GrD6+g+G7rfQMIAqpaRXyWfgteLg6IGesuZYlEQ4qBchjYyWXIq2hCyd1WiL2kSrkALIz0w1svr8C0adMQGhoKFxcXlJaWoqWlBXl5ebhy5QpaWlpQW1uLjo4O3Lt3DzqdDjExMdDpdLh8+TLc3NzQ3t6OxsZG+Pr6Ys6cORCEvjp7dxEEAePGjUNERARKS0tRX1+PK1euQKFQYNq0aairq0N1dTVu3ryJmTNnmkZPXV1dERISMhhvFxGRVUkrqcOvPrwCEXjge3z331Pzq5EQ6oUx7o7DXh/RcGCgHCa+rkp8ln6r12NEiPhNgi/C/L1gb28Pd3d3BAcHo7W1FZWVlXj11VcRFRWFjo4OVFZWQi6Xo6WlBQCQnZ2N3NxcGI1G1NfXw8PDAzU1NVi9ejVcXXvfj/JhnJycMHXqVAiCgLKyMhQVFaG0tBSJiYn4/vvvUV9fD3t7e1OgFUURsbGxA3pviIis2RvHr6G4rwEDmYDGNgMSY8YMX2FEw4iBcpj4uzvCy8UBqfnVkMuEHt945DIBEIElqhbcy78IlUrVY6NwPz8/XL58GQCgVqvh4eGBjIwMhIWFoa2tDXq9HkuWLMGdO3cgiiI6OjpMQTMvLw9FRUWoqqrCvXv3IAgCHB0dTVv+9EYQBAQFBWHixImma1y9ehVPP/00bty4gTt37iA0NBQ1NTVo03cgXB0HuUyAnZy35hLRyNBu6MT/+zyrz/vkRRG4WduCLU+O5/dIskkMlMMoZqw7EkK90NhmwM3aFojo2hdyYYQv/rIyGpvmx6K6uhpff/01XFxcTCu6FQoFDAYDLl++jMmTJ8Pd3R0XL16Es7MzGhsb0dHRgaVLl+Lrr7+Gs7MznJyc0N7ejqVLl0KlUkGv16OkpASZmZlIT0/HxYsXkZ+fjzt37qCxsRFGoxGOjo6P7OLg7OyMuLg4tLe3o6ysDHl5eQgLC0NtbS3yaw24rPdHats47DhfjHfOFSKvogl+rkpO7RCRzatvNWDH+Zv9OlYEsHFGEJwcuGMf2R5+Vg+zuCBPxAV5ot3Qieb2Drgo7Xps5bN69WqcPHkSx44dQ0tLC2bNmgVBEPDEE08gPT0d33zzDRITE6FSqdDa2gqDwQCZTIaysjKIoojGxkbY2dkhPj4eU6ZM6fHaOp0OlZWVpj8VFRXIysoy9eIePXo0fH19e/xxdnYGANjZ2eGZZ55BVFQUPvnkE+Tn56NQGIPzbX4Q8GPnH6MInLlejdPXqvDm8iismxY4TO8sEdHwc1HaQSagXzt5yISu44lsET+zJaK0lz+wJyQAyGQyPPPMM3BxcUFqaiqam5uxePFiKJVKzJo1CykpKZgxYwb8/Pxw48YNU9vFoqIiODg4mFZ/P/nkkw9c28HBAYGBgQgM/DHkdXZ2oqamBhUVFaag+f3330Ov1wPoGp308/ODSqWCn58ffH198dprr+Fve4/gfJEjutal91zw073f5p8P5yJc5YK4oL5XmBMRWSOlvRwLIlQ4c726172G5TIBCyapHvp9n8gWMFBaIEEQ8OSTT8LZ2RnHjx/HvXv3sHLlSsTHx+Py5ctITU1FcHAwMjIyAHRNid8fAmfPng0nJ6d+vZZcLjeNRnYTRRH19fU9RjOzsrJw4cIF0+t9bQyDDICxl2vLZAJ2XihmoCQim/bizGB8ea0SwKN30zAaRWxOCB6+ooiGGQOlBZsyZQqcnJywf/9+JCcn47nnnsOcOXNw9OhRTJgwwXScIAimRTiOjo6YMWOGWa8rCAI8PT3h6emJiIgI07+3tLSgsrISZXcqsONU4wMjkz/VaRRxOq8S7YZO/lZORLarpggz7MpwqSMQ8p+02JXLBBiNIt5cHsVfrsmmcamZhZs4cSLWr1+Pqqoq7Nq1CyEhIfDy8kJ2djZkMhk6RAHNBqBD7Ap3c+fOhUKhGLTX1+l0uHXrFjIyMnD+/HlcvHgR5y+n9RkmuxnFrk5BRES2qKqqCqdPn8b6GUHYv2UGFkxSQfbDt0eZACyYpMLnW2bwfnKyeYIo9rZzFlmKmpoaJCcnQxAEzJgxA3u+uIACwR83dc4QIUCAiBBFC97aOB/TQrz6vuBPdHZ2ora2FtXV1aY/VVVVaGxsBPDjqKVKpYKbpxe2nO19z7VuMgHI276II5REZHMMBgN27NgBmUyGl156CXZ2XZN+j1p0SWTLGCitSFNTE5KTk3Gp1v6H1dXoMVIo/2GlYW+rq0VRRENDgykw1tTUoKqqCnfv3jWt9nZ1dYWPj0+PP909xLttSU7v903o766bOjhvABGRBTl27Biys7Px8ssvw9vbW+pyiCTFeyitiKurK2LmrcBfd2ega3V1T50//EP36upJ3g6oqqrqMepYU1NjWryjVCrh4+ODwMBAxMfHQ6VSwdvbG46Ofe8fuTkhBKevVfV6TKfRiJ9N5jdZIrI93a1wExMTGSaJwBFKq9OfkUEZRATbN+NJ+Q0AXSu5vb29TYFRpVLBx8cHLi4u/e7x/TDJ35Xiz4dzIXvETehzXasRrWzAhg0bMHr06AG/DhGRJWloaMB7772HkJAQrF692qzvo0S2goHSirQbOhGx9VS/NtAVABz8eSDGjfGFp6dnv1otDkR6SR12XijG6bxKGMUfO/9sTghGmKcd9u3bh7a2Nqxbt67H1kRERNbIaDRi9+7daGpqwpYtW/o1o0M0EjBQWpGaZh3i3zrT7+PT/m0+vF0chrCiHz3qJvR79+4hOTkZDQ0NeOGFFzB27NhhqYeIaCikpqbi/PnzSEpKQkBAgNTlEFkMbhtkRbpbfPXHcLf4UtrL4e3i8MCKRicnJ2zcuBHe3t7Yu3cviouLh60mIqLBVFpaivPnz2P27NkMk0Q/wUBpRbpbfMn7SJVymYCFEb4Ws12FUqnEunXrMG7cOHz44Ye4ceOG1CURET2WtrY2HDx4EAEBAZg1a5bU5RBZHAZKK7M5IQTGPm6itMQWXwqFAj//+c8xYcIEfPrpp7h27ZrUJRER9Ysoijh69Cj0ej1WrFgxZPekE1kzflVYmfggT7y5PAoC8MBIpVwmQAAstsWXnZ0dVq9ejcjISBw4cABXr16VuiQioj5lZGQgPz8fy5Ytg5ubm9TlEFkk7kNphdZNC0S4yuWB1dULJqmwOSHYIsNkN7lcjhUrVkChUODo0aPQ6XSYPn261GURET1UdXU1vvzyS8TFxWHSpElSl0NksRgorVRckCfigjytssWXIAhYsmQJFAoFvvzyS+j1esyaNYt7uRGRRTEYDNi/fz88PDywcOFCqcshsmgMlFZOaS+3miB5P0EQsGDBAiiVSqSmpkKn02H+/PkMlURkMU6fPo36+nq89NJLsLe3l7ocIovGQEmSEQQBTz75pGmkUqfTYcmSJQyVRCS569evIz09HUuWLIGPj4/U5RBZPAZKktz06dOhUChw7NgxGAwGPPvss1xFSUSSaWxsxNGjRxEeHo6pU6dKXQ6RVWCgJIswZcoUKBQKHDp0CHq9HqtWrYKdHT89iWh4GY1GHDp0CAqFAsuWLeOMCVE/cRiILEZUVBR+9rOf4fvvv8fHH38MvV4vdUlENMKcP38eZWVlWLlyJft0Ez0GBkqyKGFhYXjhhRdw69YtJCcno729XeqSiGiEKCsrw9dff41Zs2YhMDBQ6nKIrAoDJVmc4OBgbNiwATU1Ndi7dy9aW1ulLomIbFx3a8WxY8di9uzZUpdDZHUYKMkijR07Fhs3bkRTUxN2796N5uZmqUsiIhsliiKOHTsGnU6HlStXclEg0QDwq4Yslq+vL5KSkqDT6bBr1y7U19dLXRIR2aArV67g+vXrWLp0Kdzd3aUuh8gqMVCSRfPy8sKmTZsAALt27UJtba3EFRGRLampqcGpU6cwZcoURERESF0OkdVioCSL5+7ujk2bNkGpVGLXrl2oqKiQuiQisgEdHR3Yv38/3N3dsWjRIqnLIbJqDJRkFVxcXJCUlAR3d3fs2bMHt27dkrokIrJyp0+fxt27d7F69Wq2ViQyEwMlWY1Ro0Zhw4YNUKlU2LdvH27evCl1SURkpQoKCpCWloaFCxdCpVJJXQ6R1WOgJKvi4OCAdevWISAgAB999BEKCgqkLomIrExTUxOOHDmCiRMnIj4+XupyiGwCAyVZHXt7ezz33HMICwvDp59+ipycHKlLIiIr0d1a0c7Ojq0ViQYRAyVZJTs7O6xevRoxMTE4ePAgMjIypC6JiKzAxYsXUVJSghUrVmDUqFFSl0NkM+ykLoBooGQyGZ599lkoFAocP34cer0eM2bMkLosIrJQt27dQmpqKmbNmoXg4GCpyyGyKQyUZNUEQcDixYuhUChw+vRp6HQ6zJ49m9NYRNRDe3s7Dhw4AH9/f7ZWJBoCDJRk9QRBwPz58+Hg4ICvvvoKOp0OCxcuZKgkIgBdrRWPHz+O9vZ2JCUlQS6XS10Skc1hoCSbMWvWLDg4OODkyZPQ6/VYsmQJe/ISETIzM3Ht2jWsWrWKrRWJhggDJdkUjUYDhUKBo0ePQq/XY/ny5RyNIBrBamtrcfLkScTGxiIqKkrqcohsFgMl2ZzJkydDoVDgwIEDMBgMWL16Nezs+KlONNJ0dHTgwIEDcHV1ZWtFoiHG+UCySREREXjuuedQVFSEjz76CHq9XuqSiGiYnTlzBjU1NVi9ejUUCoXU5RDZNAZKslkTJkzACy+8gDt37mDfvn1ob2+XuiQiGiY3btzAd999h/nz58PX11fqcohsHgMl2bSgoCBs2LABtbW12LNnD+7duyd1SSaiKOKf//wnnJ2dIQgCzp0791jn5+TkYPPmzQgJCYFSqcSYMWOwdOlSHD9+fGgKJrISzc3NOHLkCCZMmIBp06ZJXQ7RiMBASTbP398fSUlJaG5uxu7du9HU1CR1Sbh58ybmzp2LV199dUAh9/3330dcXBz27t2Lp556Cv/zP/+DpKQkXLp0CUuXLsXmzZthNBqHoHIiyyaKIg4dOmRqfMDtw4iGBwMljQgqlQqbNm2CwWDArl27UF9fL0kd3aOSMTExuHr1KqZPn/7Y1zh+/Dh++ctfwmAwYP/+/di5cydefvllvPXWW/juu+/g7e2N//u//8O//uu/DsFHQGTZLl68iOLiYqxYsQJOTk5Sl0M0YjBQ0ogxevRobNq0CTKZDB988AFqamqGvYbt27fj1VdfRUJCAnJzc/H0008/1vk6nQ6/+tWvYDQasXbtWixbtqzH8+PHj8cbb7wBAHj77bdx7dq1QaudyNLdvn0bqampmDlzJkJCQqQuh2hEYaCkEcXNzQ2bNm3CqFGjsGvXLlRUVAx7DTt37sSpU6cwbty4xz537969uHXrFgDgpZdeeugx69atg6OjI4xGI/7yl7+YVSuRtehurejn54e5c+dKXQ7RiMNASSOOs7MzkpKS4OnpiT179qCsrGzYXnvr1q148cUXB3z+559/DgBQKBSYNWvWQ49xdnY2LUTo3uCdyJaJoogvvvgCra2tWLVqFZsZEEmAgZJGJEdHR6xfvx5+fn7Yt28fioqKhuV1zVkg0NnZiW+++QZA1z6bve2rN2XKFABAU1MT0tPTB/yaRNYgOzsbOTk5SExMhIeHh9TlEI1IDJQ0Yjk4OOD5559HcHAwPv74Y+Tn50tdUq8KCwuh0+kAoM/p8vuf532UNFAD3doqLy8P27Ztw5w5c+Dj4wN7e3u4u7sjNjYWv/3tb3Hjxo1Bq/Hu3bs4ceIE1Go1oqOjB+26RPR4GChpRLO3t8fPfvYzTJw4EZ999hmys7OlLumRSkpKTI9VKlWvx97//P3nEfXXQLa2qqysxMKFCxEZGYnt27ejvb0dr7zyCt599128/vrr6OjowN///ndERUXh7bffNrvGzs5OHDhwAC4uLli8eLHZ1yOigWOgpBFPLpdj1apVUKvVOHTokMVOETc3N5seK5XKXo91dHR86HlEfTFna6uSkhKkpKQAAP7zP/8Tly5dwvbt2/Hiiy/iT3/6EzIzM/HCCy/AYDDg9ddfx44dO8yq9ezZs6iqqsKqVavg4OBg1rWIyDwMlEQAZDIZli1bBo1GgxMnTuDixYtSl/SAtrY20+O++hLf/3xra+uQ1US2x9ytrQBg2rRp+Ld/+7cH7hmWy+V47733MHr0aADAH/7whwG3RC0sLMSlS5cwf/58jBkzZkDXIKLBw0BJ9ANBELBo0SLMmjULZ86cwVdffQVRFKUuy+T+Uce+Vm7f//yoUaOGrCayTeZsbQUAS5cufeQCNCcnJyxatAgA0NDQgPPnzz/29VtaWnD48GGEhoYOqDkAEQ0+O6kLILIkgiDgqaeegoODA86cOQO9Xo+nn37aItq3ubi4mB73Napz/2jm/ecR9WXr1q0D/nwPDw/HsWPHMHXq1F6PCwgIMD1+3G27RFHE4cOHAYCtFYksCAMl0UPMnDkTCoUCX3zxBfR6PRITEyGTSTugHxQUZHpcVVXV67H3Px8YGDhUJZENMiegubu7IzExsc/jGhsbTY8ftz3ipUuXUFRUhHXr1sHZ2fmxaySiocFASfQI8fHxUCgUOHLkCPR6PVasWCHphsmhoaFwcHCATqczdct5lNu3b5seR0ZGDnVpRI+luLgYQFd4nTlzZr/PKy8vx9mzZ/HEE09g/PjxQ1UeEQ0A76Ek6oVarcaaNWtw/fp1fPrppzAYDJLVIpfLTd1xrl+/3ut9lFeuXAHQNd0dFxc3LPUR9UdjYyNSU1MBAImJif2+T1On0+HAgQPw9fXFU089NZQlEtEAMFAS9WHSpEn4+c9/juLiYnz00UemzcWlsGbNGgBdP1wvXLjw0GNaWlrw3XffAehaHMHtVMiS7Nu3D+3t7bC3t8d//dd/9fu8kydPoqWlha0ViSwUAyVRP4SGhmL9+vWoqKjAvn37eix6GU4bNmzA2LFjAXStxH2Yjz76CK2trZDJZPjjH/84nOUR9aqmpgZvvPEGAODNN9/s9+0Y2dnZyMrKwjPPPANPT8+hLJGIBoiBkqifAgICsGHDBtTV1WHPnj1oaWkZ9hqUSiX+93//F4Ig4JNPPsHx48d7PH/z5k38+c9/BgD85je/YSs6shhGoxEbN25ETU0N1qxZg9///vf9Oq+urg4nTpxATEwM1Gr1EFdJRAPFRTlEj2HMmDFISkrCvn37sHv3bqxfvx5ubm6PdY3k5GTT4/tbPaakpJgW06hUKixYsOCh5y9btgzvvPMOfv3rX2PlypVISkpCfHw8SktL8e677+Lu3btISkrCX//61wF8hERD47e//S1OnjyJOXPmYO/evf1aTd7dWtHJyQnPPPPMMFRJRAMliJa0czORlairq8PevXsBdE1DP840XH9+kM6ePRvnzp3r9Zjs7Gz84x//wFdffYXKykq4u7sjLi4OW7ZswdKlS/tdD1Fvtm3bhu3btwMAUlNTMWfOnMe+xvbt27Ft2zYkJCTg5MmT/d7uJyUlBZcvX8YvfvEL+Pv7P/brEtHw4Qgl0QB4enriF7/4Bfbu3Ytdu3Zh/fr18PHx6de5g/U7XExMDD744INBuRbRUHnrrbewbds2zJgxA1988UW/w2RRURG+/fZbzJ8/n2GSyArwHkqiAXJ1dcWmTZvg5OSE3bt3o7y8XOqSiCzK22+/jT/96U+YNm0aTp061e+uTffu3cOhQ4cQEhKCJ554YoirJKLBwEBJZAYnJyds3LgRo0ePxp49e1BaWip1SUQW4b//+7/x+uuvIy4uDl9++SVcXV0fOCYuLs40nd6tu7WiKIpYsWIFWysSWQkGSiIzOTo6Yv369fD390dycjIKCwulLolIUu+88w5ee+01xMbG4vTp049cuJaRkWHqmtPtu+++Q2FhIZYvX87WikRWhPdQEg0ChUKB559/Hp9//jk+/vhjrFq1ChEREVKXRTTsduzYgX/5l3+Bu7s7/v3f/x1ZWVn9PreiogIpKSmYPn06JkyYMIRVEtFgY6AkGiR2dnZYu3YtDh8+jP379+PZZ5/lvnlklQa6tdVXX32FX/7ylxBFEQ0NDVi1alW/X1Ov1+PAgQPw8fHBvHnzzPwIiGi4MVASDSK5XI4VK1bA3t4ehw8fhl6vR3x8vNRlET2W9evXP/Tf33rrLdPj2bNnPxAoy8rKBryLwcmTJ9HU1IQtW7bAzo4/moisDfehJBoCoiji9OnTuHz5MubNm4eEhASpSyKyWDk5OTh48CCeffZZTJ48WepyiGgA+Gsg0RAQBAELFy6Eg4MDzp49C51Oh6eeeoorVol+or6+HidOnEBUVBRvESGyYgyURENEEATMmTMHCoUCKSkp0Ov1WLRoEUMl0Q+6Wys6OjpiyZIl/NogsmIMlERD7IknnoCDgwOOHz8OvV6PpUuXQibjjl1E586dQ0VFBTZt2gSlUil1OURkBgZKomEwdepUKBQKHDp0CHq9HitXroRcLpe6LCLJFBcX48KFC5g3bx7Gjh0rdTlEZCYOkxANk+joaKxduxYFBQX45JNPYDAYpC6JSBKtra04ePAggoODMXPmTKnLIaJBwEBJNIzCw8Px/PPPo7S0FB9++CF0Op3UJRENK1EUceTIEXR2drK1IpENYaAkGmYhISFYv349KisrsXfvXrS1tUldEtGw0Wq1uHHjBpYvXw4XFxepyyGiQcJASSSBcePGYePGjWhoaMDu3bvR0tIidUlEQ66yshIpKSnQaDQICwuTuhwiGkQMlEQS8fPzQ1JSEtra2rBr1y40NDRIXZJNEEUR//znP+Hs7AxBEHDu3LnHvkZLSwteeeUVyGQyTskOku7Wil5eXg902CEi68dASSQhb29vbNq0CUajEbt27cLdu3elLsmq3bx5E3PnzsWrr76Ke/fuDegaZ8+eRVRUFN59990BtxGkB506dQqNjY1YvXo1WysS2SAGSiKJeXh4YNOmTVAoFNi1axeqqqp6PN9u6ERNsw7thk6JKrR83aOSMTExuHr1KqZPn/7Y1+gelVywYAEUCgWCg4OHoNKR6dq1a7h69SoWLVoELy8vqcshoiHAQElkAVxdXZGUlAQXFxfs3r0bd+7cQVpJHbYkpyNi6ynEv3UGEVtPYUtyOtJL6qQu1+Js374dr776KhISEpCbm4unn376sa+RmJiIHTt24LXXXkNWVhYCAgKGoNKRp6GhAceOHUNkZCRiY2OlLoeIhgjnHYgshJOTEzZu3IiPPvoIf9h5HBfax0IuE2D8YdbVKAJnrlfj9LUqvLk8CuumBUpbsIXZuXMnXnzxxQGfr1KpcP78eTzxxBODWNXIZjQacfDgQSiVSiQmJvJ+VCIbxkBJZEGUSiXCZy3BGx+kAQA6jT3v4ev++58P5yJc5YK4IM9hr9ESbd261eyw8sknnzDwDLKvv/4at2/fZmtFohGAU95EFmbPd7cg76PXt0wmYOeF4mGqyPINRhBkmBxcJSUl+OabbzBnzhyMGzdO6nKIaIgxUBJZkHZDJ1Lyqh4YmfypTqOI03mVXKhDFqm7tWJgYCASEhKkLoeIhgEDJZEFaW7vQB9Z0sQodh1PZElEUcTRo0fR0dGBlStXQtbHaDsR2QZ+pRNZEBelHWT9nHmVCYCzg3xoCyLqh/u3tkpPT0dBQQGWLVsGV1dXqUsjomHCRTlEFkRpL8eCCBXOXK/uddpbgIhxQj327f4A8fHxiI6O5mbRNOzSSuqw88JNpORVwSh2/ZITIKvHqsg4hIeHS10eEQ0jjlASWZjNCSEw9jnvLeC1xWo4OTnh6NGj+Nvf/oYzZ86gsbFxWGok2ne5FGvfu4Qz16t7bG1V1umOv2UDyd+VSlsgEQ0rDmkQWZj4IE+8uTwKfz6cC5lM6DFSKZcJMBpFvLk8CiumBQIJMbh79y7S0tKQnp6Ob7/9FuHh4dBoNAgMDOTKZRoSaSV1+I8juRDx4NZWRnR9znFrK6KRhYGSyAKtmxaIcJULdl4oxum8StN04oJJKmxOCO7xQ3r06NFYtGgR5s6di+zsbGi1WuzZswc+Pj7QaDSIjo6GQqGQ8KMhW7Pzws0Hftn5qe6trRgoiUYGBkoiCxUX5Im4IE+0GzrR3N4BF6UdlPaPXoTj4OCA+Ph4xMXFobi4GFqtFsePH8eZM2cQGxuL+Ph4eHh4DONHQDoiOQAACpdJREFUQLaoe2urvu7KuH9rq94+b4nINjBQElk4pb38sX4gC4KAkJAQhISEoL6+Hmlpabh69SouXbqEsLAwaDQahISEcDqcHpvRaEROfuFjb23FQElk+xgoiWyYh4cHFi5ciLlz5yInJwdarRbJycnw8vJCfHw81Go1HBwcpC6TLFxNTQ0yMzORk5OD+qYWCJgCEX3/QiITurbCIiLbx690ohHA3t4eU6ZMQWxsLMrKyqDVanHq1CmcPXsWkydPhkajwejRo6UukyxIa2srcnNzkZWVhfLyciiVSkRFRUGtVqM6tRJn8nvf2kouE7Bgkoqjk0QjBAMl0QgiCAICAwMRGBiIxsZGpKen48qVK9BqtRg/fjw0Gg0mTJjA6fARqrOzE99//z2ysrJw48YNiKKICRMmYM2aNQgLCzPtdbp51iiczqvq9VpGo4jNCcHDUTYRWQAGSqIRys3NDfPmzcPs2bORm5sLrVaLjz/+GB4eHoiPj0dsbCyUSqXUZfZbcnKy6XF2drbpcUpKCm7fvg0AUKlUWLBgwUPPr6qqQkpKSo+/P+zaMTExiImJGbS6pSaKIioqKpCVlYXc3Fy0trbC19cXCxYsQHR0NJycnB44p79bW3GFN9HIIYii2M/bq4nIlomiiNu3b0Or1SIvLw9yuRwxMTGYNm0avL29pS6vT/0ZVZ09ezbOnTv30OfOnTuHuXPn9nmNrVu3Ytu2bY9ZneVpbm5GdnY2srKyUFNTAycnJ8TExECtVkOlUvXrGukldQ9sbbUwwveBra2IyPYxUBLRA5qbm5GRkYGMjAy0tLQgODgYGo0GYWFhkMnYYMtaGQwGFBQUICsrC0VFRZDJZAgPD4darcb48eMH/H/b362tiMh2MVAS0SN1dnYiLy8PWq0Wt2/fhpubm2k6fNSoUVKXR/0giiJu3bqFzMxM5OXlQafTYdy4cYiJiUFkZCQcHR2lLpGIbAADJRH1S3l5ObRaLXJzcyEIAqKjo6HRaODr6yt1afQQDQ0NyMrKQlZWFurr6+Hm5maa0uaKfiIabAyURPRY7t27hytXriA9PR1NTU0ICAiARqNBeHg45HJOd0pJp9MhLy8PWVlZKC0thb29PSIiIqBWqxEUFMTV+0Q0ZBgoiWhAjEYj8vPzodVqUVpaChcXF8TFxWHq1KkPXRlMQ8NoNKK4uBhZWVm4fv06Ojo6EBwcDLVajUmTJrGPOxENCwZKIjJbZWUltFotcnJyIIoiIiMjodFo4O/vL3VpNqu2ttbUvaapqQmjR4+GWq1GTEwM3NzcpC6PiEYYBkoiGjRtbW2m6fCGhgb4+/tDo9EgMjKS0+GDoLt7TXZ2Nu7cuQOlUonIyEhMnjwZ/v7+nNImIskwUBLRoDMajbhx4wbS0tJw8+ZNODk5YerUqYiLi4OLi4vU5VmVzs5OFBYWIisrCwUFBabuNWq1ukf3GiIiKTFQEtGQqqmpgVarRVZWFjo7OxEREQGNRoOxY8dyRO0RRFFEZWUlsrKykJOTg9bWVqhUKqjVakRHR8PZ2VnqEomIemCgJKJh0d7ejszMTKSlpaGurg5+fn7QaDSIioriKNsPmpubkZOTg6ysLFRXV8PJyQnR0dFQq9XcnomILBoDJRENK1EUUVhYCK1Wi8LCQowaNQpTpkxBXFzciFxM0tHRgfz8/B7dayZOnAi1Wo3Q0FB2JiIiq8BASUSSuXv3LtLS0pCZmQm9Xo/w8HBoNBoEBgba9HR4d9/0zMxMXLt2DTqdDmPHjoVarWb3GiKySgyURCQ5nU6H7OxsaLVa1NbWwsfHBxqNBtHR0Ta1j2J395rs7GzU1dXB1dUVarWa3WuIyOoxUBKRxRBFEcXFxdBqtSgoKIBSqURsbCzi4+Ph4eEhdXkDotfrTd1rSkpK2L2GiGwSAyURWaT6+nqkpaXh6tWraG9vR1hYGDQaDUJCQiw+hHUH4+7uNQaDgd1riMimMVASkUUzGAym6fDq6mp4eXkhPj4earUaDg4OUpfXQ21trWlKu6mpCZ6enqYp7ZG44IiIRg4GSiKyCqIooqysDFqtFtevX4e9vT0mT54MjUYj6f2HbW1tyM3NRVZWVo/uNWq1mnttEtGIwUBJRFansbER6enpuHLlClpbWxEaGgqNRoPQ0NBhCXCdnZ0oKioyda8xGo0IDQ2FWq3GxIkTua8mEY04DJREZLU6OjqQm5sLrVaLiooKeHh4ID4+HrGxsVAqlX2e327oRHN7B1yUdlDa991rvLKyEpmZmcjNzcW9e/fYvYaI6AcMlERk9br3ddRqtcjLy4NcLkdMTAymTZsGb2/vB45PK6nDzgs3kZJXBaMIyARgQYQKLyWEIC7Is8exLS0tpu41VVVVGDVqFKKjozF58mR2ryEi+gEDJRHZlObmZmRkZCAjIwMtLS0IDg6GRqNBWFgYZDIZ9l0uxX8cyYVMJqDT+OO3P7lMgNEo4s3lUXhuqj8KCgqQlZWFwsLCHt1rxo8fD7m879FMIqKRhIGSiGxSZ2cn8vLyoNVqcfv2bbi5ucF1fCze/LYFvX/TE7HcuRgeHXXw9/eHWq1GVFQUu9cQEfWCgZKIbF55eTm0Wi3+kd6C0k53iHj0wh0BImK95dixIR5eXl7DWCURkfWSSV0AEdFQGzNmDBYtWYoyo0evYRIARAjIrDXC2c06O/MQEUmBgZKIRoTm9g4Y+zkfYxS7jiciov5hoCSiEcFFaQdZP7eolAldxxMRUf8wUBLRiKC0l2NBhAryPlKlXCZgYYRvv/alJCKiLgyURDRibE4IgbGPeW+jUcTmhOBhqoiIyDYwUBLRiBEf5Ik3l0dBAB4YqZTLBAgA3lwe9cDm5kRE1DtuG0REI056SR12XijG6bxKU6echRG+2JwQzDBJRDQADJRENGI9bi9vIiJ6OAZKIiIiIjIL76EkIiIiIrMwUBIRERGRWRgoiYiIiMgsDJREREREZBYGSiIiIiIyCwMlEREREZmFgZKIiIiIzMJASURERERmYaAkIiIiIrMwUBIRERGRWRgoiYiIiMgsDJREREREZBYGSiIiIiIyCwMlEREREZmFgZKIiIiIzMJASURERERmYaAkIiIiIrMwUBIRERGRWRgoiYiIiMgsDJREREREZBYGSiIiIiIyCwMlEREREZmFgZKIiIiIzMJASURERERmYaAkIiIiIrMwUBIRERGRWRgoiYiIiMgsDJREREREZBYGSiIiIiIyCwMlEREREZmFgZKIiIiIzMJASURERERmYaAkIiIiIrMwUBIRERGRWRgoiYiIiMgsDJREREREZBYGSiIiIiIyCwMlEREREZmFgZKIiIiIzMJASURERERmYaAkIiIiIrMwUBIRERGRWRgoiYiIiMgsDJREREREZBYGSiIiIiIyCwMlEREREZmFgZKIiIiIzMJASURERERmYaAkIiIiIrMwUBIRERGRWRgoiYiIiMgsDJREREREZBYGSiIiIiIyCwMlEREREZmFgZKIiIiIzMJASURERERmYaAkIiIiIrMwUBIRERGRWRgoiYiIiMgsDJREREREZBYGSiIiIiIyCwMlEREREZmFgZKIiIiIzMJASURERERmYaAkIiIiIrP8f9yr7kKtdrcJAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stderr", + "output_type": "stream", + "text": [ + "Computing transition probabilities: 100%|██████████████████████████████| 24/24 [00:00<00:00, 3618.12it/s]\n", + "Generating walks (CPU: 1): 100%|█████████████████████████████████████████| 10/10 [00:00<00:00, 23.73it/s]\n" + ] } ], "source": [ "import networkx as nx\n", - "from karateclub.node_embedding.neighbourhood.deepwalk import DeepWalk\n", - "\n", - "G = nx.barbell_graph(m1=10, m2=4)\n", - "draw_graph(G)\n", + "from node2vec import Node2Vec\n", "\n", - "dw = DeepWalk(dimensions=2)\n", - "dw.fit(G)" + "node2vec = Node2Vec(G, dimensions=2)\n", + "model = node2vec.fit(window=10)\n", + "embeddings = model.wv" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "V = np.matrix([model.wv[str(x)] for x in G.nodes()])" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 62, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzkAAAMtCAYAAAC8Vb+UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXRkdZ3//+etLVVJVWVPOkkv6X1PL9ANrYDQyC4Niig6guNv/I4LwqjoKOqozAzgwqioI4PoiIIIgsNu02izr83aK713eknS2VOVpSq13Pv7ozppQtKdrSqVVL8e53Ca3Prce9+VVM65r3w2w7IsCxERERERkQxhS3cBIiIiIiIiyaSQIyIiIiIiGUUhR0REREREMopCjoiIiIiIZBSFHBERERERySgKOSIiIiIiklEUckREREREJKM40l3A8ZimSW1tLT6fD8Mw0l2OiIiIiIikiWVZtLe3U15ejs12/L6acR1yamtrmTJlSrrLEBERERGRceLgwYNMnjz5uG3Gdcjx+XxA4o34/f40VyMiIiIiIukSDAaZMmVKb0Y4nnEdcnqGqPn9foUcEREREREZ0jQWLTwgIiIiIiIZRSFHREREREQyikKOiIiIiIhkFIUcERERERHJKAo5IiIiIiKSURRyREREREQkoyjkiIiIiIhIRlHIERERERGRjKKQIyIiIiIiGcWR7gLkxGNZFqFggGh3N/FYDLvDgTMrC48/d0g72IqIiIiIHI9CjqRcVzDAwa2bqN+7m7rdO6nfu5toONSvndPtoXTGLMpmzaF0xiymLKwi25+bhopFREREZCJTyJGUsCyLul3beXvd4+x4+XnMeByb3Y4Zjx/znGg4xKFtm6ndsa23/dz3ncHScy+ibPZc9fKIiIiIyJAo5EjS7X7tFV687y6aDu7HsNmxzESwOV7AebeedmY8zvYXn+Od55+maGol7//4lcw6+ZSU1S0iIiIimcGwLMtKdxHHEgwGyc3NJRAI4Pf7012ODCLUHuSp3/0P2198DsMwSOZHq+d6895/Bqs/83k8Pn0eRERERE4kw8kG6smRpNj12ss8efvP6e7sBEhqwHn39Xa8/ALVm97m3M9dw+wVq5J6DxERERHJDFpCWkbFsixeffDPPHLLjYQ7OrBMM7X3M03CHe08csuNvPrgn5MepkRERERk4lNPjoyYZVm88Kffs+HhB3oOjNWNAXjh3j8QCYc47YqrtCiBiIiIiPRST46M2IaH7j8acNJZw0P3p7UGERERERlfFHJkRHa99jIv3PuHdJcBJHp0dr/2SrrLEBEREZFxQiFHhi3UHuTJ238O42WImGGw7vZbCbUH012JiIiIiIwDmpMjw/bU7/4nsYpaEufgdEdjPLNjLwda2jjQ0kYoEuXjK6pYMX1Kn3b3btjI69WH+p1f7Muhsmo5F1379aTVJCIiIiITk0KODMvu115h+4vPJf26nZEIf9u2i7xsD+W5PvY0thyzrcNm4/IVi/scczudbH/xWea+7wxtGCoiIiJyglPIkSGzLIsX77sr6Rt9AvjdWXz34rPxe9wcbGnj1r+/eMy2NpvBSdMm9ztuGAYv3ncXM09aqdXWRERERE5gmpMjQ1a3aztNB/enZG8ah92O3+MecnvTtAhHo32OWZZF04Fq6nbtSHZ5IiIiIjKBqCdHhuztdY9j2OxYZjytdURjcb794Dqi8Tgel5NlU8q5qGoeWU4Hhs3O208+TvmceWmtUURERETSRyFHhqQrGGDHy8+nPeD43VmcOW8mFfl+LAt2HG7kpT37qQ0E+cKZp2IHdrz0HGde9Vmy/blprVVERERE0kMhR4bk4NZNmPH0BhyAC6v69tAsm1pOsTeHtVt2sOnQYZZNLceMxzm4dTNzV52WpipFREREJJ00J0eGpH7vbmx2e7rLGNAZc6ZjGLCrvgkAm91O/b7daa5KRERERNJFIUeGpG73jnHRkzMQp8NOtstFVyQCgBmPc3i3Fh8QEREROVEp5MigLMuifu+edJdxTOFojK7uCN6srN5j9Xt3p2QVOBEREREZ/xRyZFChYIBoOJTuMojG44SjsX7H/75tFxYwd1Jx77FIKEQoGBjD6kRERERkvNDCAzKoaHf3mNznhV3VhKNRAqEwANtqG3r///2zKglFo/z0yedZOrWcEp8XgB31jWyva2TupGIWVpT2uV7syPA1ERERETmxKOTIoOKx/r0nqfDsjr20dh3tMdpcc5jNNYcBWD6tAo/TyfzyUnbVN/F6dQ2WZVHozeaCxXM5c+4MbIbR53qx92wWKiIiIiInBoUcGZTdMTYfk29/aPWgbT55ytIhX8/hdI6mHBERERGZoBRyZFDOd03oH48swLI7wGYDwwDLAtPErpAjIiIickJSyJFBefy5ON2ecbH4AIBpdxDP9mG6s4l7coi7c2CAPXxu/dVtlJeXU1FRQVlZGdOnTycnJycNFYuIiIjIWFLIkUEZhkHpjJkc2rYlbTVYgOnJIZJfQsyfD4YNLBMwEr03A4hEIlRXV3PgwAFM08Rms7Fo0SJWrFjB5MmTMY5xnoiIiIhMbAo5MiRls+ZSu+OdtGwIGvXmESkux3RnJ4ai9YQTY2groJum2fvvli1b2LRpEyUlJaxevZp58+alqmwRERERSRPtkyNDUjpj1pgHHMtuJ1Q+nfCUWZhZnsTBUfa+9ASexsZG7r33Xh544AG6urpGW6qIiIiIjCPqyZEhmbKwCpvdPmZBJ+rNI1w2DexHPqJJHlpmWRYAW7duZc+ePaxZs4b58+cn9R4iIiIikh7qyZEhyfbnMnfV6Ri2/hP8k8kCugsnEZ4yKxFwUjxvxrIsQqEQ9913H88//3xv+BERERGRiUshR4Zs6XkXYZmp68mxgEhxBZGSyYkDY7wwwPr161m/fr2CjoiIiMgEp5AjQ1Y2ex5FUytTtipZpHASkaKylFx7qF544QVeeOGFtNYgIiIiIqOjkCNDZhgG7//4lSnp6Yh684724KTZ+vXr2b59e7rLEBEREZERUsiRYZl18inMe/8ZGLbkfXQsuz2xyMA4Gib28MMPa9U1ERERkQlKq6vJsK3+zOep3vQW4Y6OpASTcOnUpC8yEIlEePHFF6mpqaGmpoZwOMwll1zC0qVL+7S74YYbjnmNe+65h40bNyatJhEREREZGwo5Mmwen59zP3ctj9xy46ivFfXmEcstTEJVfXV1dfHcc8+Rm5vLpEmTqK6uHrDdhz/84X7HamtrefXVVykpKWH79u3aMFRERERkglHIkRGZvWIVp11xFS/c+4cRXyOxmlp5ojcoyYsZeL1errvuOrxeL7W1tdxxxx0Dtquqqup3rCcQLV68mKeeeoq5c+embLEFEREREUk+zcmREVt56eWsvPTyEZ9venIw3dkpWSra4XDg9XqHfV4sFuOdd96hsrISv99PQ0MDhw4dSnp9IiIiIpI6CjkyYoZhcNoVV3HaFVf1HBjW+ZH8knG12ADArl27CIfDLF68GACbzcZrr72W5qpEREREZDgUcmRUDMPglA9/jEu+9h3cXu+QV10z7Q5i/vwx3/BzMJs3b8Zut7NgwQIATNNky5YtdHZ2prkyERERERkqhRxJilkrTuX/++ntzF11GsCgc1ji2T4wxtfHr7u7m127djF79mzcbnfvcdM0j7lwgYiIiIiMP+PrKVMmNI/Pz0XX/iuXfO07FE6ZBoBhsw/Y1nRng2WOZXmD2rZtG7FYrHeoWg+bzUZtbW2aqhIRERGR4dLqapJ0s1acysyTT6Fu1w7efvJxdrz0HGY8js1ux4zHAYh7coDxN1QtKyuLOXPm9DlumiY1NTVpqkpEREREhkshR1LCMAzK58yjfM48zrzqsxzcupn6vbs4vGcndXt2E3fnjKv5OO3t7VRXV7NkyRIcjv6/FrW1tViWpaWkRURERCYAhRxJuWx/LnNXndY7X6ejo4NbbrkljRVZ5BDCSRQ7JnFsvLFlI5ZlDbhvDkAkEqGzs3NEy1KLiIiIyNhSyJExF41Gx+Q+GzZsIBwOE2pvBaBt50u0B1/CRwf/vNJBrvtor8zdmzso9xl8t/I16jhEHSXsYypdeHrbxGKxMalbREREREZHIUfGXPzIvJzUstjw0vM0Bzp6jzz7TiPPvpP4/3+s8vaGnB1Ncd6oM/nqqS5mGDVUUtfbw7OFubzGEg4xSSFHREREZIJQyJExZ7cPvOJassxlD6t5ke9/2UacXOwcf8PRuUV2rO/5j9aH2fvvIrazhHeopwj3/kVQdHlKaxcRERGR0VPIkTHndDpTcl0PIS7gaarYQc/i1IMFnMH0nF9ME7ZHPwv7noALfwzZBaOsVkRERERSRfvkyJjLycnB5XIl9Zrz2M013MkidgLJ/2D3Xm/rg/CLk+Cdx5J8BxERERFJFoUcGXOGYVBWVpakq1mczgau4FHchLGNsudm8NvFIdQG9/0DPP9fYKX4fiIiIiIybAo5khaTJ0/GZhvtx8/ibF7kbF4ExvLDfGQw3Pp/T/ynoCMiIiIyrijkSFqUlZVhmubgDY/jdF7jdF5LUkUj9MJPEv+JiIiIyLihkCNpMX369FH15Mxjd28PTtqt/3fY/ni6qxARERGRIxRyJC1ycnJYuHDhiIKOhxBr+Buj6wdKJhs8/CXoakl3ISIiIiKClpCWNFq5ciWbN28e9nkX8DRuupOW0F+rifP7jRGero5T3WZS6DE4dbKd/1ydxZzCo3v6bKiJc+fbEV6tibOp3iRmcmR/HRPCAVj7r3DZb4Z1b8uyiLe0YIbCWNEIhtOFzePGXlCAYRhJeociIiIiJxaFHEmbyZMnU1JSQmNjI9YQJ+/PZQ9V7EhqHT98sZsXD8a5fIGTqlIbhzssfrkhwvLbO3nlszksKkkEnb/uivKbN6NUldqYkW9jZ/O7+pKsOGy+HxZ+BOZdeMx7xVpb6XrlFcJbtxLatJnw1i2YnV392tlysnEvXISnajHuhQvJPvVUHPn5SX3fIiIiIpnKsIb6dJkGwWCQ3NxcAoEAfr9/8BNkwtm+fTv33nvvEFtbfIG7KKY5qeMsXzoY4+RyOy770Z6TXc1xFt/WyUcXOLn7Ix4A6jtM/FkGHqfBl/4a4r9fix7pyTnCsEHxfPjCi/CuXhjLsgi9/Tat9/yJ4Nq1EIuBw5H4dzA97RwO/BdeSMEnP4F7yRL18oiIiMgJZzjZQHNyJK3mzZvHokWLhvTQPpk6SpMccADeN8XRJ+AAzC60s7DExjtN8d5jpV4bHudx6rRMaNgKh17vPdS+fj371lzC/k98kuBf/3o02Awl4Ly7XSxG8PHHqb7iE+y75FLan3pqaOeLiIiInIAUciTtLrzwQtxu96DtVrCROGPTg2FZFvUdFkXZw7yfzQGv3UGstZWa677Goau/RPfu3YnX4vHjnzuYI+d379rFoS9eTc11XyPW2jq6a4qIiIhkIIUcSbvs7GzWrFlz/DaEWMRO7IzN6Mo/bo5S027x8YXO4Z1oxmhf+yh7z7+A4BNPJI4le0TokesF165l7wUX0v73vyf3+iIiIiITnEKOjAvz589n9erVx3x9Ogewj9Gi0dub4lz91zCrJtv59JKhhxzLgqatXg49n0c8GBx9z81gTJN4IMChL11D0+2/HvLiDSIiIiKZTiFHxo3TTz+d0047bcDXymggPgYf18MdJhfd00VulsEDH/Ngtw1tuJplQeMmH42b/UcPjIUj92n86U9p/OnPFHREREREUMiRccQwDM4++2zOPvvsfq9VcBhbintyAmGLC/7YRVsYnvhUNuW+of96NG/z0vyOL4XVDaGGX/+a5l/fkdYaRERERMYDhRwZVwzD4PTTT+eKK67A4/EcWXXNopz6lC45EI5ZXPynLnY2mzz2CQ8Liu2Dn3RE+yH30R6cNGv86U9pX78+3WWIiIiIpJVCjoxL8+bN45prrmHhwoXkECKLaMruFTctPv5AiJcPxbn/cg+rpgx9j9xYt0HdhlwYowURBmUY1H37O1p1TURERE5oQ3+aExlj2dnZfPSjH2VPZQE8dnvK7nPdk908siPGxXMctIQs7t4U6fP6p6pcAOxvM7lrUyJsvV6bGDr3rfuhO9BKucPJmtzcUdeyORTi4WCAV7u6qI1GybXbWeLx8C9FxVS6XL3t7m9r49FggH2RCEHTpMThYIUnm6uLCqkIBqm/8UYqbrll1PWIiIiITEQKOTLuzaycmtLrv304sQraoztjPLqz/yadPSFnX5vJvz3d3ee1H+8JALDC40lKyPltSwtvhro4z+dnblYWTfEYf2xt5bLqfdw7rZLZWVkAvNMdZrLTyVleL367nZpolPvb2ni2s4MHKyvhscfxX3ghvuOsWCciIiKSqQxrHC/HFAwGyc3NJRAI4PePjzkPkgat++HWqnRX0Ydlwb4niukOOCCJs4XeCnWx0O3BZRy9ZnUkwqXV+zjX6+NH5eXHPHdrOMzl+6v5SlEx/6+oiKzZs5n+8ENH5jVlBsuyaO6MEIrEicZNnHYbHpedwhxXRr1PERER6W842UA9OZIylmXREm4hHA8TjUdx2p247W4K3AXDeyB1ZqeuyBEKNTvpDgxzo9AhWObp/14rXS5muVzsjXQPcMZRFc5EPe1mHCyL7p07CW/ciGfp0qTXOVZaOiO8tKeJzTUBNh5sY/OhAJ2R/vsP5bjsLJ6cy5IpeSyuyOV9M4soyHENcEURERE5ESjkSNK0hlt59fCrbGvexubGzWxr3kZXrKtfu2xHNgsKF7C4eDELChdwyqRTyHfnH/vCOUXg8kKkI4XVD0/rrhwwLLBS33tgWRbN8TizXFn9XmuLx4lbFnWxKLc1NQNwanZO4kW7nZZ7/kTFBAs5lmXx5oE27nq5msc21REzLRw2g5h57E7nzkicV/a28Hp1a2/7i5eUc+WqaSybkqdeHhERkROMhqvJqFiWxcbGjdy7417W7VtHzIrhMBzErP5zW96rp53DcHD+9PO5Yt4VVBVVDfxA+ruLYP8LKXgHwxfrtrHrodIxCTgAjwQCfPNwHf8xaRKX5eb1eW3pzh1EjvwK59ntfLGwkE/lFxxt4HAw+/nncOQfJ0SOI09uPcx/PbmTHfXt2G0G8eMEm8H0nD9vko/rzp3LOQtKk1ipiIiIjDUNV5Mx8dSBp/jlW79kV9su7IaduJUYRjSUgPPudjErxtp9a3ls72PMzpvNNcuu4aypZ/VtPPkkOPgKmEO7dip11bvGLODs7e7mPxvqWer2cKm//8IGt0+eTLdpsTcS4dFggNB7Q0EsRterr+I///wxqXekWjsjfO+RrTyysZaejDuagPPu83fUt/P//vA6a5aUc8OaheRrGJuIiEjGU8iRYWsLt3HTqzextnotxpFJ9z0BZ6R6zt/dtptrn76WCyov4FunfIs895Gei7Kl4yLgAIRbnGMyVK0xFuMLNYfw2mz8rKIc+wA9XKccGZp2BrDa6+WS6n1k22z8Q0/PjcNBeOvWcR1y1m09zDf/solgKPHzTXbfcs/1Ht9Uy/O7GvnBZVWct3BScm8iIiIi44o2A5VhWX9gPRc/dDFP7n8SACvJm2D2XG/d/nVc/NDFrD+wPvHC9A+AbXxk8lCzK+V7f7bH43zu0EGC8Ti/njyFEsfgixxMdbmYn+XmsWDg6MFYjNCmTSmsdOQsy+K/n97N5+56g7ZQlHiKR87GLWgLRfncXW/w30/vZhyP1BUREZFRUsiRIbEsizs23cGXn/4yge7AqHtuBmNaJoHuAF9++sv8ZvNvsLILYOFHwGZP6X0HY1kQbnWSzGWj36vbNPlizSH2RyLcNnkKs7L6LzhwLGHLpN00+x7bsnXcPdBblsWP1u3gx+t2HPl6rO6b+PfHR+493r4vIiIikhwKOTIoy7K49c1b+flbP098nepujJ77HrlPz72tFZ8FM7XhajDxbhtmLHW/NnHL4qt1tWwMhfhJeQVLPZ5+bWKWRSDe//uwKRRiV3c3i9zuPsfNzk7iLS0pq3kkfvXMHm57Zk/aa/hVmmsQERGR1Bgf439kXPvN5t/w2y2/TXsNOcuy+WzJQmh8Byxz8JNSwIyldh7OjxobeLqjg7NyvATicR4JBPq8viY3ly7TZPWe3Vzg9zPLlYXHZrCru5sHAwG8NhufLyzqd10rHE5p3cOxbuvh3h6cdPvxuh3MLvFyruboiIiIZBSFHDmu9QfW9/bgpNutb/2cGUuvYvWTW9NWQ6qz1fYjYeTpzg6e7uy/L9Ca3FzcNhsfzctjQ1cXT7a3EzZNShwOLvT7+XxhIRXO/quHmZFIagsfotbOCN/8yyYMkjetqbtuJ51b1hPev5lYsB6b209W+VzyzrgSZ0FFn7bRpoO0PHUH3Ye2YdgdeGau4Drr8zz33Uu16pqIiEgGUciRY2oLt/H9l76PgTFmQ9SOx8DgewceYfnCS8jb9hikeF7QgDWkeIDn76dOG7SNyzC4vmR4e77YXOPjAf57j2wlGIol9dMUfOUBumveIXveaTiLK4l3ttL+5mPU3fkvTLryFlzFlQDEgk0cvucb2LJyyDvjKqxomOCG/2PnndX82+JKfvmplUmsSkRERNJJIUeO6aZXb6I90p60gNO1t4u2F9vofKeTSFMEh9eBZ6aH0stKyZqUmFxvmRZtL7YRfCNI6ECIeEccV7GL3FNyKTq/iKAR5OYphfzQnQuhNmBsh63ZHOkPeyNhvGeeTjo8ufUwj2ysTfp1fSs+TNGar2PYj65AlzPvdGr/90sEX3mAoou/BkDglT9jRbsp/cef4fCXAOAqm0PDfd/hT3ffxSXLp2nDUBERkQyhhQdkQE8deIq11WuTuopa01+bCL4eJGdBDmX/UEb+mfl07ehiz/f2ED6UGKZlRkxqfltDrD1GwZkFlH2yDM8MDw0PNrD/J/uJm3H+euDvPH36FxjrgANgzzKxOdIzH2ikbDk52AsK0lqDZVn815M7GWCrn1FzT57fJ+AAOAsqcBVNJdp8sPdY146X8Mxc0RtwADyVS3EUVNC1/Xn+60mttiYiIpIp1JMj/ViWxS/f+mXSh6kVnVeE+/NubI6j2Tp3ZS67v7ObxscbmfK5KRgOgxnfnkH27OzeNgVnFuAqctHwYAOd2zrxLfTxi8ZXOPOs72A8/Z9Jq28oDAPc+VG6Gl2kchnpZHIvWoiRinQxDG8eaGNHffuY3c+yLOKdbTiLpgIQa2/C7GrDVTarX9ussjmE9rzO9sPtvHWwjeVT88esThEREUkN9eRIPxsbN7KrbVfS5+Fkz87uE3AAsiZlkVWRRXdtNwA2h61PwOnhX+4HoLu2GwuLXW272DT/HDjtq0mtcSg8hZGJkm/A4cBTVZXuKrjr5WrstrH7pnVue4Z4RzM5808HIN7RCoA9p3+Plj0nHzPcjs2McdfL+8esRhEREUkdhRzp594d92I3xmbTTcuyiAVjOHzH71SMBWIA2H2JuuyGnXt33AdnfzfxHzBWH+esgihYEyTlxGK4Fy5MawktnREe21RH3ByboWDR5oO0PHkbWeXzyFl0NgBWLBGi3zusDcBwJBZliEXCPLqxlpbO8bESnYiIiIycQo700RpuZd2+dUmdi3M8gZcDxFpj5K7MPW67xrWN2Dw2fIt9AMStOE/se4LW7jY4/Tq44h7w5EGKw5kFuMojWLYJMnfD4SD7lFPSWsJLe5qIjVHAiXe00vDADdiycii69HoMW+LzYDiOLGwRj/Y7x4pFetvETIuX9zSPSa0iIiKSOgo50serh18lZsXG5F7dtd3U3lWLZ5aHvNPyjtmu4dEGOrd2Unp5KfacoyEmZsXYcHhD4ot5F8E1b8DCDye+TvJazz2P6IeLXWw4PY/QSeb4Dzp2O/4LL8SRn945JptrAjjGYKia2d1J/f3fwwx3UvKxG3D4Cntfs3sT34N4Z0u/8+KdrdjcPgyHE4fNYHNNoF8bERERmVgUcqSPbc3bcBipX48i2hal+qfV2D12pl49FeMYD8GBVwM0/F8D+WfkU7i6sM9rDsPBtuZtRw9kF8BHf5vo1SmenzhmG917MY+U1ZFjZ+NCH9vm+4k5bXR+wMQwx/mQtXicgk9+It1VsPFAW8p7cqxYhIYH/p1Yaw0lH/0uriMLDvRw+IqwZecSqdvd79zuup24SqcDEDMtNh5sS2mtIiIiknpaXU362Ny4OeU9OfGuOPt/sh+zy2T6t6bjzO8/TwKgY0sHh+44hK/KR/mny/u9HrNibG7a3P/EeRfB3Avh0Ovw2h2w5S9gxhKBxzz+e0usIGzHMOKYBtQXZ3Go3E3Q5+Dd6x9Hp1tEy00cdQbGEOfndJom/9vSzOZQmE3hEEHT5MZJk/hwbv9erLXBIL9vbWFfJIINmJ2VxT8VFPIBr3dI98IwyJozB/eSJUNrnyKWZaW8Z8Qy4zQ+/EO6a7dT8pHvkFUxf8B22XPeR+eWp4gFG3H4iwEIVb9NrKUG/8mX9LbbXBPAsqy0r0gnIiIiI6eQI70sy+rbM5ICZsRk/8/20324m+n/Oh13xcCbVHbt6eLALw7gqfQw5eopGPaBHzi3NW8b+IHUMGDKisR/590M1c9B7VtQ82bi30hH/9osDxFzFh2eXOpmbqQ1z0nUeYzOTgOCa+IU/s/AAW0gbfEYtzU3U+ZwMC/LzYZQ14Dt7m5t4aaGBj6Qk8OlxcVETIsHgwG+UHOIW8srOMfnG/xmlkXxv1yb9gf15s4InZHUzu9qfeq3hHa/imfWSuLhDjq2Pt3nde/CswDIXfUxuna8SP2fvoXv5DVYkRDBDf+Hs7gS7+Jzett3dMdo7oxQ5M1Kad0iIiKSOgo50qsl3EJXbOAH72SwTIuDtx2ka08X066dRvas/ktFA4Rrw+z/6X6cRU6mfWUaNtexR1V2RjtpCbdQ6Ck8ZhtyChNzdXrm61gWdDZhRbvoeGYfHa82Y+HCJBcLqD7534h43WAcf4hVd5VF18lxPG/ahjR0rdju4NmZsyh2ONgSDvGx/QMvV/zH1lYWu938qmJyb0j5SG4uZ+7Zw0PBwOAhx2bDf+EF+FavHrSmVAulOOAARBr2Ju61ewOh3Rv6vTRRo+oAACAASURBVN4Tchz+Yko/cTOtT/2GtmfvxLA58MxcQf7qf8Jw9A2r4ejYLLwhIiIiqaGQMwjLsmiKxgjFTaKWhdMw8NhtFDkdaf8rebKF4+GUXv/wnw7T/lY7vqU+4p1x2l7qO/ch7315xENx9t+yn3hnnKILimjf2HcDSVeJq1846o53D68QwwBvMe1PHyD4qh0o6X0pnLubiO/QkC8V+FicrHds2LqsQYetuWw2im2DT4PrME0qXa4+ny+v3U62zcA92GfOMLD7/ZR++9tDqj/VonEz5feY9MkfDLmtq3gapR//j0HbRWKpr1tERERSRyHnPZojMV5oa2dTe4i3gl1sbO+ic4AHtRy7jSW+bJb5s6nyeTgtz0eha2J/O6MDLK+bTKEDIQDa326n/e32fq/nvS+PeEecaEuijvr76/u3eX9ev5ATiQ9/X5PQ1iaC6/r3pLROWQ+mDWxDe8i1vBD4hxgFvx76sLXBrMzO5sn2du5ubeEsr5du0+KPba10mCZX5vffzLJvQRZlN/5n2ldU6+G0T8y1TVyOiVm3iIiIJEzsp/IksSyLN4Jd/K6miYcbWolZ4DAgdpzRSp1xk5faOtgQ6Ohtf2lJPp+pKGK5P3tC9vI4B9goMZlmXD9j0DauYheL7lw0rOu67K5htY93Rmn9y65+x2POdtonbRhywOkRXmoRXBPD/0hyfp2+VVJKazzOTQ0N3NTQAEC+3c7/TpnKUo/nuOcWf+Ur+M4+Oyl1JIPHNTabyiab2zkx6xYREZGEEz7kPNEY4Af76tjeGcZuQPxIsDlewHm32LvaP9jQygP1rczPcfPNGWWcV3T8DS7HG7d94EUAxrss+/AmiLc9sgcz1H+Vta6Cd8A2srkYjWfEuOPZFnZs6R505TTTsngymOjJ+t7hw/yooYF5bjffKC5hntuN22ZjusvFJIeDD3i9dJomf2hp5dqaQ9w1dRrTXAOHusJ//mcK//n/jaj+VCnMcZHjsqd88YFk8mY5KMwZXnAWERGR8eWEHZPREo3xha3V/OOWfezsTMxFiY9yK4+e83d0hvn05n18YWs1LdGx2VgzGdq2x3HGJ9aKUjnOHArcgwzhepfQ1mZCGxuP7u75Lt3+ajBH9hf8QDDObze0sNvRzbys44fF7xyu43etiU0pL/b7+WJREWUOBy3xRBD4Sm0NddEoN5WVc57Pz0dy87hz6lSilsWtTY19L3akx7D4q1+l5KtfGXc9iIZhsLhiYoX9xRW54+77KCIiIsNzQoactY1tvP/Vd3ikITHxPdlTjHuu90hDG6e9+g5rG8f/5oLhjijP3L2Doo4pAwaA8WpB4YIhP5BalkXgyWo4RvNQ7h4wRtbjUFDg4M/3T+XuB6fyz59PzIcZaB2CtcEgDwWDfKUosU/LydnZXJlfwE1l5bwvJ4eDkQgvdHZylrfvCmp5djvLs7N5KxQ6+n5sYM/NZfJ//5KicdaD825LpubhOMZmr+ONw2awZEr/3jcRERGZWE6o4WqWZfHz/Q3cvK8OG8kPN+8VB9qicT6zpZpvzSjjmqkl4/YvxM/dt5PuUJTSjmnU+/ZiGqP/7sTDcZrWNhHaEyK0L0S8M07FP1WQf/qxJ8VbMYvd391Nd203kz4+iaILio7Z1mE4WFy0eMj1RA60E6sfeIlsC4uwf/8xA9BgXC6DgoLEr1P37MSx6DQLWsEyjq689vvWFha73azMyYYmiFh9E2Xzkd6c+ABJM2ZZxCyr93rhkw2qbv3ruFlk4FgWV+QSMydGco6Z1oTreRIREZH+TpieHMuyuGlvHTfvqwNSH3B69Nznpr113Ly3Dssafw97e99uZNdr9VgmFHVOwRzmxPtjibfHaXy4ke66btxThjbfp/nvzUSbh7bKW8yKsaBwwZDr6Xi59pif+LirHcuR3CW0u043aflclFhZ4mfebsXYHA6z2O3mntZE794N9fWcu3cPa4NBAKY6ndiAJ4LtfT4rh6NR3gh1Md/tJlZm0fz5KK3/2I2ZM/7nurxvZtGE6slZNfM4ey6JiIjIhHDC9OT8fH8DvzjQkN4aDjTgddi5dlppWut4N8uyePWRvYkeDAsqArMxTBtWEoKOI8/B3J/NxZnnJLQvxJ4b9hy3fSwYo+HhBoouLKLhwcF/Vg7DwcpJK4dUS7wzSmhT0zHTrWUb5l47QxReYhGuiuGsNjj4YARrJ/xfINDbT7PI7aYxFuO6ulrsBpzr8/OR3FweCAT4zKGDfNDnpStucW9bK92WxceuzqXx3Fhvj1N8uHsEpUFBjosPVZXx6KY64uO4R8duM7h4STkFWnRARERkwjshenLWNrb19uCk201763iiMZDuMnrV7wvSUtvZOw/HE/Myq3kZhjn6j4bNacOZN/RlqQ/ff5issizy3jf4nAi7Yef86eeT7x7aUK3uPW1wnAdsa4Srqg2JAdHpFo0fTCxCEbYsuo/00mwJh6mPJY7f0dwMwHdLJ/Gt8hICjjg/a2nk9vYmJs138MMfl7HgPHefIXWWNfw9gtLhylWV4zrgAMRNiytXTUt3GSIiIpIEGd+T0xKN8dUdB3s6KtLOBnxlxwFW5s2nwJn+b//mZw5h2Aysdz2ALjx8OruK3xjTOrr2dtH2Qhszvj34XjoAcSvOFfOuGPL1IzUdYDOOGXSMEa6qNhyurERwnFTm4O67pyYOWmDrgB/9rIG/P99B7fe7sXkMVnu9rDa8g17TMCZGr8PyqXnMm+RjR30743DEJoYBc0t9LNOiAyIiIhkh43tyvr3zEMHoQNO4R84MddFx5220fuNqGi75APWrlxF64pEB23Y9eC9N//gR6s9bSePl5xL41S20BTv4zs5DSaxoZEIdEXa/3tAn4ACUdlRS0Fk28PJgKWBZFnV315F7Si7Zs7IHbW9gMCd/DlVFVUO+R+RA+3F7cgwz9UtnFxYmglR+3rsClQGmD3In2YnFoSPbwvQx5AUQ7MPcIyhdDMPgunPnjsuAA2BZcN25c8ftwiAiIiIyPCkNObfddhtVVVX4/X78fj+rVq1i7dq1qbxlH080BniwoY1kD0SyAm10/uHXxPbvxTFzzjHbtf/6Vtp/8UMclTPxXf11ss44m64H76Ple9fxfw1trGtK77C1Q9tbMQd48DcwWHnwIjDG5om07YU2wofClF4+tLlKFhZfWvqlYS0dHa3pOG4be8SHEUvtZqhFRQ4KCuw0NfffO6m5OY7LZZCdPfSHbLvdi9M5cSbJn7OglDVLyrGPsyBhN+CSpeWcs2D8zJUTERGR0UlpyJk8eTI/+MEPeOONN3j99ddZvXo1l1xyCVu3bk3lbYHEg+0PjiwVnWy2giKKHvgbxfeuxfe5Lw/YJt7cSNf9d+M+5yLyvv9jstdcjv+ab+D74nVEXn+ZyEvP8oM0r7bWeKAd2zFWvapsXcysxuUYVmo7++KhOPX311N0QRGuwsGHXtkMGxdOv5Czpp415HuYnVGsyPGjroGBOzgt5WMazzwzh8aGOG+8fnQp60AgzksvdbJ0mfuYP4+B+HyLJlzPww1rFuL3OBgvZRsG+D1Ovn/xwnSXIiIiIkmU0ifYiy++mAsvvJDZs2czZ84cbrzxRrxeL6+88koqbwvAG8EutneGU7JUtOFyYS849v4tANGtmyAew33WeX2Ou1cnvg49vY53OsO8GRx435axUF8dHLAnp8dp1R8lK+ZJ6bC1prVNWHGL3JW5RBojRBojRFsTS0jHO+NEGiOYscRP0bAM/C4/16+8flj3sCJD+xR4AjPBGvncnIceCnD33a088UQ7AC+/0sndd7dy992tdHQkavjEJ/IoLLRzww31/P73LTzwQBv/cm0t8Rj80z8VDPlehuEg179kxLWmS36Oix9cVjVuhq1ZFvzwsirytaKaiIhIRhmzme/xeJz777+fzs5OVq1aNWCb7u5uuruPLokbPLJ3yEj8rqYJuwHxND1MWdHEqldGVt8hUD1fR3e+g91I1HlSbs7Y12dZNO5vP24bdyyHD+y5gnXzfpuyOqLNUeKdcXZ/e3e/1xofa6TxsUZm3jATzzQPlmFxw6obyHMPb3K4FR9ayMkKVsIoVlm7/88B6uuPDkV74fkuXng+EWI/+EEvXq+N/AIHP/1ZOb++vZm//CVAPAYLFmTxzeuLmTlz6PNrLCuGz79oxLWm03kLJ/H18+by43U70l0KXz9vLucunJTuMkRERCTJUh5yNm/ezKpVqwiHw3i9Xh588EEWLBh4A8ebb76ZG264YdT3bI7EeLihNW0BB8AxpRKAyJa3cS1b0Xs8svktAMymBuIWPNTQyg2zKih0je1Ka6H2KNHuwR/op7dWsfLARWyY+nhK6ig8pxD/cn+fY7H2GLV31pJ3Wh7+ZX5cxYm/sq/c/yFOzT9t2Pcw7EPrsMxumQ+mfcRB54/3TB1Su/JyJ9+/YXQP1obhID/v1FFdI52+eOZMOrtj/OqZ4++dlOoavnjmzLTdX0RERFIn5U/Wc+fO5e233yYQCPDAAw/w6U9/mmeffXbAoHP99dfz1a9+tffrYDDIlClThn3PF9raiaV5OIxzznyc8xfTde+d2ItKcC1bQWz/XoI/uwkcDqwjPVYxC15s62BNydguXRsbZI7Kuy2rOYeorZu3Jv992Pdp/nsz8a44sbZED0f72+29w9EKP1iIp9KDp9LT55xIY6IXzF3hxn9SIgAtO/RBltV+kFh0+AHEcA0t5DiiPnyHV9I+6VVIwmaoqWIYdkpLPoTLNfThbeONYRh8/by55GQ5+PG6HRgGYzKErec+/3r+XL545qzU31BERETSIuUhx+VyMWtW4mHipJNO4rXXXuPWW2/l9ttv79c2KyuLrKzRL4m7qT2EwyDtQSf3+7cQ+I9vEPzx9xMHbHayL/8UkY1vED9YDYDDgE3tXWMecsxhdHMlVlv7EM64mw3THkvM0RniymtNa5uINkd7vw6+EST4RmIYYt6qPOzZx5kDc+QWp+z/EMtqz0nUPYIfqi3HieGyD7r4AED+wbNpL3952PcYS5YVZ/LkT6W7jFEzDIOrz5rF7BIv3/jLJoKhaEp7X+1HFhn44WVVGqImIiKS4cZ8N0rTNPvMu0mFN4NdaQ84APbiEgp+/jtih/ZjtjRjnzwVe0ERjZefg31yYmf1mAVvpWHxAZt9eIsJGBgsrz2H/NAknp35J7odXVhDCDpz/2vusGtzFbtY/LvFZMWy+cD2TzC9dfHRuh3DXwTBMAycFV4i+wZfstsdmImrfTIRb82YLaE9PAbenLn4/UvTXUjSnLtwEisqC/jeI1t5ZGNt0nt1eq73oSXl3LBmIXnZWmRAREQk06U05Fx//fVccMEFTJ06lfb2du655x6eeeYZ1q1bl7J7WpbFpvb0rVg2EMfkadATaqr3YDY34T5vTe/rG9u7sCxrTJcDdrhGtorY9NbFlL09gxcqH2B38ZvD6tUZkiPXm9m0nNOqL8Md67sog8M5srpdU31E9gePuyEoJMJc8e7LqFl264juk3oWM2Z8ZcItHT2Y/BwXP//EMj5UVcZP/raT7YfbsdsM4oP8vI6n5/y5pT6uO3eu9sERERE5gaQ05DQ0NHDVVVdRV1dHbm4uVVVVrFu3jnPOOSdl92yKxugc4mpaY80yTdp/fSu43WRf/NHe4x1xk6ZojGKXc8xq8ficOLPsQ1p84L3csRw+uPvTzGxezmtTHqclpw7DtGGNYh5Lz/kFXZNYefAiKt/Ve9PD6bbj8Y3se+Sq8A4acHp4G5fhqzuV9tIN42xujp3S0osoLv5gugtJmXMXTuKcBaW8dbCNu17ez6Mba4mZFg6bQWwIP7+edg6bwZol5Vy5ahpLp+RlXCgUERGR40tpyPntb1O39PCxhMYo4HQ9eC9mRztmcyMA3S8/S7yxHoDsD1+Bzesj+MsfQSSCY+YciMcIr3+C6PYt+L/x79hLy/pcLzyKv1iPhGEYFE/zUbuzbcTXmN66mMrWRTR497Nl0vPsLnwTy2ZiM22YhgnHe660wLBsR9rbmdW0jIX1p1PSMQ3jGCeWTPWN+GE1a2Ye2IwhB53S7Z+is3ALprNznAxbM3A6/cyd8910F5JyhmGwfGo+y6fm828fWsDLe5rZVNPGpoMBNtW00TlAMM/JslNVkceSKXksrshl1cxCCrT3jYiIyAlrzOfkpFp0jHYZ7PzzHzDr63q/7n7+KbqffwoAzzkXgdeHc9Y8uv7yR8J//yvYbDjnLST/ltv7LCndI2KOfY9BaaWfw7sDx90QdDAGBqUdlZTuruR91R+m1r+LRu9BGrz7afQeJGrvP//KGc+iuGMKJR3TKO6YQnlwNp6Y97j3sdkMSqf7j9vmeOw5TjxVRYQ2NTKUHWLtUS+Ttn6G2mW/GPE9k8ti/rybcTrz013ImCrIcXFRVRkXVSX+KGBZFs2dEcLROJGYicthw+20U5jjUm+NiIiI9Mq4kOMcowed4j/9ddA2nvPX4Dl/zaDtAFy2oS1znEzFU32jCjjv5Yl5mdmyjJktywCwsAg7OojZosRtMeymA4fpxB3zHrO35lhM06J46shDDoB3VTmhtxuH3N7XeBJFuy6jafZfRnXfZJg542sUF6dumOdEYRgGRd7Rr8AoIiIimS3jQo5niBs/jjdu29j/FXryvHxsNiOpQefdDAw8MV9SrmWzGVTMHd0y266pPhyTsonVd/UuTz2Ygn0fwrR30zLjsVHdezSmTfsC06Z9Pm33FxEREZloJmYiOI4ip4OcCRZ0vHYbRc6xz5ser4tZJ5dgpCFgDYdhM5h1cgke7+jmWBiGQe65lUMOOJAIakW7L6No15GFIqyx+l4l7jNzxteZNfNrGoolIiIiMgwTKw0MgWEYVPmy013GsCzxZaftIXbxmZOxxnjRg+GyTIvFZ05OyrU8CwrxLCk+/qII72FgULjvQ5S/dS22aA5Yqf61seN05lG1+H+orFQPjoiIiMhwZVzIAVjuz2YEe0amhcOAZf70hbLS6X4KK3KG9dA/pgworMgZ1aID75W3ZiY2j2PY79nXuJwZL/4A3+GViQNJ79VJXK+09CJWnfp3zcERERERGaGMDDlVPg+x8d050StmkdaeJ8MwOGXNjGEN4RpTFpyyZkZSe7rsOU7yL5s9ovdsj3op3/x5yt+6FldHReKgOcpfoyPn5+TMoWrx7Sxa+FOcztHNPxIRERE5kWXcwgMAp+X5cBhMiKDjMOD9ecdfPjnVpi8pZvaKUna/UY81jva+NGww66RSpi8pTvq1PQuL8J83jeC6/SM639e4HG/jMsK5e2idsp72SRvAFgfTDkZ80D2CsOy97QttZzP9pM/h9y/R3BsRERGRJMjIkFPocnBJST4PNbQSH8dBx27ApSX5FLrS/2M44+NzOLithXBXdHz06hiQ5XFyxsfnpOwWvjOnYHWbtD9zcETnGxh4ArPwBGYR2/FJQgXvEPZXE/LvJZxbjeUI9z8n5sYdqMQTnIE7WEnx/A9SeF6Vwo2IiIhIEqX/6TpFPlNRxF/qW9NdxnHFrUSd44Hb6+SsK+ex9n82p7uUBAvOunIebq8zZbcwDAP/edMwsuwE11Unel9GGPAcUR+++pX46hPzdSws4q52LFsEyxbDMB0Ypgt7xJcINBb4z6/Ef+aUpL0fEREREUnIyDk5ACf5s5mf4x63b9AGLMhxszyNiw6814ylxZxyyYx0lwHAqZfOYMbS5A9Tey/DMPCfNYXCKxeMaDGCY14XA0fEjzNchKtrEs5wEY6IH8MwsHkcFF65QAFHREREJEXGawYYNcMw+OaMMsbRFJM+TOAbM8rG3TClk86fxvLzp6W1huXnT2P5eWNbg2dhIaXXnYyn6kiwSs3CaXiWFDPpayfjWViY5BuIiIiISI+MDTkA5xXl8uGSPOzpLuQ97MBHSvI4ryg33aX0YxgGp14yg1MvPdKjM7Z7X3LqpTNYdenMtIQ/e46Twk/Mo/DKBThKj/SwjXaj1CPnO0qzKbxqAYVXzMOWnboheCIiIiKSwXNyetw4ZzLPtLYTiMbHRa+ODch12vnPOcnZ3DIVDMPgpPMryZ+Uw9N3bac7FE3pqmuGLbHIwFlXzhuTIWqD8SwsxL2ggMjBdjperiW0sQlMKxFYhrJxak87m4FnSTHeVWW4pvjGXa+diIiISKYyLMsaD2tpDSgYDJKbm0sgEMDvH/lmkGsb2/jMlurkFTZKdy6azvnF468XZyDhjijP3beTXa/Vj2pi/oCOXG/2ilLOuGIO7pzx2cMR74zSvaeNSE0H0YPtRGo6sLrj/doZWXZcFV5cU3w4K7xkzczDPk7fk4iIiMhEM5xscEKEHIBbq+u5eV9dkiobuW/NKOPaaaXpLmPY9r7dyIZH99Jc04lhM7CG0qNxDD3nF1bkcMqaGSnZByeVLMvC7IxiRU2smInhsGE4bdhynOqtEREREUmR4WSDjB+u1uPaaSV0xuP8/EBD+mqYWsI1U0vSdv/RmLG0mOlLiqjfF2TzM4fY/XoDpmlhsxuYQ9iMyGYzetvPPrmURWdWUFrpn5ChwDAM7F5XussQERERkWM4YUKOYRhcP6MMr8POTXvrsMGYzNHpuc+3Z5RxzQTswXk3wzCYNCOXSTNyOe1js6nZ0UbD/iAN1UEa9rcTHWAIlzPLTsk0H6XT/RRP9VMxNw+PAoKIiIiIpNAJM1zt3Z5oDPCVHQcIRuP0fyxPHjuJRQZ+MnfqhJmDM1KWZRFqjxKLxjFjFjaHgcNpx+PTEC4RERERGT0NVxvE+cW5rMybz7d3HuLBhrak9+r0XO+SkjxunDOZfGfmf5sNwyDbrx4aEREREUm/jN4n53gKnA5uW1jJnYumMzfHDYB9lB0OPefPzXHz+8XT+dXCyhMi4IiIiIiIjCcn/BP4+cW5nFfk581gF7+raeKhhlZiFjgMiA1hIF9PO6dhcGlJHp+pKGKZP1tDtERERERE0uSEDzlwZPPL3BxOys3hhlkVvNjWwcb2Lt4OdvF2exed8f6D2XLsNpb6slnmz6bKl83787wUuvTtFBERERFJNz2Vv0ehy8GakjzWlOQBiQn1TdEYYdMiYpq4bDbcNoMip0O9NSIiIiIi45BCziAMw6DYpV3rRUREREQmihN24QEREREREclMCjkiIiIiIpJRFHJERERERCSjKOSIiIiIiEhGUcgREREREZGMopAjIiIiIiIZRSFHREREREQyikKOiIiIiIhkFIUcERERERHJKAo5IiIiIiKSURRyREREREQkoyjkiIiIiIhIRlHIERERERGRjKKQIyIiIiIiGUUhR0REREREMopCjoiIiIiIZBSFHBERERERySgKOSIiIiIiklEUckREREREJKMo5IiIiIiISEZRyBERERERkYyikCMiIiIiIhlFIUdERERERDKKQo6IiIiIiGQUhRwREREREckoCjkiIiIiIpJRFHJERERERCSjKOSIiIiIiEhGUcgREREREZGMopAjIiIiIiIZRSFHREREREQyikKOiIiIiIhkFIUcERERERHJKAo5IiIiIiKSURRyREREREQkoyjkiIiIiIhIRlHIERERERGRjKKQIyIiIiIiGUUhR0REREREMopCjoiIiIiIZBSFHBERERERySgKOSIiIiIiklEUckREREREJKMo5IiIiIiISEZRyBERERERkYyikCMiIiIiIhlFIUdERERERDKKQo6IiIiIiGQUhRwREREREckoCjkiIiIiIpJRFHJERERERCSjKOSIiIiIiEhGUcgREREREZGMopAjIiIiIiIZRSFHREREREQyikKOiIiIiIhkFIUcERERERHJKAo5IiIiIiKSURRyREREREQkoyjkiIiIiIhIRlHIERERERGRjKKQIyIiIiIiGUUhR0REREREMopCjoiIiIiIZBSFHBERERERySgKOSIiIiIiklEUckREREREJKMo5IiIiIiISEZRyBERERERkYyikCMiIiIiIhlFIUdERERERDKKQo6IiIiIiGQUhRwREREREckoCjkiIiIiIpJRFHJERERERCSjKOSIiIiIiEhGUcgREREREZGMopAjIiIiIiIZRSFHREREREQyikKOiIiIiIhkFIUcERERERHJKAo5IiIiIiKSURRyREREREQkoyjkiIiIiIhIRlHIERERERGRjKKQIyIiIiIiGUUhR0REREREMopCjoiIiIiIZBSFHBERERERySgKOSIiIiIiklEUckREREREJKMo5IiIiIiISEZRyBERERERkYyikCMiIiIiIhlFIUdERERERDKKQo6IiIiIiGQUhRwREREREckoCjkiIiIiIpJRFHJERERERCSjKOSIiIiIiEhGSWnIufnmm1mxYgU+n4+SkhIuvfRSduzYkcpbioiIiIjICS6lIefZZ5/l6quv5pVXXuFvf/sb0WiUc889l87OzlTeVkRERERETmCGZVnWWN2ssbGRkpISnn32Wc4444xB2weDQXJzcwkEAvj9/jGoUERERERExqPhZAPHGNUEQCAQ+P/Zu/P4KMt7///ve2YyWSZ7CGGVTQUJEHBD7SZgFdDa9vTUWnv6Pe1ptceqFfG031o9tbZafz3urZ7Tqt1Oz9fldFFRRK2gdamCoIEQQJDVsCQh2ySTZNbr98cQFMOShLnnntx5PR8PHnHu3Pd1fdCA855rkySVlpYe9vvhcFjhcPjg62AwmJa6AAAAALhH2jYeSCQSWrRokT72sY9p2rRph73n9ttvV1FR0cFfY8eOTVd5AAAAAFwibdPVrrzySi1btkyvvfaaxowZc9h7DjeSM3bsWKarAQAAAENcxk1Xu/rqq/XMM8/olVdeOWLAkaTs7GxlZ2enoyQAAAAALmVryDHG6JprrtETTzyhl19+WRMmTLCzOwAAAACwN+RcddVVeuSRR/TUU0+poKBA2C+rIAAAIABJREFU+/btkyQVFRUpNzfXzq4BAAAADFG2rsmxLOuw13/729/qa1/72jGfZwtpAEOdMUbx5mYlurplohFZWX55cnPkLS094t+xAAC4UcasyUnjETwA4AqxlhZ1vvmmumtr1bWuRt2165UIdfa6zxPIU07lNOXOmK6cykrlnXWWfCUlDlQMAEDmSes5OQCA3owx6qquVssjjyq4bJkUi0k+X/LrESRCnepctUqdb7998P7ChQtVetmXlVNVxSgPAGBII+QAgIPaly9X4733Kbxli+T1SvF48htHCTiH6LkvFlNw6VIFlyxR9sknq3zRtSqYO9eeogEAyHBpOwwUAPCBWEuLdl//b6q76mqF33svebEn4AzUgefDW7ao7ttXaff1/6ZYS8txVgoAwOBDyAGANGt/8UVtW7BQweeeS15I9frFA+0Fly3TtgUL1f7ii6ltHwCADEfIAYA0McZo/y9/pbqrr1G8re34R26OJZFQvK1NdVdfo/2/epDNYAAAQwYhBwDSwBijxrvvUeO99/ZcSFfHkqTGe+5R4z33EnQAAEMCIQcA0qDpVw+q6aGHnK3hwQfV9KCzNQAAkA6EHACwWfuLL34wguOwxnvuUfvy5U6XAQCArQg5AGCjWEuL9t7071KmnFtjWdp7403sugYAcDXOyQEAG9Xfepvi7e0pXYMTSiT0m+Ym1XR1a113l4KJhG4bMUKfLyo+5L4/trbq6WCbtkciCiYSGu7z6YzcPF0VjSpw220afeedKasJAIBMQsgBAJu0L1+u4NKlKW+3NR7TfzU1aaTPpynZOVrV1XnY+zaGuzUmK0tz8vNV6PVqdzSqP7a26m+hDj3x5JMqXLiQA0MBAK5EyAEAGxhj1Hjvfclpaine0azc69PfJp2ocp9P67u7dMnOnYe974cVI3pdm5dfoC/u3KGngkGNvfc+5c+ZIytTptIBAJAirMkBABt0VVcrvGWLLVtF+z0elfsG9hnV6KwsSVJ7PK7w5s3qXrs2laUBAJARCDkAYIOWRx6VvF6ny5AktcbjaorFtL67Szfu3StJOisvIHm9an7kUYerAwAg9ZiuBgApFmtpUXDZMiked7oUSdK5W99T5MCIUrHXqx8MH65zAgEpHlfw2WdVccP35SspcbhKAABSh5ADACnW+eabUizmdBkH/WrMGIUTRtsiET0dbFNX4kNT6GIxda5cqcL5850rEACAFCPkAECKddfWSj5fxgSd2XkBSdInJc3Nz9dnd2xXnsejr5SUSD6fumtrCTkAAFdhTQ4ApFjXunUZE3A+6gS/X6dk5+iZYFvyQiyWrBcAABdhJAcAUsgYkxzJyWDdJnFwjY4kda+vlTGGraQBAK7BSA4ApFC8uVmJ0OEP50ynmDFqO8zGB+u6urQlHNa0nJyD1xKhkOLNzeksDwAAWzGSAwAplOjqTks//6+lRe2JuBoOTIt7uaND9Qf++SvFJTKS5m59TwsKC3WiP1u5HktbwmE90damfI9H/1o27JD2THd66gYAIB0IOQCQQiYaSUs/v21u0p4Prfv5a0eH/trRIUn6TGGhyn1Z+sfiYq3q7NQL7e3qTiQ03OfTwsJC/WtZmUZn+Q9pLxFJT90AAKQDIQcAUsj6SHiwy4uTTjzmPTcMr+hzex5/euoGACAdWJMDACnkyc059k0ZyMoZnHUDAHA4hBwASCFvaak8gTyny+gXTyAgb2mp02UAAJAyhBwASCHLspRTWel0Gf2SM62S7aMBAK5CyAGAFMudMUPyDZIljz5fsl4AAFyEkAMAKZZTWSl9aOezjBaLDbqRJwAAjoWQAwAplnfWWYNqJCdv9mynqwAAIKUIOQCQYr6SEhUuWCB5vU6XcnRerwoXLpSvpMTpSgAASClCDgDYoOSyL0vxuNNlHF08rtLLvux0FQAApBwhBwBskDtzprJPPlnK1F3LLEvZkycrp6rK6UoAAEg5Qg4A2MCyLJUvulYyxulSDs8YlV/7HbaOBgC4EiEHAGxSMHeuCi+8MPPW5ng8KrzoQhXMnet0JQAA2IKQAwA2qrjpRnkLCjJn2pplyVtYqIobb3S6EgAAbEPIAQAb+UpKNPLWn2TOtDVjNPK2W9lRDQDgaoQcALBZwXnnqXzRIqfLkCSVX3edCubNc7oMAABsRcgBgDQo+9YVKrviCmdruOIKlV1xuaM1AACQDoPkSG4AGNwsy1L5dYvkCQTUeM89yTU66ZjCdqCf8sWLNYyAAwAYIhjJAYA0sSxLw751hcY8cL+8RUWSx+a/gj0eeYuKNOaB+wk4AIAhhZADAGlWMG+eJi57VoULFiQvpHrntQPtFS5coEnPLWMNDgBgyCHkAIADfCUlGn3XnRrzwP3KPumk5MXjPU/nwPPZJ52kMf/5gEbfeae8xcXHWSkAAIMPa3IAwEEF8+Ypf+5cda9dq+ZHHlXw2WelWEzy+ZJfj6XnPp9PhRcuVOlllylnxgxZmXIuDwAADrCMyZTDG3oLBoMqKipSW1ubCgsLnS4HAGwXa2lR58qV6l6/Xl01NepeX6tEKNTrPk8goJxplcqdMUM5lZXKmz2bs28AAK7Wn2xAyAGADGaMUby5Waa7W4lIRB6/X1ZOjrylpYzWAACGlP5kA6arAUAGsyxLvrIyp8sAAGBQYeMBAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKoQcAAAAAK5CyAEAAADgKj6nCwAAAKlhjFFzd7O6492KxqPK8mYpx5uj0pxSWZbldHkAkDaEHAAABqmW7hat3LdSG5o2qKaxRhuaNqgz1tnrvjxfnqaWTdX08umaWjZVs0fMVklOiQMVA0B6EHIAABhEjDFa27hWj737mJ7f/rxiJiaf5VPMxI74TGesU6vrV6u6ofrg/fMnzNelUy7VjGEzGOUB4DqWMcY4XcSRBINBFRUVqa2tTYWFhU6XAwCAo1bsWqH737lfW1q3yGt5FTfxAbfV8/xJxSfpmlnXaM4Jc1JYKQCkXn+yASEHAIAM19rdqp+u/KmW7VgmS5aMUve/7p72FoxfoB/M/oGKc4pT1jYApFJ/sgG7qwEAkMGW71quzzz5Gb2w8wVJSmnA+XB7z+98Xp958jNavmt5StsHACcQcgAAyEDGGD207iEtemmR2sJtxzU1rS8SJqG2cJsWvbRID9c8rAye6AEAx0TIAQAgwxhjdN/b9+nn7/w8+TrFozdH7PdAPz19E3QADFaEHAAAMszDNQ/r1+t/PeRrAICBIuQAAJBBlu9afnAEx2n3vX2fVuxa4XQZANBvhBwAADJEa3erfvT3H8lSZpxbY8nSzX+/Wa3drU6XAgD9wmGgAABkiJ+u/KnaI+0pXYMT745r/7L96trapa7tXYqH4hr9jdEq+UTJwXtMwqj19VYF1wTVtatL8Y64/OV+Fc0ukllgdPuq2/WzT/4sZTUBgN0YyQEAIAOs2LVCy3YsS/kuavH2uBqfalR4b1g5Y3MOe08iktDuX+9WrD2m0nNLNfKykcqdmKuGJxq0/a7tWrptqV7a9VJK6wIAOzGSAwCAw4wxuv+d+1N+0Kck+Yp9mnzvZGUVZ6lre5e23rK11z2Wz9LEGycq76S8g9dKzy2Vf5hfDU80qHNDp35R8gudO/ZcWVZmTKUDgKNhJAcAAIetbVyrLa1bbNkq2pPlUVZx1tHv8XkOCTg9Ck9NnijevadbW1q3aN3+dSmvDwDsQMgBAMBhj737mLyW1+kyeom1xSRJ3gKvvJZXj216zOGKAKBvCDkAADiopbtFz29/PuVrcVKhcVmjPLkeFUwvUNzE9dz259TS3eJ0WQBwTIQcAAActHLfSsVMzOkyeml4ukGh2pAqvlghbyA5yhQzMa3at8rhygYpY6SORqllp7T/veTXjsbkdQApx8YDAAA4aEPTBvksX0YFnbaVbWr4S4NKPlmisrllB6/7LJ82NG3QBeMvcLC6QSLUJG3/m7S3Wtq9RtpTLUU6et/nz5dGzZRGnyaNnClN+JQUKOt9H4B+IeQAAOCgmsaajAo4Hes7VPdQnQpmFGjUP4865HsxE1PN/hqHKhsEjJHq3pJWPSTV/kVKxCSPL/n1SCId0o7XpF1vfnD/tC9IZ1wujTldYjc7YEAIOQAAOMQYow1NG5wu46DOrZ3a9Ytdyh2fq7FXjZXl7f0Ge0PTBhlj2Er6ozYtlVbcKjVskDxeKXFgjdXRAs6H9dyXiEnr/yyte1waXinNvUmastCemgEXY00OAAAOae5uVmes0+kyJCW3id55z05lDcvSuOvGyeM//FuEUDSk5u7mNFeXwTqbpT99Q3rsMqlxU/Ja4jg3kegJPI0bpce+nGy/k3/nQH8wkgMAgEO6491p6afpxSbFO+OKtSbfPLdXtyvaEpUklZ1XJlnSzjt3Kh6Ka9iCYWpf237I8/7hfuWd+ME5OuF4OC11Z7yNz0hLrpG625KvTSK17fe0V/uEtHWFdPEvpFMuSm0fgEsRcgAAcEg0Hk1LP/uX7Ve06YO+gmuCCq4JSpKKzy5O1tKc/H79H+t7PV/8seJDQk4kHrGz3MxnjPTqXdKKnyg5KSbF4aZXf3Gpq1V6/CvSvB9KH1/MWh3gGAg5AAA4JMublZZ+Jt81+Zj3TPvdtD635/f6j6ecwc0Yafkt0mv3HLhgc8A56EA/y38shTuSYYegAxwRa3IAAHBIjjfH6RIGJNub7XQJznn1rg8FHIe8dnfyF4AjIuQAAOCQ0pxS5fnyjn1jBglkBVSaU+p0Gc7Y+MyBKWoZYPmPkzu6ATgspqsBAOAQy7I0tWyqVtevdrqUPptaNnVobh/d2ZzcZECWJJOSJjsiRne8HtbK3XGt2h1XS7f028/m6GszD50OuGp3XL+rjmjl7rjW1ScUS0jm5mLpqaulE86W8oZo6ASOgpEcAAAcNL18unzW4PjM0Wf5NH3YdKfLcMaz3z2wi1pqAo4k7e80+vErEW3cn1DVCO+Ru94S1cNvR2VJmljS89Ytkaxn2fdSVg/gJoQcAAAcNLVsqmKmjwdGOixmYppaNtXpMtJv01Jp/Z+Su5yl0Mh8S3uvz9fORQW649NHXp915el+tX2/QKuvyNenJ34oDJm4VPNHadOzKa0LcANCDgAADpo9YvagGsk5c8SZTpeRXsZIK26VrNS/Zcr2WRqRf+x2K/I9ys06whRBy5Osz6RuhAlwA0IOAAAOKskp0QUTLpDXOvJ0pUzgtbyaP2G+SnJKnC4lverekho2pP6gz1QxCamhVqobPOu6gHQg5AAA4LBLJ1+qeIqnQqVa3MR16ZRLnS4j/VY9JHkyO4DK45PeesjpKoCMQsgBAMBhVeVVOqn4JFnKzF3LLFk6ueRkzRg2w+lS0ivUJNX+RUpkdgBVIiat/3OyXgCSCDkAADjOsixdM+samRTu3JVKRkZXz7x66G0dvf1vyQAxGCRi0o5XnK4CyBiEHAAAMsCcE+ZowfgFGbc2x2N5tHDCQs05YY7TpaTf3urkVLDBwOOT9lQ7XQWQMQg5AABkiB/M/oEK/AUZM23NkqVCf6FuOPMGp0txRt2awTWSs3uN01UAGYOQAwBAhijOKdaPzvlRxkxbMzK65ZxbVJxT7HQp6WdMciRnMNlTzVbSwAGDZAwWAIChYd4J8/SdWd/Rz9/5udOl6NpTr9XcE+Y6XYYzQvulSIft3dy/KqLWbqM97cktqp/eHFNdMBlUrjnTr6IcSztbE/rDuqgkafWe5H23vhKWJI0rsvTVKn+ysUh7su78ctvrBjIdIQcAgAzzzenfVGesUw/XPOxoDd+Y9g3H+ndctDMt3dz597B2tn0w+vKXjTH9ZWNyitw/zchSUY6l7a0J/ftL4UOe63n9qXHeD0KOJMW67C8aGARsDTmvvPKK7rjjDq1Zs0Z79+7VE088oc997nN2dgkAwKBnWZa+M+s7CmQFdN/b98mSlZYpbD39XHvqtfrm9G/a3l9Gi0fT0s2ORQXHvOfc8T6Zmwv71mAscpwVAe5g65qcUCikqqoqPfDAA3Z2AwCA61iWpW9O/6bum3OfirKL5LHsXUbrsTwqyi7SfXPuI+BIkjfL6QoGxuc/9j3AEGDrSM6CBQu0YMECO7sAAMDV5p4wV6cOP1U/XflTLduxLOWjOj3tzR8/Xz+Y/QMVZRelrO1BLSvP6QoGxpfrdAVARsioNTnhcFjh8AdzToPBoIPVAACQGYpzivUfn/oPzZ8wX/e/c7+2tG6R1/IqbuIDbrPn+ROLT9Q1s64ZmufgHE1gmOTPT8vmAynjL0jWDSCzQs7tt9+uW265xekyAADISHNPmKs5Y+do3f51emzTY3pu+3OKmZh8lk8xc+zzXHru83l8WjB+gS6dcqmmD5suy8qMc3kyimVJI2dKO19zupK+GzUzWTeAzAo5N9xwgxYvXnzwdTAY1NixYx2sCACAzGJZlqrKq1RVXqXvnfE9rdq3SrVNtVq/f71q99eqM9Z7V7A8X54qh1Vq+rDpmlo2VWeOOFMlOSUOVD/IjDlNev/NwXEgqMcnjT7N6SqAjJFRISc7O1vZ2dlOlwEAwKBQklOiC8ZfoAvGXyBJMsaoubtZ4XhYkXhEfq9f2d5sleaUMlozECNnDo6AIyXrHDXT6SqAjJFRIQcAAAycZVkqyy1zugz3mPCp5AjJYAg6Hp80/pNOVwFkDFv3o+zo6FB1dbWqq6slSdu3b1d1dbV27dplZ7cAAADHL1AmVf6D5PE6XcnReXzStC8k6wUgyeaQs3r1as2aNUuzZs2SJC1evFizZs3SD3/4Qzu7BQAASI0zL5cSA9/FLi0SMemMy52uAsgotk5XO/fcc2WM/Sc0AwAA2GLMGdLwSqlxo2QSTlfTm+WRhk+VxpzudCVARrH3+GQAAIDBzLKkuTdlZsCRknXNuZGto4GPIOQAAAAczZSF0rR/lKwMW5tjeaXpX0zWB+AQhBwAAIBjWXiHlFOkzHnr5EnWs+A/nC4EyEiZ8icVAAAgc+WVShf/QlKmTFtLSJ+9P1kXgF4IOQAAAH1xykXS3H93uoqkeT+UplzodBVAxiLkAAAA9NUnrpc+vtjZGj6+2PkagAxHyAEAAOgry0qOoszrOfMvXW+lDvQz72bpvJvZTQ04BkIOAABAf1hWckTn0kek3GL7d12zvMl+Ln1E+gQjOEBfEHIAAAAGYsqF0jVrpMrPJ19bKX5b1dPetH9I9sMaHKDPCDkAAAADlVcq/eOvk6Ms5ackr3l8x9dmz/Plp0iXPip94WF2UQP66Tj/FAIAAEBTLpQmL5TqVktvPSSt/7OUiCUDSyJ27Od77vNkSdO+IJ15uTT6NNbeAANEyAEAAEgFy5LGnpH8dcHt0o5XpD3vSLvfTn6NdPR+xp8vjZqVDDSjZkrjPykFytJfO+AyhBwAAIBUC5Ql1+r0rNcxRgrtl2JdUiwi+fySL1cKDGO0BrABIQcAAMBuliXllztdBTBksPEAAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFUIOAAAAAFch5AAAAABwFZ/TBQAAAMA5xhg1hSLqisQVjSeU5fUo1+9VWcAvy7KcLg8YEEIOAADAENIciujvW/erZneb1r7fqpq6NoUi8V73BfxeTR9TpKqxxZo+ukjnTBqm0oDfgYqB/iPkAAAAuJwxRm/vatUf3tihZ9btVSxh5PNYiiXMEZ8JReJ6c1uzVu9oOXj/Z6pG6atnj9OsscWM8iCjEXIAAABc7IXafbrrhc16t75dXo+l+IFgc7SA82GxD92/ZO0ePfHObk0ZUaDrz5+sT0+tsK1u4HgQcgAAAFyoJRTRzUtqtWTtHvUMusT7GGyOpOf5d+vbdfl/r9bFVaN0y8WVKmEaGzIMu6sBAAC4zPO1+zT3rpe1dN1eSZI5vmzTS097S9ft0dy7XtbztftS2wFwnAg5AAAALmGM0QMvvadv/WGNWruiiqc63XxE3EitXVF96w9r9MBL78nY3B/QV0xXAwAAcAFjjP7j+Xf1Xy9vPfA6Xf0mv97x/LsKhWP67gWT2ZQAjmMkBwAAwAX+8+WtBwOOkzX8p8M1ABIhBwAAYNB7vnaf7nj+XafLkJQc0XmBNTpwGCEHAABgEGsJRfT9P69TpkwQsyzp//55nVpCEadLwRDGmhwAAIBB7OYltQp2xZTKJTiJSJeCK/+i8N53Fdm7WYnuDpUtXKT86ef1uje6/301r3hI4boNsrw+5U46Q2beN/Wjp2t136WzUlgV0HeEHAAAgEHqhdp9WrJ2T8rbTXQF1fb3R+UtLFfW8AkK76o57H2x4H7te+T/ypMdUPEn/49MtFvBVX/RnsYdetJ/ty6aMYoDQ+EIQg4AAMAgZIzRXS9slmWlfic1b6BUY676g7z5JQrv3aJ9/33dYe9re/N/ZaJhVXztXvkKh0uS/CNPVsPjNym0frnueqFU550ynN3WkHasyQEAABiE3t7Vqnfr223ZKtryZcmbX3LM+zrf/btyJ51xMOBIUu74mfKVjlZo46vatK9d77zfmvoCgWMg5AAAAAxCf3hjh7we50ZIYu37lehslX/kib2+lz3yZEXqt8nrsfSHN3Y6UB2GOkIOAADAINMciuiZdXsVT6TpxM/DiHe0SEpObfsob6BEie52xSIRPb12j5rZaQ1pRsgBAAAYZP6+db9iDgYcSTKxsCTJ8mb1+p7l8x+8J5YwemNrU1prA9ISch544AGNHz9eOTk5mj17tlatWpWObgEAAFypZnebfA5OVZMky5ctSTLxaK/vmVjk4D0+j6Wa3W1prQ2wPeQ8/vjjWrx4sW6++Wa9/fbbqqqq0gUXXKCGhga7uwYAAHCltbtaHR/J6dmYIB5q7vW9eKhFnpwCWb4sxRJGa9l8AGlme8i5++67dfnll+vrX/+6pk6dql/+8pfKy8vTb37zm173hsNhBYPBQ34BAADgA8aYjBgZ8RUMkyevSJG97/X6XnjvZvkrJhx8XbO7TcaObeCAI7A15EQiEa1Zs0bnnffB6bgej0fnnXee3njjjV7333777SoqKjr4a+zYsXaWBwAAMOg0hSIKReJOlyFJyjv5HHVtfUuxYOPBa107qhVr3q28yR8/eK0jHFMTmw8gjWw9DHT//v2Kx+OqqDj0pNuKigpt2rSp1/033HCDFi9efPB1MBgk6AAAAHxIV5oCTnDN00qEQ4p3JKejdb23SrH2/ZKkwtM+I092QEVnX6LOd19X/aM/UMHpF8tEuhRc9RdllY9X/vRPH9JedzQzghmGBltDTn9lZ2crOzvb6TIAAAAyVjSeSEs/wVVPKB78YA115+a/S5v/LknKr5wjT3ZAvsJyVXz5drWseFitf/udLI9PuZPOUMncb8jyHbrrWiSWnroByeaQM2zYMHm9XtXX1x9yvb6+XiNGjLCzawAAAFfK8qbnBJAxV/ZeP304/vJxqvjST459n4+TS5A+tv60+f1+nXbaaVq+fPnBa4lEQsuXL9fZZ59tZ9cAAACulOv3Ol3CgORkDc66MTjZPl1t8eLF+ud//medfvrpOvPMM3XvvfcqFArp61//ut1dAwAAuE5ZwK+A35sxmw/0RX62T2UBv9NlYAixPeR86UtfUmNjo374wx9q3759mjlzpp577rlemxEAAADg2CzL0vTRRXpze+/zaTLV9NFFsixnDy/F0JKWjQeuvvpqXX311enoCgAAwPWqTig5YChjAAAgAElEQVTW6p0tjh8I2hc+j6WqscVOl4EhhhVgAAAAg8z00UWDIuBIUixhNH10kdNlYIgh5AAAAAwy50waJp9ncEz/8nksnT2pzOkyMMQQcgAAAAaZ0oBfF80YKW+GBx2vx9JnqkaplE0HkGaEHAAAgEHoq2ePVzzDp6zFE0ZfPXuc02VgCCLkAAAADEKnnlCsKSMKlKmbllmWNGVEgWax6QAcQMgBAAAYhCzL0vXnT5bJ0MEcY6Trz5/M1tFwBCEHAABgkPr01ApdXDVK3gwLEl5L+uzMUfr0VM5FhDMIOQAAAIPYLRdXqjDXlzHT1ixLKszN0o8+U+l0KRjCCDkAAACDWEnAr//vCzMyZtqaMdLPvjBDJeyoBgcRcgAAAAa5CypH6LsXTHa6DEnSdy+YrPMrRzhdBoY4Qg4AAIALfPvcSfr2uZOGfA2AJPmcLgAAAADHz7IsffeCyQpk+3TH8+/KspSWKWw9/Xxv/mR9+9wT7e8Q6ANGcgAAAFzCsixdNedEPfjV01ScmyWvzZsReC2pODdLD371NAIOMgohBwAAwGXOrxyhFdefqwtnjJKklO+81tPeRVWj9NK/ncsaHGQcpqsBAAC4UEnAr59/eZYumjFSd/91szbta5fXYymeGPgctp7nJ1cU6PrzJ3MODjIWIQcAAMDFzq8coU9PrdA777fqD2/s1NNr9yiWMPJ5LMX6EHh67vN5LF1cNUpfPXucZo4tlpUpB/MAh2EZkym7qvcWDAZVVFSktrY2FRYWOl0OAADAoNcciuiNrU1at7tV695v07rdrQqF473uC2R7NWN0sarGFmv66CKdPalMpZx9Awf1JxswkgMAADCElAb8unDGSF04Y6QkyRijplBE3dG4IrGE/D6PcrK8Kgv4Ga3BoEXIAQAAGMIsy9Kw/GynywBSit3VAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAqxByAAAAALgKIQcAAACAq/icLgAAAACZyxijUCikaDSqeDwur9errKwsBQIBWZbldHnAYRFyAAAYJIwxijc3K9HVLRONyMryy5ObI29pKW82kTKhUEjbt2/X3r17tXv3bu3Zs0eRSKTXfX6/X6NGjdLo0aM1cuRITZgwQYFAwIGKgd4IOQAAZKhYS4s633xT3bW16lpXo+7a9UqEOnvd5wnkKadymnJnTFdOZaXyzjpLvpISByrGYGWMUV1dnVatWqXa2lolEgl5PB4lEokjPhOJRLRjxw7t2rXr4P3Tpk3TGWecoTFjxhC84SjLGGOcLuJIgsGgioqK1NbWpsLCQqfLAQDAdsYYdVVXq+WRRxVctkyKxSSfL/n1WHru8/lUuHChSi/7snKqqniziaPatGmTVqxYoYaGhmMGm2PpeX748OGaO3eupkyZksJKMdT1JxsQcgAAyBDty5er8d77FN6yRfJ6pXh84I0deD775JNVvuhaFcydm7pC4QqdnZ169tlntX79elmWpVS+Jexpb9q0aVq4cKHy8vJS1jaGLkIOAACDSKylRfW33qbg0qWSZUmp/F/zgfYKL7xQFTfdyDQ2SJI2btyoJUuWqLu7O6Xh5qMsy1JOTo4uvvhinXLKKbb1g6GhP9mALaQBAHBQ+4svatuChQo+91zyQqrfcB5oL7hsmbYtWKj2F19MbfsYVIwxeuWVV/T444+rq6vL1oDT019XV5cef/xxvfrqq7b3B/Qg5AAA4ABjjPb/8lequ/oaxdvajm9qWl8kEoq3tanu6mu0/1cP8mZzCDLGaPny5VqxYoUj/S9fvlzLly/nZw9pQcgBACDNjDFqvPseNd57b8+FdHUsSWq85x413nMvbzaHmFdffVWvvfaaozW89tprjteAoYGQAwBAmjX96kE1PfSQszU8+KCaHnS2BqTPxo0bHRvB+ajly5dr06ZNTpcBl+OcHAAA0qj9xRc/GMFxWOM99yj7xEkqmDfP6VJgo87OTi1ZsiSlbT755JNau3btEb9/3XXXHXVh+FNPPaUTTjiBXddgG0IOAABpEmtp0d6b/j31O6gNlGVp7403KffUU9l1zcWeffZZdXd3p7TN0047TRMnTjzkmjFGS5cuVXFx8TF3vuru7tayZcv0hS98IaV1AT0IOQAApEn9rbcp3t6esoCzJRzWA/v3a0O4W/tjMeV4PJrk9+tfSks1J7/g2A0Yo3gwqPrbbtPoO+9MSU3ILJs2bdL69etT3u7YsWM1duzYQ67t2rVL0WhU06dPP+bzxhjV1NSosrKSA0NhC9bkAACQBu3LlyfPwUnhLmp7olF1JhL6bGGRbhheoSvLyiRJV+3erf9tbe1bI4mEgs8sVXuGrNdA6hhjtGLFClmWlZb+ampqJKlPIUdKnqGzYsUKNsDIUMYYRSL71dVVp87O7erqqlMksn/Q/PdiJAcAAJsZY9R4730pn6b2qfx8fSo//5BrlxWX6B937tDvW5p1SXFx3xqyLDXee5/y58xJ2xti2K+urk4NDQ1p6Ssej6u2tlZjx45VcR9/7owxamhoUF1dXa9RIaRfJNKslpY31N6+Xm3BtWpvX694PNTrPq83oIKCaSoqrFJBwTSVlJwtv7/UgYqPjpADAIDNuqqrFd6yJS19eS1LI30+1fRnDYYxCm/erO61a5U7c6Z9xSGtVq1aJY/Ho0QiYXtfW7duVVdXV59HcXp4PB699dZbhByHGGMUDL6j9+v+Rw0NS2VMTJblkzGxIz4Tj4fU2rpSbW1rDt5fMfwijRnzTyosnJkxH5QQcgAAsFnLI49KXq9tB352JhIKJxJqTyT0UkeHXg2FNL/g6Au/e/F61fzIoxpNyHGFUCik2tratAQcKTlVzePxqLKysl/PJRIJrV+/XhdccIECgYBN1bmDMUZd7VHFInEl4kYeryWf36vcgqwBBYvGxr9q67a7FQptlmV5ZUz8QD9HDjiH1hM7+LW+4Wntq39SgcBkTZq4WOXl5/W7nlQj5AAAYKNYS4uCy5bZFnAk6T8aGvS/bck1OB5J5+UX6KaKiv41Eo8r+Oyzqrjh++y05gLbt29PW8CJRCJ69913deKJJw5oS+hEIqEdO3b0OyC5XVdHRHWbWtS4q131O4Jq3NmuaLj33yNZ2V6VjytQxfhClZ9QoDFTSpSb7z9iu9Foi97dfIvq65+WlAxHPQFnoHqeD4U2a13Nt1RR8RlNPvlmZWU593cJIQcAABt1vvmmFOvbJ6MD9X9KSnR+QYEaYzE91x5UQkbRgaz9icXUuXKlCufPT32RSKu9e/embarapk2b+ryr2uF4PB7t2bOHkKPkaE399qBqXq7Te6sblEgYeTyWEokj/3mOhuPas7lV+95rO3j/iacP1/Rzx6hiQuEhozyNjS9o46YfKBoN9vSY6t+BJKm+/lk1N7+mU6b8VOXl56e4j74h5AAAYKPu2lrJ57M16EzMztbE7GxJ0meLivTN93fpqt11euyEcf2bxuLzqbu2lpDjAnV1dWmdqub3+zV58uQBPZ9IJLR79+4UVzX4bKtu1Mol29S8JyTLY8kcCDZHCzgflvjQ/VtWN2jzqnqVjQ5o9sUTNX7GMO3c+V/auu0uJUdv7N4hLa5otFXraq7UpIn/pnHj/jXta3UIOQAA2Khr3TrbR3I+6vyCQv2ofp92RCOa4M/u+4OxWLJeDGrGGO3duzctfYVCIW3btk3Tpk1TVlbWgNvZs2ePjDEZs2g9nbo7onrl8c3a8lZ9z+yxgwFnoHqeb9oT0rP/tU4nn/+8PMV/7vnucbXdjyokSVu33alYPKRJE69P639fQg4AADYxxiRHctIsbJKf4LfH+/9Jfvf62iH7ZtMtQqGQIpFIWvrq2dxgoFPVekQiEYVCIeV/ZEt0t9tW3aiX/rBJ4a5o8oINs8fKTnlWnuInU9xw/+zc+V/yeQMaP/7KtPXJYaAAANgk3tysRKjTtvabDjNCFDVGT7W1KceyNCm7H6M4ByRCIcWbm1NRHhwSjUbT1ldNTY0CgYAmTpx43G3F0jzi6SRjjFYv26Flv6xRd2dUxqaZhfmj3lH5dGcDTo+t2+5UY+Nf09YfIzkAANgk0dWPs2oG4Ef1+9SRSOj03DxV+HzaH4/pmWBQ2yIRfa98uAKegX2Wafpzxg4yTtzGnfw+6hvf+EbK2hoqIccYozef3Ka3n9954II9/Xj8HRpxxu9ljCXLStcUtaOxtHHTDSouPj0tu64RcgAAsImJ2jtlaEFBof7c1qrHWlvUFo8rz+NRZU6OFpeXa25+wYDbTaRpqhPs4fV6nS5hQHy+ofG2dM1zOz8IODaqmPWovFldKQ04dXVR/e63zVq/vlvt7QkNH+7T3Ln5+uIlRcrJOdaHKkbRaFDvbv6xplXek7KajmRo/DQBAOAAK+vIZ1WkwsLCQi0s7Oehn33g8dtbN+x1PBsAOGkohJxt1Y1a+dQ22/vJH1WtonGrUtpmQ0NMV1+1W4GAR5/9XJEKCjzauKFbv/99izZvCesnPxnRh1biqq9foorhF9p+YKj7f5oAAHCIJzfH6RIGxMoZnHUjKRAIyO/3p23zgVTw+/0KBAJOl2Gr7o6oXvrDJlt3cH7u7f+nZ976jU4Ym6dfnzNSlid1Hb3413Z1dCR0732jNH588oOQiy4qVCIh/fWvHWpvj6ugoC+jiJa2brtbw4bNs3WDEzYeAADAJt7SUnkC/T8B3kmeQEDe0lKny8BxsCxLI0eOdLqMfhk1apTrd/R75fHNyV3UbAo4LR2NeuGdR5SdlS2PN5rSgCNJoc7k7gglJYcGmdIyrzweyefr638/o1DoXQWD1Smt76MIOQAA2MSyLOUMslPcc6ZVuv7N5lAwZswYeQa48US6eTwejR49Or2dGiN1NEotO6X97yW/djQmr9tgW3WjtrxVb9suapL0xJu/1Pjhp+jEiUU6eOBOClVV5UqS7ryzUe+9F1ZDQ0wvvdShp58O6nOfL1Rubt9/3izLq7q6/0l5jR/GdDUAAGyUO2OGOt9+J+0Hgg6Iz6fcGTOcrgIpMHLkSCUSNr6jTqFEIqFRo0bZ20moSdr+N2lvtbR7jbSnWop09L7Pny+NmimNPk0aOVOa8CkpUHZcXRtjtHLJNlunqb23Z52qt72iH1x6t5bUfl8Kp76jM8/M09e+XqJHH2nVG3//YGv8y75SrH/5l/6N/hoTV33DMzrppBvl99szckzIAQDARjmVlYMj4EhSLDboRp5weBMmTJDH4xkUQcfj8Wj8+PGpb9gYqe4tadVDUu1fpERM8viSX48k0iHteE3a9eYH90/7gnTG5dKY06UBjHLWbw+qeU/oOH4jR5dIxPXH13+hs6cs1ElTu6UNtnWlERU+TZ+Ro098IqDCQq9WvtmpRx9pVWmpV5/7XFG/2jImppbWN1UxfKEttRJyAACwUd5ZZ0k+3+AIOj6f8mbPdroKpEAgEFBlZaVqa2szOuh4PB5NmzYt9ZsObFoqrbhVatggebxS4sDZQUcLOB/Wc18iJq3/s7TucWl4pTT3JmlK/96U17xcJ8tjySTsGcZ5dcPTau6o19UX3aGc0hclY89005dWdOiee/brd78fq/LyZIT4xCcCMsbo4YeaNWdOvoqK+r59uWX51B5cb1vIGRyTNQEAGKR8JSUqXLBAyvSzS7xeFS5cKF+J/Yf0IT3OPPPMjA44UnKq2hlnnJG6BjubpT99Q3rsMqlx04FOjvNw1J7A07hReuzLyfY7m/v0aFdHRO+tbrAt4HR0t2np6t9p/qn/pILcYuWUbpddc+KWLAnqxBP9BwNOj7PPCai72+i998L9as+YmNqCa1NZ4iEYyQEAwGYll31ZwaefdrqMo4vHVXrZl52uAik0ZswYlfmL1BRuS/k69L179+rll1/Wrl27FIvFVFJSotNOO02z+zESaFmWhg8frjFjxqSmqI3PSEuukbrbkq9Tvcq/p73aJ6StK6SLfyGdctFRH6nb1KKETQFHkp5567cKZBfqU9M+L8kop2SnHXsOSJJaWuLKL+g9PhKLJX9/8QFkyfb29TLG2LLZCSM5AADYLHfmTGWffPKA5vOnhWUpe/Jk5VRVOV0JUqh7Q7NO7RiX8je9W7du1a9//WuFQiF98pOf1Pz583XyyScrGAz2qx1jjObMmXP8b3CNkV65U3r8K1JXq2SOc+TmmP3Fk/08/hXp1buOuiNb4652eTz2/LlvaKvT6xuX6lPTP6+2zia1hreqsalDkYhRLCbt2xdVMJi6fxdjxmRp63th1b1/6PlLL63okMcjTZzY/0OE4/EORaNNqSrxEIzkAABgM8uyVL7oWtV9+yqnSzk8Y1R+7XfYOtpFjDFqe2GHxplyTYxXaLunPiVLNcLhsJ544gmddNJJuuSSSwb8M2MZaZJ/tCZPnnx8BRkjLb9Feu2eAxfSNT3vQD/LfyyFO6R5Pzzshxj1O4K2jeS0hvbLmIT+9Pr9+tPr9ycv/u6D7//TV97XP/xDob591bCU9HfJl4q0alWnFi3aq899rlAFhR6tfLNTq1Z1acHCAg0bNrBYEY/3b5pbXxFyAABIg4K5c1V44YUKPvfcwOZ12MXjUeHCBSqYO9fpSpBCkV3titUnt/k9JzpZu7ObFTbR4x7VqampUSgU0ty5c2VZliKRiLKysvoXdozkV5bOap+kyPvtyj6hcOAFvXrXhwKOQ167W8rOlz5x/SGXjTFq3NluW7ejSibo8vNvOfjal9OqEac9ot/+tlmdnUZXXVWmkaOyUtbfjBm5+vkvRum/f9+iJUuCCgbjGjEiS//yLyX60qXFA27XmMixbxoAQg4AAGlScdONCr3+uuJtbbYdOtgvliVvYaEqbrzR6UqQYh1v7EkuSkhIOcrSJ6Kn6EX/uuNud9u2bcrOzlZ7e7sef/xxNTU1KSsrSzNmzND8+fPl8/XhraUlfTJyinI8fnW8sWfgIWfjM9KKnwzs2VRb/mOpfIo05cKDl7rao4qG7ftAIz+3SFUTPn7wdVbefk36+FP681/aJMX1sY+neMc6SVOm5Oint49MaZuW1f9pbn1h25qc2267Teecc47y8vJUXDzwdAcAgFv4Sko08tafZEbAkSRjNPK2W9lRzWXioai61u0/ZObW+ES5To9OOu62m5ublUgk9Nhjj2nSpEm65JJLNGvWLK1Zs0ZPPfVUn9o4PTpJ4xLlUsKoa+1+xUPR/hfS2ZzcZCCFC446IkY3v9St+f8TUunPgrJuCep31X0dZfBIT119yK5rsUh6R2wTcXvCgt283mxb2rUt5EQiEX3xi1/UlVdeaVcXAAAMOgXnnafyRYucLkOSVH7ddSqYN8/pMpBi4a2t0mHWgVTFx6kqNu642o5EIopGo5oxY4YWLFigU045RQsWLNBpp52m9evXq6np6IvIq2LjVBX/UA0Jk6y3v5797oFd1FL3gcH+TqMfvxLRxv0JVY3o75bviWQ9y773wZV4ej/MiIcLFI9m6+67R+nhX49Na98D5fXmKyurzJa2bQs5t9xyi6677jpNnz7dri4AABiUyr51hcquuMLZGq64QmVXXO5oDbBHZHeHdJgdvSxZOj026YMRnQG8B++ZjvbR93c9r+vq6no/dKCfM6KTdEbsRFkfHn3xWIru7uhfEZuWSuv/lPJd1EbmW9p7fb52LirQHZ/O6X8DJi7V/FHa9KwkyeNN90YelrpbxmXMQHFfFBRMs23Dk4zaQjocDisYDB7yCwAAt7EsS+XXLVL5ddf1XEhXx5Kk8sWLNXzxdeym5lKRXe2HHcmRkkFnZny8Ph2ZoWxlyernG+KCggJJUiBw6HqPntddXV2H9mekbGXp05EZqoqP791gwijyfj8W5xsjrbhVslL/FjbbZ2lE/nG2a3mS9Rkjnz/9BwB3N0+QTIYfPHyAZflUVGjftvUZFXJuv/12FRUVHfw1duzgGGoDAKC/LMvSsG9doTEP3C9vUZHksfl/yR6PvEVFGvPA/RrGCE7GM8aoqatJuzt2a0fbDu3u2K2mriaZY3xMb4zp08jIuES5vhg+WxMSFQce7FtdI0cmF523tx8aTHpeHww/B9qbmKjQF8NnJ9fgHEFkd8cxf18H1b0lNWxI/UGfqWISUkOtVLdauQVZyspOb+Dobh4ny5NBuzcehTExFRROs639fu2u9v3vf18/+9nPjnrPxo0bNWXKlAEVc8MNN2jx4sUHXweDQYIOAMDVCubNU+6pp6r+1tsUXLo0OdqSyvkmB9orXLhAI266SV42A8pILd0tWrlvpTY0bVBNY402NG1QZ6yz1315vjxNLZuq6eXTNbVsqmaPmK2SnA82jkiEojJ9XPCeoyzNjU7TpHiFVvu2qsUKyTKWzFGGdyorK/X666/rnXfe0YQJEw5ef/vtt+XxeDR+3HhJUokJfLDBwDGYcFyJUFTe/D4snF/1kOTxSokMfiPv8UlvPSRr7BkqH1egPZsHsOZogDobpsgkPLI8GRoCP8SyfCopPsu29vsVcq6//np97WtfO+o9EydOHHAx2dnZys62Z4cFAAAyla+kRKPvulOFCxeo8b6fK7x5s+T1Ht95Ogeezz7pJJUvupZzcDKQMUZrG9fqsXcf0/Pbn1fMxOSzfIqZ2BGf6Yx1anX9alU3VB+8f/6E+bp0yqWaMWyGTKT/b27HJcp1QmSYGq2gNvjqtNVTL2OZZOCROWQDs5EjR2rmzJmqrq5WIpHQuBPGacfOHdqwYYM+8bGPa1bgJE0Nj1G5KTx07c2x/l1E///27jwuqvPeH/jnObMww8AM+4AICqKoKGDclxrMIjYatU3bmN4mNktv02bzps3WJUmXm7Q3t22apU3a9MYkvW2S3jSrSUx+UWNdsyiKRlEURQVFVBgYltme3x/jkCgIM8Oc2fi8Xy9ehplznvMFT/B8eM7zPX7UbT8F7P5ndAccAPC4gF2vAJUPwzrSjOO1rao9EPR8bkcybPVTYc7/OKqDjhAaWLMWQa9PU+0YAYWczMxMZGYOnMiJiIgocMmXXoqkSy5B144dOP23v8P29tuAywVotd4/B+LbTquFeeEVSPvmN2EoLeXamyi0pn4Nntj+BPa37IdGaOA+u4i+v4DzRb7tXNKFd+rewVsH38LolNG4s+A2jAziMYgCAlnSgiynBTMwGg3KGTQrbTgpWtGstMEpPg8WixYtgsViwY6qHdi7Zy8yLem49dJv444p34LBGVwbY+ny44K87kNvgIgFHhdwaD0y82eFLeD4nDkwD5aRW8N6zEBJ6cbw4d9S9RiqPQy0vr4ep0+fRn19PdxuN6qqqgAARUVFSEpKUuuwREREMU0IAWN5OXLLy2G97150bN2Krl270Fldja5du+Gx23vto5hMMEwogbG0FIaSEiROn85n30Splq4WPLT1Ibxz6J2emQ73ILuE+favbanFA1sfxHP45aDGM0CPQo8VhWfX60hIdMEJF9zwCAlFClw3owKGGbqAZmv6I7R+rElrrPLeChYLQUfRAg1VGD5zIRRFhDXodJ0qRFdLLhLMDRBKNLZaE0gyFcNsLlf1KKqFnPvvvx/PPfdcz+eTJk0CAKxduxYVFRVqHZaIiChuaFNTYV6wAOYFCwB4b29ynz4N2dUFj8MBRa+HMBigSUvjbE0M+KD+Azy46UG0ObyL9GUIn/HiG69b8ffhlf4TEDBC7zuIKoTOj5Bz9NPYCDiAt85jn8KYpEfRlCzs/6QJMmxBR6B511IMn/NkmI4XKInCQvW7O6rWymXlypWQUvb6YMAhIiIKjhAC2vR06HJzkVBQAF1uLrTp6Qw4UU5KiT/v/DNWrF2B1u7WQc/c9KdV044OpUu18dUgEjRQTLr+N5LSO5MTSxqqACkxsWJ4GAOOV3tDOVoPT4P0RFUjZQAaWK2LkZl5mepHUm0mh4iIiGiok1Li99t+j7/s+ov3c7WmQnwEUGuox8SO0SG7lUxt+tykgYO6vRlwBPjQ0CA88ZEDLV0SDW3eNUJv7nPhqM37d3bbND0shgC+p442wN4Ma0EG0nNNONVgV20mrC8ntl8DU/ZuaPQdEIE+EEkVAjqdGcVj7g/L0aIt3hERERHFjWeqn+kJOOFSYzwEN6K8A5mPIqDPSx54O2fvdtpq+O9N3fjp2m788RMnAOCfe1z46Vrva2e6gggKrk4IITB9cWFYAw4AeBxJOP7x8igJOAAgMW7sw9DpwrNekDM5RERERCr4oP4DPLb9sbAfd7+hHtpYucTzSOhy/WhI5XaqXwuAQyv8CFyBcHnXSBWUZWL0VCtqPz0R1ueYtjdMwsnqpcic+Fr4DnoBowp/iMzMy8N2PDk8ciwAACAASURBVM7kEBEREYVYS1cLHtz0YERuGduRWANXDM3kJIzy4wG1mgHW7EQr7ecttedePQYJRh3CfUqc2nMFmvd8ObwHPc+IEd/DiBE3h/WYMRLziYiIiGLHQ1sfQpujLWRrcDoOdqBlYwvse+xwNDugTdLCOMoI61VWJGSf+yB1m9aO9eZPMdc2GVpoQnJ8VSgCxrIMaAZqOgAAukT161GD1tjzn4YkHeZdOxbvPFUd5iIEmqu/Ao/TgKzSVyGlCNMtbAKAxKjCuzByZHgDDsCZHCIiIqKQWlO/Bu8ceiekXdSa326G7RMbTONNyPm3HKRWpKKjpgMHHjiArqO9u6m9mfphdAccAPBIJM0c5t+2pgxAH2PPWdQne+v+gsLyTExfUhiBYgRO770CRzfcArcjMQxd1zTQ6VJQOvGpiAQcgCGHiIiIKGSklHhi+xMhv00tozIDY34zBsO+NQxpF6cha3EWCn5UAOmWOLnqZK/t9xrrUJdwFB6EcQFIIASgzTb513QAAIQActR9eGTIDSv31n2eyQtG4KIFIyJQkLe19MF3fgmte+7ZV0J975x3PKt1IWbO+H9hXYNzPoYcIiIiohDZcXIH9rfsD3mr6MTRiVC05162JWQnICE3Ad0N3b13EMBzmW9CidZLPQlY5o8I7BlPwycDSoystFC0QO7kPt8SQmDGkkLMWHp2Ridca3TOHmfaFaWoqPwLSic+BZNpzNmaBjfr59vfZBqD0olPY0LJ76DT+bHWSkUxcqYQERERRb8Xa16ERmhUfeCnj5QSLpsLhlxDn+9vTa7GWvPHmGu7CJpounVNAMayTBjHpwe2X0454HGpU1OoeVzemZwLEEJg8oKRSM02Ye0Le9Hd6VS165pQgASjd01QYXkmACAz83JkZFwGm60KR4/+FSea3oKULgihhZQDf5992wmhhdV6JYbnfgtmc1nUPJyYIYeIiIgoBM50ncHqutVhCTgA0Lq5Fa4zLli+YrngNn+0voyL7OOQ7E6MjlkdAShGLVKuHBX4vgUXe2dIYiHoKFpg5NwBNyssz8SwohSsf2kf9n98wrdWP3TOjlc02Yq5y8bAcF6TByEELJZJsFgmYfToH+NMyxa02arRatuJtrZquN32XkNqNCYkJ0+ExVyGZPMEpKbMgF6fFsKiQ4Mhh4iIiCgEth7fCpcfvwEPhe6GbjS80ABjkREpcy58W1Cb1o7f5/wv7j/63bDUNSAJpF41xr+OauczpQMlXwV2vwJ4orhFtqIFJlzlrdcPhiQd5t9YgqLJWfjozYM4dcwOoQhIT/Bpx7d/+jATpi8uREFZ5oD76PVpsGZdAWvWFQC8M4VO5ym43d2Q0gEh9NBoEqDTpUfNbE1/GHKIiIiIQuCzU59BK7SqBx1nixOHfncIGqMG+bfkQyj9X3BuTt6BlZmv49snl6halz/MlSNhLAnwNrUvmvYdoPrl0BWkBo8LmPqdgHcrLM9EQVkGTtTZUL3uKGo/aYLHI6FoBDzugQOPooie7UdPsWJCRS6sI81BBxIhBPT6jIE3jFIMOUREREQhUH2yWvWA4+5w4/BvD8PT4UHBjwqgS/VvRuSl9NUweBKw7NQCVevrT3JFHpIrhg9ukOFTgawS4OQeqLqIJVhCAbLGA8OnBLe7EMgutCC70II53xiNYzUtaDpsQ9MhG5oOt8HZ3XsGS5egQdaIZFgLzMjMNyO3OAXGJH0fow8tDDlEREREgySlxGenPlP1GB6HB4cfPYzu490ouLvggg0H+iSA5zLfQKfSjetPLoEHnvCs0Tm7JsS8YCTMFXkhGE8Al/wEePGawY+lBukB5v24z9bRgTIm6VE0OQtFk7O8Q0uJzjYnXE43PC4JRSug1WlgTNbFxO1j4caQQ0RERDRIp7tOo8PVodr40iNx5I9H0HGgAyNuH4HEosTABxHAyxmrUZ/QiBWN30KS26hu17WzTQZSrxozuFvUzjf2CmDC14DdrwJhavLgF6EBJnzVW58awwuBRDNnaPwVBW02iIiIiGJbl7tL1fGP//042ra3IXliMtx2N1o2tZzzEYgtyTvxncKfYb15m/cFdZ4HCWNZJrJ/OCW0AcfnikcAgwXRcymreOv58n9FuhA6izM5RERERIPkdDtVHb+zvhMA0FbVhraqtl7vp8wK7MGLbVo7/iv3Wcy9/MtI2NgB1/EOQBHAIDp6+fbXWhNhmT8y8OfgBCIxDVj8OPDSv6l3jIB4gCVPeOuiqMCQQ0RERDRIOk0QLZEDUHhfoSrj6sZZYJ0yFo4jbWjf3IDOHc3eoONv4PFtpwgYyzKRNDMH+rzk8KwRGbcIuOSnwJpfqH+sgVx6PzB2YaSroC9gyCEiIiIaJIMmgCYAUSRBkwAhBBLyzUjIN8O9yInuAy1wHGuH80gbHMfaIfvo6CUSNNDnJkGflwxdbhISRqUE9+ybwfrSDwCHHdjw2/Af22fOnd4PiioMOURERESDlGZIQ6I2UdXmA6Fm0pmQZjj39iqNSYfE0kwklnofHimlhMfuhHR6IF0eCK0CoVOgmKKko5cQ3lmUhCTgg5/Du0YnHK2lzx7n0geALzHgRKNoWa1FREREFLOEEBifPj7SZQRkfPr4AYOKEAKaJD20qQboMhOhTTVAk6SPjoDjI4R3RmfZ3wBjirfLmarH03iPs+xvDDhRjCGHiIiIKAQmZk6EVsTGTTJaocXEjImRLiO0xi4EbvsUKPmK93MR4stc33gTvuo9DtfgRDWGHCIiIqIQGJ8+Hi7pinQZfnFJV8zNPPklMQ342l+8syyZ47yvKYMMnr79M8cBy/4OXPUMu6jFgNj4dQMRERFRlJuePR1aoY2JoKMVWkzLnhbpMtQzdiFQfAVw9BPg4z8Du14BPC5vYPH48ffj207RAROuAqZ9B8id7L01jmICQw4RERFRCKQaUlFZUIl3696FW/buSBYtNEKDBQULkGpIjXQp6hICyJvq/ah8GDi0HmjYDhzb5v3T0d57H30SMGySN9AMKwdGzgVMKj7vh1TDkENEREQUIsuKl2HVwVWRLqNfbunGsrHLIl1GeJnSvWt1fOt1pATszYCrE3A5AK0e0BoBU0bUzdZIKdHsdKHT7YFTSuiEgFGjIEOnja4GEFGGIYeIiIgoRMoyyzA6ZTRqW2oh4cfDNMNMQGB06miUZpRGupTIEgJIyox0FX065XBhQ0sbdrZ1YrutAzvaOmB3926LbdIoKEtOxCRzIkqTjZiTkox0PS/tffidICIiIgoRIQRunXQr7lh7R6RL6ZOExK3lt3IGIMpIKfGprQPPHmvG601n4JKAVgCufnKy3e3BppZ2fNTa3rP90qxUXJ+bgYvMiUP+75ghh4iIiChEpJT4+LNhcLaWQWveCSGiZzZHEQoWjFyAefnzIl0KfcG7J1vxq7pG7LV3QSMA99lTpr+A80WuL2z/atMZ/N+JMxhnMuDewhxUZljUKToGsIU0ERERUYj8Yd0B/HHdAXSdWAzpNkLK6PhtuoCAWW/GfdPui3QpdNZppwvf230I395Vh332LgCfB5xg+favsXdheXUdvrf7EE47o7/bnxoYcoiIiIhCYPXu43hkdY33E7cJ3Y1XRc1MjoTEz2b9DCmGlEiXQgDeOdmC2Vv34I2mFgBA7xU3g+Mb742mFszZugfvnGwJ8RGiH29XIyIiIhqkM3YH7n1lJwTQ027A1V6C7qZKJGStDmpMj9ODpleb0LKpBW67G4Y8A6xftSJpQlLAY91x0R24JP+SoOqg0JFS4rHDTXi4rhEKQh9uzucG0OJ04/pdh/Cjwhzclp81ZNbqcCaHiIiIaJAeeGM3bJ2uXv3UHKcq0N1cEdSYx545hubVzUiZkYKcf8sBFODQ7w7Bvs8e0Dg3TbwJN064MagaKHSklHjoYCMermsEoH7A8fEd56GDjXj4YCOkjI7ZRbUx5BARERENwnu7j+ONHQ1w93nxKOA4WYnupkoA8HuNTsfBDrRubUX217KRvSwbaRVpKLi7APp0PY6/fHzA/X3H6W5agPGGZUPmt/fR7LHDTXi8vimyNdRHvoZwYcghIiIiCpKUEr95b98Az48UcJyah84j1/rdjMD2sQ1QgNSK1J7XFL2C1Lmp6KzthOOUo5+aBKTbiM4j18J5ugK/ea9myPz2Plq9c7KlZwYn0h462Ih3T7ZGugzVMeQQERERBWlbfQtqTrTBnwzhai+B/eAP4LJ5H8TZX9jprO9EQnYCNEbNOa8bC40AgK76rl77+MZz2cpgP/BDuNpLICWw93gbth8ZegvPo8Vppwt31hxBKOfSnPs+w5l7bkHTojloWjgbZ+76Hpy1NX7tqwD4j5r6uO+6xpBDREREFKQXNh+CRgng8tVtQlfDNeg8ci083VYAgJS9L8dcLS5oLb37Q/lec7V8foHq29/TbUXHkevQ1bAM8CT2vK9RBF7YfNj/GimkfrzvKGxOd6/1WsFy7tuD07ffAHfjUZiu+3eYrv13uI7V48x/3ARX/aEB9/cAsDnd+Mm+oyGqKDox5BAREREF4bTdgbd2NsLtCfzy1dVego66O2Cv+z5crWU9QUVKBVICHocHQtc7PCm6s4HGIXu2d7WWwV73fXTU3QF3+/he+7g9Em/uaMBp+4VvcSN1vHuyFa82tcAdwjHbn/0DREIC0h5/DqZvXAfTsuVIe3wl4PGg/S+P+zWGG8A/m1qwujl+b1tjC2kiIiKiIGw60AxXEAHncwKernx0NeZDNC2CJvEAFMMxaIxHoOhqIZ29x3Z3ey/dPI4x6DxaCXfHKEi3acAjuTwSmw+cwsLSnEHU2zcpJTptrXB2d8PtckGj1UKXkACj2TKkGx5IKfErFVpFO6u3Qz91FhTL58880qRnQlc2Gd1b/gVPZwcUY2I/I3gpAH51sBHz081x+ffEkENEREQUhOpjrdAqYpBBx0u6TXC1lQJt3vU6QlcPR9NJtO+/B1BcgEcLSB06DtQC+Akk5nq395NWEag+1hqSkNNha8WR3Ttx4mAtGmv34cTBWji7OnttpzMYYS0sQk7RGFgLi5BXUopEs2XQx48Vn9o6sNfee+3UYEmnAyIhodfrIsEAOJ1w1dVCP37gc8MDYI+9C9tsHZhsGTgoxxqGHCIiIqIg7KhvCUnA6YveWghb/U647QlQEj7vsOZo3Od9P6swoPFcHokdg2g+IKVE4/69qFq9CjWb/wWP2w1Fo4HHfeEbsZxdnTj6WTUaaj7r2b541lyUz1+InNHFcTl78EXPHmuGRgDuEJ8i2ryRcH5WDel2Q2i8jSmk0wnnnmoAgKfZ/xbRGuGtMx5DDtfkEBEREQVISonqY+qtZ0gsng1ID9qq3v38mC4n2qvfhz6nGFpzZsBjVh9rDaqVdO3HW/D8Xbfi7z+9C3s3/asn2PQXcL7oi9vv3bgef//pD/H83beh9pOtAdcSK045XHi96UzIAw4AGBd/He6jh2H775/BdegAXHW1aP3VT+A53QwAkN3dfo/llsBrTWdwyhF/ndY4k0NEREQUoFN2B+yOUC4nP1fCsGIkFs9By/rn4OlogTZ1GOy7PoCrtQnWL98R1Jjt3S6csjuQkdT7Vqe+dLbZsObZp7B34/qeWRfpGdzX7Nv/1JHDeP2RX2Ds7Lm45PqbYUw2D2rcaLOhpQ0ulR5NlLj46/CcPAH7S8+ha/WbAABt8XiYrv427P/7DIQf63G+yCWBjS3tWJyVMvDGMYQhh4iIiChAnSoGHJ+MRXei5V9/hX33Wri72qHPGomsq+6HIW9C0GN2Of2re//Hm/He04+h224HgJA/TNQ3Xs3mDTi0swrzv3sbRk+dGdJjRNLOtk5oBVQLOkk33orEb1wH16EDEKYk6ApHo+0Zb2c17fD8gMbSCmBnWwdDDhEREdFQ53SHsl9W34RWj9R5NyB13g0hG9Ph6r9uKSU+eu0f2PDi84AQ8Ospp4MgPR50tbfhjf/+T8xZdh2mLf16XKzV2WbrUC3g+CjJZugnTur53PHpViiZVmjyCwIaxyWB7baOUJcXcVyTQ0RERBQgnSY2L6H02gvXLaXEhr8/5w043hfCU9TZ42x48XlsePH5kM8ahZuUEjvbwhsautauhqtmNxKv+iaEEvi5uaOtI+a/7+fjTA4RERFRgIx6TaRLCIpBd+G6P3rtH/jo9f8LYzV916A3GDH9K9+IaB2D0ex0wa7iTJ9jx6ewv/An6KfMhGK2wPlZNTrffQP6abOQeNU3gxqz3e1Bs9OFTL0uxNVGDkMOERERUYDSTXqY9BpVmw+EWlKCFukmfZ/v7f948+czOBG24cXnkT48H0VTZ0S6lKB0qnwro5KRBSga2F96DrKjA5qcXCTd8H0kfv1aCE3wl/ZdKrVDjxSGHCIiIqIACSEwMdeCLXWnI12K3ybmWvpc79LZZsN7Tz8WljU4fhECq5/+PXLHjo/JrmtOlb+H2tw8pP7XH0I+rsOj/jqzcGLIISIiIgpCWX4KPjl8RrUHgoaSVhEoy+u7e9aaZ5/ydlEL0cV5bdMpPLVuS5/v3XbpLIxIT+3zvR5Sottux5pnn8bC2+8KSU3hpIvRxgn6INbyRDOGHCIiIqIgTMy1xETAAQCXR2JirqXX67Ufb8HejetVOeac0SORl3buMTOSTH7tKz0e7N34IYpnzUXRlOlqlKcaY4w2pTAosRnOLoQhh4iIiCgIs0ZlQKuImAg6WkVg5qj0c16TUmLjSy9ACKFKZ62CjDSU5eUEvb8QAhtfegGjJk+LqbbSGTotTBpF1eYDoZakUZChi69YEJtRk4iIiCjC0kx6LCrNgSbKfwOuUQSuLBuGtPOaDjTu34vmI4dVbR3c5XTBHeRaDyklmusPoXF/TYirUpcQAqXJiZEuIyBlyYkxFST9EV+RjYiIiCiMrp05Eq9VNUS6jH65PRLXzhzR6/Wq1asgFA2kR50OcS9/vAPdLjcUIVCQkYpFZeOQl9b3uqALEYoGVe+twrAxY1WpUS0XmRPxcWu76g8EDQWtACaZYyuU+YMzOURERERBuig/BWOzkxGtvwQXAhibnYxJ5zUd6LC1ombzv1QJOFpFYOLwbCwpL8H1s6dgwYQxaGxtw5NrN+PYmdaAxpIeN2o2rUeHLbD9Iq002RgTAQcAXBIxN/PkD4YcIiIioiAJIfCD+cVR0Xm5L1ICP5hf3OtWpCO7d8LjVmcGZ2RGGpbPmoxphXkoybXiknFFuP3S2RAA3q4O/NYzj9uNI7urQ1+oiuakJEMbpcH3fFoBzE5JinQZIceQQ0RERDQIl4+3YnHZMGiibDpHI4Al5cNw+Xhrr/dOHKyFotGErZaMZBNKhmWjtukUPAE2alA0Gpyoq1WpMnWk67VYkpUKTXSdEr1oBLA0KxXp+vhbwcKQQ0RERDRIP1tcArNRGzW3rQkBmI06PHhlSZ/vN9bWqDaTcyEpiQa4PR443K6A9vO43TheG1vNBwDg+twMuKN0hs/HLb11xiOGHCIiIqJBSjXp8aurSqPmtjUpgV9fVYrU8zqqed+TOHHwQNhrOmXvgFajQK8NfNbgxMFaVbvAqWGyORHjTIaovdhWAIw3GXBRHDYdABhyiIiIiEKisiQbd1UWR7oMAMBdlcWYX5Ld53udtlY4uzpVO3Z7V3ev1xpabPis4QSKrZlQgpjucnR2ojPGmg8IIXBvYQ6i9Wk5HgD3FObEXeton/i7AY+IiIgoQr5fMQr2bhf+sC78MyVfrOH7FaMu+L6zu3cICaUXtmyHTqNgZHoqkhIScMLWji0H66HTaHBFafAh0OVwhLDK8KjMsOArWSl4o6kF4b05sH8aAEuyUlCZYYl0KaphyCEiIiIKESEE7qoshilBi0dW10AIhOUWNt9x7l5QjO9XFPW7rdsV2JqYQE0YZsW2+gas31eHLqcLSQl6TByejfnjRyMj2RT0uC6nM4RVhs9/jhmOdWfa0Op0R8WsjgLAotPgl2OGR7oUVTHkEBEREYWQEAK3zCvC6Kwk3PPKTtg6naouQNecbTLw66tKL3iL2jnbB7EmJhBfGlOAL40pCPm4Wp0u5GOGQ5pOi98W5+H6XYciXQoA721qvy3OR5ouvmMA1+QQERERqWB+STbW/KACC0uHAUDIO6/5xltUNgxrf1jhV8ABAF1CQmgLCROtvncThVjx5cwU3FeQE+kyAAA/KszBgsz4vU3NhyGHiIiISCWpJj0eu2YS/nTtZBRbkwEAGmVwace3f7E1GX++bgp+v2wSUhL9DwBGswU6g3FQNYSb3miE0RzbF+a3j8jC7flZka0hPwu3RbiGcInveSoiIiKiKDC/JBuXj7di+5EWvLD5MN7c0QCXR0KrCLj8eDimbzutIrC4bBiunTkC5XkpQXXGEkLAWjgKRz/bFcyXEhHWwqKY7wImhMB9hTlI0mrw0MFGKEBY1uj4jvPjwhzcNqL3g2HjFUMOERERURgIIXBRfiouyk/FTxeNx+YDp7DzWAt2HmnFzmMtsHf37r9lStCgNDcFZXkpmJhrwcxR6Ujr49k3gcopKkZDzZ6wPxA0GIpGg+yi6GjNPVhCCNw+wooxiQb8R009bE63ql3XNPA2Gfhtcf6QuEXtixhyiIiIiMIszaTHwtIcLCz1rtOQUuKU3YEupxsOlwd6rQKDToN0k16VGQxrYVFMBBwA8LjdsBb03zEu1izItGBayjj8eN9RvNrUEvJZHd94S7JS8J9jhiM1zpsM9GXofcVEREREUUYIgYyk8DUEyCsphaLRxETQUTQa5JVMjHQZIZem0+KPJSOxJKsVv65rxB57FzQCg+rE59u/2GTAvYU5cf0cnIEw5BARERENMYlmC4pnfgl7N/0L0hO9QUcoGhTPmovEGG860J8FmRZUZpixzdaBZ48147WmM3BJQCsAlx+Bx7edTggszUrB9bkZmGROjPk1TIPFkENEREQ0BJVXLsSeDesiXUa/pMeN8vkLI12G6oQQmGwxYbLFhJ8V5WJjSzt2tHWgytaBqrYO2N29b2YzaRSUJydikjkRpcmJmJ2ShHQ9L+19+J0gIiIiGoJyRo9FRv5InDpyGFKq+LTSIAkhkJ43Ajmj46PpgL/S9VoszkrB4qwUAN71Ws1OF7o8Eg6PB3pFgUERyNBph/xsTX/4nBwiIiKiIUgIgdlXXxuVAQfwXtzPvvraIX8hL4RApl6HPIMeoxINyDPokanXDfnvy0AYcoiIiIiGqKIp0zF29lwIJbouCYWiYOzsi1E0ZXqkS6EYFV1nNBERERGF1SXX34wEkwmIlpkBIZBgSsIl13830pVQDGPIISIiIhrCjMlmzP/u7UC03LYmJSq/ezuMyeZIV0IxjCGHiIiIaIgbPXUm5iy7LtJlAADmLLsORVNnRLoMinEMOURERESEaUu/jmlLvz7ka6D4wBbSRERERAQhBOYsuw56gxEbXnzeu0YnHLewnT3OnGuWYzoDDoUIQw4RERERAfAGnelf+QbSh+dj9dO/R7fdDunp/SDKkB1PUZBgSkLld2/nLWoUUgw5RERERHSOoqkzkDt2PNY8+xT2blwPIURIn6fjG6945pdwyQ03w5iUHLKxiQCGHCIiIiLqgzHZjIW3343imXOx8eW/orn+EISigfS4gx7Tt3963gjMvvpaPgeHVMOQQ0REREQXVDR1BkZNmY7G/TWoem8Vajath8fthqLRwOMeOPD4tlM0GoydNRfllYuQXTQGIlqey0NxSchQzj2GmM1mg8ViQWtrK8xm9konIiIiirQOWyuO7K7GiYP7cfzAPhw/UAtnV2ev7XQGI7JHFSG7qBjWgiLklUxEotkSgYopXgSSDTiTQ0RERER+SzRbUDxzDopnzgEASCnRaWuFy+GAy+mEVqeDVq+H0WzhbA1FDEMOEREREQVNCIFES0qkyyA6Bx8GSkREREREcYUhh4iIiIiI4gpDDhERERERxRWGHCIiIiIiiisMOUREREREFFcYcoiIiIiIKK4w5BARERERUVxhyCEiIiIiorjCkENERERERHFFG+kC+iOlBADYbLYIV0JERERERJHkywS+jNCfqA45bW1tAIC8vLwIV0JERERERNGgra0NFoul322E9CcKRYjH40FDQwOSk5MhhIh0OUGz2WzIy8vDkSNHYDabI10OxRmeX6Qmnl+kNp5jpCaeX/FFSom2tjYMGzYMitL/qpuonslRFAXDhw+PdBkhYzab+T8YqYbnF6mJ5xepjecYqYnnV/wYaAbHh40HiIiIiIgorjDkEBERERFRXNE8+OCDD0a6iKFAo9GgoqICWm1U3yFIMYrnF6mJ5xepjecYqYnn19AU1Y0HiIiIiIiIAsXb1YiIiIiIKK4w5BARERERUVxhyCEiIiIiorjCkENERERERHGFIYeIiIiIiOIKQ06IPPnkkxg5ciQMBgOmT5+Ojz766ILbrly5EkKIcz4MBkMYq6VYsn79elx55ZUYNmwYhBB47bXXBtxn3bp1uOiii5CQkICioiKsXLlS/UIpJgV6fq1bt67Xzy8hBI4fPx6miimWPPzww5g6dSqSk5ORlZWFpUuXoqamZsD9/vGPf2Ds2LEwGAyYOHEi3n777TBUS7EmmPOL12BDB0NOCLz00ku488478cADD2Dbtm0oKytDZWUlmpqaLriP2WxGY2Njz8fhw4fDWDHFErvdjrKyMjz55JN+bV9XV4eFCxdi3rx5qKqqwooVK3DTTTdh9erVKldKsSjQ88unpqbmnJ9hWVlZKlVIsezDDz/ELbfcgi1btuD999+H0+nE/PnzYbfbL7jPpk2bcM011+DGG2/E9u3bsXTpUixduhS7du0KY+UUC4I5vwBegw0VfE5OCEyfPh1Tp07FE088AQDweDzIy8vDbbfdhnvvvbfX9itXrsSKFSvQ0tIS7lIpxgkh8Oqrr2Lp0qUX3OaeCGsUFgAABIpJREFUe+7BqlWrzrkgWLZsGVpaWvDuu++Go0yKUf6cX+vWrcO8efNw5swZpKSkhLE6igcnT55EVlYWPvzwQ8ydO7fPba6++mrY7Xa89dZbPa/NmDED5eXleOqpp8JVKsUgf84vXoMNHZzJGSSHw4FPP/0Ul112Wc9riqLgsssuw+bNmy+4X3t7O0aMGIG8vDwsWbIEu3fvDke5NARs3rz5nPMRACorK/s9H4kCVV5ejpycHFx++eXYuHFjpMuhGNHa2goASEtLu+A2/BlGwfLn/AJ4DTZUMOQMUnNzM9xuN6xW6zmvW63WC96jXlxcjP/5n//B66+/jr/+9a/weDyYNWsWjh49Go6SKc4dP368z/PRZrOhs7MzQlVRvMjJycFTTz2FV155Ba+88gry8vJQUVGBbdu2Rbo0inIejwcrVqzA7NmzMWHChAtud6GfYVz3Rf3x9/ziNdjQoY10AUPRzJkzMXPmzJ7PZ82ahXHjxuHpp5/GL37xiwhWRkTUv+LiYhQXF/d8PmvWLBw4cAC/+93v8MILL0SwMop2t9xyC3bt2oUNGzZEuhSKQ/6eX7wGGzo4kzNIGRkZ0Gg0OHHixDmvnzhxAtnZ2X6NodPpMGnSJNTW1qpRIg0x2dnZfZ6PZrMZRqMxQlVRPJs2bRp/flG/br31Vrz11ltYu3Ythg8f3u+2F/oZ5u+/qTT0BHJ+nY/XYPGLIWeQ9Ho9Jk+ejA8++KDnNY/Hgw8++OCc3xT0x+12o7q6Gjk5OWqVSUPIzJkzzzkfAeD999/3+3wkClRVVRV/flGfpJS49dZb8eqrr2LNmjUoKCgYcB/+DCN/BXN+nY/XYPGLt6uFwJ133only5djypQpmDZtGh599FHY7XZcf/31AIDrrrsOubm5ePjhhwEAP//5zzFjxgwUFRWhpaUFjzzyCA4fPoybbropkl8GRan29vZzfsNUV1eHqqoqpKWlIT8/H/fddx+OHTuG559/HgBw880344knnsDdd9+NG264AWvWrMHLL7+MVatWRepLoCgW6Pn16KOPoqCgACUlJejq6sIzzzyDNWvW4L333ovUl0BR7JZbbsHf/vY3vP7660hOTu5ZV2OxWHpmls//N/KOO+7AxRdfjN/85jdYuHAhXnzxRXzyySf405/+FLGvg6JTMOcXr8GGEEkh8fjjj8v8/Hyp1+vltGnT5JYtW3reu/jii+Xy5ct7Pl+xYkXPtlarVV5xxRVy27ZtEaiaYsHatWslgF4fvnNq+fLl8uKLL+61T3l5udTr9bKwsFA+++yzYa+bYkOg59evf/1rOWrUKGkwGGRaWpqsqKiQa9asiUzxFPX6OrcAnPMz6fx/I6WU8uWXX5ZjxoyRer1elpSUyFWrVoW3cIoJwZxfvAYbOvicHCIiIiIiiitck0NERERERHGFIYeIiIiIiOIKQw4REREREcUVhhwiIiIiIoorDDlERERERBRXGHKIiIiIiCiuMOQQEREREVFcYcghIiIiIqK4wpBDRERERERxhSGHiIiIiIjiCkMOERERERHFlf8Prn8XTtl+A94AAAAASUVORK5CYII=", "text/plain": [ - "
" + "(
,\n", + " )" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAGsCAYAAABaczmOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3zV9aH/8dc5J8nJyZ4kZAEJEcLeOBEERUVcrdVa67xebdXeVn+9V+1wdNhWa63WKto6q9bROtCK4gQFRUbYGwKEhJC9TnLm9/fHSU5ySAKB5ITk8H4+Hufh+e7P8Y+8+Xw/y2QYhoGIiEgIMB/vAoiIiPQWhZqIiIQMhZqIiIQMhZqIiIQMhZqIiIQMhZqIiIQMhZqIiISMsONdgMPxer2UlJQQGxuLyWQ63sUREZHjxDAM6uvrycjIwGzuuj7Wr0OtpKSE7Ozs410MERHpJ/bt20dWVlaXx/t1qMXGxgK+HxEXF3ecSyMiIsdLXV0d2dnZ/lzoSr8OtdZXjnFxcQo1ERE5YlOUOoqIiEjIUKiJiEjI6NevH0VEpH+pb3Kxamc520prKDpYT5PTg8VsIjUukvzB8Ywdkszw9Ljj1mNdoSYiIkdUXNnA68t28emG/Tjc3k7P+WRDCQDD0+O4eNowZo/LxNzH4Wbqz+up1dXVER8fT21trTqKiIgcBx6vwb+/3sXzn27D5ek8zLoyNieJ2+ePIyMpusfl6G4eqKYmIiKdcro9/OaN1Xy1/aB/X0S4mfwhyeQMjiMlIYpIaxher0F1fTNlFY1sLaqkotoOwPq9Vdzy9Bfcf8UUxg5J7pMyq6YmIiIdeLxe7n9tVUCgjT1pEFNHDyY83HLYa4vL6liyci/1jU4ArOEWfn/VdAqyEo+5PKqpiYjIMXtj+W5/oIWFmZl7ai5Z6UeuXHi9Bl6vQW5WAluLqmh2uHG4PPz0ha84d2I2o7MTmZ6fRpQ1OPGjUBMRkQB7y+t58fNtAJhMMPe0XLLSDh9oLreHdVsPsnlXBY1Nro7HPV4WrtzDwpV7iIoIY/a4TC4/LY/UOFuvll2hJiIiAf755U5/p5CxJw06YqCVHKzn82/2UNfyurE9swkwmfB621q67E43C1fu4eP1+7n5nFGcMz6r14YAKNRERMSvptHBkk2lAFgjLEwZndHpeZVlpfzjod+wvxpyz74Wk8k3l4fJBEMGxzN8SBKDkqKIiYrAZDLR1OyivNpO0f5atu+pwu3xYne4eXjhOrbsr+G288f0Svd/hZqISAhrdrpZsaOcbSU17Cyro6HJBSZIirYyfHA8BVmJTByWjKVlOZevtx/019JGDE0mPKzjxFMNtTX87LsXMfa8q8iberp/f3pKNGdOGUJCXGSHa2yR4eQMjidncDzTxmawfG0x24qqAPjP6r1YzCZuPW9Mj3+vQk1EJARV1jfz2rKdfLi2GLvD3ek5rR1BUuMimTd5CJdMG8r20lr/8SEZ8Z1e9+bfHic9fyzW3DPweHyvFcedNIjp4zIxm49c24q0hjFr2lCy0uL4dEURhgELV+5h/JBkzhg1+Gh/agCFmohICDEMg4/W7efJDzfS0NwxzEwmOHQgV3ldM899upUPCvdhDW+rmSUnRHX6jJWfLGb0d37mD7SC3BROHp951O1i+UOS8Hi8fL5yLwCPvb+BcUOTiY+KOKr7tKdQExEJEV7D4K+LNrJw5R7/PovFxPCcJIZlJpCaGEWULRzDMKhrdFJe1cj2PVXsLa0DoLRl0HTrddaIzsejOcMTMGy+wdTxMVZOmdCxo8fNZ02jvKS4w7XnXnkNN/7yAf/2iGHJ7CmtpWh/LbV2J++u3MP3ZuQf8/8DhZqISIhY8OGmgEDLH5LEKROysB0yJsxkMhEfYyU+xsrwnCSq65r5/Js9lFU2+s/xegwMw+i09pU5ea7/+7RxGZ22u/3+jffxejz+7b3bt3D/9Vdwytz5Hcpy6oQs9pTUYhi+9rUrTs/zt/EdLS09IyISAr7YXMpbK4oA3yvGWdOGcNb0oR0CrTOJcZFcOOskxp40yL/PAPaX1XU41+32kjJ8CgDRtnCGZiR0es/4pGQSUwf5P6s++4j0nKGMnnZKh3Njo63kDPa131XUN7Nlf80Ry9wVhZqIyABXZ3fy2Psb/NtnTMrhpKFHN9ei2WzilPGZjMxtu+6L1cUcOpNiZW0TJovvtWRmWmy3Ooa4nE6WvPMvzrr0ii7b3XLazVayo11nlaOlUBMRGeDeXbWHmpaBz0Mz4gOCCcDj8fDKn//AD2ZP57vjc/nh2afw+l//1CGwWl8FxsVYAahtcLC/rD7gnKraJv/31MTOO5IcasXHi2isr2PWJd/p8pyUdvfadbC+y/OORG1qIiIDmMfr5b3Ve/3bp07s2Gnjracf54NXnue23/2Z7OEj2LlhLX+5+ydExcQy7+r/Cjg3PMzC9HEZLF62G4DVmw8EzPnocrW1k0V2c/7Gj994hYlnzCIpLb3Lc2yRbfdq6mIIQnco1ERE+rkmp5vPN5awbk8V20trKaux4/EaREZYSI2zUVHXDEDO4Dhio60drt+6ZiVTZ89l8sw5AAzKymbpe2+xY31hp88bmpFAlC0ce5OL0vIGHE431ghfXLR/3dh+6quuHNxfzPrlS/npY3877HmedvcKsxz7S0SFmohIFyrrm/l6+0G2l9ayp7yeZqcHi9lEWoKN/MHxjB2STEFmQq/NW3gou8PNP5Zs4/01+zodQN3Q7Kahue1VXWtni0ONmDiFxa/9g5LdO8kYlkfRlo1sWb2Ca++8t9PzzWYTWWmx/hk/Pv6qiHNPz8NsNhHTbgxZdUuYHs6n//4ncckpTD5zzmHPa3+vlE5mJOkuhZqIyCG2l9by6pc7Wbb1QEANotW20lqWbj4AwLBBsVw0bShzJ2T3ytyFrQp3V/DHhes42K4NC3yBExdjxWI2YW9y0uRoex2Y0kUb1yX/fSv2xnp+dP4MzBYLXo+HK398JzPmX9rl81MTo/yhtu9AHR8u28WZU3ICnnGw3RCAzni9Xj5581VmXnwZlrDDx037e+V3Ec7doVATEWnhdHt4acl2Xlu2C28n6yebzSYMwwiYkWP3wXoeeXc9i9cWc8eF48lMiu5xOT5eV8xD76zzl8FiMZGfk8SIYcmkJkZhsZg5WNnIu59vD7iuq+77y95/h6UL/82PH3qc7OEj2L1lI8/+9h4SB6V12Xnj0PayPSW1vPbBZiaOTCMmKpwGu4uS8gbqGhz+jiWHWrdsCRUl+5l96RWH/b0er8G2Pb4ANZtgVA8WE1WoiYgAjQ4X9/xzJev3Vvn32axhjMxNJis9jpSEKCLCLXi9BrX1zRyobGTr7kr/gOWN+6q59ekvuP+KKYwdcnTd6dtbvrWMh95ZS2sFMWNQDGdOGRIQHA6nmw++3IXL7Q24tqs2rhce/BWX3Hgrp8+7GIAhIwqoKCnm30891mWodXavZoeb5Wv3B9RI124t44zJOZ3eY8LpM/nXlpKuf2yLHXuqsLeswTY9P43k2GN//agu/SJywnO6PQGBZjabmDJ6MN+7YAzTxmaSkRpLRLjFfywx3kZBbgoXzx7B/Jn5xEX72pnsTjc/f+WbYx48XN3g4OGFbYE2Ki+FC87M71ATWramGHuzLwSibeH+/TX1nbdxOZqaMR0yQ4fZbME4TEeP9m1cORmB66m1r8Vu2llBSQ+64Dc2uVi+tm06rYumDT3me4FCTUSEFz7b5g80a4SFi2adxOTRg7F0oxdexqBYvn1OAdkt3d6bXR4e+PdqmpxH3y398UUbqWupsQzNjOf0SdkdOqFU1tj9r+oiwi1MHtXWTb6sizauKbPO5l9PPsqqzz7iYPE+vl78PgufW8D0s8/tsiwHq9rmgZw+JoMwi68cYWYTSYeE7EfLd1PTjU4jh3I4PXzw5U4cTl+74MzRGUwclnLU92lPrx9F5IS2ZX8N//pqF+Crhc2bMZzUo2wXCw+3cM5pubz72XbKKhs5UNPEM59s4ZZzu78+WElVI0s3+xbnjIiwkBgbyYfLdlFZ0+T/o+91NtJY34A1zveHf+qYweRkxGNavQ/DgO17qpg6JqPDLB//9fNf88qjf+Cp+++irrKSxEFpnH3597nshz/ptCz1jQ5/7SsmKoLEeBtDMxPYsbcat9fgnu9MJjk2kl+88g27D9bT5HDz9qfbmDl1SJfL1RyqsqaJT74u8g/mTo61csu5o7v9/6srqqmJyAntlaXb/a/7powe3GWgvf/Ss9x81jSuGDeMO78zj+3r1gQcD7OYmTVtiL9G896qvVQ1dL/20n4AtdPpYc2WMor211Lf6MTp8uB0eXCbIv2BFh5m5qShyUTbIvxd+RubXGxv1ybYyhYTw/V338+CT77hlbW7+Ovi5Vz54/8jPKLzJV4Kt5T5vxfkpmAymUhLbvv/sr20ltQ4Gw9efQp5aS01VIebRV/s5KPluzlY2dhhtpJWdQ0OlhcW8++PtvgDLT4qgt9eOZ24Hiw500o1NRE5YR2osfN1y0KZ0bZwxo1I6/S8L//zNs/97j5uuvd35I+fxLvPP82v/utKHnt/KfHJba/L4mMjGZM/iMItZXi8BovW7OPKMwKXUWl0uNhT3kCT0+0b8xYfRUqslQ8L93X67PAwM9G2cAwD6hod/p6X2elx/na+Mfmp7CnxzZe4vLCYrLS4gLa2o1Fa3sCmnRWAr9dl65RbifE2/zllNb4wirWF84erT+Z3b67hmx3lAOzcV83OfdXExVhJTYwiPtaKCV/gllfbqawJHKKQkxLDL749iZzU2GMq76EUaiJywlq+tYzW+kRBbgqWLibnXfjcU8y57ErO+pava/pN9/2e1Z9/zMf/eoVL//u2gHOH5yT6azqfbijhitOHU17bxHur9/LllgMUd9LuZTGbAsbDxURFMCovhaGZCSTEWv3talt2VfgX1ExNahsvlpUWR152Ijv3VeNwevjwy53MOzPfH3rdVVvfzEfLd/m3p43JICoy3F/GVu72ZY0M51dXTOXDtcU8tXgzDS0dWOoaHNQ1OLp8VrjFzKUnD+OqGflEhB1dOQ9HoSYiJ6zt7WaDzxkc1+k5LqeTnRvXccl/3+rfZzabGXfKGWwrXIVhGByoaGTzrgrKKhqoa5lYGGBvRQMX/Pb9Tgdwt9d63GyCCQXpTCpI77STirPdvIsxh7yqO21SNqXlDdibXRyssvPOp9s4a/pQktrVsA5nb2ktn63Y4593MT0lhjH5bUvRNLfr+GI7JCxNJhNzJ2Rz5ugMPt9YwgeF+9hWUovLEzjkwGyCnJRYZo3J4NyJ2SR0MqVXTynUROSEVdTSGcJsoss//vXVVXg9HhKSUwP2x6ekUFHn4F+Lt3R4pdbeoYEWZQsnJz0OW2Q45VWNFLfMgh9mMXPu6Xlkph3mNdxhZiyxWcM4f8Zw3v1sG81OD5U1Tfxr8RbG5g9i9PCUTueEBCivsrNuWxk79lb79yXF25h7Wm5Ah5OK6rbfOGRQ52WMDLcwd0I2cydk4/Z42VNeT3WjE8MwiIkMZ9igWCIjghs7CjUROWHZW2of4eGWbnXfb+X1GrgSRjJ45nkBgRZmMZGc4GtHMptNNDW7qai209jSTR/A3uSiosbOKeOz2NDSngcw55Rhhw80INLaVkOqb1cjbJWcYOPCWSfx4bJd1NQ78HoN1m4tY+3WMlISo0hNjPK1z+F71VhRbaemPvAVYbQtjAtn5fsnMG5VfKBtwdDuTGMVZjGTl37s010dK4WaiJywWtuJvF4DwzA6nZg4NjEJs8VCTWW5/9yPv96NOz6P1rNTEmyMG5FGblZCp+FYUW1n445ythZVYhi+Ws/7S3fibnk9N3JY8hG7wv/7qcd468V/cNptTwBQXm3v9LzEeBvfOqeAlRtKWb/9oH9mkIpqOxVdXNNedHMx1ohxHcrfOgZuaGosGd1cR+14UJd+ETlhpcb5Xjm63F7/NE2HCo+IIG/0ONYv/wKAZYXF7NrnmzHEbDYxfVwGl8wZSf6QpC5reymJUZw5dQgXzx5BQqzvNWBroJlMMHVsxmHLuWN9IYtf/QcpyXHg8ZVzX2mdf/zaoV566FfEOvYyd1ISQ5O8uBsqMAxvh/PMZhODkqKIatdTctbcswLOMQwjYMaPC6YMCdqqBL0hqKH2wAMPMHXqVGJjYxk0aBAXX3wxW7duDeYjRUS6rf1rtK5m4wCYf+1/89HrL/PuvxaysaXrutlsYu5puUwYmd5hsHNXBiVFc/HsEQErRkdFhvt7GHamqbGRR/7frdz8qweJiY3DXO/r+u/2eNmyq6LTayrLSvnTHT/kpxedyRu/ugnHhn8zb1oyF511Eueensd5Z+Rx6ZyRXH/JeKaPy/QH+qDkaBIOWfZl/baDlBxs8B2PtzFnXGa3fuvxEtTXj59//jm33HILU6dOxe12c/fdd3POOeewadMmoqN7PpO1iEhPjMlJ5LVlvu9biyrJze58dvjTzr+ImqpKdtZYsbY0e506IavL9csOxxoRxrln5PH6B5tpdrhpbHKxp6S2y9ePf7v/bibPnM34U2fwryf+jLluN96EXABWbSolNzuhQyeQ2x9+sltlcbu9LF3VNuh7dF7gFFWbd1WwfO1+//ZPLhiHLcgdPXoqqDW1RYsWce211zJ69GjGjx/Pc889x969e1m1alUwHysi0i1T8lJJbamZ7C2to7Km6zankWdegjXW90c/Y1AMo/I6n6OwqaGBZ377S246ayrfHZ/L3VfM77DCdFRkOKdNzPJvr9928NDbAPDFe2+xa9N6vnf7Xf59Jmc9Bbm+Z7vcXj5avhuXq/PXkIdjGAZLV+/1dxQZlBTF8JwkwDc7yMdf7WbJyrbAu/y0PCbl9mxexr7Qp21qtbW+MSFJSUmdHnc4HNTV1QV8RESCxWI2M3/KUP/2Zyv2dDmmrHWWDYBJBYO7bFf66y/uYO2yJfzo94/x8DsfM/60M7nvusupLCsNOC8vO5H4lomB9x+s7zDDfkXpfp757S/5n4f+QoQ18JXgyeMz/ePUDlbZeXfJDhrsHXtDdsXl8vDpij3+RUDNZhOnTsiitLyBJSv38tJ7GwK6+F968jCumzWi2/c/nkxGVxN09TKv18uFF15ITU0NX3zxRafn3Hvvvdx3330d9tfW1hIX1/nASBGRnnC6Pdz6ty/YU+5rN8ofksTMqUMC2sk8Hi/PvLkWr9cgNjqC754/utNQczQ3cdXkk7jz8WeZPHOOf/9PL53LxBlnceWP/y/g/DWbD7BivW+9sRmTcyhoV/v7+qP3+cOtN2C2tHXj93o8mEwmTGYzjy/dzHuf7/QPyI4INzNtbCYnDU0mPKzz+orXa7CntJblhcUBQwLCLGZ/x5X2YiLD+MHc0cwem3ncO4fU1dURHx9/xDzos5ejt9xyCxs2bOgy0ADuuusubr/9dv92XV0d2dnZfVE8ETlBRYRZ+H8Xjuf255bj8njZvqcKh9PNmVOH+DtwVNU1+7vGpyVHd/kH3uv24PV4CLcGtnFFREayZdWKDuenp8T4v5dX2ylod2zcyWfwp3c+CTj/L3f/hMzc4VzyX7cwKCmGC2fl85+lO7E3uXC6vHyxeh8r1pcwLDOB1KQoX03Q5Jt3saLKTlFJbac1ukMDzRZh4ayxmXzvjPweLdh5PPRJqN166628++67LFmyhKysrC7Ps1qtWK29P22KiMjhnJSRwN2XTuTX/1qNx2uwt7SO1xZtYsLIdEYOS6a+3RyGh5t2yhYTw4gJk3njr4+QlZtPfEoqX7z3FtsKV5GeM7TD+UnxbYFR3xg4CNoWE0POSSMD9kXaoohNSPTvT06I4jtzC1hWWOx/leh0edhaVMnWosrD/ubkGCsJMRE4nF4MIC4qnOHp8YzISODUkWlEW49tQuTjLaihZhgGt912G2+++SafffYZw4YNC+bjRESO2akj07n/iqn84a1Cau1OHE4PX6/bz8oNJcREt82zeKSZR370h8d4/O7bufHMSZgtFnJHjeX0eRezc+O6Due2v9eR5ofsijUijFnThpKTHsdHXxUd9lwTMDV/EPMnD2HK8FTM/Xi82bEKaqjdcsstvPzyy7z99tvExsZy4MABAOLj47HZujfJpohIX5mSl8pTN8/giQ828dlGX1uXx2tQ224qKccRVrROzxnKr/7xb5rtdpoa6kkclMYff3ITadlDOpzb/l5h3Zim6/4X/9Xlsd372yZnvnjaUDISo6hpdOI1DGJs4eSlxTN8cBxxtp6vWdafBTXUnnjCN53LzJkzA/Y/++yzXHvttcF8tIjIMUmItnLXpRP5/pn5vLdqL19uPeBfPww47OTF7UVGRREZFUVDbQ2FX3zO9//fzzuc036S4KjIY/9zvKvYt4YZ+Dp3fP/Mk4g5zIDuUBb0148iIgNRVnIMN50zipvOGUVto4OrH/uUZpeHAxUNuN1ewrroYbhm6WeAQcawPA7s2c0LD/6KzNzhnHXp5R3O3d8yQz9AUUkt9Y2OLmfT78qBigY+XbHHv/2DuaNP2EADTWgsInJE8dFWThuZzsfr9+NwethZXM2IocmdnmtvqOOlhx+g8kApMQkJnHz2+Vz5kzsJCw8MGpfby7Y9bZ05HE4Pb328lRlThhxxcmPwVRo27azgq7XFuD2+CsQZBenMHtu/p7EKtj4bp3YsujsuQUQk2Dbuq+L255YDEBsdwWXnFBB+lCtLt7difQlrNvv6GYSHmXG527rVD82IZ3R+KpmDYjsMH/B4vBSV1LJu20EOtpuvclJuCvddPqVXV5HuT/rdODURkYFsVFYi44YksW5PFfWNTpYVFjNjSs4xDUo+UNFA4RZfoJlNcO7peRRuKWNfy5plRSW1FJXUEhFuISXBRnRUBIZhUNfgoLK2CY8nsC4yb3ION58zKmQD7Wgo1EREusFkMvGTC8Zx81NLcbg8bNldSaQ1jGljM44q2Mqr7Cz6Yiet78gmjRpMxqBYBqfG8M2GUgq3HPAfc7o8lLTMdNKZnJQYfnjuaCYO6/9zMvYVhZqISDdlJEVz23ljeOidtQAUbimjotrOjClDiI0+fFd5r9dg3baDrNxQ4h+TNjg1htysBLa1DJZuXeIFfDW46Mhw6g9Z5y0jKYqRGQnMnZDN+KHJx336qv5GbWoiIkdp4co9/OX9Df5ti8VEXnYiJw1NZlBilL+tzes1qG1oZm9JHZt2llPXGDhFlckEnf0FPmlwPHdcOJ6hg2KpaXRQ3+TCbDKREB1B9Anas1FtaiIiQTJ/yhDSE2w88u56Kuqb8XgMthVV+aeqiraFYzabaHK4cbs7ThTc6tBAy0qK5sKpQ7hgyhAsZt+QgYRoKwlH2c3/RKaamojIMWpsdvHS0u18ULiPhubDzzQCvjawjMQoau1O7E43YWYzqfE28gfHMzYniXFDkvQ6sQvdzQOFmohIDzW7PHyxuZSN+6rZXlpLZX0zHq9BlDWM3LQ4ThoczxkFg8lMjj7eRR2w9PpRRKSPRIZbmDMuiznjul6FRPpGn658LSIiEkwKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRkKNRERCRlBDbUlS5Ywf/58MjIyMJlMvPXWW8F8nIiInOCCGmqNjY2MHz+exx9/PJiPERERASAsmDc/77zzOO+887p9vsPhwOFw+Lfr6uqCUSwREQlR/apN7YEHHiA+Pt7/yc7OPt5FEhGRAaRfhdpdd91FbW2t/7Nv377jXSQRERlAgvr68WhZrVasVuvxLoaIiAxQ/aqmJiIi0hMKNRERCRlBff3Y0NDAjh07/Nu7d++msLCQpKQkcnJygvloERE5AQU11FauXMmsWbP827fffjsA11xzDc8991wwHy0iIiegoIbazJkzMQwjmI8QERHxU5uaiIiEDIWaiIiEDIWaiIiEDIWaiIiEDIWaiIiEDIWaiIiEDIWaiIiEjH41obF0Q0MDrFnj+1RXg2FAbCyMHQuTJ0Ny8vEuoYjIcaNQGwicTnjzTfjrX2HpUl+QdWX8eLj5Zvje93xhJyJyAtHrx/7u7bdh2DC44gpYsuTwgQawdi384AeQmQmPPw5eb9+UU0SkH1BNrb+qq/OF08svB+z2JCfjHjoUT0YGRlwcAKbGRiylpVj27SOspMR3Yn093HorvPEGvPACaBVxETkBKNT6o6oqmDsXVq7073Ll5eE4/XQ8Q4eCydThEteECQCYS0uxfvUVEWvX+g589hmcdhp8/DHk5/dB4UVEjh+T0Y9nHK6rqyM+Pp7a2lriWmolIa+xEc46C1asAMCwWmk67zxc48d3GmZdsezaRdTbb2OurfXtyM6G5ct9ryVFRAaY7uaB2tT6m7vv9geaNzqahhtu8NXCjiLQADy5uTTceCOeQYN8O/btg+uuO3KbnIjIAKZQ60+WLIFHHwXACAuj8fvfx9saSsfAiImh8eqr8bb+q2bxYvjb33qjpCIi/ZJCrT+54w7/1+bZs/Gmp/f4lkZMDE3z57ftuPNOaGrq8X1FRPojhVp/8c03/o4hnrQ0nNOn99qt3fn5OEeP9m1UVcHrr/favUVE+hP1fuwvFizwf3VMnw7mtn9vfFlUxKPLlrG2pIQDDQ384/LLuaCgwH/cMAx+++mnvLB6NbXNzUzPzubhCy4gr93sIs6TTyZi40bfxpNPwtVXB/83iYj0MdXU+ovPPgN8bWmuMWMCDtldLsampfHgvHmdXvrnL79kwddf8/AFF/DRf/0XURERXPriizS7XP5zPFlZeFJSfBsrVugVpIiEJIVaf4yoVsoAACAASURBVFBdDTt3AuBJT4eIiIDDZ+fn8/PZs5nfrnbWyjAMnvjqK346YwbzRo5kTHo6T15yCQfq63lvy5a2E00mPFlZvu8ej2/mERGREKNQ6w82bfJ/9Rxl55A91dWUNTRwZm6uf198ZCSTs7JYUVwccK5n8OC2jfXrj62sIiL9mEKtP2hs9H81oqKO6tKyhgYABsXEBOwfFB3NwZZjnd77kGMiIqFAodYftOsUEtTB0e3vbbEE7zkiIseJQq0/SEryf/VPa9VNaS01tENrZQcbGzvU3gLurXXXRCQEKdT6g9GjITwcAEtp6VFdOiQxkbSYGD7fvdu/r665mVXFxUxr7RjSwtI6gz/AxInHXl4RkX5K49T6A6sVxoyBNWswl5djqq3FiI/3H25wONhVVeXf3lNTw7rSUhJtNrITEvjBySfz0JIl5CUlMSQxkd988gnpsbHMGzmy7RluN5Y9e3zfo6NhxIi++nUiIn1GodZfzJ8Pa9ZgAiJWr8Yxa5b/0JqSEuY//7x/+2cffADAd8eP54lLLuF/TjuNRqeTHy9cSG1zMyfn5PCvq64isqX2BxC+eTNmu923cd55alMTkZCkpWf6i+JiGDoUPB68UVHU33Yb2Gy9c2+Ph5i//a3t1eann8LMmb1zbxGRPqClZwaarCz41rcAMNvt2BYt6rVbW5ctawu0sWPhzDN77d4iIv2JQq0/efhhaGlLi1i7lvA1a3p8S0tREdaWKbgwm+Gpp456bTYRkYFCodafZGbCn/7k37S98w7hq1cf8+0su3YR/fLLmDwe34477oCTT+5pKUVE+i2FWn9z7bXwox8BYDIMot55B9sbb2BqN+vIEblcRH74IdEvvojJ6fTtO/98+M1ver+8IiL9iHo/9jcmk6+2ZjLBn/8MQMSGDYTt2IFr0iScU6bgbTdYO+DShgYi1qwh4ptvMNfVtR244AJ47TX/WDgRkVCl3o/9lWHAyy/Dbbf5ZvFvxxsXhycjA2/L/xNTYyOW0lIs7cayAb7Z/u+/3/faMUz/fhGRgau7eaC/dP2VyQTf+x6cdRbceSf885/Q8irRXFcXWBPr7Nrzz4c//AFGjeqjAouIHH9qU+vvBg+G55/3jWP73e983fFjYzueZ7XC9Om+ANy5E959V4EmIiccvX4ciLxeX3DV1Pi+x8ZCfr7azEQkZOn1Yygzm30hJiIiAfT6UUREQoZCTUREQoZCTUREQoba1I6nqiooKQGXyzcj/5AhvTczv4jICUih1pdcLnj7bXj1VVi5EoqKAo9bLL7FQk8+Ga6/HqZO1eTDIiJHQV36+4LL5Zv66pFHoHUJmO6YPBnuvdc3zZWIyAlMXfr7i3Xr4Lrr4JDZ9o3wcDzp6XiTkzEsFkxOJ5ayMszl5Zha/52xapVvRezvf983D2Ri4nH4ASIiA4dCLZjefhsuvxwcDgAMkwn3iBE4p07FPWyYb7zZoRwOwjduJOKbbwhrrdW9+CJ88QV89BHk5vbhDxARGVj0+jFY3nkHLr0UWtYy86Sm0nTxxXgyM7t3vWEQXliIbdEiTC2hSFaWL9yGDAlSoUVE+qfu5oG69AfDtm1wxRX+QHOOG0fDTTd1P9AATCZcEydS/8Mf4klN9e0rLoaLL/a10YmISAcKtd7m8fja0JqaAHCOGUPTxRcf89IvRnw8jddcg6d1DbXCQnjggd4qrYhISFGo9ba//Q2WLQPAk5RE04UXdt52dhSMmBjs3/42Rmv3/l/9CrZv72lJRURCjkKtNxmGr9t+i6aLLvIt1NkLvBkZOE4/3bfhdsMTT/TKfUVEQol6P/amzz6DLVsAcA8Zgqddh44vi4p4dNky1paUcKChgX9cfjkXFBT4j7+zaRPPrlxJYWkp1U1NLLnpJsYNHhxwe+cpp2BdvhyT2w3PPgu//jVERfXJTxMRGQhUU+tNb77p/+qcMiXgkN3lYmxaGg/Om9fppXaXi5Nzcrhvzpwub29EReEaPdq3UVMDn3/e8zKLiISQPgm1xx9/nKFDhxIZGcn06dNZsWJFXzy2761a5f/qzssLOHR2fj4/nz2b+e1qZ+1dMX48/zdzJmceYRxawH3bPU9ERPog1F599VVuv/127rnnHlavXs348eOZO3cuBw8eDPaj+5bX6+uZCHgTEjCC9FrQk5HRtqFQExEJEPRQe/jhh7nxxhu57rrrGDVqFE8++SRRUVE888wzwX5032psBLsdAG8Qp7MKuHd5edCeIyIyEAU11JxOJ6tWrWJOu3Yis9nMnDlzWL58eYfzHQ4HdXV1AZ8Bo2WgNYDRwy78h9X+3m538J4jIjIABTXUKioq8Hg8pKWlBexPS0vjwIEDHc5/4IEHiI+P93+ys7ODWbze1W4dNFNzc/Ce0/7e6vkoIhKgX/V+vOuuu6itrfV/9u3bd7yL1H1Wq3+yYUtZWUDNrTdZ2i9dM2pUUJ4hIjJQBXWcWkpKChaLhbKysoD9ZWVlpKendzjfarVitVqDWaTgmjwZdu3C5HZjPngQb7txZg0OB7uqqvzbe2pqWFdaSqLNRnZCAtV2O/tqazlQXw/AjspKANJiYkiLjfVfF7Z/f+DzRETEL6g1tYiICCZPnszHH3/s3+f1evn444855ZRTgvno46N1xg8gYu3agENrSkqYsWABMxYsAOBnH3zAjAUL+O2nnwLwn61bmbFgAd95+WUArn/jDWYsWMAzK1e23cQwCG9/39NOC9IPEREZmIK+9Myrr77KNddcw4IFC5g2bRqPPPIIr732Glu2bOnQ1naoAbf0TGWlb3mY5maMyEjqfvIT32vJXmLZuZOYF1/0bZx5pm8GExGRE0C/Wfn68ssvp7y8nF/+8pccOHCACRMmsGjRoiMGWo9VVPjGcW3c6Otub7FAcjJMnAjjxkFkZO8/MznZt+TMc89ham4m8qOPaO5iBpGj5nJhe//9tu0f/rB37isiEkJCa5HQ2lp4/nlYsAA2ber6vLAwOOccXzCce64v8HrLzp2+0GwZs9Z41VW4hw/v8W0jP/gAa+swiClTYPnyY17ORkRkoDmxFgn1eODBByEjA/7nfw4faOAb3/Wf/8AFF0BBQe/OoZiXB7/7nX8z6rXXsPSwF2fEsmVtgRYR4ZvMWIEmItLBwK+p7dgBV10FX38dsNudmYknKwvP4MEYNhsYBubaWiwlJYTt3o350IHdt93mC8beaAPzeuGii+DddwEwwsNpOu88XBMnQuuaaN3hdBK5eDHWb75p2/foo76yioicQLpbUxvYobZ2LZx9tn+6KANwTp6Mc/p0vIMGdX1jr5ew7duxLl1KWHFx2/6zz4a33uqdQc12O1x4IbTr+enKy8MxaxaezMzDh5vHQ9iWLUR+9BGW6uq2/ffdB7/8Zc/LJiIywIR+qG3f7uvS3hJonqQkmi6+GE9OTvcf4PUSsWIFkR995FujDHxtbAsX9s7rveZmX7vds88G7HYPHox7xAg8gwfjTU7GsFgwOZ1YysqwlJQQvmED5oaGtgtsNvjTn+Cmm3peJhGRASi0Q83thlNOgZYxXO6sLBq/972AqaqOhmXvXqJfegmTw+Hb8dvfwl139bT4bd57D/77v6Gk5OivPf10eOYZyM/vvfKIiAwwod1R5KGH/IHmSU7uUaABeHJyaLziCozWV4L33usbCtBb5s3z1Sz//neYNOnI55vNcMklsHixrxOLAk1EpFsGXk2t/QBnk4nGG27Ak5XVK8+LXLwY65df+jbmzfN39OhVhgG7dvnG0K1a5au9OZ2+UM7P9019NWUKpKT0/rNFRAaofjP4utc995x/pnrnlCm9FmgAzTNnEr5+va9n5H/+A7t3w7BhvXZ/wNdBJC/P9/nOd3r33iIiJ7iBFWqGAU8+6d90Tp8ecPjLoiIeXbaMtSUlHGho4B+XX84FBQUAuDwefv3JJyzevp2i6mrirFbOzM3l3jlzGNya+uHhOKdMIfKTT3zPevppX/uaiIgMCAOrTa2kxDcuDXDn5OA95BWd3eVibFoaD3YyNZXd5WJtaSk/nTGDz2+6iRcvv5wdlZV895VXAs5zTpzYtqG5FUVEBpSBVVNbtcr/1dPJAqJn5+dzdhedKuIjI3nr6qsD9j14/vmc9fTT7KupITshAQAjNhZvQgLmmhooLPT1tNTsHSIiA8LAqqm165HoabdW2bGqa27GhC/w2vPfu6nJ164mIiIDwsAKtXYDkr09nPWj2eXino8+4ttjxxJ3SKh5o6M7faaIiPRvAyvUzG3FNfVgJILL4+Ha11/HMAz+2NnSMO3v3Zsz+IuISFANrMaipCT/V1Nt7THdojXQ9tXWsvCaazrU0gDM7e+dmHhMzxERkb43sGpqEyb4v1qOYcqp1kDbVVnJ21dfTVJnrzANo+3eycm+gd4iIjIgDKyaWrsppsJ27/a9Jmw3232Dw8Guqir/9p6aGtaVlpJos5EeG8vVr73GutJS/nnllXi8Xsrq6wFItNmIaOnhaD54EHPLAp9MmXJ0S8WIiMhxNbBCLT4ezjgDli7FUlmJpagIT7sZP9aUlDD/+ef92z/74AMAvjt+PHfOnMn7W7cCcEa7AdwAC6+5hjNa7hPRMqck4JsqS0REBoyBN/fjP/8J3/0u4FufzH7VVb1WmzLV1RH7l79gcjohOhr27/cFqYiIHFehO0v/pZdCZiYA4Tt3El5Y2Dv3NQxsCxf6Ag3gmmsUaCIiA8zAC7WICHjiCf+mbdEizAcO9Py2y5cTvn27byM9HX71qx7fU0RE+tbACzWA+fPh+98HwORwEP3CC5iPZQFOAMMgYtkybB9+2LbvqacChg+IiMjAMDBDDeCvf4WWWfrNdjsxf/871qVLwePp9i1M9fVEvfJKYKDdd58vNEVEZMAZWL0f24uJgUWL4IIL4MsvMXk8RH78MeGFhTinTcM5fjx0MrAawFxeTsTKlUQUFmJyONoO3Hsv/OIXfVN+ERHpdQOv9+Ohmpt9YfTgg+D1+ncbJhPe1FQ8gwdj2GxgGJhrarCUlvoWAW0vLc23TtvFFwfvx4iIyDHrbu/HgR9qrb7+Gv73f2HJku4/IDISrr7atxBocnLPCisiIkHT3TwYuK8fDzV9Onz+OWzY4OvosWSJ7/uhbWyxsb6ZSebPh+uuU4cQEZEQEjqh1mrMGHj0Ud/3pibYts23fIzFAikpkJsbMNu/iIiEjtALtfZsNhg//niXQkRE+oiqLCIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjKCFmq/+c1vOPXUU4mKiiIhISFYjxEREfELC9aNnU4nl112Gaeccgp///vfg/WYvmMYUFQEmzeD3Q5hYZCWBuPHQ1TU8S6diIgQxFC77777AHjuueeC9Yjg83jgP/+Bp5+GL7+EqqqO55jNUFAA3/oW3HgjZGX1fTlFRAToZ21qDoeDurq6gM9xYRjw0kuQmwsXXggLF3YeaABeL2zcCPffD0OHwpVXwoEDfVpcERHx6Veh9sADDxAfH+//ZGdn930hysrgkkvgqqtg717/bm9UFK78fJrPOIOms8+mefZsnJMm4UlPxzCZfCd5PPDKKzB6tO+/IiLSp47q9eOdd97J73//+8Oes3nzZkaOHHlMhbnrrru4/fbb/dt1dXV9G2w7dsCcObBnj3+XKy8P5/TpuIcP971q7ISpro6IVauI+OYbzHa7r1Z35ZWwaZOvBtcaeiIiElRHFWp33HEH11577WHPyc3NPebCWK1WrFbrMV/fI3v3wllnwb59AHijo2maNw/3qFFHvNSIi8MxaxbOadOI/M9/iNi40Xfg17/2dSi5555gllxERFocVailpqaSmpoarLIcPx4PXHGFP9A8gwbR+P3vY8TGHtVtjOhomi67DE92NrZFi3w7770Xpk+Hc8/t5UKLiMihgtb7ce/evVRVVbF37148Hg+FhYUADB8+nJiYmGA99tj86U+wfDkA3oQEGq++GqMHZXSefDJ4PNgWL/btuPFG2LAB4uN7o7QiItKFoHUU+eUvf8nEiRO55557aGhoYOLEiUycOJGVK1cG65HH5uBB+MUvADAA+yWX9CjQWjlPPRVX66vY4mLfq0gREQmqoIXac889h2EYHT4zZ84M1iOPzTPPQHMzAM6pU/EMGdI79zWZaLrwQgyLxbf9979DU1Pv3FtERDoVtNePA4LXC08+Cfhqac5TTvEf+rKoiEeXLWNtSQkHGhr4x+WXc0FBgf/4A59+yr83bGB/XR3hFgsTBg/mF7NnM6Xd4GsjIQHX6NFErFsH1dXw6qtwhI42IiJy7PrVOLU+t22bv/u+OzcXb1KS/5Dd5WJsWhoPzpvX6aXDk5N58PzzWfaDH7Do+uvJSUjg0hdfpKKxMeA855QpbRsfftj7v0FERPxO7Jpau/Y9z9ChAYfOzs/n7Pz8Li+9bNy4gO3fzJ3Li2vWsLGsjDPbDWvwZGZiWCyYPJ6A54mISO87sWtqLT0yATwZGcd8G6fbzfOrVhFntTImLS3woMWCJz3d9337dmhoOObniIjI4Z3YNbXaWv9X71GOSQNYtHUrN7zxBnaXi/TYWN66+mqSo6M7nBcw3q2+HvrbkAYRkRBxYtfUDKNHl58xbBhLb76ZD2+4gdnDh3Pt669TfqSaWA+fKSIiXTuxQy0uzv/VdAyvBaMjIshNTmZqdjZ/uegiwsxmXlyzpsN5pvadR46hRigiIt1zYofa+PH+r5bS0h7fzmsYONzuwJ0eD5bWpWhycxVqIiJBdGK3qU2e7P8atncvznaHGhwOdrVbQ21PTQ3rSktJtNlIiorij0uWcN6IEaTFxlJlt/P0ihWU1tVx8ejRAY+wHDiAyeXq8DwREel9J3aoFRRARgaUlBC2fTum2lqMlvkZ15SUMP/55/2n/uyDDwD47vjx/OmCC9hWUcEra9dSabeTZLMxMTOT96+/noJBgwIeEbFqVdvGnDnB/00iIicwk2H0354LdXV1xMfHU1tbS1y79q9edd99vpn0Acepp9J8zjm9dmtTfT2xjz7qq6nFxkJJiXo+iogcg+7mwYndpga+GfTDfBXWiOXLMZeU9M59DQPbu++2vXq85hoFmohIkCnUMjLg5z8HwGQYRP37370y8XD4qlWEb93q20hN1UKhIiJ9QKEGcNdd/p6QlooKov/xD0x2+zHfLnztWmzvvde244knICWlp6UUEZEjUKgBRETAa6/5alRA2P79xDz1FJZdu47uPg4Hke++S9Sbb2Jqbar88Y/hW9/q5QKLiEhn1FGkvXXr4JxzoKzMv8s5ZgzOadPwZGeDydT5dU1NRKxdi3X5csztpt7illvg0UfBrH87iIj0RHfz4MTu0n+oceNg+XK47jr4/HMAIjZsIGLDBjxJSXgyM/Gkp2PYbJg8HszV1VhKSrAUF2NqP+g6Ohp+/3v44Q+7DkIREel1qql1xuuFv/7V17mj3QDsbpk713dtu+VnRESkZ9SlvyfMZrj1Viguhuefh9NP97W7dSUjA267DTZuhEWLFGgiIseJamrd5XTChg2webOvy39YmK9jyeTJ0LpemoiIBIXa1HpbRARMmuT7iIhIv6TXjyIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjIUaiIiEjKCFmpFRUXccMMNDBs2DJvNRl5eHvfccw9OpzNYjxQRkRNcWLBuvGXLFrxeLwsWLGD48OFs2LCBG2+8kcbGRh566KFgPVZERE5gJsMwjL562IMPPsgTTzzBrl27unV+XV0d8fHx1NbWEhcXF+TSiYhIf9XdPAhaTa0ztbW1JCUldXnc4XDgcDj823V1dX1RLBERCRF91lFkx44dPPbYY9x0001dnvPAAw8QHx/v/2RnZ/dV8UREJAQcdajdeeedmEymw362bNkScM3+/fs599xzueyyy7jxxhu7vPddd91FbW2t/7Nv376j/0UiInLCOuo2tfLyciorKw97Tm5uLhEREQCUlJQwc+ZMTj75ZJ577jnM5u7nqNrUREQEgtimlpqaSmpqarfO3b9/P7NmzWLy5Mk8++yzRxVoIiIiRytoHUX279/PzJkzGTJkCA899BDl5eX+Y+np6cF6rIiInMCCFmqLFy9mx44d7Nixg6ysrIBjfTiKQERETiBBex947bXXYhhGpx8REZFgUCOXiIiEDIWaiIiEDIWaiIiEDIWaiIiEDIWaiIiEDIWaiIiEDIWaiIiEDIWaiIiEDIWaiIiEDIWaiIiEDIWaiIiEDIWaiIiEjKDN0i8i3WMYBrWeWlxeF2HmMOIscVhMluNdLJEBSaEmchwUNRfxXuV7rLevZ4t9C/Weev+xSHMkI2wjGB09mnMTz2V09OjjWFKRgcVk9OO1YLq7fLfIQLG6fjV/O/A3vq7/utvXjIoaxTVp1zA7YTYmkymIpRPpv7qbBwo1kT5g99j5S8lfeLX81Q7HbBYbCeEJhJnD8Bpeal21NLgbOpx3VsJZ3Jl9J8nhyX1RZJF+pbt5oNePIkFW5izjlh23sLt5t39fbFgsJ8WdxLDoYUSFRXW4ptnTzD77PrbWbaXKWQXAJzWfUNhQyF+G/4URUSP6rPwiA4lqaiJBVO4q54atN7DfuR8Ai8nCpMRJjIgbgdl05M7HhmGwp3EPX1d+jcPrACDWEsvT+U+TH5Uf1LKL9CfdzQN16RcJErfh5o6dd/gDLTYslvmZ8ymIL+hWoAGYTCaGxgzlwqwLSbWmAlDvqedHO39Evbv+CFeLnHgUaiJB8kLZC2y0bwQgOiyacwafQ1z4sb1xsFlszEmfQ4o1BYCDroP8sfiPvVZWkVChUBMJgmJHMU+VPgWACRMzUmcQHRbdo3uGm8OZMWgG4aZwABZWLWRF/Yoel1UklCjURILg9fLXcRkuAAriCkiNTD2m+3gNLwebD7K5djNflH/B8vLl2Cw2//FHih9hb/PeXimzSChQ70eRXtbsbeadyncAMJvMjEkY4z+2c9lOPnnsE/at3UfdgTquf/F6xs0b5z/+0i0v8c0r3xCWGEbyxcmkfCsF62Brl8/a2rSVSzZdwoToCVyWehmzE2YTbg4P3o8T6edUUxPpZavrV1PnqQNgaNRQIi2R/mOORgcZYzL49h++3em1Bgaj7xzNpI8mkXlr5mEDrb3CxkJ+VvQzrtpyFZvtm3v+I0QGKNXURHrZJvsm//eMqIyAY6POHsWos0d1ep3T68R7qRdrrhU3bv/+TFsmWVFZJFuTiQuLw2wy4zJcVDurqXBUsLthN7WuWgB2NO/gmi3XcHPGzVyXdp1mIJETjkJNpJe1rym19lY8EofHweIDiyG3bV9eTB7jEsYRGx7b4fwwwrDZbGTYMhgbP5ay5jK+qfqGamc1Hjw8XvI41e5qbs+8XcEmJxSFmkgvq3ZX+7/HhMUc8Xyv4eWTsk/8M4dYzVZOSz2NrKisbj3PZDKRbkvn/IzzWV+znnU16wB4+eDLJFgSuGHwDcfwK3y/Y7t9Ow2eBgwMYiwx5NvySQpPOqb7ifQFhZpIL3Mbba8OTRy5lrS+Zj3ljnIAIi2RzE2fS3xE/FE/12KyMCFxAtFh0SyvWA7AgtIFnBJ3CqOiO3/leait9q28UfEGy+uWU+os7fSctPA0psdN59sp39YKAtLvKNREelmkua1jiMtwEWGK6PLcJmsT22q2Ab4APCvtrGMKtPbyY/NpdDeyrmYdHjzcu+deXhr50mF7RW6xb+EP+/7A2sa1R7x/mauMdyrf4Z3KdxgdNZqfZv+UsdFje1Rmkd6i3o8ivWxo5FD/9ypH1WHPPZB6AAPf9KtjEsZ0uw3uSMYljCMpwveacGfzThbXLO70PJfh4smSJ7l6y9UBgWYxWRhkHURBXAGTEicxKXESBXEFpEWmEWZq+7fwRvtGrt96PX8u/rN/bkqR40k1NZFedpLtJP/3CkcF6bZ0/7ajwUH5bt+rxvDUcGpjfL0WbRYb4xLaxqsdaTybo8HBwvsXsv699dir7STlJDHjphmcdt1pGIaBYRhMTpzM4jJfmL1R/gbnJ50fUM5mbzP/u+t/+bLuS/++uPA4CuIKyI3J7bJm5/a62d24m821m6lx1eDFywsHX2CTfRMP5z1MtKVnM6eI9IRCTaSXOb1O//ddDbsYHT/a3wNxb+FeHr/wcQDSrkvzvyvJj83HYrL4r2sdzzb9e9N55upnOjzjrZ+/xfal27lqwVXEZcexevNqvtnxDfu37MdhdfhrfyZMGBisbVzLB1UfcE7iOZhMJlyGi//b9X/+QDNhYmzCWMYmjA0oR2fCzGHkx+aTF5PHxtqNrK1eixcvKxtW8pOdP+Gx4Y9hNXdvfJ1Ib1OoifSyr+q/8n+vcdVQ1lzmr63ln57PI1WPAPBJ2ScU24sBGBY9LOAehxvPBrB7xW4mXTuJqpFVrGxYiWuEi6QRSTTTHHBea7gB3F10Ny8efJErB13JnqY9fFH3BQBmzGRGZVLSVMLm2s24DTcmTERaIkmyJpEckUx2VDZJ1sBej2aTmbEJY0mPTOfjso9xep2saljF4yWPc3vW7Uf7v02kVyjURHqRYRisb1wfsG9F5QrmZc7r7RHM8wAAIABJREFUUAOqdFQCvomKj2b2fsMwyLk6h4OnH6SiviLgmAkT8eHxWC1WvIaXBncDTZ4m//HN9s38ougXAdd48bLPvi/wGRjYPXbsdjvF9mLW1qwl1ZrKqPhR5ETlBIx9S41MZU76HD4o/QCP4eHlgy8zK2EWE2Mmdvs3ifQWhZpILypxlvinyAo3heMyXNS4aiisLmRy0mT/eS6vyx82ieGJ3R4g7TW8LKtYhnuuG3PLu8swUxjDYoaRF5NHckQyFnNgeNrddvY37Wdb3TYqnZWHvX9MWAxWsxUvvkB0eV3+Y+WOcj4/+DlZtixOTjk5YMXuFGsKExInsKpqFQYGv9v7O/5Z8E8N/JY+p1AT6UV7HW0z5g+JHsKuhl148bKxdiM2i41R8b5Xih7D4z+vuxMQew0vS8uXsqdxj3/fsOhhTE2eGjC/5KGiwqLIj80nPzafYnsxX1V8hd1j9x9Pj0xndPxoUq2pRFjahh8YhkG9u56SphK21W2jxlUDQHFTMe/sf4dZabNIi0zzn18QV0BRQxGVzkp2NO9gTcMaJsVO6tZvE+kt6tIv0ova12xiwmMCamcrq1bydcXXuLwufy0LfK//uqOwutAfaGaTmRmpMzhj0BmHDbRDZUVlcWHmhWTaMv37Kh2VxIfHBwQa+GYqiQuPY2TcSOZnzmfmoJn+Zzm9Tt7f/T4/O+tnfPLoJ/4yFcQX+K9/veL1bpdLpLco1ER6UfsxXF7DS0F8AeMTxvv3ba3fyv9v797joqrz/4G/zswwF+4DM1wdEAnwgpBa8IUuauIlzctvK83KbMu2fFTfbNtW9pLk1uOhtX7Xh9uabptl7baaouaWKV4SfHgvRQEFQgQEuQvDwAxzYebz++MsB47cCRjC97MHj2bO+ZzD+5zPjG/OOZ/L1ze/RpmpTHjG1mhr7HG/RpURVxr4WbQ5cJjuNx2j3Uf3K0a5VI5p/tOExGZjNpypPQPGWJfbcByHELcQLAhegEBVIABAopTgrk13IWJ+hFAu1C0UcgmfHM8azna7T0IGAyU1QgaQ1qVtMlCDjX+2FquORbxvvJDEmlqacLL2JBzMIby32MUdly1NFpRll6EsuwzggGJNsdCS8W713Qh2DcZPIeWkeMDvAbhK+ediFeYKXG+63uN2SqkSD/k/hCAVP/uA1F2KPGWekLyknBRaBX8ODHYDyq3lPylOQvqKkhohAyhMFQYFx/fRam3dCABRnlGYHzxflPTaN7e/2XxTtJ8bl25gw9QN2DB1AzwTPGHz4G9r+sh9MMFrYMZblEvkSNAkCO+vGq726spKyknxoN+DooRY2FQorPdV+Aqv85vzByRWQnqLGooQMoBknAxRrlHIMmahsaUReqse3nJvAPxoHeHF4Ti19hS0j2vhPd0bnIxvHZhvyMcY97Z5Z0T92Sq/Q1kz358txjsGEo7/W/TIxiPI+iYL1QXVcFG6YHTcaMxPmQ//iLbGG1++/iV+zPgRhkoD5G5yhMWF8WUi+TLBrsHQKDSotdSi3lqPGksN/JR+PR5na0I8VnUMAHC14SrC3cPBcRxUUpVQrsne1O9zSUh/UFIjZIDNUs9ClpGf/iXfkI94TbywLvL+SLx75F0AgKXFggMVB9DU0oQaSw3KTeUdJhW1OWzCVZyr1FU0HU3hqULc//z9CJkUAofdgQPvHMDWR7ci+UwyFG781aIuVod7Hr8H3qO8Yao34dB7h7Dl0S1Yc2kNJFI+OUZ5RKHWwvd3KzGWwE/pB2O9EYfWH0Le8Tzoy/Rw83XDxHkTMff3c6Hy5JNWsGswtAotaiw10Nv0qDZXw1/l36uZCQgZLHT7kZAB9ojPI8JI/deargnP1m6nkClE4z2erj0tGmILAOqt9cJtyiBVkHCVBgAvpb6E+CfjETguEMHRwXhy85OoL6tH2eUyoUzis4kITwyHb4gvdLE6zPvDPOhv6lF3o22g5fbP52qa+XEpDRUGNFQ0YOGfFmL1qdV4cvOTyDuWh52v7hTFF+UZJbwuNhYDgKizt5uExoEkQ4uSGiEDzEPmgV9ofgGA7492uuZ0l8+qwt3DEaDkh9Ay2U04Wd3WgAQQP5dr/6yqM80GPpm4ert2ut5itODcF+fgG+oL72BvYblSqoSbjE8+dZY6MMYQOD4Qz33+HKLnREMTpkHkg5GY94d5yEnLgb2lrY9d+yvH1o7d7Tt4R6jaWkYSMhQoqREyCFYGrkSwnL8CqrZU4/u67ztNbBzHIVGTCBeO74Bd1lyG9Op04YrNbG8by9HDxaPL3+dwOLDv9/sQFh+GwPGBonUnt53Eb3W/xWrdauQey8XKvSshk4ufPHjI+H07JA7RJKftNRuaofRQQiprG7FELpEL29ZZ69DiaEGtmb+V6SZxwyhF72bvJmSgUFIjZBC4Sl2xJnSN0Mk6z5CHs7fOosXRMWG4u7hjuv904dZimakMX5d9jfLmclHHbEk3X9fUN1NRkVuB5R8v77BuyuNT8Gb6m3j1m1ehDddi+3PbYTPbRGXa39Zsf6XYqulWEw5vOIzE5Ykd1rWOW+lgDpyvPQ+zg0/EcR5xov0SMhSooQghg+Qej3uwJnQN1pasBQNDQWMBqsxVSNQkdmhhGKAKQJJ/Eo5XHYeN2WC0G3G08qhobrLbn7e1Sv1tKq6mXcWrB14V3VZspfJUQeWpgjZci9B7QvH7Mb9H1oEsTHm0bbST9vtu34EcAMwGMz5a8hH8o/wxZ/WcDvtvn7iuGa+17ZNZkVKcghbWArlEDp1Ch7GuYzHedTy8ZR3jJGQgUFIjZBDN950PGSfD2pK1sDEbDDYDDlUcglahRaRHJAJUAXCVuoLjOASoAvBI8CM4WHFQuO1otBuFfdVZ6xDiFiK8Z4xhz+o9yD6QjVf+8wp8Q7t/5sZvxG/XYmm7YnQwB/RWflxHd5m7aEBkc6MZWx/fCqWHEs//83lIXTrOtdZ+aLD22k8+2p4EEjzo9SAe1z5OV3NkwFFSI2SQPezzMKJUUXi75G1cMfFDXdVYalBj4VsaKiVKqGQqcOBgtptFz9Haa2123yr1zVRcSL2AFV+sgMJdAUMV38pS6amEXCVHbXEtMvdlYuz0sXDXuEN/U4+jm47CRekimqtNb9ULz9F85W2J0WwwY8tjWyBTyLDiixVwUXYceJkxhjor35JSLpFjtNtoFDUVwcY6T3QAP9ZlekM60hvSEesWi5TQFIQqQ3s8j4T0BiU1QobAGNUYfBL1CfbX7seXNV+i0Nw2AofZYYbZ2nkii3CPQEFTAQCgorkCphaTMOXLqU/4K6G/zf+baJulf1uK+Cfj4aJwwfUz15GxNQPN+mZ4aD0QnhiO1w69Bg9tW6OT9qOB+Ej5iUDNBjO2PLoF1mYrlv19GcyNZpgb+RjdNe5CH7fGlkbh1qVWocX/aP4HU3ymIKchBzn6HKE7gqvUFdFe0TC0GFBiLBGa/V82XsbS3KVYNWoVFmsX9+fUEiLCsWE84qjBYICXlxcaGhrg6dn7SRQJGc4YY7hkvITTDaeR25yLH00/wmA3gIHBTeKGYHkwrjZfBQCEuIagorlCuPKZ6DURk3wGbvJNm8OGPaV7YHVY4TA7EJkdicTFiSg4WYDNCzZ3us1bl96Cbwh/RXep/hKy9HxH87vVd4v63d2y3EJ6dTqMLfwtVLVcjbmBc8FxHEpNpbhYdxGNLW2DOa8IWIGVQSsH7NjIyNLbfEBJjZBhxsZsmJ01Gw32BkgggbvMHYYW/tailJPikaBH4CX3GpDfdbb2LH5s/BEA32fuPu19vd7WzuzYW7oXzfZmcODwqO5R0cShAGBsMSKtIg1NLfxwWdFe0Zjsw8+x1uJowcX6i8gz5AnlVwWvwjL/ZT/1sMgI1Nt8QE9oCRlmXDgXLPBdAIB//iSTtD0lsDM7TtWeEk0y2l83TTeFhCbjZKKrrN64XH9ZuI2oc9V1SGgA4CZz47sr/PefmisNV4QO5TKJDHG+cbjX516h/Ac3P0C+iQZBJv1HSY2QYehR7aPCGIqtLRNb1VpqkVGd8ZMSW5W5ChnVGcL7yT6Tu+3cfbsac40wv5sEEsSqY7ssq5arhYTJwITtWo3zGodor2gAgB12pJSkdNmikpCeDGpSW7BgAUJCQqBUKhEYGIhly5ahvJzmVyKkJzqFDo9pHgPQ+czYZaYyHK443OW4kl1hjCHPkIejlUeFFo+jXEchyiOqhy3b1Fnq8F3Vd0IjkBh1DHL/nYsP5n+A1SGrscpnFUwNJtE2E7wnCONh3jDeQHNLs2h9rDoWarkaAFDQXIC0+rQ+HRchrQY1qU2fPh27du1Cfn4+9uzZg8LCQjz22GOD+SsJGTH+N/h/haG22mu9lVdjqcHXN78W3QbsCmMMFc0VOFx5GOdvnReu8oJUQZiqnQqO63lkfcYYrjddR1plGiwOflJTf6U/or2iYW22YtyMcZj565mdbivlpLjL4y4AfJJuHfy4/fo43zjh/e6a3T3GQ0hnBrVJ/+uvvy68Dg0NRXJyMhYtWgSbzQYXl459XgghbVylrnh39Lt4qeAlWFjbzNgSTgKVRAWj3Qg7s+Oy/jKy9dkIcg2CVqGFj9wHcokcDjjQZGvCLestlDeXd7iq48DBT+GHFtYCKTp2qm6v1lKLLH0WykxtMwB4WD0wPZQf3mvaymkAgIKTBV3uI9QtFDkNOQCAM0fOQDNJA21426Spfgo/qOVq1FvrkWPKQYGpABGuNCAy6Zsh66dWV1eHL774AomJiV0mNIvFAoul7ctrMPTt1gohI02Mewz+L/z/8EbhG0Jia2Et8JH5YJTrKOQ38o0qHHCgzFQmSjpd4cCB/fe/S/pLyG7Ihs5V15YQpXIwxtDU0oRbFj4hth95HwDqDtVh+tTpkEvkvT4Wb7k3JJDAAQdcwlzw4f/7UDT3G8dxCHcPxw91PwAALhkvUVIjfTboDUVWr14NNzc3+Pr64saNG9i/f3+XZdetWwcvLy/hR6fTDXZ4hAx7CZ4J2BqxFQEuAcKyaks1DDYDHgl+BNFe0cLzqu74K/3xoN+DWByyGGFuYcJyO7Oj2FiM7+u+R1plGr6++TW+Kf8G6dXpyG7IFiU0pUQJ67+s4P7DQTe+b99PKScVGqNIfCWwmW24uOeiqIxGoRFe55py+7R/QoB+JLXk5GRwHNftT15eW7+TN998E5mZmTh8+DCkUimeeeaZLueW+t3vfoeGhgbhp7S0tP9HRsgIEuMeg93jd2OG9wxhWYW5AscrjyNAFYDHQh7DguAFuE9zH6K9ojHWcyzGe47HZPVkJAUkYXHIYswOnI1Q11CUGEtEV3S9malaLVcjQZMA9iHDzdSbnc4G0BtSjr/N6WAOyOQyXD93XbTeR+4jvC4yF/Xrd5A7W59vP77xxht49tlnuy0zZswY4bVGo4FGo0FkZCTGjRsHnU6Hs2fPIiEhocN2CoUCCoWiryERckdwlbri/THv40j9EawpXgMrswqj+QcoAxDlGYXR7qOFxNGe1WHFj4Yfkd+Yj3prvbA8RBGCTWM2Yc2NNcg2ZgMAwtzCIJPIoJQo4aPwga/cF24yN+xZvQe53+Z2ORtAbwhztbUA+nI9DJXiRwwyiQxSTgo7s6PZ0X3jF0I60+ekptVqodVqey7YCYeDb5rc/rkZIaRvZqpnYoLrBKwtWYsfmvjnT5XmSlSaKyGBBN5yb3i5eEHCSdDCWqC36tFga+iwn4W+C/F68OvwkHkgUhUpJLUIjwgEqNpudfZrNoBO2B12NNr4YbHsNXaMSxrX4a4NY0yYz62nxiuEdGbQGoqcO3cO33//Pe6//36o1WoUFhbirbfeQnh4eKdXaYSQ3gtSBGFLxBZ8desrfF71OUot/K16Bxyos9YJI+d3Jto1Gi8GvohEr7YJP8e7jsce7AEA3LLeEiW1nmYDAABDlQGGagNqr/MzCVRcrYDCXQH1KDXc1PyccHXWOqFvW0REBM7VnUPIpLapdADAZDcJZdQu6v6fIHLHGrSk5urqir179yIlJQVGoxGBgYGYM2cO/vjHP9ItRkIGgIST4BeaX2CR7yKcazyHg3UHcdV0FcXmYiExAPwQWBGqCEx0m4gFvgswznVch31Fu0ULr0uMJZjgNUF439NsAABw6tNTSHu/rcP0B/M+6FCmxFgirFcYFCi9VIq5v58r2mfrEFoAMFY1tpdngpA2NKAxISOMyW5Cra0WNmaDnJPDX+7fY9N7xhieynsK+c18F4G5QXNFLRF/qhZHC1JLU2F1WME5OBQvL0bwmGA89/lzonLtB1h+P+x9zFDP6Gx35A5EAxoTcodylboiRBmCcFU4dEpdr/qScRyHx7Rto/1cqLvQZSvl/sjSZwnzrhnSDZjy8BQ88/EzojI2hw3Xm/jWkEqJEnGecR32Q0hPKKkRQgDwM3QHyYMA8AMet58S5qeotdSKBj9+atlTmPuHuZDJxU8/8gx5QuvIuT5z4SHt/QDLhLSipEYIAQCoJCqsCV0jvP+h7geUmn5aX1GDzYDjVcfbBj/2joG3vGN3AL1Vj8v1lwHwiY9mwSb9RUmNECK41+NePOn3JAB+mpj0qnTkG/L7dSuysrkShyoOCYMtaxQaRHtHdyhnsVtwovqEMBvB035PI0JFw2OR/hmysR8JIT8Pq4JXoc5Wh0P1h8DAcO7WOdww3sC9vvd2epV1u2Z7M7L0Wcg3tE326e3ijYf8H4KEE/8d3dzSjGNVx6C38XPGjVaMxktBLw3sAZE7CiU1QoiIlJPiT6P/BC+ZF76s+RIAPyTXf27+BwHKAIS5h0Gj0AgdvNsPflxqKkWJsUQ0B5y/0h/T/KZBIW3rysMYQ7GxGOdvnRemsfGV+WJj+EYoJNTlh/QfNeknhHTpdMNpvHvjXVTZqjqs48BByknhYI5OJzKVclJMVk/GWM+xwnxtdocdJaYS5BvyUWOpEcr6ufjhw4gPEaYM67AfQoDe5wNKaoSQbjXZm7C/dj9Sa1Nxw3KjV9tw4KCWq+Ej94GUk8LGbNBb9dBb9R0S4AzvGUjWJcPHxaeLvRFCSY0QMsAczIHLxsvINmYj15SLG+YbsDIrZJwMVocV1bZqmBymXu/vLuVdeCHwBSSpkwYxajJS9DYf0DM1QkivSDgJJrlPwiT3SZ2utzEbTuhPIK0+DbmmXJRby8XbQ4IwZRii3aIx33c+7na7W7gtSchAoaRGCBkQLpwLZqhnCENb6Vv0qLHW8MN1SeQIlgdDJVU5OUoy0lFSI4QMCm+ZN7xl/Zt3jZD+GtZJrfVxn8Fg6KEkIYSQkaw1D/TUDGRYJ7XGRn5CQZ1O5+RICCGEDAeNjY3w8vLqcv2wbv3ocDhQXl4ODw8PpzxQNhgM0Ol0KC0t/Vm2vqT4ne/nfgwUv3NR/G0YY2hsbERQUBAkkq5HeBzWV2oSiQSjRo1ydhjw9PT8WX6gWlH8zvdzPwaK37kofl53V2itaEBjQgghIwYlNUIIISOG9O23337b2UEMZ1KpFNOmTYNMNqzv1HaJ4ne+n/sxUPzORfH3zbBuKEIIIYT0Bd1+JIQQMmJQUiOEEDJiUFIjhBAyYlBSI4QQMmJQUiOEEDJi3DFJ7cSJE5g/fz6CgoLAcRy++uqrbsvv3bsXM2fOhFarhaenJxISEpCWliYq8/bbb4PjONHP2LFjh0X86enpHWLjOA6VlZWicps3b8bo0aOhVCoRHx+P8+fPD0r8/TmGZ599ttNjmDBhglBmqOpg3bp1uPfee+Hh4QE/Pz8sWrQI+fn5PW63e/dujB07FkqlEhMnTsS3334rWs8Yw5o1axAYGAiVSoWkpCQUFBQMi/j/8Y9/4IEHHoBarYZarUZSUlKHz0dndTRnzpxhEf/27ds7xKZUKkVlhur89/cYpk2b1ul3YN68eUKZoaqDLVu2ICYmRhgdJCEhAQcPHux2G2d8/u+YpGY0GhEbG4vNmzf3qvyJEycwc+ZMfPvtt7hw4QKmT5+O+fPnIzMzU1RuwoQJqKioEH5Onjw5GOH3Of5W+fn5ovj8/PyEdV9++SV+/etfIyUlBRcvXkRsbCxmz56N6urqgQ4fQN+PYdOmTaLYS0tL4ePjg8cff1xUbijqICMjAy+//DLOnj2LI0eOwGazYdasWTAajV1uc/r0aSxduhTPP/88MjMzsWjRIixatAg5OTlCmffffx9//etfsXXrVpw7dw5ubm6YPXs2zGaz0+NPT0/H0qVLcfz4cZw5cwY6nQ6zZs3CzZs3ReXmzJkjOv87duwY0Nj7Gz/AD8/UPraSkhLR+qE6//09hr1794riz8nJgVQq7fAdGIo6GDVqFNavX48LFy7ghx9+wEMPPYSFCxfiypUrnZZ32uef3YEAsH379vV5u/Hjx7O1a9cK71NSUlhsbOxAhtYrvYn/+PHjDACrr6/vskxcXBx7+eWXhfd2u50FBQWxdevWDVisXelPHezbt49xHMeKi4uFZc6qg+rqagaAZWRkdFlm8eLFbN68eaJl8fHx7MUXX2SMMeZwOFhAQAD785//LKzX6/VMoVCwHTt2DE7g/9Wb+G/X0tLCPDw82GeffSYsW758OVu4cOFghNit3sT/6aefMi8vry7XO/P8M9a/Oti4cSPz8PBgTU1NwjJn1QFjjKnVavbxxx93us5Zn/875krtp3I4HGhsbISPj49oeUFBAYKCgjBmzBg89dRTuHHjhpMi7Nzdd9+NwMBAzJw5E6dOnRKWW61WXLhwAUlJScIyiUSCpKQknDlzxhmh9mjbtm1ISkpCaGioaLkz6qChoQEAOnwe2jtz5ozo/ALA7NmzhfNbVFSEyspKURkvLy/Ex8cPeh30Jv7bmUwm2Gy2Dtukp6fDz88PUVFRWLlyJW7dujWgsXamt/E3NTUhNDQUOp2uw1WFM88/0L862LZtG5544gm4ubmJlg91HdjtduzcuRNGoxEJCQmdlnHW55+SWi9t2LABTU1NWLx4sbAsPj4e27dvx6FDh7BlyxYUFRXhgQceEOaBc6bAwEBs3boVe/bswZ49e6DT6TBt2jRcvHgRAFBbWwu73Q5/f3/Rdv7+/h2euw0H5eXlOHjwIFasWCFa7ow6cDgcWLVqFe677z5ER0d3Wa6ysrLb89v6/6Gug97Gf7vVq1cjKChI9I/QnDlz8Pnnn+PYsWN47733kJGRgYcffhh2u30wQgfQ+/ijoqLwySefYP/+/fjXv/4Fh8OBxMRElJWVAXDe+Qf6Vwfnz59HTk5Oh+/AUNZBdnY23N3doVAo8NJLL2Hfvn0YP358p2Wd9fn/eQ4mNsT+/e9/Y+3atdi/f7/omdTDDz8svI6JiUF8fDxCQ0Oxa9cuPP/8884IVRAVFYWoqCjhfWJiIgoLC7Fx40b885//dGJk/fPZZ5/B29sbixYtEi13Rh28/PLLyMnJGbTnp4OtP/GvX78eO3fuRHp6uqixxRNPPCG8njhxImJiYhAeHo709HTMmDFjQONu1dv4ExISRFcRiYmJGDduHP7+97/jnXfeGZTYeqs/dbBt2zZMnDgRcXFxouVDWQdRUVG4dOkSGhoakJqaiuXLlyMjI6PLxOYMdKXWg507d2LFihXYtWtXh0vp23l7eyMyMhLXrl0bouj6Ji4uTohNo9FAKpWiqqpKVKaqqgoBAQHOCK9LjDF88sknWLZsGeRyebdlB7sOXnnlFXzzzTc4fvx4j3P9BQQEdHt+W/8/lHXQl/hbbdiwAevXr8fhw4cRExPTbdkxY8ZAo9EMi/N/OxcXF0yaNEmIzRnnH+jfMRiNRuzcubNXf6gNZh3I5XLcddddmDJlCtatW4fY2Fhs2rSp07LO+vxTUuvGjh078Mtf/hI7duwQNaHtSlNTEwoLCxEYGDgE0fXdpUuXhNjkcjmmTJmCY8eOCesdDgeOHTvW5T1yZ8nIyMC1a9d69YUerDpgjOGVV17Bvn378N133yEsLKzHbRISEkTnFwCOHDkinN+wsDAEBASIyhgMBpw7d27A66A/8QN867R33nkHhw4dwj333NNj+bKyMty6dWtYnP/b2e12ZGdnC7EN5fkHftox7N69GxaLBU8//XSPZQerDjrjcDhgsVg6Xee0z3+/m5j8zDQ2NrLMzEyWmZnJALC//OUvLDMzk5WUlDDGGEtOTmbLli0Tyn/xxRdMJpOxzZs3s4qKCuFHr9cLZd544w2Wnp7OioqK2KlTp1hSUhLTaDSsurra6fFv3LiRffXVV6ygoIBlZ2ez1157jUkkEnb06FGhzM6dO5lCoWDbt29nV69eZb/61a+Yt7c3q6ysHPD4+3MMrZ5++mkWHx/f6T6Hqg5WrlzJvLy8WHp6uujzYDKZhDLLli1jycnJwvtTp04xmUzGNmzYwHJzc1lKSgpzcXFh2dnZQpn169czb29vtn//fpaVlcUWLlzIwsLCWHNzs9PjX79+PZPL5Sw1NVW0TWNjI2OMr8/f/OY37MyZM6yoqIgdPXqUTZ48mUVERDCz2ez0+NeuXcvS0tJYYWEhu3DhAnviiSeYUqlkV65cER3jUJz//h5Dq/vvv58tWbKkw/KhrIPk5GSWkZHBioqKWFZWFktOTmYcx7HDhw93GruzPv93TFJrbeJ++8/y5csZY3yz2KlTpwrlp06d2m15xhhbsmQJCwwMZHK5nAUHB7MlS5awa9euDYv433vvPRYeHs6USiXz8fFh06ZNY999912H/X7wwQcsJCSEyeVyFhcXx86ePTso8ffnGBjjm/iqVCr20UcfdbrPoaqDzuIGwD799FOhzNSpU0WfD8YY27VrF4uMjGRyuZxNmDCBHThwQLTe4XCwt956i/n7+zOFQsFmzJjB8vPzh0X8oaGhnW6TkpLCGGPMZDKxWbNmMa1Wy1xcXFhoaCh74YUXBuWPov7Ev2rVKuGz7e/vz+bOncsuXrwo2u9Qnf8m3GjGAAAAg0lEQVT+HgNjjOXl5TEAQvJobyjr4LnnnmOhoaFMLpczrVbLZsyYIYppuHz+aT41QgghIwY9UyOEEDJiUFIjhBAyYlBSI4QQMmJQUiOEEDJiUFIjhBAyYlBSI4QQMmJQUiOEEDJiUFIjhBAyYlBSI4QQMmJQUiOEEDJiUFIjhBAyYvx/bbhGEzEDZhYAAAAASUVORK5CYII=", + "text/plain": [ + "
" ] }, "metadata": {}, @@ -372,42 +450,35 @@ } ], "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "fig, ax = plt.subplots(figsize=(10,10))\n", - "\n", - "for x in G.nodes():\n", - " \n", - " v = dw.get_embedding()[x]\n", - " ax.scatter(v[0],v[1], s=1000)\n", - " ax.annotate(str(x), (v[0],v[1]), fontsize=12)" + "plot_embeddings(V)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Node2Vec" + "## Edge2Vec" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "from node2vec.edges import HadamardEmbedder, AverageEmbedder, WeightedL1Embedder, WeightedL2Embedder" + ] + }, + { + "cell_type": "code", + "execution_count": 64, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Computing transition probabilities: 100%|██████████| 24/24 [00:00<00:00, 3458.86it/s]\n", - "Generating walks (CPU: 1): 100%|██████████| 10/10 [00:00<00:00, 26.41it/s]\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hUVf7H8fedSTKTSYYUEgIBUkhCiQk1dKRJX+kKCMKisiA23N+6a19Q11130dUFFFSUEkEEQUAEDIRQpUqRkgAhjQSSkF5nUub+/sjmymxCDegu+b6eh4c7ueeeW/76PN97zzmKqqoqQgghhBBC3Cbdr30BQgghhBDif5sESiGEEEIIUScSKIUQQgghRJ1IoBRCCCGEEHUigVIIIYQQQtSJBEohhBBCCFEnEiiFEEIIIUSdSKAUQgghhBB1IoFSCCGEEELUiQRKIYQQQghRJxIohRBCCCFEnUigFEIIIYQQdSKBUgghhBBC1IkESiGEEEIIUScSKIUQQgghRJ1IoBRCCCGEEHUigVIIIYQQQtSJBEohhBBCCFEnEiiFEEIIIUSdSKAUQgghhBB1IoFSCCGEEELUiQRKIYQQQghRJxIohRBCCCFEnUigFEIIIYQQdSKBUgghhBBC1IkESiGEEEIIUScSKIUQQgjxi8nIyGDBggWMGDGC5s2bYzAYcHV1JSQkhClTphATE3NL/WVmZjJ27FgURSEgIODuXLS4IUVVVfXXvgghhBBC3PtmzJjB0qVLKSsro3nz5owfP57g4GAsFgtbtmzh+++/B2DChAksXboUg8Fw3f6++uornnnmGbKysgDw9/cnKSnpbt+GqIUESiGEEELYycjIYM2aNURFRXHs2DEyMzNxdHSkSZMmdO/enccee4x+/fpdt4/Dhw+zZs0a9uzZw7lz5ygoKKCiogKAkJAQNm/eTHBwsN0xixYtYubMmQA88sgjrFy5sta+MzMzmTlzJuvWraNz585cuHCBnJwcCZS/IgmUQgghhNDUtYoYGxvL1KlTOXToEAADBgygd+/e+Pr6MmPGDGw2G6qq4urqyqJFi5g0aZLd8UOHDmXr1q0AHDhwgK5du9a4xoCAANLT05k9ezZ/+tOfCAoKIjk5WQLlr8jh174AIYQQQvz3WLZsGWVlZQwfPpxVq1ZhMpm0fbNmzdKqiKtWrUJRlBpVxBMnTmhhMjIykkcffVTb9/TTT9OjRw8URWHHjh1MmTIFT09Phg4dqrUZO3asFig3btxYa6Bs1aoVmzdvJjQ09I7eu7h9MihHCCGEEHZcXFz47LPP7MJktSeffJIhQ4YA8OWXX3Lw4MFa+xg3bpxdmAT45ptvmDdvHsuWLcPR0RGbzcb//d//2bXx8/PTtlNSUmrte+vWrRIm/8tIoBRCCCGEne7du+Pt7X3N/WPHjtW2N27cWGubESNG1Pjb0KFDCQsLo1mzZnTp0gWAuLg4zp8/r7XJz8/Xtl1cXGrtW1GU69+A+MXJK28hhBBCaL755huaN29+3TbXqyL27t2bb7/9lvvvv/+Gfezbt0/rIyQkBIDExEStzY36EP89JFAKIYQQQnP194zXcr0qoq+vL76+vrfdx/r16wHw8fFhzJgxN+xH/HeQV95CCCGEuCV3oopY3YfZbKZ9+/YAnDp1iv379wPw1ltv4ezsXMcrFb8UCZRCCCGEuCV1rSKeO3eO2NhYAKZOnYrRaERVVZ577jmgqko6bdq0O3fB4q6TQCmEEEKIm3YnqoiffPIJAB4eHrz22msAvPPOO8TExNCyZUu++OILGXjzP0YCpRBCCCFuyp2oIsbFxbFgwQIAFi5cSKNGjVi7di2vvfYavr6+bNmyBU9Pzzt63eLuk0AphBBCiJtS1ypiSUkJjzzyCFarlRdeeIHx48cTFRXFpEmTaNSoEdHR0bRo0eIuXb24myRQCiGEEOKG6lpFrKysZPLkyRw/fpyJEyfy97//nejoaEaNGoWbmxs7duygdevWd+nqxd0mgVIIIYQQ11XXKqKqqkyfPp1169bx0EMPsWzZMvbs2cOIESNwcXEhOjqaNm3a3KWrF78ECZRCCCGEuKa6VhFVVeXJJ5/k888/Z/To0dpyjQ8++CDOzs5ER0cTFhZW47gZM2bUutqO+O8kE5sLIYQQola7du2qcxXx2Wef5ZNPPmHEiBF89dVXHDlyhKFDh+Lo6Mi2bdto27ZtrcedPXuWpKSkOt6B+KVIoBRCCCFEDfv27bupKuLly5evuZ7373//ez788EN+85vfsGbNGk6cOMGQIUMoKipi7ty5JCQkMGHCBB588EGGDx9ud2xeXt5duS9xdyiqqqq/9kUIIYQQ4r/HgQMHGDRoEA4ODkRHR9OhQ4da2/Xt25ekpKRaK4l/+tOfmDt3LkOGDGH9+vUUFxcTHBxMbm7uTV+Hv79/rX0nJCTwww8/oKoq27ZtIzIyEgA3NzdtSiKAHj16XPN7z+zsbBYuXMh3333HuXPnKCoqwtvbm65du/LEE08wbNiwm75OIYFSCCGEqBdUVWXBggW8/PLLFBcXExMTQ9++fWu0O3LkCAMGDKCgoIC5c+fSqVMnu33btm3j1KlTZGdnU15ejk6n4ze/+Q39+vVjxIgRBAYG8uqrr/LXv/4VPz8/Pv74Y4xGI+np6TzyyCO3dM3XCpRLly7lscceu+HxS5YsYerUqTX+vnXrViZNmkROTg4dO3ZkwoQJeHp6cvr0aT777DMKCgqYPHkyS5YsQa/X39I111uqEEIIIe5pFy5cUPv06aMC2r+YmJga7bKzs1UPDw+7djf65+TkpG3/4Q9/UJcsWXJLxwPq7Nmzb/pebDabOm/ePNXFxUVt0KCB2q1bt+ve03/av3+/ajAYVECdPHmyWllZabf//Pnzqre3twqoTz/99E1fV30no7yFEEKIe5SqqsyfP5+2bdty7NgxunXrdt32BQUFt/RKGqBJkyZMnDhR+323B9K88cYbPPfcc/Tq1YtTp04xePDgmz5WVVWeeuoprFYrDRo0YMGCBeh09lEoODiYN998E4CPPvqII0eO3NHrv1dJoBRCCCHuUbcavgICAlBV1e7fH/7wBwCeeuqpGvtUVSUpKYk5c+bQsGFDXFxcmDNnTq3trvdvzpw5t3RfixcvZuvWrTRv3vyWjjt+/DjHjh0DYMiQITRo0KDWdo888gg6nQ5VVfnggw9u6Rz1lYzyFkIIIe5hixcv5oknnritYxMSEpg3bx6KovDKK69cs11ISAhZWVm3e4m3ZPbs2be85GO1Q4cOadu1jVqv5ubmhr+/P4mJiWzcuJGysjKcnJxu65z1hQRKIYQQ4h5Vl/AFsHz5csrLy+nUqRNNmza9g1d2++pyP9nZ2dr2taqT1Tw9PUlMTKSwsJDY2FjatWt32+etD+SVtxBCCHGPqkv4Avj6668Bakw+XlZWRnFxcZ36/jWYTCZt22KxXLdteXm5tn3mzJm7dk33CgmUQgghhKihpKSE2NhYAPz8/MjPz+fVV18lKCgIo9GIq6srbm5ujBo1ij179vzKV3tzQkJCtO0LFy5ct21ycrK2/Uu9zv9fJq+8hRBCCFHD6dOnsdlsAKSkpBAeHk5xcTHPP/88HTp0oKCggFWrVrFhwwY2bNjA66+/ro2O/m/Vu3dvXF1dKSoqIioqClVVa63iHjp0iPz8fO13YWHhL3mZ/5OkQimEEEKIGq5cuaJtL1myhJKSEg4fPszrr7/Ogw8+yMSJE9m4cSMvvvgiAG+99RZLliwBICMjgwULFjBixAiaN2+OwWDA1dWVkJAQpkyZQkxMzA3Pf+bMGebOncvw4cMJDAzEZDJhMBjw9fVl2LBhLFmyhIqKilu6J7PZzKxZs4CqCuTChQtrtKmsrOTVV1+1+5tMbn5jUqEUQgghRA3/WZV76aWXal3G8M0332TFihWkpqby8ssvs2/fPiIjIykrK6N58+ZMmDCB4OBgLBYLW7ZsITIyksjISCZMmMDSpUsxGAw1+nz22We1JRQ9PDz47W9/S8uWLSkuLubQoUN8/fXXbNmyhXnz5vHAAw/c0n3NmTOHY8eOsXnzZmbNmsXFixeZNGkSnp6enD17lr/97W/s3LmTwYMH8/333wM3HsAjJFAKIYQQohb/Wf176KGHam3n5OTEmDFjmDdvHhkZGdrI8OHDh7Nq1Sq7gTCzZs1i0aJFzJw5k1WrVqEoCitXrqzRZ3V1NCwsjN27d+Ph4WG3f+vWrQwbNozjx4/f8kTsDg4ObNy4kfnz5/P+++/zzjvv8M477wBVg5juv/9+9uzZw+HDh7VA6e3tfUvnqI/klbcQQgghanB1ddW2XVxcCAgIuGbb9u3ba9s2mw0XFxc+++wzuzBZ7cknn2TIkCEAfPnllxw8ePCa/X700Uc1wiRUTUr+8MMPA/aDZ26WXq/n+eefJzk5mYSEBPbu3cuBAwfIzMxk165ddOvWzS6ohoeH3/I56hsJlEIIIYSowcvLS9t2d3e/btuGDRva/e7evft1q3pjx47Vtjdu3Fhjf1BQED169KB79+4AWMoruVJoxVJeqbWJiIi4/g3cpMDAQHr27EnXrl3t7jkhIQGoet199ehwUTt55S2EEEKIGkJDQ7XtGw1+UVVV2x46dCh/+9vfrtvez89P205JSamx/+233wbgcFIOi/cmsO1MBjYVdAoMDPXhd71a4OLiclP3cbuqV9UZPXp0jfW+RU0SKIUQQghRg4eHB8HBwcTHx5OTk0NFRQUODrXHhqtHhHfu0vW6yxoCdlPyXCsYRh5I5s8bTqHTKdj+nVdtKmyPzSTqdAZ+p3cBVa+vKysra+2jNomJiZw4cYIHHngAs9lca5v4+HhtDs7HH3/8pvuuzyRyCyGEEKJW1a+my8vLOXHiRK1tDifl8P6qrdrvReecmPHFEY4k5Vyz38TERG37/vvvr7XPP284hQpU2lS7fZU2FWtGArs3fwNUzS15K7777jtGjx7Nd999d8021RXSMWPG3HL/9ZUESiGEEELUaubMmRiNRgAiIyNr7I88kMxDC2I4eyAaAEfvABybhrI9NpOHP97PFwdrHzCzfv16AHx8fBgzZkyN/Yv3JqDT/TzhuM1STEVhFpbUWHJ3R5L+xZ9Q9A70fuK12w58f/nLX2pdPvKDDz5g6dKlhISE8NFHH91W3/WRvPIWQgghRK38/f2ZPXs2L7/8MgsXLmT06NH06dMHqKoivr7+JDnRi6kszgOdA56Dn0ZRFK2q+Pr6U7T2MRMR4Kn1efLkSfbv3w/A//3f/5GSkkJJSQnFxcUUFxeTV1RC1GlHVH4OlJlr38J68ZT227FRIC6hfYnNLMU96+clFLdt20ZqaipQFVYHDhx4zXs7ffo0bdq04bHHHsPPz4/MzEw2bNjAwYMH6dWrFytXrsTHx+cOPMX6QVGv/pJWCCGEEPeUL774Qttet24d33xT9ar4lVdeoU2bNsCNw9ef/vQn3n33XRwcHJg6dSpdunThs5gzHNu1BWtaHIrBhNfwP2IK7mx3nE6BMHcb45sWaIFx/vz5JCYmEhwczKRJk7SlD41GIy4uLqgGV95LsB8hbk2Px1ZagK20EGtaHIU/fnvD++7Tpw87d+6s8ff09HTWrVtHdHQ0p0+fJiMjg9LSUho3bkynTp2YMGECDz30UK1LMoprk0AphBBC3MNuJhhdK3xd7YcffmDhwoXs3r2b9PR0yhUHHN2b4BzUGXPEcPQmt9rPj8pbbYtxczWxYcMGPvvsM/z9/Vm3bh1NmzbFZDJhMpnQ6/WoqsrhoycY/3WqXYXyP1UUZJGx6jUqclIJCAzk4IEDNGrU6Ib3Ke4eCZRCCCGEuCVXCq10/uv2m25/+JUB7I7axLhx42jcuDF79uypsYxjUlISUVFRXL58mUOG9sTm67FdJ1SWXz7LpWV/AGDixImsWLHi9m5G3BEyKEcIIYQQt8RsdEB3k2+EFVQ2fr2KSZMm0ahRI6Kjo+3CZHZ2NqtWrWLZsmUoisLUqVMZ39YL2w36dWrSCr+AIADWrFlT6wAb8cuRQCmEEEKIW2J01DMw1Af9DUKlTgHPywd5cvo0nJyc+PDDDwkODgagpKSELVu28NFHH5Gens6YMWOYNm0aOp2O5B938EiwDlBR/iNaVp1TZWTTUsLvaw1UTWt09uzZO3+j4qbJKG8hhBBC3LIJ7Rvx/el0uM5r6ZLkk1z+5p+YzWZefPFFTp48SUJCAj4+PqSmpqIoCv369aNbt244ODhQVFTE559/TmZmJjNH+5Gf8j2nK3xIsbmjoqCg0rahwtRu/vy0Yz0Hs7O1c91oNR9xd0mgFEIIIcQtqays5MKBKPqb9ewobISCajeIRsFGaWos2V/PwexiYufOnYSHh7N//3527dpFQkICiqKwd+9eYmJi+P7776msrGTNmjWkp6ezaNEiDAYDPm5utPTWYzBZcPXwxtPszOmfjvObroPxd6lk/vz52jmvXs5R/PLklbcQQghRD6iqyvz583F1dUVRlBuO6r5adnY2b7/9Nj179sTT0xODwcCzzz7Lj199QLOjiwjWXUGhaoyvAnhc/pGc1X/GyUHPxIkTqaio4PPPP2fbtm0EBATw+OOP079/fxISEjh48CCRkZGsWbOGixcv0rdvXwC2bq1afcff3x+zyYhBtdKtcydKS0uJjY2loqJCW/KxTZs2NG7c+E4+LnGLJFAKIYQQ97iEhAT69evHc889d8uDV/bu3UtoaCivvfYaFy5cYMyYMQwdOpTx48dTWFjIvqhNHJw/i35XNjDBcJwPeiqcWfUOFeVlDBs2jLKyMubNm8dPP/1Ey5YtadKkCRcuXKCiogJXV1dcXFzIzc3l7NmzmEwmcnNzAYiNjWXPnj20bt0ao9GIxWKhYcOGBAQE8P333zNx4kQAdDodXbp0Yfbs2bcUlgMCAlAU5Zb+ffDBB7f87OsLeeUthBBC3KNUVWXBggW8/PLL6PV6unXrxoEDB276+IyMDIYPH05eXh5t2rThu+++Y/Xq1TzwwANMmDCBPXv28Nvf/pakpCS+WL6MqVOnMnXyu1itVgC+/vpru/7mzZtX4xzNmjWjoKCAoKAgnJyc2L17N2azmcLCQqKjoxkzZgxt2rTB2dmZkpISoqKi2LRpE+Xl5bi7u/Pmm2+ycOFCli1bVreHdRNk5Zxrk0AphBBC3KPeeOMN3njjDQYPHsynn37KZ599dkuB8pNPPiEvLw+At99+mx07dmAwGBg1ahSKopCcnMy0adN47bXXKC8v5+DBg1r7m1VSUoKXlxfjx4/H0dGRQYMG0bJlSw4cOMC5c+fIy8tj27ZtlJSUsG7dOjw9PQkICKBfv34EBARoYTkwMJDExMRbOnfnzp1Zvnz5ddukp6fTv39/3NzcGDVq1C31X59IoBRCCCHuYYsXL+aJJ564rWMPHz6sbZeVlXHp0iUee+wxnJ2dsVgsJCUlMXjwYP7yl79gsVjIzMxkzpw5dOzYkeTkZDw8PEhOTqZjx45ERETw+eef4+XlxeTJk3FwcGDVqlWkpKRoYRKgQYMGlJaW0qpVK3r06IHNZiM3NxedTqdVK6Oionjvvff45JNPtLC8cOFC/va3vwFoFdIbMZlMtG7d+rpt1q1bh6qqTJ48GWdn59t6jvWBfEMphBBC3KNmz55922ESqkJktePHj/PAAw/QrFkzAM6fP4/NZsPd3R29Xg9UzQfZvXt3hg8fTpcuXbhw4QJdu3bl0KFDVFZWMmnSJNLT01mzZg07d+7k3LlzjBkzBg8PD+08ycnJWCwWALp27cozzzxDp06dsNlsfP3118ybNw+dTkd5eTlvvvkmW7dupXnz5jg5OWl9xMTE3HAaoc6dOxMeHn7dNqqqsnjxYgCmT59+C0+u/pFAKYQQQtyjbmYd7+tp27attm0ymejevbv2++TJkzg7O/Ppp59qA328vLy0c7Zr106rOnp6erJ582Z8fX0ZP3488fHx7N69mz59+hASEmJ3zri4OBwcql6gtmrVCp1Op00J9PjjjxMQEMDBgwfp168frq6u5OTk1LjuK1eusH79eq5eXdpSXsmVQiuW8kqganWdq6cdqs22bdtITEykR48ehIWF3dxDq6fklbcQQgghNJbySgotFZiNDkyfPp158+ZhtVo5cuQIiqJgsVjYvXs358+fx8nJiUuXLmnHduvWTQuXBoOBtm3bcvz4cUaMGMHKlSs5efIkzZo1w8HBgfLyciwWC6qqaiFUVVXi4uIAcHR0pEGDBgAYjUYA3N3dGTVqFA888ACbNm3i3LlzzJ8/n1atWtl9u9m7d29Onz5NgwYN8GgZweK9CWw7k4FNrVq9Z2CoD7/r1YKIAM/rPotPPvkEgBkzZtyhp3vvkkAphBBCCA4n5dQIXu0aKjz46AwORX3Dxo0b6dOnD23atMHFxYW8vDxKSkpYtWoVer2ekSNH0r59e7tpiTp37syRI0ewWq2EhoYSFRWFyWTCbDbToUMHoqOjMZvN9OzZE6gaAFNQUABAkyZNtH6qA6XFYsFsNmM2mxk7dizvvfce/v7+5OTkcPz4ca19s2bNaN26NR9s+pH9MeXodQq2fxcrbSpsj80k6nQGb40K49Gu/rU+j4yMDDZu3IiHhwcPP/zwHX3W9yIJlEIIIUQ9F3kgmT9vOIXuP4LX8axKVO9BPP3Ph9i3fC5RUVHs3r1bO85gMDBz5kymTZvG8ePHKSkpoaioSNvfqFEj/P39OXLkCKNHj2bevHmUlpYyffp0fHx8KC8vZ/v27ZhMJjp06EBcXByOjo6Ul5cTFBSk9XN1oKzm5ORE27ZtOXv2LLNmzSIuLo5du3YBVdMVdRz8MPsrqsJipe3nV99X/359/Sla+5hrrVQuWbKE8vJyGYxzkyRQCiGEEPXY4aQc/rzhFCo1g5eKDuuls/x5yYeUZSTQqVMnpk2bxpEjR3Bzc+P06dMsXbqU/Px82rZtS4MGDWpMnB4REcHatWs5fPgwNpvN7rvOvn37UlxczLfffovJZCIuLg5XV1dyc3PtRl8bDAag5ujtjh07cuTIEeLj4/H0/DkU+vn5seLIZRTc7JaE/E86ncLivYk1AqUMxrl1EiiFEEKIemzx3gR0OqVGmASwpsWS8eVrqBVWAjs/wG8nj2Tt2rUcOnQIi8WCo6MjRqORlStXsnbtWv7whz9gNBrtvots06YNRqORffv20alTJxITE3n//feJj4/n4MGDXLlyBVdXV9asWUPnzp1p3bo1iqJQUVFBUlISNptNC5IXLlzAarVis9mw2WxUVlbi5uZGdHQ0qamp2nU7GpxJLnCn5h3Zq7SpRJ1Jx1JeidFRr/09OjqaCxcu0LNnT+677766P+R6QAKlEEIIUU9Zyiu1byb/k6qqZG+Zj1phBZ2exKO7eO5wNO7u7oSHh+Pv709ZWRmnTp0iNzcXq9XKu+++ywsvvMDf//53VFXFZrPZTd/z448/EhMTw65du3B0dKRjx460b9+eK1eucPToUU6dOkWfPn3o168fS5curXFN15uUPSEhQds+cy4e1SPkmm2vZlOh0FJhFyirB+NIdfLmSaAUQggh6qlCS0WtYRKgPCOB8qyUqh+qDWwq7TtFMHrEcDw9PQkMDESn06HT6XjppZc4fvw4ZWVlrFy5ko8//hiz2QxUTY5eUlKC1WolLS1NC5PTp09n5syZGI1GdDodCxcu5P3332fXrl34+/vz7rvvav1X7+/SpQs9evRAp9Oh1+vR6XSUlZXx3nvvaVMLAfg380UpVq/7uruaTgGz8ec4lJmZyfr16/Hw8GDcuHG3/3DrGZmHUgghhKinzEYHdNfIXOW5aVf9UlAcjTw09mFUVaVdu3YMHTqUoUOHMnjwYKZOnaq1TEpKori4mO7du5OXl0d+fj6TJk3C19dXW+bw6aefxtfXl4sXLxIUFIS3tzcuLi4MHjwYgK+++oqioiIaNmyIh4cHbm5uODs7o6oqRqMRJycn9Ho9iqJgMBgIDQ0lLe3n602MP4e/Pg/dDV5663UKg0Ib21UnqwfjTJkyRRsMJG5MAqUQQghRTxkd9QwM9UFfW6pU7COCW7MgDI5Vf9uxYwf/+Mc/WLNmDUePHqWkpMSu7ZYtW/jpp584dOgQQ4YMoXnz5hw/flz7FvLpp5+md+/eHDp0iIyMDM6dO4eiKHTp0gWoGnzzzDPP2A3CMRqNdqO8oaqauHXrVmJjYykvL9f+Hh4ezuQuzbDd4P5tNpVpvQK13zIY5/bJK28hhBCiHpvWqwVRpzNq/N3BrZG27ejTgmeefpaS4gwUReG+++7DbDZz8eJFvv32WzZv3mx3bEJCAt9++y3t2rUjIiICgO3btwPg7e1NcHAwgYGBHD9+nM2bN+Pk5ETjps1JupSBh4cHubm5HD58mFWrVjFp0iQcHBwwGo1YrVbKy8s5c+YMP/74IxcvXsTBwQGbzT46urm5kXpsF8O8W7L5ihkFFfWqGppep2Czqbw1KsxuhPeOHTuIj4+nV69ehIaG1v3h1iNSoRRCCCHqsc4Bnrw1KgwF7CqVTo2D0btWhS1bVjKPjR6IqqqEhIRw/vx5Dh06ROPGjXnsscdITk626zMvLw+9Xk+TJk3Iz88nLS2Nc+fOAdCwYUMKCgrQ6/UMGzaMw0k5fHJG5W/xjVhZEo7Vu2q6oCtXrnDmzBnWrVunBcaLFy/yz3/+k/Xr12t9KIpCjx49CAz8udK4b98+wsPDaWZJZHKTLFo4FaP8+/W3ToGBbXxYM6N7jUnNZTDO7ZMKpRBCCFHPPdrVn9Y+ZhbvTeT705dRUdApCsH9Hubstx9TWVHO6NGjGTVqFCNHjkSn03H48GF++OEH3nzzTTIy7CucAQEBNGzYkO+//56tW7eSmZmp7XN3d+fo0aP07duXfZl6Npe1+ncFsYq+gbfWNsfoS2xsLP/85z8pLi5Gp9PRpEkTMjIyKCkpoXv37nTv3h2TycSOHTvszl/9naWProjnOnpQbCklv8TKY48+YvfNZLXq9b9lZZzbI4FSCCGEuId98cUX2vZPP/2kbW/btk2bu9HHx4eBAwcSEeDJok8/w1KpkJ+VTuR0DXEAACAASURBVLenR/OvihS2bdvGTz/9xOXLl9Hr9TRv3pzMzEy++uorjh07BoCLiwvFxcW4uLjQv39/fve732GxWEhISGDBggXaeV1cXNi7dy9JxXrm7C0AFLvR2HoXd2173aF4xncJwKe4SPuGMjMzk65du9KjRw9MJpPW9urvOMPDwzl69Cg9e/Zk79699OvXj/j4eEoK82sNkwBLly6lrKxMG3kubo0ESiGEEOIeNnny5Fr//te//lXb7tOnDwMHDgTAUQcNXIzkZ5TTsmVLevXqxdixY/n8889JTExk7ty5lJaWYjKZ8PPzY/r06dx///3aefr3709hYSGXL1+mSZMmhIaG0qJFC+1cgYGBVFZWsuSH5H+vZFP19Z2qqhT+uIm8PSt/vsjyUi6ZW+NrOYbFYkGv1zNr1ixcXFyAqrBc2/2NHTvW7vecOXPo0qULv/3tb6/5nD799FNAXnffLgmUQgghxD1MVW+0XkxNzs7OKIpCTk4OXbt2Zf/+/QwaNIiIiAiOHDnCmDFjCA8P1/rv3bs3AK1atWLcuHEkJibyySefEBISwv33309paanWd9u2bTGYXEmJd9cqk+V56WR/9wHWi6fsrqOyzMqJbJXf9elCetpFUlNTSUhI0M59rbBcG51OV2PpxmoxMTGcP39eBuPUgQRKIYQQQtjR6XQ0atSItLQ0Bg4cyA8//ICzszPDhg2jvLyc9evX4+LiQosWLXj77bfZu3cvXl5ePPXUUwQHB5OcnMyIESPYu3cvn3/+ObGxsVrfZWVltO/WETU+9eeq5K5loNPh5NuKsktnf74ORwMqCl169uHi+dOkpqayfv16nJ2dCQ4OJj8/Hzc3N4YPH86cOXNwdnZm+fLlFBYWMnXqVFasWEHHjh3p3LkzsbGxnD17trbbpV+/frcVvMXPZJS3EEIIIWrw9fXl0qVLODk5odPpsFgsFBYWMnz4cAIDA1m9ejWLFy9m9uzZmM1mXnvtNVxdXXF1daWiooLWrVvz1FNP8fDDD6PX//zdYlpaGi0Dm6Ogkr93JbnbP8bQLBTfJz7EObCj3TUoTs7aSjbOzs5A1YCb1atXc/78eSIjIwEYMmQIHTt2RFEUjEYjPj4+ZGZm4u7uzgMPPEDr1q1p3rw5ZWVlEhzvEgmUQgghhKihadOmZGZmkpCQQEVFBU5OTuzZswe9Xs/DDz9Meno6M2fOxGQysWLFCgICAlBVVfu+sbi4GEVRCA0NtXs1vW/fPj7+aAF+ujxAxXPoc/iMfxOHq0Z3V3N086aHnytGRz0GgwGAwYMH06hRI7788kuKi4sBMJlM2Gw2tm/fTlBQEG3atOHUqVM4OzvTpEkTAAwGA6qq2k2ALu4cCZRCCCGEqKFp06aoqsqxY8cwm8306tWLo0ePkpeXx969e/n4448xGAxMnz6dAQMGoCgKqqri6uoKQFFRkdZXWFiYtl1QUIDJZOI+hwzcek3E3G7QNa/BwcufBpePsHXrVhwdHYGqVXQUperbS53u5xhz9OhRsrOzGTBgAB07dqS0tBRfX1+tbXUgLSsru0NPSFxNAqUQQgghavD29kav15OYmEirVq3o0qULzs7OfPjhh4wYMQK9Xs8f//hHGjVqxKpVqwBqVCgBcnNz2bdvH56entrvyspKfHRF9HS6CKgotSySqDd78c6jffjtsF4cOXKEjRs3AvD999+TkZHBuHHjcHCoGgpSUlLCzp07adu2LQ0aNNCm/bk6PDo5OQFcc2COqBsZlCOEEEKIGvR6PV5eXmRkZNC6dWucnJwwm828+uqrODo68uSTT/LCCy+Qk5OjDYRxcnLi+eefZ/fu3QwePJiYmBj27duHyWSid+/erF+/noyMDMxmMxaLhUe7BeB+MJbTFY1IsXlgs/xc1Rz4QF8e7RYABODv78/q1asBuHTpEhMnTiQ4OBhvb29+//vf880335Cfn09iYiJZWVkAODg40LRpUwoKCpg5c6ZWoZRAeXdIhVIIIYQQtaquAAYEBHDgwAH++Mc/otfrmTx5Ms8//zwuLi40b96csWPHkpubS2FhIefOnSMjI0MLk82bN6e8vGpOy+rK4f79+7VX2D66Ivo7JRD9ZDsaF57Xzt23W4T2vaOPjw9+fn5AVRX0+PHjWCwWGjZsCFStE37hwgWee+451q9fzwsvvED//v3JyMjg97//PZ06deLSpUuABMq7RQKlEEIIIWpV/R3k/v37GTJkCEVFRdq8kocPH2bnzp3s3LmT9PR0SktLOX36NOfPn0dVVXQ6HQ4ODqSkpBAWFsYrr7zC3LlzAVi9ejWqqtqt3HMxKYHEhHjtd1xcHP/617/Yt28fUVFRnDhxAr1eT9u2bYmPj+fjjz/m4sWLALRs2ZKnn36a++67jwcffBAvLy9eeukl/vGPf+Dh4cHp06cZN24cpaWl8g3lXSKvvIUQQghRQ15eHvn5+ZSUlPDggw+Sn58PQFRUFADLli275rHu7u5YLBY6derE/fffj5ubGwDPPPMMKSkpzJ07l7/85S+0b98eb29vsrKyeOedd6ioqND66N27N15eXkRHR6OqKkFBQWRkZODh4cGTTz7J2rVrWbJkCbNmzWLUqFF4e3vz9ddfU1lZicViITg4mGbNmrF3715Wr15NQkICe/bsYeLEiXfxqdVfUqEUQgghRA1nz57VRlFXh8mbpaoqDRs25MEHH9TCZLVx48bx+OOPExYWRmxsLJs3byYuLo5WrVrZLY2Yk5NDkyZNUFUVX19fkpOTKS4u5vz58zg6OvLYY4/h6emJh4cHSUlJNG/enGHDhnHmzBnt+8mgoCC6du2K2WwG4NixY3ar9og7RyqUQgghhKjh7NmzBAYGoqoq//jHP1BVlenTp+Pu7o7NZuODDz7AarVSVlaGg4MDFRUVGAwGfve73xEZGUlOTg4ZGRn4+PjY9RsXF0f37t3x8/PDZDJRWlrKE088weLFi8nMzNTaJSYmUlRURNeuXRk8eDDFxcV8/PHHpKen869//YuWLVuSnZ1Nr169OHHiBIsWLWLkyJGYzWYKCws5fvw4HTt2pGPHjjRq1IjCwkJKS0s5d+4cXbt2/aUf5z1PKpRCCCGE0JTbILe0gvjEZFq3bk15eTklJSWMGTMGd3d38vPzWbNmDYWFhdr3iOHh4URERGAymWjYsCEdO1ateLNixQq76qbFYiExMRG9Xo+rqyslJSW4u7vTtGlT/Pz8SEtL09oWFRVx3333MXjwYBRFwdXVlcaNGxMUFES3bt04c+aM1ucjjzyCn58fq1atorCwED8/PzZt2kRsbCwdOnTAZDJp/WZkZPwSj7HekUAphBBCCA4n5TDjiyP8PcGHOSeMRFo6MPdAPkeScwHw8PBgx44dzJs3T1sT22Aw0Lx5c0aMGIGzszM2W9V8km5ubqiqiqIorFixAovFAkB8fDw2m4309HQCAwMBtP8jIiLIy8uzu6YWLVpoE5MDGI1GysvLtVfh7du35/Tp0yxevBij0Ujr1q2BqnkpW7Rowdq1a8nNzdXmxgQosFRgKa+8G4+wXpNAKYQQQtRzkQeSGffxfrbHZqJSFeBUFA6llbK5rBVxFd58/PHH7NmzB5vNRlhYGM8++ywjR47k4sWLJCUlaSvlANpqOSNHjqSwsJBVq1ZRUVFBXFwcbm5udssftmnTBoDQ0FBtmiKAhg0bkpiYaHedBoMBi8VCdHQ0QUFBXLx4ES8vLwYMGMCFCxeIi4vDycmJyspKkpOT8fDwYOXKleQWWbQ+PkvxIHT2VmZ8cYQjSTl354HWQ/INpRBCCFGPHU7K4c8bTqEClTbVbl91uNxf4YeHtZQ+oUEMHDhQW/XGw8ODxo0bExMTo31vCWgVQYPBwCOPPMLy5ctZt24dFy5cwGAwEBISos0LWT2/ZE5OjlbhBGjWrBkXLlzAZrNpg4OMRiMFBQWUlJTw0EMP0a1bN4xGI3FxcURERPDuu+8CVavxuLu7k5WVxdlKb86dPweAzuSGg2dTbCpsj80k6nQGb40K49Gu/nfj0dYrUqEUQggh6rHFexPQ6ZTrtlGABEd/xo8fr4VJAEVR6NevHykpKeTl5WmBsDpQFhUV4efnx9ixY4mNjaWsrIzCwkI6dOhATk4Obm5uODk5kZubS2RkpDbxOVStJV5aWqoFT6iaaL2kpIR27drRuHFjAM6dO0dCQgJZWVmUlZUxbtw4RowYgaIoZNhcifrxHKq1BADXdoO1V+iVNhUVeH39KalU3gFSoRRCCCHqKUt5JdvOZPAfhckaVBTOFhvZsWsPzk4OKIqCTqfT/vfw8ODs2bNUVlZy8uRJ7bj4+HgURcHBwQEvLy+ysrJwcnKioKAAVVXx9vYmPj6eb7/9FkVRaNmyJVu2bAGqqpsGg4FTp07h7u6OTqfTJjLv2bOnNmelqqo89thjvPLKKzg5OREQEIBer6ddu3YMfXUxuTs+B8ChYTPcuj1U4950OoXFexOJCPCssU/cPEWtrk8LIYQQol65Umil81+333T7KeZYnJVyVFXFZrNp/9fFiRMntO3Y2Fji4uIAuP/++/Hy8gKqvskMCgqqceyXX36pDRBydXWlbdu2+Pj4oKoqySkXOXbiBFRW4NQkBO/Rr+DQwLvWa9ApcOaNIRgd9XW6l/pMKpRCCCFEPWU2OqBTuGGFEkBB5TeDHqBrRIca+2w2G/PnzycvL4+XXnoJgMWLF+Pn50e/fv1ITU3lq6++QlEUAgMDSUhIAMDb25tvvvmm1vPt2bNH246IiGDgwIGkpKRQUVHBkCFDMBqNjBgxgvj4eLZt28b27duJjY3l8OHDVdMMmc2YgrpgCu2NqWV3FN21w6JNhUJLhQTKOpBAKYQQQtRTRkc9A0N92B6bWWNAztUUbPjp8vjp2GU6tgvD0dHRbr9OpyMkJITDhw9z4cIFQkNDMZvNWK1WXF1dSUlJQVEUWrVqxdixY3n77beBquUd09LS8PX1tevv4MGDREVFMW3aND755BMGDhzI9u3b6dy5M4cOHaJFixZ4e1dVGzt06EBISAhNmzalbdu2pKWlkZ2dTYWq8IW1ozaw6Hp0SlW4FrdPBuUIIYQQ9di0Xi2w3aBEqaLjPodMLl26xNy5c9m9ezdWq9WujaenJ4qiEBMTg81mw8XFheLiYlRV5dSpU6iqSkREhN1qOI6OjtoUQ1dr164der2ec+fO4ePjw8GDB3Fzc6N9+/ZA1WCfxMREoqOjWbx4MRs2bAAgNTWVgIAAHn74YV558Y8Muq8x+hvkSb1OYVBoY6lO1pF+zpw5c37tixBCCCHEr6OpuzNeZgMxcZnodQpXj6zQ6xRQ4S+jwujl70piYiI2m42kpCQOHjxIeXk5jRs3xtHRkUuXLpGQkEBxcTENGzbEarWSkZFBYGAg+/btw9XVlaFDh7JixQqKi4vp3Lkzubm5xMbGEh4ebjcHpYODA3l5eZw6dQpfX18uXrxI9+7dyczMJCUlhVOnTnH8+HGysrJo0qQJBQUFhIeHM2XKFFq2bIm3tzeOjo7oLAVsis2B61UpVXhnTDi+7s537yHXAxIohRBCiHqubTN3egV7kV9aTkJWESpV30xGNHbiX5O6MCSsCQ4ODhw9epSxY8ditVrJzs4mJSWFgwcPYrVa0el0JCYm0rJlS86cOUPz5s05n5BEaaWOtNSL3N+rJ7GxsZw7VzUn5OTJk2ndujUHDhwgOTmZsLAwbb5JqJqS6Mcff9Tmp0xKSuLy5cvaxOpjxoxh4MCBeHt7c+DAAQYMGGA3pVFGRgZb1q7EyWYl1eZ+zbD81qgwhoQ1+aUe9T1LRnkLIYQQQmMpr6TQUsHmDWuxlVuZOnUqCxYs4OWXX6a4uJiPPvqImTNnkpSUxNatW8nIyNDmdlRVlUmTJvHPyA2kurTkZK6CioKCSnsvhcb5Z9i0ZB6pqakA2oTokZGRhISEEBYWRkJCAomJieTm5mrXpNPpaNeuHcOGDeOvf/0rQ4cOpXPnzgD88MMPxMTE8OKLL2pVztzcXBYvXkxpaSmtWrWiRdcBfLY3iagz6djUqm8mB4U2ZlqvQJku6A6RL1CFEEIIoTE66jE66mkXFsqSJUvo3bs3e/fu1fZnZ2cDEBAQwIwZMzh16hTbt2+noKAAgNeXR7G/vBVKGXbLOB7PspF/+Dy5/w6TAGlpaZSXl2M2m4mLiyMuLg4vLy9CQkIICAhg06ZNlJSU4O/vT1ZWFg4ODhiNRrvvN+Pj4wkMDNTCZGFhIcuXL8dqteLh4cHo0aNxcnKic0BDLSybjQ7yzeQdJoNyhBBCCGFHVVV27NjBokWLOHbsGN26ddP2XblyRdtWFIXw8HCeffZZQkNDybC5sr/cj6oX5vbfLZbnZ5G35wu7v23bto2ffvoJPz8/wsLCgKopgoYOHUpRURElJSU4OzujqiqpqamUlpZiNBqxWKrW5i4rKyM5OVmbo7K0tJTIyEiKiorQ6XRMmDABJycn7XxGRz3eZoOEybtAKpRCCCGEsPPGG2/wxhtv0LZtW6ZMmUJhYSEHDhwAID8/H6vVisFg0No7ODgQEhLCguNWdIpS67yW2d9/iFpuxTkogtILRwAYNWoUI0eO1F6Zm81mtm7ditFoZOfOnbRv3x6z2cyBAwdQVZWEhAS7QFk9SCg4OJiysjK+/PJL8vLyqKioYOzYsdrUQuLukwqlEEIIIWpYvHgxy5Yto6ioqMYUQVevr12trBJSbO61hsmi0zFYEn7EHDECp8Yh2t/d3d21MAkwcOBAwsLC2LBhA1arlb59+9KpUycqKipwdXUlPj4eg8GgXU98fDweHh64u7uzZs0aLl26RGVlJV26dNEqnuKXIYFSCCGEEHZmz57NE088QatWrdDpdGRlZWn7HB0dSUtLq3GMpZJaJxGvLC0gN3oxejcf3O9/1G7ff44LVhSF/v37a7/Lyspwc3OjVatWVFZWcuHCBQwGAxaLBVVViY+PJygoiPXr15OQkIDBYMDX15dBgwbV9RGIWySBUgghhBB2qquGzs7OtGjRwu67yYYNG9ZaoXRx0qFQszyZu/1TbCX5NBz8FDono92+zZs3Ex8fbxcs9+7di8FgwNPTkxUrVlBYWEhERASlpaUUFhYCYLFYyMnJIS8vT5uvsvr19sMPP4xeL99I/tIkUAohhBDimkJDQ8nLy9N+e3l51VqhNDrq8dPlVc3v+G+lCT9SfDoGU2gfnFt0AuCqN9xkZ2ezYsUKFi1aRGxsLJmZmRw7dow+ffrw6KOPoqoqK1asoGnTptpKPCUlJVgsFuLj41EUhfj4eEJCQsjMzGTs2LE0aNDg7j0McU0SKIUQQghxTa1bt7b7ztHLy4uCggKKiors2imKwn0OGdoyjrYyC9lbP0Tn3ADPAdO1dle/5Q4JCUGv15OZmcnq1av59NNPMRqNdOzYkQYNGjBp0iTy8vJYvXo1ERERqKpKfn4+xZYydh08SrkN2rdvz/nz5+nXrx8tWrS4uw9DXJMESiGEEEJck7OzMx4eHtpvLy8vgBpVSp1Oh4+uiNeHtUQB8ncvp7IgE4/+T6A3uaFgA1T6t26kHdO9e3deeOEFBg0ahMlkoqKigtLSUubNm8eRI0do2LAhEyZMICUlhdTUVDJVM+uzvFmYFcJHl/34wtqRD44U49S0Db169folHoe4BgmUQgghhLiuq6ffcXFxwcXFpUagrK5iju/oy5yuThT8uAljQHtcwx9AAfx0ebzZ24O2zdztjjMajXTr1g13d3c8PDxo1qwZxcXFfPfdd8ydO5eUlBRGjBjBup+u8J21JSk2N7sJ05MqGvDJBRdWHEq5uw9BXJfMQymEEEKI66quSkJVcGzatGmNgTnVgdJqtfLen/+Ao4Oef732LKPHDWDzhrUkXUhgdK9RvHdwW43+Y2NjuXTpElOmTCEwMJDs7Gx2797NqVOniImJ4QoN2F8RQm0Tplf/fn39KVr7mGUpxV+JVCiFEEIIcV2Ojo52v319fbl06ZLd6GydripSvP/++5w8eZJ+/frR9r5QvM0GrqRfwmAwYDaba/RdWVlJdHQ0wcHBBAYGAlUjyUePHs2LL75I3759OV3hU+sI8qvpdAqL9ybW9VbFbZJAKYQQQoibVlpaStOmTSktLSU3N1f7u6IoZGVlMXfuXEJCQggPD8dms3H58mUyMzMxmUxkZWVRUlKiHZOfn090dDQXL16kQ4cONc7l5ORE1x69SK50Q71BZKm0qUSdScdSXnnnblbcNHnlLYQQQoiblpycTJ8+fYCqgTmenlWvmBVF4eLFi1itVs6fP897773He++9Z3fsrFmz7H6PGjVK2547d26Nic4BLmfl1rr6Tm1sKhRaKmSt7l+BBEohhBBC3LSkpCRMJhMeHh6kpaURHh4OVL3yDg4OZu3ateTl5bFz507GjRvHgQMHSElJYezYsbi4uLB8+XIiIyMBmDFjBlarlVGjRuHi4lLjXCUlJWxYuxoFv1pX4flPOgXMRok2vwZ56kIIIYS4aRkZGRQXF2vfUVZTFAWz2UyfPn2Ij4/n0qVL/OY3v+HcuXOYTCZGjhwJVK2EU62iooJJkyYxYMCAGuexWq2sWLGC8tJiIpo4ceSy9bqvvfU6hYFtfKQ6+SuRbyiFEEIIcUtiY2Np2rQply9fxmazAT+P8q6efNzNzQ2bzUZhYSGNGjWqtR+9Xl/r/JEVFRV89dVXZGdn07lzZ7yzT96wQmmzqUzrFVjHOxO3SwKlEEIIIW5akyZNOHPmDE2bNqWiooLMzEzg50Bps9m0QJmQkABAcHBwrX21a9cOo9F+fW+bzca6deu0gTq7du1iaERL/jIyDAXslnbk378V4K1RYTJl0K9IXnkLIYQQooYvvvhC2/7pp5+07fT0dM6ePUtpaSkJCQmkpaXRuHFjbdqg6gqlt7c3J0+eBCAnJ0fr7+q+Ll68qP29bdu2hIeHs2nTJuLi4mjXrh0HDhyga9euDB48GEVRaN24AYv3JhJ1Jh2bWvXN5MA2PkzrFShh8lemqLUNqRJCCCFEvXb1+t3XEhISwnvvvcfw4cO5dOkSn376KTNmzGDFihV06tSJEydOUFRUxLZt29i1a9d1+5o9ezY9e/bkhx9+oE2bNsTGxtKrVy/69+9f41os5ZUUWiowGx3km8n/ElKhFEIIIUQN16s3RUZGoqoq7u7u2hKM1aGvvLycoqIiGjRoQH5+Pj4+PuzcuVPr87PPPkNVVaZNm2YXFPft28f27dsJDAwkNjaWfv360bt371rPb3TUS5D8LyPfUAohhBDiloSGhpKUlISXlxeZmZmUl5drr7yLi4uBqlHaqqoSFBSkHXfmzBnS0tIYMGCAXZg8evQo27dvx9fXl8TERAYNGnTNMCn+O0mgFEIIIcQtad26NQAWiwVVVbl8+bIWEAsLCwFITU0FoH379sDPSyyGhIRoSyxCVcjctGkT3t7e2lRD3bt3/yVvR9wBEiiFEEIIcUtcXFwICAggNTUVBwcH0tLSagTK9PR09Ho9Xl5eAPz444/k5eXZzTmZkJDAunXrcHNz48qVK4wcOZKIiIhf/oZEnUmgFEIIIcQtq37t3ahRIy5duqQFyqKiIkwmE3l5edqyjFarlV27dtGuXTttTsrU1FRWrVqF0WgkPz+fhx56SKtmiv89EiiFEEIIccvatGkDgMFgIC0tTfuGsrCwEJPJhM1mo0WLFkDVgJuysjL69esHwJUrV1i5ciV6vZ7S0lLGjx/Pfffd9+vciLgjZJS3EEIIIW5Z9Wvv4uJicnNzsVqtQNWgnMrKSqDq+8mCggL2799Pt27daNCgAXl5eURGRlJRUYHNZmPixIl2A3fE/yapUAohhBDitoSGhnLlyhWgao1vqAqUFosFnU6nTRnk6OhIz549KSoqYvny5ZSWlgIwefJkCZP3CAmUQgghhLgt1a+9HRwc7AKl1WrFw8ODK1eucPz4cfr06QNUzV+Zn5+PTqdjypQp+Pv7/2rXLu4sCZRCCCGEuC0uLi74+/vj+P/s3Wd4lGX69/HvzGRSJp2QAimkkkYzdKRJlaZYAHVFqbqIurq7ulh2bWtbXfVZlT8CojQVUYSll4CUUKRDSIBMGgRCSCEhdZKZuZ8X2dwm0jFhQnJ+jsPDycw9M2eGiL9c5bz0evVMb4vFgtVqJTg4mPj4eDw8POjYsSOLFy8mNzcXe3t7JkyYQEBAgI2rF/VJAqUQQgghblpMTAzl5eVkZ2fXud/b25uTJ09y11138f3335OVlYWjoyOTJk2iVatWNqpWNBQJlEIIIYS4adHR0Wg0GnVdJFQfw3j48GFat27NsWPHSE9Px2AwMHnyZLy9vW1YrWgoEiiFEEIIcdNcXFzw9/cHwKxoKFfssHdyJjs7G0dHR06cOIGzszNTp07Fy8vLxtWKhiJtg4QQQgjxu+hbR7E5zYFTVg8UNGhMCqEOJeQYzxDq6swTTzyBm5ubrcsUDUgCpRBCCCFu2sLdmby2rRBwR6H6tBwFDWkmZ1KJ5B/d2kqYbAZkylsIIYQQN2VvRgH/WJGIAii/iRTVX2t4a20K+zIKbFKfuHUkUAohhBDipszdkYZWq7nqNVqthrk70m9RRcJWJFAKIYQQ4oZVVFnYmJSDxapc9TqLVWFD0jkqqiy3qDJhCxIohRBCCHHDiivMXCNLqqxK9fWi6ZJAKYQQQogb5upoxzVmu1VaTfX1oumSQCmEEEKIG+ao1zE4xhfdNVKlTqthSIwfjnrdLapM2IIESiGEEELclCm9Q7FeY97balWY0jvkFlUkbEUCpRBCCCFuStfgFrw1uh0AGuoGS51WgwZ4a3Q7ugS3sEF14laSBQ1CCCGEuGmPdm9D5uGdJOQ5crzEHqtSvWZycLQvU3qHSJhsJiRQCiGEEOKmVVVVoZxP5e8DB3JHl24UV5hx/3ZjIwAAIABJREFUdbSTNZPNjARKIYQQQty0jIwMLBYL4eHhOOp1EiSbKVlDKYQQQoibZjQacXd3p2XLlrYuRdiQBEohhBBC3DSj0Uh4eDgazXU2pRRNkgRKIYQQQtyUgoICCgoKCA8Pt3UpwsYkUAohhBDiphiNRrRaLSEh0meyuZNAKYQQQoibYjQaCQoKwsHBwdalCBuTQCmEEEKIG2Y2m8nIyJDpbgFIoBRCCCHETcjMzKSqqkoCpQAkUAohhBDiJhiNRlxdXfHx8bF1KaIRkEAphBBCiBsm7YJEbRIohRBCCHFDCgsLycvLk+luoZJAKYQQQogbYjQa0Wg0hIaG2roU0UhIoBRCCCHEDUlNTSUwMBBHR0dblyIaCQmUQgghhLhuFouFtLQ0me4WdUigFEIIIcR1O336NJWVlRIoRR0SKIUQQghx3VJSUnB2dsbPz8/WpYhGRAKlEEIIIa5bamqqtAsSl5BAKYQQQojrcvHiRXJycmS6W1xCAqUQQgghrktqaqq0CxKXJYFSCCGEENfFaDTi7++PwWCwdSmikZFAKYQQQohrslqtpKamEhYWZutSRCMkgVIIIYQQ15SVlYXJZCIiIsLWpYhGSAKlEEIIIa7JaDTi5OREq1atbF2KaIQkUAohhBDimoxGI+Hh4Wi1Eh3EpeSnQgghhBBXVVJSQnZ2tqyfFFckgVIIIYQQV5Wamgog/SfFFUmgFEIIIcRVGY1GWrVqhbOzs61LEY2UBEohhBBCXFFNuyAZnRRXI4FSCCGEEFd09uxZysvLJVCKq5JAKYQQQogrMhqNODo6EhAQYOtSRCMmgVIIIYQQV2Q0GgkNDZV2QeKq5KdDCCGEEJdVVlbGmTNnZLpbXJMESiGEEEJclrQLEtdLAqUQQgghLstoNOLr64urq6utSxGNnARKIYQQQlxCURRpFySumwRKIYQQQlwiOzub0tJSCZTiukigFEIIIcQljEYj9vb2BAYG2roUcRuQQCmEEEKIS9S0C9LpdLYuRdwGJFAKIYQQoo7y8nKysrJkultcNwmUQgghhKgjLS0NRVEkUIrrJoFSCCGEEHUYjUa8vb1xd3e3dSniNiGBUgghhBAqaRckboYESiGEEEKozp8/T3FxsQRKcUMkUAohhBBClZKSgl6vJygoyNaliNuIBEohhBBCqFJTUwkJCcHOzs7WpYjbiARKIYQQQgBgMpk4deqUTHeLGyaBUgghhBAApKenY7VaJVCKGyaBUgghhBBA9fpJLy8vPD09bV2KuM1IoBRCCCGE2i4oLCzM1qWI25AESiGEEEKQl5dHUVERERERti5F3IYkUAohhBACo9GInZ0dbdq0sXUp4jYkgVIIIYQQGI1GgoOD0ev1ti5F3IYkUAohhBDNXGVlJZmZmbJ+Utw0CZRCCCFEM5eRkYHFYpH1k+KmSaAUQgghmjmj0YiHhwctWrSwdSniNiWBUgghhGjGFEXBaDQSHh6ORqOxdTniNiWBUgghhGjGCgoKuHDhgpyOI34XCZRCCCFEM2Y0GtHpdISEhNi6FHEbk0AphBBCNGNGo5GgoCDs7e1tXYq4jUmgFEIIIZqpqqoqMjIyZLpb/G4SKIUQQohmKjMzE7PZLIFS/G4SKIUQQohmymg04ubmhre3t61LEbc5CZRCCCFEMyXtgkR9kUAphBBCNEMXLlwgPz9fprtFvZBAKYQQQjRDRqMRrVZLaGiorUsRTYAESiGEEKIZMhqNBAYG4uDgYOtSRBMggVIIIYRoZsxmM+np6TLdLeqNBEohhBCimTl16hRVVVUSKEW9kUAphBBCNDNGoxEXFxd8fX1tXYpoIiRQCiGEEM2MtAsS9U0CpRBCCNGMFBUVkZubK9Pdol5JoBRCCCGaEaPRiEajkXZBol5JoBRCCCGakdTUVAICAnBycrJ1KaIJkUAphBBCNBMWi4W0tDSZ7hb1TgKlEEII0UxkZWVhMpkkUIp6J4FSCCGEaCZSUlIwGAy0atXK1qWIJkYCpRBCCNFMpKamSrsg0SAkUAohhBDNQHFxMefOnZPpbtEg7GxdgGh4SUlJzJs3j/Xr16vrZ/z8/AgODqZv374MGzaM7t2727pMIYQQDSg1NRWAsLAwG1cimiIJlE2Yoii89tprvPvuu/j7+zN27FgiIiIoKSnh559/ZuXKlWzZsoVVq1axb98+W5crhBCiARmNRvz9/TEYDLYuRTRBEiibsD//+c988sknjB8/ntmzZ+Po6Kg+9vzzzzN79myefPJJG1YohBDiVrBaraSmptKtWzdblyKaKFlD2UStWrWKTz75hA4dOjBv3rw6YbLG1KlTiYmJwcPDwwYVCiGEuFXOnDlDRUUFERERti5FNFEyQtkEKYrC888/D8CMGTOws7v8H7NGo+HYsWO3sjQhhBA2YDQacXJyonXr1rYuRTRRMkLZyOTm5vLqq6/Srl07XFxc8PLyolevXsycOZOqqqrreo2tW7diNBrRarWMGDGigSsWQgjR2BmNRsLCwtBq5X/7omHIT1YjsmfPHjp27Mjbb79NQEAA77//PjNmzKCwsJDp06fTu3dvcnNzr/k6P/zwAwBt2rTBzc1Nvd9qtVJcXNxg9QshhGh8SktLOXv2rOzuFg1KAmUjkZmZyahRo8jOzubPf/4z69atY/r06bzwwgvs37+fO++8k19++YX77rvvmiOVNTu2g4KCsFgszJ49m27dumFvb4+bmxsODg707duX+fPnY7Vab8W3J4QQwkZq2gVJ/0nRkCRQNhIvvPACubm5BAUF8c4779R5zMnJidmzZ6PRaEhISGDu3LlXfa3ExESgekRy8ODBTJ8+nc6dO/P999/z008/8cQTT7B7924mTJjAyJEjKSsra7DvSwghhG0ZjUb8/PxwcXGxdSmiCdMoiqLYuojm7uTJk0RFRaEoCq+++ipvvfXWZa/r06cPO3bsIDAwkMzMzMsenVVWVoazs3Od+5YvX869995b5761a9cyYsQIFEXhscceY/78+fX3DQkhhGgUFEXhww8/JC4ujoEDB9q6HNGEyQhlI/DDDz9Qk+uv9h/8oEGDADh9+jR79uy57DW/XSM5YsSIS8IkwLBhwxgzZgwACxYs4NChQzdVuxBCiPqhKAqffvopLi4uaDQafv755+t6XkZGBp999hkPPvggbdu2xcXFBXt7e3x9fenduzebN2/G39+/YYsXzZ60DWoEtmzZot6+4447rnhdXFycenvz5s306NHjkmvMZnOdrx988MErvt5DDz3E999/D8DixYvp1KnTddcshBCi/qSlpTFp0iS2bt16Q8/78MMPeeGFFwAwGAyMHz+e2NhYrFYrhw8fZuHChZjNZo4fP87atWuJiopqiPKFkEDZGNSseXR1dcXd3f2K1wUGBqq3r9Q/8rdrZNq1a3fF16sdIH/55ZfrqlUIIUT9URSFzz77jJdeegmdTkePHj3YvXv3dT8/Ly8PgFatWrF7926CgoLqPB4YGMh7771HRkYG99xzD4mJidjb29fr9yAEyJS3zZlMJs6dOweAr6/vVa+t/XhGRsZlr3F1da3zl8XVTsHx8vJSb58/f/56yhVCCFGP3njjDZ599ll69+5NYmIiQ4cOvanXef/99y8Jk+Xl5eh0Oh5++GEAUlJSWL9+/e+uWYjLkUBpY7XXPF7ueMTanJycLvu82rRabZ0pjd9OgddWez+WTqe7Zq1CCCHq39y5c1m3bl2dWajrFRAQQOfOnRkyZMglj6WmpqIoCnfddZd6X1JS0u+qVYgrkUBpY+Xl5erta01D1H78aq1+unXrpt7Oycm54nW1m6TLcVxCCHHrvfbaa0yePPmmn//000+zb9++y85wGY1GfHx88Pb2Vu+rPTAhRH2SQGljtf/jrqysvOq1tR83GAxXvO6BBx5Qb9c0Ob+cAwcOqLf79u2r3i4sLGTx4sVMmjSJO+64Aw8PD+zs7PDw8KBr1668/PLLnD59+qq1CiGEuLbLtX+rD4qiYDQaCQ8PZ//+/er9tUcrhahPEihtzNXVVb1dUVFx1Wtrj2bWft5vDR48WN2Ms2jRIq7UanThwoUAODg4MHHiRAB27tyJn58fjz76KF9//TUhISG8/PLLfPbZZ0yePJmMjAzeffddoqOj+fHHH6/vmxRCCHFLnTt3jtLSUgwGA59++ikAkydPpn379jauTDRVEihtzMHBAT8/P+Dq09O/fbxNmzZXvE6n0zFz5kz0ej2HDh3ivffeu+Sab775hlWrVgHwz3/+U+1RdvHiRUwmE1qtljVr1rBs2TJefPFF/vjHP/Lvf/+bEydOEBsbS2lpKY888gjHjx+/4e9ZCCFEwygpKSE7O5tVq1axa9cu7rvvPoqKinjrrbeYPXu2rcsTTZgEykYgNjYWqN5oU1RUdMXrsrKyLnnOlfTp04fFixfj4uLCyy+/zLBhw/j888+ZNWsW48aN49FHH0Wr1fLmm2/y17/+9ZLnT5gwgbvvvvuS+1u0aMEHH3wAVE/Bz5kz57q+RyGEEA3v6aefpnXr1jzxxBOsX7+e8PBwtm/fzquvvopWK//LFw1HfroagdprWq52Yk3tNY8DBgy45uuOGTOGxMREnn/+eTIyMvjb3/7Gn//8Zw4ePMjUqVM5fPgwf//73+s8x93dnc6dO9dZh/lbXbp0UW/LjkEhhGg8XnzxRVatWsXYsWN5/PHHSUtLo3v37gwePBij0Wjr8kQTJo3NG4EHH3yQV199FYD4+Hj69et32es2bdoEVLeJuNwpOZfTpk0bPvroIz766KPrur5nz55X3cgD1DkrXHYMCiFE4xETE6P++09/+hMAo0aNYtOmTXTv3p2dO3cSGRlpyxJFEyUjlI1AZGSkOiK4cOHCy+72Pn78ODt27ABgxowZDbYz8HrIjkEhhGi8jEYjLVu2xMPDAw8PD7755hv0ej0FBQVMmjTJ1uWJJkoCZSPx4Ycf4uXlRUZGhjpaWaO8vJwnnngCRVHo2bMnTzzxhI2qrF43WVNf+/btmTJlis1qEUIIUVftdkE1AgMD6d+/P1DdyePkyZM2qk40ZRIoG4ng4GBWrlyJr68vH3zwAcOGDWPmzJl8+OGHdOnShe3bt9OlSxeWL1+OXq+/ZXWZTCZycnJISkpi3rx5dO3alW3btjF27Fi2b98uU95CCNGI5ObmUlxcXCdQAnWmuRMTE291WaIZkDWUjUjPnj05cuQIn3zyCcuXL+eFF17A3t6eqKgoPv30U5588slbGiYBvv32W7VHJUBQUBDffPMNDz30kE2n3YUQorkrKytjzZo1xMTEqGsnU1JSsLOzu6S1nJ3dr/+7v9qRvELcLBmhbGR8fHx45513SEpKorS0lAsXLrBr1y6efvrpWx4mAYYOHcrGjRtZvnw5//rXv/Dw8OCRRx4hKiqKDRs23PJ6hBBCVDt//jxjxoxh5syZ6n2pqamEhITUCZBQHTRrBAUF3bIaRfMhgbKe9e/fH41Gc81/XFxcbF3qdWnVqhWDBg3i3nvv5YUXXuDgwYM8++yznDx5kmHDhvHdd9/ZukQhhGjW1q9fj8ViwWQykZmZecl0d1ZWltolxMfHh65du9qiTNHESaAUN0Sr1fLxxx8TGxuL1WrliSeeoKCgwNZlCSFEs2U0Gnnuuec4ceIEVqu1TqDMz89nzJgxmEwmAP71r3+h0+lsVapowmQNZQMYPXo077777lWvuZ1PLNBqtTzyyCO88sorFBcX88MPP9h057kQQtzOFi1apN4+cuSIenvjxo3qCWm+vr4MHjy4zvNcXFwIDQ0lLS2Nzz77jO+++4527drh5eWFg4MDR48eZfHixRQUFODk5MT777/P448/fmu+KdHsSKBsAO7u7kRFRdm6jAYlOwaFEKJ+jB8//rL3v/POO+rtfv36XRIoW7ZsidFoZPPmzaxcuZIVK1Zw8OBBdu7cCYCnpyft27dn4MCBTJgwgcDAwIb7JkSzJ4FS1LF27VoMBsMVT+upITsGhRCifiiKctPP1Wg0DBw4kI4dO+Lp6ckjjzxCREREPVYnxPWRQCnqmDZtGi4uLtccdZQdg0II0XgYjUZ0Oh3BwcG2LkU0U7fvQr7bRGVlJUVFRb/rN9D6UFFlIbfYREWV5ZrXJicnk5GRccXHrVYrCxcuVL8eMWJEfZQohBDiJhmNRoKDg23SXk4IkEDZIAoLC3n77beJiIjA0dERDw8P9Ho9HTp04JVXXuH8+fO3rJa9GQU8uWgfMa+to+s7m4h5bR1PLtrHvowr78y2Wq2MHz+ec+fOXfKYxWJh+vTp6sLxiRMn0r59+warXwghxNVVVVWRkZFBWFiYrUsRzZhGsfXQWRPTv39/tm7diouLC1OmTKFXr144OTlx/PhxZs+eTUpKCh4eHnzzzTcMGzasQWtZuDuTf6xIRKvVYLH++ses02qwWhXeGt2OR7vXPU3h3nvv5b///S8ABoOBhx9+mMjISPWc8SVLlqjnwE6cOJEvvvhCfiMWQggbSklJ4ZtvvmH69Om0bNnS1uWIZkoCZT3r378/mZmZbN68mZCQkDqPVVRUMGrUKDZt2oSDgwPbtm2jW7duN/weOTk5LF26lA0bNnDw4EHOnz+PXq+nVatW9OzZk4kTJ+IS0pGxX+zian+4GmDpkz3pEtyizv2JiYn89NNPbNu2jRMnTpCXl0dVVRWurq6EhobSq1cvHnvsMbp06XLDtQshhKhfa9eu5cSJE/zpT3+SI3GFzUigrGfnzp3DYDDg5uZ22cfPnj1LaGgoJpOJrl278ssvv9zQ6z/55JN8/fXXVFZWEhgYyLhx4wgPD6eiooK1a9eyfv16AMJ6DMHa9yms2ivvu9JpNQyO9mXWo51vqAYhhBCNx6effkpISAgjR460dSmiGZNAaQOjR49mxYoVABw6dIiOHTteck1FlYXiCjOujnY46n891cDR0RGTycSoUaP47rvvMBgMdZ43a9Yspk2bBoAhph/e97xw1Vq0Gkh64+467yGEEOL2UFBQwKeffsq4ceOafP9j0bjJphwbqD1VnJCQUOex69lE4+zszJdffnlJmAT4wx/+QLeevQAoS9qK6eyJq9ZiVaC4QvpICiHE7choNKLVai9ZYiXErSZ9KG3Ax8dHvZ2dna3err2JpmYPjVWBTcnn2XAsh7dGtwOgZ8+eeHt7A1BWVkZGRgbp6elkZGSQl5eHd61F2WUpe3Bo/eupNr+l1YCro/wYCCHE7choNBIUFISDg4OtSxHNnCQJG7Bareptna56qnlvRgH/WJGIAnV2ZFPr678vT+Ttz+YR6efG+vXrycjIUFv7tGjRguDgYPr160enTp1YvbJ6p7blYu4V66hZQynT3UIIcfsxm82kp6fTv39/W5cihATK+rRy5UoOHz7MK6+8ctWddrX7O7Zq1QqAuTvSLmnv81saFP6bbmXAmf24ubkREhJC9+7dCQkJwd3dHagOq0uWLPn1Ofor/9ZqsSpM6S3TJEIIcTvKzMzEbDYTHh5u61KEkDWU9enHH3/k73//Ozk5OVe9bvfu3ert3r17U1FlYWNSzlXDJIAVDaesnkz941M899xzjB49mk6dOqlhsqysjEWLFrFnzx71OQ6BsWiw1nkdzf+aCfW0y6T89LHr+t5efPFFNBoNGo2G119//bqeI4QQomFUVFk4kJSCk4tbnWVUQtiKjFA2gLVr1zJx4sTLPpaSksKmTZsA6NWrF7GxseQWm7hGllQpgN7gdskIaHZ2NkuWLKGqqor8/HwAXFxcmPFAL1aeLOSU1RMFDRoUgrSFPNqlFRGeMWzevBmdTkevXr2u+J4HDhzgo48+ur4ChRBCNJi9GQXM3ZHGxqQcrApoiCB18X6m9g69pKewELeSjFA2gJdeekk9Taa2goICHn74YSwWCwaDgc8//xyo3hSjvc5etBoU9u7cxunTp9W1mEeOHGHevHkYDAbuvPNODhw4AFSfsR3j7cgA+zTejTMxvfVpZt7lyGCnDApO7qNHjx707t2bjRs31hnVrM1sNjNlyhQslmufAS6EEKLhLNydydgvdrEp+bw6CKGgYVPyecZ8sYtFezJtW6Bo1mSEsh7FxMSg1+vJycmhU6dOPPTQQ3Tt2hV7e3uSk5NZsGABubm5+Pr6smTJEjp16gSAo17H4BhfNiWfv+q0t04D7TwVjh05xN7dOzEYDBgMBvLy8mjXrh2jRo3i7rvvBiA8PJy33nqLDRs2oNPpaOHuSl5ONp3ax/LLrgQURWHfvn0MGDAAq9XKunXr0Gq1dO3atc57/vvf/+bgwYPce++9au9MIYQQt9b1btyM8nWVkUphExIo69GLL77IY489xrJly9i4cSPbtm1Tp6E9PT3p0KEDI0eOZPLkybi6utZ57pTeoaw/dvW1l1YF/j7mTuKCRpCSksKaNWvIy8sDICkpie+//54tW7bg7e3NSy+9RHh4ON999x1eXl5oNBqsVit+fn54enqi0+nYtWsX3bt3Z9CgQVgsFtasWYNOpyMuLg6obkfxxhtv0LVrV5599lkJlEIIYSPXs3FTq9Uwd0e6BEphExIo65mfnx9PPfUUTz311A09r0sbT0b4XGT1eVc0KCi1ViNoUbACQ1oUEhfkQXZ2NmvWrMFisTBhwgRcXV2ZNWsWS5cuxdXVlYcffhiTycTKlSuxWq2Ehoai1WpRFAWNRkN0dDQHDhzAZDKxf/9+evTowdChQ7FYLKxcuRKtVkunTp148sknqaqqYs6cOVy4cKGePykhhBDXo2bj5rXW2lusChuSzlFRZZF2cOKWk0DZSBw8eBCfiyd5pVtvFu07W2cTTfsWCt3dS6nKTuWLL74gPz8fPz8/xo4di5ubGxs2bODNN9/E29ubsWPH0qdPHwAOHz4MQGJiIm5ublRWVmI2m4mNjWXnzp2Ehoayc+dOunTpgp2dHcOHD8dqtbJixQpWrFjB5s2b+dvf/kbHjh3ZsCnelh+PEEI0W8UV5uveuFlz+pkESnGryaacRqC0tJSNGzfSsWNH/B1MPOB7gb8EneHdbjDB+Qg9Lcf464T7cXJy4vz583h4eDBhwgTc3NyIj49n9OjRuLu788wzzxAVFcV9993Hgw8+iIeHB1qtlnbt2nHhwgXKysr44IMP2L59OwaDAb1eT3FxsRo8NRoNI0eOpE2bNrz//vsEBgYyYsIzPLloH49/9Yta78ojZ+scBSmEEKLh3MjGTTn9TNiKBMpGYMOGDWg0GgYPHkxGRgbBwcE42Glx1lmIDA/FZDIxd+5cTCYTDg4O5Ofnk5CQwNatW7nnnntwdnbm888/x2KxMHz4cHQ6HYqiUFhYSMuWLbn77rvp2bMnjo6O9O7dm5KSEsrKyjhx4gROTk7Ex8eTk5OjTomvXLmS8vJywvqNZvz8Q2xKPo9S67fjtNxS2VEohBC3SM3GTd01UqVOq2FIjJ+MTgqbkEBpY+np6Rw5coRBgwYBkJubS3BwMDqdDqvVSnBwMFDdcmjChAlMmzYNvV7PggULGD58OE5OTqxevZr09HTatWtHSEj1yTenT59mxYoVLFiwAACttvqPuk+fPkyePJlHHnkEADc3N8rLy5k1axafffYZr7/+OsuWLWPEAw+RHjAEuHRHoaIoKFTvKJSRSiGEaHhTeode+/ALOf1M2JAEShsym82sXr2aoKAg7rjjDjIyMgAICQlBp9ORl5fHxo0bgeojFX19fXF3d6ddu3YsXrwYq9XKnDlzyM3NxWw2M2TIEPW1Dx06RF5eHmfOnAFQN+XUCA8Px93dncDAQCIiInBzc8Pb25uPP/4YZ2dnCoPvuuYPR82OQiGEEA2rc5AHQzwLAOWSkUqdVoMGeGt0O9nhLWxGFlo0ELPZzMKFC/n+++85dOgQ+fn52NvbExAQQN++fZk2bRpFRUVcuHCBcePGodFoSE9Px8vLCycnJ/Lz8ykuLqZLly6UlpaSnJxMUlISZrOZxx57jMrKSgYPHqy28unWrRv79+9X33/Dhg3qFDlUB8qaRuiAutv76NGjjBs3jnnz5rFr1y4uXrzIJ//5lE/O+nOtNeCyo1AIIW6NvXv34l+exqwHHmb58WI2JJ3DqlSvmRwc7cuU3iESJoVNSaBsAOfOnWPEiBEcOHAAe3t7Hn/8cTp16kRRURHr1q1jzpw5fPnll/Tv35+XX34Zb29vADIyMmjdujVff/01JSUl+Pn5MWJEdc/J5ORkfv75Z958802KioqA6tBYY/78+ZetpU2bNsClgRKqG7Hv3r0bq9VKVVUVP/zwA/369SM8pgPK2eLr+l5lR6EQQjSskpIStmzZQlxcHHd3acvdXapbCRVXmHF1tJO/f0WjIIGynimKwgMPPMCBAwdwcHBg165d3HHHHerjL730Ei+++CIffPABmzdvZvz48QAUFxeTn59PSUkJDg4OBAYGqqOLoaGh2NnZkZGRcdP9IH8bKK1WK/b29jg6OrJixQrmzJmDVqulbdu2bIvfgLUsGoVfp1WsprJfv0ezCUtZdajVasBRd539LIQQQtyw+Ph4tFotAwcOVO9z1OskSIpGRQJlPduxYwc7d+4EYNq0aXXCZI0xY8Ywc+ZMSktL+eCDD3j88ceJj6/u8+jt7c1DDz3EmjVrqKioAECn0xEVFYXFYmHLli3079+f0tJSPvvsMyIjIykqKiIzMxM3NzemTJnCxo0bOXLkCM8++yyenp4AmEwmFEVh06ZNnD17ljNnzlBZWQlATk4O58+fB2DOnDnX/B4v7lnGxT3L1K/3j66uSQghRP3Kysri0KFDjBgxAoPBYOtyhLgiCZT1bO/evert7t27X/J4WVkZP//8M+Hh4Rw+fJikpCS+/fZbUlJScHJyYsKECeh0OnQ6HRaLRX1ebGwsiYmJHDx4kH79+rFp0yYABg8ejJ2dHXPmzKGgoIAFCxZQUVHJ6KT3AAAgAElEQVSBTqfj+PHjnDlzhqysLHWa/PDhwwQEBNCnTx/8/f2xWq189dVXLF68mKqqKuLj4zEYDJwtVdhjDoT/jVJW5aRxYcs8AJxj78K5/UA0wN9HRNOxY8cG+jSFEKL5slqtrFmzBj8/P/VIXCEaKwmU9axm1A+47G+TmzZtwmKxEBQUpDYUP3LkCF5eXsTGxqLTVU9h/HaKOiwsDJ1Ox8WLF9m3b1+d31gLCgro3LkzmzdvJjc3V33O5s2badWqFTExMZjNZvbu3cuzzz6LXq9Xr1EUhRYtWuDp6UlMTIy603z4HXfQNlvhhwwdGhTKNb/u+dZ7tsIQ3Im3Rrfj0e5t6ueDE0IIUceBAwfIzs5m0qRJaus3IRorCZT1rEOHDurt48ePM2TYCHXhdM7ZLA4ePMjw4cOZO3cuAI6OjkyYMIElS5aoPSeBS0Yo9Xo9kZGRJCcns2nTJlxcXEhOTiY+Pl6dGnd3d1dHIt3d3Zk+fboaHo8ePcrevXvrtA6CX3d7Hz58mF9++QWNRoOiKPj6+uJ6cB3Pt4tjWVIhJ2o9J8DNjq+e7Ck7CoUQooGUlZWxefNmOnbsSGBgoK3LEeKaJFDWs6FDh9KhQweOHDnCm+//m5nnw0DviFYDYY6l9GwRzObNm0lNTQVg8uTJmEwmgDqBUqvVYjab1SnrM2fOcOrUKRRFobKyEo1Gg06no0ePHgQEBNC6dWucnJz46quvOHXqFEVFRaxdu5ZRo0ah0WjU325/GygtFgunT59WWwxNnTqVJUuWEB8fT0BAAF7OFu73KWDfmZMs+t9zop3LJUwKIUQD2rx5M1arVT30QojGTgJlPdPpdEx5ey4vPj2V0szDVM7/Mx59HkXvG8oxUwn7Nh+gOOFbAB544AE++OADNmzYgI+PDyaTibS0NLKysjh+/DglJSXMnTsXnU6Hn58foaGhHDlyBIC7776bTp06XfL+Fy5cUKfLDx48iMFgYNCgQWg01Wsha0+jFxYWMnfuXEpLS9HpdHTq1AkvLy/8/PzIzc3F3d2dpUuX4u7uTmZaqvq8Y8eOMX/+fHQ6Hb6+vgwePLghP1IhhGhWsrOz2b9/P0OHDsXFxcXW5QhxXSRQ1rO9GQV8lHAen4f+SdmJBAp/nk/uT+/UucYpvBuv/fkpxgztw969e0lMTATgP//5DwCenp44OjpitVp5+OGH8fPzw87OjmXLlqkbdg4fPnxJoDSbzRQXFxMQEICvry8HDhwgISEBg8FAixbVI4o1gfLYsWMsW7YMq9VKv379KCsrIzk5mZ49e5KcnIyDgwOLFy9m+fLll3yPSUlJTJgwAYB+/fpJoBRCiHqiKApr1qzBx8eHbt262bocIa6bBMp6NndHGtayC+St/z/KTuxC59YSj/4T0LcMQjFXUpF+gJLELbz73vsk79lCZGQkZrOZmJgYOnbsiL+/P87OzsTHx3P06FECAgKA6qbnR48eJS4ujgMHDpCRkUFhYSEeHh7qe6ekpAAQGRlJr169KCwsJCMjg40bN6o7zq1WK6tXr2bfvn3Y2dkxfvx4goODycjIYO/evSxfvhwHBwf69u2LyWQiLi6O/v37k5CQwIwZM1AUhc8//5zAwEDuvffeW/8BCyFEE3b48GGysrJ4/PHHZSOOuK3IT2s9qqiysG6/kbMLXqDsxE703kG0mvQp7j0exBDeDeeo3ngNexafB16l6PQJFixYQGlpKQAjR46kbdu2ODs7A9VT5zWjiRaLhTVr1hAYGKhOX9eMUtZ29OhRADp27IhWq2XMmDF4eXlhb2/Pnj17AFiwYAH79u3D09OT559/Xl23GRQUhKOjIxkZGQwZMoTOnTtjZ2eHk5MTlZWVODo6Ar9u4jl+/HidTUNCCCF+n4qKCjZt2kS7du3qrKkX4nYggbIeFVeYKdi6EHPhOQA8Bz6BzvHS9S9OoZ1xjr0LRVF4//330el0ODk51blGq9WqgW337t3k5eUxfPhwnJycCAsLw9HRkUOHDtXZZHP69Gns7e1xdXUFwMHBgYcffhi9Xo+dXfVgdF5eHrGxsTzzzDN12hpZrVYURUGn09GuXTsURcFqtVJaWkphYWGd+mJiYqioqFBbDAkhhPj9fv75ZyorK2UZkbgtSaCsR872WsqStwGgcTDg2KbDFa81tK2egjabzezfv/+S3dc1I5QXL15k69atdOvWDT8/P6A60NUEvVOnTgHV/S9LSkrw9fWt8zoeHh60b98es9kMVAfV3r17q5t0auzcuZPKykosFgvZ2dlkZWVhtVoxGAxkZWWpI5QAfn5+eHh4kJycfNXPo6qqinnz5jF8+HD8/Pywt7fHx8eHfv36MWvWLLUmIYRo7nJycvjll1/o168fbm5uti5HiBsmgbIeFRcWYK0oAcDOzeeS0FZDg0Ibr19HLpOSknj77bdZsGABKSkpWK1WtQ/l+vXrcXBwqHO0YWRkJFDdOP3QoUNUVFnYfSgJs1I9HV3DarXy7bffsnv3bnWEsmazTe0zwQsLC9m+fTvdu3fHYDCQlJREamoqBoOBO++8k8LCQrXhOtSd9q69a7y21NRUOnfuzOTJkzl8+DBTp05l1qxZPPPMM5w5c4Zp06bRrVs3cnJybvBTFkKIpkVRFNauXUuLFi3o0aOHrcsR4qbIppx6VHcBtXLF6xQ0dPeBff/72sXFBYPBQHp6Ounp6eh0Ojw9PamqqiIpKYn777+/zgihwWAgJCSEY+crWL2vhOf3rMOqgIY4zh7XoG9VQNsWdnz55ZdcvHiR1q1bM2jQIBYsWEB5eTnOzs4sXLiQSZMm4eLiwrp163BycuKuu+5S39PJyYnQ0FC6dOlCfHy82jC9RnR0NLt27eL06dO0aVP3tJyCggIGDx5Meno67dq1Y9u2beqZ4gB/+ctfGDJkCAkJCQwbNozdu3djb29/05+7EELczo4dO0ZmZiaPPvponV/ehbidyAhlPfLy8lLXL5qLzqOl7uidVgOgMMDtPL1ifg1hNT0gp0+fTrdu3XB0dCQvLw+oHg08evQoaWlpdUYDTzm0YUl+azLNblj/l10VNPxsLODBL3Yx7d+LuXjxIj179mTq1KlqYIuKiqK8vJyKigoWLVpEYmIiJ06cYOjQodjb2xMTE0NhYSHZ2dmEhYVhb2+Po6Mj+fn5FBcXq+8fEBCAq6vrZae933rrLdLT0wH49NNP64RJqA7ENScFHTx4kM8+++wmPm0hhLj9mUwmNmzYQFRUFGFhYbYuR4ibJoGyHmm1WoYPHw6AUllOVFXa/0Jk9TR3mH0JXz3SnihdrtpzEuCee+5h586dLFq0iJCQEP7yl78QEhICVB+5mJKSwsKFC3n33XdZsmQJK3Ym8uWhkv+9at0/Qsv/0mVCZSAdBoxmyJAh1e+v0bBnzx4mTZrEP/7xD1JSUigoKGD58uWEhIQQExMDVJ/WUxM+Q0ND1edqtVp27dqlvo9GoyEqKork5OQ66z+tVivz588HwNfXt85UfW1RUVHExcUB8PHHH1+yhlQIIZqDbdu2UV5eztChQ21dihC/iwTKevbaa6+pu6dPLv+UZQ+34SGHQ8wZ4kpvzXFifBxxcHBQ2/jExcXxyiuv8NRTT+Ht7c2SJUuYP38+mZmZQPX08JQpU4iNjUWj0XD8+HE+Wn2Iq02pA+i0WtZnVm96SUtL48EHH2Tt2rWUlZUBqO2JanaS1wQ6rVaLq6ur+m+o/g06ODiYffv2qc+H6s1BFy9e5OzZs+p9KSkp6vrM2NjYq9bYsWNHALKysti9e/dVrxVCiKYmLy+P3bt307t37zo9hYW4HUmgrGfR0dGsWLECb29vUlNTGdCvL1vXr2Ln9q3s37+f+++/n+eeew6o7v348ccfo9FoaNGiBY888gjjxo3jzJkz6vS2yWTC39+fBx98kBkzZjD24T9wyuqBwuU3/NSwWBXWH8vmo0/+Hx06dCAxMVFtkg7QvXt3qqqqcHJyIiMjg5UrV6IoCoqiUF5ejtVq5dy5c5jNZsxmM23btgWoE/yCgoLUTTw18vPz1dvX2qlYc3oPwC+//HKtj1YIIZqMmo047u7u3HnnnbYuR4jfTTblNIBBgwZx/PhxvvzyS1avXs3evXvZt2+fOur34IMPEhQUhLe3NwkJCcTExPDXv/5VnSqu7fXXX7/i+zhF9MDngVev+PiF7d/wl4RvGTp0KO+//z5/+tOfyMrKAiAxMZEWLVpQXl5O69atOXToEE5OTsTFxVFWVoa9vT1JSUnqCTvu7u506dKFX375hV69euHo6IhWq1WnvWsartfubVlRUXHVz6mqqkq9XTuUCiFEU3f8+HHS0tJ46KGH1C4cQtzOZISygbRo0YIXXniBLVu28OKLL7Jnzx4OHjzIM888w6xZs/Dz8yMuLg53d3e+++67mzp1Rud87SmSCZMm85///IfWrVvXuf/MmTOMHDmS+++/nzNnzhAaGsquXbvYtGmTGhSTkpIoLy8HwNHRkZ49e2I2m+uMJkZHR3PhwgW1/U9oaKi6SzE1NfWqtdVujF6zCUkIIZq6qqoq1q9fT0REhDr7I8TtTgJlA9NoNNjZ2VFVVUV4eDh2dnbs37+fsrIywsPDGTduHCUlJWqD8meffZZdu3axfv16pk+fzu7du1m9ejUzZszg2Wef5auvvsLFq7rBuUv7gVd8Xy0KnfoPJzgokG+//ZZZs2bVeTwwMJDIyEhiYmIYNGgQaWlpREREcOLECTw9PWnfvj0FBQWknzpDuWKHRu+Aq6srcXFx7N69m8rKSgBCQkJwcHBQd3u7ubmp0zcpKSmkpaVdtj6TycS2bdvUr2vvIBdCiKZsx44dlJSUMHTo0Cv2KxbidiOB8hbQ6/VUVlZib29PWFgYycnJ6HQ6AgMD8fLy4v7771f7PI4ePZoePXrQtm1bvL29iYiIYPjw4bz55pvce++9JCQkUJJ/Dr13MA7+0Vd8Tyvw1IAopk6dSlxcHA4ODnUeLy0t5ciRI1gsFnr16kVcXBxGoxGNRkN+fj4HThfxszmCcT9k8Z2pE/0/28+Ti/ZhaNMek8nEvn3VXTR1Oh2RkZF12ge9+uqv0/AzZsy4bH3vvfcehYWF6tfSe00I0RwUFBSQkJBAz5498fLysnU5QtQbCZS3gL29vbpeMCoqisLCQvz8/NDr9QBEREQQEBBAYGCgerxiTZP0mqlwvV6PxWJh7969ALSP60p158nfHNmo1aABHggyk7x9NQcOHGDYsGFMmzatznUFBQX89NNPvP3228yePRtfX198fX1RFIVzLhG8uCGbTLObuvnHqsCm5PNMXHSEYt9O7Nq1Sz06MTo6mtzcXHXaevDgwfzzn/8EYOnSpTzwwAPs3LmT7OxsDhw4wDPPPMPrr7/OyJEj1XrkqDEhRHOwfv16nJ2d6dOnj61LEaJeyUrgW0Cv16uBsma9jJOTk/p4cnIyXbt25d577+W///0vvr6+6oidxWLBbDbz9ddfk5qaSlJSEgaDgVlvvcCSzfvYe9GFU1ZPFDRoULizjSvPDmlH5zaeHDgQyNq1azlz5ozaH7PGuHHjcHZ25siRI5w7d461a9cCkGN1YW2eG6Dht4cq1vS4/D5dywj76qbkXbt2JSwsDL1eT1JSEn379gXglVdeoVOnTrzxxhssW7aMZcuWqa/Ttm1bFixYQKdOnVi1ahUA3t7e9fNhCyFEI3Xy5ElOnjzJmDFj5HQw0eRIoLwFagfKixcvAtVTzgCVlZWsW7eOyMhIRo8ezZw5c1iyZAkjRowAqjerzJ8/n4qKCrKzs6mqquLRRx+la9eulJaW4rp1Kxa0VCpaDHotPYI70yW4uh1P586d8ff3Z+nSpZfsIHdycqJv37707duXqqoqDh48yMaNGzlW5osG5aptiXRaDaedI0hISCAuLg69Xk/btm1JTk5WAyXAiBEjGDFiBLm5uaSlpWE2m/H39yc4OBigzhrK9u3b/85PWQghGi+z2cy6desICQkhOvrKy5WEuF3JlPctUDtQpqeno9FoyMnJoby8nK1bt1JeXs7dd9+No6Mj48aN48KFC2zfvh2AZcuWYTKZGDp0KAcPHgTgiSeeAMBoNALw9LQncXfQopgr2b9/PwUFBep7+/n58fjjj1914bder6d9+/aYzNb/jXZe/cfCYlVILNSRX3iRI0eOANXT3ufOnVObmtfm7e1N9+7dufPOO9UwCdTZsNO5c+ervqcQQtzOdu7cSVFREcOGDZONOKJJkkB5C9QOlBkZGfj7+2O1Wtm3bx+7d++mT58+6ikJPj4+jBo1Sg2LdnZ2TJkyBYAjR47QoUMHevToAUBOTg5ubm74+PjQvXt3tFotlZWVzJw5ky1btqjvuXPnzkv+AqsZKTWbzWRmZrJmzRoqFe01zt/5lVWB4IgoduzYgdVqJSIiAjs7u8ue7X0lNe2HgoODJVAKIZqsoqIitm/fTvfu3WV5j2iyZMr7FqgJlFarlczMTHr27ImiKOzatQtPT0969eqlXltSUkJ8fLz6dZ8+fWjdurW6c7pmdDIvLw+z2ayO+MXGxqqjmmFhYSQkJHD48GF69OjBnj17GDBgABs2bFBfd/ny5Zw6dYrCwkIsFgtarRaD3g6N6VqHOlbTamBAn14s+OpLjh07Rvv27dUd7O3btyc+Pp6OHTuqZ5L/lsViYfXq1QBMnDhRfmMXQjRZGzZswNHRkX79+tm6FCEajIxQ3gI1gfLcuXOYTCZCQkLw8PCgvLycwYMHq6ckpKSk8Mknn1BUVESnTp0ASEhI4PTp0yxZsgSDwcCjjz4KwKFDh4Bfz8P28fGhRYsWGAwG7OzsmDZtGt7e3qxfvx6dTkdubm6dmmraA/n7+zNp0iRcXV3pckdHBrT1umTn+G/ptBqGxPgREhRAeHg427dvR1EUoqOjycrK4tixY9x33328//77V3yNRYsWcerUKQIDA/nrX/96cx+sEEI0cmlpaSQlJTF48OBL2rcJ0ZRIoLwFagJleno6er0eLy8v0tPTgV/bAm3cuJFvvvkGgIceeohBgwYB1f0ZZ8yYQVlZGePGjcPd3R2oDp8ajUYdodRoNERHR2MymTh58iQJCQlkZ2er73H06NE6Nf3hD39gxIgRnDlzhpUrV1JUVFQdSnMPXXOE0mpVmNK7euSxb9++5Obmcvz4cSIjI9FqterayIULF172SMXt27fz9NNPYzAY+Pbbb+sc1yiEEE2FxWJh7dq1BAUFycZD0eTJlPctUBMoMzIyCAwMZNu2bVRVVdGyZUuSkpJISEjg7NmzuLq6MmXKFNzc3NQjD3v16sVHH30E/DrdrSgK+fn5eHp6kp+fT2ZmJqdOnSItLU0NqGlpaZhMJgIDA7nnnns4cuQIW7ZsUWvSaDR06dIFf39/Fi1aBMCmTZto4+LCy11CeWdjGlrAWmu3d/XubxjVupzObTyB6hN3goOD2b59O1FRUYSGhqqBsqysjG7dujFp0iTatWunbkL673//i7+/PwsWLFBP1RFCiKZmz5495Ofn88ADD8iyHtHkyQjlLaBo7bhQbiEt8zReXl7s3buX/v3706ZNG44dO8bZs2eJjIzkueeeUxt81/ShzMjI4Ny5c/j6+qLRaDh79iwbNmzAYrFQVFTEzJkzWbNmDfn5+bRv3x4nJyd0Oh0GgwGdTseYMWNo2bIlAwYMqPMXWnx8PAUFBbRq1YoWLarbDNUE0C4eFQy3P0G/cE+0/3uKVgOh+mIe9j6HV0ESO3bsUF+rT58+ZGdnk5qaqo6Szps3j8mTJxMWFsZ3333H008/zXvvvUdBQQEff/wxx44dk/VEQogmq7i4mK1bt9KlSxf1wAohmjIZoWxAezMKmLsjjQ3HTCiEokFh275Surr6q2d6Q3XLnNqnxsCvgbJm9LB3796sW7cOQA2GHTp0IDY2lsDAwDpNcvfu3Ut2djZDhw7F1dVVvb/m9B2AwsJCZs6cqa57dHd3p1u3bmzevJnExES6hwbw+ON3UlFlobjCjKujHXk52cyfPx9Pb2+2bNmijk6GhIQQEBDAtm3bGDt2LHq9ng4dOjBx4sQG+FSFEKLx27hxI3Z2dtx11122LkWIW0JGKBvIwt2ZjP1iF5uSz6trEhU0GMsd+ea8Lx+v3Ie9vT1ubm4oSvUVJpMJo9FIfHy82sw8Pj4ee3t7hg4diru7O05OTri7u6PT6Rg1ahRhYWF1wmRkZKQ67R0bG1unptojlKNHjyYiIoLExEQA4uLi6NmzJ4MGDcJsNnPmzBmSkpJw1OvwdnXAUa8jICCA++67j9zcXNzc3Pjxxx8pKSlBo9HQp08fTp8+TV5eHm3atLmh9kFCCNGUZGZmcvToUQYNGlTnVDQhmjIZoWwAezMK+MeKRBR+Pa6wRk3T8F3mIJ4Y1YGcxJ0cOXKEs2fPkpOTg6IoODs7ExQUxNGjR6mqqmLixIlMnTqVkpISvvjiCwoLC/Hx8bnsmpya87Sheh1l7c04586dU29/++23FBYW4uzsrL7O6dOnKSkpISAgADc3N5YuXUq3bt3q7ESPiYlh4MCBxMfH4+DgwI8//sj48eOJiIjAz8+P7du3Ex0dzfr16ykvL5e/TIUQzYrVamXt2rX4+/ur3TqEaA4kUDaAuTvS0Go1l4TJ2jTA699uZYB99QYWZ2dnRo4cSVBQEF5eXmg0Gp577jkA/vjHPwLg4uJCnz59WLt2bZ3p6xqlpaXEx8fTsmVLCgoKMBqNjB8//rLvP2/ePPV2dHQ0L730EqtWraK0tJR27doxatQogoODWb9+PadPn2bMmDF4elZvxLnzzjspKCjg0KFDZGZm8vPPPzNgwAD69OmjhlCr1crJkyfVtkZCCNEc7Nu3j5ycHKZMmSIbcUSzIlPe9ayiysLGpJyrhkmonv4+ZW3Bk089jYuLCy1btiQuLo6WLVui0WjUdZDh4eF069ZNfd6ZM2eA6tHGml6UNTZt2gTAgAEDsFqtpKSkYLFYUBQFRVH44IMPmDdvHq+//jrx8fGUlZXxxhtvsHDhQqKiovD19cVgMJCcnMz//d//4erqyqRJk6ioqOCLL75QWwBpNBpGjBhBcHAwOp2O7du3YzQaiY6OpmXLlhw4cIDAwECZ9hZCNCulpaVs3ryZuLg4/P39bV2OELeUBMp6Vlxh5hpZUqUAqzfE4+bmxtGjR7l48aK6nnL27NkA3HPPPXWek5GRgV6v54477mDVqlWcPXsWqJ6uPnToEAMHDiQyMhIHBwdMJpPai9JqtVJZWcmpU6cYPHgwAwYMIDMzE0VRCA0N5dy5c6SlpXH33Xczbdo0WrZsyZIlS/j5558ZM2YMYWFhLF26lLVr12I2m9HpdIwdOxZ3d3fs7OxYtmwZFy9epE+fPpw8eRJ/f3+MRiMmk6l+PlghhGjkNm3ahEajYeDAgbYuRYhbTgJlPXN1tFNb7VyLBgWlspy8vDzKysr4+OOP+fe//82cOXNYvHgx9vb29OrVSw2ZVquVixcv4uPjw/Dhw/H19eX777+nuLiY1atX07p1a+Li4tBqtcTExKDRaNRRyp9++omqqirCw8PVox5TU1Np0aIFnp6eJCQk4OHhQWxsLF5eXjzyyCOMGzeO8+fP8+WXX+Ll5cWQIUPYv38/X331FRcuXMDR0ZE//OEP6PV6KisrWbp0KdHR0Wp/TIvFQkpKSkN91EII0WhkZWVx6NAhBgwYIIc1iGZJ9/rrr79u6yKaEjudlqTsi2Tkl6FcZaRSi0KQ9gIR+kL69+9PZmYmbdu2/f/t3XtUlded//H3OYfDReQiogcULwgaRSQqRMRgxCSIRhKdsUlMk2iqMZo0v07bmbaTzGRSm07bWatrzWTVpGpMl81lakzbJOMNxQtGCuKNKBeNRMQogiBEbnI/z+8PxjMSFdEjHi6f1z8eeZ7z8IW1lA977+/ehIeH09TUxJQpU4iNjaWsrIzMzEy++uorTpw4QWVlJWPHjiU8PJzRo0dz8OBBcnNzuXjxIgsXLmy3j+WxY8e4fPkyp06doqCggH79+hEWFkZYWBgA27dvZ9SoUQwaNIjNmzfz4IMPEhISArRNawcGBhIdHY1hGGRkZHDx4kXi4+M5c+YM+/fvZ+DAgQwbNowRI0bwxRdfUFVVRXNzM2PHjmX//v0EBgZSX19/Tbe5iEhvYrfb+eijj+jfvz/JyclaOyl9kkYou8Dz8aOwd2IN5asL4ggKCmLLli0YhsHZs2d54IEHeOqpp/jxj3+Mn58fERERTJ8+HR8fH86cOQO07TP561//mo8++gibzUZlZSUDBgwgMDDQ8fzQ0FDHGd5FRUU89dRTeHp6OkY7v/nmGyorKwkLCyMjIwMvL6/rdiRarVYefPBBxzR4amoqAQEBhISEsHHjRlJSUggODubv/u7vANi/fz8eHh74+vri5uZGQUEBzc3Nd+pbKyLS7WRnZ1NSUsKcOXOu2zAp0hdohLILDPX3ItDHgz0nyrCYTe1GKi0mMDB4dqw7y+bcx/jx4xk3bhwlJSVcvHiR7OxsPDw8GDx4MNnZ2QQHB/Pggw8SERFBVlYWJpOJRYsWMXjwYKBtTWVLSwsNDQ2kp6eTm5vL2bNnKSsro7i4GLvdzgMPPMCkSZM4dOgQ/v7+hIeHk5+fT0FBAQkJCWzatIn4+HhCQ0Nv+DX169ePCRMmEBQURE5ODmVlZYwaNYq8vDwKCgqIjY3F29ub06dPU1BQwH333Ud+fj6tra0MGTKkXdgVEekt6uvr2bBhA+PHjyc2NtbV5Yi4jAJlF4kK8Sc+PJCq+mYKL9Zi0HZ84ayIIBaG2bn8ZQahoaH4+fnRv39/IiMjyczMxNfXl+zsbI4ePUpLSwsDBgxgzJgxNDc3s3v3boYNG8aMGTMICQnB09OTw4cPM3fuXAzDoKqqitDQUCorK8nNzcVut8JMVOIAACAASURBVANta3uKi4uprKzEYrEwfPhwDh48iJeXFw0NDZSUlLBgwQLHXpM38u1p8JycHPr160dDQwMHDx5k8uTJWCwWSkpKqK6uxmw2Y7FYMAyDcePG3YXvuojI3bVjxw5KS0t56qmn2h0yIdLXmAyjo5V+cidcfXyhp9WC3W5n/fr11NTUsHz5cjw9PQHYuHEjVVVVzJs3j88//5y8vDzc3d1JTEzEbDazadMm5s6dS0xMDK2traxZswYPDw+WLFlCS0sL7777LvX19RiGgdlsZu7cufzpT3/CZDIxcuRIioqKHCETwM/Pj9raWkaNGkViYiIDBw68pemaiooKUlJS+Oqrr/D29qauro4pU6Zw9uxZSkpKsNlslJWVYbVa+cGP/pHLzYbjeyAi0tOVlJSwdu1aZs2aRVxcnKvLEXEpjVDeBW4WM94ebrhZ2sLalYCXmZnJpUuXHKN3drudAwcOEB8fz+TJkzlx4gRms5mcnBxOnTqFYRjMnz8fq9VKZmYmeXl5PPXUU/j4+GCxWPDx8XGcD/7CCy8wZMgQioqK+Oabb3jiiScoLi5mxIgRTJw4kcLCQry8vKivr6eyspKDBw+SmZnJyZMnKSkpoaamBgAvL68bhsyrp8ELCwtpbm7m3Llz9O/fH7vdzqVLl7ho8uNv9cH8Zu951u4r5O20r8gvqSbY15Mh/jpFR0R6JsMw2LhxIx4eHsybN09rJ6XPU6B0ES8vL3x9fdm7dy+BgYEMHjwYPz8/MjMz8fPzIyQkhJycHGw2GwsWLODw4cMYhkFubi7Nzc3s27eP6OhoJk2aBLSdHfvxxx/j7+9PbW0t7u7uhIaG4ubmxvHjx3F3d6empgYfHx/c3d0d+1dOmDCBZ599lrCwMAIDA2ltbaW4uJijR49y+PBh0tPTyc/Pp7i4mEuXLtHS0oKnp6djevzb0+Dnzp2jrq4Ou91OfvNAdjWGUm14YNDW9WgARRWX2XjoLIE+HkSF+Lvk+y8i4oxjx45x4MABvvOd7xAQEODqckRcTkcvulBUVBQFBQVs2bKFYcOG4efnx6hRozhx4gSxsbFYLBZaW1vx9fWltbWVESNG4Ovry549ezCZTPj6+tLS0kJhYSEff/wxw4YN48knn+TAgQPs3r2b4OBgxowZg8lk4vjx4/j6+mK32yksLGTAgAFcuHCBadOm4eXlRWhoaLumnObmZi5cuEBpaSklJSWUlpaSm5tLa2srAAMGDCAoKIigoCCCg4MJCgriwQcf5N5772XLli3sP1VOZvNw2nbbbL+FxpVThF77NJexNh9iRuo/YxHpORoaGkhNTWX8+PEdNjOK9CUKlC505QjD1atX8+mnn7Jo0SLGjh3Lli1bqKurcwTK7OxsAKKjo+nXrx85OTmEhISwa9cu0tPTaWxsZPTo0Tz++OO4ubkRHx9PSUkJn3zyCcuWLcNms1FaWuoIoGfPnsXLy4uIiAgGDhx43dqsVishISGOfSmhbUr+4sWLlJSUOEJmRkaG4zQcb29vgoODGTJkCCXlgZgu2uloga7ZbGJd+mkFShHpUdLS0mhqamLWrFmuLkWk29CUt4tZrVaCgoLYu3cv7u7uREZGkpGRQWBgIBUVFRiGQWlpqaNZZ8OGDdhsNp577jmg7bQbgMbGRqxWKzabDYvFQnh4OHl5eeTl5TFhwgROnz4Nbu7UNUNNdRWtLc3Mnz8fHx+fTtdqMpnw9vYmKCiI8PBwJk6cyP3338+9997L8OHD8fHxoa6ujhMFp9hcEXDNyOS3GQYUXqxl+QNhjvWlIiLdWVlZGZ999hkJCQmMHj3a1eWIdBsKlN3AgAEDHOsiIyMjKS8v55tvvsHNzY2WlhbOnz9Pv379MAyDL7/8koULF5KdnU1aWhqxsbHMnz+f2tpaMjIyyM7Oxmw2M3ToUMLDw9m/fz9fX7aSWuHLjmobmZe8yWkNpsFrEPdFhDvdGHNlu6Ly8nIqKyuprq6mqrGVI5c7N+poAIvjRuLtocFyEeneDMPgL3/5CxaLhfnz56sRR+Qq2jaom7iy7U9LSwsTJ05kz549hIaP4WJVHRdLzjJuTDinT5/mvvvuAyAzM5OEhAQeeOABxzFflZWV7Nu3j6NHj+Lt7c20adPYVwpvH6jABO1GDC0msBvwxvxInokdcdPaiouLOXfuHKWlpVRUVFBTU0N9fb1jTeUVJpMJi7sn66oibjpCCW17c+avnK2thESk28vNzeUvf/kLTz/9NOHh4a4uR6RbUaDsRsrLy1m7di1ewyP57EQNX9v9MTBhwmBMvwYmuJcTf08wR48eZfbs2Tc8leFKsNx+5Cu2Nt0DHQQ7E/Dx8jiihvTn66+/pri4mAsXLlBZWUlNTQ0NDQ3t9q4EMJvNeHh44OPjw4ABAxg8eDBDhw5l+PDheHm1jXgu/+AQO4+XORpwrseMwfQwf/74fPwtf69ERO6mpqYmVq1axdChQ3nyySddXY5It6NA2c38csNe1h2tuWZE0YQdAxPTrF/zswVt6xZvZskfMkkrqMDeYaA0GGG+xEz3U+0+brFY8PT0xMfHh4CAAGw2m6NJpzOnQRwsquSJNZkdNuWAwSPuX5IcO46HHnoIDw+Pmz5XRMQVdu7cSVZWFi+99BIDBgxwdTki3Y4WrnUjB4sqefdoLW0xrz2DtrU6Gc0jaPYbdsNnVFdXc+bMGYrOFrOnoOXmjTGYOGP3Z2xkFMOCbQwbNowhQ4ZgsTg3BX3fyADemB/Ja5/mYjab2o1UWswm7HaDXzwWSTgD2bNnDydOnGD27NmMGzfOMYUvImIYBqtWreKVV16hrq6OPXv2kJCQcNP35efns3HjRtLS0sjPz+ebb77B29ub0NBQZs6cyYoVKxgzZkynarh48SKZmZlMnz5dYVLkBjRC2Y10ZprYYjYxI3wA/2+iJyUlJZSXl1NVVUVdXR1NTU2O++oNNzY0Tuz05z746sMM8rnzI4SHiipZl36aHfml2I3/O8/8+fhQx3ZBVVVVbNu2jS+//JLRo0fzyCOP4O+vDc9F+rrCwkKWLFnC3r17HR+7WaAsLS1l0aJFpKamAhAbG0tSUhLDhw+ntLSUDRs2kJubi9Vq5Ve/+hX/9E//1GENhmHw4YcfUlFRwUsvvYTVar0jX5tIb6NA2U00NLcS8XoKHWRJBxMGz3gcwc3UdrO7uzve3t74+fkRGBjIkCFDsA0JIf7NA5163t1ojPn2eebXc+LECbZt28bly5dJSEhg6tSpTo+UikjPc/WopMViISIigv379wM3D5T79+93nKv9y1/+kldffbXdrEdrayuLFy/mww8/BGDNmjW88MILN3zeiRMn+Oijj1i4cCH33HPPHfjqRHonTXl3EzUNLZ0Kf9A2TZ34yGPce08ofn5+N7wvMcLWqRHPxHG2Lu+y9rRabvo5xo4dS2hoKGlpaezatYtjx46RnJzMsGE3nuIXkd5n5cqVrFy5kqSkJN555x3effddR6DsrNjY2GvCJLStD1+zZg0pKSlUVFTws5/9jEWLFuHp6XnNM5qbm0lJSSE8PLzT0+MifZU20eomfDzdMHdy6aDZBFMmTegwTAI8Hz8K+01Sqt1u8Hx89zk6zMPDg6SkJJYtW4abmxt/+MMf2Lx5M/X19a4uTUTuonXr1pGSknLbv1A++uijN1yP7e3tzezZswG4dOkS+/btu+59f/vb36itrWX27Nla2y1yExqh7CY8rZY7PqLYmcaYN+ZHdsujD4ODg1m6dCmHDh1i165dnDhxgqSkJCIjI/Ufu0gv9/rrr9/2v/OxY8eyadMmoqOjO7xv+PDhjtdff/31Nde/+eYb0tPTiYuLu+ERtSLyfxQou5Hn40exI+9Ch/fc6ojiM7EjGGvzuaYxJnGcrV1jTHdkNpuZMmUKY8eOZfv27fz1r3/liy++YO7cuQQEdN+6RcQ5zvzS6O/vT3Jy8k3vq6qqcrz29va+5vr27dvx9vZm+vTpt12LSF+iQNmNdNWIYszIAGJGBnSqMaY78vX15fHHH+fkyZNs3bqV3//+90yfPp37779fTTsicltOnz4NtIXX+++/v921goICvvzyS77zne90at9dEVGg7Ha6ckSxM40x3dmYMWMYOXIke/fuJS0tjZycHJKTkxkxouOjI0VErlZVVcWePXsArmn8a2lpISUlhdDQUCIiIlxVokiPo0DZDfX0EcWu5O7uTmJiIlFRUWzevJn169czceJEEhMT6devn6vLE5Ee4P3336ehoQGr1cqvf/3rdtcyMzO5dOkSCxcu1HptkVugQNmN9fQRxa5ks9lYsmQJhw8fZufOnZw8eZJZs2YRFRWlHwIickPl5eX84he/AOCNN95g/PjxjmtVVVXs27ePKVOmMGjQIFeVKNIjKVBKj2UymYiJiXE07Xz66aeOpp3AwEBXlyci3Yzdbmfx4sWUl5fz+OOP89Of/rTd9R07duDh4dGpox1FpD3tQyk9Xv/+/VmwYAHPPPMMVVVVrF69mrS0NFpaWlxdmoh0Iz/+8Y/Ztm0bCQkJvPfee+1mMwoLC8nPzycxMREPjzt/DK1Ib6dAKb1GWFgYL774ItOmTWPfvn2sXr3a0ckpIn3bypUrefPNN4mPj2fTpk3tTsZpbW1l27ZtDB8+nAkTJriwSpGeS4FSehWr1cqDDz7IihUr8Pb25r333uOTTz6hrq7O1aWJiIv86le/4uc//zlxcXFs3bqV/v37t7t+4MABKioqmDNnjtZgi9wmBUrplQYNGsRzzz3HY489RkFBAatWreLIkSMYRicPTBeRXuG3v/0t//Iv/0JsbCwpKSn4+Pi0u15TU0NaWhoxMTEEBQW5qEqRnk+BUnotk8nEpEmT+P73v88999zDpk2bWL9+PeXl5a4uTUTugjfffJOf/OQnxMTEsH37dnx9fa+5Z9KkSezZs4eZM2e6oEKR3kOBUno9b29v5s+fz6JFi6irq2P16tXs2rWL5uZmV5cmIl3k7bff5oc//CGTJk1ix44d+Pn5XXPPmTNnOHXqFB4eHnh5ebmgSpHeQ9sGSZ8RGhrKihUrSE9PJz09nby8PB555BHCw8NdXZqI3EFr167l5Zdfxt/fn3/913/l6NGj19xjt9vZvHkzAAMHDrzbJYr0OgqU0qe4ubmRkJBAZGQkW7Zs4cMPPyQyMpKkpKRrFur3NIZhsGrVKl555RXq6urYs2fPLe2nl5OTw5tvvsnu3bs5f/48AQEBREdHs3z5cpKTk7uucJHr+OCDDxyvjx075nidmprKuXPngLYDDhITE9u9b/fu3axYsQLDMLh06RILFiy4OwWL9HEmQ10K0kcZhsGxY8fYsWMHra2tPPzww0RHR/fILs/CwkKWLFnC3r17HR+7lUD5zjvv8PLLL2MYBosWLWLKlCkUFRWxdu1aKioqWLp0KWvXrsVs1ioZuTs68+9wxowZpKWltfvY+vXr+d73vndLn2vx4sWsX7/+lt4jIu0pUEqfd/nyZXbu3El2djYhISEkJydjs9lcXVanXD0qabFYiIiIYP/+/UDnA+XmzZuZN28ehmHw6aef8thjjzmunTp1iri4OMrLy/npT3/Kf/zHf3TVlyJy1/zP//wPx48f5+WXX8bb29vV5Yj0ChpukD6vX79+PPbYYzz33HM0NjayZs0aUlNTaWpqcnVpN7Vy5Up+8IMfEB8fT25uLklJSbf0/sbGRl566SXsdjtPPPFEuzAJbZvFXzn3+Le//S15eXl3rHYRVyguLiY7O5uZM2cqTIrcQQqUIv9rxIgRLF++nJkzZ3LgwAHefvttTp486eqybmrdunWkpKQwbNiwW37ve++9x9mzZwFYtmzZde955pln8PLywm6385vf/MapWkVcyTAMtm7dSlBQEDExMa4uR6RXUaAUuYrFYmH69Om8+OKLBAYG8qc//YmNGzdSXV3t6tKu6/XXX2fp0qW3/f6PP/4YAHd3d6ZPn37de/r3709sbCzQNlXYE0ZuRa4nOzub8+fPM2fOHK0HFrnD9C9K5DoCAgJ4+umnWbBgAV9//TVvvfUWWVlZ2O12V5fWjjMNRK2trXz++ecARERE4O7ufsN7J0+eDEB1dTWHDh267c8p4ir19fXs3LmTqKgohg8f7upyRHodBUqRGzCZTERGRvLyyy8zYcIEUlJSePfddykpKXF1aXfEV199RWNjI8BNp8uvvq51lNIT7dmzx7Gbg4jceQqUIjfh6elJcnIyS5cupbW1lXfeeYeUlBRHGOupioqKHK9v1tV+9fWr3yfSE5SWlnLo0CESEhKuOctbRO4MBUqRTgoJCWHZsmU89NBDHDlyhLfffpsTJ064uqzbVlNT43jt6enZ4b1XH0t39ftEursrjTiBgYFMmTLF1eWI9FoKlCK3wGKxcP/99/PSSy9hs9n46KOP2LBhA1VVVa4u7ZbV19c7Xne0fvLb1y9fvtxlNYncaceOHePs2bPMmTMHi8Xi6nJEei0FSpHb4O/vz1NPPcXjjz/O+fPneeutt8jIyOh2TTsduXrU8Wad21df79evX5fVJHInNTY2kpqayvjx4wkNDXV1OSK9ms7yFrlNJpOJiIgIwsLC2L17N6mpqeTk5JCcnMzQoUNdXd5NXb2WrKGhocN7rx7N1Bo06SnS0tJoamq65rxvEbnzNEIp4iQPDw/mzJnDsmXLMJlMrFu3jq1bt940pLnayJEjHa8vXLjQ4b1XXx8xYkRXlSRyx5SVlZGVlcX06dPx8/NzdTkivZ4CpcgdMmTIEJ5//nmSkpI4evQob731Fnl5eRiG4erSris8PBwPDw8Ax2k5N3Lu3DnH6/Hjx3dpXSK3q6G5lfKaRuqbWti2bRsDBgwgLi7O1WWJ9Ama8ha5g8xmM1OnTiUiIoJt27bx5z//mfDwcB555BEGDBjg6vLauXIq0M6dOzl+/DhNTU03bM45cuQI0DbdrSPrpLs5WFTJuvRCUvMvYDfABAw3W/jRIzNwc9OPOZG7QSOUIl3A19eXJ598koULF1JWVsbbb79Neno6ra2tri6tnccffxxoa15IT0+/7j21tbVkZWUB8OijjzpGNUW6g/f3n+GJNZnsPF6G/X8nAwzgrN2fH20+ywdZZ1xan0hfoUAp0oXuuecevv/97xMTE8Pu3btZu3btTaeX76ZFixYREhICwLp16657z3//939z+fJlzGYz//zP/3w3yxPp0MGiSv7ts1wMoNXefmmJHRMG8NqnuRwqqnRJfSJ9iQKlSBdzd3cnKSmJF154AavVyh/+8Ac2bdrUrnPaVTw9PXnrrbcwmUxs2LCBzZs3t7teWFjIa6+9BsCPfvQjJkyY4IoyRa5rXXohZnPH59mbzSbWpZ++SxWJ9F0mo7t2DIj0Qna7ncOHD7Nr1y7c3NxISkoiMjISk6njH4od+eCDDxyv//rXv/LJJ58A8OqrrzJu3Dig7ejEjrZOWb16Nf/wD/+AYRg899xz3HfffZw5c4bVq1dTUVHBc889x7vvvovZrN9BpXtoaG4l4vUU7J34CWY2Qf7K2XhatbG5SFdRoBRxgZqaGrZv305eXh6jRo1i7ty5BAQE3NazOhNGZ8yYQVpaWof3HDt2jP/6r/9i9+7dlJaW4u/vT0xMDMuXL+fRRx+9rdpEukp5TSP3/Wpnp+8/+OrDDPLR+l+RrqJAKeJCBQUFbN26lZqaGqZPn87999+vrtQeyjAMVq1axSuvvEJdXR179uwhISHhlp5RW1vLT37yE9asWYNhGN12yylXMwyDgsIiktblYXDzX6g0QinS9fSTS8SFRo8ezUsvvcTevXv5/PPPyc3NZe7cue02HZfur7CwkCVLlrB3797bfsauXbtYunQpZ86oK/lG7HY7x48fJzMzk+LiYsK9xnGqwbvDaW+L2UTiOJvCpEgX04IoERezWq08/PDDLF++HC8vL/74xz/y2WefcfnyZVeXJjdhGAa/+93viIqKIjs7m6lTp97yM2pra3nxxRdJTEzE3d1dZ05fR1NTEwcOHOB3v/sdf/7zn7FarXz3u9/l3599iJsN4trtBs/H63sq0tUUKEW6icGDB/O9732P5ORkTpw4wapVq/jiiy807dmNrVy5kh/84AfEx8eTm5tLUlLSLT8jOTmZtWvX8sMf/pCjR48yfPjwLqi0Z6qtrWX37t3853/+JykpKYSEhLBs2TIWL17M6NGjmRI6kDfmR2KibSTyahazCRPwxvxIYkbe3vpkEek8TXmLdCMmk4no6GjuueceduzYwWeffcYXX3xBcnIygYGBri5PrmPdunUsXbr0tt9vs9nYt28f06ZNu4NV9Wzl5eVkZmZy7NgxzGYzkydPZurUqfj7+19z7zOxIxhr82Fd+ml25JdiN9rWTCaOs/F8fKjCpMhdokAp0g3179+fv//7v+fee+9l69at/P73vyc+Pp7p06eraacbef31153a8glgw4YNTj+jNzAMg6+//pqMjAxOnjxJ//79SUhIIDo6Gi8vrw7fGzMygJiRATQ0t1LT0IKPp5vWTIrcZfrJJNKNhYWF8eKLL7Jv3z7S09MdTTujRo1ydWlC57ZsuhvP6MmuNNpkZGRw/vx5Bg0axLx584iMjLzlX548rRYFSREXUaAU6ebc3NyYOXMmkZGRbNmyhffff5+oqChmzZqFt7e3q8sTuS1NTU1kZ2ezf/9+Ll26RGhoKN/97ncJDw/v8yFbpCdSoBTpIQYNGsTixYs5evQoO3bs4OTJkzz88MNMnjxZP4Clx6itrSUrK4tDhw7R2NhIZGQkTzzxBMHBwa4uTUScoEAp0oOYTCYmTpzImDFjSE1NZfPmzRw9epTk5GQGDx7s6vJEbujqRhuLxcLkyZOJjY29bqONiPQ8CpQiPVC/fv2YN28e9957L5s3b2bNmjXExcUxY8YMrFarq8sTAdoabc6cOUNGRgYFBQWORpuYmBg8PT1dXZ6I3EEKlCI92MiRI1mxYgV/+9vf2LdvH3l5ecydO5fw8HBXlyZ9mN1uJz8/n8zMTM6fP8/gwYOZN28eEyZMwGJR04xIb6RAKdLDubm5MWPGDEfTzocffsj48eNJSkrCx8fnuu/R9irSFa7XaPP0008TFhamdb4ivZwCpUgvMXDgQJ599llycnLYsWMHb731Fg899BDR0dGYzW2HYh0sqmRdeiGp+Rf+bwPoCBvL4kdpA2i5bTU1NRw4cECNNiJ9mAKlSC9iMpmIiopi9OjR7Ny5k61btzqadlKLGvm3z3Ixm03Y//c0R7sBO4+XsSPvAm/Mj+SZ2BGu/QKkRykrKyMzM5OcnBxHo83UqVPx8/NzdWkicpcpUIr0Ql5eXjz66KOOpp1f/P5DtjaNBaDV3v5s8Ct/f+3TXMbafDRSKR0yDIOioiIyMzMpKCjAx8eHmTNnEh0drUYbkT5MgVKkFxs+fDjLly/nyd/txHShGYMbr2Mzm02sSz+tQCnXdaXRJiMjg5KSEgYPHsz8+fOJjIxUo42IKFCK9HbNdjhS1tJhmIS2kcod+aU0NLeqUUccGhsbHY02VVVVjBo1imeeeYZRo0ap0UZEHBQoRXq5moYWvjXLfUN2A0orqhgZpFHKvq6mpoasrCwOHz5MU1MTkZGRxMXFERQU5OrSRKQbUqAU6eV8PN0wm+hUqDRh8O7qVQT4+TB06FCGDBni+NPDw6Pri+2BPvjgA8frY8eOOV6npqZy7tw5AGw2G4mJidd9/4ULF0hNTW339+s9OyoqiqioqDtW941cabQ5duwYbm5uREdHExsbq0YbEemQyTCMTo5diEhPtfyDQ+w8XnZNQ87VLGYTCaMD+McpvhQXF3P+/HnOnz9PU1MTAIGBge1Cps1mw81Nv5N2Ztp3xowZpKWlXfdaWloaM2fOvOkzXn/9dX7+85/fYnWdc6XRJiMjg6+++gofHx+mTp3K5MmT1WgjIp2iQCnSBxwsquSJNZl09I/dBHy8PK5dU47dbqeiooLi4mJHyCwtLcVut2OxWLDZbO1CZmBgoNbV9SCtra2ORpvS0lJsNhvTpk1j/PjxarQRkVuiQCnSR3yQdYbXPm3bh/LqkUqL2YTdbnR6H8qWlhYuXLjQLmRevHgRAHd3d0e4vBI0fX19FTK7mcbGRo4cOUJWVhZVVVWEhYURFxenRhsRuW0KlCJ9yKGiStaln2ZHfqnjpJxZEUE8Hx/q1HZBDQ0NjinyK0GzpqYGgP79+1+zHtPLy+tOfUlyC6qrqx2NNs3NzWq0EZE7RoFSpA+6G2d519TUtBvFPH/+PA0NDQAEBAS0C5lBQUFYrdYuqUPaGn2unGhjtVodjTa+vr6uLk1EegkFShG5KwzDoLKysl3ILCkpobW1FZPJhM1mazddPmjQIMcZ5HLrDMPg9OnTZGRkcOrUKXx9fYmNjSU6Olod+yJyxylQiojLtLa2UlZW1i5klpeXYxgGVquV4ODgdiHT399fa/xuorW1lby8PDIzM9VoIyJ3jQKliHQrTU1NlJSUOAJmcXExly5dAtrOKL96qnzo0KF4e3u7uOLu4Uqjzf79+6muriYsLIxp06YRGhqqEC4iXU6BUkS6vbq6Oke4vPLn5cuXAfDz82vXVT5kyBDc3d1dXPHd8+1GmwkTJhAXF4fNZnN1aSLShyhQikiPYxgGly5datdVXlJSQnNzMyaTiUGDBrXrKrfZbL1uuleNNiLSnShQikivYLfbKS8vbzeKWVZW5tiE/dvrMQMCAnrcVPD1Gm2unGijRhsRcSUFShHptZqbmyktLW0XMisrKwHw8PC4Zj2mj4+Piyu+viuNNhkZGVy4cIGgoCCmTZtGRERErxt5FZGeSYFSRPqU+vr6a9Zj1tbWAuDj43PNJuxdcZZ1Z/cBbWxs5PDhw2RlZVFdXU14eDhxcXFqtBGRbkeBUkT6NMMwrrsJe2NjIwADH7JF4QAAA8JJREFUBw68ZhN2Nze32/pcB4sqWZdeSGr+BcdJRYkRNpbFj2p3UlFVVRVZWVkcOXKE5uZmoqKimDp1qhptRKTbUqAUEfkWwzCoqKhoFzJLS0tpbW3FbDZjs9nahczAwMCbbsL+/v4z/NtnHZ+l/vAIDzIzM8nNzcVqtRITE8OUKVPUaCMi3Z4CpYhIJ7S0tFx3E3YAd3d3goOD221f5Ofn55iWPlhUyRNrMun4P1uDR9y/ZMwAC1OnTmXSpElqtBGRHkOBUkTkNjU2NjqmyK8EzerqagC8vb0dI5jvHIfMs3XtRia/zYzB1GH9+GBFgo6cFJEeR4FSROQOqq2tbdfwc+bcedZVRWBw8yYaswnyV87usFFHRKQ7UqAUEelCZdUNTPn1rk7ff/DVhxnko6luEelZNK8iItKFfL2smDu5w4/ZBD6et9dBLiLiSgqUIiJdyNNqITHChuUmqdJiNjErIkjT3SLSIylQioh0sefjR2HvoCEHwG43eD4+9C5VJCJyZylQioh0sftGBvDG/EhMcM1IpcVswgS8MT+y3ebmIiI9iZpyRETukkNFlaxLP82O/FLHSTmzIoJ4Pj5UYVJEejQFShGRu6yzZ3mLiPQUCpQiIiIi4hStoRQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOEWBUkREREScokApIiIiIk5RoBQRERERpyhQioiIiIhTFChFRERExCkKlCIiIiLiFAVKEREREXGKAqWIiIiIOOX/A+jvzY1uUkxTAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaoAAAHDCAYAAAB1dF5kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXhU5dn48e+ZycxkssxkMtn3kEAIm6AIAlpkEQTF6uvy1rUur7W21er7U4u2itTdthardaH6Iq6tYq24IiKKbCL7ToAQCAnZt0kms5/fH+OcZJiwhEUC3B8vrmvOM89ZZiLcec55nvtWVFVVEUIIIXoo3Ym+ACGEEOJgJFAJIYTo0SRQCSGE6NEkUAkhhOjRJFAJIYTo0SRQCSGE6NEkUAkhhOjRJFAJIYTo0SRQCSGE6NEkUIkeKS8vjxtvvPFEX8Yx9fXXX6MoCl9//fWPfu6ysjIUReHPf/7zcT/Xa6+9hqIolJWVHbLvqfhzFseeBCpxWEL/+KxcubLL988//3wGDBjwI1/Vye/GG29EUZQu/0RHR5/oyxOiR4g60RcgxOnOZDLxyiuvRLTr9foTcDVC9DwSqIQ4RlRVxeVyYTabu7VfVFQU11133XG6qtOHz+cjEAhgNBpP9KWIY0xu/YnjYtasWYwdO5aUlBRMJhP9+vXjxRdfjOinqiqPPvooWVlZxMTEMGbMGDZt2hTRr6GhgXvuuYeBAwcSFxeHxWJh0qRJrFu3Lqxf6DnQu+++y/Tp08nMzCQ+Pp4rrriC5uZm3G43d911FykpKcTFxXHTTTfhdruP6Nrz8vK4+OKLmTdvHkOHDsVsNvPyyy8DsHfvXi699FJiY2NJSUnh7rvvjjhPd4RuvS5evJg777yT5ORkEhISuO222/B4PDQ1NXHDDTdgs9mw2Wzcd999HKgwwl//+ldyc3Mxm82MHj2ajRs3RvTZunUrV1xxBYmJiURHRzN06FDmzp0b0W/Tpk2MHTsWs9lMVlYWjz76KIFAIKLf4f6cAZqamrjrrrvIzs7GZDJRWFjIU089FXbczs/cZsyYQUFBASaTic2bNx/uVypOIjKiEt3S3NxMXV1dRLvX6w3bfvHFF+nfvz+XXHIJUVFRfPTRR/zqV78iEAjw61//Wuv30EMP8eijjzJ58mQmT57M6tWrmTBhAh6PJ+x4paWl/Oc//+HKK68kPz+f6upqXn75ZUaPHs3mzZvJyMgI6//EE09gNpuZOnUqO3bs4LnnnsNgMKDT6WhsbOThhx9m+fLlvPbaa+Tn5/PQQw91+9oBtm3bxtVXX81tt93GrbfeSlFREe3t7YwbN449e/Zw5513kpGRwRtvvMFXX311wO+1q+/UaDRisVjC2u644w7S0tKYPn06y5cvZ+bMmSQkJLB06VJycnJ4/PHH+fTTT/nTn/7EgAEDuOGGG8L2f/3113E4HPz617/G5XLx7LPPMnbsWDZs2EBqaioQDD6jRo0iMzOTqVOnEhsby7vvvsull17K+++/z2WXXQZAVVUVY8aMwefzaf1mzpzZ5YjycH/OTqeT0aNHU1FRwW233UZOTg5Lly7l/vvvZ9++fcyYMSOs/6xZs3C5XPziF7/AZDKRmJh4wO9YnMRUIQ7DrFmzVOCgf/r376/1dzqdEceYOHGi2qtXL227pqZGNRqN6kUXXaQGAgGt/YEHHlAB9ec//7nW5nK5VL/fH3a8Xbt2qSaTSf3jH/+otS1cuFAF1AEDBqgej0drv/rqq1VFUdRJkyaFHWPEiBFqbm5uWNvhXLuqqmpubq4KqJ9//nlY+4wZM1RAfffdd7W2trY2tbCwUAXUhQsXau0///nPD/h9Tpw4UesX+v4nTpwY9l2NGDFCVRRF/eUvf6m1+Xw+NSsrSx09enTYdwWoZrNZ3bt3r9b+3XffqYB69913a23jxo1TBw4cqLpcLq0tEAioI0eOVHv37q213XXXXSqgfvfdd1pbTU2NarVaVUDdtWuX1na4P+dHHnlEjY2NVUtKSsK+06lTp6p6vV7ds2dP2OexWCxqTU2NKk5tcutPdMvf//535s+fH/Fn0KBBYf06/1YdGoWNHj2a0tJSmpubAfjyyy/xeDzccccdKIqi9b/rrrsizmsymdDpgv+7+v1+6uvriYuLo6ioiNWrV0f0v+GGGzAYDNr28OHDUVWVm2++Oazf8OHDKS8vx+fzdevaQ/Lz85k4cWJY26effkp6ejpXXHGF1hYTE8MvfvGLiOsEiI6O7vI7ffLJJyP63nLLLWHfVehz3XLLLVqbXq9n6NChlJaWRux/6aWXkpmZqW0PGzaM4cOH8+mnnwLBW6xfffUVV111FQ6Hg7q6Ourq6qivr2fixIls376diooK7XOec845DBs2TDtecnIy1157bdg5u/Nzfu+99zjvvPOw2Wzauevq6hg/fjx+v59FixaF9b/88stJTk7u8nsVpw659Se6ZdiwYQwdOjSiPfQPS8iSJUuYNm0ay5Ytw+l0hvVtbm7GarWye/duAHr37h32fnJyMjabLawtEAjw7LPP8sILL7Br1y78fr/2nt1uj7ienJycsG2r1QpAdnZ2RHsgEKC5uVk7zuFce0h+fn7EuXfv3k1hYWHYP8oARUVFEX0hGFjGjx/f5XtH87kaGxsj9t//uwbo06cP7777LgA7duxAVVUefPBBHnzwwS6voaamhszMTHbv3s3w4cMj3t//c3bn57x9+3bWr19/wOBTU1MTtt3V9y9OPRKoxDG3c+dOxo0bR9++fXnmmWfIzs7GaDTy6aef8te//rXLh+2H8vjjj/Pggw9y880388gjj5CYmIhOp+Ouu+7q8ngHmtp9oHb1h4kH3b327s7wO1rd+VzqASZTHEzo891zzz0RI8WQwsLCbh+3O+e/4IILuO+++7p8v0+fPmHbP/b3L04MCVTimPvoo49wu93MnTs3bASwcOHCsH65ublA8LfoXr16ae21tbURo4E5c+YwZswYXn311bD2pqYmkpKSfvRrP5jc3Fw2btyIqqpho6pt27Yds+s8Utu3b49oKykpIS8vD0D7ORgMhkOO8nJzc7s83v6fszs/54KCAlpbWw97hClOD/KMShxzod/uO/9G39zczKxZs8L6jR8/HoPBwHPPPRfWd/+ZXaFj7j9CeO+997TnJcfK4V77wUyePJnKykrmzJmjtTmdTmbOnHnsLvQI/ec//wn7zlasWMF3333HpEmTAEhJSeH888/n5ZdfZt++fRH719bWaq8nT57M8uXLWbFiRdj7b731Vtg+3fk5X3XVVSxbtox58+ZFvNfU1BT2LFGcPmREJY65CRMmYDQamTJlCrfddhutra384x//ICUlJewfv+TkZO655x6eeOIJLr74YiZPnsyaNWv47LPPIkZJF198MX/84x+56aabGDlyJBs2bOCtt94K+w39x7z2g7n11lt5/vnnueGGG1i1ahXp6em88cYbxMTEdNnf5/Px5ptvdvneZZddRmxs7BF/nv0VFhZy7rnncvvtt+N2u5kxYwZ2uz3sVtvf//53zj33XAYOHMitt95Kr169qK6uZtmyZezdu1dbu3bffffxxhtvcOGFF/Lb3/5Wm56em5vL+vXrteN15+d87733MnfuXC6++GJuvPFGzjrrLNra2tiwYQNz5syhrKzsmI6gxclBApU45oqKipgzZw5/+MMfuOeee0hLS+P2228nOTk5Ytbdo48+SnR0NC+99BILFy5k+PDhfPHFF1x00UVh/R544AHa2tp4++23+de//sWZZ57JJ598wtSpU0/YtR9ITEwMCxYs4I477uC5554jJiaGa6+9lkmTJnHhhRdG9He73Vx//fVdHmvXrl3HNFDdcMMN6HQ6ZsyYQU1NDcOGDeP5558nPT1d69OvXz9WrlzJ9OnTee2116ivryclJYUhQ4aErTdLT09n4cKF3HHHHTz55JPY7XZ++ctfkpGRETYLEQ7/5xwTE8M333zD448/znvvvcfrr7+OxWKhT58+TJ8+PWwiizh9KOqRPHEVQgghfiTyjEoIIUSPJoFKCCFEjyaBSgghRI8mgUoIIUSPJoFKCCFEjyaBSgghRI/2o6+jCgQCVFZWEh8fH5G0UwghxOlBVVUcDgcZGRlaZYQD+dEDVWVlZUSmZyGEEKen8vJysrKyDtrnRw9U8fHxQPDi9q9eKoQQ4vTQ0tJCdna2FhMO5kcPVKHbfRaLRQKVEEKc5g7nEZDk+hPiBGv0NrLZuZktzi3sde/Fo3owKAZSjakUxxTTL6YfqcbUE32ZQpwwEqiEOAECaoBlLct4r/Y9FrcsRuXgKTeHxA3hyqQrGZswFoPO8CNdpRA9gwQqIX5kO9t3Mn33dDY5Nx32Pmta17CmdQ1Zpiwezn2YIXFDjuMVCtGzSKAS4keiqipv1bzF85XP41W9WnuMPobc2FzsJjs2o40oJQq/6qfZ20y9u55yZznN3mYA9rr3cmvJrVyTcg13Zt5JlCJ/hcWpT/4vF+JHoKoqz1Y8yxs1b2htVoOVIbYhZMVkoVMi15EkGBPIjc1liG0I1a5q1jSuodZdi0ow4FV5qngs/zEMitwKFKc2CVRC/AherXo1LEj1s/ZjSMIQ9Dr9IfdVFIU0cxoToyeytWUrqxtWEyDAgqYFRO+OZnrudFk8L05pkkJJiONsQ9sGXt73srZ9jv0chiYOPawg1ZlO0dHP2o8xqWO0EdgnDZ8wr3HeMb1eIXoaCVRCHEeugItpZdMIEABgcMJg+lj6HNUxM2MyGZU0Stt+uvxp6rx1R3VMIXoyCVRCHEcf13/MbvduAJJMSQxIGHBMjpsfl09ubC4Azf5m3qh+4xB7CHHykmdUQhwnqqryXu172vZw+3Dtll3AH+DzJz9n5XsrcdQ4sKRZGHb1MCbcMyHseVPVtio+mv4RO5fsJOAPkFqUys2zb8aWZWOYfRjlbeUECPBR/UfcnnE70broH/1zCnG8SaAS4jjZ6NzIDtcOAJJNydhNdu29Bc8uYMmsJVzzwjWk9U2jfE0579zxDtGWaEbfNhqAul11/G3y3zjnunOYNHUS0fHRVG2tIsoU/Gtr1pvJi82jtK2UZn8zC5sWMilx0o//QYU4ziRQCXGcrG1dq70uiCsIe2/Xil0MmDSA/hP6A2DPsbP6/dXsWb1H6/PJo5/Q74J+XDL9Eq0tKT8p7DgF8QWUtpVq55NAJU5F8oxKiONki3OL9jrJFB5g8oflU7KohJodNQBUbKyg9LtSiscXA8G6bZvnbya5IJkXL3+RP/T5A8+Mf4b1n6wPO07nUVrn8wlxKpERlRDHyS7XLgAUFBKMCWHvjbtrHC6HiyeGP4GiV1D9KpP/MJmhVw4FoLW2FXermwXPLmDyA5OZ8vAUti7YyqwbZvHrub+mcFQhAEadkfioeBw+B6Wu0h/3AwrxI5FAJcRx4gq4ADDoDBGZJ9Z+sJZV763i+pnXk1acRsWGCj544AOsaVaGXT0MNRBMUjtg0gDO/9X5AGQNzGLXil0smbVEC1QQDFah86mqKot/xSlHApUQx4nuhzvrqhqZGX3utLmMu2scZ15+JgAZ/TJoLG/kyxlfMuzqYcTaY9FF6UgrSgvbL7VPKruW7wprC2Ve16GTICVOSfKMSojjxGawAeBVvbj8rrD3PO0eFF14UFH0ijaSijJGkTMkR3uGFVK7sxZbtk3bVlWVVl8rAImGxGP+GYToCWREJcQx1OBtoKS9hFZ/KzG6mI52dwMZMRnadv8L+zP/L/OxZdlI65tGxfoKvn7ha4ZfO1zrM/aOscy+ZTYFIwooPK+QrQu2sunzTfzmo99ofVp9rXgCHgD6mvv+CJ9QiB+fBCohjtLmts3MqZvD8pblVHuru+xT2V4ZFqguf/JyPn38U+bcM4fWulYsaRZG3jiSifdO1PoMungQV/7lSr6c8SX/vv/fJBcmc9Psm+h1Tq+w44YUxxQfh08nxImnqF3dQD+OWlpasFqtNDc3Y7FYfsxTC3FMbWzbyON7Hmdb+7ZD9jXqjFyRfQVRumP3u6GqqnxU8RFN3iYA3u77NkUxRcfs+EIcT92JBTKiEqIbvAEv8xvn82rVq5S5y7rsE62LxmKwYDfZqWyvpNnbjCfgocRRQj9rv2N2LXvb92pBalDsIAlS4pQlgUqIw+ANeHmj5g3+WfNP6n31B+3rCrhwuV3UuGuwGTsmPqxpXENWTBYWw9HfSXD73SyvW65t/yz5Z0d9TCF6KglUQhzCFucWHi57WMvbFxKlRGEz2rAYLCgoeFUvjZ5GWrwtWp9GT6P22q/6WVSziAnpE7S1T0cioAZYUreEdn87ACMtI5lgm3DExxOip5NAJcRBfNHwBQ/ufhCf6gOCWSZyYnLoY+lDanRqlyXkPX4PpW2llLSUaLfmQho8DXxZ9SVjU8cSre9+pnNfwMfi2sXsde4FIFYXy+9zfi/rp8QpTSZTCHEAXzR+wQO7HtAW1NqMNkYljSLRdHjrlVRVZZtjG6sbVmuBrjO9osegGLTnWcmmZLJjsg9Y+bfGVcOS2iU4fA4ADIqBvxX8jWGWYUf4CYU4cWQyhRBHabtzOw+WPagFqcK4QoYnDUevHH75eEVR6GvpS4Y5gy+rvtQW5ob4VT9+1a89z9rCFkw6E4XxhfSz9MMcZSagBtjXvo9tjm3aKAqCEzb+0usvEqTEaUEClRD78apepu2epo2CCuMKGZE04rBvr6mqSp27jjp3HQ2eBlp9rZh0Jpw4tZL0BsWAWW/Gp/pw+p3avu6Am03Nm9jSvIXYqFicPid+/GHHHxQ7iGm508iLzjs2H1iIHk4ClRD7+WfNP7W1UQmGBIYnDT+sIOXxe9jRuoNtLdu023MH4lW9RBPNgIQBZJozafG2UNpayu623QR++G//Y6QaUrku9Tr+O/m/uzWyE+JkJ4FKiE78qp9/1v5T2x6ZPBK9og8rHe9L9GEfYyft/DRMeSa8qhe/6scb8Gq3Cg+Hw+dgRf0KYvQxjEgawXkp5zHUN5TvG76nrK1M65cclcy92fcyOmE0UYr8lRWnH/m/XohOljQvocpTBUCmOVMrePjl375kQ+UG+r3TD2d08FadGzdun/uAx4qPiqcwvpCi+CKidFH4VT9NnibqPfWUtZZR4w4mnHX6nSyoXkBRfBFn28/mJyk/Iac1hyV1S/Crfmp9tXzv+J5xtnHH+dML0TNJ9nQhOplTN0d7XWQJZnpo8jRReVYl6feka0EqRK/oidHHEKOP0cp6hDh8DtY0ruGb2m9w+p0YdAaSo5Ppa+nLhRkXMiVzCmnRHWU8tjm28W3NtwTUAHlxeYxNHasd87269/iu5bvj9bGF6NFkeroQP2gPtDNm3Ri8qhcFhatzr6asrYzldcu1SRAAicZEesf3JiU6BavBqq2lCo2Yql3VbHdsp9nbrO1jUAycl3IeWTFZYedUVZUSRwnf13+vnaNPfB/OSToHgK0tW1lRvwKAdGM6c/rNIVrX/fVXQvQ03YkFMqIS4gezqmbhVb0AJBgTKG0tZWndUi2AWAwWJqZN5KKMiyiyFGEz2sIW/OoVPXaTnX7WflySeQljUscQow+W+vCqXhZWL2RP256wcyqKQpGliDGpY7TRU4mjhIcueYiv/vYVRfFF2qhrn2cf8xvnH/fvQYieRgKVEARz+f279t/atl7Rs7y+I5den/g+XJxxManm1MOaAagoCtkx2VySdQm5MblAsBLvoppF1LnrIvpnxmQyPKmjFlXuH3IpnlKMoigMsQ3R2t+rfe+IPp8QJzMJVEIAC5sX0ujvyMvX4G7QXve39me4ffgRlegw6oycl3IeveKCNaQCBFhSuwR/wB/RtzCukAxzsGaVIdlAQ2LwGpJMSSQag9kwNjk3Ue4q7/Z1CHEyk0AlBLCsZVnYduh2X6Y5kzNtZx5VLj2domNk0kjsRjsAzd5m/vrIX3mo30O8efubNO8LPstSFIWzE8/W9itpKUFVVRQlmF8wZLNz8xFfixAnIwlUQhCs0rs/g87QrYwUB6NTdIxMHqk9h0q/Pp2fz/45NdtreOXaV7R+VqOV9Oh0IDhrsMYVnMLeOb/gFueWo74eIU4mso5KnPa8AS+7XLuAYHb00KLdYksxMVExWj+Xw8Wnj3/Khk820FrXSubATP7rif8i58zgaOezJz9jzQdraKpoQm/Qkz04m8m/n0ze0DwgmNS2V1wvdrTuwK/48Rf5ueLpK3hm/DM07m3ElhWsXZUfl88+1z4Aat21pJpTsRqs2nUcqNy9EKcqGVGJ054zEJlPT0GhT3yfsLZ//vaflHxdwnUvXcd9i++jaEwRL1z2Ak2VwVIeKYUpXP7U5dy3+D7u/PROErMTeenyl2it60hGG1qbBVDaWkp7SzuKomC2mLV2u8muva73BIs0dk6Z5A14j8GnFuLkIYFKnPY6pz0KvU4yJYWNpjztHtZ/tJ4p06dQMLKA5F7JTJo6iaReSSyZtQSAs644i6Lzi0jKSyK9OJ1LH70Ul8NF5aZK7Th2k524qDggGIQ++uNHnHn5mURbOtZGWQ1WFIK3Gx3eYL6/zmVCmnzhNa6EONVJoBKntYAaCFuYGxJKnaT18wUI+AMYTIawdkO0gdLlpRH7+zw+ls5eSrQlmowBGWHvhSZV+FU/+jQ9V/75yrD3dYpOG0EF1OCkjs6Vgrc6t9Lsi7xmIU5V8oxKnHbqvHV8WPchKxwr2Nq+lVZ/a0Sfzs+EAKLjo8k7O495f55Hap9U4lPiWf3+asq+LyOpV0dQ2zRvE7P/ZzZepxdLmoVf/ftXxNnjwo9ttMIPmZgu+eslYaMpCGar8KvBW5GhBcX17nrt/Xa1nf+r+j/uzrr7yL8EIU4iEqjEaaPSXclzlc+xoHFBxDOp/XVVRuO6l67jnTveYVr/aej0OrLOyOLMy8+kfG3HuqbCcwu595t7aatvY9nry3jt5te4e/7dxCfHd3lsQ1z4CA2Cs/1CtyBjomIIqIGwbOoAc+vncnvG7ZJOSZwWJFCJU15ADfB+3fs8W/Es7YH2sPfMejN2ox23302tp1Zr76p0fFJ+End8fAfuNjcuhwtrmpXXbn6NpLyOEZUp1kRyr2SSeyWTd3Yejw59lOVvLueCuy/oOHag49juZjctrS3E2GKIMgb/OnYePdmNdirbK7XqwGa9mXZ/Oy3+FuY3zmeKfcpRfjtC9HzyjEqc0kLVep8sf1ILUtG6aAZaBzIudRwFcQX4VF/EBIUmz4EnLJhiTVjTrDibnGz9aisDJg04YF81oOJzhwe9Jm/HsV+Z/AoPFT/ErhW7tLZyZ8cIzWa0saphlbbd19JXe73SsfKA5xXiVCIjKnHK8qt+ppVNY17jPK2td3xvMswZbG3ZyobmDQfcNzQtvLMtC7aACim9U6grrePDaR+S2juV4dcOx93mZv4z8xlw4QAsaRba6tv49pVvad7XzOCfDtaOoaqqNmIyKAaeXPNk2ILidl+7lrg2WhdNtatam+xhN9rpG9+XtY1rUVFl4a84bUigEqes2dWztSClQ8eIpBFUuar4puabiL5mvRmrwUqduw6f6qPOXYfD6yDe0PFsydXi4uNHPqapsolYWyyDpgzioj9chN4QrABcs72GWf+cRWt9K7GJseQMyeHOT+4kvThdO0atuxanPziTwm6yR2S9WNe0TkvflGhMZEtLRzAamTwSg95AgjGBRk8ju1y78KpeDErkcy4hTiUSqMQpaUf7DmbumwkEF++ebT+btU1rafO1aX2sBit94vuQG5urrZna0LSBNY1rgGC5jbMSz9L6D7lsCEMuG0JXDNEGbn795kNe17aWbdrrgriCsPcq2yspcZQAwcBa6epYfxWlRJFgSADQJlAECOAOuDHoJVCJU5sEKnFKerL8Sa22VEFcAeua1uHyu4DgLbeh9qEUxhVGjGgK4wtZ1xgc1Wxt2Urv+N5YDMemwGetq1abvWfSmciLzdPea/I08W3Nt9p250KNEJzc4fK7MEeZwxYo719VWIhTkfxfLk45W51bWdMaHBXF6eOodlVrQcpmtHFJ1iX0ju/dZbJZs95MH0swdZJf9bO0dikBNYAn4KHV24rD66Dd1053C2P7Aj6W1i3Vgkx/a3/0uuA09RpXDV/s+wJ3wB22j4KilfcAtMAbunVoVIyYdKZuXYcQJyMZUYlTzpzaOdrrWEMs1a5gEtcEQwIT0iZg0h/8H/chtiGUt5XT5m+jxl3Dv3b/SwsSISadiURjIqnRqRTGF4alW9qfX/WzqGZR2KSIftZ+eANe1jauDXsOFZJgSGBU8ii2tGyhwROsS6WqKp6AhxZvCwC9zb27XO8lxKlGApU45XzbEryFpkevBSm9ouf81PMPGaR8AR+bmjeFBab9gxSAO+Bmn2sf+1z7WNe0jpzYHAYnDA5mnejE6XOyuHYxVa4qIPisqa+lL9/Xf8/O1p0R67XsRjvF1mJyY3PRK3rafR3rvgw6A9XtHZnTi2OKD+frEOKkJ4FKnFJqPbXUeYOl3g06g1ZJd4htiPas6UDlOqL7RbO0bqk2YgnRK3psRhtxUXEoKLgDbhrcDbgCwduJKiq723az17mXwbbBFFuKUVEpbS1lVcMqPAGPdiyf6mNJ3ZKw4ysEy9afkXAGNpNNa1dVVZsmH62Lxqw3s83RMRljlHXUsfrahOjRJFCJU8q29o5/yEOBJFoXHVZe45+//SdVW6q47qXrsKRZWPnuSt5+5W0y7u1IHqugkBObQ1F8ESnRKVrOvRBVVWn1tbKjdQfbHdtx+V34VT+rGlZR0lKCx+/BrYY/c9pfwBWgT1If+lv7R4zEIFgJOBTk7CY7DZ4GKtuDMwEzjBmMskigEqcHCVTilNLia4loK4wv1J7lhMp13PLWLRSMDE4PL/hVAbX1HemTkkxJjEwaSYIx4YDnURSFeEM8Q2xDGGgdyJrGNdqzJofP0eU+Rp0xeA0/BJ8L8y4kzZx2wHNsd2zXXqdGp7K0bqm2fWXylfJ8Spw2ZNafOKXsP60bICsmq+P9/cp1VLuqWV6/XHu/n6UfF6ZfeNAgtb8oXRRn289mfNp4opSO3/3io+K1bZPOxMKoSXgAACAASURBVM9yf8aghEHa+wcKaAAuv4sdrTuA4K3HFm+LVuqjt7k3VydffdjXJ8TJTgKVOKXE6MJn3+0/xbtzuY76ynqW1HY8L+pn7cdZiWdF3OY7XBnmDManjddGOg6fQztWaNJE5/Ihrd7I8iIh39V/p1XyjYuK6wha6Hk492EMOlnkK04f3fob6ff7efDBB8nPz8dsNlNQUMAjjzzS7TUlQhwvBebwbA8x+hiidOF3uK976TpQ4dUXX9WykiebkjnTdmaXa6u6IyU6hTNtZ2rbodt8ob8jna/lQKVGtju2s7ttNxAMtJ0LOz6U+xB9Y/p2uZ8Qp6puPaN66qmnePHFF5k9ezb9+/dn5cqV3HTTTVitVu68887jdY1CHLZ4fXzYdlejo6T8JG6feztz9szBo3rQoWNk0kit74FmBeacmRNxrHf/912WvraUSx+7lPNvPx8IZjjf3babGneN1i+00Dc0CxGCo6P97XTsZHnd8oj9dOh4MPdBLrZffLhfhRCnjG4FqqVLl/LTn/6Uiy66CIC8vDzeeecdVqxYcVwuTojumt84P2w7dPtsf2VtZXjU4GgnLy4vbNZdV7MCX7jsBaYum0pCRsezq/Ufr6dsZRnW9PAZe4qiMDBhIAuqF2htoYDTucRHZ56Ah5X1K7VbfJ3lmHKYljuNwXGDu9hTiFNft279jRw5kgULFlBSEkycuW7dOhYvXsykSZOOy8UJcbi2O7fzi5Jf8PTep8PaXQEX7f7wYolbFmxh8+7N2nZRfMfU9dCswCnTp1AwsoDkXslMmjqJpF5JLJnV8TyrqbKJ93/3Pte/fD26qMi/RhnmDOKiOkrQh3LydS6KuKF5A9tatrGhaQMf7v0wIkjF6+K5KfUm3i5+W4KUOK11a0Q1depUWlpa6Nu3L3q9Hr/fz2OPPca11157wH3cbjdud8d6kpaWyOnDQhwpr+rltarXeKXqlS6r8kIwOHSe+edqcVFnrSMqNgqDYiDJ1FGhd/9ZgSGGaAOly0uDfQIB3rr9LcbeMTashEdniqKQbk7XpphH66PxBXxUtFeE9fuu/rvw/VAoiC7gmpRrmJg4UUrNC0E3R1Tvvvsub731Fm+//TarV69m9uzZ/PnPf2b27NkH3OeJJ57AarVqf7Kzs4/6ooWA4GjpvtL7eGnfS1qQ6mptUWlradh230v6EmUP/o62f02ozrMCm/c1E/AHWPnuSsq+L6OlOvhL1oJnF6DT6/jJbT856PXZjXbttVlvZlfbLm1yRXxUfET/EZYRfNT/I/7V71/8NOmnEqSE+EG3AtW9997L1KlT+dnPfsbAgQO5/vrrufvuu3niiScOuM/9999Pc3Oz9qe8vPyAfYU4XF7Vy+9Kf8ei5kVAcCQy0DqQtOjIBbR72vbg9Dm17VAmdSDs9lxIaFbgtP7TuCftHhbNXMSZlwdnBJavLWfRy4u45u/XHHKGYOeii1G6KNY3rte2z00+lz7xfbTtbFM2f+n1F9JNXY/QhDiddevWn9PpRKcLj216vZ5AIHKRZYjJZMJkklIE4th6dd+rLG5ZDAQTvY5JHUO6OT2splNIgAArG1byk5TgCKjzcoqugk1SfhJ3fHwH7jY3LocLa5qV125+jaS8JHYu20lrbSvTB03vOL4/wIcPfsg3L33DtHXTOo5Nx7Fdfhdt/mDRxrToNJJMSdhNdurd9dR76il3lzO7eja/SP/FUX4zQpx6uhWopkyZwmOPPUZOTg79+/dnzZo1PPPMM9x886ErmwpxrGx1buX/qv4PCAaDsaljSTOnBZO4dpqsYFAMqKj4VB9lbWXktuWSG5sbtpapc8LY/ZliTZhiTTibnGz9aiuXPHwJZ1xyBkWji8L6vXTlSwy9aijDrhkW1t752KG1UDq/jhFJI1AUBQWFkckj+bjiY1RU3q19lxtTb9RSLQkhgroVqJ577jkefPBBfvWrX1FTU0NGRga33XYbDz300PG6PiEiPF3+tLZYdmDCQC1f3taWrVquP6POyMT0iTR6GllcGxx5LaldQrQ+mmRTMjpFR0AN0OBuiDj+lgVbQIWU3inUldbx4bQPSe2dyvBrh6M36IlNjA3rr4vSEZ8ST2rv1LD2UB2pzsqeLKP5zmbiBwVvC9qMNnJjcylrK6PR18iCpgVMSpRZtEJ01q1AFR8fz4wZM5gxY8bxuh4hDmqLcwvr2tYBwXREAxMGAvDBGx/QMqIFRR+83TY6ZTQ2o40EQwJ7nXspayvDp/r4supLzrGfQ6IhkTpPHQ6fA5ffRbS+Y+KCq8XFx498TFNlE7G2WAZNGcRFf7gIvaF7SWBr3bVh25YoC86FTsp/Uk7WoI5ZiEXxRVqJ+gWNEqiE2J9kTxcnlZcrX9ZeF1uKQYVVjatwjHJoz5uK4otINwcnJQTUAOnR6VQ4K/CqXvyqnyV1S8ImUZS2ltLP2k/bHnLZEIZcNuSwr6nzc6mQNl8bVe1VYW0t3haIg8JzC8PaU6JTiFKi8Kk+trRHVvsV4nQngUqcNNoD7SxtCZa6iFKiSDen89m+z4K32H6YtxClRDHEFgwye9r2sLxuuVaXqrNQjj+AbS3b6Gvpe8TJaLuyrWWblo3CZrDR6G0EBS6aeRHJvZLD+ipKMHFujbuGKk8Vjb5GbFG2rg4rxGlJsqeLk8bzFc9rz6YSDAksrF4Y8RyoV1wvUGBRzSK+rvk6LEglGBLIMmdhUMIX8zp8DjY2bzxm19nkaWJzczDzhYJCf2t/7b0VX6+gcnNlxD6dp7I3ehuP2bUIcSqQEZU4KbQH2vmw/sOObX+7Nt27s0xzJvP3zddKuIfaBiYMJNmUjKIoeAIedjp2srl5s3aM9Y3ryTRnYjfZI47ZHf6AnyW1S7S6WMXWYtJjOtZGWQdbWfzKYq565qqw/TqP5g6UYUOI05WMqMRJYV7DPNoDHTn7QgFm/9HR+qb1WpAy6oycm3wuY1PHkhKdoj3DMuqMFFuL+a/s/wqOwAiutVpQtUArTngk/AE/X9d8rZ3fYrAwOGFwWIYJJVpBDUSWxek8lV0yUggRTgKVOCl81fRVl+0xUR2FEg2KQQsS0fpoLky/kF5xvQ6YQUJRFEbYR5BsCj4zcgVczNs3j9LW0m7XWGv2NDOvap6Wyy9KieK85PMiamG5ml0MvGhgxP6hAGlUjJKdQoj9SKASPZ6qqmxxRs6GyzZnhxUV9KrBkh46Rcf41PGHVU5er9MzLnWclpfPE/CwuHYxC2sWUuuqPWTAave1s7ZxLR9Xfkyduy54TFXP2NSx2m3EztnbU3JS6HdBv7BjuP3u4IxAgmXm9x8lCnG6k2dUoser8dbQ4ItcPJtoSqS8PTJ35OCEwSSaEiPaD8SoNzIhfQJL65ZqlXX3Ovey17mXRGMi6eZ07EY7cYbglHaP30ODp4Fady0VzgrteRQAbpiYPzEsI3vn52V5OXkR5++cNFfKeQgRSQKV6PG6ClKZ5kzafJGTKawGq7YmKuAP8PmTn7PyvZU4ahxY0iwMu3oYE+6ZEHE70KAzUP1kNaXlpRQ+UkjAFAw+DZ6GLjNMHEh8bHxYkAKobq/WXu8/WSOgBtjm2KZt/9T+08M+lxCnCwlUosfzq/6ItsyYzIjyHQBFliJtBt2CZxewZNYSrnnhGtL6plG+ppx37niHaEs0o28bHbZfqFqvWq+S8U0GOdfksK1lW9hoqCvRumgK4wvZ69xLk7cJh8+BN+DFoAvevvMH/Oxs3QkEiyfun919S8sW7bbfWXFnUWAuOMxvRYjThwQq0eOZdJHZ9+1GOyWBkrA2BUWbxQewa8UuBkwaQP8JwXVM9hw7q99fzZ7Ve8L2C1Xr/eWcXzLzZzPRBXQUxhdSGF+I0+ekwdPA8rrlOP3BUiEZrgzys/Kxm+xYDBZ0ig5PwKOVmW/wNJAaHcz7t6N1B+5AsHBobmxuWKqmRk8jaxrXaNd+e8btR/U9CXGqkskUosfLNmWjJzzPXlxUnBY4QhKMCWGZx/OH5VOyqISaHTUAVGysoPS7UorHF2t9DlWtNyYqhqyYLHJjc7W21U+tJsWVQoIxQRu9xUZ1JKp1+4OBqc3XxuqG1Vp7kaUj63qLt4UFVQsIqMFbjNekXMOQuMNP2yTE6URGVKLHi9ZFkx+dzw7XDq2trK0sokRHojF8AsW4u8bhcrh4YvgTKHoF1a8y+Q+TGXrlUK3P4Vbr7XxsU56J5W8u54K7L9DaOteeUlHxB/wsrl2szUQsiCsgJToFgPK2cpbVLdOyZvQ195XRlBAHIYFKnBTOiDsjLFCFbpl1tv8twrUfrGXVe6u4fub1pBWnUbGhgg8e+ABrmpVhVw/TqvXes/CeQ1brNek7jq0YFXzu8OwRodt7EAxaX9d8TbUrOInCrDdzduLZNHoa2dC0QcuUDlAYXcjzhc9j1pkP/SUIcZqSQCVOCpclXcb7de9r212lGQolgQ2ZO20u4+4ax5mXnwlARr8MGssb+XLGlwy7eli3qvV2Xk/V3tzO4BvDp5F3nhm4smGllvRWr+jJMmfxVfVX1LhrwvYZZRnFo3mPYomyHPb3IMTpSAKVOCkUxxSTbcym3NOxbipKicKv+rUA1TkjOoCn3YOiCx8pKfqOFEZn//fZh12tt/OxR18/Oux5VkANhFUW7tzXr/rZ3ro97Fhx+jjuybqHixMvPuRITgghgUqcRAbEDggLVL3je9PobqTKHaz71DlYAPS/sD/z/zIfW5aNtL5pVKyv4OsXvmb4tcMBiE2MPexqvZ2nqRf2Dq8nVe4sP2hJ+5A8Ux5XJl/JRfaLiNfHH7K/ECJIApU4KczcN5PPGj8La7MYLGxr6Vgs6/Q7afI0aamTLn/ycj59/FPm3DOH1rpWLGkWRt44kon3TuzWuQNqQCuCqEOHzdhRK0pVVba2bO1yv/EJ40k3plMcUxwcEZqyZQQlxBFQ1O5m3zxKLS0tWK1WmpubsVjk3rw4tI/qP+Lh3Q+HtenRgxK5GLivpS/D7OG37Y7WnrY9fF3zNQBZ5izGpo3V3tvp2MmSuiVAcHZiQVwBm1o2AfBU/lOMt40/ptcixKmiO7FA1lGJHq3KU8Wfyv8U+UanIJURnaE173TsxOlzRvY/QgE1EFZUsfNaKIfXwfcN32vbI5JGhOUYrPKEl6IXQhwZCVSiR3tyz5O0BSJz+oWCVJIpiTFpY8iNCS7I9apeltUt63aZjgPZ0rJFy4puNVjJMAeDYqu3lflV87VnU71ie5Edm41e6ViYHFpDJYQ4OhKoRI9V2l7Kty3fAsEZfvvTKTpGJY1Cr+g5J+kcbR1VRXsFm5o3HfX5q9urw9ZrjUgagaIolDvL+WzfZ9rsPqvBytn2s4HwafNGxYgQ4uhJoBI91py6OdrrzimKQootxViNViC4IPcM3Rnae6sbV7OhacMRj6z2te9jQXVHiqNiSzF6Rc+imkUsrF6o1ZiKJZYL0i7QFgQ3eZq0Y2SaMo/o3EKIcDLrT/RIqqoyr3EeEFw06w2E30ZTUCiK73he5Gxy8q+L/0XB/ysgcF4wuKxpXEOVq4oRSSOIi4o7rPP6Aj7WNq5lc8tmrS02Kpaq9iq2tIQXb7Q4LFzY/8KwRLOdp8j3iwkvkCiEODIyohI90j7PPpp8wdFJanRqRCaK1OhUrZAhBHP22TJtXHv9tQyxdSR33de+j7l757Ksbhn17voDjrDafG2sa1zHB3s/CAtSofcavY3atlFnpOzhMvLL88OClNPnpMoVnECRYkgh2ZB8hJ9eCNGZjKhEj7TV2bE2yW60axMaQvYvTrjxs430HduX1256jZ1Ld5I8IZnk3yTjM/nwqT62O7az3bEdo85IojGR2KhYFBTcATf17vqITOxdsRltFMUXkR+Xj2F2ZLn4HY4dWpaMKfYpsmZKiGNEApXokWq8HXnxLAYLRp0xLPtD50W3APW761kyawnn/+p8LvjfC9izeg8fXvIh5752Lq0ZrdoMPE/Ao416DsRqsJJsSiZaH41BZyDRmEiiKRGz/sCJY1t9rdoEDh06Lku6rNufWQjRNQlUokfqfKtPp+hINCaG5dDrXHcKQA2oZA/O5uIHLwYga1AW+7buY8fDO/jN579hU8Umvv3qW6xnW2G/eGNQDCSaEkmNTqV3fO8uJ24cjKqqLKtdpgXDKfYppBsja1sJIY6MPKMSPVLnQORTfdhN9rD398+Ubkm1kFYUXuY9tU8qTRVNGHQGBqQOYNe9u0j7NI28mDytT1xUHD/N/CkT0ycy2Db4iILUd/Xfsc+1Dwg+m7o78+5uHUMIcXASqESPFJoWDsGS7aGFtiEOryNsO394vlbJN6R2Ry22rOAtwihjFDlDcqjZUcM5yecQHxVMCtvqa+Xzqs8jnoEdDrffzaLaRZQ4SoBgWqdpudO0Ywshjg0JVKLH+d7xPX+r+Ju2Xeeuw26yY42yam2ds5kDnH/7+ZStLGP+M/OpLa1l1ZxVLHt9Gef+z7lan7F3jGXNB2tY9cYqzvKeRVR78M53q6+Vzyo/Y1XDKlx+1yGvL6AG2NW6i7kVc9ndthsIPpd6OO9hzrGcc1SfXQgRSZLSih6lxFnCzSU30x5oD2ufkjmFb2u+pckbnLJu1pu5PPtydErH71qb5m3i4z9+TG1pLYk5iYz51RhG/HxE2HGWv7mcL2d8SXNlM6lnp5L7RC7t5o5z6dCRG5tLhjmDRFMicVFx2uzABncDte5adrbu1Bb8hvZ5utfTjEkYczy+EiFOSd2JBRKoRI/hDXi5but1Wsl5a5SVZl8zEHyWtH9hxNEpo8mNzT2qc4aSzq5vXE+AwKF36IIOHUsHL8Wgi5yyLoTommRPFyelV6pe0YKUzWhjfNp4bcQUClK6Tv/LbmzaGPYs60joFB2DEgbx06yf0je+72Hvl2XOItEYzJQeIBAxAhRCHDsSqESP4PA5eLPmTSCYHmlU0ihiDbHkx+ZrfRQUxqWOI8EQLIxY76k/JslnAeIN8XjUjnVaCYYEcmNzSYtOw2II/23vJ8k/YWza2LB1VUc6GhNCHJoEKtEjfNzwMa5AcCJDn/g+Wl2n3aW7tT4DrANIj0kPZjEnmPVhXeM69rXvO+rzl7SUUNpaCoBBZ2B82nhGJY3CZrTR4m3R+g1KGEReXB6A9pxKQSFGF3PU1yCE6JoEKtEjzK2fq70OFSds9DTiSwku/I2PimeQbRAAydHJFOgLgOBI5qvqr9jr3HtE5w2Vkl9ev1xrO8t2FlWuKj6q+CgsEW1RbBFnJAQztPtVv5YpPdeUG7EAWQhx7EigEiec0+9ke/t2IPhsKsEYvLVX0lKi9elr6asVJXQ2OZl/6XyUHcFRlV/181X1V3xX911ElvWDntfnZGHNQlbUr9DarAYrqxtWs7h2MQ5fcK2W6lXpG+jLsORhWv6+OneddruvOKb4SD+6EOIwSAolccJta9+mZZronGy2sr0SCE6gKIgv0NoXPLsAW5qNa8Zfw7c137LHuSd4HMc2drftpnd8bwrjC4k3RC68VVWVRk8jJY7grb79s7I3e5vDtpNNyYzMHKnVvQrZ4dihvR5mGXYkH1sIcZgkUIkTrtxdrr0OJZv1BDzaiCbRlBh2ay2UKf31m15n57KdpF2XhvVqK6pexRVwsaF5AxuaN2DWm0k0JhKtj0ZFxelz0uBpCEtu2xUdOnJicyiyFJFiSonIgu70OdnVtgsAi97CBbYLjsn3IITomgQqccJ1DhyhkvOdK+WGpoGHdJUp/ZOrP2HoC0NpTWrVRmft/nYq2isOeF6doiNGH6NNfc+KyWJQwiBsBht6nb7LfVRVZVndMm1a/BT7FMy6A2dVF0IcPQlU4oQLBSfoyPHXOXjF6MNn1B0oU3rZ78v45ae/ZEfrDqraq6j31EeMnsx6M3ajnYyYDHrF9aLB3cAXVV8AwedT+9e52t82xzYt+Nmj7NySdssRfmohxOGSQCVOuBRDivZ6/2dEXTlQpvT1H63HHGVmYMJABiYMRFVVKvZU8Pxlz3PT6zeRU5wTUVMqNM39cOxw7AibePH7nN+H5R8UQhwfEqjECdd51lyDpwEgLB1R57x6cOhM6SGKomBWzLjKXMSqsV0WPux8bIPSdQokb8DLqoZVWpZ0gOtTrmd0wuhDfTQhxDEg09PFCWcz2LRCg7WuWtr97dgMHUHnSDKltzW2sXfDXqq3VQNQs72GvRv20lLdEnaszsfev2qwx+9hS/MW5u6dGxakrk6+mt9m/vYoP7UQ4nDJiEr0CBNtE3mt+jUCBNjh2MHAhIHER8Xj8Dlo9DTiDXi1UVbOmTnc8sYtfPzHj5n3p3kk5iRy2WOXMfTKodrxNn62kXd+8462/fr/vB48z30TmTR1ktZe4+oYmTm8DrY7ttPibaHeXU+duy5s+rpZZ+a3mb/liqQrImYCCiGOH8meLnqESncll2y6BBUVk87EJVmXsLZxLdsdwYXAw+3DtYwVx0qTp4m5FXMP3REYaRnJ1OypZJoyj+k1CHG6kuzp4qSTYcpggm0CAO6Am+/qvqNPXB/t/a0tW486U/r+NjdvPuj79ig7VyVfxXvF7/Fc4XMSpIQ4QeTWn+gx7sm6h+8c39Hka2KPcw+JxkSSTcnUumtp9jazsWmjlu/vaFW1V7GjNZhdwqSYuCvrLiA4Vd4eZac4pphkQ7Lc4hOiB5BAJXqMREMi92ffz+92/Q6AtU1ryY/Np85dh4rK+qb1pJvTSY5OPqrztPvbWVq3VNv+TeZvuCr5qqM6phDi+JFbf6JHGW8bz12Zd2nbu9p2YdKZgGCm9AXVC6hz1x3x8dv97XxZ9aWWjWJI3BB+lvyzo7toIcRxJYFK9DjXp17P77J/h55gGqNQnSoIZqyYt28em5s30915QBXOCj6p+IRGTyMQXGj8SO4jWhVhIUTPJH9DRY90VfJVvN73dXqbe0e851f9rGxYyWf7PmN32+6DTrJQVZVaVy2LahaxoHoBTr8TgFRDKi/2fpF0U/px+wxCiGNDpqeLHs0b8PJB/QfMqZ3DTtfOLvuY9WZSolOwG+3ERsUCwZmDDe4GbSJGZ8PjhzMtdxqpxtTjfv1CiK51JxZIoBInBVVVWdu2lu8d37O8ZTmb2jbhw3foHTux6q38JvM3XGa/TGbzCXGCSaASp7yAGuB7x/e8W/suy1qW4VbdXfbTo6d/bH8uT7qc8bbxROuif+QrFUJ0pTuxQKani5OSTtEx3DKc4Zbh+FQfZa4ytjm30exvJqAGiNHHUBhdSO+Y3lIvSoiTnAQqcdKLUqIoNBdSaC480ZcihDgOZNafEEKIHk0ClRBCiB5NApUQQogeTQKVEEKIHk0ClRBCiB5NApUQQogeTQKVEEKIHq3bgaqiooLrrrsOu92O2Wxm4MCBrFy58nhcmxBCCNG9Bb+NjY2MGjWKMWPG8Nlnn5GcnMz27dux2WzH6/qEEEKc5roVqJ566imys7OZNWuW1pafn3/ML0oIIYQI6datv7lz5zJ06FCuvPJKUlJSGDJkCP/4xz+O17UJIYQQ3QtUpaWlvPjii/Tu3Zt58+Zx++23c+eddzJ79uwD7uN2u2lpaQn7I4QQQhyubpX5MBqNDB06lKVLl2ptd955J99//z3Lli3rcp+HH36Y6dOnR7RLmQ8hhDh9dafMR7dGVOnp6fTr1y+srbi4mD179hxwn/vvv5/m5mbtT3l5eXdOKYQQ4jTXrckUo0aNYtu2bWFtJSUl5ObmHnAfk8mEyWQ6sqsTQghxQvkDKhv21FNS2UxJZTO1Le34/AGi9DpSrWZ6p1spykygf3Yiet3xqZzdrUB19913M3LkSB5//HGuuuoqVqxYwcyZM5k5c+ZxuTghhBAnRrPTw6er9/Dp6j3UNLd32WdrRRPfbN4HQFqCmYvOyuXCIdlYzMZjei3dLkX/8ccfc//997N9+3by8/P53//9X2699dbD3l9K0QshRM+lqirfbNrH3z/fSEu7t8s+Op1CINB16EiINXLHpAGcW5x+0PN0JxZ0O1AdLQlUQgjRM3l8fv784TptlBSSk24hP8tGsi0GmyUanU7BH1BpammntsFJ6d4myqvCZ3SPH5TJXRcPwqDveipEd2KBlKIXQgiB2+vnoX99z9pd9Vpbr+wEhg/MxBIXOc9Ar1OwJ8RgT4ihb68kmh0ulq+roKyyGYAv11fQ7PTw0JVnYYzSH9W1SVJaIYQ4Rbm8fpra3LQ4Pfj8gQP2U1WVp/+zVgtSUVE6xo/I54IRvboMUl2xxkczYVQvxgzPJUofnFTx/Y5aZny84ag/h4yohBDiFOFo97Jgw1427G5ge1Uz1U0dkyCidAp5KfH0TrcysiiNoYXJ6JRgQPlyfQWLt1YBYIjScdHo3qTaY7t9fkVR6JNrJy7GyGeLduDzqyzYUME5fVL5Sb+DP7M6GAlUQghxkqtpbufNRSV8vbESt6/rkZMvoLKjqoUdVS18tqactAQzlw7L59ziVF76YpPWb8zwvCMKUp1lJMcz+uxcFiwvA+D5zzZyRp4da8yRzQaUQCWEECcpVVWZt7acl+dvwen2hb0XFaXDbjVjMupRVXA4PTS1uLT3q5raeemLzby7dCetruC+hTk28jMTjsm1FWTbKC1vYldFE81OD5+s2s015/U+omNJoBJCiJOQzx/gz3PXsXBjpdZmNOjok2enKM9OotWMbr8FuF6vn701DjbvrGPvD7P0GlrdACjAOWdkaX0/f2c28955ndqKYDah7MIirvz13Zz5k7EAVO0pY/bTf2TrqhV4PR4GnzeG//nDoyQkJQePpyiMGJzJroomAD5ZvYf/HlWAXtf9qREymUIIIU4y/kCAJz9YExak+uQlcs1FAxg1JJskW0xEkAIwGPTkZyZw0U8KuXRcEQmWaO09Faiub9W27anpXPf/HuDp9z/n6TmfMeCcUTz165vYZeKoTgAAIABJREFUs30bLqeTP95yNYqi8PBr7/HY2x/i83p44vafEwh03HqMjzWRkx6cel7X4mJtWceMwu6QQCWEECeZ178u4dstwckPep3CBSPzGTMsD5Px8G+SpdpjufyCvvTJS9TaFiwvo77JCcDZYydw1uhxZOT1IiO/gGvvnkp0TCwl61axdfUKaivK+c0TM8gtKia3qJg7nnyWnRvXsWH54rDzFOZ0HH/bD6Or7pJAJYQQJ5FtlU28u3QnADoFJozqRa+sw6uy3tbuZXdlM+u2VrNq0z7Wb6shzR6rjXoCAZWvv9+Nf7+sE36/n8Wf/AeX00nR4KF4PR5QFAzGjskRRpMJRadj66oVYfsm22K019v3NR/RZ5ZnVEIIcZJQVZW/frSeUBw5s186OenWg+7T7vKydVc9W0vraGnzHPIcdY3tbCipZnDfNHZv28IDV0/B43YTHRPLfc+/SnZhHyyJdqLNMbzx58e49u6pqCq8+ZfHCPj9NNbWhB3PGm/SUi7ta3Qe0eeWEZUQQpwk1pXVs6vGAYA9wczg4rQu+/175nNc0T+Hf7z0Dm9+vJEVGyoPK0iFfL9hH7UNbWTkF/DnD+bz5L8+YeLPbuD5qb+lfEcJ1kQ7/2/Gy6xcOJ9rz+zN9WcX0eZooVe/gSj7TZZQFIWoH9IoeQ+y6PhgZEQlhBAnibkrd2uvhxSndVlWY8eGtXw7fyE/+e2LBBLSodNtvPTkOFISg2mPTEY9gYBKS6ub2kYnFdUO2n+Y4h5QVT5YsI0z+6VzVr88FEWhYMAgdmxcyyevv8Iv//g0g889nxfmL6OlsR69PopYi5Vbzj2D1OycsOtRVRX/DwHqQHn/DkUClRBCnAS8/gArtgdvq8VER5HXxXqn9rY2Zv7pGfpf9Xv8ajCI6XQK/QuT6V+YjPUg6ZD8/gC7KppYs6WKhmYXqgqrNu2jpdXN+WfnotMpqAE1+HyqE4vNDsCG5Ytprq/j7DETwt53tHm0Z17JVvMRfXYJVEIIcRLYXePQbp1lpMR3OZp69U9/omDyr7UgZU8wM2ZYLvaEmIi++9PrdRTmJJKfmcDqLVWs2VKFqsL23Q20O5ppWPcJm1Ys5cFX3gbgq/f/SVZBbyyJdratXcX/PfYQF//8F2T2+v/s3Xd8VfX5wPHPuTe5Nzd7L7JDBnuDgIAiSh3UVets66y1tGr92TraWutsa2uHWmtVbOseSFEUKaLIHjIDJEB2yJ43497c/fvjJCe5JIEEEgnwvF8vX71n3nPt65XH7/c83+cZ6XXf2m7vpTJij/0+rS8SqIQQYphzuNx8daBrzVT3TLpO61Ysxz3iHND5ApAQE8RFs9Px9RnYdJter2Pa2HiiwvxZvbkIt9vDkQYXjfU2fv3KW0yYPQ+A8uIC3vzz07Sam4iKT+TqH93Nopt/2ON+RUe6UtIz4yVQCSHEGaXGbOXTnaWs3FVKU7dkiKAA7ym8uspy1qzLIX7qJQBEhplOKEh1lzIilPOmJfPF1mIA4qZfRcaU0drx7/3fL/ne//3ymPewtDu0yhQh/gYmp0We0LNIoBJCiGHG5Xbz/qZC3lh3uNdMOeWo+JObs4/YSQsB9Z3U+dNTTipIdcpIDqe4oonCsiba7S525VYxe1Jiv6/fvq9C6wT8rYmJJ9yXStLThRBiENgcLvIrzewtqWdfaQPVTRZOpIF6jdnKva9t4rUvD2pBSqdAWEhXuSOb3eV1jU9kFjq9GgTGZ0YT3kfSwof/fI6rs+NZ8tQjALQ0NfLK47/kp986l+snpHHn+VN59Ylf0dbS1a333EmJWn+pQ8X1OJyuXu99tLKqZvIK1ZJJJoOeRdOS+3Vdb2REJYQQJ6ihtZ3PdpWxPreK4poW3EcFpmCTL2MSw7l4ciJT06N7TYDorrLRwi9e30KNWe0jpSgwNiOaCVnRbNhZRqNZrX5e32iFFPUaj8dD/pGWrvNHRvV67/yc3ax+9w2Ss7qm7xprqmmoqeb7v3iExJGZ1FYc4aXfPEhDTTU//9vLAJj8fElPCudgUT12h5uC0kayjzOF12C2smZLkbZ9+4JRRAWfWMYfSKASQogBa7c7ee3Lg3z8dc9yQ901Wx1sPlTN5kPVxIX5c/cl4/p8T9NssfPQm1u1IBUcYGD+OanERARQXNFEcXlX+aHuxWPNrTYs7Q4AEmODCeil55O1rY2/3P8TfvT4Myx98a/a/qTMbH7x3CvadmxSCjf87AH++vOf4nI60fuoISIrJYKDHd1/K+tajxmoymta+HxToTbqm5IWyaWTk/o8vz9k6k8IIQbgcKWZH/1zPf/dVuwVpMJD/MhMDmdCVjTjMqJJjA3Gz9D1Tqay0cJDb27l+ZX7em0L/+Kq/VqJodBgPy6/IIuYiABsdifrvy7zOremwUJjsxrQ6rqlf/fV8PCVxx5mynkXMGHW3OP+PktLM/6BgVqQAogK96dzMFjXRxkkm93Jhp1lrFh7mPaOIJUZH8IvvzMZRTn2SPJ4ZEQlhBD9tL+sgV+9tR2LXa3goNcrjMuIZnR6ZI9MPFCLvJZWqUVgq+raAPj46xLqmtv51Xcma6WFNh2s4ouOlh0GXz2Xzh2Jv5+aZr47r1obMYUGG2lqVvtH7Ttcy5wpSTSYu5oh9rZeasMn/6XwQA6//+DT4/6+5sZ63n/xLyz47k1e+330OkKDTTSYrTQ2t+PxeFAUBavNSV2jhcKyRvJLG3C6ugL3pNRIfn3NZAKMvsf93uORQCWEEP1Q1WThkXe6glR0uD/zZ6QQEuTX5zU6nUJKfCjJcSHsz69jy54juNweNh+q5oXP9nPPpePweDz8Z+0h7ZrZkxII7Ji+c7nc5HVMuekUWHBOGv9dk4fT5SG3sI7MlAic3VrPGw3eWXV1leUseeoRHlnyDgZj388JYGlt4ak7v09ieibX/uT/ehzvvLfHA299sg+X24O13dnzPF89t83PYtG0FHQnOZLqJIFKCCGOw91RtbyzZfuImCC+NTsdn36kgLtcbtrtLlJHhBDo78vnm4twuT18urOUWVkx+Bt9tEKz0eH+ZCSr/Zs+fOk5cvLKiJ15HQCpCWFEhJqYPDqObTkVeDywdlsxI2KCte86OsmwYP9ezPV1/PyqhV2/xeXiwNdbWPnma7yztxi9Xo+1tZUnbr8BvwC1QrqPb89RUPd7t1ocPY77G324aEICV05PJbaXBcknQwKVEEIcxxc55Vp32kB/AxfNSvMKUu8+90fee+FZbTsoNpXM864ha/ZCGszt2loiAD+DD66OUdlfVuxlUlpXlt6Yjoy9Voudw0XVJM28nM5lvlmpak29CVkxFB1porbRQlOLDaerq/JDS5uNuKhAbXv8OXP480dfeP2W5x/+GSPSRnLl7YvR6/VYWlt4/LYb8DUYeOjv/+pz5NXSZvPaDvU3MCIigIy4ELLiQ5mZFYNpAI0bB0IClRBCHMfybcXa57lTkzD49ly4mpiRxd1/fZ1dh5uoM6vhpa7R2uO8dnvXdFldi421+8q17dzCOjbuOoLd4SJ08lV0L/+67utSYiMDyEqJ4PwZyXz0xSHa7S6v0U1to4XMlAht2xQYSFJmttf3+5n8CQoNIykzG0trC4/ddj02q5V7nnkOS2srllY1ozA4PAJ9x9osS7uDNqv3KCojPoQnrp/e17+yQSWBSgghjuFwpZlDHZ1pI8NMJMQE9TjHA0RNWMiaHTUcna0eGmQkJMgPh9NFo7lda6XRydEtAaEz4aI3rRY7+aV28ksbCQk0kpUayZ6D1V7nHKlq1hId+qNwfw6H9+wEYPFFs7yOvfj5VqITErX7dvL10eFwuvk6v5aKhjbiw3vPNBxMEqiEEOIYckrqtc9ZKRE9goDb7cESPIrImDgtSIUGGRmbEc3IpHCcThfrdpRSUdNKfxgNeqLC/AkN8kOnV3A63TSYrdQ1WrW0dnOrrUeQAmhqsVFZ20p8dM9g2umx15dqn8fOmMXSvIo+z+10oKBO+zwyKYzcwno8wGe7y7h1fnbfFw4SCVRCCNGLFquDZqudPcVdgSomMrDHeVv2lOMwxQFqZYhJo2KZPCoWvV7HoZJ6Nu5Up/I6+froCA8xUdtg0SpZKAqkJYQxZmQUsZEBvY6IXG4PJRVN7D9cS0Wtd9CLjw7UAuGOA1XERQWe9NqlTkeqm6muV0d64SFqMkduR2mkA2WNg/IdxyOBSgghUAPBjoJaPt97hLyKJqqber5f2p1bRVZqBImxwSiKwpHqZnI6mhnqFFgwK43UjoaGu3Or2JrTNVox+OqJiwrE10dHQVmjlkUXGmRk/owUoo4zhabXKaQlhJGWEEbhkUbW7yijvWMasdFsxWT0wWpzUlHTQm5hPaPTT6xSeXd2h4uvtpdq2+Myown0NxDo70urxUF+lRm3xzNoaeh9kUAlhDjrbcyr4p+rD1DVS3DqrvBIE4VHmggOMDB9XDxb9nYFopkTE7Qgte9wjVeQAvWPfkmFmaPZ7C7yyxoxGHyO2YG3u7SEMGIjA1m5Lp+6JitWm0tbewWwec8RIkJNfVaq6A+328PabSW0WtSUjvioQLJS1NT5iFB/Wi1mrHYXdc3tRJ9g597+kkAlhDhrWWxO/vpJDmv3ewcVH72OyDCT9se/1WL3ekfU3Gbn8y3F2vlxUYFaanlZVTMbdx3p9zNYbU72Hqxh78EaRiaFMWtSIibj8f80+/v5cum8DJZ/eYim5nZaLXYiQk3UN1lxOt18uu4wC2enH/N9VV8cThdfbivReknpdQrzpiVr04nGblmPNkf/qqmfDAlUQoizUlu7g4fe3MbBiq51SPHRQYzLiCIpLgSdrmfSRGmlmZzDNT0SIyZkRaMoCoeK61m7vcTrmF6vMCI6iKgwf8JCTOg7EiQaze3UNloor2nR1lnllzZSXt3C3GlJpMSHHvc3+Bl9uGBGCss+z8PtgYYmKyH+CmaLB7vDzcdrDzM+M5ppY+P7tTgZoKK2ha+2l9Lc2rVuamRSGMHdRnvdq8QfryL8YJBAJYQ467jcHh5972stSBl89Zw7OZGRSWF9JiHodAopI0JJjg/hcGmDV5LE3oM1NJrbvab7TEYfJmbHkJkSgd8xRkjWdgd5RfXsOViNze7CanOyakMBc6YkE2m0cteCGb1e939/eYlZ31pEZJg/47Ni2J1XjQdIiAvHUGem1qy+v9p7qIbDJQ1kp0WQmRJBSKCxx290OFyUVTezP7+Oio4qGd2Z/LwrVTR36zYc0ku19sEmgUoIcdZZtrWIvSUNgDoquWxeBhGh/XvPoigKmckRRISYtErhFbWtXpl46YlhzJ7cvyk8k58vk0bFkpkSwfodpR3vsRTW7yhl3rQkXlm/2+v81e+9wfJXX2TSnPnavvGZ0ew9VIPb7aGgrInrLxvLgfw6vt5XodbksznZlVvNrtxqjAY9ESEmDAY9breH5lYbTS02jhYW7Edjs1rw1m7rKnzrdnuob1IrqMeF+RPgd/JFZ49HApUQ4qxSY7by77UHte2LZqX1CFI/mj+d2oqe75m+dcMPuOORpwE1oeDC2Wl8/OVhr3OmjY1j0qjYY6aH2x0uaurbqG20UN9kxe5woSjg66MnLjKAyo6Fvxt3lvGdi0Z5Fb7d9vlKZl28CFNAV6KEyc+X1BGhFJQ10m53Ud9oZWJ2DMnxwfx7yVL84rJROvrX2zoCa1+CA42Mz4zG4Kvji63qNGZ1SQFMSwegsrYVV8ci5Yy4kD7vM5gkUAkhziorvi7B3lFxfGxGlFdtvE6//2AlbldXkkDp4Tweu/U6Zi5c5HVeTEQgfgYfrSzS+MxoJo+O6/O765usHCio5VBJg1fV8744XR4+31zEVRdmoygKBfv2UpS7n9t//VSPc+OjgyjoWNdUVFSOvcHN+hXL2PDKCzzw0tv4RGWyZ/cBWqweDIFh2nVul4OwYD/iYkJJSwgjISYIRVHYvKcrUE+b1TX9eKCgVvs8Ozv2uL9hMEigEkKcNZwuN5/tVpsQ6nQKk/r4QxsSHuG1vezl54lNSmHM9Jle+w8V12tBKjzEj+nj4nu9n8PhYsvecq8KD/1V12Tlsw0FXDgzjTVL3yYhPYPsydN6nBfVrWL5/5Z/TMmX/yY5axS/fuUtJsxWGyZOGhXLh/98jtWvvIvV2k5CajrX330fY6ZO6HG/qm6jrs571zdZtEzAsACjBCohhBhsRTUtmDvWBSXHheBvOv77FYfdzrqPlrLo5ju9pvM8Hg/787tGF3OmJKHX98yse/fVJVQ4YvEP7/qj7uujIz0xjLioQCLD/LUmiW1WB3VNFipqWigsa9QaEZZWNvP+qgPs2LyNS797fa/PGdDtt8y8+EoeffL+Xs+76oc/5aof/vSYv7m+yUJNg/oeKizYD3+TL66OdVWdCX+Lpibj28vvHQoSqIQQZ43DlV0LbmMj+7cYdtuaz2hraeb8K7+r7evs3FvfsUA4KsxEbC/llXZs20W9IQv/IPUdmI9eYcqYeEanR/Zagd3P6ENEqImslAhmTUxgf34tOw9U4XJ7aG6zM+66Rxh/fmbvD9rtlZin9zP6be+hGu3z6PQoPB4Pm3aVUdfxe5OjArlmVtpJfkv/SaASQpzxKhstfLKjhFUd036g1q3rjzUfvM2kOefj9Ali464yahss1DVacHUrk95gbufjLw8RHRFAZkoEYcF+VNc0svVgG3qjOm3Wn47A3RkNPkweHUdqQihrthRT32TF1z+Ir3bXEhEZQVCAd1q4tb2rDYdvP9dM9eZIdTOHihu0+6QnhrJ+Rxm5heq0pU5RuP/bEzD49Ay0Q0UClRDijNXUZuPFVQf4an9Fj1FGb9N0R6spP0JVk5OZN9zLsjUH+zzP5fZoKeq786qJjwrkSEkZen81aSE+OohvnZt+QgEkLNjEt8/P5NN1+VTXt9Fuc7Lu6xIumTvSayqye++r/qbaH81idXjV9hszMopP1uVrI0cFuP/b48nsx2LkwSSBSghxRtqeX8Mzy/do76SOZj9O6R9ru4MVa/Yx4dqHsBx1anCAgdBgP/Q6HQ6Xm0az1auxYEVtK7qOIBUUYGDh7LSTGuUYfPVcPCed91fl0mZ1cKS6hbzCekZ1KzxbVdc9+WHgNf7arA4++eqwVtvPaNCzO6+rlYhep46k5o8bccK/40RJoBJCnHHWHajk6Q93aaV+jAY94zOjKShtpKFjEWt9k4Xk+N7XAdU3Wflk3WEcftHavsgwE2PSo0gZEdprpYk2q4OC0gYOFNRh7lZ+CI+a9dfbO6mBMBp8mDctmU/X5QOwM7eSrNQIdDpFK2wL6tRceGj/phc7FZc3sX5HKZb2rqaONntXdE6NDuL+b09g5De0bupo30zKhhBCfEP2lzXwu2VdQSo5PoTvfms0Bl+9FqQAynspFQRqy4wVaw9h7fij7WfQc8E5KVy1IJvstMg+yyEFmHwZnxXDtRePZtbEBHz06rRci8XOR2sPYzmqlfuH/3yOq7PjWfLUI9q+fzzyC3584Uyun5DGLTPH8rsf38yRwq4FxYmxwSTFBQPQanFQ2pEckldYp63Lcns8LF9ziAP5tTiOMWr0eDyUV7fw2YYCVm0s9ApSnSKD/bh1fjbP3X7uKQtSICMqIcQZpN3h4o8f7dESHbJTI5g7NYlWi4Ote70rpFfUtNLY3E5YcNfow+FwsXJDAe0do4nocH8WnpuupY/3h6IojMuMJjEumJXr8mlus9PcauN/mwr59vmZ6HQK+Tm7Wf3uGyRnjfa6Nm3MeOYsuoqouBG0mht59/k/8fht1/P3z7ei16sjsjEjoyitVFvD5xXVExZi4uv9lV73MbfaWL+zjC17y4mJCCAyzJ+gAAMKCja7k7omK9X1bdo0X3cjwv0ZlRDGrKxYzsmMRq879eMZCVRCiDPGuxvyqehY/xMTEcCcKUkoisK+/BqtRUdMRIDWsXbr3nIWzk7TkhK27C2npaPgamSYiUvnZZzwlF1okB+Lzs9k+RcHabU4qK5vI+dwDZkJgfzl/p/wo8efYemLf/W65qJrb9I+Ryckcv29D/B/ly+gtryM2KQUQB1VGQ16bHYX1fVtfLGlSPttlvL9pI6bSnWDmvzgcLo5Ut3CkereR4+dQvwNXH/uSC6elIifYfiFhVMfKoUQYhDYnS4+2almrOl0CudNS0anU3C63Bwsqtf2nz89WSsWW1Jh1lKxq+vbtMoRPnodF85MO+n3SoH+BubPSNW2t++r4JWnn2DKeRcwYdbcY17bbrHw5YfvEp2QRERsV8ULRVG0ShHtNqe2MNfe2sA1V5zLvAkRXDg1mtS4gGNWbdcpChNTI/jl1ZN5694LuHJG6rAMUiAjKiHEGWJTXrWW4ZeWEEpox5ReaYVZSwxIHRFKSJAfc6Yk8b9NhQCs21GKwVev1ckDmD4u3qv/UqcP//kcbz77NJd+/3Zuffgxr2Mej4cnf3gTu9Z/yS+ef5UZCy4G1KaKY0dGsS+/FpfLQ7MSxp333d3n7/jsrX/x+h+foN1iIT41nd8seQdfg/eaqfAQk9coydluYecbj7H2D/le5/199RYCImKpa7TQbneRV1hLdb0a2O7/9nguGJ9wjH+jw4cEKiHEGWFvab32OSM5nMMlDezPr9Wm+QBGdHS7TU0IZVRaJLmFdbjdHv63qVAr7OBn9GF0t7TvTn29V+q04t8vQx8V0yeOimF/QS0eD8RPWoDep+8eTnMWXcX4WXNprK3hoyUv8qd77+TJt5djMHa9S+veBNFHr+PySyay+Pvr+rxnoL+BdpuTDR0jzgCjD7NH9V08d7iRqT8hxBnhcEVXeaTNu4/wxdZiryAFEBHWtRD23MmJZCaHa9udC4KzUyN6LAa2trVp75UCg3tmvxXl7uOj115i8ZPP9vpsASYDKSPURbJ2J/zosou5Zkwi+7dv5tPXX+WaMYm4Oqq1BwQFE5+Sxphp53D/X1+mvCifratXet2vs82G+jsSei3fdLSte8u16y6amIjfSU5rfpMkUAkhzgjV5q7KDN0bARp8u/7MGbv9cbbZnRgNevR671FQQmxwj3u/8tjDfb5Xslkt/OX+xdzxyJOERUX3ON4pMabrvjf98o/8adlq0sdOYM6iq/jTstVaVp83Dx6PB4fdOzuvqaUrzb4/Qaq00kxex3s6k0HPVd3em50OZOpPCHHaKq9vY8XOErYfrulRgSIy1MTMSQkcKqrnYEfChKNjrVFhWSPrd5bRbutl7VCov9f2hk/+S+GBHH7/wae9PsNrTz9K1qSpTL/gW8d81sjwrvu6fINIykzBz+RPUGgYSZnZVJWVsOnTj5gwex7B4eHUV1Wy7OXnMRhNTJl3gXatx+OhtlF9z2Tw1ff6Lq272oY21mwp0rbvWDCK6H7WORwuJFAJIU4LVruTDblV5JY3klfexJG6Vmx9NB+cmB3D1LHx6HUK1XVd03/1TRZyC+u8+kLpdQo6nYLD6cZo0GM0dI1s6irLWfLUIzyy5B2vd0Sdtn+xipytG/njh/877vMHdysi21uANBiMHNixlRX/eZm2ZjMhEZGMnnoOT729nJCIrndmNQ0WbfFwZJj/MTsJF5Y1snZ7iRagZ2REc8nkpOM+63AjgUoIMaw1tdl4a30+q/ccwWLv+Qf+aOEhfup7Jp36BzyyW0PBXbnVXuWNUkaEMGtCAu98dgCgxx/9gv17MdfX8fOrFmr73C4XB77ewso3X2Phdd+nurSY70/P9rruj3ffwagpM3js9aXd9nr3sgK8jofHxPKrf75x3N93oFsPrIxu79i6M7e0s21fBYVlTdq+cUnhPHz15GMGtuFKApUQYthaf6CS51bu67WwrMnog6KA1ebUmvmB2nLj/f/lMn1sPOMyo8n5cjluTwY6H4MWpBQF5k5NJislnO37KnF3VLKwO1y43R50HUFu/Dlz+PNHX3h97/MP/4wRaSO58vbFBIWFc9G13/M6/rNvz+fmBx9l6vyLvPbbugVZnxNsOFjXaCG/tKsFx4ioQJxONy63m6YWG3WNForLm3os8J0zKpb7L594WiVQdCeBSggxLL257jD/+eqQtu2j1zEyOYyRSeFEhflri3GdLjcNTVaKypvIK6qn3ebE5fKweU85tY0WIqNjaGmFpo6BlKLAgnNSSUsMo7bRwu68Ku073G4Pjc1WIjreU5kCA0nK9B4tdX+vBPSaQBEZP4KYBO8ptromi/Y57ATeEblcbtZuL6GzDZbD6eatT/cf85pgky+LvzWWeWPiTsuRVCcJVEKIYef9zQVeQSplRAhzpiT1WnPPR68jOiKA6IgAJo+OZVtOBfsOq9Nj+aWNZCRnoDisYFMz5SZkxZCWqLbg2Hmg0ms0BmqFioijEioGQ/dU+aiwgd3f7fawdnuJ1hfqeGJDTVw2JZmFkxIJNvW9Zut0IYFKCDGsHKxoYsmaPG37nAkjGJ8Z3a8Rga+PntmTEhkRHcTqzUW43R4Ol3RVnAgL9mPqGHWh69uvvo45cDSKomA06rHZ1HVMB4vqGZ0e1ed3eL936mlpXkWPfS6Xm/wSdcpOUSAmsv/9omx2J2u3l1Bcbtaujw73p76pXavx17n/vNFxXD49lawRoehO4xHU0SRQCSGGDafLzZ8+2qNNb00eFcuErJgB3ydlRCjnT09mzZZir/0Ts2MoKGtkf34tzUFjtPSGselRFFeYqW+yUtNgobq+jZiIgTcf7EvhkSatjUZ0eIBWa/BYPB4PxeVmNuwq82oR4vGglUHqlB4bzK+unkx8+OA983AigUoIMWxsPlhNSa3aqTYyzMTkMT3L/LhcLt57/k+s+2gpTXW1hEXHcP6V3+U7d93rNeoamRRO0ZEmCo+omW8GXz37C+qoOapaBajZcwEmA+t2qCWG1u8o5coLsvrVrv542m1Otuw5om1X17fx3mcHGJUWSVxUIOGpuU2GAAAgAElEQVQhJu17Ot+3VdS2kltYR3P3Boy9iA/3584LRzE9I+aMGkEdTQKVEGLY+HhHifZ5xvgRWop5d/99+QVWvf1vfvq7v5I4MouCfXt4/uGf4R8YxKXfv107z+5wEeDf9U7L4XR5BSlFUUcnRoO6aDbQ38C+/BoazO3UN1n5en8lM8afXNt1j8fTo3MuqJUzNu8pB9SK7kaDHjzqNJ/b0/M+JqMPQQEGrVK6yaDnr7fMIjm6ZxWNM5EEKiHEsNDW7mBPsVrmJyTQqBWQPdrBXV8z7YKFTDlvAaD2bVr/yX/Jz9kNQHOrjb2HajhUXK8tdAW0pIngQCMzJ4xg1Ua1enp4iAlFUdDrFc6bnsKyz/PweGB3XjVGgw8Tswc+9ah+n4cNO8u0EV1f3G6P1k34aIoCF85MJWVEKOt3lGmB6qa5mWdNkAIJVEKIYeJwVVdR2RExQX0mT2RNmsrq996goqiA+NR0ivP2k7dzGz944FH2Ha5h694KryQDr2tTI5g9KRGns6tFu2+3SuRRYf7MnJDApt3qVN3WveU0NluZNTEB4wB6NbVa7Hz1dSlHqpq1fZFhJsZlRNNmddBmsdNqtWN3uLG2O3G63CiKOj3p66OjqqOaRnpiGKkJYVTUtJBbqFbTMProuGjC6dGeY7BIoBJCDAud76bAu5rE0a784U+wtLVw9yVz0en1uF0urrv3l7SGjCNvV9e7IL1OweMBd8dQauzIKGZNSkBRFNzurkDmPmqubVxmNA6nm+371Oy9Q8UNHKluYVJ2LJkp4cdspmhpd5BXWMeeg9XYHd7BMjzERGZKxDH/HbjcHj5cnattjxkZhaXdwdrtXVOiN8/PJtj/9E85H4iTClS/+93veOihh7jnnnv4y1/+MljPJIQ4C7Xbu0Y5x+o0u2nlR6z/+EPu/eML6juq3APsLHYS1K0aw+j0SNxuj1YxPD4qUAtSoI5cfHx0OJ1ur0rrnSaPjiXQ35eNu8qwO9xYrA427ipja045CTFBRIX5Exrsh16nw+F00Whup7bRQnlNi1fg62wZDxBg6rkG7Gh78qpoMKvrvSLD/An0N/DJV4dpaVMrc4xJDOOK6SnHvc+Z5oQD1fbt23nppZcYP378YD6PEOIs5dOt3YbL3fvUHcB/nnmcK+/4CedeegUej4cDNb4E2dUpNqNBz4KZqUSE+vPmxznqfX10zJuWjKIofPb2v1n19n+oLS9j/A2PEpKYTavFjtXm9EoZf+NPTzFp7nzmj49lx6EmalvU53E63RSXm7U1TceSmRKO0aAn55C6+PhYo0SAipoWdhxQq2Qoijrt9+Hnedr7q6hgPx68ctIZnd3XlxMKVK2trdx44428/PLLPPHEE4P9TEKIs1Bst2oQnaOK3tis7Sg69b3SwaJ6SivVIGXw1bPovAwiQv3ZnVeFq2NkMzotUmuFERETx03/9zBxyansK7FQVK2OVErKm8hO66pQbm6o47kH7qaxtgb/oCDSp8xl7Le+R6PdhN3hoi8mPx+yUiIYlRZJUICBD/7XNY0XFdb3Gqcj1c2s2liojcaC/A1s3VuuHY8JMfH0TTNOu/Ycg+WEAtXixYu59NJLWbBgwXEDlc1mw2brGlo3Nzcf42whxNkqI66rc251fWuf5009/0KW/uNvhEQncKCpq3r4/BkpWumj/NKuahTd28pP61YoVh/URlH1QQAOFNR5Baq+OvV6PB7MLTZqGy20Wey43B70eoXgQCNRHVN1ndOLlbWtWsCNiQggKKDneyWn0832/RXkHKrxKuXU3NZVhHdGRjT3XDqOiKCebUbOFgMOVO+88w47d+5k+/bt/Tr/6aef5re//e2AH0wIcXaJCvYjNtREVZOVippWzK02QnppCnj7r57g7b/9gVWrNhI39TJAnWZLjlcDndPppqGj2294iB8hffyBjwgx4qez0+42UNtooai8idSOdvF9URSF0GA/QoOPHTQ8Hg9f7+sqpTR6ZKTXcWu7g7yieg4U1NHaS2V4gIggI7ecn82C8SNO64Kyg2FAgaqsrIx77rmH1atX4+fXv+j+0EMPcd9992nbzc3NJCYmDuwphRBnPEVRuGRyMku+UOv87c6tYt605B7nmQID+cGDv+WtFTlY2p0oCkwfG68d3755Ox6PmrjQ23RbycFcHr5+EXabjYTJC8he9FNArUYRFxmIXz/KGx3PgYI6KjqyGPV6tXljbYOFdpuTukZLrwkcAAYfHWOTwrlkchIzM2NOuB3ImWZA/4/s2LGDmpoaJk+erO1zuVysW7eO559/HpvNhl7vnbppNBoxGo/dKlkIIQAWTkzg7Q2Hsdpd5BXVk5YYRmJsz4WtFTUtWrWHlBGhBHRL126z2gE1UIUG9/zbE5+azh+XrcbS0sKmVSsoL9xFWNokrO1OVm8q5OI5I/HxOfEAUVHTwubdXWnyLpfHq6Pw0VKjg7hwQgJT06NIiAjstRrH2W5AgeqCCy4gJyfHa98tt9xCdnY2DzzwQI8gJYQQAxEaYOT2BaN47tN9AKzZUqQlSHRX29BVCuno6brkrDEUbC0GQK/rGXB8DQbiklMBSB87nsd+dCuepNEoPkYqalv5dH0+F85MxdRLS5HjKSpv4ostRVoiR290isLI2GAmpERwyeSkM7aQ7GAaUKAKCgpi7NixXvsCAgKIiIjosV8IIU7EJZOT2HSwmh0FtdjsLj768jDnTk5kZFKY9q6mtrGrevjRvZ303dLcHc6+M/Q6uawtOPM/xzTmMpwuD5W1rby3KpfZkxJITwzr1/uhdpuTzbuPcKijlUdvjL567liQzbcmJeErU3oDIpUphBDDik5R+NXVk3n4ra3kHmnC7nDxxdZiDpU0MC4jisTYYFo7suIUBUKCvKf3uidgHJ3m3rk+KipuBNa2VtavWMb+bZv49Q9/Qlx2Jis3FNBuc9Juc7JmSzE79lcyOj2KpLhgggONXkHL4XRR22jhUHEDBaUNOF19j6LOyYzhZ5eNIzRAXoOcCMXjObq/5dBqbm4mJCQEs9lMcPDZU1RRCDEw7XYnf16Rw9r93o0I/Qx6nC4PTpcbHx8dt1010eu42+1hybLduFweggMMXHfJGC3AvPDL+8jZvEFbH5WcNYorb1/MhNnzADUbb/3OMop6KSRr8NUTHGBAp1OwO1yYW209ugN3pyhw4bgEvj09xSv1XqgGEgskUAkhhrUNuZW8+L8D1DX3XASsKHD71ZPQHZWAsPyLQ1TVqVl3V1yQNaAmiB6Ph5IKM3sP1VBZ2/d6ru50ikJggC9tFof2fuqlO+eQchZVOB+ogcQCmfoTQgxr546KY2ZWDFsP1bBqdxm55U2YO9YeeTxgbm0nLNi7YkNWaoQWqPbn1w4oUCmKQsqIUFJGhNJgtlJ0pInaRgu1jRba2x09+kWNz4xm6pg4dhyoZM/BGkBdpCtBavBIoBJCDHt6nY5Z2bHMyo7F4/Gw5Is83tuk9pOqbbB4BSprWxs+lgp89OB0weGSBkanRxIbGTjg7w0PMRF+VNmiwiONrN5UBKi9rc6ZMILK2lb2HlKDlK9ex63zs0/0p4peSOqJEOK0oigKk9OitO2jGxMW7NvDA1cv5MDK17R9a7eX4DhGjb7+srY72LCzTNueMjqW6vo2Vm0s0N5X3TQ3g5Q+mj6KEyOBSghx2hmfHE5URxmjkgozLW1dlR7GzpjF0rwKnvnn34gOV1PXzS02Vm0q9Or4O1A2u5NP1xdo1cyT4oKx2Z188tVhrffUlPQorpmVdsLfIXongUoIcdrR63RcMjlJ297SrdJ4J51ObS3f2eiwvLqFFV8dxtzae/miY6lvsrD8i0PUdazfMhr0tNucbNpdrqWlT0yN4JFrpvS6yFicHPk3KoQ4LV0yOYmgjmaEhWVNFJY19jgnLNiPi+eka+3ma+rb+GBVLrvzqrWGhsdibXewPaeCD1fn0diRdagoYLO7qGnoWnR82ZQkHr9uGn7H6P4rTpykpwshTltf7ivnd8t2A+Dro+PSeRm9ZvjVNlhYvblQ65QLakPF9MQwYiMDiQozqSWTPNBmdVDbaKGytoXCI009WtV3Fxtq4meXjWdiamSf54jeyToqIcRZwePx8OTSXazPrQTUYDV/RgopvbTrcDhcbNlbfswCsf2hABNTI/n21GRmZEbLVN8JkkAlhDhr2Bwufv3OdvYU12v7RiaFcc6EBAJMPQvLNpit7M+v5XBJw3GTKww+OlKigsiICyEhIoCMuBDSY0PwH4RWIGc7CVSnAZfHxbaWbexu3U2uJZfi9mLa3e34KD6E+oQyyn8Uo/xHMTdkLtGG6FP9uEIMazaHi9//dzcb86q0fToFUhPCSE8KIyrMnwCTr1ZKqd3mpKq2lbziesqqmr2m94L8fLliegoTUiLIjA/FKO+dhoQEqmGszdXG+7Xvs7RuKRX2iuOer0fPeaHncX309UwKnPQNPKEQpyePx8Pne8t5cdV+2mzOHscNvnp8fXS43B7aezmu1ynccO5Irj13pFQ3/wZIoBqmtjZv5bHSx6iyV/U4FuDwIcDhi0vx0OjXjruXzgJXRV7FPSPuIVA/8BX2Qpwt6lva+Wh7MSt3lWmllo7F6KvngnEjuGJ6CslRslD3myKBaphxe9w8V/4c/6n5j9f+6TXRXFiWwOjGMGKt/iio0cmqd1IQbGZbdC2fJJXQ6Ne17iPOEMdf0/9Kuin9G/0NQpxu7E4XX+fXklfexOEqMxUNbdidbnz1OiKD/ciICyEjLoSZmTEEnECTRHFyJFANIx6Ph6fLnmZp3VJt38S6SO7dO56ktuOPjByKm0+SS/jnqAO0+6jrPkL0IbyU+RIZpowhe24hhBhKA4kFMhE7xJZULdGClM4Di/eN5Y+bZ/YrSAH4enRcUZzKkrXnk9mk9rQxu8wsPryYBkff3USFEOJMIYFqCB20HOSlypcAUDzw0M7JXF2Uho7jt7Y+WqzVnz9tnkV2o7o+pN5Zz+/Lfj+ozyuEEMORBKoh4vK4+G3Jb3GhTtfdeDiTCyoSTuqeAU5fntg2nWC7AYDPmz7ni8YvTvpZhRBiOJNANUQ2N2/moPUgAGnNQXzvUOag3Dfc7sfdOeO07X9V/2tQ7iuEEMOVBKoh8n7t+9rnW/JG4evp/V/1n9evJ/TRR3lw5UptX1FDAze+8w7pf/gDiU89xc3vvUdNa1dL7PMr4hlpVt9X7bfsZ3/b/iH6FUIIcepJoBoCZqeZjc0bAYi2mDinOqbX83aWl/Pajh2Miek63ma3c+Xrr6MAH/3gB3x2223YXS6ue+st3G613IuCwhVFKdo1KxtWIoQQZyoJVEMg15KLBzXr/9yqWPS9JE+02mzcsXQpf1u0iFA/P23/1tJSSpua+PsVVzAmJoYxMTG8eOWV7KqoYF1RkXbeuVVx2ucDlgND+GuEEOLUkkA1BHItudrnTHPPKs4A93/6KRdlZnJeuvfCXZvLhQIYfbqKXvr5+KBTFDaXlmr7gh0G4trU7qUHrQdxenqWhBFCiDOBBKohUGmv1D4nt/QsybI0J4e9lZX85oILehyblpBAgMHAb1avxmK302a386v//Q+Xx0N1t/dUAMmt6r3b3e2YneZB/hVCCDE8SK36IdB9dGNwef+3wBGzmQc/+4xl3/sefr49y7ZEBgTwr2uu4b5PPuGlrVvRKQpXjxvHhLg4dIr3FGL3ezs8jkH+FUIIMTxIoBoCvkpXAOose9Rpd0UFtW1tzHvpJW2fy+NhU0kJL2/bRs2vf838kSPZfc891Le1odfpCDWZyHzmGVLGjvW6V7u+694GxTBEv0YIIU4tCVRDYIRxhPa5OKiFUU1h2va8tDQ23XWX1/mLly8nIzKSe2fP9uoWGhGgttT+qrCQ2rY2Ls7K8rquOLgFAH+dP6E+vb8LE0KI050EqiEwyn+U9vlgaBMXlyVp20FGI6NjvNPV/X19CTeZtP1v7NpFVmQkkQEBbCsr48HPPuPHM2eSERmpXdNosFFjsgKQ7Z+NTpHXjUKIM5MEqiGQ7Z+NHj0uXKyPrWTxvrF9LvjtTX5dHY99/jmNVitJoaH835w5LJ450+ucL+PLtc9j/ccefQshhDhjSJuPIfKLwl+wpmkNAL/aMYX5FSOOc0X/efBwy3lfUhqkZgG+O+pdRppGDtr9hRBiqEmbj2HgmqhrtM9LsnOx6gdvndOK5BItSE0OnCxBSghxRpNANUSmBk5lQsAEACoCLLySnXucK/qnymThH6O7avvdGnvroNxXCCGGKwlUQ0RRFH6T/BuMihGAZWlFfJhSeFL3bDTYeHDGFqwdKe+XR1zOzOCZx7lKCCFObxKohlCyXzL3JtyrbT8/bh+vZufiUNwDvld+sJl7Zm/QpvxGGEbws4SfDdqzCiHEcCVZf0Psu1Hfpc5Rx6tVrwLwZsZhtkRXc0/OOMY0hqMcp9tvq4+DD9IKeDPjMC6dmvcS4xvDixkvEqTvWZ5JCCHONBKovgE/jv8xgfpAni9/HhcuCkKaufvcjYw0h7CwLJFRjaGkN4dgdOvx4KHGZOVQiJlt0TWsGXHEq7pFhimDP6f/mThD3DG+UQghzhySnv4NyrXk8mjxo+S35/d63ODS4VI82sipOz16bom9hdtjb8dX17NGoBBCnE4GEgtkRPUNGuU/ijey32Bl40o+qP2A/Rbvzrx2fc93V/46fy4Nv5Rro64l1ZT6TT2qEEIMGzKiOoUOWQ6xu203uZZcitqLaHe3o0dPuG84o/xHke2fzYygGQToA071owohxKCSEdVpItM/k0z/zFP9GEIIMaxJeroQQohhTQKVEEKIYU0ClRBCiGFNApUQQohhTQKVEEKIYU0ClRBCiGFNApUQQohhTQKVEEKIYU0ClRBCiGFNApUQQohhTQKVEEKIYU0ClRBCiGFNApUQQohhTQKVEEKIYU0ClRBCiGFNApUQQohhTQKVEEKIYU0ClRBCiGFNApUQQohhTQKVEEKIYU0ClRBCiGFNApUQQohhTQKVEEKIYU0ClRBCiGFNApUQQohhbUCB6umnn2batGkEBQURHR3NFVdcwcGDB4fq2YQQQoiBBaqvvvqKxYsXs2XLFlavXo3D4eCiiy6ira1tqJ5PCCHEWU7xeDyeE724traW6OhovvrqK+bOnduva5qbmwkJCcFsNhMcHHyiXy2EEOI0NpBY4HMyX2Q2mwEIDw/v8xybzYbNZvN6OCGEEKK/TjiZwu12c++99zJ79mzGjh3b53lPP/00ISEh2j+JiYkn+pVCCCHOQic89XfXXXexcuVKNmzYQEJCQp/n9TaiSkxMlKk/IYQ4iw351N9PfvITVqxYwbp1644ZpACMRiNGo/FEvkYIIYQYWKDyeDz89Kc/ZdmyZaxdu5bU1NShei4hhBACGGCgWrx4MW+99RbLly8nKCiIqqoqAEJCQjCZTEPygEIIIc5uA3pHpShKr/tfe+01br755n7dQ9LThRBCDNk7qpNYciWEEEKcEKn1J4QQYliTQCWEEGJYk0AlhBBiWJNAJYQQYliTQCWEEGJYk0AlhBBiWJNAJYQQYliTQCWEEGJYk0AlhBBiWJNAJYQQYliTQCWEEGJYk0AlhBBiWJNAJYQQYliTQCWEEGJYO6FW9EIMmMsF+/fDjh2wezc0NoLHA0FBMH48TJkCEyaAwXCqn1QIMcxIoBJDq7oaXnkF/vlPKC099rmRkXDbbXDnnZCa+s08nxBi2JOpPzE0XC549llISYFf/er4QQqgrg5+/3sYORIeeADa24f8MYUQw5+MqMTgKy+Ha6+FjRu1XR5FoXrO+dTOmEXTmPFYY+LwKAp+9bWE7s8hYud24td8hs7hALcb/vAH+PhjeO89GDv2FP4YIcSppni+4f7yzc3NhISEYDabCQ4O/ia/WnwTiovh/PPV/+1QcMMPOHzrj7EkJB7zUmNdLWlvvUbWyy+oAQsgLAxWr1bfYQkhzhgDiQUSqMTgqa+HGTOgoACAtvgEvv7936ifds6AbhN8KI+pv/gJoXkH1B0REbBlizolKIQ4IwwkFsg7KjF47rlHC1Itqel89fZHAw5SAM2Z2ax747/UTZ2h7qivh5tvVt97CSHOOhKoxOBYvhzefBMAe3AIG159m/aY2BO+nTMwkE3/+A+tSSnqjo0b4bnnBuFBhRCnGwlU4uR5PGpmX4e9Dz+GNT7hpG/rDAxix5PPdu14/HGwWk/6vkKI04sEKnHyNmyAffsAqJ8whdLLv9PraR/+8zmuzo5nyVOPaPse+d7VXJ0d7/XPS795QDteP+0cSi+7Ut1oaFCzAIUQZxVJTxcn79VXtY+FN90CitLjlPyc3ax+9w2Ss0b3OLbgmhu57u6fa9tGk8nreOGNt5C0YlnXd/3gB4P04EKI04GMqMTJ27QJAJfBSPnCS3sctra18Zf7f8KPHn+GwOCQHseNJhNhUdHaP/6BQV7HGyZOoTUxWd3Ytg06U9eFEGcFCVTi5JjNcPiw+jF7NG6Dsccprzz2MFPOu4AJs+b2eov1H3/IzeeM4d5F5/PGn57CZrV4n6AoNI6bqH622SA3d1B/ghBieJOpP3Fy8vO1j+asUT0Ob/jkvxQeyOH3H3za6+XnXnYlUfEJhEfHUHIol9f/+CQVxQX84rlXvc4zZ48m8dPl6sbBg2ohWyHEWUEClTg53bLwnAHeU3Z1leUseeoRHlnyDgajX6+XX3TtTdrn5KxRhEVF8+jN36WqtJjYztR0wBkQ2Ot3CiHOfBKoxMnx9dU+6hx2r0MF+/dirq/j51ct1Pa5XS4OfL2FlW++xjt7i9Hr9V7XZIyfDEBliXeg0nV/LyWtQIQ4q0igEicnPl77GFhc6HVo/Dlz+PNHX3jte/7hnzEibSRX3r64R5ACKM5T09zDoqO99nvdOy7uZJ9aCHEakUAlTk5CAkRFQW0tofv3qot/O9LTTYGBJGVme53uZ/InKDSMpMxsqkqLWb9iGZPnXkBQaBglhw7w2tOPMnrqOaQclcYeun9v18akSUP+s4QQw4cEKnFyFAWmToWVKzE2NRK+62saJk/r16U+vr7s3bSeFf9+BZvVQkRcPOdcdAnfueter/NMVRWEHshRN7KyQIoZC3FWkUAlTt5118HKlQCkvf3vYwaqx15fqn2OjBvB4298eNzbp7z3BrrOgrTXXXdyzyqEOO3IOipx8r77XQgPByBh5UeE5O0ftFv71VST/ua/1A29Hu64Y9DuLYQ4PUigEifPzw/uvhsAndPJlIfuRRmM6hEeDxMffQCDuUndvvFGGDHi5O8rhDitSKASg+PBB2HMGABCc/cz+dc/V1vKn4RRz/+J+C/+p25ER8Ozzx77AiHEGUkClRgcRiP861/auqrk/77HtJ//BH1b24BvpdjtjP39bxn1QrfA9NJLaqdfIcRZRwKVGDxTp8I776jvkoDET/7Lgm/PJ3rjV2raej+E7t/L+d+9hMzXXura+ec/wxVXDMUTCyFOA4rH08+/IIOkubmZkJAQzGYzwZJmfGZavhxuuAEsXcVlm0aPpfDa71M7YxZtSSmg6/hvJI8HU2U5kTu2kfL+W0Rt29R1H70e/vY3+PGPv9nnF0IMuYHEgtMjUFkssG4d7NgBO3dCbS24XODvD6NHw5QpcO65kJY2tA8v+q+gAG67Db76qsche1Aw7dExoCgY6+swNjb0vH7cOHUqcfLkoX9WIcQ37swJVPn58Pe/w2uvQVPT8W++YAEsXgzf/nbXf7GLU8fthjffhOeeg+3b+3dNVpY6gvrRj6SmnxBnsNM/UDkc8LvfweOPn1iTvHPPVYPbyJEn97Bi8Gzfri4K3rEDdu+Gxkb1vVVwsNqyY8oUuOACOO+8XjsECyHOLKd3oCorU1+c79yp7fLo9TjGjME5ciSuuDjcYWGg06FYreirqtCXleG7Zw/6xsau+5hM6mjs5puH/kcJIYQYkIEEquFVQqmoSP0v6tJSADyKgm32bOyzZuHx9+9xuicgAGd6Os70dGxz5+KTn4/fypVqwLJa4ZZboLlZW4wqhBDi9DN8AlVTE1x4oRakXGFhWL/zHVz9rUSg0+HMzKQ1JQW/Vasw7tih7r/nHnWxqNSIE0KI09LwyTi47z41UwxwRUbSdttt/Q9S3RkMtF92Ge1z53btu+suqKgYpAcVQgjxTRoegeqzz9TkB8BjMNB24414AgOPc9ExKAq288/HPm6cut3UBHfeOQgPKoQQ4ps2PALVb3+rfbQuXIgnLOzk76kotF98Me7OgLdihVeChhBCiNPDqQ9UO3fCli0AuKKjcfSxwPPP69cT+uijPNjR9wiguqWFH374IZnPPEP8k08y9x//YPmBA9pxj78/tvPO67rJ3/8+JD9BCCHE0Dn1gerf/9Y+2qdP73UNzc7ycl7bsYMxMTFe+3+0bBn5dXW8ff31bLrrLhaNGsUt77/PnsrKrnuOG4fHaFQ33noLbLah+R1CCCGGxKkPVB2jKQB7R5uI7lptNu5YupS/LVpEqJ+f17FtZWX8cMYMpiQkkBIezs/nzSPEz4893RMnjEYcWVnqZ6sVcnKG5GcIIYQYGqc2UDkcsGcPAK7wcHWR7lHu//RTLsrM5Lz09B7HpicmsmzfPhotFtxuN0tzcrA5nZybkuJ1nis+vmujM21dCCHEaeHUrqOqqNCm4tzR0T0OL83JYW9lJV/00X78tWuu4dYPPiD1D3/AR6fD39eXN669lrSj+ha5ut87P3/wnl8IIcSQO7WBqr1d++g5qgDpEbOZBz/7jGXf+x5+Hc34jvbkl19ibm9n+fe/T7i/P5/k5XHz+++z8tZbvd9ndb93b++o7Hb48ku1Ht3XX6uLju12tcV6Wppah27GDJgzR+u1JIQQ4ptxagNV9wDicnkd2l1RQW1bG/Ne6mqg5/J42FRSwsvbtvH1T3/Ky0J0Y8sAABJ4SURBVNu2sfnHP2ZUx4hpXGwsm0tKeGXbNv68aFHv9+7+nZWV8OKL8PLLUFXV+zPu2AHvv69+Tk1Vq3rfcQcMRgq9EEKI4zq1gSo2Vh2huFzo6+q8Ds1LS2PTXXd57Vu8fDkZkZHcO3s2lo6q6rqjsgT1Oh3uo+rs6mpruzYSEtSq3UuWqNUwmpt7PJZHUcDHB5xOlO73KiqCBx6AZ59VW6NffvmJ/GohhBADcGoDlcmkNj7MyUFXU6MmV3RM8wUZjYw+Kh3d39eXcJOJ0TExOFwu0sLDuffjj3nioosI9/dnRV4eXxYU8O4NN3hdp++Wrs5HH6mVMFat0nZ5FAVndjaOUaNwxcfjDg9X+1m5XOjq6tBXVOC7bx++HSWeqK5WK7zfcosasPqYmhRCCHHyTn1R2mnTICcHxePB59AhnL2kqPfGV6/n/Rtv5NHPP+e6t9+mzW4nNTycF6+8kosyM7tOdLnwPXSoa/vLL73uY584kfb58/H0VmZer8cdE4M7JgbHpEno6uvxW7Wq636vvQb19fDBBxKshBBiiJz6flSff65WTQecKSm0DXL/KJ8DBwh47z0APDoditutflYULNdcg3P06IHd0OPBd88eTB9/jNL57uvWW+HVVwfzsYUQ4ow2kH5Up37B7/z50DEC8ikuxmcw08edTvy6jaCsl1yCOyAAQB3BHTky8HsqCo6JE9XCuZ0ZgEuWqFOKQgghBt2pD1Q6nZqg0MH00Udeaesnw/jVV+g7EilccXE4Jk+m7aabtABj2LwZfVnZCd3blZaGtXtm4Z13qlXahRBCDKpTH6hATUpYsAAAXXMz/u+9pyZWnATfnByM69cD6pSf5fLLQafDHRenFapVPB78Vq8+4e9wTJiAIyND3aiqkuk/IYQYAsMjUCkKvPIKhIQA4FtYSMBbb6G0tg78Xh4Phm3bMH34IZ2J6790uwn+xz/47/79ANhmzcLVUb3Cp7QUXXV1r9XZQa0nuOhf/yL+ySdJfOopLl6yBGtnEFUU2hcu7Dr5xReh4x2YEEKIwXFCgeqFF14gJSUFPz8/ZsyYwbZt207+SZKT4ZNPoOMdkk9REYEvvIBvTk6///grjY34v/EGpk8/1dY/NY0fD/PmEWgwsGDkSPVEvV6t1N6had26Xquzbysr4ztvvMH89HTW3HEHX/zwh/xw+nSvtVvuyEgcaWnqRkEBbNp0ov8GhBBC9GLAgerdd9/lvvvu4ze/+Q07d+5kwoQJLFy4kJqampN/mtmz1SzAyEj14axW/JcuJfC55zBs3IiuqqpHBQulpQWf3Fz8336boL/9rWutE2CbORPliitYcfAgV4wZQ2Bnuw/APn68urAXaM7L67U6+8OffcYPZ8zgZ3PmMCo6mozISK4cOxajj3dWv6N7Sv1gBG0hhBCaAa+jevbZZ7njjju45ZZbAPjHP/7BJ598wpIlS3jwwQdP/onOOQfee0/NBuygb2zEtHo1rF6Nx8cHd0gIKApKezu6XqYH3cHBWBctwpmRwe6KCnKqqvjjJZd4n2Qy4Y6MRF9bS5bbTUJyMs90O1zb2srX5eVcM348F73yCkWNjWRERvLr+fOZmZzsdSupzi6EEENnQCMqu93Ojh07WNCR+ACg0+lYsGABmzdvHrynqq7WPrrCw70OKU4n+vp69HV1PYKUOyiI9vPOo+XHP8bZkeTw+s6dZEVGMiMpqcfXuGJjAfDxeNA1NHgdK25sBOB3a9fy/SlT+OCmm5gQF8fl//kPBfX13t/bvTp7YeEAf6wQQohjGdCIqq6uDpfLRcxR73JiYmLIy8vr9RqbzYatW8Xy5l5q6/VgsXRdP2sWrpQUfA4eRF9Rgae8HGtTE0G+vigGA+6oKN5raMAcG8sN117rVd3c6nDwfk4OP583r9ev8XTrf6XY7V7HOusF3jJlCjdNmgTAhLg4vios5I1du/hNt2CNXt+1mFg6CAshxKAa8qy/p59+mpCQEO2fxMTE41/ULdgobjfuyEjss2djveYaPli4kDDA6HRisFjwKynhxuZmFh86RMQTT+Dqlnix/MABrA4H10+Y0Pv3dDv3/FdeYWNJCS9t3UrEb39LdGAgAFlRUV6XZEVFccRs9r6Py6VVvOCodiVCCCFOzoBGVJGRkej1eqq7Tc0BVFdXE9sxjXa0hx56iPvuu0/bbm5uPn6w6jaVpuuYgut0vKrqel1X7H19504uzsoisiOT8Gjd7/2P732PO9as0e6TEhZGXFAQh4+a5suvr+fCzuzBzvt0r/x+1PsrIYQQJ2dAIyqDwcCUKVNYs2aNts/tdrNmzRpmzpzZ6zVGo5Hg4GCvf46rY6oNjqp8TldV9e7/dK+q3qmwvp5NJSV8f/Lk3r/D40FfUaH+hv9v7/5joq7/OIA/P/c5OA5CQpEELgj4WhiIpRAetLAv5EwsW83coubCZtqpOFtBusrNflitlkk5rQ1FGtEfAaYipE42bTNuCYSUnElCYDkdxfHje3h3r+8fJ6eQyefOy/fn7PXYPn/cB31/ntzcXn4+n/f79Q4Oxn8SEkaNI0kSVmVmYvuxY6g5cQKnL1zAG4cOwXL+PJ4ZM+bIOABcmywyxhjzGY9n/a1duxZLlixBWloa7rvvPnz44YcYGBhwzwL0iSlTgOhooKcH8q+/AkNDri1BPFB+/DhiJkzAfxMTr/pzzdmz0AwNAXC1V8KYfa0A4AWjETa7Hevq6tA7NISU225D1TPPIH7MBI+AH3+8/CE93aOcjDHGrs2r7uklJSV477338Ntvv+Gee+7BRx99hIyMDEV/V3HH3FWrgJISAMDQvHkYnj3b05jXpK+pQeDx4wCAwQULcDEtzatxpN5ehG7e7OqCcfvtrll/WvG7pzDGmJr9493TV65ciTNnzsBms+HYsWOKi5RHrngPpfv2W5/OptNcuODqeAGAdDpcnD7d67GCDhxwt2rC889zkWKMMR9TR6+/q7n7bmDePACuRrXX0zx2FKcT+poaSHY7AGB41izgio4VntC2tSHwUv9AhIcDy5b5JiNjjDE39RYqAPj4Y3fvP53ZjICmpusbjwhBBw9C29kJAHDeeiv+9zdrrMYjd3cjuLr68oktW4AxU9kZY4xdP3UXqoQE4N133R/1NTUIbGwEvNmU2OFAUH09dEePAgAIrsXE3txNadvbEVJWdnmR8BNPAE895Xkmxhhj41L/C5UVK4CffgK2bIFEBP3evdBaLBh65BFQaKiiITS//w59dTW0V0x1lwAE7dsHTW+v665qTEPaq5H6+xF04AACr7yzy84GysquOmuQMcbY9fNq1t/18GSmh5vTCbz0EvDBB+5TpNXiYkoKhmfOdDWFHTuJYXgY2jNnEGg2Q9ve7t72AxoNEB/v2pJjZKyAAAynpsI+bRocUVGgKxYIS319kM+eRUBrKwJOnLjcgQIAHn0UqKgAgoM9/h4YY+zfzJNa4B+FakR1NbB8+aimtQBAsgxHZKS7wGj+/BOa8+cvF6cR06YBO3YAM2cC778PvPYaMKbHH+BaAAytFrh40b3WapQJE1xFs6CA76QYY8wLN2+hAoALF4A33gBKS4GxPff+TkwM8MILwNq1ox/xtbcDmze7Ht0p2U140iRg6VJg9WrXmIwxxrxycxeqEQMDQGUlcOgQYDa7is7Ir6LVAikprnZG8+e7HtFda32T1Qrs3u0ax2wGurpcd1o6nWtCx6xZQEYGkJen6F0WY4yxa/t3FKqxbDZX8ZIk4JZbgIAA343NGGPMpzypBeqf9aeUTuf1wl3GGGPqdcML1cgNnKINFBljjN2URmqAkod6N7xQWa1WAFC2gSJjjLGbmtVqRVhY2DX/zA1/R+V0OtHT04PQ0FBIKp3aPbK5Y1dXl2/fo90A/pwd4Pwi+XN2gPOL5E12IoLVakV0dDQ0mms3Sbrhd1QajQYGg+FGX9Yrijd6VCF/zg5wfpH8OTvA+UXyNPt4d1Ij1N3rjzHG2L8eFyrGGGOqJm/YsGGD6BBqJMsy5syZA60fboToz9kBzi+SP2cHOL9I/2T2Gz6ZgjHGGPMEP/pjjDGmalyoGGOMqRoXKsYYY6rGhYoxxpiqcaG65O2330Z6ejpCQ0MRGRmJxx57DCdPnhQdS7GtW7ciNTXVveDOaDSitrZWdCyvbNq0CZIkYc2aNaKjKLJhwwZIkjTqSEpKEh3LI93d3Xj66acxadIk6PV6TJ8+HWazWXQsRe64446/fP+SJMFkMomONi6Hw4FXX30V8fHx0Ov1SExMxMaNGxX1v1MLq9WKNWvWIC4uDnq9HpmZmWhsbPTpNfxvDuQ/pKGhASaTCenp6bDb7Vi3bh3mzp2LtrY2hFyxNb1aGQwGbNq0CVOnTgURYefOnVi4cCGOHz+O5ORk0fEUa2xsxLZt25Camio6ikeSk5Nx4MAB92d/ml7c29uLrKwsPPjgg6itrcXkyZNhsVgQHh4uOpoijY2NcDgc7s+tra146KGHsGjRIoGplHnnnXewdetW7Ny5E8nJyTCbzXj22WcRFhaG1atXi46nyHPPPYfW1lbs2rUL0dHRKC8vR25uLtra2hDjqw1miV3VuXPnCAA1NDSIjuK18PBw+uyzz0THUMxqtdLUqVPpm2++oezsbCosLBQdSZHXX3+dZsyYITqG14qKiuj+++8XHcNnCgsLKTExkZxOp+go48rLy6OCgoJR5x5//HHKz88XlMgzg4ODJMsy7dmzZ9T5mTNn0vr16312HX709zf+vLTN/cSJEwUn8ZzD4cAXX3yBgYEBGI1G0XEUM5lMyMvLQ25urugoHrNYLIiOjkZCQgLy8/PR2dkpOpJiu3fvRlpaGhYtWoTIyEjce++9+PTTT0XH8srw8DDKy8tRUFCg2qbXV8rMzMTBgwfR3t4OAGhubsaRI0fw8MMPC06mjN1uh8PhQNCYnc/1ej2OHDniuwv5rOTdRBwOB+Xl5VFWVpboKB5paWmhkJAQkmWZwsLCaO/evaIjKVZRUUEpKSk0NDRERORXd1T79u2jL7/8kpqbm2n//v1kNBopNjaW+vr6REdTRKfTkU6no1deeYW+//572rZtGwUFBdGOHTtER/NYZWUlybJM3d3doqMo4nA4qKioiCRJIq1WS5Ik0VtvvSU6lkeMRiNlZ2dTd3c32e122rVrF2k0Grrzzjt9dg0uVFexfPlyiouLo66uLtFRPGKz2chisZDZbKbi4mKKiIigEydOiI41rs7OToqMjKTm5mb3OX8qVGP19vbShAkT/Oaxa0BAABmNxlHnVq1aRbNnzxaUyHtz586lBQsWiI6hWEVFBRkMBqqoqKCWlhYqKyujiRMn+tV/Ek6dOkUPPPAAASBZlik9PZ3y8/MpKSnJZ9fgQjWGyWQig8FAp0+fFh3luuXk5NCyZctExxhXVVWV+x/5yAGAJEkiWZbJbreLjuixtLQ0Ki4uFh1DkdjYWFq6dOmoc5988glFR0cLSuSdX375hTQaDVVXV4uOopjBYKCSkpJR5zZu3Eh33XWXoETe6+/vp56eHiIievLJJ2n+/Pk+G5vfUV1CRFi5ciWqqqpw6NAhxMfHi4503ZxOJ2w2m+gY48rJycEPP/yApqYm95GWlob8/Hw0NTVBlmXRET3S39+Pn3/+GVFRUaKjKJKVlfWXpRjt7e2Ii4sTlMg7paWliIyMRF5enugoig0ODv5l00BZluF0OgUl8l5ISAiioqLQ29uLuro6LFy40HeD+6zk+bkVK1ZQWFgYHT58mM6ePes+BgcHRUdTpLi4mBoaGqijo4NaWlqouLiYJEmi+vp60dG84k+P/l588UU6fPgwdXR00NGjRyk3N5ciIiLo3LlzoqMp8t1335FWq6U333yTLBYLff755xQcHEzl5eWioynmcDgoNjaWioqKREfxyJIlSygmJob27NlDHR0d9NVXX1FERAS9/PLLoqMptn//fqqtraXTp09TfX09zZgxgzIyMmh4eNhn1+BCdQmAqx6lpaWioylSUFBAcXFxFBgYSJMnT6acnBy/LVJE/lWoFi9eTFFRURQYGEgxMTG0ePFiOnXqlOhYHvn6668pJSWFdDodJSUl0fbt20VH8khdXR0BoJMnT4qO4pG+vj4qLCyk2NhYCgoKooSEBFq/fj3ZbDbR0RSrrKykhIQECgwMpClTppDJZKI//vjDp9fgbT4YY4ypGr+jYowxpmpcqBhjjKkaFyrGGGOqxoWKMcaYqnGhYowxpmpcqBhjjKkaFyrGGGOqxoWKMcaYqnGhYowxpmpcqBhjjKkaFyrGGGOqxoWKMcaYqv0fdgwn6ZkWnhUAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -415,27 +486,24 @@ } ], "source": [ - "import networkx as nx\n", - "from node2vec import Node2Vec\n", - "\n", - "G = nx.barbell_graph(m1=10, m2=4)\n", - "draw_graph(G)\n", + "edges_embs = HadamardEmbedder(keyed_vectors=model.wv)\n", + "V = np.matrix([edges_embs[str(x), str(y)] for x, y in G.edges()])\n", + "fig, ax = plot_edge_embeddings(V, list(G.edges()))\n", "\n", - "node2vec = Node2Vec(G, dimensions=2)\n", - "model = node2vec.fit(window=10)\n", - "embeddings = model.wv" + "ax.set_title(\"HadamardEmbedder\")\n", + "plt.savefig(FIGURES_DIR / \"HadamardEmbedder.png\", format=\"png\")" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 65, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAMtCAYAAABdPqrFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXzU1b3/8fd31kyWGUJIQlYIENkXFzZxF0HrRmtt7a2l9Ha7Vtva2tqfXmurXbhXa2/ttUWrXtdaautarKBFcRcR2VGWQAhbQgjJTDJJJjPz/f7+GAjELGSZLDCv5+ORR8j3e875nsmDP/J+nPP9HMOyLEsAAAAAkGBs/T0BAAAAAOgPhCEAAAAACYkwBAAAACAhEYYAAAAAJCTCEAAAAICERBgCAAAAkJAIQwAAAAASkqO/JxAPpmlq3759SktLk2EY/T0dAAAAAP3EsizV1tYqNzdXNlvHaz8nRRjat2+fCgoK+nsaAAAAAAaI3bt3Kz8/v8M2J0UYSktLkxT7wF6vt59nAwAAAKC/BAIBFRQUNGeEjpwUYejI1jiv10sYAgAAANCp12cooAAAAAAgIRGGAAAAACQkwhAAAACAhEQYAgAAAJCQCEMAAAAAEhJhCAAAAEBCIgwBAAAASEiEIQAAAAAJiTAEAAAAICE5+nsCJxPLsmQGw7KaTFlRU4bdJsNlky3F2akTcAEAAAD0HcJQD0SDYYVKatS0t07h3bVq2lMnqynaqp3hssuVnypnQZpcealyjxwke4qzH2YMAAAA4AjCUBdZlqWmslrVvbdPDesPSqYl2YzY9/b6NEUV2uFXqDTQ3N4zeYhSZ+bKVZDGqhEAAADQDwhDXdCwqUr+V0oVqaiPvW1lHr7RQRBq4Ug701LDuoNqWFMpx9Bk+eYMl2dcRm9MGQAAAEA7CEOdEA2GVfNiiRrWVUpHFnHMDrsc3+FgFKmoV9Xjm+WZnKlBV4xk+xwAAADQRwhDx9Gw6aCqn9kmsyESu9DJRaBOOzxew/pKhbZVK/2qYnnGD4nzQwAAAAB8GqW122FZlgKvl6nqiY9jQSjeIajVAyWzIaKqJz5W4PXdsqzefiAAAACQ2AhDbbAsS4FlpQos23X4Ql89OPbtyLMJRAAAAEDvYZtcG2pX7Fbtij1xHbMpGtaTa17Qkk9e19aqUjWGQ0r3+DQmc4Sunnixrhh7Yas5GG67vOcXxHUeAAAAAGIIQ5/SsOng0RWhONkfOKBrn/6RtlaVarDHp6l5E+VxJml/7QGt3LNOyc6kVmFIiq0QObOS5RlPpTkAAAAg3ghDx4gGw6p+Zltcx2wIh/Rvf/2hth8q0w9nfU03zPyKnHbHMfcbtePQ7rY7G1L1M1vlGn4GVeYAAACAOOOdoWPUvFhytGpcnPzh/Se1/VCZvjz5cv3grK+1CEKS5HEmaXx2cdudDxdVqPlHSVznBAAAAIAw1KxhU1XsHKE41iwIRyN6Ys3zkqRvT/9S9waxpIa1lWrYXBW/iQEAAABgm5wUqx7nf6U0dqBqHMPQxoqtOtTgV3bqEBWl5+vjyhIt3fKmKuoOypeUpmkFk3X+iOmyGcfJpIbkf6VUSWMHyzCMjtsCAAAA6BTCkKSmslpFKurjPu7HB2Lb23LSMrVwxf1atPIvso5JW39c+ZQmZBfroc/9Wnne7PYHsqRIeb2adtfKXeiN+zwBAACARMQ2OUl17+3rld9EdaNfkrSpYpv+uPIpzT9tnt745p+1+caX9dQXf6sRgwu0sWKbvvq3mxWOHuddJZsRmycAAACAuEj4MBQNhtWw/qBkxn/sI2emhs2Irhw7W7+86AcaMbhAae4UnT38DD31xd/K7XBpy8GdevHj5R0PZlpqWHdQ0WA4/hMFAAAAElDCh6FQSY1kxvFFoWOkujzN//7ylCta3c/zZuvCETMlSW/v+vD4A5pWbL4AAAAAeizhw1DT3jrJ1jtFCQoH5Tb/e9ignA7bVNR1olqczVB4b11c5gYAAAAkOsJQWW2vrQxNyD5FhmJB61CDv802R66nHLOK1C7TUtPu2rjNDwAAAEhkCR2GLMvq1ZWWrNQMTc2fKEl6u3R1q/vhaETv714rSZqSM7ZTYzbtrZNl9U54AwAAABJJQochMxiW1RTt1Wf8YNbXJEn3vf+kPtq7qfl6xIzoF6//QWU1+5TqStYXJn6mU+NZoahMiigAAAAAPZbQ5wxZTb1QQu5Tzhp+un509tf1m7ce1lVP3aApOWOVmTJYGyu2are/XEkOt+674mfKTBnc6TGtcO/PGwAAADjZJXYYivZNqPj+mV/VlJyxevjDv2nNvo+1bv8nykwZrKsnXKLvzPg3jcoY1qXxrAhhCAAAAOiphA5Dhr3vdgmeWzRN5xZNi8tYhiOhdzcCAAAAcZHQf1UbrhPz4xvOE3PeAAAAwECS0H9V21KcMlz2/p5Glxhuu2wpzv6eBgAAAHDCS+gwZBiGnHmp/T2NLnHlpcoweueQWAAAACCRJHQYkiRXYZpkO0HChc2QqyCtv2cBAAAAnBQIQ3mpknmCHGJqWifcShYAAAAwUCV8GHKPHHRCrQy5Rw7q71kAAAAAJ4WED0P2FKc8k4YM/N+EzZBn8hDZKZ4AAAAAxMVAjwB9InVmrjTQzzE1rdg8AQAAAMQFYUixIgqOocnSQN0tZ0iOoSkUTwAAAADiiDCkWIlt35zh0kCto2BJvjnDKKkNAAAAxBFh6DDPuAx5JmcOvNUhQ/JMyZRnXEZ/zwQAAAA4qRCGjjHoipGyeRwDJxAZks3j0KDLR/b3TAAAAICTTpfC0KJFizRp0iR5vV55vV7NnDlTL7/8cod9/va3v2nMmDFKSkrSxIkT9c9//rPFfcuydPvttysnJ0cej0ezZ8/Wtm3buv5J4sCe4lT6VcUDZ7ucJaVfdQoV5AAAAIBe0KUwlJ+fr//6r//S6tWr9eGHH+qCCy7QlVdeqU2bNrXZ/t1339WXvvQlff3rX9eaNWs0b948zZs3Txs3bmxuc9ddd+n3v/+97r//fq1cuVIpKSmaO3euGhsbe/bJuskzfoi8c4f1y7M/zTt3uDzj2R4HAAAA9AbDsqwerYMMHjxYd999t77+9a+3uvfFL35RwWBQS5Ysab42Y8YMTZkyRffff78sy1Jubq5uuukm/ehHP5Ik+f1+ZWdn69FHH9U111zTqTkEAgH5fD75/X55vd6efBxJsdWqwLJdql2xu8djdVfaeQXyzqVoAgAAANAVXckG3X5nKBqNavHixQoGg5o5c2abbd577z3Nnj27xbW5c+fqvffekyTt3LlT5eXlLdr4fD5Nnz69uU1bQqGQAoFAi694MgxD3rnD5J07/PCFuA7fwYNj37wXD5fv4uEEIQAAAKAXObraYcOGDZo5c6YaGxuVmpqq5557TuPGjWuzbXl5ubKzs1tcy87OVnl5efP9I9faa9OWhQsX6o477ujq1LvEMAx5zy+QMytZ1c9sldkQ6d13iQ4XS0i/6hS2xgEAAAB9oMsrQ6NHj9batWu1cuVKXXfddfrqV7+qzZs398bc2nXLLbfI7/c3f+3e3Xvb2TzjM5R90xnyTMqMXYj3Ys3h8TyTMzX0R2cQhAAAAIA+0uWVIZfLpVGjRkmSTj/9dK1atUr33nuvHnjggVZthw4dqoqKihbXKioqNHTo0Ob7R67l5OS0aDNlypR25+B2u+V2u7s69W6zpziV8aUxapiUKf+rpYqU10s2QzJ7sFR0uL8jO1m+OcM5RwgAAADoYz0+Z8g0TYVCoTbvzZw5U8uXL29x7dVXX21+x6ioqEhDhw5t0SYQCGjlypXtvofUnzzjM5T9/dOU+Z3J8kweEgs00tHvx3NMe8/kTGV+Z7Kyv38aQQgAAADoB11aGbrlllt0ySWXqLCwULW1tXrqqae0YsUKLVu2TJI0f/585eXlaeHChZKk73//+zr33HN1zz336NJLL9XixYv14Ycf6k9/+pOk2Hs5N954o375y1+quLhYRUVF+ulPf6rc3FzNmzcvzh81PgzDkLvQK3ehV9HLwgqV1Khpb53Cu2vVtLdOVijauo/bLldeqlwFaXLmpco9chBnBwEAAAD9rEth6MCBA5o/f772798vn8+nSZMmadmyZbroooskSWVlZbLZji42nXnmmXrqqad022236dZbb1VxcbGef/55TZgwobnNzTffrGAwqG9961uqqanRWWedpaVLlyopKSlOH7H32FOcSp6UqeTD7xNZliUzGJYVNmVFTBkOmwynTbYUJ5XhAAAAgAGmx+cMDQTxPmcIAAAAwImpT84ZAgAAAIATGWEIAAAAQEIiDAEAAABISIQhAAAAAAmJMAQAAAAgIRGGAAAAACQkwhAAAACAhNSlQ1fR9yzLUlWwSQ1NUYWjppx2mzwuuzJSXBzkCgAAAPQAYWiAORRs0rslB7Vhr1/rdtdowx6/gk3RVu1SXHZNzPdpcsEgTczz6cyRQzQ4xdUPMwYAAABOTIShAcCyLH1UVqMn3ivVkvX7FTEtOWyGIqbVbp9gU1Tv7zikD0urm9tfPjlXX5k5TKcWDGLVCAAAADgOwlA/e2VTue55Zau2VNTKbjMUPRyAOgpCx4oc0/7Fdfv03Jq9GjM0TT+86BSdOSxV4XBY0WhUdrtdTqdTKSkpBCUAAABAhKF+Ux1s0s9e3KQX1+3TkWwS7WQAaotbYeWoVhmOoIYcCuqNp1foXcNs1c7lcik3N1d5eXnKyclRUVGRUlJSuv1cAAAA4ERFGOoHyzaV6/89s16Bhogkyep2BrKUaQQ1xlGhIlu1bIYl0zJkyFJ7iz9NTU0qLS1VWVmZTNOUzWbThAkTNHXqVOXn57NqBAAAgIRBGOpDlmXpjytKdPeyLTKMnoQgqcBWrdMce5Vua5BpSbbDGcZmdG5Q0zSbv2/cuFHr169XVlaWLrjgAo0ZM6b7EwMAAABOEIShPmJZlu5atkWLVpQc/rl747gV0XTnLo2wH9KRXXW2Hi7mHAlGlZWVWrx4sSZMmKDPfOYzSk5O7tnAAAAAwABGGOojf1xR0hyEuqvQVq0znaVyKba97uPNm7Rq1SpVVFQoGo1q8ODBmjhxombMmCG73d7l8a3DCW3Tpk0qKSnRFVdcobFjx/ZozgAAAMBAZVhWTzZrDQyBQEA+n09+v19er7e/p9PKsk3l+vYTq3swgqWJ9v063blXliUZhrR06VKtXLlSNptNRUVFcrlc2rlzpxobG1VYWKhrr71WTqezx3O/8MILddZZZ/EuEQAAAE4IXckGrAz1supgk/7fM+tlSOpe6rR0mmOPJjnKJcWC0CeffKKVK1fK5XJpwYIFysnJkSTV19frscceU1lZmV5//XXNmTOnx/Nfvny5QqGQLrzwQgIRAAAATiqEoV72sxc3KdAQ6WYQkiba9zcHoSPeeustSdKsWbOag5AkJScn69JLL9UjjzyiDz74QOecc46SkpKa79fU1Ojee+/t1HMXLFigYcOGSZLefvttud1unX322d38FAAAAMDAQxjqRa9sKteL6/Z1u3+hrVqnO/e2uBYIBLRvX2zMiRMntu5TWCiv16tAIKBt27a1aONyuTR58uR2n1dZWal9+/bJ5XK1CFlSbIUoMzOTSnMAAAA4aRCGeollWbrnla3dLqHtVkRnOkub3xE6orw8tkrk8XiUnp7eZt/c3FwFAgGVl5e3CEPJycmaN29eu8/885//LEmaMGGCXC5Xq/svvPCCCgsLqTIHAACAk4KtvydwsvqorEZbKmq7XUJ7unOXXIq0Ojy1urpakuTz+drte+RFsZqamk4/LxAIqKQkVu3u1FNPbbNNY2OjXn755U6PCQAAAAxkhKFe8sR7pbJ38wCgAlu1RtgPtXl+UFNTkyR1WCnuyKpOKBTq9DPXrl0ry7KUmZmp/Pz8NttYlqUNGzbok08+6fS4AAAAwEBFGOoFh4JNWrJ+v6Jmd5aFLJ3m2Ktude2BdevWSWp/VegIwzD02muv6SSoyA4AAIAERxjqBe+WHFSkm2km0wgq3dbQ5qqQdHTVJxwOtzvGkdUjt9vdqWeWlpbq0KFDstvtHRZYkGKrQwcOHNCePXs6NTYAAAAwUBGGesGGvX45urlFboyjosNVoUGDBkmS/H5/u20CgYCkjt8rOtbatWslSaNHj+5UcQSbzaZVq1Z1amwAAABgoCIM9YJ1ZTXdWhlyK6wiW3W7q0KSmkteNzQ0NBdT+LQjpbc/XR67LaFQSJs3b5YkTZkypVPzNE1TGzduVDAY7FR7AAAAYCAiDMWZZVnasLf9VZuO5NhqZTM6DlFer1e5ubmSpA0bNrS6X1ZWpkAgILvdruLi4uM+c+PGjQqHw/J6vRo1alSn52qapkpLSzvdHgAAABhoCENxVhVsUrAp2q2+GbagTOv42+vOPvtsSdI777yj/fv3N1+vr6/XSy+9JEmaNm2akpKSjjvWmjVrJEmTJ0+W8ek63h2w2WzNK1AAAADAiYhDV+OsoZtBSJKGGEEZOv72ujFjxmjatGn64IMP9NBDD2nEiBFyOp3auXOnGhsbVVBQoPPPP/+441RWVmrv3r2Sjl9F7tNM02zuCwAAAJyICENxFo6a3expaYgt2OqQ1fZccsklKiws1KpVq7R7925Fo1ENHjxYs2bN0syZM2W32487xkcffSRJKioqUnp6epdnvG/fPlmW1aUVJQAAAGCgIAzFmdPevZ2HSYrIaXQtSI0fP17jx4/v1vOi0WjzO0ddXRU6oqmpScFgUKmpqd3qDwAAAPQnwlCceVxtrMhYlnxNdXJHwnJaUYUNu0IOp/yuVB1ZCnJ0MQj11NatWxUMBpWUlKSxY8d2e5xIJBLHWQEAAAB9hzAUZxkpLg21GlS8b4uKa/bolOrdKq7Zo+RIqFXbeodb2wbla2t6gUoz86TCvpvnkbOFJkyYIIej+/8NCEMAAAA4URGG4sSyLDWsXavqp/6ih156SXbTVMSwyW6Zau+NmuRISJMOlmh81U6F9iVpSeHlfTbfL33pS3EZpydBCgAAAOhP/CUbB7XLl6vyd/cqtG2bZLfLbsa2vDms4299Mw63i0S6X4WuPxGGAAAAcKLiL9keiFRXq+KXv1LgpZea3/1RtHuhxh0KyREOK+J0xnGGvcvlciklJaW/pwEAAAB0C2Gom2r/9S/tv+2nitbWxi5Yxz8fqCOGpPRD1arMylSn62sfIxqNateuXdq+fbt27dqlqqoqhcNheTwe5eXl6fTTT9cpp5zSozl+Wm5uLmW1AQAAcMIiDHWRZVmqeuBPqvzd72KhpYch6FgZh6p0MHOIrG4EjF27dumJJ56QJKWmpqqwsFAul0uVlZXaunWrtm7dqtNOO02XXXZZXAKMzWZTXl5ej8cBAAAA+gthqAssy1Llb/9HVQ8+eORCXMdPP1Qty9a9c4oMw9DYsWM1ffp0DRs2rMW9jRs36tlnn9VHH32kwsJCTZ48ucdzNU1Tubm5PR4HAAAA6C+EoS6oeuBPR4NQD/0j4Nc7waC2hEKqjEQUiEaVtG2rvJs3acyYMZo+fbpcLlenxrIkDT1ltC4eM16mzVDAtOQ0I0oKN8lQrHz2jh07tGbNGq1bty4uYchms2n48OE9HgcAAADoL4ShTqr9179iW+Pi5K81NVrT0KARLpfGuZPks9t1MBrRmooKvbZvn9auXasFCxYoLS2tVd8Gh0t704foYOogHfCmqzJ1kMKO1oUXnJGwMutqlBWoln3UFmnNGgUCgR7P3WazacKECRRPAAAAwAmNMNQJkepq7b/tp3F9R+jHmVka5nJpkN3e4nqJ16vrK8pVVlamV155RVdddZWk2OpPhTddm3JHaHtmniybTTbTlGkY7RZcCDuc2ucbonJvhvzR2Pa7cFaOKtLSlVVb3e75R8djmqamTp3azd4AAADAwEAY6oSKX/4qVjUuju8ITfZ42rw+IhDQFdOm6b6yMpWUlEiSdmYM1arhY3Uo1SfDNJvfKzI7836RYShcXaWGZS9KkqwLLtFzp52rwXV+TSv9WMOr9svpbJTNFpXNZso0bTJNu8LhJKmNuGQYhrKyspSfn9+9Dw4AAAAMEISh46hdvjx2jlAfMSQV79gpSbI7HPrXmNO1PbugOYh1tcCCFY0o8Ov/lBWsk2NEsTxXXC1Jqk5J09IJMzTDfFsLjAeVproW/SIRh+rqMlRbO0R1tYNVUzNUkUiSLMvS+eefT0ltAAAAnPAIQx2wLEuVv7s37iW0OxI0o3r6k09iP5w9WyVZh8tXdzN8BP7nV2r66AMZ3kHy/exuGYcPdbWMWKj6wJipjZqkb2qRztAHzf0cjoh8vgp5vQdks1kyTUMHK4vk8Vyi0aNHd/8DAgAAAAMEYagDDWvXKrRtW68+451gUC8F/DIlVUWiWtvYoKBpyjXtTHm+fWNzaOmOwH13qfGfz8tI8yr97kVyFAxr1cY07Apaqfof4yf6gvWkrtBzzZvjYq8jxUKgzWYpM3OnDNsftPKDf2nkiB8qM3N2t+cGAAAA9DfCUAeqn/qLZLdL0WivPaMkFNLzn6rwlnThJUq97ibZ0rzdHrd20T1qePYvMlLTlH7XH+UsHtNu2yOB62njWjVaHn1BT7VZXMGwxYJRMLhV6zd8W9nZl2v0KT+T05ne7XkCAAAA/cWwrD7a/9WLAoGAfD6f/H6/vN7uB4hjRaqrte3sc6RIJC7jHU/YsnT/zHP1RHKqgk8+JBmGBt1xj1yTT+/yWLUP/E71f31MRkqqvLf8Sk2r3lXTB+8oerBChidFzlPGKvlzX5J7xtlt9v+C9aSu1HOdeJJdTqdXY8f8WpmZc7o8TwAAACDeupINur8H6yRX//77fRaEJGnllKl69qvXKeXqryj9v+6TVRuQf+FtskKNXRqn9k/3NgehtOt/rMBdt6vhhb/KamqUe9osOYYVqWntKtXc+j3VPbqozTGeNq7Vh+pM6eyowuEard9wnUpLF+kkyNUAAABIIGyTa0fjpk2Sw9Engcifkqq7r/2WDMuSZRhyjp0o+7ARipaWKLxls1yTTuvUOHUP/0H1ix+VkZqmQb+6V/5f3Sor4Jf7/Dny3XyHDHeSJCn8ySZV/78bFHz8T3JOOFXuM2a0GMewTP2x4iqN/+u/tGF1QAcORGRZUkaGXRMnJunzV/s0cqT7cOtYACrZ8RtFokGNHHETleYAAABwQmBlqB0N69f32crQ3V+5UbXJqbKOCRFGUuwcIrPmUKfGaHxnhYJ/fkiSZM8rUN3D98k8UC45nJJhU+B3v5b/v29X7aLfyjlmvFLnf1OSFHziT63Gavpkk3Z/42t6+YUqNTaaOv0Mj6ZP90iG9OqrdfrOdXv1xht1rfrt2rVIu3bd3+XPDwAAAPQHVobaYFlWbGWot58j6bkLv6F3Jo9vcd30VytSslWSZM9vXQGuzbFqjxZhiGzZfPRGJKzQa0ubf7Rl5yjtuh/Kddp0SVJ441pFDx2UffCQ5jaBe34hqz4oz2VX6YffNTTN8VFsXqalxx6r1p+frNH//PagZs5MlsvVMk+X7PiNUlJGKTPzok7NGwAAAOgvrAy1IXrokMxgfa+Nvz0U0j8Cfn1c+Bktnn2uDPPouzaR3btUc8fNUrhJznET5RxR3KkxPRdfoezX1jR/2Y/pl/K17zRfz/zLPyVJNt/hCnCWpcjWj5vbmv4aRXbEyomnfe06Pev4so7MzmYzNH9+utxuQ3V1pnbtCrcxE0Mff3KLwuHqzv9CAAAAgH7AylAbzIauFS3oqkPRiH6yf7+cBxdJ5a/LNiRLioQVPVCuyLZPJNOUfViRfD/9726N37RxraI7Oj4fKbJ/T/O/o+X7jt5wuZr/aRmGdhvDtd0qVrFaj+fz2dsY2VI4HNCWrXdqwvj/6erUAQAAgD7DylAbrHBTr44f9BVrfOEM2VJSFf54g0KvL1PordcULSuV69RpSrvxVmU8sFj27Jwuj201Nihw189keAc1X4tWVbZq1/CPvx/tU3/0/R+bJ1nOiadKkur+748ywo16VZdIim2Te/zxaoVClqZN8ygrq70sHVVFxYuqrPxXl+cPAAAA9BVWhtpgOF3Hb9RNYUeKnjFTtKnstVb3kq9ZoNSvfLNH49c+9L+K7inToF//Xv67fy6r+pBC//qnQtNmyTnpNJkBvxpeeFqNryw5Wi3PaJmJvTfdrppbvquGJc8o9P5b+ucpY7XPXqXS7UFVHYxo9kWp+u53h7QzgyMMlez4rYYMuZDqcgAAABiQCENtsHmSem3srcVXa+ihCk0+6xrtPHeSnMVjFPzzw2p89aUej9209kM1PLdYSXMuk3vG2XJNPkOhFa/Iqg+q5rYbW7RNvurLatq4RpEtm2Wk+VrccxQO1+D7HpN/4W1q+vA9NR48oPcP3xs2zKnJk5OUknK8RUVLweAWBQJr5fOd2uPPBgAAAMQbYagN9sGDZUtJjnsRhcqMSarInqozs6X6SR4dGJ0k02ZItp7vVjQb6hW4++eypWco7fofS5IMd+wsoKQ5l8uWMURWwC9b+mC5Z50n5+jxqrw6VvHNMWJUi7GaNq6V/2c3STa7vP/5a3mmnKY5zuUavfFxLVp0SPf85qA2bQzpRz/O7HBOhmHXnj1PEoYAAAAwIBGG2mAYhpKKhqp+Y4mk+GzxsiTtKLpMskzJsGlfhkNmHHeP1d3/W0X375Xvzt/KluZtcc+eV9Bq+11k726ZVQdleAfJWTy2+bpZV6ua238oy1+jwfc9JufYiZJlaY8m6qszU1Q4zKVvfXOPli6t1ezZqZpyqqf9z2xFVXFgiYqL/1Mu1+D4fVgAAAAgDiig0BbLkse9N145SJIU8BYpmJonGTZZkvanO6Q4vUsTWvWeGv7xjNznz1XSWed3qk/9049LkjyXfU6G03l0rPffklVTLXtOfiwISZJhaIdGypKUm+vUmDGxFaePPmo47nMsK6LqmveP2w4AAADoa4ShtuxZpST3fsmKXxrak3uODDMqSap3G2pyxmdss65Wgd/cIWNQurzf+0mre59mRSMK/vlhNSx5JrZi9OVvtOxzYL8kyUhOaXG90UhWQLEVp85cWX0AACAASURBVCPvCwVqo8edn2E4VBvY2PkPBAAAAPQRtsm15YMHlTw0IhlWXAJRkzNFB7JOl2WLncsTtscvZNX+4TcyKyvku/2/jx6kelh09y5JUsNLzyqyc7sUblJ48waZ1VWy5xUo/e77ZXhabnOzDcmSJEV2l8qsq5UtNe3o55BbkYilbdtipcdzhjp1PJYVkT+wrkefEQAAAOgNhKFPC1ZJm56VwxWRt7BBgTJPjwNR9aDRzUFIkqJxXI8Lvf2aZHeo/oWnVf/C0y3umYcOxr4frFTojVclm12OUaOVfPVXlPzZL8pwt66a5542S0aSJ3Ze0T2/kPfmn8vmSZYkNYZtWrSoSgcORORwSGefk9Kqf1tqazfKsixKbAMAAGBAIQx92s43JDMiSUovDiqwK7nHQ9amFcgwI7JssV+33ezxkC1FIwqvW93+/cPb82xDMpWx6MkOh7INGqy0H/ynAnf9XKE3XtXBdR/KOXq8DIdDN235UIcOhmWzSdffMES5ucdfGZKkaLRO4XCVXK7jnU0EAAAA9B3C0KftXyvZHJIZkScjLLcvrJDfoZ5UUwikDZdlHF0ZckatOEw0Jusfb7V7z//ft6tx2T+U8rXvdOkwV89Fl8oxYpTq//6Uwus/UtNHH0iy5B0sXXhhqj77Oa/GjOnaWUzRaKhL7QEAAIDeRhj6tD2rm1eGDEPKnBTQnrcyuj2cJak2rbBF5bjkkCVX2IpbEYXe4Bw5Wr6f3NH8c5JVr4f0lW5HQstqis/EAAAAgDihmtyxLCu2MnSMtLyQvIX1sWIK3RB2pirqaLmKYkjKqY7EnncisCyNUEmPKo0bhitu0wEAAADigTB0rOBBqamu1eXs0/2yO03F1nm6JmpvOwTkVkVkO0GykF1RjdT2no1hd8dpNgAAAEB8sE3uWOH6Ni873JZypvm15+3BXR7SMlr/indXbtW7C/9X1Wmx94gi+3ZLkhqWPKOm94++A+S78x7ZMzK7/Mzm/j+5U76f3Nnt/kdEDYeKrJJu97fbU+V0dn+rIQAAANAbCEPHiobbvZWW36jMiQFVbvB2aUjDirS61hCu14E9m1tdNysrZFZWHL0Qbn8+fcluRTRO3T84NS1tAmW1AQAAMOAQho5l77hUdMa4OpkRQ1Ufp3XYrsWQ0daFA07JnaL7vr1cz01P0eZCl0zbwA0KNiuiGXpHaartVn/DcMjnnRznWQEAAAA9xztDx3J2fKZQrLpcrTInBQ5fOf5LP85wneyRxjbvTd0eGtBBSJJMw6GL9HK3+1tWRGneCXGcEQAAABAfhKFjpQyRXKkdNjEMaci4OuWfdUh2l3ncKnOGpLTasjYrx+VVRZRVE5FhDsxKCoZlqtAq1Sht6/4YhkPpg2bEcVYAAABAfLBN7liGIeVMkXa9fdymafmN8mSGVLHap0BZsmKrRG2v8nhrS+X3jWhVTMGQdM7qdfr7haf3fO46eshqR7KWvi/D1bnKbpZh0+etv3S7pLZh2JWddZlcrq4XngAAAAB6G2Ho0/JPl3a/33zwakccbkt5Z9bIW9ioyg1pCvmdsZUiq2V8SKvdLcvW+lcdbdquom0vakyhQ1tGTpRli89CnXPCFNnzCtq+2cln2KyoZugdna4Puz0Py4oqP//abvcHAAAAehNh6NNypnQqCB0rLb9RqXmNaqxy6tC2FAXKPLFAZFiSJaXXbJFhRmXZ7M19LLNB4fpXJEmz316iXfmj1OD2dDqsdMTzmc/Kc/EV3e5vWKaSFdR8PdyDWRhKTRktr3dKD8YAAAAAeg/vDH1a0blSG6s4x2MYkmdIWHkza1Q8r0J5Zx5Sxug6JWc1KcmqVdaB1TLMaHP7cP1rkhWSJHlCDZr7xvNxCULxYBk2fVN/VJpaH0DbhVE0YsQPKKkNAACAAWtg/PU9kKRkSOM/Jx2zitNVDrcpb2GjsqbUatgFVTrlqnLNGPVc88pQtGm7zPAWHVuNrrj0Y5298tWezj4uvmA9qTO0qgcj2JWdfYUyM2fHbU4AAABAvLFNri3TvilteDpuwxmGlJfyiTIaS3UwXKBIw7tttpu+5g01OV1aedq5PXpe09pViuzcJqu+XobXJ+eYCXJPP0uGy3XcvldYz+gKPdeDpxtyOr0afcrtPRgDAAAA6H2EobbkT5WyxkuVH0uWGZchDUOanvqUlhxcIMs82HYbSWd/8Kpc4ZDemj5HMs1ubZ1rfGVJq2u2jCHy/vjnck+b1fq5linLsOmL1pM9DEKSZGnsmIVyOtN7OA4AAADQu7r0l/bChQs1depUpaWlKSsrS/PmzdOWLVs67HPeeefJMIxWX5deemlzmwULFrS6f/HFF3fvE8WDYUgX3Ba3IHREUdIqecKvqL0S3Dp8Z8aaNzVv6ZPyhBpkmJ2fg2PEKUq74cfKePjvylzytjKfWa5Bdy2Sc/xkmVUHVXPbjWpa27I6nM2KKkV1+oH1X3EIQtLIET9SZuZFPR4HAAAA6G2GZbVxGmg7Lr74Yl1zzTWaOnWqIpGIbr31Vm3cuFGbN29WSkpKm30OHTqkpqam5p+rqqo0efJkPfTQQ1qwYIGkWBiqqKjQI4880tzO7XYrPb1zqwuBQEA+n09+v19er7ezH+f4/v51adNzkhU9fttOqI849MC2GTI7eXJPg9ujf511mT4pnizDNLtdetuyLPlv/6FC76yQY+Qpynjwr82rQWdab+qrelipPSqWEDNs2HUaOeImiiYAAACg33QlG3Rpm9zSpUtb/Pzoo48qKytLq1ev1jnnnNNmn8GDWx64uXjxYiUnJ+vqq69ucd3tdmvo0KGdmkcoFFIoFGr+ORAIdKpfl33mbqnkNamhRlLPV4l21w/qdBCSYlXmLl/+N40p2aC3p87WwYyhrUp0d4ZhGEpZ8B8KvbNCkZKtih4o1/DMRl1t/aVH5wgdHl2SpZEjfqzhw/+jh2MBAAAAfadH1eT8fr+k1oGnIw8//LCuueaaVitJK1asUFZWlkaPHq3rrrtOVVVV7Y6xcOFC+Xy+5q+CgnYOGO2p5MHSFf+reAQhSapoTJWtG2MVl36iBX+7T19+9n6N3bZBtmhspcoWjUrHW9izLNmtiByFI5ov/fuBn2uhbopDELLL6RykSRPvJwgBAADghNOlbXLHMk1TV1xxhWpqavT22293qs8HH3yg6dOna+XKlZo2bVrz9SOrRUVFRSopKdGtt96q1NRUvffee7LbW6+CtLUyVFBQEP9tcke8+RvptV/0eJi/7pqoPfU+dfTOUGfUJyVrd26RyjPztD8rXxWZeWpyuVu1c5sNGmls1whru4Yc2qj//sKzkqQHH8pXUdHxK8u1L7YalJ19hUaf8jM5nYN6MBYAAAAQP722Te5Y119/vTZu3NjpICTFVoUmTpzYIghJ0jXXXNP874kTJ2rSpEkaOXKkVqxYoQsvvLDVOG63W2536z/+e83ZN0lNQent33Z7CMuKrQz1NAhJUnJjvUbv2KTROzbFxpZUn5SiiMOpqN0uezQqRySs5MagfMNqlTO1Ui+9XhHrm2KooMDZrecahl2WFVVKyikaOeKHnCMEAACAE1q3wtANN9ygJUuW6M0331R+fn6n+gSDQS1evFh33nnncduOGDFCQ4YM0fbt29sMQ33OMKQLb5fcqdLyOxXbXdi17W4NUafCZu9UMjck1ezfp5r6Ro3JyZT9mEILNaWpevX1aj2/pkaS9Nl5PjkchsyoZNhiH609liXZDLssRWUYDmVnX678vGvl9U6mSAIAAABOeF3669yyLH33u9/Vc889pxUrVqioqKjTff/2t78pFArp2muvPW7bPXv2qKqqSjk5OV2ZXu8yjNgKUeYY6YUbpEZ/l6rMhc0evZ51XNX1DXr0ndXyuJzKH+RVapJbDeGwyv11qqlvkCSdWpirU43x2vlqo5IzG5Wc2aDkzEbZXa2DXbTJpvrKJBVPuUpDsqcpfdAMuVydfzcMAAAAGOi6FIauv/56PfXUU3rhhReUlpam8vJySZLP55PH45EkzZ8/X3l5eVq4cGGLvg8//LDmzZunjIyMFtfr6up0xx136KqrrtLQoUNVUlKim2++WaNGjdLcuXN78tl6x5hLpcKZ0j9/LG38e2x5pRPnEUWt3g1DOT6vzi4u0p7qGh2oDWpnVbVkSalJbk3KH6qpRQUam5MlNUn+HS75dxzZP2nJkRSV4bBks5syozZZEUORRrskQ+dc+E0Nzsrr1bkDAAAA/aFLYWjRokWSYgepHuuRRx5pPjOorKxMtk+dh7Nlyxa9/fbbeuWVV1qNabfbtX79ej322GOqqalRbm6u5syZo1/84hd9+15QVyQPlj7/sDThc9Jrv5IObJJsDsmMtNvFbsT3ANdPy0hN1pWnjutGT0ORxvb/Gzic3Xu/CAAAABjourxN7nhWrFjR6tro0aPb7evxeLRs2bKuTGPgGHOpNPoz0p4PpVUPShufiQWiNoKR09a7Yai3OFw9qToHAAAADFy980Z/IjEMqWBq7GvuQqn0TWnfGmnvR7HvTXWSJI89LKct0mtFFHqDy+ORx+vr72kAAAAAveLE+cv8RJCSIY3/bOxLipVjCx6UIg0yIk3KvvcP2rN1W//OsQuyR4yiahwAAABOWoSh3mQYUmpm8485YyZpX8kOmdHOV6HrLza7XUNHje7vaQAAAAC9pndLnKGF7BGjToggJElmNKrsolH9PQ0AAACg1xCG+lDB+Emy2e39PY1OsdntKhg/sb+nAQAAAPQawlAfSvb6NHrm2TJsAzsQGTa7Rp95jpIpngAAAICTGGGoj02Ze6ksc2BvlbPMqKbMubS/pwEAAAD0KsJQH8spHqMhhcMHbJU2wzA0pHC4coopngAAAICTG2GojxmGoVlf/EqnDrDtD5ZladYXvzJgwxoAAAAQL4ShfjDqjOkaM+scGbaB9es3bDaNmXWuRp0xvb+nAgAAAPS6gfXXeAK54Gv/IXdKSuwsooHAMOROSdUFX/t2f88EAAAA6BOEoX7iSfNqzre/Jw2U7XKWpbnf/p48ad7+ngkAAADQJwhD/ah46kyddc38/p6GJOmsa+Zr1NQZ/T0NAAAAoM8QhvrZtHlXa9q8qxN+DgAAAEBfc/T3BBKdYRg665r5ciV59Pbix2PvEPXF1rnDzznrS1/VdIIQAAAAEhBhaAAwDEPTP/sFZeQXatkD9yoUDMoyzd57ns0md0qq5n77e2yNAwAAQMIiDA0go6bOUN6YcXrtkfv1yTtvyjCMuJ5HdGS80TPP1gX//h/ypKbFbWwAAADgREMYGmA8aV5d+r2bNXrmOXrn6Sd1sKxUhs0uy4x2e8wj/TMKhmnWF7/COUIAAACACEMD1qipMzTyjOnav22L1r7ykra8+6bMaFQ2u11m9PjB6Eg7m92uMWeeoylzL9PQUafIGCjnGgEAAAD9zLDiuQ+rnwQCAfl8Pvn9fnm9J+c5OfUBv3Zv2qCKHdtUXrJV5SXbFW5saNXOmeTR0JGjNHTUaGUXjVLB+IlK9vr6YcYAAABA3+tKNmBl6ASR7PVp9MyzNHrmWZIky7LUEPAr0tSkSDgsh9Mph8slj9fH6g8AAADQCYShE5RhGEr2DervaQAAAAAnLA5dBQAAAJCQCEMAAAAAEhJhCAAAAEBCIgwBAAAASEiEIQAAAAAJiTAEAAAAICERhgAAAAAkJMIQAAAAgIREGAIAAACQkAhDAAAAABISYQgAAABAQiIMAQAAAEhIhCEAAAAACYkwBAAAACAhEYYAAAAAJCTCEAAAAICERBgCAAAAkJAIQwAAAAASEmEIAAAAQEIiDAEAAABISIQhAAAAAAmJMAQAAAAgIRGGAAAAACQkwhAAAACAhEQYAgAAAJCQCEMAAAAAEhJhCAAAAEBCIgwBAAAASEiEIQAAAAAJiTAEAAAAICERhgAAAAAkJMIQAAAAgIREGAIAAACQkAhDAAAAABISYQgAAABAQiIMAQAAAEhIhCEAAAAACYkwBAAAACAhEYYAAAAAJCTCEAAAAICERBgCAAAAkJAIQwAAAAASEmEIAAAAQEIiDAEAAABISIQhAAAAAAmJMAQAAAAgIRGGAAAAACQkwhAAAACAhEQYAgAAAJCQCEMAAAAAEhJhCAAAAEBCIgwBAAAASEiEIQAAAAAJiTAEAAAAICERhgAAAAAkJMIQAAAAgIREGAIAAACQkAhDAAAAABJSl8LQwoULNXXqVKWlpSkrK0vz5s3Tli1bOuzz6KOPyjCMFl9JSUkt2liWpdtvv105OTnyeDyaPXu2tm3b1vVPAwAAAACd1KUw9MYbb+j666/X+++/r1dffVXhcFhz5sxRMBjssJ/X69X+/fubv3bt2tXi/l133aXf//73uv/++7Vy5UqlpKRo7ty5amxs7PonAgAAAIBOcHSl8dKlS1v8/OijjyorK0urV6/WOeec024/wzA0dOjQNu9ZlqXf/e53uu2223TllVdKkh5//HFlZ2fr+eef1zXXXNOVKQIAAABAp/TonSG/3y9JGjx4cIft6urqNGzYMBUUFOjKK6/Upk2bmu/t3LlT5eXlmj17dvM1n8+n6dOn67333mtzvFAopEAg0OILAAAAALqi22HINE3deOONmjVrliZMmNBuu9GjR+v//u//9MILL+jJJ5+UaZo688wztWfPHklSeXm5JCk7O7tFv+zs7OZ7n7Zw4UL5fL7mr4KCgu5+DAAAAAAJqtth6Prrr9fGjRu1ePHiDtvNnDlT8+fP15QpU3Tuuefq2WefVWZmph544IHuPlq33HKL/H5/89fu3bu7PRYAAACAxNSld4aOuOGGG7RkyRK9+eabys/P71Jfp9OpU089Vdu3b5ek5neJKioqlJOT09yuoqJCU6ZMaXMMt9stt9vdnakDAAAAgKQurgxZlqUbbrhBzz33nF577TUVFRV1+YHRaFQbNmxoDj5FRUUaOnSoli9f3twmEAho5cqVmjlzZpfHBwAAAIDO6NLK0PXXX6+nnnpKL7zwgtLS0prf6fH5fPJ4PJKk+fPnKy8vTwsXLpQk3XnnnZoxY4ZGjRqlmpoa3X333dq1a5e+8Y1vSIpVmrvxxhv1y1/+UsXFxSoqKtJPf/pT5ebmat68efH8rAAAAADQrEthaNGiRZKk8847r8X1Rx55RAsWLJAklZWVyWY7uuBUXV2tb37zmyovL1d6erpOP/10vfvuuxo3blxzm5tvvlnBYFDf+ta3VFNTo7POOktLly5tdTgrAAAAAMSLYVmW1d+T6KlAICCfzye/3y+v19vf0wEAAADQT7qSDXp0zhAAAAAAnKgIQwAAAAASEmEIAAAAQEIiDAEAAABISIQhAAAAAAmJMAQAAAAgIRGGAAAAACQkwhAAAACAhEQYAgAAAJCQCEMAAAAAEhJhCAAAAEBCIgwBAAAASEiEIQAAAAAJiTAEAAAAICERhgAAAAAkJMIQAAAAgIREGAIAAACQkAhDAAAAABISYQgAAABAQiIMAQAAAEhIhCEAAAAACYkwBAAAACAhEYYAAAAAJCTCEAAAAICERBgCAAAAkJAIQwAAAAASEmEIAAAAQEIiDAEAAABISIQhAAAAAAmJMAQAAAAgIRGGAAAAACQkwhAAAACAhEQYAgAAAJCQCEMAAAAAEhJhCAAAAEBCcvT3BAAAAAD0DsuydKjxkBqjjQpHw3LanUqyJ2lw0mAZhtHf0+t3hCEAAADgJFHdWK2V5Su1uWqzNlRu0OaqzaqP1Ldql+xI1riMcZqYOVHjMsZp+tDpSk9K74cZ9y/CEAAAAHACsyxL6yrXafGWxVq2c5kiVkQOw6GIFWm3T32kXh9WfKi1B9Y2t7+46GJdM+YaTRoyKWFWjQzLsqz+nkRPBQIB+Xw++f1+eb3e/p4OAAAA0CdeK3tN9625T9tqtslu2BW1ot0e60j/4kHF+u6p39X5hefHcaZ9pyvZgDAEAAAAnGBqGmv065W/1sulL8uQIUvx+5P+yHiXDL9Et06/VYOSBsVt7L7QlWxANTkAAADgBLK8bLkuf/5yvbLrFUmKaxA6drxlu5bp8ucv1/Ky5XEdfyAhDAEAAAAnAMuy9OD6B3Xj6zfKH/L3aEtcZ5iWKX/Irxtfv1EPbXhIJ8GGslYIQwAAAMAAZ1mW7v3oXv1+ze9jP8d5Najd5x5+zpFnn2yBiHeGAAAAgH5mWZYaasOKNEVlRi3Z7IYcLrs8aU4ZhqEH1z/YHIR6/KyIpeDWoOrW1ym4JahQeUhmkylHikOeER4NPm+w0qaktexjWmooadC4g+NUvbFaH3/8cfPf4KeeeqoWLFigf/u3fxsQVegooAAAAAAMYA11TdrzSbUqy2pVURpQ5a5ahUOtt7053XYdHLVVf/HGJwhJUt2mOpXeXSpJcvgc8gz3yHAbCu0LKbQnJElKPy9duV/NbQ43oYqQtv1kmyQpbVCaZk6bqfT0dO3YsUOrVq2SJH1mziX622OL5U5Nki3F2W/BqCvZgHOGAAAAgD5gWZYqdga0YcUebf/wgEzTks1myDTbX5uojQb0nOdhyZIUr2xhSN4zvMq4KEMpo1Na3PKv9Gv3A7tVvaJaycXJSp+V3twnZWyKMi/JVO7kHP0p4y4l7zXUdEqd3h21Wgv+/hP985WXdfvVP9CNsxbIcNnlyk+VsyBNrrxUuUcOkj3FGacPED+sDAEAAAC9bMfaSq18cYcO7QvKsBmyOghAx/rXqMdUMmStLMPs5Rketff/9qr6zWqljEtR0c1Fre7bLJvOqT1dP9n7teZr9777mH7z1sMaNihPb3/7L8c0NiTTkmyGPJOHKHVmrlwFab26asTKEAAAADAANNaF9eZft2rbqormlZ3OBqGd6Ru0PfOjXpxd25IKkyRJ4UPhNu+bhqkV3lU613+6ZtRNkiRNyD5FkrS/9sCnGlvN3xvWHVTDmko5hibLN2e4POMyeucDdAHV5AAAAIBesGNtpf78s/e1fXVF7EIX9mNZsrSq4CXJ6vv3bpoqmiTF3idqj2EZeizzxeZqczsP7ZYkZaV0EHAOB6NIRb2qHt+sqr98omiw7cDVV1gZAgAAAOLIsiytXrpLK1/YEVsN6sZLKRWppTqUsj/uczuecE1Y1W9XS5J8Z/jabWcZlkqT9umTpFINr83RI6ufkSRdMvqc4z/k8O+jYX2lQtuqlX5VsTzjh/R47t1BGAIAAADixLIsvf/8Dn20bNfhC90bZ9PQt2SYNlm2vntXyIpa2vOnPTIbTLnz3Uo/P73D9nbLpiXpb2jfM/tU5t+v7NQh+u7Mr3ThgZLZEFHVEx/LO3e40s7L7/MKdIQhAAAAIE5WL911NAh1U4OjTtsz1siymQrtD6luY50aShvUsKtBoX0hyZSyPpelrCuyOj1m1fIq7X8ittKUfk668v49r1WbfY/tU3BzUPZUuwpvKJTN0fEbNVHD1NNvvKTyjRVyO1xadOUdSve0v5rUpsNhMbCsVFYoKu/cYX0aiAhDAAAAQBzsWFsZ2xrXQ3t925pXhA69dkhVr1b1aLymA02qeLqiwy17+/+8X9VvVsueYtfwHw+Xe6j7uOMeXHpQ5c9VyOlw6MHP/kpT8yc23yupKtObpau0vnyLNpRv0faqMkWtqH509tf1/TO/2uZ4tSt2y3DblXpunp544gk98cQTWrdunQKBgAYPHqyxY8fq85//vL7zne9059fQJsIQAAAA0EONdWG9/sQn3X5H6FgHU3bLZtpk2mLb1YZcPERJw5LkGeZR5ZJK1bxb0+mxLNPSnof2SMb/Z+/Oo6Oq7/+Pv+5s2Sf7QiAsYVUgoIKAiEVFQa0UtbbwtVCttZvYWrX6xS7qT1u3amur1WqtVK3r1+JC3XABRVEEQRZl3yEJIctMlsms9/fHkIGYAJnsYZ6Pc3Ik934+976H4/HMy88mpZ2WpqqPmvYtfrZY5YvKZUm0qP8N/ZXQL+GYzy1fVK6S50pk2Ax9Z843dWb2uEb3n1r1sh5f+X8trrPBnlfX6cc3fldLVyyT0+nUaaedprS0NO3du1erVq2S2+0mDAEAAADdyQfPb5LX429zEJKk0uSdCh08VyjjGxmNb0Y5g6x8UbnqNtWp1+xe8leFd26r21anrbdtlbfEq1B9KFyzRcqZnqOEAU2DkK/cp5o1B6fq7fCofne9FArXUnB1gcwhFmlX4z5Dswv141NnanjuYI3MHaIHlz2tl9a/ddRaTdPUD//zay3btUo/+sFVuu+B+5WcnHyoDp9Pa9asie4v4BgIQwAAAEAbbFtdFj5HqB2YMnUgeXfUoac53mKvSl8qVeLQRGWclaE9j+4JX9/jlS3VJluyTT6PL/yukFTyXIm8JV7lfz+/0bod9wq3Sp4tafL8pBOT5DzJqc3BXTJlyjis6FmjvtmobUvWAT2/9nUt27VK3xhwqv5wznWNgpAkORwOjRkzJpq/gmPinCEAAACglUzT1KevbmuX8CJJ9bYa+a3eNj/HDJna81g4/PS+snc4jBysMXlUstLPSJevzCdLokWFvy1UwU8LJItUubiyyTQ8R7ZDGVMylDYxLfyMgwnCkemQJHms9XJZa9pcc8P23D85dZY8q8vk+bJta6VagpEhAAAAoJVKt7tVsa+23Z7nt/ra5TkHXj8gzzaP8mblKS4nvBmCIzscXsyAqbLXyiRJcblxqni3InLfVxrebKH2y1pZU6zqNbOXnCc7Zc+0a+utWyVTsiZZFawJqnZjbSRwzav+o+JD4ff86YKbo663rLZCX+7fIqth1Sm9R2ina58evvEFHejtU0pKisaNG6dvfetbcjgcbf67ORxhCAAAAGiltYv3yLAYMkPtsFhIUsgItvkZ9Xvqtf/l/UoclKjMczKb3Df9h2r1bPfIs93T6H7AFVDVR1WyZ9rVa2YvSVKwLhhZDxWsCdfoK/XJ6IzENwAAIABJREFUVxoObwv1fqR/a8LQV/u3SpLSE5x6bs1C3f7eQ/KHAo3aFBYWasGCBSoqKor6+UdCGAIAAABawVPj05YV+9stCEmSxbS2qb8ZPDg9zjg4Pc7SdP5eXF6cCm8ubHK9+N/hXeUShyaqcF7j+8knJGvE/BGSpNIFpSp7pazReUXzN9+u3EDT4NVSlR63JKmq3q3fvfOALhg6WddOukKDTx+u4qF+XXvttfr00081bdo0rV27VpmZrX/X4VgzBAAAALTCng2VCrVjEAoZftUn7WjTM8peK1P9znrlXJSjuF7HPiuogb/Kr8qllZKk1DFRHpwqKc5s2/Q18+CwUyAU1Cn5w/XIjP+nYZkDZN3o0diRp2jRokXKzc1VcXGx/va3v7XpXYdjZAgAAABohbJd1bJYjHYJRN64A6pO3aQ+xk4lhkKqs7RuzMK9MjzCUr26WtVfVDe65z8Q3lq7+otqbbszfDhs4bzC8GjSo3sU8oTPNUo/Mz2qdyYE45UaTD52w6NIdiRG/nzZ6OmHboRMebdWKaUoW9/73vd033336Z133tFvf/vbNr2vAWEIAAAAaIXSHe42ByFTpuqSdqsuZYdkSqcaa/SR16eV8XFSC7ajPpK6TXVHvBdwBRRwHVqPs+9f+8IbJiRb1XduX1lsUQQxUxpc37fRttqt0Tctv9k/y2LIv7dGKspWYWF46l5xcXGb3nU4whAAAAAQJdM0Vbaz+tgNj/YMmapN3iFP8m5JUqLh0QhtUpHXqS/i4xQ4Rv/mDLp90BHvNbfWp/jfxar8oFLWJKv6/6q/4vJaPrVOkqyyaKinfysqbawwo4+SHYmq8dWpwuM6dCNkyrc7/Pd84MABSWpy/lBbEIYAAACAKHmq/fJ727bzW13S7kgQkqQB2iWrQjrR51OgFaNC3mKvatbVyLPDI89Oj7z7vFJIyrk4RznTc5q0L342vGGCJAVrg9p6y9YjPrv3Vb2VPrHp9LmgEdLg+r5R1/p1NotNUwdP0kvr39LSHSt03pAzIvd8e2tkmqYWLVokSTr11FPb/L7Ie9vtSQAAAECMCPjaFoS8cQfCU+MO00v7FZRF4zz1spmmAoYhzw6P9j25L9LGVxbeyrpicYWqVx8amer7876qeK8iEm6OpeT5EpW/VS5ZpeThybKlNI0F/gq/ar+qlQwpaWhSs8+xmhYV1Q1p0TuPZe6E7+nVr97Vs18s1JmF4zVl0GmSJNMb1D2/v0tLly6V1WrV1Vdf3S7vkwhDAAAAQNRCwdavFQoZflWnbgqf23PYAFBvlciikNJD0tTaOr2ZlKigJyjPNk+TZwQqAgpUHJpI593rVcAdUFx+nIL1QQUqA5Fzgb6ubnudvLu9MmyGzICpmjU1R6036cQkObKa7hZnmNI3XGOa3TxhbclG/frtP0V+31m1V5L079Wv6t0tyyLXH7v4DuUmZ0mSBmX2093TfqUb3rhbV7z0vyrKG6aC1DxtLNumLRW7ZLVa9fDDD2vkyJFHrTcahCEAAAAgShZr6zcMqHFukWkE1HjPAVP5Ko1cmumu1n+Tkxqd73M0xf8ulutT11Hb5F6UK4XC229bEi1yjnGq6oMqxRfEK75vfKO2ZsiUe7lbZtBUxhkZzT7PNCRb5XiZMptsoFDjq9Oq4i+b1lldpuLqssjvvqC/0f1LR56nwVn99fAnz2j5njX6av8WpSc4dcn0i3Xjr29q1ylyEmEIAAAAiJrN0brDUb1xB+RNKGtyPUkexelQMBjl9Wmw16ctDrvMFqwfiusTp6xpWYrvF6+EfgkqW1imqo+rGrVxr3Kr7LXwu+Ny4+TZHh5xMmVKpuR3+xWoCChYE1SwPigzaEqGVL6kXKULSmVNDH9mf2W4zrpVbj2y+W49L7vivXVKT3Bqa8Vu1fk96uPM09wJszV3/GVKOmzb7JYY3esE/f2i2xtdy7tprGzp8Ufo0XqEIQAAACBKCSl22eOsUW2i0LB7nEyzybbZdjUeITEkXVPl0s9zs1v07IxvfG30ppn8FKw5VGtDEJIk726vvLu9jfpak6wK+oKyJllV92Xz23R7q4NS9VYdfndcwShlJ2Zo+Z4v9OCyp/TGxiX6z2UPKiMxrUWf40gMe+vOXToWwhAAAAAQJcMwlN0vRfs2VR278UEBe7WC9jo1l1SsCjW5dmadR+fV1OrtpEQF23DmUIP0SelKn3RoR7iGrbazv5WtpKFJqnivQpnnZMqeYdemGzdJkgbcNEDefV7t/vtuKRTeVS7ztDRNq63T3WXlGrPzF1o5/w7JMHTjJXfomoGnS5I8/nr94KV5Wrpzpea9dV+TkZ5oGHFWWZLsbfvwR9AxEQsAAAA4zuX2d8piaXlIqUvYGx4VakbwCF/Lby6vVEooJOMI/dpD/c561ayrkTXJqupV1Sp+tlgypYQBCYoviFfquFSlnx4OUVUfVckZCmleeaUkaceyNyWZSh45RW8OHCXXwVCXYI/XvefdJIth0eublmhL+c5W1+fonSyjHcJgcwhDAAAAQCtk901RKNSykBIy/PIllDWZHtfAr+ZHPtJCId16oKJF64Zaq3p1tQ68fkCVSyp14M0Dqv48vGW3I//QDnINGyz4K/y67UCF0kIh+YKmKretkSQlnThZ1TL1Z9VH+vRJzdOY3uHNH97c9GHrirMYchSktK5vSx7fYU8GAAAAjmN9hqW3eGTIF1fV7DqeBrVKkPcIgejsOo9+XtHy6Xgt5chxKPfbuRp420Cd8NAJOuGhE5Q7Kzdy3/WRK7IJg680fL5R/yTprLrweqNVBxwK+cNrjRx5gxSStEgBLT1s/VNR3jBJ0vrSza0rMmTK3rvp1t3thTAEAAAAtEJCskODxuTIaEEgClgrJbPpuqBDDO1T7pGOBtIPXW79sOroW2dHK31iurK/ma2EfgmyJlllTbKqfmt4ZMeRFx4VKn62WL5ynyqXhqfFXT04HB9CprSkInw+kCUuSZa4xIOfQnpM3vAOdZLynTmSpF2u4tYVaTEUN7Btmy8c9fEd9mQAAADgODdych+ZLZgq57eX66hDQ5L2Kk+hI3w9NyT9vNKlXxwcIeqINUSBmoDcn7slSbnfyZUsUrA6qF1/3aWQJ6SRORb9ZEx49CooqzZ4M8O12A9teW1K2qqQ1iu8c12SPUGSVOOrjb4gi6GEUVmydtDmCRJhCAAAAGi13AFOZfZOOmrOMWUq4PAfcb1Qg2LlNLurXAND4RGiB0rLlBoKydLOgci1zCUzYMqR45DzJKdszvDG0/U76pWZYOj/vpMgx8HDZu1GULvMnGafY5W0QL62FxQylTwhv+3POQrCEAAAANBKhmFo3PRCHXF+myTT4m/Rt+7t6nvEXeUOd1adR6/tKdbU2vAJP+01SlT5YXgqXPqkNMmUQu6AJCnZIS2anaghmYcOmvWbVm2zD5Qkmf76Rs8JSnpHAVUppFq/5+AzkqIrxpBseUkdunmCxDlDAAAAQJsMGJWtwWNztWVlabPLgkJq2cGsdUrQOg3RCG2U9WjpSuFd5u4pK9e02jo9mJaqzXEOebfXac9T4bU5vv2HRmYqFleoenV15Pe+P+8re1rjqWeenR7V76qXLNJJpybLde9mhQ5+lhcvTdBJvQ4FoYBp0WuhCapPHRD+fN5ahbx1kXVDUjgQfa6g9rn3S5IKUvNa9HcQYUqp5/brsC21GzAyBAAAALTRGd8dorgEe/PT5UxPi5/zmUYdMwgd7qw6j17aV6Kn95VoTGWdPNs88mzzKFhzKIAFKgKR655tHpl+U75yn6o+qpTFF27n+iA8KjRpsF3xT+zSsq/CYWraIKumDWocnGxGSE8FzpE9o7cMe5wkyVeypVEbq6SNCmpNyQZJ0ojcIS3+TDKkhNHZSjgxs+V9WomRIQAAAKCN4pPtOnP2ML3xyNom90yzZSNDkrRHvVSqLGXrQItHLQxJwR0ebftvvU7pY1WtYdHuiqBqa0NypNtkTT8UZhpGhcwdddrz2F6VPblPg/NtOiNJCg616YOdflUenPV2Si+LXrw0sdG7gqahjWaBVpmDZFgNJRSOVd3Gpar9crHi+xUdaidppWufVu5dL0maNmRSiz+MJcGmtAsHtvDTt01UI0N33nmnxo4dq5SUFOXk5GjGjBnauHHjUfs89thjmjRpktLT05Wenq4pU6Zo+fLljdpcfvnlMgyj0c+0adOi/zQAAABAFykcna1x3ypsct2IakmPofd0WtTTt9xeU5/uDWrlnqA27PartjY8x81X2XhU6F+7irV45x4trt2vmyY6NDHfIndFQG9t9Ou1jQFV1kt2i3T75DgtvypJyY7GQ11Ww9T9gUvVMATmHP9tSYZq1r4jz7aVkXYhf70+fONPCppBnT/kGxqU2a9lH8SU0i8Z0qE7yB3OMM2Wr7iaNm2aZs6cqbFjxyoQCOjmm2/WunXr9OWXXyopqflFUZdddpkmTpyo0047TfHx8br77ru1YMECrV+/Xr1795YUDkOlpaV64oknIv3i4uKUnp7eorrcbrdSU1PlcrnkdDpb+nEAAACAdmWapj55ZZs+f3Nn5FowWKWKvFWS1XqUno1drNc1QptkiWLKXFu8utGvbz0Xns43Jt+i4dlNaw1Jcif01upvPNjouvuzl1X53j8kGYrrO0LWxDR596xXsKZC/TMK9MplDykjsWVnBTmn9pfzzII2fZZoskFUYejrysrKlJOToyVLluiMM85oUZ9gMKj09HQ9+OCDmjNnjqRwGKqqqtLLL7/comd4vV55vd7I7263WwUFBYQhAAAAdDnTNPX5Wzv1ycvbJEMyg3WqTH1PwcSUY26v3SBBHl2j+YpXfacs8p+/2qcrXqk/Zju7M0v5P53f5Lpnx2q5ly+Qr3iTQv562ZzZShw6Ua+Ov0ID45JbVEPK5AI5p7Z904RowlCb1gy5XOFTcDMyMlrcp66uTn6/v0mfxYsXKycnR+np6TrrrLN0xx13KDOz+UVTd955p2677bbWFw4AAAB0EMMwdMq0/krPS9L7T21QfV2CrJ56BROTdayDVxt4lKBXdY5m6rWOLfagy0c7dPlox1HbXOW7TotCY5q9l9B/tBL6j25y3a6Eo7/YkGRKzmn95ZzcthGh1mj1yFAoFNL06dNVVVWlpUuXtrjfz372M7311ltav3694uPDp9U+99xzSkxM1IABA7R161bdfPPNSk5O1rJly2RtZjiRkSEAAAD0BPU1fn3w/CatWv6YPL1aNlXscJO0XGfrow6oLDr3+L+rvwW/FXW//1Oy8o40tnVws4T0S4YoYXj77RzXKSNDV199tdatWxdVELrrrrv03HPPafHixZEgJEkzZ86M/HnkyJEqKirSwIEDtXjxYp199tlNnhMXF6e4uLjWlg4AAAB0ivhku869crhqqgZqjftAi6fJNfhQY+WQT5P0WQdVeGwPBabrb8Hprerb7Df2g6NBCaOylT59oCyJnbNZQnNaNQVx7ty5Wrhwod5//3316dOnRX3++Mc/6q677tLbb7+toqKio7YtLCxUVlaWtmzZctR2AAAAQE8w/LTRsrkrpKgnZRl6VxP1jjlRUnhr687Q8J67/TN1b2CmWjq973CJktIO72cJ/9mWm6jMOScqc+awLg1CUpQjQ6Zp6pprrtGCBQu0ePFiDRgwoEX97rnnHv3+97/XW2+9pTFjmp9neLg9e/aovLxcvXr1iqY8AAAAoFsqGF6kONffFEhtzXQwQ0uNU/WWf6Tm2Z6W06yTzQi1e40NAqZFbiXqJt+PjrhGqCWGySrDYpFCpmQxlDAqW8kTeslRkNLmTRLaS1Rh6Oqrr9YzzzyjV155RSkpKSopKZEkpaamKiEhvDhqzpw56t27t+68805J0t13363f/e53euaZZ9S/f/9In+TkZCUnJ6umpka33XabLrnkEuXl5Wnr1q268cYbNWjQIE2dOrU9PysAAADQJRKdqTpx9Mlaue+AQnHxUU+Xk6SvNFhne+/Vrfan9C3rxwqahqzRHWJ0VA3PWxgar1v8l8ullu0C1xyrpBGpiUoZ3Vv23smKG5jWaWcHRSOqaXIPP/ywXC6XJk+erF69ekV+nn/++UibXbt2qbi4uFEfn8+nb3/72436/PGPf5QkWa1WrVmzRtOnT9eQIUN05ZVX6pRTTtGHH37IuiAAAAAcN06a9k3Fle1pVRCSpExLrSqVql/45+oq33XaZIaXqwTMtm2+3dB/k9lHP/Rdr2v9c9sUhCQpKGncBYOVet4AJRZld8sgJLXxnKHugkNXAQAA0N2Zpqknb7xGuwOGAs6MqENRvWnT895RMiPjGaZOMrZotm2RLrQsk90Iym9aZVWwYXlOs0KmFJQ10v7V0AQ9FThXq82Bas3aoObYLIaW/3qKMpKOvl13R+i0c4YAAAAAtIxhGJr43dl6+f4/qCbJKVltUQWieCOgAZYKbQ9lypQhydAqc7BW+Qfrdn1PEyxfqsiyXUXGVhVZtinZaHqIao0ZrzWhQn1hDtTa0AAtC52oSrXvYILVYujCUfldEoSiRRgCAAAAOsmgMeN0wviJWrd2rTy9B0bdf5htv7b5sppcr5RTr4fG6/XQ+INXTGXKrXj55DAC8pk21cuhcjnVXqM/RxIMmZo9oV+HvqO9tG2CIQAAAIConHXFT5RsBuQo2xt132yjVulGnaRjrXQxVK5U7VW2tpu9tFfZKleqOjoIGYY0LC9FJxVEf8BsV2BkCAAAAOhECSlOnfvjn+uVP/5eMizyZbX8OBnDkE6y7dF7/iHtUou/fI88O1bJV7JFvpIt8pfvlsyQUid9T2mnzTxiv6DHLffy/8iz5TMFXCUyg0FZE1MV13uY5t58Q7fZOvtYCEMAAABAJxs8doImzZyjD597UgoF5cvpEz6QtQUhYmL/paqpdmtFyUkKydqmOqpXva7qla9G1cdfWazSZ25SsKZClgSn4gtGyrDHyX9gl+o2fqQbvv+RjAP36brrrmtTbZ2BMAQAAAB0gVNnXCpfvUfLX35RFm+96nv1O+amCpmZu9R/wGpd5tukL8uHqdafeNjuctGzZ/eT89SL5cgtlCN3oFzLXlDt+veP2qfyvX8oWFOhhIFjlTX9Jlkc8TIMKS3BrjnpW3Tdz6/WTTfdpO985zvq06dPq2vrDKwZAgAAALqAYRg6feYcnT5zjuw1VUretl42d0X4ZjOn39hsXg0e8olMU0p21On7w59tUxCSpJRRU5V+5g+UdOJk2TMLJOPYz6vftUaSlDpxliyO+Ei5d19SpF9e8zMNHjxYgUBAn332WZtq6wyEIQAAAKCLGIahcRd9R9+64TdKSExQYslOxe/eIovXE25wWCgaOGi5bDZfZODo5Jy1unjQa51fs7XpAaq/mjpU5w7Pa3QtK6vprnfdDWEIAAAA6GKDxo7XD/70dw2dcLrsNVVK2vGVErd/JZurXDJDysjcrZycHTKMxiNG5w9YpPMHvN2ptSYUniJJcn30rEL+ep0/4G1dOny7JOmxxx7T5s2bNXLkSE2YMKFT62oN1gwBAAAA3UBCilMX/PxGDZ1whj564Wkd2LVDiaX1Cu7frQGjtjW7v4JhSBcPWqh4q1f/2XKhDIXaPHXuWNLP/IH85bvl2fqZyh69TJ8Pt2rWiy+opDhDGzZs0AUXXKDHHntMNlv3jxrdv0IAAAAghgwaO14Dx4xT8eaNWv32f7V7y5tKTKs7YnvDkC4oXKT85BLNXz9Ldf6ENu8ydzT2JKcK5/xGiR//Rp8v3aNPP5WkOkklKigo0FlnnaXs7OwOe397IgwBAAAA3YxhGMofMkz5Q4bpi9XbdaBih6TQUfuclLNWg9O26t8bvq3lJWPafZSo4XlDjbf1xVOPabcroJ//IksTJiQqKcmm8gOn6KGHtuv666/Xm2++qTfeeENWa8eFsvbAmiEAAACgm/L5KlReuUjHCkINkh11+nHRk5o7+jH1Ti6WJFmMYJtqaOjfO7lYPxv5iL569lEV7/PpuuuzNH26U9nZNiUmSn37faGFC59XXl6eFi1apCeffLJN7+0MhCEAAACgm6qsXCbTDETd76Sctbp1wt26+dT7dWreykigsRoBSU237f46y8E2ViOgcXkr9etT79OtE+5WXPnn2rnTL7vd0OmnJzXqY5oBydig8847T5L0zjvvRF13Z2OaHAAAANBNVVevk2HYWhWIDEMamLZDA9N2aObQBdpQMVg73H213dVXO919VR+Mb9LHejA0DUrbpouL/qlhGZuV4qiN3N+/P1xHfLwhq7Xxbg6GYVO1e51SU1MlSRUVFVHX3NkIQwAAAEA35XJ/0aog9HUpjlqNzVutsXmrJYWPL6r2JcsXsisQsslmCchh8evhVdu0aK00PGuDxuaVNnlOVlZ4DVB1dUh79vjVp8+hM4dMMyCX+wt9+ml4m+0BAwa0ue6OxjQ5AAAAoBsyTVPV1es65NmGITnjapSVUKm8pDJlJVTKGVcj4xj9TjwxPhKI7r+vTFVVh9YjhUKm/v7Ie1q2bJkkadasWR1Se3tiZAgAAADohvz+cgWDtcdu2AabN3n1wF8ORH4v3ueXJP13oVuffHJoO+/bbstVZqZNNpuhm/43R7/9TYnWrKnXnDm7dMKweCUkGtq21ad9+8KjWDfffLMmTZrUobW3B8IQAAAA0A0Fg/Ud/o7aupA2fOVtcr2sLKiyskOjPn7/oU0XTjopQY8+1kcv/Z9Lq1Z5tG5dvYJBU6mpVp1+eqJuuukf+uY3u/+okEQYAgAAALol0/R3+DtGj07QO+8WRt0vP9+ua36e1ey9CePHt7WsTsOaIQAAAKAbMgz7sRt1Q4bh6OoSWowwBAAAAHRDVmvTra97Aqs1rqtLaDHCEAAAANAN2e2ZslqTjt2wG7Fak2W3Z3Z1GS1GGAIAAAC6IcMwlJIyoqvLiEpKyggZxrE26O4+CEMAAABAN5XqHCXD6Bl7nhmGTanOUV1dRlQIQwAAAEA3lZIyQqYZ6OoyWsQ0A0px9qyRLMIQAAAA0E2lp0/oUSND6Wk9Z1ttiTAEAAAAdFsOR4Zyci6QYVi7upSjMgyrcnO+KYcjo6tLiQphCAAAAOjGCvp8T6YZ7Ooyjso0g+rT53tdXUbUCEMAAABAN+Z0nqSkpKGSuusubYaSk4bJ6Rzd1YVEjTAEAAAAdGOGYWhg4XWSzK4u5QhMFRb+skdtqd2AMAQAAAB0c9nZU5Sbe6Gk7rZ2yKrc3OnKzp7S1YW0CmEIAAAA6AGGDrlFdrtT3We6nCG73amhQ37X1YW0GmEIAAAA6AHs9nSdMOwP6j7T5UydMOxO2e3pXV1IqxGGAAAAgB4iO/tcDSy8vqvLkCQNLLxB2dnndHUZbUIYAgAAAHqQfv1+qn79ftoNavhJl9bQHnrGcbYAAAAAJDXsLne9bNYkbd32R4XXEHXG1LnwewYW/kr9+/f8ICQxMgQAAAD0OIZhqH//n6po5COy29PU8bvMWWW3p6lo5CPHTRCSCEMAAABAj5WdfY4mjF+k3NzzD15p753mws/Lzb1AE8a/0+PXCH0d0+QAAACAKJimqQP+gDzBkPymKbthKMFqUZbd1iUHj9rt6Rox/M/KzblAW7f9SbW1G2UYVplmsNXPbOiflDREAwuv67HnCB0LYQgAAAA4inJfQEurqrWm2qNV7jp9UV2n2mCoSbskq0WjUhJ1kjNRRSkJOj0tRZmOzvu6nZ19jrKypsjtXq09e55W6f6FMs2ADMMm0wwcs39DO8OwKTf3QvXp/T05naO6JOB1FsM0ze6yUXmrud1upaamyuVyyel0dnU5AAAA6OFM09RKd52e2HtAr+yvVMCUbIYUaME354Z2NkOakZOuK3pn6WRnYqeHCp+vQpVVn6javVYu9xpVV69VMFjbpJ3VmqSUlJFKdY5SinOE0tPGy+HI6NRa21M02YAwBAAAABzmzTKX7tperA219bIaUrAN35Yb+p+QFK//LeylqVmp7VdolEzTlN9frmDQK9P0yTAcslrjZLdnHlejP9FkA6bJAQAAAJIq/AH9etMeLdhfFdllrC1B6PD+G2vr9f2123VRTpp+P6SPMuyd/zXcMAw5HFmd/t7ujN3kAAAAEPPeKKvSxE+/0qv7qyRJTVcEtU3D817dX6XTP/1Kb5RVtfMb0BqEIQAAAMQs0zT1wI5SXbFuh1z+oFq//1rLBCVV+YO6Yt0O/WVnqY6DFSs9GtPkAAAAEJNM09QfthXrr7v2S/raaJBpKq3arTi/T/ZAQH6bTV67Q1UpTqmN62sa3vOHbcWqCQQ1r7DXcbVmpychDAEAACAm/WXn/kgQcta4dfLG9Rqya7uGbd+qobu2KdFb36RPXVy8NvYt1IYBA7Wp7wB9PnS43MlOBXbtkG/FMvk3f6XApq8U2LldCgWVdMXPlDz7qiPW8Od1m/X+fXdpz/uLtGPHDsXHx2vkyJG66qqrNHv27A777AgjDAEAACDmvFFWpTu37dOJ2zdrxuK3debKT2QLBRWwWGUNBXWkcZpEb71Gb/5SI7dujLR/b8wE3Vu8T+XvvB5VDYF9e1R5/Y/0TmmxnBkZOvvss+XxePTJJ5/oww8/1LvvvqsnnniCUaMORBgCAABATKnwB/Tsc//R4wueU+G+3QpYLLKFwpPXbKFjrxoyDmtnCwV11oqP5a6o0Kq+/bT7jHO0fcr5qv3346pf9N+jPsd1xzyFSovlGD1GuX/4s56cMk4Zdpu2bNmiadOm6V//+pcmTpyoq6468sgS2oYNFAAAABAzApWV+uCnczXvoXvVv3iPJEWCUGvZQiF9Oy1Ntycm6snPluqWRQtlDx49VPnWf6HAhnWSxaqU63+n2vgk/WZTuJ5Bgwbp/vvvlyTdfvvtbLLQgQhDAAAAiAnV77yjDdPO06CPP5QkWdo5ZDSSmQOaAAAgAElEQVQ878zPP9Gk1Z8dtW1g43pJkjUvX7beBQpK+s/+Kr11wCVJmjJliiRp9+7dWr58ebvWiUMIQwAAADiumaapA4/8XXvmXiPD7Za1jSNBx2INhWQPBCRJozZ/JTUTukyPR5JkOFMj1yyS7tpWLNM0lZiYqISEBEnSypUrO7TeWEYYAgAAwHHLNE2V3f8nlf35z5LafzToSAyF3zNmw1r98JXnmwQiIy1dkhQs2Ru5FpL0VW29PnfXqaSkRJ6DgWn79u2dUnMsYgMFAAAAHLfK//6oyh97rF2e5TdNrair09LaWn3mqdNOn0+eUEipVquK4hP0nbQ0fSM5uUm/gpf+rez339YGb71CB8oUqnZJ1vDXcLOqUnVvvabEqRdKkqyG9MTeA8p64YlIf7fb3S71oynCEAAAAI5L1e+8ExkRag+f1dXph3t2S5KyrFadnJCgBItFW70+vV9bo/dra3Rpappuzc1t1G+h2611e/coKStH/gEDZUlNV8jtkm/1Z1IgoOp7blGovEyJF1ysoM+rp559Qp4nHpbdbpff75fFwmSujkIYAgAAwHEnUFmp4t/8VjKMZtfstIZF0rnJKfpeerrGJCY2uveG260bi/fpRVeVTj641qfBFRkZuiE3V3HOVM255V65k1MkScGKclX8eJZC5WWq/cdfVfuPv0b6TJx+kbItpl5++WVlZGS0S/1oipgJAACA407pHb9XsLq63YKQJI1PStKfe/duEoQk6TynUzNSw5shvOJ2Nbp3Qny8cqxWJXvqdM0L/4pct2ZkKuOhJyO/x597oRJnXq6s+x/VtPsfVGlpqSRp5MiR7fYZ0BgjQwAAADiuVL/7rtz/PfqBpx3hhLh4SS6V+APKszX9mm0NhTTls4/0/inj9fGoMQcvWsP/tFjk/OXNMuLiJUnLi/dr9erVstlsOvPMMzvpE8QeRoYAAABw3DBNU2V/fiA8Pa6T7fT7JEnZNusR24QMQz947QXJNGX6fKr5x4OSJMcp4yNBSJI+enq+PB6PLr30UuV+bQ0S2g8jQwAAADhueFavlnfz5k5/b1kgoJdd4elx56Sk6Mv6+iZtvqyv19OVFTL37ZX/F1eqcudWmdVu2YYOl/OGWySFw1z9m6/I/fhDSs/I0H333depnyPWEIYAAABw3Kh85tnw1LNgsNPeGTBNzd27R9WhkOINQ6+6XNp78NDVF6qqtLimRpLkCga10+8Pd1q36mBvQ6bfr+qH7pVkyr/xS4VKi2VJz9DTC19Xr169Ou1zxCLCEAAAAI4LgcpKud94o1ODkCTdVlqitQdHgupNU+u83si9kkBAJQeDkSQtKixUns2uvaGQZp08XpWvvKDgts0K7t4uw2qTNb+PEmZfpcRLZ2voqFGd+jliEWEIAAAAx4W6Tz6RDgseneEPpaV6yeWS02LRPwv66sT4+GN3ktTXatU5Y0/TezNm6sAPLpFhWJT51CuyZmRF2jg4X6jD8TcMAACA40L9+vVSM7u4dZS795fq6apKOS0W/aOgoMVBSJICFquG7Noua16+HKPHyvTUybfik0Zt4i2dvwlErCEMAQAA4LjgWbOm00aG/rh/v/5VWakUi0WP9SnQiPiEY3c6jDUU1Ak7tkiSjIN9Q1UVkfvJVouy7Ezi6miEIQAAAPR4pmmGR4Y6wf1l+/XPygqlWCz6R58CjUyILghJkiFpyK7tMr1e+deGN1Ow9ekXuT8qJVFGF2wPHmsIQwAAAOjxghUVCtXWdfh7Higr0z8qKsJT41oQhMoDAT1XWamaZjZ1qKl2y3P7/ypUXiZLXr4cY8ZLkmyGdJIzsUPqR2OMvQEAAKDHC3manuvT3t6rqdbfK8olSX0dDj1bValnqyqbtEuz2nRjTo4kqd4M6f/tL9WdZfs1LC5Ove12mZJK/H596fXKv22rLJnZSrv9fhmOOElSwJSKUghDnYEwBAAAgB7P9Ps6/B2uw0Z31tXXa10zB6tKUr7tUBjKsNp0Y3aOVnjqtNnr1TafT95QSClWq0bFx6v44v+Rb+blsiQlR/rbDGliWnKzz0b7IgwBAACgxzPsjg5/x0WpabooNS2qPgkWiy7PyNDlymj2/swZ31XpYUHIakgzctKV6eBremdgzRAAAAB6PEtCy7e17k68XwtxQVO6onfWEVqjvRGGAAAA0ONZMzJkSepZ62xq4xNUleKM/G6RdGJSvE5m84ROQxgCAABAj2cYhuKHD+/qMlrMlLSp7wDpsO2zQ5JuKuzFltqdiDAEAACA40JCUZFk6xlrbYIWq77qPyjyu1XSxTlpmpqV2nVFxSDCEAAAAI4L8cOHS4FAV5fRIrZQMDwypPAX8lS7VXcM6dO1RcUgwhAAAACOC4njx/eYkaGAxapVQ0+UFJ4ed//Qvsqw94zajyeEIQAAABwXbOnpcp53nmS1dnUpRxWwWPTemAlyJ4c3T7i5sJemZTM9risQhgAAAHDcSP+fWdJhh6N2R7ZQSC9/41xJ0s/75uiavjldXFHsIgwBAADguJEwerTihgxptEtbdxIyDG3t3VdfDRikXxf20s0D89k9rgtFFYbuvPNOjR07VikpKcrJydGMGTO0cePGY/Z78cUXNWzYMMXHx2vkyJF6/fXXG903TVO/+93v1KtXLyUkJGjKlCnavHlzdJ8EAAAAMc8wDGVf+wvJNLu6lGZZTFMvXDRT80cW6pp+uV1dTsyLKgwtWbJEV199tT755BMtWrRIfr9f5557rmpra4/Y5+OPP9asWbN05ZVXatWqVZoxY4ZmzJihdevWRdrcc889+stf/qJHHnlEn376qZKSkjR16lTV19e3/pMBAAAgJqWcdZacF1zQ7dYOBS0WbTx9sh748WzWCHUThmm2PjaXlZUpJydHS5Ys0RlnnNFsm+9+97uqra3VwoULI9fGjx+v0aNH65FHHpFpmsrPz9f111+vG264QZLkcrmUm5ur+fPna+bMmcesw+12KzU1VS6XS06n85jtAQAAcHwLVFZq23nnK+hydYtRopBhyHQ6NezNN2RLT+/qco5r0WSDNq0ZcrlckqSMjIwjtlm2bJmmTJnS6NrUqVO1bNkySdL27dtVUlLSqE1qaqrGjRsXafN1Xq9Xbre70Q8AAADQwJaerl533N4tgpAUnh7X7w+/Jwh1M60OQ6FQSNdee60mTpyoESNGHLFdSUmJcnMbz4fMzc1VSUlJ5H7DtSO1+bo777xTqampkZ+CgoLWfgwAAAAcp1KmTFH2tdd2dRmSpOxf/lIpZ5/d1WXga1odhq6++mqtW7dOzz33XHvW0yLz5s2Ty+WK/OzevbvTawAAAED3l/njHynzRz/q2hp+9CNl/uiqLq0BzWvVMbdz587VwoUL9cEHH6hPnz5HbZuXl6fS0tJG10pLS5WXlxe533CtV69ejdqMHj262WfGxcUpLi6uNaUDAAAghhiGoexfXitLUpLK/vSn8JbbnTF17uB7sq+7TlkEoW4rqpEh0zQ1d+5cLViwQO+9954GDBhwzD4TJkzQu+++2+jaokWLNGHCBEnSgAEDlJeX16iN2+3Wp59+GmkDAAAAtJZhGMr68Y/U56EHZU1NlSwdfNSmxSJraqr6PPQgQaibi+rfhKuvvlpPP/20nnnmGaWkpKikpEQlJSXyeDyRNnPmzNG8efMiv//iF7/Qm2++qfvuu08bNmzQrbfeqhUrVmju3LmSwv9yXnvttbrjjjv06quvau3atZozZ47y8/M1Y8aMdvqYAAAAiHUpZ5+twjdel/O888IX2vuw04PPc55/nga++QZrhHqAqLbWPtLpuE888YQuv/xySdLkyZPVv39/zZ8/P3L/xRdf1G9+8xvt2LFDgwcP1j333KPzzz8/ct80Td1yyy169NFHVVVVpdNPP11/+9vfNGTIkBbVxdbaAAAAiEb1u++q7IG/yLtpU/g8omCw9Q872D9uyBBlX/sLpZx1VvsViqhFkw3adM5Qd0EYAgAAQLRM01T9F1+o4pln5X79dSkQkGy28D+PpaGdzSbnBecr43/+R/FFRUccPEDnIQwBAAAAUQhUVqru009Vv26dPGvXqn7deoVqa5u0syQlKX7EcCUUFSl++HAljhvH2UHdDGEIAAAAaAPTNBWsqJBZX6+QzyeLwyEjPl7WjAxGf7q5aLJBq7bWBgAAAI5nhmHIlpnZ1WWgg3XwvoIAAAAA0D0RhgAAAADEJMIQAAAAgJhEGAIAAAAQkwhDAAAAAGISYQgAAABATCIMAQAAAIhJhCEAAAAAMYkwBAAAACAmEYYAAAAAxCTCEAAAAICYRBgCAAAAEJMIQwAAAABiEmEIAAAAQEwiDAEAAACISYQhAAAAADGJMAQAAAAgJhGGAAAAAMQkwhAAAACAmEQYAgAAABCTCEMAAAAAYhJhCAAAAEBMIgwBAAAAiEmEIQAAAAAxiTAEAAAAICYRhgAAAADEJMIQAAAAgJhEGAIAAAAQkwhDAAAAAGISYQgAAABATCIMAQAAAIhJhCEAAAAAMYkwBAAAACAmEYYAAAAAxCTCEAAAAICYRBgCAAAAEJMIQwAAAABiEmEIAAAAQEwiDAEAAACISYQhAAAAADGJMAQAAAAgJhGGAAAAAMQkwhAAAACAmEQYAgAAABCTCEMAAAAAYhJhCAAAAEBMIgwBAAAAiEmEIQAAAAAxiTAEAAAAICYRhgAAAADEJMIQAAAAgJhEGAIAAAAQkwhDAAAAAGISYQgAAABATCIMAQAAAIhJhCEAAAAAMYkwBAAAACAmEYYAAAAAxCTCEAAAAICYRBgCAAAAEJMIQwAAAABiEmEIAAAAQEwiDAEAAACISYQhAAAAADGJMAQAAAAgJhGGAAAAAMQkwhAAAACAmEQYAgAAABCTCEMAAAAAYpKtqwsAAEkyTVPltT55fEH5gyHZrRYlOKzKTHLIMIyuLg8AAByHCEMAukRFrU8fbz2gtXtd+mJ3ldbucanWF2zSLslh1cg+qRpVkKaRvVN12sAsZSQ5uqBiAABwvCEMAeg0pmnq811VemrZDi1cU6xAyJTNYigQMo/Yp9YX1CfbKrRiR2Wk/YWj8jV7Qj+dVJDGqBEAAGg1whCATvH2+hLd9/YmbSytltViKHgwAB0tCB0ucFj7V7/YpwWr9mpYXoquP3eozjkxt8PqBgAAxy/CEIAOVVnr0y2vrterX+xTwyBOsIUB6Ega+m8srdZVT67Q9FH5um36cKUzfQ4AAESB3eQAdJi31pforPsW679riiVJZtsyUBMNz/vvmn06677Femt9Sfu+AAAAHNcIQwDanWmaeuj9LfrxUytV5fEr2N4p6GuCplTl8evHT63UQ+9vkdnB7wMAAMcHpskBaFemaeqetzbq4cVbD/7e+mf5y/fIs2OVfCVb5CvZIn/5bskMKXXS95R22syvvTf8z3vf2qhab0AnWXfrT3/6k5YvX67a2lr169dPl1xyiebNm6fk5OTWFwUAAI4bhCEA7epvi7dGglBbVa96XdUrX42631333qfK9/4hwzA0adIk5ebm6sMPP9Qf/vAHvfTSS1q6dKmysrLapUYAANBzRT1N7oMPPtCFF16o/Px8GYahl19++ajtL7/8chmG0eRn+PDhkTa33nprk/vDhg2L/tMA6FJvrS/RvW9tbLfn2bP7yXnqxcq68Abl//BhJQ0/85h9fKVbVfne45Jh0e1/e0pLlizRCy+8oK1bt+rss8/Wxo0b9ZOf/KTdagQAAD1X1GGotrZWo0aN0kMPPdSi9g888ICKi4sjP7t371ZGRoYuvfTSRu2GDx/eqN3SpUujLQ1AF6qs9el/X1qj9jz1J2XUVKWf+QMlnThZ9swCyTj2f7Jcy16UZCq5aIr+b3+2Kmt9kqTExEQ9/vjjslgseumll7Rhw4Z2rBQAAPREUYeh8847T3fccYcuuuiiFrVPTU1VXl5e5GfFihWqrKzUFVdc0aidzWZr1O5oU1i8Xq/cbnejHwBd65ZX18vtCagrty4wg355tn0mSUo6YbLcHr9ufW195H6/fv00ceJESdKCBQu6pEYAANB9dPpuco8//rimTJmifv36Nbq+efNm5efnq7CwUJdddpl27dp1xGfceeedSk1NjfwUFBR0dNkAjuLt9SV69Yt9Hb5r3LH4K/bK9HslSY68QQqa0iur92nRl6WRNmPGjJEkrVq1qktqBAAA3UenhqF9+/bpjTfe0A9/+MNG18eNG6f58+frzTff1MMPP6zt27dr0qRJqq6ubvY58+bNk8vlivzs3r27M8oH0AzTNHXf25siB6p2pYArHHoscUmyxCVKkgxDuu/tjZHtthv+58n27du7pkgAANBtdOpucv/617+UlpamGTNmNLp+3nnnRf5cVFSkcePGqV+/fnrhhRd05ZVXNnlOXFyc4uLiOrxeAMf2+a4qbSxt/n9cdDbT55EkGfb4Q9dMaUNJtVbtrtLJfdMj22ozvRYAAHTayJBpmvrnP/+p2bNny+FwHLVtWlqahgwZoi1btnRSdQBa66llO2S1dINhoaOwWgw9tWxnV5cBAAC6mU4LQ0uWLNGWLVuaHen5upqaGm3dulW9evXqhMoAtFZFrU8L1xQrGOratUINDEeCJMn01ze6HgyZeu2Lfaqo9ammpkaS5HQ6O70+AADQvUQdhmpqarR69WqtXr1aUnje/erVqyMbHsybN09z5sxp0u/xxx/XuHHjNGLEiCb3brjhBi1ZskQ7duzQxx9/rIsuukhWq1WzZs2KtjwAnejjrQcU6CZBSJJsqbmSpJC3ViFvXaN7gZCpZVvLI2sM+/fv39nlAQCAbibqNUMrVqzQmWceOvjwuuuukyR9//vf1/z581VcXNxkJziXy6WXXnpJDzzwQLPP3LNnj2bNmqXy8nJlZ2fr9NNP1yeffKLs7OxoywPQidbudclmMbpNILJn9JZhj5Pp98pXskXx/Yoi92wWQ2v3urRixQpJ0sknn9xVZQIAgG4i6jA0efLkyK5MzZk/f36Ta6mpqaqrq2va+KDnnnsu2jIAdANf7KrqNkFIkgyrXQmFY1W3calqv1zcKAwFQqY+Xv2VPv74Y0lq8VlpAADg+NXp5wwBOD6Ypqm1e11dXUYTzvHflmSoZu078mxbGbke8tfrvcf+n4LBoC655BINGzas64oEAADdQqdurQ3g+FFe61OtL9ih7/CWbFHF2w9Hfg9UFUuSala/Kc+WzyLXsy/+tWzJGZKkuLxBSj/rSlW+9w/tf/FWxfUdIWtimrx71itYU6FBg4fokUce6dC6AQBAz0AYAtAqng4OQpJk+urkK97Y5Hqw+oCC1QcOu+BvdN85dobs2f3lXr5AvuJN8vrrZXNmyzn+Ur32/F+VlZXV0aUDAIAegDAEoFX8wVCHvyO+b5H63bSwVX0T+o9WQv/RTa47EpLaWhYAADhOsGYIQKvYrT3zPx8OW8+sGwAAtD++FQBolQSHtatLaJV4e8+sGwAAtD/CEIBWyUxyKKmHBaLkOJsykxxdXQYAAOgmCEMAWsUwDI3sndrVZURlZO9UGYbR1WUAAIBugjAEoNVG9U2TzdIzwoXNYmhUQVpXlwEAALoRwhCAVhvZO1WBkNnVZbRIIGT2uJEsAADQsQhDAFrttIFZPWpkaMLAzK4uAwAAdCOEIQCtlpHk0DeLesnazQOR1WLowlH5ymDzBAAAcBjCEIA2mT2hv4LdfKpcMGRq9oR+XV0GAADoZghDANrk5L5pGpaXou66SZthSMPyUnQSmycAAICvIQwBaBPDMHT9uUNldtPBIdOUrj93KFtqAwCAJghDANrsnBNzNX1UvqzdLHBYDelbo/N1zom5XV0KAADohghDANrFbdOHy5lg6zbT5QxDcibYdeuFw7u6FAAA0E0RhgC0i/Qkh+66pKjbTJczTenuS4qUzg5yAADgCAhDANrN1OF5+tXUoV1dhiTpV1OH6tzheV1dBgAA6MYIQwDa1c8mD9TPJg+M+RoAAED3Z+vqAgAcXwzD0K+mDlVSnE33vrVRhqFOmTrX8J4bpw3VzyYP6vgXAgCAHo+RIQDtzjAMXX3mID06+xSlJdhl7eBNFayGlJZg16OzTyEIAQCAFiMMAegw5w7P03vXT9YFRfmS1O47zTU875uj8vX+DZNZIwQAAKLCNDkAHSo9yaG/zDpJ3yzqpfsXbdKGkmpZLYaCodbPnWvoPzQ3RdefO5RzhAAAQKsQhgB0inOH5+mcE3O1aneVnlq2U699sU+BkCmbxVCgBcGooZ3NYmj6qHzNntBPowvSZHSXg40AAECPY5hmdzkVpPXcbrdSU1PlcrnkdDq7uhwALVBR69OyreVas7dKa3a7tGZvlWq9wSbtkuKsKuqdplEFaRrZO1UTBmYqg7ODAADAEUSTDRgZAtAlMpIcuqColy4o6iVJMk1T5bU+1fuD8gVCctgsirdblZnkYPQHAAB0CMIQgG7BMAxlJcd1dRkAACCGsJscAAAAgJhEGAIAAAAQkwhDAAAAAGISYQgAAABATCIMAQAAAIhJhCEAAAAAMYkwBAAAACAmEYYAAAAAxCTCEAAAAICYRBgCAAAAEJMIQwAAAABiEmEIAAAAQEwiDAEAAACISYQhAAAAADGJMAQAAAAgJhGGAAAAAMQkwhAAAACAmEQYAgAAABCTCEMAAAAAYhJhCAAAAEBMIgwBAAAAiEmEIQAAAAAxiTAEAAAAICYRhgAAAADEJMIQAAAAgJhEGAIAAAAQkwhDAAAAAGISYQgAAABATCIMAQAAAIhJhCEAAAAAMYkwBAAAACAm/f/27j06qvpQ+/izZyZ3MhNyg0SuXgAJBBAhBU8rQagGS7WlWrTrXUABe3wBwdieCvWItiquo62gUEFtpfYcRC2KLQooQeTYV0DAKAS1ICi3BAKBTBJym5n9/jEQRK6BmeyZ7O9nrVk4m315WBtJnvx++zeUIQAAAAC2RBkCAAAAYEuUIQAAAAC2RBkCAAAAYEuUIQAAAAC2RBkCAAAAYEsuqwMAABApTNNURV2F6vx1avQ3KsYZo3hnvFLjU2UYhtXxAAAhRhkCANjWkbojWl+2XtsOb9OW8i3adnibjvmOnbZfoitRPdN6qndGb/VM66m89nlqG9/WgsQAgFCiDAEAbMU0TX1S/okWf7FYK3etlM/0yWW45DN9Zz3mmO+YNh7YqOKDxU3739T1Jo3uMVq56bmMGgFAlDJM0zStDnGpvF6vPB6PKisr5Xa7rY4DAIhQq3ev1tyP52r70e1yGk75Tf9Fn+vE8VelXKUp/aYov1N+CJMCAC5Wc7oBZQgA0OodrTuqx9Y/puVfLZchQ6ZC96XvxPkKuhRoRt4MpcSnhOzcAIDma043YDU5AECrVrS7SCOXjtQ7X78jSSEtQt8838qvV2rk0pEq2l0U0vMDAMKHMgQAaJVM09Tznz6vae9NU2V95SVNibsQATOgyvpKTXtvml7Y8oJawcQLAGj1KEMAgFbHNE3N2TxHT3/8dPB9iEeDznrd49c5cW0KEQBENp4ZAgC0Os9/+nxTEbpU9aX1qt5ardqvalX7da3q99dLASnzx5nK/GHmafubAVO1X9aqakuVPHs8qvi6ounrVL9+/TR27FjdeeedrEAHAGHSnG7A0toAgFalaHdRyIqQJFWsrtDhdw9f8P4N5Q3a+ejO4LFJFerXv5+uyLpCO3fu1KpVq7Rq1SotXrxYS5YsUWxsbMhyAgCaj2lyAIBW42jdUT30/x6SodCNusR1iFP6Tenq8IsOuuqxq5Qy+DyrxRlS0tVJ6lzYWVc/c7Xi747X/IXztWHDBq1Zs0ZJSUlatmyZHn/88ZBlBABcHMoQAKDVeGz9Y6pqqArpM0Kp16eq/ej2ShmUorjsOJ2vZ8Vlxqnrr7sqOTdZckjeBq9mbZglSbr++ut1//33S5JeeumlkGUEAFwcyhAAoFVYvXu1ln+1POyrxjVXwAzo7V1v673d70mS+vXrJ0nas2ePlbEAAKIMAQBaAdM0NffjuSGdHhdKhgw98/EzMk1T27dvlyRlZWVZnAoAwAIKAICo90n5J9p+dLvVMc7KlKntR7dr/e71evrp4OIOo0aNsjgVAKDZI0Nr167VyJEjlZ2dLcMwtHTp0nPuv2bNGhmGcdqrrKzslP3mzZunLl26KD4+Xnl5edqwYUNzowEAbGrxF4vlNJxWxzgnp+HUxH+fqF27dik7O1szZsywOhIA2F6zy1BNTY369OmjefPmNeu4L774QqWlpU2vzMyTn83wyiuvqLCwUDNnztTmzZvVp08f3XjjjTp48GBz4wEAbOZI3RGt3LUy4p4V+rbSpaXaumKr4uPj9eqrryotLc3qSABge82eJldQUKCCgoJmXygzM1MpKWdejvQPf/iDJk6cqHHjxkmS5s+fr7feekt//vOfm1bdAQDgTNaXrZfP9Fkd45wOrTikg28clOEy9MD8B3TddddZHQkAoBZcQKFv377KysrS8OHD9c9//rNpe0NDgzZt2qRhw4adDOVwaNiwYfrwww/PeK76+np5vd5TXgAAe9p2eJtcRuQ+Anv43cMqW1wmw2Woy5QuSuyVaHUkAMBxYS9DWVlZmj9/vpYsWaIlS5aoY8eOGjJkiDZv3ixJOnTokPx+v9q1a3fKce3atTvtuaITZs2aJY/H0/Tq2LFjuP8YAIAItaV8S8SODB1edVil/1Mqw2Wo4+SOSuqTpC2HtlgdCwBwXNh/lNa9e3d179696f3gwYP15Zdf6qmnntJf//rXizrn9OnTVVhY2PTe6/VSiADAhkzT1LbD26yOcUYVqytU+t8ni5C7r1tScCTLNE0ZRmQuAw4AdmLJvIKBAwfqgw8+kCSlp6fL6XTqwIEDp+xz4MABtW/f/ozHx8XFKS4uLuw5AQCRraKuQsd8x6yOcZqKNRXa/yPyUuIAABxCSURBVNf9pxUhSapprFFFXYXSElhAAQCsZkkZKi4ubvqwudjYWPXv319FRUW69dZbJUmBQEBFRUWaPHmyFfEAAFGizl8X9mvUflWr/S/tb3rfUN4gKVh4qoqrmrZ3uqeTYlJiVPt1rfb/Zb9kSrEZsfJ+5JX3o1Ofbb37nbuVGJOohQsXhj0/AODsml2GqqurtWPHjqb3u3btUnFxsVJTU9WpUydNnz5d+/bt00svvSRJmj17trp27aqcnBzV1dXphRde0OrVq/XOO+80naOwsFBjxozRtddeq4EDB2r27NmqqalpWl0OAIAzafQ3hv0a/lq/anfWnrbdV+GTr+Lks0pmoxnc/5hfCv6n6kvrVV9af9qxr/3zNUmiDAGAxZpdhjZu3Kj8/Pym9yee3RkzZowWLlyo0tJS7d69u+n3GxoadN9992nfvn1KTExUbm6uVq1adco5fvrTn6q8vFwPPvigysrK1LdvX61YseK0RRUAAPimGGdM2K/R5uo26rWwV0j3XzlqpbLbZF9qNADAJTJM0zStDnGpvF6vPB6PKisr5Xa7z38AAKBVOFx7WENeHWJ1jGZbc/sanhkCgDBpTjdosc8ZAgAg1FLjU5Xoiq7P7UmKSVJqfKrVMQAAogwBAKKYYRjqmdbT6hjN0jOtJ8tqA0CEoAwBAKJa74zechmWLI7abC7Dpd7pva2OAQA4jjIEAIhqPdN6ymf6zr9jBPCZvqgbyQKA1owyBACIannt86JqZGhg+4FWxwAAHEcZAgBEtbbxbXVj1xvlNJxWRzknp+HUTV1vUtv4tlZHAQAcRxkCAES90d1Hy2/6rY5xTn7Tr9E9RlsdAwDwDZQhAEDU65PRR1elXCVDkblKmyFD3dp2U256rtVRAADfQBkCAEQ9wzA0pd8UmYrMzxE3ZWpy38ksqQ0AEYYyBABoFfI75augS0HEPTvkMBwa0XWE8jvlWx0FAPAtlCEAQKsxI2+GkmOTI2a6nCFD7li3pg+cbnUUAMAZUIYAAK1GSnyKHhr8UMRMlzNl6uHBDyslPsXqKACAM6AMAQBalRs63aB7+t1jdQxJ0tRrpmpop6FWxwAAnAVlCADQ6kzoPUETek+wPMP4XuMtzQAAODfKEACg1TEMQ/f0u0dTr5kafN9CzxCduM7Ua6Zq6jVTWT0OACIcZQgA0CoZhqEJvSdoTv4ceeI8chjh/ZLnMBzyxHk0J3+O5aNSAIALQxkCALRqQzsN1T9u/Ydu7HyjpNCPEp04301dbtKyHy3jGSEAiCKGaZqRseTOJfB6vfJ4PKqsrJTb7bY6DgAgQq3evVpzP56r7Ue3y2k45Tf9F32uE8dflXKVpvSbwucIAUCEaE43cLVQJgAALDe001Dld8zXp4c+1eLPF2vFrhXymT65DJd8pu+8x5/Yz+VwqaBLgUb3GK3e6b15NggAohQjQwAA2zpSd0Qbyjao5HCJth7aqpJDJTrmO3bafomuROWk56h3em/1TOupge0Hqm18WwsSAwDOpzndgDIEAMBxpmmqoq5C9f56NfgbFOuMVZwzTqnxqYz+AECUYJocAAAXwTAMpSWkWR0DANBCWE0OAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC01uwytXbtWI0eOVHZ2tgzD0NKlS8+5/+uvv67hw4crIyNDbrdbgwYN0sqVK0/Z56GHHpJhGKe8evTo0dxoAAAAAHDBml2Gampq1KdPH82bN++C9l+7dq2GDx+ut99+W5s2bVJ+fr5Gjhypjz/++JT9cnJyVFpa2vT64IMPmhsNAAAAAC6Yq7kHFBQUqKCg4IL3nz179invH3vsMb355pv6xz/+oX79+p0M4nKpffv2F3TO+vp61dfXN733er0XnAcAAAAAJAueGQoEAqqqqlJqauop27dv367s7Gxdfvnl+tnPfqbdu3ef9RyzZs2Sx+NpenXs2DHcsQEAAAC0Mi1ehp588klVV1fr9ttvb9qWl5enhQsXasWKFXr22We1a9cuffe731VVVdUZzzF9+nRVVlY2vfbs2dNS8QEAAAC0Es2eJncpFi1apIcfflhvvvmmMjMzm7Z/c9pdbm6u8vLy1LlzZ7366qsaP378aeeJi4tTXFxci2QGAAAA0Dq1WBlavHixJkyYoNdee03Dhg07574pKSnq1q2bduzY0ULpAAAAANhNi0yTe/nllzVu3Di9/PLLuvnmm8+7f3V1tb788ktlZWW1QDoAAAAAdtTskaHq6upTRmx27dql4uJipaamqlOnTpo+fbr27dunl156SVJwatyYMWM0Z84c5eXlqaysTJKUkJAgj8cjSfrlL3+pkSNHqnPnztq/f79mzpwpp9OpO+64IxR/RgAAAAA4TbNHhjZu3Kh+/fo1LYtdWFiofv366cEHH5QklZaWnrIS3HPPPSefz6dJkyYpKyur6TV16tSmffbu3as77rhD3bt31+233660tDStW7dOGRkZl/rnAwAAAIAzMkzTNK0Ocam8Xq88Ho8qKyvldrutjgMAAADAIs3pBi2+tDYAAAAARALKEAAAAABbogwBAAAAsCXKEAAAAABbogwBAAAAsCXKEAAAAABbogwBAAAAsCXKEAAAAABbogwBAAAAsCXKEAAAAABbclkdAADQAkxTqjkkNR6T/I2SM0aKSZSS0iXDsDodAACWoAwBQGtUc1ja9b5UWizt2yTtL5Yaqk/fL7aNlN1Xuqy/lNVX6nq9lJTW8nkREUzTlL+iQoHaOpmNDTJiYuVIiJczNVUGpRlAK0QZAoDWwjSlvR9JG56XSl6XAj7J4Qr+ejYN1dJXH0i7153cv9coacBEqcO1jBq1cr4jR3Rs3TrVlZSo9tMtqivZqkDNsdP2cyQlKj6nlxJyeys+J0eJ3/mOXG3bWpAYAELLME3TtDrEpfJ6vfJ4PKqsrJTb7bY6DgC0vM/fklY/Ih3cJjmcUsB/8ec6UaAyc6ShD0g9RoQuJyxnmqZqi4t1ZNHL8i5fLvl8kssV/PV8Tuzncsk9YoRS77xD8X36MGoEIKI0pxtQhgAgmh2rkN7+lbT1b5LhkMxA6M594ny9fiKNeEJKTA3duWGJqqIilc+eo/rt2yWnU/JfQmk+fnxct27KmDZVyUOHhi4oAFwCyhAA2MFny6S/T5HqKiXzEr6pPR/DKcV7pB8+I139g/BdB2HjO3JEBx55VN633gpOfQzll/7j53PffLPaPfAbps8BsFxzugFLawNAtDFNae2T0is/k2qPhrcIScHz1x4NXu9/fx/ab6QRdlWrVmlnwQh5V6wIbgj1/Tt+Pu/y5dpZMEJVq1aF9vwAEEaUIQCIJqYpFT0srf7d8Q0hnBZ3TsevU/Tb4ItCFPFM09Sh+Qu0d/IU+SsrL21K3IUIBOSvrNTeyVN0aMFzagUTTwDYAGUIAKLJ//5e+uCpkJzqi0N+PbO+QWOX1qr3s9Vy/dYr42GvHllbf9Zj9lQGtGD247rrlkHq37+/4uLiZBiGJkyYEJJMCA3TNFX+h6dUPnv2iQ0tdWFJUvlTT6n8qdkUIgARj6W1ASBafLbsGyNCl+7ZjY2as76hWccs+axR966sl7Q+ZDkQeocXPKfDzz8fknPtaqjXP2tqtK2uTiV19drZUC+/pHvS0/XvaelnPGZtdbXe/e3D2jFntg40NKiiokKxsbG64oorNGLECBUWFio9/czHAkBLYmQIAKLBsYrgYgkK3RLGvTId+uWgWP3PjxP02aQk/Z/cmPMe0zXFoSkDY/XiLQn6ZGq2fvMfhSHLg9CoWrXq5IhQCCw+elSPHTyopV6vth8vQuezzOvVkspKHSkt1dXZ2Ro1apQGDx6sr7/+WrNmzVJOTo5KSkpClhEALhYjQwAQDd7+VXDVOIVu2tGEa2JPee+4gJ51S48Y3dLjeGkyavV6yXshy4NL5ztyRKUP/GdIV4y7KjZO49qm6ur4OPWMi9dzFYf1d6/3nMeMS03VrzIzlRETI2dMrC6fN0+utm1VXV2tn//853rttdc0YcIEffjhhyHJCAAXi5EhAIh0n78V/ByhcK8a11ymXzrIT/cjyYFHHpW/qiqkzwj9JCVFv8rM1A/cHl0eF3dB3zhcHR+vDJdLMk35vV4dePRRSVKbNm30+9//XpK0bt06ec9TqgAg3ChDABDJTFNa/UjwA1Aj0vHhJB6Ut1xVUVHwc4TCvWpccwUC8i57S1WrV0uSXK7gpBSHw6GYmPNPzQSAcIrUr64AAEna+5F0cJtkttQS2s11vAQdO2RtDJszTVPls+cEp8dFIsNQ+ew5qqur04wZMyRJw4cPV0JCgsXBANgdzwwBQCTb8LzkcEqBCPtp/7eVf2F1AlurLS5W/fbtVsc4zba6Ov33kQqZkir27NZnWVk6dPSoBgwYoD/96U9WxwMAyhAARKyaw1LJ65FfhCTpyFfBvElpViexpSOLXpaczoibIre/sVFLv/Vc0LBhw7RgwQJddtllFqUCgJOYJgcAkWrX+1LAZ3WKC2MGpK/WWp3ClnxHjsi7fHnEFSFJGpacrG3de2hLt+569/Ir9LvsbH1WUqJevXrpb3/7m9XxAIAyBAARq7RYckTJAL7hkPYXW53Clo6tWyf5Irs0Ow1Dl8XEaFSyW8tnzZJhGBo3bpzKysqsjgbA5ihDABCp9m6KrpGhfZusTmFLdSUlkitKSrPLpXaHDik/P1/V1dV69913rU4EwOYoQwAQiUwzODIUTfYXs8S2BWo//TTiR4aa+Hyq/fRTJSUlSZIOHjxocSAAdhclP0oCAJupOSQ1VFudonkaqoK522RYncQ2TNMMjgxFEe+nW/TBwQOSpG7dulmcBoDdUYYAIBI1Hgv7JTaX+vV/36prev/lkeBnGS3Y1KBl/zo50vDGTxOUlRycSFBaFdCPXqlt+r293uAxf//Cp++8UCO9daPkjNUf//hHXXPNNWH/M9idv6JCgZrw/11pjsM+n96tqtIP3G61cTpP+b0DjY16fP8+7a+qUpcuXTR8+HCLUgJAEGUIACKRvzHsl/DWm1q/7/QVyPZ6Te31ntxe/41d6v064zHlx0yVH/NL+z4OnvtbyykjPAK1deff6RJtq6vTbw+cXOhgT2Pw7+arR49qTfXJ0ctnLuugDJdLdWZAvz14QLPKD6pHXJwui4mRKamssVHb6uvVaJrKbtdOS5cuVXx8fNjzA8C5UIYAIBI5Y8J+iSFdXDJnupt1TJcUx7mPmbZFSul0iclwoczGhrBfozrg16d1p5euMp9PZd94VqnBDI4Spjpd+o+MTG2sPabt9fXa2dCg+kBAyU6n+sTHa0ibNvqPd95RRm5u2LMDwPlQhgAgEsUkWp3g4rgSrE5gK0ZMbNivMTAxSdu697jg/RMcDo1NTdVYpZ51n5Q0PpwXQGRgNTkAiERJ6VJsG6tTNE9scjA3WowjITqnmRlMjwMQIShDABCJDEPK6mt1iubJ7hvMjRbjTE2VIym6RhEdSUlypp591AgAWhJlCAAiVYf+kiNKZjM7XNJl/a1OYTuGYSg+J8fqGM0S3ytHBqUZQISgDAFApMrqKwWi5MM0A77gyBBaXEJuruSKktLscgXzAkCEoAwBQKTqen10jQx1+Z7VKWwpPidH8kVJafb5om4kC0DrRhkCgEiVlCbl/FhyOM+/r5UcLqnXqGBetLjE73wnqkaGEvPyrE4BAE0oQwAQyQZOlAKnf8hpRAn4pAETrU5hW662beUuKJCcEV6anU65R4yQq21bq5MAQBPKEABEsg4DpMwcyYjQf64Nh9Sul9ThWquT2FrbO++Q/BFemv1+pd55h9UpAOAUEfrVFQAgKbhU9dAHJDNgdZIzMwNS/m9YUttiCX37Kq5bt8i9D4ahuO7dFd+nj9VJAOAUlCEAiHQ9Rki9fiIZETYNynBKvW8L5oOlDMNQxrSpkmlaHeXMTFMZU+9hSW0AEYcyBADRYMQTUrxHkfPPtiOYp+C/rA6C45KHDpX75psj79khh0PuH9ys5KFDrU4CAKeJlK+qAIBzSUyVfviMpEiZLheQbpkbzIWI0e6B38iZnBw50+UMQ063W+1+8xurkwDAGVGGACBaXP0Daeh/Wp0i6IYHpR43W50C3+Jq21ZZj/wucqbLmaayHn2EFeQARCzKEABEk+/eJ/1bobUZ/q3Q+gw4q+Rhw5QxbZrVMSRJGffeq+QbbrA6BgCcFWUIAKKJYQRHZW548PiGlvpn/Ph1bpgpDZsZOdOwcEZpv7hLaXfdZW2Gu+5S2l18/hSAyEYZAoBoYxjBEaLRi6SElPCvMmc4g9cZvUj6LiNC0cAwDGXcO00Z9957YkNLXViSlFFYqMzCe1k9DkDEowwBQLTqcbM0ZZOU86Pg+1B/MOuJ8/X6cfA6PCMUVQzDUPov7lKHeXPl9HgkR5i/5Dsccno86jBvrtIZEQIQJShDABDNElOln/wpOGqTcXVwm8N1aec8cXzG1dLol6VRL7BqXBRLvuEGXb78bbkLCoIbQj1ac/x87hEFumLFcp4RAhBVDNOMlCVnLp7X65XH41FlZaXcbrfVcQDAGqYp7d0offS8tHWJFPAFi03Ad/5jT+zniJF6jZIGTpQu68+zQa1MVVGRyuc8rfp//Sv4eUR+/8Wf7Pjxcd26KWPaVD5HCEDEaE43oAwBQGtUc1j6aq20/2Np3+bgrw3Vp+8X20bK7hcsPtl9pS7fk5LSWj4vWoxpmqr75BNVLHpZ3rfflnw+yeUK/no+J/ZzueS+eYRS77xT8bm5PBsEIKJQhgAApzJNqeaQ5KuVfA2SK1ZyJUhJ6Yz+2JjvyBEdW79edVu3qnbLFtVtLVGgpua0/RxJSYrvlaOE3FzF5+QoMS+Pzw4CELEoQwAAoNlM05S/okJmXZ0CDQ1yxMbKiI+XMzWV0R8AUaM53eASn7IFAACthWEYcqUxTRKAfbCaHAAAAABbogwBAAAAsCXKEAAAAABbogwBAAAAsCXKEAAAAABbogwBAAAAsCXKEAAAAABbogwBAAAAsCXKEAAAAABbclkdIBRM05Qkeb1ei5MAAAAAsNKJTnCiI5xLqyhDVVVVkqSOHTtanAQAAABAJKiqqpLH4znnPoZ5IZUpwgUCAe3fv1/JyckyDMPqOK2K1+tVx44dtWfPHrndbqvjoIVw3+2Le29P3Hd74r7bV2u/96ZpqqqqStnZ2XI4zv1UUKsYGXI4HOrQoYPVMVo1t9vdKv9nwblx3+2Le29P3Hd74r7bV2u+9+cbETqBBRQAAAAA2BJlCAAAAIAtOR966KGHrA6ByOZ0OjVkyBC5XK1iViUuEPfdvrj39sR9tyfuu31x74NaxQIKAAAAANBcTJMDAAAAYEuUIQAAAAC2RBkCAAAAYEuUIQAAAAC2RBkCAAAAYEuUIVyQr776SuPHj1fXrl2VkJCgK664QjNnzlRDQ4PV0RBmjz76qAYPHqzExESlpKRYHQdhNG/ePHXp0kXx8fHKy8vThg0brI6EMFu7dq1Gjhyp7OxsGYahpUuXWh0JLWDWrFkaMGCAkpOTlZmZqVtvvVVffPGF1bHQAp599lnl5ubK7XbL7XZr0KBBWr58udWxLEUZwgX5/PPPFQgEtGDBApWUlOipp57S/PnzNWPGDKujIcwaGhp022236e6777Y6CsLolVdeUWFhoWbOnKnNmzerT58+uvHGG3Xw4EGroyGMampq1KdPH82bN8/qKGhB77//viZNmqR169bp3XffVWNjo77//e+rpqbG6mgIsw4dOujxxx/Xpk2btHHjRg0dOlS33HKLSkpKrI5mGT5nCBftiSee0LPPPqudO3daHQUtYOHChZo2bZqOHj1qdRSEQV5engYMGKC5c+dKkgKBgDp27KgpU6bo/vvvtzgdWoJhGHrjjTd06623Wh0FLay8vFyZmZl6//339b3vfc/qOGhhqampeuKJJzR+/Hiro1iCkSFctMrKSqWmplodA8Alamho0KZNmzRs2LCmbQ6HQ8OGDdOHH35oYTIALaGyslKS+JpuM36/X4sXL1ZNTY0GDRpkdRzLuKwOgOi0Y8cOPfPMM3ryySetjgLgEh06dEh+v1/t2rU7ZXu7du30+eefW5QKQEsIBAKaNm2arrvuOvXq1cvqOGgBW7Zs0aBBg1RXV6c2bdrojTfeUM+ePa2OZRlGhmzu/vvvl2EY53x9+5uhffv26aabbtJtt92miRMnWpQcl+Ji7jsAoPWZNGmStm7dqsWLF1sdBS2ke/fuKi4u1vr163X33XdrzJgx2rZtm9WxLMPIkM3dd999Gjt27Dn3ufzyy5v+e//+/crPz9fgwYP13HPPhTkdwqW59x2tW3p6upxOpw4cOHDK9gMHDqh9+/YWpQIQbpMnT9ayZcu0du1adejQweo4aCGxsbG68sorJUn9+/fXRx99pDlz5mjBggUWJ7MGZcjmMjIylJGRcUH77tu3T/n5+erfv79efPFFORwMLEar5tx3tH6xsbHq37+/ioqKmh6eDwQCKioq0uTJky1OByDUTNPUlClT9MYbb2jNmjXq2rWr1ZFgoUAgoPr6eqtjWIYyhAuyb98+DRkyRJ07d9aTTz6p8vLypt/jJ8et2+7du1VRUaHdu3fL7/eruLhYknTllVeqTZs2FqdDqBQWFmrMmDG69tprNXDgQM2ePVs1NTUaN26c1dEQRtXV1dqxY0fT+127dqm4uFipqanq1KmThckQTpMmTdKiRYv05ptvKjk5WWVlZZIkj8ejhIQEi9MhnKZPn66CggJ16tRJVVVVWrRokdasWaOVK1daHc0yLK2NC7Jw4cKzflPEX6HWbezYsfrLX/5y2vb33ntPQ4YMaflACJu5c+fqiSeeUFlZmfr27aunn35aeXl5VsdCGK1Zs0b5+fmnbR8zZowWLlzY8oHQIgzDOOP2F1988bxTqBHdxo8fr6KiIpWWlsrj8Sg3N1e//vWvNXz4cKujWYYyBAAAAMCWeOgDAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC1RhgAAAADYEmUIAAAAgC39fxcXdje7a5QIAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbYAAAHDCAYAAABI5j8CAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXhU1f3H8fcsyWSyTfZ9gxBWASFsguwKCoJWrSsIatUi0NLWWrW/qlgVra1iAUWsohUURVAUAYsKCi4gYd/XBMi+75lMZs7vj0kmmcywJwTG7+t58nTuuefeeyZ9zIdz77nnaJRSCiGEEMJDaNu6AUIIIURLkmATQgjhUSTYhBBCeBQJNiGEEB5Fgk0IIYRHkWATQgjhUSTYhBBCeBQJNiGEEB5Fgk0IIYRHkWAT4hdk8uTJ+Pv7X5RrJSUlMXny5DPWe+edd9BoNKSnp7d6m8QvgwSbaHOvvfYaGo2G/v37t3VT2kR6ejoajeaUPy+88EJbN1GIy4q+rRsgxOLFi0lKSmLz5s0cPnyYDh06tHWT2sSdd97JmDFjXMp79erVBq0R4vIlwSba1LFjx/jhhx9Yvnw5Dz30EIsXL+app566aNe32WzU1tbi4+Nz0a55Kr1792bChAlt3YzLXmVlJX5+fm3dDNGG5FakaFOLFy8mODiYsWPHcuutt7J48WIALBYLISEh3HvvvS7HlJWV4ePjwyOPPOIoM5vNPPXUU3To0AGDwUB8fDyPPvooZrPZ6ViNRsO0adNYvHgx3bp1w2AwsGbNGgD++c9/MnDgQEJDQzEajaSmpvLxxx+7XL+6uprf/e53hIWFERAQwPjx48nMzESj0fD000871c3MzOS+++4jMjISg8FAt27dePvtt8/795WUlMQNN9zA+vXr6dOnD0ajke7du7N+/XoAli9fTvfu3fHx8SE1NZVt27a5Pc/Ro0cZPXo0fn5+xMTE8Mwzz9B8oQ+bzcbs2bPp1q0bPj4+REZG8tBDD1FcXOxUTynFs88+S1xcHL6+vgwfPpw9e/a4ve6ePXsYMWIERqORuLg4nn32WWw2m9u6q1evZvDgwfj5+REQEMDYsWNdztvwzPDIkSOMGTOGgIAA7r777rP5VQpPpoRoQ507d1b333+/Ukqp7777TgFq8+bNSiml7rvvPhUUFKTMZrPTMe+++64C1M8//6yUUspqtapRo0YpX19fNWPGDPXGG2+oadOmKb1er2688UanYwHVpUsXFR4ermbOnKnmzZuntm3bppRSKi4uTj388MNq7ty56uWXX1b9+vVTgFq5cqXTOW677TYFqIkTJ6p58+ap2267TfXs2VMB6qmnnnLUy8nJUXFxcSo+Pl4988wz6vXXX1fjx49XgHrllVcc9Y4dO6YANXPmTJWfn+/yY7FYHHUTExNVp06dVHR0tHr66afVK6+8omJjY5W/v79atGiRSkhIUC+88IJ64YUXlMlkUh06dFBWq9Vx/KRJk5SPj49KSUlREydOVHPnzlU33HCDAtTf/vY3p+/5m9/8Run1evXAAw+o+fPnq7/85S/Kz89P9e3bV9XW1jrq/d///Z8C1JgxY9TcuXPVfffdp2JiYlRYWJiaNGmSo152drYKDw9XwcHB6umnn1YvvfSSSklJUT169FCAOnbsmKPuf//7X6XRaNR1112n5syZo1588UWVlJSkgoKCnOpNmjRJGQwGlZycrCZNmqTmz5+v/vvf/yrxyybBJtrMli1bFKDWrl2rlFLKZrOpuLg49fvf/14ppdSXX36pAPX55587HTdmzBjVvn17x/Z7772ntFqt2rBhg1O9+fPnK0B9//33jjJAabVatWfPHpf2VFVVOW3X1taqK664Qo0YMcJRlpaWpgA1Y8YMp7qTJ092Cbb7779fRUdHq4KCAqe6d9xxhzKZTI7rNQTbqX5+/PFHx7GJiYkKUD/88IOjrOH3ZDQaVUZGhqP8jTfeUIBat26do2zSpEkKUNOnT3eU2Ww2NXbsWOXt7a3y8/OVUkpt2LBBAWrx4sVObV+zZo1TeV5envL29lZjx45VNpvNUe+JJ55QgFOwzZgxQwFq06ZNjrK8vDxlMpmcgq28vFwFBQWpBx54wOnaOTk5ymQyOZU3fJ/HHntMCdFAbkWKNrN48WIiIyMZPnw4YL9NePvtt7NkyRKsVisjRowgLCyMDz/80HFMcXExa9eu5fbbb3eULV26lC5dutC5c2cKCgocPyNGjABg3bp1TtcdOnQoXbt2dWmP0Wh0uk5paSmDBw9m69atjvKG25YPP/yw07HTp0932lZKsWzZMsaNG4dSyqldo0ePprS01Om8AA8++CBr1651+Wne1q5du3LVVVc5thtGk44YMYKEhASX8qNHj7p812nTpjk+N9yera2t5auvvgLsv1OTycS1117r1PbU1FT8/f0dv9OvvvqK2tpapk+fjkajcZxzxowZLtdctWoVAwYMoF+/fo6y8PBwl1uHa9eupaSkhDvvvNPp2jqdjv79+7v8/wkwZcoUlzLxyyWDR0SbsFqtLFmyhOHDh3Ps2DFHef/+/fnXv/7F119/zahRo7jlllt4//33MZvNGAwGli9fjsVicQq2Q4cOsW/fPsLDw91eKy8vz2m7Xbt2buutXLmSZ599lu3btzs9m2v6BzsjIwOtVutyjuYjOfPz8ykpKWHBggUsWLDgrNqVkpLCNddc47ZuU03DC8BkMgEQHx/vtrz5MzGtVkv79u2dyjp27AjgeJfs0KFDlJaWEhERcdq2Z2RkONreVHh4OMHBwU5lGRkZbl/p6NSpk9P2oUOHABz/MGkuMDDQaVuv1xMXF+e2rvhlkmATbeKbb74hOzubJUuWsGTJEpf9ixcvZtSoUdxxxx288cYbrF69mptuuomPPvqIzp0707NnT0ddm81G9+7defnll91eq/kf/KY9swYbNmxg/PjxDBkyhNdee43o6Gi8vLxYuHAh77///jl/v4YBERMmTGDSpElu6/To0eOczwug0+nOqVw1GxRyNmw2GxEREY7BPM2d6h8RLaHhd/fee+8RFRXlsl+vd/6zZTAY0Grl5pNoJMEm2sTixYuJiIhg3rx5LvuWL1/OJ598wvz58xkyZAjR0dF8+OGHXH311XzzzTf89a9/daqfnJzMjh07GDlypFPv6lwsW7YMHx8fvvzySwwGg6N84cKFTvUSExOx2WwcO3bMqZdy+PBhp3rh4eEEBARgtVrPqhd2MdlsNo4ePeropQEcPHgQsI+6BPvv9KuvvmLQoEFu/yHQIDExEbD3spr2AvPz8116iomJiY7eWFMHDhxw2k5OTgYgIiLikvvdicuD/DNHXHTV1dUsX76cG264gVtvvdXlZ9q0aZSXl/PZZ5+h1Wq59dZb+fzzz3nvvfeoq6tzug0JcNttt5GZmcmbb77p9lqVlZVnbJNOp0Oj0WC1Wh1l6enpfPrpp071Ro8eDdhnS2lqzpw5Lue75ZZbWLZsGbt373a5Xn5+/hnb1Jrmzp3r+KyUYu7cuXh5eTFy5EjA/ju1Wq38/e9/dzm2rq6OkpISAK655hq8vLyYM2eOU89w9uzZLseNGTOGn376ic2bNzvK8vPzXXqFo0ePJjAwkOeffx6LxeJynrb+3YlLn/TYxEX32WefUV5ezvjx493uHzBgAOHh4SxevJjbb7+d22+/nTlz5vDUU0/RvXt3unTp4lR/4sSJfPTRR/z2t79l3bp1DBo0CKvVyv79+/noo4/48ssv6dOnz2nbNHbsWF5++WWuu+467rrrLvLy8pg3bx4dOnRg586djnqpqanccsstzJ49m8LCQgYMGMC3337r6PE07TG+8MILrFu3jv79+/PAAw/QtWtXioqK2Lp1K1999RVFRUVObdi6dSuLFi1yaVtycrLTYJEL5ePjw5o1a5g0aRL9+/dn9erVfPHFFzzxxBOOW4xDhw7loYceYtasWWzfvp1Ro0bh5eXFoUOHWLp0Ka+++iq33nor4eHhPPLII8yaNYsbbriBMWPGsG3bNlavXk1YWJjTdR999FHee+89rrvuOn7/+9/j5+fHggULSExMdPodBwYG8vrrrzNx4kR69+7NHXfcQXh4OMePH+eLL75g0KBBTsEshIs2HZMpfpHGjRunfHx8VGVl5SnrTJ48WXl5eamCggJls9lUfHy8AtSzzz7rtn5tba168cUXVbdu3ZTBYFDBwcEqNTVVzZw5U5WWljrqAWrq1Kluz/HWW2+plJQUZTAYVOfOndXChQvVU089pZr/Z1JZWammTp2qQkJClL+/v7rpppvUgQMHFKBeeOEFp7q5ublq6tSpKj4+Xnl5eamoqCg1cuRItWDBAkedMw33bzpkPjExUY0dO9al7e6+V8N5X3rpJUfZpEmTlJ+fnzpy5Ijj3b/IyEj11FNPOb3v1mDBggUqNTVVGY1GFRAQoLp3764effRRlZWV5ahjtVrVzJkzVXR0tDIajWrYsGFq9+7dKjEx0antSim1c+dONXToUOXj46NiY2PV3//+d/XWW2+5vMemlFLr1q1To0ePViaTSfn4+Kjk5GQ1efJktWXLFpfvI0RTGqXO48myEMLJ9u3b6dWrF4sWLZKZL4RoY/KMTYhzVF1d7VI2e/ZstFotQ4YMaYMWCSGakmdsQpyjf/zjH6SlpTF8+HD0ej2rV69m9erVPPjggy6vFgghLj65FSnEOVq7di0zZ85k7969VFRUkJCQwMSJE/nrX//q8o6VEOLik2ATQgjhUeQZmxBCCI8iwSaEEMKjXNIPBGw2G1lZWQQEBJz3VElCCCEuf0opysvLiYmJOePcoJd0sGVlZckoMyGEEA4nTpw442oOl3SwBQQEAPYv0nypCiGEEL8cZWVlxMfHO3LhdC7pYGu4/RgYGCjBJoQQ4qweS13SwSaEEOLyopQiv6yGQ9mlHMkpo7ymFqXA6K0nKdyflJgg4kL90LbiuAkJNiGEEBesylzH17syWbklg/T88tPWDfE3MKZ3AmN6JxAa4NPibbmkX9AuKyvDZDJRWloqtyKFEOIistoUJwsrOJhVSkF5DXVWG956LdHBfnSMNhEZZESj0aCU4qudmcz/3x4qaurO6Ro6rYbbBiZz1+AOeOvdrwDf4FzyQHpsQgghHA5ll7IyLYNv92RRXWs9Zb0gP2+Gdo0hPb+cHemFTvsiQnyJiQggPMQXf19vNEC1uY6C4ipyCys5kVOGUvbw/GDjYX48kMvjN/ciKeLMA0POhvTYhBBCkFNSxb+/2EXa0YLzPkdyfDBXdo4kLNj3tPUqqmrZfSifXQdzsdUnkL+PF8/f3Y9OMUFuj5EemxBCiLO2ettx3vjfXqcemreXlrjIQMKCfQnw96agqIqCkmqKS2uoNlto3iXSaTXEhPufMdQA/H29GdAzlpTEYL7ZlEFRaTUVNRb++v5mXp48kIQw/wv6PtJjE0KIX7D3vj3Iou8OObb9jF707hpFSkIIdVYbOw7kcuBYITWnuS3ZlCnAQL/uMbSLDTqrofm1FitrNh4hO78CgI7RJmbfNxBds9lFziUPJNiEEOIXpqTSzNqdJ/nf9hMcL6h0lHduF8qAnnEYvHUcPVnMhrQT1JhdB4QE+hsweOtQNkVZZS21FtfQS4wxMTg1AT+j1xnbU2ux8snXBygpqwFg8vBO3Hl1B6c6citSCCGEi+ziKt779iDf7c3GYrU57Rt4ZRzdO0Zgsyk2pB1n75HGZ21arYb2cUF0ahdKRIgf3l6NIxiVsofbyZwy9hzOp7g+nDKySskp2Mt1VycTdYZbi95eOob3TeTTbw6gFHyw8TDj+iTi73PmUHRHgk0IIS4jtXVWdmUUcSi7lGN55VSZLWg1GsICfUiJNtEtPoT4ZkFiU4rPt2Tw1tf7MbvpXfXuGkX3jhEopfj25wwOZhQ59iXFmri696l7XhqNBpO/AVOHcLomh3Ess4SNaSeoNtdhrrXyxbeHuaqzH5+/Pov9aZux1NZy5eDh/Ob/niUoLNxxnohQP7q0D2PvkQLMFitf7TzJTf3andfvSIJNCCEuA0UVNXy6KZ01209QWlV72rpXJIRwY98kBneJwmK18cLybXx/INexX6vBMRoxPNiX1K7RAGzdm+MINa0GhvRJpGNSyFmvrqLRaGgfF0xMeABf/XSMzNxy6qw21m3NRWvw5+l3lgLwwb//wawpk5j14Uqnmfq7dQh39BRXbT0uwSaEEJ5IKcW63VnMW7OHihrLWR2z+3gRu48XER5owGpVFFU6B6GtyciKwX0S0Go1FBRXsXVvNgAaDVxzVXvaxbkfen8mPgY911+dzJqNRziZW47e4EvnGx4moWMnNBoN0194lUn9urDrp430HDjEcVyIyUh4iC/5RVVk5FdQXm0h4Cye0TUnC40KIcQlympT/HvVbl78dLsj1LQa+/tiw/sn8utRnRk5IIm4SH/0OtdeVX6Z2SXUmooK8yM82NdxC7Ih8Hp1iTrvUGug02m55qp2+NYHU1Z+FYeO23uD3gYDGq2W/WmbXY6LCPFzfD6cU3pe15YemxBCXEJq66zklFRjqbOyZONhvtuX49iXHB/MVVfG4Wf04nh2KWu+P0r5aYLrTDolhQKQmVdOQUk1ACEmH3p3iXJbf/mCOSx+eRZj7/kN9z3xDOUlxXw455/s+P5bCrKzCAwJod/I67jj94/iFxCIwVvPkNQE1mw8AsCOfTnEh/mw+OXnsVmtFOfnuVwjLMjo+Hw8v5xe7cLO+XtJsAkhRBvLLKzki60ZbDtWSEZ+OVab61tYiTEmBvSMxcdbx/rN6RxIL3JzpnMTGWbvHe093DgCsnfXaHQ615t5h3dtZ+2Hi0js1NVRVpyXS1FeLvc8+iTxHTqSn3WSN556jKK8XP787zcd7Y4I8SWvqIqiMjPTb76R7j270L5rdzRuVsI2GBpjqcbNQJezIcEmhBBtJK+0mtfW7OHHg7lnrJuRVcrx7FJ8vHVUm13/4EeF+ZMQbZ8pRKvVkJ5ZQl5RJUWlNdTV2dycEY6dLME/xZuMrBIAfH30JMW63oKsrqxk9iPT+O3fX2LZ6686yhM6dubROf9pbENCEnf94S+8+ufpWOvq0OntEdO1Qzh5mzMAmPjMGwztn8z9V/ckMj7B5VqqSahrtee3tI0EmxBCtIFvdmUyZ/Vuqpq8AK3RQHCgDyEmI156HbUWK4UlVZSUmwFQCpdQax8XRGq3aEJMRvKKKknbk83x7LKzasPPu7PZfSjf8WwtLioQnZsw+c8zT5A6bCQ9Bw5xCjZ3qsrL8PX3d4QaQEK0yfG5pLKOXT9tpLSwgL7DR7kcX1ZpdnwO8jWc1fdoToJNCCEusk82HWP+//Y6tn19vOjeMYJO7UIx1t+Ks9TZOHKiGI3GPoik+bM0jQaiw/1JTgjG39ebTTsz2XEg12UOR6NBT0iQES+9FqtVUVpeQ1mTc1U3CVaTv2uQbPziU47u3cWLH6864/cqKy5k6euzuea2CS5t8Pf1pqKqltyCcpa//FtumPQgse07uJwjv6jK8blD1PnNOCXBJoQQF4HFamNHeiFfbj/Bd/XD6gE6JoYwsFccBm/7n+Macx3b9uWw/1ih26mqGigFWXkVZOVVoNVosDVJNH9fb7omh9GhPvSav4dWY64jI6uUPUfynYJkx4E84qNNhNdPZFyQncnbzz/Jk28vwdtw+gVBqyrKef6he4hP7sjt0/7kst8UYKCiqhaFll899HtunPwblzpWq42s+jkjDXotCeHnNxmyBJsQQrSi0qpaPtl0jNXbjlPSrNfVu2sUfbpFO4InPbOEDWnHqWq2YKdWqyHE5IPRYB86X1FVS0l5jaN31jTUuiaHMahX/GmfT/kY9HRqF0qndqEcO2m/ZrW5jlqLlZXrDzFuWAphwb4c2bOT0sIC/nzzaMexNquVvVt+YvXihSzZmY5Op6O6ooJnf3MXPn5+PDr3LfReru+eaZuE63V33ev2pe9jmSWOuSn7d4x0mQj5bEmwCSFEK9mwN5s5q3e7nSkkOT7YEWpKqfpbiY3D33U6DcnxwXRpH0Z4sK/LSEVLnZXs/Ar2HSkgI7vUEXL7jhYQGmSka3I4Z6NdXBBR4f787/sj5BRUUmuxsnrjEW4b3YUeAwbzymffONWf+8QfiG3fgV/9Zio6nY6qinL+fv9deHl78/hr75yyZ2epa+x9uht1abUptu1rHEQzrk/iWbXfHQk2IYRoYUopFny1j+U/HXO738egZ1DveAAKS6r4aUcmJ3PLHfsTogMZkpqAn6/3Ka/hpdeREG0iIdpEUWk16zdnkF9chVKwIe0EKPtoxLNhNOgZM6QDX3x7mNzCSqqqLfyw7STD+yeR0LGzc9uNvgQEBZPQsTNVFeU8c/+dmKur+f1Lc6iqqKCqwn4rMTAkFJ1O5/h9FNa/J+fv64WX3jXYtu3LoajUXqdDVCDdE0LOqu3uSLAJIUQL+8/X+51CzUuvxdJkyH2npBCOHC9m75HG2fAbDOoVT7cOYWc9PyPYp6K6aWQnNu3MZOdBe69vw9YTmAJ9iI0IOKtzeOl1XHNVO5Z+uZdai42DGUWkJIUQF3nqARxH9+zi0I6tAEwdNdBp3+tfbSIizh7eJWU1ju/vbiHS49mlbKt/7qjVaJhxQ49z+v7NyXpsQghxnmxKkVVUSW5pNcUVZo7klHEoq4RdJ4pPe5zBW4fZzcKdQ/sk0Ln9uc+00UApxeZdWWzfb7+lp7XWsHbWBK67YwL3PfEMAPOffJSdP26gOC8XH19fOvXqw4RH/kpc+xTAfivzuy3HAfvL1dddnXze7WmwaWemo00DesTSs3OkY9+xzBK+/vGY46X0u67uwKThnVzOIeuxCSFEK7HaFJsP5bFq23F2Hy9yeg/tbLkLtc7tQi8o1MA+u36/7jHkFlaSnV+BTedDr5unA41B275bDwaPu5nw6FgqSov5cO6/+Pv9d/LaV5vQ6XR0SgolbU82ldUWMrJKKa80E+B3fu+Tgf21hf3HCgH7IJiUJPstRnOtlZ92nHTsAxjcJYoJQzue97UayCTIQghxlrYdK+D+19bz9Edb2Hwo76xCzcdb5768yWKdfkYvrroyzm295QvmcEvnGN5+/kmXfUopnn3gbm7pHMOmr1YD9nAb2jcRXf2kyEEpA1CaxmuNun0C3foOICIunvbdenDnjL9QkJ1FfuYJwB4+XZoEbEbW+U1E3ODn3VmOkY7t44Iw11r5ccdJPli12ynUhl8Rw2O/6uX2BfFzJT02IYQ4A6vNxutf7uXzLRlO5b4+eiJC/AgK9EGn1VBTa6WguIr84ips9bfWatz0zsB5HsQeHSOcVqVu4G5+xqZWvvum/U3tZkz+BlISQth/rBCtlwFbQLz7NlRVsW75h0TEJRAaFeMoj48KZMse+zOv/OIqt8eejay8cnYdbBzpmZFdyuHjzrdpjd46Hry2K9f3ir+g52pNSbAJIcRpWG02nlu2je/3N86yHxXmT68ukcRHBbr9Y3wiu5RNu7IcIwFPR6fT0LF+lv2mTjU/Y4Nj+3bz2cI3+MfHq/nN4Ctd9nfrEO7oESn/aKd9a95/h/f++Sw1VVXEtEvmqbeX4OXdOAIzJMjoWIy04DyDLb+oki+/P+pUZrE0DqDRaTUM6xbDpGEdiQxyHVByISTYhBDiNBas3ecINa1Ww1U94045atFisfLTzkzHKtBnIyLEDx+D65/i083PaK6uYvYjU3ngyecIDo9we97QICNGg55qcx3KEIRSytHmweNupsfAIRTn5/HZ26/zrxkP8dwHKxzvoOl1WnyN9imwmr8sfiZKKQ6mF/H9thNOI0Gb8tJp+c/DQ4lq4UBrIM/YhBDiFLYfK+DTzemAPdSuuzqZK1LC3YZaYUk1S/+3zynUmleLCvMjIdp5RJ+74e8N8zPe/cfH3bZr4ayn6dSrD/1GXnfKtms0msZz6wzcMygVq9V++9MvIJCYpPZ06zuAR159k8xjh9m0dnWz4+3/W2OuY/v+HMdzslNRSpFbWMnqDUdY/3OGU6gN6hXntM7azf3btVqogfTYhBDCLatN8eqqXY7tq3rGEt9sUl6r1cpHc//Fz99vov3Y3+FltL8zptdpaRdr4lCT50m9u0bRpX0YH6za43SOQD/nl7DPND/jz998ya5N3/PP5f8743cIbDKp8aOvved4YdqZQimFpbZxdhSllNPIzU07s9iyJ5ukmCAiQnwJC/bF4K3DpqCswkxBcRUncsrc3noNCzJSWFLtWMg0LtSPu4eknLHtF0KCTQgh3Eg7kk9W/QTBkaF+dHMzi8enb85j3eef0f+h2dQp+w2w8GBfBvdJ4PN1Bx31+nSLJrVbNHsO5zsGlTTQNuvWnWl+xtF33EPu8XTu6ec8I8g/f/cAXVL788x7yxxlTU8dEZ9EzokMflj1GT0HDSUwJITCnGw+eXMu3gYjqUNHOuqWV9a6TMBstSqOnCjmyBne0XP6bloNfkZvx7M+nVbDn8b3xOBmoExLkmATQgg3Vm097vh8ZedIt7cfD2zbQq87/uIItchQP8YM6cBPOzIdt+LiowLp3TUKcD/CsPmoyTPNzxgQHMKo2yc67f/D+BFMfuxp+oxwXt+stsm59ToNGm8De9M2sfK/b1JZVoopNIyufQbw/AcrMIU2DvHPLax0Oo9Wq0Gn1ZzymVkDXx8vqmosjm0vvZaMbPvrAloNPHrjlXSNCz7tOVpCqwbbrFmzWL58Ofv378doNDJw4EBefPFFOnVyfatcCCEuFUopdh0vAuzzOjZdKLOpxP5jqPCPBexD/6+7OhmbTXEw3d5D8dJrGdInAY1Gw5oP3uVAaSg+ITFO5ygscQ47o7//aednBNwOGAmLiSUyznlF6oL6c2s0YPL3QR/ky/8tWHTG738gvdBpe3BqAikJwRSV1VBQVEVxWQ0WqxWtRoOPQY+XXsvBjCKKS52nB2u4nemt1/LojVcyuKvz6MzW0qrB9u233zJ16lT69u1LXV0dTzzxBKNGjWLv3r34+fm15qWFEOK85ZZWU1Hf8wgP9nW7BIxSCm1Ud6iwr/g8uE8CPgY9O/bnOqaH6twuDP/6ifQVRDUAACAASURBVIxDI6Px14dQp+wTAdeY66izKvKKqpxGLLaUWovVMQ9lcKARvZuJh90pKq0ms8mEzH5GPV56DVU1FsKCjIQH+1JXZ6OwtJr8okoOpBed9pWArnHB/Gl8D+JCz29ttfPRqsG2Zs0ap+133nmHiIgI0tLSGDJkSGteWgghzlt+aeMgiOBA98uwnMwtp6w+1GIi/EmKCQLscx826Nqh8fZe3xGj2P3JDrBY0em0RIb5k5lbTkVVLVl5FcRGnnqy4qbPzdxZtj/LpexgepFjKZvos1yw02ZTjnkiG1RW1/HVj+mAveen1WgcwX06yZGB3NgviWt6xLXIbCLn4qI+Yysttd9rDQk5/+UIhBCitTX9w32qBTsPNrld1zCwxGZTjluLgX7eBAU4h6JOpwGLff7ELu3DHD2jXYfyThts58pmU+w5ku/Y7tLe9QVwd3YcyHU8X9NoQKeFJsuooRRY3cybrwF8DXq6xAbRMTaIvh0i6BIb1OK90LN10YLNZrMxY8YMBg0axBVXXOG2jtlsxmw2O7bLysouVvOEEMLB2OSF6VO9v5VXP2JSp9OQWN9bKymvoc5q/8Pv7v00H52NaqCq2kJUmB++PnqqaurIyColPbOEpNigFmn/zoN5lNTfhowK8yP0LN4Z23s4n827Gnt+NwxNITzYl8y8co5nl5GRVeL0sra/Qc9tg5JJbR9O8ilmYGkrFy3Ypk6dyu7du9m4ceMp68yaNYuZM2derCYJIYRbCWH+aACF+ymlzLV1jtuQoUG+jltt1U1CsOk7ZA2iI4MpPmrv6RWWVNOveyzrf7bPP7kh7TjhIX74Gb0uqO2FJVVs2d0YUP17xJ62vrvZUromh1FrsbL9QC6ZueUuoyT7pUTw5xt7Emg89UKobemizDwybdo0Vq5cybp164iLcz+DNcDjjz9OaWmp4+fEiRMXo3lCCOHE6K0nPsz+XKqwtJrKqlqn/WWVjdshTZ7BNV3e0l0PJrrJop+HjxfTMSnEMRNJVU0dX3x7iKpqi8txZ6uotJovvjvsuJXao2MEUWHun69Z6qzsO1rgMlsKwN4jBXz5/VG27s1xCjV/Hz2PjO/JM7f3uWRDDVq5x6aUYvr06XzyySesX7+edu3anba+wWDAYDj/dX+EEKKlXN05ivc3HkYp2Hu0gL5XNA7Tt1ob3+dqOtpQr2v8bK51vYWZFBPkWGT0yIliruoZy5A+iXz69QEqqmopLqvhk68PMKxv4jk9c1NKceh4Ed9vPen0YnVhaTU/78oiJMiIl16LzaYoKashv7iKk7nlLi9hn0piuD/j+iQyonssfoYL61FeDK0abFOnTuX9999nxYoVBAQEkJNjn0jUZDJhNBrPcLQQQrSd63snsOT7w9gU7DqYR+d2oY4FN3XaxgCzWht7aU1HUDafXmrRv56n15ARxIeZOJxVjc2m+GlHJsP7J3HD0A6s/PYwFVW1VFTVsvLbQ3RMCqFHx0hCg079t1IpRXZBBTv253I823VMQmZuudPQ/bOl1UBKtIkb+7WjW3wwkSbjJfUM7UxaNdhef/11AIYNG+ZUvnDhQiZPntyalxZCiAsSYTJyXa8EVm09jqXOxrrNGYwd0gGdToufb2OvpaS88aVkg7eeQD9vyiprKSipoq7O5ujRlRYVMOcvv6Oypo4BU15Fb/DjYEYR7eKCSIoN4sYRHflmUzrZ+RWAfbj+wfQiIkJ8iQrzJyzYF6OPHhRUVFsoKK4iK6/c8a7ahdIA7SIDGd8ngeHd45wWQr3caJRyM3bzElFWVobJZKK0tJTAwMAzHyCEEC2o0mzhofnfkV8fHokxJkYOaIeXXsuiz3dRWW3BS6/l3l/1dPRo1m1O52C6fdaSYf0S6eRmrbX9xwr5tn7QiF6vZeyQDkSF+aOUYk/96MQzTV91OvHRgfh461AKFIrC4mpKys2nrN8x2sRzd/Uj0PfSfW52Lnkgy9YIIcQp+Bm8ePzmXhjqe10ZWaUs+98+svMrCA+xD6G31NnIzGu83delfeNL2bsP5eOu79ApKYR29UP76+psfPHtYcd7cVekRDBhXHcG9Yo/5cvhTfn7Oj/z6tkpggE9YomNCMRmUxw9UXLKUNNrNdwztCOv3Dvwkg61cyU9NiGEOIPtxwp46sMt1DQZbBEUYHAERrvYIEYNag/Yn3stW7vf8Yzt6t7xblcGqLPa+HLjEU42eQaWGGOiX/cYQkyNz9Wqauy3HQtLqrHUWdGgwdtLi1an5eCxQsdyMOdCp9Vwdeco7ry6A+0iL4+/reeSBxJsQghxFo4XVPDyZzvY12TKrAYaDdw4ohORofY5cE/mlPHFd4cB+63Gm6/p7Lb3ZbXa+G7LcQ5mFDmVR4f7kxQbRHiwL8GBPvaZ9a02ikqryS+q4vDxYopKzy3QwgJ86BQbRJe4IEZ2jyXE/8y9wUuJBJsQQrQCq02xZttxPt2czvGCCqd9QQEGbhnVxTHk/7stx9l31P5+mJ/Ri3HDUjAFuA+TY5klbEg7TnXN6VepPhsBPl5ckRBCl7ggksID6BgbhJ9Bj7f+8h0MAhJsQgjRqpRS7DlRzM70QpZtOkpFfSC1jwti5IB2aLUaai1WPlt30HFL0segZ3DveNrHu1+PzFxr5VBGIXsO5592oIc7sSG+DOsWwy1Xtb8s3jM7HxJsQghxkaTnlTP9rY3U1o9iTIo1MaxvEgZvHdU1FlZ+e4iiJuuUJcWa6NkpkshQP7fvhimlKCip5tjJEo6cKKKsotalToOwQB9enND/oi4J01Yk2IQQ4iL6+XAeT3+4hbr6qaz8jF4M6ZNAfFQg5lor327JID2z1OmYEJORmHB/wkJ88fPxAk39QJGiarILKk67xhnA6CvjePDarvj7eGYPrTkJNiGEuMi2HMnn2Y/TqK5tHDkZGmSka3I4sRH+5BVV8sP2zFOuFnC2eiSGcMegDqQmu4609GQSbEII0QZyS6p4ZeUuth0rcNln8Nbh7+tFrcVGZbUF21ks1gng660jJSaITjH20YxJES23btvl5Fzy4KIuNCqEEJ4sMsiXWXf3Y93uLFb8nM7+Jq8GmGutmGvdTzrsrdeSHBlIr/ZhdI0LJirIF1+DHi+dFn+jF9rLaJ7GS4EEmxBCtCCNRsOI7rGM6B7LoexSfjiQw+HsUg7nlFFaVYvNpjB46UgI9ycl2sQV8SFc3SXqsh+OfymRYBNCiFaSEm0iJdrkVKaUuqxmyr8cyVyRQghxEUmotT4JNiGEEB5Fgk0IIYRHkWATQgjhUSTYhBBCeBQJNiGEEB5Fgk0IIYRHkWATQgjhUSTYhBBCeBQJNiGEEB5Fgk0IIYRHkWATQgjhUSTYhBBCeBQJNiGEEB5Fgk0IIYRHkWATQgjhUWShUSEuJrMZdu+GtDTIzASLBXx8ICUFUlOhQwfQyr83hbgQEmxCtDal4Pvv4bXXYNkyqK09dd3QULj3XvjtbyE5+eK1UQgPIv80FKI17d8PV18NgwfDBx+cPtQACgvhn/+09+Duvx9KSi5OO4XwINJjE6I1KAWzZ8Pjj9tvP9YzB4eQO3g4xd16UNEuGZu3N/rKCkwH9hG8azsRG79FZ6m1H//22/Dll/DuuzByZBt+GSEuLxqllGrrRpxKWVkZJpOJ0tJSAgMD27o5QpwdpeAPf4BXX3UUlSe2Z//UP5A5eiw2g88pD/UuKiRp6ft0enMuXhXl9kK9Ht5/H37969ZuuRCXrHPJA7kVKURL+7//cwq1Q5Me5JtP/8eJ8becNtQAakNCOfjQdL76/BtyBw6xF9bVwV13werVrdlqITyGBJsQLembb+D55wFQGg1bnn+FXY8/jdXoe06nqY6O5fs3F5N+yx32gro6mDQJ8vNbusVCeBwJNiFaSnk53HefY3PXn//G8ZtvP//z6XRsfeYlsodfa9/Oz4epUy+wkUJ4Pgk2IVrKvHmQkQFAfr+BHJ784IWfU6dj69//iTko2L69dCls2nTh5xXCg0mwCdESrFaYPx+w34Lc9vQLbl+0Xr5gDrd0juHt5590lD058RZu6Rzj9PPGU39x7DeHhbPnD483nuT111vvewjhAWS4vxAtYe1aR28td/BwKtp3cKlyeNd21n64iMROXV32XfPru7njd392bBuMRqf9J8bfzBX/eg7vslJYssQ+OMVkauEvIYRnkB6bEC3hu+8cHzN+dZvL7urKSmY/Mo3f/v0l/ANdA8lgNBIcHuH48fUPcNpvNfpycsyN9g2zGX7+uWXbL4QHkWAToiWkpTk+Fl2Z6rL7P888QeqwkfRsGMLfzIbPlzN5QDdmjBvOon89j7m6yqVOUc/ebq8nhHAmtyKFaAl79wJgNgVTHRXjtGvjF59ydO8uXvx4ldtDr77hV4THxBESEUnGwX2898/nyEo/wqNz3nKqV9L1CpfrCSFcSbAJ0RKq7D0si8kEGo2juCA7k7eff5In316C9ylezh51+wTH58ROXQgOj+DpybeRczydqIQkxz5L01uYlZUt234hPIgEmxAtQacDQGO1OhUf2bOT0sIC/nzzaEeZzWpl75afWL14IUt2pqOrP7ZBSg/7LcfsDOdgczq3Xv7TFeJU5L8OIVpCRATk52PMy0Fba8bmbQCgx4DBvPLZN05V5z7xB2Lbd+BXv5nqEmoA6ft3AxAcEeFU7ncio3EjPLyFv4AQnkOCTYiW0Ls37NmD1mIh8MB+Srr3BMDo709Cx85OVX2MvgQEBZPQsTM5x9PZsPITeg8ZSUBQMBkH97Jw1tN07TOApGavBQTt2dm4keo6QEUIYSfBJkRLSE2F994DIHLjOkewnYney4udP2xg5bv/wVxdRWh0DANGjeHWKTNc6kZuWO98PSGEW7JsjRAtIT0d2rcHpaiKjuHLtT+hWvA5WMCRQ1w7dqh9IyXFvoCpm5lNhPBUsmyNEBdbUhKMHQuAb3YWiZ982KKn7/T67MaNKVMk1IQ4DfmvQ4iW8oc/OD52f/EZjNmZLXLa6K/XkLDyE/tGUBBMntwi5xXCU0mwCdFSRoywr5kGeFWU03/GQ+gu8H2zgMMH6f3XPzUWvPoqBAdf0DmF8HQSbEK0pNmzITYWgJAdW7n6/jswFBac16mCdu1g8KRbMZQU2wvGjYOJE1uqpUJ4LAk2IVpSUBCsWmX/XyB0exrX3DCM2NWfwVmO09LU1tLl3/9g2B034NMQir1720ddNpnVRAjhnoyKFKI1bN8Oo0dDXp6jqKRLN47eOZnskaMxh4Y511cKv4xjJHy2jKSl72PMz23cd9VV8MUXcgtS/KKdSx60arB99913vPTSS6SlpZGdnc0nn3zCTTfddNbHS7CJy1puLjz8MCxf7rKrKiqainbJ2LwN6CsrCDy4377WWlN6PTzxBPz1r+DtfZEaLcSl6ZIZ7l9ZWUnPnj2ZN29ea15GiEtTZCR8/DEsWwb9+zvt8s3JJuLHjUR9+zVhWzY5h5pOBzffbF9zbeZMCTUhzlGrzjxy/fXXc/3117fmJYS4tGk09pC6+Wb7GmpLlsCWLfbP5eWN9aKjoU8fGDAA7rkH4uLars1CXOZkSi0hLpbU1MapsGw2+9IztbXg4wN+fm3bNiE8yCUVbGazGbPZ7NguKytrw9YI0Yq0WggIaOtWCOGRLqnh/rNmzcJkMjl+4uPj27pJQgghLjOXVLA9/vjjlJaWOn5OnDjR1k0SQghxmbmkbkUaDAYMBkNbN0MIIcRlrFWDraKigsOHDzu2jx07xvbt2wkJCSEhIaE1Ly2EEOIXqlWDbcuWLQwfPtyx/cc//hGASZMm8c4777TmpYUQQvxCtWqwDRs2jEt4xi4hhBAe6JIaPCKEEEJcKAk2IYQQHkWCTQghhEeRYBNCCOFRJNiEEEJ4FAk2IYQQHkWCTQghhEeRYBNCCOFRJNiEEEJ4FAk2IYQQHkWCTQghhEeRYBNCCOFRJNiEEEJ4FAk2IYQQHkWCTQghhEeRYBNCCOFRJNiEEEJ4FAk2IYQQHkWCTQghhEeRYBNCCOFRJNiEEEJ4FAk2IYQQHkWCTQghhEeRYBNCCOFRJNiEEEJ4FAk2IYQQHkXf1g34xSkogLQ0+09ODtTVgY8PdOoEffpA9+7g7d3WrRRCiMuWBNvFYLHAihXw2muwbt3p6/r7wz33wJQpcMUVF6d9QgjhQeRWZGtbvx46d4Zf//rMoQZQUWEPwO7d4c477T08IYQQZ016bK3FYoFHHoF//9up2BoaSl1KCtboaGyhoSitFo3ZjC43F93Jk3gdOIDGYrFXXrIEvvkGFi6EMWPa4EsIIcTlR4KtNZjNcOutsHKlo6guPp6aYcOwtmsHWteOsrVdOwCqa2rw3r4dw/r1aGtqIC8Pxo+Hd9+Fu+++aF9BCCEuVxJsLU0pmDjREWpKp6Pm2mup7dfPbaC58PGhdsAALN26Yfz8c7wOHgSr1f7cLTAQxo1r5S8ghBCXN3nG1tL+8x9YuhQApddTOWECtQMGnF2oNaECAqi64w7MffrYC2w2uPdeyM1t6RYLIYRHkWBrScePw5/+5NisuvVWxy3G86LVUjNmDJbOne3bhYX20ZJKXWBDhRDCc0mwtaRnn4XycgBqe/WiriGQLoRWS/W4cdh8fe3bn3wCmzdf+HmFEMJDSbC1lJISWLwYAOXtTfWoUW6rvbJhA0FPP81jq1c7lW8+cYJx77xDzHPPEf/881z/9ttU14+OVH5+1Iwc2Vj5tdda5zsIIYQHkGBrKe+/D1VVANT27AlGo0uVrZmZLExLo1tkpFP55hMnuHXRIkYkJ/P1Aw/wzYMP8mC/fmg1GkcdS48e2Hx87Bsffgilpa33XYQQ4jImwdZSNm50fLRceaXL7gqzmQeWLePf48YR1BBQ9Z5Ys4YH+/fnD4MH0yUigpSwMH51xRUY9E0GrXp5YWmYicRshi1bWuVrCCHE5U6CraXUB43S6bBGRbnsfmTVKkZ17Miw5GSn8vyKCrZkZhLu58eo//yHlJdeYszChfyYkeFyDmtcnMv1hBBCOJNgawkWCxw6BIA1IgJ0Oqfdy3btYmd2Nk81fU5WL724GIAX1q/nntRUPp4wgZ7R0dz43/9ypLDQqa5TYO7d28JfQgghPIMEW0uoqXF8VM2erZ0sLeWxNWtYcPPN+Hh5uRxqqx+6f29qKhN69aJndDSzrruODqGhLNq2zamu07nrn+cJIYRwJjOPtIQmPTSNzea0a3tWFvmVlQx94w1HmVUpfsjI4M3Nm9kyfToAncLDnY7rFB7OyeYDRJqeWy//1wkhhDvy17ElGI3g5weVlWjrby02GNq+PT9MmeJUNnXFClLCwpgxaBBJwcFEBwRwqNltx8OFhVzboYNTmdO5mwWhEEIIOwm2lqDRQK9esHEj2tJSNJWVKD8/AAIMBro2G97v6+VFiNHoKJ8+cCAvrF9P98hIukdF8f6OHRwqKOC/t93mdJwuK6txo3fv1v1OQghxmZJgayl9+jiG/OuPHMHSo8dZH/rwVVdhrqvjiS+/pLi6misiI/lk4kTahYQ41fM6cqRxIzW1RZothBCeRqPUpTvxYFlZGSaTidLSUgIDA9u6Oaf33XcwdChgX6Km8v77W/T02vx8AubNs2+kpMD+/ec8sbIQQlyuziUP5C9jSxk8GLp1A0B/4gS6o0db9PSGDRsaN6ZMkVATQohTkL+OLUWjgRkzHJu+n31mnyGkBegPHMB75077hskEkya1yHmFEMITSbC1pPvus/fcAG1JCb4rVjgP0T8P2oICjCtWNBa88go0e/YmhBCikQRbS9Jq4e23oX6JGa+9ezEuWwa1ted3upwc/N55B23Dy9jXXw+TJ7dQY4UQwjNJsLW0Dh1g2TKon2XEe88e/OfPR3f8+Nmfw2rF8N13+L/5JtqKCntZz572FQSazPgvhBDClYyKbC2rVsGtt0J1taPIkpxMbd++1CUnO4KvKU15OV47dmDYsgVtSUnjjj59YM0aCA29GC0XQohLzrnkgbzH1lrGjIGtW+Hee+GnnwD7e2heR46gtFps4eHYQkNRWi0asxldbi7asjLnc2i18MgjMHMmNFvqRgghhHsSbK2pc2f7S9vz5tkHfaSnA/b5JHW5uehyc0997OjR9kDr3//itFUIITzERbkVOW/ePF566SVycnLo2bMnc+bMoV+/fmc8rtVvRRYX21+sTkuD7duhpASUgsBA6N7dPrvHkCHQbEqs82K1wpdfwtKl9rXU9u51HjEZGGifJmvgQHsvr9k8kUII8Ut2LnnQ6sH24Ycfcs899zB//nz69+/P7NmzWbp0KQcOHCAiIuK0x7ZasG3bBnPnwgcfOD0Dc0uvh1tugalTHUP5W0RVFRQU2NdyMxohKkpeuhZCiFO4pIKtf//+9O3bl7lz5wJgs9mIj49n+vTpPPbYY6c9tsWDraIC/vIXeO218zv+zjthzhwZxCGEEBfZJTN4pLa2lrS0NB5//HFHmVar5ZprruHHH39szUu72rEDfvUrOHbMUaQMBmp79KAuKQlrTAwqIAA0GjQVFeiys9EfP47X9u2N75F98AF8/TV89JFjXkghhBCXllYNtoKCAqxWK5HNnlFFRkayf/9+l/pmsxlzk2moypqPEjxfW7bAtdfan6EBysuLmuHDqe3TB7y9Xaork4k6k4m6zp2pGTECrx078Fm7Fm1NDeTlwXXXwYoVMGpUy7RPCCFEi7mkHurMmjULk8nk+ImPj7/wk6an24OoPtTqYmOpmDKF2oED3YaaC70eS2oqFVOnYklOtpfV1Nh7f9u3X3j7hBBCtKhWDbawsDB0Oh25zYa15+bmEhUV5VL/8ccfp7S01PFz4sSJC2uAzQb33w/1q1PXJSRQec892M5jrkUVEEDVXXdh6dLFXlBVZZ+M+DynyxJCCNE6WjXYvL29SU1N5euvv3aU2Ww2vv76a6666iqX+gaDgcDAQKefC/Lmm/DNN/brBgZSeeedYDCc//l0OqpuuQVrw63VnTvhuecurI1CCCFaVKvfivzjH//Im2++ybvvvsu+ffuYMmUKlZWV3Hvvva17YavVKXSqx4+3D6u/UHo9VTfdhGoYmv/KK1BefuHnFUII0SJafeaR22+/nfz8fJ588klycnK48sorWbNmjcuAkhb3xRdQfyvTkpJC3SleeH5lwwZmfv01v+3fnxeuv56M4mJ6vvqq27rv/PrX3NStG7boaCxXXon31q32UFu8GH7721b7KkIIIc7eRZlSa9q0aUybNu1iXKrRu+86PtaeYpaTrZmZLExLo1uTkI0zmTjwpz851XsnLY05P/zANU3C0dy3rz3YAN55R4JNCCEuEZfUqMgWtWkTYH9Xra5hNGMTFWYzDyxbxr/HjSOoyQTDOq2WyIAAp5+V+/dzU7du+Dd5PmeLjsba8KL2tm0yiEQIIS4RnhlsOTmQmQmANTra7VRVj6xaxaiOHRnmJvSa2p6Vxa6cHCb26uWyzxoTY/9QWwt79lx4u4UQQlwwzwy2JrOLWN3MR7ls1y52Zmfz1MiRZzzVe1u30iksjP4JCS77bE3PffTo+bVVCCFEi/LMYGsye4lqtqDnydJSHluzhgU334yPm8U+m6q2WFi6axcTevd2u9/p3E2uKYQQou145npsTWYU0dTVOe3anpVFfmUlQ994w1FmVYofMjJ4c/Nm8v72N3T1ty5X7N1LtcXCnT17ur9O03NfyPtxQgghWoxnBltiouOjNj/fadfQ9u35YcoUp7KpK1aQEhbGjEGDHKEG9tuQ13fqRJifn9vL6Jqeu8k1hRBCtB3PDLaYGPv6Zjk56LKy7IuHajQABBgMdG32Dp2vlxchRqNT+dHCQn7IyGDp3Xef8jK6rCz7By8v+8KkQggh2pxnPmPTaKD+3TVtTQ26JoNJztaibduIDQxkxClGTWrz8hp7bD16yK1IIYS4RHhmjw1gwgT47DMADJs3U9W+/SmrfuFmeq8nr7mGJ6+55pTHeG/Z0rgxceL5t1MIIUSL8sweG8BNN9lvRwL6/fvRZWS02Km1+fl4p6XZN3x97bP8CyGEuCR4brB5ecGjjwKgAYwrVrTM7CBWK8ZPP0Vjtdq3p06FoKALP68QQogW4bnBBvC730H98ji6oiJ8P/rIeYj+ubLZMH72Gfr6WU3o2BFmzmyBhgohhGgpnh1sOh0sXAgBAQB4HT6M36JFaMrKzv1c1dX4Ll2K944d9m1vb/vkxy2xFI4QQogW49nBBtCpE6xcaX8WBujT0wl47TW8tm49u96bzYZ+zx4C5s3Da98+e5leDx984OgNCiGEuHRolFKqrRtxKmVlZZhMJkpLSy98Ne0ff4Rf/Qpycx1FNn9/anv1wpqUhDU6GlUfftTUoMvORn/8ON7btqEtKWk8j8lkX39t7NgLa48QQoizdi558MsJNoCiIvtzt8WL3e5WevvbD82n4XIYMwYWLIDY2AtvixBCiLN2Lnng+bcimwoJgUWLYP16uPVW+zO4JjR1da6hptHA9dfD55/bb2lKqAkhxCXNc1/QPp2hQ+0/WVnw1VeQlgbbt0NJCdhsEBgIPXtCaioMHw6neblbCCHEpeWXdStSCCHEZUluRQohhPjFkmATQgjhUSTYhBBCeBQJNiGEEB5Fgk0IIYRHkWATQgjhUSTYhBBCeBQJNiGEEB7F82ceqaqCykr79FkBAfYFSIUQQngszwu24mL7fJDffQdbtkB6euM+Ly+44gr7VFnjx9snNW42X6QQQojLm+dMqXXihH016/ffh+rqs7tAYiJMm2af8d/b+8IbLIQQolX8sqbUUgreesveE3vrLadQU15e1MXFYUlJwdKhA9awMJxSPCMD/vxn6NfPPgmyEEKIy97lfSvSYoHJk+29tHrKYKC2Z09qe/XCFhkJ2mbZbTajT0/He8sW9IcOoQHYsQP69oV33oG7aqvkjwAAIABJREFU776IX0AIIURLu3yDra4O7rwTli1zFNVeeSXVo0eD0Xjq4wwG6jp1oq5TJ7RZWfh++im6vDz7+SZOtPcAJ0y4CF9ACCFEa7h8b0X+7W+OUFN6PZW33Ub1TTedPtSascXEUPHgg5hTU+0FStl7gJs2tUKDhRBCXAyXZ7Bt2gT/+AcASqul6o47qOva9fzOpddTc8MNmPv2tW9brfZwq6lpmbYKIYS4qC6/YLPZ4P777f8LmIcPp65Dhws7p0ZDzXXXURcTY9/evx9mzbrAhgohhGgLl1+w/e9/sGcPAHXR0ZgHDnRb7ZUNGwh6+mkeW73aUZZbXs6Dy5fT8aWXiHnuOYbMn8+KvXvtO3U6qm+6CdUw2GTePOm1CSHEZejyC7bXXnN8NA8Z4vYF662ZmSxMS6NbZKRT+W8/+YTDBQV8cOed/DBlCuO6dOHepUvZkZ0NgC0iAku3bvbKhYWwdGnrfQ8hhBCt4vIKtqoqWLUKAFtAAHUdO7pUqTCbeWDZMv49bhxBPj5O+zafOMGD/fuTGhdHUkgIfx46FJOPDzuyshx1avv0aTzg449b53sIIYRoNZdXsO3YYR/cAfbnam56a4+sWsWojh0Zlpzssq9ffDyf7N5NcVUVNpuNZbt2Ya6r4+qkJEcda3w8ymCwb6SltcrXEEII0Xour/fYtm51fLRGR7vsXrZrFzuzs/nmgQfcHr7w17/mvo8/pt0//oFeq8XXy4tFt99O+9DQxkpaLdboaPTp6ZCZCbm50OyWphBCiEvX5dVjy811fLSFhDjtOllaymNr1rDg5pvxOcUM/s+tW0dpTQ0r7rmHdQ8+yMNXXcXkpUvZ0+S8LufOy2u59gshhGh1l1ePra7O8VE1mypre1YW+ZWVDH3jDUeZVSl+yMjgzc2b2TJ9Om9u3syPDz9Ml4gIALpHRfFjRgb/2byZV8aNc39ui6WVvowQQojWcHkFW5NZRTTNhuIPbd+eH6ZMcSqbumIFKWFhzPj/9u48Pory/gP4Z/bebJLdXCRLCCGBJFwh4EEICEQ51SJYRfGg3lbqRdX+jLYUqK2gpbVqUVERqFUROcSichMU5BDkCJKDhNz3uWf2yM7z+2PNJMMmIXfC8n37ysudmWdmn2cnmy/PM88xaRKsvwQoCceJ0kglEvCXLHAgunYHZjIhhBDS966swDZ8uPBSWl4umm3ET6nEyEuehfnI5QhUqzEyNBROlwvRgYFY/L//4a8zZyLQxwc7MjJwICcHn997r+g8aVmZ+4VcDkRH91x5CCGEdLsrK7A1zukIQFpU1KFT5VIpvrjvPizbuxcLPvsMFocDUYGBePf22zGz+bABmw2Sqir36/h4oLGHJCGEkCvClRXYoqIAvR4oLYXs4kVwRiNYGwvOff3QQ6LtoUFB+Pjuu9t8C8XZsxAaK1uZ1YQQQkj/dWX1iuQ49zyRADjGoDhxonuvz/NQ/Phj03YrwwYIIYT0X1dWYAOA3/5WGJit/OEHSKqru+3SimPHIK2sdG/ccAMwZky3XZsQQkjvuPIC26BBwO9+BwDgGhqg/vJL0TCAzpJUVkK1b1/Tjr/+tcvXJIQQ0vuuvMAGuJeU+WXKLFlhIXy2bhWm2uoMSU0NNB9/DK4xQD79NDB1anfklBBCSC+7MgObRgP897/AL5Mcy8+fdwemuroOX0qWlQXN2rWQGI3uHQkJtBYbIYRcwa7MwAYAEyYA27YJwU2Wlwe/d96B4vBhoL7+sqdLKiuh3roVmk8/hcRice8cNQrYtcsdOAkhhFyROMYumXajHzEajdBqtTAYDPBvrVv/oUPAvfcChYXCLiaTwTliBFwREXDp9WBqNcAYJHV1kJaUQHbxImT5+eLrzJ7trgU2nxCZEEJIv9CuePCLHgtsf/vb3/D111/j9OnTUCgUqOtEM2G7C2IwAC+8AHz4Yccz6u8PvPEG8NBD7uEEhBBC+p2OBLYea4p0OByYP38+Fl0yf2OP0GqBDz4Afv4ZeOopwM/v8ufExLgDWl4e8PDDFNQIIcRL9HhT5Pr167F48eKerbFdqr7evSjpiRPuYGexuMe+BQUB48a5p+aKjQUkV+4jRkIIuZp0JB70qym17HY77Ha7sG1s7KnYUWq1u3PJhAndlDNCCCFXin5VZVmxYgW0Wq3wExER0ddZIoQQcoXpUGBLSUkBx3Ft/mRkZHQ6My+99BIMBoPwU9ispyMhhBDSHh1qinz++efx4IMPtpkmugvrlymVSihpmRhCCCFd0KHAFhISgpCQkJ7KCyGEENJlPdZ5pKCgADU1NSgoKIDL5cLp06cBAMOGDYOvr29PvS0hhJCrXI8Ftj//+c/YsGGDsD1u3DgAwIEDB5CcnNxTb0sIIeQqd+VPqUUIIcTr9YuZRwghhJC+QIGNEEKIV6HARgghxKtQYCOEEOJVKLARQgjxKhTYCCGEeBUKbIQQQrwKBTZCCCFehQIbIYQQr0KBjRBCiFehwEYIIcSrUGAjhBDiVSiwEUII8SoU2AghhHgVCmyEEEK8CgU2QgghXoUCGyGEEK9CgY0QQohXocBGCCHEq1BgI4QQ4lUosBFCCPEqFNgIIYR4FQpshBBCvAoFNkIIIV6FAhshhBCvQoGNEEKIV6HARgghxKtQYCOEEOJVKLARQgjxKhTYCCGEeBUKbIQQQrwKBTZCCCFehQIbIYQQr0KBjRBCiFehwEYIIcSrUGAjhBDiVSiwEUII8SoU2AghhHgVCmyEEEK8iqyvM0CuTLUNtUi3puOC9QLMLjM4joOv1Bcx6hiM8BkBnUzX11kkhFylKLCRdrO6rNhZuxObKzcjsz6zzbQjfEbgzuA7MStwFtQSdS/lkBBCAI4xxvo6E60xGo3QarUwGAzw9/fv6+xctRhj2Fa9DW8Wvwmzy9yhc/2l/vj9oN9jTuAccBzXQzkkhHi7jsQDqrGRNlU5q7A0bymOmo6K9sfUaTGmJgixdVoE2lUAgGqVDVlaA84GVSFbawQAGF1GLM9fjr21e7EschkC5YG9XgZCyNWFamykVaX2UjyR/QSK7EXCvpuKwnHXxaGINbT9DC1DW4tNQ3OQGl4i7ItURuLdmHcRqgjtsTwTQrxTR+IBBTbSolpnLR7KegiF9kIAQFC9Cs+fTcCEio4FpcOhZfjnmDOoVdkBAEOUQ/BR3EfQyrTdnmdCiPfqSDyg7v7EA2MMrxa+KgS1QWYN3jk0ucNBDQAmlYdh9aHJ0Ft8AAB59jy8Vvhat+aXEEKao8BGPOyp3YP9dfsBAFq7AquOTESIrfM9G8PqfbDqSBL8HHIAwK7aXcL1CSGku1FgIyINrAH/Kv6XsP1s2hgM6EJQa6Sv1+Cpc6OF7X8V/Qs847t8XUIIuRQFNiJyyHAI5c5yAMD1FSFILh3YYro3vv8eumXLkPLtt8K+3Joa3LdxI4a+/joiXn0VD27ahApz0/CA6cWDMLYqGABQ7CjGUeNRj+sSQkhXUWAjIlurtgqv77g4tMU0PxUXY93JkxgV2vTMzeJw4PaPPwYH4KsHHsDORx6Bw+XCgk8/Bc+7a2YcONxxMUo4Z3PV5p4pBCHkqkaBjQh4xuOU+RQAdy/I6ypDPNKY7XY8tmUL3pozBzqVSth/rKAABXV1eGfePIwKDcWo0FC8e/vtOFVSgu9yc4V0EypCobMrAACnzKfQjzvlEkKuUBTYiCDfng8rbwUAjKjTQQLPmUJe+OYbzIyNRfJQcW3O7nKBA6CUNY35V8lkkHAcjhQUCPukTIK4OvcYOKPLiBJHCQghpDtRYCOCnPoc4XWMwXOc2Za0NJwtLcXSadM8jl0/aBA0CgWW7tkDq8MBi8OBP+3eDRdjKDeLp+GKaTa4u/l7EkJId6AptYignq8XXvs7FKJjRQYDUnbuxLaFC6GSyz3ODdZosH7+fDz39ddYc+wYJByHO+LjkaDXQ3LJHJH+jqbzm78nIYR0hx4LbHl5eXjllVewf/9+lJWVYeDAgbj//vvxxz/+EQqF4vIXIL1O0qwCz1/SCnm6pASVFgumrlkj7HMxhh/y8/HB8eOoWLIENw0bhtPPPotqiwVSiQQ6tRqxf/87howeLboWzzU9V5Nw1GhACOlePRbYMjIywPM81qxZg2HDhuHcuXN47LHHYLFYsGrVqp56W9IFzddQK1dbRcemRkfjh0WLRPue3L4dMcHBWDxpEqSSpgAVpNEAAA5evIhKiwU3x8WJzitXN9XStFKaWosQ0r16LLDNnj0bs2fPFrajo6ORmZmJd999lwJbPxXn0xSAsnQG0TE/pRIjQ8VTavnI5QhUq4X9/z11CnHBwQjWaHC8sBApO3fid0lJiAkOFp2Xpatr8T0JIaQ79OozNoPBgMDA1pctsdvtsNvtwrbRaOyNbJFfBMuDESIPQaWzEhm6WlhkTmgaPJ+ntSa7qgp/2bsXtfX1GKzT4fnJk/FkUpIojVHuQJbWHTTDFeE0GTIhpNv1WmDLzs7G22+/3WZtbcWKFVi+fHlvZYm0YIp2CrZUbYFN5sKeQUWYlxfVatqvH3pItL1sxgwsmzGjzevviiiEU+oesD1ZO7nrGSaEkEt0+Ml9SkoKOI5r8ycjI0N0TnFxMWbPno358+fjsccea/XaL730EgwGg/BTWFjY8RKRLpkfPF94vTk6B3aJq9uuXS9twJaoi03vFTK/jdSEENI5Ha6xPf/883jwwQfbTBMdHS28LikpwY033oiJEyfi/fffb/M8pVIJpVLZ0SyRbhTjE4PrfK/DCfMJlGis+Gh4OhadH335E9vhgxHpqPBxdxxJ8k/CENWQbrkuIYQ01+HAFhISgpAQz6mWWlJcXIwbb7wR1157LdatWweJhLp2XwlSBqfg3vR74WAObI6+iPiaINxQpu/SNVP1Jfgyyj21lpJT4sVBL3ZHVgkhxEOPRZri4mIkJydj8ODBWLVqFSorK1FWVoaysrKeekvSTaJUUVg00N21n3HAK9ecxEF956e+2jewCH+75qSw/XT404hQRXQ5n4QQ0pIe6zyyZ88eZGdnIzs7G4MGDRIdo4lv+7/7B9yP7PpsfF3zNZxSHsuvO4Fb8gfjifOj4NvOnpImuQOrR53D7ogiYd/coLlYELKgp7JNCCHgWD+OMkajEVqtFgaDAf7+/n2dnatOA2vAK/mvYEfNDmGfzq7ALQWR+FV+JMLqfVo8r8THgh2D8/FNZAGMCoewf17QPLw8+GVIOWmP550Q4l06Eg8osJE2McawtWor/lX8L2Hm/0Yh9SrEGnQItLk7/FSr7MjS1qFKbROl00g0eCHiBcwJnAOO81wxgBBCLocCG+l2pfZSvF3yNvbW7oUL7RsCIONkmKGbgafDn0aoIvTyJxBCSCsosJEeU+Wswvaq7ThmOoYMawYsvEV0XCPRYLjPcEzwn4C5QXMRJA/qo5wSQrwJBTbSK3jGo9hRDIvLAg4cNFINBioG0oz9hJBu15F4QOuxkU6TcBJEKKnbPiGkf6F/WhNCCPEqFNgIIYR4FQpshBBCvAoFNkIIIV6FAhshhBCvQoGNEEKIV6HARgghxKtQYCOEEOJVKLARQgjxKhTYCCGEeBUKbIQQQrwKBTZCCCFehSZBJqSP1bvqkVmfiXRrOiqdlWhgDZBzckQoIzDCZwSi1dGQc/K+ziYhVwwKbIT0AsYY0ixpOGI8gvPW88iyZsHgMsDJnODBt3muWqLGLYG3YH7wfMT4xPRSjgm5ctF6bIT0IBdzYUf1Dnxe+Tky6zO7fL1kbTJSBqcgRB7SDbkj5MpB67ER0g/k2fLwl/y/4IzlTJvp1FI1wtXhCFIGQSvXQsJJ0MA3oNZZi2p7NYqsRWhgDQCAVEMqfjr/E14a/BKStck4YT6BdEs60q3pqGqogou5oOAUiFRFYrjPcCRoEhCrjgXHcb1RZEL6BaqxEdID9tTuwdK8pbAzu7BPKVHCzjdt6+Q6JAQkIMInos1Vxx28AxfNF3G29ixsvE3Yr5aoUc/XXzYvw9XDMT9kPm4OvBlKibKTJSKkb3UkHlBgI6Sb7azZiSV5S4RnZ34yP2jlWhTVFwEAOHCI18UjXhcPKSf1OJ9nPGocNaiyV6HGXoN6Vz0Y3F9Tc4MZRqexU/mKVEZi+ZDliNfEd7JkhPQdaookpI+cMZ/Bn/P+LAS1ob5DoVfpcajqEAB3UJsyYAoiNZEe59pcNlwwXUCWKQuWBkun3l8lUSFAEQB/uT/UUjUKrYWodlQDAPLt+Xg482E8GvYoHtc/Ts2TxGtRYCOkm9h4G5blL4MLLgBArF8sEnQJ+F/x/4Q0ScFJHkGNMYYLpgs4WXMSTubsch5KbaUotZWCAwedXIchPkNQYa+A1WUFDx7vl70Pg8uAPwz6AwU34pUosBHSTT4o/QAF9gIAQLAyGOODxuOnmp+E52IRPhEY6jtUdI7dZcf3ld+jpL5EtD9cHY5wn3AEKYLgJ/eDBBI4eAdqHbWoslch15ILc4NZdI6P1Ac2l02oLTIw1DprUeus9cjr55WfQwEFFkcs7rbyE9JfUGAjpBtYXVZ8UfkFAEDCSTApeBJ4xiO9Mh1QAhJIkBiUKKohVRRXYGfRTmBA03WG+g7FGN0Y+Mn9PN5DIVVAKpFCwkngI/NBraMWBdYC2Fw2IQ8d8XHlxyhwFGD5kOXwk3q+HyFXKgpshHSDnbU7YeHdz8WiNdHQKrTIMeWAKd2dPob4DoGPzEdIb6o1Yfu57VDGunspqiQqTAqZhHCfcI9rm5wmnDecR54lT9Srsi1STgoJJJBJZPCV+cJH6gMpJ4XVZUW5rVzojHLQcBB3nb8LyyOXY7z/+C59BoT0FxTYCOkGu2p2Ca/j/OMAAOW2cmHfMN9hovTffv8tlPHuoKaWqjFLPwv+cnFPrzpHHb6v/B61Ds+mxMtxMRdccMHpcqLe1TQkQCvXIkGX4K5NGtPhZE5UOCvwVPZTeGXIK5gVOKvD70VIf0OBjZAu4hmPdGs6APdzriBlEAAIvRE5cAhWBgvpq+xVqB9VDw4cJJBgWug0UVDjGY/vK75HvjVf9D4SSBCiCkGQIgj+cn9IOSmczIk6R517aICjRpSe++W/5lN2GZwGnK47DSknhU6ug81lg8VlgQsuLMlbAifvxHDNcDDGoJaqoVfoWxySQEh/RoGNkC4qshcJzZCBykAA7p6OdY46AIC/3B8ySdNX7UztGXAS97O2MboxwjkAYHAYsLtst6iWpZQoMVI7EsP8hkEtVbeajzpHHTJNmbhgvAAePBgYJJwEEwInQMJJkGPOEWqRLuYSAm8jF1xYWrBUtE8tUSNWHYtrfa/FvOB5CFd6NpUS0t9QYCOkiyqdlcLrxppXY2ABAJVUJRw3OU0ori8GAGikGozWjRaO5RXl4TvLd4Ci6dqRmkgkBiWKrtEanUKHxKBExPrF4nDlYdQ4auBiLhyvOY5pA6ZhWug01Nhr8GPNjx5BrTX1fD3OWM7gjOUM1pWvwyT/SXg6/GkMUw+7/MmE9BEKbIR0UeM8jgAghbvZjkNT78fmk/vkmHOE17H+scJUWmXVZThQewBS36Zmv3EB4xCv6/gsIQGKAMzWz8aesj2otFeCZzz2lO8RjnPgoJKoRNNzKSQKOHiHKI1OroOTOYVhBQwMh4yHcNR0FI+HPY4Hwh6AjKM/IaT/od9KQrqo+fyLDuYODs0DW/NZRCpsFcLraN9oAO5mwb15eyENbApqo7Wj2x3UGGMwNZhgcprg5J0otZWi2Frcavd/BiYKagDg5J24JuAaXDBdgKnBJIyBG6sbi2F+w5BjzkGmMRNWlxUNrAHvlL6Dk+aT+Ef0P9psHiWkL1BgI6SLIpVNM4k0PlfjWVOHDYvLApvLBqVEKTQBqqVqaGQaAEBaXRr4wKb0QYogjA0Y2+Z7upgLBZYCZJuzUWWvgpNve8YSX5kvNDINOHCw83bUOeqEplLAHexO1Z5CvDYeNt6GLFMWAOB03WkopUrE6+Ix0n8kztSdwc+Gn8HAcMx0DItzFuOtYW/R5MqkX6HARkgXBcgDECoPRbmzHDX2GvCMh8UlnuuxrL4MoepQIQAFKAIAuFfPTqtLE6VNCk4Smih5F4+dK3fixBcnYKowwV/vj9F/HA3ntU6PWtel9Co9Yv1jEaYKg1IqDjwNfAOq7dXINmcj15ILnrmfCZ41nBXK1DhjyYmaEwhThUGr0OKawGsQ7hOO/eX74eSdOGE+gX8U/QMvD365k58eId2v9bUyCCHtluCbAABwMicKrYVwMZfoeJYpCy6+aZ9cIgcAXDBdENWc9Cq9qJfkvjf34fC6w7jj9Tvw9JGnMXL9SJjGmURBTc7JRe+lk+twy8BbMEM/A5GaSI+gBgAyiQyh6lBMCpmEXw/6NSJ8IkTHm0/D5WIu/FD1g/CsMFQViumh04Xna1uqtuC48Xg7PiVCegcFNkK6wdygucLrTGMmJJd8tcpsZaKB1owxMMaQZcwSpRvmJ+5tmHs8F6NvHo0BUwbgB/wAi29TTTDSJxLjA8eLOq/E+MXg1vBbRePmLsdH5oPkAclICk4SPRtsrtJeKfTmBIAQVQiuCbxG2H7u4nPYULYBZ8xn0I9XwiJXCQpshHSD8X7jMVg5GIA7iFXaKj3SnKw5Kbw2Oo0wNZg8OniEqkJF21Hjo5BXlIc9JXuEXou+Ml/MDJuJSSGTkGHKEGp8cX5xmBA0oVMDqjmOQ4xfDCaHTG41zeH8w6LtOL84Ib/1fD3eKnkLD2c9jDvP34mNFRs7PHclId2FAhsh3UDCSbBo4CJh+2TtSfjJxBMLGxuMQo3I4DR4BD+VVCWaTxIApjwzBRF/iUAD566VhanCMCd8DsLUYUirSxMWHQ1WBuP6oOu7vAzNEN8hGKUd1eIxu8qOrRe24mztWZRaS1HnrMNI/5Ee6fLsefh70d+xIH0BfjT92KX8ENIZ1HmEkG4yQzcDe3V7sa9uH+y8XdQzkgMH9st/gLsXYqG1UHR+S93md/+0G3yI+zrBymDcFHoTZBIZGvgGZJoyAbin2poUPEnocGIz2fDNq98g7es0mKvMCI8Px69X/BqDrxnscf1Nz23CD+t/wLy/zUPyomQAwFjdWBRaC1tcqdssM+N03WnRPgkkomm7GhU7ivHEhSfwmwG/wdPhTwv5I6Sn0W8aId2E4zikRKRAr9ADgGjR0JaWoam2tz37R5W9CrUh7udyMk6GySGTham5ci25QtNklG8UtAqtcN7GZzciKzUL9793P/7v0P8h7sY4vHP7O6grqRNd/+yOs8g7kQetXivaL5VIEa8Vj6Frq3mzpaDWvPv/fyr+g78V/I2evZFeQ4GNkG4UKA/Eu8PeRahc/KzM6DR6jPW6dEiAtcEq+uOfacwUXo8NGCsKjrmGXOF142oCAOCod+Ds/85izvI5GDpxKEKiQ3Bzys0Ijg7G4XVNz8jqSuqw5cUtWLhmISQyzz8DQzRDRPl1MReiNFG4acBNiPGLueyMI3bejsHqwULT65fVX2JN6Zo2zyGku1BgI6SbRagisDZ2LUb5iJ9VXa7GYuftwiwlNpcNuRZ38FJIFIj1ixVdp9RQCsC9jluQIkg4xjfw4F085ErxEAC5So6LRy+60/A8Pln0CW56+iboR+hbzItUIkWYOky0L9eSi+L6YkwImoA7B9+JUdpRol6Ul/YELawvxFjdWCHN2rK1+Nnyc5ufASHdgQIbIT1Ar9Tjo7iP8JT+KeEPe+N0W20ps5UBcK/l1viMLto3WrQ6QJ2lDpyP+5qBykBRhxGVnwpDrh+CXat2wVBqAO/icWLTCeT9mAdjufuZ2b4390EilWDKb6e0mZfmAbNRpikTeZY8KCQKXBt4LWbrZ8NH6u7wwoOHWqoWysvAkG5Mx2jtaOH4svxloiZaQnoCBTZCeoiMk+Eh/UNYF7dOmBz5ci6YLgAQP38LU4lrTlZHUzf6SxcnBYD737sfYMDSUUvxQtgL+O7973DNHdeA4zgUni7Ed2u+w72r771sD8rm1470aZo27Fj1MWFZnRBVCGbpZwnBrd5Vj2F+w4RmTBtvg9FpFILkRdtFpNalXvZzIKQrKLAR0sPiNfF4NvzZdqWttFei3FYuGszduHBpI5lPU+3t0uY/AAiOCsbTO57Ga4WvYWnaUjy39zm4nC4EDwlGzpEcmCvNWD5mOZ4LeQ7PhTyH2sJabF+yHcsTlouu07wXY4AiAJEad3Bz8A6crm3qGekn90NyaLJQU8s2ZSMxKFGYESXfmi+a2eSLyi/a9VkQ0lnU3Z+QXrBgwAKsL1+Pmoaay6Y9UnVENE1WY22oUfOOG82XmrmUUqOEUqOEtc6KjP0ZuG3ZbUi4LQFxU+NE6d6b/x6uu+s6jL93vGh/82tLJVIkBiWixFoCJ3Mi15yLawOvhULiXjwuWBmM0drRSDOkgYGhuL4Y1wVdhyNVRwC4mzD9ZH4wNZhw0nwSZY4yhCnENVFCugvV2AjpBVJOinsG3NOutEanUVgDrSXNe0c2r9k1St+XjvS96ajOr0bmgUz8+7Z/IzQmFIn3JUITqIF+pF70I5FJ4DfAD6Ex4p6cza/tL/eHSqoSltppYA34/MPPYSg1CGnidfFCoMuz5CFCHQG9yt05pd5VLwrI5y3n2/VZENIZFNgI6SV3BN+BIJlnh4yW2Hl7i68Bdy/Jxudftc5a0eTKAGAz2rD5/zbj1cRX8cnvPkH0hGg8seUJSOUdm2qr+XO+xmdkMX4xTe8TbMOH930obMskMgz1HQrgl2V1rAWiFcKbT6ycbk3vUF4I6QhqiiSkl2hlWrw8+GU8f/H5Dp1X46jBQPVA0T5FjQLwc6/7lm/NF2pSADDu9nEYd/u4dl9/6ZmlHvvMTjPKbeUAADWnFqb6ClAEQM7J4WRO+Cf44+fTP6O2qBYBg9zL8ERqIpFudAetKnsVYvxi4C8dM1WcAAAVvklEQVT395jFJM+W1+78EdJRVGMjpBcl65JFKwG0R0sTKvuXNfVYzDBmdPusHlmmrKbJlbVNz+Q4jhOW1bFL7JD5y6D2b5oKLFARKHQiqXZUg+M4j16dAHDcdJwmSSY9hgIbIb3s5cEvY6p2arvTZ5uzRfNOAsCkGZOgk+sAuGtGF80Xuy1/BodBqHWxBga9QzyIWyVVCa/H3DkGKv+mbZlEBl+ZLwAIg82b9+ps7BRj5s14u+TtbsszIc1RYCOkl8k4GV6Pfh2zAma1K72lweIxYTLHcRgX2NTceLzmeJsdTtrLxVw4XHVYWCjVtNOE05+KJz1uti4qfvXHX3lco3FeycZgrJFphGNRvlHC8U2Vm2j2f9IjejSw3XbbbRg8eDBUKhX0ej0WLlyIkpKSnnxLQq4IMk6GV6NexcsRL7c4Fu1SP1b/6NG1P8InAtEa97M1J+/E3rK9sDZ0vnmPZzwOVR5Clb0KAOAn80PdJ3VosDeI0jVvQvTV+npcp3Hh08ZxcM2n3VJIFLgmoGmB0tUlqzudX0Ja06OB7cYbb8SmTZuQmZmJLVu2ICcnB3feeWdPviUhV5Q7Qu7AV6O+wkgfz3XNmrO6rDhefdzjWdr1QdcL674ZnUbsLN0pdProCEuDBXvL9iLfkg8AkDAJrBusqMuvw9i5Y4V0PONR43CPxfOV+Qrd+xs5eadQc2xskrS7mnp1yiVyDPcfLjSjplnSqIck6XY9Gth+//vfY8KECYiMjMTEiRORkpKCo0ePwumkueIIaaRX6vHx8I/xRvQbGK4e3mq6i+aLOFFzQhTclFIlZoTNEIKIucGMXaW7cLy6fU2TTt6JdEM6vir6SpinkrfzKFpahPr0ejzz9TOiiZKr7dVCM6U/84ex3IgGR1ONrjHoAU3P1qodTcMGdHIdOI4TrUjwZdWXl80nIR3Ra939a2pq8Mknn2DixImQy+UtprHb7bDbm/51ZzR6LnRIiLeaopuCKbopuFB/AbtrdmN/3X7k2fNEadKN6TA1mDAhaILQBd9X7ovZ+tk4WHEQlXZ3D8oMYwYyjZkI9wlHmCoMQcogaKQacBwHm8uGGkcNKm2VyLPkCU2HgHuWk8mRkxH6sXiwdqMsU5bw+sjSI9ixfQee/OpJxNzgHt/WWOMD3LORABCaNoGmYBftG+2ugYLhtPmSZ3iEdFGPB7YXX3wR//73v2G1WjFhwgTs2LGj1bQrVqzA8uXLWz1OyNUgRh2DmPAYLBq4CH/K+xN21e4SHS+yFuEr21eI18VjmO8wKKVK+Mh8MEs/C6nlqSiqLwLgnl2/yFqEImtRu953qO9QXB94PRRSRYvHLQ0W5FnyALibFF9a+xJk65r+hDh5J3JMOQDcHUgifSJhdBqFplE/mZ8QjOUSOXQKHWodtci15cLG26CSqEBId+hwU2RKSgo4jmvzJyMjQ0j/hz/8AadOncLu3bshlUrxm9/8ptUxNy+99BIMBoPwU1hY2GI6Qq4GEk6C5UOWY2bATI9jDt6BkzUnsblwMw6UH8DZurMori9GjF9MuzqjNJJxMsT4xeBXA3+FSSGTWg1qjDEcqToiNEPG+MaIltIBgDN1Z4QlaaI0UVBIFUg3ND0/C6wOFKUPVLi3XXChwFbQ7jwTcjkdrrE9//zzePDBB9tMEx3dNAtCcHAwgoODERsbixEjRiAiIgJHjx5FUlKSx3lKpRJKpdJjPyFXKzknx1+H/BUx6hisKV0jajYE3N3zC62FHsMBGqkkKozUjoS5wQw7bwdjTKgtBSmCEKQMglzS8qOB5s4bz6Ok3t2j2UfqgzG6MaLjlbZKIYhJIMEo7ShU2iqFpkvmZMhbm4epbzeN32ve8aSer2/Hp0FI+3Q4sIWEhCAkJKRTb8bz7nEtzZ+jEULaJuWkeDjsYUzRTsHKwpU4ZT7V7nNtvA055hxMD5suGk/WEemGdJysOSlsJwUniWp2BocBB8oPCDOVjA0YC7VMjdSSVGGfOk2N0gulouvyaBp03ji2jZDu0GPP2I4dO4Yff/wRN9xwAwICApCTk4MlS5Zg6NChLdbWCCFtG6Yehg9jP0SGNQNfVH6Bw8bDqHR6Trd1KYPTgB3FOzA+aDyGaIZcdoHRRjaXDceqj4k6hIzRjUG4T7iwXVZfhu8qvoONtwEAQpQhGOY3DPvK9sHgdM/8H6QIQtlXZQiICBBd3+xs6rUZKBM3UxLSFT0W2Hx8fLB161YsXboUFosFer0es2fPxp/+9CdqbiSkC4b7DMeSyCUAgCpnFTKtmTC6jGCMwUfqgzPmM/hPxX9E59h5O76v/B4XTBcw3H84BvkMEi0k2pylwYIsUxayjFmilQXidfFI0CUAcAe9M7VnkGnKFI4HKAKQoEvAztKdwqTHciaHKlWFn7/5GU/97ykhLWNMGBrgL/WHXiGetouQruixwBYfH4/9+/f31OUJIQCC5cEI1gaL9iXrksFxHDaUb/BIX2YrQ5mtDAqJAkGKIAQqA6GQKMAYg6nBhGp7NQxOg9CECLifhY0PHI8QVQgKrAUosBQg35IvakoMVgRDq9BiX/k+4VyX0YULz1xAISvEQxseQvSEpmfvdc461Lvcz9WG+wxvdy2SkPagZWsI8ULPhD+DAfIBWFW0ShSkGjl4B0ptpSi1lbZwthjP8/ih+gePiZgB93RZGpkGVY4qVDmajVdTBGHyyMnwP+jvcQ4AZBqbanrJ2uR2lIiQ9qNJkAnxUgsGLMCGuA3wl3oGl44MCWhAQ4tBDXCPlWs+w4mUk2JcwDjcPPBmYTHUS5kbzMJqBGqJGrcE3dLuvBDSHlRjI8SLjdKMwu743VhdshqfVHwiNB82b0bsDlq5FjF+MRjqOxRKaevP0BljOFJ5RBi2cFvQbfCT+nVrXgihwEaIl5NL5Fg8aDHuCrkLW6q24MvqL1HXUNexa3ByJAYnwsk7YXfZwcAgk8igk+sQqAyEWqq+/EUApBnShObPAfIBWKRf1OHyEHI5HOvupXe7kdFohFarhcFggL9/y80ahJCOcfAOpFvTkW5NR4Y1A7m2XJQ6SmFymeBgjlbPU0lVmB46XVhBuyMYY0irS8PpuqZ5Id8a+hYmaSd1qgzk6tOReEA1NkKuMgqJAgm+CUjwTRDtZ4yhwlmBfHs+bLwNMk4GjUSD1wpfQ2Z9JmwuG74p+QYJAQkYpR3V6nCBS5mdZhypOiLqqPLMwGcoqJEeQzU2QkibDA0GPJP9DM5Zzwn7/GR+iPOPa/WZWuM4tSxTFi6aLwpzTALAs+HP4jehv+mVvBPv0ZF4QIGNEHJZdt6ONaVr8HH5xx4dT/zl/ghU/DIeDgxmpxk1jhrR4G4ACJWHYknkEiT508xDpOMosBFCekSaJQ2rS1bjR9OP7T5HI9FgbvBcPK5/nHpAkk6jZ2yEkB4Rr4nHezHvIbc+F9uqt+G0+TSy6rOE5WoaBcoCMcJnBKZop+CWwFvgI/XpoxyTqxEFNkJIh0Wpo/DcoOcAuBcYLXIUwcbbIIEEAbIAhMhDaJos0mcosBFCukQukSNKFdXX2SBE0K8DW+PjP6PR2Mc5IYQQ0pca40B7uoX068BmMpkAABEREX2cE0IIIf2ByWSCVqttM02/7hXJ8zxKSkrg5+fXre31RqMRERERKCwsvKJ7W3pLOQDvKQuVo3+hcvQvXSkHYwwmkwkDBw6ERNL25AD9usYmkUgwaNCgHru+v7//Ff1L0shbygF4T1moHP0LlaN/6Ww5LldTa0TL1hBCCPEqFNgIIYR4FemyZcuW9XUm+oJUKkVycjJksn7dGntZ3lIOwHvKQuXoX6gc/UtvlKNfdx4hhBBCOoqaIgkhhHgVCmyEEEK8CgU2QgghXoUCGyGEEK/iFYHtu+++w5w5czBw4EBwHIcvv/yyzfRbt27FjBkzEBISAn9/fyQlJWHXrl2iNMuWLQPHcaKf4cOH92QxOlyO1NRUjzxyHIeysjJRutWrV2PIkCFQqVRITEzE8ePHe7IYHS7Hgw8+2GI5Ro0aJaTp7fuxYsUKXH/99fDz88OAAQMwb948ZGZmXva8L774AsOHD4dKpUJ8fDy++eYb0XHGGP785z9Dr9dDrVZj+vTpuHDhQk8VA0DnyvLBBx9g8uTJCAgIQEBAAKZPn+7xe9PSfZs9e3a/Ksf69es98qhSqURpevuedKYcycnJLX5Hbr31ViFNb9+Pd999F2PGjBEGWyclJeHbb79t85ze+n54RWCzWCxISEjA6tWr25X+u+++w4wZM/DNN9/g5MmTuPHGGzFnzhycOnVKlG7UqFEoLS0Vfg4dOtQT2Rd0tByNMjMzRfkcMGCAcOzzzz/Hc889h6VLl+Knn35CQkICZs2ahYqKiu7OvqCj5XjzzTdF+S8sLERgYCDmz58vSteb9+PgwYN48skncfToUezZswdOpxMzZ86ExWJp9ZwffvgB99xzDx555BGcOnUK8+bNw7x583Du3Dkhzeuvv4633noL7733Ho4dOwaNRoNZs2bBZrP1q7KkpqbinnvuwYEDB3DkyBFERERg5syZKC4uFqWbPXu26J589tln/aocgHuWi+Z5zM/PFx3v7XvSmXJs3bpVVIZz585BKpV6fEd6834MGjQIK1euxMmTJ3HixAncdNNNmDt3Ln7++ecW0/fq94N5GQBs27ZtHT5v5MiRbPny5cL20qVLWUJCQndmrUPaU44DBw4wAKy2trbVNOPHj2dPPvmksO1yudjAgQPZihUrui2vbenM/di2bRvjOI7l5eUJ+/r6flRUVDAA7ODBg62mueuuu9itt94q2peYmMh++9vfMsYY43mehYWFsb///e/C8bq6OqZUKtlnn33WMxlvQXvKcqmGhgbm5+fHNmzYIOx74IEH2Ny5c3sii+3SnnKsW7eOabXaVo/3h3vSmfvxxhtvMD8/P2Y2m4V9fX0/GGMsICCAffjhhy0e683vh1fU2LqK53mYTCYEBgaK9l+4cAEDBw5EdHQ07rvvPhQUFPRRDts2duxY6PV6zJgxA4cPHxb2OxwOnDx5EtOnTxf2SSQSTJ8+HUeOHOmLrLbL2rVrMX36dERGRor29+X9MBgMAODxO9LckSNHRJ81AMyaNUv4rHNzc1FWViZKo9VqkZiY2Kv3oz1luZTVaoXT6fQ4JzU1FQMGDEBcXBwWLVqE6urqbs1rW9pbDrPZjMjISERERHjUKPrDPenM/Vi7di0WLFgAjUYj2t9X98PlcmHjxo2wWCxISkpqMU1vfj8osAFYtWoVzGYz7rrrLmFfYmIi1q9fj507d+Ldd99Fbm4uJk+eLCyl0x/o9Xq899572LJlC7Zs2YKIiAgkJyfjp59+AgBUVVXB5XIhNDRUdF5oaKjHc7j+oqSkBN9++y0effRR0f6+vB88z2Px4sWYNGkSRo8e3Wq6srKyNj/rxv/35f1ob1ku9eKLL2LgwIGiPzqzZ8/Gf/7zH+zbtw+vvfYaDh48iJtvvhkul6snsi7S3nLExcXho48+wvbt2/Hf//4XPM9j4sSJKCoqAtD396Qz9+P48eM4d+6cx3ekL+5HWloafH19oVQq8cQTT2Dbtm0YOXJki2l78/txZc/N0g0+/fRTLF++HNu3bxc9m7r55puF12PGjEFiYiIiIyOxadMmPPLII32RVQ9xcXGIi4sTtidOnIicnBy88cYb+Pjjj/swZ523YcMG6HQ6zJs3T7S/L+/Hk08+iXPnzvX4M9be0JmyrFy5Ehs3bkRqaqqo48WCBQuE1/Hx8RgzZgyGDh2K1NRUTJs2rVvzfan2liMpKUlUg5g4cSJGjBiBNWvW4JVXXunRPLZHZ+7H2rVrER8fj/Hjx4v298X9iIuLw+nTp2EwGLB582Y88MADOHjwYKvBrbdc1TW2jRs34tFHH8WmTZs8qsiX0ul0iI2NRXZ2di/lrnPGjx8v5DE4OBhSqRTl5eWiNOXl5QgLC+uL7LWJMYaPPvoICxcuhEKhaDNtb92Pp556Cjt27MCBAwcuu4RSWFhYm5914//76n50pCyNVq1ahZUrV2L37t0YM2ZMm2mjo6MRHBzcr+7JpeRyOcaNGyfksS/vSWfKYbFYsHHjxnb9Y6437odCocCwYcNw7bXXYsWKFUhISMCbb77ZYtre/H5ctYHts88+w0MPPYTPPvtM1GW2NWazGTk5OdDr9b2Qu847ffq0kEeFQoFrr70W+/btE47zPI99+/a12g7elw4ePIjs7Ox2fWl7+n4wxvDUU09h27Zt2L9/P6Kioi57TlJSkuizBoA9e/YIn3VUVBTCwsJEaYxGI44dO9aj96MzZQHcPdReeeUV7Ny5E9ddd91l0xcVFaG6urpf3ZNLuVwupKWlCXnsi3vSlXJ88cUXsNvtuP/++y+btqfvR0t4nofdbm/xWK9+PzrU1aSfMplM7NSpU+zUqVMMAPvnP//JTp06xfLz8xljjKWkpLCFCxcK6T/55BMmk8nY6tWrWWlpqfBTV1cnpHn++edZamoqy83NZYcPH2bTp09nwcHBrKKiot+U44033mBffvklu3DhAktLS2PPPvssk0gkbO/evUKajRs3MqVSydavX8/Onz/PHn/8cabT6VhZWVm/KUej+++/nyUmJrZ4zd6+H4sWLWJarZalpqaKfkesVquQZuHChSwlJUXYPnz4MJPJZGzVqlUsPT2dLV26lMnlcpaWliakWblyJdPpdGz79u3s7NmzbO7cuSwqKorV19f3SDk6W5aVK1cyhULBNm/eLDrHZDIxxtz3+IUXXmBHjhxhubm5bO/eveyaa65hMTExzGaz9ZtyLF++nO3atYvl5OSwkydPsgULFjCVSsV+/vlnUVl78550phyNbrjhBnb33Xd77O+L+5GSksIOHjzIcnNz2dmzZ1lKSgrjOI7t3r27xTL05vfDKwJbY7f3S38eeOABxpi7G+zUqVOF9FOnTm0zPWOM3X333Uyv1zOFQsHCw8PZ3XffzbKzs/tVOV577TU2dOhQplKpWGBgIEtOTmb79+/3uO7bb7/NBg8ezBQKBRs/fjw7evRovyoHY+5uvWq1mr3//vstXrO370dL+QfA1q1bJ6SZOnWq6HeGMcY2bdrEYmNjmUKhYKNGjWJff/216DjP82zJkiUsNDSUKZVKNm3aNJaZmdlj5ehsWSIjI1s8Z+nSpYwxxqxWK5s5cyYLCQlhcrmcRUZGsscee6xH/8HUmXIsXrxY+N0PDQ1lt9xyC/vpp59E1+3te9LZ362MjAwGQAgczfXF/Xj44YdZZGQkUygULCQkhE2bNk2Ut778ftCyNYQQQrzKVfuMjRBCiHeiwEYIIcSrUGAjhBDiVSiwEUII8SoU2AghhHgVCmyEEEK8CgU2QgghXoUCGyGEEK9CgY0QQohXocBGCCHEq1BgI4QQ4lUosBFCCPEq/w+E01N8oDBQcAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -443,46 +511,49 @@ } ], "source": [ - "import matplotlib.pyplot as plt\n", + "edges_embs = AverageEmbedder(keyed_vectors=model.wv)\n", + "V = np.matrix([edges_embs[str(x), str(y)] for x, y in G.edges()])\n", + "fig, ax = plot_edge_embeddings(V, list(G.edges()))\n", "\n", - "fig, ax = plt.subplots(figsize=(10,10))\n", - "\n", - "for x in G.nodes():\n", - " \n", - " v = model.wv[str(x)]\n", - " ax.scatter(v[0],v[1], s=1000)\n", - " ax.annotate(str(x), (v[0],v[1]), fontsize=16)\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Edge2Vec" + "ax.set_title(\"AverageEmbedder\")\n", + "plt.savefig(FIGURES_DIR / \"AverageEmbedder.png\", format=\"png\")" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 66, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAHDCAYAAACnJFQ8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3gU1eL/8fdmk2x6QkghQKgC0gSMEkroKKKi2CtFrg2Rr4heL/hTFAtcO15FEb2igh2QIghyAUUQQTpIkdAJAZKQXjbJ7vz+WLNhSYBsCsLyeT3PPnf3zJmZM7vefJiZc86YDMMwEBER8SBef3cDREREqpvCTUREPI7CTUREPI7CTUREPI7CTUREPI7CTUREPI7CTUREPI7CTUREPI7CTUREPI7CTS4IQ4cOpVGjRpVeNygoqHob5KZPPvkEk8nE/v37/9Z2VIeSY1m3bl2N76uiv/v+/fsxmUx88sknNd4muTAo3KRKvvnmG0wmE999912ZZe3atcNkMrF8+fIyyxo0aECXLl3ORRMrLC8vj+eff56ffvrpnOyvZ8+etGnT5ox1kpOTGTNmDL169SI4OBiTyXTa9jVq1AiTyVTu65prrqmBIxA5f3n/3Q2QC1tCQgIAK1eu5KabbnKWZ2VlsW3bNry9vVm1ahW9evVyLjt06BCHDh3izjvvrPB+PvzwQ+x2e/U1vBx5eXmMHz8ecATP+WDXrl288sorNGvWjLZt27J69eoz1m/fvj1PPPFEmfK6devWVBNFzksKN6mSunXr0rhxY1auXOlSvnr1agzD4LbbbiuzrORzSTBWhI+PT9UbewGKi4sjLS2N8PBwZs6cyW233XbG+vXq1ePee+89R63zXLm5uQQGBv7dzZAq0GVJqbKEhAQ2btxIfn6+s2zVqlW0bt2a/v3789tvv7mcda1atQqTyUTXrl0BmDFjBnFxcfj7+xMeHs6dd97JoUOHXPZR3r2XtLQ0Bg0aREhICGFhYQwZMoTNmzef9t5LUlISAwcOJCgoiMjISJ588klsNhvguGcTGRkJwPjx452X855//nnn+jt37uTWW28lPDwcPz8/rrjiCubNm1dmP3/88Qe9e/fG39+f+vXr89JLL1X6rDM4OJjw8PBKrXs6JfcgDx48yPXXX09QUBD16tVj8uTJAGzdupXevXsTGBhIw4YN+eKLL8rdTl5eHg899BC1a9cmJCSEwYMHk56eXqbeDz/8QLdu3QgMDCQ4OJjrrruOP/74o0y9OXPm0KZNG/z8/GjTpk25l7oBMjIyGDp0KKGhoc7fPSMjo9y6FfnNSu4h/vzzzzzyyCNERUVRv379M36Hcv5TuEmVJSQkUFRUxJo1a5xlq1atokuXLnTp0oXMzEy2bdvmsuzSSy+ldu3avPzyywwePJhmzZrx5ptvMmrUKJYuXUr37t1P+wcLwG63M2DAAL788kuGDBnCyy+/THJyMkOGDCm3vs1mo1+/ftSuXZvXX3+dHj168MYbbzB16lQAIiMjef/99wG46aabmD59OtOnT+fmm28GHIHVqVMnduzYwZgxY3jjjTcIDAxk4MCBLn+Ejx49Sq9evdi0aRNjxoxh1KhRfPbZZ7z99tuV/4LdUFRURGpqapnXyf/wKPk++vfvT2xsLK+++iqNGjXi0Ucf5ZNPPuGaa67hiiuu4JVXXiE4OJjBgwezb9++Mvt69NFH2bFjB88//zyDBw/m888/Z+DAgZz8FK3p06dz3XXXERQUxCuvvMKzzz7L9u3bSUhIcOlc8+OPP3LLLbdgMpmYOHEiAwcO5L777ivTacUwDG688UamT5/Ovffey0svvcThw4fL/d0r+puVeOSRR9i+fTvjxo1jzJgx7n71cr4xRKrojz/+MADjxRdfNAzDMIqKiozAwEDj008/NQzDMKKjo43JkycbhmEYWVlZhtlsNh544AFj//79htlsNl5++WWX7W3dutXw9vZ2KR8yZIjRsGFD5+dZs2YZgDFp0iRnmc1mM3r37m0AxrRp01zWBYwXXnjBZT8dOnQw4uLinJ9TUlIMwHjuuefKHGOfPn2Mtm3bGgUFBc4yu91udOnSxWjWrJmzbNSoUQZgrFmzxll2/PhxIzQ01ACMffv2Oct79OhhtG7dusy+Tufbb781AGP58uXlLm/YsKEBlPuaOHGis17J9zFhwgRnWXp6uuHv72+YTCbjq6++cpbv3LmzzHcybdo0AzDi4uKMwsJCZ/mrr75qAMbcuXMNwzCM7OxsIywszHjggQdc2nn06FEjNDTUpbx9+/ZGTEyMkZGR4Sz78ccfDcDld58zZ44BGK+++qqzrLi42OjWrVuZ372iv1nJ8SQkJBjFxcXlfrdy4dGZm1RZy5YtqV27tvNe2ubNm8nNzXX2huzSpQurVq0CHPfibDYbCQkJzJ49G7vdzu233+5yllGnTh2aNWtWbi/LEosWLcLHx4cHHnjAWebl5cWIESNOu87DDz/s8rlbt27s3bv3rMd34sQJli1bxu233052draznWlpafTr14/du3eTlJQEwMKFC+nUqRMdO3Z0rh8ZGck999xz1v1Uh/j4eJYsWVLmddddd5Wpe//99zvfh4WF0aJFCwIDA7n99tud5S1atCAsLKzc7+nBBx90uRc6fPhwvL29WbhwIQBLliwhIyODu+66y+X3NZvNxMfHO3/f5ORkNm3axJAhQwgNDXVu76qrrqJVq1Yu+1y4cCHe3t4MHz7cWWY2mxk5cqRLPXd+sxIPPPAAZrP59F+uXFDUoUSqzGQy0aVLF1asWIHdbmfVqlVERUVxySWXAI5we/fddwGcIZeQkMDrr7+OYRg0a9as3O2eqRPJgQMHiImJISAgwKW8ZJ+n8vPzc95TK1GrVq1y7xGdKjExEcMwePbZZ3n22WfLrXP8+HHq1avHgQMHiI+PL7O8RYsWZ91PdYiIiKBv375nrVfe9xEaGkr9+vUxmUxlysv7nk793YKCgoiJiXFebty9ezcAvXv3LrcNISEhgOO3LG974PjeNmzY4Pxc8rufOm7x1O/Xnd+sROPGjcutJxcmhZtUi4SEBObPn8/WrVud99tKdOnShX/+858kJSWxcuVK6tatS5MmTbDb7ZhMJn744Ydy/8VcnQOvq/Iv8pLOIE8++ST9+vUrt87pQvV8dbrv43Tlxkn30Sqq5HubPn06derUKbPc27vm/vxU5jfz9/evsfbIuadwk2px8ni3VatWMWrUKOeyuLg4LBYLP/30E2vWrOHaa68FoGnTphiGQePGjWnevLlb+2vYsCHLly8nLy/P5ewtMTGx0sdw6hlLiSZNmgCOM8mznRU1bNjQecZysl27dlW6Xeer3bt3u4xfzMnJITk52eX3BYiKijrj99awYUPn9k516vfWsGFDli5dSk5Ojss/fk6t585vJp5J99ykWlxxxRX4+fnx+eefk5SU5HLmZrFYuPzyy5k8eTK5ubnOILz55psxm82MHz++zJmBYRikpaWddn/9+vWjqKiIDz/80Flmt9ud3dkroyQkT+2lGRUVRc+ePfnggw9ITk4us15KSorz/bXXXstvv/3G2rVrXZZ//vnnlW7X+Wrq1KkUFRU5P7///vsUFxfTv39/wPEbhYSEMGHCBJd6JUq+t5iYGNq3b8+nn35KZmamc/mSJUvYvn27yzrXXnstxcXFzp6t4Oj5+c4777jUc+c3E8+kMzepFr6+vlx55ZX88ssvWCwW4uLiXJZ36dKFN954Ayg9y2vatCkvvfQSY8eOZf/+/QwcOJDg4GD27dvHd999x4MPPsiTTz5Z7v4GDhxIx44deeKJJ0hMTOTSSy9l3rx5nDhxAjj9WdiZ+Pv706pVK77++muaN29OeHg4bdq0oU2bNkyePJmEhATatm3LAw88QJMmTTh27BirV6/m8OHDbN68GYCnnnqK6dOnc8011/DYY48RGBjI1KlTadiwIVu2bCmzz5SUFF566aUy5Y0bN3Z2QilZXjI2bPr06c7OO88884zLeklJScyYMaPM9oKCghg4cKDb38mZFBYW0qdPH26//XZ27drFe++9R0JCAjfccAPguKf2/vvvM2jQIC6//HLuvPNOIiMjOXjwIAsWLKBr167Oe7ETJ07kuuuuIyEhgWHDhnHixAneeecdWrduTU5OjnOfAwYMoGvXrowZM4b9+/fTqlUrZs+e7RKKJSr6m4mH+ht7aoqHGTt2rAEYXbp0KbNs9uzZBmAEBweX6W49a9YsIyEhwQgMDDQCAwONSy+91BgxYoSxa9cuZ51ThwIYhqPr/t13320EBwcboaGhxtChQ41Vq1YZgEt39iFDhhiBgYFl2vTcc88Zp/5f4NdffzXi4uIMX1/fMl3g9+zZYwwePNioU6eO4ePjY9SrV8+4/vrrjZkzZ7psY8uWLUaPHj0MPz8/o169esaLL75o/Pe//y13KACn6brfp08fZ73T1Tm17WcaCnDyd3e67+N0QxMaNmxoXHfddc7PJV3nf/75Z+PBBx80atWqZQQFBRn33HOPkZaWVmb95cuXG/369TNCQ0MNPz8/o2nTpsbQoUONdevWudSbNWuW0bJlS8NisRitWrUyZs+eXe7vnpaWZgwaNMgICQkxQkNDjUGDBhkbN24sMxTAMCr2m5Ucz++//16m7XLhMhlGJe4Ui5yn5syZw0033cTKlSudM6CIyMVH4SYXrPz8fJcebjabjauvvpp169Zx9OhR9X4TuYjpnptcsEaOHEl+fj6dO3fGarUye/Zsfv31VyZMmKBgE7nI6cxNLlhffPEFb7zxBomJiRQUFHDJJZcwfPhwHn300b+7aSLyN1O4iYiIx9E4NxER8TgKNxER8TgXRIcSu93OkSNHCA4OrtTgXBERufAZhkF2djZ169bFy+vM52YXRLgdOXKE2NjYv7sZIiJyHjh06NBZn5Z+QYRbcHAw4DigksdkiIjIxSUrK4vY2FhnJpzJBRFuJZciQ0JCFG4iIhe5ityeuiDCTUQubFa7lcT8RLbnbeeQ9RBWuxVvkzeRPpG0DGhJy4CWhHjrH65SfRRuIlJjdubt5NuUb1mUvogCe8EZ63YO6cxtEbeREJqA2VT5h8uKgMJNRGpAalEqEw9O5KfMnyq8zuqs1azOWk1jv8Y81/A52ga2rbkGisdTuIlItVqWvoyXDr5Epq30GWsBRd50OVaHSzPCaJIVQkCxN0Vedg4H5rArLJPfoo9xNCAPgH0F+xi2axiDowfzSN1HdBYnlXJBTL+VlZVFaGgomZmZ6lAich6bnTqbCQcnYOD4sxJm9WXIrhZcdTiWANvp/y1tw+D3qON82mIXu8JKn4Ter1Y/Xmj0At4m/Ttc3MsC/RcjItVi8YnFvHzwZefnHkfqMmprW0ILLWdd14yJTsejuTIlkq+b7mFai53YvAwWpy/Gz8uPZxs8qwkcxC2afktEqizZmsxLB19yfr49sSnj1sdVKNhOZja8uDuxGS/+3hFvuyPM5qbNZUn6kmptr3g+hZuIVIlhGLx48EXy7I57Zn0P1+ehHa0wUfkzrU7Ho3lqUwfn538f+jdpRWlVbqtcPBRuIlIla7LXsCZ7DQCR+X7839a2VQq2En2T6tP9SAwAmbZMPjv2WZW3KRcPhZuIVMm3Kd863w//ozVBxT7l1nvrl18Ie/55xvzwg7Ns34kT3PPVVzR99VViJ0xg6DffcDwnx7n8/7a1xcfm+DM1L23eWcfKiZRQuIlIpaUWpbIicwUAtfP96HY0ptx6G5KSmLZ+Pa2jo51luYWF3DR9OiZg3pAhLPrHPyi02bjziy+w2+0AhFv96HmkLgBZtiyWpS+r2QMSj6FwE5FK25K7BTuOILoqqT5mo+yflByrlQdmzeI/AwYQ5ufnLF9z8CAHMzJ4b+BAWkdH0zo6mvdvuomNR46wYt8+Z71+h0qfCLIpd1MNHo14EoWbiFTazrydzvct02uVW+fJhQu5unlzejZt6lJutdkwARbv0hFJft7eeJlMrD540Fl2aUYtTH+Nxt2Rt6P6Gi8eTeEmIpW2N3+v8/0lmWUH1c7aupUtyck816dPmWVX1q9PoK8vzy1ZQl5hIbmFhTzz44/YDINjJ913C7B5Uy830LG/gr1ltiNSHg3iFpFKy7fnO98HF/m6LDucmcmYRYv4btAg/HzKdjKJCAzkk9tuY/SCBXywZg1eJhO3tG1Lu5gYvE4ZsO3Ydi4F9gIMw9CAbjkrhZuIVNrJ8z7aTK4z+W06coSU3Fx6fPBBaR3D4NcDB/hw7VqOP/ssvS+5hE2PPUZabi5mLy/C/P1p/tprNGrTxmVbNpPjvp4Zs4JNKkThJiKVVsu79D7b0YA8QjNLz956NGnCr8OHu9QfMXcuzSIiGNW1K2av0rsitQMdlx1/3ruXlNxc+rdo4VxmYJD816TKYd5hNXIc4nkUbiJSaZcGXMr3J74HYFdYBi0yS8Mn2GKh1Uld/wECfHwI9/d3ls/YuJEWERFEBAay9tAhxixaxCOdO9MsIsK5TnJAHtm+Rc79iVSEwk1EKq1lQEvn+98jj3PDgUZurZ+YmsoL//sf6fn5NAgL44lu3RjRubNLnd8jj5e7P5EzUbiJSKW1DmxNhE8EqUWprK5zlBS/fCIL/E9bf8F997l8fv6qq3j+qqtOW9/AYH6j/c7PPcN6VrXJcq78+Sf89husWweJiWC1go8P1KsHV1wBV14Jl18OXjXTaV/hJiKV5mPy4ebaNzP16FTsJvjikt08tu2yatv+r9FH2RuSDUDbwLY6czvfFRbCzJnw3nuwatXp6338seN/mzWD4cPhvvsgrHrvp2qcm4hUyc0RN2MxOR5tM7fxfjbVTq2W7Wb5FPLWZVucn++OvLtatis1ZP16iIuDe+45c7CdbPduGD0amjeHWbOqtTk6cxORKon0jeTReo/yxuE3AJjQYQP/WZVAnfyASm+z2GRnYocNnPCzAtA1pCtX1Tr95Uv5GxkG/Pvf8OyzYLM5izObteDwdTeR3rYdmS1aURwQiFehleB9ewjbtpm6SxcT9dtKR+WUFLj1VkcwfvQRnDRNW2WZDMMwzl7t7+XOo8VF5NyzG3Ye3P0gG3M2AlAnL4B//9aJBrlBbm8r31zMi5ev57c6xwAIMgfxbctvifKNqtY2SzUwDHjySXjzTWdRRsvWbBkzntSOneEsYxKD9+ym9ZsTqLt0cWlhnz4wfz74l713604W6LKkiFSZl8mLVxu/SkNLQ8Ax5u2hHj8zs/Ee7FT8388baqfwj54/OYPNYrLwZpM3FWznq1dfdQm2HY+MYvk3C0mN73LWYAPIbtqM3979mLWvvUtxwF9n+kuXOs7gqnjepTM3Eak2KUUpjNg9gj0Fe5xl9XMCGXCgEX0P16dWoaXMOgXmYtZGHWduw/1sjCy9XxfgFcBbTd/iiuArzkXTxV2bNjl6PBYXA7DhxdfYf9s9ld5c+MZ1dP3HXfjk5ToKPv7Y0dHkJO5kgcJNRKpVvi2fd468w9cpX5dZFpXnT9OsEAKKvSnysnM4KIf9QTnYvVz/DMUFxTGu4TjqW+qfq2aLO4qLHd35N28GYOdD/8f2x8dUebMxyxbT+ZG/Ai0kBLZvdwwd+IvCTUT+dhuyN/BB8gesy1lX4XUaWBpwb9S93BRxE14m3TU5b82a5egAAmQ2b8mymT9g+PqeZaWKifvXYzSc+9fT3Z96Cl55xblM4SYi5419+fuYlzaPLblb2JW/y+VJAmbMNPFvQquAVlxd62o6BndUqF0I+vSBZY6noq/86AuOJ/Qst9rsqe/w+ZsTuW7w/Qx7+gUAxg26hT9+X+1S7+o7BvHQeEeIWdJSuabnFZiLCqF2bTh82Nl70p0s0FAAEalRjf0b81j9xwCwGTbSitKw2q14e3lTy7sWfl5V7/Yt59DBg85gy27YhONdupdbLXHrJpZ8PYOGLVqVWdb3tnu48//+6fxsOalnpLV2BEnXXE+D+bMhLQ2+/955lugO/RNJRM4Zs8lMlG8UsX6xxPjGKNguRGvXOt8mXXtDudNn5efmMunJR3n4xdcICgkts9zi70+tyCjnKyAo2GX54WtvLP2wZk2lmul2uK1YsYIBAwZQt25dTCYTc+bMqfC6q1atwtvbm/bt27u7WxEROR+sX+98m962XblVPnrhaeJ69qHdac7qfpk/m6GdWjNqQC9mvDEBa36ey/L0Nidt96T9ucPty5K5ubm0a9eOYcOGcfPNN1d4vYyMDAYPHkyfPn04duyYu7sVEZHzwZ7SYR6Zzco+gmjlgjns3b6VV2YuLHf1hOtvIrJufcKjojnw5w6mv/4yR/bv4al3/uusY42MwlorHEv6CZf9ucPtcOvfvz/9+/d3e0cPP/wwd999N2az2a2zPREROY9Yrc63Nn/XKdZSk5P4eMI4xn38Fb6W8i85X33Hvc73DVu0pFZkFM8PvZ2jB/dTp0Ej57Ji/wBHuJ20P3eckw4l06ZNY+/evcyYMYOXXnrprPWtVivWkw4oKyurJpsnIiIVdVKXf69TgmfPH1vITEvlnzf3c5bZbTa2r/uNHz6fxldb9mM2m13WaXbZ5QAkH3ANN3Ohtcz+3FHj4bZ7927GjBnDL7/8grd3xXY3ceJExo8fX8MtExERtzVo4Hwbsnc3+fVKB9pf1qkbb81b5lL93acfp16TS7jp/hFlgg1g/85tANSKKp1izTf9BH6pKWX2544aDTebzcbdd9/N+PHjad68eYXXGzt2LKNHj3Z+zsrKIjY2tiaaKCIi7rj8cufbsG2bOdatl/Ozf1AQDZq73ofz8w8gOKwWDZpfytGD+/nl+++4vHsfgsNqceDP7Uyb+DytruhEo5OGDIRt31q6gbi4SjWzRsMtOzubdevWsXHjRh599FEA7HY7hmHg7e3Njz/+SO/evcusZ7FYsFjKzkEnIiJ/syuvdL6t9+MCdj38WIUmSQbw9vFhy6+/8P2nH2HNz6N2TF06XX0ttw4f5VKv7o8ndUY5aX/uqNFwCwkJYevWrS5l7733HsuWLWPmzJk0bty4JncvIiLVrXlzR+D8/jthO/4gfNN6TnQ4/eTWL0wvfQhpREw9Xpwx+4yb987OosH8v9YJCoIbbqhUM90Ot5ycHBITE52f9+3bx6ZNmwgPD6dBgwaMHTuWpKQkPvvsM7y8vGjTpo3L+lFRUfj5+ZUpFxGRC8Qjjzhn7G/9xgR++WxmuYO5K6Pl5Lfwzvtr3NugQY4JlCvB7dasW7eODh060KFDBwBGjx5Nhw4dGDduHADJyckcPHiwUo0REZELwB13wF9X3iLX/UbTGR9Xy2bDN6zlkk+nOj5YLDBq1JlXOANNnCwiIu776Sfo5ehMYvfxYfW7H3OsR59Kby5o3x66D7q5tJfkK684ngpwEj2JW0REalbPns4zK6+iIjo/OoyGM7+o1BO0a69b4xpsXbvCE09UqXkKNxERqZzXX3dcosQRcHHPPEmXhwcTeHB/hVb3TT/BZS8/6xpsl10G8+ZBOWPi3KFH3oiISOWYzTBjBoSFwQcfAFDn56VEr1jGsW69OHT9TaS3aUdOoyaODieGgf+xZML+2ELd/y2i/sJ5mK0Fpdvr3h2++w7Cw6vcNN1zExGRqps/Hx58EI4eLbPIZvGj2M8fc5G1tCfkyfz8YMIE+L//O+MZm+65iYjIuTVgAGzfDhMnQsOGLovM1gIsmellgy001HHf7o8/4PHHq3wp8mQ6cxMRkepls8Hy5fDbb7BuHSQmQkGBYxLkevXgiiscr2uugcDACm/WnSzQPTcREaleZjP07et4/U10WVJERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyOwk1ERDyO2+G2YsUKBgwYQN26dTGZTMyZM+eM9WfPns1VV11FZGQkISEhdO7cmcWLF1e6wSIiImfjdrjl5ubSrl07Jk+eXKH6K1as4KqrrmLhwoWsX7+eXr16MWDAADZu3Oh2Y0VERCrCZBiGUemVTSa+++47Bg4c6NZ6rVu35o477mDcuHEVqp+VlUVoaCiZmZmEhIRUpqkiInKBcycLzvk9N7vdTnZ2NuHh4ed61yIicpHwPtc7fP3118nJyeH2228/bR2r1YrVanV+zsrKOhdNExERD3FOz9y++OILxo8fzzfffENUVNRp602cOJHQ0FDnKzY29hy2UkRELnTnLNy++uor7r//fr755hv69u17xrpjx44lMzPT+Tp06NA5aqWIiHiCc3JZ8ssvv2TYsGF89dVXXHfddWetb7FYsFgs56BlIiLiidwOt5ycHBITE52f9+3bx6ZNmwgPD6dBgwaMHTuWpKQkPvvsM8BxKXLIkCG8/fbbxMfHc/ToUQD8/f0JDQ2tpsMQEREp5fZlyXXr1tGhQwc6dOgAwOjRo+nQoYOzW39ycjIHDx501p86dSrFxcWMGDGCmJgY5+uxxx6rpkMQERFxVaVxbueKxrmJiMh5Pc5NRESkpincRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE4yjcRETE47gdbitWrGDAgAHUrVsXk8nEnDlzzrrOTz/9xOWXX47FYuGSSy7hk08+qUxbRUREKsTtcMvNzaVdu3ZMnjy5QvX37dvHddddR69evdi0aROjRo3i/vvvZ/HixW43VkREpCK83V2hf//+9H1yFDcAACAASURBVO/fv8L1p0yZQuPGjXnjjTcAaNmyJStXruStt96iX79+7u5eRETkrGr8ntvq1avp27evS1m/fv1YvXr1adexWq1kZWW5vERERCqqxsPt6NGjREdHu5RFR0eTlZVFfn5+uetMnDiR0NBQ5ys2NrammykiIh7kvOwtOXbsWDIzM52vQ4cO/d1NEhGRC4jb99zcVadOHY4dO+ZSduzYMUJCQvD39y93HYvFgsViqemmiYiIh6rxM7fOnTuzdOlSl7IlS5bQuXPnmt61iIhcpNwOt5ycHDZt2sSmTZsAR1f/TZs2cfDgQcBxSXHw4MHO+g8//DB79+7lqaeeYufOnbz33nt88803PP7449V0CCIiIq7cDrd169bRoUMHOnToAMDo0aPp0KED48aNAyA5OdkZdACNGzdmwYIFLFmyhHbt2vHGG2/w0UcfaRiAiIjUGJNhGMbf3YizycrKIjQ0lMzMTEJCQv7u5oiIyN/AnSw4L3tLioiIVIXCTUREPI7CTUREPI7CTUREPI7CTUREPI7CTUREPI7CTUREPI7CTUREPE6NT5x80UpJgS1bICsLTCYIDYX27aFWrb+7ZSIiHk/hVp1+/x2mTIH//Q9OmoLMRZMm0K8fPPwwXHbZuW2fiMhFQpclq8Nvv0HHjo7Xxx+fPtgA9u6F99+Hdu2ge3fYvPnctVNE5CKhM7eqKCiAcePgjTfAbncWGz4+2OrWxRYTgxEYCIApOxtzcjLm5GRMxcWOir/8AldcAc8+C08/Dd76OUREqoP+mlZWdjbceCMsX+4sskVFYY2Pp6htW/D1LX+9ggJ8t2zB97ffMJ84AcXF8NxzsH49fP01+PmdowMQEfFceipAZRQUQP/+8NNPABhmM9aePbF26QJmc8W2UVyM5eefsaxciankJ7jhBpg5E3x8aqbdIiIXMD0VoKaNGVMabH5+5A4dirVbt4oHG4C3N9Y+fcgdNAijJMzmzYOJE6u/vSIiFxmFm7t++QX+8x8ADG9vcu+9F1tsbKU3Z2vShNy77sIwmRwFL76oTiYiIlWkcHOHYcAjjzj+Fyjo3Rtb/fpV3qytSROsCQmOD8XFMHJklbcpInIxU7i5Y8UK2LYNgOKYGAo7dSq32lu//ELY888z5ocfnGXHsrN5cPZsmr/2GnVffpnuU6Ywd/t253Jrjx7Yatd2fPjlF8cAcBERqRSFmzvee8/5trBLF/Aq+/VtSEpi2vr1tI6Odil/+LvvSExN5cu77uLX4cMZ0LIl9337LZuTkx0VvL0pjI8vXeH992vkEERELgYKt4oyDPjxRwDs/v4UtWxZpkqO1coDs2bxnwEDCDulS//aQ4d4MD6euPr1aRQezj979CDUz4/NR4446xRedhlGyVi3xYtr7lhERDycwq2i9u6FjAwARweScgZcP7lwIVc3b07Ppk3LLOsYG8t327aRnpeH3W5n1tatWIuLSWjUqLSSnx+2mBjH+3374MSJmjgSERGPp0HcFbVpk/OtrW7dMotnbd3KluRklj3wQLmrT7vtNobNnEnjV1/F28uLAB8fZtxxB01K7rOdtG3vQ4dK99m7d/Udg4jIRULhVlF/nbUB2IODXRYdzsxkzKJFfDdoEH6nGYD98vLlZBYUMHfwYMIDAliwcydDv/2WH4YNc7k/57LtzMzqPQYRkYuEwq2izjCRy6YjR0jJzaXHBx84y2yGwa8HDvDh2rWsGzmSD9euZfUjj9AyKgqAtnXqsPrAAT5au5a3Bgwof8MnzVcpIiIVp3CrqJOmevHKyXFZ1KNJE34dPtylbMTcuTSLiGBU167kFRU51isZqP0Xs5cX9lNC0ys3t9x9iohIxSncKuqkZ6+ZS7rv/yXYYqHVKV3/A3x8CPf3p1V0NEU2G03Cwxk1fz4vXX014QEBfL9zJ8v37OHru+92Wc98Uu9J2rWr/uMQEbkIKNwqqnlzCAqCnBzMhw+DzVbhuSR9zGa+vecenv/f/7jzyy/JLSykcXg47990E1c3b15asbCwNDhjY+GvS5giIuIehVtFeXk5ei7Om4dXTg7ef/5JcTlj3UosuO8+l89Na9dm+h13nHEXPtu2YSosdHzo06fKTRYRuVhpnJs7TrqvZlm9+oydTNxms2FZs6bcfYmIiHsUbu64+mr4a4C298GD+GzYUG2b9l29GvOxY44PcXFw5ZXVtm0RkYuNws0dXl7wzjvOj/6LF+N1/HiVN2tOSsKv5IneJpPjkTqn9KwUEZGKU7i5q39/+Ot+mqmwkMDPPqtSwJmTkgiYMQOTzeYoGD0aunSpjpaKiFy0FG6VMWmS49IhjjFvQR99hM/69e7dg7Pb8V29msBp0/DKz3eUde8OL71UAw0WEbm4qLdkZYSEwKJF0K8fbNiAqbCQgPnzKd68GWvnzhQ3b376YQLFxfjs3Invr7/iffKYtu7dYf58OOVpAiIi4j6FW2VFRMDy5TBqFEybBjg6mXgfPIg9KAhbbCy2mBjsQUFgGHhlZ2NOTsZ86BBeeXmu2xo5El55Bfz9/4YDERHxPCbDqM7+7DUjKyuL0NBQMjMzCTkfp6RauNARUHv3urdey5aOh5L26FEz7RIR8SDuZEGl7rlNnjyZRo0a4efnR3x8PGvXrj1j/UmTJtGiRQv8/f2JjY3l8ccfp6CgoDK7Pj9dey3s3u0IuRtucMxkcjqhoXDrrbBsGfzxh4JNRKQGuH1Z8uuvv2b06NFMmTKF+Ph4Jk2aRL9+/di1axdR5UwX9cUXXzBmzBg+/vhjunTpwp9//snQoUMxmUy8+eab1XIQ5wUvL0dPyv79HVNz7d4NmzdDVpajW39oKLRv7xgn56V+PCIiNcnty5Lx8fFceeWVvPvuuwDY7XZiY2MZOXIkY8aMKVP/0UcfZceOHSxdutRZ9sQTT7BmzRpWrlxZoX2e95clRUSkxtXYZcnCwkLWr19P3759Szfg5UXfvn1ZvXp1uet06dKF9evXOy9d7t27l4ULF3Lttde6s2sREZEKc+uyZGpqKjabjehTHu8SHR3Nzp07y13n7rvvJjU1lYSEBAzDoLi4mIcffpinn376tPuxWq1YrVbn56ysLHeaKSIiF7kav/nz008/MWHCBN577z02bNjA7NmzWbBgAS+++OJp15k4cSKhoaHOV2xsbE03U0REPIhb99wKCwsJCAhg5syZDBw40Fk+ZMgQMjIymDt3bpl1unXrRqdOnXjttdecZTNmzODBBx8kJycHr3I6V5R35hYbG6t7biIiF7Eau+fm6+tLXFycS+cQu93O0qVL6dy5c7nr5OXllQkw81+zd5wuVy0WCyEhIS4vERGRinJ7KMDo0aMZMmQIV1xxBR07dmTSpEnk5uZy31+TCQ8ePJh69eoxceJEAAYMGMCbb75Jhw4diI+PJzExkWeffZYBAwY4Q05ERKQ6uR1ud9xxBykpKYwbN46jR4/Svn17Fi1a5OxkcvDgQZcztWeeeQaTycQzzzxDUlISkZGRDBgwgJdffrn6jkJEROQkmn5LREQuCDU+/ZaIiMj5TOEmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIeR+EmIiIep1LhNnnyZBo1aoSfnx/x8fGsXbv2jPUzMjIYMWIEMTExWCwWmjdvzsKFCyvVYBERkbPxdneFr7/+mtGjRzNlyhTi4+OZNGkS/fr1Y9euXURFRZWpX1hYyFVXXUVUVBQzZ86kXr16HDhwgLCwsGo5ABERkVOZDMMw3FkhPj6eK6+8knfffRcAu91ObGwsI0eOZMyYMWXqT5kyhddee42dO3fi4+NTqUZmZWURGhpKZmYmISEhldqGiIhc2NzJArcuSxYWFrJ+/Xr69u1bugEvL/r27cvq1avLXWfevHl07tyZESNGEB0dTZs2bZgwYQI2m82dXYuIiFSYW5clU1NTsdlsREdHu5RHR0ezc+fOctfZu3cvy5Yt45577mHhwoUkJibyyCOPUFRUxHPPPVfuOlarFavV6vyclZXlTjNFROQiV+O9Je12O1FRUUydOpW4uDjuuOMO/t//+39MmTLltOtMnDiR0NBQ5ys2Nramm1k5Nhvk5EB2NhQX/92tERGRv7gVbhEREZjNZo4dO+ZSfuzYMerUqVPuOjExMTRv3hyz2ewsa9myJUePHqWwsLDcdcaOHUtmZqbzdejQIXeaWXOKimDWLHjwQYiLA39/CA6GkBDw84N27WDYMPjiCzjpzFNERM4tt8LN19eXuLg4li5d6iyz2+0sXbqUzp07l7tO165dSUxMxG63O8v+/PNPYmJi8PX1LXcdi8VCSEiIy+tvlZcHL74IjRrBrbfChx/Chg2OsCths8GWLTBtGtxzD9SvD08/DZmZf1uzRUQuVm5flhw9ejQffvghn376KTt27GD48OHk5uZy3333ATB48GDGjh3rrD98+HBOnDjBY489xp9//smCBQuYMGECI0aMqL6jqEkrV0L79jBuHBw54iw2AFtEBMWNG1PUpAm2qCgMk6l0vdRUmDgR2rSBxYvPfbtFRC5ibo9zu+OOO0hJSWHcuHEcPXqU9u3bs2jRImcnk4MHD+LlVZqZsbGxLF68mMcff5zLLruMevXq8dhjj/Gvf/2r+o6iprz1FjzxBPw1WsIwmShu0YLCuDiKGzQAi8W1fmEh5sOH8d2wAZ/t2zHZ7XD4MFxzDTz7LIwfDycH4HnOMAw25W5iY85GdubtZG/BXgrsBZhNZsK9w7k04FJaBrQkISSBcJ/wv7u5IiJObo9z+zv8LePcXnsNnnrK+bG4fn3yb7wRe2RkhVY3pafjP38+Pnv3lhb+61/w739Xd0urXb49n7mpc/k25Vv2W/eftb63yZu+YX25K+ou2gS2qfkGishFyZ0sULiVZ+5cGDjQ+bGge3esPXuCl5tXcQ0D39Wr8f/xx9Ky//7X0enkPLUxZyPjD4znkLVsJx6zyYyPyQc7dgrt5XcGuiPyDkbWHYm/2b+mmyoiFxmFW1WkpUHr1vBXj9CC3r2xdu9epU36/v47/gsWOD6EhMC2bXCeDW8wDIOpyVP58OiHGJT+JxHtF03ToKZEWCII8QnBy+QIeKvNyonCExzJP0JidiJWe2nv0PqW+kxqOonGfo3P+XGIiOdSuFXFsGGOHo9AUfPm5N11V7XcJ/OfMwffTZscH264wXF2+DcxDAOrYaXYKMZisuBt8uatpLf4/PjnzjqRlkg6RXSilm+ts27PZrexK3sXG9M3YjMcM8/U8q7F1GZTaeLfpMaOQ0QuLgq3yjp6FBo0gKIiDIuF7BEjMMrZ31u//ML4pUt5OD6ef/fv7yxfe+gQLy5dyvqkJMwmE23q1GH2oEH4+/hAfj7B772HV3a2o/KuXdC8ec0dyyl25u3kx/Qf2ZG3g515O8mylc76EmwOJtuW7fzcoVYHWoe2dp6lVVRWURY/H/+Z9MJ0ACJ9Ivmy5ZfU8j57QIqInE2NzS3p8f77X+fYNeuVV5YbbBuSkpi2fj2tT5mCbO2hQ9w6Ywa9mzZl6QMPsOzBB3mwY0e8Ss76/P2xdupUusIZZmipLoZhsCx9GUN3DeWenffw6bFPWZu91iXYAJdgM2EivTCdzCL3x+eF+ITQr04/avvWBiClKIXXDr1WtYMQEakEhdvJvv0WcIxhK4yLK7M4x2rlgVmz+M+AAYT5+bkse3rRIh6Mj+fxbt1oGRVFs4gIbmrTBot36WiLog4dMEpmavlrXzUlrSiNp/Y9xT/3/ZOtuVtdlvmb/Yn2iybGL4YISwTeptI2Ghjsz93PgqQFbMnYgt2wn7rpM/I1+9Iruhe+Xo4B+ovTF7M8Y3nVD0hExA1uj3PzWPn58McfANijojBqlb2U9uTChVzdvDk9mzbltRUrnOUpOTmsS0ritssu4+qPPmJfejrNIiJ4tndvOjds6KxnBARgq18f7wMHHOPfjh2DU84Aq8OOvB2MTBxJenG6syzMJ4wWIS2IDYglwDvApb7dsJNVlMXenL0kZidSYC/Ajp1N6Zs4kneE3tG98TWXP5tMeQK8A+hYuyMrU1YCMO3oNHqF9aqegxMRqQCduZXYutU5+bEtJqbM4llbt7IlOZnn+vQps2x/uiNE/v3TTwyOi2PmvffSLiaGGz/7jD1paS51bXXrln5Yv74aD8BhR94OHvrzIWewWbwsdI/szoB6A2gR0qJMsAF4mbwI8w3j8vDLuSX2FtqEtsGE43LqcetxPl78Ma/2fZWDGw86jqHIxrzn5/FK11d4qv5TjGs1jhnDZ5CZXHops3FgY8J9HQO7/8j7g+2526v9WEVETkfhViI52fnWXru2y6LDmZmMWbSIqTffjF85D1y1/9Un5764OO7t0IF2MTFMvOYaLqldmxkbN7rWDT9pJo9TJqCuqvSidB5LfIxcey4AUZYobqh/A42CGmGqYI9Ps5eZy8Mv55qYa/Dzclx6DWgZwKVvX4p/mGPsWmF+IYc3H+bqJ6/mieVPMOzTYRzffZyP7vnIuR2TyUSLkBbOzwtOLKiuwxQROStdlixx0iNrjFMGa286coSU3Fx6fPCBs8xmGPx64AAfrl3LupEjAWhxyuwlLSIjOXzKxMnGSU9HcJl4uRq8cugV0oodZ4pRlij61umLt1flfuJIv0iujrmaRcmLKLQXkhGQQVZEFpFE4h/izyPfPeJS/9ZXb+XNvm+SfjidWvUdl3QbBDRgNY6H2G7P05mbiJw7CrcS/qUzaphOeVxNjyZN+HX4cJeyEXPn0iwiglFdu9KoVi1igoPZfcolyMS0NK665BKXMpdt+1ffLB4rMlewJGMJAL5evvSI6lHpYCsR5htGl4gu/HT8JwB+P/E79QLq4Wf2K1M3Pysfk8mEf0jpMVnMFoK8g8gpzmFX3i6KjWKXzisiIjVFf2lKtCi9hGY+etRlUbDFQqtTOn4E+PgQ7u/vLB/ZpQv//ukn2kZH07ZOHb7YvJndqal8dvvtLuu5bPukfVbVjGMznO871u6Iv3dpyGQcyWD++Pns+N8OivKLiGgcwV3v3kWDDg3KbOeb0d/w6ye/MvDlgfQc3pMGgQ1oHNiYfbn7KLQXsidnD61DW7usU1RQxPzx87n8lsvxC3ENvjDfMHKKc7AaVtKL04n0qdjcnCIiVaFwK9GkCYSFQUYG5iNHwG53ay7JRzp3xlpczNOLF5Oen0+b6Gi+GzSIxuGus+Wbk5Icb7y94bLLqqXpe/L3sD7H0TklxCeExoGl017lZeTxdv+3aZbQjIe+eYigiCBS9qQQEFa2Y8mW77ewf91+QmNCXcrb1WrHvtx9AOzK2kWrkFbOe3i2IhufDPsEDLjt9dvKbNNsKr0MW2zX08pF5NxQuJUwmaBLF1i4EK/cXLz37qX4lEuKJ1vw1/PrTvZ4t2483q3badcxJyVhTk11fLj8csfTu6vB0ozSh8c2D27u0nlk6dtLqVWvFndPvttZVruha4cZcJzdzfrXLB6e+TBT75zqsizEJ4QY/xiS85PJKc4hrTCNCEuEM9jSD6UzYu6IMmdt4Jiaq0RVL5OKiFSUekue7B//cL71Xbu22jfv+/vvpR/uv7/atrsjb4fzff2A+i7Ltv2wjdj2sUwbOo1nmj/Daz1eY/Wnq13q2O12Ph/+Ob1H9iamZdlhEAD1/Uu3e8J6whlsKXtSeOS7RwgMDyx3vYyiDAD8vPwI99Yz30Tk3FC4neyGG+CvcWg+f/6J959/VtumzQcP4lMycXJICNx995lXcENJuPl4+RDsHeyyLO1AGqumrSKyaSQPz3yYrvd1ZfbY2az9sjS8l769FC+zF90fOv3TD2pbSs/2UgtSmTZ0Goc2HmLQ1EHYbXayjmWRdSyL4sLSS49Wm5Wc4hwAWvi3cLlEKSJSk3Sd6GTe3vDCC86zKv/588l5+GGMwPLPSirMasV/7lycFwv/3/+Dqm7zL4ZhkFbk6KUZ4h1SZjybYTeIbR/L9c9eD0D9y+qTvDOZVdNW0fGujhzadIgVH6zgyeVPnnEsXLBPaWhm5Wax7YdtALzW3XXuyBHzRtAsoRkAB3IPOMtbB7p2QhERqUkKt1MNG+aY93HxYryyswn4/HPy7r0XI6BsB4wKsVoJ/PJLzCXDBOLj4Yknqq25BgZ2HPM/lhdOIdEh1GlRx6Usunk0W+ZvAWDP6j3kpOQw/rLxzuV2m525z87l5yk/89zm5wDwOukk39vfm0knJp25XYbBruxdzs8d6OnegYmIVIHC7VQmE3z0EXTsCMnJeB85QuDHH5N3883YT546qwK8UlLwnz0b75LZT2rVgk8/BXP1XZ7zMnnhY/KhyCiiyF52UHjj+MYcTzzuUpaSmOIcaH3lHVfSoofrkIQpt03hituvoOPdHZ1lJ2+7ImPV9ubsdT76xju9Pq8uOMqf8dsZ2qsFfj66PCkiNUv33MpTvz4sWeKc1NicmkrQhx9iWbIEU3b2WVYGU24ulp9/JmjKlNJgCw2FH36o1rFtJRpaHJMzZxVllelu33N4T/av28+SN5eQsjeF9TPXs/qz1STcnwBAYHggMa1iXF5e3l4ERwUT3ax0bF9JUIGj9+SZ5BXnsfZE6T29gMQeGMB3a/YxfOoK9h3LOv3KIiLVQGdup9O6NfzyC9x2G2zejMkw8Fu1Csvq1RS3aEFxo0bYYmKwBweDyYRXTg7m5GTMBw7gs2MHJltpF3iaN4dvvoF27WqkqS0DWpJYkIiBwYnCE0T5RTmXNbi8Af+Y/g++f+F7Fr+2mPAG4dz08k1ccdsVbu0j1ZrqfH9y55JTWW1Wlh5b6jzTa2XqSaPoXqxPS8ZmMzhyIo8nP1vNxHviaV43zM0jFRGpGD2J+2wKC2HiRHjpJZf5JyvEZILRo+HFF6t1qq1TzU6dzcsHXwYc49w6RXQ6yxrusRt25hye4+z5eEvsLQR6l+0Qk1GYwYrjK5zd/0NMkdzv/x/8TcFkZBWwdM1+UtPzHMv8ffjPPxKIqVXJe5kictHRk7irk68vPPcc7Nnj6OUYFXX2dWrVcnQa+fNPeP31Gg02gKtrXY2/l2Mfe3P2UmgrrNbtJ+UnOYOtnn+9MsFWZC9iW8Y2vj/yvTPYAk1h3O33Ev4mRy/LsBA/bujZjDoRQQBk5Rfx5vzNzicqiIhUJ525uauwEDZvdjyLbdMmyMgAw3CMXWvXDuLioEOHapt9pKImHJzArNRZADQLbkbniM7Vst1iezHzk+aTXey419g7ujf1A+qTb8vnhPUESflJ7MnZ49LhpLapPrf7jSPcq2wHHGuhjVlLdpCd6wjgR65pzY1XNqqWtoqIZ3MnCxRuHiLZmsztO24nz+647Ncnug/1AupVebtr0tawK6u0S39JT8lio7xLtCY6+dxEd5978DFZTrvNpGPZfP/zbgBqBVqY/lhvfMy6iCAiZ6bLkhehGEsMj9V7zPn55+M/c7zg+BnWOLttGdtcgg0coXZqsNkL7Pj/UZt/+L1NH99hLP/mW8YNuoV745pzy6V1yc1yfaZdvehgGtd3dCZJz7WyaqfrUxhERKpK4eZBbom4hR6hPQBHCP3v6P/Ynb0bd0/Oi+xF/Jb6GxvSNzjLYkzNiPZqQripHhGmBjT0akvzjK6kvZ5FxshCwv7XkDrmJgAUFuTTvltPbn5o5Gn30fqS0kff/LjpkFvtExE5Gw0F8CAmk4kJjScwes9o1mSvodgoZnXqag7kHqB9rfZEWCLOuL7dsHMo7xDrT6x3diAB6OUzhC6+ro+zyc/N5Z/D+vHAcxOYlfi2y7LrhzwAwLY1v552X3Ujgwjw8yGvoIidSRkYhnHG6b9ERNyhcPMwfl5+TGo6iX8f+jdz0+YCcCT/CEfyj1DbtzaxAbHUttQmxCcEL5MXRfYi0gvTSbWmsj93P/m2/NKN2Xy45NhtdGlW9jltH73wNHE9+9CuS3dmvf92meVnYzKZiAwP4MCRTHKtxRxJz6PeaZ4sICLiLoWbB/L18mVcw3H0CuvFywdfJqUoBYC0wjTSCtMqtA3vtIYEbxlIq+ZlB56vXDCHvdu38srMhVVqZ+1Qfw4ccdyPS0rLVbiJSLVRuF3gDMNgd3ImWw6cYHdyJgdSsskvLAYvOwV1N2OrGwA+FdyW3aBWTl1aF9/Dzt+CMOGFzynzQKYmJ/HxhHGM+/grfC1VG+7g4116y7ew2HaGmiIi7lG4XaCKbXb+t+Uw89cdIPGo61yNxcFHyW4zG1to2V6IJkz4ePlgYJSZaNnkZSIjJJmkvLUY3gmYiv2w2+0udfb8sYXMtFT+eXM/Z5ndZmP7ut/44fNpfLVlP+YKTgxts5d2dPHWUAARqUYKtwvQnqNZvDFvM3vKmYC4oNFaclouBK/SUAr3DeeS4EuItEQS5hvmfGio1WblROEJkvOTScxOpMBeAMD+gBV4dd9MyLq7ych2zMhiN2ykGYcJ7BTAqB/fwgtvAm1hhBXV4b2nn6Rek0u46f4RFQ42gIzsAuf72sHndtC7iHg2hdsFZt7v+5ny43ZsdgPDZAOTjcjQEFo2juRI1BLWmL931g3zCSM+Ip4oS1S5PREtZgsx/jHE+MfQrlY7ErMTWX9iPcVGMXb/TDI7fcy2Yz3Yk3+EZPtuirCCCThp3mQzPgQ/543XgSKimzUAID3lOBmpxzl6cB8AB/7ciX9gIBEx9QgOq+Vct2SeSR+zF42iXJ8gLiJSFZqhUWn6/gAAIABJREFU5AIyZfUvfH5gLkWhSRSHHsHwK+2u708I+ZSeybUKaUWH8A7Os7SKyinKYUXKCpenAFSUD35c6XM9Rz86xsz/lO1BOWLCW/S++Q5sdoODyZn8uGovAHVC/Xn02jY0iwklLPD0M5uIyMVN0295mLVZa3lzzwfsNjZVeJ0GAQ1oG9b2jI+nOZ0iexHLji3jWMExZ1mgOZAISwRhvmF4e3ljs9vIKMogzZrmnHeyRG1TfQZYHqeeufTZdTabnb2HM9i5N5Vjabku99tOFhniR9dL63B9XENi/5pkWUQEFG4eI9uWzaTDk5iTNqfMMl8vX0J9QvEyeVFsLyazKLPMtFgmTLQJbcNltS5z+wzOarMyL2mec9xb59qdaRbSrNy66YXp7MraRWJ2InYc9/rMeDPQ8hQtzJ3ZuTeNtduOUGB175FBHZtF8eg1rYkO02NxROQchNvkyZN57bXXOHr0KO3ateOdd96hY8eOZ13vq6++4q677uLGG29kzpyyf7BP52IMt4MFBxmROIIjhUecZcHewTQPaU6DgAYEeQe53EezG3ayirLYn7uf3dm7XQZj1/atTe86vfE3u/foncN5h1l2bJlz3wPrDzzjLCIZhRmsSlnlHEvnhZlGu4eR9WesS73gQF+iwgOJCPPH19cbwzDIyrGSkp7H8RO52Gyl/0n6+5p58KpW9O8QqxlMRC5yNRpuX3/9NYMHD2bKlCnEx8czadIkvv32W3bt2kXUGZ51tv//s3fe8XGUV9u+ZvuqrLSr3mXZkixb7r3ggo0NBtNsQkwJYN6ExEBCCCQY8sIbElqAhHwQIIHQQgyEgIMNprhg417kXlUsybK6VtJqe53vj7VmNV7JhZKAPVd++mV35plnZ1dmj57nnHPfNTVMnjyZgoICLBbLORvcHEEHB50HOeQ6RJWnCnfIjYBAoiaRgTEDKYkpodBYKKnr90adp45by2/FGggHCY2gYbRlNIXxhWf0BR8UgxzoPMDezr3SSspX5yNrVxYX//RiaQ5RFPn4sY/Z8vctuG1u+o3rxzVPXUNK/x66j42f0eQJtxTMTJtJZky0jU1PQmKITW2bOOoI59MEv4HEdXeg9prol51IaWEKGclxfb4PjzdAeY2VveUtON2RVoWrx/fjRzNLlACnoHAe840Gt3HjxjFmzBiee+45AEKhEDk5Odx5553cd999vV4TDAaZMmUKCxcuZP369XR2dp5zwe2Q6xDvtr7LJ+2f4BW9pxybpk1jXvI8rki+gmStXO/RHXSz4PAC6rxhMeFEbSIXpl1InPbs80/t3nbWNK/BFQxXJTp3OylpKWHabdMAWPWnVaz64yquf/56kvKSWPHoChoPNnLf5vvQGsKd37XOWta1rAOgX2w/Lki94LSvGxJDfNHyBcdcxwAwthUzT/e/5GUknvG9e31Btuw5zuHqiKLKtZP6s/DCgWc8h4KCwrnFN2Z54/P5KCsrY+bMmZEJVCpmzpzJ5s2b+7zu4YcfJjU1lVtvvfWMXsfr9dLV1SX7+bbSGejkgeoHuOHwDXxg/eC0gQ2g2d/M843Pc/n+y1nSsoSQGOlJe7bhWVlgm50x+0sFNgCL3sLsjNnSdmTs8FiOqcIBRxRFvnjxC2b9YhZD5gwhc3Am179wPbYmG/s+2ifNkR2TjUoI/zM5U+kulaBiQvIE6XXdyUfwphw5zVVy9Do1U8fkMWV0rnTsnY1VbKv4ajY+CgoK5wdnFdza2toIBoOkpaXJjqelpdHU1Lsn14YNG/jb3/7GSy+9dMav89hjj5GQkCD95OTknP6i/wJbu7byvYPf45OOT6RjWpWWovgiJiVPYm7WXObnzOfqnKuZnTGbMZYxZBkjBqJe0cvTx5/mRxU/os3fxj7nPt5pfQcAtaBmWto09OqvVhofr43ngpTIakuYLuAIOLDWWulq7qJoWpF0zmgykjcqj5rtNdIxtaDGrA33pnX5u/CFfLL5RVHkxWte5C7LXez9aK90XK/WMzYpkoctC3z0pe6/pCCZicOzpefPfLQXh8d/iisUFBQUvuEmbrvdzo033shLL71EcvKp7VZ6snjxYu6++27peVdX17cuwK3tXMuvqn8lVSjqVDqGm4fTP64/WlW0mGOcJo40QxolCSU4/A722/ZTbi8HYJdjF7eW30q+Pl8aP8I8ApM2vOwOBUN88vgn7Hh3B/YWO6Z0E2MXjGXWPbMQBIGgP8hHj3zEoZWHsNZaMZgMFE0tYu6Dc0nISCDdmE6xqZgjXUcQ1SLlXeWYm8MBKz5F3jwdnxJPV4t8pZyoS5RWbc6AE51OJ51b98K6PvNgOTE5xGnicAQcHA3upD3UgEV16pxdb5QWplDX1EVdUxdWu5e3N1TyPzNLznoeBQWF84ezWrklJyejVqtpbm6WHW9ubiY9PT1qfFVVFTU1NcydOxeNRoNGo+GNN95g2bJlaDQaqqqqen0dvV6PyWSS/Xyb2GnfyX3V90mBLdOYyeVZlzPQNLDXwHYycdo4xiePZ1b6LGLU4TL3497jbOjaAIRta4pNkR6x1X9azcZXNzLv9/O4b8t9zH1oLmueXcMXf/0CAJ/bx/E9x5l1zyx+8fkvWPj6QloqWnj5+pelOYYmDEV14tddYa+QCk3OhJ7FLz31KI/vO87nf/6cBc8u6PU6laCiMD7SPlATDK/s3v/rs8wbmMkrjz4onXvxwV+y6KIJLBhWwC0TSnl80c0cP1oBhO1xpozORaUKB9FPd9cpQssKCgqn5KyCm06nY9SoUaxevVo6FgqFWL16NRMmTIgaP3DgQPbt28fu3buln8svv5zp06eze/fub91q7ExwBp08WPsgfjH8Jd8vth8Xpl1IjObse7HSjelcknkJ8Rr56qkwvlDWl1a9rZrSS0oZPGswSblJDL9iOMXTijm280TBhsnIoqWLGHHVCNIK08gfk8/838+nbncdHcc7wmM0RnJjw/krb8iLLzW8vWhvlTdg21vtmFLlf0z07J+rcoT/IPG5fPz9h39n/pPzMaX1/cdHqiFSQdsUqqRy325WvvMmecWDZOMKBg/l9kf/yJ8+Wsf/vrwEURT57a0LCAbDQSwuRkdBdrggpcvtZ/3Bxj5fU0FBQeGspdjvvvtuXnrpJV5//XUOHTrET37yE5xOJ7fccgsAP/jBD1i8eDEABoOB0tJS2U9iYiLx8fGUlpbKtre+K/yp/k80+sJfrGmGNCalTJIKLr4MsZpYZqbPRCCytZcdky0b029sP8q/KKelMlxMUb+/nqNbj1Jyiq05d5cbQRAwmiK9bT3n9Sf6MaWZqFhXIR3zdHmoLaslf0y+bC6b3yY9rrRX4gl6WPrAUvqN7ceQOUNO+f4sOov0uDFQyTP33MGPf/skcaYE2bhZ197A4DHjSc3OoWDwUBbc9SvaGhtora+TxpQURLa2d9WcWXGLgoLC+clZ59yuvfZaWltbefDBB2lqamL48OF88sknUpHJsWPHUKnOTfuSRm8jS9uWAuGtuonJE79SYOsmXhuPUW3EFXQhIGDWmWXnZ9w1A4/dw2PjHkNQC4hBkTm/nsPoa0b3Op/f42f5b5Yzct5IDKaI2n6SLiLF1e5rZ8qPp/DZ05+R0j8FS56FFY+uICE9gSGXRgJWSAzR7muXnouIbNyxkYr1Fdy79t7TvjetSotW0OIX/bS01p6Re7fH5eLz998hNTuXpPRIji7VEosggChCZaOtz+sVFBQUvlRByR133MEdd9zR67m1a9ee8trXXnvty7zkt4L3296XclWDEwYTr41sJ3Y2dLL8N8s5tOoQfref5H7JLHhuAbkjwluBHz/+MbuW7qKzvhO1Vk3O8BzmPDCH/NH5AFI7QIwmBo1K/mvZvXQ3Ze+WceNfbyS9JJ36ffUsvX8pCekJjF0gV4YJ+oO8tvA1EOGap66Rnet5v66gi0t+egk+p493fv4ObpubgvEF3PbubVKPG0Cdq07WqgDQoG/AWm1lcb/FsuOv3vQqBRMKuHP5nb1+fj6vl+vvXtzrOYBPlrzG35/6HR6Xi8x+/XnolbfR9ljdazQqzCYD7TYPta0OgqEQ6nP0DykFBYWvhmJ5c4aIosgH1g+AsGZjd6FEUAxi77Dz7DXPUjCygNv+eRtxyXG0VrUS00MTMXVAKvOemEdSfhJ+t591L6zjxXkv8uuyXxOXHCcFTVUvO8XLHlrGjLtmMHLeSAAyB2XSUdfBqmdWyYJbd2DrqOvg9g9ul63aIFzgISAgIiKKIoIgMOf+Ocy5f06f7/tIV6Q/LUGbgM1vQ0wQ+dn6n6En0qbwxOQnuPKRKym9uFR2vS/kk/KT6Sn9TunefcHcqxk6cQodrS0se+UFnr7rNh556wPZNUa9FvAQEkW8/hAxeiW4KSgoRKMEtzOk3lcvyWElahPZ1bELq9ca/rJHJO/NPEKE2K3dTZI+icyxmZhjItuLo+aPks135e+uZMubW2g40EDR1CKpgORkd2wIV0MKKnm5vaAWEHso63cHttaqVu5YdgexltioefwhPyLha85ESLneVS9Jb8Vr4sk0Zkr5N02+hoyYDNl4c7aZpDy5C0G7N7KlefjDMq55IlxE1Jt7d2y8idh4E5n5BRQNG8lN40rYuvJjLrjsKmmOnnI6KkWJS0FBoQ+U4HaG7HHskR53+Dvo8HdEjRERsflt2Pw2jjqOsl21ncL4QkoTS9GpIttrAV+ATa9vwmAykFkazimZtCbcQTeekAd3wI1REykEGXzxYFY+vRJztpn0genU761n7fNrGXf9OCAc2F69+VWO7znOD9/+IaFgiK4TLt0x5hg0uvCvucMXuefuHrq+8AV9bG6LqM6UJpbKAmKnrzOq8KU3etrmXHbhTygcH77n5+7/+Wncu8OrS79P3jTudIWfa9UqdNqzczpQUFA4f1CC2xmwqWsTDx97OOq4gECiLjEiMxV00+nrlFZH3pCX/bb9HHUcZWLyRDrWd/D6/7yO3+XHlG5i0fuLiEsKS2sl6ZKkQNDmbSNHE2mTmPf4PFY8uoJ/3fMvHG0OTOkmJt48kdn3zgags7GT/R/vB+DJKU/K7vH2ZbdTOLlQmrebU/m8BUIBPm/5XNKkzDBmMCBuAA3uiEPByfY6z7Q/EzVPSAxRYe+uxhQYnXkJCapwa4DBGEN8opncooE01dWyacUyhk2aisliwdrUyNKXnkOnNzJq6gxpPq8viM0RljcrSDOhUkSUFRQU+kAJbqfh1aZXea7hOem5gEBubC6F8YWk6lOjij+CoSCt3lYq7BXUOmsJEcIVdLGqeRWlI0q5Z909uKwuNr+xmdcWvsbPV/6c+JR4UgwpdBtpH3UeJSc2EtwM8Qaufuxqrn7s6l7vMSk3qdfg0hNRFCWlfoAUfUqv4xwBB+tb1tPqbQXCyisTkicgCIIUtKH33ODJ1DhrpABZqB4jBbaT0en0HCzbyodvvISzy0ZCUjKDRo/n0bc+ICEpUv7f2KMnrzDj29XYr6Cg8O1CCW4n6Ah0UOepwyt60Qga0rRpfNr+Kc81RgJbqj6ViSkTT7mlp1apSTemk25MZ4R/BJvaNkl5q/3O/ajMKoYXDCd/TD6/G/07try5hYt+fhHZMdkYVAY8IQ/HnMdwBVxfqjG8L9q8bVJJf5IuKardICgGqbRXsrN9p1QAohW0zEyfSZwmvLp0BBzS+NNpXrqDbrZbt0vPR2suk51/+O/vSY8taen8+q9vnvY9HKyKrDzHDOjbXklBQUHhvA1uITHEVvtWllmXsde5lyZf78LP3ZQmlDLCPOKs/MTitHFclH4RB2wH2NmxE4C9nXsxaU0UxBUghkQCJ9yp1YKawvhC9tn2ISKyzbqNqalTvxb/spAYYpt1m/S82FSMIAj4Qj7ave00uhupsFfgCXmkMQYMzMiYIdu+tHojjdM9m7N7e72NrRvxhsJbiAPVE+mnHvGV3kNbh4u6pvDSNi3RqAQ3BQWFU3LeBTdRFPmk4xP+0vgXyVrmTCi3l6MW1FGFFadDEATpmu3t4ZXMluYtbH54M7ZGG8OvGC6NLTYVs88Wtps55jpGtbOagriCM36tvtjfuV9mV7PDuoMd7TuiFP67SXOnMX3gdFkRTEgM0egOK7P01mjeTTAU5IvWL6T8nBETF+sXfaUgHQyGWLu9Vno+d3QeaqVUUkFB4RScV8Gtzd/Go8ceZZ1tney4RtBg0Vkw68xoVBpCYogufxdWr1VazfhCPvZ07qHWWcuklEmnLMjojZKEElq9rdQ4awioAoRmhPjp939KRkmknL7eVS+7ZlPbJgxqA5nGs1fS76bSXsnuzt2yYz7RJ6+pJ5JLHGgaSJpBbmnUfW/d+bMsY1ZUrhHCW58bWzdG5LqCGmZxN7HCmZuUnowoimzeU4+10w1ApjmGK8f2+9LzKSgonB+cN8Gt2lPN7RW30+yPlKanG9IZaBooM+TsiSiKtHnbOGI/QrWjGhGRTn8ny6uXU724Gts6G5Nvncz8J+fz7NxnqdoodzmYePNEvveH70nPxyaNpdHdiDfkRVWkoi6ujoxQBlqVlmAoyI72HbLrQ2KINU1rGJ00muL44rNa/QTFIHs797KvM2I8mqhNRBAEAqEAgiCgU+lI0iVh0VvIMmb1meMLiSFpRQnIHAtEUaTF20J5Vzk1zppI0UlAi6lsAbscOjKmuEhKPPv8YSgksmVvPQcqW6Vj7XYvR5u7KM788gFTQUHh3EcQRVE8/bD/LmdjLd4bx73HubX8Vtr84YIEg8rAuORx5MXmnfEc7d52NrZtlHrFBFGg4q4KbvzljRROLuTZuc+S2j+VSxZfIl2jM+qiVEJ2d+xmb2fE1DNOE8f0tOkc6DzAUWe4mtGitRCjieG4+7g0Ls2QxkjzSJL1yacMcqIo0uBuoKy9jE5/p+zcJRmXhKsyz5IDtgOUtZeF35NKR1F8ESExhM1vw+qz4gl6ZOPT6I9x1xU4GsIBSK0WGFOayZDCVMm25nR02j2s3VZLs9UZdS4xVsdfbptCYuxXM3JVUFD4bnE2seCcD25+0c9Nh2/iiDssI2XWmZmZPlPqTTsbgmKQza2bpSAUcoeYVziPeG08z859lqzSrD7L9btxBVy8V/eerKy+W1gYwiX2l2VdhklrYkf7Dg53HZZdb9aZyYvJI0mfRII2AZWgIigG6fB1YPVaqXHWYA/IbWy6STekMytj1lm952Z3MyubV0bpS/ZGDCbGaq9kvPZq/D5Ysb6S1naXdD7RZGBw/xQK8yzoddF5S1EUae1wcbCyjcpj7QRPKLAIAkwakUNVXQeNreGKzamDMrj/hByZgoLC+cHZxIJzflvy1aZXpcBm0pq4KP0iDOq+9Q1PhVpQMzFlIkExSK2rFpVRxZa2LcxMnwlA2b/KKHu3jPjUeAZfPJjZ98xGFyO39YnRxJCoS5SphXQHNgjn5hJ14RXP2KSxmN3msFLICYeYDl+H7NpTYdaZmZA0gfWt67EH7DR5mrD5bCToEk5/MdDgamBty9pTBjZ1IIY8/UBKNdMpUU9CI4Tfr1oPc6cVsX1/A/vKw1Y9nV0eNu6qY9PuOswmA0mJMei1akKiSJfDS1uHC49PbkJqitMzbUweGSlx9MtK5J+fHsTrC7LuYCNzR1sZknd2uU8FBYXzg3M6uDV6G3m5MexGLSBwQcoFXzqwdaMSVExImUDr8VZcQReNnkZqnDWMmjcKc46ZhIwEGg40sPz/ltNa2crCNxZGzZGkS5IClFlrlkl5FcUXSY9dnS6WXLqEAdMGMOB/BtAU14SN01u9pGpSGWQZJOUSi0xF0rZihaOC0ZberXK68Yf87OrYJVs19leNZrbux9hpI4Cf1Rtr8dviiRWTWXD5sF7n0WpUTByeTUF2Ilv21EtbjKII7TYP7TZPr9eFrxUYPCCVkYMy0GrC+dAYo5bxw7JZd6JyctmOWiW4KSgo9Mo5Hdzea3uPIOGVwKCEQVKF42+G/YaOuujVz+RbJzP9zun8dvhve53v5lduZviVw9GpdIxPHs+a5jVAWDn/4psvlsZlDsrElGbi+Sufp626jeR+ybJ5elrPlCaUUtZRJlUiNrobpfOr/7Qac5aZ6/90vTS+u4rT6rXiDDqp3V1L0BNk+OThWPQWkvXJxGrkosn94/pLwa3eVc9I88ioAhpRFHEEHFQ6KsM9bz3yaEXq8Vyl/yUaQYeZdAC2u/R0uj0ENaff1Y6P0UVtQwpEFWxi0GtIMcfQLzuRAblmtJrorcvCXDPb9tbj9gbYeLgJu9tPvFEbNU5BQeH85pwNbr6Qj39b/w2E81iDTIOkc79Y/QtCwchWW+OhRl64+gWGXTEMc5aZhw/JdSQ3vb6Jz5/7XOZ8nWXMkixgWrwtdPg6ZL1feaPCxSqtR1ujgltP122VSsWE5Amsbl4NhJu8B8QPQCWo2P/xfgZeOJBXb36Vqk1VJGQkMHnhZCbcNIF+ceFy+H988A8OfnSQKl0VxkQjhRcUcukDl8pcAQxqA/GaeOwBOza/jbdq3iJJn0SsJhZBEPAGvbT72nEH3bL71KBjuu4mRmsuQ3VSb58o5cP6LhCx2T0crGrjcHUbPn/k8x43NIvSwhS6HF4CgRAr//l3Vr71NzRiAK1eT/HwUSTfvZiUzGhhZrVaRUGOmQOVrQRDIhWNNkYWJEeNU1BQOL85Z4PbYddhOgLh1VlOTI5MZT8uOU42dtUzq0jul8yASQMQBAFTmjxRue+jfQy/Yjj6uEh1niAIFMUXSY3Z9a56WXCr3xfuWUtIj85v9Wye1ggasmKyyDZmc9x9HFfQxXHXcXJjc7HWWtn46kamLZrGRXdfRPWeaj5951M68zqxDLEQEkMk/CCBWTfOIi0xDd9RH588/Al/+d5fuOvTu1CpI6szi94iFZoECdLibQFv75+dGIRi9XhmGG/BosqKOh8MiThOqPP7/EGWfV5OUqKxR/7MR2uHiy6H/AViDBouGJ1L/okyfktC+HdSMriIfvc/SGa//nS0tPDun5/m1zdcxTPLPscYJ/9dAaRYIm0FlU1KcFNQUIjmnA1uh1yHpMdpxuim5G4CvgBl75YxbdG0XlchdbvrqN9Xz/zfz486l25Mlx4f2HuABFMCMZYYGg80svSBpfSf2J/MwdEN2N0aj4BUPFJsKpZK/ysdleTG5iKGRHJG5DDiFyM40nWE45OPUzC5gFZaae060fuVCu20c5zjqEpUjH5rNGtvXUvFhgqKp0b60fSqSGC2uPW0G+WBx2QLUHzYzfajOhbMfhKLIRNc0EELJkuSzJams8stVTICNLY6pCrGvsjJMHHh2HwM+uh/ciOnXCg9zi8eRNGwEfz4wrFs/GQZM+dfFzU+occfGR2OPiK0goLCec05G9zK3eXS4yRd30UH+z7ah9vmljla92TLm1tIK0qj37hoVYwEbQJqQU1QDOLSuXhh3gv4XD4SsxIZNncYs34RXXYfEkOS9YxBZSBGHV6FZBoz0av0eENe2jxtiKJI8vhkku5PkrYsT0eIEI00Uvy3YvZ07iHDnyGJPPeseHxy6wSSPAbsWh/alZ+SsPswKa1+PswdxF+OHWDnU3Jn7hdWbSU1O+JScKyxS3ocq9fg9MrtbwB0GhVxBi3tJ4LPsKK0XgNbb8SaEsjIL6CptqbX8z3/CAl9+ztZFBQU/gucs8HNHoz0ep1KXX/Lm1somVlCQkYv24duH2X/KmP2PbN7vVYlqDCoDTgDTmIzY3m06tHT3tdx13FpWzLVkCp9UQuCgEVvodHdiCfkoay9jKynsxDVkS/vGHUMOTE5Uo+bWlATEAN0+jpp87ZR56qTxIo9iR4+rP+Q0ZbRFJmKZIr+CV4dJr+OpK37iVkZVh6xG2I58ptneG9C6SnvPxQSOXQ0os7/3P9MJkavoa7NgccfRKNWkRCjIy8ljn9truaVNeGKS6e7dx3L3nA7nTTX1WK+fF6v57sNSwHiDUoxiYKCQjTnbHATo2rxommva6d8XXmv5foAe5btwe/2M+b7Y/qcQyoOOfFydr89XM3os+IIOAiJIVSCijhNHEm6JA52HZSuja2LhR47pmadWRInPth1ENSR48MTh5MVk9WrTFiqIZUiisL9d85adnfsxhFwEBADbLFuwRlwSsLJSW4DFp8B7c6dGJcvl+Z48dLbSB1aeNrPrOJYO3ZnOLiM7p9C5onCld7UQvqnR3KXrR0uivJ7X0G//sRvGD19FimZ2bS3NPHOc0+hUqmYfNlVvY5v7Yg0hhekK75uCgoK0ZyzwS1OHSlE8AQ9UeXxAFv/sZX4lHgGzRokO+4Nemn1trKrbRdD/zaUzYHNCE1hLUaLzoJFbyFFn4JaUMtK5j9u+Fgy+Twdokvk4O6DeHO90mrLGZBLTQkIDEkcwpDEIWfkRKAW1BTEFZATk8PO9p0csYeb12W6kO1xGN97D92+yLGl4y+n4uIr6X8aOSun28emXRFJsKt72artSWGP1XBtg40Jw7J7ld+yNjfyx18swt7ZgcmSRMmoMTz2zockWKKDoSiK1NRHZMWKMhSNSQUFhWjO2eBWaIysQqxea5SKfygUYtuSbYz5/hjUJ/qpWj2tHOk6Qo2zhhAhDHPCDd/dqykIu0tDWDIrOyabgBjON3lCHjzevpuST0aIEWAGkpRXb6Qb0smLzTsrix0ArUrLuORxmLQmqZqzmxlv7EW3L+Jdt3T85fzl4v/hsuK+i24A/IEgKzdV4/OH+wYvLM1kVP9T61QmxOgY1T+FsqpW7E4fx5psUqVkT+7+w4tn+taob7HTaQ//MTA0z0Ky6as15SsoKJybnLPBrSQm0pPW4mmhyFQkO1++tpyO4x2Mu34cnqCHbdZtUuA6E/yin2pnddTxRG0iubG5JOuTpbyYL+RjV8cu6lxn7h8H0OhpZHn9cgrjCxllGSXzVzsTShJK8AQgW0rqAAAgAElEQVQ90spNFRSZ/mlYCstpjOP5S37IqmEXUtI/hczU+D7ncXv8fLbpqKQwYonT85OLB5/RPVw+Oo+yqvBqdvOu42SlxvfanH0mBIIhNu6MfIZTB2VyrM2BWhAwx+mJOcOCFQUFhXOfc1Y42R1yc/G+i3EEHagFNfNz5qNXR2+7Nbgb2NCyQeZCrVPpKIgrIEWfQpI+CYMqvDpwBp2Sc3W1s1qW10vWJzPKPEpWJALQ6etkbctauvyRCkO1oCYvNo90QzpJ+iRJxNkT9GD1WmnxtlDtqJZWhQCx6limpE45a1X/kBhiRcMKqf1g4d+aGb51IM9N/wHtpiTiY3XMn1WCTtu7kHF1fSfry+rwnKiIjNFrePLG8QzopQCn99cXuef1zRw4oQhTlGdh2ti8szYvFUWRdduPcaQmnDtUqwRZO4IAZCXFMjjHzMUjcinJSvxaXMwVFBS+PSiuACd4qu4p3mp9C4Dh5uEMTRwqO1/nrGNdyzpChMvkdSodI80jKYgrwBP00OBuwOqz0uHrwBsMb4VpVVoCoQBdgXCwEhAYYR7BoIRBUcUeVq+VlU0rpepIFSqGJg6l2FTca6DtiT/kp8Jewe6O3VKQC7qCtD7WyrBhw5h1zyzpy9vr8LL84eXs+2gfrg4XllwLU26bwqRbJgFhE9EVDSvCE4tgqJhKbOVUDFo9V1xYhNkkd0hwe/zUNNg4WNlKW2dEtSQhRscj142V5dLOhHqrk5/89Qu8gfDnXNwvickjc9Coo4tjev0sAkE+WlfZq/1NXxRmJHDHJYMZmNW7Y7iCgsJ3DyW4naDGU8P8g/MREVELai7LvExSxG/2NLOycaUU2LKMWUxMnkiHr4PDXYdlXmqnIkGbwNDEoeTF5smCm8PvYEXDCmlFaNaZuSDlAqlp+0yx++1sbN0YVhQBVEEV5beWM+O6GUy9bSoA79z1DhXrK7j2T9diybVwZM0R/nXvv1j4xkJKLwmX9q9oWCH11wFo2nMxbb8egxCLJcGIVqMmGBKx2T043f6o+5hYnMadc0qxxH25HNf6g408+v5OuhdbZpOByaNyyEiOO+UK6+jxTj7fWkMgKHcmMOg1JJtjiDFoCIVEbHYvVpubUI/VnEqA+RP6c/P0YtRn6COnoKDw7UUJbj14+vjTLGlZAoSbubv9zJbXL5d6v/rF9mOUZRTbrdupddX2Ok93vssf8vfaZpCqT2ViykRMWhOiKPJZ02c0e8Ku3yn6FGakzzjrnFk3wVCQtS1rqXeHJb3EBhHhTYEfvPADAB6f+DgjrhrB7Hsj/XhPTX+KkpklXPrApUBY3HmrdatsXk1nJqatN6MK9B2wijITuGZCfy4oSf/K23xrDzTw5L93E+gRgJITjfTPMZNsicF0olrT7vLR1u7iSK2VjpOcAwbkmhk8IIW0pNio+wkEQlQd72DvkRbabZEV59RBGfzqquGoVWe2UlRQUPh2ovi59WBR5iI22DZwzHsMq8/KmuY1mLQmKbCl6lMZED+A5fXLpZJ8CDdMF8YXkm5Mx6KzoFWFm4WDoSAd/g5aPC1U2Cuw+cMWNC3eFpbXL2dC8gR8IZ8U2GI1scxI+/KBDUCtUjM1dSorGlbQ6e9EyBRIuT6Se+s3th/7P9nPuOvHkZCRQOWGSlqrWrnqkUifWIo+OlcXSGzAMWwp8WXfl/r1NCqBgdmJFGcmMm1wJkW9VDd+WaYNziQ/JZ6nlu2hojH8ubV1umVbn31hitUxbWw+GSnRWpPdaDQqivOTKMy1sOdIMzv2NxASYd3BRkwxOu645NQN6goKCucO5/zKDaDcVc4PK36IIyjXP1QLasYnjWeLdQtBMVzirlfpGZM0hvzY/F4bpnsiiiKN7ka2WLfIFEBCzhCq2PC1F6VfRIYx46zvuTesXisrGlYgIqIRNFyTe004B+gN8M7P32H729tRaVQIKoFrn7mWsd+PSIqFxBBLapZI27A9id95DfrGIdLzwTlmHrluLEbdN/O3TyAYYs3+epbvqKW84fT+dJYEI5dNHYDxLNVIahtsfLbpqLRV+eh1Y0/bvqCgoPDtRdmW7IX9zv3cWXknXcFI1WJhfKGsKjHTmMmklElS9eKZ4g/52W7dTqWjUnY8NyaXaWnTpOceu4cVj65g30f7cLQ5yBqSxdWPXU3uyFwAPn78Y3Yt3UVnfSdqrZqc4TnMeWAO+aPzpTk2t22mwl4BwLikcRSbilnz7Bo2/30zVzx8BZYcC1Wbqvjwtx+y8I2FFE+LiCe/U/sO3pAXAUG2taoJxGBafZdse3JwjpknbhyP9gyLPr4sx1rtHGmwUdFoo8vtQxTB4wuwpSKcY9Rp1XxvdgmxJzmaW5sbefOpR9j5xef4PG7Sc/O5/dE/MmCI3Dj1QGUrG060D6QmGHnl9mnf+HtSUFD4ZjibWHDe/FdeGlvKa0WvoRUif/23edqkwJYTk8P0tOlnHdggXEE5IXmCzDMOwkr/PXn7Z29TvracG168gV9u+CXF04t5/qrn6WwIK26kDkhl3hPz+OWGX/LTFT/FkmPhxXkv4miLrAqL4yNzVtor8bl9fPS7j7jyd1dSenEpmYMzueCHFzDiyhF8/tznstfvDmgnu5EHNC4GTGkgxhBZqR2o6+D1z4+c9WdxtuSmxHPRsGwWXTyY+64aweKrR8hychOHZ0cFNoetkwcWXIFao+HXL73JMx+t5aZfPUhcQnQV56D+yWSmhrcyW2xuNh5uihqjoKBw7nHeBDcAnVqHXwxXAsZr4unwh3uvErQJXJBywVkrgfREEARGmkdKuSuj2ki6IWKJ43P72Lt8L3N/M5f+E/uTUpDCJfddQnJBMhtf3QjAqPmjKJ5WTHJ+MhklGVz5uyvx2D00HGiQ5rHoLSRqw3mwdl87Pp+PoD8YVVwhqAXJUBTCHnLdLQmxmlgyjXIrnuqYNVx+YRFxPQLJu5uPSrmx/xRNHS52nGj6jo/VUZhniRqz9OU/k5yRyR2PPUPh0BGkZecyfPI00nPzo8YKgsDIQZFt4Y/Kei8YUlBQOLc4r4LbQWdEtNgVDIvvCghMSpmERvXV80uOoENaHSXpk+TWLIEQoWAIrV6eN9IatBzdEi3BFfAF2PT6JgwmA5ml8kDULSUmIuLWu+k/qT/LHlpGxYYKrLVWti7Zyo53djDkskgerd0b8ZCz6CyUmEpkc7aKxwjEWLl06gA0msg/iz8s33u2H8NXYk+tVXpcnJ/UqxbljjWf0b90GE/97EfcMnEI91x1ESv/+Y8+58xMicN0wgPuYF0HvkDw679xBQWFbxXnfLVkN56Qh782/lV63l1AkhebR7I+4uR8qrxY0B/ko0c+4tDKQ1hrrRhMBoqmFjH3wbkkZCTIVEh6unIDGOIN5I/J59OnPiWtKI341Hh2vreTmu01JPdwkj7w6QFe/5/X8bv8mNJNLHp/EXFJ8gpBi85CFVUAdPm7uOnlm/jw4Q9587Y3cXW4MOeYmfPAHKmJG+T6mEn6JDKNmRjVRtzBSKViU6iSwfFZjB+aJeWpjjZ3cazVTm5K3/JcXyc9V4rpyb1XRjbXHePTt95g7s0/4urb7qRy3x5eeeR/0Wi1TL/qe1HjBUEgLSmWLoeXQEikpsX+tVaBKigofPs4L4KbO+TmZ5U/o9JTGXWut7xY06EmbnjxBkzpJnb8cwfPX/U8922+D32cnuN7jjPrnllklmbi7nTz/uL3efn6l/nFml9IAROQ5fa6ueHFG3jrzrd4aPBDqNQqsodlM3LeSOp2R/QSB0wewL3r7sVpdbL5jc28tvA1fr7y58T3CC49V5lBMYgpzcR1f452rO45psIRLkIREMgyZiEIAsn6ZJneZVnVpwwunsqg/skcrGqTesX+sb6CxVeP7HP+r5PGHnY2loTe++9EMUT/wUO5/u7FABQMGkJdxWE+e/vvvQa38FyRXGpDh0sJbgoK5zhfalvyz3/+M/n5+RgMBsaNG8e2bdv6HPvSSy9xwQUXYDabMZvNzJw585Tjv25EUWTx0cWUOcqizhnVRlL1qdLz0+XFjCYji5YuYsRVI0grTCN/TD7zfz+fut11dBzvQNXj4+zpfN1Ncr9k7vzwTp6oe4KH9j3E3avuJugPkpwfWbnpY/WkFKSQPyafBc8uQKVRseXNLbJ5es59unYFgCp7lWTNkxuTK5m3WnTyfFZ8dvgLXxAEBg+IlMyX9TAn/aYJhCLvTd1HVWNiSirZA+RC2Fn9C2lrrO9z3p5SXyernSgoKJx7nHVwe+edd7j77rt56KGH2LlzJ8OGDWP27Nm0tLT0On7t2rUsWLCAzz//nM2bN5OTk8OsWbOor+/7i+jr5L2291jftR4ANfKCEYvO8pXyYgDuLjeCIGA0GTFqIquDbu3J3tDH6klIT8DV6eLwmsOSRFZviCGRgDcgO9Zz+/N01Z3OgJOy9khgH2gaKD0+ubFcUEc+i8JcM90fjd3tx+v/z+Sp9D0cA3x9vObAEWNoqK6SHWusOUpKZlaf8/r8kc9Q34tItIKCwrnFWQe3P/zhD/zwhz/klltuYdCgQbz44ovExMTwyiuv9Dr+H//4B4sWLWL48OEMHDiQl19+mVAoxOrVq7/yzZ+OBm8Df6r/k/R8pEW+tXayzmPPvJit0UYoGGLHP3dQs72GruboYOX3+Fn+m+WMnDcSg8mAWWeWVm9WrzVq/KHVhzi0KpyvO/L5EZ67/DnSCtMYd/04vE4vH/72Q2q219Be107d7jqW3LEEW6ON4VcMl83Tc+6Tfep6EggFWN+yXqoQVR9Sk2aM+LadLCOmFSJizlqtGnMPr7Sjzf+ZqsncHnm2tk5Xr2Pm3vwjyvfs5L0X/x+NtdWsX/4+K//5Jhdff0uf87Z1RHKLeX3k8hQUFM4dzirn5vP5KCsrY/HixdIxlUrFzJkz2bx58xnN4XK58Pv9WCzRJd5fJ96Ql9/X/R5XKPwFWRhfSJGpiB3tO6QvdY0Q/fbPJC8GEPQHeW3hayDCNU9dA4QVTxJ1ibT72rH5bXT5uzBpI42Gni4PH/72QzobOok1xzJ07lAu/fWlqLVqQsEQLRUtvPr2qzisDmItseSOyOWnH/2UjJJIKbs76JYEkGPVsVE9a934Qj7WNq+VBJf97X5GxsiD+8nO38mqXNnzpMQY2k9oO360s478VNM3plrSTU/Hgfpme6/mpgOGDOeXz/6Nf/zhMd59/o+kZudwy+KHmTL36l7nDAZDNJ7oFTRo1WQlKcFNQeFc56y+qdra2ggGg6SlyV2b09LSOHz48BnN8atf/YrMzExmzpzZ5xiv14vXG9F57Orqe4vvZBq9jbzb9i5LW5fSFQpfpxE0jDSPRC2oSdGnSF/4Pf3SuunOi3mdXjx2DwnpCby28DVZXqw7sHXUdXD7B7dj6LHCyY/Nl7zTyrvKGZ00Wjo34qoRjLhqRK/3rTVoWfjGwtO+v0p7pSShlR+X3/tn4G5kU9smWfDShDSUTJWX/5+8usxQDZA97+nxtnLPcbaUN7No9mCml2Z+Y15pI/olo1Wr8AdDlNe0M3ZIFlpN9AbD6OkXMXr6RWc0Z3V9p+RHN2ZAiuIQoKBwHvAf7XN7/PHHefvtt1m6dCkGQ99K9I899hgJCQnST05OzmnnDokhlrQsYd7Bebze/LoU2CAccLr904riI4UInb7OPufrKy/WHdhaq1pZtHQRsZZY2XUD4gdIRR4V9gqZ5uRXxRP0cMh2SHre872Ioki9q541TWtY2bRSCmzdTeVCskC1I+Ic7gv6sPoiwU2DjnRVf9nrBUPywgu7288T/97N7/61E883lIMzxeiYNjjc1+fzB9l96KspivgDIXbsj7RBzO0hZaagoHDuclbBLTk5GbVaTXNzs+x4c3Mz6enpfVwV5qmnnuLxxx/ns88+Y+jQoaccu3jxYmw2m/RTV1d3yvG2gI0fV/yYp48/jVf0Rp0viCuQHufH5tOtHdzua+dkac1T5cWC/iCv3vwqdbvquPGvNxIKhuhq7qKruYuAL7wyMKgNDIgLr4D8op/NrZujXuPLss26TfKHi9fEU24vZ5t1G581fsbbtW+zunm1zIcuzZDG5JTJ0vMjXRE5rSpHlax1YbBmKjpBXpzSZY98lrnpkVaEDYeb+N+3tn1jRSbzJxRIq6tdh5vOyqT0ZLburcfmCL+PkqxEhvaieKKgoHDucVbbkjqdjlGjRrF69WquvPJKAKk45I477ujzut///vc88sgjfPrpp4wePbrPcd3o9Xr0+lM7VXfTGejktvLbZD1sxfHFtHhb6PCF5bV6Fl2oVCr8x/1oc7W4g25avC2kGSLbrKfKi1mPWdn/8X4AnpzypOw+bl92O4WTC4FwRWK5vRyARk8juzp2McI84itt5R20HaTGWSM9twfsHLAd6HWsUTAyxDJE0qHcb9tPh68Dq89Ku7edeG08h7oOya4ZpblU9lwURamgQ6USuGRKIUePd7B2Wy3+QIi9te388cO93NfHNutXIT81nusmD+DvX1QgivDJ+krmTC0kxRxzxnOIosjOg00cqAxLeWnVKu6+fNg3tp2qoKDw7eKsqwPuvvtubrrpJkaPHs3YsWN55plncDqd3HJLuFLtBz/4AVlZWTz22GMAPPHEEzz44IMsWbKE/Px8mprC20xxcXHExX21xL5f9HNX1V1SYDOoDUxJmUK6MZ23at4Cwiucbi82CDc0i/rISupI1xFZcDtVXiwpN4ln2p857X3VOuX6hftt+wmKQUZaRp61fmVIDLGvcx97OvecclyMOoZkfTIFcQVkx2TL+t8GxA1ge/t2IOw7V+molG2XlqgvIEMtz7c1tjnw+cNL3G7pqoJsM3ExOj5cW4E/EOLz/Q1cUJLBpIGnXrV/Gb4/eQB7aq3srW3H4wvywZojjC3NpLQwtVdJrp443X7Wlx2jtoedzqKLB8sqMRUUFM5tzjq4XXvttbS2tvLggw/S1NTE8OHD+eSTT6Qik2PHjqHq4Xj8wgsv4PP5mD9/vmyehx56iP/7v//7Sjf/etPr7HPuA8L9XrMzZkvVid1bbidrRu7t3IsuLdLfVeuspdXTSorh6/H5cgacHLQdjDp+qOsQTZ4mJiZPPGX5fk9sPhub2jbR6m2VHTe1m5g4eCIhMcSqP6zi0L8OITgFjIlGWi5o4dIHLpXlAnvKi9U6ayUjVQADcczW/zjqtQ9WRhq3S3s0dKdaYpk8KofPt4YD+POfHGBcYaqsSfrrQKNW8X/XjuZ/39rOgboOgkGRzXvqOXi0jUH9U8jLMGGK00srsUAgRFuni4radspr2wkEIvnCH84sYc7I3L5eSkFB4RzkO+vnVuWu4rrD1xEQAwgIXJJ5iexLfEnNEgJigARtAldkXwGEiyjerXtXlmuCsCvApZmXfmXxZFEUWdO8hnp3uEE925hNdkw2W61bZT1lGYYMikxFpBnSokr5vUGv5PLdM38GoEJFiBACAldlX0WcNo6d7+1EF6PDkmehrbqNj377Efo4PXd9eheqEwEnEAqwpHZJL3cscK3+QQZoxsiOtnW4WLrqMCERBERunTdCphYiiiIfr6+irilctPPAvJFMGfT1GLKejNcf5JU1h/lgWw0n/0PVadUYDRrEkIjdFfaC64k5Vs9P55Qy8RtYWSooKPznORs/t++stuQbzW9IpfyDEwbLAhuEV3L2gB1HwEFIDKESVLIiiqK4Iqw+K1afFZvfxvrW9UxJnfKlbW9EUaSsvUwKbGpBzaSUSejVesxaM58d+oygOfzajZ5GGj3hCr4YdYwkh+UJenqtrozXxDMxZSLN7mZ2d+5GRKTcXs5Iy0hGzov0rmUOyiRzcCa/G/k7KjdUUjQ1XE2pUWnQCJqo1ocrdL+ICmzBkMja7bV0u+UMLU6LksESBIGhxalScPtk17FvLLjptWp+Mnswk0syeHNdObtrIhWePn+wVxUTo07NzKHZ/GBqEaaTvOAUFBTOD76Twa0z0MlnHZ8BYQmpoYmR6suPH/+YT3//Kf0e64d5lpmgGMTmt2HWmWVO2QMTwjJUKxpWEBAD1LnqWNO8hskpk78WJ+6R5pFS+8HuF3Zz8K8HmfHGDNpT2nERUd5wBV2S/c7JBNoCjMgbQWlyKVqVFpPGxJ7OPYiIVDmqei1SSc5PJjYpltbqVim4AVJvHIAKNfN1D1CoHSu7VhRFvthRi7UzrOahCnoYc5LdTjdZqfHEGLW43H4OHe8kJIqovsFijSG5Fp64cTzHWu18caiJioZOjrbYcXr8qFQCyfEGBmQkMDjHzJRBGcTqo4WrFRQUzh++k8FtVccqfGLYeLN/XP+o7cT0gelMvnQyB/zhasLjruPEaeKk6kmLziJJb01Pm85ndZ8haAUa3Y0sO76MMUljyI/NP60osSiKNLob2WLdIltxGdQGShIiDdPV26opvaiUC8deiCiKNLgbWLl0JapsFdo8bUQeS1RjMVhI0ieRpk/jpUteouT+ErQ/CH9RGzVG0o3pNLobcQfdOINO4jTyIonO+k5c7S4S0iJKH66ASya2PFA1OSqw+QNBvthxjMpj4c9IDAW5cEx2n+LFgiCQao6hxm3D5QvQ0O4k+z+g/JGbEs8N/yH7HQUFhe8u30mz0gOuSAl8fmx+1HmVRkVRWmTVUt5VLklWgbzAIsOYQdLmJIK28PaWN+RlQ+sG3q97nz0de2h2N+MP+aXxwVCQNm8bB20HWVa/jFXNq6K2EjMM8i26fmP7Uf5FOS2VLeGV1lGofLiSQS2DWJC/gBnuGewcvZPZwmwuybyEsUljyYvLQ6PRcHSrXLA5WRe592ZbMx88+AE122uwHrNSvq6cl294meSCZAZeGBFI7tmsDWBF3jdY32LnX58eigQ2UcRx4GP6Dzh1EUZCfKRdw2qP7i9UUFBQ+G/xnVy5HXKFe7QEhChTUIC2o208OexJMh/OJGZUDM6gkypHREX+ZMHkOTfOYfmTy6mx1GCeGZ7PFXSxp3MPewiX4Hcr6PtD/ijBYQCT1iSp9Z88/4y7ZuCxe3hs3GMIagExKDLn13MYfU245y+9MB1zlpkPH/6Q7/3xe+hidKx9YS2dDZ10Ncmlx3rO7RAdNBxoYPvb23Hb3JjSTQycPpA5989Bo4/8ahtcDbI5nGIndqeX+hYHh6paaWmPbIuqBNj11qPcfMcPo97jycgcFb79dUkKCgrnEd/J4NboCxdjxGniorYk80blcd1z15FamEpdZx1HCKty1DhqpDEnG4nuXrqbXX/fxeW/uRytV0uFqwJ7gh2hRz+VL+Tr9V5S9akUm4oJhoJssm4Kz6+Knr/s3TJu/OuNpJekU7+vnqX3LyUhPYGxC8ai1qpZ+MZC3vrpW9xfcD8qtYqiqUWUzCyJUjfpObegFvjJez855WflD/k56pCv/lxeL0tWRjeAp1picJevxttWxaipfWt/SvN4IivaWP138p+SgoLCOcp38hupe5uwt9L9QRcNkh5nkom33kuNr0ZWUNHzMcCyh5Yx464ZUuXhEIaw4vkVVNRVMO4X46ipq6HL1oUgCARdQTyVHpwHnTh2Oqj2VHPxnotluo0ntxqcPH/moEw66jpY9cwqxi4I575yhufwyy9+ibvLTdAXJC45jj/M/AO5I+Rbgz3nPhOj0sNdh6WcXncrAQF58LUkGBhSmEphnplFj97ItCuvQa05/T+NthOu2SpBIE/JgykoKHyL+E4GN61KizfoJRCKVvU/mfHp46naVYU6KVLi39PsE8IO3MJJqhdarxbHKgfjHxvPENUQ+fZgHrz44otM/N5Exl4XDk7d5fxnOr+gFhBD0Vt5RlO4UrO1qpW63XXMuX+O7LzNH1Hd6PmavdHp62RPR0TZpDuoa12pZKebSDHHkJthIi0pFkEQ2L1hLW0N9cy4+vunnBegy+GV7HDyUuIUA1AFBYVvFd/J4Japy6TcXY4j4CAQCpyy+Vp0i9T+spaCFwvgxILlZKuXwRcPZuXTKzFnm0kfmE793nrWPr+WcdePAyDWEhul/q/SqIhPjSetMKzMYtFFBHnPdn6A3f/eTWxyLOZsM40HG3l/8fsMmTNEVhgC0O5tlx4n6fpWOvEGvXzR8oUU0LKN2VJT+Mi0YVyYNyDqmuGTp/He4Yao471xoCqimjJ1cO/tAgoKCgr/Lb6Twa0kpoRydzkiIu2+dlINqdK5D/73AwZfPBhzjpmuxi4++dsnpN+dLgU2gGZPs8xIdN7j81jx6Ar+dc+/cLQ5MKWbmHjzRGbfO/uM70mr0hKviccesNPua8fhdxCnjTvj+W3NNv79639jb7VjSjMx5toxzLp3luw1/CE/je5wvlEraGVGqD1xBVysbl5Npz9s6ZOgTZC1Ajhr06H4jN9aFB02N/srwsFNoxK4ZMTpLYkUFBQU/pN8J+W33mt9j0frHgWgxFTCmKSIysbrt75OzcEaDBcYSJ6XjDa172beeE08BXEFFMYXnnaL70xY0bBCajkoTShlpGXkaa44O8q7ytli3QKExZAnpkyUnRdFkaOOo2xv3y4VwBjVRianTGZl00oAVK5EzJ/fxZwLCsnt4Xp9pvj9QZatLaetI9zoPW98P37UI8+poKCg8E1xNvJb38k+t5nmmeiFcI9VpaNSKjDxh/wMfGIg/Zf0J+MnGacMbBC2jdnTuYf36t5jU+smfMHeKyLPBLvfToe3Q3p+xH4EV6B35ZEvgz/kZ79tv/S82BRZevlCPsq7yvmw4UM2tm2UAlusOpZZ6bPY17lPGquvH4qAis82HaWmoW+z1t7weAOsWF8pBbbspFhumvYVloAKCgoK3xDfyW3JBE0Csy2zWWZdhj/kZ2/nXrKMWWxs2yg5UHeTpEsiSZ9Eoi5R0le0+WxhXUmvFfHE/yodlTS4G5iQPIGsmKyzuh9RFNnUtokgkUpGf8jP5lAxCs4AACAASURBVLbNXJh24dfiIVbWXiY1i+tVeg7aDhIUg3T4OrAH7FHj+8X2Y0zSGKod1TR5Im7Wnv4bEYI6jEcn8emGo5QUJDN2SCaGU5Tyi6JIdX0nG3bW4faEi3jiDBp+PW+kUkiioKDwreQ7uS0JUO2uZsHhBVKZu4AgNVdrBA3FpmKK4ouI1/Zdou4IOKjoqpCVywOMTxpPkamo12tEUcQRcGD1WnEEHATFII3uRlq8Lb2OH5I4hBHmr2boWWGvYHPb5jMam6xPZkjCEHJic6h2VLOhdUOvTeeazkzid30PtcuCWi0wIMdCdno8KeYYDHoNwZBIR5eHFquTIzVWbD0USBJidDxy3VgKv8S2poKCgsKX5Wy2Jb+zwQ3glaZX+HPDn2Vj0wxpTEyeeMqgdjLOgJPNbZtpcEcqBSclT6J/fP/IPfi7KO8qp8pRhTfUt9SUWlCTok+RrZYGmQYx0jLyjPrSeiKKIoe6DrGjfYd0rGcQl70uamakzyDdmE5QDLK3Yy/7bJHtyAFxA9CoNBzpOiJdr/LGYdpyMxpHatR8fTG+MJWfXjqEpHjD6QcrKCgofI2cN8GtxlPDNQevkcrdi+KLGJc07kttA4qiyM6OnRywhZU7VKi4LOsyDGoD26zbqHHWfKX3YNFZmJg8EYvecvrBhHN4m9s2y4Jk85vNzBw1k8JZhYTEEGpBzba2bdS5w1qRYyxjiNHEsKdjj1QpCfLPpdXTysa2jVIvXkwwEfOmH+HtOrXo8aDsRCYNzGBonoWEGB2pCcavZbtVQUFB4Uw5L4JbSAxxW8Vt7HTsBKAgroBJyZO+0heuKIpstW6l3F4OhKspfUEfXjGyUlMJKjIMGbI8XlAMYvPZaPO10eRuivJN60mGMYOi+N6NSn0hH62eVirsFdS56mQrNP8aP/vu3cfCvy9k6KURi58OXwfL65cD0as6FSqGmYdRmlAq+1y8QS+rmlZJgsqjY8dyMw9R1dRFdYsdty8QVmMJibQ7PLR1eXB65e8p3qilKDORmUOymFySjk6j5N4UFBS+Wc4Ls9LPOj6TAlusJvZLr9h6IggCoy2jafI00eXvkhVq6FQ6ShNKGRA/ICoohW8i/H++oI8qRxX7bftxB91RwxrdjVKvWqwmlhh1xKi0t8IQfUhP9UPVLHp6Efvu3Rd13qwzk6pPpcXbIgtsFp2FSSmTehWW1qv1zEifwYf1H+IKutjh3MasnI3cUDwPURRZufc4f1t9mE5n39WjdrefsqpWyqpa+ctKHQsvHMisYdnKak5BQeFbwXc2uP2z9Z/S4/FJ42WCwh67hxWPrmDfR/twtDnIGpLF1Y9dTe7IsE7jnuV72PTqJur21OHqcHHPunvIHpINhPUqJyRP4NPGT6X5so3ZTEiegFFzehNTnVpHSUIJBXEFbLNuo9oZ0ZzUqXQyAWZnwBlV3dmNUW2kwFDAymtXcum9l2JK6/uvlKyYLKmgxaKzMNIykgxDxikDjUFtYELyBFY3rwbgxcYXmRozmz8tO8i2ylbZWKNeQ4olhrgTrtYOl4/WdhfuE6u5TqePPyzfy4ZDjdx75XBMRsX9WkFB4b/LdzK4Vbgr2OMMayYmahPJNMrln97+2ds0HWrihhdvwJRuYsc/d/D8Vc9z3+b7SMxMxOfy0W98P4ZfOZz/396dxzV15f0D/yQ3G0tIgEAIiCIISBWXaqG46zjjgtp2OtVX7VjbqV2eWmeqz7TVsR112qp1fGb8VW3tNtrOz0q1demjVmtRtO5WQKmyL7KGPQtkT87zR+SGSBCSAhrmvPvi9YKbc2/OAZvv697zPd/z1atfdbi+XCSHTChjF2QPkwzrVmBrT8gIMTF0IqQqKbKaswAARpMR5ARB7NxYaBl7JRNXjzBTZCmI9o/G1yu+RlRiFBJnJ971vdqX/pKL5JAYJNi/dj/yTuVBVamCX7AfElMTMfsvs9nalYA9KA70HYhyXTmaLE146cin0BbFsq9HRUiQGBcKhcy/Q6AkhKCmvgU5hXUoq7LXu7xcVI/XPr+I9xYlQ+onBEVR1L3ilcHtouYi+32sONbpg9ekN+H6/17Hc7ufQ8w4e7bjrJWzcOP4DZzbeQ6pq1Px0AJ7RZPGcucakO3FimPZ4KY0KCH3kXvU10RpIkw2E26ob4DD44CMJri05BJe/e5VcLlctixWZlMmbmpuArDPieUey0Xhj4V4LeO1Lt+jfWaowWqAplYDdY0aj/ztEYTFh6Gpogn7/nsfNDUaPPv5s07nDg0YinJdOQCgUnoWEsTCR8jDpIcGIirceV+69jgcDsJDxQgPFaOsWoUzV8qhN1pQVq/FX9N+wj+eSQGvk128KYqieptXBre2zUoB+51KezaLDTarDXyhc3USvoiPkovO+5rdTfvr3rmTtbtGBY5Ctb4azaZmcMO40A3UofBMIeKnxLPLA+IC4tjgVtZaBtMZExpLG7Fq8Cqna+1cvBPRKdFY9r/L2GPcdoVmbLBB8YACf/jiD+wx2WAZUlen4t8v/RtWixVMu+QPuUgOf54/WiwtMAdWwteXi3mT4yBxI9U/KlyKwGkifJtRCJ3ejPxqFfaeL8bCibFdn0xRFNULvDK4FeoLAdg/1O/c9VokFiHqoSgc33wc8jg5xKFiZH6TibIrZZBFy7r9HmKeGHwuH2abGU3GJpfzeHM2zoH0ASmsxAouuLj0wSVc/uQy9Go9BicPxhObn0BITAgYDoOHgx/GdzXfAQBCnghB8cVixLcrXRXAD4CEL4HarIbKpELqn1KRsijFqU/vTXgPj777KIbPHO50vP08Ho/j+k+q1+ghEoucAhtgvwMLFgbbq58wZiSNF3YIbDeuXMShzz5AyY0cNNfX4vVtnyF5+iynNhKxCDPHR+NAej4IAXafKcSUYeEIv2M3BYqiqL7glcGtxWovQyViRC4XRv9+x++xZ9kerBm2BlyGiwEjB+DBxx9ERXZFt9+Dw+HAh/GB2WaGmZjt83j5SszaOQvNgc2o19fjvO95oP0OMY8BCXMSIOVIUb23Gjvm78DKcyvBF/ERIgph5/F8Yn2gzlJ3eM9gYTDUZjVssMEaaIUiTNGhTeCAQAQPct7qpsnk2AbHz9YxmLQ0tuD7zd9j3OJxHV4D7HN2t1pvAQCK1EUYEhAPpt0jRaNeh6ihw/Crx5/EpmXPdfo7Cwnyw8h4ObLzamGxERzJLMfz0xM6bU9RFNVbvDK4uarQ0Z5ssAzLDi+DsdUIg9YASZgEu/6wC7Ko7t+5AfZ1YwBAbARVgipE74xGHj/P/mInmwiY+WbUox78hXwopiuQcTkD0ydOB4fDcZrHIwM6jqH9FjZ6ix7oZk5G2zUBoOlSEzDP8ZpBY8DHCz6GPF6OmW/MdHm+gOvIbiyqqsOBgnxMS45CkMSefPLgpGl4cNK0bvVlRLwcOQV1sNoIjmdX4Jmp8eDTuTeKovqYV37q+HHtdycGm8Fpn7I7Cf2EkIRJoFPpkHcyD8NnDe+07Z0IIew6NRtsiHwjEma+o/4kn8OHXCRHvDgeD0geQLw4HnKRHHyOY65PECpATWQNjtcch8asQYgwxHF+VMcdCxiO45FhW9WV9rY0bXFawA0AFpuFrZ5CzAQtN1rY1wxaA3Y8sQMisQjP/fs5MJ0UOXb6HRIGjSo9Dp0sQG2j62UKd+Mj5GFQhL3mpFZvRlldx7V7FEVRvc0r79zifONQZiyDjdigNqs7LFTOTc8FCBAaG4qGkgYcWnMI8lg5u/N1a3MrmiuboVHaS1DVFdrXiAWEBrDryVosLexcVvtAE+ETgaEBQ6HwUbh8JEoIQY2+BnnaPFTq7Dtf1xnrcKTqCKbKp4LhMPY5OkXHc9u27gGcA93dlLaWsv3UnNIgKigKgP2O7cPffQiekIclu5eAL+p8+x+NRcN+L+EFwgjAZLbi6JkiPPareEgD3KsjKQ/2R0mFvfxXYY2aFlimKKrPeWVwS/BNwPfN3wOw76p9Z3AzaAw4/PZhqKpV8Av0w4i5I5D6Zip75/Lzdz9jzyt72PZfLPkCADDj9RmYtdKeKFGsLXa6pj/PHymyFCh8Os6DtcfhcBDuG45w33Ao9Uqcbzhvz0QkZpysPcmW6yK8jo8lm02O/eDEvK4LPxusBmQ2ZbI/qw6rMGbnGHtge/xDmPQmLPpoEQxaAwxag30cMn9w73hM2GR0zNk9PmYKMgx1qK7TwmS24tSVW3hkahy43O5XHgmSOIJhTXPP7WlHURTVXV4Z3B4SO3beLtQWIl4c77TWbfRjozH6sc63mUlemIzkhcmdvm60Gp02BlWIFJgin+JUBaU7wnzCMDdiLk7XnUa1vhoWYmEXbbfN57UhhKDRaF9ywOfwnebfXCGE4GLDRXaHApJL8NL7L8Ff5o/Cs4W4ddWeIPLOmHecznsr+y0ED3QkpOitevZ9pZwwiPkSzBzvj29O5EHdYkRdYytuFNUjMa77OwcwXEfwtNg6f2xMURTVW7wyuCX4JmCY7zDc0N1As6kZSoOyyzsqd5ytP8s+igwVhmKqfCp4XM9+VXwuH1NDpyK9Nt2pwr+AcS5RVWeog85qv8sJFgbftXRWW4HntsXXQq4Q82bMgw9jTwCJnRCLLU1butW/Im0RO9YE3gR7n/kMpiQNwqGT9gLS1wvqMGxISLfv3owmR9UVEd3MlKKoe8ArE0oAYH7IfPb7iw0XYbF1XonfHTX6GlTpqwDYA9PE0IkeB7Y2DJfBhJAJTlmJIq7zPFaeNo/9foh4SKfX0ll0OFl7kt25gAMOxoeMZwObOwxWA3LVbQviOXiQ58imDJP5IzLs9vyjzoSfruSgNNd+N1tXWYHS3J9RX13p8roN7R5FRoV0f189iqKonuK1wW1W0Cwk+tlrLmotWlxpuoKe2L3nYoOjtNeYwDHw4znWjRm0BuxftR/rRqzDa+GvYcuMLSjPLHd5nb0r9uLVoFeR8WEGAMCX54uxQWPZ19vvGKDUK9l1ZiKuCIP8BnW4ntFqxA31DRyqOsQGXw44mBAyAQN8B3g01iuNV2Cw2efihjIpkHLDnF5PaLfo/WDafvz5sd8AAHZtXIs/P/YbpL2/2eV1K2sdGZI0mYSiqHvBKx9LAvZswjWD1uDJ3CdhJmYUagvB5/IxJnCMx5uVXm26ym47I2JETjtxA10XZG5z/fB1lP1UBskdH+zR/tHIas6C3qqHyqxCi6UFAq4A5xvOs23kIjnqDHVgOAzMNjOaTc1oMDagSl8FK7Gy7XwYH4yTjUOEb4TbYwWAXHUuu2MBx8DgN4EvdmijCHFsYJo890ms/+faLq/bqNKxSwgGhfhDEdjJgkCKoqhe5LV3bgAwWDQYT4U+xf58U30TJ2tPQmdxL0NPb9XjdN1ptrYjAMT6xzql47cVZJ67bi5ixsUgJDoEs1bOgixahnM7z7HtVNUqfPPGN1j00SJwec6/Xi6Hi1ixo95iRWsFTtWespe+uu2W7hZOKE/gWM0xpNemI7M5E+W6cqfABtg3PQ3zcb7T6g5CCHJUObjSdIU9FpAxAGJucIe2IiEPfj72JBqV1tjhdVfXvnCtiv157thBdH83iqLuCa8ObgCQEuBcf7FKX4VDVYdwrflal0FOb9UjR5WDbyu/ZZMz2twZOLpTkNlms2H3f+3GtGXToEhwneCiEDmOX1ddR62h9u4DvE0IPwzmOjJAS1pKcLjqsFN1kq5ozBocrznObsEDAJbDDHzzOwa2NvzbAdrWjazHG0X1qLr9SFIWIMKvEj17XEpRFPVLee1jyTZixpGw0LZA2mwz45rqGq6rrkMukiNIGAQpX8quMVOZVWg0NqLOUOe0QJtDOCAc+7xdsMD5A787BZnT/186uAwXk16c1Gl/g4SOvdfa0vg54LAlxabwn4YJOliJBQxHgGBOBMKYGMg4kbBagW/LDiBP/m+Aa4XarMbR6qMIE4UhThyHMJ+wDruEm2wm1BvqUaAtQKWu0ql0Wc2HNaj5tAY5nJ/w3e6dSLteBoZxzm40W+y/n/bp/a4UlDXifLYjwWT5nBHwFXr9Py+KoryU13/6DBYNBo/Dg4VY4Mv4IlQUipKWEpDb/ykNSqcUfJcIEOUfhUZjI7QWLfgcfodUfeDuBZkrsitw5qMz+POpP9/1URyfy4eQK2QDm5gnhkwoY+e/IpihiGKcS2yZLTYUlDchK1cJTWs0pOIXoR15AFZJDQA4jdGX8WWTYAxWAzuH2J6fJRDjmhcgbN4QbLu4HBHRQ/DYkqUdApveYEar3l41pbMtcIwmC85nV6KgzLEQ/Hcp0RgbE+KyPUVRVF/wKLht374df//736FUKjFy5Ehs3boVSUlJnbbft28f3nrrLZSVlSE2NhbvvfceZs+e7XGn2xNwBYgRxSBfn48WSwtmBs3EyMCRKNQUorilmF075ooP44PK3ZUYNWgUJi2chIOVB+0vdBKb7laQufhCMVrqW7BuxDq2vc1qw6G3DuH0jtNYc20Ne7xtATefw8eciDnt0vGB8rp6cIgaNhuBSmtAQ7MOlbX2aiFtRDoFeN8kocD0BaKej4WGqWNf01l1nY7ZnxOE0byZeNj3MQhuF0UW+fhCLA3EwLihHdrX1DvmAoOljqUGZosNjSodiiuaUVDWCJPZcfc776FBWPKrjteiKIrqS24Ht6+++gorVqzAjh07kJycjC1btmDGjBnIz89HaGjHKhbnz5/Hk08+iQ0bNmDOnDn48ssv8eijjyIzMxPDh3e/kPHdpASkIF+fDwKCIm0REqWJGB00GqODRkNv0aNIW4QslX2eKVQYimHSYQgWBMOX54vdlbuR8f8zECoLBW7nelhsFlhtVjBc1wuQhX5CCP2EbEHmeWvnYeS8kYifHO/UbscTOzB2/lgkLXQEfiuxsrUg/Xh+4HP5To8Kr+XVI7feufRXe4oQfygv7sNP332DdV98DYU4CmW26zhXm4EqSyGsAUoQvv2ukAchQrlRUHCHIIoZiVgmCUwn+725crPEMZ93o6gepZX28mB6owV3rrrwFfLw4q8TMGNUJE0ioSjqnuMQNxeHJScn46GHHsK2bdsA2BMNIiMjsWzZMqxcubJD+wULFqC1tRWHDx9mjz388MMYNWoUduzY0a331Gg0kEgkUKvVCAjoWJaq2liNeTfmgYDAl/HFIwMecSqVZbKZkHYrDYB977I5EXPY19pvQip9SYrAWfY6lbPDZ0MmdN4ix1VBZr6Qjz8e/aPLivvrRq7D5JcmY8p/TWGPNRobcaT6CAAgyi8Kk0In4Vz9ORS32AOa5OwL4KudEzF4DBfRkVIMGxKCg1vfwY+HD2Dl9p0IH9xuqQJfhK9PFMFGAD6fgydmDIXY1/2F3W2q6rQ4nFHYZTsBj4upw8Px+0lxCJV4/n4URVFd6SoWtOfWnZvJZMLVq1exatUq9hiXy8X06dNx4cIFl+dcuHABK1ascDo2Y8YMHDx4sNP3MRqNMBodqecajabTtgAQLgzHJMkknFafhs6qQ2ZTJpJljtqRAq4AgYJANJua0WRqQpOxiU3sEIlF+O2G3+K3G36LXHUumyJfZ6jrENy6KsjcHfXGevb7tuu31XbkEC54WjkAICJUjNioIIQE+kIqFrGlr47v+RwA8NenH3e67tL1/8SQQckoKGuC2Uxw9moVZk6I8eguymiy4vSVW+zPD0QGwmS2Qq2z33FKfAUYopAgPlyKiQkKiH3cq7lJURTV29wKbg0NDbBarZDL5U7H5XI58vLyXJ6jVCpdtlcqO0/y2LBhA9atW9fp664sH7Acl7SXYLAZkK/Nh8JHgYF+A9nX48RxuNR4CQCQq8nF+JDxHa7RPv2/SFuEhIAEtwoy36n9PBtgXwdWpC1if5aL5NBZdFCb7btyRwkHo5XwYQPQpNYjKlwCocD5T/RNXjU6YzBaUKHUQG+woLxGgx+vVmDiGPceExpNVhw7WwRtqz2QJQ4MwqanHwaXPmqkKMqL3Jfr3FatWgW1Ws1+VVRUdHlOpDASy8KXsT+fqTuD8lbH2rVo/2h2I9HilmKX68sCBYHshqIqs6rrLEs31Rnr0GSyZxUGC4IRLAxGobaQnXObFjQF44fa18HpjRacy3Jdu7EzIiEPUx4ahLY4lFvSgMOnC6Ft7XoBNgAoG1pw4Ic8KBvsFUYkvgL897yRNLBRFOV13ApuMpkMDMOgttY5MNTW1iIszHW1jLCwMLfaA4BQKERAQIDTV3fMD5mP1KBUAPYNRjPqMnCp4RLMNjP4XD5GBo5k256vPw+jteOHfnyAIynkUuOlHivIbLVZnepWxgfEw2g1Il+TDwBgwOBx2eN46TcPwO/2+rDCW/b0f3cMVEgwNclRm7K6rgV7j+Xix6vlqG/SwWZznmK1WG2oUGpw/FwxDp0sgLrF/jsJ8OHj3YVJtHwWRVFeya3gJhAIMGbMGKSnp7PHbDYb0tPTkZKS4vKclJQUp/YAcOLEiU7b/xJcDhd/HfRXNsABQL42H4cqDyFHlYMovyj2zkxr0SK9Nh0mq8npGlF+UexcmMaswU9NP/VIQebM5kz28WOwIBjR/tFOhYunSadBLpBDFiDC0pnD2PMu51TjzE/lTksB7sZgtOBWtfMcpcVqw83iBuz/IQ87D1zD/hN5+PZUAfYdv4md+7Nx9EwRyqrUbPuhEVL889lxtOgxRVFey+1sya+++gqLFy/GRx99hKSkJGzZsgV79+5FXl4e5HI5nn76aURERGDDhg0A7EsBJk+ejI0bNyI1NRVpaWlYv369W0sB3MmQAQAbsSGtPg3bqrbBSBx3ZxxwIOaL0WppZWs1SvgSjA8Z75Q8ojKpcLj6MGzEvn4rUZKIUYGjPC7IfF11HddU1wAAXHCRGpGKekM9Ljba7+TEjBj7EvYhROBY+PzVuWL866RjHtPfV4CR8XLERQVB4CKBxWC0IL+0EdcKaqE3OO42R0UFI69KBUM3gmOQvxC/S4nGo0mDwbix8zZFUVRfcCcWuB3cAGDbtm3sIu5Ro0bh/fffR3KyPTtxypQpiIqKwq5du9j2+/btw5tvvsku4t60aZNbi7jdDW5tyg3l+J/K/8E5zTmntWR34oCD+IB4JAQkQMy3l/Mq1BbiQoMjA3Sg70Aky5Ld2jfNYDXgUuMldjsbAEgOTgYBweXGy+yxdYPWYU7wnA7nH8sqxwfHb8LYLjAxXA6CpT4IkvqAzzAwWaxoVOnQpDY4PXL0F/Hw6pwRmJigQKvRjJM5VbhW1ojCGjWUKvt2O1wOMFAmRqxCgqTYUIyLl4PH3JfTsBRFUb0f3Pqap8GtTYWxAvvr9+O85jxKDaWwovO7GIVIgRBRCIIFwag11DrtFCDkCjFcOhwx/jEdaji2Z7QaUdxSjJ9VP7OPHQFghHQEmkxNqNQ5EkWeDn0af4z4Y6d3hTXNOmw9moOrJd0vkDx+aBiWzhyG4E5KZtkIgcVqA5/h0gXXFEV5DRrc7kJv06NYX4xLZRXYfS4P+rAcmCKudVpyyxUuhwuFSIFgYbC9IDPXXttSZVKhydiEGkON0xY1fA4fwcJgNBgbYCGOR4bPyJ/BK+GvdCvAlNZqcPjqLWSVNqKqqdXpNQ6ASJk/xg4JwZwHByEi2M/1RSiKorwYDW7ddKtei+W7zkNDmtAy4gDMIcVuBbnuaF/xv00wLxirBq7CVOlUj67ZajCjulkHk8UKAY/BgGA/+Ai8vgY2RVHUXdHg5oZWoxkfHLuBH65XweLbAF3MjzCF/wzwzD36PgDgx/XDnOA5eEHxAqQ8adcnUBRFUSwa3DyQVdqAtLNFyC5rBGFMMAWXwCKphkVSDSJoBeHawLHywbSEgFErwOikiI4QYXCsCY38UlSZqtBoboTaqna6bpggDAk+CXg44GHMCpoFP4Y+MqQoivJEr9WW7M9GD5Zh9GAZyuu1SM+pQkFNOAor1dAWOu7gAnz4iFVIED9QiukjBric29JatGixtoCAwJ/xRwCvd4IxRVEU1Tka3O4wMESMZ6fZ9yMjhEBvssJ8O7PQR8B0mfwh5okh5onv2oaiKIrqXTS43QWHw4GvkP6KKIqivI1XfHK3TQt2tfUNRVEU1X+1xYDupIp4RXDTarUAgMjIyHvcE4qiKOpe02q1kEjuXvvWK7IlbTYbqqurIRaLPa6oodFoEBkZiYqKil7LuLwf/KeME6Bj7a/oWPufnhonIQRarRbh4eHgcu9eKtAr7ty4XC4GDBjQI9dyZwsdb/afMk6AjrW/omPtf3pinF3dsbWhVXIpiqKofocGN4qiKKrfYdauXbv2XneirzAMgylTpoDH84qnsR77TxknQMfaX9Gx9j99PU6vSCihKIqiKHfQx5IURVFUv0ODG0VRFNXv0OBGURRF9Ts0uFEURVH9Tr8Jbtu3b0dUVBREIhGSk5Nx+fLlu7bft28fhg4dCpFIhMTERBw9erSPevrLuTPWTz75BBMnTkRgYCACAwMxffr0Ln839xN3/65t0tLSwOFw8Oijj/ZyD3uOu2NVqVRYunQpFAoFhEIh4uLivObfsbtj3bJlC+Lj4+Hj44PIyEgsX74cBoOhj3rrmTNnzmDu3LkIDw8Hh8PBwYMHuzwnIyMDDz74IIRCIYYMGYJdu3b1fkd7gLtj3b9/P379618jJCQEAQEBSElJwfHjx3u2U6QfSEtLIwKBgPzrX/8iN27cIM8//zyRSqWktrbWZftz584RhmHIpk2byM2bN8mbb75J+Hw+ycnJ6eOeu8/dsS5cuJBs376dZGVlkdzcXPLMM88QiURCKisr+7jn7nN3rG1KS0tJREQEmThxInnkkUf6qLe/jLtjNRqNZOzYsWT27Nnk7NmzpLS0lGRkZJDs7Ow+7rn73B3r7t27iVAoJLt37yalpaXk+PHjRKFQkOXLl/dxz91z9OhRsnr1arJ//34CgBw4cOCu7UtKbQUboAAABgRJREFUSoivry9ZsWIFuXnzJtm6dSthGIYcO3asj3rsOXfH+qc//Ym899575PLly6SgoICsWrWK8Pl8kpmZ2WN96hfBLSkpiSxdupT92Wq1kvDwcLJhwwaX7efPn09SU1OdjiUnJ5MXX3yxV/vZE9wd650sFgsRi8Xk888/760u9hhPxmqxWMi4cePIp59+ShYvXuw1wc3dsX744YckOjqamEymvupij3F3rEuXLiXTpk1zOrZixQoyfvz4Xu1nT+rOB/7rr79Ohg0b5nRswYIFZMaMGb3ZtR7XnbG68sADD5B169b1WD+8/rGkyWTC1atXMX36dPYYl8vF9OnTceHCBZfnXLhwwak9AMyYMaPT9vcLT8Z6J51OB7PZjKCgoN7qZo/wdKx/+9vfEBoaiueee64vutkjPBnrt99+i5SUFCxduhRyuRzDhw/H+vXrYbVa+6rbHvFkrOPGjcPVq1fZR5clJSU4evQoZs+e3Sd97ive+rnUE2w2G7RabY9+Lnn9kviGhgZYrVbI5XKn43K5HHl5eS7PUSqVLtsrlcpe62dP8GSsd3rjjTcQHh7e4X+i+40nYz179iw+++wzZGdn90UXe4wnYy0pKcHJkyfx1FNP4ejRoygqKsLLL78Ms9mMNWvW9EW3PeLJWBcuXIiGhgZMmDABhBBYLBa89NJL+Mtf/tIXXe4znX0uaTQa6PV6+Pj43KOe9b7NmzejpaUF8+fP77Frev2dG9V9GzduRFpaGg4cOACRSHSvu9OjtFotFi1ahE8++QQymexed6fX2Ww2hIaG4uOPP8aYMWOwYMECrF69Gjt27LjXXetxGRkZWL9+PT744ANkZmZi//79OHLkCN5+++173TWqB3z55ZdYt24d9u7di9DQ0B67rtffuclkMjAMg9raWqfjtbW1CAsLc3lOWFiYW+3vF56Mtc3mzZuxceNG/PDDDxgxYkRvdrNHuDvW4uJilJWVYe7cuewxm80GAODxeMjPz0dMTEzvdtpDnvxdFQoF+Hw+GIZhjyUkJECpVMJkMkEgEPRqnz3lyVjfeustLFq0CEuWLAEAJCYmorW1FS+88AJWr17d5b5e3qKzz6WAgIB+e9eWlpaGJUuWYN++fT3+NMnr/1UIBAKMGTMG6enp7DGbzYb09HSkpKS4PCclJcWpPQCcOHGi0/b3C0/GCgCbNm3C22+/jWPHjmHs2LF90dVfzN2xDh06FDk5OcjOzma/5s2bh6lTpyI7O/u+3sXdk7/r+PHjUVRUxAZwACgoKIBCobhvAxvg2Vh1Ol2HANYW1Ek/Ko3rrZ9LntqzZw+effZZ7NmzB6mpqT3/Bj2WmnIPpaWlEaFQSHbt2kVu3rxJXnjhBSKVSolSqSSEELJo0SKycuVKtv25c+cIj8cjmzdvJrm5uWTNmjVetRTAnbFu3LiRCAQC8vXXX5Oamhr2S6vV3qshdJu7Y72TN2VLujvW8vJyIhaLySuvvELy8/PJ4cOHSWhoKHnnnXfu1RC6zd2xrlmzhojFYrJnzx5SUlJCvv/+exITE0Pmz59/r4bQLVqtlmRlZZGsrCwCgPzjH/8gWVlZ5NatW4QQQlauXEkWLVrEtm9bCvDaa6+R3Nxcsn37dq9ZCuDuWHfv3k14PB7Zvn270+eSSqXqsT71i+BGCCFbt24lAwcOJAKBgCQlJZGLFy+yr02ePJksXrzYqf3evXtJXFwcEQgEZNiwYeTIkSN93GPPuTPWQYMGEQAdvtasWdP3HfeAu3/X9rwpuBHi/ljPnz9PkpOTiVAoJNHR0eTdd98lFoulj3vtGXfGajabydq1a0lMTAwRiUQkMjKSvPzyy6S5ufke9Lz7Tp065fL/vbaxLV68mEyePLnDOaNGjSICgYBER0eTnTt39nm/PeHuWCdPnnzX9j2BbnlDURRF9TteP+dGURRFUXeiwY2iKIrqd2hwoyiKovodGtwoiqKofocGN4qiKKrfocGNoiiK6ndocKMoiqL6HRrcKIqiqH6HBjeKoiiq36HBjaIoiup3aHCjKIqi+h0a3CiKoqh+5/8AbDBJf4RwzDAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "from node2vec.edges import HadamardEmbedder\n", - "edges_embs = HadamardEmbedder(keyed_vectors=model.wv)" + "edges_embs = WeightedL1Embedder(keyed_vectors=model.wv)\n", + "V = np.matrix([edges_embs[str(x), str(y)] for x, y in G.edges()])\n", + "fig, ax = plot_edge_embeddings(V, list(G.edges()))\n", + "\n", + "ax.set_title(\"WeightedL1Embedder\")\n", + "plt.savefig(FIGURES_DIR / \"WeightedL1Embedder.png\", format=\"png\")" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 67, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2IAAAMtCAYAAAD9ocIrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXhU1fnA8e+dfbKHJATCKvsiYQcBcUFQELXQulCtsmilKmq1glK1YkVxa6uitkWtiBuiVgUpIovIvgdCgAABAiEJ2TOTZPaZ+/vjJhPCTCDBgP2V9/M8PIZ7zj33zLWP0zfvOe9RVFVVEUIIIYQQQghxweh+7gkIIYQQQgghxMVGAjEhhBBCCCGEuMAkEBNCCCGEEEKIC0wCMSGEEEIIIYS4wCQQE0IIIYQQQogLTAIxIYQQQgghhLjAJBATQgghhBBCiAvMcKEfGAgEyMvLIzo6GkVRLvTjhRBCCCGEEP8lVFWloqKClJQUdLqLK0d0wQOxvLw82rRpc6EfK4QQQgghhPgvlZOTQ+vWrX/uaVxQFzwQi46OBrSXHRMTc6EfL4QQQgghhPgvYbfbadOmTTBGuJhc8ECsZjliTEyMBGJCCCGEEEKIi3LL0sW1EFMIIYQQQggh/gtIICaEEEIIIYQQF5gEYkIIIYQQQghxgUkgJoQQQgghhBAXmARiQgghhBBCCHGBSSAmhBBCCCGEEBeYBGJCCCGEEEIIcYFJICaEEEIIIYQQF5gEYkIIIYQQQghxgRl+7gkIIYQQ/61UVcVpt+F1u/H7fOgNBoxmM9aYWBRF+bmnJ4QQ4v8xCcSEEEKIag67jZy96RQcySI/6yAFR7Lwupwh/YwWK8kdOtGyUxeSO3SiTc9UImJif4YZCyGE+P9KAjEhhBAXNVVVyT+Uya7lSzmwaR0Bvx+dXk/A76/3Hq/LyYl9e8g7sC/Yv+vQK+hz7Vhadu4q2TIhhBBn1ehArKKigqeffpqvvvqKwsJC+vbty+uvv87AgQPPx/yEEEKIBlNVlWKvD6c/gFdVMSoKVr2ORKMhbHCUtW0zGz77kOKcYyg6PWpAC77OFISdqqZfwO8nc8Na9q/7gcS27Rl22510GjC46T6YEEKI/zmNDsTuueceMjIy+PDDD0lJSeGjjz5i5MiR7Nu3j1atWp2POQohhBBhlXh8rC+vIL3CSZrdwe4KB1X+QEi/SL2O3tER9I2JIDXaygAD7ProHTI3rA0GaDVB2Lmqub8k5xjfvPIc3YZdwYjJv8MaHfOTxhVCCPG/SVFVVW1oZ6fTSXR0NN988w1jx44NXu/fvz9jxoxh9uzZZx3DbrcTGxuLzWYjJka+nIQQQjSOqqrssDt4P7eYbwrL8KlgUMDXgG+zmn66gJ9uWXvom7GZloUnOB8LCRWdDnNkFNdOfZDOA4echycIIcT/fxdzbNCojJjP58Pv92OxWOpct1qtrF+/Puw9brcbt9sd/Lvdbj+HaQohhBDwXZGNF4/mk1nlQq+Avzr4akgQdmq/gE7P/k692NelD4klJxm+dSWdjmU26VzVQABXZQWLX32eyyfcxaBxt8jeMSGEEEGNOkcsOjqaIUOG8Nxzz5GXl4ff7+ejjz5i06ZN5Ofnh71nzpw5xMbGBv+0adOmSSYuhBDi4lHq9XHf3mwmZRzlYJULqA3CzpWq0wNQEt+cr8b8hiXX3ILTbP2pUz3tIdok1y9cwPqFC2jEIhQhhBD/4xq1NBHg8OHDTJkyhbVr16LX6+nXrx9dunRhx44d7N+/P6R/uIxYmzZtLsr0oxBCiMZbVlTOowdysHv9/LRdXGemBAJY3E6u+/FrOmeHfp+dLrfMxmsr1zO0YzvG97s0pN3l9bF6fxZ7ck9S5nBi0uvpc+mlPPfKq4wYMeJ8fAQ8Hg//+Mc/WLRoEfv27cPhcJCYmEivXr2YNGkSt912W7Cv3++nZ8+eOJ1OMjMzsVqbOAgVQogGuJiXJjYqIwbQsWNHfvzxRyorK8nJyWHr1q14vV46dOgQtr/ZbCYmJqbOHyGEEOJsVFXl9ewCJmdkYzvPQRiAqtPhNFv5evQdbO57BWf7LeVXaXsx6vWM7NE5pK3C5eb1letZnXkYt9dHj5bJtIiNZtPONEaOHMncuXObfP4nTpygb9++PPzwwxw4cIBhw4Yxbtw42rVrx9q1a/n888/r9Nfr9cyePZvjx4/z8ssvN/l8hBBCnFmjM2KnKysr45JLLuHll1/m3nvvPWv/iznqFUII0TCqqvLCkXzmHi/82eYweOePDN+6Imwhj905+Xy4aSdXde3ADb27h7S/v347e/MK6Nw8gcmXD8Rk0JZB7s8v5P3120FRSEtLIzU1tUnm6nQ66devH5mZmcyaNYs//vGPGI3GYLvD4eDgwYP06dMn5N7U1FSysrI4cuQILVq0aJL5CCFEQ13MsUGjM2LLly/nu+++4+jRo6xYsYKrr76abt26MXny5PMxPyGEEBehN44VNnkQ5j2UScHI/tjfeLHePv78XOxvvEjxXb9g8ZNPMPOblby0bA0Lt+6mpNIR7Lfu4FEABl0Suu/5pK2CvXkF6BSFWwamBoMwgO4tm9OlRRKBQIDevXujKMoZ/xw/fjx4r81mIyEhgcGDB4fsNZszZw6ZmZnce++9PPPMM3WCMICIiIiwQRjAlClTcDqdzJs37wxvTwghRFNrdCBms9l44IEH6NatG3fddReXX345y5cvD/mPvhBCCHEulhWVM+do+AJQP0XF3JdQTGai7gy/esO5ahnFk3+F8+vPUExmzEOuQNdvMD6The3ZJyiwVwDa3rDskjLaJcTRPCYqZJyM3JMAtE+Mp1lkREh7amst66TX67nzzjuZOHFinT/du2sZto4dO9YpcBUbG8vMmTPZunUrCxYsCF73er38/e9/B2D69OmNfi933HEHBoOBf/7zn/h8vkbfL4QQ4tw0+kDnW2+9lVtvvfV8zEUIIcRFrtTr49EDOShw1j1ajeH6cQXejF1E3DYRXXyzkHb3zi3Y5zyFLq4ZsX96G1NqP60hEMDqdjL53eeJ8nkAyMgtAKBz88Swz8ot145paR0fG7Y9tXULFm1Lx+/38/jjj9OzZ8867T169AC0TNXp5e6nTZvGyy+/zMyZM5kwYQJms5mdO3dSXFxMSkoKnTp1Ys+ePfz73/8mLy+P+Ph4hg8fzpgxY9Dpwv/uNSkpiT59+rB9+3a2bdvGkCFy5pkQQlwIjc6ICSGEEOfLkwdPYPf6mzQIA3B88TEA1jHjQtpUvx/7q3+GQIDYWa/UBmEAOh0us5Wdo28jxqqdoZlVWAxAu8T4sM8qrdKWMMZHhK9CaDEasRi134Pu2LCuTtumTZvYv38/er2eSZMmhd5rsXD77beTn5/PZ599BkB6ejoArVu35oknnqB3797MmjWLefPm8dJLL3HDDTcwYMCAOsscTzd06FAAVq1aVW8fIYQQTUsCMSGEEP8Vviuy8VVheZNXR/QeysS7dzfGHr0wtG0f0u7etJbAyTyMvfpiujR0H5Wq07G/c2+y2nUDajNezaNDlyUCuL3aJzh1b9jpatoyNq6vc/1f//oXAKNHjyYlJSXsvTUB2ltvvQVASUkJAGlpabz00kvcf//9HDhwAJvNxooVK+jSpQtpaWmMHTsWr9cbdsyarNzOnTvrnbMQQoim1eiliUIIIURTU1WVF4/mowMCTTy2e8MPAJj6DQ7b7tm2UWtP7Yfq9+HesAZvxi5Utxt9ixTMw67C2Lod6waNpM3hDDw+LdCKNP/0vdH5B/fjsNuIiInF4XAEs1x33313vff06dOHpKQktm7dSn5+frBwh9fr5de//jVvvvlmsO/IkSNZsWIFXbt2JSMjg4ULF3LnnXeGjJmQkABAQUHBT/5MQgghGkYyYkIIIX52O+wOMqtcTR6EAXjStgFg7BG+VLzvyCHtB72e0vvuxDZrOo4vPsa55Asq33mDkik3Y//n3yhqlsyxmKTgfWZD+N9lmo1atqsmYAs7p+o2k15Hzt49AHz++edUVFTQvHlzbrjhhjN+ppp9XKtWrSI6Ojp4ferUqSF927Zty9ixYwFYuXJl2PFqSkaXlZWd8blCCCGajgRiQgghfnbv5xajD3dgVxPwHcoEwNCuQ9j2gN0GQNUn/8JfeJKYPz5P0lerSfzsO6KmPgJ6PY7PP8Lx8Xtk9r08eJ+7ngqDzSK0SollDmfYdpfXi8ur3ZsYE0XB0SygdlniXXfdddZKxKcuJezQofZznfrzqWqu5+eHr0Zps2nvID4+/L43IYQQTU8CMSGEED+rEo+PbwrL8Dd1hQ5AdTpRXVpApMSEr2JIzZlcPh+xT76AdeT16GLj0SclE3nbXURNvh+AqoXzOXBJz+D+rip3+P1WreK17NKJMlvY9pxS7brJoCchwsrJrANkZWWxdu1aQKuWeDanLiXs169fsLpicXFx2P4116Oiwu9rq9lnlpycfNZnCyGEaBoSiAkhhPhZrS+vwHcegjCAQFVF8GclIjJsH6U6g6VrkYJ5YGjpdutNtwCgOqrwHNpPsxYtAYLnip3u0lbaOWHZxWWUVYVmxdKO5wHQo2Uyep2OgiNZvPfee4C25LDmHLEzOXUpYYsWLbj8ci1TF27podfr5ccffwRg0KBBYcfLyMgAoH///md9thBCiKYhgZgQQoifVXqFE8N5Wpaoi6rdP6U6qsL20bdsDYCh+p8hY0REosRpS/b8xUW4e18JwLGS8rD9W8RG0zMlmYCqsmh7Ot5T9ortzy9ke/YJFAVG9+xJhCEGg9vEgvkfAJCYmIiiKFx11VVn/FynLyV85plnAJgzZw6bN28O9vP5fPzhD3/gyJEjREdHM3ny5LDjbdyoFSwZMWLEGZ8rhBCi6UjVRCGEED+rnXbHecuIKRYrisWK6nKi2m0QGbo0z9ilO+4fVxCwhS9Uofr9qJVa9kuJiEB35ShY+jHbSjxcpTNjDbhD7rl5QC8KVldyqKCYOf/5gY5JSbi9CvtPnkBF5U8j7ue3vScAsPrwJvJOfkKkyUrrEi3Tpdh8ONKLMHeMQx8Zul/s9KWE11xzDc899xxPP/00w4cPZ9CgQbRo0YKdO3eSnZ2N1Wrl008/Dbv0sKioiPT0dFJSUhg4cGBDXqsQQogmIBkxIYQQPxtVVUmvcJzXZxg6a+d/+Y4dCdtuvuIaUBR8Odn4i0LLt3t2bwefDxQFY9ceGPr0wtSqO/bC47xnHc7hiPYh90RbzPx+1DCu79mbGHMs+/IKyCu3ccUlA/nktr/y24ETgn0Xpi8F4IauV3Pg5GEAbm43ktJPMsl/fgsln2XiPm4PlqmH8EsJn3rqKZYvX86oUaPIzMxkyZIl+P1+Jk2axM6dO4OVE0/30Ucf4fP5mDp1KoZ6KkEKIYRoevJfXCGEED+bYq+PKv/5KFpfy9R3IN49aXj3pmO+bHhIu6FVWywjr8e1Yin2v/yZ2KdeDC5p9J/Mo2LuSwCYrxiJPrE5ADGXjaf4y/2cWPxX/l6SQ/vOqTzQtw01KyxTIjrRK/4KJnZJIqD60SnhD3cudZSzMktbFvirS0cz6YvH6dWiKzd1rV4iGFBx7i7GmVaEoUUEsde2x9ojgU2bNgGhSwmvvfZarr322ga/G1VVef/997Fardx7770Nvk8IIcRPJ4GYEEKIn43zPAdhAOZhV1O1YB7uHZuJuvuBsH2iH3wcX/YRPFs3UnznTRi7p4LXjXffHlSnA0PHLsQ88mSwf8SlwzFv7oE7TyuNX2xtwab4wVxp203/hFG0i+pBQNU+W31BGMCXe7/HG/DRqVlbVDWAw+tk5pVTg1UQAQhomTBfgYOSBfs4FFtESUkJgwYNomXLlj/p3XzxxRfs2bOHWbNm0aJFi580lhBCiMaRpYlCCCF+Nl71PG0OO4WxczeMPXvjy8yod3miLiqaZnPfJ+qeaegTkvDs2opnzy4tCOuRSrM3P0BXXf4+UFZKZfoqFJMFqoOtyr0/sPLzeWw76Aef1k+nnP0rdtGe/wBwW+pYhrbrR87jaxnefkD4zipUuh089uafAEjfnY7VaqVdu3aMHz8+pGKizWYjISGBwYMH11nWWMPv9/P000/Ttm1bZsyYcda5CiGEaFqKGu6/zueR3W4nNjYWm80WLL8rhBDi4nTc6WbQ5v3n/TmuH1dge3YGCb+8hUvumYwx4MOrM+DUWSg2xoESWrax9KHJ+LIOkPjxt+jimwWv2154EtfK/wAKoKKPSuCS5h0pO3mQEkc5EUYr74yfzRWXNG3hi8yiI/zms8coqCpGp+i4psMQIlrFku8qJi0tjYceeohXX321zj2vvvoq06dPZ/78+UycOLFJ5yOEEE3hYo4NJBATQgjxsynyeOm1Ye95GbuZt5zLy3aSWnmQvvb9PPbaJvbkezn8UBTJUbXZqkq9ld1RXUmL6U56VBfWx/cjb+M2bM/OIOK2iURP/X2dce1zX8JUakDRmSlf8z6/v/sd/pDQmSqPgxnfvcLi/auIs8SwbuqnxFmiT5/WWWUUHGTsB/dyV99xPDdKe3ZRVSkj35tEqVMrmd8sIg6vz4vL5yYhrhl9B/fnxhtv5L777qszlsvlom3bthgMBo4ePYrZbG70fAAqKip44403+Oqrrzh06BAej4fmzZvTr18/HnjgAUaOHBnsa7PZ6NChA506dWLz5s11l1kKIcRpLubYQPaICSGE+NkkGg1E6nXhC3aoKngCKAFV2yelU1B1Cph0YTNYNff0t+9lct7X/KJoNUbVj1fRo1f9vD3axIB3vDy31s2b11uDt0T5nQyx7WKQfU+wf68PddgA65hfhDwi5r7pmFflowDTBt3GVCwARJoieHXM46w+vIlyl53Vhzfxy54NL5xR408rXsdiMPPw0NoM1vM//D0YhOkUhXaxKSRHJ6BDR3Z5LsuWLWPZsmVkZGTw1ltvBe+zWCzcfvvtvP7663z22WfcddddjZ5PRkYGo0ePJjc3l9atWzNixAgMBgPHjx9n6dKldOzYsU4gFhsby8yZM5k+fToLFiyQTJwQQtRDMmJCCCF+VuPTsthUXgkeP7pSNzqbF8XmQWf3ovhDv6JUvUIgxogaayIQayTQzAwmPdcVr+eJ7HfpXnUUn6LHoPrDPO3s0vL99JtXxWWt9bz3UC9ebH8P3ycOq364ilLqxry9hOEYmENEyP1jP7iX9JOZPH7FvUwb8ptGPXtp5hp+982f+N2gX/Pk1Vp2q7iqjEFv/wqdomP+zS9xWdveGHR1f4+68dhOJn/zRxxOB9999x3XXXddsG3Xrl307duXQYMGsWXLlkbNp6CggNTUVEpLS5k7dy5Tp9YtJFJeXk5eXh49evSoc19TZeKEEP/7LubYQDJiQgghfjaqqtLKqWJKL0U56URRQdW2XlHfgjbFr6Ir80C5B4MKsUoFz0Z9yDjvevzVd51rEAbwdaYXgJGX6OladZQFe//Iv5Ou4cnOD1Omj0Fn8xKDwuNYCKCiO2WmXr+PE7Z8AJpHJTT62e9uXwTAhNTaM782Ht+JN+BjQKtLubx9f7af2MOqI5spc5STEBHP5e0HMLR9P27qNoKFad/y/fff1wnE+vTpQ1JSElu3biU/P79RlRanT59OYWEhL7zwAr/73e9C2uPi4oiLiwu53hSZOCGE+F8nVROFEEL8LL7fe5LRr63j28UHg0EYgHKGIKyGUt3vWt02fjD9gRs82llcen76Io/V2VoQN6SNPjjeTUU/sH7rnYwuXY/O7uERLESj1AnCQDucudRpw2Iwc3WHwY16bkbBQbbnZtAvpScdE9oGr+8v0io9JkU24+FvZzP+4wd4c9OHfLx7CW9sWsCtnz7E7Z8+is/rAwibfRoyZAgAq1atavB8CgsLWbhwIVarlWnTpjXqswBMmjQJoM5SSSGEELUkIyaEEOKCKqvy8MzivSzenRfc6qU0On5SuV//DTOMi/CrCvrGD1CvtHwtEOueWHv+l4EAcT478/c+xReBX3EZkzg9XNxfdJjn17wNwMNDJ5IU2YzGWH5wPQCXt+tf53q50wbAyqyNBFSVR4dN5uZeo4k2R7HpeBpPrfgb645tR6/oUVC49tIrQsbu2bMnixcvZufOnfzmNw1bLvnDDz/g9XoZOHAg0dHRbNy4kaVLl1JcXEzz5s0ZOXIkV155Zb33/5RMnBBCXAwkEBNCCHHBLN97kie+TMfu1LI357ZLWWWG4TPuNywGaNIgrMqjUqWtTCQhom6gVZMdu1n3JR7TNsq9D+JRuwEK+fZCpnwxkyqPk1GdhvHAZXc0+tkbju8EoH+rnnWu12zl9gZ8PHDZb3jk8sm8uu49cu0FuHxuYs1RFFaW4Ff93D3gZroVJqGqap29XAkJ2jLJgoKCBs8nPT0dgBYtWnDnnXfy0Ucf1WmfPXs2I0eOZNGiRcTHx4cdY8iQISxevJhVq1Y1OAAUQoiLhQRiQgghzjtVVXl7zWFeWX4ARTnXAExzv/6bYBDWVNLy/Qx4p4qJvY3Ba9Gmun2OlgX46yY3yw/7OWHPwKCbSstoMz2ad2NHXiEn7Ce58pJB/P0Xz55Tyfa9BYcA6JTQjkPF2by95RM2HNtBQWVJsE9qi64ArMjawL7CrOD16m11fJu5hmfyH8STU4G5be2m95oN8GVlZQ2eT0mJ9twlS5YQCASYNWsWEydOJDY2ljVr1vDAAw+wcuVKJkyYwPLly8OOcS6ZOCGEuFhIICaEEOK8UlWVl5cf4O9rDlf//dzHula3jRnGRU00s1oPLnNhNcCfrjTx/i4tJVbhgZjq7Vaf7vEyZbETlw96NddxY1cDTi8cKPHy9f7dAAxv14d3f/k8ZoOpvsfUy+Fx4vA6Adidn8mj/5mDy+embWxLuiV1CAZd933zDC9d9xjLJ/9Lm6O7isOlx5n61Z/IqyigoLKYj3cv4bebmtcJxGw2bXljfZmrcIKZOK+XmTNn8swzzwTbxo8fT0pKCkOGDOH7779n3bp1DB8+PGSMc8nECSHExUKKdQghhDiv3l5zOBiE/RRxVPCi8R38qkJavh/9n+08+B9nvf2PlgV48D9OusytJOJ5OzFz7HR7s5LJ3zg5UlZ7btkX+7xsyPFz/0AT7eP0RFYnxUocWiCy6oiP33zlJM6isHZSBOn3RfHZzRG8d5MFY/W3aN8WOtrGHGTke7fR8dVr6PyXUVz5zh388fu/crw8L2RudnclvV6/gRsXTEVVVezuqmDbjO9exuVzc8+AW1l77ye8eN1jwTaDTs/M7//CoeJsAKLNkfRp2Z328SnBPs+tfpPyHXn4a9ZYUpvdSk5ObuDbhujo2sOop06dGtI+ePBg+vXrB8DKlSvDjnEumTghhLhYSCAmhBDivFm+9ySvLD/QJGM9a/yAGBzoFTWYwXr6yvDnU326x0uPtyt5c5sXiwFu7GrgqvYG9DqYv8vLvqLa8vZ/2+wB4O6+WgTWr6VWpGNfkR9/QOWeJU4CKnx5q5Xh7bSFJMWOACMWONhbFCC1uY6MwgAf73FgUMq4rlMbLm/fn0qPgw/TvmbUvyazJWd3nfnFmKN44LI72JW/ny8yviPWEhVsq/Q4aB/fiiev/h16nZ4+LbvTKkYLoIa3H4Av4OfNzbX7tcqcdvacPBj8u8PrYsm+VbgPlwevZWRkANC/f91CIGfSoUMHAAwGA23atDljn/z8/LDt55KJE0KIi4UEYkIIIc6LsioPT3yZftZS9A0xSredX+g3YlACdTJYzSNDv8bqy2At/nUEe++P4ujDUfSvDrbS8v1szPFzWWs9XaurJF7dXvvnphN+lhz0kV2ucnlbPUPbaEFYqVPlmgUOMgoDjLhER16FijcAf77KzKEHo1g8oZgvb+vOpt99xi2XjsHhdfLEd68A8MjSF2jz0hU8svQFJvX/JQkRcby4dh46RUeE0Rr8DJe16RM8tFlRFH4/bBKgLVsE+P7QenwBH06vi5nLX6XCU0XzyNpzyz7Y+RXe3Mrg3zdt2gTAiBEjGvzOa4I2n8+H3W4P26e4uBiAqKiosO3nkokTQoiLhQRiQgghzotnFu/F7vQ1wcleKn8wfI5f1UK60zNYp6ovg3Wq9nE6WkZrX3+nHt5cY1w3bdwVR3wsz9KqO3ZppkP3rJ0xH1Ux6J1K0gu0pY1OLxQ7VQw6yCr1M/kbF3d86aDVK+/R8dWRfJ6xDICs0uOUuyqC+66MOgMWg5lx3UdSWFnCkszVXJrcOTiHeGvt/i7QDnj+deoNFDu0JX6VHgcTFv6evnN/wdIDawAocWgZMAXYlb+fnAzt/LG0tDRKSkrQ6/WMGzcuOIezGTRoEG3baueZrVixIqS9tLSUHTt2BPuGcy6ZOCGEuFhIICaEEKLJfb/3JIt35+H/KZU5qvVTDtFNl4NeUcNmsE4VLoN1Jqce3lyjb0s9Q9vo2ZobYEuu1r7iiA8F+O6wn8NltZ9p0wktIPMFYEG6jw92e/kkw0elp+5zTHojUSYre05qyzQnpI4F4JZeYwAtgzW0bb9g/z0nD9Lu5at4esVrwWtD2vXlxq61Ga0tOelUeUP3yNXMbvXGtaiqyvz58wHw+/1s3bqVBQsWnPW9gJaJqynQMWPGDHbu3Mnzzz/PgAEDiImJISkpCbvdjtVqDe4Fq2Gz2UhISOC7774DGpeJE0KIi4UEYkIIIZqUqqr85fuDnEMF97DuNKzAp9afwTpVTQbrirZ6fAGVL/d5eXS5i/u+dfLSejeZxf46/cMd3gzwyGVa5cPsci3QyrGrmA3w0XgrRdOjyHkkildGmTGdctufrzKz/A5teeG0gXWzdbeljqWoqoyDJdmM7jKcftVnhfVM7kxCRBy78vczsPWlwf4bj+/EpDfx8NCJwWtrj25jyYHV9b4nv+pnYr/x3DPgFgD2nMjEUVLBJ598gtWqzctisTBz5kzcbne945xqypQp3HPPPWRnZ9O/f3+eeuop9u7di8fjIRAIoNfr8Xg8rF5dd16xsbHcdddd+Hw+OnToIIc5CyFEGBKICSGEaFI7j5dzoKDiJ5WprxGPnRt0mzEoWkAULoN1qvRCrZ9BB4PeqeLmz538bbOHf+1R4ocAACAASURBVOzw8sQqNz3fruIPy12oqnrGw5tv7mFkWBs95a7aa3PHmLkj1UhihI7WMToeG2rmuau1YiEK8Kc1bsZ+4iTCCEfLaz/8XX3aMOuaB1l7dBt6Rc/jV9xb51n9UrSgrNhRTr+UHgAEVBWr0cyhkmyqPA6ySo5RVFUa8nkthtpiJfPGPcfsUY/QIjqperxS3nzrTYqLi4PFMm666Sby8/P57LPP6nnjoWbPnh3MeFmtVgKBAK1bt2batGlkZ2dTXFzMlClTQu7zeLS0YElJSYMDPyGEuJhIICaEEKJJfbgpG72uadJhQ3X7MCq1Waz6Mlg1akrOz1nv4bhNDclgGXTw180eXlzvweauDZZOP7wZYO4YS3CZn1kPd/cLrdB43wDtRhWIMYFPBYcXlh7yBfsMb1NEjHEnt6VeT/aMH+iU0K7OGF0SLwG05Yj3DpwQvF7mtHHrpw/T7W+jufrdO9lwbAePDqsNeN4d/wKH/lC7d6tPy+7VnyWy+l2U8/Lrf6FPnz7k5eUxfvx4Zs6cCcBbb70V9v2FM336dOx2Oy+88AIOhwO3201WVhZz586ldevWxMXF0aNHjzr3uFwuFi1aRGRkJDabrVGBnxBCXCwkEBNCCNFkSqs8fJuejz/QBOkwoJfuKF5VC7rOlMGqUfNUbwA++ZW13gzWnPXu4BlgoB3efLq+LfX0SNQ6tYwK/7xosxI89NnugdEd9ZTOiObkH2qrCP52iYs3N756yuzqqinMUewopV31eWAKCq+OeYKpgyZwe+8beWz43ayYMp82cS1q55fSne0n9gT//o+tn7Lp+C7s7srqdxRHweFcHnroIfR6PS+88AJ9+vQhKSmJrVu31lty/lSFhYUsXLgQq9XKtGnTztq/xty5cykuLmbGjBlA4wI/IYS4WEggJoQQoslsPFyMr4mCMIDeShZ6tCzY2TJYp15vH6dwbcfQYh01GawKD2QUBkIObz6dw6ddr2+/26ESP/bqVXfxFvjslgjirQrJUbVfrwrw/LoCTpStrWfOWgbL5qpg+cH1wet7Cg7w1NX389Lo6Tw8dCKdEtqx5uhWAKJMETy/5u+M//iBYP9/7fiSWz99iA92fgVAYkQzFKOOyZMn4/P56NatGwBDhgwBYNWqVeE/1Cl++OEHvF4vffv2JTo6mo0bN/Lkk08ydepUnn76aX788ceQe2w2Gy+++CKDBg3i6aefblTgJ4QQFxMJxIQQQjQJVVXZta+I8IsGz2lEeumOUrPKMc5SGw2Fy2ABdIjX1fnn6aLNCknV2bT8SrXO4c3hFFRqgViuXeWEPRDSPmdd7UTmjrEQYw6N2NrEKPgCsP3EF2GfUZPBirVEs+H4TgDm3/wis0c9EtJ3W046AE6vi2/2reLRYZODbS9dN53mUQmcsJ8EILVVF3SRoSX+e/bU9qTt3Lkz7HxOlZ6uPa9FixbceeedDBs2jBdeeIF58+Yxe/ZsrrrqKkaNGkVZWVnwntjYWEpKStiyZQuKojQq8BNCiIuJBGJCCCF+MufeEgpe28mOXfmED2kaLwE7UUpttYwIo3LWDFbNQc3F9bT7AyrlLq0tylT38ObTVXlUnNVbvTwB+O0SJzZX7bjHygMs2uetnhvckRo+TWevzuRVug+iwxbSXu7SDktOjGjG3oJDALSJrVtl0Ol18fSK18irKNQ+hxrgd4N/zSOX1wZiV3cYzLvjnw/+3ap4UcKk8hIStIOfCwoKws73VDUHMi9ZsoRPP/2UWbNmcfToUUpLS/n3v/9Ny5YtWblyJRMmTKh3jMYEfkIIcTE5+yErQgghRD38VV7KFx/GubsIFZUDTRaGgVUJTXv1a6ln3XE/+4r8XBIm6/WrHkZmrnKTWRzghD1A65i6fdZk+/EGtOWCA1L0tInR8ee1HlYc8TH7tKOuTl0K2a+lju+y/HSaW8llrfW4fCqbcvzBPWtxFvAFVAxhipTUZO86xINZtwdn4PI67QeKjgLQNfESHNXngt344VR6JXeleVQCVR4H23MzsLkqSIpsFqye+Js+N4U8y6iv/VrffWADvrIyDNUVE2vUVEA8NYtVn5rDn71eLzNnzgyeKwYwfvx4UlJSGDJkCN9//z3r1q1j+PDhIWM0JvATQoiLiWTEhBBCnBPn3mIK/rIdZ3oRAOWoOJpwfCO+kGtnymABdGqm4zepRjz+8BmsB5dpGbabexhIidbVObx53EIHyrN2Jn2tBUOnLoVcdkcEL4wwkxKtsPqoj405fpIja9vzKqD9a5Vc8X4lV82v4qr5VcE2v6qV0y+uAqMuK2TOO/L2AnBpcufgtQGtenG07ATfHVzL9twMuiV14MXrHuPBIXcCYNDpSYlpHjLW53uWBX8uLD+JY8uWkD42m5aViz8tQAsnOjo6+PPUqVND2gcPHky/ftpB1CtXrgw7RmMCPyGEuJhIRkwIIUSjqKpKxZoc7MuPaaml6ljHdca7Gs8b5itqXDdjvRmsGnPHWNhb5A/JYG0+4afSA72TdfzjBmuw/yOXmdiY4+RgibYHrKaaYs1SyCovVHlg5nAzM4fXlrD/OtPL+M+cwb/nVqjkVoRfEukLQEGVH5NyoM71jIKDlDlt9GnZnY4JbYPX//6LZ4k2R4aMk5a3r3o8PxXuKmIttYGS2+fh630rMeoNeP0+rL5KXHv3EjN6dJ0xapYbJicnh3+Bp+jQoQMABoOBNm3a1Ntnx44d9RbjaEzgJ4QQFxPJiAkhhGgwVVWxL8/WgjCoU5HdW0959nPlVEP3XJ2awdpfT4GNWIvChimRIRmszs10vHiNmU13R9LMWpvNqjm8ObNYC8Tu7ldb4OJMxTzGdTOiPhOD+kwMP06K4NaeBtrEKJj0YDhlheIPEyNQn4nh2astmHRZnPrSajJYE/uNx2q0EGHUAsQyZ+heMtDOCmsVowVQ67K312lbtGcZpU4b+uqv9l4GHc7qYhunysjIAKB///5hn3Gqmj4+nw+73R62T3FxMQBRUVFh2xsT+AkhxMVEMmJCCCEarGJNDhVrToRtM3Juhzh7Cg6T/8EjRPe9nmajfhe8XkIMlaoF1eNkzno3X+73cdwWwFD9K8Q/rXHz+S0RYce0GJSQDNaZPH2FidEfa9mtIe+FLrC84VMnUJv9+nFSBFe0075C/QGVe5e4cPpUDkyLwmrU3oPyrBa4dGpW+ztPneJEh40AcTy05Dm+2rcCi8HMjd209N6lyZ3ZeiKdQyXHaBuXEjIPRVH4/bBJTF/2Ei+s+TvdkzoG2z5I+4o4SzTlrgpSTBauiYrClbEXVVXrFO3YtGkTACNG1JNSPMWgQYNo27Ytx48fZ8WKFdxyyy112ktLS9mxY0ewbziNCfyEEOJiIhkxIYQQDeLcW1ybCQvDco7jlq74J4rBROzQ0yvvKfxY0ZoB71QxZ72HCrfKjV0MwSzVF/t8PL/WfY5PrSuvQkWvwLiuBib2Ngb/3NBZC7YSIxQGpmhfmdGm2uqMAHqdwuwRZo7bVF7eUE9d/TqfSutzqER7l71bdMNs0LJ/Q9tq+6125GbUe/+E1LH8OvUGcmwnuW7+lOB1o95AuauCOHMUf2uRjFmnI1BVhb9UK+4xadIkFEWhpKSEQYMG0bJly/oeUTtXRQkW6JgxYwYHDtQurXQ4HEydOhW73U7btm0ZN25c2DEaE/gJIcTFRDJiQgghzspf5aXsy0Nn7BOHQgQ0qmBHVeZ63Ln7iBn0S/SRcSHtTy4t5GBJgGsu0bP41xFEVGeb5m5x89B3bp76wc2NXQ2kJv+008sm9zUxuW/48vPD/lXFxhw/3RO1QGzCpUYiTXWzfzf3MNKruZuXNriZOsBIi6j6f8+pKF7srkr2FWqFO2ZeWVsE47oul/Paxvmsy97OjCt+G/b+1zZ8QGbREdrHtaLYUYa7OrCrcFeRGBFPkqLyld1GL6u2zFF1abv3AoHac9AeeOCB0IHrMWXKFDZt2sS7775Lnz59uOyyy4iNjWXLli2cPHmSZs2a8cUXX2CxhIbiaWlpjQr8hBDiYiIZMSGEEGdVvvgwAWdoFcNTKSh0beRxzhXbvwEgKvXakDZP8XF2HzyBXoH3brIGgzCABwebubuvtpdrzvqmyYrV55HLtABt3XFtn1jNc083pa8Rpw/+uV2raV+zf+z0EvqqaqTK4ySgBhjdZTj9W18abLs0uQsDWl3Krvz9HCrODvucY+W5pOXvI7s8l0pPbdjr8XspdpSxv6qcw+7adxLwaIHatm3bAEhMTOS2225rzCvgnXfe4dNPP2Xw4MGkpaWxbNkyIiMjmTZtGrt372bgwIFh75s/fz7QuMBPCCEuFpIRE0IIcUbOvSU4dxc1qG939KTjb9BpYp6Cw7hz92NK6YoxoXXocw9qS9qGtjHQLi7094a39zLyXpqXJQd8eP0qRv257VE7k7R8P7d94STKBJUe6JqgMLi19tVZswfsdLN+dDPrRze39TSw8ObQPWwqJtYe3Yhe0fP4FfeGtN8z4Fa252bwafq3/GnEtJD2l0ZPp1dyF77N/IGDJdm4vG7irTF0TWjHTYFSxkTU7ovzqyqpo0ZR5XKRm5sLwKuvvorZ3LC9c6eaMGHCGQ9uPp3L5eKTTz6hZcuWjQ78hBDiYiCBmBBCiHqpqort++w6ZerPpCv6Bh/p7Di4GQBruz5h2z0FhwGIa9kan1qOQQnUaR+QomXfqrxwqDRAj6SftjwxnAeXubAaIKY6EEuMCA32JvY2ogI2j4UVh104PF6ubG/hynah4wVUKwFiuS31em5LvT7sM8d2u4qB23vx8a4l3Df4dpIimwXb8u2F/GbRYxwsyaaZNZaBrXphNVrIryhka84uzBERjIloFeyvVxT+/OSTTJii7SVLTU3lrrvu+mkvpYHmzp1LcXEx8+fPP6fATwgh/tfJ0kQhhBD18hyvwFfgaFAQBtAffYMXJ7qO7wbA3Kpb2HafrQCA7Kg+IUEYQIxZIab6/98fLQtt/6m+2OdlQ46fG7sYyKsEkx6+nhCa4Zo/zsoH46zcOrAP/dppQVB0dGsm9a3bV1XBE+gEDagu+edRD+PyuXl94wfBa06vm9s/e5SDJdk8Omwy2x/4ivdvfpG3fzGLhX1Hsr5jR6YmJNQZRxcZya2TJtGrVy+sVivLly+vU0HxfLHZbLz44osMGjToggV+Qgjx/40EYkIIIepVuSmvUd8Ucei4BkODgjFPwREADAnhDwoOeLRy8bnG1uwPtMGvhgYQUdVFM+znYZvY3zZre6tqtsbd1NVAYkToywioUOiKJN8VTYsY7YDlY6UVrC7oeFpPPR61a4OefWlyF47NWMPsUY8Er721+SOySo9zR+8beeTyyRj12qIW94H/4Dn0HVadju6nFcywXNoTRVGYMmUKTqeTefPmNej5P1VsbCwlJSVs2bLlggR+Qgjx/5EEYkIIIcLyV3lxphdDI5NNv8R01uWJAY8L1atV89NbY87SW+EvvlvRK017YPSZpOX72ZjjZ2CKjhVHtEhsSp/wRTp0CmwsagcoRJi1PhUuD5n25mRV1C4rVBQ/3kCnc5qP1+/jw7SvAZg6+NeoqvYvxb3333j2fx3+JoMBa2oqAHfccQcGg4F//vOf+HxnLroihBDiwpA9YkIIIcJyHy7X0j0NpqLDRipuOmLiCDrUepbhBdxVwZ8VkzVsH131ddXrYmWgP9/4hzJWt7nOMsVKjza/mCbegvR1plb5MClSwZEHrWMUrusU/ivz8R+MrMvNQyEfX0ALQR1eLwoqG4ra0TGqFEUBVdXjDvQ6p/lkFByk1GkjOSqR9rEt2Z+3l2/Xvc3J8lxi9Tr6WyMYHhmJ7tTsk8+HpWdP7XMkJdGnTx+2b9/Otm3bGDJkyDnNQwghRNORQEwIIURYntxKLd1TTzCmw4ZZl45Jl4VROYhJl4VO0ZYTPuHvx2+9j9U7ts4SGfxZ9ThRzKF7rwyxyXgKDuOzaxUbn/FOZLg5nVi1Cr2iYnerwSWJ7cNUVfwpVmdrAdXhUu2zT+ptrBvknOLltSVASZ1rFU4XdpcHlSjyXdG0tDhwBK4gQOw5zWd/oVa4pGV0Es8v/TPz9v1QZ9veu5TS3WxmbqvWpBirM3cGAxGDBwf7DB06lO3bt7Nq1SoJxIQQ4r+ABGJCCCHC8hyvCBOEqZiUTCINS4nQrUNR/KiqHvBzapwySr+Tm/wbWBq4DH+YHWM6owXFaEH1uvA77ejCBGKm5I44Dm7Ec1I7+LicaJ7w/pZ5pr8BsD1PC5YijdAloWkDsbR8bewDJQEUCHvY8+29DLRt3gGdpRXRFjPlDhfLMw6wKycfp9fHvB+38PDIIewqbUlKq4NU+cae01zUgJ8ylw2AvScPsCt/P7fHxfGb+GYk6vWku1zMLihgv9vNfSdO8EX79hgNBmKuvx5DfHxwnJ7V2bGdO3ee0zyEEEI0LdkjJoQQIoSqqnhzK+tcs+g2k2yaRnPz9GAQBtrep3DJomeNHxCDA6WeTWamZK2YhbckJ2y7tfNlALhP7MNnLwTg+8BAXvbeCsAne7Tlgzd2NTTpGWJVHpUqb+3fr75ET4f40K/L313eg8SEzjSLjMCo15MUHUmkWQvYDDod+bYKNh4+wQF7EjZPBzxqV9SAD1U983JPVVVRA9o+LjXgw3diK+4jawDwqgHGRsfwVHIL2ptMROn1DI2M5N02bTArCoc8bpbZ7eD30+z2X9cZN6G6omJBQcG5vhohhBBNSAIxIYQQIQJVXlSPFmjpsNPM+DKJptkYlOMAwSDsTOKVSl40voNaz1eNpa1WSMKdmxm23ZTUTgvG1AAl/3mDgFdbh/i2/xfcn9mf+bu86BSYeXnoBrFZa1woz9q5an5VSNvZ2Nx1A6W7w2TDthS3YWtJ6CHU2SVlAPRslQzAvrwCAujYl67HuXUenqyV+IsPoHqdYZ+tep34iw/gyVqBc+s/qfpuBq6d7xPhtgX73BoXF3JfitHIlZFRAGxyODB37Yqld+86fWJitKIoZWVl9X52IYQQF44sTRRCCBFC9WhZLItuE/HGN9ChBTRKIysXXqffznT1M17x3RbSFtHlMmwbP8WVnQZX3Bn2/oTrpnGy+DiuY7vIm/dbzK174neU8/fjGQC8PtpMz+YGTj/orGZFpfEczniOs9Rm12LN8MvuhuCYOgXWFbZna0loyf1Kl5v88gpirGY6JjVjd04+NqcLhQAnq8zE5e+AvB3B/oopGvRG0Bkg4AO/F9VTEXZOrY3GsD+H61Pk85L08EMhZeNtNi2Yiz9luaIQQoifjwRiQgghQqg+P9H6RcQaF6CqSqMDsFPdr/+GKtXC2/5f1LluSu6IuVV33Ln78RbnYEwMDW70kXG0nPgats2LcBzYiOPgJgj40MckkTDmYfZ08GFjHjGqA4MSoMKtMme9mze2aGeAbc7xM/YTB38YYmLEJQ37yoswKugV8KtwYxcDFoNCQAWX38D3+V04XJmAPxDgSFEpmSeLOFxYQnFlFW6vDxUwGwwcKymH6p9VVaHcqmXt/KrKTdlHcQUCLL2kAxZdwxam9LBYUNDCzTK/n5ZhgrEyv5aljElJIXrEiJD2khKtoEhycnKDnimEEOL8kqWJQggh6lJV9FvmEGtcADQ+C3Y6RYHphs+Yblio/f2UPWPRA7TgrCJ9eb3368wRxF85iVb3zsPcsguK0ULLu/6GtX0fVgQGMML9F5YGLqOwKsCAd6qYs96DwwvxFujbUseyQz5GLnAwtzo4a4ihbbRU2q09tYDngD2J9w8P4HClts/qcFEp//xxCz8eOILN6aJ9QjxmoxboFVVUseNYLgBtmsWComCLsKACekXhocRE8n0+3istbfB8kgwG+lm1cv6bHKHLLb2qynanA4Dht98edoyMDC2L2L9//wY/VwghxPkjGTEhhBB1rfsLuh1zm3TIXSf9PPTOR9zQ/weOX/MqdiLwo8fS5lIM8SlUbF+M8+AmfJWlKIoOfUwS1kv6EjNwHIZYLYNTlbked+4+Ygb9En1k7T6pcqJ52DsNvjnKsZID9G2hI+1kgEW3RDCyg4H/HPJy06dOfr/cRYQR7lniavC8b1ro5PruMQzp2pE5//mBhKhIHrpmKFkFxXRs3oxYi5WcsnIOFhYTCKg0i7BiNOgpsGuFTuIitODJr9fhMegx+/wcclfvdSsp5ta4OJIMZ/8qXmK3YapeavjXoiJeKyrCqtNxicnE1ZFRFPh85Hi9REdEcPf992vP9Pvp2bMnTqeTzMxMNm7cCMCIMNkyIYQQF54EYkIIIWrt/xZWP9egrqoKfreOgE9BDYCiA51BRW8OhFRRfHCZC6sB3rnKhtH8B57xTmRxYBhlq9/BV5YHQMDjIKLTYFSvC/fJQ1TsWEJl+gqSxj+J9ZK+VGz/BoCo1GtD5uIpPk7+oQOg6Ega/yQrYn7gavMeQOW6TiYm9vHxrzQv/870MrF3+D1WKrAt18/+4gDJUQYKKn0owMDOvbCajIzo1pFv0zPZfiyX3HI7hwu1jJZBpwS3qJU6tCIcNcsIswqKuaZ7J+3zVb8U9ZTnfV5ezv2JiWd915+Vl5PmdNJMr6fU7w/mFPe6XOxxaYGlxWjk00WLgksP9Xo9s2fP5pZbbuGZZ54hPT2dlJQUBg4ceNbnCSGEOP8kEBNCCKFxlMLiB6kNI+ryuXU4Cky4So04S0y4yowEfKEr3HWGAJZ4L9YED5ZmXpaVVbIhx8/0oSaaR+qASt4wvcVY/2YmWY0YLr+D6NSR6KOTgmMEPE5KvpuLY/9aihe/TNL4P+LO3Y8ppSvGhNBqhc6DWrbHmtiGFf+YTVXHthwcOJg2EeUkWyoZ2r6Af6WVsDzLT7vYAMVOFacXEiMU+qcY+GXPWHqmNOfmj48ALlrGN6egMg8VcHg8RFvMDOvcnh8OHGFZeibRVgsAJr0eg16Hy+vDbDAQaTZRWuUIvr1DhSU8tmhpva/8zZJiboyJoY1Jq8xY4fdz7ZHDtDWZWNi2XbDgxvSk5rQzmYjT69lQVcWCslLSnU50aMsdvarKiFGjGDu27lllN998M7169eK1117D5/MxdepUDA3IwAkhhDj/5L/GQghxkVFVlVJXKS6/C6/fi1FvxKK30GzpdBSXjVODMFUFZ4mRskOR2I9bQVVAUau7hD+7K+DT4Sgy4Sg2garw0nE7AHe0j0BVa7NlVr2Oe8cOo0iNJNOncDQQQEWHQgCdyULCmIdwHt5GwFWBvTobZm3XJzgxHQECih6d6seUmw6AseIkfr2OkT064/QbOViRxMGKJHIrmwHr8avgIZJOzS2AQkGFk28PVvLtwWJ6tTKQU+5CpygUV9buw9pyJIeb+vTAqNfTr20K6w5lY3e50SkKj42+gmaRdQ+jXrQtna1HtbPRoswmurVsDkCL8kp0fj9LKyrQKwqe6vPEin2+YCAWrdfz24QEXi0q4hu7nXGxsQD0rt4fBjAsMpJhkZHa5jtVJevGG7np1VfYvHlz2H8fkydP5tFHH8VoNHLvvffW878KIYQQF5oEYkII8T+uzFXGlpNb2Feyjz1Fe9hXsg+HzxHSLyIQoEdyAr3cHnp4PPQ+pOLcHYXbZqwOvqojKLUhhydry/X2uVykOV30tlgw7WjB0SwvSal2TrRqzWouR1GguVJFc9NRBqk5nAxEUxyI1P4YIzE2a43n5CE8BUcAMLfqhgEfya6TJLsLae4uorUrj3+UZQNgd7m5qmsHoi11zxZLjIrEpNfj8fu59tJu9EiprRyYVVjMe+u2syf3JADtEuI4WlxGu4Q4FEVh85HjXN2tI9EWMwPat2bdIe1Z7RPjQ4IwgK4tEoOB2IjuHbmiSwcArtmbzS67ncUVFSTp9Zz0aYc2b3E66BtRO84dcfH8q7SUvxUVcX10NKZwlRV1OvQxMbR8fjblERHw6iuYzaHnqUHt+WEWi4XEBiyDFEIIcWFIICaEEP+DVFVld9FuFh5YyPKjy/GpPgyKAZ/qq/ceh07HdouZLNVE9I8q7fapBGqOY25Q8BVqVaV2LtaQyEgA3DYDJ9YlcKJtM0z9nXjMtZkei+Kjvb6M9nrtwGGfz89f7Vr1Qaq00uvjWlbQwrST6GNpKIHa6otub+0B04MuCS2DbzYasJgMeJx+3L6676BT80RSW7cIVjqMsWjLDjs3T6RX6xa8tnI9K/Yd4pf9LqVVfCx6nQ5/IEBSdGTIc/yBABuqAzWAjklalUW9P4DJ52dwRCSftG3H7cePBReA7nPVLR5i1ukYGxPDh2VlLKuo4BfVWTEgmAWLuX4MLZ56Codez6ybbwbgpptuCp2P388rr7yCyWSioqKCbdu2MWTIkJB+QgghLjwJxIQQ4n/M6uOreTPtTQ6VH0Kv6PGrWpBypiCsxsBDKlP/EyCyOjbQ1bP8sKG2OLTMW29LTcCljZeSk8uYgiK2DxxIbuvQPV8Au3al4ay+3199RlazSBOKTsFviUDvqMTt9bF6fxal1UsJFWDx7n1c2aUDnZMbnv0pqy6yYdTrsDm1n9slxtMqPpZXbqndd1XucFKzdHPrkRz2nDhJ6/hY/o+98w6Pqsr//+tOn8ykdwIJEEIJofeqgCL2AooFy5d11VV3LbtiW3ZdRRHXdXXBuu4qCqwVdS1gAQXpEAKEDgkkAdJ7ppf7++PO3JnJJIhd9ndezzMPM/eec+65N8+TyZvP5/P+jM/rTn6XdN4t3E1pXWPEuks2FeH3eDmjWw4mjYblzUqPsX5GI3tdLuq9IREZ5JK4eF5vbGRZU6MixLRa8PnYEh/PZ/FxaGtqqJ45k40bN9La2sq0adNYsGBB1DparZb9+/dzxx138I9//INVq1YJISYQCAS/EIQQEwgEgv8RmpxNPLb5MVYcXYEUEDxBEfaNyDKXbpS5ao0fPz9ck8l9gWhPbqAGKohGK3whWAAAIABJREFUBoPLzfh169k0NJejeUORpNBVq6ur+fzzz5WxGg3+QPTLEFjHZ7biaGjguS83UNsaqucy6XUcqKzlQGUtFw/JZ3xeD/WcOyB4jO3MKsobmjgaEE/9szLYe6IagLRYa9S4l9duwedXhFiM0UBarIWS2noOVtfRLSmeioZmzAY9GknC5nLj8fk4d2BfXltfyL+ampidkMCKViVKeKbVyl6Xi2Z/9M+on8lEklZLsdNJrSyTe8H5JF19NStXr2bZ3XdHjL366qt56qmniA+PnLWjf//+AGzfvr3TMQKBQCD4aRFCTCAQCP4HWFW+ioc2PESrW/kjX+7A9bBTZEWAXbpRmfN9Rdhep5PLy44G9qGQoFUaJC+qq+W5+vrICQf2A5HOgpIkIQfMLEaMGMHmzZsBcLvdGI1G/KYY3tm2i9pWG3lpyRxvbMHu8ZCbmsyo3GxeWbeND3bspWdqMma9ng937sXpUSKC/163DVCiX1ajUY2GAZzRuwc7yhU7/cc/+ZKsxHjuOGscXr+f1zYUYnd70GokfH6ZZIuZ2yaPpbyhiedWb6SioRmDVsNNE0fyyvpt6poDszLonduTf5+opNtll2I7dJAUk4nc2Diorydeo424d43FgqmgPyN0Wj7ds4cjd9/FxJtvBuCuQYO466678Hg8lJeX88EHHzBv3jxWrlzJe++9x8SJEzv8mSQnKymS1dXVJ/3ZCQQCgeCn44f6T0+BQCAQ/AzIssw/d/2TO7+8k2ZX86lHwMK4dKOsirAfgsdqqpEAY1gzMUvAcCJLr8cSiHwZJYkuOh3J2pAQ0eiVc7IsYwrUag0fPhy9Xun9ZQ+kKlbanOw5UY1Gkrh8xEBcPkVkNTud9MtMY3j3rsgyfLhzHwtWfMWuY1WhawT25fH5abQ71OTL7KR44gK29KCIyGONzWwrO87u41U02Z2Y9TqsRiUq5wzUpe2qqMQbiNilxFrplpQQGX3TaPjVjTficDh4fuVKAG64/XZi7p2jXPfMM+i54hN6rfqCvPXr6L1tKzmLFzM0UPO188CBqGes1+vJzc3l7rvvZsWKFTQ2NjJr1iwcDkfUWAgZdjQ2NnZ4XiAQCAQ/PUKICQQCwWmKLMs8s/0Z/lH0D+Xzt4mCBRhx0M9Va/zfPPAU+bS1he0OB37gioQE9bgtIFRWtbVhk/2MjolhQ688vsjtxde98ng+qysS4Pco4xLSEnA6nXTt2pWUlBQyMzMBqK2tBWDL9iJAsYe3GA1quuCxhmYabQ76ZymuiIeq61SRBNAzJYknLj+PJy4/jwFZGUAoauf0eCNq4tICZhwf79xHWZ1S19U1MR6z3hCYJ/Pxrv18daAUg04Rk5VNLdS2tkVE376oPs7//epGtFotZWVlAFx//fXcf//9AAweNQpjjx7os7LQJServcNONYo1atQo8vPzqaioYNu2bR2OaW5uBiAxMfGkawkEAoHgp0OkJgoEAsFpysvFL/Ov3f/6zvOtdsWYI7wmbK/TyRVlR7kyIYE/pmeoYztMKewAQ1gUbGZCAm83NeGQZZp8Pqq8Xla3taEFHsnIxBxmyz7AZMIgSbhkGTSgG6mDjyAtLY0PPviAmpoaAN58800SExNpalKEUX6XdFX0gCKq5n/yJVInHiOldQ2sO3SE8Xk9uHbMUO595xNViNW02vjqQAkGnRa318eArpms2neYNpebE81KL7QYo0EVdi0OJ1/uL8Gs13HNmCG8vHYrMrDmQGnENRuSfKSmppKamkpVVRUFBQUUFBSo93Hs2LEO9/ptoliWgCtl8Dm1pz7ws0tPT+/wvEAgEAh+eoQQEwgEgtOQVeWr1EjYd2X254o7YnhqxGM11Rglid8kRzoO9jWauCQgDDpidVsbLX6/2qR4kMlED4ORfJOJQoeDErebfS7FuGOI2UxWINUQoNHr5f8qKhQRBmhlsB9QUhCLdhQh+2Xi4uJwOp0YDAZsNpvqoqjR6zGFrZVkiaHBZqej4ODont3YcuSYWjuWERcbNWz38WqyEuI5UtdAWpxFtZgvrW0AoL7Nrka/XN6gk2MMy7ftUdfYVKr0ENNpJLx+mRNSPV6vl9aASUevXr2ora2loqICnU7HsmXLmDdvHhkZIeELHUexDhw4wGeffUZhYSGFhYXs27cPn8+HLmBA0rt376j79vl83HfffQAMHDgw+sEIBAKB4GdBCDGBQCA4zWhyNvHQhoeQkL5TOiLA8IN+xu+NnBtMK5ydmERyO2fBs2JjOSs2tsO1arwePmxpiTgW7Bs2MiaGQoeDHQ4HR9xuAAodDuZVV/HH9AyafD5mH6vgkNulzvXJ4CxVhJgcSDlsaWkhMzOTyspK0tPTcQbcGDccKMHtcqlRrAsH9WXxhmhnwGRLDJcOLcAvw5YjFXywfQ8ldQ1R4+ptduptyrX/s3ln1Pljjc1Rx443tUQdA/AG9u72u3nnw3ew2RR3x/fff5/i4mK8Xi/Tpk1j5cqVvPTSS/zpT3+K3EsgiqXT6Vi6dCnTp0/n+eef55lnnom+ltfL6NGjGTBgQNQ5rVb7jdE3gUAgEPz0iBoxgUAgOM14bPNjtLpbv7MIQ5a5cq0ff7v0vdcalBS46Qmd26B3xPvNLfiINOcI9g2bYlXE2wa7jWMeRYjpwiJuf6qq5IArJMKCK3Tg6M7QoUMBpWZKG2bw4dPpyQrsufi4YsphaWeXX2+z89jHX1LT0gbQoQgDiDHoyc9MUz/rtaGvyfYNnNtfI5xRPUNNpWuW13DVZVdFnC8pKQFgZcC8489//jOlpaGUxubmZv72t78B0LVrV2bNmkVKSgoff/wxffv2ZcSIERQUFKj1ZKmpqbz55psd7iU8+rZ06VKqqqo6HCcQCASCnxYhxAQCgeA0YnX5alYcXfGd3BGD5B2H7Fqll1eQvU4nRU6HmlL4bXgv0KDYJ4cWDPYNyzeZGGIyU+x0UunxADDSHKNG3Jp9kfdxMmmZ0ydHrZsyhImgwWMnkJuRCkBFQzBiFb1Ss8PJ0fqT11udO6APsyeMUAWYJqy3mSxDrCn0bGyBCF97xuRmc+GY/hjTlD1KZglJE120NmjQIPr166d+DhdI8fHxqlOk2Wzm0UcfZcKECXi9XioqKti5cyd1dXVqOuOtt95KdnZ2h/tZsmQJXq+Xs846C6fTyUsvvXTSZyAQCASCnwYhxAQCgeA0QZZlFhUtUps1f1fO2e7H126JVW1K/VIwpfBU2Wa3U+bxoAO8YccTwiJW1yUpNU7NAZOLYWazem5xdg4PB0xB0nQ6UrWRPbXC2Zu4l5iYGEDpJwZgNBrJ7tGDvMFDAGgK9ASzuT3qvPBbjQmrJ2tPz5RERvfM5mhdIx6fsleXN3RXftmP3y8TY9CTlRCql8tKiGN0z5AIGt69K+sH1qNLU64lO2Vkv0yXLl2U/UgS3bp1Y+PGjRHXX716tfq+qKgIu92OTqfjueee4/e//z0rVqzgyJEjtLW14XK5qKysZOrUqQBqjVh7ZFnmlVdewWw289e//hWdTseLL76I1+vtcLxAIBAIfjqEEBMIBILThJ21OznUdOi7pyQCsXaZsftktO2W2BzozxVMKTxVlgcMJdoLOEuYI+I5sXH0NRoJmshbtJFfPcE1Lo6LxyFHbkxnCQmzbW9vU63c/QFRl5SUBEBabh+yM9JVARWOTCiSZfd4os4HGZ2bgyRJbD2imG1o2lkvNtgc2NxushLimVYQMsVItJjZVFoOKKmN1SP9VKQ70Fl1oQ0Aubm5AIwdO5by8nJ27NjBvn370ASe1dtvv83MmTPJz89n7Nix6vqVlZX8+te/xtPB3oOC9MUXX1QbYIfzzjvvUFxczL333ktBQQGDBw/mxIkTbN26tdPnIBAIBIKfBiHEBAKB4DThjQNvoJU6jxidCgVlMroO2obtC5hf5J6k7qk9Nr+PT1sVo4rp8fHtzkVeZIAp1Cj5RJigKHW52OFUoljTrFbaAvMSAuJk9IRQvVbbrjZVbKSkKDVmVdXV7NSa2NQjH82sX6tjjbrQczLpdfzxgslcP3YYZ/TpqaYdXjCob8S4tFgLbq+PHRWVAPg7EDYaSeJQTR2vbypSLfIPVdehC+y357B09vZW6tAkbUjIPf3v/zBo0CAAzj33XAD+/e9/AzB48GAA9u/fz/Lly9HpdPj9fkwmE/379wfg9ddfZ8KECbS1tUXsJ5iieezYMV577bWIcz6fj7lz55Kdnc2cOUrz6KDAW7VqVdS9CQQCgeCnRQgxgUAgOA1odDby6ZFPv1dtGEDPKhlvu9/8dr9fjUQlnCQ1sD0rWlpxyDJpOh1TrLGYwyJITe1qv0rC6qn2BEQfhKJhI8xmTgTS5STg0oCw2/hZpTo2Z06O+r4tsIbs9/PJB++zM7UrjnMvg0CKXtBaPrieVqNhQNcMLhzUTxVY6w4ejRhnNRnZeawSl9eLXquhfVnXsJwsHrxgEoO7dcHt9RHUaS6vD6/fjzXJhP+GODrKHF1ZdIQNGzYAMHnyZOx2u2quccEFFwCQmZlJY2Mj1157LW63mxdeeIEdO3aoUb/Nmzfz6KOPRi+O0kfs/vvvxxVmfKLVatm/fz9lZWWYA+mgQWG3fXu0s6RAIBAIflqEEBMIBILTgM1Vm/HK37+up9cJGW27iFhbmEVheErhNxGeUqiVJPLDol4l7Yws9oWJryKHgxMeD15Z5oMWZY3p8Qk8Uas0Ix5uNjPcrNSChQfWDEmhaJ1x7gKCISl34WZqrruYpkfui5iQlawIGKfHiyNQM+b0ePAFbOU7SlMMpiWO6pmNv11ArM3pYv4nX9Fgt0elLWp0Et4EOPrUUUrnl1I6v5S24lD06osliygqKqJLly6MGDGCt99+m9bWVtLS0lTDjqysLHw+H48//jgjR47kuuuuA2D8+PHqOp999lnUnkHpD1ZZWdmpc2KQ5ORkADXFUyAQCAQ/H0KICQQCwWnA3vq96KTv2fpRlulZFR2widWEomDtUwo7Izyl8LJA9GpkwEgDYIfDob4Pj7hNtFjwAXOrKvmitZV6n49YjYZDLhcVAWH0QFo6BwJ9xcK10KH7DqnvdRlJaDMU8wvDiLFI5hhc679ShZimaw5t0y5R13hz6y5cHm+YqyK4vZFRuwabXW3cXJAV2VwZFBOOPumptDicUWmLfq+Ms9SJ/YBdfXlbQsLZ23gCWZa5+eab0el0alriddddpzZuTk9PJz4+nvr6ejZv3qxa0wejWKCYk3TEkCGKWcmzzz7b4fkgQdfJxsaTu0cKBAKB4MdHNHQWCASC04Di2uLvHRGLs4O5A8d1s0aDWZJwyDJNPh/WU0hPDE8pzAnUKU2xxvJ8oAnxBruNO1As5cMjbvPSM7i2opyNdjuFAYdDoyTxr0ZFAN2VkkIfk4llTU0n30DJ10gWKwCGwcOxLHgW2eGg5nylBsp/vAJ3a6s6fPfxKua+Xx0VyQonWBuWk5xAdlJCxLluifEMyclicE4Wfr+fhz9chc2lPEx9ip4+T/aJWq/ihQqaNynPSZ/YBewN3HTTTRw+fJi1a9cCMHv2bJ577jkAhg0b1uG+wq36L7roog7HZGZmkpqaypYtW6isrCQzM7PDcUHRl5iY2PFDEAgEAsFPhoiICQQCwS8cWZbZW7/3e69j7NwwUE0rbJ9S2BHtUwrD1xgScF0sdjopCdQrhUfcTBoNb+d05+qEBNyBeFddoJ4sUatlnc3G9eVlfG2LNKVoj3P913grygDQZmYB4LeFhBeyH+eazwEwnjkVTXIqfsDbLuJ3wcC+6vttR48BUNXcyoIVX0WM65ORioyENy6Jr5s92FxuNWLlqfNQ8nBJlGuhtzUgQCUNnsYT5E65Gp01kX/9618AjBkzhn79+kXUjgEsW7aMG264gVmzZjFlyhS1LiwrK4u7776702cyZswY4ORGHPUBoZyent7pGIFAIBD8NAghJhAIBL9wGpwN2L32772O7iQ+H8G0wvCUws5Y09amphROjY2NOBfsGQbwTqDR8yPVoUbFwYjbH9Mz2NunL0PNZoLxnkafj60OB1sdDqq+oc9V2xe7wOVEiovHMEKJgmmsob1ounRFDlxfdrnQdgsZfSTdfAeaQIpf8rCR6vFgqqLL60Pbzqnji32H+drmp0xn4bM1SjQr2EwZwFHqoHGtHU/LAFw107CX/RrXicB+NBq0canY+p7PsIc/5cln/wlA5sjzWPpVMbt27VJrxwC2bNnC4sWLWbp0KatXr8YXEKpjxoyJiI6151SMOHbv3g10Hn0TCAQCwU+HEGICgUDwC8fpc37zoFPAe5KMwykBEbPe4cRhSsJuTsNhSsKtt0Z1LVseiIa1+v08GTDYCDLcHENOoGnya42NDDqwn/+2tKjntzhCgvLT1ha2OxzMSkxib5++Ea9rEhIZE1ZzFsScF9nnLPa396KxWPEeOUzLM4+rBh7+moD402hwb92At/QQuvwBIEk4jh/HH4jWLV3fQT8tjZYGR8h9MDkxFa1Wy0crVrJkyRLcbjd9+vTBarWGzdFQ9VYTjrIrcNdPoK24AW+jkupoHXgOXX/zChq9EeeR7Xhb60GjY/kzc7l26ki8Xi+VlVWkZ3bhsssu44orrkCWZZxOJ/v371cjXZ9++ikJCQmMGjWqw55hp2LE0T76JhAIBIKfD1EjJhAIBL9wPL6T5BR+C1z6yM9uvYXGhD60xnbDGdudno5/sLtmH+/1uZGMxFAESet1EttaTlzrUTz1B/n6wH4AjMBvklMi1lxQU0NZwHRDBjL0euq9XuwB4fBQVRUZOj1jLRZea1AMI6YnRPYgA3gwkDq3zW7nugqlWbKklXAecaKN0+JrCYT3/H4afn8TnqKAoDIYwO1Gio1HbqwHvx/JYCTh4adoe3khktGE+eLLcXz0DgDeg/uirm0YPR739i0QMCOpb6wlLSmLmobjtLW1kZuby4wZM3jqqacASEhIoKmpCb+tkapl9yLpjbjKlchT4pSbiBsequtq26WkS2pjk/E1VyN7FJFt6jmUNnsL773/Ph988AEvvfQSv/rVr+jTp49qXx90WdyyZQu9evUiNTWVkpISQGnorA8I4I8//rjDOrHa2tqo6JtAIBAIfj6EEBMIBIJfOHqt/psHnQItMWA3gMfUg2NdJlKTNgxZo0Xye5ElLZMGXU7p5w+zYf8nXDbmN+o8n85EU0IezfE9kbOncn1sf/61ah4zMnqQpIv8GonXark9OYXp8fGk6/VUezxMKi1huNnMNocDL/D7E8d5JiuLIqeDQSYTPQwdOwF+1NLMnMpQH7Hef+2Nt9VLyZ9LQvf0+FwIjw7pFSEmNynmH+j0yE4HTX/6PXJLEzEzr0eX1U0dLsUnqCmMAIaRY0mc97T6uW72DHxHS6hpOK4eKy8vZ/78+fgD9WZNYcYi7sqDEffQuOolmta+Rtc730J2tmI/vEV5ps2hqFXc2CtJnDALAMeRQmrencdNN99C/8HDGT1sEBs3bgTAarVSU6NEIEtLSyktLVXXOHbsmPq+ubk5op9YkCVLluD1elXnRoFAIBD8vIjURIFAIPiFY9KavnnQKdC9cQDbhj1A4dA/qCIMQNboQJIY0vMMemYUsG7vR7TYGyInS5IyDvhy93sA9Dzjz2wZ/gC1yQPUYQ+mp3NrSgrpgejMersNLfBQegaDAoYgzX4/rweiYWMslk73+5cOUuwql1R2MDK0R4ImH7KMrk9/dHmKm6Hcoogl87mXYHv7dZCCX3+RtWDekoM03HYdLU8/BoBh6Eja4/F4omzkJUmCwPM09xmPpWAKloIpmHoOR/Y4afh0EbY9X4Lfi2QM3bMmNoX40ZcD4Pc4kX0+9Mld8fu8jBk5DJ1OT319PUlJSWrE66qrrgJg8eLFyLJMU1MTSUlJagTsrrvuonv37hH7k2WZV155BbPZzE033dT5MxQIBALBT4YQYgKBQPALJ8mURIwuul7qVDF6Yphy8FqmHfg1HoPyx7qs6bhg7PJxt+PxuVm5fUmH5yvqDlFavYfuaf1IT+iGzZJJ8YBb2NPvBjy6aFF1WXwCxX364pRldoU1dd7nUt4PMpnJP7C/w1ewp1n8yHgKXi3AXmLHfsiONjGwd72e+LlPKO81WvQjx0be9+RpJPzlbxHHvJXHsL3yPMjK2nJzZD8tf30dnn3FOP77Ns4NX+FY/kaHz8HRztRElmWkQOQyJm8UKeffRcr5d5F64R8ACVvx57TsVJoxa0yh2rL0GX9Co1dEnW3vGmrffRhPzZHQwlYl9bOhoUHt/dWzZ08g1DMsPj6eO++8k8pA9HDo0KFR+33nnXcoLi7m3nvvjTAZEQgEAsHPhxBiAoFA8AtHkiTyk/O/09zuDQO4cseD5NYPCax18l/73VLyWHjT51wx/ncdnt91ZD0AfbsGXPcC61WnDWXTyD9RmzKww3mP1VRjkiT1S6c24IqYG+YCeElcnPoKJs4NSctjvPUSchoKqP9UsV732xQRZb32Bvy2gBGI34dn83pAAo1yFcfyZbT9K7LBseOj5ZjOuRBdbm8ANGntREnA7EMyx9D28iKIsirpnGC9V/PGtyhbcAF1H/8djcmKPq0HyDLmrv3IufcjpadY8Dn8VxGSzmN78NSWEVMwhdgRl6j35Guuir6OLEf0DAO455571PPtzTp8Ph9z584lOzubOXPmRK23aNEiZs6cSX5+PikpKej1epKSkpg4cSLPPvssHk90jWJzczPJycmdGocIBAKB4Jv5VkIs+Mu8R48emM1mcnNzeeSRR8QvYYFAIPiRGZA6AJ30Lep6ZBhy7GymHbgRozcGDd/cpPlUOHiiCIAe6e2EoaTFo4+huOBmjmZPjZAvQXfEwWYzwS5ewT/tE8KaRz+W2YXHMrsw1mLBC8RIEm9d+TQX9p5FwfozsR+2I+kkZLeMdUgCMVffQsz5l5G48FUI9C/DYFBTBP3VlTi/+gxNcqp6DU/hJuJ+P5e4OX9RHlNryNERo0mtN5O9XnxHQ7Vo7dFp9MSak9o9A01grjvwUdlH/KgZgBLxAtDGhMxJvE3V+ByteBsraS38L85Dm2jd+kGH15QCAnP9+vVRPcP27QuZjsybNy+iRkyr1bJ//37KysowmyNdJwEef/xxli9fjsFgYNSoUcyYMYOCggI2btzI7bffzoQJE2hri+zrFh8fz/3338+WLVt47bXXOn1OAoFAIOicbyXEFixYwPPPP8+iRYvYt28fCxYs4IknnmDhwoU/1v4EAoFAAOQn5+OVT95bS0WGkeUXMKriAgA0P2DyQ0XdYQDSE7KjTwaESGnPiyntcZEqxoLuiEV2JZ3vxsSQgLFoovf2ZsD8ol9cKgaTlYFmPVsPfgGA7JVJ7ZNBxl2TVWFi6D8Iw4DBymS3C7yhCI4UE4O/tVn9LDsd+I6Vo8/riy63N7LDDgExqB8Y1lvLc/LG1l6/h1ZHZB2dLiYOAF+bctw6cKpyj/kTAQnZ48RVXYpkCIohCXwenEe2Y8oeQPzYK9Gn57YvWwvdi1kRcPX19VE9w1599VV1XFNTE2+++eZJ9x/OG2+8QWNjIzt27ODjjz/mP//5D2vXrqWkpIQ+ffqwefNmtal0OLfffjupqancf//9HZqDCAQCgeDkfKtv5w0bNnDxxRdz/vnn0717d2bMmMHUqVPZsmXLj7U/gUAgEACjMkadckRsyPGzGXri7B/0+hV1h/jtS2fj9irpdxZTXMT5PeWbeWHFg9z/2gx+98+pzFi1kItP1PNwVRVFTgd6wInMJKuVWwL9rgC1Diyc/YE/6ifkjkUjSZg9zazb9yEAWcm5PDD+FfKKB9D8+J+ouWA81VOG4t66MXIRrQ7rHfcDErgjRZW3UnFA1HYNiMlAw2S5XnEk1KRlYL70SozjzkTbMw8AXV7fiDV0Wj3xMZHW/V5bwD3R5wGtHr/Lpp7TWBQR1bZjBe6aoNuhIlXb9nyJxhyHJf8MdLHJSlSugxo+OSAwrXHxET3DnE4ny5YtIzMzk4SEBACefvrpqPmdMX78+MieaAGys7N58MEHAfjss8+izptMJq6++moqKyu/lfATCAQCgcK3EmJjx45l1apVHDyo2PPu3LmTdevWce6553Y6x+Vy0dLSEvESCAQCwbcj0ZTIOT3OQSudPMWwe8MANRL2Q/L2+kURNvomfcg85P1NL/H8igfYXb6JRGsag3tMoEd6PuWOVt4IWMN7gPExFv6e2YUYrRZzoBarKSCCAF5taODh6ipVnGWk5FFvb2LmG3fi9iri7IbJD7L/eCFf/P1xnJ99iOxyRdrXB7BcfxOWi68g7u4HQwcDro2uTV8D4G+oj5jjPV4BQMz0a4j77b0kPPJ3Ul5+C/PFV+A9tD9yrM9Ds71O/ZyfN5CEoeeFBvg81Lz7CM7yXQDo4pVaNGd5Me4TB9Cn9UAbp6RMOku3UfH3yznx8m+w7VtL4qRfoTEoz1cbl6YuKbuU9EBnQnfi4hQh3NjYyMKFC6mrq2P+/PlMnDgRgKKiIrV+7PsQtLlv7xIZ5IYbbgBCxiECgUAgOHW+lRC77777uPLKK+nbty96vZ4hQ4Zw5513cs0113Q6Z/78+cTHx6uvbt26dTpWIBAIBJ1zZZ8r8cm+Ts8bPTGcUXIlMtFRpu9DUekaSqt2M65fSOA5PXZAiZR9sfNNtBodt52/gDmXPcfss+Zy+/lPcM+liwjm2SVoNCzMysIQSCfMD4iikrBo1RO1NbwR1pPrvs/+yrgXZnKwLuQiqNVqWbzqMTxeFya9BXyBdM12fbFcG9fit9swDhsdOhhInXR9+Smy2x0lrnA5Qa/HPPV8ALxlpTQv+BPOL6OjQe3Ze2gXraVK/ZwuIQNTr1Hg99Kw6p/Kvs2xAPhsStpiTO5IUi6+T9mW3oR10DnET5hFl9mLsA45D7+zFYCLkq0TAAAgAElEQVSkc26LulaFJoOtB5W+YVarlccff5yRI0dy3XXXqSmLEKof+67U1NSwYMECAC666KIOxwwePDjKOEQgEAgEp8a3EmJvvfUWS5cuZdmyZWzfvp3Fixfz5JNPsnjx4k7n3H///TQ3N6uvioqK771pgUAg+P+RQamDyEvIQ+qkiGj8kekYvWakH9gQ98td7yrr51+IQacIKJtTyW44eFwRH327DqNf1+HqnFZHE//+Yh7B9LsErQ5jWD3YyBgl4rPD4eD82DgWdsmiv9FIeNxFK2mweRyY9aE+akUla3B67JgMFpyeUOofARdGKVaJFHn37abh9uuQTGbVCZGA+5/c1krjfbcjOyMt6AG0mVk0L3iImovPoP7/puP89EPksBqzcDSShtT4rupnX5MiRLxNVRgzeimXrDmCt6UWyaik/skeJbJnzOqLNmBjL3vdOEoLaV7/BlXL7ufEv29X1jfHYc4ZFLY5JSLZ8OmzvPaSEoHq2rUr9fX1bN68GUmS1JRFCNWPnSrLli3jhhtuYNasWUyZMoXs7Gx27tzJ9ddfz913393pvPbGIQKBQCA4Nb7Vt/U999yjRsUGDBjAtddey1133cX8+fM7nWM0GomLi4t4CQQCgeDbI0kSvx3yW+QOLNW7NxSQVz/8B3NHDNK+b1i3FKVmqqqxDIA2pyJSKhuOqnPaHM3846M/UNkYOhZvjsPm9zO1tIT8A/t5vl5JC9xgt/HXLl3wIrPH5WJ6Usjh0Bfo9eXwhPqPrdur1Io53TbSE6IzLII1XQC+o6VUTxsdSl0MM/Hwt+sfps4pP4p709pIN8Xg/A6MRWqblciUJtgWQG9CExNPW9EnoTVb6/A7A66DfiWiqUvuhr1ka2B9P5JGS0yvkWgtiaqgM3UfQl3A3h5An6zcrzl3JK4W5fkNGxZmMAIR37Htbey/iS1btrB48WKWLl3K6tWrcbvd3HXXXTzzzDMYwtoMtKe9cYhAIBAITo1vJcTsdjuadl9EWq0WfwfF1gKBQCD44ZmUPYlzu58bWSsmw4jy8/H/wCmJEN03rHcXxZ3wSPVeAPYdKwSg2V7P/mOF2JwtLPzoD1Q2HKF7WsjgYsyAK3iypobjYT2p+htNFDudlLhcqrPisobak+6n0RY6X90UnWHh3VkY+iBJaKyx0YsYjfiOHI4+rtGiyeoGndRD0e67zi/7o95rdAYs/c7AZwsJveq3/4yzojhirqe2jKY1iu27JiaeLje9RNL5d+F3hgSgfd8a7Ac3hG5Hp0TEzD2GEEz5HDduXMS6zc2h6F2wAfSp8vTTTyPLMk6nk/379/Pggw/ywgsvMGjQIPbu3dvpvHDjEIFAIBCcOt9KiF144YU8+uijfPzxxxw9epT33nuPp556iksvvfTH2p9AIBAI2vHAqAeINcSqKYrpbd1JdnT5QW3qg7TvGzawh/KH//7jhRSVruFY3SH6Zg1FRmbRx3N46D/XcrxBcQUsrz2orrOqdANvNjfRXR8y/JiRoDgJvlhfR5HTQWLA1l2vUeq97hx3AzkJWQAYtUpEJilGsb7vkZaPJHXi864i4W+oA21k/Zg+P9B0WqePHO73oe3SDU1cQsfLxUcfl9pFIHMGnId1wFmh84YY4kdfAWFRPYDGNa+CL9BvTG+idvk8Tjx3A77WeiWVUjVGCd2jp64cgKb1/yGY8vnJ56sj1q2vDxmQJCYmdnwf34DRaKRPnz488sgjLF68mLKyMq6//vpOx4cbhwgEAoHg1PlW39oLFy5kxowZ3HrrrfTr148//OEP3HzzzTzyyCM/1v4EAoFA0I4EUwIPjX1ITVHsXzUeP52beHwf2vcN65aSR8/0/pTV7OfT7csAuHz87/jNtMeINSfgcIca/4ZHjA5V7gDgSFhE7AyLlaFmMytbFWMKKSC2eqd0B+DDfasoa1Ks5uNNSmSrwa6YXRyp2Ycc5pZ4zpBZ0Zs3mzFfMJ3Y390bcdhTpKQEajoQVp7iHfhrIyM71lv/oKQlNjdFjZfbPfe6g1/jqgpF26wDziJueLTRRfBeQUlddB3fhz4lYKcvy4oFfuAK6rXcSk2br6VGPfbMPxZFrFtUVKS+T0tL4/syffp0YmNj2bZtW6c13sEo3HcVfgKBQPD/K99KiMXGxvL0009TVlaGw+GgpKSEefPmnTR3XCAQCAQ/PFOyp/C7Ib/D5LGQWz/0B68NA3B5HB32DZs0cDoAx+oP0z2tH1sOfs6zn9xLt5Q87rnsOf42+yMeumoJF4z4P8IjOr87bwE7CsJrmiQeSEsn2Ka6wdHMtN4TuGXU1QCUNoT+8B+cqaQ56iRtoB4rsk5uze7lUfuXEpPxHiuj9enHOrw/KTY6bVGSiOrhZTrjLMwXXd7hGu1pbTpOw8p/qJ/dVYexHwzrcRaIdGn0ge9NSUPX25fQ7Y43SL9mAZaCycr5mGiRqEvsEnlAb+Lg7kib+m3btqnv7Xb7Ke35ZGg0GsxmJVJZU1PT4ZhgFC49Pf17X08gEAj+f+KHz2MRCAQCwU/CjQNu5Nr4W9DKP7wIA3C4Q66E4X3DhvQ8gwSLYqphNlj5tGgpWUk9uXnao+Sk9sGoN5MSl8m0obPISuoBgFajo1fWEJoSeocuYDBT3m0CJp1Sk6VBw70Tb+KS/LMw6Yyq1NJrdKpxh1f2kWSNjvQE7fTDkU9U4C09hH7YKKQOasVkRzvXRKMR2WFHP3BIxOHG39+CZ9epG1GYe49Ve4S5ju+l/vPn1XNSIO0y2OxZG5uiWtu3Fn6EbbeSaqgxR+/X23gi4rM+SUnbDLoVFhUVUV9fr/b+ev/993EFmmN/V3bv3k1NTQ1arZaePXt2OgaijUMEAoFAcHKEEBMIBILTFEmSGK4dD5poF8UfghiDVX3fXuhYTUp9V3mdUgc2JPcMtO0iSXZXKw0Bcw2f30t983FaYrPV88ZJt/Jx5WGcgWbNZ/YcxTMbFjPtlV+pxwD+b9h0VpVsZHjWAAB0Wj0psV0Ij7Z1TQm5JQYxjBqHoWAwviOHkdtaQycCNWP+urAIj96AZFAEoWHoKLRdQ/v0HTuKt/RQR48IgFhTAiPzpgIwIf8ici68V6n1CiA725RQmykW2RNIL7Q1B/5txBsYG+wdBuCtP1mrF+W+dbGKSUZhoWJQEuzp6fV6SU9Pp6amhjfffPMk68C6dev48MMP8Xq9Uee2b9/OVVddBcDll1/eaerhxo1KxG/y5MknvZZAIBAIIhFCTCAQCE5jqo+2gP+bTCu+Gwa9KapvWJCagG27SW8O/BtDe95atxCHKyQuyusO05ySE/p8xnwGX3RU/VxUvYuP9n/JvtqSyHWKV5BuTSHdqgiPqqYKdDo9ceaQMDhWFy2U3JvW4dqwBn99XcRx4/gzAdCkZoQOetyqZb3c0kTC/IVR63WKJLHjyFrOLLiM6WNvBVsTyJEOi5YBZ2Pumq9+9juakQwx4PNQ89ZcnOW7iBt5GV1ufB59ao+OrxOIpgWFpBR49hUnKnE6nZSWlqpDb7tNaQT97LPPnnTrhw8f5qKLLiI1NZXJkydzzTXXcPHFFzNw4ECGDRvG7t27GTduHM8//3yH84NRuJEjR5KZmXnSawkEAoEgEiHEBAKB4DRFlmVqy1q/eeD3oH3fMIisHQumKB6t2R8xb0fp12w7vEq1vQc4VLmT1rjsiHGTzgpZxb/6n1QeeDAVv+xHFxZda3K2oJEkCo/vJs2iiDG7s5VWZ8g8w2KM7FFpvmQmqR+sIeWdL7CGmXVYbvgNsktxK7TOvpWkF/8Tdc/+xgY0CUmRB7VaJarVQS+xVkcjXZJ6kNdlEDqtHtuRoojzks5I0jm3h8w4AkIqaeqt6JOz8dSVU/2fB6j4++WcePk3eGqPRF1D2VggahUw8pB0Sp3Zio8+JDMzU01DTElJYc6cOaSmprJly5aIGrL2nHnmmcydO5chQ4Zw+PBhli9fzsqVK2lsbOTCCy9k6dKlrF27loSEjp0kX331VSAk/AQCgUBw6gghJhAIBKcpjlYPHteP45YYpH3fMIisHRuaeyYAhYdXs+2wUt/U5mjmzXVPE2tKoL6lCgCzwcKWQ1/Q1BKqy3r+uXouOP+oqm1aWny8u1yxQPcGGh//9errAKhsraWqrY4am5LG1+JoQA6LOtlcoYhdbFwasbfPQRMbhzYpmZhpF4fGvf4Snt2KUDIMGUHrwgVRfcP8rS34mxoijunzByo9xjromzlj7O00tFXzz8/+zIrC10kYeBamnsPV83GjZ6DRaNRaMGOmUifnrj5M5uyFpF76AHEjL0NjUSJ8xq75xOSfGXENU+4IYoddSM69H2HsVgCAHEjf7J3fn6amkCh98sknMRqNjBkzBgjVkHVE9+7defjhh1m9ejXl5eU4HA5cLhcVFRX897//5eqrr47qHxrE6XSybNkyMjMzmTlzZqfXEAgEAkHHCCEmEAgEpyle948rwiCyb1iQ8NqxYb0mU5A9GhmZV1c9yqNv38iLn86l1dFEq7OJ2pbj6DR6EiypuL1OFrx7izp3505FlJnNSmrlxo129uxxkZcXcuIdPPtrNi+5mqN//ISKe9dSOmcNA7uPxaSPoVfmIHWcLswOflD3cRE9xiSTGcmkpPHh8yG3taLrW4Bn9w48u3cQc8mVYAiJMU1sHJqklIjnYDp/Ov5jSh+vtITI6NugHuO58eyHkJBYsf11sho3ha4vSbTtWIHs9ympiIBkMGPMyqdtx0r8jhZieo8lcdJs1XwjYcKsiF5kcaNnkD7jzySddXPEdf1uJSo5fMQounRRHBX79evHddcp4rV///6AUuv1Y7Bw4ULq6uqYP38+xs6aYAsEAoGgU4QQEwgEgtMUv+/HMekIJ7xvWDA9Mbx2zOm2cfO0eVw76V76ZA2l1d7A0Zp9EWt4/R4qG48C0GwPmVg0NyvRpYwMJVVv7RqlB9nQYWZ1jN0u05qxhdJx99GaWkiTV2Zo7iR6pPenNlCnBqFaNYDUmHRiXMqzaV7wJ6onDwFT6DxAzCVXYH9nqTJ38jRwh8xBNIlJ+E5EmmU4/vuWcs5goKapBZM+skl0z4z+JMVm4Pf7yDnxPq4TBwDQp3TH19aAu/IgfpdieKIxWUk6+2Zkr5vmDW9EPXNAPa61JJIw7poOx/haldq3YcOGcc899wBw5ZVXqiIwOVlJ46yuru5w/vehubmZxx9/nJEjR6rCTyAQCATfDt03DxEIBALBLxGN9scx6WjPpIHTKf18Dxv2f8JlY34DKAKtpKqYqsYyUuIyGdV7KqN6Tz2l9W5/cYr6fvz4GK6ZlchvbjlOSYlSuzVwoJkP3m/B6ZRpafFhsWjw622cGLIQyXgZw23TGN5rcsRaWUk9OXBCSTnslTGAPUGRGkgl1CQl4wukG0rWWLRdu+PZsxN9/gA0iZH1YLre+dhefSHimHfvLmU5t7JHpyfkMrh843MUla4lxqikHurqDuF3uDBk9sbYpQ+e2iM4ynYie5QIljYmAUN6Lpk3PI0+qWvU82ne9l9cFYolfMol9yPp9B0+x6Cd/UXnTkWv13PPPffw4osv8sADD6DT6YiLUyJ3jY2NHc7/PsTHx6v9wwQCgUDw3RBCTCAQCE5TdIYfp39Ye4b0PIOeGQWs2/sRZw2aSVxMEr27DKakqpgj1XspyBn9ndbVaGD2r5LIzjbQv7+RPXuUqNSKFYoIAygr85CZqQdJ+SznLydFclBXfCnh9vUl1XvU91/v+xCNayhYtHgOBqJzYWLGeuNvcW9ZByhW9Zp2Pcbsb72ObLdFHEOSQJbRShJT++excvdBtc+Z3amMDdbOlTYoIi126PnIXsVYw11dAj7luCGjFwBN65bhLNuJIT0XrTUJT60ScXQe2hR4QFrqPvwrGkMMksmqRrrcNYqZh+xxojPF8MQTT/D0008zePBgtm3bxtatWxkzZgzNzYpFfme28wKBQCD4eRFCTCAQCE5TzLF69Ebtj27YAXD5uNt5YvmtrNy+hCvG/46BPcaxYvvr7D9eyIXMPuV1NLqQWcfSZdmkpuo4dMjF3r2h1ECdLiSw/vhgVQerPBt4QUHOGE7Ul9LQFkq/23RgJbpbitB074mvrBR0enwHQ2Yjzi3r8WxYAygmHJLJrNSIBdITvYcjHSABkBXZ5ZNlVuw+iFYj4fMrx0qrdwWG+IkzaNly3E+81Yyl70TsJVsA8Nua8DQcB8CUo9S2WfpOQPa68dQexXVif7QRiN+Hr6WWk/10vU47O3bsAGDs2LFs27aNVatWMWbMGDVilZ6efpIVBAKBQPBzIYSYQCAQnKZIkkRqTiwnDjZ98+DvSbeUPBbe9HnE557p/Smt3kNVYxkZiTknmR1ExpRYFnV00aI6DAYJV6Cu6/AhV9SYqVOtUcf2FFnZW74Fv+zDZLDgDESkzAYrjqYG2KaIM01SMsaR49Dm9KDt2SdV0w0AXU5PZUxsHP76WoyTp+HethG5pRlNcgr6vgW4CjeD0xFxbYNWiyNgJ+8J2MkDdE+U2FUt8+CFXVii06MJGHT42hrwO1owZPZGZ1VSIS35Z2DJP0Od27T2dbTxaZi6FaCNTcbvbMNdeYimr1/HU1eOZIgh89q/UffpQtzH9iIZLSxft5tLhncHos05du9W0huHDQu1EBAIBALBLwchxAQCgeA0Jr17HFWHm/H7f3zjjnAq6g6plvbhtWMQWQPWEWeeaeGPc5Uozdo1bezZ7eKy6XEsf1exoD92zMv48TE0NvrUdMU596ZFrNHQ4OP/bqjAH7Cwd4ZZ6jvcbep7KTGJhEefRp/bBwDXmi/w7N4RWufOX5H88pv425R+bO5NXyPbbRgnTSV+zl+Q9AbMLgfnLPoTr6/6Grvbg8Wox+YKiS+Agm4jaGg5zK7qRgZnSMwZ3MoSt4zfpezL26yIwtih53f6XBImXhvxWaM3oYtNwdxzOFXL5uCuPETj2sX4WpVIl7XfBCb266KOb2/OsXHjRgAmT57c6TUFAoFA8PMhXBMFAoHgNCY1O/YnF2EAb69fhF5nJCe1L+v2fkSLvSFqTNDAI/w1aVwOAweFHAzffVepY7rwwjhMJiUlMVg7Nn16fIfXbmryMeeeE9hsfgb0S+eOC5/CpFciTwmWFHJ7j8M4fjLazCzkxgYabpmF8yslmmeZ9euItfy11TQ/fB+4FCMN2W5DssYSd9cfkYwm0Gg4Z8175MWayU5Smhp7fX6sRkPEOs2OajSyIrou7WsgTuMkmRb8zlDDbUlnxNJ34ik+4RCSTk/8GKVPl6O0EF9LLQBjxo4jyRLaR7g5R1FREfX19YwcOZLMzMxvfU2BQCAQ/PiIiJhAIBCcxnTtm4hGI/2kYqyodA2lVbs5a9AVDOs1OaJ2LJxrJ90bOVHy0euiP6AzKiYjhw652LPHRb9+Rrp1M5CXZ6S42MnDj2SQnW1QUxUBGhu8JCbpaG728Yc/nODoUQ9DhpqZN8/MLf/3V5weO0Z9DE22OpoO1pHyyEo0yanYXn0e25KXaXnqEYxjJ+KvrwVJA4FImja7O+7CTWh79cHfUI/cUIcuu7tq4DFh82fkHd3Pc19upLRWEZsurw+XN7Jyq6JOSXeUgBcL3TwwwYDR76Tpq1fVMXEjLunUAfGb0Cd3U974PBi69MF94gAT8lIjxoSbc7z6qnLd22677TtdTyAQCAQ/PkKICQQCwWmM2Wqg1/A0Dm2rQf6JxNiXu94FYEzf80hP6BZRO9Ypko+47C3ojKG0wQ3rlQhSsG/Y4MEmioud7N3rZPToGBYtqlPHPvRQNV276dm4wU5Li5++fY3Mm5eO0wEV1ZUAuDz2yEtqNFiuvwXb20uQ21qpmTYa0zkXkr6qkJrzxiI7HZgmno1tyT/xlRxEk5KGDPhblBTJ3Ldexrb+C1Z6fVQ1t0asHWcy0uJU0iZzkhPonRrPZzMbGfHPNrad8LP1uA9jmh/0JnDZQKsjfsKsb3xMVcvuU63rOyPjynn065bGg3dMAMDn89G/f39qamoASElJYdmyZWRmZjJz5sxvvKZAIBAIfh5EaqJAIBCc5gw4s+tPJsIq6g5RWr2H7mn9SE/oduoTZS2Jvb6KOFRUpKQD5ucrzaHHjrMAsL3QodaOBdmzx8WnK9toaVEiWfv3u7ju2gr+/vcadUxqXKheCnfHXoOSVvn/R11eX0CJiCn7kzFOUGqpfMfLGfn5u6Rs+pIVxQf4Yt9h7O7ImrCgCLMaDfx2yjguHNwXWYaxXZX1Vx3xYbPZ8duCPbwk/LZTN1Ux9RiKpWCK+tIlK/3GNCYrkt7M76f2Ue3stVot8+bNU/uFuVwu6urqmD9/Pkaj8ZSvKRAIBIKfFhEREwgEgtOc9B5xJGdZqD9hgx9Zj+06sh6Avl2/2Ylv1a63qWs+Acikppo4a/A+eieHhMHhw4qYyc5W0vXy8oxqP7FlyxTRMnq0mXPPi6NXLwPz59ewuzgkzurrfaxbF4qC1bacUN/rSlrxZ/qxLX5Bqf8ymcHpwHTeJQAYhozAU1yE6+tVoTldAs2VZZkdLy5iQl53UmMtuL0+Wp0u/HLo4Uooj/qcgt4AuP06HD49/dOUhs9zv3QRs+8ZkP2YegzDeaSQ1p0rSRh3VYfPylm2CySQA9eIHz0DU/ZAZJ+Hlq3vY9u9GoCkSbO5eHAXzs6PtKSfMWMGJpMJp9PJ+vXrGTlyJNddd91JfjoCgUAg+LkRQkwgEAhOcyRJYtRFPfnk+eIf/VoHTxQB0CM9/xvHvrfxhYjPy9fAiBFm5sxJxWTWqE2b4+JCjamnT49nz54aDh9206+fkXmPhowmnn46S31fWenhlpuPY7MpEbKkJC0NDaEoWNPiv+J5rhJfYy3GCVNwfb0K4/jJGPIHAmAcNwnbay/h3rZJnZNcXkJyWgpHa+qoam5l2eYdxJmMpMRasLvd+H0hISYDY3vlMLpntnrMK2tINod6oDmaapB0RhInzaaybAdtO1YQP+YKJE10I253zREaV/8TNMrXcvOGN2ne+Dbu2iNqJC1u5GV0HX0+D13YP2p+bW0tbrciAu+++27+8pe/RI0RCAQCwS8LkZooEAgE/wP0GJRK3oh0pB/5t3pF3WEA0hOyOx0zvNcUbjrnYR6+ehl/v/EjFtx1F7/9bTJxcRq2bnUwZ04VTU1edXxMTEi8TDzDSmqqIlTy8ztPq8vM1DNokJLSmJys5cWXutK3V5563nmkEF/NCbRduiFZLKDRYr3xdvW8Pq8vup55yA47uiTF9t1auJ7rRw+me0oiHp8i6lqcLkprG/D4Ipstp8VaiTHoOVBVq0bKvH4NccbQvcjONuJGTceQmoMhrSe+tgbclQc7vB9TdgHWIeepZh7Oij24ju1FozdjKZhM+jV/JXHSbBZMH0iixRA1f8mSJfj9fjQaDS+//DJerzdqjEAgEAh+WYiImEAgEPyPMHFmb8r31OO0e5CQvnnCt8TlceD2KnVdFlNcp+NumPJA4J0frcFG/tlfMMwYz8hRMdxy83GOHHGzZk0opdBul7FYQvuNi9dSW+vj+HEPndHa6mPnTqXJsiTBr288ho+QcMuc/Sze5moaNryCc+V/MZ17Mbpu3dH4fPi1WjQ+H4nx8dQCCW4HdUCb002sychtk8ZwqLqOwzX12NxuYo1G9lXWcLypRV2/prWNL/YqojQ11sJVowaj6+WntNGv7kkTm0rcqOkAGLP64q46hKNsJ8asflH3Y0jPJXnqrXjqynFV7CZ2yLmAhOx1o7UkILvt/P7sPKb2z4iaK8syr7zyCmazmd69e7Nz5062bt3KmDFjOn1+AoFAIPj5EUJMIBAI/kcwWfX0OtPCnk+af5T1HWFNk4N9u06OhowRi9EalXmZmXrOmWZl+bstFG6zYzJJOJ0yLS0+LJZQKO/4MUWA3XZ7SqcrL1xYj82mRKIaG334/XD3vAH87cHNypWNFsx5I0ntl0fVk7/GueIDsgcPoU9KIhm1x+l24givVJRQCzTYFEFn9yjXlSSJ3hmp9M6ItIcf2DWDFbuViNZtk8Zgc7tZUXyA6pY2XlqzmetzLWyoUCJRWTk90M5cqM7Vp+QA4K4uOYXnBq2FH0YdW7RzKaOXLGHEiBERx9955x2Ki4t56KGHaGhoYOfOnaxatUoIMYFAIPiFI1ITBQKB4H8Ij7kBe+zRH2XtGINVfe9sZxXfEakDlhObtTPiWHa2klZXW+sjL0+JYJWVhSJfDoe/w9qxcL7+2sbqVW3ExipfYT4fZGbqOHN4S8Q4SQaTO56cBKUxdLf3X+eMzZ/Rp3QPMU67GuEKphbG6Dvv8TVtQB+aHE71c6LFTEFWBnedPZ5uSfE4PV4e/sqmpiZ6u0WKJY1Z6Uv2Tc6Jpq79SZr2W7r8+kWyf/8OWbe+yk2PPEf//v05ePAgZ511Fvv27VPH+3w+5s6dS3Z2NnPmzKF/f6V+bPv27Se9jkAgEAh+foQQEwgEgv8hjh07hi2mHLul/Adf26A3YdApdVk2Z8tJxyb3/YSkviuijre0KLVXMTESgwcra+3dGxI4QfMNgI0bbVRUuCPmNzf7+PtTtRgMEq2tfjSBb7GYGA1mXchRsWXre5QtuIDK/zyAZFBs8cMt6F1eL+5AU+aLBiupglaTgarmVpyeyJRIn9/Pqr2H2VQS/Ux1Wi2T+/UCYGWJl3UVAcOQnHZCzKBEEP3ONk5GwsRriR10DqbkLJLiYvn3refw4h9/Q2FhISNGjKClpYX7779fHa/Vatm/fz9lZWWYzWaSk5V6t+rq6pNeRyAQCAQ/PyI1USAQCP5HkGWZyspKkMBmPYpf8mFt64GM/IPVjHVLyaOkqpiqxjJS4jLbnfUDGlIHvEtyv5VRc/1+mTVrlDTFPn1NjB1n4fXXm9he6GD2bGWM1Rr6/8EvV7fx+PxasrL05OToMZk1HFVRrCsAACAASURBVD7kUnuJSRpITNRSX++jpMTNHXccV+fa9q9TrmlvotqlNGNOsoTSKZ2ekJlFfZsS3euaGM/m0nI2lpbTNTGeeLMJr89PeUMTrU4XKdYY6tqiI4Fp8YrQc3lhd40fkzUeQ2bvyHt3KfetMVmj5ocjSSDLcMGgLvzlov4kxCgRRKPRyIMPPsgll1zCypUr8Xg86DuI4MXFKbV7wZ5iAoFAIPjlIoSYQCAQ/I9gs9lUC3MkcFgr8OnsxDb3Bln3g4ix3l0GU1JVzJHqvRTkjA6dkHxo9XYOeOZhsVaRTKSzX2Ojj+eeraPksBudDi65JI6cHIPaN6yszM1XX7Xx+mtNqhgZPTqG2Fgth0tc7Nnj5P+xd+fxUZV3///fZ7ZM9oSEQIAEArKDgEaq4lJRxGpvatXWpbZFsXWpoq3W1t6/23rf9K6t9rZq/dVWa9XWttriUrSyyOJCVUREICA7SSAL2fdZMjPn+8dhJhlmEhKIUwuvZx88zMycc51zhj5q3v1c1+dqawvJ4ejWlTBk7SUmWcd33wA61FZv/TMQkKetWXaboZNHdAXH5G4hZl9dgyTppLxc+QIBNbR7VNHUrAMNzXLYbRqcnqpzxhXprJNG6Z6XYgOmx9sV6gIhKXX6JTEt6kNeKwzaUrPifq92m6FgyNT4Iem688LxMfuESdLEiVblLrxhc37+4UFYam621gdmZ2fHvQ4A4LODIAYAx4nOztgug353vRpc65XWcpLc3rxjro6dXDRLSz/6o7ZXbNB/6HqFq2DpBes1dMZf9Mef7NXDv+mIqmLVHAxozx6fPB5Tbreh7989WCNHWkEtvG/Y0tdb5XZb95WaalNbW0iD85z64bzMI97Tyjda9eCDtQoGu71p2CTDULC5WjJs+tL0ScpJ66qIuRx2uRx2+QNBVTe3KSM5SQWDMmW32TT+sCYdR7Jxv7WRtM0hGXIqa8YXYo7prC2TJCUNOSnynsNmKBAy5bAZmjdtmL5+xkhNL8iSYcT/+6mvr4/8nJ6e3usxQ4bEBjkAwGcLQQwAjhPBqCTSxbQF1Jq1XT5vrVLbRsoRSJOpkIyjWCZckDtWo4dM1t6DW1XdWKaRo+zKnfJKpCnHhXPTlZJii6piJSUZGjbcqVNmJGvelzKUn99VjTrn3DRNntKs115r0cRD+4ZNn+7W2rUd2rbNq9NPP3J3xgvmpKtotEsvvdis5csPrcEyQ7IlZyl51HSln/ofmt75nhTy6PkPNunD0gMqHjVCw7Myta+uQSHT1OmjR8pui/997K6pk2RozOBBUe8HgiG9tWuv/rmrVJIUCkjX3LRQU75wqjbvb9bmiia1+6y/E1+F1WDDPfJkpSbZdfLwLE0ryNLU4Zk6Y0yOBsXZG+xwzz//vCSrMpaWFn+KY0lJiSTp1FNPPeJ4AIB/LYIYABwn7Pb4XQbD/O56+ZPq5ehMV3LHMCV5B8uQTaZCkowjVMpMyQhKpkPnnfxl7X1jq0o67tO5FzrUvYBz1lmpOuus1H7d96235uo7t1Ro8yavxo1z6ZqvZWnt2o6otWNHMmZMkm79XoGWL7cCz/Cbn5Ejo6v9fWD/B1LIWkcnSXbDClb76hpkMwydPrqgx7Erm1q15ONtSnd37VP2p/c3qq6tQ61eazqkPdUum9umn//vHRoxaITmz5+vbc8+qyuvuVb33PcTFf9fmYbk52vjr27WkMyUuFWvNWvWyDAMnXvuuVGf+/1+PfTQQ/rVr6x2+HfeeWeP9/ruu+9KkmbPnn3E7wwA8K9FEAOA40S85g0xDCngalWra4faQnvk9GfJ2ZkuR2e6HJ1pspmx/1qwOTxyZ5fJnbNP7uwynfSlHXq/KknLVu7X175ZoOxBx/avkrFjk/TAA/m6664qLbhhkMaNc0etHQtPY+yNaUqlzYWSPon7eVBWSD3QaK2hmjm6QHtrrbVhae4kZSS74573xtZd2rS/UmlJLvm6NfgorWuU3WZTcpJTjslujVxo7RNmc1lVtVDIaiiSnuLW6tdeUiAQ0C033aShWT2H1E2bNum73/2uhgwZounTpysnJ0e1tbXavHlzpAviXXfdpQULFsQ9P3zssGHDYvYaAwB89hDEAOA4kZqaKpfL1dWw4whMW0B+d5387rpDb0hGyClDNhmmTcMLNyt/2DY5k1t0eAEnXMV67rkm3baw542X+2r6jGStXDU68rr72rGbbs454vlB06Z9LSM18gevxf3crqCaO7w62NKmKcOHqCA7S89/sEl2m00tHq8OtrRqSEbsuqv69g5Vt8S2nDclBUIhBXwhpbR3BWB/0PruN2zYIEm6/vrrdeONNyo5OVnf/va3e32Gc889VzffbLWq37x5sxoaGmSz2TRs2DDNnTtXN954o84888wez3/uuecUCAR04403yuHgX+8A8FnH/1IDwHHCMAzl5+errKzsKAeQTHunzEMvO/xOuVLi7xc2dmySVrwxOu5nA6H72rErr8w8YtXNYQuprKXn6YWOUFAlB2tlMwxdPHWCbDZDP/jC57Vpf5X++N5HWrd3v+ZNnxRz3lUzp+mqmdNi3g/J1L5h7Xpnen3U+y67SxUVFdq2bZu+/OUv68CBA9qyZYvuu+8+DR06tNdnmDFjhn7961/3ekxPTNPU008/3afABwD4bGBDZwA4jowYMUK2HppO9FdT01CFQgOz/9jRuPXWXPn9pp57rumIxwZCNm1vGBv3M2fIr+SQRzOLCvTAVy5WXkZXo4tpBfkalZut9/eWR9Z7HYkpU35nSB9Mit2rK8mepBUrVshut2vRokX6r//6LxUWFuruu+/u09hHa/HixdqyZYt+8IMfHDHwAQA+GwwzvHI5QVpaWpSZmanm5ubIxpMAgIFRUlKixYsXD9h448av1eDBpbLZEvqvin4JhmxaV32Knir5RuyHpqnh3gpdVv1qj+dXNDbr4ZVrdcaYkbrslCl9uuaqU2u0f4gn6r1UZ6reu/q9HtvPf1qCwaAmT54sj8ej7du3Kzk5OaHXB4BjcSJnA6YmAsBxpKioSDabLdIs4lhVVY7XkCH7BmSsT4vdFtKa/WfH/cymkIb4ano9f3h2ph78yiV9vt6GcY0xIUySJuVMSngIk6xumdu3b0/4dQEAx4apiQBwHElNTdXkyZMHbHpia2uu2tqylNi5E30XMg3tbx2mvc2j4n9u2JXnqx2w620e06wtY2LXzTkMh6bmTh2w6wAAjn8EMQA4zsycOXPAKmKSobLS6TFdEz8rbIapl3dfIvWwB5rNDGqEt/KYrmEeal+yYXyjPhrfFPdSATOgSTmxzT4AAOgJQQwAjjMjRoxQXl7egE2Ta2goUE3NKJnmZyuNBU1D71eeqk218StRhhnS2LbdSg55j/oaIZnyOUNadWpN3EpYmMNwaObQmUd9HQDAiYcgBgDHGcMwNHv2bA1kL6Y9u2cqEHB9ZqYohkxDHZ0p+vOOK3o8xjRsOrl169GNf6gKtm9Yu146tzLumrAwu2HXRUUXKdudfVTXAgCcmAhiAHAcmjBhgqZMmTJgVbFAIEm7dp7+mZmiaDNMPbP1arV3psY/wAwpx1enIb6D/Ro3ZFgBrCm9U6tOrdE70+vld/U+zTNoBnXVhKv6dR0AAOiaCADHqYsvvlh79uyRx9NzNac/6usLVbpvukYVfTwg4x2LF3d9UR/XntzzAYZNM5s+kGSqp/VjkrX+yzQkm2koaFibNG8f2aq6TH9vp3VdRobGZo/Vybm93AsAAHEQxADgOJWSkqJ58+bphRdeGLAx9++fIps9oMLCkgEbs7/+sXeOXt83p5cjQsp0bpVn6GZVNyUpt9klZzB2AkinPaS6TL/qsnyqy/SrOscr3xGqX4czZerW6bf+S9rWAwD+vRHEAOA4NnHiRM2ePVurV68eoBGtLorBoENFRR/LNJWQ6Yoh05DNMLV4539oaWnvIUx2j4KjXtYGR4f1lim5/TbZQ4bsQUNBu6mgzZTXFepT1asnNsOmi0ZdpPMKzzv6QQAAJyyCGAAc584++2z5/X6tXbt2gEY0dGD/VHV0ZGncuPfkcPhlGJ9eF4/gocYcz2y9uvfpiJIkm9z5L8oIhzDrduVNGqh2/uEhDWW4MnTPzHsGdFwAwImDIAYAxznDMHT++ecrKSlJq1atGrBxG+oL9OH6PI056QPl5ZUOeHUsXAVbX3WK/rz9CrUHemjM0Y1r8DI507cN3E30wJSp/z7zv5XlzvrUrwUAOD4RxADgBGAYhs4++2wNHjxYf//73+X1egekvX0gkKQd289Wbe0ojRz5sdLSmhQKGbLZjn7sYMgmuy2kirZ8vbz7kh73CTucK2eNXDlvHvV1++P2U27X7MLZCbkWAOD4RBADgBPIhAkTVFhYqNdff10lJSUyDGNAAllDfYEa6kcoPb1O+cN2aPDgMtlsIQVCNtmNUK+VMtOUgqZNDltIgZBdH1SfotX7z9a+5pE68iKukCSbXIOXKin3rWN+jr64YeoNWjBlQUKuBQA4fhHEAOAEk5KSoiuuuEJTpkzR6tWrVVNTI5vNplDo6NdRhc9PTp4sW+7Xdd8HlRqevE2FGeUalVGuUZnlSnb4Ys7zBJJU2lyofS0jVdZSoO0NY9XWmdbHq4Zk2D1Kyn/xU5+OaMiQKVO3n3K7bph6w6d6LQDAiYEgBgAnqAkTJmj8+PE6cOCA1q9fr5KSEoVCoT6HsvBxNptNU6ZM0cyZMzV8+HAZhqG5Z/r14yVFWrypUoYhmaapdFebXLZOOWwBBUIO+UNOtfrT1N/WhdZ40ufGOrQ/6Um1h2oU+vR6hchm2JThytB/n/nfTEcEAAwYwxyIOSn90NLSoszMTDU3NysjIyORlwYA9KK9vV2lpaWqrKxURUWFKisr5ff7Y45zuVwaNmyYhg8frmHDhmnUqFFKTY3fSGPF1mo99MZOba9uld1mKHgMiSl8/oSh6brzwvGaM2mImrxN+um6n2pp6dJI1WqghMe7uOhi/ehzP1JmUuaAjQ0AsJzI2YAgBgCIyzRNtbe3KxAIKBAIyOFwyOFwKDU1tV8bGJumqY37m/TH98r06qZKBUKmHDZDgT6EsvBxDpuhedOG6etnjNT0gqyY668uX63HNj6mXU27ZDfsCprBfj9vWPj8sVljdduM29gnDAA+RSdyNiCIAQASpqHdr/f21GtzRZM272/W5oomtftiQ1Nqkl0nD8/StIIsTR2eqTPG5GhQqqvXsU3T1Oa6zXp++/Natm+ZAmZADsOhgBk44n2Fj3PYHPrCqC/oqglXaWru1H4FTgBA/53I2YAgBgD4lzFNU/Xtfnk7g/IHQnI5bHI77cpJdR1TCGr0NuqD6g+0tX6rSupKtLVuqzoCHTHHpThSNDl3sqbmTtWknEmaOXSmst3Zx/JIAIB+OJGzAUEMAHDcM01TDd4G+YI++YN+uewuJdmTNMg9iKoXAPwLncjZgK6JAIDjnmEYyknO+VffBgAAEbZ/9Q0AAAAAwImGIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKsX0Fs1KhRMgwj5s93vvOdT+v+AAAAAOC44+jPwevXr1cwGIy8Likp0Zw5c/SVr3xlwG8MAAAAAI5X/QpigwcPjnr9s5/9TGPGjNG55547oDcFAAAAAMezfgWx7vx+v5577jl973vfk2EYPR7n8/nk8/kir1taWo72kgAAAABwXDjqZh2vvPKKmpqaNH/+/F6Pu//++5WZmRn5U1BQcLSXBAAAAIDjgmGapnk0J86dO1cul0uvvvpqr8fFq4gVFBSoublZGRkZR3NpAAAAAMeBlpYWZWZmnpDZ4KimJpaVlWnlypV66aWXjnhsUlKSkpKSjuYyAAAAAHBcOqqpiU8//bTy8vJ0ySWXDPT9AAAAAMBxr99BLBQK6emnn9Y3v/lNORxH3esDAAAAAE5Y/Q5iK1euVHl5ua6//vpP434AAAAA4LjX75LWhRdeqKPs7wEAAAAA0DG0rwcAAAAAHB2CGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwfodxCoqKnTttdcqJydHycnJmjp1qj788MNP494AAAAA4Ljk6M/BjY2NmjVrls477zwtXbpUgwcP1q5du5Sdnf1p3R8AAAAAHHf6FcR+/vOfq6CgQE8//XTkvaKiogG/KQAAAAA4nvVrauKSJUtUXFysr3zlK8rLy9OMGTP05JNP9nqOz+dTS0tL1B8AAAAAOJH1K4jt3btXjz/+uMaOHavly5fr5ptv1sKFC/Xss8/2eM7999+vzMzMyJ+CgoJjvmkAAAAA+HdmmKZp9vVgl8ul4uJivfvuu5H3Fi5cqPXr1+u9996Le47P55PP54u8bmlpUUFBgZqbm5WRkXEMtw4AAADg31lLS4syMzNPyGzQr4pYfn6+Jk2aFPXexIkTVV5e3uM5SUlJysjIiPoDAAAAACeyfgWxWbNmaceOHVHv7dy5UyNHjhzQmwIAAACA41m/gth3v/tdvf/++/rpT3+q3bt3689//rOeeOIJfec73/m07g8AAAAAjjv9CmKnnXaaXn75Zf3lL3/RlClTtGjRIj388MP62te+9mndHwAAAAAcd/rVrGMgnMgL8gAAAAB0OZGzQb8qYgAAAACAY0cQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQIIRxAAAAAAgwQhiAAAAAJBgBDEAAAAASDCCGAAAAAAkGEEMAAAAABKMIAYAAAAACUYQAwAAAIAEI4gBAAAAQII5/tU3AAAAgBObaZpqb29XZ2engsGg7Ha7nE6nUlNTZRjGv/r2PtNM01SDt0HeoFedwU457U657W4Ncg/iu/uMI4gBAAAgodrb27Vv3z5VVVWpoqJClZWV8vv9Mce5XC4NGzZMw4cPV35+voqKipSamvovuOPPjkZvo9ZVr9O2+m3aUrtF2+q3qSPQEXNciiNFk3ImaergqZqUM0mfG/o5Zbuz/wV3jJ4YpmmaibxgS0uLMjMz1dzcrIyMjEReGgAAAP8ipmnqwIED+uCDD7R161aFQiHZbDaFQqEjnhs+zmazacqUKTrttNM0YsSIAa/4fFarS6ZpalPtJj2/43kt37dcATMgh+FQwAwc8dzwcQ7DoYuKLtJVE67Sybknf2aqZSdyNiCIAQAA4FO1fft2rV69WjU1NX0OXz0Jn5+Xl6fZs2drwoQJRz3Wv0N1aXX5aj228THtatolu2FX0Awe9Vjh88dmjdVtM27TeYXnDeCdHp0TORsQxAAAAPCp6Ojo0Ouvv66SkhIZhqGB/LUzPN6UKVN08cUXKyUlpU/n/btUl5q8Tfrpup9qaelSGTJkagC/u0PjfWHUF/Sjz/1IWe6sARu7v07kbEAQAwAAwID75JNPtGTJEnm93gENYIczDENut1vz5s3TxIkTez3236W6tKp8le579z61+luP6R6PxGbYlOHK0H1n3qfzC8//1K7TmxM5GxDEAAAAMGBM09Q777yj1atXJ/za559/vs4666yYCtWnW12STElfKDhfPzrzvmOqLpmmqd9t+Z0e3fjogN9nT8LXuf2U27VgyoKErx07kbMBQQwAAAADwjRNrVq1SmvXrh2wMauqqvTkk0+quLhYF198cdRnu3btUkVFhaqqqlRZWam2tjZJUnl5uQoKCiT1rbpkhkzt/d+98uzxSJKKflSk1HH9685oM01lGE7dN/UmnT/j29KhQNPZ2am3335by5Yt05tvvqldu3apvb1dOTk5mjlzpm688UZdcsklMk1Tj3z0iJ4qeSpyT549HrVuaVX7J+3yVfoU9AZlT7bLPdKt7FnZyjwjM25w2vfAPnn2ejT2Z2PlzHL2+RlumHqDFs5YmNAwdiJnA9rXAwAAYEC88847AxrCJGnp0qVyOBw699xzYz578cUX5fP5Yt5ft261cnJm65lP/qzHS547YnWpbmmdFcLC5a2jEDIMNZudumPLY7p9wxNacNb/yJh4id566y3NmTNHkjR06FCdddZZSk1N1bZt2/Tqq6/q1Vdf1be//W2desupkRAmSf5av/b+715Jkj3VruSiZNlT7PLX+tW+tV3tW9vVvK5ZBbcVyOawRd3L0K8M1Z7/3qOKZyrUtqlNg2YP0rCvD4s6pnVTqzr2dshb6pWnzKNAU0B36A75Vvh095y7j/i8NTU1euihh/Taa6+ptLRUpmlq6NChmjlzpu666y6deuqpR/dFdtPXEHu4UCik999/X8uWLdPq1av1ySefRALfjBkzNH/+fF1zzTVxA+cFF1ygDz74QDt37tTQoUOP+Rl6QxADAADAMfvkk08GfDritm3btH//fp155plx9w+bOHGicnMzNG6cS+Mn2HT7whWSpM7AvfrRsvu1qtWqBvUWwrwVXtW8XKP0aenyHvCqs77zqO/XPPSL/SMuv9pX3KyFJRfIljpPl19+uW6//XadffbZUce/8MIL+trXvqYnnnhCw83hyp7VrROjIaVOTFXuF3KVNiVNhq0rNLRvb1fZL8vUuqlVdf+oU96X8qLGTS5KVvq0dLV+3CrDZcR8Lkn7f7NfIU9s98rfl/xexeOLNbtwdo/PuWbNGl122WVqamrSSSedpIsuukihUEilpaX661//qlmzZg1IEOtriP3Nb34TFar27t2rWbNmSZIGDRqk4uJiZWdna+/evVq5cqVWrlyp559/Xi+++KJcLlfUNX/2s5/ptNNO0z333KOnn376mJ+hNwQxAAAAHJOOjg4tWbJkwMd9//33JUkzZsw47BNT6el1uvv72crNK5fNZioU6vpF/J02u95xHnlKnhk0deDJAzJchobNH6a9P9nb47GeMo/23LcnproUaAmodUur2ra0ybPPYwU5m3T3IKeWjP2bnjpjhRYv+o008eyYMfPz8zV12lR9/NHHqnymUhVPVkjqmhpZ9IOiuPeSOiFVuZfkqualGjX9sylu0EoalqTWTa1y5bnkyHDIDJhq39muts1tat/RrpA/JBmSLdmmlNEpaiuxpnUaMvTjd3+sU/JOUZY7K6a6VFJSoubmZknSySefrLvvvjuqulRdXa2ODmsLgGOtLtlstj6F2FmzZukb3/hG5DPDMDR79mx9//vf15w5c2S32yOfvfXWW7rkkkv02muv6Wc/+5nuvffeqHGLi4v1xS9+Uc8++6zuuOMOTZs2rd/33efn+9RGBgAAwAnh9ddfl9frHdAxq6qqtH//fo0YMUK5ubmR9wcNKtcpM5Zo+oxlGpxXJpvNqnaF/ylJq1tdMePFU/tarbylXuVfnS9ndu/Breq5KtlctpjQU/WXKlU8WaHmdc2yuWxKn5Gu1AmpCrYHtfqdNk18uFJv/PRK6Z3/kw5rzbBw4UJ9/NHHkiSzs39zIpMLkyVJnQ3xK3jtO9slSb5qnwJtAbXvaFfpA6WqW1anzoZOpU9JV8ZpGXIOckZCmCSFzJBa/C26/4P7JXVVlxYtWqRPPvkkErhGjx6tzZs369prr9W8efPk9/slWZWr0aNHS7KqS62trbrn2Hjy+AAAIABJREFUnnv69Wxhs2fP1uLFi2NCmCRdeeWVmj9/viTpD3/4Q9RnY8aM0apVq3TRRRdFhTBJOvfcc/XDH/4w7nlhCxYssNbsPfLIUd13XxHEAAAAcNS2b9+ukpKSAW9Rv337dklSUZFVFXI4fJowZpUmT3lLKaktkiSjx99kj3wvnjKPapfUKm1KmrLP7n1z5ub1zerY1aFBswfJkRE9ocyealfel/M0/qHxOmnRSSr8TqFGfW+Uxj04Tpmfy5TXb+qyF/3a++r/Sav+JyqMjf/ceCWPtgKVe7Rbzpy+N9bwHbTWxjkyYye4eco88uzxyJ5qlwKygpYhZRRnqOieIk14ZIJGfnekCm8p1NifjFXBzQWRc1s+bFHIDOn1fa9rTfmaSHVp6dKlWrFihZqamlRQUKDdu3frzTffVGpqaqS6dLju1aVNmzb1+dn6Klwp3b9//4Ced8kllyg3N1d/+ctf1NDQcGw32QuCGAAAAI5KKBTSGyvfsJpcDLDS0lJJUkFBgXKySlV8ykvKza+U1FsAC+v9hkKBkCp+VyHDaWjYdcN6PVaS6pfXS5Kyz4kObJ4yjxpWNSjQEoipqHXs6JAz1ynZpDZPQGMerJIx5z4t/f1P1NraqoaGBjXObJSvygpU2WfED4NmyNSeRXtUMr9EJfNL1L6zXSFfSPUrrXvKKI7tNNjykRVU3aPckqT2be1Km5SmwlsLlTo+eq2dr8qnQEvXZtbVf6lWyfwS1S6p1a82/kqjR4+OVJdWrlwpSTr77LNlGIa8Xq+mT58uSVq0aJGys7OVlJSk/Px8zZ49W7/+9a9jqksXXHCBMjIyVF1dfaSv/Yh27dolyZriOZDnOZ1Off7zn5fX69Xy5cuP7SZ7wRoxAAAA9Emjt1HrqtdpW/02bandosoDlTqj7owBv05VVZXKy8slSdPGV2jSyftlhqwAtm5dh7Zv92rXTr927fKpvt5qSf/jZ0b1efzaV2rl3e+VM9epnXfulGSty4rHU+ZRx+4OJY9JVlJ+UvR99jBd0QyYKv//y2X6Yytzly16SfnLOjRjkkvvLn5XIU9ISSOSlH1etuqW1UmyglTTP5vkKfXIu98rHdZTo/IPleqs7ZQjy6HB/zFYUnTL+vZPrGmJqeNT1b61XZ4yT4/fRcPqBtW/UR/zvilTu5p2aXPdZk0bbK2T2rx5syQpKytLc+bMiQQzSQoEAmpqatLIkSM1YsQIbdy4US0tLXrvvfci1aVf/OIXA9YMo7q6Ws8884wk6fLLL+/zeR0dHXr00UePeN6ZZ56pxYsXa9WqVbr66quP+j57QxADAABAj0zT1KbaTXp+x/Natm+ZgmZQhuwyzaCKG4tlTQMc2JLYP/7xj8jPE2aUSbJFqmA//d8atbfHdvtb3dy3aX0deztU+3qtXHku+Wv8R2xZH64upU1Ki3o/PF0x9wu5MdMV23e0xw1hkuQt+1j7yj7W/kEjFGholz3NocJbC6Na0Ncviw1GRpIh02eqcW2jmv7ZJMNpqOA7BXKkWdfu3rK+Y6fVLMNdYFXEAs1WxStey3pJyv58thrfbJQk2dPsCrZZ4dZu2PX89ucjQayqqkqS9Pjjj8s0TRmGEZmSGt4DrKysTHPnztXq1au1efPmSHVp8eLFWr58ua6++uqoZhjhqadhfWlZP3fuXF177bVqbm7W1KlTdeONN0qyphq+/vrr2rBhgzZs2KCSkhL5/X4tWLBAv/vd7yRJt9xyi/bt26dhw4bpRz/6kaT4TUUmT54sSfroo4/i/j0OBIIYAAAA4lpdvlq/2vgr7W7aLUM2mYdKM6aCcoVcKmwv1ECHsG3btqmioiLyOiUlevyzzk7R8OFOjR2bpLFjk3TF5WWSpJrgkVfctO9u176f7JNskr/eH9WyvmN3h4IdVgApf7Q8EkaSi6w1XCknpUSNFZ6uWLe0TnVL6/r8fNlzblbjG48r0HBAhjNJeV/9b9lSP5K0LXJMenG60qemq255nRUWu2YOquntJsmQnIOcKnuoTCF/SI5Uh5JHJyu5KFltH3c13nBkW7/qB9oD6tjVobJflUWNFeYc1BVindnOyLMHzaAeu+kxPbb/MT3z9DN65513JFnhvLCwUOXl5ZEwduqpp+qmm27SlVdeqd/97ne65557VFxcLCm2urRgwQK99tpreuSRR/Twww9H3UtfWtaPHz9eO3bsUE5OjhYvXhxpQf/iiy/qu9/9bo/f/aJFi/Tss8/K7Xbrr3/9q3JyciTFb1kf/uzgwYM9jnesWCMGAACAKE3eJt391t26fc3t2t24R5IiISyssL1AxqewOCzcsj6soyO6svT97+fpmmuyddppKcrK6uqIZxyhQYenzGOFMMmqgJlSoC0QqRYd/OvByL5a4SAiWfuMSVY7+O5jdezukKIb8vXIObgr6HTWdLXId+YUyjV4krwHviFf3ecj7+demKtAU0D+Sr/Sp6Zbtxzo9nym5K/xK+QJyTAMBX1BtX7cKs++w6YgHvorszlt1ubQ3UNYt3uveakm7r1W/L5CbZ+0qa21TVdeeWWk+uV0OpWVlWXdyqGNnB988EF99atfVW5urkKhkNasWRMZ5/DqUm/NMMIt699++21VVVXptdde0wsvvKAtW7bo+eefl2EY2rFjh1JTU/XGG29o3LhxkXOLiop022236emnn9amTZv0n//5n5HPHnroId17771KSkrSyy+/HNlnTIrfVCRc4WtsbNSnhYoYAAAAIlaVr9KP//ljNftbrTeM+AHn3MaZajY7Zfbw+dEIt6yfMN6t0jKfvF5TLS1BpaYeuXZgHiEU7n+8W4e8Q0HMs6fntVORQw9NMbSndSWX8HRFm8umkCekjOIM2ZK67jHkC6l1S6tM36HgMtipzlqrzXzbpuWS3SkFO9XZcEAVT9yoQEudDMMmM2QFwPZd7ZGOju5Ct1o3tkpd2VBGkiFnllOBloBC3lDcKpfU1do+1GElMsNpKHlMspyZTnU2dkamMHbXfePowfMGq/GfjVJICgaDcjis6BAMBiPrxdxutx555BG98cYbevLJJyPHrF+/XtXV1Vq5cqU2btwoSfr444919tln66qrrtI555yjl156KWYT8D//+c965ZVX9OMf/zjm3j744INIGJw0aVLM/nJf+tKX9KUvfSny+qWXXpIkbd26VU899ZRcLpdefPFFXXTRRTFjd6/S/f73v4/slZad3XtHzWNBEAMAAIBM09TvtvxOj258VDKNHgOYJJ3eerKSO1PUZGsa0HvYvs2anndqsVtOl7Rli1dlZZ3Kz+97W/d4mtc3y19t7XMlm7Xea9RdoyRJO+7coc76TmV/PlstG1oUbA3GHcPm7gpa4WYYhtOQPNLQK4fKNdiaHtfZ1Kl9P9sXCWGSNOL6Edp5l9UUxEhKki0pQ8GWWpl+j4zMIUo56XMyO73y7NsgSar5W02ko2Pls5VR95F3eZ5aN7XKs9sjW4pNGadkqLOhM7YaJkXes6fZNewbw5Q+I102Z9dzlMwv6fV7M4NmVABMT09XY2Nj1FYFeXl5+trXvqZAIDoNPv7445KktLQ0TZ48WevWrZNhGHrvvfe0du1aFRYWSpLefPPNqPPuu+8+/elPf9LChQujqmp33323HnroISUnJ8vj8USCUl+8//77kRB2ySWXxD2me5XuF7/4herrramnQ4YM6fN1+osgBgAAcIIzTVOPfPSInip5ynqjtyqXKX299ot6x7a71+VhVVVVevLJJ1VcXKyLL7446rNdu3apoqJCVVVVqqysVFubta5p5LBMSdKkyW7ZbFYQ27bNq9NPT4kZX5KCwa773PG9HT3eS+2SWuuxnIYMe/yW9VlnZqltS5uCih/Edv3nLvkr/VHvGfboLyDQElDpA6Vdoe+QcAiTJNPnU9Bn3Y977BkaclnX9LmyX3xZCh7aoNlm7enVtvnQmi+HpIDkLffKs9ujpBFJKvpBkRzp1q/zu+/bLW9p9Kba7TuswJh/bb4yZ2ZGfVb1l6q4zxn9gNY6s0CjFbI8Ho/sdruCwa7vqLy8XJMmTdILL7ygzs5OFRcXKxSyKnBZWVnaunWrKisrddppp2no0KFatmyZ5s6dG+mKefj+YiNGjNANN9ygxx57TEuWLNG8efP0wx/+UA8++KAyMzN10UUX6YUXXuhTy/oPP/zQ+iptNr344ov64he/2OOxhzcVqay0AvCpp5565O/pKBHEAAAATnBPbnmyK4QdwQRPkfJ9eep09xx8JOnvf/+7TNNUZ2dnzGd/+9vf4r5fVWdN+SssdGrQILv++McmfbTBo+uvj3+Ne34YP0yUPVIWCUnOHKfVAl6S2Wkq/5p8uXJcvd57PIeHMEkyjK4gFmgJaN/P98lX6ZPhMnrsmhh1vqS6f/xSkmRPzoja7Nn0mar+S7e9tg5ln5b11nfkO+DT9tu2K6M4Q4W3Fsa9nrfcK8NpKG1KmgItAdUtq1Prplb5qn3qIW9GScpLUur4VDW/b1WfvF5v3OPKy8s1aNAgXXXVVQqFQiooKFBtbW1k8+dwMKusrNRtt92mBx54QF//+tclSTU11vq0zMzMmHG7TzOUpObmZr366quSulrPx+t4KElPPvlkpPvm+eef32sIC+veVCS8Nmz27NlHPO9oEcQAAABOYKvKV+lXG3/V5+P/o/FceY3YUNLdtm3bdPDgQdlsNl1wwQUxn3evqHTn94dboduVn+/U5MlJ2rrVp7Iyv0aOjA5PpaV+bdwYPxh4y7re72zuCnxJBUnK/vwArvk5lMPqV9Wr6Z0mBduDcg52yjRMBWoCkiElj0mWZ3f8tWieXe9FfrZnDJZCPSz2knpssd/y4aFgdtAXe4rflJFkaPut2/v2POqadtmwpkGBpkBU4xJJkmFoZGGhysrKIm+1tbVp9OjR8vl8SktL0/79XevxwiEszOl0Rq3tamqyprdec801cjqtKajl5eVau3Zt3LDe0dGhrKwsrV+/XvPnz9fOnTvV2tqqm266Sa+88ookay1auKW9ZG0OPn/+/LjPG96LTOpqKrJhwwYdOHBAbrdbc+fOjXveQCCIAQAAnKCavE360Tv3yjQlow8NEDMCqTqn5VS1G7G/9HcXbsAwbdo0paamxnw++eTpcmTnyznkJAXyJuqjR2+K+jzcsv7yyzO1dWuNlr7eqptuzol8HgyaWvQ/B7sXkKzzxqdo9D2jI689ZR7t+fGeyOvOhk5tvW6rJGn4DcPlr/Ur0GKFn30/tToqjn9ofNQ0R/dIt7xlXmWdnaWmd6LXxHXWW0Gh+75f4aYckjWtb8z/N0ZS7Hqs3Hl3K3XiOZIkMxhQw4rH1bZ5efQDGbJ6nPdSvRp972h1Nnb2eExUt8XwsHZDsituFS3Ybg0UaAzIW+GNWlMmSY7MIbrsB4/ql7dEV6t8Pp9uueUWVVZWRgJRPAsWLNCuXbsir7OyslRdXa3HH39cbrdb1157rdasWRNp+hFPU1OT/vjHP0a99/e//12bNm3StGnT1NTUFLWObdeuXVHX7K57EAu3rC8rK1NjY6Ouu+46DRo0qMf7OFa0rwcAADhB3ffuT9TR2danECZJ0zrGyyG7bL0sDquqqoo0OjjzzDMj75umVBNK1dv+IrXOvU8NM29WzcjzVZ88PGaMcMv6c85N0+QpSXrttRY1NnRVi557rlFlZZ1yJUXfR9rU6E2XK56qiHod6rYRdMVTFar9e63MzugwUvNqTdTrIZdbzRpaP27t8Zl7EmgMqPzX5dr1o+gQYEtOU8rYM9S6abmq/nCnKn9/a2wIk6wq2BGmENa+Vqtd/9lt/MPzS5zz3YVupU9Lj3nfle+Sceg7deW7NPqe0ZH2/pFnaqrWL2/5kmy2rhgR/rm4uFjz58/XbbfdpksvvdQax9VVyTQMQ9ddd52uuuqqyHt5eXmRn7/1rW/pb3/7my699NLIBsznnXdeZIzk5GR99NFHMk0z6k+4C+K8efN02mmn6dJLL5XD4Yj8nwAXXnhhzDnhP2ErV67U9773PUldLettNltk/eLhbrjhBjkcDm3ZsiXu531BEAMAADgBrS5frVX7l0tG6MgHHzLWW6iAAnKYPW+gFW6QkJ6ertzcXElSeTBLf/dP1uv+SdoXypF56FdQUzZlBLt+0XW5rBDQ0tKVHm69NVd+v6nnnrOqUbt3+/SnQz/P/05u1LXtyV331by+Wd7y+FMXD108rnCVK8w9wi13odvqpnhY88bUiamyZ/SymZgptXzQIl9ldAXRDAVV/vBX1bD81/JX7VCg4UDPYxxB60etkfb0kuTKPfL6N88+T2StWXf+Kn/ke/FX+bX73t2R9XWH6z7lMPzznj17Il0VV61aZY3j75rGOmvWLI0aNUo+X9f3MX36dElWm/g//OEPmjJliv7617/qjDPOkCStXbtWfr9fhmFo5cqVMS3rJUXWf5WXl2v//v0666yzdNlllyklxWrysmLFCt14441Rwau7X/7yl5ozZ47efvvtyHvJycl66qmnVFxcrLq62A2777vvPjmdTi1cuDDumH1BEAMAADjBmKap+9/7pUyzfxsyj/eMkl12ueWUs4cwtnv3bklSYWGhvKZdb/lHa3XnWDWZyda1D6umnWPvmjpYUGAlnbKyrjA0dmySVrwxWrctzFVnp6lFiw4qFJKmnpyk8+dm9HivB188GPPexMcnRn7OmJmhIVcMkT09+jnyLs2Lem0GTQU9VjA8vEtiykkpmvjoRE15ZopG3DSix3s5/Dx7aqZSTvqckotmyJbSvUmFdZwt2apWOXNHypGdFWfAHi8lf50VfFz5LrmGdIWy5NHW928kGXINjQ1ruV/I1ZRnpihtSldV0Vvhle0Ie7jZ7fZIi/fq6mpdd911euyxx9TaGl1BnDBhgr71rW9px44dstlskUB17rnnRh13xx13yOl0RqYJhteJffWrX42qsHY3ceLEyFTGu+66K7IJ9C233GI9s2HoiSeeiJnOKEkbN27UnXfeKbvdrkWLFkmyKmElJSU6//zztWPHDt10000x54W7O7755ptasmRJr99RTwhiAAAAJ5hNtZtU7S2V0Z/NmE3pJG+hjEP/yQ2lx60qhX8Bzyqaopd9U1UaCq+xiU0PBbZG5bq7Qte4cVZA2LYtfhXmmWcaVHEgIKdT+uEPh+jAnvjHeco8MS3kJUU1nsi/Kl+DvzhYNlfvvw6X/6ZcnbWdMpxG1N5gktS2taua1/hOY49jmMHDvqiQqUBLreyZeRp+4+8kezgYmUoaOU1p06ypdoGWGqVOit18ON73bks+9ByHHjFlTIqSi5Ijn3tKrYYhps+M+900f9SsPf+zJ9LyPjyWc5AzfvAzbMo87csKBkM6eNAKvRs3blRWVpzgKGsN2fWH2l/+5je/0f79++V2uyNdCe12KxB3dnaqurpaV1xxRdT5d9xxR9xxJauz4VlnnSVJeuGFF2I+Hzt2rCTpD3/4Q8xn999/v0zT1HXXXafkZOv7uv766zV69Gg99dRTkdb327fHNjxZsGCBJOnhhx/u8d56QxADAAA4wfx6wx9kmv37NTAzmKaUkDvyerCZKeOw39D9fn9k+teewWfJJ0dMBayLqdPtFZLZNcXt5GnWL8IfbYjtMrh9u1d/fcFqo56T49CiRQd1/73VUcfULa3Tnv/Zo/2/tbr2ObIdsiV1PaevovcmI/F4D4W9pIKkqADkGuKSZ69H3kqv/PV+tW9r72GEWIGmg/JX7ZBn9zqZnT4p2BWMkkcXq2PHPyVJpt+j1o/jrB2L81cXWet26B9pU9KiOx4eYQZq58FOefZ6otbRSZJvvy9+8HOnK/2Mr8iZVyRJkfVSbrdbc+bMsY7pto5s3759CoVC+u1vf6vc3FzV1dXp6quvjjTDCFe+Hn30URUWFsZs9Dxv3rxIE5h4zjnHanyyY0fstgrh6lr3bo6S9d/XcIv7a665Ru+++66krpb1I0eO1KxZsyRJL7/8csy406dP17Rp07RmzRp98sknPd5bTwhiAAAAJ5BGb6Per1ktox9rwyQpKRQ9nS03lC7zsIpaS0vXdDRHRp56m0M32GhXqt0jp6srHBUUWC3rt2+3WtaH+f0h/WRRjUxTysy0qbo6oO2f+FRXF92JorPOChP+GuvclLEpco/sCo8dezr6/sBhhx4h98JcOfO6Fok5sq2pcPsf36+KJyuiworh6NuUz2BrvSp+syDqvVB7owKNlVGvY8T5qzu8O2Lq+MO6VXa7JVuyLeYejSRDyaOTNWj2IE15ZopSJ1jnu0e5lffVK2NvwdOiyiduVGfNXrmzh2rHjh3y+/2qqqrS+eefL0kxmy7PmjVL1dXVeuihh2QYRtz1VZ988klM2/qsrCzV1tZq7ty5uuyyyzR//nzdddddUcdMmzZNklWRPf3003X66adHGn58/PHHkqxGMqeffro++ugjSdLOnTvV0dEROf/tt9+OaVlfXFwsyar2xRMOnb11iuwJQQwAAOAEsqr0nzL7spvvYZxmdDu+YaFsGYetMdsZil5f1ZsZthrJlGy26Hu5/HJrzdTS161Qt2uXT5dcXKrqaqt7X36+UydPc+vkae6euz0eavSXNiVNqRO7Akn3qYQ7vrdDJfNLYppz7P2fvdFjmZLhMlS/ot5q2HFIx3brF3jffp/at3dVwxzZDtnTutadjfr+qEiHQmeeS678rjb8kmQGoqt0ztxCDbn2Fz08WB/ZpR137pAZ6hbOuv0Y8oRigpvpM60KX4VVAUwZbzW68Ff71fx+dOv98ID21CxlnPFV5X79l2pydO3PtnnzZknWBszdrV27Vvfee6/Wrl2roqIiTZw4UX0R3mssEAjo5Zdf1rPPPqvFixdHHTNiRNcavXXr1mndunWqqLC6Zno8VoW1tbVV69atU0uL1ahk3z5ry4KsrCy99dZbMVU6SSooKIg69nDhdWvh5iT9QRADAAA4gazZ91G/pyVKUqcR3cbcLZdGh/IiYawsmKXtyZMinwdbanscK0mdync0SIZks0WXdw5vWf/YY3XqvqXU9u0+bd7k1eZN3ph9xA6XXJSsjFOshh62JJs8e6OnPGYUZyhrVpbche54p0eYfiukhPxd99pT1SvQGFCgyfquUienylvlVesmK1R21vjlr6qPe541pkvJo0+N+92FK3D90bGj/xXA0feMVtvWtki7/pA3JF+5tfeaY8iYyHFp0+Zq2A2PK/ucb6j5radVXDQ40so9vH1B99bvU6ZMUU1NTSR87d27t8eOg+eff77GjRsnyZr+Z5qmfvUra9PxwsJCmaap0tLSqHO6d3E8ePCgTNNUZ2dnpDo3depU+Xw+maapz3/+85K61jOmpqbq97//fdwqXVqa1bwkHN4OF94EOlxl6w+CGAAAwAlke+NWHXHBUBw+W2yDh0mBApmGKa9p17udo2RzJkV2hvZV7exxrJFGa6RRSCgU++touGX9Aw/UamuJT58/Ly3mmL5w5jiVPDJZKSelKOSLfeahVw7ViG+NkLug9yAmSUkjkqL25Iq3UXLkuoemMIY8IdUsrunxuMPZM/PU+OYzan73+a43bVZ1LWV8Zg9nxRGUFIrTJOQIRv94tKr+UqXSB0vlLYtthBKo6aoKBdqbVPePX6ry6YVq3bRCpgzd8p3bJEleb+y5lZWV+v73v6+ZM2dGOiU+8cQTkWmDRrfy5oYNGyIbMN9+++3WvY22NuquqqqKe+/l5eWRn7OzrercTTfdpFWrViknJ0eLFy+O2tOsO7/fr9dee03f/OY3I+30+yq8/qyxsTGqVX9f9D9aAwAA4N+SaZqq8+/p8wbO3TXb29Rh80Y17MgzM5QdStUrgSHyyyHJkD0tV8HWWnlLNyp92oVxxxqpDsk0JMNUKBTbBj/csv72hdbUsmuuydIPfhA97dHrDemLl5RaLwz1uC+Y1K2aZFfcDY5HfGuEmv7ZFPWePd2upGFJkdcdu/pRXTKt1vYduzsiZY+k4UlKGjZcvoOp8pXH3wQ4UH9AgfroPcVcQ8bIX7VTrkEpypkr1S/vuaKWNj1NbR8fqkLZ1GveHnrNUFX/ObrZSdvWtsj49my7go2HfVndGqt4d6+L+shwJmntO29pyZIlke6D3TU0NOjZZ5+Nef+tt96SZHU23LnTCu/hqYhut1vf/OY3JSmyl1e4QnW4DRs2SLI2kHY6nbr99tv11FNPKTs7W2+88UakwtZdero1ZbSxsVHp6em6//77Y44JV/UyMuJvldD9/aampqgNqo+EIAYAAHCCqPfUK2T0v3OgJMmQdrvLNbVjbKRboiFD6hyrfWZXE4vkolPUtnm5vAe29jjU9ndf0dI9sWHkFw/Wyn2oDXtenkNbt/o0cWKSCgpiKxlut01utyGv1+wxh3XWd8qR4lCg+dC0yn4sjQu2Bvs8tc+eYVew2ybUnfWdGnLZECuIHcouw68frradF6h1058ixxkOl8xAVxUlZcLZsqfnqHW91fghdeoFMn0d8lftVFtJo7zlcUJWt3CZPCpZps9U7hdylTYlTXt+vKfHDZkP39DZlmxTzUtW9S5lbIrsmXa1ftga71TreW5+Ro4Ma0Ptlg9eUuOa30uyWrkXFxdr2bJlGjx4sGprrWmWp5xySiQsSdLMmTO1fv36SGOOSy+9VA888EDUNa644opIpeyNN96InBdPONCNGzdOd955px599FFlZWVpxYoVcTeBlqRRo0ZJstaeVVRURIJZd+FOi+FjD9d9HVy4EtdXBDEAAIATRHVrz79Y98WO5FJN6hgtx6FfIU2Z+ruZJEPBSJv69FMuVtvm5Qq1Naizbr+cuQWHjWJq146PdfBgtQ5XWtrVOKOs1Aoop5waW10JGzs2SVu2xAkah5KZZ59HyQXJkTVbh2tc22i1eO9WOXINcWncz63qScOaBlU+WxncLAcCAAAgAElEQVT33O5Sx6dGB5uQrPO6haTSX5Qp5Hki6rxwCHMMGqFAwwF59qyX2dn1PBkzL1PzP61pipEQJkWlTpvLppDHegDPXo+KflAU+cyeEX/TbSm2wme4DenQErpga8AKkX1gmiE5cgoUbsu4Zs0arVmzRpIiIUyy2sqffvrpkdfhvcfC4eumm27Sb3/726hg8/Of/1yS9Pzzz+tPf7ICbLx1ZZ2dnZEGIenp6XrooYeUmZmpFStWRLoexjN+/HilpKSoo6NDH374oc4777yYYz788ENJVpCMJ7weLjs7W06nM+4xPWGNGAAAwAmi1XeU1bBDdrnLIyFMkrYqqL0KRe0V5hoyRo5BwyVJzesWx4zhNgMaOvT/sXfe8VHU+f9/zmzNJtn0QkvovQsYmhRRBERUzu6dKNzZu57inaec91VOrCe2A1Q47KiggEqR3ntJSEgCCek9m2wvM78/Jtlk2Q01/k7PeT4eebg78/l85jOzKzuveb8/r3fSWY8lNNyl9u7d8vqtgQOVfSZTYK6lNkqZo/WoFckr4a5UBE+7u9sFtKtYUUH1+mqqN1T7t3ltXlxlynXSJ4deU3Q6UWlRwU79Imgjmq6V5Gg5HBc98haABhGmDKRL7obr1BHsmZuDO5zmgNiILbvJvVFySTjym8xJBOOZ81Gb1w+T7D7OVHqgOd7aUiqWzWmYVMv5oTabze9muGvXLgoLlRRMV8N3Mi4ujtdee83fPiwsjIcffpjBgwdzyy23IMsyzz77LJMnTw4ae+XKlX5nxB07dhAVFcXatWsZOnToGeeu1+uZMmUKAJ988knQ/vz8fH9tseuuuy7kGEePKo6Sl1xyyRmPFQo1IqaioqKioqKi8ltBbjlCci4cMmXhxYcWZZyvcYdcdhU9+vdUrpiLLWMjMWNnoAlvStmKQOLqa6/l2muv9W+Lj8+jV+8tAWNcPUUxhkhJaTnKMGJkOP/5Ty0dOuiZ/3Y7JlyuWM+H9wzHstOC/bidog+LQAJBJ1C9tklwiSYxwHBDdjeYh1glsp/JxtjeiKmLib4f9fW3qdtfR/Hi4qZUxwY8lZ4gDRLWKYxOT3Yi6/EsPFUeRKMZyRnsvKdP6oKgay42lYEEjZbqte+1eO6hkB0yJ+eeRGPWYMu0IVmbxJXsDJygaBQRdILfkr/x/AW9wLLH45n2XFlDSwHzsOuo2/MNoW0qBYyp/dHGtsd6YPU5z1WSJIYNG0ZsbCw//PADR44cISqqyZDE5/OxYsUKzGYzkydP5uGHH+bKK0OvOXz99df9rxvTEc8mwhp5+umnWbZsGR9++CHTp0/nqquuAsButzNz5kx8Ph/Tp0+nZ8+eIfufXgT6fFCFmIqKioqKiorKb4QIfctpfudCndbGZvM+Lqu7BCsC6/GGXHYV3nMUlu2d8FScpGbTYuInP+Lfpw9xM19bm4wkCYiiss/hkHA2CAfzGdLrunUz0KePgfT0wALQMSOisOy04K314i5TtsseOcC+XrKfwcnCB858J16Ll7Z/aOvfbDtmCxJhAKWfN6VZihEiklUiZnQMsizQGFkKJcIAwroOQ3IGp4y6i461PL8QJF6fiD3brtjsuyS00Vp8Z1gUJzklaMiCFAwCsqvhehsFXlja9BkZOw3GWZCOoAtDdjelK1Z8/QKIipTQJ3chcsBEvxCLiYmhtLSUIUOG+C3tw8LCGDduHDt37qS6uprU1FQ+++wzduzYwQ8//MB7770XYHRx2WWX+deFnYk9e/awZUuTiO/atStvv/12yLbx8fG88kpgjbbBgwfz6quv8thjjzF58mTGjBlDYmIiW7ZsoaSkhB49evDeey0L4nXr1gEwbdq0s871dFQhpqKioqKioqLyGyE5Ih7Zp0fQnJ/NdnO+i9nE+Lph7MNzRu+L+CmPULL4UcXSPoDglTFer5GKio4kJOQhijK2Zmlyp6cdns706VGkp5f7C0ADGNqHoU/W4y51Y0g20OWvXYL6FS4oDHJKPB19UmBqYuTgSH/KX4C9uwRiuIhkk5BsEsaORqIujUIQZMK6XII5bThVq14jFJZdX2HqeinhfS/HlrEJJC9h3S4lYsBVDSl/50biNcFufUdnhCrEHEyjCAPQeyX2ZjdY7osavDXFeGuDLePdZbn+14JWhy4+xf++pqaG0aNHY7M1pUo6HA6+//57DAYDN954I++++y6xsbF+18Fly5bRpUvT5zRz5sxzmvujjz4a8H7v3r3+dV2nk5qaGiTEGsfo168fr776Krt378Zms5GSksLs2bOZPXt2SBMPgAMHDnD48GHGjRtH7969Q7Y5E6oQU1FRUVFRUVH5jRAfYQB3e2TjiQuysAfIDDvJSUMhma64ltzgASXlLvXP3wZt97RQTLqkuAdJSUo6YkREUxu7XSY8PHCy2dku7r+viKnXmHnwwXj69LWwcmVTxClyQxmiQRmjdmsttVtr6fFaD3SxTWmO7f/YnvZ/bI/kksi4O8O/PeXxFE69egpBKyB7Zb+Y6fRMJyJ6RRDRS7FPP13kxI2Po25/Ha4iF7HjYxEEAVf5RGLGjcOZf7iFqwR43dgzA9MytZHxGNr2RDCEI7tsJN92KbHj6smbl6c4OTZeDhkQlRpcmY9mYupiIu6KOMJ7hAMQPTqa2i2BYjN2YizVa6qJHhGNZbcFfYIOV3GTMK9q7n0i+UKKsEZSn1oZuEFrAK+y5mv37t1B7WVZxul0MmnSJGJjYwH8BhdOp5P09HREUWTQoEHcdNNNLR43KyuLNWvWsG/fPjIymj67F154gb/+9a8t9gPFXOOVV15h5cqVnDhxAo/HQ2JiIsOHD2f27NlcdtllQX0mTJjA7t27OX78OMnJyf7tH3ygOEU+8sgjQX3OBdWsQ0VFRUVFRUXlN4IgCMTrunFRt4ACLE74jkyk83GD92MTNAghaofV18djtUYjy03W9AB1dcFHmT+/Er1e4PbblbVnjQWgG9n7XW3IgsSh8NkDx/fWNKQeiuDIdZyrZwWmriYSr1WiUq4iF67KsbirxgKgjVbMSWKvepAOD3/W0hAARI2+ndgr7kUTFkn8lEcRdEZKP95F7nO5TamVDb4Ygl4gvE84kYMi0YRpqNtbx8mXTlL5g1Jzy5ZhCxrfssOCqBeRfTKyT6b3n9rRtW0zU5EQGZvJd7yB0CyyaeoxMkiEOfMP+0UYKOYWU6dO9RdRHjduHLIsI8syM2bMaPH8JUli7ty5AQWeT+fdd9/loYceYvHixdTU1LTY7nRyc3Pp378/c+fOpaSkhLFjxzJt2jTMZjPLli1jzJgxAYYhjcydO5f6+npmz57t31ZQUMDChQsZO3Ys11xzzTnPoTmqEFNRUVFRUVFR+Q3RM7YXgnCG9VHnwM6II6RzYemNdkFA9ESEMNgTyM8b6I/Udeum3Pjn53sCWm3eZCX9qItrrjETE6Pxt12ztrO/zU03R/HiS8ncPCfQJTEUGlOgKLTsVOzTZY9M5IDIgCjamTC0NWAeEo2pm4nqDXXUbDRQu/UTypfNoXTpkwBU//AW9ftXNZ1xhBIVQtQS3qfJOt1ZeIyKFf+keu27yD7lOruKXMiepoumidCQ8mAKnR7vRMoDKXR7sRttZyjr2Uq/LMWeY8dT1XTtkm9OxphqxFfnwzzETId7OvD46x15/mQ5Q0KUv9K3azKnqFn3b2RPk8jSJ3XBW1dB/cHvqfrhLYoW3kvZZ8/490dFRfH1118TGxuL2+0mOTmZefPmAUp0yWw2U1oaXL4gIiICWZaZMGHCGa913759eeKJJ/j44485duwYv//978/YvpHHHnuM4uJipkyZQn5+PqtWreLLL78kIyOD999/H4CnnnrK7+jYyJAhQ7j66qtZvHgxhw4dAmDOnDl4PB7efPPNczp2KFQhpqKioqKioqLyG2Jc6gjkFtIDzxXZF97gl3gBCOD0RRAq1FRd3YHy8o7IsuC3ps/ICIxsffWVIpQmTQ69bgfg2mujGDbMxKxRTVGcRov9uv11OPKaTDtEg+hPY4SmKJKgF/zCppGaLTUcnXGUrMezgo4phmuRfWHETpiF7PFRufpNLNs+xZG7B5+1ya3RdqzJjl4XmdgwB5Pfr99VnEXZx3/GnrkFWZIRZAltmBh01y55JPJfy6dmS1NEKHZsrLKuzQdFi4v82yP6RRB/VTyyWxHgYXYP/yqr4Kq95UxbbOOzdC+aZh+HaIzAXZTpf+8qyvAbcwCYug/HnrWd6h/fxnroR7xVBQFzGzRoEC+88AKLFy/GaDSybNkyv717qOhSI2Fh52YmM2vWLObNm8ett95Kz549EcVz+z7/9NNPADz33HOEh4cH7PvTn/5Et27d8Hq97NmzJ6jvzJkzkWXZL7wWLlyI1+ulf//+53TsUKhCTEVFRUVFRUXlN8QVPbrgq+t/cWJMOrf6Wi1RLZlACF1zKjdnGF6vnhEjlBvl/fuaRFN2tov0dBe9ehno0EHP0v/U8MADRf6/Rp79a2nQNq9euWG2HrOR+3wuWY9nkf96PgXvF4S8I257e1t0MadFwxqmLGiDRaTkHoQt9wk05itJ/fO3hPcZS/RlfyDxhjkk3zXf385Tme9/7S7LVoaVfDhylZt/54l9gIw57UYkWzWyDINi5CDZmzQ5AWQo+aQEny04fdNV0BTBSr45GXeeHVeJG40INUdsDKiyIwowvZeWzTNM9B42oulcXHbMaTf43wtaPUjKMQzteqOL64A2OonIS6YSNfI2pU3z1EWTib/97W8YDAa++eYbRo4c6d8XKrrUiNVq5efEaGy5Jl1z4uPjg7ZNmTKF+Ph4Pv30U6qrq0P0On9UIaaioqKioqKi8hsiNlxPWvzUi0tPvMh6ZKdkM8ih1wB5vQayj6fRrbtiTZ+Z2WRNv32bEq0afIkSOSku9pB5zOX/ayQnxx20rX3dSCzxDxM+rAsxl8WgidDgOOmgbncdkjvwWkT0jSBmdHC+XmPh5+Ypgo2cfGkXJR89S9WadwCIn/wIuvgURFMUmpbKBjSIG9llQ3I0mI3IErq4FCUK1UCtE3wSdIpuumbRmRZEjVLQ2XFSEavVG6v9dv2NREaKdPy6EN27eQCE68DphT9842B8Jy3LbjSxo+1tVF9yd5OYkiXqdn7pH0P2ugEZNDrir1NSEE3d0oidcDeCVhGrgt7kb7969WpEUeR3v/sdCQkJQad9enSpkZiYEDmSrcikSZMAJa3QbrcH7FuwYAHZ2dn069eP4cOHB/XV6XSMHTsWp9PJjz/+2CrzUV0TVVRUVFRUVFR+Y9w/YgJ/+HEBoqEMoYXI1BkRLsSmo4kTGpGRznjcxoqQZhhVVSnknRzI9OlWvzX9PffGceCAkqbYu7cS2fjzU4n8+alg2/ZGjjg0PHq1EnXqWpBPzpBb8I1/D9OoXOLq12Kw70LAhz3PxYnns5W5yBA3OS5orJotNf6URk+1J2i/pywHwC9MQDGwqN/3LRpzsBhRGovEjJ+Jecg0Kle9ju3oev8urauaRhn593FGbu6rY3uBl5Ef2NFrIPOYy3/p4j8roM4lU1IRLK7r6yXW7WtK76xrGHRTvmJK8rb3Gt7xXYM2UiBu8qNUfvsyyCFEus5A8m3z0IZHB2x2VyhOl7LbEbBdkiQ+/vhjPv74Y2677TYWLVqEwaAIvebRpb/97W/+PklJSaGvUysxb948MjIyWLVqFSkpKaSlpWEymUhPTyczM5MpU6awYMECtNrQEmnEiBEsW7aM9evXc8stt1z0fNSImIqKioqKiorKb4xLUmNI8E67MBEGIF54HTIAhwil7uQzOhIWFPSlY6c0+vQ1sHJlHTXVXnJyFBWRknJ2Aw1ZhtW1Te06Fxfg02pBEPAaulIffy9V7d7CEn0fmqiJaKON/tRD66HgFDlXiSaEwUgghg59Sb51rv+9qXsaEf2vRBNmbmqkbUrhS7xxDuYhpxUC1ujwVJ1C51Cib3oRbuqjxeqWmbNJOf+/XqZnanetfzp7C30cr5CIN3HOdIsV+afnZuZ5b6bxgwjvOSrANKQR0RRN+7sXYkjqHLRPcij122SPIvYEQeCjjz6ivLycDz74ALPZzMcff8xDDz3k79M8utS4bgvwryP7uUhKSmLjxo3cfvvtVFVVBZh1tGvXjvHjx4eM4DXSp08fAPbv398q81GFmIqKioqKiorKbwxBEPjruBvwWAYgt5AieMb+GhuI52YP3xJ7NWFoPOFnEDeKi+L114/E7Zb58KManE6lsdl89tTIPLdIiafp3PrlHkfj8wa0cZ8oouD6Byj4LANvrSJyNBExVP9kpXT5cAoWdcOjeIPgyKkCoN29H2ForxTvTfzdc0SNUCIj5uE3EdFvAvn/vNr/V/bpM1gPrwkoftzc4l0X2yFo3qYeIxAMYdTWK9fXLUHvd2x0eK2ePUU+HrlUx6L9blZnK+fSwSww93I9E7tosJ6mj4e0EZGfM2Od3WRssv4Pytq7LGs4861jqdn0EcWL7ufUa9PJ/+dUJSonaogae6e/T+TgKWjClbTBss/+wqnXb8BnbTAJkQM/wAkTJnDHHXeQkJDAnXfeyYIFCwDF3CIvL8/fbsQIZU3axo0b/dvGjx8fdD1ak8zMTAYNGsR3333HO++8Q0FBARaLhY0bN5KUlMTjjz/O5MmT8flCR3zj4pRIaVlZWavMR01NVPmfRZZlHHUWPC4XPq8XjVaLzmAgzBx1xtoUKioqKioqvwWu6J3EuIN/YovjSWSN47yiY4IAGmMRPntnzrnQ1mkUa2S8thSE6GNnOhKiMJrX3+hIXNxmVq9Soi8m09mPudWqJdredE6Rdivj9u5gw5AR+DSKkKt7+XmQJJxHdyMYjOhi2uGuPAU+D5XfLgpZVMtnrcZddgIAbVwHNBGxWLZ/ijPvAGGdByPojP7o0Nmo+PoFvxuh5FKicNpuXZg4sSM/vL7Y3y6zUplHogne2+fB2aAno40wMEnk6fWhI5TRYcp1sriarsOx8EHAVuwOF65FD+CzVSuOjXJDcTIAyYdl44f+Pu7yk1Sueh0Ar6UM2e2gas18Eq9/FlkKFLd5eXlBdcIMBgMul4sNGzZw552KwGuMLh08eBBQjDQmTpx41mt2oXi9XqZPn05OTg5ffPEFN9zQZEYyZswY1qxZQ+/evVm7di1Llizxz7M5ZrMS2Tyf2mVnQhViKv8z2OssFKQfpuxEDiU5xyk7kYPH6QhqpzOGkdS5K226diepc1c69OmPyRz1X5ixioqKiorKf5cXp6Ux9p0bkRI/Ou++mrACfPaOcBE29ls1ZiY4EnC1sFaskeqqDlRWTANeBcBmk4mIaLmD1QcH7BriTlvKde2mtay7dDQAzk1r8eZmgUYDNitERSPpBPC6ESNikayhnfHqD/3gF1qaMDNidDKGdr1wFR1DYzQjhpnxeZyYuo9AaDDpcBVm4K0tCRqreaRMNClrr6z71vHjilPoRPA06MDRKRoOl/kob+Yv8fClOp4YYeCJNS2LvsxKiSfXurh/aNMt/99rpgBbAUkRYQBaPVpzIt6qUyHHcRzf7n+tiVCiQo7sXRQvug9PZaB1fXZ2NtnZ2SHHKSlRrsG6deuYM2cOAEeOHAGgS5cu/uLPpzNr1iw++ugjDhw4QL9+/Vo83zOxa9cuMjIyMBgMXH/99UH7Y2JimDRpEh9++CHr1q0LKcQsFou/bWugCjGVXzWyLFOSncnBH1eRtWMLks+HqNEgtRBSBvA4HRRmHKE4K8PfvseIyxh45RTadOuhRstUVFRUVH4zxITreXnybTy4ugRD4vk5wYnGIi5YhDWQq5PoZe9IgqEGGe8ZxZgoRqDT6fB4PJSVhRMR4UCSBEQxOJKX7dIgIaD1Be7rfTKbzoWnONm2PdYP3gZAn3YZ7m0bkC21eC21AC2KMABvbVMh4kahFTlkGq6iY9QfbrqGMeNnoo1qMp/I/+fVjb0QdAba3b0QTXg0Msppl2+Zj2P7D0iFihjyNAvGfTI9jPZmkftXu3hnj2LS8fxYI9FGgVv66ii1ymzO9yGjrDtq7Gp1ybyy3cVbB3Wg1YPXja+uIa2uIU1TG9ee5NvmoQlT0her171P/b7vAs653b0foTUrlu6OvIOUf/5XZY41xSR07E5FXmBdtT/96U+89957/nuqzp07c/LkSSIiInj99dd57LHHgq5reno6Q4YMYevWrUH28c8//7x/ndmGDRuC+p4Lp04p19VkMqHRhP7eRkUpD+ZbsqevqlLSU1vLVOS81og9//zzCIIQ8NezZ8+zd1RR+RnI2bOTJU8+wKfPPknm9i1+8XUmEdac5u0zt23m02efYMmfHyRn766fbc4qKioqKiq/NCb2SeahS+7GVTn2vPppTLnAxbknAqwzgr6u2zllOLZp0waAjRv6cfDAVVRUdESSlI6SJPiXKxW4RURkvKfdbwvAXd99gTv3OL4CpZ5X5B8fIumnAwF/bT7bTspfV5Py1Eo05kBXxuiRt/pfNzoFhvcchaFdb6wHf0AOkc4YiEzkoMl+EYZOxD0oFjmyyVjkyo5ayp+IaNYDPKJAVI9L/O+XH1PCfWntNewoVETYe9Mi0TTc3ev0ejrcuwhjx0G47FYEjRJtchWkB8wmvM/lTSLsp4XU7/sO0RAOmhYMUQQBQ0pDEWPJx7rVKzGZTM12C/z73//mP//5DwDHjx8nP1+51lFRUTz++ONoNBreeOONgGHHjBlDVlYW99xzT9Ah27dvz6xZs9i4cSPffvtt6HmdhXbt2gFKWmFLEbtdu5R7wE6dOoXcf/ToUaD1TEXO26yjT58+lJSU+P+2bt3aKhNRUTlXHPV1rPrXy6x45R9UNTw1kqWL+yFo7F9VkM+KeS+w6l8v46ivu+i5qqioqKio/Bq4f1xXZva+D1e5skbnXAw8RK0drfkwFyvGnCKsF82Y6juetW3HjkqbwsIi6usTOJ41il07f8exjMsoKuqNxZKE16vllFtEAlwhtMTIw/uIWfiWcg7xCWhTgo8rJYbhGpWIlBxc/0vQ6hF0in2+z1FH7daPyf/n1UheF7LXjeyyBfXx1pUHvA/vf6VynDZhuEYlISWGIUhN0bte8RoSwptu0wVAK8nc1K+MRsV6z7ZYhlW/wOW5t+P2gTGuHU/XXuePpMkR8dQZkohqEI5yg0mIs0hZk9d4DvasrUgeJzUbPqB+z3IEQzgRgyaDL9iiHyAsdQDJt7yIYDCBLLNm1XIef/xx//5GEbNkyRKqqqqYNWsWkiQxbNgwVq1ahSzL3HnnnUHBnPnz5yOKIl999RWZmZlBx505cyZAkIA7V4YPH+4XY7NmzaKiosK/T5Ik5s6dy44dOwBatKbfvl1J0WwtU5HzTk3UarUkJye3ysFVVM6X7D07WPP+v3DZlH/kZPkCbXdboHG8rB1byTt8kCvvfpBuQ4OL+qmoqKioqPxakWUZm82Gx+PB5/Oh0WjQ6XQ8ObEHEcZ7eH1bIsY2X52TgYc+ZgfeukEXPaccvUScM5nBVh+OiIIW2/Xs2ZPNmzdz4sQJ/82w12uksjKVyspUADZt2sjuU3uQT7NjvL+oEF1Dqlyx+zgAur5nmLteg2dArOIff/qupC64CtPxVBX4XQM1xkja/vlbCt+9C5/HgfXwOiRnPbLkw1Nd6O+rS+qMNrUjNm0JlvdfUzbKMlJx03kvOuxiZ0mgCYYAGE+V0mio4aoqZu/7s9FGK/flzpoynJuW+NuLukAve43JjK++Cm9NMYJWj6nveGwHVuMpy6XgzVsU4SUIyF5XQDFnCDQV0Sd3Ie7K+2jXMYrCLDuff/4527Zt49NPPyUnJ8cf/dq5cyfdu3enurqa1NRUlixZwuDBgwG49dZbgyzgU1JSGDlyJFu2bOGbb75h9uzZAfsHDhzIgAED2LBhA1999RXz5s3z78vNVdbavf/++6xcudK//ZtvvvFHUXU6HUuWLGHq1Kls3ryZrl27cumllxIZGcmhQ4f8YzzzzDOMHj2a0/F4PGzevLlVTUXOW4hlZ2fTtm1bjEYjw4cP56WXXiIlJaXF9i6XC5eryaazrk6NMqicP7Iss3v5l2z9bIli1dTKAizoeJKE01rPt6/8H6Nu/gPDrr1BXTumoqKiovKrxGazcfLkSUpKSigqKqK4uBi3O9hlT6/X07ZtW/7cpTvLs++hyLwBKeYAsiy0KMjEsFOIhhIkVxIXWxVpl8GH3tmO/vUabJF5+BdPNaNNmzZ06NCBgoICKioqQtZ8qqytwn7CHrT9WLP70Ub0Q87+sFXWBE5CFsCY0h9XYTquokw8DYYbEf2vCGhn2f5pyPE0vXrgHpGI71ABnmNHQraxumFXUWCksdwmMfNbxZgjMs6MnDIKZ/5hPFUNIq/RvVCj80ezJLcDy7ZPlD6XTMV6eB3e6kKMnS4hduxdeKuLcOUfaop+ybJ/7VhzmpuKCFodkzutoX6og6VZkJWVhV6v59Zbb+Xvf/87Op0On8+H3W4nJSWFe+65h8cff5zi4mLsduVzGTJkCPPnzw86zpAhQ9iyZQsHDhwIeV2uuOIKDh06xA8//OBPI2xOYWEhhYVNotd12mc+fvx4jhw5wmuvvcb69evZunUrXq+XhIQErrvuOu69916uuOKK04cFYOXKlVRWVnLnnXcSGxsbss35cl5C7NJLL+Wjjz6iR48elJSUMGfOHEaPHs3Ro0eJjIwM2eell17yu6KoqFwIsiyz9dPF7F6xrHHD/68DA7D1syW4nQ5G3fwHVYypqKioqPwqkGWZwsJCdu/eTXp6OpIkIYoi0hnWL7ndbvLy8hBFkWGShFzbhZOWbpyI3Y8lMgcZEUEI7C8IYEhYg6PwjouftABbjD7crjZcWmOiPup4SAOPtLQ0CgoK2L9/f8jIxFXTr4JHmt7ftsHHlN0y2oap2yWJIdlKROym4gknT6YAACAASURBVFN8FzRCIAmfrgagbLwSPXNfEoeu55Ww/VMcBQfwlp1Cn9wVU6/LAAjrMhRj+944S4/jKslEctbjqyz2j+fc/CPee/IQtFrCrrkB8yPPMGv5Z9z24woQZOY6C1iSFygkb/3KwaEyH3UuxbL+tT8bORLbga9z7kNAwpa9m4rlL4Hk8wspT00xRe8qzn/Rl/0B87Dp2I9tAUDUG/HVV+CpDO2S2IgYHkNYx0FoTFHEjr8TGZHp3b5lcqeVfJ+tLMCrr68nLS3NL4AaxU9KSgpms5np06cTGxvLtm3blLlER2M0Gtm8eTMAffv29a+96tBBqat28uTJkPNprD128uTJC86K6ty5c0gReDY++OADBEEIKEx9sZzXo4tJkyZxww030L9/fyZOnMjq1aupra3liy++aLHP7NmzsVgs/r+CgpbDzSoqodi9/MsmEdZKFNVYePLLVXyz/2jI/VmlFSzcvJu/LV/DU8u+Z9qse5l+1ZUBT1lai/379/PKK69wyy230L17d0RRRBAEli5dek79v/zyS8aOHUtMTAzh4eEMGDCAl19+GY8ndG73hAkTMJvNlJaWhtyvoqKiovLrJjMzk3fffZdFixb5RRhwRhHWnMZ2AjKdkZhQNYDxeTeRVDkcWVZuHWVZ9D8X1UYeQ2s+SGsYdyDALqOXTMKIrRiKwdkQ8Wp2z927d286dOjAvn37sFqtwfMn8DxPJAt+EQZQ4W2K+MzatYVbf1h+fnPUiWjSBqLrMwBP4XFkjxPTQ4/iGpOMa1Qi4f94Hs19N+GNkfAUZgWIMGWCEt7sY3iOHcGbf4Jbf1jOrT+uaDhPgbfGRbD8pjCmdm+Kl+wp9tHeLPJomp5D90ZwVYTElM5reWDgAsJ1diK6DcXQpgfNL5bstiM5reiTu2Fo1wt3aTbuslxEUxS2rO2UL5uDZDtzPSzJVoMt/SfsWdsI19l5YOACJndaB0Bks6Lau3btoqioSDluwxcjPz+fXbt2+bPh6uuVGnDh4eH+6BLAP/7xD/84ERGKQUlLGXSNtcdOT2v8udmzZw8rV67kjjvuYODAga027kXZ10dHR9O9e3dycnJabGMwGDAYDBdzGJXfMNl7dijpiK3MNwfS0Wk0TOjdLWjfD0eyWHdM+U63izETG26i1FLPN2vWsb53bzZu2sSgQRefD9/I3//+d1asWHFBfR955BHefPNNtFot48ePJyIigp9++omnnnqK7777jjVr1hAWFrjQeO7cuQwdOpTZs2fz4YcftjCyioqKisqvDbvdzurVqzl69Kg/g+NcxVeLNNxUx+BltDWZk3V3sEfvRDIVIxgL0BiLEDQujEnfYrV1Q/CGIQsXl6II0E6oRCO3w2zphcuZgC0iH5/OpuQFCjKTJk1iwYIFbN68mcmTJwf0FU+LMxxNFfCK+MWY0EzVCcCsFZ9jcjpZeO3NCJKELJ7b/E2/uw1L+iFMN9yOIU2J1DSP0UQ9/XciH3iSit9dAe7AFDlNm3bEf7ySP37zKbeu+LxphyBjSnIzzaBjWk8dwhxFkGQ/GEF7c9O8pAo32V0kBiUeoVt0Ls8v6MDJogwEnQHBFI1kKUMX35HIQZOo2bSYss/+gja2HYI+jPirn6D8i7/5bfijxtxBdNoNAfOTfV4K5t+O7LSii0/lur/cya29/kGErilSFxvbJCPKysp45plnWLRoEXFxcWzfvp3u3bu3eO0ao0v79++nc+fO53S9AeLilBpmNTU1uN3uFuuOtTazZ88mMjKSl156qVXHvSghZrVayc3N5fe//31rzUdFxY+jvo417/+r1deEHSooIa+yhrE9OhNpDHxIcKyknHXHchAEuD1tMAM6KAs8ZVlmbUYOa9KPc/3115GZmdVqDxjS0tLo06cPgwcPZtCgQdx1111s2rTprP2WL1/Om2++SUREBJs2bfIvgK2srGT8+PFs3bqVZ599lldeeSWg35AhQ7j66qtZvHgxjzzyCAMGDGiV81BRUVFROTOyLOOo9+B1+5B8MqJGQKvXEBapu+jU94yMDFYu/x6Xw4NGDkNGAkFCFj3nZAt/rnTW1NNNNEDSNNJtkRzOr8HmrQPBA4L3gkSYDKAXkUUBRAEkmRi7EbmhRpnBFY/eFYdXV4/DVIzLWEGbNm147tnnggw5ADRSoGd9vUlgey+BkRkyGhkStE1WisVeLz20Wm77cQWpJYXM+/3dWMNMSC3UmWqOccwV2PsOxPHdV5humoEmNi6ojXP99+B2ISYmI5U3ZaJIFeW88O4rjDq8r6mxIGNOcaA1nF08izLE1HooTzCQd7yag18rGT49briL3HU/IAGCRkvk4CmIxggqv5uHz1pN+3s/RDRGEHPF3dSsfQ+AiN7jgsbXaAV0se1xF2eitRfxp/7BD8WrKptkxAsvvMCiRYuIiYlh7dq1IUVY4zImi8XCypUrmTFjBgMHDgyIfjVGOM1mc8jzbr69traWxMTEkO1am3Xr1v0s456XEHviiSeYOnUqqampFBcX89xzz6HRaFq0eFRRuRh++vA9xR2xldeEbTmu5B0P69ShxX2XpLb3izBQamJc0bsrGcVl5OXls3TpUr+N6sXy9NNPX1C/F1980d+/UYQBxMfH88477zB69Gjmz5/Ps88+6y9Q2MjMmTNZuXIlb775Jh988MGFT15FRUVFpUUcVjeFmTVUnKqnLK+Oivx6PK7g9D2dQUNCaiRJHc0kpETSvmcMYRFnftLffOzjB09RX+ElXB5E+GntJMGLV2fFq6vHq63HbahFFoPNGM4VWZbxup2QvY37Lr+ckbMmUm334PT4cHsllr71OR+4z+yuLetEpFgDUpQOyaxDjtKDtpmAk2W8X+sDSkULCOg8ZnQWM1JdFzz6WvRGKzp9PZViPR6h6boaJANaSYu32Xn+OFjksnSlTZgo+oseH3U66WFUbNxHHd5Hv+cf4183zuCnYSPPKToW+eBTVN97G7b/LMD8cPDvuWO1kvZonHg19v8s9G83y1KgCAOQBWK7BVvfh0ISINLqpTzBwI8/Kil/kyZF8thdP3Ln9nKUhRSKoIvslUblai2yy4arJJuwToMQmqlzn92C1hyHRpDwyRo0gpdhyftZ68mjCtCIoYXhyTzl2yaKIvPnzyc6Opo1a9a0mDXUWHrAarW2GF1qXMLU2PZ0LBaL/3VMTEwLV+fXw3kJscLCQm655RaqqqpISEhg1KhR7Ny5M6RjjYrKxZCzZyeZ2za3+rhFNRbyqmpIjYsm0RwRtL+gRvkfvFtS8FMtQRDomhhHYY2FJYsWtpoQuxCKiorYs2cPoFjAns6oUaP8rlKrV68OelgyZcoU4uPj+fTTT3nllVdazf1HRUVF5beOLMuUnazjyMZCcvaWI0kyoiggSS0/VPS4fBQfr6U0x+Jv33VIIv3Gtiepk9kfLQs1NoKMLIPYwi2dKGvRuaPQuc0IiMhIuIwVOEzFeHX1FxUtW79+PS6Xi8svv9w/x4fT2mBbsI7Pe1weeF0AOUqPNyVcqc3VEPlCQMl8aYbJJWM4g1YUZR0GVwK4EuhkEJkcJuLEgxcfkiAjygJZjsOkm3L855fdDvIToEOlEk1K0mop8XrZZrcxPTraP3aUzcqzH85n3L4dfDj1Rk60T0Hj8+LThL6+um49SVq3L+Q+T+5xvNnHQBQxTZmO84ulSC7F9bB/g/hrRELm39Zy/vV2DWNSNWyccbqkDkSQwVynXKTycuW/JpOIIIBeozhito8s5o/9PyCvLoVFeh1ehxfJqYg2Y6cmsVS9+lVG3D2Lnu2qSDUX0D36OKu/KaaqQplrhw7B5y4IWg4dVKJXkiQRFRXFmjVrGDJkSItz7tGjByaTCbvdzooVK0KWw9q7dy9AwAPm5lRVVQGKCNPpWig4/SvivITYZ5999nPNQ0XFjyzLbPv8PwiC0Op1wo4WlQHQLTE+5H53wwJeUws5x+EGZfuBg4eQZfm/5qLYaOsaGxvbYvX3IUOGUFBQwIEDB4KEmE6nY+zYsSxbtowff/xRjWqrqKiotAInDlaw69sTVBfbEEQBuUF8nUmENUdq1j57bznHd5cR1y6cS6/pjCwTcmxk4axaSmkhNLwWMTgTMDqT8Gqt2CLycBur/W1LSkpYsGABQ4YMCVp7lZ2dTVFRESUlJRQXF/vTyJYtW8b06dMBCB8+nDv+/BRhXhcf9ZmMIEt4E03YpVPYVn6M58hBpHoLYlQM+kFDCb/1LrQduwQcR+c799/+bJeEVoDuRuX32eP1sqvgEAU7C8jNz8VV5kJyS2jDtfwxychf7NGMiYhgZHg4yywW9tsdyjWXZQ45HWy12dhlt5ObfZz6Lz8GQUCjNyDFNt031L38PGKYUqNL260nvsJ8PJnpxC1ZjufYETTxiRi79KDueyUa1rZrD/654A0e93lpLOt8R0zgA1ARgRyNEg073bY+FAJgtnpBltHrlM929eo60jOcFBUq9zLFhS4W/2MVLpeE16EYeD057mtSu63HK2l5cpWBkiIX7opT7Hr1Oep7GzlqEngr101xcZMSnjYtKuj4Ho+Ho0cVcw6DwcDatWsZOnToGees1+uZMmUKX375JZ988gnjxgWmRJ46dcpfMPm6664LOUaju+Ill1xytkv0q+Ci1oipqPwclGRnUlmQ/7OMnVOuOPSkxocOZ0cYDFgcTqqtwfVHAKoattc7HOQeOkDXgaGf2PzcNNq6nqmG37lYwC5btoz169erQkxFRUXlInDUu9mybA95R4pA40Vn0iL59PhckVxoyKlRaFUV2Vj9bkOtKSFw34UiNJhZaLzhRNX2xWksx2rOQRa9fP/992i1WsaMGRPU76uvvgqqywSwbds2+vTpQ8+ePdHGxBA1aRI3rV5NvLeOebf+EcvBtdS/oVira1I7Yeg3EF/hKZzrVuPctI7oF17DMGykfzzNefqLHHNKeGXoHaZhx6kD3PbF4wBoo7SEdw9HMAi4il0UZlu5Fyu/i47mpqhollkslPu85LpcaAWB204pVu5RokhfYxiHnQ7qJUmJYpU0uSb78nL9/pC+8lKi//E61ffejnXBW+iMRiwrviAi0ozbpghVU14u9+dkUddgnDLCZGJEeFPEyyeAs5OLgn2K+IkynNt3RuuT0XlkOnbSsWMHOBwymceaPh+nM/B9fLyGQX19iKLilPj3OQncf18hbrfSd/9+RZQ2z8acMCGCyycEZxC9+H8V+HzK+SxevPisIqyRp59+mmXLlvHhhx8yffp0rrrqKv++Bx54AJ/Px/Tp0+nZs2fI/o1CrbGY968dVYip/OI4+OMqBFGDLLWCDe5pFNUqC0ITI4P/UQHomhjHvvwidp8sYETX1ICIl93t4VBhif/9zlUr/mtCrLkFbEv8Ui1gVVRUVH7tuN3V1NTsoL7+KGXFe7E7M9CkOumSGtjO5zHgrEnFWd0JZ3Uq9vKe+Nyh666eE61cRrMxlmZwJqB3xbCj5HMKCgoYMWJEyN+XXr16ERsbS5s2bWjTpk2AGdSKFStISUnBZDIRc+strM4vZvF1NxNWkM6pN14ESSLhrvsRb5vpT0V0fL+CunnPY3nhaeKXfosYpTwk9V2A6WK2S6LeJyMhMqn7GG4eNoXXLl+Kr1ndM8suCwXvF7CstpZBxjA66vTkedwsqq7inrh4LjWZuCs2lhGmcDSCwDMlxSxv4Te0kX4eFy9/spDnYmLY9eO3zE5K4nBUFBlOJ+WCgAUo8nhoo9ORptezxmqlvpmTpQTYjdChfw3HflS26zWQtjBwrdg1n9rRNxSWHtxG5J0piiOyRpKZMsXMp59YOBu33haNKDbd13TqpGfqVDNffVVHWJiALIPHIxMZKdK1m4Grropk7Njg+6Ud2x1s3twgMk0mvv/+e77//vugdvHx8UGGYYMHD+bVV1/lscceY/LkyYwZM8a/1mvTpk306NGD9957r8VzaDTNmDZt2lnP99eAKsRUflHY6yxk7djys4gwl9eL26uMG24InVc8rmcXDhWWUFRbx+Lt+5jYtwexpjBKLPUsP5DuT10EOLF3J/Y6CyZzcMj+10CjBWxZWdl/eSYqKioqv3xkWaau7gAFhUspL1+FLHtB1iDjQ2zhbkqjc2FKOI4pPhdB9CFLInWnhlGTMxZndWda1c7wIhAQQNaya+duAAYNDG22cKabX6fTybeLFjHO6SJ7zz4GZ2WyZM4TPFdaSpYkMTQsjMXb1mPfu42slM5kdurC8ZROrEwbjW3nFuxffULEXfcD4NFc2HUp9croYvvz7JRBdNCL7LUcY3PUPr8Yi7o0Cmu6lZrNNXxXZ+HhhHgeLS5mZV0djyUk8mGHwCyTF9u05cU2bQF4r6qSf1VW0kGn48fOgamUlJdya5iJnTU1HHQ4+b82bWiJ2/LzOeB0kOty0cVgQAT2jvNgK3HjlcCggYI6mYK6wPugA6VN4s3Y7PsmSJCcrGPd+s5s22bjh+/rOX7chcXiQ6MRSE7WMmSIid/dEEVCQvAXtaBQSVl87LEExo0P/ZD6dLKyHP7XdrudxYsXh2yXmpoaJMQAHn30Ufr168err77K7t27sdlsDXN4jOeff97vrng6Bw4c4PDhw4wbN47evXuf01x/6ahCTOUXRUH6YSRf64swAKenSUQZtKG/+slRkdwx4hI+2XmAo0Vl/jVlACa9jqkDerP8QDoCYNBoKEg/Qo/ho36W+Z6Jxn+kGv/xCsW5WsDW1Jy5mKOKiorKb52KirXknngNm+04gqBBlht+pwTf2ddnCUo7AEGUMKfsJqrjTpy17ag8ei3WYqU4bEFlNi9/fR+je1/DjaMeDBgj/dQu8sozKag4zqnKbOrsimHBC7d9RkzEuRumSZKP11Y8TF75MQAeveYNurTpB0BhZQ4nytLpmNiLVOMQbHLeeelEWZbZmpXFlrVrKSotJcPp4oTb5U/hG94QYTO5nAzMzqBfbhZayUeXWgsvAtKaVdT7fLi2bcRXWsyTgo62MZ0Y2WsKw7pfEfKYb618kvzyTP5282LMJmXNlUeG/XYfxW6JcVWXsSF6T0AfY4piknFc52VipJmehioyXS5er6g4o4DqZVD6lXpDu4iMiYggRqNhdX0dTyYmEt2C/f0fYmM4UOxgmaWWpxKT+GSMyO8SLERJShhw/mQjswafe20suVn0cOTIcEaOPLPJR3M8HpnDh5x0765n7Lhz7Sdw+LDyxRg+fLg/VfB8mTBhAhMmTACUzJ2oqCiee+65FkUY4Hd5fuSRRy7omL9EVCGm8oui7EQOokbzs4ixsGbuOi6vF2MLbju92iTyzJTxHC4soaS2Hp8skWSOZFBKWwobXBXjI8PR63WUncz5rwixRlvXRpvXUJyrBez/gv2rioqKys+Bx1ND1vE5lJV9R6Mq8YuwC0RosAI3mItpP+ptLPnDKDtwC19um49Oo2fSJbcH9flo/f/hcJ+brXkoGkVex8Se5JUfQ0BARsbuqmfX8TVkFOzhWIEiWE5VHOfVD/5Gl07dGHpZP6KbOQo24nQ6yc3N9b9/6623kGUZrVYbcg0ZQLTYJEwEQNuQ+RLXkCrnKC+BTz9EHx6BZvAwEkptFBRmsGTDXJZsmEu/1BEkRrUnu+QQFZZCXF4nOo0el8fB/30xE41GFyBQiUhALu+AWK2j4HAejgIH3hov3ganwRqnh5liGZ10OjJdLr6rs/BDfR3xWi39jEYKPB5OuN2s7tSZBK2WfLfiRJjQgsDSCQJDw0yssdazzWZjSrOHoCfdLrbZbGQ4naQ7leuzuKaGE+1EEgbH0b/EjRAtIj8X/OC02iEzb5uL5Vle8moljFrol6jhj4N1/H6AHp8YrJaffLKErEwnHy3uEFB0+XTSjzpxOmVmzoo9D/MxmX79LiU9fe0ZUwhbm4KCAhYuXMjYsWO55ppr/r8d9+dGFWIqvyhKcrJ+toiYXqtBr9Xg9vqwuTwtCjGAML2OSzsHG2GcrFCcpbonxSP5fJTmZP0scz0bjTU6qqqqOHnyZEjnxHO1gE1KSvqZZqmioqLy66WiYg3HMp/B42lcI9S6C7QEURnP3GEv+3O2c6L0FBMG3EhkWPDDsQGdRpMQ1Y4O8d3oEN+N2Uumn9exvtw2H62o41TFcfqmpFFcfZJqaxmbji4ns0ixXhcFRWC0j+9KdX0Z2w/8xO7Dm+nVuxculyvAJXHYsGHs3r3bP37Hjh3RaDTk5ytGWyJwY1QUm2w2ShoiSK9UlLPf4eBPcXF0NRj8fQs9Hv/rvkYjC9q0YU+Xbuy/7ve0P1jA3C9m4fW5OZKvRF7Mplg6J/fFoA3jwMlNANhcgeu4nvvkNsKNZlITe2KR66k5VYM+SY8+SY/X6gUf4IMdx5SMkDBAK4pYJYkCj4cCj4c7Y2I54nTyekUFzyYlsbRWaXtFZCR3FZziiNPpF2mNDAoLY421np32QCH2WW0t/wmRfbLXbmeVRdti4PFEjcT4xTbyLTJxYQKXd9Li8MrsLPSxZbmPtXk+/jAqOHA5a1Ys999XxKKF1Tz555YLHg8cFMa69Z1b3B+MhqSkKSxd+jpLl55Ht1Zgzpw5eDwe3nzzzf+/B/6ZUYWYyi8GWZYpO5F79oYXQbvoKE5WVlNWV09chOm8+jrcHnadLEAUBIY3rMguO5HzX7Gxb9++PUOHDmXPnj188skn/OUvfwnYv3XrVgoKCjAYDEH2w438r1nAqqioqLQGsiyTn/8uuSdeRbnFbWWHjNMQRIlvViim5iN6XwGyHFRX6/axT17w+AdObOJE6VEiw2Lw+jzcfNmjvLb8IQCMehMxEYlYHRYEQcDt9XHXhGeJDIvm402vsj93A0eOHAkaU6fTkZaWxs6dOwGYOnUqZrMZn8/HurVr2blrF59ZAs0jXLLMyvo61ljreatdO0aHR+CRZT6tbRIod8XEEqXRMG7/TrqUwtdie7w+JRKl0xi4b/JcurXt72+/dKOR/PJMSmryAo7Vu8NQqqxlHM3fAUD7QZ2Iui+cvNdPgg/0SXrcVW7/x+sAaGagMSXSzM3R0Zx0u1hRZ8Hi81Lo8ZCo1XJ3XDyFHjc35ufzekUFLzZLZ2wUmBlOZ8B8uukN3BkTSw+jgY5RRv6irSb3qIVLehsYZ3fQErd8ZSffIjO2o4avbzQRE6Z8L3KqJa5aauM/Bz3Ef29lypTASFqPHgbS0kysWWPl+ulRdOliCDX8eSKg05np0f1vrTDW+bNw4UIWLlx49oa/Mi7Al0ZF5efBUWfB42z5H6TWoGuiYlCRX1XbYptTVbVB9ctq7Q4+3LaXeqeLsT06kxyl5DC7HQ4cdcqPzYwZMxAEgRkzZvw8kz+NZ555BoC5c+cGOB9WVVVx3333AYoVbFRUaDOR/zULWBUVFZWLRZZlck+80iDC4OcWYQDZ2S4y0p10ad+BxMiOQSLsYtlw+CsA6h01XD/8XqLDm+phtYvrQo21nFG9puD2KuIh3GjGoAvj9jFPoGlIJxwxYgRPPPGEv9+wYcOYOHFi0LE0Gg0DBg70v09sSOMzCgI+IFWnwy3LPF5UxG6bjfsKCylvtuaqTUOmikaSaFN2mA2Hl/n3eXwudJrATJbbxz7J9cPv5fRKajeNfoS/3LCQOy//K6IgUnjgJPkv52PLsKGJ0CCGieCF6NFNaZe9H+/E5B7KPYJBFOig13N9VDQysMFmwyAIvNamLdEaDX2NYYwND2dFnYXMZqKrcV1Y1WmZPdfHRPNkYiIxadG8/rCJqihlvmPsgYKtOTsKvOwuktAIsHBqmF+EAXSNFXllorJmbenSmpA1VydNikSW4euvz+6meG7I9Or5EjqdupyhNVEjYiq/GDwt5JW3Jn3bJbE2I5vjZZVM6tcjZJt/b96FXqsh2RxJuEFPncNJXlUtPkkirXMKV53Wz9uQNy41PE0730rvq1at4oUXXvC/z8jIAOD5559n/vz5/u2NTx4bufbaa3nooYf417/+RVpaGpdffjnh4eGsX7+e2tpaRo4cGTBuczweD5s3b8ZoNIb8MVVRUVH5LZKf/y75+a277iU728X99xUx9RozDz4YH7Bv1y47n3+mRIQKyyp54N+KKUVrmXAUVGZzoiwdgF7thzK851UB/fbnKql9AzqPZsPRrwEw6pRsEb3OSLu4rpyqyMJV72Pbtm3+fm+88QYmU+iskj179gRtCxNF3D4f+Q1piFZZZkZhARpgXEQE6xtSHqM0GjZZrfyjrJQSr5fTy4mdqjxOx6ReAdt6dRhCu7guFFbl+LetOfAJOSWHqaovpTFxz5pdj2gUaXN7GwrfK0QXqyPxukRqN9cqTXqEsSfHCllgUzQOJz1u/5gvtWnD4IZz9sgyfYxGNtps3FVYgE+WcUgSEQ0FuGoahJhXBK0EBfHw2RiRfd1E6g/XY89WapK+udXJvE1O9BroEiMyuZuWx4briTeJ7ClWxugYLdAlVmTCEhu7i3wcfzCC5AiRKzsrt/AV5T4yM1306mUMuC6XppmIihLZ8JONu+/2YTaHXtt2rnTp/AQJCaFNU1QuHFWIqfxi8LXgRNSatIuJomNcDHlVNZTV1ZNkDnbnGd2tE8fLKiiqrcPp8WDS6+nVJoHhXVLpkRz8w+ht+GHZt0/Js585c+Z5zamiooJdu3YFbc/NzQ1YDB2KN998k5EjR/L222+zfft2PB4PXbp04emnn+bRRx9Frw/tvLRy5UoqKyu58847iY2NPa/5qqioqPwvUlGxplkkrPWYP78SvV7g9tubIgk2dzI59iuY8495uO3KQ0iX58IzQtYf/iLAhKORgye2AKARtdxy2aNB/UpqTtIxsRcp8d3925weO2H6cHw+L9X1pQDsOxL4G9WtWzdqa2v9zr1r167l+uuvRxAEiouL/e0cDZEaSZYZEhaGW4YTbpe/sHGEIJDcbI1VB52Om/LzAupsFhwBJQAAIABJREFUNaeqrjTkdoMuLOD9loxvSTC3o3eHoeSUHMbqVKJCvS8ZQkWVso4trGsY5V8pKaG6OB0ln5TgKlU+i93dBW6OquXwygp/cqq74b8CsMdu5+2Gdda1Ph8jTCbMGg3pDie1koRHlvlbWSnjxyez5hINOW3xRzprd9TiLlcEXlK4wLB2GqocMruLfLy01c2iAx5++oMJa4MGjDMp/eZOMDJ0gY3Z6118OC0Mo17AYBBwuWSOHw8WYlqtwIABYWzebGPvXgfjz9GaPhSpqfeSmnrPBfdXaRlViKn8YtC0YCnf2ozu3om8HTXsOlHANQOD61BM7NudiX27h+gZGq1OR1FRERkZGVx33XWkpaWd13xmzJhxUemMN954IzfeeON59fnggw8QBIGHHnrogo+roqKi8r+Cx1PDscxnaO01YZs3WUk/6uLGG6OIjtaQXz+O9b7r2RjVBl+MgGb0AcS1q5AkH09e9w7zvrnvvI9RUp3Hqr2LA0w4yi2FvPHdY+g0ytqgkb2mEBuZRL2jhoyCPX5hAopL4j+/vgdR0CDJPmzOOsL04WzP+h6r04JW1NGj/WBSe7Rh9drlAJSWllLXrNDx0aNH6dq1KwMGDPAbegD0MBjY63BwR2ws98Qp0cC55WUsaTCusMiyPxoGsMFqZUJEJO11Ov5dVcnpeTKb01dQZilgVK+r+X/s3Xd4VFX6wPHvnZaeSS+EkEJIAgk1gCBdQSwgdsRVEXRtay9Y1lV3XQsi7A/FVVdBXdG1IDZQIICAdEIiHRISWgIhPZNpmXZ/f9xkkmEmEIqAcj7Pw2Ny77nnnjvJbuadc973ZCcpf2sN5hoOVRV5tEuNy8busLHz0Cb3kku1SkPF9sMYtyvBY0NBA7Jd+Vnbq+zUrmjJVasvMFBrrEPSSET311Oxto55QSZSO4XSuRxUJrgsOIRap4NNFgvX6sO4JCqUrzVGXikoBWBeXR3rIoMIT/BcyvfnQf4crDfx5U4Hd/TS8dxQ5WdktMlM/s7CVzsd3PWDlTt7K6tr9tUqY+zbQc2YdA0f/2rnoQE6VJ38aGyUm34evj/I7pblx6pVJgryTyUQU/630Dn1SZKTRRD2WxE5YsJ5Q+t3JpJJT6xnYjzJUeGsLzlIg/X0l0NqdDqWLFmCWq3mlVdeOQMj/G1t2rSJBQsWMHHiRHq1WssvCIJwodpT+Pem6ohnNifs66+VgCdtyHiet3zKs6EPKEFYU8nxUcNH4Woq4x4T1vGk+3e6nPz356lo1X7cPPRRHE5lhca36/+DRqXB5lBm2UZ0v4EdBzfw1oIn+eTnqe7gBCA+PAmTtQFXU1n+TUXLKKsu4dv17wHgcNnZcXCDOwgDPIKwZlu2bKGhoQGLRblnTEwMoSHee1PlNjR4fN96X67nyo+QqtNRZrd7BWEAWo2O7QfW8e6iv/K/VTNwOB18vPxVj+cBKCnfzqGqQq/jFfWlmOuVwE+2yyCBNkqLyk9Fx/taXn+X0QUSJD6QSMDFSp71dlsj//iThomPqfngmVBsL3eifpRSJGNaipmJj6mZk648iy5OWY1St0bJR5eaZgYfrqljWpCFAK13HmCwTmL6Zcqs1vpSJ307qJGASrPMt7uVn+udvbXIwFvrbcza0vK6mU2+ZxCTk5VxFBWd7HsdNVptGD26vyuCsN+YCMSE80ZAqB6tf8CJG54B1/bOwu50kruz6MSNj0MXEEBAqJ5JkybhcDjIzMw8QyP87TzzzDOEhITw6quvnuuhCIIgnHOVlblN+4Sd2a1Tiooa2bGjkcj0TGZn3ce+QOXDxuYgLNTYwKQvWmqAN+dmnYxVO77lUFUh1w28jwZLLQaLssWKqdGAVt2yNL20qoj3l7zA4Zp9Xn2MH/IIf79lLvHhyQAszp/Luz89S6PdgkbV/pznuro6PvvsM5xN+VEmk4naAOWZy+12HLLMVovFXc6+tZHBwVwaHIzB5WJ6VSXzDb4LTAzuNtZdgGPNroXMWvgke8ry8WvHa9czZTC9U4d6HJNUEvYqO65GF8ZtRtSt86hk8E/wRxOsrNZx1DeNW5IwBElU6SUa05XAyVBmBUnCvFfJ/Qrs3JRLVmNHJcvoXS5mHq3krnrvALY1TdO7cpUEGZEqbu2hvP6Tv7Mwd6uNAQkqIgIkPtlq58N5BpoXEkltvJtvzgurrW3v77byuxkbexUDBywVOWFngViaKJw3JEkiNrUzpTu3/+b3SgjXM+3Gq067n9jUtLNeuv50LV269FwPQRAE4bygVEmcwW9Rpv7b5SlAGY39BqMB5GP+Vjz4xUfoApMBJf/Kajef9D1Wbp/vLsLxjy/u8DhntrUs+Zuz9CWP3LHW5q2ZRa/UoUwY+hgzvnsIh8tOramSrh37UV57gFpTBb1ShuCnDWBD4ZI2x1JXV+fe1NnlcmEymShoyiFbZDKxaG8RjT6q+4Wr1EyL78DuxkaKGhs52GpfsWN1CE8mJ20Eu8s2s273T+w9spVAvxDS4nuwdf+aNq+TkMgvXkFiVBeP41EhHaisK1PGv9q7mnLpf0pRhyjBjMPgoPR9Zdlh2MVhVC2uchfdsB6yUv5lOaY9JiSthNQ046XRa7jcZObInDIuK7BRcE8Q3WN9F81odMg8u1yZuRqVqiZAK/HOVf402GS+3e3gtm88Z/dycroSFFzDqpVHCQ31/XY+MFCJ0IxG3zNm7tdHUiPLToKC0umc+hjR0SOP2144c8SMmHBeiU/LQNXGrvXnG5VaTVya78qLgiAIwvnPYCjAZCrkTAZhsgxLap5l+S4lCNFk9fBqM2hLHiPz1uLUJ6PTKLMqJuvxZ0t80ah0TBj6KAUlK6moO+Q+HhUS79GurSAMlEqER+sOEq3v4C4DHx4cw92j/+H+oPHagfdy64jj72XWXELd4XC4qwg3MzgcGFwur0AsXq1mfnIy3xkM3HrwAAftdkJVKrr6SFWQgPSE3gBUG440HZP4y1VTKTr86/HH1vT8x+aSNdosHjOHxzIXmWnIb1pK6VKWGtatqWP/tP0YtxndSxBxQdWPVTiNTkK6B1O/QZnRm5yhZmplNa8M06FVw0OLPIOp+bvsTPzWwpWfmun4LyMf/WqnXwcVs69WVgcF6SS+GR/I2smBPD9Ux5/76LgkW/nZ9up1MXabshlzr54DkSQlGGv+L4CpaclicLD32/3W7WNjr6Zvztdc1H+hCMLOMjEjJpxXYlPTcDnP7PKQ34rL6SQ2Je1cD0MQBEE4RYdK57pnA84EWYYf6l7ii8huOIp2A6BJSvVqNPn7L3FJEoaQZBKjulBcvo3y2gO+x1hVxOvz72dIt6u5afCDHud6pQ5l3Z5FHvttAXSM6sKLt8zlsdnK/mAvTphLVKjyBn79nkXMXTHNo/2GwiUes121xgoem30l4cEx7mOt9+rKyclhy5YtOFotM4yJiXH/i4+PJyoqipkzZwIQ7KfD2NhSCr5ZJ52OpcYGXquowAk8FR3DxKZKvn327KZ12CIBz8+9GVmScLqU+8ZHpKAPjMRiM/l87SZd+hwV9YdYmPex1zmdxp9XbvuKWQunsLt0M5IkocSJLcFiwi1xaOL8ODDjAP5J/iRMTqD4xWKQIOmRJDQhGor/XoxGr0F2yjiNTmy7jLgsMt1jVExvisE7hqq4q7eWWZvsfL+nZcavoNxFQXlL0DoyVc17YwJICPUMnAYmahiYqIOAMJZ0fYPl424gLy+PwsJCNBoNt98+h/BwLbV162kwbKPesJWGhm0YDMqMXXh4ywfcanUQISHd0Yf2JCQ0m/CwAeh0onryuSICMeG8kpjVA5Va/bsIxlRqNYlZ3c/1MARBEIRTYLPVUFGx8IwFYQC5tc/yRWQ3ZIsF2aoUrZBC9R5tuu0rIvXwIWSgIaQT6R16UVy+jX1Hd/rsc+6KaciyC5tDWba2v2K3+1x+8QrsTu9CDPpA5Y116yCvORCLDk1o17PIyO6cM0VLIJacnOzesgUgMjKSiRMntrm3mK8gDGCDxcKGpuIevfz93UEYKEFaoa3lOhcoBUVaTapVGQ7z675fvPptrgD5zfr3SE/ohUpS4ZKVgCc0MBJLoxGbw0rxkW0cqdmvPK+PZZMDwrpx8MAWDgABSQFULqgEGcKHhBPSIwTbVmUWM9xPprJC+T2yWmTC/GDeTQHo1C2v2Z19dMzaZOf/1tvopFcCrZdG+PHMYB2lBpmlJQ5eWNFI9r+N/PfaAG7odmx+ngvGzSLSFAfAvn37sFgsTJgwgdjYWABiY64kNuZK9/NsWP8S8AKDB1/LxQOno1b7odVG/u5SKv7IxNJE4bwSGKonY+AQJNX5vTxRUqnJuHgogcf8gRUEQRB+H2pr1yHLZ27/yu31N/NxZA4ALlNLZUAp0LNy4DUrluBQqbBrg3Fq/OmRMgiA3WWbOVZByUrKqouRkCir3svr8+9n5vct+4H5CsIAQpsCsfQOSmXc1kFe53jPDxB1Gs9lgK1nvpqDr/W7FzEn9yX30XXLFrTcKzSUyZMnExgYyJEjR/jggw/c/45Hd0ww8KvVyvgD+3mkrIxHyso4fEyumHTMfwFsDiu5Bf/z6nvCsMcBqDNVsrEw1x2EAUSHduDSnjcC8O6i56g3V+Ov9a7uCBIjnH8laItSGfGfkVbMm5XAK35PPSsOlPLnbUcB0JpdaFu9o761h5b0SM/3Mb3i1PSMVfHzfid11pagT62SSApTcWcfHasnByFJMOk7C+VGF8U1LiqbKyJe+jxkXkVIiLL/qcFgICIigunTfe99J0kSGzduAeCyy8YREJCAThclgrDzjJgRE847vUZfxa7VK871MI5LdjnpddnpF/sQBEEQzo2Ghu1IkuaMBGMmWyz/DrwOSZaRJQlVcIj7nGw2IQUpeziFGg2M2LwejcuFRafkFyVGdSE1NouSozu8+v1h4xwAokI7eOU3Hc/a3YvYVbqZhIgUQAnyxjLZZ9vmmTYAjUqLw2WnuXiJ3BTA/JT/icc1h+tartHr9SxZoixrNBqNlJWVtWuMOQEBmF0utliVBYhaYL/NxjarFRXQUaPF6GgJxuRW/9UiEaEL4KjNTL252qvv/618o837Fpdvw2CuQULC0qqgiTeZz3+ZSf6hKvw0anqGSTiaYqKYAHjqWxNzCpTx9YpT8eNeJ35qaHTCUZPn7Fr+ESf3L7RS0XQ8t0T5nXtvs40FhS2/f9+MD2BEsoaFRQ5yix1UW2SezG2kT3oCnXasR555A2vWKEVJVCoVubm5xMd75gM2s9vtrFq1Cn9/f0aPHn2c5xTOJTEjJpx34rtkEtUp+bz91EaSJKI6JRPfRRTqEARB+L2qN2w5YzNin5v/RoNG5a6MKPkHIDVtxyK3KsXeZ88ONE37hsmtiiqM6HG9V5+HqoqoqFeq9N17xcvMumcZT1//XrvGU91wmL1HtmC1m0mNzeJAxe42c9BaU4IwaA57mnOx4NiZslbjPHSILVu2sGXLFoqLi322UUkSx/5J10oS8dqW5XcO4NZwZfPjiwIDWdS5M+Eq329T7cgctbVdZbL1DJgvlYYykmIy6ZbYHwkVVrvvHLPVO7/H3NhA7w46amIHu4/fk+PHX4fokFFC1h/3OtH7wX19leB6X90xxUoaZTaUOTliVF5Xc9PLXGpQjjf/a3RCUFP9jwoTDErUcP3wXlQ26vjxxx9ZtGgR/v5KcZfs7Gz69OnT5jMuWLCAqqoqJkyYQESEyAE7X4kZMeG8I0kSg8bfxnfTXjpx43NAlmUGjb/tvA0UBUEQhOOTZZmGhjOzVcqO+vEsD/eeldB0ycS+rQDHgRLU8UpeVvrBfThUajQuJ1KrILB36jBS47IpKW8Z0y87fwBAHxhJbFgiAB2j0ph1zzJ3m0a7hcfnjPG69w0D72d4U3BXULKSktwdrN39I9cNvK/N5xiYcQXrCxe7Z8EeuOp1vlozi6N1B4HjV16cMmUKAQEt+4Bu3LiRNStXYjArwZKfRk2nyHCqjSaqjGYkYJXJhL5VoCUDWy3K7Nj1+jAAotRqaltVYAyUVHzUKZF0nR/PHy3nex8bS59IWFAUdaYqhmaNo3N8d1747E8nvGaPQUd1xgRgCVoVjM/249tdje5xB2og97Ygfi1XgmzDMStGhydrkF8IpbDaScYsE+H+UPNUqNd9Gh0yqw8qfaTHh9Lv8Tl8num5+mb69Ok88cQT9O/f/7hjnjNnDpIk8dBDD53w+YRzR8yICeeltL4XkTloKFIbn4adK5JKReagYaT1vehcD0UQBEE4RXZ7NU6n71mQkyHL8Ln2aiQfhR50vfsp99qx1X0sc99e1E0zYmqnZwGLGwc94PH9roObAEiL9y5/36ytaoGNjpZ6g81B3uqdC5i/7l0eeO9Sn9ccrt2HLLvcwV5mxxz+Nv5DZt2zjEt7jHe3a86FCm5V9b2oyHPZZPfsLExNxUoAHh89lD8P7U9SpDLjFR2i5GTVH1Pmfp3ZRKpOx7CgIHZbrZQes/lzuk7LW1VVjCgp9gjCIv73I5ouXX0+F3jO5oUFRQPQYKklMiSOK3Ju83lNeowy86RWq6mtq2ft2rUA6MMjkLKvY8rSlte4a7SKfgknzm13Nf2a1FrB5vT8nSkzuLjtGyuHG2SSY4IZ9a8CyPROgWgexyWXXNLmfTZt2sSCBQuYOHEivXr1OuG4hHNHzIgJ561LJt3L/q0FWI1G8PFH7qyTJPyCgrlk0j3neiSCIAjCaXA6rSdu1A4HjSMoCfX3ec5v0AhM//0PjZvXE3znX0CWyTi4zx0SaO1GFm/6kG2l3kU63lv8HLWmCgAM5hqv880CdcE+jx+bN3XjoAd4ff797D2ypc2+DjRVYzRbDVTWlxGtV2bxtu5fy7KtX7jb2V1KEOZoFUMVrFtBeXk5l112GcgyJVt/xelq+bs9e3UeMSFBmBuVNXkVDd4BpB/QCJTYbPTb6zsf7tfGRmhsmW7qoNGgm/E+lth4ImZ9TO3j92DfXgAaDX76KCSbHWtDtcdsXk1DOQAx+o5oJTPBqqMe94gK8aeqwYpRE0FISAMOhwOLxeJeBuhwuph+oBt7a5Q+AzSw+YiLaz43U9agvCjVZpk7vrUQFSjxxmUtvx+tiigy4AMjXSLVyDIcMsjkH3Fic0KHmEi+XbIM/4gOXs/f3ryvZ555hpCQEF599dU22wjnh/NrukEQWgkICeWyex46P4IwAFlm9D0PERDivZxAEARB+P2QZfuJG7XDMud1qF2+/0Zpu2SizeqJY/d2HAdKCGswENjYEgBKQF3NXvZX7HL/a1Zatdf9tfU4uVA6rb97Q+jWmjc8bpYY1YW37s4lQBfi1fZYNcYKZv7wGA2WWgDMjd7L/4w2sLaarNpfXsvOnU2VGSWJo4cOerQ/Umdg66EjFFdWo2pa1t/6DWiEWs2i1M68Hh9PZ13bGyy3pgGqnE5c+5W8NEmrRf/C6/iNGI06pQs2swGrpd7jGpUEBkstnfQaXun9Hn/ueA95x5S/D45UysO//vrrPPzww1gsFrp168bAgQMBqKur4/3333e3tzS9Dt/tcZB3uCkQs8h8vMXOvJ2ev2d+raY/6hvhpyIH3+x2sNegZUDf3kx7/XV2FZXQs2dPn8/c3ryvpUuXYjAYiIuLa7ONcH4QgZhwXuvSbyCDb779XA8DgME3305avwHnehiCIAjCaZKkY/doOnkmWxwr9PE4VW3nCwfeoOQfWX78Bj+7915aT3Ydxtt/Xsyse5Z5/Hv+5pYNiB8c23YFQFCCrGNVG496HXM47RQeLvDZR0iAsmQwPDgGP40/daYqFud/BsCAjMuZdc8y1K2Ki/SOU3mU7ugTryIi2I8vPv8cldVMbb138JYWG8XrN17Jnwb0BpR9wUB5I/pmhwRitVrGhOr5ISWVWQnee50FSRLjQkMZHRxCv4AAdJKETZY59OZUnDVVOMoO4aquoPHnxTj370WdlIq2h2cxC5cMHeJi+f6HH4j4az5P1NzMvioLqlZpEGVlZahUKqZMmcI///lP0tLS+PLLL+natat7n7R33nkHWZaRZZn58+cDcOnwoQzJ6QbAK9dnIL/cgf2PeAa+lqa4LDxIS/EXf8OQPx+7oYrKegsr1+fzxJNPEhra9oe9Iu/rj0csTRTOe/2vuRGb1cLGb786p2Pof82N5+z+giAIwpmjVvteTngy9ppH4Qw/ftEm/2GjMGf3wvLD13DJFV7nQxoOIat8vRVrfzGo5g2hWyuvPUB57QHiwpPcxz5f9S93IY5jNc9+1Ror3Mc2F/9M//RRdIpOB0Cj1uJsytkqKPfsJ/+IC6hAr2/Er7KMygbvsvD9U5SCIweqaz2OXx0aSp9WG0HvtFr5R3m51/UmWeY7H8U5ZIcd81dzkfz8MM2djSomDpxOHPuLoVWemkqt5vm//Y1HH32U0NBQnn76aWbMmAHA0KFDWbFiBaAs/wM4fPgwffr0Yc6cOWRlZQFw1VVX8dVXX/HZZ58xYsQIAPe5vIItGI3Kc1/7z28hIwNMVeCwgMMGGh3bFy6Ft+8kZ+AwGPV3r2c5nua8rzvuuEPkff2BiBkx4bwnSRKDb769ZWbsbFUrbLrP4AkTGTJhoqiSKAiC8Aeh1UaiVvvaxLf99rky2lyW2FrIg08h2xop+/YLr3PhdXuQmop3tBYWGOn+utbH7FZrzRtC+2kDPI6v3f2j++ufNn/CtoPrTzjWznE9+MuVUwEwWut5ff59/O3TCbz949Pu/cY0rf4UZkercD0fgvxCKI7nw/jb5BvRGOu9+o3Xh9ArMZ4FW3axqnCfx7lknR/brRYcskylw8GUw2VUOL1fk2PlpqYS2jSTZf7uS0z//Q9SYCCu+jpctdXQ6JkH+M2iJbzwwguEhoby3HPPMXXqVMLCwti4cSP79iljiouLQ5IkFi9ezJdffonZbCYnJ4c333wTgKeffhpJkvjwww9ZtGgRAJGRys+qvr4ep9PJ9ddfT2ZmpvIeIjgawjpBVBqEdWJtvrJX3PEKbbRF5H39MYlATPhdkCSJi669iXFPPId/cPBvXk1RUqnwDw5h3BPPcZGYCRMEQfhDkSSJkJDs0+qjSJuAsx2fz2m7ZBK7dDNR9z3mdU5nNxFTsdkrGNNp/d2V/g5U7Dlu/80bQjfaW2Z/EiJSWb1zgbvQR5XhMCard4DUWkRwHI+O+xemppwwP40/AzOvIMg/lNKqvaikpr3FmmLPixPV5N0d5P6QUi25yF+1iDeXrqHK6FmMw+Zw8tIPy1ixpwRQ9hULD1QCx2CVir+VlzOseC8Pl5VSYj9x/t5HiYlEqzWYm6ouShoN/qPHogqLUN4faHVITSXwASS1mqtHKsHP999/z8svvwxAWloaL730EgcOKHuslZeXk5qaymeffcaGDRtYt24dsbGxPProo2zZsoU+ffowffp0nE4nV155JSNGjODee+9136dz5868++67bY576dKlAIwbN+6Ez+jrWpH39ccjliYKvytp/QaQkNmN5R++y+41q5AkCfkMFvNo7i9j4BAumXwvAcEnTmwWBEEQfn/0oT2pr998Sps6yzIUBgaf1AqNupBQzH7+HgU7ADoeXsXROO89ocKCoqk1VbC7dDMXd73yuH2P6HE9Jbk73N8PzLyKr9e9zaL8udw0+CFuG/EUt414yuMam93KY3Oay6NLPDruXwBs3vszAKlx2fxp2BMcqiri9fn3c3P3SL7aXoXDBSE6WHZ7IMv2OdhY5mTzERebDzs5YvS9r1e1ybPgyB2Dcvh0/a8AzKqqxNAUUG1zOlEBISoVGX7+JGq1PBUTQ7DaszT8Ubudp8qP0PyT0w0Ygv6pf7jPm+f/j4ZZrys/H1mmY1Iyb731Fps3b3YHQwB5eXleYy0uLqa4uJikpCTeeOMNrrjiCmbPns3IkSMxGo34+/uTnZ2NSqVi69at7uWIoOyfFhERwciRI9m4cSOFhYXuwKmgoICtW7cyYsQIunXr5vN1Ei48IhATfncCQkK56qEpZAwcypov51J1cD+SSo3sY3lHezVfH5mYxKDxt4l9wgRBEP7gQkKyTykIAzDZOmD2P8mVGZLEnk4p9Cra5ZEBFmrYR5CxDFNQPEgtfXZN7Mfa3Qu98r9a+2nzJ+w4uAFQliY2z4r9uPkjkqIzOFhZyBe/zGT8kIfd12zdv4awoGg6RaejUqlxuZykxXcnQBfMvDVvs+1A0z5VPW4A4Ks1b6FVacgvq3GXrDfZwF8jccvXFuqP2by4tbDAAK7tncWHa1oCnrSYSBZt20NjU76ZQ5aJ02iQkGhwOTG4XGgkiXsiI7iztJTvDfVk+vuToNUiA+V2OzutjdibS9JLEsH3POru3/ztF0oQptUqEbPDQVxkhM8CF0888QQzZsxAkiRKS0u9ZptKSkr46islP91oNHLppZdisVhYv349ZrOZiRMn8vTTT9O1a1fCw8PdlQxfe+01+vXrxzPPPMOHH34IKIU2AB555JG2XzDhgiMCMeF3K63fADr3vYgjRXv4dclC9qxdhcvpRKVW42rH+vLmdiq1msyLh9Jr9Bji0tJFLpggCMIFIDx8IJKkOaVgzCaf2mqJ3SlpdC8uRNPqg0MJSN33A9u63+vRdkjWWNbuXki9udqr8EazLft+obS62Ou4ubHBXQ6/1ljhEYgVlv3Kiu3zCQuKxtU0juqGcp7/7BbMjQ2oVGquHXAPmR1zKChZSUn5DsIDtOypdhGkBZMdZOCo0cV1XbV0iVDRJ15Nn3gVMW8os0OPXzaE/1u6hjqzhe2HPQtv7K3w3OPMKMsYHQ4CJIlVaWk8UnaYNWYTH9QoyyrtwG6rlZ1WKy5ATUvFRYCgux5EExmlPPf3X9Hw5mug1RJ44+2YP5sNwJgxYxg2bBi9e/emT58+vPLKK3zyyScsX74cSZLIz8/3ueRvwoQJGJr/Sie0AAAgAElEQVQKhLz44os89ZQyq7h3714uv/xyPv74Y/z9lcIvOTk57uv69u3LmDFj+Pjjj3nkkUeIiIjggw8+YPjw4Vx99dVe9xEuXCIQE37XJEmiQ3omHdIzGX77XRzasY2jJUWUFxdSXrwXe6uKSc20/gHEdU4jLi2D2JQ0ErO6ExiqPwejFwRBEM4VnS6CmJirqKhYgCyf3IoKp6t9e10dq7BTikcQ1iy6ehuxRzdxNKYPSMoyvMSoLsToO1JRX0rur597LS0ESIjs7DMQ8+hb39Hj+x4pg2h0WDhUVYS5sQGbw0q9qZoYfQJ9Og9nSLerSYhMBWDpr0qBkVqLnUtS1Kzc3zL2l1Y1MmecZ4GQZgE6LRd37sQvRfspqWh7Q+rWLLJMkEpNlr8fa8wm1pvNPBcTy2aLmV3WRmqcDswuF4EqFSk6HQODQ1g8/T+YE5MBMC+YT8PMV0GrJezFNzB/rmwB0LdvX55//nmPezWXq7/22mu54YYbiI+P9xrP4sWL2bhxIwAhISHccccd7nNpaWnMmDGDcePG8emnnwLeBTjuvPNOFixYwMyZM1GpVNjtdmbOnNmu10K4cEjymUywaQeDwYBer6e+vv64eyUIwumSZRmLoR6HzYbDbkej1aLR6QgI1YtZL0EQBIH6+nzyNp98QaYaawYPBrxy0teFGg18/dT9PoMxuyaI9f2fx64NdC9RLChZyezcf6BWqXnpT58TGtj2Jr4noznvq3fKUPJLVpAUk8mT174NwI6DG9hfsZvCsgKPZZEDO6pYV+rCTw03dtOgbrV/2jWZGq7J1CL9XZk9CvH3w9TYiCwrs2calYousVG4ZJmio1W4ZJkgrYZNqWleY/tXZQXv19SgAbZmZPocv0WSmN0xmY8iorFtycNxYF9LqfqAADSdUnHsaalQmJiY6L52/PjxPPzwwxQVFREcHOzO8fL39ycpKYmuXbtSVVXFxo0bsdlsqFQqFi1axNSpUz3yvsxmM0FBLZU3d+zY4ZH7Zbfb6dChA0ajkbKysuNuwHyhu5BjAzEjJvxhSZJEYKuqSYIgCILQWmhob4KCMjCZCoH2fy6tkxpO6X6G4FB+zhnAiM3r0Lg89+LSOkxkFn7Ktux73Md6pw4jIbIzZdXFfL/xA24dPuWU7nusr9bMQqvWcePgB6gzVVJydId7+eNHy17GYjN5XbOuVBlvoxPmbvNczpkcJnG4oeX189dqSImKoNFup7iqBofTxa4jFfhp1CRG6DlcZ8Bkd/BtfT3X6FtWpJhcLn5oWgo4ILDt7QUKjEb+vfQnAFQRUWhS0nDsagoaLRZ3EAawfPlyj2sdDgdFRUUAxMbGkpGRQVlZGRUVFezZs4c9e/YQGhpKbGwshw4domfPnowaNYrw8HCPvK/AwED8/PxobGwkPT3dqwCHVqtl+PDhzJs3j8WLFzNhwoQ2n0e4cIny9YIgCIIgXJAkSaJz6mOcTBAGEKQ7TKDD9+bIJ/Lt8Mu8grBm0VVbSS353uPYrcOfRJJU6DSnvwk10JT3tZ2hWVcTEhDOiB7XAy37jvVMGcLY/neSEu75QeahR4ORXwj1+e++vjoeXdxSDfKeYRdx+8V9+POwi3jx6lGkxyo5XMlRETx46SD+NKA3/ioVz5YfYdy+fTx6uIx7Sw9xafFeKhwOglUqZnbo4HP8LkniSFQMfkMuJfz/ZhM9L5fIt/9L7PICYpcXoP/ba+5qlv/85z+RZdnj3xNPPMFNN90EwB133EFeXh5Hjhyhvr6eG29UZke7devmXs5YWloKeOZ9bdmyhfLychobG93tfbn44osBWLZs2cn8iIQLiAjEBEEQBEG4YEVHjyQ2dixKGYj2kSRINxuVqnwnaWdKF4oTEnG1sUQ+6eBikg4sdn+fGNWFt+7O5abB3lX/TsXPW78GYGCmUhK/d+owUuOy3fuO3Tr8Se7rEEaFsa7dfa4+6MTWRpqdv1bDZVldADhQXQtA9w6xzElKIlGrpcjWyOKGBlaZTBhcLlzAjfowAtS+fx4qWSZ/4r2E/f0NdD36eJ2fMvE2Jk+apDzrzz97ne/VqxcBAd65bcHBwUyfPh2A9evX07dvXyRJorKykm+//RZQ8r5kWWbmzJlMnTrVfW1MTIzPsWZlZQGQn5/v87wgiEBMEARBEIQLWkb6C2i1oUD784e72MtQn0qWvSQxZ+xNqNoI4pQqit+TWvKdckA+tZk3Xw5VFVFydAfJMV2JDWvJm7px0APYnTYW5c8lteRbeus/xnTifZXd/NuZ6BKk0yHJMtu3FXL7vn2EqdV8nNiJjWldWJ7amb/FxBKsUvFxbQ3f1HsHgk6ViqX9BrG2Z1+P481vZv+aGs+znTvQp48SoB06dKj9DwFoNMqDqFQqMjIyuPXWWwGYPHkyc+fOZcCAAURERPDJJ594FN5oLv5xrMjISACOHj16UuMQLhwiEBMEQRAE4YKm1YbTNfMVTmaJYopqD07VqRV+WtuzL0v7XoyzjTfwEpB8cAndt72H1m6Gk6zq2Jat+9YAkNkxx+N4YmQq797xDS+F6ejBd7girb4ub9PARA16P9/nGu0OluxQcrIGdO5ESXUtH+7eS7hawwcdE+kXGEiwWk2cVsuE8HBejI3DBbxWUYGh1VY0LknCGBDIWzdN9OhfDYRp1XyUncKDSbEA7hwwX9UQ29LY2Mizzz4LwKhRowgICOCdd97hmmuuoba2lttuu434+HhqampwOBxcdNFFXHPNNQBtFuJoLjxRW1vb7nEIFxZRrEMQBEEQhAtedPRldE59nOKS6e1qnxaYi9o17pSDsbfG30G/XVsJMZvanB2Lrt5K2MZiCrvcyNHYfsrsmHTqn6EXHi4AICW2Kaepqb/Yis2kF32Jv8pI7JB6bCf5TBEBEh9eE8h1X5gBeG/lBuL1odicDg5UKzNbV2RnMDw9he82bgFgaHAQIT6WH14WEoK2XKLB5WK71crFTZUJVbLMtNvuwRCs7OGmQtlPbFxMGC+ndyRcq7ylLS8v56OPPgLg+uuvP+6458+fT1FREZWVlWzatImqqir69evH7NnK/mNBQUF88803rFu3jkWLFnHkyBGKi4tZvnw5WVlZ7Ny5E4Du3bv77L++vh6A8PDw9ryMwgVIBGKCIAiCIAhAUtJ9OJxmDhx454Rtg3TlDK87wgp9/CkFY4bgEKbdejf/fG/GcdtpHSaydn1ETEU+JSljMAUnILmcyKr257Q1O1S1F4C40ATlGUxHSN33A9HVSsXB+MH1aPxkNEjuzZvb69rMlreUlQ0mKhtaKi+mx0aRHBWOpFJhrVMqTga3MRuokSQCJAm7LFPfakbs/XHjWdOzL2oJnDJkBPnzdGo8o6Naqi46HA5uvfVW6uvr6d69O/fcc4+vW7gVFBRQUFDg/n7kyJG89957JCQkeLQbOHAgAwcOBGDJkiUsX76cvLw8CgsL0Wg0jBgxwmf/1dXK5tWxsbHHHYdw4RJLEwVBEARBEGiuovg4nVOfaD5y3PaXquef8owYwJpe/fjg6vHtahtdvZX+ea+Qkz+NmIo8pKa9yCSX48RFQ2QZW6MRm0NZcpjSUEzO5mn0z3vFHYRF9zAQ0rFlSWKf+JML9N7eZHN/fdvA3vzz2st4bswlXNsni4M1dby7cj2FO4pIbHrrudXie/njPlsjhqaqkglaLQD/u3wcn40eh1aSuC4mnB/7dGF5vwyPIAzg3nvvZdmyZURGRjJv3jx0uuNvvP3SSy/hcDjYv38/H3zwAbt27SI7O5t58+a1eU1z3te+ffuwWCzceOONbQZa27dvByAnJ8fneUEQgZggCIIgCEITSZJITr6PHt3fRasN43jVFDsF/0xnkxXpFKonNvv08nF8Onpc+8YG6A37ydr9Xwate4bsHR+QWLqcsLpC1A7fgY3aYSWsrpDwVpUYc/Z+gb5hvzvMjOzaQGRXo8d1I5LbH4itOuDkgR9b7p8UGY6/VktYYACD0pK5Lqc7sgyf7SpmcNNSwwKrhdk11citXrtqh4O/lZcDkKzTke3vz5Kbb0f34EP8JzuFCcu+ZlZWMo+NuwrpmKqTDz/8MLNnzyY8PJzc3FzS09PbNXa1Wk1SUhJ33nknq1evRpIkJk2aRHl5OcXFxVRWVnq0DwlRlkYaDAYiIiLclRZ9Wbt2LaBsKi0IvoiliYIgCIIgCMeIjh5FWFhf9hT+naNHf0AJgzwDLkmC8fbveEVq36yWT5LEB+PGY/b358/ffYGMhNSOoiE6u4mYygJiKpWldTJg1wbjVOmQVRoklwO1y4bWbkQCLK32LjO5XASrVYBEdA8DUd2MXv1fk6nlH6tsXsdbe2llIwuLHJTUelZ2/HB1HuqmpYcJ4aFc0zuL/6k0GF0O9Go1N+nD+LK+jumVlXxVV0eGnx8ml4utVitGl4tQlYqpXdJJ/L9/8fDIke5+85piL23TTFmzxx9/nDfffJOwsDCWLFlC7969Pc7n5+dz//33u78vLi4G4L333mPBggXu49988w0jRoxg4cKF5ObmUl1dzZNPPkmfPn3o1KkTsiyzZo1S8ESlUpGbm9tmQRC73c6qVavw9/dn9OjRx30dhQuXCMQEQRAEQRB80GrDyc76P2JjrqK45F+YTHuQJDVyqyqGWfovuaR2KCv0cbhOdZmiJPHZ5degt0ZzzfIP0dotSJxc2XoJ0Nm9A6pmASoVAZKERZapcznQB2iI71/vsRyxtd7xai5OVLP2UNsVG4trXWwo8z5fVmdwf61Rq9gQORBJ9wuy1Ui908mLcXEMCQpifn09261WfjYa0UgSCVot1wcF8Zcbb6TP1Kmowzw3ld68eTOg7OfVbMqUKcyYMQO9Xs+SJUvo29eztD0os1cbNmzwOl5aWuresBmUyolBTTN2FRUVDB06lOuvv56NGzeyfft2JEkiOjoagOzsbHeZfF8WLFhAVVUVkyZNarOqoiCIQEwQBEEQBOE4oqNHERU1EoPhV0pL53K0YgGy7ECSNMiyg5sDX2Kz4y0MWhVyGxs1t4cxtDvr+j9PRtFXxFXktXt2rL26+fuz2WLhSKiRSy63ofY7ft+PDtCx9pClzfMfXRPAR9cEcOlnfiwvqiQ5MpwHLr3Yo02evjerHNG4rEqQ2Jz3dWlICJc2LfNDrQanE7/0dKIfeZgQH0v5bDYbK1euJCcnh/HjlRnIp59+mmnTpqHX68nNzaVfv34+xzl8+HCPJZBtaWxsZPXq1QCkp6fTr18/Pv/8c48206dP54knnqB///7H7WvOnDlIksRDD52ZjbiFPyaRIyYIgiAIgnACkiSh1/cmK2s6gwetIzv7LTolTiYsbAChAUbuN88/rSAMWSa+1oFTG8zObpPYmn03piBl2ZvrNErWK4NXgpCLw/0BKAypP2EQBnBDt5YlgJUm7xk6lwy76qNJiUsGYH91LT/vLsbZFPSsDb+I1X6ZVC96C4BOOj+y/ZUx0LR58qyaarrt3ME9wUGkfPetzyAMYM2aNZhMJl577TUkSeK5555j6tSphIWFHTcIa62iooJ33nkHg8Hgda6srIzbbruNw4cPk5yczKhRo3z20Z68r02bNrFgwQImTpxIr169Tjgu4cIlye35iOAMMhgM6PV66uvr3RvdCYIgCIIg/F7JsozdXs30VYeZqT65JYXNAq0uHv+u7tiOCTXsJ+HwSmIrNqOSXUpQJcPxKzrKTSltEkgyoUkWIrqY2NVoJed9E/0TVGy4K9jnlc15X82alx5GBULncKWAR594FbOuDMDq1PBhSV+sTi3z8raxvuQgABHBQahi0jC6VDQe3oNsM6PyC+LT2Ch6R0Xhn51FQI8e+Gdl8fqyZbz8xhuMHDmS3Nzcdr1W33//PePGKQVO+vbtS1ZWls92UVFRvPHGG+7v9+/fT0pKCjqdjl69epGcnIwsyxw6dIj8/HxsNhsdOnTgxx9/pGfPnl792e12OnTogNFopKysrM0lhyNHjmTjxo0UFhYSFxfXrme6kF3IsYFYmigIgiAIgnAaJElCp4viqUsisC7bw3uaxpPuQ+v08bm4JGHQp2DQp7C38w2kmxbSrXEhlhod1hotLof3TJlK48I/wk5ApA3/cDuBsTY0fkpw2IeWvK9dlU66RntXRmwr76vKDFVm5bi/BlQSLDmSjtWpzJpd17c7mfHRLD9YQ1lNHc79O5BUajT6WPxTejNs7J+44S+XoI6I8Kh4WPCWMlvWOu/rRGpqatxf5+XlkZeX57NdUlKSRyAWExPD9OnTWbVqFdu3b2fXrl1YLBbCwsIYMGAAY8eO5e67724zGGhv3tfSpUvb/SzChU3MiAmCIAiC8LvVPBvldFqRZTuSpEWt9kerjfQqcX42uFwu3li5lxmYkWS53csVIxqc/OXH+hO2ywmax4CQT5FlcDaqkJ0SLieo1CCpZdR+Lo53y3k77dz4lYXHBuiYPtq/vY/l5ZeKZDZWJ+JCQoVMlTaC9eH92ReU4tVWo5K4a0gqT1+R6XHcZrMRERFBZmYmmzZtOic/r5MxduxYFi5cSH5+vlhyeAZdyLGBmBETBEEQBOF3w2arobZ2HQ0N26k3bKGhYTtOp8mrnVodREhINvrQnoSEZBMePhCd7revXqdSqZgyIp2M/FKmVFXSoJFxtSPAcLYzDWyz6Xq0kpWc4K/R+J/8MsgbumkZlGjjvc02pgzSERt88vlnG6oS2VjdEVBREpRGfmg2R/1iaCsCdLhkuifovY4fm/d1PmvO+7rjjjtEECacMWJGTBAEQRCE85osyxgMBRwqnUtFxUKPioUn0txOkjTExoyhY8dbCQ3tdVbe+FfWWXhqbRE/BrhOODvmM0esTTJ9guYzMGQuLllCJZ3cW7mCI076vm/ivr5aZl0Z0K5rXLKyHPGXqp5sNlyKShOLSpPIv8PAfIJYTqOS2PjXkUQE6U5qnOcTkff127mQYwMRiAmCIAiCcN6qrMyluGQGJlOh1x5eJ6v5+qCgDDqnPkZ09MgTX3QGfJdfyhvllRQFSKhdMk5f+43JMlPm1+J34tjSLcVvAyP0b+MnmVBJp1YkpD1csopGVyDL6x9gv+0i9/FGZN7UW49bN0Stkri6Zwf+NV7MIgm+XcixgShfLwiCIAjCecdur2X7jkfYuu1eTKYigNMKwlpfbzIVsnXbPWzf8Qh2e+1pj/VExvXpyMrLe/JNQgeubFSjdimfgWtcMjR/Hi5JHAnXnNSuYfsaL+LTylnstSp7d7nkMzvL19zfXusgPq36t0cQJiNzVO06fvFGwOmSuW1g0hkdlyD8UYgcMUEQBEEQziuVlUvYtftZ7Pbm/Z7O9OIdpb+jR3+kpmY1XTNfITr6sjN8D08qlYqB6TEMTI+hss7CyqJKfq0zssVmY4dOxqyROBypIbHKgfokHrdRDiW3/nH2WgfTP/h/RGkP4JLVqKRTD1qbr69xdGKD8Rb2N3pvXuwCjmiOPwsnSZARG0LvxLBTHosg/JGJpYmCIAiCIJwXZFnmwIF3KC6ZTtNGWGfhrsp9Oqc+QVLSvees0mJlvZXi/EoKvio+jZ5kYrWFZAf+RBf/1aglJ05ZjQrncSspyjK4ULvbF1mHsN18BUftXTjelNd3gY0U6o4fjL1/e19GdYs9xecRLgQXcmwgZsQEQRAEQTjnZFmmuOQNDhx4t/nI2bozAMUlb+Bwmuic+vhZD8ZUKhWx4YGEXhTPlq9LcLlO9dkljtozOFqfwRrDZBJ024jRFhOjLSJGuxedyup1hc3lT4U9jaP2LlTaO1Nm645VPvGbYScyh44zI6aWYEzPDiIIE4TjEIGYIAiCIAjn3IED77QKws6MoqJG/nJ/GWOvDuXBB6M8zm3YYGb3bitFhTaKihqprnYCT7J2rY2BA589br8bNmxg2rRprF69mpqaGqKjoxkxYgTPPvss3bp1O+XxBgTrSOsbQ1FeBbJLxul0sPfIVnYe2kTRkS1U1pfS6LAS5BdKUkwmg7uOITtpgM++Nh/Yxex96yitKqbeXIXZ2oBarSY2NJaeST0Y3WMMAQFRWFx6Ws96vbXgSQ5U7Ob5mz8mNNB3uX8nMru1TixtVBqQJAgN0PLi2KxTfi0E4UIginUIgiAIgnBOVVYuaVqOeGbNmlWFTidx663hXudeebmCT/5bx/r15qYgTHHg4HtUVua22ed//vMfBg0axNdff01ERARXX301UVFRfPrpp/Tp04dFixad1pi7D++I3DQjVnRkC28tfJJlW7+kzlRJalw2vZKHEBwQxvYD63h30V/536oZ+MoyyStaxrrdP2G1mYgPT6Zn6hBSYrOpbKjmh/wfeOaLpyipquPYpYdXX3QXVruZ7zZ80OYY1UgUHKe8oyzD1Ot7EP47LlcvCGeDmBETBEEQBOGcsdtr2bX7Wc50TtiqlUZ2bG/kppv0hIervc4PHhJIQoKWLl386NLFjxuuP9B0RmLX7mcIC+uLVusZwG3dupX7778fp9PJjBkzePTRR93nPvzwQyZPnszNN9/M3r17iYrynIFrr9iUUCITgqg+bEKSVPRKGcLw7teRFt/Do93mvT/z8fJXWLNrIalx2VyU7lls5NKeN3HtwHu9ZrUa7RbmrphGQclKPl35Bk9cO8vjfFJ0BtmdBrCxcAkjelxPx8jOHuddyFSpZI4cp6LIk6MzuCxL7LUlCCciZsQEQRAEQThn9hT+vak64pnNCfv663oArrgyxOf5J5+M4ZZbwunXL5CwsNaBmozdbmBP4T+8rnn77bdxOp0MGzbMIwgDmDRpEtdeey319fXMnDnzlMctSRIXXZ0KMmQk9Oauy170CsIActJGcFHGaAA2FnrP4HWMSvO5tNBPG8B1A+8FYH/FLiw2k1ebgZlXICOzYtt8r3MqJFYH2Nus4XH/8M7cP7yz75OCIHgQgZggCIIgCOdEZWUuR4/+AJze/mDHKipqZMeORrp29SMx8VSWxzk5evR7KiuXehzdtGkTACNH+t4Iuvn4vHnzTuGeLVJ6RtOlXyzSCd6ldYxMA6DWWHFS/askJfCUJBVqlffiqOxOAwj217N573JMVoP7uAuZnVoHxVrPIh3NtU2mXJ7BlMszz0nlSUH4PRKBmCAIgiAIZ51SJXEGJ9wR+BSsXaPM8vTJCTiNXiSKSzzzr4xGIwCRkZE+r2hejrhnzx5MJu+ZppMxdHw6fgHa4748lfVlAIQG+h6PL3anje83zgYgMyEHncbPq41araFLh57YnTZ2leYBShBmlWBZgN2zrQRhAVr+c1sO9w9Pa/c4BEEQOWKCIAiCIJwDBkMBJlPhb9J3QYFSpr1bN//T6EXGZNqDwfAren1vAGJiYigqKqKkpMTnFc3HZVlm//79ZGWdetVA/2AtI27L5Kd3t/k8bzDXsKFwMQC9Uoe02c+hykJWbP8GGRmjpZ6DlXswWutJis7gT8Mfb/O6lNgsCkpWsacsn75pl6BCYnFgI9amj/AlSSnKMaZnB/5+dRZhgaIwhyCcLDEjJgiCIAjCWXeodC6S5F1E40zYu7cRgE6dtKfVjySpKS2d6/7+kksuAeDTTz/FbDZ7tLXb7cyZM8f9vcFg4HSl9ormonGpXsedLicfL38Vi81Eh4gUBncd02YfNcYKNhQuYWNhLjsPbcRorScjoQ+TRj5HWFB0m9fFhycDcKiqCIBV/nb2al2oVcoUXUZsCO/f3peZN/cWQZggnCIRiAmCIAiCcFbZbDVUVCxEls9sbhiAxeLCalWWE4aGnl6gJ8tOjlYswGarAeAvf/kLUVFRHDlyhNGjR7Np0yZMJhNbtmxhzJgx7N+/332tSnVm3mLlXJ5En8uTPI59/su/2FOWT5B/KHeOegGNuu2As2fKYGbds4w3/7yEf9zyGbcMe5yjdQd5+au7KChZ2eZ1Qf7Kps4N5lo2+jvY4OdAo5IY17MD39x/MT89PERs1iwIp0ksTRQEQRAE4ayqrV2HLLe9D9XpMJlaCkkEBp5+/pksO6itW09szJXExsaycOFCrrvuOlavXk3//v3d7QICAnjnnXe46667AIiI8L0Z8smSJIkB41LR+atZ/20J89bMYt3unwj0C+GBq14nNiyxXf2oVGoiQmK5OPNKMhL68PKXdzJ3xTQ6x3X3WV1Rp1Py60x2I11Hd+KmBD0DO0cSIfYGE4QzRgRigiAIgiCcVQ0N25EkzW8SjAUHt8xEmc0yQUGnF4xJkoYGw3ZiY64EoH///hQVFfHNN9+wadMmLBYLnTt35uabb8ZisQAQFBREaqr3ksJTH4NEzuXJvPPpVFZs/4YAXTB/uWoqiVFdTqm/yJA4unToyY6DG9hdupn+6aOOuR+4JGV5Z0x0JE9fkXnazyAIgjcRiAmCIAiCcFbVG7b8ZjNi/v4q/P0lrFYZg8FJUNDpLRGUZQf1hi0exwICArjlllu45ZZbPI7Pnq1UIxwxYgRq9ZnNf5syZQqz576LXq/npQfeRVUVc1p7YPtplBmvBktty8Gm/tL6xpIYZYH/QWysWH4oCL8VkSMmCIIgCMJZI8syDQ3bf9N7dOmilGQ/cMB+gpbt09Cw3aOMvS8Oh8O9kfMDDzxwRu7b7Omnn2batGno9Xpyc3N58J83c8W93YnsEASApDq5WT+700ZxuVKNMUbf0X19ZIcgrryvO5fdmUXh3t0A5OTknMEnEQShNRGICYIgCIJw1tjt1Tidp7fH1on06qWUrd+503pG+nM6jdjt1QDk5eXhcHjO5tXU1DBhwgS2bdvGhAkTGD16tFcfL774IpIkMXz48JO693PPPcfUqVMJCwsjNzeXfv36AUpFxfHP9ef6KTl06RuDqimYUqklGiy1/LLjeyw279e5zlTJf5e/Rr25msiQOLol9SO9XyzXP5XD+Of6k9JTqaS4du1aoKVSpCAIZ55YmigIgiAIwlnjdJ6Z4LRGpk0AACAASURBVOh4Lh4UxCef1JG/2cLkyb7bzP2klvUbzF7H//ZcORqtEtR06eLHww8rmzQ7nUrO1F133UVZWRk9evQgNjaWqqoq1q5di8lkYsyYMR4l7FtzuZQiIlpt+0vqf//997z88ssApKWl8fbbb/tsFxUVxUuvv0LZnjoqDhjYnm/ii//O5Ou1/yYhqjORwXHIyNQaKyit2ovDZScqIpY5sz5j5NhBBAR7FuCw2+2sWrUKf39/n0GlIAhnhgjEBEEQBEE4a2T5zCwXPJ4uXfzIyvJjx45GDhywkZTkXenv8GE7u3c1eh3fu9fm/lqna1nyJ8vK8bvuuouvv/6a7du388svv6DX6xk8eDCTJk1i/PjxbY5p8+bNANx5553tfo6amhr313l5eeTl5flsl5SUxBtvvEFaTgxpOTH0urwDDeFvsOLnlezYuYOiis1YrBbC9GFcPHggY8eO5e677yY0NNRnfwsWLKCqqopJkyadseqPgiB4k+QTLXo+wwwGA3q9nvr6+jb/D0AQBEEQhD8mi6WUteuG/eb3WbXSyD/+UcENN+i5977I0+7v4oGrCAhIOKVrbTYbERERZGZmsmnTJiTp9Mvq/5bGjh3LwoULyc/Pp1evXud6OMIf3IUcG4gcMUEQBEEQzhq12v+s3GfosGCysv1YsMBAbc3pV2hUq/1O+do1a9ZgMpl47bXXzvsgbNOmTSxYsICJEyeKIEwQfmMiEBMEQRAE4azRaiNRq4POyr0eeCAKm01m7ty60+pHrQ5Gqz31WbURI0YgyzIjR448rXGcDc888wwhISG8+uqr53oogvCHJ3LEBEEQBEE4ayRJIiQkm7q6Db/5vbp08WNJ7ulvrBwSkn3ez2SdKUuXLj3XQxCEC4aYERMEQRAE4azSh/ZEkn4fnwVLkgZ9aM9zPQxBEP6ARCAmCIIgCMJZFRKSjSyfft7W2SDLDkJCs/+/vTsPj6q8////OjOZrCQhQBLZtyooYRNQwaWIoEUE9Nev/VmXAgVtFbCItopW0VoFa7VgVcSl4rdibSsfEFE/iCAgKBiJLEE2WcOWsCSZZLLMZOZ8/4gJxiSQZXJmJvN8XFcumHPOfZ/34DSd13Xf574DXQaAZoggBgAALJWUNDikRsSSWl4W6DIANEMEMQAAYKnIyFZKSRklw7AHupSzMgy7UlNuUGQke2kB8D+CGAAAsFzHDrfLNL2BLuOsTNOrDh1uD3QZAJopghgAALBcQkJ/xcX1kBSsqxEaahHXUwkJ7KUFoGkQxAAAgOUMw1D3btMlmYEupRamunW7L2yWrQdgPYIYAAAIiOTk4UpNHS0p2J4Vsys1dYySk4N/A2YAoYsgBgAAAqbHBTPlcCQoeKYoGnI4EtTjgscCXQiAZo4gBgAAAsbhSNKFPZ9W8ExRNHVhz1lyOJICXQiAZo4gBgAAAio5+Vp173Z/oMuQJHXv9oCSk0cEugwAYaBRQWz27NkyDEPTpk3zVz0AACAMde58tzp3vjsIavhtQGsAED4avK19enq65s+frz59+vizHgAAEIbKV1G8XxH2OO3d91eVPzNmxXTF8vt07/Z7delCCANgnQaNiBUWFuq2227Ta6+9pqQk5lADAIDGMwxDXbrcrT69X5HD0VJNv5qiXQ5HS/Xp/QohDIDlGhTEJk+erFGjRmn48HMv61paWiqn01nlBwAAoDbJySM0+LIVSk29/vsj/l5Rsby/1NRRGnzZpzwTBiAg6j018d1331VGRobS09PrdP2sWbP0xBNP1LswAAAQvhyOJKX1mqPUlFHau+9vcrl2yTDsMk1vg/usaB8Xd4G6d5vOPmEAAsowTbPOE7CzsrI0cOBArVixovLZsKFDh6pfv36aM2dOjW1KS0tVWlpa+drpdKpjx47Kz89XQkJCI8sHAADNnWmacjo36/Dht5Wds0ymWSbDiJBplp2zbcV1hhGh1NTR6tD+diUk9JVhBMu+ZUB4czqdSkxMDMtsUK8gtmTJEt10002y28/M2fZ6vTIMQzabTaWlpVXO1SSc/7EBAEDjuN2nlZu3QQXObcp3blVBwTZ5va5q19ntcYqP763EhL6KT0hTUsvLFBnZKgAVAzibcM4G9ZqaeM0112jbtm1Vjk2YMEE9e/bUgw8+eM4QBgAA0BiRka2UmnK9UlPKnx8zTVMezyl5vaUyTbcMI1J2e5QcjtaMegEIavUKYvHx8UpLS6tyLC4uTq1bt652HAAAoKkZhqHIyDaBLgMA6q1RGzoDAAAAAOqvwRs6V1i9erUfygAAAACA8MGIGAAAAABYjCAGAAAAABYjiAEAAACAxQhiAAAAAGAxghgAAAAAWIwgBgAAAAAWI4gBAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFiOIAQAAAIDFCGIAAAAAYDGCGAAAAABYjCAGAAAAABYjiAEAAACAxQhiAAAAAGAxghgAAAAAWIwgBgAAAAAWI4gBAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFiOIAQAAAIDFCGIAAAAAYDGCGAAAAABYjCAGAAAAABYjiAEAAACAxQhiAAAAAGAxghgAAAAAWIwgBgAAAAAWI4gBAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFiOIAQAAAIDFCGIAAAAAYDGCGAAAAABYjCAGAAAAABYjiAEAAACAxQhiAAAAAGAxghgAAAAAWIwgBgAAAAAWI4gBAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFiOIAQAAAIDFCGIAAAAAYDGCGAAAAABYjCAGAAAAABYjiAEAAACAxQhiAAAAAGAxghgAAAAAWIwgBgAAAAAWI4gBAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFiOIAQAAAIDFCGIAAAAAYDGCGAAAAABYjCAGAAAAABYjiAEAAACAxQhiAAAAAGAxghgAAAAAWIwgBgAAAAAWI4gBAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFiOIAQAAAIDFCGIAAAAAYDGCGAAAAABYjCAGAAAAABYjiAEAAACAxQhiAAAAAGAxghgAAAAAWIwgBgAAAAAWI4gBAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFiOIAQAAAIDFCGIAAAAAYDGCGAAAAABYjCAGAAAAABYjiAEAAACAxeoVxObNm6c+ffooISFBCQkJGjx4sD7++OOmqg0AAAAAmqV6BbEOHTpo9uzZ2rRpk77++msNGzZMY8eO1fbt25uqPgAAAABodgzTNM3GdNCqVSs9++yzmjhxYp2udzqdSkxMVH5+vhISEhpzawAAAAAhLJyzQURDG3q9Xv33v/+Vy+XS4MGDa72utLRUpaWlla+dTmdDbwkAAAAAzUK9F+vYtm2bWrRooaioKP32t7/V4sWLddFFF9V6/axZs5SYmFj507Fjx0YVDAAAAAChrt5TE91utw4dOqT8/Hy99957ev3117VmzZpaw1hNI2IdO3YMy+FHAAAAAGeE89TERj8jNnz4cHXv3l3z58+v0/Xh/I8NAAAA4IxwzgaN3kfM5/NVGfECAAAAAJxdvRbrmDFjhkaOHKlOnTqpoKBA77zzjlavXq3ly5c3VX0AAAAA0OzUK4jl5OToV7/6lY4dO6bExET16dNHy5cv14gRI5qqPgAAAABoduoVxN54442mqgMAAAAAwkajnxEDAAAAANQPQQwAAAAALEYQAwAAAACLEcQAAAAAwGIEMQAAAACwGEEMAAAAACxGEAMAAAAAixHEAAAAAMBi9drQGQBqY5qmTnrKVOz1yWOachiGYuw2tXFEyDCMQJcHAAAQVAhiABrklLtM6/IKtLWgWN84i7SloEgur6/adXF2m/rGx6p/Qqz6xMfoipbxah3Jrx4AABDe+DYEoM5M09QmZ5HePHJS7+fkqsyUIgypzKy9jcvr0xd5hfoqv7Dy+htTkjShfRtdnBDLaBkAAAhLBDEAdfK/J/I1e/8x7XSVyG5I3u/D19lC2A+V/eD6xTm5ei87VxfGReuhbm11XZvEpikaAAAgSLFYB4CzOu0p093bD2h85n7tdpVIOhPCGqqi/S5XicZt26+7tx/QaU9ZIysFAAAIHQQxALX6+ESeLt+4Q0tz8iRJ1Z8Aa5yK/pbm5OmKjTv08Yk8P98BAAAgOBHEAFRjmqbmHsjWhMwDyvd45W3i+3kl5Xm8mpB5QC8czJZpNnLIDQAAIMgRxABUYZqmnt53TLP2H5Pk/1Gw2lTc5+l9xzRr3zHCGAAAaNYIYgCqeOFgjv5+KMevfXr27FT28AFyvjC72rnSDZ+rcMEryn34dzpx8whlD+uvR37SXk9u3Fxrf6Zp6sknn9RNN92kHj16qFWrVnI4HEpJSdG1116rt99+2+9BbteuXfr73/+u8ePHq3fv3oqIKN8f7c9//nO9+3r55ZdlGIYMw9CkSZNqvGb48OFKSEjQ8ePHG1s6AAAIQqyaCKDSxyfyKkfC/Kng78/IiIxSizvuqnYu/6mHZboKqx3/+6EcXdI9Xz9Lrr6iotfr1WOPPaaoqCj17t1bPXr0UExMjA4ePKhPP/1UK1as0H/+8x8tXrxYdrvdL+9h3rx5mjt3bqP72bdvn/7whz/IMIyzhsXZs2dr0KBBmjFjht58881G3xcAAAQXRsQASCpfHXH6riz5e1evkjUr5MncrJixv5AtqVW181FXXqMWk6ao5TMvKfl/VlYet0m6b9ehGldTtNvt+uyzz5SXl6f09HQtXbpU//73v7VhwwZt2bJFKSkp+uCDD/T666/77X2kpaXpgQce0MKFC7Vjxw7dcccd9e7D5/Np/PjxMgxDv/rVr8567cCBA3XDDTforbfe0pYtWxpaNgAACFIEMQCSpEd2H5bT45W/n8wqem+hJClm5I01nk/8w+OKu3WiogYNka3lmaDmk+T0ePXH3YertTEMQ0OHDlV0dHS1c71799aUKVMkSZ988okf3kG5SZMm6dlnn9Wtt96qnj17ymar/6/PuXPn6vPPP9czzzyjLl26nPP6iRMnli+c4oeROAAAEFwIYgD0vyfytTgnz++rI3r27JRn+xY5LuqtiE5d6t3eK+l/cvK0/GR+vdpFRJTPuo6Kiqr3PZvKrl279Mgjj+inP/2p7r777jq1GTVqlNq0aaN//etfOn36dBNXCAAArEQQA8KcaZqavf9Yk/wyKF3/mSQp8uJLG9yHTdLseqyiuHfvXr388suSpDFjxjT4vv7k9Xo1btw4GYahN954Q4ZRtwmgDodDQ4cOVUlJiZYvX97EVQIAACsRxIAwt8lZpJ2ukiZZpt79TbokyXFRnwb34ZO0w1WiDGdRjedfeOEFjR8/XrfeequuvPJK9ejRQ0ePHtVDDz2kW265pcH39adnn31WGzdu1FNPPaXu3bvXq+2QIUMkSStXrjzHlQAAIJSwaiIQ5t48clJ2Q/I2wbZdZXt2SpIiOndrVD92o7zOAYlx1c6tWrVK77//fuVrh8OhJ554QtOmTWvUPf0lMzNTM2fO1JAhQ3TvvffWu32vXr0kSRkZGf4uDQAABBAjYkAYO+Uu0/s5uU0SwsziYpklxZIkI6H6EvT14TWlJTm5OuWuvoLikiVLZJqmXC6Xtm7dqrvuukt//OMfNXjwYB09erRR922ssrIyjRs3TjabTf/4xz8atMBH69atJUnZ2dn+Lg8AAAQQQQwIY+vyClTWBCFMknyugsq/G7HVR7Lqq8yU1udV32+sQmxsrHr37q0XX3xRs2fP1pYtWxo0AuVPTz31lDIyMvTEE0+oR48eDeojISFBkpSbm+vP0gAAQIAxNREIY1sLihVhqEnCmK1FfOXfzSKXjLgWjeovwpC2FhRpTErLc147YcIE/eEPf9AHH3wgr9frt02d62vx4sWSpA8++EAfffRRlXMHDhyQJH344YcaOnSoJGn16tXV+sjPL18xMikpqcnqBAAA1iOIAWEsw1nUZCNiRnSMjOgYmSXFMp35UiODWJkpfVPLgh0/FhdXPgLndruVl5dXOb0vUNatW1fruePHj+v48eO1nj916pQkKTU11e91AQCAwGFqIhCmTNPU1oK6BZuGiji/pySp7OA+v/S3paCoTsvYV6ww2Lp1a7Vq1eocVzedzZs3yzTNGn9mzpwp6cymzbW9r8zMTEnSgAEDLKsbAAA0PYIYEKZOesrk8jbFovVnRPYfJEnybN/ql/4KvT6d9JRp2bJlWr16dY3hZdWqVZUbJt95553V9ux6/PHHZRhG5XTAYPfFF19IkoYNGxbgSgAAgD8xNREIU8VNHMIkKeryq+X6v6+qdNMGtZg4ucZrCv/5qtwbqk/dy3tkmgyHQ1L5yFrCtIclSSU+U19//bWeeOIJJScnq3///kpOTlZeXp727Nmj3bt3S5JuuukmPf7449X69fnK37fj+77rKiMjQ/fcc0/l671790qS5s+fr2XLllUeX7x4sdq2bVuvvmvj8Xi0du1aRUdH67rrrvNLnwAAIDgQxIAw5anDFL/GcpzfU45efeXZvkVlB/fVuJ+Y9+hheXZsq3a87LudZ15ERlb+1e3z6ec//7mKi4u1bt06bd++XSdPnpRhGGrbtq1+8Ytf6I477tANN9xQY02bNm2SVD4lsD6cTqc2btxY7fjhw4d1+PDhytelpaX16vdsli1bppMnT2rChAkBnWIJAAD8zzDr8sCFHzmdTiUmJio/P79yWWYA1jtUXKpLNuxo8vuUrFmh/Cf+oNibb1f83fc3ur/0wRepY3TkuS+sgdvtVqtWrdSzZ0+lp6dXm7YYbEaPHq0PP/xQGRkZ6tevX6DLAQDA78I5G/CMGBCmYuzW/M8/+qcj5Ejrp+IPFsl7+lTj+7M1PDytX79eLpdLs2fPDvoQlp6ermXLlmncuHGEMAAAmiGCGBCm2jgiFGdRGIuf+qBMd6lc/3ytUf20sNvUxtHwGdVXX321TNPU8OHDG1WHFWbMmKH4+HjNmjUr0KUAAIAmwDNiQJgyDEN94mP1ZV5hk9/LcX5PpX66qdH99I2PDfqRLH/59NNPA10CAABoQoyIAWHs4oRYRYRIrokwpP4JsYEuAwAAwC8IYkAY6xMfozJLl+tpuDJT6hNPEAMAAM0DQQwIY1e0jA+pEbHLW7YIdBkAAAB+QRADwljryAiNTUmSPcjDmN2QbkxJUutIHmsFAADNA0EMCHMT2reRN8inJ3rN8joBAACaC4IYEOYGJMTqwrjooP1lYJN0UVy0LmahDgAA0IwE63cvABYxDEMPdWsrX6ALqYVP0oPd2obNsvUAACA8EMQA6Lo2iboppaXsgS7kR+yS/r+UlrquTWKgSwEAAPArghgASdJTF3RQgsMeNL8UbJISHXb9+YIOgS4FAADA74LlOxeAAGvliNDzPToGzRRFn6Tne3RSKwcrJQIAgOaHIAag0sjklprRtW2gy5AkPdytrX6WzJREAADQPBHEAFRxb+cU3dspJbA1dErR1ADXAAAA0JQIYgCqMAxDM7q11cPdykfGrPolUXGfR7q11cPd27FKIgAAaNYIYgCqMQxD93ZO1YK0rkp02Jt8NUW7pJYOuxakddXUzqlNfDcAAIDAI4gBqNXPkhO1/tILNSalpST//8Ko6G9sSkutv/RCngkDAABhgyAG4KxaOSI0r1cXLUjrqh5x0ZIkeyNnDVa07xEXrbd6d9XLvbooidURAQBAGOGbD4A6+Vlyoq5rk6AMZ5HePHJSS3JyVWZKEYZUZp67fcV1DsPQjSktNaF9G/VPiOVZMAAAEJYIYgDqzDAMDUiM04DEOD3xk/Zan1eoLQVF2uws0uaCIrm81Xchi7Pb1C8+Vv0TYtUnPlaXt2yh1pH86gEAAOGNb0MAGqR1ZITGpLSsfH7MNE2d9JSpxGfK7fMp0mZTtM1QG0cEo14AAAA/QhAD4BeGYSg50hHoMgAAAEICi3UAAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFiOIAQAAAIDFCGIAAAAAYDGCGAAAAABYjCAGAAAAABYjiAEAAACAxQhiAAAAAGAxghgAAAAAWIwgBgAAAAAWI4gBAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFosIdAHBxDRN+VwemW6fTK9Pht0mI9ImW5xDhmEEujwAAAAAzURYBzGvy6PSvXlyHymUJ6tA7sOFMt3eatcZkXZFdmghR8d4RbZvoajuLWWPcwSgYgAAAADNQdgFMdM05T5UoMIvj6p460nJZ0o2o/zP2tq4vSrdl6/SA87K62P6tlGLwe0U2TGe0TIAAAAA9RJWQax4+ynlf3JAZdlF5U/H+b4/cZYQVkXFdT5TxVtOqvibE4o4L1aJ13ZRzEWtm6JkAAAAAM1QWAQxr8ujvKV7VbzlhFQxeOU7a5Nz+z6UlWUX6dT//VYxfZPVckx3piwCAAAAOKdmH8SKt59U7qI98hWXlR+o4+BXnX3fX/HWEyrdk6ukn5+vmF5t/HwTAAAAAM1Js12+3jRNOT87pFP/3FEewvwdwKrdUPIVl+nUP3fI+VmWTLOpbwgAAAAgVDXLIGaappzLD8i5/OD3B6y6cfkfFfcmjAEAAACoSbMMYgWrs1Sw+rBf+8zM3q3OfxmqR1fMqXZu1d4v9fy6f2jCew9pwEs3qeMzV6nlyK7a+d/0c/brdrv1zDPPqG/fvoqLi1NSUpKGDh2q9957z6/1S1JWVpbmz5+vu+66SwMGDFBUVJQMw9CkSZPO2u7UqVNasGCBpk6dqiFDhig2NlaGYWj48OFnbTdp0iRFRERo27Zt/nwbAAAAQMhrds+IFW8/eWYkzI8eWzFX0RFR+t2QcdXOTf3gSTlLC6sdL1ydpeJe3RXTq+YVFYuKijRixAh98cUXatmypX72s5+psLBQq1at0po1a3T//ffrr3/9q9/ew6JFi3TffffVu93nn3+uCRMm1Lvd448/roULF+ree+/VZ599Vu/2AAAAQHPVrEbEvC6Pchft8Xu/H+5crfQj2/Sr/jeqTVxStfM/u+AqPXjVXfrnzX/V5qlLz5wwpNxFu+V1eWrs9+GHH9YXX3yh3r17a8+ePVq0aJGWL1+uDRs2qEWLFnruuee0bNkyv72Prl27aurUqXrzzTe1ZcsWPfLII3Vql5qaqt/85jeaP3++0tPT9corr9SpXYcOHTRp0iStXr1aS5cuPXcDAAAAIEw0qyCWt3TvmdUR/ej1r/8jSbqlz6gazz93/UOaMvh2De12iVrHtjxz4vsFPPI+2FutTW5urubNmydJmjdvntq0ObPS4oABA/Tggw9Kkp566il/vQ2NHTtWL7zwgsaPH68+ffooIqJuA6KDBw/WK6+8orvuuksDBw5UVFRUne85ceJESdKcOdWndAIAAADhqtkEseLtp8r3CfPz+hiZ2bv19ZFMXdyul7q37lT/DkypePMJFX97qsrhjz76SG63W506ddLll19erdmtt94qSdqwYYOOHj3aoNqDQb9+/dS3b1999tln2rFjR6DLAQAAAIJCswhipmkq/5MDZzZr9qPlu9dJkq7oPKDhnRhS/icHqqyi+M0330iSBg4cWGOTbt26qVWrVpKkzZs3N/zeQWDEiBGSpCVLlgS4EgAAACA4NIsg5j5UoLLsoiZZpn79oQxJ0oD2vRreiSmVHS+SO6ug8tD+/fslSZ061T7K1qFDhyrXhqohQ4ZIklauXBngSgAAAIDgUK8gNmvWLA0aNEjx8fFKSUnRjTfeqF27djVVbXVW+OXRJouU27PLF//4SevOjevIZpTX+b2CgvJQFhcXV2uTFi1aSJKcTmfj7h1gvXqVh9iMjIwAVwIAAAAEh3rFlzVr1mjy5MnasGGDVqxYIY/Ho2uvvVYul6up6jsnr8uj4q0nJZ//+y5yF6vIUyxJSopJbFxnPlPFW07WuoJic9a6dfny/bm5uXK73QGuBgAAAAi8eu0j9r//+79VXi9YsEApKSnatGmTrrrqKr8WVlele/MkXxPMSZTkLD0TMFtExja+Q5+p0r15iu2TrPj4eEk6a4gtLCzfmywhIaHx9w6gH9afl5enlJSUAFYDAAAABF6jNnTOz8+XpMpFJWpSWlqq0tLSytf+nmbnPlIo2YwmCWOJ0S0q/17oLlJ8VO3TCOvEZshzpFDqk6wuXbpIkg4dOlTr5YcPH5akymtDVcXnRJKSkqrvwwYAAACEmwY/WeXz+TRt2jRdfvnlSktLq/W6WbNmKTExsfKnY8eODb1ljdyHCppsRCzGEa1YR4wkKbc4/xxX14HPrFyw4+KLL5Ykff311zVeum/fPp0+fVqS1L9//8bfO4BOnSpfuj8pKUkOhyPA1QAAAACB1+AgNnnyZGVmZurdd98963UzZsxQfn5+5U9WVlZDb1mNaZrlI0xNKC31fEnSnlMH/dKf+0ihTNPU9ddfr8jISB06dEjr16+vdt0777wjSbrsssvUrl07v9w7UDIzMyWVb1QNAAAAoIFBbMqUKVq2bJk+++yzyiXWaxMVFaWEhIQqP/7ic3lkur1+668mQzqVj1xtOpLpl/7MUq98Lo+SkpJ09913S5LuueeeylEjqXx1wWeeeUaS9Mgjj1TrY8GCBTIMI2SmLH7xxReSpGHDhgW4EgAAACA41OsZMdM0NXXqVC1evFirV69W165dm6quutXjboKlEn/kuguu0JwvFujzA1/rD1fdWeM1c9a/pVV7v6x2/Nf/M0MOW/lUvLTzLtDT106XJJme8rqffvppffXVV/ryyy91/vnna9iwYXK5XFq5cqU8Ho+mT5+uG264oVq/Pl95+/pO8zt27JhuuummytcVz6AtXbpUl112WeXxl19+uXLqZIUfnj9x4oQkKT09vcrxRx99VKNGjap2308//VSSNHbsQOg+dwAAHNpJREFU2HrVCwAAADRX9QpikydP1jvvvKP3339f8fHxOn78uCQpMTFRMTExTVLg2Zjepg9iaakXaGD7NH19JFN7Th7Q+W26VLvmYN4RfXPs22rHM7/fg0ySoiIiK/9ulpXXHRsbq9WrV+v555/XwoUL9dFHHykyMlKDBw/WlClTdPPNN9dY06ZNmyRJEydOrNd7KS0t1caNG6sdP3HiRGW4kmpeUKWmdk6ns8rxH/ZR4ZtvvtHWrVt19dVX66KLLqpXvQAAAEBzZZimWeeVLgzDqPH4m2++qfHjx9epD6fTqcTEROXn5zd6mmLZ6RId/0t6o/qoiw93rtZv339Mdw76hR4bNqXR/Z334CBFJEU3uP3555+v4uJi7dmzJyABuD6mTp2qF198Ue+//77GjBkT6HIAAAAQRPyZDUJNvacmBhMjssFrjdTLqJ5DNejr3lq4+QPdfemtSo6rfbn+ujAcDa/7wIED+u677/Taa68FfQjLysrS66+/rqFDhxLCAAAAgB+wJsk0EVucQ0akvd7tTJkqllsFRrHyjSIVGMUqllumag+afxrxO5WUlWruF281pmQZUXbZ4ur2bJdpmnK7T6q4+LCKivaruPiw2rVrIZ/Pp0mTJjWqDis88cQT8ng8mjt3bqBLAQAAAIJKvaYm+oO/hx9z5m+Ve//Z9/gqkVtHbbk6aSvQCSNfJ20F8hjVV1t0mHa18cUr2UxUG1+82vmSFK3IGnpsuKhuiUq+q0+N59zu08rN/VIFBZnKd25RQUGmvF5Xtevs9jjFx6cpMaGv4uPTlJQ0WJGRjRulAwAAAKzG1MQQFtkpXu6DzmqbOpsylWM49W1ElvbZcmQapgzTKB/1qvlRN3kMr47Z8nRc+TIjyq/v7kvVRWUdlGwmyKitYV3ZDEV2jK9ap2nK6fxGWYffVk7OhzLNMhlGhEyzrNZuvF6X8vI2Kj9/U+X1qSk3qEOH25WQ0K/WZ/kAAAAABIfQD2LtW1QLYQdtJ/R1xF7l2lzl4csoP1/x51kZqpyiaBqm9tqy9V3UcSX54jSwrLs6+5IbXqzPlKN9i8qXJ06s0N59z8vl2i3DsMs0y0fpzhbCfqjiOtMsU3bOBzqevURxcT3Uvdt0JScPb3idAAAAAJpUyAexqO4tJZsh+UyVyKMvHLu0z56tise96hS+zqKifa7h0orIrermTdUQTw9Fq357eEmSbIaiureUx5OrXbufUHb2B6oYnqsIYQ2u8/v2Ltdubd32G6WmjlaPC2bK4UhqVL8AAAAA/C+kF+uQJHucQzF92uiA/YT+G/Wl9tuyy0/4e3be9/3tt2Xrv1Ff6oCt+p5ZZ2UzFNO3jU4XfaYvN4xQdvZH35/w9yN65f1lZ3+kLzeM0IkTn/i5fwAAAACNFfJBzDRNbY3N0qeOrSqVR2YTPx5lGlKpPPo0cqs22w+cdaXFKu18PuX2+Fhbt90tjydPUuNGwM7NK48nT1u33a0DB+YF3dYDAAAAQDgL6amJpmlq5cqVWpexvvyAVWtUfH+frx175THKNLCs+1kX8jANU6f7vq+Tp5dUHGn6Gn9wn737/qoyr0vdu93PQh4AAABAEAjpIPb5559r3bp1fu3z2LFjeu211zRw4EBdf/31Vc7t2bNHR44c0bFjx3T06FEVFhZKkt6cMkfD4y6utc8Vnnlav2K5du8p1Z7dbmVnly+y8bc57dS7d3SD6tyzp1ST7zmi0WMSNHVqmyrnli3L1/p1Rdq/363cXK+8Xkn6ve68c7lefXVFjf3l5ubqpZde0qJFi7Rr1y4VFxdLkmw2m1JTU3XvvffqwQcfrDHIDR8+XF999ZV2796t8847r87vYdeuXfrkk0+0adMmbdq0STt27JDX69WTTz6pP/7xj7W2+/jjj7Vo0SJt3rxZR44c0enTpxUZGanu3bvr+uuv1/Tp09WmTZtq7RpaJwAAAOBvITs1cceOHVq1apXf+/34448VERGhn/70p9XOLVq0SGvWrNHu3bsrQ5gkbXUc1MFanhkrSNmkp5f8j/7xj1yt+7yoMoQ11osvnlRkpKHbb6++GMdLL55SenqxTp6sCGHl8vLTdeJEzUHskUce0aOPPqrNmzertLRUKSkpat++vex2u44dO6YZM2aof//+crvd1drOnj1bBQUFmjFjRr3ew7x583TvvffqrbfeUmZmprzeuk3XXLhwod544w3l5+crLS1NP//5zzVkyBAdPHhQs2bNUq9evbR9+3a/1QkAAAD4W0gGsaKiIi1dutTv/X777bfKysrSoEGDFBcXV+38hRdeqGHDhum2227TAw88cOaEKa117FCJPFWu90YWKrvXm7p4QIx+NS5JTz6Zqnff7aTU1MYNRK5dU6jtmaUaMyZBSUn2aucvuCBKab2j9P/fkqg5c9v+4IyhHTtnyOPJrdYmNjZWHTt21Ouvvy63263s7GwdPnxYLpdLN998syRpy5Yt+v3vf1+t7cCBA3XDDTforbfe0pYtW+r8PtLS0vTAAw9o4cKF2rFjh+644446tXvggQd07Ngx7dmzRytWrNA777yj5cuXKysrSzfffLNycnI0adIkv9UJAAAA+FtIBrGPPvpIJSUlfu93w4YNkqT+/fvXeH7s2LG68sor9ZOf/KRqUDMktzz60rGryvXZPd6W11Gk3/ymtX71qyQNHhKnNsmNnw26aFG+JGnk9fE1np/7QnvNmdNed97ZWmlpMT84Y8rjcWrX7j9Va/PXv/5Vhw4d0sSJE2W3nwl3DodD7777rlq3bi1Jevvtt2u858SJE2WapubOnVvn9zFp0iQ9++yzuvXWW9WzZ0/ZbHX7OPbr16/GqYUtWrTQc889J6n8v6XT6fRLnQAAAIC/hVwQ27lzpzIzM/2+CuCxY8eUlZWlDh061Ph80bmYhrTXnl05RbEgOUMFbTdI8vm1zj17SrV9e6kuvDBKHTtGNqAHr7Kzl+rEiU/r3MJms6lnz56SpLy8vBqvGTVqlNq0aaN//etfOn36dAPq8o+IiPKga7PZ5HBU3+stWOoEAABAeAupIGaaplatWtUkK//t3LlTktS1a9eGd2JKX0fslU8+ne57ZrNmf/pivUuSdPGAmHNceTaG9u57vl5hdv/+/ZKk+PiaR+EcDoeGDh2qkpISLV++vBG1NVxpaakefvhhSdKIESMUE1P93ygY6gQAAABCKogdPnxYOTk5TbIn1oEDByRJHTt2bHgnhpRrcyn38qMqse1XUyxT/8035VMyL7qoYastljPlcu2S07m5TlcvWbJER48elSSNGTOm1uuGDBkiSVq5cmUjaqu7jIwMjR8/XuPGjdP111+vDh06aMGCBRo0aJDeeOONoKkTAAAA+LGQWr7+q6++ks1mk8/n3+l+UvnUREkNmpb4Q4Zh6KhjkaIMu0zT/5s2f/ddqSSpU6fq0+7qwzDsOnz4bSUm1vw8XIWjR4/q1ltvlVS+oMff/va3Wq/t1auXpPKAZIVDhw7prbfeqnJs+PDhmj9/vtq3b19rO6vrBAAAAH4sZEbEXC6Xtm/f3iQhzO12y+MpX/EwNja2UX3Z7cWKiNjcJCGsuNinkpLyUbaEhOqrJdaHaXqVnbNMbnftz0k5nU4NHDhQxcXFMgxDH3zwQeWiHTWpOJednd2o2urqxhtvlGmaKisr04EDB/T6669rx44dSktL03vvvRc0dQIAAAA/FjJBbP/+/U0SwqTyZ4sqREY2ZAGMM1q2PC6bzf9TEiXJ5Trz/mNjG//8mWmWKTdvQ43nCgsL1bdvXx07dkyGYejf//63hg0bdtb+EhISJJVvDm0lu92uzp07a+LEiVq3bp0Mw9CECRN0/PjxGq8PVJ0AAABAhZAJYseOHavz8ub1FR195nmrmjYsro8W8afl8/l/kQ5JatHizPsvKmp82DOMCBU4M6sdd7lc6tevnw4cOCDDMLRw4cLKvcTOJj+/fFn9pKTqm0xbpUuXLrr66qtVWFioFStq3rw6GOoEAABAeAuZIHb48OEmGxFzOByVS50XFRU1qq/4+JMyjKYZEYuOtik6ujzkOZ2Nn/pommXKd1bd2LioqEj9+vXT3r17ZRiG/vnPf+qXv/xlnfo7deqUJCk1NbXRtTVGxR5vOTk5NZ4PljoBAAAQvkIiiJmmWbmYRlNp27atJOnEiRON6MVUixan1ASr61c6//woSdLBgx6/9FdQcGZPtuLiYvXv31/fffddZQi77bbb6txXZmb56NqAAQP8UltDlJaWat26dZKkCy64oMZrgqFOAAAAhLeQCGIul6vRUwbPpUuXLpLKR94ayuEoUUREmZ8qkt5667SGX7NP06cfrTzWr1/5NMpvvy3xyz283kJ5PKdUUlKiAQMGaPfu3fUOYY8//rgMw9Ds2bMl6ZzPkjVGTk6O5s2bJ6fTWe3ckSNHdMcdd+jo0aPq0qWLRowYUWMfX3zxRZPXCQAAAJxNSCxfX7GiYVPq2bOn1q5dq3379tX6BX3NmjXas2dPteP/+te/ZLfbZbP5tPErl373u6pL4H/0oVMffVxQ+fr06fKwNudvJxQTW56FW7ey64k/nVelnfn9TMwI+5khtiGXx+mf/8xTxqZi/frXNb+XuXNOaMWKwmrHF/9Pvj5YWh5goqMNzX+1g1q3jpDXW6o775ymHTt2SCpfOXLmzJmaOXNmtT5SUlIqg0yFiimj+fn5io6O1nXXXVdzYT+SkZGhe+65p/L13r17JUnz58/XsmXLztS9eHHliGVRUZHuueceTZs2Tf369VOXLl1kmqaysrKUkZEht9utdu3aacmSJVWe/avg8Xi0du3aetUJAAAA+FtIBDGv1/9Lwf9Y27Zt1bFjR2VlZenEiRNKTk6udk1ubq6OHDlS7fgPV+dLalX9y/+Jk2XauaO02vEfTi9MTa3+n2L3nvI2I0fGVx47//wo9eoVpe3bS3XwoFudO1df5fHYsbLKZe5/qKxMKisrP15SYsrjKf+7abp18uTJyutcLldlKPqxmo5v2rRJUnnIuf3229WqVasa2/6Y0+nUxo0bqx0/fPhwlZHJH65qmZKSoueee05r165VZmamduzYoeLiYrVs2VKXXXaZRo8erbvuuqtyZcQfW7ZsmU6ePKkJEybUuU4AAADA3wyz4gEhizidTiUmJio/P7/WL8s/lpubq7lz5zZxZdK3336r//73v7rssssaNFoSFVWoSy5d7JdaPB5TN914QJ06OfTSy+1l/ODBs7VrCvWnP+Xo//yfRP327tr39aqrIYPXKiam9g2Qz8btdqtVq1aKiIhQfn6+vvnmG/Xr16/RNTWV0aNH68MPP1RGRkZQ1wkAABAOGpINmouQeEasYkXDpnbRRRepY8eO2rRpkwoLq0/tOxefr3GbLP/Q9swSlZSYmjipVZUQJklX/bSFeqVFadkyp3JPN/6ZNLs9qsFt169fL5fLpfz8fI0fPz6ow016erqWLVumcePGBXWdAAAAaP5CIojFxcU1eqPluho5cqTKysq0du3aerf1eKJVVuaf2Z79+sfo05XdNGBAbI3np0xpI7fb1Ntv5zXqPnZ7CzkcDR9Vu/rqq3XNNdcoPj5es2bNalQtTW3GjBkhUScAAACav5CYmihJb775pg4ePNiElflH7z6fKDExu0mXsPenli0v04CLFwa6DAAAAIQhpiaGgA4dOshmC/5yCwrayDRDI4UZRoQSE/oGugwAAAAg7AR/svle27ZtK5dJD2aFBa1ks1k6yNhgplmm+IS0QJcBAAAAhJ2QCWJdu3YNiRGxvLzz5POFzohYUsvLAl0GAAAAEHaCP9l8Ly4uTr169Qr6MObzxaqsrJ8Mw38rKDYFw7ArNeUGRUaylxYAAABgteBONT9yySWXBP30RJ/Pp+7dJsk0m34T6sYwTa86dLg90GUAAAAAYSmkgliHDh2UkpJSbV+tYGEYhlJTU/WTn1yruLgekoKzTslQi7ieSkhgLy0AAAAgEEIqiBmGoWHDhsniFffrzDRNXX311bLZbOrebbqk4KxTMtWt231BG2gBAACA5i6kgpgk9ezZU2lpaUEXIgzDUO/evdWzZ09JUnLycKWmjpYUbM+K2ZWaOkbJycMDXQgAAAAQtkIuiEnS9ddfr+jo6ECXUUV0dLRGjhxZ5ViPC2bK4UhQ8ExRNORwJKjHBY8FuhAAAAAgrIVkEIuNjdWYMWMCXUYVY8eOVWxsbJVjDkeSLuz5tIJniqKpC3vOksORFOhCAAAAgLAWkkFMki688EINGzYs0GVIkq655prKKYk/lpx8rbp3u9/iimrWvdsDSk4eEegyAAAAgLAXskFMkq688kpdccUVAa3hiiuuOGcNnTvfrc6d77aoorPV8NuA1gAAAACgXESgC2gMwzB0zTXXKCoqSitXrrT8/tdcc42uvPLKc15nGIa6d7tfEfY47d33V5U/M2bFdMXy+3Tv9nt16UIIAwAAAIJFSAcxqTzkXHnllUpOTtb777+vkpKSJl3e3jAMRUdHa+zYsbVOR6ytXZcudysu7ifasXOGPB6npKbc9NkuhyNBF/acxXREAAAAIMiEfBCr0LNnT3Xq1EkfffSRMjMzZRiGXwNZRX9paWkaOXJktYU56io5eYRathyoXbufUHb2B/L/6Fh5f6mpo75ftbGlH/sGAAAA4A+GafHuyE6nU4mJicrPz1dCQkKT3GPnzp1atWqVcnJyZLPZ5PP5GtxXRfuUlBQNGzasXqNg53LixArt3fc3uVy7ZBh2mWbDR8gq2sfF9VD3btPZJwwAAABBz4psEKyaZRCTJNM0dfjwYaWnpyszM1M+n6/OoaziOpvNprS0NF1yySVq3759k2wibZqmnM7NOnz4bWXnLJNplskwImSaZedsW3GdYUQoNXW0OrS/XQkJfYNus2sAAACgJgQxCwXiH9vlcunAgQM6evSojhw5oqNHj8rtdle7LjIyUu3atVP79u3Vrl07denSRXFxcZbUKElu92nl5m1QgXOb8p1bVVCwTV6vq9p1dnuc4uN7KzGhr+IT0pTU8jJFRrayrE4AAADAHwhiFgqGf2zTNOVyuVRWVqaysjJFREQoIiJCcXFxQTWaZJqmPJ5T8npLZZpuGUak7PYoORytg6pOAAAAoCGCIRsESrNZrKM+DMNQixYtAl3GORmGocjINoEuAwAAAICfhfSGzgAAAAAQighiAAAAAGAxghgAAAAAWIwgBgAAAAAWI4gBAAAAgMUIYgAAAABgMYIYAAAAAFiMIAYAAAAAFiOIAQAAAIDFIqy+oWmakiSn02n1rQEAAAAEkYpMUJERwonlQaygoECS1LFjR6tvDQAAACAIFRQUKDExMdBlWMowLY6fPp9PR48eVXx8vAzDsPLWtXI6nerYsaOysrKUkJAQ6HIQwvgswV/4LMEf+BzBX/gswV9+/FkyTVMFBQVq166dbLbwemrK8hExm82mDh06WH3bOklISOCXC/yCzxL8hc8S/IHPEfyFzxL85YefpXAbCasQXrETAAAAAIIAQQwAAAAALGZ//PHHHw90EcHAbrdr6NChioiwfLYmmhk+S/AXPkvwBz5H8Bc+S/AXPkvlLF+sAwAAAADCHVMTAQAAAMBiBDEAAAAAsBhBDAAAAAAsRhADAAAAAIsRxAAAAADAYgQxSS+99JK6dOmi6OhoXXrppfrqq68CXRJCzKxZszRo0CDFx8crJSVFN954o3bt2hXoshDiZs+eLcMwNG3atECXghB05MgR3X777WrdurViYmLUu3dvff3114EuCyHE6/Xq0UcfVdeuXRUTE6Pu3bvrySefFAtu41zWrl2r0aNHq127djIMQ0uWLKly3jRNPfbYY2rbtq1iYmI0fPhw7dmzJ0DVBk7YB7F///vfmj59umbOnKmMjAz17dtX1113nXJycgJdGkLImjVrNHnyZG3YsEErVqyQx+PRtddeK5fLFejSEKLS09M1f/589enTJ9ClIATl5ubq8ssvl8Ph0Mcff6xvv/1Wzz33nJKSkgJdGkLIM888o3nz5unFF1/Ujh079Mwzz+gvf/mL/v73vwe6NAQ5l8ulvn376qWXXqrx/F/+8he98MILeuWVV7Rx40bFxcXpuuuuU0lJicWVBlbY7yN26aWXatCgQXrxxRclST6fTx07dtTUqVP10EMPBbg6hKoTJ04oJSVFa9as0VVXXRXochBiCgsLdfHFF+vll1/Wn//8Z/Xr109z5swJdFkIIQ899JDWr1+vzz//PNClIITdcMMNSk1N1RtvvFF57Oc//7liYmL09ttvB7AyhBLDMLR48WLdeOONkspHw9q1a6f7779fDzzwgCQpPz9fqampWrBggW655ZZAlmupsB4Rc7vd2rRpk4YPH155zGazafjw4fryyy8DWBlCXX5+viSpVatWAa4EoWjy5MkaNWpUld9NQH0sXbpUAwcO1M0336yUlBT1799fr732WqDLQogZMmSIVq5cqd27d0uStmzZonXr1mnkyJEBrgyhbP/+/Tp+/HiV/49LTEzUpZdeGnbfvyMCXUAgnTx5Ul6vV6mpqVWOp6amaufOnQGqCqHO5/Np2rRpuvzyy5WWlhbochBi3n33XWVkZCg9PT3QpSCE7du3T/PmzdP06dP18MMPKz09Xffee68iIyM1bty4QJeHEPHQQw/J6XSqZ8+estvt8nq9euqpp3TbbbcFujSEsOPHj0tSjd+/K86Fi7AOYkBTmDx5sjIzM7Vu3bpAl4IQk5WVpd/97ndasWKFoqOjA10OQpjP59PAgQP19NNPS5L69++vzMxMvfLKKwQx1Nl//vMfLVy4UO+884569eqlzZs3a9q0aWrXrh2fI8APwnpqYps2bWS325WdnV3leHZ2ts4777wAVYVQNmXKFC1btkyfffaZOnToEOhyEGI2bdqknJwcXXzxxYqIiFBERITWrFmjF154QREREfJ6vYEuESGibdu2uuiii6ocu/DCC3Xo0KEAVYRQ9Pvf/14PPfSQbrnlFvXu3Vt33HGH7rvvPs2aNSvQpSGEVXzH5vt3mAexyMhIDRgwQCtXrqw85vP5tHLlSg0ePDiAlSHUmKapKVOmaPHixVq1apW6du0a6JIQgq655hpt27ZNmzdvrvwZOHCgbrvtNm3evFl2uz3QJSJEXH755dW20Ni9e7c6d+4coIoQioqKimSzVf2qaLfb5fP5AlQRmoOuXbvqvPPOq/L92+l0auPGjWH3/TvspyZOnz5d48aN08CBA3XJJZdozpw5crlcmjBhQqBLQwiZPHmy3nnnHb3//vuKj4+vnOOcmJiomJiYAFeHUBEfH1/tucK4uDi1bt2a5w1RL/fdd5+GDBmip59+Wr/4xS/01Vdf6dVXX9Wrr74a6NIQQkaPHq2nnnpKnTp1Uq9evfTNN9/o+eef169//etAl4YgV1hYqO+++67y9f79+7V582a1atVKnTp10rRp0/TnP/9Z559/vrp27apHH31U7dq1q1xZMVyE/fL1kvTiiy/q2Wef1fHjx9WvXz+98MILuvTSSwNdFkKIYRg1Hn/zzTc1fvx4a4tBszJ06FCWr0eDLFu2TDNmzNCePXvUtWtXTZ8+XXfeeWegy0IIKSgo0KOPPqrFixcrJydH7dq10y9/+Us99thjioyMDHR5CGKrV6/W1VdfXe34uHHjtGDBApmmqZkzZ+rVV19VXl6errjiCr388su64IILAlBt4BDEAAAAAMBiYf2MGAAAAAAEAkEMAAAAACxGEAMAAAAAixHEAAAAAMBiBDEAAAAAsBhBDAAAAAAsRhADAAAAAIsRxAAAAADAYgQxAAAAALAYQQwAAAAALEYQAwAAAACL/T/hIj9tWtw8kwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAHDCAYAAACnJFQ8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXwU5eHH8c/uJtncGxJyE+77PpQjBEFQEJUKtnhWQCte2JaibbG/qlhFWlusVvGuaPGoWhCpohVRRA5BxCDIodwhJBBCkiV3sju/P5ZMWJJAEkDI8H2/Xvty5plnZp7Zfck3M/M8MzbDMAxEREQsxH62GyAiInK6KdxERMRyFG4iImI5CjcREbEchZuIiFiOwk1ERCxH4SYiIpajcBMREctRuImIiOUo3KRJmDRpEq1bt270uuHh4ae3QQ30yiuvYLPZ2L1791ltx+lQdSzr1q074/uq7+++e/dubDYbr7zyyhlvkzQNCjc5JW+//TY2m4133323xrJevXphs9n47LPPaixr2bIlqampP0YT6624uJgZM2awbNmyH2V/w4YNo3v37iess3TpUm655RY6duxIaGgobdu25dZbbyUrK6tG3datW2Oz2Wr9XHbZZWfqMETOSQFnuwHStKWlpQGwYsUKxo0bZ5a73W42bdpEQEAAK1eu5OKLLzaXZWRkkJGRwXXXXVfv/bz44ot4vd7T1/BaFBcX89BDDwG+4DkX/P73v+fw4cOMHz+eDh06sHPnTp5++mnef/990tPTSUhI8Kvfu3dv7rnnnhrbSUpK+rGaLHJOULjJKUlKSqJNmzasWLHCr3z16tUYhsH48eNrLKuarwrG+ggMDDz1xjZBjz/+OGlpadjt1RdZLrvsMoYOHcrTTz/NI4884lc/OTmZn//85z92My2nqKiIsLCws90MOQW6LCmnLC0tjW+++YaSkhKzbOXKlXTr1o3Ro0fz5Zdf+p11rVy5EpvNxuDBgwF47bXX6NevHyEhIURHR3PdddeRkZHht4/a7r3k5uZy0003ERkZSVRUFBMnTmTDhg113nvJzMxk7NixhIeHExsby7333ovH4wF892xiY2MBeOihh8zLeTNmzDDX37p1Kz/72c+Ijo4mODiYCy64gEWLFtXYz3fffcfw4cMJCQmhRYsWPPLII40+67zooov8gq2qLDo6mi1btjRqm1X3IPfu3cuVV15JeHg4ycnJzJkzB4CNGzcyfPhwwsLCaNWqFW+88Uat2ykuLub2228nJiaGyMhIJkyYQF5eXo16H374IUOGDCEsLIyIiAiuuOIKvvvuuxr1Fi5cSPfu3QkODqZ79+61XuoGyM/PZ9KkSbhcLvN3z8/Pr7VufX6zqnuIn3/+OXfddRdxcXG0aNHihN+hnPsUbnLK0tLSqKioYM2aNWbZypUrSU1NJTU1lYKCAjZt2uS3rHPnzsTExDBz5kwmTJhAhw4dePzxx5k6dSpLly7loosuqvMfLACv18uYMWN48803mThxIjNnziQrK4uJEyfWWt/j8TBq1ChiYmL429/+xtChQ5k9ezYvvPACALGxsTz77LMAjBs3jnnz5jFv3jyuvvpqwBdYAwcOZMuWLUyfPp3Zs2cTFhbG2LFj/f4Rzs7O5uKLLyY9PZ3p06czdepU/vWvf/Hkk082/gs+TmFhIYWFhTRv3rzGsoqKCg4dOlTjc+wfHlXfx+jRo0lJSeGxxx6jdevW3H333bzyyitcdtllXHDBBfzlL38hIiKCCRMmsGvXrhr7uvvuu9myZQszZsxgwoQJvP7664wdO5Zj36I1b948rrjiCsLDw/nLX/7C/fffz+bNm0lLS/PrXPPxxx/z05/+FJvNxqxZsxg7diw333xzjU4rhmFw1VVXMW/ePH7+85/zyCOPsG/fvlp/9/r+ZlXuuusuNm/ezAMPPMD06dNP+jvIOc4QOUXfffedARgPP/ywYRiGUVFRYYSFhRmvvvqqYRiGER8fb8yZM8cwDMNwu92Gw+EwJk+ebOzevdtwOBzGzJkz/ba3ceNGIyAgwK984sSJRqtWrcz5+fPnG4DxxBNPmGUej8cYPny4ARhz5871Wxcw/vSnP/ntp0+fPka/fv3M+ZycHAMwHnzwwRrHOGLECKNHjx5GaWmpWeb1eo3U1FSjQ4cOZtnUqVMNwFizZo1ZdvDgQcPlchmAsWvXLrN86NChRrdu3Wrs62QefvhhAzCWLl3qV96qVSsDqPUza9asGt/Ho48+apbl5eUZISEhhs1mM/7973+b5Vu3bq3xncydO9cAjH79+hnl5eVm+WOPPWYAxnvvvWcYhmEcOXLEiIqKMiZPnuzXzuzsbMPlcvmV9+7d20hMTDTy8/PNso8//tgA/H73hQsXGoDx2GOPmWWVlZXGkCFDavzu9f3Nqo4nLS3NqKysrPmFS5OkMzc5ZV26dCEmJsa8l7ZhwwaKiorM3pCpqamsXLkS8N2L83g8pKWlsWDBArxeL9dcc43fWUZCQgIdOnSotZdllY8++ojAwEAmT55sltntdqZMmVLnOnfccYff/JAhQ9i5c+dJj+/w4cN8+umnXHPNNRw5csRsZ25uLqNGjeKHH34gMzMTgMWLFzNw4ED69+9vrh8bG8uNN9540v3Ux/Lly3nooYe45pprGD58eI3lAwYMYMmSJTU+119/fY26t956qzkdFRVFp06dCAsL45prrjHLO3XqRFRUVK3f02233eZ3L/TOO+8kICCAxYsXA7BkyRLy8/O5/vrr/X5fh8PBgAEDzN83KyuL9PR0Jk6ciMvlMrd36aWX0rVrV799Ll68mICAAO68806zzOFw8Mtf/tKvXkN+syqTJ0/G4XDUOE5pmtShRE6ZzWYjNTWV5cuX4/V6WblyJXFxcbRv3x7whdvTTz8NYIZcWloaf/vb3zAMgw4dOtS63RN1ItmzZw+JiYmEhob6lVft83jBwcHmPbUqzZo1q/Ue0fG2b9+OYRjcf//93H///bXWOXjwIMnJyezZs4cBAwbUWN6pU6eT7udktm7dyrhx4+jevTsvvfRSrXWaN2/OJZdcctJt1fZ9uFwuWrRogc1mq1Fe2/d0/O8WHh5OYmKiebnxhx9+AKg1hAEiIyMB329Z2/bA972tX7/enK/63Y8ft3j899uQ36xKmzZtaq0nTZPCTU6LtLQ0/vvf/7Jx40bzfluV1NRUfvvb35KZmcmKFStISkqibdu2eL1ebDYbH374Ya1/MZ/Ogden8hd5VWeQe++9l1GjRtVap65QPV0yMjIYOXIkLpeLxYsXExERcUrbq+v7qKvcOOY+Wn1VfW/z5s2rMWQBICDgzP3z05jfLCQk5Iy1R358Cjc5LY4d77Zy5UqmTp1qLuvXrx9Op5Nly5axZs0aLr/8cgDatWuHYRi0adOGjh07Nmh/rVq14rPPPqO4uNjv7G379u2NPobjz1iqtG3bFvCdSZ7srKhVq1bmGcuxtm3b1uh25ebmMnLkSMrKyli6dCmJiYmN3tbp9MMPP/iNXywsLCQrK8vv9wWIi4s74ffWqlUrc3vHO/57a9WqFUuXLqWwsNDvj5/j6zXkNxNr0j03OS0uuOACgoODef3118nMzPQ7c3M6nfTt25c5c+ZQVFRkBuHVV1+Nw+HgoYceqnFmYBgGubm5de5v1KhRVFRU8OKLL5plXq/X7M7eGFUheXwvzbi4OIYNG8bzzz9f65NBcnJyzOnLL7+cL7/8krVr1/otf/311xvVpqKiIi6//HIyMzNZvHhxnZdwz4YXXniBiooKc/7ZZ5+lsrKS0aNHA77fKDIykkcffdSvXpWq7y0xMZHevXvz6quvUlBQYC5fsmQJmzdv9lvn8ssvp7Ky0uzZCr6en0899ZRfvYb8ZmJNOnOT0yIoKIgLL7yQL774AqfTSb9+/fyWp6amMnv2bKD6LK9du3Y88sgj3HfffezevZuxY8cSERHBrl27ePfdd7ntttu49957a93f2LFj6d+/P/fccw/bt2+nc+fOLFq0iMOHDwN1n4WdSEhICF27duWtt96iY8eOREdH0717d7p3786cOXNIS0ujR48eTJ48mbZt23LgwAFWr17Nvn372LBhAwC/+93vmDdvHpdddhm//vWvCQsL44UXXqBVq1Z8++23NfaZk5NTYyA2+O7/3Hjjjdx4442sXbuWW265hS1btviNbQsPD2fs2LF+62VmZvLaa6/V2F5tdU9VeXk5I0aM4JprrmHbtm0888wzpKWl8ZOf/ATw3VN79tlnuemmm+jbty/XXXcdsbGx7N27lw8++IDBgweb92JnzZrFFVdcQVpaGrfccguHDx/mqaeeolu3bhQWFpr7HDNmDIMHD2b69Ons3r2brl27smDBAr9QrFLf30ws6iz21BSLue+++wzASE1NrbFswYIFBmBERETU6G49f/58Iy0tzQgLCzPCwsKMzp07G1OmTDG2bdtm1jl+KIBh+Lru33DDDUZERIThcrmMSZMmGStXrjQAv+7sEydONMLCwmq06cEHHzSO/19g1apVRr9+/YygoKAaXeB37NhhTJgwwUhISDACAwON5ORk48orrzT+85//+G3j22+/NYYOHWoEBwcbycnJxsMPP2z885//rHUoAHV03R8xYoRhGCfu3n/891HfunV9H3UNTWjVqpVxxRVXmPNVXec///xz47bbbjOaNWtmhIeHGzfeeKORm5tbY/3PPvvMGDVqlOFyuYzg4GCjXbt2xqRJk4x169b51Zs/f77RpUsXw+l0Gl27djUWLFhQ6++em5tr3HTTTUZkZKThcrmMm266yfjmm29qDAUwjPr9ZlXH89VXX9VouzRdNsNoxJ1ikXPUwoULGTduHCtWrDCfgCIi5x+FmzRZJSUlfj3cPB4PI0eOZN26dWRnZ6v3m8h5TPfcpMn65S9/SUlJCYMGDaKsrIwFCxawatUqHn30UQWbyHlOZ27SZL3xxhvMnj2b7du3U1paSvv27bnzzju5++67z3bTROQsU7iJiIjlaJybiIhYjsJNREQsp0l0KPF6vezfv5+IiIhGDc4VEZGmzzAMjhw5QlJSUo2X+B6vSYTb/v37SUlJOdvNEBGRc0BGRsZJ35beJMKt6gnoGRkZ5msyRETk/OJ2u0lJSanXWzGaRLhVXYqMjIxUuImInOfqc3uqSYSbyNnmrnSzpXgLW4q3cKjiEJVGJUH2IFKcKXQN7Ur7kPY47c6z3UwROUrhJlIHj+FhRcEK3jn0Dqvdq09YN9gezGXNLuOa2GvoFHrqb90WkVPTJAZxu91uXC4XBQUFuiwpP4qNRRt5aM9D7Crd1eB1L3ZdzPSW02ke2PwMtEzk/NWQLNCZm8gxPIaHZ/Y/w78O/AsvXrM8oTiUgQfi6ZjvIqUonECvneKASnZGutkalc+q+GyKAysB+KzgM9ZvXs8fW/6R4c2Gn61DETmv6cxN5KhKo5IHdj/A//L+Z5Z1yo9i4rZOXHgwDgd138QudlSypEUGr3baRr6zHAAbNv7Q8g9c3fzqM952kfOBztxEGsgwDB7d+6gZbA6vjZu3debaHe1wGCd/kE+oJ4Cr9rRhWFYST/TYyOdJ+zEwmLl3JmH2MEZFjzrThyAix9Djt0SAJXlLeC/3PQACvDYe/qo/N2zvUK9gO5ar3MkDX/fjmu3tzLKZe2eSVZ51WtsrIiemcJPz3uGKw/w548/m/G/TezPwYHyjt2fDxu1bunJphu8JCkXeIh7e8zBN4A6AiGUo3OS89+qBVynwFABw0f5ELs089Ue92bDxy009iC0JBmDNkTWsObLmlLcrIvWjcJPzWqm3lEW5iwAI9Nj51aYetdb7+xdfEDVjBtM//NAs23X4MDf++9+0e+wxUh59lElvv83BwkJzeXhlIHds7mbOv5Pzzhk6ChE5nsJNzmuf5n2K2+MG4OL9SUSXBdeosz4zk7lff023+OpLlUXl5YybNw8bsGjiRD76xS8o93i47o038HqrhxAMyUok5ujZ2/KC5eRU5JzZAxIRQOEm57n0onRzemRGzcuRhWVlTJ4/n3+MGUNUcHXwrdm7l735+Twzdizd4uPpFh/Ps+PG8c3+/SzfVT3wO8Cwc2mm796bFy8bizaewaMRkSoKNzmvbSneAoDNgC75zWosv3fxYkZ27Miwdu38yss8HmyAM6B6NE1wQAB2m43Ve/f61e2cF2VOby3eehpbLyJ1UbjJeW1n6U4AkovCCPH4D/ucv3Ej32Zl8eCIETXWu7BFC8KCgnhwyRKKy8spKi/njx9/jMcwOHDMfTeADgWu6v2V7DwDRyEix9MgbjlvGYZBqbcUgPCKQL9l+woKmP7RR7x7000EBwbWWLd5WBivjB/PtA8+4Pk1a7DbbPy0Rw96JSZiP+51HBEVQeZ0ibfkDByJiBxP4SbnLZvNhgMHHjx4bf5j0NL37yenqIihzz9vlnkMg1V79vDi2rUcvP9+hrdvT/qvf01uUREOu52okBA6/vWvtO7e3W9bnmO27bA5zuxBiQigcJPzXFRAFLmVuWSHFmNgYDv6/Mihbduy6s47/epOee89OjRvztTBg3HYq6/ox4SFAfD5zp3kFBUxupP/K2+yQovM6WYBNe/ricjpp3CT81rn0M6sdK/EHVRBdkgxiSW+oIpwOuka7/+UktDAQKJDQszy1775hk7Nm9M8LIy1GRlM/+gj7ho0iA7N/V91sy0q329/InLmKdzkvNYltAsr3SsB+Couh5/sCav3utsPHeJPn3xCXkkJLaOiuGfIEKYMGlSj3rq46rFtXUK7nHqjReSk9MobOa9tKd7Cz7f+HIC2BZG8uHyoeWnydDgYXMINlyzBa4Pmgc15v/v7BNpqdlARkZNrSBZoKICc17qEdqFHmO+RWztdblbFHzit23+jww94j2bl1TFXK9hEfiQKNznv3RB3gzn9RM8NHAksPy3bTY85xKLWuwFw2px6aanIj0jhJue9S6MuZXDkYAByg8uY2Wc9FTbvSdY6seyQYh7ts96cvzv5bmKDYk9pmyJSfwo3Oe/ZbDb+r+X/Ee4IB2Bt/EEevOArShyVjdre3rBCpqWu4lCIb4B4n/A+XBd73Wlrr4icnMJNBIgPiufxto/jtDkB+DLhAL8Ytoz1MfV/ir8Xg/+02cHtQz8nO7QYgFbOVjzW5jHsNv2vJvJjUm9JkWOsO7KO3+z4DcXeYrOsT05zrtrTmv4H4wj21Bw9kxdUxtLkfSxqvZt94dUDttsFt2NOhznEBupypMjp0JAsULiJHCejLIOH9zzM14Vf+5XbvTZaF4bTojCcQK+d4oBKdkS6ORha83mR18Vex91JdxPiCPmxmi1ieQo3kVPkNby8e+hd5h2cR0ZZRr3XuzDiQm5LuI2+EX3PYOtEzk8KN5HTxGt4WXtkLR/nfczm4s3sLNmJB4+5PMQeQqeQTvQM68lPYn5Cm5A2Z7G1ItbWkCzQ47dETsBuszMwciADIwcCUOotJa8yj0pvJU67k5jAGD3pX+QcpHATaYBgezCJQYlnuxkichLqnywiIpajcBMREctRuImIiOUo3ERExHIUbiIiYjnqLSkiImdOSQns2QNlZRAYCElJEBV1xnercBMRkdPHMOCrr2DuXFi9GjZtAo/Hv0779nDhhXD99XD55eA4/WNFFW4iInJ6LF4MDzwAX3994nrbt/s+b74JrVrBvffCXXeB/fTdKVO4iYjIqcnLg9/8Bl591a/YsNtxt+tIQacueELDsJeXE75rB1Fbv8NR5nvfIXv2wC9/CW+95Tvba9/+tDRJ4SYiIo23Zw9cconvTOyovK492HnjJPZd9hM8YWE1VrFVVBC/8nPavvkqCZ8v9RWuWAF9+8KiRTBs2Ck3Sw9OFhGRxtm3D9LSfAEHVIRH8O19M9hz9XVgs9VrE83Xrqbv/00jPMO3DUJC4H//gyFDatRtSBZoKICIiDScxwM/+5kZbEfatOOT95ay56fX1zvYAA71H8TShZ+QPXSEr6CkBMaNgwMHTql5CjcREWm42bNhzRoAilq05ItX/0NJcotGbcoTFsaXT73EgdSLfAW5ub4OJqdwYbFB4TZr1iwuvPBCIiIiiIuLY+zYsWzbtu2k673zzjt07tyZ4OBgevToweLFixvdYBEROcv27fP1igQMm42v/vo0pXHxp7RJb5CTdX99mrJm0b6CBQt8vS8bqUHh9vnnnzNlyhS+/PJLlixZQkVFBSNHjqSoqKjOdVatWsX111/PL37xC7755hvGjh3L2LFj2bRpU6MbLSIiZ9ELL/gGZQPbJ9zK4T4X1FptwQtP8dPOSbz86ANm2QM3/ZSfdk7y+zz/4O8BKItpzoY/PlK9gX/8o9FNPKUOJTk5OcTFxfH5559z0UUX1Vrn2muvpaioiPfff98sGzhwIL179+a5556r137UoURE5BxRXu4bm5adjdfh4KNP11IaX/Mdh9s3pjN76u2EhEfQfUAqt/zhT4Av3BJbt+W6X/3WrOsMCSE0PMI34/UyamQqYfv2+ua//x46dAB+xA4lBQUFAERHR9dZZ/Xq1VxyySV+ZaNGjWL16tV1rlNWVobb7fb7iIjIOWD9esjOBiBr+Mhag62kqIgn7r2bOx7+K+GRrhrLnSEhNIuNMz9msAHY7ey69ufV8x9+2KhmNjrcvF4vU6dOZfDgwXTv3r3OetnZ2cTH+1+LjY+PJ/vol1ObWbNm4XK5zE9KSkpjmykiIqfTMU8fyRmYVmuVl/70B/oNG0Gv1Nqv6H3x3wVMGtiNqWMu5rXZj1JWUuy3/ODAY4YBrFvXqGY2ehD3lClT2LRpEytWrGjsJup03333MW3aNHPe7XYr4EREzgXp6eZkXreeNRav+GAhOzdv5C//qb0zSNqV44hNakF0XDx7vt/CvL/NZP/uHfzuqX+addydOuMNDMReUQHffNOoZjYq3O6++27ef/99li9fTosWJ+76mZCQwIHjxiscOHCAhISEOtdxOp04nc7GNE1ERM6k3FxzsiTJ/9//Q1mZvPzoAzzw8r8JcgbXuvrIYy45turUhWaxccyYdA3Ze3eT0LI14Os5WRrTnNDsLDh8uFHNbNBlScMwuPvuu3n33Xf59NNPadOmzUnXGTRoEEuXLvUrW7JkCYMGDWpYS0VE5OzzeutctOO7bynIPcRvrx7F+G4pjO+WwndfrWbxvH8yvlsKnuPfDgB06NkXgKw9u/0XVD1E+QT7O5EGnblNmTKFN954g/fee4+IiAjzvpnL5SIkJASACRMmkJyczKxZswD49a9/zdChQ5k9ezZXXHEF//73v1m3bh0vvPBCoxosIiJnUUR154+gvMN+49t6DhzC3xd96lf96T/8huS27Rl36xQctbzaZvdW37CwZnFx1YVeL0H5eTX21xANCrdnn30WgGHHPdRy7ty5TJo0CYC9e/diP+a1Bampqbzxxhv88Y9/5A9/+AMdOnRg4cKFJ+yEIiIi56hj/u2O2rwRd6cu5nxIeDgtO3b2qx4cEkpEVDNaduxM9t7dfPH+u/S9aAQRUc3Y8/1m5s6aQdcLBtK6U1dznfDdOwgoPtrJpEePRjWzQeFWnyFxy5Ytq1E2fvx4xo8f35BdiYjIuahfP3MyZv1X7B13Tb1XDQgM5NtVX/D+qy9RVlJMTGISA0dezs/unOpXL2b9V7XuryH0VgAREak/txsSE6G4mIqwcBYv/6bW19qciqHXjiFmw9EhB6tWwdE+GnorgIiInBmRkXDDDQAEFhXSev6bp3XzzdK/rg62nj1h4MBGbUfhJiIiDTNlijnZ9cnHCNm/77Rs1l5eRt/7qx/LxV13Nej1OX7bOi0tEhGR80fv3nDLLYDv7O2C6VOxlZef8ma7zZ6F64etNfbRGAo3ERFpuNmzITkZgNi1qxjwm9uxl5U2bluGQZen/kaHV48OEQsIgLlzITCw0c1TuImISMNFRcFbb8HRMc5JS//HsOt/QuS2zQ3ajPNQDgN+dStd5jxeXfiPf/jO3E6Bwk1ERBpn8GBYtAhCQwGI2ryJ4T8bTa+H/4+IHT+ccFVnzkE6Pfckl1w5jOQlxzz5/+9/hzvvPOWmaSiAiIicmvXr4aabYLP/WVt+1+7kde9NQacuVIaGYS8vJ2LXDqI2bSBmw9e+ByNXad4cnn8err66zt00JAsUbiIicurKyuBPf/KdeZWU1H89mw2uvRaefBKOfQRXLTTOTUREflxOJ8ycCZmZvoDr0ePE3fhbtoTp02HHDnjzzZMGW0PpzE1ERM6MI0d872Pbvh1KSyEoyNfDsl+/RoVZQ7Kg0S8rFREROaGICLjoIt/nR6bLkiIiYjkKNxERsRyFm4iIWI7CTURELEfhJiIilqNwExERy1G4iYiI5SjcRETEchRuIiJiOQo3ERGxHIWbiIhYjsJNREQsR+EmIiKWo3ATERHLUbiJiIjlKNxERMRyFG4iImI5CjcREbEchZuIiFiOwk1ERCxH4SYiIpajcBMREctRuImIiOUo3ERExHIUbiIiYjkKNxERsRyFm4iIWI7CTURELEfhJiIilqNwExERy1G4iYiI5SjcRETEchRuIiJiOQo3ERGxHIWbiIhYjsJNREQsR+EmIiKWo3ATERHLUbiJiIjlKNxERMRyFG4iImI5CjcREbEchZuIiFiOwk1ERCxH4SYiIpajcBMREctRuImIiOUo3ERExHIUbiIiYjkKNxERsRyFm4iIWI7CTURELEfhJiIilqNwExERy1G4iYiI5SjcRETEchocbsuXL2fMmDEkJSVhs9lYuHDhCesvW7YMm81W45Odnd3oRouIiJxIg8OtqKiIXr16MWfOnAatt23bNrKyssxPXFxcQ3ctIiJSLwENXWH06NGMHj26wTuKi4sjKiqqweuJiIg01I92z613794kJiZy6aWXsnLlyhPWLSsrw+12+31ERETq64yHW2JiIs899xzz589n/vz5pKSkMGzYMNavX1/nOrNmzcLlcpmflJSUM91MERGxEJthGEajV7bZePfddxk7dmyD1hs6dCgtW7Zk3rx5tS4vKyujrKzMnHe73aSkpFBQUEBkZGRjmysiIk2Y2+3G5XLVKwsafPH1c4oAACAASURBVM/tdOjfvz8rVqyoc7nT6cTpdP6ILRIRESs5K+Pc0tPTSUxMPBu7FhGR80CDz9wKCwvZvn27Ob9r1y7S09OJjo6mZcuW3HfffWRmZvKvf/0LgCeeeII2bdrQrVs3SktLeemll/j000/5+OOPT99RiIiIHKPB4bZu3Touvvhic37atGkATJw4kVdeeYWsrCz27t1rLi8vL+eee+4hMzOT0NBQevbsySeffOK3DRERkdPplDqU/FgachNRRESsqSFZoGdLioiI5SjcRETEchRuIiJiOQo3ERGxHIWbiIhYjsJNREQsR+EmIiKWo3ATERHLUbiJiIjlKNxERMRyFG4iImI5CjcREbEchZuIiFiOwk1ERCxH4SYiIpajcBMREctRuImIiOUo3ERExHIUbiIiYjkKNxERsRyFm4iIWI7CTURELEfhJiIilqNwExERy1G4iYiI5SjcRETEchRuIiJiOQo3ERGxHIWbiIhYjsJNREQsR+EmIiKWo3ATERHLUbiJiIjlKNxERMRyFG4iImI5CjcREbEchZuIiFiOwk1ERCxH4SYiIpajcBMREctRuImIiOUo3ERExHIUbiIiYjkKNxERsRyFm4iIWI7CTURELEfhJiIilqNwExERy1G4iYiI5SjcRETEchRuIiJiOQo3ERGxHIWbiIhYjsJNREQsR+EmIiKWo3ATERHLUbiJiIjlKNxERMRyFG4iImI5CjcREbEchZuIiFiOwk1ERCxH4SYiIpajcBMREctRuImIiOUo3ERExHIUbiIiYjkKNxERsZwGh9vy5csZM2YMSUlJ2Gw2Fi5ceNJ1li1bRt++fXE6nbRv355XXnmlMW0VERGplwaHW1FREb169WLOnDn1qr9r1y6uuOIKLr74YtLT05k6dSq33nor//vf/xrcWBERkfoIaOgKo0ePZvTo0fWu/9xzz9GmTRtmz54NQJcuXVixYgV///vfGTVqVEN3LyIiclJn/J7b6tWrueSSS/zKRo0axerVq8/0rkVE5DzV4DO3hsrOziY+Pt6vLD4+HrfbTUlJCSEhITXWKSsro6yszJx3u91nupkiImIh52RvyVmzZuFyucxPSkrK2W6SiIg0IWc83BISEjhw4IBf2YEDB4iMjKz1rA3gvvvuo6CgwPxkZGSc6WaKiIiFnPHLkoMGDWLx4sV+ZUuWLGHQoEF1ruN0OnE6nWe6aSIiYlENPnMrLCwkPT2d9PR0wNfVPz09nb179wK+s64JEyaY9e+44w527tzJ7373O7Zu3cozzzzD22+/zW9+85vTdAgiIiL+Ghxu69ato0+fPvTp0weAadOm0adPHx544AEAsrKyzKADaNOmDR988AFLliyhV69ezJ49m5deeknDAERE5IyxGYZhnO1GnIzb7cblclFQUEBkZOTZbo6IiJwFDcmCc7K3pIiIyKlQuImIiOUo3ERExHIUbiIiYjkKNxERsRyFm4iIWI7CTURELEfhJiIilqNwExERy1G4iYiI5SjcRETEchRuIiJiOQo3ERGxHIWbiIhYjsJNREQsR+EmIiKWE3C2G/Cj8Xhg2zbYuBHcbrDZICoKeveGdu188yIiYgnWDjePBz76CJ59FpYtg6Ki2uu5XDByJNx1FwwdqqATEWnirHtZ8oMPoGNHuPJK33RdwQZQUADvvAMXXww9e8KKFT9eO0VE5LSz3plbQQH86lfwr3/5FXvDw/GkpOBJTMQbHg6Ggf3IERz79+PIyMBeUuKruGkTXHQR/PrXMGsWBAefhYMQEZFTYa1wy8nxXV5MTzeLKlu3pmzQICo7dAB7HSeqlZUEbtlC0OrVBOzfD4YBTzwBGzbAokUQHv4jHYCIiJwONsMwjLPdiJNxu924XC4KCgqIjIysvVJBAQwbZgab4XRSctllVPTuXf97aF4vQV9+SfCnn2KrrPSVjRjhu6zpdJ76gYiISKPVKwuOss49t1/9ygw2b0QEhZMnU9GnT8M6h9jtlKemUjRpEkbV5cilS+Ghh85Ag0VE5EyxRrj997/mPTbD6aRo4kS8zZs3enOeFi0ouvFGjKrLmH/5C3z11eloqYiI/Aiafrh5PL6ztqNKLrvslILN3GxKCmXDhvlmvF6/fYiIyLmt6Yfbhx/C7t0AVLZp47vHVou/f/EFUTNmMP3DD82yA0eOcNuCBXT8619JmjmTi557jvc2bzaXlw0ejCc21jfz5Zewfv0ZOwwRETl9mn64PfusOVk2aFCt99jWZ2Yy9+uv6RYf71d+x7vvsv3QId68/npW3XknY7p04eZ33mFDVpavgsNB2YABte5LRETOXU073Cor4bPPAF8nksr27WtUKSwrY/L8+fxjzBiijhuztjYjg9sGDKBfixa0jo7mt0OH4goOZsP+/Wadih49MAKOjphYuvTMHYuIiJw2TTvctm6Fo4OvK1NSah3Hdu/ixYzs2JFh7drVWNY/JYV3N20ir7gYr9fL/I0bKausJK116+pKTieexETf9K5dcPjwmTgSERE5jZr2IO5vvzUnvVUBdIz5GzfybVYWn06eXOvqc8eP55b//Ic2jz1GgN1OaGAgr117LW1jYvzqeRITCcjIqN5nVUcTERE5JzXtcHO7zUnvcU8R2VdQwPSPPuLdm24iODCw1tVnfvYZBaWlvDdhAtGhoXywdSuT3nmHD2+5xe/+nHHsto/Zp4iInJuadridYIB2+v795BQVMfT5580yj2Gwas8eXly7lnW//CUvrl3L6rvuoktcHAA9EhJYvWcPL61dy9/HjKne2LEPcanrEV4iInLOaNrhFhVlTtqPHPFbNLRtW1bdeadf2ZT33qND8+ZMHTyY4ooK33rHBaTDbsd73BPJbMdu2+U6HS0XEZEzqGmHW69e5qTjmB6OABFOJ12P6/ofGhhIdEgIXePjqfB4aBsdzdT//pdHRo4kOjSU97du5bMdO3jrhhv81nNUDQ0A3ytxRETknNa0w61jR98T+wsLcWRk+J5W4nDUa9VAh4N3bryRGZ98wnVvvklReTltoqN5dtw4RnbsWF2xpARHdrZvukMHnbmJiDQBTTvc7Ha49FJ4913sRUUEbN1KZbdudVb/4Oab/ebbxcQw79prT7iLoA0bsHk8vplRo065ySIicuY1/d4Rd91lTjpXr/Y9B/J0qaggaM2a6vnj7uGJiMi5qemH2/Dh0LkzAAH79hG0du1p23TwsmU48vKq99O162nbtoiInDlNP9zsdr9nPgZ/8gn24zqXNEbA9u0ErVrlmwkKgn/845S3KSIiP46mH27ge2LIlCkA2CorCZs3D0dmZqM3F7B9O6FvvYWtakjAjBlwgnt5IiJybrFGuAE89hgMGQKAvaSEsJdfJmjFiobdg6uowLlkCaGvv47t6Dg4xo2D3/72DDRYRETOlKbdW/JYoaHw/vswZgwsX47N4yHkk08I2riRsgEDqOje3Xd5sTalpQRt2EDQmjU4jn0w8tVXwxtvQIB1viYRkfOBzTCOexzHOcjtduNyuSgoKCAyMvLElUtK4P774fHH/R6bZQQG4klMxJOUhBEWBoDN7caRlYUjK6u6uz9AYKDvUuTvfqdgExE5RzQkC6wXblVWrYJf/xrWrWvYzoYNg6eegu7dG9xOERE5cxqSBda553a81FRYuxbWrIFJkyAlpe667dr5xstt3Oh7+amCTUSkSbP2NTebDfr3930AcnJ872Nzu33LoqJ8z6ds1uzstlNERE4ra4fb8WJjYcSIs90KERE5w6x7WVJERM5bCjcREbEchZuIiFiOwk1ERCxH4SYiIpajcBMREctRuImIiOUo3ERExHIUbiIiYjkKNxERsRyFm4iIWI7CTURELEfhJiIilqNwExERy1G4iYiI5SjcRETEchRuIiJiOQo3ERGxHIWbiIhYjsJNREQsR+EmIiKW06hwmzNnDq1btyY4OJgBAwawdu3aOuu+8sor2Gw2v09wcHCjGywiInIyDQ63t956i2nTpvHggw+yfv16evXqxahRozh48GCd60RGRpKVlWV+9uzZc0qNFhEROZEGh9vjjz/O5MmTufnmm+natSvPPfccoaGhvPzyy3WuY7PZSEhIMD/x8fGn1GgREZETaVC4lZeX8/XXX3PJJZdUb8Bu55JLLmH16tV1rldYWEirVq1ISUnhqquu4rvvvmt8i0VERE6iQeF26NAhPB5PjTOv+Ph4srOza12nU6dOvPzyy7z33nu89tpreL1eUlNT2bdvX537KSsrw+12+31ERETq64z3lhw0aBATJkygd+/eDB06lAULFhAbG8vzzz9f5zqzZs3C5XKZn5SUlDPdTBERsZAGhVvz5s1xOBwcOHDAr/zAgQMkJCTUaxuBgYH06dOH7du311nnvvvuo6CgwPxkZGQ0pJkiInKea1C4BQUF0a9fP5YuXWqWeb1eli5dyqBBg+q1DY/Hw8aNG0lMTKyzjtPpJDIy0u8jIiJSXwENXWHatGlMnDiRCy64gP79+/PEE09QVFTEzTffDMCECRNITk5m1qxZAPzpT39i4MCBtG/fnvz8fP7617+yZ88ebr311tN7JCIiIkc1ONyuvfZacnJyeOCBB8jOzqZ379589NFHZieTvXv3YrdXnxDm5eUxefJksrOzadasGf369WPVqlV07dr19B2FiIjIMWyGYRhnuxEn43a7cblcFBQU6BKliMh5qiFZoGdLioiI5SjcRETEchRuIiJiOQo3ERGxHIWbiIhYjsJNREQsR+EmIiKWo3ATERHLUbiJiIjlKNxERMRyFG4iImI5CjcREbEchZuIiFhOg19506QYBqxbBytW+P67ZQsUF4PDAXFx0K+f73PZZdCs2dlurYiInCbWDLfSUvjXv+CZZ2DDhtrrbN4My5b5pkNC4Lrr4Fe/gt69f7RmiojImWG997mtXQuTJvnO0o5j2GwQFAReL7aKiprr2mwwbRo8/LAv8I5tQ6WbLcVb2FK8hQMVB6jwVhBkD6KFswVdQrvQKaQToY7QUzhKERE5kYZkgXXO3AwD/vxn+OMfwes1iyuTk6no3ZvKFi3wxsZCgO+QbYWFOLKyCNi+naD0dGxlZb5tzJ4N778P77+Pp10bVrtX807OO6x0r8Sg7r8DAmwBjIgawfjY8fQO643NZjvjhywiIrWzxpmbYcAf/uALt6M8iYmUXHEFnhYtTr6D8nKca9bgXLYMm8cDwLZBLZjxzIV8793T4PZeEH4BD7R6gGRncoPXFRGR2jXkzM0a4fbUU777ZUeVDh1K2UUX+TqONIA9J4eQt9/m5ascvDg5EW9A9dlXsD2YlmEtiXXG4gpyYcdOpVFJfnk+ueW57C3aS5m3zKwfYg/h3hb3Mrb52IYfsIiI1HB+hdu2bb5OIKWlAJRccQXlF17Y4H14MFgTd4Cnun3LgfDSWuvYsdMsqBktw1rSIaIDwY7g6vW9HnYX7SY9L50iT5FZPiVpCrck3NLg9oiIiL/z556bYcAtt5jBVjZgQIODzcDg0+RMXu60layw4hPW9eIltzyX3PJcNuRtoG14W/pF98PpcOKwO2gX0Y6WYS1Zd3gdPxz5AYA5++cQZg/j2rhrG3eMIiLSYE073JYtg1WrAPA0a0bpiBENWv2ws5S/9/yWlQnZfuVB9iBinDFEB0UTaA/EMAyOVBwhtzyXgooCwBd02wu3k1mSycCYgaSEpQAQaA9kUPNBRAREsD5vPQCPZz5Ov4h+tA9pf4oHLCIi9dG0w+2ZZ8zJsuHDfd38a/H3L77goaVLuWPAAP48ejQA+8IK+dWFX5AfUT0kIDE4kc6uziSHJGO31f7wliMVR/j+yPd8f+R7KrwVlHhK+OzgZ/SL7kc3VzezXveo7pR6Stns3kylUcmMPTN4pdMrBNia9lcuItIUNN3Hb7ndsHAhAN6wMCq6dKm12vrMTOZ+/TXd4uPNsuyQYu7uXx1swfZghsYN5dLES0kJTakz2AAiAiPoF92Pq5KvIjmkujfk14e/ZnPBZr+6fZr1wRXoAmBL8RaW5i1t3LGKiEiDNN1w++YbqKwEoKJzZ3P82rEKy8qYPH8+/xgzhqhgX+cPj83LQ/3W4Q73BVtUYBRjksfQKqxVg3YfGhDK8Pjh9I6qfqLJV4e+Yt7MeRRk+S5dOuwO+sf0N5e/nfN2w45RREQapemG29dfm5Oe5NrHk927eDEjO3ZkWLt2Ztlb7XawrVk+ABEBEYxMHElIQEit65+MzWajZ7Oe9Izq6Zu326gcUclLN79k1kkITjDP3tKL0tlVsqtR+xIRkfpruuG2qzokvLGxNRbP37iRb7OyePCYTiblkQavdtwGgA0babFpft35G6tnVE9inb42OOIdVPSqIG9fnm8/NhvtwqvDNb0o/ZT3JyIiJ9Z0w6283Jw0AgP9Fu0rKGD6Rx/xwtVXE3zMspzBXiocvkdzdY7sTGxwdSjm789n3u3z+EO7P/DbpN/yl8F/Ye83e2vd9dvT3mZq9FSWPbsMALvNTmrzVGz4Bn3H/iwWZ4TTrF8VfOC79yYiImdW0+26d0zPyOMfgpy+fz85RUUMff55s8xjN+g+IIIggrBho4urugNKcX4xT45+kg5pHbj97dsJbx5Ozo4cQqNqPgj52/e/Zfe63bgSXX7lriAXKaEp7C3eS2DzQA4GHKQ1rQFo5qx+nc7O0p2ndNgiInJyTTfcWlV3ALHn5OBJSTHnh7Zty6o77/SrPuXbD7DF+QIxOSSZ8IBwc9nSJ5fSLLkZN8y5wSyLaRVTY5f5+/OZ//v53PGfO3jhuhdqLO8Y0ZG9xb6zvf3F+2kd1hqAQFsgNmwYGJR6a3/6iYiInD5NN9z69TMnHfv3U9G3rzkf4XTS9Ziu/wBBnYKpOr+LD/FftunDTXQe3pm5k+ayY9UOXIku0m5JY9DEQWYdr9fL63e+zvBfDiexS2KtTYoLjjNDLLc8129Z1RsFHDTseZciItJwTfeeW9++5oORA7dtg6NP86+Lt011qMQE+Z+V5e7JZeXclcS2i+WO/9zB4JsHs+C+Bax9c61ZZ+mTS7E77Fx0+0V17iPAHmD2jMwvz8dr+O7vFVYWmnXs5WH1PEAREWmsphtuLhf85CcA2I8cIWDr1hNWv7hn9aOvQgP876UZXoMWPVtw5f1X0qJnC1InpTJwwkBWzl0JQEZ6BsufX84Nc2446XvaqrZtYFDp9Y3Dyy2rPovbtTWMnQfc9TxIERFpjKYbbgDH3FcL/vRTqO3t2ked6NUHkfGRJHRK8CuL7xhPfqZvPNyO1TsozCnkoZ4PMS12GtNip5GXkcd797/HQ70eOsE+fXvNLMk0y2x5icxetIFKj7eu1URE5BQ13XtuACNGwIUXwldf4cjNJfizzygdObLWqqGV1Yda6iklMrD6dQltBrTh4PaDeAwPh8sOk1ueS0ZSBimPpPDpgU+xjbExfsR4IrwRuLwuAgnkufHPccE1F9D/hv5++yn1VHcYCbAHUOYpY3fRbgDslcEE5rZhu8fN26t2cMOQDqfxyxARkSpNO9zsdpg713f/rbwc56pVeJo39+tcUqWtuzrMcstyiQuOM+cH3jWQhQsW8ubWN/EGHz2j6gRBBLGveJ9v/uhwOYfNQeuw1gR3DiYiLoL4DtWdUzyGh/xy39meK9CFw+bg24Jv8Ri++4FdGc4BbxAGsGDNLn46sC3OQHUwERE53Zr2ZUmAbt1g5kxzNnTRIpxffAFe/8t+HQuizOmDZQcB8BpeNuZvZE3UGhJuSagOthPwGB52FO4g+W/JHOp5yO9M7VDZIbz4thETFENuWS6bCjYBYMdBWsRVtG8ZDcCRkgqWb85q5EGLiMiJNO0ztyr33AOZmfDEEwAEL11KwLZtlFx5Jd4E3720du5IIssDcQdVsLdoL9/lf8fG/I2UG+W1bjLIHkRMUAwtw1oS64wlvyKfg6UH2VW0iwqv795ecVIxizIXMSR2CIkhieYLSgFinDEsP7jcvO/WbO9wNh6pJNhZ/ZV/snEfl/ZqcUa+EhGR85nNMIwT9bU4J9Tr1eKGATNmwMMP+6aPqmzVivLevfG0aMGcIdm806HhDy4OdgTTNbIrXV1d8Rgedhbu5Ju8byj3+oLRjp2BzQfyZe6XeA0vgbZAgh3BHKk8AoCjIIGolbdjM/wvQQYH2ln4+8tO2gNTRETqmQVHWSfcqnzxBdx8M+zYAUBelIP/jonhi7RINvQKxxPofyU20BZItDOaqKAoAmwBeAwPBeUF5JbnmuFVpbmzOanNU4kKiqK4sphVh1axv2R/jSZUDeQGcJRFEP/VnVS4w6ntmx7YIY57ftKLyNDaX7QqIiI+53e4ARQVkT3vHzxT+iZLBjgod9a8tZgckkznyM4khSTVeuZkGAYHSg+w7cg29hbtNcMqwBbAsPhhJIUk4TW8rMhZYfaGrE0wEUwI+QvNvC3ILShhX7abrbsOUVhcPWwhOtzJjGsvoFNSVJ3bERE5353X4WYYBu/lvsfj+x6nyFtUY3mYI4xBsYNICkmq9/5zSnNYeWgl7grf4GuHzcGI+BEkhCTgNbx8nPWx2UmlSpA9yDzzi7DFcGvIPwi1+Z5e4vUa/LDnMKvS91Fe4etJGRLkYNaNA+jSohkiIlJTQ7Kg6feWPEalUcmDex7k4b0P1xpsCcEJjGkxpkHBBhAbHMuVSVeSEup7OLPH8LDs4DJKPCW+193EpuKwVd9PGxI7hKtbXG0+5uuIkcv/yqrfUGC32+jUJoZrLutCYqzvAc4l5R7++OZXHMgvbvBxi4iIP8uEm9fw8uDuB/ng8AdmWURAhDkd64xlePxwguyNu7cVYA9gaNxQMxjLveWsObQGwzCIDIyka2RXs667wk2QI4iL4y8297fZs5xtlV/6bTMsJIjLh7QnOc7XzsLSCp74YCNN4GRaROScZplwm5s9l4/yPgJ8vRd7RvU0eysG2gIZEjuEAPupjXyw2+y+t3fbfW/v3lu813y0VsfIjubLSn848gOGYRAaEEr/mOonmKyqeKfGNgMC7Fya2pawEN8o8fU7D/Hxhn2n1E4RkfOdJca5/VD8Ay9kV79frVNkJzblbzLn+0T3ITzQd/nP6/Hy0Z8/Yt076zhy8AiRCZH0v74/I+8dic1mw1Ph4YOZH7BlyRZy9+QSHBlMx6EdGfPAGFyJLoIdwVwYcyFf5HwBwFb3VlqEtiAsIIz44HiyS7Mp9hRT4ikhNCCUNmFt+K7gO/LK89jv3cbN13SFDDud+lzAz+/9P1q07YAzyMHQC1uxePl2AN5euYORvVpoiICISCM1+TM3wzCYmTGTSsP3BP6IgAi2uLeYTwpx2p10CK9+huPSJ5eycu5KfvrYT5n+5XTGPDiGT5/6lOUvLAegvKScfRv2MfLekdzz2T3c8uotHPzhIC/d+JK5jdZhrc2Xne4v2W92NGnubG7WySnLAcBms9EpopNZPvbZydz/0hsYhsHDv7gez9FX9aQkRJIU59vmvsNFfLPL/31wIiJSf00+3DYVb2Jj0UbAN76s6lJklXYR7XDYqzt77Fq7i+6ju9NtZDdiWsbQ+6redBrWib3rfW/QDokM4a5376LPuD7Ed4in9YWt+dljPyMjPYO8fXm+/dhsdIzoaG4zs9h3abJZUHVPx71Fe83plmEtzemC0CzaduvJ9VN/z6Gs/eRkZpjLurWLNac/21T9JgEREWmYJh9u7+RU38cyanmxTWKw/1uz2/Rvw/fLv+fgdl/X/cxNmexcs5Mul3Spcx8l7hJsNhshkSFmWUJI9StyDpcfBiDQHmiWVZ25ge8JJ2EBvpeUZnt3UlxUyGcL3iKuRUtiEqp7brZMdFF1JfKHrIK6D1pERE6oSd9z8xpeluUvq1F+7BNCop3RfstGTB1B6ZFSHhv5GK7BLkI6htB9XncykzLZt28fDpsDV6CLGGcMcc44XIaL/z70X/r+tC/BkcHmdpoFNjP3UxVuVW/eBiiqLMJreLHbfH8/uAJdFFUWUUEpk0Z0Ib5Zax58+d8EBlX33gwIsBPtCiE3v4Q9OYWUVngI1lsDREQarEmH276yfTXGsyWFJFFUWURBRQF2m50QRwhew4u7wk1uWS7fbf2OgyMO0vOmnhzt3Eg55ZRXVD9qK688z3zqiDfbS8iwEMZNHee3H4fdQYgjhGJPMWWeMgDz3hv4ziILKgrMS5XHjoP73bMvs+SF15g99XZmvvkeQc7q0IyKCCY3vwSvYZBXWEZiM/+3houIyMk16cuSq9yr/OY7RHRgePxw7FWHZUB6Xjrv7HmHRZmLWHloJfnN8wlKDjKD7Vi2WgrtCXYiJkTwyZFPyCnNqbkS1ZdDc8v9O4FUvdsNMDu8AHTtPYB7n3yRzF3bWbPkQ791HPbqNlTobd0iIo3SZMPNMAxezHrRnE8JTWFgzEAOlR0yz6C8ePk2/1vKjLL6bfNoSNmwEeuMNZ8wAr6zsg+zPmRD3gYMw8BreM3HawXaA6n0VpJV4v9+tmMDrSroggkjhAjf3gyDinL/hzMfG2hBAU325xEROaua7GXJjUUbyfccDQx7MP1j+vP14a/Z7N58wvUC7YHEBMUQHRRNkD0IL16OVBzhcPlhCip8nTgMDHLKcgh2BNOvWT/2FO/hUNkhADbkb6DcW0778PZmeEUFRrG7aHeNtwhUnUEWV/rGvQFEV7Zg2zfrePfFpwlyhtBv6Ai/dQ7n++rZgI17DhMd7iQoQPfdREQaosmG279z/m1O94jqwYqcFRwoPVBn/fjgeDpHdiYlNMXs5HG8IxVH+P7I93x/5HsqvBWUekr5Ou9rekf1pkVoC9Lz0gHY4t5CUWX1vb5mQc3YmL+xxvacDicAu4qq3yGX/toXrH5nGV0vGMijb76HK6Z6bFxZeSUFhb6zTAP426IN/HPpVu4Y2ZWh3RI1qFtEpJ6a5FsB3JVuGXMfdAAAGbRJREFULvn2Ejx4CLQFEhUYRU557ffDguxBDIgZQOuw1vUOh+LKYr7M/ZJ9xdWPwerbrC9Oh5PVh1bXqN86tDW7i3cDvkd9VRi+19mMTxlPsCOYhfsWmuPv7gh5jhh77W/f/m57DivWZ9S6bEiXBO75SS9Cgprs3yMiIqfE8m8F2FS8CQ++J3uEBYTVGWyuQBdjksfQJrxNg856QgNCuTjuYvo262uWrc9bT0RABN1d3f3r2kPNYLNjx2McfYWNI4SQgBC2ureawdbG3rvOYDMMg807qo/jogta0irJZc5/sSWb+15fQ0l5ZW2ri4jIMZpkuG0t3mpO51fk11onLCCMSxMuNQdPN5TNZqN7VHd6RfUyy1YdWkVXV1dcgdWhU+ytfkVNUkiS+divlqEtcVe4WZ+33lyeFnRdnfvbsvMQhwtKAYiPCaNL2+ZcltaOSwa1+f/27j0q6jL/A/h77sNlGBjuKJe4i4IkJAtqpFG4upS1m54sMn+Ztekek7O2mrZIlrodt5+tS5nd3PP7may2Zpvy8xLGmihLCqQmhgriBQZFbsN1Lt/n98fEDMMMlxmXGcDP6xzOYb483+98PsL4Oc/zfb7PA/HPz7pV3GjGxn1ltGsAIYQMYlSOcVV3VVs8zgffUFymeU2Ds9AZOqZDs7oZd7rvoFnTDC2nBY/Hg5QvhUKigEKsgKvQtd+eXZx7HJRdStR31aNN24aKlgokKBJwrP6YSbtw13CT2ZJBLkH4RvmNoSeXKMxAkMC019ejta0bxT8Yl9tKnGhcVSUs0APuMgm+LryEbrUOJZdu4XD5dcy+P8jSpQghhGCUFreemYe9uYvcDb24SFkknIXO+P7O97jSdsVsFmNfgmYBGr5oQN2eOvC0PATGB2LO2jkISdTfp0vxSsFXN74CBw6VqkpMcp8EF6GLyaQSjnFo1+lfe4o9cfL2ScNrL14QZooXWXzv9g418o9fhkarL8rNl4rRNUEA+Bl7jJ7uzpiVFIL/++4KAODDoxWYPsEfrlKRxWsSQsi9blQOS/Ze7QP4eRIHpzG8VnNq7L+xHxWtFYMWNgDQuevgscQDk49MxlOHnoJHoAe2/3o72hraAAAykcyw+HE3143rHdcR7BJsco2q9ioA+mfk7qjvGAqbB88fT0vfhJgnRV91t9uw/1ilYYakq5MAD8+IgatcbtY2yF+OiGD9UmId3Vp8c5b2fCOEkP6Myp6bu9Dd5HWwSzAut+n3QhNAYFg6C9BvMBroHAhviTcUYgUkAgkYY2jTtqFR3YjazlrDM2waaHBefB7jXhsH9X41an+sRWSqfvX/SFmk4bo3O24i0DnQYmy9F28ex4/GbyRr4cr3MGnT1qHGDxfrcf6ycQKJm4sYGTMj4erc/07h8dG+uFSjX8fy4JlrmDf1voH+mQgh5J41Koubl8jL5HXvCR49syiFPCFi3WMRIYuAVGDea1JIFAhyCUK8RzwauxtxruUcatprAAA3NTcR9VEUPGOMK5R4S70N9/Qa1Y2IdY/tNz4+J0Js52+QLH0cAp4EHUwDVYcaDU0duFHfipraFvSeE6JrVeLbHRtx5mMnpD/9PB6Z/4zF6yrkTvBROONWYweuNbShtUMNtwGKISGE3KtGZXHrvYajTCjDnW7TNR19JD6Y5j0NMpFsSNdTSBRI9UlFTXsNihuK0c11wynSCcXqYqRz6RDyhRDwBHAXu5usZGJGI4HT1SRIrz2Am11yfIHKAd9Xp1WjunA3Jkf7YfVfPsDlcz/g07ffgFAkwswn5ls8x8fTBbca9TM0L9W1IKHXHnCEEEL0RmVxq+qqMnzvLnbHzU7jTMMg5yDM8Jlhdl9uKIJdguEucscR5RF06jpxR30H5c3lSFQkAtA//9azvY2le3ny6pkQXUoZ9H2cpUJEh3ph29JfYXzQODyb9R4AIDQmFtcvXcSRvP/pt7h59NpT7lar+cQaQggho7S4XelV3Nq17YYVQbwl3jYXth5ysRwP+z6M/Np8cOBQ0VKBYOdgeEu9TXYNaFW3mp2r4dSwNH/RXSaBj6cLvD2c4eXhDG+FCwR8HpykAowPjzRpOy4sAsVH8vuNTyAwxqDV0fNuhBBiyaicLdnSa9+0np6UgCfANO9pd1XYeigkCsR7xAPQTxApayoDAHTpuowxaC0MTXKWp+anJYdi5tQQTIrwgZ+Xq2Fbm+j7H0Bt9RWTtnVXq+AdMK7f2Lq6jCuUOItpQWVCCLFkVBY39vOkkd4myifCTWRca6xL1YV9a/YhJy4HqwJWYWv6VlwrvWbxenuy9uBVxaso/KDQcCxGHgOZUH/PTtmlRFN3k6GQ8sDDzY6bZtfhd7ibHQOAhuYOi8cznl+Kyh9K8Y/tf0FdTTW++3ofju75X8x+ZrHlxPtcK8RnaPcUCSHkXmNTccvNzUVISAikUimSkpJQUlIyYPu9e/ciOjoaUqkUsbGxyM/vf9htSHh9X/IQKTMd3stbkYfKwko8u/1ZvHbiNUTNjML7T7yP5lrT5brOHjiLq6evQu5v+mwZn8dHlFuU4fX5lvOG1UYAy8t+8bXmszIB4Hqd+RAmAITHxuO1bZ/gxMH9WJkxC3s/2IrFa97EgxlPWmyv03G4Wa9fp1Ik4CPYm4obIYRYYnVx+/vf/46srCxkZ2ejtLQUkydPRnp6Om7dumWx/cmTJ/H000/jhRdeQFlZGebNm4d58+bh/Pnzdx18D38nfzgLnQ2v1Z1qnP36LDJyMhCWEgbvUG/8cvUv4RXqhaLPigztmmub8Y8//AOZH2aCb2Fj0FDXUMP3tZ21hu97P8vWG+ekH6rk9ym+1Teb0dGpsXAGkDjzEfz318eQd7Yaf8k/3u9jAD3X6ezWD0v+ItIXQsGo7HgTQsiws/p/x3fffRcvvvgiFi9ejJiYGGzfvh3Ozs749NNPLbZ/7733MHv2bKxatQoTJkzAhg0bMGXKFPz1r3+1KeAursvsmLfEdDo8p+XA6TiIJKb3wERSEaqK9ZNROI7Drt/uwqzfzYL/BH9YIhVIDUOT3dzgu3lr3fRrS3J9ah/HMRSfNR/GtIZGo0PJOWOBzUgMHqA1IYTc26wqbmq1GmfOnEFaWprxAnw+0tLScOqU+T5nAHDq1CmT9gCQnp7eb/vBdOo6zYYlPcSmK4BIZVKEPBCCw1sOo6WuBZyOw+k9p3H1+6tordcPERa8VwC+gI8HX3pwwPdTSBRDjo2JuiDq1QMc5+Nq+P5STSOuXG8a8rVMrssYTpbfgKpd//jBpCAF4oKHHhchhNxrrCpuDQ0N0Ol08PX1NTnu6+sLpVJp8RylUmlVewDo7u5Ga2uryZeBhcX7xXzzVTqe3f4swIDsidn4vd/vcXzHcUz59RTweDxcL7+O4x8ex8LchYPu82bp2v3iMch6rRgS6Gd6H+/Yv6+i+qblLXr6wxhD8Q83cbFa/6C6RMhHVkYc7cpNCCEDGJHPuW3atAk5OTkWf+bMdwYYTIqcpXtgXvd54XcHfofu9m50qbog95Nj53/thFeIF66cuoK2223IiTO+B6fj8NUbX+Ff2/+F7B+yjccZZ3ZtIU8ILTPfNJSvk6JJpR82FYsE8PRwMvk5xzEcKapCTJgXkuLGGfZp60+zqgv/+r4Gygbj7gMr5sZinMK2PeoIIeReYVVx8/LygkAgQH19vcnx+vp6+Pn5WTzHz8/PqvYAsGbNGmRlZRlet7a2IjBQv1CxhC8xa6/SqODvZPm+mcRFAomLBB3NHbh47CIeW/8YJj82GVGpUSbttj+1HYnzEzF14VST423aNpPXPPBMCptMIINKp5/BKNcEQvtznY0MUaC51XifLjJAjspa/YSTC1cacPlaIyJDPBES4A4vDydIxEIwxtDeqcGtxnZcqmk0WYOSB2DFr2LxcJzlnbwJIYQYWVXcxGIxEhISUFBQgHnz5gHQT8woKCjA8uXLLZ6TnJyMgoICvPrqq4ZjR48eRXJycr/vI5FIIJGYF7EePCYA4xmn5fdea7JHRUEFwACfCB80VDXgq+yv4Bvhi6RnkiAQCeDSp/fDF/Ih85HBN8I4hMoYQ2N3o+l7g2fSU5SJjMWts84LIgBSiRBTJvjh+Gnjc3UvPRqDK8pWfFJwEd0aHdQaDucv3cb5S/qdAYQCPhhj0PWdjQLA38MZWRlxiAv2NPsZIYQQc1YPS2ZlZWHRokVITEzE1KlTsXXrVrS3t2PxYv2Dx8899xzGjRuHTZs2AQBWrFiB1NRU/PnPf8bcuXORl5eH06dPY8eOHTYHHSaJwGXNRcPrus46cIwDn2e8hdjV2oUDGw6gubYZLh4uiMuIw9x1cyEYZCiwt1vdtwxLewH6wtaz0zeg3327qu3nfdy6XSBs1RfGGVMCoeMYaur0PTVPmQTRAe6YFKjAA2HeyCu6jG/P10KtNV5LqzMf/lS4SjB3ShB+kxwKqXhEjiATQsiIZPX/mAsWLMDt27fxxz/+EUqlEvHx8Th06JBh0si1a9fA5xuLTEpKCj7//HOsW7cOr7/+OiIiIrB//35MmjTJ5qDfCd+IJy88abjv1qZtQ21nLcY7G4fs7n/iftz/xP1Dvmbv+2w9KltNV/Xv3WNzEbhAwpcYip30+hTwmL7HFhrogW9OVRuGFOfcH2R4Ji1A4YKsjMlYkjYBxZX1qKxtQVV9K9q6NODzeFC4ShDuL0fMeA8khnnTs2yEEGIDHmNsxK++29raCrlcjpaWFri56ZfYeuD0L8Dxjb0qb4k30v3TTXpvd6NZ3YwDNw+Y9NR68MDDdO/pKLpdpP85x4dH4QoEy4MwZ0Y4rlxvQkHxVQCAq1SEj3+bCg/X/odZCSGEDM5SLejPqO0WrAt8A70nSd7uvo2LrRf7P8EKHOOMhcuCVJ9UnG85b/i5U9V0uPN9MXtaGGpqW/BtSY2h7bLZE6mwEUKInY3a4va471y46kwnWJQ2lULZ2f/zc0PBGMPpxtMWJ6kAwIPeD+LHlh/RpNY/kC1Q+cD1ykOYlRSC4rM3cbioCtzPk0IeiRuPmZMC7ioeQggh1hu1xQ0AjiR8bdJ74xiHY/XHcKPjhk3X4xiHksYSiz1APvhIUCTgTNMZ3O7Wz3DkqZ0hL1uA+/y8cLioyjDzEQBmTgrAyoxYetiaEEIcYNTec+tReuc8Xry6yGzlkkhZJBIUCRDxLe+x1leTuglFt4sM29r0JuKJ4CnxhLLL2CvkdbtAXvIchK2mz9eJhXwsnhmFeUn3gU+FjRBC/mOsuec26osbAHzfcA4v1zxvVuDEfDHCZeEIdw2HXCQ360XpOB2UXUpUqipxo+OGxZVOBBBA12f/OOGdEMh+eAKCTuOalkI+D9Mn+CMzNQLjPV37XoYQQshduueKGwA0drVidulj0ElUFtefFPFFUIgVkPAlYGBo07ahWd3c7/Y1lvDVLvCsSYNHXTL4PD5kUhHC/eSICJDjwQn+NHGEEEKGkTXFbcw8GayQuqEkpRBvlX+ILzU79HcTexU5DadBfVd9v+f3Xa+yh4QnRYR4Ap7yeRKPeqZB/AsrFlImhBDiEGOm59bXV5dPYJMyBxppo75oWbr9xQBwAijaYjBfthhhAVJwTiromA5ivhghkhAESYMg4A19VRNCCCHD454clhyIjuPw7xuXcanlGjSCToS6+yLBJwpuAjeazUgIIaPEPTksORABn4+UoEikINLRoRBCCLGDUVHcejqXJpuWEkIIuaf01IChDDiOiuKmUum3lOnZ040QQsi9S6VSQS6XD9hmVNxz4zgOtbW1kMlkNt8j69nw9Pr16zbdtxsJKIeRgXIYGSiHkcGeOTDGoFKpEBAQYLL7jCWjoufG5/Mxfvx/ZgdqNze3UftH1INyGBkoh5GBchgZ7JXDYD22HqN6bUlCCCHEEipuhBBCxhzB+vXr1zs6CHsRCAR46KGHIBSOitFYiyiHkYFyGBkoh5FhJOYwKiaUEEIIIdagYUlCCCFjDhU3QgghYw4VN0IIIWMOFTdCCCFjzpgqbrm5uQgJCYFUKkVSUhJKSkoGbL93715ER0dDKpUiNjYW+fn5doq0f9bk8NFHH2HGjBnw8PCAh4cH0tLSBs3ZHqz9PfTIy8sDj8fDvHnzhjnCwVmbQ3NzM5YtWwZ/f39IJBJERkY6/O/J2hy2bt2KqKgoODk5ITAwECtXrkRXV5edojV1/PhxZGRkICAgADweD/v37x/0nMLCQkyZMgUSiQTh4eHYuXPn8Ac6AGtz2LdvHx555BF4e3vDzc0NycnJOHz4sJ2itcyW30OPoqIiCIVCxMfHD2OEA2BjRF5eHhOLxezTTz9lP/74I3vxxReZu7s7q6+vt9i+qKiICQQC9s4777ALFy6wdevWMZFIxM6dO2fnyI2szWHhwoUsNzeXlZWVsYqKCvb8888zuVzObty4YefIjazNoUd1dTUbN24cmzFjBnv88cftFK1l1ubQ3d3NEhMT2Zw5c9iJEydYdXU1KywsZOXl5XaO3MjaHHbt2sUkEgnbtWsXq66uZocPH2b+/v5s5cqVdo5cLz8/n61du5bt27ePAWBffvnlgO2rqqqYs7Mzy8rKYhcuXGDbtm1jAoGAHTp0yE4Rm7M2hxUrVrA//elPrKSkhFVWVrI1a9YwkUjESktL7RSxOWtz6NHU1MRCQ0PZo48+yiZPnjzMUVo2Zorb1KlT2bJlywyvdTodCwgIYJs2bbLYfv78+Wzu3Lkmx5KSkthLL700rHEOxNoc+tJqtUwmk7G//e1vwxXioGzJQavVspSUFPbxxx+zRYsWOby4WZvDBx98wEJDQ5larbZXiIOyNodly5axWbNmmRzLyspi06ZNG9Y4h2Io/6m+9tprbOLEiSbHFixYwNLT04cztCGzpjD0FhMTw3JycoYhIutZk8OCBQvYunXrWHZ2tsOK25gYllSr1Thz5gzS0tIMx/h8PtLS0nDq1CmL55w6dcqkPQCkp6f323642ZJDXx0dHdBoNFAoFMMV5oBszeHNN9+Ej48PXnjhBXuEOSBbcvjnP/+J5ORkLFu2DL6+vpg0aRI2btwInU5nr7BN2JJDSkoKzpw5Yxi6rKqqQn5+PubMmWOXmO/WSPs8/ydwHAeVSuWwz7OtPvvsM1RVVSE7O9uhcYycx8nvQkNDA3Q6HXx9fU2O+/r64uLFixbPUSqVFtsrlcphi3MgtuTQ1x/+8AcEBASYfcjtxZYcTpw4gU8++QTl5eX2CHFQtuRQVVWFY8eO4ZlnnkF+fj4uX76MV155BRqNxiEfcFtyWLhwIRoaGjB9+nQwxqDVavHyyy/j9ddft0fId62/z3Nrays6Ozvh5OTkoMhst2XLFrS1tWH+/PmODmXILl26hNWrV+O7775z+GolY6LnRoDNmzcjLy8PX375JaRSqaPDGRKVSoXMzEx89NFH8PLycnQ4NuM4Dj4+PtixYwcSEhKwYMECrF27Ftu3b3d0aENWWFiIjRs34v3330dpaSn27duHgwcPYsOGDY4O7Z70+eefIycnB3v27IGPj4+jwxkSnU6HhQsXIicnB5GRkY4OZ2z03Ly8vCAQCFBfX29yvL6+Hn5+fhbP8fPzs6r9cLMlhx5btmzB5s2b8c033yAuLm44wxyQtTlcuXIFV69eRUZGhuEYx3EAAKFQiJ9++glhYWHDG3Qftvwe/P39IRKJIBAIDMcmTJgApVIJtVoNsVg8rDH3ZUsOb7zxBjIzM7FkyRIAQGxsLNrb27F06VKsXbt20L2zHK2/z7Obm9uo67Xl5eVhyZIl2Lt3r8NGYWyhUqlw+vRplJWVYfny5QD0n2fGGIRCIY4cOYJZs2bZLZ6R/Rc7RGKxGAkJCSgoKDAc4zgOBQUFSE5OtnhOcnKySXsAOHr0aL/th5stOQDAO++8gw0bNuDQoUNITEy0R6j9sjaH6OhonDt3DuXl5Yavxx57DDNnzkR5eblDdl635fcwbdo0XL582VCYAaCyshL+/v52L2yAbTl0dHSYFbCeYs1GwfKzI+3zbKvdu3dj8eLF2L17N+bOnevocKzi5uZm9nl++eWXERUVhfLyciQlJdk3IIdMYxkGeXl5TCKRsJ07d7ILFy6wpUuXMnd3d6ZUKhljjGVmZrLVq1cb2hcVFTGhUMi2bNnCKioqWHZ29oh4FMCaHDZv3szEYjH74osvWF1dneFLpVI5KgWrc+hrJMyWtDaHa9euMZlMxpYvX85++uknduDAAebj48PeeustR6VgdQ7Z2dlMJpOx3bt3s6qqKnbkyBEWFhbG5s+f75D4VSoVKysrY2VlZQwAe/fdd1lZWRmrqalhjDG2evVqlpmZaWjf8yjAqlWrWEVFBcvNzXX4owDW5rBr1y4mFApZbm6uyee5ubnZUSlYnUNfjpwtOWaKG2OMbdu2jQUFBTGxWMymTp3KiouLDT9LTU1lixYtMmm/Z88eFhkZycRiMZs4cSI7ePCgnSM2Z00OwcHBDIDZV3Z2tv0D78Xa30NvI6G4MWZ9DidPnmRJSUlMIpGw0NBQ9vbbbzOtVmvnqE1Zk4NGo2Hr169nYWFhTCqVssDAQPbKK6+wpqYmB0TO2Lfffmvxb7sn5kWLFrHU1FSzc+Lj45lYLGahoaHss88+s3vcfeOxJofU1NQB2zuCLb+H3hxZ3GjLG0IIIWPOmLjnRgghhPRGxY0QQsiYQ8WNEELImEPFjRBCyJhDxY0QQsiYQ8WNEELImEPFjRBCyJhDxY0QQsiYQ8WNEELImEPFjRBCyJhDxY0QQsiYQ8WNEELImPP/i9diagdknTsAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -490,17 +561,12 @@ } ], "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "fig, ax = plt.subplots(figsize=(10,10))\n", - "\n", - "for x in G.edges():\n", - " \n", - " v = edges_embs[(str(x[0]), str(x[1]))]\n", - " ax.scatter(v[0],v[1], s=1000)\n", - " ax.annotate(str(x), (v[0],v[1]), fontsize=16)\n", + "edges_embs = WeightedL2Embedder(keyed_vectors=model.wv)\n", + "V = np.matrix([edges_embs[str(x), str(y)] for x, y in G.edges()])\n", + "fig, ax = plot_edge_embeddings(V, list(G.edges()))\n", "\n", - "plt.show()" + "ax.set_title(\"WeightedL2Embedder\")\n", + "plt.savefig(FIGURES_DIR / \"WeightedL2Embedder.png\", format=\"png\")" ] }, { @@ -512,12 +578,12 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 24, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAM0CAYAAAAhmGqPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXwU9eH/8ffs5r6BhEMCAkZAgxyGQ8EDEUWBKkpbFauI/Xp8W7WKPxVrvb71rIhWxaNa8Khai0e1IKAiVEFQTiP3kaDhykGOzX3szu+PABp3A0l2NzObvJ6PRx4tn5n5zDv4eIS8d2Y+Y5imaQoAAAAAYAsOqwMAAAAAAH5ESQMAAAAAG6GkAQAAAICNUNIAAAAAwEYoaQAAAABgI5Q0AAAAALARShoAAAAA2AglDQAAAABshJIGAAAAADZCSQMAAAAAG6GkAQAAAICNUNIA4CeysrI0b948zZgxQ+edd546duwowzC8vpYtWxawc44ePdrnOfz5Gj16dMDyAQCA1hVmdQAAsEp2drbWrFmjtWvXHvkqKiqyOhYAAGjnKGkA2q0hQ4aopKTE6hgAAAANtLmS5vF4tG/fPsXHx8swDKvjAGijysvL5XK5AjKX2+0OyDw/nzNQ+QAACFWmaaq0tFTHHXecHI7QedLLME3TtDpEIO3Zs0c9evSwOgYAAAAAm8jJyVFqaqrVMZqszV1Ji4+Pl1T/HyIhIcHiNADsrGfPnl63O/bo0UODBg3SkCFDNHjwYHXq1MnnIhzz58/XmWeeGZAcEyZM0PLly4M2PwAA7ZXL5VKPHj2OdIRQ0eZK2uFbHBMSEihpAI6qZ8+eSktLU0ZGhjIyMjR06FAlJyc32Gf37t0+j42NjQ3Yzxin0xnU+QEAaO9C7TGoNlfSAKCpMjMzrY4AAADgJXSengMAAACAdoCSBgAAAAA2QkkDAAAAABuhpAEAAACAjVDSAAAAAMBGWN0RAGysrq5O+fn5KigokMfjUceOHdWhQwfFxcVZHQ0AAAQJJQ0AbOj555/Xvffeq9WrV6u6utpre8eOHTVy5EiNGjVKkyZNUv/+/S1ICQAAgoHbHQHAhubNm6fly5f7LGiSVFhYqPnz5+vuu+/WySefrAkTJmjZsmWtGxIAAAQFJQ1Am2SapipKilWSl6vCfXtVkperipJimaZpdbSAM01TH3/8sc455xzddNNNqqqqsjoSAADwA7c7AmgTKlwlytmUqdysndq/c7tys3aqtqrSa7/wqGh16ZOmbml91aVPmnqkD1RMQqIFiYNj9uzZWr58uZYsWaJOnTpZHQcAALQAJQ1AyDJNU/t3bNWGxQu0beWX8rjdcjid8rjdjR5TW1WpPZu/075tm4/s32/kWRp8/gR1O7GfDMNoxe+gIcMwdMopp+j888/XkCFDlJ6erq5duyohIUEOh0OFhYXau3evVq5cqcWLF2vhwoXyeDxe83z77bf6xS9+oSVLlig6OtqC7wQAAPjDMNvYvT8ul0uJiYkqKSlRQkKC1XEABMnO1au04p03VJDzvQyHU6an8WJ2LIePT+7ZS6Muu0ppQ0cc2bZ792717t3b65ilS5dq9OjRLT7nT1177bXq06ePrrnmGqWmpjb5uJ07d+q2227T/PnzfW6fNm2a5syZE5CMAACEolDtBpQ0ACGlstSlz+e+qK0rvpBhGAF9xuzwfP1HnaUx025UdHxCq5Q0fz3xxBO68847vcYdDofWrl2rwYMHW5AKAADrtaQbuFwuffPNN8rNzVV+fr7Ky8sVFxen1NRUDRgwQP369Qtyam53BBBCdqxeqU9eekbV5eWSFPBFQA7Pt23lcu3O3KDzb7hZ4SndAnqOYLjjjjtUUlKihx9+uMG4x+PRPffcowULFliUDACAY8vKytLatWsbfBUVFXntF8wPSKuqqvTSSy9p3rx5+vrrr1VXV9fovqmpqbr88sv1+9//Xr169QpKHq6kAbA90zT1zb/nafk/X5cMQ2qNH1uHztNnzAW69MabvTbb6UqaVP/S6wEDBmjbtm0NxsPDw3Xw4EHFx8dblAwAgB9lZ2drzZo1xyxkvrTk396mdINXXnlF999/v/bt29esuSMjI3XHHXfo/vvvV1hYYK99cSUNgK2Zpqnlb7+mbz589/BAa51YkrTmP++3zvn8FBYWphkzZmjatGkNxmtra/Xpp5/q0ksvtSgZAAA/GjJkiEpKSqyOIUmqqanRDTfcoFdffbVFx1dXV+uhhx7SsmXL9NFHH6lDhw4By8Z70gDY2jf/nvdjQcNRjR8/3ufqlKtXr7YgDQAA9lVXV6cJEyYctaB17dpVw4YN0+jRo3XyyScrPDzc537Lly/Xeeedp/JDj2MEAiUNgG3tWL2y/hZHNEnnzp3Vo0cPr/Hc3FwL0gAAYF933nmnPvvsM69xwzB0zTXXaP369dq/f7+++eYbLV26VJs2bVJ+fr5effVV9ezZ0+u4tWvX6tprrw1YPkoaAFuqLHXpk5eeqX82DE3WuXNnr7G8vDwLkgAA0DQ9e/bUJZdcoocffliLFi3SmjVrgnq+Tz/9VE899ZTXeExMjBYtWqS5c+f6XBk5MTFRU6dO1datW/WLX/zCa/u//vUvzZs3LyAZeSYNgC19PvfF+lUc29baRpaoqamxOgIAAJLqC1laWpoyMjKUkZGhoUOHKjk5ucE+u3fvDmqGBx54wGvMMAy9//77Ov/88495fHR0tN577z2NHTtWX3zxRYNtt99+uy6++GJFRET4lZGSBsB2dq5epa0rvjj2jvDi66oZK90CAOwiMzPT0vN/8cUX+uqrr7zGr7/+eo0bN67J84SHh2vu3LlKT09XVVXVkfGcnBy99tpruu666/zKye2OAGzFNE2teOcNnwtg2Ikd316Sn5+vnJwcr3Ff984DANAe/fvf//Yaczgcuuuuu5o9V58+fXTZZZd5jb/wwgstytYgk98zAEAA7d+xVQU539uyBP3UwT3eZchq8+fP9/n3NmTIEAvSAABgP59//rnX2BlnnKHevXu3aL6pU6d6ja1fv16bN29u0XyHUdIA2MqGxQtkOJxWxzimnWtWWh2hgbq6Oj322GNe44Zh6JxzzrEgEQAA9lJZWenzdsuRI0e2eM7hw4fL6fT+vWXBggUtnlOipAGwkQpXibat/FKmx211lGPK2ZipCpc9XsYp1T8EvX37dq/x0aNHKzU11YJEAADYS0FBgc87TtLT01s8Z2xsrI4//nivcV/L+zcHJQ2AbeRsypTHbf+CJkkej0c5m77za47Vq1dr27ZtfmeZOXOmHn74YZ/bZsyY4ff8AAC0BQUFBT7Hk5KS/JrX1/H+vkaAkgbANnKzdsrh45YBO3I4HMrN3unXHCtWrNBJJ52kSZMmaf78+Q1Wh2qKXbt26aKLLtIdd9zhc/vkyZObtJQwAADtQWVlpc/xyMhIv+aNioryGissLPS5mFdTsQQ/ANvYv3NbSF1JO7DT/6tgpmnqww8/1Icffqi4uDidd955Gjp0qAYOHKi+ffsqKSlJCQkJcjgcKioq0t69e7Vy5UotXLhQCxculMfj8Tlv37599corr/idDwCAtqKxK2YlJf49vlBcXOxzfOfOnerRo0eL5qSkAbAF0zSVm7WrVc9ZWF6hRxYsbdGxLy5bpReXrdJl93sv1nFYdna2evXq1eQ5y8rK9MEHH+iDDz5oUabD0tPTtXjxYr9v3wAAoC3p1KmTz/EDBw74NW9jx/vzUm5udwRgC5WuEtVW+b4NAU3jcDh02223ac2aNerevbvVcQAA7YxpmsqvqdUPldXaVVGlHyqrlV9Ta5vX6iQnJys6OtprfPXq1S2eMysrS4WFhT635eXltXherqQBsIXa6mqrI7S6tLQ09enTR1lZWX7NExERoUsuuUTTp0/X8OHDA5QOAICjO1hTp+XFpcosrdR6V4W+La1Qudv7NvxYp0OD4mM0JCFGA+OjdUZSvDpFtH4NcTqdOv30073elbZkyRK53W6fS+kfyyeffNLotoMHDzZ7vsMoaQBswV1XZ3WEVjdx4kRNnDhROTk5+vLLL7Vu3Tpt2LBB27dv1/79+1XXyN+JYRjq37+/hg8frtNOO02XXnqpOnfu3MrpAQDtkWmaWuuq0Ny9Bfowr0h1phRmSHVHuVhW7vboq+IyfVNSdmT/SZ07aFr3ZJ2aECPDMFot/9lnn+1V0vbu3av//Oc/mjRpUrPne/HFFxvdVl5e3uz5DqOkAbAFZ1jr/zhKiIrUzee2/AWWknTx7fcotkNHn9u6devWpDl69OihKVOmaMqUKUfGPB6PcnNzVVJSosrKSnk8HiUmJiopKUlJSUkKs+DvCwDQvi3KL9Fj2fu1tbxKTkNyHypmRytoP1X3k/0/yCvSu7lFOik2SjP6dNO45MTghP6ZK664Qg8++KDXwlt33nmnzj//fMXExDR5rr/97W/69ttvG91eU1PT4pz8Kw/AFsL9XP62JcKcTh3fqYNfc5w+cqRiEgO/QIfD4VC3bt2aXPQAAAiWwto63bN9jz7IKz6yoIXbz8fMDh+/rbxKU7/L1iWdk/Rw31R1DA9uPTnxxBN16aWX6t13320wvmPHDk2bNk1vvvlmkz4IXbFihW6//faj7tPYCsxNwcIhAGwhOiFR4VHeD/PaWUR0tKITWueTPwAArLAwv1ijvt6ij/Lql5lvee3w7fB8H+UV64yvt2hhvu/l7APpgQce8LmAyL/+9S+NHz/+qM+Kezwe/e1vf9P555+vsrKyo57H1/vTmooraQBswTAMdelzgvZs3mh1lCbr0ietVe+jBwCgtZimqWe+z9Oj2fvlUODL2c+5JRXXujVt427dEF4b1HOlp6frueee029/+1uvbZ9++qlOPvlkjR8/XhdccIF69uyp6Oho5efna+3atXr//fe1ffv2BscMGzbM5wqRzbl18ucoaQBso1taP+3btiUkXmjtcDrVNa2f1TEAAAg40zT1SNZ+PftD/RLywS5ohx0+z/M5+UE/17XXXqudO3fq0Ucf9dpWXV3d5PeW9urVS3//+981cOBAr23+LOrF7Y4AbKNLn7SQKGiS5HG71aV3mtUxAAAIuGe+zztS0NqyRx55RK+88ooiIiJadPzgwYO1bNkyJSQk+Nzuz3PllDQAttEjfaAcLXhHiRUcTqd6pJ9idQwAAAJqYX6xHs3eb3WMVvPb3/5WW7Zs0VVXXdXk96TFxcXpvvvu08qVK3X88cerpKTE5359+/ZtcS5udwRgGzEJiep3+pna+tWXMj32vaJmOJzqN/IsxbBoCACgDSmsrdP0bTkyJPm5eGNI6dOnj15//XU98sgjWrRokT799FNt2bJF+fn5KiwslNPpVNeuXTVo0CCNGzdOl19+uZKSflzZeevWrV5zGoah9PT0FmeipAGwlcHjJmjL8mVWxzgq0+PW4PMnWB0DAICAumf7Hrlq3e2qoP1Uamqq/ud//kf/8z//06zjMjMzvcYGDhyo2NjYFmfhdkcAttLtxP5K7tnLtqsmGoah5J691O1EFg0BALQdi/JL9EFesex7H4t9rV+/3mvsnHPO8WtOShoAWzEMQ6Muu0qmac/P8UzT1KjLrrJtiQQAoLlM09Rjh5batzM7/m5QXFysJUuWeI1feumlfs1r9/8WANqhtKEj1H/UWTIc9voRZTgc6j/qbKUNHWF1FAAAAmatq0Jby6taban9ltpeXmV1BC/z5s1TdXV1g7Hjjz9eZ5xxhl/z2us3IAA4ZMy0GxUZGyvZ5YqVYSgyNk5jpt1gdRIAAAJq7t4COW3yz+3RLCrwvYqiVWpra/XXv/7Va/wPf/iD33fcUNIA2FJ0fILOv+EWyS63Npimxt1wi6Ljfb8LBQCAUHSwpk4f5hXJbZN/bo9meXGZDtbUWR3jiFmzZmnTpk0Nxrp06aLrrrvO77kpaQBs68Rhp+uMy6+2OoYk6YzLr1basNOsjgEAQEAtLy5VXQgUNElym9KK4jKrY0iSli1bpgcffNBr/JFHHlFcXJzf81PSANja8Em/0vBJv2r3GQAACIbM0kqFhcCtjpLkNKTM0oqAzFVW1vKyt3DhQo0fP16VlZUNxseNG6dp06b5G00SJQ2AzRmGoTMuv/rHK2qt9YzaofOcccVUnXnFVFZzBAC0SetcFSF1JW29KzAl7Xe/+53Gjh2rd955Ry6Xq0nHfP/995oyZYrPgnb88cfrtddeC9jvC7zMGoDtGYahEZf8Wp1Se2rxS39VdXm5TE/w1qAyHA5FxsZp3A23cIsjAKDNMk0zYFemmsp9YJ8Kpkxo0bFF06/T+5KOVoOys7PVq1evY87l8Xi0ZMkSLVmyROHh4Ro1apROPfVUDRgwQJ07d1ZiYqLKysqUl5enrKwsffzxx1qzZo3P1wCkpKRo0aJF6tKlS4u+L18oaQBCRtqw09S9/8n6fO6L2rriCxmGEdB3phyer9/pZ2rMtTcqOi4+YHMDAGA3BbV1KnfbfeH94KutrdWyZcu0bNmyZh97wgknaNGiRUpLSwtoJkoagJASHZ+gCbfcqX6nn6UV//qHCn7YLcPhlOlxt3jOw8d36nG8Rl12Fe9BAwC0C5UUNL9MnTpVzzzzjBISAr/yMyUNQEhKG3aaThg6Qvt3bNOGTxZo21dfyON2y+F0yuM+dmE7vJ/D6VT/kWdp8LiJ6prWl2fPAADtRq1dXnNjgXPOOUerV6/W9u3bm3Wc0+nUhRdeqHvvvVfDhw8PUjrJMAN5r1AjZs+erSeeeEIHDhzQoEGD9Oyzzzb6Tb388st6/fXXtXHjRklSRkaGHnnkkSb/JbhcLiUmJqqkpCQorRaAPVW4SpSz6TvlZu3QgV3bdWDXTtVWVXrtFx4Vra4npKlrWj916Z2mHumnKCYh0YLEAABY64fKag1ftaVVz2nW1Kh251a/5pg7oLe6RIb73DZkyBBFRkYe+fOxukF2drZWrFihb775Rlu2bFF2drYKCgpUXl4uh8Oh+Ph49ezZUyeffLLOOussTZgwQd27d/crf1MEvaS98847uvrqq/Xiiy9qxIgRevrppzVv3jxt27ZNnTt39tr/yiuv1KhRozRy5EhFRUXp8ccf1wcffKBNmzY16S+EkgZAqn8YutJVorqaGtXV1iosPFxhERGKTkjkahkAAJLya2p1yopNx97RZr4bla6UCN8l7edCtRsEvaSNGDFCw4YN03PPPSepfiWVHj166Oabb9aMGTOOebzb7VaHDh303HPP6eqrj/1S21D9DwEAAAC0JtM0lfbldyG1eEic06EdZ57S5A9cQ7UbBPU9aTU1NVq7dq3Gjh374wkdDo0dO1YrV65s0hwVFRWqra1Vx44dfW6vrq6Wy+Vq8AUAAADg6AzD0MD4GKtjNMug+Jh2cUdMUEtaQUGB3G631zsDunTpogMHDjRpjrvuukvHHXdcg6L3U48++qgSExOPfPXo0cPv3AAAAEB7cGpCjMJCpPOEGdKQhNAqlS0V1JLmr8cee0z//Oc/9cEHHygqKsrnPnfffbdKSkqOfOXk5LRySgAAACA0DYyPVl2ILPJYZyrkrvy1VFCX4E9OTpbT6VRubm6D8dzcXHXt2vWox86cOVOPPfaYPvvsMw0cOLDR/SIjIxus4AIAAACgac5IileYoZAoamGGNCopzuoYrSKoV9IiIiKUkZGhJUuWHBnzeDxasmSJTj/99EaP+8tf/qI///nPWrRokYYOHRrMiAAAAEC71SkiTBd37iCnzW95dBrSpM4d1CmifbzmOei3O06fPl0vv/yyXnvtNW3ZskX/+7//q/Lyck2bNk2SdPXVV+vuu+8+sv/jjz+ue++9V3PmzFGvXr104MABHThwQGVlZcGOCgAAALQ707ony23zK2lusz5nexH0KnrZZZcpPz9f9913nw4cOKDBgwdr0aJFRxYT+eGHH+Rw/NgVX3jhBdXU1OiXv/xlg3nuv/9+PfDAA8GOCwAAALQrGQkxOik2StvKq2THxfgdkvrHRunUdrJoiNQK70lrbaH6LgQAAADAKosLSjT1u2yrYzTqtVN6a1xyYrOPC9VuYOvVHQEAAAAE37jkRF3SOUlOq4P8jFPSpZ2TWlTQQhklDQAAAIAe7puqhHCnbQqCQ1JiuFMP9U21Okqrs8t/AwAAAAAW6hgepln9etjmuTSPpFn9eqpjePtY0fGnKGkAAAAAJEkXpiTp7t7drI4hSfpjn266IKV93eZ4GCUNAAAAwBG3HN9Zt/TsbG2Gnp11s8UZrERJAwAAAHCEYRi6u083/bFP/RW11ioMh89zT59u+uMJx8kwbP6G7SCipAEAAABowDAM3XJ8F706oLcSw51BX/XRKSkp3KlXB/TWzcd3CfLZ7I+SBgAAAMCnC1IStWLESbqoc5KkwJeHw/Nd3DlJK0ac1G6fQfs5ShoAAACARnUMD9ML6b306oDe6hcbJUly+nkn4uHj+8VG6bVTeuv59F7q0A5XcWwMfxMAAAAAjumClESNS07QOleF5u4t0L/zilRnSmGGVGce+/jD+4UbhiZ1TtK07skakhDTrp89awwlDQAAAECTGIahjMRYZSTG6sG07lpRXKZvSyu0wVWhDaUVKnd7v2Ut1unQ4PgYDUmI0cD4GI1KilOnCGrI0fC3AwAAAKDZOkWE6aLOSUeeVzNNUwW1darymKrxeBThcCjKYSg5PIyrZc1ESQMAAADgN8MwlBIRbnWMNoGFQwAAAADARihpAAAAAGAjlDQAAAAAsBFKGgAAAADYCCUNAAAAAGyEkgYAAAAANkJJAwAAAAAboaQBAAAAgI1Q0gAAAADARihpAAAAAGAjlDQAAAAAsBFKGgAAAADYCCUNAAAAAGyEkgYAAAAANkJJAwAAAAAboaQBAAAAgI1Q0gAAAADARihpAAAAAGAjlDQAAAAAsBFKGgAAAADYCCUNAAAAAGyEkgYAAAAANkJJAwAAAAAboaQBAAAAgI1Q0gAAAADARihpAAAAAGAjlDQAAAAAsBFKGgAAAADYCCUNAAAAAGyEkgYAAAAANkJJAwAAAAAboaQBAAAAgI1Q0gAAAADARihpAAAAAGAjlDQAAAAAsBFKGgAAAADYCCUNAAAAAGyEkgYAAAAANkJJAwAAAAAboaQBAAAAgI1Q0gAAAADARihpAAAAAGAjlDQAAAAAsBFKGgAAAADYCCUNAAAAAGyEkgYAAAAANkJJAwAAAAAboaQBAAAAgI1Q0gAAAADARihpAAAAAGAjlDQAAAAAsBFKGgAAAADYCCUNAAAAAGyEkgYAAAAANhJmdQAAsLODBw9q9+7dysnJ0YEDB1ReXq7KykpFR0crMTFRHTp0UHp6uvr27SuHg8+9AACA/yhpAGwpKytLa9eubfBVVFTktd/SpUs1evTogJwzLy9PX331lVasWKENGzbou+++U25ubpOOjYuL0xlnnKGpU6fqkksuUWRkZEAyAQCA9oeSBsBy2dnZWrNmzTELWTAtWbJEY8eObfHxZWVlWrRokRYtWqSUlBQ98cQTmjp1agATAgCA9oKSBsByQ4YMUUlJiaUZamtrAzZXfn6+rrnmGr311lt67733FBcXF7C5AQBA20dJA4Am6Nq1q7p06aKEhASFh4fL5XJp37592rdvX6PHfPLJJzrvvPO0aNEiJSYmtmJaAAAQyihpAPAznTt31llnnaUzzzxTp59+uvr376/4+Hif++bn5+vDDz/U888/r/Xr13ttX7Vqlf7whz/o1VdfDXJqAADQVhimaZpWhwgkl8ulxMRElZSUKCEhweo4AJogKSnJ63bHnj17KiMjQ0OHDlVGRoaSk5M1dOhQr2MDtXDI6tWrNW/ePE2aNEmnnXZas1dq9Hg8evLJJ3XXXXfJ14/VQC5wAgAAmiZUuwFX0gBYrmfPnkpLS1NGRsaRYpacnNxgn927dwc1w7BhwzRs2LAWH+9wOHTHHXdIku68806v7a+88golDQAANAklDYDlMjMzrY4QMNOnT9fcuXO1ZcuWBuMfffSR3G63nE6nRckAAECo4M2rABBATqdTv/71r73GS0tLtX//fgsSAQCAUENJA4AAS09P9zlOSQMAAE1BSQOAAGtsuf3mLkYCAADaJ35jAIAAy8vL8znerVu3Vk4CAABCESUNAALsyy+/9Brr1auXjjvuOAvSAACAUENJA4AAys3N1TvvvOM1/pvf/MaCNAAAIBRR0gAgQKqqqnTVVVd5vZg7OTlZt9xyi0WpAABAqKGkAUAArFq1SqNGjdKnn37aYDwsLEyvvvqqUlJSLEoGAABCDS+zBhBUpmnKXVgoT2WVzNoaGeERckRHydmxowzDsDreMe3Zs0d79uxpMObxeFRWVqa8vDxlZmbqk08+0bfffut1bHx8vF5//XVNmDChteICAIA2gJIGIKDqiopUsWqVqjZtUmXmd6ratFGe8gqv/RyxMYpKH6DogacoKj1dMaedprAOHSxIfHSvvPKKHnzwwWYd43A49Mtf/lKPP/64evXqFZxgAACgzaKkAfCbaZqq3LBBRW+9LdfChVJdnRQWVv+/jfCUV6jim29UsW7dkf0Txo9XxylXKGrQoJC4yvZzhmFo2rRpuvfeeylnAACgxXgmDYBfSpcsUfZFF+v7K6bI9fHHPxazoxS0Bn6yv2vBAu2+/AplXzxJpZ9/HpzAQWSapubMmaMxY8Zo5syZKi0ttToSAAAIQZQ0AC1SV1Skvbf/P+35/U2q3rmzftDt9m/SQ8dX79ihPb/7vfbe/v9UV1TkZ9LWl52drTvuuEMnn3yyPvvsM6vjAACAEENJA9BspZ99pqwLx8u1aFH9gGkG9gSH5nMtXKisC8er1MKi88ADD8g0zQZfNTU1RxYNmTNnji6//HJFRkZ6Hbtnzx5dcMEFevPNNy1IDgAAQhUlDUCTmaapghdf0p6bbpa7pMT/K2fH4vHIXVKiPTfdrMI33wruuZohPDxcKSkpOuWUUzRt2jS9/fbbysnJ0ZVXXum1r9vt1tSpU/XVV19ZkBQAAIQiShqAJjFNU/mznlL+008fHmitE0uSCuf8vXXO10IpKSn6xz/+oaeeesprm8w7r2YAACAASURBVNvt1jXXXKO6pj6nBwAA2jVKGoAmOfjS33Tw5ZetjmF7t956q2688Uav8R07dui9996zIBEAAAg1lDQAx1T62Wc/XkHDMT388MOKiYnxGn/77bctSAMAAEINJQ3AUdUVFWn/n+6VQvC9ZVbp2LGjzjvvPK/x5cuXW5AGAACEGkoagKPKfehhuUtLW+8ZtDZi6NChXmMHDx5URUWFBWkAAEAooaQBaFTpkiVyLVgQ/FUc26CUlBSf40Uh+N43AADQuihpAHwyTVP5T//V9rc5mja9wldeXu5zPCIiopWTAACAUENJA+BT5YYNqt6xw/a3Odbs2mV1BJ/27NnjNRYeHq6OHTtakAYAAIQSShoAn4reeltyOq2OcUyuz5ZYHcGnxYsXe4317dtXzhD4OwUAANaipAHwUldUJNfChSHxLFrF16tUZ7PnvJYvX67Nmzd7jY8ePbr1wwAAgJBDSQPgpWLVKqmuzuoYTeN2q+Lrr61OcURZWZl+97vf+dw2ZcqUVk4DAABCESUNgJeqTZuksDCrYzSN01mf1w8vvviinn76aVVWVvo1z8GDB3XBBRfou+++89p29tlna+TIkX7NDwAA2gdKGgAvlZmZIXUlrTIz068pDhw4oNtuu029e/fW7bffrpUrVzZr1cji4mI9++yz6tu3r1asWOG1PSoqSrNnz/YrIwAAaD9C5KNyAK3FNE2/r0w1197aGp2XldWiY6/JyZFef73+qxHZ2dnq1avXMefKzc3VrFmzNGvWLHXp0kWnnnqqBg8erL59+yopKUlJSUkKCwuTy+VSUVGRNm/erHXr1mnp0qWqrq72OadhGJo7d67S09Nb9P0BAID2h5IGoAF3YaE85RVWx7Bcbm6uFi5cqIULF7Z4jtjYWM2dO1e/+tWvApgMAAC0ddzuCKABT2WV1RHahIkTJ2rTpk0UNAAA0GxcSQPQgFlbY3WEVvfb3/5WiYmJWrhwob744otGb108lpiYGF1yySW69tprNWbMmACnBAAA7YVhNufp+BDgcrmUmJiokpISJSQkWB0HCDk1e/Zq19ixrXtOj0dbWliMDkt99hmFde7sc9uQIUMUGRnZpHmqq6u1YcMGff3119q4caOys7O1e/duFRUVqby8XLW1tYqPj1dCQoISExN1wgkn6NRTT9Wpp56qs846S/Hx8X59HwAAIHBCtRtwJQ1AA47oqFY/Z4TDoUHR0X7NceKoUQrr1MnvLJGRkRoxYoRGjBjh91wAAAAtwTNpABpwduwoR2yM1TGaxREbK2fHjlbHAAAACAhKGoAGDMNQVIgtFx81IF2GYVgdAwAAICAoaQC8RA8cKIWFyN3QYWH1eQEAANoIShoAL1Hp6VJdndUxmqauLuSu/AEAABwNJQ2Al5jTTgupK2kxLPIBAADaEEoaAC9hHToo4cILJafT6ihH53QqYfx4hXXoYHUSAACAgKGkAfCpw5QrJLfb6hhH53ar45QrrE4BAAAQUJQ0AD5FDx6syL59JbuummgYiuzXT1GDBlmdBAAAIKAoaQB8MgxDKbf+QTJNq6P4ZppK+cMtLL0PAADaHEoagEbFjxmjhAkT7PdsmsOhhIkTFD9mjNVJAAAAAo6SBuCouvzpHjnj4+1z26NhyJmQoC733GN1EgAAgKCgpAE4qrAOHdTtoT/b57ZH01S3hx9iRUcAANBmUdIAHFP82LFKufVWq2NIklJuu03x555rdQwAAICgoaQBaJJON1yvTtdfb22G669Xp+uvszQDAABAsIVZHQBAaDAMQym33SpHbKzyn3qq/hm11rgF8tB5UqZPVzIFDQAAtANcSQPQZIZhKPmG65U6+zk5ExMlR5B/hDgcciYmKnX2cxQ0AADQblDSADRb/Lnnqs/Cj5Vw4YX1A4Fe+fHQfAnjL9QJixbyDBoAAGhXKGkAWiSsQwd1f3KmUmc/p8gTT6wf9Pd9aoeOjzzxRKU+P1vdZ86UMynJz6QAAAChhWfSAPgl/txzFTdmjKq+/VaFb70t18cfS3V1UlhY/f8ey+H9wsKUMGG8Ok6ZoqiBA2XY5b1sAAAArcwwTbu8/CgwXC6XEhMTVVJSooSEBKvjAO1OXVGRKr7+WlUbN6ryu+9UtXGTPOXlXvs5YmMVNSBd0QMHKio9XTEjRvDuMwAAEFCh2g0oaQCCyjRNuQsLZVZVyVNTI0dEhIyoKDk7duRqGQAACKpQ7Qbc7gggqAzDUFinTlbHAAAACBksHAIAAAAANkJJAwAAAAAboaQBAAAAgI1Q0gAAAADARihpAAAAAGAjlDQAAAAAsBFKGgAAAADYCCUNAAAAAGyEkgYAAAAANkJJAwAAAAAbaZWSNnv2bPXq1UtRUVEaMWKEvvnmm0b33bRpkyZPnqxevXrJMAw9/fTTrRERAAAAAGwh6CXtnXfe0fTp03X//fdr3bp1GjRokMaNG6e8vDyf+1dUVKhPnz567LHH1LVr12DHA9DOZWVlad68eZoxY4bOO+88dezYUYZheH0tW7bM6qgAAKCdCAv2CWbNmqXrrrtO06ZNkyS9+OKLWrBggebMmaMZM2Z47T9s2DANGzZMknxuB4CWys7O1po1a7R27dojX0VFRVbHAgAAaCCoJa2mpkZr167V3XfffWTM4XBo7NixWrlyZUDOUV1drerq6iN/drlcAZkXQNszZMgQlZSUWB0DAADgqIJ6u2NBQYHcbre6dOnSYLxLly46cOBAQM7x6KOPKjEx8chXjx49AjIvAAAAAFgh5Fd3vPvuu1VSUnLkKycnx+pIAAAAANBiQb3dMTk5WU6nU7m5uQ3Gc3NzA7YoSGRkpCIjIwMyF4D2p2fPnsrIyNDQoUOVkZGh5ORkDR061OpYAACgHQtqSYuIiFBGRoaWLFmiSZMmSZI8Ho+WLFmim266KZinBgAvPXv2VFpamjIyMo4Us+Tk5Ab77N6925pwAAAAhwR9dcfp06dr6tSpGjp0qIYPH66nn35a5eXlR1Z7vPrqq9W9e3c9+uijkuoXG9m8efOR/793715t2LBBcXFxSktLC3ZcAG1YZmam1REAAACOKegl7bLLLlN+fr7uu+8+HThwQIMHD9aiRYuOLCbyww8/yOH48dG4ffv2aciQIUf+PHPmTM2cOVNnn3027ykCAAAA0OYZpmmaVocIJJfLpcTERJWUlCghIcHqOABCzO7du9W7d2+v8aVLl2r06NGtHwgAALRYqHaDkF/dEQAAAADaEkoaAAAAANgIJQ0AAAAAbISSBgAAAAA2QkkDAAAAABuhpAEAAACAjQT9PWkA0CpMUyovkGorJHet5AyXwmOk2GTJMKxOBwAA0GSUNAChqfyglP1faf8Gae9aad8GqabMe7+IOOm4wVL3DKnbYKn32VJsp9bPCwAA0ESUNAChwzSlPaulb16WNr0veeokR1j9/zampkzavVz6YdWP+w+YLA27TkodylU2AABgO5Q0AKFh6wLp84ekvM2Swyl53PXjRytoP3V4P0+dtPE9KfMdqXO6NOZPUv/xwckMAADQAiwcAsDeKgqld38r/XOKlL+1fuxwQWupw4Utf4v0zyvq568o9G9OAACAAOFKGgD72jJf+uhmqaqk/s+mJ7DzH55v0wfSrs+li56VogcE9hwAAADNREkDYD+mKX35pPT5n1V/wT/A5czrfG6pslh650rp5JuCey4AAIBjoKQBsBfTlJY8KC1/6tBAkAvaEYfO89UzrXQ+AAAA33gmDYC9fPnkTwoaAABA+0NJA2AfW+YfusURAACg/aKkAbCHisL6RULEe8sAAED7RkkDYA8f33FoFUfT6iQAAACWYuEQANbbukDa+K7VKQAAAGyBK2kArGWa0ucPSYbNfxyZXOEDAACtw+a/FQFo8/aslvI2B/5F1YGWv83qBAAAoJ2gpAGw1jcvSw6n1SmObet8qxMAAIB2gpIGwDrlB6VN70set9VJji37i/q8AAAAQUZJA2Cd7P9KnjqrUzSN6ZZ2f2F1CgAA0A5Q0gBYZ/8GyREii8waTmnfBqtTAACAdoCSBsA6e9aG1pW0vWutTgEAANqBEPkIG0CbY5r1V9Ja0e5ij3r/taxFx57zWoX02gJpmtHoPtnZ2erVq1cL0wEAANTjShoAa5QXSDUtK0wAAABtGSUNgDVqK6xOAAAAYEuUNADWcNdanQAAAMCWeCYNgDWc4a1+ym5xhlb+Nsa/SS57U4rv6nv+bt38mxsAAECUNABWCfezLLVAZJih01L9/LF3+igpLiUwgQAAAHzgdkcA1ohNliLirE7RPBHx9bkBAACCiJIGwBqGIXUbbHWK5jlucH1uAACAIKKkAbBOaobkCJG7rh1hUvcMq1MAAIB2gJIGwDrdBkueOqtTNI2nrv5KGgAAQJBR0gBYp/fZoXUlrddZVqcAAADtACUNgHViO0npl0oOp9VJjs4RJg2YXJ8XAAAgyChpAKw1/DrJ47Y6xdF56qRh11mdAgAAtBOUNADWSh0mdU6XDJv+ODIcUpcBUupQq5MAAIB2wqa/FQFoNwxDGvMnyfRYncQ30yOdcw9L7wMAgFZDSQNgvf7jpQG/lAybPZtmOKVTflWfDwAAoJVQ0gDYw/gnpKhE2efHkqM+z4V/sToIAABoZ+zy2xCA9i6mo3TRs5LsctujR7r4ufpcAAAArYiSBsA+TpoojbnX6hT1zr1P6j/B6hQAAKAdoqQBsJczb5fOmG5thjOmW58BAAC0W5Q0APZiGPVXsc6979BAa/2YOnSec++Xxt7Pao4AAMAylDQA9mMY9VfULn9Lik4K/qqPhrP+PJe/JZ3JFTQAAGAtShoA++o/Qbp5rZR+Sf2fA/3C68PzDbi0/jw8gwYAAGyAkgbA3mI6Sr/8e/1VrpST6sccYf7Nefj4lJOky9+WJr/CKo4AAMA2/PxNBwBaSf8JUr/x0p410uqXpY3vSZ66+sLlqTv28Yf3c4RLAyZLw6+Tumfw7BkAALAdShqA0GEYUo9h9V/jHpV2fyHtWy/tXVf/vzVl3sdExEnHDakvZMcNlnqdJcV2av3sAAAATURJAxCaYjvVP6t2+Hk105TKC6S6SqmuRgqLkMKipdhkrpYBAICQQkkD0DYYhhSXYnUKAAAAv7FwCAAAAADYCCUNAAAAAGyEkgYAAAAANkJJAwAAAAAboaQBAAAAgI1Q0gAAAADARihpAAAAAGAjlDQAAAAAsBFeZg0A7VhhYaHWrFmj/fv3q7i4WGVlZYqJiVFSUpI6d+6sU089Vd26dbM6JgAA7QolDQDamaysLL3yyiuaN2+edu7cecz9u3fvrosvvljXXXedBg8e3AoJAQBo3wzTNE2rQwSSy+VSYmKiSkpKlJCQYHUcALCN4uJi3X777Zo7d65a+qN/4sSJeuGFF5SamhrgdAAABF6odgOeSQOAdiAzM1Pp6emaM2dOiwuaJM2fP1/p6elavHhxANMBAICf4nZHAGjjNm7cqHPPPVcFBQWN7tOpUyf17t1biYmJKisr0969e7Vnzx6f+7pcLk2aNEn/+c9/NHbs2GDFBgCg3aKkAUAbVldXpyuvvNJnQQsLC9MNN9ygG2+8UQMGDPDavmfPHr366quaNWuWioqKGmyrqqrSb37zG23btk2JiYlByw8AQHvE7Y4A0Ia99NJLyszM9Brv1KmTli9frueee85nQZOk1NRU/elPf1JmZqbPBUNyc3P1wAMPBDoyAADtHguHAEAbNmzYMK1Zs6bBmGEY+u9//6szzzyzyfPk5ubqlFNOUX5+foPxlJQUHThwQA4Hn/kBsN7mzZu1ceNG7du3T2VlZYqKilJKSopOOukkDRkyROHh4VZHRCsL1W7A7Y4A0Ebt27fPq6BJ0qRJk5pV0CSpS5cuuvvuuzV9+vQG4/n5+Vq1apVGjhzpV1YAaKmcnBw988wzeuutt7Rv375G94uPj9dFF12kW265RcOHD2/FhEDz8dEnALRRjb0DbfLkyS2a71e/+pXP8V27drVoPgDwh8fj0SOPPKJ+/fpp5syZRy1oklRaWqo333xTI0aM0NVXX62SkpJWSgo0HyUNANqo3Nxcn+Mnn3xyi+ZLTU1VXFyc1/j+/ftbNB8AtFRlZaUuuugi3XPPPaqsrGz28W+88YaGDRum7OzsIKQD/EdJA4A2qrFHjn0VrabydT+/0+ls8XwA0Fxut1uTJ0/WggULfG4PDw/XoEGDdO6552r48OGN/szbsWOHxowZwwdNsCVKGgC0UV26dPE5fvDgwRbP6evYrl27tng+AGiu++67TwsXLvQaT0pK0lNPPaX8/Hxt2LBBn332mb7++msVFhbq3XffVd++fb2O2b17t6644gq53e7WiA40GSUNANqojIwMn1e5vvnmmxbNt2HDBlVXV3uNn3baaS2aDwCa69tvv9Xjjz/uNd67d2+tXbtWt956q9e7G8PDwzV58mStW7dO48aN8zr2v//9r1588cWgZQZagpIGAG1UXFyczj//fK/x1157rdFbIY9mzpw5XmNDhgzRCSec0KJ8ANBct99+u9dVr9jYWH388cfq06fPUY+NjY3V+++/r/T0dK9t9913n8rKygKaFfAHJQ0A2rA777zTa2zdunV65plnmjXPihUrfH7S/Mc//rHF2QCgOdasWaMlS5Z4jd97773q379/k+aIiYnRyy+/7DVeWFiov/3tb35nBAKFkgYAbdjo0aN14403eo1Pnz5df/nLX+TxeI45x4cffqiJEyeqtra2wfhll12mX/7ylwHLCgBH46tEderUSTfffHOz5jn99NN93vboq7wBVqGkAUAb9+yzz+qSSy5pMObxeHTXXXcpPT1ds2bN0po1a1RYWKi6ujq5XC5t3rxZc+bM0dlnn61JkyapuLi4wfHjx4/Xa6+91prfBoB2rK6uTu+++67X+JVXXqmYmJhmz3fdddd5jW3dulXr1q1rUT4g0MKsDgAAaBnTNFVbe1Bud5VMs1aGES6nM0rh4Z1kGMaR/cLCwvTuu+/qL3/5ix588EFVVVUd2bZ161bdfvvtTT5nTEyM7rnnHs2YMUMOB5/zAWgdq1atUlFRkdf45MmTWzTfhAkTFB0d7fWOtYULF+rUU09t0ZxAIFHSACBE1NQUqqhopUpLN6rE9a1KSzfK7S732s/pjFV8/AAlJgxSfPwAdehwuiIiOmrGjBm65ppr9Oyzz+rdd9/V9u3bm3zu9PR0XX755brhhhuUkpISyG8LAI5p6dKlXmMxMTE6/fTTWzRfVFSURo4c6fWM2+eff6577rmnRXMCgURJAwAbM01TLtd65ez5h/LyFsg062QYYTLNukaPcbvLVVz8tUpK1h7Zv0vniUpN/Y2kboqJifFaovpY9u3bp61bt2rz5s06++yz/fyuAKB5Vq9e7TU2ZMgQhYeHt3jO4cOHe5U0bneEXVDSAMCm8vM/1a6sWSov3y7DcMo065edPlpB+6nD+5lmnXL2fKj/+7+/698flqqm+tiLhfxcUVGR3nzzTb355ps666yz9Pe//11paWnNngcAWiIzM9NrbMCAAX7NOXDgQK+x4uJiff/99zr++OP9mhvwFyUNAGymtrZI27Y/qNzc/0iqf7bscEFriYKCOt0944Cys2u8tsXExGjixIk666yz1LNnTyUlJamsrEy5ubn66quvNH/+fO3fv7/BMV988YUGDx6sefPm6cILL2xxLgBoipqaGuXk5HiN+/tBUWPveMzKyqKkwXKUNACwkfz8T7Rl6x9VW+s6NNL8l07/lMvl1h3/b79ycmq9tl06OUUPPzRb/fv/yuex11xzjWpqavTyyy/rzjvvVEVFxZFt5eXluuSSS7R48WJufwQQVDk5OT5fF9K9e3e/5m3s+N27d/s1LxAILM0FADZgmqZ2735emd/9r2priyW1/MrZT/31rwVeBc0wpDvvStHvfpegvftmaPfuF2SavstgRESEfv/732vlypVKSkpqsK26ulpXXXWVSkpKApIVQPtlmqYKyqqVU1ihrPwy5RRWqKCsWqZpKj8/3+cxXbp08eucjR3f2PmA1sSVNACwmGma2pU1U99//+LhkYDMu2lTlf67zHv1x19flqjzz48/cp5dWTNV5y7XCX1ub7B0/08NHDhQb731lsaPH99gPCcnR08//bTuv//+gGQG0D4Ultfoq10F+m5vib7NKdZ3e0pUXuP94VRshFOdijb5nKO5CyD9nNPpVGxsrMrLG/6cPHjwoF/zAoFASQMAi33//Qs/KWiB8+9/e1/hio936MorO/jMEOaMVa9e/9vofBdeeKHGjh2rzz77rMH4Cy+8oHvvvZf3pgE4KtM0te6HYr2xcrfmZ+5XncdUmMNQnafxD6bKa9zK+8H3la3Y2Fi/M/kqaT//M2AF/kUFAAvl53+iXVlPBnxe0zS1dk2l1/jIkTGKifH9o39X1kzl53961HmnTJniNZabm+tz5TUAOOyTTQd0wdNfavILX+k/hwqapKMWtMNMj+8Vba//x3p9ujnXr1y+lvCvqfFeZAlobZQ0ALBIbW2Rtmz9ow6v4BhIeXl1crm8H7QfMCDqKEcZ2rL1btXWFjW6x5lnnulzfMOGDc2NCKAdKCqv0S1vr9f1b6zV9rxSSZK7CcWsAdP3a0OyDlbqutfX6Ja316uovGXFyul0eo3V1TXtNSdAMFHSAMAi27Y/eGgVx8A8g/ZTxcW+f6np0MH7F5IfmaqtdWnb9v9rdI/GHrQvKChoTjwA7cDiTQc05sllWpBZ/xqPRtYnOibD4fvnlumpf4ZtQeY+jXlymRZvOtDsuX0VMn9ekA0ECiUNACyQn//pofegBWYVx59zu33/NuQMO9ZVO7dycz9Sfv5nPrc29suLr+WxAbRPpmlq9tKduuGNtSqurJW7pe3sMKfvnzumu75guU2puLJWN7yxVrOX7mx0tVpffN3aGBkZ2bKcQABR0gCgldWv5jhLwbjN8bDERN+fPJcUN6UUGtqVNcvnLzqNLU2dkpLSnHgA2ijTNPWXxdv0xOJth/7s/5yOiGjf56r58bnbw+d54tC5m1rUSktLvcYSEhKaHxIIMEoaALQyl2u9ysu3Kxi3OR6WlOS7pG3fUd2Eo02Vl2+Ty+X9nNnq1at9HkFJAyBJzy/bpReW7QronI5o36XJU1XWaIbnm5ChqqpK1dXePxM7derUvIBAEFDSAKCV5ez5hwzjaM+G+S821qHu3b3fsrLyq4pGb4X8KcNwas+ef3iNv//++z72NTRs2LCWBQXQZizedODIFbRAcsYm+Rx3lxc3eswTi7fpk2M8o3bggO/tXbt2bXo4IEgoaQDQimpqCpWXt0CmGZxn0X5q6LAYr7H9++v06ae+P33+KdN0KzdvvmpqCo+Mbdq0Sf/85z+99h00aFCjC4oAaB+Kyms0473MoNzE7Yzr5PO5tDpXXqPHGIZ013uZR1318YcffvA53rt37+aHBAKMkgYAraioaKVMs3WWdx4zJs7n+OznCrRz57FvezTNOhUVr5IkFRYW6tJLL5Xb7V0ur7jiCv+CAgh593+0Sa7KuqDcxG0YhsKTunmN1xXta/QY05RclbV64D+bGt1nx44dPsfT0tKaHxIIMEoaALSi0tKNMgzv2xCDIT09Sqed5n01rbLS1PTp+7R06dGvqBlGmEpdG7V69WoNHz5c27dv99rnuOOO08033xywzABCzyebDuijb/f5v4rjUUR06eM1VpOXfdRj3Kb04YZ9jb7wev369V5jqampSk5ObllIIIAoaQDQikpc37balTRJuvHGjoqP9/5RX1Fu6uGH8nTDDXv0/nsl2rG9WiUlbrndpsrKPMrJqdHChUWaes3TGj58uHbt8n4I3zAMPfPMM4qO9r3yGoC2zzRNPfnJdhnBW6xWkhRxXD+vsdqCH+SpLj/qcYYhPfmJ79UeV65c6TU2YsSIlocEAqh1Ps4FAMg0TZWWbmzVc6b2iND//bmrZty1X9XV3r+k7NpZo+d3HmzR3LNmzdLkyZP9jQgghK37oVjbcr2XsQ+06OMHq+jng6ZHlbs3KLbfqEaPM01p64FSrc8p1qk9OxwZz8vL83klbezYsQFKDPiHK2kA0Epqaw/K7T76p77BcMopUXpyVjelpvp+IWxzJSYm6rXXXtOtt94akPkAhK43Vu6W0xG8y2h1rgJV7Fqtyu83yBEV77W9YsuXx5zD6TD0xsrvG4z961//8rq6ZhiGJk6c6F9gIEC4kgYArcTtrrLs3P37R+nFl7rrrbeK9fECl4qLPc2eIyoqSr/+9a/10EMPqUePHkFICcBKWVlZWrt2bYOvoiKv61daunSpRo8ercLyGs3P3C+3J7DPonlqKlWW+YnKvv1EtQXfH3Xfim0rVLp+oeIGXyCjkXsu3R5T//l2n+6deLI6xkbINE3Nnj3ba7/Ro0crNTU1IN8D4C9KGgC0EtOstfT8UVEOXXttR111VQct/7Jc69ZXauuWan3/fY08jXS2rl3DNGrUOJ199jhNmTKFl7wCbUR2drbWrFlzzEJ2NF/tKlBdgAtaxY5VKvzkBbnLmnobtqnCT2ar7LvPlDz+VoUn+/4Aqc5jauWug5owsJvmzp2rrVu3eu1z0003+ZEcCCxKGgC0EsMIzO2G/goPN3TOmDidc2iJ/ro6U6Uut8rKPaqoMBUZaSgu1qH4BIciIx0aefpLio7ubnFqAIE0ZMgQlZSU+DXHd3tLFOYwAlbUile8rZLlb0ktWMi/Zv827X9julIuukvRJwz12h7mMPTd3hKdGFWq6dOne20fMGCAJk2a1JLYQFDwTBoAtBKnM8rqCD6FhRnq0DFMPXpEqF+/SPXqFaHklDBFRtb/E+F0RlqcEIAdfftDccAKWsnKf6lk+ZvyXdAMhXXopsieAxXRrZ/UyCuzzZpK5X3wsKp+yPTaVucxu3614gAAIABJREFUtWzF1zr33HN9ltNnnnlGDge/FsM+uJIGAK0kPLyTnM5YSxYPaSmnM07h4dziCKAh0zT13V7/rsQdVpn9/9m77/Coqvx/4O87LWWSSSEdEpIQCD0JCSUqVQQExLYLuAILKnZZKf4QRdRdEdldvyqggsq6KyurIohtBQsggkEhUiIllCSUkB6SCalT7u+PkCxxJnXKvTe8X8+Th2fOPffcTwzB+cw553N+QdnuDbYXBBV8B02CYfDt0PiFNDZXnUxD0SfL7Q9mMaFwy3KE3bUC2uDuEOuqUVeYjcpju/B1xncQrbZHoMyfPx+jR492yvdC5CxM0oiI3EQQBPj69kdZ2U9Sh9Jmvr79m92MT0SdS1RUFJKTk5GSkoLk5GQEBQUhJcV26SAAlFTWobLO4vAzraYalGxbjd/OoAkaHYJve8ru0kXvXqnwHzELZbvfszumWFuJvH/Oa9PzJ0+ejJUrV7Y7biJXY5JGRORGfoYElJenu/VA644SBA38DAlSh0FELhAVFYW4uDgkJyc3JmZBQUFN+uTk5DR7f7UTEjQAMO7fCouxyKY9cPyjdhO0Bn6pUyFoPHBp53pAbH+1WgCYMWMG3nnnHWi18tgvTHQ1JmlERG7k69tfEQkaAIiiGb6G/lKHQUQucOSI7b6t9jBZOpYYXc1qqkVF+uc27Z4xyfDpP6bV+w2Db4VH194o2b4GpsLsNj83PDwcf/3rXzFjxox2xUvkTtwhSUTkRgEBqRAEZXw+JggaBPgPkzoMIpIhrdrxt5DVp9JgrbLd1+Z/wx/aPIZHRDwi5qyGfuBNLfZTeejhFTcEr7zxFrKzs5mgkewp450CEVEnodMFIiRkEgoLv4AoOme5kCsIghqhIZOh0wVKHQoRyZCXTu3wGJXHvrdp0wZHwyMivt1jBYz4IyozvrNZ+ug75Pb6wiM+9f+WzZg5Fh4erFhL8seZNCIiN4vsNkPWCRoAiKIF3brxk2Yisq+LXge9A4maaDHZLZXvHX99h8ZT6/3hEdnPpt1UkN2YoPl4aNBFr+vQ+ETuxiSNiMjNDIYk6PXNn/UjPQE++t4wGBKlDoSIZEoQBAzo6tfh+2svZkI01dq0e3bveLEie/fW5h6DaKnfBzygqx+r1ZJiMEkjInIzQRDQI3YB7B/aKgciYmPn880MEbUoIcofGlXH/p2oyztl26hSwyMsrsPxeIT3smkTzXUwFZ+DRiUgIdK/w2MTuRuTNCIiCQQHj0Vo6C0AHN/X4VxqhIZOQXDwWKkDISKZG9DVD2Zrxz5sqivKsWnT+IdD0HR8OaIuOMb+swqzYbaKDs38EbkbkzQiIonE93oWWq0B8ln2KECrNSC+1zKpAyEiBbiuR1CHZ9LMZXk2bdqAcIfiUfsEQNB62nlWPjQqAak9ujg0PpE7MUkjIpKIVhuAPr1fhHyWPYro03sFtNoAqQMhIgUI1OsweWA41B1I1MzlhTZtah/Hkyi1j21FWouxELckRCCQRUNIQZikERFJKDh4HHrELpQ6DABAj9hFCA5u+awhIpI/URRRfLkW50urkFV0GedLq1B8uRai6PwPhGamRsPSgSWPFjvno6n1ju8ZU+ttP2QyV5VhZmp3h8cmcieek0ZEJLHu3R+C2VKFs2fflDSG7t0flOz5RNRxpZV1+PFMMTJyy3H4fBkyLpSjss72mA+9To0B3fyQEOmPAV39cF2PIIdnlwZF+aN3mC8yCyrQ1hzQaqoBLCabdpWHt0OxNDeGh7kKSSwaQgrDJI2ISGL11R4XQqPW40zW31G/R80dSyDrn9Mj9glERzNBI1ISURTxy7kybEjLwRdH8mC2itCohBYLeVTWWbAvqxQHci419r8lIQIzU7sjKdK/QxVdBUHAwnHxmPvegbbHXldjfyydV7ufbzOGnT1p/jorq9WS4jBJIyKSAUEQEB39EPT6OBw/sQQmkxGAKw+8VkOrNaBP7xVc4kikMF8fzcfLX59EZkEF1CqhcblhWystmq/q/9nhi/jkYC56h/li4bh43NQ3tN3x3NQ3FFMSIvDlkTxY2jCdJlrN9i8Ijle7FVS2Y+gEq8PjErkb96QREclIcPBNSB32DUJDJ15pcfanv/XjhYZOQuqwb5mgESnIpco6zPvPQdy/IR0nCysAoEP7wa7WcH9mQQXmvncA8/5zEJcq69o9zvNT+sHgpUGbJqxE+0mToHLC21I7Y5jNzSSFRDLGJI2ISGa02gD07/cqBg5YC72+/nBWwcFPmBvu1+t7YeCAdejf7xVotdyjQaQU24/mY8zLu/DlkfrS9c6uAdIw3pdHLmLMy7uw/Wh+u+4P0Ovw0p0D2xZXM/+eiVbHVw/YG0Or1To8LpG7cbkjEZFMBQffhKCgsTAaD+HChX+joPALiKIZgqCBKLb+yXBDP0HQIDT0FnTrOgMGQwL3ZhApiCiKeGPXGfxteyYEwfnJ2W9ZRKCs2oQHNqTjngR9u+4d3y8MT4yPx9+2Z7bYT9A0kzRZnDDjZWcMDw8Px8clcjMmaUREMiYIAvz8kuDnl4SePZ/GpbJ9qDBmoNx4BBUVGbBYKm3uUav18PUdAD9DAnwN/RHgPww6ne3ZQUQkb6Io4q/bM/HmrjNXXrvrufV/vrU7q933PjyqByprzXjjSsz2qJopEGKtq27389oyhsFgcHhcIndjkkZEpBA6XSBCQyYiNKR+v5ooijCZSmCx1EIU6yAIOqjVHtBqu3C2jKgTeGPXmcYETSkEQcAT4+Oh99A0O/snqLUQdF4Qf5NQWWsvO/Dc+ueEeVqQ85trXbo4fkg2kbtxTxoRkUIJggCdLgheXl3h7R0DL6+u0OmCmKARdQLbj+a3umxQrgRBwCOj4/DWzGT4e2mhtvNPkr2Dqy2Xyzr0PLUA+Htp8dbMZIhVtmOEhYV1aFwiKTFJIyIiIpKRS5V1eHLzEafXdnW3cf3CsGPhKEwaGAEATSo/avxsEydLRWG7xm8Yb3JCBHYuGoUbewfj4sWLNv1iYmLaNS6RHDBJIyIiIpKRZz87CmO12S1H2rtagF6HVXcl4a2ZyYgP9QUAqFUCNAERNn1NpbYJlj1qVX12Fh/qi7dnpeC16Unw99YhJycHJpPJpn/Pnj0d+A6IpME9aUREREQy8fXRfHx2uG3JipKM6xeGm/qG4uD5MmxIO4v3D/XAb3egWSqKYamugNrL1+Z+jUqA2SpCoxIwJSECM1O7IzHSv8ny7oMHD9p9dmJiojO/FSK3YJJGREREJAOiKOLlr0+6pdS+I8QOBicIAgZFBWBQVADujP4jhn+1yqZPbe5xeMcNaXyt91BjYFd/JET6Y0BXP6T26IJAvc7u+GlpaTZtQUFBiI2N7VC8RFJikkZEREQkA7+cK0NmQYXUYbTqVOFljHZwjOuHJCE0NBQFBQVN2icFFuKZhSOh06jgqVWji17X5mJI27dvt2m78cYbWUyJFIl70oiIiIhkYENaTuN+Kzn7+mhB651aIQgCJk+ebNO+7fOt6B7ohW4B3gjy8WhzgvXrr7/i6NGjNu1TpkxxOFYiKTBJIyIiIpJYaWUdvjiSB4tVxuscr0g7U4zSyjqHx5kxY4ZNW35+PjZt2tTusdasWWPT5uPjg1tvvbVDsRFJjUkaERERkcR+PFMMswISNACwiCLSzpQ4PM7IkSPRv39/m/Zly5ahrq7tSWBmZib+8Y9/2LTPmTMHer3eoRiJpMIkjYiIiEhiGbnl0ChgqSMAqAUBGbnlDo8jCAKWLl1q037q1CksWLCgTWNUVVXh7rvvtim97+npiUWLFjkcI5FUmKQRERERSezwuTJFzaQdPl/mlLGmTZuGkSNH2rS//vrrWLhwIcxmc7P3FhcXY9KkSUhPT7e5tnjxYkRFRTklRiIpCGJH66jKlNFohJ+fH8rLy2EwGKQOh4iIiKhFoiii/7PbUVlncdszzeUFyF17r8vGz87ORnR0dJv65uTkICkpCWVltolf3759MX/+fNx4443o1q0bTCYTTp06hU8//RSvvfYaSktLbe4ZOnQofvjhB2i1Wke/DeoElJobsAQ/ERERkYRKKuvcmqDJTXR0NDZv3oxJkyahpqamybVjx45h7ty5bR4rNjYWmzdvZoJGisfljkREREQSqr6GE7QGY8aMwVdffYWgoKAOjzFo0CDs2rULXbt2dWJkRNJgkkZEREQkIZPFKnUIsjBq1CgcOnQIU6dObdcB1J6enli6dCn27t2LyMhIF0ZI5D5u2ZP2+uuv429/+xvy8/ORkJCA1atXY8iQIc3237RpE5555hnk5OSgZ8+eWLlyJSZOnNimZyl13SkRERFdm86XVmH4X3e69Zmi2YS6gjMOjbFuZjJCDJ52ryUlJcHDw6PDYx8/fhzr16/Htm3bcPz4cVitTRNZDw8PDB48GFOmTMGcOXMcmoGjzk2puYHLk7QPP/wQs2bNwtq1azF06FC8+uqr2LRpEzIzMxESEmLT/8cff8SIESOwYsUKTJ48GRs3bsTKlSvxyy+/2D1L47eU+oMgIiKia1Px5VqkvPCt1GG024GlYxHk0/FErK1qampw7tw5VFRUQK1Ww9/fH5GRkVCr1S5/NimfUnMDlydpQ4cOxeDBgxtPgrdarYiMjMRjjz2GJ5980qb/tGnTUFlZiS+++KKxbdiwYUhMTMTatWtbfZ5SfxBERER0bZKiuqOjfDw0yHhuXLuWJRJJQam5gUv3pNXV1SE9PR1jx4793wNVKowdOxZpaWl270lLS2vSHwDGjx/fbP/a2loYjcYmX0RERERKIQgCBnT1kzqMdhnQ1Y8JGpELuTRJKy4uhsViQWhoaJP20NBQ5Ofn270nPz+/Xf1XrFgBPz+/xi9uGCUiIiKlSYjyh0aljKRHoxKQEOkvdRhEnZriqzsuWbIE5eXljV/nz5+XOiQiIiKidhnQ1Q9mq8truTmF2SoqbuaPSGlceph1UFAQ1Go1CgoKmrQXFBQgLCzM7j1hYWHt6u/h4eFQ9SAiIiIiqV3XIwgalaCIRE2jEpDao4vUYRB1ai6dSdPpdEhOTsZ3333X2Ga1WvHdd98hNTXV7j2pqalN+gPAN99802x/IiIiIqUL1OsweWA41DJf8qhWCbglIQKBep3UoRB1ai5f7rhgwQK8/fbb+Ne//oXjx4/joYceQmVlJebMmQMAmDVrFpYsWdLY/09/+hO2bduGl19+GSdOnMBzzz2HAwcO4NFHH3V1qERERESSmZkaDYvMZ9IsVhEzU7tLHQZRp+fS5Y5AfUn9oqIiLFu2DPn5+UhMTMS2bdsai4OcO3cOKtX/csXrrrsOGzduxNKlS/HUU0+hZ8+e2Lp1a5vOSCMiIiJSqkFR/ugd5ovMggq49oCkjhEEID7UF0ksGkLkci4/J83dlHoWAhEREdE3xwow970DUofRrLdnpeCmvqGtdySSCaXmBoqv7khERETUWdzUNxRTEiKgltkZZGoBuDUxggkakZswSSMiIiKSkeen9IPBSwO55GmCABi8tHjuln5Sh0J0zWCSRkRERCQjAXodXrpzoGz2pYkisPLOgQhgRUcit2GSRkRERCQz4/uF4Ynx8VKHAQB4Ynw8xvWzf14tEbkGkzQiIiIiGXp4VA88PKrHNR8D0bXI5SX4iYiIiKj9BEHAE+PjoffQ4G/bMyEIcMsSyIbn/L8J8Xh4VJzrH0hENjiTRkRERCRTgiDgkdFxeGtmMvy9tFC7uJiIWgD8vbR4a2YyEzQiCTFJIyIiIpK5cf3CsGPhKEwaGAEATq/82DDe5IQI7Fw0invQiCTG5Y5EREREChCg12HVXUmYPDAc//fNSZzIr4BaJcBi7fgayIb740N9sXBcPM9BI5IJJmlERERECjKuXxhu6huKg+fLsCHtLD4/fBFmqwiNSoC5DQlbQz+NSsCUhAjMTO2OxEh/CHI5mI2IIIiiXE7hcA6j0Qg/Pz+Ul5fDYDBIHQ4RERGRS5VW1iHtTAmO5JbhyPlyHMktQ2Wtxaaf3kONgV39kRDpjwFd/ZDaowsCefYZdXJKzQ04k0ZEnVpWVhbS09ObfF26dMmm386dOzFq1CiXxVFUVNQkhgMHDuD8+fM2/Z599lk899xzLouDiDqfQL0OkwaGY9LAcACAKIooqaxDjcmCOrMVOo0Knlo1uuh1nC0jUggmaUTUaWRnZ+PAgQOtJmSuVlxc3CSO5hIyIiJXEAQBQT4eUodBRA5gkkZEnUZSUhLKy8ulDgP33XcfPv30U6nDICIiIoViCX4iIiIiIiIZYZJGREREREQkI1zuSESdWlRUFJKTk5GSkoLk5GQEBQUhJSXF7XEEBgYiOTm58SslJQWjRo3C2bNn3R4LERERyRuTNCLqNKKiohAXF9ckEQoKCmrSJycnx+VxBAYGYuzYsU2Sw5iYGJc/l4iIiDoHJmlE1GkcOXJE6hAAAP/4xz+kDoGIiIgUjHvSiIiIiIiIZIRJGhERERERkYwwSSMiIiIiIpIRJmlEREREREQywiSNiIiIiIhIRpikERERERERyQiTNCIiIiKFEUURI0eOhCAIdr+ee+45qUMkIgcwSSMiIiJSmHXr1mH37t1Sh0FELsLDrIlIGUQRqCwGTFWAxQSotYDWG9AHAYIgdXRERG5z4cIFLF68WOowiMiFmKQRkTxVlgDZ3wN5h4DcdODiIaDusm0/nQ8QkQh0TQbCE4GYkYC+i/vjJSJyk4ceeghGo1HqMIjIhZikEZF8iCJwYT/w89vA0S2A1QyoNPV/NqfuMpCzBzi373/9+98JDJ4LdEvhLBsRdSoffPABvvjii8bXKpUKVqtVwoiIyBW4J42I5OHEl8Cb1wHrbwKObv5fYtZSgna1q/v/uhlYPxZ483rgxH9dEy8RkZuVlJRg3rx5TdoefPBBiaIhIldikkZE0qoqBT6+F/jgD0DRifo2q8WxMRsStqLjwAd31Y9fVerYmEREEnv88cdRVFTU+DoiIgIrVqyQMCIichUudyQi6Rz/AvjsMaCmvP616OQlOw3jHf0EOLMDmLIa8Orv3GcQEbnBtm3b8O9//7tJ26pVq2AwGCSKiIhciTNpROR+ogjs/jvw4d1AdRkgOjhz1urzLPXP+fDu+v1uREQKcvnyZTzwwANN2m655RbceeedEkWkbFlZWdi0aROefPJJ3HTTTQgMDLR71tyuXbskjfOZZ55p9hy8UaNGSRobuR5n0ojIvUQR+O55YM8rVxrcteH9ynN+XOWm5xEROceSJUtw7ty5xtc+Pj54/fXXJYxIObKzs3HgwAGkp6c3fl26dEnqsFqVkZGBlStXSh0GSYhJGhG51w8vX5WgERFRS3788Ue88cYbTdpeeOEFREZGShSRsiQlJaG8vFzqMNrFYrHg3nvvhclkkjoUkhCXOxKR+xz/AtjxF6mjICJShNraWtx3331NSuynpKTg0UcflTAqcrVXX30V+/fvlzoMkhiTNCJyj6rS+iIh4LllRERt8cILL+D48eONr9VqNd566y2o1WoJoyJXysrKwrJly5q0qVR8u34t4nJHInKP/z5xpYqjKHUkRESyZ29P0uOPP46kpCSJIuo8oqKikJycjJSUFCQnJyMoKAgpKSlShwUAmDt3LqqqqhpfDxw4EL6+vti7d6+EUZEUmKQRkeud+BL49WOpoyAiUgR7e5Kio6Px/PPPSxiVMkVFRSEuLg7JycmNiVlQUFCTPjk5OdIE9xvr16/Hjh07Gl+rVCq89dZbWLx4sYRRkVSYpBGRa4kisOMFQFA5/xw0ZxI5w0dE8mBvT9Ibb7wBvV4vUUTKdeTIEalDaJO8vDwsWrSoSdvDDz+MoUOHShQRSY1JGhG51oX9QOExqaNoXVEmgNFSR0FEnZAoiqiuMMFcZ4HVIkKlFqDRqeHlq4UgNN2na29P0rRp03DzzTe7M2Rys0cffRRlZWWNr7t27Yrly5dLGBFJjUkaEbnWz28DKjVgdfGB1Y468QWAB6WOgog6gerLdbhw4hKKzlWgIMeIorMVMNXa/huo9VAjuLsvQqMNCI7yRbfeATZ7kvz9/fHqq6+6M3xys82bN2PLli1N2lavXg2DwSBRRCQHTNKIyHUqS4CjW+SfoAFA9u76ePVdpI6EiBRIFEUUZBuRsesCTh8ohNUqQqUSYLU2v5TaVGvBxZNlyD9dDqtVRFrmV9ixa0eTPitXrkRYWJirwyeJlJWV2RypcNttt+H222+XKCKSCyZpROQ62d8DVrPUUbSNaAFydgP9+D9GImqfrENF+OmzLJRerISgEiBeScxaStCuZrWKKK8swZYf1zZpT04cgrlz5zo9XpKPBQsWID8/v/G1r68vVq9eLWFEJBc8eIGIXCfvEKBSyGdBghq4eEjqKIhIQWoum/D1+qP4am0GSvMqAaAxQWuvj/auRnXd5cbXGpUWE3o9gG/+cQw1l00t3ElK9d133+Hdd99t0rZ8+XJ069ZNoohIThTy7omIFOlCurJm0nLTpY6CiBQi61ARdm44gdrqKwmUAwViD2btxuHsH5q0jU2chvCAaJxOL8D5Y6UYPbM3YhODHYiY5KSqqgr3339/k7bBgwfjkUcekSgikhsmaUTkGqJYP5PmRjllVsS8drn1jnaM/lcV8K8vgTlCs32ys7MRHR3dpvGio6Nx9uzZdsfx/PPPt3oW0rvvvovZs2e3e2wicpwoikjfdhY/fZoFCHAoOQOAqtrL2LS36fK2EL9uGD/o7vrnWYGaKhO+WpuBYbfFYtD47jYVIUl5li5diqysrMbXGo0Gb7/9NlQqLnKjevybQESuUVkM1HUsYSIikiNRFLFva1Z9ggY4nKABwJa0N2GsKm3SNn3449CqdVc9uP6PfVuzsO/TLIg811HRfv75Z7z22mtN2hYsWICEhASJIiI54kwaEbmGqar1PkRECpK+7Sx+2d7+GfLmZF74BfsytzVpG9prPHp1TWr2nl+2nYXOU43kCdFOi0Op2nP+nFyYTCbcd999sFqtjW0xMTF49tlnJYyK5IhJGhG5hoUb3Ymo88g6VPS/GTQnqDPV4D8//F+TNh9Pf9ye+kCr9+7bmoWAMP01t0fNkfPnvHx0dkZ0vxUrViAjI6NJ25tvvglvb2+JIiK5YpJGRK6h1rr9keE+AtLudfB/dNPeB3ztn0kUHh7e5mE++eQT1NbWOhZLM3r06OGScYnIvprLJuzccMIpe9AanC3KRLExr0nb4J43oqg8F0XluS3fLADvrDyJ8XP7w8Pb/lu5CxcuYN++fTbtffv2VdQhyc44f06lEhCXEoIBo7ohNMYg2SzbsWPHsHz58iZtd911F8aPHy9JPCRvTNKIyDW07v9U0EMjYFg3B/9ZS70e8HH80+mkpOaXKxGRsuz+8GR9FUcnbgUT7Qy2M2MzdmZsbvMYKz5o/tr69euxfv1622fs3IlRo0a1+RlScsb5cw1/njpQiJM/F6BLVz2GTolFTIJ7ZyGtVivuu+8+1NXVNbYFBATglVdecWscpBxM0ojINfRBgM5HWcVDdL71cRMRXZF1qAin9hdIHcY1peayCbs/PFn/3/3KpFdHz59r0HB/ycVK/PfNDPQcHIoR03rB08c9qz7WrFmDtLS0Jm1//etfERoa6pbnk/IwSSMi1xAEIDwROLtH6kjaLiKxPm4iItQvtfvpM+eU2qe2ceb5c3ZdGe/q8+dU/k5+xm+cPXsWTz/9dJO2ESNG4N5773Xtg0nRmKQRket0SwbO71PGgdYqDdA1WeooiEhGCrKNKL1YKXUY1wRnnz/X6vOuOn8uKtW1RUUeeOABXL78v1UlOp0O69atk20FSpIHJmlE5DrhicpI0ID6OCMSpY6CiGQkY9eFJnuhnKlXRCLWPPCdw+MIKgGPvDnGpv3ZZ5/Fc8895/D47tBw/lzj8QbumrW88pyDX59z2SPee+89bN++vUnbkiVL0Lt3b5c9kzoHHmZNRK4TM7J+hkoJVBogeoTUURCRTFRfrsPpA4UuSdCcSe7xtYWzz5+Ti8LCQsyfP79JW3x8PJYsWSJRRKQkTNKIyHX0XYB+dwAqtdSRtEylAfrfWR8vERGACycutbmKIHWcs8+fk5N58+ahtLS08bUgCFi3bh08PDwkjIqUQiEfcRORYg2ZC2R8JHUULbOagcFzpY6CiGSk6FxFq+dxkWNccf6cnHz44YdNXo8YMQIeHh52z69ridFotNtmb5xu3bqhW7du7QuUZIlJGhG5VrfBQEg/oOh4/U5tuRFUQEhfoFuK1JEQkYwU5BiZoLmYK86fk7Pvv/8eqampThnr4MGDdsdS0l5EahmXOxKRawkCMGapPBM0oD6u0U+z9D4RNRJFEUVnK6QOo1NrOH9Orv9rIJIakzQicr3eE4H+vwMEme1NE9TAgN/Xx0dEdEV1hQmmWovUYXRaTc6fkzFRvEam+EiWuNyRiNxj4t+AMzuA6jIAcvjoVAV4+gE3/1XqQIhIZsx19Qnao+tudPrYNyfPwqSUPzp9XCVRyvlzl/LkHyN1XpxJIyL38A4EpqyGPBI0ALACt66pj4uI6CpWC2dQXKnh/Dm5yzpU5ND9oig65WvkyJE2Y48cOdJuX+5H6zw4k0ZE7tNnMjDmGWDHX6SOBLhxGdB7ktRREJEMqdTyTyCudnPyLABAwphu8PDWAgBGjRolYUTNU8r5cwCQm1mG6st18PLRSR0KXYOYpBGRew1fCNRVAnv+T7oYblhQ/0VEZIdGJ7P9s61oWD45Z+kN8DbIO6FQ0vlzVlFEbmYZ4pJDpA6FrkFM0ojIvQShfhbLwwf47s+oX3XtjiWQV55z47PAcCZoRNQ8L18ttB72E7WFt612aGx/fbBD9zdH66mGl6/WJWM7k5LOn1MJAorOGZmkkSSYpBGR+wlC/YxacG/g00eBmnJAdGElNUFdXyTk1jVc4khErRL5DVBiAAAgAElEQVQEAcHdfe1eiwnt6+Zo2iYkyheCAo4SUdL5c1ZRREG27UHSRO7AJI2IpNN7EhCVCvz3CeDXj+sPlnbmoTkN4/W/o76KI4uEEFEbhUYbpA6hzVQqAaEx8o9XivPnSiry8ezGuzt076rPF2LV5wAWNt8nOzsb0dHRHRqfqCWs7khE0vIOBH63Hpi+EQjuU9+mcvDzo4b7g/sA0/8D3PkOEzQiapfgKPszaXJktYoIjpJ/ksbz54jajjNpRCQPvScB8ROBCweA/W8Dv24GrOb6hMtqbv3+hn4qLdD/TmDIXKBrcv3SSiKidurWO0DqENpMpRLQNd5f6jBa1XD+HBG1jkkaEcmHIACRg+u/xq8AcnYDFw8Cub/U/1l32fYenQ8QkVSfkEUkAtEjAH0X98dORJ2KUsquCyoBcSkhioiX588RtR2TNCKSJ30XoN/t9V8AIIpAZTFgrgbMdYBGB2i8AH0QZ8uI6JolWkUMGNVN6jDaRIrz5wzegQ5X5Lz5wQHQ+3nYvRYeHu7Q2G0xe/Zsm3PvuA+u82OSRkTKIAiAj2tKVxMRKZIAdInQK6JoCCDN+XNatc7hipypqamSnj83e/ZsyZ5N0mHhECIiIiIlEoGhU2IVUXofaPn8OblSyvlz1PlwJo2IiIionerMtbhcXYbKWiM0Ki28PXzh7ekLrdo9My6CCohLDkVMgnJWGDScP3fxZJnUobSZUs6fo86HSRoRERFRG334w2s4k5+BvEtnIdo51zHQJxSxYf3RI3wAkmJGwMfLz/lBCICHlxYjpvVy/tguFhptQP7pckUcaK2U8+eoc2KSRkRERNRGPxz7rMXrpZcLUHq6AAdOf4ctaW9iSM+xGJswDcF+XZ0XhAiMntkbnj7KW4YXHOWriAQNUM75c9Q5MUkjIiKia44oiqg2lsNUWwuL2Qy1RgOthwe8DH5OW95mMtdi7/Evsf/Ud7gj9SHc0HeyU8YddlssYhOVs8zxat16B0ClEhSRqCnl/DnqnJikERERUadXZSzH+aNHUJB1GnmnT6Ig6zRMNdU2/bSeXgiNjUN4nPOWEtaZa/DBD68gK/9XzBy92KEkcNCE7hg0vrvTYnM3Lx8d4lJCcOpAIUQZJ2pKOn+OOicmaURERNQpiaKIvFMncGj7l8hM+wFWiwUqtRpWi6XZe0w11bhwLAMXM481tmk0agwelIybJ09G//79YS0x4PQeI7x0epgtJlTVVqDIeBFZ+UdxKHs3LhSftjv2z6e+gd7TgDuve7h934gAQKyfQUueEN2+e2VowKhuOPlzgdRhtEhJ589R58QkjYiIiDqd0/v3Ye+HG1B8/iwElRqitT4xaylBu5rVYkH3Lv4YEhOJpO6R0KkFBBkLMCByHOJuH4qslCLs3HACtdUaeGi9EOATgl4RiZgw6G6cvHgIH/7wGgrKztmMuzNjM7oFxWFor3FtikNQ1RcJGT2zt2KXOP5WaIwBXbrqUXKxEpDjZJrCzp+jzkkQRVGOvx4dZjQa4efnh/LychgM/OUiIiK6llRXGLHj3bU4sXc3BEGAM9/mNIzX+/oRGDPnQQiCF3Z/eBKn9hc0znY1qDPXYsPOl3Awa7fNOP76ICyb/h50Go8WHlY/Xs/BoRgxvRc89corEtKS7MNF+O+bGVKH0ayJDw1Q1PEG1Dyl5gY8zJqIiIg6hVP70/CP+Q8gM20PADg1Qbt6vMy0PfjH/Adx/vgBjLu3H25+cAC6ROgB1O9lAgCdxgN/HPMUekUk2oxTVlmM3b9utfuMhvu7ROgx8aEBGHdvv06XoAFATEIweg4OhSCzd6KCqj4xZoJGUuNMGhERESmaKIr4eesm7PngPUAQAHe8tbnynBumz8KQ234PACjINiJj1wWcPlAIq1WESi2goDQXyz+6B2arqcnt0SF9sOj2NQDQWO1QpRbQMyUU/Ud1RWi0odMfolxz2YT3n92HmiqTPJY9CoCntxZ3Pz9MkccbkH1KzQ24J42IiIgUSxRF7PnPv/Dzpx83NLjrwQCAPR+8h7qaatwwfRbCYv0QFuuHG6b2RG5mGQrPGlGY44fBh8cg7fj2JrefLcpErbUCsb0jERpjQHCUAV3j/a+paoKePvV77b5aK5Nljwo+f446HyZpREREpFg/b930vwRNwhh0nl4YevtUAFfKzCeHIC45BABgirwXaVObJmmiaEXfOzwwYcIgt8crJ7GJwRh6ayx++jRL6lAUff7cb+Xm5uLQoUMoKipCUVERLBYLDAYDYmJikJiYiPDwcKlDpFYwSSMiIiJFOrU/rX6Jowzs+eA9dOkWhbjBw2yupaSk2L2nsLDQ1WEpQvKE7jDVWvDLtrOSxaD08+cAIC8vD6+88gq+/PJLHDt2rMW+CQkJmD17Nu655x5FLQG8lshsuyYRERFR66orjPh63ar6vWFyIAjYvu41VFcYbS6FhITYvYVJWj1BEDDs1lgMuy32SoO7Hlz/x7DbYpF6Ww/F7gGsqanBE088gR49euBvf/tbqwkaABw+fBjz589Hr1698MEHH7ghSmovJmlERESkODveXYvaykr37UFrjSiitrISO95d1+Zb6urqXBiQsgiCgOQJ0bj5wQHw9Na6vOqjoKovEnLzgwMUfUB4bm4uhg8fjr///e+orq5u9/0FBQW466678Nhjjzm9Gio5hssdiYiISFFO79+HE3ttzx+Tmmi14sTe7xF/3QjEpQxtbG9uxozLzGzFJgYjIs6/2fPnHHZlvLhk5Z8/l5ubi6FDhyI3N7fZPrGxsY37z/Ly8pCVZX/v35o1a2AymbB27VqXxErtx5k0IiIiUgxRFLH3ww2yXZomCAL2frihyaxEenq63b5RUVHuCktRPH20zZ4/11Gd7fy5uro6/O53v7OboOn1evzlL3/BuXPncObMGezZswd79uzBmTNncO7cOfzlL3+BXq+3uW/dunV488033RE+tQFn0oiIiEgx8k6dQPF56QpMtEYURRSfy0HeqUxE9OoNAPj888/t9k1KSnJnaIoTmxiMmIQgu+fPWS2tT6915vPn/vznP2Pfvn027XFxcfjmm28QHR1t977IyEgsXboUM2bMwE033YTTp083ub5o0SJMnDgR3bsru4hKZ8DDrImIiEgx/rv67zjx4w8QrRapQ2mWoFKj9/UjMPHRhThz5gz69OkDk6npYdY9e/bEyZMnJYpQmaov1111/pwRhWcrYKq1/Xug9VAjpLtvpz1/rrS0FNHR0aioqGjSHhQUhMOHDyMiIqJN41y8eBEJCQkoLi5u0j516lR8+OGHTotXakrNDTiTRkRERIpQZSxHZpq8EzQAEK0WZP64G9dNn4W5c+faJGgAMGPGDAkiU7bfnj8niiKqK0wwmyywmkWoNAI0WjW8fLWdYrasOWvWrLFJ0ABg9erVbU7QACAiIgKrVq3CH/7whybtH3/8MTIzMxEfH+9wrNRx3JNGREREinD+6BFYLa5P0I7nFaKy1rHKi7W1dZg+dSp27txpc83X1xePPPKIQ+NT/f4/b4MOhi5e8A/1hqGLF7wNuk6doAHA1q1bbdpiY2Mxbdq0do81bdo0xMbGNmmzWq1Yt67tVUrJNZikERERkSIUZJ2GSq12+XP2nTmHF77YgS2//IqzJZfaXZr8TGEJXv12D7bv3GX3+osvvoguXbo4IVK61pSWluLw4cM27TNmzOhQcqpSqezO6m7cuBFWq7VDMZJzcLkjERERKULe6Uy3zKQBgMliwY+nz+LH02dh8PJAfGgwIvwNCPc3IMDbC55aDTy1GlisIqrrTCi+XImc4ks4ciEPuWW2B1o3mDp1Kh599FG3fA/U+ezfv99u8nTdddd1eMzU1FSbtoKCAqSnp2Pw4MEdHpccwySNiIiIZE8URRRknZHk2cbqWuzPueDwOFOnTsW///1vJ0RE16rmztzr169fh8ds7t5vv/2WSZqEuNyRiIiIZK/aWA5TTbXUYXSIwWDA+vXr8eGHH0KrVe7ZXCS931ZibODv79/hMZu798CBAx0ekxzHJI2IiIhkz1Rb67ZndQvwg97D8ZLt3jotHnngAfz666+45557nBAZXeuqq+1/UOHh4dHhMT09Pe22Hzp0qMNjkuO43JGIiIhkz2I2u+1ZN/XribF945BXXoGzJZeQe8mIvHIjSi5XobK2Ds2VEdGoVAj3NyAq0A8xQYHo1zUU9y97BoERXd0WO3Vuzc16lZeXIygoqENjlpWV2W0/e/YszGYzNBqmC1Lgf3UiIiKSPbWb3ygKgoAIfwMi/Jsefmu2WFFRU4tasxlmixWCAHjptPDUauGp1UD1mwp7Gi5vJCdqripofn5+h5O0/Px8u+0WiwXnz59HTExMh8YlxzBJIyIiItnTOrCcy5k0ahUC9F5t769zfNkkUYOoqCi77fv370f//v07NOb+/fubvVZYWMgkTSLck0ZERESy52Xwg9az7cmRHOi8vOBl8JM6DFIYURRRVGfCuepanKmqwbnqWhTVmSCKIpKTk+HlZft78PXXX3f4eS3dW1JS0uFxyTGcSSMiIiLZEwQBobE9cOHYr1KH0mahsXEdOmCYri0ldWbsKavAkYpqHDRW4XBFFSottmeh6dUqJPh6IywhCdn7fmxybcuWLSgsLERISEi7nl1QUIBPPvmk2euVlZXtGo+ch0kaERERKUJ4XDwuZh5324HWjlCp1QiLi5c6DJIpURSRbqzCu7nF+LTwEswioBEAc3NVaQBUWqz4sewyaoffBPwmSaurq8P8+fPx/vvvtyuO+fPno66urtnrLV0j1+JyRyIiIlKE0Ng4RSRoAGC1WBAaEyd1GCRD24rKMXp/Jib/cgpbryRoQMsJ2tV0YydBFWQ7Y7Zx40asWrWqzXG89tpr+M9//tNiH6vVdkaP3INJGhERESlCZL+BUKnVUofRJiq1GpH9BkgdBslIqcmMh47mYPav2ThZWQMAsLQxMbuaoNXCZ87Ddq/96U9/wkN/+hOMRmOz9xuNRjz++ON4/PHHW31Wc2eoketxuSMREREpgrfBD/Gpw3Hixx8gWuU7oyao1Ii/bgS8WTSErviqqAwLMs/DaKr/e+vo/JTXzbei7tB+1Hzzpc21tatWYeP772PaHXdg5MiRCAsLA1Bfav/777/HJ598guLi4ib3DB482G6VR29vbwcjpY5ikkZERESKkTh+Eo7v2SV1GC0SrRYkjpskdRgkA6IoYtXZQqzIzoMKjidnVzPMfxrW0mLUpf9kc81YUoK3334bb7/9dqvj3HzzzZg9ezamTZtmc629hUjIebjckYiIiBQjvGdvBEVFy7ZqoiAICIqKRnhPFg251omiiBez8rAiOw+AcxM0ABA8veD/0hp43XJnh8e46667sGXLFlRXV9u9Hh4e3uGxyTFM0oiIiEgxBEHA9dNmQhQ7sJnHDURRxPXTZso2iST3WXW2EKvPFbr0GYJaA8P8pQh45R1oByS1+b7IyEi8//772LhxIzw9PVFeXm7TR6/Xo2vXrs4Ml9qByx2JiIhIUeJShqL39SOQmbYHooyqzwkqFeJThyMuZajUoZDEvioqa5xBcwddQjICX/sHTGdOom5/GuoO/QxLfh6sZZcgVl6Gl6cnYqO7IyUlBVOmTMGUKVOg0fwvDThx4oTNmH379uWHDRJikkZERESKM2bOg8g5chA1ly8DcphVEwR46H0wZs4DUkdCEis1mbEg8zwEAO7+m6nt0QvaHr2gn/7HxjYVAD+tGruH9kGg1v5b/yNHjti0XXfdda4Kk9qAyx2JiIhIcbx8DRj3wDx5JGgAIIoY/8A8ePkapI6EJPb0yQswmixuT9CaYwVgNFmw9OQFu9ctFgsyMjJs2kePHu3iyKglTNKIiIhIkXoOTsUN02dJHQYA4IbpsxA3eJjUYZDEthWV45PCMsjtgAgLgC2FZdhebLv37JtvvrE5V83Hxwfjxo1zU3RkD5M0IiIiUqwht/0eQ277/TUfA0lPFEW8dKXUvhypALyUlWdTdGfDhg02fe+44w54eXm5KTKyR65/j4iIiIhaJQgCbpg+638zau4qdHDlOTfc9UcMv+uPLLBASDdW4URljdNL7TuLFcDxyhr8YqxqbMvOzsaWLVts+j7++ONujIzsYZJGREREiiYIAobePhW3LloKTx8fCCrXvr0RVCp4+vji1kVLMZQzaHTFu7nFUMs8V1cL9XE2ePjhh1FTU9Okz8SJE5GU1PZy/uQaTNKIiIioU4gbPAz3vLIO8ak3AIDTZ7caxotPHY57Xl3HPWjUqKTOjE8LL8Eil2ohzbCIwNbCSyipM2PlypXYtm1bk+tarRYvv/yyRNHR1ViCn4iIiDoNL18DJs37f4hPHYG9H/0bxedyIKjUEK0dL+XQcH+XyO64ftpMnoNGNvaUVcDs5gTNWl0FlZd3u+8zWUXMW/YsNq580eba888/j969ezsjPHIQkzQiIiLqdOIGD0OPlKHIO5WJQ19/icwfd8NqsUClVsNqaT1ha+inUqvR+7oRSBw/GWFxvbj3jOw6UlENjQC3Jmql90+Htl8CvMbdAm3CIAjq1t/W1/16CJff+Ds2njhqc23ixIlYvHixK0KlDhDE35Z4UTij0Qg/Pz+Ul5fDYOBZJURERARUGctx/mgGCrJOIf/MSeSfOQ1TTbVNP62nF8J6xCEsLh6hMXGI7DcA3gY/CSImJbn94GmklV126zOLpo6HtbgQACDofaBLTIGmRy+oI6OhMvhB8PSC1VgOa1kpzNmnUZf2Ayx59s9KGzZsGL799lvo9Xp3fgtuodTcgDNpRERE1Ol5G/wQn3pD4341URRRbSyHua4OZpMJGq0WGp0OXgY/zpZRu4iiiCMVVa13dGUMlZdRu3cXavfuave9EydOxEcffdQpEzQlY5JGRERE1xxBEODt5y91GNQJFJvMqLTItfB+8zw9PfGXv/wFCxYsgMrFFVGp/fgTISIiIiLqoGqJEjSPG0ZDFRDY7vsEL2943fI7fJ9xFIsWLWKCJlOcSSMiIiIi6iCTROUdDPOehPjYYphPZ8J07AhMmcdgyT0HS/5FiJcrINbWAFodVHofqMO7QhPbE7qkIdANvR4qL290iYiQJG5qGyZpREREREQdpJVwD6MgCND27A1tz/aXzddxBk3WmKQRdUB1dTUOHjyI7OxslJWVoby8HFqtFv7+/ggMDMSAAQPQs2dPbj4nIiLq5LzUykx2PFV8jyJnTNJkqrq6GseOHcOpU6dQWlramAQEBAQgICAAffv2RXx8/DWTBGRlZSE9Pb3J16VLl2z67dy5E6NGjXJJDGVlZdiwYQM2bNiAgwcPwmw2t9jfz88PN954I+677z6MHz+ea76JiIg6oSCtBnq1SlHFQ3zUKgRpmQbIGX86MlFYWIidO3dix44d+P7773Hq1ClYrS3/sgcEBGD48OG47777MGnSpE6TBGRnZ+PAgQOtJmTuYrFY8Oqrr2LZsmWoqmp7id3y8nJs2bIFW7ZsQZ8+ffDOO+/guuuuc2GkRERE5G6CIGCgr7fbz0lzRIKv9zXzQb9SMUmTUEFBATZv3oxNmzZh9+7drSZlv3Xp0iV89tln+OyzzxAdHY1Vq1bhlltucVG07pOUlITy8nKpwwBQP3s2efJk7N2716Fxjh8/juHDh+PPf/4znn76aSdFR0RERHIwyOCN/eWXYZamhki7aAQgyeAtdRjUCiZpEnr66aexfv16p4yVk5ODKVOmYPbs2Vi7di08PDycMu61rKKiAuPHj8fPP//cbB8vLy/06tULgYGBMJlMKCwsxOnTp+0m3FarFUuXLgUAJmpERESdyEBfL0UkaABgFoGBvkzS5I5JmswFBAQgJCQEISEhAICioiKcPHmy2Vm3f/7znygpKcHmzZuh1WrdGWqns3jx4mYTtIkTJ2LhwoUYPny4zX9no9GILVu24KWXXkJmZqbNvc888wxGjx7NpY9ERESdxA3+vtAIUESiphGA6/19pA6DWtE5NjF1Ij4+Ppg1axbeffddnDlzBqWlpThx4gR2796N3bt34/jx47h06RI2btyIpKQku2N8/vnneOSRR9wcuWtFRUXh9ttvx/Lly7Ft2zYcOHDApc87cuQI1q1bZ9OuUqnw1ltv4csvv8SYMWPsJsIGgwGzZ8/GoUOHMGPGDJvroih2up8PERHRtayLToNbQwKglvk2L7UA3BYSgC46ztPIHX9CMpGamor7778fv//976HX61vsazAYcNddd2HatGl44YUX8Oyzz9r0eeeddzB79uwOz9aYzWacPn0ax48fR1FREcrKymC1WuHv74+AgADExMQgMTEROp2uQ+O3JCoqCnFxcUhOTkZycjJSUlIQFBTUpE9OTo7Tn3u1DRs22J2tfP755zF37tw2jeHp6Yl//vOfyM3Nxc6dO5tcO3ToEDIyMjBgwACnxEtERETSmtM1CJsLpCt01hYWsT5Okj8maRK7/vrr8dxzz2Hs2LEA2l9qftmyZfDw8MCTTz7Z5Looinj66adtkoPmVFVV4YcffsDOnTuxc+dOHD58GLW1tS3e4+HhgZSUFMycORMzZsxoNblsqyNHjjhlHEd89tlnNm1hYWF44okn2jWOWq3Gyy+/jEGDBtlc+/zzz5mkERERdRLJBm/00Xsis7IGcizGrwLQW++JQSwaoghM0iR077334sKFC/j222+xcuXKDpeaX7x4MT799FOkpaU1ad+9ezcKCwsb97P9VnV1Nb744gts2rQJX375ZbvKywNAbW0t9u7di7179+L//b//h6eeegqLFi2CWq1u9/cgJ1arFVlZWTbtkydP7lBBlqSkJPTo0QNnzpxp0v7b10RERKRcgiDgydhw/DEjW+pQ7LICWBwbztL7CsEkTUI333yz00rNP/HEE7jjjjuatFmtVmzfvh0zZ860e8/mzZubvdZeRqMRTz75JD755BN89NFHiIqKcsq4UigpKbF7UHXfvn07PGafPn1skrK8vLwOj0dERETyMz7ID7eH+OOzwjJYpA7mKmoAt4b4Y3yQn9ShUBuxcEgncdNNN9n9ZOTs2bMOjevt7Y3Y2FgMGzYMo0ePxsCBA+Hl5dVs/59++gljxozBxYsXHXqulETRfmkmH5+OV0IyGAw2bUqfcSQiIiJby3t1g0Grls2bbBUAP60aL/TqJnUo1A5y+ftDDvLx8UFAQIBNe35+frvGUavVmDBhAl599VWkp6ejoqICZ86cQVpaGnbs2IHDhw+jrKwMO3bswG233WZ3jDNnzmDcuHGoq6vr0PcitcDAQGg0tpPMJSUlHR6zuLjYpi0sLKzD4xEREZE8BWo1+L/4SNnsS7MC+L/4KARquYBOSVyWpJWWluLuu++GwWCAv78/7r33Xly+fLnFe9566y2MGjUKBoMBgiCgrKzMVeHJliOl5u2Vg1ep2vYjjomJwYoVK3Du3Dl89dVX+NOf/oRBgwbZvV+n02H06NH45JNPsHXrVvj52U6dHz16FC+//HKbY5cTjUZjt9BHS4dat8Rqtdr9OQ4bNqxD4xEREZG83RzsjyUx4VKHAQB4KjYcE4K5zFFpXJZS33333cjLy8M333wDk8mEOXPm4P7778fGjRubvaeqqgoTJkzAhAkTsGTJEleFJhvOLDVfWVmJoqIim/bw8Jb/gYiOjsbTTz+N2bNn2509as2tt96KTz/91O7M2fLlyzFv3jynVX10pzvvvNMmKdu+fTvy8/PbPQO2detWlJaWNmnz8PDALbfc4nCcREREJE/zuoeg0mLBqnOF0sUQFYLHouwXkCN5c0mSdvz4cWzbtg379+9HSkoKAGD16tWYOHEi/v73vyMiIsLufY8//jgAYNeuXW1+Vm1tbZNS8UajseOBu5kzS81///33ds/1iouLa/ae8ePHY9q0aXZn4Npj5MiRWLBgAV566aUm7ZWVldi2bRvuvPNOh8aXwty5c/HSSy81qbZZVVWFRx55BB9//HGbKyMVFhZi0aJFNu333Xdfs1U3iYiISPkEQcCS2HD4aNR4MSsPKsAtSyAbnvN0bDge6x7qhieSK7hkuWNaWhr8/f0bEzQAGDt2LFQqFX766SenPmvFihXw8/Nr/IqMjHTq+Erx7rvv2rRptVqMGzeu2XuCg4MdTtAaLFy40O7SyP/+979OGd/dAgIC8MYbb9i0b9myBX/4wx/a9GHA0aNHMWbMGGRnNy3FGxcXhxUrVjgtViIiIpInQRAwr3so/tk/Bn5aNVxdMkwNwF+rxj/7xzBBUziXzKTl5+fbzBJoNBoEBga2u5BFa5YsWYIFCxY0vjYajddconb48GFs2bLFpn306NF294u5QlBQEAYNGmSz9+q31SVFUYTJVAKLpQaiaIIgaKFWe0Kr7SK7czumT5+OCxcu2Bxg/cEHH+Dbb7/Fvffei3HjxqFfv34ICAiA2WxGUVER0tPTsXnzZmzatAkmk6nJvbGxsfj222/h6+vrUGyiKCI3Nxfnzp3D+fPnUVxcjKqqKtTW1sLX1xd+fn4IDg5GYmIiunbt6tCziIiIyDETgv0wxL8Pnj55AZ8Uljl9Vq1hvFtD/LG8VzcEsEiI4rXrJ/jkk09i5cqVLfY5fvy4QwG1l4eHR4cOGHYXURRRWlOKGksNTBYTtGotPNWeCPQMdEpSYrFY8OCDD9pd6vjb5MLVoqKibJK0vLxcFBR8iYqKX1FuPIyKil9hsVTa3KtW6+Hr2x9+hgT4+vZHQEAqdLpAd4XerEWLFqFPnz6YO3duk3PNiouLsXLlylZ/HxoIgoC7774bq1evhr+/f7vjOH36NPbu3Yu0tDQcOXIEv/76KyoqKtp0b2hoKMaPH4977rkHI0aMkF0yTEREdC0I1GrwZr9o3BpSjpXZeTheWQO1AFjsn/zTJg33x+s98WRsOM9B60TalaQtXNKnFTEAACAASURBVLgQs2fPbrFPbGwswsLCUFjYdJOk2WxGaWlppy87fqnmEn7K/wnHSo4hoygDx0qOocpcZdPPW+ONvl36YkDwAPTt0hdDw4YiwNO2hH5rli9fjn379tm0T5o0CWPHju3Q99BR9pZOVtdk4dej8yAIGoii7QHRDSyWSpSV/YTy8nSIohmCoEFoyGR06zYDBkOipInFpEmTkJWVhfXr1+P999/HTz/9ZDcpticsLAy/+93v8OCDD6Jfv34dev4zzzyDF154oUP3AkBBQQHee+89vPfeexg4cCDWrl2L1NTUDo9HREREHTch2A/jgwz4xViFd3OLsbXwEswioBEAcxsStoZ+WkHAbSH+mNM1CEkGb34I28m0K0kLDg5GcHBwq/1SU1NRVlaG9PR0JCcnAwB27NgBq9WKoUOHdixSGRNFEYeLDuODzA+wPXs7zKIZGkEDcwtJSZW5CgcKDuBQ4aHG/hNiJmB67+kYGDSwTb9o27dvx/PPP2/T7ufnZ3c/lavZq0QZGFi/+rqlBO1qDf1E0YyCws+RX7AVen08esQuQHCwe5PO3/Lw8ICfnx80Gk2bz4ArLS3F6dOncfDgQcTHx3eoguZvl0w64siRI7j++uuxePFi7osjIiKSiCAISPbTI9lPj+fjumJv2WUcrqjCIWMVDlVUodJi+2GwXq1Coq83kgzeGOjrjev9fdBFx2WNnZVLfrJ9+vTBhAkTMHfuXKxduxYmkwmPPvoopk+f3ljZMTc3FzfeeCPee+89DBkyBED9Xrb8/HycPn0aAJCRkQFfX19ERUUhMFD6pW/27Di3A2sOrsGpslNQC2pYRAsAtJigXa2hn1k046vsr/BF1hfo6d8TjyU9htFRo5u9LycnB48//rjdGZ21a9ciKiqqA99NxxUV5SA9fb9Ne9eIjhcmEa/8t6ysPIkjGQ8gNPQWxPd6Flpt+2ccHfHuu+/iqaee6tB+yrq6Omzbtg3btm3DsmXLsHbt2haLubSXWq1GZGQkAgMD4efnB6vVCqPRiKysLJSXl9u9RxRFvPTSSygvL5ckmSciIqL/6aLTYEqIP6aE1G+HEEURxSYzaqwi6qxW6FQqeKoEBGk1nC27hrgs/X7//ffx6KOP4sYbb4RKpcKdd96JVatWNV43mUzIzMxEVdX/lgKuXbu2yczQiBEjANS/SW5tmaW7ldWU4cWfXsRXOV9BQP0vTEOC1lEN958uO415O+fh5uibMSNsht2+Tz75pN034Y899himT5/uUBztVVT0NV588T6YzbYJ49Bh3k54Qv3cf0HBf1Faugd9er8IoJcTxm2ZyWTCrFmz8MEHH9hcEwQBY8aMwZgxY9CnTx8EBgbCZDKhpKQE6enp2LZtGzIyMprck52djQkTJuC5557DsmXLOhRTr169MHz4cAwfPhyDBw9GXFwcdDqd3b6nTp3CRx99hNdff73JfroGb775JoYMGSK73y0iIqJrmSAICNY5p/o2KZcgiqID2xXlx2g0ws/PD+Xl5TAYDC55xnfnvsNzPz6HiroKhxOzlqgEFXTlOhyYd6D1zqg/WHrz5s1Qq11d4LWeKIo4e/ZNHD32N8yZcwFFhU1nD731Aj7+OBo6nTM/9REAiPDQzcHw4c/YXN25cydGjRrllCdNnToVmzZtsmkfM2YM1qxZgz59+rR4//bt2/Hggw/aXQb60ksvYfHixW2K41//+hcKCgpw2223oVev9ienRqMRDzzwgN1kMyAgAGfOnEFAgHtnJ4mI/j97dx4eVXX/D/x97yyZySSTPSErgbAkJGyCbIICQQigYIW2IFqhLLZVEEWtWr6VfhW32h+irXxdEHBFxFYRWUQBxYqA7AkgCkGyEEhIyDJZZru/PwJIuJN1lnsnvF/Pw9Ny5t5zPvEZknnnnHsOEZEv+CIbeINXzklrryRJwuuHXsf8bfNRXlfu1YAGAE7Jicq6lu3gN3r0aHzwwQc+DWgnTr6AEyf/gbdWlckCGgDcdluIhwMacGlW7efTr3m434aWLVvmMqDNnj0bW7ZsaTagAfWHhe/bt+/yc5lXWrhwIfbskS8PdeXuu+/GI4880qaABgBmsxnvvvsubrnlFtlrZWVl+Oijj9rULxERERF5B0NaC0mShKX7luKl/fVLNiX4ZgKyJePcdNNN+Pjjj316FMHPPy/Dzz//Hw7sr8HatfJllxERGkyZ0vqt5tXAYrHgL3/5i6z9hhtuwLJly1we2t2YsLAwrFu3Trbtvt1uxyOPPOJ2rS0liiJeeeUVlyHe1Rl7RERERKQchrQWeuPwG1ievVzpMmSGDBmC9evXw2g0+mzM4uLPceLkP1BSbMdTT52Dq93o590ficBA/3x7vfvuuygrK5O1P/fcc22aqYyLi8NDDz0ka9++fTtycnLaVGNbJCYmYujQobL248eP+6wGIiIiImqef36K9rEvT395eQbN15zWxs/jGjBgADZu3IigoCCf1WOzleHoscdRUyNh4cIiXLggX/J5yy3BuOEGk89q8rTNmzfL2pKTk3HDDTe0uc877rjDZfuWLVva3GdbuDqrzdWmIkRERESkHIa0ZlyovYBF3y66vIOjLznrnChYXuDytZQuKdi8ebPPH4D84fjfUFNTjif/twg//SQ/K6xb9wD86d5In9bkafv27ZO1uZqBao1OnTohPj5e1n7gwAG3+m2tkJAQWVtrlm8SERERkffx01kznt71NCqtlT57Bu0Sp9WJn5f+jJqTNS5f7/X7XrLnnLytuHgLzpxZh2efOYPdu+V1xcdr8dRTMV7YLMS3iouLZW0xMTFu9+uqj5KSErf7bY1z587J2mJjY31aAxERERE1jSGtCVtPb8XGUxu9vovj1S4FNMsRS6PX7C/fj22nt/msJkmS8NOJf+AfL5Rg+3Z5XdHRWjz/91iEh3vt6L0W8cSJEna7fKdKnc7980pc9eHqMHJv2rFjh6zNnWWcREREROR5DGmNkCQJ/9z/T5+P67Q5cfqfp2HJaTygAYAAAS/vf9kjoaQlKir24+nF32LzZvmRABERGvz9hVjExCh/8KLF8pPbfURGypdruppday1XfURFRbndb0tt3rzZ5SYhd97p+sB0IiIiIlIGQ1ojDhYfxI8XfvTpmE67E3n/zEPVoapmr5Ug4ccLP+JQySEfVAbce+9MrF8vD2ihofUBLT5e+YAG1C/JdFd0dLSsbe/evW71WVJS4vJQa1+FtNzcXMyePVvWPnz4cGRmZvqkBiIiIiJqGYa0Rqz+YTVEH/7nkRwS8l7JQ+XBlh1eDQAaQYPVx1Z7sap68+ffi3fflW9wERIi4u8vxCIpSe/1Glqq7MJOWK2lbvXh6vDpgwcPIjc3t819fvzxxy6XNg4YMKDNfbaE0+nEe++9h8GDByMvL6/Bax06dMDKlSu9Oj4RERERtZ6yDxCpVFltGTad3AQnfPO8kOSUkLcsD5X75AFNF6mDrcTm8j6H5MCm3E145PpHEGYI80ptjzzyCJYufUXWHhws4rnnY9Gpk3oCGgBIkgNlF75DTPS4NveRlZWFN95446p+JSxatAirVq1qdX+1tbVYvHixrF0URYwaNQqSJMFRWgpnTS0kmxWCTg/RaIAmPByC0PgmLEeOHEFFRUWDNrvdjsrKSuTl5WH//v1Yt24dCgsLZfd27doVn376KTp27Njqr4eIiIiIvIshzYVdRbvggG82C5GcEvJfy0fF9xWy13RROiTek4iTT51s9H67ZMfuot0YkzzG47U9/vjj+Pvf/y5rN5lEPPtcLLp0CfD4mO4SBA0qK7LdCmmjR49GeHg4Sksbzsi99dZbuPHGGzFz5swW9+V0OnH33Xe7XOo4ols3VM5/AMU52XBaqmWvi6ZAGNIzYOzVE4b0dAQOGgRt2C9h/E9/+hO++uqrln9hAIKCgnDvvffif/7nf2Ay+e9ZdkRERETtGZc7urAxd6NPxpEkCQVvFqD8u3LZa7ooHTo92gnakKZztFbQ4sj5Ix6v7a9//SueeeYZWXugScBzz3dA9+7qC2hA/UxaecVBt/oIDg7G448/7vK1OXPmYOHChbBa5WfEXa2oqAjjxo3DmjVrZK8JAP5ktaF6926XAQ0AnJZqVO/ejfMrV6HggQfx47AbUfDIn1Fz4ECrN4wxmUx49tlnkZeXh2effZYBjYiIiEjFBMlX2wP6SEVFBUJCQlBeXt6mg54lScKA9wag1l7rheoaKny7EKVfyp+fEvQCEmYmQBehg+2CDXn/zJNdE3tnLIzJRgBAWkQaFg5a6HKMgIAA9O3bt1V1Pfnkk/jrX/8qaw8MFPDss7HokW5oVX+tVVRkw53T5F+zp+Tm5iI5ObnJa+rq6jBkyBCXB1sD9WeLzZo1CyNHjkRqairCw8Nhs9lQUlKCvXv3YuPGjXjnnXdQW+v6fXRnaBgeb8vZaxoN4HAgoFs33H36Z3xzsOWBVBAEDBw4EA888AAmT57MQ6yJiIio3XM3GyiFIe0qB84dwF0b7/JCZXI/LPgBtvOunzfzlI4dO7pcateYZ555xuUsktEo4OlnYtGzp3cDGqCOkAbUH/x8ww034Kef3N/W/0o3BwVhSVw8xCaeN2uWIODun09hT43rw86bM2TIELz11ltISUlpew1EREREKuevIY2/Sr/KqpzWbwzRXrzwwgsuA5rBIGDx0x18EtDUJDo6Gl9//TWysrI80p8IYEZYOP7ubkADAEnCqqSOOJLWAz8MHISKLVsgSRKqq6tRWFiIb7/9FkuXLsWNN97o8vZvv/0WgwcPxuHDh92rg4iIiIg8jiHtCmW1ZdiWt03pMhSxdOlSPPzww7L2wEAjnnqqA3r1MipQlfJiY2OxceNGvPnmm+jRo0eb+hAADAoMxKrEJDwcHQ29uwHtSk4nHOXlyL9vLkpefQ0GgwGxsbEYPHgw5s2bh6+++goHDhzA9ddfL7u1uLgYWVlZKCsr81w9REREROQ2Lne8wqZTm/DwV/Kg4i1qWe64bNky/OlPf5K1G41GrF37JgIMf/FSda5ZrRJ++qnOrT569VyGgAD5odQA0LdvXwQEtG3jk+3bt2PdunXYvXs39u/fj+pq15t+hGk0yDAY0NtgxDizGcl63xxVEDFnDqIemC/but9ut2Pq1KlYu3at7J7p06djxYoVPqmPiIiIyJf8dbkjQ9oV/t/e/4e3ct6CQ/LN9vstYS224vjDx2XtyX9ORlBa0OW/b560GXFBca3u/80338SsWbNkuwUaDAasW7cON93UFzu+Gdj6whU2bOgu6PWRXh3D6XSirKwMFy5cQHl5OSr+/R/Y338fZlFEsEbj1bGbEvXAA4i8Z46s3WazoV+/frIljlqtFrm5uUhISPBViUREREQ+4a8hjeekXeFw8WFVBbTWCNC0fmZozZo1mD17tsvt3B999FEEBwdj794f8cMxAQ5n2zaoAIAuXQKg13twiV8zNJog6HQRXh9HFEVEREQgIiIClV98gfy1awGdzuvjNqd4yRIEdElBcGZmg3adTofnn38eY8eObdBut9uxdu1azJ8/35dlEhEREVEjOJN2kSRJGPTeIFTbXS9f84bGZsk8pbldDKdPn45Vq7y/Uco77yaiQwffhZfQ0EHod927PhvPXlaGk2PHwVFeDqjhn5MgQBMSgs4bNzQ4/BoAHA4HYmJicP78+QbtkyZNcrkUkoiIiMif+etMGjcOuai0ttSnAY28QxC0CDH39umYZ59aDEdlpToCGgBIEhwVFTi7eLHsJY1Ggz59+sjaT58+7YvKiIiIiKgFGNIuqnV4//Bq8j5JsiPYnOGz8Sq//BIVn30GOFS2TNbpRMX6z1C5davspaioKFkbd3gkIiIiUg+GtItsDu/uski+IQhahIUO8slYkiSh+MWlgCe31PckQUDxi0tlzxxaLBbZpXof7T5JRERERM3jxiEX6TS+3/BBG6pF54Wd3epDhIh/jfoXzAHyNbaxsbFN3rty5UqsXLmyReNk5zyIc+fWQ1LxxiqCoEFM9C3Q68N9Ml7NgQOo+/FHn4zVJpKEuuPHUXvwIIxXLHHMz8+XXRoTE+PLyoiIiIioCQxpFxk0Bp+PKepEBHYJdKuPmzvejNE3jfZQRY1LTLgTZ89+4vVx3CFJDiQk3Omz8creex/QaNS31PFKGg1K33sf8RdD2tmzZ3Hw4EHZZW09qJuIiIiIPI/LHS8KN4QjUOteYFLC73r8zifjmM19YTJ1B6DSpX0QEGRKhdks3xTDG+xlZajYuFHdAQ0AHA5UbNgA+8Vnzl5//XU4nU7ZZcOHD/dxYURERETUGIa0iwRBQI8I/5pNMGqN6B3lm50MBUFASucHAahkB0MZCZ07PwDBR8+HVX/3HWC3+2Qst9ntqN61C0ePHsXTTz8tezkkJATjx49XoDAiIiIicoUh7Qo9o3pCK/jPCtAb4m7wWSgBgKioUYiJuRWAxmdjtowGMTETEBU1ymcj1ubkAFrvv1eeOXcWX1RWujxwvMW0Wnz/+ecYOXIkamrkh5LPnz8fRqPRjSqJiIiIyJP8J5H4QI+IHrBLfjI7AiCrU5bPx+ze7QmUln4Dm+0C1DGrJkCnM6N7t7/6dNSaQ4d8MpN2rLYWb5eVoas+ALeYzRgdHIyOrdiJscBmxTvnzuLdF1+E3UXQ69atGx555BFPlkxEREREbmJIu8LADgOhFbR+EdQ0ggYDOgzw+bg6XRjSUp/GocN/9PnYrklIS30GOl2Y70aUpPqZNB/60VqHJSXFWFJSjCSdDmkGA1IDAhCn0yFY1CBIFOGEBIvTiVK7Az/U1eFQbQ0O19Y2GqXDw8Px8ccfIzDQ/57FJCIiImrPGNKuEGYIw5hOY7ApdxMcKt5qXhREjO00FmEG3wWTK0VFjUZK5wU4cfIfiox/pZTODyEq6mafjukoLYXTUu3TMa902mbDaZsNmysr29xHp06d8OmnnyItLc2DlRERERGRJ/CZtKtM6T5F1QENAJySE1NSpyhaQ8eOf0THjsrOptXX8Aefj+usqfX5mJ6i1WqxYMECHD58GOnp6UqXQ0REREQuMKRdpXdUb3QN7QpBpVvNCxDQLawbekX2UrYOQUBK5wVI6fzQ5cp8NDIAIKXzw+iS8pBPN065RLJZfTbWn6NjcE94BHoEBLj1XzhSo8H8WbNw+PBhvPDCCzCZTB6rkYiIiIg8i8sdryIIAub2nYt52+YpXYpLEiTc1+c+RcLJ1QRBQHLyH2EydcHRY4/BZqsA4M1ZSA10OjPSUp/x+RLHKwm6lm/c4a4eBgN6GAy4PyoKlQ4HDtfW4nBtDU5arSiw2VBks6HK6US10wlBEGASRQSJIkJEDVIC9EgLMCDdYEBfoxHdFy2CLj7eZ7UTERERUdswpLkwImkExiaPxec/f66qpY+iICIrOQsjkkYoXUoDUVE3IzS0P344/jecPfsp6me7PLnzY31/MTHj0b3bE9DpQj3Yd+uJRoMi4wZrNBhiMmFIG2fBBIMydRMRERFR63C5YyMeH/g4gvXBqln2KECAWW/GYwMeU7oUl3S6MGSkv4hePf8PJlM3AIAguHee2qX7TaZu6NXzVWSkL1E8oAGAJjwcosm/dkQUTSZowsOVLoOIiIiIWoAhrRGhhlAsGrIIkirOAqtf5vi3IX9DqEH5kNKUqKibMXDAZ+jfby1iom+FcPFwcKGFh4RfeX1MzAT07/cRBg74zKcHVTdHEAQY/GzTDUNGuiqWyBIRERFR87jcsQmZSZmY13ceXtr/ktKl4P7r7sfIpJFKl9EigiAgJKQvQkL6omvXv6DswneorDiM8opDqKw8DIfDIrtHozEhOLgnQsy9EWzOQFjoIOj16p35Mfbqhep9+31yoLXbtFoYeym70QwRERERtRxDWjNm9ZyFans13jj8hqI1zMyYqdj47tDrwxETPQ4x0eMA1B8EbbOdh8NRB0myQhD00GgCoNNF+NVMjyE93T8CGgDY7X4380dERER0LWNIa4YgCJjXdx5MOhOW7lsKAYJPlkBeGuf+6+7HrJ6zvD6erwiCAL0+Uuky3BY4aBCg1fpHUNNqEThwoNJVEBEREVEL8Zm0FhAEAbN6zsLSEUsREhACUfDufzZREBESEIKlI5a2q4DWnmjDwmAeOxbQuLc5itdpNDCPGwdtWJjSlRARERFRCzGktcLIpJH49LZPMabjGADw+M6Pl/rLSs7C+l+t95tn0K5VYXdMBRzqOaLBJYcD4XdMVboKIiIiImoFhrRWCjWE4vmbnsfSEUvRJbQLAEDj5lbzl+7vEtoFL414Cc/d+BxCAkLcrpW8y9inDwK6dQPU+iydICCge3cYevdWuhIiIiIiagU+k9ZGI5NGYkTiCBwqOYTVx1ZjU+4m2CU7tIIWdqn555QuXacVtRibPBZTUqegZ2RPv9o841onCAKi5t+P/D/dq3QprkkSou6fx/cUERERkZ8RJElSx0FgHlJRUYGQkBCUl5fDbDb7bNyy2jLsLtqNnPM5yC7JRk5JDqrt1bLrArWBSI9MR8/InugR0QMDOgxAmIHPC/mzggUPoWLTJnUtfRRFmMeNRfwLLyhdCREREZFilMoG7mJI8xJJklBaW4o6Rx2sDiv0Gj0CNAEIN4RzZqOdsZeV4eTYcXCUlwNq+OckCNCEhKDzxg3cMISIiIiuaWrJBq3FZ9K8RBAERBgjEBcUh+SQZMQFxSHC6F9ngVHLaMPCEPvUk+oIaAAgSYhd/BQDGhG1OydPnsSHH36IRx99FDfffDPCw+t/8Xn1n+3bt7s91vbt21327ek/w4cPd7tWImp/+EwakQcEjxqFqPnzUfzii0qXgqgHHkBwZqbSZRARuSU3Nxfff/899u7de/lPWVmZ0mUREfkEQxqRh0TcMwfO6mqcf+015WqYMwcRc2YrNj4Rkaf07dsX5eXlSpfhdV27dlW6BCJSIYY0Ig8RBAFRD8yHaDKheMmS+q35fbEE8uI4UQ8+iEgGNCIiv/L73/9e6RKISIUY0og8SBAERN4zBwFdUnDmLwvhqKgAnE7vDSiK0JjNiF38FJc4EhF50HXXXYedO3d6pC+bzYYxY8agpqamQXtaWhoGDx7skTGIPK22thaHDh3C8ePHUVxcDIvFAr1ej+DgYMTHxyMlJQXdunWDTqdTutR2iSGNyAuCMzNhvO46nH1qMSo++8zzs2oX+zOPG4sOCxdCExrqub6JiFQqKSkJ/fr1Q//+/dGvXz9ERkaif//+XhnLbDZj0KBBHunr3//+tyygAZxFI/WpqanBhx9+iLfffhvffPMNamtrm7zeYDCgb9++GD58OMaPH49BgwZBo9H4qNr2jVvwE3lZ5ZdfonjpS6g7fhzQaNw7T+3i/QHduiFq/v0IHjnSc4USEalIr1690KVLF/Tr1+9yMIuMjGxwzalTp9CpUyfZvdu2bVPVrom33HILPvvsswZtOp0O+fn5iI6OVqgqol9IkoTly5fjiSeeQGFhYZv7Udu/PcB/swFn0oi8LDgzE0EjR6L24EGUvvc+KjZsAOx2QKut/9/mXLpOq4V5/DiE33EHDL168TgHImrXDh06pHQJHlFYWIhNmzbJ2sePH8+ARqpw9uxZ3HXXXdiyZYvSpdAVGNKIfEAQBBj79EF8nz6IeexRVO/ahdrsbNQcPoza7Bw4LRbZPaLJBENGOoy9esGQno7AgQN59hkRkZ9ZtWoVHC5WUMycOVOBaoga+umnnzBmzBicPHmy0WvCwsLQoUMHREdHw263o7y8HLm5ubC4+OxCnsOQRuRj2rAwmLOyYM7KAlC/xMBRWgqpthZOqxWiXg/BYIDm4iGtRETkv1asWCFri4uLw9ixYxWohugXBQUFyMzMxOnTp2WvdezYEXPmzMGECROQkZEhe93pdOL48ePYsWMHPv30U2zZsqXZ59eodRjSiBQmCAK0ERFKl0FERB62Y8cO/Pjjj7L23/3ud9xcgRRltVoxceJEWUDTarV47LHH8Nhjj8FoNDZ6vyiKSE1NRWpqKmbPno3S0lK8+eabiODnGY9hSCMiIiLyguXLl7ts566OpLSFCxdi7969Ddq0Wi3ef/99TJ48udX9hYeH46GHHvJUeQRAVLoAIiIiovamsrISa9eulbXfeOON6Nq1qwIVEdU7cuQIlixZImt/7bXX2hTQyDsY0oiIiIg87IMPPnC5sQJn0Uhpjz32GOxX7S6dmZmJGTNmKFQRucKQRkRERORhb775pqzNbDbj17/+tQLVENU7duwYPv30U1n7yy+/rEA11BSGNCIiIiIPOnbsGHbu3ClrnzJlCgIDAxWoiKje66+/DkmSGrQNGTIEaWlpClVEjeHGIURERORTkiTBYrHAZrPB4XBAo9FAp9PBZDK1i6NHuGEIqZEkSfjggw9k7dOmTVOgGmoOQxoRERF5lcViQW5uLs6cOYOCggIUFhbCarXKrtPr9YiLi0N8fDxiY2PRqVMnmEwmBSpuO7vdjrffflvWnp6ejoEDBypQEVG9w4cPo6CgQNY+evRoBaqh5jCkERERkcdJkoT8/Hzs3r0bOTk5cDqdEEURTqez0XusVitOnTqF06dPX74+IyMD119/PRISEvxilu2zzz7D2bNnZe2cRSOlbd++XdZmMpmQkpLi8nq73Y6ff/4Z5eXlCAwMRGRkJMLDwyGKfFrKFxjSiIiIyKOOHTuGrVu34ty5cw2CWVMB7UpXXp+dnY1Dhw4hOjoaI0eORGpqqtfq9gRXG4bodDrcddddClRD9It9+/bJ2nr27Nnglx9VVVVYuXIlPvzwQ3z33XeyGW+dTodBgwZh1KhR+M1vfqP6f4/+jFGYiIiIPKK6uhpr167F6tWrUVxcDKDlwawxl+4vLi7G6tWrsXbtWlRXV7tdqzcUFRVhw4YNsvYJEyYgKipKgYqIfpGTkyNraA1+IQAAIABJREFUS05Ovvz/ly9fjuTkZMydOxdff/21yyXJNpsNO3bswBNPPIH09HTcddddOHnypDfLvmZxJo2IiIjcdvToUaxbtw61tbUAINtBzl2X+svJycGJEycwYcIEGI1Gj47hrrfeekt2/hTApY7kG5IkwWmxQbI6ITmcEDQiBL0I0aSDIAg4ffq07J7g4GDYbDbMmDED7777bqvGczqdeOedd7Bu3TqsXr0aY8eO9dSXQmBIIyIiIjdIkoQdO3Zg69atPhuvpqYGH3zwAXr06OGTMVtqxYoVsrb4+HiMGTNGgWqovXNYbKg7cQHWgirY8iphza+CZHXIrhP0GoixBpSUlMheCwoKwp133ok1a9a0uY6KigrceuuteOONNzB9+vQ290MNMaQRERFRm0iShC+//BLffPONIuN/++23iozryrfffotjx47J2qdPnw6NRqNARdQeSZIE6+lKVO0sRM2hEsApAaJQ/7+N3WN1oORYoculx2vWrJHt+JiQkIB77rkHWVlZSE5OhtlsRnFxMQ4fPoz//Oc/WLlypWwppMPhwB/+8AdkZGSgf//+nvlir3EMaURERD7gdDpx9OhRHDt2DAUFBaiqqoIgCAgKCkJ0dDRSUlLQvXt3BAcHK11qi+3YsUOxgKY2rjYMEQQBM2bMUKAaao9qcs6j/PNTsJ+trt9V4lLmaiKgXVJnt7lsvzqg3XfffXjuuedkh67Hx8cjPj4eWVlZePjhh/Hb3/5WthFJXV0dfv3rX+PYsWMICAho8ddFrjGkERFRu3Hy5Ens3bu3wZ+ysjLZddu2bcPw4cO9Xo8kSfjiiy+wYsUKbN68GaWlpU1eL4oi0tLSMHToUIwbNw6ZmZmqPSfs6NGjPlviqHYWi8XlIcE33XRTo9ubE7WUw2LDhXUnUHOwGLi0EWMr9+NxSPJlkFd7ZMHDeO6F55u9rkuXLti2bRtGjBghC2qnTp3CqlWrMGfOnNYVSDIMaURE5Jdyc3Px/fffNxvIlPLVV19hwYIF2Lt3b4vvcTqdyMnJQU5ODl599VU88cQTWLRokfeKbKPq6mqsW7dO6TJUY82aNaiqqpK1z5w5U4FqqD2pySlB2Uc/wllzcUOaNu7HoxWbXnJ7XVw67guagJqcEhjTI5vtz2w247333kPfvn1RU1PT4LXnn38es2fP9otzDdWMIY2IiPxS3759UV5ernQZMna7HY888ghefPFFj+9wqBYbNmy4vIsjuV7qGBISgkmTJilQDbUHkiShcnseKjb/XD975ua3Er1G1+TrDw+bBaFOwvm3j8I8JhnBw5s/PL579+6YPn06li1b1qD9xIkTOHz4MHr16uVe0dc4npNGRETkIRaLBbfeeiuWLFnSaEAzmUxISUnBkCFDMHz4cPTu3RuRkc3/5lotjh07huzs7HYbQFvr+PHjLp/Lmzp1quqOCCD/IEkSKjafqg9ogNsBDQCCA0wQ4Dp0JYXGYWhyv8vjXBq7Jf/GG1vW+NVXX7W5VqrHmTQiIiIPsNvtmDx5MjZt2iR7zWQyYfbs2bjtttswdOhQl7v95efnY9euXVi/fj0+++yzy4dBq4kkSdi6dSsEQVB1SPNlba5m0QAudaS2q9yeh8rt+R7tUytqYQ4wobxOvix3QIJ8xqtyex6EAA3MIxKb7Ld3794ICQmRrWr47rvvMHfuXPeKvsYxpBERUbuRlJSEfv36oX///ujXrx8iIyN9th30gw8+6DKgTZ48GUuWLEFCQkKT9yckJCAhIQGTJk2C1WrFRx99BJ2u6SVKvpafn49z584pXUazfBVwHQ4H3nrrLVl7r169uA05tUlNTskvM2geFhMc5TKkpUd3cXl9xeZT0EUHwpge0WifgiCgV69e2LFjR4N2f/g+oXYMaURE5JeSkpLQpUsX9OvX73Iwu3rZ4KlTp3xSy4YNG/Dyyy/L2ufPn48lS5a0uj+9Xo+pU6d6ojSP2r17N0RRdHnekpq4Oq/MGzZu3IgzZ87I2n//+9/7ZHxqXxwWG8o++tFr/SeFxuJ4Sa6sPdRodn2DAJR9dBz65P7QmBr/hVFEhDzEnT9/vs11Uj2GNCIi8kuHDh1SugQAQG1tLe677z5Z++9+97s2BTS1slgsyMnJUX1AA+p3/rRYLF4/vsDVUke9Xo8777zTq+NS+3Rh3YlfdnH0gq4RHfHFT/ID4I1ag+sbJMBZY8eFT08gYkpqo/26+nfmardTah1uHEJEROSGZcuWITe34W+no6Ki2lVAA+qDjz8ENKD+mTRvz6IWFxdj/fr1svaJEye6nFkgakpNzvn6c9C8+Dhlrw6ug1al1dL4TRJQc6AYNUcanxlztctueHh4q+ujhhjSiIiI2shut7sMY//7v//b7j6knDlzBqLoHx8bBEFAYWGhV8d46623YLPZZO3cMIRaS5IklH9+Co1svugx/eN7umw/X93M+ZICUP75qUY35HH1/Jk/7VirVv7x3ZaIiEiFNm7ciLy8vAZtBoMBd9xxh0IVeU9+fr5fzaQVFBR4dYwVK1bI2hITE3HzzTd7dVxqf6ynK2E/W+3VWTQA6BAcie6RnWTth8780PSNEmAvqoY1r1L2ktVqxcGDB2XtycnJbS2TLuIzaURERG20evVqWdutt94Ks7mRB/H9lCRJLjfI8KYLFy5g6dKlbbp31apVWLVqFWbMmNHoNbm5uW3+ILlr1y7k5OTI2qdPn+43s42kHlU7C+unTXzwO5Dx3Yfjh6s2D/ku7wCsDlvTB16LAqp2FiIgqeH3tq+//hp1dXWyy0eMGOGReq9l/E5CRETUBpIkYfPmzbL20aNHK1CNd1ksFlitVqXLUA1XG4YIgtBkKCRyxWGxoeZQiU8CGgBM7pkFUWj48b+0phzrj21r+kanhJqDJXBYGi7x/de//iW7VBRFhjQPYEgjIiJqg8OHD7vcZrpXL/nBsJfk5+fjwIEDOHToEM6cOePymSY18pc6faG6utrlDOqIESPQqZN8KRlRU+pOXACcvjt8PTEkFuO63SRrf/7r11FZ18QGIgDglOrrvWjLli345JNPZJfdfvvt7e6ZXCUwpBEREbXBvn37ZG2iKCIjI+Py351OJ/7zn//g9ttvR0hICBITE9G3b1/07t0bcXFx0Ov16NmzJx544AFs29bMb7IV5HA4lC5BNdauXYuKigpZOzcMobawFlQBopd3DLnKg0NnQCc2fOKpoOIs5n36JOrsTcyYiwJsBfVb6x87dgx33323bDMRQRDwxBNPeLzmaxGfSSMiImoDV88kRUdHIzAwEADwzTff4I9//COys7Ob7Cc7OxvZ2dl48cUXccMNN2Dx4sW46Sb5b7qVpNFofD5mUFCQ28Hnt7/9LYKDg12+Fhsb26Y+hw0bhp07d8rar7vuujb1R9c26+lKn86kAUDXyGT8YeBUvLzz7QbtX5z4FlM/eBDPjXkIXSOT5Tc6JVjzKrF27Vr88Y9/RElJieySP/zhDw1+UUVtx5BGRETUBqdPn5a1XQoEL7/8Mh544IFWz0D997//xYgRI/Dkk0/iL3/5i0fq9ASdrokNBbxEq9UiISHBrT4GDx6MoKAgD1VUr1OnTlzWSB4hSdLlmSlfe3DoDOzJP4zv8g40aN+TfwijV8zA8E4DcVPnAUgKiYVJH4jSmnL8UHwSm1btQE7Rjy77HDJkCF588UVflH9NYEgjIiLVkSQJTosNktUJyeGEoBEh6EWIJh0EwbdLgxrjarfD4OBgvPLKK5g3b16b+5UkCQsXLsTJkyexfPlyd0r0GJPJBL1e71ebh+j1ephMJqXLIGpU/fc4ZZYSa0Ut3rh9Me74YAEOFR1r8Jrd6cAXJ77FFye+bXF//fv3x7///W/o9XpPl3rNYkgjIiLFOSw21J24AGtBFWx5lbDmV7n88CLoNdAnBEGXGAx9fBACUkKhMfl+lgcAysrkB8Dm5+fj/vvvb9AWGBiImTNnYuLEiUhLS0NkZCTKy8tx4sQJbNiwAa+++qrLw2DffPNN9OnTB3PnzvXa19BSgiAgNjYWP//8s9KltFhcXJxqAj2RK5JV2XMHQwzBWDP1RTyy6e9Yd/TLNvczbdo0vPHGGzAYDB6sjhjSiIhIEZIkwXq6ElU7Cy9uQS3VP0DfxPMZktWBupPlqDtVcfl6Y+9IBA2Ogz4x2Kcfyl2dDXR12LrxxhvxzjvvIDExsUF7VFQUoqKiMGjQICxYsABz587F2283fD4EABYsWIARI0ao4hmPhIQE5OXl+cWB1qIoIj4+XukyiJokOZT/t2TSB+JfE57AbT1G4e9fv4GjxSdafO+NN96Iv/3tbxg+fLj3CryGMaQREZHP1eScR/nnp2A/W93wENeWPkB/6bqLZ/fU7C+GtkMgQkYnw9gjwhsly9jt9iZfHzFiBDZs2NDsb5dDQkKwatUqGAwGvP766w1es9lsePrpp/Hee++5Xa+7YmNj/SKgAfW7asbFxSldBlGTBI16Nlm/ucsNuLnLDdhbkI0vTuzE/sIcnCzNQ1lNBexOO0INZoQbQ5AUGocxMyZi7G3jkZ6ernTZ7RpDGhER+YzDYsOFdSdQc7AYuDTp5e7n/ouBzX62GuffOgJj7yiETkjx+jLIpjbTCAsLw9tvv93i5T+CIOCll17Cf//7Xxw5cqTBa2vWrMHixYsV36yiU6dOEEXRL4KaKIpITk5WugyiJgl69YS0S/rFZ6BffNMz97H3D4QmiM+eeZv63h1ERNQu1eSU4Ow/vkfNoeL6Bk/vOn2xv5pDxfXj5Mi3h/akph6Qv/fee1u93M5gMLg8X8jhcODTTz9tdX2eZjKZkJ6eDlFU90eHS2fVcdMQUjvRpIOg9/3xFu4QAjQQFXoO+Fqj7u+0RETk9yRJQsW20zj/9lE4a+yeD2eyAQFnjR3n3z6Kyp2FXhsmNDS00ddmzZrVpj5vv/12REZGytq/+uqrNvXnaQMGDFD9TJrT6cT111+vdBlEzRIEAbp4zx4R4W36+CBuyOMjDGlEROQ1kiShYvMpVGy+uCugr85svThO1df5XhvCVZgCgI4dO6Jjx45t6lOr1WLw4MGy9u+++65N/XlaQkICoqOjVfshTRAExMTEuH2+GpGv6JOC6zdM8geiAH2i68PhyfMY0oiIyGsqt+ehcrv3gpKSGlvO2KdPH7f6dXV/cXGxW316iiAIGDlyJCTJV2m7dSRJwogRI1QbIomupo8PavmGSUpzSn438+fPGNKIiMgranJKfplBa4c6d+7ssj08PNytfiMi5LtT2mw2VFRUuNWvp6SmpiIjI0N1QUgQBPTs2ROpqalKl0LUYgEpoX41kxaQ0vgyb/IshjQiIvI4h8WGso9+VLoMr0pLS3PZHhgY6Fa/jW14UVVV5Va/njRu3DjVHVxrMBgwduxYpcsgahWNSQdjr0j1fyK/eCalt3fNpV+o/S1BRER+6MK6E/WbhLRj/fv3d9nu7oxXeXm5y3Z3Z+g8KTAwEBMmTFC6jAYmTpzodkAmUkLQ4Dj3jyLxNqdUXyf5DEMaERF5VE3O+fpz0PzkMYu2ioqKQteuXWXt586dc6tfV/ebTCbVzVylpaVh5MiRSpcBAMjMzOQyR/Jb+qRgaDsE/nJ2pNoIgLaDiZuG+BhDGhEReYwkSSj//JR6P2xc5KmNL8aMGSNr27t3r1t97tmzR9am1oOZhw0bhqFDhypaw9ChQxWvgcgdgiAgZHSyen+xJQEhozuq7jnU9o4hjYiIPMZ6uhL2s9Xq/bBxke1ctUf6mTx5sqytpKQE+/bta1N/FRUV2LVrl6x9xIgRberP2wRBQGZmJjIzMxUZPzMzE6NGjeKHR/J7xh4RMPaOUt8vuATA2CcKxh7yDY3IuxjSiIjIY6p2FvrFT5aanPMe6efGG29ESkqKrP2VV15pU38rVqxAdbU8QCoVglpCEAQMGzYMU6ZMgdFo9HpgEgQBRqMRU6ZMwbBhw7w6FpEvhU5IgWjUqieoCYBo1CL0Vvn3OPI+P/hRSkRE/sBhsaHmUIn6H4AHYD1RDofF5nY/giDgwQcflLWvWrUK33//fav6KioqwlNPPSVrT0hI8ItdC1NTUzF37lykp6cDgMfD2qX+MjIyMHfuXD6DRu2OxqRD2KSu6lmJIAFhk7pxR0eFMKQREZFH1J244D+HskpSfb0eMHPmTNlsmt1ux29/+1ucPn26RX1UVlbiN7/5DUpKSmSvPfroowgICPBIrd4WGBiIyZMnY8qUKYiKigIAiKJ7HzUu3R8VFYUpU6Zg0qRJ3MWR2i1jeiTMYzoqXQYAwDwmGcZ0LnNUilbpAoiIqH2wFlTVH8rqD0FNEGArqAJ6RbndVUBAAJYtW4YxY8Y02JDk5MmTuOGGG/Daa681ORO2b98+zJ492+VzbH369MGsWbPcrtHXUlNT0b17d+Tn52PPnj3Izs6G0+mEKIpwOpufar10nSiKyMjIwIABAxAfH89nz+iaEDw8EVKdE5Xb8xStIXh4gmLjEyBIntriSiUqKioQEhKC8vJymM1mpcshIrpmnHv1EKy5rs/48oa88jMY8n+/9Vr/ubm5rdpVceHChVi8eLHL1wYMGICJEyeiR48eiIiIQHl5OU6ePInPPvsMX3zxhcvgEhkZie+//x4dO6rjt+rusFgsOHXqFAoLC1FQUIDCwkJYrVbZdXq9HnFxcYiPj0dcXBySk5MbPdybqD2TJAmV2/NRsflU/TNqvvi0fnEcc1YyzMMTfTCgb/hrNuBMGhERuU2SpPqZqWvYk08+iXPnzuH111+XvbZ7927s3r27xX1FR0fjk08+aRcBDag/5y09Pf3y82qSJMFiscBut8Nut0Or1UKr1cJkMnG2jAj1z2CaRyRCFx2Iso+Ow1lj925Qu7hJSNikblziqBIMaURE5DanxQbJ6lC6DEUJgoBXX30VKSkpWLhwIex2e5v66du3Lz7++GMkJSV5uEL1EAQBQUFBSpdBpHrG9Ajok/vjwroTqDlY7PlZtYv9GXtHIWxCCsRAbhKiFtw4hIiI3CZZ/WBLRx8QBAF//vOfsX//fowfP75Vs0IpKSlYsWIF9uzZ064DGhG1jsakQ8TUVETc1QPamIub5ohuzjhfvF8bE4iI3/VAxJRUBjSV4TNpRETkNltxNc7+Y69Px6yzW5Fz9ke3+gi/IxXaMIPL1/r27ev2roonTpzAxx9/jK+++gpHjx5FUVERampqYDabERkZifj4eAwbNgw333wzBg8eDK2WC1yIqHGSJMGaV4mqnYWoOVhSv1FTSzdsunSdKMDYOwpBg2OhTwxu90uM/TUbMKQREZHb7KW1KHp+j9JltFqHP1/faEgjIlIzh8WGuhMXYC2ogi2vEtaCKkh18mXnQoAG+vgg6BODoYsPQkBK6DV19pm/ZgP+yo6IiNwm6P1z9byg88+6iYg0Jh0Ce0Uh8OJRIpIk1T8fbHNCsjshaEUIOhGiSdfuZ8vaI4Y0IiJym2jSQdBr/GrzECFAA/Ea+m0yEbVvgiBAE6RXugzyEP4KkYiI3CYIAnTx/rVbnz4+iL9dJiIiVWJIIyIij9AnBbu/45iviAL0icFKV0FEROQSQxoREXmEPj6oZTuMqYFT8ruZPyIiunYwpBERkUcEpIT61UxaQEqo0lUQERG5xJBGREQeoTHpYOwVqf6fLKIAY+/Ia2oLaiIi8i9q/1FKRER+JGhwHOBUuopmOKX6OomIiFSKIY2IiDxGnxQMbYdAQK2rHgVA28HETUOIiEjVGNKIiMhjBEFAyOhkQK37h0hAyOiO3HqfiIhUjSGNiIg8ytgjAsbeUeqbTRMAY58oGHtEKF0JERFRkxjSiIjI40InpEA0atUT1ARANGoRemuK0pUQERE1iyGNiIg8TmPSIWxSV/Use5SAsEnduKMjERH5BYY0IiLyCmN6JMxjOipdBgDAPCYZxnQucyQiIv/AkEZERF4TPDwRwcMTVVBDgqI1EBERtYZW6QKIiKj9EgQB5jEdIQRoULH5VP0zar5YAnlxHHNWMswKh0QiIqLWYkgjIiKvEgQB5hGJ0EUHouyj43DW2L0b1C5uEhI2qRuXOBIRkV9iSCMiIp8wpkdAn9wfF9adQM3BYs/Pql3sz9g7CmETUiAGcpMQIiLyTwxpRETkMxqTDhFTU1HTKwrlW07BXlQNiALgdCOtXbxfGxOIkNHJPAeNiIj8HkMaERH5nDE9AoYe4bDmVaJqZyFqDpbUB7WWBrZL14kCjL2jEDQ4FvrEYAiCWg5mIyIiajuGNCIiUoQgCAhIMiMgyQzHLTbUnbgAa0EVbHmVsBZUQapzyO8J0EAfHwR9YjB08UEISAnl2WdERNTuMKQREZHiNCYdAntFIbBXFABAkiQ4LTZINickuxOCVoSgEyGadJwtIyKido8hjYiIVEcQBGiC9EqXQUREpAgeZk1ERERERKQiDGlEREREREQqwpBGRERERESkIgxpREREREREKsKQRkREREREpCJeDWmlpaWYNm0azGYzQkNDMXPmTFRVVTV5/dy5c9G9e3cYjUYkJSVh3rx5KC8v92aZREREREREquHVkDZt2jTk5ORgy5YtWL9+Pb7++mvMmTOn0esLCwtRWFiIF154AdnZ2Vi5ciU2bdqEmTNnerNMIiIiIiIi1RAkSZK80fHRo0fRo0cP7NmzB/379wcAbNq0CePGjUN+fj7i4uJa1M+HH36IO++8ExaLBVpt88e6VVRUICQkBOXl5TCbzW59DURERERE5L/8NRt4bSZt586dCA0NvRzQAGDUqFEQRRG7du1qcT+X/oM2FtDq6upQUVHR4A8REREREZG/8lpIKyoqQnR0dIM2rVaL8PBwFBUVtaiPkpISPPnkk00ukXzmmWcQEhJy+U9iYqJbdRMRERERESmp1SHt0UcfhSAITf45duyY24VVVFRg/Pjx6NGjBxYtWtTodY899hjKy8sv/8nLy3N7bCIiIiIiIqU0/5DXVRYsWIDp06c3eU3nzp3RoUMHnDt3rkG73W5HaWkpOnTo0OT9lZWVyMrKQnBwMP7zn/9Ap9M1em1AQAACAgJaXD8REREREZGatTqkRUVFISoqqtnrBg8ejAsXLmDv3r3o168fAGDr1q1wOp0YOHBgo/dVVFRgzJgxCAgIwLp162AwGFpbIhERERERkd/y2jNpaWlpyMrKwuzZs7F7927897//xX333YcpU6Zc3tmxoKAAqamp2L17N4D6gDZ69GhYLBYsX74cFRUVKCoqQlFRERwOh7dKJSIiIiIiUo1Wz6S1xrvvvov77rsPmZmZEEURkyZNwksvvXT5dZvNhh9++AHV1dUAgH379l3e+bFLly4N+srNzUVycrI3yyUiIiIiIlKc185JU4q/noVARERERESe5a/ZwGvLHYmIiIiIiKj1GNKIiIiIiIhUhCGNiIiIiIhIRRjSiIiIiIiIVIQhjYiIiIiISEUY0oiIiIiIiFSEIY2IiIiIiEhFGNKIiIiIiIhUhCGNiIiIiIhIRRjSiIiIiIiIVIQhjYiIiIiISEUY0oiIiIiIiFSEIY2IiIiIiEhFGNKIiIiIiIhUhCGNiIiIiIhIRRjSiIiIrrJo0SIIguD1P4sWLVL6SyUiIhViSCMiIiIiIlIRhjQiIiKFdO3aVekSiIhIhRjSiIiIFBASEoLbb79d6TKIiEiFtEoXQEREpDazZs1CVlaWR/o6fPgw5syZI2u/4447YDQaPTIGERG1LwxpREREV0lISEBCQoJH+nrvvfdctv/+97/3SP9ERNT+cLkjERGRl9TV1eHdd9+Vtffq1Qv9+/dXoCIiIvIHDGlERERe8vHHH6O0tFTWzlk0IiJqCkMaERGRl7z55puyNr1ejzvvvFOBaoiIyF8wpBEREXlBXl4evvjiC1n7bbfdhoiICAUqIiIif8GQRkRE5AUrV66E0+mUtXOpIxERNYchjYiIyMMkScKKFStk7YmJibj55psVqIiIiPwJQxoREZGHbdu2Dbm5ubL2GTNmQBT5o5eIiJrGnxREREQe5mrDEEEQMGPGDAWqISIif8OQRkRE5EHl5eX497//LWsfOXIkkpOTfV8QERH5HYY0IiIiD3r//fdRU1Mja585c6YC1RARkT/SKl0AERGREiRJgsVigc1mg8PhgEajgU6ng8lkgiAIbe53+fLlsrawsDD86le/cqdcIiK6hjCkERHRNcFisSA3NxdnzpxBQUEBCgsLYbVaZdfp9XrExcUhPj4esbGx6NSpE0wmU4vGyM7Oxvfffy9rv+OOO2AwGNz+GoiI6NrAkEZERO2WJEnIz8/H7t27kZOTA6fTCVEUXZ5fdonVasWpU6dw+vTpy9dnZGTg+uuvR0JCQpOzbK5m0QCejUZERK0jSJIkKV2EJ1VUVCAkJATl5eUwm81Kl0NERAo5duwYtm7dinPnzjUbzJpz6f7o6GiMHDkSqampsmusVivi4+NRUlLSoL1Pnz7Yv39/m8cmIqK289dswJk0IiJqV6qrq7FhwwZkZ2dfnvVyJ6BdeX9xcTFWr16NjIwMjBs3DoGBgZevWbdunSygAdwwhIiIWo8hjYiI2o2jR49i3bp1qK2tBVC/3NGTLvWXk5ODEydOYMKECUhLSwPg+my0gIAATJs2zaM1EBFR+8eQRkREfk+SJOzYsQNbt2712Xg1NTX44IMPkJmZiU6dOuHzzz+XXferX/0KYWFhPqmJiIjaD4Y0IiLya5Ik4csvv8Q333yjyPhffvklTp8+DYfDIXuNSx2JiKgteJg1ERH5tR07digW0C755JNPZG0dO3ZEZmamAtUQEZG/Y0gjIiK/dfToUZ8tcWzMqVOnUFpaKmufMWOGW4diExHRtYshjYiI/FJ1dTXWrVundBk4cOCArE0URcyYMUOBaoiIqD1gSCMiIr+0YcOGy7s4KqWurg5Hjhzla/gNAAAMrklEQVSRtWdmZiIpKUmBioiIqD3gxiFEROR3jh07huzsbKXLQHZ2Nmw2m6w9KytLgWqIiKi94EwaERH5FUmSsHXrVlU877V//35Zm9FohEaj8fgZbUREdO1gSCMiIr+Sn5+Pc+fOKR6CiouLUVBQIGvv2bMnysrKkJ+fr0BVRETUHjCkERGRX9m9ezdEUfkfX65m0QCgb9++EEURe/bs8XFFRETUXij/U46IiKiFLBYLcnJy4HQ6Fa3D6XTi0KFDsvbY2Fh06NABTqcT2dnZsFgsClRHRET+jiGNiIj8Rm5uruIBDQCOHz/uMoD17dv38v93Op04deqUD6siIqL2giGNiIj8xpkzZ1S71FGr1aJnz56X/y6KIgoLC31ZFhERtRPK/6QjIiJqofz8fMVn0qqqqvDTTz/J2tPS0mAwGC7/3el0utxYhIiIqDkMaURE5BckScKZM2eULgMHDhxwGRSvXOp4SWFhoeK7UBIRkf9hSCMiIr9gsVhgtVqVLgMHDhyQtYWGhiI5OVnWbrVauXkIERG1GkMaERH5BZvNpnQJOH36NM6fPy9r79OnT6OHa9vtdm+XRURE7QxDGhER+QWHw6F0CS43DBEEAX369Gn0HoY0IiJqLa3SBRAREbWERqNRugQMHDgQ/fr1a9Cm1WoREhLS6D1aLX/UEhFR6/AnBxER+QWdTqd0CejQoUOr72FIIyKi1uJyRyIi8gsmkwl6vV7pMlpFr9fDZDIpXQYREfkZhjQiIvILgiAgNjZW6TJaJS4urtENRYiIiBrDkEZERH4jISEBougfP7pEUUR8fLzSZRARkR/yj590REREAGJjY10eJK1GTqcTcXFxSpdBRER+iCGNiIj8RqdOnfxqJs3VAddERETN8Y+fdERERKjfPCQ9PV31QU0URWRkZHDTECIiahN1/5QjIiK6yoABA1S/5NHpdOL6669XugwiIvJTDGlERORXEhISEB0drdpdEwVBQExMDBISEpQuhYiI/BRDGhER+RVBEDBy5EhIkqR0KS5JkoQRI0aoNkQSEZH6MaQREZHfSU1NRUZGhuqCkCAI6NmzJ1JTU5UuhYiI/BhDGhER+aVx48bBYDAoXUYDBoMBY8eOVboMIiLycwxpRETklwIDAzFhwgSly2hg4sSJCAwMVLoMIiLycwxpRETkt9LS0jBy5EilywAAZGZmcpkjERF5BEMaERH5tWHDhmHo0KGK1jB06FDFayAiovZDq3QBRERE7hAEAZmZmQgICMCXX37p8/EzMzMxbNgwn49LRETtF0MaERH5PUEQMGzYMERFReGTTz5BbW2tV7foFwQBBoMBEydO5BJHIiLyOIY0IiJqN1JTU5GUlIQNGzYgOzsbgiB4NKxd6i8jIwNjx47lJiFEROQVDGlERNSuBAYGYvLkycjIyMDWrVtx7tw5iKIIp9PZ5j4v3R8VFYWRI0dy9oyIiLyKIY2IiNql1NRUdO/eHfn5+dizZw+ys7PhdDpbHNguXSeKIjIyMjBgwADEx8er7gBtIiJqfwTJm4v2FVBRUYGQkBCUl5fDbDYrXQ4REamExWLBqVOnUFhYiIKCAhQWFsJqtcqu0+v1iIuLQ3x8POLi4pCcnAyTyaRAxURE5C5/zQacSSMiomuCyWRCeno60tPTAQCSJMFiscBut8Nut0Or1UKr1cJkMnG2jIiIFMWQRkRE1yRBEBAUFKR0GURERDI8zJqIiIiIiEhFGNKIiIiIiIhUhCGNiIiIiIhIRRjSiIiIiIiIVIQhjYiIiIiISEUY0oiIiIiIiFSEIY2IiIiIiEhFGNKIiIiIiIhUhCGNiIiIiIhIRbRKF+BpkiQBACoqKhSuhIiIiIiIlHQpE1zKCP6i3YW0yspKAEBiYqLClRARERERkRpUVlYiJCRE6TJaTJD8LVY2w+l0orCwEMHBwRAEQelyrhkVFRVITExEXl4ezGaz0uVQO8X3GfkK32vkC3yfkS9c6+8zSZJQWVmJuLg4iKL/POnV7mbSRFFEQkKC0mVcs8xm8zX5DYB8i+8z8hW+18gX+D4jX7iW32f+NIN2if/ESSIiIiIiomsAQxoREREREZGKaBYtWrRI6SKofdBoNBg+fDi02na3ipZUhO8z8hW+18gX+D4jX+D7zP+0u41DiIiIiIiI/BmXOxIREREREakIQxoREREREZGKMKQRERERERGpCEMaERERERGRijCkERERERERqQhDGrVJaWkppk2bBrPZjNDQUMycORNVVVVNXj937lx0794dRqMRSUlJmDdvHsrLy31YNfmj1r7XAOC1117D8OHDYTabIQgCLly44KNqyV/861//QnJyMgwGAwYOHIjdu3c3ef2HH36I1NRUGAwG9OzZExs2bPBRpeTvWvNey8nJwaRJk5CcnAxBEPDiiy/6sFLyZ615n73++usYNmwYwsLCEBYWhlGjRjX7PZB8jyGN2mTatGnIycnBli1bsH79enz99deYM2dOo9cXFhaisLAQL7zwArKzs7Fy5Ups2rQJM2fO9GHV5I9a+14DgOrqamRlZeHxxx/3UZXkTz744AM8+OCDeOKJJ7Bv3z707t0bY8aMwblz51xe/+2332Lq1KmYOXMm9u/fj9tuuw233XYbsrOzfVw5+ZvWvteqq6vRuXNnPPvss+jQoYOPqyV/1dr32fbt2zF16lRs27YNO3fuRGJiIkaPHo2CggIfV05Nkoha6ciRIxIAac+ePZfbNm7cKAmCIBUUFLS4nzVr1kh6vV6y2WzeKJPaAXffa9u2bZMASGVlZd4sk/zMgAEDpHvvvffy3x0OhxQXFyc988wzLq//zW9+I40fP75B28CBA6V77rnHq3WS/2vte+1KHTt2lJYsWeLN8qidcOd9JkmSZLfbpeDgYGnVqlXeKpHagDNp1Go7d+5EaGgo+vfvf7lt1KhREEURu3btanE/5eXlMJvN0Gq13iiT2gFPvdeILrFardi7dy9GjRp1uU0URYwaNQo7d+50ec/OnTsbXA8AY8aMafR6IqBt7zWi1vLE+6y6uho2mw3h4eHeKpPagCGNWq2oqAjR0dEN2rRaLcLDw1FUVNSiPkpKSvDkk082u2yNrm2eeK8RXamkpAQOhwMxMTEN2mNiYhp9TxUVFbXqeiKgbe81ov/fzr2DtLKFYRj+3GJiUFOIkWDwgoWFQkCESKp0UUhja+OlsrEQLLRQYyNEsdM2CCm8NQHFQjTaqiAIWlgI2gim8EISLERcp9icnO3RuImeHSec94FpZtaQf8FHyD9Za/L1X+RsbGxMdXV1bx5G4XvRpCFrfHxcJSUlHx7n5+df/pxUKqVQKKTW1lZNT09/vXAUnUJlDQAA5BaJRLS6uqp4PK7y8vLvLge/YJ0ZskZHRzUwMPDhmObmZrnd7jebUZ+fn3V3d/fbjc7pdFrd3d2qqqpSPB5XWVnZV8tGESpE1oD31NTUqLS0VMlk8tX5ZDKZM1Nutzuv8YD0uawB+fpKzubn5xWJRLS7uyuv1/sny8Qn0KQhy+VyyeVy/Xac3+/Xw8ODjo+P1dHRIUna29vTy8uLOjs7c96XSqXU1dUlu92ujY0Nntj8j/3prAG52Gw2dXR0KJFIqKenR5L08vKiRCKh4eHhd+/x+/1KJBIaGRnJntvZ2ZHf7y9IzShOn8kakK/P5mxubk4zMzPa3t5+te8b1lE6zXoz5Mnlcunw8FArKytqb2/X1dWVhoaGFAwGs/+OXF9fy+fzyefzyePxKJVKKRgM6vHxUcvLyzLGKJPJKJPJyOFw6McPVt7irc9kTfq5h+ji4kJnZ2fa3NxUKBTS/f29bDabHA7HN84IVuB0OjU5Oan6+nrZ7XZNTk7q5ORE0WhUlZWV6uvr09HRUXZ/hsfj0cTEhCoqKlRdXa3FxUWtra0pGo2+2TMJ/CrfrD09Pen09FQ3NzeKxWJqampSbW2tMpkML3VATvnmbHZ2VlNTU4rFYvJ6vdnfY9LPpg8W8d2vl0Rxur29Nb29vaaystI4nU4zODho0ul09vrl5aWRZPb3940x/7wK/b3j8vLyeyaBopBv1owxJhwOv5u1paWlwk8AlrSwsGAaGhqMzWYzPp/PHBwcZK8FAgHT39//avz6+rppaWkxNpvNtLW1ma2trQJXjGKVT9b+/j779xEIBApfOIpKPjlrbGx8N2fhcLjwhSOnEmOMKWBPCAAAAAD4AGvMAAAAAMBCaNIAAAAAwEJo0gAAAADAQmjSAAAAAMBCaNIAAAAAwEJo0gAAAADAQmjSAAAAAMBCaNIAAAAAwEJo0gAAAADAQmjSAAAAAMBCaNIAAAAAwEL+Aj+pXNaFB0KbAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0YAAAM0CAYAAACfzjLSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3xUVf7/8fedyaT3AKGEECAKS+9NRVAEC4vs2ldlddW1N1x7/+3XtbEWVtcuIuuurOLuKhZ0QWwEpQihSIdQEpIAaaRn5v7+QKLZmYSUmbkzmdfz8cjDnXPPPefDYy3zzjn3XMM0TVMAAAAAEMJsVhcAAAAAAFYjGAEAAAAIeQQjAAAAACGPYAQAAAAg5BGMAAAAAIQ8ghEAAACAkEcwAgAAABDyCEYAAAAAQh7BCAAAAEDIIxgBAAAACHkEIwAAAAAhj2AEAAAAIOQRjAAAAIAQsWPHDr3zzju66667dNpppyk5OVmGYbj9LF261NI677//fo91GYahCRMm+GTOMJ+MCgAAAMBSO3fu1MqVK7Vq1ar6n6KiIqvLOqZ169bp8ccf9/u87S4YuVwu5ebmKi4uToZhWF0OAAAAYImhQ4eqpKSkVfeWl5ertLTUyxUdm9Pp1GWXXaba2tom+zS3NtM0VVZWpq5du8pma3qznGGaptmiagPc3r171b17d6vLAAAAABAg9uzZo7S0tCb7tLsVo7i4OElH/vDx8fEWVwMAAABYIz09vdUrRgsXLtRJJ53k5YqatnPnTo0bN04VFRX1bTabTS6Xq0G/E088UR9++GGzxiwtLVX37t3rM0JT2l0wOrp9Lj4+nmAEAAAA/Ex6erqGDx+uESNGaPjw4erQoYNGjBjh1i8mJsbv36VnzpzZIBQNGjRIcXFx+uabbxr0s9vtLa6tOY/YtLtgBAAAAOBICMrMzNTw4cPrw1CHDh0a9Nm1a5c1xf2P1157TUuWLKn/bLPZ9PLLL+vOO+/0Ww0EIwAAAKAdys7OtrqEZsnLy9Mf/vCHBm3XXXedRo8e7dc6eI8RAAAAAMvccMMNKi4urv/crVs3PfLII36vg2AEAAAAwBILFizQe++916DtL3/5iyVnBRCMAAAAAPhdcXGxbrjhhgZt06dP169+9StL6iEYAQAAAPC7mTNnav/+/fWf4+Li9Je//MWyeghGAAAAAPxq8eLFmjNnToO2Rx555JgvYfUlghEAAAAAv6moqNDvf//7Bm0jR47U9ddfb1FFRxCMAAAAAPjNfffdpx07dtR/DgsL0yuvvCKbzdpownuMAAAAgCBjmqYqy2pVV+OUy2nKZjcUFm5XVJxDhmFYXV6jvvvuOz377LMN2mbOnKnBgwdbVNFPCEYAAABAgKs8XKO9m4pUuLtM+btKVZhTptpqp1s/R4RdHXvEKTUjXh3T45TWN0lRseEWVOyutrZWV155pVwuV31bz5499eCDD1pY1U8IRgAAAEAAMk1T+TtLtW7pXm1bWSCXy5TNZsjlMhu9p7baqdwtxdq/raS+f+aITho4IU2pPeMtXU169NFHtW7dugZtL7zwgqKjoy2qqCGCEQAAABBgdqwp1Lfv79Ch3HIZNkPmj2GoqVD0c66f9d+6skBbvstXSrcYjZ7WSz0Hd/RZ3Y3ZuHGjHnnkkQZtF110kaZMmeL3WhpDMAIAAAACRNXhWn05f4u2rsiXflzcMZsZhhpz9P6DueX66IV1Om5kqsZfcLwiYx1tLbdZXC6XrrzyStXU1NS3JSUl6emnn/bL/M1FMAIAAAACwI41hfp83iZVV9YeaWhbHnL343jbVuVrz8ZDmnhpX9kSvTyHB88995yysrIatD3xxBNKTU31/eQtQDACAAAALGSaplZ9kqNv/7PjyCqRtwPR/87nkqoqavXxi+uUPta3BzPk5OTo3nvvbdA2fvx4XXHFFT6dtzUIRgAAAIBFTNPU8n/v0OpFOT82+GviI3/5/tPdPp3m6quv1uHDh+s/h4eH66WXXgrII8V5wSsAAEA7ZRiG138eeughq/9Y7cqqT3J+CkXtzJtvvqlFixY1aLv77rvVt29fiypqGsEIAAAAsMCONYVHts+1QwUFBbr11lsbtPXp00d33323RRUdG8EIAAAA8LOqw7X6fN6m+pPn2pubbrpJhw4dqv9sGIZeeuklRUREWFhV03jGCAAAAPCzL+dvOXL6nL+eKfKz+fPnN/g8fvx4RUREaPny5S0ap7S01GObp3HS0tKUlpbWskJ/hmAEAAAQQv732OSWassXTxyxY03hkfcUhZAvvvhCY8eO9cpY33//vcexHnzwwTY9A0cwAgAACCFjxoyxuoSQZpqmvn3fP8dyt4VpBnBxPkIwAgAAAPwkf2epDuWWW13GMRXlBX6N3sbhCwAAAICfrFu6V4Yt8E9c2LGm0OoS/I4VIwAAAMAPKg/XaNvKApmuwN+mtm9zsSoP1ygqNrxV93trK96ECRP0xRdfNGg7+eSTtXTpUq+M/3OsGAEAAAB+sHdTkVxBEIokyWWa2re52Ooy/IpgBAAAAPhB4e4y2YJgG50k2QxDhbvdj8puzwhGAAAAgB/k7yoNqhWj/J0EIwAAAABeZJqmCnPKrC6jRQp2l4XUsd0cvgAAABCCKisrVVhYqIMHDyo8PFzJyclKTk5WRESE1aW1S5Vltaqtdvp1zoNl+/Xg3y9u1b2zP7hNknT1s4332blzpzIyMlo1fiDyy4rR888/r4yMDEVGRmr06NH67rvvGu37yiuv6KSTTlJSUpKSkpI0adKkJvsDAACg+a677joNGjRIsbGx6tGjh4YNG6YBAwaoa9euioyMVEZGhi6++GK9+OKLOnDggNXltht1Nf4NRWg5nwej+fPna+bMmXrwwQe1evVqDR48WFOmTFFBQYHH/kuXLtVFF12kzz//XFlZWerevbsmT56sffv2+bpUAACAdu+FF17QunXr5HK5PF7PycnR3//+d1177bVKT0/X1VdfrW3btvm5yvbH5QydLWnByufB6KmnntJVV12lyy+/XP369dOLL76o6Ohovf766x77v/XWW7ruuus0ZMgQ9e3bV6+++qpcLpcWL17s61IBAACChmmaqigpVklBvg7l7lNJQb4qSoq9+kxIZWWlXn75ZQ0ePFgvv/yy18YNRTZ7cJxGF8p8+oxRTU2NVq1apbvvvru+zWazadKkScrKymrWGBUVFaqtrVVycrLH69XV1aqurq7/XFoaWqdnAACA0FBRWqI9G7KVv2Ob8rZtUf6ObaqtqnTr54iMUmqvTHXJPN57c1dU6Oqrr9bXX3+tuXPnyjD4kt9SYeF2v88ZH52s26b/pU1jTL1hsCJjHB6vdenSpU1jN8dll12mCRMmNGjz1XNNPg1GBw4ckNPpVGpqaoP21NRUbdq0qVlj3HnnneratasmTZrk8fqjjz6qhx9+uM21AgAABBrTNJW3dZPWLPpQm7O+ksvplM1ul8vZ+PMqtVWV2rtxnXI3b6xvCwuza+Sw4Tpj6lQNHDhQv/jFL9ShQwfFx8erurpaRUVF2r59u7755hstWLBA33//vcex582bp5SUFD399NNe/7O2d1FxDjki7H49gMFhD1fP1H6tvz/SrpNPOdHSIHzZZZf5ba6APpXuscce09tvv62lS5cqMjLSY5+7775bM2fOrP9cWlqq7t27+6tEAAAAn9i2Yrm+mT9PB/bkyLDZZbqOfKFuKhT9nMvpVI+URI3q2V1De3RXuN1Qh9J8DUibrMw+fer7ORwOxcbGqnv37powYYLuvfdeLV26VNdee63HX2Q/88wzGjp0qGbMmOGdP2iIMAxDHXvEKXdLsdWlNFun9LiQWh306TNGHTp0kN1uV35+foP2/Px8de7cucl7Z82apccee0yffvqpBg0a1Gi/iIgIxcfHN/gBAAAIVpVlpfpw9hP6z6z/08G9uyWpPhS11I2nnqDRvdIV/uPzLQf35Og/T/5RH85+QpVljT9+MGHCBK1evVrnnnuux+v33HOPKivdt/GhaakZ8bLZgiNo2GyGUnuG1vdqnwaj8PBwDR8+vMHBCUcPUhg7dmyj9z3xxBP64x//qE8++UQjRozwZYkAAAABY+uKLL1+69XanPW1JHn95ZpHx9uc9bVev/UabV3R+DPfUVFReuuttzRx4kS3a/v27dNzzz3n1dpCQcf0OLlcwXE6nctlqmM6wcirZs6cqVdeeUVz587VDz/8oGuvvVbl5eW6/PLLJUkzZsxocDjD448/rvvvv1+vv/66MjIytH//fu3fv1+HDx/2dakAAACWME1T3/7rn3p/1iOqOnxYZiNHaXttPpdLVYfL9P6sR/Ttv/7ZaAALDw/XK6+8ovDwcLdrCxYs8GmN7VFa36SgWjHq1ifR6jL8yufB6IILLtCsWbP0wAMPaMiQIVqzZo0++eST+gMZdu/erby8vPr+L7zwgmpqanTuueeqS5cu9T+zZs3ydakAAAB+Z5qmvv7HXH399ptHG/w1sSTp67ff1Ndvv9loOOrdu7cuuugit/YVK1bwAtgWiooNV+aITjICPBwZNkOZIzopKtY9ELdnhuntNVqLlZaWKiEhQSUlJTxvBL/ZuHGj1q9fr9zcXB0+fFiRkZHq2LGjfvGLX2jo0KFyODwfcwkAwLf/+udPochCJ144Q6N/db7Ha++++67OO+88t/ZPPvlEU6ZM8XVp7cr+HSVa8MQqq8s4pnPuGK7OvRKsLqPNWpINAvpUOiCQ7dmzR7Nnz9bf//535ebmNtovLi5O06ZN00033aRRo0b5sUIAQKDbuiIrIEKRdGTlKCUtXZkjx7hdGz58uMd7/veALRxbas94pXSL0cHccikQlycMKaVrTMgdvCD5YSsd0N64XC796U9/Up8+fTRr1qwmQ5EklZWV6a233tLo0aM1Y8YMlZSU+KlSAEAgqywr1acvzZYC5Thkw9Cil571eFpdp06dPN5SUFDg66raHcMwNHpar8AMRZJkSqOn9QqpY7qPIhgBLVBZWalp06bp3nvvbdUxpfPmzdPIkSO1c+dOH1QHAAgmS+a8qOrycv89U3Qspqnq8nItmfNSs2+pqanxYUHtV8/BHXXcyFQZAfZN3LBJx41MVc/BHa0uxRIB9n8HELicTqfOOeccffjhhx6vOxwODR48WKeeeqpGjRql2NhYj/22bt2qU045pcGhIwCA0LJtxXJt+uZLn58+11Kmy6VN33yhbSu/bdDe2MoQz3O33vgLjldElEMKlIUZQ4qIcmj8BcdbXYllCEZAMz3wwAP6+OOP3doTExP19NNPq7CwUGvWrNF///tfffvttzp06JDeffddHX+8+79gdu3apYsuukjOZr69HADQfpimqW/mzwvYrUqGYeib+fManFK3apXnwwLS09P9VVa7Exnr0MRL+wbOljpTmnhpX0XGhu6BUQQjoBnWrl2rxx9/3K29Z8+eWrVqlW655RYlJDQ8ucXhcOicc87R6tWrPZ7Y88UXX+jFF1/0Wc0AgMCUt3WTDuzJ8frLW73FNE0d2L1LeVs317d98MEHHvsOHTrUX2W1S72GdNTos3tZXYYkacz0Xuo1JDS30B1FMAKa4bbbbnNb3YmJidFHH32kXr2a/hdaTEyM3nvvPfXv39/t2gMPPMDLiwEgxKxZ9KEMm93qMppk2Oxa8+mRrePbt2/XP/7xD7c+xx13nLp37+7v0tqd4af30LDTe1haw7DTe2jYFGtrCAQEI+AYVq5cqcWLF7u133///erbt2+zxoiOjtYrr7zi1n7o0CG9/PLLba4RABAcKkpLtDnrK5muwN5Kbbqc2rzsSxUfKNRVV12l2tpatz6XXHKJBZW1P4ZhaMzZvTRm+o+/aPXXDssf5xkzvZfGTu8dsFs7/YlgBByDp+CSkpKiG2+8sUXjjB071uOWOk+BCQDQPu3ZkC2XH54v/SGvQOXVbTsxrrq6Rheef74+//xzt2txcXG6/vrr2zQ+fmIYhoafnqEzrhmoyGiHz0+rM2xSZLRDZ1wzUMNPz/DtZEGEF7wCTairq9O7777r1n7xxRcrOjq6xeNdddVVWrRoUYO2TZs2afXq1Ro2bFir6wQABIf8Hdtks9t9Ho6Wb9+tN5et1sieaRreo5vSkxNbtCKwveCg3lu9Xvmlnrd7/+lPf1JKSoq3ysWPeg3pqK6Zifpy/hZtXZF/ZFXHm4+i/The5vBUjb/weEXGhO5BC54QjIAmLF++XEVFRW7t55xzTqvGO+ussxQVFeX2DqSPP/6YYAQAISBv22a/rBhJUq3TqWXbcrRsW47ioyLUJ7WjuibGq0tivJKioxTpCFOkI0xOl6nKmlodOFyuXQeKlL03T/uK3V/yetT555+vG264wS9/hlAUGevQ5Cv6K3N4J333wQ4d3Fcuw2bIdLU+IR29P6VrjEZP6xWy7yk6FoIR0ARP2weio6M1duzYVo0XGRmpcePGuT2ztGTJEt17772tGhMAEBxM01T+ju2WzF1aWa0Vu/a2eZzzzz9ff/vb37xQEY6l15CO6jm4g/J3lmrd0r3atrJALpcpm92Qy3nskGSzGfX9jxuRqgETuik1I55niZpAMAKasGLFCre2oUOHyuFo/dLzqFGj3ILR6tWrWz0eACA4VJaWqLaq8tgdA1B8fLyefvpp/e53v7O6lJBiGIY690pQ514JOvH847Rvc7EKckpVsKtUBTllqq12X310RNjVqUecUnvGq2N6vLr1SVRUbLgF1QcfghHQhOzsbLe2AQMGtGnMQYMGubUVFxcrJydHPXpwVCYAtFe11dV+mystKUG7Dha1+QCG6HCHLr/8d7rz3ns5mttiUbHhyhzeSZnDO0k6sgJZWVarulqnXHWmbGGGwhx2RcU5WBVqJYIR0Iiamhrt2bPHrT0zM7NN4/bu3dtj+44dOwhGANCOOevq/DbXaf2P06R+mcorKVPOwSLtKypVXkmpDh6uUHl1TaPP84fZbOqSGK/05AT17JCs/t1S9fsH7ldy125+qx3NYxiGouNZCfImghHQiD179sjlcrm1d+vWtv84NHb/rl272jQuACCw2cP8+7XLMAx1TYxX18T4Bu11TpfKqqpVXVenOqdLhiFFhTsU6XAo0hEm2/+sNoS1Yfs4EEwIRgh5pmnqYHmNKmucqnW65LDbFBVuV0FBgcf+qampbZqvsfsLCwvbNC4AILA5IiKsLkGSFGa3KSkmqvn9w1mVQGggGCHkHCqv0bLtB7RuX4nW7inWur0lKq9xf3jRlbPK4/0JCQltmt9utysmJkbl5eUN2g8ePNimcQEAgS0qPkGOyKigOoAhPCpKUfFt++8eECwIRggJpmlq9e5izcvapYXZeapzmQqzGapr4p0AlRUVHttzSp0aZppterDRUzD6388AgPbFMAyl9uqtvRvXW11Ks6X2yuRBfoQMghHavU837NefP92izfllstsMOX8MQ02FIkkyXZ4fkr3x7Wy9vLZKt03uo9P6tW5bnafjvmtq2nZyEAAg8HXJ7KPczT/47SWvbWGz29U5s4/VZQB+QzBCu1VUXqMH39+g99fm6ugvu5wteWu06X7wgiQZNps255fpqjdXatrgrnp4Wn8lxbRs/7Xdbndrq/PjaUUAAGuk9soMilAkSS6nU6k923YSKxBMbFYXAPjCog37dcqfl+rD7DxJktmCPHSUYXMPL5Jkupz1432YnatT/rxUizbsb9HYnkJQW14aCwAIDt37D5LNwy/HApHNblf3/gOtLgPwG4IR2hXTNPX859t09bxVKq6slbM1iegou+egYjp/CjVOUyqurNXV81bp+c+3yWzmfJ62zUUEyGlFAADfiY5PUJ+xJzX6y7dAYdjs6jNuvKI5eAEhhGCEdsM0TT2xaLOeXLT5x89tG88W7vkoU7Om4WlCR+d58se5mxOOysrK3Nri4+M99AQAtDdDppwl0xXY2+lMl1NDJp9ldRmAXxGM0G78del2vbB0u9fGs0V5DiquqsNN1vDXY9RQVVWl6upqt/aUlJSWFQgACEpdjuurDukZAXvam2EY6pCeoS7HcfACQgvBCO3Cog3761eKvMUek+ix3Vle3OR9Ty7arE+beOZo/37P1zp37tz84gAAQcswDJ1wwaXN3n7tb6Zp6oQLLg3Y4Ab4CsEIQa+ovEZ3LciWt//1bY9N8ficUV1pQZP3GYZ054JsFZV7Pn579+7dHtt79uzZ8iIBAEEpc8Ro9T1hvAxbYH0VM2w29T3hZGWOGG11KYDfBdY/jUArPPj+BpVW1snbv3czDEOOxC5u7XVFuU3eZ5pSaWWtHvpgg8frW7du9diemcmRqAAQSk65/BpFxMRIgbIyYxiKiInVKZdfbXUlgCUIRghqn27Yr/fX5rbt9LkmhKf2cmurKdh5zPucpvSfNbn6bGO+27Xvv//erS0tLU0dOnRoXZEAgKAUFRevyVff1PbTgrzFNDXl6psUFcdhQAhNBCMELdM09edPt/j0F23hXd0fPK09sFuu6vJj3msY0p8/dT+lLisry63v6NFsWQCAUHTcyLE68cIZVpchSTrxwhnKHDnG6jIAyxCMELRW7y7W5vwyn/6iLarHEPdG06XKXWuOea9pSpv2l+n7PT8d1lBQUOBxxWjSpEltqhMAELxGTT9Po6afF/I1AFYjGCFozcvaJbvNt/uyHR26K8zDc0YVP3zVrPvtNkPzsnLqP//zn/90W0EyDENTp05tW6EAgKBlGIZOvHDGTytH/nrm6Md5Trzotzrpot9yCh1CHsEIQelQeY0WZufJ6fL9vuyY/hPc2iq2LlddaeEx73W6TH2wNleHymtkmqaef/55tz4TJkxQWlqaN0oFAAQpwzA0+lfn6+w/3KfI2Fifn1Zn2GyKjI3T2X+4T6NZKQIkEYwQpJZtP6A6P4QiSYodfLpkD2vY6KpT8VfzmnV/nctU1vaDmjNnjjZt2uR2/YYbbvBGmQCAdiBz5Bj97umX1GfsiZLk9VWco+P1GXuSfvfMSzxTBPwMwQhBad2+EoX5eBvdUWFxKYodeJpbe/n6JSrf9PWx77cZWvLtGs2cOdPt2oABAzR9+nSv1AkAaB+i4uJ11k136Ow/3KeU7j0kSYbN3qYxj96f0r2Hzr79fp110+2Kio1rc61AexJ27C5A4Fm7u9hvK0aSlHjSJarY9LVcVWUN2g8s/LPkciqm38mN3luRt00vvPiIKktK3K7Nnj1btgB7uR8AIDBkjhyj3iNGK2/rZq359ENtXvalXE6nbHa7XE7nMe8/2s9mt6vvuPEaMmWqOmcez7NEQCMM83+fBA9ypaWlSkhIUElJieLjOYe/PTJNUwMeXKTymmP/R8GbKrZkqfBfj3i8FtlruOKGnKGIrn1ki4qXWVOpmoKdKt+4VIfXLZZcdW733HrrrXrqqad8XTYAoJ2oKC3Rng3rlL9jq/Zv36L927eptqrSrZ8jMkqde2eqc2YfpfbMVPf+AxUdn2BBxYD1WpINCEYIOgcOV2vE//3XkrlLsv6p4i/fbPM4U6dO1XvvvSeHw+GFqgAAocg0TVWWlqiupkZ1tbUKczgUFh6uqPgEVoWAH7UkG7CVDkGn0s8rRT+XMPZ8GWERKvr8Ncl0tWqMSy65RK+++iqhCADQJoZhKDoh0eoygHaDYISgU+tsXSDxlviRZyuiW18d+uwF1ezf1uz7OqV21p9nPalLLrnEh9UBAAAEr0OHDmnlypXKy8tTcXGxDh8+rOjoaCUmJqpTp04aNmyYunRxf8ekNxCMEHQcdusPK4jo2kddfvuMKnetUfmGz1W1a42chw+69bNFxCiie39F9zlBy169X707J1lQLQAAQODasWOHXn31Vb3zzjvatu3Yv3Tu1q2bzj77bF111VUaMmSI1+rgGSMEHSufMWqKq+qw6g4fkllbJSMsXLaoeIXFJtdfX3nfJHWIjbCwQgAAgMBRXFys2267TXPmzFFrI8nUqVP1wgsvKC0tzeP1lmQD63/1DrRQSky4YsLb9j4HX7BFxiq8Q7oiuhyv8I4ZDUJRbESYUmLCLawOAAAgcGRnZ6t///56/fXXWx2KJGnhwoXq37+/Fi1a1OaaCEYIOoZhaGC34Dp2dGA3TggCAACQpPXr1+vUU09Vbm5uo31SUlI0YsQInXrqqRo9enSjK0LSkVWh6dOn67//bduOIoIRgtLg9ESF2YIjaITZDA3uzqlBAAAAdXV1uvjii3XgwAG3a2FhYbr++uu1bt06HThwQCtWrNB///tfLV++XHv27NGePXv0xz/+UUlJ7s9sV1VV6ZJLLlFJSUmrayMYISgN7JagOldwPB5X5zKDboULAADAF1566SVlZ2e7taekpOjrr7/Wc889pwEDBni8Ny0tTffdd5+ys7M9HrqQn5+vhx56qNW1EYwQlMb17hBUK0Zje6dYXQYAAIDl3njjDbc2wzD0r3/9S6NHj27WGGlpafrkk0/UsWNHt2tvvfWWXK7WvdqFYISglBwTrqmDusge4OHIbjP0y8FdlczBCwAAIMTl5uZq5cqVbu3Tp0/XSSed1KKxUlNTdffdd7u1FxYWavny5a2qj2CEoHXp2Aw5A3w7ndNl6tKxPawuAwAAwHKNvaPonHPOadV45513nsf27du3t2o8ghGC1rD0RPXtHKdAPezNMKS+neM0lIMXAAAAlJ+f77G9X79+rRovLS1NsbGxbu15eXmtGo9ghKBlGIZum9xHgfqKYtOUbpvch2O6AQAApEbfV+Qp3DSXp5e22u2te98lwQhB7bR+qZo2uKvsARY+7IZ09pCuOq1fqtWlAAAABITUVM/fiw4ePNjqMT3d27lz51aNRTBC0Ht4Wn/FR4UFzJY6w5Dioxx66Jf9rS4FAAAgYAwfPtzjas53333XqvHWrFmj6upqt/YxY8a0ajyCEYJeUky4HjtnUMBsqTNN6fFzBimJk+gAAADqxcbGavLkyW7tc+fObXSbXVNef/11t7ahQ4eqd+/eraqPYIR2YUr/zrp9Sh+ry5Ak3T6ljyb3b90SLgAAQHt2xx13uLWtXr1as2fPbtE433zzjV588UW39nvuuafVtRGM0G5cN8pRzscAACAASURBVKG3rpvQut8QtKcaAAAAAtWECRN0zTXXuLXPnDlTTzzxRLNezvqf//xHU6dOVW1tbYP2Cy64QOeee26razPM1qxbBbDS0lIlJCSopKTE4ykVaN9M09Rfl27Xk4s2yzDkl+11R+e54/Q+um5Cpu8nBAAACECmaaq29qCcziqZZq0MwyG7PVIOR0qDU3rr6up0/vnn61//+pfbGH379tVVV12l8ePHq1evXoqPj1dFRYX27t2r5cuXa+7cufryyy/d7jvzzDP13nvvKSIiokF7S7IBwQjt0qcb9uvOBdkqrayV04d/h9t/PGjh8XMGsX0OAACElJqaQyoqylJZ2XqVlK5VWdl6OZ3lbv3s9hjFxQ1QQvxgxcUNUFLSWIWFJeqJJ57Qww8/rKqqqlbXEB0drXvvvVd33XWXbDb3zXAEI4IRJBWV1+jB9zfo/bW5Xl89Ojre2UO66uFp/ZUYzUELAACg/TNNU6Wl32vP3r+poOBDmWadDCNMpll3zHuP9jOMMKV2mqq0tEtUUdFZzz33nN59911t2bKl2XX0799fF154oa6++mp17Nix0X4tyQZhzZ4dCDJJMeGafdFQTR3URU99tkWb9pfJbjPkdLU+IR29v09qnG6b3If3FAEAgJBRWPiZtu94SuXlW2QYdpmmU5KaFYp+3s8065Rf8IH25/9b1VUZMs10JSQktKiW3Nxcbdq0SRs3btTJJ5/csj9II1gxQkgwTVPf7ynWvKwcfbA2V3UuU2E2Q3XNCElH+4XZDE0b3FWXju2hId0TG+yVBQAAaK9qa4u0ecvDys//QJIhqe3xoabG1BtzDunf/y5VTU3bxhs/frxee+01ZWa6P+vNVjqCEZpwqLxGWdsPKntfsbL3lCh7X7HKq51u/WIi7BrULVGDuydqYLcEje2domTeTQQAAEJIYeGn+mHTPaqtLZXk/n2pNQ4cqNPdd+3Xzp01bteioyM0derZGj9+vNLT05WYmKjDhw8rPz9fy5Yt08KFC5WXl+d2X0xMjN555x2dccYZDdoJRgQjtIBpmjpYXqOqWqdq6lwKD7Mp0mFXSkw4q0IAACAkmaapnJwXtH3Hn+WtVSJJKi116uabcrVnT63btem/StCllyZq2NA71aPHNR6/h9XU1OiVV17RHXfcoYqKigbXIiIitGjRogZb6whGBCMAAACgVUzT1PYds5ST4/4C1bb64x/z9cXShifXGYZ0+x0dNXlyXH1bjx7Xqnev2xr9JXV2drZOPvlkFRcXN2jv3r271q1bV//MUkuyAS94BQAAAFAvJ+cFn4SiDRuq3EKRJJ1/QUKDUNScGgYNGqS///3vbu179uzRM88806r6CEYAAAAAJB15pujI9jnv+/e/S9za4uJsuvjiJI/9t++YpcLCzxod74wzztCkSZPc2l944QW5XK4W10cwAgAAAKDa2iL9sOkeHXmmyLtM09SqlZVu7ePGRSs6urFIYuiHTXertrao0XF/85vfuLXl5+crOzu7xTUSjAAAAABo85aHfzx9zvtHEBQU1Km01H0VZ8CAyCbuMlVbW6rNW/5foz1OOukkj+1r1qxpaYkEIwAAACDUFRZ+9uN7irxzJPf/Ki72vLUtKcl+jDudys9/X4WF//V4NTU11WP7gQMHWlKeJIIRAAAAENKOnEL3lHyxhe4op9PzKpQ9rDlzGtq+4yl5Okzb4XB4vINnjAAAAAC0SGnp9yov3yJfbKE7KiHB88pQSXFzVqhMlZdvVmmp+/a4wsJCj3d07NixJeVJIhgBAAAAIW3P3r/JMI61pa1tEhM9j79la3Wz7jcMu/bu/Ztb+4oVKzz2JxgBAAAAaLaamkMqKPhQpumbZ4uOiomxqVu3MLf2rGUVjW6z+znTdCq/YKFqag41aH/vvffc+hqGoZEjR7a4RoIRAAAAEKKKirJkmnV+mWvEyGi3try8On322eFm3W+adSoqXl7/ecOGDXr77bfd+g0ePLjRQxmaQjACAAAAQlRZ2XoZhvtKji+cckqsx/bnnzugbduOvaXOMMJUVrpeknTo0CH9+te/ltPpvtJ10UUXtao+ghEAAAAQokpK1/ptxah//0iNGeO+alRZaWrmzFx9/nnTK0emWaeS0rVasWKFRo0apS1btrj16dq1q2688cZW1eefeAgAAAAgoJimqbKy9X6d85prkrVhQ5XKyhoep11RbuqR/yvQ228Xa8rkOA0cGKlOqWGKjbWpstJUUVGdNmyo1ldffqBvv/27x7ENw9Ds2bMVFRXVqtoIRgAAAEAIqq09KKez3K9zpnUP1//7Y2fddWeeqqvdD13Yvq1Gf912sFVjP/XUUzrnnHNaXRtb6QAAAIAQ5HRWWTLvwIGR+vNTXZSW5vnlrC2VkJCguXPn6pZbbmnTOAQjAAAAIASZZq1lc/ftG6kXX+qm31ycqMTE1kWSyMhIzZgxQ+vWrdOMGTPaXBNb6QAAAIJQZWWlNm7cqK1bt+rQoUMqKSmRw+FQUlKSkpKS1K9fP/Xp00eGYVhdKgKUYXhnxaa1IiNt+t3vknXppUn6+qtyrf6+Upt+qFZOTo1cLs/3dO4cphNOOEMnn3yafvOb3yglJcVr9RCMAAAAgkBBQYE+//xzLVmyRF988YW2bt0qV2PfHn+UlJSkk046SVdeeaXOOuss2WxsFsJP7PZIq0uQJDkchiaeEquJPx7nXVdnqqzUqcPlLlVUmIqIMBQbY1NcvE0RETaddOLrCg/v4PU6CEYAAAABKj8/XwsWLNA777yjL7/88phB6H8VFRXp/fff1/vvv6+MjAzNnj1bv/zlL31ULYKNw5Eiuz3G7wcwHEtYmKGk5DAlJbtfs9tj5XB4b5Xo5/i1AQAAQIC69957df3112vp0qUtDkX/a9euXZo2bZouv/xyVVcf+2WaaP8Mw1Bc3ACry2iRuLgBPtseyooRAABAEEtKSlKnTp3UqVMnSVJhYaG2bNnSaJB64403dPDgQS1YsEAOh7XPmMB6CfGDVVKyym8veW0LwwhTQvxgn41PMAIAAAgisbGx+vWvf62JEydq/Pjx6tWrl1uf0tJSffjhh3ryySf1/fffu13/4IMPdP311+vll1/2R8kIYHFxA4IiFEmSadYpLt53K1xspQMAAAgCY8eO1Zw5c7R//37NnTtXl112mcdQJEnx8fG66KKLtHLlSj388MMe+7z66qtatmyZL0tGEEhKGivDCI61EsMIU1LiGJ+NTzACAAAIYCeccII+++wzLVu2TJdddpliYmKafa/NZtMDDzygxx57zO2aaZq69957vVkqglB4eLI6dTpLhmG3upQmGYZdqZ2mKjzcw4kM3prDNE3TZ6NboLS0VAkJCSopKVF8fLzV5QAAALTavn371K1bN6+MNW7cOGVlZTVos9lsysvLq38+CaGppGS1Vq46z+oyjmnE8HeVkDC0Rfe0JBuwYgQAABCgvBWKJOn22293a3O5XFq0aJHX5kBwio8fqpiYPpIC9WXAhmJj+io+fohPZyEYAQAAhIDTTjvN4zHHOTk5FlSDQGIYhnr3mikpUDeSmerV61afHdN9FMEIAAAgBMTGxiopKcmtff/+/RZUg0DTseMkpab+UlKgPWtkV2rqNHXsOMnnMxGMAAAAQoSn9xbZbHwdxBF9jn9QDke8AmdLnSGHI159jn/AL7PxTwIAAEAIKC8vV2FhoVt7ly5dLKgGgcjhSNIv+v5JgbOlztQv+j4qh8N9pdMXCEYAAAAh4IsvvpDL5XJrz8zMtKAaBKqOHSerd6/brC5DktS71x/UseNpfpuPYAQAABAC5syZ49bmcDg0efJkC6pBIOvR41r16HFtANRwjV/nDI7X3AIAAKDV1q5dq/fee8+tfeLEiUpISLCgIgSyI6fU3aYwe4y275ilI88c+WN73ZF5eve6XRkZ/g1FEitGAAAA7ZrT6dQ111zjcRudp3cbAdKRcJSRca0GDXxRDkeifH9anV0OR6IGDXzRklAksWIEAABgKdM0dajqkKqcVap11sphdyjSHqnkyGSvvLflkUce0fLly93azzrrLE2a5PsjkBHcOnY8TYmJI7R5y8PKz/9A3l89OjJeaupZP56Kl+jFsVtYiWmagXLshFeUlpYqISFBJSUlio+Pt7ocAACABoqqivTt/m+18eBGrStcp40HN6qirsKtX3RYtPql9NPAjgPVL6WfRnceraTIlp3OtWjRIp155pluq0UJCQnKzs5Wenp6m/4sCC2FhZ9p+46nVV6+WYZhl2k6Wz3W0ftjYvqod6+ZPntPUUuyAcEIAADAx0zT1NrCtXp789tatHOR6sw6hRlhqjPrjnnv0X5hRphO73m6Lux7oQZ1GHTM1aSNGzdq3LhxKikpcbv2j3/8QxdeeGGr/zwIXaZpqrR0jfbu/ZvyCxbKNOtkGGEym/H38tF+hhGm1NRfKq3bJYqPH+yVldHGEIwIRgAAIEAs2b1Ez33/nLYWb5XdsMvZht+yH73/uMTjdOPQGzUxfaLHfvv27dMJJ5ygnJwct2s33nijZs+e3eoagKNqag6pqHi5ykrXqaQ0W2Vl6+R0lrv1s9tjFBc3UAnxgxUXP0BJiWMUHp7slxoJRgQjAABgseKqYv3p2z/p410fy5Ah04vPZRwd74yMM3TP6HuUGPnTcxmFhYWaMGGCNm7c6Hbf2WefrQULFshu9/WD9AhFpmmqtvagnM5qmWaNDCNcdnuEHI4Un64KNaUl2YDDFwAAALxs8e7FemjZQyqrKZMkr4ain4+3KGeRsvKy9NC4h3Rq+qkqKirS5MmTPYaiyZMna/78+YQi+IxhGAoP72B1Ga1GMAIAAPAS0zT16rpXNfv72V5fJfLEZbpUUl2iWz6/Rb8//vead/M8rVmzxq3fySefrH//+9+KiIjwaT1AMCMYAQAAeIFpmnp29bN6bf1rRz775YWYR+ZxVjl114y7VLHN/XS7cePGaeHChYqKivJLPUCw4gWvAAAAXvDqulfrQ5E/uapdynkqx2MoGjVqlD7++GPFxsb6vS4g2BCMAAAA2mjx7sWa/b3/T3pzVbuU83SOKra4h6Jhw4Zp0aJFHEYFNBPBCAAAoA2Kq4r10LKHZMi/p265alzKeTZH5Zvcj0eOTo/Wux+8q8TERA93AvCEYAQAANAGf/r2TyqrKfPbM0XSz0LRRvdQFJEWoYw7MvTithf9Vg/QHhCMAAAAWmnJ7iX6eNfHbXppa0u5al3a/dxulW/wEIq6RqjnHT1li7Xpo50f6fPdn/utLiDYEYwAAABawTRNPff9c37dQueqc2nPc3t0OPuw27XwzuHKuCNDYfFHDh02ZOgv3/9Fpum/lSwgmBGMAAAAWmFt4VptLd7qv2O5nab2/HWPytaWuV0L7xyunnf1lCPR8VN/mdpavFXZB7L9Uh8Q7AhGAAAArfD25rdlN+x+mct0mdrzwh6VrfYQilLD1fPOhqHoKLth19ub3vZHiUDQIxgBAAC0UFFVkRbtXOSXZ4tMl6m9L+9V6cpSt2uOjo4joSjJPRRJktN06pOdn6ioqsjXZQJBj2AEAADQQt/u/1Z1Zp3P5zFNU/te36eS5SVu1xwdHUe2zyV7DkVH1Zl1+m7/d74qEWg3wqwuAAAAINhsPLhRYUaYz8NR3t/yVPx1sVu7EW6o87mdVVdUp7qipmuwG3Z9ZH6khL4JHq9HRERo6NChXqkXCGYEIwAAgBZaV7jOLytGZWvcnymSJLPmyDNHzbVVWzVbsz1e69Gjh3bt2tWa8oB2ha10AAAALWCapjYe3Gh1GQC8jGAEAADQAoeqDqmirsLqMgB4GcEIAACgBaqcVVaXAMAHeMYIAACgBWqdtX6bq8+f+3htrA+mf6CMhAyvjQe0N6wYAQAAtIDD3vTx2IEq3B5udQlAQCMYAQAAtECkPdLqElolwh5hdQlAQCMYAQAAtEByZLKiw6KtLqNFYhwxSo5MtroMIKARjAAAAFrAMAz1S+lndRkt0i+lnwzDsLoMIKARjAAAAFpoYMeBCjOC4wyrMCNMAzsMtLoMIOARjAAAAFqoX0o/1Zl1VpfRLHVmXdCtcAFWIBgBAAC00OjOo4NqxWhU51FWlwEEPIIRAABACyVFJmlKzymyG3arS2mS3bDr9J6nKykyyepSgIBHMAIAAGiFC/tcKKfptLqMJjlNpy7se6HVZQBBgWAEAADQCoM7DtZxicfJUGCe9mbI0PFJx2tQh0FWlwIEBYIRAABAKxiGoRuH3ihTptWleGTK1A1DbuCYbqCZCEYAAACtNDF9os7IOCPgnjWyGTad2fNMTUyfaHUpQNAgGAEAALTBPaPvUVx4XMBsqTNkKD48XnePutvqUoCgQjACAABog8TIRD007qGA2VJnytTD4x5WYmSi1aUAQYVgBAAA0Eanpp+qm4beZHUZkqSbh92sU9JPsboMIOgQjAAAALzgyoFX6sqBV1pewxUDrrC0BiBYEYwAAAC8wDAM3TT0Jt087OYjn/30zNHReW4edrNuHnYzp9ABrUQwAgAA8BLDMHTlwCv17MRnlRCRIJvh269aNsOmhIgEPTvxWctXq4BgRzACAADwslPST9EH0z/QlB5TJHl/9ejoeKdnnK6Fv1rIM0WAF/glGD3//PPKyMhQZGSkRo8ere+++67Rvhs2bNA555yjjIwMGYahZ555xh8lAgAAeFViZKKeOPkJPTvxWWUmZkpSm993dPT+zMRMzZ44W4+Pf1wJEQltrhWAH4LR/PnzNXPmTD344INavXq1Bg8erClTpqigoMBj/4qKCvXq1UuPPfaYOnfu7OvyAAAAfOqU9FO0YNoC/e3Mv+mMnmcozAiTpPq/Hkt9f1uYzux5pt468y0tmLaAl7cCXmaYpunTQ/dHjx6tkSNH6rnnnpMkuVwude/eXTfeeKPuuuuuJu/NyMjQLbfcoltuuaXZ85WWliohIUElJSWKj49vU+0AAADeVlRVpO/2f6cNBzdo/YH12nBggyrqKtz6RYdFq3+H/hrYYaD6pfTTqM6jlBSZZEHFQPBqSTZo3q8qWqmmpkarVq3S3Xf/9OZlm82mSZMmKSsryytzVFdXq7q6uv5zaWmpV8YFAADwhaTIJE3JmKIpGUeePzJNU4eqDqnaWa0aZ43C7eGKsEcoOTKZE+YAP/JpMDpw4ICcTqdSU1MbtKempmrTpk1emePRRx/Vww8/7JWxAAAA/M0wDKVEpVhdBhDygv5UurvvvlslJSX1P3v27LG6JAAAAABBxqcrRh06dJDdbld+fn6D9vz8fK8drBAREaGIiAivjAUAAAAgNPl0xSg8PFzDhw/X4sWL69tcLpcWL16ssWPH+nJqAAAAAGg2n64YSdLMmTP129/+ViNGjNCoUaP0zDPPqLy8XJdffrkkacaMGerWrZseffRRSUcObNi4cWP9/963b5/WrFmj2NhYZWZm+rpcAAAAACHI58HoggsuUGFhoR544AHt379fQ4YM0SeffFJ/IMPu3btls/20cJWbm6uhQ4fWf541a5ZmzZqlk08+WUuXLvV1uQAAAABCkM/fY+RvvMcIAAAAgNSybBD0p9IBAAAAQFsRjAAAAACEPIIRAAAAgJBHMAIAAAAQ8ghGAAAAAEIewQgAAABAyCMYAQAAAAh5BCMAAAAAIY9gBAAAACDkEYwAAAAAhDyCEQAAAICQRzACAAAAEPIIRgAAAABCHsEIAAAAQMgjGAEAAAAIeQQjAAAAACGPYAQAAAAg5BGMAAAAAIQ8ghEAAACAkEcwAgAAABDyCEYAAAAAQh7BCAAAAEDIIxgBAAAACHkEIwAAAAAhj2AEAAAAIOQRjAAAAACEPIIRAAAAgJBHMAIAAAAQ8ghGAAAAAEIewQgAAABAyCMYAQAAAAh5BCMAAAAAIY9gBAAAACDkEYwAAAAAhDyCEQAAAICQRzACAAAAEPIIRgAAAABCHsEIAAAAQMgjGAEAAAAIeQQjAAAAACGPYAQAAAAg5BGMAAAAAIQ8ghEAAACAkEcwAgAAABDyCEYAAAAAQh7BCAAAAEDIIxgBAAAACHkEIwAAAAAhj2AEAAAAIOQRjAAAAACEPIIRAAAAgJBHMAIAAAAQ8ghGAAAAAEIewQgAAABAyCMYAQAAAAh5BCMAAAAAIY9gBAAAACDkEYwAAAAAhDyCEQAAAICQRzACAAAAEPIIRgAAAABCHsEIAAAAQMgjGAEAAAAIeQQjAAAAACGPYAQAAAAg5BGMAAAAAIQ8ghEAAACAkEcwAgAAABDyCEYAAAAAQh7BCAAAAEDIIxgBAAAACHkEIwAAAAAhj2CEdmvHjh165513dNddd+m0005TcnKyDMNw+1m6dGmb51q6dKnHsb39M2HChDbXCgAAAHdhVhcAeMPOnTu1cuVKrVq1qv6nqKjI6rIAAAAQJAhGaBeGDh2qkpISq8vwueOOO87qEgAAANolttIBQeR3v/ud1SUAAAC0S6wYAV4wbNgwZWVleWWs2tpaTZkyRZWVlQ3af/GLX2js2LFemQMAAAANEYzQbqWnp2v48OEaMWKEhg8frg4dOmjEiBE+mSs+Pl5jxozxyljvvfeeWyiSWC0CAADwJYIR2oX09HRlZmZq+PDh9WGoQ4cODfrs2rXLmuJa6PXXX3drczgcmjFjhgXVAAAAhAaCEdqF7Oxsq0vwitzcXH3yySdu7WeddZY6depkQUUAAAChgcMXgAAyd+5cOZ1Ot/YrrrjCgmoAAABCB8EICCBz5sxxa+vatavOOOMMC6oBAAAIHQQjIEB89dVX2rp1q1v7jBkzZLfbLagIAAAgdBCMgADx2muveWznNDoAAADfIxgBAaCsrEzvvvuuW/v48eN13HHHWVARAABAaCEYAQFg/vz5Ki8vd2tntQgAAMA/CEZAAPD07qL4+Hidd955FlQDAAAQeghGgMU2bdqkrKwst/YLL7xQ0dHRFlQEAAAQeghGgMU4dAEAAMB6YVYXAByLaZoqLy9XbW2tnE6n7Ha7HA6HYmJiZBiG1eW1SV1dnebNm+fW3r9/f40ePdqCigAAAEITwQgBp7y8XDt37lReXp727dun3Nxc1dTUuPULDw9X165d1a1bN3Xp0kU9e/ZUTEyMBRW33ocffqj8/Hy3dlaLAAAA/ItghIBgmqb27t2r7777Ths2bJDL5ZLNZpPL5Wr0npqaGu3atUu7d++u7z9gwACNHDlSaWlpQbGa5OnQBYfDoUsvvdSCagAAAEIXwQiW27Rpk5YsWaKCgoIGYaipUPRzP++/fv16ZWdnq1OnTjrllFPUt29fn9XdVvv379dHH33k1j5t2jR17NjRgooAAABCF8EIlqmoqNBHH32k9evX16/uNDcMNebo/YWFhXr77bc1YMAAnXnmmQF5utubb76puro6t3a20QEAAPgfwQiW+OGHH/T++++rqqpK0pGtdN50dLwNGzZo+/btmjZtmqKiorw6R1vNmTPHra1bt26aMmWKBdUAAACENoIR/Mo0TX311VdasmSJ3+arrKzU/Pnz1a9fP7/M2RzLli3Tpk2b3Novu+wy2e12CyoCAAAIbQQj+I1pmlq8eLG+/vprS+ZftmyZJfN64unQBcMwdPnll1tQDQAAAHjBK/zmq6++siwUBZLy8nLNnz/frb179+665pprlJycLMMw3H6WLl3qtRomTJjgcY62/EyYMMFr9QEAAPgbK0bwix9++MFv2+cC2c6dO/Xkk0/q8OHDbtd2796t3bt3W1AVAAAACEbwuYqKCr3//vtWlxEQhg4dqpKSEqvLAAAAwP9gKx187qOPPqo/fS7UOZ1Oq0sAAACAB6wYwac2bdqk9evXW11GwKitrbW6hEY9//zzGjZsWKvvj4+P92I1AAAA/kUwgs+YpqklS5bIMAyvv6fIm/xVm9PpVE1NjVu7w+HQ1KlTNWLECA0fPlwdOnTQiBEj/FLTz/Xr109jxozx+7wAAACBgGAEn9m7d68KCgqsLuOYCgsL/TLPxx9/7DGEPfnkk7r55pvrP+/atcsv9QAAAOAnPGMEn/nuu+9kswX+32KeXrTqC57eXRQeHq5LLrnEL/MDAACgcYH/rRVBqby8XBs2bJDL5bK6lGPauXOnysvLfTpHYWGhFi5c6NZ+9tlnKyUlxadzAwAA4NgIRvCJnTt3BkUoko48Y+Tr7Wtvvvmmx4MXrrjiCp/OCwAAgOYhGMEn8vLygmIbnSQZhqHc3FyfzjFnzhy3tu7du+u0007z6bwAAABoHg5fgE/s3bvXrytGxcXFevbZZ1t17xtvvKE33nijyT47d+5URkZGq8b/9ttvtWHDBrf2yy67LGjCIwAAQHvHtzJ4nWmaysvLs7qMgOHp0AXDMHT55ZdbUA0AAAA8YcUIXldeXu7xfT2hqKKiQm+//bZb+8SJE9WzZ08LKjq2uro6FRYW6sCBA3K5XEpOTlZSUpJiY2OtLg0AAMBnCEbwOk+HDISqd999V6WlpW7tgXjowl//+lfdf//9WrFihaqrq92uJycna9y4cTrhhBM0ffp09e3b14IqAQAAfINgBK9zOp1+nzM2NrbNYePcc89VYmKix2tdunRp1ZgnnXSSsrKy3NqHDRvWqvF86Z133mny+qFDh7Rw4UItXLhQ99xzj8444wzdfvvtmjBhgn8KBAAA8CGCEbzObrf7fc6wsDClpaW1aYwxY8Y0GoyawzRNVZaWqLa6Ws66OtnDwpSanKSMjAwZhtGm2gKNaZr66KOP9NFHH+n666/XrFmzFBkZaXVZAAAArUYwgtc5HA6rS2iVsLCW/eNQUVqiPRuylb9jm/K2bVH+jm2qrap06+eIjFJqr0x1yTxeqb0y1b3/IEXHJ3irbMs9//zz+vrrr7V48WJeVgsAAIIWwQheFxMTo/Dw8KA6gCE8PFwxMTHH7GeapvK2icw9MwAAIABJREFUbtKaRR9qc9ZXcjmdstntcjWxfbC2qlJ7N65T7uaN9f37jBuvIZPPUpfj+li6mmQYhgYOHKjJkydr6NCh6t+/vzp37qz4+HjZbDYdOnRI+/btU1ZWlhYtWqSPP/7Y4zHsa9eu1S9/+UstXrxYUVFRFvxJAAAA2oZgBK8zDENdunRRTk6O1aU0W9euXY8ZULatWK5v5s/TgT05Mmx2ma4jYaipUPRzR/u5nE5t+uZL/fDV5+qQnqETLrhUmSNGt+0P0EK9evXSpEmTdNlllzW5BbFLly7q0qWLRowYoRtvvFHbtm3TrbfeqoULF7r1zcrK0vXXX+/xeHIAAIBAx3uM4BNpaWlB8/JSm82mbt26NXq9sqxUH85+Qv+Z9X86uHe3JNWHotY6ev/BPTn6z5N/1Iezn1Blmfvpdb7y+uuv67777mvxc1mZmZn64IMP9MQTT3i8PnfuXK1Zs8YbJQIAAPhVcHxzRdDp0qWLxy1Xgcjl+v/s3XlcVOX+B/DPmRnWYRMREIRQEVFQQdzTMilNNJfsZt1WK+v2a3O53uqVpe11s6utN617vTdvi5VlLommtrgLKOKKKCCLsgnMsDPL+f2BUNMMCLOdGebzfr3mxYvnnPOcrwk2n3me8zx6hIWFmTyWk3YA/174CLIP7AXQMpXOmlr7yz6wF/9e+BfkpBmvYOeIlixZgueee86oXa/Xm2wnIiIicnQMRmQTffv2daoRo6ioKIM2URRx6LuvsGnFq2isrYVo45An6vVorK3BphWv4uh242lqjmj58uUYOHCgUfuPP/6ImpoaCSoiIiIiMp9zvHMlp6NUKhEXF+fw4UgmkyE+Pt5g4QVRFLH3i/9i75eftjbYp5gr90nf/K197mchhUKBZ555xqhdo9Hgxx9/lKAiIiIiIvM59rtWcmqjRo1y+Ol0er0eI0eONGg7vPFrHP7+G4kqci4pKSkmF61IS0uToBoiIiIi8zEYkc306dMHwcHBDru5qSAICAkJMViAICftwG8jRXRVwcHBiIiIMGovLS2VoBoiIiIi8zEYkc0IgoBJkyZZfcECaxFFETfccENbcGuoUWPH6ncBBw1yjio4ONioraysTIJKiIiIiMzHYEQ2FRsbi/j4eIcbNWrd2DQ2Nratbffaj9BUV2e/Z4q6MWfa3JeIiIgIYDAiO0hJSYGnp6fUZRjw9PTE1KlT274/l3YQZ/b9avPV57ojU6NDfn5+ElRCREREZD4GI7I5b29vzJgxQ+oyDMycORPe3t4AWqbU7Vu/zuFGtf7IEacklpeXo7Cw0Kg9MjJSgmqIiIiIzMdgRHYxaNAgTJo0SeoyAADJyckGU+gu5ZxBReEFhwwev3e5yDiASG3Lli0m/7slJiZKUA0RERGR+RiMyG4mTJiA8ePHS1rD+PHjjWrI3L4VgkwuUUWddy79gNQlGNBqtXjjjTeM2gVBwA033CBBRURERETmYzAiuxEEAcnJyUhOTpbk/snJybjxxhsNpszVq1XIPrAHol4nSU1dUXgiC/VqldRltFm+fDnOnj1r1D5x4kSDJdCJiIiInAGDEdmVIAiYMGEC7rjjDnh5edn8uR5BEODl5YU77rgDEyZMMDpeeDILep3jhyKgZTPawpPHLeojLS0N2dnZFteyYsUKvPrqqyaPPfPMMxb3T0RERGRvDEYkidjYWDzxxBOIi4sDAKsHpNb+4uPj8cQTTxg8U/R7pbnnIJM7/jQ6AJDJZCjNO2dRH/v27cOgQYMwa9YsbNmyBY2NjV26/vz585gxYwaWLFli8vicOXMwefJki2okIiIikoJC6gLIdXl7e+O2225DfHw8du/ejbKyMshkMugtWDK79fpevXph0qRJ7QaiVpfOZTvViFHJOctHe0RRxPfff4/vv/8ePj4+uOmmmzBixAgMHToUMTExCAgIgJ+fH2QyGaqqqlBcXIwDBw5g27Zt2LZtW7t/PzExMfjkk08sro+IiIhICoLo6EtxdZFarYa/vz9UKhX3UnEioiiiqKgIaWlpOHHiBPR6fadDUut5MpkM8fHxGDVqFMLDw686CiWKIt67/3ZoGhus9ce4qsq6ery29Seb9Z+Xl4eoqKh2j69atQoLFy60+n3j4uKwfft2hIeHW71vIiIiInN1JRtwxIgcgiAIiIiIQEREBKZMmYL8/HxcvHgRxcXFuHjxIpqbm42ucXd3R1hYGMLDwxEWFoaoqCgolcpO37NBrbJrKOqOZDIZnnrqKbz22msOt4kvERERUVcwGJHDUSqViIuLa3v+SBRF1NXVQavVQqvVQqFQQKFQQKlUWvRskqapyVolO43o6Gj069cPubm5FvXj7u6O2bNnY9GiRRg1apSVqiMiIiKSDoMROTxBEODj42P1fnVardX7dHTTp0/H9OnTUVhYiD179uDIkSPIzMzE2bNncenSJWjb+W8iCAJiY2MxatQojBkzBrfeeiuCg4PtXD0RERGR7fAZI3JZqrJSfPLEg3a9p1anQ3G12qI+Zi5+DsoegSaPJSYmwsPDw6x+9Xo9SktLoVKp0NDQAL1eD39/fwQEBCAgIAAKBT9HISIiIufCZ4yIOsHNzABhCYVcjmt69rCoj7HjxsHbP8BKFf1GJpOhd+/e6N27t9X7JiIiInJ03MeIXJaXnz/cPL2kLqNL3L284OXnL3UZRERERN0OgxG5LEEQENKvv9RldElIv2irb4ZLRERERHYKRh988AGioqLg6emJ0aNH4/Dhwx2e//XXXyM2Nhaenp4YMmQIfvjhB3uUSS6od/RAyORyqcvoFJlcjtDogVKXQURERNQt2TwYrV+/HosWLcKyZctw5MgRDBs2DFOmTEFZWZnJ8/fv348777wTDz74II4ePYpZs2Zh1qxZOHHihK1LJRcU0i8aep1O6jI6Ra/TIaRvtNRlEBEREXVLNl+VbvTo0Rg5ciTef/99AC0rX0VEROCJJ57AM888Y3T+3LlzUVdXhy1btrS1jRkzBgkJCfjoo4+uej+uSkddUa9WYfVf7nWKcCSTy/HIR5/Cm88YEREREXVKV7KBTUeMmpubkZGRgRtvvPG3G8pkuPHGG3HgwAGT1xw4cMDgfACYMmVKu+c3NTVBrVYbvIg6y9vPHwPHToAgc+zpdIJMjoHjrmMoIiIiIrIRmwajiooK6HQ6hISEGLSHhISgpKTE5DUlJSVdOv/111+Hv79/2ysiIsI6xZPLSJgyDaLesUeMRL0OCZOnSV0GERERUbfl9KvSPfvss1CpVG2vwsJCqUsiJ9N7QCyCIqMcdrU3QRAQFBmF3gO48AIRERGRrdg0GAUFBUEul6O0tNSgvbS0FKGhoSavCQ0N7dL5Hh4e8PPzM3gRdYUgCLh27j2w8eN2ZhNFEdfOvcdhgxsRERFRd2DTYOTu7o6kpCTs2rWrrU2v12PXrl0YO3asyWvGjh1rcD4A/Pjjj+2eT2QN0SNGI/ba6yDIHGsQVZDJEHvt9YgeMVrqUoiIiIi6NZu/C1y0aBE+/vhj/Pe//8Xp06fx6KOPoq6uDvPmzQMA3HvvvXj22Wfbzn/qqaeQmpqKt99+G2fOnMHy5cuRnp6Oxx9/3NalkoubNO8v8FAqAUcZmREEeCh9MGneI1JXQkRERNTt2TwYzZ07FytWrMALL7yAhIQEZGZmIjU1tW2BhYKCAly6dKnt/HHjxuHzzz/HmjVrMGzYMHzzzTfYuHEj4uPjbV0quTgvXz9MfuRJwFGm1IkipjzyJLx8OT2UiIiIyNZsvo+RvXEfI7LUoe++wt4vP5W6DIy/416Mnn271GUQEREROS2H2ceIyBmNmvUnjJr1J5evgYiIiMiVKKQugMjRCIKA8XfcC3dPr5aRI0Gwz/S6K/cZf+d9GM1QRERERGRXDEZEJgiCgNGzb0fPPpHYvvodNNXVQdTrbXc/mQweSh9MeeRJRI8cY7P7EBEREZFpDEZEHYgeOQbhsYOxe+1HOLPvVwiCYNX9jlr7Gzh2AiY98Bd4+fharW8iIiIi6jwGI6Kr8PL1w7Qn/4aBY6/Dvq/+h4qCfAgyOUS9zuw+W6/vGXENrp17D/cpIiIiIpIYgxFRJ0WPHIP+I0bjUk42MndsRfb+X6HX6SCTy6HXXT0ktZ4nk8sRO+46JEyZjtDoGAiOsm8SERERkQvjct1EZqpXq1B48jhKc3NQcv4sSs6fg6axweg8N08vhPaPRmj0QIT0jUZE3BB4+/lLUDERERGRa+lKNuCIEZGZvP38MXDseAwcOx4AIIoiGtQqaJubodVooHBzg8LdHV5+/hwVIiIiInJwDEZEViIIArz9A6Qug4iIiIjMwA1eiYiIiIjI5TEYERERERGRy2MwIiIiIiIil8dgRERERERELo/BiIiIiIiIXB6DERERERERuTwGIyIiIiIicnkMRkRERERE5PIYjIiIiIiIyOUxGBERERERkctjMCIiIiIiIpfHYERERERERC6PwYiIiIiIiFwegxEREREREbk8BiMiIiIiInJ5DEZEREREROTyGIyIiIiIiMjlMRgREREREZHLYzAiIiIiIiKXp5C6ACKyr9zcXGRkZBi8qqqqjM776aefMHHiRPsXSERERCQBBiOibiwvLw/p6elXDUFEREREro7BiKgbS0xMhEqlkroMIiIiIofHZ4yIiIiIiMjlMRgREREREZHL41Q6IhcTGRmJpKQkjBgxAklJSQgKCsKIESOkLouIiIhIUgxGRN1YZGQkoqOjkZSU1BaGgoKCDM7Jz8+XpjgiIiIiB8JgRNSNZWVlSV0CERERkVPgM0ZEREREROTyGIyIiIiIiMjlMRgREREREZHLYzAiIiIiIiKXx2BEREREREQuj8GIiIiIiIhcHoMRERERERG5PAYjIiIiIiJyedzglchZiSJQVwFo6gGdBpC7AW7egDIIEASpqyMiIiJyKgxGRM6i7jKQ9wtwKRMozgAuZgLNtcbnufsAYQlAeBLQOwHoez2g7Gn/eomIiIicCIMRkSMTRaAoDTj8MXDyW0CvBWSKlq/taa4F8vcCBQd/Oz9+DjByPtBnBEeTiIiIiExgMCJyVGe2ArtfAcpOATI5oNe1tHcUin6v9Ty9FjixAchaDwTHAZOWArEptqmZiIiIyElx8QUiR1NfCXzzIPDln4HyMy1traHIXK0hqfw08OWdLf3XV1rWJxEREVE3whEjIkdyeguw6QmgUdXyvai3bv+t/Z38Dji/G5jxHuAVb917EBERETkhBiMiRyCKwJ63gd0vo2Ug18qByOh+OqChGlh/FzD4cdvei4iIiMgJMBgRSU0UgV0vAntXXmmwcShqc+U++9+10/2IiIiIHBefMSKS2p63fxeKiIiIiEgKDEZEUjq95cr0OSIiIiKSEoMRkVTqK1sWWgD3FSIiIiKSGoMRkVR+WHJl9TlR6kqIiIiIXB4XXyCSwpmtwIlvpK6CiIiIiK7giBGRvYkisPsVQHDwXz+RI1lERETkOhz8nRlRN1SUBpSdsv7mrdZWni11BURERER2w2BEZG+HPwZkcqmruLozW6SugIiIiMhuGIyI7KnuMnDyW0Cvk7qSq8v7taVeIiIiIhfAYERkT3m/AHqt1FV0jqgD8n+VugoiIiIiu2AwIrKnS5mAzEkWgxTkwMVMqasgIiIisgsGIyJ7KspwrhGj4gypqyAiIiKyCyf56JqoGxDFlhEjO8qv1qPvO7VmXXvDf+uB/24F5gntnpOXl4eoqCgzqyMiIiJyHAxGRPZSVwE0mxdSiMhxFBUV4dixY8jLy4NarYZcLkdAQABiYmIwfPhw+Pv7S10iERGZgcGIyF409VJXQOR0cnNzkZGRYfCqqqoyOu+nn37CxIkTbVZHbW0t/vWvf+GTTz7BiRMn2j1PoVDg+uuvx6OPPopbb70VgtD+iCsRETkWBiMie9FppK6AyKHl5eUhPT39qiHI3r7//ns89thjKC4uvuq5Wq0Wu3btwq5duzB69GisXbsWgwYNskOVRERkKQYjInuRu9n9lr19BBx40NuyTuZ+BviGmu6/d2/L+ib6ncTERKhUKqnLMPDSSy9h+fLlEEWxy9ceOnQIo0ePxvr16zF16lQbVEdERNbEYERkL24WBhQzeCgEjOlj4a/52GsBn17WKYjIibz22mtYtmyZyWOCIKB///6IiIiARqNBTk4OSktLjc6rqanB7NmzkZqaatOpfkREZDku101kL8ogwN1H6iq6xt23pW4iF7Njxw4sXbrUqF0mk+HJJ59EXl4ecnJysHv3buzZswclJSU4cOAAJk+ebHRNU1MT5s6di4sXL9qjdCIiMhODEZG9CALQO0HqKromLKGlbiKJREZGYvbs2Xj11VeRmpqK9PR0m9+zvr4e8+fPN5o+5+npiS1btuCdd97BNddcY3TdmDFjsH37dpOBqqysDE899ZTNaiYiIstxKh2RPfVJAgoPOscmrzIFEJ4kdRXkQiIjIxEdHY2kpCQkJSVhxIgRCAoyHLHMz8+3eR3/+Mc/UFBQYNS+Zs2aTj0r9PLLL6O4uBhr1641aP/mm2+wf/9+jBs3zmq1EhGR9TAYEdlT7wTnCEVAS51hTjbCRU4tKytL6hLQ0NCAd99916j95ptvxj333NPpflauXImtW7eirKzMoP2NN97Apk2bLK6TiIisj1PpiOyp7/UtIzHOQKYAoq6Tugoiu/ruu+9QXl5u1L58+fIu9ePv74+FCxcatW/dupXPGhEROSgGIyJ7UvYE4m4FZHKpK+mYTAHEz2mpl8iFfPHFF0ZtQ4cOxejRo7vc1wMPPAC53PB3Xa/X48svvzS7PiIish0GIyJ7GzUf0OukrqJjei0wcr7UVRDZVXNzM3bv3m3UPmfOHLP6Cw4OxoQJE4zat23bZlZ/RERkWwxGRPbWZyQQHAcIDvrrJ8iAkHigzwipKyGyq0OHDqG+vt6oPTk52ew+TV27d+9eaDQas/skIiLbcNB3ZkTdmCAAk5YCol7qSkwT9cANz3GZbnI5aWlpRm0KhQJJSeavzjhq1CijtsbGRpw8edLsPomIyDYYjIikEJsCxN8GCA72rJEgB4b8qaU+IhdjalW8/v37w9PT0+w+hw4darL92LFjZvdJRES2wWBEJJWUtwBPfzjOr6GspZ6pf5e6ECJJnD9/3qgtOjraoj5DQ0OhVCqN2nNzcy3ql4iIrM9R3pERuR7vQGDGewAcZUqdHpj5fktdRC7I1Oax4eHhFvcbFhbWqXsREZG0GIyIpDRoOjDpeamraJH8AhA7TeoqqJsSRREVtU0orKxHbnktCivrUVHbBFEUpS6tjan9i0JCQizuNzQ0tFP3IiIiaTnJTpNE3diExUBzHbD3H9LVMH5Ry4vISirrmrH/fAWOF6twrLAax4tUqGs2XqZe6S7HkD7+GBYRgCHh/hjXPwiBSne711tfX4+mpiajdn9/f4v79vPzM2q7fPmyxf0SEZF1MRgRSU0QWkZrPHyAXS+hZSDXHtPrrtwneRkwgaGILCeKIo4UVGPdgXxsyboErV6EQiZAq29/VKiuWYeDuZVIz69qO/+WYWG4Z+w1SIwIgGCn1RFra2tNtvv4+Fjct6lnjOrq6izul4iIrIvBiMgRCELLyFGvWOD7x4FGFSDacBNYQd6y0MLM9zl9jqxix8kSvL3jLLJLayCXCdBdCUMdhaLf0/7u/E3HLuK7o8WIDfXF4skDcdNgy6ezXU17+wopFJb/b9LNzc2orbm52eJ+iYjIuviMEZEjiZ0GPJEBxM1u+d7am8C29hd/a8t9GIrIQlV1zXjyi6N4eF0GzpbVAEBbKDJX6/XZpTWY/2k6nvziKKrqbBskdDrTH0TI5ZYvqW+qD61Wa3G/RERkXRwxInI03oHAbf9qCS+7XwXKTgIyBaC34I1U6/W9BrVsLst9isgKtp8swTMbsqBuaPnZtPY6Cq39bc26iD055XhjzlAMNJ6VZhXtjQxZI8CY6sPUKBIREUmLwYjIUcVOAwamAEXpQNrHwIkNLeGmsyGp9TyZGxA/Bxg1HwhPapm2R2QBURTx4c/n8db2bAiC9QPRH+lEoLpBg0fWZeCBYbZJRh4eHibbrTHlzVQf7d2PiIikw2BE5MgEAYgY2fKa8jqQ/ytw8ShQfKTla7OJB8bdfYCwxJYQFJYARF0HKHvav3bqlkRRxN+3Z+OfP5+/8r297tvydc2vttkY1dfX12R7TU2NxX2b6sPUSnVERCQtBiMiZ6Hs2fLsUevzR6II1FUA2gZA2wwo3AGFF6AM4qgQ2cyHP59vC0Xdibu7O3x8fIxWp6uurra4b1N99OzJDyuIiBwNgxGRsxIEwKeX1FWQC9l+sgRvbc+WugybCQ0Nxblz5wzaSkpKLO7XVB+mNn0lIiJpcVU6IiK6qqq6ZjyzIQvdeSyyb9++Rm0FBQUW9anT6XDx4sVO3YuIiKTFYERERFe1bNNJqBu0sNMjRZIYMGCAUdvZs2ct6jM/P9/kHkmm7kVERNJiMCIiog7tOFmCTccuQmevlRYkkpiYaNRWVFSEyspKs/s8evSoyfaEhASz+yTnJ4oirr/+egiCYPK1fPlyqUskckkMRkRE1C5RFPH2jrMOv56HaIXQNnr0aJPt+/fvN7vPAwcOGLUFBQWhX79+ZvdJzm/16tX49ddfpS6DiP6AwYiIiNp1pKAa2aU1dluW21w5ZSaWru+i+Ph4hISEGLVv377d7D5NXZucnAzB0ZMm2UxRURGefvppqcsgIhMYjIiIqF3rDuRDLnP8N/E7TpZa3IcgCJg+fbpR+zfffAOdTtfl/k6cOIGTJ08atc+YMcOs+qh7ePTRR6FWq6Uug4hMYDAiIiKTKuuasSXrEnR6Bx8uAnDgfAUq65ot7ufuu+82aispKcHXX3/d5b7ef/99ozYfHx/MnDnTrNrI+X355ZfYsmVL2/cyGd+GETkS/kYSEZFJ+89XQOsEoQgAdKKIA+cvW9zP9ddfj/j4eKP2F154Ac3NnQ9e2dnZ+Pe//23UPm/ePCiVSotqJOd0+fJlPPnkkwZtf/nLXySqhohMYTAiIiKTjheroHCCaXQAIBcEHC9WWdyPIAhYunSpUXtOTg4WLVrUqT7q6+tx1113GS3T7enpib/+9a8W10jOacGCBSgvL2/7PiwsDK+//rqEFRHRHzEYERGRSccKqp1qxOhYYbVV+po7dy6uv/56o/YPPvgAixcvhlarbffaiooKTJs2DRkZGUbHnn76aURGRlqlRnIuqamp+N///mfQ9u6778LPz0+iiojIFEG0xhqnDkStVsPf3x8qlYr/4BARmUkURcQv24665q4vOmAuraoUxR89aLP+8/LyEBUV1alz8/PzkZiYiOpq47A1ePBgLFy4EMnJyejTpw80Gg1ycnLw/fff45133jG579Ho0aOxZ88euLm5WfrHICdTW1uLuLg4FBQUtLXdcsst2LRpEwCYXKFw2bJl3MuIyEq6kg0UdqqJiIicyOW6ZruGIkcTFRWFDRs2YNq0aWhsbDQ4durUKcyfP7/TffXr1w8bNmxgKHJRzz77rEEo8vHxwQcffCBhRUTUHk6lIyIiIw0uHIpaTZo0Cdu2bUNQUJDZfQwfPhw///wzwsPDrVgZOYv9+/fjww8/NGh75ZVXEBERIVFFRNQRBiMiIjKi0emlLsEhTJw4EZmZmbj99tu7tCmrp6cnli5din379vFNsItqamrCQw89BL3+t9+lESNG4PHHH5ewKiLqCKfSERGRETe5/T83kysDEXr3Cov6WH1PEoL9PE0e6927t1l9hoeHY/369Vi+fDn+9a9/ITU1FadPnzZ4wwsAHh4eGDlyJGbMmIF58+ZZNNJEzu+VV17B6dOn276Xy+VYs2YN5HK5hFURUUcYjIiIyIiXu/3fvAkKN3iEx1rUx7hxYxHk42GligwNGjQIK1aswIoVK9DY2IiCggLU1NRALpcjICAAERERfNNLAIDjx4/jzTffNGhbsGABEhMTJaqIiDqDwYiIiIz0VLpD6S53qgUYfDwU6Kl0t8u9PD09ERMTY5d7kXPR6XR48MEHDfaxioqKwosvvihhVUTUGXzGiIiIjAiCgCHh/lKX0SVDwv279BwQkS2sWrUKaWlpBm0ffvghlEqlRBURUWdxxIiIiEwaFhmA9AtVTrHJq0ImYFhEgNRlUDcjiiIaajTQNuug14mQyQUo3OXw8nUzGcJzc3PxwgsvGLTNnTsXU6dOtVfJRGQBBiMiIjJpSLi/U4QiANDqRacb4SLH01DbjKIzVSgvqEFpvhrlF2qgaTKeTurmIUeva3wREuWHXpG+6BPbA14+7pg/fz7q6+vbzgsICMCqVavs+UcgIgswGBERkUnj+gdBIROcIhwpZALG9u8pdRnkhERRRGmeGsd/LsK59DLo9SJkMgH6Dn7uNU06XDxbjZJzqrbzcxr2YPfu3QbnvfnmmwgNDbX1H4GIrITBiIiITApUumP60N7YnHUJOgcOR3KZgFuGhSHQTgsvUPeRm1mOQ5tyUXmxDoJMgHjl57yjUPR7redV1VTgo6/eMjh27bXXYv78+dYtmIhsisGIiIjadc/YKGzMvCh1GR3S6UXcM/YaqcsgJ9JYq8Gv688iJ60UuPKokGhB+P9q33toaK5t+14hc8N9U/6GpjotPH3cLC2XiOyEq9IREVG7hkcGIDbUF4662JsgALGhvkjkwgvUSbmZ5fhs2UGcyyhtabBwMPRo7q84lrfHoO3GhLnQXPLBZ8sOIjez3LIbEJHdMBgREVG7BEHA4skDITroTDpRBBZPHshluumqRFFE+rZ8bPvoOBrrNRD1lvdZ31SLr/e9Z9AW7N8HU4bfBVEPNNZrsO2j48hIzYfoqL9ERNSGwYiIiDp00+AQzBgWBrmDhQ+5AMxMCMNNg0OkLoUcnCiKOLgxF4cwLqLYAAAgAElEQVS+z73SYJ1+vz3wT6jrKw3a7piwAG5yd4P7HNyYi4Pf5zIcETk4BiMiIrqqF2fEwc9L4TBT6gQB8PNyw/Jb4qQuhZxARuoFHNl+wap9ZhcdwcHsVIO20TFTEBOeaPL8IzaogYisi8GIiIiuqofSHW/MGeowU+pEEXhzzlD04Ep0dBW5meW/jRRZSbOmEV/s+YdBm49nAGaPfaTD6w5uzOUzR0QOjKvSERFRp0yJC8WSKQPx1vZsqUvBkikDMTmO+8NQxxprNfhp3ZmWleesGOovlGejQn3JoG3kgGSUq4pRripu/0IB+OTNs5gyPx4e3u2/BSsqKsLBgweN2gcPHgw/Pz+z6yaijgliN5vwqlar4e/vD5VKxX88iIisTBRFvLU9Gx/+fF6yGv5vYn8smcIFF+jqdvzrJM5llFploYXfO3sxE+9uXmzdTjvhp59+wsSJE+1+XyJn1pVswBEjIiLqNEEQsGTKQCg9FHhrezYEAXaZXtd6n7/dPBD/NzHa9jckp5ebWd6yTxERUSfxGSMiIuoSQRDw2A3RWHNPEgK83CC38cCNXAACvNyw5p4khiLqFFEUcWhTbtvmrUREncFgREREZpkcF4rdiydi2tAwALD6inWt/U0fFoaf/jqRzxRRp5XmqVF5sc6qzxURUffHZ4yIiMhiO06W4B8/nsWZkhrIZQJ0evP/19J6fWyoLxZPHsh9iqjLfvz3SeSkl0G04OfQ1gSZgAEjgjH5wXijY8uWLcPy5cvtXxRRN8RnjIiIyK4mx4XipsEhOFpYjXUHLmDzsYvQ6kUoZAK0nXhz2nqeQiZgxrAw3DP2GiREBHCBBeqyhtpmnHPwUAQAol7EufQyqcsgot9hMCIiIqsQBAHDI3tgeGQPPD99MA6cv4ys4mpkFaqQVVyNuiad0TVKDzmGhgdgWEQAhoT7Y2z/ngjk3kRkgaIzVdA7eChq5Sx1ErkKBiMiIrK6QKU7pg3tjWlDewNoeRj+cl0zGjU6NGv1cFfI4OkmR0+lO0eFyKrKC2ogkwlOETpkMv7sEzkSBiMiIrI5QRAQ5OMhdRnkAkrz1U4RigCOGBE5Gq5KR0RERN2CKIoov1AjdRlE5KQYjIiIiKhbaKjRQGPiWTYios5gMCIiIqJuQdvMUERE5mMwIiIiom5Br+MzO0RkPi6+QERERN2CTO58q7xNTboXwyb1gYe3W1vbxIkTpSuIyIUxGBEREVG3oHCXS11Cl00bcR/mLR0Pbz/u30UkNQYjIiIicni5ubnIyMgweFVVVRmdt+jWlejXa6jN6qhpqEZh+VkUVORc+XoWVbVlRudNTboX00bcd9X+3Dzl8PJ1u+p5RGR7DEZERETkUPLy8pCenn7VEGRKQIg3oLdOHbUNKhSUZ181BFkiONKXmxwTOQgGIyIiInIoiYmJUKlUZl3bI1QJWYlglc1TP/91BbLy91vcT3tkMgEhff1s1j8RdQ1XpSMiIqJuIyDEyyqhyB70ehG9IhmMiBwFgxERERF1G70ifSGTOcfUNJlMQPjAAKnLIKIrbBaMKisrcdddd8HPzw8BAQF48MEHUVtb2+E1a9aswcSJE+Hn5wdBEFBdXW2r8oiIiMiJREZGYvbs2Xj11VeRmpqK9PR0k+d5eLkhekQwBBuFI28PX8T2ScJNCXfiwZtewIt//gyBPiFd7keQCYgeEQwvH65GR+QobPaM0V133YVLly7hxx9/hEajwbx58/Dwww/j888/b/ea+vp63Hzzzbj55pvx7LPP2qo0IiIicmCRkZGIjo5GUlISkpKSMGLECAQFBRmck5+f3+71Qyb2wdnDpRbX4e3hh4HhwxHZKwaRvWIQERSDIL/eFvcLAKJexJCJfazSFxFZh02C0enTp5Gamoq0tDSMGDECAPDee+8hJSUFK1asQFhYmMnrFixYAAD4+eefO32vpqYmNDU1tX2vVqvNL5yIiIgkl5WVZdH1IX390DNcicsX6wALHje6e+ISi+polwD0DFNy4QUiB2OTqXQHDhxAQEBAWygCgBtvvBEymQyHDh2y6r1ef/11+Pv7t70iIiKs2j8RERE5F0EQMHpGP4tCkU2JwOgZ/bhMN5GDsUkwKikpQXBwsEGbQqFAYGAgSkpKrHqvZ599FiqVqu1VWFho1f6JiIjI+fQd1gsDRoZAcLBlpgQZMGBkCPoO6yV1KUT0B1365+KZZ56BIAgdvs6cOWOrWk3y8PCAn5+fwYuIiIjourkx8PByAxxlYEZoWRziurkxUldCRCZ06RmjxYsX4/777+/wnH79+iE0NBRlZYY7Q2u1WlRWViI0NLTLRRIRERF1laePG264JxbbPjoudSktROCGe2Lh6eMmdSVEZEKXglGvXr3Qq9fVh37Hjh2L6upqZGRkICkpCQCwe/du6PV6jB492rxKiYiIiLqoX0IvjJ7ZD4e+z5W6FIyZ1Q/9EjiFjshR2WTm7aBBg3DzzTdj/vz5OHz4MPbt24fHH38cd9xxR9uKdMXFxYiNjcXhw4fbrispKUFmZibOnTsHADh+/DgyMzNRWVlpizKJiIjIBSTdfA2G33yNpDUMv/kaDJ8ibQ1E1DGbPZL42WefITY2FsnJyUhJScH48eOxZs2atuMajQbZ2dmor69va/voo4+QmJiI+fPnAwCuu+46JCYmYtOmTbYqk4iIiLo5QRAwZmY/jJnV70qDvW7c8mXMrH4YO6s/V6EjcnA22+A1MDCww81co6KiIIqG62guX74cy5cvt1VJRERE5KIEQUDSzVHoEarET+vOoKlBA1Fvy/sBnt4tzzhx+hyRc7BZMCIiIiIyIopAXQWgqQd0GkDuBrh5A8qgljRhY/0SeiEsOgC/rj+LnLTSllEdG+x3FNhbibteGgNPJRdaIHIWDEZERERkO3WXgbxfgEuZQHEGcDETaK41Ps/dBwhLAMKTgN4JQN/rAWVPm5Tk6eOGyQ/GITopGIc35+JycR0EmQBRb72E1H94MEMRkZNhMCIiIiLrEkWgKA04/DFw8ltArwVkipav7WmuBfL3AgUHfzs/fg4wcj7QZ4RNRpP6JfRC32FBKM1T4/jPRTiXXga9XoRMLkCvu3pIkskE6PWi4+yTREQWYTAiIiIi6zmzFdj9ClB2CpDJAb2upb2jUPR7refptcCJDUDWeiA4Dpi0FIhNsXq5giAgtJ8/Qvv5Y/ztA1CcXY2yC2qU5atRdqEGmiad0TVuHnIEX+OLkL5+6BXph79v80RljdVLIyI7YzAiIiIiy9VXAj8sAU58AwhXFr3VG4eKLmkNSeWngS/vBOJvA1LeArwDLeu3HV4+7ohOCkZ0UjAAQBRFNNRooNXooNeKkCkEKNzk8PJ1M1hhjovNEXUPDEZERERkmdNbgE1PAI2qlu+tvdxba38nvwPO7wZmvAd4xVv3HiYIggBvP3eb34eIHAODEREREZlHFIE9bwO7X0bL1og2XP8aAEQd0FANrL8LGPy4be9FRC6HwYiIiIi6ThSBXS8Ce1deabBxKGpz5T7737XT/YjIVTAYERERuTBRFFFcXIyCggIUFhaioqIC9fX1aGpqgq+vL/z9/dGrVy8kJCQgPDz8twv3vP27UERE5PwYjIiIiFzIuXPnsG/fPhw4cABZWVk4ceIEamo6t6RaSEgIpkyZggeSY3Hd+dcNFiAgInJ2DEZEREQu4vnnn8crr7xi9vWlpaX49NNP8emnwNAQGT6a5omxEXwrQUTdg0zqAoiIiMg+NBqN1frKKtXj2n/X49mdjVbrk4hISvyYh4iIiCCXyxEREYHAwED4+/tDr9dDrVYjNzcXKpXK5DUigDf2NUPVJOLDaV72LZiIyMoYjIiIiFxQTEwMJkyYgAkTJmDkyJGIjo6Gu7vpPXtycnLw1fr1+GDFS7ikMh51+me6BqPC5bg/wQH2/BFFqSsgIifFYEREROQiBg0ahDfffBOzZs1CTExMp68bMGAAnrtvMp6o+zse2SLiyxNao3MWbW/EzIFu6OEl8YIM5dkAbpC2BiJySgxGRERELuK+++4z/+LDH8PPS4HPbvVCbXMDtpw1DEdVjcCG0xo8NFziUaMzWwD8RdoaiMgpcfEFIiIi6ljdZeDkt4BeB5kg4MMUT8hNDAx9e9p4JMnu8n5tqZeIqIs4YkREREQdy/sF0P8WeiL8ZRgfKccvF3QGp529rPvjlfYn6oD8X4G42VJXQg6muLgYmZmZKC8vR3l5OXQ6Hfz8/NC3b18kJCSgd+/eUpdIEmMwIiIioo5dygRkCoNwFNdLZhSMLtU6wMIHghy4mMlgRACAS5cuYeXKldi6dStOnTrV4bnDhg3D/fffjwceeAB+fn52qpAcCafSERERUceKMgxCEQD4exrPpZNJvO4CgJYRo+IMqasgiTU2NmLJkiXo378/3nrrrauGIgA4duwYFi5ciJiYGHz55Zd2qJIcjSCK3WtdS7VaDX9/f6hUKqZ9IiIiS4ki8HofoLnWoPmhTQ3411HDpbsHBMpw9gkfi2+ZX61H33dqr36imfLy8hAVFdWpc6OionDhwgWb1LF27Vrcf//9NunblRUXF2PWrFlIT0+3qJ/HH38c7777LgTBERI/masr2YBT6YiIiKh9dRVGoQgA9hQYP090baTcHhURtau4uBijR49GcXFxu+f069ev7XmiS5cuITc31+R577//PjQaDT766COb1EqOh1PpiIiIqH2aeqOm7ee0OHtZb9R+9xA3e1REZFJzczNuu+02k6FIqVTi5ZdfRkFBAc6fP4+9e/di7969OH/+PAoKCvDyyy9DqVQaXbd69Wr885//tEf55AAYjIiIiKh9OsPpcnlVeszf3GB02sQoOZL7cSIKSeell17CwYMHjdqjo6Nx4sQJLF26FBEREUbHIyIisHTpUpw4cQLR0dFGx//617/abDolORY+Y0RERETtq7oAvDMUelHElye0WLS9EaV1hm8dQn0EHHxQiWsCrPN5a5NWxNESC5f+nvsZ4Btq8lBiYiI8PDw61c3Ro0fR1NRkWS3t6N+/P3r16mWTvl1NZWUloqKiUFNTY9AeFBSEY8eOISwsrFP9XLx4EcOGDUNFRYVB++23347169dbrV6yHz5jRERERJ126tQpqNVqgzatVouamhoU5pzC0S0N2HRWi4s1xp+lDgiUYfOdXlYLRQDgoRAwpo+Fb1HGXgv4WB46EhMTLe6DbO/99983CkUA8N5773U6FAFAWFgY3n33Xfz5z382aP/mm2+QnZ2NgQMHWlwrOS6OGBEREXUToihCV1kJfUMjRE0zBDd3yLw8IQ8M7HBlrYkTJ+KXX37p0r183IHHRrrj+es8oHR3sFW73H2BZwsBribmMoYPH46jR48atPXr1w/nzp3r8qpyer0eAwYMMFqUYeHChfjHP/5hca1kXxwxIiIicgHaqirUHzyIxpMn0ZB1HI0nT0BfZ7xYgkzpDc+4eHgNHQLPuDh4jxkDRY8eZt1T6QY8f50HHhnhjgATexk5hLAEhiIXUllZiWPHjhm133333WYttS2TyXD33XfjpZdeMmj//PPPsWLFCshkfES/u2IwIiIiciKiKKIhMxNVn38B9bZtgFYLKBQtX9uhr6tH/eHDqD9ypO18v5QUBP75TngOG9al+9dpgGd3NWFjthYLx7jjtsEKyBwphMgUQHiS1FWQHaWlpUGvN14lcdy4cWb3OXbsWKO20tJSZGRkYOTIkWb3S46NwYiIiMhJ1OzahfJV76ApJweQywHdlQUKOghFBlrP02qh3roV6k2b4BETA111dZfqEAEcLNJh7jcNGBchx6ezvNA/0EE+RddrW0aMyGWUlZWZbI+LizO7z/au3blzJ4NRN+Yg/4oRERFRe7RVVShe/FcUPfY4ms6da2nUWbhq25Xrm3JysKaxCUWLFkNTWQlRFCGKIurr63Hx4kXs378f7/z9NVx3jenPUvcX6jD2X3U4XmphPdYiUwBR10ldBdnRH1eQaxUQEGB2n+1dm56ebnaf5PgYjIiIiBxYzc6dyJ2aAnVqakuDtddMutKfets25E5NQc3OnQAALy8v9O7dG2PHjsWTS57FL2/fj8xHfTEyzPitQ3m9iJs/q0dVg8TrOckUQPwcQNlT2jrIrhoajPfVAtDpJdlN8fT0NNmemZlpdp/k+BiMiIiIHJAoiqj4aDWKHn8COpXK8hGiq9HroVOpUPT4E6hYvQZGi9aOmo9hwQL2P6jEbYONR48u1ohYtKPRtjVejV4LjJwvbQ1kd+2N7qhUKrP7rG5neumFCxeg7ezUVXI6DEZEREQORhRFlP9jJcpXrWptsNeNAQDlK1eifOUqw3DUZyQQHAeFXI7Pb/XCkGDjtxD/y9KgSG38ELxdCDIgJB7oM0Ka+5NkevY0PUJYUlJidp/tXavT6VBYWGh2v+TYGIyIiIgczOXVa3D544+lrWHNGlxe87saBAGYtBQQ9XCTC/j7TcZTjbR64JtTGjtW+TuiHrjhOS7T3Y2JoojyZg0KGppwvr4RBQ1NKG/WICIiwuT5aWlpZt+ro2vbW+yBnB9XpSMiInIgNTt3/jZSJLHylSvhEd0fvsnJLQ2xKUD8bcDJ73BTPxE9vQRc/sNzRXsLdFgwxs6FCnIg/taW+qjbuNysxd7qGmTVNOCouh7HaupRpzMekfTWe0Du6Qldo+FUzh07dmDevHlm3XvHjh3t13X5sll9kuNjMCIiInIQ2qoqXFr6fMuoh72mz3VEEHDpuaXwGj78tw1hU94Czu+GvKEaCaEy7MozfPapQGXvqXQywNMfmPp3O9+XbEEURWSo67G2uALfl1VBKwIKAdB28OtQL5NDFjsEukzDUZ4N336L0tJShISEdKmG0tJSfPfdd+0er6ur61J/5Dw4lY6IiMhBlL7yKnQ1NY4RigBAFKFTq1H66qu/tXkHAjPeA6BHL6XxtLUqu6+/oAdmvt9SFzm11HIVbkjLxvQjOdh4JRQBHYeiVl43GY8WapqbMfS+h7C9omuLMCxcuBDNzc3tHu/oGDk3BiMiIiIHULNrF9Rbt9p+9bmu0uuh3rIVNbt3/9Y2aDow6XnUmXh/6C63X2kAgOQXgNhpdr4pWVOlRotHT+bj/hN5OFvXkqx1XfxswPPGaZAFBRu1l23fgj+9+CoePZmPSs3VV5N755138MUXX3R4jl4v0QIjZHMMRkRERBITRRHlq95x3IUDBAHlq94xXKVuwmIU6YOMTg0xMYpkM+MXtbzIaW0rr8a1h05jU1nL8tjmRg7BzQ0+8/7P5LGa99/CumVLMXZ3GraVm16GW61WY8GCBViwYMFV79XeHkfk/PiMERERkcQaMjPRlJMjdRntE0U0nT2LxmPH4JWQAAAoLSvDsVzj1bkG97L1Z64yAHogeRkwgaHIWYmiiHcvlOH1vEutf6MW85o6E82ZaWj8cavRsboNn+Hczq2YM34SbrspGffGxUAQBJSUlOCXX37Bd999h4qKCoNrRo4caXJ1Om9vbytUS46IwYiIiEhiVZ9/AcjljjeN7vfkclR+/gXCrwSjjz/+2OSUoolRNnxrIchbFlqY+T6nzzkxURTxWu4lvFfQEqytOTHNb+Fz0FdWoDnjkNExvaoaDVu/xbqt32LdVfqZOnUq7r//fsydO9foWHCw8ZQ96h44lY6IiEhC2qoqqLdtc+xQBAA6HdQ//ABtVRVOnz6N1157zegUf293TBugaNls1Zpa+4u/FXgig6HIyb17oawtFFmb4OmFgDfeh9ctc8zu484778S3336LhoYGk8d79+5tdt/k2BiMiIiIJFR/8CCgvfpD4ZZ6vawUO2tqDJ8T6iqtFgc//xyTJk0y+aZxwZJn4XXPF0CvQS0NMgtHj1qv7zUIuOMLYM4nXH3OyW0rr8breZdseg9BroDfwqXosfITuA1J7PR1ERER+Oyzz/D555/D09MTKpXxanZKpRLh4eHWLJccCKfSERERSajx5ElAobB5ODrT2Ih1VVUY4O6B6X5+mOzri2vc3Tt9fbGmGf9TqfDZk09Ca2IKXUxMDP72t78B3t7AwBSgKB1I+xg4sQHQa1tCjr4Tf8bW82RuQPwcYNR8IDzJcRemoE6r1GixKLsQAgB7LEjvPiwJge/8G5rzZ9GcdgDNmYehK7kEfXUVxLpaCO7ucAvtjVvHj8OfZs3CjBkzoFD89tb4zJkzRn0OHjwYAn8Wuy0GIyIiIgk1ZGXZZcSoVU5zE1ZWlGNlRTki3dwwyNMTsR4eCHNzg69MDh+ZDHqIqNPrUanVIbupCVmNDTje2Njum9nAwEBs3Ljxt4fSBQGIGNnymvI6kP8rcPEoUHyk5WtzrXEn7j5AWGJLCApLAKKuA5Q9bfbfgezvubNFUGt0dglFv+fWPwZu/WOgvOM+o2NyAD2CA3BrXJTRsaysLKO2cePG2aBCchQMRkRERBIRRbFlxEgiBRoNCjQabK+pMbuPvn37YvPmzRg0aJDpE5Q9gbjZLS+gZfPaugpA2wBomwGFO6DwApRBHBXqxlLLVfiuzPRS2VLSAfi2rBozQ1SYEuT/W7tOh+PHjxudf8MNN9ixOrI3BiMiIiKJ6Coroa+rl7oMsygUCjz11FN48cUXoVQqDY6p1WocPnwYpaWlKC8vR11dHXx8fNCnTx/Ex8dj4MCBElVNUhBFEW9YcVlua5MBeCP3Eib39GubJvfjjz9CrVYbnOfj44PJkydLUCHZC4MRERGRRPQNjVbpp7C5GSebGnGqsREnr7zUJp4DusXXD+ebm3C6qcns6UxBcjnueeghPLxgAWJjY9vaGxsbsXr1anz99dc4dOgQtB1MD+zTpw/uuOMOPPbYY4iKijKzEnIWGep6nKmzzs+6LegBnK5rxBF1PZL8W0L+unXGC3rfeuut8PLysnN1ZE+CaNHyNI5HrVbD398fKpUKfn5+UpdDRETUrqa8POROTenSNUXNzTjRiRBkyn8iIjDKW4kanQ7HGxtxvLEBuc3NKNZoUKLRoFavR71eD0EQoJTJ4COTwV8mR38Pdwzy8EScpycSvbwwIHUbPPr2bev3k08+wbJly3Dx4sUu/Vk8PDywZMkSLFu2zOChd+peHjt1ARvLqqBz4HeccgGYHdwD7w++Bnl5eRg8eDAaGw3D3JEjR5CY2PlV7sgxdCUb8F8hIiIiiQhunV8VrtWcC/mo6WQQao+vXI5xSiXG/WEKXGfJrqxm19zcjEceeQT/+c9/zOqnqakJr7zyCn7++Wds2rQJPXr0MKsfclyXm7X43sFDEQDoRGBjWRVejA7H//3f/xmFopSUFIYiF8BgRERkQw0NDTh69Cjy8vJQXV0NlUoFNzc3BAQEIDAwEEOGDMGAAQO4/KuLknl5Sl2CWQRPT2i1WkybNg07d+5s97zQ0FBERERAqVSirKwMOTk50Gg0Ruft3bsXN910E3755Rej55XIue2troHWwUNRK60ILHr5FaSmphq0u7m54e2335aoKrInBiMi6lZyc3ORkZFh8KqqqjI676effsLEiRNtUkN1dTXWrVuHdevW4ejRox0+awEA/v7+SE5OxkMPPYQpU6ZAJuPe265CHhgImdLbqRZgkCmVkAcGYvHixSZDkSAIuO+++/DUU08hISHB4JhKpcLGjRvxwgsvoKCgwOBYRkYGHnjgAaxfv96m9ZN9ZdU0QCHAbuFI31APmZd3l68TRREN//sYn679p9GxF1980eB5Ouq++IwRETmtvLw8pKenXzUEmWKLYKTT6bBq1Sq88MILqK83743uoEGD8Mknn3CvDBdy4d57UX84rdPnj845azSVrrdCgThPz7ZXD7kCf7qQb3Rt6zNGlvAePQpn777b5Opc3t7e+O677666cldDQwPmzp2LzZs3Gx376quv8Kc//cmiGslxzD56DgeqTexbZSMV98yAW9wweE2+BW7DhkOQX30MoPlEJmo+WAFttvHS+SkpKdi8eTM/sHJifMaIiFxCYmIiVCqV1GUAaBklmj59Ovbt22dRP6dPn8aECRPw0ksv4bnnnrNSdeTIvIYORf2Ro53e5LW3wg2j3d0w+EoIivfwRI8/LFxQrGm2RamAQgGvoUOxfPlyo0OCIODbb7/t1HLGXl5e2LBhA2688Ub8+uuvBscWL16MmTNnwt29689fkWMRRRFZNfYdDRWbmtC4Ywsad2yBoPSBe8IIKPrHQB4RBZmfPwRPL+jVKuirK6HNO4fmA3ugu1Rksq8xY8bgq6++YihyIQxGREQWqqmpwZQpU3D48OF2z/Hy8kJMTAwCAwOh0WhQVlaGc+fOQW/iIXq9Xo+lS5cCAMORC/CMi+t0KAKAjb9bDc7utFpk6PXYv3+/0aGHH34YU6ZM6XRXbm5uWLt2LeLi4gwedC8sLMR///tfzJ8/3yolk3QqNFrU6aTbuUisq0XTvp/RtO/nLl+bkpKCr776is+8uRhGYCIiCz399NPthqKUlBTs2rULKpUKmZmZ2L17N/bs2YPs7GxUVVVh7dq17W52+fzzz5t8A0rdi/eYMYCzLFWtUGB7Xp5Rs0wmw9NPP93l7vr164e5c+catf/zn8bPeZDzaZAwFJnN3QPPvfY6Nm/ezFDkghiMiKhbiYyMxOzZs/Hqq68iNTUV6enpNr1fVlYWVq9ebdQuk8mwZs0abN26FZMmTYKbm5vROX5+frj//vuRmZmJu+++2+i4KIp47LHHbFI3OQ5Fjx7wmzoVkMulLqVjcjn8UlLws4mwPn78ePQ1cyTrvvvuM2o7evQoTp06ZVZ/5Dg0EjzG7jH+Bsh6BHb5OsHLG1633Iagdd9j3lMLOH3ORTnJR1RERMYiIyMRHR2NpKQkJCUlYcSIEQgKCjI4Jz8/36Y1rFu3zuR0uBdffLHTU4E8PT3xn//8B8XFxfjpp58MjmVmZuL48eMYMmSIVUMaGwQAACAASURBVOolx9Tjz3dCbWIhAoei08Hr1tnIWvGW0SFLFgsZNWoU5HI5dDqdQfvWrVsxePBgs/sl6blJsA2B35PPQHziaWjPZUNzKgua7FPQFRdAV3IRYm0NxKZGwM0dMqUP5L3Doeg3AO6Jo+A++tq21ezcGYpcFoMRdZper8fp06dx5swZFBcXo7a2FoIgwMfHB8HBwejfvz8GDhwIX19fqUslF5GVlSV1Cdi0aZNRW2hoKJYsWdKlfuRyOd5++20MHz7c6NjmzZsZjLo5r4QEeMTEoCknB3DExWIFAR4xMagNC4OpxWzj4uLM7lqpVOKaa65Bbm6uQfvOnTu7/HtEjsVLLk3AEAQBbgNi4TbAvCW2PWXcV85VMRg5GEfYg+X3RFHEzp07sXbtWmzfvh2VlZUdni+TyTBo0CCMHz8eKSkpSE5O5hxd6rb0er3RmzkAmD59Ojw8PLrcX2JiIvr374/z588btP/xe+p+BEFArwVPoej/HHTqpCii11NP4tzlyyYPBwQEWNS9qettPQ2WbC/ITQGlXCbpAgxd5SOXIciNb49dFf/mJWTJHiz28Msvv2Dx4sXIyMjo9DV6vR4nT57EyZMnsXr1aixbtszksq5E3cHly5dNbt5qyfSfQYMGGQWhS5cumd0fOQ/fSZPgN20a1KmpwB+mlUlKJoNfylT4TpqEhnYWAzHng4Df8/T0NGqrrKxEYWEhIiIiLOqbpCMIAob6ett1HyNLDfP1hiDBFEByDAxGEnKkPVh+T6vV4m9/+xtWrVplcsoEEbVo7/fDx8fH7D5NbT4nd/SH8slqQpY+h7p9+6BTqRxjSp0gQO7nh5Ary8a3NzJk6f/LqqurTbafO3eOwcjJDffzRpqqFloH+HG+GoUAJPp5S10GSYjBiAzU1dXhtttuQ2pqarvnKJVKhIaGIiQkBO7u7qiqqkJxcTEqKirsWCmR9AIDA6FQKIxGjS63M92oM0z9HoWGhprdHzkXRY8e6P3Kyyh6/AmpS2khiuj96itQ9OgBAOjZs6fJ00pKSiy6TXvX23rxFLK9ob5eThGKAEArAkN9GYxcGYMRtdFqte2GIqVSifnz52PWrFkYP368yU+wi4qKcOjQIWzZsgVbt25FeXm5PcomkoxCocDw4cON9jDqaKPXjuj1epPPVYwZM8as/sg5+d54I3otWIDyVaukLgW9Fi6Eb3Jy2/dBQUHw8vJCQ0ODwXlpaWlm3yM3N7fd51fLysrM7pccw/gAXygEOEU4UgjAtQHmj/iT82MwcjCRkZFtyw4nJSUhKCgII0aMsMu9Fy1aZDIU3XbbbVi5ciX69OnT4fV9+vRBnz59MGfOHDQ3N2PDhg0m924h6k7mzJljFIS2b9+OkpKSLo/0bNy40egNooeHB2655RaL6yTnIIoiKjRaNNx7P2p0Iuo++wwemmYE1Khh76ceej78MHo+bLjkvFwux9ixY7F7926D9l27dkGn05k17XPHjh3tHrNk9JUcQ093BWYG98DGsiroHDgcyQVgVnAP9HTnW2NXxr99CTnCHiytfvjhB7z33ntG7QsWLMDKlSu73J+7uzvuvPNOa5RG5NDmz5+PN954w2DhlPr6evw/e/cdH1WV/g/8c2cmkzozaRMICSEhlJCEEIrSLJAgBFBZyypLWUVA3VVAigV1V/i54LKufhULFgRcexdUEjqCLEWkJoC0BAgtPZM+7f7+CGEJd1Kn3Jnk8369eCnn3nvOk5Ayz5xznvPYY4/h66+/bvYm3ry8PMybN0/SPm3aNISFhTksXnIvhUYzfikpw6GyKuw3VOJgWeX/KnjFDwIW1c4W+lZXoeeZ04jLOYUeZ7PR7/cs6CrKHB+QINRWoJszB6EP2z6H69Zbb5UkRufPn8cPP/yAP/zhDy0e8p133mnwWkVFRYv7I/czJSIU31x2n+JStljE2jipfWNiJCN3OIMFAKqrq/H4449L2v/85z+3Kikiak+CgoLw9ttvS94I+PbbbzFhwgS8++67NgsqXCsrKwv3338/srOz67V369YNL730ksNjJnmJoojfDJVYeb4Aq/OKYRbR5FKjKh9fHOgRj8OxPWFRqaC0mJGydyf+8PN69Mo+6ZjZJIUCSq0W4Yv+UW/53PX+9Kc/YeHChZKDjZ966imMHDkSfn7N36Px3nvv4eDBgw1eNxqNze6L3Fd/rR96+fvg94pquGPhbgWAOH8f9GPhhXaPR/sSli1bJnlBptfrmRSRrERRhNFYgKqqXFRWZqOqKhdGY4FbVkocP348Xn75ZUn7559/jtjYWDzzzDPYvHkzLl++DKPRiMrKSpw5cwbffvstJk6ciL59+yIrK6ves127dsXGjRt5YHIbk5FfiuG//o7b953A91eSIqCZ+y8EARZV7fuZFqUKmwcMxmNPvYhpzy3BjqT+rQ/qyqymdsxoxGakN5oUAUD37t1x9913S9pPnDiBKVOm2Cxhb8uOHTswd+7cRu+5PvkizyQIAp7pGu6WSREAWAE83TWcZbqJM0btndlstpkA/b//9/8QHBwsQ0TUXhmNRSgu3omyskyUGg6irCwTFot0GY1S6Q+NJhE6bR9oNIkIChoMtVr+r9V58+ahV69emD59er1zhwoKCrBkyRIsWbKkWf0IgoCJEyfijTfesPvQTHIfRSYznjuei+/ySq6+I2nvfguLsvZXeHanSDz/l3lI2bMDM79cBV1FM8+MUSoBiwXe3btD/8QsaFJSmj32ggUL8NNPP0mKMHz55ZcoLi7GO++8g65du9p81mq1Yvny5Zg9ezYqKysbHcfW+UbkmUaF6nBXWCDW5JXAjU7pghLAuLBAjArVyR0KuQEmRu1ceno6zp07V6/Nx8cHEyZMkCkiak9EUYTBsB/ncj9GXt5PEEUzBEEFUWz4HWeLpQIlJbtRWvrb1fs7hN2OyMhJ0GqTZX3Hb+zYsTh9+jQ++OADfPLJJ9i9e3ez3/Hu2LEj7r33Xjz66KNISEhwcqTkSun5JZjz+zkYTLUvBx39rrmoqE21tvYfhL3xvfHkx+8jZq/tg1hRVxxBpYJ27BgET5gAn6SkFn/fJCQk4M0338TUqVMl1zZs2ID4+HiMGTMGaWlpiIqKgq+vL/Lz8/Hbb7/h22+/xfHjx+s9c8MNN9isbNeSZXnk/hb1iMTW4jKUmixuMXukAKDzUuIfPRovLkXtBxOjdu7zzz+XtN1xxx1N7okgsld+/gacOv0qKiqOQxCUEMXaF42NJUXXqrtPFM24nPcDLl3+Hv7+PRHbdQ70+hFOi7s5vL29odPpoFKpmr1HoqioCCdPnsT+/fvRs2dPqFT88ezpRFHE0jN5eCn7IhRwfEJ0PatSiTK/APzt0bm49z8BwGlpUQNtWhoixo2D38CBV88maq2HHnoIJ0+etLkPrqamBt999x2+++67JvuJjo7GBx98gKSkJMk1Fh5pW4K9VHi1Z2dMycyROxQAtd+Tr/aMQrAXf95SLe4xasdEUcS6desk7SNHjpQhGmovTKZiZGY9gUOHH0VFxQkAuJoUtVbd8xUVx3Ho8CPIzHoCJpPrKyCtXLkSMTExmD59OjIyMlq0cdxoNCIjIwOTJ09Gjx49Gi1hTO5PFEUsPn0RL2XXLqt01bvjdbNHX4y0XeI96P77oU1LszspqrN48WIsX74carW6Vc8nJydj69atDb4ZFx4ebk945IZG6wMxP8Y9/l2f7RqOND2X0NH/MEVuxw4fPmzzjAhb79rVyc3NRUFBARQKBfR6PUJDQ3lWETVbfv56HD32LEwmw5UWRxdSqO3v8uW1KCr6Bb3iFgPo4eAxpEwmE/785z/bnIEVBAEpKSlISUlBr169EBwcDJPJhMLCQvz222/IyMjA4cOH6z2TnZ2NtLQ0LFiwAH//+9+dHj853tIzeXjjbPs4nHTq1KkYPnw4FixYgE8//RQWS9NvdAQEBGDOnDmYP38+fHx8GqzS2qOH879/yfVmdglDhcWCpTJ+j8yMCsOMKM5IUn1MjNqxffv2SdoUCgUSExOv/t1qtWL16tX46KOPsGnTJhgMBskziYmJGDFiBO68804MHz7cqTG3NdXV1Th06BCOHz+O/Px8VFRUQK1WQ6PRICIiArGxsejRo4fHJ5+iKOLMmWU4dfoVAAIcnxBdzwKTqQSHDv8F3uopTh4LmDhxIr766itJe0pKCt5880306tXL5nP3338//vWvf2HdunV49NFH651bJooiXnjhBXh7e+Ppp592VujkBOn5JVdnitqLrl274j//+Q8WL16MjIwMbNiwAUePHkV+fj6KioqgVCrRsWNH9OnTB6NGjcL48ePrFRc5duyYpE9BELjfro0SBAHzu4YjQKXE4tOuWWoK4Oo4z3UNx4wuHVwwInkaJkbt2PXlgYHa9dx1m11/+eUX/OUvf0FmZmaj/WRmZiIzMxOvvfYahg4dikWLFuHWW291SsxtQVVVFb766it89NFH+OWXX1BdXd3o/T4+Pujbty+GDRuGsWPHYtCgQa06XV4uoiji1Ol/48yZuv0Oriq3XTvOmbPvOXWUZcuW2UyKpk+fjnfeeQcKRdMrlkeNGoV9+/bhtttuw2+//Vbv2vPPP4+UlBTccMMNDouZnKfIZMac38+5JP13R5GRkZg2bRqmTZvWoudszRglJSXB39/fUaGRmxEEATO7dEAPPx/M/v0sDCaLU6vVKVFbaOHVnlFcPkcN4h4jJxFFEZZyI8xF1TDlV8JcVA1LudGtzmA5e/aspK3uzJQ33ngDw4YNazIput6OHTswfPhwLFq0yCExtiWiKGL58uXo1q0bHnjgAWzcuLHJpAionVXauXMnXnrpJdx0003Yvn27C6J1nDNnll2TFLUtFRUVeO655yTtQ4cOxbJly5qVFNUJCgrCmjVrJCW6zWYznnrqKbtjJdd47nguDCZLu0yK7LF//35JG1cgtA9peh12DOyFO8Nqf/Y5+oVpXX/jwgKxY2AvJkXUKM4YOYilwoSaUyUwni+H6VwZjLnlEI3S9z4EtRLqyAB4ddZAHREA79hAKP3lWSZ17VkrdTQaDd5++23MnDmz1f2Koojnn3/+atliAi5fvozJkydjw4YNcofiUvn5668sn2ubPvnkExQXS4s8LFmypFWzep06dcK8efPw/PPP12vfunUrsrKyuKzIzWXkl+K7vBK5w/A4JSUl2LRpk6Td1iGy1DYFe6mwLCEa48JKsST7Io5WVEMp2HfWV93zPf198EzXcJ5TRM3CxMgOoijCeLYM5TsvoOpQAWAVAYVQ+9+GnjFaUHO6FDU5hqv3+/YJRcDgTlB31rj0DBZbL+hyc3Mxa9asem1+fn6YOnUqxo0bh169eiE0NBSlpaU4deoU1q5di3fffRd5edINlCtWrEBycjJmzJjhtI/BE5w8eRKjRo3C6dOnG7wnKCgIHTt2RFhYGMxmM0pLS5GdnY2KCukBp57CZCrG0WPPwjV7iuRhq6pjdHQ0hg4d2uo+J0yYIEmMgNqzYZgYuS9RFPFPF5Xltoc7rVqo89VXX6GmpqZeW5cuXXDTTTfJFBHJJU2vw6hQLfYZKrHyfAG+zyuGWQRUAmBuxpdu3X1egoA/hAViSkQo+mr9ZD3fjjwLE6NWqsoqROn6HJgvV6Leb8JGkqJ66u6ziqg6WICq/flQdfSDbmQ0fONDnBGyxPW/iABIEpxbbrkFH3/8MTp37lyvXa/XQ6/XY9CgQZg7dy5mzJiBjz76SNLf3LlzMXz48HoFHdqT8+fPIzU11eayxS5duuDhhx/GnXfeafPzY7Vacfz4cWzfvh0//PADNmzY0Kyld+7i9+MLr1Sfc78XYo5iq4CJvS/mYmJiEBERgfPnz9drP3DggF39knP9ZqjEsQr3//48XlENd1qgZjKZ8Prrr0vaZ82axRez7ZQgCOiv80d/nT8WdovAjpJyHCyrxAFDJQ6UVaLCIn3rwV+pQLLGD321fkjS+GFoYABC1HyJSy3Hr5oWslSYULLmFKoO5te+EQ7Y//bglSTJfLkShf85At8+egTeGev0JXZmc+MHaQ4fPhxr166Fj49Po/fpdDp8+OGH8PHxwfvvv1/vmslkwuLFi/Hpp5/aHa+nMRqNGDdunCQpUqlUmD9/PubPnw9fX98Gn1coFIiLi0NcXBymT5+OoqIirFixAiEhrkmc7ZGfvwGXL/8gdxhOl5+fL2nr0MH+SkcdOnSQJEYFBQV290vOs/J8gd1Lf1who6AUj8gdxDVeffVVSSGgDh06YPr06TJFRO4kRK3CnWGBV/cfiaKIApMZ1VYRRqsVaoUCPgoBoV4qJtLkEEyMWqAqqwDF35yAtepKQuGcI1hQdSgfNSeKEXRPd8CJBXkaKwEdFBSEjz76qMmkqI4gCFi6dCl27NiBI0eO1Lv25ZdfYtGiRYiJibErXk/z/PPPSyqMqVQqfPbZZ7j33ntb3F9wcDDmzZvnqPCcprYK3atw9yV0jlhSZOvNBUeUVrfVh9Xqzgu02rdCoxmr84rdPikCgF9KylFoNLvFu+lbt27FwoULJe2LFy9GQECADBGRuxMEAXq1Zx9fQe6NVemaQRRFGLacReFHR2uTImf/8hMBa5UZhR8dRdnOC04bprGTyh977DFERES0qD8fHx+88MILknaLxYIffmj7swfXOnLkCP7v//5P0v7ee++1KinyJAbDflRUHIc7J0UAUFFx0u4+QkNDJW22ZpFaylYfer3e7n7JOX4pKWvW/gd3YBGBHSXlDumrvLz1/aSnp2PMmDGoqqqq1z5q1ChMmeL8s8eIiGxhYtQEURRhWJcDw7ozVxpcNXDtf8q35TptiOvLAl+rpWdQ1Ln77rttvlj8+eefW9Wfp5o/f75kNiE1NbVd/MI/l/sxBMH9z1nKz7e/QmBYmPTU9OtnCVuqoKCg3kGvdZgYua9DZVVQecgqHqUAHCqrdEhff/3rXzFixAh88cUXNg//tuXMmTOYMGGCzaSoS5cu+PDDD7kkiohkI/9cupsr23oOZVudl5zIyVYCA9T+curSpUur+lSpVBg8eLBkhmjXrl2t6s8THTt2zOYM2RtvvCFDNK5lNBYhL+8niKIzj+lzjOKSnTAai6BWB7e6j/79+0vOXzl48CCys7NbvXT0+++/t7ls7sYbb2xVf+R8+wyVLp0xsly6gIIJY1v1bMHs6fjbbOBvjdyTnZ2N6OjoJvuyWq3YtGkTNm3aBC8vLwwdOhT9+vVDYmIiwsLCoNPpUF5ejry8PJw+fRpr167F3r17bS5j1ev1yMjIcMgePSKi1mJi1IiqrIL/zRS1QQ0tlUtOTrar3+TkZEli4IjlRZ7i/fffl/ziHzJkCHr16iVTRK5TXLwToth4UQ93IYoWFJfsQoewMa3uIy0tDcuXL7+uXxELFizAhx9+2OL+qqurbR6OrFAoMGLEiFbHSc4jiqLDZmA8mclkwtatW7F169YWPxsbG4uMjAx069bN8YEREbUAl9I1wFJhQvE3J+QOw6m6du1qsz04uPXvoAOwWTXNZDI1e6mFJxNFEV988YWkfeLEiTJE43plZZkQBM94v0UQlCgzZNrVx8iRI21+v/znP/9p8eHGVqsVDzzwgM1ldKNGjbL7+5Kco8Bktlk+mJrngQcewL59+5gUEZFbYGLUgJI1p/5Xfa6NamgGw8/Pz65+/f1tl9KzZ6Oupzh8+LCkzDJQ+wK6PSg1HPSoGaNSw0G7+tBoNHj22WdtXnv44Yfx/PPPw2g0NtnPpUuXMGbMGHz55ZeSa4IgYPHixXbFSc5T1Y6TouHDh6NHjx4tfk6pVOL222/H7t27sWrVKmi1WidER0TUcp7x1q6LVWUV1p5T1MYNGDDAZru9MzulpaU229vDO962lpH4+/sjNjbW5v1msxlnzpxBaWkp/Pz8EBoaiuDgYCgUnveehSiKKCuzbwampS5dMmHSxHOtenbe3IsAPr3yx7bm7LV4/PHH8emnn0oOe7VarVi0aBFWrFiBadOmISUlBXFxcQgODobJZEJBQQF+++03pKen4+OPP27w8N4ZM2bYvbyVnMfkgLLvLaUIDkXQmy1fqnmt9xK6INLH2+a18PDwZvUxdepUTJ06FdnZ2dixYwf27NmDo0ePIjs7GwUFBaioqIBCoYBGo0FUVBTi4+Nxyy23YOzYsS2uekpE5ApMjK4jiiJK1+e4+xEsDjmDRa/Xo3v37jhxov6Swby8PLv6tfW8v79/s89E8mTXvzgGgN69e9erslReXo5Vq1bhq6++wq5duyQzCl5eXhg0aBBGjBiB++67D3FxcU6P2xFMpkJYLBVyh+Fy3t7eSE9Px9ChQ3HypLQE+MWLF/Hiiy/ixRdfbHHfd999t82y7+Q+vGSooCao1VDHJ9nVx8BB8ejs0/CRDS0RExODmJgYTJo0ySH9ERHJxfPelnYy49kymC9XunVSBACmPMds9h01apSkzd5yw7/++qukrTkVjtqC609wB+p/7B988AGio6MxY8YMbNu2zeYyK5PJhO3bt+OFF15AQkICJk+ejNOnTzszbIewWGzPeLQHYWFh2LZtG9LS0hzSn0KhwLx58/DZZ5955Oxhe+Kr9Mx/Hx8FS2ITEV3PM3+iO1H5zgse8Vmpyip0SD+2DhstKCiwOfPRHAaDAbt375a0Dx8+vFX9uSNRFGEpN8JcVA1TfiXMRdWwlBshiiLOnj0ruV+j0cBkMmHSpEmYNm0aCgub/29ntVrx8ccfo2/fvkhPT3fkh+FwomiSOwRZhYeHIz09HStWrEB8fHyr+hAEAampqfj555/x8ssvN3oIM7mHUC8V/D0sOQpQKhDqxQUjRETX40/Ga1gqTKg6VAB4wF5a46lSWCpMUPp72dXPLbfcgtjYWJw6dape+9tvvy0pQ9wcK1euRGWldDYrNTW11THKzVJhQs2pEhjPl8N0rgzG3HKIRuk5PRaViIL8Akl7QEAAJk2aZHNjfXMZDAbccccdWL58OR588MFW9+NMgmDf12JrBAersPSNTnb1kdR7Gby9pQe1As3fa3GtKVOmYMqUKdi6dSvWrFmDPXv2YP/+/Ta/L4Da88RuuOEGDBo0COPHj2/VZnaSjyAISNL4YWeJ5xSX6aPx4yGqREQ2MDG6Rs2pEsDq5mvo6ogiak6VwC9Jb1c3giBgzpw5eOyxx+q1f/jhh3j00UcbLNBgy6VLl/CPf/xD0h4ZGYnRo0fbFaeriaII49kylO+8cCVZFgGF0OjXh6HMAKsozaq//OwLnL90oV5bZGQkHnnkEaSlpSE6OhparRb5+fk4fPgwvvvuO6xatUqyzM5iseDRRx9FYmJii/5dXEWpdP0eMrVaQHy8feMOHjwEarXtw47tMWzYMAwbNgxA7cxfcXExSkpKUFpaCqVSicDAQAQGBkKn0zl8bHKtflo//Fpa7tJDXltLJQB9tfZVHiUiaquYGF3DeL68yRe/bkMQYDpfDtiZGAG1lYVeffXVerNGZrMZ999/P7Zs2YKoqKgm+ygrK8N9992HggLpjMkzzzwDb2/b1Y/cUVVWIUrX59TuNVPgfzOITXxd1JhtLyW7Pil6/PHHsWTJEklZ9IiICERERCAtLQ1PPvkk7r//fsmSxpqaGvzxj3/EsWPH3O5z6uUVAqXS36MKMCiVAfDykp675WgKhQIhISE2z/giz5ek8fWIpAgAzCKQpGFiRERki2ctjHYy49kyz0iKAEAUYTxX5pCuvL29sWzZMsnSitOnT2Po0KFN7m3Zt28fhg0bhu3bt0uuJScnY9q0aQ6J09ksFSYUfnYMhR8dgbmuuEULllVaROnyuuvNunM6Xvvnq02eFdWtWzds2bIF/fr1k1zLycnBhx/aV6rXGQRBgEaTKHcYLaLRJHJJEdntpkANVB7yZaQSgKGBAXKHQUTklgTREXWf3YjBYIBOp0NpaWmLDo0TRREXXthpc++Is5wrvYgh79zvtP6bcwbLtZ5//nksWrTI5rUbb7wR48aNQ3x8PEJCQlBaWorTp0/jp59+wsaNG2G1SjOI0NBQ7N27F126dGnth+AyVVkFKP7mRO2hvq38jrhcXoABb93d4PV+nRLw7aQ34eXvjaB7usM3oenlW7///jv69u2Lqqqqeu2xsbE4ceKE272oP3lyCc6eW+ERh7wKggpRnaeiW7en5A6F2oDHjpzB93nFsLjxb1SlANwVFoQ3493/ZzIRkaO0JDfgUrorrBUmlyZF7ujFF19EXl4e3n//fcm1PXv2YM+ePc3uKywsDKtXr3b7pEgURZRtPQfDujN2n12lVjZefODJm6dBKShhrTKj8KOj0I6KhmZYZKPJTc+ePfHggw9i2bJl9dpPnTqFw4cPIynJvrNMHE2jSfSIpAgARNEMjdazZrjIfU2JCMU3l4vlDqNRFrE2TiIiso1L6a4QjR5Qis7JBEHAu+++i3/+859QqVqfM/ft2xe//vorBg0a5MDoHE8URRjW5dQmRYDdZ1dpvP0hwHaSExXYCTdF9683Tt3YTU3aPvzwwzbbf/7551bH6ixBQYMhCJ7xfosgqBAU6N5fo+Q5+mv90Mvfx21/qSoAxPv7oB8LLxARNchdf4a7nGhhYgTUJkdPP/009u/fj7Fjx7ZoqVZsbCxWrlyJX3/9tVkFG+RWtvUcyrbmOqw/lUIFrbe/zWs3Rtqe2WlODH369LFZuWzXrl0tD9LJ1OpghIWNhSAo5Q6lUYKgRIew26FWB8sdCrURgiDgma7hbnvagxXA013D3W75LRGRO/GMt3ZdQJDhgL4w/xCsnrSs6RsbETy5F1Ra29XJWnMGS53ExET8+OOPOHXqFL7//nv8/PPPOHr0KC5duoSqqipotVqEhoYiIiICN998M2677TYMHjzYrpkmV6rKKvjfTJEDddDoUVojPc8kIaxbg88Y1uXAK8wPNCDG9AAAIABJREFUvgm2K5YJgoCkpCRJcYu8vDz7gnWSzpGTcPnyarnDaJQoWhAZOUnuMKiNGRWqw11hgViTVwJ3WpitBDAuLBCjQlkanoioMZ7xKtYFBLXrEyNvlRr9IhLs6iN8yEAoA9QOikgqNjYWc+fOxdy5c502hqtZKkwo/uaEU/qOCgzH8YJsSXugbyOb/QSg+JvjUEcPaPDAXltlngsLC1sdpzNptX3h798TFRXHYff6RKcQEODfE1ptstyBUBu0qEckthaXodRkcYvZIwUAnZcS/+gRKXcoRERuj0vprlD4e0FQu/fyn+sJ3kooGnghTQ0rWXOqtvqcE3QPsV1swlfVyCGkImCtMqPkh1MN3uLvL12iV14unZlyB4IgILbrHLhnUgQAIrp2nc0lReQUwV4qvNqzs1skRUDtErpXe0Yh2IvvgxIRNYWJ0RWCIMArwrPOdlBHBPDFXQtVZRWi6mC+016zJ3WMs9leZmzi0FMRqDqQj6ojtmeBSktLJW3Bwe67P0avH4EOHe5A7SIed6JEhw53Qq8fIXcg1IaN1gdifkzrlzI70rNdw5Gm5xI6IqLmYGJ0DXWUBlB4SKKhEKDurJE7Co8iiiJK1+eggcJxDjEgorfN9sLKZpTxFYDS9Tk2q9TZ2k8UGureZXd79ngBXl5aOPUT3iICvLy06Nnj73IHQu3AzC5hmBkVJm8MUWGYIXMMRESehInRNdQRAYDVXZf/XMcqetwMl9yMZ8tgvlzp1BVeHTWh6BkaI2k/dPH3ph8WAfOlShjPldVrNhqNOHjwoOT2lhzeKwcvryD0ilsM91lSJ6JX3Evw8gqSOxBqBwRBwPyu4Xi2a+3Mkat+2daN81zXcDwb24mrCoiIWoCJ0TW8YwM9asbIOzZQ7ig8SvnOCy75ih/bc5ikbde5AzBaTE0/rBBq47zGtm3bUFNTI7l1+PDhrQ3RZfT6kYjt6h6FO2K7zoNef5vcYVA7IggCZnbpgFWJMdB5KZ2+sFQJINBLiVWJMZjRpYOTRyMianuYGF1D6e8F36RQ9/+sKAT49gltsIIZSVkqTKg6VABX7Ii+t3caFEL9L6KiqlL8eGxL0w9bRVQdLICl4n9J1FtvvSW5TaFQeERiBABduvwFXbr8xQ1ieFTWGKj9StPrsGNgL9wZVvtmlqN/xdT1Ny4sEDsG9uKeIiKiVnL3FMDlAgZ3csmLZ7tYxdo4qdlqTpW4bJlkZ104xvS4VdL+r23vo6ymiSIMAGAVa+MFsGHDBqxeLT0T6O6773br4gvXqq1SNxexXefVtbhqZABAbNcn0S12HpcUkayCvVRYlhCNVYkx6OlfW6VSaeeXZN3zPf198GHvGLydEI0gVp8jImo1JkbXUUdpoOro5z77xa8nAKqO/iy80ELG8+UuXSY556Yp8FLUf4Fy3nAZM394ETVmY+MPKwSYzpfj2LFjeOCBByTFGARBwAsvvODokJ1KEARER/8FSb3fgZdXIJxfrU4JL69AJPV+B9HRnCki95Gm12HzDT3xU7/uuCssCKorP5ZUzfzxVHeflyDg7rAgrO3XHZtv6MnDW4mIHICJ0XUEQYBuZLT77Be/ngjoRnbhu98tZDxb5tLCGt1Do/HowD9J2jee+i/+9MUcnCjIafhhq4hvvv8WN998My5evCi5/OijjyIxMdGB0bqOXn8bBg/agA4dxlxpcfTXcW1/HTqMxeBBG7mniNySIAjor/PHm/FdcHBIIt5LiMYjncMwNDAA/krbv5b9lQoMDQzAo53D8F5CNA4MScAb8V3QT+fP3wdERA4iiLZqA3swg8EAnU6H0tJSaLXaVvdT+NkxVB1y3nk3rSIAvn30CBlv+6wcsk0URVx4YSdEo8Wl45qtZvzp8znYde6A5JpKocSwmIG4teuNiNKFw1/th6KqUvyefxoZx7cjK++EzT6HDBmCLVu2QK1WOzt8p8vP34BTp/8PFRW/QxCUEMXW//vUPe/v3xOxXefwnCLyWKIoosBkRrVVhNFqhVqhgI9CQKiXigkQEVErtCQ3YGLUAEuFCZdf2Qtrldk9kiMBUPiq0GHuABZdaCFLuREX/7FblrFLq8sw4Yu5OHTpmN19DRgwAD/++CM6dGg71aZEUYTBcAC5uR/jct6PEEUzBEEFUTQ3+WzdfYKgQocOdyAyYhK02j588UhERERXMTFyQGIEAFVZBSj86KiDIrNfyOR4+CaEyB2GxzEXVePSv36VbfwKYyWeyngZa45uanUfEydOxPLly+Hj4+PAyNyL0ViE4pJdKDMcRqnhEMrKDsNikRarUCr9odH0hk7bBxptIoICB0Gt9oxCFERERORaTIwclBgBgGHLWRjWnXFAZPbRjoqGdnhnucPwSKb8Slx+5Te5w8CGkzvw8rblOJp/qtnP3HLLLVi4cCGGDRvmvMDclCiKMJkKYbHUQBSNEAQ1lEpveHmFcFaIiIiImqUluQHrejZBM6wzxBoryraekzUGzbBI2cb3dEIDm5ld7bZuQ3Fbt6H47XwmNp7aif0XsnC66ByKqwwwW80I9NEi2FeHqMBOGNKlH+5+cQr6DOknd9iyEQQBanWo3GEQERFRO8HEqAmCIEA7qgsEbyUM63Jqi165Yo7tyjjatGhoh3GmyB6C2j0Sozr9IxLRP6LpqnLhSZ5ZeY6IiIjIEzExagZBEKAd3hleYX4o/ua48wsyXCm0EHRPD+4pcgCFvxcEtdLlVensIXgroWCRDSIiIiKXYWLUAr4JIVBHD0DJmlOoOpjv+NmjK/359tEj6M5YKPz4wtgRBEGAV0QAjNmlcofSbOqIAO6jISIiInIhJkYtpPT3Qsif4lCVpEfphhyYL1UCCsG+w0OvPK/q4AfdyGj4xnOWyNHUURoYzxhceshrqykEqDtr5I6CiIiIqF1hYtRKvgkh8IkPhvFcGcp3XkDVwYLaF93NTZLq7lMI8O2jR8DgcKg7azhL4CTqiADPSIoAwCrCKyJA7iiIiIiI2hUmRnYQBAHeUVp4R2lhud2EmlMlMJ4vh+lcGYznyyHWSPe0CN5KqCMCoO6sgVdEALxjA3lgqwt4xwbaP7PnKgqhNl4iIiIichkmRg6i9PeCX5Iefkl6ALVnsFgrTBBNVohmKwSVAoKXorYQAGeFXE7p7wXfpFBUHcoHrHJH0wiFAN8+oUyWiYiIiFyMiZGTCIIAZYBa7jDoGgGDO6HqQL7cYTTOKiJgcCe5oyAiIiJqd9zrgBciJ1JHaaDq6Fdb/c8dCYCqoz8LLxARERHJgIkRtRuCIEA3Mto1B/S2hgjoRnbhUksiIiIiGTAxonbFNz4Evn307jdrJAC+yXqWaiciIiKSCRMjancC74yFwlflPsmRACh8VQi8I1buSIiIiIjaLSZG1O4o/b0QdE9391lSJwJB9/RgJToiIiIiGTExonbJNyEU2lFd5A4DAKAdFQ3fBC6hIyIiIpITEyNqtzTDOkMzrLMbxBApawxERERExHOMqB0TBAHaUV0geCthWJdTu+fIFcvrroyjTYuGVubEjIiIiIhqMTGidk0QBGiHd4ZXmB+KvzkOa5XZucnRlUILQff04PI5IiIiIjfCxIgIgG9CCNTRA1Cy5hSqDuY7fvboSn++ffQIujMWCj8WWiAiIiJyJ0yMiK5Q+nsh5E9xqErSo3RDDsyXKgGFAFjtyJCuPK/q4AfdyGieU0RERETkppgYEV3HNyEEPvHBMJ4rQ/nOC6g6WFCbHDU3Saq7TyHAt48eAYPDoe6sgSC4y8FJRERERHQ9JkZENgiCAO8oLbyjtLDcbkLNqRIYz5fDdK4MxvPlEGss0me8lVBHBEDdWQOviAB4xwbybCIiIiIiD8HEiKgJSn8v+CXp4ZekBwCIoghrhQmiyQrRbIWgUkDwUkDh78VZISIiIiIPxcSIqIUEQYAyQC13GERERETkQDzglYiIiIiI2j2nJkZFRUWYOHEitFotAgMDMXXqVJSXlzd6/4wZM9CzZ0/4+voiKioKM2fORGlpqTPDJCIiIiKids6pidHEiRORlZWFDRs24Mcff8S2bdvw8MMPN3j/hQsXcOHCBfz73/9GZmYmVq1ahYyMDEydOtWZYRIRERERUTsniKLoyGMsrzp69Cji4+Px66+/YsCAAQCAjIwMjBkzBrm5uejUqVOz+vnqq68wadIkVFRUQKVqekuUwWCATqdDaWkptFqtXR8DEREREVFbYjabcfLkSRw9ehT5+fkoKSmB1WpFYGAggoKCEBMTg+TkZKjVbWM/dUtyA6cVX9i5cycCAwOvJkUAMGLECCgUCuzevRt33XVXs/qp+yAaSopqampQU1Nz9e8Gg8G+wImIiIiIHOz06dP47bff6v0pLi6W3LdlyxYMGzbMYeNWVlZi+/bt2LJlC7Zs2YKDBw/We+1si7e3NwYMGIDJkydj0qRJ8Pf3d1g87sxpidGlS5cQFhZWfzCVCsHBwbh06VKz+igoKMCLL77Y6PK7l156CQsXLrQrViIiIiIiR8nOzsbevXubTIKcpaqqCj/++CO++uor/PTTT6isrGzR8zU1NdixYwd27NiBp556Cs8++yzmzZsHpVLppIjdQ4sTo2eeeQZLlixp9J6jR4+2OqA6BoMBY8eORXx8PBYsWNDgffPnz8ecOXPqPde5c2e7xyciIiIiao2+ffvKWjzsm2++weTJkx3Sl8FgwDPPPIPvvvsOX375JaKiohzSrztqcWI0d+5cPPjgg43e07VrV3Ts2BF5eXn12s1mM4qKitCxY8dGny8rK0NaWho0Gg2+++47eHl5NXivt7c3vL29mx0/EREREVF75+fnh44dOyIsLAy+vr4oLCzEiRMnUFVVZfP+3bt3IyUlBdu2bWt2rQBP0+LESK/XQ6/XN3nf4MGDUVJSgt9++w39+/cHAGzevBlWqxUDBw5s8DmDwYBRo0bB29sba9asgY+PT0tDJCIiIiKiayiVStx2221IS0vDzTffjOTkZCgU9QtUG41G7NixA0uXLsX3338v6ePUqVMYOXIk9u3b12aKM1zLaeW6e/XqhbS0NEyfPh179uzBjh078Pjjj2P8+PFXs8zz588jLi4Oe/bsAVCbFI0cORIVFRX44IMPYDAYcOnSJVy6dAkWi8VZoRIREREROVVUVBTuuusuLFq0CBkZGdi7d69Lxo2JicFLL72Es2fPIj09HbNmzUK/fv0kSREAqNVqDB8+HN999x2+//576HQ6yT1ZWVl45ZVXXBG6yzmt+AIAfPLJJ3j88ceRmpoKhUKBe+65B0uXLr163WQy4ffff7+6IWzfvn3YvXs3AKBbt271+srOzkZ0dLQzwyUiIiIisltUVBS6deuG/v37o3///hgwYABCQ0Pr3ZOTk+PUGKKjo/Hcc8/hwQcfbNaRN9cbN24cVq9ejZEjR8JoNNa7tmjRIsycObPNVatz2jlGcuE5RkRERETk7nJychATEyNpd0S57vz8fAQGBja6T7+55s+fj3/+85+S9q+//hr33HOP3f07W0tyA6ctpSMiIiIiItfT6/UOSYqA2sJrtpbdrV271iH9uxMmRkREREREZFNoaCj69esnaT9z5owM0TgXEyMiIiIiImqQrbOLLl26JEMkzsXEiIiIiIiIGmRrWZ6t5XWeru19RERERERE5DC2KuiFh4e7PhAnY2JEREREREQ2lZSUYN++fZL264/WaQuYGBERERERkU2ffPIJTCaTpH3s2LEyRONcTIyIiIiIiEiisrISS5YskbRrtVqkpqbKEJFztfwYXCIiIiKidkoURRRVF6HaUg2TxQQvpRd8lD4I9gmGIAhyh+dQCxYswLlz5yTtM2bMgLe3twwRORcTIyIiIiKiBhRXF2P3pd04UngEh/MP40jhEVSaKyX3+an8EB8Sj9763ogPicfAjgMR5BMkQ8SOsWXLFrzyyiuS9vDwcDz99NMyROR8TIyIiIiIiK4hiiIO5h/E579/jnXZ62AWzVAJKphFc4PPVJorsffyXhzIO3D1/rSYNIyPG4+k0CSPmk06f/48xo8fD6vVKrm2bNkyaDQaGaJyPiZGRERERERXbD67GW/ufxMnSk5AKShhES0A0GhSdK26+8yiGenZ6fjx9I/oHtgdM/rOwPCo4U6L21EqKipwxx13IC8vT3LtkUcewbhx42SIyjWYGBERERFRu1dSXYLFuxcjPScdAmpnd+qSotaqe/5kyUnM3DITo6NH49mBzyLQJ9DueJ3BZDLhj3/8I/bv3y+5NmDAALz++usyROU6rEpHRERERO3aprObcMf3d2D9mfUAABGiQ/uv62/dmXW44/s7sOnsJof27whWqxWTJ09Genq65Fq3bt3www8/tMmCC9fijBERERERtUuiKGL54eVYun8pBAgOT4iuZxWtKK0pxRNbnsDEDhOdOlZLiKKIqVOn4osvvpBci4qKwsaNG9GxY0cZInMtJkZERERE1O6IoojX972ODzI/qP27k5Oiq+NeGWdl5kqXjNccf/nLX7Bq1SpJe6dOnbBp0yZ06dLF9UHJgEvpiIiIiKjdWX54+dWkqD2bNWsW3n33XUl7WFgYNm3ahG7duskQlTyYGBERERFRu7Lp7CYs3b9U7jBkN3fuXCxdKv08hIaGYtOmTYiLi5MhKvkwMSIiIiKidqOkugQL/rvgauW59uqpp57Cq6++KmkPCgrChg0bkJiYKENU8mJiRERERETtxuLdi1FmLHPZniJ39Oyzz+Lll1+WtOt0Oqxfvx7JyckyRCU/Fl8gIiIionZh89nNSM+RlqNuT/7+97/jpZdekrRrtVqsX78eAwYMkCEq98AZIyIiIiJq80RRxJv733T7JXSi6LyZrBdffBEvvviipF2j0SAjIwM33nij08b2BEyMiIiIiKjNO5h/ECdKTrj9ErpTpaec0u9LL72Ev//975L2gIAArF27FoMHD3bKuJ6EiRERERERtXmf//45lIJS7jCatPnsZof3+e9//xvPPvuspN3Pzw8//fQTbrrpJoeP6YmYGBERERFRm1ZcXYx12etgES1yh9KkPRf3oLi62GH9vf7663jyyScl7X5+fvjxxx9xyy23OGwsT8fEiIiIiIjatN2XdsMsmuUOo1ksogV7Lu1xSF/Lli3DE088IWn39fXFmjVrMHz4cIeM01YwMSIiIiKiNu1I4RGoBM8oxqwUlDhSeMTuflasWIHHHntM0u7j44PVq1cjNTXV7jHaGs/4CiEiIiIiaqXD+Yc9asbocMFhu/r48ssvMX36dJsV7p555hloNBrs2rXLrjEAoG/fvvD29ra7H3chiM6sCSgDg8EAnU6H0tJSaLVaucMhIiIiIhmJoohBnw5CpbnSZWMa8404/uRxp/WfnZ2N6OjoBq8/+OCD+PDDD502fnPjcActyQ04Y0REREREbVZRdZFLkyJqvsLCQuTk5ODcuXO4dOkSKioqUFVVBV9fX+h0OgQFBSEhIQE9evSAQuH8HUBMjIiIiIiozaq2VMsdAgHIy8vDf//7X+zYsQMHDhzA4cOHcfny5WY9GxAQgJtuugkPPPAA7rrrLqct32NiRERERERtlslikjuEdm/Tpk0YMWJEq58vLy9HRkYGMjIyoNfr8fLLL+OBBx5wYIS1uMeIiIiIiNqs8+XnkfZNmkvHtJqsqD5j30zVa8Nfg95Pb/NaS4oeBAYGorS0tFUxbNmyBcOGDWvVs9fKyMjA6NGj7e7nWiNHjsQ333yDgICARu/jHiMiIiIiIgA+Sh+Xj6nwUsCvm59dfQwZPAQhviEOisi9dezYER06dIBWq4WXlxcMBgMuXLiACxcuNPjM+vXrcdtttyEjIwM6nc4hcTAxIiIiIqI2K9gnGH4qP48qwODv5Y9gn2C5w3CKsLAw3HLLLbj55psxePBgxMXFQaPR2Lw3Pz8fq1evxttvv439+/dLru/atQuzZs3CqlWrHBIbEyMiIiIiarMEQUB8SDz2Xt4rdyjNFh8SD0EQnNZ/VFQU+vfvjwEDBqB///4IDQ3FgAEDnDZeSEgInnzySfzhD3/AoEGDml1hTq/XY9q0aXjooYfwyiuv4Omnn5aczfThhx/iwQcfdMiSPyZGRERERNSm9db3xoG8Ax5xyKtKUKF3aG+H9RcVFYVu3bqhf//+V5Oh0NDQevfk5OQ4bDxbbrjhBtxwww2tfl6hUODJJ58EADz11FOS68uXL2diRERERETUlPiQeI9IigDALJoRHxLvsP4OHTrksL7kNmfOHKxcuRJHjx6t175mzRpYLBYolUq7+nf+SUlERERERDIa2HEgVIJnzAeoBBVu7Hij3GG4JaVSifvuu0/SXlZWhosXL9rdPxMjIiIiImrTgnyCMCpmFJSCfTMKzqYUlEiLSUOQT5DcobithIQEm+1MjIiIiIiImmF8z/GwiBa5w2iURbRgfNx4ucNwaw2V5m5uQYfGMDEiIiIiojavj74Pugd2hwDnVXuzhwABPYJ6ICk0Se5Q3FpeXp7N9vDwcLv7ZmJERERERG2eIAiY0XcGRIhN3ywDESIeT37cqWW624Lt27dL2qKjo9GpUye7+2ZiRERERETtwvCo4RgdPdrt9hopBAXGxIzB8Kjhcofi1i5fvowvvvhC0j5p0iSH9M/EiIiIiNqtBQsWQBAEp/9ZsGCB3B8qXfHswGehUWvcZkmdAAFatRbzb5wvdyhurbq6GpMnT0ZpaWm99tDQUMycOdMhYzAxIiIiIqJ2I9AnEAuGLHCbJXUiRCwcshCBPoFyh+K2du3ahaFDh2LDhg312lUqFVatWgW9Xu+QcTyjoDsRERGRB+vevbvcIdA1UqNSMbPvTCzdv1TuUDCr3yykRKW06llRFGEpKoK1qhqiyQjBSw2Frw+UwcEesVcpNzcXubm59dqsVivKy8uRl5eHQ4cOYf369Th48KDkWY1Gg//85z8YO3asw+JhYkRERETkRDqdDnfffbfcYdB1pvWehkpzJZYfXi5rDFMTpzb7fnNxMSp37UJ1VhaqDh1GdVYmrBWVkvsU/n7wSUiEb1Jv+CQkwG/QIKiC3O9spOXLl2PhwoUtekahUODee+/FkiVLEB0d7dB4mBgRERFRuzVt2jSkpaU5pK/Dhw/j4YcflrRPmDABvr6+DhmDHEcQBMzsOxP+Xv54fd/rECC4ZHld3Tiz+s3CtN7TmrxfFEVUHTiA4k8/gyE9HTCbAZWq9r8NsFZUonLPHlTu23f1fu2YMQie8Cf49OnjEbNJ1xMEAVOmTMHf/vY3hydEdZgYERERUbsVGRmJyMhIh/T16aef2mx/6KGHHNI/OZ4gCJjWexq66rrihf++AIPRAKtoddp4CkEBrVqLhUMWNmv5XNmmTch/7XXUnDgBKJWA5coBtY0kRfXU3Wc2w/DTTzCsWQPvHj2gf2IWNCmtW74nF1EUsWLFCmzZsgV//etf8cgjj0Cj0Th0DBZfICIiIrJTTU0NPvnkE0l7UlISBgwYIENE1BIpUSn44Q8/YFSXUQDg8Ip1df2lRafhx7t+bDIpMhcX4/zcech97HHUnDxZ21iXFLXWledrTpxA7l8fw/m582AuLravTxlkZ2fjySefRHx8PDZu3OjQvpkYEREREdnp+++/R1FRkaSds0WeI9AnEP+69V94ffjr6BbYDQDsPu+o7vlugd2wdPhSLLllCXTeukafKdu4EadHj4EhI6O2QXTw8r4r/RnS03F69BiUOTi5aIkFCxZAFMV6f4xG49XCCytWrMD48ePh7e0teTY3NxdpaWk235BoLUEUHf3ZlpfBYIBOp0NpaSm0Wq3c4RAREVE7MGrUKKxfv75em1qtxoULFxASEiJTVNRaoijiUMEhfH7sc2RkZ8AsmqESVDCLTS9hq7tPpVBhdPRojI8bj96hvZvc1yOKIgrffQ/5r70GCILjEyJbroxTNXky+j//nOTyli1bMGzYMOfH0YT8/HzMnj3bZhKkVCqxbds2DBkyxOazLckNmBgRERER2eHcuXOIjo6G1Vp/b8p9992HL774QqaoyFGKq4ux59IeZBVmIbMgE1kFWag0SyvB+an8kBCagN6hvREfEo8bO96IIJ/mVYITRRH5r/4fCt9/39HhN8t5kxG3nT4taXeXxKjOa6+9htmzZ0vau3fvjiNHjkClkpZPaEluwOILRERERHZYtWqVJCkCuIyurQjyCcKo6FEYFV27/0gURRRVF6HGUgOjxQi1Ug1vpTeCfVp/dlDhu+/JlhR5kieeeAK///473nnnnXrtJ06cwDfffIP777/frv65x4iIiIiolURRxMqVKyXtnTt3xm233SZDRORsgiAgxDcEnQI6IVoXjU4BnRDiG9LqpKhs48ba5XPULIsWLYKfn5+k/bPPPrO7byZGRERERK20ZcsWZGdnS9qnTJkChYIvs6hx5uJiXHz+b7V7fahZgoODbb7p8Msvv9jdN79jiYiIiFppxYoVkra6gyiJmnL5H4tgKStzTaGFNsRWCfzCwkJUVkr3frUEEyMiIiKiVigtLcW3334raU9JSUF0dLTrAyKPUrZpEww//WT/+UTtkF6vt9lebOe5TEyMiIiIiFrhs88+Q1VVlaR96tSpMkRDnkQUReS/9rrbL6Fz1+LVFRUVNtvVarVd/TIxIiIiojZNFEWUl5ejuLgYBQUFKC4uRnl5ud0v+j744ANJW1BQEO666y67+qW2r+rAAdScOOH2S+iMp07JHYJNubm5kjYvLy8EBwfb1S/LdRMREVGbUlFRgezsbFy8eBHnz5/HhQsXYDQaJfep1Wp06tQJERERCA8PR0xMDPz9/Zs1RmZmJvbu3StpnzBhAnx8fOz+GKhtK/70M0CpdPtldIaNm4Bp0+QOQ2LdunWSth49ekCpVNrVLxMjIiIi8niiKCI3Nxd79uxBVlYWrFYrFAqFzfOF6hiO/a/OAAASZUlEQVSNRuTk5ODs2bNX709MTMQNN9yAyMjIRssv25otAnh2ETXNXFwMQ3q62ydFAFC5exfMxcVQBTXvoFpX+OWXX3DkyBFJuyMOomViRERERB7t2LFj2Lx5M/Ly8uolQ40lRde69v7MzEwcOnQIYWFhSElJQVxcnOR+o9GIjz/+WNKenJyMfv362fGRUHtQuWsXYDbLHUbzWCyo3L0b2rQ0uSMBAJSXl+Ovf/2rzWsTJkywu3/uMSIiIiKPVFlZia+//hqff/458vPzATQ/GWpI3fP5+fn4/PPP8fXXX0tKAK9ZswYFBQWSZ1l0gZqjOisLUHnI3IRSWRuvHd555x289tprNguVtERhYSHS0tJw+PBhybVbb70VQ4YMsat/gIkREREReaCjR4/ijTfeQNaVF22Orp5V119WVhbeeOMNHD169Oo1W2cXeXt7Y+LEiQ6NgdqmqkOHPGrGqOrQIbu6uHTpEmbPno2YmBjMnTsXO3fubNH3a0lJCd544w306NEDO3bskFz38fHBW2+9ZVeMdQTRXevwtZLBYIBOp0NpaSm0Wq3c4RAREZEDiaKI7du3Y/PmzS4fOzU1FTExMYiOjobluv0h48ePx2effebymMiziKKI4wMGwFph30GkLXHeZMRtp087rf/s7OxGz+1asGABFi5cWK+tQ4cO6NevH5KTk9GjRw8EBgYiMDAQKpUKBoMBxcXFOHLkCPbt24ctW7agpqbGZt+CIODTTz/F+PHjGxy/JbmBh8zjERERUXsniiI2bdqEX375RZbxN23ahLNnz0qSIoDL6Kh5LEVFLk2K3NXly5eRnp6O9PT0Vvfh7++PlStX4o9//KPD4uJSOiIiIvII27dvly0pqrN69WpJW5cuXZCamipDNORprFXVcofQJtx+++3IyspyaFIEcMaIiIiIPMDRo0dlWT53rZycHBQVFUnap0yZ0mhpb6I6okl6nlZbN3XqVOh0OqSnp2Pbtm0NLotrip+fH+666y489NBDSElJcXCUtZgYERERkVurrKzEmjVr5A4DBw4ckLQpFApMmTJFhmjIEwleapePqVeq8FlUF7v6iHxjKVRhYTavhYeHN/ps586dMXv2bMyePRs1NTU4cOAAdu/ejczMTGRnZyMnJwfFxcWoqKiAyWSCRqOBVquFTqdDbGws+vXrh379+uGWW26BRqOx6+NoChMjIiIicmtr165FdbW8S5BqampsHiqZmpqKqKgoGSIiT6Tw9XH5mGqFAn18fe3qo/vQoVCFhNgdi7e3NwYOHIiBAwfa3ZczcI8RERERua1jx44hMzPT4eW4WyozMxMmk0nSnuYmB1+SZ1AGB0Ph7yd3GC2i8PeHMjhY7jBcgokRERERuSVRFLF582a32L+zf/9+SZuvry+USqXsSRt5DkEQ4JOQIHcYLeKTmOAW34OuwMSIiIiI3FJubi7y8vJkTzzy8/Nx/vx5SXvv3r1RXFyM3NxcGaIiT+WblASoPGQ3i0pVG287wcSIiIiI3NKePXugUMj/UsXWbBEA9O3bFwqFAr/++quLIyJP5pOQAJjNcofRPGazx81w2UP+nzZERERE16moqEBWVhasVquscVitVhw6dEjSHh4ejo4dO8JqtSIzMxMVFRUyREeeyG/QII+aMfJz00IJzsDEiIiIiNxOdna27EkRABw/ftxm0tO3b9+r/2+1WpGTk+PCqMiTqYKCoB09GlAq5Q6lcUoltGPGQBUUJHckLsPEiIiIiNzOxYsX3XYZnUqlQu/eva/+XaFQ4MKFC64Mizxc0IQ/ARaL3GE0zmJB8IQ/yR2FS8n/E4eIiIjoOrm5ubLPGJWXl+PkyZOS9l69esHH53/n0VitVpvFGYga4pucDO8ePQB3rfYmCPDu2RM+ffrIHYlLMTEiIiIityKKIi5evCh3GDhw4IDN5OzaZXR1Lly4IHv1PPIcgiBA/8QswF2/ZkQR+lkz202Z7jpMjIiIiMitVFRUwGg0yh0GDhw4IGkLDAxEdHS0pN1oNLIAA7WIJiUF2rFj3W+vkUIB7e1joUlJkTsSl2NiRERERG7FZDLJHQLOnj2LwsJCSXtycnKD76KbPaUEM7mNDs8/B6VG4z5L6gQBSq0WHZ57Tu5IZMHEiIiIiNyKxQ02pdsquiAIApKTkxt8hokRtZQqKAjh/3jRfZbUiSLCF/2jXVWiu5aHFFEnIiKi9kLpBkuLBg4ciP79+9drU6lU0Ol0DT6j8pSzacitaEaMgP6JJ5D/2mtyhwL97NnQpKbKHYZs+B1MREREbsXLy0vuENCxY8cWP8PEiFor5JGHYa2sROF778kXw8MPI+Th6bKN7w64lI6IiIjcir+/P9RqtdxhtIharYa/v7/cYZCHEgQB+tlPQD97dl2DqwYGAOjnzEHYnNntrgrd9ZgYERERkVsRBAHh4eFyh9EinTp1avcvKsk+giAg9JGHEfnWm1DqdICzDzhWKKDU6RD51psIbeczRXWYGBEREZHbiYyMhMLZLwwdRKFQICIiQu4wqI3QpKaia/paaEePrm1wdMJ9pT/tmNGIzUhv13uKrucZP3GIiIioXQkPD7d5uKo7slqt6NSpk9xhUBuiCgpCxCv/RuRbb8K7e/faRnuLklx53rt7d0S+/RYi/v1vKAMD7Yy0beEuQSIiInI7MTExUCgUHpEcKRQKm4e+EtlLk5qKgJQUVB88iKJPP4Nh7VrAbAZUqtr/NqXuPpUK2rFjEDxhAnySkrjsswFMjIiIiMjt+Pv7IyEhAVlZWW6dHCkUCiQmJrLwAjmNIAjwTU5GRHIyOsx/BpW7d6M6MxNVhw+jOjML1ooKyTMKf3/4JCbANykJPgkJ8Bs4sN2eTdQSTIyIiIjILd144404fPiw3GE0ymq14oYbbpA7DGonVEFB0KalQZuWBgAQRRGWoiKI1dWwGo1QqNUQfHygDA7mrFArMDEiIiIitxQZGYmwsDDk5+dDFEW5w5EQBAFhYWGIjIyUOxRqpwRBgCokRO4w2gwWXyAiIiK3JAgCUlJS3DIpAmrfrR8+fDjfmSdqI5gYERERkduKi4tDYmKi2yUfgiCgd+/eiIuLkzsUInIQJkZERETk1saMGQMfHx+5w6jHx8cHo+vOmSGiNoGJEREREbk1Pz8/3HnnnXKHUc+4cePg5+cndxhE5EBMjIiIiMjt9erVCykpKXKHAQBITU3lEjqiNoiJEREREXmEm2++GTfddJOsMdx0002yx0BEzsFy3UREROQRBEFAamoqvL29sWnTJpePn5qaiptvvtnl4xKRazAxIiIiIo8hCAJuvvlm6PV6rF69GtXV1U4t5y0IAnx8fDBu3DgunyNq45gYERERkceJi4tDVFQU1q5di8zMTAiC4NAEqa6/xMREjB49moUWiNoBJkZERETkkfz8/HDvvfciMTERmzdvRl5eHhQKBaxWa6v7rHter9cjJSWFs0RE7QgTIyIiIvJocXFx6NmzJ3Jzc/Hrr78iMzMTVqu12UlS3X0KhQKJiYm48cYbERER4XaHyhKRcwmiMxfmysBgMECn06G0tBRarVbucIiIiMjFKioqkJOTgwsXLuD8+fO4cOECjEaj5D61Wo1OnTohIiICnTp1QnR0NPz9/WWImIicpSW5AWeMiIiIqE3x9/dHQkICEv5/e/cW0vT/x3H8tbmmku6nkiXaUrqoKCrCmHgReTFU8EYIAhE6INRFB6IuiqgUIrIQCqqbIiovKu1C6BxlRhfZAStIo4vAIBQNS93WLmr6+V/8yP/ff2ZO5zb9Ph+wC7/7bL4HL4evfQ9bsUKSZIzR9+/fFQqFFAqF5HA45HA4NHfuXPYKARhBMQIAALOazWZTSkpKrMcAEOf4glcAAAAAlkcxAgAAAGB5FCMAAAAAlkcxAgAAAGB5FCMAAAAAlkcxAgAAAGB5FCMAAAAAlkcxAgAAAGB5FCMAAAAAlueI9QCRZoyRJPl8vhhPAgAAACCWfnWCXx1hPLOuGPn9fkmS2+2O8SQAAAAA4oHf79c///wz7hqbmUh9mkGGh4fV3d2t1NRU2Wy2WI8zI/h8Prndbn3+/FkulyvW42AWIFOINDKFSCNTiDQyFZ+MMfL7/crOzpbdPv5ZRLNuj5HdbtfChQtjPcaM5HK5+ENGRJEpRBqZQqSRKUQamYo/f9tT9AsXXwAAAABgeRQjAAAAAJaXUFNTUxPrIRB7CQkJKioqksMx646uRIyQKUQamUKkkSlEGpma2WbdxRcAAAAAIFwcSgcAAADA8ihGAAAAACyPYgQAAADA8ihGAAAAACyPYgQAAADA8ihGFvXt2zdVVlbK5XIpLS1NVVVVCgQC467ftWuXli5dquTkZC1atEi7d+/W4OBgFKdGPAs3U5J0/vx5FRUVyeVyyWazaWBgIErTIh6dO3dOeXl5SkpKUkFBgV6+fDnu+hs3bmjZsmVKSkrSypUrdffu3ShNipkinEx1dHRow4YNysvLk81m0+nTp6M4KWaKcDJ14cIFrVu3Tunp6UpPT5fX6/3r+xpii2JkUZWVlero6NDDhw91+/ZtPX36VNu2bfvj+u7ubnV3d6uurk7t7e26fPmy7t+/r6qqqihOjXgWbqYkKRgMqrS0VAcPHozSlIhXDQ0N2rt3r6qrq/X69WutXr1aJSUl+vLly5jrnz17poqKClVVVenNmzcqLy9XeXm52tvbozw54lW4mQoGg1q8eLFqa2uVlZUV5WkxE4SbqSdPnqiiokItLS1qbW2V2+1WcXGxurq6ojw5JszAct6/f28kmVevXo1su3fvnrHZbKarq2vCz9PY2GicTqf5+fPndIyJGWSqmWppaTGSTH9//3SOiTjm8XjMjh07Rn4eGhoy2dnZ5vjx42Ou37hxoykrKxu1raCgwGzfvn1a58TMEW6m/ldubq45derUdI6HGWgqmTLGmFAoZFJTU82VK1ema0RMEXuMLKi1tVVpaWlau3btyDav1yu73a4XL15M+HkGBwflcrn4dmdELFOwph8/fqitrU1er3dkm91ul9frVWtr65iPaW1tHbVekkpKSv64HtYymUwB44lEpoLBoH7+/KmMjIzpGhNTRDGyoJ6eHs2fP3/UNofDoYyMDPX09EzoOfr6+nT06NG/HioFa4hEpmBdfX19Ghoa0oIFC0ZtX7BgwR/z09PTE9Z6WMtkMgWMJxKZ2r9/v7Kzs3/7UAfxg2I0ixw4cEA2m23c24cPH6b8e3w+n8rKyrR8+XLV1NRMfXDErWhlCgCA2ay2tlbXr19XU1OTkpKSYj0O/oBjoGaRffv2acuWLeOuWbx4sbKysn47UTAUCunbt29/PeHU7/ertLRUqampampq0pw5c6Y6NuJYNDIFzJs3TwkJCert7R21vbe394/5ycrKCms9rGUymQLGM5VM1dXVqba2Vo8ePdKqVaumc0xMEcVoFsnMzFRmZuZf1xUWFmpgYEBtbW3Kz8+XJD1+/FjDw8MqKCj44+N8Pp9KSkqUmJiomzdv8omHBUx3pgBJcjqdys/PV3Nzs8rLyyVJw8PDam5u1s6dO8d8TGFhoZqbm7Vnz56RbQ8fPlRhYWFUZkZ8m0ymgPFMNlMnT57UsWPH9ODBg1Hn4SI+JdRwLJTlZGZm6sWLF7p27ZrWrFmjT58+afv27SouLh7ZO9DV1SWPxyOPx6OcnBz5fD4VFxcrGAzq6tWrMsYoEAgoEAgoOTlZdjtHZVrZZDIl/XueyMePH9Xe3q5bt26prKxM/f39cjqdSk5OjuErQrS5XC4dPnxYbrdbiYmJOnz4sN6+fauLFy8qJSVFmzZt0suXL0eOzc/JydGhQ4c0d+5cZWRk6OzZs2poaNDFixd/O98N1hRupn78+KF3796pp6dH9fX1ysvL0/z58xUIBDhZHpLCz9SJEyd05MgR1dfXa9WqVSP/N0n/Fi3EoVhfFg+x8fXrV1NRUWFSUlKMy+UyW7duNX6/f+T+zs5OI8m0tLQYY/57OeWxbp2dnbF5EYgr4WbKGGOqq6vHzNSlS5ei/wIQc2fOnDGLFi0yTqfTeDwe8/z585H71q9fbzZv3jxqfWNjo1myZIlxOp1mxYoV5s6dO1GeGPEunEz9eo/6/9v69eujPzjiVjiZys3NHTNT1dXV0R8cE2Izxpgo9jAAAAAAiDsc/wQAAADA8ihGAAAAACyPYgQAAADA8ihGAAAAACyPYgQAAADA8ihGAAAAACyPYgQAAADA8ihGAAAAACyPYgQAAADA8ihGAAAAACyPYgQAAADA8v4DCJHZL+nvPXYAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -577,7 +643,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.18" + "version": "3.8.14" } }, "nbformat": 4, From 069857d2e32e9a09b595dcb2ef157f338332a833 Mon Sep 17 00:00:00 2001 From: deusebio Date: Sun, 24 Nov 2024 23:03:41 +0100 Subject: [PATCH 18/31] [2nd Edition][Chapter 8] Introduce Poetry (#13) --- .github/workflows/ci.yaml | 2 + Chapter08/01_nlp_graph_creation.ipynb | 2371 +++++---- ...supervised_classification-embeddings.ipynb | 134 +- ...vised_classification_graphSAGE-TFIDF.ipynb | 1712 ++++++ ...ised_classsification_graphSAGE-TFIDF.ipynb | 1884 ------- .../04_supervised_classification_pyg.ipynb | 911 ++++ Chapter08/poetry.lock | 4680 +++++++++++++++++ Chapter08/pyproject.toml | 46 + Chapter08/requirements.txt | 182 +- Chapter08/subject_object_extraction.py | 4 +- docker/Dockerfile | 6 + 11 files changed, 8851 insertions(+), 3081 deletions(-) create mode 100644 Chapter08/03_supervised_classification_graphSAGE-TFIDF.ipynb delete mode 100644 Chapter08/03_supervised_classsification_graphSAGE-TFIDF.ipynb create mode 100644 Chapter08/04_supervised_classification_pyg.ipynb create mode 100644 Chapter08/poetry.lock create mode 100644 Chapter08/pyproject.toml diff --git a/.github/workflows/ci.yaml b/.github/workflows/ci.yaml index 7d87fc6..3f9b6a8 100644 --- a/.github/workflows/ci.yaml +++ b/.github/workflows/ci.yaml @@ -29,6 +29,8 @@ jobs: folder: Chapter06 - name: chap7 folder: Chapter07 + - name: chap8 + folder: Chapter08 runs-on: ubuntu-latest name: Image ${{ matrix.chapter.name }} steps: diff --git a/Chapter08/01_nlp_graph_creation.ipynb b/Chapter08/01_nlp_graph_creation.ipynb index 6801cba..6e580d4 100644 --- a/Chapter08/01_nlp_graph_creation.ipynb +++ b/Chapter08/01_nlp_graph_creation.ipynb @@ -38,7 +38,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -50,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -62,6 +62,33 @@ "cell_type": "code", "execution_count": 4, "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[nltk_data] Downloading package reuters to /home/deusebio/nltk_data...\n" + ] + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nltk.download('reuters')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, "outputs": [], "source": [ "from nltk.corpus import reuters" @@ -69,7 +96,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -81,7 +108,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -90,7 +117,7 @@ "'SUBROTO SAYS INDONESIA SUPPORTS TIN PACT EXTENSION Mines and Energy Minister Subroto confirmed Indonesian support for an extension of the sixth International Tin Agreement (ITA), but said a new pact was not necessary. Asked by Reuters to clarify his statement on Monday in which he said the pact should be allowed to lapse, Subroto said Indonesia was ready to back extension of the ITA. \"We can support extension of the sixth agreement,\" he said. \"But a seventh accord we believe to be unnecessary.\" The sixth ITA will expire at the end of June unless a two-thirds majority of members vote for an extension. '" ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -101,7 +128,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -110,7 +137,7 @@ "90" ] }, - "execution_count": 7, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -122,7 +149,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -203,7 +230,7 @@ "test/14833 [palm-oil, veg-oil] " ] }, - "execution_count": 8, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -221,7 +248,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -230,7 +257,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -245,7 +272,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -254,26 +281,27 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "en 9899\n", - "sv 432\n", - "de 371\n", + "language\n", + "en 9893\n", + "sv 443\n", + "de 364\n", "sw 29\n", - "so 23\n", + "so 24\n", + "nl 8\n", "pt 7\n", - "nl 7\n", - "vi 6\n", - "et 5\n", - "ca 2\n", - "Name: language, dtype: int64" + "vi 7\n", + "da 3\n", + "et 2\n", + "Name: count, dtype: int64" ] }, - "execution_count": 12, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -284,7 +312,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -372,7 +400,7 @@ "test/14833 [palm-oil, veg-oil] en " ] }, - "execution_count": 13, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -390,7 +418,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -399,7 +427,7 @@ "text": [ " % Total % Received % Xferd Average Speed Time Time Time Current\n", " Dload Upload Total Spent Left Speed\n", - "100 916k 100 916k 0 0 547k 0 0:00:01 0:00:01 --:--:-- 548k\n" + "100 916k 100 916k 0 0 3026k 0 --:--:-- --:--:-- --:--:-- 3023k\n" ] } ], @@ -409,7 +437,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -430,7 +458,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -439,12 +467,13 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ + "language\n", "en 10278\n", "de 90\n", "ja 73\n", @@ -455,10 +484,10 @@ "fr 27\n", "eu 20\n", "eo 12\n", - "Name: language, dtype: int64" + "Name: count, dtype: int64" ] }, - "execution_count": 17, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -469,7 +498,38 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "language\n", + "en 10278\n", + "de 90\n", + "ja 73\n", + "it 67\n", + "sv 52\n", + "zh 48\n", + "es 31\n", + "fr 27\n", + "eu 20\n", + "eo 12\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "corpus[\"language\"].value_counts().head(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -478,7 +538,7 @@ "'USDA - U.S. 1986/87 ENDING CORN STOCKS 5,240 MLN BU, WHEAT 1,848 MLN, SOYBEANS 610 MLN USDA - U.S. 1986/87 ENDING CORN STOCKS 5,240 MLN BU, WHEAT 1,848 MLN, SOYBEANS 610 MLN '" ] }, - "execution_count": 18, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -496,7 +556,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -517,7 +577,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -526,7 +586,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -535,7 +595,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -544,7 +604,7 @@ "\"THAI TRADE DEFICIT WIDENS IN FIRST QUARTER Thailand's trade deficit widened to 4.5 billion baht in the first quarter of 1987 from 2.1 billion a year ago, the Business Economics Department said. It said Janunary/March imports rose to 65.1 billion baht from 58.7 billion. Thailand's improved business climate this year resulted in a 27 pct increase in imports of raw materials and semi-finished products. The country's oil import bill, however, fell 23 pct in the first quarter due to lower oil prices. The department said first quarter exports expanded to 60.6 billion baht from 56.6 billion. Export growth was smaller than expected due to lower earnings from many key commodities including rice whose earnings declined 18 pct, maize 66 pct, sugar 45 pct, tin 26 pct and canned pineapples seven pct. Products registering high export growth were jewellery up 64 pct, clothing 57 pct and rubber 35 pct. \"" ] }, - "execution_count": 22, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -555,7 +615,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ @@ -564,18 +624,13 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/html": [ - "
THAI TRADE DEFICIT WIDENS IN \n", - "\n", - " FIRST QUARTER\n", - " DATE\n", - "\n", - " \n", + "
THAI TRADE DEFICIT WIDENS IN FIRST QUARTER \n", "\n", " Thailand\n", " GPE\n", @@ -595,17 +650,27 @@ " 2.1 billion\n", " MONEY\n", "\n", - " a year ago, \n", + " \n", + "\n", + " a year ago\n", + " DATE\n", + "\n", + ", \n", "\n", " the Business Economics Department\n", " ORG\n", "\n", " said. It said \n", - "\n", + "\n", " Janunary\n", - " GPE\n", + " PERSON\n", + "\n", + "/\n", + "\n", + " March\n", + " DATE\n", "\n", - "/March imports rose to \n", + " imports rose to \n", "\n", " 65.1 billion baht\n", " MONEY\n", @@ -628,12 +693,12 @@ " resulted in a \n", "\n", " 27 pct\n", - " MONEY\n", + " QUANTITY\n", "\n", " increase in imports of raw materials and semi-finished products. The country's oil import bill, however, fell \n", "\n", " 23 pct\n", - " MONEY\n", + " QUANTITY\n", "\n", " in \n", "\n", @@ -658,37 +723,42 @@ ". Export growth was smaller than expected due to lower earnings from many key commodities including rice whose earnings declined \n", "\n", " 18 pct\n", - " MONEY\n", + " QUANTITY\n", "\n", ", maize \n", "\n", " 66 pct\n", - " MONEY\n", + " QUANTITY\n", "\n", ", sugar \n", "\n", " 45 pct\n", - " MONEY\n", + " QUANTITY\n", "\n", ", tin \n", "\n", " 26 pct\n", - " MONEY\n", + " QUANTITY\n", "\n", " and canned pineapples \n", "\n", " seven pct\n", - " MONEY\n", + " QUANTITY\n", + "\n", + ". Products registering high export growth were jewellery up \n", + "\n", + " 64 pct\n", + " QUANTITY\n", "\n", - ". Products registering high export growth were jewellery up 64 pct, clothing \n", + ", clothing \n", "\n", " 57 pct\n", - " MONEY\n", + " QUANTITY\n", "\n", " and rubber \n", "\n", " 35 pct\n", - " MONEY\n", + " QUANTITY\n", "\n", ".
" ], @@ -713,7 +783,7 @@ }, { "cell_type": "code", - "execution_count": 162, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -741,8 +811,6 @@ "
\n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -750,8 +818,6 @@ " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -761,8 +827,6 @@ " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -770,8 +834,6 @@ " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -779,8 +841,6 @@ " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -788,8 +848,6 @@ " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -797,8 +855,6 @@ " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", "
labellanguageparsedtripletskeywords
id
[trade]en(ASIAN, EXPORTERS, FEAR, DAMAGE, FROM, U.S.-JA...[(EXPORTERS, (FEAR, False), DAMAGE), (Japan, (...[(trading, 0.461513063953854), (said, 0.315985...
test/14828[grain]en(CHINA, DAILY, SAYS, VERMIN, EAT, 7, -, 12, PC...[(VERMIN, (EAT, False), STOCKS), (vermin, (con...[(vermin, 0.3120614380287176), (daily, 0.26110...
test/14829[crude, nat-gas]en(JAPAN, TO, REVISE, LONG, -, TERM, ENERGY, DEM...[(JAPAN, (REVISE, False), DEMAND), (Industry, ...[(energy, 0.3857636092660117), (demand, 0.3479...
test/14832[corn, grain, rice, rubber, sugar, tin, trade]en(THAI, TRADE, DEFICIT, WIDENS, IN, FIRST, QUAR...[(Products, (registering, False), growth), (Pr...[(pct, 0.5457455609144312), (export, 0.2656069...
test/14833[palm-oil, veg-oil]en(INDONESIA, SEES, CPO, PRICE, RISING, SHARPLY,...[(INDONESIA, (SEES, False), PRICE), (Indonesia...[(indonesia, 0.2410428235502938), (harahap, 0....
\n", @@ -821,32 +877,16 @@ "test/14832 [corn, grain, rice, rubber, sugar, tin, trade] en \n", "test/14833 [palm-oil, veg-oil] en \n", "\n", - " parsed \\\n", - "id \n", - "test/14826 (ASIAN, EXPORTERS, FEAR, DAMAGE, FROM, U.S.-JA... \n", - "test/14828 (CHINA, DAILY, SAYS, VERMIN, EAT, 7, -, 12, PC... \n", - "test/14829 (JAPAN, TO, REVISE, LONG, -, TERM, ENERGY, DEM... \n", - "test/14832 (THAI, TRADE, DEFICIT, WIDENS, IN, FIRST, QUAR... \n", - "test/14833 (INDONESIA, SEES, CPO, PRICE, RISING, SHARPLY,... \n", - "\n", - " triplets \\\n", - "id \n", - "test/14826 [(EXPORTERS, (FEAR, False), DAMAGE), (Japan, (... \n", - "test/14828 [(VERMIN, (EAT, False), STOCKS), (vermin, (con... \n", - "test/14829 [(JAPAN, (REVISE, False), DEMAND), (Industry, ... \n", - "test/14832 [(Products, (registering, False), growth), (Pr... \n", - "test/14833 [(INDONESIA, (SEES, False), PRICE), (Indonesia... \n", - "\n", - " keywords \n", + " parsed \n", "id \n", - "test/14826 [(trading, 0.461513063953854), (said, 0.315985... \n", - "test/14828 [(vermin, 0.3120614380287176), (daily, 0.26110... \n", - "test/14829 [(energy, 0.3857636092660117), (demand, 0.3479... \n", - "test/14832 [(pct, 0.5457455609144312), (export, 0.2656069... \n", - "test/14833 [(indonesia, 0.2410428235502938), (harahap, 0.... " + "test/14826 (ASIAN, EXPORTERS, FEAR, DAMAGE, FROM, U.S.-JA... \n", + "test/14828 (CHINA, DAILY, SAYS, VERMIN, EAT, 7, -, 12, PC... \n", + "test/14829 (JAPAN, TO, REVISE, LONG, -, TERM, ENERGY, DEM... \n", + "test/14832 (THAI, TRADE, DEFICIT, WIDENS, IN, FIRST, QUAR... \n", + "test/14833 (INDONESIA, SEES, CPO, PRICE, RISING, SHARPLY,... " ] }, - "execution_count": 162, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -857,7 +897,7 @@ }, { "cell_type": "code", - "execution_count": 164, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -890,7 +930,18 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "corpus = pd.read_pickle(\"corpus.p\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -899,7 +950,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -908,7 +959,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -962,7 +1013,7 @@ " [grain]\n", " en\n", " (CHINA, DAILY, SAYS, VERMIN, EAT, 7, -, 12, PC...\n", - " [(VERMIN, (EAT, False), STOCKS), (vermin, (con...\n", + " [(STOCKS, (showed, False), consume), (paper, (...\n", " \n", " \n", " test/14829\n", @@ -970,7 +1021,7 @@ " [crude, nat-gas]\n", " en\n", " (JAPAN, TO, REVISE, LONG, -, TERM, ENERGY, DEM...\n", - " [(JAPAN, (REVISE, False), DEMAND), (Industry, ...\n", + " [(Ministry, (revise, False), outlook), (MITI, ...\n", " \n", " \n", " test/14832\n", @@ -978,7 +1029,7 @@ " [corn, grain, rice, rubber, sugar, tin, trade]\n", " en\n", " (THAI, TRADE, DEFICIT, WIDENS, IN, FIRST, QUAR...\n", - " [(Products, (registering, False), growth), (Pr...\n", + " [(Products, (registering, False), growth), (re...\n", " \n", " \n", " test/14833\n", @@ -986,7 +1037,7 @@ " [palm-oil, veg-oil]\n", " en\n", " (INDONESIA, SEES, CPO, PRICE, RISING, SHARPLY,...\n", - " [(INDONESIA, (SEES, False), PRICE), (Indonesia...\n", + " [(oil, (told, False), reporters), (Prices, (ar...\n", " \n", " \n", "\n", @@ -1020,13 +1071,13 @@ " triplets \n", "id \n", "test/14826 [(EXPORTERS, (FEAR, False), DAMAGE), (Japan, (... \n", - "test/14828 [(VERMIN, (EAT, False), STOCKS), (vermin, (con... \n", - "test/14829 [(JAPAN, (REVISE, False), DEMAND), (Industry, ... \n", - "test/14832 [(Products, (registering, False), growth), (Pr... \n", - "test/14833 [(INDONESIA, (SEES, False), PRICE), (Indonesia... " + "test/14828 [(STOCKS, (showed, False), consume), (paper, (... \n", + "test/14829 [(Ministry, (revise, False), outlook), (MITI, ... \n", + "test/14832 [(Products, (registering, False), growth), (re... \n", + "test/14833 [(oil, (told, False), reporters), (Prices, (ar... " ] }, - "execution_count": 27, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -1037,20 +1088,20 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "edge_list = [\n", " {\"id\": _id, \"source\": source.lemma_.lower(), \"target\": target.lemma_.lower(), \"edge\": edge.lemma_.lower()}\n", - " for _id, triplets in corpus[\"triplets\"].iteritems()\n", + " for _id, triplets in corpus[\"triplets\"].items()\n", " for (source, (edge, neg), target) in triplets\n", "]" ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -1059,26 +1110,27 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "be 7620\n", - "have 2675\n", - "include 2010\n", - "tell 1729\n", - "buy 1464\n", - "sell 1385\n", - "say 1216\n", - "take 1172\n", - "make 1151\n", - "give 1029\n", - "Name: edge, dtype: int64" + "edge\n", + "be 5476\n", + "have 2151\n", + "include 1712\n", + "tell 1419\n", + "buy 1177\n", + "sell 1162\n", + "take 976\n", + "make 950\n", + "give 944\n", + "acquire 790\n", + "Name: count, dtype: int64" ] }, - "execution_count": 30, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -1089,7 +1141,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -1098,7 +1150,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -1108,16 +1160,16 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "7576" + "7450" ] }, - "execution_count": 33, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -1128,7 +1180,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -1142,7 +1194,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ @@ -1164,7 +1216,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -1173,10 +1225,10 @@ "text": [ "Name: \n", "Type: MultiDiGraph\n", - "Number of nodes: 7576\n", - "Number of edges: 72263\n", - "Average in degree: 9.5384\n", - "Average out degree: 9.5384\n" + "Number of nodes: 36\n", + "Number of edges: 52\n", + "Average in degree: 1.4444\n", + "Average out degree: 1.4444\n" ] } ], @@ -1186,7 +1238,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -1195,52 +1247,48 @@ "text": [ "Name: \n", "Type: MultiDiGraph\n", - "Number of nodes: 7576\n", - "Number of edges: 72263\n", - "Average in degree: 9.5384\n", - "Average out degree: 9.5384\n" + "Number of nodes: 36\n", + "Number of edges: 52\n", + "Average in degree: 1.4444\n", + "Average out degree: 1.4444\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "/Users/deusebio/.pyenv/versions/3.7.6/envs/ml-book-7/lib/python3.7/site-packages/matplotlib/axes/_axes.py:6694: RuntimeWarning: invalid value encountered in multiply\n", + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIwAAAHaCAYAAABiudLiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAkGUlEQVR4nO3df4yl910f+vcHbw0ogYOEXauyHdbVmoCLK4WuDBV/3EWklR3ftSug1G64bZCbUaqG/sCquhEo7U1VXaeI9irUEAZhmaIQ41oV7NZGrtRmld4qQXZKlcS2XK1cF69bXYck90gON7jb+7l/zLic73jXPrszc5758XpJI815zjPPvPfzzMzOvvf7PKe6OwAAAADwum+YOgAAAAAAe4vCCAAAAICBwggAAACAgcIIAAAAgIHCCAAAAICBwggAAACAgcIIAGCPq6qHquqVqvriJZ6vqvpYVZ2rqs9X1feuOiMAcLAojAAA9r6Hk9z+Js/fkeTmzbe1JL+4gkwAwAGmMAIA2OO6+9NJvvImu9yd5J/3hs8m+baq+hOrSQcAHEQKIwCA/e/6JC8tPD6/uQ0A4IocmTpAklxzzTV99OjRXTn21772tbztbW/blWPzRua9ema+Wua9Wua9Wrs578997nO/393X7srBuSxVtZaNy9bytre97c9813d918SJAIDdsp3fwfZEYXT06NE8/fTTu3Lss2fP5sSJE7tybN7IvFfPzFfLvFfLvFdrN+ddVf9lVw7M615OcuPC4xs2t71Bd68nWU+S48eP9279DgYATG87v4O5JA0AYP87neSvbL5a2vcnmXf3f5s6FACwf+2JFUYAAFxaVX0yyYkk11TV+SR/P8kfS5Lu/niSJ5K8J8m5JH+Q5CemSQoAHBSTFkZVdTLJyWPHjk0ZAwBgT+vue9/i+U7yN1YUBwA4BCa9JK27z3T32mw2mzIGAAAAAAvcwwgAAACAgcIIAAAAgIHCCAAAAICBwggAAACAgcIIAAAAgIHCCAAAAICBwggAAACAwaSFUVWdrKr1+Xw+ZQwAAAAAFkxaGHX3me5em81mU8YAAAAAYIFL0gAAAAAYKIwAAAAAGCiMAAAAABgojAAAAAAYKIwAAAAAGByZOsBu+8LL87zv1OOTZnjxgTsn/fwAAAAAl8MKIwAAAAAGCiMAAAAABgojAAAAAAaTFkZVdbKq1ufz+ZQxAAAAAFgwaWHU3We6e202m00ZAwAAAIAFLkkDAAAAYKAwAgAAAGCgMAIAAABgoDACAAAAYKAwAgAAAGCgMAIAAABgoDACAAAAYKAwAgAAAGCgMAIAAABgoDACAAAAYKAwAgAAAGAwaWFUVSeran0+n08ZAwAAAIAFkxZG3X2mu9dms9mUMQAAAABY4JI0AAAAAAYKIwAAAAAGCiMAAAAABgojAAAAAAYKIwAAAAAGCiMAAAAABgojAAAAAAYKIwAAAAAGCiMAAAAABgojAAAAAAYKIwAAAAAGCiMAAAAABgojAAAAAAYKIwAAAAAGCiMAAAAABgojAAAAAAYKIwAAAAAGkxZGVXWyqtbn8/mUMQAAAABYMGlh1N1nunttNptNGQMAAACABS5JAwAAAGCgMAIAAABgoDACAAAAYKAwAgAAAGCgMAIAAABgoDACAAAAYKAwAgAAAGCgMAIAAABgoDACAAAAYKAwAgAAAGCgMAIAAABgoDACAAAAYKAwAgAAAGCgMAIAAABgoDACAAAAYKAwAgAAAGCgMAIAAABgcGTqAIfB0VOPTx0hLz5w59QRAAAAgH3CCiMAAAAABgojAAAAAAYKIwAAAAAGCiMAAAAABgojAAAAAAYKIwAAAAAGCiMAAAAABgojAIB9oKpur6rnq+pcVZ26yPPvqKpPVdXvVtXnq+o9U+QEAA4GhREAwB5XVVcleTDJHUluSXJvVd2yZbefSfJod78ryT1JfmG1KQGAg2THC6Oq+u6q+nhVPVZVf32njw8AcAjdluRcd7/Q3a8leSTJ3Vv26STfuvn+LMl/XWE+AOCAWaowqqqHquqVqvrilu1vWBrd3c919weS/FiSH9j5yAAAh871SV5aeHx+c9uif5Dkx6vqfJInkvzkaqIBAAfRsiuMHk5y++KGN1saXVV3JXk8G7+sAACw++5N8nB335DkPUl+rare8LteVa1V1dNV9fSXvvSllYcEAPaHpQqj7v50kq9s2XzJpdHdfbq770jy3p0MCwBwSL2c5MaFxzdsblt0X5JHk6S7P5Pkm5Jcs/VA3b3e3ce7+/i11167S3EBgP3uyDY+9mJLo7+vqk4k+eEk35g3WWFUVWtJ1pLkuuuuy9mzZ7cR5dKu++bk/lsv7Mqx95Pdmu9Wr7766so+FxvMfLXMe7XMe7XMe097KsnNVXVTNoqie5L85S37/F6SH0rycFV9dzYKI0uIAIArsp3C6KK6+2ySs0vst55kPUmOHz/eJ06c2OkoSZKf/8Rv5ee+sON/zH3nxfeeWMnnOXv2bHbrXHJxZr5a5r1a5r1a5r13dfeFqvpgkieTXJXkoe5+pqo+kuTp7j6d5P4kv1xVfycbN8B+X3f3dKkBgP1sO03KMkujAQDYAd39RLas3u7uDy+8/2y84AgAsEOWven1xfzPpdFVdXU2lkaf3plYAAAAAExlqcKoqj6Z5DNJ3llV56vqvu6+kOT1pdHPJXm0u5/ZvagAAAAArMJSl6R1972X2P6GpdGXo6pOJjl57NixKz0EAAAAADtsO5ekbVt3n+nutdlsNmUMAAAAABZMWhgBAAAAsPcojAAAAAAYKIwAAAAAGCiMAAAAABhMWhhV1cmqWp/P51PGAAAAAGCBV0kDAAAAYOCSNAAAAAAGCiMAAAAABgojAAAAAAYKIwAAAAAGXiUNAAAAgMGRKT95d59Jcub48ePvnzLHYXD01OMr+Tz333oh77vE53rxgTtXkgEAAADYHpekAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwmLQwqqqTVbU+n8+njAEAAADAgkkLo+4+091rs9lsyhgAAAAALHBJGgAAAAADhREAAAAAA4URAAAAAAOFEQAAAAADhREAAAAAgyNTB+DwOHrq8akj5MUH7pw6AgAAAOx5VhgBAAAAMJi0MKqqk1W1Pp/Pp4wBAAAAwIJJC6PuPtPda7PZbMoYAAAAACxwSRoAAAAAA4URAAAAAAOFEQAAAAADhREAAAAAA4URAAAAAAOFEQAAAAADhREAAAAAA4URAAAAAINJC6OqOllV6/P5fMoYAAAAACyYtDDq7jPdvTabzaaMAQAAAMACl6QBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADA4MnUAWKWjpx6fOkJefODOqSMAAADAm7LCCAAAAICBwggAAACAgcIIAAAAgMGkhVFVnayq9fl8PmUMAAAAABZMWhh195nuXpvNZlPGAAAAAGCBS9IAAAAAGCiMAAAAABgojAAAAAAYKIwAAAAAGCiMAAAAABgojAAAAAAYKIwAAAAAGCiMAAAAABgojAAAAAAYKIwAAAAAGCiMAAAAABgojAAAAAAYKIwAAAAAGCiMAAAAABgojAAAAAAYKIwAAAAAGCiMAAAAABhMWhhV1cmqWp/P51PGAAAAAGDBpIVRd5/p7rXZbDZlDAAAAAAWuCQNAAAAgIHCCAAAAIDBkakDwGFz9NTjO3q8+2+9kPdd5jFffODOHc0AAADAwWKFEQDAPlBVt1fV81V1rqpOXWKfH6uqZ6vqmar69VVnBAAODiuMAAD2uKq6KsmDSf5ckvNJnqqq09397MI+Nyf5UJIf6O6vVtUfnyYtAHAQWGEEALD33ZbkXHe/0N2vJXkkyd1b9nl/kge7+6tJ0t2vrDgjAHCAKIwAAPa+65O8tPD4/Oa2Rd+Z5Dur6t9X1Wer6vaVpQMADhyXpAEAHAxHktyc5ESSG5J8uqpu7e7/Z3GnqlpLspYk73jHO1YcEQDYL6wwAgDY+15OcuPC4xs2ty06n+R0d//37v7PSf5TNgqkQXevd/fx7j5+7bXX7lpgAGB/UxgBAOx9TyW5uapuqqqrk9yT5PSWfX4zG6uLUlXXZOMStRdWmBEAOEAURgAAe1x3X0jywSRPJnkuyaPd/UxVfaSq7trc7ckkX66qZ5N8Ksnf7e4vT5MYANjv3MMIAGAf6O4nkjyxZduHF97vJD+1+QYAsC1WGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMDgydQBg9Y6eenzqCHnxgTunjgAAAMAl7EphVFV/IcmdSb41ya9097/ejc8DAAAAwM5b+pK0qnqoql6pqi9u2X57VT1fVeeq6lSSdPdvdvf7k3wgyV/a2cgAAAAA7KbLuYfRw0luX9xQVVcleTDJHUluSXJvVd2ysMvPbD4PAAAAwD6xdGHU3Z9O8pUtm29Lcq67X+ju15I8kuTu2vDRJL/d3f9h5+ICAAAAsNu2ew+j65O8tPD4fJLvS/KTSd6dZFZVx7r741s/sKrWkqwlyXXXXZezZ89uM8rFXffNyf23XtiVY/NG5r16+3Xmu/U9v9teffXVfZt9PzLv1TJvAABetys3ve7ujyX52Fvss55kPUmOHz/eJ06c2I0o+flP/FZ+7gteDG5V7r/1gnmv2H6d+YvvPTF1hCty9uzZ7NbPK97IvFfLvAEAeN3l3MPoYl5OcuPC4xs2twEAAACwT223MHoqyc1VdVNVXZ3kniSntx8LAAAAgKksXRhV1SeTfCbJO6vqfFXd190XknwwyZNJnkvyaHc/sztRAQAAAFiFpW980t33XmL7E0meuJJPXlUnk5w8duzYlXw4AAAAALtgu5ekbUt3n+nutdlsNmUMAAAAABZMWhgBAAAAsPcojAAAAAAYKIwAAAAAGExaGFXVyapan8/nU8YAAAAAYIGbXgMAAAAwcEkaAAAAAAOFEQAAAAADhREAAAAAA4URAAAAAAOFEQAAAACDSQujqjpZVevz+XzKGAAAAAAsmLQw6u4z3b02m82mjAEAAADAApekAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwmLQwqqqTVbU+n8+njAEAAADAgkkLo+4+091rs9lsyhgAAAAALHBJGgAAAAADhREAAAAAA4URAAAAAAOFEQAAAAADhREAAAAAA4URAAAAAINJC6OqOllV6/P5fMoYAAAAACyYtDDq7jPdvTabzaaMAQAAAMACl6QBAAAAMFAYAQAAADA4MnUA4HA6eurxqSPkxQfunDoCAADAnmSFEQAAAAADhREAAAAAA4URAAAAAAOFEQAAAAADhREAAAAAA4URAAAAAINJC6OqOllV6/P5fMoYAAAAACyYtDDq7jPdvTabzaaMAQAAAMACl6QBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwmLQwqqqTVbU+n8+njAEAAADAgkkLo+4+091rs9lsyhgAAAAALHBJGgDAPlBVt1fV81V1rqpOvcl+P1JVXVXHV5kPADhYFEYAAHtcVV2V5MEkdyS5Jcm9VXXLRfb7liR/K8nvrDYhAHDQKIwAAPa+25Kc6+4Xuvu1JI8kufsi+/3DJB9N8vVVhgMADh6FEQDA3nd9kpcWHp/f3PY/VdX3Jrmxux9fZTAA4GBSGAEA7HNV9Q1J/kmS+5fYd62qnq6qp7/0pS/tfjgAYF9SGAEA7H0vJ7lx4fENm9te9y1JvifJ2ap6Mcn3Jzl9sRtfd/d6dx/v7uPXXnvtLkYGAPYzhREAwN73VJKbq+qmqro6yT1JTr/+ZHfPu/ua7j7a3UeTfDbJXd399DRxAYD9TmEEALDHdfeFJB9M8mSS55I82t3PVNVHququadMBAAfRkakDAADw1rr7iSRPbNn24Uvse2IVmQCAg8sKIwAAAAAGCiMAAAAABgojAAAAAAYKIwAAAAAGCiMAAAAABgojAAAAAAYKIwAAAAAGCiMAAAAABpMWRlV1sqrW5/P5lDEAAAAAWDBpYdTdZ7p7bTabTRkDAAAAgAUuSQMAAABgoDACAAAAYKAwAgAAAGCgMAIAAABgoDACAAAAYHBk6gAAUzl66vHL/pj7b72Q913Bx13Kiw/cuWPHAgAA2ClWGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMNjxwqiq/mRV/UpVPbbTxwYAAABg9y1VGFXVQ1X1SlV9ccv226vq+ao6V1WnkqS7X+ju+3YjLAAAAAC7b9kVRg8nuX1xQ1VdleTBJHckuSXJvVV1y46mAwAAAGDlliqMuvvTSb6yZfNtSc5trih6LckjSe7e4XwAAAAArNiRbXzs9UleWnh8Psn3VdW3J/lHSd5VVR/q7v/jYh9cVWtJ1pLkuuuuy9mzZ7cR5dKu++bk/lsv7MqxeSPzXj0zX62dnvdu/ew7KF599VUzWiHzBgDgddspjC6qu7+c5ANL7LeeZD1Jjh8/3idOnNjpKEmSn//Eb+XnvrDjf0wu4f5bL5j3ipn5au30vF9874kdO9ZBdPbs2ezW3w+8kXkDAPC67bxK2stJblx4fMPmNgAAAAD2se0URk8lubmqbqqqq5Pck+T0zsQCAAAAYCpLFUZV9ckkn0nyzqo6X1X3dfeFJB9M8mSS55I82t3P7F5UAAAAAFZhqRtxdPe9l9j+RJInrvSTV9XJJCePHTt2pYcAAAAAYIdt55K0bevuM929NpvNpowBAAAAwIJJCyMAAAAA9h6FEQAAAAADhREAAAAAA4URAAAAAINJC6OqOllV6/P5fMoYAAAAACzwKmkAAAAADFySBgAAAMBAYQQAAADAQGEEAAAAwEBhBAAAAMDAq6QBAAAAMPAqaQAAAAAMXJIGAAAAwEBhBAAAAMBAYQQAAADAQGEEAAAAwEBhBAAAAMBAYQQAAADAYNLCqKpOVtX6fD6fMgYAAAAACyYtjLr7THevzWazKWMAAAAAsMAlaQAAAAAMFEYAAAAADBRGAAAAAAwURgAAAAAMFEYAAAAADBRGAAAAAAwmLYyq6mRVrc/n8yljAAAAALBg0sKou89099psNpsyBgAAAAALXJIGAAAAwEBhBAAAAMBAYQQAAADAQGEEALAPVNXtVfV8VZ2rqlMXef6nqurZqvp8Vf2bqvqOKXICAAeDwggAYI+rqquSPJjkjiS3JLm3qm7ZstvvJjne3X86yWNJ/vFqUwIAB4nCCABg77stybnufqG7X0vySJK7F3fo7k919x9sPvxskhtWnBEAOEAURgAAe9/1SV5aeHx+c9ul3Jfkt3c1EQBwoB2ZOgAAADunqn48yfEk/8slnl9LspYk73jHO1aYDADYT6wwAgDY+15OcuPC4xs2tw2q6t1JfjrJXd39hxc7UHevd/fx7j5+7bXX7kpYAGD/m7QwqqqTVbU+n8+njAEAsNc9leTmqrqpqq5Ock+S04s7VNW7kvxSNsqiVybICAAcIJMWRt19prvXZrPZlDEAAPa07r6Q5INJnkzyXJJHu/uZqvpIVd21udvPJnl7kn9RVf+xqk5f4nAAAG/JPYwAAPaB7n4iyRNbtn144f13rzwUAHBguYcRAAAAAAOFEQAAAAADhREAAAAAA4URAAAAAAOFEQAAAAADhREAAAAAA4URAAAAAAOFEQAAAAADhREAAAAAA4URAAAAAINJC6OqOllV6/P5fMoYAAAAACyYtDDq7jPdvTabzaaMAQAAAMACl6QBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwUBgBAAAAMFAYAQAAADBQGAEAAAAwODLlJ6+qk0lOHjt2bMoYAIfW0VOPTx0hLz5w59QRAACALSZdYdTdZ7p7bTabTRkDAAAAgAUuSQMAAABgoDACAAAAYKAwAgAAAGCgMAIAAABgoDACAAAAYKAwAgAAAGCgMAIAAABgoDACAAAAYKAwAgAAAGCgMAIAAABgoDACAAAAYKAwAgAAAGCgMAIAAABgoDACAAAAYKAwAgAAAGCgMAIAAABgoDACAAAAYKAwAgAAAGCgMAIAAABgoDACAAAAYKAwAgAAAGCgMAIAAABgoDACAAAAYKAwAgAAAGCgMAIAAABgoDACAAAAYHBkpw9YVW9L8gtJXktytrs/sdOfAwAAAIDds9QKo6p6qKpeqaovbtl+e1U9X1XnqurU5uYfTvJYd78/yV07nBcAAACAXbbsJWkPJ7l9cUNVXZXkwSR3JLklyb1VdUuSG5K8tLnb/9iZmAAAAACsylKFUXd/OslXtmy+Lcm57n6hu19L8kiSu5Ocz0ZptPTxAQAAANg7qruX27HqaJJ/1d3fs/n4R5Pc3t1/bfPx/5bk+5L8vST/LMnXk/xfl7qHUVWtJVlLkuuuu+7PPPLII9v7k1zCK1+Z5//+f3fl0FzEdd8c814xM18t816tVc371utnu/9J9oFXX301b3/723fl2D/4gz/4ue4+visH54odP368n3766aljAAC7pKqu+HewHb/pdXd/LclPLLHfepL1ZOOXlRMnTux0lCTJz3/it/JzX9jxPyaXcP+tF8x7xcx8tcx7tVY17xffe2LXP8d+cPbs2ezW38cAAOwv27lk7OUkNy48vmFzGwAAAAD72HYKo6eS3FxVN1XV1UnuSXJ6Z2IBAAAAMJWlCqOq+mSSzyR5Z1Wdr6r7uvtCkg8meTLJc0ke7e5ndi8qAAAAAKuw1I0huvveS2x/IskTV/rJq+pkkpPHjh270kMAAAAAsMMmfdn77j7T3WuzmVenAQAAANgrJi2MAAAAANh7FEYAAAAADBRGAAAAAAwURgAAAAAMJi2MqupkVa3P5/MpYwAAAACwwKukAQAAADBwSRoAAAAAA4URAAAAAAOFEQAAAAADhREAwD5QVbdX1fNVda6qTl3k+W+sqt/YfP53quroBDEBgAPCq6QBAOxxVXVVkgeT3JHkliT3VtUtW3a7L8lXu/tYkn+a5KOrTQkAHCReJQ0AYO+7Lcm57n6hu19L8kiSu7fsc3eSX918/7EkP1RVtcKMAMAB4pI0AIC97/okLy08Pr+57aL7dPeFJPMk376SdADAgXNk6gBJ8rnPfe73q+q/bD6cZeMXnK0utn2Zbdck+f2dyLmkS+XfrY9fZv8322dH5/03zfut9rmceV9s+xv2W/HMtzvvyz3G1PN+w7YD/jW+3Xm/2fN7+mdK/dGFO3vtZ8pK553dnfd37NJxuUxVtZZkbfPhH1bVF6fMwxus+u8ZluO87D3Oyd7kvOw977zij+zuPfWWZH3Z7ctsS/L0Xsi/Wx+/zP5vto957915X2K+FzsHK5v5dud9uceYet6XOAcH9mt8u/Pe7mwP27y3M8+DMm9vl/W18meTPLnw+ENJPrRlnyeT/NnN949k4xf2eovjOud77M052Ztvzsvee3NO9uab87L33rZzTvbiJWlnLmP7sttWabuf/3I/fpn932wf8975/Xdq3hfbvt/nfbnHmHrey2bYTav8Gt/uvN/seT9Trmz/gz5vlvdUkpur6qaqujrJPUlOb9nndJK/uvn+jyb5t735myIAwOWqg/57RFU93d3Hp85xWJj36pn5apn3apn3apn33lZV70nyfya5KslD3f2Pquoj2fifw9NV9U1Jfi3Ju5J8Jck93f3CWxzTOd9jnJO9yXnZe5yTvcl52Xu2c072xD2Mdtn61AEOGfNePTNfLfNeLfNeLfPew7r7iSRPbNn24YX3v57kL17mYZ3zvcc52Zucl73HOdmbnJe954rPyYFfYQQAAADA5dmL9zACAAAAYEIKIwCAA66qbq+q56vqXFWdusjz31hVv7H5/O9U1dEJYh4qS5yTn6qqZ6vq81X1b6rqO6bIeZi81TlZ2O9Hqqqryn1aVmCZ81JVP7b5/fJMVf36qjMeNkv8/HpHVX2qqn5382fYe6bIeZhU1UNV9UpVffESz1dVfWzznH2+qr53meMqjAAADrCquirJg0nuSHJLknur6pYtu92X5KvdfSzJP03y0dWmPFyWPCe/m+R4d//pJI8l+cerTXm4LHlOUlXfkuRvJfmd1SY8nJY5L1V1c5IPJfmB7v5TSf72qnMeJkt+r/xMkke7+13ZeFXPX1htykPp4SS3v8nzdyS5efNtLckvLnPQQ1cYVdXbqupXq+qXq+q9U+c56KrqT1bVr1TVY1NnOQyq6i9sfm3/RlX9+anzHHRV9d1V9fGqeqyq/vrUeQ6LzZ/jT1fV/zp1loOuqk5U1b/b/Do/MXUerthtSc519wvd/VqSR5LcvWWfu5P86ub7jyX5oaqqFWY8bN7ynHT3p7r7DzYffjbJDSvOeNgs832SJP8wG4Xq11cZ7hBb5ry8P8mD3f3VJOnuV1ac8bBZ5px0km/dfH+W5L+uMN+h1N2fzsYrpF7K3Un+eW/4bJJvq6o/8VbHPRCF0aWWX11iqdwPJ3msu9+f5K6Vhz0ALmfemz9I7psm6cFwmfP+zc2v7Q8k+UtT5N3vLnPez3X3B5L8WJIfmCLvQXCZP8OT5O8leXS1KQ+Oy5x3J3k1yTclOb/qrOyY65O8tPD4/Oa2i+7T3ReSzJN8+0rSHU7LnJNF9yX57V1NxFuek81LOG7s7sdXGeyQW+Z75TuTfGdV/fuq+mxVvdkqC7ZvmXPyD5L8eFWdz8are/7kaqLxJi73750kB6QwykWWX73JUrkb8keD+h8rzHiQPJzl5832PZzLn/fPbD7P5Xs4lzHvqroryePZ8lLXXJaHs+TMq+rPJXk2if89vHIPZ/mv8X/X3Xdko6T731ecE0hSVT+e5HiSn506y2FWVd+Q5J8kuX/qLLzBkWxcZnMiyb1Jfrmqvm3KQOTeJA939w1J3pPk1za/h9hnDsRJu8Tyq0stlTufP1rSeyD+/Kt2mfNmmy5n3ps3M/tokt/u7v+w6qwHweV+fXf36c1/ULvE9Qpd5sxPJPn+JH85yfv98nH5Lmfe3f3/bT7/1STfuMKY7KyXk9y48PiGzW0X3aeqjmTjEoIvryTd4bTMOUlVvTvJTye5q7v/cEXZDqu3OiffkuR7kpytqhez8XfR6XLj6922zPfK+SSnu/u/d/d/TvKfslEgsTuWOSf3ZXM1eHd/Jhsrla9ZSTouZam/d7Y6yL9oX2rJ1b9M8iNV9YtJzkwR7IC66Lyr6tur6uNJ3lVVH5om2oF0qa/vn0zy7iQ/WlUfmCLYAXWpr+8Tm6828EuxwminXXTm3f3T3f23k/x6kl9eKDTYnkt9jf/w5tf3ryX5Z5MkYyc8leTmqrqpqq7Oxg1IT2/Z53SSv7r5/o8m+bfd3SvMeNi85Tmpqncl+aVslEVWVe6+Nz0n3T3v7mu6+2h3H83GfaXu6u6np4l7aCzz8+s3s/EfSqmqa7JxidoLK8x42CxzTn4vyQ8lG/f8zEZh9KWVpmSr00n+yuYCg+9PMu/u//ZWH3Rk93PtLd39tSQ/MXWOw6K7v5yN++mwAt39sSQfmzrHYdHdZ5OcnTjGodTdD0+d4TDo7n+Zjf9oYR/r7gtV9cEkTya5KslD3f1MVX0kydPdfTrJr2TjkoFz2ViBds90iQ++Jc/JzyZ5e5J/sXn/8d/rbvff3CVLnhNWbMnz8mSSP19Vz2bjliN/d/PfIOyCJc/J/dm4NPDvZON+iO/znxC7q6o+mY3i9JrNe0f9/SR/LEm6++PZ+M/t9yQ5l+QPsmQncpALoytacsUVM+/VMu/VMu/VM/PVMu8DrrufyJaVkN394YX3v57kL64612G2xDl598pDHXJvdU62bD+xikws9b3SSX5q840VWOKcPBsvCLNS3X3vWzzfSf7G5R73IF+StsxSOXaOea+Wea+Wea+ema+WeQMAMDgQhdHm8qvPJHlnVZ2vqvs2XxL29aVyzyV5tLufmTLnQWHeq2Xeq2Xeq2fmq2XeAAAso1xKCAAAAMCiA7HCCAAAAICdozACAAAAYKAwAgAAAGCgMAIAAABgoDACAAAAYKAwAgAAAGCgMAIAAABgoDACAAAAYKAwAgAAAGDw/wP82np9qnmmCgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABlAAAAKdCAYAAABcTSStAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdbWyV9d3A8V/Lw0ES8WGMIljTPWRzjRMYYtM5E00qjTMsLlnCdBHSTBZdSdRmmXQK3OzB+mIS3hxDhhK2ZItsZjNLICg2I2axGxXGsqU+xPkA0bVAjFTrVljb+8Vue68/KsLk9ND280muF+d//levXzWeePhynVMxNDQ0FAAAAAAAAAyrLPcAAAAAAAAA5xoBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAABK5Jlnnolly5bFvHnzoqKiIp544okPPWfPnj3xhS98IQqFQnz605+Obdu2lX5QAADgJAIKAABAifT19cWCBQuiWCye1v5XX301brrpprj++uvjwIEDcffdd8ftt98eTz75ZIknBQAAsoqhoaGhcg8BAAAw0VVUVMRvfvObuPnmmz9wz7333hs7duyIv/71r8NrX//61+Ptt9+OXbt2jcWYAADA/5la7gHO1ODgYLz55ptx/vnnR0VFRbnHAQCAkhsaGop33nkn5s2bF5WVbiKfyDo6OqKhoWHEWmNjY9x9990feE5/f3/09/cPPx4cHIy33norPvaxj3nPBADApFCq90zjLqC8+eabUV1dXe4xAABgzB06dCguvfTSco9BCXV3d0dVVdWItaqqqujt7Y1//OMfcd555510TltbW2zYsGGsRgQAgHPW2X7PNO4Cyvnnnx8R//4HMWvWrDG//okTJ+Kpp56KpUuXxrRp08b8+gDl4vUPmMzK/RrY29sb1dXVw/8vDP+ptbU1Wlpahh8fO3YsLrvssrK9ZwIAgLFWqvdM4y6gvH8L+qxZs8oWUGbOnBmzZs3yB4jApOL1D5jMzpXXQB/HNPHNnTs3enp6Rqz19PTErFmzRr37JCKiUChEoVA4ab1c75kAAKBczvZ7Jh+gDAAAcI6or6+P9vb2EWu7d++O+vr6Mk0EAACTl4ACAABQIu+++24cOHAgDhw4EBERr776ahw4cCAOHjwYEf/++K0VK1YM77/jjjvilVdeie9+97vxwgsvxMMPPxy//OUv45577inL/AAAMJkJKAAAACXy3HPPxaJFi2LRokUREdHS0hKLFi2KdevWRUTE3//+9+GYEhHxiU98Inbs2BG7d++OBQsWxEMPPRSPPPJINDY2lmV+AACYzMbdd6AAAACMF9ddd10MDQ194PPbtm0b9Zw//elPJZwKAAA4He5AAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIppZ7gPHqiv95MvoHKso9xjnntQdvKvcIAAAAAADwkbkDBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACApS0D56le/GhdddFF87WtfK8flAQAAAAAATqksAeWuu+6Kn/3sZ+W4NAAAAAAAwIcqS0C57rrr4vzzzy/HpQEAAAAAAD7UGQeUZ555JpYtWxbz5s2LioqKeOKJJ07aUywWo6amJmbMmBF1dXWxd+/eszIsAAAAAADAWDjjgNLX1xcLFiyIYrE46vPbt2+PlpaWWL9+fezfvz8WLFgQjY2Ncfjw4Y88LAAAAAAAwFiYeqYn3HjjjXHjjTd+4PMbN26MVatWRVNTU0REbN68OXbs2BFbt26NNWvWnPGA/f390d/fP/y4t7c3IiJOnDgRJ06cOOOf91G9f81C5dCYX3s8KMe/E2BsvP/ft//Ogcmo3K+BXnsBAADG3hkHlFM5fvx47Nu3L1pbW4fXKisro6GhITo6Ov6rn9nW1hYbNmw4af2pp56KmTNn/tezflQ/uGqwbNc+l+3cubPcIwAltnv37nKPAFA25XoNfO+998pyXQAAgMnsrAaUo0ePxsDAQFRVVY1Yr6qqihdeeGH4cUNDQ/z5z3+Ovr6+uPTSS+NXv/pV1NfXj/ozW1tbo6WlZfhxb29vVFdXx9KlS2PWrFlnc/zTcuLEidi9e3esfa4y+gcrxvz657q//k9juUcASuT9178bbrghpk2bVu5xAMZUuV8D378LGwAAgLFzVgPK6Xr66adPe2+hUIhCoXDS+rRp08r6B3j9gxXRPyCgZP5QFSa+cr/+ApRTuV4Dve4CAACMvTP+EvlTmT17dkyZMiV6enpGrPf09MTcuXPP5qUAAAAAAABK5qwGlOnTp8fixYujvb19eG1wcDDa29s/8CO6AAAAAAAAzjVn/BFe7777brz88svDj1999dU4cOBAXHzxxXHZZZdFS0tLrFy5Mq666qq4+uqrY9OmTdHX1xdNTU1ndXAAAAAAAIBSOeOA8txzz8X1118//Pj9L3hfuXJlbNu2LZYvXx5HjhyJdevWRXd3dyxcuDB27dp10hfLAwAAAAAAnKvO+CO8rrvuuhgaGjrp2LZt2/Ce1atXx+uvvx79/f3xxz/+Merq6s7mzAAAAONKsViMmpqamDFjRtTV1cXevXtPuX/Tpk3x2c9+Ns4777yorq6Oe+65J/75z3+O0bQAAEDEWf4OFAAAAEbavn17tLS0xPr162P//v2xYMGCaGxsjMOHD4+6/xe/+EWsWbMm1q9fH88//3w8+uijsX379vje9743xpMDAMDkJqAAAACU0MaNG2PVqlXR1NQUtbW1sXnz5pg5c2Zs3bp11P3PPvtsXHPNNXHrrbdGTU1NLF26NG655ZYPvWsFAAA4uwQUAACAEjl+/Hjs27cvGhoahtcqKyujoaEhOjo6Rj3ni1/8Yuzbt284mLzyyiuxc+fO+PKXvzzq/v7+/ujt7R1xAAAAH90Zf4k8AAAAp+fo0aMxMDAQVVVVI9arqqrihRdeGPWcW2+9NY4ePRpf+tKXYmhoKP71r3/FHXfc8YEf4dXW1hYbNmw467MDAMBk5w4UAACAc8iePXvigQceiIcffjj2798fv/71r2PHjh3xgx/8YNT9ra2tcezYseHj0KFDYzwxAABMTO5AAQAAKJHZs2fHlClToqenZ8R6T09PzJ07d9Rz1q5dG7fddlvcfvvtERHx+c9/Pvr6+uJb3/pW3HfffVFZOfLvwRUKhSgUCqX5BQAAYBJzBwoAAECJTJ8+PRYvXhzt7e3Da4ODg9He3h719fWjnvPee++dFEmmTJkSERFDQ0OlGxYAABjBHSgAAAAl1NLSEitXroyrrroqrr766ti0aVP09fVFU1NTRESsWLEi5s+fH21tbRERsWzZsti4cWMsWrQo6urq4uWXX461a9fGsmXLhkMKAABQegIKAABACS1fvjyOHDkS69ati+7u7li4cGHs2rVr+IvlDx48OOKOk/vvvz8qKiri/vvvjzfeeCM+/vGPx7Jly+JHP/pRuX4FAACYlAQUAACAElu9enWsXr161Of27Nkz4vHUqVNj/fr1sX79+jGYDAAA+CC+AwUAAAAAACARUAAAAAAAABIBBQAAAAAAIBk3AaVYLEZtbW0sWbKk3KMAAAAAAAAT3LgJKM3NzdHV1RWdnZ3lHgUAAAAAAJjgxk1AAQAAAAAAGCsCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkU8s9wOkqFotRLBZjYGCg3KNwCjVrdpR7hHPWaw/eVO4RAAAAAAA4TePmDpTm5ubo6uqKzs7Oco8CAAAAAABMcOMmoAAAAAAAAIwVAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAACScRNQisVi1NbWxpIlS8o9CgAAAAAAMMGNm4DS3NwcXV1d0dnZWe5RAAAAAACACW7cBBQAAAAAAICxIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJFPLPcDpKhaLUSwWY2BgoNyjwH+lZs2Oco/AOPXagzeVewQAAAAAmHTGzR0ozc3N0dXVFZ2dneUeBQAAAAAAmODGTUABAAAAAAAYKwIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAQIkVi8WoqamJGTNmRF1dXezdu/eU+99+++1obm6OSy65JAqFQnzmM5+JnTt3jtG0AABARMTUcg8AAAAwkW3fvj1aWlpi8+bNUVdXF5s2bYrGxsZ48cUXY86cOSftP378eNxwww0xZ86cePzxx2P+/Pnx+uuvx4UXXliG6QEAYPISUAAAAEpo48aNsWrVqmhqaoqIiM2bN8eOHTti69atsWbNmpP2b926Nd5666149tlnY9q0aRERUVNTM5YjAwAA4SO8AAAASub48eOxb9++aGhoGF6rrKyMhoaG6OjoGPWc3/72t1FfXx/Nzc1RVVUVV1xxRTzwwAMxMDAw6v7+/v7o7e0dcQAAAB+dgAIAAFAiR48ejYGBgaiqqhqxXlVVFd3d3aOe88orr8Tjjz8eAwMDsXPnzli7dm089NBD8cMf/nDU/W1tbXHBBRcMH9XV1Wf99wAAgMlIQAEAADiHDA4Oxpw5c+InP/lJLF68OJYvXx733XdfbN68edT9ra2tcezYseHj0KFDYzwxAABMTL4DBQAAoERmz54dU6ZMiZ6enhHrPT09MXfu3FHPueSSS2LatGkxZcqU4bXPfe5z0d3dHcePH4/p06eP2F8oFKJQKJz94QEAYJJzBwoAAECJTJ8+PRYvXhzt7e3Da4ODg9He3h719fWjnnPNNdfEyy+/HIODg8NrL730UlxyySUnxRMAAKB0BBQAAIASamlpiS1btsRPf/rTeP755+POO++Mvr6+aGpqioiIFStWRGtr6/D+O++8M956662466674qWXXoodO3bEAw88EM3NzeX6FQAAYFLyEV4AAAAltHz58jhy5EisW7cuuru7Y+HChbFr167hL5Y/ePBgVFb+/99tq66ujieffDLuueeeuPLKK2P+/Plx1113xb333luuXwEAACYlAQUAAKDEVq9eHatXrx71uT179py0Vl9fH3/4wx9KPBUAAHAqPsILAAAAAAAgEVAAAAAAAACScRNQisVi1NbWxpIlS8o9CgAAAAAAMMGNm4DS3NwcXV1d0dnZWe5RAAAAAACACW7cBBQAAAAAAICxIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAk4yagFIvFqK2tjSVLlpR7FAAAAAAAYIIbNwGlubk5urq6orOzs9yjAAAAAAAAE9y4CSgAAAAAAABjRUABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBk3ASUYrEYtbW1sWTJknKPAgAAAAAATHDjJqA0NzdHV1dXdHZ2lnsUAAAAAABgghs3AQUAAAAAAGCsCCgAAAAAAACJgAIAAAAAAJAIKAAAAAAAAImAAgAAUGLFYjFqampixowZUVdXF3v37j2t8x577LGoqKiIm2++ucQTAgAAmYACAABQQtu3b4+WlpZYv3597N+/PxYsWBCNjY1x+PDhU5732muvxXe+85249tprx2hSAADgPwkoAAAAJbRx48ZYtWpVNDU1RW1tbWzevDlmzpwZW7du/cBzBgYG4hvf+EZs2LAhPvnJT57y5/f390dvb++IAwAA+OgEFAAAgBI5fvx47Nu3LxoaGobXKisro6GhITo6Oj7wvO9///sxZ86c+OY3v/mh12hra4sLLrhg+Kiurj4rswMAwGQnoAAAAJTI0aNHY2BgIKqqqkasV1VVRXd396jn/P73v49HH300tmzZclrXaG1tjWPHjg0fhw4d+shzAwAAEVPLPQAAAAD/9s4778Rtt90WW7ZsidmzZ5/WOYVCIQqFQoknAwCAyUdAAQAAKJHZs2fHlClToqenZ8R6T09PzJ0796T9f/vb3+K1116LZcuWDa8NDg5GRMTUqVPjxRdfjE996lOlHRoAAIgIH+EFAABQMtOnT4/FixdHe3v78Nrg4GC0t7dHfX39Sfsvv/zy+Mtf/hIHDhwYPr7yla/E9ddfHwcOHPD9JgAAMIbcgQIAAFBCLS0tsXLlyrjqqqvi6quvjk2bNkVfX180NTVFRMSKFSti/vz50dbWFjNmzIgrrrhixPkXXnhhRMRJ6wAAQGkJKAAAACW0fPnyOHLkSKxbty66u7tj4cKFsWvXruEvlj948GBUVvpwAAAAONcIKAAAACW2evXqWL169ajP7dmz55Tnbtu27ewPBAAAfCh/zQkAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACAZNwGlWCxGbW1tLFmypNyjAAAAAAAAE9y4CSjNzc3R1dUVnZ2d5R4FAAAAAACY4MZNQAEAAAAAABgrAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAECJFYvFqKmpiRkzZkRdXV3s3bv3A/du2bIlrr322rjooovioosuioaGhlPuBwAASkNAAQAAKKHt27dHS0tLrF+/Pvbv3x8LFiyIxsbGOHz48Kj79+zZE7fcckv87ne/i46Ojqiuro6lS5fGG2+8McaTAwDA5CagAAAAlNDGjRtj1apV0dTUFLW1tbF58+aYOXNmbN26ddT9P//5z+Pb3/52LFy4MC6//PJ45JFHYnBwMNrb20fd39/fH729vSMOAADgoxNQAAAASuT48eOxb9++aGhoGF6rrKyMhoaG6OjoOK2f8d5778WJEyfi4osvHvX5tra2uOCCC4aP6urqszI7AABMdgIKAABAiRw9ejQGBgaiqqpqxHpVVVV0d3ef1s+49957Y968eSMizH9qbW2NY8eODR+HDh36yHMDAAARU8s9AAAAAKN78MEH47HHHos9e/bEjBkzRjt1B0EAABfrSURBVN1TKBSiUCiM8WQAADDxCSgAAAAlMnv27JgyZUr09PSMWO/p6Ym5c+ee8twf//jH8eCDD8bTTz8dV155ZSnH/N/27j22yvr+A/inLZfqGMhlFlrrWJxDkdssltXLTzAoYwZSExPmEmF4WbaAc3abgspFmYAXCC4wmahxW0ZAyGSLIIpM4hxkCMgyMtExJZhqq85gsWwttv394ejv1wdQTmnP6eX1SvjjPOd5nu/n5Hz65bTv83wfAADgOCzhBQAA0Eq6desWRUVFTW4Af/SG8CUlJSc87oEHHoh58+bFxo0bY+TIkekoFQAASHAFCgAAQCsqKyuLKVOmxMiRI6O4uDiWLFkS1dXVMXXq1IiImDx5chQUFMSCBQsiIuL++++P2bNnx8qVK2PgwIGN90rp0aNH9OjRI2OvAwAAOhsBCgAAQCuaNGlSvP/++zF79uyoqKiIESNGxMaNGxtvLH/gwIHIzv6/xQEeeeSRqK2tjWuvvbbJeebMmRNz585NZ+kAANCpCVAAAABa2fTp02P69OnHfW7Lli1NHu/fv7/1CwIAAD6Xe6AAAAAAAAAkCFAAAAAAAAASBCgAAAAAAAAJAhQAAAAAAIAEAQoAAAAAAECCAAUAAAAAACBBgAIAAAAAAJAgQAEAAAAAAEgQoAAAAAAAACQIUAAAAAAAABIEKAAAAAAAAAkCFAAAAAAAgAQBCgAAAAAAQIIABQAAAAAAIEGAAgAAAAAAkCBAAQAAAAAASBCgAAAAAAAAJAhQAAAAAAAAEgQoAAAAAAAACQIUAAAAAACABAEKAAAAAABAggAFAAAAAAAgQYACAAAAAACQIEABAAAAAABIEKAAAAAAAAAkCFAAAAAAAAASBCgAAAAAAAAJAhQAAAAAAIAEAQoAAAAAAECCAAUAAAAAACBBgAIAAAAAAJAgQAEAAAAAAEgQoAAAAAAAACQIUAAAAAAAABIEKAAAAAAAAAkCFAAAAAAAgAQBCgAAAAAAQIIABQAAAAAAIEGAAgAAAAAAkCBAAQAAAAAASBCgAAAAAAAAJAhQAAAAAAAAEgQoAAAAAAAACQIUAAAAAACABAEKAAAAAABAggAFAAAAAAAgQYACAAAAAACQIEABAAAAAABIEKAAAAAAAAAkCFAAAAAAAAASBCgAAAAAAAAJAhQAAAAAAIAEAQoAAAAAAECCAAUAAAAAACBBgAIAAAAAAJAgQAEAAAAAAEgQoAAAAAAAACQIUAAAAAAAABIEKAAAAAAAAAkCFAAAAAAAgAQBCgAAAAAAQIIABQAAAAAAIEGAAgAAAAAAkCBAAQAAAAAASBCgAAAAAAAAJAhQAAAAAAAAEgQoAAAAAAAACQIUAAAAAACABAEKAAAAAABAggAFAAAAAAAgQYACAAAAAACQIEABAAAAAABIEKAAAAAAAAAkCFAAAAAAAAASBCgAAAAAAAAJAhQAAAAAAIAEAQoAAAAAAECCAAUAAAAAACBBgAIAAAAAAJAgQAEAAAAAAEgQoAAAAAAAACQIUAAAAAAAABIyEqA888wzMWjQoDj33HPjsccey0QJAAAAAAAAJ9Ql3QN+8sknUVZWFi+++GL06tUrioqK4pprrom+ffumuxQAAAAAAIDjSvsVKNu3b48LLrggCgoKokePHjF+/Ph4/vnn010GAAAAAADACaUcoLz00ksxYcKEyM/Pj6ysrFi3bt0x+yxbtiwGDhwYubm5MWrUqNi+fXvjc++8804UFBQ0Pi4oKIjy8vJmlg8AAAAAANDyUg5QqqurY/jw4bFs2bLjPr969eooKyuLOXPmxK5du2L48OExbty4eO+99065WAAAAAAAgHRI+R4o48ePj/Hjx5/w+cWLF8fNN98cU6dOjYiI5cuXx/r16+OJJ56IGTNmRH5+fpMrTsrLy6O4uPiE56upqYmamprGx1VVVRERceTIkThy5Eiq5Z+yo2N2z25I+9hA55SJue54jtbRVuoBSKdMz4HmXgAAgPRr0ZvI19bWxs6dO2PmzJmN27Kzs2Ps2LGxbdu2iIgoLi6OPXv2RHl5efTq1SueffbZmDVr1gnPuWDBgrjnnnuO2f7888/H6aef3pLlp2TeyPqMjQ10Lhs2bMh0CU1s2rQp0yUAZEym5sDDhw9nZFwAAIDOrEUDlA8++CDq6uoiLy+vyfa8vLzYu3fvpwN26RKLFi2KMWPGRH19fdx+++3Rt2/fE55z5syZUVZW1vi4qqoqCgsL46qrroqePXu2ZPkn5ciRI7Fp06aYtSM7auqz0j4+0PnsmTsu0yVExP/Nf1deeWV07do10+VERMSQuc9luoQ2q630DXQUmZ4Dj16FDQAAQPq0aIBysiZOnBgTJ048qX27d+8e3bt3P2Z7165dM/oHvJr6rKipE6AAra+thBVHZXr+/f/MwyfWVt4j6GgyNQf6mQYAAEi/lG8i/1n69esXOTk5UVlZ2WR7ZWVl9O/fvyWHAgAAAAAAaDUtGqB069YtioqKYvPmzY3b6uvrY/PmzVFSUtKSQwEAAAAAALSalJfw+vjjj2Pfvn2Nj996663YvXt39OnTJ84+++woKyuLKVOmxMiRI6O4uDiWLFkS1dXVMXXq1BYtHAAAAAAAoLWkHKDs2LEjxowZ0/j46A3ep0yZEk8++WRMmjQp3n///Zg9e3ZUVFTEiBEjYuPGjcfcWB4AAAAAAKCtSjlAGT16dDQ0NHzmPtOnT4/p06c3uygAAAAAAIBMatF7oAAAAAAAAHQEAhQAAAAAAIAEAQoAAAAAAECCAAUAAAAAACBBgAIAAAAAAJAgQAEAAAAAAEgQoAAAAAAAACQIUAAAAAAAABIEKAAAAAAAAAkCFAAAAAAAgAQBCgAAAAAAQIIABQAAAAAAIEGAAgAAAAAAkNBuApRly5bF4MGD46KLLsp0KQAAAAAAQAfXbgKUadOmxd///vd45ZVXMl0KAAAAAADQwbWbAAUAAAAAACBdBCgAAACtbNmyZTFw4MDIzc2NUaNGxfbt2z9z/zVr1sR5550Xubm5MXTo0NiwYUOaKgUAAI4SoAAAALSi1atXR1lZWcyZMyd27doVw4cPj3HjxsV777133P23bt0a1113Xdx4443x6quvRmlpaZSWlsaePXvSXDkAAHRuAhQAAIBWtHjx4rj55ptj6tSpMXjw4Fi+fHmcfvrp8cQTTxx3/4cffji++c1vxk9/+tM4//zzY968eXHhhRfG0qVL01w5AAB0bl0yXUCqGhoaIiKiqqoqI+MfOXIkDh8+HHU1OVFfl5WRGoDOJVPzXdLR+a+qqiq6du2a6XIiIqK+5nCmS2iz2krfQEeR6Tnw6M/00c/CtB+1tbWxc+fOmDlzZuO27OzsGDt2bGzbtu24x2zbti3KysqabBs3blysW7fuuPvX1NRETU1N4+OPPvooIvxfAABA59FavzO1uwDl0KFDERFRWFiY4UoA0qPXkkxXQHukb6BjOnToUPTq1SvTZZCCDz74IOrq6iIvL6/J9ry8vNi7d+9xj6moqDju/hUVFcfdf8GCBXHPPfccs93vTAAAdDb/+te/WvR3pnYXoOTn58fbb78dV1xxRezYsaPZ57nooovilVdeSfm4qqqqKCwsjLfffjt69uzZ7PFpvua+d+1JW3+NmawvHWO31hgtdd6WOE9zzmH+axva+vxwqtr66zP/Zf68p3qu9voZsKGhIQ4dOhT5+flpH5u2b+bMmU2uWDl48GB8+ctfjgMHDgjcOCmZnuNof/QMqdIzpErPkKqPPvoozj777OjTp0+LnrfdBSjZ2dlx1llnRZcuXU7phycnJ+eUju/Zs6cf3gw51feuPWjrrzGT9aVj7NYao6XO2xLnOZVzmP8yq63PD6eqrb8+81/mz3uq52rPnwH9Ibx96tevX+Tk5ERlZWWT7ZWVldG/f//jHtO/f/+U9u/evXt07979mO29evVq03MqbY/PeaRKz5AqPUOq9Aypys5u2du+t9ubyE+bNi2jx5M5neG9a+uvMZP1pWPs1hqjpc7bEudp6z3GiXX0966tvz7zX+bP6zMg7U23bt2iqKgoNm/e3Litvr4+Nm/eHCUlJcc9pqSkpMn+ERGbNm064f4AAEDryGpwJ8qUVFVVRa9eveKjjz6SfgKdivkP6MzMgZyK1atXx5QpU+KXv/xlFBcXx5IlS+Kpp56KvXv3Rl5eXkyePDkKCgpiwYIFERGxdevWuPzyy2PhwoVx9dVXx6pVq2L+/Pmxa9euGDJkyOeOp19JlZ4hVXqGVOkZUqVnSFVr9UzO3Llz57bY2TqJnJycGD16dHTp0u5WQAM4JeY/oDMzB9JcQ4YMiTPOOCPuu+++eOihhyIi4re//W0MGjQoIiIefvjh6NKlS5SWlkbEpzd/P//88+PBBx+MhQsXRmVlZTz++ONxySWXnPSY+pVU6RlSpWdIlZ4hVXqGVLVGz7gCBQAAAAAAIKHd3gMFAAAAAACgtQhQAAAAAAAAEgQoAAAAAAAACQIUAAAAAACABAEKAABAO7Ns2bIYOHBg5ObmxqhRo2L79u2fuf+aNWvivPPOi9zc3Bg6dGhs2LAhTZXSVqTSMytWrIjLLrssevfuHb17946xY8d+bo/R8aQ6zxy1atWqyMrKitLS0laukLYm1Z45ePBgTJs2LQYMGBDdu3ePr33ta/5/6mRS7ZklS5bEoEGD4rTTTovCwsK47bbb4j//+U+aqiXTXnrppZgwYULk5+dHVlZWrFu37nOP2bJlS1x44YXRvXv3+OpXvxpPPvlkyuMKUFrQM888E4MGDYpzzz03HnvssUyXA5BW11xzTfTu3TuuvfbaTJcCkDZvv/12jB49OgYPHhzDhg2LNWvWZLokOoHVq1dHWVlZzJkzJ3bt2hXDhw+PcePGxXvvvXfc/bdu3RrXXXdd3HjjjfHqq69GaWlplJaWxp49e9JcOZmSas9s2bIlrrvuunjxxRdj27ZtUVhYGFdddVWUl5enuXIyJdWeOWr//v3xk5/8JC677LI0VUpbkWrP1NbWxpVXXhn79++PtWvXxuuvvx4rVqyIgoKCNFdOpqTaMytXrowZM2bEnDlz4rXXXovHH388Vq9eHXfeeWeaKydTqqurY/jw4bFs2bKT2v+tt96Kq6++OsaMGRO7d++OH/3oR3HTTTfFc889l9K4WQ0NDQ3NKZimPvnkkxg8eHC8+OKL0atXrygqKoqtW7dG3759M10aQFps2bIlDh06FL/61a9i7dq1mS4HIC3efffdqKysjBEjRkRFRUUUFRXFG2+8EV/4whcyXRod2KhRo+Kiiy6KpUuXRkREfX19FBYWxi233BIzZsw4Zv9JkyZFdXV1PPPMM43bvvGNb8SIESNi+fLlaaubzEm1Z5Lq6uqid+/esXTp0pg8eXJrl0sb0Jyeqauri//5n/+JG264If70pz/FwYMHT+rbwXQMqfbM8uXL48EHH4y9e/dG165d010ubUCqPTN9+vR47bXXYvPmzY3bfvzjH8df/vKXePnll9NWN21DVlZWPP300595teMdd9wR69evb/KloW9/+9tx8ODB2Lhx40mP5QqUFrJ9+/a44IILoqCgIHr06BHjx4+P559/PtNlAaTN6NGj44tf/GKmywBIqwEDBsSIESMiIqJ///7Rr1+/+PDDDzNcFR1ZbW1t7Ny5M8aOHdu4LTs7O8aOHRvbtm077jHbtm1rsn9ExLhx4064Px1Lc3om6fDhw3HkyJHo06dPa5VJG9Lcnrn33nvjzDPPjBtvvDEdZdKGNKdn/vCHP0RJSUlMmzYt8vLyYsiQITF//vyoq6tLV9lkUHN65uKLL46dO3c2LvP15ptvxoYNG+Jb3/pWWmqm/Wmpz8AClP86mTXUPmtdvnfeeafJZYYFBQUubwbajVOdAwHaq5ac/3bu3Bl1dXVRWFjY2mXTiX3wwQdRV1cXeXl5Tbbn5eVFRUXFcY+pqKhIaX86lub0TNIdd9wR+fn5x/wRgo6pOT3z8ssvx+OPPx4rVqxIR4m0Mc3pmTfffDPWrl0bdXV1sWHDhpg1a1YsWrQofvazn6WjZDKsOT3zne98J+6999649NJLo2vXrnHOOefE6NGjLeHFCZ3oM3BVVVX8+9//PunzCFD+6/PWUGvu+p8A7YE5EOisWmr++/DDD2Py5Mnx6KOPpqNsgLRZuHBhrFq1Kp5++unIzc3NdDm0QYcOHYrrr78+VqxYEf369ct0ObQT9fX1ceaZZ8ajjz4aRUVFMWnSpLjrrrssLckJbdmyJebPnx+/+MUvYteuXfG73/0u1q9fH/Pmzct0aXRwXTJdQFsxfvz4GD9+/AmfX7x4cdx8880xderUiPh0rcb169fHE088ETNmzIj8/PwmV5yUl5dHcXFxq9cN0BJOdQ4EaK9aYv6rqamJ0tLSmDFjRlx88cVpqZvOq1+/fpGTkxOVlZVNtldWVkb//v2Pe0z//v1T2p+OpTk9c9RDDz0UCxcujBdeeCGGDRvWmmXShqTaM//85z9j//79MWHChMZt9fX1ERHRpUuXeP311+Occ85p3aLJqObMMwMGDIiuXbtGTk5O47bzzz8/Kioqora2Nrp169aqNZNZzemZWbNmxfXXXx833XRTREQMHTo0qqur43vf+17cddddkZ3tOgGaOtFn4J49e8Zpp5120ufRWSfhZNblKy4ujj179kR5eXl8/PHH8eyzz8a4ceMyVTJAi2mJdbMB2qOTmf8aGhriu9/9blxxxRVx/fXXZ6pUOpFu3bpFUVFRkxuo1tfXx+bNm6OkpOS4x5SUlDTZPyJi06ZNJ9yfjqU5PRMR8cADD8S8efNi48aNMXLkyHSUShuRas+cd9558be//S12797d+G/ixIkxZsyY2L17t6UtO4HmzDOXXHJJ7Nu3rzFsi4h44403YsCAAcKTTqA5PXP48OFjQpKjAVxDQ0PrFUu71VKfgV2BchI+a12+vXv3RsSn36pYtGhRjBkzJurr6+P222+Pvn37ZqJcgBZ1MnNgRMTYsWPjr3/9a1RXV8dZZ50Va9as8YcZoF07mfnvz3/+c6xevTqGDRvWeP+U3/zmNzF06NC010vnUVZWFlOmTImRI0dGcXFxLFmyJKqrqxuvlJo8eXIUFBTEggULIiLi1ltvjcsvvzwWLVoUV199daxatSp27NhhyblOJNWeuf/++2P27NmxcuXKGDhwYON69D169IgePXpk7HWQPqn0TG5ubgwZMqTJ8WeccUZExDHb6bhSnWd+8IMfxNKlS+PWW2+NW265Jf7xj3/E/Pnz44c//GEmXwZplGrPTJgwIRYvXhxf//rXY9SoUbFv376YNWtWTJgwocmVTHRcH3/8cezbt6/x8VtvvRW7d++OPn36xNlnnx0zZ86M8vLy+PWvfx0REd///vdj6dKlcfvtt8cNN9wQf/zjH+Opp56K9evXpzSuAKUFTZw4MSZOnJjpMgAy4oUXXsh0CQBpd+mllzb55iSkw6RJk+L999+P2bNnR0VFRYwYMSI2btzYGPYdOHCgyTc0L7744li5cmXcfffdceedd8a5554b69at84fNTiTVnnnkkUeitrY2rr322ibnmTNnTsydOzedpZMhqfYMpNozhYWF8dxzz8Vtt90Ww4YNi4KCgrj11lvjjjvuyNRLIM1S7Zm77747srKy4u67747y8vL40pe+FBMmTIj77rsvUy+BNNuxY0eMGTOm8XFZWVlEREyZMiWefPLJePfdd+PAgQONz3/lK1+J9evXx2233RYPP/xwnHXWWfHYY4+lvGpUVoNrnI6RlZUVTz/9dJSWlkbEp8s3nH766bF27drGbRGfvjkHDx6M3//+95kqFaDFmQOBzsr8BwAAwP/n6wInoblrxgJ0BOZAoLMy/wEAAHRulvD6r89bQ+3z1uUDaM/MgUBnZf4DAADgRCzh9V9btmxpsobaUUfXUIuIWLp0aTz44ION6/L9/Oc/j1GjRqW5UoCWZw4EOivzHwAAACciQAEAAAAAAEhwDxQAAAAAAIAEAQoAAAAAAECCAAUAAAAAACBBgAIAAAAAAJAgQAEAAAAAAEgQoAAAAAAAACQIUAAAAAAAABIEKAAAAAAAAAkCFAAAAAAAgAQBCgAAAAAAQIIABQAAAAAAIEGAAgAAAAAAkPC/D5bOhwNx4ZoAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ - "graphSummary(G, bins=15)" + "graphSummary(G, bins=10)" ] }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAANH0lEQVR4nO3db2hd933H8c9ndrOFmGWwBFFsM2UohImItuSSNOTJVemIUk/p6IPNJh14GIuMpXRgKDL0Qfqg1E9SStKUIpbgBzMRIR1L/AeyjOXSJ6FN3H+O5wZMUYnNiNq606oQGtR++0AXqiqS9dO95/jc+9X7BQafc8+fr362Phy+59zfcUQIAJDLHzVdAACgeoQ7ACREuANAQoQ7ACREuANAQrubLkCSbrvtthgdHe1p33fffVe33HJLtQUlxDiVYZzKME5l6h6n8+fP/zwibt/os4EI99HRUb3xxhs97dvpdNRut6stKCHGqQzjVIZxKlP3ONn+6Waf0ZYBgIQaDXfb07bnlpaWmiwDANJpNNwj4nREzNx6661NlgEA6dCWAYCECHcASIieOwAkRM8dABKiLQMACQ3El5j6ceHqkg7Pnm3k3AsnDjRyXgDYClfuAJAQN1QBICFuqAJAQrRlACAhwh0AEiLcASAhwh0AEiLcASAhHoUEgIR4FBIAEqItAwAJEe4AkBDhDgAJEe4AkBDhDgAJEe4AkBDhDgAJ8SUmAEiILzEBQEK0ZQAgIcIdABIi3AEgIcIdABLa3XQBw2x09mwj5104caCR8wIYHly5A0BChDsAJES4A0BChDsAJES4A0BChDsAJES4A0BClYe77b+y/U3bL9j+p6qPDwDYWlG4237W9qLtN9etn7L9lu3LtmclKSIuRcSjkv5O0gPVlwwA2ErplftJSVNrV9jeJelpSQ9JGpd0yPZ497OHJZ2VdK6ySgEAxRwRZRvao5LORMTd3eX7JT0eEQ92l49LUkR8Zc0+ZyNiw+/K256RNCNJIyMj98zPz/f0AyxeW9I77/W069Ca2Lv9+e+Xl5e1Z8+eGqrJhXEqwziVqXucJicnz0dEa6PP+plbZq+kt9csX5F0n+22pM9I+mNd58o9IuYkzUlSq9WKdrvdUxFPnXpRT1zYWVPkLDzS3vY+nU5HvY7xTsI4lWGcyjQ5TpWnYkR0JHVKtrU9LWl6bGys6jIAYEfr52mZq5L2r1ne111XjNfsAUA9+gn31yXdafsO2zdJOijppWrKAgD0o/RRyOckvSbpLttXbB+JiBVJj0l6WdIlSc9HxMXtnNz2tO25paWl7dYNALiOop57RBzaZP059fG4Y0SclnS61Wod7fUYO1EvLwk5NrGiwxW8XIQXhQDDgekHACChRsOdtgwA1KPRcOdpGQCoB20ZAEiIcAeAhOi5A0BC9NwBICHaMgCQEOEOAAnRcweAhOi5A0BCO+stF+hbL/PaVIE5bYDtoecOAAkR7gCQEDdUASAhbqgCQEK0ZQAgIcIdABIi3AEgIcIdABIi3AEgIR6FBICEeBQSABKiLQMACRHuAJAQs0JiKNyo2SiPTazo8JpzMRslhhVX7gCQEOEOAAkR7gCQEOEOAAkR7gCQEN9QBYCE+IYqACREWwYAEiLcASAhwh0AEiLcASAhwh0AEiLcASAhwh0AEmLKX+A6btRUwxthumH0gyt3AEiIcAeAhAh3AEiolp677b+VdEDSn0p6JiL+s47zAAA2VnzlbvtZ24u231y3fsr2W7Yv256VpIj4j4g4KulRSX9fbckAgK1spy1zUtLU2hW2d0l6WtJDksYlHbI9vmaTL3Y/BwDcQI6I8o3tUUlnIuLu7vL9kh6PiAe7y8e7m57o/nklIv5rk2PNSJqRpJGRkXvm5+d7+gEWry3pnfd62nVHGblZjFOBQRqnib2DOxX28vKy9uzZ03QZA6/ucZqcnDwfEa2NPuu3575X0ttrlq9Iuk/S5yR9UtKttsci4pvrd4yIOUlzktRqtaLdbvdUwFOnXtQTF3hcfyvHJlYYpwKDNE4Lj7SbLmFTnU5Hvf7O7iRNjlMt/4sj4klJT9ZxbADA1vp9FPKqpP1rlvd11xXhNXsAUI9+w/11SXfavsP2TZIOSnqpdGdeswcA9djOo5DPSXpN0l22r9g+EhErkh6T9LKkS5Kej4iL2zgmV+4AUIPinntEHNpk/TlJ53o5eUSclnS61Wod7WV/AMDGmH4AABIi3AEgoUbDnZ47ANSj0XDnaRkAqAdtGQBIiLYMACREWwYAEqItAwAJDcb0dwA+YHT2bCPnXThxoJHzolpcuQNAQtxQBYCEuKEKAAnRlgGAhAh3AEiIcAeAhLihCgAJcUMVABKiLQMACRHuAJAQ4Q4ACRHuAJAQ4Q4ACfEoJAAkxKOQAJAQbRkASIhwB4CECHcASIhwB4CECHcASIhwB4CECHcASIgvMQFAQnyJCQASoi0DAAkR7gCQ0O6mCwAwWEZnz265zbGJFR0u2G67Fk4cqPyYOxVX7gCQEOEOAAkR7gCQEOEOAAkR7gCQEOEOAAkR7gCQEOEOAAlVHu62/9L2M7ZfqPrYAIAyReFu+1nbi7bfXLd+yvZbti/bnpWkiPhJRBypo1gAQJnSK/eTkqbWrrC9S9LTkh6SNC7pkO3xSqsDAPSkKNwj4tuSrq1bfa+ky90r9fclzUv6dMX1AQB60M/EYXslvb1m+Yqk+2z/uaQvS/qY7eMR8ZWNdrY9I2lGkkZGRtTpdHoqYuTm1UmMcH2MUxnGqUxd49RrDgyq5eXlxn6mymeFjIhfSHq0YLs5SXOS1Gq1ot1u93S+p069qCcuMLnlVo5NrDBOBRinMnWN08Ij7cqP2aROp6Nes61f/Twtc1XS/jXL+7rrivGaPQCoRz/h/rqkO23fYfsmSQclvbSdA/CaPQCoR+mjkM9Jek3SXbav2D4SESuSHpP0sqRLkp6PiIv1lQoAKFXUNIuIQ5usPyfpXK8ntz0taXpsbKzXQwAANtDo9AO0ZQCgHswtAwAJNRruPC0DAPWgLQMACdGWAYCECHcASIieOwAkRM8dABKiLQMACRHuAJAQPXcASIieOwAkRFsGABIi3AEgIcIdABLihioAJMQNVQBIiLYMACREuANAQoQ7ACREuANAQoQ7ACS0u8mT256WND02NtZkGQB2uNHZs7Uc99jEig5vceyFEwdqOTePQgJAQrRlACAhwh0AEiLcASAhwh0AEiLcASAhwh0AEiLcASAhwh0AEuJlHQCQEN9QBYCEaMsAQEKEOwAkRLgDQEKEOwAkRLgDQEKEOwAkRLgDQEKEOwAkRLgDQEKEOwAkRLgDQEK7qz6g7VskfUPS+5I6EXGq6nMAAK6v6Mrd9rO2F22/uW79lO23bF+2Pdtd/RlJL0TEUUkPV1wvAKBAaVvmpKSptSts75L0tKSHJI1LOmR7XNI+SW93N/tNNWUCALbDEVG2oT0q6UxE3N1dvl/S4xHxYHf5eHfTK5J+GRFnbM9HxMFNjjcjaUaSRkZG7pmfn+/pB1i8tqR33utp1x1l5GYxTgUYpzKMU5mScZrY2/uU55OTk+cjorXRZ/303Pfq91fo0mqo3yfpSUlft31A0unNdo6IOUlzktRqtaLdbvdUxFOnXtQTFyq/dZDOsYkVxqkA41SGcSpTMk4Lj7RrOXfl/zoR8a6kfyzZ1va0pOmxsbGqywCAHa2fRyGvStq/Znlfd10x3sQEAPXoJ9xfl3Sn7Tts3yTpoKSXqikLANCP0kchn5P0mqS7bF+xfSQiViQ9JullSZckPR8RF7dzcl6QDQD1KOq5R8ShTdafk3Su15NHxGlJp1ut1tFejwEA+CCmHwCAhBoNd9oyAFCPRsOdp2UAoB7F31CttQj7Z5J+2uPut0n6eYXlZMU4lWGcyjBOZeoep7+IiNs3+mAgwr0ftt/Y7Ou3+D3GqQzjVIZxKtPkOHFDFQASItwBIKEM4T7XdAFDgnEqwziVYZzKNDZOQ99zBwB8UIYrdwDAOoQ7ACQ01OG+yTtcscZm77/FH7K93/artv/H9kXbn2+6pkFk+09sf9f2D7vj9KWmaxpUtnfZ/r7tM02cf2jD/TrvcMUfOql177/FhlYkHYuIcUkfl/TP/H/a0K8lfSIiPiLpo5KmbH+82ZIG1ue1OmNuI4Y23CXdK+lyRPwkIt6XNC/p0w3XNHAi4tuSrjVdx6CLiP+NiO91//4rrf5S7m22qsETq5a7ix/q/uGpjHVs75N0QNK/NlXDMIf7Ru9w5ZcRfeu+DP5jkr7TcCkDqdtu+IGkRUmvRATj9EFfk/QFSb9tqoBhDnegcrb3SPqWpH+JiP9vup5BFBG/iYiPavXVmvfavrvhkgaK7b+RtBgR55usY5jDve93uAJr2f6QVoP9VET8e9P1DLqI+D9Jr4p7Ous9IOlh2wtabRd/wva/3egihjnceYcrKmPbkp6RdCkivtp0PYPK9u22/6z795sl/bWkHzda1ICJiOMRsS8iRrWaS/8dEZ+90XUMbbhX8Q7XnWCj9982XdOAekDSP2j1KusH3T+farqoAfRhSa/a/pFWL7BeiYhGHvXD9TH9AAAkNLRX7gCAzRHuAJAQ4Q4ACRHuAJAQ4Q4ACRHuAJAQ4Q4ACf0O8/NCopxb9zkAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df2xV9f3H8ddtaW/XSavY2VIp1k3HrEg7+yvFJZYJNEhw1ZixsbgGN92WWwNpoil/DEr8A+Y2ZPnuZrgZJHNhMjFAIg6oVejmj1AodWjFDFcdDlsgjl4oy+V67/n+sfRmpT/obW/v6fv2+Uj6xz330895v/Ph9r649/zwOI7jCAAAwIgUtwsAAACIBeEFAACYQngBAACmEF4AAIAphBcAAGAK4QUAAJhCeAEAAKYQXgAAgCnT3C4gVpFIRKdPn9b06dPl8XjcLgcAAIyC4zi6cOGC8vPzlZIyvs9OzIWX06dPq6CgwO0yAADAGJw6dUqzZs0a1xzmwsv06dMl/bf5rKysuM4dCoV04MABLV68WGlpaXGdezKZKn1K9Jqs6DU50Wty6u+1qqpKN998c/R9fDzMhZf+r4qysrImJLxkZmYqKysrqf8xTZU+JXpNVvSanOg1OfX32h9a4nHIBwfsAgAAUwgvAADAFDPhxe/3q6ioSOXl5W6XAgAAXGQmvPh8PnV2dqqtrc3tUgAAgIvMhBcAAACJ8AIAAIwhvAAAAFMILwAAwBTCCwAAMIXwAgAATDETXrjOCwAAkAyFF67zAgAAJEPhBQAAQDJ4V+lEmNu0X8Hw+O96mSgfbVzqdgkAACQMn7wAAABTCC8AAMAUwgsAADCF8AIAAEwxE164zgsAAJAMhReu8wIAACRD4QUAAEAivAAAAGMILwAAwBTCCwAAMIXwAgAATCG8AAAAUwgvAADAFMILAAAwhfACAABMIbwAAABTzIQX7m0EAAAkQ+GFexsBAADJUHgBAACQCC8AAMAYwgsAADCF8AIAAEwhvAAAAFMILwAAwBTCCwAAMIXwAgAATCG8AAAAUwgvAADAFMILAAAwhfACAABMIbwAAABTCC8AAMAUM+HF7/erqKhI5eXlbpcCAABcZCa8+Hw+dXZ2qq2tze1SAACAi8yEFwAAAInwAgAAjCG8AAAAUwgvAADAFMILAAAwhfACAABMIbwAAABTCC8AAMAUwgsAADCF8AIAAEwhvAAAAFMILwAAwBTCCwAAMIXwAgAATCG8AAAAUwgvAADAFMILAAAwhfACAABMIbwAAABTprldAMavsHFvTOO9qY6eqpDmNu1XMOyZoKpG9tHGpa7sFwBgX8I/eTl//rzKyspUUlKiuXPn6ne/+12iSwAAAIYl/JOX6dOnq7W1VZmZmerr69PcuXP1wAMP6Prrr090KQAAwKCEf/KSmpqqzMxMSVIwGJTjOHIcJ9FlAAAAo2IOL62trVq2bJny8/Pl8Xi0e/fuQWP8fr8KCwuVkZGhyspKHT58eMDz58+fV3FxsWbNmqXHH39cOTk5Y+8AAABMKTGHl76+PhUXF8vv9w/5/I4dO9TQ0KB169apvb1dxcXFqqmp0ZkzZ6Jjrr32Wr3zzjvq6urS9u3b1dPTM/YOAADAlBLzMS9LlizRkiVLhn1+06ZNeuSRR7Ry5UpJ0pYtW7R3715t3bpVjY2NA8bm5uaquLhYf/nLX/Tggw8OOV8wGFQwGIw+DgQCkqRQKKRQKBRr+SPqn8+bktxfY/X352af8V67q+0nUftzE70mJ3pNTvQ6Ph5nHAeceDwe7dq1S7W1tZKky5cvKzMzUzt37oxuk6S6ujqdP39ee/bsUU9PjzIzMzV9+nT19vbqrrvu0h//+EfdcccdQ+6jqalJ69evH7R9+/bt0WNnAADA5Hbp0iWtWLFCvb29ysrKGtdccT3b6Ny5cwqHw8rNzR2wPTc3VydOnJAkffzxx3r00UejB+o+9thjwwYXSVqzZo0aGhqijwOBgAoKCrR48eJxN3+lUCik5uZm/fRIioIRd65/kgjeFEdPlkVc7fPdppqE7Kd/TRctWqS0tLSE7NMt9Jqc6DU5TcVeFyxYELc5E36qdEVFhTo6OkY93uv1yuv1DtqelpY2YQsejHhcu3hbIrnZZ6JfrBP572WyodfkRK/Jaar1Gi9xPVU6JydHqampgw7A7enpUV5eXjx3BQAApqi4hpf09HSVlpaqpaUlui0SiailpUVVVVXjmtvv96uoqEjl5eXjLRMAABgW89dGFy9e1MmTJ6OPu7q61NHRoRkzZmj27NlqaGhQXV2dysrKVFFRoc2bN6uvry969tFY+Xw++Xw+BQIBZWdnj2suAABgV8zh5ciRIwMOuuk/mLaurk7btm3T8uXLdfbsWa1du1bd3d0qKSnRvn37Bh3ECwAAMBYxh5fq6uqrXs6/vr5e9fX1Yy4KAABgOAk/2wiQpMLGvQnZjzfV0VMV0tym/eM+s+qjjUvjVBUAYDwSfmPGseKAXQAAIBkKLz6fT52dnWpra3O7FAAA4CIz4QUAAEAivAAAAGMILwAAwBQz4YUDdgEAgGQovHDALgAAkAyFFwAAAInwAgAAjCG8AAAAUwgvAADAFDPhhbONAACAZCi8cLYRAACQDIUXAAAAifACAACMIbwAAABTCC8AAMAUwgsAADDFTHjhVGkAACAZCi+cKg0AACRD4QUAAEAivAAAAGMILwAAwBTCCwAAMIXwAgAATCG8AAAAUwgvAADAFDPhhYvUAQAASZrmdgGj5fP55PP5FAgElJ2d7XY5mIIKG/e6XcKIvKmOnqqQ5jbtVzDskSR9tHGpy1UBQPyZ+eQFAABAIrwAAABjCC8AAMAUwgsAADCF8AIAAEwhvAAAAFMILwAAwBTCCwAAMIXwAgAATCG8AAAAU8yEF+5tBAAAJEPhxefzqbOzU21tbW6XAgAAXGTmxowAYjfZbyY5FG4mCeBqzHzyAgAAIBFeAACAMYQXAABgCuEFAACYQngBAACmEF4AAIAphBcAAGAK4QUAAJhCeAEAAKYQXgAAgCmEFwAAYArhBQAAmEJ4AQAAppgJL36/X0VFRSovL3e7FAAA4CIz4cXn86mzs1NtbW1ulwIAAFxkJrwAAABIhBcAAGAM4QUAAJhCeAEAAKYQXgAAgCmEFwAAYArhBQAAmEJ4AQAAphBeAACAKYQXAABgCuEFAACYMs3tAgDgfxU27r3qGG+qo6cqpLlN+xUMexJQ1cg+2rjU7RKAKYVPXgAAgCmEFwAAYArhBQAAmEJ4AQAAphBeAACAKYQXAABgCuEFAACYQngBAACmJDy8nDp1StXV1SoqKtK8efP04osvJroEAABgWMKvsDtt2jRt3rxZJSUl6u7uVmlpqe6991598YtfTHQpAADAoISHl5kzZ2rmzJmSpLy8POXk5Oizzz4jvAAAgFGJ+Wuj1tZWLVu2TPn5+fJ4PNq9e/egMX6/X4WFhcrIyFBlZaUOHz485FxHjx5VOBxWQUFB7JUDAIApKebw0tfXp+LiYvn9/iGf37FjhxoaGrRu3Tq1t7eruLhYNTU1OnPmzIBxn332mb7//e/rt7/97dgqBwAAU1LMXxstWbJES5YsGfb5TZs26ZFHHtHKlSslSVu2bNHevXu1detWNTY2SpKCwaBqa2vV2Nio+fPnj7i/YDCoYDAYfRwIBCRJoVBIoVAo1vJH1D+fN8WJ67yTTX9/yd6nRK/JarL1Gu+/RUPNPZH7mCzoNTlNRK8ex3HG/Or3eDzatWuXamtrJUmXL19WZmamdu7cGd0mSXV1dTp//rz27Nkjx3G0YsUKzZkzR01NTVfdR1NTk9avXz9o+/bt25WZmTnW0gEAQAJdunRJK1asUG9vr7KyssY1V1wP2D137pzC4bByc3MHbM/NzdWJEyckSW+88YZ27NihefPmRY+Xef7553XHHXcMOeeaNWvU0NAQfRwIBFRQUKDFixePu/krhUIhNTc366dHUhSMeOI692TiTXH0ZFkk6fuU6DVZTbZe322qmbC5+/8uLVq0SGlpaRO2n8mAXpNTf68LFiyI25wJP9voG9/4hiKRyKjHe71eeb3eQdvT0tImbMGDEY+CYff/IE60qdKnRK/JarL0mog3n4n8mzfZ0Gtyimefcb1IXU5OjlJTU9XT0zNge09Pj/Ly8uK5KwAAMEXFNbykp6ertLRULS0t0W2RSEQtLS2qqqoa19x+v19FRUUqLy8fb5kAAMCwmL82unjxok6ePBl93NXVpY6ODs2YMUOzZ89WQ0OD6urqVFZWpoqKCm3evFl9fX3Rs4/GyufzyefzKRAIKDs7e1xzAQAAu2IOL0eOHBlw0E3/wbR1dXXatm2bli9frrNnz2rt2rXq7u5WSUmJ9u3bN+ggXgAAgLGIObxUV1framdX19fXq76+fsxFAQAADCfhd5UGAAAYDzPhhQN2AQCAZCi8+Hw+dXZ2qq2tze1SAACAi8yEFwAAAMmFK+wCQLIpbNw7YXN7Ux09VSHNbdof16sJf7RxadzmAhKNT14AAIApZsILB+wCAADJUHjhgF0AACAZCi8AAAAS4QUAABhDeAEAAKYQXgAAgClmwgtnGwEAAMlQeOFsIwAAIBkKLwAAABLhBQAAGEN4AQAAphBeAACAKYQXAABgipnwwqnSAABAMhReOFUaAABIhsILAACARHgBAADGEF4AAIAphBcAAGAK4QUAAJhCeAEAAKYQXgAAgClmwgsXqQMAAJKh8MJF6gAAgGQovAAAAEiEFwAAYAzhBQAAmEJ4AQAAphBeAACAKYQXAABgCuEFAACYQngBAACmEF4AAIAphBcAAGCKmfDCvY0AAIBkKLxwbyMAACAZCi8AAAAS4QUAABhDeAEAAKYQXgAAgCmEFwAAYArhBQAAmEJ4AQAAphBeAACAKdPcLgAAkHiFjXvdLmEQb6qjpyqkuU37FQx7Bj3/0calLlSFyYhPXgAAgCmEFwAAYArhBQAAmEJ4AQAAphBeAACAKWbCi9/vV1FRkcrLy90uBQAAuMhMePH5fOrs7FRbW5vbpQAAABeZCS8AAAAS4QUAABhDeAEAAKYQXgAAgCmEFwAAYArhBQAAmEJ4AQAAphBeAACAKYQXAABgCuEFAACYQngBAACmEF4AAIAphBcAAGAK4QUAAJhCeAEAAKYQXgAAgCmEFwAAYArhBQAAmEJ4AQAAphBeAACAKa6El/vvv1/XXXedHnzwQTd2DwAADHMlvKxatUq///3v3dg1AAAwzpXwUl1drenTp7uxawAAYFzM4aW1tVXLli1Tfn6+PB6Pdu/ePWiM3+9XYWGhMjIyVFlZqcOHD8elWAAAgJjDS19fn4qLi+X3+4d8fseOHWpoaNC6devU3t6u4uJi1dTU6MyZM+MuFgAAYFqsv7BkyRItWbJk2Oc3bdqkRx55RCtXrpQkbdmyRXv37tXWrVvV2NgYc4HBYFDBYDD6OBAISJJCoZBCoVDM842kfz5vihPXeSeb/v6SvU+JXpMVvSanq/Ua77/5burvJZl6Gs5E9BpzeBnJ5cuXdfToUa1Zsya6LSUlRQsXLtRbb701pjk3bNig9evXD9p+4MABZWZmjrnWkTxZFpmQeSebqdKnRK/Jil6T03C9vvLKKwmuZOI1Nze7XULCvP7663GbK67h5dy5cwqHw8rNzR2wPTc3VydOnIg+Xrhwod555x319fVp1qxZevHFF1VVVTXknGvWrFFDQ0P0cSAQUEFBgRYvXqysrKx4lq9QKKTm5mb99EiKghFPXOeeTLwpjp4siyR9nxK9Jit6TU5X6/XdphoXqpoY/e83ixYtUlpamtvlTKj+XhcsWBC3OeMaXkbr1VdfHfVYr9crr9c7aHtaWtqELXgw4lEwnNx/JKSp06dEr8mKXpPTcL0m45v8RL6XTTbx7DOup0rn5OQoNTVVPT09A7b39PQoLy8vnrsCAABTVFzDS3p6ukpLS9XS0hLdFolE1NLSMuzXQqPl9/tVVFSk8vLy8ZYJAAAMi/lro4sXL+rkyZPRx11dXero6NCMGTM0e/ZsNTQ0qK6uTmVlZaqoqNDmzZvV19cXPftorHw+n3w+nwKBgLKzs8c1FwAAsCvm8HLkyJEBB930H0xbV1enbdu2afny5Tp79qzWrl2r7u5ulZSUaN++fYMO4gUAABiLmMNLdXW1HGfk6w3U19ervr5+zEUBAAAMx5V7G40Fx7wAAADJUHjx+Xzq7OxUW1ub26UAAAAXmQkvAAAAEuEFAAAYQ3gBAACmEF4AAIApZsILZxsBAADJUHjhbCMAACAZCi8AAAAS4QUAABhDeAEAAKYQXgAAgCkx35jRLX6/X36/X+Fw2O1SAAAuKGzc63YJMfto41K3S0hKZj554WwjAAAgGQovAAAAEuEFAAAYQ3gBAACmEF4AAIAphBcAAGCKmfDCjRkBAIBkKLxwqjQAAJAMhRcAAACJ8AIAAIwhvAAAAFMILwAAwBTCCwAAMIXwAgAATCG8AAAAU8yEFy5SBwAAJEPhhYvUAQAAyVB4AQAAkAgvAADAGMILAAAwhfACAABMIbwAAABTCC8AAMAUwgsAADCF8AIAAEwhvAAAAFMILwAAwBQz4YV7GwEAAMlQeOHeRgAAQDIUXgAAACTCCwAAMIbwAgAATCG8AAAAUwgvAADAFMILAAAwhfACAABMIbwAAABTCC8AAMAUwgsAADCF8AIAAEwhvAAAAFMILwAAwBTCCwAAMMVMePH7/SoqKlJ5ebnbpQAAABeZCS8+n0+dnZ1qa2tzuxQAAOAiM+EFAABAIrwAAABjCC8AAMAUwgsAADCF8AIAAEwhvAAAAFMILwAAwBTCCwAAMIXwAgAATCG8AAAAUwgvAADAFMILAAAwhfACAABMIbwAAABTCC8AAMAUwgsAADCF8AIAAEwhvAAAAFMILwAAwBTCCwAAMMWV8PLyyy9rzpw5uvXWW/Xss8+6UQIAADBqWqJ3+Pnnn6uhoUGvv/66srOzVVpaqvvvv1/XX399oksBAAAGJfyTl8OHD+v222/XjTfeqGuuuUZLlizRgQMHEl0GAAAwKubw0traqmXLlik/P18ej0e7d+8eNMbv96uwsFAZGRmqrKzU4cOHo8+dPn1aN954Y/TxjTfeqH/9619jLB8AAEw1MX9t1NfXp+LiYj388MN64IEHBj2/Y8cONTQ0aMuWLaqsrNTmzZtVU1OjDz74QDfccEPMBQaDQQWDwejjQCAgSQqFQgqFQjHPN5L++bwpTlznnWz6+0v2PiV6TVb0mpySsdfh3qf6t8f7fWwymohePY7jjPlficfj0a5du1RbWxvdVllZqfLycv3617+WJEUiERUUFOixxx5TY2Oj3nzzTf385z/Xrl27JEmrV69WRUWFVqxYMeQ+mpqatH79+kHbt2/frszMzLGWDgAAEujSpUtasWKFent7lZWVNa654hpeLl++rMzMTO3cuXNAoKmrq9P58+e1Z88eff7557rtttt08ODB6AG7b7755rAH7A71yUtBQYHOnTs37uavFAqF1NzcrJ8eSVEw4onr3JOJN8XRk2WRpO9TotdkRa/JiV4nh3ebauI6X/97a2VlpWbOnBmX8BLXs43OnTuncDis3NzcAdtzc3N14sSJ/+5w2jT98pe/1IIFCxSJRPTEE0+MeKaR1+uV1+sdtD0tLU1paWnxLD8qGPEoGJ5c/5gmwlTpU6LXZEWvyYle3TVR763xnDfhp0pL0n333af77rvPjV0DAADj4nqqdE5OjlJTU9XT0zNge09Pj/Ly8uK5KwAAMEXFNbykp6ertLRULS0t0W2RSEQtLS2qqqoa19x+v19FRUUqLy8fb5kAAMCwmL82unjxok6ePBl93NXVpY6ODs2YMUOzZ89WQ0OD6urqVFZWpoqKCm3evFl9fX1auXLluAr1+Xzy+XwKBALKzs4e11wAAMCumMPLkSNHtGDBgujjhoYGSf89o2jbtm1avny5zp49q7Vr16q7u1slJSXat2/foIN4AQAAxiLm8FJdXa2rnV1dX1+v+vr6MRcFAAAwHFfuKj0WHPMCAAAkQ+HF5/Ops7NTbW1tbpcCAABcZCa8AAAASIQXAABgDOEFAACYQngBAACmmAkvnG0EAAAkl27MOBb9V9jt7e3Vtddeq0AgEPd9hEIhXbp0SeFgqiKT7C6f8RROdXTpUjjp+5ToNVnRa3Ki18kh3u+v/e+tFy5ckKSrXituNDxOPGZJoE8++UQFBQVulwEAAMbg1KlTmjVr1rjmMBdeIpGITp8+renTp8vjiW9aDQQCKigo0KlTp5SVlRXXuSeTqdKnRK/Jil6TE70mp/5e//nPf8rj8Sg/P18pKeM7asXM10b9UlJSxp3YriYrKyvp/zFJU6dPiV6TFb0mJ3pNTtnZ2XHr1cwBuwAAABLhBQAAGJPa1NTU5HYRk0lqaqqqq6s1bZq5b9RiMlX6lOg1WdFrcqLX5BTvXs0dsAsAAKY2vjYCAACmEF4AAIAphBcAAGAK4QUAAJgy5cKL3+9XYWGhMjIyVFlZqcOHD484/sUXX9TXvvY1ZWRk6I477tArr7ySoErHJ5Y+t23bJo/HM+AnIyMjgdWOXWtrq5YtW6b8/Hx5PB7t3r37qr9z8OBB3XnnnfJ6vbrlllu0bdu2iS80DmLt9eDBg4PW1ePxqLu7O0EVj82GDRtUXl6u6dOn64YbblBtba0++OCDq/6exdfqWHq1+nr9zW9+o3nz5kUvylZVVaU///nPI/6OxTWVYu/V6ppeaePGjfJ4PFq9evWI4+KxrlMqvOzYsUMNDQ1at26d2tvbVVxcrJqaGp05c2bI8W+++aa++93v6gc/+IGOHTum2tpa1dbW6t13301w5bGJtU/pv1d5/PTTT6M/H3/8cQIrHru+vj4VFxfL7/ePanxXV5eWLl2qBQsWqKOjQ6tXr9YPf/hD7d+/f4IrHb9Ye+33wQcfDFjbG264YYIqjI9Dhw7J5/Pp7bffVnNzs0KhkBYvXqy+vr5hf8fqa3UsvUo2X6+zZs3Sxo0bdfToUR05ckTf/OY39a1vfUvvvffekOOtrqkUe6+SzTX9X21tbXrmmWc0b968EcfFbV2dKaSiosLx+XzRx+Fw2MnPz3c2bNgw5Phvf/vbztKlSwdsq6ysdH70ox9NaJ3jFWufzz33nJOdnZ2o8iaMJGfXrl0jjnniiSec22+/fcC25cuXOzU1NRNZWtyNptfXX3/dkeT8+9//TlBVE+PMmTOOJOfQoUPDjrH6Wr3SaHpNlter4zjOdddd5zz77LNDPpcsa9pvpF6tr+mFCxecW2+91WlubnbuvvtuZ9WqVcOOjde6TplPXi5fvqyjR49q4cKF0W0pKSlauHCh3nrrrSF/56233howXpJqamqGHT8ZjKVPSbp48aJuuukmFRQUXPV/CJZZXNPxKikp0cyZM7Vo0SK98cYbbpcTs97eXknSjBkzhh2TLOs6ml4l+6/XcDisF154QX19faqqqhpyTLKs6Wh6lWyvqc/n09KlSwet11Dita5TJrycO3dO4XBYubm5A7bn5uYOewxAd3d3TOMng7H0OWfOHG3dulV79uzRH/7wB0UiEc2fP1+ffPJJIkpOqOHWNBAI6D//+Y9LVU2MmTNnasuWLXrppZf00ksvqaCgQNXV1Wpvb3e7tFGLRCJavXq17rrrLs2dO3fYcRZfq1caba+WX6/Hjx/XNddcI6/Xqx//+MfatWuXioqKhhxrfU1j6dXymr7wwgtqb2/Xhg0bRjU+Xuua/NckxlVVVVUN+B/B/Pnzddttt+mZZ57Rk08+6WJlGI85c+Zozpw50cfz58/Xhx9+qKefflrPP/+8i5WNns/n07vvvqu//vWvbpcy4Ubbq+XX65w5c9TR0aHe3l7t3LlTdXV1OnTo0LBv6pbF0qvVNT116pRWrVql5ubmhB9gPGXCS05OjlJTU9XT0zNge09Pj/Ly8ob8nby8vJjGTwZj6fNKaWlp+vrXv66TJ09ORImuGm5Ns7Ky9IUvfMGlqhKnoqLCTBCor6/Xyy+/rNbWVs2aNWvEsRZfq/8rll6vZOn1mp6erltuuUWSVFpaqra2Nv3qV7/SM888M2is9TWNpdcrWVnTo0eP6syZM7rzzjuj28LhsFpbW/XrX/9awWBQqampA34nXus6Zb42Sk9PV2lpqVpaWqLbIpGIWlpahv0esqqqasB4SWpubh7xe0u3jaXPK4XDYR0/flwzZ86cqDJdY3FN46mjo2PSr6vjOKqvr9euXbv02muv6eabb77q71hd17H0eiXLr9dIJKJgMDjkc1bXdDgj9XolK2t6zz336Pjx4+ro6Ij+lJWV6Xvf+546OjoGBRcpjus6hgOLzXrhhRccr9frbNu2zens7HQeffRR59prr3W6u7sdx3Gchx56yGlsbIyOf+ONN5xp06Y5v/jFL5z333/fWbdunZOWluYcP37crRZGJdY+169f7+zfv9/58MMPnaNHjzrf+c53nIyMDOe9995zq4VRu3DhgnPs2DHn2LFjjiRn06ZNzrFjx5yPP/7YcRzHaWxsdB566KHo+H/84x9OZmam8/jjjzvvv/++4/f7ndTUVGffvn1utTBqsfb69NNPO7t373b+/ve/O8ePH3dWrVrlpKSkOK+++qpbLYzKT37yEyc7O9s5ePCg8+mnn0Z/Ll26FB2TLK/VsfRq9fXa2NjoHDp0yOnq6nL+9re/OY2NjY7H43EOHDjgOE7yrKnjxN6r1TUdypVnG03Uuk6p8OI4jvN///d/zuzZs5309HSnoqLCefvtt6PP3X333U5dXd2A8X/605+cr371q056erpz++23O3v37k1wxWMTS5+rV6+Ojs3NzXXuvfdep7293YWqY9d/OvCVP/391dXVOXffffeg3ykpKXHS09OdL3/5y85zzz2X8LrHItZef/aznzlf+cpXnIyMDGfGjBlOdXW189prr7lTfAyG6lHSgHVKltfqWHq1+np9+OGHnZtuuslJT093vvSlLzn33HNP9M3ccZJnTR0n9l6trulQrgwvE7WuHsdxnNg+qwEAAHDPlIP2DaoAAABMSURBVDnmBQAAJAfCCwAAMIXwAgAATCG8AAAAUwgvAADAFMILAAAwhfACAABMIbwAAABTCC8AAMAUwgsAADCF8AIAAEwhvAAAAFP+H/Y6q75L0w5YAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -1259,7 +1307,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -1321,9 +1369,9 @@ " \n", " 4\n", " test/14826\n", - " they\n", - " u.s.\n", - " tell\n", + " move\n", + " sentiment\n", + " boost\n", " \n", " \n", "\n", @@ -1335,10 +1383,10 @@ "1 test/14826 japan fear raise\n", "2 test/14826 row damage inflict\n", "3 test/14826 they correspondent tell\n", - "4 test/14826 they u.s. tell" + "4 test/14826 move sentiment boost" ] }, - "execution_count": 39, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -1349,7 +1397,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -1358,7 +1406,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -1368,14 +1416,14 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 25, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAG+CAYAAACnNpjcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3zM9x/A8df37nLZS0jEDiKIPatGbQlib2pUzVK01aJmtVqjVilVq/YesalNUbNqRWySkET2vPn7I83hZ2Vccpfk83w8PCq5u+/3nVRy3/fn8/6+35Jer9cjCIIgCIIgCIIgCDmUzNQBCIIgCIIgCIIgCEJmiMRWEARBEARBEARByNFEYisIgiAIgiAIgiDkaCKxFQRBEARBEARBEHI0kdgKgiAIgiAIgiAIOZpIbAVBEARBEARBEIQcTSS2giAIgiAIgiAIQo4mEltBEARBEARBEAQhRxOJrSAIgiAIgiAIgpCjicRWEARBEARBEARByNFEYisIgiAIgiAIgiDkaCKxFQRBEARBEARBEHI0kdgKgiAIgiAIgiAIOZpIbAVBEARBEARBEIQcTSS2giAIgiAIgiAIQo4mEltBEARBEARBEAQhRxOJrSAIgiAIgiAIgpCjicRWEARBEARBEARByNFEYisIgiAIgiAIgiDkaCKxFQRBEARBEARBEHI0kdgKgiAIgiAIgiAIOZpIbAVBEARBEARBEIQcTSS2giAIgiAIgiAIQo6mMHUAgiAIgpAbxaq1hCVqUWn1aPV65JKEUi7haq3AzkKsKwuCIAiCMYnEVhAEQRCMIFGj4+rzJO5EqwhN0qLR6VFIEnr0hudISGj0ehQyCVcrOaUdlVRyscJaIRJdQRAEQcgMSa/X69//NEEQBEEQ3iQ4Xs3foYkERquQAE063lUVEugBT0cltVytKWRrkVVhCoIgCEKuJhJbQRAEQciARI2O/Y/iuBujQquHzLyZSoBcglIOSnyK2YkdXEEQBEFIJ5HYCoIgCEI6BUYns/thHBqdHq0R30XlEihkEq2L2+HpaGm8AwuCIAhCLicSW0EQBEFII71ez5GgeK48T0Kty7rzWMigiosVjQvbIklS1p1IEARBEHIJkdgKgiAIQhro9Xr2PYrjZlRylia1qSxkUM7JEt9idiK5FQRBEIT3EDfxCIIgCEIaHAmKz7akFkCtg5tRyRwJis+eEwqCIAhCDiYSW0EQBEF4j8Do5CwvP34TtQ6uPE8iMDo5e08sCIIgCDmMSGwFQRAE4R0SNTp2P4zL9qQ2lVoHux/GkagxUQCCIAiCkAOIxFYQBEEQ3mH/o5Tux6ak0enZ/zjOpDEIgiAIgjlTmDoAQRAEwTzFqrWEJWpRafVo9XrkkoRSLuFqrcDOIm+siwbHqw1zak1Jq4e70SpC4tW421qYNhhBEARBMEMisRUEQRCAlJLbq8+TuBOtIjRJi0anRyFJ6HmR1UlIaPR6FDIJVys5pR2VVHKxwlqROxPdv0MTTZ7UptLq4VxoIu08RGIrCIIgCP9PJLaCIAh5XHC8mr9DEwmMViEBmpcSOe1rE+FSPtZq9TyO1xCSoOFESAKejkpquVpTKBftJiZqdARGqzCTvBY9EBitIlGjy7ULCYIgCIKQUSKxFQQhzxClta9K1OjY/yjOUGqbkQQuNQkOiFJxJ1pFKQclPsXsckXidfV5EtkxPfbPxTN4/vg+XX9Y9N7nSqTEVdvNJusDEwRBEIQcRCS2giDkWqK09u0Co5PZ/TClKZIxSm31pCS5d2JULL4RSevidng6Wmb+wCZ0J1r1yu61OdDoU+ISia0gCIIgvEoktoIg5DqitPbt9Ho9R4Lis2wmq1af8r30fxBLFRc1jQvbIknZse9pfKFJ2nS/RqvRIFdk7VtrRuISBEEQhNxOJLaCIOQaorT23fR6PfsexXEzKjnLZ7KqdXDleRLJWj2+xexyXHIbq9a+NuIn6mkQu2d+y4PLZ9HpdVRu0Z4i5atwfvtqinhX49KeTXzQqS8yueKV0uLI4EfMaF2d7/8OQa5QEBH0kC2ThhN06yrFKtYgf/FSr5zn0dUL7Jk9kdB7ATi5F8Vv9A+UrFHX8LhGpydOrcuT5fOCIAiC8DbiXVEQhFwhMDqZxTciuROTUj6a2QrS/y+tDYxONkaYJnUkKD5bktpUah3cjErmSFB89pzQiMIStSheSsZ1Wi1/jOiJk3sRvt5zkbH7r1K5RXsAHl+7RL4ixfn20A0a9R/13mNvGDeYQuUqM+FIAI0//YJLuzcaHosODWHliB40+nQUE44F0nLUZNaM7kdcZLjhOQpJIjRRY8SvVhAEQRByPpHYCoKQo+n1eg4/icP/QSzJWuPcL/oyrR6S/yutPfwkDv1rpcw5Q2B0cpaVH79L6s5tTlsYUGn1r9yL/fjaJWLDnuI7cjJKa1ssLK0oUfUDAOwLFOTDbgOQKxRYWFm/87hRIU8IunGZ5kPHoFBa4lH9Q8o1aGF4/MrezXjVbUrZes2QyWR4ftCQIuUqE3DqT8Nz9OhRmcsMIkEQBEEwE6IUWRCEHEuU1qZNokbH7odx2Z7UplLrYPfDOAaXt8gxJd3/fy929LMgnNyLvPH+WSe3Qmk+bkzYU6ztnVBa2754vXsRop8GAxAZ8oRrf/pz68SBF7FoNJSsWc/wsf4N8QmCIAhCXicSW0EQcixTldZayiWaFLHLnpMawf5Hca/dL5rdNDo9+x/H0d7DwaRxpJX8/xYuHN0KE/U06M3Nof7vuUprG9RJiYaPY8NDDX+3z+9GYmwUqsR4Q3Ib9TQI6b/BQk5uhajaqjMdJsx5a2zSG+ITBEEQhLwuZyydC4Ig/B9RWps2wfFqQzMtU9Lq4W60ipB4tWkDSSOlXDIkmwBFK1TDPr8bB36ZiioxHnVyEg+unHvja929KnD/8hmiQp6QFBvDsRXzDI85FypK4XJV+HPxDDRqFQ8un31ld7ZKy87cPHGA238dQafVok5O4t6F00Q/CzY8RyJl/rIgCIIgCC+IxFYQhBzHXEprEzUmCiAd/g5NNHlSm0qrh3Ohie9/ohkoYC1H81K5r0wup8/cNTx/fJ+fWlblJ9/KXD24442v9fygIZWatWVe14/4pWcTytZv/srj3aYt5vG/F5na0JPDS2ZRtVUXw2NOBQvz8ezVHFs+l++blGW6bxVOrFqAXvfi35pGr8fVWhRcCYIgCMLLJH1O7YQiCDlYrFpLWKIWlVaPVq9HLqXswLhaK8QIjzTYfi+GOybehZRLUNpRadaltYkaHQuuRZhNYgsp37dhFfLliHtt51x9TrI5ffP+YymXGFXJxdRhCIIgCIJZEUu+gpANEjU6rj5P4k60itCklPmYCkl6peuqhIRGr0chk3C1klPaUUklF6sckQBkJ3MsrXW3tTBtMG9x9XkS5lawKpESV203G1OH8l6uVnIex5vfWB1XK7mpQxDMmFg4FQQhrxKJrSBkoeB4NX+HJhIYrUIiZS5qqte7mqZ8rNXqeRyvISRBw4mQBDwdldRytaaQmSZP2c0cS2vbeZjn/5s70apX/s2ZA40elq9YyZe713Hq1ClTh/NOpR2VhCRozOp7qPivUkAQUomFU0EQhBQisRWELJCo0bH/UZxhZzEj18WpF9MBUSruRKso5aDEp5hdnr4QSdToCIxWvfb9jAx+xIzW1fn+75A3jmPJKnogMFpFokZnlv9fQpO0pg7hNVqNhhhT3RydTpVcrDgRkmDqMF6hJyUuQRALp4IgCK8Sia0gGFlgdDK7H6aMVzHGzqKelAuWOzEqFt+IpHVxOzwdLTN/4Bzo5dLa6a2q0XHiHErX/sikMZljae306dOZN38+z6OicShQkLZjZnB57yYcXQvR/LNxANy7cJqN44cwdv/VlNe0qkbtjr25vGczMeHP8G7oS9txM7GwtDI894PO/Ti1djFKa1uafzaOqi07AZAUG4P/jLHcPn0YCytranboRcNPRiGTybjov57z21dTxLsal/ZsomT1Dwk49Sc6jRo7OzsUCgVRUVGm+la9k7VChqejkoCo1xdTTEECPB2VZrmIImQfsXAqCILwZiKxFQQj0ev1HAmKz7IRNFp9ymq7/4NYqrioaVzYFimPzbI019LaO9Eqs0lsAwICWLBgAVuPnOZskj1PnzxEp03bzu2VfVvpt3ATSmsbVo3sydGlsw2JcNzzUOKjIhi7/yqP/r3AyuE9KFK+CgVKlMZ/xliS4mIYvesCCdERLBvaGfv8btRs1wuAx9cuUalFe749dAOdRs2NQzsJ3LeeC2dOZ9n3wVhquVqbzb87uQS1Xa1NHYZgQmLhVBAE4e3E0pwgGIFer2ffo7hsmauaOkd136M48lpT89TS2o3jhxL99Al/jOzFpLrFuXpwJwBX9m3hp5ZVmNrYi6NLZxtep9PpOLZiHjPb1OS7RmVY901/EqIjAVAnJ7Hx2yF816gMUxqUYkGvZsQ+DwVSdiK3ThnBtObe/NiiIgcXTntjkmjKkt/4+Hg6duzI5s2bUalUyOVykpOTuXnjBhq1CudCxXAp6pGmY9Xp2h+ngoWxcXSmYf9R/HNg+yuPNx86BoXSkpLV61K2flOuHtqJTqvl6oHttBg+HktbO5wLFaN+r6Fc3rPZ8Dr7AgX5sNsA5AoFFlbW6NGb5b/dJ0+e4OHhgZOTE1ZWVshkMgrbKdGHPcbUY2PlEpRyVGZ5o7JYtZZ7MSpuRSZzPSKJW5HJ3ItREZdDysdzK71ez+Encfg/iCVZa5yk9mVaPST/t3B6+Enee28RBCF3EDu2gmAER4LiuRmVnG1zVdU6uBmVjKVcokkRu+w5qYnFqlOaogB0/f5XHlw+ayhFjgx+xP753/Hwyjm+3HaG8Ed3WfhxC7wbt8a1ZBnObPidG0f3MfD3ndg6u7Brxjh2/vQN3X9cwqVdG0mKi2HM3isolJaEBFzDwjJlV2zz5OHYOefnq51/o0pM4I8RPXF0K0ztTn1eiU2j0xOn1pmk42hycjI7duzg0KFDDBgwgAEDBvD111+zYPr33LpxA886jWj15dQ0HcvRrZDh787uRYkJe2r42NreCaW1reFjp4JFiQ17SnzUc7QaNc7uRV485l6EmNCQFx+/dNxU5njZbGNjw8OHD1+5qJfL5QysW57ld+LQmrBrmUIm4VvU+D/rovGQ+UtdOM2O95jUhdNkrR7fYnZ5ripIEIScTSS2gpBJgdHJ2bJT+/9SL0CK2VvkidKxsEQtCkl6Q1OUF5oMHI2FlTXuZSrgXsabkMDruJYsw7ktf9Dmm58MiVuTQaOZ3qoqWo0GuUJBQnQkzx/fx72MN4XLVwYg9nkoAaf+ZNLxO1hYWaO0tqVuz8Gc37bqtcRWIUmEJmqwszBut1q9Xk9sbCzh4eHv/KPT6YiNjQVg1qxZWFhY8M+zGLbfCGHj1C/ZN+87rGztUCUlGo6duiv9suhnwYa/Rz19gkOBgoaPE2OjUCXGG5LbqKdPcCtdDlsnF+QKCyJDnuBW0ivlOE+DcHB1f3Hg/7s4liTJ7MYQpSpUqBBBQUGGj3ft2oWjjSWti4P/g9hs/zkHsJBB6+J2WBkxkRSNh3IOsXCatcR4JEHIPURiKwiZkKjRsfthnEkudiHlAmT3wzgGl7fI9bsnKq3+lV2kN7FzcTX83cLKGlVCHJCShK35qg+S9OJ7JJPJiYsIo2qrLkQ9C2bD2IEkxkZTtWVnmn82jqiQJ+g0aqY1r2B4jV6vw9Gt8Gvn1aNH9Z7dPL1eT0JCwnuT1OfPn7/ysaWlJfnz53/jn+LFi5M/f3727NmDSqXC2tqa+vXrM3DgQNCosbC0wsLSCp1Oi7tXRU6t+ZWET79Aq1Zxeu1vr8V4ZtNyytZvjoWVNUeXzaFSs7avPP7n4hk0H/Ytj/+9yK2Th2g6+BtkcjkVm7Xl4MJpdPluIQnRkZxau4j6Hw996/fC3sWVZyHBqFQqlErTj67R6XR88803zJ07F1dXVywtLUlOTqZJkyb4+voC4OloSRUXdbYvYlnIoIqLldEWr0TjoZxFLJwan6hSEITcSyS2gpAJ+x/FGcpjTUWj07P/cRztPRxMGkdW+/9dpPSUyDm6FaLjpHmUqFL7jY83HTSapoNGExn8iJXDu5O/RCm86jZFrrRk/JGA944Q0mi0nPrrDH/ev/bORBWgQIECb0xSK1as+MrHLi4uuLi4YGX1/tEuKpUKALVazYMHDxg6dCjx8fHo5BYUq1STDhNmY+3gxJ1zx5nRuhrO7sWo3qY7J9f8+spxqvh0YPnQzsSEPaVcQx8affqF4TE7F1es7R35sUVFLKysaTduJq4engC0+eZH/KePZaZfDRSWltRs/zHV2/Z8a7weNevh7V2eggULIpPJDN8bU9i6dSuffvopiYmJTJ8+nS+++IItW7bw+eefs3v37lee27iwLclafbbtnlnIoLyTJY0L277/yWkgGg/lLGLh1LhElYIg5H4isRWEDAqOVxt2PUxJq4e70SpC4tVZ3ljGlOT/l8ja5StAxJOH8OZc9RW1O/bl4MJpdJ6yAOdCRYmLDOfRP+cp39CXu+dPYeuUD9eSXlja2iNTWCBJMhwKFMTzg4bsnTORZkPGorSxJTLoIdGhwZSsXveV46tUyZw/dxbF88fkz58fLy8v6tati4uLyyvJqo2N8Tsnq1QqHB0diY6ORqPRcPv2bQBatGhBixlrSX7pH2iP6UtfeW29XoNf+biId1UafjLyredq9OkXryS7qawdnOj6w6I3vqZ6m+5Ub9P9lc9ZWVpyYO/ed35dWe3u3bu0b9+ea9eu0alTJ1atWmVYROjUqROdOnV67TWSJOFbzA5LuZTlu2ipO7XG6H4uOrbnTGLh1DhElYIg5B0isRWEDPo7NNHkSW0qrR7OhSbSziP3JrZKuUTKnZkp3/SGn4zAf8ZY9s2b8sZk62Uf9hiIHj3LP0vZjbTLV4BKzdpSvqEvsc9D2THtK6KfhWBpY0vF5m2p2qoLAF2+W8j+X6Yyp1NdkhPiyFe4OB/1/fy149va2PLNV19Q0iHry2rv37/P2rVrOXjwINevXyciIuK1JGLgwIH89ttvrL0dxeN4TZbHlF6uVnKTnVulUtGnTx82btyIt7c3AQEBeHp6pvn1kpRy32Exewuj7n6mkkspjaKMtfspGg/lTGLh1DhElYIg5C2SXvR0F4R0S9ToWHAtwuQXHS+TSzCsQr5ctYKs1WqJiooiPDycoOeRnLcsiV5mfl+fXIIh3vmM3mhEo9Gwf/9+tmzZwpkzZ3j48CHJyck4OTnh7e1N06ZN6dmzJ//88w+dO3dGkiRWrVpFr14p82PPPUvgZEhCmmawTm9VzdBl+v/du3CajeOHMHb/1Ux/TQoJ6rvbmGTu77x58xgzZgyWlpYsXbr0jbuy6WGMnaBUEi9G+vgUNd5O0OEn2TOG7GWpu815ofFQVtlxP4aAKJVZdA+XAC8nJe1y0K5tVlcppDJmZYUgCJknEltByIDUhCHk/h3Wj/mU508e0PyzcdTtPtBkMZkyYUgLvV5PdHT0e5snvfwnKioKBwcHQylvy1kbUFib39dnKZcYVckl08cJDg5m7dq17N+/n3///Zfw8HDkcjlFihShdu3atG3blvbt2792361KpaJevXosXbqUSpUqGT4vFmBSnDlzhq5duxIcHMznn3/OrFmzkBlxgSQkXs25t9y79z4KKSUh9nRUUtvV2qi7YoHRySbt5NymhL3YzcoA8XObOdlZpQAp/9bLOVmKKgVBMAOiFFkQMuBOtAqNHk788Qsla9Tj8w3H3vuasdUK8OWOc+QvVjJLYtLoU+LKjsRWr9cTFxeXpuQ0tXnS8+fPsbGxea1pUup9qCVLlnztsXz58qF4qXFTbiqt1el0HD16lM2bN3Py5Enu3btHUlISDg4OeHl50b9/f3r27EmFChXeeyylUsnff//92uetFTI8HZVmtfPj6ajMtovjiIgIOnbsyPHjx2nQoAGXLl0if/78Rj+Pu60F7Tws3tltVU/K159d3VZF46Gc6+rzpHSPw3pXxYUxSKTEZa4Lpy8T45EEIe8Sia0gZEBokhaAyJAnVG7RLlvOqdNqkcnfnUClxpVeGRlDY2Fh8cbuvi4uLlSpUuWNn8/saJfSjkpCEjTp2hHLagopJa73CQ8PZ/369ezdu5crV67w7NkzZDIZhQoVonr16nz11Vd07twZOzvjXhjVcrU2LMSYmlyC2q7WWX4enU7H6NGjmTdvHu7u7pw8eZK6deu+/4WZZK2QUdvtRdVEnFpHaKLGJPMxReOhnMtcfl5flp0Lp5khxiMJQt4mEltBSKdYdcpOzO8D23P/0l88vHKO3bPGY2lrT7Mh31Cz/ccAXPRfz/kdaxi8fA+/9fcDYH63RkgSdJw4F3VykuHxVC/v6m6eNAwLS2siQx5z/+IZes9ZhWtJL/ynj+HBpbMobWyp23PQK+XPGp2e57EJJMVEpjlBDQ8PR6fTvXUMTfny5d+YpFpbZ32C8v8quVhxIiQh28/7LnpS4nqZTqfj3LlzrF+/nhMnThAYGEhCQgK2traUKVOGbt260a1bN2rXTkNL50wqZGtBKQcld0zciCb1/tGsbkCTOr4nKSmJWbNmMXLkyCw937vYWciws8j+Ob2i8VDOltEFyqxmrnGlElUKgiCIxFYQ0iksUYtCkhiwZDtLBrSlastO1Gz/MUsGtH3rawYt28XYagX4fMNRQynyRf/17z3Xlf1b6Tt/PX3mrUOTnMRv/f0o39CXbj8uIeZZMEuHdKJA8dKU+bAxAPExMdRv2Z2ou9ffmKR6enrywQcfvPZ5GxubHHFvkLmW1qoT4li7aRO7du3i4sWLhISEAODm5kbVqlUZNGgQXbt2JV++fCaJ06eYHYtvRKI1YaajkEn4Fs26Mr2Xx/d06dKFlStXpmkGcG4kOrbnXKkLpxkRHHCNPT9PJPLpY8rUaUzn7xZgYWnFjWP7+HPxdCKCHmLrnJ823/yEV90m6T6+RqcnTq3L8mqDjBJVCoIgiMRWENJJpU29Yy7rlf/IlxJVUnb1nt65SXzUc5oM/AqAfEVKUKt9L64e2G5IbO0dHNjqv4tyzrn3gt6cSmvVyUl83aUtgRf+wtramtKlS9OmTRu6detGvXr1jNqgKDOsFTJaF7czaSOh1sXtsMqCXYykpCT69u3Lpk2bMjS+J7dJ1OgIjH6x8PPn4hk8f3z/rXOG53SqR9sx0ylZo+4rz40MfsSM1tX5/u8Q5AoFK4Z1pVKL9lT365auePRAYLSKRI1O7GKlQerCqTYDfT3/PbSTfgs3olBasrhfKy7t2kChspXYNPEzes5YTqlaDYgNf0ZyfFyGYlNIEqGJGpNUIbyPqFIQBAFEYisI6ZaRC46McnQrZPh7VMhjYsOeMqVBKcPndDotJap+8OIFEph4wTrLmUtprUaVTETAPwzu3pEeu7ZSsGBB0wWTBp6OllRxUZts9EtW3Hc2d+5cxo4di5WVFZs2bcr0+J7cIL2Nh0ZtOZWm5/VbsDFjAZGzGg+ZWmYWTj/sNgCHAim/h8o1aEFwwDWCb/1LjTY98PygIQCOru4Zjk2PHpWpM8e3EFUKgiCASGwFId3kbynZVVrboEpKNHwc+zz0ncdRWtugfvn54c9ee87L5cGOboVxLlSMr3a+3v3W8Px3xJebmENpra21FV/19MVK0cpkMaRX48K2JGv12ToGo7yTJY0L2xr1uKdPn6Zr1648ffqUESNGMHPmTLPZHTc1c6lmeFlOaTxkDjKzcGqf39Xwdwsra2LCnpIQE4lX3abGCA092buwm1b/X6VgaqJKQRBMR/zECUI6KeUS0hv2RNzLVOD6kT2oEhMIf3SPCzvWvvK4nUsBIoIeGj4uWKYCz+4GEBzwL+rkJP78beY7z1u0QjUsbe04vnI+6qREdFotT+/c5PH1y4bnSKR0Xc3tUktrTXWrV1aW1mYlSZLwLWZHFRerLP/epe7U+hhxtmN4eDgNGzakfv36lClThtDQUH7++WeR1P5n+vTpDK1Xjkn1SvBz+w+4c+4EAFqNik0TPmNSvRLM6VSPJzeuvHhNq2rcOXf8vcdeMqAt57evBlL6Ayz+pBV750xiykelmdG6OgGn/zQ8NyLoIb/192NSvRIsHdyRnT9+zexRA4z7xeZSxl6YdHIrTMSTB0Y5lrkunGZkPFJW0+vhzydx3ItREWeqblaCkAeJqwFBSKcC1nI0b1i1rtdzMHILJT80K8+WScOo4vtqWWTTQV+zZdIwpjQoxdWDOyhQvBRNBnzJsiGd+LldbcO9tG8jk8vpM28dwQHXmOFXnamNvdj23SiS42IMz9Ho9bha541CjJTS2qxP0P6fOjGBC9vXsPP3XwgICEBvhjsY7yJJKbMW25Swx1IuYex1ELkE6oQ4No8fiizwvFGSWp1OxxdffEHBggW5d+8ep0+f5siRIyZrxmWOAgIC+GXBAoavOcSUUw/4ZOEmnAsVBeDm8QNUatGOScfvUu6jFvj/NCbT53t87RL5i5dmwpEAGvQZxtYpIw0/CxvGDaZohWpMOHqbpoNGc3nvZvQgLvDT4G0LpxlVo11PLvqv5865E+h0OqJDQwi9H5ihY5nrwqk5VinogBuRKnbej2XR9QjmXH3O2ttRnHuWQKImcz8HkiRx584d4wQqCLlM3rgCFgQjsreQo5BJaLV6Bv6+0/B5W2cX+v+6+ZXnNh38teHvtTv1pXanvq883ujTL2j06ReGj6u26mz4e+cpC147t0OBgnT/cclbY1PIJLPtWJkVTFFaG3X3XzZMGcUWhYJJkybh4ODAtm3bqFOnTtYHYESejpYMLm/B/kdxhqYrmbk2TNnNSRnpc/3AZs7t3ozvIX+qVq3KvHnzqFWrVoaOu2XLFj799FOSk5P5+eefGTFiRCaizL3kcjmJSck8v38baycXnAsVMzxWvEptytZrBkDVVl04ve7tv0PSyqlgEWp1SBltVq11V3b++DVxz0PRqtUE3bjMp4u3orBQUqLqB5Rr4IMEZtt4yJy8beE0o4pWqEanyfPZ8/MEIoIfYpevAG3HTMfVI/0N1sx14dRcxxDpgeT/ml5otXoex2sISdBwIiQBT0cltVytKSQaTAmCUeWdK2BBMCJXK7mpQ3gjc40rq7xcWivP4jusUktr+9YsjZWVFRqNhoSEBPR6PR4eHll67qxirZDRvqQDPT0d8XJSIpdAkc4NGYWUktB6OSnp6elIew8HalaphK2tLcnJyZw9e5batWtz9uzZdB03MDCQChUq0KVLF3x9fYmMjBRJ7TuULl2asdNmsn/xdL5vWo71YwYQE/YUAHuXF/deKq2s0SQnodVoMnW+l+/nVFqn3DubnBBPTNhTrB2cDZ8DcCyY0gTPXBsPmZPUhdP0+mbPJUrX/sjwcdPBXxs6YXs3bsWITceZcuoBo/3PG7rop1dGFk5/+uknSpUqhb29PeXLl2f79u0ArFy5knr16vHVV1/h7OyMh4cH+/btM7yuYcOGTJgwgbp162Jvb0/z5s0JDw83PO7v74+3tzdOTk4s+KQNofduGx4bW60A4Y/uGT7ePGkYBxdOA+DehdP86FOJk6t/5fsm5ZjW3JsLO9cZnqtOSmTP7IlMb1mVyQ1KsviTVoZeGI+uXmBR35ZMaVCKeV0bcu/CacPrlgxoy8GF01jUtyWT6hbnjxE9iY+KYMO3g5lc34MFvZoRGfwIjT6ludTJy9dp2KQZ9k7OlPHyYtOmTYZj9e3bl88++4xWrVphb29P7dq1uXv3LgANGjQAoHLlytjZ2bFxY8abuglCbiQSW0HIgNKOynQnAFlNIaXElRfodDqOHDnC4MGDqVixIq09C7Bi5MckxkajVauMei65BJZyiTYl7GlSxI6yZb0oVSqlM7VcLqd58+a4urq+5yjmzd3WgnYeDgyrkI/67jYUtVUYypQtZRJKWUpir5SlfJz6PSlqq6C+uw3DKuSjnYeDYbxFuXLl0OlSttBlMhmzZ8+mdu13l9qnSkpKokuXLnh5eSGTyQgMDGT9+vV5diZtevh27MrwlXv4Zs9lkCT2zfsu22Owz+9GYkwkqsQEw+einwYD5tl4yByZ6wJlRuIqVaoUJ0+eJDo6mkmTJtGrVy/DnO9z587h5eVFeHg4X3/9Nf3793/l1o5169axYsUKQkNDUalUzJo1C4Dbt2/TvXt35s6dy7m7QZSv15Q/RvZEk8bf/XHPQ0mKi2Hs/qt0mDgX/+ljSIyJAmDvnEkE3fyHwSv3MvFoIL4jJiHJZESHhrByRA8afTqKCccCaTlqMmtG9yMu8kWy/c+B7XSZupCx+/8l4skDFvX1pUab7kw4GoirRxkO/9dHQ5UYz7Khnajk04Fv/7yJ33eLGTRkKDdu3DAca8OGDUyaNInIyEhKly7Nt99+C8CJEyn3zf/zzz/ExcXRtWvXdP8/EYTcTCS2gpABlVyszKYDYyo9KXHlRhERESxYsABfX1/c3d1RKBQ0a9aMPXv2ULp0aRYsWMDZXZsY86EH5fPboZDI9F1qEi8WCwaXd35lXM3w4cOxtbXl+PHj3L9/n969e6NWqzN5RtOzVsio7WZDzzJOjKrkwhDvfLT1sKdlMXt8itrRspg9bT3sGeKdj1GVXOhZxonabjavdf4sWrQoer2eYsWKUbZsWZRKZZrutZ09ezbOzs4cOnSIzZs3c/XqVcMigvBuAQEBnD95DI0qGYWlJRaWVkgZ2PnLLOdCRSlcrgqHf5uJRq3i4T/nuXnyAGCejYfMUW5aOO3cuTOFChVCJpPRtWtXPD09+fvvlM7+xYsXZ8CAAcjlcvr06UNISAjPnr2YDtCvXz/KlCmDtbU1Xbp04cqVKwBs3LiRVq1a0axZM/QyBR/1+QxNchKP/jmfpphkCgsaD/gKuYUFZes1Q2ltS9iDO+h0Oi74r8dv9A84urojk8spXrkWCqUlV/ZuxqtuU8rWa4ZMJsPzg4YUKVeZgFMvmqbVaNMdl6IeWNk7UKZuE1yKlKB07Y+QKxRUbNqG4IB/Abh14iDO7kWp0bYHyBUUKFORso1aMX3ZWkNi3759e2rVqoVCoaBnz56Gr10QhHczv5slBCEHsFbI8HRUEhBlHiMGJMDTUZkrRgvodDrOnTvHhg0bOH78OHfu3CE+Ph5bW1s8PT3p0qULPXr0eOsOYPuSDoTEqzkXmkhgtAoJ0tVYRCGlLBJ4Oiqp7Wpt2IV82YABA2jfvj2urq4cOHCAzp070759ezZv3oy1tXXGvnAzZGchy9A9kZIk8eeff1K1alWCgoL48MMP+eijj6hQocIbn//y+J5Ro0Yxffp00ek4nZKTk5nz3QQCbt1EprCgWKWadJgwm7+3rsr2WLr+sIgtk4YztVEZinpXo1Kzdkh6nVk2HjJHlVysOBGS8P4nZqOMLpyuWrWK2bNn8+DBAwDi4uIIDw9HLpe/MvvbxsbG8Hiq/3889bHg4GCKFy8OpFQByGQyHN0KEx0akqaYbBydkSteXP5aWFmjSownIeo5muQk8hUp8dprIkOecO1Pf26dOGD4nFajoWTNeoaP7VwKvDimpdWrH1tZkZwQbzjW42uXXp1Jr9Ugte7Cvkdx7/zaBUF4N5HYCkIG1XK1NptujHIJarvmzIQqJiaGTZs2sXv3bi5cuEBISAh6vR43NzeqVq3Kp59+So8ePdLVATeltNaCRI2Oq8+TuBOtIjRJi0anRyFJ6NGjJ2VBQEJCo9ejkEm4Wskp7aikkovVOxcJZDKZofzYxsaGHTt20LdvX3x8fPD398fR0TGT35Wcr27dugB4enoyc+ZMunfvzt9///1K4h8eHk7Hjh05efIkDRs25OrVq6LTcQZVqlSJU2fPsvh6JC/fyvpyAzsA50LF+PFSmOHjb/ZceuNz//95LzfKq96mO9XbdH/luC8/16WoB4OW7zZ8vO6bT3Hz8DTLxkPmKLcsnD58+JABAwZw+PBh6tSpg1wup0qVKpnuJF+oUCH+/Tdl91MuSej1eqKfBeHo6g6AhdX/z4gPxdG10HuPa+PkgsLSiognD3Av8+oinJNbIaq26kyHCXMyFTuAY8HCeFT/kP6Ltrz22M2oZELi1RTJ9FkEIW8SS+KCkAaxai33YlTcikzmekQStyKTSdLqKW5nYfRxKemV2on2TTuL5ujKlSt8/fXX1KhRAwcHBxwdHRk+fDh37tzBz8+PQ4cOodFoCAkJYe/evQwbNizDyY6xSmvfx8LCgtWrV1OhQgUaNWpEaGhohuLNrfr06YO3tzejR48GUnblR4wYQcGCBbl//74Y32MkGW08ZGyPr1/m+eP76HQ6Ak4f5ubx/VRq3DJPdWzPrFqu1iZ/b0mV0YXT+Ph4JEmiQIGUncsVK1Zw7dq1TMfTpUsX9uzZw+HDh5F0Go6v+hW50pJilWsCUMjLm3/2b0Wn1RJw+jD3L51J03FlMhk12nRnz88TiQl7ik6r5eE/59GokqnSsjM3Txzg9l9H0Gm1qJOTuHfhNNHPgtMdf7n6zQl/eJdLuzehVavRqtU8vn6Z0Hu3UesgIllLRPLbm7u5ublx7969tz4uCHmZWD4VhDd4105fqtSdPlM3+lTIJHyL2pk2iLdISEhg27Zt7Ny5k/PnzxMUFIRWqyV//vxUrlyZSZMm0b17dwoVev9qujFktLQ2LWQyGQsWLGDixInUr1+fQ4cOUaxYsfe/MA+QJInFixdTtWpVbG1t+e2331JKZ+fMYfjw4aYOL1dxtZLzOD5zHY8zKy48lLVf9SUhOhIHV3fajp1BtapVTRpTTlPI1oJSDkru/DeKy1Qys3Bavnx5vvzyS+rUqYNMJqN3796GSo7M8PLyYs2aNQwfPpygoCBcSnvTZ+4aFP/9bm89ehqbJw7jzKbllG/YkvINfdN87JajprD/l+9Z2KsZyYnxuHt688nCTTgVLMzHs1ezf94UNowbhEwmp0iFqrQbOzPd8Vva2vHJr5vZM3sCe2dPRKfX4e7pTasvU5q96YDAaDWJGt0bF1knT55Mnz59SExMZMmSJXTp0iXdMQhCbiXpM1sTIgi5SHC8mr8zeG+mKVjIoE0J+1caG5lSQEAAa9as4fDhw9y4cYPo6GgsLS0pUaIEH374IZ06daJ58+YoFLl7TW3u3LnMnj2bgwcPUrZsWVOHYxYCAgLw8fHhwYMHtG3blk2bNqFU5o0u3tnp3LMEToYkmNXvLoUE9d1tqO1m8/4nCwaJGh2Lb0SSbMLM1lIuMaS8M1Zm3L9hztXnJv0eZQX5f8262ns4mDoUQchRcvfVpSCkUaJGx/5Hcdz9b3U8J7xFps5VNVVSq1Kp2LVrF9u2bePcuXM8evQItVpNvnz5qFChAqNHj6ZXr16GJh95yciRI3FycqJhw4bs3r2bGjVqmDokk0lKSuLjjz9m69atVKxYkc8//5wbN27k+sUNU8lNjYfyOmuFjNbF7fB/EItal/3nt5BB6+J2Zp3UgnlUKRibVg93o1WExKtzzG1GgmAOxJWFkOcFRiez+2EcGp3py4rTykIG5Z0saVzYNtvO+fDhQ9asWcPBgwe5du0aERERWFhYUKxYMWrXrs306dPx8/MTu3D/6du3L05OTvj6+rJ582YaNmxo6pCy3c8//8y3336LjY0NW7dupX379mg0Gho1asTPP/9suOdWMJ7c0nhISOHpaEkVFzVXnidla3Jr6oXT9CjtqCQkQWNWVQrGoNXDudBE2nmIxFYQ0kqUIgt5ll6v50hQfLZfMGRW6gVH48K2aZoNmhE6nY79+/ezZcsW/vrrLx48eEBycjKOjo6UL1+eJk2a0KNHD8qVK5cl589Njhw5Qrdu3Vi6dClt2rQxdTjZ4tSpU3Tr1o1nz54xatQofvrpp1fG9zx8+JCaNWuyd+/ePL2bnVWC49WsC4w2iwt9hQQ9PR3FrlMm6PV69j2K42ZUcra8Vykk8Ha2xKeYXZa9xxhTokbHgmsROWZhOj3kEgyrkE8sDAlCGomfFCFPSr1QyElJrVxKud+pTQl7mhQx7gXH06dP+fnnn2nWrBmurq4oFAratm3LkSNHqFixIkuXLiU+Pp6oqCj++usvpk6dKpLaNGrcuDF79uxh4MCBrFqV/TNFs1N4eDgNGjSgQYMGeHl58ezZM2bMmPHaTNrixYuzYMECevToIeYzZoHUxkOm7qqb0zq2mytJkvAtZkcVFyuyurG0Tq3i0ekDNCtsnSOSWnhRpZAd0U5vVY07545n+jgX/dez+JNW732eBFx9npTp8wlCXiESWyFPOhIUn22r35klkbKCXtpRyeDyzpkuDdPpdBw7dowhQ4ZQsWJFbGxscHd3Z8qUKURGRtK3b18uXbqEWq3mwYMHbN68mV69emFjIxq/ZFTNmjU5cuQI3377LfPmzTN1OEan0+n4/PPPKViwIA8fPuTMmTMcPnz4neN7unTpQr169fj888+zMdK8w6eYnclH/5hzx/acRpIkmhSxo00JeyzlktEXLVIXTtuXcuTq5t8ZN26ccU+QxcxpPJIxafRwJ1pl6jAEIccQ99gKeU5gdHKO2KlVSClNVzwdldR2tc7wrkdERAQbNmxg9+7dXLlyhadPnyJJEu7u7lSvXp0RI0bQpUsXHBxE98WsVL58eU6dOkWzZs2IiIhg8uTJOWZH5F02btzIwIEDUavVzJ07l2HDhqX5tfPnz6datWps3LiRrl27ZmGUeY9oPJQ7eTpaMri8hdGaHUq82Fn3KWqHtULG1q1b+eCDDyhXrhz9+vUzVuhZylzGI2WF0CStqUMQhBxDJLZCnpKo0bH7YZzJk1oZYCFLmYurJ+XiInUurkIm4Wolp7SjkkouVum+t+bcuXOsW7eOEydOEBgYSHx8PDY2Nnh6etKpUye6d+9O7dq1XysPFbJe8eLFOXnyJD4+PkRERDBv3rwc+/8hICCA9u3bc+vWLXr06MHy5cvT3TjMzs6O9evX4+vrywcffJAnO2hnJdF4KHeyVshoX9KBkHg15zI4nu5dC6cuLi7s2rWLjz76iJIlS/LRRx8Z/WvICj7F7Fh8IxJtFme2T65fZteMccSEP8O7oS9tx83k8b8X2Th+CB907septYtRWtvS/LNxVG3ZCYD4qAi2Tv6cexdPU6CEJ551GqX5fBqdnji1DrusrkMXhFxAJLZCnrL/UUr3Y1OSS1DC3oLqBaxRafVo9XrkkoRSLuFqrUjXm1dcXBwbN25k165dXLx4keDgYPR6PW5ublSpUoVPPvmE7t27kz9//iz8ioT0cHNz4+jRo/j5+dG7d29WrFiBhUXOuQcxKSmJXr16sW3bNipVqsTdu3fx8PDI8PGqV6/O6NGj6dmzJ8eOHRNjgIyscWFbkrX6bLv1whQd2/Mqd1sL2nlYkKjRcfV5EneiVYQmadHo9CikzC2cli1blrVr19K1a1dOnz5NqVKlsvVry4jsqlK4sm8r/RZuQmltw6qRPTm6dDala39E3PNQ4qMiGLv/Ko/+vcDK4T0oUr4KBUqUxv+nb1BYWjLu4DUigh6x4rMuOBculqbzKSSJ0EQNdhZi4oAgvI/oiizkGbmhU+jVq1dZu3YtR44cISAggNjYWKysrChZsiT169enc+fONGrUKMfuAuYlCQkJdO7cGZlMxqZNm7C2tjZ1SO81c+ZMJkyYgI2NDStWrKBt27ZGOa5Op6NFixbUq1ePSZMmGeWYwgvZ1QE+Ozq2C+8Xp9YRmqjJ9MIpwKJFi5g/fz5nzpzByckpawI2ssNPsq4x5PRW1WjY73Nqd+oLwK1Th9g1YxwdJ85l2ZCOTDpxF6V1yqLOum/641a6PI0+GcmEOkUYsfEErh6eABz45XvuXz7D4OV73ntOpQxaFrOnrLOogBCE9xFL40Ke8Xdootnce5OW+XRJSUls3bqVnTt38vfffxMUFIRWqyV//vxUrFiRCRMm0LNnTwoVKpSNkQvGYmNjw44dO+jbty8+Pj74+/vj6Oho6rDe6MSJE3Tv3p3Q0FC++OILfvzxR6MunshkMlatWkXVqlVp2rQpdevWNdqxhReNh4rZW2TJzG65lNIoqnVxO1F+bAbsLGRG290bMmQIN2/epGvXruzZsydHVFRkdZWCo9uL91xn96LEhD0FwNreyZDUAjgVLEps2FPiI8PRaTQ4FXzxOif3onD5TJrOpwe0Yg9KENJEbOsIeUKiRsfpf24wr1tDJtUrwen1S9763KiQJ0yqWxydNqVhw5IBbTm/fbVR49EDgdEqEjUv3nUDAwOZOHEidevWxdnZGWtraz755BP++ecfGjZsyPbt21GpVISGhnL48GFGjx4tktoczsLCgtWrV1OhQgUaNWpEaGioqUN6RWhoKPXr16dhw4aUL1+esLAwpk+fniUVAe7u7vz+++/07NmTqKgoox9fSG085ExpByUKiUyPRzF2x3bBPM2ePRtJkhg5cqSpQ0mTrB6PFP0s2PD3qKdPcChQEIDE2ChUifGvPGZfoCC2zvmRKRREPX31dWmV0uBLVEAIQlqIxFbIE64+T+L4yl8oWaMeU049oG73gW99rpN7EaacfohMLs/SmHRaLWN+WY6npydKpZIyZcqwcOFC5HI5o0aN4t69eyQnJxMQEMDKlStp3bp1jlgtF9JHJpOxYMECWrVqRf369Xn06JGpQzKM7ylUqBCPHz/m3LlzHDp0KMtLEf38/GjdujWDBw9G3CWTNVIbD/X0dMTLKWXWrSKd18wKKWWX1stJSU9PR9p7OKS7yZ2QcygUCjZu3MjRo0dZuHChqcNJk6wcj3Rm03KinwWTEB3J0WVzqNTsxS0Zfy6egUat4v6lM9w6eYiKTdsgk8vxbtSKw7/NQJWYwLN7AVzavTHtXwsppeSCILyfuEoW8oQ70SoiQp5QuUW7bDunXq9Hr9e/dXdLL5OjL1CMmjVr8uOPP9KmTZt0d5UVcgdJkpg6dSouLi7Uq1ePgwcPUrZsWZPEsn79egYPHpyh8T3GMHPmTGrVqsUff/xB3759s/XceUlaGg8lJ6uwtFQarWO7kHM5Ojqya9cu6tati6enJ82bNzd1SGli7PFIAFV8OrB8aGdiwp5SrqEPjT79gifXL2Pn4oq1vSM/tqiIhZU17cbNNNxT22bMT2yZ9DnTmntToIQn1dt0596FU2k6n0avx9VaXK4LQlqI5lFCnuBZqz53L/6FXGGBTC6n+WfjuLhrAxFPHmBl50CNtj1pOvhrACKDHzGjdXW+/zsEuULBkgFtqdqyEzXbf8yfi2fw/PF9uv6w6K3PLV65Fvcvnibo1r+M2HgcnVbLrhljCbr5D7bOLjQbMoZKzdsBYCmXGFXJxVTfFsEMrVy5kjFjxrBnzx6qV6+ebedNHd8TEBBA9+7dMzS+x1iuXbtGo0aN+Ouvv/D09DRJDHlVauOhGwGBTJg0iV49etC+TesMNR4Scp9Tp07RoUMHjh07Rvny5U0dTrpkZjzS+9y7cJqN44cwdv9V4x30P+I6QRDSTiwBCblerFrLwCXbWfTpiwT13oXTdPluIa6lyvLszk2WD+2Mu1cFvBu1zPT5Lu/dTL9fNpC/eGnUiQnM7VKfpoO/oe8vG3h25wbLhnbGrXQ53Ep6ifl0wmv69u2Lk5MTvr6+bNq0iYYNG2bp+RISEvj444/Zvn07lStX5s6dO5ka32MMFSpUYPLkyXTv3p2//vpLVDJko9TGQ8Mnf82VfXu5/9efDOkQjI0YNSIA9erVY9asWfj5+XHu3LkcNUrufVUKKp0+07u5WcHVKmtvixKE3ERcTQu5XliiFsX/NV4oWaMuBT3LI5PJcC/jTaUW7bl/8S+jnK+6XzfcSpVFrlBw+6/DOLsXpUbbHsgVCgqVrUSFxq3595A/8GI+nSC8rF27dmzYsIEuXbrg7++fZeeZMWMG+fLl49ixY+zYsYPLly+bPKlNNXToUAoVKsSECRNMHUqec+/ePY4cOQJAcnIyP//8s4kjEsxJ79696dKlCx06dCA5OdnU4aSbtUJGbTcbepZxYlQlF4Z456Othz3lnZXIzOxW1tTmbIIgpI3YsRVyPZU2dUz9C4/+vciBX6by7M4tNBoVWpWKCk3bGOV8jm6FDX+PDHnC42uXmNLgxXB7nVZD1VZdANCjR2UuM4gEs9K4cWP27NmDn58fUVFR9O7d22jHPnbsGD169CAsLIyvvvqKH374wexmH0uSxPLly6lSpQrNmjWjadOmpg4pz/jxxx9RqVRAytixadOm8fnnn5vtOCoh+/3www906tSJwYMHs3z58hw9tzi1SsHdRsGtqIgMHaNkjbpZUoasByq5WBn9uIKQW4nEVsj13jT/beO3g6nTpT99f9mAhaUVu2Z+S0Ia3tCU1jaokxINH8eGvz6e5eX3d8eChfGo/iH9F2154/HEfDrhXWrWrMmRI0do0aIFkZGRjBgxIlPHCw0NpUOHDvz11180bdqUTZs2ZXmn48zInz8/K1eupG/fvly5ciVHlT3mZNWrV0eSJPz9/WndujXe3t6iHFx4hUwmY/Xq1dSvX5+ZM2fy9ddfmzqkTLNWyPB0VBIQpTKLkmQJ8HRUiiZtgpAO4qdFyPXeNP8tOT4Oa0cnLCyteHztEv/s35amY7l7VeD+5TNEhTwhKTaGYyvmvfP55eo3J/zhXS7t3oRWrUarVvP4+mVC790GxHw64f3Kly/PqVOnWLhwIZMnT87QGBydTsfw4cMpVKgQT5484dy5cxw8eNCsk9pUTZs2pUePHnzyySdiBFA2GTx4MEuWLMHLy4tevXoxatQorK2tTR2WYGZsbW3x9/dn/vz57Nixw9ThGEUtV2ujjgbKDLkEtV3Fz50gpIdIbIVcTymXkHj1nart2On8uWg6k+qV4PCSWVRslrYyZM8PGlKpWVvmdf2IX3o2oWz9d488sLS145NfN3P14HZ+bFGRH5p7s3/ed2jUKfclifl0QloUL16ckydPsnPnTkaMGIFOp0vza9evX4+zszPLli3jl19+4cGDB9SsWTMLozW+77//nuDgYBYtWmTqUPIUa2trEhMT3/9EIc8qUqQI27dvZ8CAAVy5csXU4WRaIVsLSjkoTZ7cyiUo5ajE3dbCtIEIQg4jxv0IuV6sWsvi65GY462scgmGeOcTXZGFNImKisLPz48SJUqwfPlyLCzeftFz8+ZNOnTowO3bt+nZsydLly7N0eWkt2/fpm7duhw9epQKFSqYOpw8oX379nz88cd06NDB1KEIZm7z5s18+eWXnDt3Dnd3d1OHkymJGh2Lb0SSbMKLBku5xJDyzliJMmRBSBfxEyPkevYWchTm1urwPwqZJJJaI4hVa7kXo+JWZDLXI5K4FZnMvRgVceq072zmBE5OThw4cICIiAg6dOjwxt20hIQEOnTogLe3N9bW1ty7d49Vq1bl6KQWoEyZMsyYMYPu3buLXcRsInZshbTq3LkzAwYMoF27djn+34y1Qkbr4naY6q3ZQgati9uJpFYQMkDs2Ap5wtrbUTyON7+xOkVtFfQs42TqMHKct80hfLn7tYSERq9HIZNwtZJT2lFJJRerXNGIQ61W06dPH4KCgvD39zd0q/3pp5+YPHkytra2rFixgjZtjNPp21zo9Xq6d+9OgQIF+OWXX0wdTq7Xv39/6tSpw6effmrqUIQcQK/X06tXL7RaLevXr8/RnZIBDj+J48rzJLJzfdRCBlVcrGhSxC77TioIuUjOv8IThDQo7ahEYWbvsWI+XfoFx6vZcT+GBdciOBmSwON4DclaPVo9JOv0qHQY/iTr/vu8Vs/jeA0nQxJYcC2CHfdjCI5Xm/pLyRQLCwvWrFlDhQoVaNSoEdu3b8fd3Z0JEybwxRdfEBYWluuSWkgZAbR48WJ27drF7t27TR1Orid2bIX0kCSJZcuW8ejRI6ZMmWLqcDKtcWFbyjlZZtvOrYUMyjtZ0riwbfacUBByITHuR8gTKrlYcSIkwdRhvELMp0u7RI2O/Y/iuBujQqsnQ6MYNP+9KCBKxZ1oFaUclPgUs8uxO7gymYzx48dTq1YtOnToQIMGDbh582aO6HScGU5OTqxZs4ZOnTpx+fLlHH8/nzkTia2QXlZWVmzfvp3atWvj5eVF9+7dTR1ShkmShG8xOyzlUpbv3Kbu1DYubJvjd7oFwZRy5hWdIKRT6nw6c3m7EPPp0i4wOpnFNyK5E6NCk8Gk9mV6UpLcOzEqFt+IJDA62RhhZiudTsfQoUMpUqQICoWCUaNG8eDBA54+fWrq0LJFvXr1GDx4ML17905Xh2ghfURiK2SEm5sbu3btYsSIEZw9e9bU4WSKJEk0KWJHmxL2WMolo3dLlkspjaLalLCnSRE7kdQKQiaJq2ohzxDz6XIWvV7P4Sdx+D+INZQbG1NqmbL/g1gOP4nLMTNS165di5OTE3/88Qe//vor9+/fZ/bs2UyZMoVGjRpx8eJFU4eYLcaPH09iYiKzZ882dSi5lkhshYyqWLEiy5cvp0OHDjx69MjU4WSap6Mlg8s7U9oh5bamzF5KSLy4HWlweWc8HS2NEaYg5HkisRXyDDGfLufQ6/Xse5Q9jTvUOrjyPIl9j8w7ub1+/Tply5ald+/etG/fnsjISAYNGmR4vG/fvixatAhfX1+OHTtmukCziUKhYO3atcyYMSPPJPPZTSS2Qma0bt2ar776Cj8/P2JjY00dTqZZK2S0L+mA5dU/Sbx/A7lEunt3KKSUawAvJyU9PR1p7+EgKrcEwYjEPbZCnuJTzI7FNyLRmnA+nUIm4VtUdDx8lyNB8dyMSs62bpRqHdyMSsZSLpldN8qEhAR69uzJzp07qVq1Kvfu3aN48eJvfG67du1wcHCgS5cuLF26NFc2kHpZ8eLF+eWXX+jRowcXL17Ezs68/t/ldCKxFTJr1KhR3Lx5k549e7J9+3bkcrmpQ8qUX3/9lc8/+wxPT0/+uXHrrd359aTsyiYnJ6OXZFhbKnNdd/73iVVrCUvUotLq0er1yCUJpVzC1VohxhwKWUaM+xHynMDoZPwfxGZrC/9UFjJoU8JelB29g/j/88KPP/7I5MmTsbe3Z+XKlbRu3TpNrzt//jx+fn7MnDmTjz/+OIujNL1PPvnE0JFVMJ5Vq1Zx6NAhVq9ebepQhBxMpVLRokULatSowcyZM00dTobodDq++uorFi9eTGJiIuXKlePGjRuvPCdOrSM0UfNKIodWTbdWzZky7hvatm1rouizR14fwyeYB7FjK+Q5no6WVHFRm2w+nbkkTeYoUaNj98M4kyS1kLJzu/thHIPLW5j0jfbIkSP07NmT8PBwvv76a6ZOnYpMlvZ4atasyZEjR2jRogWRkZF8/vnnWRit6c2fP59q1aqxadMmunTpYupwcg2xYysYg1KpZOvWrdSuXZuyZcvSv39/U4eUbt988w3z5s0zNKuLjo5+7Tl2FjLsLP5/hJ8lc376gT59+tC4cWPs7e2zIdrsFRyv5u/QRAKjVUi8mEAAoH1t7yzlY+1/Y/hCEjScCEnA01FJLVdrColbtIRMEkskQp4k5tOZp/2P4tDoTFtEotHp2f84ziTnfvr0KR9++CFNmzalUqVKhIWF8cMPP6QrqU1Vvnx5Tp06xYIFC5g8ebJZ3z+cWXZ2dqxbt45hw4bx8OFDU4eTa4jEVjCWfPnysXv3bsaNG8fx48dNHU66ffLJJ3Ts2BFISdRjYmLS/NpGjRrRuHFjJk2alFXhmUSiRsf2ezGsC4wmICplFJ8mnW8zGn1KI8eAKBXrAqPZfi+GRI3odC9knEhshTwpdT5dFRerLE9uU3dqfYqJVv7vEhyvNsypNSWtHu5GqwiJV2fbOXU6HUOGDKFw4cI8ffqUv//+mwMHDmR6Jm3x4sU5efIkO3fuZMSIEbl6NE6NGjX46quv6NWrFxqNxtTh5AoisRWMycvLi7Vr19K1a1fu3Llj6nDSpVy5cnTr1o1atWrxww8/0KxZs3S9ftasWaxdu5ZLly5lUYTZS4zhE8yVSGyFPEvMpzMvf4cmmjypTaXVw7nQ7LmgX7VqFY6OjqxatYpff/2Ve/fuUaNGDaMd383NjaNHj3L58mX69OmDWp19CXt2++qrr7C0tGTatGmmDiVXEImtYGxNmzZl8uTJtG7dmsjISFOHky6LFi1ixIgRfPXVV2zbti1dr82fPz/Tp09n4MCBaLXaLIow64kxfIK5E4mtkOeJ+XSml6jRERityvSqr7HogcBoVZaWRF2/fh0vLy/69etHp06diI6OfmV8jzE5OTlx4MABIiIi6NixY65NVmQymWGB4PTp06YOJ8cTia2QFQYPHoyPjw9dunTJMQttt2/f5urVq4Zy5Izo06cPdnZ2LFy40IiRZR8xhk/ICURiKwi8mE/X09MRLyelmE+Xza4+T3rjgsL0VtW4c84092NJpMRlbAkJCbRr146KFStib2/P/fv3WbFiBQpF1vbys7GxYceOHdjZ2eHj4/PG5ie5QaFChfj999/p1asXUVFRpg4nRxOJrZBVfv75ZywsLBgxYkSOSFwWL17MJ598gqVlxheqJUli8eLFfPfddzx58sSI0WUPU43hOxIUnz0nFHIFcdUtCC9xt7WgnYcDwyrko767DUVtFYYyZUuZhFKWcs+sUpbycWq5cVFbBfXdbRhWIR/tPBxwF5390uVOtCrdTSeymkafEpcx/fDDDzg7O3Pq1Cl2797NhQsXKFasmFHP8S4WFhasWbOGChUq0LhxY8LCwrLt3NnJz8+PVq1aMXjw4Bxx0WyuRGIrZBW5XM6GDRs4ceIECxYsMHU475SQkMCqVauMUlFTtmxZhg0bluM61QdGJ2f7JAl4sXMr7rkV0kqM+xGEN7BWyKjtZkNtNxvgzfPpxKBx4wlNMs97jowV1+HDh+nZsyfPnz9nzJgxTJkyJUOdjo1BJpOxYMECJk6cSP369Tl48GC2JtfZZebMmdSsWZNVq1bRp08fU4eTI4nEVshKDg4O7Nq1iw8//BBPT098fHxMHdIbbdy4kdq1a1OiRAmjHG/MmDFUrlyZnTt35ojZtmIMn5CTiMRWENLgzfPpBGOIVWvfOeLnyfXL7JoxjpjwZ3g39KXtuJlokpPYOH4oT65dQqvVULxyLdp/OwtHt0IAXPRfz+HffyY+MhxbJxeaDR1L1ZadALiwYy0nVi0k9nkoRb2r0n78bJwLFX3juTU6PXFqXYYXL54+fUr79u05d+4cLVq0YOPGjTg4OGToWMYkSRJTp04lX7581K9fnwMHDlC2bFlTh2VU1tbWrF+/nsaNG1O3bl1Kly5t6pByHJHYClnNw8ODLVu20L59e44dO0b58uVNHdJrFi1aZNRRPVZWVixevDjHzLY1pzF87T1M//4pmDex9CEIgkmFJWpRvKNj9JV9W+m3cBOj/c8T/uguR5fORqfTUaNtd77ec4kxe69gYWWF//QxAKgS49k1cxz9ftnAlFMPGLxiD4W8KgBw49g+ji6fS69ZKxl/+BYlqn3AhnFvLy9TSBKhiekfHfPy+J7Q0FAuXLjAvn37zCKpfdmoUaOYMmUKjRo14uLFi6YOx+gqVqzIpEmT6N69OyqVccvK84LUxFaUcwtZqW7duvz888/4+fmZ3e0RFy5cIDQ01Oi7yTlltm1eHsMn5EwisRUEwaRUWj36d/RDrtO1P04FC2Pj6EzD/qP458B2bJ3yUaGJH0prGyxt7WjUfxT3Lv5leI0kyXh29ybqpEQcChTErVTKbuS5LStp+MkIXEuWQa5Q0PCTUYTcvkZk8OM3nluPHlU639FfHt+zaNEi7t69S7Vq1dJ1jOzUt29fFi1ahK+vL8ePm6ZRV1b67LPPKFiwIBMnTjR1KDmOQqFAJpPlmM61Qs718ccf07VrVzp06EBysvncT7lo0SIGDRqEXC43+rFzwmzbvDqGT8i5RGIrCIJJad+zG5RaXgzg7F6UmLCnqBIT2P79l0xvWZXJ9T1Y8mkbkmKj0Wm1KK1t6f7T75zb8gfTmldg5efdCb0fCEBUyBN2z/yWKQ1KMaVBKaY29ESv1xMTFvLGc+vTEF+qa9euUaZMmVfG9wwcODBt3wQTa9euHRs2bKBz5874+/ubOhyjkiSJ5cuXs3r1ag4fPmzqcHIcUY4sZJfvv/8eV1dXBg0aZBZVApGRkWzbto3+/ftnyfHNfbZtXhzDJ+R8IrEVBMGk5O8oQwaIfhZs+HvU0yc4FCjIyTWLCHt4h6Gr9jP55H0GLk1JxlIvhsp82Jj+i7Yw7uA1CpTwZPvUUUBKktzu25+ZdOKu4c/UM48pXrnWG88tpSG+uLg4/Pz8qFSpEg4ODtk2vsfYGjduzJ49exg4cCCrV682dThGVaBAAVauXEmfPn0IDw83dTg5ikhsheySOof633//ZcaMGaYOh1WrVuHr64urq2uWncOcZ9u+bQxfVtk8aRgHF05753OyagyfkHuIxFYQBJNSyiWkd7x9ntm0nOhnwSRER3J02RwqNWuLKj4OC0srrOwdSYiO5PCSWYbnxz4P5caxfagS45ErLVFa2yL914G4dqe+HF8xj2d3bwGQFBvDv4d2vvXcEindr9/m+++/x8XFhbNnz7Jnz55sH99jbDVr1uTIkSN8++23zJ8/39ThGFWzZs3o0aMH/fv3N4vdoJxCJLZCdrK1tcXf359ffvmF7du3mywOvV7PokWLGDJkSJaex5xn2+aVMXxC7iISW0EQTKqAtRzNOxKNKj4dWD60MzP9apCvSAkaffoFdXsOQp2cxPeNvfi1jw9l6jQ2PF+v03FqzSKmtajI1Iae3L/0F23HzQTAu3ErGvQZzvqxA5lc34O5XeoTcPrt5anxSUkM6dWV7777jsDAQMPnDx8+TMGCBfnuu+/45ptvePbsGb6+vkb4bphe+fLlOXnyJAsWLGDy5Mm5Kgn8/vvvefLkCYsXLzZ1KDmGSGyF7Fa4cGF27NjBwIEDuXz5skliOHr0KBYWFtSrVy/Lz2Wus21zyhg+jSb9DR6F3EvS56arFkEQcqQ5V5+TbC4dKl6iUyWxa2Rnbt26RVRUFHK5HLlcjkqlokKFCuzbt48iRYqYOsws8ezZM3x8fKhfvz5z58412dxdY7t9+zZ169bl2LFjeHt7mzocs1etWjV+//13qlevbupQhDxmy5YtfPHFF5w9e5ZChQq9/wVG1LlzZxo1asTQoUOz5XxJSUlUrlyZGTNmmGy2bXBwMMOHD+fEiRPY2tlRufMA6nQfiE6r5fjK+VzYuY64iDDyFyvFx7NXoddpmdG6Ot//HYL8v1tvlgxoS9WWnajZ/mOeP77PtqlfEBJ4HUmS8KzTiLZjpmNt75hyvltX2frdSMIf3cOrblMkScKlqAfNPxsHwN/bVnN85XwSY6IoUaU27b6dhUOBgsgl+LpqARYsWMDcuXPRaDTcv3/fJN8zwfzkjisVQRByNFcr43ecNIbiznacOXOGsLAw+vfvj06nQ6lUUqJECe7cuUPRokWxs7OjcuXKDB06lEOHDqHT5Y7GFm5ubhw9epTLly/Tp0+fXNMZt0yZMkyfPp3u3buTlCTu1XofsWMrmEqnTp0YNGgQbdu2JSEhIdvOGxwczOHDh+nVq9c7nxer1nIvRsWtyGSuRyRxKzKZezEq4tTpfw9InW07fPhwYmNjMxp6hul0Ovz8/KhcuTJBQUGs3LGPU+uWcPuvI5xas4h/Dmyn7/z1TD55n06T52FhZf3eY+r1ehp+MoJxB/5l1NbTRD8N4s/FKfdOa9QqVn/Rh6otuzDxaCAVm7Xh2pHdhtfe/fskBxZ8T4/pSxl38BpO7kVYP2YAgGE84I4dOzh37hw3btzIgu+IkFOJxFYQBJMr7ahEkZ1dKtJAIaXE9ccff+Ds7MyGDRtYsmQJsbGx3L9/n8TERJ49e8ZPP/1E0aJF8ff3x9fXF4VCQYECBWjYsOFrJcw5jZOTEwcOHCAiIoKOHTvmmgSnX79+lCtXjq+//trUoZg9kdgKpjRu3DjKli1L3759s23RcOnSpXTt2vW1ueOJGh3nniWw9nYUc64+Z/H1SHbej2Xvo1gOPI5j76NYdt6PZdH1COZcfc7a21Gce5aQ5i6+ppxte/78ecLCwpg4cSJKpZKCxTz4oEMvrh7Yzvkda2g+dCwFSpRGkiTcy1TA1infe4+Zv1hJPD9oiEJpiZ1zfur1GsL9Sylj+R5fvYBWo6Zuz0HILSyo2LQNRcpXNbz2yr4t1GjTg8LlKqNQWtJi+Hge/XuByOBHhvGAY8eOJV++fFhbvz/JFvIOkdgKgmBylVyszGakQCqdXs+nvg345JNP6Ny5M1FRUXz66aevPMfV1ZVhw4axe/dunjx5gkaj4dKlSwwYMACVSsXcuXMpU6YMFhYWlChRgo4dO7Js2TJiYmJM9FWln42NDTt27MDOzg5fX98cFfvbpDZs8ff3Z8+ePaYOx6yJxFYwJUmS+P333wkKCmLy5MlZfj6NRsOSJUteaRoVHK9mx/0YFlyL4GRIAo/jNSRr9Wj1kKzTo9Jh+JOs++/zWj2P4zWcDElgwbUIdtyPITj+/VUvpppt+/DhQ4KDg3FycsLJyYlaJdw4vGwusRFhRD8LJl+REuk+ZuzzUNaPGcCPLSoyub4Hm8YPISEqAoCY8Gc4uLojvTR1wMn9xW09MWFPX/nY0sYOG0dnokNDDNcKRYsWzdDXKuRuIrEVBMHkrBUyPB2V2Tpa4F10Wi2XD+zg2uWL6HQ6VqxYgVKpZPbs2e99bZUqVZg2bRp//fUXERERqNVqtm7dSuPGjbl58ybDhw/H0dEROzs7KlWqxJAhQ8y+hNnCwoI1a9bg7e1No0aNCAsLM3VImebs7MyaNWv49NNPCQl58xxjQSS2gulZWVmxfft2Vq9ezbp167L0XLt27aJEiRJUqlSJRI2O7fdiWBcYTUCUCq2edHcJ1uhBq4eAKBXrAqPZfi/mnTu4ppptW7RoUTw8PIiKiiIqKoq/Hzxj2l8P6PfLBhzdChHx5MFrr7GwtgFAnfTi90Pc81DD3w8u+AEkiRGbTjD55H26fL/I0IzQPr8rMaEhrzQnjH76oiu0Q4GCRIW8+FiVGE9CdCSOru6G6wTpPaP4hLxJJLaCIJiFWq7WvGOyTrbSqlWcWv3rK5/T6/V89NFH6T6WQqGgTZs2LF++nBs3bpCQkEBYWBgzZsygePHi7N6921DCnD9/fj766COmTJlCQECAsb4co5DJZCxYsICWLVtSv359Hj16ZOqQMq1evXoMGjSIPn36mPXCgilZWVmJxFYwOVdXV/z9/Rk5ciRnzpzJsvOkjvgJjE5m8Y1I7sSkjLzJbEWRnv9G1cSoWHwjksDo5Lc+1xSzbWvVqoW9vT3Tp08nMTEROTqe3rnF4+uXqdmuF4d+/YnwR3fR6/WE3L5OfFQEds75cXB15/Lezei0Wi7sWMvzlxLg5IQ4LG1ssbJzIDo0hJOrFhgeK1apJjKFgr/WL0GrVnPt8G4eX3/RAbuyTwcu+q8nOOBfNKpkDiz4gaIVquFcqNg7xwMKgkhsBUEwC4VsLSjloDR5cqvXaqhQ0JF9G1e/9tjcuXONsoqeP39+hg4dyq5du3j8+DEajYYrV64waNAgNBoN8+bNo2zZsoYS5g4dOrB06VKioqIyfe7MkCSJqVOnMmjQIOrXr292yXdGjB8/nvj4eObMmWPqUMyS2LEVzEXFihVZsWIFHTt25OHDh0Y/fmBgIFeuXKFAvdb4P4g1lBsbU2qZsv+DWA4/iXvjODVTzLaVy+Xs3r2bK1eu4OHhQa2Shdg4ZSTJcTHU6zWEis3bsHxoFybX92DrdyPRJKc03uswYTYnVy1kaqMyPLsXQPFKNQ3HbDJwNEE3rzKlQUn++Lw73o1bGx5TWCjpNWslF3dt4LtGnlw9uAPvRq0Mj5eu/RHNho5h7ehPmNa8As8fP6D7j78DvHM8oCCIcT+CIJiNRI2OxTciTTr6x1IuMaS8M1YKGd9//z0TJkwA4IMPPuDcuXNIkkTXrl1ZvXo1cnnWdXPWaDTs37+fHTt2cObMGUPDKhsbG0qVKsWHH35I+/btadKkCYr/Ri1kp5UrVzJ27Fj27NlDtWrVsv38xvTgwQNq1arFvn37xFib/zNy5EiKFSvGF198YepQBAGAOXPmsGLFCk6fPo29vb3Rjvvll1/iUKcVdp6VyEBj43SzkEE5J0t8i9m9sax28uTJXL16lW3btmV9MG9grmP4LOUSoyq5mDoMwUyJHVtBEMyGtUJG6+J2WJjoN5OFDFoXt8NKkRLA+PHjqVevHuXKlePMmTMkJSXh6+vLhg0bUCqVdO3aNcvug1IoFLRu3ZqlS5dy/fp1QwnzrFmz8PDwYO/evbRq1QqlUkn+/Plp0KABkydP5ubNm1kSz//r27cvixYtwsfHh+PHj2fLObNKiRIlmD9/Pt27dycuLs7U4ZgVsWMrmJuRI0fywQcf0KNHD6P9/k1MTOShVUFsSlXMlqQWQK2Dm1HJHAmKf+PjY8aM4fr16+zcuTN7Avo/5jqGz1zjEsyD2LEVBMHsHH4Sx5XnSdl2gQEpSW0VFyuaFLF773NVKhWdO3dm165dAHTo0IGNGzdm6Q7u21y7do2NGzdy9OhRbt68SUREBAqFgkKFClGtWjV8fX3p0qULTk5OWXL+I0eO0K1bN5YtW4afn1+WnCO79OvXD7lcztKlS00ditn47rvvUKlUfP/996YORRAM1Go1Pj4+VKlShZ9//jnTx/tt+z7CC1VCrrQ0QnTpYyGDNiXs8XR8/dxHjx6lT58+XL9+3ai702lx7lkCJ0MS0t0wKyspJKjvbkNtNxtThyKYKbFjKwiC2Wlc2JZyTpbZtnNrIYPyTpY0LmybpucrlUp27txJUlISbdu2Zdu2bVhYWNC+fXtUKlUWR/uqChUqMHXqVE6dOsXz589Rq9Vs376d5s2bExgYyMiRI3F2dsbW1paKFSsycOBA9u3bh0ajMcr5GzduzJ49exgwYABr1qwxyjFNZf78+Rw/fpzNmzebOhSzIXZsBXNkYWHB5s2b2bVrV6YXohI1Op4VKGuSpBZSdm53P4x7Y7dkU862NccxfHpS4hKEtxE7toIgmCW9Xs+RoPgs37lN3altXNg2w+MDtFotXbt2NdwL5efnx+bNm1EqlcYMNcMiIiLYuHEjBw4c4NKlS4SEhKDVanF2dqZ8+fI0atSI7t27U65cuQyf48aNG/j4+PDVV1/x+eefGzH67HX+/HlatWrFhQsXKFasmKnDMbkFCxZw48YNfv311/c/WRCy2e3bt6lfvz4bNmygUaNGGTrG8ksPCVYrUJgosQWQS1DaUUl7D4fXHgsPD8fb25t9+/Zlez+DHfdjCIhSmUWCKwFeTkraveF7JAipRGIrCIJZC4xOZvfDODQ643aolEugkEm0Lm73xhKwjNBqtfTo0YMtW7ag1+tp2bIl27ZtM5sE92WpJczHjh3jxo0bREZGIpfLcXd3N5Qwd+7cmXz58qX5mA8fPqRZs2b07NmTiRMn5tg5gzNmzGDXrl0cO3bMJOXl5mTZsmWcOnWKFStWmDoUQXijI0eO0L17d06dOoWnp2e6Xhscr2bl9TBkFqb/Ha2QoKenI+62Fq89tnLlShYsWMC5c+ey/HeSSqXi7Nmz7Ny5k6eJOqoO/NYsypHf9f0RhFQisRUEwewlanTsfxTH3RgV2kzOFJRISWpLOSrxKWqHtcL49c5arZaPP/6YjRs3otfradGiBdu2bcPa2tro5zIWjUbDwYMH2b59O2fPnuXevXskJCRgY2ODh4cHderUoX379jRv3vydXZifPXuGj48PDRo0YM6cOchkOe+OF51OR7NmzWjYsKGhK3ZetW7dOvz9/dmwYYOpQxGEt1qyZAk///wzZ8+exdnZOc2v2xTwnDuxGmRmsID1rh1JvV5Po0aN6NChQ5ZVxLi4uBAREfHa57fdjebOf++9pvKuHW1BeJlIbAVByDFC4tWcC00kMFqFBOlaRVZIKQmxp6OS2q7W2bLqq9Vq6du3L+vWrUOn09G8eXN27Nhh1gnuyyIiIti8eTP79+/n0qVLBAcHG0qYy5UrR6NGjejWrRve3t6vvC4qKgo/Pz9KlCjB8uXLsbDIeSvsQUFBVK9enW3btvHhhx+aOhyT2b59OytXrjRZZ1ZBSKtRo0bx77//sm/fvjT9zknU6Jh3JRTk2T8u7W3kEgyrkO+NC663bt2iXr16XLlyhSJFihj93AMHDuT3339/5XPFihXj1t37ZjWGTxDeRSS2giDkOIkaHVefJ3EnWkVokhaNTo8qKRG1Wo1MJsfaxhqFTI5Gr0chk3C1klPaUUklF6ss2aF9H61WS//+/Vm9ejU6nY4mTZqwa9euHJPgvuz69euvlDBHREQYSpirVq2Kj48PXbt2xcrKis6dOyOXy9m4cWOO/Fp37tzJyJEjuXLlCo6OjqYOxyT279/P7NmzOXjwoKlDEYR30mq1tGnThmLFivHrr7++91aIs8/iOXQvAgsr8/nd9L6uv1k121alUlG8eHGePn36yudTU4TA6GT8H8Rm66SCVO/qGi0I/08ktoJZiFVrCUvUotLq0er1yCUJpVzC1VqBnamGmgo5wooVKxg7+TtcS5Vj8GfD+KhRY7P996PVahk4cCB//PEHWq2WRo0a4e/vj53d+0cMmSuNRsOhQ4cMJcx3794lISEBa2trSpQoQXJyMtbW1pw4cSJd9+uai88++4yIiAjWrVuXY+8Zzozjx48zfvx4Tp48aepQBOG9YmJiqFu3LgMGDHhvye7C8w+IVWT8d++fi2fw/PF9uv6wKMPHeJOitgp6lnF642NJSUlUrlyZGTNm0LZtW6Ocr3///ixfvhxImen94MEDIKW8e8CAAYbnmfsYPkEAkdgKJvKmHTeFJKF/6e5JCclsdtwE83PlyhU6derE/fv3+eSTT1i0aNE77/00J1qtliFDhrB8+XK0Wi0NGjRgz549OTrBfVlUVBSbNm1i3759XLp0icePH6PX63FycqJ8+fI0bNiQ7t27U6FCBVOH+l6JiYnUqFGDb775ht69e5s6nGz3999/M3ToUC5cuGDqUAQhTR48eECdOnVYvnw5vr6+b33e92ceobDK+DzUrEpsLeUSoyq5vPVxY822PXPmDPXq1UOn06FUKrl+/TqlS5emVq1aREdHExAQ8Mrz9Xo9+x7FcTMqOVuS29QxfD7F7PLkoqKQMSKxFbJVcLyav41wj2QtV2sKic54eVJcXBxdu3Zl37591KxZk61bt2bJ/UbZZdiwYSxevBitVkvdunXZs2dPrit71ev1DBkyhC1btlCqVCnu3r1LREQEMpmMQoUKUblyZXx9fenSpQv58+c3dbiv+ffff2ncuDFnzpyhdOnSpg4nW/37779069aN69evmzoUQUiz06dP0759e44cOfLGBbS7T0JY/0SLwjJtM1GPr5zPX+t/Jyk+FocCBWn1xXes+bIvevQoLJTkK+LBiI3HiAh6yOaJwwgO+JeiFapToHgpkuJi05X8yiUY4p3vndVGffv2JV++fMyePTvNx02lUqnw8PAgODgYgEmTJjF58uQ0vTYnjeET8iaR2ArZIku62joo8SmWNV1tBfM0efJkpk2bhrOzM2vWrKFZs2amDslohg8fzuLFi9FoNNSpU4d9+/blugR3zpw5zJ07l4MHD+Lp6WkoYf7rr7+4d+8e8fHxWFtb4+HhQe3atWnXrh0tW7Y0i534BQsW8Mcff3D69GmzHN+UVe7cuUPz5s25d++eqUMRhHRZs2YNEyZM4Ny5c7i6ur7y2PeLVyJVaYLc8v3314Y9uMOyIR0ZuuoADgUKEhn8CJ1Wy+U9m1/bsf21jy8lqtSi+bBveXLtEis/7065Bj7pSmwtZRJtPewp6fD23zMZnW37ctlxuXLluHHjRppf+7KcNIZPyFtERiBkucDoZBbfiOROjApNJpNaSHm9Rg93YlQsvhFJYHSyMcIUzNi+fftwdXVl2rRpjB8/nmfPnuWqpBbgl19+Qa1WM2LECM6fP4+TkxO1a9d+4/iFnGrUqFFMmTKFhg0bcuXKFVq0aMHixYu5evUqcXFxREZGMn/+fLy8vDhy5AgdO3bEwsKCfPnyUbduXcaNG8fVq1dNEvtnn32Gm5sbkyZNMsn5TcXa2prExERThyEI6darVy969uxJhw4dSE5+cZ2g0Wj489hxlJZpS5wkmQyNSkXovQC0ajXOhYrhUtTjtedFhTwh6MZlmg7+BoWFkhJVP6BcA590x61Hj+o92WL+/PmZPn06AwcORKvVvveYZ86cQS6Xs3z5cpRKJYGBgRlOagE8HS0ZXN6Z0g5KFFLKhkNmSKRU5ZV2VDK4vLNIaoUME4mtkGX0ej2Hn8Th/yCWZK1xV/UAtHpI1urxfxDL4SdxiOKD3OfJkyfUrFmTVq1aGZK8iRMnmjqsLDV37lzUajVffvklly5dwsXFhZo1axIWFmbq0Iyib9++LFq0CB8fH44fP/7KY05OTnz66ads27aNBw8eoFaruXXrFiNGjEChULBkyRKqVKmCQqGgaNGi+Pn5sWDBAsLDw7M8bkmSWLFiBatWreLIkSNZfj5zIRJbISf77rvvcHd3Z8CAAYZrhD179uDq5o48jTO28xcrSeuvvufP32bwfdNyrB8zgJiwp689LybsKdYOziitX9y361iwULpj1gPaNFzP9OnTBzs7OxYuXPjW56hUKgoXLsyHH36ITqdj0qRJJCcnG+WWCmuFjPYlHejp6YiXkzJltzWdGa5CStml9XJS0tPTkfYeDqIKT8gUUYosZAlTNBko52SJr2gykCtoNBoGDx7MihUrKFWqFFu2bKFSpUqmDsskvvnmG+bMmYNaraZatWrs37+fAgUKmDqsTDty5AjdunVj2bJl+Pn5pfl1Op2Ow4cPs23bNk6fPv1KCXOJEiX44IMPaNu2La1atcqSEuaDBw/yySefcOXKFbO8H9jYEhMTcXJyemXHSxBykoSEBBo0aEDHjh0ZO3YsLVq0oONnXxFXvCqqdF6fJMXFsv2HL5HJFbgU9eD5o3uGMuPI4MfMaluTSSfuGZLbjd8OAUhXKbJSBi2L2VPW+f27lu+abWussuO0eldTUD0pu7Lm3hRUTOjI+URiK2QJ0RZeyKhly5YxYsQIJEliwYIF9OnTx9QhmYVvv/2WWbNmoVKpqFKlCvv27aNgwYKmDitTzp8/j5+fH7NmzaJXr14ZPk5MTAybN29m7969XLx4kaCgIDQaDc7OzpQtW5aGDRvSrVs3oy2OjB49msDAQLZv357rF9L0ej0ymQyNRoNcLjd1OIKQIUFBQXzwwQeMGTOGKVOmcOLGPfYFJZOse/8lcNiDO8SEhlC8Si2QJHb88BU6nZbilWpyee9mBi7dhey/3d9fe/vgUa0OzT4bS9CNf1gxvCvl6rcw+j22L/v/2bZv63ac3eLUOkITNWadJIoJHbmPSGwFoxODvIWMuHLlCh07duTBgwf079+fX3/91SyaBpmbSZMm8dNPP6FSqahUqRJ79+6lcOHCpg4rw27cuIGPjw+jR49m+PDhRjtuYGAg69ev58iRI1y/fp3nz58jk8koWLAgVapUwcfHh27dumVo11WlUlGnTh0GDBjA4MGDjRazubK2tub58+fY2GR8NIogmNrFixepX78+Xbp04Zffl7H4emSabpEKuX2dbVNHEXr/NnKFBcUq1aTDhNnILZSs/uJjnt0NIF/hYgxfd4Tnj++zZdJwgm9fo6h3NfIVKYFep6XjpHlpjjMtXZFfljrb9ocffmDEiBGGbscTJkzgu+++S/N58xIxoSP3EomtYFSJGh2Lb0SSbOwbatPBUi4xuLyzWE3LIWJiYujWrRv79++nVq1abNu2jUKF0n9fUl4zdepUfvjhB5KTk6lQoQL79+/PsQnuw4cPadasGT179mTixIlZsguq0+k4evQoW7du5fTp09y9e5f4+HisrKwMJczt2rXD19c3TV2PAwICqFevHseOHcPb29vo8ZqTfPnyERgYiIvL22drCoK5S0pKws3NDRsbGy5evMjGcMssv1ZZ982nFCjhSbMh36T5Ne+bY/smrVu3Zs+ePUD2lB3nVGJCR+4n/i8IRrX/UUr7d1PS6PTsfxxn0hiEtJk8eTL58+fn4sWLHDhwgLNnz4qkNo0mTJhAUlIS06ZNIzAwkCJFilChQgUePXpk6tDSrXjx4pw8eZIdO3YwcuRIdDrjl3vIZDKaNGnCr7/+yj///ENcXBzR0dH8+uuveHt7c+zYMTp37oylpSXOzs7UqVOHsWPHcuXKlTcez8vLi+nTp9O9e3eSkpKMHq85EQ2khNxg06ZNfPjhhwwfPpw2bdrgojT+Atrj65d5/vg+Op2OgNOHuXl8P96NfNN1DFertJf8p3Y73rNnDzKZjH79+omk9i3EhI68QezYCkYTHK9mXWB0uko6sopCgp6ejriLEhGztG/fPvr06UN0dDQTJkxg/Pjxpg4px5s+fTqTJ08mKSmJsmXLsnfvXjw8Xh9JYc6ioqLw8/PDw8ODZcuWYWGR/T+/gYGBbNy4kcOHD3P9+nXCw8MNJcyVK1fGx8eHrl274urqil6vp2vXrri7uzNvXtpLDXOa0qVLs2/fPjw9PU0diiBkWJ06dRg3bhytW7emT58+2Ff8EI9mnYx6zXLz+AF2/vQ1CdGROLi607DfCGq07ZHm1yskqO9uQ223d5f9q1QqPDw8Xik7/vzzzzM02za30+v1HAmKz/K+L6l9XhoXts31vRfMmUhsBaPZcT+GgChVplfBjEEipX18Ow8HU4civOTRo0d06NCBS5cu0apVK9avX4+dnWj2ZUw///wz48ePJykpCS8vL/bs2UOpUqVMHVaaJSQk0LlzZ+RyORs3bsTa2tqk8aSWMKd2Yb5z584rJcxVqlThzz//5Pfff6ddu3YmjTWrVKxYkbVr12Z7Z3LRoVQwlsuXL9OuXTvu3buHXC4nOTmZFn5taTFtJZLcfHo5yCUYViHfO8taBw4cyO+//w68Xna8cuVKFixYwLlz50SzN8SEjrxIJLaCUSRqdCy4FpGmRgwX/ddzfscaBi/fk6UxpeUNQsgeGo2GAQMGsGrVKkqVKsW2bduoUKGCqcPK1ebOncu4ceNITEzE09OT3bt3U6ZMGVOHlSZqtZo+ffoQHByMv78/Dg7mtUAVExPD1q1bDV2YHz16hFarxcHBgXLlyvHRRx/RtWvXXLNrUqtWLX755Rdq166dpecRHUqFrDJw4EBKlCjBuHHjDJ8LDQ3l202HKfVhE5BM/+/nfQvyL3c7trCw4MaNG691O9br9TRq1IgOHTrw+eefZ0PU5k1M6Mh7TP+TLOQKV58nYW5rUxIpcQmmtXTpUpycnNiyZQsrVqzg9u3bIqnNBiNHjiQhIYH58+cTFBSEl5cXnp6e3Lx509ShvZeFhQVr1qzB29ubRo0aERYWZuqQXuHg4EC/fv3YvHkz9+7dQ6PRMGzYMFxdXbG2tmbFihXUqFEDhUJB4cKFadmyJfPmzePp06emDj1Dsvoe2+B4NTvux7DgWgQnQxJ4HK8hWatHq4dknR6VDsOfZN1/n9fqeRyv4WRIAguuRbDjfgzB8eosi1HIuaKjo1m5ciXffvstMpkMSZKQJAk3Nzd6N6iG2kxmNMslqO36eoWKSqWicOHCfPjhh+h0OiZMmIBKpXrjCB9Jkli8eDHfffcdT548yY6wzVZgdHK2J7UAah1ceZ4k7rk1EZHYCkZxJ1plFvfWvkyjT4lLMI1Lly5RqlQpBg0aRK9evYiMjKR3796mDivPGT58OPHx8fz6668EBwdTvnx5SpUqxbVr10wd2jvJZDIWLFhAy5YtqV+/Po8fPzZ1SO80Z84cChQogJ+fH6GhoWg0Gg4ePEi7du0ICQlh/PjxuLu7Y21tTdmyZenTpw9bt25FpTL/31FZldgmanRsvxfDusBoAqJSupSm931EowetHgKiVKwLjGb7vRgSNSaYNSeYrdRKIUjZ0UxlaWlJ/Upe5CcRjcq0SYhcglKOytf6ggwcOBBLS0uCg4MpV64cer3+vSN8ypYty7Bhw/L0jm2iRsfuh3EmGTsJKcnt7odx4neRCYjEVkiT4OBgOnbsSIECBfDw8GD+/PlERERQpEgRdu3aRWiSluSEOGa2qcml3RsBiHoaxJov+/J947J816gMO396td393jmTmPJRaWa0rk7A6T8Nn7+wcx2zO3zIpHolmOFXg3Nb/jA8du/CaX70qcTJ1b/yfZNyTGvuzYWd6wyPx0dF8MeInkyu78GCXs1YOWsq9erVMzx+69YtmjVrRr58+fDy8mLTpk1Z9S3Ls2JiYvD19aVGjRq4urry+PFjFi9eLGbSmtiQIUOIj49nyZIlPHv2jIoVK+Lh4cHVq1dNHdpbSZLE1KlTGTRoEPXq1SMgIMDUIb2VQqFg3bp1/PTTT1y6dAmZTEbjxo1ZuHAhly9fJjY2ltjYWBYvXkzFihU5deoU3bt3N3Rhrl27Nl9//TUXLlww9ZfymqxIbEWHUiE76PV6FixYgJub22uPpXaQ71uzNAoTl5wpZBK+RV+UrqZ2O/7999+xsLAgMDAwXd2Ox4wZw/Xr19m5c2dWhGv2xISOvEsktsJ76XQ6/Pz8qFy5MkFBQRw+fJi5c+dy/vx5li9fzqcDBhAVHsqenydQyKsC1Vp3RafV8seInji5F+HrPRcZu/8qlVu0Nxzz8bVL5C9emglHAmjQZxhbp4w0rKTa5ctPn3lrmXzyPp0mz2PP7AkE3fzH8Nq456EkxcUwdv9VOkyci//0MSTGRAHg/9M3KK1tGHfwOp2/W8B5/w2G+37j4+Np1qwZPXr0IDQ0lA0bNjB06FDRGt9IUkuk8ufPz+XLlzl06BBnzpwR43vMzIABA4iLi2Pp0qWEh4dTuXJlSpQoYdYJ7qhRo5gyZQoNGzbk0qVLpg7nrUqUKMH8+fPp3r078fHxrz1uZ2dHnz592Lx5M3fv3kWlUnHnzh2++uorbG1t+eOPP6hVqxZyuZzChQvj6+vL3LlzTV7CbMzEVq/Xc/hJHP4PYg3lxsaUWqbs/yCWw0/iEG1E8q6oqCh8fX25ffs2x48fp2TJkobH/vjjD1xdXQGwVsjoUCY/OrVpqicsZNC6uB1WClm6yo7fxcrKisWLFzN8+HBiY2OzKHLzFByvNsypNSWtHu5GqwgRt0hkK5HYCu91/vx5wsLCmDhxIkqlkpIlSzJgwAA2bNhA8+bNadG2A0sGdSTg1J+0+/ZnICVxjQ17iu/IySitbbGwtKJE1Q8Mx3QqWIRaHT5GJpdTrXVXYsOfEfc8FICy9ZvjUtQDSZIoWb0unh805MHls4bXyhQWNB7wFXILC8rWa4bS2pawB3fQabVcO7KbpoNTklu3kl7U9OuG+r9Vu927d1OiRAn69euHQqGgatWqdOzYkc2bN2fjdzN32rt3L25ubsyYMYNJkybx9OlTmjRpYuqwhHfo378/sbGx/PHHH0RERFC5cmWKFSvGxYsXTR3aG/Xt25dFixbh4+PD8ePHTR3OW3Xr1o06deowcuTIND2/VKlSfPvttxw5coRnz56h0Wg4fPgwHTp04OnTp0yYMOGVEubevXuzZcuWbC1hNlZim9qhNDvue0u9z23fI5Hc5jUxMTEMHTqU/Pnzc+DAAYoXL87Dhw+5e/cu+fLlo0WLFq/dFlPGyZKaBe3QJGdvX47URkOejpavlB17eXmlqez4XRo1akTjxo2ZNGmSESM2f3+HJpo8qU2l1cO5UDEDPDuJ2kDhvR4+fEhwcDBOTk6Gz2m1WurXrw9Ap979Wb1kEQ0/GYmtUz4Aop8F4eReBPlbyk/t87sa/q60TpnXlpwQjz0QcPpPDv82i/BHd9HrdKiTEnErXc7wfBtH51eOa2FljSoxnvjIcHQaDY5uL3YInQoWIuJfveHrOHfu3Ctfh0aj4eOPP87YN0Z4ZXyPn58fa9euFeN7cpjevXvTu3dv1qxZw2effUaNGjUoUqQIW7dupVatWqYO7xXt2rXDwcGBzp07s2zZMvz8/Ewd0hv98ssvVK1alS1bttCpU6d0vVYmk9GwYUMaNmxo+FxcXBzbtm1j9+7dnD59mo0bN6JSqXB0dMTLy4sGDRrQpUsXatasaeSvJIWxEtsjQfHZNnYDUpLbm1HJWMol0aE0D4iNjWXy5MnMnz8fjUZDmTJlePr0Kf/88w+Ojo4APH/+/K2vb1rUnrhkFdfCE7GwyvoxYxYyKO9kifXjf5EXf3e344yaNWsW3t7e9OrVK9d0aX+XRI2OwGjzGDsJKbdIBEarSNToROf2bCK+y8J7FS1aFA8PD6Kiogx/YmNj2bt3L1qtlokjh1KjdRfObl5B+KN7ADi6FSbqaRBajSZd59Koklk7+hPq9x7Kt4duMOnEXbzqNYU0rLjbOudHplAQHRpi+Fzk0yDDL7iiRYvy0UcfvfJ1xMXFsWjRonTFKKQsCPTr1w8PDw9iY2O5evUqO3fuFEltDtarVy+io6PZsGEDsbGx1K5dmyJFinD27Nn3vzgbNW7cmD179jBgwADWrFlj6nDeyN7envXr1zN06FDDfXyZYWdnR+/evdm0aRN3794lOTmZe/fu8c0332BnZ8eqVauoXbs2crmcQoUK4evry+zZswkODjbCV2OcxFZ0KBWySnx8POPHj8fFxYXZs2dTrFgx/v77bz7++GO6detmSGrfR5Ik2pV2obw9qJMSsjRmCxlUdFLy6YdlqZvJsuN3yZ8/P9OnT2fgwIFotVqjHddcpU7omN6qGnfOmaay5//PLSZ0ZC+R2ArvVatWLezt7Zk+fTqJiYlotVquXbvG+fPnmTZtGpIko+uU+TTo/RmbJw5Dp9VStEI17PO7ceCXqagS41EnJ/Hgyrn3nkurVqNRJWPr7IJMoSDg9J8Enj2WpjhlcjnejVpx+LcZqBITCL0fyMXdmwxjiFq3bs3t27dZvXo1arUatVrN+fPnc8T4E3OyZMkSHB0dDeN7AgICxPieXKRr165ERUWxadMm4uPjqVOnDoUKFeL06dOmDs2gZs2aHDlyhHHjxvHLL7+YOpw3qlmzJl9++SW9evXKkgtKDw8Pxo4dy+HDhw0lzEePHqVTp048e/aMyZMnU7hwYaysrPDy8jIkxklJ6b/AymxiKzqUClkhISGBH374ARcXF3744QcKFCjAn3/+yd27d6lWrRpLlixhyJAh6TqmJEl0rFAUb00oSbHRyIy89yeXwFIu8Xj3KlqUcDRa2fG79OnTBzs7OxYuXJglxzcnYkKHIBJb4b3kcjm7d+/mypUreHh4kD9/fj799FOOHDnC7Nmz+fm3ZcjlCj7q+zmSBMdXzEMml9Nn7hqeP77PTy2r8pNvZa4e3PHec1na2uE3ehrrvxnAdx+V5sq+bZRr0CLNsbYZ8xNJcTFMa+7NpglDqerTAUtLSyBlF+XgwYNs2LCBQoUKUbBgQb755huSzWSGnblLHd8zZMgQevfuTXR0tBjfk4t17tyZyMhItm3bRlJSEvXq1cPd3Z0TJ06YOjQAypcvz8mTJ/nll1+YMmWKWd5HOXr0aCwsLPjxxx+z/FwymYwGDRowf/58Ll26RExMDPHx8SxdupSqVaty+vRpPv74Y6ytrXFycqJWrVp8+eWXnDt3Dp3u3QlfZhNb0aFUMKakpCRmzZpF/vz5GT9+PHZ2dmzZsoWgoCBDb4c9e/ZQpEgRqlSpkqFzdKhfA/c7J7l39hgKCTLbNFkCFBI4a2KZ8FEZ5o3/0tDt+NatW5k8+nvOnYdm24YmGW8RUa/Xv/a7Mb1ViKmMGZfwbpLeHK8GhBwlVq1l8fVIs7lZ/2UH5n+HuyaKdatXmTqUHCsmJoYuXbpw8OBBateuzdatW0Wn4zzI39+ffv36ERERgZubGxs2bHjlPlBTefbsGT4+PjRo0IA5c+Ygk5nXem1QUBDVq1dn+/bt1KlTx9Th8PDhQ9avX8+ff/7Jv//+S1hYGJIk4ebmRqVKlWjWrBndu3d/5Wd87ty53L9/n3nz5qX7fMHxatYFRpvFLopCgp6ejq/NChVyhuTkZH777TfGjRtHQkICdnZ2zJkzh/79+7/2XB8fH3r27JnpHhpffPEF9yPi+HjCDO7GapBI36xlhZRyn2UpewVT+3fhyvFDAEyYMCHLdmjfZvLkyVy9epVt27Zl63mzy8vXotNbVaN2x95c3rOZmPBneDf0pe24mWiSk9g4fihPrl1Cq9VQvHIt2n87y9CbZcmAthSvXIv7F08TdOtfRmw8zs/tatPmm584ve43dFotX+++yM0TBzn06zQigx/jWtKLduNm4l7GG0g5d8eJcyhd+yNDbHIJhnjnw87CvN6fciPxHRYyzd5CjkJm4iFw/wm9H0jI7evo9XoeX7vE+R1r6dKxg6nDypF0Oh3ffvstLi4u/PPPP2J8Tx7Xpk0bnj9/zp49e9BoNDRq1Ag3NzeOHDli0rjc3Nw4evQoly5dom/fvqjV5jVaoXDhwvz222/06NGD6OhoU4dD8eLFGTNmDH/++aehhPn48eN07tyZsLAwpkyZYihhLlOmDL169eLatWvvHRly6NChN+78ig6lQmapVCoWLVqEq6sro0aNQqvVMn36dGJiYt6Y1N69e5dLly7RuXPnTJ975syZqMODOTDjGz7zdqa+uw1FbRVYyqWUsmKZhFKWcs+sUpbycWq5cVFbBfXdbbi7bCodSztz5fihLC87fpfcPts2LFGLQnpxLXpl31b6LdzEaP/zhD+6y9Gls9HpdNRo252v91xizN4rWFhZ4T99zCvHubx3M+3Hz2byyfs4uxcF4MaxfQxddYBRW04RfOsqW6eMoN23PzPh6G1qdezNqlEfo1G9vfpPIUmEJmZst1dIH5HYCkbhaiU3dQgAJCfEsearvkyqW5z1YwbQ6pPPaNu2ranDynF2796Nq6srs2bN4rvvviMkJESM7xEAaNmyJeHh4ezfvx+dTkeTJk0oUKAABw4cMFlMTk5OHDhwgPDwcDp27Gi0mavG0rZtW3x9fRkyZIjZlUzLZDLq1avHvHnzuHjxoqGEedmyZVSvXp2zZ8+ycuVKVqxYgaOjo+He4TNnzhgS2YiICJo3b07BggVfmblrzh1KBfOnVqtZtmwZBQsWZPjw4SQmJjJmzBji4+MZPXr0W1/322+/0bdvX6ysrDIdg1wuZ/369Zw5c4YlC3+htpsNPcs4MaqSC0O889HWw56WxezxKWpHy2L2tPWwZ4h3PkZVcqHk85t8WMie3xbMz7ay43fJ7bNtVVo9+pd+29Tp2h+ngoWxcXSmYf9R/HNgO7ZO+ajQxA+ltQ2WtnY06j+Kexf/euU41f264VaqLHKFArlFSnVHw34jsHF0xsLKmr+3raZWx94Uq1gdmVxOdb9uKJRKHv174a2x6dGjMpcVvlxOjPsRjKK0o5KQBI3Jy82KeldltP95IKUEqL67DZJkHrvJOcGjR49o3749ly9fpm3btqxduxYbGxtThyWYoRYtWhAWFsahQ4fo1asXPj4+uLi4sGrVKlq2bJnt8djY2LBjxw769u2Lr68v/v7+ODg4ZHscbzNr1ixq1qzJ6tWrzf7edBsbG3r27EnPnj0B2Lx5MytWrKBhw4YcOnSItWvXMmfOHCRJwtXVFWdnZwDCwsIoWrQo+/fvp0mTJoYOpeYktUNpbTfxe81caTQa1q5dy+jRo4mMjESv1zNo0CDmzJmDUql852uTkpJYsWKFUbu529vbs2vXLurUqUOZMmUMv9/sLGTYWbwej0qlonBhD0NXclOUHb/Ny7NtZ8+ebepwMkSlUuHt7U2LFi0YNmwYZcuWBUD7f4uGL49+dHYvSkzYU1SJCez5eQK3/zpCYmwUAMnxcei0WmRy+X+vK/zaOR0LvjhWZMhjLu3eyJkNSw2f02rUxIQ9e2vM+jfEJ2QNsWMrGEUlFyuzWZVPpSclLuH9NBoNffv2xcPDg/j4eP7991+2b98uklrhvZo1a8azZ884fPgwCoWCVq1a4eLiwu7du7M9FqVSyZo1a/D29qZx48aEhYVlewxvY2Njw/r16/nyyy+5c+eOqcNJF2trayRJ4uuvv+bQoUM8ffoUjUbDiRMn6Nat2ytjhTQaDU2bNqV///5G7VB60X89iz9plenjiA6l5kur1bJmzRqKFSvGwIEDCQ8Pp2vXrsTExLBw4cL3JrWQsghTvXp1SpUqZdTYihcvztatW+nbty/Xrl176/MGDhyIpaVltnQ7zqhZs2axdu1aLl26ZOpQMkShUHDv3j1+++03qlatSpkyZZgyZQr/f0dc9LMXv5einj7BoUBBTq5ZRNjDOwxdtZ/JJ+8zcKk/wCuVNG/eC3nxSSe3wjT6ZCSTTtw1/Pnur0dU8Xn7bW8SIBebLNlCJLaCUVgrZHg6Ks1mdV4CPB2VYiB2Gvz22284Ojqybds2/vjjD27duoW3t7epwxJymMaNG/P06VOOHz+OUqnEz8+PfPnysX379myNQyaTsWDBAnx9falfvz6PHz/O1vO/S6VKlZg4cSI9evQwu3uB3+VNXZFlMhl169Zlzpw5hs7zqZRKJXK5PF2dQDPabTQjRIdS86LT6diwYQMlS5bk008/JSQkhBYtWhAeHs6aNWvStcD666+/MnTo0CyJs06dOsyZMwc/Pz9CQ0NfeezMmTPI5XJ+//13syg7fhdznW2r1+uJiYkhMDCQ06dPs23bNhYvXsyUKVP47LPP6Ny5Mw0aNKB8+fLodDo0Gg1JSUkEBgYyc+ZMJK0G6aWr0DOblhP9LJiE6EiOLptDpWZtUcXHYWFphZW9IwnRkRxeMivdcdbs8DHntv7Bo38votfrUSXGc+vkQZLj3951XUJCKTeXK+TcTZQiC0ZTy9XabGaIySWo7Wpt6jDM2oULF+jcuTOPHj1i0KBBLFiwwOw6ygo5T4MGDQgJCeH06dN07tyZDh064OTkxNKlS+nYsWO2xCBJElOnTiVfvnzUq1ePgwcP4uXllS3nfp9hw4axf/9+Jk2axLRp00wdTpq8b9xPkyZNiImJoWfPnnTu3BmFQmHoUPou01tV44POfbmydythD+/QeMAXXPTfQFxEGE5uhWn+2Ti8G7ci9N5tdkwbjVajZlLd4sjkCiaduItGlczBhdO4emgnWpWK8o1a0vrLqVhYvft3v0anJ06tEx1KTUyn07Ft2za++eYbQkJCSExMpGHDhqxevZoiRYqk+3hXrlwhKCiIVq0yv7P/Nj179uTWrVu0b9+ew4cPI5PJ8PAwz7Ljd+nTpw8rV65k4cKFfP7551l2Ho1GQ3h4OKGhoYSGhvLs2bN3/tfCwgI3NzdcXV1xdXU1/L1cuXJ89NFHho/Lly//ynni4+P5esin1P92geFzVXw6sHxoZ2LCnlKuoQ+NPv2CpLgYNowbxPeNvbAvUJD6vYZy4+jedH1NRcpXof342fhPH8PzR/ewsLKieJXaeFT78O3fB70eV2uRcmUHMe5HMKrt92K4E6MyaRdMuZRyz297D/O5v86cREVF0bVrVw4dOkSdOnXYunUrBQsWNHVYQi519uxZOnXqRFBQEI6Ojvz+++9G6VaaVitXrmTs2LHs2bOHatWqZdt53yU0NJSqVauyevVqGjdubOpw3uvy5cv069ePK1eupPk192JU7LwfS/I75tdOb1UNa3sHes9di61TPm6dPEjxKrWxc3Hl2qGdbJkykq92nsOhQEEu+q/n/I41DF6+x/D63bPGE/HkAZ2m/IJcYcGGcYNwK10Wn+ET3hmbpUyirYc9JR3eX9oqGJ9er2fHjh2MHTuWx48fk5CQQI0aNVi3bh2enp4ZPu6gQYMoWrQo48ePN2K0r9PpdHTt2pXLly9z9+5dALy8vMx2h/Ztbt26Rb169bhy5Uq6FhISEhLempj+/+eioqJwdnY2JKRvSlpf/tybdudVKhVTpkxh3bp1BAUFvbXapX///nh/Pp1kM2zSZCmXGFXJxdRh5Ali+UAwKp9idiy+EYnWhL9YFDIJ36J2Jjv//9g767Co0jYO30M3SNkgitjY3diFhQnW2rHqrmKLHSh2d2GD3b3WLsaKhWKDioIg3TNzvj/8YEVSiRn03NflNePMOed9BuYczu99nvf3KCtyuZzp06ezaNEiTE1NuXDhQr64qRbJ39SpU4d3795x69YtunbtSvfu3TEwMGDdunX07t0718fv378/RkZGtG7dmoMHD9K4cePMd8plzM3N2bZtG/369cPb2xsTE+W+4cksY5sW3zqUpke9noMxKvTFrKVSi/8c7G1bdebKthW8e3yP8k3apNpPEARuHdrFmP1X0DH8Yl7V5Lex7J86LFNhKzqUKgZBEDhx4gRTpkzhzZs3REVFUb58eXbt2pXtSafw8HAOHDjAkydPcija9PHy8uLQoUPI5XJUVFTw9fXF2to618fNacqWLcuoUaP4/fff2bx5c6bZ1KTnUqmUggULphKmVlZW1K5dO8VrpqamqKpmvWvG/v37WbBgAc+ePUvzmiORSNDX10/l6vz8+XOsra3Z/SyMt9HK11ZHWTqH/AqIwlYkR9FWU6G9pR7H3kSSqICOCvLEBOoZSdAS19am4MSJE/Tv35/IyEhmz57N5MmTFR2SyC9GrVq1ePv2LXfv3qVz5844OjoybNgwVq9enesuwZ06dUJfX59u3bqxZcsWOnTokKvjZYWWLVvSo0cPBg0axKFDh5Tavf1HhG1WHUANC/3nQPrvif1cd19HaMCXddEJsdFEh4WkuV90aDCJcTGsdmye/JqAgJCFNYOiQ2neIggCZ86cYcqUKbx8+ZLIyEisrKw4fvw4TZo0yZExdu3aldxyKrdISEhIUXY8duxYPDw8uH//vtIJ2/j4+FQZ1PRE68ePH7lw4QLFihVLlU2tXr16quyqnp5etq9XDx48wNnZGS8vLyIiItJsg6apqYm1tTUjR45k+PDhKd6zsbHh+fPnFC9eHH9//+TXlaVDx9eo/b+KUCRvEIWtSI5T2lCTKiaJeIfE5am4VZMIXN63manLZqClpUW9evX47bffkltW/Ir4+fnRuXNnvL29xfY9IkpB9erV8ff3x9vbm06dOtGvXz9GjhzJqlWr6N+/f66N26xZM06ePEmHDh1wc3PDyckp18bKKvPmzaNu3bps2LCBYcOGKTqcdPkRYZtVB9CkG+TQgLccmvMng9Z7YmFbExVVVVb2bAJJN7zfHE/HyAR1LW3GelzH0Lzwd8UmOpTmDYIgcP78eaZPn87Tp0+JjIykUKFC7Nq1K0f7ywuCwLp161izZk2OHfNbhgwZwqZNm4CUZcd9+vShVatWWFpaUqNGjVwbP8lYKaslwDExMZiZmaXKqhYuXJjKlSuneO3x48cMGjSIW7duoa+vn6Nxf/78GWdnZ06ePElISAjSNEzi1NTUKFSoEA4ODsyZMwc9vcwr7h49eoS/v3+qCQVbEy2ufojJsfhzArFDR94iCluRXMGuqC7xMoEnYfF5Im7VVaC8kRaL3L8YB8TFxXHp0iUuXbpElSpVfjmX34SEBAYPHoy7uzs2NjY8fPjwl/sZiCg3VapU4c2bNzx48ICOHTsyYMAARo0axbJlyxg8eHCujFmzZk0uXbpEq1atCA0N5ffff8+VcbKKpqYme/fupUGDBslun8rIjwhbDVXJ/x1Ks5Y6SYiLQSKRoFvAFIA7R/cQ+PK/NYt6xmaEB35AmpiAmroGKioq1OzsxMkl07CfuPDL+0EfCHzxBJt6GS+xEB1Kc59Lly4xffp0fHx8iIiIwMjIKLn8PqtEJsr4FCsjQSYgEwRUJV9+b+baaimMv65evYogCLmyzODvv/+mQYMGyOVy1NXV8fHxSSGmqlWrxsaNG+nUqRNeXl4ULZq6B2p6SKVSPn36lKWsalBQEJqammmuTa1QoQJNmzZNsVa1QIECWc6qFi1aNNu9bRMSEli6dClbtmzB39+fhITULbVUVFQwNjamUaNGLF68OFtZbg0NjTT3T+rQ4RuWoBQtKMUOHXmPKGxFcgWJREIbCz00VSW5nrlVV4EqJlrYFdXFxcUlxc2qo6PjLyfo1q1bx7hx41BTU2PHjh1KkZkSEUkPW1tbXr9+zaNHj+jYsSNDhgxh7NixLF26lKFDh+b4eOXLl+fatWu0aNGCz58/4+LiotAy4DJlyrBw4UJ69eqFl5cXWlrKN7OfJGwFQcjyz8pMWxXpd5T7FixZhgZOw1nXvw0SFRWqtuuOZeVaye+XqtWQgqXKML9FBSQqKky/5Evr0S5c2ujG2n5tiAkLwcCsMLW79c9U2IoOpbnH1atXcXFx4cGDB0RGRqKpqcmSJUsYO3ZspvvGSuU8CInjRXgCQXEypHIBNYkkxVptCRKkgoCaigRzLVWsDTXYuG0nw4cPz9Hz+Nuy44zcjjt37oyvry/29vacPn2aqKioLGVVw8PDMTY2TtNEqUyZMqle09bOvU4Pbm5uVKhQAScnp0zXO584cYLZs2fj4+NDTExMqjJiiUSCrq4ulSpVYurUqbRv3z7X4k4LsUPHr43oiiyS6zwPj+eEXxRSuZCjbsmqki9GUe0t9Sht+KWPYtKsqlwuR1NTEw0NDe7du5fjzdq/JquzyrnNnTt3cHBw4N27dwwdOpRVq1aJ7XtE8h1PnjzB3t6eFy9eoKOjg6urK6NGjcrxcQIDA2ndujWNGjVi2bJlCj1XBEGge/fuFC1alOXLlyssjoxQV1cnOjoaDY2srxVb9iBEdCj9Rbhx4wYzZszg3r17REVFIZFImDRpEi4uLpmeWwHRidwKiuV5eAIS+C5BoopAfHw8ZYy1qV/UgCK66tn7IKQsO7axseH69euZZlODgoJ4+/Ytcrmc4sWLpxKrabkBm5iYfJexUm6zfft2Vq9ejZeXF6qqqrx48YI//viDmzdvEhYWhlyeOkOhqamJhYUFQ4YMYfTo0d91fchNxA4dvy6isBXJE2Klcs74R/Hy/xea7HzpvqyPglKGGrQurpeqxOO3337jwYMH3Lx5k3r16vHw4UOuXLlC3bp1s/UZkvjRWWVbE61cKUcJCwuje/fuXLhwgXr16uHh4SG27xHJ9zx79oz27dvz/PlztLW1mT9/fpayPt9DWFgYHTp0wMrKii1btqCunv2b4h8lNDSUKlWqsG7dOtq2bauwONLDwMCAt2/fYmhomOV9lNWhtLiuGo42RooO46fAy8uLGTNmcOfOHWJjY0lISGDEiBEsWbIENbWMs+K5cl9goEFri9T3BV8TFxeXprHSvXv32L9/f/J2pqamhIWFYWBgkKV2NUZGRnTs2JHGjRszb968bHyavCUqKoqJEydy5MiR5Az1t6ipqWFqakqHDh1YuHAhxsbGeRzl9xErlbPeJ1ShE2uaqhKGly8gmpnmMaKwFclTPkQn4vWDM7Nqki9/+EobalDbXJvCWZyZ7dChA6dPn+bgwYN07tz5h+KG7M0qfx17LXPtHJlVlsvlTJ06FTc3N8zMzNizZ0+OOUyKiCgLL1++pF27dvj6+qKlpcW8efP4888/c+z4MTExODg4oKamxv79+3O13C8zrl27Rvfu3bl3757STU4VLFiQ+/fvf1dcXoExXPsQoxQlgUmoSaBhYR1qFxRN9LLDnTt3mDFjBl5eXiQkJBAdHU2fPn1Yv359lsrpc6uSSyLIkchlaD7/h89PvdMsBY6NjU0hSM3MzDh06BDR0dEA9O7dG2dn5+T3vmfC69OnT9SuXZtZs2bRp0+fnPtgOcSqVatYt24dr169Ij4+PtX7SeXcjRs3ZsWKFdja2uZ1iDnG8/B4hXXoUFcB+xL6ydWEInmHKGxFFEJGWU+BL7OvOZn1HDlyJOvWrWPFihXfbRijqFnljDh27BgDBgwgOjqa2bNnM2HChGxEJSKi/Lx+/Zq2bdvy9OlTtLS0mDVrVo597xMSEujfvz8BAQEcO3YMAwPFlY65uLjg5eXF6dOnlWopQYkSJbh8+TJWVlZpvl+gQAHCw8NRV1dHW1sbuVxOjboNaOO6U6HlgN+iKoFRFY1FM5cf5N69e8ycOZMbN24gCAKhoaF06tSJrVu3YmRklOn+giBw6X10rntvyBMTkL15hHHwCwp+k2k1MjJKFnDDhg1jw4YNQEq34+zw+PFjmjZtyuHDh6lfv362j/cjXL16lSlTpnD//n2io6PTbKejo6NDmTJlmDx5Mt26dUt+febMmTx48IBDhw7lZci5wsV3UXneoSPJ96VZsczdnUVyHlHYiigFUYlygmKlubpOddGiRUyaNIlx48axePHiLO2Tl+uDs4Kfnx+dOnXi/v37dOrUCXd3d7F9j8gvhb+/P23btsU/MBiLClVw7Nsf+06dsn3NkMvljBo1ilu3bnH69GnMzMxyIfrMkUqlNGrUCAcHhxzNTGeXcuXK4enpma5zs6amZionVFVVVQ4+C8E3LB4kiheSEqCMkQadxDVv383Dhw+ZOXMmV69eRUVFhaCgIJo3b86uXbuylMUXBIGoqChO+UXil6CGPA++D+oqUM5IkzYWqfuuZuZ2nF3OnDnDgAED+PvvvylRokSOHfdb/P39GTduHJcvXyY0NDTNdbDq6uoUL16cPn36MGXKlEzXwcbFxVG5cmUWLVqUo22ZFIEgCJz2j8rjDh2atE7jOyeSN4jCVuSXYu/evTg5OdG1a1cOHDiQ7nZ5Nav8taNzRhfBhIQEBg0axO7du7GxseHQoUOUK1cu9wITEVEyvq3ySJTJiYuORi7IkUhU0NDQQEtTM1tVHoIg4OLiwsGDBzl//jzFixfP5U+VNq9fv6ZWrVqcO3eOqlWrKiSGb6lWrRqbNm2ievXqqd7bs2cPv/32W4rSRhUVFTw8PFi+bTctpixHTVPxbs9qEnAsbZjlZSwi4OPjw6xZs7h48SJaWlq8f/+eOnXq4O7uTokSJQgJCcnUWCnpscWoadTo7IS6Vt5Nxn6bPUtISKBkyZK8f/8eyNjtOLusXLmSjRs3cvPmzWxXgSQkJODi4sLevXv58OEDiYmJqbZRUVHB1NSU5s2bs2TJkmwtZ7h8+TL9+vXj8ePHOd7bNq9Rtvs5kdxFFLYivxxXrlyhZcuW1KxZk2vXrqUq91PEDF96s8qQsn3PunXrcHR0zP2gRESUBEWsbV+2bBnLly/n3LlzlClT5ofizi579+5l1qxZ3L17F11dXYXE8DX169fH1dWVBg0aAF8yy127duXEiRPI5XI0NDRSZGyrV69OXFwcCxYsILFC4+SlHIpCdCjNGnFxcQQGBnLr1i1Wr17N3bt3UVdXJywsDENDQ8qUKUNsbCyBgYF8/vwZQ0PDLBkrReuacu5jgkLXOy6ZOCbHy44zQhAERowYgZ+fH8eOHcvUTCuJXbt2sXjxYl68eJFm/2iJRIKenh7VqlVjwYIFOWaM+S39+/fH2Nj4h3vbKhvKVoEnkjuIwlbkl+TJkyfUrFmTIkWK4O3tnaKcV1nWZNy+fZtu3brx7t07hg8fzooVK5RqzZ2ISG6i6LXt27ZtY8qUKZw8eTLTvo65Rb9+/dDU1GTjxo0KGf9rmjdvzsSJE9HT08PBwSHZPbVYsWIcOnSImjVrUrNmTe7cuYOZmRmLFi2iT58+qKqqig6lCiRpHWxW2tUEBgYSFxeHuro68fHxaGpqEhMTg5GREY6OjtSpUyeV6VJWxJoy/P5jIsJws6+JNDY6x8uOMyIxMZE2bdpQsWLFVK287ty5w6RJk7h9+zaRkZFproPV0tLC2tqa0aNHM3jw4DyJOYng4GAqVKjA6dOnFXYNzGnyskOHiGIQha3IL0tQUBAVK1YE4NGjR5ibmyuFi56ZEEu3bt24ePEi9erV49ChQ5ibm+d9QCIiCkJZZtYPHz7M0KFDOXjwII0bN872+N/b8zoyMpKqVauycOFCHBwcsj1+dihRogTv3r1DJpOhqqpKp06d2LdvH2pqarx9+5YZM2Zw4sQJJk6cyMiRI1M54yrDtfVnyaYkJiam2a4mLdH66dMndHR0MsymFixYkPj4eLZt28apU6coWrQojx8/pkiRIqxfv5727dtnK15l6CmaGB+H5NNbpnXInexmRrx8+ZIqVaogkUiIiYlBJpOl2kZNTY3ChQvTvXt35s+frzT9YL/tbauMfO91FRTToUMkbxCFbS7wIyeZiGKIiYmhcuXKfPjwgRu37nBJaqbQWWV5QhwL21ZFT1NdbN8j8suhjGuhLl68SK9evdi6det33+DnRM/rW7du0aFDB+7cuZPna37fvHlDu3bt8PHxAUBXV5ft27cni+yQkBAWLFjAtm3bGDZsGBMmTMiwz62yVMMoG0nGSpllU5MeIyMjMTU1TVOgfitezc3N0dRMX9D7+fkxd+5cDh06RIkSJbh//z4FChRg2bJlODk5ZfuzBUQnsud5uFK0fMrtNdYJCQksXryYbdu28fbt21RmavCljNjY2JgmTZqwdOlSLCwsciWWnEIQBJo2bUqXLl0YPXq0osMBcua6mpVj5UaHDpHcRxS2OUBOnmQieY9cLqdhw4aU7DKYik3bIijQvVMaH49aaACT2tRUWAwiIopA2da2f82tW7ewt7dnyZIlWVrjntPrghcuXMjp06e5dOlSnmRNli9fzrRp04iOjkYikVCnTh2KFy9OmzZt6N+/PzExMaxYsYIlS5bg4OCAi4sLRYoUyfS4v5JDqUwmIzg4OEtZ1aCgIFRVVdPNpn4rVI2NjbO9LOXt27fMnz+fAwcOYGNjw927d9HW1mbu3Lnf3RIvI468jsA3LCFbJZ85RU66Yh85coS5c+fy5MkTYmJiUo8lkaCrq4utrS0uLi60atWKK1eu0KNHD65evaqwtfs/wtOnT2nQoAHe3t4UK1ZMYXHkhd9CXnToEMldRGGbDRRhaiKSOwREJ7LtURCqGoovVROdO0V+RZQ9m+fj40OrVq2YMGFCujf+ubUuuEVRbezbtMLOzo5p06Zl46jpExUVRbt27bh27RqCIKCtrY2LiwuTJk0CvvT7rFixIhoaGsyaNYv69eszd+5cbGxsvmscZczKZ5Uk06SsZFVDQ0MxMjLKkrGSubl5nhmEBQQEsGDBAnbv3k2lSpW4ffs2AJMmTWLatGk56uMQK5Wz+tHnfN3H2MfHh/Hjx/PPP/8QHh6eZjsdTU1NLC0tGTZsGH/88UeGx9uyZQuurq78888/GBsb/9BnUASK7G2raL8FkfyFKGx/APEk+/n4WWeVRUTyA4pcfylPTKBbGZMsrb988+YNLVq0oE+fPkyfPj2FYMrtdcF19RLoWLcKR44cyVEX1BMnTtC/f39CQkIAKF26NMePH0+RURIEgQ4dOnDr1i0qVqyIq6srNWtmr6pEGdZRy+XyLBkrJT0mJiZmmk1Nem5qapplF9y84OPHj7i6urJjxw6qVavGrVu3iI+PZ9SoUbi6uuZKrF6BMVz7EKMUZchJqEmgYWEdCsYGYWVlRWJiImpqakRFRTF+/HiOHz9OUFAQUqk09b5qapibm9OhQwfc3NzQ0/ux8vbx48fz77//cvbsWdTV88cEtqJ62yrDdUIkfyEK2+9EPMl+Pn6GWWURkfyKMjimxkaE8enQGlYtdcu01DcwMJBWrVrRuHFjli1bhkQiybMMpF7oO1x/68K9e/cyXMuaGVKplH79+rF//35kMhnq6ur07duXzZs3p9r28uXLTJo0CT8/P1q3bs22bdtyLgOaC5PEVnpqVNGIIjw48xLg4OBgdHV1MzVWSnrU19fPd/0pg4KCWLRoEVu3bqV27drcunWL8PBw+vfvz+rVq1OZfOUku5+F8TY6tUBUNJLQj2wc3JFXr16l+b6KigoGBgbUrVsXNzc3ypcvn6Pjy2QyOnXqROHChdmwYUO++U7lZW/b/FzZIaJYRGGbRcST7OflR2aVX925wf5pw5l85kGuxJQ0q1y7YN41shcRUQTK4JgqS0zA58oZ9k8ZwoABA1i/fn2GAjcsLIz27dtTsmRJus9ahW9EYp6tGf3scwe/k+64u7t/9/4PHjzA3t4ePz8/AAoWLMiePXuws7NLta23tzeTJ0/m2bNnzJ07l2fPnpGYmMjcuXOz/Tm+JTsOpbKEeJBI8L99jau71vDi7t+YmZll2VhJWdxnc5rg4GDc3NzYuHEj9evX5+7duwQGBtKlSxe2bNmCgUHuVwQtexCi0Amr9IiNCGN2k9IAaGtrU758eaZNm0anTp3yLIbIyEgaNGhA//79My1fVibyoretMvstiCg/ylMno8Tk5UmWKAfvkDjiZYJ4kuURL8ITlKpUCr7c2L0ITxCFrRIhup3nPAHRicnZOkWiqq5B1Zb2xPr8w+bNm9i6dSv9+vVj06ZNaQpcIyMjzp07x4QtntwPikRVI/eyXl+TKIcC5Wrg//IFu3btok+fPlnab+rUqSxdupS4uDhUVFRo1aoVR44cSTNb9+rVK6ZPn86lS5eYOnUqR48eRUNDAzc3Nz58+JAjn0MqlSYbK32dRf0cGk68qSUaxazRKVgcFTV1pPFxIFFBRUUFieSLKY+KmjoSuQzV2AiME8IpqSWji50t83sepkCBAr90v+/Pnz+zdOlS1q1bR6NGjTA0NOTkyZO0bNmSnTt3Zrt1nKurK7dv38bDwyP5tTFjxiAIAnPmzOHPP//k1KlTSFRUKNe2B82GTkRFVZW7x/Zy+4g7FpVqcPvIbrT1Dek42ZUy9ZsDEBcZwcml0/G9cQGJRIXq9r1oPuzLvit6NOHzu9fJ4yXExjB44xGAVBPMru2q0dVlGda1GyOXy7m6YxW3D7sTGxmOda2GdJrihr5RAR49e0lFm1JERESgpqbGtm3bKFeuHO/evcPMzIyJEycydOjQbP2sMkJfX59jx45Rt25dSpcune2WSnmFm5sbFSpUwMnJKdd62156H51noha+XFefhMWjqSpRavd0kawhCtssIJ5kPzdBcal7yikDyhrXr4Lodp773AqKVbioTUImQN8Zbuxet4JOnTqxbds2duzYgZOTE1u3bk0lcN8nqlKiYZs8nxSTClCpXXdWu4ykXr16lCpVKs3tgoODadWqFffu3UMQBAwMDFi9ejUDBw5Mc/ugoCDmzp3L7t27GTNmDOvXr09RbqilpUVsbGy6ccXExGRqqJT0GBYWRoECBdLMplrryjFXD6Oguib6pgVB3xyJmoY4mZQJYWFhLF++nNWrV9OkSRMKFizI0aNHqVevHleuXMHS0jJHxunZsyezZs0iMjISfX19ZDIZBw4c4PDhw/Tv3x9zc3NevHjB44+hOHS0x8C8KLUd+gHw9tG/VGvfk+mXfLl1aCees8Yy+exDJBIJB2f+jl4BU8YfvUVCbAw7xjhiWPDLvmP2X0ke/5bnTq7vXkeRsrYEPM24YurvfZvwuXyaIZuOolvAhOOLpnB04UT6u24iJC5libS5uTknTpygZMmSXL16lTZt2lCzZs1cE28AlpaWHDp0iA4dOnDx4kVsbW1zbaycwtTUFFdXV4YMGZIrvW2fh8fnuYkg/JdUstBXF5cD5nNEYZsJ4kn2cxOZ+EWwpIdru2rU7tqXeycPEhEcSIUmbeg4ZXGq7a5sW8Htw+5Eff6EUcGitBw5hQp27QAynalOD6lcICpRLt7A5TEZuZ3LUq3c+PJ/mUzgbbSUDzFSrn6IEd3Os0CsVM7zcOUwbIMvv8nn4Qm0Kq7H2bNniY2NpUuXLuzatQt3d3d69OjBrl27UFVVJVYq/+K1oKDg5ajQefpy+g3qy+VzZ1IY0Gzfvp0xY8YQEREBQNWqVTl16hSFChVK81iRkZEsXbqUlStX4uTkxJMnTzA3N0culxMSEpIsSB8+fMj9+/eZNm1amuJVKpVSsGDBVGLVysqK2rVrpzJWyou2Rb8CERERrFixghUrVtC0adNksVS5cmUePHhAxYoVc3Q8S0tLqlWrxuHDh+nbty+XLl1CR0cHKysrTp06RVhYGNra2hgYq9HIaRh/e+5MFrZGhYpRq8uXKoNq7XtwdMEEokKCQCLB9/oFZvz1AnUtbTS0danvOIzbh/7bF+DNvX84t3YBQ7eeQEsv8zWeXh47sJ+4EMOCX1pRNRvqjGu7qkiliSSqpTx527Vrl/y8cePGtGzZkmvXruWqsAWoU6cOK1aswN7eHi8vLwoWLJir4+UE/fr1Y/v27axZsyZHe9smXVcVYSIIX+67T/hFMay8ujg5nY8RhW0GiCfZz8+nWBlqEkkaguU/vE97MmDNATS0ddg51pHLm5diXbtxim1MipVg6Jbj6JmY8+j8UfZPG8H4o14YmH25mcxopjo91CQSgmKl6Kn/nGvAlI2cMLJJEjq+YQm8CE8Q3c4z4EFIHFldaHFh/SJC3r6mx7x1uRqThC9x1S6og7a2NqdPnyYhIYEuXbqwb98+9u/fj4ODAz3mb8xwQiwvUNXQpPZv45gxYwYuLi506dKFs2fPIpfL0dTUZPLkycyfPz/FPvHx8cli9P379xw4cICjR49SrFgxGjVqxJMnT2jZsmWysZK+vn6yGI2Li+Pz589oaGhQvXr1VOtX9fTEpTN5SVRUFKtWrWLZsmU0btyYsmXL4unpSenSpblx40a2nbMFQSAmJobIyEiioqJSPJYpU4bFixcTGhrKjh07KFiwIKNGjSIhIQFDQ0MEQUCiooqKmjqGhYomH1Pf9L8yaA3tL8ts4mOiiY0IQy5NZH7Lil+NL8ew4H/7hn18z56Jg+g2exVmlmlXKXxL2Md3uI/vh+Sr3vQqKqqEBX3gZVwQACEhIZiZmXH27FlmzZrFs2fPkMvlxMTEUKlSpR/74X0nvXv35unTp3Tu3JlLly7lqqFXTiCRSFi/fj0NGjSgS5cuOdbb9ox/lMKvq1K5wJm3UXQWu1LkW0RhmwHiSfbzkyATUpSWpkXdHgMx+v8f5yYD/+D4oimphG2lFv/Z39u26syVbSt49/ge5Zu0AdKfqdY3TX92VkAgQVnqNH9yctrtXOD/66QjEljvEyq6nadBflnbrqGhwYkTJ0hISKBbt2787fOCCoHhyTfmikImgHn56qx2ncaCBQuAL2WCgwYNQlNTk6CgIBwcHFKUAMfExGBmZoaGhgaBgYEUKFCALl26ULFixVSZ1qTtkjh8+DDbt2/HxcVFUR9ZBIiOjmbt2rW4ubnRsGFDqlSpwqFDhyhSpAj79u2jTp06REZG4uXllaYozejx6+fR0dFoamqir6+Pnp5eikd1dXWePHnC/fv38fHxYfjw4ZiYmHD06FF27dqFkZERsYaFeK5ZGBmZT+oZFiyCqoYm0y75oppG26HEuFh2/dmX+r2Hpqh0UtfWITHuv/J4uUxGdGhIiuN2nbGCElVqpzieNC4Gz9VrAChTpgyRkZHI5XIKFy5MmTJlMDMzw9vbmwsXLqCrq4upqSkmJiaYmJgkPzc2Ns7RVj0zZ87E19eXgQMH4u7urvSTRGXLlmXUqFGMHj06R3rbKovfgkyAl+EJfIhOpLBYcZUvEYVtOogn2a9BRpnaJJLKmAAKFC5OxKePqbb598R+rruvIzTgLQAJsdFEh/33Bza9meqMiqmELMYn8uPkttu5TPhSpnzsTSRVTBJFt/OvUNY15OnFpaGhwdGjRzn0MoynYfF5HFXaSAWBBk7D2T9lKDVq1KBo0aKEhoZibm5OhQoVaNq0aQqhevv2bSZPnoyGhgbbtm2jSZMmWR5LW1s7wzW2IlknKSOYFYGZ9BgaGsqjR4/w9fVFT0+PxMREPD09kUgkqKqq8uHDB4YOHZpKhKb1WLx4cfT09DLcRk9PL8Ny8TZt2vD27VvKlSvHsmXLALh9+zY3b95kzpw5BMk1uH39EZ8+vqdk9foZ/jwMzApRuk4TTi1zocXwyWjo6BL63o/woABKVq+Px6wxmFmVpnH/31PsZ2ZRCmlCPE+vnaN0naZc3rocWeJ/52btrv05t2Y+3WatpkCR4kSFBuN//zZV7doyddIEzu3ZQnBwMJGRkZiamrJw4UKsrKw4d+4cZ8+epXTp0nz+/Jnnz58TEhJCcHBw8mNoaCh6enqpBG9Gz01MTNDW1k7zZ6CiosL27dtp3Lgx8+bNY9q0aVn9OimMSZMmUblyZY4ePZrt3rbK5rfgFRRLJyvxnjs/IgrbdBBPsl8D1SyIjPDAgOTnYR/fJZcXJxEa8JZDc/5k0HpPLGxroqKqysqeTSCbolSSxfhEfgzR7TzvSXJU3bZ3f3I1zPHFUxAEgSYDxnBk3njeeHuhbWBE4/6jk6scviatVltfO6FeWL+IwFdPUVPXxOev0xQoYoHj4m08vnic67s3oKahQReX5djUbQqkdmOt0bEXv61yxVAr9fU2VirnZaQUFRXlWB+qqqpGtdadKRrux8unjzl06FCa363bt28zYsQI3r9/z4IFC+jcufN3fwd/ZWGbkJDwQ1nP9B6jo6PR1tZOISIzEpgvX77kwoUL2NjY0KBBA65evYqWlhazZ89m2LBh6Ovro6mpmafXld69e9O3b18WLVqU/NrOnTuZNGkS5cuXJzIyEr3CFjTqn7U1mN1nr+HMqjksc6hPfEwUxkUtafz/fR+cPYy6ljYz6v9ngNV/1T6sqtWl4yRXDs35A7lMTqN+ozAw/28iul7vIQgIbB3ZjYhPH9EzNsO2RUcqNW2DidZ/t78FChRg5cqVODs7Ex8fT4cOHejcuTPW1tbptreSy+WEh4cni92vhW9ISAje3t6pXg8ODkZdXT1D8duvXz9mzpyJmpoaPXv2xMTERGnL/LW0tFi/fj39+vXDzs7uh3vbKqvfQqxULi4jyoeIwjYNxJPs10FDVYIECRmtqPz7wFbKNmyJupY2l7csw7ZFypnJhLgYJBIJugVMAbhzdA+BL59mOzYJXxxARXIH0e0870lyVH0dFIaaREKiVMrD80dxctvB3kmDKWhdjslnH/LpzXO2Du+GSbESlKrV8LvHeXr1HH2W7sRh1io8Z41h28ju1OzkyOQzD7h7fB9H5o1nwom7AKncWHeOcWTV+o1MGzsy1XGzui44NMCfRe2rM/fWhzRLK3MSCdB51ARGtW/Mxo0bU7QoefbsGVOnTuXmzZvMnDmTAQMGoPaD8eQXYSuXy4mOjv6uEtzMxKkgCJlmQZOeFy9ePNNtdXV1MzXPio+PZ8uWLcyfP5+qVavSs2dPdu7ciUQiYfbs2UycOFGhbY369OmTqt2UoaEh69atY926L2vhv+5jW92+F9Xte6XYfsG/n5Kfa+kb0GnKYjqlYc749Xbf8u1xG/X977xVUVGhodNwGjoNT7GPmoqECqVLInw1+Txy5EhGjkx9zqeHiooKBQoUoECBApQuXTpL+wiCQFRUVCoRnPT82bNnBAcHU6pUKaZNm8by5cuJjIxEKpV+V2bY1NQUQ0PDPPl+NG3aFDs7O2bMmPHDvW2zcl399OYFeycNIuTdGxJjY2g2bCLNBo/7ofGywtd+CyL5C1HYpsH3mJpkhYMzRmFoXoSWI6f88DHEkyx3MNNWRZpJZrVK6y5sHfFlxrdck9Y0HfQn7x7fS36/YMkyNHAazrr+bZCoqFC1XXcsK9fKdmxSQcBcWzxFcwPR7VwxJDmqnjp2BI16HXl5+xrqWjoYmBfG7/4t+q/ci7qmFkXKVKJGZ0f+Pbn/h4Rtiap1sKlnB0Cl5vY8vnSCxgPGoKKqSuVWnTk8909iI8ORJsSncmNt0HsIe7ZvoqihTqo2NZUGTsK8TOU0x/w6a5yXSAV4Ey1n7969NGzYkIYNG2JkZMSsWbM4dOgQ48aNY8eOHejoZO9vR24IW0EQMsyG/ogojYmJQUdHJ0sluSYmJlhaWmaaOdXQ0MizjFlCQgLbtm1j3rx5VKxYkV69erFx40bi4uIYM2YMCxcuzDd9eo3V4YMSrjgw11JMxYVEIkFfXx99fX1KlCiR4bZHjhxh1KhR+Pr6YmJikmZWODg4GH9/f+7du5fq9ejoaAoUKJAseLMiiI2NjX9o4iurvW3DwsLQ19dPNamTFb+FqztWUbJGA0bvu/Ld8f0IafktiOQPxLvmNMgvpiYi2UdfXRU1FQmyDOrOi1WoSpPfxqZ4rWSN+ilKIVuNmkqrUVPT3D+zmer0UFORiK1+cgHR7Vyx9O7dm72eB+hcryP3T3tSuXUXIj59RMegAJq6/2WyCxQuznuf+z80hp6xWfJzdS0tdIxMUPn/zZSa5hfH0YSYaCI+fUztxiqXo6WtzZUrVyhYsCBFihShatWqmJub89C8Eim7XyoHQXEyytqWZfr06TRt2pTExEQGDhyIr68vxsbGOTKGtrY2MTExREREZCv7+e1j0s1+WtnPbx9NTEyylA3NL8LvaxITE9m5cydz587FxsaGgQMHsnr1as6fP8+AAQNYvXp1CjMvZSUxMZFz587h7u5OiH4RGg/8E1UN5ZnEU5OAtaHy/xw7deqEr68v9vb2XLt2jWLFin2X+3BiYiKfP39OMzP86dMnnjx5kur1JOH5teDNaoY4K71tW7duzefPn9mxY0cK1+6s+C2EfnhH5Vadsvz5cwJl9YEQyRhR2KaBsn6ZlTWu/I65lipvo5XvdlVRs8o/O6LbuWLp1q0bf44bR9PAAB5fPsXw7afR0NElJiKU+OioZHEb9uEdBuape69m5oT6PaTlxqqhAm0t9ClbIOXNeGSijAePQ9NctbB/2gjCP75jx1gnVFRUsBs8HgDv0x6cX7eQxLhYGvQeStNBf36JWS7n6o5V3D7sTmxkONa1GtJpihs6hgXYProXNvXsqNdzcPLxV3RvTPNhE5J7Y3+LVC7gtmotrnPmoKurS/v27Vm0aBHx8fHJ5jjZLc2NiIggNjaWokWLZikbampqipWVVabb5gexlptIpVJ2797N7NmzKVGiBMOGDWPVqlVcuHCBbt26sXnzZvT0lHvpgiAIeHl54e7uzoEDByhdujROTk5Y2ZTlXyWbZBAAWxPlbqeTxIQJE3jy5Al9+vTBw8PjuyZs1NXVk/tKZxWZTEZYWFi62WE/P79Ur4eEhKCpqYmxsTGfP3+mQoUKVKtWLU1x/Pr1a4KCgmjWrBkdOnRg1apVaBcwyfTv8aYhnXn97038vL044TaNco1bY1zUkpYjp7C0Sz3ajJ1JuUYtv3wGqZQFLSsyYM1+iparjP+DO5xc6kLQK1+MCheng/M8StbI2MwsCalcICpRLiYY8hmisP2GyERZipPsr+0rubl3E3HRkRiYFaLjpEXcO3UgRWnxt2YmAU8f4Dl7LMH+ryhTv3mKEqbYiDD2TxvBu0f/IpNJsaxci85T3ZKddzcO7kiJqnV4dfsaH577YGFbk57z1qP7/5NfPMlyHmtDDT7ESJUqS59fZpXzG6LbueIxMzOjdoNG7HcZTYGiFpiXtAHA0rYmZ1bNoe0fswj2e8mdo3vS7FubmRPq95CWG2vIe3/uvQ+jbNvmKbbNqOd1j7lreXPvn+RS5NAAf86snI2ftxfjDv1NsP9L1vRpRQW79piXtOHvfZvwuXyaIZuOolvAhOOLpnB04UR6LdhItfY9uOa+LlnYfnj2iPBPHyjTsEW6nyM6Ipxjx05jYGBAXFwc27ZtY/v27aipqWVJhOrr62NmZpZhxjQxMZFKlSoRHh7+Qz9rkZTIZDL27dvHrFmzKFSoEGPHjmXlypVMnjyZ1q1b4+3tjampqaLDzJDnz5+ze/du3N3dUVVVpU+fPty8eRNfX18WL17Mq1evGLXpEIJ5CaXwLJEApQ018k2ljEQiYcOGDbRo0YKpU6cmt/XKLVRVVZOzsFlFEAQiIyMJCQnhzp07DBo0iDp16iAIAiEhITx58iSFeRZAbGwsBw4cwMPDg8eB4eleV5MYvPEwGwd3pGpbB2p27sPBGaOS36vcugv3zx5KFrbP/76EjpExRctVJjzoA9vH9Kb7nDXY1GvGy1tXcXcewJ+HbqJXIPNzS00iIShWip66eC+WnxCF7Td8ffPy6c0L/t6/hZHu5zEwK0RogD9yWcZZU2liArv+7Ef93kOp22MgPn+dZt+UoTTu98WmXi6XU6NjL3q7bkaQy/GYNZpjrpPos3Rn8jHunzlE/1X7MCpYhG2/9+TarjW0Hu0inmS5hK2JFlc/xKT53sST/+ZxNF/IT7PK+QnR7Tz3kclkfP78OcXa1K8fg4KCCPzwgWePH9JmzIzk/Xou2MjheeNZ0KoS2gZGNB82Ic31qlr6Bhk6oX4v37qxmhS1ZN60yam2y0rP629pNsQZdS1tCttUpLBNBT48f4x5SRu8PHZgP3Fh8oRms6HOuLarikwqpVzj1hyeN55g/5eYWpTi3smD2LbshFoG130tbW1mzVtASd0vZb0PHjxg8ODBeHt7f1fGJiNiY2OJi4vLkWP9ysjlcg4ePMjMmTMxNjbG2dmZlStXMmbMGBo0aMDFixexsLBQdJjpEhQUxP79+3F3d8fPz4+ePXuyb98+KlasyJ49e+jYsSMaGho4OzvTrVs3PiXAnufhSjFxrCqB2uZpt9tRVjQ1NTl06BC1a9embNmy9OvXT9EhpUAikWBgYICBgQFWVlY8fvyYK1eupOptKwgCampqaGtrIwgC9vb2DBs2DFTVEfjx60rl1l1Y1duOhNgYNLR18D5ziMqtuwDgfeogZeo3p2yDL5OCpes0oVi5yvhev0D1Dj0zPbaAQIKy3DCIZBlR2H7D1zcvEhUVpAkJBL3yRdfIhAJFMv9j8/bBHWTSROo7DkUikVCpuT3X3dcnv69rZEzFZh2S/9904B9sGtI5xTGq2/fEzLIUAJVadOTJX2cA8STLLbTVVChtqIFvmHI4Yee3WeX8guh2/uPExcWlFKYZiNaQkBAMDQ0xNzdP7qGa9Fi7dm3Mzc0xNzfnppY1iV/Z9BkWLEL/lXvSHL/5sAkp/p+RE+q321rXbpxigkpVTS1DN1Z5Qhz/bJvL+dMnU5TjmtrWoc6AcWjo6Gb556Zn8l//anUtbRJiooAvbcPcx/dDIvnv966iokrU508YmhfGtmUn7p30oNlQZ+6fOUTvRVszHEddQ4OSxa2pYPxlMszCwoJBgwbRr18/Tp06lSNrTrW0tEhISEAmk2Xq6CuSGrlczqFDh5g5cyZ6enpMmDCBDRs2MHToUKpVq8bjx48pV66cosNMk+joaI4ePYq7uzs3b96kQ4cOzJ49m2bNmhEZGcn69euxt7fH1taWlStXYmdnl1ypVkQdShlo8ELBlTKqEihlqJEvK2RMTU05fvw4TZo0oVSpUjRo0EDRIaVLer1t5XI5dnZ2tG/fnn79+mFkZATA48/ZmywztSiJuZUNT6+epWyjVjz56wzN91wCvqzLfXThGE+vnk3eXiaVUrJm1n5+AmSYSRZRTkRh+w1ff4lNLUrSfvxcLmxYROBLX2zqNqXduDkZ7h8RHIiBeeEU5cdGhf9b8J8QG8PJJdN5dvMSsZFhAMRHRyGXyZLNTfS/uhnS0NImITYaEE+y3KSWubbSmIblx1nl/EBOu53nBIpyOxcEgbCwsLSzqWmI1vj4+BQCNel5sWLFqF69eor3TE1NUVfP/Obx1bMwpVzbrhIVSpUqVVKZGUXqmOIt1UnXPOp7XHMNCxah64wVlKhSO833q7XvwYHpIyhRtTbqWtpYVq6Z4fHS6nnt4uJCo0aNWLFiBX/88UeWY0t3DIkELS0t4uLi0NXNurj/1REEgaNHjzJjxgzU1dWZPHky27ZtY+DAgZQpUwYvLy9q1sz496sIpFIpFy9eZPfu3Rw7dox69erh5OTEwYMH0dXV5c2bN4wfP56dO3fSoUMHzpw5g62tbZrHam2hx3qf0AxNGnMbNRUJbYor91rljChfvjy7du2iW7du3Lhxg5IlSyo6pDRJr7etqqoq58+fT7X9t9etH6Fyqy7cP3sYuSBgXrIMphZffjZGBYtQtV03ukxf9kPHTeu6KqL8iML2G779Eldp05UqbboSFxXJ4XnjOL1iNlq6eiR8ZV4SGRKU/Fzf1JyIoA8IgpB8oxP+8R0mxUoAcM19HZ/8XjBi5xn0TQsS4PuQVb3sUvRTSw/xJMs9iuiqi7PKPzl5NXHxPW1fctLtPDExkU+fPmVcAvzVcx0dnTSzqra2tqleMzQ0TFe4SaXSZIOhsLAw3r17lyVnXL1K9bBo2hFVDeUpuVeTQMOKpajdrFKq915FJPDwdWS6Rid6xmZ8fucHaWvVFNTu2p9za+bTbdZqChQpTlRoMP73b1O+SRsALCvXRKKiwqmlM6jarnumx0ur57W6ujq7d++mdu3aNGnShKpVq2YeWCYktfwRhW3mCILAyZMncXFxQS6XM3HiRA4ePEjfvn0pXrw4Z8+epUWL9NdNKwJBELh79y67d+9m3759WFhY4OjoyOLFi5NL2v/9918WL17MuXPnGDhwIA8ePMjUrVdbTYX2lnocexOpEDd6dRVob6mHlpJXxmRGq1atmDp1Kh06dODmzZsYGhoqOqQ0+Z7ethqqEiRISNOVL4vYturEubXziQkPpcr/y5ABqrTtxpo+LXh28xLWtRsjkyby9uFdTIpbJS8DyYi0rqsiyo8obL/h65Ps05sXRAR9wLJKLdQ0NVHX1EIul1G4TCWuu68lZtCfyBITuLF7Q/L+FrY1UVFT4+bejdTp9htPrp7l7eN7lKzxpfQhIToKdU0ttPQNiQkP5eJGtyzHJp5kuYs4q/xzoyyu4jKpNNmBF1LGFRERwezZs3nx4gWHDx8mKioqSyXAgYGBREZGYmpqmqZYrVChAubm5piZmWFoaIiWlhaJiYnpOuH6+vpy9+7dLLnmJiQkZNmgqFChQlhbW6Ovr4+WgREv1DWUpjQcMl7bnlnP6ya/jeHYosmcXjEr2f04Per1HoKAwNaRX/pj6xmbYduiY7KwBajWvjvn1y6kz9IdmcadXs/rkiVLsmLFCnr37s2dO3eyLUhzo5ftz4YgCJw9exYXFxdiY2OZOnUqp0+fpm/fvpiamrJ//34cHBwUHWYKXr9+nWwClZiYiJOTE3/99Rc2Nl+M3QRB4PTp0yxevJjnz58zduxYNmzYgIFB1l3dSxtqUsUkMc/7h6urQBUTrZ+mb/ioUaN48uQJPXv25Pjx4z/UdzYvyGpv28yuq1nBwKwQFpVq8Prfm/R23Zz8ulGhovRZuoszK2axb8pQVFRUKVaxKp0mL87ScdO7roooNxIhK6nCX4jIRBnrH4ciE+DDs8ccmvMHQa+foaqmjoVtTbpMX4q2gREHXUbx7OZFChS2oLp9L665r012RX7n482hOX8Q8vY1Zep/cdY0tShJy5FTiPj0kX1ThvLexxt9s0I0dBrBkfnjmXvrA6pqaimc3wDuHtvL7SPuDNt6ElUJDK9gLLoi5yLPw+MVOqtsX0L/p/kDrCy8ffuWkb+P5tJf15ALciq36kyHCQu4snUZtw+5kxgfh009O+wnLEBL3yCVyzmkzMJeWL+IoNe+qGlo8fjySYwKFaPb7NUUK1+F/dNGcP+0B6oamsltX2xbdmRR++p0cVnGxY1uFChcHE1dvf9aushlhB/fyMrFC4mLi0uu9tDQ0EBVVTW5VYKhoSEGBgbo6emhra2NlpYWampqyTc2MpmM6OjoTMWopqZmhr1Cs/L49XNtbe3vKsP9miOvI5RqbXsZIw06ZdCCadmDEOLzaOLr3xP7uXVoJ8O2nsx0W01VCX/Ypu9k2rdvX7S0tNi4cWO2YrK2tubUqVPJgkfkPwRB4MKFC7i4uBAeHo6Liws3b95k/fr16OrqJvf5VBZCQkI4cOAAu3fvxtfXlx49euDo6EidOnWSz+f4+Hj27t2Lm5sbampqjB8/nh49emRpqUFaCILAaf8onoTF58nfWHUVKG+kSWsLvR++RikjUqmUtm3bUq5cOVasWKHocNJl+/btrF69OsPetpC319XvIbPrqohyIgrbNBBPsl+bi++iFDar3KyYmK3NSWQyGdWqVaN6g8bY9BlPIiq89/Em2O8ll7cuZ+Dag+gam3Jw+ijUtXXoMXdtloTtX9tX4ui2DZu6dpxbO59Xt28wYueZVNsChAb4s6h9daq2606nKYuQSFR4cvUs19zXMXLnWeTxcWwe0Y3X9/5JEbumpiZSqTTLAjMrj7q6uko1wx8Qnag0jqlqEnAsbZjhMoDdebQuOCE2hs1Du1Cn+wCqte+R6fbFddVwtDFK9/2IiAiqVauGq6srXbt2/eG4KlWqhLu7O5UrV/7hY/yMXL58GRcXF4KCgnBxcUlud6OqqoqLiwvjx4/PEQOv7BIbG8uJEydwd3fnypUrtG3bFkdHR1q1apVCrIaFhbFhwwZWrlxJhQoVcHZ2pnnz5jkiDgVB4NL76Fz/G5v0N9WuqO5PJWqTCAsLo27duowZM+aLu7ASIggCTZs2pUuXLowePTrd7fLquvq9ZHZdFVFOlOcOR4kw11JVypNMIz4KB4ehBAQE4OvrS3h4OLq6umJfwRzGrqgu8TIhz2eV7YqK69Zymlu3bhEQEMDumQs4FxALcihRtQ4X1i+igdNwjP+/9r3V79NY3r0hDjNXZum4llVqJ7cQqNquOzf2ZJ4Jaz7UGQ3tL7/jr1u6FClRisKmBQjS1UUulxMbG4uamhqhoaFoaWn9lDdlSSjL2na5NJEiOiqZrm3Pi57Xz25ewn38AKxrN6Jy68xFaFZ6XhsYGLBnzx46dOhArVq1KF68+A/FJpYip+Tq1avMmDGDt2/fMmPGDIKCghg2bBiJiYn8+eefzJ07V+GCViaT8ddff+Hu7s7hw4epUaMGTk5O7Nq1K1UpsZ+fHytWrGD79u20b9+eU6dO5fgkhkQioVkxPSz01TnhF4VULuToua8q+bKkp72l3k9d/WRkZMTx48dp0KAB1tbWNG/ePPOd8hiJRML69etp0KABXbp0SXctdl5cV7+XrFxXRZQTxU8hKiHWhhqoKdm9pJoErnm64+npyd9//83nz5+RyWTf1UhbJGtIJBLaWOhRxUSL3K76VkWgionWT1cqpSy8ffsWS0tLJN+UQUV8+kiBr9zKjQoXQy6VEvX507eHSJNvncul8XHIpBlPhhkWLJr8XF1TK7mli0wu58VDb86dO8eZM2do3rw56urqP72oTaK1hR5qKor9nBK5jAnt67Fhwwbk8vRns2xNtHK9bNqmnh2zb/rRd9muFGux0yOrPa9r1arF2LFj6dOnD7JM+rGnh7a2ttjLFrh58ybNmzenf//+9O3blylTpjB27FgmTZpEnz59iIiIYP78+QoTtYIgcP/+fZydnbG0tGT8+PFUrFiRx48fc/78efr165dC1N67dw9HR0eqVauGiooK9+/fZ+fOnbmamS9tqMmw8gWwNvhyv5XdK4CE/8TIsPIFfmpRm4S1tTX79+/H0dGRp0+fKjqcNClbtiyjRo3KMGObF9fV7yWr11UR5UMUtmmgrCfZtrmTadKkSYrX/fz8qFmzJhs2bECayY21SNZJmlW2L6GPpqqEnPbsUpVAQnQkO8cPQMvv/i8hYBRB8eLF8ff3R/jmRt7ArBChH94l/z/s43tU1NTQMzZDXVuHxK9cz+UyGdGhIVkeM93f5TevV2vfA+/THrzwuoqWjg716tWjUaNGnD9/nsjIyF/mO5HkmKoo6wB1FXAoa8bpY0fYtm0bTZo0wdfXN81tk3peK8tv5nt7Xk+YMAGJRMLChQt/aLxfPWPr5eVF69at6dWrFz179mTx4sVMnTqVwYMH07p1a8LDw1m7di0aGorJ9Lx9+xZXV1dsbW3p2LEjGhoanDt3jn///Zc///yTIkX+c4JNMrlq3rw5HTp0oEqVKrx69Qo3N7cfzuh/L9pqKnQuaYBjaUPKGGl8ybZ+58mlJvny97SMkQaOpQ3pbGWg9H3Bc5LGjRuzYMECOnToQEhI1v9O5SWTJk3i8ePHHD16NM338/t1VUS5EH9raaDMJ9nly5ext7dPfm/Dhg1oa2szduxYNDU1KVeuHLNnzyYiIkJxAf9E5OassnMdS6wN1GncuDGenp45Ea7IN9SqVYvChQuzfPY0EmJjSIyP4423F5Vbd+bG7vV8fu9HfEwU51bPxbZFJ1TV1DCzKIU0IZ6n184hS0zk0ualyBLjszxmctuXTEhq6XJ86Qy69HRM8V5GRhs/I18cU3O/QuJbvnZMrVSpEjdu3MDBwYH69eszb948EhISUu1Ty1w7xye6fpTv7XmtqqrKrl27WLlyJf/880/mO3zDryps7969S/v27XFwcKBTp05s3ryZBQsW0K1bN6pXr86nT5/YvXs3Ojp5248avqy13Lx5M02aNEkWp2vXruXVq1fMmzeP8uXLp9g+ISEhORvr7OxM3759efXqFc7OzgprH1NYV51OVgaMqmhMw8I6FNdVS55Q1lSRoKHy5VzVUPnyf1XJF8+R4rpqNCysw6iKxnSyMvhl2+T99ttvdOrUia5du6Z5zVI0Sb1tf//9dyIjI9PcJj9fV0WUC1HYpoMyn2RHjx5NLhsaNGgQV69eJTY2lnPnzmFtbc2SJUswNDTEwsKC0aNH4+/vr8Do8z+5Oat8+PBhRowYQbdu3Vi+fHmuxP8ro6qqyvHjx/no94o5rauwsE1lHpw7QvWOjlRt152Ng+xZ3L4Gahpa2E9cAICWvgEdJ7lyaM4fLGhti4a2Dgbmmfe8S6LJb2O4tGUpsxqV4urONRluW619dz489+G3vn2y9Tl/BuyK6lLOSDPPxG1aa9tVVVUZPXo0d+/e5caNG9SoUYNbt26l2C9pXbCi/z78aM/rYsWKsX79ehwdHb97AvRXE7be3t507NgRe3t7WrduzYEDB1i9ejWtWrXCwsICf39/jh8/jrGxcZ7GFR8fz+HDh+natSuWlpacOXOGsWPHEhAQwIYNG2jYsGGqMujw8HAWL15MyZIl2bVrF4sXL+b+/fv07dtXYRnmb9FWU6F2QR0cbYz4w9aE4RWM6WilT1sLfVoX16OthT4drfQZXsGYP2xNcLQxonZBHTGzBixcuBBDQ0NGjBiBMnrCft3bNi3y+3VVRHkQXZEz4PCrCIWbmqj+P7vXOYMWFGnx6NEjFi9ezJkzZwgKCsLU1JSWLVvi7OxMlSpVcifYX4RYqZwHIXG8CE8gKE6GVC6gJpEgICDwJSsrQYJUEFBTkWCupYq1oQa2Jlrp/gFesmQJzs7OjB07NtOG5iI/hjK6nf97Yj93Du3i1b3vz579jCiTY6ogCOzdu5c///yTXr16MWfOHPT0vriWx0rlrPcJVej3SVNVwvDyBdD6wZv6YcOGERUVhbu7e5b3GThwIHXr1mXQoEE/NGZ+4eHDh8ycOZObN28yceJEmjVrxsCBA7lz5w7Vq1fH3d2dMmXK5GlMcrmc69evs3v3bjw8PLC1tcXR0REHBweMjIzS3e/t27esWLGCbdu20aZNG8aNG0fVqlXzLnCRPCMqKor69evTt29fxo0bp+hwUhEcHEyFChU4ffp0mr1tf4branpEJsr4FCsjQSYgEwRUJRI0VCWYa6uJLTxzGFHYZsDPcpIFBATg5ubGoUOH8Pf3R1dXl4YNGzJmzBhatWqVg9H+mkQlygmKlWb7grV//3569+5N586d8fDwyMWIf02UraVAUkuXBh27s37CsFQOpb8yz8PjlcYxNTg4mD///JOrV6+yfv16WrdunRxjfu55HRMTQ40aNZgyZQpOTk5Z2mfUqFGUKVOG33///YfHVWZ8fHyYNWsWV65cYcKECXTq1InBgwdz5coVypUrx44dO6hRo0aex+Tu7s7u3bsxMDDAycmJXr16YWFhkeF+9+/fx83NjZMnTzJgwADGjBmT6T4i+R9/f3/q1q3L+vXr6dChg6LDSUVmvW3z+3U1iYwSIEl8bwJEJGuIP70MUAZTk/aWetmeOSpSpAhLly7lzZs3REREMGXKFPz8/Gjbti1aWlrUr1+fHTt2ZOgGKpI+euoqlDTQoGwBTSoYa1G2gCYlDTS+exauR48e/PXXXxw7doy6deuKv48cRpnczp/dvMTcZuXQMzZFV0uDYsWK0aFDB3bs2EFoaKiiw1M4yuSYampqys6dO9mwYQPDhw+nT58+BAcHK2xdsCwhjopG6tm++dLR0WHv3r388ccfvHz5Mkv7/KylyL6+vjg6OtKkSROqVavG7du3uXr1KqVLl+bNmzdcuHCBx48f55moDQgIYMmSJVSrVo2WLVsilUo5fvw4Dx8+ZOLEiekKVEEQOHfuHC1btqRt27ZUqlSJV69esWTJElHU/iJYWFhw6NAhfvvtNx48eJD5DnlMv3790NPTY82atJfpKIPfQnYIiE7kyOsIVj/6zLUPMbyNlhIv+zJBGy8XSJCT/C/+/xO38TKBt9FSrn2IYfWjzxx5HUFAdGIOfbJfD1HYZkJ+P8m+RU9Pj8mTJ/P48WPi4+NZs2YNMpmMwYMHo6Ghga2tLYsXLyYmJiZHxxXJGg0aNODhw4c8fPiQ0qVLi7+HHESZ3M6TWroMWOHOykmjefv2LT179uTo0aOUKFGCNm3asGXLFoKDgxUdqsJQNsfUVq1a8fDhQ8zMzKhYsSK7d++maRGdPF0XrCaBMJ+7LOzfKUcMAitXrsy0adPo3bs3iYmZ30j9bML2xYsX9O3blwYNGlC+fHkePHjAw4cPKVmyJLdv38bT05NXr15hZ2eX67FERESwfft2WrRoQcWKFfHx8cHNzQ0/Pz8WLVqEra1tuvsmJiaya9cuqlSpwrhx43B0dOT169dMmDAhwzJlkZ+T2rVrs2rVKuzt7QkMDFR0OClI6m07e/Zs3r17l+Y2yuC38L3ESuUcfhXBnufh+IZ9WcL4vX15pQLIBPANS2DP83AOv4ogViomOL4XsRQ5CwiCwGn/KJ6ExedJeUTSSZbXvU1PnTrFihUruHHjBjExMZQoUQIHBwfGjx+Publ55gcQyTGCgoKoVKkScrmchw8fUqhQIUWH9FNw5HUEvmEJSiFwJXwRXJ2+WT8fFRXFqVOn8PDw4OzZs9SsWRMHBwc6d+5MwYIFFROsEpAba9t/lFu3bjFo0CCKFi3K0GHDOP3yM8XqNkddK/ecNJMmOxsX0uL333/n9u3bnD59GjMzs2wdVxAE2rVrR9WqVZk3b16G2y5YsIDw8PAfbhekLLx69Yq5c+dy7Ngxfv/9d0aNGoWLiwsbN27EwMAANzc3BgwYkOtxJCYmcvbsWdzd3Tl9+jRNmjTBycmJ9u3bo62d+XcpIiKCjRs3smLFCmxsbHB2dqZVq1a/TKswkYyZOXMmZ8+e5fLly2hpKVdP1pkzZ/LgwQMOHTqU5vvK5LeQGcq0dEZEFLZZJj+dZDnBnTt3cHNz4/z583z+/JmCBQvStm1bnJ2dKVeunMLi+pWIi4vD1taW9+/fc+vWLSpUqKDokPI9AdGJ7Hke/t0zqbmBmgQcSxtm6L4YExPD2bNn8fDw4OTJk1SpUoWuXbvSpUsXihYtmofRKh85tbb9R3n06BE9e/bkyZMndOvWDZfVWzgbEJcnNzeCIDB9+nQ8PT05d+5ctvuOBgYGUrVqVfbs2ZOqV/rXLF++nNevX7NixYpsjaco/Pz8mDdvHp6enowcOZIxY8awdOlSli5dipqaGjNnzsx10x1BEPjnn39wd3fn4MGD2NjY4OTkRLdu3TAxMcnSMd69e8fKlSvZsmULrVq1Yvz48Wma8Yj82giCQK9evVBRUWH37t1KNeERFxdH5cqVWbRoER07dkx3O2UWjb+aLsgviKXIWUQikdCsmB72JfST+6vlJEl92exL6NOsWN5matOiRo0a7Nu3j5CQEF69ekWXLl04d+4c5cuXx8jIiM6dO3P9+nWFxvizo6WlxdOnT6lWrRpVq1blypUrig4p35PfWgro6OjQuXNndu/ezcePHxk3bhx37tyhUqVK1K9fn2XLlv2y7bxyam379xIQEMDQoUNp2rQpffr04e7du3z48IEB7exoxIc8WRcskUiYO3cugwYNomHDhjx79ixbYxUsWJCtW7fSt29fPn/+nO52+bUU+d27d4wYMYKqVatiamrKs2fPMDQ0xNLSkqVLlzJ+/HjCw8NzVdQ+e/aMGTNmYG1tzYABAyhSpAheXl5cv36dYcOGZUnUPnjwgL59+2Jra0tiYiJ3795lz549oqgVSROJRMK2bdt4+fIlc+fOVXQ4KchKb1tQLr+Fr0mq5MxtUQuQKAfvkDhO+0cpZSsnZUMUtt+Jsp5kuYmVlRVr167l3bt3hISEMHr0aHx8fGjUqBE6Ojo0bdqUAwcOiGZHuYCKigrXrl2ja9euNGvWjN27dys6pHxPaws91FQUq2zVVCS0Ka73XftoaWklG0x9/PiRadOm8fjxY6pVq0bt2rVZvHgxr169yqWIRcLCwpgyZQqVKlXC0NAQX19fJk6cSJUqVbh8+TIDBw6kdbOm/LttMQ6W2nmyLnjcuHG4uLjQpEkT/v3332x9vtatW+Pg4MCgQYPSvXnKb8I2ICCA33//HVtbW/T09PD19aVUqVKULl2ayZMnM2DAACIjI5kzZ06qvq85QWBgICtXrqRWrVo0btyYiIgIDhw4wJMnT5g6dSpWVlaZHkMQBC5cuEDr1q1p3bo15cuX5+XLlyxbtowSJUrkeMwiPxfa2tocOXKEzZs3c+DAAUWHk4LMetsmoWx+CwCX3kfn2fJE+CJun4TFc+l9dN4MmI8RS5GzwYfoRLyCYnkenoCE71soriYBAShtqEFtc+182Qw6ISGBjRs3sn37du7fvw+Ara0t/fv3Z+jQoUrT9P1nYcKECbi5uTF//nwmTZqk6HDyNT9LSwH4sk7vr7/+wsPDg8OHD1O0aFEcHBxwcHDAxsYmR8b4lYmLi2P16tUsWrSIDh06MHPmzHRLfwMCAhg1ahQ+Pj5s2rSJGnXr58m64EOHDjFs2DA8PDxo1KjRD3/W+Ph46tSpw/DhwxkyZEiq9w8ePMj+/fuVvh3Zx48fcXV1ZceOHfTv35+JEydy/fp1Ro0axadPn+jduzfr169HR0cnx8eOjo7myJEjuLu78/fff2Nvb4+TkxN2dnaoqall+TiJiYkcOHAANzc3EhISGD9+PL1790ZTU/kmv0WUH29vb1q0aMHJkyepVauWosNJJrPetmmhaL+Fn+n+4WdEFLY5gKJPMmVALpdz6NAh1qxZg5eXF3FxcVhbW9OjRw/++OMPjI2NFR3iT8Hq1asZPXo0w4YNY+3atYoOJ19z8V3elBF9TdJamWbFvi9bm1VkMhnXr1/Hw8MDT09PTE1N6dq1Kw4ODpQvX17hSxzyEzKZjJ07dzJjxgyqV6/OvHnzKF++fJb2PXToEL///jv29vYsXLgQQ0NDIHfXBV+8eJFevXqxbds22rVr98PHefr0KQ0bNuTq1aup/BROnDjBunXrOHnyZLZizS0+ffrEokWL2LJlC3369GHSpEn4+PgwaNAg/Pz8sLe3Z/v27TnuFCyVSrlw4QK7d+/m+PHj1K9fHycnJ+zt7dHV/T6n1YiICDZv3szy5cspVaoUzs7OtG7dOlcyyiK/FkePHmXEiBH8888/2V6Xn5Nk1ts2M/LSbyFWKme9TyjxObng9zvRVJUwrHyBn0Y/5DSisM0FFG1qogxcv36dJUuWcPnyZcLDwylatCj29vY4OztnqfxKJH2OHj1K165dadOmDcePH1d0OPmWn93tXC6X8/fffyeLXF1d3eRMrq2trShy00EQBI4fP86UKVMwNjZm4cKF1KtX77uPExYWxoQJEzh16hRr1qzJ0CAlp/Dy8qJjx44sWbIER0fHHz7Opk2bWLNmDf/8808KN9WLFy8yb948Ll26lBPh5hghISG4ubmxYcMGevXqxeTJk/n48SN9+/bl6dOnNG3alF27dlGkSJEcG1MQBO7cucPu3bvZt28flpaWODk50aNHjx/qIvD+/XtWrlzJ5s2badGiBePHj8+zvrkivw6LFi1i7969XLt2DT293Jlg/V4EQaBp06Z06dKF0aNHKzqcDDn8KoIXEQk5amT1vaj+f/li5286Koh8QRS2IrmOr68vrq6unD59mo8fP2JsbCz+4c4mXl5eNG7cmAoVKuDl5fVdJW4i//GruBoKgsDt27fx8PDAw8MDFRWVZJFbvXp1UeT+n+vXrzNp0qTkljZt27bN9s/mypUrDBkyhMqVK7Nq1apcb931+PFjWrduzcSJExk1atQPHUMQBBwcHLCwsGDZsmXJr9+8eZNx48bx999/51S42eLz588sXbqUdevW4eDgwNSpU4mNjcXR0ZF///2XmjVr4u7uTunSpXNszFevXrF7927c3d2RyWQ4OTnh6Oj4w2M8evQINzc3jh07Rp8+fRg7dqw4+SuSawiCwMCBAwkNDcXT01NpKgGePn1KgwYN8Pb2plixYooOJ03yW1eFXxXl+EaL/NSUKVOGrVu38uHDBwIDAxk4cCC3b9+mVq1a6Onp0apVK06cOKHoMPMVtWvX5smTJ7x48YJSpUoRERGh6JDyJb+K27lEIqFWrVosWrSIly9fcuDAAVRUVOjduzdWVlaMHz+ef/7555c1gHv06FHyWsghQ4bg7e1Nu3btcuT31aRJE+7fv4+NjQ22trZs2bIlV50tK1SowLVr11ixYgVz5sz5obEkEgmbNm3C09OT06dPJ7+uLOZRYWFhzJw5ExsbGz5+/MidO3eYPn06ffv2pVy5csTHx3Pnzh28vLxyRNQGBwezdu1a6tevT506dQgKCmLHjh08f/6cmTNnfvcYgiBw6dIl2rRpQ4sWLbCxseHFixesWLFCFLUiuYpEImH9+vV8/vyZKVOmKDqcZMqWLcuoUaOUOmN7KyhWoZnar5EJ4BWk+GuxMiJmbEUURkxMDGvWrGHXrl34+PigqqpK1apVGTRoEP379xezkFng8+fPVKxYkbi4OB48eKC0M535gVipnDP+Ubz8f5lRdi6MEv5r6dO6uJ7SroURBIFHjx4lZ3IjIiLo0qULDg4O1KtX74fWO+Un/P39cXFx4fTp00yaNInhw4enKL3Nae7fv8+gQYPQ19dn48aNWFtb59pYHz9+pFWrVjRt2pSlS5f+UGbmr7/+olevXty7dw8dY1P+ffaG+a6LWbp8uUKW2ERERLBy5UpWrFhBu3btmD59OoaGhvTr14/Tp09TsmRJtm7dmi0DrSRiY2M5duwYu3fv5urVq7Rt2xZHR0datmyJuvqPZUmkUikHDx7Ezc2NmJgYxo8fj6OjY65+50RE0iI4OJg6deowbdo0+vfvr+hwgKz3tlUEsVI5qx99VhphC1/uMUZVNFba+wtFIQpbEaVALpfj7u7Oxo0buXPnDomJiZQtW5bevXszZswYpVkLoowkJCRQrVo1Xr16xc2bN6lSpYqiQ8rX/Mpu5z4+Pnh6euLp6UlgYGCyyG3YsOFPNdEUEhLC/Pnz2b59OyNGjGD8+PHJBk+5jVQqZeXKlcyfPx9nZ2f+/PPPHxZKmREWFkb79u0pVaoUW7Zs+a7fYZIp4oX7zxD0CqCpo4sKAtHR0cnX47wyRYyKimL16tUsXbqUli1b4uLiQpEiRRg8eDAHDhygcOHCrF27Fnt7+2yNI5PJuHLlCu7u7hw5coSaNWvi5ORE586d0dfX/+HjRkZGsmXLFpYvX06JEiUYP348bdu2VZoyUJFfkydPntC4cWM8PT1p2LChosMB4PLly/Tr14/Hjx9n65zLabwCY7j2ISZHypBDA/xZ1L46c299QDUbf1fVJNCwsA61C+a8u3t+RhS2IkrJ2bNnWblyJVevXiU6OhoLCws6d+6Ms7NzjhqA/CzI5XJatWrFlStXOHbsGG3atFF0SPmeX93t/Pnz53h6euLh4YG/vz+dOnXCwcGBpk2b5poQy22io6NZsWIFS5cupXv37kyfPp3ChQsrJJbXr18zdOhQPn36xObNm6levXqujBMTE0PXrl3R0NBg//79mWYHA6ITuZUDEzu1zLUpks2JnejoaNauXYubmxt2dna4uLhQqlQpRo8ezZYtWzA0NGTp0qX07dv3h8cQBIH79+/j7u7O3r17KVSoEE5OTvTs2TPb342AgABWrVrFpk2bsLOzY/z48UrVakVE5Ny5c/Tr148bN25QsmRJRYcDQP/+/TE2Nmbp0qWKDiWZ3c/CeBstzZFj5ZSwBSiuq4ajjVGOxPWzIApbEaXH29ubxYsXc+7cOYKDgzEzM6N169ZMmDCBihUrKjo8paJ///7s2rWLjRs3MnDgQEWH81PxK7udv379mkOHDuHh4cHz58+xt7ena9euNG/ePF/01UxMTGTr1q3Mnj2bBg0aMHfu3Bw1FPpRBEFg165dODs707dvX2bNmpUrvVUTEhLo27cvQUFBHDlyBAOD1G6auVKKb6BBa4vvL8WPjY1l/fr1LFq0iAYNGjBjxgzKly/P5MmTWbFiBRoaGsyZM4cxY8b8cIz+/v7s2bMHd3d3oqKikk2gvm1x9CP4+Pjg5ubGkSNHcHR05I8//lAa0SAi8i1r1qxhzZo1/P3333lWuZIRP9LbNrdZ9iAkx1r85KSw1VSV8IetSY7E9bPwc9+NifwUVKlShd27d/Pp0yfevn1Lz549uXLlCpUqVcLAwIAOHTooXfsJRbF9+3amT5/O4MGDmTlzpqLD+anQU1ehpIEGZQtoUsFYi7IFNClpoPHTi1oAKyurZDfce/fuUblyZRYuXEihQoXo06cPR48eVQpToW8RBIGDBw9SoUIFPDw8OHr0KPv371cKUQtfjFz69u3Lw4cPCQgIoFKlSly4cCHHx9HQ0GD37t2UKVMGOzs7Pn36lOL95+HxrPcJ5UVEAtJsilr4sr9UgBcRCaz3CeV5eHyW9ouLi2PVqlWUKlWKq1evcubMGfbv38+JEycwMDBg5cqVTJ48mbCwsB8StaGhoWzatInGjRtTrVo13rx5w/r163n16hVz587NlqgVBIErV67Qrl077OzsKFmyJM+fP2fVqlWiqBVRakaOHImdnR3du3dHKs2ZrGR2MDU1xdXVlSFDhiCTyRQdDpGJXyq2MsO1XTWu7ljNiu6NcalnieesMUSGBLFtVA9mNCjB5mFdiY0IS7XfxsEdObd2AesHtGVGgxJsGdGN6NCQLMUmlQtE5UW/wnyEmLEVybdERESwfPly9u7dy7Nnz1BXV6dWrVoMHTqUXr16/dLrlzZv3szQoUPp27cv27ZtU3Q4Ij8pHz584PDhw3h4ePDvv//Spk0bHBwcaN26Nbq6ugqN7dKlS0yaNAmZTMbChQtp0aKFQuPJCqdOnWL48OHY2dnh5uaGiUnOzsQLgsC0adM4dOgQ586do1ixYkrR7io+Pp4tW7awYMECqlSpwsyZM6levTobN25k4sSJREdHM3LkSBYvXvzda73j4+M5efIk7u7uXLx4kZYtW+Lk5ETr1q1zpNpAKpXi6enJ4sWLiYqKYty4cfTp00c0hBLJV0ilUtq1a4eNjQ2rVq1SdDhK1dv2VUQCR19HEp+JuHVtVw19E3P6LNuJXCZjVS87DAsWpqvLcsysbNj+ey+sqtejeoceKTK2Gwd3JDwwgP6r9mFUsAjbfu+JRaXqtB7tkmlsmioSOlrpU9JAI6c+br7n173zF8n3GBgY4OLiwpMnT4iPj2fFihXExcUxYMAANDQ0qFKlCkuXLiUuLk7RoeY5gwYN4sSJE7i7u9OiRYtfto2LSO5SuHBhRowYwaVLl3j27BlNmzZlw4YNFClSBAcHB/bt20dkZGSexnTv3j1atWrFkCFDGDduHLdv384Xohagbdu2PHr0CH19fSpWrMj+/ftztDWQRCJh3rx5DBo0iIYNG7Lv0ftcF7UAiXLwDonjtH9Uis+TkJDAxo0bsbGx4cSJE3h6enL8+HFevnxJwYIFGTFiBJ06dSIiIoJly5ZlWdTK5XL++usvhgwZQpEiRVi9ejXt27fH39+fgwcP0rFjx2yL2qioKFauXEnp0qVZs2YNLi4u+Pj4MHjwYFHUiuQ71NTU2L9/PxcuXGDt2rWKDie5LdHs2bN59+6dQmNJkCU5a2RO3Z6D0Dcxx9C8MCWq1qZ4xeoUKWuLuqYWFeza8sH3YZr7VbfviZllKdS1tKnUoiMBvo+yNJ6AQIIyWTUrAaKwFfkpUFNTY+jQody6dYu4uDg8PT0xMzNj+vTp6OjoYG1tzeTJkwkODlZ0qHlGmzZt8PLy4vr161SuXJmEhARFhyTyE2Nubs6QIUM4d+4cr169ol27duzatYtixYrRqVMndu3aRVhYWK6N//LlS3r37k3btm3p2LEjPj4+9OjRI99Vbujr67Ny5UoOHz7MnDlzsLe35+3btzk6xrhx4/hj/T6eR8pzXdQmkSiHJ2HxXHofnbzmuUyZMnh4eLBv3z5OnTpFaGgolpaW9OrViwYNGvD582e2bduWZaH46NEjJk+eTIkSJRg9ejTW1tZ4e3tz6dIlfvvttxxZP/jx40emTp2KlZUVV69eZd++fVy9ehV7e/t8910TEfkaIyMjTpw4wezZszl//ryiw8nz3rZSqZQRI0bg6emZIiEi+47JRX0Ts+Tn6pra6Bl//X8t4mOi09nPPPm5hpY2CbFpb/ctwnfG9ysgXoVFfjpUVFTo2LEj58+fJzo6mr///puqVauyYcMGzMzMkttEPH/+XNGh5jrVqlXD19eX9+/fY2VllavCQkQkCRMTEwYMGMDJkyfx8/Oja9eueHh4YGFhQbt27di2bRufP3/OkbECAwP5/fffqV27NuXKleP58+eMGDECDY38XZpVp04d/v33X2rVqkXVqlVZs2ZNjlVePA+PR1rYGg3tvG0TkSiHOx+jaOU0GHd3d3bu3Mm5c+dQUVGhbNmytGnThjJlyvD+/Xs8PT3TNLn6lvfv3+Pm5kaVKlVo06YNcrmcEydOcP/+fSZMmEDx4sVzJPYnT54waNAgypcvT3h4OP/88w8eHh7Url07R44vIqIMlCpVigMHDuDo6MjTp08VHQ6TJk3i8ePHHD16NE/G27BhA/3798fExITu3btz4MABVNNYPqEsfDHqU974FIEobEV+emrXrs3Bgwf5/PkzL168wN7enpMnT2JjY0OBAgXo2rUrf//9t6LDzDUsLCx48+YNqqqqWFpa8vr1a0WHJPILYWRklGww9f79e/r06cPJkyexsrKiZcuWbNy4kaCgoO8+bmRkZLJbrqqqKk+ePGH69Ok/Vc9rDQ0Npk+fzrVr19i7dy8NGzbEx8cnW8eMlco54ReVZ5nabxFU1WgzYSEnz13A2NiYatWqUbduXYyNjXn58iXnzp2jUKFCGR4jIiKCbdu20bx5cypVqsTTp09Zvnw5fn5+uLq6YmtrmzOxCgJ//fUXHTp0oEmTJlhYWPDs2TNWr15NqVKlcmQMERFlo1GjRri6utK+fXtCQrJmYpRbaGlpsX79en7//fccX9YSERHBgwcPOH78OKtWrWLSpEmoqakRFRVFTEwMBw8epFevXsRGRSJBOcWjhC/dGUT+QxS2Ir8UpUqVYv369QQEBPDp0ydGjBjBgwcPqF+/Pjo6OjRr1ozDhw//dGtSDQwMePXqFaVKlaJcuXLcvn1b0SGJ/ILo6+vTs2dPPDw8CAgIYMiQIVy6dAkbGxvs7OxYu3YtHz58yPAY8fHxyWsbX79+zd27d1m+fDlmZmYZ7pefKVeuHFevXsXJyYnGjRsza9Ys4uOz5jT8LWf8o7Lk8JmbCCqqTNp5gkqVKiGTyfD29ubmzZtYWVmlu09CQgLHjh2jR48eFC9enGPHjjFs2DACAgLYvHkzTZo0ybFSYKlUyoEDB6hduzaDBw+mffv2vHnzBhcXF0xNTXNkDBERZWbAgAF07dqVLl26KHwZU9OmTbGzs2PGjBlZ3kcQBEJDQ7l37x6HDx9m+fLljB07ls6dO1O1alWMjY0pXLgwPXv2ZN26dfj4+GBmZpbcu1pbW5vmzZvz/v17rAsVQKqk5b5SQcBcO3stg342RFdkERG+tJnYsGED27dv5+HDh0gkEipXrszAgQMZOHBgvi9rTEIul2Nvb8+ZM2fw9PSkY8eOig5JRITY2FjOnTuHh4cHJ06coGLFijg4ONClS5fkUlK5XM7evXuZPn065cqVY8GCBTmWmctPvHv3jhEjRvDy5Us2b95M3bp1s7xvQHQie56HI1WCv/qJcbHUJIjWdaunu40gCPz999+4u7tz8OBBypUrh6OjI926dcPY2DjHY4qOjmbbtm0sXbqUIkWKMH78eHHtrMgvi1wup0uXLpiYmLB58+Y0Hc3zim972wqCQHBwMH5+frx584Y3b94kP096BChRogSWlpYpHpOem5qapvpMPXr04OTJk2zYsIHevXsnv5+TfWxzErGPbWpEYSsi8g1yuZz9+/ezfv16bt26RUJCAjY2NvTs2ZMxY8ZgZGSk6BCzzfDhw9mwYQOrV69mxIgRig5HRCSZ+Ph4Lly4gIeHB8eOHcPGxoaKFSty48YNDA0NcXV1pVGjRooOU6EIgoCHhwdjxoyha9euzJ8/H319/Uz3O/I6At+whGz3qc0JJEAZIw06WaVeR/v06VN2797N7t270dLSwsnJid69e1OiRIlciSUwMJBVq1axYcMGGjVqxPjx479rwkBE5GclKiqKBg0a4OTkxPjx4/NsXEEQCAwMTCFUz5w5w7///kuRIkXw9/dHU1MzlWj9WrwaGRl9txj/8OEDampqqSqAdj8L42204nv8fktxXTUcbYwUHYZSIQpbEZFMuHTpEitWrODKlStERERQvHhxOnbsiLOzMxYWFooO74dZsGABU6dOxdnZGVdXV0WHIyKSihs3bjBixAj8/PwQBIHSpUvj4OCAg4MD1tbWig5P4Xz+/BlnZ2fOnz/PunXraNeuXbrbxkrlrH70GWVKOqhKYFRFY7TVVPj48SP79u1j9+7dvH//nl69euHk5ESVKlVyLVP09OlTli5dioeHBz179uSPP/6gdOnSuTKWiEh+5e3bt9SpU4d169Zhb2+fI8eUyWR8+PAhVZY16bm/vz96enopxKqFhQWbNm2ibdu2TJkyJUdczrOKV2AM1z7EKEW1SxJqEmhYWIfaBfPWBFDZEYWtiMh38PjxYxYvXszp06cJCgrCxMSEli1bMn78eKpVq6bo8L4bd3d3+vXrR48ePdizZ4+iwxERAcDX15cpU6bg5eXFzJkz6d+/PwBXr17Fw8ODw4cPU7BgQRwcHOjatSvlypVTbMC5SGSijE+xMhJkAjJBQFXyxSzEXFsNPfUvJbIXL15k6NCh1KxZkxUrVmBubp7qOGndmLm2q0ZXl2VY126cY/GGBvizqH115t76gGomfWfVJKD74QlHV8zDy8sLe3t7nJycsLOzQ1VVNcdi+hpBELh+/TqLFy/Gy8uLESNGMGLEiJ96jbaISHa5desW7dq14/z581SpUiXT7aVSKe/fv0+zRPjNmze8e/cOY2PjdDOulpaW6Orqpjru06dPadCgAd7e3hQrViwXPmnaKPvEoMh/iMJWROQHCQgIYMmSJXh6euLv74+uri4NGjRg7NixtGrVStHhZZlLly7RqlUr6taty5UrV8T1ZCIK4/3798yaNYvDhw/j7OzM77//jra2dqrtZDIZN2/exMPDA09PTwwNDZMzuRUrVlToWrDsEiuV8yAkjhfhCQTFyZDKBdQkEoSvCoglSJAKAmoqEsy1VLE21MBaR2DR3Nls376dRYsW0bdv3xQ/h7RK6RQtbAHCXz+lcsI77O3t0dHJvcyDTCbj8OHDuLm5ERISwrhx4+jbt2+ujiki8jOxf/9+JkyYgJeXF8bGxrx9+zaVaE16DAgIwNzcPF3RamFhkea1PSvMnDmTBw8ecOjQoRz+hBmTX5Zy/OqIwlZEJAeIiopi9erVuLu78+TJE9TU1KhevTpDhw7F0dERtSzc4CmSx48fU6tWLYoVK8b9+/fR0tJSdEgivxBhYWG4urqyceNGBg0axKRJkyhQoECW9pXL5Xh5eeHp6YmHhweampp07doVBwcHqlatmm9EbkB0IreCYnkenoAEvqvkTU0CAlDaUAPDUH/GDeqLiYkJGzZsoGTJkkDa5ifKIGxz2/wkJiYm2RCqYMGCODs7Y29vn2sZYRGRn4G4uDj8/f1TidarV68SGBiIIAgULlw4hRnT14/FixfPNdPNuLg4KleuzKJFi/LUAFOZzPfUJOBY2pDCuuqKDkXpEIWtiEgOI5VK2bVrFxs3buTff/9FKpVSvnx5+vTpw6hRo5Q2Q/Dx40cqVqyIqqoqjx8/FttaiOQ6cXFxrF69mkWLFmFvb8/MmTOzVV4mCAJ3797Fw8MDDw8P5HJ5cia3Zs2aSilyY6VyzvhH8TIiAZlAtrIBEr6Up1npq/Py2HYWzZvD5MmTGTjidzb5RqQqo3NtV43aXfty7+RBIoIDqdCkDR2nLEYaH8f+aSN49+hfZDIplpVr0XmqG4YFiwCwcXBHSlStw6vb1/jw3AcL25r0nLce3QImqYTto4vHObl0Bv1W7KaQdeqScVUJDK9gnFxWnVMEBQWxevVq1q9fT/369Rk/fjz169fP0TFERPIrMTExGToKf/78mWLFiqUSrZaWlixZsgQdHR327dunsGvq5cuX6devH48fP86ScV5OcfhVBC/+f61WFKoSsDbUoLOYrU0TUdiKiOQyp06dYuXKlVy/fp2YmBhKlChB165dGTduHIUKFVJ0eCmIiYmhUqVKBAUFcefOHcqUKaPokER+QmQyGTt37mTGjBnUqFGDefPm5fg6WUEQePDgAR4eHhw8eJCYmJjkTG7dunWVouT+eXg8J/y+9JXNyRslVQmoqUiorhHJrJED0SpmTdOxc5B+07retV01NHV06b9qHxraOuwc60jJGg2o7ziM13dvYFOvGYJcjses0cilUvos3Ql8EbbhgQH0X7UPo4JF2PZ7TywqVaf1aJcUwvbeyQNc3rKMAav3Y2pRMs1YNVUkdLTSp6RBzmR3nj17xpIlSzhw4AA9evTgjz/+EK9jIr8ckZGRaZoyJT1GRERgYWGRbsa1cOHC6VY1xMbG0rRpU9q0afNdvWVzmv79+2NsbMzSpUvzbMxYqZz1PqEKbf2jqSphePkCaIlra9NEFLYiInnInTt3WLJkCefPnyckJISCBQvSpk0bJkyYoDQGOHK5nHr16nHv3j0uXrxIgwYNFB2SyE+CIAgcO3aMKVOmYGpqysKFC/OkrYogCPj4+CRncj9//kyXLl1wcHCgQYMGeV6WKggCl95H4x0SR6I898ZRV4EqJlr43rrOJ/OyaOrqpXjftV01mgwYTW2H/gA8vX6e44um4HzsdortAnwfsmlIZ2b89QL4ImytazfCbtA4AP4+sJUnf53htzUHkoVtm7EzuXt0D7+tPZic6U0LDRVoa6FP2QKa2fqsN27cYPHixdy8eZPhw4czcuTINE20RETyO4IgEBYWlu761jdv3hAXF5dm79akx4IFC2Zrcu/jx4/Url2bRYsW0aVLF9asWcPgwYPTNHzKLb7tbZtXPA+P59ibyFy9dqeHugrYl9CntGH2rpc/M8q98E9E5CejRo0a7N27FwA/Pz8WLVrEsWPH2L59O4aGhjRp0oQ///xToX06VVRU+Oeff+jatSuNGzdm7969dO/eXWHxiPwcXLt2jUmTJhEZGcnixYtp06ZNnpWxSSQSKlSoQIUKFZgxYwa+vr54enryxx9/EBAQQKdOnXBwcKBJkya5vh5eEARO+0fxJCw+12+MEuXgHRJHoYp1iI5ORJbGNl+LzgKFixPx6SMJsTGcXDKdZzcvERsZBkB8dBRymQyV/08C6Jv8Jxo1tLRJiI1OcdxrO9dgN3hchqIWvpRey35wfl0mk3H06FHc3NwICgrizz//ZM+ePUq73ENEJCsIgkBISEiaojXpUS6XpxKs9evXT35uamqaq9fXQoUKcfz4cezs7Jg9ezZPnjyhVKlSdOjQIUv7Z8XtPTNMTU1xdXVlyJAheHl55dkEZWlDTaqYJOb6xOS3JE1UiqI2Y0RhKyKiICwtLVmzZg1r1qwhLCyM5cuXs3fvXpo0aYKmpia1a9dm+PDhdOvWTSFlk0k3/j179uTdu3f8+eefeR6DSP7n0aNHTJ48mYcPHzJnzhx69+6tcOOeMmXKMGXKFKZMmcLLly/x9PRkypQpvH79mo4dO+Lg4ICdnV2umJ9ceh+dJ6I2iUQ5BMRIEUj7Jjc8MCD5edjHdxiYFeKa+zo++b1gxM4z6JsWJMD3Iat62fE9BV6/rT3AtlE90Dc1p2Kz9G92v6wL/r4b8JiYGHbs2MHSpUsxMTHB2dmZTp06Kfx7JSKSFQRBICgoKN31rX5+fqirq6cQrVZWVjRt2jT5tQIFCijcM0BLSyu5GkYikXDx4sV0he2Pur3bmmhl2M6mX79+bN++nTVr1jB69Ogc/4zpYVdUl3iZkGfXcnUVKG+kiV3RvMuI51fEUmQRESUjISGBzZs3s3XrVu7fvw9ApUqVGDBgAEOHDs01p8H0WLp0KePHj+f3339nxYoVeTq2SP7Fz8+PGTNmcPr0aSZPnszw4cPR1FTumWY/Pz8OHTqEh4cHT58+pX379jg4ONCiRYsccQpXZAmbIAipboRd21VDU1ePAav2oa6lzc4/nLCqWhe5TMbHFz44LdlBYlwsnrPH4nP5VLIh1MbBHana1oGanfsAcPfYXm4fcWfY1pMp1tgGvXrK1pHd6TxtKeUbt04zroToSHwPrMdIFpV8A5/0aGxsnCLmT58+sWbNGtatW0edOnVwdnamfv36Cr/BFxH5GrlczocPH9Jd3+rn54eenl6GPVwNDQ0V/TEypWbNmnh7eyOVfmkjZmNjg6+vb4ptcsrtvZa5NkXScQBWVG/bvF5SYldUV7zWZQFR2IqIKDFyuZzDhw+zZs0a/vnnH+Li4rC2tk42RTE2Ns6TODw8POjRowcdO3bM895xIvmLkJAQ5s+fz/bt2xkxYgTjx4/PFzdp3/L+/XsOHTqEp6cn9+/fp23btjg4ONCqVasfKnVVBtORb0nhivzpI+WatKbT5MXERUWwb8pQ3vt4o29WiIZOIzgyf/x3C1tVNTXe+XizY3RvHGatpEz95qliUEHAOuAu71895/Xr17x58yb5USaTJZdVBgcH8+LFCxo0aMCIESNo2rRpvvxeieR/pFIpAQEB6ZozvXv3DiMjo3RFq6WlJXp6epkPpOSEh4ezadMmFi9ezOfPn5FKpURERKCvr58rbu+lDDRobaGXZgZXUb1tIfdNANtb6onlx9+BKGxFRPIRN27cYMmSJVy+fJmwsDCKFCmCvb09EyZMwMrKKtfHtrOzo0qVKty4cUPpe/OK5C3R0dEsX76cZcuW0aNHD6ZPn650rt8/ysePHzly5AgeHh7cvn2bVq1a4eDgQNu2bVPcoD5+/JgnT57g4OCQ6hjK0CZCGVFHzriqaZs8nTt3DldXV+7cuUOtWrWwtLQkMDAwWfxqaGikyvJ+/ZiXRjYiPw+JiYm8ffs2TVMmPz8/3r9/j7m5eboZVwsLC7S1tRX9MfIMmUzGkSNHGDduHOfPnwdzizwXeorqbZtErgh5Qw1aF09byIukjyhsRUTyKb6+vixevJiTJ0/y8eNHChQoQPPmzXF2dqZmzZq5Mubz58+pVq0aZmZmPHjw4KeYdRbJHomJiWzZsoU5c+bQsGFD5s6di7W1taLDyjU+ffrE0aNH8fT05ObNmzRr1gwHBwfat2/PoEGD8PDwYM2aNQwfPjx5n4DoRPY8D/+uMrxfhVd3buA+pheVKlWia9euDBw4kGvXrrF48WI+fPjAn3/+yYABA1KJ1CSDnW+zvEmPb968QV9fP13Ra2lpmSPl5SL5j/j4ePz9/dN1FA4MDKRw4cLpZlyLFy+u9MsqFIGiS3MV1dv2az5EJ+KVA6XXtc21KZxO6bVIxojCVkTkJyAoKIglS5bg4eHB69ev0dHRoV69eowaNYr27dvnqPlUcHAwFStWRCqV8uDBA4oUydj1VOTnRBAEDh48yLRp07C0tGThwoVUr15d0WHlKaGhoRw7dgwPDw+uXLlCbGwsMpkMbW1tXF1dsbOz48aNG7w1Lo22VXlUVERzo69Rk0AdU3UeHt/Dnj17uH37NvHx8aiqqmJra4uzszPdunX7oeoQuVyeIrv77ePbt28xMTFJV/haWFigri7eWOZHYmJikteypiVeQ0JCKFq0aLo9XIsWLSr+7r+TvHR7hy/itpyRJm0s9FKIW0X0tk2LjMyyBL5kZX/ELEskc0RhKyLykxETE8O6devYuXMnjx8/RkVFhapVqzJw4EB+++23HCkhjouLo0qVKrx9+xYvLy8qVqyYA5GL5BcuXrzIpEmTEASBhQsX0rx56rWTvwJRUVF4eXnxzz//cPr0aW7evJnKOdi0cFHGHPZCTUPM8HyLqgR6FYatG9aydu1aatWqRZ8+fbh79y4nT57E19cXqVSKhYUFdnZ2DB8+PMeqUWQyWfI6ya8Fb9LzDx8+ULBgQaysrNIUv0WLFhVdmBVEZGRkuqLVz8+P8PBwLCws0u3hWqRIEfF3l8NcfBelsPY3zYr9VzmmqN62mRGVKCcoVpqt9kYiWUMUtiIiPzFyuZw9e/awYcMGbt++TWJiImXKlKF3796MHTs2W6XEcrmcpk2bcvPmTc6cOUOzZs1yMHIRZeTevXtMmjSJly9fMm/ePIW1ospL/Pz8uH79Onfv3sXHxwc/Pz8CAwOJjIxEKpWipqaGvr4+giAQFhaGiooKhoaGmJmZ0aJFC/pMX8S1DzE/XIa8zKEBHSe5UrJG/Zz9YApHIPrlI1YP7kLXrl0ZN24c5cqVS7XVjRs32LhxI5cvX+bdu3eoq6tTtmxZ7O3tGT58eK5VjCQmJvLu3bt0S50/ffpEsWLFUgnepOeFChX66c+N3CIsLCxdR+E3b94QGxubKsv69fOCBQuKP/s8RJFu7+oqYF9CP8Wa2+3bt7N69eo87W0rojyIwlZE5Bfi/PnzLF++nGvXrhEVFUXx4sXp1KkTzs7OP2yT7+joyL59+9i2bRt9+/bN4YhFlIGXL18ybdo0/vrrL6ZPn86gQYN+mlK9hIQE7t69y99//82DBw949uwZ7969IyQkhNjYWARBQEtLiwIFClC0aFGsra2xtbWlVq1a1K1bN9khOTg4mMjISCwsLFLcTO1+FsbbaGm247ywfhEhb1/TY966bB9LGUiMiyXhxmFGOnXPssmYVCpl3759uLu7c+vWLUJDQzEwMKBGjRr06tULJyenPFs3Gx8fnyy00hK/ERERWFhYpFvqbGZm9ku27hAEgc+fP6e7vtXPzy/ZDTu9jOuv+rNTRpTB7V1TVcKw8gWSS3gFQaBp06Z06dIlQD6kvgAAqjNJREFUT3vbiigHorAVEflFefDgAYsWLeLcuXN8+vQJMzMzWrZsyaRJk767tHjy5Mm4uroyZ84cpk6dmksRi+Q1gYGBzJkzh3379jF27NhsZ/kVRVBQEDdu3OD27dv4+Pjw6tUrPn78SFhYGImJiaioqKCnp4eZmRmWlpaULVuWqlWrUr9+fcqUKZOt7M+yByE5ctP3MwlbWWICMX5PmdfNLlvHCQ4OZsOGDRw+fJjHjx8THx9PoUKFaNy4MYMGDaJp06YKy9zFxMQki7W0Sp3j4uJSZXm/fjQyMsqX4k0QBIKCgtIVrW/evEFdXT3DjGuBAgXy5Wf/FVEGt3dVCVgbatDZyiD5NUX1thVRPKKwFRER4d27dyxevJgjR47w9u1b9PT0aNSoEX/88UeWS4zXrVvHyJEjGTJkCOvXr8/liEVyk4iICJYsWcLq1avp27cvU6dOxdTUVNFhpYtcLufRo0f8/fff3Lt3D19fX/z9/fn06RPR0dHI5XI0NDQwMjKicOHClCxZkooVK1KjRg0aNGiQa/2gIxNlrH8cmq2bPtd21bCfuJDd4/sjIKCmroFxMSvG7L+SY3HmNZoqsLFPc+bPmkHnzp1z7LgPHjxg3bp1nDt3jjdv3qCiooK1tTVt2rRh5MiRlCpVKsfGyi4RERHpZntfv36NRCJJN9trZWWlMNdXuVzOx48f0824+vv7o6Ojk6YpU9Jzsf/wz4Eyub2rScCxtGEKJ2FF9rYVURyisBUREUlBREQEK1euZM+ePfj6+qKurk7NmjUZOnQovXv3zjADcuzYMbp06ULLli05ceKEuM4pnxEfH8/69etZsGABrVq1YtasWZQoUULRYQFfjJqSsq4PHjzg5cuXBAQEEBoaSnx8PBKJBB0dHUxNTSlevDilS5ematWq1KlTh6pVqyqk7/KriASOvo4kXv7jf2Zd21Wjq8sy3tzz+ikytklr4kKe3KNjx47cvXs3VzIqcrmc48ePs337dm7cuMGnT5/Q0dGhcuXKODg4MGjQIAwMDDI/kAIQBIHQ0NBUWd6vWxlpa2unK3otLS2TS+S/l69NtdISr2/fvsXIyCjdHq6Wlpb5sqpD5Ps58joC37CEbPVszSkkQBkjDTp9lbVVdG9bEcUgClsREZF0kUqlbN26lS1btnDv3j3kcjkVKlSgb9++DB8+PM2bp9u3b9OwYUPKlSvH7du3FSIoRL6PJJOx6dOnU6FCBebPn4+trW2ex/Hy5Utu3LjB3bt3efr0KW/evCEoKIjIyEhkMhlqamoYGBgku9VWqFCB6tWrU79+faUsN3saGs8p/0gSsmGqklvCNmnKKS/9Xr51MZ03bx4XLlzgwoULuW7yEhUVxZYtWzh48CDe3t5ER0djampK/fr16devHx07dsw3E3GCIPDp06d0s73+/v4YGRmlWepctGhRVFRUkrOu34rX9+/fY2pqmq5otbCw+GHRLPLzECuVs/rRZ4WWIH+LqgRGVTRO0S5HGXrbiuQtorAVERHJEnK5nBMnTrB69Wpu3LhBbGwsVlZWODg44OzsnKJU1c/Pj8qVK2NgYMCjR4+UNjPyqyMIAmfOnGHSpEno6Ojg6upKo0aNcm28hIQEbt26hZeXF/fv3+f58+e8e/eOz58/Jxs1aWtrY2xsnGzUVLlyZWrVqkWdOnXyzBgop3j8OY6zb6OUUthK42J5/+Q+RcpVRl1LO0eOmREqgpzCRGOrGomGhjpqamqoqKjg5OSEnZ0d48aNQ01NDXX1L++pqanl6jrL169fs3btWk6ePMnz58+Ry+WUKFGCFi1aMGzYMKpUqZJrY+cmSaZW//77L/fv3+fJkye8efMmeU15fHw8ABoaGhgaGlKwYEFKlChBmTJlqFKlCjVq1MDa2lqckBTJEK/AmO92ez84YxSG5kWwrt2Y/dOGM/nMgxyNSU0CDQvrULtgyokXZeltK5I3iMJWRETkh/Dy8mLJkiVcuHCB0NBQChUqRLt27Zg4cSKlS5cmLCyMihUrEh0dzf3797GwsFB0yCJf4eXlxcSJEwkKCmL+/Pl07NgxR4TEx48fk9vjPHr0KLknaEREBImJiaiqqqKnp4e5uXmyUVO1atWoV68epUuXzjdZs6yQoxlb71uE+L/KMWGbGBPN00ObaNiuK+GGRRBUci9jKo2P49XVk3jv20BiYiJSqZTExEQSExOJj48nKCgIPT09BEFIfk8mk6Gqqoq6unqy2M3o8UffS3p89+4d9+7d482bN0RGRqKqqkqRIkWoUqUKzZs3x9jYONtjfPvaj5xvsbGx+Pn5pWvOFBwcTNGiRdPNuBYrVgyJRML79+/TXeMbGBhIkSJF0i11Lly4sNhG5RfnR9zec1vYAhTXVcPRxijFa8ra21YkdxCFrYiISLZ5+fIlixcv5vjx4wQEBGBkZETTpk0ZPXo0o0eP5vnz59y4cUP8o6IEPH36lKlTp3Lr1i1mzpxJv379vis7I5fLefDgATdv3sTb2zvZqCk4OJjo6GgEQUBTUzPZqKlUqVJUrFiRWrVqUa9ePYyMjHLvwykZObnGNuTta+6dOsiQzcdzRPxL42LoWc4cayMtnofHc8IvCqlcyNHSQlUJqKlIaG+pl6LP5Ld4enoyYcIE7t27l1zd8bXITe8xo/eysk1678XFxfHo0SN8fX0JCgoiMTERdXV1jI2NKVasGIUKFUImk2VrfKlUiqqqairR+7VglMvlyOXy5P0SEhKQSqVoaWmho6ODjo4Oenp66OvrY2BggKGhIQYGBmhoaGRLfAuCQHh4OJ8+fSI4OJjAwECCgoL48OEDHz58IDw8nMKFC1O8eHEsLCyShXOpUqUoWbIkRYsWRUNDQ3Q2/on5Ebf3rAhbmVSKajaqBTRVJfxha5LqdbG37a+DKGxFRERylM+fP7NkyRIOHjzIixcv0NLSQktLi/DwcI4ePUr79u0VHeIvyfv375k1axaHDx9mwoQJjBo1Cm3ttEtQIyIiuHHjBrdu3eLhw4e8evWKgICA5FJGiUSCrq4upqamWFhYYGNjk2zUZGtrK5Yx/p+cckXu6rKMwmUqsevPPgS+9MW4qAW/77mUrdhUJTC8gjF66l9EcqxUzhn/KF7+v3VHtm4MBDmJ8fEkvH/JKLsqFDQ2ynSXIUOGEBcXx86dO7Mzcq7w8eNH1q9fz9GjR3ny5AkJCQkULVqUpk2bMmTIEBo0aJDlY4WHhydnWF+9epWcJfX39+ft27fExMRQtGhRihQpQuHChSlUqBAFCxbE3NwcMzMz9PX1kcvlPyTsvxbV2ZkgSExMJDY2lri4OOLj45Nfk8lkyGSyFJ9XVVU1ReZdU1MzlfDObkY+p7fJ6rY/u0CKjo6mbNmyDBo0iHHjxiWbgmX1uhbw9AGes8cS7P+KMvWbI5FIMClulUrYurarRp1u/fE+5cknvxfMuuHHdfe13Ny7ibjoSAzMCtFx0iKsa2e+TObb61oSYm/bXwdR2IqIiOQacXFxbNiwgR07duDt7Y0gCFhaWjJhwgQGDRqEhoaGokP86QkNDcXV1ZVNmzYxePBgJk6ciKGhIS9fvuT69evcu3ePJ0+e4OfnR1BQEFFRUchkMtTV1TEwMKBQoUJYWVlRvnx5atasSb169ShSpIiiP1a+Iaf62OY06WU2PkQn4hUUy/PwBCTwXWvo1CRfBHFpQw3K68hY4jKJkydPsmbNmkxdSaOjo6lRowbTpk3D0dHx+z5MHnPnzh02bNjA+fPn8ff3R01NDRsbG9q2bYujoyMymSxNR2E/Pz8SExNT9W39+rmZmVm+z3RGRUXx+vVrXr16xcuXL5NNrfz8/PD390cqlVK0aNFkAf+teNfS0sqRjHxOZ/i/3iYxMRGJRJLnYjovBXxwcDAWFhbJr7m4uDBy5EgCElQyrUSRJiawpGNt6vceSt0eA/H56zT7pgylcb/f0xS22voG9F2+G10jY8I+vmfL8K6M2HkWA7NChAb4I5fJMClulel3T1NFQkcrfUoapL63SOpte/HiRdzc3Ojduzdt2rT58S+6iFIiClsREZE8QS6X0717dzw9PVFTU0Mmk2FjY0PPnj0ZO3bsL1WimheEhoYyZcoUdu3aRaFChdDX1+fTp0/JRk0A2tramJiYULRoUWxsbKhcuTK1a9emRo0a+c6oSVn5kbVoeUFaa9G+5uadf9n71x3kJsUoWs4WNQ1N1FVUEBAQ+NJeQ4KE6Lg4tDU1KKSjjrWhBrYmWilcSf/66y8GDx5M5cqVWbVqFYUKFUp3zHv37tGyZUu8vLwoWbJkzn3YHCLJjfjrda2vX7/Gy8uL58+fExkZCYCKigpGRkZUqlSJ1q1bY2NjkyxejY2N871wzS5hYWEZ9vBVV1dPc21v0nNdXV1FfwTgS2ukvBTTeS3g5fLU5gCmpqZce/YuU++A13dvsnfyECaffZj8fV/Xvy2lajZIU9g2GzyOGp2+TGgF+79i/YB29Jy/Hqtq9VBVV093nG/RUIG2FvqULZB66YMgCHTs2JHTp08jl8txdnZm4cKFWT62SP5ArBcTERHJE1RUVPDw8GDbtm0MGjSIFi1aoK2tzbJly5g1axbFihXD3t6eCRMmYGlpqehw8wUBAQFcv36dO3fu4OPjw+vXr5PXwCXdlOjr66Oqqoq5uTmNGjVKbo9TqlQpBUf/a2BtqMGHGOl3ZT5zGzXJl7i+RS6Xc/r0adzc3Hj58iV//PEHg7o2RF9fn6hEOUGxUhJkAjJBQFUiQUNVwqh+Q/l9yMB0Mx+NGzfmwYMHzJkzB1tbWxYsWMBvv/2WprirWrUqU6ZMoXfv3ly7dg3177ihzQnkcjmBgYFpmjK9efMGf39/tLW1U5gxlS1bllatWiX/H2DTpk14enpy69Yt/vrrL8zNzWnQoAEDBgygbdu2v7ywNTIyokqVKmk6TwuCQEhISArB++TJE06dOpX8+9DX18+wh29eTcollVlraqa/fjw/8+rVK8qXLw+ARCLBwcGBKVOmIMtCPiwiOBAD88IpvutGhdNvyWZYqGjyc1OLkrQfP5cLGxYR+NIXm7pNaTduDgZm6U+KJSFAuvG1bt2av/76C6n0y0TjmzdvMj2eSP5DzNiKiIjkOWfPnqV9+/Y0atSI8+fP8+TJE9zc3Dh16hRBQUGYmJjQokULnJ2df2nDKalUire3N//88w/e3t48e/Ys2agpJiYm2aipQIECFC5cGG1tbZ4/f06hQoVYtmwZzZo1U/RH+OXJD/0e4+Pj2b17N0uWLEFDQ4P/sXfWYVGlXxz/DAyNgIWAqISIiYqB3d3t2oWBurp2rq5rK7YLYix2t66F3diiYKC0oijdw8TvD1Z+uoqKDswA9/M8+yzM3Pu+5+LMve95zznfM2nSJLp37/5djuWECRMoWrQoU6dO/eaxDx8+xNnZmQIFCrB+/XpKly792TFyuZw2bdpQo0YN5s6dm/WL+woymYzXr19nqigcEhKCsbHxFxWFP/z8oc7we3n27Blubm6cOnWKly9fAmBtbU2rVq0YMWIEFSpUUOo15nUUCgVv3779YrQ3KCiI0NBQChUq9MUevlZWVpQsWTLHN0xyK2/fvsXe3p7BgwczZcoUihUrBnyf2nvA3Wvsnjb8k4jtukFtsKn+5Yht11krKO3U8LNxUhLiOTR/AhqaYnrOc/umzV+L2O7atQsXFxeSkpJIS0ujZs2aeHt7ZzpWfJqMd8myzzbzTPXEn9XwCqgPQsRWQEAgx2nZsiV3796lVq1aVKpUifv37+Pp6QmkC7UsW7aM/fv3U716dfT19alXrx5jx47Nk/UwMTExXL16lVu3buHr68vLly8JDw8nJiYGiUSChoYGBgYGFC1alBIlStCqVSsqV65M3bp1qVixIhoaGly5coUpU6aQkJDAli1baNWqVb6PCqkLemIN7Iy1eRYj+TlBJiUhIr0GVk+sQXR0NOvWrWPNmjU4ODiwevVqmjRpkqXPTuXKlTl58uR3H3vz5k1Wr15NrVq1mDRpEuPHj//E0dDQ0GDLli0ZbXYaNvx8sZsZUqmUsLCwL9a3BgUF8erVKwoXLvyJo1q9enW6du2a4fTo6+t/e6IsYG9vz6pVq4B0p/306dP8/fff7N+/n7Vr16Knp0fFihXp0qULw4YNo1ChQkqdP68hEokwMzPDzMyM2rVrf/a+TCYjPDw8I605KCiIa9eusWPHjoyMlmLFin0x2mtlZYWlpWWeF4X6XooVK0ZMTMxnr2trihAh4msScyUdaqAhFnN913pqdR/Mk8unCfW9j031bwutvQt6QVxEOKWq1ESso4OWji5yueyb50F6eYS25pfvX7169aJVq1ZMmDCBzZs38+zZs0/eT5bK8YlM4UWshIgUGVK5ArFI9G/xxf/HlyoUiDVEmOpqfrH8QkC1CBFbAQEBlREWFoaDgwO6uro8fvz4s0VdUlISa9euZdu2bfj5+SEWi3F0dGTYsGH069cvV6jvyuVynj17xvXr17l37x7Pnj0jODiYd+/eER8fj1wuR0tLC2NjY8zNzbG2tqZChQrUqFGDunXrYmpqmunYjx49Ytq0afj6+jJ37lx69+6dp/rA5hVeJ6ax0z9WLdKRJclJxJ7diTQynG3bttG+fXsmTJiAg4PDD43n4+NDz549efLkSZbOCwwMZMSIEURERLBx40aqVav2yfsnTpxgxIgRPHjwIOO+kJqaSmho6BdFmT70SzYzM/uiKFOpUqUoUaKEWtWOJyUlsWXLFvbs2cO9e/eIj4+nUKFCODk50a9fP7p3754r7nG5ibS0tIzNj//W9gYFBfHu3TssLS0zTXU2MzPL9/fY71VFDvN7wMG544gMDcS+bjMgPc34WxHb8Oe+HJw7jojA52iKtSjpUIMuvy//rlTkzFSR/4uXlxfu7u4cPHiQ14lp3FKCYF5NUz0sDIRsAFUjOLYCAgIqJSEhgYoVKxIVFcX9+/czrf2USqVs27aNDRs2cPfuXaRSKeXKlaNv376MHj06yymCyiQpKYmbN29y69YtfHx8ePHiBa9evSIqKoqUlBREIlGGUJOlpSVlypTBwcGB2rVrU61atSyrQwcHBzNr1ixOnz7NtGnTGDFiRJ6t88orHAqI48W/rXRUhUghJ/DWJTxceqClpcX06dP5448/fmpMiUSCiYkJkZGRmbaPygyFQsH27duZOHEi/fv3Z+rUqbx//z7DWd2wYQNv377F0tKSkJAQ3r17h4WFRaaKwpaWlrk6zTQkJIR169Zx/Phxnj59ilQqpUSJEjRp0oQRI0bg5OSkahPzPKmpqYSEhGQqbBUXF0fJkiUzTXXOC6rW30NuU3v/EspscSYi3am2NdKmVUlDIYKrQgTHVkBAQOVIpVJq1arF48ePuXTp0nct4E6ePMnq1au5evUqiYmJlCpVii5dujBp0qSvKq/+KGFhYVy5coV79+7h6+tLYGAgERERxMXFIZVK0dTUxMjIiGLFilGqVCnKly+Po6MjdevWxdr6220Kvof379+zYMECtmzZwqhRo5g4cSJGRkZKGVsge0mWylnnF63SxWBKQhyG9/5hYJ9ezJo1iw0bNmBkZMTy5csZMGDAD49bpUoVNmzYQI0aNb56XEJCAsHBwZ9FWl+8eIGfnx+pqamYm5tTrlw5rKyssLCwYMuWLfTs2ZPRo0djYWGRryKYN27cwMPDg/PnzxMWFoaWlhZly5alQ4cOuLi4CG23VEBSUtInitj//X9KSkqm0V4rKysKFiyYJxzf3Kr2/gH/2FSOBycglSuUutmoKQKxhoh2pQyxMxY2m1WB4NgK5CmEYv/cTfv27Tl58iT79u2jc+fO333evXv3cHV15cyZM0RGRmJqakrr1q2ZNGnSd4uzSKVS7t69myHU5O/vT2hoKJGRkRlCTbq6uhQsWBALCwtKly5NpUqVqFmzJrVr187WiHFiYiIrVqxg5cqV/PLLL/z+++8ZQh4CuQf/2FSOBsWT9hXRlexCJJfS0cqIsoX/X0OalJTE0KFD2b17N8WKFWPdunV06NAhy2MPGDCA+vXr071790zThIODg0lMTMyIdn0p4nr//n1GjRpF48aNWbZsGYUKFcLPz48GDRpw9epVypYtq8w/Sa5CKpWyZ88etm/fjre3N9HR0RgZGVGtWjV++eUX+vfvr1Zp1vmVuLi4Txzf/0Z8RSJRpk6vtbU1BQoUUPUlfBfeb5O4Ep6kFuUVHxCLoL65Pk7FMq+TVygUnH+VyIPIlGy9D2tpQJXCujQpbpAnNjJyE4JjK5CrEYr98x6jRo3C3d2dVatW8euvv2b5/ODgYFxdXTl8+DBhYWEYGRnRqFEjxo0bh4ODA1euXOHOnTs8fvyYgICAjPY4H4SaDA0NKVKkCKVKlcLe3p6qVatSt25dypUrl+O1VWlpaWzcuJG5c+fSsGFD5s6d+0Ul2Q8IGzvqz7mwhGxfVP2XD4usppZf3nyJioqif//+nDhxAmtrazw9PWnQoMEnxygUCqKjo7/YBuf27dtERkYiFou/qihsamr6zUVeQkICM2bMYO/evaxcuZIePXqwfv161q1bx82bN4WU+395//49Hh4eHDp0CF9fX1JTUzEzM6NBgwYMGTKEpk2b5vtaUHXjw3cos2hvUFAQurq6mfbwLVWqlNLFzX6U3KD2/l8UCgUnQxJ4EpOaI/dfLQ0oZ6JD65KGgnObgwiOrUCuRCj2z9ssWbKEqVOnMmHCBJYuXfrd58nlcp48ecK1a9d48OABjx49wtfXl5iYGD6+1RUoUICSJUtiZ2dHxYoVqV69OnXr1qVIkSLZcTlZRi6Xs3//fmbMmIG1tTULFy78TFwHhI2d3IgqFlflTXRo9Y3FlUKhwMfHh0GDBnH//n3MzMxo2LAhiYmJGU6sSCT6oihTREQEW7du5fr160pbwN28eRNnZ2esra3566+/GDt2LDY2Nixbtkwp4+c1Hj9+jJubG2fOnMmIDJYuXZrWrVszcuRI7OzsVG2iwDdQKBS8e/cuU6c3ODgYExOTTKO9JUuWzNGNn8OBcWql9m5vok0n68xLc9RxU1FA+QiOrUCuQij2zz/s2LGD/v3707VrV/bu3ZvxekJCAjdu3ODWrVs8evSIFy9e8Pr1a6KjozOEmvT19SlcuDAlSpTAzs6OKlWq4OjoyMOHD9m8eTMPHz5EoVBQqVIlBg4cyPDhw9Umje/s2bMZPUEXL178xV60wsZO7kYV6XAf+n9+LVVYV1cXKysrChcuzMOHD4mIiMDOzo6lS5fSsGFDTExMvjjP+/fvKV26NNHR0UqNTEgkEpYsWcKqVauYOHEia9euZcOGDbRq1Uppc+RF5HI5x48fZ/PmzVy7do2IiAj09fVxcHCge/fuODs7C7X5uRC5XM6bN28yFbZ69eoVRYsWzVTYqkSJEkqtUVcntXexCPrYGWOeyfNMlWUgWhrQwaqAUHObQwiOrUCuQSj2zz8EBwdz5coVjhw5woEDB9DV1UVbW5vExESkUilisRgjIyNMTU2xtramXLlyGVHXkiVLfnN8uVzOoUOHcHNz48aNG6SkpGBra0uPHj2YMGGCSnpJ3rt3j6lTpxIYGMj8+fPp1q3bZ6mEwsZO3iK77mnIZSikUt6e3YPfpVMEBQURGhpKgQIFvhhx/fD//9b33b59mwEDBvD06VMaN27Mtm3bMhUssrS05OrVq1hZWSnxQtJ5+vQpQ4cOJTo6moiICB49eiTUmGeBhIQENm3axL59+3jw4AGJiYkUKVKEOnXq0L9/fzp37iykLecBpFIpr169yjTV+e3btxkt5b6U6mxubp7lHr7qoPauKYLSxtp0ziRaqw7CfTqaIkaULyg8Z3MAwbEVUHuEYv+8h0Qi4e7du9y4cQMfHx+eP39OWFgYkZGRJCcnZwg1FSpUiIIFC/L06VNMTEzYunUrjRo1Unqd0bVr11i+fDnnz58nJiYGc3NzOnTowKRJkzJtP6QsXrx4wcyZM7l8+TKzZs1iyJAhX2xZImzs5E2UuVkhl0mRS6UkBD5B4+l1SpoXy3Baf6Y+79y5czg7OxMSEkKHDh3w9PT8LHrbtm1bhg4dSqdOnX7iCjJHLpfj4eHBhAkTKF68OI8ePVKbLIvcRmBgIG5ubvzzzz/4+/sjl8spVaoUzZo1Y+TIkVSpUkXVJgpkAxKJhNDQ0ExTnaOioihRokSmqc7FihX7bG2kLk6jS/mC6GbiNOYG51tAeQiOrYBaIxT7514iIiK4du0at2/fzmiP80GoKS0tLUOoydTUlJIlS1K2bNkMoSZ7e/tPIghv3rzBwcEBSK8lMzU1zTa7/f39WbJkCf/88w/h4eEULFiQpk2bMnHiRKX2kXzz5g1z585lz549jBs3jt9++w0DA4PPjhM2dvIHIbHJXA6J5lWaGIVcDprfnzKoiQKZTMb7J/eY0KV5pul4P8uBAwcYPXo07969o0+fPnh4eGQ4l9OnT0dHR4fZs2dny9wfCAwMxNHRER0dHQ4dOkTt2rWzdb78wMWLF9mwYQOXLl3i9evXaGtrU758eTp27IiLi0u23m8F1Ifk5OSv9vD90Fbvv6nOhtbl8RUXU0lK8rfSfHNTurSAchAcWwG1Rij2V1/kcjmPHz/m2rVrPHz4kKdPnxIaGsq7d+9ITExELpejra2NiYkJ5ubm2NjYULFiRWrWrEmdOnWynO6blJRE5cqVCQ8P5/bt25QrVy6bruz/vH//nmXLlrFv3z4CAgLQ09OjTp06jB49mvbt2/9Q+l5cXByurq789ddfDBgwgOnTp2cqWiVs7OQdUlJSCAkJ+UxR+MP/3717l95GqlwFKrbsQpFyjmiaFEUu0kCSkoyWlhbaOjpoamiQlpZGmkyOno42ZvpalDbWxs4Aype24fz585QvXz5br2Xjxo1MmjSJxMRERowYwfLlyzlw4AB79uzh4MGD2To3pGc5fHBuf/nlFxYsWJBr2qSoOxKJhB07drBz505u375NbGwsJiYm1KhRgz59+tCrVy+0tbVVbaaACkhISMi0h69Vy55Uad8Lbb2cU23+nrVabhO4Evh5BMdWQG0Riv1VT1xcHDdu3MDb25vHjx/z8uXLDKGm1NTUDKGmIkWKUKJECezt7alcuTK1a9emSpUqShWqgHRnun79+ty+fZuzZ89+1pIkO0lJScHNzY2tW7fy+PFjNDQ0qFKlCkOGDGHIkCHfvNbU1FTWrVvHggULaNWqFX/++SelSpX66jnCxk7uITExkeDg4C+2wwkODiY6OhpLS8tM2+FYWFhkfIYePnyIq6sr//zzD4NdRtFt0HBMChdFplDw8P59Vi1byjrXhVQtb/+JDfPmzePly5d4enrmyDUvXbqUOXPmIJPJGDRoECdPniQwMDBH5t62bRvz5s2jVq1aXLhwAXd3d9q2bZsjc+cn3rx5g4eHB4cPH+bJkydIJBIsLCxo1KgRw4YNy9F7sID6olAoOPIiCv8EGTKyv470Y7X3D3wpTTq3tSQS+HkEx1ZALVGXuo38UOz/8uVLrl27xt27d3ny5AnBwcFEREQQHx+PTCbLEGoyMzPDysqKChUqUK1aNerWrYulpaVKbO7evTsHDx5k+/bt9OrVK8fnl8vl7Nq1Cw8PD27dukVaWhplypShT58+jBkz5hPFUZlMxs6dO5k1axYVK1ZkwYIFVKpU6ZtzCBs76kVcXNxnUdaPf05ISMioZf2S82pubv7VCL9CocDLywtXV1d8fX0ZM2YMw4cP/6SW9cqVK3Tt2pXjx49Ts2bNz8aIioqidOnS+Pj45Nh3Uy6XM3PmTJYvX05qaiqLFi1iypQp2T6vQqGgb9++GBkZ0b17d4YNG0aNGjVYtWqVkDqbjdy5cwcPDw/Onj1LSEgIGhoalClThrZt2zJq1KhvbtYJ5F1UVTZz8uRJ+vfvz+bNmz/Z3PJ+m8SV8CS1SEP+gFgE9c31cSqmHv2I8yKCYyuglgjF/sojJSWFO3fucOPGDR49esTz58959eoVkZGRpKSkoFAo0NPTo1ChQhQvXpzSpUtTuXJlatasSa1atdRWoGXChAmsWLGCRYsWMXnyZJXacu7cOVasWMHly5eJj4+nRIkSdO7cmWrVquHq6oqhoSGLFy+mfv363zWesLGTsygUCmJiYr6YIvzhZ4lEkqnTWqpUKUxNTX8oNT0tLY3du3fj6uqKTCZj4sSJ9O7d+7N0z4cPH9KiRQt27NhBs2bNMh1v/PjxiESiHO/3KpFIsLS0JCoqChMTE5YvX07//v2zdc7Y2FiqVq3KsmXLaNmyJXPmzGHz5s0sWbKE/v37C+n02YxcLufgwYNs2bKFGzduEBkZiYGBAVWrVqVHjx4MGjQIQ0Mh8yO/kV1Ch1JJKvK0NF6f3klheWJGje/Zs2dxdXVFR0eHDh064O7ujomJCTuexxCaKFWeAUqihIGYPmVMVG1GnkVwbAXUDqHYP+u8efOGq1evcvv2bfz8/AgMDOTNmzfExcWRlpaGpqZmhlBTqVKlKFu2LI6OjtSrVw9bW9tc2+ph1apVjBs3jlGjRrFmzRpVmwOki1tNmjSJc+fOkZaWhpGREe3bt2fy5MkZAljfQtjYUS4KhYL3799n2sM1KCgIAGtr60yd18KFCyvVUYqLi2P9+vWsWrWKMmXKMHHiRFq1avXFOV6+fEmDBg1YtWoV3bp1++q4oaGhVK5cmZcvX1KwYEGl2fs9DBs2jLJly3Lnzh327NmDmZkZ7u7udOjQIdvmvHHjBp06deLu3btYWlpy//59nJ2dKVSoEB4eHtjY2Hx2TnyajHfJMiQyBTKFAk2RCG1NEaZ6Ygy1cue9UB2IiYlh06ZN7N+/Hx8fH5KSkjA1NaVevXoMGjSINm3a5NpnjUDWSJbKOREcT2B8mtJa01loyTCLesGroIAMQaugoCBu375NYmJi+rEiEVpaWhw5coTeQ4ZRq/tg7v+zj8iwICq37ESL0TPYP/tXgh54U6JiNfos2YSekQl+l05xes084iLCMbevSKdpSzG1KQPA4raO1O45hPvH9xL9JpQytZvQ/c+1aOmkb/o/uXwGL7cFRL8OxdTGnk7Tl2JepgKXt6wl5NEd+rpuzriWo0umIdbQ4PIOj5/4iwh8DcGxFVA7hGL/z5HL5Tx48ICbN29y//59nj17RmhoKO/fvycxMRGFQoGOjg4mJiZYWFhgY2NDpUqVqFGjBnXq1PmsNUde4sCBA/Ts2ZO2bdty5MgRldry9OlTpk+fzu3bt5kzZw7NmjVjxYoVHDp0iJCQEAwMDGjQoAG//fYbzZs3/+IYwsZO1lEoFLx9+/aLTuuH/+vo6Hy1h6uJiUmORPjCwsJYvXo1mzZtomXLlkyYMIFq1aplenx4eDj16tVjypQpDBs27LvmGDhwIHZ2dsyYMUNZZn8Xf/31Fw8fPmT9+vVERUXRv39/Tpw4gbW1NZ6entlWjzlv3jzOnz+Pl5cXmpqaSKVSVq5cyaJFi5g2bRrDRv2KX6yUF7ESIlJkSOUKxCIRio+eMiJESBUKxBoiTHU1KW2sjUNh3XyRsZBdPHv2DDc3N06dOsXLly9RKBTY2NjQokULRo4cSYUKFVRtokA2ERAQgKOjI10Hj6D9r9Pxj5Uggiw918SidIfYzlgbJ1O9TJ9D9erV49q1axgaGiKVSqlatSor3Dxo3aYthoVN6bdiK3KZjDW9mmBczJyus1ZS1LoMm3/thXW1OlRu1YU1vZrQb/kWbKrV5eqOddw6uJVxB64h1tJmcVtHDAsVod/yrYi1dVg3qC11ew/DqdtAXj/14e9RPem/cjuW5atw/8Q+zq5bwoRDN0iKjca1oxPTTvugV8AYmVTKwpaVGLJ2N/O7NxY20bIJwbEVUCvyc7F/TEwM169f59atWxlCTeHh4cTExGQINRkYGFCkSBFKlixJmTJlqFq1KrVq1aJKlSr5eif8xo0bNGrUiEqVKnHz5k2li1Z9i1evXvHHH39w+PBhJk+ezOjRo9HT0/vkmISEBFatWsXOnTt5+vQpWlpaVK9enWHDhtG3b9+Mfz9hY+dz5HI54eHhmSoKh4SEUKBAgU/EmD52WkuVKvVJ3bMq8PHxwdXVlePHjzNgwADGjh2LlZXVV8+Jjo6mYcOG9OrVi2nTpn33XH5+fjRp0oTAwMDPPofZydWrV5kwYQLe3t4Zr4WFhdG3b18uX75MhQoV2LZtm9L7pMpkMpo0aUKrVq0++Tvdfh7EjmuPKFreES1tLeRZELX5eFFd01QPCzXf3FF35HI5Xl5ebNq0iStXrvDmzRt0dXWpWLEiXbp0Yfjw4VlWyhdQT44cOULv3r1JSkpi4sSJLF26lGSpHJ/IlC9uLilIf9b86OZS9+7dSU1NZejQobRs2RJtbW0C4iRUL1ua5qOmU7VNepbL9okDMSxUlE7TlwJwffcGXt66gkW5yrx94UfvxZuA9M/q4taV6Tl/HTbV67K4rSMtRk6jatvuAJxcOYeUxHg6z3Dl8IJJ6JsUosXI/993lnWuReeZy7CpVhfP0T2p0KQdNbv048nlM5xaNYeph67T0boANkaCunh2kLOrPwGBb+ATmUJmMZO0lGR2TnEm8P4N7Go1os+Svznz1wK8D2xBQ1OTUVvPsKJbXWZfDkBDUzPTOQLv3eDg3HFMOHTzm/bcPbqLO4e30+DUhU+K/WNiYvD29qZly5bffW1yuRx/f3+uX7/OvXv3ePr0aYZQU0JCAjKZDC0trQyhJmtra1q0aJERdbWwsPjuufIbtWvXxs/Pj6pVq1K6dGkeP36cI7Vd0dHRLFq0iI0bNzJ06FCeP3+eafqnoaEhM2bMYMaMGUilUjZv3szGjRtxdnZm8ODBlC9fnr6DnRE16q0WTi2kL+z9YyUkS+XZurEjlUp59epVporCoaGhFCpU6BOHtWrVqnTu3BkrKytKliz5xR7AqkahUHDu3DlcXV3x8fFhzJgxrFq16rtShJOSkmjXrh3Nmzdn6tSpWZq3fPny1KxZk82bN+Pi4vKj5mcZBwcHfH19kclkaP57D7a0tOTixYs8efKEfv364ejoSM2aNdmxYwe2trZKmVdTU5Pt27dTrVo1mjRpgkO1GpwKSeBlkiHmVWqjALKqZfMhsvQsRsKLWAm2Rtq0KmkoRHB/EA0NDVq2bJnxzExJSWHLli3s3r2bhQsXMn36dAoWLIiTkxN9+/alZ8+eOb5BKfDzTJkyhTVr1pCcnAyQcR/QE2vgVOz/okkJaXIikqVKKQfYt2/fZ69J/o2OFChcNOM1LR09DAt9/LsuqUmJxL97g4lZiYzXNTQ0MC5WnNiI8IzXChT5vyCdlq4ece/eABAdHsq943u4sXtjxvsyaRpx794C4Nj+F7z3eVKzSz8enNhH1bbdUaDIsE9A+Qh3DQG14kWsJNNUlUdnj5EQ9Y7fzz9HUywmJjyMK9vdmfLPvYyb1Zxrwd+cw9qx9nc5tR9Q/GvXhxvy1q1bGTx4MJC+IP+YlJQUbt68ya1bt3j48CEvXrzg1atXREVFZdzo9fT0KFy4MMWLF6dWrVpUqlSJ2rVrU716dbUVasoN2NraEhQURIUKFShVqhSPHj3Kts2A5ORk1qxZg6urK506dcLHx4fixYt/9/lisRhnZ2ecnZ2Ry+WcOHGCNWvWcPpxIA1rJuVoL8BvISJ9w+lnVBwlEglhYWGZRlzDw8Mz6r8/OK+1atWiZ8+eGY5rbvpupKWlsXfvXlxdXZFIJEycOJEjR46go/N9KtNpaWl069YNOzs7li5d+kMp0lOmTKF///4MHTo0xxwEIyMjTE1NefHiBfb2n7YiKleuHHfu3OH27dsMGDAAOzs7mjRpwtatW5XyPS1RogRubm5MW7GO9tNskSpQSuaPgnQn90WchHV+0bQrZSiohSsBXV1dhg8fzvDhw4H0yL67uzvHjh1j8ODB9OvXjxIlStCkSRNGjBiBk5OTii0W+BZyuZxbt27xcSLof9dIHzDU0sBQK/silrIsJKMWKGrG2xd+Gb8rFApi377C2NT8m+eaFCtO48G/0dh5/BffL9+oNYcXTOLNiyc8vXKG1mNno8iifQJZQ3BsBdSKiBRZpu/FvAmlSElbNP9dpMW8CUPfuOAnO3DZaVdCQgLNmzfn5s3/O8WtW7cmODiYt2/fEhcXh1QqRVNTkwIFCmQs1GvVqpXRHkdZEQqBL1OoUCECAwMzIrc3b978bsGm7+FDpHXOnDnUrFmTy5cvU7Zs2Z8aU0NDg3bt2tGuXTu1VHGUKj7d2PkSKSkphISEZBpxjYiIwNzc/JOIa8OGDTPShi0tLT9TAc6NxMfHs2HDBlauXImtrS3z58+nVatWWSoTkMvlDBw4EC0tLTZu3PjDJQZ169bF3Nw8owY9p6hcuTIPHz78zLH9QI0aNfDz8+PcuXM4OztTokQJOnTogKen509pASgUCgrWakWzknVIzYZWIzIFyGQKjgbFU6VwWkarEQHlYGlpyfz585k/fz6QXl6yfv16zp8/z5YtW9DS0sLe3p727dvj4uKislZzApmjoaHBhQsX6N+/PxcuXODVq1ekpaWpxBbNLHw3HZp3ZI3nal54X8basTbXdq1HU1uHkpVrfPPcGl36sX3CAGydGlKioiNpKUkE3LmGtWMddAwM0dLRpVKz9uyZPgLLCo6YmFv+K4Yl3DuyC8GxFVAb4tPS6y4iAp5zeOEkwp89xsjUnJa/zuSV30Muea5CgQK/iydoM+5Pji+biUySyuy6pajYrD3Nhk9mSbtqzLsVjqZYTFJsNCeWz+L5jQukpaZgU60O/ZZvJeDONfbMdGHaKR8ALnqu4vah7SREvcOkWHFajJpOhSZtP7FNKldgaWNH7L/pJx94+fIlVapU4ZdffsHJyYnatWurvJYvv6Orq4uvry/NmjWjWrVqnDhxIlOhpu9FoVBw+PBhpk+fTrFixdi/f3+2RBC+trGjSiKSpTx58iTTHq5RUVGUKFHik4hrixYtMn4vXrx4nk4rfPXqVYYgVLNmzTh48CDVq1fP8jgKhYKxY8cSFhbGqVOnfvpvNmXKFGbNmkWPHj1yzAn74Nj26NHjq8c1bdqUwMBA9u/fz6+//kqRIkXo27cv69aty3J0XqFQcDIkgScxqWhkYxQIIE0ODyJTSJUpaF3SUHBus4natWtTu3ZtIH1Dcc+ePWzfvh13d3cWLFhAgQIFqFatGr/88gsDBgzIVRkdeZmoqCj++ecf7t+/T1xcnMpKRLQ1v/97WdSqND3nuXFsyTRi34VjUaYiA1ZuR/wd9xLL8lXoPHM5RxdPJTIkAC1dXUpVccLasU7GMY7tenL70Ha6zl4FpNcSZ8U+gawhiEcJqA0BcRIOPo9iYefaVO/Ym/r9RxF835ut4/sxevtZHp46SGRoID3nu6cf/x8HNfp1yCeO7eYxvdDWM6DzDFe09QwI9rmFTbW6n533yOsIpao4YVjYlMdeR9g/5zcmHvHGqKgZd4/u4vbh7YzdfALJnVP8veRP/P39M1Jtli1bxvjxX05BEVA9/fv3Z8eOHWzcuJFBgwb90BiXL19mypQpJCUlsWjRokxbsvws8Wky1vlGfzN9cppjUSYc9qZIyfQ2Jvtmj8bY1IIWo6Z/dmzo43scWTiZ9yEv0dLRo3LrrrSbMDfLtklTU9g/tgfFTAp8UVHY3Nw8o5YqP/H48WNcXV05evQo/fr147fffsPa2vqHx5szZw6HDx/m4sWLGBsb/7R9crmcSpUqsWLFClq0aPHT430Phw8fZuPGjRw/fjxL523cuJFJkyaRmJiIi4sLy5Yt+27H/lxYAg8iU0jLhkhtZmhpQJXCujS1FPq05jRRUVF4eHhw8OBBHj9+TEpKCmZmZtSvX58hQ4bQvHnzfC2mqErmzJlDSEgImzZtUqkd3/s8zQliwsNY3rUO08/4omtYAE0RuFQoJKgiZxN5dwtdINchkSkIenQbSXIiDQeNRUNDA9ua9SlbvwUPTx3M0lhx797w/No5fr/wHD0jEwBsqtX94rGVmnfM+NmhZWcueq4izPc+5Ru1znhdgYKOXboxZUgfpFIpGzZswMPDg0qVKmX9QgVyjK1bt1KiRAmGDBlCaGgos2bN+u5zfXx8mDZtGn5+fsydO5fevXtn62LpXbIMsUik1NqbY0tnUKfXMBzb9SA1KYG3L57+0DgGenoc9LooqDiSHh28cOECS5cu5cGDB/z666+8ePHipxVd165dy/bt27l69apSnFpITw2cMmUKixcvzjHH9kPENqt8qDlfunQpc+bMYf369RkR56997/xjU3PcqYX/R25LFtASam5zmEKFCjFt2rQMBezHjx/j7u7OmTNnaNOmDSKRCFtbW9q0acPIkSOxs7NTscX5g/j4eNauXcv169dVbQoFtDQRa4iQqdizlcvlXNnujkOLTugaFgBArCESnNpsRPjLCqgNMoWC2HdvMC5W/JOFTEFzS+LehX/lzM+JffsaPeOCGU7t17h3fA+rf2nEnAa2zGlgy9uXT0mMifzkmI+L/cViMS4uLjx48OCnU1wFsp/58+fj7u7OH3/8wdChQ795fFBQEP3796d58+a0bNmSp0+fftKOJ7uQyBSf9NVUBppiMZGhgSRGR6Kjb0hJh6ynxwKCiiPp6ZC7du2ievXqjBo1im7duhEYGMj06dN/2qnduXMnixcvxsvLi2LFiinJ4nR69eqFv78/d+7cUeq4mWFlZUVcXByRkZHfPvgLTJo0ibi4OMaNG8eiRYswMTFh1apVXzw2WSrneHBCjju1H0iTw/HgBJKlKjJAAICKFSvy119/4e/vT1paGgcPHqRChQrs3LmTMmXKYGBgQO3atVm2bBlxcXGqNjfP4u7uTvPmzdVmI8FUV7VZRJLkRObUt+aF9yWajZiS8bqq7crrCI6tgNqgKRJhXNSM2LevkMv/v1CIefMKo6LfVqf7GONiFiTHRpMcH/vV46Jfh3Jw7ng6TFnE7xeeM/vyS4rZloX/RM2EYv/czfDhwzl69Cienp60bNnyk8/XB96/f8+4ceOoVq0a1tbW+Pv7M2bMmEyVbOPTZATESXganYpvVApPo1MJiJOQ8IOr7OxQSew6eyXvQ16yvGsd1vZtzpPLZ35onPys4hgfH8/KlSspXbo0Hh4ezJkzB19fX4YMGaKUur6TJ08ybtw4Tp48+c2+tj+ClpYW48ePZ/HixUof+0uIRCIcHBx+KGr7AQ0NDRYsWEBcXBx9+vRh4sSJFClShO3bt39y3KmQBKRy1X4upXIFp0ITVGqDwP/R0NCgQ4cOHDx4kLdv3xIfH8+iRYsQi8XMnj0bY2NjihQpQvv27dm/f/8XnwUCWSc5OZkVK1YwffrnJTGqorSxNmIVLtu09QyYcy2YcfuvYmKW3jVBLEq3SyD7EBxbAbVBW1NEqUrV0dLV5/KWNcjS0gi4c40nl0/j0LJzlsYyKmpGmbpNObJwMslxMcjS0gi8+3l6jCQlCZFIhEHBIgDcObKTty8/T9cUiv1zP+3atePWrVtcvnyZKlWqIJFIAEhISGDu3LmULVsWqVSKn58fc+bM+UwELFkqx/ttEjuex7DCJ5J1vtEcCYznREg8p0MTOBESz5HAeNx9o1jhE8mO5zF4v0367mjO926caOnqk5aSnPF7/PuITI8tUtKWXgvXM+PsExoO/JWdkwcjSU78rnk+Jj9u7Lx+/Zpp06ZhbW3N9evX2bt3LxcvXqRdu3ZKi95fv36dAQMGcPjwYSpWrKiUMb+Es7MzFy9exN/fP9vm+JgfTUf+L9ra2ri7uxMdHU2LFi0YMGAAlpaWHD16lNeJabyMk6i8hk6mgJexEsITVaP+KvB1DA0N+fXXX7ly5QoJCQkEBAQwePBgAgIC6NWrF1paWlhbWzN06FDu3bunanNzLZs2bcLJySlb72NZxaGwrtr0hP+AgnS7BLIPwbEVUBuK6mmCWIsBK7fz/No55ja158jCyfT48y9MrbOe2tJjrhsaYjHLu9RhXrNyXNu5/rNjitnYU6+vC+4DWzO/eXnevHhCqco1PztOqlBgqieUpOd2HB0defr0KSEhIdjY2ODq6kqZMmV48uQJ3t7erFmz5rNU0NeJaRwOjGPt4yiuhCcRmiglVaZApoBUuQKJnIz/UuX/vi5TEJoo5Up4EmsfR3E4MI7X31j4amuKEPFt59HCvgIPTx1ALpPx7No5Au/dyPTY+//sIyH6PRoaGugVSK/bFImyftvPTxs7vr6+DB48mIoVK5KQkMCtW7fYu3cvNWt+fl/4GR49ekTnzp3Ztm1bhvprdmFoaIiLiwuurq7ZOs8HlOXYfsDQ0JCdO3fy7t07qlSpQqdOnZi9+YDKo7UfkCnAOyL52wcKqBxra2uWLFmCr68vaWlpXLhwgbp163Ly5MmMXvJVq1bljz/+4M2bN98eUACJRMKSJUuYMWOGqk35BD2xBnbG2t/xVM0ZRICdsTZ6YsH1yk4EVWQBtWKFTySpqt6C/wI6miLGORRWtRkCSkAul+Pp6cnw4cMRiUQcOnSIdu3afXZcslTOqZCEjKjQz3wq0yOeYGukTauShl98sH2vimOY3wP2zRpNzJswyjdqg1wmpbClFS1GTScmPIwV3eoybv81TMwt2TPDBf+bF0lLScLEvER6K6vGbQCYXbcUA9fsxtrx205VXldxVCgUXLx4EVdXV+7evcvo0aNxcXGhcOHs+c4HBATQoEEDXF1d+eWXX7Jljv/y7t077O3t8fPzw8zMLFvnunXrFsOHD+f+/fvZMr5/UAh7I8RoZnNrn6ygKYLRFQsJi9ZcjEQiYdeuXezYsYPbt28TExODsbExNWrUoHfv3vTp0ydP9Nv+GeLTZLxLliGRKZApFGiKRFw4e4YTe7ZzbP8eVZv3Ga8T09jpH4tUDZaVYhH0sTPG3EBL1abkaQTHVkCt2PE8htBEqarN+IwSBmL6lDFRtRkCP8nZs2eZMmUKGhoazJs3j8mTJ/Ps2TOuXr36Sd9R/9hUjgen1+8pc59FU5SuiNiulOEXlVSFjZ2cRSqVsn//flxdXUlISGDChAn069cvW3tivnnzhnr16jFhwgRcXFyybZ4vMXr0aAoUKMDChQuzdZ6kpCSKFClCbGwsWlrKX8R5v03iSngSUgWcXbfkkzZwymB23VKM3XOJQpZW332OWAT1zfVxKqavNDsEVMubN2/w8PDgyJEj+Pn5IZFIsLCwoGHDhgwdOpRGjRqp2sRsJ1kqxycyhRexEiJSZEjlCsQi0SdCh/Hx8ejqG6At1sRUV5PSxto4FNZVm02eQwFxvFBx2YLmv7W1na2Nvn2wwE8hOLYCasXHCxZ1QViw5H7u3r3L1KlTCQoKYsGCBXTr1g2RSIRcLqdt27Z4eXlx+PBh2rZty/lXidnePuRDD8wmxQ0+6YkrbOzkDAkJCWzatIkVK1ZQsmRJJk6cqNTa2cyIiYmhUaNGdO3ald9//z1b5/oSgYGB1KhRg4CAgM9qyJVNuXLl2Lt3b7a0RPv4e5Idju2Pkte+JwKfcu/ePdatW8fZs2cJDg5GQ0MDOzs72rZty8iRI3+qh7W68ToxjVsRyfjHShBBltZkYlF6hpOdsTY1TfWwUHGEMlkqZ51ftEo3jXU0RbiUL4iumjj7eRnhLyygVqhrsf/zi/+wZ88e3Nzc+PPPP5k4caLQNiAX4O/vT8+ePWnfvj1du3bFz8+P7t27ZziTGhoanDx5ksGDB9OxY0dWnLmTIz0xP/TAPBmSwMd7i6pWcfwSeUnF8c2bN8yYMQNra2uuXLnCnj17uHz5Mh06dMh2pzYpKYn27dvTsGFDZs6cma1zZYa1tTUtWrTAw8Mj2+dSdp3tx0SkyLJl3J9FXe0SUA6Ojo6sX7+egIAA0tLS2L17N3Z2dmzevBkbGxsMDQ2pV68ea9asISEhdyplJ0vlHAqIY6d/LM9i0qOcWQ00SBXpdefPYiTs9I/lUECcSlti6Yk1aFfKEFVV0mhpQLtShoJTm0MIEVsBteNwYBzPYiRq4eCKAFN5IoOrWyESiRCLxUilUsRiMe/evcPY2FjVJgp8gTdv3vDnn3+yd+9exo0bx2+//YaBgcFXz1lw4BxpZqXR0f/6ccrkQ+S2qaUhkL6oWPs4SuVKrx+TF2oHnzx5wrJlyzh48CC9e/dm3Lhx2Nra5tj8aWlpdOnSBWNjY7Zu3ZrtTvTXePDgAW3btiUgICDTVlbKYOHChURGRipVsGrx4sWsWr2ayJhYjIqa0XHqEoLu3/wkYut36RSn18wjLiIcc/uKdJq2FFObMtw5shPf8/8wYNUOAFw71sTcviJ9lvwNwKLWlem/cjsW9pWY5liUCYe9KVLShn2zR6Otq090eCiB925gamPPL/PXUbhEenTu+Y0LHFsyjfjICBxbd0PjzUsG9u+Hs7Oz0q5bQP2Ji4tj48aN7N+/n4cPH5KUlISpqSl169Zl4MCBOZIR8rOoqgQnpzgXlpAjG9cf899nvED2o97fMoF8SU1TPdRFgFVTBK3KWrB9+3a0tLRIS0tDoVBgZ2dHZGSkqs0T+A9xcXH8/vvvVKhQAT09PZ49e8aMGTO+6dT6x6aiU7pyjjq18P/IrX9sKiCoOCoThULBpUuXaN++PY0aNaJkyZI8f/6ctWvX5qhTK5fLGTx4MAqFAk9PT5UvbqtUqUKlSpU+6wmrbJQdsX327Blr167lwPlrLLoezOC/9lLQosQnx7wLfsnuacNpN3EeM889xb5uM7b81gdpmgSbanUIun8TuVxO3Ls3yNLSCPG5A0BUWBCpSYmY2VX44twPzxym6bBJzLr4gsIlrDnz1wIAEqMj2Tl5MC1Hz+T3888pWsoG7xuft5UTyPsYGRkxfvx4rl+/TmJiIs+fP6dPnz74+fnRpUsXtLS0KF26NCNHjuTx48eqNvcTFAoF58ISOBoUn6H4r0w+dAo4GhTPubBPs5RykibFDShnopNjkVstDShvokOT4jm7rsjv5L7VikCex8JAC1sjbZU7t5oisDXWxtxAiz59+vD777+jr6+Prq4ujo6O1KxZkzZt2nDs2DFkMiEFTZWkpqaycuVK7OzsCA0N5d69eyxbtuy7VG2TpXKOByfk6C7ux6TJ4XhwQkaqlrpt7DiZ6qnajCwhlUrZu3cvTk5ODBs2jPbt2xMUFMSsWbMoUqRIjtqiUCgYP348QUFB7N27N1uElH6EKVOmsHTp0my9b31wbJW1iNXU1CQ1NZUnfn5I0yQUtCiZETX9gM+Zw5St3wy7Wo3Q1NKifv9RSFNTCHl4m0KWVugYGBL+7BGB925gV7sxRkXNiAj0J+Dudayr1sp006FC4zaUqOiIplhMldZdCX+e7pg8u3YWU5uyVGzaDk2xmKodeqNvWIC0NKGnbX7Hzs6O5cuX8/TpUyQSCadOnaJ69eocPnwYBwcH9PT0qF69OvPnz+f9+/cqs1OhUHAyJGcimZmV4OQUIpGI1iUNqVJYN9ud2w+R2lYlDT/R0RDIfgTHVkAtaVXSELGGam8GYg0RrUv8P31kxowZdO/enbJly7Jt2zZCQ0Pp2bMn8+bNw9bWlgULFvD27VsVWpz/kMlkbN26FXt7e86dO8fZs2fZvHkzpUqV+u4xToUkqLwfplSu4FRoek2WOm7s5AYSExNZs2YNZcqUYfXq1UyfPp0nT54wbNgw9PRU45wvWLCACxcucOzYMfT11Ud8rlGjRhgZGXHkyJFsm8PCwgK5XK60XqClS5dm5cqVrF08j9lNyrFr6lDi3n06dvy7N5iY/T+Kq6GhgXGx4sRGhANg7ViHgLvXCbx3A+tqdbCpVpfAu9cJvHcd62p1Mp27QGHTjJ+1dfVJTUoEIO7dG0zMLDLeMyxQAF2DAsyZM4crV64o5boFcj8aGho0b96c3bt38/r1a5KSkli1ahVGRkYsWbKEokWLUqhQIVq1asX27duRSnNOQPD8q0SexKTm2MZumhyexKRy/lVizkz4H0QiEU0tDelgVQAdTZHSn7OaonShqA5WBWhqKTi1qkBwbAXUEnUs9heJRHh6enLjxo10G/X0GDBgAN7e3hw4cICAgADKli1L7969uXLlisrSbfIDCoWCf/75h6pVq+Lh4cH27ds5duxYlhVYXyemZfSpVSUyBbyMlRCemB7pUceNHXXl7du3zJw5EysrKy5evMiOHTu4evUqnTp1Umna77p16/D09OT06dOYmJiozI4vIRKJmDJlCosXL862+5RIJKJKlSpKTUfu3bs3O09eYObJ+yAScXLVn5+8X6CoGTFvQjN+VygUxL59hbGpOQDW1eoQeOcaQfdvYlOtDtbVahN47zqBd2981bHNjAJFihH7NjzjdxGgoZDRpUsXevXqhYuLC7GxsT92sQJ5Fl1dXYYNG8b58+eJjY0lNDSUUaNGER4ezpAhQ9DW1qZkyZIMHDgwY72RHfjHpuZ4zSl8XoKjCuyMdRhRviCljdIFG3/2aSvi/0KLI8oXVGktcX5HcGwF1BY7Y50cSRn5Lx9SSL50YxKJRF/scVmtWjU2btxIQEAATk5ODB06FAcHB9zc3AT1ZCVz48YNGjZsyOTJk5k7dy5Xr16lXr16PzTWrYhklTu1H5ApwDsiGVDPjR114+nTpwwdOpSyZcsSFRXF9evXOXDgALVr11a1aezdu5d58+Zx5swZzMzMVG3OF+nUqRMxMTFcunQp2+ZQZp3ts2fPOH/+PAqpBC0dXbR0dBH9Z/PHoXlHnl45ywvvy8jS0riyzQ1NbR1KVq4BpDu2L+9cJS0lGeNiFlhVrc3z6+dJio3Cwj7rbYnK1mvOmxd++F44gUwq5dqev3kf8RZHR0ceP36MQqGgYsWK2RoZF8j9WFpaMnfuXB4+fEhqaio3btygadOmXLhwgbp166KtrY2DgwPTp08nLCxMKXOqWwmOKtATa9DZxog+dsbYm6RnSWW1K4FYlB6ltTfRpo+dMZ2tjXKlJkVeQvjrC6g1ua3Yv2DBgowdO5YnT56watUqzp8/j5WVFS4uLvj4+CjZ2vzFkydP6Ny5Mz179mTQoEH4+PjQsWPHH071SZbK8Y9VD/VtSG8r5R8ryXjQq+PGjqpRKBRcuXKFDh060LBhQywtLXn+/Dlubm7Y2dmp2jwAzpw5w6+//sqJEyewsbFRtTmZoqmpyaRJk1i8eHG2zaFMxzY1NZWpU6dS08aC2U3LkxD1nla/ftoLuKhVaXrOc+PYkmnMbWrP08unGbByO2Kt9HZVRUvZoqNvgHXVWgDoGhagUPFSlKpcEw1NzSzbZFCwML0Xb+LkqjnMbVKGNy+fUbVadXR0dDAxMWHdunXs2LGDyZMn0717d8LDw789qEC+x8nJCU9PT4KDg5FIJGzZsgVLS0s8PDwoUaIERkZGNGrUCHd3d5KSkjIdJyYmJtP31K0ER5WYG2jRydqI0RULUd9cnxIG4ow0ZR0NEdoa6c9FbY303z+kG5cwEFPfXJ/RFQvRydoo15Tt5HWEdj8Cao9CoeD8q8RsT5n5sKBvUtxAqXURr169YuPGjWzYsCHDye3WrVu2ttrIS4SFhfHHH39w9OhRJk+ezKhRo5RSM+n9Nokr4Ulf7dF39+gubh/ezoi///ni+56je+LQsjPV2v/y2bGz65Zi7J5LFLK0+m6bxCKob66PU7H0eswPwh45VQP1YWNH3QQvZDIZhw4dYunSpURFRTFhwgT69++vVnWrADdv3qRDhw4cOnSIunXrqtqcb5KamoqNjQ0nTpygcuXKSh//4cOH9OrVCz8/P6WOu8InklR1SbX4CC2RgmVtKrNjxw4aN26c8XpKSgrz5s1j/fr1LFy4kMGDB6vV90sg9xAVFcX69es5ePAgjx8/Jjk5GTMzM+rVq8fgwYNp2bIlGhoavHz5ktKlS9OzZ0927979yRivE9PY6R+b5f602YFYBH3sjNXSKUxIkxORLEUiUyBTKNAUidDWFGGqJ8ZQVelUAt9EcGwFcg25vceaVCrl2LFjuLm54ePjw6BBgxg+fDjW1tbfPjkfEhUVxaJFi9i0aRPDhg1jypQpSq1V3PE8htDEr4t0fMux/d5j980ejbGpBS1GTf/mOCUMxPQpY5Lxe27f2PkZkpKS8PT0ZPny5RQrVoxJkybRoUMHNH8gupbd+Pr60rRpU/7++2/atGmjanO+myVLlvDw4UN27Nih9LElEgnGxsZERUUpVcDre767OcXz6+cpUakaWjq6PNzlztU9mwgICPji9fr4+ODs7IyhoSEeHh5qk2UgkHvx9fVl3bp1nD59moCAAABsbGwwMDDgwYMHQHoE+Pr16xmaA4cD43gWox7ZSiLS03g7WRup2hSBPIKw5SCQa8jtxf5isZjOnTvj5eXFlStXkEgk1KhRg3bt2vHPP/8ILYP+JTk5mcWLF2Nvb09sbCyPHj1i4cKFShfgiUhRz7/3f+3KjyqOERERzJo1CysrK86ePcu2bdu4fv06nTt3VkunNigoiFatWrF8+fJc5dQCDB8+nFOnThEUFKT0sbW1tSlTpgy+vr5KHbe0sXaWa+GyixCfOyztUIN5Tezxu3yaw4cPZ+rEOzg4cOPGDTp06EDt2rVZtGiR0BpI4KeoUKECa9as4fnz50gkEo4ePYqDg8MnpU/e3t4UKlSIuLg4tS/BERD4WQTHViBXkVeK/cuUKcPy5csJCQmha9eu/PHHH5QuXZpFixYRERGRo7aoC1KplA0bNmBnZ8ft27e5evUqHh4eWFhYfPvkLBKfJvukvuii5yqWdqjB7HpWrOhaF9/zH0VdFQqOLJrCHw1sWN6lNi+8L2e8tX5oR24f2vbFOaY5FuV9SAC3DmzlwckDXN6yltl1S7FlbB8ub1nL9okDPzn+6JJpHFs6HalcQcIXQrO5fWPne3j+/DnDhw/H3t6eiIgIrl69yqFDh6hTJ+uKtTnF27dvadGiBZMnT6Z3796qNifLGBsbM3ToUJYtW5Yt4yuzzvYDDoV11WZh3mzEZGZdeM7ca0HcueWNk5PTV4/X1NTkt99+486dO1y8eJGaNWty9+7dHLJWIC+joaFBmzZt2L9//2dq57GxscyfPx+fyBREwOK2jrzw/lw4LvDeDZZ1rpXx+8fHnV23hD0zXACICQ9jdt1SyJWwIS8CfCJTfnocAQEAsaoNEBD4EdKL/bVIlsrxiUzhRayEiJR0Z0UsEqFAgYL0G6YIEVKFArGGCFNdTUoba+NQWFctlOv09fUZNGgQgwYN4vbt27i7u2Nvb0+bNm1wcXGhbt26ahFBy04UCgWHDh1i+vTpmJubc+DAgW8uDn+Wd8kyxCIRsn8f/oUtrRi+6RiGhU157HWEPTNHMvGINwChj+9RsWkHfj/3DN/zx9k+aSCTj91F37jgd81Vs2t/gn1ufZKKHPfuDWc9lpIcH4teAWNkUik+pw8zaM1uxCIREclSDP8VvPmYDxs74YlpeEck4x8rQQRZqpUSi9J3ye2MtXEy1VN5bZNCoeD69essXbqU69ev4+LiwrNnzzA1Nf32ySomNjaW1q1b07t3b3799VdVm/PDjB07lgoVKjBr1iyKFi2q1LGV3fIH0r8HdsbaapVOaWesnaVnipWVFSdPnmTHjh20bduWfv36MWfOHLWrGxfIfcjlcszMzDA3N6dhw4Z06tSJevXqoaGhwY7nMV99Xlg71mbCoZvfnMPE3JI514KVYq9UAS9iJRnaEgICP4Pg2ArkavTEGjgV+7/YTm4u9q9RowY1atTA1dWVLVu2MHjwYHR1dXFxcaFv374UKFBA1SYqnUuXLjFlyhRSUlJYuXIlLVu2zBFHXiL7sPWRTqXmHTN+dmjZmYueqwjzvQ+AQcEi1O0zHJFIhEPLzlzZ7s7TK144tuvxw/MbFTXD2rEWj7yOUrNLP55fP4+BSSGKl6+MAgWSbxSR54WNHZlMxpEjR1i6dCnv3r1j/Pjx7Ny5M9cs7JOTk+nQoQN16tRh9uzZqjbnpzA3N6dbt26sXbuWOXPmKHXsypUrZ0u7m5qmeryIlaiFAI6mCJxMs15DLBKJ6Nu3Ly1btmTcuHFUrFgRDw8Pmjdvng1WCuQXNDQ0eP369Rffyy0lOAICP4rg2ArkKQy1NL4Y6cpNFCpUiHHjxjF27FjOnz+Pu7s7M2bM4JdffsHFxYVKlbLeb1HdePjwIdOmTePp06fMnTuXXr16ZQhb5ASy/6Rp3Tu+h6vb3Yl+HQqAJDmRxJhINDQ0MTI1/8TZNjG3JP79m5+2wbH9L3jv86Rml348OLGPqm27A+nR1P/alxm5cWMnKSmJLVu2sHz5cgoXLsykSZPo1KmTWtbOZoZUKuWXX36hePHirF69Ok9kVUycOJF69eoxefJkDAx+rN3Zl6hcuTI+Pj4oFAql/p0sDLSwNdLmRZxEpb2opampyN6HUsyh5g+PUbRoUbZv387JkycZOnQojRo1YtmyZRQuXFiJlgrkd/5bghPme59jS6YT9/4tFRq1puP0pYQ+usuemS5MO/X19oTRr0NY0q4a826FoykWE/fuDYfnTyTogTd6RiY0HDiGml36AekpzBGBzxBr6+J74R9MzCzp/udaLMtXyRjvQwmOujynBHIvwidIQEBN0dDQoFmzZhw4cIBHjx5hampKq1ataNCgAbt27SI1NVXVJmaZoKAg+vXrR8uWLWndujVPnz6lT58+OerUAmh+tMCOfh3Kwbnj6TBlEb9feM7syy8pZlsW/nUu4yLCP6lXinnzigJFzLI0n+gLFbHlG7Um3N+PNy+e8PTKGaq07vbvsZ/alxUMtTSwMdKmbEEdKhTSpWxBHWyMtNVisfDu3Tv++OMPrKysOHXqFJ6enty4cYOuXbvmKqdWLpfj7OyMRCJh8+bNOf7ZzS7KlClDgwYN2Lhxo1LHLVKkCPr6+oSEhCh1XIBWJQ0Ra6h2U0FDpGDpoI4ULFiQtWvX/tRYrVu35vHjx5iYmFCxYkV27979Wa2kgMCP8qEE5wMPTh5g0F97mXT0Nu9DXnJh4/IfHnvX1KEYFbNg2ulH9Fn6N2fWzuflrSsZ7z+5dBqHlp2Yfekl5Rq25OiiqZ+c/6EER0DgZ8kbT2QBgTxO8eLF+eOPPwgKCmLs2LFs3LiRUqVKMX36dIKDlVPnkp28e/eO3377jWrVqmFra4u/vz+//vor2tqqia5ra4oynE1JShIikQiDgkUAuHNkJ29fPs04NjH6Pdd3rUeWlsYjryO8C3yOfb1mWZrPsHBRol59+u+kpaNLpWbt2TN9BJYVHDExt0yfLzGRrZ6bOH78OElJST9zmWqBv78/Li4u2NvbEx4ezpUrVzhy5Aj16tXLdZFOhULBpEmTeP78Ofv371fZ5ze7mDJlCsuXL1e6Um/lypUzWo8oEz2xBu1KGaKqfRstDehetigRr0Lp1asX48aNy4i+/iiGhoasXLmSw4cPM3/+fDp06EBoaKgSrRbIr/y3BKd2zyGYmBVH37ggjYaM4+HpQz80bsybVwQ/vEXrMbPQ0tHFwr4S1Tv34d4/ezKOKVXFibL1mqOhqUnVtj0I9/9UKf17SnAEBL4HwbEVEMhFaGlp0bVrV86dO8fFixdJSkrC0dGR9u3bc+LECbVrGZSQkMCff/5JuXLlkMlk+Pn58ccff6i8XrionibSfyMhxWzsqdfXBfeBrZnfvDxvXjyhVOX/pxWWqOjI+5AA5ja15/RfC+i95G8MTAplab7qnfoQEfCMOQ1s2Ta+f8brju168uaFX0YaMoCGWIs9G93p0qULBgYG6OjoYGlpSYMGDRgzZgz79+8nJibm5/4AOcD169fp0qULderUoUiRIjx58gQPDw/s7e1VbdoPs3jxYs6cOcPx48eVmq6rLtSoUQNbW1t27dql1HGzQxn5A3bGOlQprJvjzu2Hvs92xjpoa2uzbt06oqOjadasGQMGDMDS0pLjx4//8PhOTk7cvXsXJycnHB0d+euvv5DLhZYoAj/Of0tcjIv9v+NAQfMSxL37sRKbuHdv0DcqiI6B4afjRfx/vAKF/y8GqK2rhzQ1BZn0/xHarJTgCAh8DaHGVkAgl1K2bFlWrlzJ/Pnz2b17N7///jujR49m+PDhDB48WOnqpllBIpGwYcMG5s2bR+PGjfH29sbW1lZl9vyXAlqaiDVEyP7dIW45egYtR8/44rHVOvQCoOPUxZ+9N2zDkU+O+3AswMJ77zJ+LlLSljG7L352vomZJVq6elRs2j7jNX1dHV76PQIgJiaGs2fPcvnyZR48eMDBgwfx8PBAIpGgpaVF4cKFsbKyonLlytSrV48WLVqoVE1YJpNx9OhRXF1defPmDePHj2fbtm15wgncsGED69ev5+rVqxQqlLWNjdzElClTmDBhAn379lVamnXlypXZt2+fUsb6Ek2KG5AqU/AkJpUvdMpSOloaUN5EhybFP/1cGxoasmvXLtasWcOAAQPo0KEDtra2eHp6Uq9evSzPo62tzcyZM+nWrRtDhw5lx44dbNiwgQoVKijrUgTyEf8tcYl9+3+BqZg3YRgVzVqJzQeMipqRFBdNamJChnMbEx6Gken3j/czJTgCAh8jRGwFBHI5BgYGDBkyhDt37rB7926ePn1KmTJl6Nu3L9evX8/RGi25XM7u3bspV64cx44d48SJE+zcuVOtnNoPmOqqtq5TLpdzZbs7Di06oWv4/wj2x3aZmJjQrVs3Vq9ezeXLlwkLCyM1NZXExEQOHjxI37590dfXzxCdKVasGFpaWpiamlK9enUGDRrExo0bs6W+8WOSk5NZt24d5cqVY+HChfz22288f/6cUaNG5Qmndv/+/cyePZszZ85kS19ldaJFixZoaWlx4sQJpY2ZnRFbSFcXbl3SMEcitx8ita1KGmaaSl+kSBH++ecfgoKCsLCwoEGDBjg4OODj83VBnswoW7Ysly5don///jRq1Ig//vgjV2osCKiWj0twAG7s/ZvYt69Jio3mwqYVOHzUHSArmJgVp5RDDU6tmUtaagrhz325c2QnVdt0//bJ/yIiXehQQOBnERxbAYE8gkgkombNmnh6evLy5UscHR0ZMGAAVapUwcPDg4SEhGyd38vLi+rVq7N8+XI2bNjAqVOnqFq1arbO+TOUNtZGrKLnqCQ5kTn1rXnhfYlmI6ZkvC4Wpdv1LfT19WnXrh1Lly7l3LlzBAcHk5ycTHJyMidOnMDZ2ZkiRYpw+fJlxo4dS6lSpdDU1KRw4cJUrVqVvn37snbtWvz9/X/qOt6/f8+cOXOwsrLixIkTbNy4EW9vb7p3756rBKG+xtmzZxk5ciQnTpygdOnSqjYn2xGJREyZMoXFiz/PUPhRypQpQ3h4OPHx8Uob87+IRCKaWhrSwaoAOpoilL1G1hSBjqaIDlYFaGqZuVP7MSVLluTSpUv4+vqira1NlSpVqF27NoGBgVmeX0NDgxEjRvDgwQPu37+Po6Mj169f/5FLEcinfFyCA1ClVRf+Htmdpe2rU8jSisbO43947F8Wrif6dSgLW1Zi+8SBNBsxmdJODb/7fKlCgamekEQq8POIFILknoBAnkUul3Pu3Dnc3Ny4dOkSvXv3xsXFRampbHfu3GHq1KmEhoYyf/58unbtmitEgZKlctY+jlJpq5D/oimC0RULKb3HrFQq5ebNm5w7d47bt2/z/PlzwsPDSUhIQCQSYWxsjKWlJeXKlaNWrVo0a9aMihUrZpqK+uLFC1asWMGuXbvo2rUr48ePp1y5ckq1WR24desW7dq1Y//+/TRo0EDV5uQYUqmUMmXKsH37durUqaOUMWvWrMnKlSuVNt7XSJbKORWSwMt/WwH9zFc8PUUSbI21aVXC8Ke+m97e3gwcOJBnz57RrFkztm7diplZ1tM/FQoFBw4cYMyYMXTp0oUFCxZgZGT0w3YJ5B9W+ESSqk4PvX/R0RQxzkFobyXw8wiOrYBAPiE0NJQNGzawceNG7OzscHFxoUuXLj+s7Orv78+MGTO4du0as2bNYvDgwWhpaSnZ6uzlcGAcz2IkP7XwVRYiwN5Em07WObdAlcvl3Lt3j7Nnz3Lr1i2ePHnC69evMyJrhoaGFC9enLJly1KzZk2KFSvG8ePHuXLlCsOHD2f06NE/tDDPDTx58oTGjRuzYcMG2rdv/+0T8hhubm6cPn2aI0eOfPvg72Do0KE4Ojri4uKilPG+h/DENLwjkvGPlSACpFn4ootF6Q6xnbE2TqZ6mBso797m5eXF0KFDCQ0NpVOnTnh6ev6QYxodHc2kSZM4c+YMbm5utGvXTmk2CuRNdjyPITRR/drqlDAQ06eMiarNEMgDCI6tgEA+Iy0tjcOHD+Pu7o6fnx9Dhgxh+PDhlCxZ8rvODw8P588//2Tfvn2MHz+esWPH5to6yteJaez0j83Sgje7EIugj52xUhfQP4pcLufJkyd4eXlx48YNvL29CQsLy1Dd1tfXx8LCgjJlylCjRg2aNGlCnTp1EIvzRipZSEgI9erVY968efTv3//bJ+RBkpOTsba25vz585QvX/6nx1u7di2PHj3Cw8NDCdZljWSpHJ/IFF7ESohIkSGVKxCLRHxofiIivcZPqlAg1hBhqqtJaWNtHArrKj174mP27t3LmDFjeP/+Pf369cPd3R1dXd0sj3P+/HmGDRtG9erVWbVqFcWKFcsGawXyAt5vk7gSnqQWz7wPiEVQ31wfp2L6qjZFIA8g1NgKCOQztLS06N69O+fPn+fChQskJCRQtWpVOnTowKlTpzJtKREbG8vMmTOpWLEiBgYGPHv2jOnTp+dapxbAwkALWyNtpdfjZZUPqY7q4NRCej2fra0t+vr6PHjwgKJFi7Jz507S0tJ48eIFrq6u1K5dm/DwcNauXUuTJk3Q0tJCX18fa2trWrRowbRp0zh9+jQpKSmqvpws8e7dO1q0aMH48ePzrVMLoKenx+jRo1m6dKlSxstuAamvoSfWwKmYPn3KmDDOoTAuFQrR0boAbUoWoFUJQ9qULEBH6wK4VCjEOIfC9CljglMx/Wx1agF69OjBmzdvcHNz4/DhwxgZGTFu3Dik0qxF1Jo0acKjR4+wsrLCwcGBzZs356hooEDuwaGwrlpkKH2MgnS7BASUgRCxFRAQIDExkV27duHm5kZsbCwjRoxg0KBBFClShJSUFNzc3Fi0aBFt27Zlzpw53x3dzQ0kS+Ws84tWad2RjqYIl/IF0c3mhfT3EBkZiZubG3/99RfVq1dn0qRJNGjQ4Jt102FhYXh5eXHt2jV8fHwIDg4mKioKqVSKrq4uRYsWxdbWlqpVq9KwYUOaNm2KoaHhV8fMaeLi4mjSpAmtWrVi3rx5qjZH5URFRVG6dGl8fHywtLT8qbFiY2MpXrw4sbGxeUZYTJnI5XKWLFnC3LlzUSgUTJ06lZkzZ2a55dL9+/dxdnamUKFCeHh4YGNjk00WC+QW4tNkvEuWIZEpkCkU3H2Xwusk9UhHVkUJjkDeRnBsBQQEMlAoFNy6dQs3NzeOHj1K+fLlefnyJTVq1GDhwoVUrFhR1SZmC/6xqRwNis+RHpj/RUsDOlgVwM5YJ+cn/4iAgACWL1/Ojh076NKlCxMmTFBKCur79+/x8vLiypUrPHz4kMDAQN6/f09aWhra2toUKVIEGxsbHBwcaNCgAc2bN1dJn9iUlBTatGlDmTJlcHd3zxUCaDnB+PHjEYlELFu27KfHsra25vTp05QpU0YJluVN5HI506ZNY9WqVejo6DB//nxGjx6dpTGkUikrV65k0aJFTJ06ld9++y3PlAkIfJuvpd4DyBVZqzfPTtSpBEcgbyA4tgICAp+gUCj4559/mDRpEsnJyUilUooWLYqLiwu9e/dWuyibsjgXlsCDyJQcdW4/9MRsaqm6v+mtW7dYunQpFy5cYNiwYfz666+Ym5tn+7xxcXF4eXlx+fJlHj58yMuXL3n37h2pqamIxWIKFy6ckVpZt25dWrZsmW1CVVKplO7du6Otrc3OnTuFiOJHhIaGUrlyZV6+fEnBggV/aqxOnTrRp08funf//v6W+RWJRMKYMWPYtGkTJiYmrFy5kj59+mRpjJcvXzJ8+HCio6PZtGkTVapUyR5jBdSC14lp3PpBsTRVoPlve7vOQrRWQIkIjq2AgEAG169fZ8qUKURFRbFw4ULat2+PQqHAy8sLd3d3Ll++TJ8+fXBxcVFKNE+dUCgUnAxJ4ElMao44t1oaUN5Eh1Ylv68npjKRy+X8888/LF26lJCQEMaNG8eQIUPUYtMiKSmJixcvcvHiRe7du8eLFy+IiIggOTkZTU1NChYsSKlSpahYsSJ16tShZcuWlCpV6ofnUygUODs7ExYWxrFjx35YJTwvM3DgQOzs7JgxY8ZPjfPHH38glUqFNO8skJCQwNChQ9m7dy/m5uasW7cuS+rHCoWCLVu2MGXKFAYNGsTs2bPR09PLRosFchpltrfKSdSpBEcg7yA4tgICAvj5+TF9+nTu3bvHn3/+Sb9+/b4YtQoJCcloGWRvb8/IkSPp1KlTnnEGFAoF518lZnvk9kOktklxgxx1alNSUti+fTvLli1DX1+fSZMm0a1bt1yRpiiRSLh69SoXLlzgzp07PH/+nLdv35KYmIiGhgbGxsaUKFGCChUqULt2bVq0aIG9vf03x50yZQqXLl3i7NmzauHYqyN+fn40adKEwMDAn3KKDh06xN9//82xY8eUaF3+4P379/Tv359Tp05ha2uLp6cn9erV++7z3759y9ixY7l79y7r16+ncePG2WitQE7hH5vK8eAEpHKFWvVk/xbqUoIjkPcQHFsBgXxMaGgos2fP5vjx40yZMoVRo0Z9V7sJiUTC4cOHcXNz49mzZzg7OzNs2DBKlCiRA1ZnP9m1WNAUgVhDRLtShjn6QI+KisLd3Z21a9dStWpVJk2aRKNGjfJEHalUKuX27ducO3eO27dv8/TpU16/fk1CQgIikQgjIyOKFy9OuXLlcHJyonnz5jg4OKChocGSJUvYsmULly9fpnDhwqq+FLWmQ4cOtGrVipEjR/7wGAEBATRs2JDQ0FAlWpa/CAkJoW/fvly9epVKlSqxbds2HBwcvvv8Y8eOMWrUKFq0aMHSpUt/Or1cQDXk1CZsdqAOJTgCeRfBsRUQyId8SDX++++/GT58OJMnT8bExOSHxvLz82PdunVs376dBg0a4OLiQvPmzbOs5qluKDO9S8T/W/q0KmGY7W1EPhAYGMiKFSvYvn07HTt2ZMKECXlWAOy/yOVyfHx88PLywtvbmydPnvDq1Svi4uIA0NHRQSqV0rhxYxo0aEDTpk1xcnLK9Z/b7OLatWv069eP58+f/3CEXy6XY2JiQlBQkEoEwvISvr6+9O/fn/v371OrVi127NiBtbX1d50bFxfH9OnTOXjwIKtXr6Zr1655YpMrv5DTZTPKRJUlOAL5A8GxFRDIRyQlJbF69WqWLVtGly5dmD17NhYWFkoZOyEhgZ07d+Lu7k58fHxGy6DcHgkLT0zD+wcFOcSidIfYzlgbJ1O9HFN+vH37Nq6urpw7dw5nZ2fGjBmjtH/nvMDq1auZOXMmDRo0IDQ0lNDQUGJjY5HL5RgYGGBmZoadnR3Vq1encePG1KtXL8+k2/8M9evXZ9SoUfzyyy8/PEa9evWYO3eukAqrJLy9vRk4cCDPnj2jWbNmbN269btF1q5du8bQoUMpU6YMf/31F8WLF89mawWUgSqEDpWBqkpwBPIXgmMrIJAPkEqleHp6MmfOHGrXrs28efO+q/7wR1AoFNy8eRN3d3eOHj1Kx44dGTlyJDVr1szVD7OvtVBQkB6VFSFCqlAg1hBhqqtJaWNtHArr5kiEVi6Xc+LECVxdXQkMDOS3337D2dmZAgUKZPvcuYkLFy7Qs2dPTp06haOj4yfvBQYGcubMGW7cuMHjx48JDg4mOjoamUyGnp4epqam2NnZ4ejoSMOGDWnUqBH6+voqupKc5/jx4/z+++/cu3fvh7/Lo0aNws7Ojt9++025xuVzvLy8MkTQOnXqhKenJ0ZG31abTU1NZeHChfz111/MnTuXYcOGCVkLaowqW9P9KKoqwRHInwiOrYBAHkahUHDw4EFmzJiBhYUFixYtombNmjk2//v37/H09MTd3R0TExNGjhxJr169MDAwyDEbsouENDkRydKMpveaIhHamiJM9cQYauXcwjA1NZUdO3bg6uqKjo4OkyZNonv37mhpCX0B/8udO3do06YNe/fupVGjRt993uvXr/Hy8uLq1as8evSIoKAgIiMjkUql6OjoULRoUWxtbalatWpGWvP3OBW5DblcjoODA8uXL6dFixY/NMb69eu5ceMGnp6eSrZOAGDv3r38+uuvREZG0r9/f9zc3L5LN8HX1xdnZ2fEYjEbNmygbNmyOWCtQFZIlspZ5xdNai5RiVJVCY5A/kZwbAUE8igXL15kypQppKamsnjxYlq0aKGyiKlcLufMmTO4ublx7do1+vbti4uLi7B4+gmio6Nxd3dnzZo1VKlShYkTJ9KkSZNcHRXPTp49e0ajRo1Yt24dHTt2VMqYUVFRn/TiDQgIIDIyEolEgpaWFkWKFMHa2prKlStTv359mjdvTpEiRZQyt6rYunUrW7Zs4dy5cz90vre3Ny4uLty7d0/Jlgl8jIeHB1OmTCE5OZlRo0axZMmSb9ZGy2Qy3N3d+eOPP/jtt9+YPHmykIKvRhwKiOPFv5oP6oyqSnAEBEBwbAUE8hwPHz5k6tSpPHv2jHnz5vHLL7+oVWpZSEgI69evZ+PGjZQvXx4XFxc6deokRBi/k6CgIFauXMnWrVvp0KEDEyZMoFKlSqo2S60JDQ2lfv36zJ49m0GDBmX7fAkJCZw7d45Lly5x//59Xr58SUREBKmpqYjFYgoVKkSpUqVwcHCgbt26tGzZMtfUQKelpWFra8vBgwepXr16ls9PSkqiSJEixMbGCt/5bEYul7NkyRLmzp2LQqFg6tSpzJw585vPg5CQEFxcXAgJCWHjxo04OTnlkMUCmfE6MY2d/rFZ0njITsQiEIlUX4IjIPBfBMdWQCCPEBgYyO+//87Zs2eZMWMGw4cPV+vddolEwsGDB3F3d8ff3z+jZZClpaWqTVNL7t69y9KlSzNq6caMGSOIvXwH79+/p379+jg7OzNhwgSV2pKSksKlS5e4ePEid+/exd/fn7dv35KcnIympiYmJiaULFmSihUrUrt2bVq1avXdSrc5ycqVK7l27Rr79u37ofPLli3Lvn37hA2ZHEIulzNt2jRWrVqFjo4O8+fPZ/To0V89R6FQsGfPHsaNG0fPnj2ZN2+e0OdZhRwOjONZjOSn1PmVhQiw0BfjWFRXZSU4AgKZITi2AgJZID5NxrtkmcrrKj/m3bt3zJs3j+3bt/Prr78yYcKEXCcY9PjxY9atW8fOnTtp2LAhI0eOpGnTpmoVaVYFcrmcU6dO4erqyosXLzIEofJi/WZ2EB8fT9OmTWnatCkLFy5UtTmZIpVKuX79OufPn+f27ds8f/6c8PBwEhMT0dDQwNjYGEtLS8qXL0+tWrVo3rw55cqVU9n3IyEhAWtra65fv46dnV2Wz+/Zsyft27enb9++2WCdQGZIJBJGjx6Np6cnJiYmrFy5kj59+nz1nMjISCZMmMDFixdZt24drVq1yiFrBT6QLJWz9nFURgryu6AX7JrqTGRYEC1GTadur2E5bpOmCEZXLCREZQXUDsGxFRD4Cl9Twv2AqtJw4uPjWb58OatXr6ZPnz7MnDkTU1PTbJ0zu4mPj2fnzp24ubmRlJSEi4sLAwcOzHc9L1NTU9m5cyeurq5oaWkxadIkevToIaRuZoHU1FTatm2LtbU169evz5W1x3K5nNu3b3P27Fnu3LnD06dPefXqFQkJCQAUKFCA4sWLU65cOWrUqEGzZs1wdHTMEYd31qxZvH37Fg8Pjyyfu2DBAqKjo1m6dGk2WCbwLRISEnB2dmbfvn2Ym5uzfv162rRp89VzvLy8GD58OHXq1GHFihUULVo0h6wV8H6bxJXwpIw05ANzxqJjUIB2E+epzCaxCOqb6+NULP+owgvkDgTHVkDgC7xOTOOWEnqX1jTVw0LJwgkSiYT169czb948mjZtyty5c7GxsVHqHKpGoVBw48YN3NzcOH78OJ07d2bkyJHUqFFD1aZlKzExMaxbt441a9ZQsWJFJk2aRNOmTXOlU6ZKZDIZPXv2RKFQsHfvXjQ1NVVtklKRy+U8fvwYLy8vbt68ydOnTwkLCyM2NhaFQoGhoSHm5ubY29tTo0YNmjZtipOT0zfFg7LCu3fvsLe3x9fXF3Nz8yyd+88//7Bq1SrOnDmjNHsEss779+/p378/p06donTp0nh6elK3bt1Mj09MTGT27Nls374dV1dX+vTpI9ybcoAdz2MITZRm/L5xRFcqt+xEjc79sjSOTCpFU4n3gBIGYvqUMVHaeAICykBwbAUEPiJZKudUSAIv/1Ue/JkvR4bUvZE2rUr+vNS9XC5nz549zJw5kzJlyrBw4UKqVKnyU2PmBt69e8fff/+Nh4cHhQoVwsXFhV69euWp/qHBwcGsXLmSLVu20K5dOyZOnIiDg4OqzcqVKBQKhg8fTkBAAP/88w86Ovmrb+KzZ8/w8vLixo0b+Pr6EhoaSkxMDHK5HH19fczMzLCzs6NatWo0adKE+vXr/3At/ujRozE0NGTRokVZOi8sLIxq1arx9u3bH5pXQLkEBwfTr18/rl69SqVKldi2bdtX7z937tzB2dkZMzMz1q1bh5WVVc4Zmw9Z4ROZ0eJnw7DOBN67jqZYCw1NTVqMms7dY7uJCgtC19CI6h370GzEZACiX4ewpF01usxawbn1rhQ0L8HQ9Yc5uWoO947vQUffkHp9XTi2ZBrzboWjKRYT9+4Nh+dPJOiBN3pGJjQcOIaaXb7sQOtoihjnUDjH/g4CAt+D4NgKCPyLf2wqx4MTkMoVSpXT/9nm5AqFgjNnzjBt2jTEYjGLFy+mcePGyjMwlyCTyTh9+jTu7u5cv36dfv364eLigr29vapN+2Hu37/P0qVLOX36NIMHD2bMmDGUKFFC1WblaqZPn46Xlxfnz5/PdbXm2UlISAhnzpzh2rVrPHr0iJCQEKKiopDJZOjq6mJqakrp0qVxdHSkYcOGNGnS5JubR4GBgVSvXp2AgACMjY2/2xaFQkGRIkXw9fXFzMzsZy9NQEn4+vrSr18/Hjx4QK1atdixY0em4mVpaWksW7YMV1dXZs6cya+//prnMiPUgfg0Get8oz9Zk6wf2pGqbbpRo3M/Au5cQ9+4IKa2ZXn74gl/j+xOpxmuVGjcJsOxrdq2B52mL0Ek0uDe8T1c37WBwW770NbTZ8fkIby8dTnDsfUY0p5ipcvRdvyfvAvy52+X7vRatAHbmvU/s01TBC4VCgmiUQJqhfBpFMj3KBQKzoUlcDQonlSZcp1aAJkCUmUKjgbFcy4sga/tJf33vdu3b9OsWTPGjBnD9OnT8fb2zpdOLYCmpiZt2rTh2LFj3L17F319fRo0aEDTpk05cOAAaWlpqjbxu1AoFJw6dYpmzZrRoUMHHB0dCQgIYOnSpYJT+5MsW7aMQ4cOcfLkScGp/Q8lS5bE2dkZT09P7ty5Q0REBFKplPDwcDZs2EDr1q1JSkpi+/btdOnSBQMDA3R1dbG0tKRBgwaMGTOG/fv3ExMTkzGmtbU1rVq1ynKdrUgkonLlyjx8+FDJVynwM1SoUIF79+5x7do1oqKisLW1pWXLlkRERHx2rJaWFlOnTuXGjRscOXKE2rVr4+PjowKr8zbvkmWIv5LubVO9LmZ25dHQ0MC8TAUcWnYm8O71T45pNnwS2noGaOnq4XPmCHV6DcO4mAV6RiY0GjQm47iYN68IfniL1mNmoaWji4V9Jap37sO9f/Z8cW6xSEREsvSL7wkIqArBsRXI1ygUCk6GJPAgMoU0efbOlSaHB5EpnAz5snM7ceJEWrduDcDz58/p0aMHnTp1omfPnjx+/Jhu3boJ9Uz/YmVlxYIFCwgJCcHZ2ZmVK1diZWXFH3/8watXr1Rt3heRSCRs2bIFBwcHJk+ezIABA3j58iUTJ07MUrRL4Mts3ryZ1atXc+bMGYoUKaJqc3INZmZm9O3bl3Xr1nHjxg3Cw8ORSCRER0dnOLkABw8epE+fPhQsWBBtbW3Mzc2pU6cOEomEhQsXEhoamqV5q1SpwoMHD7LhigR+ltq1a/P06VNOnjzJ06dPMTc3p1u3bsTFxX12rJ2dHefPn2fYsGE0a9aMmTNnkpKSogKr8yYSmeITscr/EvLoLhuGdWJek7L80cCGWwe2kBgT9ckxxsX+3xYu/v0bjM0svvhe3Ls36BsVRMfg/22dCpqXIC7izRfnVqBAouxIgIDATyI4tgL5mvOvEnkSk5rtTu0H0uTwJCaV868SP3n9woULuLm5cfnyZTp27EidOnWoWrUq/v7+DBs2TFDDzQQdHR169erFlStXOHXqFBEREVSqVImuXbty9uzZr0bHc4qYmBiWLFmCjY0N27dvZ9myZTx8+JB+/fqpdZ/h3MSRI0eYOnUqp0+fFqLeSsLExIRu3bqxevVqLl++TFhYGKmpqcTHx7N//3769u2Lnp4et27dIi4ujpIlS6KlpYWpqSk1atRg8ODBbNy4kZCQkC+OL0Rs1Z+WLVsSHBzMzp07uXLlCoUKFWLw4MGfOa4ikQhnZ2cePnzI06dPqVy5MpcvX1aR1XkL2TeeYXtmjKBcg1ZMOfmAPy4HULPrAPjvOR9tiBcoUoy4t+EZv8e+/f9GsFFRM5LioklNTMh4LSY8DCPTL5cLKL7DPgGBnEZwbAXyLf6xqTkSqf0vHyK3/rGpAERHR9OtWzeSk5NJTk7m+vXrPH36lGnTpuUpgaTsplKlSri5uREcHEyzZs0YP348ZcuWZcWKFURHR+e4PaGhoUyYMAEbGxt8fHw4fvw4Xl5etGjRQoi8K5FLly7h7OzMsWPHKFu2rKrNyfMYGhrSoUMHli5dyrlz5wgODubcuXPY2dlx7NgxnJ2dKVSoEJcuXWLs2LGUKlUKTU1NChcuTNWqVenbty9ubm6YmJgIjm0uoWfPnrx9+5Y1a9Zw8OBBjI2NGT9+PFLpp2mo5ubm7N+/n8WLF9O7d29GjBhBbGysiqzOG2h+41mRmpiAnrEJWjq6hD6+x8NTB796fKXmHbm2az2xEeEkx8dyafOajPdMzIpTyqEGp9bMJS01hfDnvtw5spOqbbp/cSzRd9gnIJDTCI6tQL4kWSrneHBCjju1H0iTw/HgBJKlcho3bkxU1P9ThyIjI/H29laNYXmAAgUK4OLiwsOHD9m0aRN37tzB2tqawYMHc+fOnWyf/8GDB/Tt25fKlStn/L59+/Z8oWCd09y/f5/u3buze/fuPN8KSp1p2LAhBQsWJCkpiQULFnD69GlevnxJYmIiaWlpXLp0iTFjxlC8eHFu3brF5MmT6dSpE35+fpiYmFCpUiV69OjB8uXLefz4MXK5im7MAl/FxcWFqKgo/vjjDzw8PDAyMuLPP//87N+rU6dO+Pr6Aul1u4cPH1aBtXkDbU0RIjJ3HjtOW8xZ98XMrmfFufWuVGre4avj1ejcD7tajVjVsyFrejXBvm4zNMRiNP4V/vpl4XqiX4eysGUltk8cSLMRkynt1PCLY4kQoa0pOLYC6oWgiiyQLzkUEMeLf1v6qApNEZQ21mbNkE4YGxtjaWmJvr4+enp6/PLLL0L0SYlERETw999/s27dOooWLcrIkSPp2bOn0iLiCoUCLy8vli5dip+fH2PHjmXYsGGYmJgoZXyBz3n+/DmNGjVi7dq1GXWgAqrj4MGDLF68mJs3b35XRoJcLqdMmTK0atWK169f8+TJE16/fk18fDyQHhkuXrw4ZcuWpWbNmjRr1oxq1aqhoSHsx6sDcrmcqVOnsmrVKnR1dZk/fz6jR4/+7LjLly8zdOhQKlWqxJo1a7Lc8zi/8yVVZGXy7NpZDs+fxJQT97N8rqCKLKCOCI6tQL7jdWIaO/1jkarBJ18sgj52xpgbCDW0OYFMJuPUqVO4ubnh7e1N//79GTFiBGXKlPmh8SQSCXv27MHV1RW5XM7EiRPp1auXUDubzbx69Yp69eoxY8YMnJ2dVW2OAOnfrfLly+Ph4UGjRo2+65x+/frRuHFjBg8enPGaXC7nyZMneHl5cfPmTfz8/AgNDSUuLg65XI6BgQEWFhbY2dlRo0YNmjRpQp06dRCLxdl0ZQJfQyKRMHr0aDw9PSlYsCArVqygT58+nxyTkpLC/Pnz8fDwYMGCBQwZMkQox8gCH/ex/VnSUpJ5eecqdrUakxD1jh0TB1GiUjXaT5qf5bGEPrYC6ojg2ArkOw4HxvEsRvIVncGcQwTYm2jTydpI1abkOwIDA/Hw8ODvv/+mcuXKuLi40KFDh+9aIMfGxrJhwwZWrVqFvb09EydOpGXLlsJiLQeIioqifv369O/fnylTpqjaHIGP2LhxIwcOHODkyZPfdbyrqyuhoaGsWrXqu4739/fPcHgfP35MSEgIMTExyGQy9PT0MDMzw87OjmrVqtGwYUMaNmyIrq7uz1ySwHeSkJDA4MGDOXDgABYWFnh4eNCmTZtPjnn06BHOzs7o6+uzfv167OzsVGRt7mLH8xhCE5XTVkeSnMT6oR15F+SPlo4eZes1o92kBegaZr09WgkDMX3KmCjFLgEBZSE4tgL5imSpnLWPo1SagvxfNEUwumIh9MRCOo8qSE1NZf/+/bi7uxMUFMTQoUMZOnQoFhYWnx0bFhbGqlWr+Pvvv2nZsiUTJ07E0dFRBVbnTxISEmjWrBn169dnyZIlwkaCmpGamoqNjQ0nTpzIqDH/Gl5eXsybN49Lly791LxhYWGcPn2aa9eu8fjxY4KDg4mKikIqlaKrq0vRokUpXbo0VatWpWHDhjRp0gRDQ8NvDyyQZSIiIhgwYACnT5+mdOnSeHp6Urdu3Yz3ZTIZa9asYd68eUycOJEJEyYIqv/fwPttElfCk9Qiy+wDYhHUN9fHqZggcCmgXgiOrUC+QnhACHwNHx8f3N3d2b17N02bNmXkyJE0btwYHx8fli1bxvHjxxk4cGCG2qtAzpGamkqHDh0oXrw4mzZtEpxaNWXJkiU8fPiQHTt2fPPYiIgI7O3tiYqKypZ/z4iICLy8vLh69SoPHz4kMDCQyMhI0tLS0NbWpkiRItjY2FClShXq169PixYthLp4JREcHEzfvn25du0alSpVYseOHVSsWDHj/aCgIEaMGMGbN2/YuHEj1atXV6G16o2wIS8g8P0Ijq1AvkKZKT2ZcffoLm4f3s6Iv//57nOElB71Ii4ujm3btrF06VLevXuHWCzmt99+47fffqNgwYKqNi/fIZPJ6N27NxKJhH379gn1lGpMbGwsNjY2GWrk38LCwoIbN27k6EZRTEwM586d4/Llyzx48ICXL1/y/v17UlNT0dLSolChQlhZWeHg4EC9evVo0aIFZmZf7uUp8HV8fX3p168fDx48oHbt2mzfvj3jc6FQKNixYwcTJ06kb9++zJkzBwMDAxVbrJ4IJVQCAt+HsNUikK+ISJGp2oQvoq525UfS0tI4evQoGzZswMDAgDFjxtCyZUtWr17NpEmTuHv3rqpNzFcoFApGjRpFREQEu3btEpxaNcfY2JihQ4eybNmy7zq+cuXKOd7P1sTEhK5du7Jq1SouXbpEWFgYKSkpJCYmcvjwYfr374+hoSFnzpxh+PDhmJubIxaLMTU1pXr16gwcOJD169cTHByco3bnRipUqMC9e/e4du0a79+/x9bWlpYtWxIREYFIJKJv3748evSIt2/fUqlSJby8vHLMtvg0GQFxEp5Gp+IblcLT6FQC4iQkqKoP4FeoaaqHunTW0RSBk6meqs0QEPgiQsRWIN/wJdn81099OPDnb7wPCcC+bjNEIhGFS1hTuIT1Z1HXaY5FmXDYmyIlbUiJj+Pokmk8v3YOLV09anTpS6PB43gf9II1vZsgk6ahpaOLhqaY2Zdf8vTKGc64LSQqLAhdQyOqd+xDsxGTM8bOq7L58Wky3iXLkMgUyBQKNEXpfe9M9cRqd61xcXEZglClS5dm4sSJtG7dOiNF8u3bt2zatAkPDw/MzMxwcXGhZ8+e6OkJD/js5Pfff+fEiRNcuHABIyMhQpAbCA8Pp0KFCjx79oyiRYt+9dipU6diYGDA77//nkPWZR2JRMKVK1e4ePEid+7c4fnz57x584akpCQ0NDQwMTGhRIkSVKhQgVq1atGiRQvs7e1VbbZacvLkSYYPH86rV6/o3Lkzf//9d8b3+tSpU4wYMYJGjRqxbNkyChdWruJuslSOT2QKL2IlRKTIkMoViEUiFB/FQUWIkCoUiDVEmOpqUtpYG4fCumqRcqtObQo7C9FaATVFcGwF8g0BcRKOBMaTKk//yEvTJCzr6ETd3sOp3XMIfpdOsnv6cBoO+PWbju3e30eRkhBHz3nuJMVGsWlkdxoO/JUanfp+MRU54M419I0LYmpblrcvnvD3yO50muFKhcbpqpE6GiI6WhfAxih3t4nJjQuHV69esWrVKjZt2kSLFi2YMGHCV+u9ZDIZJ0+exM3Njdu3bzNgwABGjBhB6dKlc9Dq/MHKlStxd3fnypUrmJqaqtocgSwwfPhwihUrxp9//vnV43bt2sWBAwfYv39/DlmmPKRSKd7e3pw7d47bt2/z/PlzXr9+TUJCAiKRCCMjIywtLSlXrhy1atWiefPmVKxYUejFC+zZs4cxY8YQGRlJ//79cXNzQ1dXl4SEBGbOnMmePXtYsWIFPXv2/On669eJadyKSMY/VoIIsqSxIRaBArAz1qamqR4WKmzNlyyVs84vWmmtf34EHU0RLuULoqsGjr6AwJcQPpkC+QaJTPGJgxXqcweZNI26fYajqaVFpWYdsCxf9ZvjyGUyfE4fouWvM9ExMKSgRUnq9x3J/X/2ZXqOTfW6mNmVR0NDA/MyFXBo2ZnAu9cz3legQKJOyhBZ5HViGocD41j7OIor4UmEJkpJlSmQKSBVrkAiJ+O/VPm/r8sUhCZKuRKexNrHURwOjON1YlqO2fzo0SMGDBhApUqVkEgk3L17l127dn1TxERTU5N27dpx4sQJvL290dTUpE6dOrRo0YLDhw8jlWZvDXd+Ydu2bSxfvpwzZ84ITm0uZOLEibi7u5OQkPDV41SRiqwsxGIxdevWZdasWRw7doxnz54RHx+PTCbjzp07TJ8+HXt7e3x9fZk7dy5VqlRBLBZjZGRE2bJl6dSpE/Pnz8fb2xu5XP3SX7OTnj178vbtW9asWcPBgwcxNjZm/Pjx6OrqsnLlSg4fPsz8+fNp3749ISEhPzRHslTOoYA4dvrH8iwmPdKZVeFIqQJkCngWI2GnfyyHAuJIlqrm30pPrEG7UoaoKtlJSwPalTIUnFoBtUb4dArkG2T/SU6Ie/8WI1PzT3aDTcwtvzlOYkwkMmkaBT861sTckriI8EzPCXl0lw3DOjGvSVn+aGDDrQNbSIyJynhf8QX7cgO5beGgUCg4d+4crVu3pmXLlpQtW5YXL16wcuVKrKyssjyejY0NixcvJiQkhP79+7NkyRKsra2ZO3cu4eGZfx4Evs6xY8eYNGkSp06dEtSncyl2dnY0atSIjRs3fvW4MmXK8OrVK+Lj43PIsuxHQ0MDR0dHJk+ezIEDB/Dz8yMmJga5XJ7h5FatWpWAgACWLVtGnTp10NTUxNDQkNKlS9OmTRtmzZrFxYsX8/xGmYuLC1FRUcyaNYt169ZhZGTEvHnzqFGjBnfv3qV27dpUq1aNtWvXIpOla1EoFIpv3l/9Y1NZ5xfNizgJUgU/LbqkIP1Z9SJOwjq/aPxjU39yxB/DzliHKoV1c9y51dKAKoV1sTPWydmJBQSyiODYCuQbNP+TzlSgiClxEeF8nI0f+yYMAG09fdJSkjNej3//NuNnA5PCaIq1iA4P++i8VxiZmqf/8oW0qT0zRlCuQSumnHzAH5cDqNl1ACg+Ts/93D51JzctHNLS0ti5cyfVqlXj119/pXv37gQGBjJt2jQKFSr00+Pr6urSt29frl+/zrFjxwgLC6N8+fL06NGDCxcuIFR8fD9Xrlxh8ODBHDlyhPLly6vaHIGfYMqUKSxfvpy0tMwzMcRiMRUqVODRo0c5aJnqKFeuHGPHjmXXrl34+PgQFRWFTCbLcHLr1q3L27dvcXNzo1mzZmhpaaGvr4+1tTXNmzdnypQpnDx5kpSUFFVfitLQ0NBgxowZJCQkMGrUKObOnUvBggVZv349M2bM4MqVK+zdu5f69evj6+vLhg0bsLKy+mIkV6FQcC4sgaNB8RlZQ8rkQ7bR0aB4zoUlqOTe3qS4AeVMdHLMudXSgPImOjQpLihWC6g/gmMrkG/Q1hQh4v/OY0mHGmiIxVzftR5ZWhqPzx0n1Pc+AGZlKvL25TNeP3tEWmoKZz2WZpynoalJpeYdOfPXAlITE4h+HcrVHe5UbdMNAMNCRYl9G440TZJxTmpiAnrGJmjp6BL6+B4PTx38xDYR6aJKuYHctHCIj49nxYoVlC5dmvXr1zN37lweP37M4MGD0dHJnp3nKlWq4OHhQVBQEA0bNmT06NFUqFCB1atXExMTky1z5hUePHhA165d2blzJ05OTqo2R+AnqV69OnZ2duzateurx+XmdGRlYW1tzfDhw9myZQt3797l/fv3SKVSQkND+euvv2jWrBlxcXFs3ryZDh06oKenh66uLiVLlqRx48aMHz+eQ4cOERcXp+pL+WE0NDRYunQp8fHx9OjRg99++w1TU1Pu37/PxYsX6d+/P3Xq1GHkyJFIpVKGDx/+yfkKhYKTIQk8iEwhu4WN0+TwIDKFkyE579yKRCJalzTMkcjth0htq5KGQu9wgVyBIB4lkG/4kipymN8DDs4dR2RoIPZ1mwFQpKQNLUZN58LG5Vzd6YGWji4tR89k7+8jM8SjkuNiOLp4Gv43LiDW0aFG5340dh6PhoYG0jQJ2ycMIMTnDiINDX4//4xHZ49yYvlskuKisXasQ0GLEqTEx9FzvjuQe1SRPywcnsSkZvvCAdIfquVMdGidxYfq69evWb16NRs3bqRp06ZMnDiRGjVqZKOlmaNQKLhy5Qpubm6cPn2a7t274+LiQtWq367nVneUoXo9evRoKleuTOPGjWnYsCErV66ke/fu2Wy5QE5x5swZxo8fj4+PT6aiSWvWrMHX15d169blsHW5l/fv3+Pl5cWVK1fw8fEhICCAyMhIJBIJ2traFC5cGBsbGypXrkyDBg1o3ry5UrJTcpK4uDicnZ05cOAAFhYWeHh40LFjx4z0bF1dXY4ePUrz5s0BOBeWM07tx3xw/JpaGubcpB/hH5vK8eAEpHLlbjJrikCsIaJdKUMh/VggVyE4tgL5ihU+kV9VFNw3ezTGpha0GDU9B61KVxoc56Dc1gbZgTotHBQKBRs3bqRPnz7o6+sD4Ovri6urK0eOHKFv376MGzcOa2vrnDP2G7x58yajZZCFhQUjR46kR48e6Orqqtq070LZqtepqakYGxsjEonQ1dVl0aJFn0VhBHI3CoWCatWq8eeff9KuXbsvHnP58mWmTJnCjRs3cti6vEdcXBznzp3j8uXL3L9/n5cvX/Lu3TtSU1MRi8UUKlQIKysrHBwcqFevHs2bN8fCwkLVZn+ViIgIBgwYwKlTpz57z8DAgKioKIKT07N8VNGCVksDOlgVUJkDmCyVcyokgZf/tgL6mUV9elkU2Bpr06qEoVq0ORIQyAqCYyuQr9jxPIbQxMzFOFTl2JYwENOnjEmOzplV/GNT1WrhMG/ePH7//XdWrFhB5cqVWbp0Kffv32f06NGMGDFC6T0QlYlUKuXEiRO4u7tz584dBg4cyIgRI7C1tVW1aV8ku9pleHl50bVrV+Lj49HS0mLEiBGsWrVKSHnLY+zevZu//vqLK1eufPH9mJgYSpQoQWxsrNAKJ5tISkri0qVLXLx4kXv37uHv709ERATJycloampiYmJCqVKlqFixYobKuzptCgLo6+uTnPx/7YuCBQtib2/P4X9OsjNMpvI2OCPKF1SpIxiemIa3Eu7TTqZ6mKuwrZGAwM8gOLYC+Qrvt0lcCU/K9IavCsdWLIL65vo4FdPPsTmzirr0z/uwcDh58iRdu3YlOTkZsViMjY0NkyZNom/fvrkm+vmBly9f4uHhgaenJ9WqVcPFxYW2bdsiFotVbVr2RAKMtGlVMj0SMHTo0AzVXH19fUQiEf7+/pibmyvFfgH1QCqVUqZMGbZt20bdunW/eIyVlRVeXl7Y2dnlsHX5G4lEwvXr1zl//jx37tzh+fPnvHnzhsTERDQ0NDA2NsbS0pIKFSpQq1YtWrRoQbly5XLcTm9vb2rVqvXZ6xs2bKBwkx68+PcepSo0RVDaWJvO1kaqM+JfvpZZoyD9Xqxu/eQFBJSF4NgK5CuSpXLWPo5S6QPwv2iKYHTFQmr9QDkUEKc2Cwfr2ACcnJyQSNLFuXR1ddm8eTM9e/ZUnXFKICUlhX379uHm5sarV68YNmwYzs7OmJmZqcSenKjdqmxekOTkZGrUqMHYsWPp0qULenp6yptMQG1wc3Pj1KlTHD169Ivvd+zYkb59+wr11WqCXC7n9u3bnD17ltu3b/P06VNev36d0ZfYyMiI4sWLU7ZsWZycnGjWrBlVqlTJ1oh7SEgIcXFxJCcnk5yczPv373Fq0Y5dL+Ky3GYuOxCLoI+dsdpFOxPS5EQkS39KC0FAILcgOLYC+Y7DgXE8i5H8dHsaZSAC7E206aQGu7yZ8ToxjZ3+sWqzcLjsOpl/dm1BLpdnLKJat27N8ePHVWyd8rh//z7u7u7s27ePFi1aMHLkSBo0aJAjKboKhYLzrxKzvZZaSwOSn9+nZxVr7OxKZ99EAmpBcnIy1tbWnDt3jgoVKnz2/qxZs5DL5cybN08F1gl8L3K5HB8fH7y8vPD29ubp06eEhYURFxeHQqHA0NAQCwsLypYtS40aNWjatClOTk7Z5vAKz3MBAYGPERxbgXyHujlq6rjD+zHqunBQKBRIJBKSkpLQ1dXNk5G+2NhYtm7diru7OyKRCBcXF/r164exsXG2zJdbVK8Fcifz58/H39+fzZs3f/bewYMH8fT05MiRIyQnJ2NgIPTMzG08efKEs2fPcuPGDXx9fQkNDSU2Nha5XI6+vj5mZmaUKVOG6tWr07hxY+rVq4e2tvY3xw0LCyMmJoaKFSt+8rqQgSUgIPBfBMdWIF+iTqm16lCTkxnCwkE9UCgUXLp0CXd3d86cOUOPHj1wcXGhSpUqSp1HnVSvBfIe0dHR2Nra8vDhQ0qUKAGkf7a3bdvG4cOHOXbsGBoaGtja2uLn56diawWURXBwMKdPn+b69es8fvyY4OBgoqOjkclk6OrqUqxYMUqXLo2joyONGjWiUaNGGUr3AA0bNuTy5cuMHj2aNWvWZLz+Lc0MVZAbNDMEBPIygmMrkC9RFzEkl/IF0VVjB01YOKgf4eHhGS2DSpQogYuLC927d/9p0Sx1U70WyJtMmDABqVRK5cqVCQgIYO7cudja2hIYGJhxzODBg9m0aZMKrRTICd68ecOZM2e4evUqPj4+BAUFERkZiVQqRUdHhyJFimBra8utW7dISUkBoESJEty6dQszM7NvdjnIjMVtHek6awWlnRoq+5KA3NHlQEAgr6K+K2oBgWxET6xBu1KGqEo3QUsD2pUyVGunFuBFrEStnFpIb2Fww/cFIpEIqTTri5rcjrm5OTNnziQwMJApU6awfft2SpYsyeTJkwkICPihMZOlco4HJ6jEqQVIk8Px4ASSpSoyQCBHiI+PR1dXlzVr1jBy5Ei2bduGSCTi6NGjGRE6fX19unTpomJLBXICMzMz+vfvz/r167l58yZv3rwhLS2NyMhItm7dSufOnZHL5RlOLUBoaCjm5ub4+PgQkSJTofWZo652CQjkB9R7VS0gkI3YGetQpbBujju3H1Ivc0N0Sl0f0JGp6mlXTiIWi+nYsSOnT5/m2rVryOVynJycaN26NceOHUMm+/6/0amQdPVjVSKVKzgVmqBSGwSylyFDhrB48WIUCgWpqano6KTfAytWrMiaNWsQi8VIJBIaN26sYksFVEmhQoXo0aMHa9aswcvL65P3dHR0KFeuHKYlrX/onrVn5khi34Sx5be+zK5bikub1+B36RQrutVjTgNb1g/tSETA85+yXypXkKCqXUIBgXyO4NgK5GuaFDegnIlOjjm3WhpQ3kSHJsXVWxhl0aJFWNvaMrV2KVZ0rYvv+X8AuHt0F+sGteG460zmNLBlSfvqBD+8xd2ju1jUujLzmpbj7rHdGeOkxMex9/dRzGtSlsVtqnJ+4zLk8vQH/tl1S9gzwyXj2OjXIUxzLIrs3yjs+qEdOeO2kHWD2jC7nhWbRnYnMToSgLWD2wNgYmKCoaEhN27cyJG/i7piZ2eHq6srISEh/PLLL8yfPx8bGxsWLFjA27dvv3ru68S0jD61qkSmgJexEsIT01RriEC24e7ujpOTU0bavJbW/0XzBg8eTNWqVTE1Nf2kvlIgfyOXyylTpgwjRozgxYsXpKSk4OfnR5KGDuIfEJzrOc8NYzNLBqzczpxrwZRv3Ibd04bTbuI8Zp57in3dZmz5rQ/SNMkP2ywWiYhIzn/ZRAIC6oDg2Arka0QiEa1LGuZI5PZDpLbV/9q78/Coq3uP4+/frJlkkkmMCYRAAoQIRI2IIFhEI1wsKGWxtS7Ua2uLUtdrlVasyvVq9RF7L7VuXK22xYqteAviUtwQg1ZxQ1FZTJCdQACTyUIy6+/+MSYCBbLPknxez8PzJJPM73ceMjO/8/2dcz4nARJgCwoKWPTyG9zz9mbGX3kzf7vtamr27gZg++cf07uwiNvf/JJhEy/gmTlXsuOLNdz8/Pv88O5HWHbfLfgOREbels2bQ2NdDbNf+JAr//A8H7/4LB8tW9Tqdny6/O98/z8f5LbX1xMK+Fn11MMAXPvECwBUV1dTV1fHGWec0cn/A4nJ5XJx+eWX895777FkyRI2b97MkCFDuOSSS1i1ahVHilR4v7Ih5kVtk5AJqysbYt0M6SKZmZmUlpYya9YsIDI1+WCrVq3igw8+oDYQ4qsaPxuqfHzxdSMbqnx8VePXKFgPlJyczMaNG3n00UcpKChoftwfMjE7Iat/7atLGTL23ygcXYLVbmfsv19D0NfItk8/aPcxTUz88fKhKtLD2GLdAJFYMwyD8X3d5KXaeXFrZEpmZ16TrAbYLAaT890JMf0Y4MILL2RDlQ9jWy3F353Oyj8+wI4v1gCQ0SePEVMvBaD43Gm8+cR8xl15MzaHkxPOOAer3cH+7ZvpPaiIta8s4bq/vokzxY0zxc3YH13NmpcWM3Laj1rVjtOmXExWfqQzc/KEqax/azlAp3Rourvhw4fz+OOPc//997Nw4UJmzpyJzWZr3jIoLS2NhmCYMm98bOUEYAJlXj8NwXCPSr3uSaxWK/Pnz6dPnz688847QGSN99r9jZR7/VQ2OglWVmEzjEPe5wYGQdPEZjHITrIyyOOgODNJr5MeKtRJuae1e3eT3rtf8/cWiwVPr1y8lRXtPqZJ57VPRNpGVwSRbxR6nMwqymBQmgObEdkztSMMIgm+gzwOZhVlJExRC7Bw4UKmnXU6vz6zgDvPKmDPpg3UV0emAbszs5p/z+aMTClMzcxufszuTMJ/oJ766v2EggEycvo2/yw9py81begwHHxcR5ILf0M9QNwUYokgPT2d66+/nvXr1/Pggw+ycuVK8vPzmTVrFss/24xBJCW0fPVbUW/b4dPRIfK+Wbu/8chPkG5j9uzZPPL0YpZuruGhz79mVcUBttcH8YUiNxZ9YRN/mOZ/vm9uOPpCJtvrg6yqOMBDn3/N0s017NL09R7H2oFZTwfPmErN6k317u3N35umiXfPTjzZOe0/fgfbJyLtp8JW5CAum4XpA9OYUehhcLojMtraxuuTzYiM0g5OdzCj0MP0AWkJNaqwdetWZs6cye3z5nPXW18yt3QTvQqGQBvvQKekZ2K12amq2NH8mHf3TtK+6TA4XMkEGr+ddlq7r7LVx473qdzxyDAMzjnnHBYvXsy6devIzc1lxeflcZl6Xe5t//o2iX8NwTBLvqphUZmXjdWR9d1tfR0GzcjU9Y3VfhaVeVnyVY1StXsQh9XAaOftZ/dxWXy9YysAxROmsmHV65SvLiUUCLDqqUewOpzknTKy3W0zMHBYdY0SiYXE6W2LRFFOip1pA9K49qTjGJuTTL8UG06rgdUAp8XAYYmsmXVYIt9bjci+tP1SbIzNSebak45j2oA0clLsLZ8sztTX12MYBr2yszAw+PD5RezZtKHNx7FYrZw8YSqvPnwPvvo6qnZt5+2nH+XU834AQM7gk9i85l2qK3bQWFvDyj8+0Opjp2Ycj8Viaff2Nj1dTk4Ot99+OwOLT4vaOUNt2JopXtO4pePKvD4WrKuivCaylVhH76uYfHMzpMbPgnVVlHl9ndFMiXNZLivBdk73LbniBlY88T/ceVYB60tf4aK7H+GFeXO4a/xgNpS+wuW/+ws2u6PdbQuaJtkurfQTiQW980SOwWWzMKpXMqN6RVI66wJhKhuC+EMmIdPEakTuzGa7bLhjtSluJysqKuKmm27iwgln4zcNTj3/h+Sfcnq7jjXlV/ey7L453P+9EdicTkZOv4zTps4AoHB0CcUTpvLARWeTnH4cZ//4+uY1tC2xJLmYfcutjBkzhkAgwPLlyxk9enS72thT1QZCh4yS7fhiDS/Mu5WafXs4sWQSU2+9H7sziff//hRv/en3NNRU03/YKKb9+rekZfUG4IX7b+WLFS/RWFdDZr+BTL75bgYMjwR5vb5gHns2rcfmSGJ96XLO/8V/UXD6WTw39zp2blhL3skjOD6/4EhNa94uoy3vqdpAiL0NoW793kxkpmmyYmc9n+xv7JL9kkMmhEImy7bUMiwzwLjcFM3s6MZS7VZsFoNQOwIxikomUVQy6ZDHThx3fmc1DZvF0GeOSIwY5pFiMkVEgPlr9+OLw3RHp9XgxuLMWDcjoX1V4+f5zbX4wib3nT8cZ3IKP37wrzhcySz8jxkMHHEmBSPHsuiWn3HFw8/Sq2AIL8+fS8WXX3DVN6nUa15azAljxpPkTuOfzzxG6cKH+OWLH2N3JvH6gnm8+eR8Lr3vCYaePZGQ38fjV11AXvEIJl53G9s/+4g/3XApRWdP4qLfPHpI25wWg6kDUhmYdvRRk0MDh0IEw6YCh+KUaZr8Y1sd66t9XVLUHs5ugaHpTiYlQAK9tN/TX1azvT7+ttXpl2JjxgnpsW6GSI+kq7uIHFV2kjXWTTiieG1XIjl8u4wzLvop6b1zSfZkUPLTG/n0lSV88o/nGDHlUnKHnoLN4eS7193Gts8+pGrXNgBOPf9CUtKPw2qzMfayqwn6/ezbWt58zLyTR3DiOedhsVior9rPznVrOPfqW7A5nAw47TsMPeu7R2zbsbbL2FUfUOBQglmxsz5qRS1AIAzrq32s2FkfnRNKTAzyONqcgdHVmgIjRSQ2NBVZRI5qkMdBxYFgXAUMqePQOQ7fjsLTq0/z1xk5/ajZu5uavbvpM6S4+XFnsptkTwbeygoy+uRRuvBhPlz6NDX7dmNg4Kuvpb7q62+P2Tu3+euavbtxpabjcKU0P5ae0xfv7l3/0rYjbZfREAyzfFsdm2oiYUPteUk2vY43Vvsp9/opSHMwMc+tEdwuVOb1ddn042MJhOGT/Y3kpdoTKpFeWq84M4nSigOxbsYhTCLtEpHY0NVcRI6qODMp7rbWUcehcxy+HYV3z7cFZvXuHaRl9SYtqzfVB6Va+xvqOeCtwpOdw+aP36X0zw9x6X1/4I6V5cwt3YTTnQaHTQVuknp8Lxpqq5u3bIqcZ+cR23b4dhkKHEpMDcEwL26ti3pR2yQQhhe31iktuZty2SwUehwd3pqvsxhAocehG2UiMaR3n4gclToO3dfh22W8++yTePfs4oC3ijefmE/xhKmcMvECPlr2DLs2fkbQ7+OVh35Dv5OGk9EnD9+BOixWKykZmYRDQd547Lf46muPer6MPv3IHTqM1xfMIxjws2XNe2wofeWIv9u0XYZpmryxo45lW2qbpxt3pqZpysu21PLGjjoUOdG5lm+rIxiO7f9pMGyyfHtdTNsgXef0bBfxsrOO1YBR2a5YN0OkR9NUZBE5ptOzXZR7/XExHVkdh85z+HYZwyZewJNXX0jN3t0MLZnIOT/7BQ5XMhOuvoWnZ19BQ001ecUjueTexwE44YxxnPCdcfz39NE4XMmMuXQWnl65RzsdABffs4DFd1zLXSWF5BWP5NTzf0hjbc2//F7QNMlKskYtcKhp2qovZCpwqJPsqg80TxuPpZAJm7x+KuoDCbn9mhxbnxQ7BWkOymP8WrMaUOBx6DUmEmNKRRaRFi35qiYuOg6DPA6mD0iLXSO6mXhOvS4+zhn1tZl2CwzLTGJ8X3f0TtpNLd1cw8Zqf1wsZTCAwekOpumzo1tqCIZZsK4qpp9lTqvBz4sySNJsIpGY0jtQRFo0Mc+NzRLbUSybxWBSPxUcnSle06VTbUZMA4e05rZjGoJhyrzxUdRCZE11mdevtbbdlMtmYXK+m1htHWu3wOR8t4pakTigd6GItEgdh+4pHrfLsALV/rAChxLY2v2NR12Xv3dLOb+/uIS5Z/bnnWce67RzVu3axpzhWYSCR97X1PimXdI9FXqcDMtMivo1qmmWh5K3ReKDeoki0irqOHQ/8Zh6HaLjqccdpcChjjnWmvzSPz/IwBFncufbWxhzyZVRa1PQjLRLuq9xuSkMTXdG7Rplt0BRupNxuSkt/7KIRIUKWxFpNXUcupd4S72GyMharJf9Hhw4JG1X2Rg66s+qKnbQq2BwFFvzrWO1SxKfYRhMynNH5QZs0w3XiQqbE4krKmxFpNXUceh+4mm7DMxwzEdrm4RMWF3ZEOtmJJzaQOioW/w8fuV0vvrwbZbdN4e5Y/K559yT+GDJU80//2jZMyy44vzm7+cMz2L1c3/it1NP586zCnj+3l82b8kUDoV4ef5c7ho3mHnfG8GGVa+12LZg2KQuVnPcJSoMw2B8XzdT+qfitBqd/tlmNSJBUVP6pzK+r65NIvFGha2ItIk6Dt1L03YZMS9uwyHiKaNfgUPts7chhO0o79mZjy2h/6mjmfKre7nzna0cn1/Q4vHWl77KNX95jRv+9hafvbaML/+5AoAPljzFhlWvct2iFVz7l9f4/I0XWjyWzTCobDjyGlzpXgo9TmYVZTAoLZIj0NGPNwOwfZPMP6soQ0tjROKUClsRaRd1HLqPeEi9tlqt2K2dd0l6fcE8/vbrn3foGAocajt/yMTsxHH3kp9cjyvVQ3pOXwaOHEPFl58DsPbV5xlz6VWk984l2ZPB2T+5ocVjmZj4Yz3PXaLGZbMwfWAaMwo9DE6P3Lxra1iezYjcbB2c7mBGoYfpA9JwKcRQJG7ZYt0AEUlcTR2HivoAqysbKPP6MeCowTFHYjMio2OFHgejsl3a4D4GmlKvl22pjUkasd0CHoeFfY3xNTraFDg0qldyrJuSMEKdPOzuzsxu/tqe5MJ/oB6A2n278fTq0/yzjJx+LR7L7IL2SfzLSbEzbYCdhmCYtfsbKff6qWyMTJm3GQZNt2IMwMAgaJrYLAbZSVYGeRwUZyapmBVJECpsRaTD1HFIfJHU60DU949tWku99uv43DtWgUNtY23D0gGHKxl/47frmGv3V7b6uanH98K7Z1fz99W7d7T4HKON7ZPuxWWzMKpXcvONqrpAmMqGIP6QScg0sRoGDqtBtsuGO1Z724lIh6iwFZFOo45DYhuXm4IvZLK+2heV4rYp9XpktouP97U85XfO8CxuWrqa4/MGArB47rV4svtw7jW3HvN5oUCAZ++4hlDAz8X3PobN7mh1G5sCh/R6bR2H1cDAoDWbNuWccBJfrHiJkdN+RM3e3Xy49GncmVmtOs/JE6byz2ceZ8jYc3G4knnrj79v8TkGkc8fEQC33YK7DZ8FIhL/VNiKSJdRxyGxNKVeO61Gl4/cNo3UjstNYXNtAJthdMk00UBjA0//8gpSMjK56O5HsVitbXp+U+CQXsetk+WyEmzl3/HMGbPYse4TfjOhiJzCIoZN+gHl77/VqueOnH4Z+7Zu4oGLS0hKSWXsZVez6YNVx3xO0DTJdqnbIyLSXRmmqQUnIiJyqDKvjxe31hEMm526r6zVAJvFYHK+uzkgbEOVj5e31eJvoZBuy4jt6wvmsWvDWhrrauh9wol8b/Y97UrYdljgvLxUhmQozKy15q/djy8OQ5qcVoMbizNj3QwREekiunUpIiL/IpJ6bWf5tjo21fgJma2ZXHp0kfWNUOBxMLGf+5A11V0V6LPts48IBQNcfO9j7d42SoFDbZedZGV7ffxtq5Od1LbRehERSSxaNCQiIkcUre0yWhvoY09KJnBw2NC+Y4cNFY4uoeQnN/CHqy5oUzDRwRQ41HaDPI42v066WtNWYiIi0n1pxFZERI6pq1OvWxs41GfwiXy6/P/oVTCEsvdWsvnjd+lbNOyYzzn7x9cRDPh5Ytb3mfnYUlIy2jYVVYFDbVecmURpxYFYN+MQJpF2iYhI96XCVkREWqWrUq9bGzg0efY9LL7jWt599kmKSs6jqGRS88+qK3Yw/wdjuPG5d0jP6XvI88bPvImQ38cTP/8+P/vfJWx85w1WPvk7bnzu7RbPqcChtnPZLBR6HGys9ndo+npnMYjsk60txUREujeFR4mISMwpcKh72VUfYFGZl2Ac/EltBswo9JCTYo91U0REpAvp9qWIiMRcvAb7xGu74l2fFDsFaZF12bHUFFimolZEpPtTYSsiIjGnwKHuZ2KeG5sltn9Um8VgUj93TNsgIiLRocJWRERirjgzKS7WYx5MgUMd47JZmJzvpg3LrTuV3QKT890kaW2tiEiPoE97ERGJuabAoXgZtFXgUOco9DgZlpkU9eLWboFhmUkUepzRPbGIiMSMrtgiIhIXTs92xXxNZhOrAaOyXbFuRrcwLjeFoenOqBW3dgsUpTsZl5sSnROKiEhcUGErIiJxQYFD3ZNhGEzKc0dl5LZppHZinhvDiJO7JCIiEhUqbEVEJG4ocKh7MgyD8X3dTOmfitNqdPrNC6sR2ZppSv9UxvdVUSsi0hNpH1sREYkrZV4fy7bUEghH/9x2C0zpn6q1mV2oIRhm+bY6NtX4CZl0KDTM4NsR9on93FoTLSLSg6mwFRGRuPPGjjo+2d8Y1eK2aRrr+L4arY2GivoAqysbKPP6MYBgG3ojNiNSEBd6HIzKdmnauIiIqLAVEZH4Y5om/9hWx/pqX1SK26bAIa3NjL6GYJi1+xsp9/qpbAwRDJvYDAMTE5PIqKyBQdA0sVkMspOsDPI4KM5M0gitiIg0U2ErIiJxyTRNVuys7/KR26aR2nG5KSpq40BdIExlQxB/yCRkmlgNA4fVINtlwx2rTXFFRCTuqbAVEZG4Vub18eLWOoJhk1AnXrGsRiQoanK+W2tqRUREEpwKWxERiXsKHBIREZFjUWErIiIJQ4FDIiIiciQqbEVEJOEocEhEREQOpsJWREQSngKHREREejYVtiIiIiIiIpLQdBtbREREREREEpoKWxEREREREUloKmxFREREREQkoamwFRERERERkYSmwlZEREREREQSmgpbERERERERSWgqbEVERERERCShqbAVERERERGRhKbCVkRERERERBKaClsRERERERFJaCpsRUREREREJKGpsBUREREREZGEpsJWREREREREEpoKWxEREREREUloKmxFREREREQkoamwFRERERERkYSmwlZEREREREQSmgpbERERERERSWgqbEVERERERCShqbAVERERERGRhKbCVkRERERERBKaClsRERERERFJaCpsRUREREREJKH9Pwvn71ng4zs9AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAAJrCAYAAADj+n3EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3gU5drH8e/sJtl0SCAQSgQC0kR6kyYgCB4QjhQRC6I0K3pERGxY8KDIsb7Hg6igIooKNrASLEhTQIqCIgiEEiIJhPRNdrPz/hETCQFJIGF2l9/nurhIZmeeuTfZJLP33M/9GKZpmoiIiIiIiIiIiIhYwGZ1ACIiIiIiIiIiInLuUoJSRERERERERERELKMEpYiIiIiIiIiIiFhGCUoRERERERERERGxjBKUIiIiIiIiIiIiYhklKEVERERERERERMQySlCKiIiIiIiIiIiIZZSgFBEREREREREREcsoQSkiIiIiIiIiIiKWUYJSRERERERERERELKMEpYiIiIiIiIiIiFhGCUoRERERERERERGxjBKUIiIiIiIiIiIiYhklKEVERERERERERMQySlCKiIiIiIiIiIiIZZSgFBEREREREREREcsoQSkiIiIiIiIiIiKWUYJSRERERERERERELKMEpYiIiIiIiIiIiFhGCUoRERERERERERGxjBKUIiIiIiIiIiIiYhklKEVERERERERERMQySlCKiIiIiIiIiIiIZZSgFBEREREREREREcsoQSkiIiIiIiIiIiKWUYJSRERERERERERELKMEpYiIiIiIiIiIiFhGCUoRERERERERERGxjBKUIiIiIiIiIiIiYhklKEVERERERERERMQySlCKiIiIiIiIiIiIZZSgFBEREREREREREcsEWB2AiIiIeC/TNCkwwW2aeDxgs0GAYWA3wDAMq8MTERERERE/oASliIiIAIXJyCN5BSTnuEnOcXMwx01yrhu3p/S+ATaIDQmgVmgAsX/+i3bYlbQUEREREZFyM0zTNK0OQkRERKyTllfAxlQnmw87ySsovCywASfIS5Zy7H4Ou0GrasG0qR5MlMNeSdGKiIiIiIi/UYJSRETkHOQxTX7PyGdDipM9mS4MoCIuCIrGqR8RSLuYYBpGBmFTVaWIiIiIiPwNJShFRETOMfuyXHySmMnRfE+FJSaPVzRu1SAbA+pFEBceWAlnEak46rcqIiIiYh0lKEVERM4RLo/Jt0nZrE9xVlpi8nhF52kfE8zFtcMItCnRI9ZTv1URERER76IEpYiIyDlgX5aLpYmZZOR7zkpi8ngGEBlkY6CqKcVC6rcqIiIi4p2UoBQREfFz61NySdiffdaqJk+m6Px96obRPibEwkjkXKJ+qyIiIiLeTwlKERERP2WaJqv/yOW7gzlWh1JK91qhdKkZommyUqnUb1VERETENyhBKSIi4qdWJed4ZXKySPdaoXSNDbU6DPFD6rcqIiIi4luUoBQREfFD6w/lknAg2+owTknTvaWiqd+qiIiIiO9RglJERMTP7MtysWBHutVhlNk151dRIkcqhPqtioiIiPgmm9UBiIiISMVxeUyWJmbiK5NLDWBpYiYuj+6XyukzTZNVyTkk7C+sGrb61VR0/oT92axKzkH1ACIiIiJ/TwlKERERP/JtUrZlU1tPhwlk5HtYkeT909HFe3nrYlAA3x3MYfUfuVaHISIiIuLVlKAUERHxE/uyXKxPcfpMcrKICaxLcbIvy2V1KOKD1h/y3uRkke8O5rA+RUlKERERkZNRglJERMQPeEyTT3xoavfxDOCTxEw8mgor5bAvy+UTi0FB4XRvJeFFRERETkwJShERET/we0Y+R31oavfxTOBovoddGUrgSNmo36r4GtM0cXtMnAUeclwenAUe3B5TPUpFRESAAKsDEBERkTO3IcVp+crFZ8oANqTk0qhKkNWhiA/w5X6rl9QNtzocqWSmaXIkr4DkHDfJOW4O5rhJznXj9pTeN8AGsSEB1AoNIPbPf9EOO4bhK+l3ERGRM6cEpYiIiI9LyytgT6bvVx6awO5MF2l5BUQ57FaHI16sqN+qrynqt9q4qoO48ECrw5FKkJZXwMZUJ5sPO8krKEyf24AT5CWLuT2wP9tNUra7eD+H3aBVtWDaVA/W70MRETknGKbmFIiIiPi0rw5ks+5Qrs9Ukv0dA+hYI4RedcKsDkW8lMc0mbMtjXQfqp48lgFUCbIxvnkUNlXI+QWPafJ7Rj4bUpzsyXRVWDV70Tj1IwJpFxNMw8ggvWZERMRvqQeliIiIDzNNk82Hy7Zy99S2MXz0xJRKj+lMmMCmw071ZJOTUr9V8Sb7slzM2ZbG4l2ZJP5ZyV5Rr82icRIzXSzelcmcbWlaaElERPyWEpQiIiI+7EheQfE0wiKJm38gYfZMcjPTLYrqzOQVmKTl/d2ESDmXFfVb9WVF/VbFd7k8Jgn7s1iwI530/MLfV5WVNC8aNz3fw4Id6STsz9JiSyIi4neUoBQREfFhyTnuUtsSN69j+ZyncPpoghJO/LxEivqt+npq5th+q+J79mW5eOWXNDb82Qf1bL0ei86zIcXJK7+omlJERPyLEpQiIiI+LDnH7Xd/zG0GJOcqQSmlbUz1/erJIgawKdX3Fvo5161PyWXBjnRLV5AvWhF+wY501qsSV0RE/IRW8RYREfFhB3PcJVaHTZg9k+VzngJg5sB2xdvvWbqh+OOtX3/KshdnkLp3F9XiGvCPfz1Ck66XlBg3/dBBlr04g+0rE8jNTKdaXAO6X3sz7f95TYn9Vi98me8XvU5a0l7sgUFUq1ufbtfeTOvLhpZ7rCIeE5KyVRkkJZWn36ovKOq32rN2KIYWPvF6pmmy+o9cvjuYU/i51fH8+X/C/mzyCky61AzR6+gYpmlSYILbNPF4wGaDAMPAbqCvk4iIl1KCUkRExEeZplmq0vCC3gNI3fs7mz9/nwGTHiOsajUAwqIK/0/c9D1bv/qEzlfegCM0nNULX2HB5BuZ8ulGwqpGA5B5+BD/u74/GAadR4whPKoa21ctZ/Gjd+LMzqTbNTcB8MP781ky8z5a9LmcriPH48p3krxjG/t+3lCcoCzrWMdLznVjmqbeSEqxE/Vb9XVF/Vajg+1WhyKncGxy0tsUxdU1NtTiSKxhmiZH8gpIznGTnOPmYI6b5Fw37hO0Mg6wQWxIALVCA4j981+0w66/NSIiXkAJShERER9VYFLqDVitxhdQu2lLNn/+Phf0+gdRtc8r8fih3Tv416KVVItrAEB8+248f1VPNn/+Pl2uGgvAl//9N56CAu54d0Vx0rLTsNG8PXU8y196ik5DrycwOITtK5dRs2FTrpk596QxlnWs47k9hZWUdr1nlD/5a1/S5By3EpRebv0h701OFvnuYA4Ou0H7mNK/T/1VWl4BG1OdbD7sLL55YQP+bok1twf2Z7tJyv5r9oHDbtCqWjBtqgcT5dDPooiIVfytbZWIiMg5w22Wv5qsUacexclJKExoOsIjOHIgESisRPl5+VKa9egHpkl22uHif40v6oUzK4MDv24BIDgikvQ/kti3deMJz1WesSrq+Yn/Ur9VscK+LBcJB7KtDqNMEvZn+/3COR7TZEd6Hgt3pvPStjTWHcotUVn9d8nJEuMc83Fegcm6Q7m8tC2NhTvT2ZGeh0d/f0REzjpVUIqIiPgoT1nfiR2jamzdUttCIqrizDgKQHZaKs7MdH54/w1+eP+NE46RfSQVgIuvn8jO71fw4nWXUi2uAed37kmry4ZSv3Wnco91IgUeQMUs8qf/PjmdD/7vSe76YC1fzZnFL999QUBAEB2HXU/fm+8l/Y8kPn7yXnatX0lgcAg9Rt1G9+tuKT4+60gKX7wwnV+/W4YzK4Pq9RrR7dqbaHf5VcX7pCXtZebAdlx258MEh0Xw7esvkP5HErHnN2fw1JnEXdCmREyHdu9g2Yv/5vd1K3E5c6nZsCm9x99N84v7A3Bk/x6eGtSBAXc9RrdrS7YzSNz8A7NvGMAt/3mZ3neNrcSvnJwul8dkaWImBtb3nCwLA1iamMnYZlEE2vyv/HxflotPEjM5mu8pXiyror4vReMkZrrYk+miapCNAfUiiAsPrKAziIjIqShBKSIi4qNsp1FOZpzkIPPPt2fmn1nP1v8YTrvLR5xw39jzmwNQI74xkz5Yw68rvuS31V/x81dLWfvePHqPu5u+N08p11gnYve3cjk5baZpkuUqfD29fe9YajRoTP/bH+TX75bx9StPExoZxQ/vv058h+70n/gQmz5bxKfPTKNu89Y0aNcFlzOXl8f9k8P7dtN5xBii65zHT8s+ZtG023FmptP16gklzrf588XkZWfRccgoDMNgxev/x4K7RzP54/XYAwsTFn/8/iuzbxhAZI1aXDx6IkEhofy07CPevGsU1zw1jwt6DyC6bn3qte7Ips8WlUpQbvp0EY6wcOp0uVT9Vr3Ut0nZlq7WXV5Fq3uvSMrmkrrhVodTYVwek2+Tslmf4qzwxOTxisZN/3OV9PYxwVxcO8wvE74iIt5GCUoREREfFXCShMaZJDrCoqrjCAvH9BTQqNPFp9w/KCSMlv2uoGW/K3C78nlz0mi+mfsMPW+8o9xjHe9kz0/OPQVmYU9SgLgL2nLFA/8BoOOQUcwc2JZPn3mIfrc/wMWjJwLQqv8QZvS7kPUfv0WDdl344f03OLT7N66c/j/a/GMYAJ2GjmbOuMF8+eIM2g++BkfYXwmdo8kHuPvD7wmJrApA9fqNmP+v6/htzdc063EpAEueup+qsXW59c0vCQhyAND5yht56cYBfPb8o1zQewAAbQeM4IPHJ3Fo9w5qNDi/8Pm4XPy07GMu6D0AmyNU/Va90L4sF+tTnFaHUW4msC7FSeOqDr+o/tuX5WJpYiYZ+YU3KM5WsrjoPBtSnOxIz2egqilFRCqdahNERER8lN0oXJH0eEEhhSu55maml3tMm91Oi94D+Xn5UpJ3/lLq8ay0v6ZkZx89UuKxgMAgasY3wTRNPG53ucY6XoCtsD+fCJTsR9r+imuLP7bZ7dRp3hrTNGk/+Jri7SERVaheryFH9hf2Vt2+MoGI6jVo1X9I8T72wEC6jBxHfk42uzasLnG+ln0HFycnARq06QzAkQN7AMhJT2PXuu+48NJB5GVnFfdWzTl6hPMv6s3hvbtIP3QQgAsvHUyAI5hNny0qHu+3NV+TffQwbf4xvNTzE+t5TJNP/pza7YsM4JPETJ/vo7g+JZcFO9ItrWItqkpdsCOd9Sm5FkUhInJuUAWliIiIjzIMg9iQAPZnl1xko3azVkDhCtotL70Ce2BgcdVXWfSb+CC/r1/Fi6P60+GKa6kZ34ScjDSSft3Czu9X8NA3OwCYe8twIqrXoF6rjoRXiyFl9w7WvPMqTbv1La5GK+tYx4sNCdCUVyl2bL/VqrF1SjwWHB5BgCOYsKhqx22PJCc9DYCjyfupFheP7bgWB0UVjUcP7iuxvWqtkr1ai5KVuRmFSf/D+3ZjmibLXnyCZS8+ccKYs4+kUKVGLUIiqtCsx6Vs/vx9Lr1lKgCbPltEZI1axHfoDqjfqrf5PSOfo/mn0eTXS5jA0XwPuzJcNKoSZHU45WaaJqv/+GvldKvTrEXnT9ifTV6BSZeaIfr7JCJSCZSgFBER8WG1QgNIynaXWJE07oI29L3lXr5f9Dq/rf4K0+PhnqUbyjxmRLUa3Dr/C5bPmcXWrz/h+/fmEVo1ihrxTek/8aHi/ToNvZ5Nny1i5YLZ5OdkE1mjFl2uGkevsXeVe6xj2QyoHaapdPKXY/OKNlvpTN7xicdip1lBZpzgHMeOV9Rftft1t9K4S68T7lotLr744zYDRvDTso9J3PwDsY2a88u3X9B5+A3FcavfqnfZ8GevQ6sTY2fCADak5PpkgvLY5KS3KYqra2yoxZGIiPgfJShFRER8WGxoACeq8+k9dhK9x04qsW3GjyknHGPKJz+W2hYeHcPge59k8L1PnvTcHYeOouPQUaeMsSxjHctjFlZQihQ5036kVWPrkrxzGx6Pp0QyM2V3YQVv1Vpx5Rovum49AOwBAWXqr9q4S2/Coqqz6dNFxF3YDpczhzYDhhc/rn6r3iMtr4A9mS6rwzhjJrA700VaXgFRDt8pz11/yHuTk0W+O5iDw27QPibE6lBERPyK7teKiIj4sNhQ/0zk+evzktNjN86sJ2mTbn3ITD3Eli8/LN5W4Haz+p1XCAoNI75dl3KNFx4dQ3z7rnz//htkpCSXevz4/qr2gABa9b+Cn5Z9zIaPFxLbqDm1Gl8AqN+qt9mY6vTZ3pPHM4BNqb6z0M++LBcJB7KtDqNMEvZnsy/L9xPZIiLeRAlKERERHxbtsOPws+V/HXaDKIcuUeQvhmEQHnj6r4mOQ0ZRo0FjFk27nU+fmcbqha/w6s1DSdz0A5feMrXECt5lNejeJ8E0eW7ExXz+wmP88P58vnrlP7w2cSSv3jSs1P5tB4wg++hhdq1fSet//PW4+q2WzWuvvYZhGOzZs6fSzmGaJpsPO712aveccYOZM25wmfc3gU2HnZiVsFhORX8/XB6TpT60MJEBLE3MxOXx1leLiIjv0dW/iIiIDzMMg1bVgn3mTd2pGEDrasFK2EgpZ5KgDAwOYdzLH9L6sqH8uOQdPn1mGrnpRxn28PN0vXrCaY1ZM74Jt725jCbd+vDjkoV8/MQUvl/0OoZh45Lxk0rtX6d5K2o2bIphsxUnKNVvtfJt27aNhx9+uEyJtCN5BeQVWJtw+mPXdhJmzyQtaW+FjJdXYJKW5/0L/nyblG3pat3lVbS694ok36j4FBHxBYZZGbfURERE5KxJyyvgpW1pVodRYSY0j/Kpnmlydmw94mRJYpbVYZyR50f2IjQyirEvvV+8bVC9CJpHOyyMyjcUFBTgcrlwOBzluoGxaNEihg8fztdff03Pnj3/dl9veI39lPAxb90zhnFzPiS+fdcSj7ld+QAEBJZv4ZvKeI299tpr3HDDDezevZv69euf0Vj7slws2JFeMYFZ4JrzqxAXrhsNIiJnShWUIiIiPi7KYad+RKDPV1EaQIOIQCUn5YR8vS/p/m2bOLj9Z9oMvLLEdl9/XmeL3W4nOLhyq6uTc9xlfnOUn3v2K+cCAoPKnZy0GZCc666kiM6cxzT5xIemdh/PAD5JzMSjmh8RkTOmBKWIiIgfaBcT7DNT407GBNppVVQ5CV/tt5q88xc2LFnI4ofvIKJ6TVpe+s/ix9RvteyO73lYv359Bg4cyMqVK+nYsSPBwcHEx8fzxhtvlDhm+PDC1dJ79eqFYRgYhsE333xTvM9nn31G9+7dCQsLY2CTWsydOJI/fv+1xLnfm3Yb07rW4/C+3cy7/SqmdavPO/ffDMDUtjF89MQUtn79Kc8O784DnerwzLBubF+1vMQYaUn7+HDGPfznis48eFEcj/ZqzIJ7biwxlXvDx2/z1j1jAHh5/D+Z2jaGqW1j2LV+FXDiHpRZR1JY/MgdPN6nOQ92rstzI3qyYcnC4sc9Jmze/juGYTBr1izmzJlDw4YNcTgcdOjQgXXr1pUYb8uWLYwePZr4+HiCg4OJjY3lxhtv5PDhw2X+XpXH7xn5HPWhqd3HM4Gj+R52ZWjBHBGRM6VbtiIiIn6gYWQQVYNspPvoGz0DqBJkIz5S0+TkxIr6ra47lOtTr/GfE5bw1cuzqF6vEVfNeIlARzCgfqsVYefOnQwbNowxY8Zw/fXXM3fuXEaPHk27du244IIL6NGjBxMnTuT555/nvvvuo1mzZgDF/8+fP5/rr7+efv368cQTT/D576msee81Zt84kIlvf0VU7fOKz+UpKGDurVdSv00n/nHnIwQG/3UzJXHT92z96hM6X3kDjtBwVi98hQWTb2TKpxsJqxoNwP5tG9m7+QdaXnoFVWrWJi1pL98veo054/7JvxatJCgklAZtL6LLyHGsfvtlet54JzUaNAYgpsH5J3z+LmcuL4/7J4f37abziDFE1zmPn5Z9zKJpt+PMTC/ur5riLKygfOutt8jMzGTChAkYhsHMmTMZMmQIu3btIjCw8HfvsmXL2LVrFzfccAOxsbFs3bqVOXPmsHXrVtauXVvhr9cNKYWrpvvSz/TxDGBDSi6NqpSvulVEREpSglJERMQP2AyDAfUifLaPlwkMrBeBTcka+Rttqgfzw6Fcq8Molz433UOfm+4ptd0EWlcPPvsB+ZHt27ezYsUKunfvDsCVV15JXFwc8+bNY9asWcTHx9O9e3eef/55+vbtW6IHZVZWFhMnTmTs2LHMmTMHt8cke/NhWg8cwdNXXMTXrz7LkAefLt7fnZ/HhX0H0f/2B0vFcWj3Dv61aCXV4hoAEN++G89f1ZPNn79Pl6vGAtC0W18u7DOoxHHNevTjf6Mv4+flS2k78Eqi69anfpvOrH77Zc7v3LNUD8rj/fD+Gxza/RtXTv8fbf5ceKnT0NHMGTeYL1+cQfvB1+AIC6do3Z+9e/eyY8cOoqKiAGjSpAmDBw/miy++YODAgQDccsstTJpUcpGnzp07M3LkSFauXFn8ta4IaXkF7Mn0/cpDE9id6SItr0AtSkREzoDmlIiIiPiJuPBA2sf43oreBtAhJpi6WmRATkH9VuVYzZs3L5Ewi4mJoUmTJuzateuUxy5btoyjR48ycuRIUlNTSU5JITvtMDabnbgWbdm1fmWpYzoPu+GEYzXq1KM4OQlQq/EFOMIjOHIgsXjbsRWXBS4X2UePUC2uAcERVUj6dUuZnu/xtq9MIKJ6DVr1H1K8zR4YSJeR48jPyWbXhtUl9h8xYkRxchIo/tod+/UKCfkrTqfTSWpqKp07dwbgxx9/PK04T2ZjqtPnf5aLGMCmVKfVYYiI+DQlKEVERPzIxbXDiAyy+cybPgOIDLLRo3aY1aGIj1C/VSly3nnnldoWFRVFWlraKY/dsWMHAL179yYmJoa42JpMv6Qp0y9pyo6135CVllpif1tAAJE1a59wrKqxdUttC4moijPjaPHnLmcuy/73BE9c1ooHO9dheu8mTL+kKc7MdJxZGaeM90SOJu+nWlw8NlvJt3Q1/pwSfvTgvhLbj/96FSUrj/16HTlyhDvuuIOaNWsSEhJCTEwMDRoUJl/T0yuuQt80TTYfdmICCbNnMrVtDNlpf9/n8skBbXlv2m3Fn+9av6pEj04o7Bf65IC2JY6b2jaGhNkzKyz2EzGBTYedmFosR0TktGmKt4iIiB8JtBkM9KGp3kVTuwNtvpJSFaup36oUsdtPXIFaliSRx+MBCvtQxsbGkl/g4f3dmcWP2+wl3yYFBAaVSgQWMU6y3TzmFfrxzKls+Phtul49gfNatic4PBLDMHh76nhM03PKeCtCWb5eV155JatXr2by5Mm0bt2a8PBwPB4P/fv3L/6aVYQjeQXkFfjiT/DJ5RWYpOV5iA5WZbSIyOlQglJERMTPxIUH0qduGAn7s60O5ZT61A0jTlO7pRzUb1XK42SLujRs2BCAGjVq0KdPH9weky2bK2elaihcLKntwBEMuOvR4m2uPCfOzJKv4/IsQlM1ti7JO7fh8XhKJE9TdhdWh1atFVeuGNPS0li+fDmPPPIIDz30UPH2omrTipSc4y73MZM+WINhlH8C4KNr9pVKOFeW5By3EpQiIqdJU7xFRET8UPuYELrXCrU6jL/VvVYo7TXNVU6Dr/ZbNU0T+/5fSN25ldxc31rsx1eFhRW2jzh69GiJ7f369SMyMpJ///vfuFwu7AYEHPPO6Pgp3mfKsNvhuMrONQtfwVNQUGJbYHDh7+3czFMn4Jt060Nm6iG2fPlh8bYCt5vV77xCUGgY8e26AGAv4w9KUYXl8RWozz77bNkGKIfkHHe534gGBDmwB5b/hlagIxh7QOUnKG0GJOeWP/EqIiKFVEEpIiLip7rULEz+fXcwx+JISutRK5SLaio5Kafv4tph7EjPJ8NHpnobwJGkvTx7ZT/uceZis9mIi4ujZcuWtGjRgltvvZU6depYHabfad26NXa7nSeffJL09HQcDge9e/emRo0a/O9//+O6666jbdu2XHXVVfzuCWNP4l5+XbmMeq06MvjeJyssjqbd+7Lx0/dwhEdSM74Je7esY+cPKwitGl1iv9pNWmCz2/n2tRdwZmUQEOSgYYduhEfHlBqz45BR/LD4DRZNu52kXzZTtVYcPy9fQuKmHxh493QcYeEAxASX7S1fZGQkPXr0YObMmbhcLurUqcOXX37J7t27z/wLcJyDOW6OnzCeffQIHz1xD7+t/gpbQCBt/jGM/hMfItBRuNr9kwPaEt++C8Mf+b9ynWtq2xguGT+ZPjfdU7wt6dctfPF/j5O4+QdMj4e4Fu249Nb7OK9l++J9Nnz8NosensiEuUv5eflSNn3yHvnOXM6/qCdXPPAfwqOqlziPx4SkbN9flVxExCqqoBQREfFThmHQNTaUPnULK4isrjYzKKzM+frFx9mV8D4ul97Iyekr6rfqC8lJKJzaXT3pZ1zOwspJj8dDYmIiS5YsYcaMGSQkJFgboJ+KjY1l9uzZHDp0iDFjxjBy5Ei2bdsGwNVXX83y5cupU6cOTz31FAsen8qWLz6gduMWtB90dYXGcfnkf9NmwJVs/mwxnzzzEBmpfzDmf4sJCim5QFhE9Zr8876nyE5L5f1H72Th1PEc2vXbCccMDA5h3Msf0vqyofy45B0+fWYauelHGfbw83S9egJQWNVXM7TsNSlvvfUW/fr147///S9Tp04lMDCQzz777PSf+AmYpnnCSsO3p4zFnZdHv9seoEnXPqx++2U+mD6pQs8N8Mfvv/LSmMs5+NtWelx/G73HTeJI0l5eHv9P9v60odT+S2ZOJfm3rfQefzedh4/m1xVf8PET955w7ORctxbKERE5TYap36Ai4udM06TABLdp4vGAzQYBhoHdKF+vJxFfti/LxdLETMuqzYpW69628EX+b/qDAMTExHDbbbcxYcIEatasaUFU4g/Wp+T6TL/VllXsxMfHc+DAgeLtdrudTp06sWLFipMuYiJnx9YjTpYkZlkdRoUbVC+C5tEOq8Mo5vaYzP1S72YAACAASURBVDqm32fC7Jksn/MUzS7uz6hn5hdv/2jGPax9bx4TF35DrcYXlKqg3LV+FS+P/yfj5nxIfPuuQOEq3rvWr2bKJz8Wj3N8BeX8SdezfWUCdy1eRXTd+gBkpCTz9JCLqN3kQsa/8jHwVwVlo04Xc+OL7xVfMy79z4OsWfgyD371G8ERkaWe3+RW1bBr4TcRkXJTBaWI+BXTNDnsdLP1iJPl+7N487ej/GfLYWZtPsyzW47w/M9HeHbLEWZtPsx/thzmzd+Osnx/FluPODns1F1v8V9x4YGMbRZFu5jCqXJn661T0XnaxwQztlkUI/r1LH4sJSWFRx55hLp163LdddeRkpJylqISf+JL/VaDgoJ47LHHSjxWUFBA3759T7pCtJw9seWoNPQl3va83Ce51up85Y0lPr/oqnEAbF9VcdXFnoICdqz5huY9LytOTgJExsTSqv9Q9mz6HmdWZoljOg65rsQN7QZtOuMpKCDt4L4TnuNkz09ERP6ed/21EhE5TWl5BWxMdbL5sJO8gsILQxuU6m90LLcH9me7Scr+qw+Sw27QqlowbaoHE+VQJYv4l0CbQZ+64TSp6uCTxEyO5nsKp11XwrmKxq0SZGNAvYjilbo7dOhAUFAQ+fn5QOE0V4/Hw5tvvsmVV17J5ZdfXgnRiL/zpX6r1113HY8//ji///47AAMGDOCRRx5h/fr1zJs3j5iY0r0G5eyIdthx2I3i6wh/4LAbRDm8K/ntOcnFWfXz4kt8Xq1ufQybjbSkEycCT0d2WiouZw4x9RuVeqxGg/MxPR7S/zhAcHjT4u1VYuuW2C8ksioAuZklF14qUuABdAkpIlJu3vXXSkSkHDymyY70PBbuTOelbWmsO5Rb4k3F3yUnS4xzzMd5BSbrDuXy0rY0Fu5MZ0d6Hh7dCRc/ExceyPjmUQyLj6R+RGHisKIqKovGqR8RyLD4SMY3jypOTgI4HA46depU4hibzcYrr7yi5KScNm/stwqF07q7xIaWqL4KCAjg8ccfB2DChAksXbqUpUuX8v3339OqVSuWL19uQcQCha+jVtV8b3X4kzGA1tWCva6dTZmLhb0kbtvJWi+c5PLQrnfYIiKnRRWUIuKT9mW5SlSAQcVVgRWNk5jpYk+mi6rHVYCJ+AObYdCoShCNqgSRllfAplQnm46tQDYKVyQ99Th/7eewG7SuFkzrU1Qg9+rVi9WrVwOFbRliYmKUnJQK0T4mhJohAV7Rb3Xg3/zdGD58OFWqVKFnz55AYRXlli1buO666+jbty9Tpkzh0UcfJTBQf3fOtjbVg/nhUK7VYVQIE2hdPdjqMEoJOEniMXXvLqLr1Cv+/PC+3ZgeD1G14yrs3GFR1QkMDiVlz85Sj6Xs2Ylhs1GlZp0zOsfJnp+IiPw93d8REZ/i8pgk7M9iwY500vMLax8r6w1o0bjp+R4W7EgnYX8WrrJkbER8TJTDTq86Ydx5YTTjm0UxqF4E7WNCqBsWQMBJrhQCbFA3LID2MSEMqhfB+GZR3HlhNL3qhJ2yPUKPHj0oKCjgvPPOK64Wu+KKK3A6nRX91OQc5C39Vv/uppbNZqN///4EB/+VPKpVqxZffvklM2bMYNasWXTr1o1du3ZVctRyvCiHnfoRgT5fRWkADSICvbJdjd3ghH9b1r47t8Tnaxa+DECTrpdU2LltdjvnX9STX779nLSkvcXbMw8fYtPni6nfuhPB4RGnPX6ArfDGnYiIlJ8qKEXEZxy7CjFUXmLyeEXn2ZDiZEd6/t9WxYj4MsMwiA62Ex1spzmFK76aponHLGz6X+ApnLoWYBjYDE572mDPnj15+eWXGTJkCNHR0Xz88cdcfPHFjBkzhjfffNPrpiOK7/GGfqunw2azMWXKFHr27MnIkSNp3bo1s2fP5uqrr66weOXU2sUEsyfTZXUYZ8QE2sWEnHI/KxiGQWxIAPuz3SW2px3Yyxt3Xsv5XXqzd8t6Nn36Hq0uG0qtxi0q9PyX3jKVnWu/YfaNA+k8/AZs9gB+eP8NCvLz6X/HtDMaOzYkQH/DREROkyooRcQnrE/JZcGOdMum7EHhxX7Gn9WU61P8Y/qXyKkYhoHdZuCw2wgNtOGw27DbjDN6A2a32xk7dizR0dEAdOzYkddff5233nqL6dOnV1ToIpb2Wz0TnTp1YtOmTVx++eVcc801jB49mszMzFMfKBWiYWQQVYNsPltFaQBVg2zER3rvzdRaoQGl3oiOfOJl7EFBfPHCY2xfuYyLRoxh6EPPVvi5azZsyoRXl1CzYVO+mfccy+fMompsXca+9AHnXdjutMe1GVA7zHu/5iIi3s4wTa3+ICLeyzRNVv+R65Urs3avFUqXmiG6Uy5SQaZPn86DDz7IwoULGTFihNXhiB8q7reamkvenyukVWa/1TNlmibz58/nlltuoXbt2rz99tu0a3f6CRQpu31ZLhbsSLc6jNN27flVqOvFsz22HnGyJDHL6jAq3KB6ETSPdlgdhk8wTZOCP2doeDyFiycFGAb2M5ihISK+TQlKEfFqq5JzvDI5WaR7rVC6xoZaHYaIXzBNk1GjRrFo0SK++eabUqt9i1SUESOu4qu163j4mf/SrFN3krJdJOe6cXtK7xtgK5y2WTsskNiQAGJDA4hy2M7qG+gdO3Zw1VVX8dNPPzFjxgz+9a9/YSvzUshyuhL2Z7EhxWnZzI3TYVDYB/WSuuFWh/K3DjvdvPzLUavDqHDjm0URHex9fT+tZpomR/IKSM5xk5zj5mCO+5S/c2uFFv6+jQ0NINphV9JS5BygHpQi4rXWH/LOysljfXcwB4fdoL2X9nkS8SWGYfDKK6+we/duBg0axA8//EC9evVOfaBIObzxxhu8++47AOxatYxbh/QHSvZb/frbFfxz0OW48/JYvXoVHVt1sDJkzj//fNasWcN9993H3XffzbJly3j99depWbOmpXH5u4trh7EjPd/S9jLlUbSCfI/aYVaHckrRDjsOu0FegS98ZcvGYTeIcujGwbHS8grYmOpk82Fn8ffaBpwgL1nM7YH92W6Sst3F+znsBq2qBdOmkqvWRcRaqqAUEa/ka1Orrjm/ihbOEakgKSkpdOrUifDwcFauXElkZKTVIYmfWLduHV27dsXlKlwApXXr1mzcuLHUfh07dmTdunUA1KlTh/3795/VOP/OF198wahRo4DCZGu/fv0sjsi/6Xqk8nx1IJt1h3J9Ivl7KgbQsUYIvep4f3K4snlMk98z8tmQ4mRPpqvCFigrGqd+RCDtYoJpGBmETVWVIn5Ft3hExOu4PCZLEzN9pjm9ASxNzMRVliZmInJKMTExLF26lMTEREaOHElBQYHVIYkfOHjwIAMHDsTj+at2Z/PmzaSnl0w+ZWRkFCcnAQ4cOMDMmTPPWpyn0q9fP7Zs2UKbNm3o378/kydPJj8/3+qw/FZceCB96vpG0qlP3TCfSU4CtKke7BfJSShMnLWuHmx1GJbbl+VizrY0Fu/KJDGz8EZQRX2Pi8ZJzHSxeFcmc7alsS/LVUGji4g3UIJSRLzOt0nZPjOdCv5a3XtFUrbVoYj4jebNm/Pee+/xxRdfcPfdd1sdjviBIUOGcOjQoRIJb9M0WblyZYn97r333lLH3n///WRlec+CHjVr1uTTTz9l1qxZPPfcc3Tp0oUdO3ZYHZbfah8TQvda3t1vunutUJ9rNxPlsFM/ItBnbkifjAE0iAg8p6ceuzwmCfuzWLAjnfT8wptAlXUdXzRuer6HBTvSSdifpSIBET+hBKWIeJV9WS7W+1hDeii8WFqX4tSdXJEKdOmll/LCCy/w7LPPMnv2bKvDER/m8XgIDQ3Fbv8rgVC0yMzXX39dYt/58+eXOt7tdnPllVdWbpDlZLPZmDRpEmvWrCE9PZ02bdrwxhtvWB2W3+pS03uTlD1qhdKlpm8lJ4u0i/H9KkoTaOdjyeGKtC/LxSu/pLEhxQlUXmLyeEXn2ZDi5JVfVE0p4g+UoBQRr+ExTT7xoandxzOATxIz8ai1r0iFufnmm5k4cSK33XYby5Ytszoc8VE2m43ly5eTmZnJ0KFDqV69OoMHDyYmJqbEyrCJiYknrZT0pgrKY7Vr144ff/yRYcOGcf3113PttdeSkZFhdVh+xzAMusaGFk/3tvpapej8feqG0SU21GdXOG4YGUTVIJvlX8/TZQBVg2zER/rO1PqKtD4llwU70i2d+VQ0k2nBjnTWp+RaFIWIVAQtkiMiXmNHeh6Ld2VaHcYZGxYfSaMqQVaHIeI3CgoKGDRoEKtWrWLNmjU0a9bM6pDEh3Xo0IFmzZqdsNrQ4/Hw0ksv4Xa7+fbbb1m8eDEbNmygbdu2FkRafgsWLODmm28mJiaGt99+m44dO1odkl/al+ViaWKmZUkZ0/RQ1RHAwHoRPtFzctOmTSQkJJCWlsaRI0dIS0vj4MGDbNu2jdatWzP3g099aiGi4117fhXq+sD3oSKZpsnqP3L57mCO1aGU0v3PimJfTdqLnMtUQSkiXmNDitNn76AXMYANunsrUqHsdjtvv/02cXFxDBgwgJSUFKtDEh+Vm5vLpk2buOiii074uM1m4+abb+b222+nd+/eACQlJZ3NEM/INddcw8aNG6levTpdu3Zl5syZJRYFkooRFx7I2GZRtIspXBTlbF27GACmyaoFc7gw4zefSE4CPP7440yePJmnnnqKV199lXfffZcVK1aQmppK1apViQsPpH1MsM9dAxpAh5jgcy45CXhtchLgu4M5rP5D1+IivkgJShHxCml5BezJdPlFH6LdmS7S8rTqsEhFioyMZOnSpWRnZzNkyBDy8vKsDkl80Pr163G73SdNUB6rfv36AOzZs6dyg6pgDRs2ZOXKlUyaNIkpU6bQr18/Dh48aHVYfifQZtCnbjjXnF+FKkGFb6kqK8FWNG6VIBtXNYwgZeUSxoy+ntxc30jCTJkyBcMwcLlcuFwuTNPEMAwaNGhQ3PP14tphRPrQVG8DiAyy0aO2b6zwXpHWH/Le5GSR7w7maLq3iA9SglJEvMLGVN+vnixiAJtSnVaHIeJ36tWrx0cffcS6desYN24c6lIj5bV27VrCwsJo0aLFKfdt2LAhAAcOHKjssCpcYGAgTzzxBMuWLePnn3+mZcuWfPrpp1aH5ZfiwgMZ3zyKYfGR1I8orKSrqOuZonHqRwQyLD6S8c2jqF8lmNdee43ExEQeeOCBCjpT5YqNjaVBgwalts+fP5/g4MIq1ECbwcB6ET5zo9oEBtaLINDmL1evZbMvy0XCgWyrwyiThP3ZWjhHxMcoQSkiljNNk82HvWvl7oTZM5naNobstMPlPtYENh12KnkiUgk6d+7Ma6+9xvz585kxY4bV4YiPWbNmDR06dCAgIOCU+xYlVHxpivfx+vTpw5YtW+jYsSMDBgzgX//6l6qPK4HNMGhUJYgRjaowoXkUHWuE4LAbxzxe1nH++thhN+hYI4QJzaMY0agKjaoEYfuzp16zZs147LHHeOaZZ1i1alVFPpUKlZeXx4wZM2jSpAkZGRk4HA6gsJXCrbfeSteuXUvsHxceWLwIkbfrUzfMZ6bYVxSXx2SpDy1maQBLEzNxeXQ9LuIrlKAUEcsdySsgr8C/Lh7yCkzS8tT3S6QyXHXVVTzyyCPcf//9vPfee1aHIz7CNE3WrFlTpundAEFBQRiGwR9//FHJkVWumJgYli5dyrPPPsuLL75I586d2b59u9Vh+a0oh51edcK488JoxjeLYlC9CNrHhFA3LICAk7zzCrBB3bAA2seEMKheBOObRXHnhdH0qhNGlMN+wmPuuusuOnXqxA033EBOjndNtzVNk6VLl3LBBRfw0EMPcdNNN7Fz505mzpwJFFZUnuwGU/uYELrXCj2b4ZZb91qhtI8JsTqMs+7bpGxLV+sur6LVvVck+UbFp4jAqW8fi4hUsuQct9UhVIrkHDfRwSd+YyEiZ+bBBx/k119/ZdSoUdSvX58OHTpYHZJ4ucTERJKTk8ucoAQICAggNTW1EqM6OwzD4I477qBHjx6MHDmStm3b8sILL3DDDTdopdtKYhgG0cF2ooPtNKewctA0TTwmuE2TAg/YbRBgGNgMyv19sNvtvPbaa7Ru3Zr777+fZ555pjKeRrn99ttv3HnnnXz22Wf06dOHJUuW0KxZMwBuueUWtm7dyqhRowgPDz/pGF1qFib/vLHPYY9aoVxU89xLTu7LcrE+xffaF5nAuhQnjas6zrmKVxFfpApKEbFcco7b734Z2QxIzvXPxKuINzAMg7lz59KmTRsGDRrE3r17rQ5JvNzatWuBwjYBZRUcHMzRo0crK6Szrk2bNmzYsIGRI0cyZswYRo4cSXp6utVhnTMMw8BuM3DYbYQG2nDYbdhtxmkniZs0acL06dN57rnn+O677yo42vLJzMxkypQptGjRgl9++YX333+fL7/8sjg5CYUJ/5deeqnU1O7jGYZB19jQ4uneVqfQi87fp24YXWJDz7mkvsc0+cSHpnYfzwA+SczEo9ZLIl5PFZQiYrmDOW7KOhk6/dBBEv73BNtXLScnPY3ImFgad+nNwMmPk5+TzTdzn+W3NV+TdiARw2ajXquO9J/4ILUal1wQYfXCl/l+0eukJe3FHhhEtbr16XbtzbS+bGiJ/XIz0/n02Wls+/ozTExa9BrAoHufJCjk76cfeUxIylZjbpHKFBwczIcffkinTp24/PLLWblyJREREVaHJV5qzZo1NGzYkJiYmDIfExYWRmZmZiVGdfaFhYXxyiuv0LdvX8aPH0/r1q156623ylVZKt7jzjvv5P333+eGG25g8+bNhIWd3R6Opmny1ltvMXnyZNLS0njggQeYPHkyISFnXmXYPiaEmiEBLE3MtGxqcdFq3QPrRZyzFXi/Z+RzNN932xaZwNF8D7syXDSqEmR1OCLyN/ytaElEfIxpmmWuNMxISebF6y5l8xcf0vLSf3L55H/TZsBwdm9YjcuZy5EDiWz9+lOadu/LgLseo/uo20je+Qtzxg4mIyW5eJwf3p/Pkpn3USO+MQMnTafPTfdQq0kL9v28odQ53753LHnZWfS7/QFa9h3MhiULWT5nVpniTc51a6EckUpWo0YNlixZwu7du7nmmmsoKCiwOiTxUuXpP1kkIiLC6/r7VZQRI0awefNmYmNj6d69O48//rh+fnyQ3W5n3rx5HDhwgPvuu++snnvjxo10796da6+9lq5du/Lrr7/y0EMPVUhyskhceCBjm0XRLqZwte+zVcVXdJ72McGMbRZ1ziYnATakOH22erKIAWxIybU6DBE5BVVQioilCkxwl/Gm7OcvPEbm4UPc8sYX1G3eunh735vvxTRNYhs1Y9KH32Oz/XXvpe2A4Tw9pAvrPlzAJeMmAbB95TJqNmzKNTPnnvKctZtcyNBpzxV/nnM0jfUfLeCyOx465bFuT2Elpd3Xr+pEvFyLFi149913GTBgAPfccw//+c9/rA5JvExubi4bN25k9OjR5TouKiqKPXv2VEpM3qB+/fqsWLGCRx55hAcffJDly5czf/586tSpY3VoUg6NGzfm3//+N3fddRdDhgzh4osvrtTzpaam8sADDzBnzhyaNWtGQkICl1xySaWdL9Bm0KduOE2qOvgkMZOj+R4MqJSKyqJxqwTZGHAOV00WScsrYE+m788IMoHdmS7S8gpOuvCUiFhPFZQiYil3GSsMPR4P2775jGY9+pVIThYxDIOAIEdxctJTUED20SMEhYRRvV4jkn7dUrxvcEQk6X8ksW/rxlOet+Ow0SU+r9+mMzlHj+DMKtuUv7I+PxE5M/379+e5557j6aefZs6cOVaHI15mw4YNuN3ucldQVqtWDbfbv/sJBwYGMn36dJYvX8727dtp1aoVS5YssTosKaeJEyfSrVs3brzxRrKzK2fVYrfbzX//+18aN27MwoULeeaZZ9i0aVOlJiePFRceyPjmUQyLj6R+RGHisKLuAReNUz8ikGHxkYxvfm5XTRbZmOr71ZNFDGBTqu8t9CNyLlGCUkQs5Slj9WR2Wip5WZnUbNj0b8bysPLN2cwa3JEHO9dheu8mTL+kKck7tuLMzCje7+LrJxIUGsaL113KrMEd+WjGPezZ9P0Jx6waW7KKJCSyCgC5GWVbNKHAd1v2iPic2267jVtvvZVbb72V5cuXWx2OeJG1a9cSGhrKhRdeWK7jatasiWmafjvN+1i9evVi8+bNdO3alUGDBnH77bfjdOrNvK8omup98OBB7r333gof/9tvv6Vdu3bcfvvtDBkyhN9++4077riDwMCzm8SzGQaNqgQxolEVJjSPomONEBzHTFWxlTGbdux+DrtBxxohTGgexYhGVWhUJQjbObYQzomYpsnmw86z1vtz1/pVTG0bw671qyplfBPYdNip9ksiXkxTvEXEUrYKvE3yzdxnWPbiE7QffDV9b5lKSGRVbDYbS2c9gGn+lSmsEd+YSR+s4dcVX/Lb6q/4+aulrH1vHr3H3U3fm6ccF9/JpoGU7eLGrttAImfVs88+y86dOxk6dChr166ladOT39SQc8eaNWvo0KEDAQHlu/StXbs2ALt27aJFixan2Nv3Va9enQ8//JAXX3yRSZMm8e2337Jw4UKaN29udWhSBo0aNeKJJ57gjjvuYMiQIfTq1euMx9y/fz+TJ09m4cKFdOrUie+//54OHTpUQLRnLsphp1edMHrWDiUtz0NyjpvkXDdJ2S6Sc90nbCEUYIPYkABqhwUSGxJAbGgAUQ7bObcyd1kcySsgr8C/knl5BSZpeR6igzXNW8QbKUEpIpYKKOMFYVhUdRzhEfzx+68n3efnhCXEt+9WomckFK7EHVo1usS2oJAwWva7gpb9rsDtyufNSaP5Zu4z9LzxDgIdweV/IidR1ucnIhUjICCAd955hy5dujBw4EDWrl1L9erVrQ5LLGSaJmvWrOH6668v97HnnXcecO4kKKGwZcqtt95K9+7dGTlyJO3bt+e5555j7NixSuL4gNtuu43Fixdz44038tNPPxEeHn5a4zidTp5++mkef/xxwsPDmTdvHqNGjSrR59tbGIZBdLCd6GA7zXEAhT/3HrOw1U6Bp/CGcYBhYDPQ67iMknP8s71Fco5bCUoRL+V9f2FE5JxiNwrvZp+KzWajec/L+GXFF+zftqnU46ZpYtjsHF/Z+NOyj8g4dLDEtuyjR0p8HhAYRM34JoUXsxXYayzAVvapRiJScapUqcLSpUvJyMhgyJAh5OXlWR2SWGjv3r0cPHiw3P0noXARGYDExMQKjsr7tWzZknXr1jFq1CjGjx/P8OHDSUtLszosOQWbzcbcuXM5dOgQ99xzT7mPN02TJUuW0KJFC6ZNm8ZNN93Eb7/9xujRo70yOXkyhmFgtxk47DZCA2047DbsNkPJyXJIznH7XbLAZkByrn8mXkX8gSooRcRShmEQGxLA/uxTXyz0u+0Bdq79hjljB9NxyHXUaNCYjNQ/+DnhYybMXUrT7pfy1cuzWDTtds5r1ZHkndvY9NliouvWLzHO3FuGE1G9BvVadSS8Wgwpu3ew5p1XadqtL46w06s0OJHYkABdCItYpEGDBnz44Yf06tWLCRMmMG/ePP08nqPWrl0LQOfOnct9bHx8PAD79u2r0Jh8RWhoKLNnz6Zv376MHTuWVq1a8dZbb9GtWzerQ5O/0bBhQ5588kluv/12hg4dWuZFbIr6Sn7++ef07duXJUuW0KxZs0qOVrzVwRw3x86Sz8vO4ssXZ7Dtm8/ITP2D4PBIajW+gP4TH6ROs1Y8OaAt8e27MPyR/ysxzpxxgwEY//JHxdvS/0ji4yfvZcfabwkKCaX1ZUNp3KV3qRh2/7iG1QtfZt/PP5J1OIXw6Oq0uORy+t12P4HBIcX7vTftNn5OWMJdH6zl4yemsPP7bwl0hND28hH0n/gQNnthxaTHhKRs31+VXMRfKUEpIparFRpAUnbJi6ATqVKjFre8/gVf/m8Gmz5bTF52JpE1atG4S28Cg0PoNeZOXM4cNn22mC3LPqJ20wsZ/dxbfP7CYyXG6TT0ejZ9toiVC2aTn5NNZI1adLlqHL3G3lVhz8lmQO0wrf4oYqUuXbowd+5crr32Wpo2bVopC0eI91uzZg3x8fHUqFGj3MfWq1cPgKSkpIoOy6cMHTqUDh06cM0113DxxRczbdo07r//fux2TZP0VrfccguLFy9mzJgx/PTTT0RERJx038zMTKZPn84zzzxDnTp1+OCDDxg8eLBu6pzDTNMsVWn4wb/v5ueEJVw0Ygw14huTczSNxE3fc2j3Duo0a1XmsV3OXF65aQhHkw/Q5apxRMbUZOMn7/H7upWl9v0p4WNczlw6DxtNaJVo9m39kTXvvEL6oSSumTm3xL4ej4d5t15JXIu2/ONfj7Dz+2/5bv6LRNetT+fhNxTvl5zrLpx5pde3iNcxTC1jJSIW23rEyZLELKvDqHCD6kXQPNphdRgi57xp06bx6KOPsnjxYoYMGWJ1OHKWderUifPPP58333zztI632Wz06dOHL7/8soIj8z1ut5vp06fz2GOP0a1bN958803i4uKsDktOYvfu3Vx44YVce+21zJ49u9TjpmmyYMEC7rnnHo4ePcrUqVO5++67CQkJOcFoci5xe0xmbT5cYtsjPRrS+h/DGHzvkyc8pqwVlKveeomlsx7g6idf4cK+hY/l5+bw/FU9ObxvN+PmfEh8+65AYTLz2EpJgG/mPceX//c49yz9kaq16gKFFZQ/LnmHPjffyyXjJhXv+8LVvTEMG7ctSCgxxuRW1bCrD5OI1/G3thIi4oNiQ/2zmNtfn5eIr3n44YcZMWIE1157LevXr7c6HDmLnE4nGzduPK3p3UUCAwM5cuTIqXc8BwQEBPDwww/zzTffsHv3blq1asUHH3xgdVhyiWgyRQAAIABJREFUEg0aNGDmzJm89NJLLFu2rMRjP/74I926deO6666jW7du/PLLLzz44INKTgpQuLjQ8YIjqrDv5x/JSEk+o7G3r0wgonpNWvQZVLwtKCSUjkNGldr32ORkfm422WmHqdeyA6ZpkrT9p1L7dxpWcjG0+m06c+RA6R7CJ3p+ImI9JShFxHLRDjsOu3/dxXTYDaIc+hUr4g0Mw2DevHm0bNmSQYMGsX//fqtDkrPkxx9/xOVyndYCOUWCg4O1OMxxunfvzqZNm+jVqxdDhgzh5ptvJjc31+qw5ARuuukmevfuzZgxY8jIyCA1NZUJEybQvn170tPTWb58Oe+++25xOwMRAM8J+i5ddsdD/PH7rzxxWSv+e92lJMyeyZH9e8o99tHk/VSLa1BqinX1+o1K73twP+9Nu41He57PtK71mX5J0+KKTGdWRol9AxzBhEdVL7EtJKIquRlHS41bcKq+UiJiCb17FhHLGYZBq2rB+EuK0gBaVwtWbxsRLxISEsKHH35IYGAgl19+OVlZ/tdWQkpbs2YNISEhtGzZ8rTHCAsLIzMzswKj8g/R0dEsWrSI2bNn89prr9GhQwd+/vlnq8OS49hsNl599VXS0tK47LLLaNy4Me+88w7PPvssGzdupHfv0guTiJxowfaWl/6TyR+v4/J7ZhAZE8uKN/7LM8O7s31V4fTpk133mgUFpxWDp6CAV28ZxvbvErh49O1c9/QbjPnfIoY98kLhuMdlUcuzyrxdWRARr6QfTRHxCm2qB+Mvky1MoHX1YKvDEJHjxP4/e/cdFdW1PXD8O0PvRVFQsCLYEFARe0k0MbEmsUaNzx4bYkyMGjUm/l6MUQNYscSuqMTEbjT2BiqKiBqxU1QUBOl97u8PAy/Ergx3ZjiftVwrztw5Z897zsy9++6zj709O3fu5MaNG/Tv35+CN7xoErRHSEgIXl5eGBi8+aZlFhYWZGZmlmBUukOhUDBixAjCwsJQKBR4eXmxePFiRIt7zRIdHY2VlRWnTp3C29uba9eu4ePj81afC0G36T8n2WhpZ0+zXoMZ8PNaJu4Kw9TKhsO/+AFgYmlFdlrqU69Jji++asHa3pGkuDtPfU8k3rlR7O/xN66QGH2TD7/4jjb/8aFu2w9w9m6DpZ3927w14PnvTxAEeYkEpSAIGsHGSI9qFgZaX0WpAKpbGGBjJHY2FQRN1KBBAzZt2sTOnTuZPHmy3OEIaiRJEiEhIW/VfxLAxsaGnJycEopKN9WrV48zZ84wZMgQRo8ezUcffcSjR49e/kJBrWJjY+nTpw9t27alcuXKNGnShEuXLmFkJDbwE15MTwH6/8gUqAoKnko+mtvaYWlnT35uLgC2jtWIiQwjPy+36Ji/ju0nJf5usde5tmxPakI8lw7sKHosNyuTM7+tLXacUvnkXPqfiUxJkji5cdlbvTd9JYj9cQRBM4kdHARB0BiN7Iy5k5YndxhvRQIa2YkG84KgyTp16sTPP/+Mr68vLi4uDB06VO6QBDWIi4vj3r17b9V/EqB8+fLk5+eXUFS6y8TEhIULF9KhQwcGDx6Mu7s7GzZsoE2bNnKHVuZkZ2czb948fvjhBywsLFi9ejUDBgwgNjYWNzc3JkyYwIoVK+QOU9BgCoUCexN94jKefPflZKbzY8cG1G/fBYda9TE0NePG6aPEXQ7nwy++B8Cre38uHdjJqtG9afBeNx7F3uHC3mBsHasVG9vrowGEbP6FLdPHcPevCCzKVyR8dzAGxqbFjrOrVgtbx2rs9ZtB6sP7GJlZcPnQrmf2lHwd9ib6og2TIGgoUUEpCILGqGlpiLWhUmurKBWAtaGSGpZiyZQgaDofHx9GjhzJyJEjOXz4sNzhCGoQEhIC8NYJSnv7J8sJxTLvV9OtWzciIiJwdnamXbt2TJ8+XSR4S4kkSezcuZN69eoxY8YMRo4cybVr1xg4cCBKpZKqVasyb948fvnlF/bu3St3uIKGczDVL0oWGBib0LTnYO5HXeLA0tnsnjeVxOgbdJv8E636jwTApfk7fPjF9yTG3GTX3KnERJ5loP9GrCpWKjauoYkpQwN/o1bTtpza9AuHV/hR1cObD8ZNL3acnoEBA/034OBanyOrAji0bC7lnGrQ8/tFb/yelAqoZCbO0wVBUykk0SRGEAQNEpuex4brKXKH8cb617LC0Vyc+AiCNsjLy6NTp06EhYURGhqKi4uL3CEJJWj8+PFs376dW7duvdU406dPZ+bMmURERLzVZjtlTUFBAbNmzWLGjBl4e3uzceNGsVO0GkVFReHr68sff/xBhw4dCAgIoE6dOk8dJ0kSHTt25PLly1y6dAlra2sZohW0weWkbHZG696Gcl2rWlDXVrQ5EARNJCooBUHQKE7mBjS2074dvRWAl52xSE4KghYxMDBgy5Yt2Nvb07lzZ5KSkuQOSShBJdF/EsDR0RGAmzdvvvVYZYmenh5Tp07l2LFj3L17F3d3d4KDg+UOS+ekpaUxceJE3NzcuHr1Kr///jv79u17ZnISnizdXbFiBWlpaYwfP76UoxW0ib2pbnaD09X3JQi6QCQoBUHQOG0qmWGpRUu9FYCloZLWlczkDkUQhNdkbW3Nrl27SEpK4pNPPiE3N/flLxI0XnZ2NufPn3/r5d0A1atXB57shCy8vubNm3PhwgXee+89evXqxbBhw8jIyJA7LK0nSRLr1q3DxcWFhQsXMm3aNK5cuUL37t1f2l/PycmJn3/+mdWrV7N79+5SiljQNrZGehjpacvZ+Ksx0lNgYyRSIIKgqcSnUxAEjWOgVNC5qgXa0n9CAjpXtcBAbAkoCFqpRo0abNu2jVOnTjFy5EhE9xvtFx4eTl5eXokkKJ2dnYEnOyILb8ba2prNmzezYsUKNm7cSOPGjYmIiJA7LK11/vx5WrZsyWeffUarVq24evUq06ZNw8Tk1TfpGzx4MB07dmTYsGEkJyerMVpBWykUCtzLad+qpudRAB7ljMUGOYKgwUSCUhAEjeRkbkB7R+2oSGzvaIaTWNotCFqtZcuWrFixgpUrVzJ37ly5wxHeUkhICMbGxri7u7/1WE5OTgDEx8e/9VhlmUKhYMiQIZw7dw4jIyOaNGnCggULxA2B15CYmMiIESNo3LgxKSkpHDx4kC1btlClSpXXHkuhULB8+XIyMzPx9fVVQ7SCtoiPj2fevHksWrSINWvWsHXrVvbv38/JkycxfRStNQUDLyMBHuWN5Q5DEIQXEA0YBEHQWI3tTMgpkDh+X3N3Tm3lYEpju1evWBAEQXMNGDCAqKgovv76a2rVqkX37t3lDkl4QyEhITRu3BgDg7e/eaSvr49CoeDhw4clEJlQu3ZtQkNDmTRpEj4+Puzfv5+VK1diZ2cnd2gaKz8/n8DAQKZNmwZAQEAAI0eORF//7S7lHB0d8ff3Z9CgQfTo0YMuXbqURLiCljl69Chffvnlc59f/1cicVmSVicqFUA1CwNsjPTkDkUQhBcQFZSCIGi05hVNaOVgKncYz9TawZTmFUVyUhB0yffff88nn3xCv379OH/+vNzhCG8oJCSkRJZ3FzIwMODRo0clNl5ZZ2xsjL+/Pzt37iQ0NBR3d3cOHTokd1ga6ejRozRs2BAfHx969OjBtWvXGDt27FsnJwsNHDiQTp06MXz4cLFRWBnVpUsXrKysnvlc//79aeJgrtXJSXhSPdlIFBQIgsYTCUpBEDSaQqGghb1p0XJvubvGFM7f3tGM5vamoo+NIOgYpVLJmjVrqFevHl26dOHu3btyhyS8pri4OO7evVuiCUpjY2MeP35cYuMJT3Tu3JmIiAjq1q1L+/btmTJlCnl5eXKHpRFiY2Pp06cPbdu2xczMjDNnzrB8+fISrzRVKBQsXbqU7Oxsxo0bV6JjC9ohKiqqqJVFIaVSSZcuXVizZg01LQ2x1qLNK/9NAVgbKqlhKdoxCYKmEwlKQRC0QmM7E/rVspJ1d+/C3br71bISy7oFQYeZmpqyfft29PT06Nq1q9hxWMuEhIQA0LRp0xIb08zMjLS0tBIbT/ifSpUqsX//fn744Qd++uknWrVqxa1bt+QOSzbZ2dn897//pXbt2hw5coQ1a9Zw8uRJGjdurLY5K1euTEBAAOvXr2f79u1qm0fQHAUFBWzfvp22bdvSsGFDkpKSim666+np4erqyoYNG1AqlSgVCjpp0eaV/1a4maVSFBUIgsYTCUpBELSGk7kBQ+vY0MjuSYPr0jrNKJynsZ0xQ+vYiA1xBKEMcHBwYOfOnURFRTFgwABUKpXcIQmvKCQkhKpVq+Lg4FBiY1pZWZGVlVVi4wnFKZVKJk2axMmTJ3n48CEeHh4EBQXJHVapkiSJHTt2UK9ePWbMmMGoUaO4du0an332GUql+i/ZBgwYQJcuXRgxYoRoZ6DD0tLSmD9/Pq6urnTv3p3c3Fy2bNlCdHQ0ffr0AcDS0pK9e/diYWFR9DoncwMa22nfjt4KwMvOGEdx7i4IWkEkKAVB0CoGSgXtHc3pV8sKK8MnX2HqOlkqHNfq76rJdx3NMVBq26mZIAhvyt3dnaCgILZt28aUKVPkDkd4RSXdfxLAxsaGnJycEh1TeJq3tzfh4eF07tyZTz/9lEGDBpGeni53WGoXFRXFhx9+SLdu3XB2diYyMpI5c+ZgaWlZajEULvXOzc1l7NixpTavUDru3LnDhAkTcHR05IsvvsDLy4vQ0FBOnTpFz5490dfX5+uvv6Z69ers2LGDqlWrPjVGm0pmsq5kel2FK59aVzKTOxRBEF6RSFAKgqCVnMwNGF7Xhh41LKlm8eSuaEmdMBWOU83CgB41LBleV1RNCkJZ1aVLF+bOncvs2bNZtWqV3OEIL5GTk8P58+dLPEFZrlw58vPzS3RM4dmsrKzYsGEDq1evJjg4mIYNG+rshlWpqal89dVX1K9fn6ioKLZt28Yff/xB7dq1ZYnHwcGB+fPnExQUxO+//y5LDELJkSSpKAFZs2ZNVq5cyciRI7l9+zZBQUF4e3sXO97d3Z1bt27RsmXLZ45noFTQWYuWehcu7RbFBYKgPUSCUhAEraVUKHC2MqS3sxUj6trQpIIJRnqKfzz/quP877+N9BQ0qWDCiLo29Ha2wtnKUPSsEYQybvz48QwfPpwRI0Zw9OhRucMRXiA8PJzc3NwST1Da29sDTxJKgvopFAoGDhzI+fPnsbCwoGnTpvj5+elMqwWVSsW6detwdXVl0aJFfPvtt1y5coVu3brJvvlev3796NatG59//jmJiYmyxiK8mby8PIKCgmjatCktWrQgIiKCBQsWEBcXx48//vjUhjivw8ncoGjjSk3X3tFMFBgIgpYRCUpBEF5KkiTyVRLZBSoy81RkF6jIV0lIkubcQ7Ux0qNdZTN83WwZXseGrlUtaGxngqOZPvrP+abTV4KjmT6N7UzoWtWC4XVs8HWzpV1lM2yM9Er3DQiCoLEUCgULFy6kdevWfPzxx1y/fl3ukITnCAkJwdjYGHd39xIdt3LlygDcuHGjRMcVXszFxYVTp07h4+PDF198QefOnXn48KHcYb2V8+fP07JlSz777DNat27N1atXmTp1KsbGxnKHBjz5vgsMDCQ/P58xY8bIHY7wGpKSkpg9ezY1atTg008/xcLCgl27dnH16lVGjRqFmVnJJBYb25nQysG0RMZSl1YOpmJDS0HQQgpJkzIMgiDITpIkknIKiM/MJz4zn/uZ+cRn5ZP/jKIFfSXYm+jjYKqP/d9/bI30ZL/7/2+SJKGSIPTsWXr06sOuHdvxcKuPUoHGxSoIguZKTk6mWbNmSJJEaGgoNjY2cock/EuvXr24d+8eJ06cKNFxf/nlF4YOHUpwcDA9evQo0bGFV/PHH38wcOBAFAoFa9eu5b333pM7pNeSkJDA1KlTWb58OfXq1WP+/Pm0a9dO7rCeKygoiE8//VT8m9cCUVFRBAQEsGbNGvLz8+nXrx++vr40aNBAbXNKksSpB1kcv5+ptjneVGsHU5pVNBHn+IKghUQFpSAIACTnFHDobgb+kUks/+sxO6PTOZeQTVzGs5OTAPkqiMvI51xCNjuj01n+12P8I5M4dDeD5JyC0n0DL6BQKNBTKpj57XTiY27z3+++RU+pECcugiC8FhsbG3bt2kViYiI9evQgLy9P7pCEf1HHBjkA1atXByAmJqbExxZeTceOHYmIiMDd3Z3333+fiRMnkpubK3dYL5Wfn8+CBQtwcXFhy5YtBAQEEB4ertHJSYA+ffrw0UcfMWrUKBISEuQOR/gXSZI4cOAAnTp1onbt2mzdupWJEycSExPDypUr1ZqchCfn1i3sTYuWe8t9Rl04f3tHM5rbm4pzfEHQUiJBKQhlmEqSuJ6Sw6YbKSy9kszZh1nkFPyvqPpVOz3987icAomzD7NYeiWZTTdSuJ6Sg0oDCrWjoqLYv38/ANu3b+f27dsyRyQIgjZydnbm999/5/jx44waNUqjWl2UdXFxccTFxaklQVmzZs2iOQT52Nvbs3fvXubMmYO/vz8tWrTQ6GX3R44coWHDhowbN46ePXty7do1xo4di76+vtyhvZRCoWDJkiWoVCpGjx4tdzjC37Kzs1m5ciXu7u506NCBuLg4Vq1aRXR0NN9++y0VK1Ys1Xga25nQr5aVrLt7F+7W3a+WlVjWLQhaTiQoBaGMik3PY9mVZLbeSiM67UkVUEldZheOE52Wx9ZbaSy7kkxsuryVRt9//z1K5ZOvPIVCwf/93//JGo8gCNqrdevWLFu2jBUrVvDzzz/LHY7wt9DQUACaNm1a4mMXbipx//79Eh9beD1KpZIvv/ySU6dO8fjxYzw9PVm3bp3cYRUTGxtL7969adeuHWZmZpw5c4Zly5ZhZ2cnd2ivpWLFiixatIjg4GC2bNkidzhl2oMHD/j222+pUqUKQ4YMoWrVqhw8eJALFy7wn//8R9Yepk7mBgytY0MjuycxlFaisnCexnbGDK1jIzbEEQQdIHpQCkIZk6eSOHovg7CEbBSUXFLyRQrnaWxnTJtKZhi86vbaJeTatWvUrl27WKWTUqnk+vXr1KhRo1RjEQRBd0yePJnZs2ezbds2unbtKnc4Zd6ECRP49ddfiY6OVsv4enp6tG3bloMHD6plfOH1paWlMWbMGNauXUv//v1ZvHgxFhYWssWTnZ3N3Llz+eGHH7CysmL27Nn079+/6AapNpIkiZ49e3L06FEuX75MhQoV5A6pTImIiMDPz4+goCD09fUZNGgQPj4+uLi4yB3aM8Wm57E7Oo3HuSq1XWcUjmttqKRTVQuRmBQEHSISlIJQhsSm57ErOo3UXFWpJCb/rXAJRudSPpkYMGAA69evf+rxQYMGsXLlylKLQxAE3aJSqejZsyf79u3jxIkTeHh4yB1Smda8eXOqVKnCpk2b1DK+sbExtWvX5sKFC2oZX3hz69evZ+TIkVSsWJGgoCC8vLxKdX5JktixYwfjx48nNjYWX19fpk2bhqWlZanGoS4PHz6kXr16tGnThuDgYNHfT81UKhW7d+/Gz8+Pw4cP4+joyNixYxk2bJhWbM6mkiRupeZxLiGL22l5JZaoLBynuoUBjexMqGFpgLIU/y1KkkSBBPmShEoFSiXoKxToiU03BaHEiASlIJQRYQlZHIjLKLWqyecpnL+9o1mp9YmpU6cOV69eferxBg0aEBERUSoxCIKgmzIyMmjTpg0PHjzgzJkzODg4yB1SmZSTk1NUsTZu3Di1zGFtbY2NjY3oYayhbt68Sd++fQkPD+eHH35gwoQJpVK5ePXqVXx9fdm3bx/vv/8+/v7+1K5dW+3zlrbg4GB69epFUFAQffr0kTscnZSens7q1asJCAjgxo0beHt7M378eD7++GMMDLSzSjA5p4ALidlceJRd1OdeqQDVK1yM/PM4Iz0FHuWM8ShvjI2RnhojfkKSJJJyCojPzCc+M5/7mfnEZz1741B9Jdib6ONgqo/9339sjfRE0lIQ3oBIUAqCjpMkiVMPsjh+P1PuUJ7SysGU5hVN1P4DnpubS1ZWFufPn+edd97h+PHjuLm5YWpqqrUnfIIgaI579+7RpEkTHBwcOHr0KKampnKHVOacPn2apk2bEhoaire3t1rmqFy5Mjk5OSQmJqplfOHt5ebmMn36dGbPnk2HDh1Yu3Yt9vb2apkrNTWVmTNn4u/vT5UqVfDz86NLly46nZTo3bs3Bw4c4PLly2r737UsiomJYeHChSxfvpy0tDQ++eQTxo8fr5Z+unKRJInkHNWThF9WPvcy8l6a8KtkZoC9yZOEn42RslQ+W8k5BYQnZhPxz4Qqr7Zx6D+PM9JT4F7OGM9SSqgKgq4QCUpB0HEn4zM1MjlZqJWDKS3sS+di/uzZszRp0oTw8HCxFFMQhBIVHh5Oy5Yt+eCDD9iyZYtW95zTRv7+/kyaNInU1FQMDQ3VMkedOnWIiYkhIyNDLeMLJefPP//ks88+o6CggDVr1vDBBx+U2NgqlYr169fz9ddfk5KSwjfffMOECRNk3aSktCQkJFCvXj1atGjBb7/9ptPJ2NIQGhqKn58fW7duxdzcnGHDhjF27FiqVKkid2ilQpIkVH8vmS5Qgd7fS6aVpbxkWiVJ3EzN5VxCNnfUsCS9moUBjeyMqWlpWKpL0gVBG4mzZ0HQYWEPNbNy8p+O388kLCGrVOYSJ9KCIKiLp6cnGzdu5LfffmPq1Klyh1PmhISE0KhRI7UlJwFsbW3JyclR2/hCyenQoQMRERF4eXnx4Ycf8sUXX5TI/3fnzp2jZcuWDBw4kNatWxMVFcU333xTJpKTAHZ2dixZsoRt27YRFBQkdzhaKT8/n82bN9O0aVOaNWvG+fPn8ff3Jy4ujjlz5pSZ5CQ8OS/XUyow0lNiaqDESE+JnlJRqufrsel5LLuSzNZbaUSn5QEl1wqrcJzotDy23kpj2ZVkYtPzSmh0QdBNIkEpCDoqNj2PA3e1o8rjQFyG+MEWBEHrdevWjZ9++olZs2axdu1aucMpU0JDQ2nWrJla57Czs6OgoECtcwglp0KFCuzatQt/f38WLVpEs2bNuHbt2huNlZCQwPDhw/Hy8iI9PZ3Dhw+zefNmnJycSjhqzffJJ5/Qp08fxowZw/379+UOR2skJyczZ84catSoQZ8+fTA1NWXHjh1ERUUxZswYzM3N5Q6xTMlTSRyIS2fD9RRScp8szFbXstLCcVNyVWy4nsKBuHTyXqUJpyCUQSJBKQg6KE8lsSs6DW2pF1QAu6LTxI+1IAhab8KECQwZMoShQ4dy/PhxucMpE+7du0dMTIza+7UV9tx7/PixWucRSo5CoWDcuHGEhoaSkZFBw4YNWb16Na/a4So/P58FCxbg4uJCcHAw8+fP5/z587Rt21a9gWu4hQsXYmhoyOeff/7K/1uWVdevX2fMmDE4OTkxdepU3n33XcLDwzl06BBdunQR7UBkEJuex4q/kjmXkA2U3uahhfOcS8hmxV+imlIQnkV8IwqCDjp6L4PUXJWsu3W/DglIzVVx7F7pVHyKk2lBENRFoVCwePFiWrZsyUcffcTNmzflDknnhYSEAKi9grJwh/YbN26odR6h5Hl6enLu3Dl69+7NoEGD+PTTT0lJSXnha44cOYKnpyfjxo2jV69eXLt2jTFjxqCvr19KUWuucuXKERgYyI4dO9iwYYPc4WgcSZI4dOgQXbt2xdXVlS1btjBhwgSio6NZtWqV6IMuo7CELDZcT5H1OqnwumfD9ZRSa3MlCNpCJCgFQcfEpucRlpCtNcnJQhJwNiFbrXcTRQ9KQRBKg6GhIb/++iu2trZ07txZVNypWUhICE5OTlSuXFmt8xT2hrt165Za5xHUw9zcnF9++YVNmzaxZ88ePDw8CA0Nfeq4mJgYevfuTbt27bCwsODs2bMsXboUOzs7GaLWXN27d+fTTz9l7Nix3Lt3T+5wNEJOTg6rV6/G09OTd999l9u3b7NixQpiYmL47rvvxM7nMpIkiZPxmRyIe1IMIfd1UuH8B+IyOBmfKYonBOFvIkEpCDpEJUns1qKl3f+mAHZHp6ESP9KCIGg5W1tbdu/ezYMHD+jZsyd5eWIpl7qURv9JgOrVqwMQHR2t9rkE9enduzcXLlzA3t6eli1bMmvWLAoKCsjOzub//u//qF27NseOHWPt2rWcOHGCRo0ayR2yxpo/fz7GxsaMGDGiTCdYHj58yHfffUeVKlUYNGgQlStX5s8//+TixYsMHjy4zGyipMlOPdDcjUOP38/k1ANRSSkIIBKUgqBTbqbm8liLlnb/mwQ8zlVxK1VcyAuCoP1q1arFb7/9xpEjRxg7dmyZvoBXl9zcXMLCwtTefxLA2dkZgLi4OLXPJahX9erVOXbsGJMmTeKbb77B09MTFxcXvv/+e8aMGcO1a9cYMGCA6A/4EuXKlWPp0qXs2rWrTG4MFhkZyZAhQ6hSpQqzZ8/mk08+4erVq+zevZv27duLlTsaIuyh5iYnCx2/nymWewsCIkEpCDrlXEK21lZPFlIA59T8Ay2SBIIglJa2bdsSGBjI0qVLCQgIkDscnXPhwgVycnJKpYKyUqVKAGLnYh1hYGBA//79adSoEZGRkcTHxxMQEMBPP/2EhYWF3OFpja5duzJgwADGjRvH3bt35Q5H7VQqVVECskGDBuzbt4/vvvuOuLg4Fi9ejKurq9whCv8Qm57Hgbul0+P+bR2IyxAb5whlnkhQCoKOSM4p4E5antZWTxaSgNtpeSTnFJT42OJOtiAIchgyZAhfffUVX3zxBbt27ZI7HJ0SEhKCoaEhnp6eap9LqVSiVCpJTExU+1yCeqWmpvLVV1/h5uZGUlIS69ato2PHjowaNQofHx+ys7PlDlGrBAQEYGpqyrBhw3T2JnBGRgaLFy+mTp06dO7cmdTUVDZu3Miwvhr1AAAgAElEQVTt27f5+uuvsbW1lTtE4V/yVBK7tKj1lQLYFZ1Gnko3P0OC8CpEglIQdER4ovZXTxZSABcSxcWBIAi648cff6Rbt2707duXixcvyh2OzggNDaVRo0YYGRmVynwGBgY8evSoVOYSSp5KpWLt2rW4urqyePFiZsyYweXLl+nfvz/bt29nwYIFLFu2DG9vb/766y+5w9UaNjY2LFu2jL1797J69Wq5wylRsbGxTJo0CScnJ8aOHUuDBg04efIkp0+fpm/fvhgYGMgdovAcR+9lyLpb9+sq3N372D3tqPgUBHUQCUpB0AGSJBHxqPjO3QcCf2JyQzsykjX7Qir5XgyTG9pxbkdQ0WMScOFRts7ehRcEoexRKpWsX7+eWrVq0blzZ+Lj4+UOSSeEhISUSv/JQiYmJqSkpJTafELJOXfuHC1btmTgwIG0adOGq1ev8s033xRtYKJQKBgzZgxnzpwhLy+PRo0asXz5cnEu8oo6d+7MwIED8fX11Yk+rWfOnKFv375Ur16dJUuWMHjwYG7evElwcDDNmzcXq3I0XGx6HmEJ2VqTnCwkAWcTssVSb6HMEglKQdABSTkF5BRo20/wi+UUSCTnqNQytrjYEARBDmZmZuzcuZOCggK6detGVpZoiP827t+/T3R0dKn0nyxkZmZGWlpaqc0nvL2EhASGDx+Ol5cX6enpHDlyhE2bNuHk5PTM4xs0aEBYWBgDBgxg+PDh9OrVi+Tk5FKOWjv5+/tjbm7O0KFDtfJcKz8/n+DgYFq0aIG3tzdnzpzh559/Ji4ujrlz51KtWjW5QxRegUqS2K1FS7v/TQHsjk5DpYWfIUF4WyJBKQg6ID4zX+4Q1KKk35e42y0IgtwqV67Mjh07iIyMZODAgahU6rkRUxaEhIQAlGqC0srKSiSWtUR+fj7z58+nVq1aBAcHM3/+fM6fP0+bNm1e+lpTU1OWLl1KcHAwBw4cwMPDg5MnT5ZC1NrN2tqaFStWsG/fPlauXCl3OK/s8ePHzJs3D2dnZ3r16oWBgQHbtm3j2rVr+Pj4iE2TtMzN1Fwea9HS7n+TgMe5Km6liipKoewRCUpB0AHxmfka/WHOzcp87dcoFRCfpZuJV0EQyrZGjRqxfv16goODmTFjhtzhaK3Q0FAcHR1xdHQstTltbW3Jzc0ttfmEN3P48GE8PT3x9fWld+/eXL9+nTFjxqCvr/9a4/To0YOIiAiqVKlC69atmTlzJgUFJb+Jny754IMPGDRoEOPHjycmJkbucF7oxo0b+Pj44OTkxOTJk2ndujXnzp3jyJEjdOvWDT09PblDFN7AuQTt78uvAM4liJthQtmjyTkNQRBe0f3MfJ5Xg5PxOImNXw9hRqvqfN/OhZ1zppCX878NaAry8zm4fB5zunox1bsyszs1ZN+C/yM/N6fYOFeO7GW1T19+eK8+U70rM6erFweXz0P1rxP1ZcO64d+zFXevRLB0SBemN6/CvoX/BSArLYXgb8cwo3UNvmtdky3TR5OV9uxeXioJ7mWIO4eCIOimjz/+mB9//JGZM2eyfv16ucPRSqXdfxKgfPnyIkGlwWJiYujVqxfvvPMOlpaWhIWFsXTpUsqXL//GY1apUoXDhw8zbdo0ZsyYwTvvvKMTPRbV6eeff8bKykojl3pLklSUgHRxcSEoKAhfX1+io6NZu3YtDRs2lDtE4S0k5xRwJy1Pa6snC0nA7bQ8knPE741QtogEpSBoOUmSXlhpGPT1UPJzcnh/zFRcW7TnVNByfv+/CUXP/zbTlwNLfqRSbTc6TZhJ9UbNOLIqgKDJw4uNc27nJgxNzGjZfyRdvvovles04MCSH/lj/syn5sxMSWLV2D44uNan84T/o6ZXSyRJYt34AYTvDsbzgx50GDWZ1Af3CZ4+9rmxx2flq+XEVtNOlgVBKJsmTpzIoEGDGDJkiFg++ppyc3MJCwsr1eXdAPb29gAkJiaW6rzCi2VnZzNz5kxq167NiRMnWLduHSdOnCixZJO+vj4zZszg8OHD3Lp1C3d3d7Zt21YiY+uiwqXef/75J8uXL5c7HABycnKKEpDt2rXjxo0bLFu2jJiYGGbOnImDg4PcIQolIDxR+6snCymAC4nZLz1OEHTJ661zEARB4xRIkP+CFmY2lavwmd86AJr1HoKxmTmhwatoNWAUIHF+52a8PurPx9P8nhzTazDmNnYcX7eIm2dPUNOrJQB9/huIgbFJ0bjePf7D75ZfEhq8ivdGT0bf0KjoubTEh3SfMhfvHgOLHrtyZC+3z4fwwbhvaT1wDABNew5i+fDuz409X/WkklKvhM40RA9KQRA0iUKhIDAwkJs3b9K9e3dOnz5NjRo15A5LK0RERJCdnV3qCcrKlSsDcPPmzbeqyhNKhiRJbN++nS+++IK4uDh8fX2ZNm2a2noGtm7dmoiICIYOHcpHH33EyJEjmTdvHiYmJi9/cRnz/vvvM3ToUCZMmMD7779P1apVZYkjISGBwMBAFi9eTHx8PB07dmTfvn106NBBnBfqGEmSiHikuTt3Hwj8iYPL5jDrfMIrHS8BFx5l07aSqfi3KpQZooJSELRc/kuqAZv2Glzs7836DAMg6uQBok4cAKBlv5HFjmk14Mnfo078WfTYP5OTORnpZCQ/oppnU/KyM0m4c73Y6/UNjWjUrW+xx6JOHECpr493z/8UPabU06N5n6EvjP9l708QBEGbGRoa8ttvv2FtbU3nzp1JSXl22wuhuNDQUAwNDUt9OWaVKlUAuHXrVqnOKzzt6tWrdOzYkY8++ghXV1ciIyP56aef1L6hia2tLVu3biUwMJBVq1bh5eXFpUuX1Dqntpo3bx42NjYMGTKk1FevXLp0iaFDh+Lk5MSsWbPo1q0bV65cYe/evbz33nsi4aODknIKyCnQreuGnAKJ5ByxmZ5QdogEpSBouZdtAFu+SvFqnHKO1VAolSTfiyX5fhwKpZJyTtWLHWNRviLGFlYk348teuzBzausmzCQGa1rMKNVdf7v3dpsmfokkZmdllrs9ZYVHNA3MCz2WPL9WCzKV8TI1Lx4fFWdXxh/gfhNFgRBx5UrV45du3Zx//59evXqRX6+2CDsZUJCQmjYsCFGRkYvP7gEFVa4xsbGvuRIQV1SU1P58ssvcXNz48aNG+zYsYM9e/bg6upaajEoFApGjBhBWFgYCoUCLy8vlixZIlrI/IulpSW//PILBw8eZOnSpWqfT6VSFSUg3dzc2LNnD9OnTyc2NpbAwEDq1Kmj9hgE+cRn6uZvp66+L0F4FpGgFAQtp3zdT/Gz7hi/5C5yVloKy4Z14/61y3T4/Gs+89/AkCW/0tFnOvB0T0cDI+PXDOr59NTwLSUuIARB0DSurq78+uuvHDp0CB8fH/E99RJybJAD/0tQik1SSp9KpWLNmjW4uLiwZMkSvvvuOy5fvkyXLl1kq4arV68eZ86cYdCgQYwaNYqPP/6YpKQkWWLRVB06dGD48OF8+eWX3L59Wy1zZGZmEhgYSL169fjwww9JSkpi/fr13LlzhylTplCuXDm1zCtolvjMfJ1LbigVPHOvAUmSyMoSu3wLukfXPsOCUObov+SkPDGm+DK0R7G3kVQqbCo5YePgiKRS8ehfx6Q9ekh2Wgo2Dk4A3Ao7SebjJHrOmE+LT0dQp/V7OHu3wcTS+pXjtHFwIi3xATmZ6cXji77xwtf98/3l5OSwf/9+fHx86N2792tfwIvlPIIgaLJ3332XxYsXs2TJEhYuXCh3OBorPj6eO3fulHr/SfjfJjn3798v9bnLsrCwMFq0aMF//vMf2rZty9WrV5kyZQrGxiV3Q/RNmZiYsHjxYn7//XeOHTuGu7s7x44dkzssjTJnzhzKlSvHkCFDUL1s6c9ruHv3LlOmTMHJyYnRo0dTt25djh8/ztmzZ+nXrx+GhoYvH0TQWnfv3mXw4MFUrFgRIyMjBrbz4sy2DcWOycvJ5kDgT8zt7s20po788F491k/4D49inyTLb4WdZHJDO26FFd+oLvleDJMb2nFuR1DRY/evXSb42zH81KUx05o68t8Odfl1hg8Zj5++KXEnPJSF/Tswrakjc7p6cfrXNc98DwX5+RxcPo85Xb2Y6l2Z2Z0asm/B/5GfmwM86cV/LyOPatWq0blzZ/bt20fjxo0xMTEplapkQShtIkEpCFpOTwH6L/gkh25ZWezvIZue7Kbo2uJdXFu2B+DkxuI/cCfWBz45pmUHAJRKPQCkf7Sdzs/LJTS4+Ngv4tqyPar8fE4Hry56TFVQwKlNK577Gn0lPIiPZ+XKlXTv3h1ra2vef/99FixYwPbt20v0JFcQBEETDBs2jAkTJuDr68uePXvkDkcjhYaGAsiSoFQqlSiVShISXm2TA+HtPHz4kGHDhtGkSRMyMjI4cuQImzZtwsnJSe7QntK9e3ciIiKoWbMm7dq149tvvxXtGv5WuNT78OHDBAYGvvV4YWFh9OvXj2rVqrFw4UI+++wzbty4wdatW2nZsqW4IV0GPHjwgKZNm3LgwAHGjBmDv78/Vo7V2Pq9Lyc2PPk3piooYM24fhxcNofKddz5cPx3NO87nOz0VB7cvPrac944fZSkuGgade1Ll4mzaPDeR1zcv43VPn2LFU3EX7/CytG9yEhK5N0RX9Goax8OLJ3N5cNP/6b/NtOXA0t+pFJtNzpNmEn1Rs04siqAoMnD/zfe3xWUUVFR9O3blw4dOhAQEICHh8drvwdB0HRiF29B0HIKhQJ7E33iMp59Epx8N4a1vv2p1fwdYi6GcWFPMO4ffIKDS30AGnbpzZnf1pKVlkL1Rs2Ju3ye8zs3U7fdh0U7eFdx98LE0prg6WNp3ncYChSE79kCr1HBWLv1+1T1aMIfC2aSfC+GCjVcuXxoN9npac99jUluBpUrV3v2eLVro6en98rzC4IgaIvZs2dz/fp1+vTpw8mTJ3Fzc5M7JI0SEhJC5cqVZUtSGRoaimW8apafn8/ixYuZPn06SqWSBQsWMGLECPT1NfvSxdHRkYMHDzJr1ixmzJjBwYMH2bBhg2w7WGuS9u3b8/nnn/PVV1/RsWPHonYJr6qgoIBt27bh5+fHyZMnqV69OnPmzGHw4MFYWlqqKWpBU33zzTcUFBQQGRlJuXLlyFdJpDTtSdDk4RxcOgfvTwYSse93bp45RqcvZtKy/+dFr207aNwbtVFp2nMQrQaMKvZYlQaN2TR5OHfCQ6ne8MlNsz8DZyNJEiN+2Ym1gyMA9d/pQkDv1sVee//aJc7v3IzXR/35eJofAM16Dcbcxo7j6xZx8+wJanq1JP/veowbN27wxx9/8P7777927IKgLUQFpSDoAAdT/ed+mPv+uBw9Q0P2LZhJ1Ik/adZ7CJ9M9y96/uNp/rT//Gvirlxg99yp3Dx7graDxtF31rKiY8ysbRkYsAGL8hX5c/Esjq9bhLN3WzqO+/aVY1QqlXzmtx6PD3oQvvdX9i/6AcsKDvT8fsGzj1eAS0Ub2rVr98znL126hJeXF4MHD8bPz48DBw7w4MGDV4pF9HYTBEGT6enpsWHDBmrUqEGXLl1e+butrJCr/2QhExMTHj9+LNv8uu7w4cN4eHjg6+tLnz59uHbtGqNHj9b45GQhPT09pk6dytGjR4mNjcXDw4Nff/1V7rA0wk8//USFChUYPHjwK6+CSUlJwc/PD2dnZ3r06IFSqeS3337j+vXr+Pr6iuRkGZKbm0tSUhKSJLF161a6dOmCJEkkJiYSn5BARvIjXJq1Izs9lbtXL3Lp4C7MrMvRrM/Qp8Z6kypbA2OTov/Oy8kmI/kRVdwaAXDv6kXgSdXm9ZDD1G37QVFyEqBCDRdqNSt+TRN14gAALfuNLPZ4qwEj/37+z6LHJKB69eoiOSnoPO34pRcE4YXsTfX592le+88n0v7ziQD0++n5S7H19PV5d/iXvDv8yxfOUdW9CaPW7H3q8Vnniy9zG758+3PHMLWyodfMRS8dA570XKlsbsShQ4fYsmULgwYNIjc3l/z8fBQKBZ07d8bW1paLFy8SFBREdnY2AHZ2djRo0AA3N7eiP/Xq1cPU1FQs+REEQWuYm5uzc+dOmjRpQvfu3Tl06BAmJiYvf6GOy8vLIywsjJkzZ8oWg5mZGRkZGbLNr6tiYmL48ssvCQ4Opnnz5oSFhdGwYUO5w3pjLVq0ICIiguHDh9OzZ0+GDRuGv78/pqamcocmGwsLC1auXMk777zDokWLGDt27HOPvXXrFvPnz2flypVkZWXRp08ffv31Vxo1alSKEQuaxMvLi4sXL+Lo6Mjjx49ZtmwZy5Yte+axGUmJJMXdoXy1muiV0M2NzJRkDi6bw8V920hPKn7tUrgiLCM5kbzsLMpXebpCuHxV56KkJEDy/TgUSiXlnKoXO86ifEWMLaxIvh9b7PHq1YsfJwi6SCQoBUEH2Jvq5ke58H316tWLRo0a8cknnxAREYEkSYwZM4b27Z/00CwoKODmzZtERkYW/dm1axcBAQFIkoRCocDZ2ZkqVaoAcOjQIaytralZs6ZYJi4IgsZycnJix44dtGnThsGDB7Nx48Yyf6Pl4sWLZGVlydJ/spCVlRWPHj2SbX5dk5WVxdy5c5k1axbW1tasW7eOfv366cS/dWtrazZv3sx7772Hj48PJ06cICgoCHd3d7lDk027du0YPXo0kyZN4sMPP6RmzZpFz0mSxPHjx/Hz82P79u3Y2NgwduxYRo8eTaVKlWSMWtAkcXFxRf9dr149BgwYgJuHJ7/d/l/bKPtadV9tsOd8zagKCp56bOPXQ4m5eJZWA0ZTybU+hqZmSCoVq8b0Rnqbvviv+F0nblIKZYFuZjUEoYyxNdLDSE9BToHuLF020lNgY/S/hes1a9bk9OnTTJw4kQ0bNhSrqtDT08PFxQUXFxc++eSTosczMjK4cuVKUdLy1KlTAEyePJnJkydjYmJCvXr1ilVburm5UbFixdJ7o4IgCC/g5eXF2rVr6dmzJ66ursyYMUPukGQVEhKCgYGBrJV1tra2XL36+hssCMVJksT27dsZP348d+/eZfz48UydOhULCwu5QytRCoWCoUOH0qJFC/r27Yu3tzdz585l9OjROpGEfRM//vgje/bsYdCgQRw5coT8/Hy2bNmCn58f58+fp3bt2ixZsoQBAwaU6YpT4Uk/2qioKC5evEh6evpTz1++fJlJkybRsLEXPZcV34TG1rEacZfOU5CXh56BwTPHN7GwBiArLaXY44/vxxX7e1bqY26eOUb7z78utuosMeZmsePMbMpjYGxCYsytp+ZKjL5R7O82Do5IKhWPYm5RoYZL0eNpjx6SnZaCjcP/+iyXzW8KoSwSCUpB0AEKhQL3csacfZiFLqQoFYBHOeOnTtyNjIwICAjA39//lU7qzczM8PLywsvLC3hSeePu7s6ePXswMDAoVnH5qsvEBUEQSluPHj3473//yzfffIOLiwuffvqp3CHJJiQkBE9PT4yNjWWLwc7OjoKCAlQqFUqlaOf+Jq5evcq4cePYv38/H3zwAfv27cPFxeXlL9RiderUITQ0lK+//pqxY8eyf/9+Vq5cSfny5eUOrdSZm5uzatUq2rZtS5cuXQgPD+f+/fu899577N27l/fee098tsqApKQkLly4wOXLl7l27Rq3b9/m3r17JCQkkJKSQmZmJgXPqGT8N6VSie84Hx4oIV8F6cmJmNuUp/67nYk68Schm38ptkkOULTCysbBCaWeHrfPh1Cv3YdFz4cGF2+PpVDqFb3un05uWFo8Fj09ajVrx5Uje3l8P66oD+XDW9e4HnK42LGuLduzb+F/OblxKR9NnVf0+In1gX8/3wEAffFREMoQkaAUBB3hWd6YMw+z5A6jREiAR/nnX3y+acVB4etsbW3x9vYuWiIOr7ZMvGbNmk8lLsUycUEQSsPkyZOJiopi8ODBVKtWjebNm8sdkixCQkLo2rWrrDHY29sDkJiYSIUKFWSNRdukpqby/fffExAQQNWqVdm5cyedOnUqM5WExsbGBAQE0L59ewYNGoS7uzvr1q3jnXfekTu0UnXlyhU2btyInp4ee/bsoVevXkyfPp169erJHZpQAlQqVVHV419//cWNGzeIjY0lPj6epKQk0tPTycnJeeamlYaGhpiZmWFnZ0fFihVxdHSkZs2a1K5dm/DwcAICAoodr6enx6hRo8jKzOTsugX8dfECN04fY/qR6zTs3Jvw3VvY/fM0Yi+fp5pnU/KyMrlx+ihNew2mbtsPMLawpH77roRsXoFCocDWsRpXj+8nIymx2DzG5hZUb9iMY2sWosrPw7KCA9dDj5B8N/qp99B+xESunTrE0iFdaNprEKr8fE5tXkGFGrWJv3656DgHl/o07NKbM7+tJSstheqNmhN3+Tznd26mbrsPqenVEgB7E5GyEcoO8a9dEHSEjZEe1SwMiE7L0+oqSgVQzcIAG6PSTfq96jLxyMhIFi9eTELCk+bYJiYm1K1b96nEpVgmLghCSVIoFCxbtoxbt27RvXt3zpw5Q7Vq1eQOq1Q9ePCA27dvy9p/EijqhXfz5k2RoHwGSZIokCBfklCpQKkEpSSxYf06Jk+aRFpaGt999x1ffPGFrJWwcurSpQsXL15kwIABtG/fnsmTJzNjxgwMnrMMVRdIksT+/fvx8/Nj3759ODg48M0337B27Vru3r1L7dq15Q5ReAWPHz/mwoULXLp06amqx8ePH5OVlUV+fv5Tr1MqlRgbG2NpaYmzszMODg5UrVqVWrVqUbduXTw8PHB0dHzGjP9ToUKFogSlnZ0da9asYffu3Wzbto3AwEAsbGyxreZKR5/pT+bU0+M/84M4/IsfF/74jcsHd2FqbUNVD2/snesUjdt14ixU+Xmc/nUN+oaGuHXoxoe+M/Dv2arY/L1/WMrO2ZMJ2bISJIlazdrynwWbmPW+W7HjHFzqMXjhZnb/PJ0/l8zGqmIl2o/4mrTEB8USlAAfT/PHtnI1zu3cxJXDezAvX4G2g8bx7oivnrwHBVQy093vBUH4N4X0rFsXgiBopespOWy9lfbyAzVcjxqWOFsZlvi4kZGRNGjQgNDQULy9vd9qrAcPHhRLWkZGRnLp0qViy8Td3NyKJS7FMnFBEN5WYmIi3t7emJiYcPLkSaysrOQOqdRs376d7t27Ex0dXbTpmRzWr1/PgAEDWL9+Pf369ZMtDk0gSRJJOQXEZ+YTn5nP/cx84rPyyX/GfhG5WZnkPbpP41pVca5gjb2pPrZGemWmevJZCgoKmDNnDlOnTsXLy4uNGzfq3E69WVlZrFu3Dn9/f/766y88PT0ZP348vXv3xtDQkOPHj9OmTRvmzZvH+PHj5Q63zFKpVFy/fp2IiAj++usvbt68SUxMTFHVY1pa2nOrHg0MDDAzM8PGxoYKFSrg6OhIjRo1cHV1LToPLombEZmZmbi5udGtWzfmzp37VBuAy0nZ7Ix+uk+ltuta1YK6tkZyhyEIpUJUUAqCDqlpaYi1oZKUXJVWVlEqACtDJTUs1XunsCTuy1SsWJGKFSu+dJn47t27xTJxQRBKTPny5dm1axfNmjWjT58+7Ny5E339snE6FxISgoODA05OTi8/WI0KE0gxMTGyxiGn5JwCwhOziXiUXbRBnxJ40T62hiamGDrWJCoL/vo7iWCk96SHtmd541JfOaEJ9PT0mDRpEm3btuXTTz/Fw8ODpUuX0qdPH7lDe2v37t1j8eLFBAYGkpSURLdu3QgMDKRVq1bFktKtWrXCx8eHKVOm0KlTJ53vRSqH9PR0Lly4QGRkZFHVY1xcXFHVY2Zm5kurHmvWrFlU9ejs7Fys6rG0+oWamppy8+bN5z5vb6qbv4W6+r4E4VlEBaUg6JjY9Dw2XE95+YEaqn8tKxzN1ZOgvHTpEm5uboSEhNC0aVO1zPEsz1omHhkZycOHDwGxTFwQhNd34MABOnbsyMiRI1mwYIHc4ZSKNm3aUL58ebZu3SprHA8fPqRixYqMGjWKRYsWyRpLaVJJEjdTczmXkM2dtDwUUCI3QwvHqWZhQCM7Y2paGqIsg1WVKSkpjBw5kqCgIAYNGsT8+fMxNzeXO6zXdv78efz8/Ni8eTNGRkYMHjwYHx8fatas+dzXZGZm4u7ujp2dHcePHxc3bV+RSqXi9u3bXLhwoajXY0xMDPfv3y+qeszOzn5h1aO1tfVTVY+F56HatupHkiT8I5OKbproAiM9Bb5utmW60lwoW0Q6XhB0jJO5AY3tjDmXkK1VVZQKoLGdsdqSk3L6927ihZ61THzTpk1kZT3Z7EgsExcE4Xnat2/PwoULGTlyJK6urowZM0bukNQqPz+fs2fP8v3338sdStGuy/Hx8TJHUnpi0/PYHZ3G41wVhZfJJXWOUThOdFoed9LysDZU0qmqBU46eD7wIlZWVmzYsIH333+f0aNHc/LkSTZt2oSnp6fcob1UQUEBO3bswN/fn2PHjlG1alV+/PFHhgwZ8kptKExNTVm9ejWtWrXC39+fCRMmlELUmi09PZ2IiAguXbpEVFTUU1WPGRkZz6x6VCgUGBsbY2FhQbVq1XBwcKBKlSo4OztTv359PDw8cHJy0sld0hWKJxXZZx9madU10PMoAI9yxiI5KZQpIkEpCDqoTSUzrqfkkqolS70VgKWhktaVzOQOpVS9zTLxfycuxTJxQSh7Pv/8c6Kiohg3bhzOzs507NhR7pDU5uLFi2RlZcm+QQ48WfaoVCpJTEx8+cFaLk8lcfReBmEJ2SWemPy3wnFTclVsuJ5CYztj2lQyw0BZdi7OFQoFAwcOLGrh0LRpU2bPns24ceM0MkmRmprKqlWrmD9/Prdu3aJFixb8+uuvdOvW7bVbT7Ro0QJfX1+++eYbOnXqpLOb5qhUKqKjo7lw4QJXrlwpVvX46NGjF1Y96uvrF3o7hr0AACAASURBVFU91qpVC0dHR6pXr46rqyv169fH3d1dK6tuS5JneWPOPMySO4wSIQEe5cvmRmJC2SWWeAuCjtK2pd79almpvVqicIn3qVOnNOIi93W86jLxfycuxTJxQdBtBQUFdOvWjePHj3Pq1Cnq1asnd0hqsWjRInx9fUlNTcXExETucDAxMcHZ2ZnIyEi5Q1Gb2PQ8dkWnyXazs/DmZecyWE0JkJOTw5QpU/j555/54IMPWL16tcbsGn/nzh3mz5/PL7/8QmZmJj179mT8+PFPrRR5XZmZmXh6emJjY8PJkye17sZrZmYmkZGRREREFKt6fPjwYVGvx7y8vKde98+qR1tb22JVj3Xq1MHDw4Pq1avrZNWjOmy6kUJ0Wp5WFGk8j4InbS96O5edjfAEAUSCUhB0WlhCFgfiMuQO46XaO5rR2E79F5yXL1+mfv36WpmgfJ5nLRO/fPnyU8vE/5m4FMvEBUG3pKWl0aJFC9LS0jh9+rTGJDFKUv/+/bl27RpnzpyROxQAbG1tMTc319mNcgrPH0qqz+SbKpy/tM4TNNEff/zBwIEDUSgUrFu3jg4dOsgShyRJnDx5En9/f37//XesrKwYMWIEo0ePxtHRscTmOXXqFC1btuTHH39k4sSJJTbu21CpVMTFxRWreoyOji6qekxNTSU7OxuV6ultovT19TE1NcXa2ho7O7uiqkcXF5eiczNLS0sZ3pXuup6Sw9ZbaXKH8dZ61LDE2cpQ7jAEoVSJBKUg6LiT8Zkcv58pdxjP1crBlBb2pZMs08UE5bMUFBRw69YtLl68WCxxeePGjaeWif8zcSmWiQuC9oqJiaFJkybUqFGDQ4cOYWysW8vCnJ2d6dSpEwEBAXKHAkCVKlVIT08nKSlJ7lBKlCRJnHqQpZHnDa0cTGle0UQjlzqrW3x8PJ999hl//vknEydOZObMmRgalk7iIi8vj+DgYPz8/AgLC8PV1RVfX18GDBiAmZl6WvN89dVXLFiwgPDwcOrUqaOWOQplZ2cTGRnJxYsXiYqK4tatW0VVj8nJyWRkZDy36tHIyKio6tHe3p6qVatSs2ZN6tati7u7OzVr1hRVjzJQSRLLriSToiWtrv5NAVgZKhle16ZMbhgmlG0iQSkIOk6TLzZaO5jSrBQvNspKgvJ5MjMzuXLlylOJS7FMXBB0w+nTp2nbti0ff/wx69ev15lETuGu2UFBQfTp00fucABo0KAB169fL6pW1xXipqbmUqlU/Pzzz0yePBlPT0+CgoJeuDP223r06BHLli1j4cKF3Lt3j/bt2zN+/Hg6duyo9qRbVlYWnp6eWFlZcfLkydfuZ1non1WP169fL6p6TExMfGnVo4mJSVHVY6VKlYqqHgs3mrG2tn7btymokba1uvq3/rWsdHLjUEF4GbFJjiDoOIVCQQt7U4z0FGK51t/K6n0ZU1NTGjduTOPGjYs9/vDhw6LqgcKk5ebNm8UycUHQMt7e3qxZs4bevXtTu3Ztpk2bJndIJSI0NBRAo24s2djYkJubK3cYJSrsoWbezPyn4/czMdJTlMnl3kqlki+//JI2bdrQt29fPDw8CAwMpF+/fiU6z9WrV/H392ft2rWoVCr69++Pr68v9evXL9F5XsTExITVq1fTokUL5s6dy6RJk4o9n5ubW3TOcvXq1WdWPT7r81lY9Whubo6joyP29vY4OTkV9Xps0KABrq6uoupRy4WGhjJ27FjajZxMOc/WWlVFqQAa2xmL5KRQZokEpSCUEY3tTKhool+mG97rSjVRSatQoQLvvvsu7777btFjz1omvmfPHubPny+WiQuCBuvVqxdRUVFMnz4dFxcXevfuLXdIby00NBR7e3uqVKkidyhF7OzsUKlUqFQqnUhmxKbnceCu5vesBjgQl0FFE/0yuXEOgJeXF+Hh4YwePZr+/fuzb98+Fi1ahIWFxRuPKUkSBw4cwM/Pj71791KxYkUmT57MiBEjSr2nbXx8POHh4Vy5cgU3NzemTJnCqlWrSEtLIzU1laysrGdWPerp6WFqaorV/7N35+Exnt0Dx78zk33fJQRBFIlILLXvWqor1cWulLSUkFLeFkW9vy5akiqhVGuPllJFUaGorbHFEvu+ZN+3mWQm8/z+SGfejAQJSSbL/bmuXL0yeeZ5zqSSPHPuc+5jb4+Xl5dB1aOvry8BAQE4OTlV6GsRyt/ixYuZPXs2aWlpaDQag6+d+WAo3564Z7T3PaWle5/UtXb5bJ0gCFWBaPEWhBpGrZU4EJPNiURVhVVT6q7zrKsFXWtbYyo3TqLwwoUL+Pr6cvjwYTp27GiUGKq60rSJF05cijZxQag4kiQxbNgwNm3axP79+2nfvr2xQ3oqPXr0wNHRkc2bNxs7FL0JEyawaNEiYmNjcXd3N3Y4T0WtlfjhYmqVexM/upmj0e4nKou1a9cyduxY3N3dCQ8PL9Ih8ThKpZJ169YRGhpKdHQ0/v7+BAcHM3DgQMzNzcs01ry8PP39g67q8e7du8THx5OamkpWVtZDq5JlMhlOTk76vR7r1q1Lo0aNDKoen7QNXKjaHlV8UL9+ff4+f7VKtXoPaWxfYxdfBAFEBaUg1DimchnPedrQxMGcHbczScvTlluiUndeezM5LxmpalIoW2XRJq5LXIo2cUEoHzKZjB9++IGbN2/y2muvERkZSf369Y0d1hPRaDRERkYye/ZsY4dioE6dOgBcu3atyicoD8RkV5nkJBTcV2TkaTkYk00vTxtjh2NUQ4cOpX379gwePJgOHTrwxRdf8OGHHz62qjcuLo6wsDCWLFlCcnIyr7zyCosWLaJbt25P1G2SkJDA6dOniY6O5urVq9y6dYuYmBiSkpJIT09HpVKRn59f5HkKhQJLS0vs7e2pW7cuderUwcvLS7/Xo7+/Pzdu3KBDhw58+OGHfPLJJ6WOTajexowZw/Lly4v92tWrVzE1NeU5T2si7lX+CvHnPK3FeyWhxhMVlIJQg2kliRsZak4mKrmZqS6zRKXuPA1sTWntaklDO9NKMYVOV0F56NAhOnXqZOxwqj1dm/iDicuHTRPXJS5Fm7gglI3ExETatWuHtbU1hw8fxs7Oztghldrp06dp1aoVf//9N507dzZ2OHrh4eEMHjyYVatWMXz4cGOH88Sq+iAJUW1UIC8vj5kzZzJv3jx69+7NqlWrik2cR0VFERISQnh4OGZmZowcOZKgoCAaN25c7Hk1Go2+6vHixYsGVY8pKSlkZ2eTm5tb7HPNzc2xtrbGycmJWrVqUbduXRo2bKivevTx8Slx1ePHH3/M/PnzOXnyJH5+fiX/xgjVnlqtLnaifbdu3di/f7/+czEATBCqBpGgFAQBgNTcfKKSVEQlq8jNL/i1IJeBtgS/IQofZ66QEeBsQYCLBY7mlSvJdPHiRXx8fESC0sh0beIPJi4f1iauS1yKNnFBKL3o6Gg6duxI586d2bp1a5Vrg1yyZAlBQUFkZGRgaVl5BqP8888/tG/fnrlz5zJjxgxjh/NEtJLEsguppOflI2H8RcTSklHQoRHo41gpFkErgz179jBs2DAkSWLlypX07duX/Px8tm/fTkhICAcOHKBevXpMmDCBAQMGcOPGDc6fP8+VK1f0VY+JiYmkp6ejVCofWvVoYWGBvb09Li4u1K5dGy8vLxo3boyvry8tW7Ys830rc3Nzad26Nebm5hw7dgxTU5GUFmDdunUMHTq02K89mOKQJIkj8ZVzEFhXDys61LIUe+ULAiJBKQjCAyRJIjVXS1yOhjilhphsNXFKDZqi+5FjIgd3SxNqW5vibmmCu5UJjubySvsHViQoKzddm3jhxGV0dLRoExeEp7R7925eeuklxo8fT2hoqLHDKZXhw4dz8eJFjh8/buxQDCQlJeHq6srYsWMJCwszdjhPJDohk233i69+q0reaGiHt33RCqqaKiYmhrfffptDhw7h5eVFUlISWVlZWFhYYGJiQl5eHmq1ukgCB8DMzAwbGxscHR0Nqh6bNm2qr3osrlqtIpw4cYL27dsza9YsZs6caZQYhMqjTZs2nDx5EgBfX1/mzJnDG2+8AcCAAQPYtGlTsc87kagk4l52he3D/zC66z/naU0b18qz+CYIxiYSlIIgPJYkSWgl0EgS+VpQyMFEJkMuq1qTsUWCsuop3CZeOHEp2sQFoXTCwsL44IMPCAsLY+zYscYOp8QaN25M3759WbhwobFDKUImk9G/f/9KNbynJCRJ4rfffiMizZTazdugqGJVtYXJAC9bU972tjd2KBUiLS2NU6dOER0dzZUrV7h586ZB1WNOTk6xVY8ymQwrKyvs7OyKVD36+PjQsmXLKrGX6vTp0/n66685ceIELVq0MHY4ghHcuXMHb29v1Go1gMHftMGDBxMREaHvyHmYu1lqtt/ONNreu7pBXy+L/fkFoQiRoBQEocbQJSgr215mQumJNnFBKL2goCDCwsL4448/6N27t7HDeazExETc3NxYv349gwYNMnY4RZiYmNChQwf+/vtvY4dSYhcvXiQoKIhTl67x0e+Vqyr1abzn41jptpUpDa1Wy+XLl/V7PV67do27d+8SFxdHSkoKWVlZ5ObmPrTq0crKCisrK1QqFSkpKZibm9OrVy9eeOEFFi5cSGxsLIsWLWLEiBFVamH5Qbm5ubRp0wYTExMiIyNFq3cNM2XKFObPnw+AtbU1CQkJT9xFo9ZKHIjJ5kSiqsKqKXXXedbVgq61rTGVV92fRUEoLyJBKQhCjXHp0iWaNWsmEpTVWGnbxP38/PD19cXa2trIkQtC+dNoNLz66qscPnyYo0eP4uPjY+yQHmn79u288sor3LhxgwYNGhg7nCKsrKxo0KAB0dHRxg7lsdLT0/nss89YuHAhXl5eTPvxV5JtaleZyd2PIgPaulnSo07l/D2ekZFBVFQU58+f5/Lly9y6dYv79++TkJBAWloaSqUSjUZT5HlyuRxLS0t91aOHhwf169fX7/UYEBCAq6srv/76KyEhIURGRtK4cWMmTpzIiBEjsLEpmHCelZVFUFAQP/30E4MGDWLJkiXY21fditOTJ0/Srl07Zs6cyaxZs4wdjlAB1Go1devWJT4+HoB+/fqxZcuWMjn33Sw1O25nkpanLbdEpe68DmZyXhJVk4LwSCJBKQhCjSESlDXTk7SJ+/n54e3tLdrEhWonIyODTp06kZ2dzT///IOrq6uxQ3qo6dOns2LFCmJjYytl1ZezszOWlpbcu3fP2KEYmD17NnPmzCnYnkWrxc3NjezsbBQKBTNmzGDSpEksuZKtH4hXVZz8PZxNs4OYuv0kjrXrGXzNXCFjkp9Thf470Wq1XL9+nTNnznDhwgWuX7/OnTt3iIuLIzk5mczMzIdWPZqammJtbY2joyNubm54enrSsGFDmjRpQosWLfDz88PCwuKh105NTWXZsmUsWrSIe/fu0bNnT4KDg3nxxReRy+XFPmfDhg289957ODs7Ex4eTrt27crse1HRPv30U7744guOHz9OQECAscMRytGePXvo06eP/n7tyJEjtG/fvkyvoZUkbmSoOZmo5GamuswSlbrzNLA1pbWrJQ3tTMVAL0F4jKq76YwgCIIglIBCoaBx48Y0btyY119/Xf944TZxXeJy6dKl+jZxCwsLfH19iyQua9WqVSmTJYJQEnZ2dmzbto127drRv39/9u7di7m5ubHDKtbRo0fp0KFDpf15s7GxISMjw9hhPNTx48eZMGECycnJNGjQgIMHD+Lp6UmySlPlkpOPk5tfMODPyaJsFpWysrKIiori3Llz+r0e7927R2JiImlpaeTk5Dy06tHCwgI7OzsaNWqkr3r09vbGx8eHgIAAPD09H5pEfJwrV67w7bffsnLlSjQaDUOGDGHSpEkl2o9x4MCBtGvXjsGDB9O5c2fmzp3L1KlTnzgWY5oxYwZbt25lxIgRHD9+3GiDe4Ty1bdvX3bt2gVAvXr1uH37drlcRy6T4W1vhre9Gam5+UQlqYhKVul/T8ploC3Br8zCx5krZAQ4WxDgYlGlt58QhIomEpSCINQ4onBcgIL2zDZt2tCmTRuDxwu3iesSlz///LNoExeqDS8vL3777Td69OjB6NGjWb16daVLAmo0GiIjI/n000+NHcpD2dvbP3YYgzFkZ2cD0LZtW/z9/YmIiKBr1676/fricoom1qqCli+9RYs+/TExKz6hHpejeWyCUqvVcvPmTaKiovR7Pd65c4fY2FhSUlLIzMxEpVI9surRycmJpk2bGlQ96v4WPOl+eI8iSRL79u0jJCSEHTt24OrqykcffcTYsWNLva+yLlE9e/ZsPvnkE/bs2cOaNWuoXbt2mcddnszMzFi5ciVt27bl//7v/5gzZ46xQxLKUHp6Oh4eHvr7rlmzZjF79uwKubajuYIedazpXtuK1FwtcTka4pQaYrLVxCk1aLRFn2MiB3dLE2pbm+JuaYK7lQmO5vJK93dVEKoC0eItCEKNcfnyZZo2bcrBgwfp0qWLscMRqpAH28R1iUvRJi5UZeHh4QwePJj//ve/TJ8+3djhGDhz5gwBAQEcOHCArl27GjucYvXo0YODBw8WOzXZGNRqNYsXL+Y///kPubm5hIWFERgYWOR30N57WZxMVFHM++wqSy4DfwcT7GIvcu7cOS5fvsyNGzcMqh6zs7MfWvVobm6OnZ0dzs7OeHh4UK9ePf2E64CAAOrWrVvhlYYqlYr169cTGhrKuXPn8PPzIzg4mEGDBj2y/buk9u3bx7Bhw8jNzWXlypW8/PLLZRB1xZo9ezb//e9/iYyMpFWrVsYORygDCxYsYPLkyUBBIvr+/fu4uLgYOaoCkiShlUAjSeRrQSEHE5kMuQyRjBSEMiISlIIg1BgiQSmUteLaxAtPExdt4kJlN2fOHGbPns0vv/zCm2++aexw9JYuXcqECRNIT08vl6q0svDWW2+xceNG8vPzjdYme+jQIYKDgzlz5gxQUHnaunVrTpw4oa8C9PLyonv37qxcuRKAldGJrP3uG6L+2Eh6fAymlla4NWhMr8CPaNy+u/7cCTevErH0S24cP0yuMhsH9zo07/UKfcYXJLM3zhrPjRNHmLbjlEFMEUvnsXfZ13xxKlH/2NVj+9m77Gvir11Cm6/Bzs2D5j1fps+EGfpjjmxYzj+bVpEacweFqRnOnl50HjqWgL4DgIfvQXn0lx859suPJN25jvaBBKSpqal+urVcLqdjx45cvnyZ+Ph47O3tmThxIjNmzKAyiY+PZ8mSJSxZsoSEhARefvllgoOD6dGjR5n/3UhKSmLUqFFs27aNoKAgvvrqqzJJflaUvLw82rZti1ar5cSJE6LVu4pr3Lgx165dA6BLly4cPHjQyBEJglDRRIu3IAiCIDyhJ20Td3Fx0Q9CEG3igjF9+umnXL58meHDh1O/fn3atm1r7JCAgv0n/f39K21yEsDDwwOAmJgYPD09K/z6586d4/nnn0cul6NWq6lXrx7Z2dnk5eU99DmSJLEm5HP++vFb2vQbSt3mLVFlZ3H/QhQxl87qE5SxV6L5fvQrKExMadt/GI6165F87xaXDv6pT1CWVPz1S6yaOAT3xj48N3YaJqbmJN+9ye0zkfpjIjevYdu8T2j+3Ct0GhSIOk9F3NUL3D1/Up+gLI4uGerdrhttXx9G0qHtREZG0rx5cyIjI/X7q3bv3p2rV69y5coVBgwYQJMmTdi0aRMzZ86kdevW9O3bt1SvqTycOXOG0NBQ1q9fj4mJCSNHjiQoKIhnnnmm3K7p4uLC1q1bWbx4MVOmTOHAgQOEh4fTrFmzcrtmWTIzM2PVqlW0adOGuXPnMnfuXGOHJDyBqKgoWrdujVZbUNe9ZcsW+vXrZ+SoBEEwBpGgFAShxhGF40J5c3Nzo1evXvTq1Uv/WHFt4n/88QcLFy7Ut4k3bNiwSOJStIkL5Ukmk/Hjjz9y69YtXn31VSIjI6lXr97jn1jOjh49Sp8+fYwdxiPVqVMHgGvXrlV4glKpVPLWW2+hUqlwc3Nj+fLlDBo0iEuXLuHn5/fQ5+VLcPHvPTzT6Tlen7ngocdtm/cxSBIT1u3FweN/r+2FoJmljvXqsf3kq/MY+d0GrB2diz3m8qE91GrUlCHzfizxebNSk9j/07c0bt+ddxb9jFwu56OvPmHpkjDGjx/P+vXrGTlypP74mJgYVq9ezbBhwwB49913qV+/PitWrDBaglKr1bJjxw5CQ0PZt28fnp6ezJ07lzFjxuDo6FghMchkMsaPH0+XLl0YOHAgbdq0YeHChYwaNapKVPr7+/szc+ZMPvvsM1577bUiC4ZC5TZ8+HDWrFkDgLOzM7Gxsfr9cgVBqHmq3tg2QRCEJ1QVbrSF6ks3Tfz1119n1qxZbNq0iStXrpCVlcXx48dZsWIFr776KpmZmSxdupQ333yTpk2bYmNjQ+vWrRk5ciQLFixgz549xMXFiUS7UGYsLCzYsmULFhYWvPLKK2RmZho1nuTkZK5evUr79u2NGsfj1K9fH6DcJssWR5IkNm/eTNOmTbl06RLNmjXj+vXrDB48GJlMRrNmzR6Z2NVIEha29iTcuEzSnevFHpOVmsTNU0dp/epgg+QkPNnfUUtbewAuHNipr5B6kIWtHenxMdyNPl3i81775yD56jw6DXlP32KvkSTGjBmDnZ0dO3bsMDjexsaGoUOH6j83MzOjbdu23Lhxo7Qv6allZWWxePFimjZtyquvvkpWVhbh4eHcuHGDqVOnVlhysjB/f39OnDjBkCFDGD16NG+//TZpaWkVHseT+Pjjj2nRogXvvPMOubm5xg5HKAG1Wo29vb0+OTlmzBiSkpJEclIQajhRQSkIgiAIRlTSNvFz584VaRP38/MzqLgUbeLCk6pVqxbbt2+nY8eODB48mN9++81olbvHjh0DoEOHDka5fkk1bNgQqLgE5YULF5g4cSIRERF06tSJO3fuEBAQwObNm0lJSSE5OZmUlBR9wq1Hjx5kZmYSExPDpk2b2LVrFwpLa16eHsLqD4czv197ank345kOPWn50pt4POMLQMq9gtfj7t20TOJu0bsfx39by+bPgtm98L80atsF354v0fy5V/WJxW4jgrj2z0HChvXGuW4DGrfvjn/fAXgFtHvoedNi7wLgWt9b/1i+FqzMzGjYsGGR/y+enp5FEqyOjo6cPXu2TF5nSdy9e5fvvvuO5cuXk5GRwYABA1i1alWl+bdubW3NsmXL6N27N2PGjCEgIID169fTsWNHY4f2SKampqxatYrWrVszZ84cPv/8c2OHJDzCunXr9IsFCoWC6OhomjRpYuSoBEGoDESCUhAEQRAqoZK2ie/cubNIm/iDiUvRJi6URPPmzfn55595+eWXmTp1KvPnzzdKHEePHsXNzY0GDRoY5fol1ahRI6CgdfhRsrKyiI2NJSEhgYSEBJKTk0lKSiI1NZXU1FTS0tLIzMwkMzOT7OxssrOzUSqV5ObmkpubS15eHnl5eQbVh4cPHwYKJrGHh4cXe92DBw+iUCj0k6slScLa0oIGrTvy0e/HubB/J1eP7ef4b2s5vH4p/T75mmf7Dyvx65dRfDWlVms41dzUwpLAH7Zx4/ghLh3aw9Uj+zj75280enY1o8I2IlcocGv4DJO3HOXSwT+5cmQf5/dt59jGn+g5ZgrPj51W4pgUj+gNe9jvwIqoRj927BihoaFs2rQJGxsbxowZw/jx4/VVuJXNG2+8wbPPPsuQIUPo2rUrs2fP5uOPP67Uf0f8/PyYNWsWn376Kf379+fZZ581dkhCMdq2bcvx48cB8PX15fz580aOSBCEykQkKAVBqDF0lROiNVaoqnRt4rpWcZ0Hp4mfO3eO77//nvj4eKCghdfHx6dI4lJMExce1LdvX0JDQwkKCqJJkyYEBgZWeAxHjx6lQ4cORvm3qdVqSUpKIiEhgfj4eJKSkkhMTCQlJUWfUMzIyCAjI4OsrCwA1qxZw++//65PJqrVajQaDVqttsR/b2QyGXK5HBMTE0xMTDA3N8fc3BxJksjOzgYKEqK+vr44Ojpib29PWFgYLVq0YMqUKbi5ueHq6oq7uzvvvPMOO3fuJD+/IFFYeIq3RivxzZlkrOwdafPaYNq8NpjcnCyWjX6ViO8LEpROngVJs7hrlx4Zs4WdA6rM9CKPp8XeK/KYXC7Hu11XvNt1hclz+WtFCH8u/pwbJw7h3a4bAGaW1rTo058WffqjUeexdvI77P8xhO6jJmJqXnSytINHXQASb1/DydMLABOZjLy8PG7evMlzzz1Xou99edFoNGzevJmQkBCOHTuGt7c3oaGhjBgxAltbW6PGVhL169dn//79zJ07l1mzZhEREcHatWuNMhCqpKZNm8aWLVsYMWIEp06dqlITyau7O3fu4O3tjVqtBiAsLIyxY8caOSpBECobkaAUnpgkSeRLBfv9aLUglxfcGCpkYq8/QRCEilSaNvGNGzeSk5MD/K9NvHDiUrSJCxMmTODy5cuMGzeOhg0bVmiiJz8/n8jISGbMmFGi4/Py8oiLiyM+Pp7ExEQSExNJTk4mOTmZ1NRU0tPTSU9PJysri6ysLH11olKp1FcmajQafUKxpGQymb6aTKVSYW1tjZWVFc7OzlhZWWFjY4ONjQ12dnY4ODjg4OCAk5MTTk5OuLq64urqSq1atfDw8MDGxqbI+SMjI5kwYQKRkZEMHjyYefPm6Yfy6Ny5c4ddu3bRqVMn/WCjixcv8ueffz40boUMcjNSMLdz0j9mbmWDc90GpMcVVILaOLrQoFUHTv6+ni5DxxrsQ6mr1AZw9vRClZVB7JVofXt4RmIc0X8Z7v2Yk56Klb3hnooeTZoDoMkr2C8wOy0Fa4f/xWRiakathk24cmQvWo0GzIu+Fu92XVGYmnEkfDnPdOyFqUKGXAbLVqwgCLNCfgAAIABJREFUPT2dl1566aHfh/KUlpbG8uXL+e6777h79y7du3dn69atvPTSS5W6ArE4JiYmzJkzh549ezJ06FD8/f1ZsWJFpZ2wbGJiwsqVK2ndujWzZ8/myy+/NHZIAgWJ43nz5gEF2wgkJCRgZWVl5KgEQaiMRIJSKBFJkkjJzScuR0NcjobYHA1xSg2aYu7lTeTgbmmCh5UJ7v9+OJkrRNJSEAShgpW0TXzXrl0sWrQIrVZr0CZeOHEp2sRrltDQUK5evcobb7zBsWPHaNr06fcj1Gq1ZGZmcj82joSkZOITk0hNSSI1MZGU5CTS0tK4ffs2WVlZrF27lvDwcHJycsjJydG3O+uqE/Pz80tVDV+4OtHMzAxzc3Ps7e2xtLTE2toaGxsbbG1tsbe3x97eHicnJxwdHXFxccHFxQU3Nzfc3d1xc3PDzMxMf14rKyu8vLy4cOHCU39/AOLj4/nkk0/48ccfCQgI4O+//6Zz587FHjtnzhx27dpFly5dGDduHBqNhu+++w5fX9+H7qsok8lYMKAz9Vt1pE4zf6zsHbh34QznI7bR/u139ce9MvVzlo56me+G9KJt/2E41qlPaswdLh/aQ9CG/QC06NOfXQs/Y+2Ud+g4cDRqlZJjm1biUq8RMZf+d/29y77h1umjNOn8PI4enmSlJHFs40/Y16qNV0DBIKQfx72JrYsb9f3bYuPsSuLNqxz9eQVNOz+PuXXRBC4UJFK7j5zI3mVf89MHb9Gh94tMXHGXsLAwnn32WYOBOBXh6tWrLFy4kJ9++om8vDwGDx7MpEmTCAgIqNA4ykO3bt04c+YMo0ePpn///owbN45vvvkGS0tLY4dWRPPmzZk9ezYzZsygf//+tGv38H1MhfKlVqupW7euvpujX79+bNmyxchRCYJQmYkEpfBIqbn5nE5ScSZZRW5+wRsBOfCoGgONFu5la4jJ1uiPM1fI8He2oKWLBY7m4g2uIAiCsZSmTXzZsmWiTbyGMjExYcOGDbRv357nn3+eBQsWoNFoSEpK0lcnpqWlGbQ7Z2dnk5OTg0qlQqVSkadWY+9Rl1qNffFo2gJP35bUadoCM0tnsHYG62fAC2SArTKHjEtnMbU9hb/Clrgr50mPuaNPKFpYWGBnZ6evVLS1tcXOzg47OzscHR1xcHDAxcUFZ2dnfXVirVq1cHJy0g9iKQ9WVlZkZGQ89XnUajWLFy9m1qxZmJiYEBYWRmBg4CMXBVq0aMHu3bv58MMP+fTTT/H09GTOnDnExsY+cvDLgFFjidi5navH9pOvzsPB3ZPnx31M1+Hj9cd4PNOccat2sSfsS45tWokmLxdHD0/8nn9Nf4y1gxND569ix4JP2fntZzjVqUef8TNIvnPDIEHp0+0F0mLvcnLren2lZIPWHXnu/alY2NoB0G7ACKJ2buLQuqXk5WRj5+ZBx4Fj6DH6w0d+3557fyrWjs4c/WUF67+YjrOTE4GBgXz++ecVMg1YkiT2799PSEgI27dvx9nZmQ8//JBx48bh7u5e7tevSE5OTvz66698//33BAcHc/DgQTZs2ICvr6+xQyvio48+YsuWLbzzzjucPn1atHobwZ49e+jTp4++6vrAgQN06dLF2GEJglDJySSxGZvwAK0kcT0jj5OJKm5lqpEBZfGPRHceL1tTWrta0MjODLl4UytUoGvXrtG4cWP++usvunfvbuxwBKFKKK5NPDo6WrSJV0IqlYr4+Hji4uL07c666c7FtTvrqhNVKpV+/0RddWJp2p3lcjkKhQITExNMTU1x8/Km1WtD8OndH3Prgr32tPkaZPLHd1MUXgStCoubXl5epKWlkZaW9sTn2Lt3L0FBQVy6dIn333+fzz77DGdn5zKM0lB0ioptt7PK7fzG8mp9W3yciukFLwe5ubmEh4cTGhrKmTNn8PX1JTg4mCFDhtSIZNj58+cZOHAg169fJyQkhPfee6/SLVRduHCBli1bMnHiRH17sVAx+vbty65duwCoW7cud+7cMXJEgiBUFSJBKRi4m6Vmx+1M0vK0ZZaYfJDuvA5mcl6qb0tdm/Jf4RYEEAlKQSgr+fn53Lx5k7NnzxokLq9duybaxEtIq9WSkZFBbGwsiYmJBtOdU1JSSE9PLzLdOScnB6VSWVCdWGgYS2nbnRUKBQqFAlNTU327s4WFhUG7s52dnb7dOSsri9WrV9OxY0emT5+ub3d2cXHRtzvX1MXNgIAALl26hEqlKvVzb926xeTJk9m8eTNdunRh4cKFFdIOnKzSsPzikydUK6vAZo44WZTv75eEhASWLl1KWFgY8fHxvPjiiwQHB9OrV69Kl6Arb0qlksmTJ7NkyRL69+/PDz/8gJOT0+OfWIG++uorPv74Yw4fPkyHDh2MHU61l56ejoeHB0qlEoBZs2Yxe/Zs4wYlCEKVIhKUAgBqrcSBmGxOJKrKLTH5IN112rha0K22NabymnVjJ1Q8kaAUhPKlVCq5cOFCkcRlcW3ihROXVaFNXKPRkJCQYDDdWdfurKuge1i7c+HpzrrqxNJMdy5cnahrd7awsMDKygpra+si7c6Ojo44Ozvj7OyMm5ubvt3ZwcHhidud161bx9ChQ/niiy/4z3/+Y/C1mry42bNnTw4cOKCfmF0SSqWSefPm8eWXX+Lk5MQ333zDwIEDK+xnQJIkQs+l6LfuqQ7MFTIm+TmV2/fw3LlzhIaGsm7dOuRyOSNGjGDixIllsjdrVffbb78xatQorK2tWbduHV27djV2SHoajYZOnTqRlpZGVFRUpdwzs7pYsGABkydPBsDMzIxbt27h4eFh5KgEQahqRIJS4G6Wmu23M8nI01ZIYvJBMsDOTM7LlegNh1A9iQSlIBhHYmIi586dM0hcPqxNXJe4fNo28ZycnCLtzrpW50dNd9ZVJ5ZFu7OuOtHc3BwrKyv9dGddQrG46c61atXSJxUr25TTTz/9lLlz57Jp0yYGDBggFjeBgQMH8vPPP5Ofn//Y5K8kSWzevJnJkycTGxvL5MmT+eSTT4qd4l3e9t3P5niC0ij3fWVNBrR1s6RHnbLdVkKr1bJz505CQ0OJiIigTp06jB8/nsDAwEpXKWhsd+/eZejQoRw6dIiZM2cyY8YMTEwqx6iDixcv0rJlSz744APmz59v7HCqpSZNmnDlyhUAunTpwsGDB40ckSAIVZVIUNZwJxKVRNzLrrA3Fg+ju/5znta0cRWrm0L5uH79Ot7e3uzbt48ePXoYOxxBqNG0Wq1+mnhUVBSnT5/m7Nmz3L59W3+Mo6MjTk5O2NjYYG5ujomJCfn5+fq9E5VKpX66s0ajKXW7s0wmK3a6s6Wlpb7d2dbW9qHTnd3c3HB1ddW3O1eWN+TlRavVMmjQILZt28bvB//hqmWdGr+4GRwcTGhoKLdu3aJ+/foPPe7ChQsEBQWxd+9eXn75ZUJCQvD29q7ASA2l5ubz/YVUo12/rL3n41hm+5RmZ2ezevVqvv32Wy5fvkybNm0IDg7mzTffrJDBO1VVfn4+n3/+ObNnz6ZDhw6sW7fukT8TFenrr79m2rRp/P3333Tq1MnY4VQbUVFRtG7dWr+It2XLFvr162fkqARBqMqq95208FCSJHEkXsnfsQXVK8bOUuuuH3Evm9x8iY61LCt9u58gCEJNpdFoiIuL07c7Fx7GkpaWRmpqKpmZmWRkZJCZmalPKObm5qJSqVCr1fr9Ex9VnairdnyQTCbTtzxbWVnh4uKCnZ0dNjY2BvsnFp7u7OLiYjDd2c7OrlynO1dHcrmclStX8u5nCzgud0dupOQkFNw3ZORpWXc13aiLm56enkDBApguGSNJEvkSaCSJtPQM5n35JYu/W0g9zzrs2LGDF1980SixFuZorsDL1pTbmWqj3wM+DRkF+5OWRXLy3r17LFq0iGXLlpGenk7//v1ZsWIFHTt2FPekJaBQKJg5cyY9e/Zk8ODBBAQE8MMPPzBgwABjh8aHH37I5s2bGTlyJFFRUZWuOr0qGj58OGvWrAEKJrzHxcWJBL4gCE9NJChrqMLJycpGF1cnd3HzIAiCUBaysrL07c5JSUkkJiaSlJSkTwBmZGQUaXdWqVT6/RN1CUWtVvtE7c6mpqaYmppibm6OnZ2dfu/Ewvsn6tqdnZ2dcXFxwdnZ2aDdOTMzs9g2cd1ekLo28aZNm+pbxZs3by6miZchSZI4lS7R4q33Cj43djz//teYi5v16tfHpX4jLqblId3LIjZHQ5xSg6bQj4nboCnMGTQFExmkWJmw914W7lYmuFuZ4GT++Mnm5aW1qwW3MtVGuXZZkYDWT5mcjoyMJCQkhI0bN2Jtbc3o0aOZMGECXl5eZRJjTdOpUyeioqIIDAzkjTfeIDAwkJCQEKMmBRUKBStXriQgIIDp06cTEhJitFiqOrVajYuLCxkZGQCMGTOGZcuWGTkqQRCqC9HiXQOdSFAScT/b2GE8lmj3FsqaaPEWqgKtVktKSoq+QlG3f2JKSgqpqamkpaWRnp5e7HTnwsNYdNWJT9rurNs70dLSUr9/YnHtzoWHsejanZ2cnCqk3blwm3jhxOXDponrPry9vat9O3Z5OByXU2kXNwG6eFhV2OJmam4+p5NUnIrPQiMrqN6TAyVJ3xc+zlwhw9/ZgpYuFmXWolxSWkli2YVU0o1YCfs0ZIC9mZxAH8dST3bXaDT89ttvhISEcOTIERo2bMjEiRMZOXIktra25RNwDSNJEitWrCAoKAgvLy82bNhAixYtjBrTggULmDJlCgcOHKBLly5GjaUq0g1Lg4Kkb3R0NE2aNDFyVIIgVCciQVnD3M1Ss+5qurHDKLEhje3F4ByhzNy4cYNGjRqxd+9eevbsaexwhGoiLy9Pn0zUJRSTk5OLTHfOzMwsMoxFl1DU7Z9YmurEwtOdzczM9NOddQnF4tqdddOdXV1di7Q7Vye6aeIPJi4fNk1c9+Hu7i5aOR9CLG4WJPSuZ+RxMlHFrUx1me3frTuPl60prV0taGRnVuqE25OqaveFDxra2B7PUtwnpqen88MPP/Ddd99x+/ZtunbtSnBwMK+88goKRcUmiGuKixcvMnDgQC5fvsz8+fMZN26c0X7P5ufn061bN+Li4jhz5oyosC+Ftm3bcvz4cQB8fHyIjo42ckSCIFRHIkFZg6i1Ej9cTDXahvalpdsAf3QzR6NP6RSqB5GgFAAyMjKIj4/Xf+iSiYWnO+sSioWrE4ub7lyaP6HFDWPRJRStra2Lne6sa3fWDWRxc3PD3d0dMzOzcvwOVV+6aeKFE5ePmibu5+eHr6+vUaYsVyZVLYlVHoubd7PU7LidSVqettwGC+rO62Am56UKHP4TcS+Lk4mqKnFvqCOjYJJ7L8+S/Wxev36dhQsX8uOPP5Kbm8vAgQOZNGkSrVq1Kt9ABQBUKhXTpk1j4cKFvPrqq6xYsQIXFxejxHLlyhX8/f0JDAzk22+/NUoMVcmdO3fw9vZGrS7YDiIsLIyxY8caOSpBEKorkaCsQWrCDaggPIpIUFY9Wq2WpKQk4uLiSExMJCEhgaSkJFJSUkhJSSE9Pb1Iu7NSqSx2uvOTtjubmpoaTHe2trYu0u7s4OCgn+ysq1DUJROdnJzEMJZKrHCbeOHEpWgTL1DTFzfVWokDMdmcSFSVW2LyQbrrtHG1oFtt63JfpK2u/48lSeLgwYOEhITw+++/4+TkxPvvv8+4ceOoXbt2xQUs6G3bto2RI0dibm7O2rVrjbbdTmhoKMHBwezfv59u3boZJYaqYNq0acybNw8Aa2trEhISxIAhQRDKlUhQ1hBVrfrhQaLVWygLIkFZ/lQqFfHx8frpzsnJySQlJT203Vk33fnBYSz5+fmlHsYil8sNhrFYWFhgYWGhr060sbHB3t4eOzs7fbuzbrKzi4sL7u7u1KpVq8ZXywkFCreJF05c6trEzc3N8fX1rfZt4jV5cfNulprttzONlrjTJeJeroBqyqp2n/io+8K8vDw2bNhAaGgop0+fxsfHh0mTJjF06FAsLcXe5sZ2//59hg0bxv79+/nkk0+YNWtWhU9/1mq1dOvWjZiYGM6cOSP+7j9ArVZTr1494uLiAOjXrx9btmwxclSCINQEIkFZA9TkTdAFobCbN2/SsGFDIiIi6NWrl7HDMTqtVmvQ7qyb7JyUlERaWppBu7NuuvOD7c66YSxP2+5sYWGBubm5wTAWOzs7bG1tcXR01Lc7Ozk56fdO1LU8i3ZnoSIVbhPXJS4Lt4k7OzvTokWLatEmXtWSVg96msXNE4lKIu5lV1jV5MPorl8RgwN1r7mye9j3IikpiaVLl7J48WLi4uJ44YUXCA4O5vnnn69WiwbVQX5+PvPmzWPmzJm0bduW9evXV/jU9GvXrtGiRQtGjRrFokWLKvTaldmePXvo06cPkiQhk8nEQCFBECqUSFDWAFfTc/n1Rqaxw3hqbzS0w9teJCKEJ1fVE5QajaZIu3NKSgrJycnFtjvrqhMLT3d+0nZnhUKBQqHQtzsXHsaiq1DUDWNxcHDAyckJJycn/f6JtWrVwsPDAwcHB9HuLFQ7D7aJ6xKXujZxgIYNGxZJXFbmNvGaurgpSRJH4pWVclp5Fw8rOtayLNdkW1Wc1B4dHU1oaChr164FYPjw4UycOBEfHx9jhCiUwrFjxxg0aBApKSksW7aMt99+u0Kvv3DhQiZOnMi+ffuM1m5emfTt25ddu3YB4Onpyd27d40ckSAINY1IUNYAG66lcztTXSXfYOjIKJhu+ba3vbFDEaqwik5QqlQqYmNjSUhIIC4+nuSUVJJSUknLyCAtJYW0lGTSU1P0eyfqBrLo9k4sPIyltO3OuunOhduddfsnWltbGwxjKTzdufAwFtHuLAhP58E2cV3isiq0idfUxc2qmKArS5U5QdvVw4oO/yZotVotu3fvJiQkhD179uDh4cH48eMJDAw02vAV4cmkp6fz/vvvs2HDBkaNGsXChQsrbLq2VqulR48e3Llzh3PnztXYe5709HQ8PDxQKpUAzJo1i9mzZxs3KEEQaiSRoKzmUnPz+f5CqrHDKDPv+TjiaK4wdhhCFfWoBKVWqyUtLU3f7pyUlERiYqJ+GEtqaioZGRlF2p1VKlWRdmetVotT3QbUaeZPnWb+eDZvRZ2mLTCzLPqmMk+ZQ8yls8RcPEP81WiSb1wmOykWiwfanXXDWOzt7fXJRN0wFldXV9zd3XFzc6u01ViCIPzPg23i586d4/z585WqTbwmLm6eSFAScb/qtjiXpcra4p6Tk8OaNWsIDQ3l0qVLtGrViuDgYN566y2x3UcVJkkSq1atYvz48Xh6ehIeHk7Lli0r5No3btzAz8+PESNGEBYWViHXrEwWLFjA5MmTATAzM+PWrVt4eHgYOSpBEGoqkaCs5vbdz+Z4grJKv8HQkQFt3SzpUadiVlWFyk2j0RRUJv7b7pyYmEhycjLJycn6vRMfbHdOT0/n/v372NjYIEmSwTCW0rY7F57urBvG4ubljU+f16nfqQ+mlgX/TiVtPsjkj62GkgO6GklzhQx/ZwtauliIhLwg1BDFtYmfO3eOq1evVnibeE1c3Kxq+21WxPDAyjQkSJ6ewOLFi/n+++9JTU2lX79+BAcH07lzZ6NXGwtl5/LlywwaNIjo6Gi++uorJk6cWCH/fxctWsSECROq7BZAT6pJkyZcuXIFgE6dOnHo0CEjRyQIQk0nEpTVmCRJhJ5LITe/8vwv/riVK70CP+K596c+0fPNFTIm+TmJm9EqKCcnR9/unJCQoJ/snJqaSmpqqsF0Z127s24Yi26689O2O5uYmJCZmYmrqytOTk5YWVlhY2Nj0O5ceP/EwsNYatWqhZVV0QpIrSRxPSOPk4kqbmWqy6zaRHceL1tTWrta0MjOTAyJEoQaqCRt4j4+PkUSl0/TJl7TFjfVWokfLqYaLRFXWrrE3ehmjpjKy/fvglorcSAmmxOJqgqrptRd51lXC2ziLvNdaAg///wzlpaWvPvuu0yYMIGGDRtWQCSCMeTm5vLxxx8TEhLCiy++yE8//YSbm1u5XlOr1dKrVy9u3rzJuXPnsLW1LdfrGVtUVBStW7fW309v2rSJAQMGGDkqQRAEkaCs1pJVGpZfTDN2GAaeNkEJENjMEScLUVVWnrRaLSkpKQbtzklJSQ9td9btnfjgdOf8/PxSTXeWyWT6hKKuOtHc3BxLS0v9/omFh7HY29vj5OSEo6OjwTAWd3d3XFxcilQV3bp1iwYNGrBnzx6ee+65p/4+3c1Ss+N2Jml52nJ746Y7r4OZnJfq25Z7xYwgCFVDSdrE/fz8DBKXJWkTf9ziZsTSeexd9jUz9l7C2tG5zF/Xw5z8PZxNs4P4YO0ePH0CSvXcxy1uRtzL4kSikoLfuFWDDGjjakEvz4pp+6/Iv3f2ZnLsbp1i6ZdzOHToEF5eXgQFBfHuu+9iZ2dXDlcWKqOdO3cyYsQIFAoFa9asKZP7tke5efMmfn5+DB06lKVLl5brtYzpnXfeYdWqVQA4OjoSHx+Pqam4txQEoXIQm5VVY3E5GmOHUC7icjQiQfkAjUZDXFycQbuzbrpzWlqavuU5KyvLYLpzbm6uPqFYeLpzSRXX7mxpaamvTtQNY7G1tdUPY3FwcMDFxQVnZ2fc3NxwdXXFw8MDOzu7KjPd+cGKEii/qhLdedPztKy7mk4bVwu61bYu96oZQRAqN1dXV3r27EnPnj31jxXXJr57924WLVpk0Cb+YOKycJt4Sm5+peq8KAu5+RKpudpi7x1upik5kaCEKlahLgHHE1U842BeIQtXdW1MCfRx5EaGmpOJSm6WQ8eAp6WM2Mi9fD3nY27euEHnzp359ddfee2111AoxH1fTdO3b1/Onj3L8OHD6d27N1OnTmXu3Lnllkxr0KABX3/9NePGjWPAgAE8//zz5XIdY1Gr1bi6upKeXrCVxejRo1m+fLmRoxIEQTAkEpTVWFyOxmBfuyeVp8zGzLJy7Psol0GcUoMP5gaPz5s3j19++YVDhw5hYWFhpOhKLisry6DdOTk5maSkJIN2Z93eibp2Z90wFl27s1qtRqvVPnG7s6460c7OzqA60cbGpsgwFl27s24Yi6ura7HtzpWdrnrmaQrHC+/JBRU3PEB3nZOJKq6m5/GyqKYUBOEBcrkcb29vvL296d+/v/7x4trEly9fTlxcHPC/NnE/Pz+aP/8a+HY11ksoN8Utbv65Zw8H8t2wdqmFXFH1bollwI7bmQT6OFbIFiBymQxvezO87c1Izc0nKklFVLJKn9CWy0Bbgj+KhY8zV8jwUqg4vOEHPv92Pkqlkrfffptffv6ZNm3alOOrEaoCd3d3du3axfz58/nkk0/Yt28f4eHhNGrUqFyu995777Fp0ybeffddzp8/X20qdn/++WcGDhwIgEKhIDo6miZNmhg5KkEQhKKq3t2YUGKxOZpik5PpCbFELPmSy4f3kpOeip2rO8907MnLH/0fZ3b+yqbZQYxZ/htn/9zK+Yht5GvUzDpwjY2zxnPjxBGm7ThlcD5du9cXpxL1j2nyctm1cC5Rf2xCnaeiUZvOvPbxvGLjTE+IZU/YF1w+FIEyMx3nug3oMnQsbfoNKXKsVoKYbLX+8+3btzNy5EiSkpIA+Pvvv8t8xVPX7hwXF1dkurMumZienl5su3Nubm6R6c6lbXfW7Z2oG8ZiY2NjMN3Zzs5Ov3+iLqFYuN3Zzc2t2HZnofQqw1RTCcj4t5qyIia5CoJQ9VlaWtK6dWtat25t8HhxbeLp7k1p36wTyKtPxdqDi5s3b95k8uTJXEzOZkToOiNH9+QkIC1Py40MNd72FTvB2tFcQY861nSvbUVqrpa4HA1xSg0x2WrilBo0xdyAmsjB3dKE2tam1LJUcP/CGZYumMeUrb/h4ODA+PHj+eCDD6hTp06FvhahcpPL5Xz00Ud0796dQYMG0bJlS5YsWcKQIUXfJ5TFtVasWIGfnx9Tpkxh2bJlZX6NitauXTsiIyMB8PHxITo62sgRCYIgPJzIWFRTkiQRpyza4p2RGEfYsN4oMzNo+/owXL0ak5EYy/mIbahVSv1xW7+YhrWjMz3HTEatyin19X/9LJioPzbi33cA9Vs8y/Xjf7MyaHCR4zKTE1gy4gWQyWj/9rvYODpz+fBefv1sEqrsTDoPeb/Ic+KUGi5dusybb77B+fPnDb6WkJBAXl6ePpn44HTntLQ0fUIxKytLn1AsPIylrNqddXsnOjs7Y2lpqa9OLG4Yiy6ZqGt3trGxqTLtzjWBJEkciVfyd2zBz4Kxmx9114+4l01uvkTHWpZicJQgCKVWXJv4mitp3M9+/BYx2WkpbP1yKleO7ENuYkrLF9/ghaBPMTUv6GI4sXU9p3dsJP76JVRZGTh7etFh4GjavznS4DxfvdSKWo2a0n1kEDsWfErc1QvYurrz3Hsf0erltx8ZgzIjjR8/eIuMxDhGL92Mq5d3scfpFjdzcnL46quvmDdvHs7OzkzZsJdcjP87/WnIgJOJygpPUOqvL5PhZKHAyUKhTwBLkoRWAo0kka8FhRxMZDLksoI2019++YWpoaGcPHmSpk2bEhYWxrBhw6pkZ4ZQcZ599llOnz7NBx98wNChQ/nzzz9ZtGhRmQ+08fLy4ptvvuH9999nwIAB9OnTp0zPX1Hu3LmDt7c3anVBYceiRYv44IMPjByVIAjCo4kEZTWVL1Hs6vWu7+aSmZzAuNW7DTaZf37sfwwq+6zsHBi9dDPyJ9jzJ/bKeaL+2Ej7N0fqqyY7vP0uG6a/T9xVw1W7Pxd/jjY/n4m/HMTawQmAdm+8Q/jHgez9/mvaDRiBqYVhhZhGC839/MjXqHnQ0KFDGTp0aIniLDyMRZdQtLe317c76/ZPLNzurEsmOjs7U6tWLX2FYlVoKxeeXOHkZGWji6uTu3hjJwiWJwzuAAAgAElEQVTC05EkifhiFjeLEz5tNI6169Jn/AzunDvJkfDlKDPSeWvuYgD+2bSSWg2b0KxbH+QKEy4d3M3WL6YiabV0ePtdg3Ol3LvJuqmjaPPaEFq9/DYntq5n06wJ1GnmT61GTYu9fnZqMivGvYEyPY3A5VtxrtvgkfHez8ylWTN/4uLimDJlCh9M+Q+rb+WW6LVWZhJwM1NNam4+juaVo+pVJpOhkIECGfwbUlJSEt9//z2LFy8mNjaW3r1788cff9CnTx+xICuUmK2tLatXr+b5559n3LhxHDlyhPDw8DLfDiAwMJBNmzYxevRozp8/j729fZmev7xNmzaNefMK3oNZWVmRmJgoFgAEQagSRIKymtIU00as1Wq5sH8nzbr2KXYCZuEKrGdfH/ZEyUmAy4ciAOg4KNDg8U6D3+PMzl/1n0uSxPm922nx/GsgSWSnJuu/9kyHHpzdvYX7l87iFdCuyDVMzM2LTVA2adKE9u3b64exODs7Gwxj0U13FjfDNdOT7EF5IqHyJid1/o7NwVwhE+3egiA8lYctbhbHsU49hoesAQoWIS2sbTi28Se6DBuHxzO+BC7farDA2HHgaH784C0OrVtaJEGZeOsagT/8ToNWHQDw6/0aX/UN4OTv4bwYPKfItTOT4lkx9g3UuSoCf/gdx9p1HxuvJFcQ0KoVC775hkaNGrHvvnG36yhLMiAqSUWPOpVjv/DCLl68SGhoKKtXr0aSJIYNG8akSZPw9fU1dmhCFTZs2DA6dOjAoEGD6NixI1988QXBwcFldn8vk8n44Ycf8PPz48MPP2TFihVlct6KUKdOHWJiYgB49dVX2bp1q5EjEgRBKDmRoKymiutMzk5NIjcr86HVCIU51q73xNdOjb2HTC7HydPL4HHX+oatV9mpSagy04ncvJrIzauLPVd2SlKxj584dZrJEz5gz549Bsmm3r17s3DhwieOXRAKu5ulJuJ+trHDKJGIe9nUsjQRg3MEQXhixS1uPkz7t0YZfN5h4BiObfyJy4cj8HjG1yA5qcrMIF+jpmHrjlw9+heqzAwsbP83fMKtYRN9chLAxtEFl/repNy7XeS66fEx/Dy9YPuXwB9+x97No8Qx/7LpV8wVciRJ4kyy6qmTk7o9uGfsvYS1o/NTnu3JSUBUsoruta0qxXYfkiTx559/Ehoayq5du3B3d2f69Om89957uLq6Gjs8oZrw9vbm8OHDzJw5kylTpvDnn3+yatUq3N3dy+T89evXZ/78+QQGBvLGG2/Qt2/fMjlvefnrr7/o1asXkiQhk8k4cOAAXbp0MXZYgiAIpSISlNXU0y4gPthWDSCj+JterTb/ia4h/ZtFDXjxTVq/Uvw+U+6NfYp9vHGjhuzevZucnBw++ugjfvrpJ5RKpRgEI5QZtVZi++3MKlNhIwO2385kdDNHTOXGf4MqCELVU4ptl3Gp19Dgc2dPL2RyOakxdwG4FfUPEUvncefsiSJ7WauyDBOUDu5Fh6JY2tmjzEwr8vgvM8chV5jw4a+HsXWpVfKAgXwtoICU3Hz95OnqIjdfIjVXW2RSeUVSKpWsXbuW0NBQLly4QMuWLVm9ejVvvfUW5ubmRotLqL7MzMz46quv6NWrF8OHD8ff359Vq1bxwgsvlMn5R48erW/1jo6OxsHBoUzOW9b69u3Lrl27APD09OTu3btGjkgQBOHJiD7XasqkmBV0a0cXzG1sib9+6YnOaWHngCozvcjjabH3DD539PBE0mpJuXfL4PHE29eKxmNtg6TNx7tdt2I/bJyKX2nXvT4rKysWL15MVlYWERER/Pe//32i1yYIDzoQk01GnrZKJCfhf9O9D8ZUjYpPQRDKhyRJaLQSqnwtOWotqnwtGq1Uoq0tnmpxs9B9R/Ldm6x4fwA5acm89OFnjFi4nneXbKLTv4PvJMkwEyp7yMTw4mL27fkSqsx0DoeXfrqu4t/XF5dTsn02qxpjva7Y2FhmzJhB3bp1ee+992jcuDH79+/n5MmTDBs2TCQnhXLXu3dvzp49S6tWrejbty9TpkwhLy/vqc+ra/XOysoiODgYgN9//53hw4eTm2v8PWzT09OxsrLSJyenT58ukpOCIFRpotysmlLIwERuuJeUXC7Hp3tfov7YxL0LUUX2oXzcmxdnTy9UWRnEXonG45mCvYMyEuOI/muHwXHPdOrF7kX/x5HwZfohOQCH139vcJxcoaB5z5eJ2rWZuGsXcfduZvD1rNQkbBxdisRhIocHC8Tkcjm9evV6ZPyCUNI9KO9mqTmRqKqIkMqUBBxPVPGMg7lo9RaEGkCSJFJy84nL0RCXoyE2R0OcUlPsPpImcnC3NMHDygT3fz+czBUGLcHFLW4+TNKdGzjVqa//PPnuTSStFsfadbl4cDeavFyGh6zFwcNTf8z144ee7IUW0nHgGJzrNiRiyZdY2NjRfeTEEj9322+/Ub9eXeIcvJAjoxQFo5WeXAZxSo1+knZFOHXqFCEhIfz888+Ym5szatQoJkyYgLd38dPUBaE8ubm5sWPHDr799lumTZvG/v37CQ8Pp3Hjxk913rp167JgwQJGjx7NrVu32L9/PwCTJ0/G39+/DCJ/MqGhofqkqZmZGbdu3cLDo+RbXgiCIFRGIkFZTclkMtwtTbiXbbia3mf8DK4d28+y0a/R9vVhuDV4hoykeM5H/M57P25/5Dlb9OnProWfsXbKO3QcOBq1SsmxTStxqdeImEtn9cfVbuKH/wuvc2zjT6iyMqnn/yzXIw+SfPdWkXP2CZrJ9ROHCRv+As/2H0qthk3IyUgl5tJZrv1zkE/3Xy3yHHdLk0qxx5JQPWkliR1VqLX7QTJgx+1MAn0ckYufE0GollJz8zmdpOJMskrfqiyHRybcNFq4l60hJlujP85cIcPf2YKWLhY4miuKXdx8mGO//MgzHXroPz+6YTkATTr14uapo4DhYpAqM4OTv4eX5mU+VK8xk8nNymT3d//FwsaO9m+OfOxz8pQ5vPnGAAACV2zDK6Bdmd1LKDPT+SN0Fhf+2omERPMeL/Hqf77CzPJ/U3NP79jIkQ3Lib9+CYWpGe7ezegx+kOD7+HT0EoQk110eGBZy8/PZ9u2bYSEhHDw4EHq16/PF198wbvvvltp21+FmkMulxMcHEy3bt0YOHAgLVu2ZPHixQwfPvypft7d3NwwMzPTJycBbt68abQEZZMmTbhy5QoAHTt25PDhw0aJQxAEoayJBGU15mFlYvBGBMDezYNxq3bz55IviNr5K7nZmdi5efBMx57F7jtZmLWDE0Pnr2LHgk/Z+e1nONWpR5/xM0i+c8MgQQkwYNa3WDs6E7XzVy7s/4NGz3bhnYXr+bKv4R9yW2c3Plizm73LviH6rx38s/EnrBwccWvYlBeCPi0Sg1wGta1FZZhQfq5n5JGWV3XraiQgLU/LjQw13vZmxg5HEIQyopUkrmfkcTJRxa1MdZFFlJL+1ip8XG6+xPEEJZEJSmzzMsiK/ocs14ZY12lo0LJdnNT7d1g9aSiNO/bkztkTRP2xEf++A/B4pjkmZhYoTM1YPWkobQcMJ0+ZTeTmNdg4uZCZFF/KV168F4Nno8rK4Pcvp2FuZUPLl9585PENXexISkri1u3bREh1kMpwASf8P6NxrF2PPhNmEHPpLMe3rMXayZW+EwvuYyK+/5q938+jvv+zPPf+NBSmptw9f4obx/8uswQlFFRQ6gZklLXMzEx+/PFHFi5cyI0bN+jYsSMbN26kX79+Yv9vodJp1aoVp06dIigoiHfeeYc///yTJUuWYGdn9/gnP2Dq1Kl8/fXXBj9XcrmcW7dulfpckiSRLxUMJNNqC7bVMJHJUMgo0c/t+fPn8ff3R/vvhsGbNm1iwIABpY5DEAShshJ3FNWYu5VJsW9YHDw8eev/2TvzsKiqN45/ZthBdkFAcVfcEMRdXEvLhdym1FxyI7Vyzb3FdjX7KS5hmkuae4qpaVZqWomWioK55Y4gIgiI7DAz9/fHxOQIKMvAMHA+z8MjM3Puue8VZrjne97v+34cnO8xLfu+Ssu+rxY4Z4N2XZn63e95nu8+YZbOYzMLS16aOZ+XZs7XeX7B2fg8x1ZxcqHfnM/pN+fzAs+bi1rSZFAKBKVFWHym0WZP5iIDwuIzhEApEFQQolJzOBCZwsNstbZdnb4+o3LneSi3xqRFD8zT0/599umL5VcXruHQqoX8vOIT5CamtB88ll5TPwTApXZ9hi1azy8rF/Dj0g+xdXal7cujsHF0JuSjwluyn0X/d/9HdkYauz6ajIVNFZp0zb/LrqRWEXXhPBermtKiZSsOXU3Pd1xx8fDyRvHBMu3j9IdJnNm7hV5T5vHgzk1+XfM/mnbrw9Av1iN/rNBnYeqCFgWlWnOfZKJHffL27dusWLGCtWvXkp6eziuvvMK2bdto06aN/k4iEJQCVapUYf369fTo0YMJEyZw8uRJtm3bRtu2bYs0j0qlaQYql8u138tkMm7duvXU4/RdgmPUqFFs3LgRAEdHR+7fv4+ZmUjaEAgEFQuZpO+7I0G5ISFTyZrLeTtgGjvjGjsatEulwHiJjo7G09OTgwcP5tvhMSlLxepLSQaIrHQY38QRRwvxXhEIjJUctcRvMWmcqQAbJ4Zmz8dT+GvPVqo4OPHur//oZc7DqxZx5OsveHPTL3g2baF9/vjmVRxY8j4f/H6TU7u/5eDSD5m07Vc8vLz1ct6nMa25ExYmJeuBKUkSJ06cICgoiO+//x57e3vGjRvHxIkTqVGjxrMnEAjKGTdv3mTo0KGEhYXxySefMGvWLJ3Ngmdx8uRJJk2aRFhYmPa5nj17cvDgwTxji1OCI5fHx+WW4PC2N6FBDTeSkzWNSgMDA1mzZk2hYxcIBAJjQnTxrsA4WZhgoc9t9HKAhYkMRwvxaysoHc49yHxGzpDxIAPCHxhfox+BQKAhKjWHtZeTCPu3YZcQJ0vGD1u+4dy5c8xf+Gy3RlFxcKuu89jKzh6AjEcPSYy+jUwux7Wul97Pmx+qElQoycnJYevWrbRp04aOHTvy999/8+WXXxIVFcXChQuFOCkwWurWrcsff/zBzJkzeeedd3jhhReIiYkp9PHt27fn1KlTbN68GRcXF0AjWuailiSuJWex/Xoyqy8lcTouQytOQvFLcJy6n866a6kMnL+GJl17cv7830KcFAgEFRqh9FRgZDLNzltFElx8nS1FgxxBqSBJEhEJmQWKAFEXz/HVqN7M61CLuX4uxPzzd5nGV1QkIDwhU+8WQoFAUPqcic9gy7VkHmWrhTCpByxMZFS1MsPX15fXA8fofX65vKBM9bL/6RUneTIxMZGFCxdSp04dhg0bhoODA/v37+fy5cu88cYb2NjY6D9QgaCMMTMzY/78+Rw+fJhLly7h4+PDgQMHCn28XC5n2LBh3L59m2HDhmkb5ESl5vD1pSRCbqYQmaJpVKW3d/6/a576bToxYskmQuUeRKWWfjMsgUAgMBSimF8Fp0VVS07FZRg6DL0gAb5VLQ0dhqCCkpil0tntfhxVTg5bZ43FzMKCgOmfYGZphaO7ZxlHWHSyVBJJWWpREkEgMBIkSeLE/Qz+uKepkSjEyZLz5OamaRlvcjrVqI2kVhN3858ysXh/sXAhNT1rUKtWLWrVqkX16tULrFN35coVli1bxsaNG1Gr1QwbNoypU6fi7V36cQoEhuK5557j/PnzjB49moCAAKZMmcLnn3+OhYVFoY63trZm8+bN5KglDkenaktwQOl9ZstNNEv25Gw1W64l08rFki4eNpjJRdKGQCCoWAiBsoLjaGFCbVszIlNyjHqhIwNq25qJenqCEpG7QM0vqzA2XVngcQnRt3l4L4qB7y+h9YARpRZfaRCbrhQCpUBQzomPjyc8PJyzyRJSPT9Dh1OheHJz00SmaUiRX6OK0qBJ1178tPxjfv16cb5NcvTpClFmZbJ82VLi4/9rSCiXy/Hw8NAKlp6enmRkZHDixAnOnDmDq6src+bMYcKECbi6uuotFoGgPFO1alX27dvHl19+yYwZMzh27Bjbt2+nUaNGhTo+KjWH/ZEpPMrWfJCU1Ror9zxh8ZlcS84moJYtnlVEoxyBQFBxEAJlJaCliyW3U4zbDiABLV2sDB2GoAITm64ssIh5WqJmsWdpa6+Xc2VnpGFuVfqWObkMYjOUNKFwWQECgaB0UavV3Lhxg/DwcJ2vmJgYOgx5nZdmzTd0iBWK/DY3ZTIZblamRKcVvCmlT6rWrEu3sdP4dc1ivh4bQNPnAjAxMyf60jnsXNzoOel9vZ2rtlMV4uLiSE9P586dO0RGRmr/vXHjBqdPn2bnzp3k5Px3TxgXF8eyZcvYs2cPNWvW1AqZj3/v4uIiyusIKhwymYxJkybRuXNnhgwZQsuWLVm+fDljxox56u/7mfgMDkenGbRxmQQ8+jebsnsNG1qJNZJAIKggCIGyElDPzhwHcznJRlrLSgbYm8upayd2CAWlx710Zb7i5M4PJnL2hx0AbJ01FoA6LTvw0sz5HN/yFbfO/klKfCyWtnZ4+Xen19QPsXFw0h6f2+V16q7jHF27hH9Cj+Do4cnkbUdRq9X8+vX/OLX7WzJTH+HZzI++cz5nw6RXqduqA6989KV2nsTo2xxc/jE3Tv2BMjsLt/pNeO71t2nU6YUCr0ktQUyacW9OCATGSkZGBhcuXNARIs+fP09qaioAHh4e+Pr6MmrUKLzadSGmRotnzCgoKgVtbrpbmxKTlv9nfmnQ4405OHrU5OSOtfwSPB8zSyvcGjTBr88gvZ1DLgMPG819krW1NY0aNaJRo0bExsaycuVKDh8+TEJCAgEBAUyePJkGDRoQFRVFZGSkjpB56NAhIiMjSU9P185taWmpI1g+KWA+zUYuEJR3fHx8OHPmDNOmTSMwMJBffvmF1atX4+DgoDOuvJXgyD3/4eg0slQSHapZiY0EgUBg9Mgk0UGhUhCVmsOWa8mGDqPYDG9gTw1hYRCUkLt371KjRg1+/PFHevXqpX1ekiQWn0/I1/IXGXGaK3/8wrH1S+nw6uvUaNKCKs4uxF67xKVjB6nfriu2zq7cv3GF099volr9xry58SftTWKuQOla14uqNevSoH03JEmi/aAxHFz2Mb9vXEHjzi/SoH037l29yNUTR1BmZeHVqbtWoExJiGP5kK7kZGbQYcjrWNs7cXb/dmKvX2bYovU0fa5PgddsKofpzZ3FTatAUIrEx8cTERGhI0ZeuXIFlUqFXC6nUaNG+Pr6ar98fHy0dtoctcTay0miIY6eyd3cHNfEEfkTn38XEzP5ITLVMIGVIn1r2dLESZMxHx4eztKlS9m2bRtmZmaMHj1aK0w+C0mSSExMzCNePv74aTby/DIxq1SpUmrXLRDoi507d/L666/j4ODA1q1b6dChg/a10Nh0rThZHunkbo2/m7WhwxAIBIISITIoKwmeVcxo5WJJWHzBXYrLIzKglYulECcFeqGgGpQqqeB6ZLV8WqPKyebY+qXUbtEO7+59Aajt25ZOI97UGVuzeSu2zx3H7XN/Usevvc5r7g2bMmT+au3jlIQ4jm/5iibdejNi8Ubt84dXf8GR1Yt0jv3tm+WkJsQzft0P1G7RDoDWA4ezbHBXDiyZR+OuvXTqmj2OUq3JpDQR+qRAUGLUajU3b97MY9G+e/cuADY2NjRv3pzOnTszefJkfH19adasGdbWBS8af4tJE+JkKSABAbVs84iTAG7WFfP218VSxr59+wgKCuLYsWN4enry6aefEhgYiKOjY6HnkclkODs74+zsjJ9f/jVRc23k+YmXoaGhREdHo1KptOOdnJwKFC+FjVxQXnjllVdo06YNQ4cOpXPnznz00UfMmTOHcwnZ5VqcBPjjXjoWJjJh9xYIBEZNxbxDE+RLFw8briVnG81CSAbYmcvp7FH6tfoElRtlMRLJzSz/uwHMycokOz2Nmt4tAYi5cj6PQNlWMVLn8Y1Tf6BWKmn3ymid5zsMCcwjUP4Tepgazfy04iSAhXUV2gwcwc8rPiXu5j+41W9cYKxKScIEsfATCIpCRkYGFy9e1BEiIyIitBZtd3d3fH19ee2117SZkfXq1cPEpPBNqaJSczgTn1lal1BpedbmppOFCRYmMrJUxnA3VEiU2bT3acqN69dp164dO3bsYODAgZials6t/uM28nzDUSqJiYnRETCFjVxgDNSqVYvffvuNTz75hHnz5nE9IRWvEdMNHVahOBydRjUrU9E4RyAQGC1CoKxEmMllBNSyNRqrd272g5lcCCuC0kVdjEJk6clJHPn6C87/vIfUxHid1zJTU/KMd6xeS+fxw3tRADh71tF53treESs7hyfGRuPdrGWeOV3rNNTO9TSBUqUGRCNvgaBAHjx4kCcr8nGLtpeXF76+vvTt21dr0a5WrVqJzqmWJA5Ephi00UJFpDCbmzKZDB9nS07HZVSI/3u1Skno1jW0atmSzZs20a5du2cfVMqYmppSs2ZNatasSceOHfO8/jQb+blz59i7d6+wkQsMhqmpKR999BHduvfglJknEsbxOS0D9kemENjYUayfBAKBUSIEykqGZxUzutew4XB0mqFDeSbda9iIHUBBmVCAO/qpbJ0dyJ3zp+k04i08vJphbm2DpFbzzcTBSPkonmYWlnqItHiYFOP6BIKKyLMs2tbW1vj4+BTJol1cbjzK5mF2WbVpqTwUdnOzRVVLTsVllE1QpYxMbsKiyWNoWsfT0KEUGmEjFxgDyjq+SEZUHiu3u/fvMWk8X0MI9gKBwPgQAmUlpJWLFVkqqVzXUunkbi1qqAj0TkE1KE2LuGDJePSQG6d+p/uE2Tw/bob2+Qd3bhR6Dgd3zUIyIeoWTo9lV6Y9TCTj0cMnxtYgPvJ6njnib1/Tmasginp9AkFFIDMzM08XbX1btEtCWHymyJ4sBQq7ueloYUJtWzMiU3KM+megUiqJu3yOVad/xN/fH39/fzw9jUeofBrCRi4wJMZagkMCTsdn0tDBQiR6CAQCo0MIlJWUDtU04l95FCk7u1vTvpoQJwVlh4lM0+26oEY5TyKTawSMJ4XO0C2r8xueL/XadEJuaspfOzfQoF1X7fMnd6zLM9bLvzuhW1cTGXGaWj6tAcjOSOPU7k04etTEta5XgecxlYNw+QgqOg8ePMjTRfvy5culatEuCUlZKm6n5Bjs/BWVom5utnSxNPqfg4mpKcpb5/nlp5/48ssvAfD09NSKlf7+/jRv3rzMhPeyRNjIBaWFsZfgkAEHIlMY18Qx30ZhAoFAUF4RAmUlRSaT4e9mjYWJjMPRaQb/A5x7/u41bETmpKDMkclkuFmZEp2mLNR4yyq21PFrz+8bv0StzMHO1Z1rfx4j6W5koc9p6+yK/6vj+GPTSr6dOpwGHZ4j9upF/jlxBBsHZ2SPNbXpMnoyET/vZsOkIXR49XWs7Bw4u38HSXcjGfbFNwV28AZwszIVljZBhUGtVnPr1q08Fu3o6GjgP4t2p06dmDRpUqlatEvCuQcie1LfFGdzs56dOQ7mcpKNpHngk8gAe3M5s+bNQv7BbO7fv8+JEycIDQ0lNDSUkJAQcnJyqFKlCu3atdMKlu3atcPW1tbQ4Zc6wkYuKC7GXoJDAh5mq7n5KIf69uaGDkcgEAgKjRAoKzmtXKyoZmXK/sgUg3X3zi1oH1DLVlgRBAbD3dqUmDQlhb0dHTx/NT98PpeT360HSaJB+66MWrGdBS96F/qcPSfPw8zSitPfb+L6qd+p6d2KMcE7WT02ANPHalbaOrvyxjc/cnD5x5zYvhZldhZuDZrw2tLNNOr0QoHzy2XgYSPeUwLjJDMzM98u2ikpmiZUbm5u+Pr6Mnz4cK1Fu379+uU+U0ySJCISilbTLGzfNnZ9OJm3Nh+iRhPfp479+vV+AIxbsxeApJg7LApoycsfLqdl31cBOLxqEUe+/oIFZ+MLnMcYKOnmplwmo48RNQ98ktx6m7kZUtWqVWPAgAEMGDAA0HSiP3PmjFawXLFiBR999BFyuZzmzZvrZFnWrFnTgFdiOISNXJAfFaEEhwwIi88QAqVAIDAqhEApwLOKGYGNHfktJo0zZfgHOfc8rVws6exhI7rNCUqdgmpQArhZmxYoTtZt5Z9nIW/v6s7wxRvyjH1yXPcJs+g+YVa+88pNTOjxxhx6vDFH+1xGSjLpDxOxd3XXGetUozbDFq0vIML8UUuaDEqBoLzzNIu2TCbTWrQDAgK0Fm03NzdDh10sErNUZKnK37L36LogXOt60bRbb0OHUij0tbnpWcWMVi6WhBlRIwzQXH8rF0tqPOXarays6NSpE506dQI0GchXr17VCpaHDh0iODgYgBo1auSxhZuair8fwkZe+agoJTgk4FZKDklZKhwtyvfGnUAgEOQi7jwEAJjJZXSvUQUvBwsORKbwMFtdakJl7rz25nL6iKxJQTnBzbrsPw5zMjMws9TN+smtY1mnlb9ezmGI6xIICqIwFu3mzZvTsWNHJk6cqLVo29jYGDhy/RGbXrhSEsVlzMqdzxzTLfBtuoyerPPcsfVLadb9pXIvUJbG5mYXDxuuJWcbzElSVFQqJarUZPzqeRTpOLlcrs0WHDt2LADx8fE6tvAZM2aQnZ2NjY1NHlu4nZ1daVyOUSNs5BWPilSCQwaEP8ikW/WK8zdUIBBUbMTKVaCDZxUzxjVx5OajHMLiM7iVkqO3P9K589S2NaOlixV17cxE4WZBucHJwgQLE1mZZjad/2UPYT9sx8u/O+bWNkSG/0XET7tp0K4rtX3blnj+rLQUFn8ShEKhoEWLFmJBIyhTKqpFu6TEpiuRQ6HLSRQVU7Nn2/lMTE0x0WN2nAwwl0OWGqPc3DSTywgwIqu3idyEzXPHs+3hfb777ju8vQtfWuRJXFxc6NevH/36aRfpt5MAACAASURBVEoDZGZmEhYWphUsg4OD+fjjj5HL5Xh7e+Pv70+HDh3w9/enVq1a4u9KISiMjfzevXt5xEthIy97ilOCw5A8q1yHBIQnZNLVw1q8VwUCgVEgBEpBHuQyGfXtzalvb05SlorwB5mEJ2RqhRu5TGMdffY8/42zMJHh62yJb1VLYTMQlEtkMhk+zpacjssosxtTtwZNkJuY8vu3X5KVmkIVZxc6vDqOF96aW/LJJYm0K2Gs/eor5s+fT506dRg4cCAKhYK2bds+tbGOQFBUEhIS8mRFVlSLdkm5l/5frdukmCh+27iCG6d+52HsXcwsrajXuiO9p36Io0femoA5Gel8/+l0/j7yA2plDk269ualmZ9hZeegHfNkDcr8eHJRO9fPBYCzP+zg7A87APB7aTB+AUNYO34Aw/+3gabP9dGZI/xgCDvencCEb36klk9rXKxMaVfN2mg3Nz2rmNG9hg2Ho9P0Pre+6e5Zhf7frGLw4MG0adOG5cuXExgYqBcBwtLSUps1CRrB5nFb+JEjR1i5ciUAHh4eOrZwX19fYQsvBqampnh6euLp6Sls5AamvJbgKAlZKomkLDVOlmL9JRAIyj/iLkLwVBwtTOhW3YauHtYkZamJTVcSm6EkJi2H2AwlynxSQEzlmrp3HjZmuFmZ4mZtiqOFXOzcCQzO02pQArSoasmpuIwyi6d6Yx8CV4WUzuQyGXNHDOCzkf04duwYISEhbNq0icWLF1O9enUGDBiAQqGgU6dOFT5jTaA/1Go1t2/fziNGRkVFAZXDol0SJEkiNuM/i3f0pXPciThF8xcGYF/Ng6SYO/y1awNfv96fabuOY26l23183+dzsbS1o/v4mcTfvs5fuzbw8F4Ur6/ZW6K/sYM+WcnuT6ZRo2kL2gx8DdDUva3ZvBX2btUJP7grH4FyF041alPLpzUAsRlK6tmZGfXmZisXK7JUEn/cS3/2YAPRyd1a0xDIpRF//vknb7/9NuPGjePXX39l9erVerdh524weHl5MWbMGEBTM/ZxW/js2bPJysrC2tqatm3bagXL9u3bY29vr9d4KiPCRl52lHYJDkMRm64UAqVAIDAKhEApKBQymQwnSxOcLE1oggWgWWipJVBKEio1mMjBVCZDLqNS3tQIjB9HCxNq25oRmZJjNPae/JChyTbSLOhN6NGjBz169CA4OJjQ0FBCQkLYvXs3X375JS4uLlqxslu3bsIWJtCSlZWVr0X70aNHwH8W7WHDhlUqi3ZJUEnobOw16tgD7+59dcY07vwiX43qxYUj+/ELGKTzmomZGYGrdmPy7/vU0d2Tg8s+4vLvP9OkS89ix9WizyvsmT8Dpxq1aNHnFd3Xer3M8S2ryEx5hKWtRvxKTXrAtT+P0W3MNO04pVojLJrIjHtzs0M1TV3g8ihSdna3pn21/+oWW1lZ8dVXX9GtWzcCAwPx8/Pju+++K1DE0hdVq1alb9++9O2r+d3NysrSsYWvXr2aTz/9FJlMRrNmzXSyLGvXri3uEUsBYSPXD6VdgsMQyGWaDaTc9ZtAIBCUZ4RAKSg2MpkMExmYIAOxHhVUEFq6WBp990YJaOliled5ExMTOnfuTOfOnQkKCuL06dOEhIQQEhLC119/jaOjI3379kWhUNCjRw8sLS3LPniBQUhISMi3i7ZSqUQmk9GwYUN8fX3p06dPpbdolwTlE9nbjzfJUuXkkJmWgrNnHSxt7Ym5cj6PQNlm4GtacRKg7Suj+Dn4M/45frhEAuXTaBEwmGPfLOPvI/to3X84AOd/3oNaqcS398s6Y5WSpLkn+Bdj3NyUyWT4u1ljYSLjcHSawZtl5J6/ew0bTeZkPgwaNIiWLVsyePBg2rdvz//+9z8mTpxYZv+fFhYWdOjQgQ4dOjBz5kwkSeLatWtawfLYsWOsWrUKAHd39zy28IoodJU3hI28cDxegiM/cstjTN/zF0fXLeHS0YNISDTr1oe+cz7XyXo/d2Anx7esIu7WVcwsLGnQriu9pn6Ig1t1nTnv/B3G4VWfc+fvM6iVSmo08eWFie/mqUV++9yf7F/8PvevX8bO1Z3Or00s1DWpJYhJM+77WoFAUHkQAqVAIBA8Rj07cxzM5SQbSTfXJ5GhaSJR1+7pCz65XE7btm1p27Ytn3/+OREREVqxcuPGjVSpUoWAgAAUCgW9evUSFt0KgiRJ+XbRzrVoW1lZ0bx5czp06MCbb76Jr68v3t7e4uevJ9RPrHxzMjM49s0ywvZt41HcPZ3yE5mpj/Ic71yzrs5jC+sq2FatRlLMnVKJF8C1TgNqNG1B+I8hWoEy/GAInt6tqPpEPCo1z9ywNJbNzVYuVlSzMmV/ZIrBunvLADtzOQGFaApUr149rd168uTJHD16lHXr1uHo6Fg2wT5G7qZGw4YNGT16NKDZBDl58qRWtJw7dy6ZmZlYW1vTpk0bHVu4g4PDM84g0DfCRp63BMfT2DYnEEePmrw46T1irpzn9PebsXFyodeUeQAcXbuEQ18txLtHP1oPGE5aUgInt6/l68C+TNr2K1a2mtIHN079wTeThlC9sQ/Pj5uJTCYjbN921o4fyPh1P+DZTPOziL12ifVvDcLGwZnnx89ErVJyePXnVHFyLVS8sRlKJEkqV//fAoFAkB9CoBQIBJWGZ9WgBE2TqD5G1M31SSQgoJZtkZpIyGQyrUX3k08+4fLly1qx8pVXXsHKyoqePXuiUCgICAgQNcWMhGdZtF1dXWnRogVDhw7V/vwbNGggLNqlyJO9qfYtmkvYvm34Dx1PzeatsKxih0wmY9vccUhS+TEZtugziP3/e5fk+zEos7OI+vsMfWcvzDPOpIL13vKsYkZgY0d+i0njTHwmSBKUwQI/N2uylYslnT1sMJMX7pwWFhYsXbqUrl27Mnr0aPz8/Ni+fTtt27Z99sGljLOzMwEBAQQEBACQnZ3N2bNntYLlmjVr+Oyzz5DJZDRt2lQny7JOnTpCWCkHlLaN/ElLeVnbyJ8swfE0PLy8UXywTPs4/WESZ/ZuodeUeSTFRHF49SJ6vDmXbmP/K4PR9Lk+rBj6HH9+t55uY6chSRLfz59B3Vb+jP5yh/Z3vK1iJEGvdOKXlQsYu3InAIdWfY4kSYxf9wMO7jUAaPbcSywb3LlQ8T5egkMgEAjKM0KgFAgEgifwrGJGKxdLwuIzjSqLUoZmQVvjGZk2z6Jx48a89957vPfee9y4cYPdu3cTEhLC8OHDMTc3p3v37igUCvr164ezs7N+gheUiMTExHy7aD9p0e7du7dWjBQW7bLH9AmR5cLhH/ALGEyftz/WPpeTlUlmSv4bJAl3blKv9X/2zKz0VFIe3MfLv3vJg3uKAOTz4gB+XDKPiJ92k5OViYmpGc1f6J9n3JPXVxEwk8voXqMKOdFX+TVOhbNnHWRISOj/WnOFSXtzOX0KkTVZEP3796dFixYMGTKEjh07snDhQqZNm4b8SYXcgJibm9OuXTvatWvH9OnTkSSJGzduaAXLP/74g9WrVwOaerf+/v506NABf39/WrRogbm5uYGvQPAkpWkjL6gepj5t5E+W4HgabV4epfO4dot2XDx6gMzUFC7+egBJrca7Rz/SkhK0Y2ydXanqWZebZ0LpNnYa9/75m4Q7N3ku8G3SHybqzFe/TSfOHdiJWq0GSeLayaM06dpLK04CuNZtSIP23fjn+OFCX59JKXxuCQQCgT4RAqVAIBDkQxcPG64lZxvM2ldUcq2AnT30a8WtV68eM2fOZObMmURFRWnFysDAQMaNG0fXrl1RKBQMGDBACF5lgLBoGzcmMk0zmNwsHZmJiSYr7zFObl+L+jGb5OOc2v0tLfu+qq1D+dfODaiVSrz8ny9xbOZW1mSm5LWVA9g4OtPQ/3nO/bgLZXYmDTs8h42j7uaEqVzTjKGisuzDd/jn6lU6DRiKad3mNGjfFSSQ6UH0yxUma9ua0dLFirp2ZkXKgs+PWrVq8fvvv/Pee+8xY8YMjh49ysaNG8vtppJMJqN+/frUr1+fkSNHApqNl8dt4e+++y6ZmZlYWVnRunVrbYZlhw4dDGJlFxSNktrIT5w4Uao28idLcDyNJ+tIWtlpnCUZjx7yIOomkiSxuH/+mctyU83n94M7NwHYOa/gWpJZqY9QZmeRk5mRp6QGQNVa9QstUBamBIdAIBAYGiFQCgQCQT6YyWUEGJHVO9faXVgrYHHw9PRkypQpTJkyhdjYWPbs2UNISAiTJk3irbfewt/fH4VCwcCBA6lZs2apxVFZyMrK4tKlS3nESGHRNl5kMhluVqZEp2nqnDXq1INzP+7Eoood1ep6cef8aa6f+h1rB6d8j1fl5LB2wkC8e/TjQeR1/tz5DbV929JYDw1yqjf24fpfv/HH5q+wc3HD0aMmNb1bal/3CxjElpljAOjxxpw8x7tZmVZIG25WVhbz58/n559/BsDm5z1MnVqbPvVsuJIK4QmZZKk0IrNcBmpJgmdkKWnGab63MJHh62yJb1VLHC30+941MzPj888/p0uXLrz22mv4+vqybdu2fLPbyiNOTk706dOHPn36ABpb+Llz57SC5fr161mwYAEATZo00bGF16tXr0L+PlZ0DGkjL8peg1xe0HtVQlKrkclkjFqxHXk+f4/NrTQbhrnlhnpN/RAPr2b5zmZuZYMyO6vwgT2FilaCQyAQVEyEQCkQCCoNhalB+TieVczoXsOGw9FppRmWXuhew6bYdsDi4ObmxoQJE5gwYQIJCQns27ePkJAQZs+ezbRp02jdujUKhQKFQkH9+vXLLC5jJTExMU8X7UuXLuWxaPfq1UtYtI0cd2tTYtI0nWJfmjkfudyEiIMh5GRnUsunDWO/CmH9W4PyPbbv7AWEHwzh8KrPUSlz8HlxIC/Nmq8XIabP25/w/advc2jlAnIyM/B7abCOQNmo84tY2TkgqdV5BFG5DDxsKlYn5ri4OFatWsXKlSu5f/8+NjY27Nq1ixdffFH7/+1uD109rEnKUhObriQ2Q0l0Sja3E1N0uvnmYirXCLkeNma4WZniZm2Ko4W81IW03r17Ex4eztChQ+natSsff/wxc+bMKVeW78Jgbm6ube729ttvI0kSN2/e1AqWubUsAapVq6a1hPv7++Pn5yds4RWAktjIw8PDn2ojv3r9Om8fvFDiGJ1r1EaSJByr18KlVr0CxznVqA2ApY0t9dt2KXCcjWNVzCyttBmXj/Mg8nqh46qIJTgEFQtJkjS1YCUJtVqzaWD6b2M9seFUeZBJhV2pCwQCgZETHx+Pq6sre/bsoV+/foU+LjQ2nT/upT97oIHo5G6Nv1vexbAhePToEfv37yckJISDBw+SkZFB8+bNUSgUvPzyyzRp0sTQIRoUSZK4fft2nqzIO3c0XZhzLdq5IqSwaFc8LiZm8kNkqqHDKDIqpZIFL3rTuPMLOs0hculby5YmThYGiEy/XLhwgaVLl7J582bkcjm9e/cmJCSETZs2MXz48ELNIZfLebFXL/bs+wGVWpO5ZCqTITfwIkupVPLRRx/x2Wef0b17dzZt2kS1atUMFk9pkJSUxJ9//qkVLP/66y8yMjKwtLTMYwt3cso/U1lQsXnSRn7+/HmCg4ORJImPQiPz3VzI5fCqRRz5+gveO3JFp8xF2L5t7PpwMrP2h6FWqVgysD3eL/Rn8Kdf6bznJUkiPTkJGwcn1Go1i/u3RSaXM2nrESysdetppiY9oIpjVQA2TR/J1RO/Mn33SW0dyribV1k2uDNqlYoFZ+N5GqZymN7cWYg8gnKDJEkkZqk0m3vpSu79u8mXX6Oq3M09d2vNxp6btSlOFibi97mCIgRKgUBQaSiuQClJEifuZ5RLkbKzuzXtq1mVyz/SaWlp/PTTT4SEhLB//35SUlJo1KiRNrPS19e3XMatL/KzaEdERJCcrCkb4OLiQosWLfD19dX+KyzaFZ+ETCVrLj80dBhF5u/D+9g6ayyvr9lD3Zb+eV5/xQ3quVc1QGQlR61W89NPPxEUFMThw4fx8PBg4sSJjBs3jsDAQC5evMilS5cwNS2c8cjc3JzmzZtz5syZUo68eBw+fJjhw4cjk8nYsmULzz33nKFDKjVycnIIDw/XybK8d+8eoGkI97gtvH79+hX6b5IgL3PnzmXhwoWAxl4efDqS2Kc4qgsjUDp61OTYN8v4ecWn1PJpTZOuvbGwqULi3TtcPHqANgNfo/NrbwFw80wo30waQhXHqrTs+yp2ru48irvHzTPHsbCxZeSyLQDcu3qRlSN7UsWxKu0GjUatVHJix1qqOLkSe+3iMwXKGjamDG/oUML/LYGg5CRlqTj3IJOIx8ujAIUpAfv4OAsTGT7OlrQohfIoAsMiLN4CgUDwDGQyGf5u1liYyDgcnaZtaGCweP49f/caNrRysTJgJE/HxsZGK0ZmZmZy+PBhQkJCWLlyJZ999hl16tTRvt6mTRujsxs+zrMs2g0aNMDX15eePXvqWLTFYrjy4WRhgoWJTHtjXt6583cYsdcu8evaxXg08s5XnMxISaZBywZ4enoyZMgQZs+ebRTZaWlpaXz77bcsW7aMf/75h1atWrFlyxZeeeUVzMzMiIiIYM+ePWzYsKHQ4iRo6t49fFh+Reju3bsTHh7O8OHD6d69O++//z7z5s2rkJsjZmZmtG7dmtatWzN16lRtFvvjguW6deuQJAkXFxcdwdLPzw8LC+PPChbkT/Xq1YmJiQE0ZRAOHDjAkehU4uIzCyWWPI2uo6dQtWY9Qres4sjXXwBgX606Ddp11SmRUbeVP29s+JFf1yzm5HfryE5Po4qzK57N/GirGKkd596wKWO+3MGBJfM49NXn2FfzoPv42aQ8uE/stYtPjaUiluAQGBdqSeLGo2zC4jO5nZKTZx1V2Pfb4+OyVBKn4zI4FZfxb4M5S+rZmZe4wZzA8IgMSoFAUGl48OABLi4ufP/99/Tv379Yc0Sl5rA/MsVg3b1zu3UH1LIt05qT+iQnJ4djx44REhLC999/T1xcHNWrV2fgwIEoFAo6duxYbhfKz7JoW1pa5mvRrlKlyjNmFlQmfr2bxum4DINudBSWnR9MJPzHXbg3bMbLH63ArX5jnddlgGv6fbZ+OJXjx4+TmZkJQO3atRk6dCizZ8/Gzs7OAJEXTHR0NMHBwaxevZrk5GQGDBjA1KlT8ff319k0ePnllzl37hxXrlzRNtIoDO7u7qjVau7fv18a4esNlUrFggUL+OCDD+jcuTNbtmzBw8PD0GGVOQ8fPsxjC09PT8fCwkLHFt6+fXuqVjXOLGHBfxw9epTnn38eSZKQyWQcOXKEbt26AcZbguNZVJQSHALjIyo1hwORKTzMVpdagkfuvA7mcvoY8fpIoEEIlAKBoNKgD4ESIEct8VtMGmfiM8ssmzL3PK1dLOnsYVOq3brLEpVKRWhoKCEhIezevZvo6GhcXV3p378/CoWCbt26FUkY0CdFsWg/3kW7KJlWgvJFWRVoT8pSsfpSkt7mMzTjmzhqLVY//vgjixcvJjQ0lKwsjVeybt26DBs2jFmzZhlUrD99+jRBQUHs3LkTKysrAgMDmTRpEnXq1Mkz9sKFC3h7e7N27VrGjh1bpPM0bNiQe/fukZKSoq/QS5Xff/+dV199lezsbDZt2kTPniXvCm/M5OTkEBERoZNlmZtp5+XlpZNl2bBhQ5EJb0T06dOHH3/8EQAPDw/u3r2r87qxluB4FuMaO+JkWT43fgUVE0OulVq5WNKlAq2VKhtCoBQIBJUGfQmUuYhdQf2iVqs5ffo0u3btIiQkhFu3buHo6Ejfvn1RKBT06NEDS0vLUjl3UlJSvhbtnJwcHYv241/Com3cGLpA+/bryUSm5BhFFmVByIDatmYMrm+f7+v79u1jyZIlnDx5kuzsbADq16/PiBEjePvtt8tErFQqlezZs4egoCBOnDhBnTp1mDJlCqNHj35qZueQIUP4888/uXr1apG7P7dp04bw8HDtNRsD8fHxjBw5koMHDzJ79mw++eQTg20OlTckSSIyMlJHsPz777+RJImqVavqdAtv1aqVsIWXQ5KTk3F3dycjIwOAOXPmsGDBgjzjJEli6d+JRlOCozCYomZ8fStsbW0NHYqgkiDcZoKSIARKgUBQadC3QAmauio3H+UQFp/BrXzqqhSX3Hnq2JrR0sWKunZmlaquiiRJhIeHExISQkhICFeuXMHW1pY+ffqgUCjo1atXsTpb5y40n7RoR0ZGAsKiXRkoLwXaryVnEXLTODLsnsbLde2ob/90AU+tVrN3716CgoL4888/tcJ//fr1GTlyJNOmTcPauuDOucUhOTmZdevWsXz5ciIjI+ncuTNTp06lb9++zywhcfnyZZo2bcpXX33F+PHji3zu3r1789NPP6FWl7SSXdmiVqtZvHgx77zzDm3atGHbtm3UrFnT0GGVS5KTk/PYwtPS0jA3N6dVq1Y63cJdXFwMHW6lZunSpUybNg3Q1CSNjIzE3d29wPHGVILjWaiUSo5v+Yqfln2Mk5MTNWvWpFatWtqvxx+7uLiITVdBiTkTnyHq9QtKhBAoBQJBpSEhIYGqVauye/duBgwYoPf5k7JUhD/IJPxx4UMG6kJ8yj4+zsJEhq+zJb6iM52WS5cuacXKiIgIrKys6NmzJwqFgoCAAOzt82ZwZWdn57Foh4eHC4t2JeRZBdqLS+48xSnQrpYkvr6URLKBMgxKigywN5czroljkTZP1Go1u3fvJigoiNOnT2vFSi8vL0aPHs3kyZNLlCl948YNli9fzvr168nMzGTIkCFMnTqVli1bFnqO4cOH89tvv3H9+vViZcONHj2aDRs2kJGRUWpZ36XJyZMnGTJkCCkpKWzYsIG+ffsaOqRyj1Kp5Pz58zpZltHR0YDG8v+4LdzLy0sIQWVE48aNuXLlCgDt2rXj5MmTzzymYpXgkGiZfpO429e5c+cOkZGROl/p6enakZaWljqC5ZPf16hRQ2RVCwpEkiRO3M/gj3vpzx5cxnRyt6ZDNSvxuWskCIFSIBBUGkpboMxFkiSSstQa62iGkpi0nGdaRz1szHCz0lhHHS3k4o/oU7hx44ZWrDx16hTm5uZ06dIFX19f7O3tuXbtmrBoC7SU51IMUak5bLmWXAoRlQ3DG9hTowT2KbVazY4dO1i+fDlnzpzRdr1v1KgRgYGBTJw4sVD2akmS+P3331m6dCl79+7FycmJCRMm8Oabbxa56cvVq1dp3Lgxy5cv56233irWdb377rvMnz+fCxcu0LRp02LNYWgSExMZM2YMe/fuZdq0aSxcuLDIVvfKzp07d3QEy/Pnz6NWq3F2ds5jCzdGIbs8c+HCBXx8fLRZzNu3b2fw4MGFPr4ylOCQJInExEStWPm4gJn7fXx8vHa8XC7Hw8MjX/Ey93vhNqm8hMaml0txMpdO7tb4u+nXqSEoHYRAKRAIKg1lJVDmhyRJqP9tvqFSg8m/zTfkem6+UdF50qJ98uRJTp8+TVLSf9kOdnZ2eHt706dPH7p06ULz5s3FTXMlxFgKtB+OTiUsPtOoFsIyNNf4fA39va/UajVbt25l+fLlnD17FpVKhUwmo2nTpgQGBvLGG2/kEciys7PZsWMHQUFBnDt3jsaNGzN16lSGDx9ebMv4qFGj+OWXX7h582axRaPVq1czYcIE9u7da9TZh5IksWLFCmbMmIGPjw87duygbt26hg7LaHn06BF//fWXVrD8888/SU1NxdzcnJYtW+rYwl1dXQ0drtEyZswYvvnmGwAcHByIi4srcuZfZSrB8TTS09O5c+dOvuJlZGQk0dHRqFQq7fgnbeRPWsqFjbxiciYug8N30wwdxjMRdm/jQAiUAoGg0pCYmIizs7NBBEpB0cnPoh0REcHDh5oOm1WrVtWxaFevXp0LFy6wZ88ejh49ilqtpmPHjigUCgYMGCBqqVUijKlAe45aYu3lJIPFWlRyry2wsWOpdchUq9Vs3LiR4OBgwsPDUalUyOVymjZtyoQJExg4cCBr164lODiY2NhYXnzxRaZNm8YLL7xQosXvjRs38PLyYvHixUyZMqXY8xw8eJDevXuzfPlyJk2aVOx5ygtnzpxh8ODBPHjwgHXr1vHyyy8bOqQKgVKp5O+//9bJsoyKigI0zaQet4U3atQIuVxu4IjLNzk5Obi6umrvEUaPHs369euLNVdlLcFRVJRKJffu3ctXvBQ28sqBsTlBhjWwF41zyjlCoBQIBJWGXIEyJCSEgQMHGjocwWM8fPhQp4v2uXPntBZtIF+Ltru7e4FiREJCAvv27SMkJIRDhw6RnZ1NmzZtUCgUKBQK6tWrV5aXJyhDjLFAu7jBLxilUsn69etZtWoV4eHh5N62ymQyOnbsyJdffknz5s31cq7AwED279/PzZs3S9S059q1azRs2JCZM2eyaNEivcRmaJKTkxk3bhzfffcdb7zxBkuWLBG25FIgKipKR7CMiIhArVbj5ORE+/bttYJl69atsbISmUC57NixgyFDhgAaK3JERATNmjUr0ZzXH6Sw806m0Wb8lbQEhz543Eb+pHgpbOTGj9hgFZQGQqAUCASVBiFQGh5Jkrhz506exjW3b98GNLvr3t7eebpo29raFvucycnJHDhwgJCQEA4ePEhGRgY+Pj5asbJJkyZ6ujqBITH2Au25wmp5p6wtUpIk8fPPPxMUFMQvv/yCvb09VlZW3L9/H0mSMDExwdfXlzfeeIPRo0cXO8vs9u3bNGjQgIULFzJ9+vQSxZydnY2FhQXDhg1j8+bNJZqrPCFJEl9//TVTpkyhUaNGfPfddzRs2NDQYVVoUlJS8tjCU1JSMDMzw8/PTyfLslq1aoYO1yD4+/tz4sQJALy8vLRNcUrCqVOnGDFiBI0HjKbdoLFgZCKlhVzGy/XsjCJTLD09naioqOw+rgAAIABJREFUqHzFS2EjL9+IEjWC0kAIlAKBoNIgBMqyJTs7m8uXL+cRIwuyaPv6+tKwYcNS7aKdlpbGTz/9REhICPv37yclJYVGjRppxUpfX19xY2ukVIQC7SHhN7km2ZVRREWnLIvMp6ens2nTJpYtW8bly5fx8/Nj2rRpDBo0CHNzc7Kzs1m9ejVr1qzh4sWLqNVqTExMaNGiBRMnTmTEiBFFEisnTJjA7t27uXXrFjY2NiWOXy6X06NHD37++ecSz1XeiIiIYNCgQcTExLB69WqGDh1q6JAqDSqVSmsLP3HiBKGhoURGRgJQr149HcGycePGFdoWfu/ePWrVqqV1WgQFBTF16tQSzZmTk8Onn37KZ599hp+fH998u4nfVS5GkyGWS3HqIZdXSmIjf1K8FDZy/WFszo8nEVbv8osQKAUCQaUhKSkJJycnIVCWAk9atMPDw7l48WKxLdplQWZmJocOHSIkJIR9+/aRlJRE3bp1GThwIAqFgjZt2lToxV1FwtgLtCcmJvLBBx+wcuVKXp71KS0GvW6A6J5OZ3dr2j8jC1Qf3L17l+DgYFavXk1SUhL9+/dn6tSpdOrUqcBzZ2dns3LlStasWcPly5eRJAlTU1NatmzJpEmTePXVV5/6Xo6KiqJevXp8+umnzJo1Sy/XYWFhgbe3N2fOnNHLfOWN1NRU3njjDTZv3szYsWNZvnx5iWzxguITHR2tFStDQ0O1dVsdHR3z2MIrys9o7ty5LFy4EABra2tiYmKwt8+/W3VhuXz5MiNGjCA8PJx58+bxzjvvYGpqatRCTFHqIRsrxbWR5ydeCht54RA1WgWliRAoBQJBpSFXoNy1axcKhcLQ4RglhrBolwU5OTkcPXqUkJAQ9uzZQ1xcHNWrV9eKlR07dsTExMTQYQrywdgWj4/v2qtUKtatW8c777xDdnY2H3zwAZMmTeJ8ssro6miWlLCwMIKCgtixYweWlpaMHTuWyZMnF7lrdGZmJitWrGD9+vX8888/WrGydevWTJkyhVdeeSWPWDlx4kS2b9/O7du39bYwtbOzw8XFhRs3buhlvvKIJEls2LCBt956i7p167Jjxw6aNm1q6LAqPampqZw6dUorWJ48eZJHjx5hamqaxxbu5uZm6HCLTPXq1YmJiQEgICCAH374oUTzqdVqVqxYwZw5c6hduzabNm2iVatWOmOMpQRHfpTl53h5pag2ckdHxwLFS2EjF13uBaWLECgFAkGlQQiURaM8WrTLApVKxfHjxwkJCWH37t3cvXsXV1dX+vfvj0KhoFu3bsIeVE4w5gLtp/88yaRJkzh79iyjRo1iwYIFOmKBMXUiLy4qlYq9e/eydOlS/vjjD2rXrs3kyZMZM2ZMibOhQLMoXb58Od988w3Xrl1DkiTMzMxo27YtU6dOZcCAAdy7d4+6devywQcf8M477+jhqjS4u7ujUqmIi4vT25zllUuXLjFo0CBu3rxJcHAwo0aNqtSL9/KGSqXi4sWLOs13cjcV69SpoyNYNm3atNw6B44ePcrzzz+PJEnIZDKOHDlCt27dSjTnnTt3GD16NL/++itTpkxhwYIFBTYfKu9lRApDYeohV0ZUKhUxMTH5ipe536el/SdQV3Yb+fbryUSm5BjFfVdByIDatmYMrl/yew2BfhECpUAgqDQIgbJgnmXRrl+/vlaE9PHxoUWLFnh4eFT4m1y1Ws2pU6cICQkhJCSEW7du4ejoSN++fVEoFPTo0UN0sjUgxligHeBB2DEWv/4KrVq1YsWKFbRr1y7fcTlqid9i0jgTn1lm2ZS552ntYknnUqpd9ujRI9avX8/y5cu5desW/v7+TJs2jX79+pXaBkd6ejpLlizh22+/5fr160iShLm5OVWrViU5OZmYmBjs7PRX/9PLy4u7d++SmpqqtznLM+np6UyZMoW1a9cyfPhwvvrqK2GTLMfExMToCJbnzp1DpVJhb2+vYwtv06aNXmqylpSXXnqJ/fv3A+Dh4cHdu3dLNJ8kSWzevJmJEydiZ2fHhg0beP755595THltxFYUyrKWcEVB2Mj/IylLxepLSYYOQ2+Mb+KIo4VwSJUnhEApEAgqDQ8fPsTR0bFSC5SSJBEVFaUVIc+dO6dj0c6tm/Z4VmTz5s3LvUW7LJAkifDwcK1YeeXKFWxtbQkICEChUNCzZ89ysZCrLBibtftxJEmN49VQxg3qV6hspajUHA5EpvAwW11qQmXuvA7mcvqUUtbkrVu3WL58OevWrSMjI4NBgwYxdepUWrdurfdzPY3U1FQWL17M+vXruXPnDqD57OvQoQMzZsygd+/eJT5Hu3btCAsL027yVBa2bt3K+PHj8fDw4LvvvsPHx8fQIQkKQVpaWh5beHJyMqampvj6+upkWXp4eJRZXOnp6bi4uGiboMyZM4cFCxaUaM4HDx4wfvx4du/ezYgRI1i+fDkODg6FPj7X7m3oEhwloTLbvUsLfdrIa9asiaura7lMAvj1bhqn4zKM9nf/cWRAG1crulUX9+7lCSFQCgSCSkNlEyhzcnLytWgnJWl2Pp2dnfNYtL28vIzeol1WXLp0SStWRkREYGVlRa9evVAoFAQEBOg1G0ugS2Us0K6WJG4+yiEsPoNbKTl6WxznzlPH1oyWLlbUtTPTa9F4SZI4fvw4QUFB7N27FwcHB8aPH89bb71F9erV9Xae4jB9+nTWrl3LuHHjtBnSoLHv+fv7M3PmTF588cVizR0QEMCBAweojLfZV69eZfDgwVy+fJmlS5cyfvz4crnQFhSMWq3OYwvPfX/Url07jy28NGo0BwcHM3HiRADMzMyIjIzE3d29RHMeOHCAsWPHolQqWb16dbHvBQ1dgkMfiC7GZYu+bOS535eWjTw7OxszM7N8P7MlSWLp34lkqZ79W3941SKOfP0F7x25go2jc4HjPu/jR91WHXjloy+LHOvnffyoVq8Ro5ZvLfKxuViYyJjq7ST+RpUjxCpUIBBUOirigjE5OTlfi3Z2djbwn0V7+vTpWjGyMli0S5MmTZrQpEkT3n//fa5fv87u3bsJCQlh2LBhmJub06NHDxQKBX379sXZueCbM0HRufEom4fZakOHUWwk4GG2mpuPcgpdoF0uk1Hf3pz69uYkZakIf5BJeEKmdqEgqVTICiESyGWg/vcj0MJEhq+zJb5VLfVuccrOzmbnzp0EBQURFhaGl5cXwcHBvPbaa+Wik3BcXBxfffUVM2bM4OOPP+aLL77g4cOHLFq0iK1bt3LkyBGOHDmClZUVnTp1YtasWc+0gD6Oq6sroMmqKQ/XW5Y0bNiQkydPMn36dN544w1+/fVX1qxZo5e6ooKyQS6X4+3tjbe3NxMmTADg3r17hIaGajuG79ixA6VSiZ2dnY4tvG3btiV2EzRu3JgrV64AmmzkkydPlmi+1NRU3n77bdasWUPv3r1Zu3ZticROzypmBDZ21JbgMDZkwP7IFAIbO5ZKGQ9BXkxMTPD09MTT05OOHTvmeb0gG/mdO3eIiIhg3759z7SRP2kpL46NvGXLlpiamrJp0yaaNWum81pilqpQ4qQxkaWSSMpS42QpbN7lBZFBKRAIKg25GZQ7d+7k5ZdfNnQ4xeJJi3buV25mg7BoG56oqCitWHn8+HHkcjndunVDoVDQv39/o+yaWt4QBdo1SJJETHIaAUNHMWrSdJzrNSY2Q4kyH+3WVA5uVqZ42JjhZmWKm7UpjhZyvW9SJCQksHr1aoKDg4mJiaFHjx5MmzaNF198sVw135g9ezYrV64kMjISJyenPK8nJiaycOFCtm/fTlRUFABWVlZ06dKFuXPn0rlz56fO//777/Ppp58SERFB8+bNS+UajIFdu3YxduxYqlatyo4dO/J0RxYYL+np6Zw+fVqbYXnixAkePnyIiYlJHlt4YbOlL1y4gI+PD2q15kNs+/btDB48uERxHj9+nJEjR3L//n2CgoIIDAzU6+deVGoOu24kk2Vke2YyoJWLJc/XMM5aiJWR0raRK5VKLCwsUKvVmJqaMm/ePObMmaPN1LyYmMkPkYWrq1zYDEpldhYymRyTYmSD6iODEqBvLVuaOFmUaA6B/hACpUAgqDQkJyfj4OBgNAKlsGgbP7GxsezZs4ddu3Zx7Ngx1Go1HTt2RKFQMHDgQDw9PQ0dotEhCrTrcvLkSTp06MDZs2dp0aIFkiShlkApSajUYCIHU5kMuYxSzZi+fPkyy5Yt49tvv0WtVjNixAimTJmSJwOjPPDgwQNtx/D58+c/c3xcXBwLFy7ku+++0zbnsLGxoWvXrsydOxd/f/88x3z99dfaOncDBgzQ+zUYEzdv3mTIkCGEh4fzxRdfMHnyZJG9XwFRq9VcvnxZxxZ+48YNAGrVqqUjWDZr1iyPLfz1119n7dq1ADg4OBAXF1ciC2tWVhYffPABixYtokOHDmzcuJF69eoV/wILwJjrIYOwelckSmojt7e3Z8mSJdrXZTIZTZs2ZdOmTfj6+nLk38aEhdHiCytQlgR9CJRyGbRyseI5UYey3CAESoFAUGkozwJlYS3aj38Ji7ZxkZCQwN69e9m9ezeHDh0iOzubNm3aoFAoUCgUpbJwqoiIAu26fPnll0yfPp2UlBTMzQtnF9cXkiRx6NAhgoKC+Omnn6hWrRpvvfUWEyZMwMXFpUxjKQrvvvsuy5Yt4/bt21StWrVIx8bGxrJgwQJ27dpFTEwMoBEru3fvzty5c2nbti0Ahw4d4oUXXiAoKIipU6fq/RqMjezsbObMmUNQUBD9+vVj/fr1+WauCioWsbGxWkt4aGgoZ8+eJScnB1tbW9q1a6ftFD506FAePnwIwMiRI9mwYUOJznv+/HlGjBjB5cuX+eSTT5gxY0ap1MmsjPWQBcbL02zkkZGRXLt2jeTk/MX2KVOm0OrND4lOUxbqXLkC5fQ9f3F03RIuHT2IhESzbn3oO+dzzK00pU/yq0F57+pFflg0l6iL57C2d6TtyyOxc3En5KMpzNofhqNHTe2x1eo1ouvoyRxYMo/Ya5ewdXGj+/iZ+AUUPvO6ho0pwxsWvlGWoHQRaTYCgaDSYch9mcJYtJs1a4afnx9jxozRWrRFwxXjx9nZmTFjxjBmzBiSk5M5cOAAu3bt4sMPP2T27Nn4+PhoxcomTZoYOtxyiSRJRCRklspCMGzfNnZ9OFnn5re0kYDwhEy6elgXe7Ph7NmzeHt7l6k4mZGRwebNm1m6dCmXLl3C19eXjRs3MnjwYCwsyrdNKjExkRUrVvDmm28WWZwEcHNzY9myZSxbtoyYmBg+++wzdu/ezd69e9m7dy+2trZ0796dkSNHAmgzLis75ubmLFmyhK5duzJq1ChatGjB9u3bad++vaFDE5Qibm5uDBw4kIEDBwKaz47HbeGLFi3SdugGGDJkCD179iQqKqpYDgOVSsXixYt5//338fLy4vTp06XaSb4y1kMWGC8ymQxnZ2ecnZ3x8/PL8/qmTZt47bXXtI/lcjlqtRoLCwssLS2JzSicOPk42+YE4uhRkxcnvUfMlfOc/n4zNk4u9JoyL9/xyXH3WDN+ADKZjK6jp2BuZc3p7zdjWsA9TmL0LbbMGkOrfsPwCxjMmb1b2fXBJKo39qFavUaFijE2Q4kkSSLpo5wgBEqBQCAoJQpj0fb19WXgwIE6Fu3S6MonKF/Y29szdOhQhg4dSlpaGgcPHiQkJIRFixYxb948GjVqpBUrfX19xU3Tv5RlgfaT363H3NKKln1fLdXzlLRAe1hYGO3atdNzVPlz7949Vq5cyapVq0hISOCll14iODiYLl26GM3v6LJly1AqlUyfPr3Ec3l4eBAcHExwcDB37txhwYIFfP/999ovgB07djBs2DB8fX1LfL6KQN++fQkPD+fVV1+lU6dOzJ8/nxkzZpSr+qSC0sPKyorOnTvTuXNn/P39teJktWrV6NmzJ6GhoWzfvh0AT09PHVt48+bNn5oFefPmTUaOHEloaCgzZ87k448/LvUNk7D4TGRglNmTuciAsPgMIVAKuHPnjvZ7KysrBg0axIgRI+jatSuSTM7/IhKKPKeHlzeKD5ZpH6c/TOLM3i0FCpS/bVhO5qOHTNx6BA8vbwBa9n2V//Vvm+/4+NvXGbd2H3X8NJtd3i/04/NevoTt20bvaR8VKkal+v/snXdUVNfXhp8ZivSOWFBsEUFBsAfssUVQoxg1dtSYaIyf0cQWk5hEY4lGE2OMsSBij5hEQY29dwUEe6+g9F6m3O8PwvxEUAFnmBm8z1qzll7mnrMHZuae+569353fPNBAP5YxFR5RoBQREXlj0OQNdGpqKhcvXiwkRMbExKhKtOvWrYuXlxcTJ05UiZHVq1fXm5t6Ec1hbm5O37596du3Lzk5Oezdu5fQ0FB+++03Zs+eTZ06dejTpw99+/alefPmb/SNfFxW6XfvS4q3Xz88u/bG0Dj/hvb0n0GY2dhpXKCE/NdVFoEyOzubS5cuMXbsWA1E9T8iIiJYtGgRmzZtwtjYmBEjRjB+/Hjq1aun0XnVTUpKCj///DNjxozByclJrWPXrFmTZcuWsWzZMu7du8esWbNYuXIlDx48wNvbG2tra7p168aMGTN00pezPKlZsyaHDh3i66+/ZsqUKRw6dIjg4GCdtgUQUR+xsbG4uLggk8kAitggPHnypFBZeGhoKDKZDAsLC1VZuK+vL61atcLS0hJBEFi1ahWfffYZDg4OHD58mDZt2mj8dSTnKribLtP4PJpGAO6ky0jOVbyWH7KI/tOiRQvVerRHjx6YmZmpfpajKFumcIu+wwv9v5Z3Ky4dDCcnIx0Ti6INPK+fOEBNz2YqcRLAzNoWr3cDOLlpZZHnV67jqhInASxsHXBwqUfSw3ulilMuCBgg3pPpAqJAKSIiIlIKBEHg4cOHRbIib9++DeSXsXl4eODt7U1gYKBYoi1SKkxMTOjRowc9evRAJpNx8OBBQkNDWbt2LQsWLMDZ2ZnevXsTEBBA69atNeKppcvEZcmRQokM2kuL1MAAqRZ+n1JJfnmRO6XP9Ll48SIKhYKmTZuqPS6FQsGOHTtYtGgRR44coWbNmsyZM4eRI0diY6OfXk1LliwhNzeXzz//XKPzuLi4sGLFCtauXUu9evVo2bIl27dvZ/PmzWzevBkbGxu6d+/OjBkzcHNz02gsuoqRkRFz5syhffv2DBkyBC8vLzZu3PjK7ugi+s2MGTOYPXs2kJ+hFRsbi7W1daHnODk50bt3b1VzqezsbM6dO6cSLJcsWcK3336LVCrFzc2NzMxM7t69S//+/VmxYgWWlkVFD00QkaD/2ZMFSIDIhJzX8kMW0X86d+5M586di/2ZsowLL5sq1Qv939Qq//OenZZSrECZEvuQmp7Nihy3r1G7ROMXzJGdnlKqOBVK4M1aUussb24ahoiIyBtLST0oZTIZ0dHRhISEMGnSJN555x0cHByoWbMmPXv2ZPHixaSmptK7d29CQkKIjo4mIyODc+fOsXLlSsaNG0fr1q1FcVKkTBgZGdGlSxeWL1/O48ePOXToEL1792bbtm20b9+eatWq8fHHH7N3715VJkpFJzZLrhFxEvI9KKc1cST58X3m+TXhya2r3Dl/gmlNHJnWxJE/PuylkXmVAjzOLNvf78KFCxgZGeHh4fHqJ5eQ9PR0fvnlF1xdXenduzdyuZwtW7Zw69YtJk2apLfiZFpaGosWLWL06NFUrVq1XOY0MTEhOzub1atXk5CQwPXr1xk6dChSqZQNGzbg7u6Ovb09Q4cO5dq1a+USk67RtWtXIiMjqV+/Ph06dGDWrFkoFApthyWiAZydnVXiZPfu3cnKyioiThaHqakpbdq0YerUqezYsYP4+HiuXLnCRx99xM2bN3nw4AGQb6fg7u7OgAEDWLJkCRcuXEAu10zWfXF+yH9+M455fkV9/TTF7XPHmdbEkdvnjr/2WAV+yGLvXJEXUdbiHan0Raqfet5rkheMX9r3soGoiukMYgaliIiICCUv0f7ss8/EEm2RcsfAwIB27drRrl07Fi9ezJkzZwgNDSU0NJTly5dja2tLr169CAgIoHPnzjrfqKQsCIJQJoP2suD/+Sx2zJ+Gsak5HUZ+BoCFvebKT8tq0H7+/HkaNWqklr/33bt3WbJkCStXriQzM5P333+fDRs20KJFi9ceWxf49ddfyczMZPLkyeU2p7m5ORkZGar/v/XWWwQHBwNw5coVZs+ezc6dOwkJCSEkJAR7e3t69OjBjBkzqFu3brnFqW2qVavGvn37+P777/n66685dOgQ69ato0qVKtoOTUQNHD16lHbt2qm+4/bv30+HDh3KPF56ejpz5sxh7dq19O7dm+XLlwMUKgv//PPPycvLw9zcvEhZuDo2jcvTD7m8eF0/ZJGKjWE53e/YVHUm6cGdIscTizmmTsrr9Ym8GlGgFBEReWMouPlPSEhgx44dYom2iF4ilUpp1aoVrVq1Yv78+URGRqrEyjVr1mBpaYm/vz8BAQF069YNc/OKUbKlEPKNzMuDhh26s/e3OZjZ2OHt977G5yurQfv58+dfq7xbEAROnDjB4sWL2bZtG1ZWVowZM4ZPPvmkTB10dZX09HQWLlzIqFGjqF69aDmYprC2tlZldz2Pm5sb69atAyAmJobZs2eze/du1qxZw5o1a3B0dKRnz5589dVXuLi4lFvM2sLAwICZM2fStm1bBg0aROPGjVm/fj2dOnXSdmgir0GPHj0ICwsD8oXo1+1qf+DAAYYPH05qairBwcEMGTJEtbbr1asXvXrlZ7rn5ORw/vx5lWC5dOlSvvvuOyQSCR4eHoWa77i4uJR6c0iTfsglpVaTt/nu5AMMjNTX3KasfsgiFR8DCRhKNb8Oq/92B05tWc3ja9EqH8qs1GQid4VqbE5Dab7djohuIAqUIiIiFRaZTMbVq1dVIuS5c+cA+OSTTwCws7PDy8uL9957T5UV2aBBA7GLtojeIJFI8Pb2xtvbm1mzZnH58mWVWLlx40ZMTU159913CQgIwN/fX6+FdnkFLz0rrUF7bm4uMTExjB49utRzyWQytm7dyqJFizh79iz169dnyZIlDBs2rMII2s+ybNky0tPTmTJlSrnOa2Njw82bN1/5vEaNGrFx40YAIiMjmT17Nnv27GHVqlWsWrWKypUr07t3b6ZPn07NmjU1HbZW6dixI5GRkQwZMoQuXbowffp0Zs6ciaGheMuiT2RlZeHo6Kjq0j116lTmzJlT5vGys7OZPn06ixcvpkOHDgQFBb1UuDcxMVEJkJC/GXP9+nWVYHngwAGWLVsG5AunzwqWXl5er3y/adIPuaRIpVKklUzUN95r+CGLVHwkEglVTA15mKlZcb7tsE+J2LmV1WPe5+0BozA2NePsX+uwqVKd7NRk0EAjmyqmhmJFnA4hVtuLiIhUCNLS0jh69ChLlixh5MiRNG3aFAsLCzw9PRk6dCh///23yuvoiy++4P79+yQkJLB//34WLlzIkCFD8PDwEMVJEb3G3d2dr776isjISG7cuMHMmTN5+PAhgwYNwtHREX9/f4KCgkhMTNR2qKWmrAbt+kJpG2RGR0cjl8tLlUGZlJTE3LlzqV27NgMHDsTKyoqwsDCuXLnC2LFjK6Q4mZmZyYIFCwgMDCx3cc/BwaHUHnheXl78+eefpKamcvbsWfr06UN2djbLly/HxcWFqlWrMnbsWB4/fqyhqLWPk5MTu3fvZvbs2cydO5eOHTvy8OFDbYclUkKWLl2Kubk5WVlZGBkZ8fjx49cSJwsyxZctW8aiRYvYt29fqbOKJRIJrq6ujBgxglWrVnH16lXi4+P5559/GDx4MI8fP2bKlCk0b94ca2trOnbsyFdffcXu3btJTU0F8jOxJ0yYQK1atehWx57v3nFj1Zi+PLoS9cJ587IzCf/pa+a+25gZLauzsHcrjqxdWsgfb92k4SwZ2LHQecH/N4hpTRy5fHi36tj96PNMa+LIteP7gOI9KP/4sBeL32/Dk9vXWDH6Pb72qcmcrh4cXrOkSGzJjx+wdsJgvvZxYdY7bmz/cQa7d+9GIpFw6NChUv1+Rd4MqpoZalw8sqlSnQ//+AvH2m9xaPVijm9YTpMe/WnWayAAhmq2MJJKoJq5eO+nS4jbkSIiInqFIAg8evSIiIiIF5ZoN2rUCC8vL4YPH64q0ba2tiY9PR0rKyuaNm1aocoXRUSKo169ekyePJnJkydz//59tm3bRmhoKCNHjkQqldKhQwcCAgLo3bs3Tk5O2g4XyO8cnZycTHx8PAkJCYUeianpOPSfqO0QNUZpDdrPnz+PgYFBiRrkXLt2jZ9//png4GAUCgWDBg3i//7v//D09CxjtPrD8uXLSU5OZtq0aeU+d4GHYkZGBhYWFqU+v1mzZoSG5pe1nT59mjlz5rB//36WLVvGsmXLqFq1Kn379mX69OkVzq9RKpUybdo02rRpw4ABA/Dy8mLt2rV0795d26GJvAR3d3euXLkCQIsWLTh9+nSZx5LL5cyZM4fvvvsOT09PLly4gLu7u7pCxcHBgZ49e9KzZ08gPyv92bLw5cuXM2vWLCQSCY0aNSI7O5u7d+8ybNgw0qo3Ij0lmXuRp3l65wbV3RoXGV8QBNZOGMLtc8do9t4gqtZvxI2TB9m1eCZpT2Px/3wWALW8W3H58C5yMtIxsbBEEATuRZ1BIpVy98Ip3Nt1A+BuxCkkUikujVu+9HVlp6UQNK4/DTv44dG5FzH7drD7l++o8pYbrr75lgl52Zms/LgP6QlP8PngQyztKxO5exu3zx1T2+9XpOJRxcywxFnDnT6eTKePi3o+N+35AU17fqD6/5TwC0WeU83Vg49W7Sh0bMePX2JYyQRzG/uXngswesU/JYwy316niqkoiekS4l9DREREZ5HJZFy7dq2QEBkZGanK/rKIJLj6AAAgAElEQVS1tcXb27vEJdpi+r7Im0rNmjWZMGECEyZMIC4ujr/++ovQ0FDGjRvH2LFjad26NQEBAfTp00dt4r0gCKSnp5OQkFCs4Fjc8aSkpCKdFyUSCXZ2dlSuUpWh5SlQlvP3RXEG7enp6ZiZmWFgUNQT7Pz58zRs2BBTU9NixxMEgf3797No0SJ27txJ5cqVmTx5MmPGjKFy5cpqj18Xyc7OZv78+QwdOpRatWqV+/wFfpc3b97Ey8vrtcZq2bIlf//9NwDHjx9n7ty5HDx4kCVLlrBkyRKqV69Ov379mDp1aoX6+7Zu3ZrIyEiGDx+On58fX3zxBbNnzxarHXSMmJgYGjdujPK/VPdNmzbRv3//Mo9X0PH+7NmzTJ8+na+++gpjY/V5LRZHpUqV8PHxwcfHhy+++AJBELhx44ZKsAwKCkKpVLJmbQizThd4aX76wvGuHN7NrbNH6TJ2Gh1G5V+73u4/kvWTR3Bi4x+83X8k9jVqU6tJKwSlkntRp3H17cSTm1fITkvBo3NP7kacUo13N+IUVes3xMTC8qWvIy0+jve/W0oT/34ANHtvEPP9vDn393qVQHk6dC1JD+8y5Ke1uLd/F4AWAcNY8kHHF44rIlLFrHykI1lONkYm/1vbZKYkEbHzT2p5tURazHrodSmv1yVSMsS/hoiIiE6QlpZWbBft3NxcAOrUqYOXlxf/93//pxIjnZ2dRdFRRKSUVKlShTFjxjBmzBgSEhLYvn07oaGhfPHFF0yYMIEWLVoQEBBAQEBAoU7COTk5LxQWX3RcJpMVmd/S0hIHBwfVo06dOrRs2bLQsYKHo6Mjtra2GBgYIAgCCy8mllujHGMTM3LSU8tlrgKDdqVSSWRkJLt27WLHjh2cPXuWzz77jAULFhQ558KFC8WWd+fk5LB+/XoWL15MTEwMnp6eBAUFMWDAAExM1OdXpg+sWLGChIQEpk+frpX5C8T+W7duvbZA+Sy+vr7s2JGfXXLkyBHmzp3L4cOHWbRoEYsWLaJGjRr079+fKVOm4ODgoLZ5tYWDgwM7duxg0aJFTJkyhaNHj7Jx40atiM4iRfnwww9ZuXIlkO+7+vTp0zILyIIgsGzZMj7//HOcnZ05fvw4rVq1Ume4JUYikVC/fn3q169PYGAg+/btw9bWlvGfTeJJCc6/dmwfUgMDfD4o7BPcZvBYYvbt4Nrx/fgMGEU1Vw+Mzcy5c+Ekrr6duBNxCmunanj79Wf958PJy87CyMSUu5Gn8e7e95XzGpuZF2ruZmhkjHPDJiQ9uqc6dv3EAawqV8Xtv+xMAKNKJjTvM4SdP31dglcn8iZiV8mASgYSjXewXzb8XWo39aVy7fpkJMVz7u/15Gam03GU+jepKxlIsK0kuh7qEqJAKSIiUq4UlGg/nxV569YtoHCJ9rBhwwqVaKszBhGRNxm5XE5SUhIJCQnUq1ePESNG0LlzZ44fP05ERATTp09nypQpmJqaYmxsTF5eHtnZ2UXGMTY2xtHRUSUoVq5cGXd390LHnn9UKqN/UHkZtBdQ3c2T01vXcGDlQuxr1MHC1oG6LdpoZC7DzBTatHmPmJgYUlNTMTAwQKFQAPnNvJ4nLy+P6Ohohg8frjoWFxfHb7/9xu+//05CQgL+/v78/PPPdOjQ4Y3cyMnJyWHevHkMGjSokNBenhQIaPfu3Xv5E1+Dtm3b0rZtWyC/w/H8+fM5cuQICxYsYMGCBdSsWZOBAwcyZcoUbGxsNBaHppFIJEycOBFfX18GDBiAt7c3QUFBvPfee9oO7Y1FJpPh5OREcnIyAMOGDWPNmjVlHu/Ro0eMGDGCPXv2MHbsWObPn69Tvrjz589n2LBhjAocRjW3xrj6dqKJfz/snGsV+/zk2AdYOlahknlhe4fKtesDkBKb76sqNTCgpmdzVbbk3YhT1PJuRS3vliiVCh5En8fC3pHs1GRqeb9arLWuXK3Id76plTVxNy6r/p8S+wB751pFnmdfo/Yrxxd5c5FIJDS2N+Hs02w0eSfl6tuJ6P07OPtXCCChegMPAr5ZTO2mPmqdRwJ42Zu8kWskXUYUKEVERDRGSUq0vby86Nmzpyor0s3NTSzdEhEpBYIgkJqa+tJMxuePF9xQPotUKsXe3h4HBwdatmyJXC4nMTGRBw8ekJeXR7Vq1Wjbti3+/v68/fbbODo6YmFhUa4Lu6pmhjzOlJdL59SOoz8nOfYhR4J/JTczg9pNfTQiUEolcOnEIY4f/1+jgwJxEsDIyIi0tLRCHdhjYmLIy8ujadOmREVFsWjRIjZu3IihoSGBgYH83//9H2+99ZbaY9UnVq9eTVxcnNayJyHfBxYotwYvHTt2pGPH/BLNf//9lwULFnDs2DHmzp3L3LlzqVWrlkqsfPb9pE+0bNmSiIgIRo4cSe/evRk/fjzz588v88aHSNkIDQ2lb9/8bD6pVEpUVBSNGjUq83ibNm1i7NixmJqasnv3brp27aquUNVGv379aNOmDVtCt/FHaDhH1i7lcPASBi8IUpVOl5VaXi05uGoRstwc7kacosPIzzC1tMaprht3Ik5hae+Y/7wSCJQvKoEVN+dF1IG3gwlnnhbdsFYnXT+dQddPZ2h0DgAB8HJ4sypL9AFRoBQREVELryrRrl27Nl5eXowfP14lRtaoUaNcxQ1xh0xEH8jKynpl6fSzxxMTE4vtFGxtbV0oc/Gtt95SCYvFZTba2toilRYtc8nJyWHv3r2Ehobyzz//sGnTJurUqaMqA2/RokW5fbZKY9BeWp43bre0r8zwXzZoaLb/oRRg/PCBWMddZeHChUV+XtDoqG7dunh7e+Pl5UVcXBwAU6dO5ciRI9SoUYNZs2YxatQobG1tNR6zrpObm8ucOXMYMGAArq6uWoujoMQ7Nja23Ofu2rWrSuTZuXMnCxcu5Pjx4/zwww/88MMP1KlThyFDhvD555+XqYGPNrGxsWHr1q0sXbqUSZMmcezYMTZv3qwShEU0i6+vLydOnADA1dWVq1evlnmspKQkxo4dy+bNmxkwYABLly4tNmtcV6hatSqfjB1Ltm9/MpLiWTLwHQ6uWlSsQGlbtQa3zhwhNzOjUBbl07s3ALCp6qw6Vsu7FQpZHlG7t5H2NFYlRNZu0oq7EaewsHfEwaUulvbq8Ze1qVqDp7evIQhCoet34oM7ahlfpOJiW8mAWpZG3EuXaTSLUtNIgFqWRthWUr+npcjrIQqUIiIipeJVJdpGRkaqEu2hQ4eqSrT1ubRMRKSsyGQyEhMTSyU4FldKbWJiUkhYrFq1Kh4eHi8UG+3t7dXWUMDExIQePXrQo0cPZDIZBw8eJDQ0lDVr1vDjjz/i7OxMnz59CAgIwNfXt9iGLuqiohqZD+3VnbuXo4r92ZkzZ7h8+TKRkZGcO3eO2bNnq94jJ06cwMPDg86dO1O9enViY2OxsrLS6N9AHwgODubRo0fMmKH5DIyXIZVKkUqlxMfHazWO7t27q7pf//PPPyxatIiTJ0/y7bff8t1331G3bl2GDBnCxIkT9UaslEgkjBs3Dh8fH/r370+TJk1YuXIl/fr103ZoFZbY2FhcXFxU3sKLFi1iwoQJZR7v33//ZcSIEWRlZbFx40YGDBigrlDVjkKhICMjA2trawwk+b7BFnaOWDlWQZ6XV+w5rq07cWbbWk5uXkn7Ef/7PR1f/zsSiQRX33dUx2o0aoKBoRFHgpdgam2LU90GQL5weX77Rkwsranvo74GNvXf7sDNU4e4cni3qkmOLDeHc3+FqG0OkYpLU0cT7qYX9RjXJwSgqWPxTQZFtEvFXOmLqBAEAYUAckFAqQSpNL9TqIFEzCYTeTVyuZyrV6+WqkS7QYMGGu+0+LqIZS4iZUGpVJKSklKi5jAFj5SUlCLjGBgYFBEUa9eurWoKU5zgqCs+XEZGRnTp0oUuXbrw22+/cezYMUJDQwkNDeWXX36hcuXK9O7dm4CAANq3b692u4byMmgvTwyUci6eOqrqfvssDg4ONG/eHCcnJ2JiYoiOjiYvLw9ra2vq1KlDz549iYyMZOvWrfz0008AmJqa4uHhofpOLtgk0pX3kKaRyWT88MMP9OvXDzc3N22Hg5GRkeqaqQv06tWLXr16oVQqVWLlqVOn+Oabb5g5cyb16tVT2QSYmZlpO9xX0qRJE86fP89HH31E//79OXDgAIsWLXphd3uRsjFjxgxmz54N5H/HxMbGltkbPDMzk8mTJ/Pbb7/RpUsXVq9erep4r6ukp6fj7OxM3759ady4MVcypZw9cpCHlyLoPvG7Ys9p0LYrdZq1Zs/SH0h+/IAq9Rty89QhLh/ahe/Ajwr5PRqbmlHNrTEPos/h1rar6h6tdpO3ycvOIi87q0Tl3SWlRcBQTm5exabpH+HzwYdYOjgRuSsU0/8aqYn3iCIvo66VMTbGUlLzlHqZRSkBrI2l1LESLcV0EVGgrEAIgkBSroK4LDlxWXJis+TEZcuL7XhqKIUqpoZUNTOkyn8Pu0oG4gXpDSY9PZ2LFy8SERGhsyXaIiLqQhAEsrKyStyNOiEhgcTExELegAXY2toWEhPd3NwKdaF+Xmy0trYutpRa3zAwMKBdu3a0a9eOxYsXc+bMGUJDQ9m6dSvLly/Hzs6Onj17EhAQQOfOnV/LI+7ZzTZ320pEJOSo8ZVoD4Vczr1ju/j666/58ccfyc7OLiRUZmdnU79+fW7duoWlpSWjR4/mo48+omHDhgwfPpzx48ernpuUlERUVJTq+/vUqVOsXr0auVyu6kZb8N1dUCru5OSkjZetUUJCQrh37x5hYWHaDgXIz0AubqNC20ilUnr37k3v3r1RKpVs3bqVn3/+mTNnzjB9+nS+/PJLXF1dCQwMZPz48TrdAd7KyooNGzbQsWNHxo8fz8mTJ9m8eTMNGjTQdmgVAmdnZx49egTkZ+OGh4eXeaxTp04xdOhQHj58yNKlSxkzZoxerCPNzMwYO3Yse/bsYdu2bcgUSmyda9Fr2nxavR9Y7DlSqZShi0PYu2we0Xv+5vz2jdhUq8G7E2bSZsjYIs+v7d2KB9HncPFqqTpm6eCEfY3aJD64Q201CpSVzCwYtXwb2+dN48TGFRibmtPEvx/vtPFl5uhBOv15F9E+UokEPxdL1t9I1XYoZUIA/F0skerBd8+biEQQU4n0nuRcBREJOUQl5qiySqRQIp+uZ59XySC/M5e3g4nox1CBEQSBx48fF8mKvHnzJlC4RPvZ7JuKUKKdlZWFubk5GzZs4IMPPnj1CSJ6Q15eHomJiaUSHHNyiopcZmZmL8xiLO64nZ2d2NTpOQRBICIiQpVZee3aNSwtLfH39ycgIIB33333pZlZpdls03sEgYPfj2XP31uxsLBALpeTl5dXSKQs6OhtYWFBly5d8PT0ZObMmRw7dgxfX9+XDp+Tk6MqD4+MjCQiIoKoqCjS09MBqFKlShHRsl69enoroMvlclxdXfH29mbr1q3aDgeA6tWrk5ubS0JCgrZDKRFKpZLNmzfzyy+/cO7cOZXA7ebmxsiRIxk3bpxOV0lER0fTr18/Hjx4wLJlyxgyZIi2Q9Jbjh49Srt27VQ+hfv376dDhw5lGisvL4/vv/+eH374gebNm7N27Vrq16+v5ojLj0tJOey4l6HtMNROyq41zPvyCx4+fKjzWa0i2mffwwzOx+foVRalBGjmaMI7zvphZ/ImIgqUeopSELiVlsf5+BzupsuQgFq+HArGqWVpRFNHE+paGYu7C3qMXC4vtot2wY2SjY2N6qZUn0q0y4ooUOoHSqWS5OTkEnWjLnikpaUVGcfQ0PClZdPPH7e3t9eLkkZ9QhAELl++rBIrL168iKmpKe+++y4BAQH4+/urugm/zmabPlJg0N6/njU3btxg2bJlrFixgoyM/JteY2NjVqxYwaBBg4iJiSEsLIywsDBOnz6NIAg0bdqUnj174ufnh7e3d4lFRaVSyZ07dwqJlpGRkaoMKXNzczw9PQtdGxo1aqQXJbPBwcEMHz6ciIgIvLy8tB0OAG5ubty/f5/MzExth1JqlEol69at49dff+XChQsoFAqkUinu7u6MGjWKMWPG6OR6ITMzk08++UT1fvj111/fGIsDddGrVy+2b98OQLVq1VTfD2Xh8uXLDBkyhIsXL/LNN98wdepUDA31u4gvMUfOiiu6lxldGmQ52RiZ/O97XZabQ8jwzqBUcP36dS1GJqIvyJQCK68kk6Ynpd4SwMpYyig3W4ykor6hq4gCpR7yIENG+L10UvKUahMmn6dgXBtjKX4ultSwEDOEdJ2CEu1nhcjo6GhViXatWrUKCZHe3t5vXIl2gUC5fv16Bg4cqO1w3ggEQSAjI6NEzWEK/p2UlFSsH5+dnV2pBEcrK6s36v2tD9y8eVMlVp49e5ZKJib0GzsJr54DybOqrLFrmq7St44Vyid3+fnnn1mzZg1yuZyWLVsSFRVFVlYWgiDQvXt3AgMD8fPzw9jYmBEjRrB7927atGnD7t27SUtLo2rVqvj5+eHn50enTp3K1OgkPj6eqKioQjYfV69eRalUIpVKadCgQZENLQcHBw38VsqGXC7H3d0dd3d3/v77b22Ho8LX15czZ86oGovoK0qlkuDgYJYuXUpkZKRKrGzUqBEfffQRo0eP1jnRKTg4mLFjx+Li4sKWLVto1KiRtkPSebKysnB0dCQrKwuAyZMnM2/evDKNpVQq+fnnn5k2bRp16tQhJCSEpk2bqjNcrSEIAoujk/TaDzloXH9sqjhT1bURORlpRO3cStytq+IaWaRUPMiQ6VWp96C3rEVdQ8cRBUo9QqYUOPw4k3PxOeV2E1cwTzNHE9pVMxd3G3SAkpRoN2zYsNBNZOPGjStEifbrIgqUr09BqWJpBMe8YjpcWlhYlEpstLW11bmbX5HX49yth+x/IkMwtUQhl2PwBv19JYCxIpcD340hPCwMBwcHxowZw5gxY6hSpQoAycnJbNy4kaCgIM6dO4eDgwODBw9m//79NG7cmJCQEGQyGceOHSM8PJywsDCuXbuGsbExHTp0UAmWderUKXOc2dnZxMTEFBItC8RTyPeme/Za4+XlRe3atbVSIr5+/XoGDx7MuXPndEoEee+99/jnn38qVHM2uVzO6tWr+f3334mKilKJ2J6ennz88ceMHDlSZ76vr169Sr9+/bhx4wZLlixh5MiR4sbVC1i6dCnjxo0D8teSN2/epGbNmmUa6969ewwfPpxDhw7x2WefMXv2bL3Iwi4NBx5lcvZptt5uqh1b/zvn/l5P8uP7KJVKatdvwPdfTqV///7aDk1EzzgXn82+h7pfJdDJ2ZxmYudunUcUKPWEBxkywu6lay2FuiAl2l/MpixXSlKi/fzNoZubm06WXOkC2dnZmJmZiQLlfygUCpKSkkolOBaUnz6LsbHxS30anz9ub28vGrC/wWhjs03XEASB5SP8sVRk8dlnnzFw4MCXfiaio6NZs2YNISEhxMfH4+zszJQpUxg4cCB2dnaq5928eVMlVh4+fBiZTIabmxv+/v74+/vj4+Pz2sKRQqHg5s2bha5JERERPHnyBMhvWNK4ceNC2fru7u6v1SSpJDE1atSIunXr6kxznAI+/vhjli9fTnJycoXcKJTL5axYsYLff/+dmJgYlEolBgYGeHl5MWbMGAIDA7XuaZqdnc2ECRP4448/GDhwIL///juWlpZajUnXcHd358qVKwC0aNGC06dPl2kcQRBYu3Yt48ePx9ramuDg4DL7Vuo6ybkKll9O1nYYakEQlET8Mp1m7vXx9fWladOm4jpNpFQcj8viaGyWtsN4IW2qmuFbRbRx0gdEgVIPKNiV0PaNXMH84u6DZihtibaXlxc1a9YUMwFKQUUWKAVBIC0trUTNYQqOJycnF8nqkUgk2Nvbv1RsfP5nFhYW4vtQpERoe7NNF1AqFTw+uZf3GlThnXfeKdVn58KFCzRt2pTWrVtz6tQppFIpvXr1IjAwkC5dumBg8L8Gd+np6ezdu5ewsDB27tzJkydPsLGxoVu3bvj7+9OtWzfs7e3V9rri4uKKiJY3btxAEAQMDQ1xd3cvJFo2btwYW1tbtcy9efNmBgwYwKlTp2jZsuWrTyhHvv32W2bOnMnZs2dp1qyZtsPRKHl5eSxfvpwVK1Zw6dIllVjp7e3Np59+yuDBg7UqVm7atInRo0fj5OTEli1b8Pb21losusK1a9do2LAhCoUCyP8dlTWDLj4+no8++oi//vqLoUOH8ssvv2Btba3OcHWOTTdTuZcu0+/rmSCgeHqfAz9O5vTp02RmZmJsbEyzZs3w9fXF19cXHx8fHB0dtR2piA4jCAInnmTrpEjZtqoZbzuZivcqeoIoUOowuvxBb1PVDB/xg14mylKi7enpqbYbuTeZAoFy3bp1DBo0SNvhvJTs7OwSd6MueBTncWZlZVWq7EYbG5tCIoeIiLrQlc02bSIoFZgbwBjPymWyTFmzZg0jRowgNTWVrKws1q9fz+rVq7l06RLVqlVj6NChBAYGFumOq1QqOX/+PGFhYYSHh3P+/HmkUilvv/02fn5++Pv706hRI7Vf0zMyMoiOji7UjCc6OpqcnBwAXFxcCnUQL8vGm1KpxNPTE2dnZ3bv3q3W+NVBUFAQI0aMYPPmzfTr10/b4ZQbeXl5/Prrr6xatYorV66ohOqmTZvy6aef8sEHH2hFrLx58yb9+/cnJiaGn376ibFjx76xa9kPP/yQlStXAvkVOU+fPsXIqGxVUjt27GDUqFEolUqWL19Onz591BmqznIjNZfQ2+naDuO16VvHinrWxsjlcqKiojh+/LjqUdAgqX79+irB0tfXF1dX1zf2syPyYnRlrScmVukvokCpw4ip0vqPWKKtW2hLoJTL5SQmJpZKcCyu42ulSpUKiYmvEhzt7e3F95KI1tHlzTZt8DoG7ePHj2fPnj1cvXpVdUwQBM6dO0dQUBAbN24kJSUFHx8fAgMD6devn6pL+rM8fvyYnTt3Eh4ezt69e8nMzKRmzZoqsbJDhw4a84uTy+Vcv369kGgZERFBYmIiALa2tsVeF18knISGhtK3b1+OHz+Oj4+PRmJ+HQ4dOkSHDh1YsGABkyZN0nY4WiEnJ4clS5awevVqrl27phIrmzdvzoQJE+jbt2+5ipW5ubl88cUXLFmyhICAAFauXFkhy+9fhEwmw8nJieTk/PLkYcOGsWbNmjKNlZ6ezmeffcaqVavw9/dnxYoVKh/dNwGlIPDH5WRS9bQqQAJYG0sZ7W6LtBixURAE7t+/z/Hjxzlx4gTHjx/n4sWLKJVK7O3t8fHxwcfHB19fX5o3by6WhYsA2q+WEa3p9BtRoNRRzj3NZt8j0WxWn8jIyCi2RLsgU0Qs0dY+OTk5mJqavpZAKQgCKSkppRIbC24CnsXAwAB7e3vs7e1xdHQsUXajmZmZ+H4R0Tt0fbOtPHnda6avry8uLi5s2LCh2J/n5OTw999/ExQUxN69ezE1NSUgIIDAwEDatWtXrAiUm5vL4cOHCQsLIywsjDt37mBqaso777yDv78/fn5+ODs7lznmkvBsZcGzDXlu3boF5PvcNmrUqEjzNwsLC7y9vXF0dGTfvn0ajbGsPHz4kBo1ajBhwgQWLVqk7XC0TlZWlqprfYEFgJGRES1btmTChAn07t273MTKv/76ixEjRmBjY8PmzZtp0aJFucyrTQoEfQCpVEpUVFSZu5sfPXqUoUOHkpCQwOLFixkxYsQbuUbRty7GzzP4LWucSyHipKWlcfr0aVWG5alTp8jIyMDIyIimTZsWyrKsXLmyBiMX0WW02dy3uaMJbcXmvnqLKFDqIPp2oXudbBB9RBAEYmNjiy3RLsgKKK6LtliirX2KEygzMzNfWDL9IsGxwKvpWWxsbF7ahfr549bW1lpvHCAiomn0ZbOtPHjdqgOFQoGVlRXfffddiTLxHjx4wNq1a1mzZg03b96kdu3aDBs2jGHDhlGrVq1izxEEgatXr6pKwY8dO4ZCoaBx48YqsbJFixblZgORlpbGxYsXC4mWMTEx5OXlAVClShXi4uIYOXIk7733Ht7e3lSrVk2nRJICH8b+/fuzadMmbYejU2RlZfHTTz+xdu1a1RrK2NiYt99+m4kTJ9KzZ0+Nx3D37l369+9PREQE8+bNY8KECTr1/lEnrVu35vjx40B+ue61a9fKNE5ubi5fffUVCxYswNfXl+DgYOrUqaPOUPWOfQ8zOB+fo1dZlBKgmaMJ7zhbvNY4crmc6OjoQmXhDx48AKBevXqFBMsGDRqIa983jAcZMsLvpZOSp9SYUFkwro2xFD8xa1LvEQVKHUOmFFh5JVlvGggUpFCPcrOtkLsUz5aiPfuIj48HwNrauthSNE12KxV5MTKZ7KVi45MnT9iyZQsuLi4olUoSEhLIzs4uMo6ZmdlLMxmfP25nZ1dm3yYRkYqKvm22aRJ1GLRfvnyZhg0bcvDgQdq3b1/i8wRB4NixYwQFBbFlyxYyMzPp2LEjgYGB9OnTBzOzF4umycnJ/Pvvv4SHh7Nz506SkpJwcHCge/fu+Pn50bVr13JvgiGTybhy5QoRERFMnjxZJVampKQA4ODgUKgZj5eXF/Xr13/t7uWvg4GBAe3atePAgQNai0HXycjIYMGCBYSEhHD79m0g39bEx8eHzz//nO7du2ts7ry8PL788ksWLFiAv78/a9asUWsDKW0TGxuLi4uLyqd64cKFTJw4sUxjRUVFMXjwYK5fv86sWbOYOHGi6FuNeP/2PA8ePCgkWEZFRaFUKrG1tVWVhBeUhWvKTkREd1AKArfTZJyPz+ZOukxtQmXBOLUtjWjqaEodK6NirQpE9AtRoNQx3uQdOG3zqhLtAjP/Zx8uLi4Vdqdd2yiVSlJSUl7ahfr5Y6mpRcUQQ0NDlZhoa2vL0aNH6aNpgkIAACAASURBVNixI76+vi/sUP2yG3YREZFXo283a5pA3QbtISEhDB06lJSUlDKLghkZGWzdupWgoCCOHDmClZUVAwYMIDAwkJYtW770eqZQKDh9+rSqFDw6OhpDQ0Nat26Nv78//v7+1K9fv9yuieHh4fj7+3PgwAHat2/P/fv3i3QRv3fvHgAmJiZ4eHgUEi09PDywsCifdYuJiQmurq5ERUWVy3z6TlpaGj/++CPr16/nzp07QP7vsHXr1nz++ed07dpVI/OGh4czbNgwTE1N2bRpE76+vhqZpzyZMWMGs2fPBsDU1JTY2NgyfX8oFAp+/PFHvv76a9zc3AgJCcHT01Pd4eo1+rYpV54VcOnp6UXKwtPT0zEyMqJJkyaFsiydnJzKJSYR7ZCcqyAyIYfIxBxyFfkrRKkElCVYLD77vEoGErzsTfByMMG2krhJUpEQBUodQt8ubM+jL6XeYol2+SMIApmZmaUSGxMTE1EqlUXGsrOze6VX47MPa2tr1Q1zbm4uJiYmhISEMHjw4PL+NYiIvDHo42abOtGEQfuECRMIDw/nxo0bahnv1q1brFmzhuDgYB48eECDBg0IDAxkyJAhVK1a9ZXn379/n/DwcMLCwjhw4AA5OTnUrVtXJVa2bdtWY026BEGgVatWGBsbc+TIkReKosnJyURFRRUSLS9fvoxcLkcikfDWW28V6iDu5eWlkQYftra2WFtbc/fuXbWPXdFJSUlh3rx5bNy4USU4m5qa0qZNG6ZMmULHjh3VOt/Dhw/54IMPOHnyJN9//z1TpkzR25LUGjVq8PDhQwC6devGrl27yjTOrVu3GDZsGCdOnGDy5Ml8++23YqXQCyjoYKzraLuHgEKhKFIWfv/+fQDq1q1bSLB0c3PT28+gyIsRBIHkXCVxWXLisuU8zpQRly1HXvTWD0MpVDE1pJq5EVVMDaliZohtJamYJFRBEQVKHaGid4HTFmKJtmbIzc0lMTGxVIJjbm5ukXEsLCxKJTba2dm9VpmeKFCKiGgefd9sex00adDepk0bqlevrnYfQ4VCwYEDBwgKCmLbtm3I5XK6detGYGAgPXr0KJHImJWVxYEDB1SC5cOHD7GwsKBLly74+fnRvXt3tQp///77L926dWPPnj107ty5VOfm5uZy+fLlIg150tPTAXBycioiWtarV++1ylidnZ3JyckhISGhzGOIQFJSEnPnzmXTpk0qjzszMzPatWvH1KlTadu2rVrmkcvlzJw5kx9++IHOnTsTEhKiV80+jh49Srt27RAEAYlEwr///lvqzwnkCwgrVqxg4sSJODk5ERwcTOvWrTUQccVC1xvDva4fsqZ4+PBhkbJwhUKBjY1NkbJwsdKpYiIIAkoB5IKAQgkGUjCUSJBKEMXINwhRoNQRbqTmEno7XdthvDZ961hRz1ozGROvQizRLhsKhYLk5ORSiY0FN3LPYmRkVKJO1AUPe3v7cvedKRAo165dy5AhQ8p1bhGRNwF932wrK5o2aFcqlVhZWfHNN9/wxRdfqHXsZ0lJSWHTpk0EBQVx5swZ7O3tGTRoEIGBgXh5eZVoDEEQuHjxokqsPHXqFIIg0Lx5c/z8/PD398fb27vMGTGCIODr64sgCJw4cUIt13ClUsndu3eLiJYF2Wfm5uZ4enoWWj94eHiU+BrWsGFD7ty5Q1aW7ooW+sbTp0+ZO3cuW7Zs4dGjR0D+36l9+/ZMmzZNLeXZe/fuZfDgwRgYGLBhw4ZSeb9qi169erF9+3YAqlWrpvrdlJa4uDhGjRpFeHg4H374IQsXLsTS0lKdoVZYBEHgxJNsnRQp1eGHXF5kZGQUKgs/efIk6enpGBoa0qRJk0KiZUmy/kVERPQDUaDUETbdTOVeukyvb+gkQC1LI/rX06xhviAIxMXFFcmKvHHjxgtLtD09PbGzs9NoXLqAIAikp6e/UGwsTnBMSkri+a8BiUSCnZ1dqQRHS0tLjS54BEFA8d+umlIJ0v921QxKsasmCpQiIpqlomy2lZTyMmi/evUqbm5u7Nu3j3feeUft4xfHpUuXWLNmDSEhITx58gQvLy8CAwMZOHAgDg4OJR4nPj6e3bt3ExYWxr///ktqaipVqlRRiZWdOnUqlRfkvn376Ny5Mzt37uTdd98ty0srMQkJCUXWGleuXEGpVCKVSmnQoEGRhjzF/W5at27NqVOnkMvlGo33TSUuLo4ffviBrVu3EhsbC+RXaLzzzjtMmzaNli1blnns2NhYBg8ezKFDh/j666+ZMWOGTjaFycrKwtHRUSWCT548mXnz5pVprK1bt/Lxxx9jaGjIqlWr8PPzU2eobwwF5d6a6lxcUtTth6wtFAoFMTExhbIsC2wfateuXagsvGHDhmJZuIiIniIKlDpAcq6C5ZeTtR2G2vjI3baIWa0gCBw+fJgWLVqUKi1foVAUW6L99OlTAKysrIpkRbq7u1eYEu2CkrDSZDcWdGl8FktLy1d2on72/7a2tlpdgAuCQFKuIt+XJEtO7H/+JC/zJalqlu9JUsXMELtKBsWKlnl5eVSqVEkUKEVENERF2Gx7EYIgICgUSP+zmShPg/b169czePBgkpKSyt0PWSaTsXv3boKCgtixYwcSiYSePXsSGBhI165dS2W7IZPJOH78OGFhYYSHh3P16lWMjY1p3749/v7++Pn5UadOnReeLwgCbdu2JScnhzNnzmglCyg7O5uYmJhCa5KoqCgyM/N956pXr15EtJw0aRL//PNPkc1AEfXz+PFjZs+ezbZt24iLiwPy10CdOnVi+vTpNGvWrNRjKhQKZs+ezbfffku7du1Yt24d1apVU3foZWbZsmWMHTsWyK9muXnzJjVr1iz1OCkpKXz66aesW7eOgIAAfv/991JtRogU5UGGjLB76VprGKcJP2Rd4tGjR5w4cUIlWEZERKBQKLC2tubtt99WCZYtWrTA3Nxc2+GKlBJ1JKeI6B+iQKkDHHiUydmn2RXihk4CtKhsSofq/7sIZGRk8OGHH7Jp0yYWLFjApEmTij03IyOD6OjoIiXa2dnZANSsWbOIGFmrVi29+YKSy+UkJSWVSnAsuOF5FmNjY5WgWBLB0d7eXm8E2+RcBREJOUQ929kNKEaXLMKzz6tkIKGxvQnezwkHokApIqI5Ktpm27MYSkCSnsidyDOc/HcH96PPU7daZQL69CEgIOClopo6mDRpEn///Te3bt3S6Dyv4unTp2zYsIGgoCAuXrxI1apVGTJkCIGBgTRo0KDU4928eZPw8HDCw8M5dOgQMpkMNzc3VXalj48PRkb/u6k+dOgQHTp0YPv27fTo0UOdL+21UCgU3Lp1q0gX8QKBzMjICJlMxocffkirVq3w8vKiYcOGenNt1lfu37/PDz/8wF9//VVoY7tLly58+eWXJbYtKODQoUMMHDgQuVzOunXr6NKliybCLhUNGzbk8uXLALRo0YLTp0+XaZz9+/czfPhw0tPT+fXXXxk0aJDerK91HZlS4PDjTM7F55RbNqUm/ZB1mczMTM6cOVOoLDw1NRUDAwO8vb0LZVnq0iaDiOaSU0T0D1Gg1DKCILA4OkklxryIB5ciCPvxS2KvX0KWk8WnGw9QzdWjXGL885tx3D53ginhF0r0/EoGEiZ42CGRSIiJiaF3797cuXMHpVLJBx98wLp1615Zou3u7l6ki7YulWgLgkBqamqpxMbk5KI37lKpFHt7+1c2h3n2uLm5eYX6AlYKArfS8jgfn8PddJnaFm8F49SyNKKpowl1rYyRy2RUqlSJ4OBghg4dqoZZRERECqhIm21KhYJmTua0q2ZWxKA9NTWVsLAwtm7dyu7du8nJycHLy4uAgAACAgJwc3NTezzt27fH0dGRP//8U+1jlwVBEIiIiCAoKIj169eTnJxMq1atCAwMpH///lhbl97qJT09nX379qmyK588eYKNjQ1du3bF39+fbt260a9fP5KTk7lw4YJeXAfj4uKIiopi4cKF7N27l5o1a/LgwQPVWsfNza1QQx5dW+tUJO7du8esWbP4559/CjVK7NatGzNmzKBRo0YlGic+Pp6hQ4eye/dupk2bxnffffdazfvKyrVr12jYsCEKhQKAdevWMWjQoFKPk52dzdSpU/nll1/o2LEja9asoUaNGuoOV4T8bMrwe+mk5Ck1JlRq2g9Z31AqlVy6dKlQWfidO3cAqFWrVpGycF20b6joaDo5RUT/EAVKLZOYI2fFlZSXPkchk7HgvZYYVapE60FjMDIxpUGbzpha2ZRLjKUVKAFGu9myY/M6PvroI+RyuWoBZWZmhoWFhc6VaGdlZb1UbHz+Z4mJicV6SVlbW79SbHz2ZzY2Nm+0R0p5L9a6VjOhjp25KFCKiKiZkm626RPPbra9iIyMDHbt2kVoaCjh4eFkZGTg5uamEisbN2782kKaUqnExsaG6dOnM3Xq1NcaSxPk5OSwfft2goKC2LNnD5UqVaJPnz4EBgbSoUOHMl3jlEolFy5cICwsjLCwMM6fP49UKkWpVDJo0CAmT56Mh4eHXoiUAGvXrmXYsGFs2rQJf39/VbVIQUOeixcvig39ypFbt24xa9YsduzYQWJiIgC2tra8++67zJgx45WbDEqlkh9//JEvv/ySVq1asXHjxnIV9UaPHs2KFSuA/HVnfHx8oUzjknLu3DmGDBnC3bt3mTt3Lp9++ukbvSYtD5SCwO00Gefjs7mjgU15TfshVwRiY2MLCZYRERHI5XKsrKwKlYW3bNlSLAvXEOWZnCJ+DvQPUaDUMpeScthxL+Olz3l65waLAnzo89VPNO9d/mWpZREoL677mY0/zSr2ZxMmTKBt27YaK9GWyWQkJiaWKruxoIz8WUxMTAqJjK/KbrSzs8PYWDsdzPUNbZa7HFv/O30b12L4kMHlMKuIyJtBSTbb9JHRbrbYmZRsJz4nJ4c9e/YQGhrK9u3bSUlJoW7duvT5rwy8RYsWZbreXb9+HVdXV/bs2UPnzp1LfX558ujRI9auXUtQUBA3btzAxcWFYcOGMXz4cGrXrl3mcWNjY+nUqRMPHz5EoVCQmZlJjRo1VL6VHTt2LHFHbW1w5MgR2rVrx7x585g8eXKRn8vlcm7cuFFItIyIiCAhIQEAGxubQoKlt7c3bm5uZRKlRApz7do1fvjhB8LCwkhKSgLAzs4Of39/ZsyYwVtvvfXCc0+cOMGAAQPIzMwkODgYf39/jcYqk8lwcnJSVeQMGTKEtWvXlmmcOXPm8P3339O4cWNCQkI0kvkt8nKScxVEJuQQWZbMMQko/1s8l6cfckUkKyurSFl4SkoKBgYGeHl5FeoW7uzsrO1w9R4xk1jkVYgCpZbZ/zCD8/E5L70Y3Tl/gj8+7MXA+avw6NSz3GIroLQCpVQCV/8NJXj6WFWnS6Xyf69w+fLljB49ukRjKZVKUlJSSpXdmJqaWmQcAwODEnWifvZ4aZr5iJQcbRuGKxUKjOS5DGhUVbxgiYioiZjEbMLuF/XM1Xd6uljiblf6jP68vDwOHjxIaGgof//9N/Hx8Tg7O6vESl9f3xKXkm3atIkPPviAhIQE7O3tSx2LNhAEgRMnThAUFMTmzZvJyMigffv2jBgxgoCAgFJfX0+ePImPjw9btmyhZ8+eHD58mPDwcMLCwrh9+zampqa88847+Pn54efnp3Mlqo8fP6Z69ep8+umn/PLLLyU6RxAEYmNjVYJlwePmzZtAvh91w4YNCzXj8fT0LFN5vUg+V65cYdasWezatUslAtrb29OjRw9mzJhB3bp1i5yTlJREYGAg27dvZ+LEicyZM0cjm9WhoaH07dsXyLcHOn/+fKk9NCFfkB0yZAgXLlzgyy+/ZMaMGaLQrWUEQeDjSVN4kq1g/IzveJwpe6X3XjVzI6qY5nvv2VaSihnWakSpVHL58uVCWZa3b98G8vshPFsW7uHhIZaFlxBtJqc0czSh3RvkxarviAKllll3PYWHmUVLhQv485txXNixudCx2k19VP8eveKfIs9/VkxMfnyf+f5NeXfCTEzMLTkcvITUJ4+p8pY7vabNp0ZD70LnXzq4k72/zSHxwR3sa9Sm85ipXD68q9QZlM7mhnSxyWPs2LFs27atUOfK4cOH88knn5QouzExMbGQuFmAra1tqQRHKysrsWxFBzgXn82+h5nldmF6IYISJFI6OZvTzFF3s25ERPSBS5cusXjXSWq17Y6BUcXJIpdKoJmjKR2rv16Jl0Kh4OjRo4SGhrJt2zYeP36Mk5MT7733Hn379qVdu3YvFQi++OIL/vzzT+7evftacWiLzMxMQkNDCQoK4tChQ1haWtK/f38CAwN5++23S3Rj3b17d+7du0d0dHSha7kgCFy7dk1VCn7s2DEUCgWenp74+/vj7+9PixYttH4DqVQqMTAw4P3332fLli2vNVZaWhoXL14s0lAwLy8PgDp16hQSLb28vKhevbooYJSSmJgYZs+eze7du0lJyc8Od3R0pFevXsyYMQMXFxfVcwVB4Oeff2by5Ml4e3uzadOm18oYfp7WrVtz/PhxAOrXr8+1a9dKPYZSqeS3335j8uTJ1KhRg5CQEFq0aKG2GEVej0aNGtG6dWt+//13IP89pfyve7FCCQb/dS9+1g9ZpPyIi4sr1C38/PnzyOVyLC0tadWqVaGycEtLS22Hq3NoOzmlonezr2iIAqUWEQSBhRcTi90hK+Be1FmuHt3DodWL8fngQ5zdvbGwd+TgqkVAyQXKag08yM3MoHnvIUgkEo4E/4phpUp8sf0cBv/dGF0/eZA1nw6gch1XmvUcSFZqEic3r8LaqRq5WZmlEiglSgUzW9dSeSq9DHNz81c2hnn2YW9vrxVDcpGyIwgCJ55kczQ2S9uhFKFNVTN8nEzFBZ+ISCnJyclh1qxZzJ8/n0+Cd+Hk6gml/By9KEN/3+/z2f/Hj8y5EP/CcxPu32L3L99zL+oMOelpmNnYUcurJb2/XIiJpVWZXtPzOJsbMri++vyelUolp0+fJjQ0lNDQUO7evYudnR29evUiICCATp06FfFg7tixI7a2toSGhqotDm1x+/ZtgoODWbNmDffv38fV1ZXhw4czdOjQF3ZUPXv2LC1atGDjxo0MGDDgpeMnJyezZ88ewsLC2LVrF4mJiTg4OPDuu+/i7+9Ply5dsLEpH//u5zEwMKBdh47s/PdflEqQ/ic4GKhBcJDJZFy9erVIF/GCLEAHB4civpaurq7iWqqEREZGMnv2bPbs2UNaWhoAlStXpnfv3kyfPp2aNWsC+e/V/v37k5SUxOrVq+nTp89rzRsbG0utWrVU4vPChQuZOHFiqcd5+PAhgYGB7Nu3j3HjxjFv3jyxSkiHSE9Px9rampUrVzJixAhthyNSArKzszl79qxKsDxx4gTJyclIpVIaN25cKMtS1zL6yxtdSU4pmF9MTtF9RIFSi8iVAguiEl/5vNvnjrNi9HuFSrz/+LAXUHKB0szGjs//Pq1qrHP58G5CPhvC0MXrcWvbBYBfPuhARmI8E0NPqG7ubpw6xOqx72NTtUapBEqAb96uQV5uDhKJRJVBKZVKGTZsGJ9++qlKcNRl3ygR9XA8LksnxckC2lQ1w7eKuFgXESkpBw4c4KOPPuL+/ftMmzYNi/fGIS/DaqKsAqVclsdPfXxQ5OXS6v1ALBwqk/Y0jqtH9zBw3ipsq6nnhsBQCpM87TWygVHQCbtArLx27RpWVlb4+/sTEBBAt27dMDU1xdbWlsmTJzN9+nS1x6AtlEolBw8eJCgoiNDQUPLy8ujatSuBgYH07NmzkEjbs2dPrl+/zqVLl0qVCalQKDh9+rSqFPzixYsYGBjQpk0b/Pz88Pf3x9XVVWN/26RcBXFZcuKy5MRmybmTmIaRSdHrTEHJZlWz/HLNKmaG2FUyeO24BEHgwYMHhQTLyMhIVSauiYkJHh4ehURLT09PLCwsXmveis65c+eYM2cOe/fuJT09HYAqVarQp08fvvzyS8zNzRk1ahRbt25l3Lhx/Pjjj5iYmJR6npkzZ/Ltt98CYGpqSmxsbKnL9wVBYMOGDXzyySdYWFgQFBSk8z62byKHDx+mffv2XLx4EQ8PD22HI1IGlEolV69eLVQWXmDHUaNGjSJl4W/C5pCYnCJSVir+p0OHkZejNuzZuVehrt+1vVsBkPToLgBp8XHEXouhXeD4Qpknb7VqT+U6ruRll/7L5WliEjv+CuXXX3/l9OnT/D97Zx5XU/rH8fe97Ys2SpFKpMXaYsuSLaLGFjFojEHINraxjBg7WcbOiMnIGExlLGmYLI3CtGEw9kiWFksp7XV/fzTdn6YQyq2c9+vlNXPPfc7zfE/33rN8vpu8vDz5+floa2tjbW399gkEqgVRSZXz4vQqZx5noCQnEjxqAgJv4cmTJ0yfPp2ffvqJjh07cvjwYRo2Mi+Ts608SYq9wfOHcSVqM3f1mF6u6+QVFDYikKuAe1iRSISNjQ02NjYsXryYf/75RypW7tmzB1VVVTp06EBqairm5ublb4AMEYvFdO3ala5du7Jp0yb27duHr68vbm5u6OjoMGTIEEaMGAHA4cOH8fPze+c0bTk5Oezt7bG3t2fJkiXcv3+fo0ePcuTIEby8vJgxYwYNGjSQipUdO3YsEb36rjzPzufCkywuldL0ojRxEgq/Yw9e5vHoZZ60HrmSnIjmNZWx/oCmFyKRCCMjI4yMjOjd+/+/kZSUFC5duiQVLCMiIvD19SUvLw+RSISZmVmJhjz6+vrvZUN1xM7OThrN/Ndff7Fs2TJOnDjB5s2b2bx5MwYGBri6urJ8+XLmz59PeHg4+/bte2Oznf9iZGREfHw8AE5OTgQHB7+znU+fPmXcuHH8+uuvDBkyhI0bN6Ktrf3O8whUPBEREaipqWFlZSVrUwTeE7FYjJWVFVZWVowePRqAxMTEYmnhAQEB5Obmoq6uXiwtvE2bNtUyLbyyipOA1C4hOKVyIgiUMqSU0ooVhpZB8a5jRWJl5ovChjIpjx8AUKueaYl9dY0b8vD63++8poKiEsOGDWPYsGFcuXKFrVu3snPnTiFi8hMiPj2XkIdVo3FGyIOX1FaRF2qTCAiUgkQiYffu3UyZMoX8/Hy2b9/OiBEjEIvFZOV/xIvZvyir/xvlf+4U5u26oahScTeZeRIJclSsl10kEtG4cWMaN27MvHnzuHXrFoGBgfj4+AAwZMgQunfvjqurK71790ZHR6dC7fmYaGpq4uHhgYeHB9euXWPnzp3s2rWLjRs3oqGhQa1atejatesHr2NkZMTYsWMZO3YsGRkZnDx5kqCgIA4cOMD69etRV1fH0dERFxcXevXqVWZRrkAi4c6LHKKTs7iXllsija2sv45Xx2XnS4hMyiQiKROTGgrY6irTQEMRcTlEe2hpaeHg4ICDg8P/18vO5tq1a8Ua8ixfvlyazly7du1igmWLFi1o2LChzGt7yprWrVvz22+/ARAeHs7y5cs5deoUGzduBAprVt69exdra2t8fHz4/PPP3zjfmTNncHBwQCKRIBKJOHbs2HtFPAYHBzNy5EiysrLYt28fbm5u735wAh+NyMhIbG1tP/nfU3Wjdu3a9OvXj379+gGFaeFRUVFSwXLDhg0sWLAAsVhMs2bNikVZFpWNqKoIwSkCH4IgUMqQD+nZ8mra9KsUvOZBUSR+zUWvAqM45V45viZNmrBx40bWrl0rXIA/EXILJByJS5N5zZGyIgKOxKUxylJb6PImIPAKt2/fZuzYsZw4cYLPP/+c77//ntq1a0vf/5jOtiJ06hrTftg4wnZv4WJwACYtWmPp4IR1r4HlVn+yiPwC4CNftszMzJg5cybPnj3Dz8+PGTNmEBAQwFdffYWcnBydO3fG1dWVvn37FvssqjqWlpasWLGCJUuWsHXrViZOnIicnBzGxsa4uLgwYsQIevbs+cHpcaqqqtImOhKJhMuXL3PkyBGCgoIYNWoUEokEOzs7XFxccHZ2xsbGptRGe/HpuQTFpZGSUyCVsMvrelc0T1xaLvfSctFSFONcQQX+lZSUpAKkdH2JhHv37hUTLffs2cOKFSuAwr9hs2bNiomWTZo0+WRrG7Zr147Dhw8D8Oeff7J8+XJCQ0PJyCh8SB8yZAjLli3jyJEjpYoP/fr1k4qd+vr63L9//527a6enpzNjxgy2bt2Kk5MTO3bseG1tV4HKQ0REhLRDu0D1RUVFhQ4dOtChQwegMC38xo0bUsHy+PHjbNq0CQBDQ0Ps7e2lgmXz5s2rTFq4EJwi8KEIbY1liPwHeMJVamiRlZZaYnvK4/j3mq8owvJJfGyJ95Ljbr/XnKUdn7y8vFDv4RMh9NFLmXVrex8kwIucAv58VDUuqgICFU1OTg5Lly6ladOm3Llzh+DgYPbs2VNCEPsgZ9trIhMLCvLfuq/z1IVM3hdKp68mk5udxeGVc/h+YHtSEx+9v0GlICfDO6WYmBhat27NlClTCAsL4+HDh6xbt478/HzGjx9PnTp1cHBwYP369Tx48EB2hpYz8vLyhIaGUr9+feLj41m1ahV3796ld+/eGBoaMmPGDP75559yWUskEtGsWTPmzJlDeHg4iYmJ7Nq1iwYNGvD999/TsmVL6taty6hRozhw4ABpaWnkFkgIeZDOz7dSSc0pVOgr6lpXNG9qTgE/30ol5EE6uQUVf2UViUTUr1+f/v37s3DhQg4dOsT9+/d58uQJISEhLFy4kIYNGxIWFoanp6e0e62VlRVDhw5l5cqV/PHHHyQnv77RVXWlY8eOHD16lJcvX3LixAkcHR1RUFDg8uXLGBsbU7duXWbPnk1KSgoZGRmoqalJxclvvvmGx48fv7M4ee7cOVq0aMGuXbvYsmULR48eFcTJKkBSUhJxcXFCR/VPELFYjKWlJaNGjcLX15ebN2+SmJjIgQMHGDx4MPHxnbZYigAAIABJREFU8cyYMQM7Ozu0tLTo2rUr8+bN49ixY6SmltQAKgOvBqdUBYqCUz7GNVWg7AgCpQyRExUWR38fdAxNSL53m/TnT6TbHt+8QtyliPeaT0NXHwPzJsQc3kdW2gvp9lvnT5MUe+Od55MXgxCE9ukSn55LVHJWlREni5AAkclZxKfnytoUAQGZcvbsWWxtbZk3bx4TJ07kypUrODk5lTr2Q5xtyhqvc7aVTWzTN7Oiy6hpjNlxmDE7DvMi6TF/+e98b3tK40OO70OQSCRER0djY2Mj3WZgYICnpycnTpwgISGBbdu2oaamxvTp06lXrx5t2rRh5cqVxMaWdDZWJa5cuYK/vz9z5szBwMCASZMmceHCBWJiYnBzc+PHH3+kcePGtG7dmq1bt5KSklJua+vq6uLu7s7evXtJTk7m1KlTDBs2jPDwcPr3749N154sPnWNqKRM4ONlCBStE52cxfZrz2V2napZsyZdu3Zl2rRp+Pn5cfnyZdLS0oiMjOSHH36gS5cuxMXFsXDhQrp3746enh5169bFxcWFuXPn4u/vz+3btymQRei1DOjSpQvHjx8nJyeHrVu3oqamxqNHj1i+fDna2tqoqamRkZGBvLw8cXFx0gjVspKTk8O3335L+/bt0dXV5eLFi4wdO1YIBqgiREZGAtCyZUsZWyJQGdDT06Nv376sXLmSs2fPkpqaypkzZ/Dy8kJdXZ3Nmzfj5OSEtrY2zZs3x9PTk59//pl79+6Vmln5sRGCUwTKA0GglCEikQh9lfcL17brM4T8vFx8x7txbt8O/tiygh893ahtavHe9vSYMJf0Z8lsHelC2O6tHN+8jD3fjKR2g3efU19FiJT8VCmQSAiqQt6z/yICguLSKKgEF3oBgY9NSkoK48aNo3379qioqBAVFYW3tzdqamqv3edDnG01DU3ISn/B45tXpdteJCdw9VRQcbsePyDp7i3p66z0NPLz8oqN0W9ohUgsJi8n57X7vSuydLbdu3eP58+fY2trW+r7tWrVYuTIkRw9epSkpCT8/PwwMDBg3rx5NGjQAGtraxYvXsy1a9c+suUfzpIlSzAyMuKLL74ott3a2pr169fz6NEjfv31V2rVqsX48eMxMDBgyJAhhISElKvwpaCgQKdOnVi5ciXXrl0j+J/7jNx6AGWtmiAr4ZrCB6qfb6USlZwpExv+i4qKCnZ2dowaNYqNGzcSFhZGamoqN2/eZP/+/Xz55ZcUFBTw448/MnDgQMzMzNDS0qJDhw5MnDiRHTt2EB0dTXZ2tqwPpUIZM2YMiYmJfPXVVyXey8vLo3Pnznz33Xekp6eXab4rV67QunVrvL29WbRoEWfOnHmnZjwCsicyMpJatWphYmIia1MEKiHKysq0b9+emTNncvDgQZKTk7l+/Trbt2/Hzs6OkydPMmzYMOrXr4+hoSFubm6sW7eOqKgocnM/rhNLCE4RKC9Eksogt3/CnHiQTnRy1huLqMdGhePj0bdEt9ILR/0J2bqC1MRH6Jk2wmnSPC79HkBs1FlmBsUA8PzRfbxdbOn59Xd0/GJ8sXln2+jS1WMG3cZ+I9125cQR/ti8jGcP49AxNKG752z+CQ0uNufbEIvATleFLnVf/0ArUH25lZpNQGyarM34YAaYatBQU1HWZggIfBQkEgkBAQFMmjSJtLQ0li5diqenZ5lrBu++mcKDl3lvH/gfXqY8w9vZGvWaetgPHkVuVibn/XeiplWTR9f/ZllMYXrottF9uBt9Vvr66qmjHFoxi6bdelPLuAEF+XlcCPqVxzeu4LH9EEbN7Erd710xVJNnWCOt99r3QwkICGDAgAEkJCS8U53J9PR0goODCQgIICgoiPT0dKysrHB1dcXV1ZVmzZpVagfi9evXsbKyYvPmzYwdO/at4x89eoSfnx++vr7cuHEDIyMjhg8fzvDhw2nQoEG52CSRSCptR9IOBqrY11ap1J/pqyQmJnLp0iUuXrworW9548YNJBIJ8vLyWFpaFmvI07x582rVFOrGjRs0btyY/PzCMha1a9dm9uzZHDhwgHPnzpGTk4NIJKJBgwa4u7szffr0EnU98/PzWbt2LXPmzMHMzAw/Pz+sra1lcTgCH0ivXr0AOHr0qIwtEaiqPHnypFi38MjISHJyclBVVaV169bSOpZt27ZFU1OzQmwokEjY9s9zUqtQ9OSriABNRTEeVtrl0oxO4MMQBEoZc/VZFofjyuYprUr0Nq6BlY6SrM0QkAF7b6cSl5ZbJS9QRYgAkxoKDGpYMRdyAYHKxP379xk/fjxHjhyhb9++bNiwAUNDw3eaoyzOttdx6/xpgtbM40ncHXTqGtF51DSe3o/lxLaVrxUonz2M49T2NcRGn+VFcgIKyioYmDWm88gpNGzdUTr3hwiUsna2zZkzh59++omHDx++9xxZWVkcP36cgIAADh06REpKCg0aNJCKlS1btqx0wpa7uzunTp3izp07KCmV/T5CIpFw/vx5fH192bt3L2lpaTg4ODBixAgGDBjwxijgtxGekFEpxckiOhio0k6/6janefnyJVeuXCnWkOfvv/8mM7MwQtTIyKhEF3FjY+NK9919Gx4eHvj4+ACF3evDwsIYNmwY169fZ926dYwaNYpDhw6xZs0a/vrrL3JzcxGJRJiZmfHll18yefJkkpKSGD58OGfOnGHq1KksXrwYZWVlGR+ZwPsgkUjQ1dVlwoQJfPfdd7I2R6CakJ2dTXR0tFSwDA8P58mTJ4hEIpo0aVKsW7iJiUmZzqPnz5/HwsICLa3SHbZCcIpAeSIIlDLmaVYePtfKr3ZSZcHDUhsdZaFb96fG8+x8fvjnuazNKDfGWGmjrSR8jwWqJ/n5+WzYsIG5c+eiqanJxo0b6dev33vNVV2dbfqJ/9CvbfMKizp4Ez169EBJSYlDhw6Vy3w5OTmcOnWKgIAAfvvtN5KTk6lXrx79+/fH1dUVe3v7MkfMVhS3bt3CwsKCdevWMWHChPeeJyMjg8DAQHx9fTl58iTq6uq4ubkxYsQI2rVr907CVlRSZpXoSNrNUA07XRVZm1Fu5Ofnc+vWrWKi5YULF6RNdzQ1NYsJli1atMDCwgI5BUXyJBIKCgobeMmLRMiJkKmYmZubi76+Ps+ePQMKRfhdu3YBhU6EqVOnsmXLFgYNGsS2bdvQ0NCgoKAAf39/1q1bR0REBHn/lrQQi8Voamqyd+9eunfvLrNjEvhw7t69i6mpKUFBQdJISgGB8kYikXDr1q1iguX169eBwrrWr3YLt7a2LtGgKykpCX19ferXr8/Ro0cxNzcvsYYQnCJQnggCpYyRSCSsvfyM7Pzq8zEoyYn4uqlOlfNsC3w4Jx++JDIps0pfoIoQAa30VOgslCoQqIbExMTg4eFBTEwM48ePZ8mSJWhoaLz3fNXV2ba6b2ueP4zD3t6enj170rNnT5o3b17h17eiyJqJEycyf/78cp8/Ly+PsLAwAgICCAwM5NGjR9SuXZt+/frh6uqKg4PDO3cRLg9GjBjBsWPHiI2NLbeosHv37vHTTz+xc+dO7t27J41G++KLL94aKRyfnsvPtypnt9TSGGqmST31j/+5fSwkEgmPHz+WCpbX7j8iKUuCvE5tDJvYUNeiGYoqJSNJ5cWFtdENVOXR//efjpLcR7lP/e2336SOH7FYTHR0NC1atCgxbv/+/YwePRpdXV327dtXrPZsQkICLi4uREdHIxKJkEgkiEQiLC0tGTlyJBMmTEBRUYj6qWrs27ePwYMHk5SUhK6urqzNEfiEePr0aYm08OzsbFRUVGjVqlWxtPDTp0/Tv39/5OTkUFFRISAgoJhzRAhOEShvBIGyEiCIOgLVgdLE9virFziy8lse37xKblYGE385SR3zpjK08t0QxHaB6kZ6ejrz589n7dq1NG7cGB8fH1q3bv3B81ZXZ1vfGmkcO/Y7wcHBnDhxgpcvX6Kvr4+TkxM9e/bE0dERbW3tcl/7/v37GBsbc+jQIT777LNyn/9VCgoK+OuvvwgICMDf35+4uDh0dHTo06cPrq6udOvW7Z1Srd+X2NhYGjVqxKpVq/j666/Lff6CggJCQ0Px9fXF39+f7OxsHB0dGTFiBH369CkhiOYWSNh+7XmV6UgqAjQUxYyy1EZBVp2dPgLPs/O58CSLS0+zpOcbMYU10N7UuEgikYCkAJG48MFTSSyieS1lrGspV9jDaMeOHTlz5gwADRs25NatNzfsunPnDoMGDeLy5cusWrWKCRMmcOjQIUaPHg3Atm3b6N27N7t372bjxo3ExMSQn5+PWCzGysoKDw8PxowZI4iVVYTp06cTEBDA3bt3ZW2KwCdOdnY2MTExxaIsi6LVa9asybNnz6SOEYDvv/+eSZMmIRKJBB1DoNwRBMpKgOB5EKgO/DeCKj83l1V9W6OgpET7oeNQUFbBooMjKhpvbziRk5nBnz9txNSuHaZ27SrS7LcilCsQqC4EBQXh6elJcnIy8+fPZ+rUqeUaJVe9blIltNJTLXaTmpOTQ1hYGL//XihYXrlyBbFYTJs2baSCpY2NDWLxe7Y0f4UDBw7Qv39/Hj58SJ06dT54vrIikUiIiYkhICCAgIAAbt68iYaGBi4uLri6uuLk5FSiYUd5MXr0aA4fPkxsbGyFrVHEixcv2L9/P76+vpw9exZtbW0+//xzRowYga2tLSKRiJB/66pWpe+zCLDTVaarobqsTSlXCiQS7rzIITo5i3tpuYigXD6Xgvx8xHJyKKU/oZmWHB0sTFAsh3Pi48ePMTExIScnB4DVq1czderUMu2bnZ3NrFmzWLt2LUZGRty/f5/evXvj4+ODnp5ecfsLCvD19WXLli1cvHhRKlY2adKEMWPG4OHhgby8/Acfj0DF0LFjR/T19dm/f7+sTREQKIZEIuH27duEh4czY8YMnjx5UmJM+/btCQ0NZd2V5691Tm8b3YeMlGd8/euZN65X1NR3wHfrse39OQAhW72L1SIHWOFsg6mdPQMXbAT+30h49Lbfyu15UQhOkT0ffhct8MFoK8lhUkOBqv4zEAH1aygI4uQnSkJG8Q6+Tx/cI+VxPB3cPWnl+gXWzgPLJE4C5GZlcmLbSmKjwivC1Hfiv8clIFDVSEhIYNCgQbi4uGBhYcGVK1eYOXNmuafwWtdSrlJizpuQAC1qFY+oU1RUpEuXLnh7e3P58mXu37/PDz/8gL6+PqtWraJly5bo6+vj7u7Onj17Sr2hLyvR0dHo6+t/VHESCuv02drasnTpUq5fv87ly5eZOnUqly9fxtXVFV1dXQYMGMAvv/zCixcvym3duLg4du7cyYwZMypcnATQ0NBg1KhR0lpcY8aM4bfffqNly5Y0a9aMVTt2E5Vc9cR2CRCZnEV8eq6sTSk34tNz2fbPcwJi04hLKzyu8vpcxP/WXM1Q1iIyT5u5v/+N0+dfMnr0aDZv3szZs2dJT3+32rrfffcdderUIScnBxUVFVJSUsosTgIoKSnRt29fdHV1uX//PjVr1mTWrFklxEkoTBkfOXIkUVFRZGVl8cMPP9C8eXOuXLnC+PHjUVJSwsbGhm3btklrWApUDvLy8oiOjqZVq1ayNkVAoARFzbkGDRpESkpKse1Fwt25c+e4k/C0WmXOAGTnS3ie/T4tHwXKC0GgrCTY6lb9BzsJYFuNCrQLvBsJGXnFTigvnxV6vJRrVJ5iw/l5eeTl5pR5vFgECZnCTb1A1aSgoIAffvgBCwsLTp06xe7du/n9998xNTWtkPWqi7MtPy+Pukq81dlWr149Ro0aRUBAAE+ePCE0NJSRI0dy5coVhg4dip6eHq1bt+a7777j/Pnz5Ofnl9mGmJiYYjXoZEFRx8/58+fz999/c/PmTby8vIiLi2PIkCHo6ury2WefsXPnTmnzj/dl+fLlaGlpMXbs2HKyvuyYm5uzbNky4uLiOHr0KJZWViTpWVLwDp9XZUIEBMWlFaY8V2FyCySEPEjn51uppOYUPixW1BHJ/RtlqFO3Hg4zVpLX0I4ZM2fTrl07NDQ0aNSoEW5ubixbtozg4GAeP35MaQloRkZGLFiwAIDu3buTkZHxTg22srKymD59Op07d8bS0pIzZ87QqFEjOnbsyKpVqygoeP1Ds7y8vLSucHZ2Nps2baJJkyZcunSJMWPGoKysjJ2dHTt27HjjPAIfh2vXrpGRkSEIlAKVmhs3bkidGzVq1MDZ2ZmVK1cSERFBZmYmOco1ymUdLYN6LDwXj7Wz2zvtZ2LTloXn4jGxaVsudhQhBKfIFiHFu5JQIJGw7Z/npFaRWkf/RQRoKorxsNJGLIREf5LsvpnCg5eFJ/Rf508g5vC+Yu/Xt7WX/r+Hz8Fi7/06fwKxUWeZGRQjDfP/L109ZtBt7DdsG93nrXPA/9MFen79HWI5Oc7t28HzR/eZ8HMIdcybknT3Fn9sXsqdyDByszKp3cCCLh7TsXJwKjavoZo8wxqVLfJTQKCycPXqVcaMGUN4eDhfffUVK1euREdHp8LXvZWaTUBsWoWvU9E4GyjQVP/9nSuPHz/m2LFjBAcHc/z4cVJSUtDR0aF79+707NmTHj16ULt27VL3lUgk6OvrM2bMGBYuXPjeNlQkcXFxBAYGEhAQwNmzZ5GTk6Nz5864urrSt2/f1x5bacTHx9OgQQMWLVrEzJkzK9DqslFdvsMDTDVoqFk1axHGp+dyJC5NZvU/RUANBRGWuYnEXYqQNuW5ePEiqamFTZP09PSkHcSVlJRYtGiRtEbbsWPHcHR0fKc1L1y4gLu7O7du3WLp0qVMmTIFsVhMbm4uc+fOxdvbm169evHTTz9Rq1atMs+bk5PDDz/8wLZt27h69SoSiQQ5OTlsbGyYMGECw4YNK5eyFALvxo4dO/Dw8CA1NRV19epVkkGg+pCTk8PBgwexsLCgcePGJc4VJ/4thfI6l0dZU7xLoywp3hWBWAR2uip0EepQygzhilRJEItEOBvXqJLiJBR6tV2Mawji5CeKRCIpFmnYqv9wOn1V2OTA/vPRuC3aTOeRU8o0l5p2TfrOWQlA487OuC3ajNuizTTu4vxetkUf+oVz+3bQqr87vaYsQFVDm8Q719ky3Imku7dw+HISvaYsQFFFld1Tv+DqyaBi+ydk5pUaKSEgUBnJysrCy8sLa2trnjx5wunTp9mxY8dHEScBGmgooqUorrpRlJICnsbfxbzmh6UZGxgY8OWXX7Jv3z6Sk5MJDw/H09OTW7duMXz4cPT19bG1tWXu3LmEh4cXS798+PAhSUlJMo+gfBPGxsZMmTKFsLAwHj58yLp168jPz8fT05M6derQqVMnNmzYwMOHD986l7e3NzVq1MDT0/MjWP52opOzqu73919EQHRypqzNeC+ikjP5+VaqTJsTSYC0XAl/oUcT50GsXbuW06dP8/z5c2JjYwkMDGTs2LEoKSmxbt06Fi5cKL1PsLGxITAwkB9++IG//vqLjIyMN66Vl5fH0qVLad26NfLy8kRHRzNt2jSpEKCgoMCKFSs4evQoERERtGjRQtp4pywoKioyceJELl++TFZWFqtXr8bc3JyoqCiGDx+OkpISbdq04ZdffhEiKz8ikZGRWFlZCeKkQKVGUVGRgQMH0rRp01IdGbFJzzm48ltWONswt3VdFne1ZMe4ATy8dqnYuMTYG/h49GWevRHLejQldOeGYu8/f3Sf2Ta6RB/65Z3si40KZ7aNbrGSYNtG92HtwA5vXbNw3Xh2fT2MefbGLO5qyZFVc7kefpKuhuqcPn36nWwRKD8EgbISUU9dATtd5Sp3YywCWuoqY6hevvXMBKoO+RLIe+W+1rh5S8zadALAxLoN1s4Dpa/fhqKKGk26Fnat1Tezwtp5INbOAzFo1Pi9bEtNesS4n4Jx+HIS7YeORcvAkMMrv0VL35CJe07g8OVE2g4ayWifgxg1syN4ffGIpbwCKBD0SYEqwMmTJ2nWrBkrVqxgzpw5XLp0CQcHh49qQ1V3toGIwAWTy6VRRhHy8vLY29uzaNEioqKiSExMZNeuXVhYWLB161bat2+Prq4ubm5u/Pjjj/zxxx8AlVqgfBUDAwM8PT05ceIEiYmJbNu2DVVVVaZNm4ahoSFt27Zl1apVpXaqffToET4+PkydOpUaNconVexDeJ6dz7203Cr8/S1EAsS+yGHf4WDS0qpGNKhEIiE8IYOQBy8LX8vann//G/LgJeEJGdLoyPr169OvXz9mzpzJiRMnyMrKAmDQoEGsXr0aKysrwsLCGD9+PG3atKFGjRpYWVkxZMgQvL29OX78uLQ77u3bt+nYsSNeXl5Mnz6diIgImjRpUqo9PXv25OLFizRo0IBOnTqxZMmSdxYUFRUVmTp1KlevXiUjIwNvb28aNmxIREQEQ4YMQVlZmXbt2rF//35BrKxgIiIiaNmypazNEBB4byQSCVvmTuEv/5006epCn9kr6ODuiYKSMkl3b0nHZb5IwXfCIPTNGtNrygJ0Tcz4ff1CboSHVJhtZVkzJ/Ml28f253bEn9h/PorOI78m7u9Ifv/3OVAITpEdQmu3SoZDHTVupebI1HP8LogADUUxHesIYdCfMnmV+CTepIsL6tr/T4fKSH1ObOQZuo2bSfbLdLJf/r8AvlnbLoRsXUFq0mM09Qyk2/MkEuSqnOtA4FPhyZMnTJ8+nZ9++okOHTpw8OBBLC0tZWZPkbOtKnZAFj24RvKtKxW6jp6eHu7u7ri7u5Ofn09UVJS0M/ioUaOkKZgbNmygV69e2Nvbl3tDo4qiVq1ajBw5kpEjR5KSksKRI0cICAjAy8uLGTNmYG1tjaurK66urlhYWODt7Y2KigoTJkyQtekAXHiSVW4domWNpKCAnSfO88WAvjg4OODi4oKzszMNGjSQtWmlcjYxkzOP3xxtKCuK7GqnXxhZvWXLFmnEr4KCArdv38bIyKjYPllZWVy9elWaGn7hwgUOHz4sbbqjqalJWloaGhoaLFiwgMGDB7+143bdunU5ceIECxcuxMvLi9DQUPz8/N6ppEIRysrKzJgxgxkzZpCRkcG6devYuXMn586d4+zZsygoKNC6dWumTp1Knz59hDTwciQzM5PLly/j4eEha1MEBN6bfAlcO/MHLfsNw3nqq8EdE4uNe5GcwMCFm7BxKawvadd3KN7O1kT99jPm7bpViG1lWfOvgF08e3AP9zW7sOrUE4BWrsPZ8HkXQAhOkSXC1aaSoSAW4VKFok+KUrsVxIJ48ylTmR3t2nWNi71+Gn8XiUTCH5uXs7irRbF/IVtXAP9v8FNEfiU+PoFPF4lEgp+fH5aWlhw8eBAfHx9Onz4tU3GyCIc6amhUoVTvImdb7tVzqKh8vGZvcnJytG7dmvnz53P+/HmSkpJo0aIFtWvXZufOnXTq1ImaNWvSv39/fHx8iI+P/2i2fShaWloMGzaMAwcOkJyczP79+2nUqBHLly/H0tISc3NzNm7cyODBg9HQ0JC1uUgkEi49rVqi+psQy8nRbfh4vFeuRCQSMWPGDBo2bIilpSUzZszg9OnT5OZWjm7fUUmVV5ws4szjDKKSM2nSpIlUnGzZsiU5OTklxEkoFABtbW0ZOXIkGzZsICwsjNTUVMLDw2nRogWpqakYGhqioqKCl5cXZmZmaGpq0r59eyZMmMD27duJjo6WRmgWIS8vz8KFC/njjz/4+++/ad68OSdOnPigY1NVVWX27NncuHGDFy9esGDBAoyNjQkLC6N///6oqKjQqVMnDh069EHrCBRy8eJF8vLyhAhKgSpNnkSCcg1N4q/E8CI54bXjFFXVsHYeKH0tr6CIYWMbnj2MqzDbyrLmzbMn0dAzwPKV3gMKSsq07O8OQH4lDr6p7ggCZSWknroC3QyrRkRiN0M16gmp3Z88ZXWsi15To7TgHRTAd51DQUm52GvJv2pqB/fxjNziX+q/mvWKdzmWE86UApWM27dv4+joyBdffIGjoyPXr19n1KhRlSbKpao627Iy0lFWVn7r+IqiVq1aJCQkMGLECB4/fkxUVBTffPMNSUlJjB07FiMjI5o0acL06dM5ceIE2dnZMrP1XVBXV2fgwIHs3buXpKQkDh48iLy8PPn5+WzduhUzMzNmzpxJRESEzNKqnmXnk51fVb6xZSMXMe4e4zl27BhPnjwhMDCQdu3asXv3bjp37oyuri6DBw/Gz8+PJ0+elOvamzdvZufOnW8dF5+eS8jDl+W6dkXxR3wa6QqFNQN3795NRETEO+3v7+/PZ599RkJCAkePHiUuLo5Hjx6RmJjI8ePH8fLywsjIiJMnTzJmzBjs7OxQV1enadOmuLu7s2bNGk6ePMnTp0/p2rUrly5domnTpjg6OjJv3rxitWzfF3V1debNm8etW7dIS0tj/vz5GBoaEhoaSp8+fVBWVqZLly4EBwd/8FqfKhERESgpKdG0aVNZmyIg8N4UFEDPyfNIvHOd5T2bs8m9OyFbvXn24F6xcZp6dUo8u6loaJL5IrXCbCvLmimP46lpaFJiXM169QEhglKWCCnelRQ7XRWy8yWV2qPcwUAVO92PF2kiUHmRL2NzJJUaWjx7eK/E9pTH/4kKesN8ZZ7jNegYFkZUysnL07B12erzlfX4BAQqmpycHFatWsWiRYvQ19cnODgYJyent+8oA4qcbUU15SozRc62zMzMjxpB+V8eP35MQkICtra2iMVibG1tpc10nj9/TkhICMHBwezZs4fVq1ejpqZGly5d6NmzJ05OTtSvX19mtpcVFRUV2rRpw71795g9ezYdO3YkICCAH3/8EW9vb+rVq0f//v1xdXXF3t4eOTm5j2JXQsaHizuVkYSMPHSU5ahRowb9+vWjX79+FBQUEBMTQ1BQEEeOHOGLL75AJBLRtm1bnJ2dcXFxoWnTpq91CJaFzZs3U6tWLb788svXjsktkHBe0yoqAAAgAElEQVQkLq3KpNUXFBQweMkW5nVtjKpS2TukP3/+nAkTJrBnzx4GDhzIli1bqFmzpvR9PT09HB0di3X+zsjI4PLly8U6iAcGBkqb7tSrVw9ra2vatGmDnp4eixcv5vTp0/zyyy/UrVu3XI5XXV2d7777ju+++44XL16wYsUK9uzZw6lTpzh16hTKysq0b9+eb7755p27ln/KREZGYm1tjaJi2b9DAgKVDbEYmnXvi4l1G66eOsrt86f5c9cmQn/awLBVvtJUavFrruEV6YwsjzWF5FDZUTlCLQRKxb62Ch0MPqyTaEXR0UAV+9qCOClQiJwI5MtwNtExNCH53m3Sn/8/UuPxzSvEXSoehaCoXPjdykwr6V0r6xyvQ11HF1O7dvwVuKvUlIRX54XC4xIuUgKVgXPnzmFra8u8efOYOHEiV65cqbTiZBF2upX3OlbEq862zMxMmUZQRkdHA4WdgP+LtrY2AwcO5Mcff+Thw4dcvHiRuXPnkpqayqRJkzA1NcXCwoIpU6Zw7NixEqmhlYk1a9YgFouZNm0aTk5O+Pj48PjxY06ePEnv3r3Zv38/HTt2xNDQkHHjxhESElIu0WFvIiEjr9rdFItFkJBZ8u8mFouxs7Nj/vz5REZG8ujRI7Zv307t2rVZtmwZzZs3x9jYmHHjxhEUFERmZsV0BA999LLK1FwHkJOTR9ugHueSc8q8T0hICE2bNiUoKIjdu3ezb9++YuLk61BVVaV169aMGTOGLVu2cO7cOV68eMG1a9f45ZdfGDJkCNnZ2Wzbto09e/YgkUgICwvDxMSEvn37snPnTi5evEhOTtltfRMaGhosWbKEu3fv8vTpU2bNmkXt2rUJCQmhe/fuqKqq0qNHD06ePFku61VnhAY5AtWBouANDV192rp9hfuaXXxzJApVTW1O7fhexta9HS2Dejx9cK+EaPk0vrChn5wQnCIzqtu9WLVCJBLRTl9Vmu4t659J0frdDNWw11f9IM+6QPVCJBKhr/L2gGy7PkPIz8vFd7wb5/bt4I8tK/jR043aphbFxikoq6Bnas7lP37j3P4fuXTsAAm3r73THG+i96wVIJGwbpADv29YRESgHye3r2bnpM/ZMXZAsbH6KvLCd11ApqSmpuLp6Um7du1QUVEhKioKb29v1NSqRimQquRsy8rKkmkEZXR0NDVr1iy1pt2riEQimjdvzqxZswgNDeXJkycEBATQsWNH/P39cXJyQkdHB2dnZzZs2MDt27c/0hG8nSdPnrBx40YmTJhAeno6np6emJubU6NGDQYMGEBiYiJhYWGEh4czZMgQgoODcXR0REFBAWdnZ/r27Yuuri5qamr069dP2hG5CBMTE1xcXAgLC6NVq1YoKytjamrKrl27StgSGxvLwIED0dHRoZeZHhu/cOL6mePFxkQf+oXZNro8f3S/+L5R4cy20SU2Kly6bdvoPqwd2IHE2Bv4ePRlnr0Ry3o0JXTnhhJr52ZnEbLVm1V9W+PVxpCl3Ruze9qX0ocjKIzYC/t5K98PaI9XG0OWdLPiwOJpZL5IKTbXCmcbdk4aQmxUOBuHdsOrbT3WunXkdmQ4j17mEhgYSNOmTaV1ES9cuFBsfwMDA+zt7RGLxSgoKKCgoEB2djYHDhzAxcUFHR0dXFxcGD58OCKRiPDwcKZOnfraz8HExISrV68SGhqKSCRCJBLRqVOnYmvGp+cSVcUaaUFhpGdkchbx6W+u35mRkcGkSZNwdHTEwsKCy5cvM3To0A+6n5CTk8PCwoLBgwezfPlyfv/9dxITE3n06BFHjx5lzpw56OrqcvDgQUaMGIG1tTXq6upYW1szYsQI1q1bR2hoKCkpKW9f7A3o6OiwbNky7t27R3JyMtOnT6dWrVocP36crl27oqamRq9evfjzzz8/aJ3qyPPnz7l16xatWrWStSkCAh9GQT65L18U26Suo4uGrj555eQYqUgate3Mi6THXAv9XbotNzuLyEA/QAhOkSWCQFkFsNNVYaiZpkwbDhQ1EBhqpimkdQuUioGq/FtPKHqmjRi4cBNZ6WkErZnHtT9/Z+CiTdSxLFmHp7/X92joGhC02ou9sz24EnL4ned4HbVNzZmw+w/M23cj5vBeDi2fyV/+PyESienqMU06TgzUURNqrArIBolEgr+/P5aWlvj5+bF27VrOnTtHixYtZG3aO1GVnG2yTvGOjo7G1tb2nUUMTU1N+vfvz7Zt27h//z5Xrlxh4cKFZGVlMW3aNMzMzGjYsCETJ07k6NGj0jRRWbB27VoApk2bRmRkJGfPnmXw4MGsX7+esWPHcuLECbp06UKLFi1YvXo1d+/eZf78+QCcOHGCgwcPkp6ejrGxMYcOHWLcuHEl1rh9+zYDBgzA0dGR1atXo62tzZdffsnVq1elYxITE7G3t+fYsWOMGzeOHuPnkJeTxa4p7lw9GfTex5f5IgXfCYPQN2tMrykL0DUx4/f1C7kRHiIdU5Cfz0+Th3Ji20rqWjan15QF2H/uQVb6CxLvXJeO+23JNILXLcC4eStcpi/BtvdgLgb78+N4N/L/0+Dm2YO77J0zBouOPegx4VsyX6Tw09dDOeq/lylTpjBs2DAWLFjAnTt3cHNzo+CV7nZXr16lTZs2XLt2jVmzZvH9999jYWFBUlIS69evZ9GiRbx8+RI/v8IHt27duhEYGIi7uztjxozh8OHDxTqxr127FkNDQywsLPDz88PPz49vv/32/8cvkRD0b2p3VUQEBMWlUfCadMHIyEhsbGzw8fFh/fr1HD9+nHr16lWYPQYGBvTs2ZPFixfz4MEDVq5ciZycHE2aNGHevHm0bNmSK1euMHPmTDp16oS2tjampqb079+fhQsXcujQIeLj498r5bJWrVqsXLmS+/fvk5iYyJQpU9DW1iY4OBgHBwfU1dX57LPPOHfuXAUcedUjKioKQIigFKjypKens6RHM36dP4Gw3VuJCPRjz8xRPLh6geZO/WVt3ltp5foF2nWM2DtnDL9vWET4L9vYNroP8kpKAJWmpvuniFCDsopQT12BUZbahD56SVRy1ker11O0jp2uMh3rqAndugVei76qPK+2qTG1a8eymOQS46x7DcC6V/EoxUZtO5cYZ9y8JRN+DimxvaxzaNcxKnX9InQMTXBbuOm17wMUAMtnT2e3fDYODg44ODhgYmLyxn0EBMqD+/fvM378eI4cOUKfPn3YsGFDhT7gfgzsdFWorSLPkbg0maV1FjnbXIxrlNrgTdYp3jExMbi7u3/QHCKRiMaNG9O4cWOmT59Oeno6J0+eJDg4mMOHD7Nx40aUlJRwcHCQ1q40Nzf/KJHiz58/Z/369Xh6elKrVi2cnZ0ZMKD4ufyzzz6jbdu2BAQE4O7ujkgkkp53O3TowJo1awgMDCQgIICCggICAgLo27cvgwcPxtnZGYAbN27w559/0qFDBwDc3NyoV68evr6+rFq1CoDly5eTmJjImTNnaGPfjlWXnmLbbxjrBnUiaM08LDv1fK8HlBfJCQxcuAkbFzcA7PoOxdvZmqjffpbW5Io5so87EX/iPHUR7YeNle7bacRkqUh078J5Ig/sZtCSrbTo6SodY2rXHt8Jg7gccqjY9uR7txnrexTj5oXCh56pOb7j3fBfNJUb165R36Sw/rK2tjZjxozhzz//lEY1Tp48GSMjIyIjI1H69+HM09OT9u3bs2HDBm7evMn06dPZvHkz48ePR0tLi7S0NL7//ntq1qyJmZkZ/v7+xMXFYWxsTN++fZk7dy61atVi2LBhJf5Gd17kkJJT9uZ4lQ0JkJJTQOyLXBpq/r+OYG5uLkuWLGHx4sXY2Nhw4cIFLCzKnt1RHojFYqZPn0779u0ZPHgwa9aswdfXl23btpGXl8eNGze4ePEiFy5c4OLFi6xbt45nz54BhZGRLVq0kP6ztrbG3NwcBYWyOWr19PRYs2YNa9asISEhgaVLl+Lv78+RI0c4cuQI6urqdO3aldmzZ9O6deuK/DNUWiIjI9HU1MTMzEzWpggIfBCqqqr0+WIUZ06GcPVkEJKCAmrWq0+f2d60GThC1ua9FSVVdUb9EMihFbM5+4sPiipq2Li4YdK8JX7TR8j0XvBTRxAoqxAKYhHdDNUx11IiKC6NlJyCChMqi+bVVBTj/JoHOQGBV9FXrZ6nkybG+pw4FIivry8AxsbGUrGyU6dO1K9fX0gBFyg38vPz2bBhA3PnzkVTU5PAwED69esna7PKjcrubMvKykJVVTbp6ImJiTx8+BBbW9tynVddXZ3evXvTu3dvJBIJN27c4Pfffyc4OJhZs2YxZcoUTExMcHJyomfPnnTp0gV1dfVytaGIdevWkZeXx7RphZHqr0ar5ubm8uLFCxo2bIiWllapYq2HhwdNmzaladOmzJ8/n02bNjFhwgRu3brF559/jpKSEmKxmDp16tCkSRPpfrq6upibmxMbGyvddvToUVq1akX79u3Jyi8Uy5RU1WnV351jGxaTFHsD/YaW73yMiqpqWDsPlL6WV1DEsLENzx7GSbddOXEENa2atB08qsT+RdeTyyGHUFbXoGEbB14+fyp9v65lcxRV1YiNCismUOqZmkvFSQCjJoXfI1O79tR5xblRJAzFxsbSqVMnnj17xsmTJ1m4cCFpaWmkpaVJx/bo0YP58+fz8OFD6tatK/1trF+/nv79+xMREcGRI0f4+eefKSgowNTUlA4dOuDi4vLGDvPRH/G3X1GIgOjkTKlAef36ddzd3blw4QJeXl7MmTOnzMJeRdCmTRsuXLjAV199Rd++fZk8eTLe3t5S58XQoUOBwkj9opq2RaLlb7/9xpo1awBQUlKiSZMmUsGyRYsWNGvWjBo1arxxfX19fdavX8/69et58OABy5YtIzAwkIMHD3Lw4EFq1KiBo6Mj3377bak1d6srERER2NnZCdFZAlUeRUVF5i1ZzuG49NeO8fA5WOr2gQs2FntdWlBJt7Hf0G3sN8W2zQyKKfa6tGCYsq4JoFPXmC/X7ym2LeznrQAYGhqWOo9AxVM9FYVqTj11BTystIl9kUt0ciZ303LL7UavaB6TGgrY6qpgqqGAWBBfBMqAjpIcSnIisvOr8iNHcZTkRKxeOA/Rovk8e/aMM2fOcPr0aUJDQ/Hz80MikWBoaFhMsGzYsKEgWAq8FxcuXGD06NHExMTg6enJkiVL0NTUlLVZ5U5ldrZlZmaio6NTAZa8naIGOeUtUL6KSCTCwsICCwsLvv76azIyMjh9+jTBwcEEBwezdetWFBQU6NChgzS6snHjxuVyTktNTWXt2rWMHTuW2rVrA4V/72XLluHr68vDhw+LpZimppZskvbf2pyNGzcGCjtGm5iYEBgYyOzZs3n06BF6enp06dIFV1dX+vbti7a2Ns+fP5fuGxcXJxXrXsl2Rq9+IwBSHse/l0CpqVenxN9LRUOThFv/SF8/e3CPWiYNkJN//W34k/uxZKW/YEnX0m1If1a8oZuWfvHOzco1NKTb8wuAf5uaFp1Tiv4Wt2/fRiKR4OXlhZeXV6lrJSUlFesMbWRkhJycHG3btqVt27Y4OjrSuXNnJk+ezM2bN/Hy8iIrK4sHDx4wefJknJ2dcXBwQElJiefZ+dxLe3P9xqqABLiblsvTzFx2b9vMrFmzMDEx4fz589jZ2cnaPKAwWjYwMJCNGzcyffp0wsPD2bt3Lw0aNJCOEYlEGBoaYmhoiIuLi3R7amoqly5dknYQj4mJYdeuXeT+W1qgYcOGxUTLFi1aYGBgUOq5wtDQkE2bNrFp0ybu37/P0qVLOXDgAIGBgQQGBqKhoUH37t3x8vKiWbNmFf+HkSERERFv7GwvIFCVqOrBKblZmSgov+Iozc4iImAXDRqaFbvmCXxcqva36hNGLBLRUFORhpqKPM/O5+KTLC4+zZKKQ2IRFJThae/VcUpyIlrUVKZFLWW0leQq0HqB6ohIJKJ5TWUikzKrdFREESKgRU1l6c22jo4Offr0oU+fPgCkpKRw5swZQkNDCQ0N5ZdffqGgoAADAwOpWOng4PDRUicFqi7p6enMnz+ftWvX0rhxY86ePUubNm1kbVaFUxmdbbKsQRkTE4O2tvZHLSOhqqpKr1696NWrF1AoVgUHB/P7778zb948ZsyYQb169XBycsLJyYlu3bqhoaHxXmtt2LCBrKwsZsyYId02ceJEfH19+frrr2nbti2ampqIRCIGDx5crEZiEXJypd+bSCQSjI2NmTJlCuvWrcPMzIx+/foREBDAuHHjGDduHDVq1EBXV1caDfgqbwxmes33piA/v9Tt4jfY+C5ICgpQ19Fl0JItpb6vpl28E7RIXPq6IrEYuVKOr8ieor/z9OnT6dGjR6lzNGzYsNjr130OvXv3plOnTmRkZGBpaUleXh4HDhxg/fr1qKmp0b17d3rPWIJIWbea3CdI+HarHz9M/ZpJkyaxfPlymdawLQ2RSMTEiROxt7fHzc0NGxsbtm/fzsCBA9+4n6amJh07dqRjx47SbTk5OVy7dk0qWl68eJGVK1dKm+7o6uqWEC0bNWpU7PtiZGTE1q1b2bp1K3FxcSxevJiDBw/i7++Pv78/WlpaODk58e233xaLgq4OPHz4kMePHwsNcgSqDVU9OGX39C/R0jfEwLwJWekvuHjUn+R7t/h+925Zm/ZJIwiU1QBtJTk611WjUx1VnmcXkJCRR0JmHo9e5pKQmUdeKWV+5MWF3YnrqCmgryKPvqo82kpiQUgR+CCsaykTkZQpazPKBQnQotbr649oaWnx2Wef8dlnnwGF0Qbh4eFSwfLXX38lPz+f2rVr07FjR6lgaWVlJfzOBKQcPXoUT09PEhMTWbp0KVOnTpVpWuDHprI522TZxTs6OhobGxuZnh+KGulMnDiRzMxMzpw5I42u9PHxQV5eHnt7e3r27EnPnj1p1qxZmexNS0tjzZo1eHh4YGBgIN3u7+/P8OHDWb16tXRbVlbWB3cZVlJSwtPTE09PT5KTkzl48CDffPMNd+7cwdDQkDZt2qChocHff/8NgPwrx5B87xYAWgaFadEqGloAZKalov3KGimP49/bPh1DEx5ciSE/Nxe51/zeaxqacCfiT4ybtyoW4fE+yL/hMzI1NQVAQUGBbt26fdA6RaiqqqKhoUHNmjU5deoUly9fJigoiCNBQTwUqVNdXOASRBjYdeL4H3/g2K0bIpGI+fPn891338natBLY2toSExODh4cHbm5ujBs3jjVr1rxTnTVFRUWaN29O8+bNGT58OFAodMfFxRUTLffu3Yu3tzdQWMahWbNmxWpbNm3aFDU1NYyNjfHx8cHHx4c7d+6wePFiDh8+zN69e9m7dy/a2tr07NmTuXPnYmn57tHMlY2IiAhAaJAjUH2o6sEpZm07E/Xbz1wM9qegoIDa9RvhtXmntASGgGwQBMpqhEgkQkdZDh1lOawoLHIukUgokECeREJ+AciJC29UxSIEkUSg3NFWksOkhgJxablV8kJVhIjCyKt3ETc0NTWLRSKlpaVx9uxZqWA5efJk8vLyqFWrljQl3MHBgSZNmgi1iD5BEhISmDx5Mvv378fR0ZETJ04US7v7FKkMzjZZNsmJjo7m888/l8napaGiokL37t3p3r0733//PXfv3pXWrly8eDGzZ8/GwMBAGl3p6OiItrZ2qXNt2rSJly9f8s03xetJycnJlYgs3LBhA/mviU58H3R1dRk1ahS7d+8mLy+PMWPGEBAQQGRkJMnJyZibm/PFF1+g2MuDzMwMIgL90K5jhJ6pOVAoFALcjTlHHfOmQGH0ZESg33vb1KSrCzfC/uDcvh3FmuRA4X2bSCSiafc+nP/Vl5M+q+kxcW6xMfl5eeRkvkSlxttLQIhFhf9eh56eHp06deKHH35g4sSJxQRkgOTkZHR1dct+cP+ipqZGSkoKIpGIZs2a0axZMzymzMDn2oeJz5UNJXUNbFuWbPRXGdHU1GTv3r107dqVSZMmcfbsWfbt24e5ufl7z1nUxMrExIS+fftKtz979kyaIn7hwgXOnj3L9u3byc/PRywW06hRoxINeYpqfd+4cYOlS5dy5MgR9uzZw549e9DR0cHFxYW5c+dW2QYzkZGR1KlTR0gdFahWVOXglPZDx9J+aPFr8Bir0u9jBD4egkBZzRGJRMiJQA4R1cZlLVCpsdVVrvL1pSSAre6HRazUqFGDHj16SFPmXr58yblz5wgNDeX06dNMmzaN3NxcdHR06Nixo1SwbNas2WvT5wSqPgUFBWzfvp1vvvkGRUVFdu/ezZAhQwSH0SvI0tkmqwjK5ORk4uPjK7T+5IdSv359abp0dnY2YWFhUsHS19cXsVhM27Ztpc12rK2tEYvFpKens2rVKkaOHFmi6LyLiwt+fn5oampiZWXFuXPnCAkJoWbNmq+x4sOQl5fH3d0dd3d3YmNjsbGx4e7duyxYsAC7K/e4d+E8zx/GMXSlr9RxVLuBBfWa2nFswxIyU1NQ0dTi72O/UZCf99522LgM4kLQfoLWeBF/NQYT6zbkZmZw+69Q2rh9hVWnnpjatqOV63BO+67j0c0rmLXphJy8Ak/ux3Il5BAuM5bQtFvvt66lKv92wX7Tpk20b9+epk2bMnr0aExNTUlMTOTcuXM8ePCAS5cuvfMx2trasmXLFhYvXkzDhg3R09Ojdgv7d56nKpCQkYeOctW4botEIjw8PGjTpg1ubm7Y2tqydevWUrutfwg6Ojp07tyZzp3/L95mZWXxzz//SJvxXLx4kaCgIGljJgMDA6lg6ezszNy5c8nJyWHp0qUEBweza9cudu3aRc2aNenduzdeXl7Ur1+/XO2uSCIiIoToSYFqx6ccnCJQMQgCpYCAQLnSQEMRLUUxqTkFVfJCJaKwoYapRvmm2aqpqdGtWzdpCl1mZibnz5+XNt2ZNWsW2dnZaGlp0aFDB6lg2aJFC+Tf0EhBoOrwzz//4OHhQXh4OF999RXe3t4VJsRUNz6Ws01WNShjYgo7U1aVbrZKSkp07dqVrl27snLlSuLj46Vipbe3N15eXujp6dGjRw/y8vJITU1l1qxZJeZZt24dcnJy/Pzzz2RlZdGuXTtCQkJeWwuxPDE1NSUmJoaZM2cSEhJCVKAftc2s+GLtbiw6dP8fe2ceHtP5/uF7Jvu+EGLfSzaJSEQiEmtR1BJF7WlrqbVa2tqKttZQa2nUV+xFpa1SSoVEEUsisYXadyGyyTKTzHJ+f6SZX4cg22QSzn1dc13MnHnf55zMnDnn836e59Hatv+c1fw6ZxJR65djamWNV4+BNPD2538f9ynW3FIDA4Yt/4nD/1tC/J+/cDFiD+a2dtTx8NFqzNNr2iJqOLlzKnwDB76fi9TAALtqtfF45z3quBeujp2R8Goh1dnZmZiYGGbPns369etJTk6mSpUqNGvWjK+++qpY+/jVV19x+/ZtFi5cSEZGBoGBgczYvAcpUIAZusIilUCiTKlZTKkoNG3alJiYGEaPHs3gwYM5fPiwplaorjA1NcXT01PrPKdWq7l586aWaLlx40bmzZsH5F07ubu78/777+Pg4MDx48c5efIkYWFhhIWF4eDgQI8ePZg+fTp16tTRWewlRa1WExMT85yLXETkdUA0p4iUJhKhqFW7RURERF7B3UwFW64+34G1ojCokQ01X9Htt7SRy+WcOnVKI1geP34cuVyOtbU1/v7+msY7np6eomBZwZDL5cyZM4cFCxZQr149QkNDadOmjb7DEikAS0tLvvnmGyZOnFim886dO5eFCxeSmppa4d20CoWC48ePs2/fPvbu3cv58+cB8PHx0XQG9/LyKndO8YspcnbfztR3GKXOtqkjqaxIJzg4mN69e5dYgN+5cyfvvfcekZGRBAYGar0WGhrKqFGjOH/+PK6urly+fJnp06dz6NAhsrOzqd7QCf+PPsM5sLPmPbG//8TOWeMZuW4PFyL2EP/Hz+TKZTTybUOv6YuxtKusNcc/xw4S+b+l3L98HolUQj1PX7pMmEnVBk0AuBFzjB9H9KQgbKvV4os/8hYDpng60H7EZDqM0haMFnT1pL6XH+/NXql5TpaRzsEfFnLx0B4yU55gU7U6LXoPpvWQsUilUmpaGDLoLdvnalDevn2bBQsWEBERwZ07dzA3N6ddu3aEhISUaTOsV7FhwwZGjx5N3bp12bFjBy4uLvoOicePH2t1EY+Pj+fy5cuo1WoMDAyoW7cuCoWCR48ekZOTA+SVK+jduzfTpk17zq2tb/755x+aNGnCgQMH6Nixo77DEREpVdSCwJqE1ApvThnhbFeohooiukUsfCYiIlLq1LI0wsvBlIp2ipcA3g6mZS5OQp6zICAggK+++oqIiAhNl/DPP/8chULB7Nmz8fHxwc7Ojs6dOzN//nyio6NRKCr2iuXrzuHDh2natCkLFixgypQpnD17VhQnyzH6SvEuDw1ySgsjIyMCAwOZP38+wcHBSKVSFixYQO3atVmyZAktW7akatWqDBgwgE2bNvH48WN9hwyAo/nrufAzdnB/FAoFgwYNwtHRkZEjR3LixIkidxXPp2vXrlhaWrJjx47nXtu+fTsuLi64urpy8eJFWrZsyaVLl/jyyy9ZtGgRElMzNn86hIuH/njuvbsXTiHxykXajZhEy/eGcfnIfn6fr+26PbNnBxvGD8DY3ILO42fQ7qPPeHzjCj980I3UB3cAcKjXiL7frNJ6dP98HgaGRljaV35u3leRK8tmzUc9iN+3k2Zd+9J98lzqeLRg/4pv+WPxDCDPQVnQ8Tx9+jTHjx+nf//+LF++nFGjRhEREaHpdF5eGDp0KKdPn0YqleLt7c26deuK/fkoLapUqULHjh2ZPHkyW7Zs4eLFi2RkZHDy5ElWrVrF22+/TY0aNbQWOpKSkvjhhx+oVasWdnZ2DBo0iPv37yYO9sEAACAASURBVOtxL/6f/AY5Xl5eeo5ERKT0kUokdK1jVSHFSchzT3arYyWKk+WE1/NqTERERO8EVrfganouTyvIapoEsDaWElBdd+lNRcHExAR/f3/8/f2ZNm0aCoWCmJgYTdOdOXPmMGXKFMzNzWnVqpUmJdzb2xsTk4qVavY6kpyczKRJk1i/fj2tW7dm165dr0UX0tcZhUKBSqXSS5OcM2fOEBQUVObz6hKZTMbChQsZOnSoJq1RqVRy8uRJ9u3bx59//slPP/0E5NUrzHdX+vj46MUlbm9igImBRNNB/nXAxEDCh+/34aMB73H9+nXWr1/Phg0bWLNmDU5OTgQHBzN48GAcHR0LPaaZmRndu3dn586dLF++XCMQJSYmEhUVpXEPTpgwgdq1a3P69GlMTExQqgUy/PoR+kFX9i3/Gpd2XbXGNbex54NVP2tEerVaTfS2H5FnPMXUypqc7Ex2h0zFq+cges/4TvM+z+79+K6XL4f/t5TeM77DqlIVmnV9T/O6IAhs/GQQBsbG9Jm9osjH8OiW1aTcu8m4nw5RuXZeIzOfPkOxdnDk743f03rwaGwda6Au4GPTtWtX+vTRLgPQvXt3fH19CQ8PZ/DgwUWOR1c4Oztz8uRJJkyYwIcffsihQ4dYvXo1VlZW+g5Ng7m5OS1atKBFi/8vb6BSqbh27ZrGZRkZGUlcXBxpaWls2bKFLVu2YGxsjJOTE8OGDSMwMBBnZ+cyv046ffo0b7311gsbiYmUHwRBQPVvzWu1GqT/1rw2EBvMvpR8c0pskrxC3PflIwG89GROESkY0UEpIiKiE4ykErpVoNW0/NUzo5e1O9UjRkZG+Pr68uWXX7Jv3z5SU1M5efIks2bNwsjIiIULF9K6dWtsbW1p3749X3/9NVFRUcjlcn2H/kYhCAKbNm2iSZMm/Pbbb6xZs4bIyEhRnKwAyGR5XSjL2kGZnJzMrVu3ynWDnOKwdu1akpKSmDp1quY5Q0NDWrVqxbfffktMTAyJiYls2LCBt956i1WrVuHv74+DgwP9+vUjLCyMhw8fllm8EokE90oVz/n/IiSARyVTzQ11gwYN+Oabb7h58yYHDhzAw8ODGTNmULNmTbp3784vv/xCbm5uocbu168fjx8/JjIyUvPczp07UavV9OvXj5SUFA4dOkTfvn3JyMjgyZMnJCYlkZ2WQiPfdiTfuUH6Y+2/bYveg7Vu/us1a4lapSL14V0Arp2IQp6Rjnvn3mSlJmseUqkBtVw9uRFztMBYD/24mMt/H+C92SuoWr/o3arP/7Wbus1aYmZlqzVvwxaBqFUqbp6JBvLEjGf577lEoVCQnJxMw4YNsbW11dSdLU+Ym5vz448/smXLFnbt2oWXlxfx8fH6DuulGBgY0LhxY/r168e8efOIjo5GLpfz8OFDFi1aROPGjVGpVJw9e5aJEyfi6emJubk5rq6uDBs2jKVLlxIZGUlamm67y4sNcsongiCQLFdyMUVOxL1MNl9JY/G5ZBadTWbpuRSWX0hh6bkUFp1NZvG5ZDZfSSPiXiYXU+Qkywt2Tr/JBFa3wNpYWmF+R8ubOUUkD9FBKSIiojNqWRrRoaYFB+9l6TuUV9KhpgW1KtDqmaGhocZJMHnyZFQqlcY9EBUVxZIlS5g5cyYmJia0bNlS47D09fXVSwrrm8C1a9f4+OOPOXjwIP3792fJkiVFciaJ6Jd8Mb+svx/5QsXrJFDK5XLmz5/PwIEDadiw4Qu3q1q1KkOGDGHIkCGoVCpOnz6tabbz4YcfIggCHh4ems7gvr6+GBnp7jzdrLIppx7LdDZ+WSIAHpWfdwMbGBjQsWNHOnbsSGpqKtu3bycsLIygoCAqV67MwIEDCQ4Oxt3d/YVjd+7cGRsbG7Zv30779u2BvPRuDw8P3nrrLU6dOoUgCMyYMYMZM2YUOEZWShI2Vapp/m/jqF0z0MzaFgBZRp5w9OTODQDWjuxV4Hgmls87/f45FkHEmhDaBE/AtX33F+7Py0i+e4PEqxf5tn2TAl/PSnkCgKqAzj8ymYx58+YRFhbG/fv3tcSM9PTyW6d7wIABeHt707dvX1q2bMmSJUsYNWpUhXKPOTo68tlnn/HZZ58BcOTIEb799luOHDlCTk4OFy9e5OrVq2zZsgWlMq+RVN26dTVdxPMftWvXLvF+5+bmEh8fz4ABA0q8XyKlQ2qOirgncs4myzWu+Vc18FKq4V6WkgdZSs12JgZ5C1vNKpuK3Z/5f3NKRelDUN7NKW8qokApIiKiU7wczMhRCfz9sPzUW3qW1tXM8argndsMDAxo3rw5zZs357PPPkOlUnH+/HmNYLly5Uq+/vprjI2NadGihabpjq+vr067dr4JKBQKFi1axNdff42joyN79+6lS5cu+g5LpIjkOyjLOsU7NjYWKyurlwp5FY2wsDASExO13JOvwsDAgJYtW9KyZUtmzZrFkydPOHDgAPv27eN///sf8+fPx9ramg4dOmjSwUu7EYadiQF1rYy4naGoMO7/gpAAda2MXnnDbGdnx6hRoxg1ahQXL14kLCyMTZs2sWzZMpo1a0ZwcDADBgygUqVKQF7adXp6OikpKfj7+7Njxw7atm3L7du3OXbsGK1bt2bEiBFcvXoVyKsjKJFIyMzMJFelZsiSTZq5K9WqrxWL9EVNk/79QwhCniTQ95tVWFWu8txmUgPtW5qU+7fZPv1jGvoE0nFM4T+Hglr1zP/VNGzZhsChYwvcPj/t26CAnLRx48YRFhbGJ598gq+vLzY2NkgkEvr3749aXb57mTdq1Ijo6GgmT57M6NGjOXToEGvXrsXGxkbfoRWLgIAADhw4AEBERAQLFy7k77//1riGK1WqRJUqVUhLS2PFihUkJycDed+R/wqWzZo1o0mTJkVaKDl//jw5OTmig1LPqAWB609ziU2ScytDgQS0zvOF/Ub+d7sclcDpxzJOPZZR18qI5g6mNLA2fqNrGYrmFJGSIgqUIiIiOsevap74Vx5FyoBq5vhWrdjiZEEYGBhoLqg/+eQT1Go1Fy5c0NSwDA0NZc6cORgaGuLt7a0RLFu1aoWlpaW+w68wREdHM2LECC5dusSnn37KzJkzRcG3gqJPB2WzZs2QSl+Pqju5ubnMmzeP/v3707hx0VNq86lcuTIDBgxgwIABqNVqzpw5o3FXjhw5ErVajaurq8Zd6e/vj7GxcYnjb+5gyq2Mit18TACav2DRTa1W8/TpU1JSUkhNTdV6ODg4MGTIEM6fP8/58+eZMGECEyZMwNzcHIDs7OznUhoHDBiARCJBEARu3bpFdna25hxYvXp1unTpgp2dHbb2lUj2DHwunsJSqWZdACzsK9PQ5+XjKOQyNk8ahpmVDe/PW1Pgd8vM2hZZhrbLR6nIJePJI63n7GvWJTc765VzGhYgSOzcuZOhQ4eyePFizXNyuVzn6cSlhampKStWrKBNmzZ8+OGHNGvWjO3bt1d4oa19+/Ya5+/+/fsJCQnh2LFjmkY2devWZeDAgbRq1YorV64QHx/P77//zpIlSwAwNjbG1dVVS7Rs2rQp1tbWBc53+vRpDA0N8fDwKJsdFHmOu5kK/ridQVquWpN+XFqLUPnj3M5QcCtDga2xlK51rN5o4Us0p4iUBFGgFBER0TkSiYRWjuaYGEg4eC/ruVXLMkdQg0RKh5oWb8yPk1QqpWnTpjRt2pRx48YhCAIJCQkawXLdunXMnz9f48Rs06YNgYGB+Pv7v/Ci+00mPT2dKVOm8MMPP9C8eXNiYmLEm48Kjr5qUMbGxtKjR48ynVOXbNiwgXv37jFt2rRSG1MqleLl5YWXlxfTp08nJSWFgwcPsm/fPjZv3syiRYuwsLCgffv2dOnShS5dulCnTp1izdXA2hhbYynpFaTB23Oo1aiynxLyxXRSCxAh09LSCqybJpFIsLW1xc7ODjs7O5ydnfHy8uLx48dcv36dpKQkbGxsaNOmDT179sTJyYnOnTvTtWtXrl+/jlqt5uTJk5rx2rZty7lz5xg3bhzVqlVDEAQWn0tGqYbM1CdY2hWto3Yj33aYWFoRuW4pDbz8MXjGwfbfMX+dO4knt2/w8fq9mlTxZ7GvWZdbcdFaz50K34hape2gdOvYg4jQhVw5foi3/NppvSbLSMfYzAITY0MKyhA0MDB47livWLEC1TNzlHeCgoLw9PSkX79+tGrVioULFzJhwoQKlfL9Ijp16kSnTp0A2LNnD9999x3Hjx9n+fLlLF++nPr16zN48GDWr1+PSqXi3LlzmoY8cXFxbN68WePCbNCggUawzBcvq1evzqlTp3BzcxPL6+gBhVog6kEWMUnyUhcmnyV/3PRcNVuupuPlYEpgdYs3Nn1YNKeIFBdRoBQRESkzvBzMqGpmyJ7bGXrr7q1WqzDIlTHArcYbvbopkUhwcXHBxcWF0aNHIwgC//zzD1FRUURGRrJp0yYWLlyIVCrF09NTU8MyvxHPm4ogCPzyyy+MGzeOjIwMli5dypgxYzSdbEUqLvpI8U5NTeXGjRuvTf1JhULB3Llzee+993B2dtbZPPb29vTt25e+ffsiCAJnz57VdAYfO3YsKpWKJk2aaFLBAwICCv13lUokdK1ANbSeRZDAnrmTyH18VyM21qtXD3t7e83/n33Y29tjbW39QhevIAicOXOGsLAwtm7dyq5du/D19cXV1ZVdu3aRlZXFokWLtN7z/fff4+/vj5ubG8OHD6d+/fqcuHibC7EnSX/0kAnbI4u0X6aWVvScEsKOGaNZMbA97m/3xMKuMmmJ97h89C/quLegx5cLuPz3AeL27MC1fTcSryaQeDVBM4axuQUubd8BwLvnIH6bO4nNk4bRqGUbHl65yJXow1jYVtKaN2DIGC5F/cmGTwbSvHt/aji5kyvLJvFaAhcO7ubzPWeoU7NqgWJdt27d2LRpEzY2Njg7OxMdHc3Bgwc1KfMViXr16nH06FGmTJnCxIkTOXz4MGFhYdjb2+s7tFKjW7dudOvWDYBdu3bx3XffceLECWbPns3XX39Nw4YNGTJkCJ9++qnGVZybm8vly5e1RMtFixZpXLKVK1dGJpPRsGFDtm7dqqnTamgo3oLrmruZCs39BpSdMSJ/ntgkOVfTc+n2hropy5s5JX/+N8mcUlGRCGL7KRERkTLm2RXNsjgJ5c9zfGsonRpUZsyokWUwa8VFEASuXbumESyjoqK4d+8eEokEDw8PjWAZEBDwWt2gvIw7d+4wduxYdu/ezbvvvsvKlSupVauWvsMSKSUOHz5Mu3btuHbtGg0aNCiTOSMiIujQoQMJCQmvRaf3sLAwPvjgA86dO4ebm5teYkhPT+fgwYOadPD79+9jZmZG27ZtNe7Kwvx9D97LJDZJXqFclBLAy8GU9jV1V6ZDLpfz+++/ExYWxv79+zUOwW3btvHee+9piZxxcXFMnjyZkydPkpWVhamlNXU8fGj+bn9N05rY339i56zxjNn8FzWd/9+FfiPmGD+O6MnwNb9R36uV1vORYcu4ez4WpSIXawdH6jVriW+/j6jh7K4ZryBsq9Xiiz/ymlKp1WoOrPyWmN+2kiuXUbeZDz2+XMDaUUHU9/LjvdkrNe/Lyc4k8n9LOX/wd9IS72NqYUXlOvVxadcN//eH41PdmnY1LJBIJMycOZNZs2YBkJaWxqeffsru3buRy+W0atWKZcuW0alTJ9q0acP69etL5W9S1uzevZthw4ZhYWHBtm3b8PPz03dIOkOtVvPrr7+ydOlSTp48iUKhQCKR0KhRI4KDg/nkk0+eW/wQBIE7d+4QHx/PiRMnmD9/PpUqVdLUtTQ1NaVp06ZatS3d3NzE8jqlSEySTBTFyhH/FYv18ffI79b9porFFQ1RoBQREdEbz9aE0cXJKH/c/JowDStZsmTJEkaPHq2D2V5fBEHg5s2bGrEyKiqK27dvI5FIcHNz09SwDAgIoHLloqXulXdUKhUrVqxg+vTp2NjYsGLFCnr16vVapLeJ/D979+6la9eu3Lt3jxo1apTJnCEhIcyePZv09PQK78JVKpU0adIEd3d3wsPD9R0OkHfeunjxIvv27WPfvn0cPXoUhUJBw4YNNWJlQEAAarX6uVTolLSnJDUOQDCxQFIB6oPm34B95GRXZimF9+/fZ+PGjYSFhXH16lWqV69O8+bNMTMz4/z581y6dAnIc5H5+vriFzQYmrYtk9jKknfrWOFsb6LvMMqUu3fv8v7773PixAnmzJnD5MmTX5s6ui9CrVazc+dOli5dyunTp1EqlUgkEho3bswHH3zAuHHjnhMro6KiaNOmDefOnaNmzZqcPXuWuLg4jeMyISFBM85bb731XBdxR0dHPe1txUQQBI4/kpXLtOLW1czxq2r2xl476tOc4u1gSsAbnG5f0RAFShEREb2iFgRuPFUQmyTjZgFd9YpL/jj1rIxo7mBGfWsjpBIJJiYmokBZSty6dUsjVkZFRXHjxg0AXFxctATLqlWr6jnS4hMXF8fw4cM5c+YMo0ePZs6cORW2i6nIywkPD6dPnz4kJyeXmSu4f//+3L9/n7///rtM5tMlGzduZOjQocTFxZV5PVZBEMjKynpOZNSIjf/WYsyvp3j//n1SUlJQKpUvHdfJry2DV2xDIqkYwsvARjZl5g5JS0vj5MmTREdHEx0dzfHjx8nMzNS8Xr16dbp168aYMWNwc3NDIpGQLFfy46WK0SCmKIxwssPetGIvMBQHpVLJV199xbx58+jcuTMbN27EwcFB32GVCWq1mp9++okVK1YQGxurERmdnJwYPnw4o0ePxtjYmEWLFjFr1qwXLkLl5ORw8eJFjWCZ/8jIyADA0dHxuS7iDRs2fO3F4OJyLDG7XIqT+bSuZk4rR3N9h6FX9GFOEV2TFQtRoBQRESk3pOaoiH8iJz5ZTo4q79QklYC6EGep/25nYiDBo5IpHpVNsTPRviAUBUrdcffuXS3B8urVqwA0adJE03QnMDCQatWq6TnSV5OVlcXMmTNZsmQJLi4urFmzhpYtW+o7LBEdsmXLFgYNGkR2dnaZNTNo1KgR77zzDsuWLSuT+XSFSqXCyckJJycndu3aVawxBEEgOzv7lSLjix4KRcGdty0tLQusuWhra4tSqeT+/ftcuXKFS5cuoVQqqVmzJh07duTdd9+lQ4cOXJYZcPBeVkkOT5mgyxRCtVrNP//8oxEjo6OjSUhIQBAE7O3t8fX11TycnZ05cOAAYWFhREZGYmVlRb9+/fjggw/w8fFh2YVUze/764CJgYRP3OzfWFcU5HXCHjx4MEZGRmzdupXAwOJ3a6+IqNVqNm3axMqVK4mLi0OlUiGVSnFxccHAwABLS8siLUKp1Wpu3rypJVjGxcVx//59ACwsLLRSxJs1a4arq+sb34Qn5rGMg/ff7HN1RaGszSkiFQtRoBQRESl3CIJAao6axGwliTIlD7IUJMqUKNXPb2soBUczQ6pbGOFoZoijuSF2JtIX3iyYmJjw3XffMWbMGB3vhciDBw80YmVkZCT//PMPkCfK/FewrFmzpp4j1Wbv3r2MHj2aR48eMXPmTD777DOMjMTV19edtWvXMnz4cM3Npa5JT0/H1taWDRs2MGTIEJ3Pp0u2bt3KwIEDOXXqFC4uLsUWGfO74T6LhYVFgSLjy5q+2NnZYWtrW+jvblZWFpGRkZp08Bs3bmBsbEzr1q15++MvUNdvVpqHrFQ5vnEFNXOSCAoKIjAwsMQNOJ4+fcqpU6c0zsiTJ0+SmpqKRCLB1dVVS5B86623Xvh7e+PGDTZs2MD69eu5c+cOjRs3Zti8VUjquiFQ8W8aJUCLKma0rWGh71D0zoMHDxg0aBBRUVHMnDmTadOmVfiyFcVBrVYTFhbG6tWriY+P13Rsd3d3Z+TIkQwfPrzY38+kpCTOnj2rJVpevnwZtVqNVCqlSZMmz3URf91K7ryIu5mKCtXYrCzd7uWdsjCniFQsRIFSRESkQiAIAmoBlIKASg0GUjCUSJBKKJJzwdTUlMWLF4sCpR5ITEzkyJEjmjqWCQl53VUbNGigESsDAwOpU6eO3uKbMGECO3bsoGPHjqxevbrMmqWI6J+VK1cyadIk5HJ5mcwXGRlJ27ZtuXDhAi4uLmUyZ2GRyWSFFhlTUlKIjY1FIpEgCMILRUZzc/NCC4zPiozGxsZlfATg6tWrms7ghw8fxnfgaN4eM6XM43gVdRVPOL39R8LDw7l9+zaVKlWiR48eBAUF0b59e0xMXl4bURAErly5ouWOvHDhAoIgYGtrS8uWLfHz88PX15cWLVpgbW1d5BjVarWm6/OhEzGM//locXe33DHS2U68Gf4XlUrFt99+y+zZs2nbti2bN2+uEBkTuuLBgwfUqFGDOnXqcPfuXY2Q6O7uzqhRo/jggw9KvJggk8m4cOGClmh59uxZsrPz0pxr1KjxnGhZr1691ypFXKEWWHspVW8NWIqKPuoFVwR0aU4RqViIAqWIiMgbhShQlh+SkpK0BMvz588DULduXY1Y2aZNG+rWravTiw61Ws3atWv54osvMDIyYsmSJQwYMEC80HnDCAkJYc6cOaSllU2NvMWLFzNjxgwyMjJ04jSSy+XFcjGmpKSQk5NT4JhmZmbPiYjp6elERUXx0Ucf0bRp0xeKjK8SysozMpmMI0eOEHUzCasWnVCrVRgYlExYKAkFdYYVBIHY2FjCw8MJDw/n6tWrWFtb0717d4KCgujcuTNmZmZkZmZquSNPnDhBSkoKEokEZ2dnLXdk48aNS13IOHfuHBsTkrBv6IJUj8ewpEiAulZG9Gso1iR+lsOHDzNw4EBUKhWbN2+mY8eO+g5JL/zxxx9069aNGzduUKtWLdasWUNoaCgXLlxArVZjYGCAh4cHY8aMYejQoaX2XVOpVFy/fl1LtIyPjycxMREAKysr3N3dtURLFxeXCnuOPngvk9gkeYUQJ/ORAF4OprSvKXZufxmlZU4RqViIAqWIiMgbhShQll+ePHnC33//rUkLP3v2LIIgUKtWLS3BskGDBqV2YZKQkMCIESM4duwYH3zwAQsXLqRSpUqlMrZIxeLrr79m9erVPHz4sEzmGzBgALdu3eL48eMv3CYnJ6fYIuOLnKCmpqZFTpXOfzx7A6tWq3F3d6d69ers37+/VI9PeeVupoJfr6WSrZaAHm6Q8t033V5S+F8QBC5cuMDOnTvZtm0bV65cwdDQEAsLC54+fYogCNjY2ODj46NxR/r4+Oi0Adjt27eZM2cOYWFhNO/ci55fr9LZXGVFn/rWNLQpe3dvReDx48cMHjyYv/76i6lTpzJr1qwSuwUrGrNmzeL777/n8ePHWtcsubm5rF69mrVr13Lx4kUEQcDAwABPT0/Gjx/PgAEDdOJwTExMfK6L+JUrVxAEAUNDQ5ycnLRES3d39zJrGFdcKlpq97OIqd4iIs8jCpQiIiJvFKampixatIixY8fqOxSRV5CamqolWMbFxaFWq6levbpGrAwMDHxpDbQXIZfLmTNnDgsWLKBevXqEhobSpk0b3eyISIVg6tSpbNu2TdONvrTIzc0tUET89NNPqVu3Ln5+fi8UGWUyWYFjmpiYFFtkNDU1LbV9++WXXwgKCuLYsWP4+fmV2rjlHYVaIOpBFjFJcp11IX2W/Hm8HUwJqG5RYGpgVlYWp0+f1krXfvLkCQAODg6o1WqSk5MxNjbm7bffpk+fPrz77rvY2dnpLO47d+4wd+5c1q1bh42NDZ9//jmjPv6YLbdzSa8gKZnPIgFsjKWMcLYTGzC8BLVazcKFC5k+fTq+vr789NNP5a7mtC555513gLy61i8iNzeXlStXsnbtWi5fvqwRC728vBg/fjz9+vXTaTp2VlYW586d02rIc+7cOc0CV506dbS6iHt4eFCnTp1y4V5TCwJrElLF84iIyGuGKFCKiIi8UZiZmRESEiIKlBWQ9PR0jh49qmm6c+bMGVQqFY6Ojlo1LJ2cnF568Xz48GFGjhzJrVu3mDJlClOmTClV0UakYjJx4kT279+vqY36XxQKRZGdjPmv5dcCKwhra2uqV69eZJGxPHRrFQSBZs2aUblyZQ4ePKjvcPTC3UwFf9zOIC1XrTOhMn9cW2MpXf/jmhQEgRs3bmiJkefOnUOlUmFlZYWPjw++vr74+fnh4+OjESFv3brFL7/8Qnh4OMePH8fQ0JB27doRFBREz549qVKlSqnEfe/ePebOncvatWuxtrZm8uTJjBkzBkvLvJTGiu58GtTIhpqi86lQHDt2jP79+yOTydiwYQNdu3bVd0g6RxAEqlSpwpgxY5g1a1ah3iOXy1m+fDlhYWH8888/CIKAkZER3t7eTJw4kd69e5dJ7UilUsmVK1ee6yKev9hha2urJVg2a9YMJyenMm8meDU9h/AbGWU6py4QndgiItqIAqWIiMgbhShQvj5kZGRw7NgxTQ3LmJgYlEolDg4OWoKli4sLUqmU5ORkJk2axPr16/H39yc0NBRnZ2d974ZIGaFQKEhLS3uhwPjzzz9z//59Wrdu/dzrWVlZBY5pZGRU5KYvdnZ2XLx4kU6dOnH27FmaNm1axkeidPj999/p0aMHUVFRBAQE6DscvaEWBG48VRCbJONmhqLUhMr8cepZGdHcwQxHQwVnYmO1BMnHjx8D0LhxY63akc7OzoWqa/rgwQN+/fVXwsPDiYqKAiAgIICgoCB69epFjRo1ihz3/fv3mTdvHj/++COWlpZMmjSJsWPHYmVl9dy2Yu24N4fk5GSGDRvGnj17mDRpEnPmzNFL86uy4ubNm9SvX589e/YUS5DNzs5m2bJlhIWFce3aNQRBwNjYGB8fHyZOnEiPHj3KtNGNIAg8ePDgOdHy+vXrABgbG+Pi4qIlWjZt2lSnZSO2XUvndoaiQp0/nkWsZSsi8jyiQCmidwRBQPVvAVy1NhxVxwAAIABJREFUGqT/FsA1EAvgiugAUaB8fcnMzCQ6OlojWJ46dQqFQoG9vT316tXj8uXLSKVSQkJCGD58+GvVxfJNQalUvlRkfJmTMTMzs8AxDQ0NsbOzIycnB0EQ8Pf3L7ST0dzcvFi/U0uXLmXKlClkZGRUyLpsgiDg7e2NpaUlkZGR+g6n3JCaoyL+iZz4ZDk5qrzLa6kE1K+40hYEAYkg5F0AASZSCfWMcki/eJKYI4eIjo7m7NmzKJVKLC0tadGihZY7sjTq5iYlJbFr1y7Cw8OJiIhAoVDg6+tLUFAQQUFB1K1b96Xvf/DgAfPnz2fNmjWYm5szadIkxo0bV6AwmY/YfffNQhAEli5dyhdffIGnpyfbtm175eeqorJ9+3b69+/Po0ePSuxKzszM5LvvvmPTpk1cu3YNyBMEfX19mTRpEt26dSuNkIvF06dPNSni+bUtL1y4QG5uLgD169fXEi09PDyoUaNGie/vUnNUhCaklsYulAtGOtthZ1L6zfJERCoiokApUqYIgkBKjorEbCWJ2UoeZitJlClRqp/f1lAKjmaGVDM3xPHfh72JgShaipQIMzMzFi5cyLhx4/QdioiOyc7OJjw8nJkzZ3Lz5k2kUilqtRo7Oztat26tqWPp7u6uky7KIgWjUqmKLTJmZBSczmVgYFCseox2dnZYWFggkUjo168fycnJZZKuPHjwYK5evcqJEyd0Ppcu2Lt3L127diUiIoJ27drpO5xyhyAIpOao8651ZEoeZCleeK0jKBUkXb/E5ZN/8+DyOZ7eu8HjW9fI+ldQb9SokZY70tXVVefnq7S0NHbv3k14eDh//vknOTk5eHp6asTKxo0ba7Z9+PAhCxYsIDQ0FFNTUz777DPGjx+PtbV1oeaqaKneYlOLknPq1Cn69etHWloa69ato1evXvoOqdSZNGkS4eHh3Lx5s1THffr0qUaszK+XbGJiQqtWrZg0aRJdunQp1fmKg0Kh4PLly1qiZXx8PKmpeYJipUqVtARLDw8PGjduXKTFukP3szj9WFYhFjZehQRoUcWMtjUs9B2KiEi5QBQoRcqE1BwVcU/knP2vqwAo4Fr9Of67nYmBBPdKpjSrbCquNIkUC3NzcxYsWCAKlK85CoWCRYsW8fXXX1O1alVWr15NmzZtOHnypKbpTnR0NHK5HBsbG/z9/TWCZbNmzSqkq60sUalUpKenF7keY2pqKk+fPi1wTAMDA2xtbYuUKp3/sLS0LPHiVY8ePVCr1ezevbtE4xQGZ2dn2rZty/fff6/zuUobQRDw9fXF0NCQv//+W1w0LCSCIKAWQKFWc+fefWJOneRk9HGijx0jPj4ehUKBsbExtra2PH36FLlcjq2tLZ06daJz58507twZR0fHMo87MzOTvXv3Eh4ezh9//EFWVhYuLi506tSJx48f8/PPP2Nqasqnn37KhAkTipXSGZMk4+C9gssolCc61LTAy0H/9V9fB9LS0vjwww/55ZdfGDduHCEhIZiYmOg7rFIjICAAR0dHduzYobM50tLSCAkJYevWrdy6dQvIawTZunVrJk+eTMeOHXU2d1ERBIG7d+9qCZbx8fFacbu6umqJlk2bNtXUrH12rKXnUzT3k0Ul9vef2DlrPJ/vicWueu2S7FapYWIg4RM3e/H3VEQEUaAU0SFqQeD601xik+Tc0kFdprpWRjR3MKWBtbHY/Uyk0IgC5etPdHQ0I0aM4NKlS0ycOJFZs2ZhYfH8ynROTg6nTp3SNN05fvw4MpkMKysrWrVqpekS3rx58zIv/l4WqNVqLZGxsC7GfJGxoMsHqVRabJHRyspKrxfnb7/9NjY2Nvz88886nSczMxNra2t+/PFHPvzwQ53OpQsOHDhAp06d2L9/P2+//ba+wyn3yOVyzpw5o1U78sGDBwA0aNBAyx3p5uaGoaEhKpWK06dPs2/fPvbt20dMTAyCIODh4UGXLl3o0qULLVu2LPPzkkwmY8eOHSxYsIBLly4BYG9vz+DBgxk4cCBeXl7F/g4fS8zm74cvbiilb1pXM6eVo7m+w3itEASB1atXM3HiRFxdXdm+fTsNGzbUd1glRqlUYmNjw+zZs5k0aVKZzJmSksKCBQvYtm0bd+7cAfIyhgICAvjyyy9p06ZNmcRRVFJTUzl79qyWaHnx4kWUSiUSiYRGjRo910Xc2M6BHy+lFXvO8ihQAoxwssPeVDTfiIiIAqWITtBnZ0sRkZchCpSvL+np6UydOpXVq1fTvHlzfvzxRzw8PAr9/tzcXGJiYjSC5bFjx8jKysLCwoJWrVppmu54e3uXm+L+arWap0+fFktkTE9PL1BklEgkJRIZK2ptz9atW1OvXj02btyo03mOHTuGv78/cXFxRfp8lgfya3SqVCqio6NFt0cB3Lt3j+PHj2vEyLi4OHJzczEzM8Pb21tLkCxsbbqkpCQOHDjAvn372L9/P0+ePMHGxoYOHTrQpUsXOnXqRM2aNXW6X0lJSSxcuJBVq1ZhYGDAuHHjcHd358CBA/z2228kJydTu3ZtevfuTVBQEH5+fkU6FwiCwPFHsnIpUgZUM8e3qpn4edcRcXFx9O3bl0ePHrFmzRr69++v75BKxPnz52natCmRkZEEBgaW+fxPnjxhwYIFbN++nbt37wJ5175t2rRhypQp+Pv7l3lMRSEnJ4eEhAQt0TI+Pl6TfdHz48/wGf5lscdXq1SolAoMjU3K1Xf63TpWONu/Pi5iEZHiIgqUIqWKQi0Q9SCLmCS5zoTJZ8mfx8vBlMDqFmLhcpGXYm5uzvz58xk/fry+QxEpJQRB0KSJZWRk8O233zJ27NgS12lTKBScOXNG03Tn6NGjZGRkYGZmhp+fn0aw9PHxKVFqmiAIJRIZ1erni2VIJBJsbGyKXI/Rzs4Oa2vrCisylgRvb288PT0JDQ3V6TzLly9n8uTJZGZmVjhnbkREBB06dOCPP/7gnXfe0Xc4eicnJ4e4uDgtd+S9e/cAqFu3Ln5+fhoxsmnTpqXy91ar1cTGxvLnn3+yb98+Tp48iVqtxs3Njc6dO9OlSxdatWpVaosoT548ISQkhJUrVyKVSpkwYQKffvop9vb2mm2USiVHjhwhPDycX3/9lYcPH+Lo6EivXr0ICgoiMDCwUGUzBEFg9d4jpFdzQlALSPVYGzj/2lJM6y4bMjIyGDlyJD/99BMjRoxg6dKlmJlVzOO+bt06hg8fTnp6eoEpymXJ48ePmTdvHj///DP3798HwMLCgrZt2zJ16lR8fX31Gl9hUavV3Lp1i/j4eB7b1eOpba1ClQmrKEgl4OVgRjuxDqWIiChQipQedzMV7LmdobdujPndFbuJbkqRl2BhYcG8efNEgfI14e7du4wZM4bdu3fz7rvvsnLlSmrVqqWTuZRKJXFxcZoaln///Tfp6emYmpri4+ODr68v7u7u1K1bl+zs7EIJjKmpqaSlpRUoMgLY2toW2cVoZ2eHjY3NGykylgRXV1fat2/PsmXLdDrP0KFDSUhI4PTp0zqdRxcEBgaSlZXF6dOny5XzpKx48OAB0dHRGofkmTNnyMnJwdTUFC8vLy13ZFnVi0xJSeGvv/5i3759/Pnnnzx69AhLS0vat29Ply5d6Ny5M3Xq1CnyuMnJySxatIgVK1YAMH78eD777LNXdgxXq9VER0cTHh5OeHg4d+7coVKlSvTo0YOgoCA6dOhQoHialJTEqFGj+OWXXxj55UzcBowlU1k2C93PIl5P6gdBEFi3bh1jx46lUaNGbN++HScnJ32HVWRGjRrF0aNHuXDhgr5D0SIxMZG5c+eyc+dOHj58CIClpSUdOnRg6tSpeHt76znCwrH5Shr3spTFfv+zKd4LunpStUET2gSP54/vviLxagJWDo50GDkZz279tN4ry0gnIjSEi4f3kvHkERZ2lWjg3Zqun36Nhd3Lz42voqaFIYPesi3RGCIirwOiQClSKuQXOC8r1+SLEFe8RV6FKFC+HqhUKlasWMH06dOxsbFhxYoV9OrVq0SiiSAIZGZmFtrFmJKSwqNHj0hJSSE7O7vAdGkAGxubYouMYnfxsqNBgwa89957zJ8/X6fzuLm50apVK3744QedzlPaREVF0aZNG3bt2sW7776r73B0Tm5uLvHx8VruyPzabrVr18bX11fjkHR3dy8XZR/UajVnz57ViJXHjx9HpVLh5OSkESsDAgJe6vhOSUlh8eLFLF++HEEQGDt2LJMmTaJy5cpFjkcQBGJjYzVi5dWrV7G2tqZ79+706dOHTp06YWZmxp49e/joo49QKpWEhoYSFBSk14wcbwdTAsSMHL1x4cIF+vbty+3bt1m1ahVDhw7Vd0hFwtPTEw8PD9atW6fvUF7IvXv3mDt3Lr/++iuJiYkAWFlZ0bFjR6ZNm4anp6eeIywYQRBYfC4ZZQnskwUJlEYmJsgy0vHqMRBrB0didm3l4T/nmbDjCFUbNAEgJzuT1cPeIenmFZq/O4AaTk3JSkvmUtR+ek1fTPXGbiXaN0MpfNa00hu5+Cci8l9EgVKkRJTnmkGtq5njJ9YMEnkGUaCs+MTFxTFixAhiY2MZPXo0c+bM0XSOFQSBrKysIqdK5zsZlcqCV+Wtra1fKTDa2NiQlpbGtWvXuHDhAqdPnyY1NRUjIyO8vb01TXf8/Pz0nvYl8jw1atRgxIgRzJw5U2dzZGdnY2VlxQ8//MDw4cN1No8uaN++PcnJycTFxb2Wv6uJiYkaIfL48ePExsYil8sxMTGhefPmWu7I6tWr6zvcQpGWlkZERIRGsLx//z7m5ua0bdtW02ynfv36QF6ziu+++45ly5ahUqkYM2YMkydPxsHBoVRiEQSBCxcuaMTKCxcuYGFhQZUqVbh58yadO3cmLCzsOedpWdQ0VymVGBgaIk95TBPFI4La+1e48guvG1lZWYwbN46wsDCGDh3K999/X2Czu/KGTCbD2tqaFStWMGrUKH2HUyju3LmjESsfP34M5C2svv3220yfPp2mTZvqOcL/R6kWWHQ2uURjFCRQpj28y4i1v1PPMy/lPTP1CQu6eODb70PemTgbgL9WL+DQj4sYtGg9Lu26ao0pCEKp/C5Odq+EgbgwIvKGIwqUIiVC7LooUtGwsLBg7ty5TJgwQd+hiLwAQRA0KdL/FRETExPZtm0bR44cwc7ODi8vL6RS6XPC44tERisrqyK7GO3s7LC1tS1U/bRnUavVJCQkaJruREVFkZSUhKGhIc2bN9cIlq1atcLa2rqkh02khNjb2/PFF1/wxRdf6GyO6Oho/Pz8iI2NLbcOlYI4evQorVu3Jjw8nN69e+s7nBKjUCg4e/asljvy1q1bANSsWVPLHenh4VGiGrPlhXyBML8z+NGjR1EqlTRo0IBKlSpx/vx5BEFgzJgxfP7554Vu4FNctm7dytixYzV1dE1MTOjUqRNBQUF0794dOzs7zbZqQeDGUwWxSTJuZihKTajMH6eGKTyJjWLzknmcORNL1apVGTRoEMHBwbi4uJTCTCLFZdOmTXz88cfUqlWLHTt24OZWMpearsk/x8fExNC8eXN9h1Nkbt68yZw5c/j9999JSkoC8krNdO7cmenTp+v9+yBXqVl6LqVEYxQkUBqbmTNx51Gt7Zb1a0OlmnUZtHg9AEvfa43UwIDx2yJLNP/LmNjUHhMDsTyPyJtN0e+4RET+JeZx+XRO/pe/H2ZjYiAR071FNLyOzp/yiCAIyGSyYjkZU1NTUSgULxzbxsaGGjVqkJOTg52dHc7Ozq/sOG1ra1vmjhipVIqrqyuurq6MGTMGQRC4fPmyRrDcsGEDCxYsQCqV0rx5c03THX9/f2xtxTpEZY1cLtd5U4bY2FiMjIz0fpNXVL755hvc3Nzo2bOnvkMpFo8fP9YSI0+fPo1MJsPY2BhPT0969eqlcUfquhu2vpBIJLi5ueHm5sbnn3/OvXv3mDRpEr/++ivXr18HwNTUlIsXL/LTTz/RpUsXGjVqVOq/mTk5OXz11VeEhITg5+fHxo0bkUql/PLLL4SHhzN06FAMDQ1p3749QUFB9OzZEwcHBxraGNPQxpjUHBXxT+TEJ8vJUeXJlFIJqAuhWP53OxMDCR6VTPGobIqdiQE4BTFxUBBnz54lLCyMDRs2sHjxYry9vQkODub9998Xz8t6YPDgwXh7e9OvXz9atGjB8uXL+eijj8rttdzp06cxMTEp90Lqi6hXrx5r164F4Pr163z77bfs3r2bbdu2sW3bNuzs7HjnnXeYMWMGjRs3LvP4XlCuu8TYOtZ47jkzaxtkGWma/yffu4Vru266CeBfVGpArOwj8oYjOihFisXdTAVbrqbrO4xCM7CRjVjoXATIKwg+Z84c0UFZSAojMr7otdzc3ALHtLCwKLSLUa1Ws2rVKvbu3UuHDh344YcfaNCgQRkfBd0gCAJXr17VuCujoqK4f/8+UqkUDw8PjWDZunVrrY65IqWPIAhIpVJCQ0MZMWKEzub54IMPOHv2LLGxsTqbo7Q5ceIEvr6+7Nixg/fee0/f4bwSpVLJuXPntATJGzduAFC9enWNEOnn50ezZs0wNTXVc8Rly9OnT1m2bBnfffcdcrmcUaNG8fnnn5OamqrpDH7kyBFyc3OpX7++pjN427ZtS5xie+7cOQYPHsylS5f45ptvmDRp0nN1dh88eMCvv/5KeHg4UVFRAAQEBBAUFESvXr2oUSNPSBAEgdQcNYnZShJlSh5kKUiUKQusTZcry8ZMkUXzhrVxNDPE0dwQOxPpS0Wu3Nxc9uzZQ1hYGPv27cPQ0JBevXoRHBxM+/btxfrAZYxMJmPixImEhobSv39/QkNDy2XmwaBBg7h27RonTpzQdyilyj///MOcOXP4448/SEnJczDa29vTvXt3pk2bRqNGjcokDl05KKs2aMKw5Vu1tlszvAcAI37cBcAM31q4tutGvzmrSzT/yxAdlCIiokApUgwUaoG1l1L11q27qOR3Y/zIyU4seC7yRgqUcrm82E7GnJycAsc0NzcvUpp0/uu2traFaiahVqtZu3YtX3zxBYaGhixZsoSBAweWW9dEaSAIAjdu3NAIlpGRkdy9exeJRELTpk0JDAykTZs2BAQEvLKTrkjRyHdPbty4kcGDB+tsHnd3d3x8fFizZo3O5ihtunbtyq1btzh//ny57Az/5MkTLTHy1KlTZGdnY2RkRLNmzbRqR9aqVeu1Poe8jIyMDJYvX87ixYvJzs5m5MiRfPnll1SrVu25bbOysjh8+LAmHfzmzZsYGxsTEBCgabbj5ORU6GOpUqlYtGgRM2bMoEmTJmzevLlQde2SkpL47bffCA8PJyIiAqVSia+vL0FBQQQFBVG3bl2t7QVBQC2AUhBQqcFACj26d2P/vn0EBgYSGRlZqHif5eHDh2zevJmwsDAuXbpErVq1GDp0KMOGDXttFswqCtu3b2f48OFUrVqV7du3l7tSGW+99RadO3dm+fLl+g5FZ1y8eJE5c+awb98+0tLyHIaVK1eme/fuzJgxg3r16ulsbl3VoCyMQFkWKd5iDUoREVGgFCkGB+9lEpskrxDiZD4SwMvBlPY1xcYUbzqWlpZ8++23fPLJJ/oOpUjk5OQU28kol8sLHNPMzKxIImP+a7a2tjqtyZaQkMDIkSM5evQowcHBhISEvJGCnCAI3Lp1S+OujIyM1NTJc3V11RIsdV0v7nUnLS0NOzs7fv75Z/r06aOTOWQyGVZWVqxcubLCNE+IiYnB29ubrVu38v777+s7HJRKJRcuXNASJK9duwaAo6OjlhjZvHlznafsVwQyMjJYuXIlixYtIjMzkxEjRvDll19qnIivIt/pnd9oJzIyErlcTu3atTXuyvbt22NlZVXg+2/cuMGQIUM4fvw4n3/+ObNnzy7W70dqaiq7d+8mPDyc/fv3k5OTg6enp0asfFG66fbt2+nfvz9VqlTh0aNHRZ73vwiCwKlTpwgLC+Onn37i6dOnBAQEEBwcTJ8+fcTmZ2XE9evX6devH+fPn2fx4sWMGTOmXCw8pKamYm9vr/OFrvLEuXPnmDt3Ln/++Sfp6XmZdVWqVKFHjx5Mnz6d2rVrl+p8uuriXRiBUtdNcsQu3iIieYgCpUiRqGip3c8ipnqLWFlZ8c033+hFoMzNzS22yCiTyQoc09TUtMguxvx/l7fGD3K5nDlz5rBgwQLq1q1LaGgobdu21XdY5Yo7d+5oNd3Jrx3n5OSkaboTGBj4XCdckZfz8OFDqlevzu7du+nWTTc1pk6dOoWPjw+nTp3C29tbJ3OUNj169ODy5cskJCToJaU1OTmZEydOaLkjMzMzMTQ0xMPDQ0uQrFOnjnhj9x8yMzP5/vvvCQkJISMjg48++ogpU6aUuMamTCYjKipK4668evUqhoaG+Pv7a9yV+fX31q5dy8SJE6lSpQobN27E39+/NHaNjIwM9u7dS3h4OHv37iUrKwsXFxeNWOnm5qb5LOTm5mJiYoKxsfELMwKKg0wm49dffyUsLIyIiAjMzc3p27cvwcHB+Pv7i59FHZOTk8Pnn3/O8uXL6d27N//73//0XiP0r7/+4u233+by5ct6qc+ob+Lj4/n222/566+/ePr0KQBVq1alV69eTJs2rdTq+26+ksa9rIKbIRaG4gqUOdmZrBrSmSe3r9H83QHUcHJH9jSVhKj99JoWQrW3XIu/U0BNC0MGvSXWuRUREQVKkUKjFgTWJKSSXkFSu59FAtgYSxnhbIdUvHB8YympQKlQKIotMmZnF9xUysTEpFgCo52d3WtTP+3w4cOMHDmSW7du8eWXXzJ16tTXZt90yf3797UEyytXrgB5aWb/FSwL65Z6U7lx4wYNGjTg4MGDtG/fXidzrF69mvHjx5ORkVEhPttxcXF4enqWmRtIpVKRkJBAdHQ0x48fJzo6WvN5rlKlipYY6eXlhbm5uc5jqohkZWWxatUqFi5cSHp6Oh9++CFTp06lVq1aOpnv+vXr/Pnnn/z5558cOnSI7OxsqlWrhqGhIXfv3mXIkCGsXLnyhQ7LkiKTydi/fz/h4eHs3r2b9PR0GjZsqBErvby8NKUJdHXLc/v2bTZu3Mj69eu5ceMGDRs2ZNiwYQwZMkRnx10kj99++43g4GBsbW3Ztm0bPj4+eotl7ty5LFy4kJSUlHJZDqMsiYmJYe7cuRw8eJCMjAwAqlWrRlBQEFOmTKF69erFHjvi30y+4pooiytQAmSnp3LwhwVcPLyXrNRkLO0r06BFa96Z+DUWtsWvFS6VgJeDGe1qlKzOr4jI64AoUIoUmqvpOYTfyNB3GCWmT31rGtq8ugaeyOuJlZUVs2bNYvDgwUWux5iamkpWVlaB4xobGxcpTfq/jzc5DTE5OZlJkyaxfv16/P39CQ0NxdnZWd9hVVgePnyoSQmPiori0qVLADRs2FAjVgYGBpZ62lVFJyEhARcXF44ePUqrVq10MsdHH31ETEwM8fHxOhm/tAkKyutofPnyZQwNDUt9/NTUVC135MmTJ8nIyMDAwAB3d3ctQbJevXqiI+0VZGdns3r1ao1A8sEHHzB16lTq1KlTZjHI5XLmzp1LSEgICoUClUqFgYEBfn5+mnRwd3d3nYk3ubm5REREEB4ezm+//UZycjJ16tTh9u3bQJ4IrkvhSK1W8/fffxMWFsbPP/+MTCajY8eOBAcH07NnzwqxMFERuX37Nv379ycmJob58+czceJEvQiEPXv2JDMzk4MHD5b53OWZ6Oho5s+fT0REhOYaunr16vTp04dp06YVuUTNxRQ5u29n6iJUvfJuHSuc7V+c2SQIAqp/a+yq1SCVgqFEgoEE8fdR5LVCFChFCs22a+nczlBUSPdkPhKgrpUR/Rra6DsUkRKiVCpfKjC+SGS8e/fuC8c0MjIqlosxX2QULxAKjyAIbNmyhYkTJ6JUKlm4cCEffvjhG+86KG0ePXrEkSNHNILlhQsXAKhXr55GrGzTps1zzSbeNGJjY/Hy8iI2NlZnTReaNWuGp6cn//vf/3Qyfmly7tw53N3dWbduHcHBwSUeT61Wc+nSJS135OXLl4G85gr/FSO9vb1L3C36TUImk/HDDz+wYMECkpOTGTZsGNOmTSvz73R6ejrjxo1j06ZN9O7dmx9++IHs7GxNZ/CIiAgyMzOpWrUqnTt3pnPnzrz99tvY2xffdfQylEolR44cITw8nFWrVgF5Dq5evXoRFBREQECAToT3fDIyMtixYwdhYWEcO3YMW1tb3n//fYKDg/Hy8hKvF0oZhULBtGnTCAkJoWvXrmzYsKHMa1fXqFGDoUOHMnfu3DKdtyJx9OhR5s+fT2RkpEasrFmzJn379mXKlClUrlz5lWMky5X8eClN16GWOSOc7LA3zSulIggCKTkqErOVJGYreZitJFGmLLD2pqEUHM0MqWZuiOO/D3sTA/EcI1JhEQVKkUKRmqMiNCFV32GUGiOd7bAzKft6WiLaKJVK0tLSiuVkzE8ZeRZDQ8OXiowhISH06tWL/v37P/eaubm5+INeBly/fp2PP/6Yv/76i379+rF06VKxZmIZ8eTJE41gGRkZyblz5wCoXbu2RqwMDAykfv36b9R34ejRo7Ru3ZqEhAScnJxKffycnBwsLS1ZtmwZo0ePLvXxS5u+ffty+vRprly5gpFR0es2p6WlcfLkSS13ZHp6OlKpFDc3N/z8/DSCZIMGDd6oz1ppIZPJCA0NZcGCBSQlJTF06FCmT5+u0w66L+LQoUMMGzaM9PR0VqxYweDBg5/7m+bm5nLs2DGNYJnfFd7Hx0fjrmzevLlOFqmMjY1RKBSMHz/+/9g787ia8v+PP2+Lok0Rskz2iGgRokKWyjKDxi409rFl7AyVXYZhMAYzrnUMM9eSpZItUYnS2HeyprTv2z2/P/y632kwtLnFeT4e/dG5534+73O7nXM+r/MHxEIeAAAgAElEQVR+v18cPHiQx48fU6VKFXr37o2LiwudO3emQoXSq6y5c+cO27ZtY8eOHTx79oxmzZrh5ubG0KFDqV69eqnN+zly7Ngxhg0bRsWKFdmzZ0+J9T19H8+ePaN27drs37+fPn36fJQ5yztnzpxhxYoVBAYGKvqs16lTh4EDBzJ79ux3PrwQBIE1V+PJyvt0JAwNVQnuZgYkZsu5/CqTv+MyFcenAh9Uzv7P/TRUJbSsoolFVU1xvStS7hAFSpEP4tSzNC7GZJTr7Ml8JEDrahXpJPb5KBHy8vL+U2T8r16N+U20/42qqmqRshj19fXR0tL6z8Wurq4uXl5eTJ06tbQ+EpF3kJOTww8//MDChQupXr06GzduxNnZWdlhfdbEx8cTFBSkECwjIyMRBIFatWoVECwbNWr0SYtIJ06coGvXrjx48KBUBJ58N+zQ0FCl9kj7EK5fv46ZmRmbNm1i9OjR791fLpdz+/ZthRgZHBzMzZs3EQQBAwODN7IjS6sX4edCZmYmmzdvZvny5cTExDBs2DDmzZtHgwYNPnosGRkZzJkzh7Vr19KpUye2bdv2we0jnj59quhdmW+qUbVqVRwdHXF2dqZbt24YGhqWSJw1atTg5cuXSKVShg8fTnh4ODKZDJlMxt27d9HT06NXr164uLjg6OhYam1X8vLyCAgIQCqVcvDgQeRyOd27d8fNzY0ePXoU6WGAyJs8ffqUwYMHExwczKJFi5g1a1apV2ccOHCAvn378vTpU7HncxE4efIk3t7eBAUFKcRKY2NjBg8ezMyZM98wQPrU1qWN9NTJlsOjlBwkUCLHlT9OXR11rAw1aaBbQfRgECkXiAKlyHv5lJ9UfcoL7sKQl5dHUlJSkUTGpKS3u7qrqqoWSWDU19dHW1u71P42okCpHEJDQxkzZgw3btxg6tSpeHp6imWcZZDExETOnTunMN2JiIhALpdjZGRUoIdlkyZNPqnz5+HDh/nyyy958eJFqWTzbtq0iQkTJpCSklLme84OHjyYc+fOce/evbdmlSUnJxfIjgwNDSUxMRGJRELz5s2xsbFRZEh+6sL2xyQzM5Nff/2VZcuWER0djaurK99//z0NGzZUSjzh4eG4urry4MEDli9fzuTJk4ssAuXk5BAaGoqvry9+fn5cvnwZiURCq1atFM7grVu3LrKTfOfOnTl16hQODg6cPHlSsV0QBK5du4ZMJuOvv/7i+vXraGlp0b17d1xcXOjevXupCerx8fHs2bMHqVRKeHg4hoaGDB06FDc3N4ULukjRyc3NxcvLiyVLltClSxd27txZqtmqc+fOZdu2bTx//rzU5vhc8PX1ZdWqVZw/f57MzEzgdVuaoUOHMn36dHR1dT+5yj6gxITJd41buYIKPYx1qKMtPggRKduIAqXIe/lUe32kHv6FVi2a07t3b2WHUiLI5fJiiYxvOxWoqKgUWWTU0dEpkwtTXV1dPD09+e6775QdymdBUlISc+fOZePGjVhZWbF582YsLCyUHZbIB5KcnMy5c+cUPSwvXbpEXl4e1apVKyBYmpqaluv+oX/++Sf9+/cnMTERPb2S71E8duxYQkJCFCX1ZZVbt25hamrKhg0bGD9+PIIgcOfOnQLZkdevX0cQBPT19Wnbtq0iO7J169bo6uoq+xA+ObKysvjtt99YunQpL168YMiQIcyfP59GjRopJZ7c3FyWLVvGwoULadmyJTt27ChxY7MXL17g7++Pn58fx48fJyEhAQMDA7p164aTkxOOjo6FepCwbds23NzcqF69OtHR0e/c7/bt2+zfvx+ZTEZ4eDgaGho4Ojri4uJCr1690NfXL4nDe4OrV68ilUrZtWsXsbGxWFlZ4ebmxqBBg0qtR+fnwokTJxg6dCgSiYTdu3fj4OBQKvN06dIFbW1tDh48WCrjf64cOXKE1atXExwcTFZWFgANGjTA1dWVhgMm8jRD+CSyKD8G+UJlK0NNOtTUQl2l7K3RRERAFChFPoBP1S1toV1d+n/9Ndu2bVNsy8zMZO3ataioqDBjxoyPHpNcLic5OblIImNiYuI7RcbKlSsXWmDMFxnLs+jwNvT09PDw8BAFylJGEAT279/P5MmTSUpKYsmSJUycOLHIGTAiZYOUlBSCg4MVgmVYWBi5ublUrVoVe3t7RVl48+bNy9W5Y8eOHQwfPpzMzEw0NN7tollUWrVqhZmZGVKptMTHLkkGDRpEQEAAEydO5OLFi4SGhhIfH49EIsHU1LRAdmTjxo3L1d+4vJGdnc3WrVtZunSpomR1/vz5mJiYKC2m27dvM2zYMMLDw5k7dy7z588v9bLk3NxcLl68qMiuvHTpEoIgYGFhociutLGx+U/Dm+zsbDQ0NKhQoYJC5HgfDx8+VIiVISEhqKmp0blzZ1xcXOjdu3eJlZ//O85jx44hlUo5evQoqqqq9O7dm2+++YYuXbqI188iEh0dzdChQzl16hTz589nwYIFJfpZyuVyDAwMmDFjBvPmzSuxcUUKcujQIVavXk1oaCjZ2dk0tXdk2Jpdyg6r3CEBdCuo0FPMphQpo4gCpch7Ofk0lfDYzA9q0FteUJGAR/u6DOj3WqAUBIHDhw8zadIkHj9+TI0aNXjx4kWRxhYEoVgio1z+5ictkUiKLDLq6uqKi8h/IAqUpc+TJ0+YMGGComx2/fr11KlTR9lhiZQCaWlphISEKATLCxcukJ2djYGBAXZ2dgrBskWLFmV6cb1p0ybGjx9PXl5eiWd+Z2dno6Ojww8//MCkSZNKdOziIAgC9+7dU2RHnjlzRuGsraenVyA7sk2bNqWSWSryJtnZ2Wzbto0lS5bw5MkTBg4cyIIFC2jSpInSYpLL5fz888/MnDmTOnXqsGPHDqX1Uo2JieH48eP4+fnh7+/Pq1ev0NPTo2vXrgp38Lf1AJRIJEgkkrfeY72PZ8+eceDAAWQyGWfPngXA3t4eFxcX+vbtS82aNYt9XP/m5cuX7Nq1C6lUyvXr16lduzbDhg1jxIgRSsueLc/k5eWxbNkyPDw8sLe3Z/fu3SX2d7t9+zZNmjTh+PHjdO3atUTGFHk3crmcAwcOsGbtT9jMWEVlo9qoqL77AYXIm+RnU3aprUUrw7Lddkbk80MUKEXeICoqihUrVnDy5EkeP36MmmZF6raypbu7J/o1/9f8PNxnD395Tmbsb4e5EnCIK34HyMvNoUW33vSatYyczAwOe8/l5ll/AFr3ccVpyoICi7/sjDQCNq7gasAhUuNfoV+zDtZ9XLFz/VaxX8Lzx3j3tOJrz5+w+nJQgVjnWBrSecwMuoybCcCJX7w5uXkl0w5e4PRvq7lx2hcBgeadevDl7BVUqFhJ8b63oaKiglwup2LFikRHRxdJZExISHinyKinp1dogdHAwEAUGUsQUaAsPfLy8li/fj3z5s1DV1eX9evX06dPnzJZ6i9SOmRkZBAaGqow3QkNDSUrKws9PT3s7OwUpjvm5ub/mfH0sVm7di1z5swhPT29xMeOiIjAysqK8+fP065duxIf/0NJTU3l4sWLBXpHvnr1CoCmTZuSm5tLTEwMp06dwtzcXLzmfGRycnLYvn07ixcv5vHjx/Tv358FCxaUePl0YXn27Blubm4EBAQwYcIEvL29qVSpklJjyicvL4/w8HCFM/iFCxcQBIEWLVoonMHbtWtHhQoVFNeh4i57YmJiOHToEDKZjJMnT5Kbm4uNjQ0uLi64uLhQt27dEjiy/yEIApcuXUIqlbJnzx4SExOxtbXFzc2Nfv36iaZThSQwMJDBgweTk5PDzp07cXR0LPaYu3btwtXVlfj4+FJrAyDydh4nZ/H7vWQQ7zOLjJ1RJdpVryjeq4uUGcrO6kCkzHDx4kWCg4MZOHAgtWrVYm/YTUL+3Mbm0b2Z+tc5hciXj4/3HHSqVKPzuJk8uRpO2P4daOro8fjvMPSMauM4cR63z53g7I71VG/YBMueA4DXN1073F15cOkcrXoPwahxc+6GnMZ3jSfJMS/oOX1xkY9hz+xR6Nf8AsdJ3/P81hUuHtiFloEhzlMWANB/0c/sXzSVyro6igUaoBAWMzIy3pkt8jaR0djY+INExrKcQfQ5IT6XKXkuX77MmDFjCA8PZ/z48SxdulTMuPoMqVixIp06daJTp07A67YZYWFhCsFy/vz5ZGRkoKOjg62trUKwtLS0VKqDbUZGRqmZ10RERKCiooK5uXmpjP82BEHgwYMHCjEyv/9lXl4eurq6tGnThm+//VaRHZmYmEijRo344YcfsLS0/GhxiqAQShYvXszDhw/p168fR48epVmzZsoOjT179vDtt99SqVIl/P396datm7JDKoCqqiqtW7emdevWLFiwgLi4OAICAvD19WXbtm14e3ujo6ND586dS2zOatWqMXr0aEaPHk1CQgKHDx9GJpMxb948pk+fjpWVFX379sXFxaVEyvElEgnW1tZYW1uzevVqDh48iFQqZdSoUUyaNIl+/frh5uaGvb29KDB8AB06dCAyMpLhw4fj5OTE7NmzWbhwYbGuP2FhYTRq1EgUJ5XAF7oatKpWkfDYTLEXZREJevH6wWz7GmXjwZOIiChQirxBjx49+PrrrwHIlQvEW8dhYufIxhHOXDt5BMue/Qvsr21gyIh1fyCRSLDp/w1xTx4StGM9rV2G03vuSgBa9x2Gd09LLh36XSFQ3gz04/7FILp9O4dOo15ns9kMGMnumd8QvGczNgNGUqVOvSIdQ00TM1w81ip+T09M4NKh3QqB0qJHPw4unY78/4UqiUTyhmi1adMm6tatWyDLUU9PTxQZyzniDXzJkpaWhoeHB2vWrKFp06acP38eGxsbZYclUkbQ1NTE3t4ee3t75s+fT3Z2NhcvXlS4hHt5eZGeno6Wlha2trYK051WrVq91UG6tChNgTI8PJymTZuWatZZenr6G9mRMTExAJiYmGBjY8O4ceOwsbHB1NT0jevYrFmzqFKlCmPGjCm1GEUKkpuby65du1i0aBEPHjzAxcWFQ4cOlQkH5/j4eL799lv27t3LoEGD2LBhQ7kQX6pUqcLAgQMZOHAgcrmcyMhIRXZlPqampjg7O+Ps7IydnV2xes7q6+szbNgwhg0bRkpKCseOHUMmk7F06VLmzZtHs2bN+Prrr3FxcaF58+bFvv/Q1NRUHN+TJ0/YsWMHUqmU7du3U79+fUaMGMHw4cP54osv3j/YZ4yhoSFHjhxh1apVzJkzh7Nnz7Jnz54if25hYWG0bt26hKMU+VA61NTiblI2ydlyUaQsIkEv0tFQlYjl3iJlArF+R+QN/rlIy8jOJi0xnip16qGpo8fzW286kFr3HlLgpqtOc0sEQaBV7yGKbSqqqtQyNSf+WZRi2+1zJ1BRVaXdoIILIruh3yIIArfPnyzyMbT+ekSB3+tatCU9MZ7M1JQC27v36MHt27eZNGkSWlpaBY6jQ4cOdOvWDWtraxo0aICBgYEoToqI/ANfX1+aNWvGhg0bWLx4MREREaI4KfKfVKhQgfbt2zNv3jyOHz9OYmIiISEhfP/990gkEpYuXUr79u3R19ena9euLF68mKCgoA82tigqmZmZaGpqlsrY4eHhJZqVKAgCDx8+5Pfff2fSpEm0atUKPT09OnbsyJIlS0hNTWXMmDEcPXqUV69ecevWLaRSKWPGjMHMzOyN61hUVBTbtm1jxowZZaZ091MmNzeXHTt20LRpU9zc3DA3NycyMpK//vqrTIiTfn5+NG/enOPHj/PHH3/w+++/lwtx8t+oqKhgaWnJ3LlzCQoKomrVqsBrceqPP/6ga9euGBgY0KtXL37++WcePHhQrPl0dHQYMGAA+/btIzY2lgMHDmBhYcGaNWto0aIFJiYmzJkzR2HyU1zq1KnDvHnzuHv3LmfPnqVDhw6sWLGCunXr0rVrV37//XcyMjKKPc+nSr4ZZlBQEE+fPsXc3BwfH59Cj5OdnU1kZKQoUCoRdRUJPY11RHGymJx4msaT1BxlhyEiIgqUIm+SkZHBggULqFOnDnqVKrLYwYTFnZuQmZJEZmryG/vr1ahd4HdNbd3X26vX/Nd2HTKSExW/J7x4go5hDTS0tAvsV61eYwASXzwt8jFUrlGwQXpF3delpv+cH0AQoHHjxqxdu5bo6Gg2btxI06ZNAUQxUkTkHURHRzNw4EC6d+9Oo0aNuHbtGrNnz1Zqia5I+URdXZ22bdsye/ZsfH19SUhI4MKFC3h6eqKhocHKlSuxt7encuXKODg44OXlRWBgIJmZmSUaR2llUObk5HDlyhWsrKyKPEZGRgbnzp3D29ubPn36YGRkRP369RkyZAj+/v40a9aMdevWERkZSWJiIidPnmTRokV0796dKlWqvHf8FStWoKenx7hx44oco8j7ycvLY9euXZiamjJ8+HCaN2/O5cuXkclktGzZUtnhkZaWxvjx43F2dqZFixZcu3aNAQMGKDusEiO/ZF5dXZ2nT5/y999/s2DBAlJTU5kyZQoNGjTAxMQEd3d3/Pz8iiXuVaxYkd69e7Nz505iYmI4duwY9vb2bNmyBWtra+rVq8d3333H+fPni2Ta808kEgl2dnZs3bqV6OhofvvtN7KyshgyZAhGRkaMGzdO0ZtT5E1sbGy4fPky9vb2fPXVV3z33XdkZ2d/8PuvXr1KVlYW1tbWpRilyPuoo61Ol9payg6jXCMBjkSlkCMXzxUiykUUKEXeYNKkSSxZsoT+/fuz648/+ObnPxm58S8qVTZAEN68kVJ5h5CnovKW7UW6QXp7SYw8L++d73jr3K8DKDjyP4bW1tZm7NixXL9+nejoaBo2bFjYQEXKCeKNetGQy+Vs3ryZpk2bcvLkSXbu3Mnx48dp0KCBskMT+URQU1OjdevWzJgxgyNHjhAfH8+lS5dYsmQJ2trarFmzho4dO1K5cmU6dOjAggULOHXqVLHNbTIzM0tFoLxx4wZZWVkfLFAKgkBUVBR//PEHU6ZMoXXr1ujq6mJnZ4eXlxeJiYmMHDmSw4cPExsby507d9i+fTvjxo2jZcuWhX6w9vTpU3777TemTZuGtrb2+98gUmjy8vLYvXs3pqamuLq60rRpUyIiIjhw4MBH7Uv6X4SEhGBubs6OHTv4+eef8fX1LRVnamWSL7Zev34diURCixYtmDVrFqdPnyYuLo79+/fTsWNH9u/fj7OzMwYGBjg7O/PTTz9x9+7dIt83VKhQAWdnZ3799Veio6M5efIk3bt3Z8+ePdja2lK7dm0mTJjAqVOnyM3NLdYxamtr4+bmxtmzZ7l79y4TJ07k6NGjtG3blubNm7Ny5Uqio6OLNceniIGBwWtX6DVrWL9+Pba2th+cUXvx4kXU1NTKzP/y50wrw4rYGYlVAEVFAJKz5Zx9nqbsUEQ+c0SBUuQN/vrrL4YPH86qVavo/3U/GrXtiLF5GzJTkkp0Hn2jOqTERpOVllpge8yjuwBUNnqdmVlRtzIAGf+aP/HFk+IFIJGg8hbxUyKRUL169eKNLVJmEXtQFo2bN2/SoUMHxo4dS58+fbh16xZDhw4VP0+RUkVVVRUrKyu+++47fHx8ePXqFZcvX2bFihUYGBiwYcMGOnfuTOXKlbG1teX7778nICCAtLTC3WBnZGSUSol3eHg4EonknYvXzMxMgoODWbVqFS4uLtSqVYu6desyaNAgjh49iomJCWvXriUiIoKkpCROnz7NkiVL6Nmzp6JktTisWLECbW1tJkyYUOyxRAqSl5fHnj17aN68OUOHDqVx48ZcunSJQ4cOYWFhoezwgNflqfPmzcPW1paqVasSGRnJ+PHjP8nz+siRIwFISEh44zVdXV369OnDpk2biIqK4vr16yxevJjc3FxmzJhB48aNadiwIRMnTuTIkSOFPr/ko6amhoODAz///DPPnj0jKCiIAQMGcOTIETp37oyRkRGjRo3C19e3UFl8b6Nhw4YsXryYR48e4e/vT4sWLZg/fz61a9emV69e7N+/v9hzfEpIJBKmTJlCcHAwcXFxWFhY8Ndff733fWFhYZiZmZVaD2ORwtGuuihSFgcBuBibKZZ6iygVUaAUeQNVVVXFk2JVCaipQMgfv/5nxmJRMLHtgjwvj5C9vxbYfn73L0gkEkzav3Zd1NTWQatyFR5FhBbYL/RPabHmr1CxEklJie/fUUTkMyYzM5MFCxbQsmVLXr58yalTp9i6desHlY6KiJQ0qqqqmJubM2XKFA4cOEBsbCxXrlxh1apV1KhRg02bNtGtWzcqV65Mu3btmDNnDn5+fqSkpPznuKVV4h0eHo6JiYkiO/HJkyfs27ePqVOn0rZtW3R1dWnfvj3z58/n1atXDBs2jEOHDvHy5Uvu3bvHzp07+fbbb7GwsEBNrWR9DZ8/f86WLVuYOnUqOjo6JTr254xcLmfv3r20aNGCwYMHU79+fcLCwjh8+HCxSv1LmuvXr9O2bVu8vb1ZuHAhQUFBNGrUSNlhlRr5plvvE+UkEgmmpqZMmzaNgIAA4uLi8PHxwcnJiWPHjtGrVy8MDAzo1q0bq1ev5ubNm0XKrlRRUcHW1pYff/yRR48eERYWxsiRIwkMDKR79+5Uq1YNV1dXDh48WKxyc1VVVbp168aePXt48eIF69at4+XLl4oHIu7u7vz9999FHv9To1WrVkRERODo6Ei/fv2YMGHCf7YUEQ1yyhYSiYT2NSr9r9y7mC0UPkckwNGoFIWRrIjIx0Z08RZ5g549e7Jz50709PQwNTXFxz+QK+fPUKmyQYnO08TekfqtbDm+YSkJz59Qo3Ez7oWe4cYZX9oPHlvAwbtVnyEESn9CttCd2qbmPIwI4VXU/WLN36C5OSdOnGD16tXUrFmTevXq0aZNm+IelkgZRRAE8gSooKWNoK5BZp4cNYkEVYmYVfkuTp8+zbhx43j48CGzZ89m7ty5pWYkIiJSFFRUVDAzM8PMzIxJkyYhCAI3b95UuIRLpVKWL1+uyMTMdwm3tbVFT09PMU5pmORkZWURGBhIpUqV6NevHyEhITx79gyAevXqYWNjw9ChQ7GxsaFFixYfvYfrypUr0dTUZNKkSR913k8VuVyOTCbDy8uL69ev4+TkxNatW8vcfYVcLmfNmjXMnTuXBg0acOHChRI1cSrrFFZM1NbWplevXvTq1QtBELhz547CGXzu3LlMmzYNY2NjnJyccHZ2xsHBodCCv0QiwdraGmtra5YtW8bVq1eRyWTIZDJ27dqFlpYW3bt3x8XFhR49ehS5HYO+vj7jx49n/PjxXL9+HalUys6dO1m7di2WlpaMGDGCwYMHf/YPIPX09Ni7dy+dO3dmypQpnD9/nn379tG4ceMC+6WkpHDjxg2mTp2qpEhF3kUrw4qE+B/mSeUGGNT8omBPL5H/RAASs+U8SM6hoV4FZYcj8hkiCpQib7B27VpUVVXZvXs3mZmZNLFqy+iNMn6d0L9E51FRUWHYmp0EbFzB1eMHCffZQ+WadXB298TO9dsC+3YePZ20hDiunTjM1YBDNG7XmRHr/2BJ56ZFm1sCUxeuYOt8d77//nsyMjIYPnx4mVtIiBQNQRCIz8ojOj2X6PRcXqTnEp2RS64cph6+TB6w5ko88DpDuEZFNYwqqVHj/38MNFQ/a9EyLi6OGTNmIJVKad++PQcOHMDU1FTZYYmIvJf87CdTU1O+/fZbBEHg9u3bBAYGEhgYyK5du1i5ciUqKipYWFgoBMuUlBSMjIyKNfezZ88ICQlR/ISHh5OdnY2amhqVKlVi8ODB2NjYYGNjQ40aNUroiItGdHQ0v/zyC7NmzSog1IoUHrlczoEDB/Dy8uLq1at069aNLVu2YGNjo+zQ3iAqKorhw4dz9uxZpk6dypIlS8SHToVAIpFgYmKCiYkJU6ZMIT09ncDAQHx9ffHz82PTpk2oq6tja2uLs7MzTk5ONG/evFD3E/n9MVu0aIGXlxe3b99WiJUDBw5EQ0MDR0dHXFxc6NWrV5Ed1ps1a8YPP/zAsmXL8PX1RSqV8t133zF9+nS++uor3Nzc6Nat22drGCmRSBg7dixt27alf//+WFlZsWnTJgYPHqzYJyIiAkEQxAzKMsiDBw+YM+4bXEe40W32Mi7FZiLh304EIu9CAoTHZogCpYhSkAiiW4TIe7gen8nhqNT371jO+NJYB1MDDWWHIVKCJGTlcflVJn/HZZKV9/rUpgJ8SIHHP/fTUJXQsoomFlU10df4fG7OBUFg9+7dTJ06lZycHLy9vRk1ahQqKmI3EJFPA0EQuHfvnkKwPHPmDE+fPgVeGyW4urrSsWNH7Ozs/jOLKDs7m8jISIUYGRwczJMnr/siGxsbY2Njg7GxMStWrCAgIIAuXbp8lOP7UGbMmMHmzZt59OhRkQWOzx1BEDh48CCenp5cuXKFLl264OXlRbt27ZQd2hsIgsD27duZPHky+vr6bN++nY4dOyo7rI9OhQoVyMnJKTWjvPv37yuyK0+dOkVGRga1atVSZFd26dKlWA8EHj58yP79+5HJZISEhKCmpkbnzp1xcXGhd+/eGBoaFiv+mJgYdu/ejVQq5erVq9SsWZNhw4YxYsQITExMijV2eSY1NZXx48eza9cuRo4cyU8//USlSpX44Ycf8PT0JCkp6bMVcssicrkcBwcHoqKiuHLlCjo6OjxJzeFoVAqJ2fJSEyrzcnNRLeFWLMpmrKn+Z7UOEikbiAKlyHuJy8xly81Pr1fjmKb6GGiKJ93yjlwQuJ+cTXhsJo9SckrsxiN/nLo66lgZatJAtwIqn3BW5f379xk/fjwBAQEMGDCANWvWKD3LS0SktBEEgYcPH9KpUyc0NTXJysoiKioKADMzMzp06EDHjh0xMTHhzp07BbIjMzMz0dDQwMrKSpEZaWNjo3A/3r59OyNGjCApKQldXV1lHmYBYmNjqVu3Lt9990MPE2MAACAASURBVB2LFi1SdjjlDkEQ8PHxwdPTk8jISDp37oynpye2trbKDu2txMTEMHbsWA4ePMiIESNYs2bNZ5s1W61aNWJjY9m3bx/9+vUr1bkyMzMJCgpSZFfevHkTVVVV2rVrp8iuNDc3L3K1xrNnzzhw4AAymYyzZ88C0KFDB1xcXOjTp0+xXNgFQSAiIgKpVMrvv/9OQkIC7dq1w83Njf79+5ep89nHQhAEtm3bxoQJE6hfvz779u3D09OT6OhoxecvUjZYu3Yt7u7unDp1ik6dOim2ywWBB8k5hMdm8LAE1wvyvFwkKio8+zuMTh3suZv0aZhPSYDW1SrSqZaWskMR+cwQBUqR9yIIAmuuxisy0j4FNFQluJsZfNZlvJ8CH+OJaP64lSuo0MNYhzraH7dPXGmTk5PDqlWr8PLyonr16mzcuBFnZ2dlhyUi8lFp2rQpzs7OrF69mrt377J79278/Py4du1aAcdebW1tzMzMcHZ2plu3bpibm6Oh8fZM/MmTJ+Pv78/t27c/1mF8EHPmzGH9+vU8evTos+81VxgEQeDIkSN4enoSERFBp06d8PT0xN7eXtmhvRMfHx9Gjx6NXC5n8+bN9OnTR9khKRVbW1vOnz+Pk5MTvr6+H3XuR48e4efnh5+fHydPniQ1NZUaNWrg5OSEk5MTXbt2xcCgaL3eY2JiOHToEDKZjJMnT5Kbm0u7du1wcXGhb9++1K1bt8hxZ2Zm4uPjw9atWzl+/Diampp8/fXXuLm50aFDh8+uwuLGjRv079+fBw8eoKWlxbBhw1i1apWywxL5f+7cuYO5uTmjRo3ip59+eud+CVl5RL7KJPKfFVcSkL93ISEg5MmR/H/GrIaKBPOqmphX1aRyBZVir5c3j/6K9MR43P8MKvIYJYm4XhZRBqJAKfJBnHqWxsWYjE+id4f4RKj8kyMXCHye9lF7yuTP08pQkw41tVBXKf8X69DQUMaMGcONGzdwd3fHy8sLLS3x/0Lk8+Lly5eYmZnRoEED1NXVuXTpEhkZGVSoUAFLS0uaN2+OpqYmcXFxXLp0ibt37wJgYmJCx44dFX0s/52x1L59e7744gv27NmjjMN6K3FxcdStW5eJEyeybNkyZYdTLhAEgWPHjuHp6cmlS5ewt7fHy8urTJdIJycnM3XqVLZu3UqvXr3YsmUL1atXV3ZYSmfdunVMnjyZmjVrKgyrlEF2djbnzp1TlINfu3YNFRUV2rRpg7OzM87OzlhaWhZJ/EtISODw4cPIZDL8/f3JysrCysoKFxcXXFxc3jB6KQxPnz5lx44dbNu2jbt371KvXj2GDx/O8OHDiyWCljfS09MZM2YMu3fvxtbWFl9f3yIbF4mUHHl5edjZ2REbG0tkZOQH3c8KgkBClvx1z/qMXJ6n5Sh61v+b/J71NbXUqVHxdc96fQ0VhXhXEhWHZU2gBLHiUOTjIwqUIh9EQlYem24kKDuMEkPsqVF+eZKaw5GoFJKz5UoRzCWAbgUVepbjbMqkpCTmzp3Lxo0bsbS0ZMuWLVhYWCg7LBGRUic3N5crV64UMLN58OABADo6Ojg6OipKtS0tLd+aHfn8+fMCPSzzMyQbNWpUwCW8WbNmeHl5MX369I96jP/F/PnzWb16NY8ePSp2v7pPHUEQ8PPzw9PTk7CwMGxtbfHy8qJTp05lOpvk7NmzDB8+nFevXrF27Vrc3NzKdLwfk+zsbDQ0NNDQ0CAzM1PZ4Sh4+vSpIrsyICCA5ORkDA0NcXR0xMnJCUdHR6pWrVrocVNSUjh27BgymYyjR4+Snp5O8+bNFWJlYQ188hEEgeDgYLZu3cq+fftITU3FwcEBNzc3+vbtS6VKlQo9Znnj6NGj9OzZk0qVKlG7dm327dtHy5YtlR3WZ83KlSuZNWsWQUFBtG/fvsjjCIKAXIBcQSBPDqoqoCaRoCLhP/9fSsKzoSwKlKJng8jHRhQoRT6YP+4lEZWSU66zKCW87ik4oOHn2X+pvHMpNoMTT9OU7sSXP3+X2lq0MqyoxEgKhyAIHDhwgEmTJpGUlMSSJUuYOHGi2Nxd5JMlNjaW0NBQgoODCQkJ4eLFi6Snp6Ouro6FhYVCjBw1ahTz589n5syZhZ4jvwdZvmB548YNxWtOTk4MHDiQjh07YmxsXJKHVmgSEhKoW7cuY8aMYeXKlUqNpSwjCAL+/v54enpy4cIF2rdvj5eXFw4ODmVa6MvMzOT7779n9erV2Nrasn37durVq6fssMocEokEiUSCXP4h9nkfn5ycHEJCQhTZlZGRkUgkEqytrRVmO9bW1oW+bmdkZODv749MJsPHx4fk5GQaNWqkECutrKyK9P1OS0vjr7/+QiqVEhgYiK6uLgMGDMDNzY22bduW6f+Z4uDp6cmGDRs4d+4cAwYM4NatW6xZs4axY8d+ssdclrlx4waWlpZMnDiRH374QSkxnHyaSnhs5gcZc76LsiZQqkiglWFFHMSqQ5GPiChQinwwd5OykD1IUXYYxebr+ro01Kug7DBECoEgCAS/zCDoRbqyQ3kDO6NKtKtesczfkD558oSJEyfi4+NDr169WL9+PV988YWywxIRKTFyc3O5du1agezIe/fuAVCjRg1sbGxo166dIjuyYsX/PVzQ0NBg1apVTJw4sdhxxMbGsmjRItatW4epqalCsDQ2NlaY7nTo0IF69ep91POGl5cXy5cv59GjR2K571sQBIGAgAA8PT0JCQnBxsYGLy8vunTpUubP75GRkbi6unLnzh2WLFnC1KlTxQdP7yD/b1lelj8vXrzA398fX19fjh8/TmJiIgYGBnTr1g1nZ2ccHR0L/f+clZXFyZMnkclkHDp0iLi4OIyNjenbty8uLi7Y2NgUqbz8/v37bN++ne3bt/P48WOaNGnCiBEjcHV1LZZpT1mke/fuABw7dozMzEymTZvGzz//TP/+/dm8efNna0SlDPJ7rqakpBAREVHg2l4SPHv2jPnz53P06FESExNp2LAh06ZN45tvviEjI0NRgTRz32li8l5XVqUnJbCmny36NY0Z+9thVP7/fHz7/AkCpT/x7NYVJBIJVY0bYjtkHObOLsD/BMpBK37FZ/ksnlyLoKKOHu0GjaHDiEn/O+acbE7/uppbQQHEPX2IPDePWk3M6DJ+Ng2s/2fYlvD8Md49rXB290RTS4fA7etIevmcGo1M+WqON3WaFayeuhpwiBO/eBP/LIoqderRdfxsHp3350lEMI8ePVLsJ5fL+emnn9iyZQv3799HT0+P3r17s3z5cvT19Uv08xf5/BAFSpEPRi4IbL6RQJKSSmuLiwTQq6DCGFP9T9qN+VPkfHR6mRQn87EzqkT7GmWzpCkvL4/169fz/fffo6Ojw7p16+jbt2+ZX3CLiLyPuLi4AtmRYWFhpKWloaamhrm5eQFnbWNj43d+5/Py8lBTU+PXX39l5MiRJRKbu7s7R44c4d69e8TFxREUFMSZM2cIDAzk77//RhAEateuXaCHZcOGDUvt/zIpKYm6desyYsQIfvzxx1KZo7wiCAInT57E09OT8+fP06ZNG7y8vOjWrVuZP0/m5eXh7e2Nh4cHpqam7Ny5EzMzM2WHVaYpbwLlP8nNzSUsLEyRXXnp0iUALC0tFdmVbdu2RU1NrVBjBgYGIpPJOHDgANHR0RgZGdGnTx9cXFywt7cv1HjwWrw4deoUUqmU/fv3k52djZOTE25ubvTq1eudxmLlBUEQqFatGhMmTMDT01Ox/a+//mLkyJFUrVqVvXv30qpVK+UF+RmxZMkSFixYQHBwMG3atCnRsV++fEmrVq2QSCSMHj0aQ0NDfH198fHx4ccff8Td3V2Rad9u0Gi6f7cIgD1zxnAz0I9Je05jaNwAgHCfPci8plCtQRNaOvZBU0ePF7evkpudTf9FG4DXAmXc4wdIVFVp1qkHhnUbcu3EYe5fDGLEuj2YtO8CQFpCHGsHdKClU1+qflGfrLRULh3aTfzTKL7d6U9Nk9fXgXyBsmYTM7LSUrHu44pEIuHs9vWoaWgww+cSquqvRdVbQcfZ4T6U6g1Nseo1kIyUREL2/oZeNSM0ctILCJSjR49m27ZtuLm5YWVlxcOHD1m/fj2mpqacP38edfXy2QJLpGwgCpQiheJJag677yYpO4wiM7SRHrXLad/Az5VLMRmceJb2/h2VTFks9758+TJjxowhPDyc8ePHs3TpUvGpvki5JC8vj+vXrxfIjrxz5w4A1apVK5AdaWVlVageaGlpaWhra7N7924GDx5cIvHa29tjZGTE3r1733gtISGBoKAgRR/Ly5cvI5fLMTIyKiBYmpiYlJhAtnjxYhYvXsyDBw8+uUym4nD69Gk8PDwICgrC2toaLy8vnJycyrwwCXDv3j2GDx9OaGgos2bNwsPDo9wLPx+DChUqkJOTUy4Fyn8TExPD8ePH8fX1xd/fn7i4OPT09OjatSvOzs44OTkV6v89Ly+PkJAQZDIZ+/fv5/Hjx1StWpWvvvoKFxcXOnfuTIUKhatASkxMZO/evUilUi5cuECVKlUYMmQIbm5umJubF/aQywQPHz6kfv36HDlyhB49ehR47cGDBwwcOJDIyEhWrlzJ5MmTy8X5pLxy5coVWrVqxfTp01m6dGmJjz9q1CiOHTvG1atXqVKlimL7oEGD8PX15cWLF1SsWJHZc+bg7e3N6M0HSY2P5feZI+k5fTHtB48FIDMlmeXdW1KtngmjtxxEXUNTMZYgCIrvyObRX/EwPJh+Czdg2bM/8Dpb0ruHBcYtWzNkpRQAeV4ecnkeaur/+3/MSElidV8bmth2xcVjLfA/gbJSZQOmH7xARd3KANwI9GPnVFeGrdlNU/tuAKzt34GMlESmys6jUem16dOD8PNsGd0bY2NjhUB57tw57Ozs3rhn8vf3x8nJqUTvpUQ+Twqfvy/yWVNHW51WhpqUt0utBLA21BTFyXLGk9ScciFOApx4msaT1BxlhwG8FlxmzJiBtbU1mZmZnD9/ng0bNojipEi5ISEhAV9fX+bPn0+XLl3Q19enZcuWTJgwgatXr9K1a1d27drF/fv3iY6O5uDBg8ycORM7O7tCGzTkm2Voamq+Z88PQy6Xc/nyZaysrN76ur6+Pl9++SWrVq3i0qVLxMfHc+TIEYYOHcr9+/eZMGECTZs2xcjIiAEDBvDzzz9z/fr1IgsqKSkprF69mtGjR4vi5P9z5swZOnbsiIODAxkZGRw5coQLFy7g7Oxc5sUEQRDYtGkT5ubmiv6nS5cuFcXJD0RXVxeAP//8U8mRFJ9q1aoxdOhQdu/ezcuXL7lw4QJTp07l6dOnjBo1ilq1atGyZUtmz57NmTNnyMn573sUVVVVbG1t+fHHH3n06BFhYWGMHDmSwMBAunfvTrVq1XB1deXQoUNkZGR8UIyVK1dm7NixhIaGcv36db755hv27duHhYUFFhYW/PTTT7x69aokPo6PRlhYGADW1tZvvFa/fn3OnTvHxIkTcXd3p0+fPsTHx3/sED8LsrOzGT58OCYmJnh4eJT4+IIgIJPJ6NWrF4Ig8OrVK8WPo6MjSUlJREREADB3gQfV6zfhT49JHFo2i3pW7Wg3aIxirLsXzpCVlkoHt8kFxEl403inQiUtLHr0U/yupl6B2s0siX8WpdimoqqqECflcjnpSQnIc3Op1dScZ7euvHEsLbp+pRAnAepZtAUg/tkjAJJjo4m+dwOLHv0V4iRAfav21GhoWqBy8s8//1Q8CPnnZ2JlZYW2tjanT5/+kI9XROSdFC5nX0QE6FBTi7tJ2UpzUS4s+a7L9jXFBr/liRy5wJGoFKUb4nwoEuBIVAqjmuqjrqK8Ba6vry/jx4/n5cuXLFq0iOnTp4ulFiJlGrlczo0bNwpkR966dQuAqlWrYmNjw5w5c7CxscHa2hotrZI9l+cvtEuqb9WdO3dITU3F0tLyg/bX09OjR48eikyclJQUzp8/rzDdmTJlCrm5uRgaGmJvb6/oY9msWbMP6hO3YcMG0tLSmDVrVrGO61Pg7NmzeHh4cObMGSwtLfHx8aFnz55lXpTM58WLF4wcORJfX1/Gjh3LDz/8gLa29vvfKKKgUaNGxMXFIZVK6dev3/vfUE5QVVWldevWtG7dGg8PD+Li4jh+/Dh+fn5IpVJWrFiBjo4OnTt3xtnZGWdnZ+rUqfPO8fKNeaytrVm2bBlXr15FJpMhk8nYtWsXWlpa9OjRAxcXF7p37/5B30NTU1O8vb1ZunSpIq7p06czffp0vvzyS9zc3HB0dCx0SfnH5uLFixgbG1OtWrW3vl6hQgVWr15Nx44dGTFiBBYWFvzxxx/Y2Nh85Eg/bZYsWcK1a9e4cOFCqTygiY2NJTExkc2bN7N58+a37hMTEwOAmloFXDzXsmFoV9Q0NPna86cC15X4p48AqN6gyXvn1atW841rUkVdPaLv3iiwLfzwH5zbuZHYR3fJy/3fwwf9Wm8a8lU2qv2v8V6LlRnJr6siE54/AaBKnTeN1arUqUfKg2uK3+/evUtSUtI7v//5n4mISFEp21cAkTKJuoqEnsY65abUWwB6GusoVTQSKTyBz9PKjQgOr79nydlyzj5Po3Ptj79gjI6Oxt3dnb1799KlSxdOnDhBw4YNP3ocIiLvIzExkQsXLhASEkJwcDAXLlwgOTkZFRUVWrRoQadOnZg7dy42NjY0aNCg1MWjks6gzM+o+FCB8t/o6Ojg5OSEk5MT8DojOjg4WCFYTps2jZycHAwMDAoIli1atHhDsExNTWXVqlV888031K5d+23TfRacO3cODw8PTp06hbm5OQcPHuTLL78sN8IkvM5aGTduHBUqVODo0aMKkw6RwuHi4kJoaCh///23skMpVapUqcKgQYMYNGgQcrmcyMhIfH19FQ8x5XI5pqamCrHS1tb2nSKPRCKhRYsWtGjRAi8vL27fvq0QKwcMGICmpiaOjo64uLjQq1cvKleu/NZx8lFTU6Nnz5707NmT2NhYfv/9d6RSKT179sTIyAhXV1fc3Nxo0uT9Yo4yCAsLo3Xr1u/d78svvyQyMpJBgwZhZ2fH0qVLmT59epEMiEQKEhERwZIlS/j++++LfK19H3L5az/uoUOHMnz48Lfu06JFCwBUVOBu8CkAcrMyefX4AQZvEQo/BJV3GJz9s4ri8tE/+ctjEqadumM3bALaBlVRUVXlzNa1xP2/GPpPJCrvME0rQmWGXC6nWrVq7N69+62vGxoaFnpMEZF/IgqUIkWijrY6XWprceJp2S+/7VJbizpiaXe54klqDpdiM5UdRqERgIuxmTSurPHRvnNyuZzffvuNmTNnoqamxs6dOxkyZEi5WniLfLrI5XJu3bpVIDvy5s2bCIKAgYEBNjY2zJw5ExsbG1q3bq2UbLCSzqAMDw+nXr16GBgYlMh4WlpadO3ala5duwKQnp5OaGiownRn1qxZZGdnU7lyZezs7BR9LM3Nzfnll19ISkpizpw5JRJLeSM4OBgPDw9OnDhBixYt2L9/P7179y5X58eEhAQmTZrE7t27+frrr9m4cSNVq1ZVdljllsmTJzNjxgzi4uKUHcpHQ0VFBUtLSywtLZk3bx4JCQmcOHECPz8/fv/9d1atWoWWlhYODg4Ks5169d7MpMrHxMSEuXPnMnfuXB4+fMj+/fuRyWQMGzYMdXV1OnfujIuLC1999dV7xQpDQ0OmTJnClClTuHz5MlKplF9//RVvb2/atm2Lm5sbAwYMKDMtanJzcwkPD8fLy+uD9v/iiy84c+YMCxYsYNasWZw5c4bt27eLIk4xyMrKYtiwYZiZmTF37txSm8fQ0BAdHR3y8vLo0qXLf+574+pVTm5ZhdWXg3hx5xr7F03Ffe9ZNHVet5QwqF0XgJf3b1H1i/rFju3aycMY1K7L0B+2FbienfhlRZHG06/5Ops67snDN16Le/KQfz66aNCgASdOnKB9+/Yl7pguIgJiD0qRYtDKsCJ2RmXTuTgfO6NKZc64ROS/kQsCR/+/tLs8IgGORqUg/wgN+G/evEmHDh0YM2YMvXv35tatWwwdOrRcLb5FPi2Sk5MJCAhg4cKFODs7U6VKFZo1a8bo0aMJCwvDzs4OqVTK7du3efXqFUeOHGHevHk4ODgorVS1NATK0sroAKhUqRIODg4sXLiQwMBAkpKSOHPmDO7u7qSmpjJv3jxatWqFvr4+8+bNw8LCgujoaHJzc0stprJGaGgojo6OtG/fnpcvXyKTybh8+TJ9+vQpV+fHEydOYGZmxpEjR9i1axf79u0Txclikm/ykp2dreRIlIe+vj79+vXjt99+49mzZ0RGRjJ//nySk5OZMmUK9evXx8TEBHd3d/z9/f+z32S9evWYNm0awcHBPH36lNWrV5OZmcnYsWOpUaMGDg4ObNiwgefPn783rvyelM+fP2ffvn3o6+szfvx4jIyMGDp0KCdPnlRktSmLmzdvkp6e/tb+k+9CXV2dZcuWKZzXzc3NOXv2bClG+Wnj6enJnTt32LFjR6FNmwqDqqoqLi4uyGQyrl279sbrsbGxAOTk5DDqGzd0DWvQa8ZSvvZcR2pcLEdWfa/Yt1HbTmhoaXNGupacrIIJGEXpLy35/yzcf7738dVwHl+5VOixAHQNa1C9YVMuH91HVnqqYvuD8PNE3ytYWt6/f3/y8vJYtGjRG+Pk5uaSmJhYpBhERPIRBUqRYtGuetkVKe2NKtGuuihOljfuJ2eTWI5Ku/+NACRmy3mQXHqGOZmZmXh4eNCyZUtevnzJqVOnkEqlBRwGRURKG0EQuHXrFlKplDFjxmBmZkblypXp1q0ba9asQSKR8N133xEQEEBiYiJXrlzhl19+Yfjw4TRu3LjMCEUlWeItl8uJiIh4p0FOaaCpqUmHDh0UJcyJiYmcPXsWW1tbcnJy+Pvvv2nTpg36+vo4OzuzfPlyQkJC3muYUR4JCwvD2dkZGxsbnj17xp9//klkZCR9+/YtV2WV6enpTJ48ma5du9KkSROuXr0qZsaXMJ+Ci3dJIJFIaNmypSK7Ly4ujv3799OhQwdkMhlOTk5UqVKF7t27s27dOu7evfvOsWrVqsXEiRM5ffo0L168YOPGjairq+Pu7k7t2rVp3749q1evJioq6p1jAGhoaNCvXz+OHTvG48ePWbBgARcvXqRLly7Ur18fDw8PHj58M9PrY3Dx4kVUVFSKdI53cnIiMjKSxo0b06lTJxYvXkxeXl4pRPnpcuHCBby9vfHw8MDMzKzU51u+fDlGRka0adMGd3d3Nm/ezPLly+nfvz8mJiYALF68mMjISMYtW4+GljZGjZvRefQ0wn32cOtcAACa2jr0mLaIp9ci2ODajTNb13Dhr20cXDqDPz0mFjquJnbdiH/6iF3ThhMm24HfukVIJw6gWn2TIh+r44R5JMe84Be3npzb/QsBG1ewa7obtRs3LXDt6dChA2PHjmXZsmV0796dNWvWsGHDBtzd3TE2NubEiRNFjkFEBEAiiFdokRLgUmwGJ56mKd3QJH/+LrW1xMzJcsof95KISskptwIlvP4e1tVRZ0DDki9JOnPmDGPHjuXhw4fMnj2buXPnlljvPBGR/yIlJYWwsDBFqXZoaCjx8fFIJBJMTU1p164dNjY22NjY0Lhx43IjCPn7++Pk5ERUVBRffPFFsca6e/cujRs3xt/fn27dupVQhIUnIyOD+vXr4+zszC+//MKlS5cIDAwkMDCQc+fOkZaWhpaWFu3atVP0sLS2ti7VbJTS5OLFi3h6enLs2DFMTU3x8PDg66+/LjffwX9y8eJFXF1diYqKYsWKFUycOLFcHkdZJn+xLS6B/htBELhx4wZ+fn74+vpy9uxZcnJyaNCggaIUvFOnTlSq9N+JCgkJCfj4+CCTyTh+/DhZWVlYWVnh4uKCi4sLjRs3/qBYQkJCkEql7N27l5SUFDp27IibmxsuLi4lbp72LsaNG8e5c+femlH3oeRnny1cuBAHBwd27dpFjRo1SjDKT5OMjAwsLCzQ1dUlODj4o5kpxcTEsHDhQnx8fIiOjlZUhgwYMAArKyvatGnD+PHj+WrmUsJjM5ED8rw8No5wJjnmBe5/naOizuv1wM1AfwK3reX57WuoqKlhWLcRtkPG0dKxDwCbR39FemI87n8GFYjhT4+JPLgUzKyjr3tcC4JAoHQtF2Q7SI2LoVr9xnQdP5urJ3wK7Jfw/DHePa1wdvfEftiEAmPOsTSk85gZdBk3U7Htiv8BTmxaScLzx1T5oj5OE+fx4PifxD64zc2bNwu8f8uWLWzatIkbN26gpqZG3bp1cXZ2xt3dHSMjoxL9G4h8XogCpUiJ8SQ1hyNRKUozNsl36+5prCP2nCynJGTlselGgrLDKDHGmuqjr/GOxtSFJC4ujhkzZiCVSmnfvj2bN2/G1NS0RMYWEfk3giBw7949hZFNSEgI165dQy6Xo6enR9u2bRViZJs2bcpMf7CicOjQIXr37k1MTEyx+4L98ccfDBo0iNjYWKWW4q5fv54pU6Zw+/btN8yycnJyiIiIUJjunDt3jpSUFCpWrIiNjY1CsGzdunWZf/gRHh6Op6cnR44coUmTJnh4eNCvXz9U32EyUJbJyclhyZIlLF68GAsLC3bu3FlmTULKO+rq6uTm5ooCZSFJTU3l9OnTCrOdR48eoaGhgb29Pc7Ozjg5OdGkSZP/zPRNSUnh6NGjyGQyjh07Rnp6Os2bN1eIlc2bN39vpnBaWhr79+9HKpVy+vRpdHR06N+/P25ubrRr165UM40tLS0xNzdn69atxR7r1KlTDBkyBEEQ2LVr13v7HH7uTJs2jQ0bNnD58mWaNm2q7HDe4Hp8JoejUt+/Yzlj27DO1KlRjYCAAGWHIvKZIAqUIiVKjlwg8Hkal2IzP1o2Zf481oaa2NfUEt26yzGnnqVxUMNcmAAAIABJREFUMSajXGdP5iMBWlerSKdaxXuqLwgCu3fvZurUqeTk5ODt7c2oUaPEjBqREiU1NZWLFy8WyI589eoVAE2bNsXGxkaRIdmkSZNP6vuXLyomJyejo6NTrLFmzJjBvn373lvCWJpkZWXRoEEDHBwc2LFjx3v3z83NJTIyUmG6ExQURFJSEhoaGrRt21ZhutO2bdsy0xD/8uXLeHp64uPjg4mJCQsWLGDAgAHlUpgEuHXrFq6urly+fJn58+czd+5c1NXFB62lRZUqVYiPj+fw4cP07NlT2eGUSwRB4M6dO/j6+uLn58eZM2fIysrC2NhYIVY6ODj85zk1PT0df39/ZDIZhw8fJjk5mUaNGinESisrq/eKjQ8fPmT79u1s27aNqKgoGjduzIgRIxg2bBi1atUq0WPOyMhAV1eXdevWMW7cuBIZ8+XLl7i6unLixAnmzZuHh4fHR8sMLE+cO3cOe3t7vL29mT59urLDeStxmblsuVl++y/m5eSARILqP75/Dy6dZ8uY3ixevJh58+YpMTqRzwlRoBQpFZ6k5nA0KoXEbHmpCZX541auoEIPMWuy3CMIAmuuxpOV9+mckjRUJbibGRT5af79+/cZP348AQEB9O/fnzVr1ohlEyLFRhAEHjx4UMBZ+8qVK+Tl5aGrq0ubNm0KZEfq6+srO+RSRSqV8s0335CTk1PshWHn/2PvzsOiqr8Hjr8Hhl1cEBURBRStSEURicEFNdPEXHFPUMywTMxSK0szcss9l9JcwjUzwzQz01xRARHEFTdUFFNEEFmHZWbu7w9ifvF1AwWGgc/reXqempl775kJhnvPPZ9zXn+dGjVqsH379lKKruRWrlzJ2LFjuXjxorZHVkmo1WrOnj2rTViGhoaSmpqKsbEx7u7u2oSlQqEot2WVhc6cOcNXX33Fjh07aNq0KV9++SVDhw7V28SkRqNh+fLlfPrpp9jb27Nx48YSDd8Qns9rr71GZGQkvXv3ZufOnboOp1LIzs7myJEj2urKuLg4jIyMaN++PT169KBHjx68+uqrTzwfys3N5cCBA4SEhLBz505SUlKwt7fXJis9PDyeemNMo9Fw+PBhgoODCQkJITc3l27duuHv70+fPn0wMTF54rbFFR4ejqenJ1FRUaXaZ1ij0TB37lymTZuGp6cnP/30E3Z2dqW2f32XlZWFi4sL9erVIzQ0tMJ+3+v7dUzqnVusec+H1t4DqV7HhqT4q0SGrKd2zRqcP39e9LkXyo1IUAplRiNJXE/PJ/q+khsZ+aWWqCzcj6OlEW3qmNG4uhEGonG83tP3O49PEvBKLaxMS3YylZ+fz8KFCwkKCqJevXp8//33eHt7l1GEQmWXnZ39SHVkUlISAC+99JI2GalQKHB2dq6wJ/9lZcWKFQQGBr7wlGtJkrCysmLSpEk6qzTIy8ujadOmtGvXjp9++qlU9qnRaDh37py2h2VoaCjJycnI5XLc3d3x8vLCy8uLdu3aldkk9rNnzxIUFMT27dtxcnJi2rRpDBs2TK8rjRISEvD39+fAgQOMHz+eOXPmPLOXn1A6vvnmG6ZMmYKdnR0JCQm6DqdSiouL0/auPHToEEqlEjs7O23vysKbOY+jUqk4cuQIISEh/PbbbyQmJmJra0u/fv3w8fGhQ4cOT/3dT0tL45dffiE4OJjw8HBq1arFsGHD8Pf3x9XV9blvGi9dupRPPvmE9PT0MunXe+zYMYYMGUJOTg4bNmwQ533/CgwMZO3atZw5c4amTZvqOpyn0ueVYDkZ6Wyf+TE3z0SSlZqCsZk5bTt04sclC2jSpImuwxOqEJGgFMpFaq6a08k5nE7J0d5ZMpCBphg/ff99nYmhjFa1TWllbVpqvf2EiqGy9m7pbW+Js1Xx79xHREQQEBDAhQsX+OijjwgKCir3KiVBf0mSRHx8fJHqyNOnT6NWq6lWrVqR6kgPDw+srKx0HbLOLVq0iOnTp5ORkfFC+7l27RpOTk78+eef9OjRo5SiK5nVq1czZswYzp07x6uvvlomx9BoNMTGxmoTlocPH+b+/fsYGhri5uamTVi2b9+e6tWrv9Cxzp07R1BQECEhITRu3Jhp06YxfPhwvU5MFrbtGDduHJaWlgQHB4vec+UsMzMTS0tLTE1NUSqVug6n0svJySE0NFSbsLx06RJyuRxPT09twtLFxeWxiUO1Wk14eDghISGEhISQkJCAtbU1ffv2xcfHhy5dujw1WXjp0iXWrVvHhg0buHv3Li1atGDUqFG8/fbbJe45PHz4cOLi4oiIiCjxZ1BcycnJjBw5kt27dzN58mRmzZpVpds9HDp0iC5durBkyRLGjx+v63CeSfTSF4QXJxKUQrmSJInUXA2J2SoSlSruZOWTqFSh0jz6WrkB2JjJsbUwwsZMjo25nFomBmXa/FrQnQO3M7XT7yoLAxm41TGjSzH6UKanp/P555/z/fff4+rqyurVq2ndunU5RCnoM6VSSVRUVJGE5L179wBo2rRpkerI5s2bV7nqyOKYNWsWS5Ys0VaVPq9ffvmFwYMHc+/ePerWrVtK0RVffn4+zZo1o23btvzyyy/ldlxJkrh06VKRhGViYiIGBga4urpqh+60b9+emjVrFmufFy5cICgoiG3btuHo6MjUqVPx9fXV+wv1lJQU3nvvPX799Vfefvttli9fXuzPRChdMpkMmUyGRlOZzjr0Q3x8vDZZeeDAAbKysrCxsdEmK994443HthaRJImoqChtsjIuLo4aNWrQu3dvfHx86Nat2xP75KpUKvbt20dwcDA7d+5EkiR69eqFv78/PXr0KNZNj2bNmvHmm2+ydOnSF/4MnkaSJBYvXsynn36Km5sbP//8M/b29mV6zIooIyODli1bYm9vz8GDB/Wm9/XPcWnczMjXyyrKQjLAwdKIwU76OwBR0F8iQSnonCRJaCRQSRJqDRgagFwmw0CGSEZWIZuuPOR2VtEllvtXzuPAqvl8/FsEB1ct4OLRvcjlxrgPGMEb739G2r07/D73M65HHcPI1IyOfuPo4DtWu33mg/vsXTaTS0f/JiczHWt7J9oPf482vYYABQ2hZ73hjLPXmwwIWlbk2DmZGczq+gqKwe/g/VEQAKq8XA6t/ZbTe34l7d4dqllZ49K9P2+M/Qy58eOrJO0s5Axv9uQLUEmS+O233wgMDCQtLY1Zs2Yxbtw4kUgSHiFJErdu3SqSjIyJiUGlUmFubo67u7t2kI2Hh4dOp0jrk2nTprF+/Xpu3br1Qvv57LPP2Lx5s86WjBb20jxz5gwtW7bUSQxQ8HN69epVbbLyyJEj/PPPP8hkMlq1aqVNWHbo0OGRCt6LFy8SFBTEL7/8gr29PVOnTsXPz0/vE5MAf/75J++88w55eXmsXLmSgQMH6jqkKq3w/FJcBulWbm4ux48f1w7bOX/+PAYGBnh4eGiH7bi6uj6SnJIkiXPnzmmTlRcuXMDCwoKePXvi4+ODt7f3E1tOpKSk8NNPPxEcHExMTAz16tXD19cXf39/nJ2dH7tNamoqVlZWbNiwAV9f31L/HB7nxIkTDB48mLS0NIKDg+nbt2+5HLeiGDNmDJs3b+bs2bM0btxY1+EU29W0XEKuv9iKjIpgQOPqONUo/VYGgvAsIkEpCILOSZLEwrMpj1TSFiYo67/UnLqOzXBo7cGlo39z+djf9Px4BpHb19O4bQdsnF7h9J5fuXk6koDVO3Fs40l+jpLlb3clJeEGHoPfwapBI879/TvxMRG8NWkm7YaNASAk6EPOH9zNF/tjkRv9/x/iU39sZduX4/hg09/YObdCo9Gwbtxg4k9H4t7fl7qOzUiMi+VEyHpebv8GvosePy1XbgATW9Z+bLI9ISGBcePG8fvvv9OrVy+WL19Oo0aNSu+DFfRaTk4Op06dIjw8nLCwMMLDw7l79y4ATZo0KVId2aJFC71e9qpLkyZNYteuXVy+fPmF9vPGG29gYWHBjh07Simy4lOpVLz88su0bNlSpwN6HqdwKNN/E5a3bt1CJpPRokULOnXqhJOTE4cPH+a3336jYcOGTJ06lREjRpRJn7fylpmZycSJE1m1ahU9evRg7dq1YthZBSASlBVTQkICe/fuZc+ePezfv5/09HTq1KlD9+7d6dGjB926dXvszbdLly5pk5UxMTGYmprSvXt3fHx86NWr1xMrlc+cOUNwcDCbNm0iJSUFd3d3/P39GTJkSJFt/v77b7p168alS5eea/jY80pNTWX06NFs376d8ePHM2/evFIZ+FMRrV27Frlcjp+fH/v27ePNN99kxYoVpTYxvbxoJIlVsamk5Wn0sopSBtQwNiDAuZaY8SDohEhQCoKgcyqNxIIzKY88XpigdO/vR7+pCwHQqNXMe8uV9KS7dA+citfIgp40yow05nRvQYs3ejMwaDnHf/qBPxZMZdDMFbT2HgAUVEyuercPiXGxfL73PCYW1bgSfojgDwbh9+1mXunYTXvsdeOHcj8+jsm/nwQgZvc2tk0fR8DqnTi09tC+7sSv69kxexLvBe/G3sX9se9vskttDA3+/4+8Wq3mu+++44svvsDS0pJly5bRv39/UTFcxSUkJBSpjjx16hT5+fmYmZnRtm3bItWRulhCXFmNGzeOY8eOcfr06efehyRJ1K5dmwkTJvDll1+WYnTFs3HjRvz8/IiJiaFVq1blfvySio+P5/Dhw/z+++/s27ePrKwsAOrXr0+fPn3o0qULXl5eev9zHhYWhp+fH3fv3mXRokUEBASI7/kKwsjICJVKJRKUFVh+fj7h4eHayeBnzpxBJpPRtm1bbXVl27ZtH1lxcv36dbZv305ISAgREREYGRnx+uuv4+PjQ58+fR7bezIvL49du3axbt069uzZg5GREf369cPf35/XX3+db775hnnz5vHgwYNyX2osSRLfffcdEydOpHnz5mzduhUnJ6dyjaE81KlTh+TkZLp06UJsbCzNmzdn3759evmdmZCZz+araboO47kNb1oDu2r6v3JB0E/60cxBEIRKTfWMCwS3fsO1/25gaEgD51ZIkoRbn7e1j5tZ1sDavgkPbt8E4PKx/Vha18Xlzf7a1xgaGeE59F3ysrO4Hh0GQJO2HbCoWZuz+/6/6kmZ/pC4iCO0fKOP9rFz+3+nrmMz6jg0JSs1RftPE/f2AFw/eaxY7+/06dMoFAomTJiAr68vFy9exMfHRy9PwITnl5ubS0REBIsXL2bgwIHY2dnRqFEjBg8ezM6dO2nSpAmLFi0iKiqKtLQ0jhw5wpw5c+jdu7feJ20qGqVSiamp6Qvt4+bNm6SmptKmTZtSiqr41Go1M2fOpHfv3nqRnISCxMPBgwfZuXMntWrVYubMmaxduxZvb2/279/PoEGDqFevHs7Ozrz//vv8/PPP2uphfZCXl8eUKVPo0KED9erV48yZM4wZM0Z8z1cglpaWAOzdu1fHkQhPYmRkRMeOHZkzZw6nT5/mn3/+Ye3atTg4OLBkyRIUCgX16tVj2LBhbNiwQdt/uXHjxkyaNInw8HASEhJYuHAhSqWSMWPGYGNjQ5cuXfjuu++4c+eO9ljGxsb4+Piwa9cuEhISCAoKIiYmhm7duuHg4MD69et59dVXddIHUSaTMW7cOMLDw0lPT8fV1bVc+wyXh+zsbJKTk4GCwTiJiYn07NlTx1E9v4bVjHCrY4q+fePLgLZ1TEVyUtApsR5MEASde1aP+po2DYr8t2k1S+QmpljUqv0/j1cnO61get7DxNvUbtj4kZPJuo5NC56/W9AnzlAu59XX3+LMXyGo8nKRG5tw/uAfqFX5tOz+//1+Um5dJ+nGFWa+/vJjY8xMTX5i/GoNZOVk8dVXX7F48WJeeeUVjh8/jkKhePobFyqNf/75p0h1ZHR0NHl5eZiamuLm5sawYcO0y7VtbGx0HW6VolQqnzhYobiio6MBdJKg/OWXX7hy5QqbN28u92OX1LVr15gxYwabNm2iXr16LF26lNGjR2uXLI4aNQoo+H0pHLpz8OBBVq5cCRQMqSicEu7l5YWdnZ3O3suTnDt3Dl9fX2JjY5k5cyaffPKJ6ClcATVu3Jjo6GhWrlxJ9+7ddR2OUAy2trb4+/vj7++PSqUiMjJSW125ZcsWAFxdXenRowc9evTgtddew87OjsDAQAIDA0lKSmLHjh2EhIQwYcIEAgMDUSgU+Pj44OPjox1EU79+fT755BMmT57MiRMnCA4OZvXq1Vy5cgUvLy/8/f0ZMGDAE3tclhVXV1eio6MZM2YMgwcP5uDBgyxevPiF/369CEmSUP87R0CjAYN/5wgYlnCOQHx8fJF9Anz00UccOXKEkJAQvRmQ819ethZcTcsjXU+WesuA6sYGdLR99mBPQShLIkEpCILOPeu8w8Dg0Yu7J56sPMdyLZfu/YgMWc/l4wd4tbM35/btpI5DU+o3a/6f3WqwcXKm58SvH7uPGvUaPPZxgIMH/ibw/fdITExkxowZTJw4sVL0VhMeLy8vj9OnTxdJSBYOYLG3t0ehUDBkyBAUCgUuLi7iZ0HHcnJyXriCMjo6mvr165d7clmj0TBjxgy8vb1xc3Mr12OXxPXr15k5cyYbNmygbt26LF68mHffffeJn3uDBg0YNmwYw4YNA+Du3buEhoZq+1iuXr0aKOjFWjh0x8vLS6c9fNVqNYsWLWLq1Kk0a9aMyMhIvalorYreeustoqOjtTcXBP0il8vx9PTE09OTGTNmkJSUpO1duXLlSmbNmkXNmjV544036NGjB927d8fW1paAgAACAgJ48OABu3btIiQkhM8//5yJEyfi5uamTVY2bdoUmUyGh4cHDRs2ZNWqVXz44YecP3+eUaNGERgYyMCBA/H396d9+/blVh1dvXp1fvrpJ7p06cL48eMJDw9n69atvPzy42+elyZJkniQqyYxW0Vitoq72SoSlapH+sdDQf91GzM59c3l2Pz7j5WJ4RM/pxs3bjz28ZiYGJRKJRYW+pc0MzKQ8Za9pd4s9ZaAt+wtMTLQt7pPobIRCUpBEHROXgYndjVt7EiMi0Wj0RRJZt6/cbXg+foNtY85uCqwtK7H2X07cGj1GteijtF51EdF9mdl58DdKxdo4t6xxCeifXv1opNXR/7+++9K2Teoqrt79+4j1ZE5OTmYmJjQpk0bBg4cqK2OtLW11XW4wv8orQpKXVRPhoSEcPHiRX788cdyP3ZxxMfHM3PmTNavX4+1tTULFy4kICCgxJ93/fr1GTx4MIMHDwYgKSmJ0NBQ7dCdwvfv4OBQJGHp4OBQLomDGzduMGLECI4dO8bEiROZMWPGCye9hbI1adIkgoKCtMtKBf1Wt25dfH198fX1Ra1WExUVxV9//cWePXt45513kCQJFxcX3nzzTXr06IGnpycjRoxgxIgRZGRksHv3bkJCQpgxYwZTpkyhRYsW2mTllStXAJg8eTINGjTg5s2brF+/nnXr1hEcHIyTkxMjR45kxIgR5VLVLZPJePfdd/Hw8GDQoEG4ubmxYsWKMpsunpqrJiY5hzMpOeSqC4oADICnLX5SaeB2loo7WSrt60wMZbjUNqW1tSm1TIoWHvw3QWloaIixsTHTpk1jwoQJOq0QfVENqxnR1c6C/bezdB3KM3W1s6ChWNotVAD6Vy8tCEKlYygruNtaml5q35WM5KQivSXVKhVhW9dgbG5B4zae2scNDAxo3rUXl0L3ErN7GxqVipbd+hbZX4s3+pCedJeT2zc+cqz8HCV5yseffOTnKPnxx7UiOVlJ5OfnExUVxbJlyxg2bBiOjo7Y2tri4+PD1q1badCgAXPmzCEiIoK0tDSOHz/OggUL8PHxEcnJCionJ+eFLoAkSeLUqVPlnqAsrJ7s1q0bHh4ez96gHMXHxxMQEEDTpk35448/mDdvHtevX+fDDz8slYvNunXrMmDAAJYvX865c+e4f/8+27dvp3fv3pw+fZpRo0bRuHFj7O3t8fPzY+3atcTFxZX6QBRJkvjxxx9p2bIlt27d4tChQ8yfP18kJ/VA4fLcnJwcHUcilDZDQ0Nee+01pk+fTkREBElJSfz000+0bNmSH3/8kU6dOlG7dm369+/P6tWrefjwIUOGDGHbtm3a75KWLVuyaNEiWrRowbvvvku1atVITExEkiTs7e358ssviYuL49ChQ3h6ejJ79mwaNWpE9+7d2bp1a7n8XLVo0YKoqCgGDBiAn58f/v7+2oFjL0ojSVxNy+XnuDR+iE3lZJJSm5yEpycni+znP/+eq5Y4maTkh9hUfo5L42paLpp/v5P//vtvoCD56u/vz/Xr15kyZYpeJycLudUxo0N9c12H8VQd6pvjVkf/P2uhchAVlIIg6JxMJsPGTM7tLFWp7dO9vx+RIRv4dXogdy6eoWb9hpw/sIubpyN5a9JMTCyK9g5q2a0v4T+vYf8Pc7FxcqZu42ZFnm/dcxDn/t7JjtmTuBZ1DHsXdySNmvvxcZz9eyejvvsFO+eiy/kkSaJhdTP8yuiutlD2kpKSCA8PJywsjPDwcKKiolAqlRgbG+Pq6kq/fv201ZEVsR+e8GwvOiQnISGB5OTkck9Q7ty5k3PnzrFixYpyPe7T3Lp1i1mzZhEcHEzNmjX55ptveP/99zE3L9uLM2tra/r160e/fv0AePDgAUePHtX2sdy8eTMajYYGDRoU6WHZrFmz566wvHfvHgEBAfz++++MGjWKxYsXU7169dJ8W0I5EFO8Kz9ra2uGDh3K0KFD0Wg0xMTEsGfPHv766y/ee+89NBoNr776qnYyuLe3N/369SM3N5cDBw4wevRoMjIycHNzw8HBgf79++Pj44OHhwedOnWiU6dOLFu2jG3bthEcHMyQIUOoWbMmw4YNw9/fnzZt2pRZJbeFhQXr1q2jc+fOjB07lhMnTvDLL7/QvHlBi6L8/Hz27NmDt7c3cnnxLvsTMvPZfTODh3ka7ZCX0votKdzPzYx84jPyqWlsQE97S6ytrXFwcGDHjh24uLiU0tEqDs96Bcm/o3ezdRzJozrWN0dRTyQnhYpDJom/zIIgVAAHbmcSfT+nyN3W/SvncWDVfKYeuFRkIM626eM4v38XQcdvFtnHqnf7kP3wARO2HQUg88F9/lo6g0uh+8jJyqCOvRPth79Hm95DHzm+JEnM7dmatMR/6DZ2Cp1Hf/zIa9T5+RzbvJKY3b+QknADI1MzrBrY84rXm7QbNgbTapZFXm8gK7hz2qWB/vXOqYpUKhVnz54tslz7+vXrQEFzfoVCgaenJwqFgtatW4sqqUrCxcWFDh06sHz58ufa/rfffqN///7cvn2bBg2e3Iu2NEmShKurK1ZWVhw4cKBcjvk0CQkJzJ49m7Vr11KjRg0++eQTxo4dW2H6hj18+JBjx45pE5bR0dFoNBpsbGy0ycpOnTrx8ssvFyuRsGPHDgICAgBYvXo1ffr0Keu3IJSBwv/X4lKo6kpNTWX//v3ahOXdu3exsLCgS5cu9OjRg27dutGmTRsmTZqEQqHg119/5bfffuPevXvY2trSr18/fHx86NChgzYBeOXKFdatW8f69eu5c+cOzZs3x9/fn+HDh1O3bt0yey+XLl1i0KBBXL16lWXLlvHOO+/w6aefMn/+fL777jvGjh371O3zNRJH7mQRdT8HGaWXlHyawuO41THFy9ai0vc/jLqvZP/trHL7fJ+k8Phd7SxE5aRQ4YgEpSAIFcKFBznsupmp6zBKXW97S5ytTHQdhvAY9+/fJyIiQlshefLkSbKzszEyMqJ169baykiFQkHDhg3LrQm+UL5eeuklevfuzfz5859r+2nTprF69Wru3r1bbj8jv//+O3369OHw4cN4eXmVyzEf5/bt28yZM4c1a9ZgaWmpTUyW93TbkkpPT+f48ePaoTtRUVGo1Wrq1q1Lx44dtT0snZ2di/QwTktL48MPP2T9+vX07duXH374oUwTDkLZMjIyQqVSiQSlABQkqs+ePaudDB4WFoZKVbCyp1+/fowZMwYvLy+MjIwICwsjJCSE7du3k5CQgLW1NX379sXHx4cuXbpgbGyMWq3m77//Jjg4mB07dqDRaOjZsyf+/v54e3tjZFT6/f6USiUTJkxg1apVdOrUicOHDwMFbTFu3rz5xBurCZn5/HEzQ2cTpwsnSL9lb1np+yCKz1oQnk4kKAVBqBBSclSsvvhQ12GUuoBXamFl+ugUcqF8qVQqzp8/X6Q6Mi4uDgAbG5si1ZGurq6Vou+RUDyNGjVixIgRzJgx47m29/b2RiaTsXv37lKO7PEkSaJt27ZYWFhw5MiRcjnm/7pz5w5z5sxh1apVVKtWjcmTJzNu3LgKn5h8kszMTMLCwrQJy5MnT5Kfn0/t2rW1CUtzc3NmzJhBamoqS5cuZcSIEeKmhZ6rVasWDx8+5MiRI3Ts2FHX4QgVTFpaGtOmTWPZsmXY2tpy584dzMzM6Ny5s3bYTpMmTTh58iQhISGEhIRw7do1atasSa9evfDx8aFbt26YmZnx4MEDtmzZQnBwMNHR0dStW5fhw4fj7++vXY5dmr7//ns++OAD7X/LZDKWLFlCYGDgI68VVX3lT5fVqm3rmNKxClSrCvpLJCgFQagQJEni23MPijTh1ncmhjImtLASF7E6kJKSoq2ODA8PJzIykszMTORyOa1atSpSHWlvby/+H1VhderU4aOPPuLzzz8v8baSJGFjY0NAQMBzJzhL6s8//6Rnz57s37+f119/vVyOWeju3bt88803/PDDD5ibmzNp0iQCAwOxtLR89sZ6JDs7m/DwcA4fPsyhQ4cIDw9Ho9Egl8vp3LkzPXr0wMvLCxcXFwwNxQ0ofdWqVSvOnDnDgAED2LZtm67DESqg8ePHs3fvXi5dukRsbKy2uvLo0aPk5+fTpEkTevToof1OiIuL0yYrY2NjsbCwoGfPnvhnj1tUAAAgAElEQVT4+ODt7U21atU4e/YswcHBbNq0ieTkZNzc3PD392fo0KHUqlXrhWNWqVR06tSJiIgI1Gq19nFra2tu3bqlvQErSRJh95QVsi9ih/rmeNYzq/TnZv/b77MsroAK91vY71NUTQoVnUhQCoJQYRz8J4uTSUqd3sEtLTLAva4ZnUX/yTKnVqu5cOFCkerIK1euAAXLmv6bjHRzcyvzgR2CfrG0tCQoKIiPP3607+yz3L59m4YNG/Lbb7/Rt2/fMoiuKEmSUCgUGBoacuzYsXK7eEtMTGTu3LmsXLkSU1NTJk6cyPjx4yv9UJhTp07h6+vLtWvXGDVqFHXq1CE0NJTw8HByc3OpUaMGHTp00PaxbN26dbEHUQi698UXXzB79mzs7e2Jj4/XdThCBeTh4YGTkxObNm0q8nhmZiYHDx7UJixv3ryJiYkJXl5e2mE7kiSxfft2QkJCiImJwdTUlO7duzNgwADeeustzM3N2b17N8HBwfz555/I5XL69u2Lv78/Xbt2fe6bH5s3b2b48OHIZLJH2hfMnj2bKVOmAHA8MbtCJicLdahvTjubyn++ppEkrqfnE31fyY2M/FJLVBbux9HSiDZ1zGhc3QiDSp7wFSoHkaAUBKHCSM1V80Nsqq7DKDVjnGtRy0RU15S21NTUItWRJ06cICMjA0NDQ1xcXIokJB0dHSv9HXjhxcjlcpYtW8b7779f4m0Le0HeunWLhg0blkF0Re3bt4/u3buzd+9eunXrVubHu3fvHvPmzWPFihUYGxvz8ccf8+GHH1KjRo0yP7YuqVQq5s6dy1dffUXz5s3ZtGkTr776qvb5nJwcIiMjtUN3wsLCUCqVWFpa0r59e23Csk2bNmXSZ04oHQ8ePKB27dqYmZmRnV1xEzWCbuTl5VG9enXmzZvH+PHjn/g6SZK4fPkyf/31F3v27OHIkSPk5ubi4OCgXQru6OjI3r17CQkJISIiAiMjI7p27YqPjw99+vRBpVKxadMmgoODiY2Nxc7ODj8/P0aOHEnTpk1LFPeDBw/44YcfOHfuHNHR0Vy7dk1bSWlkZERubi7R93PY/0/WC30+5aEqLPf+r9RcNaeTczidkqNdUWYgA00xsjX/fZ2JoYxWtU1pZW0qrkMEvSMSlIIgVCg/x6VxMyNfr6soZYCDpRGDnSr3RXx50Gg0XLx4UTvIJjw8nEuXLgEFy5X+m4ws7MsnCMWlUqkwMjIiODiYkSNHlnj76dOns2LFCu7du1fmiXBJkmjfvj1qtZrw8PAyPV5SUpJ28quRkREfffQREyZMoGbNmmV2zIri6tWr+Pn5ERkZyZQpU/jyyy8xNjZ+6jZ5eXmcPHlSm7A8duwY2dnZWFhY0K5dO+2UcDc3t2fuSyhfMpkMAwODIkthBQEgOjoaNzc3wsLCUCgUxd4uOzubw4cPa6srr127hpGRER06dKBHjx60atWK2NhYtm/fztGjRwHo1KkTPj4+9O3bl9u3bxMcHMyWLVtIS0ujffv2+Pv7M3DgwOdqp5Gbm8ulS5c4dOgQd+7cIfDLWWy+mlbi/ejK201rVLllyZIkkZqrITFbRaJSxZ2sfBKVKlSaR18rNwAbMzm2FkbYmMmxMZdTy8RA3JwX9JZIUAqCUKFcTcsl5HqGrsN4YQMaV8ephrgQLamHDx9y4sSJItWRaWlpGBgY0LJlyyIJySZNmogTMOGFZGRkUL16dbZs2cKQIUNKvP1bb72FSqXir7/+KoPoijp48CCvv/46u3fvxtvbu0yOcf/+fRYsWMDy5csxNDRkwoQJfPTRR6XSF62ikySJlStXMmnSJGxtbdmwYUOJkhL/lZ+fT3R0tHbozrFjx8jMzMTMzAxPT0/tlHB3d3dMTExK+Z0IJVH4N0RcDgn/a+XKlQQGBpKenv5Cg/Pi4uLYs2cPf/31F4cOHUKpVNKwYUPefPNNFAoF6enp/Pnnnxw8eBC1Wo2np6e2Z+WpU6cIDg5m//79mJubM2DAAPz9/enYseMj5z9JSUn8/PPPjB079omtJvI1EmsupupsgnRJFU6cHv1KrSo/1EWSJDQSqCQJtQYMDUAuk2EgQ5wLC5WKSFAKglChaCSJVbGppOnJydP/kgE1jA0IcK4ler08g0aj4fLly9pkZFhYGBcvXkSSJKysrB6pjqxsgzgE3UtKSqJevXrs2LGDPn36lHh7W1tb/P39mTVrVhlEV1SnTp3IzMzk5MmTpX4xkpycrE1MymQyPvzwQz7++GOsrKxK9TgV1Z07dxg1ahR79+7l/fffZ/78+aVaja1SqYiJieHw4cMcOXKEo0ePkp6ejqmpKR4eHtqEpYeHB6ampqV2XOHZRIJSeJJRo0Zx+vRpTp06VWr7VCqVHD16VFtdefnyZeRyOZ6ennh5eSGXy4mKimLfvn3k5ubi5uaGj48PCoWCo0ePsm7dOq5du0bjxo0ZOXIkI0aMoFGjRgB89NFHfPvtt/j5+REcHIyBgcEjx99/O5Po+zl6dX4tA9zqmPK6XTVdhyIIQjkQCUpBECqchMx8vVp+8r+GN62BXRVbjlIc6enpRaojIyIiePjwITKZjObNm6NQKPD09EShUNC0aVNxR1goc7du3cLe3v65ejrevXsXW1tbQkJC6N+/fxlFWODIkSN06tSJnTt30rt371Lbb0pKCgsXLmTZsmUABAYGMnHiRGrXrl1qx6jotm7dyvvvv4+pqSk//vgjb775ZpkfU61Wc+bMGW3CMjQ0lIcPH2JsbIyHh4e2h6VCoRBDvcqYkZERKpVKJCiFRzRv3pz27duzcuXKMjvGjRs3+Ouvv/jrr784cOAAWVlZ1K9fny5dulC7dm3i4+PZv38/2dnZtGjRgv79++Pg4MDhw4f59ddfyc7OpmvXrgwYMID33ntP+3M8YcIEFi1aVOQ8St/PraviUm9BqIpEglIQhApJ3OXVb5IkceXKlSLVkRcuXECSJGrVqoWHh4e2OtLd3b3STwMWKqbLly/z8ssvc+TIETp27Fiibf/44w969erFjRs3cHBwKJsA/9W1a1eSk5OJiYkplcT9gwcPWLRoEUuXLkWj0TBu3DgmTZqEtbV1KUSrHx48eMC4cePYsmULgwYN4vvvv9dZYlatVnPu3DltD8vQ0FBSUlIwMjLC3d1dm7D09PSkWjXx96U01axZk7S0tBL3GRQqt4yMDGrUqMGaNWsYNWpUuRwzNzeXY8eOaYftXLhwAQMDA9zd3XF0dOThw4ccP36c9PR0mjVrRq9evbCwsODgwYMcO3bskf39d2K3WJ0kCIK+EAlKQRAqJNEnR79kZGQQGRlZpDrywYMHyGQynJ2di1RHNmvW7LFLjwShvJ05c4ZWrVoRGRlJ27ZtS7Tt119/zZIlS0hOTi7Tat/jx4/Tvn37UqnUTE1NZfHixSxZsgSVSsUHH3zA5MmTqVOnTilFqx/27duHv78/2dnZfP/99wwdOlTXIRWh0Wi4cOGCNmF55MgR7t+/j1wux83NTTt0p127dqL1xQtycXHh7NmzDBs2jM2bN+s6HKGCKKxaP3v2LC1atNBJDAkJCdpk5f79+8nIyKBOnTo0b94cjUbD2bNnSU1NxcHBgZs3bz62CnjevHlMnjxZ9HcXBEFviASlIAgVlr4tR6kqy08kSSIuLk6bjAwPD+fcuXNoNBpq1KhRpDrytddeo0YNMc1cqJgiIiJQKBTPdRHap08flEol+/btK6PoCnTv3p07d+5w5syZ507sP3z4kG+//ZZvv/2WvLw8xo4dyyeffELdunVLOdqKLSsri08//ZTvvvuON954gx9//BE7Oztdh/VMkiRx8eJFbbLy8OHD3Lt3D0NDQ1xdXbUJy/bt24vv2xL67LPPmDt3Lo0bN+batWu6DkeoIBYsWMBXX31FWloahoaGug6H/Px8wsLCtAnLM2fOAPDyyy9jaGjIhQsXnrhtVFQUV2s4cTMjXy9u+D+JDHCwNGKwk/iOE4TKTCQoBUEoFZIkof53upxGAwb/TpczfMHpclH3ley/nVWKkZaNrnYWuNV5/imPFVnhYI7/VkcmJycD8MorrxQZZvPKK6+I6khBbxw6dIguXbpw9epVnJycSrStnZ0dvr6+zJkzp4yi+/8E6tatWxk0aFCJt09LS2PJkiUsXryYnJwc3n//fT755BNsbGzKINqK7cSJE/j6+nL79m3mz5/P+++/r7ffVYUtNAqTlUeOHOHOnTsYGBjQqlUr7dCdDh06VIkJ7C8iMTGR+vXrY25uTlZWxT/XEMrHoEGDSExMJDQ0VNehPNadO3fYu3cve/bsYefOneTl5T32dU2aNCHizAXWXNH/6slCY5xrUctE90ljQRDKhkhQCoJQYpIk8SBXTWK2isRsFXezVSQqVag0j75WbgA2ZnLqm8ux+fcfKxPDEiUtjydmc/Rudim+g9LVob457WwqxyADSZK4fv16kerIs2fPolarsbS05LXXXtMu1X7ttdfExa+g1/bs2YO3tze3b9+mQYMGxd7u3r172NjY8MsvvzBw4MAyi69nz57cuHGDc+fOlaiKJz09naVLl7Jo0SKUSiXvvfcen376aZVMTObn5zNjxgxmz55NmzZt2LBhAy+99JKuwypVkiRx7dq1IgnLhIQEZDIZLi4u2h6WHTt2rFIDkIpLJpNhYGCAWq3WdShCBeHo6IiPjw8LFizQdSjP9PLLL3P58uXHPte5c2embtzFySSlXldPFpIB7nXN6NzAQtehCIJQRuS6DkAQBP2RmqsmJjmHMyk55KoLTnUMgMfkJbVUGridpeJOlkr7OhNDGS61TWltbVqsu6Ce9QoqEytikrJjfXMU9fS3cjI7O5uoqCjtIJuIiAiSkpIAeOmll1AoFLz33nsoFAqcnZ0rxFInQSgtSqUSAFNT0xJtd+rUKQDatGlT6jEVioqK4s8//2Tz5s3F/r3LyMhg2bJlLFy4kKysLMaMGcNnn31G/fr1yyzOiiw2NhZfX1/Onj3L9OnTmTJlCnJ55Tv1lclkODk54eTkxDvvvIMkScTHx2uTlTt37mTJkiUAtGjRokjCsqot838SjeZpZzJCVZKUlER8fDzu7u66DqVYHjx4AIChoaE2yS6Xy6lVqxbvjx3LmZTSGzi5f+U8Dqyaz5xT9wGY29OVxm6eDAxaXkpHeDoJOJ2SQydb8zLt/SwIgu5UvrM0QRBKlUaSuJaeR/T9HOIz8pFBkROd4p7S//d1uWqJk0lKIpOUOFga0aaOKU2qGz9xMp9MJqOdjTkmhjL23856JIbyVnh8fVvWXXjR+t/qyDNnzqBSqahWrRru7u4EBARoqyNFpY1Q2RUmKM3MSvZ7HB0dTc2aNXF0dCyLsACYMWMGzZo1Y/Dgwc98bWZmJsuXL2fBggVkZGQQEBDAZ599VqKq0MpEo9GwdOlSPvvsMxwdHQkPD8fNzU3XYZUbmUyGo6Mjjo6O+Pv7A3Dz5k1tD8s9e/awfHlBQsHZ2VmbsPTy8qqSVbaC8F8nT54EKPHgNF3x8PAgNzcXV1dXWrduTatWrXBycsLAwICUHBWrLz7UdYilKlctkZqrwcpU3DAXhMpIJCgFQXiihMx8dt/M4GGehsLUYWklBgv3czMjn/iMfGoaG9DT3vKpQ2bc6phRz0zOHzczdDbdu3Ba91vPiLUiUCqVREdHF0lIJiYmAtC0aVMUCgWjR49GoVDQvHlzUR0pVDk5OTlAySsoo6OjcXV1LbMKjpiYGH7//Xc2bNjw1N/LrKwsvvvuO+bPn096ejqjR49mypQpejH4pazcunWLkSNHcujQISZMmMDs2bNLnICujOzt7fHz88PPzw+A27dvaxOW+/fvZ8WKFUBB5Xzh0B0vLy9sbW11GXa5kMvlqFQqXYchVBAnT57E2toaBwcHXYdSLL///vsTn0vMrpw/14nZKpGgFIRKSiQoBUF4RL5G4sidLKLu55R6YvJ/Fe43LU/D5qtpuNUxxcvWAiODx1/4N6xmxOhXahWJrzwSlYXHcatjSsenxKcrkiRx69atIsnI06dPk5+fj7m5Oe7u7vj7++Pp6YmHhwfW1ta6DlkQdE6pVGJsbFziYSmnTp0qVmXj85o5cyZNmjRh6NChj30+KyuLFStWMG/ePB4+fMg777zD559/TsOGDcsspopOkiQ2btxIYGAgNWrU4MCBA3Tp0kXXYVVYdnZ2vP3227z99ttAwdCN0NBQbR/LVatWAeDk5KRNVnp5eVXKnzFzc3PS09OJioqqUpW2wuNFRkbStm3bSrGEODFb9cxWTGUtT5mFsVnp9Yw0kEGiUoUzJqW2T0EQKg6RoBQEoYiEzHxthSKU31LqwuNE38/halreUysUjQxkdLWrxks1TYpUeJZFrIX7rVGMCs/ylJOTw6lTp4okJO/cuQMUTG1UKBSMHDkShUJBixYtKmXfNUF4UTk5OSWurktOTubWrVtl1n/y3LlzbN++nR9//PGR39vs7GxWrlzJ3LlzefDgAaNGjeLzzz/H3t6+TGLRF/fv3+e9995j+/bt+Pn5sWTJEmrWrKnrsPSKra0tQ4YMYciQIUDBIKjQ0FBtH8s1a9YABcND/puw1Jcqs6dp1KgR58+fZ+nSpWzYsEHX4Qg6JEkSJ0+e5IMPPtB1KKXibrbquZOT8TER/LFwGvfiLlK9bn06+o175jbRv2/h16/G8+7qHZzdt5Pz+3ehVuUz/UgcuVmZ7Pt+DrGH95CRfA/TatWp3+xV3hw/jQavuBQ7Lo0Ed7Lyn/NdCYJQ0YkrVkEQtKLuK3Xe41EC0v+tpnxWj8eG1YwIcK7F9fR8ou8ruZGeh0ajxsDwxb/aCj+Dgh6ZZjSubvTEHpnl4fbt24SFhWmTkTExMeTl5WFmZkbbtm3x9fXVVkeKoQeCUDxKpfK5lndD2Q3ImTlzJg4ODgwfPlz7mFKp1CYmU1JSGDlyJF988UWlSA69qD/++IPRo0ejUqn49ddf8fHx0XVIlUK9evUYOHCgdkr9/fv3OXr0qDZhGRwcDBQsHS9MVnbq1AlHR0e9qzzr2rUr58+fJywsTNehCDoWHx9PcnKy3vSffBpJkkhUPt8S78Srsfz4wSAsatbm9TGT0ahV7P9hLtWsind+uXPOp1jUqk2XdyeSn1Mw4PK32ZM4v38XisHvULdxM7IfpnLz9AmSblwtUYISCiooJUnSu+8aQRCeTSQoBUFAkiTC7im1U7J1OYDmv8fffzuLXLWEZz2zJ56EGMhkyJIT+PGDsUTFXsHv89nYKbqSL8n+fb7gbuuz/Pd1JoYyWtU2pVUxp4yXttzcXGJiYopUR96+fRsoqF5RKBQMHz4chUJBy5YtMTKqGFWdgqBvlErlcw3IqV69Oo0bNy71eGJjY9m2bRs//PADRkZGKJVKVq1axTfffMP9+/cZMWIEU6dOLdPhPPoiIyODjz/+mDVr1tCzZ0/WrFkjBryUoTp16tC/f3/69+8PQEpKCkePHtX2sdy4cSOSJGFnZ1ckYenk5FThkwiffvop3377rbZHs1B1RUZGAvozIOdp1BKonrN88u+Vc5EkiTFrd1GzfkFP4+ZderFkcMdibW9evSajV27H4D89lC8f/Zu2/YbT8+Ov//PKwOeKT6UpOGc3rNhfLYIgPAeRoBQEoUhysqIpjKudjfkjz+Xn57No0SK++uor6taty4aV39OzZ08kqWDCX2K2ikSlijtZ+SQqVY89UZMbgI2ZHFsLI2zM5NiYy6llYlCuF1R37tzRJiLDwsI4deoUubm5mJqa4ubmxtChQ1EoFCgUCnEBLgil6HmWeJ86dQpXV9cS960sjlmzZmFnZ8fgwYNZtmwZc+bMISkpCV9fX6ZOnUqTJk1K/Zj66NixY/j5+ZGUlMSqVasYPXp0hU+CVTa1a9emb9++9O3bF4DU1FSOHTumTVhu2bIFjUZD/fr1iwzdeemllyrc/6vCv6tKpVLHkQi6dvLkSRwcHCrFShSV9HzlBhq1mqvhh3Du1EObnASo27gZTRWduXxs/zP30ba/b5HkJICpZQ0Szp8i/X4i1eu8+LmsSpIwpGJ9lwiC8OJEglIQqriopIqbnCx09G42JoayIsu9T5w4QUBAAOfPn2fChAkEBQVRrVo1AGQyGVamhliZGmqbaEuShEYqOKFRa8DQAOQyGQYyyvViKS8vj9OnTxepjrx16xZQ0AdLoVAwZMgQFAoFLi4uGBsbl1tsglDVPO8S77JYRnz58mW2bNnCoEGDcHZ25u7du9rEpJOTU6kfTx/l5uby5ZdfMn/+fDw9Pdm/f3+ZVLIKJVerVi169epFr169AEhLS+P48ePaoTvbtm1DrVZTr149OnbsqE1YOjs7V5iEpUajy1EiQkVQOCCnMnjeH+es1GTyc5RYN3r0u9Xa3qlYCcpato0eeazHh1+ybXog3/RwocErLrzUriuubw3Cys7hueJUawAxyFsQKh2RoBSEKiwhM5/9/2TpOoxi2X87i3pmcmpolHz++ed8//33uLq6cvLkSVxdXZ+5vUwmw1BGwd3WcjyhSUxMLFIdGR0dTU5ODiYmJrRp04aBAwdqqyNtbW3LLzBBEEpcQZmSkkJ8fHyxvnNKIjc3Fz8/PwwMDNi2bRtvv/0206ZNo2nTpqV6HH129uxZfH19uXjxInPmzGHSpEkYGoqr04qqRo0aeHt74+3tDRQsyQ8LC9MmLD/88ENUKhXW1tbaJeFeXl40b968TKqTBeFZVCoV0dHRBAUF6TqUUqHLXyMj00f/rrbs1heH1h5cOPQncRGHCd3wHUfWL2P4gmBeate1xMcwFF8TglApiQSlIFRR+RqJP25m6HQgTknIgF8uJrFsiBfJ9xJZuHAhgYGBFWo6dX5+PmfOnClSHRkfHw+AnZ0dCoWCAQMGoFAoaNWqFSYmJroNWBCquJL2oIyJiQFKb0BOXl4ewcHBBAUFcffuXdzc3Ni0aRMvvfRSqey/MlCr1SxYsIBp06bx8ssvExUVRcuWLXUdllBClpaWdO/ene7duwOQlZVFeHi4dujOxIkTyc/Px8rKio4dO2oTli1btiyXRLSBgYGooKziLl68SHZ2dqWpoJQ/Z2WyRS1rjEzNSL51/ZHnkm/GvVBM1evYoBg0CsWgUWQ+uM+yYa9zaO3i50pQPu/7EwShYqs4V/aCIJSrI3eySM/T6EVyEgqSqHkGRvT+OIhJvTrQqNGjy0fKW1JSUpFk5MmTJ1EqlRgbG+Pq6kq/fv201ZF2dnbP3qEgCOWqpEu8o6OjqVat2gtXNubn57Nu3TpmzZrFrVu3cHR0xNramtDQ0BL3xKzMrl+/jp+fH2FhYXzyyScEBQWJGzuVhIWFBV27dqVr14LEhFKpJCIiQpuw/Oyzz8jNzaVmzZp06NBBm7Bs1apVmdyYtLCwICMjg9jYWJydnUt9/0LFd/LkSQwMDErtBpSuGcoK+qyXdFCOgaEhTRWdiT28h4d3b2v7UCZdv8LV8EPPFYtGrSYvOwtTy+rax6pZ1aF6HRtUeXkl3p/coGC4pSAIlY9IUApCFZSQmU/U/Rxdh1FiMgMDbD27I7OqUe7HVqlUnDt3jrCwMG1C8vr1grvLtra2KBQKZsyYgUKhwNXVtcR97QRBKH85OTlUr1792S/8V3R0NK1bt37uJaj5+fls2LCBmTNncvPmTQYNGsSqVavw9vZm/vz5Ijn5L0mSWLNmDR999BF169YlNDSU9u3b6zosoQyZmZnRuXNnOnfuDBT8bp44cUI7dGfq1Kna39f27dtrB++4urqWSsLSzs6OixcvsnDhQtauXfvC+xP0T2RkJM7Oztp+5vpOJpNhYybndpaqxNt2HfMJV8IO8sM7vfAY5I9GpSJs6xrqNn6ZxKsXSry/3OxMvnmzJc279qJ+0+YYm1sQd+IIty/E4F1kqnfx2JjJK0zvWkEQSpdIUApCFaORJHbr0dLu/yUDdt/MIMC5FgZleHKSnJz8SHVkVlYWcrkcV1dXevXqpa2ObNiwoThREgQ9pFQqSzStNTo6mt69e5f4OCqVio0bNzJz5kyuX7/OwIED2bVrF82bNycgIIDatWszZsyYEu+3MkpMTOTdd9/ljz/+YPTo0SxatAhLS0tdhyWUM1NTU23VJBT0aT158qQ2YRkUFMSnn35KtWrVaNeunXbojpubG0ZGRiU+XufOnbl48SJHjx4t7bciVGBKpRK1Wk21atUq1YCcQvXN5dzJUlHS5gX1m73KqOVb2b3oS/5eMZca9WzpOuZTMpLvPVeC0sjUDI+Bo7gacYgLB3cjaTTUbuhInynz8BjoX6J9GcjA1qLkv+OCIOgHmSRJ+pijEAThOV1NyyXkeoauw3hhAxpXx6nG4ydc5+bmlmgZoFqt5vz589pBNuHh4cTFFfTZsbGx0SYiFQoFbdq0EVVOglBJtG3bltatW7Nq1apnvjY1NRUrKys2btzI8OHDi7V/lUrF5s2bmTFjBteuXcPHx4fp06fTokULAG7evEnTpk2ZPXs2kyZNeqH3Uhls376dgIAADA0NWbNmjXYitCD8r7y8PKKjo7VDd44fP05mZibm5uZ4enpqE5Zt27Yt1vlAXFwcTZs2xcLCgszMzHJ4B0JF0KlTJ0JDQ3FyciIuLo4hQ4YwceJEWrRogbHx488x9cmFBznsuln5fp5721vibCXafQhCZSQSlIJQxfwcl8bNjHy9rJ4sJAMcLI0Y7FR0qbckSSxYsIDPP/+co0eP4uHh8djtU1JSiIiI0FZHRkZGkpmZiVwup1WrVkUSkvb29qI6UhAqqRYtWtClSxeWLFnyzNcePHiQ119/ndjYWF555ZWnvlalUvHTTz8xY8YM4uLi6NevH9OnT8fFxaXI68aOHcu2bdu4ceNGpVlW+DzS0tIIDAxk48aN9O/fn5UrV1KnTh1dhyXoEZVKxalTp7QJy6pvSYYAACAASURBVGPHjpGeno6pqSmenp7aaszXXnvtiS1YZDIZBgYGqNXqco5e0BV/f3/Wr19P4eWwTCZDkiRatGjB2bNndRzdi0vJUbH64kNdh1HqAl6phZVp2Q/PEgSh/Ikl3oJQhaTmqonPyNd1GC9MAm5k5JOaq6aWScEJilKpZNSoUfz888/IZDL27duHh4cHarWa2NhYbTIyLCyMK1euAFC3bl0UCgVTp05FoVDg5uaGubm5Dt+ZIAjlqSRDcqKjo7GwsKBZs2ZPfI1arWbLli3MmDGDK1eu0KdPH7Zt20arVq0eee3t27dZu3YtQUFBVTo5efDgQUaOHElaWhrr16/H19dX3BQSSkwul+Pu7o67uzuTJ09GrVZz+vRp7dCdxYsXM336dExMTPDw8NAmLBUKRZFVEWKSd9XStWtX1q1bp/3vwkRlz549dRRR6bIyMcTEUEauWp/LEooyMZRRy+T5+kALglDxiQpKQahCDv6TxckkpV5XTxaSAe51zejcwIKEhAR69erFuXPn0Gg0yGQyHB0dady4MSdOnCAjIwNDQ0NatmyJQqHA09MThUKBo6OjuBAWhCrMzs6O0aNH89VXXz3ztUOHDiUhIYFjx4498pxarWbr1q18/fXXXL58mV69evHVV1/h6ur6xP2NHz+ezZs3Ex8fXyV7LCqVSqZMmcKSJUvo3Lkz69ato1GjRroOS6ik1Go1Z8+e1fawDA0N5cGDBxgbG+Pu7o6XlxezZs0C/j9JJVR+iYmJ1K9fX/vfhoaGdOrUib1792JoWDkq9Crrub8gCJWTqKAUhCpCkiTOpORUihMUKKiiPJ2SQ2rkPvx8fcnOztZeVEiSxPXr13F2dmbKlCkoFAratm2LhYU4oREE4f8plcpi95SNjo6mR48eRR5Tq9Vs27aNr7/+mosXL/LWW2+xadMm3Nzcnrqvu3fvsmrVKqZOnVolk5PR0dH4+vpy/fp1Fi9ezPjx4597MrogFIehoSGtW7emdevWTJgwAY1Gw/nz57UJyx9++EH72sIl4Z06daJdu3ZVusK5srOxsaFZs2ZcuXIFmUxG/fr12bp1a6VJTgK0tjYlMkmp6zBKhQS0si7eqgdBEPSTSFAKQhXxIFddoZZ4pN9PJDJkA86de2D7Uovn2keuWmL8Z1PJysp67PPz5s17Zq84QRCqruIu8U5LS+Pq1at88cUXQMEy0F9//ZWgoCBiY2Px9vZm/fr1xZ4AO3/+fExNTQkMDHyh+PWNSqVi9uzZzJgxAxcXF06dOoWzs7OuwxKqIAMDA1q2bEnLli0JDAxEkiRMTU3Jy8vj1KlThIeH880332BoaEibNm20Q3fat29P9erVdR2+UIo6d+7MlStXMDQ0ZNeuXdSuXVvXIZWqWiaGOFgaVZr+84WtnQRBqJzE7WpBqCISs1W6DqGI9PuJHFg1n7uXz7/Qfn789XeWLVvG22+/Tb169Yo8FxER8UL7FgSh8pIkiZycnGJVUMbExADQunVrfv31V1xcXBg8eDCNGjUiIiKC3bt3Fzs5ee/ePVauXMmECROoUaPGszeoJK5cuUK7du34+uuvmTJlCuHh4SI5KVQIhcNx8vLyAMjNzdU+991339G4cWM2btxIz549qVWrFm3btmXSpEns2rWLhw8r3wCSykiSJFQaiRy1hux8DTlqDSqNhCRJ2lYcc+fOfWy/4MqgTR1TvU5OQkH1ZJs6xVvxIAiC/hIVlIJQRSRmqzAA9LX9e54yG2OzogNsDGQgt7Jh3LhxjBs3Tru0+/Dhw0RGRj5zmaUgCFVXXl6etmrqWaKiojA2Nmb48OGcO3eObt26sWrVKhQKRYmPu2DBAuRyOR9++OHzhK13JEni+++/Z/LkydjZ2XH8+HFee+01XYclCM8kl8sZM2YMY8aMQZIk4uLitFPCt27dysKFC5HJZLRq1Uo7dKdjx45YWVnpOvQqTZIkHuSqScxWkZit4m62ikSlCtVjToDlBlCv0yA2R72Oi2MDUnJUWJkYVrr+5E2qG/N/7N13eFPl28Dx78lo070oLaVA2Za9R5kiDmRvedkiQxw/EUVxFQeKuFAUEBQUFBUR2QoUkCWzbETZpS0tLdDdtM047x8loWnT3ZKmfT7XlSvNyck5T9KV3M/93Leng4KkLKNdBiolwMNBQT13ta2HIghCORNNcgShkouOjuatt95i3aatpCTewd3Xn0Yhvej38lxUagfuRF3jjy/e4fKRfeizMvFv0IRek1/kgW6PmI8RvvEn1s55nlmbw/EKuNfE4MqxAyybMojJS9dTr10XAJZOHkh64h1GffgNG+e9QuTZ4zi5eRAyago9Jjxn8bjchs35grYDRpmPMfztL9n8yRtEnz9F+8Fj0aYk8t/+MF7bdhalOvtNSqCLijGNPHnkkUeIiIjgv//+K8+XUxCESiIpKQlPT0/WrFnD8OHDre4jyzIbNmxg4sSJJCYm0rt3b+bMmUOXLl1KdM74+HiCgoKYMWMG7733XmmGbxeio6OZOHEiO3bs4JlnnuHDDz8UtYCFCmfGjBksWLAgz/bp06fz1VdfWX2MLMtcvXrV3CV8z549REREIEkSzZs3N9ew7N69O9WqVSvvpyAACZkGTtzK4NTtDHNJo6JOzOfcz1Ep0dJHQ+tqmkq1nDgyVcePF5NsPYwSG9PQg0BXEaAUhMpOZFAKQiV248YNOnToQGJiIm0Hj8WnTkOS42M4G7YJXYYWbXIiiyc+ji5DS8gTk3H28Ob45p9ZOWMso+cvp2mvviU6rzY5kRXPjqTpg31p/vBAzoZt4s8v3sG/YTCNu/TGt25Dej/9KmGL59FhyDiCWncCoE7Le0sk05PusOK5J2jx6CBaPz4cVx9fHJycObF5DRcO7ia4e3YANVarJyYmhl27dhEaGlr6F00QypEsyxhk0MsyRiMoFKCSJJQSlS5jo6LTarObBlhb4i3LMhs3bmTOnDmcPHkSZ2dnBg8ezLp160p1zk8//RRJkpgxY0apjmMPfvrpJ6ZPn46zszPbtm3jkUceKfxBgmADn332GUuXLiU9Pd1ie37BScj+e12vXj3q1avHk08+CcC1a9fMwcotW7awcOFCAJo2bWoRsMxdjkYoOaMsczk5i/D4DK6l6JDAIkOwqKuGcu6XaZA5GqflSJyWIDc1bX011Hd3QGHn/6Nruapp56shPN6+GmZKQDtfjQhOCkIVIQKUglCJzZ49m9jYWA4cPMRf6rrm7Q8//SqyLLPlkzdJvR3P1G83mYOE7YeM4fORPdny6VsE9+xTos6qyfGxDH/nK9r0GwFAu0Gjmd+3NcfW/0jjLr1x86lO4y4PEbZ4HrVbtKN137zZSym34hj02sd0HDbevM1oNOLhF8DJrb+aA5R6I6z+6SeMRiNjxowp9lgFobwUd5mZv5OKGs4q/O9eKuMys4rEFKDMucRblmU2b97MnDlzOH78OD179uSPP/7g8ccfp3///qU63+3bt/nyyy959tlnK10Thpzu3LnD9OnT+eWXXxg1ahRfffUVXl5eth6WIBTo5s2buLm5mW8XpfRDbkFBQQQFBTF+fPb7lsjISHPAcseOHSxatAiABx54wNx0p0ePHtSoUaNsnkQVE5mqY0tEColZRkz/Kcsq8GY6TkSKjmspOjwdFPSt40YtOw+S9Qhw4WJSFsl2stRbAtwdFHQPEJn3glBViCY5glBJGY1G1q9fT//+/WnVtm2e+yVJ4r8DYQQ2a2MOTgI4OrvSYchYEm5cJ+5KyZZLOzi7WAQdVWoHApu24U50RJGPoXJwpO3AURbbFAoFrfoM5fzebWSmpZq3r169mpCQEOrWrZv7MIJw3yVkGtgVncaCM3dYdj6RTRGphMdnEJVmPTgJ2YH2qDQ94fEZbIpIZdn5RBacucOu6DQSMg339wkUoKBGA/YmIyMDyM6glGWZLVu20KFDBwYMGICrqyu7d+9m9+7duLi4IMsyba38HS2OBQsWYDQamTlzZlkMv0L6888/adasGdu3b+fnn39m9erVIjgp2AVXV1eef/558+358+eX+pi1atVizJgxLFu2jAsXLhAdHc3q1avp0aMHu3fvZtSoUQQEBNCoUSOmTJnCjz/+SFRUVKnPW9npjDJhUan8eDGJpKzsf6rl9R/IdNykLCM/XkwiLCoVndH+/t+ZqBUS/eq42UVwErJf/3513FArxGStIFQVIoNSECqp+Ph4kpOTadasGcZ8giKJMVE0b5b3Q3f1uo3u3h+Jf4PgYp/bo3pAnswvJ3cPYi/+U+RjuFevgUrtkGd7634j2fPdQs7t3kKbfiOJv3aJ4+HhPPbYY8ybNw83N7cCL66urqhU4k+fULYq4zKzyp4BasqgPH78OC+++CJHjhyha9eu7Ny5kwcffNA89vDwcBwdHQkOLv7fQpOEhAS++OILpk+fjq+vb5mMvyJJS0vjpZdeYsmSJTz66KMsX76cgIAAWw9LEIrl888/58svv8RoNPLss8+iN8plWo4jICCAUaNGMWpU9uRrbGwse/fuNdexXLZsGQD169c3Z1f26NGDOnXqlNlztHeRqTo2R6SQXM6BydxM5wmPz+BiUhb97Dibsparmt6BLoRFpdl6KIXqHehit6+zIAglIz6lC0IVUIJV2pbyeTNuNFjP7FIorRcVL06WldrR+vIqv3qNqRnckhNb19Km30hObP0VSZI4e/YsR44cISUlBZ1OV+CxnZycCg1iFhboNF1cXFxKtAxeqDwq2zKzkjQaMGWA3kjT20WjAVmW+euvvwB4/vnnCQkJYceOHTz00EN5gg/h4eG0bNkStbrkr/kXX3xBVlYWL730UmmGXSEdPHiQcePGcePGDRYtWsS0adMqdGBaEHLLORmzPSKJmHQ9n5y+Xe6TMf7+/owYMYIRI7LL4cTHx1sELJcvXw5kLx03BSt79uxJUFBQlfwdOxavJSwqLc8E4P0kA8l3syl7B7rQzjdvDWN70M7XiUyDzL6Y9MJ3tpFuNZzt9vUVBKHkRIBSECopX19f3N3dOXv2LKp83sh61ggkPuJSnu3x1y7evb8WAE7ungBoU5LIuVgvMSayxOOTKPmb69b9RrD107dIjo/l1J/rGDhwEL//fq95RWZmJikpKYVeUlNTLW7funWLq1ev5tnPmF8KKtmZFC4uLkUOaBZ20Wg0VfKDhz3SGWX23EjjWHxGmQcmc8u9zKydr4YeAS5ltuypMmaAWiPLMmFhYYSGhnLw4EEAvv/+e8aOHZvv793x48fp0aNHic+ZlJTEggULmDZtWqVqjpGVlcU777zDBx98QPv27dm6dSsNGza09bAEocgq2mSMr68vQ4cOZejQoQDcunWLffv2metYrly5ElmWqVWrljlY2aNHD+rXr1+p3zfIsszfN7XmYJqtlyebzh8WlUamQSbEz8kuX/8Qv+zgX0UMUnav4UxnPxGcFISqSAQoBaGSUigUDBo0iB9++IET4cdQOdS1yAaQZZnGXXpzYPXXRJw6au6gnaVN48i6VXgF1KZ6vcYA+AQGAXD1+EECGjcHsrMnj6xbVeLxqZ2cgeygZ3G1fGwIWz8LZfPHr3Mn6hpjFnxscb+joyOOjo5Uq1atxOMzkWUZrVZbpIBn7kt0dHSebWlpBS+pUSqVpcrozH1xcMi7TF4ovcq0zKyyZYBaHYcss2vXLkJDQzlw4AAdOnRgzpw5zJkzh4cffjjfD5dpaWn8+++/vPjiiyU+95dffolWq+Xll18u8TEqmnPnzjF27FjOnDnDO++8wyuvvCJKZwh2wZ4mY6pVq8bgwYMZPHgwkF0qImfAcvXq1RiNRgICAiwClo0aNbLLgFl+cgYnKxrTuLr4O9t4JMUnSRJd/J1xVEo2z0wFzOe358xUQRBKT7ybFIRK7P3332f79u307NmTbsPH4xzYgORbNzkbtpGpyzfTY+LznNq2ju+ee4KQUZNxcvfk+OZfSIiOYPRHK8xLl/3qP0Ct5u3YtnAu2qREnDw8Ob1tPUaDvsRj8wkMQuPmwZHfvsfRxRUHJxdqNWuDd83Cay25elWjUedenNmxEWd3D/r161ficRRGkiScnZ1xdnYuk+wno9GYJ3OzoKzO3BmeubeZGn3kx8HBocyyO11dXVHms3y/Kqksy8wqUwZoQXbv3k1oaCj79u2jXbt2bNmyhT59+vDbb78B2SUf8nPy5EmMRiNt2rQp0blTUlL49NNPmTx5cqWoyWg0GlmwYAGvvfYa9evX5/DhwyV+bQThfrP3yRgvLy8GDBjAgAEDgOzs7P3797Nnzx7++usv1qxZg8FgwN/f36KGZXBwsN0GLI/FVdzgpMm+mHQclZLdBtXa+Trh56QyT7ra4n2NqVu3Pdf2FAShbIgApSBUYjVr1uTw4cO8+eabbNz8K6kpKbhXr0GjkF6oNU44uXnw9Iqt/PHFO/z98zfoszLxb9iEcQt+4IFuj1gc64m5i/l97kvs+e4LNG7utBs4mvrtu/Lt08NKNDalWs3wd75k28L3WP/+yxj1eobN+aJIAUqANv1G8O++7TzYfwiOjo4lGoMtKBQK3N3dcXd3L5Pj6XS6AoOa+V2SkpKIiorKs12vLzjo7OzsXKqMztz1O+3pQ1NlWmZWmTJA87Nnzx5CQ0PZs2cPbdu2ZdOmTfTt29f8Gpma5BQUoDx+/DgODg40bdq0RGNYtGgRqampvPLKKyV6fEUSERHB+PHj2bt3LzNmzGDu3LloNNZrBQtCRVJZJ2M8PDzo27cvffv2BbInRA4cOGAOWD7//PPo9Xp8fX0tApZNmza1i9rZkak6wqIrfiMXyP4/7OekstvgWi1XNU8Fe1n8ntyP9wWm87Tz1dD9Pk1aCoJQsUlycbpWCIJgt87dyWBTRKqth1Fm/vnrD1a9OI6Vm8MY2/chWw+nUpBl2Wr9zpIEQE2Xgv7FSJJUJsFO0zHKu37ngdj0Cp3J0a2Gc5GWmVWEDFAov+Vc+/btIzQ0lN27d9O6dWvefvtt+vXrl+dnY+nSpUybNg2DwZDvz82ECRM4d+4cR48eLfY40tLSCAoKYtiwYSxevLhEz6UikGWZ77//nueffx4vLy++//57evbsaethCUKR5JyMqWqZYampqRw8eNDcdOfIkSPodDp8fHzo3r27eVl48+bNK1zAUmeU+eZ8gs2+b8Vl+j4/Fexl90G23JnG5fH6m45rq7IvgiBUXCKDUhCqCH/nyvXrfmTdKrwDg3i8V8mbVwiWJElCo9Gg0Wjw9fUt9fFkWSY9Pb1Egc3IyMg829LTCw4OqlSqMsvudHNzs+jaXBmWmVWmDFBrDhw4QGhoKDt37qRVq1asX7+eAQMG5HvMjIyMQoPa4eHhhISElGg8ixcvJjExkVdffbVEj68I4uLimDp1KuvXr2fChAksWLAADw8PWw9LEIqkIkzG2LLrs6urKw8//DAPP/wwAOnp6Rw6dMgcsJw1axZZWVl4eXnRrVs3c8CyZcuWNi/nsudGmt0EJ+He93nvjTQeCnS19XBKpZarmilNvLiSrCM8XstVK7VaS8p0nOxarU7Uc1fbtHGeIAgVT+WKWAiCkC9vRyWOSsncqdJendr2O7EXzvHf/h0MmvU+3hpRE7GiMnU4d3Fxwd/fv9THMxgM5mzO4mZ1xsXF5dmWmZlZ4PkcHR1xc3OjQfuuDHhvqV0sRy9omZm9Nxo4efIkDRs2xMXFxWL7wYMHCQ0NZceOHbRo0YJ169YxcODAQjOCtFptgcu709PT+eeff3juueeK8UzuPfajjz5iwoQJ1KlTtLIVFc3GjRuZPHkyRqORdevWmRt1CEJFV9knY0rK2dmZXr160atXLyD7b+Dhw4fNTXdef/11MjIy8PDwoGvXruamO61bt76vTbAiU3Uciy+4vnZFJANH4zNo5Olo9xmBCkmigYcDDTwcSMg0cPJWBidzdruXwFiEX6yc+zkqJVr5aGhVym73giBUbiJAKQhVhCRJtPTRcDROa/M366Xx8+wpODi70G7QaJ6ZPt0ugkZC2VAqlXh4eJRZBpdOpys8uJmWjtxlGMgy2MHPmgRsjkjJs8zM3jNA9+3bR8+ePRkzZgzff/89AIcPHyY0NJRt27bRrFkz1q5dy+DBg4u8VNGUQZmf06dPYzQaadu2bbGfy9KlS7l9+zazZ88u9mNtLTk5mRkzZrB8+XL69+/PsmXLyqRBmCDcL/Y+GXO/ODk50bNnT3PJhszMTI4cOWIOWL711ltotVrc3Nzo2rWruYZl27ZtLVYYlCWjLLMlIsXmJUhKSgK2RKQwpYlXpckM9HJU8mBNF3oGOJOQaSQ2XU+sVs+NNB2xWj16Y97HqBTg76QiwEWNv5MKf2cVXo4K8Z5dEIRCiRqUglCFJGQa+PqfBFsPo8xMbeIlZmGFchUWlUp4fIZdfVCSjUZSzh3CcO4Abm5uOAfUJavVI3YRYAUY3dDDIvskPj6eZs2aERcXhyRJrFmzhuXLl/PHH3/QtGlTQkNDGTp0aLFrqL366qusXbuWS5cuWb3/q6++YsaMGaSkpBSrEZdWq6VevXo89thjrFixolhjsrW9e/cyfvx4bt26xeeff87EiRPFB0rBrhyL09pFY5X7vdy7JLKysjh27Ji56c6BAwdIS0vDxcWFLl26mAOW7du3x8HBodDjybJMWloarq75L4G+mJTJb1dSyvJp2MSweu408Cj8NbF3sixjlEEvyxiMoFSASpJQSIj/HYIglEjFqogsCEK58nJUEuSmxt7fMkhAXTe1CE4K5cq0zMyegpMAkkKBW7POHDh3iSXLviHOrwlGo8HWwyoSUwao7u6aMKPRyOjRo7l9+7Z5n+HDh3Pt2jV+/vlnTp8+zfDhw0vU4EGr1RaYQRkeHk6zZs2KFZwE+Pbbb4mLi+O1114r9phsJSMjg5dffpmePXtSq1YtTp8+zZNPPik+YAp2xd66Pkem6mw9jAI5ODgQEhLC7Nmz2bZtGwkJCRw6dIi33noLpVLJvHnz6Nq1K56envTu3Zt3332XvXv35ls+5euvv6ZatWqsXbs233OG5+i0bq8kIDxea+th3BeSJKFUSDgqFTirFTgqFSgVkvjfIQhCiYkMSkGoYsTstCAUzijLLP0ngSQ7KtKfkwR4OCio7+HAcXsLssoy9VUZhPgo+Oabb5gzZ47F3ZIkcfbsWZo0aVKq00ydOpXjx4/n26G7VatWtG/fnmXLlhX5mJmZmdSvX59evXqxcuXKUo3vfjl58iRjx47lwoULzJ07lxkzZti8QYYgFJfo+nz/6fV6Tp48aW66s2/fPpKSktBoNHTq1MncdKdjx444OTnx+OOP88cffwAwb948Zs2aZRHIEqt8BEEQBBGgFIQqprIEXipTfR+h4qksgXx7JctGvp40gIiTh63e7+vrS8eOHUvUnd3JKbtBxbhx47h27Rp79+7Nc/yMjAzc3NxYuHAh06ZNK/K4lyxZwvTp0zl//jyNGzcu8fO/HwwGA/Pnzyc0NJQmTZqwatUqmjdvbuthCUKJ2GM5Dglo56ux+67PJgaDgVOnTplrWO7du5eEhAQcHBzo0KEDhw8fRqe7lzX65JNPsnjxYvPy8F3RaXZfJ91EAjpUd+LBmi6F7isIgiDcIwKUglAFRabq+PFikq2HUWJjGnoQaOcdEoWK7edLSUSk6CrFByW7JMuk3orl/T6tkI15K/D7+PgQEhJitbFRampqgYdWKBS4ubmRlZWFQqGgSZMmeYKYqamprFq1ihkzZtCsWbMCA56mJeBZWVk0bNiQLl26sHr16nJ5WcrKpUuXGD9+PIcOHeKVV14hNDS02EvZBaGisPf3NLnr7lYWRqORM2fOsGfPHtavX8/u3bvz7NO8eXO2b9+On58fC87cMXeJrgwclRIvNPcWy50FQRCKQQQoBaGKEtkGgmBdZVtmZs+GBLnQwMMRSSp6TSuj0UhaWlq+ndlTU1NJSUlh6dKlGAwGevXqlWef6Oho4uPjcXJyQqstuJaYWq3Gzc0NSZK4ffs2LVu2xM/Pr8gZna6urha3VSpVWbx0VsmyzNKlS5k5cyZ+fn6sXLmSLl26lNv5BKG8iVUh9uGzzz7jpZdewmhlwqlDhw5s3XOAZecTbTCy8pMcH4th7xpGDRtCq1atbD0cQRAEu1B+74IFQajQegS4cDEpy+7qNXUPEMtlhPJ14lZ2kX57+L2ozCTgxO0sGnkVr9OtKUPSzc2twP3+/PNPqlWrZrXG5OTJkzl69CgnT55Er9ebg5r5XRITE/noo49o0KABrVu3Nm+/ceNGnn1zLnG0RqPRlGjpurWLi4uLuYFQTEwMkyZN4o8//mDq1Kl8/PHHBXbTFQR7cDk5i8SsvEEveyEDiVlGriTrKnVd7f3791sEJxs2bEi3bt2oX78+o0ePJjZdb8PRlY/k+Fi+mvsuwQ3qiQClIAhCEYkApSBUUWqFRL86bnazLEoG+tVxs9ti8oJ9kGWZU7ezM4sjz51g80evE3PhHLqMdJ77aRcBjQuv0Re+8SfWznmeWZvD8QqoDcDSyQMBmLJsQ3kOv1KRgaspOhIyDeXSaCAjIyPfLt7h4eG0bdsWAJVKhaenJ56envke67vvviMpKYm9e/fSokWLAs+blZVVYLAzv8vt27e5du1anu3WMpJycnV1Ra1Wk5SUhEKhoHnz5ty4cYOpU6dazeAsSv1OQagoTF2f7XlCydT1uTIHKMeNG0fTpk3p3LkznTp1wsvLy+L+nVGpKAD7DTXfY9DrkWUjClsPRBAEwQ6JAKUgVGG1XNX0DnQhLCrN1kMpVO9Al0pZo0moWO5kGsg0yBh0OlbPmoTa0ZF+M99FrXHCq0YtWw+vypGAk7cyyqXRgFarxckpb3ZmZmYmZ8+eZdKkSUU6jl6vZ+7cuQwePLjQ4CSAg4MDPj4++Pj4FHvMVetnVAAAIABJREFUucmyjFarzTeoefPmTVauXMnx48dp2LAhnTt3RqfTkZqaajW7s7D6nUqlslgBzcIupuYYZUmWZQwy6GUZoxEUClBJEkoJEVytZBIyDVxLKTgj2R6U92RMRTBw4EAGDhxosS0lJYU333yT9evXE30jBkdXd2o0aspjz79JzeCWfNi3DfXahTD87S8tHpd7wu/KsQMsmzKIUR8sJebCOY5tXE1mWhoNOnRjwKsf4ulf0+Kx6Yl3GP72l2ycP5sb/53Bzac6PSY8R8dhEyzOk3onnm0L3+PffTvISE2mWp0GdB0zjbb9nzDvk3DjOvP7taXPC3NQKJUc/OVbEm5c5/EZb7PlkzcBmDhxIhMnTgRgxYoVTJhgeR5BEAThHhGgFIQqrp2vE5kGmX0x6bYeSr661XCmnW/xlnkKQkmYlpndjrpGYkwkQ978lPaDxxbrGK37jqDFo4NROVT8piNhS+azc+lHvLHzX1y8Sh8wK+w8HxyPL9bjZODk7Qx6BjiXeXBJq9VazaA8e/YsOp3OnEFZmJ9++olLly6xZs2aMh1fUUiShLOzM87Ozvj5+VncFxYWxssvv0xKSgqrVq1i9OjRhb6GhdXvLOhy69atPNsyMjIKPJ+Dg0OpAp6urm7g7E662pkkWU2s1kCsVo/eShqWSgH+TipqOKvwv3vxdlSKoKUdq0zlOMpzMsbWEhMTqVOnDs2bN2fFihU0bNgQgGnTprF27VqeeeYZotxrk5KQQMTJw8RdvUjN4JbFPs/ubxeAJNFj/POkJsRzYPVSvn16KM//tBu15t57SG1yIt89P4rmDw+g5WODObN9A+vffxmlSk27QaMB0GVoWTZ5ELcjr9Jp5CS8a9bmzI6NrA19joyUJLr831SLc4dv/Al9ViYdhoxFqXag6YN9yUxPI2zxPCZPnkz37t0BCAkJKenLKAiCUCWIAKUgCIT4Zb9xq4hByu41nOnsJ4KTwv0Rm65HAaTdyQ6kadw8in0MhVKJQlm+WTBZ2nQcnJzL9RwVRaZBJiHTiLembF/TjIwMqxmU4eHhKJVKWrYs/AOywWDgvffeo3///rRu3bpMx1dS6enpvPrqqyxcuJCHHnqIFStWUKtW0bJ/i1q/s6j0en2+TYoKuxRUv9M7MIiOw8bTfvBYnLI0gBGDLgWFSp1vwFFvzO72HJmSiaTI/lmSDDq80+IIJBVfF8d863cKFU/Ochxw/yZbyoK1MiDlORlja5cuXSI5OZkDBw7QqFEjOnXqxPLly9myZQuTJ09m/sef8PGp23f3fq7E50lPTuDF3/7G0SW7tm7NB1qw+pWnOPL7KrqMmmLeLzk+lsdffIduY54GoMPQ8Swa9yjbvpxL674jUKrVHFm3krirFxjx3mJaPz4MgI5DJ7B08kC2L/qAdgNHm88DkBR3g5c2HMHVq5p5W+MuDxG2eB6dOnVmzJgxJX5egiAIVYkIUAqCgCRJdPF3xlEpERaVZvOMBNP5ewe6iMxJ4b6KSdfzS+izHN/0CwCrZ2Uv863bNoT+L7/P/h8Xc/X4IVLiY9G4udO4S2/6vDAHF09v8zGsffjMLb99TEvVJi9dT7122d2Vcy5J2/zJG0SfP0X7wWPp//Jc9FmZ7P52ASf/WEvSzRu4elej5aNDeHj6q3aRwVlUsen6Mg9Q5rfEOzw8nODgYKv35bZmzRouXLjADz/8UKZjK6mjR48yduxYIiIi+Pzzz3n22WdtGmRTqVR4eXnlqTdXEkZZ5t/b6YTHaYnOBAkZmXuBHKW68OXikiSBdO/nSFaqiXf247aqJhcO7ubgL9/w3/4wZKMRSZJwcXEps+XsGo2m0gWebMlUjqMyKa/JmNIwGo3o9Xqr1zm/NhgMefaRZRm9Xs/Fixctjnno0CGaNGmCSqVi586dXI+OBqzXAy6ONn1HWAQNm/UegFs1P/7bH2YRoFSoVHQcOs58W6V2oOPQ8ax//2Wiz5+idot2/Lc/DLdq1Wn52BDzfkq1mpBRk/l59hSuhP9NcPdH7p2rVz+L4GROhkqR4ysIgnB/iAClIAhm7Xyd8HNSsTkixWbdvU3duvvVcRM1J4X7SpZlYrV6OgwZj7tvDf5avoCQUZMJbNIaVx9fLh3ew52oCNoOGIWbT3VuXv6Xo7+v4uaV/5j+/Z/lGnxIT7rDiueeoMWjg2j9+HBcfXwxGo2sfGEM104eocOQsVSv24jYS/+wf/USbl2/zNhPV5bbeO4nhQSxWj1NKNuAa35Nco4fP16k5d1Go5F3332XPn360L59+zIdW3HpdDrmzp3Le++9R+vWrTlx4gQPPPCATcdUliJTdWyJSCExy2gOSeYMTpaGQpX9Vrhx55406vwgDvoMvG+cQRcXlW92Z3R0dJ5taWkF13JWKpXmpkSurq64uLjg4uKCs7Oz+dr0tUajwdnZGScnJ5ycnNBoNOavHR0d0Wg0KBSKPIEhU0Ao53XOfQwGg8V9ubfn/Dr3fbm3595m7doUxDJdTNvy2yfn/bn3yX3t1yqEFmP+VyY/AxXJoyNGcy5sI7Kc/Q4s97W1bdbuy/11QdtsRa/X8++//9IwqA4BwS1p3KU3bfqNwDswqETH86ldz+K2JEn41KpLYkykxXb3av44OFkupa9Wuz4ACTGR1G7RjsTYKHxq1cszwVO9bvby9NzH9KpZJ99xGSvOSy4IglDhiQClIAgWarmqeSrYiz030jh2H7tjms7TzldD9wAX0a1buO8McvYy0Dot22PQZfHX8gUEte5E894DAAhq1ZFuY6dbPKZ2i3b8PHsK104com6bzuU2tpRbcQx67WM6Dhtv3nZiy69cOrKXKcs2ENS6k3m7X/1g1r//EhGnjlCnZYciHT8t8Q4b5s3iwt+7UKjUtH58GI89/xZqx+wA3uw2vnQa8SS1W7Rn17KPSYyJonq9xvSb+S5121rW1Lp24hCbP3mTm5fO4169Bt3HPVuq526U4UaajqysrDxZO7mv88visbZPWloaUVFR7Nq1yxy0yczM5OTJk7Ru3ZoNGzZYDeSYro8cOcL58+fp378/ixYtsgi8FDXQYy2IYy2ok/sxOb9OTEzk4MGDJCQkEBwcTM2aNZk9e3aeY+QX6Cno2vQ1YPU+a7etXXIew9p17v1N96kcNXSd+AJth4xDNsoolMpy+39kCnhqJRUxtdry9/7j7PjqA7Iy8pY+KUmQx2AwkJiYSGJiYqnHWtXknvyRJIk+rXpi0GUVKXO2LMiyjD4zw6KWoYkuMwOl2qHU2coGvY4HOnRFe+Ws+VgKhQJJkszXpou17bm35XetVCqtPsZ0ybmPtdu5txV0rVAoiI+PZ9GiRXmer7u7O7NmzcLVw5Olv21h78qv2PP9QsZ8vILGXXrnO+knGwxI5VxGpbhM/yutEW9nBUEQik4EKAVByEOtkOgd6EpjT0eLrJXy+GBoOq6Hg4K+ImtSsCF9IUGHnB9MdZkZZKWnUbt5dqbdjX9Pl2uAUuXgSNuBoyy2nQnbSPW6jfANakhawm3z9vodugJw5ej+Igcof3rlKbwCavHos29w/Uw4f/+0DG1yEiPe/cq8z9XjBzmzfQOdR01GpXbg0K8rWPHcE0xfuQ3/BsEAxF78h+XPjMDF04eHpr6M0aAn7OsPcfWuXqrnf+VWMo6NS79MOLcvvviCL774Is/2ZcuWsWzZsiIdY/78+WU9rBI7f/4858+fz7PdWoAnv9umrwu7zr2tqF9bu50zWGK6L6BpGx6ZORdXX38kSZFzZXa5Uiqz3xqHPDGZ1o8O4p9fFpMccSFPICh3ACd3oKegIE/ua2vbIDsz1mAwoNPpLC5ZWVnma9MlMzOTrKwsMjIyyMzMNF8yMjLIyMjAYDAU+LwdHR1xcnKyyOQ0fW3K+DRlf5ou7u7uuLq64uHhYb42bVOr1SgUClQqlcW16VIYLy8vEhMT0Wg0vP7668ycOdOi7MIPFxKJStPneVxhky3HNqzmxJZfuXn5XzJSk/EJDKLzE0/RafhEi+N82LcNfvUfIOSJp9j+1fvcvPwvjz73BgGNm7NsyiCe+GApNy+dJ3zjT6Tcusmbf13Eyc2D62fCCVvyIdfPHMOo1xPYpBWPPPs6Qa06FvqclSo1j44Yw6o3SjepU9GcP3/eIkDp7+/PwoULGTYsu7aj3iij7TKS1DvxLPy/h9j97Wc07tIbJ3cPMlKS8xwvITYKbysZi7evX7G4LcsytyOv4t+wicX25FuxZGnTLLIob12/DIBXjex6vZ7+gcRe+gej0Wjx8xp/NXu5umeNwuv6SncnPZRllO0tCIJQFYgApSAI+arlqmZKEy+uJOsIj9dyNUVXZoFK03GC3NS09XWinrsahajPJdiQ0Urn35zSkxLYufQjTm9bT+ody27UGakp5TgycK9eA1WuTKHb168Qd/UC7z1kfSlvasKtIh/fq2Ztxn22CoDOIyehcXHl0K8r6DZ2OjUaNQXg5qXzPPtDGDWbZDePafnoYD4Z0pmwxR8y5pPvANix5ENkWWbqt5vwrBEIQLNe/fl8ZPdiPd/cHJycmTjpKRTIeTJ9ct7O72IK+uzcuZPz58+jVCq5efMm1atXx8vLi6SkJNq3b09aWhq7du3i888/x9nZ2SIYlfP62LFjfPzxx7z//vs0bdoUlUpl3tf0tSkgk/uxpu0598m9b+7tOYM7KpWK6OhoJk6cyM6dO3nuueeYN28ezs6Vp2nSsXitzeshSwoFLj5+tJs+x+7rIcuyTGZmZrEbFRXUsKigLFJJkorVnd3avqmpqUB2KYa33nqLRYsW8dFHHzFq1CgkSSJWmzc4CYVPthxe+x1+9RoT3ONRFEoV/+7dxoYPZiEbjXQeOcniWLciLvHza1PpMHQc7QePxTeogfm+Xcs+QalW023sM+h1mShVai4f2ceK556gZnBLHpryMpIkEb7xZ76ZOoSp326iVrM2hX6vYrXZWduVqV6pn58fkiRRrVo1PvvsM0aPHo3BYCApKQkPDw+UEqgU4Orti7uvP/qsLCC7Gda1E4fQ67LM///O791OUmy01QDl8S1r6PnkC+Y6lGfDNpJy6yY9Jlg23jHq9Rz+baW5SY5el8Xh377HxauauXt44669uXjoL05vX0+ru3UoDXo9f//yDQ7OLtRrW3g3bvXdRnZJSSJrWhAEoahEgFIQhAIpJIkGHg408HAgIdPAyVsZnLydYS5Or5CKVl8n536OSolWPhpaVdPg5VixlukIVVdhST2rX3mK66eP0m3sMwQ0boaDswuy0ciKZ0ciFxbdzC2fD5/GfLKcrC0fk2Uj/g2a0HfmO1Yf4+FXs8jD6TTiSYvbnZ+YzKFfV/DfgTBzgLJ2i/bm4CSAZ41AmvR4jPN7t5vHffHgbpr07GMOTgJUr9eIhp0f5L/9YUUejzWLv/4aR2XpllBGR0ezb98+8+24uDji4uIA2LRpk3n7p59+SocOHXj77bcJDg62OIYsy8ybN49evXoxe/bsUo2nuGRZZvXq1TzzzDO4urqyfft2Hn744fs6hvIkyzJ/39SyLyZ7WbWtS7eZO0RHpZFpkAnxc7LLwJEkSWg0GjQaDb6+vqU+nizLpKenFyvIabpERkbmCZAWVr9TlmViYmIYM2YMb775JhcuXUafz5/cwiZbpizbYJENH/LEUyx/ZgT7f1ySJ0B5O/IqE7/8hUYhvczbrhw7AIA+K5Nnf9hhPpYsy/z+/kvUa9eFiV/+Yv456Th0PJ8N78b2RR8wadGvhb62emP2eyWl/f2Y5cvb29tczsEkJSWFwMBAhg0bRsuWLTmfpuDo3t1EnTvB4y9m/09rP2gMZ8M2seKZkbR4ZCC3I69x8o9f861R6ezuxZIn+9F2wBOk3onnwOql+NSqS/vBYy32c/f1Z+93C0m4cZ1qtetzZvt6Yv47y+A3PkWpzl7F02HIOI78tpK1oc9x4/wpPGvU4uzOTUScPEK/l96zaMaTH5/AIJzdPfj6669xd3fHxcWFjh07Urdu3RK8ioIgCFWDCFAKglBkXo5KHqzpQs8AZxIyjcSm64nV6rmRpiNWq7f6gUGlAH8nFQEuavydVPg7q/ByVNjlhzyhclMV8DOpTU7k8pG99J72Cg9Necm83bQsrLic3D2zj5uSRM6Fy7kL7xfEOzCImAvnqN+he6l/n6rlai7gExiEpFCQcOPeeHxq5/1QVa1OfXQZ6aTdzdbUZWjzHCt7vwalDlAajEAp5zNmzpzJN998kyf7y9HRkczMTPPtiIgIIiIiGDlyJMHBwZw+fZrLly8zYMAAtm7dysmTJ/nrr79KN5hiun37NtOmTWPt2rWMHj2ahQsXlkl37IokZ3CyojGNq4t/5clULSlTh3MXFxf8/f1LfTyDwUBaWppFE6LevXtbnE+WZZycnOjdu3eB5TgKm2zJGZzMSEnGoNdRr20IFw/uJiMlGY2bu/l+r5p1LIKTObXpN9LiWDH/neH29Sv0eupF0hPvWOzboEM3Tmz5Nc9y4fzoZbnSLwt2dnZm+vTpbN++nXXr1qEzGPEKDGLg7Pnm5faNQnrx+IvvsP+HxWz++A1qNmnJ+AWr2fLZW1aP2XPSC8ReOMeeFV+QmZ5K/fbdGDR7Pg5Olr+zTu6eDH/7SzbOn83R33/A1duXAa/Mo8OQe4FMtcaJycvW8+cX73J80y9kpKXgW6cBw+Z8QdsBo3Kf2iq1g5rZC5by08dvM23aNPR6PStWrBABSkEQhAKIAKUgCMUmSRLeGiXeGqW5s64syxjl7DfWBiMoFdkBH4WUt96ZIFREpmVm1gLtkiI7MpY7sHXgx69LdC6fuxkgV48fJKBxcyA7e/LIulVFPkbzhwfy3/4wjq5bRYeh4yzu02VokWVjnk6lRVYBf2dLmTwJQOPGjenfvz9btmzBYDAgSRJ16tShTZs2bNiwwVynT6FQMHLkSIYMyV7aN2/ePH766Sfq1auHLMt069aNHj16lH5ARbR161YmTZpEVlYWa9asYfjw4fft3PfLsbiKG5w02ReTjqNSsuvl3hWRUqnE3d0dd/fs4KCpXIEpMNm0aVNefvllRo4ciaOjI+m6/DPWC5tsuXbyMGFL5nP99DF0uRogZaRaBii9A2rnex6vXPfdulv/8Ne38q8fmZmabJ6cKkhZTMZUdA4ODsyfP99cw/fcnQw2RaTm2a/bmKfNS7FNpizbYPWYCqWSR597g0efe6PQ89ds0pKnv9ta4D6u3r4Mm5O3RnFOXgG1+eB4vNX7jDIMGTiQNyaOKHQ8giAIQjYRoBQEoUxIkoRSulsMvJK/sRYqJ0mS8HdSWW28oHF1o26bzuz9/kuMeh3u1Wtw8dBfJERHlOhcfvUfoFbzdmxbOBdtUiJOHp6c3rYeo8F6XTVrWvcdwZkdG1j//ktcPpbdEEc2Goi/donTOzbw5FdrCGzSqkjHunX9ikVNr9uRV5GNRrwC7jUCuH39at7HRVxGrXHGxasakJ11citXo4Ls/S4V+Xnlp6AM1+J45ZVX2LhxI5AdcP7www9JSUlh3bp1QHZwslGjRixbtsw8uWI0GpEkiatXr5qXt3733XeMHj0atbr8GnulpqYyc+ZMli5dSp8+ffj222+pUaNGuZ3PViJTdYRFF7zMt6IIi0rDz0klGrqVIxcXFzw9PenevTsvvvgi3btbZokXq1l2jsfdjrzKt9OG4hvUgL4vvoOHfwAqtQP/7g/jwI9LkGXLwKeqgM7Mao3lfabJqz4vzCGgcTOrjynqhFFZTMbYG3/nyvmRtLI+L0EQhPIi/moKgiAIwl01nFXcsBKgBBj5/tds+nA2B9csB1mmYeeeTFj4Mx882rxE53pi7mJ+n/sSe777Ao2bO+0GjqZ++658+/SwIj1eoVAw9pOV7P9xCSe2rOGf3VtRa5zwrlmHLqOmUK12/SKP5dCa5TTq/KD59sGfsztYN+7ykHnb9dNHiT5/ytxEIDE2mn/2/EmjkF4olNmzEg07P8g/f/1BYkyUuQ5l3JULXDy4u8hjsUalyK5jWxZCQkJo1qwZZ8+e5YEHHmD48OFERt5byq7RaNiwYQMuLveCCaamNqY6ajdv3mTixImcOnWKzz77rGwGlsvff//NuHHjiImJYcmSJUyZMqVSZqPrjDKbI1Js2hCnOCRgc0QKTwV7oS6rH0rBgo+PDwkJCfneX9BkRUGTLef3bkOflcm4z36wqJN7+ej+Uo/ZVBdR4+JGg46ly64uq8kYe+LtqMRRKZnrm1cGjkoJL8cqGG0WBEEoBRGgFARBEIS7/J1VGIF67brkWbblUb2GuVt1Trn3aztgVJ4aVdaWpHkHBjFp8dpCj5ffcjYApVpNjwnP5elSWlwJ0ddZ+cIYGob04vrpY5zc+ist+wylRqN7mUB+DYJZ8cxIOo+ajErtwKFfVwDQe+os8z69p87iwt+7+HpSfzqNmIjxbtfT6vUeIPbiuRKPz99JVabBuWeeeYann36ad955B0mSqF27Nh4eHiQlJbFq1SoaNWpksX/uunFKpZLAwEAmTbJsqlEWsrKyCA0NZf78+XTq1Ik///yTBg0aFP5AO7XnRhrJWUa7CE5CdhA1OcvI3htpPBRYeKMMoewVVI6joMmWq8cPApalOjJSkgnf+FOpx1QzuCXegUHsXfUVLfsMwdHZ8mcjNeEWrnczzQtSlpMx9kSSJFr6aDgap7WbvwUFkYBWPppKOakkCIJQnkSAUhAEQRDuqqrLsUbNW8aOJfPYtvBdFEoVnUdOos8Lcyz2qdumM7VbtGfn0o9Iio2mer1GDH97obnLN0CNRk158stf2PLpW+xY/CEefgH0nvoKKbduljhAqZAgwKVsltPKsoxBhgmTp9D9oUeoVy8IvVFGKcHUqVOJjY01153MKWf2JED//v357rvv8PDwKJNxmZw9e5YxY8bwzz//8N577zFr1iyUyspbMyMyVcex+AxbD6PYZOBofAaNPB3FUm8bKKgcR0GTLSoHDUq1AytfGEOHoePI0qZxZN0qXL2rkXLrZqnGpFAoGPrWAlY89wQLhnWj7YBRuFevQXJcDFeO7cfRxY3xn/9Y6HHKejLGnrSupuFInLbYj7M2oZifgib8ypIMtKqWf4kAQRAEwbqq+UlMEARBEKyojMvMCtJ72ix6T8vOgBw9f3mh+7d+fBitHy94CXrdtiE8+2Pejt2m8xSXUc7+0F5csixzJ9NAbLqe2HQ9Mel6YrX6HFlX7nA6u9uuSgHNJ83mEWcV5+5k4O+swttRaQ4U3LyZHbxQKBR88skn/O9//yvTIILBYOCzzz7j9ddfp2HDhhw5coRWrYpWP9ReGWWZLXa0tDs3CdgSkcKUJl4oqmhAyZZM5ThyJ1EWNNniG9SA0fOXs33RB2xdMAc3n+p0HDYBFy8ffnv7f6UeU712XXj6u63sWvYJB9d8S1Z6Gq4+1anVrA0dh44v9PFlORljj7wclQS5qYlI0dnl3wQTCQhyU+PlWHknlwRBEMqLJOduSSoIgiAIVdiu6LRKs8ysrMxu40unEU8y8NUPbXL+KcFeeGuK9mEvIdPAiVsZnLqdYQ40KyBPIMOanPs5KrOXHLaupmHwow9x8OBBdu/eTUhISEmeQr6uXr3KhAkT2LdvHzNnzuTdd99Fo6n8mTcXkzL57UqKrYdRasPqudPAw8HWw6hy8uv6bO8G1HGjibejrYdhM+LvgiAIQtUmMigFQRAEIYeSLjMTykdRGg0YZZnLyVmEx2dwLUWXJyuvKMHJ3PtlGmSOxmk5Eqdl6rL1LPZW09jbuZijz58sy6xYsYL//e9/+Pj4sHv3bnr0KF1zDXsSHp9ht9mTJhIQHq8VgQgbqKzlOCrr8yqq+u4OeDooSLKjurQ5SYCHg4J67lU3E1YQBKE0RGsxQRAEQcjBtMxMLNq0vaI0GohM1bH0nwR+u5JCRIoOKLugl+k411P1bLiuZek/CUSm6kp93Js3bzJo0CAmTZrEiBEjOH36dJUKTiZkGrhm58s4Ifvn42qKjoRMg62HUuWYynFUJqLrMygkib513Oz2b4MM9KvjJso+CIIglFDVnqYTBEEQBCva+mq4llL6QFRlUdQGBGWtoEYDOqPMnhtpHLubiWfav7zGAZCUZeTHi0m089XQI8AFdSHtdi9cuICHhwd+fn7mbevXr2fKlCnmrwcOHFhOo664Ttyy/+xJEwk4eSuDB2u62HooVYro+lx51XJV085XQ3h8hl19byWgna+GQNE4SxAEocSq9jSdIAiCIFhhWmYmPirajgTUzafRQGSqjm/OJxB+twP0/foQazpPeHwG35wvOJsyMTGRDh060K1bN7RaLUlJSUyYMIHBgwfTpUsXzp49WyWDk7Isc+p2yQMP4Rt/YnYbXxJuXC/TcZWUDJy8nYEo6X7/ta6msasAVkFE12dLPQJccLej/8ES4O6goHuAmKgQBEEoDRGgFARBEIRc7H2ZWWUgA219nfJsPxav5ceLSSTbsEaZDCTfzaY8Fm+9Xun7779PSkoKly9fZty4cbRo0YJ169axYsUK1q1bR/Xq1e/voCuIO5kGc/OiyiLTIJOQWdRKp0JZqSzlOAqajKmq1AqJfnb0P9i0tLuwrHpBEAShYCJAKQiCIAhWmJaZ2dvHDQloV83RrjNAJcAzV6MBWZY5EJtOWFRa9m0bjc08nrvXYVFpHIhNt8igu379OgsWLMBoNGI0Glm7di2enp6cPn2aCRMmVOllnLHpelsPoVxU1udV0bX1tf8syvwmY6q6Wq5qegfaR0Zi70AXaoml3YIgCKUmApSCIAiCkA97XWbWo6arXWeAWms08PdNLfti0m03qALsi0nn75v3Milfe+01jMZ7GXWSJBEfH4+Xl5cthlehxKbrK92bT4UEsVoRoLQFey/HYW0yRrinna8T3Wo423oYBepWw5l2IsCgybzoAAATTElEQVQsCIJQJirbe0RBEARBKDP2vMzMnjNA2+dqNHAsruIGJ032xaRzLF7L0aNH+fHHHzEY7nV2lmWZmJgYQkNDbThC21i7di2SJLFnzx4AYtL1mEK3h9d+z+w2vsReOg/A5SP7+PrJfrwVUoe3u9dn5YyxxF25UOg5ZrfxJWzJ/DzbP+zbhl9DnzXfNtWvvHbiEBvnz+a9Xg/wdvf6/P7eTPS6LLQpSax58xne7tGAt3s04I8Fb+epLWk0Gtn/4xI+G9aVNzsFMrd3E357dyYXb9imkVRVZ+/lOETX58KF+FXcIGX3Gs6E+IngpCAIQlkRAUpBEARBKIA9LzOz1wzQnI0GIlN1hEWn2W5QxRAWlcaL73xosc3BwYHGjRszcOBAevXqZaOR2U7fvn1xdXVlzZo1yLJskWl4evt6/Oo/gH+DYC4d3sPyZ0eQmnCL3lNfpuuYp7l+6ihLnuxb5g1xNs6fze3rV3ho2iyCezzGkXUr2bFoHiv/Nxqj0cCjz75OUKuO7F35JSe2rLF47Pq5M/nj87ep07ID/V6aS9sBT3Dyj7XMnTiErKysMh2nUDSVaTJGyEuSJLr4O5v/D9v6+2w6f+9AF0L8nat0yQ5BEISyprL1AARBEAShomvn60SmQa7QWXzWlpmZMkB/vJhko1EVT+5GAzqjzOaIFCRsX3OyKCRgwOuf0qNNM3o/2JOGDRtSo0YNFIqqOx/s5ORE//79Wbt2LZ8u+Bz93fTJlFs3uXr8bx6aOguArQvm4OzuxdPf/YGzR/ZS+CY9+7Dw/3qxY8mHjHjnqzIbk6u3LxMW/owkSXQe8SS3I6+yb+WXdBg6nkGvfQRAhyHjmN+vDcc2rKZNv5EAXDtxiKO//8DIuUto1Weo+Xj12nVlxbMjWbPmV8aMGV1m4xSKrkeACxeTsmzaPKs4RNfn4mvn64Sfk4rNESk2+z6bvm/96riJmpOCIAjloOq+YxYEQRCEYrDXZWb2nAG650aa3QQcIDuIanR05sHJL9GzZ09q1qxZpYOTJiNHjiQuLo5du3ebt50J24RsNNLikUEkx8cS899Z2vR/whycBKjRqCkNOvbgwv6dZTqe9oNGW2Q91WrWBlmWaTfoXnBRoVRSs0kr7kRH5BjzRjSu7jTo1IO0hNvmS83gljg4u7Drr90ItmHP5TiEoqvlquapYC/a+mqA+5dNaTpPO18NTwV7ieCkIAhCOREZlIIgCIJQBKZlZo5KibCoNJtn9ZnO3zvQpdAC/faYARqZquNYfIYNR1QyMnA0PoNGno7iQ+xdjz32GB4eHvy6Zg2NnmkNwJnt66nRuBm+depz/fQxAHzr1M/z2Op1G3Hx4G6ytGk4OJVNoN3DP9DitsbVPXu7X0Cu7W5okxPNt29dv0JGajJzHwq2ety4m3FlMj6hZEyTMWFRFb8khOj6XHJqhUTvQFcaezqyJSKFxCxjuf0/Nh3Xw0FBX5E1KQiCUO5EgFIQBEEQisFel5mZMiwrYpCyew1nOufIADXKMlvsaGl3bhKwJSKFKU28RPMLwNHRkUGDBrFpw3pemPouqXfiiTh1hEeefb1czysbDVa3K5RK69sVVrbnaJIjG424evsycu5iq4+f2qFe8QcplCl7nIwRSqaWq5opTby4kqwjPF7L1RRdmf3PMB0nyE1NW18n6rmrxd9yQRCE+0AEKAVBEAShmEzLzPbcSONYfMZ9C6SZztPOV0P3AJdiLQ+0pwzQy8lZJGYZrT7OHshAYpaRK8k6Gng42Ho4NpeZmUmPHj34/vvvuXxkL3FXLyDLMi0eGQSAZ43sjMb4iMt5Hht/7SIunj4FZk86uXuiTbGss6rXZZFy62YZPgvwCQzi8pG91GnZAbUmb4CpTUufMj2fUDL2NBkjlI5Ckmjg4UADDwcSMg2cvJXBydsZZBrku/eDsQj/6HLu56iUaOWjoVU1DV6O1iczBEEQhPIhApSCIAiCUAL2uszMHjJAw+9j0Le8SEB4vLbSByizsrKIjo4mKiqKyMhIq9c3b94LFJ7e9jtx1y4R2KwN3jXrAODu60+Nxs04vvlnej75P5zcPACIvXSei4f+otXjwwocg3dgENdOHLTYduS3lRgN1jMoS6r5IwM59OsKdi37hEefe8PiPsmoJzkpES8vr3weLdwv9jQZI5QdL0clD9Z0oWeAMwmZRmLT9cRq9dxI0xGr1ZsbdOWkUoC/k4oAFzX+Tir8nVV4OSpEZ25BEAQbEQFKQRAEQSgFe1xmVpEzQBMyDVxL0d2H0ZQvGbiaoiMh02C3WThZWVncuHEj38BjZGSkRfARwMPDg1q1ahEYGEibNm0YMGCA+fbSpUvZvHUzmdo0+sx42+Jxj78whxXPPcHi8X1oN2g0uswMDv78DRpXd3rf7fSdn/aDxrD+/Zf44aUJNOzUk5gL57hwcDcunmWb0VivbRc6DB3PXys+58aFszTs1BOlSs2t61c4v3MT9b/6gmHDCg6mCvePPUzGCGVPkiS8NUq8NUqa4AiALMsYZdDLMgYjKBWgkiQUEiIYKQiCUIGIAKUgCIIglJI9LjOrqBmgJ27Zf/akiQScvJXBgzUrXhd1nU6XJ/hoLfNRzlGD0d3d3RxsbNWqFf369TPfNl27ubnle05Jkli7di2SJNHi4YEW9zXo2IOJC38h7OsPCVvyIQqVinptQnjs+bfMmZb5aT9kLAk3Iji2fjUX/t5NUOuOTFr0K99MG1q6F8mKwa9/TM3glhz57Xu2f/U+CqUSr4DaPDL0Cbp06VLm5xNKpyJPxgj3jyRJKCVQIoF9zhcJgiBUCZKc852nIAiCIAhlQpZlu1lmZpTlcs0ArVvEDFBZlllw5o45sFsZOColXmjuned7GRMTg1qtplq1amV+TlPwsaBl17GxsRbBRzc3N4tgY+7AY2BgIO7u7qUe27k7GWyKSC31cSqaAXXcaOLtaOthCAWITNXdt8kYT9H1WRAEQRCKTQQoBUEQBOE+sYdlZrbMAL2doWfZ+cSSDj2PiFNHuHjwL7qMnmqua2gLU4K98NZkvwZ6vZ5PP/2UN998k/79+7N27dpiHUuv11sEH60FIHMHH11dXa0GHXNel0XwsSjK+ntcUeT8HgsVV0WZjBEEQRAEIS+xxFsQBEEQ7hN7WGZmy0YDsen6MnoW2SJOHWXn0o9oO+AJmwYoY9P1eGuUnDp1inHjxnHmzBlkWebff/+12E+v1xMTE1NgzcfY2FiMxnvfBBcXF3PwsWnTpjz22GN5ApAeHrZ77rl5OypxVEqVLkvWy1Fh62EIRWCP5TgEQRAEoaoQAUpBEARBEPKwRaOB2HQ9CsBKDNRuKSSISslg5fxQPvroIwBzduPFixcZPny4OfgYExNjNfgYGBhIkyZNeOSRR6wGHytK9m1RSJJESx8NR+O0labOaCsfjV19D4RsouuzIAiCIFQsYom3IAiCIAgVwg8XEolKK5ssyrAl89m59KM822dtDse9egB/rfic45t+JunmDdyq+dHqsSE8NPVlVA5lX0cw6swxvhrfx+p9Dz74IHXq1LG67Nrego9FlZBp4Ot/Emw9jDIztYmXyJyrZOyhHIcgCIIgVDYig1IQBEEQBJuTZZlYbdkt8W7aqy+3rl/m1J/r6DvzXVw8fQBw8fJh3bsvcHzTLzTr3Z+uY54m8mw4f634nLhrFxn7yfdlNgaTmsEtqVWrFpGRkSiVSgwGg/m+r7/+moYNG5b5OSsyL0clQW5qIlJ0dp1FKQFBbmoRnKyE7KEchyAIgiBUNiJAKQiCIAiCzRlkrC6pLKkajZoS8EALTv25jqYPPo5XQG0AYi6c5fimX2g/eAxD3vwMgM4jnsTVy5d9q77i8tH91G/ftewGAkgqNVevRXDhv39ZuXIlK1as4ObNmwBERUVVuQAlQFtfDddSdLYeRqnIQFtfJ1sPQxAEQRAEoVIQFb0FQRAEQbA5/X2qOPPf/jAAuo5+2mJ7t7FP371/R7mcVy/LBAcH88EHHxAdHU1YWBivvvoqrVq1KpfzVXT13R3wdFBgr4tlJcDTQUE9d7WthyII/9/e/f3WXdZxAH9/v+ec/u5q2cq62qaOQMy4kOHGBSAj2kqiTBMTEy7wkuhfoH+CdybemKgxJhoxmBhvwBuDRoOYaBjZDd5gwLllDMecW7e1o935ejGLkCGDcdrnnPJ6XZ5+830+J+3Fk3c/z/MBgB1BByUAUFx3mybjnH/tVKq6zu6F/e/4fHLP3oxMTuX8aye3ZN1r3bx1VLTVamVpaSlLS0tbstYgqKsqjy5O5smXL5Qu5ZY0SY4uTqZ2HyEAQE/ooAQAiqu3e0eyzcFSy47rBgsTnRyeGRm4LsoqyX0zI5mf0D0JANArtssAQHHtLQgM323a7vS++TTdbs7945V3fL5y7p9ZW7mQ6X0LPa8j2ZrvtxM8PDeeXQN01LtKsmuozpG58dKlAADsKAJKAKC4VpW0e7wrGRodS5KsrvzvGPEnP7OcJHn+5z94x7N//Nn3//vzz/e2iFz/XvWgJHDbrFNXObo4OTDTvDePdnf8QgEAesodlABAcVVVZXa0nVOXN3r2zrkD9yRJfvO9b+dTj3wlrU4nB448kk9/6bH85Vc/zerKhew/9EBOvfRiXnz6F7n7s1/s+QTvJJkdbb9rNyfXLUx0sjw/nmdPXS5dyk0tz49nwdFuAICeq5pmm8ZmAgC8h9+eupRjZ9fSy3k5v/vRd/LnX/4kK2+8nqbbzbeeOZZdt8/l9z/+bo49/VQuvn46E3tuz71f+GqWvvHNtIeGe7j69c7JwzOj+dzHHQm+mefPXMlzr10pXcb/9dC+sTw4O1a6DACAHUlACQD0hZf+tZanT1wqXUbPfXlxMnff1tvgcydqmiZ/en21L0PKI/vGcv/eUZ2wAABbxB2UAEBfmB3bmTfP7NTv1WtVVeXB2bEsz1/vNi0dBW6uvzw/ngdmx4STAABbyI4ZAOgLtw23MtyqcvXazjncMdyqMj3s/8EfxOGZ0ewdbeeZEyu5+Ga3yACdzWndRxcn3TkJALAN7JgBgL5QVVXu2T1SvHOuV6okB3eP6Ly7BQsTnTxxYDqHZkaSbF835eY6h2dG8sSBaeEkAMA2EVACAH3j3j0jRTrmtkKT5OCekdJlDKxOXWV5fiKP3zWVqaHrW9atCio33zs1VOfxu6ayND+RTi1YBgDYLobkAAB95am/XciJlfWBDiqrJJ+Y7OSxO6dKl7IjdJsmr1xcz7Gzq3l1ZT1V0pO/j8337J/s5NDMaO7Y1Umt4xUAYNu5gxIA6CuHZkby95X10mV8KE2SQzOjpcvYMeqqyp1TQ7lzaijnr17L8TfWcvzc2lv3ldZV0n0fieXbnxtuVTm4eyQH94xkeri1hdUDAHAzOigBgL7SbZr88K/nc6HQgJQPq8r1o8Jfv3taN94Wapom5692c+bKRs6sbuT05fWcWd3IRvfGZ9t1Mjvaztx4J7Oj7cyOtTM9XLsfFACgTwgoAYC+c/LSep58+ULpMm7Z1+6ayrwBK9uuaZp0m2SjaXKtm7TqpF1VqasIIwEA+pghOQBA31mY6OTwzOBN9K6S3DczIpwspKqqtOoqw606Y506w606rboSTgIA9DkBJQDQlx6eG8+uoXpgQsoqya6hOkfmxkuXAgAAA0VACQD0pU5d5eji5MDcQ9kkObo4mU49KJEqAAD0BwElANC3FiY6WZ4fjI7E5fnxLDjaDQAAH5iAEgDoa4dnRvPQvrHSZbynh/aN5fDMaOkyAABgILVLFwAAcDMP7L0e/j332pXCldzoyL6x3L9XOAkAALeqappmUK52AgA+4l44u5pnT11OlRS9m3Jz/eX5cZ2TAADwIQkoAYCBcvLSep45sZKLb3aLhJSb07qPLk66cxIAAHpAQAkADJz1bpM/nL6cF86ubVs35eY6982M5MjcuGndAADQIwJKAGBgnby0nl+fWMm/3+xuWVC5+d6PDdV5VNckAAD0nIASABho3abJKxfXc+zsal5dWe9ZULn5nv2TnRyaGc0duzqpK12TAADQawJKAGDHOH/1Wo6/sZbj59Zy9dr1LU5dJd33sdt5+3PDrSoHd4/k4J6RTA+3trBiAABAQAkA7DhN0+T81W7OXNnImdWNnL68njOrG9no3vhsu05mR9uZG+9kdrSd2bF2pofrVLolAQBgWwgoAYCPhKZp0m2SjabJtW7SqpN2VaWuIowEAICCBJQAAAAAQDF16QIAAAAAgI8uASUAAAAAUIyAEgAAAAAoRkAJAAAAABQjoAQAAAAAihFQAgAAAADFCCgBAAAAgGIElAAAAABAMQJKAAAAAKAYASUAAAAAUIyAEgAAAAAoRkAJAAAAABQjoAQAAAAAihFQAgAAAADFCCgBAAAAgGIElAAAAABAMQJKAAAAAKAYASUAAAAAUIyAEgAAAAAoRkAJAAAAABQjoAQAAAAAihFQAgAAAADFCCgBAAAAgGIElAAAAABAMQJKAAAAAKAYASUAAAAAUIyAEgAAAAAoRkAJAAAAABQjoAQAAAAAihFQAgAAAADFCCgBAAAAgGIElAAAAABAMf8Bj1wdiapfVzcAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1411,7 +1459,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ @@ -1420,7 +1468,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 33, "metadata": {}, "outputs": [], "source": [ @@ -1429,24 +1477,24 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[('trading', 0.4615130639538529),\n", - " ('said', 0.3159855693494515),\n", - " ('export', 0.2691553824958079),\n", - " ('import', 0.17462010006456888),\n", - " ('japanese electronics', 0.1360932626379031),\n", - " ('industry', 0.1286043740379779),\n", - " ('minister', 0.12229815662000462),\n", - " ('japan', 0.11434500812642447),\n", - " ('year', 0.10483992409352465)]" + "[('trading', 0.46151306395385305),\n", + " ('said', 0.3159855693494513),\n", + " ('export', 0.2691553824958075),\n", + " ('import', 0.17462010006456907),\n", + " ('japanese electronics', 0.13609326263790283),\n", + " ('industry', 0.12860437403797767),\n", + " ('minister', 0.12229815662000476),\n", + " ('japan', 0.11434500812642369),\n", + " ('year', 0.1048399240935248)]" ] }, - "execution_count": 45, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -1458,7 +1506,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ @@ -1469,7 +1517,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 36, "metadata": {}, "outputs": [ { @@ -1518,7 +1566,7 @@ " en\n", " (ASIAN, EXPORTERS, FEAR, DAMAGE, FROM, U.S.-JA...\n", " [(EXPORTERS, (FEAR, False), DAMAGE), (Japan, (...\n", - " [(trading, 0.461513063953854), (said, 0.315985...\n", + " [(trading, 0.4615130639538536), (said, 0.31598...\n", " \n", " \n", " test/14828\n", @@ -1526,8 +1574,8 @@ " [grain]\n", " en\n", " (CHINA, DAILY, SAYS, VERMIN, EAT, 7, -, 12, PC...\n", - " [(VERMIN, (EAT, False), STOCKS), (vermin, (con...\n", - " [(vermin, 0.3120614380287176), (daily, 0.26110...\n", + " [(STOCKS, (showed, False), consume), (paper, (...\n", + " [(vermin, 0.31206143802871755), (daily, 0.2611...\n", " \n", " \n", " test/14829\n", @@ -1535,8 +1583,8 @@ " [crude, nat-gas]\n", " en\n", " (JAPAN, TO, REVISE, LONG, -, TERM, ENERGY, DEM...\n", - " [(JAPAN, (REVISE, False), DEMAND), (Industry, ...\n", - " [(energy, 0.3857636092660117), (demand, 0.3479...\n", + " [(Ministry, (revise, False), outlook), (MITI, ...\n", + " [(energy, 0.38576360926601216), (demand, 0.347...\n", " \n", " \n", " test/14832\n", @@ -1544,8 +1592,8 @@ " [corn, grain, rice, rubber, sugar, tin, trade]\n", " en\n", " (THAI, TRADE, DEFICIT, WIDENS, IN, FIRST, QUAR...\n", - " [(Products, (registering, False), growth), (Pr...\n", - " [(pct, 0.5457455609144312), (export, 0.2656069...\n", + " [(Products, (registering, False), growth), (re...\n", + " [(pct, 0.5457455609144314), (export, 0.2656069...\n", " \n", " \n", " test/14833\n", @@ -1553,8 +1601,8 @@ " [palm-oil, veg-oil]\n", " en\n", " (INDONESIA, SEES, CPO, PRICE, RISING, SHARPLY,...\n", - " [(INDONESIA, (SEES, False), PRICE), (Indonesia...\n", - " [(indonesia, 0.2410428235502938), (harahap, 0....\n", + " [(oil, (told, False), reporters), (Prices, (ar...\n", + " [(indonesia, 0.24104282355029413), (harahap, 0...\n", " \n", " \n", "\n", @@ -1588,21 +1636,21 @@ " triplets \\\n", "id \n", "test/14826 [(EXPORTERS, (FEAR, False), DAMAGE), (Japan, (... \n", - "test/14828 [(VERMIN, (EAT, False), STOCKS), (vermin, (con... \n", - "test/14829 [(JAPAN, (REVISE, False), DEMAND), (Industry, ... \n", - "test/14832 [(Products, (registering, False), growth), (Pr... \n", - "test/14833 [(INDONESIA, (SEES, False), PRICE), (Indonesia... \n", + "test/14828 [(STOCKS, (showed, False), consume), (paper, (... \n", + "test/14829 [(Ministry, (revise, False), outlook), (MITI, ... \n", + "test/14832 [(Products, (registering, False), growth), (re... \n", + "test/14833 [(oil, (told, False), reporters), (Prices, (ar... \n", "\n", " keywords \n", "id \n", - "test/14826 [(trading, 0.461513063953854), (said, 0.315985... \n", - "test/14828 [(vermin, 0.3120614380287176), (daily, 0.26110... \n", - "test/14829 [(energy, 0.3857636092660117), (demand, 0.3479... \n", - "test/14832 [(pct, 0.5457455609144312), (export, 0.2656069... \n", - "test/14833 [(indonesia, 0.2410428235502938), (harahap, 0.... " + "test/14826 [(trading, 0.4615130639538536), (said, 0.31598... \n", + "test/14828 [(vermin, 0.31206143802871755), (daily, 0.2611... \n", + "test/14829 [(energy, 0.38576360926601216), (demand, 0.347... \n", + "test/14832 [(pct, 0.5457455609144314), (export, 0.2656069... \n", + "test/14833 [(indonesia, 0.24104282355029413), (harahap, 0... " ] }, - "execution_count": 47, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -1613,7 +1661,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 37, "metadata": {}, "outputs": [], "source": [ @@ -1633,8 +1681,12 @@ " \"count\": g[\"lower\"].count()\n", " }, axis=1)\n", " \n", - " return summary[summary[\"count\"]>1].loc[pd.IndexSlice[typeFilters, :, :]]\n", + " summary = summary[summary[\"count\"]>1]\n", "\n", + " subselection = list(set(summary.index.get_level_values(\"type\")).intersection(typeFilters))\n", + "\n", + " return summary.loc[pd.IndexSlice[subselection, :, :]]\n", + " \n", "def getOrEmpty(parsed, _type):\n", " try:\n", " return list(parsed.loc[_type][\"count\"].sort_values(ascending=False).to_dict().items())\n", @@ -1650,7 +1702,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 38, "metadata": {}, "outputs": [], "source": [ @@ -1659,7 +1711,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ @@ -1668,7 +1720,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 40, "metadata": {}, "outputs": [ { @@ -1723,8 +1775,8 @@ " en\n", " (ASIAN, EXPORTERS, FEAR, DAMAGE, FROM, U.S.-JA...\n", " [(EXPORTERS, (FEAR, False), DAMAGE), (Japan, (...\n", - " [(trading, 0.461513063953854), (said, 0.315985...\n", - " [(u.s., 13), (japan, 12), (taiwan, 3), (tokyo,...\n", + " [(trading, 0.4615130639538536), (said, 0.31598...\n", + " [(u.s., 14), (japan, 12), (taiwan, 3), (austra...\n", " []\n", " []\n", " \n", @@ -1734,8 +1786,8 @@ " [grain]\n", " en\n", " (CHINA, DAILY, SAYS, VERMIN, EAT, 7, -, 12, PC...\n", - " [(VERMIN, (EAT, False), STOCKS), (vermin, (con...\n", - " [(vermin, 0.3120614380287176), (daily, 0.26110...\n", + " [(STOCKS, (showed, False), consume), (paper, (...\n", + " [(vermin, 0.31206143802871755), (daily, 0.2611...\n", " [(china, 2)]\n", " []\n", " []\n", @@ -1746,10 +1798,10 @@ " [crude, nat-gas]\n", " en\n", " (JAPAN, TO, REVISE, LONG, -, TERM, ENERGY, DEM...\n", - " [(JAPAN, (REVISE, False), DEMAND), (Industry, ...\n", - " [(energy, 0.3857636092660117), (demand, 0.3479...\n", + " [(Ministry, (revise, False), outlook), (MITI, ...\n", + " [(energy, 0.38576360926601216), (demand, 0.347...\n", " [(japan, 2)]\n", - " []\n", + " [(miti, 4)]\n", " []\n", " \n", " \n", @@ -1758,8 +1810,8 @@ " [corn, grain, rice, rubber, sugar, tin, trade]\n", " en\n", " (THAI, TRADE, DEFICIT, WIDENS, IN, FIRST, QUAR...\n", - " [(Products, (registering, False), growth), (Pr...\n", - " [(pct, 0.5457455609144312), (export, 0.2656069...\n", + " [(Products, (registering, False), growth), (re...\n", + " [(pct, 0.5457455609144314), (export, 0.2656069...\n", " [(thailand, 2)]\n", " []\n", " []\n", @@ -1770,11 +1822,11 @@ " [palm-oil, veg-oil]\n", " en\n", " (INDONESIA, SEES, CPO, PRICE, RISING, SHARPLY,...\n", - " [(INDONESIA, (SEES, False), PRICE), (Indonesia...\n", - " [(indonesia, 0.2410428235502938), (harahap, 0....\n", + " [(oil, (told, False), reporters), (Prices, (ar...\n", + " [(indonesia, 0.24104282355029413), (harahap, 0...\n", " [(indonesia, 4), (malaysia, 2)]\n", - " [(cpo, 2)]\n", - " []\n", + " [(cpo, 3)]\n", + " [(harahap, 2)]\n", " \n", " \n", "\n", @@ -1808,37 +1860,37 @@ " triplets \\\n", "id \n", "test/14826 [(EXPORTERS, (FEAR, False), DAMAGE), (Japan, (... \n", - "test/14828 [(VERMIN, (EAT, False), STOCKS), (vermin, (con... \n", - "test/14829 [(JAPAN, (REVISE, False), DEMAND), (Industry, ... \n", - "test/14832 [(Products, (registering, False), growth), (Pr... \n", - "test/14833 [(INDONESIA, (SEES, False), PRICE), (Indonesia... \n", + "test/14828 [(STOCKS, (showed, False), consume), (paper, (... \n", + "test/14829 [(Ministry, (revise, False), outlook), (MITI, ... \n", + "test/14832 [(Products, (registering, False), growth), (re... \n", + "test/14833 [(oil, (told, False), reporters), (Prices, (ar... \n", "\n", " keywords \\\n", "id \n", - "test/14826 [(trading, 0.461513063953854), (said, 0.315985... \n", - "test/14828 [(vermin, 0.3120614380287176), (daily, 0.26110... \n", - "test/14829 [(energy, 0.3857636092660117), (demand, 0.3479... \n", - "test/14832 [(pct, 0.5457455609144312), (export, 0.2656069... \n", - "test/14833 [(indonesia, 0.2410428235502938), (harahap, 0.... \n", + "test/14826 [(trading, 0.4615130639538536), (said, 0.31598... \n", + "test/14828 [(vermin, 0.31206143802871755), (daily, 0.2611... \n", + "test/14829 [(energy, 0.38576360926601216), (demand, 0.347... \n", + "test/14832 [(pct, 0.5457455609144314), (export, 0.2656069... \n", + "test/14833 [(indonesia, 0.24104282355029413), (harahap, 0... \n", "\n", - " GPE ORG \\\n", - "id \n", - "test/14826 [(u.s., 13), (japan, 12), (taiwan, 3), (tokyo,... [] \n", - "test/14828 [(china, 2)] [] \n", - "test/14829 [(japan, 2)] [] \n", - "test/14832 [(thailand, 2)] [] \n", - "test/14833 [(indonesia, 4), (malaysia, 2)] [(cpo, 2)] \n", + " GPE ORG \\\n", + "id \n", + "test/14826 [(u.s., 14), (japan, 12), (taiwan, 3), (austra... [] \n", + "test/14828 [(china, 2)] [] \n", + "test/14829 [(japan, 2)] [(miti, 4)] \n", + "test/14832 [(thailand, 2)] [] \n", + "test/14833 [(indonesia, 4), (malaysia, 2)] [(cpo, 3)] \n", "\n", - " PERSON \n", - "id \n", - "test/14826 [] \n", - "test/14828 [] \n", - "test/14829 [] \n", - "test/14832 [] \n", - "test/14833 [] " + " PERSON \n", + "id \n", + "test/14826 [] \n", + "test/14828 [] \n", + "test/14829 [] \n", + "test/14832 [] \n", + "test/14833 [(harahap, 2)] " ] }, - "execution_count": 51, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -1856,7 +1908,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 41, "metadata": {}, "outputs": [], "source": [ @@ -1870,7 +1922,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 42, "metadata": {}, "outputs": [], "source": [ @@ -1885,7 +1937,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 43, "metadata": {}, "outputs": [], "source": [ @@ -1895,7 +1947,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 44, "metadata": {}, "outputs": [], "source": [ @@ -1904,7 +1956,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 45, "metadata": {}, "outputs": [ { @@ -1913,9 +1965,9 @@ "text": [ "Name: \n", "Type: Graph\n", - "Number of nodes: 25752\n", - "Number of edges: 100311\n", - "Average degree: 7.7905\n" + "Number of nodes: 25931\n", + "Number of edges: 100712\n", + "Average degree: 7.7677\n" ] } ], @@ -1925,7 +1977,16 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "edges.to_pickle(\"bipartiteEdges.p\")" + ] + }, + { + "cell_type": "code", + "execution_count": 47, "metadata": {}, "outputs": [], "source": [ @@ -1941,7 +2002,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 48, "metadata": {}, "outputs": [], "source": [ @@ -1950,7 +2011,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ @@ -1962,16 +2023,16 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2386" + "2383" ] }, - "execution_count": 60, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -1982,7 +2043,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 51, "metadata": {}, "outputs": [], "source": [ @@ -1991,27 +2052,25 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 52, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/Users/deusebio/.pyenv/versions/3.7.6/envs/ml-book-7/lib/python3.7/site-packages/matplotlib/axes/_axes.py:6694: RuntimeWarning: invalid value encountered in multiply\n", + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAATo0lEQVR4nO3df4xl5X3f8fenUDs224KdTaZ0F3VJjWmJt1HtCaZCqWZDmuBgea3KcsDUYV2akVPiRs1WMaSVyB9FwW1Ty5ZbR5tAwZLFmhI30NpOS6lvUKWAs9iJ+WXiFcZmV9gbF0w7JLK1zrd/zMG93Z3ZmXN/zMx95v2S0NzznF/PfnXvh2eeOfecVBWSpLb8hc3ugCRp8gx3SWqQ4S5JDTLcJalBhrskNchwl6QGnb3ZHQDYuXNn7dmzZ6R9X3rpJc4555zJdqhx1qwf69WP9epnnHo98sgj36yqH1hp3ZYI9z179nDkyJGR9h0MBiwsLEy2Q42zZv1Yr36sVz/j1CvJV1db57SMJDXIcJekBhnuktSgNcM9ye1JTiR57JT29yX5UpLHk/yrofabkhxN8lSSn5pGpyVJZ7aeP6jeAXwE+NjLDUn2AfuBH6mqbyf5wa79EuBq4IeBvwr89ySvr6rvTrrjkqTVrTlyr6oHgedPaf554Naq+na3zYmufT9wuKq+XVVfAY4Cl06wv5KkdRh1zv31wI8leTjJ7yX50a59F/Ds0HbHujZJ0gYa9Tr3s4HXApcBPwrcneSH+hwgySKwCDA3N8dgMBipI0tLSyPvu11Zs36sVz/Wq59p1WvUcD8GfLKWn/TxuSR/DuwEjgMXDG23u2s7TVUdAg4BzM/P16gX8fuFif62Ys323Pip771+5tarNrEnp9uK9drKrFc/06rXqNMyvwPsA0jyeuAVwDeB+4Crk7wyyYXARcDnJtBPSVIPa47ck9wFLAA7kxwDbgZuB27vLo/8DnBdN4p/PMndwBPASeAGr5SRpI23ZrhX1TWrrPoHq2x/C3DLOJ2SJI3Hb6hKUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAaN+iQmaWzDT1+SNFmO3CWpQYa7JDVozXBPcnuSE90j9U5ddzBJJdnZLSfJh5McTfLFJG+cRqclSWe2njn3O4CPAB8bbkxyAfCTwNeGmt/C8kOxLwLeDHy0+ymNZHhe/plbr9rEnkizZc2Re1U9CDy/wqoPAr8M1FDbfuBjtewh4Lwk50+kp5KkdRtpzj3JfuB4Vf3RKat2Ac8OLR/r2iRJG6j3pZBJXg38CstTMiNLsggsAszNzTEYDEY6ztLS0sj7bldbpWYH955csX24b8PbbFaft0q9ZoX16mda9RrlOve/DlwI/FESgN3A55NcChwHLhjadnfXdpqqOgQcApifn6+FhYURurL8gR913+1qq9TswCrXuT9z7cKK2wy3b6StUq9ZYb36mVa9ek/LVNWjVfWDVbWnqvawPPXyxqr6OnAf8LPdVTOXAS9W1XOT7bIkaS3ruRTyLuD3gYuTHEty/Rk2/zTwNHAU+E3gH0+kl5KkXtaclqmqa9ZYv2fodQE3jN8tSdI4/IaqJDXIcJekBnlXSG053i1SGp8jd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgL4XUzPDBHdL6OXKXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalB63nM3u1JTiR5bKjtXyf5UpIvJvlPSc4bWndTkqNJnkryU1PqtyTpDNYzcr8DuPKUtvuBN1TV3wL+GLgJIMklwNXAD3f7/PskZ02st5KkdVkz3KvqQeD5U9r+W1Wd7BYfAnZ3r/cDh6vq21X1FZYflH3pBPsrSVqHScy5/0PgM93rXcCzQ+uOdW2SpA001r1lkvxz4CTw8RH2XQQWAebm5hgMBiP1YWlpaeR9t6utUrODe0+uvdEqNrL/W6Ves8J69TOteo0c7kkOAG8Frqiq6pqPAxcMbba7aztNVR0CDgHMz8/XwsLCSP0YDAaMuu92tVVqdmCMZ6U+c+3C5Dqyhq1Sr1lhvfqZVr1GmpZJciXwy8DbqupPh1bdB1yd5JVJLgQuAj43fjclSX2sOXJPchewAOxMcgy4meWrY14J3J8E4KGqem9VPZ7kbuAJlqdrbqiq706r85Kkla0Z7lV1zQrNt51h+1uAW8bplCRpPH5DVZIaZLhLUoMMd0lqkOEuSQ3yAdlqgg/Plv5/hrs21J4xvrgkaf2clpGkBhnuktQgw12SGmS4S1KD/IOqZpJ/mJXOzJG7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJatCa4Z7k9iQnkjw21PbaJPcn+XL38zVde5J8OMnRJF9M8sZpdl6StLL1jNzvAK48pe1G4IGqugh4oFsGeAvLD8W+CFgEPjqZbkqS+lgz3KvqQeD5U5r3A3d2r+8E3j7U/rFa9hBwXpLzJ9RXSdI6jTrnPldVz3Wvvw7Mda93Ac8ObXesa5MkbaCxbz9QVZWk+u6XZJHlqRvm5uYYDAYjnX9paWnkfberzazZwb0np36OSf/bfI/1Y736mVa9Rg33byQ5v6qe66ZdTnTtx4ELhrbb3bWdpqoOAYcA5ufna2FhYaSODAYDRt13u9rMmh3YgHvCPHPtwvdeT+IJTb7H+rFe/UyrXqNOy9wHXNe9vg64d6j9Z7urZi4DXhyavpEkbZA1R+5J7gIWgJ1JjgE3A7cCdye5Hvgq8M5u808DPw0cBf4UeM8U+ixJWsOa4V5V16yy6ooVti3ghnE7JUkaj99QlaQGGe6S1CDDXZIa5GP21BwfwSc5cpekJhnuktQgw12SGmS4S1KDDHdJapDhLkkN8lJIbRuTuEOkNCscuUtSgwx3SWqQ4S5JDXLOXduS8+9qnSN3SWqQ4S5JDRor3JP80ySPJ3ksyV1Jvi/JhUkeTnI0ySeSvGJSnZUkrc/I4Z5kF/BPgPmqegNwFnA18AHgg1X1OuAF4PpJdFSStH7jTsucDbwqydnAq4HngB8H7unW3wm8fcxzSJJ6Gjncq+o48G+Ar7Ec6i8CjwDfqqqT3WbHgF3jdlKS1E+qarQdk9cAvw38DPAt4D+yPGL/1W5KhiQXAJ/ppm1O3X8RWASYm5t70+HDh0fqx9LSEjt27Bhp3+1qM2v26PEXN+W8Z7J317lnXO97rB/r1c849dq3b98jVTW/0rpxrnP/CeArVfUnAEk+CVwOnJfk7G70vhs4vtLOVXUIOAQwPz9fCwsLI3ViMBgw6r7b1WbW7MAWfATeM9cunHG977F+rFc/06rXOHPuXwMuS/LqJAGuAJ4APgu8o9vmOuDe8booSeprnDn3h1mehvk88Gh3rEPA+4FfSnIU+H7gtgn0U5LUw1i3H6iqm4GbT2l+Grh0nONKksbjN1QlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoPGuuWvtF3sGXqC1DO3XrWJPZHWx5G7JDXIkbs0xBG6WjHWyD3JeUnuSfKlJE8m+TtJXpvk/iRf7n6+ZlKdlSStz7jTMh8Cfreq/gbwI8CTwI3AA1V1EfBAtyxJ2kAjh3uSc4G/S/cA7Kr6TlV9C9gP3Nltdifw9vG6KEnqa5yR+4XAnwD/IckXkvxWknOAuap6rtvm68DcuJ2UJPWTqhptx2QeeAi4vKoeTvIh4H8D76uq84a2e6GqTpt3T7IILALMzc296fDhwyP1Y2lpiR07doy073a1mTV79PiLm3LeUezddS6wXK+vvPjd09q1Mj+T/YxTr3379j1SVfMrrRsn3P8K8FBV7emWf4zl+fXXAQtV9VyS84FBVV18pmPNz8/XkSNHRurHYDBgYWFhpH23q82s2fDVKFvdy1fLDAYDDvzuS6e1a2V+JvsZp15JVg33kS+FrKqvJ3k2ycVV9RRwBfBE9991wK3dz3tHPYfaMEuBLrVi3Ovc3wd8PMkrgKeB97A8j393kuuBrwLvHPMckqSexgr3qvpDYKVfCa4Y57jSVvDybxwH957E7/tp1nj7AUlqkMMRqSdvUaBZ4MhdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchLIaUJ8RJJbSWO3CWpQY7cpTF4UzRtVY7cJalBhrskNchwl6QGOecuTcGpc/FePaON5shdkhpkuEtSgwx3SWrQ2OGe5KwkX0jyX7rlC5M8nORokk90z1eVJG2gSYzcfxF4cmj5A8AHq+p1wAvA9RM4hySph7GulkmyG7gKuAX4pSQBfhx4V7fJncCvAh8d5zyaPX5zU9pcqarRd07uAX4N+EvAPwMOAA91o3aSXAB8pqresMK+i8AiwNzc3JsOHz48Uh+WlpbYsWPHSPtuVxtRs0ePvzjV42+kuVfBN/5svGPs3XXuZDozA/xM9jNOvfbt2/dIVc2vtG7kkXuStwInquqRJAt996+qQ8AhgPn5+VpY6H0IAAaDAaPuu11tRM0ONDRyP7j3JL/+6HhfCXnm2oXJdGYG+JnsZ1r1GucdeznwtiQ/DXwf8JeBDwHnJTm7qk4Cu4Hj43dTktTHyH9Qraqbqmp3Ve0Brgb+R1VdC3wWeEe32XXAvWP3UpLUyzRuP/B+4HCSfwl8AbhtCueQmuPDPjRJEwn3qhoAg+7108ClkziuJGk03jhM2gCOyrXRvP2AJDXIcJekBjktI21BTuNoXIa7tMEMbm0Ep2UkqUGO3KVN5A3WNC2O3CWpQYa7JDXIcJekBjnnrolx/ljaOgx3aYvz0kmNwmkZSWqQ4S5JDTLcJalBzrlLjXGOXmC4S03wSiWdauRpmSQXJPlskieSPJ7kF7v21ya5P8mXu5+vmVx3JUnrMc6c+0ngYFVdAlwG3JDkEuBG4IGqugh4oFuWJG2gkadlquo54Lnu9f9J8iSwC9gPLHSb3cnys1XfP1YvJZ3GqRidSapq/IMke4AHgTcAX6uq87r2AC+8vHzKPovAIsDc3NybDh8+PNK5l5aW2LFjx0j7blfTqtmjx1+c+DG3grlXwTf+bLN7MZq9u87d8HP6mexnnHrt27fvkaqaX2nd2OGeZAfwe8AtVfXJJN8aDvMkL1TVGefd5+fn68iRIyOdfzAYsLCwMNK+29W0atbqSPLg3pP8+qOzee3BZlwt42eyn3HqlWTVcB/rOvckfxH4beDjVfXJrvkbSc7v1p8PnBjnHJKk/sa5WibAbcCTVfVvh1bdB1zXvb4OuHf07kmSRjHO75qXA+8GHk3yh13brwC3AncnuR74KvDOsXooSeptnKtl/ieQVVZfMepxJU2O31bdvry3jCQ1yHCXpAbN5vVdknpzimZ7ceQuSQ1y5K51WW3U1+oXl6RZ58hdkhpkuEtSgwx3SWqQc+7SNuSVM+1z5C5JDTLcJalBhrskNcg5d/Xmte3S1me4b3P+YU1n+p+174nZ5bSMJDXIkbu+59QRnKM2DVvPdJzvma3DcG+M0yyaJP++MrumFu5JrgQ+BJwF/FZV3Tqtc20Xq33QVgvxcYPeD7b62nPjpzi49yQHzvBboAOQjTGVOfckZwH/DngLcAlwTZJLpnEuSdLppjVyvxQ4WlVPAyQ5DOwHnpjS+bSG4dHSSiMrabOtd0TvyH99UlWTP2jyDuDKqvpH3fK7gTdX1S8MbbMILHaLFwNPDR3iXODFdS7vBL450X/A6ued5H5rbbPa+pXa+9QLplcz69XfKDWzXtPZ50zbbdV6/bWq+oEV11TVxP8D3sHyPPvLy+8GPtJj/0PrXQaOTOPfsNJ5J7nfWtustn6l9j71mmbNrNfG1Mx6TWefM203i/Wa1nXux4ELhpZ3d23r9Z97Lk/LqOdZz35rbbPa+pXardds1mvUc1mv6exzpu1mrl7TmpY5G/hj4AqWQ/0PgHdV1eNTONeRqpqf9HFbZs36sV79WK9+plWvqfxBtapOJvkF4L+yfCnk7dMI9s6hKR23ZdasH+vVj/XqZyr1msrIXZK0uby3jCQ1yHCXpAYZ7pLUoObCPck5Se5M8ptJrt3s/mx1SX4oyW1J7tnsvsyCJG/v3lufSPKTm92frS7J30zyG0nuSfLzm92fWdBl2JEkbx3nODMR7kluT3IiyWOntF+Z5KkkR5Pc2DX/feCeqvo54G0b3tktoE+9qurpqrp+c3q6NfSs1+907633Aj+zGf3dbD3r9WRVvRd4J3D5ZvR3s/XML4D3A3ePe96ZCHfgDuDK4YYz3JxsN/Bst9l3N7CPW8kdrL9eGq1e/6Jbvx3dQY96JXkb8Cng0xvbzS3jDtZZryR/j+V7cJ0Y96QzEe5V9SDw/CnN37s5WVV9B3j55mTHWA54mJF/36T1rNe216deWfYB4DNV9fmN7utW0Pf9VVX3VdVbgG05TdqzXgvAZcC7gJ9LMnKGzfLDOnbx/0bosBzqbwY+DHwkyVVs7Neit7oV65Xk+4FbgL+d5Kaq+rVN6d3Ws9r7633ATwDnJnldVf3GZnRuC1rt/bXA8lTpK9m+I/eVrFiv6m6umOQA8M2q+vNRTzDL4b6iqnoJeM9m92NWVNX/Ynn+WOtQVR9meQChdaiqATDY5G7MnKq6Y9xjzPK0xbg3J9turFc/1qsf69XP1Os1y+H+B8BFSS5M8grgauC+Te7TVma9+rFe/VivfqZer5kI9yR3Ab8PXJzkWJLrq+ok8PLNyZ4E7p7izclmivXqx3r1Y7362ax6eeMwSWrQTIzcJUn9GO6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBv1fa/Wlj8SbwLgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGhCAYAAABLWk8IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df3RU5Z3H8c8kGSYESWLCISGSQI4HBUSJCwRT2QoSiIEiP9J1WVmLyIHdLaCQFiRbwYDYAIcqglFKa7HuIbuU3YWuQIEUUFb5HcQtFRG2KCw04bQxGZIchiGZ/YMybZgAmXAn89zk/TonR+9zn3nmO/nOwIc79844fD6fTwAAAAaJCHcBAAAANyKgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYJyrcBbREQ0ODLly4oM6dO8vhcIS7HAAA0Aw+n0+XLl1SSkqKIiJufYzElgHlwoULSk1NDXcZAACgBc6dO6fu3bvfco4tA0rnzp0lXXuAsbGxlq7t9Xq1c+dOjRw5Uk6n09K1EXr0z/7oof3RQ/sLVQ/dbrdSU1P9f4/fii0DyvW3dWJjY0MSUGJiYhQbG8sLy4bon/3RQ/ujh/YX6h425/QMTpIFAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGCfogLJ3716NGTNGKSkpcjgc2rx5c8CcEydO6Mknn1RcXJw6deqkQYMG6ezZs/79ly9f1owZM5SYmKi77rpLeXl5qqiouLNHArQTPedvDfgBgLYm6IBSW1ur/v37q7i4uMn9//u//6shQ4aod+/e+uCDD/Q///M/WrBggaKjo/1z5syZo/fff18bN27Uhx9+qAsXLmjChAktfxQAAKBNiQr2Brm5ucrNzb3p/h/84AcaNWqUli9f7h+79957/f9fXV2td955RyUlJXr88cclSevWrVOfPn104MABPfLII8GWBAAA2pigA8qtNDQ0aOvWrZo3b55ycnL0ySefKD09XQUFBRo3bpwkqaysTF6vV9nZ2f7b9e7dW2lpadq/f3+TAcXj8cjj8fi33W63JMnr9crr9Vr5EPzrWb0uWkd76J8r0hcw1pYeb3voYVtHD+0vVD0MZj1LA8rFixdVU1OjpUuXasmSJVq2bJm2b9+uCRMmaM+ePXrsscdUXl6uDh06KD4+vtFtk5KSVF5e3uS6RUVFWrRoUcD4zp07FRMTY+VD8CstLQ3Jumgdbbl/yzMDx7Zt29b6hYRYW+5he0EP7c/qHtbV1TV7ruVHUCRp7NixmjNnjiQpIyND+/bt05o1a/TYY4+1aN2CggLl5+f7t91ut1JTUzVy5EjFxsbeeeF/wev1qrS0VCNGjJDT6bR0bYRee+hfv8IdAWPHC3PCUElotIcetnX00P5C1cPr74A0h6UBpUuXLoqKilLfvn0bjffp00cfffSRJCk5OVlXrlxRVVVVo6MoFRUVSk5ObnJdl8sll8sVMO50OkP25A/l2gi9ttw/T70jYKwtPta23MP2gh7an9U9DGYtSz8HpUOHDho0aJBOnjzZaPyLL75Qjx49JEkDBgyQ0+nUrl27/PtPnjyps2fPKisry8pyAACATQV9BKWmpkanT5/2b585c0bHjh1TQkKC0tLSNHfuXP3t3/6tvvnNb2rYsGHavn273n//fX3wwQeSpLi4OE2dOlX5+flKSEhQbGysZs2apaysLK7gAQAAkloQUI4cOaJhw4b5t6+fGzJ58mS9++67Gj9+vNasWaOioiI9//zzuv/++/Uf//EfGjJkiP82r7/+uiIiIpSXlyePx6OcnBy99dZbFjwcAADQFgQdUIYOHSqfL/Ayx7/03HPP6bnnnrvp/ujoaBUXF9/0w94AAED7xnfxAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjBMV7gIAWK/n/K0BY18uHR2GSgCgZTiCAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYhw9qA9qApj6YDQDsLOgjKHv37tWYMWOUkpIih8OhzZs333TuP/7jP8rhcGjlypWNxisrKzVp0iTFxsYqPj5eU6dOVU1NTfDVAwCANinogFJbW6v+/furuLj4lvM2bdqkAwcOKCUlJWDfpEmT9Nvf/lalpaXasmWL9u7dq+nTpwdbCgAAaKOCfosnNzdXubm5t5xz/vx5zZo1Szt27NDo0Y2//+PEiRPavn27Dh8+rIEDB0qSVq9erVGjRmnFihVNBhqPxyOPx+PfdrvdkiSv1yuv1xvsQ7il6+tZvS5aR3vonyvS16Lb2eV30h562NbRQ/sLVQ+DWc/yc1AaGhr0zDPPaO7cuXrggQcC9u/fv1/x8fH+cCJJ2dnZioiI0MGDBzV+/PiA2xQVFWnRokUB4zt37lRMTIy1D+BPSktLQ7IuWkdb7t/yzJbdbtu2bdYWEmJtuYftBT20P6t7WFdX1+y5lgeUZcuWKSoqSs8//3yT+8vLy9W1a9fGRURFKSEhQeXl5U3epqCgQPn5+f5tt9ut1NRUjRw5UrGxsdYVr2vprrS0VCNGjJDT6bR0bYRee+hfv8IdLbrd8cIciysJjfbQw7aOHtpfqHp4/R2Q5rA0oJSVlemNN97Q0aNH5XA4LFvX5XLJ5XIFjDudzpA9+UO5NkKvLffPU9+y15bdfh9tuYftBT20P6t7GMxaln4Oyn//93/r4sWLSktLU1RUlKKiovTVV1/pe9/7nnr27ClJSk5O1sWLFxvd7urVq6qsrFRycrKV5QAAAJuy9AjKM888o+zs7EZjOTk5euaZZzRlyhRJUlZWlqqqqlRWVqYBAwZIknbv3q2GhgYNHjzYynIAAIBNBR1QampqdPr0af/2mTNndOzYMSUkJCgtLU2JiYmN5judTiUnJ+v++++XJPXp00dPPPGEpk2bpjVr1sjr9WrmzJmaOHFik1fwAACA9ifot3iOHDmihx9+WA8//LAkKT8/Xw8//LAWLlzY7DXWr1+v3r17a/jw4Ro1apSGDBmitWvXBlsKAABoo4I+gjJ06FD5fM3/HIYvv/wyYCwhIUElJSXB3jUAAGgn+LJAAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4ln4XDwDr9Zy/NdwlAECr4wgKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOEEHlL1792rMmDFKSUmRw+HQ5s2b/fu8Xq9efPFFPfjgg+rUqZNSUlL0ne98RxcuXGi0RmVlpSZNmqTY2FjFx8dr6tSpqqmpufNHAyAoPedvbfQDAKYIOqDU1taqf//+Ki4uDthXV1eno0ePasGCBTp69Kj+8z//UydPntSTTz7ZaN6kSZP029/+VqWlpdqyZYv27t2r6dOnt/xRAACANiUq2Bvk5uYqNze3yX1xcXEqLS1tNPbmm28qMzNTZ8+eVVpamk6cOKHt27fr8OHDGjhwoCRp9erVGjVqlFasWKGUlJQWPAwAANCWBB1QglVdXS2Hw6H4+HhJ0v79+xUfH+8PJ5KUnZ2tiIgIHTx4UOPHjw9Yw+PxyOPx+Lfdbreka28peb1eS+u9vp7V66J1tMX+uSJ9lqzT1O/kxrVN+L21xR62N/TQ/kLVw2DWC2lAuXz5sl588UX93d/9nWJjYyVJ5eXl6tq1a+MioqKUkJCg8vLyJtcpKirSokWLAsZ37typmJgY6wuXAo4EwV7aUv+WZ1qzzrZt2267dlNzwqUt9bC9oof2Z3UP6+rqmj03ZAHF6/Xqqaeeks/n09tvv31HaxUUFCg/P9+/7Xa7lZqaqpEjR/qDj1W8Xq9KS0s1YsQIOZ1OS9dG6LXF/vUr3GHJOscLc267dlNzWltb7GF7Qw/tL1Q9vP4OSHOEJKBcDydfffWVdu/e3ShEJCcn6+LFi43mX716VZWVlUpOTm5yPZfLJZfLFTDudDpD9uQP5doIvbbUP0+9w5J1mvp93Lh2rwU7A+Z8uXS0JfcfrLbUw/aKHtqf1T0MZi3LPwflejg5deqUfv3rXysxMbHR/qysLFVVVamsrMw/tnv3bjU0NGjw4MFWlwMAAGwo6CMoNTU1On36tH/7zJkzOnbsmBISEtStWzd9+9vf1tGjR7VlyxbV19f7zytJSEhQhw4d1KdPHz3xxBOaNm2a1qxZI6/Xq5kzZ2rixIlcwQMAACS1IKAcOXJEw4YN829fPzdk8uTJKiws1H/9139JkjIyMhrdbs+ePRo6dKgkaf369Zo5c6aGDx+uiIgI5eXladWqVS19DAAAoI0JOqAMHTpUPt/NL3u81b7rEhISVFJSEuxdAwCAdoLv4gEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxosJdAIDW0XP+1nCXAADNxhEUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYJOqDs3btXY8aMUUpKihwOhzZv3txov8/n08KFC9WtWzd17NhR2dnZOnXqVKM5lZWVmjRpkmJjYxUfH6+pU6eqpqbmzh4JAABoM6KCvUFtba369++v5557ThMmTAjYv3z5cq1atUo///nPlZ6ergULFignJ0efffaZoqOjJUmTJk3S73//e5WWlsrr9WrKlCmaPn26SkpK7vwRATbWc/7WcJdwW03V+OXS0WGoBEBbFnRAyc3NVW5ubpP7fD6fVq5cqZdeekljx46VJL333ntKSkrS5s2bNXHiRJ04cULbt2/X4cOHNXDgQEnS6tWrNWrUKK1YsUIpKSkB63o8Hnk8Hv+22+2WJHm9Xnm93mAfwi1dX8/qddE67N4/V6Qv3CUEuPF32VSNVv6+7d5D0MO2IFQ9DGY9h8/na/GfiA6HQ5s2bdK4ceMkSb/73e9077336pNPPlFGRoZ/3mOPPaaMjAy98cYb+tnPfqbvfe97+vrrr/37r169qujoaG3cuFHjx48PuJ/CwkItWrQoYLykpEQxMTEtLR8AALSiuro6Pf3006qurlZsbOwt5wZ9BOVWysvLJUlJSUmNxpOSkvz7ysvL1bVr18ZFREUpISHBP+dGBQUFys/P92+73W6lpqZq5MiRt32AwfJ6vSotLdWIESPkdDotXRuhZ/f+9SvcEe4SAhwvzGm03VSNN865E3bvIehhWxCqHl5/B6Q5LA0ooeJyueRyuQLGnU5nyJ78oVwboWfX/nnqHeEuIcCNv8emagzF79quPcSf0UP7s7qHwaxl6WXGycnJkqSKiopG4xUVFf59ycnJunjxYqP9V69eVWVlpX8OAABo3ywNKOnp6UpOTtauXbv8Y263WwcPHlRWVpYkKSsrS1VVVSorK/PP2b17txoaGjR48GArywEAADYV9Fs8NTU1On36tH/7zJkzOnbsmBISEpSWlqbZs2dryZIl6tWrl/8y45SUFP+JtH369NETTzyhadOmac2aNfJ6vZo5c6YmTpzY5BU8AACg/Qk6oBw5ckTDhg3zb18/eXXy5Ml69913NW/ePNXW1mr69OmqqqrSkCFDtH37dv9noEjS+vXrNXPmTA0fPlwRERHKy8vTqlWrLHg4AACgLQg6oAwdOlS3ujLZ4XBo8eLFWrx48U3nJCQk8KFsAADgpvguHgAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMaJCncBAMzWc/7WcJcAoB3iCAoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDh8DgqAO3bjZ6V8uXR0mCoB0FZwBAUAABiHgAIAAIxjeUCpr6/XggULlJ6ero4dO+ree+/VK6+8Ip/P55/j8/m0cOFCdevWTR07dlR2drZOnTpldSkAwqTn/K0BPwAQDMsDyrJly/T222/rzTff1IkTJ7Rs2TItX75cq1ev9s9Zvny5Vq1apTVr1ujgwYPq1KmTcnJydPnyZavLAQAANmT5SbL79u3T2LFjNXr0tZPkevbsqX/913/VoUOHJF07erJy5Uq99NJLGjt2rCTpvffeU1JSkjZv3qyJEydaXRIAALAZywPKN77xDa1du1ZffPGF7rvvPn366af66KOP9Nprr0mSzpw5o/LycmVnZ/tvExcXp8GDB2v//v1NBhSPxyOPx+PfdrvdkiSv1yuv12tp/dfXs3pdtA67988V6bv9JJtqbk/s3kPQw7YgVD0MZj3LA8r8+fPldrvVu3dvRUZGqr6+Xq+++qomTZokSSovL5ckJSUlNbpdUlKSf9+NioqKtGjRooDxnTt3KiYmxuJHcE1paWlI1kXrsGv/lmeGu4LQ2bZtW1Dz7dpD/Bk9tD+re1hXV9fsuZYHlF/84hdav369SkpK9MADD+jYsWOaPXu2UlJSNHny5BatWVBQoPz8fP+22+1WamqqRo4cqdjYWKtKl3Qt3ZWWlmrEiBFyOp2Wro3Qs3v/+hXuCHcJIXO8MKdZ8+zeQ9DDtiBUPbz+DkhzWB5Q5s6dq/nz5/vfqnnwwQf11VdfqaioSJMnT1ZycrIkqaKiQt26dfPfrqKiQhkZGU2u6XK55HK5AsadTmfInvyhXBuhZ9f+eeod4S4hZILth117iD+jh/ZndQ+DWcvyq3jq6uoUEdF42cjISDU0NEiS0tPTlZycrF27dvn3u91uHTx4UFlZWVaXAwAAbMjyIyhjxozRq6++qrS0ND3wwAP65JNP9Nprr+m5556TJDkcDs2ePVtLlixRr169lJ6ergULFiglJUXjxo2zuhwAAGBDlgeU1atXa8GCBfrud7+rixcvKiUlRf/wD/+ghQsX+ufMmzdPtbW1mj59uqqqqjRkyBBt375d0dHRVpcDAABsyPKA0rlzZ61cuVIrV6686RyHw6HFixdr8eLFVt89AABoA/guHgAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAY/Scv1X9CndIkv+/ANonAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAONEhbsAAO1Tz/lbw10CAINxBAUAABiHgAIAAIxDQAEAAMYhoAAAAONwkiyAVsFJsQCCwREUAABgHI6gAGHEUQUAaBpHUAAAgHEIKAAAwDghCSjnz5/X3//93ysxMVEdO3bUgw8+qCNHjvj3+3w+LVy4UN26dVPHjh2VnZ2tU6dOhaIUAABgQ5YHlK+//lqPPvqonE6nfvWrX+mzzz7Tj370I919993+OcuXL9eqVau0Zs0aHTx4UJ06dVJOTo4uX75sdTkAAMCGLD9JdtmyZUpNTdW6dev8Y+np6f7/9/l8WrlypV566SWNHTtWkvTee+8pKSlJmzdv1sSJEwPW9Hg88ng8/m232y1J8nq98nq9ltZ/fT2r10XrsFv/XJG+cJdgHFeEz/9fu/QRjdntdYhAoephMOs5fD6fpX9C9u3bVzk5Ofq///s/ffjhh7rnnnv03e9+V9OmTZMk/e53v9O9996rTz75RBkZGf7bPfbYY8rIyNAbb7wRsGZhYaEWLVoUMF5SUqKYmBgrywcAACFSV1enp59+WtXV1YqNjb3lXMsDSnR0tCQpPz9ff/M3f6PDhw/rhRde0Jo1azR58mTt27dPjz76qC5cuKBu3br5b/fUU0/J4XBow4YNAWs2dQQlNTVVf/jDH277AIPl9XpVWlqqESNGyOl0Wro2Qs9u/etXuCPcJRjHFeHTKwMbtOBIhMoWPhHuctACdnsdIlCoeuh2u9WlS5dmBRTL3+JpaGjQwIED9cMf/lCS9PDDD+v48eP+gNISLpdLLpcrYNzpdIbsyR/KtRF6dumfp94R7hKM5Wlw2KKHuDm7vA5xc1b3MJi1LD9Jtlu3burbt2+jsT59+ujs2bOSpOTkZElSRUVFozkVFRX+fQAAoH2zPKA8+uijOnnyZKOxL774Qj169JB07YTZ5ORk7dq1y7/f7Xbr4MGDysrKsrocAABgQ5a/xTNnzhx94xvf0A9/+EM99dRTOnTokNauXau1a9dKkhwOh2bPnq0lS5aoV69eSk9P14IFC5SSkqJx48ZZXQ4AALAhywPKoEGDtGnTJhUUFGjx4sVKT0/XypUrNWnSJP+cefPmqba2VtOnT1dVVZWGDBmi7du3+0+wBQAA7VtIvizwW9/6lr71rW/ddL/D4dDixYu1ePHiUNw9gDaiqS9T/HLp6JDdDoA5+C4eAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4IfmgNgAIFT6EDWgfOIICAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOn4MCwPaa+mwUAPbGERQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDh8UBuAduHGD3P7cunoMFUCoDk4ggIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYJyQB5SlS5fK4XBo9uzZ/rHLly9rxowZSkxM1F133aW8vDxVVFSEuhQAAGATIQ0ohw8f1o9//GM99NBDjcbnzJmj999/Xxs3btSHH36oCxcuaMKECaEsBQAA2EjIAkpNTY0mTZqkn/zkJ7r77rv949XV1XrnnXf02muv6fHHH9eAAQO0bt067du3TwcOHAhVOQAAwEZC9kmyM2bM0OjRo5Wdna0lS5b4x8vKyuT1epWdne0f6927t9LS0rR//3498sgjAWt5PB55PB7/ttvtliR5vV55vV5L676+ntXronXYrX+uSF+4SzCOK8LX6L+hYpfniB3Z7XWIQKHqYTDrhSSg/Nu//ZuOHj2qw4cPB+wrLy9Xhw4dFB8f32g8KSlJ5eXlTa5XVFSkRYsWBYzv3LlTMTEx1hR9g9LS0pCsi9Zhl/4tzwx3BeZ6ZWBDSNfftm1bSNeHfV6HuDmre1hXV9fsuZYHlHPnzumFF15QaWmpoqOjLVmzoKBA+fn5/m23263U1FSNHDlSsbGxltzHdV6vV6WlpRoxYoScTqelayP07Na/foU7wl2CcVwRPr0ysEELjkTI0+AI2f0cL8wJ2drtnd1ehwgUqh5efwekOSwPKGVlZbp48aL+6q/+yj9WX1+vvXv36s0339SOHTt05coVVVVVNTqKUlFRoeTk5CbXdLlccrlcAeNOpzNkT/5Qro3Qs0v/PPWh+wvY7jwNjpD+fuzw/LA7u7wOcXNW9zCYtSwPKMOHD9dvfvObRmNTpkxR79699eKLLyo1NVVOp1O7du1SXl6eJOnkyZM6e/assrKyrC4HAADYkOUBpXPnzurXr1+jsU6dOikxMdE/PnXqVOXn5yshIUGxsbGaNWuWsrKymjxBFgDCpef8rQFjXy4dHYZKgPYnZFfx3Mrrr7+uiIgI5eXlyePxKCcnR2+99VY4SgEAAAZqlYDywQcfNNqOjo5WcXGxiouLW+PugbC48V/f/MvbLBwdAczGd/EAAADjEFAAAIBxCCgAAMA4BBQAAGCcsFzFA7RHTZ2UCQBoGkdQAACAcTiCAgBB4PJxoHVwBAUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHG4igcA7gBfOgiEBkdQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMw2XGAGAxqy495hJmtGccQQEAAMYhoAAAAOMQUAAAgHE4BwUA/qSpcz4AhAdHUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjMNlxgAQBnyMPXBrHEEBAADGIaAAAADjWB5QioqKNGjQIHXu3Fldu3bVuHHjdPLkyUZzLl++rBkzZigxMVF33XWX8vLyVFFRYXUpAADApiw/B+XDDz/UjBkzNGjQIF29elX//M//rJEjR+qzzz5Tp06dJElz5szR1q1btXHjRsXFxWnmzJmaMGGCPv74Y6vLAQDb4KP2gT+zPKBs37690fa7776rrl27qqysTN/85jdVXV2td955RyUlJXr88cclSevWrVOfPn104MABPfLIIwFrejweeTwe/7bb7ZYkeb1eeb1eS+u/vp7V66J1mNQ/V6Qv3CXYkivC1+i/bcWNz8mWPj9MeG7fjkmvQ7RMqHoYzHoOn88X0j8FTp8+rV69euk3v/mN+vXrp927d2v48OH6+uuvFR8f75/Xo0cPzZ49W3PmzAlYo7CwUIsWLQoYLykpUUxMTCjLBwAAFqmrq9PTTz+t6upqxcbG3nJuSC8zbmho0OzZs/Xoo4+qX79+kqTy8nJ16NChUTiRpKSkJJWXlze5TkFBgfLz8/3bbrdbqampGjly5G0fYLC8Xq9KS0s1YsQIOZ1OS9dG6JnUv36FO8J6/3blivDplUEa9ZMAAAqkSURBVIENWnAkQp4GR7jLsczxwpxG2y19fty4jolMeh2iZULVw+vvgDRHSAPKjBkzdPz4cX300Ud3tI7L5ZLL5QoYdzqdIXvyh3JthJ4J/fPUt52/XMPB0+BoU7/DG5+PLX1s4X5eB8OE1yHujNU9DGatkF1mPHPmTG3ZskV79uxR9+7d/ePJycm6cuWKqqqqGs2vqKhQcnJyqMoBAAA2YnlA8fl8mjlzpjZt2qTdu3crPT290f4BAwbI6XRq165d/rGTJ0/q7NmzysrKsrocAABgQ5a/xTNjxgyVlJTol7/8pTp37uw/ryQuLk4dO3ZUXFycpk6dqvz8fCUkJCg2NlazZs1SVlZWk1fwAEBbwCXEQHAsDyhvv/22JGno0KGNxtetW6dnn31WkvT6668rIiJCeXl58ng8ysnJ0VtvvWV1KQAAwKYsDyjNuWo5OjpaxcXFKi4utvruAQBAG8B38QAAAOMQUAAAgHEIKAAAwDgh/aA2oL3gCg2ES1PPvS+Xjg5DJYC1OIICAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcLjMGABvhkna0FxxBAQAAxiGgAAAA4xBQAACAcTgHBQDamBvPU+Gj72FHHEEBAADG4QgKcBv8axQAWh9HUAAAgHEIKAAAwDgEFAAAYBzOQQGCxCd5AkDocQQFAAAYh4ACAACMw1s8ANAONfVWZXMuoeeye7QWjqAAAADjEFAAAIBxCCgAAMA4nIOCsAr3+9nhvn8AQNM4ggIAAIzDERS0G3zAGtqr5j73W/Iaaeo2p14ZGfQ6wI04ggIAAIzDERQYL5h/1bkifVqeKfUr3KGTr34rhFUBuJl+hTv8r0NPvaPJOTee79XSz2VB2xXWIyjFxcXq2bOnoqOjNXjwYB06dCic5QAAAEOELaBs2LBB+fn5evnll3X06FH1799fOTk5unjxYrhKAgAAhgjbWzyvvfaapk2bpilTpkiS1qxZo61bt+pnP/uZ5s+fH66y0M5xIi1gtpZ8NABvH9lTWALKlStXVFZWpoKCAv9YRESEsrOztX///oD5Ho9HHo/Hv11dXS1JqqyslNfrtbQ2r9eruro6/fGPf5TT6bR0bQSKulrbaPuPf/zjbefccr0Gn+rqGhTljQhYK5h1ED5/2cP6hqbPX4DZmtPD5rw+m/PnQVNzbneb5t6uPQvV34WXLl2SJPl8vttP9oXB+fPnfZJ8+/btazQ+d+5cX2ZmZsD8l19+2SeJH3744YcffvhpAz/nzp27bVawxVU8BQUFys/P9283NDSosrJSiYmJcjj+nM4HDRqkw4cPN7nGzfbdOO52u5Wamqpz584pNjbWwkcRvFs9ntZcL5jb3W7unexvah/9s/Z2zZnb0h7yGrRHD/lzNDTr0cNrfD6fLl26pJSUlNvODUtA6dKliyIjI1VRUdFovKKiQsnJyQHzXS6XXC5Xo7H4+PiAeZGRkTf9Rd5s383GY2Njw/7CutXjac31grnd7ebeyf6m9tE/a2/XnLkt7SGvQXv0kD9HQ7MePfyzuLi4Zs2LLCwsLLT0nptzp5GR2rp1q65cuaJRo0ZJunZU5Pnnn1deXp6GDBnS4rUzMzOD3veX4x6PR0uXLlVBQUFAKAqHWz2e1lwvmNvdbu6d7G9qH/2z9nbNmdvSHvIatEcP+XM0NOvRw+A4fL7mnKlivQ0bNmjy5Mn68Y9/rMzMTK1cuVK/+MUv9PnnnyspKSkcJUm6dlgrLi5O1dXVYU/+CB79sz96aH/00P5M6GFYjqBIUr9+/RQfH69XX31VK1askCStX79e999/fzjKaSQyMlJDhw5VVJQtTtHBDeif/dFD+6OH9hfuHobtCAoAAMDN8GWBAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0AJwpYtW3T//ferV69e+ulPfxructAC48eP1913361vf/vb4S4FLXDu3DkNHTpUffv21UMPPaSNGzeGuyQEoaqqSgMHDlRGRob69eunn/zkJ+EuCS1UV1enHj166Pvf/37I7oPLjJvp6tWr6tu3r/bs2aO4uDgNGDBA+/btU2JiYrhLQxA++OADXbp0ST//+c/17//+7+EuB0H6/e9/r4qKCmVkZKi8vFwDBgzQF198oU6dOoW7NDRDfX29PB6PYmJiVFtbq379+unIkSP8OWpDP/jBD3T69Gmlpqb6P8vMahxBaaZDhw7pgQce0D333KO77rpLubm52rlzZ7jLQpCGDh2qzp07h7sMtFC3bt2UkZEhSUpOTlaXLl1UWVkZ5qrQXJGRkYqJiZF07aPUfT6f+Dey/Zw6dUqff/65cnNzQ3o/7Sag7N27V2PGjFFKSoocDoc2b94cMKe4uFg9e/ZUdHS0Bg8erEOHDvn3XbhwQffcc49/+5577tH58+dbpXZcc6c9RPhZ2cOysjLV19crNTU11GXjT6zoX1VVlfr376/u3btr7ty56tKlS2uVD1nTw+9///sqKioKea3tJqDU1taqf//+Ki4ubnL/hg0blJ+fr5dffllHjx5V//79lZOTo4sXL7ZypbgZemh/VvWwsrJS3/nOd7R27drWKBt/YkX/4uPj9emnn+rMmTMqKSkJ+FZ7hNad9vCXv/yl7rvvPt13332hL9bXDknybdq0qdFYZmamb8aMGf7t+vp6X0pKiq+oqMjn8/l8H3/8sW/cuHH+/S+88IJv/fr1rVMwArSkh9ft2bPHl5eX1yp14uZa2sPLly/7/vqv/9r33nvvtVqtCHQnr8Hr/umf/sm3cePGkNaJm2tJD+fPn+/r3r27r0ePHr7ExERfbGysb9GiRSGpr90cQbmVK1euqKysTNnZ2f6xiIgIZWdna//+/ZKufQ318ePHdf78edXU1OhXv/qVcnJywlUybtCcHsJszemhz+fTs88+q8cff1zPPPNMuEpFE5rTv4qKCl26dEmSVF1drb179xrxBbG4pjk9LCoq0rlz5/Tll19qxYoVmjZtmhYuXBiSeviaSUl/+MMfVF9fr6SkpEbjSUlJ+vzzzyVJUVFR+tGPfqRhw4apoaFB8+bN48xzgzSnh5KUnZ2tTz/9VLW1terevbs2btyorKys1i4XTWhODz/++GNt2LBBDz30kP+983/5l3/Rgw8+2Or1orHm9O+rr77S9OnT/SfHzpo1i94ZpLl/jrYWAkoQnnzyST355JPhLgN34Ne//nW4S8AdGDJkiBoaGsJdBlooMzNTx44dC3cZsMizzz4b0vV5i0dSly5dFBkZGXCyVkVFhZKTk8NUFYJBD+2PHtob/bM/03pIQJHUoUMHDRgwQLt27fKPNTQ0aNeuXRz+twl6aH/00N7on/2Z1sN28xZPTU2NTp8+7d8+c+aMjh07poSEBKWlpSk/P1+TJ0/WwIEDlZmZqZUrV6q2tlZTpkwJY9X4S/TQ/uihvdE/+7NVD0NybZCB9uzZ45MU8DN58mT/nNWrV/vS0tJ8HTp08GVmZvoOHDgQvoIRgB7aHz20N/pnf3bqId/FAwAAjMM5KAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAY5/8Bi+Nus8LXGqwAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -2021,7 +2080,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 53, "metadata": {}, "outputs": [ { @@ -2030,9 +2089,9 @@ "text": [ "Name: \n", "Type: Graph\n", - "Number of nodes: 2386\n", - "Number of edges: 120198\n", - "Average degree: 100.7527\n" + "Number of nodes: 2383\n", + "Number of edges: 120596\n", + "Average degree: 101.2136\n" ] } ], @@ -2042,7 +2101,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 54, "metadata": {}, "outputs": [], "source": [ @@ -2051,19 +2110,25 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 55, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", + " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAPtUlEQVR4nO3dQYic533H8d+vCk6M1t2DHfYgiUphZRPhpQQPFSZQZiGpZRw5wYREii5KhRYZ5JMOlWghvgT7oouwi9kioaYk2hodglZSUdvD0IsPkkpAVoWKMC5aHaw6BMEKQVH670HjeLqaWb3vO+877zvPfD8g0PvMvO88+u/Mbx897/O+44gQACAtf1R3BwAA5SPcASBBhDsAJIhwB4AEEe4AkCDCHQAS9JU6X9z2bkm7n3nmmYPPP/98oWPcv39fGzduLLdjCaNe+VCv/KhZPsPU6+rVq59HxNf7PeYmrHNvtVpx5cqVQvt2Oh212+1yO5Qw6pUP9cqPmuUzTL1sX42IVr/HmJYBgATVGu62d9tevHfvXp3dAIDk1BruEbEcEQvT09N1dgMAksO0DAAkiHAHgAQR7gCQIE6oAkCCar2IKSKWJS23Wq2DdfYDk2fr0Qt92z9997UR9wSoBtMyAJCgWkfuwCgNGq1XcXz+B4C6Ee5Aj0EBnTe4CXrUrRE3Dpudna2zG0hImaPzrUcv6MjcQ+2veMQPVIETqkBOVU/vAGXghCoAJIg5d4w9RtLA4wh3oGKsqUcdCHeMJUbrwPoId6Am6/2CYlSPYbEUEmgg1sljWHxZBwAkiKWQAJAg5twxNjiJCmTHyB0AEsTIHWg4Tq6iCMIdtSG08ivrrpVIH+GOShA21eMcBNbDnDsAJIiLmNBojE6BYriICQASxLQMACSIE6oYKaZZgNFg5A4ACWLkjsZhdF8elqROLsIdlSOsR4t6QyLcMSRGhuODn9VkYc4dABLEyB2YQIzi08fIHQASRLgDQIKYlkEjsMKjGZiuSUfpI3fb37T9ge2ztt8s+/gAgCfLFO62T9m+a/vjNe27bN+0fcv2UUmKiBsRcUjSjyR9u/wuAwCeJOvI/bSkXb0NtjdIel/Sq5J2SNpre0f3sdclXZB0sbSeAgAyc0Rke6K9VdL5iHixu/2ypLcj4pXu9jFJioh3eva5EBF9J+5sL0hakKSZmZmXlpaWCv0DVldXNTU1VWjfSVR2va7dufeHv89tmu7bPs5mnpY+e1B3L6o16OfW254Hn8l8hqnX/Pz81Yho9XtsmBOqmyTd7tlekbTTdlvSG5K+qnVG7hGxKGlRklqtVrTb7UKd6HQ6KrrvJPniRNmRud/rre+1Szvu/t4TcPvafdvH2ZG5hzp+Le11B4N+br3tefCZzKeqepX+ro2IjqRO2cdFfbKuoGDFC9Acw4T7HUlberY3d9sy42v2xg8BDoyHYcL9sqTttrfpUajvkfSTPAeIiGVJy61W6+AQ/RgbrCFGE/ELO01Zl0KekfSRpBdsr9g+EBEPJR2WdEnSDUkfRsT1PC9ue7ftxXv30jj5BgBNkWnkHhF7B7Rf1BDLHSdt5A6Mk7Ujev63OV64twwAJCjtNV4Tgrl8jALvs/FS68idOXcAqEatI3fm3MvH6AqAxJw7ACSp1pE7FzHVg9E9hsV7qPmYlplwgy5g4QMLjDemZQAgQSyFRF9cko6smKJpJpZCAkCCag33iFiOiIXp6WJfCgAA6I85dwCl2Xr0gq7duce0XgMQ7gCQIMIdABJEuANAglgtAwAJ4grVBuBLEQCUjYuYAFSCi5vqxZw7ACSIcAeABDEtkzAuJAEmF6tlACBB3FsGABLEtEzDseIAQBGcUAWABBHuAJAgwh0AEkS4A0CCCHcASBDhDgAJItwBIEFcoQoACeIKVQBIENMyAJAgbj8AoDbcXqM6jNwBIEGEOwAkiGkZAJVj+mX0GLkDQIIYuQMYKb7+cTQYuQNAggh3AEgQ4Q4ACSLcASBBlZxQtf0DSa9J+mNJJyPin6t4HQBAf5lH7rZP2b5r++M17bts37R9y/ZRSYqIX0fEQUmHJP243C4DAJ4kz8j9tKT3JP3iiwbbGyS9L+m7klYkXbZ9LiL+o/uUv+k+DgDr4kKncjkisj/Z3irpfES82N1+WdLbEfFKd/tY96nvdv/8S0T864BjLUhakKSZmZmXlpaWCv0DVldXNTU1VWjfUbt258v71s9tmu7bvt5jve2DjvskM09Lnz3I/PSJR73yK6Nmg97rKRomw+bn569GRKvfY8POuW+SdLtne0XSTklvSfqOpGnbsxHxwdodI2JR0qIktVqtaLfbhTrQ6XRUdN9R2987MtnX7tu+3mO97YOO+yRH5h7q+DWuXcuKeuVXRs0GvddTVFWGVfKujYgTkk5UcWwAwJMNuxTyjqQtPdubu22Z8DV7AFCNYcP9sqTttrfZfkrSHknnsu7M1+wBQDUyT8vYPiOpLek52yuSfhYRJ20flnRJ0gZJpyLieo5j7pa0e3Z2Nl+vAUwMVtEUkzncI2LvgPaLki4WefGIWJa03Gq1DhbZHwDQH7cfAIAEscYLQONwz/fh1TpyZ7UMAFSj1nBntQwAVINpGQBjb+00Dqtqag53lkICyINlkdkxLQMACWIpJAAkiHAHgASxFBIAEsScOwAkiGkZAEgQ4Q4ACSLcASBBhDsAJIgrVAGMpax3jpzUq1pZLQMACWJaBgASRLgDQIIIdwBIEOEOAAni3jIAkCBWywBAgpiWAYAE8R2qAJKT9QKnlBHuACbGJF2tyrQMACSIcAeABDEt00DMFwIYFiN3AEgQI3cAEy/FE61coQoACeIKVQBIEHPuAJAgwh0AEsQJVQATadCS41ROrjJyB4AEEe4AkCDCHQASRLgDQIIIdwBIEKtlasLNwYDxMm6raBi5A0CCCHcASFDp4W77G7ZP2j5b9rEBANlkCnfbp2zftf3xmvZdtm/avmX7qCRFxCcRcaCKzgIAssk6cj8taVdvg+0Nkt6X9KqkHZL22t5Rau8AAIU4IrI90d4q6XxEvNjdflnS2xHxSnf7mCRFxDvd7bMR8cN1jrcgaUGSZmZmXlpaWir0D1hdXdXU1FShfUft2p3h7ls/t6n/rZHzHHfmaemzB0N1Y6JQr/wmoWaDPotFDJNh8/PzVyOi1e+xYZZCbpJ0u2d7RdJO289K+rmkb9k+9kXYrxURi5IWJanVakW73S7UiU6no6L7jtr+IZc/frqvPfRxj8w91PFrrIDNinrlNwk1G/RZLKKqDCv9JxARv5V0qOzjAgCyGybc70ja0rO9uduWme3dknbPzs4O0Q0AqE9TL24aZinkZUnbbW+z/ZSkPZLO5TkAX7MHANXINHK3fUZSW9Jztlck/SwiTto+LOmSpA2STkXE9TwvzsgdwCRYe7uRUYzwM4V7ROwd0H5R0sWiLx4Ry5KWW63WwaLHAAA8jtsPAECCCHcASFCti1GZcwcwjsbhlt21jtxZLQMA1WBaBgASVGu4295te/HeveHuuQIA+P+YlgGABDEtAwAJItwBIEEshRxT47AUC0B9mHMHgAQxLQMACSLcASBBhDsAJIhwB4AEcYUqACSI1TIAkCCmZQAgQYQ7ACSIcAeABBHuAJAgVssAQIJYLQMACWJaBgASRLgDQIIIdwBIEOEOAAki3AEgQYQ7ACSIcAeABBHuAJAgrlAFgARxhSoAJIhpGQBIEOEOAAki3AEgQYQ7ACSIcAeABBHuAJAgwh0AEkS4A0CCCHcASBDhDgAJItwBIEFfKfuAtjdK+ltJ/yOpExG/LPs1AADryzRyt33K9l3bH69p32X7pu1bto92m9+QdDYiDkp6veT+AgAyyDotc1rSrt4G2xskvS/pVUk7JO21vUPSZkm3u0/7fTndBADk4YjI9kR7q6TzEfFid/tlSW9HxCvd7WPdp65I+l1EnLe9FBF7BhxvQdKCJM3MzLy0tLRU6B+wurqqqampQvsO69qdL+9DP7ep/22Le5/TBDNPS589qLsX44N65TfJNevNgfU++73PGybD5ufnr0ZEq99jw8y5b9KXI3TpUajvlHRC0nu2X5O0PGjniFiUtChJrVYr2u12oU50Oh0V3XdY+49e+MPfP93Xvw+9z2mCI3MPdfxa6adakkW98pvkmvXmwHqf/d7nVZVhpf8EIuK+pJ+WfVwAQHbDLIW8I2lLz/bmbltmfM0eAFRjmHC/LGm77W22n5K0R9K5PAfga/YAoBpZl0KekfSRpBdsr9g+EBEPJR2WdEnSDUkfRsT1PC/OyB0AqpFpzj0i9g5ovyjpYtEXj4hlScutVutg0WMAAB7H7QcAIEG1hjvTMgBQjVrDnROqAFCNzFeoVtoJ+78l/Vd3c1rS2qH82rbe7eckfV5R1/r1paz91nvOoMeytk9avdZ7PO/7ae029cpXL6m6mlGvx/1JRHy97yMR0ag/khaf1Na7LenKKPtS1n7rPWfQY1nbJ61eeWtGvaqrV5U1o175/jTxhGq/WxasbRt4W4OSFX2dLPut95xBj2Vtn7R6rfd4kfcT9Vq/jXqt396IejViWmYYtq/EgBvn4HHUKx/qlR81y6eqejVx5J7XYt0dGDPUKx/qlR81y6eSeo39yB0A8LgURu4AgDUIdwBIEOEOAAlKPtxtb7R9xfb36u5L09n+pu0PbJ+1/Wbd/Wk62z+w/Xe2/9H2X9Tdn6az/Q3bJ22frbsvTdXNq7/vvq/2DXOsxoa77VO279r+eE37Lts3bd+yfTTDof5K0ofV9LI5yqhXRNyIiEOSfiTp21X2t24l1evXEXFQ0iFJP66yv3UrqV6fRMSBanvaPDlr94aks9331etDvW5TV8vY/nNJq5J+EV9+KfcGSf8p6bt69J2tlyXtlbRB0jtrDvGXkv5U0rOSvibp84g4P5rej14Z9YqIu7Zfl/SmpH+IiF+Nqv+jVla9uvsdl/TLiPj3EXV/5Equ19mI+OGo+l63nLX7vqR/iojf2P5VRPyk6Os29ltsI+LfbG9d0/xnkm5FxCeSZHtJ0vcj4h1Jj0272G5L2ihph6QHti9GxP9W2e+6lFGv7nHOSTpn+4KkZMO9pPeXJb2rRx/GZINdKu/9NYny1E6Pgn6zpN9oyJmVxob7AJsk3e7ZXpG0c9CTI+KvJcn2fj0auScZ7OvIVa/uL8M3JH1VQ3wJyxjLVS9Jb0n6jqRp27MR8UGVnWugvO+vZyX9XNK3bB/r/hKYVINqd0LSe7Zf05C3KRi3cC8kIk7X3YdxEBEdSZ2auzE2IuKEHn0YkUFE/FaPzk9ggIi4L+mnZRyrsSdUB7gjaUvP9uZuG/qjXvlQr3yoV3GV127cwv2ypO22t9l+StIeSedq7lOTUa98qFc+1Ku4ymvX2HC3fUbSR5JesL1i+0BEPJR0WNIlSTckfRgR1+vsZ1NQr3yoVz7Uq7i6atfYpZAAgOIaO3IHABRHuANAggh3AEgQ4Q4ACSLcASBBhDsAJIhwB4AEEe4AkCDCHQAS9H8PhAsuyKf11gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGhCAYAAAC6URSFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df2gUd/7H8dcmxkjaJK0Gk8as9Z9WLrUmkGyC0INYoqFXFOsJgtCmCi30JtJjaYvhOC/SP1q+10LgHJBr//BaTggWtNDjbG2wBFqPRI8IJeidYItXzz1FzOqGW9fd/f5RsleTNe6v2flM5vmAIjs7+5n35p3svvqZX4F0Op0WAACAISrcLgAAAOCnCCcAAMAohBMAAGAUwgkAADAK4QQAABiFcAIAAIxCOAEAAEZZ4nYB+UqlUrpy5Ypqa2sVCATcLgcAAOQgnU7r1q1bam5uVkXFwnMjngsnV65cUTAYdLsMAABQgMuXL6ulpWXBdTwTTmzblm3bunv3rqQf31xdXV1Jt5FIJPTFF19o8+bNqqqqKunYcB798z566H300Nuc7F80GlUwGFRtbe0D1/VMOLEsS5ZlKRqNqr6+XnV1dY6Ek5qaGtXV1fFH5UH0z/vooffRQ28rR/9yOSSDA2IBAIBRCCcAAMAohBMAAGAUwgkAADCKZ8KJbdtqbW1VKBRyuxQAAOAgz4QTy7I0NTWliYkJt0sBAAAO8kw4AQAA/kA4AQAARiGcAAAAoxBOAACAUQgnAADAKJ4JJ5xKDACAP3gmnHAqMQAA/uCZcAIAAPxhidsFAFj81uz7yz2Pv3v3eZcqAeAFzJwAAACjMHMCoKTmzpKYsH1magBvIZwAKIrbYQTA4kM4AVB2zG4AWAjhBIAR1uz7i6or0/q/Lmnd0OeKJwPz1iHAAP7gmXBi27Zs21YymXS7FMAXFtPsBmcLAd7imXBiWZYsy1I0GlV9fb3b5QC+xPElAMrBM+EEAOYiLAGLE+EEgGcQRgB/4CJsAADAKIQTAABgFHbrAIA4owcwCeEEgCR/Hc/hp/cKeBG7dQAAgFEIJwAAwCiEEwAAYBSOOQF8iGMuHiyXnxEHzQLO8Ew44d46AEyzmO4/BJjEM7t1LMvS1NSUJiYm3C4FAAA4yDPhBAAA+APhBAAAGIVwAgAAjOKZA2IBFI6zcwB4CTMnAADAKIQTAABgFHbrAEAJcXdjoHjMnAAAAKMwcwIADuIqskD+CCdAGTDVj58isAALI5wAgAEIsMD/cMwJAAAwCuEEAAAYhd06gMEKmernarAAvM4zMye2bau1tVWhUMjtUgAAgIM8E04sy9LU1JQmJibcLgUAADjIM+EEAAD4A8ecAIbgWBEA+BEzJwAAwCiEEwAAYBR26wAex+4gAIsNMycAAMAozJwAgIG4OSD8jJkTAABgFGZOAMAjuHMx/IJwAgAexa4fLFaEE3je7Ad0dWVa/9flcjEAgKIRToAiMdUOk/D7iMWAcAK4gGuTAMD9EU6AEiN4AEBxOJUYAAAYhXACAACMwm4dAPAZDpqF6Zg5AQAARiGcAAAAoxBOAACAUcoeTm7evKnOzk61t7dr3bp1+uCDD8pdAgAAMFjZD4itra3V2NiYampqFIvFtG7dOm3fvl0rVqwodykAAMBAZZ85qaysVE1NjSQpHo8rnU4rnU6XuwwAAGCovMPJ2NiYtmzZoubmZgUCAR0/fnzeOrZta82aNVq2bJm6u7s1Pj5+z/M3b95UW1ubWlpa9Oabb6qhoaHwdwAAABaVvHfrxGIxtbW1ac+ePdq+ffu850dGRhQOh3Xo0CF1d3dreHhYfX19unDhglauXClJeuSRR3Tu3DlFIhFt375dO3bsUGNjY9btxeNxxePxzONoNCpJSiQSSiQS+Za/oNnxSj0unFVd+ePMW3XFj/+Wu3+z2y+Htb/5LMv2y7Z5x832cPZfFC/b38Pc39lS/s3wOeptTvYvnzED6SL2qQQCAR07dkzbtm3LLOvu7lYoFNLBgwclSalUSsFgUHv37tW+ffvmjfGrX/1Kzz77rHbs2JF1G0NDQzpw4MC85UeOHMnsHgIAAGabmZnRrl27ND09rbq6ugXXLekBsXfu3NHZs2c1ODiYWVZRUaHe3l6dPn1akhSJRFRTU6Pa2lpNT09rbGxMr7322n3HHBwcVDgczjyORqMKBoPavHnzA99cvhKJhE6ePKlNmzapqqqqpGPDOeuGPpf04/9tv92ZKnv/ZreP4s328LdnKhRPBdwuZ1H4dqhv3rK5v7PZ1ikUn6Pe5mT/Zvd85KKk4eT69etKJpPzdtE0Njbq/PnzkqTvv/9er776auZA2L179+rpp5++75jV1dWqrq6et7yqqsqxX3wnx0bpxZP3fomVu39zt4/ixVMBfq4lku1vIdvfjBPb5XPUu5zoXz7jlf1U4q6uLk1OTpZ7swAAwCNKGk4aGhpUWVmpSCRyz/JIJKKmpqZSbgooi7k3SAMAOK+k1zlZunSpOjo6NDo6mlmWSqU0OjqqDRs2FDW2bdtqbW1VKBQqtkwAAGCwvGdObt++rYsXL2YeX7p0SZOTk1q+fLlWr16tcDis/v5+dXZ2qqurS8PDw4rFYtq9e3dRhVqWJcuyFI1GVV9fX9RYyC7bLAG3UgcAlFve4eTMmTPauHFj5vHsmTT9/f06fPiwdu7cqWvXrmn//v26evWq2tvbdeLEiftexwQA4Bx2TcKL8g4nPT09D7zc/MDAgAYGBgouCgAA+FfZz9YplG3bsm1byWTS7VLgEHYrAQAkF278VyjLsjQ1NaWJiQm3SwEAAA7yTDgBAAD+QDgBAABG8cwxJwAAZ+RyRg/Hf6GcmDkBAABG8Uw44QqxAAD4g2fCCWfrAADgD54JJwAAwB8IJwAAwCiEEwAAYBROJQYAPBC3l0A5eWbmhLN1AADwB8/MnFiWJcuyFI1GVV9f73Y5WIS4tTwAmMEzMycAAMAfPDNzAhSDWREA8A5mTgAAgFGYOQEAFCTbjOQ/397sQiVYbJg5AQAARvFMOOFUYgAA/MEz4YQb/wEA4A+eCScAAMAfCCcAgJJZN/R55l9O4UehCCcAAMAohBMAAGAUwgkAADAKF2GD0ebus+YW7QCw+DFzAgAAjOKZcMJF2AAA8AfP7NaxLEuWZSkajaq+vt7tcnwr26mB7GoBAJSSZ2ZOAACAPxBOAACAUQgnAADAKIQTAABgFM8cEAsA8B4OokchmDkBAABGIZwAAACjsFsHnsIt2AFg8WPmBAAAGMUz4YTL1wMA4A+eCSeWZWlqakoTExNulwIAABzkmXACAAD8gQNi4Yi5B65yXQMAQK6YOQEAAEYhnAAAAKMQTgAAgFEIJwAAwCgcEItFZ93Q54onA26XAQAoEDMnAADAKIQTAABgFMIJAAAwCuEEAAAYhXACAACMQjgBAABGIZwAAACjeCac2Lat1tZWhUIht0sBAAAO8sxF2CzLkmVZikajqq+vd7scAICDuLO5v3lm5gQAAPgD4QQAABiFcAIAAIxCOAEAAEYhnAAAAKMQTgAAgFEIJwAAwCieuc4JAGBxmntNE4CZEwAAYBTCCQAAMArhBAAAGIVwAgAAjMIBsQCAsuIAWDwIMycAAMAohBMAAGAUwgkAADAK4QQAABiFcAIAAIxCOAEAAEYhnAAAAKMQTgAAgFHKHk4uX76snp4etba2av369Tp69Gi5SwAAAAYr+xVilyxZouHhYbW3t+vq1avq6OjQL37xCz300EPlLgUAABio7OHkscce02OPPSZJampqUkNDg27cuEE4AQAAkgrYrTM2NqYtW7aoublZgUBAx48fn7eObdtas2aNli1bpu7ubo2Pj2cd6+zZs0omkwoGg/lXDgDwjTX7/jLvPyxeec+cxGIxtbW1ac+ePdq+ffu850dGRhQOh3Xo0CF1d3dreHhYfX19unDhglauXJlZ78aNG3rppZf0wQcfLLi9eDyueDyeeRyNRiVJiURCiUQi3/IXNDteqcf1iurK9Lxlc38WuayTbb1cfqbZxs5HdUX6nn/hPfTQ+8rZQ79+VjvJye/BfMYMpNPpgn+DAoGAjh07pm3btmWWdXd3KxQK6eDBg5KkVCqlYDCovXv3at++fZJ+DBybNm3SK6+8ohdffHHBbQwNDenAgQPzlh85ckQ1NTWFlg4AAMpoZmZGu3bt0vT0tOrq6hZct6THnNy5c0dnz57V4OBgZllFRYV6e3t1+vRpSVI6ndbLL7+sZ5999oHBRJIGBwcVDoczj6PRqILBoDZv3vzAN5evRCKhkydPatOmTaqqqirp2F6wbujzecu+HerLe51s62VbJ5ft56O6Iq23O1P67ZkKxVOBosaCO+ih95Wzh7l8riA/Tn4Pzu75yEVJw8n169eVTCbV2Nh4z/LGxkadP39ekvT1119rZGRE69evzxyv8vHHH+vpp5/OOmZ1dbWqq6vnLa+qqnIsQDg5tsniyfkfJHN/Drmsk229XH6e2cYuRDwVKNlYcAc99L5y9NCPn9Pl4sT3YD7jlf1snWeeeUapVKrcmwUAAB5R0ouwNTQ0qLKyUpFI5J7lkUhETU1NRY1t27ZaW1sVCoWKGgcAAJitpOFk6dKl6ujo0OjoaGZZKpXS6OioNmzYUNTYlmVpampKExMTxZYJAAAMlvdundu3b+vixYuZx5cuXdLk5KSWL1+u1atXKxwOq7+/X52dnerq6tLw8LBisZh2795d0sIBAMDilHc4OXPmjDZu3Jh5PHsmTX9/vw4fPqydO3fq2rVr2r9/v65evar29nadOHFi3kGyAAAA2eQdTnp6evSgS6MMDAxoYGCg4KIAAMhXtqvGfvfu8y5UgmKV/a7EheKAWAAA/MEz4YQDYgEA8IeyX+cEAIByYVePNxFOAACexJ2JFy/P7NYBAAD+4JlwwgGxAAD4g2fCCQfEAgDgD54JJwAAwB8IJwAAwCiEEwAAYBTCCQAAMIpnwgln6wAA4A+eCSecrQMAgD94JpwAAAB/IJwAAACjEE4AAIBRCCcAAMAohBMAAGAUz4QTTiUGAMAfPBNOOJUYAAB/8Ew4AQAA/kA4AQAARiGcAAAAoxBOAACAUZa4XQAAAOW0Zt9f7nn83bvPu1QJ7odwAgDwtblhRSKwuI3dOgAAwCieCSdchA0AAH/wTDjhImwAAPiDZ8IJAADwBw6IBQDgAThotryYOQEAAEYhnAAAAKMQTgAAgFEIJwAAwCiEEwAAYBTCCQAAMAqnEgMAUABuIOgcZk4AAIBRPBNOuLcOAAD+4JndOpZlybIsRaNR1dfXu10OAGARy3ZFWJSPZ2ZOAACAPxBOAACAUQgnAADAKIQTAABgFMIJAAAwCuEEAAAYhXACAACMQjgBAABGIZwAAACjEE4AAIBRPHP5epiLyzwDAEqJmRMAAGAUwgkAADAK4QQAABjFM8ec2LYt27aVTCbdLgUAgHlyOf7uu3efL0Ml3ueZmRPLsjQ1NaWJiQm3SwEAAA7yTDgBAAD+QDgBAABGIZwAAACjEE4AAIBRCCcAAMAohBMAAGAUwgkAADCKZy7CBgCA12W7UBsXZpuPmRMAAGAUwgkAADAK4QQAABiFcAIAAIxCOAEAAEYhnAAAAKMQTgAAgFEIJwAAwCiEEwAAYBTCCQAAMAqXr8eCsl1qGQAAJzFzAgAAjOJKOHnhhRf06KOPaseOHW5sHgAAGMyVcPL666/ro48+cmPTAADAcK6Ek56eHtXW1rqxaQAAYLi8w8nY2Ji2bNmi5uZmBQIBHT9+fN46tm1rzZo1WrZsmbq7uzU+Pl6SYgEAwOKX99k6sVhMbW1t2rNnj7Zv3z7v+ZGREYXDYR06dEjd3d0aHh5WX1+fLly4oJUrV+ZdYDweVzwezzyORqOSpEQioUQikfd4C5kdr9TjekV1ZdqxsXP5mRa7/eqK9D3/wnvooffRw/yZ9J3j5PdgPmMG0ul0wb9BgUBAx44d07Zt2zLLuru7FQqFdPDgQUlSKpVSMBjU3r17tW/fvsx6X331lQ4ePKhPPvlkwW0MDQ3pwIED85YfOXJENTU1hZYOAADKaGZmRrt27dL09LTq6uoWXLek1zm5c+eOzp49q8HBwcyyiooK9fb26vTp0wWNOTg4qHA4nHkcjUYVDAa1efPmB765fCUSCZ08eVKbNm1SVVVVScf2gnVDnzs29rdDfY5vv7oirbc7U/rtmQrFU4GixoI76KH30cP8Zft8nPt5mMtnaCk4+T04u+cjFyUNJ9evX1cymVRjY+M9yxsbG3X+/PnM497eXp07d06xWEwtLS06evSoNmzYkHXM6upqVVdXz1teVVXlWIBwcmyTxZPOfZDk8vMs1fbjqYCj7wXOo4feRw9zl+3zce7PrtzfSU58D+YznitXiP3yyy/d2CwAAPCAkp5K3NDQoMrKSkUikXuWRyIRNTU1lXJTAABgkSrpzMnSpUvV0dGh0dHRzEGyqVRKo6OjGhgYKGps27Zl27aSyWQpSgUAwAiF3sNs7uu+e/f5UpRjhLzDye3bt3Xx4sXM40uXLmlyclLLly/X6tWrFQ6H1d/fr87OTnV1dWl4eFixWEy7d+8uqlDLsmRZlqLRqOrr64saCwAAmCvvcHLmzBlt3Lgx83j2TJr+/n4dPnxYO3fu1LVr17R//35dvXpV7e3tOnHixLyDZAEAALLJO5z09PToQZdGGRgYKHo3DgAA8CdX7q1TCNu21draqlAo5HYpAADAQZ4JJ5ZlaWpqShMTE26XAgAAHOSZcAIAAPyBcAIAAIxCOAEAAEYhnAAAAKO4cm+dQnCFWACAXxV6FVmv8szMCWfrAADgD54JJwAAwB8IJwAAwCiEEwAAYBTCCQAAMApn6wAA4BPZzvr57t3nXahkYZ6ZOeFsHQAA/MEz4QQAAPgD4QQAABiFcAIAAIxCOAEAAEYhnAAAAKN4JpzYtq3W1laFQiG3SwEAAA7yTDjhVGIAAPzBM+EEAAD4A+EEAAAYhXACAACMQjgBAABGIZwAAACjEE4AAIBRCCcAAMAoS9wuIFe2bcu2bSWTSbdLQYms2fcXt0sAABjIMzMnXIQNAAB/8Ew4AQAA/kA4AQAARiGcAAAAoxBOAACAUQgnAADAKIQTAABgFMIJAAAwCuEEAAAYhXACAACM4plwYtu2WltbFQqF3C4FAAA4yDPhhMvXAwDgD54JJwAAwB8IJwAAwCiEEwAAYBTCCQAAMArhBAAAGIVwAgAAjEI4AQAARiGcAAAAoxBOAACAUQgnAADAKIQTAABgFMIJAAAwCuEEAAAYhXACAACM4plwYtu2WltbFQqF3C4FAAA4yDPhxLIsTU1NaWJiwu1SAACAgzwTTgAAgD8QTgAAgFEIJwAAwCiEEwAAYBTCCQAAMArhBAAAGIVwAgAAjEI4AQAARiGcAAAAoxBOAACAUQgnAADAKIQTAABgFMIJAAAwCuEEAAAYhXACAACMQjgBAABGIZwAAACjEE4AAIBRCCcAAMAohBMAAGAUwgkAADCKK+Hks88+09q1a/XEE0/oww8/dKMEAABgqCXl3uDdu3cVDod16tQp1dfXq6OjQy+88IJWrFhR7lIAAICByj5zMj4+rqeeekqrVq3Sww8/rOeee05ffPFFucsAAACGyjucjI2NacuWLWpublYgENDx48fnrWPbttasWaNly5apu7tb4+PjmeeuXLmiVatWZR6vWrVKP/zwQ4HlAwCAxSbv3TqxWExtbW3as2ePtm/fPu/5kZERhcNhHTp0SN3d3RoeHlZfX58uXLiglStX5l1gPB5XPB7PPI5Go5KkRCKhRCKR93gLmR2v1ON6RXVl2rGxs/1MS7296or0Pf/Ce+ih99FD9+Ty3ZXtc/enr3PyezCfMQPpdLrg36BAIKBjx45p27ZtmWXd3d0KhUI6ePCgJCmVSikYDGrv3r3at2+fvvnmG/3+97/XsWPHJEm//vWv1dXVpV27dmXdxtDQkA4cODBv+ZEjR1RTU1No6QAAoIxmZma0a9cuTU9Pq66ubsF1SxpO7ty5o5qaGn3yySf3BJb+/n7dvHlTn376qe7evauf/exn+uqrrzIHxH7zzTf3PSA228xJMBjU9evXH/jm8pVIJHTy5Elt2rRJVVVVJR3bSeuGPp+37NuhvoJe55Rs9ZR6+9UVab3dmdJvz1QongqUdGyUBz30PnronkI/Z3/6Oie/B6PRqBoaGnIKJyU9W+f69etKJpNqbGy8Z3ljY6POnz//4waXLNH777+vjRs3KpVK6a233lrwTJ3q6mpVV1fPW15VVeVYgHBybCfEk/M/AHKpP9vrnJKtHqe2H08FyvreUHr00PvoYfkV+jmb7XVOfA/mM17ZTyWWpK1bt2rr1q1ubBoAABiupKcSNzQ0qLKyUpFI5J7lkUhETU1NRY1t27ZaW1sVCoWKGgcAAJitpOFk6dKl6ujo0OjoaGZZKpXS6OioNmzYUNTYlmVpampKExMTxZYJAAAMlvdundu3b+vixYuZx5cuXdLk5KSWL1+u1atXKxwOq7+/X52dnerq6tLw8LBisZh2795d0sIBAMDilHc4OXPmjDZu3Jh5HA6HJf14Rs7hw4e1c+dOXbt2Tfv379fVq1fV3t6uEydOzDtIFgAAIJu8w0lPT48edPbxwMCABgYGCi4KAAD4lyt3JS4EB8QCAOAPngknHBALAIA/eCacAAAAfyCcAAAAoxBOAACAUTwTTjggFgAAf/BMOOGAWAAA/MGVG/8VY/YaK9FotORjJxIJzczMKBqNeuquxKn4zLxlufx8sr3OKdnqKfX2k5VpzcwklYxXKsXdUD2JHnofPXRPoZ+zP32dk9+Ds9t50LXSJCmQzmUtg/zrX/9SMBh0uwwAAFCAy5cvq6WlZcF1PBdOUqmUrly5otraWgUC/0vloVDovrt8sj2XbVk0GlUwGNTly5dVV1dX+uJztNB7Ked4+bwul3UftM79ns91uSn9k+hhocvpYXGvK7aHhTxHD0v7ukL/xnJ5PpfvQif7l06ndevWLTU3N6uiYuGjSjy3W6eioiJr4qqsrLzvDzLbcwutX1dX5+of1UK1lXO8fF6Xy7oPWud+z+e73O3+SfSw2OX0sLDXFdvDQp6jh6V9XaF/Y7k8n893oVP9q6+vz2m9yqGhoaGSb90lXV1deT03d1k8Hte7776rwcFBVVdXl7y+fCz0Xso5Xj6vy2XdB61zv+dzWW5S/yR6WMhyelj864rtYSHP0cPSvq7Qv7Fcnn/Qd6Ep/fPcbh0nRaNR1dfXa3p62vXEj/zRP++jh95HD73NlP4tqpmTUqisrFRPT4+WLPHcHi+I/i0G9ND76KG3mdA/Zk4AAIBRPHMRNgAA4A+EEwAAYBTCCQAAMArhBAAAGIVwAgAAjEI4KcLMzIwef/xxvfHGG26XgjzdvHlTnZ2dam9v17p16/TBBx+4XRLycPnyZfX09Ki1tVXr16/X0aNH3S4JBXjhhRf06KOPaseOHW6Xghx99tlnWrt2rZ544gl9+OGHjm2HU4mL8Jvf/EYXL15UMBjUe++953Y5yEMymVQ8HldNTY1isZjWrVunM2fOaMWKFW6Xhhz8+9//ViQSUXt7u65evaqOjg794x//0EMPPeR2acjDV199pVu3bulPf/qTPvnkE7fLwQPcvXtXra2tOnXqlOrr69XR0aFvvvnGkc9NZk4K9M9//lPnz5/Xc88953YpKEBlZaVqamok/Xi55nQ6ndNtvGGGxx57TO3t7ZKkpqYmNTQ06MaNGy5XhXz19PSotrbW7TKQo/HxcT311FNatWqVHn74YT333HP64osvHNnWogwnY2Nj2rJli5qbmxUIBHT8+PF569i2rTVr1mjZsmXq7u7W+Ph4Xtt444039M4775SqZMxRjh7evHlTbW1tamlp0ZtvvqmGhoZSle975ejfrLNnzyqZTCoYDBZbNn6inD1EeRTb0ytXrmjVqlWZx6tWrdIPP/zgSK2LMpzEYjG1tbXJtu2sz4+MjCgcDut3v/ud/v73v6utrU19fX36z3/+k1ln9liEuf9duXJFn376qZ588kk9+eST5XpLvuN0DyXpkUce0blz53Tp0iUdOXJEkUikLO/ND8rRP0m6ceOGXnrpJf3xj390/D35Tbl6iPIpRU/LJr3ISUofO3bsnmVdXV1py7Iyj5PJZLq5uTn9zjvv5DTmvn370i0tLenHH388vWLFinRdXV36wIEDJa0b/+NED+d67bXX0kePHi2qTmTnVP/++9//pn/+85+nP/roo5LViuyc/Bs8depU+pe//GVJ6kTuCunp119/nd62bVvm+ddffz395z//2ZH6FuXMyULu3Lmjs2fPqre3N7OsoqJCvb29On36dE5jvPPOO7p8+bK+++47vffee3rllVe0f/9+p0rGHKXoYSQS0a1btyRJ09PTGhsb09q1ax2pF/cqRf/S6bRefvllPfvss3rxxRedKhX3UYoewiy59LSrq0vffvutfvjhB92+fVt//etf1dfX50g9vrtl5PXr15VMJtXY2HjP8sbGRp0/f96lqpCPUvTw+++/16uvvpo5EHbv3r16+umnnSgXc5Sif19//bVGRka0fv36zH7zjz/+mB6WSak+R3t7e3Xu3DnFYjG1tLTo6NGj2rBhQ6nLRQ5y6emSJUv0/vvva+PGjUqlUnrrrbccO8PRd+Gk1F5++WW3S0ABurq6NDk56XYZKNAzzzyjVCrldhko0pdfful2CcjT1q1btXXrVse347vdOg0NDaqsrJx38GMkElFTU5NLVSEf9NDb6J/30cPFx7Se+i6cLF26VB0dHRodHc0sS6VSGh0dZTrRI+iht9E/76OHi49pPV2Uu3Vu376tixcvZh5funRJk5OTWr58uVavXq1wOKz+/n51dnaqq6tLw8PDisVi2r17t4tV46foobfRP++jh4uPp3rqyDlALjt16lRa0rz/+vv7M+v84Q9/SK9evTq9dOnSdFdXV/pvf/ubewVjHnrobfTP++jh4uOlnnJvHQAAYBTfHXMCAADMRjgBAABGIZwAAACjEE4AAIBRCCcAAMAohJ3AStwAAAAuSURBVBMAAGAUwgkAADAK4QQAABiFcAIAAIxCOAEAAEYhnAAAAKMQTgAAgFH+H54TNkBgBD28AAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -2074,7 +2139,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 56, "metadata": {}, "outputs": [], "source": [ @@ -2085,7 +2150,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 57, "metadata": {}, "outputs": [ { @@ -2094,9 +2159,9 @@ "text": [ "Name: \n", "Type: Graph\n", - "Number of nodes: 2265\n", - "Number of edges: 8082\n", - "Average degree: 7.1364\n" + "Number of nodes: 2267\n", + "Number of edges: 8111\n", + "Average degree: 7.1557\n" ] } ], @@ -2113,7 +2178,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 58, "metadata": {}, "outputs": [], "source": [ @@ -2127,7 +2192,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 59, "metadata": {}, "outputs": [ { @@ -2160,53 +2225,69 @@ " \n", " \n", " 0\n", - " 4.715074\n", - " 0.211563\n", - " 0.227356\n", - " 2254\n", + " 4.722114\n", + " 0.21808\n", + " 0.227060\n", + " 2251\n", " \n", " \n", " 1\n", - " 1.000000\n", - " 0.000000\n", - " 1.000000\n", - " 2\n", + " 1.600000\n", + " 0.00000\n", + " 0.700000\n", + " 5\n", " \n", " \n", " 2\n", - " 1.500000\n", - " 0.000000\n", - " 0.750000\n", - " 4\n", + " 1.000000\n", + " 0.00000\n", + " 1.000000\n", + " 2\n", " \n", " \n", " 3\n", - " 1.333333\n", - " 0.000000\n", - " 0.833333\n", - " 3\n", + " 1.000000\n", + " 0.00000\n", + " 1.000000\n", + " 2\n", " \n", " \n", " 4\n", " 1.000000\n", - " 0.000000\n", + " 0.00000\n", + " 1.000000\n", + " 2\n", + " \n", + " \n", + " 5\n", + " 1.000000\n", + " 0.00000\n", " 1.000000\n", " 2\n", " \n", + " \n", + " 6\n", + " 1.333333\n", + " 0.00000\n", + " 0.833333\n", + " 3\n", + " \n", " \n", "\n", "
" ], "text/plain": [ " shortest_path clustering_coefficient global_efficiency 0\n", - "0 4.715074 0.211563 0.227356 2254\n", - "1 1.000000 0.000000 1.000000 2\n", - "2 1.500000 0.000000 0.750000 4\n", - "3 1.333333 0.000000 0.833333 3\n", - "4 1.000000 0.000000 1.000000 2" + "0 4.722114 0.21808 0.227060 2251\n", + "1 1.600000 0.00000 0.700000 5\n", + "2 1.000000 0.00000 1.000000 2\n", + "3 1.000000 0.00000 1.000000 2\n", + "4 1.000000 0.00000 1.000000 2\n", + "5 1.000000 0.00000 1.000000 2\n", + "6 1.333333 0.00000 0.833333 3" ] }, - "execution_count": 69, + "execution_count": 59, "metadata": {}, "output_type": "execute_result" } @@ -2220,16 +2301,16 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 60, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2265" + "2267" ] }, - "execution_count": 70, + "execution_count": 60, "metadata": {}, "output_type": "execute_result" } @@ -2240,18 +2321,18 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 61, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'shortest_path': 4.715073779178782,\n", - " 'clustering_coefficient': 0.21156314975836948,\n", - " 'global_efficiency': 0.2273555107741054}" + "{'shortest_path': 4.722114220840121,\n", + " 'clustering_coefficient': 0.2180798636929227,\n", + " 'global_efficiency': 0.22705958935991422}" ] }, - "execution_count": 71, + "execution_count": 61, "metadata": {}, "output_type": "execute_result" } @@ -2262,7 +2343,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 152, "metadata": {}, "outputs": [], "source": [ @@ -2271,7 +2352,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 62, "metadata": {}, "outputs": [], "source": [ @@ -2280,7 +2361,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 63, "metadata": {}, "outputs": [], "source": [ @@ -2289,27 +2370,45 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 64, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/Users/deusebio/.pyenv/versions/3.7.6/envs/ml-book-7/lib/python3.7/site-packages/matplotlib/axes/_axes.py:6694: RuntimeWarning: invalid value encountered in multiply\n", + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAASjElEQVR4nO3df4xldXnH8fcjFMWddhfFTs0u7WAgtpRto0zQhmjuiLZboEIMoVhid822W1t/kEojS/2Dv0jXNNSitjVbQLbRMlBCygqiEuoUTQN1V22XH1VXhMpmBa2wdZAUF5/+MWfxZrjz455z79wz332/ksne8/M+z957P/fM9557JjITSVJZXjTqAiRJg2e4S1KBDHdJKpDhLkkFMtwlqUCGuyQV6NhRFwBw4okn5sTERK1tn376adasWTPYgkbEXtqplF5K6QPs5Yi9e/d+PzNf0WtZK8J9YmKCPXv21Np2ZmaGTqcz2IJGxF7aqZReSukD7OWIiHh0oWUOy0hSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIK1IovMUlqj4ntdzx/+5Ed59ZeR6PlkbskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQH6JSdKC/LLS6uWRuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBVryPPeIuB44D3giM0+v5v0l8DvAs8C3gHdm5lPVsiuArcBzwPsy83PDKV3SSuo+513tt5wj9xuATfPm3QWcnpm/BnwDuAIgIk4DLgZ+tdrmbyPimIFVK0laliXDPTPvAX4wb97nM/NwNXkvsKG6fT4wnZn/l5nfBvYDZw6wXknSMkRmLr1SxARw+5FhmXnLPg3clJmfjIiPAfdm5ierZdcBd2bmLT222wZsAxgfHz9jenq6VgOzs7OMjY3V2rZt7KWdSulloT72HTjUaL8b169ttH0dpTwm0KyXqampvZk52WtZo2vLRMQHgcPAp/rdNjN3AjsBJicns9Pp1KphZmaGutu2jb20Uym9LNTHloZj6Y9c8sJ9DlspjwkMr5fa4R4RW5j7oPXs/Onh/wHgpK7VNlTzJEkrqNapkBGxCfgA8NbM/FHXot3AxRHx4og4GTgV+PfmZUqS+rGcUyFvBDrAiRHxGHAlc2fHvBi4KyJgbpz9XZn5QETcDDzI3HDNuzPzuWEVL0nqbclwz8y395h93SLrXwVc1aQoSVIzfkNVkgpkuEtSgfwze1LBui8ZcMOmNSOsRCvNI3dJKpDhLkkFMtwlqUCGuyQVyHCXjhL7DhxiYvsdXpf9KGG4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCLRnuEXF9RDwREfd3zXtZRNwVEd+s/j2hmh8R8ZGI2B8R/xkRrx1m8ZKk3pZz5H4DsGnevO3A3Zl5KnB3NQ3w28Cp1c824O8GU6YkqR9Lhntm3gP8YN7s84Fd1e1dwAVd8/8h59wLrIuIVw6oVknSMkVmLr1SxARwe2aeXk0/lZnrqtsBPJmZ6yLidmBHZn6pWnY3cHlm7umxz23MHd0zPj5+xvT0dK0GZmdnGRsbq7Vt29hLO63mXvYdOPT87fHj4fFn5m5vXL+25zp1dO9rpazmx2S+Jr1MTU3tzczJXsuObVQVkJkZEUu/Q7xwu53AToDJycnsdDq17n9mZoa627aNvbTTau5lS9ef1Lts42Gu3jf3kn/kkk7Pdero3tdKWc2PyXzD6qXu2TKPHxluqf59opp/ADipa70N1TxJ0gqqG+67gc3V7c3AbV3zf786a+b1wKHMPNiwRklSn5YclomIG4EOcGJEPAZcCewAbo6IrcCjwEXV6p8BzgH2Az8C3jmEmiVJS1gy3DPz7QssOrvHugm8u2lRkoZrouE4u9rPb6hKUoEMd0kqUONTISUd3bqHeB7Zce4IK1E3j9wlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCAvHCYVxmu1Czxyl6QiGe6SVCDDXZIKZLhLUoEMd0kqkGfLSBoK//zeaDU6co+IP42IByLi/oi4MSJeEhEnR8R9EbE/Im6KiOMGVawkaXlqh3tErAfeB0xm5unAMcDFwIeAD2fmKcCTwNZBFCpJWr6mY+7HAsdHxLHAS4GDwJuAW6rlu4ALGt6HJKlPkZn1N464FLgKeAb4PHApcG911E5EnATcWR3Zz992G7ANYHx8/Izp6elaNczOzjI2NlavgZaxl3Zabb3sO3Co5/zx4+HxZ1a4mMrG9WsHur/V9pgspkkvU1NTezNzstey2h+oRsQJwPnAycBTwD8Bm5a7fWbuBHYCTE5OZqfTqVXHzMwMdbdtG3tpp9XWy5YFLj9w2cbDXL1vNOdQPHJJZ6D7W22PyWKG1UuTYZk3A9/OzO9l5o+BW4GzgHXVMA3ABuBAwxolSX1qEu7/Dbw+Il4aEQGcDTwIfAG4sFpnM3BbsxIlSf2qHe6ZeR9zH5x+BdhX7WsncDnw/ojYD7wcuG4AdUqS+tBoAC4zrwSunDf7YeDMJvuVJDXj5QckqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFci/oSoVYGKBy/zq6OWRuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAfolJWqX84pIW45G7JBXIcJekAjUK94hYFxG3RMR/RcRDEfEbEfGyiLgrIr5Z/XvCoIqVJC1P0yP3a4DPZuYvA78OPARsB+7OzFOBu6tpSdIKqh3uEbEWeCNwHUBmPpuZTwHnA7uq1XYBFzQrUZLUryZH7icD3wM+ERFfjYhrI2INMJ6ZB6t1vguMNy1SktSfyMx6G0ZMAvcCZ2XmfRFxDfC/wHszc13Xek9m5gvG3SNiG7ANYHx8/Izp6eladczOzjI2NlZr27axl3Zqay/7Dhzqa/3x4+HxZ4ZUzBI2rl870P219TGpo0kvU1NTezNzsteyJuH+C8C9mTlRTb+BufH1U4BOZh6MiFcCM5n56sX2NTk5mXv27KlVx8zMDJ1Op9a2bWMv7TTqXrrPZ39kx7k95y/HZRsPc/W+0Xy1pbvuQRj1YzJITXqJiAXDvfawTGZ+F/hORBwJ7rOBB4HdwOZq3mbgtrr3IUmqp+nb+HuBT0XEccDDwDuZe8O4OSK2Ao8CFzW8D0lSnxqFe2Z+Dej1K8HZTfYrSWrGb6hKUoEMd0kqkOEuSQUy3CWpQF7PXdLQLXSuvobHI3dJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgrkee6SVpTnvK8Mj9wlqUCGuyQVyHCXpAIZ7pJUIMNdkgrk2TLSCPV75kj3+tJiDHephQxxNeWwjCQVyHCXpAI1DveIOCYivhoRt1fTJ0fEfRGxPyJuiojjmpcpSerHII7cLwUe6pr+EPDhzDwFeBLYOoD7kCT1oVG4R8QG4Fzg2mo6gDcBt1Sr7AIuaHIfkqT+NT1y/2vgA8BPqumXA09l5uFq+jFgfcP7kCT1KTKz3oYR5wHnZOafREQH+DNgC3BvNSRDRJwE3JmZp/fYfhuwDWB8fPyM6enpWnXMzs4yNjZWa9u2sZd2GmYv+w4cev72xvVre84flPHj4fFnBr7bRrp77ofPrzlTU1N7M3Oy17Im57mfBbw1Is4BXgL8HHANsC4ijq2O3jcAB3ptnJk7gZ0Ak5OT2el0ahUxMzND3W3bxl7aaZi9bOn+EtMlnZ7zB+WyjYe5el+7vtrS3XM/fH4trfawTGZekZkbMnMCuBj4l8y8BPgCcGG12mbgtsZVSpL6Mozz3C8H3h8R+5kbg79uCPchSVrEQH5Hy8wZYKa6/TBw5iD2Kx1NvOSABslvqEpSgQx3SSqQ4S5JBTLcJalA7TrpVdJRpd8/VqLl88hdkgpkuEtSgQx3SSqQ4S5JBfIDVWmF+U1UrQSP3CWpQIa7JBXIcJekAjnmLq0Ax9m10jxyl6QCGe6SVCDDXZIK5Ji7NASOsWvUPHKXpAIZ7pJUIMNdkgrkmLu0DP5RCa02tY/cI+KkiPhCRDwYEQ9ExKXV/JdFxF0R8c3q3xMGV64kaTmaDMscBi7LzNOA1wPvjojTgO3A3Zl5KnB3NS1JWkG1wz0zD2bmV6rbPwQeAtYD5wO7qtV2ARc0rFGS1KeBfKAaERPAa4D7gPHMPFgt+i4wPoj7kCQtX2Rmsx1EjAH/ClyVmbdGxFOZua5r+ZOZ+YJx94jYBmwDGB8fP2N6errW/c/OzjI2NlZr27axl3aanZ3l24ee67ls4/q1PefvO3BomCXVMn48PP7MqKtY2EL/l72U9vyq28vU1NTezJzstaxRuEfEzwC3A5/LzL+q5n0d6GTmwYh4JTCTma9ebD+Tk5O5Z8+eWjXMzMzQ6XRqbds29tJOMzMzbPns0z2XLXTmTBu/oXrZxsNcvW91nCC31BlJpT2/6vYSEQuGe5OzZQK4DnjoSLBXdgObq9ubgdvq3ockqZ4mb+NnAe8A9kXE16p5fw7sAG6OiK3Ao8BFjSqUJPWtdrhn5peAWGDx2XX3K0lqbnUMwEkt5TdX1VaGu9TFsFYpvHCYJBXIcJekAhnuklQgw12SCuQHqtICjny4etnGw/hS0WrjkbskFchwl6QC+bumpNbx+wbNeeQuSQUy3CWpQA7L6Kg3qGuvt/Ea7jp6eeQuSQXyyF1HDY+sdTTxyF2SCmS4S1KBHJaR1Grzh9M87315DHcVzXF2Ha0clpGkAnnkrlVjuUfh/touGe4qkEMxZZvYfgeXbTzMlu13+Ea+CIdlJKlAQztyj4hNwDXAMcC1mbljWPd1tGv7FfSWU1/be1A7+bxZ2FDCPSKOAf4GeAvwGPDliNidmQ8O4/6GbaFf87ufTIN8kq3kE3axIYx+++te54ZNa/q+P0mDM6xhmTOB/Zn5cGY+C0wD5w/pviRJ80RmDn6nERcCmzLzD6rpdwCvy8z3dK2zDdhWTb4a+HrXLtYChxaYPnL7yL8nAt9vUO78++pnnV7zl1P7Qreb9NKkj4WWrcZe+u1j/vT85xesnl6G+ZgsVudy1mlTL214rQzq+fVLmfmKnksyc+A/wIXMjbMfmX4H8LE+tt+50PSR213/7mlY68666/Sav5zaF+mpdi9N+iipl377WOr5tZp6GeZjUlIvbXitDOr5tdjPsIZlDgAndU1vqOYt16cXmf70AuvUtZz9LLROr/nLqX2x23U16WOhZauxl377mD/t82thpfTShtfKoB6TBQ1rWOZY4BvA2cyF+peB38vMB4ZwX3syc3LQ+x0Fe2mnUnoppQ+wl+UYytkymXk4It4DfI65UyGvH0awV3YOab+jYC/tVEovpfQB9rKkoRy5S5JGy2+oSlKBDHdJKpDhLkkFKjrcI+INEfHxiLg2Iv5t1PU0EREvioirIuKjEbF51PU0ERGdiPhi9dh0Rl1PExGxJiL2RMR5o66liYj4lerxuCUi/njU9TQRERdExN9HxE0R8ZujrqeJiHhVRFwXEbf0u21rwz0iro+IJyLi/nnzN0XE1yNif0RsX2wfmfnFzHwXcDuwa5j1LmYQvTB3+YYNwI+Zu17PSAyolwRmgZcwol4G1AfA5cDNw6lyeQb0Wnmoeq1cBJw1zHoXM6Be/jkz/xB4F/C7w6x3MQPq5eHM3FqrgGF8M2oQP8AbgdcC93fNOwb4FvAq4DjgP4DTgI3MBXj3z893bXcz8LOruRdgO/BH1ba3rPJeXlRtNw58ahX38RbgYmALcN5qfkyqbd4K3Mncd1JWdS/VdlcDry2kl75f8639Yx2ZeU9ETMyb/fwFyQAiYho4PzP/Auj5a3FE/CJwKDN/OMx6FzOIXiLiMeDZavK5IZa7qEE9LpUngRcPpdAlDOgx6QBrmHtxPhMRn8nMnwyz7l4G9Zhk5m5gd0TcAfzjEEte0IAelwB2AHdm5leGXPKCBvxa6Vtrw30B64HvdE0/BrxuiW22Ap8YWkX19dvLrcBHI+INwD3DLKyGvnqJiLcBvwWsAz421Mr601cfmflBgIjYAnx/FMG+iH4fkw7wNubebD8zzMJq6Pe18l7gzcDaiDglMz8+zOL61O/j8nLgKuA1EXFF9SawLKst3PuWmVeOuoZByMwfMfdGtepl5q3MvVkVITNvGHUNTWXmDDAz4jIGIjM/Anxk1HUMQmb+D3OfHfSttR+oLqDpBcnaxF7ap5Q+wF7aasV6WW3h/mXg1Ig4OSKOY+7DrN0jrqkue2mfUvoAe2mrletlVJ8kL+OT5huBg/z01L+t1fxzmLvi5LeAD466TntZnb2U0oe9tPdn1L144TBJKtBqG5aRJC2D4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kq0P8Dwnnka7hYNZMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGhCAYAAABLWk8IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df3TU1Z3/8dckDBOCDDHhkB9LMNkerGiQWCCYFSpKSARkxaa6rFlFlwO7W9Bi6g9yVmhABORQm4LRlJ6WLueQXWR3oRZdYARr2iX8CsVV11I4C8qRTThtTIYkh2FI5vuHX6Y7TBI+A5/J3AzPxzk58LlzPzfveecDvLjzyxEIBAICAAAwSEKsCwAAALgSAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgDYl3Atejq6tLZs2c1ZMgQORyOWJcDAAAsCAQCOn/+vLKyspSQ0PseSb8MKGfPnlV2dnasywAAANfgzJkzGjFiRK9z+mVAGTJkiKSv7qDb7bZ1bb/frz179qi4uFhOp9PWteMNvbKOXllHr6yjV9bRq8hEq19er1fZ2dnBf8d70y8DyuWHddxud1QCSnJystxuNxfxVdAr6+iVdfTKOnplHb2KTLT7ZeXpGTxJFgAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGCcAbEuAAAQezlL3gkbO71mZgwqAb7CDgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgRB5S6ujrNmjVLWVlZcjgc2rFjR49z//7v/14Oh0NVVVUh483NzSorK5Pb7VZKSormzZuntra2yKsHAABxKeKA0t7errFjx6q6urrXedu3b9eBAweUlZUVdltZWZk++eQTeTwe7dy5U3V1dVqwYEGkpQAAgDgV8TvJTp8+XdOnT+91zhdffKGnn35au3fv1syZoe9E+Omnn2rXrl06fPiwxo8fL0nasGGDZsyYoXXr1nUbaAAAwI3F9re67+rq0uOPP67nn39ed9xxR9jt9fX1SklJCYYTSSoqKlJCQoIOHjyohx9+OOwcn88nn88XPPZ6vZIkv98vv99va/2X17N73XhEr6yjV9bRK+vs7JUrMdDj+vGA6yoy0epXJOvZHlBeffVVDRgwQM8880y3tzc2Nmr48OGhRQwYoNTUVDU2NnZ7zurVq7V8+fKw8T179ig5Ofn6i+6Gx+OJyrrxiF5ZR6+so1fW2dGrtQXhY+++++51r2sarqvI2N2vjo4Oy3NtDSgNDQ360Y9+pKNHj8rhcNi2bkVFhcrLy4PHXq9X2dnZKi4ultvttu37SF+lO4/Ho2nTpsnpdNq6dryhV9bRK+volXVWe5VXuTts7OPKkojn9GdcV5GJVr8uPwJiha0B5de//rXOnTunkSNHBsc6Ozv1ve99T1VVVTp9+rQyMjJ07ty5kPMuXbqk5uZmZWRkdLuuy+WSy+UKG3c6nVG70KK5dryhV9bRK+volXVX65WvM/w/jFfOtzInHnBdRcbufkWylq0B5fHHH1dRUVHIWElJiR5//HE99dRTkqTCwkK1tLSooaFB48aNkyTt27dPXV1dmjhxop3lAACAfirigNLW1qaTJ08Gj0+dOqVjx44pNTVVI0eOVFpaWsh8p9OpjIwMff3rX5ckjR49Wg888IDmz5+vmpoa+f1+LVq0SHPmzOEVPAAAQNI1vA/KkSNHdNddd+muu+6SJJWXl+uuu+7SsmXLLK+xZcsW3XbbbZo6dapmzJihSZMmaePGjZGWAgAA4lTEOyhTpkxRIBD+crSenD59OmwsNTVVtbW1kX5rAABwg+CzeAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACME3FAqaur06xZs5SVlSWHw6EdO3YEb/P7/XrxxRc1ZswYDR48WFlZWXriiSd09uzZkDWam5tVVlYmt9utlJQUzZs3T21tbdd/bwAAQFyIOKC0t7dr7Nixqq6uDruto6NDR48e1dKlS3X06FH9+7//u44fP66//Mu/DJlXVlamTz75RB6PRzt37lRdXZ0WLFhw7fcCAADElQGRnjB9+nRNnz6929uGDh0qj8cTMvb666+roKBAn3/+uUaOHKlPP/1Uu3bt0uHDhzV+/HhJ0oYNGzRjxgytW7dOWVlZYev6fD75fL7gsdfrlfTVjo3f74/0LvTq8np2rxuP6JV19Mo6emWd1V65EgM9nhvJnP6M6yoy0epXJOs5AoFA+FVp9WSHQ9u3b9fs2bN7nPPee++puLhYLS0tcrvd+tnPfqbvfe97+vLLL4NzLl26pKSkJG3btk0PP/xw2BqVlZVavnx52Hhtba2Sk5OvtXwAANCHOjo69Nhjj6m1tVVut7vXuRHvoETiwoULevHFF/XXf/3XwUIaGxs1fPjw0CIGDFBqaqoaGxu7XaeiokLl5eXBY6/Xq+zsbBUXF1/1DkbK7/fL4/Fo2rRpcjqdtq4db+iVdfTKOnplndVe5VXuDhv7uLIk4jn9GddVZKLVr8uPgFgRtYDi9/v16KOPKhAI6M0337yutVwul1wuV9i40+mM2oUWzbXjDb2yjl5ZR6+su1qvfJ2Obs+JdE484LqKjN39imStqASUy+Hks88+0759+0J2OTIyMnTu3LmQ+ZcuXVJzc7MyMjKiUQ4A4BrkLHknbOz0mpkxqAQ3ItvfB+VyODlx4oTee+89paWlhdxeWFiolpYWNTQ0BMf27dunrq4uTZw40e5yAABAPxTxDkpbW5tOnjwZPD516pSOHTum1NRUZWZm6tvf/raOHj2qnTt3qrOzM/i8ktTUVA0cOFCjR4/WAw88oPnz56umpkZ+v1+LFi3SnDlzun0FDwAgMt3tfERrbXZUEC0RB5QjR47ovvvuCx5ffvLq3LlzVVlZqbfffluSlJ+fH3Le+++/rylTpkiStmzZokWLFmnq1KlKSEhQaWmp1q9ff633AQAAxJmIA8qUKVPU2yuTrbxqOTU1VbW1tZF+awAAcIPgs3gAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAME7EHxYIADBLXuVu+TodsS4DsBU7KAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcXijNgC4AeUseSfWJQC9YgcFAAAYh4ACAACMQ0ABAADGIaAAAADj8CRZAOhH/u+TW12JAa0tiGExQBSxgwIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA7vgwIAuGbdfejg6TUzY1AJ4g07KAAAwDgEFAAAYJyIA0pdXZ1mzZqlrKwsORwO7dixI+T2QCCgZcuWKTMzU4MGDVJRUZFOnDgRMqe5uVllZWVyu91KSUnRvHnz1NbWdn33BAAAxI2IA0p7e7vGjh2r6urqbm9fu3at1q9fr5qaGh08eFCDBw9WSUmJLly4EJxTVlamTz75RB6PRzt37lRdXZ0WLFhw7fcCAADElYifJDt9+nRNnz6929sCgYCqqqr00ksv6aGHHpIkbd68Wenp6dqxY4fmzJmjTz/9VLt27dLhw4c1fvx4SdKGDRs0Y8YMrVu3TllZWddxdwAAQDyw9VU8p06dUmNjo4qKioJjQ4cO1cSJE1VfX685c+aovr5eKSkpwXAiSUVFRUpISNDBgwf18MMPh63r8/nk8/mCx16vV5Lk9/vl9/vtvAvB9exeNx7RK+volXX0qneuxMCffp8QCPnVFCb+7LiuIhOtfkWynq0BpbGxUZKUnp4eMp6enh68rbGxUcOHDw8tYsAApaamBudcafXq1Vq+fHnY+J49e5ScnGxH6WE8Hk9U1o1H9Mo6emUdvere2oLwsZfHd/V9Ib149913Y11Cj7iuImN3vzo6OizP7Rfvg1JRUaHy8vLgsdfrVXZ2toqLi+V2u239Xn6/Xx6PR9OmTZPT6bR17XhDr6yjV9bRq97lVe4O/t6VENDL47u09EiCfF2OGFYV6uPKkliXEIbrKjLR6tflR0CssDWgZGRkSJKampqUmZkZHG9qalJ+fn5wzrlz50LOu3Tpkpqbm4PnX8nlcsnlcoWNO53OqF1o0Vw73tAr6+iVdfSqe77O8CDi63J0Ox4rJv/cuK4iY3e/IlnL1vdByc3NVUZGhvbu3Rsc83q9OnjwoAoLCyVJhYWFamlpUUNDQ3DOvn371NXVpYkTJ9pZDgAA6Kci3kFpa2vTyZMng8enTp3SsWPHlJqaqpEjR2rx4sVauXKlRo0apdzcXC1dulRZWVmaPXu2JGn06NF64IEHNH/+fNXU1Mjv92vRokWaM2cOr+ABAACSriGgHDlyRPfdd1/w+PJzQ+bOnauf//zneuGFF9Te3q4FCxaopaVFkyZN0q5du5SUlBQ8Z8uWLVq0aJGmTp2qhIQElZaWav369TbcHQAAEA8iDihTpkxRINDzS9ocDodWrFihFStW9DgnNTVVtbW1kX5rAABwg+CzeAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGGRDrAgAA8SVnyTshx6fXzIxRJejP2EEBAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwju0BpbOzU0uXLlVubq4GDRqkr33ta3r55ZcVCASCcwKBgJYtW6bMzEwNGjRIRUVFOnHihN2lAACAfsr2gPLqq6/qzTff1Ouvv65PP/1Ur776qtauXasNGzYE56xdu1br169XTU2NDh48qMGDB6ukpEQXLlywuxwAANAPDbB7wf379+uhhx7SzJkzJUk5OTn653/+Zx06dEjSV7snVVVVeumll/TQQw9JkjZv3qz09HTt2LFDc+bMCVvT5/PJ5/MFj71eryTJ7/fL7/fbWv/l9exeNx7RK+volXX0qneuxD/tRrsSAiG/msqEnyXXVWSi1a9I1nME/u9jLzZYtWqVNm7cqD179ujWW2/Vhx9+qOLiYr322msqKyvT//zP/+hrX/uafvvb3yo/Pz943r333qv8/Hz96Ec/CluzsrJSy5cvDxuvra1VcnKyneUDAIAo6ejo0GOPPabW1la53e5e59q+g7JkyRJ5vV7ddtttSkxMVGdnp1555RWVlZVJkhobGyVJ6enpIeelp6cHb7tSRUWFysvLg8der1fZ2dkqLi6+6h2MlN/vl8fj0bRp0+R0Om1dO97QK+volXX0qnd5lbuDv3clBPTy+C4tPZIgX5cjhlX17uPKkliXwHUVoWj16/IjIFbYHlDeeustbdmyRbW1tbrjjjt07NgxLV68WFlZWZo7d+41relyueRyucLGnU5n1C60aK4db+iVdfTKOnrVPV9neBDxdTm6HTeFST9HrqvI2N2vSNayPaA8//zzWrJkSfC5JGPGjNFnn32m1atXa+7cucrIyJAkNTU1KTMzM3heU1NTyEM+AADgxmX7q3g6OjqUkBC6bGJiorq6uiRJubm5ysjI0N69e4O3e71eHTx4UIWFhXaXAwAA+iHbd1BmzZqlV155RSNHjtQdd9yh3/72t3rttdf0t3/7t5Ikh8OhxYsXa+XKlRo1apRyc3O1dOlSZWVlafbs2XaXAwAA+iHbA8qGDRu0dOlSfec739G5c+eUlZWlv/u7v9OyZcuCc1544QW1t7drwYIFamlp0aRJk7Rr1y4lJSXZXQ4AAOiHbA8oQ4YMUVVVlaqqqnqc43A4tGLFCq1YscLubw8AAOIAn8UDAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADCO7e+DAgCwR86Sd2JdAhAz7KAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGGdArAsAAMS3nCXvhI2dXjMzBpWgP2EHBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOLzMGAAM0d3LcYEbFTsoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADG4WXGABBlfJovELmo7KB88cUX+pu/+RulpaVp0KBBGjNmjI4cORK8PRAIaNmyZcrMzNSgQYNUVFSkEydORKMUAADQD9keUL788kvdc889cjqd+o//+A/993//t37wgx/o5ptvDs5Zu3at1q9fr5qaGh08eFCDBw9WSUmJLly4YHc5AACgH7L9IZ5XX31V2dnZ2rRpU3AsNzc3+PtAIKCqqiq99NJLeuihhyRJmzdvVnp6unbs2KE5c+bYXRIAAOhnbA8ob7/9tkpKSvTII4/ogw8+0J/92Z/pO9/5jubPny9JOnXqlBobG1VUVBQ8Z+jQoZo4caLq6+u7DSg+n08+ny947PV6JUl+v19+v9/W+i+vZ/e68YheWUevrIvHXrkSA2Fj3d2/7ub1um5CIOTX/qSvf77xeF1FU7T6Fcl6jkAgYOuVnZSUJEkqLy/XI488osOHD+u73/2uampqNHfuXO3fv1/33HOPzp49q8zMzOB5jz76qBwOh7Zu3Rq2ZmVlpZYvXx42Xltbq+TkZDvLBwAAUdLR0aHHHntMra2tcrvdvc61PaAMHDhQ48eP1/79+4NjzzzzjA4fPqz6+vprCijd7aBkZ2frD3/4w1XvYKT8fr88Ho+mTZsmp9Np69rxhl5ZR6+si8de5VXuDhv7uLLE0rzeuBICenl8l5YeSZCvy3HN9cVCd/c/muLxuoqmaPXL6/Vq2LBhlgKK7Q/xZGZm6vbbbw8ZGz16tP7t3/5NkpSRkSFJampqCgkoTU1Nys/P73ZNl8sll8sVNu50OqN2oUVz7XhDr6yjV9bFU698neHhobv71t08S+t3Oa753FiJ1c82nq6rvmB3vyJZy/ZX8dxzzz06fvx4yNjvf/973XLLLZK+esJsRkaG9u7dG7zd6/Xq4MGDKiwstLscAADQD9m+g/Lss8/qL/7iL7Rq1So9+uijOnTokDZu3KiNGzdKkhwOhxYvXqyVK1dq1KhRys3N1dKlS5WVlaXZs2fbXQ4AAOiHbA8oEyZM0Pbt21VRUaEVK1YoNzdXVVVVKisrC8554YUX1N7ergULFqilpUWTJk3Srl27gk+wBQAAN7aovNX9gw8+qAcffLDH2x0Oh1asWKEVK1ZE49sDAIB+js/iAYAY6O7zeQD8CZ9mDAAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADj8Fk8AIA+d+VnEZ1eMzNGlcBU7KAAAADjEFAAAIBxCCgAAMA4BBQAAGAcniQLADa78gmgACLHDgoAADAOAQUAABiHgAIAAIxDQAEAAMbhSbIAcB14Qqw9uusj7y57Y2MHBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADG4bN4ACACfPYO0DfYQQEAAMYhoAAAAOMQUAAAgHGiHlDWrFkjh8OhxYsXB8cuXLighQsXKi0tTTfddJNKS0vV1NQU7VIAAEA/EdWAcvjwYf34xz/WnXfeGTL+7LPP6pe//KW2bdumDz74QGfPntW3vvWtaJYCAAD6kagFlLa2NpWVleknP/mJbr755uB4a2urfvrTn+q1117T/fffr3HjxmnTpk3av3+/Dhw4EK1yAABAPxK1lxkvXLhQM2fOVFFRkVauXBkcb2hokN/vV1FRUXDstttu08iRI1VfX6+77747bC2fzyefzxc89nq9kiS/3y+/329r3ZfXs3vdeESvrKNX1pneK1diINYlBLkSAiG/xhs7rwHTryvTRKtfkawXlYDyL//yLzp69KgOHz4cdltjY6MGDhyolJSUkPH09HQ1NjZ2u97q1au1fPnysPE9e/YoOTnZnqKv4PF4orJuPKJX1tEr60zt1dqCWFcQ7uXxXbEuISreffdd29c09boyld396ujosDzX9oBy5swZffe735XH41FSUpIta1ZUVKi8vDx47PV6lZ2dreLiYrndblu+x2V+v18ej0fTpk2T0+m0de14Q6+so1fWmd6rvMrdsS4hyJUQ0Mvju7T0SIJ8XY5Yl2O7jytLbFvL9OvKNNHq1+VHQKywPaA0NDTo3Llz+sY3vhEc6+zsVF1dnV5//XXt3r1bFy9eVEtLS8guSlNTkzIyMrpd0+VyyeVyhY07nc6oXWjRXDve0Cvr6JV1pvbK12leEPB1OYys63pF4+dv6nVlKrv7FclatgeUqVOn6qOPPgoZe+qpp3TbbbfpxRdfVHZ2tpxOp/bu3avS0lJJ0vHjx/X555+rsLDQ7nIAAEA/ZHtAGTJkiPLy8kLGBg8erLS0tOD4vHnzVF5ertTUVLndbj399NMqLCzs9gmyAADgxhOTDwv84Q9/qISEBJWWlsrn86mkpERvvPFGLEoBAAAG6pOA8qtf/SrkOCkpSdXV1aquru6Lbw8AAPoZPosHAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGCcmLxRGwDEWs6Sd8LGTq+ZGYNKAHSHHRQAAGAcAgoAADAOD/EAQA+6exgIQN9gBwUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDi8zBgAYKQrX+bNO/3eWNhBAQAAxiGgAAAA4xBQAACAcQgoAADAODxJFgDQL3T32Ug8cTZ+sYMCAACMww4KAPx/fHoxYA52UAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjMPLjAHcEHgJMdC/sIMCAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAc2wPK6tWrNWHCBA0ZMkTDhw/X7Nmzdfz48ZA5Fy5c0MKFC5WWlqabbrpJpaWlampqsrsUAADQT9keUD744AMtXLhQBw4ckMfjkd/vV3Fxsdrb24Nznn32Wf3yl7/Utm3b9MEHH+js2bP61re+ZXcpAOJQzpJ3Qr4AxCfb36ht165dIcc///nPNXz4cDU0NOib3/ymWltb9dOf/lS1tbW6//77JUmbNm3S6NGjdeDAAd19991ha/p8Pvl8vuCx1+uVJPn9fvn9flvrv7ye3evGI3plHb2y7mq9ciUGup1/NVeeFw9cCYGQX29EVn/+/BmMTLT6Fcl6jkAgENUr++TJkxo1apQ++ugj5eXlad++fZo6daq+/PJLpaSkBOfdcsstWrx4sZ599tmwNSorK7V8+fKw8draWiUnJ0ezfAAAYJOOjg499thjam1tldvt7nVuVN/qvqurS4sXL9Y999yjvLw8SVJjY6MGDhwYEk4kKT09XY2Njd2uU1FRofLy8uCx1+tVdna2iouLr3oHI+X3++XxeDRt2jQ5nU5b14439Mo6emXd1XqVV7k75PjjyhJL6155XjxwJQT08vguLT2SIF+XI9blxITVnz9/BiMTrX5dfgTEiqgGlIULF+rjjz/Wb37zm+tax+VyyeVyhY07nc6oXWjRXDve0Cvr6JV1PfXK1+kIm2fFlefFE1+XI67vX28i/fPEn8HI2N2vSNaKWkBZtGiRdu7cqbq6Oo0YMSI4npGRoYsXL6qlpSVkF6WpqUkZGRnRKgdAnOKJskB8sv1VPIFAQIsWLdL27du1b98+5ebmhtw+btw4OZ1O7d27Nzh2/Phxff755yosLLS7HAAA0A/ZvoOycOFC1dbW6he/+IWGDBkSfF7J0KFDNWjQIA0dOlTz5s1TeXm5UlNT5Xa79fTTT6uwsLDbV/AAAIAbj+0B5c0335QkTZkyJWR806ZNevLJJyVJP/zhD5WQkKDS0lL5fD6VlJTojTfesLsUAADQT9keUKy8ajkpKUnV1dWqrq62+9sDiCM8vwS4cfFZPAAAwDgEFAAAYBwCCgAAMA4BBQAAGCeq7yQLAD3p7gmwp9fMjEElAEzEDgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDi8DwoAY+QseUeuxIDWFkh5lbslOWJdEoAYYQcFAAAYh4ACAACMQ0ABAADG4TkoAPpEd5+9A1wvPtMpfrGDAgAAjENAAQAAxuEhHgARYUsdQF9gBwUAABiHgAIAAIxDQAEAAMYhoAAAAOPwJFkAPeK9SwDECjsoAADAOOygALAdOy8wyZWfku3rdPDS+H6AHRQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOPwMmMAQdf68mBeVgzAbuygAAAA4xBQAACAcXiIJ45due3OOyfaw8rDGbHudXc1XlkTD8sgXnFtx4eY7qBUV1crJydHSUlJmjhxog4dOhTLcgAAgCFitoOydetWlZeXq6amRhMnTlRVVZVKSkp0/PhxDR8+PFZlGak//I/dLtf6Px/T7v+V9+PKzwG5zErd/G8QsN+N9PdqfxWzHZTXXntN83hgHdoAAAlfSURBVOfP11NPPaXbb79dNTU1Sk5O1s9+9rNYlQQAAAwRkx2UixcvqqGhQRUVFcGxhIQEFRUVqb6+Pmy+z+eTz+cLHre2tkqSmpub5ff7ba3N7/ero6NDf/zjH+V0Om1d+1oNuNR+1Tl//OMfr3ped3OuRzR6ZeW+dsfu+9aba6lxQFdAHR1dGuBPUGfXn3ZQrNR9rT250pXfy6517dZTrxCOXll3Lb3qy79XTBOtfwvPnz8vSQoEAlefHIiBL774IiApsH///pDx559/PlBQUBA2//vf/35AEl988cUXX3zxFQdfZ86cuWpW6Bev4qmoqFB5eXnwuKurS83NzUpLS5PDEZqEJ0yYoMOHD/c61tux1+tVdna2zpw5I7fbbev96K42u87pbV5Pt1np1ZVjJvfK6nl91av/exzNXvVW9/WeQ6+sn3O1OdfTL3rV83i89+pq86LRKyl6f78HAgGdP39eWVlZV50bk4AybNgwJSYmqqmpKWS8qalJGRkZYfNdLpdcLlfIWEpKSrdrJyYmhjXzyrGrHUuS2+22/SLu7vvYdU5v83q6zUqvrhwzuVdWz+urXnV3HI1e9VSLHefQK+vnXG3O9fSLXvU8Hu+9utq8aPZKik6/hg4damleYmVlZaWt39nKN01M1DvvvKOLFy9qxowZkr7aFXnmmWdUWlqqSZMmXdf6BQUFVx3r6djn82nNmjWqqKgIC0V26K42u87pbV5Pt1np1ZVjJvfK6nl91avLx9HuVU+12HEOvbJ+ztXmXE+/6FXP4/Heq6vNs7tXUvT/frfCEQhYeaaK/bZu3aq5c+fqxz/+sQoKClRVVaW33npLv/vd75Senh6LkiR9ta01dOhQtba2RiVlxxN6ZR29so5eWUevrKNXkTGhXzHZQZGkvLw8paSk6JVXXtG6deskSVu2bNHXv/71WJQTIjExUVOmTNGAAf3iKToxRa+so1fW0Svr6JV19Coyse5XzHZQAAAAesKHBQIAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4B5RodP35c+fn5wa9BgwZpx44dsS7LWKdOndJ9992n22+/XWPGjFF7u5kfVGeCnJwc3XnnncrPz9d9990X63KM19HRoVtuuUXPPfdcrEsxWktLi8aPH6/8/Hzl5eXpJz/5SaxLMtaZM2c0ZcoU3X777brzzju1bdu2WJdktIcfflg333yzvv3tb9u6Li8ztkFbW5tycnL02WefafDgwbEux0j33nuvVq5cqcmTJ6u5uVlut5v3IuhBTk6OPv74Y910002xLqVf+Md//EedPHlS2dnZwfdUQrjOzk75fD4lJyervb1deXl5OnLkiNLS0mJdmnH+93//V01NTcrPz1djY6PGjRun3//+9/z93oNf/epXOn/+vP7pn/5J//qv/2rbuuyg2ODtt9/W1KlTuXh78Mknn8jpdGry5MmSpNTUVMIJbHHixAn97ne/0/Tp02NdivESExOVnJws6au3MQ8EAtY+8v4GlJmZqfz8fElSRkaGhg0bpubm5hhXZa4pU6ZoyJAhtq8btwGlrq5Os2bNUlZWlhwOR7cPv1RXVysnJ0dJSUmaOHGiDh06dE3f66233tJf/dVfXW/JMRPtXp04cUI33XSTZs2apW984xtatWqVneX3qb64rhwOh+69915NmDBBW7Zssav0PtcXvXruuee0evVqu0qOqb7oV0tLi8aOHasRI0bo+eef17Bhw+wqv0/15d/vDQ0N6uzsVHZ29vWWHRN92Su7xW1AaW9v19ixY1VdXd3t7Vu3blV5ebm+//3v6+jRoxo7dqxKSkp07ty54JzLj9Ve+XX27NngHK/Xq/379wc/9LA/inavLl26pF//+td64403VF9fL4/HI4/H01d3z1Z9cV395je/UUNDg95++22tWrVK//Vf/9Un981u0e7VL37xC91666269dZb++ouRVVfXFspKSn68MMPderUKdXW1oZ9onx/0Vd/vzc3N+uJJ57Qxo0bo36foqWvehUVgRuApMD27dtDxgoKCgILFy4MHnd2dgaysrICq1evjmjtzZs3B8rKymyp0wTR6NX+/fsDxcXFweO1a9cG1q5da0/BMRTN6+qy5557LrBp06brKdMI0ejVkiVLAiNGjAjccsstgbS0tIDb7Q4sX77c1rpjpS+urX/4h38IbNu27brqNEG0enXhwoXA5MmTA5s3b7at1liL5nX1/vvvB0pLS22p87K43UHpzcWLF9XQ0KCioqLgWEJCgoqKilRfXx/RWv394Z2rsaNXEyZM0Llz5/Tll1+qq6tLdXV1Gj16dLRKjhk7etXe3q7z589L+urJ1/v27dMdd9wRlXpjyY5erV69WmfOnNHp06e1bt06zZ8/X8uWLYtWyTFlR7+ampqC11Zra6vq6uqM+HBWu9nRq0AgoCeffFL333+/Hn/88WiVGnN2/lsYDTdkQPnDH/6gzs5Opaenh4ynp6ersbHR8jqtra06dOiQSkpK7C7RGHb0asCAAVq1apW++c1v6s4779SoUaP04IMPRqPcmLKjV01NTZo0aZLGjh2ru+++W0888YQmTJgQjXJjyq4/gzcKO/r12WefafLkyRo7dqwmT56sp59+WmPGjIlGuTFlR6/+8z//U1u3btWOHTuCbyXx0UcfRaPcmLLrz2FRUZEeeeQRvfvuuxoxYoRt4YaXUlyHoUOH9tvHcPva9OnTeaWFBX/+53+uDz/8MNZl9DtPPvlkrEswXkFBgY4dOxbrMvqFSZMmqaurK9Zl9BvvvfdeVNa9IXdQhg0bpsTExLBw0dTUpIyMjBhVZSZ6ZR29so5eRYZ+WUevrDO9VzdkQBk4cKDGjRunvXv3Bse6urq0d+9eFRYWxrAy89Ar6+iVdfQqMvTLOnplnem9ituHeNra2nTy5Mng8alTp3Ts2DGlpqZq5MiRKi8v19y5czV+/HgVFBSoqqpK7e3teuqpp2JYdWzQK+volXX0KjL0yzp6ZV2/7pWtrwkyyPvvvx+QFPY1d+7c4JwNGzYERo4cGRg4cGCgoKAgcODAgdgVHEP0yjp6ZR29igz9so5eWdefe8Vn8QAAAOPckM9BAQAAZiOgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4/w+kbyVa2HkUlQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plotDistribution(_betweeness[_betweeness>0], 100)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGhCAYAAABLWk8IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df3TU1Z3/8dckDBOCDDHhkB9LMNkerGiQWCCYFSpKSARkxaa6rFlFlwO7W9Bi6g9yVmhABORQm4LRlJ6WLueQXWR3oRZdYARr2iX8CsVV11I4C8qRTThtTIYkh2FI5vuHX6Y7TBI+A5/J3AzPxzk58LlzPzfveecDvLjzyxEIBAICAAAwSEKsCwAAALgSAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgDYl3Atejq6tLZs2c1ZMgQORyOWJcDAAAsCAQCOn/+vLKyspSQ0PseSb8MKGfPnlV2dnasywAAANfgzJkzGjFiRK9z+mVAGTJkiKSv7qDb7bZ1bb/frz179qi4uFhOp9PWteMNvbKOXllHr6yjV9bRq8hEq19er1fZ2dnBf8d70y8DyuWHddxud1QCSnJystxuNxfxVdAr6+iVdfTKOnplHb2KTLT7ZeXpGTxJFgAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGCcAbEuAAAQezlL3gkbO71mZgwqAb7CDgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgRB5S6ujrNmjVLWVlZcjgc2rFjR49z//7v/14Oh0NVVVUh483NzSorK5Pb7VZKSormzZuntra2yKsHAABxKeKA0t7errFjx6q6urrXedu3b9eBAweUlZUVdltZWZk++eQTeTwe7dy5U3V1dVqwYEGkpQAAgDgV8TvJTp8+XdOnT+91zhdffKGnn35au3fv1syZoe9E+Omnn2rXrl06fPiwxo8fL0nasGGDZsyYoXXr1nUbaAAAwI3F9re67+rq0uOPP67nn39ed9xxR9jt9fX1SklJCYYTSSoqKlJCQoIOHjyohx9+OOwcn88nn88XPPZ6vZIkv98vv99va/2X17N73XhEr6yjV9bRK+vs7JUrMdDj+vGA6yoy0epXJOvZHlBeffVVDRgwQM8880y3tzc2Nmr48OGhRQwYoNTUVDU2NnZ7zurVq7V8+fKw8T179ig5Ofn6i+6Gx+OJyrrxiF5ZR6+so1fW2dGrtQXhY+++++51r2sarqvI2N2vjo4Oy3NtDSgNDQ360Y9+pKNHj8rhcNi2bkVFhcrLy4PHXq9X2dnZKi4ultvttu37SF+lO4/Ho2nTpsnpdNq6dryhV9bRK+volXVWe5VXuTts7OPKkojn9GdcV5GJVr8uPwJiha0B5de//rXOnTunkSNHBsc6Ozv1ve99T1VVVTp9+rQyMjJ07ty5kPMuXbqk5uZmZWRkdLuuy+WSy+UKG3c6nVG70KK5dryhV9bRK+volXVX65WvM/w/jFfOtzInHnBdRcbufkWylq0B5fHHH1dRUVHIWElJiR5//HE99dRTkqTCwkK1tLSooaFB48aNkyTt27dPXV1dmjhxop3lAACAfirigNLW1qaTJ08Gj0+dOqVjx44pNTVVI0eOVFpaWsh8p9OpjIwMff3rX5ckjR49Wg888IDmz5+vmpoa+f1+LVq0SHPmzOEVPAAAQNI1vA/KkSNHdNddd+muu+6SJJWXl+uuu+7SsmXLLK+xZcsW3XbbbZo6dapmzJihSZMmaePGjZGWAgAA4lTEOyhTpkxRIBD+crSenD59OmwsNTVVtbW1kX5rAABwg+CzeAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACME3FAqaur06xZs5SVlSWHw6EdO3YEb/P7/XrxxRc1ZswYDR48WFlZWXriiSd09uzZkDWam5tVVlYmt9utlJQUzZs3T21tbdd/bwAAQFyIOKC0t7dr7Nixqq6uDruto6NDR48e1dKlS3X06FH9+7//u44fP66//Mu/DJlXVlamTz75RB6PRzt37lRdXZ0WLFhw7fcCAADElQGRnjB9+nRNnz6929uGDh0qj8cTMvb666+roKBAn3/+uUaOHKlPP/1Uu3bt0uHDhzV+/HhJ0oYNGzRjxgytW7dOWVlZYev6fD75fL7gsdfrlfTVjo3f74/0LvTq8np2rxuP6JV19Mo6emWd1V65EgM9nhvJnP6M6yoy0epXJOs5AoFA+FVp9WSHQ9u3b9fs2bN7nPPee++puLhYLS0tcrvd+tnPfqbvfe97+vLLL4NzLl26pKSkJG3btk0PP/xw2BqVlZVavnx52Hhtba2Sk5OvtXwAANCHOjo69Nhjj6m1tVVut7vXuRHvoETiwoULevHFF/XXf/3XwUIaGxs1fPjw0CIGDFBqaqoaGxu7XaeiokLl5eXBY6/Xq+zsbBUXF1/1DkbK7/fL4/Fo2rRpcjqdtq4db+iVdfTKOnplndVe5VXuDhv7uLIk4jn9GddVZKLVr8uPgFgRtYDi9/v16KOPKhAI6M0337yutVwul1wuV9i40+mM2oUWzbXjDb2yjl5ZR6+su1qvfJ2Obs+JdE484LqKjN39imStqASUy+Hks88+0759+0J2OTIyMnTu3LmQ+ZcuXVJzc7MyMjKiUQ4A4BrkLHknbOz0mpkxqAQ3ItvfB+VyODlx4oTee+89paWlhdxeWFiolpYWNTQ0BMf27dunrq4uTZw40e5yAABAPxTxDkpbW5tOnjwZPD516pSOHTum1NRUZWZm6tvf/raOHj2qnTt3qrOzM/i8ktTUVA0cOFCjR4/WAw88oPnz56umpkZ+v1+LFi3SnDlzun0FDwAgMt3tfERrbXZUEC0RB5QjR47ovvvuCx5ffvLq3LlzVVlZqbfffluSlJ+fH3Le+++/rylTpkiStmzZokWLFmnq1KlKSEhQaWmp1q9ff633AQAAxJmIA8qUKVPU2yuTrbxqOTU1VbW1tZF+awAAcIPgs3gAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAME7EHxYIADBLXuVu+TodsS4DsBU7KAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcXijNgC4AeUseSfWJQC9YgcFAAAYh4ACAACMQ0ABAADGIaAAAADj8CRZAOhH/u+TW12JAa0tiGExQBSxgwIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA7vgwIAuGbdfejg6TUzY1AJ4g07KAAAwDgEFAAAYJyIA0pdXZ1mzZqlrKwsORwO7dixI+T2QCCgZcuWKTMzU4MGDVJRUZFOnDgRMqe5uVllZWVyu91KSUnRvHnz1NbWdn33BAAAxI2IA0p7e7vGjh2r6urqbm9fu3at1q9fr5qaGh08eFCDBw9WSUmJLly4EJxTVlamTz75RB6PRzt37lRdXZ0WLFhw7fcCAADElYifJDt9+nRNnz6929sCgYCqqqr00ksv6aGHHpIkbd68Wenp6dqxY4fmzJmjTz/9VLt27dLhw4c1fvx4SdKGDRs0Y8YMrVu3TllZWddxdwAAQDyw9VU8p06dUmNjo4qKioJjQ4cO1cSJE1VfX685c+aovr5eKSkpwXAiSUVFRUpISNDBgwf18MMPh63r8/nk8/mCx16vV5Lk9/vl9/vtvAvB9exeNx7RK+volXX0qneuxMCffp8QCPnVFCb+7LiuIhOtfkWynq0BpbGxUZKUnp4eMp6enh68rbGxUcOHDw8tYsAApaamBudcafXq1Vq+fHnY+J49e5ScnGxH6WE8Hk9U1o1H9Mo6emUdvere2oLwsZfHd/V9Ib149913Y11Cj7iuImN3vzo6OizP7Rfvg1JRUaHy8vLgsdfrVXZ2toqLi+V2u239Xn6/Xx6PR9OmTZPT6bR17XhDr6yjV9bRq97lVe4O/t6VENDL47u09EiCfF2OGFYV6uPKkliXEIbrKjLR6tflR0CssDWgZGRkSJKampqUmZkZHG9qalJ+fn5wzrlz50LOu3Tpkpqbm4PnX8nlcsnlcoWNO53OqF1o0Vw73tAr6+iVdfSqe77O8CDi63J0Ox4rJv/cuK4iY3e/IlnL1vdByc3NVUZGhvbu3Rsc83q9OnjwoAoLCyVJhYWFamlpUUNDQ3DOvn371NXVpYkTJ9pZDgAA6Kci3kFpa2vTyZMng8enTp3SsWPHlJqaqpEjR2rx4sVauXKlRo0apdzcXC1dulRZWVmaPXu2JGn06NF64IEHNH/+fNXU1Mjv92vRokWaM2cOr+ABAACSriGgHDlyRPfdd1/w+PJzQ+bOnauf//zneuGFF9Te3q4FCxaopaVFkyZN0q5du5SUlBQ8Z8uWLVq0aJGmTp2qhIQElZaWav369TbcHQAAEA8iDihTpkxRINDzS9ocDodWrFihFStW9DgnNTVVtbW1kX5rAABwg+CzeAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGGRDrAgAA8SVnyTshx6fXzIxRJejP2EEBAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwju0BpbOzU0uXLlVubq4GDRqkr33ta3r55ZcVCASCcwKBgJYtW6bMzEwNGjRIRUVFOnHihN2lAACAfsr2gPLqq6/qzTff1Ouvv65PP/1Ur776qtauXasNGzYE56xdu1br169XTU2NDh48qMGDB6ukpEQXLlywuxwAANAPDbB7wf379+uhhx7SzJkzJUk5OTn653/+Zx06dEjSV7snVVVVeumll/TQQw9JkjZv3qz09HTt2LFDc+bMCVvT5/PJ5/MFj71eryTJ7/fL7/fbWv/l9exeNx7RK+volXX0qneuxD/tRrsSAiG/msqEnyXXVWSi1a9I1nME/u9jLzZYtWqVNm7cqD179ujWW2/Vhx9+qOLiYr322msqKyvT//zP/+hrX/uafvvb3yo/Pz943r333qv8/Hz96Ec/CluzsrJSy5cvDxuvra1VcnKyneUDAIAo6ejo0GOPPabW1la53e5e59q+g7JkyRJ5vV7ddtttSkxMVGdnp1555RWVlZVJkhobGyVJ6enpIeelp6cHb7tSRUWFysvLg8der1fZ2dkqLi6+6h2MlN/vl8fj0bRp0+R0Om1dO97QK+volXX0qnd5lbuDv3clBPTy+C4tPZIgX5cjhlX17uPKkliXwHUVoWj16/IjIFbYHlDeeustbdmyRbW1tbrjjjt07NgxLV68WFlZWZo7d+41relyueRyucLGnU5n1C60aK4db+iVdfTKOnrVPV9neBDxdTm6HTeFST9HrqvI2N2vSNayPaA8//zzWrJkSfC5JGPGjNFnn32m1atXa+7cucrIyJAkNTU1KTMzM3heU1NTyEM+AADgxmX7q3g6OjqUkBC6bGJiorq6uiRJubm5ysjI0N69e4O3e71eHTx4UIWFhXaXAwAA+iHbd1BmzZqlV155RSNHjtQdd9yh3/72t3rttdf0t3/7t5Ikh8OhxYsXa+XKlRo1apRyc3O1dOlSZWVlafbs2XaXAwAA+iHbA8qGDRu0dOlSfec739G5c+eUlZWlv/u7v9OyZcuCc1544QW1t7drwYIFamlp0aRJk7Rr1y4lJSXZXQ4AAOiHbA8oQ4YMUVVVlaqqqnqc43A4tGLFCq1YscLubw8AAOIAn8UDAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADCO7e+DAgCwR86Sd2JdAhAz7KAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGGdArAsAAMS3nCXvhI2dXjMzBpWgP2EHBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOLzMGAAM0d3LcYEbFTsoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADG4WXGABBlfJovELmo7KB88cUX+pu/+RulpaVp0KBBGjNmjI4cORK8PRAIaNmyZcrMzNSgQYNUVFSkEydORKMUAADQD9keUL788kvdc889cjqd+o//+A/993//t37wgx/o5ptvDs5Zu3at1q9fr5qaGh08eFCDBw9WSUmJLly4YHc5AACgH7L9IZ5XX31V2dnZ2rRpU3AsNzc3+PtAIKCqqiq99NJLeuihhyRJmzdvVnp6unbs2KE5c+bYXRIAAOhnbA8ob7/9tkpKSvTII4/ogw8+0J/92Z/pO9/5jubPny9JOnXqlBobG1VUVBQ8Z+jQoZo4caLq6+u7DSg+n08+ny947PV6JUl+v19+v9/W+i+vZ/e68YheWUevrIvHXrkSA2Fj3d2/7ub1um5CIOTX/qSvf77xeF1FU7T6Fcl6jkAgYOuVnZSUJEkqLy/XI488osOHD+u73/2uampqNHfuXO3fv1/33HOPzp49q8zMzOB5jz76qBwOh7Zu3Rq2ZmVlpZYvXx42Xltbq+TkZDvLBwAAUdLR0aHHHntMra2tcrvdvc61PaAMHDhQ48eP1/79+4NjzzzzjA4fPqz6+vprCijd7aBkZ2frD3/4w1XvYKT8fr88Ho+mTZsmp9Np69rxhl5ZR6+si8de5VXuDhv7uLLE0rzeuBICenl8l5YeSZCvy3HN9cVCd/c/muLxuoqmaPXL6/Vq2LBhlgKK7Q/xZGZm6vbbbw8ZGz16tP7t3/5NkpSRkSFJampqCgkoTU1Nys/P73ZNl8sll8sVNu50OqN2oUVz7XhDr6yjV9bFU698neHhobv71t08S+t3Oa753FiJ1c82nq6rvmB3vyJZy/ZX8dxzzz06fvx4yNjvf/973XLLLZK+esJsRkaG9u7dG7zd6/Xq4MGDKiwstLscAADQD9m+g/Lss8/qL/7iL7Rq1So9+uijOnTokDZu3KiNGzdKkhwOhxYvXqyVK1dq1KhRys3N1dKlS5WVlaXZs2fbXQ4AAOiHbA8oEyZM0Pbt21VRUaEVK1YoNzdXVVVVKisrC8554YUX1N7ergULFqilpUWTJk3Srl27gk+wBQAAN7aovNX9gw8+qAcffLDH2x0Oh1asWKEVK1ZE49sDAIB+js/iAYAY6O7zeQD8CZ9mDAAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADj8Fk8AIA+d+VnEZ1eMzNGlcBU7KAAAADjEFAAAIBxCCgAAMA4BBQAAGAcniQLADa78gmgACLHDgoAADAOAQUAABiHgAIAAIxDQAEAAMbhSbIAcB14Qqw9uusj7y57Y2MHBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADG4bN4ACACfPYO0DfYQQEAAMYhoAAAAOMQUAAAgHGiHlDWrFkjh8OhxYsXB8cuXLighQsXKi0tTTfddJNKS0vV1NQU7VIAAEA/EdWAcvjwYf34xz/WnXfeGTL+7LPP6pe//KW2bdumDz74QGfPntW3vvWtaJYCAAD6kagFlLa2NpWVleknP/mJbr755uB4a2urfvrTn+q1117T/fffr3HjxmnTpk3av3+/Dhw4EK1yAABAPxK1lxkvXLhQM2fOVFFRkVauXBkcb2hokN/vV1FRUXDstttu08iRI1VfX6+77747bC2fzyefzxc89nq9kiS/3y+/329r3ZfXs3vdeESvrKNX1pneK1diINYlBLkSAiG/xhs7rwHTryvTRKtfkawXlYDyL//yLzp69KgOHz4cdltjY6MGDhyolJSUkPH09HQ1NjZ2u97q1au1fPnysPE9e/YoOTnZnqKv4PF4orJuPKJX1tEr60zt1dqCWFcQ7uXxXbEuISreffdd29c09boyld396ujosDzX9oBy5swZffe735XH41FSUpIta1ZUVKi8vDx47PV6lZ2dreLiYrndblu+x2V+v18ej0fTpk2T0+m0de14Q6+so1fWmd6rvMrdsS4hyJUQ0Mvju7T0SIJ8XY5Yl2O7jytLbFvL9OvKNNHq1+VHQKywPaA0NDTo3Llz+sY3vhEc6+zsVF1dnV5//XXt3r1bFy9eVEtLS8guSlNTkzIyMrpd0+VyyeVyhY07nc6oXWjRXDve0Cvr6JV1pvbK12leEPB1OYys63pF4+dv6nVlKrv7FclatgeUqVOn6qOPPgoZe+qpp3TbbbfpxRdfVHZ2tpxOp/bu3avS0lJJ0vHjx/X555+rsLDQ7nIAAEA/ZHtAGTJkiPLy8kLGBg8erLS0tOD4vHnzVF5ertTUVLndbj399NMqLCzs9gmyAADgxhOTDwv84Q9/qISEBJWWlsrn86mkpERvvPFGLEoBAAAG6pOA8qtf/SrkOCkpSdXV1aquru6Lbw8AAPoZPosHAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGCcmLxRGwDEWs6Sd8LGTq+ZGYNKAHSHHRQAAGAcAgoAADAOD/EAQA+6exgIQN9gBwUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDi8zBgAYKQrX+bNO/3eWNhBAQAAxiGgAAAA4xBQAACAcQgoAADAODxJFgDQL3T32Ug8cTZ+sYMCAACMww4KAPx/fHoxYA52UAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjMPLjAHcEHgJMdC/sIMCAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAc2wPK6tWrNWHCBA0ZMkTDhw/X7Nmzdfz48ZA5Fy5c0MKFC5WWlqabbrpJpaWlampqsrsUAADQT9keUD744AMtXLhQBw4ckMfjkd/vV3Fxsdrb24Nznn32Wf3yl7/Utm3b9MEHH+js2bP61re+ZXcpAOJQzpJ3Qr4AxCfb36ht165dIcc///nPNXz4cDU0NOib3/ymWltb9dOf/lS1tbW6//77JUmbNm3S6NGjdeDAAd19991ha/p8Pvl8vuCx1+uVJPn9fvn9flvrv7ye3evGI3plHb2y7mq9ciUGup1/NVeeFw9cCYGQX29EVn/+/BmMTLT6Fcl6jkAgENUr++TJkxo1apQ++ugj5eXlad++fZo6daq+/PJLpaSkBOfdcsstWrx4sZ599tmwNSorK7V8+fKw8draWiUnJ0ezfAAAYJOOjg499thjam1tldvt7nVuVN/qvqurS4sXL9Y999yjvLw8SVJjY6MGDhwYEk4kKT09XY2Njd2uU1FRofLy8uCx1+tVdna2iouLr3oHI+X3++XxeDRt2jQ5nU5b14439Mo6emXd1XqVV7k75PjjyhJL6155XjxwJQT08vguLT2SIF+XI9blxITVnz9/BiMTrX5dfgTEiqgGlIULF+rjjz/Wb37zm+tax+VyyeVyhY07nc6oXWjRXDve0Cvr6JV1PfXK1+kIm2fFlefFE1+XI67vX28i/fPEn8HI2N2vSNaKWkBZtGiRdu7cqbq6Oo0YMSI4npGRoYsXL6qlpSVkF6WpqUkZGRnRKgdAnOKJskB8sv1VPIFAQIsWLdL27du1b98+5ebmhtw+btw4OZ1O7d27Nzh2/Phxff755yosLLS7HAAA0A/ZvoOycOFC1dbW6he/+IWGDBkSfF7J0KFDNWjQIA0dOlTz5s1TeXm5UlNT5Xa79fTTT6uwsLDbV/AAAIAbj+0B5c0335QkTZkyJWR806ZNevLJJyVJP/zhD5WQkKDS0lL5fD6VlJTojTfesLsUAADQT9keUKy8ajkpKUnV1dWqrq62+9sDiCM8vwS4cfFZPAAAwDgEFAAAYBwCCgAAMA4BBQAAGCeq7yQLAD3p7gmwp9fMjEElAEzEDgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDi8DwoAY+QseUeuxIDWFkh5lbslOWJdEoAYYQcFAAAYh4ACAACMQ0ABAADG4TkoAPpEd5+9A1wvPtMpfrGDAgAAjENAAQAAxuEhHgARYUsdQF9gBwUAABiHgAIAAIxDQAEAAMYhoAAAAOPwJFkAPeK9SwDECjsoAADAOOygALAdOy8wyZWfku3rdPDS+H6AHRQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOPwMmMAQdf68mBeVgzAbuygAAAA4xBQAACAcXiIJ45due3OOyfaw8rDGbHudXc1XlkTD8sgXnFtx4eY7qBUV1crJydHSUlJmjhxog4dOhTLcgAAgCFitoOydetWlZeXq6amRhMnTlRVVZVKSkp0/PhxDR8+PFZlGak//I/dLtf6Px/T7v+V9+PKzwG5zErd/G8QsN+N9PdqfxWzHZTXXntN83hgHdoAAAlfSURBVOfP11NPPaXbb79dNTU1Sk5O1s9+9rNYlQQAAAwRkx2UixcvqqGhQRUVFcGxhIQEFRUVqb6+Pmy+z+eTz+cLHre2tkqSmpub5ff7ba3N7/ero6NDf/zjH+V0Om1d+1oNuNR+1Tl//OMfr3ped3OuRzR6ZeW+dsfu+9aba6lxQFdAHR1dGuBPUGfXn3ZQrNR9rT250pXfy6517dZTrxCOXll3Lb3qy79XTBOtfwvPnz8vSQoEAlefHIiBL774IiApsH///pDx559/PlBQUBA2//vf/35AEl988cUXX3zxFQdfZ86cuWpW6Bev4qmoqFB5eXnwuKurS83NzUpLS5PDEZqEJ0yYoMOHD/c61tux1+tVdna2zpw5I7fbbev96K42u87pbV5Pt1np1ZVjJvfK6nl91av/exzNXvVW9/WeQ6+sn3O1OdfTL3rV83i89+pq86LRKyl6f78HAgGdP39eWVlZV50bk4AybNgwJSYmqqmpKWS8qalJGRkZYfNdLpdcLlfIWEpKSrdrJyYmhjXzyrGrHUuS2+22/SLu7vvYdU5v83q6zUqvrhwzuVdWz+urXnV3HI1e9VSLHefQK+vnXG3O9fSLXvU8Hu+9utq8aPZKik6/hg4damleYmVlZaWt39nKN01M1DvvvKOLFy9qxowZkr7aFXnmmWdUWlqqSZMmXdf6BQUFVx3r6djn82nNmjWqqKgIC0V26K42u87pbV5Pt1np1ZVjJvfK6nl91avLx9HuVU+12HEOvbJ+ztXmXE+/6FXP4/Heq6vNs7tXUvT/frfCEQhYeaaK/bZu3aq5c+fqxz/+sQoKClRVVaW33npLv/vd75Senh6LkiR9ta01dOhQtba2RiVlxxN6ZR29so5eWUevrKNXkTGhXzHZQZGkvLw8paSk6JVXXtG6deskSVu2bNHXv/71WJQTIjExUVOmTNGAAf3iKToxRa+so1fW0Svr6JV19Coyse5XzHZQAAAAesKHBQIAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4B5RodP35c+fn5wa9BgwZpx44dsS7LWKdOndJ9992n22+/XWPGjFF7u5kfVGeCnJwc3XnnncrPz9d9990X63KM19HRoVtuuUXPPfdcrEsxWktLi8aPH6/8/Hzl5eXpJz/5SaxLMtaZM2c0ZcoU3X777brzzju1bdu2WJdktIcfflg333yzvv3tb9u6Li8ztkFbW5tycnL02WefafDgwbEux0j33nuvVq5cqcmTJ6u5uVlut5v3IuhBTk6OPv74Y910002xLqVf+Md//EedPHlS2dnZwfdUQrjOzk75fD4lJyervb1deXl5OnLkiNLS0mJdmnH+93//V01NTcrPz1djY6PGjRun3//+9/z93oNf/epXOn/+vP7pn/5J//qv/2rbuuyg2ODtt9/W1KlTuXh78Mknn8jpdGry5MmSpNTUVMIJbHHixAn97ne/0/Tp02NdivESExOVnJws6au3MQ8EAtY+8v4GlJmZqfz8fElSRkaGhg0bpubm5hhXZa4pU6ZoyJAhtq8btwGlrq5Os2bNUlZWlhwOR7cPv1RXVysnJ0dJSUmaOHGiDh06dE3f66233tJf/dVfXW/JMRPtXp04cUI33XSTZs2apW984xtatWqVneX3qb64rhwOh+69915NmDBBW7Zssav0PtcXvXruuee0evVqu0qOqb7oV0tLi8aOHasRI0bo+eef17Bhw+wqv0/15d/vDQ0N6uzsVHZ29vWWHRN92Su7xW1AaW9v19ixY1VdXd3t7Vu3blV5ebm+//3v6+jRoxo7dqxKSkp07ty54JzLj9Ve+XX27NngHK/Xq/379wc/9LA/inavLl26pF//+td64403VF9fL4/HI4/H01d3z1Z9cV395je/UUNDg95++22tWrVK//Vf/9Un981u0e7VL37xC91666269dZb++ouRVVfXFspKSn68MMPderUKdXW1oZ9onx/0Vd/vzc3N+uJJ57Qxo0bo36foqWvehUVgRuApMD27dtDxgoKCgILFy4MHnd2dgaysrICq1evjmjtzZs3B8rKymyp0wTR6NX+/fsDxcXFweO1a9cG1q5da0/BMRTN6+qy5557LrBp06brKdMI0ejVkiVLAiNGjAjccsstgbS0tIDb7Q4sX77c1rpjpS+urX/4h38IbNu27brqNEG0enXhwoXA5MmTA5s3b7at1liL5nX1/vvvB0pLS22p87K43UHpzcWLF9XQ0KCioqLgWEJCgoqKilRfXx/RWv394Z2rsaNXEyZM0Llz5/Tll1+qq6tLdXV1Gj16dLRKjhk7etXe3q7z589L+urJ1/v27dMdd9wRlXpjyY5erV69WmfOnNHp06e1bt06zZ8/X8uWLYtWyTFlR7+ampqC11Zra6vq6uqM+HBWu9nRq0AgoCeffFL333+/Hn/88WiVGnN2/lsYDTdkQPnDH/6gzs5Opaenh4ynp6ersbHR8jqtra06dOiQSkpK7C7RGHb0asCAAVq1apW++c1v6s4779SoUaP04IMPRqPcmLKjV01NTZo0aZLGjh2ru+++W0888YQmTJgQjXJjyq4/gzcKO/r12WefafLkyRo7dqwmT56sp59+WmPGjIlGuTFlR6/+8z//U1u3btWOHTuCbyXx0UcfRaPcmLLrz2FRUZEeeeQRvfvuuxoxYoRt4YaXUlyHoUOH9tvHcPva9OnTeaWFBX/+53+uDz/8MNZl9DtPPvlkrEswXkFBgY4dOxbrMvqFSZMmqaurK9Zl9BvvvfdeVNa9IXdQhg0bpsTExLBw0dTUpIyMjBhVZSZ6ZR29so5eRYZ+WUevrDO9VzdkQBk4cKDGjRunvXv3Bse6urq0d+9eFRYWxrAy89Ar6+iVdfQqMvTLOnplnem9ituHeNra2nTy5Mng8alTp3Ts2DGlpqZq5MiRKi8v19y5czV+/HgVFBSoqqpK7e3teuqpp2JYdWzQK+volXX0KjL0yzp6ZV2/7pWtrwkyyPvvvx+QFPY1d+7c4JwNGzYERo4cGRg4cGCgoKAgcODAgdgVHEP0yjp6ZR29igz9so5eWdefe8Vn8QAAAOPckM9BAQAAZiOgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4/w+kbyVa2HkUlQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -2319,7 +2418,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 66, "metadata": {}, "outputs": [], "source": [ @@ -2328,7 +2427,7 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 67, "metadata": {}, "outputs": [], "source": [ @@ -2337,7 +2436,7 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 68, "metadata": {}, "outputs": [], "source": [ @@ -2350,7 +2449,32 @@ }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "gas 0.000360\n", + "change 0.000400\n", + "price index 0.000532\n", + "reflected 0.000520\n", + "scheduled 0.000585\n", + "Name: pageRank, dtype: float64" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "kpis[\"pageRank\"].head()" + ] + }, + { + "cell_type": "code", + "execution_count": 73, "metadata": {}, "outputs": [ { @@ -2359,20 +2483,18 @@ "(1e-05, 0.02)" ] }, - "execution_count": 79, + "execution_count": 73, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtMAAAFQCAYAAAB9OPLaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACbKUlEQVR4nO39eXgc53WnDd+nugGQoEAQ4k6BpERRoiVAXkhKpGzFkhLJlvxSkS3ZkSW/k9fjaMso842vzBLHSRhF2TzfTOaz80UZa4lH48SkZYm0tjFtWY5Wh6RIIFoA0ZQokADBfQFBkADR2/P+UV2F6urqFd3obuDc18WL6O5anq5GP/jVeX7nHDHGoCiKoiiKoihK4ViVHoCiKIqiKIqi1CoqphVFURRFURSlSFRMK4qiKIqiKEqRqJhWFEVRFEVRlCJRMa0oiqIoiqIoRaJiWlEURVEURVGKRMW0MqUQkVdE5O4Knv86Eemv1PkVRVEqzUTPwyLyoIj800SdT5l6qJhWMiIi+0RkRETOiMgREXlCRM6r9LgURVGmCjoPVxYV4ko+qJhWcnGLMeY8YCWwGvjjSg1ERMKVOne1o9dGUSY1Og8rShWjYlrJC2PMAWAL0C4iLSLygogcE5GB5M+tzrYicpGIvCYiQyLykog87L2zF5G1IvIvInJKRN4WkesynTcZlfkDEXkHOCsiYRH5hoh8mDz+eyLyBc/2XxWRN0TkvyfHtldEbs5w7IUi8o6I/OeA1/5ARJ72PfcdEflbz3l6kmPYKyJfyXCO6clI0oCIvAdc6Xt9kYhsSl7LvSLy//Ht+7+T++4Skf/itYhkuDYZr62INIvIP4jIIRE5ICJ/ISKh5GvLReRVERkUkeMi8mSmz0RRlMqg83Bx83CSaSLyZHLbThH5mOeYgfOwiNwEfBO4Q+yVgbdF5HoRedez789FZIfn8esi8vlsx02+Znmu4QkR+ZGInJ987UIRMSLy/4hIX3JO/qM8950mIv+UfP6UiOwQkflFXC+lEIwx+k//Bf4D9gE3JH9eDHQDfw7MBm4HGoEm4CngGc9+W4H/DtQD1wCngX9KvnYBcAL4HPbN3I3Jx3OzjOGt5PmnJ5/7ErAouf8dwFlgYfK1rwJR4B4gBPwucBCQ5OuvAHcDFwHvA/dmOO9SYBhoSj4OAYeAtcCM5HtakXxtIdCW4TjfAl4Hzk++hy6gP/maBXQA65PXahnQA3zWs++rQAvQCrzj7Bt0bXJdW+DHwCPJ8c8D3gTuS762Efij5H7TgGsq/fun//Sf/tN5uETz8IPJ8XwRqAP+E7A3+XOuefhB57olH08HzgFzkvsfAQ4kP4PpwEjys8l13P8AbMOe2xuSc/PG5GsXAgZ4LHnMjwGjwGV57Hsf8Hzy9yIErAJmFnK99F8R39NKD0D/Ve+/5AR6BjgF9AJ/70ykvu0+Dgwkf14CxIBGz+v/xNgk/gfAP/r2/xnw/2QZw9dyjPMt4Nbkz18F9nhea0xOSguSj18B/kfyuHfmOO4bwG8nf74R+DD584zkNbk96Hr4jtED3OR5fC9jYnoN0Ofb/g+B/+XZ97Oe1+4mXUx/zfM447UF5icn4+me1+4EXk7+/H3gUaC10r93+k//6b+xfzoPl2QefhDY5nlsYYvyX8tjHn4Qj5hOPvc6cBu2qH8R+BFwE3A98E5ym1zH3QX8hue1hdiCP8yYmG71vP4m8OU89v0a8C/AR33nzvt66b/C/6nNQ8nF540xs4wxS40x/84YMyIijSLyiIj0ishp4DVgVtIysAg4aYwZ9hxjv+fnpcCXkstPp0TkFHbUZGGWMXj3R0R+W0Te8uzfjh0lcDjs/OAZhzdh5yvYkYSU5cMANmALToC7ko8xxpzFjsTcDxwSkf8jIh/JcIxFvvH3en5eCizyXYtvYgvfoH1TrkPAc9mu7VLsKMohz2uPYEeoAf4LIMCbItItIl/L8H4URZl4dB62KXYeThm/MSYB9GNfp1zzcBCvAtcBn07+/ApwbfLfq8ltch13KfBjz2u7gLjvvIc9Pw8zdv2y7fuP2DdGPxSRgyLy/xWRuiKul1IAKqaVYviPwApgjTFmJvaEArYYOwScLyKNnu0Xe37ejx0RmeX5N8MY860s5zPODyKyFHvp6/eA2caYWdjWCSlg/A8Cx4ENyT88mXgKuE5sH+IXSE7iAMaYnxljbsT+4/Or5JiCOETq+1/i+Xk/sNd3LZqMMZ/z7Nvq2d57HHcovuNlurb7sSPTczyvzTTGtCXfz2FjzD3GmEXYy4R/LyLLs1wbRVEqi87D+c/D4Hn/ImJhz60HyT0Pm4Bj+cX0q6SL6VzH3Q/c7Ht9mrF98bnIuK8xJmqM+TNjzOXAJ4F1wG8Xcb2UAlAxrRRDE7Yv7FQy6eFPnReMMb3ATuBBEakXkauBWzz7/hNwi4h8VkRCyWQJZ6LMhxnYk9sxABH5t9gRkUKIYvv9ZgDfT06saRhjjmFHHP4X9qS4K3nO+SJyq4jMwBaoZ4BEhnP9CPhDsZOFWoF/73ntTWBI7CSb6cnr0S4iVwbsewH2H65sZLy2xphD2MuRfyMiM5MJLBeLyLXJ9/Qlz2cwgH2NM70nRVEqj87D+c/DAKtE5Daxq5F8PbnPNnLPw0eAC33j+xfsG5mrgDeNMd3Y0eI12CsE5HHc7wJ/mbwxQUTmisituS9b9n3FTpC8InmDchr7OieKuF5KAaiYVorh29hJEcexJ6Of+l7/CnA1dkLLXwBPYn95McbsB27FXu46hn2H/Z/J83fRGPMe8DfYyTVHgCuAXxb6BowxEWzP23zge5kmcuwoyA14oiHJsf4+dlTjJHY04ncz7P9n2NaOvdhi9h89Y4hjRw0+nnz9OPA40Jzc5CHspci9wEvYy6GjWd5Trmv729iJMO9hC+anGVvWvRLYLiJngOeA/2CM6cl0LkVRKs630Xk433kY4Flsm8MA8G+A25JR3Fzz8FPJ/0+ISGdy3GeBTqA7+R7Avha9xpijyW1yHfc72HPtiyIyhP0Zrskyfi/Z9l2APbefxrZ/vIr9d6fQ66UUgJNZqyhlQ+wya78yxvxpzo2VjIjI72InoFxb6bEoilJb6DysKOVDI9NKyRGRK5MWAkvsOp23As9UeFg1h9j1Vz+VvI4rsD2SP670uBRFqX50HlaUiUM7GSnlYAGwGbvWZj/wu8aYf63skGqSeuyKGxdhlzT6IXZZLEVRlFzoPKwoE4TaPBRFURRFURSlSNTmoSiKoiiKoihFUtM2jzlz5pgLL7yw0sNQFEUpmI6OjuPGmLmVHsdEICK3ALc0NTXdc+mll1Z6OIqiKEWRad6uaZvH6tWrzc6dOys9DEVRlIIRkQ5jzOpKj2Mi0TlbUZRaJtO8rTYPRVEURVEURSkSFdOKoiiKoiiKUiQqphVFURRFURSlSFRMK4qiKIqiKEqRqJhWFEVRFEVRlCJRMa0oiqIoiqIoRaJiWlEURVEURVGKRMW0oiiKoiiKohRJTYppEblFRB4dHBys9FAURVEURVGUKUxNimljzPPGmHubm5srPRRFUaY4Hb0DPPzyHjp6Byo9FEVRFKUChCs9AEVRlFqlo3eArzy+jUgsQX3Y4gd3r2XV0pZKD0tRFEWZQGoyMq0oilINbOs5QSSWIGEgGkuwredEpYekKIqiTDAqphVFUYpk7bLZ1IctQgJ1YYu1y2ZXekiKoijKBKM2D0VRlCJZtbSFH9y9lm09J1i7bLZaPBRFUaYgKqYVRZlSdPQOlFT8rlraoiJaURRlCqNiWlGUKYMmDCqKolSOUgczqgUV04qiTBmCEgYn04SuKEp1MllFZCFM5mCGimlFUWqWQv9AOQmD0VhCEwYVRZkQJrOILITJHMxQMa0oSk1SzB8oTRhUFGWimcwishAmczBDxbSiKDVJsX+gNGFQUZSJZDKLyEKYzMEMFdOKotQk+geq8ojI54H/C5gJ/IMx5sXKjkhRqo/JLCILJVswY6J85eU4j4ppRVFqEv0DNT5E5HvAOuCoMabd8/xNwHeAEPC4MeZbmY5hjHkGeEZEWoD/DqiYVpQAdEUsOxPlKy/XeVRMK4pSs1RDlKOGeQL4O+D7zhMiEgIeBm4E+oEdIvIctrD+a9/+XzPGHE3+/MfJ/RRFUQpmonzl5TqPimlFUSYdmj2fG2PMayJyoe/pq4A9xpgeABH5IXCrMeavsaPYKYiIAN8CthhjOoPOIyL3AvcCLFmypHRvQFGmCFMhMDBRtr1ynUfFtKIokw7Nni+aC4D9nsf9wJos2/974AagWUSWG2O+69/AGPMo8CjA6tWrTQnHqiiTnqkSGJgo2165zqNiWlGUSYcmJ04Mxpi/Bf620uNQlHJTqeiwPzCwqbO/pOOodNTbf/6JGEM5zqNiWlGUmidoQtbkxKI4ACz2PG5NPqcoU5ZKRoe9gYGQJTzd0U8sXtw4/PNkpaPelT5/KVExrShKTZNpQtbs+aLYAVwiIhdhi+gvA3eN96Aicgtwy/Lly8d7KEWZcCppG/MGBg6eGmHjm31FjSNonqy0Ha7S5y8lVqUHoCiKMh6CJmQlNyKyEdgKrBCRfhH5HWNMDPg94GfALuBHxpju8Z7LGPO8Mebe5ubm8R5KmcJ09A7w8Mt76OgdmNDzOtHhkFAR29iqpS08cP1yblvZWvQ4gubJSr+vSp+/lGhkWlGUmsbvj25prOfhl/eovSMHxpg7Mzz/E+AnEzwcRclKoZaAUnqBq8U2Np5xBOWRFHu8Ul3barmupUDFtKIoNY13Qm5prOehF7onhQdPUZQxCrEElMOLWy22sWLHkUm4Fnq8Ul/barmu40VtHoqi1DzOMujAcEQtH1WIiNwiIo8ODg5WeihKjVKIJWAyW7/GY3Vx5snxiNfJfG3Hg0amFUWZNJS6JF6ly0ZNFowxzwPPr169+p5Kj0WpTQqxBEzG0pgdvQNs7uznqZ37iSXMuKLCQVU98p3nJuO1LQUqphVFmTSU0oM3mco2KcpkIF9LQC16cYMErfNcS2M9Dz5v29ccItHiql/457X169oKssb5bXVOZLoWrnE5UTGtKMqkolQevMlUtklRphq15MUNunEHuPOxbURjCUQg4esdmgBaGuvd/fO9cfDPa1u6DhU8zzmva7BhDBXTiqIoAehypqIo5cQRwQdOjaQJ2oPJ5wCMSd/XEhgYjmRdQQsS2f557eb2hezYd7LgeU6DDamomFYUpSxkW7bMtJQ5MByZkGXZfCM5t61sRZL/T+U/FONFm7YoSipeERwOWYQtIZ4wrqDd1NmfcV9LoD65XSZRm62Zld8Cs2JBU8GWmJTOjCGLA6dG6OgdmLLzpIppRVFKTqZly0zPjUYTGMb+SJRzyTAfL7R/m9tWtpZlLFMFTUBUlFS8IjgeT/Abl81nJBrn5vaF7nz05Jt9xJNRaQGuuWQOs2fU89b+U9zUtoBVS1vYfXgISwQwKZHlTZ397rzqjxx7LTDFJlmvWtrC+nVtPLmjj+6Dg/zwzT42d/ZPWbtHTYppjXIoSnWTqXxSpuecVcyJWDLMZ3lSlzAVRSkXHb0DHDw14kajQyGLV3YfJZYw7Nh3khULmli1tIU///wVrH+2y97GEmbPqOeZtw4C8N3XeujsG+Ct/aeIJw3VH72g2T3+0x397rwqlgRGjseTZN3RO8BDL3S7gh2KT4qcDNSkmNYoh6JUN5n8xpmei0QTJLAj0+X2J+fjhVa/tKIo5cARsKPRBJYl/Ppl8wF46b0jGGxB+u2X3ufrN1zKXWuWALiC+tmkkHZ4c99A2uMvP7qVyxfOJBa3/dYCmIQJjBxnCnrkE6l29vXaub1Jkflch0pUWynXeWtSTCuKUhnynYgylabK9tzQSJTuQ6e5uX0hQFEtwfMZXz5ls/LZRmtQK4pSKNt6TrjR3HjC8M+/OooIY6tzwC/3HGfHvpP84O61DAxHSBhDQA5iING44e1+uzmSJWCJHf0Osnv4gwYtjfV5R6qdfb2RaScpMheVKjtazvOqmFYUJS8KnYiCSlNleg7G/NTbe06ACLF4YRNeIePLp2xWtm20BnVhqDVPmSrkusleu2w2IUuIJa0ZCV/NO8G2uzkR6pvbFyIiKSU9zmsIcWY0nnMsn1o+h5vbF/LQC912oqAlHPTYPRzf85auQ9zcvjCwg2xQPonz/n5w91oeefVDfrHrCMaMJUXmolI2unKeV8W0oih5Uc6JKOXYcQMER1IqNb5KnmsyoNY8ZSqQz032qqUtPHRrO+uf7SJhbC90Ihk5DocsMIZY3LgR6u09J8ATl64PCf/3mqU89sZe4slOiB9rbWaHz/IBcHP7Qu5as4QVC5rY1NnP0x39bHyzj02d/axf10b3wUG3o+KOfSdZv67Ntt3FEogILY31KeIZSGv48toHx+zkcUtYv64tr3mwUja6cp5XxbSiKHlRzokopcySJSBCPF7YeSZyglZPtaIofvK9yXYErtMePGFsi8R1l87luhXz2NJ1iDc+OG5HqOMG8ez78cWzeGLrPowxhC3ha5+8kO/9y77A8XQfHHTtchfMmk4sbo8tEku4PmxHpkdjCQaGI6xf1+a+9uBzXSmrhL92ydyUCiHehi+CycviAZXrUFnO86qYVhQlL3JNRLmWN3O9fvvKVo4OjTKvqYG2Rc0F15wuxUQ5Xk+4oihTl3xusr1zzKJZ04klBW3cwM/fO8JrHxzjprYFKR5py4JkPiEdvQMYcAVs96HTRD1txr1s3N6HARrqLDfqHE1GnWMee4kwlvi9reeE69H2rhJGYgn++VdH3XGFLAls+FLIHFpI5ZB859pc25arM6aKaUVR8ibTRJRreTNXly7nNfsPhD35F+NDHs9EWQpPuKIo1U05E4f9N9mQmkjd0TvAnY9uJRo31IWEz12xMGV/R7Q+9/ZY1Q4B2hc1807/IAbbOm1ZgiTrSrctnMnrHxwPHI8jsc9FE3zvjR5+7ZK5zGtqoKkhzHdf63G3u+Hy+dx/7cXu9QhaJZRkIqMzputWzHMj2U7gA8bfYtz/+RQyL1cyl0XFtKIo4ybX8ma2172vAQV7pSfqPShKLaBVZjIzEWLLuckOOtemzn4iyS4skbhxa0aDHenFmLSoMQJXL5vN7iNDbgTYK2C39ZzAEvDlMaax59hZ9hw7S9iCO65ckvLa3KYGtyxe0A2B06HWTWRM1sV+adeRlAZc337p/XHNoUHXrJB5eXOWRjXlRsW0oijjJtfyZrbXndecCdOi/LWmi3kPilLtaJWZ7FQqSdmpzDEazVyBo33RTNovaObY0Cj//KsjOM4NY+B7v9zLg7/ZzsBwhKGRKN97oweSCYL+fJOPL57FwVMj9J86F3ieWALe8EWyf/hmH8bY8+7Ge9amrbo5Pzttxw+cGuGHb/a513FzZ39Kx8Vi+wUEfT75zssdvQM8tXP/mA0lNLFzuIppRZmijDeC5d//B3ev5buvfsje42f51pZdXDq/ibZFzXQftJcnv3r1hXQfOk3bwpkpURBn382d/XT2DnBk6BzL557H7sNDeY2vVJG4Qn3QGgHMHy2NNzFMhFis5d/7ct4w+6teOB0Oncocb3xwPGut6Gg84VbW8BOJG7Z0HaJt4cwUe8Y3f/wuf/WFK1Jq9T/+xt7AY3jpPTmc8tjZPJIUxplajXuj7ps7+93r6NhTDHYw5FPL5/D1Gy4t+Pcj6PPJd17e1nPCfd8CfHFV64T+fqqYVpQpyHgjWEH77z48xM/fO+JuE1SqSYDXPzge6It+cud+Yskl0DfPDvDmvoGc/ulSR+Ly9UFrBLAwtDTexFDu1ZVa/70vV+Lwhu19bqm7cNJnHIsnCIcsrmidybsHBgNtGF57xnuHhrKe440PjqdFlAG2dB3irjVL2H14iL95cTc+hwghCxbMnJYxUu3H2b2jd4A7H9vm/i45EWsItoJ4xbUjpAu98cr0+eSq+e/YULy/+7evbM3r/ZYKFdOKMgUZbwQraH8n2pwN4/nfe95tPSdcIe3fPtv4JmPxf0UplnJXmank730pV6BKudLV0TvA+me73Kiov07+2UiccMhyy9J5yRZADlmQSKTOmUFMqwt5xLx3f+HXPzKPV98/xsHBVCFdH7b42ifHVgq/98u9blLk7Stb6egd4KHnu4kkvSb+iDWkX0f/712xN16FVvnw170utApUqVAxrShTkPFGsIL2b2msz5hV7iDgLgV6z7t22WzCIUkT1Ln805Ox+L+ijIdyVpmp1O/9REXEC60c4fiH4x4VK2IL2WjcFtR7jp4hbMENl83n5d1Hk2I7O5bAb3xkPkdOn+P4mVEOBESV5zXVc/JshF/sOsLLvzqaNoaVS2Zx9PQ5orFEmhC/7tK5fONzl7mPb2xb4Arh3YeHUm4OHLoODNLRa682Bt1seH/vOnoHkh7xzMmApbg58t/cDQxHeOD6yljJVEwryhRk1dLUNrKQWsIpGx29A2zq7OejFzQzGktw9bLZbO7sxwD3f3oZW3tOUB+2UjzTR4dGEeyscaeGdEtjfUo0+7dWL2bPkSFODkdZNmeGW3rJu51/6RDgtpWtSPL/oNfLEaXTOtPKVKRSv/cTFRHP9zxe0R0OWYQs3IRBEVh6fiN7jp11t48nYCQaTxG8Dk5DFucVS+xOiP+8+2jgap2zz8Lm6Rw/E7Gj0U4nxWQ1EIwJtNk5+I/q9UIHCWmAt/sH+dJ3/8W1poQt4UurF7vzbtC1CQqc+LcZz81RNQU1VEwryhSko3eAh16wl/G295xI6XKVKxpz56Nb3fJOYE+yDvUhYeO9V2etMX1b0svm/WOEMcSSrXEz1aB2lvGccfv3uy25POke1+NdLEc0S+tMK1ORSvzeT5Ro8p+npbE+MMjgFd3xeIL2C8bqQMcTpAhpgLqQ3eBk64d2QxQHJyfEsSe0NNYzMBzhwKkRNmzvyzhOA7x36DTJanqEQ+JW+8i1L8C8pobAyLDTsMWLs5oItoh2kxXjhg3b7dbk3rnVe20sCU5G9N+0bO7sL+oGrZqCGiqmFWUKkjKZ+Tx+2aI+23pOZF2mjMZNXjWmgZTnINgf7d/X2742aL+U4xbwvhRFqV4mSjR5z+PUVQ6KnrY01mMlI8AhS5g/cxp1odOutcOLCHztUxcxMBzh7msu4vE39pJIGMKh4Mgu2EEEp/RcJuJxg1hJqSvCigVNrFraklNIC9DUEA6MDDs3E449AzJ7tZ3X/HOr/4YkqKpHSjm/kOVWMSkm6FEtQQ0V04oyBfHXJnW6XOWK+qxdNpu6kKREpr3UhSTvGtPeyRRjiCdMxhrUzr7e9rWZ9ivmfSmKUt2UQzQFRWed8zz88p7AIMCmzn6e7uhPabn98/eOUBe2uOHyefyzz79sDDz2xl6MscXiQ7e2p0Shdx8ecm1y7R4LXFYVCyC45/EmCA4MR1KiyX4M8OhrPXY3RVLrRB8fGuXXLpnL4HCENzPYROpCwnUr7MTGoLk1nxsf7zb+mtW1GvRQMa0oU5Cg0kb5RH1WLW1h471XuxPvnKYG2j21pG8PiLJkmlzzOX/Qvk7jgEz7FfO+lPKidaaVaiOXb9fbTEpEGBqJ8pXHt6VEbb1EYgk+vngW16+Yxx/9+N2UbRzRey6aoPvgILetbOWOR7cGeqKtpIk6kfZKKv6o9cbtfTQ1hDk9GqMubBGLJUCCK4YkgFDyPKGQxZM7+lzPN57XHAT4aGsz7Rc0B+am+OdWp0dAS2N9xm0z1ayu1aCHimlFqQGKKdcU1A626+Cgm6wHcODUCJs7+2lb1Jy279BIlK09J5g/c5qbDOhke7/Zc4KRWII2ZrJiQRN3rVni7rf78FBK5KWlsd4V216cCXdoJErT9Do30fDn3YfpPnSam9sXsmJBkxu1yXQdgsS7X5CP93oq40PrTCvVRib7mTNXDgxHuKltAc+9fZBYwtj2DJNu4/Dyyu6jfOETrdxw+Xx+sesIxthC1CuMf7ijjw+ODGVMLszVFjwTCeC7r/Ug2NHjO9cswWCL7KBDiiX81urFkNzGP4aQgDPEurDF+lvaspbGc9iwvY9v/vhdwO4p0HfiLE9s3ZfxpqWafM/jQcW0olQ5hWY++zPNnSQ97yT95M79ACkTumBPmhjj8/4N8uJ7R9wGAN4IxoGBEV7efZQ/+812Hnqh243aOMuM/uXGp3fuZ+O9V7P78FDKhBvE6x8cJ2TZCT0AP9q5HwuK9tYFXZ9abDyhKOOl1m4m8xlvoe/JbyEbGolyxyNbiSeCBXM8YfujBeO27fZbIXbsG2BHstlUXdITvX3vSfYcPeM5Duw5doZMBFk0mqeHOT0Sy+n8ILlvPGFYNGs6a5OVlqKxBCLQWB/m9LkYYM/9/7LnODe1LUiz7tUlExq9wZd8f0+2dB1KefzT7sM5K6RUi+95PKiYVpQqp9CyUP7tIX1yztYgJWh757lYwNpjNNnq1imF5N3ffxwnQTGfBi8wJqSdMTt/aMbjrdOGK8pUptZuJvMZbzHvyZ9smKkknEPIEtfv7Kz4/dZ3/4WgALPjpT46NMqHR9OF88DZaOA5Pv/xRew9fjalQhLA4Egs63vxE9SKu6Wxnj959t2U7fadGOa7r/Xw+Y8v4vm3DxJPRqQf/M127lqzxN2uo3eAh1/e40bss92w3Ny+MCVAclPbAp7Yuq/mbRy5UDGtKFVOoWWh/JnSQZHpcNIU5xXVFhAOjEyPvW5Z6YLaKfu0Y99JItEECTJHpp0ExXwavAApkelwSLAgMFGxEKqpNqmiTDS1djOZz3j922zKs9SaN9kwqAY0OC25hbuvuShFSD788p6slgwDvLTrSMbAhJcLZzdyU9sCOvoGeMcnpAslZAnr141ZMpz3+Ec/fjclOOHlrf2nUsY0MBxxf/beqCTMWDm/TDcsjgh3ehjctWZJSlOYav5dGw8qphWlyinUU5YpuTDIM72psx8Bt5GKd/tsnunvvdFje6YXzuS+ay9OSQz0eqX9nmknQdF5D1u6DtG2cKbrmR4YjjA0Eg30TN+eHPN4J+XJ4tFTlGKoxpvJbBYNf3DgwKkROnoHApMFnSo+T3f0F1Rffu2y2TTUpZaECycFdNP0OoZGojz+xl7iCeMKybXLZmNZkibCnaYmYFfyyEU4JMxtauCRZIUNL3PPq+fYmUjgfplIJAzdB9MFebahONFjJ9mypbHefc17o+IcJ9dN2F1rlqREtieDjSMXYvL5tKuU1atXm507d1Z6GIoyoeTyBjrZ0U6ppa6Dg+w5MsS+E2cZicSZfV4DYUtomVHPmXMxeo6dARHWXHQ+a5JR41d2H6X74CBnIjFCYvHpS+Zwyfwm95zf+skunnnrANPqQpwZjRGJJVixoIkvfKI1RThDakKPI5TbFs5kaDSWsQJItvfpPJ/PkmM5r/N4EZEOY8zqkh+4itE5uzqoJs90vjaOzZ39WesRO+/p4KkRNiZLrYUEfv8zK3jg+uV5zZtB80pH7wB3PLLVtYAI8J8+ax/znu/v5OfvHXGP8bHWZu64cgkPPteVsXxooWQrc5eJsAVP3vdJ931u2N7Hkzv66DowSDwZXf5YazOnRqLc1LaAb3zuMjZs72P9s10pNwzO+7/zsW1uW3ILqE++DlOvWlKmeVsj04pSQ+T6w+NMfJEgc3OSodFh+4eULl2G1z44zmsZrBfPvHUQgGl1Fje1LXAfe3GSbxy8CYP+5VCvxcNJSvS/j6D36TzvRJAsoSy+z1rzlSpKIVRTpDAfG8eqpS1s6znhziVB23lLrW3ylVrLZ97MJAqd8zoYcCO3F8+Zwc892169bDYDwxGuWzGPn78XbPEolCC7XC5iCdy6097qGjAWOX+r316lfGLrPm5sW0DXwUE3+dJb3WRzZz+JhP33JGTZAZo7rrSjzo7IrgtbbLyn+ufIct5EqphWlBoi1x+ebT0n3CTCchCNJXjl/WN5betNGMx6zDy7Jjp/UL2JjuXyfdaar1RRapV8bSf5bhdk43r45T3uDXgkmvp9DhLaMBZxHRpJTxbsPjhIR+8Aj72xN+X5R1/vwRg7N6QuWaO6FHy0daxdeRAiyRJ8ng2e2rmftkXN/O0v3k/Z1ruNAUajCbcRjfOSCG51E++NRDwB7/QPsvtIN5++ZK77/rxNY6qVcgdIVEwrSg2R6w/K2mWzSzqJ+6kLW1x36dzAyLQfJ2EwKDKdcswCuia6jRSSiY6WUBbfZzX6ShVlMpJvDkMhuQ7+yHtLY/3YDTikeYK9QvuRVz90uxg21Fm0tjSmHf/JHX0cGxpN80s7D6Nxww2Xz7MTEEsQnr7jyiVcvews332tx31u+dwZfHjsrB25NnDD5fP5ued80bjhT5K2DS9eTzfYgvqnyWpM3vfx2Os9mSuVxBIcOX0u7flqptwBEhXTilJD5PqDsmppCxvvWVt2z/SCmdPK6pnO9D79pZ7K5ZnWJMXSoh0QlWzkazsp1p7iTcizJLVahV9ov7TriCs2I9FEYBZhLAGdfQNpzzsYoP/kcMH2jJAFiURqoxdnvN/43GWAXbf5prYFLJk9w7VvuDLYdzK/kP7M5fNZNmdGWrLjSV+pPmNSG82ELGHVkll09A7YkfewxdXLZtN1YND2plv2mP2JodVEuQMkKqYVZZzk68MqlV8rW+epb7+0m5NnI0wLh1jQPI32Rc3cvrKV/7plF+eiCRrqQpyLxhkYjnJ48BzTGkLMbWpg0azpLD6/kaGRKD/+1wOcGolwbjRONGFYMLOeg6dG+OWe43z3lT1ctnAmK5e0MH/mNLfSxyu7j3Lk9Dn6Tpx1PX5eVixoAuzqIUvOb+TGtgUAbsdEp6qItzmA87+zjbcSyQPXl16U+T+favKV1jraAVGpFB29AzyVbFIFEA6NCamO3gG2dB1KKeXp1Z+WJbRf0MyelPwSm+M5qmzsOjyU1pY7F07pOsuCOhFicUM4ZDeUufXv3uC9Q6eJJwxPbN3H7StbU8YNqVraL+JDAsvmzOCJrfsy20WwLR5us6+4wUpWNXH2syzhq1dfmPIYgY1v9rGps79q80vKHSDRah6KMg7y9WGV26/lTzLxUkw2eCkIhwRLhFjc7sSYSCTcGtXe17x/vOo9iSz++qZB25SKSiQcajUPRSk/D7+8h795cbdbI/nONUv4qy9c4VavyNaoZcHMBg6fHh3X+a+6sIVFs6bnZY3z4ghkyyKtPnRI4Dcum8+Lnkoin7l8ftakR6detpNkaAHL5s5IuVG4/9PLaJpel1Iide2y2WzrOeFew5DAJ5fP4Zd7jrvXFOy/Md7qKdmopmoyhZJp3rYqMRhFmSwE+bDGs12x+Fu4eqnU7XIsboh63nMsEfyaF++18dc3DdqmVJT781EUZXw4Xfg6ejPbK4JwlvdDYudnHB8a5d7v7+RPnnk3q5AGxi2kAd7cN8C2DwufTwxOa/D01+rCFnOaGlJWAE8NR7CyRMINkDB2K/SQ2OXtvnbNMm68fD4fa23mr75wBd/43GWueAbcn1sa68euYdji5vaFKY/rQuL+nMs+4QQu/ubF3Xzl8W0Ff57Vito8FGUclDoTvVj8LVy9VDoyHY/bzRbyiUwHJhvGMm9TKjThUFEKZ6IijIWUtgPS7Fo/uHstmzr7+dHO/SnR3Ini8ND4RbnD8nnn8bVPXcSKBU083dHvJg6+uS+7KHXKiK5f1+Y203rwuS6icUPIsn3lG7b38dAL3URiCcKWQHKO9u7n/aydLodOw658fg82d/a7CZ+TqVKSimlFGQflyEQvBqfblN8z/bVrlrFiQRP/dcsufnV4iPqwRdgSBoaj1FnCtIYQ00IWi2ZN55L5TTQ1hHnpV0d9nulpzJ/ZwN7jZzkXjbueaW93RMczffWy2ZwejaV0WfT+kfN6o53X/J0ZMyUbBm1TKjThUFEKYyKtUZlWjpy5wRWAjtc3oLHL/pPDxErUSKWS7Dl6hj955l3+/PNXcO2lc1OaxmSiLiR8afXilGTvb/74XbexTCwBP9jeR9gSEiZZyztux8Yd0TswHHHtGx29A+4137HvJD+4e21eeSyOf935FEKhyRO4UDGtKOOk3Jno+eJv4erlR/d/Mu/jOFnjhZ47E/7GCpley7TvRAlbTThUlPyZyFrs/pWjlsZ6V8hbIinNRmCsfvIjr37InKYGt734ZCFu4I9+/C5XXpjf9U4kDBfMmu7momzrOcHxgGh5LGEIW4JgEEswBowxaat1xX723gY4AnxxVekDI5VCxbSiUPhyZbbtN2zvc5e/HJFZyPH923b0DvDIqx/Sc+wM58+o55L5TW5k95FXP6T74CDReIKZ0+pov6CZvcfPUh+2uHR+E22Lmuk+OEhn7wD9p0YwCUMCaKwPEbaEk2cjNE+vY9b0OnpPDnP+jHo+2jqL/SeHOXBqhKZpYS6eex5dBwYJWcLHl7Rw/7UXs/vwEE/u6HMj095yeE678e9v6yWWMHyufQHf/vInAt+nE6luW9ScUjrPuXbZlm/H8/kpijI+JtIa5V858oq5hKeIgpNY5/iN/ZaOXJY3J0GvUtSFhN/51EU8+npP1tr8YL+Pjr5ThEOSM+IuIrQ01qd0kE0W4Ui5HpbAQ7e2031wkKd27ieasD3W69e1pcyr2T77bHOxfz+nfOpkQKt5KFOeQpcrs23vr6rxV1+4ghULmvI+vv/Y69e18adJX5uXupC9HFeJYItFag1SL/Uh4XNXLEzLXP/8xxelCOqO3gHufHSru8wYxP2fXsYTW/cF+ve817BWW39rNQ+l1qnUTWxH7wB3PratoOZUAjTUWXz6krkZfdOXLWhiz7EzafPtRHHVhS0sn9/EzIZwXoLawq5O0ndymDc+OJ71RmFancVtK1vZuL1vrNMhqWL6/k8v4xufuyylAopTocO5ifEGefyffT5zca0HPjLN2xqZVqY8hS5ZZdveX1VjS9chBoYjeR/ff+wtXYcCJ/ZKTfaQWUiDPa6gduP+57b1nMj5Hn7afXjsWvj8e95rqK2/FaUyVNQalSMQ6AhFCzvh+UurF9O2qJmXdx/NuM+uw0NpNfInkjf3DfDmvgHqQ8JHL2jmrf7BrNuHQ+KuUu7Yd5JIMrEv6MpEogm3PJ5rtRC48bL5jETjKSup/giy01o8YVK96P7PPp+5eLLa6VRMK1OeQpcrs23vr6rhZDrne3z/sW9uXxgoPKs1Ml0XksB249ddOjfl8dpls6kLSdbI9E1tC3hi6z6isQShZGQ6Hk+/hlqJQ1GmFl7vbSauuWQON7cvdCtQADlXw6C4ykdzz6vnWI4mLoUQiZucQhqw1TC2QF2/ro0tXYdoWzgzsBV4Ajg6NMrd11zE42/sdYXxfddenBJZdqLG3uRvbz3uSJaAxVSei1VMK1OeQis5ZNveubP3e6bzPX7QsVcsaKo5z/SCmdOyeqZXLW1h471X5/RM39i2IKdnWitxKMr4Kcfye6ZjjvdcLY31WCJgDOGQ8PHFs1JKw4UtO5DhzEvOfJVLSBfLaAF2k1ISjyfY1NnP5s5+ntq5n1jCsH3vSVYtbWHHvoG0G4OX3jvC63UWD93anlbmLsii8cD1y3n45T1pPvKWxvqUx0EifKrNxeqZVhRFqQDqmVaqhXLkHWQ6pvd5S4SHbm3PWg3Ie7xtPScYGony+Bt7iSeT4x66tZ2ug4OuF1iAKy9soaPvVMWSCa2kx6ScEtsS7FJ2UFDJv0xdCoN80g9cvzwladG5vg11wZ9nLeWsFIt6phVFURRFSaMceQeZjumvxPEnz7zLigVNeSV9O4LOIZYwvLz7KK++f8xTu1jo6B1IszlMJFdc0Mz8mdNK2iDm/Bl1fPqSuVwyv4mWxnoGhiO8vf9UznNYYo9n16HTxBPpZe6cmxSny6HfouGs/H37pffdFuKZPs+pnLOiYlqZsuSz1FjqpU/v8XYfHnI9bkOjMQzQvqiZroOD7DkyxMmzEc6fUc/QuRhHhs5Rb1lEEgaMYfBcFIAZ9WHOReOERDACdZbwlTVL+cbnLuPzf/cG7xwYJGwJIUuIxBI0T68jYWBoNEo4ZPGxC5oZOBthz/GzWAKzptcxHIkzr2kaKxY0YYD+k8MMDEf4/Mcv4Ma2BWzu7HctHc57mD2jnq4Dg5w+F2XmtDq+ds2ylGiTvwzey7uPcvT0Oe64ckla9yzv5O5filQUpfSUw+ua6Zhrl81GkhYNsGsmb+rszyvpO0gf/2LXmJgUoG3hTN7Jx29cRt7pHyQUOl3Uvp5Lk8LJs1F+8u4hHrxotjsvHjw1kvN4lkjgPAupqwdhS7huxTzmNDWkNHcBW1B//YZL2b73pJ3DEkr9PMOWEI3btakPnBqho3dgys3ZKqaVKUm+JXxKuXyVsrxpjdUGzdQGHIBjZ7Me8/S5WPIn+1jngO++1sOmzn43ISYSNzhhmpPDUXffeCKR4jOMGzhx1n699+QwvSeHU8713dd6Uso1PflmX2D05+hQxC0P6NSKzpT483b/u4RDQiLZsWz9uja3s1bCpC8pKrWJiNwC3LJ8ee4uacrEU468g0zHXLW0hd/4yLyUiGpQBQ1v4GHtstmEQ1ZgKTxnnnAqVVy9bDa7jwwRidrbTq8PcTYSH/f7KQRDYdaLlH2z7BaJG/74mXcxxn6v6z66MOV1f6k7wY7eP/hcFxvvvTrN2uGNKkfihp+/d4SGuiz1n53B+QcpgsEQixs2bu9jc2f/lJuzrUoPQFEqQab2tIVuU+w5y93WtpSZ5V68FsRcb8EpE5irDF4sblJKATrXCEgphafULsaY540x9zY3N1d6KEoGVi1t4YHrl5dUAGU65n3XXkx92EKA+rDlJlQ7OIGHv3lxN195fBu7Dw9lVZlOObh4wvDE1n189eoLuaK1GbFkwoV0oQhJj3WeJExSrCcMz72dWjXJErtW9cdam7nywhZXWEfihk2d/WnHclYPnNNnm2+dCirOdfa2dPd2l3S6TwadbzKjYlqZkjiTSEjIuKyZzzbFnjMcKm8107nn1efeqAi8k36ut3Bzux01ccrgZSIcEvca39y+kPqw5Z7HojTXXlGU0tHRO8DDL++ho3cg98YBrFrawsZ71vKfPruCjfekRjA7egf49kvvp9Xbd0qzWcDHWpvtcpk+DHbptsff2Ms7/YNFJSAKuee2UiHY5UQ/sqCpqP2NSZ2TjYFrV8zj2d+7hkvnpx4z01u6fWUrN1w+3553GeuW6Mf/97ClsZ6HX97D0EjUtu14xwU83dFf9O9HLaI2D2VKks+yZqmXPv3Hmyqe6aAyeNk8085j9UwrSvVRKvubv3lHR++AW+ItGrcjoJbnJnvHvpOu/3r9LW1s6uxnw/a+tOMKduTUL6Oz1cf3Ysi96lYqPtrazK7DQ+w6NJRxm0wt0B0L3FevvtCuG50w1NeNBR5uW9nKUx397jXLFP13PsevffJCt/70Qy90pyWF+mtZe+14QWONx8eSEUuRe1TtnRNVTCtTlnw6MZW6W5P3eKuWtuRVEqpYnvm9a8pyXP8Em8978F9H/z7+Y1bjZKkoSukrf3T0DvDIqx/yi11HUkSsBXxq+Ry+fsOlgH3z7q1lD/DDN/vSWm77hadIUuRVWRXg+pDQfkEz7x4YTGnvbUmqmDfY/uiE7wbhglnT+HfXX8Jda5awZPYMt+6/gxP9zyRAN3f2u9VRorEE3YdOkzC25W40mmCzLym0o3fAFdBbPzzhbusnbAnGjFUNKcXNVy2U36saMS0iy4A/ApqNMV+s9HgURVEURUmllJU/OnoHuPOxbWmJhQLU11mukPYKKSc5btXSFu79tWV897WelH3TxLUprqthuTHAB0fsiLQAliVcNLuRwZFoWs5L87QwiF3Rw6H/1DkefK4LgAef60omeA/yyvvHXOuMIzgdf7MTJd7c2c+TO/o85QTt6P/2vSfdqilP7dzPbZ4bF+9NFMZgJYtpe693XdjiwVvaUlYUH355j7tfkEjPh1oov1dWMS0i3wPWAUeNMe2e528CvgOEgMeNMd8yxvQAvyMiT5dzTErtUa7OXI7t4DZfGaBSHv/40CinhiOMxhJcNGcGJ87aXf72nRzmoxc0s2bZbLfrn/N/ImGYluxQOBKJE0sY6kMWjcmsdGNMSmUMC1g0axqxhCESS3BqJIoBzqsPEY0bRmMJd7m0PmRxwazpNE0L807/IOdiCabXWVxzyVwunjOD5985yEg0wZKW6fQNDBOJ2n/APn3pXBobwhwfGsUA85oa3GVDx5LRdXAQAZoawildDMd7Hf2f/YbtfWkdJr3kel1RlOIppf1tW88Joj4hHbKEO65c7Eags4mxb3zuMnqOnx1XPeeQFGbrCFuSs5V5EII9Bzs3DtG4Sa2mlDDsyVC9yVuFyUs0btjSdSglwdubQOjtjOitluSt1y3AF1e1smJBE5ctaOKd/sGUJEPnWvtvotavs0Wzd+4P+lvqrcQSJNLzoRbalJc7Mv0E8HfA950nRCQEPAzcCPQDO0TkOWPMe2Uei1KDlKszl7dU21Md/WlJMKU8vsPbvtqnr31wnNcylMU7O5qagX4uluBchpa1CewohZ8hzzHiBuLRBOeiCU4fTvXnjUQT/Py9I/zc89zJs57ISCTOM2+lZo0D/Gjnfrf0UtDfFqfkX7GCNuiz3314yC27F3T8Ddv7sr6uKMr4GY8VK73knbhiMCTw576OiH4x9sM3bZ+0I8juu/ZiXnn/WGDZvHyIGzsJMFvFIS/FCGkYS44cD37/tCUwGo2n1KZ2kgP9TW681ZK8QrqhzqJ9UXPK9k7wxStai72JWrW0hS+uanU7VPpFer7HqPY25WWt5mGMeQ046Xv6KmCPMabHGBMBfgjcmu8xReReEdkpIjuPHTtWwtEq1Uipy9M5x8x0J18KcpWCmyxE44ZoPFhIOzjl8Yoh6LP3H6/Qx4qilJ58q3sElbxza0QL/PnnrwjMp7j20rnu47iBH2zv487HtnHP93fyX7fsIjZOkVor87V/lHEDb+4bIJGs6vGZy+ez8Z61DAxH0kRzKGQxrS5EOGRX5KgPW9y5Zgk/uDt1e8erHhS4KrZ84u0rW2mos88bsoSDycYuhVCO0o2lpBKe6QuA/Z7H/cAaEZkN/CXwCRH5Q2PMXwftbIx5FHgUYPXq1bXxDVCKplyduepC4kaOS71s5D/+ZKUuJFkj0zBWHq8Ygj77lsb6lCY3/uPf3L4w6+uKopSWQlYP/TfITsk7Z/oYGE71CjtR7AMDw2nHisTsFbVqI2RBfBzavnXWNC5fZNdj//l7R/L2exsDH1s8y732ztwZCllcd+lc/vlXR3jpvSOELPjyVUvSrBbeufbrN1yas717UJQ40/NOZHlTZz9Pd/Sz8c0+Nk2yxi5Vk4BojDkB3F/pcSjVRbk6c3lLtZXaM+09vnqmi7dYBH32zueUyRPtPFbPtKJMDIUkh/lvkP0l77xBDa9Ir7ZKHNkY71jXfXQR3/jcZTz88p6CvODe6+efOzd19uME72MJO8IdJHadsqfZyHTzFPQ8kDJ/Ow1e/L8r1V72Lh8qIaYPAIs9j1uTzylKIOUolVbu8mu1Wt7tG5+7rOB9Jvo63rVmSVaRnOt1RVFKRyGrh95axc7NrreuvLfqhFekl6KHilN2zrFEXDq/iV2HM9d3LpYiLdUuj7+xlxvbFriVPjKxfO4MvnbNsrTkP68wddqHb/Z1Izw+NBp4zE2d/URiiaztwDPdPPmf39TZz+bk8RxxHfS7Ugtl7/KhEmJ6B3CJiFyELaK/DNxVgXEoiqIoilIg/khivquH3lrFO/adTGkM4hdUjvCKxBJYInzy4tkZE7bz4coLW2hurOfo6XNcNGcGzwYkVTuEkqK7LiQsbJ5O78l0m0mxOII+E4mEYXNnf1qrcAcnafC/fvFjaRaLb/74XZ7u6CcWTxWmt61s5UfJZjgAr+w+SkfvQMr++a4wZLp58j8vkHa8B65fnva74q3Wku281R69LndpvI3AdcAcEekH/tQY8w8i8nvAz7BL433PGNNdznEoShC5fF+OdWHPkSFGYwnuuNKOdj65o4/BkSgnz0awBGZMq6Nt4UyuWzGProODvPDWAU4nK2nUhwQDxOLpHbkgvUh/UNH+QnAiOJbYE+6Fs2cwoyFM74mzjETinD+jgZgxRKJxIokE0ZhhRn2IC+fMQLCreNSFLKIJw7I5M7huxTxe2X2UnmNnOH9GvZuRfvWy2QyNxujsHeDI6XPMnzmNTyxtcctZ+a9trsdBn0e2ybPaJ1ZFqXWyzY+O8A2HLL64qpXbV7a6UdBsZBJsmzwNRJzyd22LmmltaeTDo2eIGcO2vSf59CVzUgR1LmHqZWfvgLutv7KSl09fModffngCY+w5e/84hLQFfGRhk9vhsC5skUgk0sbc1GBb+DB2fW1D8PsSgRsum8/9114MwMMv73HFrL+CVCSaKkwvXzgzY9k7yH+FIdPNk/95sCPdzvGc9uPeiHm+562F6LWYWjIj+Vi9erXZuXNnpYeh1CC5fF/ekkJK/tSHhAd/s92NPnlrm2Z67HjrvJ9H0DZe0V3tE2s+iEiHMWZ1pccxkeicXRtk+449/PIe/ubF3a7YcyKl+XwPneN6axV3HRzkyR19KUl7mVp/f2XNEpoawjzz1gGWnN/IyiUtaU1bxsPyeeex9/hZ4kV4NVpnTePg4LlAERxKNmRBhA+Pnkn723LXmiXcvrLVFaLeEqBeJHmsu6+5iCe27nM/n1+7ZG5gMuZffeEKVixoSit7l2nezCfIUQjewFSm+Tyfc3h/50ICv/+ZFXndvJWDTPN21SQgFoKI3ALcsnx5ZS6mUvvk8n2pkC4Op4mAP2M/22PHJ5lrm6BOXNXaDUtRapls3zEnkuiIM6cddb7fQ6ctePuiZh56oZtz0XTZnKkYhgFubFvA6dEYAvQcD25yUgjOap4B9hw9E/h6rr8Hn7l8Pvdde3HGQIy/IYv3mCGxr4W/Y2HQeQ129aRHX7dvIBLGnjff7T+VNiZL7Ooo3r9p3hbtQZ+VP0dlvIEL53i5rBy5coy0aUuZMMY8Dzy/evXqeyo9FqU2yeX7ikQTGSd0JTN1IUnL0M/12Ln2+Wb518LEqii1TLbvmLfyw1M79xNPmLy+h15hZolw7COjBTcxGR6NBTbEGg+WJMV7hkNmsueFLMEk22ofOX2O3YeH+MHda/mDTe8EinIv11wyh7aFM3ns9R7iBv7kGTsK7SROr102m1CWTovG2Od32nkfPp2aUGhhz6dBc2uusndeShW4GO+cXQtNW9TmoUxZ1DOtnulKojYPpZrJ5ztWyPfQbw8JWUJI7LnRkdRJfZgxkJFPlNjhvPoQZyLx3BsWgWNne2X30ZTydfd/ehmPvt6T08f9V1+4gq6Dg2zY3uc+Zwk8df8n3eu4YXsf65/tChTU9SHhuhXz6Dl2xo14W8CnLpnDze0LGRiOlMSq4b8BesjXnbIQJsOcDZnnbRXTiqIoFUDFtDKZ8AYh/GLOef2OR7a64tAC7lyzBAM8tXM/sbgd5S3Gr+xQiNgezzluvHw+H1s8ixe7D6ckM144u5F9J1ITFj/W2sz8mdNc0W0B//GzKzh4aoQfeMS0s+36W9pSRLB3BSAUsrj20rm8+v4xoj47Yn3Y4sFb2gKv/XhwRH08YfL2xk9mJpVnWlEURVGUytPRO+B2tnMEnj/JzRHad19zEY+/sZdEwlBfZ3FbMukunuyCGCSkCxHIExEatCzhld1HeWnXETuS7uGmtgU89sbelPdx9bLZ3Ni2gNc+OJZic9gdUOP67f5BvvL4Nve6Of9uW9nqNlQRIBZP92Vfe+ncrEl+DoWsAILtu04kK5tojkpmVEwriqIoilIwmaofJcxYiTtIrdRz9zUXuR1SHVEWsoREBm9bJoEs2KXixtskpRBCAr/+kXn8YtcR+7zGbp4yoyHsWt8a6yyGRsfsJVt7TvCNz13m+syPDo261yXoRsEvWL3R6VjCELYEEUlrtXhgYNj1N0diCR56vpu2C5pd651zrHyrJjnbHzw1Qji5YqA5KplRMa0oiqIUhYhcBvwHYA7wC2PM/6zwkJRxUoi3NVv1I4OdX3J0aNSt2HEumnArUezYdxKAroODRVk7ls5u5OOLZ/FMluYrDo11FsMBVUMKQYDfuGw+c5oaCIcsYjE7Sb3n+FnClvDeodNuUxQvDWGLh1/eQ0tjPU/t3O8mT4YsXFuLyJhf3CtYg25WYnHDb1w+n5feO5Jy3XcdGqIubLntut/uH+Tt/kGe3rmfjfdeHdil8Mkdfe6xg0S8t574HVctThHmSioqppUph9/b19JY7ybZXTT3PK5PJt29d3CQc7GEm9RXXxdiUfM0BBiNJbhozgx27DvJqeEo0+tDRKJxN/HQj5WcLLMlr1tAOCRE4saOupA9ESdkgYgQTybwhMSenJ1oR2N9iEvnN9HSWM+p4QjvHTzNmUgcAc5rCFEXtmhqqGNWYx1XL5tNz/GzdPYNEIklWLGgiS98otW9Pt0HBzk6NMrgcMRNxnTaAHuXC53Iy7ymBtoWNdN90G4ScPvKVsAu4i+Mtb7N53NylkS9LYiV8SMi3wPWAUeNMe2e528CvoPdVOtxY8y3Mh3DGLMLuF9ELOD7gIrpGqbQUmjeKg0hS1gye0ZKJYtYAn6xK7X+saObR6MJ14tbTHC598Qwh0+f4/5PL+OftvdyJsPcC4xLSDtJ4aGQxSu7j7rR4WVzZ/DhsbN2JDhDVF2Azr4BdvYOYElqdY64p4SIMfbxnQY4/jKgKVH/5HFv/fiitBuJL65qZf/JYV73NLaJxscatKR8XiHLnZ/BPr836uwV3vF4ggtmTVchnQUV08qUwvvHIigYsufY2cDi9w4HBkbcn72JJ2dzZI0nTO7lyARjk7JTvzUTdr1RUraKG4h7JvXBkRg79g0E7js0GofROCfPRuk9md4RbMe+AXbsG8joV3y7/13qQnZUxVkufPD57oylrn60cz8Y495MPNXRz8Z7Mv+hTskit4RY8n05fyRUUJeEJ4C/wxbBAIhICHgYuBHoB3aIyHPYwvqvfft/zRhzVER+E/hd4B8nYtBK+Si0FJq3ZFlLYz0PPteVtk2mec+pmVwsTjS1aXod3/zc5YFNTnLh7aCYaa4Lh4QvrV7MsaFRNxocixv2nhjOeRMwNk9jl9Ejc4DEEaww1tnQX9Pb4cX3jlAftvj8xxfx3NsHMcau3uQELbbvPenOxXUhcUWy9/M6cGqEH77Z5773L65KDXAUU84uV4WsWq/kkY2aFNPatEUpFu8fCyU32S6Ts6TpNFmJZgm7x3yRm1x/qL2fk99LuaXrkIrpEmCMeU1ELvQ9fRWwxxjTAyAiPwRuNcb8NXYUO+g4zwHPicj/ATb4XxeRe4F7AZYs0c+tmilGQHkbcxQijvMpAyrA/JkNaXWUHSxLOHBqhLXLZvNXX7jCXb0C+KMfv5t1/nLK2zmrbgK8ufckp0aiKdslEvZK4avvH3OPJxKcLJkNk9xv+ZwZnD+jnrf6B11LhgVuy21/KTpvTe+op8RqJJZgRkOYp+7/ZJpQ3XjPWjdh0W/NcD4vZyXRWVUQbNGbqT14vt0tM3UVrvWOtbmoSTGtTVuUYnGbsiSF2kSUUqplsl2fupCQSCal3Ny+MCUa4icckpTIdK4/1N4/6uKJTAPuH0ulLFwA7Pc87gfWZNpYRK4DbgMagJ8EbWOMeRR4FOzSeCUapzIOMkUKswmoDdv7slqt/HNrNpymJyuXzOJNz+qZAL92yRze2HMck5yfMwlpsG/of/hmH5s7+1m/ro21y2azYkETkHtev27FPO5as4SO3gHufGxbxrlLRDg2NEos2e9csK/TmwGrfkHv05skmTD26ue0UyNuGbuhkaibkDkwHBkLIhjDHz/zLn/x+Sv4yy9cwW0rW3no+e6UVUSTHAvgdpL1VgHJhvNZO5VYNr7Zx6bO/hSxm89xHHJ1FZ7sHWtrUkwrSrH4lyXVM106z/SKBU0l80z7/6irZzo3Sd/yecaY0xN1TmPMK8ArE3U+pTAyNUfKFikMElAbtve5NopMVqtVS1tYv66NLV2HOBeNB1rMHJwyeJ19AylWC8uCbXtPuoUq8nE6O5VD1j/bRcLYtrOLZs8I3NZ7rlfeP+Zen2ydGGMJwyu7jxIOWcTjdsR+VmN9HiOzhfTqAOEdiSXcetDOZ7Fj30nWr2vDEiGRvAAJA+uf7WLFgiZWLW3hjiuX8Hb/mJ2lfVHzuCK/jth1IuSl7HLY0ljvJl5OhY61KqaVKUfQHwv/HwYVbPmR649wtu3zObY3QqKfSToisgG4H4gDO4CZIvIdY8x/K/KQB4DFnsetyeeUGiOTyAqKFAJZl/O3dB1Kefzkjr7ALntOmTXvTX0mvH5ih3gC4onCkwW9/utz0QS7Amo4h0NC66zpblOVeDzhvudcROKG5XMbWbNsNretbGVTsrSdHyfw4rzvhIGjQ+mR9YSBlsb6tM9iYDjCQ7e288fPvDsWzU6MJRB2HxyLSlti14Aeb+R3vK2+HfyBKm/JvfXrSt9MptpQMa0oilK7XG6MOS0iXwG2AN8AOoBixfQO4BIRuQhbRH8ZuGu8g9Q8l4knk8gKiiDmimze3L4wpUJE98FB3j0wSNiyk/Oc5iuZ8hyqgXjcpHQnNNiC9ufdh/Paf8+xs+w7Ybfubl/UTH1IiMYNlmUfzGA3qvnq1RemtBT3d0R0eHn3Ue6/9uI0Ietc+/XPdrnNbdYum01H7wBP7RxzYIU91TfGI4a9do/jnhrYxYher3/ef5PwwPWT+7uvYlpRFKV2qROROuDzwN8ZY6IikpeSEZGNwHXAHBHpB/7UGPMPIvJ7wM+wK3h8zxjTPd5Bap7LxJMp4ui3UOUT2XRWhbZ0HWJaXchtWhKJGzZst72269e1EbYkY5m4SuMfVcLAQy90M2t6Xd7HiCVsy0tDneUmLz61cz/RhCFkCevXtXHXmiVs7TmRViHJz9HT5zJ61O9ak26j8yZ4+qtv+I/htfdA9lUHh6c9NbBzVVvKRaHR7lx+/FpAxbSiKErt8giwD3gbeE1ElgJ5eaaNMXdmeP4nZEgmVGqHbMmEfktW2LKjrCFLMgqfu9YscRP2Xv/gmFuuzSlR131w0DYJ11BKdzSWYFpdqKB9nPc7MBxh0azpxJJ1so0xDAxH2LC9j7OjsbT9/Ffmjiuzi0b/Z+QXqE4ein9bf7MVO/HbZPVTb+s5kdJwZryJgoVUAsnHj58vlSzBp2JaURSlRjHG/C3wt56nekXk+kqNR6ku8q7G4IhgkZyb+qtAxON2A5CuA4NZy2NmoyEkzJxeZ9dUjiU4fiaSts3yuTM4F41z4NS5ksh1wa4qFLZyv2eAC1qmc2xo1E1CDLJYfHBkKKWRyvJ559G+aCYvvHOIeMIQtqBtUTN3XDl2Y5LLYuMViPkIVP9KA4zdAGQSyGuXzaYuNLaqUIhdJFtlmHx+9/x+/GJLn1a6BJ+KaaWm8H9xvV33BJjT1JBSV9O/3PXdVz/kvUOnGTwb4VwsznnT6rhk3nmcHY2x/+Qwo7GEvZRmxjLJQ5bTrcquuNHSWMdwNE4klshaIzXkq6HqlIMK6vhVl/TfOdvVhYS6kAVie/0M0Dw9zOwZDRwaPMdwJMZ5DfbXd+b0Os6OxhiN2UX/Vy5toakh7JZbcibtzZ39fHBkiJNnI5w/w85GP3k2QjRuGBqN0dQQdit7NE2vY+2y2fy8+zA/7T7MxxfP4pJkZRBvIom3m+TLu49y9PQ5Lpozg66Dp8EYvnbNMndinAxLedWGiPwH4H8BQ8DjwCewfdMvVnJcftQzXb041RwMY0l5fquAX5Q4Qun2la1uDeR3+geLFrmRuOH4mYhdizngdQH6BkaIBrQu9yf95YsIrF/Xxiu7j7Ln2Nmc2x87fY4Hf7Pdnf/Avnbr17W51Y6efTu1I+GM+hAnzkbcOT+RsOdrp3xfLouNt514yLLrTgd5j72flb/LIcYQT5YwzSSQVy1tYeO9VxfUodY7vvEIWL8fv9jSp5UuwadiWqkZ/F/cTF33nt65n433Xg0wttxlCXFjXFHscGo4mrWEE5CyTwI4MRzNuG3Kfr7ZPVvHL+8Sm8H+4xKJp5bZOzoU4ejQWMTmZHIcJz3jOX14KCWT/fUPjtN34izf+5d9qdcp4I/HybORlG6I3psBbxKNJbjX38nY9r4tr1fQ25WsVEt5SgpfM8Z8R0Q+C7QA/wa7E2FViWn1TFcvQf7WbA04vALbLa1WZEtwB5PhZy+O4M+2r59wSLBEiMcTIJLaaMXY1TDuu/ZiXkp6wLMRSxhXSDtR+Vh8zErhbaji0H1wkGRsxi11+ss9x9mx7yQ/uHttTm/xtp4Trp0mljApZfIcOnoHuPPRrUTjhrqQsPHeqzOWFc1VjrRQ8VkKAev1448n0FKqqiTFUpNiWqMcUxP/FzdT171o3LjlntztAya6qcJPuw8XtfyaKeruvf75NGjwL+M5z6mYLglOYO5zwD8aY7pF8lirV5QkQf5WfzUGZz4NEthrl81OqY2cCb9n2Kn5HLIgZFmBUWcHg70qGBIIhSyWnN/InqNnsp5v+dwZrFk2m7ZFzbyy+yi/2HXEHYMA9XWWW57u3l9bxuNv7CWRsKtz2E1TUo9nibiVT7ztvb1WCu97W720hZ29A3aHQ4El5zfSd3I45Zo+cP3yrNaNlsb6lOPGPWXynBubt/afcu0ZkbhhU2c/f/WFK9xtnIDHjn0n04T4eMlUW7rQ3gCOH388FNqxsdTUpJjWKMfUxP/FzdR1ry4kaX62UIbI9FTgprYF6ZHpHAiZW/1agnv9d+w7mVNQO8t2pVjKU9LoEJEXgYuAPxSRJvLrdaEoQLDnNSjK5w1mRDxRyFVLW3jo1nb+5NmurC223RJyxhay3trDQFp3vzTxnSzDd/vKVn7efTirmA6JbQvpebPPbbbizGUCXHPJHG5uX5hSC/mhW9vpOjjI0x39JOJOi21DImGf+6FbbYvHuWjq1yuc7ARrjP3zdSvmMaepgfZFzbyT9JHXhS3u/fTFPPRCd2B1lUzCb2A41TvuJIh6Vw78987eR+W2PvhrSz/4XJddLtDzt2MiVyKLia6XipoU08rUJOjO09t1L8gz7d0epq5n+sa2BWXxTDvlm/LxTMP4l/KUNH4H+DjQY4wZFpHZwL+t7JCUWiGTnSNort19eCilLXaLpwugU8rtkVc/5Be7jmCwK4QsmT3DFb2JBHy0tZm2C5rT8lo2d/bTfWisCE1I0iPDsbih+8Agx4ZG+cWuIxnf0/J557HmovPZ+GafKyK9hwpZwtdvuDSwYcoFs6a73QBDGO64agmLZk13r8G3frIr7XyJ5HwuAh9fPItXdh91q2f4m5X4y93lYu2y2dQnEwNDAg/d2p62cmBhV2FJJH3Rt3mqfGSLHOfyxeeL8/vyzR+/60bI/X8Xp8JKpIpppabw33nmuhP1v/7Yb68u6/iqlWLv2FctbeEbn7ssr+NOxFKekoYBLgfWAQ8BM4BpFR1RAGrNq06yRS79c8bAcMSNFlvJx34x9uhvr+ZbP9nFM28dYPH5jaxa0uKKaQO80z/I7iNDblk3R8x7o70CXDq/Ka2LocHJx8hev3nfibPc8JF5rhj3By7WfXTMOxzksfU+50/E8wp+B69w9LYN9zYr6egdcFtrF4zYEfJQyHITF/0iOVOHwVxdCb2Px1v9Ipu3bCqsRKqYVhRFqV3+HnsR5dexxfQQsAm4spKD8qPWvOqkkKSttctm01A3tu3QSJQ7HtlKPGFoqLPF2O7DQ3z3tR4ADp8epWPfQIpdw1uiDeDbL73PqM82EQoJ7+fwQ2cjFjdsTR4/iBfeOcS/ufrCjB7bbL5bf+WJbIRC6cmcCWOLTud65RKvmSqtANy+shWT/D+fgJLfB+/NeSmFBeS2la081dHv/n587ZMXpqyOTnbyFtMicg1wiTHmf4nIXOA8Y8ze8g1NURRFycEaY8xKEflXAGPMgIgUEf5SpiKFJG35o5xej3QkaouxbT4Rm8C2VZiEcW1zliUpLcz9keO2hTN5J0f3wFw0hK00z7U7psRYgvrmzv60bbKt4jmi8L+/+CtOnh2rorR87gz6BkZciwhgm8NJjf5D+g1Fpmvf0TvAwVMjdiWqZIfFg6dG2LC9LyWi3L6oOa/PLyjnaMe+kyWrfrFqaQsb76lcAmClyUtMi8ifAquBFdg1TeuAfwI+Vb6hKYqiKDmIikiIpG5IBjo0AXGSUqoOb0El7vLB2e6h57vTkg3XLptNS2N9WuRWMKy6sMW1QETjhld2Hw1MXK4PCRfNmZGzFbeTf7JyyawUawXYfuu3MtS89lbxuPOxbW5StlNONdN18F4vxx9+52PbxqKw1yyj++AgXQcG3XrbTuUNR8SOeZxx/cuZajT7uxj++mXzePX9Y2x8s8+tnOIkgq5/touEyd7hEMZuhpwbiBULmvK+kcr3966SCYCVJt/I9BewmwF0AhhjDiazxhVFUZTK8bfAj4F5IvKXwBeBP67skJRyUKoObylCLVkho5AmHXc+utVNNHMR2H14iK6Dg1y2oIl9J84ykrRvGANHh0ZTNu85diatnJ4A162YxwvvpJfSTDmVwA2Xzef+ay9m9+GhNDG9OFmCLggr2ahlYDiSUi7UKacadA2C6jh7o7BeL3I4ZFEXErdJilN6zznn0EjUtT4MDEcy2iy80ex4PMG5aNxNpDTGuJVGRMYS2vO1amzq7CcSS7C5s58f3L02sAmM//1XsrNgrZCvmI4YY4yIONGPGWUck6IoipIHxpgfiEgH8BvYeuTzxpj0kgNKzTPeMmdOdPHgqZGxEndxw4btfWxKCit/MxB/NHJTZ3+6kMYWzH/yzLtpVRycKOxNbQtcLzVA78nhtAZWdWGLOU0NWcvrOef6xa4jzG1qCEx623dimJAlWB6x6ZAw0HXQjnqHPRWUvOVU/Xjfs1PH2YnA+r3I8XiCLycrgAQl/P3///kDt+bz+nVtGf3qfktG28KZbsTfAHdfcxFN0+vcc+Rr1Sjmd6jSnQVrhXzF9I9E5BFglojcA3wNeKx8w1KUsZJJQUkWTmvqtoUzGRqNYYD+k8O8c2CQOks4ORwlbMGSlkb6T40QjSfc8nbN08M0T7dLvI1E40Tjxq2rDJmblWRiep1F87Q6BkaixBMJvOWc60Pi/tGYNb2O4UicaDxB07Qwl85vormxHsGO6pw4O8ryuefZUYZ4gsFzMU4OjRKJJ1h8fiM3tS2g+9Bp2hbOpOf4WXqOneH8GfXMSparGxiOcn5jHcvnN2VMSunoHXBbxrYtamZgOJJW7s67rRN5CXrdf9x8l59LtVStuHwAnCY5n4vIEmNMX2WHlIpW8xg/4+nw5o9Gh0NjTVKCoppB0UiA7gPp9gvHcuEXxwJ86pI5fP2GS1m1tIUls2ewpesQ0+tC/Py9I2nbfnFVq9ue3ElKzDQVJwxs3N5HXSi4hkQ8YZeS8x/BEnhyx367jFxI+Mzl89PKqQa9P//jTO27vRVAciX8DQxHstosvAmG23pOuE1uBLuqiHNdCym3V8zvUD776JwOYnJ0LXI3FLkR+Az2Z/kzY8zPyzmwfFi9erXZuXNnpYehlIGO3oEUT1u9Z3ltw/a+lDbVSjre6+WQcYmWsRbh3rbB3k5f/te9FLIMqEuGY4hIhzFmXLUaReTfA38KHAHiJHtdGGM+WoIhlhyds8dHsaLl4Zf38Dcv7rbrJwvccZWdSPd0Rz/xuC2SHMHsRK+dOs2WwBUXNLPr0OnATrIhS7jnmov43i/3pswtIYE///wVaZUcOnoHuOORrSniO2QJv/ERu9nJzIYwj7+x17UvWNhR5KCmWwI0TQtz+lws7T07ItjpeHjx3BnsPTHsRqot4D9+doVbui5bIqDXH/3gLekl5Zzr5g08gN0x0lu+zhtFzjT3ZbqRybciSK7fkWJ+h3Jdn6k0p2eatwspjfc+9iT9kog0ikiTMWYo515lQKMck59tPScyetqC2lMrqQR5ALf1nHCXNf34l/CcpT2T4XUvhSwD6pJhyfkPwApjTOZaYMqkodgEL3900YnEOlFPr/jzRq+d6hTZOhPGE3bTp433Xs2mzn72HBmio+8UxhgeeqEbIGVly+mYuD5ZDcSy7CO+mIxWJxslujfxn1puR7d3Hx5Ks5IYCBTSjgA32KXy6sIWy+aex55jZ8c2ElKqY5yLJrAE7v21ZXzjc5elCEhvlYqgOczxHftFZVCTsVxCNtPxf3D3Wr790vu88cHxjB7pfIRtIb9D3muQyVutc7pNvtU87gHuBc4HLgYuAL6L7dObcLRm6eRn7bLZ1CUzoCHV01ZIrc+pSpAHcO2y2dQlu2k5uE0YhJQlPDcDPZogEfC6/7iF1KotdqlaCWQ/ubpYKFMWrxgKshR4hVWK9zdhuOOqxXQfGEwT0kGWDkNqPeOdvQOB1Sa8zUWevO9qtvWc4MCpETZuH3MleYPP4WS3QucG3zmrJXbn11PDUfxcdWELy+c3sefIEDuTyYkJY/jnX6VaSxIGtzqG834SBtfb/cTWfSmi1Csmg+awTCK4kCZjkHmOXLW0ha/fcGnWcnalFLb5Rpx1TrfJNzL9AHAVsB3AGPOBiMwr26iUKY+TLR3kmXaWDdUzXZhnetXSFjd6lMsz7a8pm80zXWyt2qnsryshPcArIvJ/ALdkgjHmf1RuSEo1ECSGvILQv3TvLeEmIsxsCKd0IQyHhOtXzEOAf/7VEXeeC1m4HQ0hVVx5q02MRhP88TO2Pc87no7eAX60cz8x38QrwJdWL3bnCL9ou+7SuTzz1sGUferDFp//RCsPPt/tBmIA4llW5IKc2T/tPpy1M2TQHFYqUZltjgx6LZt/O9sYctk98hXmOqfb5CumR40xERFbbYhImMy5AYpSEnIVz58KXZVKTaE1ZSu9rZKTvuS/+uQ/ZYqRSRRlE0OZoo7r17W59ovH39jrlq4T4NdXzOO1D44RiSXcahkGCImkjcWJQDvVJpzcCydFK+IZz6qlLdyxejE/8ESnHU/wbR6RDnaXPQGakr5qsIMgv/mxRVwyv4mWxno30S8FATFjosVZkXMi7cRNSkT8prYFPLF1X6AozXS9Sykqs82R3te8uS0hS3jo1va8xpBP1LkQYa5zev5i+lUR+SYwPZmI+O+A58s3LEVRFCUXxpg/AxCRRmNMcHHdKkDzXMpDpmQ1Z0UpkxjKJLQHhiMkjC2SEx4/s5UUzM4+JhnpdTzJ337pfW5uX5iWmOcIrD9+5l28tQ4sSbWhtS1qTnlfN1w+n4vnzHCPu2JBk/s+HSHsdhQ0cOJshKuSwv1cNL1nkTGp0b8rL2yhc/8p4nFDIpEqpG+8fD7f+Nxl3Ni2IMVP/vDLe9LK3flFaKlFpV+4+x9v6znh3qjEEob1z3bx5H1Xu95uZ0x+8ok6a8S5MPIV038A3A28C9wH/AR4vFyDUhRFUXIjIlcD/wCcBywRkY8B9xlj/l1lR5aK5rkUT7bleL8o2tTZz+ZkU45wyOLaS+cyr6khrSmLP+rY0ljvikXv81+9+kK3ssYru48SDlnE4wksS2wRamyP8y/3HGfrhyfSGoiAbcfzCmnBrpPsHc/AcCQlWrz3+Fm3fN7rHxznM5fPD+yYSHIf7/n9+BMmAd4/eoZEcqx+B8j1K2wHqyOMvTcsVhFNUorFf6PkVAPxCvm1y2aneNgTxvDIqx/yz786mrUrYr5RZ404509OMZ1sVdttjPkIWltaURSlmvg28FngOQBjzNsi8umKjkgpGbmW4/2iSBiLHkdiCV5674hrl/CLcm9OhFekffXqC1O69DmRaicpUYCndu63S7QllWrC2J35RJLWiZDFW/tP8Z1ffODWs/aK2ie27uPGtgUpfuOGurGW23uOnkm5DkdOnwts0GKJHXV2vM8hR+QnXwuHLDAmraRfUOIiyTFu6TrEigVN7ti8NyzOOYwxZU+2898o+etUOwmOTmWUhDGEQxa/2HXEvUGI5BF1dro0Os8rxZFTTBtj4iKyuxobASiKokx1jDH7RVKkRrxSY1FKS67leP9SPNgd+1yPMvZ+mzv73TbSliW0LZzJHVcu4YHrl6dU8YhEE65XOqhLn1NKL5aMzoqxPccJY5KCOvk4YQt5r0d56exGek8MY7BF3h9seocZ9SHuuNLOf3FKvwVVarrjyiU0hPtTWocLdhk7r7fZ69V2kqZ3Hx5iS9chZs+o5639p9h3IrMbyoly79h30r1xWbtsttvkJhyy60znamJVCvw3Sje3Lwys5HHXmiVuyT1/ZRS/ncbPwVMjfOel94klMkexS8Vkb+ySr82jBegWkTcBt1CjMeY3yzIqRVEUJR/2i8gnASMiddh1p7Wd+CQhn+V4/1L8D+62qyA9tXM/8YQdQXUEbMJAIm54u3+Qt/vfTTuHyJgwztalz9k+lLSSHD19jnf6B90Ith/DWFKfP/rsjOOuNUv4+g2XsvXDEyml9z5z+XxWLGjiLU+JPkg2bJlel9XX29E7kNbSe/2zXSnHF+yyn5ctaOLdA4MkjF155KHnu1l/S1vyDYwZtL1R63IS5FnOVKfaa0nZ3NlPJGrfND10a3vGxi3eplxQXtvKVGjskq+Y/pOyjkJRFEUphvuB72DX/j8AvIhdylSZBBSTBOYIq9t8DVk2d/anJec9uaOPz7QtSKu+kUm8e6t1vLL7KL/YdYSX3jtCXUiwLNI6FHo5PRrLGH1+ckcfd61ZktLQxfH83nftxWlNvMAu1edtBBM0zoOnRtJaeN99zUVuLWmwEw7vu/ZiALfrrsFuVHPno1v50urFbiQ+nkhvhpUvxURm/e8tl4c5398Xf1MuABGhpbGwgkD5vqep0NglLzFtjHm13ANRFEVRCsMYcxz4SqXHoZSPYpLAgkTOD+5eyyOvfuh2GgToPnSadw8MpkQLvdFPSO2KiAixeMJNRHS8udG44bxpYYY83QjPawhxZnTMcSSMNR755Z7jKcmE82ZOc8c9MBzhoVvb06wUliVu1Ntfg9r/3p2oq7NfiDGP87aeE2PNqoCPLZ7lHueLq1rZ4LFJOF7rsCVE47Zf2rkuhYjjoGTCcllFCm0MI5Ykfed2x8p8I++FRJunQmOXfDsgDpGeEDsI7AT+ozGmJ30vRVEUpZyIyKXA/wTmG2PaReSjwG8aY/6iwkNTKkRH7wB3PrbNFS4b7xkrl3fftRdz3Yp5bOk6xPS6EC/tOuJ6pb/90vtut0FHFHn91NG47cJ2fNheDKQIaYCVS1rYtnfM4+vUjF61tIW/+PwV/NGP303WqYb7r704UHA6iXEA4pEg3uP58ZaLAzua/Jlk9Nl5Xw11wcLu9pWtPN3Rn9J5t31RM09Lv/0uk7kJmYRkPjW/I9HUrpCVsDx4I9gHT42w8c2+gqPGhUSbp0KZvXxtHt8G+oEN2DeFX8ZuK94JfA+4rgxjU2qITJOI8/zQSNTNEL9rzRK+9ZNdPPPWAQAi8QRNDXXUhS3qLCEaTxBLGE6PRIklEpw5F7fnMIFEwp64Q54ohQXuEqMlyczy5PMhK1kL1TP3C/ac6I2MCPayYSJh3GiLAPNnNhBPGE6ejYwdV6DOEixLWDG/CYPtIRTgwOA5RmN2NEYMNIQtmqbVUR+2uONKu8nMw6/sYWgkygWzprMyuRwLY7Vh/RGLoGtb6JJhrnqlDhu29/Hkjj7mzZzG/Z4/PuVmw/Y+tnQdcn8/lLx5DPjPwCMAxph3RGQDUFViWutMTxxOaTywfdL/dcsuOvtOpYi3u9YsYcP2Pv75V0cxxrjl7ZykQ8fycfDUCOHkXBtKRqbjcdsrHVQlw4sBHrylzf1ee+eSFQuaqPP4riG74LxtZas7Xwt2BDlTVPrAqZG0engj0bi7fTZht2ppeufdbT0niMVtcR6Pj5X88wtJIGOkNpsvvRSWB+987lzLfLrROn8LNnX2F9Sgxv+e8ok2T/Yye/mK6d80xnzM8/hREXnLGPMHyWYuyhQm2126P8nh9Q+O89OuQ7zm88ydPBtcqsjFSU1P4k1ySWCLbEitGep9Pu1QJv25qK/gqAEOnx7FT8LAaNxA3KQlxQRzDhhLtHE4fXiIXYeH+NHO/Qh20f2EGev+5TRgCGrKUEgyRz71SlctbWHD9j6++WNnjIO8/KsjPHnfJ8s+AXrP63gpVVDnTaMx5k1fNY9Ypo0rhdaZnjj84tZbASPiqUVtl7czKeXtIrExEetMsSEL2i9o5o4rl6RZQDZ19vPkjv2BSYezZ9S7x9qx72SKfWBzUrx5BWo2wSmQVlUkKEDg1oMmtaTNze0LU8aWb4dBhyDR6H8uW6Q2qBRhqSwP3vftlAZ0Ajz5RL0z3VzksnFMhWhzIeQrpodF5LeAp5OPv4ijECrQVlyjHNVFpkkkKMkB4M19JysyzmolGjcpgRR/04OgCEghyRz51CtdtbSFLV2HUvaLJZiQRBH/ebd0HVIxnT/HReRikr8+IvJF4FD2XZRqo5Rlw25f2cqPdu4n5u9Ggn2j/nTHmJAFe6XNK8JiPmEcT9jJeLuPdPODu9fywPVjf3dXLW1hZkM4JaEP4MLZjbzwziH3WOeiCR559UMe/e3VdPQO8NTO/e75QyErY+1rr0XEn1DpDxBs6TrkBm5CYicWnovGx7Xa5W+P7vegZ6pyEiSSvSI9U1WOYvDO7wnPZ56pxnQQQTcQ+XZJnOoi2iFfMf0V7Izxv8eetLcB/7eITAd+r0xjy4hGOaqLTMs9zvPeyDTAVReenxaZnsrUhSQlMm1B1ghIpucykW+90pvbF6Zk2YctJiRRxH9efxRJycoDwKPAR0TkALAXTUisKUpdNmzV0hZ+a/XilEQ6sEXzb1w2n5d2HUmZj8Mhi6998kIee2MviaAWg0kyCaqm6XVp2zZPr6PXV8/5xfeOsGF7HwPDEVdk+y0buQRnkJfbG0137H11YWvcNrV8IrPFRmqLFaFBN12Z/s7mqjGdC+e4kWiiqEofU418q3n0ALdkePmN0g1HqUUyTSLe59UzXbxnOujaFrK8FvT5BP2hcqI3E+2Zds6rnunCSc7NN4jIDMAyxgxVekxKYeSbyFVI9Pr2la08vXM/keRkFrKEP7+1nRULmnjtg2OprbmNYWg0liakHeOQV6CuXTbbHYczVzktyB2fdtiym6zsPtIdWIpv/S2pjWDaFzXz8Mt7MtZODroG3rbn4mnxbQl8avkcN5FyPPg/l82d/TmvfzkjtZnEvTO/O9adWNxkrTGdL6uWtrh1uQut9DEVEeM3jwZtVKUZ46tXrzY7d+6s5BAURVGKQkQ6jDGrx3mMD7FXCl8HXjfGdJdkcGVC5+x0HJHkiMugyHQx0WsnsUyA21aORX87egd46Plu3k7mezhBg2NnRlPqRNeFhC+tXkz7omb3Bh/G7BXe/I7169roPjjoJu05HubvvvohP/eU4gtb8OR9nwRwgyyPv7GXeMK4eSKZ3teG7X2sf7bL3TZTbexSVcfwfi5OwuVEdArMxMMv7+FvXtxNwtg2lt//zIoUy40z5lJ6mPM551Qj07ydr82jJjLGFUVRphiXA2uAXwP+m4isAN4xxnyhssNS8iWbPSBT85F8vLDZoqS7Do8tYHgTrWdOC3M6WeIukbBzObwrZX/043dT7AROfsfAcIS//MIVaed/7LdX86Xv/gs7kkmQxtgi2hFkdzyy1bV8RKLZo/LezoWj0YQ7rkyeZv/+xTRMcT6XA6dG+GER5eNKideuF7KEg6dG6OgdyBnNL9U5J2t96FKRr5iuiYxxRVGUKUYciCb/TwBHk/+UGiKTpcHbMMVplDJeUeOUegvCEdKW2ImBT+3c70Zj169rS0kchLFW3JnG09E74EbAAbfpSUfvAN9+6f2UKiBWloYo23pOpGxrgKGRaF7R+vE0TPGWj3t65/60xi0TiSPuN3X283RHPxvf7GNTZ39Zo+RasSN/8hXTmjGuKIpSfZwG3gX+B/CYMeZEju2VIin1EnouvM1HYnHDl9cs5oJZ08d9/rXLZhMOjXmcg7jigmbaLmhOicZu6TqUVukjZAnr17VlHI9XuAt210IgpWSqJI/jeHyDLC1rl80mZElK4mL3odN5RevzbZiS8/N1agimBhUnFOfGIhafuNbcWrEjP6w8t3sA2+LhZIx/Hbi/XINSFEVR8uJO4DXg3wE/FJE/E5HfqPCYJh2OwPubF3fzlce30dE7kHuncZ7v7f2n3ChwAmhf1MwD1y8vWths2N7Hv/mH7ew+PMQXV7WSTRLuOjxE+6Jm6sMWIbGjz20LZ+LT0sQShq6Dg3T0DvDwy3vSrotjE3COcXRolIeetxMTHSF9zSVzePK+q7lrzRI3Yh0kkh+6tZ2wJVjYPu2b2xemHDtTtNg7BstKb5gCuT/fTI1bgsh0LUrF2mWzCVvi3oSo9aI6yBqZFpHf9zz8CfAytgA/C9yOHQ1RFEVRKoAx5lngWRH5CHAzdqDjvwDTKzkuP7XeG6CQ1snjxdvsysES27vsJ9/Oof7GSPd/epnbgVDE9jJ7dXI8nuCV3UdZMb/JreyzqbM/8Ng/fLOPpzv6icXT7RbeShNP7uhLSUYE+5xOd0R/ky/LJ5LvWrMkrQpRUFUif4Q5n4Yp3lWAIO92vt7hUpc5zEgZo+QTvQIzWchl82hK/r8CuBJ4Fvtm8t8Ab5ZxXIqiKEoORGQT8DHgQ+wI9W8D2ys6qABqvTfARCZi+ZtdCXbpTf85C+kc6m+M9MxbB0gk28NaAlbIIhZLkGCsE/eLrvAd5PoV8zg+lN4NFnBvMPzNptI9z+n7SnJsjih23rdFcIm7oNrO/oTNoI6xfgHutAt3aGmsT1kF8NdUztc7PBE3XUFR8lKdY8JuBiYhWcW0MebPAETkNWClU8NURB4E/k/ZR6coiqJk4/8HbDXGuN2TRaShguOZlIw3EauQaJ+/asOXVi9OKW3n4BfIj772YcY6wG0LZ6Y0RnKqd4Bdu/+3rmzlglnT3VJ1fm/0kzv62HXodOB4QxaErLHkyJbG+pTEyS+tXkzbombqQuLWvYYx0f7LPcfZse8k69el1p8uplZ0UG3oTZ39aeLaeW5zMoFvYDji9ijItAqQj3d4Im66ynmOiVyBmWzkm4A4H/D+dkWSzymKoiiV42+NMSt9z20F/M8p42Q8XesKifblK9z9nUN7Twzzlce3ucd3BLwjkCG1EYuD48cGeGrn/pSqGQ7zZk7j3QNjdalXX9hCJJZg/sxp3HftxcBY9Dcl4S9u2LC9j4Y6iwd/s52ug4MI0LaomS1dh/jlnuOucBsYjuQsEZjrZqSlsR4raYGoC1u2bcMnDgl4zrtf0CpAvpS7+oW3vblzLUuJlsIrnnzF9PeBN0Xkx8nHnweeKMeAFEVRlOyIyALgAmC6iHyCMZ00E2is2MCUNIqJ9uUj3B1Lx6OvfUjvieE0m8Wdj20LrNjhdI91JLMl8Mruox5bR7LCRkhoWziTO660vcqvf3DMFVnfuPmytPF5H3vbW3trUf+Vpxb1igVN7Nh3MkW4Bdk2vvvqh/zzr45iAipweOnoHeChF7qJJ4xbZcSxdPjFoVcwOj5q737em5FCRXG5ql/4SyUiQiyeKGl5PC2FVzz5thP/SxHZgt0YAODfGmP+tXzDUhRFUbLwWeCrQCupieCngW9WYkBKMOWM9jlJed4OimuXzWZz0sbgx2kz/cruo/xi1xGMsYXlkdPnUrZbOruRez99MQPDEVYssFOnbl/ZmtLhMBP+esiZamPnEm4dvQPc+ejWFGtIJI8SeAYwxjAwHAk8R0fvQMp7Cdov39WEQgS3f9tCxXrKTVnc4NwOZbsmxaCl8Ioj38g0xphOoLOMY1GqAO/SYPeh09zcvjAwY9phw/Y+ntzRR0PYormxnsHhCCeHo9RZQjSeoC5kUR+2aJ5ex/tHhhiOxDlzLoYIiAgIzGms58xojDOReLLcj+1dc1YbHW/dzGlhxIIz5+IYYxCB6XUhIrEEkbhhep3FRXNmMHguxplzUXvCSRhGk5kvjXUhmhvruGDWdI6cHuXAqRGMMTRPrwMRmhrCxBIJzkRijEbsSfTXPzKP4UicnmNnOH9GPX0nhzl5NsLlC2dyY9sCPjgyxGsfHGc0GidkCRfMms7i8xvdsk9zmhpoX9RM18FBjg+NMqepIe2PUUfvAJs7+zk6NMq8pgbaku17WxrrU5oL5DMZf+snu/hp92FualvANz53WdG/B/lWCSgEzRIvHcaY/w38bxG53RizqdLjUTJTaLSv0O9J0PEzVd5wij+89sExO9EvGYkFeLv/XXe7m9oW8NAL3XYU1NdK+/aVrXmNadXSFlesZnov2YTbtp4TKULaoaWxnodf3pN2zEw3Ld5z+EXy7StbA/fLZzWhEPtOUOMY9/pm8cV78Y5TLCGWvDYJk54wqUw8eYtpZfLjfOHPeUoyvf7BccIhIZFIX2LzZpMXjB0GAOCwJ0vcAP6AijOdOt25vC+cGXXzrhiJJnjv0BCZOBOJcyYS58Cp1CjMyeGo/f/Z1KSTc7EEz7x1cOyJY2fdH9/qH+QtT2cvh9OHh1Ja9Qbx9M79bLz3alcQBy3HOjcQgl1T1Tv5+idj53P5efdhvvtaD4D7fzGCupAqAfmiWeJl45ci8g/AImPMzSJyOXC1MeYfKj0wZYxMojHoBrmY74n/+LevbHU79gm2LxrAJAxbug65QlGwI7EPXL+cvhNn3RvxodGYa9OIJucmr40k3+9uMVFO55q0NNa786DDwuZpafOevwxfNvEeJJIfuH554H65VhMKse/4t/V+Bo6vPJddw/v+DpwaYeP2PrfySVDCpDKx5Nu0paoQkVtE5NHBwXQxoxSP84X3E4unF7mH9GxyJT+icZNSPioacM2N53//5Bv0eFvPCX7afTjlGP7H+eL/XEvxOQf94VFKwv8CfgYsSj5+H7vWtFKlOE09NmzvS2sUUsrvyZdWL+bONUv4iy9cwbS6seYmN7cvTGv60dE7wBNb99F3cpjv/cs+ntzR585B4ZBQF5KczVFKgbd5ykMvdHPrxxelvN62qDnr9Vm1tIUHrrdrmWdqIhMOWUlPeGr02tsQxxGuv/+ZFRkFrr8hTbbr4t/WaTjjTQjN5/N2xnn7ylYakp9pfZ0mClYDNRmZrvWapdWK84V3IhIO4ZBgEiZtwvBnkyv5URca61q1dtls6sLprX2diIzF2OTrTdbxP167bDZDI1E3Ig32Um0x+D/Xm9sXFnUcL5olXjbmGGN+JCJ/CGCMiYlIPNdOSmXwRp4FcFwMjpDK9T3JxwISZGXwRl6BtKYffhHvINiivD1ZfaNt4UxX8AVZ/vK1hmV6H/5xXDK/ib/6whXucVcsaOI1TyJk0DySM7qfXBF1/89Arqh6IfadoG1XLGjK6SsvxbmViaEmxbRSHrxf0Hw8086EqZ7p4j3Tq5a2sPGetXl5pnN1/3KOOV7PtPO5ltIzrZN/2TgrIrNJLmaIyFpAl+yqFK9Y9OJEiLN9T/K1gGSyMjg2km+/9H5a04+U2tZJj3Q8GUCZ2RBm/bNdxBOG1z847lrPMln+Xv/gOC/vPsr9116c0dqS6X34a2wfPDXC2mWzU+agYqwcznbbek4QS1YyiSfMuBP38rXvBG2br6+80HMrlUHFtJJCpi9opi/tXWuWlCxBbaqS76SYaTL28o3PXTauxEOHcnyuOvmXhd8HngOWicgvgbnAFys7JCUTQat/TvQ3k+hyyNejmym6vWF7nyuK/e26vSK+pbGe7oODGOz60+uf7Upp4hLknfZbwX7+3hFe/+BYilB2BOaBUyMZ34e/EsjGN9O9xLnmkWzR/YlYISumrrjOi8VTLYntKqYVRVFql/eAHwPDwBDwDLZvWqlC/GLRWd6/LY8KGfkKwUzl4LyiWBhr1w241THWLpudIgSBwCYuliUp5w+y/HmFspNoHY0lCIeEcLLWdaaSeU7L7GI68WWL7pdqhSybgNMughNHNSW2q5hWFEWpXb6PXVv6r5KP7wL+EfhSxUakZCVoeR8ILPfmJ1OtZ7+480c7t/WcSBHFIUtcIe0VI7etbE0Rgo6lw1vhCeDyhTNTjr9iQRNha6wSkyW4Ng2n9KeTFxKNGz5z+Xw+tnhWxvrSB06NEA5ZBXuJHbJFe7O9Vown3S/gND9k4qimGxcV04qiKLVLuzHmcs/jl0XkvYqNRskbR9TlE10LSirM9FrQ/muXzaahziISTbiNW1YtbeHhl/ekiWevELxtZStNDWEeea0nJSn9jiuXpJz/2y+9T9wR0sAVFzSz6/CQa9P4tUvmpoxnTlODW3Uj0/sMW8KXr1qSs/5yqRiPJ70c0W8lN9V046JiWlEUpXbpFJG1xphtACKyBthZ4TGlISK3ALcsX54uoKY6XnEWiSX49kvv8/UbLs1a5cKfVJcrOpdJ4PnFyG0rW7nNFzF//I29KUL6M5fPd/MpvALUSboWgbOjMaLJ5yKxBPOaGqgPCdG4oS4kGRu/eN9LPGFYNGv6hInRfD4HyE/AqQ96YqimGxcV04qiKDWGiLyLnQtWB/yLiPQlHy8FflXJsQWh5Uwz44gzR8i98cFxduw7mbHKRbFJdUECzxEjmzv7XcHs3e7hl/eQ8JSQC1vCfdde7D72ClABELvc3x5Pg6uEsetD33Zv9qoVHb0DHDw1ktVPXU7y+RygugScUj03LiqmFUVRao91lR6AUhoccfbtl97njQ+OB1bLKCaprpAqB5uSnubNvsoZXoFpyZg9xCGlxbVIStUPB6dDXy6vsmvvCFnccdXiNF94ucnnc/BuWw0CTqkeVEwriqLUGMaY3kqPQSkdq5a28PUbLk1rxOTfJt+kunz9v47fOVepukx1r7f1nGD9uja3Lv6Dz3enNKCyxPZg54owp9g74gkumEB7h5d8PgdFCULFtKIoiqLkwXhq2ubat5T2gWw+amccLY31PPRCt1vz2lt32j+uXAmRjlhfsaDJtYy0J5tP5fNeqimRbNXSFtava3ObVmkEWskHFdOKoiiKkoPx1LTNd99S2QcyiVPvOCyRsQYujNWdzuf8mcR6JuGdq+xfNfmQO3oHeOgFO8K+Y99JVixoUkGt5ETFtKIoiqLkIEhAOs/nqkvst1Js6uwvqXAMqjMdJE6978EYgyX2/iFLWHJ+Y97nyzeSXMgNSLX4kKupdrFSO6iYVhRFUZQc+AVkS2N93vWhvVaKkCU83dFPLF6arm3+aPNDt7Zz15olgeJ07bLZhC0hEk9GpC3huhXzePX9Y4GtuzORrxXCL0xLfRNRDqrJcqLUDiqmFUVRFCUH/mhvPhFMZxuvlWLJ+Y1sfLOv4Ah3JrzjSBjD+me7MloTVi1t4UurF7Nhex8GSCQM56LxlNbdm/MQvPlaIbzCtNQ3Ed6xlFKgF2o5KfX5ldpExbSiKIqi5IE/2psrgumPcjotvDd19hcU4c7G2mWzsUTcetCJhMlqTbhtZWvK+W9uX+hWrwiFLJ7auZ9YwhTVBTCb3eTgqZG0m4jxtPV2thvPtctEvpaTcp1fqT1UTCuKoihKgeQTwQzapqN3gNtXtmKA25PdBh1hOhq1I8OFCLJVS1t46NZ21j/bRSJhCIeEg6dG6OgdyDomp+rGigVN7hgPnBrhh3kI3iArRCZh6fzr6B1IEfGl8FlX2t9c6fMr1YOKaUVRFEUpgnwimN5t/ELx9pWtto85ZLl2kKd27ue2HA1L/JHbu9YsYcWCJjZ19vN0R39e/md/o5YHrl9OR+8Am/MQvEE3CQ+/vCersMzXPlGIQC3U31xqS4b6qxUHFdNViP8Lv2F7n5vocdeaJRm3eXJHH/NnTuO6FfPoPjjoRj4A/vjH77J/YJiVS1oYicb58NhZ6i3hbDRG87Q61n10ET3Hz9Jz7AzRuGE0FufS+U30HDvDybMR4gZGYwkE3LazIYHG+hDD0QSCndASEjs9PBK3t2oICQlsL1+dZTGtzmJGQ5jm6XUMjkQ5NRJlNJrAEpg5vY7zGsKcPBthOBIjloCwBZ9Y0sIXPtHKI69+yIFTI0yvs6gLWzQ11BEzhul1IW74yDxOj8Y4PjSKAeY1NdC2qJln/rWfPcfOMr+pgcXnNzKnqSHv+qf+axw0EWebnJ3PZN7MaVy/Yl7Wc2Y7Tqbfh7aFMxkajbmfc7VERNRDqCjBBAnFB65fzhdXtbIx6WOO57BpbNjeZ0ehjUmLAG/rOZHif850nGyl7fL1C/tvEg6cGiEcsojHMwvLfG4+ChGohYy3HJaMairpp1QWFdNVhv8L/9WrL+S7r/UA8PoHxwF7WS7TNjDIi+8dcY/3ox19xBNjAvi15DG8DJ2Le/Yf4/Dp0bTnvM1i4waGRuMpr8dTtoDR+NjjeCLBuViCUyMxDpw6l3bs42ciHD8TSXkuloAd+wbYsW9gbLyjcRiNc/Js1H1uz9EzacfzcvJshF2Hh9zHAjTUZe8M5r3G69e1uQk3zkQMZJycN2zv45s/fjd5tEF+/t4RtxuY/5zZJvl8fh8Ant65n433Xl3xyVw9hIqSmUz2CAHqQnbd51wWiD955l2caTXiE8wtjfVYImCyHyebYC20RJ0j7uMJQ11I+PJVS3JG1rNRqEDNd7zFWjLyabZTqTmumMCFBjvKQ02KaRG5Bbhl+fLllR5KyfF/4X/afTjl9S1dhxgYjmTdxouns6viwVBY5GZL16HAGrOZJuctXYfSjplpEs82yef6fXCIxrNHsyYK9RAqSmb8QhHGbsjDIYs7rlrsriYGNTrZ1NmPJz6BwRbQMFZhI2EMliWsX9eWtaZzKSKqHb0DrH+2i1jCHlQsblhUglbg3vnP+3g8FGPJqObgQDFjq+b3U+tYlR5AMRhjnjfG3Nvc3FzpoZQc5wsfSrZ2valtQcrrN7cvzLmNl7BlR2GVVCyCW+c6+K/xze0LUx6vXTY7bRvvsW5uX5h+zgzterMdJ9/Pui4kVeHXy/ZeFGWy4XT36+gdyL1xklVLW3jg+uWuLcO5+YzHE1wwazpgC+y/eXE3X3l8W8qx/XO5MfDQC91utNE9VsLw5I6+rOPyjqNYtvWccKuIgF23Ot/vfLZr54i+oGtQLM4NxO9/ZkXeIjJTo55qoJixVfP7qXVqMjI9mQmKGCyZPSPNMx20jXqmS+eZDvocVixoSovkZIruOJ9TPp7pbFGibL8P1eiZVg+hMlUYb5Qvk8842+pO26L0AJKzjb8hy9v9g9z56Nay2r+cm2dvw5hSlJQr1wpXoZaMak4wLGZs1fx+ah0xnrvKWmP16tVm586dlR6GoihKwYhIhzFmdaXHMZFMhjnbiQJ76yaHBH7/Myt44Pr8rIcdvQPc+ehWonFDyII7rlxCW/Imv6Wxnode6HYFj1doPvzyHv77z3a7AQ0n92P9ujYGhiO8uvsob+5LjWT/p8/mPy7v+8s30boQD26+184R20HXYKIptcc40/Emyv+snunxkWne1si0oiiKouSBN6IatiSwekU+YmVTZ7+7ehdLwPtHhnhyx363Qocjjv2C9uCpETdRMWQJX1q9mLZFzTz0QrfbstxLvvYvZ8yOkM830RqKa3CS6dp5j1ktK1ylTDDMFJEvdpWjmLFVMmFyMqNiWlEURVHywO9LvuOqxVwwa3pK+cx8RJHf+7yzdwBnkTgSSzAwHEmL1DqRbMuC9guauePKJdy1Zolb39kvpJfPO4//evtHC0pKs8QW6t4EbWdM47Vc5HPt/N0TJ5voy2Rf0cTt2kfFtKIoiqLkgd9z6s9VyFcU3baylac67OYolmULWAdLxC2Zt6mzHwGODo26kex4wvZD7z7SzYoFTe6YzkVTSzddddH5BSfZGWNHvI2vtJ73Pbc01gdWGhnPtStnlYlqsjVk8iyrl7n2UTGtKIqiKHmQy36QryhatbSFjfesTbVWRBOIJVz/kXnsPjzEg891uQLaCijJ5G368oO717Kps58f7dxPPG7Xe3aSz3PR0liPo+UNcPc1F9E0vS4w0TrIBpKvQM127TZ19rs2lVJGZqutFFyma1BNthalOFRMK4qiKEUjIjOAV4EHjTEvVHo85Sab/aAQUeQ9zooFTWzu7Oepnfv5xa4jvPyroynR6oSBkCeC7S+z6Rzr9pWtBQuygeGIW6XJApqm16UlLDrHz9UyPBdB166jd4CnO/rHqkQVUF4vF9Von/BfA2/kvJBEUaW6UDGtKIoyBRGR7wHrgKPGmHbP8zcB3wFCwOPGmG/lONQfAD8q20BrjGKTwrb1nCCWMHaU2BgswW3QUh+2ePCWNrfaR7Yym4Wee+2y2TTU5WcxyDfynsta4X3daYEOtpf8S6sXl0zwVrt9otoi50rxqJhWFEWZmjwB/B3wfecJEQkBDwM3Av3ADhF5DltY/7Vv/68BHwPeA6ZNwHhrgmI9un7ht35dG10HBxEYV3vufMZ3+8rWvOrV5xN5zyUQ/a+vX9eW8r5vy9Oekg/Vbp+oxsi5UhwqphVFUaYgxpjXRORC39NXAXuMMT0AIvJD4FZjzF9jR7FTEJHrgBnA5cCIiPzEGJPwbXMvcC/AkiVLSvwuqot8Io2ZxHa+wm88CXVBQtbrgXZ81tnOkSv6nUsg+l8fGI6UVfBWc1WQao+cK/mjYlpRFEVxuADY73ncD6zJtLEx5o8AROSrwHG/kE5u8yjwKNhNW0o52Gojl5DMJbZzCb8gMZyrm2u28W3pOhTYXroQ64FfeOcSiEGvV7PgLSfVHjlX8kfFtKIoijIujDFPVHoM1cDaZbMJh2yhGAqlC8nxLut794/EEqx/titro5eg8XmF7M3tC9mx72SKsPWeYzSa4Nsvvc/Xb7i0IEtHNoGoAjKVqXojMdlQMa0oiqI4HAAWex63Jp8bFyJyC3DL8uW1Wa2goBbQTvcVkx6EH++yvnd/8TRYGY0m+ONn3gXIGk0OErIrFjSlPP559+GUUnlvfHCcHftOBh4z081BLoGoAlKZbKiYVhRFURx2AJeIyEXYIvrLwF3jPagx5nng+dWrV98z3mNNNIW0gHYqchjsLn/+yPN4o7Le/b31qROQ0kHRsWtk8mZnetzRO8Djb+xNOWe22s+TxfNbTY1daoUN2/vY0nWIm9sXcteayZ0LkQ8qphVFUaYgIrIRuA6YIyL9wJ8aY/5BRH4P+Bl2BY/vGWO6KzjMilNIC+h8xOV4o7L++tTfful93vjguFunWURoaax3hX44ZPHFVa05K3U47zXhi6j7a1r7x1Lrlg0tT1c4G7b38c0f2yshr39wHGDKC2oV04qiKFMQY8ydGZ7/CfCTCR5O1VJIC+iJFperlrbw9RsuZfvek0RiTq1mQ/fBwRRv9cbtfWzu7M8pFJ33FIklsES4+5qLGBqNkS1rtNYtG1qernC2dB1Ke6xiWlEURVGUQAptAZ2vuOzoHWBTZ/+460ivWtrCF1e1snF7H8l+Lxhs77TTojvfNt3+9wRjlT3yEeO1yGSxqkwkN7cvdCPSzuOpjoppRVEUpazUegJiJoFcbFS2o3eAOx/dSiTZ4vCpjn423lO8UL19ZSubO/tdQXj7ylb3uad27ieeMHkLRe97KrZ9eC15kCeDVWWicaLQ6pkeQ8W0oiiKUlZqOQFxPGQSldt6ThCNj5knxmsvyBYlv21la9FCsZiobS16kJ0biI7eAR5+eY+K6jy4a80SFdEeVEwriqIoSonJJirXLptNXUjcyHQp7AWljp47+xYata1VD7KzWhCNG+pCwsZ7ry563LUUmVdKg4ppRVEURSkx2UTlqqUtbLz36rw805UWZoWK8Vr1IG/q7HdvbiJxw6bO/qItPLUWmVfGj4ppRVEUpazUume6GHKJynxE6obtfax/tot4wtBQV7wwK0aQFyvia9WDLDke50utRuaV8aFiWlEURSkrU9EzPV5R2dE7wPpnu4gl2xFGotmbsWQ7TqGR0vFaHmqxXN5tK1t5qmMsifO2la1FHadWI/PK+FAxrSiKoihlYDyi0t9AxbKEoZEodzyytaBIda5IaVAEulSWh1pi1dIWNt4z/oh6rUbmlfGhYlpRFEVRqoygBiqPv7E3LVKdS6xli5RmilqXyvLgnKNWhGWpIuq1GJlXxoeKaUVRFEWpMvwRzqBIdb51ozNFSjNFrUtledBkPGWqoGK6zDh35S2N9QwMR1i7bDa7Dw/x5I4+GsIWsxrrmdPUQPuiZv5x6z72Dwxzw2Xz+faXP8GG7X08uaOP+TOnsWzODLb2nCAaTzB4LgbGcMGs6Rw5PcrBwRGMMYQsi5nTwoREOH42QtgSZk2vYzgaJ5EwJIC6sHBeQx0DZ0YZjtrtZxvCQkPYYjiS4IJZ07m5fQEv/eoox4bOEY0bzm+sY91HFzE0GuPo0CjzmhpoW9TMwHCEoZEoL/3qKCORGG2Lmjl6+hzvHTrN7Bn1tLfOYnA4wt7jZxmN2cdemZyogyZUbwTDuUbzZk7j4uR7rw9bXDq/yT13S2M93QcHOTY0ypymBm5PTvibOvs5PjTK3KaGwHN19A7w3Vc/5Ojpc9xxpV0r03tuSPck+qMruaIt1RyNqeaxKYoyhj/C6Y1UP3Rre97f30yR0kxR61JZHjQZT5kqiPHc6dYaq1evNjt37qz0MDLivStPGHupLGRBLJF734+3NvNW/2DZx1gJ6sNWWrcv77WyJL9r5CccEjAmZV//uTp6B7jjkX9J2eb+Ty/jia37iMQShC0BEWLxsUgKkBJdWb+ujYde6M4YbanmaEw1j22qISIdxpjVlR7HROCp5nHPBx98UOnh1CxBwZnxfn/LeXPtzDeOWC/FfFPoeDV4oJSSTPN2TUama6XMkveuHMCQv0jsOni6bOOqNEERCu+1ShR5fxeLp+/oP9e2nhNpn8FPuw+PRU/iBjAYz75ASnRlS9ehrNGWao7GVPPYlMnLVKzmUQ6c72q2G+JCV9HK6e8tdTJeocEADR4oE0VNiulamZi9CSQJAxZg5RmZbl80c9JGpoPKBXmXGyWPyLRg35x4CYpM+8+1dtlswr7P4Ka2BTyxdR/RWIJQMjIdj6cue3qXQm9uX8iOfSczlj6q5tJI1Tw2RVFyk+2G2CsewyGLay+dy6vvH0tZacslPksdxS2lWC80GKDBA2WiqEkxXSt478rVM53dM+2PYJTLM71qaQtP3vfJNM/0jW0Lsnqm/dGVFQuaMv7RqebSSNU8NkVRstPRO8CBUyOEQ1baDT+kisdILMHP3zvivpZLTNZCFLfQYIAGD7KjFpjSoZ5pRVGUCjCVPNMOOmcXT0rU2RK+tHpxWrDA2WY0mkhZuRPIWZf64Zf38Dcv7iZhICTw+59ZwQPXV5+VUj3TpaEWbp6qkUnlmVYURVGUqcTmzn5XJMcThkWzpmdcFdvc2c9TO/cTTxhCGYS3n1qJ4mayjWQSzVrzORi1wJQWFdOKoihKWamVpPFqpaN3gKd27nejzaFQZrHriMfbVrYWFJGtZQuYRlkLp1ZunmoFFdOKoihKWamVpPFyU6zlwK5CZEtpAb64KnuUGYqLyI43ilspS0U1RFlrzU5SyzdP1YiKaUVRFEUpM+OJnvqjiLcX2ZGwnFQyOlzpKGutRsbVAlM6VEwriqIoSpkZT/S0FqKIlYwOV/r6VENkXKksKqYVRVEUpcyMN3pa7VHESkeHK3l9Kv3elcqjYlpRFEVRykylo6flZrK/Pz9+j/RUeu9KOiqmFUVRFGUCqPbocjbySbCr5fdXCJk80lPhvSvBqJhWFEVRlCKYqAoOpTjPeI5Rqwl25UI90oofFdOKoihKWZmMdaYnSmCW4jzjPYaKx1TUI634sSo9AEVRFGVyY4x53hhzb3Nzc6WHUjKCBGa1nme8x3DEY0hQ8ciYP/z3P7NiykfpFRuNTCuKoihKgUxUdLIU5ylFJRFNsEtFPdKKFzHG5N6qSlm9erXZuXNnpYehKIpSMCLSYYxZXelxTCSTbc6eKp7p8VJt3QGrbTxK7ZBp3tbItKIoiqIUwURFJ0txnnKNNZcwrbbkxWobjzI5UDGtKIqiKErB5CNMqy15sdrGo0wONAFRURRFUZSCySexsdqSF6ttPMrkQCPTiqIoijLFKcZHnE9iY7UlL1bbeJTJgYppRVEURalyypk0V6yPOF9hWm2VL6ptPErto2JaURRFUaqYcifNjcdHPBmFqVb7UApFxbSiKIqiVDHlTprTjn5jaLUPpRhUTCuKoihlZTK2E59Iyi121Uc8hlb7UIpBxbSiKIpSVowxzwPPr169+p5Kj6UWmQixO1nsGuO1aGiUXikGFdOKoiiKUkUECcLJInbLSSksGhqlV4pBxbSiKIqiVAnq2S2eUlk09MZFKRRt2qIoiqIoVUI+jVCUYLQhi1IpNDKtKIqiKFWCenaLRy0aSqVQMa0oiqIoVYIKwvGhFg2lEqiYVhRFUZQqQgWhotQW6plWFEVRFEVRlCJRMa0oiqIoiqIoRaJiWlEURVEURVGKRMW0oiiKoiiKohSJimlFURRFURRFKRIV04qiKIpSg3T0DvDwy3vo6B2o9FAUZUqjpfEURVGUsiIitwC3LF++vNJDmTRo23FFqR40Mq0oiqKUFWPM88aYe5ubmys9lEmDth1XlOpBxbSiKIqiVJBi7BpO2/GQoG3HFaXCqM1DURRFUSpEsXaNiWw73tE7oO3NFSULKqYVRVEUpUIE2TXyFawT0XZcvdmKkhu1eSiKoihKhah2u4Z6sxUlNxqZVhRFUZQKMZF2jWJwxH40lqhKsa8o1YCKaUVRFEWpIBNh1yiWahf7ilINqJhWFEVRFCUj1Sz2FaUaUM+0oiiKoowD7USoKFObqolMi8gM4O+BCPCKMeYHFR6SoiiKomRFq10oilJWMS0i3wPWAUeNMe2e528CvgOEgMeNMd8CbgOeNsY8LyJPAmUR0956mUCaD6yjd4DNnf0cHRplXlMDTQ1htvacYN7MaVy/Yh4DwxFaGut55l/76Tp4mtFYHAxYljC/qYHVF55P18HTHDg5zLlYgrqQcP6Mes5GYsycXs/cGfXsPjJESIRp9SEa6kLUWcKJs6OYBNTXWbQvaubgqREQ4WufugiAv3/5AwbPxZhRFwKBS+c3MTgSZf7MaVy3Yh7dBwf54MgQo7EEd1y5hBULmtjWc4KWxnq6Dg4iQNuiZroPDmKA9uTPR4dGkeS1mdPUwO0rW91rsWF7H1u6DnFz+0LuWrPEvT6bOvs5PjTqbr/78BBbug4xe0Y9J85GuLl9oXv+TB47/7H9n8umzn4EuG1la+DnFPS5bu7sx0DKeyimPup4aqr69/U//voP/5VX3j/GdZfO5dtf/kRBx1YUpfoYT2k7RVEmB2KMKd/BRT4NnAG+74hpEQkB7wM3Av3ADuBO4FZgizHmLRHZYIy5K9fxV69ebXbu3Jn3eLwRhLAlIEIsPhZNALjzMfv1jO8JKN8VKx3hkJBIGBIFDrY+JGy892p2Hx7imz9+133+r75wBSsWNHHno1uJxMcOGhKIB5wjbEHCEBip2bC9L+XY9396GU9s3Wd/LiGLRCKB8xHUhQQBYgmTMerT0TuQ8rk57wEoOGI0niiTf9/169p46IVu9/FVF57Pax8cd7f//McXqaCewohIhzFmdaXHMZEUOmfXAs733ql2oZFpRZm8ZJq3yxqZNsa8JiIX+p6+CthjjOlJDuyH2EK6H2gF3iKLl1tE7gXuBViyZElB40mJIMQNYDCk1s6MZhHSUBtCGiAWpHDzIBo3bOs5kVZLdEvXIQaGI8nrNkam0ziXMShSs6XrUMq2P+0+nBLZ8R4yGjfuDUymqM+2nhMpn5vzHoCCI0bjiTL5993SdSjl8Zv7TqZs/8r7x/I6rqIo1YtWu1AUpRIJiBcA+z2P+5PPbQZuF5H/CTyfaWdjzKPGmNXGmNVz584t6MQpxfFDQp2vUP7aZbOpC2e/JJL11eohHBKsIgZbFxLWLpvNze0LU56/uX2hfX1CqQcNZThH2CJjEwL/sW9qW5DStMD7EdSFhLqQZG1o4P/cnPdQTDOE8TRQ8O97c/vClMdXXXh+yvbXXVrY76+iKNXJqqUtPHD9chXSijJFqZoERGPMWeDflvMc/ggCpHtxN96zVj3TnjJIfs/0xnuvHrdn2jmW99g3ti0o2jO9ammL+7n5PdOFRozGE2UK2td/HdQzrSiKoiiTi7J6pgGSNo8XPJ7pq4EHjTGfTT7+QwBjzF8XeuzJ6L9TFGVqoJ5pRVEmmvEk2CsV8kxnYAdwiYhcBBwAvgzkTDZUFEVRFEVRikPLOJaPsnqmRWQjsBVYISL9IvI7xpgY8HvAz4BdwI+MMd3lHIeiKIqiKMpEU00NfYIS7JXSUO5qHndmeP4nwE/KeW5FURRFUZRKUW2RYCdJ3injWEiCvZKdqklALAQRuQW4Zfny5ZUeiqIoiqIoShrV1tBHyziWj5oU08aY54HnV69efU+lx6IoiqIoiuKnGiPB3mpdSumoSTGtKIqiVB4RuQ74c6Ab+KEx5pVKjkdRqgmNBE8dVEwriqJMQUTke8A64KhTujT5/E3Ad4AQ8Lgx5ltZDmOAM8A07AZciqJ40Ejw1EDFtKIoytTkCeDvgO87T4hICHgYuBFbHO8QkeewhbW/F8DXgNeNMa+KyHzgfwBfmYBxK4rWS1aqipoW0x0dHcdFpDfgpWZgMM/DFLLtHOB4nttOBQq5dpVgosdXrvOV6rjjOU6x++p3MTNLK3lyY8xryaZaXq4C9hhjegBE5IfArcmmWuuyHG4AaAh6QUTuBe5NPjwjIrsDNiv09yvf7SfD70kpmRRzttRPn1HXsuhSEAtMIjpw8H0TGTlbznNW8LgTPW/rnJ2d4HnbGDPp/gGPlmnbnZV+b9X0r5BrNxXGV67zleq44zlOsfvqd7G6/wEXAl2ex1/EtnY4j/8N8HdZ9r8NeAR4ErhuHOMo6Pcr3+3192R813kqjE/n7eL30Tl77F9NR6az8HyZtlVSqfZrN9HjK9f5SnXc8Ryn2H31uziJMcZsBjaX4FCFfvb6u1Ic1X7dKjE+nbeL36faf58mDEneMSh5ICI7TUBPdkVRJhb9LpaGpM3jBZNMQBSRq4EHjTGfTT7+QwBj2zxqDv09UZTqYLJ/F8vaTnwS8milB6AoCqDfxXKxA7hERC4SkXrgy8BzFR7TeNDfE0WpDib1d1Ej04qiKFMQEdkIXIedGHQE+FNjzD+IyOeAb2NX8PieMeYvKzZIRVGUGkDFtKIoiqIoiqIUido8FEVRFEVRFKVIVEwriqIoiqIoSpGomFYURVEURVGUIlExXSJEZIaI7BSRbF3CFEUpIyJymYh8V0SeFpHfrfR4lOpG521FqTyTYd6e8mJaRL4nIkdFpMv3/E0isltE9ojIN/I41B8APyrPKBVl8lOK76IxZpcx5n7gt4BPlXO8SuXQeVtRqgOdt22mfDUPEfk0cAb4vqdxQQh4H7gR6MeuvXondqkof/OCrwEfA2YD04DjxpgXJmb0ijJ5KMV30RhzVER+E/hd4B+NMRsmavzKxKHztqJUBzpv20zWduJ5Y4x5LdkFzMtVwB5jTA+AiPwQuDXZBSxtOVBErgNmAJcDIyLyE2NMopzjVpTJRim+i8njPAc8JyL/B6i5SVnJjc7bilId6LxtM+XFdAYuAPZ7HvcDazJtbIz5IwAR+Sp2hEMnZEUpDQV9F5MC6TagAfhJOQemVB06bytKdTDl5m0V0yXEGPNEpcegKFMZY8wrwCsVHoZSQ+i8rSiVZTLM21M+ATEDB4DFnsetyecURZlY9Luo5Iv+rihKdTDlvosqpoPZAVwiIheJSD3wZeC5Co9JUaYi+l1U8kV/VxSlOphy38UpL6ZFZCOwFVghIv0i8jvGmBjwe8DPgF3Aj4wx3ZUcp6JMdvS7qOSL/q4oSnWg30WbKV8aT1EURVEURVGKZcpHphVFURRFURSlWFRMK4qiKIqiKEqRqJhWFEVRFEVRlCJRMa0oiqIoiqIoRaJiWlEURVEURVGKRMW0oiiKoiiKohSJimlFmSBE5EER+U+VHoeiKIqSG52zlXxRMa0oBSI2+t1RFEWpAXTOVsqN/nIpNYmIXCgivxKRH4jILhF5WkQak6+tF5EdItIlIo+KiCSfv1JE3hGRt0Tkv4lIV/L5UPLxjuTr92U4324R+T7QBSwWkf8pIjtFpFtE/syz7T4R+TMR6RSRd0XkIwHHu0dEtojI9HJdI0VRlGpB52xlMqNiWqllVgB/b4y5DDgN/Lvk839njLnSGNMOTAfWJZ//X8B9xpiPA3HPcX4HGDTGXAlcCdwjIhcFnO+S5PnajDG9wB8ZY1YDHwWuFZGPerY9boxZCfxPIGWZUER+LzmmzxtjRop984qiKDWGztnKpETFtFLL7DfG/DL58z8B1yR/vl5EtovIu8CvA20iMgtoMsZsTW6zwXOczwC/LSJvAduB2diTsJ9eY8w2z+PfEpFO4F+BNuByz2ubk/93ABd6nv9t4Gbgi8aY0XzfqKIoyiRA52xlUhKu9AAUZRwY/2MRmQb8PbDaGLNfRB4EpuU4jgD/3hjzsxzbnXV3sKMg/wm40hgzICJP+M7jTLpxUr9n7wIfB1qBvTnOpyiKMpnQOVuZlGhkWqlllojI1cmf7wLeYGxyPC4i5wFfBDDGnAKGRGRN8vUve47zM+B3RaQOQEQuFZEZOc49E3uiHhSR+diRi3z4V+A+4DkRWZTnPoqiKJMBnbOVSYlGppVaZjfwgIh8D3gP+J/GmGEReQw74eQwsMOz/e8Aj4lIAngVGEw+/zj2sl5nMvHlGPD5bCc2xrwtIv8K/ArYD/wy2/a+fd8Qu9zS/xGRG40xx/PdV1EUpYbROVuZlIgx/lUXRal+RORC4IVkwkq++5xnjDmT/PkbwEJjzH8o0xAVRVGUJDpnK5MZjUwrU4n/S0T+EPv3vhf4amWHoyiKomRB52ylJtDItKIoiqIoiqIUiSYgKoqiKIqiKEqRqJhWFEVRFEVRlCJRMa0oiqIoiqIoRaJiWlEURVEURVGKRMW0oiiKoiiKohTJ/wt4TKmBbJqDpwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+wAAAHbCAYAAABRORC0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxU1f0//tedkB0y2SEbJAYhAiFIANkRUAGpFIkVxCrQSm0JWn+21dB+rMuHNsHt4xa0qEW/VjEqSz8fFVRAhUCFsO+ymJAAARKSTCAZSMic3x/hXma5M3MnmWRmktfz8bA1k7uce++Yc99neR9JCCFARERERERERF5F5+kCEBEREREREZEtBuxEREREREREXogBOxEREREREZEXYsBORERERERE5IUYsBMRERERERF5IQbsRERERERERF6IATsRERERERGRF2LATkREREREROSFGLATEREREREReSEG7ESkeOaZZyBJEiorKz1dFM3mzp2L5ORkTxeDiIioXXhzXT137lx07drV08Ug6lAYsFOn8d5770GSJOWfoKAg9OnTBwsXLsS5c+c8XTwiIqJOj3U1WVu6dCnee+89TxeDyGO6eLoARO3tueeeQ0pKCi5fvozCwkK8+eab+PLLL3HgwAGEhIR4unhERESdHutqki1duhTR0dGYO3eup4tC5BEM2KnTmTJlCoYMGQIAeOihhxAVFYWXX34Z//73v3Hfffd5uHTOmUwmNDQ0ICgoyNNF6dTq6uoQGhrq6WIQEXVIrKuJiJpxSDx1ehMmTAAAFBcXAwBefPFFjBw5ElFRUQgODkZmZiY+++wzm/2MRiMeffRRREdHo1u3bpg2bRpOnz4NSZLwzDPPWGx7+vRp/OpXv0L37t0RGBiI/v3745///Kem8kmShIULF+LDDz9E//79ERgYiHXr1rlUVvkYa9aswYABA5QyyMdx5OTJk+jduzcGDBhgdzjiZ599BkmS8P3339v87h//+AckScKBAwcAAGfPnsW8efOQmJiIwMBAxMXF4ec//zlKSkqclkUuf1BQEAYMGIDVq1erbmcymfDKK6+gf//+CAoKQvfu3fHwww+jurraZrtnnnkG8fHxCAkJwfjx43Ho0CEkJydbtOTLQzS///57LFiwALGxsUhMTFR+v3btWowZMwahoaHo1q0bpk6dioMHD9qU68iRI7jnnnsQGRmJoKAgDBkyBP/7v/9rsU1jYyOeffZZ3HjjjQgKCkJUVBRGjx6Nb775xun9ISLqqFhXO+ZNdTUA/PTTT5g0aRJCQ0MRHx+P5557DkIIi2201NXJyck4ePAgvv/+e2WaxK233oqamhr4+fnhtddeU7atrKyETqdDVFSUxbl+97vfoUePHhbn3rZtGyZPngy9Xo+QkBCMGzcOW7ZssbkOLd+J7777DpIk4ZNPPsHf/vY3JCYmIigoCBMnTsTx48dtjqnl3BcvXsRjjz2G5ORkBAYGIjY2Frfffjt27dqlbHPs2DFkZWWhR48eCAoKQmJiImbNmgWDweDo0ZAPYg87dXonTpwAAERFRQEAXn31VUybNg33338/Ghoa8PHHH+MXv/gFPv/8c0ydOlXZb+7cufjkk0/wwAMPYPjw4fj+++8tfi87d+4chg8frlTEMTExWLt2LX7961+jtrYWjz32mNMybty4EZ988gkWLlyI6OhoJcma1rICQGFhIVatWoUFCxagW7dueO2115CVlYXS0lLl2tXuzYQJExAZGYlvvvkG0dHRqttNnToVXbt2xSeffIJx48ZZ/K6goAD9+/fHgAEDAABZWVk4ePAgHnnkESQnJ+P8+fP45ptvUFpa6jB53Ndff42srCz069cPubm5uHDhgvIyYe3hhx/Ge++9h3nz5uHRRx9FcXEx3njjDezevRtbtmyBv78/AGDRokV4/vnncdddd2HSpEnYu3cvJk2ahMuXL6uWYcGCBYiJicFf//pX1NXVAQA++OADzJkzB5MmTcKSJUtQX1+PN998E6NHj8bu3buVazp48CBGjRqFhIQE5OTkIDQ0FJ988gmmT5+OlStX4u677wbQnEwoNzcXDz30EIYNG4ba2lrs2LEDu3btwu233273/hARdWSsq32jrgaApqYmTJ48GcOHD8fzzz+PdevW4emnn8bVq1fx3HPPKdtpqatfeeUVPPLII+jatSv+8pe/AAC6d++O8PBwDBgwAJs2bcKjjz6q3DtJklBVVYVDhw6hf//+AIDNmzdjzJgxFs9pypQpyMzMxNNPPw2dTofly5djwoQJ2Lx5M4YNGwbA9e9EXl4edDod/vjHP8JgMOD555/H/fffj23btrl87t/+9rf47LPPsHDhQvTr1w8XLlxAYWEhDh8+jMGDB6OhoQGTJk3ClStX8Mgjj6BHjx44ffo0Pv/8c9TU1ECv1zt8RuRjBFEnsXz5cgFArF+/XlRUVIiysjLx8ccfi6ioKBEcHCxOnTolhBCivr7eYr+GhgYxYMAAMWHCBOWznTt3CgDiscces9h27ty5AoB4+umnlc9+/etfi7i4OFFZWWmx7axZs4Rer7c5nzUAQqfTiYMHD9r8TktZ5WMEBASI48ePK5/t3btXABCvv/668tnTTz8tAIiKigpx+PBhER8fL4YOHSqqqqocllEIIe677z4RGxsrrl69qnxWXl4udDqdeO6554QQQlRXVwsA4oUXXnB6PGuDBg0ScXFxoqamRvns66+/FgBEr169lM82b94sAIgPP/zQYv9169ZZfH727FnRpUsXMX36dIvtnnnmGQFAzJkzR/lM/u6MHj3a4vouXrwowsPDxfz58y2OcfbsWaHX6y0+nzhxokhPTxeXL19WPjOZTGLkyJHixhtvVD7LyMgQU6dOdeHOEBF1HKyrfbuunjNnjgAgHnnkEeUzk8kkpk6dKgICAkRFRYUQQntdLYQQ/fv3F+PGjbM5V3Z2tujevbvy8+OPPy7Gjh0rYmNjxZtvvimEEOLChQtCkiTx6quvKmW58cYbxaRJk4TJZFL2ra+vFykpKeL2229XPtP6nfj2228FAHHTTTeJK1euKNu9+uqrAoDYv3+/y+fW6/UiOztb9R4LIcTu3bsFAPHpp5/a3YY6Dg6Jp07ntttuQ0xMDJKSkjBr1ix07doVq1evRkJCAgAgODhY2ba6uhoGgwFjxoyxGIYkD09bsGCBxbEfeeQRi5+FEFi5ciXuuusuCCFQWVmp/DNp0iQYDAaL49ozbtw49OvXz+ZzLWU1v+7U1FTl54EDByIsLAw//fSTzbYHDhzAuHHjkJycjPXr1yMiIsJpGWfOnInz58/ju+++Uz777LPPYDKZMHPmTKW8AQEB+O6772yGpztSXl6OPXv2YM6cORatxrfffrvNffn000+h1+tx++23W9zvzMxMdO3aFd9++y0AYMOGDbh69arTZ2hu/vz58PPzU37+5ptvUFNTg/vuu8/iXH5+frjllluUc1VVVWHjxo249957cfHiRWW7CxcuYNKkSTh27BhOnz4NAAgPD8fBgwdx7NgxzfeHiKijYV3dzJfqanMLFy5U/l3uoW5oaMD69esBaK+rHRkzZgzOnTuHH3/8EUBzT/rYsWMxZswYbN68GUBzr7sQQulh37NnD44dO4bZs2fjwoULynnr6uowceJEbNq0CSaTqUXfiXnz5iEgIMCifACUZ6f13EDzu8C2bdtw5swZ1WuX34W++uor1NfXO71X5Ns4JJ46nfz8fPTp0wddunRB9+7d0bdvX+h019uuPv/8cyxevBh79uzBlStXlM8lSVL+/eTJk9DpdEhJSbE4du/evS1+rqioQE1NDZYtW4Zly5apluf8+fNOy2x9HlfKKuvZs6fNZxEREaqV8V133YXu3bvjq6++0ryeqjwfq6CgABMnTgTQPMRu0KBB6NOnDwAgMDAQS5YswR/+8Ad0794dw4cPx89+9jM8+OCDNvPLzJ08eRIAcOONN9r8rm/fvjZzugwGA2JjY1WPJd9v+ZjWzywyMtLuS4/1c5CDanlupbWwsDAAwPHjxyGEwFNPPYWnnnrKbrkSEhLw3HPP4ec//zn69OmDAQMGYPLkyXjggQcwcOBA1f2IiDoi1tXX+UpdLdPpdLjhhhssPpOPLc+B11pXOyIHxJs3b0ZiYiJ2796NxYsXIyYmBi+++KLyu7CwMGRkZCjnBYA5c+bYPa7BYEBjY6PL3wnrZye/S8jPTuu5IyIi8Pzzz2POnDlISkpCZmYm7rzzTjz44IPKfU1JScHjjz+Ol19+GR9++CHGjBmDadOm4Ze//CWHw3dADNip0xk2bJiSedba5s2bMW3aNIwdOxZLly5FXFwc/P39sXz5cnz00Ucun0tuKf3lL39p9w+0lkDMvHW+pWU17xk2J6ySwADNc9fef/99fPjhh3j44Yedlg9oruCnT5+O1atXY+nSpTh37hy2bNmCv//97xbbPfbYY7jrrruwZs0afPXVV3jqqaeQm5uLjRs34uabb9Z0LkdMJhNiY2Px4Ycfqv4+Jiamxce2fg7y8/3ggw9UX2K6dOlisd0f//hHTJo0SfXY8gvk2LFjceLECfz73//G119/jXfeeQf/8z//g7feegsPPfRQi8tORORLWFdbYl1tKz4+HikpKdi0aROSk5MhhMCIESMQExOD3//+9zh58iQ2b96MkSNHKo098rN+4YUXMGjQINXjdu3aFRcuXADg2nfC2bPTem4AuPfeezFmzBisXr0aX3/9NV544QUsWbIEq1atwpQpUwAAL730EubOnau8Lzz66KPIzc3FDz/8oJrfh3wXA3YiMytXrkRQUBC++uorBAYGKp8vX77cYrtevXrBZDKhuLjYotfXOhtoTEwMunXrhqamJtx2220eKWtLvPDCC+jSpYuS9Gb27Nma9ps5cybef/99bNiwAYcPH4YQQhliZy41NRV/+MMf8Ic//AHHjh3DoEGD8NJLL+Ff//qX6nF79eoFAKrDxOWhcObHXr9+PUaNGqX68mR9zOPHj1v0ily4cEHzEEB52GJsbKzD5yu3iPv7+2v6HkRGRmLevHmYN28eLl26hLFjx+KZZ55hwE5EBNbVMm+rq2Umkwk//fST0qsOAEePHgUAJWGd1roaUB+JIBszZgw2bdqElJQUDBo0CN26dUNGRgb0ej3WrVuHXbt24dlnn7W4JqB5BJyjZ90W3wmt55bFxcVhwYIFWLBgAc6fP4/Bgwfjb3/7mxKwA0B6ejrS09PxX//1X9i6dStGjRqFt956C4sXL3ZLmck7cA47kRk/Pz9IkoSmpibls5KSEqxZs8ZiO7mXdOnSpRafv/766zbHy8rKwsqVK5WlUsxVVFS0eVlbQpIkLFu2DPfccw/mzJljs/SYPbfddhsiIyNRUFCAgoICDBs2zCIYrq+vt8nAnpqaim7dulkME7QWFxeHQYMG4f3337dYruSbb77BoUOHLLa999570dTUhP/+7/+2Oc7Vq1dRU1MDAJg4cSK6dOmCN99802KbN954Q9O1As3fg7CwMPz9739HY2Ojze/l5xsbG4tbb70V//jHP1BeXm53OwBKq76sa9eu6N27t8P7Q0TUmbCubuZtdbU587pUCIE33ngD/v7+yjB8rXU1AISGhlr8bG7MmDEoKSlBQUGBMkRep9Nh5MiRePnll9HY2GiRIT4zMxOpqal48cUXcenSJZvjyc+6Lb4TWs/d1NRkszRbbGws4uPjlftfW1uLq1evWmyTnp4OnU7H94UOiD3sRGamTp2Kl19+GZMnT8bs2bNx/vx55Ofno3fv3ti3b5+yXWZmJrKysvDKK6/gwoULylIxcguyeWtwXl4evv32W9xyyy2YP38++vXrh6qqKuzatQvr169HVVVVm5a1pXQ6Hf71r39h+vTpuPfee/Hll1/anast8/f3x4wZM/Dxxx+jrq5OmUMmO3r0KCZOnIh7770X/fr1Q5cuXbB69WqcO3cOs2bNcnjs3NxcTJ06FaNHj8avfvUrVFVV4fXXX0f//v0tKr5x48bh4YcfRm5uLvbs2YM77rgD/v7+OHbsGD799FO8+uqruOeee9C9e3f8/ve/x0svvYRp06Zh8uTJ2Lt3L9auXYvo6GiHLfqysLAwvPnmm3jggQcwePBgzJo1CzExMSgtLcUXX3yBUaNGKS8t+fn5GD16NNLT0zF//nzccMMNOHfuHP7zn//g1KlT2Lt3LwCgX79+uPXWW5GZmYnIyEjs2LFDWdqFiIhYV5vztroaAIKCgrBu3TrMmTMHt9xyC9auXYsvvvgCf/7zn5Wh7lrraqD5Ob755ptYvHgxevfujdjYWOUa5WD8xx9/tBjWP3bsWKxduxaBgYEYOnSoxf165513MGXKFPTv3x/z5s1DQkICTp8+jW+//RZhYWH4v//7PwDu/05oPffFixeRmJiIe+65BxkZGejatSvWr1+PoqIivPTSSwCal4dbuHAhfvGLX6BPnz64evUqPvjgA6WhgToYD2SmJ/IIeamYoqIih9u9++674sYbbxSBgYEiLS1NLF++XFlCxVxdXZ3Izs4WkZGRomvXrmL69Onixx9/FABEXl6exbbnzp0T2dnZIikpSfj7+4sePXqIiRMnimXLljktNwC7S3toLau9Y/Tq1cti+TLzpWJk9fX1Yty4caJr167ihx9+cFreb775RgAQkiSJsrIyi99VVlaK7OxskZaWJkJDQ4Verxe33HKL+OSTT5weVwghVq5cKW666SYRGBgo+vXrJ1atWiXmzJljsaybbNmyZSIzM1MEBweLbt26ifT0dPHEE0+IM2fOKNtcvXpVPPXUU6JHjx4iODhYTJgwQRw+fFhERUWJ3/72t8p2zr473377rZg0aZLQ6/UiKChIpKamirlz54odO3ZYbHfixAnx4IMPih49egh/f3+RkJAgfvazn4nPPvtM2Wbx4sVi2LBhIjw8XAQHB4u0tDTxt7/9TTQ0NGi6R0REvox1tW/X1XPmzBGhoaHixIkT4o477hAhISGie/fu4umnnxZNTU0222upq8+ePSumTp0qunXrJgDYLPEWGxsrAIhz584pnxUWFgoAYsyYMarl3L17t5gxY4aIiooSgYGBolevXuLee+8VGzZssNhOy3dCXtbNeom14uJiAUAsX77cpXNfuXJF/OlPfxIZGRmiW7duIjQ0VGRkZIilS5cqx/jpp5/Er371K5GamiqCgoJEZGSkGD9+vFi/fr3q9ZJvk4RQyWJBRC2yZ88e3HzzzfjXv/6F+++/39PFoRaoqalBREQEFi9ejL/85S+eLg4REbkZ62oi8iWcw07UQkaj0eazV155BTqdDmPHjvVAichV9p4hANx6663tXBoiInI31tVE5Os4h52ohZ5//nns3LkT48ePR5cuXbB27VqsXbsWv/nNb5CUlOTp4pEGBQUFeO+993DnnXeia9euKCwsxIoVK3DHHXdg1KhRni4eERG1EutqIvJ1HBJP1ELffPMNnn32WRw6dAiXLl1Cz5498cADD+Avf/mLsv42ebddu3bhiSeewJ49e1BbW4vu3bsjKysLixcvVtZCJSIi38W6moh8HQN2IiIiIiIiIi/EOexEREREREREXogBOxEREREREZEX6vSTd0wmE86cOYNu3bpBkiRPF4eIiDo5IQQuXryI+Ph46HRsV3cH1vVERORttNb3nT5gP3PmDLOEEhGR1ykrK0NiYqKni+HT8vPzkZ+fj4aGBpw4ccLTxSEiIrLhrL7v9EnnDAYDwsPDUVZWhrCwME8Xh4iIOrna2lokJSWhpqYGer3e08XpEFjXExGRt9Fa33f6HnZ5aFxYWBgrcSIi8hocuu0+rOuJiMhbOavvOTmOiIiIiIiIyAsxYCciIiIiIiLyQgzYiYiIiIiIiLwQA3YiIiIiIiIiL8SAnYiIiIiIiMgLMWAnIiIiIiIi8kIM2ImIiIiIiIi8UKcN2PPz89GvXz8MHTrU00UhIiIiIiIistFpA/bs7GwcOnQIRUVFni4KERERERERkY1OG7ATEREREREReTMG7EREREREREReiAE7ERERERERkRdiwE5ERGSl3GDE1hOVKDcYPV0UIiIi6sS6eLoARERE3qSgqBSLVu2HSQA6CcidkY6ZQ3t6ulhERETUCbGHnYiI6Jpyg1EJ1gHAJIA/rzrAnnYiIiLyCAbsRETUaVkPfS+urFOCdVmTECiprHfpOERERETuwCHxRETUKakNfR/bJwY6CRZBu58kITk6xKXjcAg9ERGRdys3GFFcWYeU6FDE6YM9XRy72MNORESdjr2h70BzwO0nSQCag/W/zxhgtyLnEHoiIiLfU1BUilF5GzH77W0YlbcRBUWlni6SXexhJyKiTsfR0PeZQ3tibJ8YlFTWIzk6xGGru6PjeHNrPRERUWdlr7F9bJ8Yr6y7GbATEVGnkxId6nDoe5w+WFOl7ew4RERE5F18rbGdQ+KJiKjTidMHuzT0va2PQ0RERO1Dbmw3582N7exhJyKiTsmVoe/tcRwiIiJqe3Jj+59XHUCTEF7f2M6AnYiIOi2tQ9/b6zhERETU9nypsZ0BOxEREREREXUqvtLYzjnsRERERERERF6IATsRERERERGRF2LATkRERF6trKwMt956K/r164eBAwfi008/9XSRiDqccoMRW09Uotxg9HRR2k1nvGZ7eC+8F+ewExERkVfr0qULXnnlFQwaNAhnz55FZmYm7rzzToSGhnq6aEQdQkFRKRat2g+TAHQSkDsjHTOH9vR0sdpUZ7zmcoMRxZV1SIkOtZi73RnvhS9hDzsREXkttvgTAMTFxWHQoEEAgB49eiA6OhpVVVUeLhVRx1BuMCrBGgCYBPDnVQc69N/dznjNBUWlGJW3EbPf3oZReRtRUFQKwH33gvV122HATkREXsneywV5n02bNuGuu+5CfHw8JEnCmjVrbLbJz89HcnIygoKCcMstt2D79u0tOtfOnTvR1NSEpKSk1habiAAUV9YpwZqsSQiUVNZ7pkDtoLNds6Og3B33orX1NYN9xxiwExGR1+mMvR++rK6uDhkZGcjPz1f9fUFBAR5//HE8/fTT2LVrFzIyMjBp0iScP39e2WbQoEEYMGCAzT9nzpxRtqmqqsKDDz6IZcuWtfk1EXUWKdGh0EmWn/lJEpKjQzxToHbQ2a7ZUVDe2nvR2vqajfPOMWAnIiKv09l6P3zdlClTsHjxYtx9992qv3/55Zcxf/58zJs3D/369cNbb72FkJAQ/POf/1S22bNnDw4cOGDzT3x8PADgypUrmD59OnJycjBy5EiH5bly5Qpqa2st/iEidXH6YOTOSIef1By1+UkS/j5jgE+sT91S3nDN7dmr7Cgob+29aE19zcZ5bZh0joiIvI78cmH+EuCsxd9eMh3yrIaGBuzcuROLFi1SPtPpdLjtttvwn//8R9MxhBCYO3cuJkyYgAceeMDp9rm5uXj22WdbXGaizmbm0J4Y2ycGJZX1ShDX0Xnymts7yZsclP951QE0CWETlLfmXrSkvpY5CvY7w3dQKwbsRETkdZy9XFhjhlvvVVlZiaamJnTv3t3i8+7du+PIkSOajrFlyxYUFBRg4MCByvz4Dz74AOnp6arbL1q0CI8//rjyc21tLee8EzkRpw/udEGSJ67ZXq/y2D4xbVoWZ0F5S++Fq/W1udYE+50JA3YiIvJKWlv8PfXyQ+1n9OjRMJlMmrcPDAxEYGBgG5aIiKhlPNmr3FYNFC3toW9NsN+ZMGAnIiKvpeXlgkPqvFt0dDT8/Pxw7tw5i8/PnTuHHj16eKhURESe0VF7lVvaGOBL0zE8NfWOSeeIiMindbZsv74mICAAmZmZ2LBhg/KZyWTChg0bMGLECA+WjIio/XlDwjtvE6cPxojUKK++B57MZs8ediIi8mkcUud5ly5dwvHjx5Wfi4uLsWfPHkRGRqJnz554/PHHMWfOHAwZMgTDhg3DK6+8grq6OsybN8+DpSYi8gxf6lX2Ve7sDff01DsG7ERE5PP48uNZO3bswPjx45Wf5YRvc+bMwXvvvYeZM2eioqICf/3rX3H27FkMGjQI69ats0lE5275+fnIz89HU1NTm56HiMhVnTHJX3txdyJaT0+9k4QQwvlmHVdtbS30ej0MBgPCwsI8XRwiIurkWC+5H+8pEVHnUG4wYlTeRpscAYU541scXLfFMQHtdRPnsBMREREREZHPc9Qb3lKezjvAIfFEREREROQ2nsqm3RnxXltqqyz8npx6x4CdiIhc5o4XhLZ4yWjrFxe+GBEROebu+cOdiat1jLN73RnrrLZMROupvAMM2ImIyCXueBlrixe6tn5J5EsoEZFjns6mrYW3BrGu1jHO7nVnrrM6WiJazmEnIiLN7L0glBuM7XqM9jhmex6f2kZ+fj769euHoUOHerooRJ1CW8wfdidPrqXtSEvqGEf3ur3rrHKDEVtPVHpVnegLa7trxYCdiIg0c8fLWFu80LX1S6K3v4SSuuzsbBw6dAhFRUWeLgpRpyDPHzbnjvnD7uDNDa8tqWNCA/xgdauVe93SOqslgbe3NoJ0JAzYiYhIM3e8jLXFC11bvyR680soEZG38HQ2bUe8ueFVrY7RSUBIgHqoVlBUiruXboX55Zjfa3vHq7x02W4w3pLA25sbQToSBuxERKSZ9cuYDsATk/uqvozZa6mXjyFXQDrA5oXO1Vb+1rwkajmXN7+EEhF5k5lDe6IwZzxWzB+OwpzxXjNv2psbXq3rGKA5+L176VabwNk6SAaag/FVC0Yo99r6eJIECAE8smKPajDe0sDbmxtBOhImnSMiIpfMHNoTNcZG5K09ApMAlqw7gvAQf4uXMk3JbiQA4tr/m2lpopyWJJlx5VwdLYkNEVFb8VQ2bUfcmT3cXYnr5OOEBvghKTIEyx4cjIfe36n0nKsl7VMLkk0CqG8wWXwm11m7TlZj4Ue7XT6mHHg7uj61JdQcjQyglmHATkRELik3GLFk7REIO5lpnWWudfR7AK3KMOzKS2JLshl740soERFp446G15Y2KpsH+QCwvLAYb28uthjWLkmAVdxsEzi7ss54nD4YEaF1Tg4KXpEAACAASURBVI8pz4e3HmLvbPSBdSMIcH1kQEvuC+tXdZ02YM/Pz0d+fj6ampo8XRQiIp/irCW+Nb8XEC1q5W+L6yDfx7qeiKxpbXjdW1aN7SVVGJYciYykCAAtX7bOPMiXB5VZB9EAlIZwc9aBs6sjBZwF+HLZ7M2Hd2bm0J5I69EN0/O3OuzFV9OZl55zRacN2LOzs5GdnY3a2lro9XpPF4eIyGc4q/xb+3utPQdtfR3k+1jXE1FL/OGTPVi567Tyc9bgBLx07yC7Db27TlbDJKogSRIye0XY5GQxD/LVAnVrOgAmNNeHT0yxzRPjbKSAda+1vQDf3nz4ZQ8ORnBAF5QbjJqC9rqGJqe9+NZa2vjRUr7ck99pA3YiImoZ68pfJwG/Gp1s9/d+koQnpvRFcWUdztdeRl1DE56ckobn1/6o+vLw69EpeLewGCbRuuRuapWz1pcYIurcfPnlnlpnb1m1RbAOACt3ncagnuEYmKC3aeiVJCD7o93XfwaQl3W9p1gtyHfET5Lw23E3YOl3J5rzxKw9gvBgf5ueZ3sjBez1WqsF+Pbmwz/0/3ZCuNDr3ZIG8OXX6nlzbTXKzdd78hmwExGRy+TKf/mWYry9qXke3ruFxUolaP5ysO9UDZZcS1An00nAk5PTMDAxXHl5sB4y+JuxKZg3KsVtcwwBaH6JIaLOy9df7ql1tpdUqX7+1JqD0EnA3TcnYM3uM0qDtXXQKdBc18g9xWrzw+3RScDMYUlY+t0Jl4eXA/Z7rdN6dENdQ5NNA5RaoA3AJkeNvf1lrjaAlxuMeHtzser1u3uUW3v35LcFBuxERNRi75glzLGuBOWK8P53flBtwX9+3Y8ozBmvOixPAHh3cwnmjUpxuUxqlfOilfsBs5cSe2Ulos6tI7zcU+sMS460+zuTANbsPoNVC0agvsGEykuX8ciKParblVTWY9PRCpv54dK1/5F7sB8afQOmDuyBgh1l+GhbGT7aZrv+uVrPs9ooEHtD9uX55dYNUHH6YDw5JU1pVJeH4mvd37wMrjSAF1faJsIDmu8F89XYYsBOREQtoqUSdDQU0JVEda0tlwmw6d7wtQqbiNpeR3i5p9bJSIrAnQN64MsDZ1V/3yQE6htMGJEahXKDUbX3XF7aTG1++OoFIxEbFmQR2P7j+xP4aFuZ3TJZDy+3NwrEbo/5tf+3boAqKCpVgnUJwO9uTcWb35/QtL/cGGFdBrX/TqwbF1KiQ23umwRgntn0OnfpCPlquEgeERG1iFwJmrOuBNW2UdtWy7FaUy4d4LbjE1HH5c6/ReS7fjmil93fWX8f5o+xHAkmAfj16BSUVRvtrpcepw/GiNQoZYRZ3tojDstzR//uKK6sQ7nBaHcUiJwgLndGOvyk5i+xWv0rN0CpjWx76/uf8OSUNKf7bzh8zm4ZrBUUlWJU3kbMfnsbRuVtREGR7QgC5ca1Aet74ov5atjDTkRELaJlzpraGq2AbYXpzgRw9o4FgAnmiMghJqPs3OSe4NAAP9Weap0E5ftg3cs9a2hPQBJYsa0Mb28uhgQ4XNtcPldVXYPT+e1rD5zF2gNnoZOaGwPsjQIBgKTIEGXIfkiADncv3arau2xvNMnAhHAU5oxHSWW96v5A83x+LVnh7TUuvHrfIJv9xbVpBG3x35qv56thwE5ERA45ypYsV4I7S6oBCcjsFWGzv3lFWd/QiOLKegxNjlDWtVXbrrUVqr1juXp8Zor2bVyHnVrC11/u3aEz/u2zTnw6+sZobDlW2by8GoCHzBKhqgWiHxeVQojrAbpA83HkwN+88cf8XK4wCeDdwmLVhoB9p2qUnDHmQ9QdNUDZGypuntsld0Y6Fq3cbzG3Xa3YaiNR7DUKQLTfEq4yX85XIwkhXPyqdCzy2qwGgwFhYWGeLg4RkVfRki1Za0ZlX8u87Knysl5yP95TIu187W+1O5QbjBiVt9EmuJQkYP7oGzBvdLJFsPf5vjNYaLaUmyNv3HczoroGKoGwvXO5YvYtSfh4e5nSEPDElL42q7H4SZJFYle1BqiColKbYF7tWX/wnxI89e+Ddstjb1+1a5XLtelohaZzd2Ra6yb2sBMRkSot2ZK1ZlT2tczLvlZeIiJ36Mh/+xyNGrCXIFVc69GeOrCHsu+moxXIWbnfZlvdtczv1j3fmckRFudzdV12a5IErNhWpvTgPzG5L9IT9A6TJZonggWg/Gw9mgRobowQQmBIcqQyGuCvDoJ1nQSsWjDCZtScfB57PfwcyaIdA3YiIlLV0izwavPYfC3zsq+Vl4jIHTrq3z5nowbsZVcHri1rtnSrsgybdVAOXD8mYJsrBQC2nqi0yJBu71zmx/vduFSL9dhl5mOjBZqXSF21YITNMXUSUHnpMvaWVePzfeXKMqwSgLwsy6XdAOCfhcUWS7VKAHKmpGHJuiMO59ibBFCwo0w1YAccTzHx5WHq7YkBOxERqdKyFIrW5VJ8bVkVXysvEfkOb54f3hH/9mkZNSD3BFvP1ZYJs33VLBzfWzmeeXC66WiFMiRcThj3q9EpFr3OFuuy4/pc+Z0nq50mowOuLzNnccxrx1NbI14AyFm532Jpt5yV+20bBgDkOsleL/toWxl6RYbi4XGpqr9nYN46XNaNiIhUaVkKRetyKb62rIqvlZeIfIPmJa48pCP+7XM0asDc2D4xeG32zZg9rKeynJnWQOm1jceV5ykv2Xa+9jJyVlo2FLy9uRgjczcCAApzxmPF/OHYumgCtuZMwIr5w7Fl0QT8+c5+iNMHY+vxSk3nlhtUxvaJwSuzMvDbcSmqowDMCQA7S6qVxgxXRujbW31tydojqsu6uVu5wYitJyrb5Vzegj3sRERexnxZmbqGJpd6YRz13Kj9rtxgxM6T1aiqu4LI0EBk9ro+125vWTVqLzdi2YODcbnRBJMQ6BkZYjG0D7DNAv9TZR32llUjNiyouYfg2lw4Z/PV2qrXSb5G8zl5WqiV15t7xojIu/nK/PCONrdYy6gB6yHzM4cmYXTvaCRGBKsua6bG/HluOlqBHDuBsEDzdoU54zEiNUr53Drvy4rtZU7PKS8zt+lohctZ5yXJ9fn0Ogn43a2pyP/2hM3vTGi7Zdlk7ZUQ0dvqegbsREReRG2pF62VkqOKTO13AGyGwclz27YXV2HlrtN2z2V9/Dh9MF786ke7+5jPmVOr/NqqErYe6mc9d88Z82F8nTFzMhG5jy/ND+9IQ5gdJT4D1BtSVmwvw4rtZfjNmBQ8OSXNJgO7PU1CYGdJdXOvtYPtzXv41QLD4so6p73eOgCrF4wEAEzP3+paL7kEJEYEY99pgwt7Na81/+Z3tsE60PZTJ9qrwcsb63oG7EREXsK6MpJpqZQcVWQAbH63aOV+CMl2yJyw2tYe6zLtLat2GOALNJ9T7RraqhJWG+rnqBxajuXtPWNE5L064vxwXyGPGthZUg1IQGav6wnSHPUyL9tc7DABnDUdgNW7TzutQ+2tmz62T4wyws5RYjoJQG5WOo6cvWi3J99uGSXg7psTVIN8HYBZw5JwU1wY/vrvgza//7ioVLVM7TF1oj0avLy1rmfATkTkJRy9NDirlBxVZALCthEAsDvBTevwOPMybS+pcrq9veFybVUJ27ufLRm250s9Y3Rdfn4+8vPz0dTU5OmiEDnt6aW2ZT5s3LznNDTADxLsz/k2CeCt739Czp1pyFt7xGHPuQnAhiPnHZZDB2DmsMTmY5mdI2flfkjXgnQJwOgbo7HlWKVqEjxJAtJ6dMPd17LXOyJJwOuzbkZwgA7FlfVIiQ7BQ+/vVM10v3rBSGQkRaDcYFRdd12tTn1q6k24c2Bcm3yPzYemt0eDl7fW9QzYiYi8hKOlXpxVSs4qMpvlXoDmHnaVczlbbkbt+MOSI51urwNUr6GtKmF799NeOVw9FnvGvF92djays7NRW1sLvV7v6eIQdbj54b7CXs9pjbERS9Y6XrYMaA7aEsODHWdyc0InAaN7R6PweCU+2mY7P13gep0sAGw+VglJAqYOiMMX+8sttjUJoKikWlNdLQSw73QN3tlcrDQGqO1mEkB9Q3PzwPrD51SPZb2vnyS1WbCuNjS9rRu8vLWuZ5Z4IiIvYZ2dV6alUnKU2Vftd7lZ6cibkQ6rU0G6VilmDU5wWFbrMmUkRTjcRx6+p3YNbZWVWD6u+TU6KoeWY3WkzMlE5BlyFnFv/PvRUTNw2+s5zdM4N91PkmASojXxOkwC2HSs0qUkb0IAaw+Uq/4uJTpEyWbviE4C3t5UrJzX3ul1UnNjdkFRKf66xrZ3HQDuG9azXepBR0PT5ez6hTnj3T633FvrekkIZwMpOja51d1gMCAsLMzTxSEiH+eOzKLlBiNKKusREqBDfYNJadl1dtxygxE7SqpgMDYiPCQASRHBSpZ5ANhRUgWdJGHwtbl7xZV1MDZcxZbjF3Dp8lX0ig5Bz8gQJZP6hsNn8e2PFRjfNwbRXQNRVFKNlOgQhAT422RNlzPan66ux39OXEBMWCASwoOhkySEBwcgMznCbpZ182PI1+tKRnZn25UbjNh1shpCQClHS8nPpi17xlgvuR/vKZFz3phsy13KDUZlPXSZDlAdbm5NTlY6tk+MzTE8acX84SitqrNZe92cJAEPjU7B25uLbfY37y2XJCBvhuNrlABsXTQBABzWg+54D9p6ohKz395m8/mK+cMtMuu3lfao6wHtdROHxBMRuYm7Xnass/NqOa5adnmZ3AAvcD3ZjKOkONbbfPhDqcX+uTPSMSI1yuE5zc+dd61H216meuvPrI/t6F5q2S5OH4ypA91T4XakzMlERDJvTbblLtb5A+Sl2wqKyjQF4PJ9MD9Ge9FdC8Sth6InR4dgRGqUMsUiJEBnswSdJICALrYDqnUA3p6TCWODCZIEDL62pOvWE/ZHANx3SxIAx/Wgu96DPD003dvqeg6JJyJyA3svO60dVqjluPayy8sEYJHYZuUuxxlsrbex3v/Pqw5gb1m1pmzyclZ26+1NojlQz1lpe21q26rdy7a650REHZW9Ie+Okm15G+tr0DqMf+bQnijMGY/fjE2BEM1LtwkBZdqUnyRhzI3RNvsJQLkP8jHeuO9mTcPR3WHBranIy0pXzqeTgCcm90VxZR3KDUbE6YORHB2C7SVVqglml9pZM33+/9uJuoarmDowXglO5UBZzUfbyjAidyP+8b36sm7urJO9dWi6p7CHnYjIDdoz07n1cR1ll28LTUJoTnYDNL8YqG2vtr+9Y6vdS2/N5kpE5I0c9X56ukdTK+trMB8NprVH953NxUojtACgE8B/T+8PfbA/Ljc2YfOxSovtre9DnD4YP8sIRl3DVYuyPDklDdMy4rHrZDUWfrS7VfPdzb3x7QlkDU6wCITlDPPORs05SiKrNopi09EKp1nnc9ceASTg4bGpFp9rqZNdGS7PBI3XsYediMgN1Fql3Znp3NFxHbWItwU/ScLQ5AjN59QBqtvrpOvD9Z0dW+1ettU9JyLqaJz1fnpjj6ZaT7r1NZiPBtPSo6sWVJoAPLXmIB5ZsQd/+my/xe90gM19kMtVY2y8ntVdAOHB/ojTByMiNMBtwbps5a7TFj9rGTXnJ0l4ckqaw7rafBSFfH+1lH3J2iM29zk0wE9125CA5nCzoKgUo/I2Yvbb2zAqbyMKikqdnsebEzS2JwbsRERu0NaZzh0d1152eZlkFhj7SRKyBifY3VZtG+v9/z5jADKSIhyeUzk3mrOyW2/vJ0nInZGOvCzba1PbVu1eeuMLJhGRN9Iy5F0e7t1WGbgdsQ7O1YI7LaPJnA3jt9fAbe+wwmpb83LlfnnEoqd+0ar9+L+9p+0GrjI5+PKTJPxmTIrDbVvq9xN6ozBnPB4em2qzWoo580ZuV0brmQRs7nNdQ5PqtvUNJtXGFvl+cRqbcxwST0TkJm01fEvLcc23kbPLW2eZN9//j5P6KtueqjZCCCApMtgiS7u8jdr+js55qtqI6voGi+zwjq5D7TOt95JD5oiInNM65N0Tybash7k/OSUNS8yWW5N7zlctGOFwiDfgfJSVWvI5R8cTZsPGATjM3WISwCMr9tiMHDMnAVidPVKpa/937xkHW7fc698eR3xEsFJHqrVI6CTL0QNq3xF7HI16U/uOqY5suHa/OtqKBG2BATsRkRu562VHXqJNkiRkXsveaj0kz3wemPXyavJSbsWVdco+x87X4j8/VWJiWiwykiJwvvYytpdU4YboUAQHNFcHAgKFxyqwp6wGE9JiMfGmHgCAvWXVOHCmBvUNjcpycD9V1mFYciRGpEZhw+Gz2HjkPCakxWLqwHibazEvq1pPufVnzpZ/k69R3lfL/kREnZV1oOotI5LUel6XqKyNLuc3mZYRjzV71INcrddk3tC75XgF3lBJymZ97pLKeggITcGso03uG5aE2LAgFFfW4XztZSxZe8Rmm/FpMQgN8MPn+846P5kd5vPTiyvrVMv02qyb8bOM6/W1lvnrgPNRb/a+Y/YaA7xhRQJvf2dgwE5E5GUKikqRs/L6PDJ5aTS59dlR0h2Y7QM0vziYr7UKAK9tOI6ekcEorXI8DO3DbWUY3DMcKdGhNvPnzEWG+qOqrtFin1ULRqmWVUsrurPl32Ralrhjyz0RUTNvHJFkr+fVut4CgMVfHFY9hk5qDj7NR3Q5I293/zuOg3VZSIAOsWFBmnug7ZKgrHOudo0A8P2RCqzOHokv959t1bnkhga1nm/dtbLIWea1zl/XAVi1YAQykiIsPpcD3rF9YlCYM97mOyYH8/ZGKHgyYawvvDNwDjsRkRcpNxgtgnXg+ty4coPRadId833M59ZZcxasy3aV1jgM1gEowbr5PhsOn23REi+q89xW7let5LUsccel3jq3/Px89OvXD0OHDvV0UYi8grcl8bKXPDRnSprTHClAcyCTOyMdP8uI13RN5nPlXZmzXVRSDQB4cnJaq4KnFduur/tu79QmNM/7zp2Rbvdcs4clOb0/8nB063wv0rVzLPxoN0bmas8PYF42c9b5BjYdrVD9js0c2hOvzhqkelwd4JGEsb7yzsAediIiL2Jv6Jqc4EXrkDxP++7HCgQHdHF52TV7GXztvdloWeKOS711XtnZ2cjOzkZtbS30er2ni0PUqWgZZmxvGPXMoT0xbVA8vthXbrdnHQBen32zzTQse+c270mV0Ly+udYe88VfHMbfrpWjNVWwln3lQHtEahTSenTD9KVbbYaqf7S9DIvuTMPAhHDsO1WD59f9iCazjayHo8ujK3aWVOORFbstypOzcj/WZI+0uRdqIwCs567bSyYXEuCHIcmRNs99SHKk6j1/ckqaR+poX3lnYMBORORFUqJDVStJnXS99bnVQ/Lawa19Y1q0rq+joXv2lq1RW+LO29cSJiLqyFwZZmxvqH6cPhhDkyPsDh33kyQM7mU7NHt5YTHevrbWugRg/pgUTB0YZxFYCgD5351AekIY9p+u1XRN7VHtWgfasWFByEjUY0+ZwWbbvC+PYOuiCRiRGoVpg+JtEsDWNTQpQ96B5vspUGVzHQLAvlMG1YYTAA7zHriaTE4t6d+TU9Js1nRviZbMQ/eVdwZJCC3pBTouudXdYDAgLCzM08UhIrKdwy4BeTMs57CbV6DTb47Hmt1nLFrXpWtvOGpz2AFomsMOwOU57PI+5nPY1XpOnF2/o5cGmb3jteSc3oT1kvvxnhK1n3KDUZmnLfOTJBTmjNccSJUbjPhnYTHeLSy221hr/bfdvJHAF0kA1mSPVJLSbTlWifzvHM+xf+M+y8RxgHpjiZx8btfJarz49VHVc+dlpds0nJQbjNh5shoQUM0RoPaszdl77uUGo1tzKbRmHron3xm01k0M2FmJE5EXKjcYsbOkGpIEDO6lXklaV6rmrevWS7EBwPpD51B56QomXMsSv7esGjtKqpEcHYKQAH9l31PVddh3yoBb+8ZYZIk337a+oREllfUYkhyBjKQIbDh8Ft/9WGGxj72yar1+633UrtHe8dz9MtCeWC+5H+8pUfvZeqISs9/eZvP5ivnDMSI1yun+1o3WMp0EvP1gJkIC/G3+tjsLHH3FLSkR2F5crbk33zoprdp9kNDciO/s3ugkYPWCkcoqLJuOVtgNgs17szcdrbBpUDen9bm3lLsaiDzxzqC1buKQeCIiJ1qz3If18mwAlGXRCo9Voq6hCUmRwQgPDkB4iD96RoagrqEJp6vrsfXEBaTGdkWQvw6f7zuDYcmRyEiKUMpjbLiKj7adRFVdA+qvXMXI3tFIiAixKeeOkirU1DeixtgAAaDy0hVsPVGJlOhQDEmOUJZ2E+iClOhQJEeHKMeRZSRFKK3+ydEhOHTGgJ8qLyEsuAvqGprQL16PfvF6FFfWKclaHC3lpuVeW1fwrizfxqXeiIhar72HGTvKVm4SQEiAv2rwt9xOT7w7Sdf+R4jm63liSl8k6IPxwQ8l2FZc7ZZzuHocOSmtvE785/vOqCeh1ZJQTgA/z98KwHKlGfl38tJraoF8Yc547DpZjYUf7bZ4du2RTE7t2bs6D93Z0rmexoCdiMiB1g6zsu4lsDcXT6vBPcOxp6xG9cVk9Z5yAJZLoan1UjhiXkmbX6+9oYYfbiuz2c/eMZxx9V67sr0vLNtCRORNWvp3szVrvjvLVh4SYJs3vdxgxNubi50e25o8pWzVrtOa6kkBIHtcKkbfGKP0xO4tq3ZbsN5SJgEs31KMdza7r9FC7TBNQmDXyWrVrOqFOeMxdWA8Ll25avHeIdC8vntb1bf2nr153h9XeeP7Apd1IyKyozXLfagtzwa0PmnNrlL1YN2cvBSaq8E6YLkcnHy9e8uqnc4LNN9P7RjO7pmr99qV7X1l2RYiIm/R2r+bM4f2RGHOeKyYPxyFOeM1Bzxqy7yZM19STF6ibUeJbSI1Lf6/O27EgyN6QcPqcYr8705g3+kaxOmDUVBUiunXeqQ9bdmmth9h4CdJMAnblWrk3mwAGNsnxuJ+yiMA2qq+tbeyzkOjb2hRz7i3vi8wYCcissPRch9a9vXkVDoT3JPRtkkIFJVUt+pFQMs9c/Veu7J9a54jEZE7ma8D7s3c8XezJWu+y73zagGK+bB687W/H/14j+bjm3vxq6P4ef5Wl+u3vLVHsOHw2RY1ireETgKmD7Jduq61XGinAAA8MaWvsiybtX2nagDYzxq/fIvrIyC0/Lei1sCjAzBvdLLL5wO8932BATsRkR1qFYHWeXjy8myeooPrlbEaP0nC0OQIhz0eWo7h7J65eq9d2b41z5GIyF3Mg8xReRtRUFTq6SLZ5cm/mzOH9sSWRRPwmzE3KGXQSVCG1Vv3grZ3+mwhgF+/v7PNg/VBiXqsmD8cW3ImICGidfOoJ/WLtflMAPjN2BT4aRxiMDAhHHH6YDw5Jc3md8+v+xHlBqPdd5+3NxVjb5n2qQNa/1uRG3jka/CTJDw5Jc0in44rvPV9gQE7EZEdahWB1nl4cfpg5GWl21Rcrgy9UzO4Z7jTytVPkpCbla56fmfkbLLycf4+YwAykiIs7oOz/STpemOB1nvm6r12ZfvWPEciInfw1qG29nj672acPhipsaFKMG4elDua597SKra1dXNb2HfKgOToEJyvvYz8bx0v7yYBDhvWvz503uYzP0nCvFEpWLVghNOySLg+Jzw9QW/ze/NeaLVHIwBMX7pVUyOVq/+tmE+/eGJKXyxZd6TFjWKe/t7bw6RzREQOzBza02ZdUlf3NV+eDWheaq2+oRGFxy6gvvEqkiJCEB7ij/DgACRFBitLq/3nWpb4tB7dLJZQk5cfqW9oxN4yA6rqrqC+oQkjUqOQGBFqUU75/DXGBtTUN6KxyYSBiXplWZzztZctlmuzXg5OPo71fTh0xoDvfqzAwES9ck7z/dSO4e577cr2rXmORESt5Wiorbf+PWrp3013ZNi2zgMjcD1LuVoWepht1xJzRvTC+1tPenQqmzUTgOWFJXi78Cen2943LAkzhyahrMqIRz7ebTPqQO265EC0uLLOpXI5WgXA0bGEWaZ5R9+Llvy3In9+/zs/2AT6zs5nzRvfFxiwExE54cqyZGr7/iwj2OYzADbrlVuKwi+GqCfpMS+P42Oon9/69xlJEaqfOzpvnD5Y9dzWS6u5ytV77cr2rXmORESt0ZqlzjzJ1b+b7sqw/c/CYpsgUw7aRqRGIXdGumoyVB0sE59q9cF/SpEzJQ1L1h6ByfnmLebKSjE6AO8U/qRpyP9H28vwcVEZcmekI88sQ78OsHs9NcZGANen8Dk6jQCUgNnZKgD2GlMAbY1ULf1vxZ2NYt72vsCAnYi8mist9dZrnjva3tUeAOvtzX8GYPHvchmSIoJRWlUPSZIQ7K9D4bELAARG3xgNY6MJ1fUNAAAhBCJDA2FsuIov9jUvzfbAiF6YeFMP7C2rxprdp1FaVQ9/Px0ye0Xg2PlLOFd7GWk9uqFrUBdUXWpESkwIMhLDUdfQZHFNcjlDA/yw75QB5y9eRs/IENQYGzEsORKxYUHYebIaQghlDXjz66ipb4SAgCRJiAgJUO6rfK9LL9Tj8tUm3HZTdyXw31tWje0lVcrx5fPXNTQhNMAPZdVGCCEwJDnS7r1Xe5Zanpm3rZ1KRAS0bqkzX1BuMGLnyWqLXnFXejit69R3C22TlJkPy545tCdqjI3I/fKIxTbj02Kw4UiFy+VvEgIDE8Px2uybsfCj3S7vr8Vvx6Wg1ngVH20v07T9Q2NSsMyF5erMl1grzBmvjMR7yM58+yVrj2BaRrwyhc9ZEr19p2owIjUKgGUvdEiADnUNTSg3GG2+59a0BN4t/W/FVxvFtGDATkRey9V1ts0rGwlAXpb69q1d7/vumxOwevdpmITt+uNaWs6Xbz3pdJvvjlYiMtQfVXWNFp+vO3hO+ffvdzk1QgAAIABJREFUj1aq7mu+Druz5djUOLoOCcCMwQk269a+vvEEsgYnAABW7jqt+Txqz0jtWc4YfP2e23tm3rh2KnlWfn4+8vPz0dTU5OmiEHnlUFt3MP/ba01euzsiVL3BW14ezfxv90OjU5wOdy83GJFnFawDaFGwDjTXM5WXLmOVxvqrJd763rVM6cfOX7L5zNl7hvkohE1HK7Bolf0g3CSAv31+CH/5WT+bKXyHymtt5s3nrT2CaYPiLb63G4+cw7uFxTb1rvw933e6Bs+v/dHlRqqW/LfSkRvFJCHaO7eid6mtrYVer4fBYEBYWJini0NE15QbjBiVt9GmpbQwZ7zNH99ygxEjczfaVEo6CdiSM8Fie1eOa297X6CTmueLeXuxdQC2LJpgMSJA7Vlas35mrj5Xb8Z6yf14T4nahrM6UroWYQrYNnjrJOBJeRi6xsoqf/bNmDowHn9evQ8fbdPWU92ZyPUeAM3vLmoN3P+39zQeWWG7XN6jE3rjvlt6YtPRCtUeebV6V867016NVO19vtbQWjcxSzwReSVX19lWq5NMAjbbu2O9b19g8oFgHWieW2d+77WuX2/9zLx17VQioo7MUR1p3XBsEs0jsMyTguW5EKwDzccrNxgZrKvQSc1rpcuJ5LTeV5MAFq3cb5GFXbKTNv+1jccxMnej3eHzavVunD4YI1Kj2nWFgfY8X3tgwE5EXsnVdbbVqhadBJvt3bHety/QSe5Zh72t6WD5jLSuX2/9zLx17VQioo7MXh05e1hPPPvz/k73d2WcrwQgMzkCO0qqtO9kRScBf7yjT4v3dycJwOxhSa0+zvDk5vwxJtE8L72gqBShAX4uLVUnZ6SXZfaKsFsXO0rqJ9e75QYjtp6o9NplC30NA3Yi8kqurrNtvea4dG2Il/X27ljvO2twgvKzxfrjrbheNZGh/i3az0+SmjPFZjleO90eR7tIEpA1OEH1WrMGJyjz2DWdB0BuluUzsvcsze+52jPz1rVTiYg6sjh9MJ6cnGbzeUFRGdw96zZnShqWFxbjUZWh2lpNy4iDPkR73aoPart0XwLAiu1lqvWpJAF3pvdQ6jRHHQc/lFQr/24SQM6q/Ziev9WlxhCgOSP93rJqbD3RnB8nLyvdpQ4LndS8VNymoxUYlbexxWuhky3OYee8NiKv5spcpHKD0WLNc2dZ4l2Z42S9vfnPgOX643IZEiOCUVZlhCQBQf46bDl+ARDAqBujcNkiSzwQGRqA+mtZ4iUJ+OVw8yzxZ1BWXYcuuuYs8cflLPFx3dA10B9VdQ1IiQ7FwEQ96htMFtcklzMkQIf9pw2oqL2CxMhg1BqvYkhyBGLDgrDrZDWEgLIGvPl11BgbIETzy0NESIByX+V7fbKqDg2NJky4KdYiS/yOkmrl+PL56xtMCAnQ4VS1EUI095Q4yvZu/Sy1PDNfmrtmD+sl9+M9JWo7W09UYvbb22w+z7+Wcb21gcajE3ojNKiLS3PdfYnc8G+zRJ0EPDk5DQMTw3G84iKeWnOw3cokz2sf2ycGu05WI9sqc755mSUA88emYN6oFAC2c+d9NZ9Me9BaNzFgZyVORERehPWS+/GeErUdR0k/Nx2twKKV+2FC87De392aivzvTtg7lA0/ScKqBSNw99KtHTJYl71x382QJNg0cPhJEp6Y3Bd5a4+0e14a82eotnKLvFqM+Yov9hpvVswfriwJR9cx6RwREREREbUpR1OSZg7tiS2LJmDF/OF48s40vPm942B9fN8YZRi2nyThiSl9sb2kqkMH6xKAamMDjpyttQnKm4RArkqwLgGYM6JXq8/raMi7vCSf9dJwkgSLpV0Fmtd/LzcYVfPQSLDNJ0Su4TrsRNQq1uupetvx3FGe9YfO4fzFy7jtpu6ovHQFn+89g96x3TAjMxEAlPIeOmPApztOobGpCZcbTWhoEhgQF4aay42IDQtEekI4gv112HvKgH1l1ThRUYchvSIwd1QKSqvqUVPfiCNna3HgtAFRXQMRpw/ChUsN6BUdgsSIEEAA4SH+6BkZgtKqekiSBGPDVWw4fB5d/IBbbojGbTd1txgOL5d9UFI4ggO6ICU6FACwo6QKNcZG1NY3orKuASnRIchIDEddQ5OyTXFlHUID/FBaVY8DZww4X3sFI1OjkBARAmPDVfxUWYdhyZHKUHi1e7fzZDWEEBZlznQyXaEtedv3i4ioI3C2bnblpcvI+9JxL3H2+FT8aVKaMrVp36maDjsM3pwAXB7uLgB88MNJDO4Zjl2lNS6fU25UGdsnBl/sK8fiLw7bbKMDYBLC5v6rPQ85O7xqYN4GGXA7W13OgJ2IWqygqBSLVu1X1lO1XsfT08drrYKiUjy5cr/y8+sbzXsGyvHC10dxbYlZu4rMksGoKasux+o95a0qp+zzfefw1JqDWJKVDgAWZZc5K6+8Dexst3r3GZvPsgYn4KV7B1l8VlBUanfZF/Phc+3J275fRETewF3BT5w+2GZ/87+7zozuHaMcBwBmv/2DTyxP6ikmAewtM+CFe9Kx4fB5rDt4TtN+//3z/rit3/XG/aHJ6o3uvxufiiHJkdBZza+3Xq4PuJ4dXm1pVnFtiV13BdadsS7nkHgiapFyg9GiEjaJ60OivOF4rVVuMCJnlW3Aa80bXyaeXLnfbtm1lNfRki1qVu46jb1l1xsm5Gdp7xgCwKJV+9v12Xrb94uIyBsUFJWqZvR2x7Jc1n93nQkJuB6W/LOw2Cvr1/YyPCVS03ZNQuBPn+3XHKwDQO/YbhbBc11Dk+p2o3vHqE53sF6FxnwKhDuWWHX03eusdTl72ImoRYor62wqYXlIVEtaUd19vNYqrqxzeUkUb9LeZd9RUq0MjVd7ltZMbm5xd8bbvl9ERJ5mL/ipMTYqQ9Fb04OppS4wd/fSrUpm8ncKi10+X0fyQ3HL15p3RC14loNs66SB8nb2pjuofSYH+H9edQBNQri8xKqz3vPOWpczYCeiFnH2B97Tx2utlOhQSFL7B77u0t5lH2I2pE7tWVrTSe2bhMbbvl9ERG1JyzB3e8FP3tojSv0hB/Fj+8S4HBBpqQvMmUTz6KtZQ5Papf7SMkXMFbf2jcHDY1Ob596v8465978Zm4J3N5c4DJ7lINs8ULbeTm26g9pngPN8BvbYa0Ay/+511rqcQ+KJqEUcZYX1huO1Vpw+GHkz0p3mSpHaIJlKay3JSrdbdi3llddX1SprcIJF4jn5Wdo7hnSt1bw9n623fb+IiNqKvWHu1tSGL+tg29gr92BaczZsXv6760qwYRLAR9vLXNij5dwdT3/3YwWSo0MwbVA8Xp01CLOHJbVFvjXN/CQJ80aloDBnPFbMH47CnPEOR0rIz93VxhK170GcPhgjUqNcqmMd9Z7L5ymurMOTU9I6XV3Oddi5NitRq8jZXF1pRW3P47mjPBsOn0NF7RVMuCkWlZeu4It95UiN7YoZg5uzxMvlPXTGgM92nkJjkwmXG5vQcFWgf1wYDGZZ4oP8ddh3yoC9Vlniy6qMqLm2rMuBUwZEdw1ED30QKi81IFnOEg8gPDgASZHBKKsyQpKA+oar2HjkPLroJNxyQxQmWmWJl8s+MEmPkAB/pRV6Z0k1aowNMBgbceFSA1KiQzEwUY/6BpOyTUllPUICdCirMuLAmRpUXLyC4TdEITEiFPUNjSiprMeQ5AiHWeJ3nayGELAo82APZ4n3pu+XGtZL7sd7Sp3F3rJqTM/fapMQrDBnvOrfvIKiUovhy09M7mvTO6y2v/nQZQlAzpQ0PDwuVbVMn+87g4Uf7XbTFXq36Rnx+N99Z5T78vNBcVjjpsSy1nQSMGtoElZsL7NpfJADWS1TGcoNRozK2+j0mauN2nBnAjhH5dh0tMLiPE9OTsPAxHCvrsu10Fo3MWBnJU5ERF6E9ZL78Z5SZ/CPTSfsLp22Yv5wjEiNUt3PvCETaE749m5h8fXgaEoapmXEK8EaAJvACgAWjk/FHyelKcc0335k7sZOm0TO3UPv5WPi2nF1EjA0ORLbi6sg4LwBxdrWE5WY/fY2m8/NvzNqgfnYPjGaAn1XWDcgyUvPuXIeX1ryTWvdxDnsREREREQ+7B/fn0Du2iOqv3M2x1eei6y2BJtJAHlfHlEaAnQS8NDoFNX52W98ewLdgvwRHuJvE9zNH5OCZZs7byI5HQATHC+bqtXsYZa96iYBbDNLUicAPL/uRwy/IRJ1DU1OA1dn88LtzS1/9b5Bbk8Apzb/feuJSs3n6ahLvjFgJ6IWaUkLZlu1esrHDQ3ws6ic1M6ntu352stYvfs06huakJ6gx239ugMAdp6sRnV9A8KD/XHWcBmrdp2CsbEJCeHBSAgPRmOTCadqLiMxPAi1l6+i9vJV3DskEb8Y0lw5bDh8Fp/uOIUuOglpcWHQB/ujxtiAsiojQgO7IF4fhJ0nq+HnJ2H4DVGI1wdhT1kNgrr44YzBiJLKOgzuGQFJJ8HfT4IOEi5fbULPyBAcKr+I0qo6NDUJxEcE4ZzhCmovX8WAuDDUXG5EamxX3NSjGwqPXUDFxcuICQtCv7huOFR+EUII9I8PQ42xETdEhyI4oAuMDVdRePwCIASm35xgM8xdvm/GhqvYe8qA6K4BuL1fDwCwuJ+hAX4oqzaiqu4KIkMDkWk2/L3cYMSOkipIkmTxuWxvWTW2l1RhWHKkxfnVPvelFnQiorZUbjAi7/9n79zjo6rOvf/dM7lOQiYJAXIhISEooIaQcBEEEdQeRfpRhJ7S0laPVfSUaP28Hi+hPfW87bEC+vbUUw21orZ6zhFpBbEV8FRBC4hVIBBQCEhISMiVkGRCJpPbzH7/mOxhLnvPLZP7+n4+rWTP2nuvvfeaWftZz/P8Hg1jXYengJjWMbRKsDlvssmw2YvhvX53qYtH2SbDum0n+Pld13o9/0hGBv5h+gT+eqq+z552nQQXmi0+j2OVZUdqhC/D1Zeyu1ZuOb1GcagF4NzF7PwVmvNHtG64IkLiRZicQBAwwaxg9teqp5pHQCfB3XlpvHu02uV8QEA1YYMlIzGapNhIiitb+vdE/cjK/DR+9e2ZgPo9VvAV6icBG1ba733htiu12ZXtyhj4lz8eY1txtcf51bbPzUockSvoCmJeCj3ingpGMlohzZIEO9be4NdCp9YxBINHKKu9+BNCHhOhd+jYuOeuu4ek64B3C26gtO6yhwZCzkRjyBfT1ULl3ed9f0L7hxoih91PxCQuEASGv+Ikfd0n2L5ooQMIoLyMAN4ruIHxcVF+32MttMr66CT4tPBmGlo7uKvooMfnz38rhyfeOeGx3f0lJhRjaSgh5qXQI+6pYCSjNReuu2MaDy2y5zH7WjQPaD7t/Q0e6tNpf+SO9xczJxr57Q9mAVeEbBtaO/jT4Qv89+fqKv8u+6cbOVZl8tpGzXDVGhfuizvOBrOCJMHaxdlMT4kDGapNFjbuLu23xXRforH99a7Zn4gcdoFA0C94K7sRaK3XvuQ5aR1XCxsMn5l7iHC4opnpqXF9XuTQ2t8m219MvqxRj0T436/qVbdrlRwaqhOyQCAQ9CfuIc067EJxirHuT6iw+zGkXmvX/edbcopYc46aGor0tW8/mJfBxESDwwiVJBgTGUZrR49H274uDhy7YOLPJTU8tChbU0/AGyU+jPVAQsgrm9rZ9EkZspvhXdnUTtHHZY79ZRnH3+65+TbZHtE4LXmMZiWZQNGq++78ubfQ/uGMMNgFAkFA+JtL1Nd9gu2LFsLDHjizMxMYHxfl9z3WwpuHPTPJgCFCvUrvbddO4KNTDR7b1TzsfR1LgpFJUVERRUVFWK3Wwe6KQNCvqIl1Kfi7aO5+jIbWDo8SccgwLXkMx6tNfhmooQzrHmjiosOBK/OXLKNqrENo/AHrd5UyLyuR8XFRAafv+Wr65O1TAXvYuOI11xoXzka5YsRPSx7DJqft/pzfJsPyooMu6W/9jbfvwXBG/S1JIBAINFBWMPWSfT3VnxXMYPYJpi8KekliZX6ay/nWr8xRbev6l+/t/pCRGE1+RnwfjjD4rMy3C89p3WMFX/dJ8cZsXJnj0lbZnmKMJjc9gZX5aR7n/8fZGarbN/TDWBKMTAoKCjh58iSHDh0a7K4IBAFRa7JwsKyRWpPF731SjNHMzx7r8XuoLG47o5ckDBE6j3M4H8PcZfUwxGTgrqKD/GzHV6p9kNz+nZc+fOfCTR+XsX6Xuphff7G86CC/7y2pFwwaUzWXzJ0s2LCX1Zs/54b1e3l250liIvQe40INqyxzqKI5qEUJGbvB7884DmbMq6H1PRjOiBx2kdcmEASFr1yiUO0TyHENEToXwRS186m1bWjt4L1jNZg7e8iZaOSW6XaV+GKHSnwEtSaLXSW+x8rE+GjSjAa6rFaqWzpIi4/icq9K/D+6qcS/c+QCekliemqvSnx7N1XN7cREhJFijKK4shm9zq4Sn2KM4niViYhwHbUtFs5famdmejw6nUS4XockQVe3jYmJ0ZzqVYnvscmkxUdT39qByWJXiTf1qsRPSx7Dp2cv0dDawfi4KKanjOFU7WUApqeModXS0+vhDqe9q5tPz15ClmF5XqqqSnxFYzvtXd0cv2AiKTbSoabvfD8NETouNFtoMneRGBNBvptK/JGKZiQJl+0KJVXNHK5oZnZmgodKvPv2/hpLQwExL4UecU8Fw4n+EGl1F+1anpfqIczqfo5akyWg+ul9jcYS2NEBchCRCToJNt8ziwfeOOLyzLxFud2dl8aOozX2VAov7d5dewPLNx302iep9//U2jjnz7vnx9eaLPz+QDmb95f7pWo/khhVonN33303n3zyCbfccgvvvPNOQPuKSVwgEAgEQwkxL4UecU8FQwF/ylGGUjjL+XwAhyua0EkSExOiuXvTQb/O8ezOk37XT1+Wk8LOE7V+9y89IZqq5r55UwVXcK7K4tAzkGBOZgKflzer7qOXJLavne9YcHcfF3BFvPB3+7QjDhQje1ryGI80Cuex5b4Y5VzRx71fQ1ksLlT4OzeNiJD4Rx99lDfffHOwuyEQCAQCgUAgEHiw9VClIyR5wYa9bD2krvztLd882PPdsH4vN6zfyyNbjvHIlqO8f7zW73PctzDLrxQxCXhwUZZfIdYKo91Yn5FmDOnxlPDzacljWDVnImD3mGsZ62B/7u1dNuZnjyU3PcElBU4HrHMSL3xoUTYFi7M9jqHD7oFfNSeD3PQENqxUT1tTE7nbVuxprCv9CnTMj2RGhOjc4sWL+eSTTwa7GwKBQCAQCAQCgQv+qLQrhEKk1f18zvaQTYbXDpR7qJrrQFMA1BeKZzc3PYG789LYVlwd1HFCwW3XTODDk/X2yjBDGB3wu3vsZdyeeuc4+75u9Nl+/cocKi+1U/SJtvibVZY9hQK9IIHL2PIl2vbE7dOIM4Q7lPMVg9w5jU3rGIFU9hFisq4MusG+b98+nn/+eY4cOUJtbS3vvvsuy5cvd2lTVFTE888/T11dHbm5ubz44ovMnTt3kHosEAwN/AmtG474uq5ak4WPTtZz7mIbk8fHkmqM4lyjmclJMVi6bb055+F0dFvZc6qBLquNpNhIMhINTBprYHZmIgDbjlzgy2oTY2Mj6O6xYem2MjY2kmtT4/jk9EW+qjYRppfISTMSrtdR3WKhrdNKQnQ4zZZuYiP1JMZE0N5lxdzZw7gxkVydPIaspFhO17by15P1SBJEhulIiYuio8dGt81GS3s3YTqJ2IgwzjRcJiZCT5heR2S4nuS4KDISDSzPswu+1ZosHDnfTEWjmc4eK3FR4VRcMjMzPZ7oiDBkWSYj0UBVs4Xyxjaqmiy0d/WQFBvJ3XlpjI+LUr2XtSYLhyuaaLF0k2CIYJZKPrlzO0mSHKGLsiwzOzPRazhneaOZmAg95i6ry7kHcsyO1O+HQCAYfgRS2jQUpal8GUY22e4Nf21/haOutg24e9NBj9zh8kazpvH3xG1XMykxhvREu0BdSVUz7x4dPGMd4H9P1vsVETB/ciJ/P9c0IGXpJKDwjmk8t/u0xzOtNVk4cNa7sQ6wdkk2i64ex/vHa3y2DeiaVG6Wr/JpDy3K5s7cVE2jXmv+DaSyz/K8VI/3ltE8pw+6wW42m8nNzeWHP/whK1as8Ph869atPPbYY7z88stcf/31vPDCC9x2222cPn2a8ePHD0KPBYLBpz8EaYYCvq5r66FKntp2YkD7dPZiACFZx+tUN5fQqrnLRbod//6qxi4I9/uD58nPiOdoZYvqxPs/n1f57MofDp53/Nv5Xm49VOlRO1fxjrjfa60au2rtlX3cS9Eo5wYGbMyO1O+HQCAYngTqNe9raSpfhpFekrhvQRbLclJchMScPf+AY/FVq8Z4fkYilU1mR97zUCnh5k8X/n6uicI7prH3VAOflzf1e39mpMVzoHBJ0F7nok/KKPq4zOu16SDgyAJZRnXhyBdaRr23+VdtMcpZ/NCZHUdrePy2qap576NxTh90g33p0qUsXbpU8/P/+I//YM2aNdx3330AvPzyy+zcuZPXX3+dwsLCgM/X2dlJZ2en4+/WVu0XaYFgKBJIaN1wwtd11ZosFG4fWGN9MCmubAnZsZzrqKoZ4TJ2Y9rlXmsY64722064jDn35+d87nXbToDTy2N/jtmR+v0QCATDl2C85r68nIGcz1m92/ncR843exjYVlnm95+W8+r+coeBdPt1yez+0nVBWikL5xJ6PwSMdX+RgY27S7nt2uR+P5cOHEa6PykQamjdW70k8eTSqcxIi9cUjQM0F136Enqupvbua/5VW4xaPHUcj2w55nJs5xx2MacPAYPdG11dXRw5coR169Y5tul0Om699VY+++yzoI65fv16fv7zn4eqiwLBgBNIaN1wwtd1lTeah9XLwFDDVx1Vm9Mqu7cQSEd7XFflvXkJbODxptBfY3akfj8EAsHwpq9e876eD3A5txJF5Y5Ogs37yh0/2TYZ/vpVPQ8vyWbTJ2V2Ix548vapmLusw7qMm03GYyGir6hFGcjAvjMXXbzCzsZusHn/j948hauSx7iktTkv1Ogk+M6cDN4+VKlZri3QdAsFNa93eqLBr/nXfeFidmaiZgSKmNPtDGmDvbGxEavVyoQJE1y2T5gwgdLSK2UFbr31VkpKSjCbzUycOJE//elPzJ8/X/WY69at47HHHnP83draSnp6ev9cgEDQD4RCkGYo4uu6spJihky43XBEL0nMyUzQXGXXSbjea412jva4CtV48xLowMXDrvSnP8bsSP1+CASC4U9fvOahOJ97RJT7z7VOgvsXZrHZrYybVZZZMGUcY6LD2dArNrbxg1Keun2aqL3uhto7iqLerniFnY3dAET1PfjN3rPI2BcJCnvV3J0XagwROr6oaNJeTA/yuWl50revnR/U/OsrAkXM6SOkrNtHH33ExYsXaW9v58KFC5rGOkBkZCRxcXEu/xMIhhPKD5tayYzhjK/rSjFGs2FFTp8mt+FEfkY8Uogu1lnFdcNKz3so9a6Ou9xrlXaO9tjVat1fBJ2fn/O516/MGbAxO1K/HwKBQBAMtSYL7x+v4S8l1dSa7GXUtCKifvOdPH640LM0mxL+vnF3qUu++8YPSlm7ONvjd1/gieIVVlPwD3a9Q9lPlmH9rlJ+9ze7enyKMdqhLfDLnep10xUKt59wjAt/0fJ6X2i2BD3/rpqTwYHCJWxZM48DhUs88t5H+5w+pD3sSUlJ6PV66uvrXbbX19eTnNz/OScCwVBloEPrBgpf16V8vudUPWUNZrLHx5BijHK073CoxEdg6e5hb2kDXT02ksb0qsQnxjAr0156ZHvxBb68oKjEy7T39DAuNorpKWPYd+YiJ6pNhOkUlXg9NaZ22jqsxEeH09KrEp8QG4Gly0pbRw/j4iKZOiGOrKQYSntV4nUSRIbrSI6LoqPbRk+vSrxeLxEb7qQSH6YjKkxPsjGK9IQYluelOlTii883U3HJTFe3jdioMCqb2pkx0YghIgxZhvTEaC4020Prqpraae+2X8ddM1MZHxflcS+Ve3ikopkWSxcJhgjyVVTindtJEkxMsJ9HlmFWprqqvPvKfnuXzeXcAzVmR+r3QyAQjG4CVcp2Fw9VBEOnJY9RbZ+eaPfIP3X7NHvZLuyevVVzJ/LRqXpVjZKij8soXDoNvU7imZ2n+nJ5IcVXlNhAI2EvmxdIaTNn/BGU27i7lDtnpgKoasqoIctQfL6ZZTP8nye1IuoefusoG1bmqIrr+YNWBIqY00GS5aETYCpJkkdZt+uvv565c+fy4osvAmCz2cjIyODhhx8OSnTOndbWVoxGIyaTSXjbBQKBQDDoiHkp9Ih7KhjuuOcM378wix8uzPJaYnPBhr0eRpUO+M/vzvQQ+QLYsmYelU1ml3Btf4wECXj8H67m+b+eCfSyRixqKXwS9tD1jR+UBmy0T50Qy9cNbT7327JmHjIyqzd/7vexX/puHt/MtRv6/i4KqVWFAbsH/EDhklFpVAeDv3PToIfEt7W1cezYMY4ds/9wlJeXc+zYMSorKwF47LHH2Lx5M2+88QanTp3iRz/6EWaz2aEaLxAIBAKBQCAQjFTUcoY37y/nhvV72Xqo0qPtwbJGjpxvVjXubIBOkjxTo8BT9d3P/skgjHUnvj8vg+uzEj22y8CG3aV8Z26GI+3A32SC0/VtLLp6nCM0XG0/Jbdb8YD7gwSOyMOthypZsGEvqzd/zoINnmPLmVVzMvjP78z02O6s7i4IHYMeEn/48GGWLFni+FsRhLv33nv5wx/+wKpVq7h48SJPP/00dXV1zJw5kw8++MBDiE4gEAgEAoFAIBhpaIVR+xIzU/OQ67CnOHkgQVWzRQjIhYD//ru2oSsDb31eiQQ8uCiLnDSjarSDGn87fZEdBTc40s3+fKzGJXXh/oWZgKeImxY64Kldg9cVAAAgAElEQVSl0yhvNNPQ2hFw+TRv6u6C0DLoBvvixYvxFZX/8MMP8/DDDw9QjwQCgUAgEAgEgqGBtyocWvWqZTyNdgl46o5pfFHR5GHIy73qZ0L1fWCQsUdJvHrPLL9TD2SgvcvG/OyxADx0UzZ3zkzl9wcqePXAOV7ZX86rB8pZvyLHkfe983itqrbAz5ZNp0eW7Qa/rB7C76t8mi91d0HoGHSDXSAQDA2c85YAzRymQEVvFEqqmtlT2kBEmI5JiQZmZybS0NrBR6fq6bLa6OqWyRpnIHdiPOYuK5auHkoumOjo7qGlvQdZlpmRHs+MNCMlF1r4qroVWZbJmRhPanwU5xrNIMOR8820dXTTcLmTtk4rqfFRGKPDaDJ3AzA2JqJ30utBp5No77KCDGE6ieb2bsxdPVzu6CZcryM9wUBiTARRYXrOXmzD3NlDTGQYE+OjaLZ009bZg6XTSoIhAkkH1yTHUdncTl1rBzERYVybauS26yZQ09LBuYttRIbpuNBioccqM2tSAq0d3XT12IgI03HrdHvU0Een6okK01NrsnC6vo2J8VGEh+mRZZlJSTFctnRTcamdnIlGbpyShLnLSlZSDA2tHewpbSBcLxEfHUG8IZyMRAOVTe1IkkR0uI5zjWbmZiY6BO0OVzRReamdjh4rt06fwPi4KMobzVi6ejhW1cL4MVHces0Er+Mh2DGWYoz2Opb2nKpjb2kDN08bzy3TkympauaLiiZH/wUCgWC0oBhGWjnDWvWqZeDf77qWxrZOkmIjae+yOgw0d/SSxKzMBL88s4LQIMvwwBtHXIx1SYKCxdmcazSz64RrjXgt7/WrB85pesaXzUjh2V2nXJ65ToLwMIlf/vnKdrXH7Y+3XAjCDQxDSnRuMBBCNAIBqjVBZew/6spKrXs798+88S9/PMa24ur+uwBBQORnxHO0ssXv/ERl9T+QZ+6O+9i5Oy+Nd49Wq46lFZs+pbiyxbFvYky4Y8EFYGV+Gr/6tmfu3EhBzEuhR9xTwXBGWdyMidCz80Qtr+4rx4bdoHry9qnkTDTy6dlGij4uc9lPwm4AKr+zsqztyV13h72Ot3K+F/d8zVtfVPXrdQnUUebED76s4+PTFx3b78hJ5vvzJrksch8sa1QVmNuyZp7DE7/1UKVjEUbqndC1xoGiRq94y4OZ74N17IRq/+GEv3OTMNjFJC4Y5WgpySooip+ARzt/1EBLqpq5q+hgKLssGESCUYD1Ncacj3uyxsT9bxzxecz3Cm4YsZ52MS+FHnFPBWoMVcPAuV/7zlz0WChXPJrHq1s0PeYQeGmzB2/M4r6FWQDcsH7vkCqLNtrQAWikJzgvcpdUNbN800EXD7nze5tz5GTx+WYefuuo5nPVSxLb186nqskCEsxSKfnqi2AdO6Haf7jh79w0akPii4qKKCoqwmq1DnZXBIJBxVdNUCWHSUb2aOcrvwngi4qmEPVUMBTw55m740/dWeW4e0sb/Drm4YrmEWuwCwSC/meoGgbu/XL2iivhzgcKl5CZZOB7r/7d629roAb3K/vL2by/nAduzBryxnqwddYHIkf/pe/mMSszwZ6qdqqBF/eeDbivNtC8QGUctFi62bi71MNYf3bFdaoLPemJBq/G+rMrrqO07nJQ3wslzc5f4Tq1xTK1agi+hO9GC6PWYC8oKKCgoMCxsiEQjFa8idmAaw5TMGqgczM9S5sIhi/BKMD6GmPOx7152nj+53PfYZizM4WxLhAIgmMwDQNvXn21frnjbRHdGTUPra9waLgihjbUCdbmvis3lVmZCfzrjq9C2h+F1XPTmZVp90ynGKPJTU8gLSHaQxdASQ3bcbRGVS/Am4cd7ONgg5uxrgO2r53P+Lgol6g2ZXz/8+LJqud5cXUe+ZPsc6pzZIW/3wutmuxKP90X+bUWy9QW9305CYZqlEyoGfQ67AKBYHBRxGwctT2lK3nszoqf7u38VQPNTU9gZX5af16CIEDyM+L9rv0KvS95+P/M3VEbOyvz01TH0i3Tk8nPiHfZPzEm3OXvlflpwrsuEAiCxpth0J/4qnPtTzQSwIGzF33W2r47P83ld1cnwQMLs9hRcAOrr0/vy2UMa94rqcEYHe67oQ+Wz0xh9fXpLnOpBLz1RZXHs101J4MDhUt4cFGWY5tNhhRjFC98J5ei1XmsWzrNZU5cvzLH5fm5o8NTKM6GXUVea3xv+sRV4wDsVQOWzUglxRjN6wfKPRZCfH0v3BeZ3HFf5K81WSjc5rlYVmuyqI5pb06CQOrGD3dGrYddIBBcwV3lE1BV/AxWDfRX357JPfMnsdehEh/jEi7WZbXS1SOTlRTDjIlG2rtstHd1c/yCiY5uKy2WbpAhZ6KRnDQjxy+Y+LLGBDbISTeSYoyiorEdmyxTfL6Zy53dNLR2Yu6ykmqMwhgdTpO5CyRIjIkAGczdPeglifZuK9hAr5doNnfT3tVDa69KfEaCgYTYCKL0esp6VeINkWFMTIiixdJNW0cP7V1WEqIj0OkkpiePsavEX+4gNjyMa9OM/MO1E6g1dXCuwUxEuER1i4WeHpn8SQlc7uihy2olQq/nlunjAdh7qoGIcB21Jgtn6tpIS4giIkwPMmSMNXC5o5vzl9q5Ls3IwilJjnqsDa0d7C1tIFyvI94QTnx0BOmJ0VQ1WZAkiArXUdHYzuzMBIdK/JGKZs43menqtnHz9PGMj7Pfx/aubo5XmRgXF8ktver1fVWAVRs7j982VfW429cuYM+pOj45fZHFU8c5VOIPVzQ7+i8QCATBohb109/1o/3x6vsTjQTw24/L+P68SV4V3XccreHx26ZyoHAJv/+0nM377OHurx0o5/6FWSyfmcqOYzWhvswhj92rKwUdUq+w41itxzF8eaZfdYtceKlXJFDxMh8oXOIxJzr0Ci608NwHpx3l0568fSobPyjVHMPu40iH+riakWZfIK81WXjtgGdkhQ68fi+8LTKpLfJ7WxSYnz3W7zJxoy18XhjsAoEAwOFFd/7bn3b+kpvuaWgp4WJa3DI9WfNYI5Vgr03rXmodL8UYzTdzPZ+j8mzd730oJkC1MaZ13FumJ7v0QW38CAQCQTAMRv1of8J93fulZbzbsC+iequ1rRw7M8nAq/vLXYxJJeS9r0brcKW0rpU7c1N5r6RvCxbe7p37s/Vm2DprEyjK7grK/jIyr9yTT3ljO3N6F67jDeGaY9h9fPsy8LX698CiLK/fC7VFJucwe+d9/VkU8NcxFEz4/HBGGOwCgUAgEAgEglHFQNePjonQexjIal599379uaSG9btKXdroJGhs66DWZHHU2v7lzlOu9byxG0EfnarXNBRl7ClPg1UvSgJmTYrn8PkWn21DyYt7PUPDQ437s81KivF6r7WMTbX8cOe8b60xrPaZNwNf1fCW4L4FV8L41dBa/Fo2I9Wjrb+LAv44hgYjSmYwEQa7QCAQCAQCgWDUEUjEWF/ErRSjy91Y1/LqO/froUXZIGMv38YVA/uRLcdcyrx5IMG//+Uku76s89q3m6eOY0/pRa9t+gsZBtxYD5Ybp4xl/9lLfrVVe7YpxmgKl07zWHxRkABDhKu0mFZ+uHv4t78Rkd4M/L5Enfi7+BXsooDWtQ10lMxgIuqwi9qsAoFAIBhCiHkp9Ih7KugLfSkBV2uyuCh2g/0Y7669QTPNR6vklVodbR3wm9V5PPzW0SCvTuAPr907izVvHvGar/3k7VOZMTHeq9H6u7+VORZf3JGADSuvjK1nd57kFS+K/VvWzPMIoe8rtSZLv0adbD1U6WFk96WcYn/3t78RddgFAoFAIBAIBII+0FdxK7UwYJtsV/NWw9viQI3J4pE3bQMOnr3k4bkcrfnpEpA70cixC6aA933itqv5f/97xuO+3ZGTzDWpRrLHxfJ1Q5tje05aHK/cMzsgg/Ghm7K5c2YqRyqaeeTtoy4h8jKwbtsJR8SEt/J6/RX+HaxOkb/48saXVDXzRUUTczMT/dKtcdYIcP57pCEMdoFA4BPn1X6Aj07Wc+5iG5PHxTJjopGqZguyLDM7M5EUYzS1JguHK5o4f6mdzh4rt06fwPi4KD48WceX1a3EROhZeFUSNaYOGlo7yEg0cLL2MuaOblotPZyoNhEVoWf6hDFUmyzMnBiPudvK1/WXMXf1YLPJxESG0dVjIzYynNaOLhpaO7HJMmOiwkkxRjE2NpJZkxIoudDC2YY2JKDO1EFnj5WxsZGkGaNpaOugq1umrbObSWNjmJ89liZzF9UtFqqbLfTYZGRZpq3DSmS4RFqCgcyxBmpNHVzu6EECYqPCuPGqcYyPi2TPqQbC9BCu03GixkRHl5WJCQbWLLLXPn3/eC3jxkSgQ6L+ciffnJHiEFbbc6qO94/Xkj0+lunJYzhW1UJXj41mcxcxkeEsz0t1TF57TtXxfkkNU8aPYeFVSZi7rI5nU95oJiZCz64TtXxZbWJ5Xhr/ODvD5VkermhCkiRmOQnC1JosfHSqnnMN9ueaGh/FgbOXkGWZu/MCL6M2WmqjCgaGlpYWbr31Vnp6eujp6eHRRx9lzZo1g90twSigr+JWJ1QMRy1jS21xYN32E5RUtfD2oSpN7+7bhyp5auk0ntt9RUX8nxdPpuhj/3O1lVB7CVizKItwnY5Nn5QNO6NfhqCMdYBpyWN44MYsXjtQjq33XqxdnE2cIZz56/d6tD9R3UpDaweGCB3vH68JyMhMjDWr5rMrgoIysua9D2X492DM1VqLAv/yx2NsK652/L0yP41ffXum12P1JfplOCFC4kWYnEDgFecfQ18r9hKwIj+N7cXVw26SHyyUmuPFlb7z+Fbmp1HeaFZtq5QuVbvvGYnR7HvyZrYeqqRw25U8SiX8DuCpbSd8ntvXxKkwWibQ/kLMS55YrVY6OzsxGAyYzWauu+46Dh8+zNix/oWDinsqCBa1kHa9JHGgcIlPA0dtX4B1d0yz56a7cbCskdWbPw+qn1vWzCMzyUDx+WZsskxGooH/99cz7P+60a/9n1l+LdnjxpCZZOB//n6eoo+Hn7HeV5R3HGXR4r4FWfz5WA3rd6vnnQPMSIvjeHWr429fc6ViIMdE6Ll700GPsaEDPl13M4DH2JGAl1TU173hzSAfSnN1SVUzdxUd9Nj+XoH31JFgv5tDBRESLxAI+oz7ar+vyVsGl9VRgW/8MdQVvN1bb8+mssnC5n1lPLur1KNmrJqgjda575k/yaf3YLTVRhUMDHq9HoPB7pHs7OxElu3RLwJBf9MXcasj55u91r52JyspJqhQdsVjv+/MRb9/052RAGN0OJlJBn7xl5Ps9iFUN1KRnf772v4KluWkeDXWARdjHbzPle4G8t15aWw/Wu3wtEvA+pU5mqXZtNTXtfBmkNeaLC4L+DYZCref8DlX95dH/ouKJtXthyuaNd87RlNpt1FrsBcVFVFUVITVah3srggEQxZvdUMFw4sPvqxTfQkM5Pl6mzgVRtMEKrjCvn37eP755zly5Ai1tbW8++67LF++3KVNUVERzz//PHV1deTm5vLiiy8yd+5cv8/R0tLCTTfdxNdff83zzz9PUlJSqC9DIFAlmBJwSkSTO6HIPZawh7Db5Cvh0eD/Aqz7scCuOj9aUVskscoyhyqagzqe81zp7FF3X8zecbSGHWtv4ES1iYbWTm6ZPt5ljtUad/4Yzb4Wz4+cb/a4ZlmG4vPNLJuhfsz+9MjPzUxU3T47U/udYzSVdhu1BntBQQEFBQWOUASBQOCJ2o+hYHhy+3XJFFe2eEzQgTxfbxOnwmiaQAVXMJvN5Obm8sMf/pAVK1Z4fL5161Yee+wxXn75Za6//npeeOEFbrvtNk6fPs348eMBmDlzJj09PR77/vWvfyU1NZX4+HhKSkqor69nxYoVfOtb32LChAn9fm0CAQReAs7Ze6mgk/DqnS9vNPv0rjuXcnM25A6WNXr9LVf7rV8+M4X3jtUOeui78wJEKI/53bnpbPmiyuv13TJtPD++ZYpHeLoOyApy3oqLDmPz/jJa2rv57Sdl9pRClRrsVllm5/E6Xj1wDpsML3181sMIdh93/hrNvhbPtSKUtAKX+jN6rtZkwdxlZel1yS7RHSvzvevnjKbSbqPWYBcIBL5x/zFUm3CcETnsgROyHPZeF4FWDvuaRdnERYe75rD3TvbgXw67v2I6o2UCFVxh6dKlLF26VPPz//iP/2DNmjXcd999ALz88svs3LmT119/ncLCQgCOHfPPwzdhwgRyc3PZv38/3/rWt1TbdHZ20tnZ6fi7tbVVtZ1A0B+8fqBc9bf4N9/J45u52iHNMRF6n8d2Lgfn/Lvqa4FdlmHRVUnsc8pp33Gs1uf5BgIZWLNwMq8dKMcaolSXNTdO5ifLpvPILVdxpKKZFksX/7rjK492P75lCrnpCTx1+zSXcms2YM2bR7jjumSfteydyUiM5ol3POdTtcvSgcNYB99GcCBGs6/F89mZiR6RBRIwS2Nhvr+i59wXIB5ekk2CIYLZmQl+vXMEE/0yHBEGu0Ag8Ir7jyHAnlP1nGswM3l8DDlpRi40W5Bl+w99ijGax2+bypGKZs43menstnHL9PGMj4vio5P1fFljwhAexsKrxlJr6qChtZP0xGhO1V6mraOHVks3J6pNGCL1TB0/htrWDmakGWnvtnKm/jLtXT1YZZmYiDC6e2zERIbT2tlFg8me1xobFU5KfBRJMZHkT0rgeHULZfVtyHiqxF9s66BTUYlP6lWJb+umxtTOhWYLPVY3lfhEA5mJdpX4tk67J3BMZBgLrx7H+DGR7C1tIEwnEaaT+LLWhKXTSnqCgQd6VeJ3naglKTYSSYKLrZ3c4aYSv7NXJX5a8hiOV5no7LHSbO4mJiqMu2a6qsQrbRdOSaK9y+Z4NhWN7RgidOw+UctXNa3cOTPVoRKvPMsjFc1IEi7CNYuuHseeU/WUNZjJHh9DijGKT89eAnA5dzBjZqROoAL/6Orq4siRI6xbt86xTafTceutt/LZZ5/5dYz6+noMBgNjxozBZDKxb98+fvSjH2m2X79+PT//+c/73HeBIFBqTRZeO+BZjkuHtjGksPO4tgGteFO9/RY/sDCLV/eXq9b4lsHFWO9P0hOiqWq2BLZPYjTb185n54laXtmnXc7MHyTgvoWZgH1R45u59jkoXK9j3bYTLvdn+aaDLL02mQ++qvO4bzYZ/veregqWZLNJQ4RPJ8Hme2ZR0dhOXHSYqrHu0h77YoBekrh/YaZHnXVvRnAgRrOvxfMUYzQbVuY47ocOe/482MUP3cPt+yN6Tm0B4refnAtYNK6/S9ENBYTBLhAIfOL+Y/j9eZkun7u/QDhPkM78YH6mx7aRhHP5NDUU41zrM+fPA2nrjPKctF7qtJ5NijHa47l664MvRsMEKvCPxsZGrFarR/j6hAkTKC31LuikcP78eR588EGH2NwjjzxCTk6OZvt169bx2GOPOf5ubW0lPT09uAsQCAJAS/vlgUVZPsW81Opu+6MM7u6lXD0ngy1fVPY50i3YWu7VARrrAD977yt0PqL4AuHPJTUeSvyr5mQwLXkMyzcddJxHlvHqQbfKMgunjOP78yZR0djO8eoWNuwuddm/sa2LO2ak8NLer732SS9JvHJPPuWN7czJTGB8XBSv9paQc26jZQQHajQr13uoopk5Kh5r98X1fWcuOlTX3cPt+yN6Tmje+I8w2AUCgUAgEAB2Ybf4eHUF68Fk7ty5fofMA0RGRhIZGdmPPRII1FEzqnQS3Lcgy+t+Wvnra26c7FUZXM1L+XYIjHUIzlgHuwfZVwqd6n4hMtZlYP2uUpDhoZtcjXZzlzWgfikGsbIInZlkYMOuKwuNMlC47YTPHHy9JLE8L5U1bx5xMYidjWAd8OTtUzWN1UCNZl/57s7idYDPcPtFV4/jP787E5wiKvuC0LzxH91gd0AgEAgEAsHAs3HjRrZu3er4+9vf/jZjx44lLS2NkpKSkJ0nKSkJvV5PfX29y/b6+nqSk4OP4hAIhiKKUaWX7Prrekli/Yocn8aNYrw4o+NKaLcWal5KxWAeTOZmJnhcz0CzcXcptSZXb39WUozf90YC7ne7/2oLKzLaxvod1yWzZc08tq+dz/biaheDuHCbvYzak0unImF/bhs/KGXroUrNPq2ak8GBwiVsWTOPA4VLNFXaS6qaKdzmaYAr92ProUoWbNjL6s2fs2DDXn7v5umHK95u5/YPv3WUH799lH1nLmr20V/UvitC80YdYbALBAKBQDAKefnllx1h4h9++CEffvghu3fvZunSpTzxxBMhO09ERASzZs1iz549jm02m409e/Ywf/78kJ1HIAgVtSYLB8saPYw9f/HXqHLngYVZjhdzvSQ5anJ764+aoa+XJAqXTnMYQoPB5+X2GvTzsvzXPwH7QkOojBMbcKSi2eXepRijKVw6ze9jvLK/nAUb9jqMaLX7rcYP5mXwXsENbPr+LOZnj6Wq2aJq6P/f975iw65Sj3ro3sZeijGa+dljvXrWl286qFqqrqKx3VHFwNmYf3V/ueo4ykwyaIrdBfv9cCbY78poQ4TECwQCgUAwCqmrq3MY7O+//z7f/va3+Yd/+AcyMzO5/vrrAzpWW1sbZ8+edfxdXl7OsWPHSExMJCMjg8cee4x7772X2bNnM3fuXF544QXMZrNDNb6/KCoqoqioCKvV2q/nEYwcQlVrOhAdD/dzPrhwMvctzCTFGK3an0VXj7PX0ZZlZmcmcvt1yew6cSUPe3leqj1/W4b1u/3Tiegv/l7ufy1zxcPa0t6t2e9A8uol4MdvH/V4lnfmptpD5n3gbEQ7h4e7h7HLbn3SSxJrl0xxef5aZdT+92S9xzZf9dC9oRjXaqdTDHC1KgY2YNEU1yoCy/NSNUsGhjLXXGje+EYY7AKBQCAQjEISEhKoqqoiPT2dDz74gGeeeQawv1gGauAePnyYJUuWOP5WBN/uvfde/vCHP7Bq1SouXrzI008/TV1dHTNnzuSDDz7o9zrqBQUFFBQU0NraitFo7NdzCYY//VlrOpBzvnagnPsWZqp+VthbgtOb0brjaA33zJ/EhkE21gPlnxdPxhChd1yjO3fNTOWalDie++C0z/JvimEvqzzL8kaz6j6KgrvyX2essuwwotXE2nzllc/OTPR1+S74yrN3zj93PpeW6KEEPLviOgDVKgYScOCsaxWBHUdrePy2qSLXfAggDHaBQCAQCEYhK1asYPXq1Vx11VVcunTJUUf96NGjTJkyJaBjLV68WNODpPDwww/z8MMPB91fgaC/GQzVam/nlJE9PvPHu2yVZQ5VNIdEeG4gKfq4zOvn7x2r4S8lNaxdnE2RRpk1gAdvnExbVw9vfe6aC26VZXYer2VOb369uwG6fe182rtsGCJ03L3poMe9f/ito7R19rBqToaLV9ifUqYpxmjW3THNL8++t3roAL/bV+ZQqtdJcP/CLH640F6FQM24dkbLoF82I5n3j7uq5SvjcH722JArxAsCQxjsAsEQQWu1dKDPWVLVzBcVTUxOiiE6IszxWUlVMx+dqicqTM+Y6DBaLT109ljJSDTQYukmPjqcFks3yPDp2UYutnXSaumms9tKfkYi16UbuXS5ky6rjbKGNi539oAMEeE69BK0tPfQ1WPlcqcVZJnYyDDoVZk1ROrpsdro7JaJDtdzubOHHquVjh4rPVaZiDAdCYYIWjt6sHT1MH5MFGnxUZyub8Mmw8TEaBZOSWJigoELLe00tHYSHxXO/rMXqb/ciQ6ZlHgDsizTY5WZnhxHfVsnEXpIS4ihu8fKxcudpBqjqTZZyOy9J509Vmamx/NFRRN7TtXT1tFDmE4iPdHAivyJpCUYiInQY+6yOu5jrcnCkfPNNJk7kSSJBEMEsyYl0NDawY6jNZi7ekhPjCYrKZb0hGjMXVaPYzg/p7mZiYyPi9IcO+4qsOWNZmIi9FQ2tSNJErN6SwXVmiwcrmhCkiTHeS1dPZxrNGueYzDGrCB0/PrXvyYzM5Oqqiqee+45YmNjAaitrWXt2rWD3DuBYOAZDE+ir3N6M760kIDIsJEpU2WTYdMn6sb6fTdk8uBNkwFYsGGv6v7P7DyFToK789LYcbTGxQBVyp7VmizcvzCL19yE2GRg3bYTJMVGuLwfgX9h3Q8tyqbV0u2xMCH1hgPIXKmHrnWs3/2tzCVdwCbD5v3lvLq/nA0r7SH/61fkuERmKH3/yfYv2b52vmoVgzU3TmbXiTrNcejPooSg/5BkX0viIxwlTM5kMhEXFzfY3RGMUkKVM9fXc35R3sS24mqXdjoJZqbHU1zZ0q/9GekoLwjbi6uD9np4e07Onytjx/kZK1oy7ueWgBX5/vdLOQcw4GN2tCDmpdAj7qnAX7YeqvTwJAb62xboYubv/lbGxt2l2MDjnM798Zdg66e78+jNU/jO9RmcrDHx6w/P8GXN5RAcNTS4X6NekjhQuMSRc7168+de93f2qDsboM7zpi+CnfvUnreWMey+6H7D+r2az9b5HvylpJpHtniWwtyyZh6VTWbVMR6KsS8IDH/nJmGwi0lcMMjUmiws2LDXY1VT+dEdqHMGs4ovGHh8vYgpYwfweMahQtcb+aD1siToGwM1L73xxhskJSWxbNkyAJ588kleeeUVrrnmGrZs2cKkSZP67dwDjZjrBYFQa7IE7UkMdAHeZWFVgsKl0+yCcVwx1ixdPdz/xpE+XZM3ChZns+lvZS5504pBq0R3lTeafRrBA4VOgqdun+bIZdcBTy2dxkM3ZTui2B5566jPRYsta+YxP3us4z7HROhVQ+G9Eezc588YUwt937zfM//cGedr8vZuWWuyUHy+GVuvcKFz5NxI9aIPxahAf+emURsSL5RjBUOFoZIzJ4z14YGvx+Qt9zFUqB23v8esIPQ8++yz/FLg8gIAACAASURBVPa3vwXgs88+o6ioiF//+te8//77/J//83/Yvn37IPew74i5XhAM/oQ3u7/8K2lFvkTr3D2mzu1lGZ7bfZo7c1P587Eau7HWb1cJd89M5cml00gxRpMx1uDiXV2el+owXhUD2d+F/Z8tm05Te5fPnHQFSYLciUaOVZn8am+TId4QzpNLp7Jhdyk22V6//Ez9Zd49Wu2IKlMWuNWU3HVAZpLBY8EkUDemr7lPy0j0NcbUQt9fO1DuddHeOYQ9xRjN3XlpLtF4iuo7wL4zF1UXlkaqYvtgRLKGklFrsAvlWMFQYajkzAkP+/DAHw97X3If/UHLwy4UY4cXVVVVDnG5HTt2sHLlSh588EEWLFjA4sWLB7dzIULM9QKFUHrX3F/+785LcxiK7jgbdO77PbAwS3XB/sW9X/PW51V96qM//Lmklid7a5I75yi7i67ZZNi4u5S1S7L57SfnfIbnR4Tr+P68ScRFh7vUGNdClqGkyhRQKP9T20445iKlj87GqfNxnlo6jXhDOIXbTji2y8Bv9nzN1kNVLgsmgeJt7gvWSKw1WVQV/m0yPLgoi9f2V3g8A3chuFqThXePuqbOKarvwIBXQxhMBqP6Q6gZmYoUAsEwQqnpqZfsWcYDob6pds71K3JYmZ/m0VYvSeRnxPdbX0YLekliZX4akuS7rbdjbFjp+Zwkp8+VseP+jCVQPbckYe9XAH1YvyKHDSsHdswKQk9sbCyXLl0C4K9//Svf+MY3AIiKisJisQxm1wSCkLL1UCULNuxl9ebPWbBhL1sPVfreSQO1l/9txerGOth/YzOTDKr7vbq/HJ3bj69OYkCMdbiymFBS1czm/WU0tHYwP3ss5i6rZxQeUPRJGf9802Sf88XPdnxlF32T4ed3XcOjt0zhtXtn8eCNkx3Xq5NwOY5yOvf74Q1/F6Sf++A005LHuMyBMrDliyrVYyjGka++KHMfwMGyRmpNV343tYxE5zZalDeaVRcudBLctyCLA4VL2LJmHp+tu5nP1t3MljXzOFC4xGUxwFv0prfPRiIj4XpHrYddIBhKDIb6pto5V83J4J75kzhc0UxmkgFDRLjjs5KqZvaeaiAiXEdcVDitHd10dttIT4ym1dJDXK9yvE2W+bSskcbLV1Ti8zISyUk30ni5i26rVUUlXqLZ0k1Xt7pKfEyknm4nlfi2zh66rVY6e6x0W2Uiw3TEO6nET4iLItUYxemGNmRbr0r8Vb0q8c12lXhjVDj7yy7S0NqJhExqvAGbk0p8Q1snEXqJtEQDXd1WGtu6SImLora1g0ljDaTER9PVbWNGupFDFU3sKa2nzdKDXieRPtbAiryJTEyIwRChcxG1efy2qRSfb6bJ3IUkQYIhgvxelfj3jtVg7uwhPdFAVlIMExOiHSVmnI/h/JxmZyYwPi5Kdey4P2PA4T2parIgSZDfqxL/+G1TOVLRjCThOG97VzcVje2a5xCKscObb3zjGzzwwAPk5eVx5swZ7rjjDgC++uorMjMzB7dzAkGICLV3Tassliay9n424MGFk3ntQLkjFP2HCzN95in7y+rr09n6xQV7nrdGZNR/fVbBri+vlPNamZ/G47dNVY3QkmX4rYZCuzs2GZeQbgnYsDKHTwtvpqKxnca2Dg9RNBn47pwMthyqDMrbrYVS5s6f5+arvJsO2HzvLMf70b4zFx254s5e9GDTHWtNFi61dare/6d60xcAj/B6dwKtPjCSo+RGQh15ITonhGgEAoFAMIQYqHmppaWFf/3Xf6Wqqoof/ehH3H777QD827/9GxEREfz0pz/tt3MPNGKuH71oKYYr4lyBUmuyeFXqVmPLmnlkJhk0RcAAl4XVQARDddgNf3eUYze0dnCoopk5mQm8/Ldz7HYyzpdMG8fHpRc99n2v4AZK6y6zbtsJ1WMHk+sNdiPx08KbHTn/HuK3AP2QyqUY4b4E5dSU0b0pp3sTdgPP56gmUOecquGcVy6Bw2nhLKoXCN76PtoU4Yfq9QrROYFAIBAIBJrEx8fz0ksveWz/+c9/Pgi9EYxEhoIqc6DetWD77M1wVqKQ1q/I8TAanD2myrmfWjrNXvbLD8P13hsmkT0+lpM1rbzdm4+tlySeXDqV1w+UO2qJq+WHf6JirAMcrmjm/hsnMy15DMs3HXQxziXsqvL+5LK7Y5Oh+Hwzy2ZEq96P+xdm8kqIogsUdOCosa5Wn1xp8+LqPEfEmTPeIiC9edHnZ4/1+rzBM8fdOQJCBiQZHr1lCjdPG++oEe8L5/Hrre+jra76cL9e4WEXq+4CgUAgGEIM5Ly0f/9+fve733Hu3Dn+9Kc/kZaWxn/913+RlZXFwoUL+/XcA4mY6weeoaTK7K93zZ8+a3nsi1bnIctw8Fwjb39epVpTHdTLZtWaLC7GtU6CVXPS2fJF4Lns35yRzKTEGDb5GbquxnsFNzgMxK2HKl3E2sButK9dnB30OTauzHHxUjtStZotfpVj8xcJKLzjSpk85Xy//7ScV/eVaz4jf/GnLK9WmTS1fbXw9/szlL5zAv8YMA97R0cHUVFRfT2MQCAQCASCAWTbtm384Ac/4Hvf+x7FxcV0dnYCYDKZePbZZ9m1a9cg97DviLJug8NQU2X2x7vmq8/OtbrVPPYXWiwOr7gErJ6bwSO3TPE4l3vZLDWD2CbD1kNVAammK7x/vM53o14k4LrUOE7UtDq25WfEu3hzF109zsM9L2MXoAuWddtPMC15DLnpdo+2eyh4MNethsyVMnnOkQw/ueMa7luQ1Wdvq6+oCaWN2vED0ULw5/sz1L5zgtASlEq8zWbj3//930lLSyM2NpZz584B8LOf/YzXXnstpB0UCAQCgUAQep555hlefvllNm/eTHh4uGP7ggULKC4uHsSehY6CggJOnjzJoUOHBrsro4qhqMqcYoxmfvZYTeNFq8/F55v55c6TDpX5uzcd5O68NJcqGU/ePtUlhF0G3vqikj8fq/HaJ8XIUrPbbLKn0bpu6TReWp3n+2L95K7cVL6qbXXZVlJlclEyL280a+ar+xJ0z0hUv9c2GZYXHeSXO09SUtXsWosee478S9/No2BJ9hXFdj/Op4a3cSeHYFlg1ZwMh2q7u1K7N5RUDWckSdsw8/X98fc7V2uyeCjaC4Y+QXnYn3nmGd544w2ee+451qxZ49h+3XXX8cILL3D//feHrIMCgUAgEAhCz+nTp1m0aJHHdqPRSEtLyyD0SDBSGI6qzGp9liQoeOuoSzubbK9nrSiJZyYZNL2lG3eXcufM1IAWCbxx58xUwFPhO1jyM+PZUeK6qGCVZXYer2XZjBRSjNGq98UZb59VNmkbhTKweX+5qiK+TYaxsZE8cds0vj9vksMT7uyJ9xe1cReq0HHnfPFABQy1vPOLrh7HkYpmfvz20YC+P/5850ZSyPxQ0McYSILysL/55pu88sorfO9730Ov1zu25+bmUlpa6mVPgUAgEAgEQ4Hk5GTOnj3rsf3AgQNMnjx5EHokGCkoxoizF9o9VHio4d5nnZe4bKss095lc3jss5JiXGp8K9jAq1c0KykmIK/xkYpmUozR3H5tcgB7aTM2JlK11vgzO0856tUr90WtnzLwm+/k8a/LpoekPwo6cBiazpERq+Zk8GnhzTy4KMuv+6YIzrnnjgdTH93dM731UKUj6kK5V4Hi7p1fdPU4yhvNzMpMCPj74+s715e68EONUNz74UZQHvbq6mqmTJnisd1ms9Hd3d3nTgkEAoFAIOhf1qxZw6OPPsrrr7+OJEnU1NTw2Wef8fjjj/Ozn/1ssLsnGOYMR1Vm5z6r1QlXUDyXzl6+gsXZvPRxmUc7Q4SOg2WNqp7AP5fUBBSULUl2w8u5NFuw6CWJ/EkJLl5eZ5xzoFfNyaCyqZ0it+vTAbMyE/hziffQf4AfLsjk959WaF6v8/qIDOw7c1HV++ucg/77AxW8euCcPfe99wAy9sWWBxZO5r6FmR73PJj66O6eaXcV/77kiys57mre7wOFSwL6/gSraK98Phy81aM1Vz8og/2aa65h//79TJo0yWX7O++8Q15e6HJrBAKBQCAQ9A+FhYXYbDZuueUW2tvbWbRoEZGRkTz++OM88sgjg909wQhAS3BrKKP0udZkUQ331kl2r627UJqaIZqbbnTU/nYPQa41Wdiw2/+oVEmC/EkJ9pzy4C/PgeJ9VYy8ncdreWbnKZc2zgbdb1VE5mzAn4/VsPED79ehlyTWLJqMydLNtuJqj891gOx0E2X8M8IWTxvHshnJXGi2YJNlMhINjjQFrVrnwZT5czcQ1Uru+TL6vaFlhB4oXBJUqL1aH7Su+/iFFr736t+HTZh8MAsuI4GgDPann36ae++9l+rqamw2G9u3b+f06dO8+eabvP/++6Huo0AwqnFWpq1saqfF0k2CIYJZk+wqrocrmpAkSfXvFGM0JVXN7DhajbnLSkJMOBF6HRmJBg5VNFPf2sG0lDHkpMVzuraVA2cbSTNGU9/WSYReIiEmAoD2Lis2mwzIVDVZmGCMIi4yjKNVLVhtMrGRekwWK1abjfAwHWMN4XTZYO6kBGKiwmhs66S9y4q5s4c6k4W61g4i9HoSYyJAlmnrsjJ1whjaunq43NFNZJieCWMiqb/ciU6SiI8JZ0xkOFeNj+XrhjYa2zqpM3XQbbWREBOB1SojSZAaH82yGSlYuq18Wd1KdXM7bZ09XJsWR6rRQGNbJ1FhOjp7bEweF0tqfBTnGs0gQ8UlM5ljY/i6oY361g4mJkTT3WMjJjKchVeNJToijKykGJd7nJ4Qzb6vL/JVdSuTkgzkpMWTnhCNucvqc6Xa+QWiobWDLyqamJuZ6KLOW2uycOR8M7IsMzsz0SW0TdkXQrsy7k9emHub0ZZLNlKQJImf/vSnPPHEE5w9e5a2tjauueYaYmNjB7trAsGg455jrAMeWJTFfQuyAFxKcmkZ0MWVV7Qg3D2B3sTc1Fi7OFtTpT4YkmIjXDz/y2ak8Mudp1yuRTFkveXab9xdqlp/XrG/ldBsgHePqhjrEjywMMuj/ro3I8zZG+28WKIYnM5Grprn2tlDrpPgyaVTA9IZUFuk6YtGw0AYoWrj+Z8XT2bD7lLHdQwHb/Vw1McIBUEZ7HfddRd/+ctf+MUvfkFMTAxPP/00+fn5/OUvf+Eb3/hGqPsoEIxanCeaQJGAvIx4lxcGNf52ptHl76NVJp/HLnPLyWs0O6XCdFq51Pt3xSXt3L2OHiutnVdypxrPNbl8fqquzWOfD76q99hWf7nL8e8zDWY+cbsegJILrR7bAuH3ByuAwErNeFup9vZcV+an8atvz/Qo9SMBG1bmALi8qMCVEMC+roz7I0jj3ubuvDTePVo9bFbnBZ5ERERwzTXXDHY3BIJBRW3hUSvE+GBZY1DzsrMRFhOh972DE5s+KaPo47Irv7vF1aqGsr/c/8YR4MrvtjsSrvnfWvOfDbv3X3YzoF65J5/yxnbmZCaQm56gec9+8508ZmUm8GpvDXrnY6gZYe7eaPdyeO6l+Nw914XbTiA5GXyKxzw+Olx17tIyEJ+8fSrPfXBas5xbIAyUEbpqTgYtlm429C5WbPq4zOOZDnVvtT+l9EYiQddhv/HGG/nwww9D2ReBQOCE+0QTKDL4NNYFgRHIo9Baqfb1XLcVV3NHTrJHqR8ZzxcNby8qgeJPXphaG+fwxuGwOi+4gtlsZsOGDezZs4eGhgZsNtfXf6Vk63BG1GEfWfRXNI+3xUq1EONAjW0FCWhs66CkqpkvKpp8tndGdvrd3XG0hncLbmDn8To27z9nX7QFbrsumf/9ss5hRCs53d6wyfZFYNmtrST11mDHfg/W3OjpBaf3vE8tncZzu68Yr8vzUlnz5hGX+7no6nGqRumszAS/jbCSqmb+eLjK63uRs8Gp5rmWwSOywSbDum0niIkMc0QnKmj1bdWcDO6cmRoSjYaBMkJrTRY27i51XL/abXQW/HPebyhF0Q1HfYy+ErTB3tLSwjvvvMO5c+d4/PHHSUxMpLi4mAkTJpCWlhbKPvYLYhIXDHUCLfciGHqorVT781w/Pn1RtY3ai4av8/mLPyF5/vR9qK/OC67wwAMP8Le//Y0f/OAHpKSkIKnJXA9zCgoKKCgooLW1FaPRONjdEfSB/ipJFYyIlbnL97ujWti6DJpCdlqoebYVlfqfLJvOfQszqWhs53h1iyM8XQIKl07jztxU1dx0d9R+122yXZX+m7n2e3DfwiwPLzjYjfWHFmVzZ67deDVE6FhedNAjzPpA4RKvRqkvI+xf/nhMNf/dHZ10xeD0VZLO5XqBh986qjq2tPoWSo2Gvhqh/hjV/szhDyzKctm/v0vBBbsYMBz1MfpCUAb78ePHufXWWzEajVRUVPDAAw+QmJjI9u3bqays5M033wx1P0OOmMQFQ51AJhrB0EQtpM2f57pk6jje+rzSo40ELh52f87nL/6E5PnT99GQSzZS2L17Nzt37mTBggWD3RWBwCv9qQztb/6wL+EygNVzM1g1ZyLtXTavKvOB8Oq9sxzeagV39XlDhI4Nu67kIsvAhl2lzMtKZNmMFJ7ddcrr77auN6TdvcmP3z5KtclCTpqRrKQY1q/IcaRqSUDBkmxyJhqpNVkcBtQvd55UXWAoPt/s0yjVMsJKqpr9MtYB7pk3ycWgds/blvEedaA1ttT65qwx5I92jS+CNUL9Nap9zeE6CYdGA9jve2Fv9AWEPopuJNWF72+CqsP+2GOP8U//9E98/fXXREVFObbfcccd7Nu3L2SdEwhGM+41Nd1x3+rxtwT5GfH90rfRSiAOSK2QNl/PdWV+GrdMT7bXvXVqouSwO+8rSVeee19D6Pypm6zWZmV+2rCqtSy4QkJCAomJiYPdDYHAJ75KUvWFE9Weui3uC4/udZ/3nbnoWrMdWLd0Gs+uyCE3PYH52WOZnZkYUI11Lc42mD1+d5fnpXL3poOs3vw5N6zfy11OHm0FGbir6KBHX9V+t9evyGHDyhwPo8Amw/pdpU71rqtcFgVe+rjMpRZ2SVUzr6qEzYPde63UdVfqqvtDrcnCs7u8Rwg4k57oumDsXOv803U3s2Gl9vyr4M/Ych4TdxUdHLSa4IHUV3efw93fIdavyHE8l62HKu2REv30vRtJdeEHAkmWA9GotGM0GikuLiY7O5sxY8ZQUlLC5MmTOX/+PFOnTqWjo6M/+tovKB52k8lEXFzcYHdHIPCg1mRxhJlVNVlosXSRYIggv1cV/khFs6Pci/vfV1Tia2jv7iHBEE6EXk96YjSH3VTiS2tbOVh2iZS4KBraOgnXSyTG9qrEd9pV4mVkqpotJMdFMSYyjGNVLfQoKvEdVqxWGxFhOhJjwumxwuxJCcRGhXPR3IGly0pbh5tKfGwE2GTau61cNX4M5q4eWju6iQrTMz4ukvrWTvS9KvGxvSrxZy+20Xi5k1pnlXibfeU8JSGaZTkpdHTb+LLGRHVTO5e7ergu1UhqfDSX2rqICJPo6paZPD6GFGMUFY3t2GSZyqZ2MhINnG1oo6G1g7TEaLq6ZWKjwlgwZSyGiHDHC5xyjycmRLP/60a+qjExaaxdJX5iQrRqWRmt55qZZKChtYPDFc3M7hXncW5TfL4ZWcaR5+e+LxDSPC7nY3tTiXdu488+Av8ZqHnpv//7v3nvvfd44403MBhGdlSEmOuHN7Umi4sqO9gNjAOFSzS94P78FqkdF+zG90M3Zfs8N3j//X1250nVvO9A0AGfrrvZcS5DhM5RKs4ftPqq9ju+5YtKfrPnbFD9dBZB9dUXf+cJd/FVf3iv4AbGx0V5HQfK3Frw1tGg+qk1bsD+vH6zOs8jF959/1DlhB8sa2T15s89tm9ZM0+zJJyvdwhv1xfoMwxlv0ci/s5NQYXER0ZG0trqqbp85swZxo0bF8whBQKBBs4hUs7GnIKSX6b1d256gup+/zjbNexo2YxU/qWvnR0lON9jtXvrD87PNcUYrXoce6kdz0nRPWwulEayPyF5aucXhvrw41e/+hVlZWVMmDCBzMxMwsPDXT4vLi4epJ4JBK74I8oVTHitVk7vjInxXtsoId7LZqR6XTDQyvsOBBuw83gty2akMD97bMAK9YpHVDGCyhvNgOvvdl8q0ij4s2sgGieKB1bruIuuSmLcmEiXUPmV+WmU1l12LGhojYMUYzQJMWbV4+okfEaKecsF95YLD6EPAw9GYd7XO4S361uelxqS+X60lmcLlqAM9jvvvJNf/OIX/PGPfwTstVwrKyt56qmnWLlyZUg7KBAIBAKBIPQsX758sLsgEPiNt/znYHPc+6LdUfDWUS40W3jopmxqTRZeP1DOa73GubMh5pJDHaQuzTM7T/HsrlOaauveUK5Hy1CsNVkC9mIHi8QVQThfXmZfAmkbvzWDFGM098yf5IhQGx8X5eIZ9jYO1J6rDnh37Q0+F+L90XPxt9JKX3PCQ6Ew7/4svF3fjqM1PH6bdt36gez3aCIog/1Xv/oV3/rWtxg/fjwWi4WbbrqJuro65s+fzy9/+ctQ91EgEAgEAkGI+bd/+7fB7oJAEBBa0Tz+CsepHc+X0aC0UfNAr99dSsmFFnafqNMss+m80PB1QytPv3cymEt31BD/xfJrXcqoeSvfpsPuLQY0DcUj55v7bKyriblp1W1vaO1g35mLPr3M3oxG5wx05yhCtegDrXGg9ez9iZpz31cLfyqthKKySl8U5rUWctavyGHdthPY3NqHshLMaCzPFixBGexGo5EPP/yQTz/9lJKSEtra2sjPz+fWW28Ndf8EAoFAIBD0E0qJ1rKyMp544olhV6JVIAC7ceduIEqSZz1pBWePoi/PfXmjmUVXj+P/3nmNqrG960Sd6jmcDRvlf5fMnT6vRSfBD+ZNwirb+O+/V7l8JgM/2/GVo2zbjInxZCYZOHK+mYdV8rFfXJ3HshmpmobskYpmTtd7prj6y3sFNzg0W/adueiiKK5mxipCeM7Pypsqu9ZCiQyqRmOgYdZ9MRid91U0hn789tGAozVCFQYeTGqaN4//qjkZTEsew/JNrsJzoQ5bFyl1/hGwwd7d3U10dDTHjh1jwYIFohyMQCAQCATDEPcSrWvWrBl2JVp9UVRURFFREVar77rZghGGhuPTWchMqb6xak6Gh9Hg7nn8ztz0gE6vZtikJ/g2TGwyvPHZea9tZGDj7lI+XXczKcZoZk3yrPtu/1um1mRRNRQl4JG3j3qogAdCad1lh2d80dXj/D6WWtk3NQPcYTS6qeBrGY2BhFk7L9oEK3LmrjFk7upxSX94culU9UWIXs+1EgExWAarL49/bnoCG0TY+pAg4LJu4eHhZGRkiMlPIBAIBIJhzGgo0VpQUMDJkyc5dOjQYHdF0I+UN5pVy5q5l59yz9eWsYeZu5eSUvM8vv25q7fbG1rCZeau0L07K2J0Sg1093JdsgyPbDmmWoYOekPYNcLNV1+fwY9vnuKzD85luI6cb1Zt409pO29e29z0BJdSbHpJ4snbp1LeaFYtAeZcxu1A4RJVQTf3Mn2hKsW2ak4GT94+FQn7mNm4u1T92JLbfwcJZSHHGfdn4c/9FPQ/QdVh/+lPf8pPfvITmpqaQt0fgUAgEAgEA8ChQ4d46KGHPLanpaVRV6ce5isQDEX8MTwADlc0qRr2RypcjU01z6MNePDGyS42liRBfka8S7tFV/1/9u49Oqr63B//e08g5AK5ESJJSEhEAdFwjxqCKNjTSrWKZJ3qF9fRotJao13nqEdCV8s5fheWUI8ejzVWBavt7/xA2oL2Zy1WK2oIUYiAEJWIxIREGIWQZALJ5Dazf39M9jCz73O/5P1a65zqXPb+zJ4xM8/n+XyeJxt7q5apBjapiQnGL8YHG9486g44pcCqZtU8rz3tnsucd95fBr0W5DfNngwA2LqvDb/ZfdwwnvTsya3VJfrh705XHEcA3O+XmaytZ9D46PIZ2PRWk26wrdfr3aj/t9VmR31zh1/9wK02Oza91aS49p7Hjqbe4/KJHq33Qu96Unj4tYf92WefxfHjx5GXl4epU6ciNTXV6362giEiIopubNFK8cLsUmhBI1qV36y11/jG2ZNRMiUNbZ19GBhyYE5BBtb84YDXc/ceP6s5zmBm2CVOEVi3oxEzJ09ATloSTtnsqkvOD7R2IWt8ouaydYsAvHnkG6/VB2YSwEdOdqNs2kScsvUr7hMAVCyYgkkTxnm9N48un4G89CRYBAHzdfqVe5Iec8eWj1T3XAMw1dtcbxm4mWJ4eoyWmIeq6FwgWPgtNvgVsLMVDBERUWxji1aKBKN2Xv4yE3gsmJqpWpxu/lTvyuC56clYe8NMbNrVBCdcgeesPOVearVK6HoBmFE7MK3K6pIVc3NRmJWKZ3Yf97rdCWUxN7mfvXoIa5fPVD2/RQDuWVyMzXtavG4XAay6qgCv7mtXVAuXbNrVhKuLs7BpV5PivqrlM5Gbnuz13hz5utt1Xf0IirUC3pf3tmDLHmVLPTVakzEpiZaAW64ZFZWL1t7jLPwW/fwK2NkKhoiIKLaxRSuFm1YLKS2+BvdGgUduejKqK0oUY1ArOLfprSZ3kCoCaDypXI2iFhxLAZja2PUqnwMwjNj/8okVj90ySzPo1wv2nSLw611fYO0NM/Hrt1wt4SwA7l1SjNXlxQDg7iPv+VoeXHYpHlx2Kd48YsWGN4+qHrehtUt1PLOnZHhdh6LsFM0MuZn3V7V3ugBsrm0xrDov0VqN0TvoCDj7bbTSI5p6j4dq4oxCw6+AnYiIiGKb1KK1rq4OR44cYYtWCim9FlJqAYOvwb3WOeVBiVEmXj5OM6QgUgrAao+d8Spu93+uLMDPrr/UnW1OSUzAg9s+URzHqMq6CPjdxx1wBaCzp2Sgrmqp6uvXCyZvnJ2Lx988qpgUq95ULgAAIABJREFUsAhAaVGmaub4yNfd7gBdyuIHEhSrBbx3Ly5SrAyQtgDcNEf9mGqfAavNHpTst9HnKxqWoAfjvy0KL78C9szMTNV9QIIgICkpCZdccgl+9KMfYfXq1QEPkIiIiEJn8eLFWLhwIcaNG6e5x5coUL7s3/U1uFejF5ToZeJflmWZjVgAvHb/hX7kALBo426vwHbb/nZs29+OTRUlWDJ9kuZ/Z3rL5X2ldiwpANV6/XrBpLQ6wXMiQgCwdvlMzCnIVATSjy6f4V76DrjG8lJdi2IRgbQcvb65w1S2Vz5GQLkyAHBtAegdHNYMROXXIJjZbzMrPcwcVy8L7m+GPBj/bVH4+RWwr1+/Ho8//jiWL1+OK6+8EgCwf/9+vPXWW6isrERLSwt++tOfYnh4GGvWrAnqgImIiChwTqcTjz/+OJ5//nl8++23OHbsGC6++GL88pe/RFFREe65555ID5HiiC/7dwMtzuVvUGK12RXZWiNSwCp54/BJzaXpa3c0uq+BYi891PeR+0I6ptTWzZPZAFQvmJSC5d/s/hJb97W7+8FnJI9VBNKqlfZF4MaSydj16TfuFQkr5uXh1ufqNbO9WlsL5CsDpN7mnufyfM/NBLjRkP2W6E04BZIhj8bCd2TMr4C9rq4OGzZswH333ed1+wsvvIC3334bO3bswOzZs/HMM88wYKdRwWqz48CJLoiiiIVFWV5/9KQvidTEBPQOOlCc7eqqoHWb9GVyuL0Lrx06ib4BB66Ykob8jGT8/bNv0WMfwoKpmTjV3Y/Gk9041d2Pi9LG4fsluejpH8LXnX34qqMXA8NOnOsfQs6EJMydkoGPvurAkCiiJC8dU7JSMLcgA03Wczh++hzGWiyoaz4L+5ADeelJmFeYgbEJCcgaPxbnB4ZxuL0bSQkWlF86CSe77eg4NwBRAAYGHRh2ikgak4DjZ85h2Ckie3wi+oecON8/hPFJY1E0MRVjEwQ0nrIBooCS/DQMOUR0nB9A6rgxmJiaiCGHE+3d/SjITEJGyjhMTE1EUXYqFkzNxOenbNjddBrLZuYge/w4vH7oJHoHHRgaduDrLjsWTM3EXeXFON3Tj/2tnchIHou2zj4MOpwYHBaRnZqICcljIEBARspYpCQm4KuOXlxZlOX+keX5HrV19kEQBCyQVa41+rJXu/9wexf2t3biyqIsAHD/s+ePO38+a77MuEtjuDg7FcmJY8KyX83zdQfyWim0NmzYgN///vf49a9/7fVdfcUVV+Dpp59mwE5B5UsGM9DiXP4GJWr93LVYBFew/pMl07xuN1qlIo1LqsLueb7sCeMCyrJvuWsB+oeceGDrIa/jWgDsvL8saH+Pt3n0pJcHxp7XV+21vNn4DQQAP15SjBtLct3BunSsdTsb3ccyG5gumT4JD1x/CZ5517sYnz/V36OhAJvehBMA3fuMJiWitfAd6fMrYP/73/+OTZs2KW6//vrr8fDDDwMAvv/976Oqqiqw0RHFgO0NbYolYtUVri8Dzy8beNwPKGfWpdssAjC3IAMH27rd9//Ru2sM3vrsW69/P2Xrx6F2m+r4TnYPeN13/HSf7uvp6hvCZ9Zzqve9/6V2uxpJ61nPfqL9+PSU97GOn+nVfO7HrdrH/X89fiB4ajjRjedr/ctIVMzPx5XFWar7FbXeR7Uve7X797d0YsfBk5rnffKHc30er68z7mpjCPV+tYf/+InXOf19rRR6f/jDH/Diiy/i+uuv95qAnzNnDpqalBWfiQJlNoMZ6PJkf4MSoyrud5cX4Za5ee7l71qV6M0SZf8sLwrnq5TEsUhOFBWTDk4AfYNadd5987u6FlOV8eXvoScRwJbaFsyekqGahX95bwtWlxebWiXxwgfNqN7VpFkAMBjV38NNb8JJhKheKb+uFVvqvjKclIimwncSTvIbs/jzpKysLLzxxhuK29944w1kZbkySb29vZgwYUJgoyOKctIsqPxLd92ORhxu71INBEUoK7l63uYU4RWsU+jsOHgSVTvUiwuJcM1iy99H6cveanNNTKjNhFftaNQM1qXzHm7v8mmsWjPuVptd9b51O9XHIB9/MB1u71Kc05/XSuFx8uRJXHLJJYrbnU4nhoaGIjCi4KupqcGsWbNQWloa6aHQiNz0ZJRNm2hqr3Jd1VJsW3M16qqWGlaTr2/ucP9dk4KShJFsty/LwTeuLIFFI0n+u72tuPW5erR19upONmyqKFH0MBdg3Nfcsyjcz5Yp/9s00jc4hL8ePqW4PVgZVKvNjpfqlBPkFkD1+NJ7+IsbL1Pc5wRQf/ys6rXeUtuCAyeUleeloFXyQm0zNuoE60bV36XX5PnZiQbSxJEn6T1Uu88CuIN1wPh73pf/toJF6zo//MdPcEtNPR5/swm31NTj4T8qizGSnxn2X/7yl/jpT3+K9957z72HvaGhAX/729/w/PPPAwDeeecdXHvttcEbaZDV1NSgpqYGDocj0kOhGKY2Cwq4voi02pxQdNF7i7Ta1XhmE9Q+A2be9o9bu3yaSfZ1xl3vsxeq/Wr7WztVb/f1tVJ4zJo1C3v27MHUqVO9bv/zn/+MefPmRWhUwVVZWYnKykr09PQgPT090sMhH5lZnqy18sjf/cie+7S3jezT9mQmQysd40BrF7rtg8hITsSCokzUHjujmnGWSEFZ7bEzePa946qP0XPP7w+o3v7dyy8KuMgZoP2b594lxboTGFoV5l9taMPtpQXYut97BZ0TAETlknrPiQerzY5qld7vAPDLGy/D92fnGlZ/j9Zq6fIsuEUAHl0+w32N5RnyexYX4UWVSvl63/PhXPqvdZ21JvnvLJvK3wwyfgXsa9aswaxZs/Dss89i586dAIAZM2bggw8+wKJFiwDAvTQ+WvFLnIJBa/mcBeptTij66LW91WtXI/1oUPsMGLTSBQAsLPLty8hoiadab1qtz16o9qtJe/XlfH2tFB7r16/HXXfdhZMnT8LpdGLnzp344osv8Ic//AF//etfIz08IkNGxeX8DUpqj53Bq/uVwbrEzKRnbnoybppzodgZ4ArkZ06egBU19cr2aAB+tfIKAFBdnReIv3/6Daw2u+54zQSvjV8rt95ZBLj7uGvJTU/GmmuKFUGlUwTKL8nGNtm1ThAELCjKVAStdy8ucj+mpaNXtQ2eBXAH69K51ZaAA9p7wcO5PFxrkuS20kJ09w2heqTSvmdxP7VK+VtklfLDuS/dqLaO1nXmJL95fi2JB4Dy8nJs27YNBw8exMGDB7Ft2zZ3sE40WkhfBJ41ZgQAGytK3G1OEgTvtUuCoFwW53lbgiBgfmFGKIdNIyrm56O6QvkeAa73ZONK5fsoX1qptvSyuqIEFfPzdc/r65eR3hJPtfs2rlQfQyj3q80pyFSc05/XSuFxyy234I033sA//vEPpKamYv369Th69CjeeOMN/NM//VOkh0dkSG/lkRozy5/N9GEXABw/fc5wGfX2hjaUV+/Gqs37UF69G9sb2tA76FCdCPjNqnm4rbRQM4utR2sJv8QJaF4TQH/LledjNr2lzGjffqW5jPTqxcWqy7znT81E1fKZ7oDE8ztKWrr94yXFEEVg854W93VUWxoOuAoBqvU+ly8B9/WzEwpqnw+JdL09t0t6vieeW0v83QIS6tcA6P83ykl+8/zKsANAc3MzXn75ZXz11Vd4+umnkZOTg127dqGwsBCXX355MMdIFNWkmc6DJ7ogisCCogvVxT1nQVMSLV59WrVuk5buHW7vwl8+OYXegWFckZ+OvIwkvP3Zt7CNVIm32vpx5OtunLL1Y3LaOCy/Ihfn+4fR1tmLlpEq8T0DQ8gZP1IlvuUshp1OXJGfjsLMVMwuSEfTN+fQfPo8xggC9npUiZ87NQOJCQnISk3E+YEhHG7vxrgxCSi/JBtWWz/OnOuHCKB/yAGHQ8S4MQloPnMOQ04Rk8aPg33I4a4SXzwxFWPGCPj0pA0iBJTkpWHYKaLj3ABSk8YgK2UchpwOnOzqR35mEjJTxmHi+EQUTUzF/JEq8e9/cQbXzZiE7PHj8JdDp9A7NIzBIQe+7u7HgqkZuGuRq0r8x61dSEseg/ZOOwYdDgwOi5g4PhFpSWMhCEBGciKSEy1o7ejDwqJMdyDp+R61d9ohCMD8qervo9rSSrX7bystxJ1lU/Fxa5f7y0f6Z38DWL1xGI2hKDsFKYljQ96q5skfzvV63QzWo9s111yDd955J9LDIPKLL8XlPDPIAoA11xRj9WLlUm6tgNnzPCKAX/7lM6z/y2fu4qRyWkHwfdddrHisFLhqvSY9v7zxMiwsyvSqtq52fL1sq5mq+lrXZeu+Nry6v81wOblWprv22BlseqsJTrgmyh9dPkNxnC17WhSBa13VUmxcWYKqnY1emfaMlLGa5/d8ryNdLd1odYivnQ4i0ZLOTPtEveucm56Mivn5ikK1/N2g5FfA/sEHH2D58uUoLy9HbW0tNmzYgJycHBw+fBgvvfQS/vznPwd7nERRzbVHy7d9Qka3zSlQBjvXXzY5wJF6C/bxQiE3PdlrnFp/yHPTk/3+I+/5Hukd32j5o/x++XsYjC8hvXGYGUM4ROKc5Lv169dj6dKlKCsrQ1JSUqSHQ+SXexcXY8ueFjjhCgQevWGGewm69PdQHliIAF7c04LNe1pQ9X3v1mzF2amqPdI337lAsUdchKvIqNoyaq2Aq+a9ZsVrePSGC/uTa4+dUV3qrSZBENzLv7UqsicIAh5drrwmntSCKosAdJzvdy+l15tIMLucXG0pd3n17gvvi+iqlH/znDzdiQIpcF0yfZJi/5nZZe2RrpZuFJD7M6EQ7pZ0ZiYVjK4zJ/nN8Stgr6qqwoYNG/DQQw95VYJftmwZnn322aANjoiIiELjww8/xFNPPYXh4WGUlpbi2muvxXXXXYfy8nIkJ0dnuyMiiXzP9Y8XX4yJExKxaWTPr+c+bK3ssAhg49+aABH4ybWuoP10T79yybrgap+qRgRw8ESXYtLel0z57CmubXCH27tcGWOdx0qTCfI93WrBcGtHH4583a24JkumT3LvOQZcgZdnOzlhZNwPbvvEq8Wp1qQAoJ/9lbftkh5T39xhGPDpBa4tHb2mWsxpiURWWmIUkEd6QsEMs5MKRteZk/zG/ArYGxsbsXXrVsXtOTk56OjoCHhQREREFFrvvPMOhoeHsW/fPtTW1uKDDz7AM888g4GBAZSWlqKuri7SQyRSpbYUd0vdVxBFKJZOL5k+CamJCRAEaGauN+1qws1z81B77AyqdjYq7hdF4EzPgOZ41I6rl/X25FmxvGqHcbD+euUivNloxeZa1wqBl+pa3BMTahnWO7Z8pGg7KgXk0hZwaQJg7fKZmJKRjMqthy68NlxYReBZ/f5nrx4ylf19+I+fKJY8P/nDuQDMBXxGgWugy9rDnZX2PK9RQB7JCQUzfJlUiNR1jhd+BewZGRmwWq0oLvauCnno0CHk52sXWiIiIqLoMWbMGJSXl2PSpEnIysrChAkT8Prrr6OpSb1dElE0UOvRrZbJdogiXt7b4toDrRMJOwEcaO3COtl+aEmCIKCnf0jz+QVZ+u3d3jxixYY3jyrul1eG1wvWLXAVtM1JS1Ld0212Wb6ICxMMnnc5R5aj/8fNyp7pIlzX56Y5ye7q972Dw4aBmlHbLrMBn1bgKj1/3Y5GOD2uZyCBoVFru2AyE5BHe6Ab7ZMK8cKvgP3222/H2rVr8ac//QmCIMDpdGLv3r145JFHcOeddwZ7jERERBRkL774It5//3188MEHGBgYwDXXXIPrrrsOv/jFLzB79uxID49IlZSJlrOMZNBF2W2ba1sM22wKI/9PtdgcXHvMq1UqpEv6Bp2a90l9yH/1t6OKPeKv3b8IcwoyVZeGe9qw4nJcf5mrl7qZZeQSXwvYOUQRZ88Pqt4nb6YitahraO1CqcbeYzNtu8wGfLqBq7RPwKBavpFI9GWP9oDcjHh4DdHOr4D9V7/6FSorK1FQUACHw4FZs2ZheHgYd9xxB37xi18Ee4xEREQUZPfddx8mTZqEhx9+GPfffz/Gjx8f6SER6ZKWwit6mI8EVwC8srV3Ly7CZlnvbzUigIavOlULr712/yJXKzaNoNezOBsA1eysvJCcZ9tQwDiwHhhyuo9nHxxW3K+1DFyewbaMvFat+D1BELBsZg6eefe4d9G9kc4pnswEt2bbdvkb8KltjVi3sxEpiQlYWJTl0zHNVDwnihS/AvbExERs3rwZ69evR2NjI86fP4958+bh0ksvDfb4iIiIKAR27tyJ2tpavPrqq/iP//gPzJs3D9dddx2uu+46LF68GCkp4WlvRGSWVvG4Z26fh5vm5AGAovDaS3UtXs+RV4CX/P6jE/h+yWT8/dNvvZZnzynIhNVm1wyoRY/ibMCF/eBSAKs2ySCIrnFKpMBaaw+7FODK94NLVszL0wwq5Rns2mNn3AG8tLJAFC+sJJhTkInqihJFMO55fLPB7ZyCTNW2XTlpSahv7gh42bna50EqludrhtyoL3u4lsn7K5xL+Sn8TAfsDz30kO79H330kfufn3rqKf9HRERERCG3YsUKrFixAgBgs9mwZ88e/OlPf8JNN90Ei8WC/n71qthEkaJVpGyBR8ZWnq1VyzBreevTb/Da/YvQN+hU3SvtPo4A3DwnD3/55JT7ePL94FIA+3FrpzKohGtPeNb4C5XaC7JS8HrlIjz59jHUfnmhgLPUl1ptP7jk9UOn8Mj3ZphaTi4P4P+/w6dQPVJFftNbTchIGWu4TN2XHuHytl1N35xzt3ILdNm5v63m1IJbrc/Wka+73YX7wrVM3leRWMpP4WU6YD906JDXvx88eBDDw8OYMWMGAODYsWNISEjAggULgjtCIiIiComzZ8/igw8+wPvvv4/3338fn332GTIzM3HNNddEemgUx/zNBvrT6soz+DzbO4AHth7SfKxTBL7usuPG2Xm6x5Fair3+ySnNY3kWvJMTAHeVdbXM/F2LpuK9L85g6YxJuP6yyQC094NL5zLbygy4EMBbbXZs2tXkXq4vD3K1judrj3CpbZfVZsetz9UHbdm5USV+teuiFdyqfbYeXT7D3RIvGOMNBS7lHx1MB+zvvfee+5+feuopTJgwAb///e+Rmema1ezq6sLq1av5JU9ERBQDSkpKcPToUWRmZmLJkiVYs2YNrr32Whaco5AKNBvoT1VqzwDVqAjbA1sP4fzAsOqY5EGs3rG0Ct5JS/K1KrVX7WwERornbd3XhrU3zETJlHRcPJKJ1zqXtI9e63p4TpIArix5Z++g6Uy5J38mTqw2O/565JRf59MjfR4OnujCA1sPeV1P+SSCu8+9RnCrNikT7PEGWyyMkQLn1x72J598Em+//bY7WAeAzMxMbNiwAd/97nfx8MMPB22AREREFHz33Xcfrr32WlxxxRWRHkrI1NTUoKamBg6HI9JDiSqR2u+qVSTM12ygv0XK5IGmZ3YbHv9sJkOpONZIJC4CugXvll2Wg3ePntY8rmei2CkCG3e5qtNbBGB+YQYOtnV7PV7qL6+3b9tzksTzNQtQ7umXB7lanxVfJk48zy/na990Na5K/Mk4P6Ddak6rz708uDWalAnGeIPJ19UOgTL628G99KHhV8De09ODM2fOKG4/c+YMzp07F/CgiIiIKLTOnj2Liy++WHG73W7HE088gfXr10dgVMFVWVmJyspK9PT0ID09PdLDiQqR3O+qVSTs5b0t+Pn3Z4VlDPJA8+PWTjy47ROvx5jNUMqPBUC34J0FwO4m7WBdj1MEDrfb8NJdC9zn6B9yemWV1ZZDyydJ5JMTAi4EpWpBrvyzsmT6JK+AzOgayc/vyUxm3hdakwha3QWkMWgFt/6sJAi3cI7R6G8H99KHjl8B+6233orVq1fjySefxJVXXgkA2LdvH/793/8dK1euDOoAiYiIKPgee+wx3HfffYpq8H19fXjsscfiImAnb5He71qcnapapf3F2hasLi82FfwFK3snjoxiYVFWQBlKedCqVfAuQRBwz+IivKixp13awy7vJe/JIYpISRyLe65xTbTVN3cYZoy1KutLRAC/uX2eeyAFma5e76mJCYrPytodjV5jNROQaZ3/lzdehu/Pzg36505tEkHvGjy6XLtYH+DfFoxwC8cYjf52RPpvS7zzK2B//vnn8cgjj2DVqlUYGhpyHWjMGNxzzz144okngjpAIiIiCj5RFCEIguL2w4cPIytLvX8yxbZo2O+qFTsePNGFG2ebW1YdSPZO7Tj+ZCjNTB6oZeC3yLPuArD5zgVo6ehD6UgV9XU7GuFUOZ4F8JpIMLMc2qjHe4Ig4ORI8Tmv9ncCVHvP62Xz1aQmJqjevrAoM2yfOa2JIgCYnZ9h+Hx/t2CEU6jHaPS3Ixr+tsQzvwL2lJQUPPfcc3jiiSfQ3NwMAJg2bRpSU7ULYhAREVHkZWZmQhAECIKA6dOnewXtDocD58+fx3333RfBEVKohHu/q1xLR6/mfWrBoSRY2Tut49RVLUVd1VLTGUpfJg/02swlCAJWzMvDmj8c8DrWa5WLsOK5esU1Wbt8piKbbzTZYLTX/tEbZiiCdUD//ZCYCch6B9XrR/QNqk1JhEZuejKqls901wOQCEBU7UePFDOTT0Z/OyL9tyXe+RWwS1JTU1lNloiIKIY8/fTTEEURd999Nx577DGvvd2JiYkoKipCWVlZBEdIoRLpPbla2V4B8OqlLhes7J3eccqmTTR1rEAnDzyz7n2DQ7j3DwcUVcvrqpaiWtb3fe3ymfjJkmm6x9OabNDba2+0ZF6PPOOvJloCuZvn5qF6V5N3ll25wGjUMTv5ZPS3I9J/W+JdQAE7USxSa22SmpiA3kEHirNTcbqnH/tbO3FlURZy0pLwzuffoOP8IK6fmYOctCTsPPA1jp8+h5vm5CF7/Di8dugk+gYd6OkbxFFrD8YlJqAgMxnJia7/vCaNH4e8jGS0nu3F3IIMnO4ZQOPX3UhOHIOuvkGMT0rAlIwUfHn6PD47ZcOQQ0RJfhoSLBacONuLcWMtyEhOxNgEC2x9Q/iqoxep4xIwPmkMnE4RmSmJ6BtyoLd/GKlJY5AgCOjuG0RhVgq+d0Uu8jKSsOfLDnz57TmcGxhGXloSIAhIHmtB69k+nDnXjzEJCbgiLw23zs9HcuIYpCYm4MjXNrz/xWmc6rYjLyMZcwszkJGS6K5S097ZizPnBjErNw3nBoaROMaCtKQxECCg2z6IIYeIOVPSYR9yQhRFFGaloK2zD919Q8hIGYvCrBQcOWnDV6fPI3v8OBROTMHCoiyvIjEHTnS5n9s76IB9cBhfdfTi4uxU9A06cOJsH872DqI4OwX/NGuy+/0szk7F56ds+OsRK6ZNGo+KBVO8vjSsNjs+bu2EIAhYMDXT65xqt6t9dqQ9W/LPj+dzDrd3uT9Lcwq0f4xqHd/odn/P46twVn1lhdnQu+uuuwAAxcXFKC8vx5gx/CkwmkRyT670o96ztRYAVFeU6I5DLeizADjbO6DbyszUcQTfsqxmJg+M/o7lpiej9tgZ3arlvrxPnll8rXPr7bU3anWnRZ7x1xpbNARyLR29imstihjVS7Z9nXwy+kzGwn7/WCWIoplFL/FLqhxrs9mQlpYW6eFQiGm1NqHoIMD1ww2A6g8ZM8/Xes6mCtessby1i9Y5pdulmWb5LPSt8/Lx2qGTih9+0uz0w3/8BDsOnnTfVzE/H0/+cK7m2LVmuY1mv309j6/CWfWVFWZdwvm91NzcjJdffhnNzc34n//5H+Tk5GDXrl0oLCzE5ZdfHtJzhxO/66OL1WbHwRNdEEVXZt3MD/vtDW2q7dh8/VvxwgfNXkuj5X/r5eOUB79Wmx2LNu72+q4RBKC+ahly05NN/R2z2uwor96tWTm9rmqpqZZZ8n/392+o57X1HMeKeXl4/dCpC9d8ZF+7WsbfTLsvfwK5YE3iql1zvWvt67FjcaK5vrkDqzbvU9y+bc3VKJs2MQIjGn3MfjcxYOeX+Kih9wVJ0cPzR0Gwj/t65SKsqKlXBPVa2QWLAOytWgYApj87CYKAF++cj3t+f0Bx318qF6lmwLV+SOy8vwy3Plev+QPjcHsXbqmpN30eX4XyB04kzxXtwvW99MEHH2D58uUoLy9HbW0tjh49iosvvhjV1dX4+OOP8ec//zlk5w43ftfHB6vNjgOtXfjZq4f8+luh1Q9c/nyrzY7f1bW427J5Br+qATuA+nWu7wr5fWpj0wqU9IJsvUljKYCW70X35W+oFFCnJFrQN+h0B9aegTYA1aA7WJOtwZqA0OI5MWHByKTDtcptBr4eM1Ynmvm9G3lmv5ssYRxTVKmpqcGsWbNQWloa6aFQmASyT4vCR0Twg3XpuA2tXaoZeK3PhXNkuZwvnx2HKOK9pjOq933c2qV6u9YSy4bWLs2llwCwv7XTp/P4Sm/pZ7CF81zkUlVVhQ0bNuCdd95BYmKi+/Zly5bho48+iuDIaDSx2uyob+6A1WY3fGxuejKyxif69bdCrx+45/O3N7Rh0cbd2LznQjV3aamwtG1KsbQawIHWLvyurkVzibvn65SqlnuyAHjt/kWamX750uUdB096/bta4TiHKOLNI1bT17Zs2kTMKchU7OeXWuBJj5Fv2VJbVm3mnJ62N7ShvHo3Vm3eh/Lq3Xihtjkox/V0W2khHl0+AwIAJ4BNbzVhe0Ob38cL1muPFGm7QsJI4VHuO49eo3bjWmVlJSorK90zGxT/jFqbUHQIZYa9tChTddm8XoZdyiqY/ewkCAKWzpyE/92n/BGwUKOoklZRntKiTN1iPVcWqbfe0jqPr8JZLChaChONJo2Njdi6davi9pycHHR0dERgRDSaWG12vFzXgs17WkwtbfesGeLP3wq9iVfp+VIApvYwhyji5bp2W6adAAAgAElEQVRWbKn7SvUYD247pHq7BcCRk924Y8tHXtlxTwKAjRUlmiujzEwaS1v95A/b8OZR/OpvR/3K/JrJHgejIKBa4Ks1ARHInnOrzY7qvzV5taar2tnod6/weGhlxn3nsWHUZthp9JHPJAqCskAoC4ZGlrSXsHplCVTaQxs/X+c51SM/hqorSrzeZ2HkR8gmjdulQj3yWeiK+fnuf5dIs9PXXzYZFfO9f5BVzM/X/DGmNcs9pyBTd/Z7TkGmT+fxVThn3znTH34ZGRmwWq2K2w8dOoT8/HyVZxAFh5RNfXFPi6Kvt1p20jP7eutz9bh1Xr7PfyukSUE5C+B+vlFgvHnPV5r3i1CvoXL7VQVewaeUHRdlz+3uG/J57J4SBAFVy2cqvpekc/qa+TWbPVYbm6+TrWrX3bPWkL/HlTtwQrnKThSBgyf8W5UWjNceDdRWTlB0GbUZdhqdtFqbeO7ZOt3Tj49bu7CwKBM5aUn4x+ffouP8AJZJVeIPfo3m0+dx4+xcZI8fh798cgq9A8Ow2Qdx9FQPkhITUJCVguTEBABAdmoS8jKS0NbZh9lT0nH63AAav7YheWwCuuyDmDBuDPIzk3H82/P41KNK/JgEC1rP9iJpTAIyksdi7BgLunuH0Hq2FymJF6rEZ6Qmwj7kwHn7MMYnjUGCRUBX7yAKJ6bghitykZuehL3Hz+LYtz04NzCM3LQkAK4q8SfO9uH0SJX4krw0rJifj5TEsUhJtKDxpA3vN53GSZsd+RnJmFuQiYyUse5r2d7Zh47zA5g5OQ3n3VXix0IQXD88hhxOzJ6Sjv4hJ0QRKMhKRnunHd32QWQkJ6IgKxmNJ21oPt2L7AmJmJqV6lV8aMn0Se6iRAVZyegbdKJvcMj93tkHnTjR2Yuz5wdRnJ2K78y6yP1+FmWn4PNTNvztiBUX54zHyvkXqsRLn4EDrV0QBGD+VO9zqt2u9tnJTU/GI9+bobrnDwCe/OFc3Fk21f1ZMgqitWa5jWa/fT2Pr8I5+86Z/vC6/fbbsXbtWvzpT3+CIAhwOp3Yu3cvHnnkEdx5552RHh7FKTNL042WXL9+6BRevHM+Wjr6UGry7568WrlFAO5dfDFWLy5yn89oJZ4/hVAXTcvG1n3tho/dtKsJN8/N06wqr9a/XSoIJ01a3FZaiJvn5uHNI1ZsePOo1zF8zfyazR4Howq81gqrR2+YgV+/9UXQqstrle3yd0VftFTAD0SsFswbbVh0joVoiIgoioTre2lwcBCVlZV45ZVX4HA4MGbMGAwPD+OOO+7AK6+8goSEhJCdO9z4XR89tAquAb4VaJOWf/ta6MuoWvn2hjas29EIp+x2y8hWLV9+NEvFTuXFQ7UYVeeWj13rtfhbTEze9larGKpaG1N/q8BLPAvCeU5ABHpc+evTKhgYaAX6WJxojuWCefGCVeJN4pc4ERFFk3B/L7W3t6OxsRG9vb2YN28eLrnkkpCfM9z4XR89Drd3YcVz9YqspgWufdxSkKYXOMp5tlXzhVZ20bW/3rVf3SleWHYPQDWY17NhxeUYm2DxCka/d8VF+FvjN16PC0Z1bs/XU3vsjGoArEUteAOgyOp7VqYPdoAXjsDXc0LG8zM32rBCfHRgwG4Sv8SJiCiahPN76aWXXsJ///d/48svvwQAXHrppfjXf/1X3HvvvSE9b7jxuz46qLVVky9N1wocq3aoF4OT1Kyahxtn5wGAu5q7IAhYMFW9z7vZfunyAFJrwkHPpooSxXafFz5odu1tB0wF1EbUXo/ZLUZ6wRtwYeugXpvRWBKtGXEzveyDtXw93nuwx8pSf7PfTdzDTkRENAqtX78eTz31FB588EGUlZUBAD788EP827/9G9ra2vB//+//jfAIKZ6o7V2XWplJe9C1Cp3tvL8MgkH3EOm+7Q1tXsG9VMzUMxhWO8+6nY2YOXmC1354qeiopzkFmVg5Lx87Dp40/dp/vvNT1FUtdQdCVpsdJVPS8VrlIkX9E39oXbe6qqUoyk5BS0ev+/Wo0duvLhUjq2/uiPmK6BK19zXSjCaQgr18PZ47s8TjUn9WiSciIhqFfvvb32Lz5s3YuHEjbr75Ztx8883YuHEjXnzxRTz33HORHh5FGV/6patRrQQOoG/QqfsYhyiiobXLcA94QZZrT7c8Ey/CFYx7jlurKvmKmnqvvtxqr9lqs+O1Q97BukUAVl1ZqNlpRt7n3bPifVtnr2bwaPaaa123l+tavXqba/UcN1PtPF4qokcjo4r8oej3Hq+dWUJxraIBM+xERESj0NDQEBYuXKi4fcGCBRgeHo7AiChaBSNjZSajp/WY0qJM3ertAHDrc/W4Z3Gx6rJ5pwivTLBWNXgRrh/3S6ZPQu2xM6qvWSvY37a/TXPJvrzPuzyYUOsD7ss1V3s9FsC9B1861zqNnuNmqp3HQ0X0aGVUkT9U/d7jsTNLqK5VpDHDTkRENAr9y7/8C377298qbn/xxRdxxx13RGBEFI2ClbEyk9HTesycgkzF7ZXXTYNny3GnCLxU16J6bosAr4kB6Txqvc0dooiDJ7o0X7NaptkiaFeP93ydesGEJ1+vudp1u/eaYtWJhZf3ql+j20oLUVe1FNvWXI26qqWqkwNmHkO+M1q9EMrVDfHWgz1eV4Iww05ERDRKPPTQQ+5/FgQBW7Zswdtvv42rr74aALBv3z60tbXFTR/2mpoa1NTUwOFwRHooMSuYGSszGT2tx8hvb+noRc37zV7PdYrAj5cUY3Nty4U97CPZafm5bistxMzJE7Cipt4r2E4QBDhFUXdPtzzTrFb13SIAz9w+DwuKMnUz+xYB6DjfD6vN7n6cP9dcfn0AYEtdi+I4W2pbsLq8WLPfu9F7Gq7937FSNCwYjFYvcHWDefF6rVglnpVjiYgoioTye2np0qWmHicIAnbv3h3Uc0cSv+v9F6z2T8EOwIwqmx9o7YIgAPM1qsRL1Kq1awXynq9ZqjSuVj0dANYtn4mfXDtNcT7PfuPCSDN5eT95o2tu9lo+/ubn2LxHmVH3rKgfjeKxaJgZRtXro7W6fTSKlWvFKvFERETk5b333ov0ECjGBCNjFYoAzGhcN80xHt/2hjZseqvJ3Vf9tiunoLtvCLc+pwzW1Zbva1VPB4DZUzJUzyllwg+e6MIDWw+5zyPfz6722gBXEP7SSObc6FrevbgYW/a0KJbrP7D1EM4PDEdlEKxVwT8lMQELi7KiOvgKlNHqhWisbh+t4u1aMWAnIiIiIk2ey61TEi3oHXR4LeHW40uhNbXn6mWSAymapdZmbuu+dsXjLAKw8/4yr3Zvnvxpj5WbnozM1F5FIO257F1+zd88YsXaHY1ejze6lrnpyaiuKFG8Ts/ietEW1GgV9Xtw2yejKttO5IkBOxERERHpyk1P1qycrsffPfBms/L+ZtLUxqXGKXq3nlM7vz8rEMwE+vJrrsYhijjQ2oWs8eoTG7eVFiIlMQEPbvtE8bxorJytVcEf8G2yhyieMGAnIiIiIl3+Zsr9yUAHkpU3Sy8w9OTZkk0r2+9Ppt9MoK+2CkBOAPCzVw/pTmwsLMoyfA+ipchbbnoy7llcrLr3HjA/0RAtr4coGBiwExEREZEufzPl/mSgw9FLWRrXuh2N0MqfS2M1s7LAn0y/UaBvtApA6l6lNrEhPV8KWD1fqwXweg+ircib1t57wFyLrmh7PUSBYsBORERERLrMZsrVMpu+ZqD9ycqb5Tk+aVwv17ViS91XcIqu8zy6fAZm52e4z+dZsT3Y2X69QL84OxUjheS9CADWLCnG7CkZeGDrIa/7HKKIl/e2YMse78J07ieKuBDpIzyrGXwl7b2XJnkkZiZ7ovH1EAWKATsRERER6TKTKdfLbPqSgQ5VL2Wt8f38xsuwenGR6oSCWhX4SO7/FgC8XrkIcwoyYbXZVfu6e/ahd4rAuh2NgKCeiQ/HagZ/yIvu9Q06TU32aL2egye6kJkav0vkD7d3YX9rJ64sytIskEixiwE7ERERERnSy5SbzWya3VtslJX3dY+y0fi0JhSCke232uw4cKILoij61JqspUNZSV4E8GajFXMKMlUnNm4rnYKt+72r3TulJ3qQgvJgrmYI9r5xf7YZqL0eQYC7hV48LpF/+I+fYMfBk+5/r5ifjyd/ODeCI6JgY8BORERERKZoBVFmMrW+7i3WOpc/e5Q/bu0M2x58+VirdjS642UBQHWFuYBRqzDeltoWrC4vVrR/O/J1Nza91aQ4jmXkxGpBebBWM0TLvnH567EIgChCs999rDvc3uUVrAPAjoMncWfZVGba4wgDdiIiIiIKiFGm1ijDbTY7688eZSmYlDObSfa337s0Vs94W4RribqZgFGrYroT8JpokP73ji0fKYJ7C4CNFa497FpBuT+vz/P9AhBV+8Y9X0/H+f6YaWnnj/2tnaq3f9zaxYA9jjBgJyIiIqKAGGVq9TLwZqqwSwHi2fMDPmXK9VqjrZiX59O+el8DPK0q7/KAW49axXS1iQatc/1m1TzcODsPAHSDcl9enzybfs/i4qjbBy+9HrV9/sEqYOirULSau7IoS/X2hUUM1uMJA3YiIiIiCpheplYrA5+SaDHMzr5Q24zqXU0QRwJEeeV0vQBMrzXa64dO4ZHvzfApY+5LwKW1pN0CmA4Y5RXTtZasa13f+VMzvY4VaKCotsLhpboWn96TcApVAUNfhWrLwJyCTFTMz1fsYWd2Pb4wYCciIiKioNAKCrUCp95Bh2529oUPmrFx14V92U7RVUTMIroy1UYBmFbQLD+PJ7XA3J+AS3rNVTsbIXUnE+Baou5LwGhmyXq4AlO1CRCnCPx4STFe2tMa0aBYi79bGoIl1K3mnvzhXNxZNhUft3ZhYVEmg/U4xICdiIiIiEJOLXDSW7JstdlRvUtZRE0UgWdXzXMFwQKwYKp2gCIFsut2NLqqpXuQ77Fv6ehF40kbNu1q8grMl0yf5HfAJb3mgye6IIrAgqJMv4I0M9nxcASmWpn81eXFWF1eHLGg2EgwVhf4Kxyt8+YUMFCPZwzYKWj0looZLSOz2uz4uLUTJ872YWDYge9cdhFy0pK8Cpp4tkT5/JQNu5tOY9nMHMzKS8c/Pv8Wp8/1ozArBQ2tXWjr7EWCIGBC0lhcf1kO+oedON3Tj7kFGegbdEAQBBRkJqO9y47Wjl40fdODjnMDsA85cL7fgbTkBJw9P4TksRZMyUrBxNRETJ2YipO2Pnx28hwSxwiYmDoOC6Zm4lS3Hb0DDkydmAIRwKG2LvT0D+OK3DSc6unH2fMD6B0cxliLBYIAXJGfjhmTJ6DHPoyBYQfSksbiQGsnxoyxYMbkCbBAwImzvYAgoCQ/HXkZSfikvRs5E5KQl5GErzp6kZE8Fp+d6kF7Zx96B4cxPnEMCrJSsGJevvu6pSYmoK2zD4IgwD44jPrms8iZMA5TslLQ3TeIIYeIgsxkdNuHcHF2KuxDTvf1BeB1jO6+IbR39eLMuUHcNDsX1182WbXnp9b77Gt/UF+KD/m7HyzYY/Js21OYlYLeQUfc9nslIvKXPHDSywzXN3co2poBrkD66y5XMD8Ss+tWXpcC2ZfrWrGl7is4Re/MvGf23JMUmP/nLbMCCrhy05Nx4+zwfBeEOjA1yuQH2n4vHgWzdR6NToIoimp/C0eNnp4epKenw2azIS0tLdLDiVl6S8WMlpHJW57IyfdFUegZXfOs1LHo7B1y/3vF/HxcWZyl+j772h/U7LLDQPaDBXtMWp/heOz3SqHH76Xg4zWNflabXZGdtdrsKK/erQiWH1g6DTXvNXv9zRUA1K9bZhgUys+jdQ4jCYKAuqqlozYIVXu/5KKl1Vs02N7QppjkGK3Xgi4w+93EgJ1f4gFT+7KTvsgAaN4nfVEu2ribAXkcUCs48+Kd83HP7w8oHvuXykWqWW29z5LnDwKzj1NzuL0Lt9TUB21MRj/2RvuPOvIdv5eCj9c0dnkGOhYAa5fPRF5GkqJVFwA8+3/m4aY5eT4dv765A6s27/PpOWaDz9GcXQ7kezpemZnkoNHF7HfTqF0SX1NTg5qaGjgcjkgPJebp7c0RIeouI2vp6GWwHifk76NDFPFe0xnVx2r1BzW7zyuQ/WC+9iw1OpdeBWJfxkVENNqpBbhq+7L/euSU6vOPfdsDq823PeJ6Rem0bn/mduOJgVBnl9WuVTRNEIRj33asieQ+eoptozZgr6ysRGVlpXtmg/xntDdH777i7FQueY8Tahn2pTMn4X/3tSkeq9Uf1Ow+r0D2g/nas9ToXHo/9nwZFxHRaKYX4MoDnQVTM1V/OzyzuxnPvtfsLhRnJnhV25P96A0zMHtKBlISLbj1uXrF3/8FBj2urTa71zYppwhU7WwMWlVwtWsFIKqWn3PfNlHwWCI9AIp90pddgiAA8C7konef9NzqihIIOscX9O4khWBcLqNrnpU61uvfK+bno7pC+T5ff9lkVMzPVzxWq8ib0efF18epkXqWBmtM0v1q1yzaWtsQEUUjrbZXVptd9fHSbweLyt9dpwhU7WjEoo27sWrzPizauBvbG5QTx55uKy3EzvvL8IsbL8PO+8vwk2unoWzaRMwpyNT8+2+12VHf3KE6xgMnuhSTCaIIHDzRZXgtjKhdq3U7GlVv07p+4RDI9zTFhsPtXdi8pxmH2wP/XJM+7mHnvrag0dubY7Rvx2qz40BrF0509mJgyInrL8tBTlqS+zkAvFqifH7Khve/OIPrZkzCrLx0vHv0W5zpGcCUrGR83NqFti5Xlfjx41xV4geGnTjdM4A5BemwDzohCMCUzGR83WVH69leNFldVeL75FXiEy0oyErBxJRxKMxOwaluOz472YOxHlXird396B0cRuFE1zgPtXWhxz6My3PT8M25fnScG6kSn2CBAKlKfBp6+ocwMOTEhKQxOHCiC2MTBMyYnAZBAE509EEQgJIp6chNT8KRdhsmpY1DbrrrmqQlj8FR6zm0ne1F7+AwUseNQWFmKm6Zl+e+bimJFrR32iEIQN/gMD5sPouctHGYkpmC7r4hDDmcmJKZjB77MIqyU9A/5HRfXwBex+i2D6K9sw8d5wfw/ZILVeLlPT+13me1x/r7WfLncWqCPSarze7+jBZkJaNv0Ml9auQXfi8FH69pdNPaR75tzdUomzZR83lWmx1vHrFiw5tHDc/x7Kp5WDBVfbm80fJ1+d9/o8e/cfik6T32vi5j92XP/Y+vuRg/v/EyU48NJs/XBID7tuOQr8V7SR2LzpnEL3EiIoom/F4KPl7T6BZIgTJfqrxbBFfRupL8dHeA7Ou5zTxeraCuWhV7f/a5q53fAtf2ALVOJXurjCvnBxMrw/summoPmOFr8V7SZva7iUviiYiIiCgo9JaKa/F3+bQU6Ky9Yab7uXo7upwisPFvTVi1eR/Kq11L5fWKo6m9HqPHS6+nuqLE/SPbAlefeHm3E1+2AXgeW36tNlaUYM01xaqv13NcoebvaxrNtje0obx6t9dnMtrpFe+l0Bi1ReeIiIiIKHjUsqtmi7+pVYP35Vxrl8/E7HxXobgVNfWGxWylYHLn/WWaxdG0Xo+ZYmpGr0cr8D/Q2oWs8frXS+3YVpsdW+paQlLkzWwGmJXhfaM1wRGs4oSh4mvxXgocM+xEREREpMlM1lwt+KjaeaH4m5nsYW56MsqmTTSVWZefa9OuJnSc70dOWpJmQTo5hyiib9Cpmt0HoBpMATC9GkDt9UjXMjUxQTFGAcDPXj2ker3k74H82KEq8uZLBliqDO+JleG1mVmtEY18Ld5LgWOGnYiIiIhUmd2TrBZ8eFZJkgLemZMnoHfQ4bWH3Nf9u2rncorAg9s+cY9xb9UytHb04cjJbmza1aTeZx1AUXYKyqZNVGSs65s7NIMpX1cDSOTX8tZ5+Xj90Ck4RNG9D10t21p77Iyp98DfcWnxNQOs1iKPleG1xXLruyd/OBd3lk31qXgv+Y8BOxEREREpmAnYpIBbyhjrFX9ziCJWPFcP0SNgfe3QSZ8LlKkFOhJpjHVVS1E2bSLKpk3E1cVZqsvk1y6f6ZWh9gwsUxMTIAjekw6ewZT88UbUruXrh05h5/1l6Bt04mzvAB7YesjrOdISeV+D5mAFyP4scQ/2pEE8i/UJjjkFDNTDhQE7ERERESkYBWy6GeORYFetHzngCjw920L5sn9XHujIyYPKOQWZqK648Hhpz/tPlkxTPb70uuTBeiDBlNa17Bt0omzaRFhtdtVsK1QmJsK1L9zfDLDepEGsVUQPNU5wkBkM2ImIiCgm9PX14bLLLsM///M/47/+678iPZy4pxewGWWMi7JTUHvszIUgGYDT4Hy+BKJSoHPwRBce2HrIa2LAbBE4efBotdlx4EQXqnY0eh3PAmDn/WUBZRONgl+tbOuCqZkRWzYd7AwwW76pC+aqCIpPDNiJiIgoJjz++OO4+uqrIz2MUUMvYNPa4y1ljAHvINlM9XZfA9Hc9GTcODsZ5weGTQWVnoGR2uoAaXm+nBNA36DRdIPxWI2CX7VJhe0NbV6ZfkGAT0FzoBntYGWAY7UiOlE0YMBOREREUe/LL79EU1MTfvCDH+DTTz+N9HBGDa2ArTg7FQK8l7wLAhQBt2eQvOaaYry4p0X1PIFkb30NKtWCR8/l+WpjC0ZG28w4Pa+XNE6vaywCS6ZPMnW+YGW0g5EBZss3Iv+xrRsREREFpLa2Fj/4wQ+Ql5cHQRDw+uuvKx5TU1ODoqIiJCUl4aqrrsL+/ft9OscjjzyCjRs3BmvI5AOz7daMmp+vXlysaPtlAVCzah7qqpYaBpN67eW0xqj2HLXgUUuwC4GZvpbQqIYPmGr7pZXRttrsptr0BRtbvhH5jxl2IiIiCkhvby/mzJmDu+++GytXrlTcv337djz00EN4/vnncdVVV+Hpp5/G9773PXzxxRfIyckBAMydOxfDw8OK57799ttoaGjA9OnTMX36dNTX1xuOZ2BgAAMDA+5/7+npCeDVkZqWjl5lQTlAN2OqtSz8xtl5hufzJ1us9Ry9KvMSiwA8c/s8LCjKjFgGOJC2X1oZ7Zf3tmDLnpaw7yOP9YroRJEkiKJKec1RpKenB+np6bDZbEhLS4v0cIiIaJSL9e8lQRDw2muvYcWKFe7brrrqKpSWluLZZ58FADidThQUFODBBx9EVVWV4THXrVuH//3f/0VCQgLOnz+PoaEhPPzww1i/fr3q4//zP/8Tjz32mOL2WL2m0chqs6O8ercimKyrWmpqSbove6KtNjsWbdytKCyndy6j8W1vaPMKHlfMy3NXuJeCyWgoiCYfp9lxHW7vcrfQk6hV7jf7ngWLr+89UTwz+33PDDsRERGFzODgIA4cOIB169a5b7NYLPjOd76DDz/80NQxNm7c6F4O/8orr+DTTz/VDNYBV4D/0EMPuf+9p6cHBQUFfr4CUhNIxtTXPdG/q2tRZPON9j8b7ZlW20/+yPdm+B1MhqpdmT9F37Ta0t29uAibZTUEwr2PnBXRiXzHgJ2IiIhCpqOjAw6HAxdddJHX7RdddBGamppCcs5x48Zh3LhxITk2XWAUTAYjiLXa7HipTlmozgJlgTtPZpaTy4NHf4PJULcr82Vc8r3rwIW2dDlpSXipriUiLeKIyH8M2ImIiChm/OhHP4r0EOKar0G2vKq59NzaY2eCEsRqFYi7d0mx7vjCtWc62tqVaRWq6xt0ch85UYxiwE5EREQhk52djYSEBHz77bdet3/77beYPHlyhEZFagLJFMuf67lXWgpiZ06egN5Bh08Zd7VMuUUAVpcXGz43WD3E9URbuzKjlQXhuCZEFFxs60ZEREQhk5iYiAULFuDdd9913+Z0OvHuu++irKwsgiMjT3ptwPx5rtqe8xXP1WPV5n0or96N7Q1tpsYlZYUTBFdPsARBwMaVJaaL1bV09AYlMNVqhRZou7Jgt1hTu17yLLovreWIKPKYYSciIqKAnD9/HsePH3f/e0tLCz755BNkZWWhsLAQDz30EO666y4sXLgQV155JZ5++mn09vZi9erVIR1XTU0Nampq4HA4QnqeeBBIpthsX3PRz2XjgRReC8a+8u0Nbaja0QgRgACguuLCsQJZZh6qve/MoodXqAoOEknY1i3G2+cQEVF8icXvpffffx9Lly5V3H7XXXfhlVdeAQA8++yzeOKJJ/DNN99g7ty5eOaZZ3DVVVeFZXyxeE3DLdA2bfLnCgJg9Atz25qrUTZtYgCjNj8e6bUA8Cm4strsKNu4W3H7h+uWeT3fn1Z1/l5vih6hLjhI8c3sdxOXxBMREVFArrvuOoiiqPg/KVgHgAceeAAnTpzAwMAA9u3bF7Zgncwxs5Tal+dWLZ+pWCruyajKuxG9peRaqwVermtFefVun5bl/+Pot6q3vyu73ddl5norGig2BLKNhMgXXBJPRERERAEtpZY/12iZvFGVdz1GWU3VQnUAttR95XM199M9/Rq3D/g1dr0xssVabIm2goMUv5hhJyIiIiIAgRUk83yuWjE2idkq7xLPbLqZrKZaxv/ea4r9ymh/57KLVG+//rIc0+NXE8iKBooOgRYcJDKLGXYiIiIiCip5MTaJr4GpPJu+/IrJprKa8ow/AGypa/E5oz2nIBMV8/Ox4+BJ920V8/MxpyDT1Pj1xHJxOBZaC6zgIJEvWHSOhWiIiCiK8HspeDyrxB87dozXNAKkYmwpiRb0DTq9AlOjoE+tMJsaiwDsrXIVgdM75vaGNq/g6tHlM1CSn24q6Dzc3oWPW7uwsCgzKMF6LGOhNW++Fhwkkpj9vmfAzh9GREQURfi9FHy8puFjNvNqJuirb+7Aqs37DM8ptVoDYHhMKbg68nU3Nr3VxKDTR6xuTxQ8Zr+buCSeiIiIiAJmNvOqtQ9dXgBOrTCbGhHAuh2NgMdjtXGBGu8AACAASURBVI4p/fMdWz7yuQAdsdAaUSSw6BwRERERedFrm6b1eLMtrnxpaXbP4mLd9nASJ5SBvdYx2VLNfyy0RhR+zLATERERkZs/e5R9ybyaaWnmOQYBwJJLs1H3ZQeccI1JFF2ZdYkF8Mqwqx0TcE0sdPYOQoD38xl0msNCa0Thx4CdiIiIiACYX64u50tfcaOgTz4GEcDe42fxWuUid+G62mNnFM8HoBtIyicBpKCdQadvYrm6vR5WvqdoxYCdiIiIiAD4v0fZ18yrZ9CXkmhB76ADVpsduenJmmPoG3SibNpExfM9g0atQFJtEsAiAL+5fR4WFGUyQPNRbnpyXF0zVr6naMaAnYiIiOKSZ1s3MseXTLmcr5nX3PRk1B47owiUuvuGFI9VG4Na0KgVSKpNAjhFYOL4cXEVeJLv/F1VQhQuLDpHREREcamyshKff/45GhoaIj2UmCFlyhMEV2UxX5eL56Yno2zaRFOPVwuU1u1oxKa3mhSPfXT5jICCJxZLIy0sQkjRjhl2IiIiInIL1x5l1aw34F0NbsTs/IyAzsViaaQlkFUlROHAgJ2IiIiIvHguLQ9VMS61QMlstXc5M2OM12JpFBhO5lC0Y8BORERERKpCWYxLK1AC9Ku9BzLGeCuWRsHByRyKZgzYRxFp9jk1MQG9gw73/0qz0VabHQdOdEEURSwsylL8sfJ8fltnHz49acOJs30onJiMgsxUdNsHMeQQcf3MHADAu02nkT0+EXOmZKDuyw7s+fIMksYmoPySbJzqtuPM+QFABFLGjcHg8DBaOuwoyEpG8cRU1H7ZgWGnE5nJYzHsFFGYlYo7ri7EnIJMWG127DjwNeq+PINz/UM41z+MbvsQslLGonLZpchKTcQfPjyBgWEHLpk0HlZbPzrOD+Ly/AlYNG0S7IPDePfoaQw5nEhOtCBl7FgUTEyGIAgYHHa6x7+/tRMZyWPRbR8CROBzaw+m5YzHRRPGof54B1LGjUFWaqL7vhuumIx/Xmj8I0YrCyC/Xf5+qWUNDrd3YX9rJ64sykJOWpLu89Xe749bOyEIAhZMzQQAxftvlLHwvB+Aqddl5lr4c/0CfWw0idVxE1F8CUcxLl+rvUdijDQ6cDKHopUgiqLKTqHRo6enB+np6bDZbEhLS4v0cELGc/ZZziIAt87Lx86DJ93bxgQA1RUXZqj1nh9O8wszcLCtO7KD0FGYlYzaR5dp3q+VBZDffuu8fLx26KT3MkFZ1uDhP36CHQdPKs6h9Xz5/Z7vt5wAYOX8C8dQy1jI+9kCF9rkaL0uz2P4k7Xx5Tmx2qIlVsdNwTNavpfCidfUP/XNHVi1eZ/i9m1rrna3V4u0WBgjUaQwARDdzH43sUr8KCCffZZzisAOWfAmwlWp1WqzGz4/nKI5WAeAtk47/vRxm+p9WlmAw+1ditt3HFQG29LjrTY7Drd3qQbres+X36/3dorwPobnudVei4gLNYL0Xpd0DK1rIR1fjS/P8ef40SBWx00UrWpqajBr1iyUlpZGeigxKRYqq8fCGIkiYXtDG8qrd2PV5n0or96N7Q3qv08p+o3agH00fYmrVWE1wwmgtaPP7+ePVm9/9q3q7VptQxpau0xfX6nNyP7WzgBH6TvPFidGnwmt1yUdw58WKr48J1ZbtMTquImiFdu6BSbQFm/hYHaMVpsd9c0dnAClUYEJgPgyavewV1ZWorKy0r0UIZ6pVWE1wwK4Z6j9ef5o9d3LL1K9XattSGlRpunrK2UNUhLDP9fmmbEw+kxpvS7PY/jaQsWXtiux2qIlVsdNRPErFopxGY2RW42iH5duB5deAoDXN/aM2gz7aCKffZZLEARUzM+H590CgI0VJe4CHHrPD6f5hYH1YQ21wqxkzcJzWlmAOQWZitsr5ucrrrdn1mBOQSYq5ud73S94PE7t+ZDdL79XkP2z5zHkGQv5axEA9+dH73VJx/Ana+PLc2IhK6QmVsdNRPEtNz0ZZdMmRvXfIq0xMtMY/bh0O/i4VSS+sOjcKCpEY7XZ0drRh5REC/oGne7/lWajrTY7Dp7ogigCC4oyVb/0pOe3d9rx6aluV5X4rBQUZKWgu28IQw4nlo1UWd/ddBrZ48dh9pR01B3vwJ5jZ5CcmIBF07Jh7e7HmfP9EEUgNWkMBoccaOnoQ8HEZBRluarEO5xOZKSMhcMhonBiKlZddaFK/M6DX6Pu2Bmc6x/Guf4hdNmHkJU6FpVLXVXi/5+PTmBgyIFpOePxja0fHecGcXl+GhZNy0bf4DB2N41UiR+bgJTEMSjISoEgAIPDF8b/cWsX0pLHoMc+DKco4uhIlficCePwYfNZpCQmICt1HERRRNM35/Ddyy8yXSVeLQsgv13+fqllDQ63d+Hj1i4sLMpETlqS7vPV3u8DrV0QBGD+SJV4+fuvNVa1MQMw9brMXAt/rl+gj40msTpuCo7R9L0ULrymoRepDKnReVmULrpZbXaUV+9WrCyrq1rK778AbW9oU7RH5MqS6GL2u4kBO7/EiYgoivB7Kfh4TUMrUkvOzZz3hdpmbPxbk9dtDAijRyxOqMTS8n0mAKKb2e+mUbuHnYiIiIgCE6k+6GbOa7XZsWlXk+K5j94wI+qDl1gKCgMRa7VbYq0eAnvLxwfuYSciIiIiv0Squ4WZ82p1NJk9Jbrr4YymPd2xVLsl0vUQ2Olg9GKGnYiIiIj8EqkMqZnz+jO2SGe2I7ViIZJioRMBENnK67GW2afgYoadiIiIiPwSqQypmfNKj5F+7FoA3bFFQ2Y7UisWIi0WOhFEqvJ6pDP7FHnMsBMREVFcqqmpQU1NDRwOR6SHEtekDOnBE11wiiIWFmWF9byGmVkBgAgo+pl6CFdm2yiDH2t7ukcTaQJIXnk91JMM7KlODNiJiIgoLlVWVqKystJdiZdCp/bYmYgs2dUrquVLEB6OoMjMsuZIBYVkTiSW73MShxiwExEREZHfonXftS9BeKiDIl+uUazs6R6twl15nZM4xICdiIiIiPwW6SW7WsvMfQnCc9OTceu8fOw4eNJ924p5eUEbv6/XiO24yBMncUY3Fp0jIiIiIr9FqhgXoF8ozpeCeFabHa8dOul12+uHTgWtsFckrxHFh1gozEehwYCdiIiIiPwWjErx/vSYttrsqNqhXz37ttJC1FUtxbY1V6OuaqnmvvpQV2ePpX7jEvb9JooOXBJPRERERAEJZMmuvz2mf1fXAlmMrbrM3Mzy8nAU9oqlZc3s+00UPZhhJyIiIqKA+bNk198e01abHS/VtShutwB+BdnhyoDHwrJm9v0mii7MsBMRERFRRLxc12K6GJtncTm1JewAcO+SYr+D4VjKgIdSpIsIEpE3BuxEREREFHZWmx2b96hkyQVllly+RHvtDTMVS9gtArC6vDigMbE6O/t+E0UbLoknIiIiIoVQFx1r6ehV7EEHgHsXX+wVNKst0f71W19g7fKZXkvYN64sGfXBdjDEYoE8onjGDDsRERHFpZqaGtTU1MDhcER6KDEnHEXH1DK5FgCrFxd5PU5rifbs/AzUVS0d9UvYQ4HbA4iiBzPsREREFJcqKyvx+eefo6GhIdJDiSnhKjqmlsndWKHMkuv1MA9WETe2MFOKhQJ5RKMBM+xERERE5BbOomNmMrlSYP/znZ/CIYpBX6LNFmZEFM0YsBMRERGRW7iLjpkp9BaqJdpaqwmWTJ/EzDIRRQUuiSciIiIit2gtOhaKJdp6qwmIiKIBM+xERERE5GW0FB1jCzMiinbMsBMRERGRQqSLjoWjEFy0riYgIpIww05EREREUSWcheBGy2oCIopNzLATERERUdSw2uyo2uFdCK5qZ2PIM+1sYUZE0YgBOxERERFFjQMnuiCrAwdRBA6e6IrIeIiIIokBOxERERFFDVGUh+vS7WEeCBFRFGDATkRERERRY2FRFgTZbQKABUWZkRgOEVFEMWAnIiIioqiRm56M6ooS949UC4DqihLuLyeiUYlV4omIiIgoqrByOxGRCwN2IiIiiks1NTWoqamBw+GI9FDID7npyQzUiWjU45J4IiIiikuVlZX4/PPP0dDQEOmhEBER+YUBOxEREREREVEUYsBOREREREREFIUYsBMRERFRTLPa7Khv7oDVZo/0UIiIgopF54iIiIgoZm1vaMO6nY1wioBFADauLMFtpYWRHhYRUVAww05EREQUR0ZTttlqs7uDdQBwisDPd346Kl47EY0OzLATERERxYnRlm1u6eh1B+sShyiitaOPLeGIKC4ww05EREQUB0Zjtrk4OxUWwfu2BEFAUXZKZAZERBRkDNiJiIiI4oBetjle5aYnY+PKEiQIrqg9QRDwq5VXMLtORHGDS+KJiIiI4oCUbfYM2kdDtvm20kIsmT4JrR19KMpOYbBORHGFGXYiIiKiODCas8256ckomzZxVLxWIhpdmGEnIiIiihPMNhMRxRcG7ERERERxJDc9mYE6EVGc4JJ4IiIiIiIioijEgJ2IiIiIiIgoCjFgJyIiIiIiIopCDNiJiIiIiCimWW121Dd3wGqzR3ooREHFonNERERERBSztje0Yd3ORjhFwCIAG1eW4LbSwkgPiygomGEnIiIiIqKYZLXZ3cE6ADhF4Oc7P2WmneIGA3YiIiIiIopJLR297mBd4hBFtHb0RWZAREHGgJ2IiIjiUk1NDWbNmoXS0tJID4WIQqQ4OxUWwfu2BEFAUXZKZAZEFGQM2ImIiCguVVZW4vPPP0dDQ0Okh0I0KoWjEFxuejI2rixBguCK2hMEAb9aeQVy05NDdk6icGLROSIiIiIiCqpwFoK7rbQQS6ZPQmtHH4qyUxisU1xhhp2IiIiIiIImEoXgctOTUTZtIoN1ijsM2ImIiIiIKGhYCI4oeBiwExERERFR0LAQHFHwMGAnIiIiIqKgYSE4ouBh0TkiIiIiIgoqFoIjCg4G7EREREREFHS56ckM1IkCxCXxRERERERERFGIATsRERERhZ3VZkd9c0dIW30REcU6LoknIiIiorDa3tDm7tNtEYCNK0twW2lhpIdFRBR14iLD/te//hUzZszApZdeii1btkR6OERERESkwWqzu4N1AHCKwM93fspMOxGRipjPsA8PD+Ohhx7Ce+/9/+3dfVBV953H8c+5F0FQngTFgBcxbXRTFYjCJdmtq6TM0szW1odOMvGPatKJTkdMGmJGXUeTTJrFXZLGFGltNROyGZuaGNFMtk2zq6bGaKKSQkwNiBYiMYKignBlQeHsH4QbLs8PF+6F+37N3MTz8Pud7zn3zPnO955zfhxSaGio5s6dq8WLFysiIsLToQEAAKCDsmqHs1hv02yaKq++wQBlANDBiL/Dfvz4cc2cOVMxMTEaP3687rvvPr333nueDgsAAABdmBY5ThbDdZ7VMBQXGeSZgADAi3n8Dvvhw4eVnZ2tgoICXbx4Ufn5+Vq0aJHLOrm5ucrOzlZlZaUSEhKUk5Mju90uSfrqq68UExPjXDcmJkYXLlwY1n1oc7G2QWXVDk2LHCdJzn/fFhrosqy7X48v1jbof05Xqrq+SbbwQNU03FRY4BjVNNzU7ZHjVHyxTqe+rFFEcIDGWC2KDA5QXMQ42cID9emXtbpU939KtIWp+GKdPii9rPrGWzIl3WxukdUw9A+TgzXGatWNpltquNmsMRZDIWPHqPRyvRKnhGl8oJ9u3mrRGD+LEm1hCvT3U0PTLR0pvSLJ1KK7YjQpZKzKqh1qaLqloi9rFTneXwlTwnT+6g0ZhqG5U8N73feO0wc+r9Q7n15UUIBV/larbp84TvExoXI0Nfd6vMqqHRrnb5Wjqdn5//bbOVl+VTU3bkqGFBY4RklxE5z9XaxtUMEX12SapmInBHXbR9s67du2tT9ZflWGYcgWHtipXU/fd1HFNR0vvyp73AQl2ML7dA4NRm/99hbvQOLqyznvLh3PhWmR4/Tin0t0oOSSvjdjkv7z/sQh3T4AoO9uCw1U1pLZ+re9n6nZNGU1DP37klncXQeALni8YHc4HEpISNDDDz+sJUuWdFq+e/duZWZmavv27UpJSdHWrVuVnp6ukpISTZo0yQMRd6394CltPxqbah1IZfFdMcr/64UeB1bZfeK81r11akhj/Lyyvttlf62o7bX9K0e/6NN2DHW/7x2np4QH6vzV7t9Z6+l4tX//rWObxXfFaO8nF9RxsSFpy9LZkqT1b53qtLynPtraPpAcq90nznfZvi/f9xNvFOqtT775UWnpnBi9cH9ij+fQYAbj6a1fST0O/DOQuIZzMKGezgVJeuOTC3rrrxd0Lutfh2T7AID+eyA5Vv88faLKq28oLjKIYh0AumGYptldzTLsDMPodIc9JSVFycnJ2rZtmySppaVFNptNa9as0fr163X06FFlZ2crPz9fkvTzn/9cdrtdy5Yt63IbjY2NamxsdE5fv35dNptNtbW1CgkJGVDcF2sb9E9bDnZbMHRkNQwdWZ/qcnfznqyDA9q2L+jqePXneHdkfP2fgZz5Fkn5q/9Ri3KPdlvsd9Q+/qKKa/pR7tFO67y8fK4e+a+Cbvep4zHoq96OlUWSDLksb7+t3tp3FVdXbQYaf2/6cy7cPyeGO+0YEa5fv67Q0NBB5SW44pgCALxNX3OTV7/D3tTUpIKCAqWlpTnnWSwWpaWl6dixY5Iku92uzz77TBcuXFB9fb3+9Kc/KT09vds+s7KyFBoa6vzYbLZBx9nV4Ck9aRtYpX17dK+r4zXQYl1qvTs80J+pWiSdKL/W52Jdco3/ePnVLtc5VHK5x33qeAz6qrdj1SJ1O/BPX9p3FVdPgwm5W3/OhYMll9y+fQAAAGAoeXXBXl1drebmZkVFRbnMj4qKUmVlpSTJz89PL7zwglJTU5WYmKgnnniixxHiN2zYoNraWuenoqJi0HF2NXhKTzoOrNL2XjC61tXx6s/x7siQZAywvUVScly4+tO8ffz2uAldrpM6Y2KP+zTQwXh6O1YWqceBf3pr31VcwzmYUH/OhXtneM8rNAAAAEBfeHXB3lc//OEPdebMGZ09e1YrV67scd2AgACFhIS4fAarbfAU69dVYPuC0GoYWjonxrmsq4FVbgsN1H98/V61t+utNjLardPVvnecjp3Q8yPS3R2v9se7qzZL58R0GWvbe+hblszusWh39tFuHUNS1tLZSrCFa8vS2V3239v3nWAL19I5MS5tls6J0ffunNzjOTTQwXg6nZuG6/eTtXS2y/KO2+qtfVdxdWwzlIMJ9XYutLEa4nF4AAAAjDhe/Q57U1OTgoKCtGfPHpf32pcvX66amhrt379/0Nt053ttF2sbnIOnSHIZSKX9sp5GPf/f01Wqrm/UlPBAXW+4pZBAP11vuKW4yCAVV9bp1Ncjs/v7WRUx3l9xEeM0JTxQpy7U6vL1RsXbQlVcWacPzrSOEi99M0r8jMnB8vez6kbjLTXcapafxaKQAD+dq3YoPiZUwYFj1NTcrACrVfG2UAX5j9GNppv68OwVyZR+dFe0JoWMVXn1Dd1ouqlPv6xV5PgAxU8JVcXVBhmGNOfrUeJ72veO0wc+r9R/dxglfnZMqG40tfR6vMqrbyjI36IbTS3O/7ffTkH5NdU0NEmSwgL9NTcu3OVd+E++uCbTlGwTArvto22d9m3b2heUX5Px9eB5Hdv19H0XVVzTyfJrSooL7zRKfHfn0GD01m9v8Q4krr6c8+7S8VyIiwzSi38u0cGSS7qXUeIxwvC+tftxTAEA3qavucmrC3apddA5u92unJwcSa2DzsXGxiojI0Pr168f9DZJ4gAAb0Jecj+OKQDA2/Q1N3n8z7rV19fr7NmzzumysjIVFhZqwoQJio2NVWZmppYvX66kpCTZ7XZt3bpVDodDDz30kAejBgAAAABgaHm8YD958qRSU1Od05mZmZJaH3vPy8vTAw88oMuXL2vz5s2qrKxUYmKi3n333U4D0QEAAAAAMJp41SPxnsBjcgAAb0Jecj+OKQDA24yKv8MOAAAAAICvomAHAAAAAMALUbADAAAAAOCFPD7onKfk5uYqNzdXzc3Nng4FAAD0Ii4uTiEhIbJYLAoPD9ehQ4c8HRIAAEPOZwv21atXa/Xq1c6X/QEAgHc7evSoxo8f7+kwAAAYNjwSDwAAAACAF6JgBwAAg3L48GEtXLhQ0dHRMgxD+/bt67RObm6u4uLiNHbsWKWkpOj48eP92oZhGJo/f76Sk5O1a9cud4UOAKPaxdoGHT1XrYu1DZ4OBQPks4/EAwAA93A4HEpISNDDDz+sJUuWdFq+e/duZWZmavv27UpJSdHWrVuVnp6ukpISTZo0SZKUmJioW7dudWr73nvvKTo6WkeOHFFMTIwuXryotLQ0zZ49W/Hx8UO+bwAwUu0+cV4b9p5SiylZDClryWw9kBzr6bDQT4Zpmqang/Ck2tpahYWFqaKiosc/WA8AwHC4fv26bDabampqRuQYK4ZhKD8/X4sWLXLOS0lJUXJysrZt2yZJamlpkc1m05o1a7R+/fp+b+PJJ5/UzJkztWLFii6XNzY2qrGx0TldW1ur2NhYcj0wSlTWNuiLKzc0NSJIk0MDPR2OV6qsbdC/vHhYLe0qPath6M+Pz+OYeYm+5nufv8NeV1cnSbLZbB6OBACAb9TV1Y3Igr2jpqYmFRQUaMOGDc55FotFaWlpOnbsWJ/6cDgcamlpUXBwsOrr63Xw4EHdf//93a6flZWlZ555ptN8cj0AXzfjRU9HgI56y/c+X7BHR0eroqJCwcHBMgyjy3WSk5N14sSJAW9joO3bfnXhjoBnDfb7HwlGwj56Msbh2vZQbMedfXItHB6maaqurk7R0dGeDsUtqqur1dzcrKioKJf5UVFRKi4u7lMfVVVVWrx4sSSpublZjzzyiJKTk7tdf8OGDcrMzHROt7S06OrVq4qIiCDXo1sjIRcOxkjYP3K95/t0R19cD/umr/ne5wt2i8WiKVOm9LiO1Wod1Ekz2PYhISE+cdJ6q8F+fyPBSNhHT8Y4XNseiu24s0+uhcNnNNxZd6fbb79dRUVFfV4/ICBAAQEBLvPCwsJ6bMP5jZGQCwdjJOwfud7zfbqjL66HfdeXfM8o8X2wevVqj7aHZ/nC9zcS9tGTMQ7XtodiO+7sk2shBiIyMlJWq1VVVVUu86uqqjR58mQPRdUZ5zdG+3c4EvaPXO/5Pt3R10g410YSnx90zptdv35doaGhqq2t9ZlfmQCgI66FI0t3g87Z7Xbl5ORIan1EPTY2VhkZGQMadG404fwGgFZcD7tmffrpp5/2dBDontVq1YIFC+Tn5/NvLwDwYVwLvVt9fb1Onz6tyspK/fa3v1VKSooCAwPV1NSk0NBQhYSEaNOmTbLZbAoICNCmTZtUWFiol19+WePHj/d0+B7H+Q0ArbgedsYddgAAMCjvv/++UlNTO81fvny58vLyJEnbtm1Tdna2KisrlZiYqF/96ldKSUkZ5kgBABhZKNgBAAAAAPBCDDoHAAAAAIAXomAHAAAAAMALUbADAAAAAOCFKNgBAAAAAPBCFOyjyI0bNzR16lStXbvW06EAgEfU1NQoKSlJiYmJmjVrlnbs2OHpkAC3ItcD8HW+luv5A3ejyHPPPae7777b02EAgMcEBwfr8OHDCgoKksPh0KxZs7RkyRJFRER4OjTALcj1AHydr+V67rCPEqWlpSouLtZ9993n6VAAwGOsVquCgoIkSY2NjTJNU/z1UowW5HoA8L1cT8E+DA4fPqyFCxcqOjpahmFo3759ndbJzc1VXFycxo4dq5SUFB0/frxf21i7dq2ysrLcFTIADInhuB7W1NQoISFBU6ZM0ZNPPqnIyEh3hQ90i1wPAK3I9e5FwT4MHA6HEhISlJub2+Xy3bt3KzMzU0899ZQ++eQTJSQkKD09XZcuXXKu0/aORsfPV199pf3792v69OmaPn36cO0SAAzIUF8PJSksLExFRUUqKyvT73//e1VVVQ3LvsG3kesBoBW53s1MDCtJZn5+vss8u91url692jnd3NxsRkdHm1lZWX3qc/369eaUKVPMqVOnmhEREWZISIj5zDPPuDVuAHC3obgedvSzn/3MfPPNNwcVJ9Bf5HoAaEWuHzzusHtYU1OTCgoKlJaW5pxnsViUlpamY8eO9amPrKwsVVRUqLy8XM8//7weeeQRbd68eahCBoAh4Y7rYVVVlerq6iRJtbW1Onz4sGbMmDEk8QJ9Ra4HgFbk+v5jlHgPq66uVnNzs6KiolzmR0VFqbi42ENRAcDwc8f18IsvvtDKlSudA9CsWbNGs2fPHopwgT4j1wNAK3J9/1GwjzIrVqzwdAgA4DF2u12FhYWeDgMYUuR6AL7M13I9j8R7WGRkpKxWa6eBEqqqqjR58mQPRQUAw4/rIUYrzm0AaMX1sP8o2D3M399fc+fO1YEDB5zzWlpadODAAd1zzz0ejAwAhhfXQ4xWnNsA0IrrYf/xSPwwqK+v19mzZ53TZWVlKiws1IQJExQbG6vMzEwtX75cSUlJstvt2rp1qxwOhx566CEPRg0A7sf1EKMV5zYAtOJ66GaeHaTeNxw6dMiU1OmzfPly5zo5OTlmbGys6e/vb9rtdvOjjz7yXMAAMES4HmK04twGgFZcD93LME3THN6fCAAAAAAAQG94hx0AAAAAAC9EwQ4AAAAAgBeiYAcAAAAAwAtRsAMAAAAA4IUo2AEAAAAA8EIU7AAAAAAAeCEKdgAAAAAAvBAFOwAAAAAAXoiCHcCIlZeXp7CwME+HAQAAhgi5Hr6Ogh0AAAAAAC9EwQ5gWDU1NXk6BAAAMITI9YD7ULADo8CCBQuUkZGhjIwMhYaGKjIyUps2bZJpms51XnvtNSUlJSk4OFiTJ0/WsmXLdOnSJZd+3n77bd1xxx0aO3asUlNT9eqrr8owDNXUrIitHwAABZZJREFU1DjXOXLkiObNm6fAwEDZbDY9+uijcjgc3cb29NNPKzExUTt37tS0adM0duxYSdK7776r7373uwoLC1NERIR+8IMf6Ny5c8525eXlMgxDe/fuVWpqqoKCgpSQkKBjx451u63Lly8rKSlJixcvVmNjY7+PIwAA3opc34pcD19DwQ6MEq+++qr8/Px0/PhxvfTSS/rlL3+pnTt3OpffvHlTzz77rIqKirRv3z6Vl5drxYoVzuVlZWX68Y9/rEWLFqmoqEirVq3Sxo0bXbZx7tw5ff/739fSpUv16aefavfu3Tpy5IgyMjJ6jO3s2bN66623tHfvXhUWFkqSHA6HMjMzdfLkSR04cEAWi0WLFy9WS0uLS9uNGzdq7dq1Kiws1PTp0/Xggw/q1q1bnbZRUVGhefPmadasWdqzZ48CAgL6ewgBAPBq5HpyPXyQCWDEmz9/vnnnnXeaLS0tznnr1q0z77zzzm7bnDhxwpRk1tXVOdefNWuWyzobN240JZnXrl0zTdM0f/rTn5orV650WeeDDz4wLRaL2dDQ0OV2nnrqKXPMmDHmpUuXetyHy5cvm5LMU6dOmaZpmmVlZaYkc+fOnc51/va3v5mSzM8//9w0TdN85ZVXzNDQULO4uNi02Wzmo48+6nIMAAAYLcj15Hr4Ju6wA6PE3XffLcMwnNP33HOPSktL1dzcLEkqKCjQwoULFRsbq+DgYM2fP1+SdP78eUlSSUmJkpOTXfq02+0u00VFRcrLy9P48eOdn/T0dLW0tKisrKzb2KZOnaqJEye6zCstLdWDDz6o22+/XSEhIYqLi3OJp018fLzz37fddpskuTze19DQoHnz5mnJkiV66aWXXI4BAACjCbmeXA/fQ8EO+ACHw6H09HSFhIRo165dOnHihPLz8yX1b2CY+vp6rVq1SoWFhc5PUVGRSktL9a1vfavbduPGjes0b+HChbp69ap27Nihjz/+WB9//HGX8YwZM8b577YE3f5RuoCAAKWlpemdd97RhQsX+rwvAACMJuR6YHTy83QAANyjLQm2+eijj3THHXfIarWquLhYV65c0ZYtW2Sz2SRJJ0+edFl/xowZ+uMf/+gy78SJEy7Tc+bM0enTp/Xtb397ULFeuXJFJSUl2rFjh+bNmyepdYCbgbBYLHrttde0bNkypaam6v3331d0dPSg4gMAwBuR68n18D3cYQdGifPnzyszM1MlJSV6/fXXlZOTo8cee0ySFBsbK39/f+Xk5Ojvf/+73n77bT377LMu7VetWqXi4mKtW7dOZ86c0RtvvKG8vDxJ3/zavW7dOh09elQZGRkqLCxUaWmp9u/f3+tANB2Fh4crIiJCv/vd73T27FkdPHhQmZmZA953q9WqXbt2KSEhQffee68qKysH3BcAAN6KXE+uh++hYAdGiZ/85CdqaGiQ3W7X6tWr9dhjj2nlypWSpIkTJyovL09vvvmmvvOd72jLli16/vnnXdpPmzZNe/bs0d69exUfH6/f/OY3zpFj20ZhjY+P11/+8hedOXNG8+bN01133aXNmzf3+1dui8WiP/zhDyooKNCsWbP0+OOPKzs7e1D77+fnp9dff10zZ87Uvffe2+nP2AAAMNKR68n18D2Gabb7440ARqQFCxYoMTFRW7dudWu/zz33nLZv366Kigq39gsAAPqHXA/4Jt5hB+D061//WsnJyYqIiNCHH36o7Ozsfj8CBwAAvBe5HhhZKNgBOJWWluoXv/iFrl69qtjYWD3xxBPasGGDp8MCAABuQq4HRhYeiQcAAAAAwAsx6BwAAAAAAF6Igh0AAAAAAC9EwQ4AAAAAgBeiYAcAAAAAwAtRsAMAAAAA4IUo2AEAAAAA8EIU7AAAAAAAeCEKdgAAAAAAvBAFOwAAAAAAXuj/ARmkiXJmiN85AAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -2381,7 +2503,7 @@ "\n", "plt.subplot(1,2,1)\n", "plt.title(\"Page rank vs degrees\")\n", - "plt.plot(kpis[\"pageRank\"], kpis[\"degrees\"], '.', color=\"tab:blue\")\n", + "plt.plot(kpis[\"pageRank\"].values, kpis[\"degrees\"].values, '.', color=\"tab:blue\")\n", "plt.xlabel(\"page rank\")\n", "plt.ylabel(\"degree\")\n", "plt.xscale(\"log\")\n", @@ -2389,7 +2511,7 @@ "\n", "plt.subplot(1,2,2)\n", "plt.title(\"Page rank vs betweeness\")\n", - "plt.plot(kpis[\"pageRank\"], kpis[\"betweeness\"], '.', color=\"tab:blue\")\n", + "plt.plot(kpis[\"pageRank\"].values, kpis[\"betweeness\"].values, '.', color=\"tab:blue\")\n", "plt.xlabel(\"page rank\")\n", "plt.ylabel(\"betweeness\")\n", "plt.xscale(\"log\")\n", @@ -2399,25 +2521,23 @@ }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 74, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEKCAYAAAAMzhLIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA/NElEQVR4nO2df5gcVZnvv293z4wiv65DHhFDDGzwR9YI6DBudjUOK2ZFQWdFXTV3oxISBwHN7rpRrstd9rIyPqxKhADOQAKMu+J6NwoEcOHRxxE0o0kg0fBDfukSgnKRuICKmSQz7/3jzGudPn2quqq7qru65v08Tz0zXd1Vdbq6+7zn/U3MDEVRFEUJo9TuASiKoij5RgWFoiiKEokKCkVRFCUSFRSKoihKJCooFEVRlEhUUCiKoiiRVNo9gCw44ogjeP78+e0ehqIoSkdx9913P83Mc9z9hRQU8+fPx7Zt29o9DEVRlI6CiB7z7VfTk6IoihKJCgpFURQlEhUUiqIoSiQqKBRFUZRIVFAoiqIokaigUBRFaYCJCWB42PwtOoUMj1UUpXkmJoDxcWBgAFi8uN2jyRcTE8Bb3gLs2wd0dwPf+U6x71FHCAoiGgTwDgCHAljPzHe0d0SKUmxm20SYlPFxc2+mpszf8fFi35/MTU9EtIGIniKie539byOiB4noESL6dNQ5mPlGZl4JYAjAX2U5XkVR/BOhEjAwYARouWz+DgzUvqbVpqksr9cKjeI6AOsAjMkOIioDuALAWwHsBrCViG4GUAYw7Bx/JjM/NfP/P8wcpyhKhshEKBqFbyKczSxebLSsMNNcqzWyrK+XuaBg5juJaL6zux/AI8z8MwAgoq8BeBczDwM4zT0HERGAzwH4FjPfk/GQFWXWU28ijEuR/RyLF4e/p1abprK+Xrt8FC8D8Lj1eDeAN0S8/jwApwA4jIgWMPOX3RcQ0SoAqwBg3rx5KQ5VUTqLtCbnqIkw7jhklVsuA2eeCSxfnq7QyZsgkvH09rZWI8taA+wIZzYzXwbgsjqvGQUwCgB9fX3cinEpik0eJq08OaHtVe7UFDAyAlx/fWNj8r0vID/v1TfGtWuBPXta831ISwMMo12C4gkAR1uP587sawoiOh3A6QsWLGj2VIqSiEYm6CwES56icWSVu3cvwGy2RscU5lxv5r2mff/dMe7ZA5x/fvPnjUuzGmAU7Uq42wrgOCI6hoi6AbwfwM3NnpSZNzHzqsMOO6zpASpKEpJGCYlgueAC8zetSJU40TitYvFis6o+6SSgqwsolczW25v8XPb7qlSAXbsC8469L+59zOL+5+nepw4zZ7oBuAHALwHsh/FFrJjZ/3YADwF4FMBnUrrW6QBGFyxYwIrSSjZvZn7hC5nLZfN38+bo1198sXktYP5efHG6Y7n44vpjyOo6IyPMS5cyr1nD3NPDTGTeY6lk/u/uDo5JMtbNm5mHhszxcp9HRmr3xTmXff9LJTPeNO5Xq+59VgDYxr651bez07fXv/71ad03RYlN0kkviWDJC/IeR0b84x8ZESNT9DY0FH0Pwu6lT8A2InTl2qVSICxE8HTyRN8ss0JQqEahdBKdtvocGWGuVMyk2tUVTLJEZuJnNivzOIKiv595cNAc657Dvo5PgNjCpVGNQs61dGn1GEol/3VnC2GCgsxzxaKvr4+1FaqipMfEBPCmNxkfjEBkpn3A+AjOOgs49FDgkksau0ZXF/COdwCbNgXXKZWAVauAefMCp7Mdgrp6tfEJVSrARz5iwm+B+E7q0VHgox+t3V8qAf/8z/Gc0XmJdktjDER0NzP3ufs7IjxWUZRsiDvBjI1VCwkgEBIAcOCACX/t6gJOOAH4yU+A6elkY9m/H7jxxup9RMCGDebadi7G+eebchWTk+Y6zEaYAPWjz+z3vGePEQruWEuleM7oPIQjt2IMhRIUGh6rKPFJe4LhmfDXHTvMRNsspRLwilcADz5oJnI7F2PtWmDLlmCCn542GoYdfbZ3rxFwQCAYAPN3/34j1C6/3PydnAyuWy4DV1wR717kIRy5FWMoVD8K1vBYpSC0oqCcO8GMjfmvOToK3HOPMe8AZpVvQ2QmW3t/HG2ivz/6eWbggQeqz8VsJvVzzqnWPkqlILlNxskMXHMNcPLJQRjsJZeY9ypC7VvfAo4/Phg7EbByJbBoUbz732hIbNLPN+r1LQnL9TkuOn3TqKd80GnO2rzQqogo+zo9PYFDuLs7iEpasyaec3rJkiDyKM5WKhmHdtzX25vvOuWyOZ84t20Htfwvr3GPcyOf1qwJnPVx7n/U99z3XNLPd2Sk/njS+q0hxJldKNOTkh9aabvNgzMxTbI2JUxMBCYZKTOxZQtw001m+hQTz7XXVptkorjrrmqfhTB/vkmEczWM6WngBS9obPyHHQb8+tfV+6amzHvYsgVYs8ace98+o2mIb6VSAVasAH784+A5ZjOWUgk45RTgjDOMtnLggDlmcjJIngz7joVlRIf9BuJ8vrbD3jeeuGNIi0IJCvVR5IdW2W7z4Ey0x5KGwIpT4C3pteyJ57zzzLkBYzJatw649dbqiV5MM3EJC578r/8KP2bvXmMucZ3k9XCFhMuOHUYArl8P3H13IKT27zd/v/tdIyiffNKYng4cMPf5wgvNPbKFGpERPhdeaMYZx0Euz4X9Bup9vvZ3mqj6/pTLbcr49qkZnb6p6an9tMp8kmWGcxLSfr/1zBnuteK+vqur1mwzf77fNOR7bZqb5C2IaajRzTUnLVtm8jDCTF6Dg4GZrVIJTFb2vSqVgvtlj8/3HQv77BtJKGSuzRoXs1OlEowzK6CmJ6WVZF3NUshLg520NagkvQ7GxkwkUJhWNTYWFObzrd59q/5XvhI45BCzmo5LUu1Apt9yOTABJbmWvH7nTmNu2rHDhOZeemlgqnGZnq4Nwd261Zxj0aLq7+2uXcDVVwfaEpH/O+b7POR7H/YbiPp83e90K6vQhqGCQsmMrO2mco1WCKR6ZCmwXLOGey0gPCS0t9f4GsJMQ2GT+09/Gn5MGEnzJoRDDwXe/Gbg+eeBO+6Id4wdNrtvH/Dcc8CxxwK33BKYmOIiZjYR7rKNjprniQL/xoknBj4L+a7Zn0elEuR9iNBOWkE2L99pm0JlZls+ipUPP/xwu4ejxKAIjmjb/h+28mv0fYb1YbjkEuChh4AjjgBe/GIzQcoqulIxAuDAATPJTU/7J/GDDgLe+MZ4k/MRRwBPPx1/3I3gS3yLQ0+PmZjDtAjfdbq6gFNPrfZR2JrYxIT5rFxfjmSC+15vayGSIHjRRa0tNd4sYZnZbfcnZLGpj6Iz6NTCeDZx3kNSn4KN64ORukZJ/ABZ+xqy9GHEed2SJf7XuvvkXgwOBuG/UcUH7eOJTF2oev6wTv9OI8RHUaiEO6WzSNrDoR3US4yy38PkpImOcV/rs2GH9UJwr+cmUwH1TSt24hsz8Dd/AyxcGP89t5ty2YTnfvnLRjsiqk3ys9m7tzYTvFQyxw8NmcQ+CYU9cMDUkrr6anPvAXOPx8erP4eBAaNFCN3dJnS2XmKbmI0uuqj9HffSRH0UStvIiyM6jDiht/IepObQt79tcgrs10b5FGzbeNj1bHv1zp3VuQE2UqSPHWvyc88Zm/7996d6ezLjNa8xjuXxceCv/gr46lej/SUDA8Z/MDQUvK5UMudYtMg83r49qAkl925y0gjta68N7vl3vxv4KMbHA3+P9PqWcUWZEFvhm7NpifnWp2Z0+qamp84hz9nbcUNvpVy1ZPiGhVDK+wwzT1x8cXWWsHsOKb8tjYAWLAhMI5WKP8xVTDOdZn4ql+ObnhYuNOYkuXdiKhocDEJLw863ZEn14/7+fH4Xw0jb1AXtR6EoyUjyI0z6g3UF5ObNZmKzJ62RkaCr2+BgbekKd2I8+GD/RPrSl7ZnsidifvGL/fvtx0cckc317fsjwsIdx6tfXXtcJ/kW0s4jChMUhTI9MfMmAJv6+vpWtnssSueTNEzxQx8yf8VMYeOLjJJoGDE57d1bfcyXvmRCQMNyE9xieb/9rf91v/xl9Lizgrk2i5oIePnLq3M34pYJSYqbYX366UGZEsCYp3zBkUnyYNodtdcq822hBIWiAOn+eOPYm13fgjTPsYXDxz8eVC0tlUxIp137Z3IymMCETvEpJGXevGpB8ZvfxDuuVApKWthNk+Iee+qpwO23m3tdLpt7f+edteePO+FOTJjKtK5/o5W0KudCBYVSKNpR+yksekvGwVy9up2eDiKkLrwQeOaZxpPVOg3m6sk5LlLKXLSrOELCFibT00aTW7sW2LjRRDBt3149lne+00RIuZ30wibgsbFAGxLHeDu0ilY4z1VQKIWiHY1kfOq/aAlhAkAipL73vepEsaQr5bzQinEfe6zJGI+iXDYhtfv3V9/7UsmUI5EEu7vuMkKjuztoYrRmTXUCXV6KTeYBzaNQckmjjXviNHEJO3ej1/TFzsfREkSzsH0QnSgkgOg8hzSOYTZNjKLuT7kM/N3fmd7ZfX1BboVkp990U3C/9+41GsX4OPDZzwZaoHz+cXJ8li833zExV4nJsYioRqHkjmZWc/VstmHnlv2Tk4Hj015hxmXnTlNe46abkh3X6TRiOmtEC7GT7yoV4O1vNw7zvXvN53355UHNpUol8GdIDoXAbPInpP+2+70QbSPKSSz+pU4vQRMHFRRK7mjWfJSk8qqc2zUV3XijMVP4HJSu7doWMrPF19AIssKfnm6sD4UEAdjVVIFggpfeEyIQVq40jvPe3qBGk+0vOnDA//lPThptIyqKTWh1cl27KJSg0MZFxaCRkL+4kU5h5x4YqC5dDfiFlE8jqeePUAxyf0olcw/jVooVk9Lhh9d+vmefHZRQd4+xJ/hFi4yz+ZprgnFUKkaIDA8D990X7J+eDl5XKpmKsbNBGETiS67o9E0zszufJBnbzSa7CSMj1UlZPT1BD+ahIfO/LwM7bl9p2Y47Lll/6SJudjJcvY3In+k+NBSecT44WPu525nvkrktTYqirt/VVZ0YmVYlgTxWJcBsSLhTikMSlT6pqSrs3KtWBSvPJ580++x+xUBgVy+VjEbR22uK+9m8/OXAY4+FX7/TK+A3Wg7chtms6N3S4CecYPpTfP/71RpIb2/wmtFR87lMTVVrErbPY9Mm87pVq4Lne3uDc8rr9u3zvxf7XFNT1SHPkoexbl31+ZPQaVFVGvWkdDxxIp3iIOarE080iVk33VQ7kYmQOOUU8+Pevr3a1k5kEruWLWssEqgTSMPExgwcc0z1vlIJ+JM/MR3n5LFUfV292nw+ExPAueeaz0UmcrnPttCYmjLCxI5g27Mn8JOUSsCRR5rvi1t5tqsL+Pu/N3/FL+KGPO/fX3v+JHRC5WQb1SiUjics0ilJhravob098QgycVx4oXl8zz3VzzObEtnd3cCb3mTi9X3nUWo1q3LZ/JVVvi0AJieNsACqhXe5DLz+9cC2bbUCbHq6WrscGDCfnaziTzwxeO2JJxqhL//v2WM0BrcRle3HmpoKkiaTagN5r5zsUqgOd0JfXx9v27at3cNQ2khS1X54GPiHfwgmKAmpFObOBT74wcChCmikU5qUSsBVV5n/zz3XTMJdXUZIHDhQe4+lPem6dcZcKJ+FjV0mRbDLqvi61UWFT4+Pm/yYL34xWEi45Vjsa9RboLS7TpSPsA53anpSOoaohDh5bnTU/B0bS6bau/brD3wgaJoDALt3A1/4gnndzp0moub3v1chIfT2AkuWNHYsEfCqVwGPPgqcd54x6xABl11mPre+2sacOOkkk9W+apWZZNeuDUxIlYrZ71scLF5s8ib27PF/P3wmIREeF1xg8jT+9m+BP/qjYDFhH2+/1m1K1cmo6UnpCKI0BDePoVQKEq6A+qr9xISp/2M7qg85BDjrLJNLIY7pqanq5jh5ohU9raN473vN33p1nOQed3WZz2/XLlMg8P77q4sgTk0ZU9CiRcCPf1x7nte9rloI7NkT5EhMTZn8CZ8mIav3qDBpXzkWu4vhpZdWaxT28XEDKzrNma2CQukIon6A8pwdBz81FSRcRan2dolv5qD43IYNfpNHmJA4/HAzhuefb/qtNkQ7hYSUr5BucFHI/TtwoDqyKYzx8dqAAl+5jCibf1iVV59fK2y/nFv8V7IgOeWUah9FXN9DO2qSNYMKCqUjiPoBuu1IZZUnTkkg3B48NladsCVRS5s2JTMrPfNMM++uNbglMxrJjnYplUwZDcBM3ldfHe+ckqUQNsaenkAYyOdeLgNnnmk+V9uUKJ9rWOmWsCqvYWHS7n5beLi+DdeRHbfsd6c5s3MvKIjo1QA+AeAIAN9h5qvaPCSlDUT9AN0f8p49ZuIWp2ilEjhFSyXgyiuNSeOSS4Cbb66esEQ4dHf7M347FclF+NWvgn2HHBJfwM2ZAxx2GPDII9X7pdje7bebz+DKK4McBwltjSNwX/1qc26pzXTsscYXJL4G+dyBwGRTLpvXHjgQmG+kGZQwMVEbmdYItvCo1zc7Tg5Qq/pIpIYvCy+tDcAGAE8BuNfZ/zYADwJ4BMCnY56rBOBf47xWM7OLRdIM1s2bTQ/pqEzfqB7SPT0m29rXJjPJFrfnc1Zbo9d/8YuZly2rzViOOh+RyZRmDnp7l0rxMrBLJXOsL1t9ZKT6s7Vbf9rjCetT7mZed3fnKxM6b6BNmdnXAVgH4A/WSyIqA7gCwFsB7AawlYhuBlAGMOwcfyYzP0VE7wRwNoCvZDxeJWfUc2L7VmTj49GrWGYTWRPG5KSJcGrWLOMLs20FkjnNDWpDv/418O//XquBRJ2PGVi/vvqxnQsRBbPJhO/uNpFkNhs3Vmc/u2ZGGzt7G6j2Xfn8CVGEfbfyGNLaEnzSI80NwHxYGgWAxQButx6fD+D8mOe6NeK5VQC2Adg2b9681CWt0hxRWkHUc2HN4zdvNit/IvPXPtZeSbZ7VS8r30bHQRStHdW7FhHz4Ye39r2Wy0ZjK5fNZxNHq5C6WoOD1ftdjUI+X7vmlmxuna+kNcDCjhsZMd+7kZHGztdJIEe1nl4G4HHr8W4Abwh7MRENAHg3gB4At4W9jplHAYwCJuEuhXEqKREntNV+DghWbWFOP9dBecklpo2l+CjWrjXhlevXR2sPrYDZREU9+2zyVT6Ridu/5ZZ4PbTd85dKwFFHpeNsl57SpVL1PZW+DzJliya2cqVxSN94o/l8bPr7zbhuuskcc+CA+dy++U2TCyPtSn21lBYvNprBXXdV+5Eke/t1rwsqxzbiB3DDYc85x1xDtEM7d2K2aBW5d2Yz8ziA8Tiv1TLj+SROaKs8NzZmQlOlPeX4eLwf+6ZNxjEtZoaeHtNPoFnzUVo0OlFPT5tM4D/908aOL5WA006LJ2Tq8drXAu97n2kpeuONwfnPOsv8b0c8MQe5DL5kR5nMb7+9dhGwaJERGosWhZt6RAiMjZkGRNL6dMsWs117bRAG20x5jVKpOhxWHOhRkUr1BF1ScmHu8qkZaW5I0fQUd1Nndr6IMgG4z7mmB3GQ+s7Z3R2YOlwzRKnEvHBh60wuWW6lEvNLX9rYseWyuYeDg8xz51Y/l9Qk1t8fmPxkn+0ctp3Y3d3mups3B5+VHBNVttv+PvT0mOPqmXrEFOWa3Fzndr3vqDsOn7lJzFBhYxkZqb5nPtNZEho1nzUKcmR62grgOCI6BsATAN4P4INpnFg1inwSN7R1YCA8actdVclKVUqC33ZbkCAnztw0VtHtRmoaPfdcsuMqlcDZu3590FWuqyswG3FCM5hkKUsCHJHJa5DP0y7Tvn498OUvGy3jyiuDzwqozYPYtSt4ztYw7ZIqk5Phph4xRcmxQLLchDDzJ2DeTxLz1caNtY+b0Spyk5jnkx5pbQBuAPBLAPthfBErZva/HcBDAB4F8Jm0r6saRediNw8SJ3XYqsp2aHd1+ZsLdfrW3x+8xyTHDQ7W3oNyOVnIb7kcXLdUClbS9Va4Q0PV5ymVwjUGO0y5u7t6Be+GMI+MhK/85XsiTaaSrLzdgImhoUBb7e42odJLl8bTDlSjaEwIfSBk/22IcEwrs5OJCeOMZDYr38suM6un4WH/qsp2aMsqedEiU59JQlM54arZJo0GPc1QqRhb/t13m/dBZJLkfve76PDXnh4T4uqOfWoKePDB6GuWSuben3qqeXzrrUaD6OoKVtRJHcTT00E2tKsx2O9h/37jm5Dz79pl7P2iJW7fXp0VvXZtbQXYqxpIx3UDJp58MtBM9u0LHPHSujVKQ5Dn0vJR5CUxL/fO7CSo6Sl7snSs2XHvREH5jbjlDu6/H3jjG4MJUnoVbNkS7/pi5pHIliyFxJFHBl30wpAqpTK27m7gP//TPBbzjmQlX3ZZ0E9h+fKgd4NL1HuSXIMzzjDHS65CUoFr93kQ5L329gaRU1JCRMZkCyMp7X399cHnDlQvGDZuTMcsE9f8CcQzJa1alY4T2x5f26OrfGpGp29qesqGtNTgMPPBmjXG3FAq+Z3erhPRdZL6zDP9/fFNLUuWGJNNmJmnVGJesCCZCShsq2caIzJjt80vlUr9eyKmt2XL6o/BfZ+Sy+Az3cU1Pcnz7rnLZfP5Sn5LuRw4vstlc9/r5djY+TFdXcH5mu2V7nudmPvcbPFmTUl5ByGmp7ZP6llsKiiyISz5LQm+ZCa7zIIkmLn26DBBsWRJ9GTsKwsh13Ens/7+asHjnmvNmvb6PupF8rj28WXLTOTXkUfWvhei6oREIjNZu5+FO0lGfQfcRDj3ePue2/8n+S7ZkVVxopDCvndxhJL8L8Kz6EKCOVxQqOlJiU0aFS/dKA4xH9gRLszV9mi7+FulAnzkI8a8sXp1bckHgQh45ztNQpcPMXOI3RkwCWC+xohExqT1wx+232exZQvwl39pTFeSVCbmQMltEB5+GPj5z809FH/HUUcFlXHFBDQ9bT7PI4+sLnlx7LGmmRCzeSxtQX3fAV9PkK4u85nZuRVA8ByzeU7OE8esafed2LfPPHYLAbpMTJioKBmbz0zli3yS8y5enK4pqSPxSY9O31SjyI6kBfrc43xx6fYqVlaKdpE4nynIjsjxbWLK8GkI9upZHi9dGl6YLmqrVJjnz09HY4jafNpRvSihwcHa1b8bdVSpBNE9YZ+NL9rM/Q7YmkapZO6nrMZtLUzutbtqj2vWdMdfL8LJLQzoM2u6429UWy4CmA0ahZI9UY41d0UY1p947drqpvUSe//kk8FKGTCOzLCe1PUyrn/9a3Ptyy83UVA7dpgoGsBEBR15pCn/AJgp7I47Ager7AOiNYglS4DPfc68h099CrjmGnPdKGxnucucOdVF+GxkFW2zf3+1Q1fG9ItfAO9+t3GE33JLdRc223G7a5fJc5CVvR1xZH82vuY+7nfA1jQqFaONAMFK/GMfC7QHKcw3MVGdQxHHMW1nZG/YYMZ//fXhHeLiFgbstP4QLccnPTp1A3A6gNEFCxakJ2IVZq6vSYT5Hsrl6tV/VDloXxG2/v76OQS+4n+SrS0rbdtp6is+Z59raCi4fj2fhPhSRDuJ42cIO2dSbYao2qHb3W1W2XZWszh+w4rrpRmjL3kMbja1nUUvmdy+bO2uruqcmKjxhGkwzbzHRrXlIoHZoFEw8yYAm/r6+la2eyxFIk5/3zDfg7vyr1SMhjE8bOof7dgBHHSQvwhbuRxMi3KsuxqX1qW2LVyKt8lx9hg2bTJbmEYyPQ18+9vG97FsmfFzuLZ/m40bzUpctBMXKbMtY7Hfj0sjdam+8AXgz/4MWLjQPJa8A9vnY4ca26Qdoy95ElNT1ZoBEBQNnJoK9tmFBaWplOwfHY3WFAYGqr8P3/62KRLovj7Je4wbhpqL2kstplCCQsmGOGUEXNX9jDOA732vevKTNqOrV9d2jxPnJhBMKq5AOOss48QWM0alYgre/eIX1U7osIlYzu3iJtZJF7dLLjHCQt6XjzPOCL9mqQR88pPG/GU7eaXaqnRzk8JzcbATCWXivfNO42hfvbpaQHR1BY7qMFNKXFMiEG9yDDPh+PZ1dQX3VbrhyX2MU6HVff3evUFiX9z36L7PehN/nEVTEVFBodQljv3WXbkB1ZOvVHQF/C1GjzsOeOihQEgQGY2iXA6SysR3IStJIuN/kMqhjTB3LnDBBX7hBQA/+pGZ6EU42SxbZmzww267LZixXXWVeX5wsLpNa28v8PGPB+/h6KOBxx4z1/a1LBV6eoKIr3PPrV6R799fW6X1He8w5bzl8xgerp4MoyZIe0L0tRwNmxzDVvC+fW79J/szsP0qPkRzsWE2VWMlGiwOSSf+3NReajU+e1Snbxr1lD5J7bduvZ85c5hPOCHcPn/CCeEJYENDJl+iv9/89cXil0q11VF9m+tLWLMmeH++nIw1a6rt4XItO3rGzV+QnAvf/fJVOrWPk3NKzobY9V2bvV0TCzCvCau867PT17Pduy1HG8l5iIP9vbLzVCSXJuq4JD6wpI2x4ly3iM2LMBt8FJpH0Tj11O9mywj86lfVq2Qi4PjjgZ/8xExrO3bUHrNvn4mQevjhoGKpjatxXHBB7UrbRWpDCZdealb8ALB5c/Vzxx9vGg719gYala95DRCYryR/4/LLa6uRSqTOgQN+U5UdkbN4caCJ+D4Tu1IrYFbk27cH/hpbA/OtguX+hq2MbS3S1SiSRgRFtRWV1XylElT/Bcxfn19FsDUXN6rOHt/EhHls9zcJe59x3lteai+1HJ/06PRNNYpkJIlhj6tVhOUw2FEujeQt2BE/ssqWCCUpAzJnjv+Ygw/2r+QHB82xtrYjUVJuBrAvt8CO6pHIKrcaqVvWws0Md9u5Nvr5iWZhayCNaBTu591M/kzYdcK0Fvl+JLlW2PhczdbX30SjnQKgJTyUMOqVZWi0X7CES7o9n8vlIKzUboKTZLMnvKGheKW416zxCy8Zj0zmbgir1Dmy35M7EdvJbnav6K6uasEhk6IIHzmXW4oiyeTlhopKiQvbfBNWAiXrCTIqjNVNnpNw3npmpyTEERRKgAqKDqUVP+awFadM8m4XuaR2ajmXrHTtSTEsnyFqk4lkZCSIvfe9bunS2l4CYb6I/n7zWp+GI9cTgeQKy4svrh3DkiXBhG13avNlE0floMQtjmhnZydZmWf9/XIzo+1aXu71sxiLLEaImtPaZgsqKDqQVjrOfOUUfCtv31iSFE1zk6/iCgp78hNzTj2zlVuRVN7j0FC4M9n3niWpzR2DrWW4Y+nvrzU/hU2IttlLVt0+Dc+XuOa+Nyma59OGfJ9FK75fPgd+UtNS0us1qp3NdmaFoEDBMrPTqj+T9IfiRvnYE6+vrHXU5OzimgIWLmysvlIcASMmHtcm391dWxcpbBMNwGc6siciu6Ocr25SlL/AvYd2OW47qzquGUU0rbC6Rr7POev6Rr6aT1mYgYoelZQ1YYKiUFFPXLDM7DTqzzSSICTXtRvXdHcDa9bUHuv2CL7xRuD224PrTExUR+ZI4x3h/vuDjFyhXqOcV7wievwCsz/Kh9nfAa+ry/x1M4aB6gigM88M+j5fcQVwww3mPN3dJs9B4vh9dZLGxoJcAV/UVKlkIq3OOw/4/OfN9VevNucKa3TkRhVJRFS9yJxW1TeyOxcKzMlzHuIwa/McMiaxoCCiEoCDmTlhu3clKWmE4jX6w/nQh8zfE0+sLuDncsYZ1aW6geoJ8OSTa0NSXdxkuTe9Cfj+98OT6B580ITM2kgZ7YEB4LnnzCTkhnO6Ia7MZmLu6zPHSjjp2Fj18cuXm81OJnzLW2pLnIuAkffuhhRPTJjwWJkwK5XgfD09wYTd2wv84z8G739y0ozpNqt5cFeXGVPYQsB3bV9xv6jvV1iRxySZ2vK6fftqhf+BA+lP5FrcLxtiCQoi+iqAIQBTALYCOJSIvsTM/5Ll4JTm8xfcH47UWZIfkKz27d4G9sRTb8Un1UHXrzdx/HbJCJkgktDTY+oW3XVXsI8IeMlLghW1lL8Q+vtNvoU9TpnYe3uDCS0s7t4+dmICmDfPtBb1CUipuhom/DZsCKqkutqbnU0seSRA7YQ9Pl6dNyIal33sihXR/cRtorTKsO+Xe4zdnzpJpjZQq6EKtqBMi1mb55A1PnuUuwHYMfN3GYAvAOgC8JM4x7ZjK4ozOy18Ia6unV6co3Hs1mE+D3e/a3t3Hcdu57X+fr/N3o648lWJDas0andDc6ON6kUP+aKN5DmJBHPf05Il0ffOjQAK8yH4fBZhY4tjk6/3mfruhXuM7WBvJFNbHNr256ihqvkDzTizAdw3Ixz+L4A3z+z7cZxj27GpoPDjJji5jt8kPZHjOAvdJDYJj7UnVNc560bIuElqvjIdrnNZxulew/c6O2IrakINc/DLhB81mbv3z54wfROtGwVlRz3FEdDuc2FhvVGfZ1TIrl3OPInDWB3N8WhnlFazguLjAJ4AcBsAAvByAHfFObYdmwoKP1GRP5VKMFFHfVHt0NKw5Lyo1e7mzbUJeBJd5Ot250YnhfXIdsNAo/pN2N3XfNFGYROqm6zn64MQ50ferDCOO5G4n7dP84qTbOnTwhqdzDRUNZp2C9OmBIX3QKDS6LFZbyoownF/7JIIZze8CTPlSPKSa66S5+K0zXS1DNt05Go8/f3mOVtwhAkAOy7fp024mkVPjzm/vV8m/bBVu/3e64WeJvkckjzvW+k3U/Cu3ROTUk27W7I2q1F8AsChM9rEegD3AFga59hWbihYHkWrcM0qPhON+zrXxhx3ZWrb6d1SDT5B5OYj+JLlSqXq87jCKGxztZOwhEHXXBTVUS1rfOU6mjUT6io/P7RbcIcJirjhsWcy85eI6C8A/A8Afw3gKwDuiD6stXDB8iiENDpqRZ1DolIkvp+5fkVRuzqp7zmJZvFF3NjRR3v2mNcAZt+ppwI33WTG4OvjDJjQVYk6KpeBK6800Vd2j+6enuA1YWG2CxeanhIbN5owX4ngcu/bW95S3Xiop8ffd7kV2Pe5VAoq0U5O1n5ecSOAmo2sU9Ijr1FbcQXFTENHvB3AV5j5PiJp8qhkSVhoY1zhIQlvdl7A2rXVoZ9uw3oJ73RDF6O+xIsXm/Nu3AiccEKQS+DL4zj/fPOcTMB28lu5HJScLperxyh897v1w3rlPUqTIDucVZoiASYxTZLTJibCW7yKkLBLgbcD+zN45hnThQ8w4+vt9b8+L5ONEo88fmZxBcXdRHQHgGMAnE9EhwBosKeYkoSwXgJxsq1l8rQ7t01Omp4Nku9gHztvnumjEJVgFxV3v3q1Of8ddwQr77Vr/ZrG+HhtXD1gxilLECJg505/olhUz+69e01Ox1VXmed8fRuuvRa4+mojGKNyAlxNKamQyKK/srz/4eHqjO6o/g1ZjkcpPnEFxQoAJwD4GTM/T0S9AD6S2aiUP+Az6cTNtnYzYqU/s2uuAILVfbkMrFuXfBKxV96A+Ts5aTQMV4OR9+X2qpbxSdb0/v3AOeeY/+sldg0MBL2omY0AsBv32ImDw8PmHkxNVfeY9t1LnxaVRJtLWj4lyUQ+MFCd0V0veW229ntWUsDnuHA3GNPT/wTwv2cezwPQH+fYdmxFi3qKE3YadpwbHrlmTa0D13X+Vir1nWhuxVg3mayeY1zOYTvR7UqtUjI7SWlz29FdKpmoJl+8v3tfkuQEJM0jSRLB0ogjM4kjut0RNTbqQM8naNKZfSWMqenPAfwfAL8BsBHASSnLLcWDa2pJ4qR0X+eaK7ZvN6+1PU7T08ZUE3b+0VHgox81/99xB/Ctb5mCgbbt/POfDzQDn6MVMM7j7duBkZFA6zn88HgtLn0sXw5cf70xPU1PA1u2BM/Z2oJ7X4DkdYvExDU2ll7RvUbqctnfjXraSF7qIDWj2ajprE34pIe7Abhn5u92a59mZreRZhKeZOUvq3b7b6lUf5Xt5h8A0Y183PBV33iaTS4T3HLW9bSasDFFZTrbiXf1muEkGX8zoZGdFArbqGbT7tDR2QCa1Cj2E1EZgLFDEc2BOrNbjh3+aa+0k0RCSXTSxz5WXVyPGXjVq4CDDwaOOgrYtMm/sp2YAJ56qva8+/YFWsgzzwQaAmBW91Iq2x1XPR9AvXvhvlfXoVsuAytXRhc3dK8XtdpdvNiUGRctqF4F1CQRLM2ERsbVRpJG1ER9pxpd3Teq2TSicSkp4ZMe7gZTDPBmALsBfBbAgwDeG+fYNDYALwKwDcBpcV5fRI3CXk1JoTt7RZZkteU2wPFlOUvrTte27+s5LclxooWEdYqLWzzO7aMcpw6RL6HPbvoT53qS0BfWXc69Rlor2zRW+VmstqPO2ez1GnnPqlFkD5rRKJj534jobgBvgXFsDzLzA/WOI6INAE4D8BQzv8ba/zYAXwJQBnANM3+uzqk+BeDrccZaVOzVVKkUlHpOGgnlY+5cYPfu4PH+/cDgIHDkkaa0t4SWjo35y4bLa6++urr8t03claMdNhsWkWS/18nJ2sioJKty977JWO2y7GefXVs+PK2kqLQikbJI1Ar7Tk1MmDBh+ZwaWd03kiuQ12S02UCSxkUPA3hOjiGiecy8q84x1wFYB2BMdsyYsK4A8FYYDWUrEd0MIzSGnePPBHA8gPsBvCDBWAuHq677Qk4rFfPDrVfnf/lyk0cg57rgAtNRzRYCt9xiBJE047n2WpM17VIqmX4QAwPGkSyNgex+CoOD/u54Pp55plpAVCqBEJD35GYnS5irndAXluvhTjL2uSQJz07WW726Og+l3jWSkqY5Je1ELZ+JyJep3krHeB6T0WYDcRsXnQfgHwH8P5jmRQTjr3ht1HHMfCcRzXd29wN4hJl/NnPurwF4FzMPw2gf7rUHYExPCwH8nohuY+ZZ5x+Js5qSycz2D7jIZOk25lm0yEyKW7cG5TPs8+zbZ7QGuzSGJNXJOezx7dwZXRrDHovtm7j00uB5IuCss6LvhS8yyicQojrBSVa6JOHJ8748lLQnxbxEIvkIi5rLU6a60iJ89ih3A/AIgN44r/UcOx/Avdbj98CYm+TxXwNYF+M8H0aEjwLAKhg/xrZ58+alaLXrDMJ6GNgkKW/tliGX6J6REbOfKCjq10j5ad9YfPkcdunxri6TZ+FrOFTPf1Av0sb3vOsvCauq2yx5iESKi/oJig2ajHp6HMCz6YimxmDm6+o8PwpgFAD6+voi1tSdQ5KIk97e6qxoX92femYOX36BW1NpfDzIj2A2eRCyopd6TcxG04iKxvKNRTKN7QzxPXsC08/0tKltJJqMrz90WGvQeit33/OtsonHNafkIYegaH6C0dH6mq8S30fxMwDjRHQrgEnZycxfbOCaTwA42no8d2Zf0xDR6QBOX7BgQRqnaytRTk7fc3v21K/7E8fM4UvuizoHEEzMNm55kH37jL/hIx8xQifuxDw6WmtKk/IgPnt+2HusN8GFPZ8Xm3ieym/k5Z40i5s4CqiwCCOuoNg1s3XPbM2wFcBxRHQMjIB4P4APNnlOAMUqMx61+o9ajdcTAq7GcPbZ5m9UnkG9c0g2tD2hi1Zjj3VqyuQfXH99eOSQOwnt2RNoKjZR1VIbXfHmeQLUHIL02bix9rEKihB89qiwDcBBCV9/A4BfAtgPE+G0Ymb/2wE8BOBRAJ9Jcs461zsdBWlc1EgMu68mVFoZxvXGaucfSDa0bee3M7UbycYtlar9F2F+mHrn6VTbujv+NWuqa201e+5O8ZGkidsKN4172emgyQ53i2FCVHfNPD4ewJVxjm3HVpSEu3oTfb1WmlETo1tmQyZ233mGhuI5ckdGgmRAV4ANDRnB5OtsVw853m7ZmnSyz1NBvEaRz9xX2LGZc3ayAG0Wt7jlbKdZQfEjGL/CdmvfvXGObcdWFEHRDPUmxjgaxebN/takF18c3qs5SoBJxFRUv2nf8TJWibRqJPqoSBPi0qXVgmLp0sbPVQQBqqRHmKCInXDHzI87Te1CcnDbR5Gc2c1Sz3EtEUxuVJON2MWFfftM0yNJcHOjj+S8YbbzPXuCjGufnT3MYWtnhEsiX7NZvYCJkOrEyJ0zzgicr/K4UfKcx6Hkh9jhsUT0pwCYiLoAfAJA3RIerYYL5MxuljhO3XrOW5lE7P7UdrOf6en6pbZ95wublLJ22Mr7zVMEUSOIwzWNsM6ihbsq2UBG26jzIqIjYGoznQKTlX0HgE8wc4zmi63D0ihWPvzww+0eTiGQntuAaSMq7U7tznQ9PaaPtasd+LKjozSYqP7gJ58c7HevlZThYVO2ZGrKCL+LLgr6eDdLI7kOeciPUBQAIKK7mbmvZn8cQdFp9PX18bZt29o9jEIik/2ddwIPPGCs5O5k6074a9cGfarDelPb57fNQ77/m51Ms9IoGm192snaTbtRIZsuYYIibq2nVwC4CsBLmPk1RPRaAO9k5n9OeZxKztm5E1i/Pui77SsK56vuateOitMvwTeBprXqz8rcEmU6C5vQND+icVTIto5SzNddDeB8mHwIMPNPYBLllA5jYsKYXiYmGjv2nHNMRVlmkwh3yim1P1DxRZTLZpOSH0D8wnq+CbQRwt7v4sXpVYAV7Pdtv0eZ0C64wPy1xxJ2TNY08z3IC2l9R5T6xHVmH8TMW5yopwNhL24XGvUUTbMrMKnzJFQq/sqhYdVdy2XTHS5OFnga0TitXnGGaSpRWkM7nMlFWYlrxFbriCsoniaiP0LQCvU9MBnXuUKjnqJp1sxhF+0rlUzRvrDj7YiqRYuST4RpTKDtMOv4IsnihCq3cqIuirlLI7ZaR1xBcQ5MZdZXEdETAH4O0x5V6SDSWIF96EPmb9zaUEDjE2G94+o5MvOy4szDhGbfq7zclzTIc32uIpEo6omIXgSgxMy/yW5IzTMbop4ajfZo5ri0zBVpRKrEHY9GxfjvFaD3Raml2ainRwH8EMBdM9t96Q4vHWaLj6KZSbvRFVha5oq0BE7c8eiK03+v0nbkK8UmbtTTQgAjAHoB/AsRPUpE38xuWI3BzJuYedVhhx3W7qFkSjuiPdKKzklr7PXGEyeqJ++RP2mNr12RVUpxiOujmIIJjZ0CMA3gqZlNaQPtsDGnZWdPa+xR44mjteQ98ifN8eXBR6J0NnEFxXMAdgL4IoCr81a6Y7bRrh++He5pP056jjhjj+NbCDMrxTFL5T3yJ+3xqQlOaYa4guIDAN4I4GMAziKizQDuZObvZDYyJZJ2/PDTWuXGiWZq5jpxtJa8R/7EGZ866pVWEUtQMPNNAG4iolcBOBXAagBrALwwu6EpeaNVq/BmrxO3cm67zDFxtaWo8eXddKYUi7hRTxthuto9CuBOAMthmhnlitkS9dQKfJNZq1bhaVwnjsaVd60sanx5N50pxSKu6elSABPM/IdmRUTUk82QGkczs9MhbDJr1Sq8yM7XtCb4vJvOlGIRV1Bcxsyvc/ZNAHD3KQWgXm2iVkzcRXW+tiLqS1HSJlJQENGRAF4G4IVEdCJM0yIAOBTAQRmPTWkTulrNjjQn+KIKUyV/1NMo/gLAhwHMhQmNFZ4D8L8yGpPSZnS1mi06wSudRqSgYObrAVxPRGcw88YWjUnJATqZKYoixC3h8QMiWk9E3wIAIlpIRCsyHJfSQeS9FIaiKM0RV1BcC+B2AEfNPH4IJpciVxDR6UQ0+uyzz7Z7KB1Ho5N9VPc2RVGKQVxBcQQzfx2mzhOY+QBM3adcMVuKAqZNM5N9OwoUqgajKK0lbnjs74ioF0GHuz8BoMv2gtBMbH+rI6Q0I1lRWk9cQfG3AG4GcCwR/QDAHADvyWxUSktpZrJvdYSUZiQrSuuJKyjuB/BNAM8D+A2AG2H8FEqbSaMwXLOTfSsjpDTHQ1FaT6xWqET0dZjciX+b2fVBAIcz83szHFvDzIZWqMDsNcNo1VRFyYamWqECeA0zL7Qef5eI7k9naEqjzFYzjOZ4KEpriRv1dM+MAxsAQERvAFD8JXvO0RaXiqK0gnq1nnbCRDp1AdhMRLtmHr8cwE+zH54ShZbaUGYbanZsD/VMT6e1ZBRKw6gZRkmTPE/Es9Unlwfq1Xp6rFUDCYOIBgBcBOA+AF9j5vF2jkdRikreJ+LZ6pPLA3F9FA1BRBuI6CkiutfZ/zYiepCIHiGiT9c5DQP4LYAXANid1VgVZbbTjiz7JKhPrn3EjXpqlOsArAMwJjuIqAzgCgBvhZn4txLRzQDKAIad488EcBczf4+IXgJT6nxZxmNWlKbJswknjLznqKhPrn1kKiiY+U4imu/s7gfwCDP/DACI6GsA3sXMw4j2ifw3gND2q0S0CsAqAJg3b14zw1aUpsi7CSeMTpiI1SfXHrLWKHy8DMDj1uPdAN4Q9mIiejdMA6XDYbQTL8w8CmAUMAl3aQxUURqhk23pOhErPtohKBLBzN8A8I04ryWi0wGcvmDBgmwHpSgR5N2EoyhJydSZHcITAI62Hs+d2dc0WmZcyQNiwrnoos4xOylKFO3QKLYCOI6IjoEREO+HqR2lKIVBTThKkcg6PPYGABMAXklEu4loxUzTo3NhOuY9AODrzHxfStfTDneKoigpE6t6bKcxW6rHKoqipElY9dh2+CgyQzUKxUZbpipKOuQ+6ikJzLwJwKa+vr6V7R6L0l46NZdBUfJIoTQKRRHyXo5CUTqJQgkKNT0pgtYFUpT0UGe2Ulg6sd6SorSTZluhKkrHobkMipIOhTI9KYqiKOlTKEGhPgpFmV1oCHRrKJTpScNjFWX2oCHQraNQGoWiKLMHDYFuHSooFCUl1AzSWjQEunUUyvSk/SiUdqFmkNbTCR35ikKhNArtR6G0CzWDtIfFi4Hzz1chkTWFEhSK0i7UDKIUmUKZnhSlXagZRCkyKigUJSU0E1wpKoUyPWnCnaIoSvoUSlCoM1tRFCV9CiUoFEVRlPRRQaEoiqJEooJCURRFiUQFhaJ0EFomRGkHGh6rKB2ClglR2oVqFIqSI6I0Bi0TorSLQmkUWhRQ6WTqaQxSJkSe1zIhSqsolEaheRRKJ1NPY5AyIRddpGYnpbUUSqNQlE4mjsagZUKUdqCCQlFyghYWVPKKCgpFyRGqMSh5pFA+CkVRFCV9VFAoiqIokaigUBRFUSJRQaEoSsejpU2yRZ3ZiqJ0NFraJHtyr1EQUYmIPktElxPRh9o9HkVR8oWWNsmeTAUFEW0goqeI6F5n/9uI6EEieoSIPl3nNO8CMBfAfgC7sxqroiidiSQqlsta2iQrsjY9XQdgHYAx2UFEZQBXAHgrzMS/lYhuBlAGMOwcfyaAVwLYzMwjRPQfAL6T8ZgVRekgNFExezIVFMx8JxHNd3b3A3iEmX8GAET0NQDvYuZhAKe55yCi3QD2zTycCrsWEa0CsAoA5s2b1/zgFUXpGDRRMVva4aN4GYDHrce7Z/aF8Q0Af0FElwO4M+xFzDzKzH3M3Ddnzpx0RqooiqLkP+qJmZ8HsCLOa7XMuKIoSvq0Q6N4AsDR1uO5M/uaRsuMK4qipE87BMVWAMcR0TFE1A3g/QBuTuPERHQ6EY0+++yzaZxOURRFQfbhsTcAmADwSiLaTUQrmPkAgHMB3A7gAQBfZ+b70rieahSKoijpk3XU0wdC9t8G4LYsr60oiqKkQ+4zs5OgpidFUZT0KZSgUNOToihK+hRKUCiKoijpUyhBoaYnRVGU9CmUoFDTk6IoSvoUSlAoShTa3EZRGiP3JTySoCU8lDC0uY2iNE6hNAo1PSlhaHMbRWmcQgkKRQlDm9soSuMUyvSkKGFoc5vWMzGh97soFEpQqI9CiUKb27QO9QkVi0KZntRHoXQKRY/AUp9QsSiURqEoncBsWG2LT0jeo/qEOhsVFIrSYnyr7aIJCvUJFQsVFIrSYmbLalt9QsVBBYWitBhdbSudRqEEhUY9KZ2CrraVTkKjnhRFUZRICiUoFEVRlPRRQaEoiqJEooJCURRFiUQFhaIoihKJCgpFURQlEmLmdo8hdYjoVwAe8zx1GICkDbWTHHMEgKcTnn8208jn0S7aPdasr5/2+Zs9XzPH6++8cV7OzHNq9jLzrNkAjGZ5DIBt7X6PnbQ18nnM1rFmff20z9/s+Zo5Xn/n6W+zzfS0qUXHKPHopHvb7rFmff20z9/s+Zo5Xn/nKVNI01O7IKJtzNzX7nEoipIds/F3Pts0iqwZbfcAFEXJnFn3O1eNQlEURYlENQpFURQlEhUUiqIoSiQqKBRFUZRIVFC0ECJ6ERFtI6LT2j0WRVHSh4heTURfJqL/IKKz2z2etFBBEQMi2kBETxHRvc7+txHRg0T0CBF9OsapPgXg69mMUlGUZkjjd87MDzDzEID3AfizLMfbSjTqKQZEtATAbwGMMfNrZvaVATwE4K0AdgPYCuADAMoAhp1TnAngeAC9AF4A4GlmvqU1o1cUJQ5p/M6Z+SkieieAswF8hZm/2qrxZ0mhWqFmBTPfSUTznd39AB5h5p8BABF9DcC7mHkYQI1piYgGALwIwEIAvyei25h5OstxK4oSnzR+5zPnuRnAzUR0KwAVFLOclwF43Hq8G8Abwl7MzJ8BACL6MIxGoUJCUfJPot/5zILw3QB6ANyW5cBaiQqKFsPM17V7DIqiZAMzjwMYb/MwUked2Y3zBICjrcdzZ/YpilIc9HcOFRTNsBXAcUR0DBF1A3g/gJvbPCZFUdJFf+dQQRELIroBwASAVxLRbiJawcwHAJwL4HYADwD4OjPf185xKorSOPo7D0fDYxVFUZRIVKNQFEVRIlFBoSiKokSigkJRFEWJRAWFoiiKEokKCkVRFCUSFRSKoihKJCooFKWDIaILieiT7R6HUmxUUChKDiCD/h6VXKJfTEWZgYjmE9FPiejfiOiBmS5lB80897+JaCsR3UtEo0REM/tPIqKfENEOIvoXaXpDROWZx1tnnv9oyPUeJKIxAPcCOJqIrprpgngfEf2T9dr/IqJ/IqJ7iGgnEb3Kc76VRPQtInphVvdImZ2ooFCUal4J4EpmfjWA5wB8bGb/OmY+aaahzQsR9CK4FsBHmfkEAFPWeVYAeJaZTwJwEoCVRHSM53rHzVzvj5n5MQCfYeY+AK8F8GYieq312qeZ+XUArgJQZW4ionNnxjTIzL9v9M0rig8VFIpSzePM/IOZ//8VwBtn/j+ZiH5ERDsB/DmAPyaiwwEcwswTM6+xm9QsBbCciHYA+BFMd8PjPNd7jJl/aD1+HxHdA2A7gD+GaXQlfGPm790A5lv7lwM4FcB7mHky7htVlLhoPwpFqcYtfsZE9AIAVwLoY+bHiehCmJa2URCA85j59jqv+90fDjAaxycBnMTM/01E1znXESEwherf7k4AJ8CUwP55nespSmJUo1CUauYR0eKZ/z8I4PsIJuuniehgAO8BAGZ+BsBviEg6nr3fOs/tAM4moi4AIKJXENGL6lz7UBjB8SwRvQRGS4jDdgAfhWm/eVTMYxQlNqpRKEo1DwI4h4g2ALgfwFXM/DwRXQ3jcH4SpkeBsALA1UQ0DeB7AJ6d2X8NjHnonhnH968ADEZdmJl/TETbAfwUpv3mD6Je7xz7/Zkw2VuJ6K3M/HTcYxWlHlpmXFFmIKL5AG6ZcVjHPeZgZv7tzP+fBvBSZv5ERkNUlLagGoWiNMc7iOh8mN/SYwA+3N7hKEr6qEahKIqiRKLObEVRFCUSFRSKoihKJCooFEVRlEhUUCiKoiiRqKBQFEVRIlFBoSiKokTy/wFbv/7xnBvB+QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAF3CAYAAAB33UvNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2deZgU1bn/v12NDMrqgiiZATRAIiIDwgygEpCQTEzEKwajxuhoJjJEXG5GEBADNwZFQQEDI4pMxC3A6HUJ3sSYi6OILAMI6JWo4AWc0QDiwjI/A9p9fn/UrZnq6tq7qquq+/t5nnp6prr61Kn1fM973vc9MSGEACGEEEJIQEhBV4AQQggh+Q3FCCGEEEIChWKEEEIIIYFCMUIIIYSQQKEYIYQQQkigUIwQQgghJFAoRgghhBASKK2CrkDYSSaT+OSTT9C+fXvEYrGgq0MIIYREBiEEDh8+jK5du0KSjO0fFCMWfPLJJygqKgq6GoQQQkhkaWhoQGFhoeH3FCMWtG/fHoB8Ijt06BBwbQghhJDocOjQIRQVFTW3pUZQjFigDM106NCBYoQQQghxgZWbAx1YDaiurkafPn1QUlISdFUIIYSQnCbGifLMOXToEDp27IiDBw/SMkIIIYQ4wG4bSssIIYQQQgKFYoQQQgghgUIxQgghhJBAoRghhBBCSKBQjBBCCCEkUChGCCGEEBIoFCOEEEJIDtHYCNTVyZ9RgWKEEEIIyRFqaoDu3YGRI+XPmpqga2QPihFCCCEkB2hsBMaNA5JJ+f9kEqisjIaFhGKEEEIIyQF27GgRIgqJBLBzZzD1cQLFCCGEEJID9OoFSJpWPR4HevYMpj5OyHkx0tDQgBEjRqBPnz7o168fnnnmmaCrRAixIIoOeH7Bc2EPniegsBBYvFgWIID8+cgj8vqwk/NipFWrVpg/fz62b9+OV155Bf/+7/+OpqamoKtFCDEgqg54fsBz0YKZ2OB5aqGiAti9Wz5Xu3fL/0eBvJu1t7i4GC+99BKKiopsbc9ZewnJHo2NcmOiHveOx+WXahR6d17Cc9FCTU2LY6Ykyb1/pZH18jw1Nsp+F716uT/HXpSRS0Rm1t7Vq1dj9OjR6Nq1K2KxGF544YW0baqrq9GjRw+0adMGgwcPRn19vat9bd68GYlEwrYQIYRklyg74HlNGM9FEEMhVhEiXp0nL6wrtNC4J3Ax0tTUhOLiYlRXV+t+v2LFClRVVWHGjBl46623UFxcjLKyMuzfv795m/79+6Nv375pyyeffNK8zeeff45rr70WixcvNq3P0aNHcejQoZSFEJIdouyA5zVhOxdBNbRWYsOL8+RFSGyUw2pDgQgRAMTzzz+fsq60tFRMmDCh+f9EIiG6du0qZs2aZbvcf/3rX2LYsGHiiSeesNx2xowZAkDacvDgQfsHQghxzZIlQsTjQgDy55IlQdcoOMJyLhoahJAkuR7KEo/L68Ow70zP06uvppavLHV12S0jaBoa5OPw8roePHjQVhsauGXEjGPHjmHz5s0YNWpU8zpJkjBq1CisW7fOVhlCCFx33XUYOXIkrrnmGsvtp06dioMHDzYvDQ0NrutPCHFOVB3w/CAs5yLIISM7ESKZnicvrCvZsGT5OUwW9BBTqMXIgQMHkEgk0KVLl5T1Xbp0wd69e22V8eabb2LFihV44YUX0L9/f/Tv3x/vvPOO4fYFBQXo0KFDykIIyS6FhcCIEXQABMJxLoIeMrIjNjI5T16ExPodVuunWAjDEFOr7O0qGC644AIktZLeBtXV1aiurkYikfChVoSQbMMoB/coDW1lpWwR8aKhdXo9Cgv9vW4VFUBZmWzt6dnT3b68KEMPI7FQVubNPswsX9l6VkJtGTnllFMQj8exb9++lPX79u3Daaed5uu+J0yYgO3bt2Pjxo2+7ocQ4j9Bm6CdEsYEXnrWCbf1tHM9gjgHXlih/LBk+T1MFrTlCwi5GGndujUGDhyIVatWNa9LJpNYtWoVhg4dGmDNCCFRIQwmaCeEWTipG1q39bRzPTIp262ACaMAVPBbLIQic6t3PrPuOHz4sNiyZYvYsmWLACDmzp0rtmzZIvbs2SOEEGL58uWioKBALF26VGzfvl2MGzdOdOrUSezdu9fXei1cuFCcddZZonfv3oymISTCRCnKIcioFScY1XPFCuu6rlhhfj3clr1kScvvJMlZRE0mv80W2YisamiQr0MQ0TSBi5G6ujrdUNry8vLmbRYsWCC6desmWrduLUpLS8X69euzVj+7J5IQEk6i0sAL4b1wyiRUU/tb5f/6eiF++1v9elo15upG3+h6GJ0Do7IbGmShEou5u8aZCCurc+Y1fogFv4mMGAk7FCOERJ+w5Ouwwo1wqq8X4oEH5E81Zr19q0ZT+9vycn0RYbTo1Vnv2LR1MxIWRmUbiRtlmTvXuuF2Kn6MiIJ1JQgoRjyCYoRkC797VflOVHqVToRTeXlq4zl2bIv1wkjUzJlj3mjW15uLAbuL1ppj1OjX1rYct1KvWMy8Dsp1tCOQrISBVTl2LCxBWd+i8M6gGMkQ+oyQbMJeFVFjRzjV15s3wHrrKyszszQ4WWbPTj8mowbb6Ltf/MK4vmYWDb3f1NcbN9xqgWYmrIwa/4kT7QkyL4nKO4NixCNoGSF+EyWfBhIOGhqE+PWvnYkDs8a2tta+pSETAaC15CiugUbCQs86ooichob072MxIaZPNy8rFpPFg10BpjyLRo1/Q4P57/y6/lF5Z+REOnhC8oEwzs4aJsIcchkEStjrokXW2yrhoLGY3GQZccUVwIMPpt+HShnl5S1hn3ZJJIDBg1vCc++/H3jyydRtnnpKvq56oauSpF/nkhLz/V58cXpZQEtZQsh16d4dGD8euOGG1OOOxdJDXAHjcOS1a/Xr8atf+Rcam4vvDIoRQgImDAmHwkqYc274gZXw0uboMCMeB9avbxEtZmJECGDuXH1BsH49MGxYyz5jMeC737Xev3qfySQwebJxA/q3v6XWT5KA++7Tr4/yXOzYkX5MQgAvvSQLDEVQxGL6dUsmZaGhV8ayZanJ3dw0/t//vvF3mZKL7wyKEQOqq6vRp08flFjJcEIyJJsJh6JkZYhasrJMsSO89BpFI0aNAl57DbjxRnMhopBMyudbaeTicaCqSv573LhUy8J779mrg7Z8LfE40LZtavkK3boBU6emiolkUhYugH6DDAB33SU/P4mEfL84JR4Hhg5NzaJq1vifd1664JEkuQy/CEWSMq/J0rBRZKHPCMkWfkd7RMXhTSFKycoyxa4PgFeRLkaLXtl+7U+JFDJKgmZWRz8cbpXFLEeKUZRTpqHjbqNinL4zgoi+oc8IIRHDz9lZo2hlyEVTtBF2hgFqaoAhQ+xZOewgSek9er2y7e5v5Ehn+1+2DPj8c9lfxQlCAOvWyffusWP2LUV2kCR58jk9zGYOtjOrsBGZDEU6eWeEfciTYoSQPCCKDm85aYo2wGjIYdMm+dOJr4hdnJZl5HuhUFdnvyxJArZtA26/3VkdFFatkodxbrzR+W/NjiOZNH8mzBp/O8JAO0yarU5CFDojFCMG0GeE5BJRtDI0NgJnnin3gt30OKNEYSFw773p66dMkc+DUaRLpjixslht66SsqVOBWbPsb68mFtN3PLWL2e+UZ8IP3yo9y0S2OglR6IxQjBgwYcIEbN++HRs3bgy6KoRkTBitDGYvfPWLe8gQ4MMPo2kRcdKoDRqUvi6RkKNDHnjA/j5HjLC/bRBcfbUcaeJWXGUyTDVkiL4FCmh5Jv72t1TRcP/97venYGSZaNcuO52ESHRGsuTDElnowEpyibCkRLeaNyUqCZ30UOaKueMOZw7DXiQdUxKN+enkanf59rf110+frp+uPtNFkoS4+mr72yrna86clmfC6BroZZN14ghq5oydrXmTgpqfiRlYPYJihBBvsRIbYYuiMZq9Vq8h0mYYdSqo1A2Gm2XiROt6hGGRJCEGDfK2vNmznYkwJeusGqN7T5L0I3gkSRYzVsLE6p7PVichiM4IxYhHUIwQ4i1WYiNMlhGz2WsVa4ciTh57zLoBtCOonIa6KosS8up1WveglnjcnriYMcP5XDWKGNFidu6sJueLxcytDUFZJoKeTI+hvYSQUGI1fu2nf4sTHw69cf7HH0/9f9w4Oapj5Ejg+uvNy7M7Rn/GGdaRK3r06SN/1tb64+yabWbNAm67zXwbSWpJu65EHmXKDTekr1OunVnSOSHk3xrdW5mE/7ol7OG8KWRJHEUOztpLiH/Y6SV6bVJ2mvTNaU/bqpevnlhtxQp50U4kl2kSrzD4ini1KNfe6pjq651bg9TDLnr3h9m1s9qPnsXFLZlYNcJiYeQwjUdwmIYQf8jm+LWbF7MXwx2XX57qHDlxonGW02nToj28cuONQlx/vXflVVamz5art8RiQvzsZ86EiHp4zWpoSzv8YuXX44UYUe6VTDImh8X3imLEIyhGCAkHmfQS3b6YtRac886z1+DFYkKsXJlaTi5ZLbK1KH46Xp67lSvTrWQTJ1rXQ33fNTTIosNqOzcY3StOrRpGAlxrjfMbihGPoBghJHgynVcnE5O1YsGxGzKrmPUV8bRyZbQtHn4u06YZW4v8Wmpr06+HJFnXYfx4/fvSrlOqHTFtZY1zatXQ1k/PAdtvKEY8gmKE5ApBe9W7xaux70yjGcx8SBRLiDIk48cEbrm4xGLZPU/xuHG0UlmZdVj1uHHp952d4Ua7YtrsHpMkWRA7RS2mg/AhoRjxCIoRkgtEbcZeNZmOfWt9A9z6qZg5U44dm7odhYj/i1NriuL7YXR9lMa+rk6In//cXBQ4eX6ciGmreyeTZzcoHxKG9hJCAERjkiwz3KSyVkJ458xJDW38299a0qXbCfFVhwIXFgKPPqq/3fPPt5RlFv5JvGPDBmDiRPth0ELIM/IWFgJVVenfJ5PAmjXyffVv/2ZcjtPnx8m8MNqwdu2xZfLshj0lPMUIITlOFCbJMsNp3hF1boXbb08XYVqBUlPTIjo2bmwRH9ocDXPmyFPW66E+n716eXv8RJ+HHgJOPx344x/t/+buu+Xr+7Of6YuYqir5Wn/0kXk5Tp4fpyJAnY9k+fLM9q0mjPNTpeCvgSa6MM8IyRXCkm8gU+wMsbgZItHzW3AzzKKM59fXBz+EEcVl3jz34c0DBzrbXpLMI6PicTm9vNn3Tp4ft/5Kfjy72U4Jz2GaDOGsvSRXCH2PyCaFhfIQi1m9rYZI9GZsFSL9N26GWdaska0npaXOf0uAAweAo0fdnfvNm4ExY1qsHUYz8yokk8DatcbfJxLA/v2p5Shlu3l+3GZf9ePZtfMcBUFMCCGCrkSYOXToEDp27IiDBw+iQ4cOQVeHENc0Nsrm3Z49w/ci8orGRjk9u95bTZLkdN2PPJL9epHsoggHt61bPC4LFvXvJUkeNhk6NPvPT5SfXbttKC0jhOQJYe0RqXEyd4wehYXAffelr5ckYP164M473c37QqKFEO6vczwO/OY36UImmQQ6d/bv+TG796Pw7GYKxQghJBQYTerlVKBMmiQPlygm9nhcNnWXlBiLFTtQxESLZBKYPl3/O0mSI2v0WLZMdnDVo21bZ3Wwe+9GakI7n6AYIYT4ht2XsVH48f33O3tJK/u78kpgzx79MfpBg5wfRywm12/MGOe/JekMH+7+t/E4sGQJUF8PzJhhLBIlCbj44nT/EcVKtmRJ+m8lCejRAzhyRL/Mpib79bQSGOoIriiH3ntGVtxpIwyTnhHiDGVW2nHjWhJTWSVrMkrIpE1spUQS6GWT1c7pMXt2er1efVU/EyWX7C2SJMRvf2u+zVln6d8LtbXpUSBjx+qXMWdOy32hRLJIUst67Xfq+s2enVkUi1UUjDoJoVHyNnUysqhmTxaCGVg9g2KEEPuYTQhn9jJ3EpJbVpaeTbahQX/badPkl/icOam/GTuWE9eFdYnFZDGrDvM1Coc1um+mTUvdbvZsY2FslCZ9zhz30weYZTu1c68bCZeoZU8Wwn4bymgaCxhNQ4g9zCJZFOrq5IiAHTvkZFBqh7yaGtk8nUg42288Dtx1FzBtmrt6k3AiScC998q+PkZRJHV18jCIltpa4JRTWhLQde+eGjIciwEzZ7YkHrviCv0yhg51F8XS2Ji+z3hcHjLcsUO/zpIkb6+E71ZUmJcTFWdWu21oqyzWiRCSw+zYYS5E4nFg0ybg+9+XX66SJDuWKv4cFRWyU+Ezz+in6zYikQBeey2jqpMQkkwCU6fKDS8gCw+tgN28Of13sZgsLoSQ77GqqvTcJUJYi9crr5SdnQcOdF53JT+IIq61+UEU4aEQjwPr1sk+KWrhY5Y9OSpixC60jFhAywjJRxob9a0XVr8xy/Fx773AlCn6vTygZX9Aem+Q5C8TJwJz58r3QywG3HYbcOut8nd27hO9nCFO0QpnOzQ2yonVYrH03CRqK6DaEqJXRr5YRpCFIaNIwnTwJJdw4gCXyRi11mckFhNi/HjZB8Bo6vaJE9P3p3U6pH9HeJdYTIif/tS/so3WT5xov5yJEzO/h/R8nrQzQit/23mG7KZld5tKPizQZ8QjaBkhUaempiV00KqH50VPrLFRNjkD8u+01hA1Rpku9+yR/1bG6//5T2Dw4NTtCNEOdxhts2cPsHIlcOONme2vrq5l1mf1c6XO+CpJLRJGIVNrBjOwEkIijVH+DqMcBl7M8FtYCFx+uWyaNhMiAPCrX6ULjGQSePDBlqyTgJz34b77mHiMpDJuXOq8LXr3x333yffS6NHW908sZjyvjXqmXe1zpRYfekNC2mfIaSI/ZmAlhEQap+LC6XTnTvet5fvf128g5s2TX9TqxFFTpsgNAAmGbt2CrkE6I0emTkD36KMt4kSSgNmzZZ8TQG7IH33UWJCMHw989JFsRVF+oyBJqQ6odu5tNepniNlWDcjKoFGEYZ4REmXcTEHu1Ri1VT4FpR4//KH+97W1+nX3wueAi/lSXp7qszN2bDgTxWkT2yn3nZkvRkODEJWV6WWpE+ppj1WSUstzkhcHkH1W3D6PUcduG0rLCCE5jJspyI2mO1enr7ZjYlb2rdcTVXqaAPDKK+nfx+Pyq1rPqjNqlPl+1Qhhf1vSwpNPAi+8IF/n9euB557zN7rJ7fDb1Kmp96ESBWbmW1FYqJ9XJJGQfZ30rB7JZKo1UftcSZJ5Wnol+seLYdBchWKEkBzHSFyYoR2jVpuWS0utTcyKcOnXT/8lLYScU2TmTP3f33ADcN55+r/97/+2rj/JjGQSuOQSWXi+8Yb/QkTt++GERELOS6Md0rMa/tAbjgRkkbJpk72hSvVztWePPMRTVycPDanF/+LFLc+Rl8OgOUeWLDWRhcM0JN8xM0lrTcwNDalhlGbDJNOnG3+nzEHCYZboL3avYSwmxM9+5m4feuHfToYjtb/LJBW88hwYDRVFPVTXKXbbUGZgJYSkoE14tnatcc9YbWJ+8EHggQfkV7qC+m8td91l/J0Q8n7Nfk+iQWWlbB1QQmCNrqkQwLPP2gvX1aK3vVWm0ooKoH379CGbREKe2XndOmDNGuCCC+SU9E4oLGzZr/Z5UjINRzVU1y84TENIFnEa0pft/WtN3dddJ6fFNkJJ8d69O3D//d6JhyuukBeG8kafhx9uESL33QeMHWu8bTIpp293M2Sjx6ZN5t+fd57+sMnGjcCQIXJdhgyxHo60+zwp5RiF6gb9fgiULFlqIguHaYhXBD37ptX+nUYIxOP6U63rmdCDHirgEo5FkqwjrNQz7DpZ9H5jJ1JF/VwYlaVXjjrbcCxm73kyq0/Q7we/YDQNISHCafIxr/ddWys7hZrt30nuhEWLgD/9yXpuEGVOGqNEUiS/SCbNs/Eq8xcJYa885b6Kx4Ef/jD9ezuRKmVl6fvT/q+XtOyGG1q2E0L+3+p5MqpPkO+HsECfEUKygNvZN91MWKdGnbJai3b/iqe/HUHy61/Ln7GYuR/A1KnApElAQwOwYIHz+pPssGgRcPLJ8t+7d8vXLZFwVoYiJiZPNr6HFPGg/l6SgOXL5Yy9TgSxJMlhx01NQNu28nCK3jZWkSpWs00D6REvev5MQsh+JpdfLv+v9zwZRc7k0+y8hmTJUhMYX3zxhRg4cKAoLi4WZ599tli8eLGj33OYhniB2+RjmZht7SYd0+5T7ek/fLh987vR+rFjgx8e4OLsPjCa1NCsjCVL5HLMtps92zyaxCjhmN79NWdOy+9efVV/f0qyMafPSSxmHvFidH5qa1u2qa+Xo4OUss0iZ3I5GZrdNhRZqk9gfPPNN6KpqUkIIcSRI0dEjx49xIEDB2z/nmKEeIWTkD4vXk5ms5oa7V876+7NN9trjH7xC4bhRnExug+c+A/FYnLDK4S1iKmraynfTuirJKULGGVdQ0PLbND19Zk9L3rPplkd9cLO1Vlay8tTvysrc+67oueHEkUoRnT47LPPRPfu3cWnn35q+zcUI8RL7E4bbtTTU17mVvtYsUJfHEhSSw4Pvd+5dTaNx4W4447gG9dcX844w7uy1CJCfQ+8+qr8qW1QzRblvjQTI/G4/L0dgTBnTrpVUP3saEVzLJaawt7KCqEco3a9nWdTwahzUV+vf/zac61XL6e5UqJAZMTI66+/Li6++GJx+umnCwDi+eefT9tm4cKFonv37qKgoECUlpaKDRs2ONrHF198Ifr16yeOP/54sXDhQke/pRghQeDWMqJ9SWsXM7O1kQBy0iBNmxZ8g83F/rJoUYt1QSsA9Hr+evdWLNZyXxolqovFWtZbDTla3ftG+4jH5QbfTFB4HbGiFTANDUL8+tf653rePPOyMumAhJnIRNM0NTWhuLgY1dXVut+vWLECVVVVmDFjBt566y0UFxejrKwM+/fvb96mf//+6Nu3b9ryySefAAA6deqEbdu2YdeuXfjTn/6Effv2Gdbn6NGjOHToUMpCSLZxM6eM1sNfi3qODD0ySbMej8tOhCed5L4M4p4BA9z97sYbW3K6TJqUGs2hvY+UCA8zlJlxFUfVWEyeDRdoKc8qUsQqCsXI4TSRkJ1vje5/PyJW1PlClJwiixbpb3v++eZl5X2q+CyJI1sA6ZaR0tJSMWHChOb/E4mE6Nq1q5g1a5arffz6178WzzzzjOH3M2bMEADSFlpGSBA4MR1bmciteqN2fT7i8XSTeHk584k4WWIxIa6+Ovh6OF2M7jFt71193zrp8VvNqKtsY3ROzawvfloerIY4y8vtlZOLqeIjYxkx49ixY9i8eTNGqabplCQJo0aNwrp162yVsW/fPhw+fBgAcPDgQaxevRrf+c53DLefOnUqDh482Lw0NDRkdhCE2MAo86JRpkYnzJhhPUGe3dTr48fLZc2cKecZqa2VwxmffNLfydRyDSGACy8E6uuBuXOBlSvlfBeZ0Lu3N3Uz45FH9LPiajOdqu9buz1+xbKgzOas5t57W56BZcvSv1fqpNzDelaPzZvTf+eV5cEoJHnCBPkaL11qrxw3k1rmDFkSR7YAUi0jH3/8sQAg1q5dm7LdpEmTRGlpqa0yN2zYIIqLi0W/fv3EOeecIx5++GFHdaLPCPEbr8axrTz87exfu9x8s9xTVfc41VYQSTKe3GzGDEbYmC3qnrwSOVFfL8SNN7orT5KEGDNGvj4335yZpcrpb51MSidJsrOz2onUyrKgWC/mzNGv60MPmf/OqPzZs909a1pyOTQ3U3LCMuIFpaWl2Lp1K7Zt24a3334blVaDnv9HdXU1+vTpgxKnMyQR4gCvx7Fvuy01K6V6+nI7+1eIxeSp0G+/XfYBEKKlfo8/nlrf2lr9sgcNkssm+ijNlvL3r34F7NolzwfkJmNtMgk8/7x8fQoKjOdTMUK55nV1cjIxJ/MCqX06jKx8ShK1ZBK4557U+Vqskp1t2iSXN3ly+nfKvDd6tG0rfxqV79Xr3Y2PF9GQJXFkCyDVMnL06FERj8fT/EiuvfZacckll2SlTrSMED/JdBxbGZPXRkJMnGivV2a0fyX894EHste75iIvsZgQgwbpfzdihPvzahQhs2iRfri3k8goxQpgFJJrZiFTomCsEvQZ+atIkrUvS7YsF07Dg73ap16ocljICctI69atMXDgQKxatap5XTKZxKpVqzB06NAAa0aIOXZn33TqQa8uVz0jqDYSYt48e3UyGkffuhXo1k22tLiFPiTuEMJ4ttnXXpM/nc5mrKROf/TR1N774sWyH9Dll8u9ePU9MnMm8JOf6Jel3r8kyVaAZcvS78PKSmt/pERCTumutizobROL6VuMLrvMePZd5TnKluXCCx8vJxjNChxJsiSODDl8+LDYsmWL2LJliwAg5s6dK7Zs2SL27NkjhBBi+fLloqCgQCxdulRs375djBs3TnTq1Ens3bvX13otXLhQnHXWWaJ37962VB0hCk59QOx60GvLtfLHUOcU0auT0Tj6T34SvHWAi/eL0mNfsULfEmJ0395xR8u9ps5OWlvbkqekvt74fqyttbaMqH1HFi3S366+Xt9nRPm9necoCMuFX0TFTyUySc/q6uoEkB5KW66KhVqwYIHo1q2baN26tSgtLRXr16/PWv04TBNuwmaidPOCMGsg1Ns4dQZVnFeN6uR0/hE/l9Gj9eew4VCPN0s8rj+EYve+VRrx+vqW500tXozuTeUeNErGpxYNyrNsNuRiNayZS2LDiqgkSYuMGAk7FCPhxetsil7g9AVhdQzKC9ooWsBqMXuB19aGp7F/7DHj9dmsY5Dnw4nYVE8eF49bWx5mzzYXG3buW6eWOSB1MjvFmlJbm54pVStsjNKiR8UakA2ici4oRjyCYiSchPVBdFIvo22V3qe6J+tmsfMCdzL/iJ/LZZfpr58xQx5uylaI8PXXBxOOrFz3iRONr7nZRG7a0NmJE1MbfDsWBSvLiNN7UZ0m3ukzYzRrbkND6jnKlcRgbi28UUiSRjGSIfQZCTdhNlHafUEYHYOTxtDMPK7er9GspGHJA3LVVebfS5I882lYLDleLnpDJloBFovJ4tRsCEJvKEVZv2KFtUg2u2/dzltk53k0s9wZWSEFGfcAACAASURBVE/UEWNhG6p1SqYW3rAPTVGMeAQtI+EkrJYRBTsvCLe9TeXv737XeDvF/0TbKKnrFKZ05HaGoeJxIVauzJ6A8kIUWi2SJIsH7bXScwi1O1GiumFTJ6iLxawtCkb3rdW9aja0YudZsXqW9bZRkqfZnYAvjIT9PeYFFCMeQTESXvwyUWarp6X0gNXmdavG2G6kizoDp95LWi8qwW6D67UYuPBC/Z673lJX567uXi6LFsliQfF/0A6TOBEiS5boCwijczx3rrllxOocSpK5o7QZZscoSfJ1cfs8Wj3Ldi0zZkOiYbSehNnC6xUUIx5BMRJuvDZRZsMpVmuGj8VaxvjN/AXuuMN9A6okhqqvlz/DMjyjHL/yadaYKpEZbocMtPtctMjcOmRUF71J4R56SIhf/tL+tVAPMTi1jhndl3bPi5mgsXPvzp1rfF7cPI/KNdU6tWq3sXvPaq9Pthzd3QgeWkZaQJbqEznoM5J/OH0xuHn5GM0Do5crQZKEGDfOm2yoUVkkSYjp0/W/Gz68pdEya5jsNu6KH4ZRyKlVBIoiKp0e46JFLfeNW2Gld186ETbqXDNBNqBOhIKdc62ei8mur4wXZCJ4ouCEmgkUIx5By0j+4MRk6ublY9VYqCMb1BEDkiSn5r71VnsvY68FwuDB+tEOTvblZFujpFfqssz8ZZzUTREdSmMQi8kT/9XXt1xnvYbCKG+Gk3MhSfqCx+5idF+q63v55fbOk9k9rCdYvGhA3Yh/q3OlTHxnNvmj0blzixfiLOxOqJlAMeIRFCP5g92XituXj1kvOJMwyuHDUxsYv4dg3Oxj0SJ7x+RV/Z2UM3duelitunHWNhRuhlbMrrvW16K83Nr/xKrRtgrptVummejOtAF14y+htRyqh/imTbN/fRSx6QX54PeRCRQjHkExkl/Y6fEZmYuNXj719fIQy8qV+i9JbcNnZzimZ0/j7+wmpMrmYpTKW907z4aQMlqcRIPYaeAXLUp3Nv7e94zvGz3BYzRc5WQYwKlwUt/DfvszuC1ffa5mz06PprFzfcJmGcllKEY8gmIk/zDr8Rk50hm9fLRJxc47L1XsqGfXtTItO1lqa1MjdYJeFKfNbO7Pi3Op12hZNfCKb0tDgyzC5s1rCd+122gZ3QtGocBm6EXB6AlWtb+FENnp8Wcy3GN0Pu3MAOyHz0gu+31kAsVIhtCBNbr4GcZn9IJWT0qnUF+vv+3Klelix0m0gNWiN6fI3Xf72/gPHy5bA8yOIVuWD6UxUA9fZXoetViFuSqf2nlX7IS/Gokdo1Bgu/5KSkI05VN7LbQZU43uXy+HONR1c/q8mokl9fWxk1/FC3LZ7yMTKEY8gpaRaOH2RW1XvBglX9JmvRTCeLhl3rz0cisrvWmIlQichx6SIwnUosRvERDkMIu6DorlwCw7rZ3zaHXv6Dka6w31qJ1UFadVs0bLLCOpV0MCdqweYfaFsBMpoxYHFArBQTHiERQj0cHNi9qNeNGaZNVZLtVl2O1Zzp7tTUN8xRX6vV1lsrJM8pR4vZj5tUiSEP/+7+7Lrq019xuYNs1ecjA9gam939T5MYxmm9UbDjGzLpjdx14JBDvPipvnyUzYe2Wx1E6qlw2rB3EPxYhHUIxEB6cv6kx6mWqzt1kZWp+R8vL0crywJlj5SIwda68BzqYg0fNpUc+bo3de77jDup6xmHHIrN7vrSwoSnZRNXoiVq/OducOUu4FpbE28kHwOseH1ZCRE18IM2Fvd3ZqO86repZJt1llif9QjHgExUh0cPqidtPL1L407ZShdmK0Wwc7i9YRNlNxcMcdmVkknNZdbT7XZt/UDoFoG+S6OnOLkjZkVhEUmZxvJYeF2X2m9VWwcw6EMBY36mEGK6HiBjvDF3a3MRq+tHounVgngx46shJNSuSc1341UYZixCMoRqKFkxe1U/FitzesbmitentuclbEYvqNVaaWDSUSIRtCxEkPWx1xpMZqeMsoZNathUiJNjHz6VD2UVtr73oodXPaWAflA2F0T5vNQG0WCu/0GfQrjNbOs2olmqysoPkKxUiGMJomujh5UdsVL0Y9vxUr9CMktOPalZWpDqXaOjgREkpyp0zLMWpQ/XJCtWNON2pstOfOanjLrqjUazzNZgY2akCV3yr3jx0LjB0/EL8aXzdYJUAzE3Fe+sB4HUZrxzJjdR2yFXkURShGPIKWkdzHSrw0NJgnItNGSJjlOVA3WErZr75qPmGb3qIMGejV1SidupXIkCQhLr7YvdiwKl+xcKh7oOr/rc6zk8beqle6cqXxb40EmToPh1For9oqZiWW7PiBBD0soWBHFJmJPLV/kBc+MF5Zhuzu3+o6OImcyzcoRjyCYiS/mTPHnrVB7TNgp9FXtjUr26ocp74wmQgJO783mnRO+V4b4qqOQrIbFqzkwrAabrGyjBjtS7HCGDWoaoy2UxpJvX1Mm6bfiDp1WLWK9PEau6JIL3+J1j/I7rFnA7vHRcuIeyhGPIJiJH9xGnJr108AsDdXi1XSLvVU8FoLg916jB/vrN5Gi1pgGYUXexWto/hmmCUe02tQlPNkFeFit7fsxqIxfrx56KudxtoolNxPnFgw3IiLIH1gvDou+ozoQzHiERQj+YlZozVjhrFfgxeNrdLI2LEUaC0MSuNk1VAr29bXO6v3t75l3fgrDpyLFrX4iLix1lx7rbkYUfZlNCzlNHpp0SLnEStmFg2z62clIvSGs6xCye04YWaCU+dwu+LC73pb4eVxmUXO5SsUIx5BMRJNMn3BGTVaaguA9gXmRUSLUl4mobpK1k+7wx52h2huusn8+5UrzXv9Ts/NtGnW86eYXSsnlhH1eXAasWK0ndU11EsypqSMN7J8mE1HkA1ridcWDDdJB/0gKMtMPkAx4hEUI/YJuoejoI1kMYo+McOo8VQnv9J7gWmnOLfb8Cp5MLwK1fU6IuaBB6xnE9Y25lq0ZuyBA639PmbPTj2f2jDfhgbZsmN3xl3lGlkdr1fholbXUBFMZv5D2hTnepYRJ8cfFoKKFLLzngrLuywXoBjJEIb2OiNMPRy9hnjsWOflqCMAlIgZu781MqmbiREzXwFJkv0NVq50nycj0+UnP7G/rZ3U4ur6Gs3NU1sri43KypbrqjjDqq0/asuGm/wyZkIhE8yGy9TDK3ZFi7ZMMytaGOaQMSOISCE776mwvMtyBYoRj6BlxJqgejh6mPk/2B3H1VpWjJJu2UFrDXDa+KmtL3q9Z8WhUd04eeksql1+/GP74sfOpGvqMrxI2mYnLbiTHCBeoFxDtZVHLZis6mPkPGtmRcsny4hdK4ad/UX1XIYZu22oBI/48ssvvSqKRIwdO4BkMnVdIgHs3BlMfYx4803rbRobgXHjWo5HCGDuXOCf/3S+v8ZG4MknU9dJEnDPPUAslro+Hgd69kwvo7AQGDFC/ltdL6WsdeuApUuB3buB2lrgT38CrrwSWLxYLlMpu7JS3j5TevQAVq4E5s2TP+vqgPXr08uWJGD/fvkcAECvXub7TyaBG27IrG6JBNC5s3zOGhvluin7V9Ounf7vlfrF48Ajj8jlmGG2DzXKNZw0Sb5OdXXyZ0WF/H2vXun3g5rf/Ca9LkqZhYXyor3eRvW3W+ds4KTeRtTUAN27AyNHyp81Ncbb2nlPReVdlpO4UTr33nuvWL58efP/l19+uZAkSXTt2lVs3brVTZGhhZYRa8LUm2hoMO5hPvSQ+16zG3OtmbOh1tSuzJtilD/CyqStDqnVpotXylT3zI0WvcnrzM6F0itVl611BlWOTZ2pVq/3n2k0kl7+Fr3rZpbO3ciJUdv79tqUb+bsavc5snLCDOvwg1vnUafvHVpGgsHXYZoePXqIN998UwghxCuvvCI6deok/va3v4mKigrxgx/8wE2RoYVixB5BJi7Sq4udhlQPMz8Ppy+lOXPMG021+V67T3W20YYGWUjplfXYY/oOnEpyMG0DNG2a8bnRJqe6/HLzbbVRH3PmmOcsUWeq1RuyyNRpd/Zsfxoc7TnUGwbLtMEyOnZtxl4vy496I+tXKvkwvctyAV/FSJs2bcRHH30khBDilltuEePGjRNCCPH++++LTp06uSkytFCM2CdM4XFGQsDsJWxnbhe7znVWDas6J4dZ6vhM/D/0EquZZUjVe+nW1wtx443G4kJ7Xq2sG9rIEKtoJLWFxWj/ikAQwn4DlemcRJncG0YY3X96zs1OCUtaeS9xK7DsvKfC9C6LOnbb0FZuhnZOPPFENDQ0oKioCC+//DJmzpypDPkgkUh4NIBEooYyfh0kjY3A2rXA5MnG2yQSsq/FKafI4/WKj4HWJ0OPTZtafDjM0Bt7VpAkoG1b6+2EAG6/Xf50w6ZN6WUblRWLAWVl6etLSoDTTwcefjjdX0VvbD0W0/9Ovc3OnS33ivZ+qaiQ67Fzp3yOdu0CPv8cuPHG1O3icfka7t4tH9N558nrFd8U9f71/HHU++nZ0/i+1bs+yaR8nOpzaeTz44SKCuDYsfRjTSblY738cvdl2z0vUeJvf0u9BpJkz+fEznsqDO+yvMON0pkwYYLo3r27GDVqlDj55JPF4cOHhRBCLFu2TAwYMMBNkaGFlpHoYHfWWm2Pe8kS+xlC9Xqp9fVyDg51tI6VZUTpzXuVKM1ocZJvxIl5W29oyU6yNbu9fG1Ek15ZRom+vDSzG/W+jSJjMsXIsqTOOusWP4YfrCJZ/MrXYWSxymVLRlRzn/g6THPs2DExZ84cccstt4i33nqref3cuXPFo48+6qbI0EIx4j9ePGR2G3WjBFFOcoKoGwaz+SiMhhzUy+zZxiLKSXZUMzGidiw1Oy964aN6KcnVTpxWIcXaY7ATKm3nWuqFAlsNAbnFLOW716Z8vTw5iv+PV+V7eV7MHGL9dJjNxWEnM8LqfGwH5hnxCIoRf/HqITOzbCgNZV2d+Uyrdi0r48fL+7QzU6fy8jfar9qZtawsXdjYmWPGjniqrTWfqdZtQ6Ju3IyugVH6daMyzSKalPpmO9FXNn0IotDwWPlr+O0wm4sOuUZE/Vh9FSNLly4VL730UvP/kyZNEh07dhRDhw4Vu3fvdlNkaKEY8Q8vHzK9qcslKT0JltU+7VhIlO2N0qPPm2fvWNUNqNXU62Ziwk5dzcSaVhgYnSMlRNgo/NiJs6fynV4iOrP9hyHRl9pi5OcwRJgdKK0sE9mwXORL1EvUrUC+ipHevXuLVatWCSGEWLt2rTjhhBPEI488IkaPHi3GjBnjpsjQwXTw/mOW78EJRplJ7c60Ont2eg4JK2uEIiD0vjPK9GoUKnv55fYiNOwM+yjiQnsOrIY+1A25E/8Zs3wjRr4lZkLI6BqFJQRT68tiNR9PrhK0ZURdjzCLNi+gZcSE448/XuzZs0cIIcTtt98urrnmGiGEEP/zP/8jTjnlFDdFhhZaRvzDi9wKRr1xq9TvykvMaIZU5XuzKduFMPcZsXOsZovaGqH1hTAa9lH8MfRe0FYiy064sV4d9fKNGPmWWAkhZf+KBSZMIZh6/hyZNBBRdUhUsBKD+WK5yAZRPpe+ipHOnTs3O672799fPPHEE0IIIXbu3Cnatm3rpsjQQjHiL0YNldGLXfsCz8SEabfHYfUiqK+Xh2aMhhxefdV5dlFJkoWNke9AJjkW9IZ8tL+16z+j1M2sh6wIi4kTjRtzvdlrw2ZtsHMN7ZrOw3ycTrASg/lgucgWUT2XvoqRn//85+Lcc88VFRUV4oQTThAHDhwQQgjx4osvirPPPttNkaGFYsR/zJxK1ei9wI0a5RUrrB9au0KmoUEuz84kbEb1dRIZI0n6s/PqCQar3pJSd+35sPNbo6yvZkJEWWprU8WHcr30MsCqfWP8yGzqlfXBSUI3qzq5vWdzEb3QeJI7+CpGvvjiCzFhwgRxySWXiL/+9a/N66dPny5mzpzppsjQQjHiP3YaIbNtzLJ2aq0J2iEPOw2+mx6snkOqOsxWvT/trLtmeU/0hJJRb0k9X42yf+35MOtp2Wl89XxCjPxZ9MJxAbkMITK3cmlFh9fWB7NhGiemczOfnChbSdxgd5iTRBeG9noExUh2sOqpWzVUVsMPRg2TVshUVrb0UN321M2GOJTJ2LT+EFphkKmVwMjvw0liKKPGNxZLtRJpr53TqB8zXxWn59vKYpap5UFvnhqnpnMnzsRB4rdPi1MHcBJNfBcjq1evFldffbUYOnSoaGxsFEII8cQTT4g33njDbZGhhGIke5j11O00LmbROVZ+DVp/BiU5l9OeulVDo7xo9aw0Zj17pU5e9L6dhATaPQdWjrVK4+3F0JN2v0ZDHpkeu9k+Mx27t+tMHBTZ8GlxEhpPoouvYuTZZ58Vxx9/vPjVr34lCgoKxIcffiiEEGLBggXioosuclNkaKEYCQ9WDZXbhsnIAmA03KBMyqaHVVisNrmakaOq4uth5WhqhBeWEaNzY1YHs/0uWWLfz8VuY5+JAA06ksWuM3EQ9cpGKCktI/mBr2Kkf//+4vHHHxdCCNGuXbtmMfLWW2+JLl26uCkytFCMhAurhkqvsbN6uZoJiMrK9HWxmLGzoZllxG7aebMcInZ7zUbWHjc9XCfWCmW/6u216d+9jAqw60ukrnfYIlnCFraZzSRb9BnJfXzPM7Jr1y4hRKoY+fDDD0VBQYGbIkMLxUj00GvszIY8jCwj8bh5RIm6IVNHBOiZ4K0cU+0udnqo6rwfsZicvt5pJJCdc6q1Lmijh6zmoPEKs8bca18cvwhT2Ga2z5FZaDyJPr6KkTPOOEP8/e9/F0KkipHHH39cnHXWWW6KDC0UI7mB1XCDNvJEERp2Ikq0mVV/+MMWB9X6elkIqJ1i3U5+p5ctVsvs2c4EjNvhCq11wSiqJlsNjFVjrhynn74kuYSVwAt6iMtLGFrsL76KkXvuuUf06dNHrF+/XrRv31688cYb4qmnnhKdO3cWf/jDH1xVOKxQjIQLvRehnZejHdOzMoavtiK4FQ9KpIU218acOcZWGOXTaI4do2yx6vpbJRVT43a4Qq/nbDT0FJZhELN8L2GwjIQRKwtjGK5tpnCYyH98FSPJZFLMnDlTtG3bVsRiMRGLxUSbNm3EnXfe6aqyYYZixD+c9rD0XoR6PXS9Ms0morNC+8JSL06FilXIb0OD/gsyk2gixWlVfb7NyjO6LlbWBTNfGa8ae6f3jN5xqvO9hMFHIyqEdYjLLXSgzQ5ZyTNy9OhR8e6774oNGzaIw4cPZ1KU7zQ1NYlu3bqJ2267zdHvKEb8wU4Py07jaSQGtLlE9H5rpxGyCtX98Y+dW03MZuddscJ9qKpRXefMST/fRiG7Eyca52NRr9c7BrXlxqyebnHTKzeLtgmLj0ZUiPrssVoYWpwdmPRMwx133CF+9rOfUYyEADs9LLuNp9lilFbdiS+DlcOpns+I1faVlenRJlaz21qFqqrPmzqJ2+zZxsMqdtbF48bnUFmnFnZWEwv6ec9k8rtc84PwA1pGiBt8FSNHjhwRd955pxg6dKj49re/Lc4444yUJWx88MEH4rLLLhOPPfYYxUgIsJNN1W5DaTVM4sSHQg8ry4hSVn29EKNHm2+r9leIxYQoK7M3zGMVqqpXZ3Wv3+h864XgOhF7RtYFo/DqTBr7THrldmaXzSU/CD8JWxhyptBnxH98FSNXXnmlOP3008Xtt98u5s2bJ+bPn5+yOOH1118XF198sTj99NMFAPH888+nbbNw4ULRvXt3UVBQIEpLS8WGDRsc7eOSSy4R77//PsVISHCb96OsLP1FaJXJ0qxxt6qj0nia7UMv3XwsJsTYsal1HT/enSOsVahqpudbXZ4d4WX3HKrLNWrsnQiUTHvlRuct13r72SBMYchewNBif/FVjHTs2FGsWbPGVcW0/OUvfxHTpk0Tzz33nK4YWb58uWjdurX44x//KN59911xww03iE6dOol9+/Y1b1NcXCzOPvvstOXjjz8WL7zwgpg4caIQQtgSI//617/EwYMHm5eGhgaKER+wCh00yuKpndNF2b6uztxnQW9IQY+GBv3ZZpV9zJ5tP6mauq5O84soETRORJPb8220nRcRMkbDNuphKbvl+dErzzU/CELChq9ipEePHmL79u2uKmaGnhgpLS0VEyZMaP4/kUiIrl27ilmzZtkqc8qUKaKwsFB0795dnHzyyaJDhw7id7/7neH2M2bMEADSFoqRzDAKyTXqYRkNGcydmxp2qy3TqPHTEzFajCa40/aU7Q6D2HEutWMNsVNfOw263R6tsp3euXTib6PN3aJeMklz72WvnJYRQvzFVzHy5JNPirFjx4qmpiZXlTOsjEaMHD16VMTj8TSBcu2114pLLrnEcfm0jASDmzF5s5wZRvO5KL/T+kJ4ETXjdHI8K+fSeFw+BvX/2hlgzaweXjWiVpYVt9YIs/PpZ8SNG3LND4KQMOH73DTt27cX7dq1E3379hUDBgxIWdyiFSMff/yxACDWrl2bst2kSZNEaWmp4/LpM5J9Mmk0nfiDxGJCXH11qoOok3TkZsModupr5Ainbey1PXujnr7WB2XaNHv1ddKg2xWJbqwRZjlP9IbTgrZG5JofhBGMGiLZxm4b2gouuPTSS938LHCuu+4629tWV1ejuroaiUTCvwrlATt2AMlk6rpEAti5EygsNP9tRQVQVgY88wxQVWW+rRDA00+n/j9vHnDrrfbq2asXIEnpdZUkYNYs+TgA/To3NgJPPpm67qmngL59gcmT5TIlCVi8WD4mdRmFhellNjYC48a11EUI4O67gfffl8+FUX3jcaBnT3vHq91HMglUVsrnW1sfvTpaoVc/SQLWrwdKSoATT5T3l0jI9X7kEef78BI3xxg1amparrn6fiQkFGRJHNkCPg/TuIGWkczwYjjBib9FJpYCrVNlZaV1CnYhzK0Abo7bzEqj9tfIZHghG46bVvXLF2tEGKBvDAkKu22o5FbEfPnll1iyZAmmTp2Kzz//HADw1ltv4eOPP/ZGJQFo3bo1Bg4ciFWrVjWvSyaTWLVqFYYOHerZfoh/FBbKPbB4XP7fTS9Yr4zycrl3Z0Y8DrRtC9TVyZYAM2pqgClTUi0FixcDt9+ebj1QympslMtu1y69LnpWlkRCtmxY1aVXLyAW0//uzTdb/q6oAHbvluuwe7ezXq5iuVDjxLJiB6v6FRYCI0Z4Y5FQroXVuc1XzCyUhIQCN0pn27ZtonPnzqJnz56iVatWzbP2Tps2TVxzzTWOyjp8+LDYsmWL2LJliwAg5s6dK7Zs2SL27NkjhJBDewsKCsTSpUvF9u3bxbhx40SnTp3E3r173VTdNgsXLhRnnXWW6N27Ny0jHuBFL7ihIXUGXL35Zuw4ueqV68TyUleX7m+hdUY1y6hqx4l32jRry0im5IrjJpOWWUPLCAkKXx1Yv//974tJkyYJIYRo165dsxh58803Rffu3R2VVVdXJ4D0UNpyVSq8BQsWiG7duonWrVuL0tJSsX79ejfVdgWHabzHrROd1UR5asdVJ2nJjeZ9MVr00qPrhQ8bhQrbbQjGjtV3ivWSqA+VsJG1T66ITxItfBUjHTp0EDt37hRCpIqR3bt3i4KCAjdFhhaKEW/xctp6dRbR2trUJGFGPhHqPCVCyD4hTjOjzp1rz9/CTIzY9c9gdkhz8jFpWSYRMVEXnyR6+BpNU1BQgEOHDqWt/+CDD9C5c2dXw0Uk93ESwaHFbMx7xAjg8stTvzOKjqmqAiZOlP1BPv9c9gkxIh6Xfy9E6roLLrCOZNEeq17ZdvwzSkrkheiTaVRR1Mg0IiYfooZINHHlwHrJJZfgrrvuwtdffw0AiMVi+OijjzB58mT89Kc/9bSCQVFdXY0+ffqghC2BZxgJCrtOnU4cLrVOr2qSSfmFPnmy/m8XLWpxunz00XTn29NPl0WNUh89p1y9Y1XXO+hQ1lzBCwfpqGAk5um0S3ICN2aXL7/8UowaNUp06tRJxONxUVRUJI477jjxve99Txw5csSVKSescJjGO6yycloN2bgZ825oMB5WMaqH3mRqRpO+GSVWMxpWsjPfDHFOPgw/5OOQFIk+dtvQmBBqI7Qz1qxZg7fffhtHjhzBueeei1GjRnmnkkLCoUOH0LFjRxw8eBAdOnQIujqRp6amJdmVlnhctkaY9WobG+WhmZ497fd+GxuB7t3TE3AB6daLOXPkYRy75ZjVWX2sSo+dSaaIW5zef1GnsVG2MPbqlZvHly/YbUNd+YwoXHDBBRg0aBAKCgoQM0qMQIgKs6yqdjKzuhnzVkz5WmEAtKyTJODee42FCOAsm2xjI3DmmcC6dUBTkzPxRMJDmBpEo/s46Hr5AbPF5iFuzC6JRELcddddomvXriIejzdH09x5551iSY7EizHPiL8EEZKpZ8p3Yt7Xy2tiNCEe815En7Bex1wfkmK4dm7ha2jv7373O3HmmWeKp556Shx//PHNYmT58uViyJAhbooMLfQZ8Q8nPiBBT/ClF6ZrlOLcjmAh4SZXGsSgnxs30Dcmt/A1HfwTTzyBxYsX4+qrr0ZcFa5QXFyM9957zxOLDcl97KYzr6mRx8pHjpQ/a2qyWUv9MF1JkodgtHV+8MHUUGDAOu12WFOZh7Ve2SAX0qcH/dwoOL2PsjFVAQkfrsTIxx9/jJ46d0YymWwO9yXEDlbzk4QhnFGvYUomZV8QNY2NwAMPpP9ekoxfpGFpMLSEtV7ZIuoNYhieG8DdfZRP4dqkBVdipE+fPnjjjTfS1j/77LMYMGBAxpUiRMGoh/rgg9mrg92GSc8qAsiOunov0mw3GHZ7qGFpyIIk6g1iGCw7mdxHmUwCSaKJq2ia6dOno7y8HB9//DGSySSee+45vP/++3jiiSfw0ksveV3HQKiurkZ1dTUSejGoJGsYZVKdOxe49dbs11sHcAAAHThJREFUNA52ohgaG+U6aZEkuZ56OInOyRQn0QnZrFeYUSK/nIaSh4EwZKbN9D5ittj8wpVl5N/+7d+wcuVK/Pd//zfatm2L6dOn4x//+AdWrlyJH/zgB17XMRAmTJiA7du3Y+PGjUFXJa8pLEwPAQbkl5ybXl4mfhCKLtXTp0YZV42sIgCweXP6Oj8aDKc91LAOUQThw2I1jBhWwmDZCet9REJKlhxqIwujaYLHqwiVOXPcT9Kn3X8slh4i7CT6wigb7ezZzo7JDm6iE8I2w2tYw2zDTtBhwGG7j0j28TWaZvr06airq8O//vUvb5URIToUFurPEeOklzdnDjBpkj3rgLYHvnZtui+IEHI0jbqOTnqiRpYUP6ZCctNDDdOYPX1Y3BO0ZSdM9xEJN658RtatW4e5c+fim2++QUlJCYYPH44RI0bg/PPPx/HHH+91HUkO4jSzZSbj942N+pPi6Y1f6/lWtG9vbz9O6pjNMX23mTvDMmZPH5ZoE5b7iIQb13PTfPPNN9iwYQNWr16N119/HWvXrsXRo0dRUlKCNWvWeF3PwODcNN6T7VTPdXVyaKEWSQL27Gl5URrN/bFuHTB4cKp1RPtbN9x/vyySksnszF3jZl6fMJBvc7IQkkvYbUNdDdMAQKtWrXD++efjpz/9KcaMGYOysjIkk8mcSXpWXV2NPn36oMQPu3keE4TJXW+YAgDuuy+1MTPqgTc1pQ8TLV6cWUNYU9MiRGIxYNYs/03YQZvs3RIGZ0xCiL+4sowsXrwYr732Gl5//XUcPXoUw4YNw4gRIzBixAj069cvpybNo2XEW4ysFHV1ckPpF+oZdJVJ8SZNSt3GqgfulWWBPX13RNWyQ0g+Y7cNdSVGJElC586dcdttt+HGG29Eu3btMqpsmKEY8ZYgG2KjxmzjRuCNN4Bhw4C33073rfDaYhGUICOEkGxjtw115cD63HPPYfXq1Vi+fDlmzJiBAQMGNFtGLrjgApxwwgmuK05ymyCnQddzpLvuOuDxx1v+Ly+XhZGfPfAwJKQihJAw4dqBVeHgwYN444038Mwzz2DZsmWQJCmnQn5pGfGHMJjcN24ESkvT19fX+xNiq0Y9bJQN51VCCAkCXy0jAPDZZ5/h9ddfx2uvvYbXXnsN7777Lk488UQMGzbMbZEkjwhDuJ/O9EoAgDff9F+MRDnVOCGEeI0rMXLOOefgH//4B0488UR873vfww033IDhw4ejX79+XtePEN8w0s3nn5+d/YdBkBFCSBhwJUbGjx+P4cOHo2/fvl7XJzRworzcp6RE9hHR+owwmpsQQrKLqzwjn332Gc4888y09V999RXuuuuujCsVBjhRXn6wdKnsIzJvnvy5dKm93wUxaRshhOQqrhxY4/E4/vnPf+LUU09NWf/ZZ5/h1FNPzSlrAh1YZZymb89lsp1BlhBCooqvGViFELqJzbZt24aTTjrJTZEkxNTUyLlBRo6UP2tqgq5RcHDSNkII8R5HPiMnnngiYrEYYrEYevfunSJIEokEjhw5gvHjx3teSRIcRo1vWVl+Wkg4aRshhHiPIzEyf/58CCHwy1/+Er/73e/QsWPH5u9at26NHj16YOjQoZ5XkgQHG99UmLCMEEK8x5EYKS8vBwCcccYZOP/889Gqles0JSQisPFNJcgMsoQQkqu48hkZPnw49uzZgzvvvBNXXXUV9u/fDwD461//infffdfTCpJg4Yyp6VRUyCnj6+rkTzqvEjswAosQY1yJkddffx3nnHMONmzYgOeeew5HjhwBIDuwzpgxw9MKkuBh45tOYaE8qV0+izJiHzqBE2KOKzEyZcoUzJw5E3//+9/RunXr5vUjR47E+vXrPascCQ9sfAlxByOwCLHGlRh55513MGbMmLT1p556Kg4cOJBxpQghxC+yPVxi5gROCJFxJUY6deqEf/7zn2nrt2zZgm9961sZVyoMVFdXo0+fPihhbnBCcoYghksUJ3A1+ewETogersTIlVdeicmTJ2Pv3r2IxWJIJpN48803MXHiRFx77bVe1zEQmA6ekNwiqOESOoETYo0rMXLPPffgu9/9LoqKinDkyBH06dMHw4YNw3nnnYc777zT6zoSQkjGBDlcQidwQsxxNTeNQkNDA9555x00NTVhwIAB6JmDdkfOTUNIbtDYKA/NaHPm7N5NKwUhfuHr3DQAUFNTg4suughjxozBL37xC1x66aVYsmSJ2+II8QXmdiAKHC4hJLy4SqE6ffp0zJ07FzfffHNz+vd169bhN7/5DT766CPcddddnlaSEDdwdl2ipaJCnldp507ZgZRChJBw4GqYpnPnzvjDH/6Aq666KmX9smXLcPPNN+dUeC+HaaIJTfKEEBI8vg7TfP311xg0aFDa+oEDB+Kbb75xUyQhnsLcDoQQEh1ciZFrrrkGixYtSlu/ePFiXH311RlXipBMYW4HQgiJDrZ9Rqqqqpr/jsViWLJkCV555RUMGTIEALBhwwZ89NFHOZNnhEQbzq5LCCHRwbbPyIUXXmivwFgMr776akaVChP0GYk2jY10ViSEkKCw24batozU1dV5UjFCsklhIUUIIYSEHdd5RgghhBBCvMBVnpGo0aNHD3To0AGSJOHEE0+klYcQQggJEXkhRgBg7dq1aNeuXdDVIIQQQogGDtMQQggJJZzOIX8IXIysXr0ao0ePRteuXRGLxfDCCy+kbVNdXY0ePXqgTZs2GDx4MOrr6x3tIxaLYfjw4SgpKcHTTz/tVdUJIUQXNqKZU1MjZ1EeOVL+rKkJukbETwIXI01NTSguLkZ1dbXu9ytWrEBVVRVmzJiBt956C8XFxSgrK8P+/fubt+nfvz/69u2btnzyyScAgDVr1mDz5s3485//jHvuuQdvv/12Vo6NEJJ/sBHNnMbGlnmlAPmzspLiLpdxNTeNX8RiMTz//PO49NJLm9cNHjwYJSUlWLhwIQAgmUyiqKgIN998M6ZMmeJ4H5MmTcLZZ5+N6667Tvf7o0eP4ujRo83/Hzp0CEVFRcwzQgixhHMieUNdnSzm9NaPGJH16pAM8HVummxx7NgxbN68GaNGjWpeJ0kSRo0ahXXr1tkqo6mpCYcPHwYAHDlyBK+++irOPvtsw+1nzZqFjh07Ni9FRUWZHQQhJG/gnEjewOkc8o9Qi5EDBw4gkUigS5cuKeu7dOmCvXv32ipj3759uOCCC1BcXIwhQ4bg2muvRUlJieH2U6dOxcGDB5uXhoaGjI6BEJI/OGlEvfQryTUfFWU6h3hc/p/TOeQ+OR/ae+aZZ2Lbtm22ty8oKEBBQQGqq6tRXV2NRCLhY+0IIbmE3TmRampafCIkSf5NRYW7fXpZVpioqADKyjidQ74Qap+RY8eO4YQTTsCzzz6b4kdSXl6OL7/8Ei+++KLvdeLcNIQQp5jNieSlXwl9VEjYyQmfkdatW2PgwIFYtWpV87pkMolVq1Zh6NChAdaMEEKMKSyUHS31BIGXfiX0USG5QuDDNEeOHMFO1ZOza9cubN26FSeddBK6deuGqqoqlJeXY9CgQSgtLcX8+fPR1NSE66+/PsBaE0KIOxS/Eq01w41zppdlERIkgVtGNm3ahAEDBmDAgAEAgKqqKgwYMADTp08HAFxxxRW4//77MX36dPTv3x9bt27Fyy+/nObU6jXV1dXo06ePqbMrIflGrjlKBoGXzpl09CS5Qqh8RsIIfUYIkQmTo2RjozxE0atXdBteM7+SIMsixEvstqEUIxZQjBASLkfJMIkiQog5OeHAGiQcpiGkhbA4SjJNOCG5CcWIARMmTMD27duxcePGoKtCSOCEJSNmWEQRIcRbKEYIIZaExVEyLKKIEOItFCOEEFtUVMg+InV18mcQfhphEUWEEG+hA6sB6nTwH3zwAR1YCQkRjB4hJBowmsYjGE1DCCGEuIPRNIQQQgiJBBQjhBBCCAkUihFCCCGEBArFiAFMekYIIYRkBzqwWkAHVkIIIcQddGAlhBBCSCSgGCGEEEJIoFCMEEIIISRQKEYIIYQQEigUIwYwmoYQQgjJDoymsYDRNIQQQog7GE1DCCGEkEhAMUIIIYSQQKEYIYQQQkigUIwQQgghJFAoRgghhBASKBQjhBBCCAkUihEDmGeEkPDR2AjU1cmfhJDcgXlGLGCeEULCQU0NMG4ckEwCkgQsXgxUVARdK0KIGcwzQgjJGRobW4QIIH9WVtJCQkiuQDFCCAk9O3a0CBGFRALYuTOY+hCiwKFDb6AYIYSEnl695KEZNfE40LNnMPUhBJCHDrt3B0aOlD9raoKuUXShGCGEhJ7CQtlHJB6X/4/HgUcekdcTEgQcOvSWVkFXgBDinMZGeeiiV6/8aZArKoCyMnlopmfP/DluEk7Mhg55bzqHlhFCIkY+m4YLC4ERI/iyJ8HDoUNvoRghJELQNExIOODQobdwmIaQCEHTMCHhgUOH3kExYkB1dTWqq6uRSCSCrgohzSimYbUgoWmYkOAoLKQI8QIO0xgwYcIEbN++HRs3bgy6KoQ0Q9MwISQXoWWEkIhB0zAhJNegGCEkgtA0TAjJJThMQwghhJBAoRghhBBCSKBQjBBCCCEkUChGCCGEEBIoFCOEEEIICRSKEUIIIYQECsUIIYQQQgKFYoQQQgghgUIxQgghhJBAyQsxsmvXLlx44YXo06cPzjnnHDQ1NQVdJUIIIYT8H3mRDv66667DzJkzMWzYMHz++ecoKCgIukqEEEII+T9yXoy8++67OO644zBs2DAAwEknnRRwjQghhBCiJvBhmtWrV2P06NHo2rUrYrEYXnjhhbRtqqur0aNHD7Rp0waDBw9GfX297fJ37NiBdu3aYfTo0Tj33HNxzz33eFl9QgghhGRI4JaRpqYmFBcX45e//CUuu+yytO9XrFiBqqoqPPzwwxg8eDDmz5+PsrIyvP/++zj11FMBAP3798c333yT9ttXXnkF33zzDd544w1s3boVp556Kn70ox+hpKQEP/jBD3w/NkIIIYRYE7gYueiii3DRRRcZfj937lzccMMNuP766wEADz/8MP7rv/4Lf/zjHzFlyhQAwNatWw1//61vfQuDBg1CUVERAODHP/4xtm7daihGjh49iqNHjzb/f+jQIcfHRAghhBD7BD5MY8axY8ewefNmjBo1qnmdJEkYNWoU1q1bZ6uMkpIS7N+/H1988QWSySRWr16Ns846y3D7WbNmoWPHjs2LImIIIYQQ4g+hFiMHDhxAIpFAly5dUtZ36dIFe/futVVGq1atcM899+B73/se+vXrh169euHiiy823H7q1Kk4ePBg89LQ0JDRMRBCCCHEnMCHabKB1VCQmoKCAob+EkIIIVkk1JaRU045BfF4HPv27UtZv2/fPpx22mm+7ru6uhp9+vRBSUmJr/shhBBC8p1Qi5HWrVtj4MCBWLVqVfO6ZDKJVatWYejQob7ue8KECdi+fTs2btzo634IIYSQfCfwYZojR45g586dzf/v2rULW7duxUknnYRu3bqhqqoK5eXlGDRoEEpLSzF//nw0NTU1R9cQQgghJNoELkY2bdqECy+8sPn/qqoqAEB5eTmWLl2KK664Ap9++immT5+OvXv3on///nj55ZfTnFq9prq6GtXV1UgkEr7uhxBCCMl3YkIIEXQlwsyhQ4fQsWNHHDx4EB06dAi6OoQQQkhksNuGhtpnhBBCCCG5D8WIAYymIYQQQrIDh2ks4DANIYQQ4g4O0xBCCCEkElCMEEIIISRQKEYMoM8IIYQQkh3oM2IBfUYIIYQQd9BnhBBCCCGRgGKEEEL+j8ZGoK5O/iSEZA+KEUKIKfnSQNfUAN27AyNHyp81NUHXiJD8gWLEADqwEpI/DXRjIzBuHJBMyv8nk0BlZe4LMELCAh1YLaADK8lXGhtlAaI00AAQjwO7dwOFhYFVyxfq6mTBpbd+xIisV4eQnIEOrISQjNixI1WIAEAiAezcGUx9/KRXL0DSvA3jcaBnz2DqQ0i+QTFCCNElnxrowkJg8WL5+AD585FHcs8CREhYoRghhOiSbw10RYU8BFVXJ39WVARdo/CRL87MJPvQZ8QC+oyQfKexUR6a6dkzd4UIsaampsXJV5JkoUrBRqyw24ZSjBhQXV2N6upqJBIJfPDBBxQjhJC8JZ+cmYm30IE1QyZMmIDt27dj48aNQVeFEJIhHF7IjHxyZibBQDFCCMlp8iVXip/kkzMzCQaKEUJIzsJkZt6Qb87MJPu0CroChBDiF2bDC2xInVFRAZSV0ZmZ+APFCCEkZ1GGF7SOlxxecEdhIUUI8QcO0xBCchYOLxASDWgZIYTkNBxeICT8UIwYoM4zQgiJNhxeICTcMOmZBczASgghhLiDSc8IIYQQEgkoRgghhBASKBQjhBBCCAkUihFCCCGEBArFCCGEEEIChWKEEEIIIYFCMUIIIYSQQGHSMwuUNCyHDh0KuCaEEEJItFDaTquUZhQjFhw+fBgAUFRUFHBNCCGEkGhy+PBhdOzY0fB7ZmC1IJlM4pNPPkH79u0Ri8UMtyspKcHGjRsz3l8m5Rw6dAhFRUVoaGhgttgI4NU9E0Widuxhqm+26+L3/rwuPwzvYoDvYwUhBA4fPoyuXbtCkow9Q2gZsUCSJBTamNQiHo97csN5UU6HDh3y+uaPCl7dM1Ekascepvpmuy5+78/r8sP0Lgb4PgZgahFRoAOrR0yYMCFU5ZDwk8/XOmrHHqb6Zrsufu/P6/L5Lo4mHKbJITipHyGEhAO+j51By0gOUVBQgBkzZqCgoCDoqhBCSF7D97EzaBkhhBBCSKDQMkIIIYSQQKEYIYQQQkigUIwQQgghJFAoRgghhBASKBQjhBBCCAkUipE85v/9v/+H7t27Y+LEiUFXhRBC8pIvv/wSgwYNQv/+/dG3b188+uijQVcpEJgOPo+5++67MWTIkKCrQQgheUv79u2xevVqnHDCCWhqakLfvn1x2WWX4eSTTw66almFlpE8ZceOHXjvvfdw0UUXBV0VQgjJW+LxOE444QQAwNGjRyGEQD6m/6IYCSGrV6/G6NGj0bVrV8RiMbzwwgtp21RXV6NHjx5o06YNBg8ejPr6ekf7mDhxImbNmuVVlQkhJCfJxvv4yy+/RHFxMQoLCzFp0iSccsopXlU/MlCMhJCmpiYUFxejurpa9/sVK1agqqoKM2bMwFtvvYXi4mKUlZVh//79zdso44/a5ZNPPsGLL76I3r17o3fv3tk6JEIIiSR+v48BoFOnTti2bRt27dqFP/3pT9i3b19Wji1MMB18yInFYnj++edx6aWXNq8bPHgwSkpKsHDhQgBAMplEUVERbr75ZkyZMsWyzKlTp+Kpp55CPB7HkSNH8PXXX+O2227D9OnTfTsOQgiJOn68j7XceOONGDlyJMaOHetZvaMALSMR49ixY9i8eTNGjRrVvE6SJIwaNQrr1q2zVcasWbPQ0NCA3bt34/7778cNN9xAIUIIIQ7x4n28b98+HD58GABw8OBBrF69Gt/5znd8qW+YYTRNxDhw4AASiQS6dOmSsr5Lly547733AqoVIYTkH168j/fs2YNx48Y1O67efPPNOOecc/yobqihGMlzrrvuuqCrQAgheUtpaSm2bt0adDUCh8M0EeOUU05BPB5Pc3Dat28fTjvttIBqRQgh+Qffx95BMRIxWrdujYEDB2LVqlXN65LJJFatWoWhQ4cGWDNCCMkv+D72Dg7ThJAjR45g586dzf/v2rULW7duxUknnYRu3bqhqqoK5eXlGDRoEEpLSzF//nw0NTXh+uuvD7DWhBCSe/B9nCUECR11dXUCQNpSXl7evM2CBQtEt27dROvWrUVpaalYv359cBUmhJAche/j7MA8I4QQQggJFPqMEEIIISRQKEYIIYQQEigUI4QQQggJFIoRQgghhAQKxQghhBBCAoVihBBCCCGBQjFCCCGEkEChGCGEEEJIoFCMEEIIISRQKEYIIcQBS5cuRadOnYKuBiE5BcUIIYQQQgKFYoQQkvMcO3Ys6CoQQkygGCGEuGLEiBG46aabcNNNN6Fjx4445ZRT8Nvf/hbquTeffPJJDBo0CO3bt8dpp52Gn//859i/f39KOX/+85/Rq1cvtGnTBhdeeCEef/xxxGIxfPnll83brFmzBsOGDcPxxx+PoqIi3HLLLWhqajKs23/8x3+gf//+WLJkCc444wy0adMGAPDyyy/jggsuQKdOnXDyySfj4osvxocfftj8u927dyMWi+G5557DhRdeiBNOOAHFxcVYt26d4b4+/fRTDBo0CGPGjMHRo0cdn0dCCMUIISQDHn/8cbRq1Qr19fV48MEHMXfuXCxZsqT5+6+//hq///3vsW3bNrzwwgvYvXs3rrvuuubvd+3ahbFjx+LSSy/Ftm3bUFlZiWnTpqXs48MPP8SPfvQj/PSnP8Xbb7+NFStWYM2aNbjppptM67Zz507853/+J5577jls3boVANDU1ISqqips2rQJq1atgiRJGDNmDJLJZMpvp02bhokTJ2Lr1q3o3bs3rrrqKnzzzTdp+2hoaMCwYcPQt29fPPvssygoKHB6CgkhACAIIcQFw4cPF2eddZZIJpPN6yZPnizOOussw99s3LhRABCHDx9u3r5v374p20ybNk0AEF988YUQQoiKigoxbty4lG3eeOMNIUmS+Oqrr3T3M2PGDHHccceJ/fv3mx7Dp59+KgCId955RwghxK5duwQAsWTJkuZt3n33XQFA/OMf/xBCCPHYY4+Jjh07ivfee08UFRWJW265JeUcEEKcQ8sIIcQ1Q4YMQSwWa/5/6NCh2LFjBxKJBABg8+bNGD16NLp164b27dtj+PDhAICPPvoIAPD++++jpKQkpczS0tKU/7dt24alS5eiXbt2zUtZWRmSySR27dplWLfu3bujc+fOKet27NiBq666CmeeeSY6dOiAHj16pNRHoV+/fs1/n3766QCQMrz01VdfYdiwYbjsssvw4IMPppwDQohzKEYIIb7Q1NSEsrIydOjQAU8//TQ2btyI559/HoAzh9IjR46gsrISW7dubV62bduGHTt24Nvf/rbh79q2bZu2bvTo0fj888/x6KOPYsOGDdiwYYNufY477rjmvxWhoR7KKSgowKhRo/DSSy/h448/tn0shBB9WgVdAUJIdFEac4X169ejV69eiMfjeO+99/DZZ5/h3nvvRVFREQBg06ZNKdt/5zvfwV/+8peUdRs3bkz5/9xzz8X27dvRs2fPjOr62Wef4f3338ejjz6KYcOGAZAdY90gSRKefPJJ/PznP8eFF16I1157DV27ds2ofoTkM7SMEEJc89FHH6Gqqgrvv/8+li1bhgULFuDWW28FAHTr1g2tW7fGggUL8L//+7/485//jN///vcpv6+srMR7772HyZMn44MPPkBtbS2WLl0KoMUiMXnyZKxduxY33XQTtm7dih07duDFF1+0dGDVcuKJJ+Lkk0/G4sWLsXPnTrz66quoqqpyfezxeBxPP/00iouLMXLkSOzdu9d1WYTkOxQjhBDXXHvttfjqq69QWlqKCRMm4NZbb8W4ceMAAJ07d8bSpUvxzDPPoE+fPrj33ntx//33p/z+jDPOwLPPPovnnnsO/fr1w6JFi5qjaZTIlH79+uH111/HBx98gGHDhmHAgAGYPn26Y0uEJElYvnw5Nm/ejL59++I3v/kN5syZk9Hxt2rVCsuWLcPZZ5+NkSNHpoUtE0LsERNClRSAEEJsMmLECPTv3x/z58/3tNy7774bDz/8MBoaGjwtlxASXugzQggJlIceegglJSU4+eST8eabb2LOnDmOh2AIIdGGYoQQEig7duzAzJkz8fnnn6Nbt2647bbbMHXq1KCrRQjJIhymIYQQQkig0IGVEEIIIYFCMUIIIYSQQKEYIYQQQkigUIwQQgghJFAoRgghhBASKBQjhBBCCAkUihFCCCGEBArFCCGEEEIC5f8DLQBDh7q7EUYAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(6,4))\n", - "plt.plot(kpis[\"pageRank\"], kpis[\"betweeness\"], 'b.')\n", + "plt.plot(kpis[\"pageRank\"].values, kpis[\"betweeness\"].values, 'b.')\n", "plt.xlabel(\"page rank\")\n", "plt.ylabel(\"betweeness\")\n", "plt.xscale(\"log\")\n", @@ -2426,14 +2546,14 @@ }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 75, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/Users/deusebio/.pyenv/versions/3.7.6/envs/ml-book-7/lib/python3.7/site-packages/matplotlib/axes/_axes.py:6694: RuntimeWarning: invalid value encountered in multiply\n", + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" ] }, @@ -2443,20 +2563,18 @@ "Text(0.5, 1.0, 'Edge Weight Distribution')" ] }, - "execution_count": 81, + "execution_count": 75, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAFDCAYAAAAqKoi3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfdElEQVR4nO3df7RdZX3n8c9HUjQJeBESQxMIl/QyLKOZGboiiG3t7RRpMF6DrT/IpDooTYprQscptgSlwHSJhE6pJcqUBqFp0QJZVDExYbDOePlVHPkxdiAgyxiDSUCRX1fyo2LgO3/sfcrO4dzc59x7zt37nPN+rXVXcvfZZ+/vOXvf53zOc579HEeEAAAAABzca8ouAAAAAOgEBGcAAAAgAcEZAAAASEBwBgAAABIQnAEAAIAEBGcAAAAgAcEZXc32btvzWrStT9r+Qv7/ftthe0qLtj03r/WQVmwPQGdrdRvTDraX2f564rpn2757EmraYnuwRds64PHlx2OgFdvOt9ey1ydMHoJzD7O93fY+2y/Yft72P9k+13blzwvbg7Zfzhue3bZ32l5v+63F9SLisIjYlrCtnWPtMyI+ExG/N9Ha831ut31aYds/zGt9qRXbB1A9hTZ3d+Hn85Ncw4W2b6tb9r1Rlp11sG1FxJci4vQW1TVse9T2tfBGova8/dj212y/s66mN0fE8Bj7SnpT0u7Hl/L6hOqpfEBC2w1FxOGSjpO0WtIFkq5rx47a0Jv6REQcJulwSW+T9F1Jd9n+zRbvR1Xu9QHQUYbywFT7WTnJ+79T0ttr7bHtX5T0C5JOqls2kK9bNUfk7f6/k/SPkr5i++xW74Q2H6MhOEOSFBEjEbFB0gcl/Sfbb5Ek26+1/ee2f5i/w7/G9tTa/Wz/se0nbT9h+/eKH2XZXmf7r2xvtr1H0m/Ynm37H2z/xPYPbP9BYVuvsb3K9vdtP5P3IB+ZUHtExM6IuFjSFyRdUdhmsZ532X4k72HfZfsTtqdLuk3S7EJPxmzbl9q+xfYXbf9U0tn5si/W7f6j+WN/0vYnCvtdZ/vThd//tVfb9g2S5kramO/vj+t7QPIaNth+1vZW28sL27o0f27+Ln8sW2wvHOt5AlBdtg/J29qnbW+TtLju9uNt35n/zX/D9tXF9sj225x9avi87X/26MMV7lMWlP99/vuvSfqmpMfqln0/Ip6w3Wf7uryN22X704WAfcDwC9un237M9ojt/2H7jvpe1vwxPpe3/2fkyy7L9/l5J/bCR8SPIuIqSZdKusL5J6UufJpn+2Tb99v+af769Rf53WtvCJ7P93dq/ljusf1Z289IurT+8eXeZXtbfpz+e2G/B7w+FNv00R5f3etTX96m/8T247YvKmz7bNt3N3ruMPkIzjhARHxb0k5lf+RS1gv9b5Q1qAOS5ki6WJJsL5L0h5JOy28bbLDJ/yjpMmW9wv8kaaOkf86385uSPm77t/J1z5N0pqRflzRb0nOSrm7yIXxZ0i/ngbjedZJ+P+9hf4uk/x0ReySdobz3Ov95Il9/iaRbJB0h6Uuj7O83JJ0g6XRJF7gw/GI0EfEhST/UKz1Pf9ZgtZuUHYfZkt4n6TO2/0Ph9vfk6xwhaYOkSf24F0DLLZf0bkknSVqo7O++6O8lfVvSUcrC4odqN9ieI2mTpE9LOlLSJyT9g+2Z9TuJiBcl/R9J78gXvUPSXZLurltWC5frJO1X1safpKyte9WQCtszlLWXF+Y1Pibp7XWrnZIvnyHpzyRdZ9sR8am8hpXj6IX/sqQ3SjqxwW1XSboqIl4v6ZckrS88PinvvY6Iewv1bZM0S9nrViPvVXZ8flnZa8RHxyow8fF9TlKfpHnKXgM/LOkjhdsbPndj7RutR3BGI09IOjL/o1wh6b9GxLMR8YKkz0iqjXv7gKS/iYgtEbFXWWNe76sRcU9EvCxpgaSZEfGnEfFiPrbr2sL2zpX0qbz3+Gf59t7n5j4ye0KSlQXKej+XNN/26yPiuYh4cIxt3RsRt0bEyxGxb5R1/ltE7ImIhyT9jaSlTdTakO1jJf2KpAsi4l8i4jvKetI/XFjt7ojYnI+JvkHZx5YAqu/WvFe49lP7NOkDkv4yInZExLOSLq/dwfZcSW+VdHHedt6t7A1zze9K2py3CS9HxD9Kul/Su0ap4Q69Eh5/TVmou6tu2R22Z+Xb+Hjezj0l6bN6pc0uepekLRHx5YjYL2mNpB/VrfN4RFybt1t/K+kXlYXUiah1dDT6dPLnkgZsz4iI3RHxrbG2FRGfi4j9B2nzr8hfD38o6S/Vmjb/EGXP6YUR8UJEbJd0pQpvjtSe5w7jQHBGI3MkPStppqRpkh6oNfKS/me+XMp6Q3cU7lf8f6NlxykbEvF8YXuf1Ct//McpG69Wu+1RSS+pucZhjqSQ9HyD235HWeP+eP4R4qljbKvR4znYOo8re04marak2huV4rbnFH4vviDtlfS6Jt9gACjHmRFxROHn2nx5fXv6eOH/tTZhb2FZfdv6/rq29VeVhatG7pT0q86Gws2MiO8p+0Tw7fmyt+TrHKdsWMeThe3+tbIe3noH1B8RoexTs6IfFW6vPZbDRqkxVa1dfLbBbeco+8T0u7bvs/3uMbZVVps/Q9nzXDzmo7b5LXzuMA680OIAzmalmKPsY7unJe2T9OaI2NVg9SclHVP4/dgG60Th/zsk/SAiThhl9zskfTQi7mm68Fe8V9KD+RCMAwuJuE/SEtu/IGmlso/tjq2r8YC7JOzvWGUXJUrZuOVa78ceZW86ao5uYtu1Hv/DC+F5rqRGxwBAd3hSB7ahc+tuO9L2tEJoKq67Q9INEbFcae5VNixguaR7JCkifmr7iXzZExHxA9v/Iulnkmbkvchj1f+vrwf5J5bHjL76q6S0t428V9JTyoYxHLjB7A3B0nys8G9LusX2UQfZV2qbvyX/f6va/KeV9Y4fJ+mRwrZp8yuIHmdIkmy/Pn83fpOkL0bEQ/nwimslfdb2G/P15hTGJK+X9BHbb7I9TdKfjLGbb0t6wfYFtqc6uxjmLX5lCrlrJF1m+7h8XzNtL0mo3Xldlygbe/fJBusc6mxOzr6I+Lmkn0p6Ob/5x5KOst031r4a+BPb02y/Wdl4tJvz5d9RdhHJkbaPlvTxuvv9WNlYtleJiB3Ken8ut/062/9WWc9J/YWJALrHekl/YPsY22+QtKp2Q0Q8rmzoxaV5W3aqpKHCfb8oacj2b+Xt6uucXZDcMLjmwxDuV3aNyl2Fm+7Ol92Zr/ekpK9LujJ/jXiN7V+y/esNNrtJ0gLbZ+affv1nvTo8HsyobWIjtmfZXinpEmVDHF5usM7v2p6Z3/Z8vvhlST/J/x3PHMp/ZPsN+ZC6/6ID2/x3OJuTv0/ZWO+ig7X5Lyk7/pfZPjx/DfxD0eZXEsEZG22/oKzH4lOS/kIHXpBwgaStkr7lbHaJbyi/CCMiblM2ju2btXXy+/ys0Y7yxuHdyi40/IGyd9lfUNbzIWUXcmyQ9PW8pm8puyBiNLNt75a0W9mV4gskDUbEaBPyf0jS9vxxnCtpWV7XdyXdKGlb/nFkMx+93aHssf8vSX9e2PcNyi6C3K7shefmuvtdLumifH+f0KstldSvrDfjK5IuiYhvNFEXgGqqzaZT+/lKvvxaSbcrazceVHbRW9EySadKekbZRYA3K29r8zfbS5R1GvxEWXv+Rzr4a/wdyoZcFGeNuCtfVpyG7sOSDlXWE/qcsgsAXzUEJCKelvR+ZReuPSNpvrJw3vD1oIGrlF3T8pztNQdZ73lnszQ9pGzo3fsj4vpR1l0kaUv+OnGVpLMiYl/ea3+ZpHvyNvhtiTVK0lclPaAsKG9SPn1rPq78Zkn/L7/9a00+vvOU9VpvU3ZM/l7SaI8LJXI2DAmYONtvkvSwpNcmfKwHABgn2zdL+m5EXFJ2LY3kwyN2SloWEd8sux6gVehxxoTYfq+zuZ7foGz+5I2EZgBoLdtvzYdJvMbZVKBLJN1aclkHyIeKHGH7tcp6v61XPokEugLBGRP1+8ouzPi+shkwPlZuOQDQlY6WNKxsaNoaSR+LiP9bakWvdqqy14KnlY3BPvMg07oBHYmhGgAAAEACepwBAACABARnAAAAIEElvgBlxowZ0d/f3/T99uzZo+nTp7e+IHQVzhOkGO958sADDzwdETPHXrN7HHHEETEwMFB2GahDW1c9HJPqmWibXYng3N/fr/vvv7/p+w0PD2twcLD1BaGrcJ4gxXjPE9uPj71Wd7A9JGlo9uzZ42qz0V60ddXDMameibbZDNUAACSJiI0RseKwww4ruxQAKAXBGQAAAEhAcAYAAAASlBqcbQ/ZXjsyMlJmGQAAAMCYSg3OtfFyfX19ZZYBAAAAjImhGgAAAEACgjMAAACQgOAMAAAAJCA4AwAAAAkIzgAAAEACpqMDAAAAEkwpc+cRsVHSxoULFy4vsw6Ur3/VprZte92i6W3bNtCL9v38peS/2e2rF7e5GgCYPAzVAAAAABIQnAEASWrD6/bt3VN2KQBQilKHagAAOkdteN3ceQPJw+vaMQyL4R8AykKPMwAAAJCA4AwAAAAkIDgDAAAACZjHGQAAAEhQanCOiI0RsaKvr6/MMgAAAIAxMVQDAAAASEBwBgAAABIQnAEAAIAEBGcAAAAgAcEZAAAASEBwBgAAABJMKbsAAACa0b9qU8u3uX314pZvE0D3occZAAAASMA3BwIAAAAJ+OZAAAAAIAFDNQAAAIAEBGcAAAAgAcEZAAAASEBwBgAAABIwjzO63kO7RnR2G+Z9lZj7Fd3B9nRJd0i6NCK+VnY9AFBV9DgDQJexfb3tp2w/XLd8ke3HbG+1vapw0wWS1k9ulQDQeQjOANB91klaVFxg+xBJV0s6Q9J8SUttz7f9TkmPSHpqsosEgE7DUA0ka8fX3AJovYi403Z/3eKTJW2NiG2SZPsmSUskHSZpurIwvc/25oh4eTLrBYBOQXAGgN4wR9KOwu87JZ0SESslyfbZkp4eLTTbXiFphSTNmDFTFy/Y395qJ9nw8HDZJUzY7t27u+JxdBOOSfcpNTjbHpI0NDAwUGYZANDzImLdGLevlbRWkubOG4grH+qufpftywbLLmHChoeHNTg4WHYZKOCYdB++chsAesMuSccWfj8mXwYASMTFgQDQG+6TdILt420fKuksSRua2YDtIdtr9+3d05YCAaDqCM4A0GVs3yjpXkkn2t5p+5yI2C9ppaTbJT0qaX1EbGlmu7VPCadOm976ogGgA3TXIDUAgCJi6SjLN0vaPMnldIR2zRrElyQB3YUeZwAAACABwRkAAABIQHAGACTh4kAAvY7gDABIwsWBAHodwRkAAABIQHAGAAAAEhCcAQBJGOMMoNcRnAEASRjjDKDXEZwBAACABARnAAAAIEGpwbk2Xm5kZKTMMgAAAIAxlRqca+Pl+vr6yiwDAAAAGBNDNQAASZhVA0CvIzgDAJIwqwaAXkdwBgAAABIQnAEAAIAEBGcAAAAgAcEZAAAASEBwBgAkYVYNAL2O4AwASMKsGgB63ZSyCwAAoFv1r9rU8m1uX7245dsEkIYeZwAAACABwRkAAABIQHAGAAAAEhCcAQAAgAQEZwAAACABwRkAkIR5nAH0OoIzACAJ8zgD6HUEZwAAACABwRkAAABIQHAGAAAAEpQanGsXmoyMjJRZBgAAADCmUoNz7UKTvr6+MssAAAAAxsRQDQAAACABwRkAAABIMKXsAtBa/as2lV0CAABAV6LHGQCQhG8OBNDrCM4AgCR8cyCAXkdwBgAAABIwxrkEjEMGAADoPPQ4AwAAAAkIzgAAAEACgjMAAACQgOAMAAAAJCA4AwAAAAkIzgAAAEACgjMAAACQgOAMAAAAJCA4AwAAAAkIzgAAAEACgjMAIIntIdtr9+3dU3YpAFAKgjMAIElEbIyIFVOnTS+7FAAoxZSyC6iq/lWbyi4BAAAAFUKPMwAAAJCA4AwAAAAkYKgGAAAdZLShhOcv2K+zJzDMcPvqxeO+L9Ar6HEGAAAAEhCcAQAAgAQEZwAAACBBR49xfmjXyITGcwEAAACp6HEGAAAAEhCcAQAAgAQEZwAAACBBy8c42z5T0mJJr5d0XUR8vdX7AAAAACZbUo+z7ettP2X74brli2w/Znur7VWSFBG3RsRySedK+mDrSwYAAAAmX+pQjXWSFhUX2D5E0tWSzpA0X9JS2/MLq1yU3w4AAAB0vKTgHBF3Snq2bvHJkrZGxLaIeFHSTZKWOHOFpNsi4sHWlgsAAACUYyJjnOdI2lH4faekUySdJ+k0SX22ByLimkZ3tr1C0gpJmjVrloaHh5suYNZU6fwF+5u+H3pLO8+T8Zy3qKbdu3dzPAEAB9XyiwMjYo2kNQnrrZW0VpIWLlwYg4ODTe/rc1/6qq58qKO/wwWT4PwF+9t2nmxfNtiW7WLyDQ8PazztEACgd0xkOrpdko4t/H5MvgwAAADoOhMJzvdJOsH28bYPlXSWpA2tKQsAMBlsv8n2NbZvsf2xsusBgCpLnY7uRkn3SjrR9k7b50TEfkkrJd0u6VFJ6yNiS/tKBQCkaHIK0Ucj4lxJH5D0K2XUCwCdImngZ0QsHWX5ZkmbW1oRAGCi1kn6vKS/qy0oTCH6TmUXc99ne0NEPGL7PZI+JumGEmoFgI5R6ldu2x6yvXZkZKTMMgCgqzQzhWi+/oaIOEPSssmtFAA6S6nBOSI2RsSKvr6+MssAgF7QaArRObYHba+x/dfiE0QAOCjmcgOAHhYRw5KGx1qvOPf+jBkzdTFz6FfOROesZx7z1mN++O5DcAaA3jChKUSLc+/PnTcQzKFfPROds5556VuP+eG7T6lDNQAAk4YpRAFggugyACagf9Wmtm17++rFbds2uls+heigpBm2d0q6JCKus12bQvQQSdc3O4Wo7SFJQzNmHa3prS4aADpAqcG51ggPDAyUWQYAdJV2TSEaERslbZw7b2D5eLcBAJ2MWTUAAACABIxxBgAAABIQnAEASWpfWrVv756ySwGAUhCcAQBJasPrpk7j0kAAvYngDAAAACQgOAMAAAAJSg3OtfFyIyMjZZYBAAAAjInp6AAASbg4EECvY6gGACAJFwcC6HUEZwAAACABwRkAAABIQHAGAAAAEhCcAQAAgAQEZwBAEmbVANDrmMcZAJCEWTUA9DrmcQYAAAASMFQDAAAASEBwBgAAABIQnAEAAIAEBGcAQBJm1QDQ6wjOAIAkzKoBoNcRnAEAAIAEU8ouAAAAlK9/1aaWb3P76sUt3yZQJnqcAQAAgAR8cyAAAACQgG8OBAAAABIwVAMAAABIQHAGACRhHmcAvY7gDABIwjzOAHodwRkAAABIQHAGAAAAEhCcAQAAgAQEZwAAACABwRkAAABIQHAGAAAAEvCV2wAAAEACvnIbAAAASMBQDQBAEr45EECvIzgDAJLwzYEAeh3BGQAAAEhAcAYAAAASEJwBAACABARnAAAAIAHBGQAAAEhAcAYAAAASEJwBAACABARnAAAAIAHBGQAAAEhAcAYAAAASEJwBAACABKUGZ9tDtteOjIyUWQYAAAAwplKDc0RsjIgVfX19ZZYBAEhQ6+zYt3dP2aUAQCkYqgEASFLr7Jg6bXrZpQBAKQjOAAAAQIIpZRcAAAC6U/+qTS3f5vbVi1u+TSAVPc4AAABAAoIzAAAAkIDgDAAAACQgOAMAAAAJCM4AAABAAoIzAAAAkIDgDAAAACQgOAMAAAAJCM4AAABAAoIzAAAAkIDgDAAAACQgOAMAAAAJCM4AAABAAoIzAAAAkIDgDAAAACQgOAMAAAAJSg3Otodsrx0ZGSmzDADoabbPtH2t7Zttn152PQBQVaUG54jYGBEr+vr6yiwDALqO7ettP2X74brli2w/Znur7VWSFBG3RsRySedK+mAZ9QJAJ2CoBgB0p3WSFhUX2D5E0tWSzpA0X9JS2/MLq1yU3w4AaIDgDABdKCLulPRs3eKTJW2NiG0R8aKkmyQtceYKSbdFxIOTXSsAdIopZRcAAJg0cyTtKPy+U9Ipks6TdJqkPtsDEXFN/R1tr5C0QpJmzJipixfsn4Ry0YxZU6Xze+C4DA8Pl11Cst27d3dUvRgbwRkAelxErJG0Zox11kpaK0lz5w3ElQ/x8lE15y/Yr144LtuXDZZdQrLh4WENDg6WXQZaiKEaANA7dkk6tvD7MfkyAEACgjMA9I77JJ1g+3jbh0o6S9KGkmsCgI5BcAaALmT7Rkn3SjrR9k7b50TEfkkrJd0u6VFJ6yNiSxPbHLK9dt/ePe0pGgAqrvsHQwFAD4qIpaMs3yxp8zi3uVHSxrnzBpZPpDYA6FT0OAMAAAAJCM4AAABAAoIzACAJY5wB9DqCMwAgSURsjIgVU6dNL7sUACgFwRkAAABIQHAGAAAAEhCcAQAAgATM4wwASGJ7SNLQjFlHi1HOKEv/qk1t2e721Yvbsl10F3qcAQBJuDgQQK8jOAMAAAAJCM4AAABAAoIzAAAAkIDgDABIwjcHAuh1BGcAQBIuDgTQ6wjOAAAAQAKCMwAAAJCA4AwAAAAkIDgDAAAACQjOAAAAQAKCMwAgCdPRAeh1BGcAQBKmowPQ6wjOAAAAQIKWB2fb82xfZ/uWVm8bAAAAKEtScLZ9ve2nbD9ct3yR7cdsb7W9SpIiYltEnNOOYgEAAICypPY4r5O0qLjA9iGSrpZ0hqT5kpbant/S6gAAAICKSArOEXGnpGfrFp8saWvew/yipJskLWlxfQAAAEAlTJnAfedI2lH4faekU2wfJekySSfZvjAiLm90Z9srJK2QpFmzZml4eLjpAmZNlc5fsL/p+6G3dOp5Mp6/CYzf7t27ec4BAAc1keDcUEQ8I+nchPXWSlorSQsXLozBwcGm9/W5L31VVz7U8oeALnP+gv0deZ5sXzZYdgk9ZXh4WONph3qJ7SFJQzNmHS0mpAPQiyYyq8YuSccWfj8mXwYA6ELM4wyg100kON8n6QTbx9s+VNJZkja0piwAAACgWlKno7tR0r2STrS90/Y5EbFf0kpJt0t6VNL6iNjSvlIBAACA8iQN/IyIpaMs3yxpc0srAgAAACqo1K/ctj1ke+3IyEiZZQAAAABjKjU41y406evrK7MMAAAAYEylBmcAAACgUxCcAQAAgAQEZwAAACABwRkAkKR2Qfe+vXvKLgUASsGsGgCAJHxzIIBex6waAAAAQAKGagAAAAAJCM4AAABAAoIzAAAAkIDgDAAAACQgOAMAAAAJmI4OAAAASMB0dAAAAEAChmoAAAAACQjOAAAAQAKCMwAAAJCA4AwAAAAkIDgDAJLUZkLat3dP2aUAQCkIzgCAJLWZkKZOm152KQBQiill7tz2kKShgYGBMssAKql/1aa2bXv76sVt2zYAdKJ2tLnrFvEms9swjzMAAACQgKEaAAAAQAKCMwAAAJCA4AwAAAAkIDgDAAAACQjOAAAAQAKCMwAAAJCA4AwAAAAkKDU4176+dWRkpMwyAAAAgDHxBSgAAABAAoZqAAAAAAkcEWXXINsjkr43ys19kkYbyzFD0tNtKap1DlZ/lfYxnm00c5/Udcda72C3j3ZbJ5wnUvvPlbLOk2bvl7Julc6T4yJi5jju17FsvyDpsZJ2X/X2rh3nZqPljZaV1da1qu1q13HpxWMi8bcy2rITI+LwhPoai4jSfyStHedt95dd+0QeW5X2MZ5tNHOf1HXHWm8850onnCetOo7t3v54t9Hqc6WXz5Mq/JT5XFW9vWvTufmq5aMsK+W4tKrtatdx6cVj0qrj0o1/KxM9JlUZqrFxnLd1gsmovxX7GM82mrlP6rpjrce5Uu72x7uNVp8rvXye9Lqqt3ftODcbLa/SedyqWtp1XHrxmEj8raTupymVGKoxXrbvj4iFZdeBauM8QQrOk3Q8V9XEcakejkn1TPSYVKXHebzWll0AOgLnCVJwnqTjuaomjkv1cEyqZ0LHpKN7nAEAAIDJ0uk9zgAAAMCkIDgDAAAACQjOAAAAQIKuCc62p9v+W9vX2l5Wdj2oLtvzbF9n+5aya0F12T4zb09utn162fV0Cp636qHNqw6ySvU0+/dR6eBs+3rbT9l+uG75ItuP2d5qe1W++Lcl3RIRyyW9Z9KLRamaOVciYltEnFNOpShTk+fJrXl7cq6kD5ZR72Rrss1tqBeft3Zq0TGhzWsjskr1tDMTVDo4S1onaVFxge1DJF0t6QxJ8yUttT1f0jGSduSrvTSJNaIa1in9XEHvWqfmz5OL8tt7wTolPj+2F9j+Wt3PGwt37aXnrZ3WqXXHBO2xTmSVqlmnNmWCKa2orl0i4k7b/XWLT5a0NSK2SZLtmyQtkbRT2Qn5HVX/DQFarMlz5ZFJLg8V0cx5YvtRSasl3RYRD05upeVo5vmJiMslvbt+G7atHnve2qkVxwTtRVapnnZmgk48aHP0yrs1KTsJ50j6sqTfsf1Xqt7XXqIcDc8V20fZvkbSSbYvLKc0VMhobcp5kk6T9D7b55ZRWEWM9vyMhuet/Zo6JrR5pSCrVE9LMkGle5ybERF7JH2k7DpQfRHxjLLxl8CoImKNpDVl19FpeN6qhzavOsgq1dPs30cn9jjvknRs4fdj8mVAPc4VpOA8OTien+rhmFQfx6h6WnJMOjE43yfpBNvH2z5U0lmSNpRcE6qJcwUpOE8Ojuenejgm1ccxqp6WHJNKB2fbN0q6V9KJtnfaPici9ktaKel2SY9KWh8RW8qsE+XjXEEKzpOD4/mpHo5J9XGMqqedx8QR0dpqAQAAgC5U6R5nAAAAoCoIzgAAAEACgjMAAACQgOAMAAAAJCA4AwAAAAkIzgAAAEACgjMAAACQgOAMAAAAJCA4AwAAAAn+P1mPY6PsO8YwAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAAHHCAYAAADZOPmeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxU9b3/8fdkmxAgYUlJCCREwVpHIPEmAz8WS9hMI2KrUrm2lUAr0nbi0rS2ia0s2hZrWxqXqYgWqduVQlv0NgjECFIQrwOC1qZYqUARIWxCSNAQJuf3h49MHbKQZTLfmeT1fDx46PmeM+f7mck3Oec9Z7NZlmUJAAAAAAAEXYTpAgAAAAAA6K4I5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAAAAADCGUAwAAAABgCKEcAAAAAABDCOVANzV79mylp6cHpa/09HTNnj3bN71ixQrZbDZt3749KP3n5OQoJycnKH0BANpn3759stlsWrFihelSOk1Htkc5OTkaPnx4YAtqp4ULF8pmswWlr/M/s02bNslms2n16tVB6T+Y+0vovgjlCGsN4a7hX2xsrFJSUpSbm6uHHnpIp0+fNl1iUDRsHBv+xcXFKS0tTdOnT9eTTz6p2tragPRTUVGhhQsXat++fQFZXyCFcm0A0B2cv00+/9/rr79uusQmPfDAA7LZbNq5c6dfu2VZ6tu3r2w2m/bu3es375NPPpHdbtfXvva1YJbaKh9++KEWLlyoXbt2tWr5YO1LtbWuYArl2tA9RJkuAAiEe++9VxdddJHq6up0+PBhbdq0SXfeeaeWLFmiF198USNHjjRdYlA8+uij6tWrl2pra3Xw4EGtX79e3/zmN1VSUqK//OUvSk1N9S37+OOPq76+vk3rr6io0KJFi5STk9Omb43fffddRUR07neALdW2YcOGTu0bAPAfDdvk8w0bNsxANRc2fvx4SdKWLVt0xRVX+Nr//ve/6+TJk4qKitLWrVv93pPH49HZs2d9r22tYGyPPvzwQy1atEjp6enKzMxs9evasi/1k5/8REVFRUGpy/Rn1p79JaCtCOXoEvLy8pSdne2bLi4u1iuvvKJrrrlG1157rf7xj3+oR48eQavHsix98sknQe1TkmbMmKHExETf9Pz58/Xss89q1qxZ+upXv+p3lCI6OrpTa/nsZ2C32zu1rwuJiYkx2j8AdCfnb5NDXXZ2tmJjY7VlyxbddtttvvatW7eqf//+ys7O1pYtW/SNb3zDN2/Lli2S1OZQHsrbo7bsS0VFRSkqqnNjxJkzZxQXF2f8M+vs/SVA4vR1dGGTJk3SPffco/379+uZZ57xm7d7927NmDFD/fr1U2xsrLKzs/Xiiy82Wsfbb7+tCRMmqEePHho8eLB++tOf6sknn5TNZvM7TTo9PV3XXHON1q9fr+zsbPXo0UOPPfaYJOnkyZO68847lZqaKrvdrmHDhukXv/hFo29d6+vrVVJSossvv1yxsbFKSkrSvHnz9NFHH3Xoc/j617+uW265Rf/3f/+nsrIyX3tT10g9//zzysrKUu/evRUfH68RI0bowQcflPTp6W1f/epXJUkTJ070nea2adOmC34G519T3uDMmTOaN2+e+vfvr/j4eM2aNavR+7XZbFq4cGGj1352nReqralr+I4cOaJvfetbSkpKUmxsrDIyMvT73//eb5mG6xt/9atfadmyZRo6dKjsdrucTqc8Hk+TnzcA4MJOnjyp2bNnKyEhQX369FF+fr5OnjzZ5LKrVq2Sw+FQbGyshg8frj//+c9NbsPaux2NiYmR0+nU1q1b/dq3bt2qMWPGaNy4cU3O69Onj+8a79b23dT2aP/+/br22mvVs2dPDRgwQN/73ve0fv16v+3YZ1VUVGjixImKi4vToEGD9MADD/jmbdq0SU6nU5I0Z84c3/awvdfpN7cv1dQ15WVlZRo/frz69OmjXr166dJLL9Xdd9/dqroarpffsWOHvvjFLyouLs732uauw/d6vbr77ruVnJysnj176tprr9WBAwf8lmlu/+Oz67xQbU2NtZqaGn3/+9/37dtdeuml+tWvfiXLsvyWs9lsKigo0Jo1azR8+HDZ7XZdfvnlWrduXdMfOLotjpSjS7v55pt19913a8OGDZo7d66kT09HGzdunAYNGqSioiL17NlTf/jDH/SVr3xFf/zjH3XddddJkg4ePOgLeMXFxerZs6eeeOKJZo/6vvvuu7rppps0b948zZ07V5deeqnOnDmjCRMm6ODBg5o3b57S0tL02muvqbi4WIcOHVJJSYnv9fPmzdOKFSs0Z84c3X777dq7d68eeeQR7dy5U1u3bu3QN7U333yzli1bpg0bNmjq1KlNLlNWVqabbrpJkydP1i9+8QtJ0j/+8Q9t3bpVd9xxh774xS/q9ttv10MPPaS7775bl112mST5/tvcZ9CSgoIC9enTRwsXLtS7776rRx99VPv37/fdxKW1WlPbZ3388cfKycnRnj17VFBQoIsuukirVq3S7NmzdfLkSd1xxx1+yz/33HM6ffq05s2bJ5vNpgceeEDXX3+93n//fb5BB4DznDp1SseOHfNrs9ls6t+/v6RPz6T68pe/rC1btujb3/62LrvsMv35z39Wfn5+o3WVlpZq5syZGjFihBYvXqyPPvpI3/rWtzRo0KBGy3ZkOzp+/Hj99a9/1b59+3wBbOvWrbrllls0atQoLViwQCdPnlSfPn1kWZZee+01jRkzxndpVnv7rqmp0aRJk3To0CHdcccdSk5O1nPPPaeNGzc2ufxHH32kL33pS7r++ut14403avXq1frRj36kESNGKC8vT5dddpnuvfdezZ8/X7feequuvPJKSdLYsWObfe8X0tS+1Pn+/ve/65prrtHIkSN17733ym63a8+ePb4vM1pT1/Hjx5WXl6f//u//1je+8Q0lJSW1WNfPfvYz2Ww2/ehHP9KRI0dUUlKiKVOmaNeuXW06U7Gtn5llWbr22mu1ceNGfetb31JmZqbWr1+vu+66SwcPHtRvfvMbv+W3bNmiP/3pT/rud7+r3r1766GHHtINN9ygf//7377fCUAWEMaefPJJS5Ll8XiaXSYhIcG64oorfNOTJ0+2RowYYX3yySe+tvr6emvs2LHWJZdc4mu77bbbLJvNZu3cudPXdvz4catfv36WJGvv3r2+9iFDhliSrHXr1vn1fd9991k9e/a0/vnPf/q1FxUVWZGRkda///1vy7Is669//aslyXr22Wf9llu3bl2T7edbsGCBJck6evRok/M/+ugjS5J13XXX+dry8/OtIUOG+KbvuOMOKz4+3jp37lyz/axatcqSZG3cuLHRvOY+g4Z5+fn5vumGn1tWVpZ19uxZX/sDDzxgSbJeeOEFX5ska8GCBRdcZ0u1TZgwwZowYYJvuqSkxJJkPfPMM762s2fPWmPGjLF69eplVVVVWZZlWXv37rUkWf3797dOnDjhW/aFF16wJFn/+7//26gvAOiuGv62N/XPbrf7lluzZo0lyXrggQd8befOnbOuvPJKS5L15JNP+tpHjBhhDR482Dp9+rSvbdOmTZYkv21YR7ejpaWlliTr6aeftizLsg4dOmRJsl599VXr9OnTVmRkpFVaWmpZlmW98847liTrZz/7WZv7Pn979Otf/9qSZK1Zs8bX9vHHH1tf+MIXGm3TJkyYYEmynnrqKV9bbW2tlZycbN1www2+No/H0+hzbEl79qUa9jsa/OY3v2lxP+RCdTW8t6VLlzY577Of2caNGy1J1qBBg3zba8uyrD/84Q+WJOvBBx/0tZ2/r9DcOluq7fz9pYbx+9Of/tRvuRkzZlg2m83as2ePr02SFRMT49f21ltvWZKshx9+uFFf6L44fR1dXq9evXx3Dj1x4oReeeUV3XjjjTp9+rSOHTumY8eO6fjx48rNzdV7772ngwcPSpLWrVunMWPG+N3wo1+/fvr617/eZD8XXXSRcnNz/dpWrVqlK6+8Un379vX1dezYMU2ZMkVer1ebN2/2LZeQkKCpU6f6LZeVlaVevXo1+415Wz4DSS3eQbVPnz6qqanxO8W9rZr6DFpy6623+h09+M53vqOoqCitXbu23TW0xtq1a5WcnKybbrrJ1xYdHa3bb79d1dXVevXVV/2Wnzlzpvr27eubbvgW/f333+/UOgEgHLndbpWVlfn9e+mll3zz165dq6ioKH3nO9/xtUVGRvpdzy19evOtv/3tb5o1a5ZvOyZJEyZM0IgRI/yW7eh2dOzYsYqIiPBdK95wdNvpdKpXr14aOXKk76hvw38brifvSN/r1q3ToEGDdO211/raYmNjmz0i3atXL79r22NiYjRq1KhO3x59dl+qKX369JEkvfDCC+2+KZrdbtecOXNavfysWbPUu3dv3/SMGTM0cODAoOxDREZG6vbbb/dr//73vy/LsvzGuiRNmTJFQ4cO9U2PHDlS8fHx7EPAD6evo8urrq7WgAEDJEl79uyRZVm65557dM899zS5/JEjRzRo0CDt379fY8aMaTS/ubvHNnWn2ffee09vv/22Pve5zzXbV8Nyp06d8tXZ3HLtVV1dLUl+G6/zffe739Uf/vAH5eXladCgQbrqqqt044036ktf+lKr+2nqM2jJJZdc4jfdq1cvDRw4sNMfa7Z//35dcsklje4I33C6+/79+/3a09LS/KYbAnpHr/cHgK5o1KhRLd7obf/+/Ro4cKBf0JbU6JKnhr/FTW13hw0bpjfffNM33dHtaJ8+fXT55Zf7Be8rrrjCdxr02LFj/eY1hOGO9r1//34NHTq00SVbze1rDB48uNGyffv21dtvv93i++uoz+5LNWXmzJl64okndMstt6ioqEiTJ0/W9ddfrxkzZrT66SuDBg1q003dzt+HsNlsGjZsWFD2IVJSUhrtU7V2H0L69GfGPgQ+i1COLu2DDz7QqVOnfBu3hm9vf/CDHzR7RLe9j2xp6vql+vp6TZ06VT/84Q+bfM3nP/9533IDBgzQs88+2+RyzYX61nrnnXcktfzeBgwYoF27dmn9+vV66aWX9NJLL+nJJ5/UrFmzGt0ArTnBvNu81+sNWl+RkZFNtlvn3dAFAGBGILaj48eP19KlS3Xy5Elt3brV75risWPHavny5aqrq9OWLVuUlZWl2NjYgPXdWia2R+fvSzWlR48e2rx5szZu3KjS0lKtW7dOK1eu1KRJk7Rhw4Zm6z5/HYHW3P1pvF5vq2oKBPYh0BqEcnRpTz/9tCT5AvjFF18s6dNTladMmdLia4cMGaI9e/Y0am+qrTlDhw5VdXX1BfsaOnSoXn75ZY0bN65TNkrnfw7NiYmJ0fTp0zV9+nTV19fru9/9rh577DHdc889GjZsWJtuvtYa7733niZOnOibrq6u1qFDh3T11Vf72vr27dvojrxnz57VoUOH/NraUtuQIUP09ttvq76+3u8b/N27d/vmAwA6x5AhQ1ReXq7q6mq/o+Xvvvtuo+Wkpre757cFYjs6fvx4Pfroo3r55Ze1c+dO3XXXXb55Y8eO1ccff6zS0lK9//77uuGGGwLS95AhQ1RRUSHLsvy2Y23Z1zhfoLfVrd2HiIiI0OTJkzV58mQtWbJEP//5z/XjH/9YGzdu1JQpUzplH+KzLMvSnj17/J6n3tQ+hPTp0eyGfUKp7fsQL7/8sk6fPu13tJx9CHQE15Sjy3rllVd033336aKLLvJdBz5gwADl5OToscceaxTqJOno0aO+/8/NzdW2bdu0a9cuX9uJEyea/Sa8KTfeeKO2bdum9evXN5p38uRJnTt3zrec1+vVfffd12i5c+fONfuYmNZ47rnn9MQTT2jMmDGaPHlys8sdP37cbzoiIsK3YautrZUk9ezZ01d7ICxbtkx1dXW+6UcffVTnzp1TXl6er23o0KG+a+8/+7rzj5S3pbarr75ahw8f1sqVK31t586d08MPP6xevXppwoQJ7Xo/AIALu/rqq3Xu3Dk9+uijvjav16uHH37Yb7mUlBQNHz5cTz31lO8yLEl69dVX9be//c1v2UBsRxuuEV+yZInq6ur8jpSnp6dr4MCBvsePffb55B3pOzc3VwcPHvR7LOsnn3yixx9//IL1NieQ2+qm9qWacuLEiUZtDffk6ax9iKeeesrvOvfVq1fr0KFDjfYhXn/9dZ09e9bX9pe//KXRo9Paug/h9Xr1yCOP+LX/5je/kc1m8+sfaC2OlKNLeOmll7R7926dO3dOlZWVeuWVV1RWVqYhQ4boxRdf9J1iJn16A5rx48drxIgRmjt3ri6++GJVVlZq27Zt+uCDD/TWW29Jkn74wx/qmWee0dSpU3Xbbbf5HomWlpamEydOtOpb1bvuuksvvviirrnmGs2ePVtZWVmqqanR3/72N61evVr79u1TYmKiJkyYoHnz5mnx4sXatWuXrrrqKkVHR+u9997TqlWr9OCDD2rGjBkX7G/16tXq1auXzp49q4MHD2r9+vXaunWrMjIytGrVqhZfe8stt+jEiROaNGmSBg8erP379+vhhx9WZmam7zqpzMxMRUZG6he/+IVOnTolu92uSZMmtXidWUvOnj2ryZMn68Ybb9S7776r3/72txo/frzfDW9uueUWffvb39YNN9ygqVOn6q233tL69euVmJjot6621Hbrrbfqscce0+zZs7Vjxw6lp6dr9erV2rp1q0pKSlq89h4A0LKGbfL5xo4dq4svvljTp0/XuHHjVFRUpH379snhcOhPf/qTTp061eg1P//5z/XlL39Z48aN05w5c/TRRx/pkUce0fDhw/2CeiC2o2lpaUpNTdW2bduUnp6ulJSURvX/8Y9/lM1m07hx4wLS97x58/TII4/opptu0h133KGBAwfq2Wef9e23tOfo8tChQ9WnTx8tXbpUvXv3Vs+ePTV69OgL3velLftS57v33nu1efNmTZs2TUOGDNGRI0f029/+VoMHD/Z9gdHeuprTr18/jR8/XnPmzFFlZaVKSko0bNgwv5vk3XLLLVq9erW+9KUv6cYbb9S//vUvPfPMM343XmtrbdOnT9fEiRP14x//WPv27VNGRoY2bNigF154QXfeeWejdQOtYvDO70CHnf/4lZiYGCs5OdmaOnWq9eCDD/o9KuOz/vWvf1mzZs2ykpOTrejoaGvQoEHWNddcY61evdpvuZ07d1pXXnmlZbfbrcGDB1uLFy+2HnroIUuSdfjwYd9yQ4YMsaZNm9ZkX6dPn7aKi4utYcOGWTExMVZiYqI1duxY61e/+pXf48Asy7KWLVtmZWVlWT169LB69+5tjRgxwvrhD39offjhhy1+Dg2PJmn4Fxsbaw0ePNi65pprrOXLl/s9/q3B+Y/4WL16tXXVVVdZAwYMsGJiYqy0tDRr3rx51qFDh/xe9/jjj1sXX3yxFRkZ6fe4lpY+g+Yeifbqq69at956q9W3b1+rV69e1te//nXr+PHjfq/1er3Wj370IysxMdGKi4uzcnNzrT179jT5mJPmajv/0SeWZVmVlZXWnDlzrMTERCsmJsYaMWJEo0ehNDwS7Ze//GWj96RmHtUGAN1VS49E03mPmzp+/Lh18803W/Hx8VZCQoJ18803Wzt37mzysVTPP/+89YUvfMGy2+3W8OHDrRdffNG64YYbrC984QuNamjvdrTBTTfdZEmyvva1rzWat2TJEkuSddlllzX52tb03dT26P3337emTZtm9ejRw/rc5z5nff/737f++Mc/WpKs119/3e+1l19+eaN+z9+eW9anj+50OBxWVFTUBR+P1p59qfMfiVZeXm59+ctftlJSUqyYmBgrJSXFuummmxo9Era5upp7b019Zg2PRPuf//kfq7i42BowYIDVo0cPa9q0adb+/fsbvf7Xv/61NWjQIMtut1vjxo2ztm/f3uTPobnamvp8T58+bX3ve9+zUlJSrOjoaOuSSy6xfvnLX1r19fV+y0myXC5Xo5qae1Qbui+bZXGXAaAt7rzzTj322GOqrq4O2k1CAADAf2RmZupzn/tchx7jGcpKSkr0ve99Tx988IEGDRpkuhwAnYxryoEWfPzxx37Tx48f19NPP63x48cTyAEA6GR1dXW++6802LRpk9566y3l5OSYKSrAzt/X+OSTT/TYY4/pkksuIZAD3QTXlAMtGDNmjHJycnTZZZepsrJSv/vd71RVVdXsM84BAEDgHDx4UFOmTNE3vvENpaSkaPfu3Vq6dKmSk5P17W9/23R5AXH99dcrLS1NmZmZOnXqlJ555hnt3r27TTeWBRDeCOVAC66++mqtXr1ay5Ytk81m03/913/pd7/7nb74xS+aLg0AgC6vb9++ysrK0hNPPKGjR4+qZ8+emjZtmu6//37179/fdHkBkZubqyeeeELPPvusvF6vHA6Hnn/+ec2cOdN0aQCChGvKAQAAAAAwhGvKAQAAAAAwhFAOAAAAAIAhYXdNeX19vT788EP17t1bNpvNdDkAgG7OsiydPn1aKSkpiojgu+5AYFsPAAg1nbm9D7tQ/uGHHyo1NdV0GQAA+Dlw4IAGDx5suowugW09ACBUdcb2PuxCee/evSV9+mHEx8d3aF11dXXasGGDrrrqKkVHRweiPCBsMP7RnQVy/FdVVSk1NdW3fUL7ud1uud1u33Op9+7dq379+hmuCuGAbRraijGDtjpx4oQuuuiiTtneh10obziNLT4+PiChPC4uTvHx8fwyotth/KM764zxz2nWHedyueRyuVRVVaWEhAT17t27w9t6dA9s09BWjBm0VV1dnaTO2d5z8RsAAAAAAIaETSh3u91yOBxyOp2mSwEAAAAAICDCJpS7XC5VVFTI4/GYLgUAAAAAgIAIm1AOAAAAAEBXQygHAAAAAMAQQjkAAAAAAIYQygEAAAAAMIRQDgAAAACAIYRyAAAAAAAMIZQDAAAAAGBI2IRyt9sth8Mhp9NpuhQAAAAAAAIibEK5y+VSRUWFPB6P6VIAAAAAAAiIsAnlAAAAAAB0NYRyAAAAAAAMiTJdANCdpReVGuvbHmnpgVHGugeACxq9uFznonq2+XX77p/WCdUAANA5OFIOAAAAAIAhhHIAAAAAAAwhlAMAAAAAYAihHAAAhAS32y2HwyGn02m6FAAAgoYbvQEAgJDgcrnkcrlUVVWlhISEdq/H1E00ucEcAKA9OFIOAAAAAIAhYRPKOaUNAAAAANDVhE0od7lcqqiokMfjMV0KAAAAAAABETahHAAAAACAroZQDgAAAACAIYRyAAAAAAAMIZQDAAAAAGAIoRwAAAAAAEMI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAAAAADAmbUO52u+VwOOR0Ok2XAgAAAABAQESZLqC1XC6XXC6XqqqqlJCQYLocAAAAP+lFpUHvc9/904LeJwAgsMLmSDkAAAAAAF0NoRwAAAAAAEMI5QAAAAAAGBI215QD6BzDF65XrddmpG+uhQQAAEB3x5FyAAAAAAAMIZQDAAAAAGAIoRwAAAAAAEMI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AADrFmTNnNGTIEP3gBz8wXQoAACErynQBgEnpRaWmSwCALutnP/uZ/t//+3+mywAAIKRxpBwAAATce++9p927dysvL890KQAAhLSwCeVut1sOh0NOp9N0KQAAdGmbN2/W9OnTlZKSIpvNpjVr1jRaxu12Kz09XbGxsRo9erTeeOMNv/k/+MEPtHjx4mCVDABA2Aqb09ddLpdcLpeqqqqUkJBguhwAALqsmpoaZWRk6Jvf/Kauv/76RvNXrlypwsJCLV26VKNHj1ZJSYlyc3P17rvvasCAAXrhhRf0+c9/Xp///Of12muvXbC/2tpa1dbW+qarqqokSfYIS5GRVuDeWBdUV1dnuoSQ0PA58HmgtRgzaKvOHCthE8oBAEBw5OXltXja+ZIlSzR37lzNmTNHkrR06VKVlpZq+fLlKioq0uuvv67nn39eq1atUnV1terq6hQfH6/58+c3ub7Fixdr0aJFjdp/ckW94uK8gXlTXdTatWtNlxBSysrKTJeAMMOYQWudOXOm09ZNKAcAAK129uxZ7dixQ8XFxb62iIgITZkyRdu2bZP0achuOHV9xYoVeuedd5oN5JJUXFyswsJC33RVVZVSU1P1050ROhcd2UnvpGt4Z2Gu6RJCQl1dncrKyjR16lRFR0ebLgdhgDGDtjp+/HinrZtQDgAAWu3YsWPyer1KSkrya09KStLu3bvbtU673S673d6ovbbepnNeW7vW2V0QJvxFR0fzmaBNGDNorc4cJ4RyAADQaWbPnm26BAAAQlrY3H0dAACYl5iYqMjISFVWVvq1V1ZWKjk52VBVAACEL0I5AABotZiYGGVlZam8vNzXVl9fr/Lyco0ZM8ZgZQAAhCdOXwcAAH6qq6u1Z88e3/TevXu1a9cu9evXT2lpaSosLFR+fr6ys7M1atQolZSUqKamxnc39vZyu91yu93yernjOgCg+yCUAwAAP9u3b9fEiRN90w13Rs/Pz9eKFSs0c+ZMHT16VPPnz9fhw4eVmZmpdevWNbr5W1u5XC65XC5VVVUpISGhQ+sCACBcEMoBAICfnJwcWZbV4jIFBQUqKCgIUkVoTnpRqZF+990/zUi/ANAVcU05AAAAAACGEMoBAAAAADCEUA4AAEKC2+2Ww+GQ0+k0XQoAAEFDKAcAACHB5XKpoqJCHo/HdCkAAAQNoRwAAAAAAEMI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AAEICj0QDAHRHYRPK2VADANC18Ug0AEB3FDahnA01AAAAAKCrCZtQDgAAAABAV0MoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAEBJ4/CkAoDsilAMAgJDA408BAN0RoRwAAAAAAEMI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAAAAADCGUAwCAkOB2u3ZJSOMAAB7sSURBVOVwOOR0Ok2XAgBA0BDKAQBASHC5XKqoqJDH4zFdCgAAQRNlugAAAACEl/SiUiP97rt/mpF+AaAzcaQcAAAAAABDCOUAAAAAABhCKAcAAAAAwBBCOQAAAAAAhhDKAQAAAAAwhFAOAAAAAIAhhHIAAAAAAAwhlAMAAAAAYEiU6QLQvaUXlZouAQAQItxut9xut7xer+lSAAAIGo6UAwCAkOByuVRRUSGPx2O6FAAAgiZsQrnb7ZbD4ZDT6TRdCgAAAAAAARE2oZxvzwEAAAAAXU3YhHIAAAAAALoaQjkAAAAAAIYQygEAAAAAMIRQDgAAAACAIYRyAAAAAAAMIZQDAAAAAGAIoRwAAAAAAEMI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAEBIcLvdcjgccjqdpksBACBoCOUAACAkuFwuVVRUyOPxmC4FAICgIZQDAAAAAGBIlOkCYFZ6UanpEgAAAACg2+JIOQAAAAAAhhDKAQAAAAAwhFAOAAAAAIAhhHIAAAAAAAwhlAMAAAAAYAihHAAAAAAAQwjlAAAAAAAYQigHAAAAAMCQKNMFdHfpRaWmSwAAAAAAGMKRcgAAAAAADCGUAwAAAABgCKEcAAAAAABDCOUAAAAAABhCKAcAAAAAwBBCOQAAAAAAhhDKAQAAAAAwhFAOAABCgtvtlsPhkNPpNF0KAABBQygHAAAhweVyqaKiQh6Px3QpAAAEDaEcAAAAAABDCOUAAAAAABhCKAcAAAAAwBBCOQAAAAAAhkSZLiAUDF+4XrVem+kyAAAAAADdDEfKAQAAAAAwhCPlAAAACAvpRaVNttsjLT0wqnPOftx3/7SArg8AzseRcgAAAAAADCGUAwAAAABgCKEcAAAAAABDgh7KDxw4oJycHDkcDo0cOVKrVq0KdgkAAAAAAISEoN/oLSoqSiUlJcrMzNThw4eVlZWlq6++Wj179gx2KQAAAAAAGBX0UD5w4EANHDhQkpScnKzExESdOHGCUA4AAAAA6HbafPr65s2bNX36dKWkpMhms2nNmjWNlnG73UpPT1dsbKxGjx6tN954o8l17dixQ16vV6mpqW2vHAAAAACAMNfmUF5TU6OMjAy53e4m569cuVKFhYVasGCB3nzzTWVkZCg3N1dHjhzxW+7EiROaNWuWli1b1r7KAQAAAAAIc20+fT0vL095eXnNzl+yZInmzp2rOXPmSJKWLl2q0tJSLV++XEVFRZKk2tpafeUrX1FRUZHGjh3bYn+1tbWqra31TVdVVUmS6urqVFdX19by/TS83h5hdWg9QDhqGPcmx39Hf4eB9moYe4EYg4xjAADQEQG9pvzs2bPasWOHiouLfW0RERGaMmWKtm3bJkmyLEuzZ8/WpEmTdPPNN19wnYsXL9aiRYsatW/YsEFxcXEBqfu+7PqArAcIRybH/9q1a431DUhSWVlZh9dx5syZAFQCAAC6q4CG8mPHjsnr9SopKcmvPSkpSbt375Ykbd26VStXrtTIkSN916M//fTTGjFiRJPrLC4uVmFhoW+6qqpKqampuuqqqxQfH9+heuvq6lRWVqZ7tkeott7WoXUB4cYeYem+7Hqj4/+dhblG+gUa/v5PnTpV0dHRHVpXwxlcAAAA7RH0u6+PHz9e9fWtPzJnt9tlt9sbtUdHR3d4R6pBbb1NtV5CObonk+M/UL/DQHsFYlvCOAYAAB3R5hu9tSQxMVGRkZGqrKz0a6+srFRycnIguwIAAAAAIOwFNJTHxMQoKytL5eXlvrb6+nqVl5drzJgxgewKAAAAAICw1+bT16urq7Vnzx7f9N69e7Vr1y7169dPaWlpKiwsVH5+vrKzszVq1CiVlJSopqbGdzd2AAAAAADwqTaH8u3bt2vixIm+6YabsOXn52vFihWaOXOmjh49qvnz5+vw4cPKzMzUunXrGt38DQAAAACA7q7NoTwnJ0eW1fJzjQsKClRQUNDuopridrvldrvl9XoDul4AAAAAAEwJ6DXlncnlcqmiokIej8d0KQAAAAAABETQH4kGAA3Si0qN9r/v/mlG+wcAAADC5kg5AAAIDydPnlR2drYyMzM1fPhwPf7446ZLAgAgZHGkHAAABFTv3r21efNmxcXFqaamRsOHD9f111+v/v37my4NAICQw5FyAAAQUJGRkYqLi5Mk1dbWyrKsC94kFgCA7opQDgAA/GzevFnTp09XSkqKbDab1qxZ02gZt9ut9PR0xcbGavTo0XrjjTf85p88eVIZGRkaPHiw7rrrLiUmJgarfAAAwgqhHAAA+KmpqVFGRobcbneT81euXKnCwkItWLBAb775pjIyMpSbm6sjR474lunTp4/eeust7d27V88995wqKyuDVT4AAGGFa8oBAICfvLw85eXlNTt/yZIlmjt3rubMmSNJWrp0qUpLS7V8+XIVFRX5LZuUlKSMjAz99a9/1YwZM5pcX21trWpra33TVVVVkiR7hKXISE57x4XZIyy//wZSXV1dwNcJ8xp+rvx80VqdOVbCJpS73W653W55vV7TpQAA0G2dPXtWO3bsUHFxsa8tIiJCU6ZM0bZt2yRJlZWViouLU+/evXXq1Clt3rxZ3/nOd5pd5+LFi7Vo0aJG7T+5ol5xcWz30Xr3ZdcHfJ1r164N+DoROsrKykyXgDBx5syZTlt32IRyl8sll8ulqqoqJSQkmC4HAIBu6dixY/J6vUpKSvJrT0pK0u7duyVJ+/fv16233uq7wdttt92mESNGNLvO4uJiFRYW+qarqqqUmpqqn+6M0LnoyM55I+hS7BGW7suu1z3bI1Rbbwvout9ZmBvQ9SE01NXVqaysTFOnTlV0dLTpchAGjh8/3mnrDptQDgAAwsOoUaO0a9euVi9vt9tlt9sbtdfW23TOG9iAha6ttt6m2gCPGQJb1xYdHc3PGK3SmeOEG70BAIBWS0xMVGRkZKMbt1VWVio5OdlQVQAAhC9COQAAaLWYmBhlZWWpvLzc11ZfX6/y8nKNGTPGYGUAAIQnTl8HAAB+qqurtWfPHt/03r17tWvXLvXr109paWkqLCxUfn6+srOzNWrUKJWUlKimpsZ3N/b24qauAIDuiFAOAAD8bN++XRMnTvRNN9yELT8/XytWrNDMmTN19OhRzZ8/X4cPH1ZmZqbWrVvX6OZvbcVNXQEA3RGhHAAA+MnJyZFltfy854KCAhUUFASpIgAAui6uKQcAAAAAwJCwCeVut1sOh0NOp9N0KQAAAAAABETYhHKXy6WKigp5PB7TpQAAAAAAEBBhE8oBAEDXxllxAIDuiFAOAABCAmfFAQC6I0I5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAAAAADCGUAwAAAABgCKEcAACEBB6JBgDojgjlAAAgJPBINABAdxQ2oZxvzwEAAAAAXU3YhHK+PQcAAAAAdDVhE8oBAAAAAOhqCOUAAAAAABhCKAcAAAAAwBBCOQAACAnc1BUA0B0RygEAQEjgpq4AgO6IUA4AAAAAgCGEcgAAAAAADCGUAwAAAABgCKEcAAAAAABDCOUAAAAAABhCKAcAAAAAwJCwCeU8uxQAAAAA0NWETSjn2aUAAHRtfAEPAOiOwiaUAwCAro0v4AEA3VGU6QIAAACAUJVeVGqk3333TzPSL4Dg40g5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAAAAADCGUAwAAAABgCKEcAAAAAABDCOUAAAAAABhCKAcAAAAAwBBCOQAACAlut1sOh0NOp9N0KQAABA2hHAAAhASXy6WKigp5PB7TpQAAEDSEcgAAAAAADCGUAwAAAABgSNiEcq4zAwAAAAB0NWETyrnODAAAAADQ1YRNKAcAAAAAoKshlAMAAAAAYAihHAAAAAAAQwjlAAAAAAAYQigHAAAAAMAQQjkAAAAAAIYQygEAAAAAMIRQDgAAAACAIYRyAAAQEtxutxwOh5xOp+lSAAAIGkI5AAAICS6XSxUVFfJ4PKZLAQAgaAjlAAAAAAAYQigHAAAAAMAQQjkAAAAAAIYQygEAAAAAMIRQDgAAAACAIYRyAAAAAAAMIZQDAAAAAGAIoRwAAAAAAEMI5QAAAAAAGBI2odztdsvhcMjpdJouBQAAAACAgAibUO5yuVRRUSGPx2O6FAAAAAAAAiJsQjkAAAAAAF0NoRwAAAAAAEMI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAEBLcbrccDoecTqfpUgAACBpCOQAACAkul0sVFRXyeDymSwEAIGgI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AAAAAgCFRpgsAAAAA4C+9qNRIv/vun2akX6A740g5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAAAAADCGUAwAAAABgCKEcAAAAAABDCOUAAAAAABhCKAcAAAAAwBBCOQAAAAAAhhDKAQAAAAAwhFAOAAAAAIAhhHIAAAAAAAwJm1DudrvlcDjkdDpNlwIAAAAAQECETSh3uVyqqKiQx+MxXQoAAAAAAAERNqEcAAAAAICuhlAOAAAAAIAhhHIAAAAAAAwhlAMAAAAAYAihHAAAAAAAQwjlAAAAAAAYQigHAAAAAMAQQjkAAAioAwcOKCcnRw6HQyNHjtSqVatMlwQAQMiKMl0AAADoWqKiolRSUqLMzEwdPnxYWVlZuvrqq9WzZ0/TpQEAEHII5QAAIKAGDhyogQMHSpKSk5OVmJioEydOEMoBAGgCp68DAAA/mzdv1vTp05WSkiKbzaY1a9Y0Wsbtdis9PV2xsbEaPXq03njjjSbXtWPHDnm9XqWmpnZ22QAAhCVCOQAA8FNTU6OMjAy53e4m569cuVKFhYVasGCB3nzzTWVkZCg3N1dHjhzxW+7EiROaNWuWli1bFoyyAQAIS5y+DgAA/OTl5SkvL6/Z+UuWLNHcuXM1Z84cSdLSpUtVWlqq5cuXq6ioSJJUW1urr3zlKyoqKtLYsWNb7K+2tla1tbW+6aqqKkmSPcJSZKTV0beDbsAeYfn9F+1XV1dnuoSgaHif3eX9ouM6c6wQygEAQKudPXtWO3bsUHFxsa8tIiJCU6ZM0bZt2yRJlmVp9uzZmjRpkm6++eYLrnPx4sVatGhRo/afXFGvuDhv4IpHl3dfdr3pEsLe2rVrTZcQVGVlZaZLQJg4c+ZMp62bUA4AAFrt2LFj8nq9SkpK8mtPSkrS7t27JUlbt27VypUrNXLkSN/16E8//bRGjBjR5DqLi4tVWFjom66qqlJqaqp+ujNC56IjO+mdoCuxR1i6L7te92yPUG29zXQ5Ye2dhbmmSwiKuro6lZWVaerUqYqOjjZdDsLA8ePHO23dhHIAABBQ48ePV319649Y2u122e32Ru219Tad8xKw0Hq19TbVMmY6pLsF1Ojo6G73ntE+nTlOuNEbAABotcTEREVGRqqystKvvbKyUsnJyYaqAgAgfBHKAQBAq8XExCgrK0vl5eW+tvr6epWXl2vMmDEGKwMAIDxx+joAAPBTXV2tPXv2+Kb37t2rXbt2qV+/fkpLS1NhYaHy8/OVnZ2tUaNGqaSkRDU1Nb67sbeX2+2W2+2W18vN3QAA3QehHAAA+Nm+fbsmTpzom264CVt+fr5WrFihmTNn6ujRo5o/f74OHz6szMxMrVu3rtHN39rK5XLJ5XKpqqpKCQkJHVoXAADhglAOAAD85OTkyLJaft5zQUGBCgoKglQRAABdF9eUAwAAAABgCKEcAAAAAABDCOUAAAAAABhCKAcAACHB7XbL4XDI6XSaLgUAgKAhlAMAgJDgcrlUUVEhj8djuhQAAIKGUA4AAAAAgCGEcgAAAAAADCGUAwAAAABgCKEcAAAAAABDCOUAACAkcPd1AEB3RCgHAAAhgbuvAwC6I0I5AAAAAACGEMoBAAAAADAkynQBAAAAAEJDelFp0Pvcd/+0oPcJhBKOlAMAAAAAYAihHAAAAAAAQwjlAAAAAAAYQigHAAAhgeeUAwC6I0I5AAAICTynHADQHRHKAQAAAAAwhFAOAAAAAIAhRkL5ddddp759+2rGjBkmugcAAAAAICQYCeV33HGHnnrqKRNdAwAAAAAQMoyE8pycHPXu3dtE1wAAAAAAhIw2h/LNmzdr+vTpSklJkc1m05o1axot43a7lZ6ertjYWI0ePVpvvPFGQIoFAAAAAKAraXMor6mpUUZGhtxud5PzV65cqcLCQi1YsEBvvvmmMjIylJubqyNHjnS4WAAAAAAAupKotr4gLy9PeXl5zc5fsmSJ5s6dqzlz5kiSli5dqtLSUi1fvlxFRUVtLrC2tla1tbW+6aqqKklSXV2d6urq2ry+z2p4vT3C6tB6gHDUMO678/jv6N8QhK+Gn30gxgDjKHDcbrfcbre8Xq/pUgAACJo2h/KWnD17Vjt27FBxcbGvLSIiQlOmTNG2bdvatc7Fixdr0aJFjdo3bNiguLi4dtf6Wfdl1wdkPUA46s7jf+3ataZLgGFlZWUdXseZM2cCUAkkyeVyyeVyqaqqSgkJCabLAQAgKAIayo8dOyav16ukpCS/9qSkJO3evds3PWXKFL311luqqanR4MGDtWrVKo0ZM6bJdRYXF6uwsNA3XVVVpdTUVF111VWKj4/vUL11dXUqKyvTPdsjVFtv69C6gHBjj7B0X3Z9tx7/7yzMNV0CDGn4+z916lRFR0d3aF0NZ3ABAAC0R0BDeWu9/PLLrV7WbrfLbrc3ao+Oju7wjlSD2nqbar3dM5QA3Xn8B+pvCMJXILYljCMAANARAX0kWmJioiIjI1VZWenXXllZqeTk5EB2BQAAAABA2AtoKI+JiVFWVpbKy8t9bfX19SovL2/29HQAAAAAALqrNp++Xl1drT179vim9+7dq127dqlfv35KS0tTYWGh8vPzlZ2drVGjRqmkpEQ1NTW+u7EDAAAAAIBPtTmUb9++XRMnTvRNN9yELT8/XytWrNDMmTN19OhRzZ8/X4cPH1ZmZqbWrVvX6OZvAAAAAAB0d20O5Tk5ObKslp9rXFBQoIKCgnYX1RSeXQoAAAAA6GoCek15Z3K5XKqoqJDH4zFdCgAAAAAAARE2oRwAAAAAgK6GUA4AAEKC2+2Ww+GQ0+k0XQoAAEFDKAcAACGBS9UAAN0RoRwAAAAAAEMI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGhE0o546sAAAAAICuJmxCOXdkBQAAAAB0NWETygEAAAAA6GoI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAEBLcbrccDoecTqfpUgAACJqwCeVsqAEA6NpcLpcqKirk8XhMlwIAQNCETShnQw0AAAAA6GrCJpQDAAAAANDVEMoBAAAAADCEUA4AAAAAgCGEcgAAAAAADCGUAwAAAABgCKEcAAAAAABDCOUAAAAAABhCKAcAAAAAwBBCOQAAAAAAhoRNKHe73XI4HHI6naZLAQAAAAAgIMImlLtcLlVUVMjj8ZguBQAAAACAgAibUA4AAAAAQFdDKAcAAAAAwBBCOQAAAAAAhhDKAQAAAAAwhFAOAAAAAIAhhHIAAAAAAAwhlAMAgJDgdrvlcDjkdDpNlwIAQNAQygEAQEhwuVyqqKiQx+MxXQoAAEFDKAcAAAAAwBBCOQAAAAAAhhDKAQAAAAAwJMp0Aa3ldrvldrvl9XpNlwKgi0gvKjXa/777pxntHwCAUGBie2yPtPTAqKB3CzQpbI6Uc/MXAAAAAEBXEzahHAAAAACAroZQDgAAAACAIYRyAAAAAAAMIZQDAAAAAGAIoRwAAAAAAEMI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAAAAADCGUAwAAAABgCKEcAAAAAABDCOUAAAAAABgSNqHc7XbL4XDI6XSaLgUAAAAAgICIMl1Aa7lcLrlcLp06dUp9+vRRVVVVh9dZV1enM2fOyFsbqXqvLQBVAuHDG2npzBkv49+gQPwdQ/s0/P2vqqpSdHR0h9bV8HO0LCsQpUH/+Szra8/w9wmtwjYNbdUwZgKxHUD3cPr0aUmds723WWG2F/HBBx8oNTXVdBkAAPg5cOCABg8ebLqMLuH999/X0KFDTZcBAEAj//rXv3TxxRcHdJ1hc6S8QUpKioYOHaodO3bIZmv5m1Cn0ymPx9Ps/KqqKqWmpurAgQOKj48PdKkh5UKfRVepI1Dr7+h62vr6zlie8f8fjP/grqc9r2/La0Jt/FuWpdOnTyslJaVD68F/9OvXT5L073//WwkJCYaraVkw/r6Y/t0O9u9ne+aH0zatq48ZE/s0Lc1vbh5jpnP66Mpj5tSpU0pLS/NtowIp7EJ5RESEYmJiWrWRjoyMbNUvWXx8fMj/MnZUaz+LcK8jUOvv6Hra+vrOWJ7x/x+M/+Cupz2vb8trQnH8h3pwDDcREZ/e8iYhISEkfndbEoy/L6Z/t4P9+9mR+eGwTevqY8bEPk1L8y/0WsZMYPvoDmOmYRsVSJELFy5cGPC1BsGoUaM6vFxtba3uv/9+FRcXy263B6q0kNXaz6yzdXYdgVp/R9fT1td3xvKM//9g/Ad3Pe15fVtew/jv2sLt5xOMvy+mf7eD+fvZnvmMmc7ro7P/nrd2+Y6MmabmMWY6rw/GTNuF3TXlgVRVVaWEhASdOnUq5L8hAwKN8Y/ujPEf2vj5oK0YM2grxgzaqjPHTNgeKQ+UyMhI5eTkKCoq7M7kBzqM8Y/ujPEf2vj5oK0YM2grxgzaqrPGTLc+Ug4AAAAAgEmBv0odAAAAAAC0CqEcAAAAAABDCOUAAAAAABhCKAcAAAAAwBBCOQAAAAAAhhDKm/GXv/xFl156qS655BI98cQTpssBgu66665T3759NWPGDNOlAEF14MAB5eTkyOFwaOTIkVq1apXpktAMflZoD7ZvuBByANqqo39XeCRaE86dOyeHw6GNGzcqISFBWVlZeu2119S/f3/TpQFBs2nTJp0+fVq///3vtXr1atPlAEFz6NAhVVZWKjMzU4cPH1ZWVpb++c9/qmfPnqZLw3n4WaE92L6hJeQAtEdH/65wpLwJb7zxhi6//HINGjRIvXr1Ul5enjZs2GC6LCCocnJy1Lt3b9NlAEE3cOBAZWZmSpKSk5OVmJioEydOGK4KTeFnhfZg+4aWkAPQHh39u9IlQ/n/b+f+XdJrwziOf/qBfOcIDC3pDwg8UJwIaigEpySIxrLmhsD+gMamIIiWxqDBKadaEiGQIjCCGoMmJSOaFCLQ+zs9QvTQ40k7x+ec9wsczo/hgutz3+dcWF5eXmpxcVGRSER9fX3K5XJf7jk8PNT4+Lj+/Pmj6elp3dzctK5VKhVFo9HWcTQaVblcdqV2oBs6XQPA/1k3818qldRoNDQ2NvbbZfuSm3sRvfIHnl/oFHMAnOqFfceXQ3m9Xlc8Htfh4eG/Xs9ms8pkMtrZ2dHt7a3i8biSyaReXl5crhT4HawBBFm38v/29qa1tTUdHR25UbYvdaMXlmVpYmLiy6dSqbTuoVf+4VZm4F+8A8GpnsiM8TlJ5vT09NM527bN5uZm67jRaJhIJGJ2d3eNMcYUi0WztLTUur61tWVOTk7cKRjosp+sgX8UCgWzvLzsSp3Ab/hp/t/f383c3Jw5Pj52rVa/62Qv+g698q/fyowxPN+CgjkATnn13uzLb8q/8/HxoVKppEQi0TrX39+vRCKhq6srSZJt23p4eFC5XFatVtP5+bmSyaRXJQNd1c4aAPyqnfwbY7S+vq6FhQWtrq56VarvdWMvolfBwvMLnWIOgFNu7TuBG8pfX1/VaDQUDoc/nQ+Hw3p+fpYkDQ4Oam9vT/Pz87IsS9vb2/ziInyjnTUgSYlEQisrKzo7O9Po6CgvPPCFdvJfLBaVzWaVy+VkWZYsy9L9/b0X5fpau3vRd+hVsHQjMxLPtyBjDoBTbr03D3alWh9KpVJKpVJelwF45uLiwusSAE/Mzs6q2Wx6XQbaQK/wEzzf8F+YA+BUp/tK4L4pHx4e1sDAgKrV6qfz1WpVIyMjHlUFuIc1gCAj/72DXsApMoNOkSE45VZmAjeUh0IhTU5OKp/Pt841m03l83nNzMx4WBngDtYAgoz89w56AafIDDpFhuCUW5nx5Z+v12o1PT4+to6fnp50d3enoaEhxWIxZTIZpdNpTU1NybZt7e/vq16va2Njw8Oqge5hDSDIyH/voBdwisygU2QITvVEZn70m+09rlAoGElfPul0unXPwcGBicViJhQKGdu2zfX1tXcFA13GGkCQkf/eQS/gFJlBp8gQnOqFzPQZY0z3RnwAAAAAANCuwP1POQAAAAAAvYKhHAAAAAAAjzCUAwAAAADgEYZyAAAAAAA8wlAOAAAAAIBHGMoBAAAAAPAIQzkAAAAAAB5hKAcAAAAAwCMM5QAAAAAAeIShHAAAAAAAjzCUAwAAAADgEYZyAAAAAAA88hc+zJSgCNUctgAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -2477,7 +2595,7 @@ }, { "cell_type": "code", - "execution_count": 82, + "execution_count": 76, "metadata": {}, "outputs": [], "source": [ @@ -2486,19 +2604,25 @@ }, { "cell_type": "code", - "execution_count": 83, + "execution_count": 77, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", + " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAL4UlEQVR4nO3dT4hV9xnG8eepkhKcNoF0KowKGpShwiwCxSy6uYu0jNiJIS2N1k2KZLBgVm4mkG2Jm2xspWFKZFooWpGSajXY1cWNC00oRCPCIBbHjSSF0uumTHm7cELGqaPn3Hvu/O71/X5gFvd3fvfcV985Pp6/1xEhAEA+3yhdAACgDAIAAJIiAAAgKQIAAJIiAAAgKQIAAJJaX7oASXr++edj+/btpctAl+7fv68NGzaULgNdoHfD7ZNPPvkiIka7ff9ABMDGjRt19erV0mWgS+12W61Wq3QZ6AK9G262/9HL+zkEBABJEQAAkBQBAABJEQAAkBQBAABJFQ0A21O2ZzudTskyACClogEQEeciYnpkZKRkGQCQ0kDcB4BmbJ05X2v+7aN7+lQJgGHAOQAASIoAAICkCAAASIoAAICkCAAASIoAAICkCAAASIoAAICkCAAASIoAAICkCAAASKros4BsT0maGhsbK1lGWjw7CMiNp4ECQFIcAgKApAgAAEiKAACApAgAAEiKAACApAgAAEiKAACApAgAAEiKAACApAgAAEiKAACApAgAAEiKAACApIo+DhrDZbXHRx+ZWNSbK5bx6Ghg8LEHAABJEQAAkBQBAABJEQAAkFTjAWD7e7Y/sH3G9i+bXj8AoBmVAsD2Cdv3bF9bMT5p+6btedszkhQRNyLikKSfSfpB8yUDAJpQdQ9gTtLk8gHb6yQdl7Rb0k5J+23vXFr2qqTzki40VikAoFGVAiAiLkn654rhXZLmI+JWRPxH0ilJe5fmn42I3ZIONFksAKA5vdwItknSnWWvFyS9bLsl6XVJ39Rj9gBsT0ualqTR0VG12+0eSoH04IasEjY++/+fTT+HQ6fToVeJNX4ncES0JbUrzJuVNCtJ4+Pj0Wq1mi4lnZV3466VIxOLev+zh3+Vbh9oFakF9bTbbbHt5dXLVUB3JW1Z9nrz0hgAYAj0EgBXJO2wvc32M5L2STpbZwW2p2zPdjqdHsoAAHSj6mWgJyVdljRue8H2wYhYlHRY0kVJNySdjojrdT48Is5FxPTIyEjdugEAPap0DiAi9q8yfkFc6tk3qz19EwCawKMgACCpogHAOQAAKKdoAHAOAADK4RAQACRFAABAUgQAACTFSWAASIqTwACQFIeAACApAgAAkiIAACApTgIDQFKcBAaApDgEBABJEQAAkBQBAABJEQAAkBRXAQFAUlwFBABJcQgIAJIiAAAgqfWlC8DTaevM+Vrzbx/d06dKAKyGPQAASIoAAICkCAAASIr7AAAgKe4DAICkOAQEAEkRAACQFAEAAEkRAACQFAEAAEkRAACQFAEAAEkRAACQFHcCA0BS3AkMAEnxfQAYCHx/ALD2OAcAAEkRAACQFAEAAEkRAACQFAEAAEkRAACQFAEAAEkRAACQFAEAAEkRAACQFAEAAEnxNFAASIqngQJAUhwCAoCkCAAASIrvA8BQ4vsDgN6xBwAASREAAJAUAQAASREAAJAUAQAASREAAJAUAQAASREAAJAUAQAASREAAJAUAQAASREAAJAUAQAASREAAJAUAQAASREAAJBU418IY/s1SXskfVvShxHxt6Y/AwDQu0p7ALZP2L5n+9qK8UnbN23P256RpIj4KCLeknRI0hvNlwwAaELVPYA5Sb+R9IevBmyvk3Rc0g8lLUi6YvtsRHy+NOXdpeVAcXW+QpKvj0QWlQIgIi7Z3rpieJek+Yi4JUm2T0naa/uGpKOSPo6IT1dbp+1pSdOSNDo6qna7Xb/6p9yRicXSJVSy8dnhqbWKTL+LnU4n1Z8XD+vlHMAmSXeWvV6Q9LKktyW9Iuk529sj4oNHvTkiZiXNStL4+Hi0Wq0eSnk6vVnzi89LOTKxqPc/a/x0UjG3D7RKl7Bm2u222PbyanyrjYhjko41vV4AQLN6uQz0rqQty15vXhoDAAyBXgLgiqQdtrfZfkbSPkln66zA9pTt2U6n00MZAIBuVL0M9KSky5LGbS/YPhgRi5IOS7oo6Yak0xFxvc6HR8S5iJgeGRmpWzcAoEdVrwLav8r4BUkXGq0IALAmeBQEACRV9No921OSpsbGxkqWATykzk1jEjeOYXgV3QPgHAAAlMMhIABIigAAgKSKBgD3AQBAOZwDAICkOAQEAEkRAACQFAEAAEkRAACQFFcBAUBSXAUEAElxCAgAkiIAACApAgAAkiIAACAprgICgKS4CggAkuIQEAAkRQAAQFIEAAAkRQAAQFLrSxcADLutM+drzb99dE+fKgHqYQ8AAJLiPgAASIr7AAAgKQ4BAUBSBAAAJEUAAEBSBAAAJEUAAEBSBAAAJEUAAEBSBAAAJMWdwACQFHcCA0BSPA0UWGM8PRSDgnMAAJAUAQAASREAAJAUAQAASREAAJAUAQAASREAAJAUAQAASREAAJAUAQAASREAAJAUTwMFgKR4GigAJMUhIABIigAAgKQIAABIigAAgKQIAABIigAAgKQIAABIigAAgKQIAABIigAAgKQIAABIigAAgKQIAABIigAAgKQIAABIigAAgKQIAABIigAAgKQaDwDbL9r+0PaZptcNAGhOpQCwfcL2PdvXVoxP2r5pe972jCRFxK2IONiPYgEAzam6BzAnaXL5gO11ko5L2i1pp6T9tnc2Wh0AoG/WV5kUEZdsb10xvEvSfETckiTbpyTtlfR5lXXanpY0LUmjo6Nqt9sVS87jyMRi6RIq2fjs8NQ6jH79x79Unjux6bla6+50Omx7iVUKgFVsknRn2esFSS/bfkHSryS9ZPudiHjvUW+OiFlJs5I0Pj4erVarh1KeTm/OnC9dQiVHJhb1/me9/CqhKbcPtGrNb7fbYtvLq/GtNiK+lHSo6fUCAJrVy1VAdyVtWfZ689IYAGAI9LIHcEXSDtvb9OAf/n2Sfl5nBbanJE2NjY31UAaAr2ytedhwbnJDnyrBMKh6GehJSZcljdtesH0wIhYlHZZ0UdINSacj4nqdD4+IcxExPTIyUrduAECPql4FtH+V8QuSLjRaEQBgTfAoCABIqmgA2J6yPdvpdEqWAQApFQ0AzgEAQDkcAgKApAgAAEiKAACApDgJDABJOSJK1yDb/5Z0s3Qdkp6T9K/C66rzvipzHzen7rLV5n9H0hdPqKPfmuxdL+trsn/dLq8zPgi9k9j2qix71Ph4RHzrCXWsLiKK/0i6WrqGpTpmS6+rzvuqzH3cnLrLVps/CP1rsneD0r9ul9cZH4TeNd2/Qejdk+Z0s6wf/eMcwMPODcC66ryvytzHzam7rMm/n6Y1Xdsg9K/b5XXHBwHb3pOXNd6/QTkEdDUivl+6DnSH/g0vejfceu3foOwBzJYuAD2hf8OL3g23nvo3EHsAAIC1Nyh7AACANUYAAEBSBAAAJDXwAWD7Ndu/s/0n2z8qXQ+qs/2i7Q9tnyldC6qxvcH275e2uQOl60F13WxvfQ0A2yds37N9bcX4pO2btudtzzxuHRHxUUS8JemQpDf6WS++1lDvbkXEwf5Wiiep2cvXJZ1Z2uZeXfNi8ZA6vetme+v3HsCcpMnlA7bXSTouabeknZL2295pe8L2X1f8fHfZW99deh/Wxpya6x3KmlPFXkraLOnO0rT/rmGNeLQ5Ve9dbZW+E7hbEXHJ9tYVw7skzUfELUmyfUrS3oh4T9KPV67DtiUdlfRxRHzaz3rxtSZ6h8FQp5eSFvQgBP6uIThE/LSr2bvP666/RIM36ev/YUgPfuE2PWb+25JekfRT24f6WRieqFbvbL9g+wNJL9l+p9/FoZbVevlnST+x/VsN9qMjMntk77rZ3vq6B9CEiDgm6VjpOlBfRHypB+duMCQi4r6kX5SuA/V1s72V2AO4K2nLstebl8Yw+Ojd04NeDq/GelciAK5I2mF7m+1nJO2TdLZAHaiP3j096OXwaqx3/b4M9KSky5LGbS/YPhgRi5IOS7oo6Yak0xFxvZ91oD569/Sgl8Or373jYXAAkBSXeQFAUgQAACRFAABAUgQAACRFAABAUgQAACRFAABAUgQAACRFAABAUv8DGLW1+YquApwAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGhCAYAAACUFDUXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAZBUlEQVR4nO3db2id5f348U+Spil1abY2mFqbkm2MQVZNIE2Cw0Hq4oqTSu0cgqCxwgbbqQgZg+TBtLIHlsFGYR4QN4ZzTCgK9sHqnDVUCq6jaaUyCTq6tVuxa7QWmzZlaZac34Nhvuuvpy5/TnKfK3m9QMq5c3KdT/HKybv3+VdRKBQKAQCQqMqsBwAAmAsxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJW5b1ADM1OTkZZ86cidra2qioqMh6HABgGgqFQly8eDHWrVsXlZWlPZeSXMycOXMmGhsbsx4DAJiF06dPx/r160u6ZnIxU1tbGxERJ0+ejNWrV2c8DUSMj4/Ha6+9Ft/4xjeiuro663EgIuxLys/58+fj85///NTv8VJKLmY+eWiptrY2Vq1alfE08J9fGitXroxVq1b5pUHZsC8pN+Pj4xER8/IUEU8ABgCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApCUTM/l8Ppqbm6O9vT3rUQCAMpJMzORyuRgaGorBwcGsRwEAykgyMQMAUIyYAQCStizrAeB6mvr2z3mNU7vvLsEkAJQzZ2YAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGnJxEw+n4/m5uZob2/PehQAoIwsy3qA6crlcpHL5WJkZCTq6uqyHodENPXtL8k6p3bfXZJ1ACi9ZM7MAAAUI2YAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCStizrASAFTX37r/u1mqpC/KQjYuOuP8TYRMV1r3dq993zMRrAkufMDACQNDEDACRNzAAASRMzAEDSxAwAkLQFj5mPP/44Nm3aFK2trbFx48b4xS9+sdAjAACLyIK/NLu2tjYOHToUK1eujNHR0di4cWNs37491qxZs9CjAACLwIKfmamqqoqVK1dGRMTY2FgUCoUoFAoLPQYAsEjMOGYOHToUW7dujXXr1kVFRUXs27fvmuvk8/loamqKFStWRGdnZxw5cuSqr3/88cfR0tIS69evjx/+8IdRX18/+78BALCkzfhhptHR0WhpaYlHHnkktm/ffs3X9+7dG729vfHMM89EZ2dn7NmzJ7Zs2RLvvfde3HjjjRER8dnPfjbefvvtGB4eju3bt8d9990XDQ0NRW9vbGwsxsbGpi6PjIxERMT4+HiMj4/PdHwSUlOVxhm7msrCVX9ej/3KQvpkv9l3lIv53IsVhTk8xlNRUREvv/xybNu2bepYZ2dntLe3x9NPPx0REZOTk9HY2BiPPvpo9PX1XbPG97///bjjjjvivvvuK3obu3btiieffPKa4y+88MLUw1UAQHm7fPlyPPDAA3HhwoVYtWpVSdcu6ROAr1y5EseOHYv+/v6pY5WVldHd3R2HDx+OiIjh4eFYuXJl1NbWxoULF+LQoUPxve9977pr9vf3R29v79TlkZGRaGxsjM2bN3vS8CK3cdcfsh5hWmoqC/HjTZPxo6OVMTZ5/c9memfXlgWciqVufHw8Dhw4EHfeeWdUV1dnPQ7ERx99NG9rlzRmzp07FxMTE9c8ZNTQ0BDvvvtuRET8/e9/j+9+97tTT/x99NFH45ZbbrnumjU1NVFTU3PN8erqaj+gi9ynfWhjORqbrPjUme1XsuC+knIxn/twwV+a3dHREcePH1/omwUAFqmSvjS7vr4+qqqqYnh4+Krjw8PDsXbt2lLeFABARJT4zMzy5cujra0tBgYGpp4UPDk5GQMDA7Fz585S3hRlrKlvf9YjALCEzDhmLl26FCdOnJi6fPLkyTh+/HisXr06NmzYEL29vdHT0xObNm2Kjo6O2LNnT4yOjsaOHTvmNGg+n498Ph8TExNzWgcAWFxmHDNHjx6NzZs3T13+5JVGPT098dxzz8X9998fH374YTz++ONx9uzZaG1tjVdfffW67yMzXblcLnK5XIyMjERdXd2c1gIAFo8Zx0xXV9f//PiBnTt3elgJAFgQC/7ZTAAApSRmAICkiRkAIGliBgBIWjIxk8/no7m5Odrb27MeBQAoI8nETC6Xi6GhoRgcHMx6FACgjCQTMwAAxYgZACBpYgYASJqYAQCSJmYAgKQlEzNemg0AFJNMzHhpNgBQTDIxAwBQjJgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKQlEzPeNA8AKCaZmPGmeQBAMcnEDABAMWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApCUTM94BGAAoJpmY8Q7AAEAxycQMAEAxy7IeAJaKpr79c17j1O67SzAJwOLizAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQtGRixgdNAgDFJBMzPmgSACgmmZgBAChGzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRtWdYDANPX1Le/JOuc2n13SdYBKAfJnJnJ5/PR3Nwc7e3tWY8CAJSRZGIml8vF0NBQDA4OZj0KAFBGkokZAIBixAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNKSiZl8Ph/Nzc3R3t6e9SgAQBlJJmZyuVwMDQ3F4OBg1qMAAGUkmZgBAChGzAAASRMzAEDSlmU9ALDwmvr2z3mNU7vvLsEkAHPnzAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAElb8Jg5ffp0dHV1RXNzc9x6663x4osvLvQIAMAismzBb3DZstizZ0+0trbG2bNno62tLb75zW/GDTfcsNCjAACLwILHzE033RQ33XRTRESsXbs26uvr4/z582IGAJiVGT/MdOjQodi6dWusW7cuKioqYt++fddcJ5/PR1NTU6xYsSI6OzvjyJEjRdc6duxYTExMRGNj48wnBwCIWcTM6OhotLS0RD6fL/r1vXv3Rm9vbzzxxBPx1ltvRUtLS2zZsiU++OCDq653/vz5eOihh+LZZ5+d3eQAADGLh5nuuuuuuOuuu6779Z/97Gfxne98J3bs2BEREc8880zs378/fvWrX0VfX19ERIyNjcW2bduir68vvvrVr37q7Y2NjcXY2NjU5ZGRkYiIGB8fj/Hx8ZmOzwKoqSpkPcKCqqksXPXnUuHnr7x98v/H/yfKxXzuxZI+Z+bKlStx7Nix6O/vnzpWWVkZ3d3dcfjw4YiIKBQK8fDDD8cdd9wRDz744P9c86mnnoonn3zymuMHDx6MlStXlm54SuYnHVlPkI0fb5rMeoQF9corr2Q9AtNw4MCBrEeAiIi4fPnyvK1d0pg5d+5cTExMRENDw1XHGxoa4t13342IiDfffDP27t0bt95669TzbX7zm9/ELbfcUnTN/v7+6O3tnbo8MjISjY2NsXnz5lizZk0px6dENu76Q9YjLKiaykL8eNNk/OhoZYxNVmQ9zoJ5Z9eWrEfgU4yPj8eBAwfizjvvjOrq6qzHgfjoo4/mbe0FfzXT7bffHpOT0/8XbE1NTdTU1FxzvLq62g9omRqbWDq/0P/b2GTFkvq7+/lLg/tKysV87sOSvmlefX19VFVVxfDw8FXHh4eHY+3ataW8KQCAiChxzCxfvjza2tpiYGBg6tjk5GQMDAzEbbfdVsqbAgCIiFk8zHTp0qU4ceLE1OWTJ0/G8ePHY/Xq1bFhw4bo7e2Nnp6e2LRpU3R0dMSePXtidHR06tVNwOLQ1Le/JOuc2n13SdYBlq4Zx8zRo0dj8+bNU5c/eXJuT09PPPfcc3H//ffHhx9+GI8//nicPXs2Wltb49VXX73mScEzlc/nI5/Px8TExJzWAQAWlxnHTFdXVxQKn/5+Gjt37oydO3fOeqhicrlc5HK5GBkZibq6upKuDQCka8E/NRsAoJTEDACQtAV/nxmA/1aKJxJ7EjEsbc7MAABJSyZm8vl8NDc3R3t7e9ajAABlJJmYyeVyMTQ0FIODg1mPAgCUkWRiBgCgGDEDACRNzAAASRMzAEDSxAwAkDQxAwAkLZmY8T4zAEAxycSM95kBAIpJJmYAAIoRMwBA0sQMAJA0MQMAJE3MAABJEzMAQNKSiRnvMwMAFJNMzHifGQCgmGRiBgCgGDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJC0ZGLGxxkAAMUkEzM+zgAAKCaZmAEAKEbMAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSlmU9AMBcNfXtn/Map3bfXYJJgCw4MwMAJE3MAABJSyZmfDYTAFBMMjHjs5kAgGKSiRkAgGLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQtGRiJp/PR3Nzc7S3t2c9CgBQRpKJmVwuF0NDQzE4OJj1KABAGUkmZgAAihEzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASVuW9QAA5aCpb39J1jm1++6SrANMnzMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJC2ZmMnn89Hc3Bzt7e1ZjwIAlJFkYiaXy8XQ0FAMDg5mPQoAUEaSiRkAgGLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAElblsWN3nvvvfHGG2/E17/+9XjppZeyGAFgXjT17Z/zGqd2312CSWDpyOTMzGOPPRbPP/98FjcNACwymcRMV1dX1NbWZnHTAMAiM+OYOXToUGzdujXWrVsXFRUVsW/fvmuuk8/no6mpKVasWBGdnZ1x5MiRkgwLAPD/m/FzZkZHR6OlpSUeeeSR2L59+zVf37t3b/T29sYzzzwTnZ2dsWfPntiyZUu89957ceONN854wLGxsRgbG5u6PDIyEhER4+PjMT4+PuP1mH81VYWsR1hQNZWFq/6EuSrFfdsna7ifpFzM516sKBQKs74HrqioiJdffjm2bds2dayzszPa29vj6aefjoiIycnJaGxsjEcffTT6+vqmrvfGG2/E008//T+fALxr16548sknrzn+wgsvxMqVK2c7OgCwgC5fvhwPPPBAXLhwIVatWlXStUv6aqYrV67EsWPHor+/f+pYZWVldHd3x+HDh2e1Zn9/f/T29k5dHhkZicbGxti8eXOsWbNmzjNTeht3/SHrERZUTWUhfrxpMn50tDLGJiuyHodF4J1dW+a8xvj4eBw4cCDuvPPOqK6uLsFUMDcfffTRvK1d0pg5d+5cTExMRENDw1XHGxoa4t1335263N3dHW+//XaMjo7G+vXr48UXX4zbbrut6Jo1NTVRU1NzzfHq6mo/oGVqbGJp/kIfm6xYsn93SquU923uKykX87kPM3mfmddffz2LmwUAFqGSvjS7vr4+qqqqYnh4+Krjw8PDsXbt2lLeFABARJQ4ZpYvXx5tbW0xMDAwdWxycjIGBgau+zASAMBczPhhpkuXLsWJEyemLp88eTKOHz8eq1evjg0bNkRvb2/09PTEpk2boqOjI/bs2ROjo6OxY8eOOQ2az+cjn8/HxMTEnNYBABaXGcfM0aNHY/PmzVOXP3mlUU9PTzz33HNx//33x4cffhiPP/54nD17NlpbW+PVV1+95knBM5XL5SKXy8XIyEjU1dXNaS0AYPGYccx0dXXF/3prmp07d8bOnTtnPRQAwHRl8tlMAAClImYAgKSJGQAgacnETD6fj+bm5mhvb896FACgjCQTM7lcLoaGhmJwcDDrUQCAMpJMzAAAFCNmAICkiRkAIGliBgBImpgBAJImZgCApM34s5my4lOzgaWiqW//nNeoqSrETzpKMAwkIJkzM95nBgAoJpmYAQAoRswAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNKSiZl8Ph/Nzc3R3t6e9SgAQBlJJma8aR4AUEwyMQMAUIyYAQCSJmYAgKSJGQAgaWIGAEjasqwHmKlCoRARERcvXozq6uqMp6GYybHLWY+woCaqCnH58kRMjFXF5ERF1uNARPzfvhwZGXFfSVm4ePFiRPzf7/FSqijMx6rz6G9/+1t88YtfzHoMAGAW/vrXv8YXvvCFkq6Z3JmZ1atXR0TEP/7xj6irq8t4mrlpb29f8PfNKfVtznW92X7/TL5vOtedy3VGRkaisbExTp8+HatWrZrWTOVqMezJUqw5m+8v9Z6czvU+7euLZV/ak7P//nLbkxcuXIgNGzZM/R4vpeRiprLyP0/zqaurS/oHNCKiqqpqwf8Opb7Nua432++fyfdN57qluM6qVavsyTK5zSz2Zan35HSuN511Ut+X9uTsv79c9+Qnv8dLqWrXrl27Sr7qPBobG4vdu3dHf39/1NTUZD3OnHV0dCR/m3Ndb7bfP5Pvm851Z3sde7I8bzOLfVnqPTmd613v64tpX9qTs//+pbInk3vOzMjISNTV1cWFCxeS/tcGi4c9STmyLyk387knkzszE/Gf01hdXV2xbFlyj5KxSNmTlCP7knIzX3syuTMzAAD/zZvmAQBJEzMAQNLEDACQNDEDACRNzAAASVu0MXP69Ono6uqK5ubmuPXWW+PFF1/MeiSIiIh77703Pve5z8V9992X9SgsUb/73e/iy1/+cnzpS1+KX/7yl1mPA3O+X1y0L83+5z//GcPDw9Ha2hpnz56Ntra2+Mtf/hI33HBD1qOxxL3xxhtx8eLF+PWvfx0vvfRS1uOwxPz73/+O5ubmOHjwYNTV1UVbW1v88Y9/jDVr1mQ9GkvYXO8XF+2ZmZtuuilaW1sjImLt2rVRX18f58+fz3gqiOjq6ora2tqsx2CJOnLkSHzlK1+Jm2++OT7zmc/EXXfdFa+99lrWY7HEzfV+MbOYOXToUGzdujXWrVsXFRUVsW/fvmuuk8/no6mpKVasWBGdnZ1x5MiRWd3WsWPHYmJiIhobG+c6NovcQu5LmI257tEzZ87EzTffPHX55ptvjvfff39BZmdxKof7zcxiZnR0NFpaWiKfzxf9+t69e6O3tzeeeOKJeOutt6KlpSW2bNkSH3zwwdR1WltbY+PGjdf8d+bMmanrnD9/Ph566KF49tln5/3vRPoWal/CbJVij0IplcWeLJSBiCi8/PLLVx3r6Ogo5HK5qcsTExOFdevWFZ566qlpr/uvf/2r8LWvfa3w/PPPl2xWlo752peFQqFw8ODBwre+9a2SzMnSNZs9+uabbxa2bds29fXHHnus8Nvf/nZhBmbRm8v95lzuF8vyOTNXrlyJY8eORXd399SxysrK6O7ujsOHD09rjUKhEA8//HDccccd8eCDD87XqCwhpdiXMJ+ms0c7OjrinXfeiffffz8uXboUv//972PLli1Zjcwit1D3m2UZM+fOnYuJiYloaGi46nhDQ0OcPXt2Wmu8+eabsXfv3ti3b1+0trZGa2tr/PnPf56PcVkiSrEvIyK6u7vj29/+drzyyiuxfv16IUTJTGePLlu2LH7605/G5s2bo7W1NX7wgx94JRPzZrr3m3O9X1y0nwt/++23x+TkZNZjwDVef/31rEdgibvnnnvinnvuyXoMmDLX+8WyPDNTX18fVVVVMTw8fNXx4eHhWLt2bUZTsdTZl5Q7e5Rys1B7sixjZvny5dHW1hYDAwNTxyYnJ2NgYCBuu+22DCdjKbMvKXf2KOVmofZkZg8zXbp0KU6cODF1+eTJk3H8+PFYvXp1bNiwIXp7e6Onpyc2bdoUHR0dsWfPnhgdHY0dO3ZkNTJLgH1JubNHKTdlsSdn9RqoEjh48GAhIq75r6enZ+o6P//5zwsbNmwoLF++vNDR0VH405/+lNW4LBH2JeXOHqXclMOeXLSfzQQALA1l+ZwZAIDpEjMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJO3/AY9tn75SI0zeAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -2517,7 +2641,7 @@ }, { "cell_type": "code", - "execution_count": 84, + "execution_count": 78, "metadata": {}, "outputs": [], "source": [ @@ -2527,7 +2651,7 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 79, "metadata": {}, "outputs": [], "source": [ @@ -2539,14 +2663,14 @@ }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 80, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABOo0lEQVR4nO29Z3gc13m/fU8BFmUXACVKVC9WpUhRYAV7sUQVtyhWaMctLrHjkrjENbGN/9EJ3zjuTuISO05c5RYmlmPHVqEsVpEgWAB2NUuWLFkSVQhgdwHscmbO++HMYmcXuwAIgqjnvq7ltilnhtjfPPOcp1hKKQwGg8EwOthjPQCDwWCYShjRNRgMhlHEiK7BYDCMIkZ0DQaDYRQxomswGAyjiBFdg8FgGEWM6BoMBsMoYkTXYDAYRhEjugaDwTCKGNE1GAyGUcSIrsFgMIwiRnQNBoNhFDGiazAYDKOIO9YDMBjGM2uaW2cAG4BGoB1Yt2n9oufGckyGiY2xdA2GgdkALAES4fOGsR2OYaJjRNdgGJhG8neEbvjeYBg2xr1gMAxMO6jlYFmAp99PDozrZGwwlq7BMDDrEnRmQKWBncC6sR7QyKE2gFqGcZ2MKkZ0DYYBOM96osEiqACCsR7LSGOhFoKV0wDjOhkljOgaDAPwvDp3QxcNDliTyhqUUjYl6HRAeeFHk8p1Mp4xomswDICHc1XkZzIprEEp5dnAhpc5D70TrJ1AkknnOhm/mIk0g2EAakllUyQqQ+Gd8NaglNIFfgrc8ZXbP/AD4AdjPKQphxFdg6EEemZfbbCpjVuoXqUFt42Jbw3+f4APNI/1QKYqRnQNhtJsAJYEuIBygd2b1i9aOcZjOiWklK8F3gDMF0L4Yz2eqYoRXYOhNI1ghb8Pa8L7cqWUVwPfAl4hhHhhrMczlTGiazCUph0dreAygX252k0S/Nxm7WKXE7/LUv2kGOtBTXFM9ILBUJp16Bn9iT6zvwGsxQGunaX6UiZJyNtExli6BkMJwnTYCe3DDWk0CRDjC2PpGgyTm3a0ewQmsJtkMmFE12CY3EwWN8mkwVJKjfUYDAaDYcpgLF2DwWAYRYzoGgwGwyhiRNdgMBhGESO6BoPBMIoY0TUYDIZRxIiuwWAwjCJGdA0Gg2EUMaJrMBgMo4gRXYPBYBhFjOgaDAbDKGJE12AwGEYRI7oGg8EwihjRNRgMhlHEiK7BYDCMIkZ0DQaDYRQxomswGAyjiBFdg8FgGEWM6BoMBsMoYkTXYDAYRhEjugaDwTCKGNE1GAyGUcSIrsFgMIwiRnQNBoNhFHHHegAGw2RjTXPrDGAD0Ai0A+s2rV/03FiOyTB+MKJrGPdMQBHbAGoJWC6wRL9n5RiPyTBOMO4Fw0RgA6ilQIK8iI1jVGMouKANm8axG4thvGFE1zABUHPBcsI3417EqunuAKXCtx7aOjcYAONeMEwAYvQcy1BVC7YViln7WIxjKG4OKeXMRidW0+Kv2qVwZuWWG+WhGsYxRnQN4xoppTXPiam9/pJHPCouryGdnukc2A5NJZc/zf7fAX21UkoL+FrMyvzD/euX/OsI7dMwyTCiaxjvrI5ZmZ6l7uYFWVV5vMVf9eA+f8nf3di87dUniN1QQlAjwqiWgHVKk1hFIl4ziJvjdcCZwDeGuz/D5MeIrmG88x7gm0KIzKubN3oBznywLB97to33K2BR4eJqfn4Sy3IdvOVSyk3AQ8CD4fNDwBNCCD+3VikLebV7V1Ula+7JUnmldm2gtHvDsijy1UopE8CXgNcLIbzTcB4MkwQjuoaT5nTcwpcRPYAbgb8CSBOvAiuc/LWBYL6UMi6ESAFIKd9TT1NNJw3h98pTWPuAzwBXhY9XAFcDZ0kpf0cowjFW/1mGqpdpS1YtT9DxBJD0cc8MBRfAAgIb3w9wdlLoqxXARiHEA6dyHgyTH0v1TbIaDENjTfOurUDuFt6zCPascu99Ndr688NnD/CFEMHQttm6VYeFWQ4oD6w9VXSfkyV2foDTAqyrpHdLlsqrcoJaQ+rFRe72rcDrgW8Cf5VRseM7/TWHwbqOyAVBSmkD5wEvCx9XAXOAy4Hztnlr437EBrHx/ZXuvckWb9XxXqovDI81qCTz0FJ300EhxOtzy0opZwObgFlCiGOncm4Nkx8juoaySCljaFG6Cm0dXg1ctc1buygqUA4eK9yNPZFVLfRdlAsoSohx8eut3tpLAtxICKMKHzaggiq6n7rW2ffTh/zZH06TcIG9Z1nPvOES+9ENh/3Gq7tJxGpIZi60f/+qs+1nE+TFNfe4GHgJeCx8PB55ndjnLf5FFw22Fv2AOjqz89yWpzIq1nDAXxh0U5tI0Olc4Rz5+4TVNVsI8bbwHFlowd0ghPj6SJx3mJAJIYYhYkR3ihOKxnRCQSUirsCFwBNoX2jOH/rgFu+mLyrshYALyqsg+/Ay9/47gJnh42ogBRwNHw8Dj4SPF/R6OOSF2dnqrf1pgL0gJ7Kg7MIwcv13auMxz24hbqeOAQ1tXlNl3p0QkKCre7678z76C+vvhRDdJY7/WmBjh5r28aP+HOFReanLiccU1op71q98Rkp5PnB9+FgXDuQPwHrgt+HnHwEWRn3Ew0VKeTZw3U5v1TczVF+q/cfKA2vnpvWLTFbbJMCI7hRBSllB/rY6KqxXoxWrQFjDx2NCiGzxtgazwkIhv4C8CF8TeV0Rbvto5HFkh7emu4qe33fRkAWrDYIqsOZrH65CG8+QE19AJeikm7hV5BbwVrr3rhBCtAzhnFyJtlK/ghbUNPBOIcRjZZZfANwHtAHHgTVAHPg58CNgixCic7D9httygCuB69Dn8brwUQO0b/FuXKJwKnPLWwS9q9x7aoQQ5gc7wTGiO8mQUk6jtNV6KfA0pcX1+dP5Y46KtEVwaLa977Nn2s+fQ16IZwJnAdXAfwFHOlXDHw/4C9/t62iFMltWOHj4OOT8vDF6n1jibraB59Bi+vNS0QRSyouBrcBeYAXwaeDbg/mgpZSPAQeFEH8ipfxn4BKgBW3xLgYOo4X5t8BOIUSvlLIO7T9uJC+us4BngP3hoz18flIIobSPmyWEdxNxunoXuDs2AX8phHh+oDEaxjdGdCcIhdalar/CPvLR8+0nz6K/uFZTKKi5148KIXrHaOwRAUEBAbCDiIUspXwZsAf4ABEx3uzddPVA2eo2HrWkelPUWS4nHrnEfvSd59tPtqOjFP4WLYpfRQtqR7ivc9FC6QAHgXcLIZ4cyrFIKX8MrAZuBjaiJ89eCL+rAv4UeC1agM8BToTH/TCwE20l70cLd9cA56zgbiJO5xsXuDveD7wZLbx3D2W8hvGHEd0Jwg3ND+z1cRv17XZAgs7MfLdlC/3F9Znxdgu6prm1C12sJooH9PkppZSNwA+EEHOiC93UvOXxLFWXlLZ29WRbHR3BLKf9eMzKWEAMqAI6gGfRboAzgYt6VPV9e/2llyjsObV0BZc7D/5tndX5tZM5X5+4/YtffdC/9t0pEk6MzNMznfav1Fldl6LFcQ7aRZGzXB9BXwRnAi8HzgU2J1Witc1ffFuAcxVY7UQuPkNw3awBvg/cCXxirC6khuFjRHecI6VcCnxqm7f2Fh83qjzJTesX1Y3VuE6GwnCwAvqO4UPiq294NJj59TR1Lvk43WMZVdm10395vLzoWoDyHbz9K9z7PgmcjbYwL0dbueehJwrr27ym6uikW5xk1wJ3xxbgRXRkw0sDvE4JIdQrmu9/uoeac3XsbkAN6WOL3O2fJ3QT5G79y8QdTwfevddb8s4kddXhOFQ1PU83uVs/AbRv9m7+FliL0dZxwYUph5TyDHSI3EzgjUKIgyfx32EYY0xyxDgknIi6HvgUWjg+5+PUoW9Zcz/G9rEa3zBYB/wPBMu0SFpQdAxHgzm3Z6lq0F/2pe9+JmZl4/Ucp5Np9BfevpwFx6fiCiHEPeUGIKWsTFLfDXYo/DYpHXr2HeAMtDV8BnBR5HX08wop5UtZ1s7IuztseqhpQFvXlwNnSClfBF6yufGbAfa8ML53WZyuR9FXiW0p6iKRGbbVS/VZaLeEdPAvj0wMuqAKEkAAhBAvSSlfD/wFcL+U8h+Bfx1qTLRhbDGiO44IA/hfDXwSqAP+CfiJEOLE5ubWOymynMZomCdNeHu8/O9v/9z+/f7C6b1UT1c4u4gcwwliF4fptWihChYAPwaY5bRx0J/vJ6kPBbNYfAMcgofL7T88r9+tJt2RJlGfS+oAe68Q4hdDOYbQX/sncbp+HF4AbFB+JZmn0a6TS4gItYW6NnI8doqEDUwTQmSLfNyewm4VQqyTUs6pJbm7iwY33L6K0+UDx6SUf0D/v+cebUKI70sptwN3AK+QUr5NCPHHoRyPYeww7oVxQBg+9Dq02J5Ap63+fLJZLlLKrwG1wJlCiNdEv9O37bXn5MTMwbPBsuJ0MctpU5VW1gL8rd5aFeC4oVsBAAdPzbVb/LidulEIsalonxa6JsLCdn/hmzvU9B/aeEsdgqMnqCxVMKfc2OcC9/Sqqof3+UvPyBK7gAGSFoqFlYiboIzrYRbw007V8Ok2f8mbi757ET1J2gjMDZ8byd8t7Acuy6jY6j3+sudOELtwoLEZxhZj6Y4hUspK4C3A36FDnD4O3D3eJsJGkJ3A24AZxV/McfbsbfMXX56l6gIg8HHqwaaTBg77c5nr7toCPDzH3n3xgWDhy7XwAlj4ONbDwWw1z27ZKKV8qxDiR5FNfxRdv2HFnf/wiuPASinlR7pVTWOrv2rDmubWRgYRqDCy4v+Ad1dZve9Y6t7/WSHE/w1yrOsoc2cS7idaEvKN6PC213359g9uBv69cFOLQIeiHUbHA+cuJueTF2AO+3MTJ6g4M1zJtAkapxhLdwyQUtYA70QLwoPAPwJbJ7HYAn3itR19O16XO941za0z4nQ+nCJRUUs63UP19KAg4cEjTjKbos6qIPPU1fbBT+0PFv0HWDX5rSscfOJ0caVz+J8+f/tHPimlfCsggWVCiKcj47h0n7f4oXzab+kJq3DZs4EHgC9t9m65M07XgynilWDv5RQtyVA4Pwq8H3iFEOLQQMsPFtlQIkpkwky2TiWMpTuKhEHy7wM+hLb6bhNC7B7TQQ2BEawD8Dg6NtZH+z5flFJaNaxoS5GoA5s0tdUOPjqU1wYUAQ5dNFSCRYaqS38fXHFHnK7uFHVhmUV9rfJx6aSBh/1ZfyelnI9OQlgdFVwAIcTjNzTvcPM+19ItgKSUcbSF+xMhxDc3N7duTWmfsMUpWpKhS+kr6Ky2pUKIp4aw2oZIFEip/bdT6NJoH87YDKcXI7qjgJRyOjro/33APcANg1k144wN5H/MBT/2kxFkIYSSUu5Ei+HlUsqPAB/PUOVEIwLCgjNeFw0OYBVOnNmkqLMWOVs7D/gLsj3U1gVYbnT9FHUW2qWwG10noSgrzj9cSzJIaUu3X21c6Eub/m/gALpsI2HDyQGFeiiEk3J3oCMjVuSSNgbDIlig+qIvSu6/rEvDMH4wonsakVKehy6G8nbgf4DFQohHx3ZUw6KR/N+KaxEsklKeKYR4kSG0G48KXhUrO+Y6LdNiVnYHoVLG6SIaP1tDMjPPbWnc4t3UrrBjhUNRQTXpdMzKdC10H9gE3LTXWxKPxL0Spwu0NT0HaJVSroVbfhqOz1VYTR6Vx+romNZFQyaXoJDbQ3jb/5/oSc335NwgFsFhhbU4HPawLMkwxvZ/gaeAm4UQmSGuV59gsdNFgx9xiRTsv9hXbBifGNEdIaLCYuMfXeBsP1pj8RrgB8CcId4+jlcOo5uSWaCI01kJ/FFK2Wpx0wKFPUi78eDnOuDfsnupThzRE2O5L9Uspy17wF/Q20NtfZgp9lGgMk6XSlIf5IveQDXpZ6919h5Hx8VeDmy+2jm496h/7UdS1FWARYClsqrSrrSyuSI/e0El8h0lbKuXmprF7tZH0Sm1xcVx/gm4Arh+s3fLmZubWzcAjQ7+H2Jkkt3abdrOSVqSYb2Hu4Bfo7PJTiY65TNXOwf+q9VfdTHGkp3QGNEdOfosvgBr0UF/wblN7tarR7Oo9Uj4Xktto3iZFHXZrd6NbpzOpbUkT6RIEPpfFSjWNO9KgrIAt4bUCYhHMspsOpnGcX8a05zjXcD6Siv7NwvcHeehXQE16Eyw355nP/n/HgrmfApUvY3vNdotj9XZyW8KIb4ipawHbgNkrZVaZBP0xfAmqbfCiIdcWnBDHR1uF/W5cXqhdbsl3Eaf6EopPwjcip58697S3LJRYTWFCRhXQ/a5TesXnZc7V2Fo2KDnW0p5HVpsvyCE+JeT+T8JsxL/tMbqnrVp/aLjJ7OuYfxRvpKI4WRpjFhS9FDbMAZdBELhJxE+bxjmNpYWbWMWfappobBjAY7TRYMdgK0nvhSh0CbAioNVC3asm0TJFN79ahHAa4C/QZeB3A9MQwvu14H/fjK47P2hhUqAY7cHSzqAj0kpXyWE6BRCfAedlPCFdGGWFynqQM/GWUDVbGefnaAzHKflAEu3eje8JqNirwvdCYRZXh8DbgpdJ4BakE9ftuxuas9d09y6NXJxCs83Zc+3lPJ6dHGcvx2G4FaiQ8g+JIQwgjsJMKI7crSj/WwwdjPHjdGmjBb+4jDk6WS3kRMZV08eRY8tWtvWpptEhS6tmEvvzf1JRduKlUrftQC+he7ocByYjU6ciAM/AZ7vpfrsfE80yw5wZqIreH1HSjknsrGmKrpf0hqrx+jj+Nu8G9p7VVU7QKWVjf6tW4AT4F57yJ93NnCdlPLl6GpkrxBCPAEgpbwsQZetLeOCY1+OLpO5lIivm9IREG9CZ9b9mRBiOBfBjwG/Z3gXUMM4xLgXRo7xMHPcTqQGa4zeF/Z5i59+eXOLr2AP2LcNcPtrAZUWNx1UWIvCVFwVJ2ld7jz47cN+4zSPissAS0EsH6oVFdVcllj0mRKfaf/sZu/mqxJ0+jOd/b+usbrfiC572JSrf7umuXV1PkQqoIZ0Dzqu+QPAL6WUi9ExzpUW6ro4ycMpEgk9NsvxqZjT6q9oW+lu3AqsTFJP4QXAssL03PehXQqvE0IciCzwuaucQ1/Y6y9ZG+AsiKxrAY52p+Te9usObKGTXd4HvFwIcbj8f1uewrkB78EmJ3ZZzMrMm+wx3FMJkxwxiSjhj60AtTAnWmErmza037S6xLOfUZW9h/15MZ2okOqZ7exLxaxMHbrW7fO7vBUreqidnhNPG48gX0ScgQqOF5IXZAcP7bawWgOc10TLHFaRbs1QdY7C2r3I2fZwjdV9AzoaZAXwLuCPwBohREpKef9m76YmsPuSJsL+bT5gb/ZuLgo/U8ToeWyJu+UidLWuPmtSSrkSnf31G+C2nd6qngzVF/Q/PqXASlFwoVUbLILFcZLZ6faxZd+Rb95f5qT0I6zItiR30YvR+/jd61dfNtT1DeMfY+mOQ4Y7IVYcMqQzlHKuAjtsYc4FwD8D9wLdQE/uuVSHBbgRKeU7gC8C/5uhalqx66CejrAKWBQVWab4dYG1ia6qZQHMC497Ze4cZIld4OAf9Ki87XO3f+y5D4mvvf7x4IrfpEg4cbqY6Rxor7Z60uHG3FpSvWniNbnwMVBs9dY6lrZKw95ruXEoTlD5sm3eDcrH/d7m5tb3o2sddKNdHHXhubnaw90cnrvIMQS4+Ps3rl82N3c0L2/euVNhNSkcK0m9lQwavsoQw7iklA02Ny7OpzjbVkZXIDNMIozojk8isa99ZQ6HE3/ZTiRDKcDZCXwO+Dy6lODHhRC7Sq0YNmS8EbgJuAHoBN5QSyqbj4lVPtA219118TZv7Vl+0Z+TjYeFhY9Noa+3v/CGuKAaQ8F9CFR9gEuAmu1w4jdSyuX7g1v+GpQLlt1FA0f8xtXz3Z0/DeNfm+Y4e35/2J+bSJOoCH274b6VFSY2qNC6tnwcdLqxsnRKsVoSo3cbunWQB1yX65f28uaWy4rdKHFSHSnqbg7PlwO8y2btYr1PCP3rjUP5j5JSvgr4ZoyeF3qoPStfCc1qH8r6homDcS+MQ4pz6MOmhGeW6mY7yHZKWsxSShd4K/AP6LoCn0RPDK3sVrV/etSf85Zu4tVV9LxwjdP241or3YBuf/N0RsXO2+8vVN3Ea8A6DMpy8Bcp8PPVv3IoFjub9+32l8/LW7MDuSB0Rwwft6Ob+IzochZekKCLLqbZxftw8Kmi+8U5zh4nZmUa0L3HPr3NW/ufxReCcJ2kjV9b2PI9v706Ok5cZD9261fle3+T+/TVzRs7c6nKoaumd76782YhxBYp5ULgG8C5e7yl9SnqqkLRBPDBKmhNFEVKeSbwL+iL419u9m45WkPyQA81Dbnyl6ZS2OTCiO44pKgpoV9LsmOh+0AA/Bvw9VMNRdNirDYA82tJZq5zdscrrSzAvhZv1Yxeqi/M+YHr6MzOc1u2Ak8CleiuDAuzqjK2y18Z090s9K12/0iFgASdJGkgekvffzn9N1jH8WC203Zil78qViiWCrA6QdXmxazYbRGgQ9csHLyjjc6ulgf9OW/uor6i0N+sfds2QXUn0wJ9nP0m+hRY2yOthOZkVeWePf6yx7JUXpSgS81y2g5WWb2vBD6TUbFbD/gLrR6qz1TY+xS2p33pOJHtdgJXFbXeuQ0dMfEz4NNCiLSU8iZ0V4jZQoic2yTy/zYiNTAMY4hxL4xPIpEQVnuaunVAA/Bh4CEp5c+ALwshyhbuHoQNwDKw7DSJqj3+skeWups2A3+WoSoe9QOHdQz2As8DL4SPl9r9RXf6uBFrNCdseQGz8SOCS+7Zr6LnuV6qzgvfBzUkexqd3bVhWFesMC1YYeOrAKe+f5SEIhqb64di7uPM3OsvnTnXbul9JJhVkQxjdgPsbJykd62zNx5gb93vL5zdQ+0Zev2oBW5ZYahcLk72B5VWNr3U3XQT8B50hbidwBHgZ/v8JV0ZYpeHY2kEdlqoE/k6CRZAPbBhTXPrOgv/FxYsqGXJiYvt3637qnzvr9c0t87Y3LzrHpu1Sx2CwyeojAvdb634/61kDQzDxMFYuhOMMO72r4H3ol0DXxRCPHAy2yhXAlBKeflub/nONLXTI5lbJUse9t9G8WRZ7n3xHbzywTo/RvdOj8pL43Spa5z2zpiV+QbwiayqdA7680Kxzm3BC32v+YiHWlIvOHgNuihONHwtP544nekF7s7qcBCPAw1ZVTntsD9X6YtJ1OdbMEa02KvW+c4DO2qt9FVocasDHkPXA96H/n+4cJu39n+j/ess/BN1dFb0bzGkkjF6n8sLdP78rmnetZXwQkiJUpNSysu2eDceVTgVkQ2a0o0TEGPpTjBC14KQUn4OXRD8+1LKY4TRBUIIfwibaadECUAhxKNrmltnu5y4OyC4tpZUtoEX/m9Ns+oAqx7onMbzr7rO3VMRY/Wx0Cq2CgW31HMORZzO4ASxBzJUXRIWKbcO+vPdBe6OVcALh/y503VbnvztfqHgaq5zWusD7G1H/MblaRKuj90N1Eb3naK+dp/XFMx22qi0spcC6pA/N9B1dMuFuOUvFgHBoqP+tQsy1Bz1caqr6H260dl1TqWV/RrwQXRyxHerSGXT1MfyE2xdFTOd/dtb/FVz82NSCkhkqEpExuiiO0FgoRYp7Jz6903AhSUqPw5cX0Xvs7oppmVKN05gpoSlO5l9YeGs+a3ozKUzgS8D3x9o0m0o5yMM7n/VVm/tLwKcvjArB0+tcO97oFvVPLrbX/7nCruqdFgYxe9VPcetWU4bu/xVRH22Nh41pPwUdU5/f2+OvE82TjK5wN1RRd5EfapL1X+pzW/6ksKuKJWIkaCDa5193i5/lVtmcq1ozDlyWW527vhR2OesdO89G9gMVLR6y2LdJCoj5+ih+9Yvu3pNc+sMG/+XgU42of95AqBztXvXh/d6S76epN7NRS1UcOLoMve3x9Bter4CfHuzd0sNk/TveCoxVUQ3OjFV9pZ5IhOK5DJ0J4KljNik2y5VfNu+aX2TFX7XBVYZF0PuvaKODn+W0/6HmJUBOLfNa4pFSzk6+NFYXcpntUE9x7nGaX8pZmU+i651++Nwgeqt3g3Vpazi3PoOXkTsSy1TPBnYTyAJXRvPL3S3N6At0gc2ezcvpS9dGQB/0/pFrpRyAXDnZu+mC8pn3Ac9q917Ov8YXPjah4NZnwe1wCaoACwX75FKMjf8av3aiVyhzlDEVBHdAv+jje+vdO/9G3Tzx9EuSnPakVJehZ50e123qvnlHn/ZNQHuVQzDOlrT3NoBqr7I0v0hcPt27/o7Pdzr8okIVtjJIYpitXs36EmhNwEio2KXHvEbG1LUqVq6VIp6tDU9MBYedXSRoo4Au0dhVQKOg3dkvrNza6u/4j3lw9H0WEpb4lBOYPt/1pflBtq/+4fN3s2ritez8QILy9aTgv18u7lx+A6eHWCfqKa728ZLpPpcK32pxZPOQJjqTBXRLbB0K8g+vMy9/wBwC3pmfgOTUICllGe3eCt391J9UXh7HAA7N61vWj7Ubaxpbp0FQQu6clhnguM3zXdbbgHen1Gx4wf9BWf2UNMQo/dZG++MFPWVxbfneUtWYRGoCvwH5zk7MjbBdQf9eVZ+0qyUpQulhbLQCk7QoZLUW4W38aWELrcFL4iTsvQ6ihpSKQc/nuwr/1gqBE5vR7tDurM91FYqFEGB9Vy6zkT0extf6YEWJG8UnYM+zGTZJGOqiG65JIFq4GZ0+/Nb0DPSOQGeFL6yYis/tNJ+AHwP2DKUQtphMkUHcL4QonNNc+sMB+/XwHwdfdDWHbOynVlV2dDir6wJChIhchQKkYNHFWnS/YrQUGK9oRAVycEsWYWNH8yzd1qPBLOsFHXE6eIK+zCPBLPQIWaq5AReqW31v1iUQq9TTfqZ65zdR6us3lXbvLVOaf9yHyNi6U7mOY2JyJQQ3aEQEeB16OyrNuC/HvOv3PqkuuzfmKB/sMVWfi2pjoXu9kq0iNrooi4/HKwKlpRyKyCFEL8Ni7KE4U1RX2tbpwX1uZAshQp01tdgwlXq81LfFS83kGug3Dq55XIWeM7SDKing7nuLvZ5TX4X05yhC36pcZWOjKjnOLN0NEVyt7c8EwnPix5DWCeCsplspSglrqvdu57f5q1t9XEaGaTzsWF0MKJbglCAbwLW7fMWv66LegdsazxPwpWzZsr8EC9Fp55Wo4uHr0EnP9wB/FgI8Uzx9j9x+xe/sd9f+MoMVefTl2kVRd9215KimwRxukhSF5ROtc2vM7BlOBQrM/p6MJGmaJlSLohSGXODjafUssXbyUdf1JA+tsjdfk5axT93xG98e5p4LEFntYeT7CHhMoyLu5TS2e5dv8+jYnZ4MQxqSXYtdB+wt3prE0EkjhjjshhTjOgOQqkZ+kqyR6tJ3/yL9Tc/OXYjK6TQog1UFb1PLHa3vBXYLYToKV5eSml3qfr3PurP/HKKOtvFe2Su09JebXXf0quq9rf5TRdmqTq3gsxzNkF1LzUz9JoD3UoXWpI2PkG/mgvlfZ1DF7pylLMyS4lzORdEueMbzDIvXNbCD2pI2Wnq6C/iKrnavbsRaEX3nvs+MB84qfoaYVfht6InKBdu89ZWFaVPB6DawG5Em9MWxtIdc4zoDkLR7Tn5H6yihvSzl9kPvvdM+4VfnmSTwdMxzqIiOX52lXtvO7ojwyH0reoO4AEhxB/DdSK1W/UxJehKg6pOUm8PMsETMrgfc3i36dH1h7qNchNwQ3VTnCwDjU9Fnq3IMgqga7GzpaXK6tmM7lg8H/ilEOKjubXL3KG46HDAdeh6wjOADHAQuHObt/Y2H2dePoKk3/n3OUmXhWHkMaI7CJE//hX9v+2rNnUM7Ru9QwhxZHRHqCm8OOStGSllDbAA/WPNPVLAji3eTX+qkxuilAv9GojBrN7Blh1sO8MVxdOFPrb+6cmllivldw6op0PNdXc9hi4g34BuXfQ0un5veoe35u+yxK4MXQWqjg5vntvio6+Ex9DF1b8hhNgfusNe36uq/qrFX7VkgC5c/qb1i0wW6hgz4qI7WWdKi0Stj0hngpeAKnSO//eAnwghnh3F8UXPe25SbBZF/wdSSuuPwQVLfh9c/t0sVVcAVnmfZK7Db26Zody+Rz8rGZtaZhunm5HabylrenjbSdCBh+33UOfoLflBDWnVS61TWIMYbDy10t24Ad2480x0QfXz0VXfYuirZc8+b3Fl/8pqfRjRHQecDtEtyv5S7WD1gNXIBBbhiKgtpcA/FrSudu/5JvAXaP9cAsiG3x9Ep3DeWVym7zSPtej/gJ2b1jetLPw+13us+BZZl2O0USpFnRWAr3Cc/oKZWx7GpzU6FE7GDTHY+uW+Lx2yVv48UuI7FV7c78ugo0560ZOg09AX2P9Dt1PqOhac4z4czPpSgHMNKCvAsegr3s6uTesXLTnJgzSMMKdDdIuqT0Vz1wPipDoWuA/cCTyCLo13FPhD8WTPeLWYBxuXlPIy4N3AnwCXk/8FHQE+s8NbszlL1c/KrT9CYyzKwPPUSnfjl4D/AVo3e7d0FH8fJxmkSTgVZH9/uX3k/dPt588Bvr3NW8sgsaRDZDSE+VStz+Hsb6j7OmULO1jobP9irZV6Pdra/Tb6bqozt4SUMgF8Cl168gt7vSU/TtLwI8bZb2iqc5ot3bDjIH39S7DxgpXuxqfQfqxaCmdV0+gr+bHd3rKXpUlMo0ypu4lAWIzmFeiOsCuA2javKVortmQI2lAvOAOEiRVYug7egRXufXcBtwGJXd4Kq4faGaGl69kE+xY42w886M95a4qEU0M6PcfZ41Ra2Zq93uJMkobY0GJgT9eE1VC3Nd4t7nIul+h7KGcFV5N+psnd9iohxL7oVqWUNvpO6zPAPcAnS4X9GcYHo+HTrUBP5BRM8OSWDycBzgGuBq5BW4eXbPXW3lgY46mSm9Y3jfvYwhLH/1508ZlGi+AQqAXRmqg2nr/S3fgW4Ke5NtvlJsVK7GMputGiBSqoIHt0mXv/nx/x5/QcU+d/lxKiLaW8Jq3if3HUv/ZveojXxOh99gr7yIcOBAs+pGBJJGJBJejgKvuQtSdYztBEF4bu8x1pTqfgnqwfdzgTgrmImFTQTcIuEy/cL75WSrkE+Ff038kHhBC7BxmcYYw57dELw3UTFMedJujqme/ufBO6Zuy4DbkosjIDC9WrsGI5qxKsNNrCd0H5cbq6F7g7qtG/sj3AVzd7N3+rKDa4e7V7d7yMKPehi9FsfAx9EfOAJ9BtdnLP0dfPApegrd/btnlrF/qFAfTkZ+n9sM36QPG0ELXK8u9H+5b/dDHU8LWTEebocooaUl02vpOirrZ/uF7hXZGU8gLgs8Bq4BPopJZx+7sw5Bm3IWOFYq3ar7NbvznNfukTQM9LwfTPHwgWfohx6Ksq3VEh/wMMs7Z60yQqYvQ8N9M58I91Vuev0O6H9wML2rwmJ3RBWKCCWroyNooUdbaFag9wZgHxwj0HxEl2LXB3+OgiPt8FHkLPcl8MXBQ+LgYuyqrKMw7684M08Yoqel4IsFUvNeeUv23Pj7+4i4NmJIRovDMcC770RcrCQ/ULNwuwCVRh9pi+66gl6WWpfOIEsRlV9Lw412mpC7ttfE4IkRrmARnGgHEruqUIfVd/vtdb8p9J6mJalMaXv7eEayBq2Xoxen+/xN28FZiJFsEz0aFmCh0/eyyjYtnD/tzL0iQqa0iqNIkg6IsgCLAJvHBW2tHrqcDlxKG5Tsv9tVZ6BTpULIMOhv8P4AtCiBcLx7lrG7A4TIzwY/Q8c4LK8/IFy0sRECdJmppQMKKMlj93PDJQlAKUEl3dRFOVqCNMZJ3cdgMsVEbfMekwPptg92/XL2ka6SMxnH4mlOjm6J+aO35yyQfy6VK+S4MNXAcsR2cnXYUW5DPavKaq4nqs2lpOZrpJxGL0PnOp/dBfnmUfuzt3eymlnA7c0Kuq337En3NDmjq7hlT3Vc6hz8at5L8IIbpKVR9rcraww385gwtoXwxviWUni1VbiqFcPE5mmfLlIzUDTbqNn795w8kxQUV34ImmiUj5SIT+tR/qOc5cd1f+A/3r7e1VVbvb/MUXZKg610Lt1z231ELCduphFhTA87u9ZRVpEvU6OkR/d43T/uJOf/X0/kIQnUjKCW45JrPong7KCW8AWAGRSm6aPgs6Ga7TzjhyrxkGZ9Bq/eOUdegW2Mnwed3YDmdE2ABqCdr6zLXXBqx29IUlxOpMEz8XeCM6jz5A/z/GDvuNqzJUXQ5WrcJaCsFiIu3Uk9T7wBbAvs7ZHa/nuOXgUU8H1zjtxw/7cxvCfZD/oZe6KBd/N9RJJkMhigSdJT+3CVQ9x60BLmIJ+v2tGCYCEzIlMLyqT2jLtgSN2r8KaP9vY/h6HUUW8Mb1y5+D5T8BfhLGAq8D3p+kYWn+x5l7zmlyoGpI9aIn1qorraw1191lASqjKtOH/PnVYWPEyPrFP/hSz6Vup6eK8J5KbPJAd5gWgBXoDsc15c8/EOkcbJgYTEj3wmSkOEQuTjK1wN3xSiHEtqFvY5eXt2whV5g77IygLrePvPRwMLu2m3hVnC5mOW1+pZV9aq+3ZEaSuqpCP225hpEUvZ8KAjvcuNuhfF/qLkH3ovNxrML/k75nlRNmJol7bSoxIS3dSUrEorXar3CO/Bi4Q0q5++ngos8/Esz6IoOGyFm70fUfLEBZqLa57q4NwFuyqvKKXf7KM3Mi2kkDh/x5/jy35fk0iUi3Wv3jdvBRJX2NVtHrYkGYjJQ6rsGOdajfRy9gWoATdJAmYRX/n4DViS4gfyj8oq+g0SA7M4wjjKU7jgmz9T60z1v8D1002OGkShCj54kl7paPoOtXPJYrfD1AL7izdnvLHgrTqvu2H1ZIe2mf11Rf3J7GwaN/SNNATJQJtNEa53AuQgEOAXG6VICFbpppg7FmJxVGdCcAa5p3JcHqS4YIC5Tfi06ZvhR4AS3Aj0YejwC/Q4ehfWeLd+N0hVOZ36oiTldygbujIqMq/V3+yup8P7O81XXqc62T2QKGkTu+6MUgoJZU0qPiOY+Ky6ro7rjUfuRNX5XvvWsEdmQYY4zoTgBKpET3znd3vh5d0s8GLkQLcO5xRfi4Ev0rPtTqLZ/RTfysXAiSg6cWOtsPVFm9e4DzMiq2pNVf0ZC3bAebBDoZoZlowjvSxXkYYHul3TNhYag/Ar9Al3J8HbpSnRBCtI7Q4AxjgBHdCUCx2+A6e9c3ptkvNaPrJ3xECNFeuJyal6CTa5z2TdVWz2eBeT2qevlhf+4tPdTGw0k0CwgO+3OtFHVWDameJAmXSDGekU8GmEgM98JSnJ1WsnBNmX3kt2ERZOc7O74Qt1JnoCN1ZvSqqieO+I1zktTZCqsnvAtpY4AmpCZ+d/xhRHcUONkfg5TSQk9yVqG7ApR6rgZuBd7cq6oOt/mLz8lQdSlg525R6+j05rktGfK1iw+h6xcfBR7f6t24NcBemA/AH0gghsJEFNfhMNTjHCyZpDi7L4f+/8u1hM8t2OY12ZGyoH3LOfhKT3qiIkXLcynoNkaAxxUmemF02EDePbA8TvIhKeVDDCyqPpDJqFjmsD83niJRUUuqZ7az73cxK5NG33JmgAcO+3PXZIjVFAqBTYqEja4qNgNdOnMdcBxds/g4sEALLoyMWE4FwYWhWa0DLZtbXoUV3HIXuug2bDqZRqu3LG0TxHqIu4UtfPLL+VhWX8BKfn8uqPrwfS6BwkzEjQOM6I4OjfSda9tKkagAPoAWzd5Sz0IIHwo69lpJ6it3+yv85e59fwdUho+KFHUv729NBVTT3QlsQ/dvq0Bbxwl0AZ54DalUirr6/A91NERzMlvDxcc2UGyvfi6s2NY/BK+bRG3hd/1idgdcP8QkUIwjjOiODu0U1Iqw9wohdg28Sh+N9GWqWW6AdS3wD+g+bCeAbA3pdJp4lb6t1D/MOjqzs5y2Z9D1cmvREQ0PoXtqPQlkr3IO3d/mN30mKOiBBuWTHwZ7PxQmq+AO9bhKieZA2+sXFx1A0Iu+E7LA8umrYkeuXrMNVlD4Oe1DPxbD6cSI7ujQL5X3JNZtJyLYAe5OIcSq6AJRn3El2acWONuvrrSyvcDZwKeeCC7b9XRw0c88Kv6kluSrZjv7emNWJpWwus6ea+/s3RssA6xaIG0RxBR2TuQjeyklDpM9KeJUGCg9ur/F23+ZkttSWlQtKPw7KtWyqd88wnCOwjDymIm0cc5wZqSllB/NqsrPHfLn+SkSDnqCBcJqYwk6M/PdlmeA89u8JreTBqtwMqfULLzv02cRT1ZGOlRspM9VwZ2ISZiYoBhLd5xzssV9pJRVwMYD/oJPp0jU9697a9NNIoZu1UOKOvpPzhS/BhvlBAzGRLZ6T5dIlnLblFqu+PtBCwkZP+0ExYjuBKLQ6g0OzHV2/bDe6liELoB+EVCPnlyjp6/RMhRarjrNFOjKqsoEKLv0D7zwFjgYUjrwRBVcGPmxn0xIWXGYXvFdRt/2om+Mn3aCMlHr6U5VcqFnCWDZY/5V30S33r4cHQa2EbgdeFWAtQtUWIc3WvfWIsD2MyqWafObOnxcVWiNRVOAKfosKHqvSiwzVTiZYy0f+3yd1apydS7y2y2+47B8dO3oXeFjMtWRnnIYn+4Eon/Ty/ItWyLZacvoS5jIW7uVZB7OUnUZBaUgFRVkD5+g4mVgVxduMf93kqAzSBO3g343SuV8wlOJkzluhYOHj0PEpx4WQC7IakuBrTBJDpMCY+lOLNrJd5EY8PZy0/pFz+lJlr7ZbqJ+XY+KKwGncC3FMvf+WfV0VOetWiLrajHtptYO+mVRRbcPhdbzRGaoxxB1FQx1XSus4hZ1A1ndFmp3uD3fxvfRnZ9Nl4hJghHdicVJtymK0f18oVsAwu6yRUvmW8fMctqop0Pp9YqXs4uEopiBkgMmIoNNfg20XLnwrwJXQvQDD2i7f/3iRavdu7tWu3efHeB0R861mTybBJiJtAnEUCMZcq4Fi2BRLSfIEtun4Mp8wLyFj2vlU4DzbPPWEhbEAeCwPxfdjRhKZ0BFmeguhcGiDKKUi7kd7Bxo907hB0qF4msBFWuaW2esdnkCuKyWVCZNbRxsM3k2STCW7uRkA6ilCjuWoq6ikmz9aveuD1bS+3QoCqETMW/5OngkqcfHpZMGDvtzrUory1x3F0ud+6nnOHa0P2ZJJrLg5hhOhl3xJORAk4q6DVLhvixL103AAbUA+MVub9n5W721OwPdKWI3ZvJs0mAs3clJY36CzLKzVF4ErPCouCLyOTkBqKUrSFFn56/Bdhi/SwpQlVa2dq67y27zmiJW71A4Vct3tC3nk9lXKYtfP9fSSZr6EstDPR0qSZ1VPkTMckE1pYlbYNNDPAFWptyEqWHiYSzdyUk7kQk3hdMihHh7gLOTgok4e9t965da89xdt8VJZnVeP+RiebOqsrrNa4pv89babV5TKMSlXArR18WhT6cymTZWlvNg4W8DH1O65HkCC5VNkbD6T0JaHn3/L8rTVm/f5Fq0M7RhEmAs3clJuVoPkc/VEQfvjOubd2YTNLmXWg8Fh9R828fFwecK+3Bw2J/r5Oq35i3ccmKqsPBC+7m4clbhcqU/HwmGYxmXy/waysViqPUVVPivXenno0Bygc87gPcC/waqsZZUJgC3h3g8FFxVR0e1lPI7wHeAB4QQkyEsZMpi4nQnKcU1G1yyr1vu/vZs4Hrg+n3e4pu7qHe0RZVrt56LFw2Ik0ymiccK+6pBkYVW8E3Y6JK8G+JUhfVURHSkXRNDrbA21JReIBJnLaV0gR8D8Tav6T2dnHEH4f/dxdaj77vUeeRm4B1oQ+m7wA+EEE8P/3gMY4WxdCcvG9B1eF1Qy2tIP4ku6bgFOJSi7uaoDzdvgen3PdQmqul+rpv49MIEinKCplAo2rwmuijlfhyOCA5HNMtZ2Cc7jsFTo8vH5Q4lVlcFhJEIUcEFXvuL9Tf3UhClsgjgkJTyS0ATWnwPSil3oq3fXwkhskM4KMM4wFi6k5Q1za1J9I84RCkbP0jQZc9y2rKH/bmV+epiATaBH2CHlq8KYvQ+dp3TuumwP/fPdOt2iE6+5a3iKDlfaHGRndGg2MI9lf0P5AKJbr+4bkLxXYBeporuVC+18ajbwsb3r7X3/GqaffzPgR+gkx9eK4ToHcoIpZS1wGvRAjwL+BHwHSHEwSEfpmFMMKI7SVnT3NoJqq7QP5l/naBDAXSTsGpJ+lfahzKPBLOqU9RZtXQFs502VWll08Afe1XVH/b7i67upXp6FT0vzrTbUw8Hs88t7DoBgwtdsZ+zeGxDYaB9jJTQD2U7KhKlUOoc9D0HCToti0B10WDnRTog7Or8EnAQuHWogluMlPIy4G3h41m0++Enm71bKjGNKscdxr0weaktfautXyept+rpYIW7sRP4HfDgXHvXAeBhdCPLx4QQ3dENSinPAb4H3LTA3nF8s3dzWCcguu2BLM2o4PafiOs/1lIMlngwEhbvUJI+LHqJh7UTSrWt73u208T9le7G6s3ezR1g1ejPbbqJx4CzgDPQ1eGGJbpCiN8BzVLK24EbgLcDn6khme0mfkboHjJ90sYJRnSnLH2xuDOEEJmBlpRSngV8G3g18DTwZuALDt4zPhUzKVCkoWZlFb8+FV9rqW0P5tsdaNv97wzy3+c+D4jTxRX2YdUWLLb8ksV/9PoKu00IcWJzc+teUMvQ3ZdVFd0dwKeBL2VU7OjLm3c+qXBmMUyrNOyrdw9wj5TyjB5q/xjxx5sU4nGCidOdpFgEbf0zpaIor4ZU90CCK6WcLqX8KfAM2lJ6kxDiIiHEj44HZ3y4mu7LdehTqfjcgSj2hUKhwA3m8hqOS6zshFaZMZRyfehnB484ydRMZ//GuJ3KrnDvw8FX5Y7bxqsFONt6+u11dAQ2vldLssPFaxRCfAOYdcife6bCWswIFbYRQryksFsZYoEkw+hhLN1JRmiVfmixE7tsv7/wuW4d75mbXJmNbmjoVJJ5+hqn/QjcWGob04EvAW9EZ6W9D/i2EEKFnSmufyRY8ZVuaipzVp9N4OtZOWWFNXqLFGiw2/1iK7PccoP5jHPLFK9fbr3osrmaCMWdNPLf26hsgB2coOJYgP04cCYwr4aklaShxL4tAuyZNzVvffAE514Sp9Nf5Gx9oMrqfWXOhyuEeGxN864sWLFwpZGySk+lN5/hNGFEd5IgpTwX+Cjan/dfMSsz/9frr398gOW/CLxQ9Nl04DPAW9Gdhj8JfAXdVfYNUspb0Sp9oIeaadGQM1DBCvdeu1dV39vir6oGtRywBhfSUtZkqeWH4qMtZTmX21//fTn4qoq0lS5oYZRfLozaqASbDFWXHvWve/N8d+eJEgdRsD+FQxbnKrBIUq9a/NWVm9Y3FflvrXb6GpAGOAQPlznIIXOyrZ6mAkPpOTicvoQngxHdCUqkSPncatJdjU6sJmZlvg/MEUI8NYRNzAH+BfrEVgJ/iTb3Po+eAb8J+DVaDLYAdwJ/I4Q4tqa5dSsRkUjQ6QL/XmX13HKG9cKql9T0Rymo8xB1QZQSx8FiYEv5aEtNmuWWiVbyGtCNEYCydayyY+k2R/3dDBZBbxgmV6U/t60UCTetar99xG98S5rEGeUnLqPHYlugrqM/fVZpJdk/znd2XCjlxkYhRHuJZQ3DJ9d9xQW1rJruPVLK7wLduUclaz6SJZarUzLiE5AmZGyCokVPLdV/GCqwCFrvX79kyRDXnVHH8Se7aDhRTbpjrrPrzEorawH/hY5kuAW4EvgNWmjvEUKkircBaoNNsCRBp3O5feS5vcGyR22CxQoChV05tCiAkcogU9h41NBND7XY+IfPtI59pEs1fK+b+Dl6GatoeX8PMC/AtaOfh6Id/jCsnLUeWKhehRXLnfMaUi+4eA1d1FcWxiaXstDz20/Q2T3f3blaCLG73NFIKf8M+DrwGiHEruGfF0OU4u4rFkFmlXvPPwE1ucdW78a/CHCiBmnZDi3DwYjuBOVkWvdE1pkB/AJUE323/gEJurrnuzufRrsRfoEW2i1CiBPltiWlzIn0rcAbd3vLv5EmfqYWqaHc1uc+G8hyHYhSy+TKJlrUkvSudA6vj1vJt2VV5aW7/JUqrCHct7SN78XpUl00VAzsZ+5b3q8m3dVDTV0tqexsZ1+61V85vTByQWHjqwDHKjzWvu+CJmfrwzErczbwH4AoF58rpXwl+o5jnRBiyyAnxDAECu/QSrexH8oyp4KJXpi4tHPyM9MbQC3OW2+gQ8cSLvAm4EIhxF8LIe4bguD+Ei24rxRCbEgTr8pPnhXfwpdyHZSL4y1lBBRHNZQzFHRXCx+XLurdR/xrZEZVzjjszyUoEHqAgFqS2YTVOYf+vYkAFYQNI3PVv1QtycxC94GKle7GbfPdnf8cszLviNFzjL7qbHhgbVvpbjx3tXv3Mw6eKhqzanK2vhCzMvegfeZvAA5LKZeWOhohxK/DZf5bSnlTmYM2nBxD6b5y0h1aTgZj6U5QhuPsL2Ed59g2lCt5xKWwNEGnfaH9+Ku+Kt/7m/C7rXryrDhqoRzl5p6igjxQnOzglqnW0lJ+YgXQtdjZ0lJl9XRt92643MNpjDSHVLUkO2ba+6c9HMz20iRclxOPXmY/+N6z7Wc3CyG83PmoIXm0m3g9uvPDbuDWTesXPSelXLjVW9sabd5p46mV7sa/B96PrrXQDXwkHNQPgI8WJ6QASCmXoe8+3iWE+N8SB26YQBjRnUKEt01hVEEfncBVQ5md1esHy8PJIA+svtuu8CLwNP2aXUbJh17F6TpxgsqODNVn6e8KbsMDm8ALsCvzQhutQTtgZEIQJh9Eli05ltRq9+7FwI8zqvKSI/7cuhR1xOliprP/gSqr94vAu4AVwFNCiGsGPh/9b0Nvat7yUJbYleHYfRfv4HL3vvOA/4eum1ADfAAtwm/MqFh6j7/86RNUXkLRhVRKOT+jYnft9Ze+mKXq/OLvDRMHE70wtViH9tkuDN/3WWZDXL8xFBjAKogl3bR+0XNrmlt3RCb3KCV4Nn5QQyp1gf3EPz4YzPl0uK1+i610763IqMrkTn9Non/cbO51sQirNNgHQc0C4gPFCjs6YeE3wIGYlZ01190FcAmwD3hECPGLMCZ5AXCGlPJPgIuBi8Lnix3WLtB+YqBEbG2W6pXVpPZlqDqnmu6uNHU3A2cDd6FD8xrC1+8APn/Qn996AvfacKxLwOqbNRdC7L2heceTPva88CBMWu8ExYjuFCIU1yFFOJShncIJhvbolzPt9tufDi6+u4v6LNhZdJWz0PJVVNH9okfF093UXvtgMOdTQKKMJaqA4/v9pgxYicKPISectXTSQ9wPcJxwO1VVpM9d7G7t3u0ty6ZJNOQvALn19LPSr3dnVGzOQX9+ty5lmT50rbPHjlnZW6WUCzKq8tIj/tzapE6X/h+FFcTIPDXT2f/ZeqvjQID1FVALwgtQv/MRuhkuBe4HrgPOEkIclFKuBDYC/4m+EP4I+GlhZw7LhWB+dHs+7pWRBUxa7wTFTKQZToayEwxSystm2M/8cJ7b8sZN6xfXbFq/qAE438Hb6+CpKrqf7KXmEY+K2YGOIqjrH7mQe2HtApp6qZ5eerJN00M8iAguYDkniF0MuNc6e39fQ+pFyPnPopaxbkcE3HrEb7wiRSLh45IiET/kz6tp85rqt3g3Xtnir7E6aSDAJcBxFE5FLzUXtvlL3iyEaFE4t4I14IRLWOf2toyqDPZ4y7ataW7t2uzd8r3H/ctvRU+S/QkwD5ilx9Q3cecn6HSklN+SUtaHm2vHpPVOeIxP13DKhNlw24HPCyG+FWkBvyBBp3uZ8+AHvnz7B79ZfiJPEYpjBuzdhL7KcHIuV4idwWN8lQ+qZbV7zzrgMuCyLd6N/17Y/UJRS2fGhopu4paPoyhoRZ+byBuwJvBJx23e2Lz9gHYd2BD6f1e7d93aq6ruPeAvuKCbeE2M3uMVZM5NU+cp7D0zrKfeMdM5+DHgluPBGR/fHzR9kOG7hgzjBGPpGk4JKeU0dGWr7wghvhV+vAHUEoVd3UWD3eYveWP4eTuFllonkARr21X2oZWr3XvSq9273hURknWhJcnAiRZaeBN0eEudTfOAx9ExxB+tJdWTt3YDquj5vYNyktTZoT/WLrSyc4Jbap99424f6vnJoSfH+n5uLtAohHipxV/V203t2WAlMlSf10vt4VXuPc+vdu/aO9M5+KQQ4t3A2x8LrvpuGF/thAd/wgjuxMSIrmHYSClrgF8Bv0VPDOVoDP2chKmUjeHnxe6JqzatX1S3af2ild+U79wONAM/klJWgvaJhtEA27QVCzlL1NYxtGF8rPLA2vbL9TdV/ePtf18DTENbhG+61H747RVkH7QIMnV0enOcPb9JkbDKCatF4OfDdlUAqhNd9Cf3PNy4zfZIOHBEuO05+clJXI+Ky4C5wMuA7VLKS4UQv01SfyIyMWj8uRMYM5FmGBZSygr07PljwEeKOtS2U2LCbQgFWL4JvAJdB+LvI5+vswl+aaEWgmpf5GyLgTr/kD/fTROvsQkOe1T2CaEQogcdvvY0cAC4M0zoeBb4bIAzJwz1CtfoE17LwrLidGaSNJyI08U1zv4f11jpvx6BDrzr6uh8souGLFht5IW7naJzJYR4KSwu9EFgl5TyPXBLv+VOcTyGMcL4dA0nRbTmQjXpLoU159frr3+6/zLDq9IkpTw7XOcN0dTXsHljGm0F3gccRndacIFOIcSfD2HbvwB+vNm7ZUuM7h0niF0UYHeDqsv5WuN0ZBa4Ox8WQsyTUp6BtuLvBj55qsIrpXwOuE4I8Wzus8HOlZRyIfCzblVzf6u/8iqwriu1nGHiYETXcFIUTW4VJEiMFFLKVwD/hvZ7Ho98/ijwFnS41X8AXwD2AxXArMGqq0kpPw6cJ4T4kJQyDjx+PDjjA48FV/1nkgYPaF/i3H9WzMo8KYS4KVxnOjrk6xdCiP93isd1DLhWCHFSYimlbECHl10CvF4I8eipjMMwthifruFkaYz4a0+Lb1EI8Rt0bYd/C90COR7rUNMub/Oaard4N717s3fLT5Kq7jNoi/d9g233xeCso3u8pe8Iw7Z+k1bx706zX3rnfHfnxpxvOWZlHODFyFheAK4HXiulPCXRpXxxiQERQnQAf4Zut77jw7f/y7vWNLduXdPc2hU+zzjFcRlGESO6hpOlndGJFf04cC26H1uO3x31rxOdNKB0Xdsle/2lt6LLUX5ASlk90AYPBvM/kaKulrAlzh5/2XK0nzTqHokBL0XXE0I8D1yfUbE339K8+fFTELthiW44BiWE+Dpw86P+zH8FtYwRau1jGF2M6BpOltNagSlHOBn2JuDLYVYXwGNZKi8sDL2yGp8KLv5gm9dUs8W76fjAYmjNicTkugp7Nnoi8MrIQlXA8eI1hRDPtfirXuyl6hKGL3bDFt3IOPaFkQx9x4GJZJhQmOgFw0kxmi1ghBDtUsrPAndIKVcBv6shnUxTV09kFv/R4Jov6VhcK1Zcs6CIdvpHACSARVLKGaGvtQboKDWesFNvjuGI3SmLbriZ9rxfPaCS7FA6hRjGCcbSNYx3vgL0oEPIHpvj7Hme/pZ2Y97ys1xQjWW2VWCl2/i5zLX/Av5WSumgRberzPrtnJprZYREty9pJOng75vv7KiWUn4jLNBjGOcYS9cwrhFCBFLKt6Krfz0QszIXrXbvuiYavrWmubVd+zgtGwJVRe9LpbZVbKVLKc9DC/r6cPvfBzKUrwc5Et11T1l0+x/HffXo6IYdUsp1Qojfneo+DKcPY+kaxj1CiKeB9wL/jhbJYp/tulpSL1oEvRZq11ynxZJS/sVA21zT3Dpju3f9XVu9tWdu9m75YY+quRf4W7QVXFFqnVyGXC7SYRhxsqfSBK4sQohO9AXgO8DOsL+aYZxiRNcwIRBC/BzYjM6lfVn0u9XuXccWuttPrHLvueb+9UuWxKzMLcAXpJTXD7DJDWHFMwdYsttfNnOft/gdW721Z+30Vn34NIVhjZR7oR9hdMPX0Bl9n5dSflVKGTsd+zKcGkZ0DROJDwHVwOuLPs9FN/weQAhxBHgd8BMp5ewy22qMRgAEuLO7qLcDXCtD9SWcnjCs0ya6OYQQe9ClIs9H12542SCrGEYZI7qGCcNm75baVm95epu39gPXN+9siVijy4HtUT9vmEL8IeDXUsrzS2yuPdp0MqwuluuKYQNLT4O1e9pFF/qSKW4D7gBapJR/err3aRg6RnQNE4kN3cSn+7gEWItA5azR5eh6vgUIIX6MLqLzayllcR3fMAJAJeN0JWP0PFOkhzYjaO2uaW6dsc9rqt7s3fzUaGSRhe6GfwFehY51/udc9TbD2GJE1zCRaAxLRQK2ZaEWhZ+XFN2QzwK7gA1hZTQgOinWVLfA3XHFbHtf8XoWI5t0sKGLBidsPzRqWWRCiFZgPtoFs01Keclo7NdQHiO6holEe1E7G1tKuQbtvzxYaoXQ5fDXgA98o6iWQ26ZY+3B4mNFHytGNsW5sbiI+Qhue0CEEC8BtwI/y6jY7hubtx0ydRvGDiO6honEOrB2WgSZGtLHzrOf/PReb/FdW70bazd7t9xfTkCEEB7w+l5VtajFW/VYKcHxca8oiugKGNkU53bGsL9Z6G748m5/xVMnqLwGU7dhzDDJEYYJQy4pQEp5MbB3s3fzq4FK3VEhWFFH51NSyhfQCQ79Hof8+Rf1UtWgt9YvXbg93z5e9zAb4Xq1I5FYccqEnSlMB4oxxIiuYcIhhHhCSnnYQi1UfREHNl009KL9l7FSjzTxX0a6RbgWwQIppRW6INZVk97bS810hd3KCIviaNasGIR2TAeKMcWIrmGickcN6WvSJCoAFwJc/EeFEH8st8Ka5tY99AmO8uN0BcBWKeXfblov9kgpnwLeFO1YMQkZFxb3VMZ0jjBMSKSU0zKq8okWf81BhX1tBZk/LHAeqI9ZmXlCiOJJMaB/a5xKel+/1N30CnTthfuB1wJnCSHSo3UchqmHEV3DhEVK+T/Ab4QQ/xm+//+AZcDacPJsqNtJAP+KbgX0j8AXhBCp0zBkg8FELxgmNHdQ2FlCoCfNPnsyGxFCJNFdg38EXA48KKV8m5TS/D4MI475ozJMZH4DzJFSXgQghPCBN6L7mRXXZxiMJcB9Qog3ofuR/RWwR0q5euSGazAY0TVMYIQQGeC/gTdEPnsJ7Zv92gDFbkqxGF3gHCFEC9pN8Tnge1LKO6WUV4zYwA1TGiO6honOHcBboplmQoh2dG3cO8P25QMSFsSpRje4zG1DCSF+BlyNTiPeKaX8spRy2sgO3zDVMKJrmOg8AMSBOdEPhRB3AHcBPxyCb3Yx0BKtUhbZTq8Q4rPALHQrnwellO+P1nEwGE4GE71gmPB8/PYv/vMhf/5tPdTWE8aeblq/6LmwqtZvgY1CiH8ote6a5tYZ1aT39FJ9Vi4pYqBMNCnltcCXgIuAjwK/LiXWBkM5jKVrmPDs85cu76H6AorqCQghsuhi5n8lpXxFmdU39FB9vsKOMYRaBEKIg8BNwIeBLwAbpZRzBlrHYIhiRNcw4fFxryxXwUsI8QxaeL8rpbysxOqN+eLlQ6tFEPp7f4N2adyJFt5vSynPGe4xGKYOxr1gmPCsaW7dSmE9gZ2b1i8qqHPw0du/8omH/VnNSeoDsNoJ3QhDWXcwwsm6TwNvS6v4v+/2l68Eaw4RV8epHaFhMmEsXcNkYB063CsZPverJ7DXX/rKJPU1JYqID7ruYAghOoQQHwWajviN79LVykjoSmamdKKhEGPpGqYEa5pbu9A+3xzJTesX1Z3u/VgEmVXuPeeF8cMGg7F0DVOGdvqKiKuR7gpRbj9eNekO4FEp5VdymXOGqY0RXcNUIXQjqGQdHd6V9sG/O737IQnWzm4S1wHXooW4TUr5QxPtMLUx7gXDlENKKYALhRDvHOX9NgDvBj6Itog/D2wxcb5TCyO6himHlPJM4BHgWiHE02Ow/yp0dbSPAZ1o8b0zLNhjmOQY0TVMSaSU/wycEEJ8bAzHYAOvAT4BTE+qum/t9ZfeasLNJjdGdA1TknBSqx24TAhxfIzHYgHLdnvL/jdNogEsm2HGDBvGP2YizTAlEUI8CfwKeO84GIsSQmxPU1cRCi6YTr2TFtOY0jCV+TzwWynlV4QQPUNdqbjXGiPnBmjHdOqd9BhL1zBlEUIcBlqBt53kqhvCbLPi7LZT5ZSz4wzjH+PTNUxppJTLgB8AVw3UzDKc9LoWWLXVu/FLAU70LvG0ZLcZJidGdA1Tnr+//XMt+/wldVmqLiB0F6x273oJmAusAlYCy4HngK07vDUrs8QuA2vYRXIMUxfj0zVMaobif93rL42foGKmfqeW1ZI8iv5t/B7YgraE3yWEeLbcNk/3cRgmD8bSNUxqCks3qqCG1POL3O0twLTcY5u39gI/Yn9YBD2r3HsuMEVqDKcDY+kaJjuN9P2dW3bY0ucHwPHw8ZKP/RNQi3PxsQp7jxFcw+nCiK5hstNOJAxLYe8WQvw8usDm5tbXVtKz1aPy0gCnBeMuMJxGTMiYYbIzaBjWpvWLnlvqbn7dSvfe321av2ilSb01nE6MT9dgAKSULtABnCeE6Brj4RgmMcbSNRiAMEZ3PzBvrMdimNwY0TUY8uwBFo71IAyTGyO6BkOe3cCCsR6EYXJjohcMhpBnggse/2Nw4WvC5pLtmHq2htOAsXQNhpCHgtn/lKSuipEvZGMw9GEsXYOhD6sRrNwbU8/WcFowlq7BkKedvvbppp6t4fRgRNdgyGPq2RpOOyY5wmAwGEYRY+kaDAbDKGJE12AwGEYRI7oGg8EwihjRNRgMhlHEiK7BYDCMIkZ0DQaDYRQxomswGAyjiBFdg8FgGEWM6BoMBsMoYkTXYDAYRhEjugaDwTCKGNE1GAyGUcSIrsFgMIwi/z8qKs3L4VuYZAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXRU15Xo/++9NakklWYkIYEEkhjFPCPcNpjg2cZ2HOy4cew4QyfpjP16xf26+72Xfr/X/eukf91O8rozeDlO49iOp/YcPIABYwNCAgSIGUkgCc1jaazx3t8fpSqpSlUaQCDJ2p+1vIyqbt17qhB19j1nn30UXdd1hBBCCDFlqePdACGEEEKMLwkGhBBCiClOggEhhBBiipNgQAghhJjiJBgQQgghpjgJBoQQQogpToIBIYQQYoqTYEAIIYSY4iQYEEIIIaY4CQaEEEKIKU6CASGEEGKKk2BACCGEmOIkGBBCCCGmOAkGhBBCiClOggEhhBBiipNgQAghhJjiJBgQQgghpjgJBoQQQogpToIBIYQQYoqTYEAIIYSY4iQYEEIIIaY4CQaEEEKIKc443g0Qk0dpZScv7KuloqGHnLRotm/MABj02OJs2zi3VAghxGgouq7r490IMfGVVnbyo+fOouug6aAqwc/7H1MUePrJBRIQCCHEJCLTBGJEXthXGwgEwPd/Tdf7/ut/TNd9xwohhJg8ZJpAjEhFQ0+g0++nDDpO033HCiGEmDxkZECMSE5a9KCpgXBUxXesEEKIyUOCATEi2zdmoCj9uQKqEvyf/zFFgcc2ZYxfQ4UQQoyaJBCKEQtdTfDYpoxAjsDAxxZlSfKgEEJMJhIMCCGEEFOcTBMIIYQQU5wEA0IIIcQUJ8GAEEIIMcVJMCCEEEJMcRIMCCGEEFOcBANCCCHEFCfBgBBCCDHFSTAghBBCTHESDAghhBBTnAQDQgghxBQnwYAQQggxxUkwIIQQQkxxEgwIIYQQU5wEA0IIIcQUJ8GAEEIIMcVJMCCEEEJMcRIMCCGEEFOcBANCCCHEFCfBgBBCCDHFSTAghBBCTHESDAghhBBTnAQDQgghxBQnwYAQQggxxUkwIIQQQkxxEgwIIYQQU5wEA0IIIcQUJ8GAEEIIMcVJMCCEEEJMcRIMCCGEEFOcBANCCCHEFCfBgBBCCDHFSTAghBBCTHESDAghhBBTnAQDQgghxBQnwYAQQggxxUkwIIQQQkxxEgwIIYQQU5wEA0IIIcQUJ8GAEEIIMcVJMCCEEEJMcRIMCCGEEFOcBANCCCHEFCfBgBBCCDHFSTAghBBCTHESDAghhBBTnAQDQgghxBQnwYAQQggxxUkwIIQQQkxxEgwIIYQQU5wEA0IIIcQUJ8GAEEIIMcVJMCCEEEJMcRIMCCGEEFOcBANCCCHEFCfBgBBCCDHFSTAghBBCTHHG8W7ARFVa2ckL+2qpaOghJy2a7RszWJxtG+9mCTEi8vsrhBgNRdd1fbwbMVqRvujG6guwtLKTHz13Fl0HTQdVAUWBp59cIF+oYsKT318hxGhNumAg0hfd9+7K5v/urByTL8CndpznSLkdbcAnoyqwKjeenz4+b4zfkRBjS35/hRCjNelyBl7YVxvo8MH3f03T+fXOcjRND3pc133Hj1ZFQ0/QF6n/fOUNPdfYeiGuv0i/vxXy+yuEiGDSBQPhvuh0FFyaAR0l6PGr/QLMSYtGVUIf1TA4Gjl58iSapo36nELcKOF+f1XF97gQQoQz6YKBSF90cVbTmH0Bbt+YgaIQOJ+qgKqorJ/Rw5tvvslvf/tbzp8/zySbYRFThP/3F3xBq3/K7LFNGdd87tLKTp7acZ4v/ayEp3acp7Sy85rPKYQYf4af/OQnPxnvRoxGeqKFD483owA6/V9037pjJkUX7YMef+rBHFLjLaO6RlqCheU5cTR3uHG6NfJn2njqiznct3Epubm5XLlyhc8++4zy8nISExNJTEy8Du9UiKuTlmBhbprKsVMVRFljWZwdz1MP5rAo69qSB/35OrWtTrqdGnVtTj483szynDjSEkb3b0wIMbFMugRCGLya4LFNGSzKGryawP/4WNN1nYqKCvbs2UNtbS05OTls3ryZjIxrv/MSYixUVFTwhz/8ge9973skJSWNyTklMVGIz69JGQxMFLquc/bsWfbu3UtzczMLFixg06ZNTJs2bbybJqa44uJiXt5ZiGHWFi419I5JrYEv/ayE5k73oMdTbCZe+/Hya2nuDSG1F4SITIKBMaBpGidPnmTfvn10dHSwdOlSbrnlFhISEsa7aWKKevbV3bxUakNRlDGrNfCd357m7JXuQY8vmBHDr/4i/1qbfF1J7QUhhjbpEggnIlVVWbZsGd/97ne5/fbbuXjxIv/+7//O+++/T1dX13g3T0xBn1QYAMZkqW1ApNuGSXA7EW5J8jV/HkJ8jkg54jFkNBpZu3Yty5cvp7CwkIMHD1JSUsK6desoKCggKipqvJsoxtBEHnZu7jWN2VJbv6YO16gen0ik9oIQQ5Ng4Dowm83cfPPNrF69mgMHDnDo0CGKi4u56aabWLNmDSaTabybKK5R6LBza5edoxX2CTHs7PV6idbtOJkWdNN+rbUGctKiaemyo4ckEE6G+gWZiQaaO50MHAydLG0X4kaQaYLryGq18oUvfIHvf//7LFq0iD179vDLX/6S4uJivF6vrNmexCbysHN7ezvZallQrQxfzQH9mmoNbN+Y4XuT16F+wfXk9XpJ6T2JghJUO2QytF2IG0VGBm4Am83G3Xffzfr16/nkk0/YuXMn7+0v5TP7ImDi3VmK4U3kYeeWlhbilXb+8ZGZvFncQUVDD/GmXhK7jjEzfv5Vn3dxto0CWynnujNQYqZf1+W7Y+nAgQNo7RX8j/s38MEp13VfeizEZCTBwA2UlJTEAw88QEFBAX/9+7NouoZ/cEbTfX96YV+trNmeBHLSomntGrzmfiIMO7e2tvryVxaks27hdACcTie//OUB9u3bx9atW6/qvJqmYXbUclumxje/eddYNvm6aWxsZP/+/RQUFLBp5Ww2rRzvFgkxMck0wThIS0vDocYT+vFPlDtLMTx/yV//KPxEGnZuaWkhKSkJRelPILRYLNxyyy0cP36choaGqzpvVVUVuq6Tm5s7Vk29rjRN45133iEhIYGNGzeOd3OEmNAkGBgnspnM5LY428bTTy5g+ewYzDiYm6rw868tmBDDzq2trSQnJw96fOXKlSQlJbF79+6rOm9paSkAS5Ysuab23SiFhYXU1NSwdetWjEYZBBViKBIMjJNwmyFNlDtLMTKLs23865P5fCn7AptSL02IQAD6RwZCGQwGNm/eTFlZGRUVFaM+b2VlJQaDYUwrbF6vJNqWlhb27t3L2rVrmTlz5picU4jPMwkGxon/znJVbjwpNhOrcuMnzJ2lGJ158+ZRVlaGx+MZ76bgdrux2+1hRwYAFixYwIwZM9i1a9eod91sb28f0025/Mszj5Tbae50c6Tczo+eO3vNAYGu67zzzjvYbDZuvfXWMWqtEJ9vEgyMo8XZNn76+Dxe+/Fyfvr4PAkEJql58+bhdru5dOnSeDeFtrY2gIjBgKIobNmyhfr6+sCw/0g0NTXh9XrJzs4ek3bC9VueWVxcTFVVFffeey9ms3kMWnrjybJjcaNJMCDENZo2bRqJiYmcO3duXNtRWtnJP7xezUHPJn6xuzNiB5KVlcX8+fPZs2fPiEczTp48CVx7voCmaVRXV/Pxxx9TWtE05ssz29vb2b17NytXrmT27NnX1Nbxcr1GTIQYimTVCHGNFEVh3rx5nDp1Cl3Xg7L4bxR/B6JpOjpRHL/czY+eOxuxbsXmzZv51a9+RVFREQUFBcOev7y8HEVRRjT/HlqmeVtBChZnHRcvXuTixYv09vZitVqZFruO6g49qGzytSTR6rrOu+++i9VqZcuWLVd1jokg3IiJLDsW15sEA0KMgXnz5gWy12fMmHHDr+/vQPwd63AdSEpKCitXruTTTz9l+fLlWK3WsOf1d+wnqucTb8rmVFXXkEWxQss0t3S2U1zWxjLDYeamW1i5ciVz584lMzOT09Xd/ODZM/h2OlKuOYm2pKSEiooK/vzP/xyLxXJV55gIyidwQSvx+SXTBEKMgaysLKxWK+fPnx+X619NRcRbbrkFr9fLp59+Gvb5gcPVTqJocicMO1z9/N4raJoeaIsvOFFh5ma+9a1vsXnzZmbOnImqqizKimVD3ClmJ7ivOYm2o6ODjz76iGXLlpGXlzfq108Uuq4To3TiL/nsJ8uOxfUmwYAQY0BVVebOnTtuwcC0GC+j7UBiY2PZsGEDRUVFtLe3D3o+dLhaRxkywa++vp5Tl1oG7ZaoA9Ut7kHHNzU1Yey5wt9uTb+mJFpd13nvvfcwmUzcdttto379RFJYWEhydwmqosqyY3FDSTAgxBiZN28eTU1NtLa23tDrNjU1Edt6OGgjHn9gMFwHsn79eqxWK3v27Bn03EhHG3Rd59ChQzz77LMkmHpHXEzrwoULmEwmZs2aNWQbh1NaWsrFixe55557Ik53TAYVFRXs2rWLOzcs5Odfk2XH4saSnAEhxkhubi4Gg4Hz58+zfv3663ot/1x+eUM3RmczC202/vXeObz8WRPlDd3Q3cC9y6zDdiBms5mNGzfy3nvvsX79eqZPnx54bnaqlZZOV9CdvoLO7NT+Drezs5O33nqLiooK1q1bxz1zVvPXOy707W44dB7AxYsXycnJuabqgF1dXbz//vssWrSIefMmb3Jda2srr732Grm5uWzevBlVVSVZUNxQMjIgxBgxm83k5ORc96mCgXP5LZ0eGlzxfNI6H6PRxE8fn8frP17B19ZBY1nxiJYOLl++nJSUlEGFiBYlNOIb5O/fshh0ZhnL0XWds2fP8utf/5rGxka2b9/O7bffzrKcBJ5+cgHplg5iTd6Id7U9PT1UV1czd+7coPc12rX1O3fuRFVV7rzzzpF8dBOSy+XilVdeITo6mgcffBBVla9lcePJb50QY2jevHlUVVXR0zPyzO/RdoKhc/n+7ZIGzuWvXr2anp4eTp8+Pez1VVXlC1/4ApcuXaK8vByAhoYGKks/4b7ZdSTSQlwUrMqN5we3RtFUfoTf/va3vPrqq2RnZ/Ptb387aPOixdk27p7VwGPzqyPmAZSVlaHrOnPmzAl8BqNdW3/mzBnOnj3LXXfdRXT05Eyu03WdN998k/b2dh555JFJPc0hJjcJBoQYQ3PnzkXXdS5cuDCi46+mExzJXH5KSgq5ubkUFxcPul64wGPu3LlkZWWxa9cuPB4Pb7/9NsnJyaRZHSw1HuGV/7aEnz4+j9XzUomOjqahoYGFCxeybdu2sB1xbGwsnZ2R38PFixeZPn06NpsNl8vFr949F7QKYbhqhD09PezcuZP58+ezcOHCiNeZ6Pbv38+5c+d48MEHx3TPByFGS4IBIcaQzWYjMzNzxFMFV1OSd2ayiZGsHFi9ejU1NTXU1NQAQwceiqJw22230djYyBtvvEF9fT1bt26lrq4Oi8WC2Wzm008/5Xe/+x3x8fEsX76cM2fORBx5iI2NpaurK/DzwCDk2785xfMn4ninbhGP/+wT/vafn6GioXfQKoShlkZ+8MEHeL1e7rrrrnEp8jQWzp07x759+9i4ceOkzncQnw+SQCjEGJs3bx6ffvopHo9n2OS48zVdYe/yz9d289SO84Eqfts3ZrA424bH4yGm9TAK+YCvep+Cr+phaJLenDlzSEhIoKioiAceeGDYynaZmZnk5eVx9uxZ1q1bx/Tp0+ns7GT69Ok8//zzVFZWctNNN7Fx40ZUVcXr9fLmm28SHR1NTk5O0LX9wYCu65yq6goqRNTc6QLiwKPQ3WmgmlUkmR20uQn6LCKtQjh//jylpaXcf//92GyTM8O+sbGRN998kwULFnDzzTePd3OEkJEBIcba/Pnzcbvdw24TXFrZib3XG/Y5e48n7B38q6++irHnCg/kNbI6L4Foo4fMmN6wSXqqqrJ69WpOnz5Nd3f3sNMLmqZxqUXnhGcV/1Eczw9+ewK7nkBjYyNtbW08/vjjbN68GYPBgKIo3HfffcyePZtXXnmFurq6oPPGxsbi8XhwOp38YV8N2qAcByXwZ0VRmTYtBaUvQREir613OBz86U9/Ii8v75r3SRgvvb29vPzyyyQkJHD//fdP2pEN8fkiIwNCjIGB9fhnp1mJjs3i/PnzQdnyoV7YV4ui9K3CC/D9oKAMuoP/5ZunmGG/SEpKCt9+7B5UVWXXrl2cPn2aRVkbw15j+fLl7N27l6NHj5KTlkZrlz3i3fer7x9mT1MeoKA7FU7VuoB1TDM5+PHd+cyalRJ0boPBwLZt29ixYwcvvvgiX/va1wJbHMfGxgJw7NgxSis0dD3y7oGaDs0dbp5+cgH/Z8dBepR4FmYl8timDBZl2YI+2xilk1RnFF+7555J2YlqmsZ//dd/4XA4eOyxxybtrori80dGBoS4RqFz8UfLO/ikfSHPHbUOuUKgoqEnJBAA/x1z6MOaDlUtbiwWC08++WRg+VlaWhp2ux2HwxG2bVarlcWLF3PkyBEevTkdRfHVCoDgu+/W1lZeK2rD92z/XTsoNDms/M2LFWHfg9ls5tFHH8VisfDCCy/Q3d2N1+vlypUrAOzatQuz3hPmHfXzBySLs21sSDjPD9Z3BVYhhH62lR1mjrpWUdUe/qtrom/9u3v3bioqKnjooYcCgZMQE4GMDAhxjcLNxQO0e23Q6aals50j5Xa+e4uJBZlWLBYLFouFGUlGWrvcIUP3kTpNjRg62b59e9Dys7S0NMA3B52VlRX2lWvWrKGkpARTbw1PP7mA/3jnLJcaHSzNTeUrmzLJnxnLjh076NFzByXxBa6uwf948SImoxKUwwAQExPD9u3befbZZ/nnX73Mhd4ZtLutxLCKdHMLHZ64kLP53+PwmxMNXkapBh4PLcoTuklSa5edoxX2iDs33mgnT57k0KFD3H777YNyLIQYbxIMCHGNws3FM6BT9dX01/jDvlqWGo/0H6EnoOtr+35SGdhJBvN10bMMZfzfHVU4phVQ266RkxbNozeno6oqDQ0NEYOB9PR0srKyKCoq4oknFvK9W2P43WuH0PXb+IeXy0gwO7C12zHpPTgwh7m+r2X2Xl8Bo+ZOO0VldhZkxvDtO7NYkGnl4sWLtHnjKezO72utggszbS7/1ELwOY14SbBZyUmLDkwHgG876IGFj0azAdNE3vq3traWd999l6VLl7J27drhXyDEDSbBgJjUBs4nh96x3ig5adGD5uIHU1FtGdy19Tu89Gk9lc1OMhOM3BPfw2dn2ujGhlex4NUHd8QKGssMRSxatJgXTkSjVzsAJdApr4ibT0NDw5BtXLNmDa+//joNDQ1U2w0c965Fqej0zdejoLAWK92jet9na3xbEK+LOUGUq55L6nqCkwP9AU7oe1JQ8fCP98cMmVMBvs+2pbM9aMQi0iqDq9m58Ubo6urilVdeIS0tjXsmaa6D+PyTYEBMWmM9LDxcYBHp+e0bMzhaYUeFiAGBAqTGm/nvL10KtNfe4+JMrZGlhjLilXYaU+/lXJ1n0LRBnNpFoqGDvWUq4dJ8jnVkMa3qEvcM8d7mz5+PzWajqKiIj2pnojMwcVFFR8NBDOFGBYaiA6e6s1lprKPVaQkzzaAQGhCoCqRY3Bw8eHDYYOCmWS6Ky/S+c6hDTivMCrOXwnhv/ev1enn11VfRNI2HH374mvZhEOJ6kgRCMWldTcGeSIarBDjU84uzbTz95AJW5sSh4GXwvL/ue6SvfQPbq+k6p7yrOOTZRGePp++Vwa/v0OJp88bR2K1GzCg40hAfNLweymAwsGLFCk6cOMHFmk4G/9NX+1qphXn1UBS68OUExCqdYV6v9R3lb5uOosCX/yyNysrKQKJhOPX19Zz87B2WGYrIS9aH3MFP13VyjBWAPqG2/t25cye1tbVs27Zt0tZEEFODBANi0hrLYeHhAovhnl+cbeNnT8zHatAINyxuwsWlurawuQVujDiJ4kq7HmF1gU41c4k3RsrKV+jUYmhpaYn4/srLyzl79ixer5cEUy+hnbaCTiwdIWsZhpz3CFAVA/XJd9Opx/W1139uDQWYZzjDslkxWHCQamrn519bwF03LSQpKYmDBw8Gt6MvZ6C7u5uXX34Zo9FIRqyL//jOSl778fKIex0cOnSIxvJivrfRMmG2/j1y5AjHjh3j7rvvZubMmePSBiFGSsasxKQVfq5eJ97US29v76g2fRkusIj0/JmqNkpLS8nIyCAqKoo4Yw89XhvBcbZGLHbQwEEyg2Nwfxc8eEjd/3iHN4Z8QwlNrAtzjI6GwvZfnGHujDg2L5vOwXPtVDT0kJloYKZ+ga6608yYMYOY6fn0XvHP6w/cZlhhS46TS5cOU+pdgSdCImG49nl1ONfgASyB5404iVe7yFJ8ezRcuXIFnWg8Hi8ejxdVVVm/fj1/+tOfaG1tJSkpqf8Kus5rr72G0+nE6XRyxx13DLke/+LFi+zatYsNGzbwhc3LeSDikUMby/yTyspK3n//fVavXs3y5cuvskVC3DiGn/zkJz8Z70YIcTXSEy18eLw50K35h4dzvEc5UbQft9tNWloaJpNp2HMdLeugrs0ZdC+sKpA/08aWZSkcOttMvd1NcEeooXs97DrdyweFFZQc2o1Na6ZBz+w7Sgms2p9vKCXZZKfOm9n32khz8+ECAp1kUxczKcNmUWj0JA041jcSoWHAi4nGDg+FF9qpaXXQ49JosLu42BHH5pXZzF28hmcOKTh0M/0BicLcDCs3p9XQermEGKObK9osvGHvEwZ+OkrIz2rQ42lRvSxSinDoFo5719GtReHFRC9R7DrRyoqcOBbNmcGxY8fo7e0N5A4UFRXR0dFBXV0d06dPR1EU7r///ojb+jY2NvLiiy+Sm5vLfffdx6mqLv7t7cs881E1R8s6SE+0kJZgifBZ9/NPA9W2Oul2atS1OfnweDPLc+JG9PqB7HY7zz//PBkZGbIlsZg0JBgQk1ZagoXlOXE0d7hxujXyZ9r4my/mcP+ty/F6vRQVFXH48GFcLhfp6elDBgWhgQVoKAo89cUczHovRw/sptqZiqooQV21vxN2YKVBn8mKGTox3Wdx6FFoGIhX7Cwyn0HTNS55cnFhQsdA5GBgIF9nrwDzlJNMT44mLcaNuacSpx4Fqgl0L1rQ+cL9X6estotdp7vwYiC049Y664jrOOr7HNLTafEm0eEKbaOOERe56jncuhkXUQPOMXhaxOXR+VJBOrsvJ+BUYkIKGem0dLi5fUUqHo+HoqIiVq5cidlsZv/+/bS1tVFQUMCpU6e44447mD59ethPp6enh+eff56YmBgeffRRztb0XnWH/m9vX6a21RkY/fH/HTd3uNmyLGWolwK+YOLf3r7Mbz+q5oPCMmIMLv7iiYexWEYXSAgxXiQYEJNaWoKFLctS2LZhOluWpZAa79thLzc3lxUrVgSCgsLCQpxOJ2lpaWGHnEMDi8w4L1nOw2TaPOzatYsYo5vHt27gSqsHe8/AjP/gTq69RyPXUs3chC7WZ7lJ1qpo79U57l1LL9HogTvuoYIB/7iCRiKtzDeUkmjooL4niqP2WdTo2Zhx8WfTW7jcGYuX0CAnTOdMVEjQ0P+choFsYxXf+ta3uPnmm0mOVfjkbBf9XaJv9CGGTlr0NNyYI5zLT2dWksrDt87ltSPdeAaNMih09bp45M8ySU1NpbCwEFVVUVWV4uJi0tLS6O3txWw2R9yV0Ov18sc//pGOjg6+8pWv0N3dzU//q4yWbj0QeIymQ//th1X0uILzKHTA6dbYtiF8MOI3cFShx6nR5TFxxZXO2nnJox5VEGK8SM6A+NwIN+e7ZcsWNmzYwKFDhygqKqKoqIjVq1dTUFBATExM0OsXZ9uCitN88EE7n376KVarlW9+85tU2w1cqKtC1/t3EAimYvdE48KFy+Wira0NgMveVf4CwH3HjWxUwISbWYYyyrzz6fLGB91du7Dwfq2/gwu3ln+gSMWMfM/FKp1s2rSJ1NRUAByN51lmOMtlbx5OQwIGbxedxNNJPJFrBwRf6wcP5mOz+QIIN6FLDjXU3haKi4tZvXo1K1asoKioiOLiYkwmE4mJiZw7d45HHnkk7BC72+3m9ddfp6qqiszMTJ555hkcDgeXPZvQAyMWfVcaQUJpS0sLRlczEB/0vka6LHE0VRKFmKgkGBCfC8PVHNi8eTPr16+nsLCQw4cPU1xczKpVqygoKAhsqjNQd3c35eXlmEwment7qa6u5vmjJjRNJ1LJXgWd1BgNCxacTmf/uQhNKBwJDQu9lHjXBc4eerV+/nX4kRL+wr2+/7mc+F4KCu4EoL29neLiYuIVD0uNR1i8eDH/WeKvPxA8ChL+nAoGXOzYc4XLTU48GAcsl+yf9rgpy8HOnTvp6OhgxYoVHD58GKvVis1mo7q6mhkzZgTyCHp6eqiurqaqqoqqqipqamrQdR2j0YjFYmH9+vU4Lekc+7gTV8gukKoC0+LNYbeDBt8qi9dff535MWk0uRN8n7w+umWJZXXht6Ee72JHQoyGBAPic2G4UrT9owaJZKdvZXFCE8eOHQoKCvzrwHt7e3nhhRfo7e3lG9/4BgcOHOCNN96g1HsrOpGGfX1DzLnmS0SpUYFgQFF8naMv036kBX1CO9rhXufvnMNX+1PQ+moIhFvFoFPrTAws6Xv//fexWCx4PL7Swy1uG53EhT1v+OvpeDFxtKKj73q+DtaIB6NBId7YTTYXmTs9i6T8LezatYvS0lIURcFoNOJ2u+nu7mb58uW89957VFVV0dzcjF1P4Ioyj259PhZvOrfO0fnO9rtQVTUQCA5etqmh6wrna3yVFYOCxK/Op6vuNLt27SI3N5cvfvGLfLHBHTSyNLBMcji9vb3s27cPejQghasZVRBiopBgQIyrsVrONdTSwMGjBm6OK1b++c+/TlftKQoLCzly5AgrVqxg1apVvPXWW9jtdp544gliY2PRNF9HH6134Az50vcVuZbx5AMAACAASURBVNFJoIVstQylsx37wGd1HRcjX+Lo47uDdhDNyAMI/3GhHbRGnNpJh2brCwgGd+rNvSaee+45Fi5cyIULF7jnnnt47733UBSFg9VRhOc/V6SRh+ApEQ9GNA0eXBXP2cNNlJW5+OEPf8iVK1c4e/YsVquVKx0GLnvz6MbG0X29mEwxuFhBcpyRqlZfsSJNh15SeKtc4ZbqbhZn2wKBYGiNhiijjtnbSaceFxjN8QeJ//racWb37KWgoIDNmzejqiqLs6NGNKzv9Xo5cuQI+/btQ9M07l95E78/4h//GH7zJSEmIkUfqmyZENdRaCft/xK9mnLCT+04T3GZPaRMjs6y7GjMJjNHyoPrEagKrMqN56ePz8PhcHD48GEKCwtxOBwYDAa2bduGy+Xivffew+l0YjQaaTbmcrxrNgM7XgVYZigkNaoXp9PJnXfeydKlS3n55ZdpaWkhIyOD354e+Jpwwt9h9xttLfvgjtqICys99BDbt2QwOFhIMbSxSCkCwGKxMGvxLbxa2EoPtr5kweGmOIbLWeh/F8tmx5BY8waappGcnBwolGTXEzjuXRuSWxGZqsC8jBhsViPF5fYwxZogxujB7fEMWPnQz4KDn30pgSVLlgx7LT9d17l48SIfffQRLS0trFixgk2bNnHmzBle3lkIM2+lusU9olEFISYaGRkQ42Ysd5krmJ9AUZl90OOOmmNUGBeEHTU4V92O3W4nPj6egoICKioqqKmpwWAw8Mc//jFwbH5+PtmLb+FvXrxEaHW+/KiLfOfhu5k9ezbPPfccp06dYvXq1eTn57Nz507mrb4N9cxFNH2oOf3wc+/+LP7gY0YSJAy8Y9fxYKGTgSsoNHyftG/+Psd4Cfqm2juVZJ4pVNADxZGGykcYrh3BdKDkUheJrGCWoQxaWkhNTeXuu+/mX95vRb/iYKS5FZru2yhJVfwjAoNHRGKUTswxZq50+99vf0vmzYwfVSDQ2NjIRx99RHl5ObNmzeKhhx4iPT0dXdc5fPgwBYsyeOihRSM+nxATjQQDYtxEGtq/WNs56nMdPNeOogQPFSuKgiMmB4O9CYWUoMQ/BR2jq4Wf//znZGRk4HA4sNvtLFmyhBMnTgRer+s6HR0dPP36CTQ9ltDh70rHNOrr68nLy2Pjxo289NJLXLp0iaysLNq1eP56RxmaPrAjD19UKHyHqmLEiZWeQP1/BQ1t0N394POpePqOG9heDRt2jHjoxkYMncwylGGjEy++u/PSrvmBLYj7XzcwIBgqIXFge8Id4ztHuzKN495kVpqP8N+/9jXMZjNVTXWMLsmyrxqEHtrOvkJPisrff2U9Xq+Xv/rPC+h9AZDvOYVv3JEzoqt0d3ezb98+jh49SmJiIg8//DDz5s0LLHe8cOECra2tPPDA1dY9vDYTYddO8fkgwYAYN+HKCSvo0NPAhx9+yK233jqi6oHgCyxCh4p1HWq6orBYotCdGgM7NFVV+PvH1qF2Z7Jr1y66u31JZiUlJaiqyvz583E4HFRWVlJdXU2LJ49wnVUnCbz5cRE5OTnk5eWRmZnJvn37eOKJJ6hmbt/mQaEd1kBDJf9p2OhgqfEI4OusfasLhk/mGxwwAKg4sbLSuBe7nsBlbx6nvcuJ8XaSojZQpi0MCQQGnt8bOMfw/KMa4dvn/3uqcM/mypUrlJeX9/39JIS5djiRgg0FpW/65yubMlmUZUPTNO7OusKBqigcajz5s1N4/NbMYYfw/cWQ9u/fD8CWLVtYs2YNBoMh6LjDhw+TmZnJjBkzRtDusTXWu3aKqU2KDolxE66csKoqbF9r4fSxg5w8eZK0tDQSEhKGPVe4csKgo+ng8hK4kzPiIoZOpifHsvtUB8UX29B6molSHL7njUa8Xi/Nzc309PSQl5fH3XffzcmqXlp7w3WUoJtsdF/6jBUrVpCQkMCBAwfIysrinVIPbs0QcnSkzjb0Z98Q/nxDKU6iOO9dxGU9L8LrQzvH8O0EnTjasSo9gSJI/uqJrXrqkK/rfy7SMcGtXzAjluYO15Dv2YuBtlNvc6qqi0o9N+S4yCMQCjoGvOioQc+rCqzOjednj88nNd6Cw+Hgtddeo77yHOlqLYsS2/j7v7h7yEJAuq5z7tw5XnnlFc6cOcOyZct45JFHyMnJGVTzoL6+nt27d3PbbbcFajQM5K9KONrSyCN1rVUThRhIggExbsKVE37qwRw2r84jPz+fy5cvs3//frq7u5k1a9agu7KBX7ZGo0JLp9s3VRB01MDOQmF6goEWh4W2Hp1el0aH20iDPoNEpYUoxUFcXBzTp0/HZrPhdrupq6vjxIkT6I4W6vUZhOvUurwWGnosdDRVsuXm1ZSVlVFVVUU702jrJeQ1ke9qAWy0AwpxtDPfUAoQ6LgZsurfyObtTbho1VNwEsXgIkgjWcI4HN/YgsHbTZd76CqF0XQxw1jLOU9+38qJ8Esfw02J+K4ysACS73P98f2zSEuMoqWlheeff57m5ma2bdtGaWkpDoeD5ORk0tLSwraovr6eN954gwMHDpCZmckjjzzCsmXLIo5Offzxx/T09HDPPfcMChTGcq+DcFwuF//xpwqc3uDrjrRqohChZJpAjKvQqn9+ycnJPPHEExQVFfHxxx9z8eJF7rvvPnJyfHO94ZYLgi/DvKnDhb3Hgzu4/gyaDnV2CL4DVdHRuOzNY6nxCO3t7bjdbuLi4ny7/MXE4Ha7aW1tpbzSToceXKXO3xm16sm8cga8L77P6qVL2blzJ3nToqlgVmC+OjhMCZ8nYMTDSuPewM8nPKHVC0Pp+OoIBN8lhzsOFDrxj7IMP9UQ/NxwfK2MpgsDHuq7hx/y92JE07QIRZkiBSiBcaSgn60mBaO7jb974SzZKWZiWg8zMx6+/vWvk5ycjMFgICUlhY8//pj58+djMpkC8+3l9d3Eql0kdZeQO83Io48+ypw5c4Zse3d3N6WlpWzcuHFQkArwh301Y5YcG6q6upq33noLsze3Lxemn9Q3EFdLggExYSmKwtq1a5k7dy7vvPMOf/jDH1i+fDm33XZb2JUICjq9Xa08MKOadyumUe8NLZajoek6vo2CBlLRrKl8/9vfx2azYTSG/2exsqKd//afF9B1fxXCgZ2nio7OB+cNNJXvRFEUnE3nyVN7uKjlE3oHG+Ed93WM/e9/JNUL9VEt/YvUhnArFwa+njCPD+QrrtRLTN/RQwUXvud7icauJ+AdtsTx4NcOOpcbFBLQXQqna10orGDbtjySk5MBMBgM5ObmBipQxs9c6itU1FdRsgUL1cp6Hr9rHnNmxw/bguLiYlRVZdGiRdTU1NDc3ExLS0vg/ydr89GuojTyUDweD/v27ePgwYNkZmbyVw8t4X+9Xjtoaa7UNxBXQ4IBMeElJibyla98haNHj7Jr1y7Kysq44PizQSsRdBQaOhVUVWVTnsYrZ/pS8/oCBYBYOvsq6gUvNTO5WqivjyUxMTFiO5blJPDzry3ghX21fWvbB3dKnSRg1xOIpx2AZi2NwXeyvr0OQ9f8K+jE0BlI7uvB1pc5MHSnOvpSxOGz/MM/pkV4LvQ8+oANk0Y67UBfbYHh8xCGbu/AqQMAFUWBVw82s3KOLxgwGo1ERUWxatUqPv30UypjzXi10CAJXtpfz9KQYEDTNNrb2wOdfVNTEydOnMBgMPCLX/wicJzNZiMlJYWsrCyy3BbKmoLDrmu5a6+vr+ett96iqamJTZs2sWHDBlRV5em4+FFVTRQiEik6JCYVu93Ou+++yxvnE2kPs1xwVZ4vgQwGL7u6aZaTvXv3BhW38S81u292Le1VJ1i+fDl33HFH2J0NB3pqx/mwdQ1AJ5HmwAqAg55NYYveGHChBer296/5z1NPU6blBz0+ss51LAoXhetkw71+YK2FgdMfo+vQfcsfB26pPLLXBV8r8rWTbSZe//FySis7+X/+8wAOQwLZyRZMDfs57V0e9u8lMVrlf95ppKWlJdD5t7a24vX65pyMRiPR0dF0dHSwatUqsrKySE5OJjk5OWi74rcPN/Dz9yrpX+4Iqgo//9qCUXXWmqZx4MAB9u3bR0pKCg888ADp6ekjfr0QIyXBgJh0dF3nzY+P8e+fuAN3lYoC6Br35zTwncfuHjTU73A4ePbZZwHoNaVx6Ep0YK39tvVJbLtjLcePH+eDDz7AZrPx4IMPkpmZGbENpZWdfP/Zs2GfM+LERgfdfXf2HsyE60znqKep1zIDNQSi6MaFNWyVwP6RBBhdp9t/veGH7kdOwUsCrbSTNEy+QqRrDxdARB7tiKaL6UnRVLe6iaETBxZ6sRH6GadFu/i7Ly/lR78/N2AUoD+3oYfYQa/xB3JxcXEkJyeTkpIS9P+4uDieeeYZ4uLiePTRR8O2fOBeCQO/XX90bzb3rQmfvBhOS0sLb731FjU1NRQUFLBx48aIU1hCXCsJBsSkdfhMPf/+zjkau1XSbToPrIzj1KE/kZ2dzcMPPxy4u9c0jZdeeomamhq+8Y1vkJCQwL59+/j0008D58rJyWHr1q243W7eeOMN6uvrueWWW7jpppvCbqOr6zqP/vQA9d0mQjvu4CS3yHfXCYZO7N7YAaMAQ3WQ+oAOLNIxwxntSMHQ51puKIx4hx3+mqHXvbqAwIiTZeYTlLtm040NL4YwARTYaMNmNVHbG7pSIVKtB4Unb07k4VuyI44MXb58mR07drB9+3Zyc3PDHvPUjvNDlr8ejq7rFBcXs2vXLuLi4rj//vuZOXPmsK8T4lrI0kIxac2YFssDG7JZmtJBR9kntNZfYt26dZw6dYpLly6xYMECjEZjYGe8L3/5y2RkZKAoCrNnz8ZqtVJWVoaqqjidTg4fPkx6ejq33XYbuq7zySefcPnyZWbPnk1UVH+HV3q5g7/9/VHqOvS+Ye6Bd7v989Y+kbPinbq/QuDAYyPN/Su4AyWFr7YjVyL8efC1RqJen4GZ3jAjH6HXHGplwFDtCb+0UMNArTcDR1+dhMgjEwpdHgMaoUsDw13XN5RvMlm4Y2Xku/cPPvgAVVW57bbbArUrQj3zUTXdTi3osZEu+bPb7bz22msUFxezYsUKtm3bRlJS0pCvEWIsSDAgJjVFUUhLS2Pp0qU0NTVx9OhRsrKyaGho4Pz582iaxt69e7n99ttZvHhx0GtnzJhBSUkJDocDr9dLeno6RUVFtLS0cOuttzJ37lyOHz9OYWEhcXFxpKWlUVrZyQ+fO0trr9LXyQxOQhvZsj1/auBoVwJc6x39UPkHQ49MhOtEPUFbOg+92iByTsJI3lO4zzh4eWHo5xtHOy4sIQHbwPMNvu5QHXZrays7d+5k8+bNZGREztgPVwBLVSB/pi1iMSBd1zl58iR//OMfcTqdbNu2jbVr14ZdtijE9SDBgPhcMJvN5OfnM23aNI4fP46u6/T09HD+/HkWLlwY8U5OURTKy8tJSkqioaGBnJwcqqqqOHbsGHl5eWzevJnW1lY++eQTWltbeaGwp68SYeidPwN+Hm69vq+bsOAMO7wd/jVDGc1ywKGmCoYamYh0/MA/DzeqMHgFwPDvL9wxkR7rXwGh4Kve2KRP7yvNHE5we4frsPft20dbWxtbt24dspP2V9b0l6L2L/l76sEcUuMHFxzq7u7mzTff5LPPPiM/P58vf/nLYSsaCnE9jSaNV4gJLz8/n7/8y79k1qxZuN2+QkRVVVW0traGPX7ZsmUoikJHRwd33nknly9fJjExkeTkZF566SV2797NPffcw4MPPsiZM2eobvUw/D+b/kS14Mf6WXDgxHpV7zHYcKsIwj0+miRCf9UAjfDnHWoaYCijuX7odcM/ZsCDghf/SoVT3hV9R4Vrt/999WVs9HXYkdboOxwOSkpKWLly5bD7ZSzOtvGPj2STSDNmHCzMMEVcRXDu3Dl+9atfUVVVxbZt23jggQewWsfi90KI0ZFgQHzumM1murq6iIqKwmq10t3dzTPPPENdXd2gY6OiosjLy8PtdhMbG8tXv/pVuru7aWpqYu3atZw8eZLf/OY31NbW4vV6iTa4CN85DfVzKGVAIHAtw/7DjUBEupMfzT97pe9K/jvh8cg3Hm5kwNcmL8a+1SUGvJhwY+nLZ+g/ZqC5060szY7GjIOcJO+Qy/5KSkrwer2sXr16RC1OMvo2mCow7uWHW+IGndfhcPDWW2/xyiuvYErOoz75Lv7nuw6e2nGe0srR79opxLWSYEBMOqWVnTy14zxf+lnJoC9PXdd59913aWho4LHHHuN73/seCxcuxOVy8eyzz3L27ODlgOvXrwfg4MGDzJgxg29+85ukpaVRVFTE6tWr0XWdwsJCMjMzsVjCZc6H66wi3UkP9bpQQ73+as49kiqIkV7jP2e4Of+xEmnkYTgDP+9IiZuD/45au7w8/fXF/NVNvczu2cuspPDX0jSNw4cPs2jRImy2kdUIqKurC9QdCF2wVVFRwa9//WvOnTvH4g338l5lJscvd9Pc6eZIuZ0fPXdWAgJxw8miVTGpDLdt66FDhzh58iQPPvhgIMnroYceYsGCBfz+v/bydy9V4DC2YzKZURSFeRkxbL9lOtHR0dTU1NDW1kZiYiLbt29nz549HDhwAIDp06dTU1NDq2cew3dQGkY0PEPsJzC6pLlIz/mHy0eS8DfwfCOZ3490jpG270byBwFDrWgYnB/grwZ48803s+/oJb73mxK6tFhy0qLZvjEjsA3wuXPnsNvtrFu3bsQtqq+vJzU1lVNVnfx8VwcNb5QwKzWKudYr1J47yOzZs9m6dSv/+FYdut5xXfYwEGI0JBgQE1ZoBcHtGzPC7kng//L8xgYDu3fvZsOGDRA3i6d2nA+8tmB+CiWeNWjo4FHo9XgAheJyXzDx2NLVXC79hCNHjrBlyxZUVSU9PR1FUVAUhZ6eHl/SmCdSRzoweU3pm2MfaSd9tSLd5Y/kjv1aA4Hr4WqvN9oRFt/W1ncs8s39lzV6KHIsR+vVAfegALOwsJDs7GymTx/5ToB1dXV0xuZT4rVBrQeA5k4XR7Hx+IqNLMq2sXv3bk6Wp6LpwUmF17qHgRBXQ4oOiQkpdATAn+AVG2XE3uMZdHyM0cN6416ys7NZctO9/NXvzwdeqyjBleBCKQosmWklsfYNeoyp6JmbuFDbicHRyOa5Cg9sXs7vfvc7vF4vReqd9LginUnHiIulpuNUuHNoI4Xr26GOZlTgehsqQBpP4VdCpJi7yVHP4ZhWwNlaF25v8C+IokBclBFV1aC7gSe3ZHHPzcFLUyPp7e3l7376DCXe9YRbTplIM8tMR8nIyKCwYyGX2o1XXaBIiLEiwYCYkCJVcYs2K/S49JBNijQSaWGp8QiqqnJOLaDOEYse8iU8VMdkxsFi00mOuVfhyzH33XUrQIHtJGZHHWazmaLuxbSRTKR0GyWQutY7xHbBkYxk3X1oSd+J1AGPtOzx1T53Le0JFmc10NnrCawpGO48BlUJjBRE4h/JulDTQVevI2Ixpnirwst/tZioqKiIQe9o9zAQ4lrJNIGYkCoaegbtSqjp4HA60AMV5fo3+JllKPMdo2k0u0whgQAM/YWvEUMnFe7ZIZ2Dgo5OYecC4oy5OBwWjHT1PRe+I9ZRcRGFK6gYT2ji3nBz20MdF7q2fyIZLo9hoGvt9If7LIdKltTRNA1FUYYcMernOy7SPL7X62Xv0Uv8v++1oOv+EDJyVcZ5mXGBipaLs208/eQC2XlQjDsJBsSEUFrZya8/qKKszjdXajaoYb7KNeLVLm5boHKmczrVLW7ijE6Sukp45O4CXC4XhYWFxNo7adMtYQKCgfo7CwW4I9/Ih5Up0OUNOc53r9/m8e9B4LvbN+LAE6jJH66jD239wM5pqI5wtNn+4V4/Fga2dyxHNoZ6fqTv2x+yeQcseVSCnhuu9oHT6UBjcAGgSAbO4+u6TkNDAxUVFZSXl1NVVcVRxzK0oBGjyJ9BaC2Dxdk2mRIQ406mCcS4K63s5Ie/OztoJAD6uyNV8X0JrzIfIUZrRlEUUlNTaWhoYMuWLRQUFADgdrt5eWchvz/iHx0YuuOJw06u4SzxSjslWgF2LW6I1wS/tr+FIzk23JK8iXZnH+pq7t6v9r2NZoohdLnjwNcPXF4YXpKpG93dE2a6x3feKBM43INXH2TFOVkbe5qWlhY8nuC8lUhbVYfatiGNb9+RPexxQtxoMjIgxt0L+2rDBgKgYzFqmI0GspJNPLYxg1VzV3P8+HH27NlDQ0MDAMXFxVitVpYsWYLJZOKxrX/G3Dn1/Oq989R1qn0b/ISvBWDATbzSDvimGEZmNHfMww31T1RXO4x/Na+JNKoSOuIy8M/h/j51BgcLg6+jKjA70cmRNtDRCN3jwOH2/6T3BZQaug6JXcdo7LETHR1NWloamqbR0NCAoijEerto1c0MFYgowOUGxzCfhRDjQ0YGxLj70s9KaO50h33OojgpMO4NFG6xWCwkJSXR3NyM2WzGarXS3NwMgNFoZNmyZWzYsIGEBN9w/p4j5fyft5sjJooZcXKTcQ8An3luDdl4Z7QmQvb8ZDGSPIpwgUCkY8OdN9JojG/Zp5VOerENeNxPw4YdIx56lDiSo9zcucjE7evnY7FY2L9/PyUlJX05B778A7ueyHHv2mETElNsJl778fIh2i/E+JCRATHuctKiae60h3lGJ0bpRNd1jEYjycnJWK1W6urqAsO03d3dACiKgsfj4ciRIxw5coSkpCTWrl3L+2dsQySK6Xgw06Um4/V6+7K/rzb5TQKB0RlJQuXA50by2YZOH0QKOFRA7wsEwp1XxYWVf3s8g7y8PHRdp7Kykvfee4/q6upAYOqvQbFmzRo2b97M/uNV/ObDalpc0WHbPLDQkRATjYwMiHEXOWdAZ7mhkI0rZpOcnExlZSXl5eVomobBYGDGjBmkp6cHSsS2tLRQWVlJW1tb4At7+Llc37pvr2KiQ4/n6oe5xzMQGO/rX62xXkYYaXRhdNdQ0EmP6mSRUkR2djZVVVW4XL7iEomJicTFxVFVVUVmZib33nsvNTU1FBUVUV9fj8VioUtNptm2jvO1vYFzypJBMdFJMCDGzcAKg9PizPS4vNS2OgHIS4/m23fOpL3qBHv27CE/P5/p06eze/duNm7ciMViobKyksrKSnp7e1FVlczMTLKzs8nOzqa7u5sDBw6wuy57yLoAAAZcePGvFrga/nnqyb7Vx40MKsZy+eHYBgKgs8xwOJBLoqoq+fn5LF26lI8++ojm5mbWr1+PruuUlJTQ29vLnDlzWLNmDbt37yYjI4P77rtvUAVNWTIoJjIJBsS4iFRs5eknF7AoKxaPx4Pb7cbtdnPu3Dk++ugjNE1jzpw5rFixIvCcy+Wivb2d5uZm2tra6OjoCEwhmEwmml0xfXO5kVYWjGZlgP/4wfPLoy8wNNVd78BjuBUJhDyvo6CRqLQyL7oGi9O3w2VMTAwej4fFixdz9OhREhISiI+Pp7KyErPZzLJly1izZg1JSUl4vV7+6Z/+idtvv501a9Zcx/cmxNiTYEDcULquY7fb+buXyjlb5xlUJTBJbWGJWjzi8xmNRkwmU+A/o9GXBtPV1RXIJ7DrCRz3rhmwJn1Qqxh5IOD/vxr4WcWDhnGE5/i8mYhTFMMFeKFJhr7CVf7RAEVRWLx4MTU1NdjtdnRdx+v1EhUVhcPhYNq0aaxZs4YlS5ZgNpsDZ62rq+OZZ57hySefZObMmdfzDQox5iSBUFw3Ho+HxsZG6uvraWhooKGhgfr6epxOJ2WeTeiD5vIVPKZk7r3r3kDnrus6H374IQB33XUXe/bsoaWlhXvvvZfFixcHMrqbmpq4fPkyly9fpqKiAqfTN92QlZVFeno69rMal9rUCIWIIi0VHJzNbqEHJ9FBz03dQADG530PtVJgpJUJ+4834WGR4WhgWkDXdU6ePInFYgmqJ+ByubjrrrtYtWoVitJ/fv90wLkrdgyeVTS7YpBQQEw2MjIgxkRXV1egs/f/v7m5OZDIl5ycTHp6OmlpaaSnp/P/7erlQl3wmuvQDVp0Xefll1+msrKSr3/966SkpOB2u3n77bc5ffo0c+bMwWg0UllZSU9PD6qqkpqaSlNTE8nJyTz++ONER/uyt/3TEt6wpQQi3UlGKmk7VTv+cMZjZCBcMDDaQKCfGQffX9eJoigUFxdjMplwu8MvdVUUhVmzZpGdnU1qaiqtHhv/6/X+nTQVdNQR7GMgxEQjwYAYFU3TaGlpob6+PuiOv6vLV7PfbDaTlpYW6PTT0tJITU0NGk4Nv3pAR1UUfnBPNgfOtlPR0EO8sZe4jmK+9eidJCUlcenSJSorK7l8+XJgCsBqtRI/cynHW5Ko6wCTq5lF8Y18+e71qKqKx+PxLRv0eChr9PBqcTeNvf5aAv0dSH+BmdHMM4vJJXyugBEXBnRSor1keM8S420CCEwLhP4ZfEmFmqZxwrNqUIKqqsDSWTH861cXBo0gCDGRSTAgInI4HEHD+w0NDTQ2NgaGTuPj44M6/vT0dBITE4f9Agy3IyHoxJucdLgtfT8NnMstIl5pC3suXz6Av9iLSuj8b6TXXPbm0UVcX3VCkE5+qgg3peDPARn+dydUpKWrZhzcGnuI1NRUpk2bRmpqaiAwtlqtQceGrjrYvjFDRhXEDSfBwBQw3JeNP6lv4N1+fX097e2+L0SDwcC0adOChvnT0tIGfamNVKSKgyoaOv7tgwOtI8PaxU3ZLo41JdLYrZIRr3D7QhNz0838fFcnF5thYGeuALFRKigKCr4KcVZvK7PUclKtvYFRhdOso8mTgAQCU0WkfSKCV4ckKS0sMRwJPGIwGMjMzKSuri5o+sBoNHLSu4pGd/DvkKrA/OlGHlnUTWNjI42NjTQ3NwfKXcfGxpKamkpqairdhhT+Y79vc6zQVTUDjJMqoAAAIABJREFU/41KwCCuNwkGPufCLeED+M6fGYj29Cf3+RPu/HXXB3b8KSkpGAyRMvEHX2+4L61IIwM+gzvmeKuBLqc37DLE//1KWYRSxqEZ474wY+Bd3wHPrbiHLD88ETPlxdUZ+TSPRXHyg9tTePOInSttHoxeX/DoVqJJinKR5jodGKnyjUytD8oqURX4xdeDiwt5vV5aW1sDo2tNTU00NjaytzEn7DTDytw4fvb4fGDoZbgSEIixIsHA51z4jlcjkRZuTbsU1Omnp6cTGxt71fOcw9UO0DQNt9vNiUt2/vaPlb6WBNoV/staQSfKqOPwBI8Y+KvE6bpOgzNu0GhC+C993/teavTd9fn2IgjdxCjcP4fRLDv8PAQPn5cgaCQJoOHrRnQRj6KoIb+fg5ch2vUESrzrgs6r9lUaHElH/dDPSmgJE8xaFCdfX9JAXl4ezx81cqKyJ+jfcGiyrRDXSpYWTmIjuQuvaOgJU+ZXRbVl8N3v3h32vP5O2+l04nK5cLlcI/rzWxeT0TRroGPWdEDX+YfnPmOJoZiBcWeuMpMKbR79v4KR1oPreDwedMwhzyi0OMzkG0poYC3Ba/8jdWQq3dgCOQODAwF/O662ouDnpQP9PBhYA8JA5L/P4HoDoNBFvG8cSQ89zndGHZ1T3pWstJ7icu/MsOd+YV/tiDrq3LRo2rrsgzr6GYlGGhsbOX36NKc9m9BC8hI03fdv20+mEcS1kmBgkgq9C2/tsnOk3M5Pvjid2clKoINOifbQ0hm6eE4nhg5efPHFsJ16pGVVA1ksFsxmM2azOfDnVuf0MOv4FdymJO66465AgaDKNoX9H3Ux3IbBChrLDEVc9uYNGkpV0EmN8bI8M4mktjJOtk0bwfy/hhdDyJ1cpDXrUzEQgMnzPoYbvfD93WqBQlOR/j59qwmAvuAQ9GH/7hXcmCjsXY7VpEDIP5fQjnoo2zdmcLTC7ktfDEzj6cw2ltPU1ITVamWa10ttj07oyNi0GC89PT2UN3kHfRccrbDLNIIYFQkGJqkX9vWvbQb//zWefv1kYBgcwKonAGuhb9mc0tfZLYpvxGg0Eh0dPahTH+7PRqMx7FTCmTBTEqoC82cmsGpV/13S8zvOj+Ad6qh4Oe1dTqzJA+7+jlvp++NcazUVFZcAWGdr5IRnJdWd1pB72+DcAe+gAkGhAcHVdobDlb+9mudEZCP5zCIVk/Lz/abMVi/QrKUPu4dFuHP3uvUB/6r8NGYmm0Z0lsXZNv7tq/N45v1yLjc6sHjbmW0oJ3faNJZteZg5c+Zw5kpPUGfvv1pU0wH+5V/+xHnjBjTNFjQipzLy0QkhQIKBSSvS8D/RaXzryW8FdeJnr/Twwid1IRumrB3zNoW7y1EUeGxTxgjaPpgXE14UWt2+MYQ4pQOHbiFG72R+TA1LZqWRnb2V7OxsEhISOFXVxY+eO4um+b/mBy4dG6pjGIvOOFJFvKHOL4HA9TdUdUnf1ECZlo8RN1c3GqQHKlQMXA5L9cccO+ZixYoVEV/d3NzM8ePHOXHiBNO6ushPTWXZsmUsWfIkMTExgeMWZ9t4+skFQdMAD66Ox9Hk4NSp/5+9N4+Pqz7v/d9nds1oFu2btUuWvGHZlnewgWAMhIYlIYRgbCCUdLld0iZNe++vt+ntfbVpe9OmbdqkeQFJjEkChEITCGCMN8Cy8b7ItqzFkmXt62g0+8w5vz+OZjTLGS22HNtw3q8XjDVz9jlzvs/3eT7P85zhQK8hySMnStDa657l+ah8mlEFhDcpSsLAG0FUNJNObcqixukQKU738XsbTbS3t9PU1ITD4WDjxo3ccsstaDTyg/xH75zjZx8NEUSPHAPWMP2AO9VgcSXMZl3VIJi7a3ClIk4RHUFC6Ik3CGa2PY0g4WAQr2CnKCedwYEBPKIRCy5uLfXz+098FqNRzlrx+Xw0NjZy4sQJLl++jMlkYsmSJdTV1VFQUJBSvCtJEn19fZw/f56mpiZ6e3vRaDRUVFTwwXA1zQMkiYQzhSHuL++nqqqK6upq8vLyFMsoqzoDFVCNgZuWVMr9m6FfeuKxzxQDPtbp9mAwGMjIyCAQCDAyMoLVamXNmjWMkcHfv+0kEhKZeZtcUiw3nUfhavkkZSD8ppjpdzq7a6rDH9UMTK6bWJRIebsC8NLvFfPDn+9k33ANssgQIl6C1WkneODOOrq7uzl37hzhcJjKykrq6uqoqamJNtdKRBRFOjo6aGpq4vz58zidToxGI9XV1dTW1lJVVYXRaEydPnyrhtBIK21tbQQCAaxWa9Qw8Orz+LMXW9R0RZUoqjFwE3Mz90uPPfZgSMLpDU2zRnxaoBJHQ2smWgnPJM1Qvu0NeAhgnnhPab1rOXNXvQI3BvK95cOIFyuJ94GWEFrCBDCi9H1pNbDrr1fxJ8+f4US7O8FlP3nfpqWlsWbNGurq6rDZbIpHEggEaG1t5fz58zQ3N+P1erFardTW1lJTU0NZWZlizY+pngXhcJhLly7R3NxMc3Mzg4ODnArXMyJlxx3rjeBZVLl+qMaAynVHuVfBJMJEql+d9hAA7eEq3FhJ14xTKjRHiwjtC92Ncpvi5IwBHQGWaI9xOrw8Ra0BdZC+vlxrr0l8DYJqTSMt4gLF+0cgzCM1I7x+IYOglBx2mmcXuT2jkVfaq1OWJl6n2wNAYWEhn//858nMzIx+Pj4+zoULF2hqaqK1tZVwOExubi41NTXU1tZOGT64EkZHR9n27xcY8yV/lm3V8+qfLZuzfancPKgCQpXrzpJSK9/9ygK+//YlWnrllKzCTCNmg5aBsQAVeWYe35DPvv39vN6SG80gHxaNjJA5g1ry8bnkArBEewy7MDpFrYGZoBoN14ZYQ2AurnF8Ym3yq8SgmDfl2q82ZTLZyCrekMjzHEbItJCdFqTbayCxmmBVvgXk3kf09vbygx/8gNtuuw1BELhw4QKdnZ0IgkBJSQmf+cxnqK2tJSMj4yrPOTUOh4PaeXZFzVFFnjn1iiqfaFTPgMpNwzd+fJ6jrU5FN2x92kkOelcohAlimfQIRIyHD0N3EUpKN5wNVzpYqYZEapRqP1zN9wNmXHiSQgCTCITR45sIGcXvWy5clHiPSJi0Ip+tGEQcvcjIyAhhSzEfjS0ChGiqr0bQ8C/PLCBDO8Zzzz0XXdspOegQq/BpMyjJ0vOVu8uon59zhec4e25mzZHKtUE1BlRuGlI1ODLrQqwWdjEuZHEkUD/x+Fd+6Ovxs163O9qS9uPQbXiwMP3gcy1qBagGQTJzf030+BGQFF348fuNECsgjBxP8jEZ8LEx7UMWLlxIXV0dpaWlnLk0Ho3dWwQXef4zrF1cSGtrK+Pj4zglBy3h2gmjVd7X9RLv3cyaI5W5RzUGVG4KTne4+MuXmnF6g8Q+mAUkVlTa+cuHCzl+/DjvHWrmrKsAJ1kTAYHk/H8ro1Rpz2MXRlO2oI0n3i08dU0BlatjJtdzNoaZ7DkCZlBUSElbEkrhOZK9TAadlqoCC0/cXkhFthaXy0Vrayvt7e10d3cTDofRarXk5ubi0eXwy4uFisZq5D7+xydrpzg+FZVrh2oMqNzwRFya8cWEImVeJO7MbubhTSsQBLkMc1dXF0cuDLJnKKKKVprly0ZBCK2Cgnwq1MF/7pltWCAyY4+k+5Fi/clOlQAnwqujepOZeiAE4ssAx+8jst/45kVKWCwWjnhvoT9gT7E9SNME+Mn/qCEn5zcXLlBRiaAaAyo3PKlaHifG/yM4JQeXpGqGxCymH1QiqIP7zYE8wGsnGgLIRauVZ+4gp44aCeAnDSNeAPykISKkEI8mb0NmOm/Q9KmvU3mhBCRyDU6WaA6zadMmVq5cOacZBCoq06FmE6jc8CiXLxbQawRKHBL33PMo77zzDsFgkGUbH+Lbbw0zMxN3rh62qrfgN0PEL6SJFggSpikxHcAcFQUGMERn8BDrKZhu5h+rHRBR1hBoCOgzMRlN+P1+KisrWbp0KTabja6uLnbu3ElZjpGWQaVCW/L2Kw3t3LLwFt5++21aWlr43Oc+R3p6+gyvjYrK1aH91re+9a3rfRAqKlNxtGWM7mEfiTOxwvQg6Z5mcnJyuP/++2lpaeHnRwJ4JfMsSx1fLYnpairXDqXUwKmuu5CwrIRfSqNU20aGMESfVEhqHUH8vgREMhgmTSfiF5O9ClUFVv7P79+PyWTi7NmzNDY2otPpqK+vZ2BgAJ+zh8uB3Dj1CUCRTaQy9DGW8CADAwPce++9nD59msOHD5OTk0NWVtYMrouKytWhGgMqNzwGyc2+c66o21RWXwtUhI6S6zDS3NzM8uXLWbVqFS99OExAVHq4X+vZ+7WuVvhpR+naTmcIKCEgoqVY045J8OEUM/CRlmLb8X8bCPBASTtVhTbODJiSlhseD1JfnUH9kirq6+vR6XQcPXqUhoYG5s2bx2BXC3csK0aXloU/KLK4xMqff76C37mvkvyMNM6fP48oijQ3N3Pffffh9/vZt28fbreb8vJyxcqDKipzhWoMqNzwHNz3DpZgDznzqggERRYVW/nm5ytYt7iIEydOIIoiPT09LF++nJMdHnoSvAgCUJ6tw2aUcPpmYxTMtuHQTLf7aWe2RtNcXlsRG6Pka7oBSBM89EnzZrB9eT2Luwn8o/T6HfiTyhNL9I542bwsF51OR2lpKfX19QiCwPHjxxFFkdG+dv7gS7fy1N1VbKrLJtcuNzDKz89n3rx5nDlzBoCmpiZuueUWFi5cyEcffURjYyPFxcVYrWrqn8q1QTUGVG5oenp62LlzJw/ddwdPbF7MF9cXRB+imZmZ1NbW0tjYSOtAiF+ckOgcFvGFYmO88kDyhcV+DL37sIl9uKX0GCFXbE45cevMbvC5klnqp5XZelFm+p2kqg8RWU9W/ddqT8teAclBe7iKEHpEtCm3LUzo/yPrBQIBLmtrCYqJM3WBwdFxxEt7CIVC2O12zGYz5eXlrFixgmAwyOXLlzl27BgABQUFcU2KMjMzqa6u5tSpU4iiSHt7O1qtlocffpgLFy7wwQcfoNPpKC4uVsWFKnOOagyo3JCc7nDxT//dznPvdzOmyWPDqsXkOZKV2BaLBX1WNTtOmhn2Cvjj+h1NPjCbu1y0BCvwSOlUaC8wJjkIxqnJI6+yKlwgPAO1ucqVMzvPgJZQTN+AVOumEhJOGh9awnglM2G0nBWX4cWMiD7lNjSEcTBEnbkZizgIyNkq3aF8RQNCREdxupezxw/Q0NBAZ2cnoiiSk5PDggULMBqNHG0eZGdbOts/GGT/qR7m5ZgpyEwDwGq1smjRIs6cOUMwGGRwcJCOjg62bt2KJEns27ePS5cuUV5eHm2LrKIyF6iphSo3HImlUgVB1gmkqtCmnHoYS/LsUH43WVsgEGajbmeKDogq14+5SANNzAhI3FaydyjDGMTtF8kw+CgMnwMiWQjxRkbskS2eZ+Qb92Vy6dIlLly4wKVLl9BqtVRVVZGWV8u/7PZP7G3yfnx2LXzh7vqop8DlcvHjH/+Y4eFhANLS0njmmWdwOp08/+oumjzzCBqyqSmyseX2QrXtsMpVoxoDKjccSoO7gMSCAh3/68ECHA4HaWlpCILA6Q4Xf/LCOULibPYwlcs5zO26nTOsTHglqCLD2XMtrtlMthlvHAhIpOPEhZ2pKhnGdikE0Ov1aDQaRFHkiHdpUiVEAQkHg6yxNrJ8+XKWLl0aTSl86aWX6OrqAkCj0bB606P8/a9HkSS5GJKAhKAR+O5vuJSxyicP1RhQueFI1YMg9iHr1mRzPrwIVzht4tMrGSySK99pCXGbbhcnQ/UzKF+rcv25GnHh7IWMAiLKbbJlNAIsKTbxtbvteL1evF4vPp8v+u//OJKBJ5Rc3iXRgIhgNBoJh8OEQnL862SonlGyE6oYSiyZZ+Jfv7p0FueiohKPWnRI5YajPC+NIVcg7oGnEWBJeTa/vfm3Odo8xD/v8kzZkCieqQvTxP4dRsfJUD3Zmj5GxOwp1lW5MUgsCjRTIqECkdRljZX2FVk31kicFKuKErT2+fjuewLb7ixmWa0jbgv7B5W9XhZcmEwmCgsLGR8fp7+/H4vFQllZGTabjQsXLjA0NIQbq0I5Y4Gmy0727dvHbbfdhkajGrAqs0f1DKjccPxq32n+eZcbQdAotlf95k+a+LjFOcOtSTGv0z0kJ2PKckRYnGhdq5KauTKWrnY7s8kGkV3+VZqzDIp5uLFixDvh/p8qK0TCyijj2GN6HMhGhZbQRFlkKfq+AKw2n6QyR0tGRgZ2u52RsJ0ffCSvHXtv/+8H8wgMNdPY2Mjo6ChmsxmDwcDo6CjZ2dnccccd9Pf386/vuxU9Vmk6iVrpEItL0nnooYfIyMi4gmuo8mlGNQZUbijC4TDf//738Rvy6TcuUWyvmiqMkIw8Y6zWNNIrzotrG6u8rJKYLNXySuvPdNlPG1cz0M9kXZE0xglijJYpnnqdMNWac1FDwIKLMm0LOq2Oo4EViIpGo/z9VmvOkC6Mc1moYVxKJ010UqppoT1cpTBIT/YriAgDQ6FQNKXRjRW7zkNd1hDVeQbsdjsOh4NQKERvby9tbW243W50Oh2hUIjs7Gz0WVX8rDHWaJGvjyDIf623nSEt2EftqntouJzGxT4vFXnmORUZJrY+VgWMnwxUY0DlhuLIkSO89dZbfPWrXyU/P19xmZl5BsJYGWNVdj/PPLqJb25v4pLLiLJ7NxXXszjOJ4W5DLMkzv4TC/vC9J4BCZvgxCXZorN7AQlBEPjuVxawY283h1ucSVuNrJvBYLQZkclkYv78+Zw5c4aG0B14RUPSGjajxLc+a6C/v5+BgQH6+voYHx+Pfp6WlobBIK8XCoXwer2I4qQa1mg0otVq8fl8iKKIU3JwPLwmxfnJR23T+RgLmaKyx4j3IVU2zmxIzPSZy22rXF9UH6jKdScy02jt86DxDrKxoj6lIQCw5fbCaVMJBQTurg7yO19+DK/XS79bQ3KYYKriN1cyiKlGQDJzeU0EBMITNQci3Qoj+4j9vlLpCCZuGCnyvjDxroAA7NjbzZbbCzna5iSsmJ0i4NNOagB8Ph+nTp0CwCQ68Sp4BrT+IVwuK5s3b45bb2BgIGogRF7dbre8F0HAZrORnp6OXq9HEASCwSBOp5NTo1WkDnnJ5zMWMkXPCybScyWJf/mv0/zpPRkUFBRgt9uvqHDRjr3dUUMgsm3NxPt/v61mynVVbmxUz4DKdSVxpgEiGkHDd78yOdOIdUuW5abxhdUZ+P0+frJ/iEtDoYm0wsQHv0imMMQtWnkWp5wdMJeGwEzWU8WIV4ec7WFmnHFsE3UiprveEOstmCe00S8VKaaNZlv1vPpnyzjd4eIvX2rG6Y2rYIWAxMoqB3/zWDnPP/88/f390c9cQhbHgvVxWgIBuUOiXRilurqaL33pS1OK+7xeL/39/VHjIGIoeDweeasaDQdCd+BT8EDMhNiMBb1eT15eHkVFRRQWFlJQUEBWVlbK44v8BlMZ4ZFrp3LzohoDKteVVDUFyhxB7i/v5+KgyFudxTGZA/EPWUjdJ94o+LjN+AGhUIhgWhEHXEvitpO68Ezks7loeKQ0O/20GQSxLv2r1Q5ceShGQKI2X4teb+DMZV/cPacRoL7SHp3dnu5w8cfPn0OU5MyBSOGriIgVoK2tjZ/97GfRtL9YLUC64KJU0xK9RwEyMjJ49tlnMZlmV7/C7XZHDYTv7/fT4TQoZBRMx6R+IRWCIGCxWMjIyCAvL4+SkhLKy8u5OCjytR+djzHYk79He5qOv3m8Wg0V3MSo5YhVris/3NmJ25/okxXwBcJUm3s4OFjIWEBP7MAtAILJwaLcAAaDgV6fFY9kItEzYGOUXC5jNpvJtRsotQfxS0bCkoYim0iJpp3+YKyoMDJ7vIiLTJIHMSm67alV5/HnMvXfnwYS3fcznc3Hvhe7jdRq/2lTAwUdX3ugkndPDEaPJhL3/ubDFdHGQSH3IG3H3yOACWNaOreU2vnmwxVRQwDkwf3WW2/F4/HQ3d2NSfCRr+mmWNPOmkoj/rF+YudaPp+Pjz/+mKqqqlk1HDIYDGRkZFBUVERlUSY7TwwiSbHGbKprMXHOCT0ZQDZcLoiLaWcB/rQSinPSSdfLmoWRkRG6u7s5d+4cDQ0N/PxoCI+UFmOAJO83EBLZeWKQZRU28hxqmeSbEdUzoHJdUfIMxM7SUmUOmHUhfntpP2lpaQz4zfzoiPwAioiaJEmkTnuIL923llWrVinu+0TrCN966TTOYOThFZFcTaadjWEnHK1df3UzUxnVU5Caq7m2qTw98dtfWKDj339vRZIiPjZbxel08r3vfY9wOMxjjz1GdXX1tHt3Op288MILjI2NRd+zWq1oNBqcznixq1PKwJu9lkGP7orU+Kc7XPzvFw4xKkbWSRXqAj0BTMhhBh/mCSWFkHBPy8ZCveEo+RY/kiTR5zFxPlA1TTgm/t5N9K6o3FyoAkKV60pEsKUhXp38xB2FAFTkmRkeTzYWFpdl8eCD66LvLV06+XDPTRcx9jdQnWdIaQic7nDx9e3NhMXENrQCEhKDYh5PrRLZP5TFsTZXzP5nm12g5Bm4XuV1b/R9pBL+TYX8xeTqndjDXbSIC6csRmXs/5A33+zhvvvuUxy0xsbG+MEPfkAoFOKRRx6hurp6Rql0drudP/zDP+Rv//Zv5VLBkoTL5ZL3aTTi9/sRBIFR0c6J8CqkvjAgMTzu5Gibk396qob5+UaCwSCBQIBAIBD378S/dUKQZCFhsohSRJOQUqsUstEgIdISKMMiHpnIWFhBvBdmeiNWlKCtz6N43VVufFRjQOW6sqTUyj8/vSDlLG06YyF2O3+/rYauri5+/OMfY0w3kpVVkHK/EVW08qChYVTIYf+QlTPtI4jS1fxMUhkESv++Gn4T3oXZGDJXajgopQtOvbwOPwulgyyvX07bYB9vtmUqdJyUCwbZhVGOHj3K8ePHWbduHfX19TT3Bfj5RwO09XnR+vopxsTDd61n4cKFSQLX4XEnR1qd/N9Hi6nK1SUN1g6HA61WSyAQiHoE/P6JxkSSRHu4KkZkOBGDl0S+9fyHU8bzQRYQGgwGDAYDznA9ytkx8X/LGRdK91vishrcyL+59nAVyeEYpYyNhC0IsvGucnOihglUbnimcunGMjIywnPPPUdmZiY2mw2Px8O2bdsUt/ng3x3D6Qkpfpbc3W4m1QtTbeOTGAa4kc4pPvffKTloCdcmzIaTRacRnJJjogshxJYltjJKlfY8HWIVw1LqYkKpMJvNhMPhqCEQIZXY1YCP3185yvz58zGZTNFB32AwoNPp8Hg89PT00NXVxfHWEXb2VsScX+prM/PvafKcZtekK77o0XeerKauQq1+eDOiegZUbngis/6p8Hg8vPTSS5hMJh577DH27t3L0NCQ4rKnO1wThoDSwzLefRpvGGhSrJPI1DOom5+r0UtczfrK2yvTtgCJA/tkyCFD5+F/3FdKvmUTR48epa2tDb1eTzAYTJqpR47NRQYnxbWY9EAgcb8aJHMuT295Gr1eHzdwt7a28sorr/DVr34Vm83G/v372bNnT3RNCy4CGEg0Liy4OH78OOfOnaO+Xq6zMTAwwKVLl+jq6iIQkA9CEAROBFfEHevktZitFmViIJ94XZ49jN5nwjLuIkBi+Ex5HwYhhICIWRqjTNvCL3e8wwcZGYQtxZxx5jLo1VOWY+Spu0pZWm6f5nhUrieqMaBy0xMKhXj55Zfxer185StfwWw2k5aWFs3PTuSHb7ei3GwGUsX4rTjxCA7C0lRCqrke7G524q+LAQ8BrsSNnCrDAMyM0xhehgUXIXRJA7uAhEkncufKSgAWLlxIT08PO3fupL29HY9gAym110en1aIRwkmalfmFNoqLi5OWnzdvHgCXL19m4cKF3HbbbYyMjHDy5EmysrIoG2hhNJyFFL3/ZK9FtqaXk6F63ONWDu11UabdleTFANBqtYwHI+WIY0mV9TKVR0vAbtZRU2iZ8LatBuBw0wDf3HERKW7wl2JeIwYELNWfwCIOApCeno7Vms9wyMbOiwUTS0icvOThay+cY2NmEwvnmcnJySE3N5ecnBwyMzPRalN3gVRLH//mUI0BlZsaSZJ444036O7uZuvWrWRmZgKym9br9SYt39bWRnPXGCS5QQUgDCmU03ohRJpOZDyY6sEllz8GJlzUV5r+diMyN8d8pYaAhtBEw6jEwQ48WADNxGw7Oe1QQmDYb+TEiRPYbDbsdjs5OTls3bqVCxcucO6VDvoCepQGTVECj9eHhA6NIEypWYlgtVqx2+10dnaycOFCBEHg/vvvZ3R0lN7eXu67dQXCR4e5GKqI9kXI1vTSIi6KGjIBDIyGs6JhjdzcXNasWcO8efN4/tX3CfboSf5ORHQE0SB3QMzVDtAsLoyeRwSLUYNOK1BTmJ4y3FY/P5uHqhp4r9WEV3AgCAKVeWbWVOg50OSkezSMVeumSDyPRZS9b5HGSl6vl8PD8yYMicg1lV87xErKPK2829BEk8eNm0HSBRd1mUMsLLaQk5MTNRQyMjJo7HQn6TWOtjnV0sfXCFUzoHJT895773HgwAEeeeQRFi6UH36nO1z8x6+a5NlEYSaCINDn9GPXeXC4jtEhVibFgTUCWKQRXCjHOw34sOCaooph4ux3KmOAKT6/Hkynb5iLY061janqCkzG+oFoQZ+IF0DuMjidd0dCQMTBMGXaySJAfmMB7eEKhgNm/KJWYb3J7VVrGhkU8/AKNoqz9Pz25gpW1uamnLW+9tprjI6O8oUvfIHz589z7tw5+vr68Pl8ildGuTqmHMNfbjyORqMhGAzGLJutcL1gmfYgDo2TDRs2cNttt3H2smdGWptE3n//fT788MO435QSoigyODhIb28vPT0+DbXyAAAgAElEQVQ99PX10dPTw+7xtYqag0yLlr/6UhV/8qOm6AAvTBz/5sKLMNYRvUY6nY4z0ir6/DYSW5mr6YvXBtUYULlpiTQ1uvvuu1m7di2gVN44ufjKZxeI/Pq8Lq66nCRJ6AjE5GBPPoAEJHINTgrD5xTEZjMZ3BK51gbB9UhdvNJ9xj5+JkWbegKkM0a5thWbMALIjYEig8WHoTsJoVTcJvbaJn/3EcMi/ntMLOATP9AWprlZbjwe12BIn1XN+/1VwGSWC0h8JrcFcfQi4XA45RkLgoDD4UCSJEZHR6cUFS7SHo8zgsZwxNQImERLkC2VzTz++OPo9cmfz5Tjx4/zy1/+kk2bNrFu3brpV0hAkiT+9IVGTnZ4EsoWy8aNRiMwLGYpDvDf3jqf8fHxaLXF/7tTwq3giVNLH18bZiuRVlG5Ibhw4QK//vWvWbVqFWvWrIm+n9hIJd51rEEQNPQHs/ifv5VFBkNYDExUiZMIYYx50MbGXSWW54yQY/Rwm+MsdaWWqOgqmWRXtfIyc0EkJz/xvWvBbM9J6TiU3pMH/gwGMeAjgyGWaQ9ym2EvqyynydDJoReNRqMws57Jucd/98G8Dfhy1iM/+ibd2PK3ppwGOhIwotFo4hr7HOmzI0piXMMeUZI40udQNAS0Wi02m43MzEwkSSIcDlNZWcmtt96KXedFvs9iETHi5UR4NSNkEcDECFkTqYLJ551mNPDkk09elSHQ1tbGm2++yYoVK6LG9WwRBIGn7iqNlm8G+VUjaPjdz1YT1McbAjBZn0AQBKxWK5WVlaxZs4ZFpZnRbURQ0xevHapmQOWmo7u7m1/84hfMnz+fzZs3xz2k2/oSZyTxRB482lInS3VHOBmox0M2UpyaXMSoETHqtZTlmvn8Sjsfv/8hVoeDrVsfxWAw8MS399AfsCc92GbGXOXqCwnL3UghiFSGUiIS6YyxVHckWtu/MbwMS9hFWbiFbIObcDgc19ZXEAQERaNr6lx4UYJeF4B2QsAXexQCmgnjKnHWuqQ8m69t+xqiKOJyubhw4QINv/IpCA81eLCSXrCIA5fTCOizqC6ysnVjIXWVk+GnM2fO8Nprr5Gens7tt99ObuUYf/T8uRhRoXwObqwTx6KU3RJ/3tJVzusGBgZ45ZVXKC8v57777ruijoYRpqodsqtJueKo0gA/0xojKnOD2ptA5aZidHSU7du3k5WVxWOPPYZOF2/PHm0Zo2fEn3J+rBEgUz/OWOs+NBoN3Yal+JLKDQjoCLBl/iXqiiQOf/geNpuNbdu2YbFYeP/99xm4fIFeKSKUmirDYKbvx34229TEqzEEfpOCRqX0NwhiYFDMpUOqxIeZMHp8pNEnzcMm9ZOmic/VFwSBESkTn6I2I/W5CEhU5OjIdZiT7hEBiWxTAE9IGz1OAQlBgK1r0yjOtdLW1sbrr7/OqVOnGBaz8CftX5SzG8Zy8WImENbQNxpg58khqrKhONeKIAjk5uai1WrZu3cvGRkZ3FJbSpHFy4kLvTHhAiHBEIg9v+TrGAxLvHGwl+NtLvIzjLPqDzA+Ps727duxWCxs2bLlqrwLEfIcRjbVZfPF9QVsqsuO9nzIzzBO2xcidhvLKmwMjgXxB0UWFVuT+kOozB2fKs2AmqZyc+P1ennhhRcIhUI888wzWCyWpGWSNQOTCBMzv1ttjZRkSOh0Os4Ja5VnKpkiqyyn6e7uBsBisVBZWYnD4eCDDz7gjjvuoOFMNx92OxIK3MSSKn6diqud2f+mB3Zmub/E66GUDhc/yNmEMbRSIBozX1/sZbyncaJk7mpmFpaJ9KuQqNMepKCgkHe6SoH4Ged3v7IAURR54b0OLvZ5seu9FInnMQX64raVk5PDwjX38Tdv9Ed1JxF3tkM3znDQjJIYcGN2C5WVlVRVVVFWVsa7777LqVOn2Lp1K263m//vZxcVhIRTXctk0WXkXGaquA8Gg/zkJz/B6XTyzDPPYLdfXS2AmTxjZ1pETOU3y6fGGEgcJGb7o1G5voRCIV566SX6+vp4+umnyc7OTrls7MMmM13L2NgYw24Ru87DF1Zn8vBdy3n++ecpLCyk7Jbb4+4LAQmNRuAvH8jl0K5XsNvtbNiwgYNne9l5LsSQ3xQdtqyMsdDajdlsZldfpaKrVphI+QomlcdN5EYxBGYTwogw0/3KIs3kUsHT7SeSpiahEQT+5C4z+z/4gI99y1Psf2JmL4Akgd2spaYwnS23F6D3drN3714u9PrpNy7Bg43qQmvSgOTxeDh8+DAHDhyIFvxJS0tDkiR8Ph8ajYaQuYjTo3mIablUF6az7c55/PXPWxQbaxkFHw/PO4/X62V0dBSNRkNRUREul4vx8XE0Gg17PetnUflvavRagWXltiknPJIk8eqrr9LS0sKTTz5JYeHVud/VZ+zNzadGM5AoLBMl+fGyY2+3mqZygyNJEr/61a/o7OzkiSeemNIQADlm+VePFPPhhx9y+PBh9Ho96+9Zz6pVn0Gv1yNJEsPDwyxevDga3/zX1xvpHAqwsDyLz9WZOfjey2RlZbFlyxaa+4K8dMqFKEbiyfJgM0IWB1xZ1HkOoaVEsR6+ljAhBfV35POpU/pmw3Trz2QfUsxroh5BaX+znUeICrXyZ3I8k3oOUZL4znsu9MItMceRuI6ATiNQXWjm9+4tSZh12qipqeHcuXPs3buXgYEBqnRVZGhvB6wMDw/T0NDA8ePHo0LAgoIC7rnnHkpKSpAkicHBQdrb22loaKBOfxkpKCFcEmh4twCbbiHDgj5JSW/VuGnuC9AWrMKncZBnlkiXBugcGac9XIcb60S+w3SFgmZGMCxxpHXqvPxdu3Zx7tw5Hn300as2BABe3NulPmNvYj6xxoDL5aK3tzf636m2AkTJELeM2mXr5mDPnj2cOnWKz3/+85SWlk65rM/no6GhgYMHDwKwbt061q5di8k0OeNyu90EAgGysrIAqCkwMj/4AQ+sXsCyZZW8+OKL5OTk8Pjjj2MymdixtwNJguR+7nK3t07mJ7xP9O/whCwtdQhhLgyBmXoVpt/XPOEil6VyZm4QzOYYNbMwH1Kdk4CEloCUqq2ujChJXOh2o+T3FASBhQsXsmDBAhobG9m3bx/PPfccFosFt9uNRqNBFEVycnLYtGkTVVVVUUGdIAjR4jjHjx9nyZIlbNiwgfb2djo6OigYOctFacnEnjQTugOBcpuXIyP18vGHBS6OilwcLQQKosvO/J6Y2T0z1WB89OhRDhw4wObNm6mtrZ12W6lwuVy0trbS1tbGqdYcRCk+7q8+Y28ebnpjQJIkhoaG4gb+3t5e3G43ILcPzc/Pp8AG7U7iHg5qmsqNz7Fjx/jggw+46667WLx4cfT9xLjjY7fm4u49y0cffUQwGGTlypWsX79eUVcQ6VkQMQaOHj2Kz+ejslI2BHJzc3n88ccxGuUH29QZChpcooVMvYf+YGIlOzEml12JK33gz1aLELtsKm+E3NXPLVmZdMsrrXelpPKATGVopK4ImeocIn9HugH+3Y5DbFkWoKioiMLCQrKzs6MDuyTJA7XBIE8SIuWrtVotd9xxB+vXr0+pqg8Gg/T19bFs2TKysrLIyspixYoVPCRJNJzp5l/faMQZTMOm81AknqdlpGqKzIBYI3Mm3/tU1y0epcG4tbWVt956i5UrV7J69epptxFLIBCgo6MjagAMDAwAsvekyJFH+ygzyhRQufG4qYyBUChEf38/PT090UG/r68vWp3LZrORn5/PihUryM/PJz8/H4dDLqe5IhLPQk1TuVloaWmJ5j3HFkBJjE0OuZwcbhlhme4Yd6xYyIYNG7DZbCm3GzEGMjIyCAaDHDhwgMrKSt544w3y8/P58pe/jNFoRJIk+vv7yTD6GXJF1N3xCIBdJwvNBlhNJDVNFqxF1lFOB1MmduCNTTWLXUfepoA4y9TGRNf+5H4EoEp7ntPh5UzfGvdKUd7O5HkkiAd1AcZCJqY2GKYKtWgYC5tpazvP4cOHATAYDOTn56PVaunr68Pj8ZCeno4gCKSnp1NRUUFHRwfvv/8+3d3dcupfbm7Snnt7exFFMdqLIHpEgsC6JUUc3/8GWVlZOBwOOjpMnO2yQlJfiyvxtkikMY6XmcXgEwfjvr4+XnnlFaqqqrjnnnumTSEURZHe3t7o4N/Z2clwyMploRaPsIySbD1Pbyqlfn4Oayd+l2oq4M3JdRUQTqU89Xq9cWUue3t7GRgYiFrzWVlZFBQUkJeXF31VmgVOtT9VxXrj0tvby49+9CNKS0v50pe+hEYzOUB98yfJucoCEktLzfzzM0sUthbPrl272He8g0DurZy/7ETrG6DK0M7CYgsPPfQQly9fpqWlhdbWVlwuF25NNkcCEy7emO1MzC9Zpj3Elz67lp5xA7/4eIT+cQ1mXKAzMRJKZ3aDqbwHM+N4sSiEJmL3H54QLc4mBh8/4MaW6gU4Ho4UcEqccSsdw9W6syUK08Yptbpp6M9L2Ie8Ty1BwhgU107OREg+bg0SyyvtfGl9LkZ/D0eOHKGzszOubgHIXqLa2lpKSkrIz8+ntbWV/fv30zECQ+Y6XGI61QXp0WdUQ0MDu3fv5s///M/xer00Nzdz8eJFent7cTqdUdFhhFPhlQxLmcysOdZUiAhISKRu7hOLViNnSSwuseJyuXjuuecwm8089dRTUY9IIqOjo7S1tUX/83q9GAwGysrK0Dgq+GHDpPclUSSoPmNvXq6bMaCkPAWJ3yrrhrEOnE4nINeozsvLi8708/PzycvLm5NcWJUbi8iDpKXXjdbXz9LMIb7x1UeSHlqP/MNxRcX2TMuU/suP/pv/bstHmGg+Iz9gBe7KayU03IIkSeTk5FBVVUVVVRUlJSWc6/KyY283Td1ukEASJGyCizz/aZ5+5DNxNdyDwSCtra18/ZURxXKqySi5u2Fqt7E48dnMBoVU6PBzq243MHXd+8njmXxvsoHQTMIZyp+bGZ9oNpToGYiqA1JkH8RfF/lKxWcexH4CYMNJjaGZBfPM9PX1EQ6HqampwW6309/fT3d3dzRUYLPZEOzl/DLafW+iU58A6/OHONcn4BItpAsuSjUtih0GY4lvrxxbAjlWJJk67BF/XcITRmKq8JO8zfJsHV97sJolpTYCgQA//vGPGR8f55lnnonznPn9ftrb26Oz/6GhIQRBoLCwkJKSEhwOB1qtluHhYbYf1dPlTkPtF/DJ47qFCZTU/SCX+dxWvyg68GdlZcXNClU+mSTXB8hg90Amn+vxs6Q03hioyDMzPD6zKmZKHOySl5tcXxYCnncX8kefraGqqiop33pJqTX6sAsEAvz85z+ns7OTRx9/lKqqqrhl9Xo9tbW1LCpt4uMWZ8LelQbXqdzHSgPpdANIqvWStxPCgFNyYBdGGceW4liSByUro+RrumgWFyl+DhJ6/AQxpvwcBDykpzxeCQG9Vkc4LMWIMBPj7JNbsxgE5hdaONXhJizFblN+HcPO4cAKmtrGEA21zC+yUbOyJOqNlCQJp9NJV1cXnZ2d/PiIltjuexICSBIf9mQRMTqGJQMj4SyW649gleTwk1arJRwOM2/ePMrKyjAYDPT09KBvPk6zrwSfxs68LD3Pbq7AaDKxY283J1oHCUixnRljjYXYcxVJZ4xx7EiKYST539WaM6SPjPPX2104Q2ZESSSdMv7koRrS09Pp7Oykra2N1tZWLl++jCRJWCwW7HY7paWlBINBhoeH6erqiu7Z4XAw7K9PCk2pIsFPBtfNGFAWZQn4tRls2qQ2ofi0odxTQFkJfTVlSiVJYsRvVIi1a/AKdlasmPre83q9/PSnP6W/v58tW7ZMmd2wrtYxYQwkurOvRownoSNIGm6FVsnTz8TjP5ePqT1cxVLdkYlPZzI7FfBhpkVcSPxMPGGQiL6faMzHLpv6OmgEWFyegdHdyoc92QnrJQ+ShsAQxWMXaDGsw+VPHY8fww4BgWMX3Rx77hzzC0xsqgrAWDt9fX2Mjo4SCoUYCd2hcOyR7zG2Pa/EsKWObXfbKSoqwul0sn37dgoKCmhsbGRkZASbzcam1Uv4+tKl5OTkxG3x77fV8NxzH3D2sjvalMiIN6aYVfx1W2zpYM2aNbx9xk/ncAi9KJds9pOGXeelXNdKMBiUizKFJwWLY9j56//qZf4v99AfysGNFasmnxLBhV0Yxe12EwqFyM7OJjs7m5qaGrKzs8nKyiIzMxO9Xk+3QohOFQl+MrhuxsDVzu5UPlkoGYepZhxT1T6fjrGxMcy4CBBvEMzk3nO73bz44ouMjY2xbdu2aXOzD5wfnSh8Ez/4zj6PfNKYEJBYoj3KmfBylAZpWYyXagBGcZ0RMtkXujuF/kA5RBFxyMdnHcSvl9j9ceptKiwlwNY7iti+G8CpsJ58XeQQo4ZqYwd+vx99YAhIjM+n3veFHi/NPRJ12i4yda6oqC7D4GMgaFKctMQfhYArbKGqqorGxkYaGhoAOHnyJAsXLuS3fuu3KCsrm1KsNz4+jl2Q+2WAHLJRuleKbBJ/+41nAfjc7RP7n+h+2N7eTnv7EBcv+vjQV0OyB0VWGzSFFkT/HhaNjAjZ/MVnM1i7uBCz2Tzlcar9AmbGzVjt9roZA+pNpRLLbI3DWLf9bBgelsVyJ8LZE49GYUb3ntPp5MUXX8Tv9/Pkk08qKswTaevzKOS5z8x9P7ms/G8dfmoKLeT4TsPYaMysO34WP2ngxHsjNIQRFfUF8oCTvF7qY5OHmKli1pHtXIlATl7HoXXx5IZstO7LXOhyKWxDNnzStCHsei+1li7MIQ9ut59STTMj4dWk7huRiLxMv3EJGaGPsFqtbN68maCpkK/96HzcM0qUYnUJMhoB0iQn3/nOdxBFkczMTLRaLV//+tdnrG2KbY8M4MaKklfCLyWL/gRBICMjg4yMDJYtW4bH42HP/zsJwVSG2OR1kSa+yffOi9y1emoBNlydIf5pITHkOTw+dfGnG4XrZgyoN5VKLL8p43BoaAiHxkkdBwkX3k73qDjtvTc8PMz27dsBeOqpp8jMzJzRviryzAyNOxUL38QzOWjKBoqEFSeCKQOrxs2KnFHGuk5Tk1FDc/Mlnn7mGfb9oJPUs/hEN7yEctMbFN5T1ghMfiqyznqGc+OFDEtT1dGfbhCOj41bGcVPGhZclGllQd6JD+AEoAnVg4KwUUJgc9kQpRkSRmMeBkMxkiRx4sQJdN5j9JiWczkq2YgN0yjrEwY8OmqNAuXl5aSnp1NUZOUP7ivlR+93MeYLoZUCFAqddFMJREJaEpIkUZN2mTs3fIbFixdz4MABmpubZ2wInO5wccy/LNp/oUzbggUXAQwkGh1Tea88Hg8HDx7k0KFDGMNLGSdL8VyTwjmzjPlfqSH+aWG21W5vFC/Cda0zoN5UKhF+E8bh6Q4X/7HPT1fwdnItYf5sc8W0P7r+/n5efPFFjEYjTzzxxKwauWy5vVBBQBiLnPpmQV4mQBoLyzKh833swiiPPPQIZ89eYmxsjDGgqamJe+65h6KiIjSaLsJiqu0mD/DKeoCp1lcW/TkYRu/tplTjYSScRWLb3dhlk48l3luhx086Y9HBPxVl2hZGwomaAXk7R4by2VBnQKvVotPp0Gq1FBYWsnv3bhzO3Txw2918dMlI+4Afk+Cj161PeW5FOemsXbSWU6dOcfz4cbCVsX+kFhCQJAiio0uqYGl6Gx3jVryCjUKHhm13zmND3Zrollwu15R1LmI53eHij58/hzjRoCiAgdFwFlWas4yKslBRItJBUVA0jj0eDw0NDXz88cdIksTKlSu5q6SOP3/pomKxrFizCNTw7Fwzm5DnjeRFuKmKDql8srmWxmHkRyeKOiT0dHvgay+cm/JH193dzY4dO7DZbDzxxBPT1rFIZEmpFXuaFqc3rPCpPFd/ckWAvpbTcvriuYNYnVb8Rj+BAPzXf/0XtbW10WqaxcXFrFq1itMdrglDYKaDe6xbeybrpF4mUo9g89pabjek8cYxF5dHJYIYYgaZiBJe2euQZ3Dyv7auYUmpDb/fz3/+ZysGQx4LFy5kdHRUNn7GxhgcHESSJOzC6ESDo8S2vAKdoxLb39iX0phobHgLB1A38XeB1sGpcL1ij4TR4RHOnj2L0WgkMzOT/UO5E2GBSRGehMiwppD/95ScKaCU6eRyuXA4EsV/ysizyHhBooTIkJRHnfYQYtEdNHe5yEoL8mePrUhqppRoBKxbty56n373Kya+//YlWnrlQaiqwMzmZdn821sdSc2E1PDs3DGbkOeN1DNHNQZUPhVEfnSR2LjSjy7WXZdvF0gbOEBNQRZf/vKXSUtLu6L91hSlJ6mvIxkB33l6CZcaP8BjtZKfn09zczMul4vs7GxKSko4duwYra2t+P1+ANauXYsgCOzY250gTJS3mToLYKZ6gMgyytvTEooOuu82NBEqyMcVtlBgHcPib8KbVk63U8KqGSfdkUPniBRfGEqAXL2TBWID+99sZt9EKl8oFALk6ng6nQ673Y7dbicjI4Pm5mZKS0vpHNLSOqKc2aAr28xffLmCUChEOByOvvr9fvbs2UNrayurV6+moqKCcDjMX7zuwulNPG+BkNZCbW1tdP13h+0kh0E0eCQrFRUVKa+gy+WiuLh4mussc+7SCMndLjWMS1bswiifXRZgsNhFc3Mzi0tuB5KNgFWrVrF27dokY3VJqZX/+J1FSfusyDOr4dlrSGLIU0BCkmDL7QVJy87Gi3CtUY0BlU8F0/3oEt11gy4RgRU8dnv1FRsCkPxgiAy2GaYwgkaDy+XCarXi8/kIhUKUl5fT09NDV1cXIfM8Do3lR2PJq0cEisfHaewYQpISf7rTpQNGllF2kSf/nSxeE5DjEk4pgxPhVUiXvcjNeEzAfOrChyjTjcpejhEfHVJR/H4liQrdRQjI2o36+noyMzOx2Wzs2rULm83Gtm3b4tTsR48e5c033yTH4KM1Or+P50LXGFqtVrGi3uOPP87bb7/NoUOHGAxYODWSgyeQ6CiXZ24LSjLYtEl293s8Hl468RHuUHzthelc6pIkMTY2htU69eAqiiKvvvoqukA6kKi9ECnNNlBiK6GlpYX58+dz6NAhnE4nhw8f5uOPPwZIaQRMhxqevbYkhjzzbaDv3U9o2ACl8anLpTlGhlyBWWc2XQtUY0DlU8F0rrvkOgcaBAF+/uEAyypnJhhUIvJg+JdfttLa7594V2DQZ+JrL5zjjmyRJaVWzp8/jyAIfOELX2BwcJDvv/Q2hzyLorkAAQz8w9tOdu58F0O4CnfSAJLITAyCRCNgak9DGh5OhuoZJTNOkBjpv9AerqJOf5TBQDpHRopIrEHwB/eV8NDaNezZs4f9+/fj8/lYs2Yy1v7qq6/S2dlJSUlJ9L3S0lJZiBfopTxLx8Wh+JCLgITGN8i//du/sXbtWpYtWxZnFAiCwL333stQ0MoLh/WAk8QaE4mucp/Px0svvUSZVqRfkB/eM3Wp+3w+wuHwlMaA2+1m+/bt9Pf3U6Z1MBqnvZCrYf7BgwtwdobYv38/y5bJx/C9730PQRBYtWoV69atw2xW4/w3KokG1+uvt7Nz507mz58fNd7C4TB5gUagGM1ENdTrGbZRjQGVTwXTZStcS3ddXpoX51APcu775AAqihLHBhwIrpPRZlv/+I//CEBTqD4hj1+DhMTp8HLKNc1x4rJkIgO9shdAR2BCuOgihE6heFHi+rIGwEVEPKlkhGgYx86J4Apc3TkJtQ7k9M2DF8Z4aG0BGzZs4MiRI5w+fZo1a9ZQWFjIggULyMvLY+/evWzduhWQwwYvvvgiNpsNnU5HePwkHYLcuXLyOxT444cWM9jm591332Xfvn2sXLmSVatWRR+6giBwZjQX2RCIR68VWFZui7rKA4EAP/3pTxkeHuaPntrGgN8yK5f62NgYQEpjoKurix07duDz+RAEATuj1GkPMWSuo9clYNO6+eZj9SwptdEuzSMYDPKLX/wCgPLych588EHVCLgJufvuu2lubuZHr+2hU6qmrc+DRXCR7e3jL+5fyq7z0nUP26jGgMqngumyFea6CFa0z0LPOFr/AGNicqlfCYFxyUooFCI9PZ1gMMjGjRs53jrCaFMGSq76EAaaxUUUZxnxuZ0M+gwKxYIS6xTEagYklmiPUZWrp76+nm/v1oBbKS1BQC4bFIwxGpRi6JP7DKJnlGwkMbLvSWINK61Wy/33388rr7zCa6+9xu///u+j0Wi4/fbbefnll2lvb0ev17Njxw4cDgdbtmwhGAzywx/+kPuKO+kzLOJinzf+O6wr5c4776ShoYGGhgYOHDjAsmXLWLt2LRkZGXLNB4Wjtpt10RlcKBTi5Zdfpq+vjyeeeEIuiQ6zcqm7XC5A2Rg4evQob731VrTZmiRJ6PV67MFRMvz7qdCJbN26ldxcM7t27YqGA3Jzc3G73WRlZamGwE2KxWKhavldfG9fAEGQnzODGOgUVrEtv4C/X339NRuqMaDyqWGqWOlc1jlI1B8IZERd6bGDpDAxOzebzZSWltLU1MRr7x3lWDC5/jsxawF0DvkRMFKlOUurtAhRmrrdMQgUWcMUh0/x24/+FkeOHOGdd95BCNdDinz0FZUOnl4NFy6M8INjdhBTGQKTdfSTxXAyiYZVbW0tBQUF9PT08PHHH7NmzRpqamrIz8/nnXfeYXh4mLy8PB5//HFMJhMAn//859mxYwf3bsjkjm13JO3D4XBw7733snHjxmhs/ciRIyxatIhCRzXD48GUxl44HObVV1/l0qVLPP7440mtiWeKkjEQCoX49a9/LacrQtQQ2LhxI/v27UOv1xMMBqmvr6elpYWf/exnCILA6tWrGRsb4/Lly+Tn59Pf339Fx6RyfYlMDI5flBtMTdYdkX8r1yNzQAnVGFBRYWvuxeUAACAASURBVG7rHCTqDySECfU/EI0Ny0P0GA4OjS+i+8wFMrQifYbFSEGYXvUvfz4k5fEX92fxH79qIqDPxBOUdf+Jy2Zb9fzNIzls3/4eZrOZL37xizidTv7xP1/lI1ek8U68iGnbnfNYUGJlwYIFHBhNrkkf8TToCE50FkxtCCQaVoIg8MADD/CDH/yAXbt2sWjRIqxWK7W1tezdu5f8/HyeeOKJuPh/ZWUld955J7t376awsJCaGuUHqNlsZuPGjaxbt47jx4/T0NCAduQykrQmLjYL4PKGeOQfjpMmOcnxDfK7jz9KWVnZNNc+NS6XbNxptfJ34HQ6eeWVV+jp6Ymet0aj4eGHH462OQ4Gg5hMJk6ePBk1AtauXYvZbKapqYlTp05RUVHB+fPnr/i4VKZmtoV/JEkiEAjg8Xhwu93R18i/I393jMCuvqqYsNnVFXy6lqjGgIrKBHOlslbSH0gSaAlO1OufJIyewXAmg6xBFw4QDuiYae8CCQE3NurnZ7NU9xKZGZns6a/AKeTEp/QhUZFnpri4GJ1OR1tbG/n5+YyPj6P3dvG1O1fyyhEP3XK4G4fWzRdXWajMmXw8bLm9kCOtsU2XJrceivYgSBYd6rWauJh8LHl5eSxdupSTJ0/y1ltvUVdXx/79+zEajeh0OsUKfrfeeitdXV28/vrrPPvss1NWg9Tr9axatYr6+noaGxt5Y/cJjg9m4tPYyXWY6BwRaep2T1wrE13Carz6vBld+1REskMA2traeO2115AkiUineLPZzJe//GWGglb+4fVDDIXuwIKLqkA796xfwJo1a+JCAeXl5Wi1WoLBIOPj43g8HjVUMMcoFf450urkd2/VkJfmTRrgI6/hcHL9EJPJhNlsxmKxYDabueCNGMAz85hdT1RjQEVlDjnd4SIYSo5OC1HHv1L+vzyQhqLtfhNJlRkgYtWMYzKZcEoOTg1U4sYmhyYmPBGR2oNP3FGITqejpKSEixcvsm7dOhoaGsjIyOD+jUtYf8tIVK2+aNEizh5t4J9P7GHJkiWsWrWKJaV51BRZOHc5toZ+xADQJPwtiw4F4BbNQVZbiwiP+HBlVCTF0jdt2kRjYyNNTU1cuHCBBQsWcMstt/Dzn/+ctrY2Kisr46+jIPDggw/y3HPP8fLLL/OVr3xFMaUwFo1Gw5IlS1i8eDFtbW189NFHvNGchRhX4nhuXLYRY+DDDz9k9+7dZGVlMTg4CEBOTg5btmyhqcfPN3ecRSId0BDEyNFgDk9ULkga6A0GA6WlpQwPDwNyRcyr8VyoJKNU+AdEfvrBAGttZ+MGd4fDEf134musRyjCa/9wHImg4n5vtIJPqjGgojJHRKscJo3nsjtdUMzfj5BoIEyuKwAlOSY6BnzRdzUTRYeKucC//miME+HV0ewDAdkQsJt16P19PLjCGp2Vl5eXs3//fgYHBzl79iz33nsvGo0Go1Gu7idJEhs2bGDz5s0cPXqUo0ePcuzYMXJzc7nYuwRIHHiTiwAJSGQIQ9ySMQhjw3R0hDh9+jQgi+EqKiqoqKigtLQUi8VCeuFi9rXp8GDF5c6h1lhAUVERe/fupaKiIqmLnslk4otf/CLPPfccb775Jg899NCUnfaiRyYIVFZWUllZyRvfPpIknJwLl63T6cTn89HS0kJlZSWtra0AVFdXc99993Hw4EH+86MQUkxXxUizoFSGSHV1Ne+99x5arZa+vj7VGJhjlDx5oEFrLeQb3/jsVW1bSZgMyVksNwKqMaCiMkdEqxwmxNVNWpEFfEx7uCrJhZ8KvVYgTS+h8w/yp1+sY93ioqS4Zpb3BAWWTH7VZo9LQ5SQjYWqfBPWSx+zrPKR6HYrKip4//332b17NyaTibo6uZBPc1+Ak6F63Fjpe6WD372/httuuw2Hw8GePXvo7+8nTXTiS2oYlIiIgyEemj9CR8dl0qxWLo/pCOQ9QOdwEMe4l66TFzh48CBarZZQWhH7RxdEj/9o6xjHL7r4+uZbOfTey7S0tFBdXZ20l9zcXD73uc/x2muvUVRUxOrVq6e/qDFUF1iTNBBX67IdGBiIivyWLVsWFQwuX74cg8HAv//7vyOKIuPiRhKNwqkMkerqat59910cDocqIrwGzHUmUSyphMn/9HTtDWMERFCNARWVOUJ5hiFg0Guxh0ap0F/kWDCi3E89oGoEqCu3UjT6LkU1RaxbLFfyS9Q0fO9775GbW024OwfGQ3HbECVo6/WwFOLi6vn5+RiNRpqamrj11lvR6/Wc7nDxje0thCcKGZ3vDfPHz59jve0MWncnlZWVPPDAA3SMCPyf1/uSmhNNBgfk/1ebOmhtHcBkMtHrNnI8tAK6/EgIuHwmLgu38FcPb6az8QN+cS7RkJHV1rubITOnhr96pYOgflxR1LV48WK6urrYuXMnBQUFccWKpmOuu2T+at9pfrK7E5e4kRxziJFjp7ELsifm1KlTiKKIKIqYTCZKrAbahpnx4JOVlRX9DlVjYO65lh1Tb6buvKoxoKIyR6SaYaRJcldCuzDC0yuDnBzOprnbAwiEJAm3LzwZfZ94EK0v9nGifZRHH3005f7cbrecv5xv4XDLaFJJ0zwrMAQZGRmT72s02Gw2BgcHWbVqFTDp0YgfkEU6xEq+/ey9FBTINdXLy+WB6TuvHKd3DCyCiyyhl3FDKR5slGSbMPTuZ0NdBY2N40iSREugbGKwl49NnKhl9HdvdFErDRAyVoI/WWF9ocuNy1chp0z6gim7ud1111309PTw6quv8uyzz05bBjjCXD2kRVHkx/+1lx0nzUAWEgJdHpFuVrNMd5iOjg5EUSQtLY3169ezcuVKmnr8fO2Fc7MafKqqqjh58iTj4+PROgUqc8O1HrBvlvLPqjGg8v+3d+fRTZ73nsC/ryzJWmzLi7C8YGwZDDjGBAKEPUBSQghhCD0hJATIhMx0MtN7zzRdbuacnrmn93R6p7edTtN0SS5NaUKchrBMNtYQGlq2sGMcY5vFtrCMI+/WYmux9M4fQi+WJRnvm76fc1RTYaTHEuH56nl/z++hAQos31fU2kOK90RRREbnNUDwT1wLFy7E5gh//t62pnScPPg+8vLykJaWFvY5Ozs74XQ6ERcXh83LM3D+Zqv/+e4W74migPnpNjQ6tVI9QODPVTcDNz1z8OLvr2OyQYOyu+MOJkM7EqQgEFCYHY9/fFQrNc958sknUVFRgVu3TkFj1UA/SY+LFy9i3bp1OHToEJyy8P0JOjoFFAsLMG1CHCpqHd2e34dOqVDb/2cjneYWExODZ555Btu3b8eePXvw4osvhhRxRTLQf6QdDgf27duHAzdTAGi7hDH/yYNVnblYmHANS5YswZw5c6RCx8JsZZ8nn7y8PKkJUVtbW69PRaTeGSsT9lBiGCAagNAGQ/4iPAU8iJdZ8fh0Gb657j/pL9K++O7/EFVUVKC+vh5r1kQuXgoca6zVapGXHY+XH+7ExxetgCYNaQlAXMtZ1F1vCdl698mXxbjgesj/ad3mQbOttcv+hd4dlmIwGCCKorTlbfPmzWhsbMT58+dx+fJliKKIgwcP+pv/HGmF8+4n5mB3///d8NT1hDcAcLvd8HUrVox0XT0uLg4bNmzAO++8g88//xyrV6+O+LoNli8vVOLNAzdg9RrRCWWYn08Gb6we3/ve98Jukezr5JOTkwO5XI7Ozk5YLBaGARp0vdvQTERhhTYY8v/vxETg3R89gvn5/k/2Op2uxz3xAaIo4uTJk5g0aVKP18ADYSAuLg4AUJClxQzhHD74fiF++8ps/NMrGyGKIiwWC65duyY99p6vmuCfiIMr2QPnB/j5q+wjLVunpqYC8F8yuH79OgBAr9dj9erV+MEPfoClS5fC7Xbj6NGjeCCuDvfOOQjmE4EGqxu/3paPuZN10McrMNsYh7nKi4gXrFIwCOgpoGRlZWHVqlU4d+6ctHNhqOw7ehE//aQeDZ2JcImx8IpAuFMQp2clhg0C/SGXy2E0GiEIAusGaEhwZYBoACJtS7J5tYiLi4PJZEJMTEzIfvlITCYTzGYzNm3a1OP3dV0ZAO6FAofDAZ1Oh6SkJMjlciQlJWHPnj1YunQpMjMz0eJWhXyKFSFAp5FjWoYWtyztEO138PyS1IjL1kqlEsnJydBoNDCZTOjo6JCOeY6NjcWjjz4KjUaDI0eOICcZcDjOosT70N0uhaGrD90/JZ840YyPjl1Gize5T6e5zZs3D7W1tfj000+RmpoKg2FgDYQAf01AS0sLGhsbUVtbi8uXL+NU63SIQS2cgw92Gqr941OnTsWNGzekboZEg4lhgGgA7rctqaqqCl6vF7m5uT0+TqBu4OvqRiTELILzPp3w7HZ/85/uYcBut0On08HpdKKjowOrV69GW1sbjh07BrVajRTVQ7C4VCHjnZahlSbk3//+NDSdPReopaWlwWq1+osEb95EYWFh0O/Pnz8fFRUVaG5uxmv/dROKPjmBAzUTpbasPU2YCxcuxMWLF6Fsv4Jq32R0KvWY3Ivr6oIg4KmnnoLFYsGHH36I73znO9K5BvfjdDrR1NSExsZG6VZfX4+Wlhape2CAA/EId4iUIsYfqoaqYjywxbK2tnZQH5cIYBggGpBI25IW5Sfi+ztKUdr0ELSwYY0iNeJjBNcdKNDh1eHVP5eHVM535XA4oFKppGK5rmEAgNSxLiUlBYWFhZDL5Thy5AiMqipYXA9CJkSuZDcYDPddik5NTUVVVRUMBgNu3LgREgYCnQLffPNNnDlzBj/4zjNI338ae8+2oF1IgEa0YmZiPex3fHCmzgqatOVyOVauXIm9e/ciHxY8tugxLFkyu8fxBCgUCmzcuBHbt2/Hm+8fQp08XzrhcPOydGQl+oIm/EAACLxugccAIB0rrVar4XK54PP5L59oYYO721kMMgGYbUwY0iI0nU6HuLg4WK1WeL3eXhdKEvVGzE9+8pOfjPQgiMYqQ2IsZucmoNHqgcvjQ0FWPJ5ZlIbfHjChrtUDL+RwQYNjX7didm4CDImxIY/xfz+pxp1mV7fzBIBGqwcrZ+nDPu+1a9fgcDik7YFyuRwnTpxATk4OMjIyYDKZUFZWhozpi/Cb/TXYd7EdbUIqDOp2pIq3oUudBBExKMiKx2vfzg36FNvY2Ijy8nIsXrw44hY2l8uFK1euYMaMGbh27RoWLVoUtlNgXFwc/va3v8FgMODRxQ/BILsD7+3jWL84GzoVcPbsWZw9exZWq1Vq9Qr4W/dWVVXB7Xbj4o0mHL6pwdtf1OLiTSvSkmLDvo4Bcrkc37Sr8JeSONxpdqHd7cOdZicOX25AxbkDuF5yHtXV1XC5XJDJZFAoFBAEAW63G21iIm7iQdzyTUNMynRMN6aiua5SWh0QBAEFUzJQ1qQJqrUQBOC1b+ciVRd5XIPh0o0mfNWYiT3n7bh0y3bf14Kot7gyQDRA3a95v/ZuRVAnwkAjnXDtZn0+H8rNoe1Ke+pIV2Ky4YOrajS2z8LtdyukZjwajSZoZcCpTMNrRbfurjjI0Y4kNLYlYW12LdpqPsOzK1Zg6dJZIZO4wWCA0+mEzWZDQkJC2DEErscnJibC6XSipqYG2dnZId/34IMPoqKiAvv378ekSZOwbNkyOJ1OnDlzBuvXrw9qe3zhwgXk5OTg4YcfhkedgSueh1Bms8IDJVDtACDc6zfw0nTkpAhBn+4Dt7a2NhR3zg26rh8olGxLmIslORbU1dVJZwYkJycjLy8PvrgsvPGlG/D5X/8KixcVljjMikmETmjFlClTMH/+fOzevRurJ+ahPnYGquudw9ZIpsRkw0e3DPDBBzi8uHArfO8Fov5gGCAaZOGKCsNN7iaTCYcPH0aMcyIE6EOaBoWrnJfOP/D5CwG7TghxcXFBYeC2b0rITgdBBO7E5OPJZUn48ssv8c033yBvzrew62SDtOd93Rz/xGKxWCKGAZ1Oh9jYWHg8Hmi1Wly/fj1sGAhcx//DH/6Azz77DBs3bsSqVavgcrnw8ccfY+PGjVi+fDmWLl2Ka9eu4dy5c/jjh5/jinfB3TEHDm/q2rRIxL/8+RQKZeek50hOToZer0dBQQH0ej2KD3uB9uCzB0QIMLd4cUd5B9nZ2XjkkUeQnZ0t/YyvvVsBwB109DQgwixMw/dfngGfz4eioiJkZmZi06anB22nQG8VHb9z91c9914g6g+GAaJBdr+iwtbWVnzxxRcoLS1FRkYGvvsfpuN/72+SJu6eiuuk8w+6TI6BCaGwWxho8xrChpIqSweWv7gcaWlp2LH3r3ir5AaEu1X7gU/eDykmoL6+Puy5AIB/Ag7UFuTl5eH69etYuXJl2O/VarVYu3YtPvzwQxQXF2PWrFlYu3Yt3G439uzZgxdeeAFGoxGFhYUoLCzEf99eDNQ4u4Sj0B4F7THJ2PjsRuj1eiQlJSEmJgY2mw0mkwnV1dVQdioBJKDrdX1BAGbkpOAftv2DdJ/T6UR5eTkqKytxtTIBPrH7QUwy+NSGbkFg07AHAaD3IZOoPxgGiAZZoKhQEP0dAQOT+3NLUvHll1/i9OnTUKlUePrppzFz5kwIgoDU1NRedaTraUJYODUOTU1NAPxhIEnpgsOjQvdCt0AomT59OtwGD3D73mMGwkWtMO2+RYQGgwFVVVXILnwExy7I8defX8SU9LiQMwQCzzVr1iwcOnQIOTk5SExMxPr167Fr1y588MEH2Lp1KyZOnAgAqGnyhGniE0wpVyAzMxPV1dU4c+YMTCaT9LPr9XqsmDIFu8u6fIK++x5sXZGJqqoqVFZWoqqqCnfu3IEoikhMTIQhbjZuW8WQFZoMnYD3338fmZmZeP7550ckCABDe6AOkSB23zdDRANWXNWGn75zCm5FCqZn6bB4khO3Lv8V7e3tWLhwIZYuXSq1p+2L196tCHva3tzJOqzMrEFpaSleeeUV/PznP0ebmIgr3gXSp/7AhPj6y/lS0Njwi8totIWetx4LJ5ZpTmHWrFnQ6/XSLS4uTqoxuHjxIt7/7BSKfQv8Zwh02TIY7jq20+nEW2+9haSkJGzdulUq2isqKkJDQwNeeOEFXL16FW+fEdHa7bJJd0rBg0UxXwDwT/45OTnIzs5GTk6OtLOixGTDe8drcbPOjhRVJ6aqa+BuvI7Ozk5oNBoYjUbk5ubCaDTCZrNhx55jQScoBpowzVVewANZWjz//PP9es8GS4nJhu/9qSzkte76fhL1F8MA0SArMdmw/fAtXDdbkWtQI1t2C66GCuTn52PlypVBBwf157G7tj/uOiF8/XUp9pxthismCUpPM741TcDSJUtQ9Le6iCsO4cKFIAAZajvy3Ceg1+vR3NwsbauLjY2VgoFCocCfvkLIscyBcBLuOnZVVRV27tyJVatWYcECf12A0+nE9u3b0dra6m/QNPsxvH1W1qXe4V7NgJ+IHJ0bP1ydjOzsbGnyB/xdFpuamqRP/tXV1XA6nVAoFMjJyZECQGpqqhRGjh07hnPnziE9PR0VdS5YdXPR6lYhXSdA3XB6VASBgDeLDuLv1Qp0KvWj+gQ8Gnt4mYBoEN0r8BMhQoVyixcVMOJ/rHkIjy+YOuDHj3TCmigCf/xKBp+YDPhkcCAF+67LsHSp0GNxWaQ+Cf/xsSycOgRs2LABKSkpUhe+rreGhgY4sDjsZYsKcxtqa2uh1+uDDkoyGo3IzF+MXx5shnj8IoypKhhjKtHS0gK5XO6/tZuxJMGGq62psCPBv5sgqLufgB88OwsFdydBq9WKqqoqafnfZrNBJpNh4sSJmD9/PnJzc5GZmRmyL7+yshKfffYZ7HY7Vq1aBavViqami/jZK7PR0NCAoqIipE9MHzVBAAC8rZXYPNuINWt613eBqLcYBogGUfcCP0AGQQCOVYh4fMHgPEe4Q27+6Z3yu3vhA/UBMmk8PYWBSOFi8gQ5Th3y7yhITU2VVgO6EkURV376ORo8sd2W9EXInI14++1DAID4+Hjpz9tlenzwdQJ8ogg4vGipsuEyJmC+Jg0q9zfo7OzEV9e+QaN6JnxqNQrTNHikQI/T5a3S+J5dlIIYhxkHD/oDQGCLYFpaGmbMmAGj0Yjs7OyIE7jT6cTRo0dx6dIl5OTkYMuWLVCr1Xj99dcxb968e0EgPR2bNm0aNUGgo6MDTU1NWLp06UgPhcYhhgGiQTQSFd8ejwelpmaI3f5z7u3zRjpBLz4+vsciQkEQsCjLiU8qIXU0FCBCJhPwP7cuQprmITQ0NEi9AEwmE76og3/1Iii0iLAoC/DDdUvxTXss/tcnDYDHfyDzlWoHik0O/OgJHVZmNqGq6gIOfFAHURSRlJQEo9GI5cuXIycnR2pY1JMbN25g//79cDqdWLNmDebMmQNBEHD8+HH4fD5kZ2ePyiAAAGazGYD/UCaiwcYwQDSIJumVaLS50f0ad0bi0LSOdTqd+Mtf/gK1Lw1OQT+olea9aUucnJyMhGor2oVEwOuFFm342UsLUZjj37ufnp4e9P1//cVloFvBoggBNq8WDzzwAN59twKCIAva3QDRh38/eBNz1cUwGAxYsmQJCgoK+nQQUUdHB44cOYLi4mJMnjwZa9euhU6nA+Dvpnj27Fnk5eVh7969ozIIAEBNTQ00Gs2Aak6IImEYIBpEeaoaXEZiUAW/KAKqhpMwmXRhG/P0l91uR1FREdra2vDf1i7Dzz5twr1iO//XgZycl5qaitLS0oi/X2Ky4Z2LsfCJCgR6/NmhQ2VVJQpzZoX9M+G2xwl3w9K5c+dQWt0Jn9j9nyUZnDIdlEolzGYzzGYzTpw4Aa1Wi5SUlJBb4MTGgLKyMhw4cABerxfr1q3Dgw8+CEEQpMOhymtaIXfPQNN1E/Iz00ZlEAD8KwNZWVkRW0QTDQTDANEgqaurg+XGWfyXRU/gUr1Ousb93OIJuHqqHEVFRXj22WcjNvLpi9bWVrz33ntwu9146aWXYOlQA2jq8h132/AOYK+QI2YC/t6Uh5P/dgmT07Qh/QO6d8QLdOzb81Uz1q0I/5jdCxaFu0f/xtz5EkcsVugUi9HeqQ3Z61+YOwE/fPGHcLlcaGpqkm7Nzc2wWCwoLS2F2+32/+SCAJ1OB51OB5vNhubmZkycOBGrVq1CRkaGFATu7coQAKSgxaXH84/kjcog4PP5UFtby3oBGjIMA0SDQBRFHD58GBMmTMCGVfOwURZ8xG1hzgvYu3cvdu3ahfXr12PGjBn9fq6Ghga89957kMvl2LZtG5KSkvCrdyvu/m7wp8b+tqotMdnw2+Nu+JAC2DvREqYPfrj6CECGxo7Qf1Y6OjpQXV2N25WVWKJrwNWWCXAgHsmxLjykb0G7pRXPPbcJTmVa0NZJASIE4d4KR2xsLDIyMpCREbziIYoiHA6HdE5BRUUFKisr4fP5IAgCzGYz/vSnPyEmJgbJycn4yvYAfD51SKHnrpMNmD05uc+v11BraGiA2+2WGjMRDTaGAaJBUFpaitu3b2PLli2Qybqfde8/SW/Dhg349NNPsW/fPrhcLsyZM6fPz1NbW4v3338f8fHx2Lx5M+LjI0/MAylc7E0f/EhL/hrRhrq6OnR0dEj7/evq7hX9zZ2aiw1G/55/jUYDURSxc+dOHDhwAK+88oq0u6HC3AaZsxE/enZ2j3vpA8v9lZZ2TNIrkYXbaKu5gYKCAqxevRpqtRptbW1BKwoHzilCmhqN5ta+NTU1EAQhJAQRDRaGAaIB8ng8OHr0KKZPn47c3NyI3xcTE4Onn34asbGx2L9/Pzo6OrBkyZJeP09VVRV27dqF1NRUbNq0CWq1Wvq9wW5V25twEa7tsigCOTE3sX37BQD+cwmMRiPmzp0Lo9GIxMTEkOcSBAHr1q3Dm2++iSNHjmDdunX4txenwePx4Fe/+hU6LGqgIPwk2L0JU6PNjctIx/dXTsFTjxRK35eUlISkpCRMmTIFAPC3hvCdHEdra1+z2Yy0tLRReQmDxgeGARo2XT/B5Ro0YXvYj0UnT56Ew+HA448/ft/vFQRB+rR67NgxOJ1OPPbYY/ctCisvL8fevXuRnZ2NjRs3hkwK0sQM/4Tc02FHvXG/cCGKItI0TvznBSI+utCGFrcKWtGGvFgTtL42xMaq8NJLL2HChAm9KnhLTEzEE088gU8//RTTpk3D9OnTIZfLkZ+fj8uXL2PKlClwOp3o6OhAe3u79HV3aVy35X4BgiDgRJUSTz0S+fkiNVsaSMHlUDKbzT0GTaKBYhigYdH9E5x0Lv0YP4u9tbUVp0+fxsKFC3u95UsQBKxYsQIqlQqff/45Ojo6sGbNmrCXFwCguLgYn3zyCfLz87F+/fqgSvmAQPOgPx6+hQqzFflZifhPq4x9alXbNaxNSPCHjUD/gECf/gUTHfjoo49QWVkJu90OmUyGJUlJaGpqwpYtW5Cd/QR27tyJ27dvIykpSQoCXq83aBIP99XhcEClUmH37t1QqVRwOp0IdEv/85//LI1ToVBArVZDo9GgqWNGv5b7IzVbGo2tfdvb29HU1IRHHukh3RANEMMADYtAZ77up+O9d7wWv3hx+oiObSCOHj0KtVrdryrvhQsXQqVS4bPPPoPL5cL69etDWubuOvgVdp9pgluxEvb2JEyv7YgYngqz4/HT54x4/fXXsWn5JuT1MQgEhzUPRBHITpah0eaBVrAhw1uGqydbkZqaiqlTpyI1NRU6nQ4WiwXHjx/HtWvXUF5eDq/XCwD43e9+B5lMhvb2dqnSvzu1Wi1N7Gq1Grm5ubh+/Tq0Wi1WrFgBjUaDL774AsnJyVi3bh00Gk1QGKqMcHBTb5b7IzVbGm3YbIiGA8MADYtI16Cv3qzH668fRlxcXNhbfHy89OvuE+VIq66uxrVr17B+/fp+X8udPXs2VCoV9u3bh127dqFgwZP44GQ9Ki3tUMKJOzYZBOghegRcVE0EaQAADPlJREFUvGXFpUprxNUUURSh0fgnwcbGRqSlpcHr9Uq3zs5OeDweOJ1OuFwuuN1uuFwuuFwuFF1Wwue7V1Tnf698aGtuwALVFWkC9nhiUF9fH7YZ0ddffw2dTgeVSgXAvxowc+bMoMm+61eVShV2NaSsrAy7d++GUqlEQUEBbDYbjh49Kp1d0NVYW+7vD7PZDK1WG7begmiw8NRCGhaRjt6dogc2zrDDZrPB4XDAbr/36+5/NdVq9X0DQ1xcHFQqVb8as/SlpsHn82H79u1QKBTYtm3bgBvBVFZW4q33D+GCe67UsAgI/PzB3QwnyFswV30VXq8XPp8PPp8PoiiGvF59cbpzBdxQhdyvifHg5ZmWiBN64OtvfvMbPPzww1i2bBkA4I033oDNZsOPf/zjfo3n448/xpnSOnjSluJ2oxuiow4bFqTguSdDD3jo/r6N1uX+/tq5cyeUSiWee+65kR4KjWNcGaBhEekT3D8+Hf4sdp/Ph/b2dtjtdulms9lgt9vhcDjQ1uY/Fc9ut4csQcfExAQFBa1WGxIYuq829LWm4dKlS7BYLNi2bZv0KbvrzePxhNwX7ve6/rraNxkiRIjivWK4UALaOjXo6OiATCZDTEwMlEol5HI5FAoF5HI5WltboVQqkZ6eDoVCAaVSKd1iY2Olm0qlkr62HWhEsak9JKzNMOrx7W8vvu/7m5KSgqame02P1IZ8HG9w49s/v4C89Pg+F4tmFSzFGxdvAtWOu70N9dh+Bih4wCq1Og4YK8v9/cFmQzRcGAZoWPS1YEsmk0kT9v243e6QwND1FggNkVYb4uPjcap1Gnw+bdAyuSCK+D8fXsITWXeCJm6XywWr1QpBELBjx477jk8ul0uTcffJOT4+XrrvSLMO9w7wCU8mADNzJ+CfX/zniKsR+/btg91uxwsvvHDfsQW89C0tXt1R1u/l9pSUFOnSQYnJhl2lOvjgAxw+XAjTsOh+dp9u7LJCEuhu6MPbn1fhN995sNc/11hXX18Pt9vNegEacgwDNGyG6hOcUqlEcnIykpN77hwXWG0IFxgOnFOFVKWLENDY7v9PJC4uTpq0a2pq4HA4sGzZMsTHx4ed5LtO/pF2CXT3129CL6V0FZigX3x0Yo+XJRISElBbW9ur5wwYaHW9Xq9HWVkZRFHsVcOi+4nU3bDym9HZFGiomM1myGQyNhuiIccwQFGjp9WG4/XhaxpmGPV4/vl7y+T19fU4d+4cHnvsMSxefP/l874IdykFAKZlatHQ5u71BK3T6WC1WiGKYp9qGQYS1lJSUuByueBwOAalG2Kk7oax3lZ4PB4oFIp+jXOsMZvNMBgMUfPz0shhGCDC/avSS0w2vHe8FqVVTYiPWYB1Gf0/WyCSwdr7npCQAK/XC4fD0avLLIOhwaVFcedcbPltOURRJp2bGNDX7n7d3w/Af8bAJOE6ysoyMXPmzMH9AUapmpoaTJ48eaSHQVGAYYAIPU/EwcWFCjh9ifjBOxVD0jBpMC6l6HQ6AEBbW9uwhIESkw3/8v/q4EUK0O6DIPgQvDAgwicKWJzf+61x3d8PrWCDwfU18tK0uHLlSlSEAYfDgebmZixfvnykh0JRgGGA6K5IE3Gkhkn9PRFwqAXCgNVqRWZm5pA/X+D1kY4yDkoCIvwtgoE3DphgNGh6HaC6vh9OpxN/+MMFeDwCamtr0dLS0uuOj2NVoNkQTyqk4dC7yiaiKDbYJwIONbVaDblcjra2tmF5vvDFfgH+mgVR9N/uFRf2jUqlwlNPPYX6+nrI5XJcuXKlf4MdQ9hsiIYTwwDRfeQaNFIxX8BoPuFOEATodLphCwPhXp9wBhqgpk6dipkzZ0IURVy+fBk+n6/fjzUWmM1mZGVlDbihFVFvMAwQ3cfm5RkQhHvV/WOh5W1gR8FwCPf6AP7XqKvBCFCrVq2CQqGAzWbDrVu3BvRYo1mg2RAvEdBwYRgguo9AMdvcyTro4xWYO1mH118O3zlxtEhISBi2lYFwr8+ra7MhG4IApdFosHbtWgDA3//+94EOfdSyWCzweDxsNkTDhgWERL0w1lre6nQ63Lx5c9ieL9zrYzRohuTMgAceeAAGgwFmsxmNjY3Q6/UDfszRJtBsKD09faSHQlGCYYBoHEpISIDdbofX6x2x0x6HMkA9sOBJfL6vBFt/W47C3Al9PvtgtDObzUhLS2OzIRo2PLWQaBw6fLoc2w/dghCXhilpceNqsgz0ffD5RIgQpEsQQ9H3YbgFTmC8WlmP9AQBrz7z4Jj/mWhsYM0A0ThTYrLhl4etaEEKmu1eXLjVhld3lKHEZBvpoQ2KQF+DrodKDWTb4mgRCDkXbrXB6YtFdZtyXL1vNLoxDBCNM+EOChoPk2XAWOv70Fvdm1sNtDcDUV8wDBCNM+N1sgwI39fAB0P82L7iOd7fNxrdGAaIxpmx1iSpr8L2fYCAJNsluFyukR3cAIz3941GN4YBonFmLDZJ6otwfQ3+9blJ0HgbcPTo0ZEeXr9tXp7hP3b67jFP4+19o9GNuwmIxqFAVfpg7/Efzc6fP4+DBw9i69atMBqNIz2cPqurq8Mv/303nBMWo8EREzXvG40ODANENC6IoohfvrUbFxsS4VWlYrJBM6a2VH744Yeor6/Hd7/7XchkXLSl4cW/cUQ0Lnx9244jdUbUe3RosnnG1JbK+vp6lJeXY8mSJQwCNCL4t46IxoWxvKXyxIkT0Ol0mDlz5kgPhaIUwwARjQtjdWteU1MTSktLsXjx4hFrHU3EMEBE48JY3Zp38uRJaLVazJ49e6SHQlGMYYCIxoWxuKWypaUFxcXFWLx4MeRynhtHI4dhgIjGhXD9B15/OX9Ub807deoU1Go15syZM9JDoSjHKEpE48ZQHps82KxWK65cuYLly5fzqGIacVwZICIaAadOnYJCocC8efNGeihEDANERMPNbrfj0qVLmD9/PmJjY0d6OEQMA0REw+3MmTOQyWSYP3/+SA+FCADDABHRsGpvb8f58+fx8MMPQ61Wj/RwiAAwDBARDauzZ88CABYsWDDCIyG6h2GAiGiYOJ1OnD17FnPmzIFWqx3p4RBJGAaIiIbJuXPn0NnZiUWLFo30UIiCMAwQEQ0Dt9uNr776CrNnz0Z8/OhthETRiU2HiIiGUInJhqLjd1Be0wq5uwCPGB8a6SERhRBEURTv/21ERNRXJSYbXt1RBlH0n6AoQIRMJuDX2/JRmM3VARo9eJmAiGiIFB2/IwUBABAhQBT99xONJgwDRERDpNLSLgWBAJ/ov59oNGEYICIaIrkGjXSkcoBM8N9PNJowDBARDZHNyzMgCJACgUwABAHYsiJjZAdG1A0LCImIhlBgN0GlpR25Bg22rMjAjEksHqTRhWGAiIgoyvEyARERUZRjGCAiIopyDANERERRjmGAiIgoyjEMEBERRTmGASIioijHMEBERBTlGAaIiIiiHMMAERFRlGMYICIiinIMA0RERFGOYYCIiCjKMQwQERFFOYYBIiKiKMcwQEREFOUYBoiIiKIcwwAREVGUYxggIiKKcgwDREREUY5hgIiIKMoxDBAREUU5hgEiIqIoxzBAREQU5RgGiIiIohzDABERUZRjGCAiIopyDANERERRjmGAiIgoyjEMEBERRTmGASIioijHMEBERBTl5CM9AKLxrsRkQ9HxO6i0tCPXoMHm5RkozI4f6WEREUkEURTFkR4E0XhVYrLh1R1lEEXAJwIyARAE4Nfb8hkIiGjU4GUCoiFUdPyOFAQA/1dR9N9PRDRaMAwQDaFKS7sUBAJ8ov9+IqLRgmGAaAjlGjSQCcH3yQT//UREowXDANEQ2rw8A/6yHB+AezUDW1ZkjOzAiIi64G4CoiGUZ1BgjvI8qjpz4VakID8rEVtWZGDGJBYPEtHowTBANIRKS0sR52vCg/IWPLHqCcybN22kh0REFIKXCYiGUHFxMXJzc+Hz+aBUKkd6OEREYXFlgGgIlJhs2HG0GtdMU2BMVUEjNiM2Nnakh0VEFBabDhENskCjIZ9PhIjAVgIRuRMU+N66PDYbIqJRh5cJiAZZoNHQvSAAAAIqGzrx6o4ylJhsIzY2IqJwGAaIBlm4RkMB7D5IRKMRwwDRIAvXaCiA3QeJaDRiGCAaZJuXZ0CIEAbYfZCIRiOGAaJBVpgdj19vy0d+pjbofnYfJKLRirsJiIZQicmGouN3UGlpR65Bw+6DRDQqMQwQERFFOV4mICIiinIMA0RERFGOYYCIiCjKMQwQERFFOYYBIiKiKMcwQEREFOUYBoiIiKIcwwAREVGUYxggIiKKcgwDREREUY5hgIiIKMoxDBAREUU5hgEiIqIoxzBAREQU5RgGiIiIohzDABERUZRjGCAiIopyDANERERRjmGAiIgoyjEMEBERRTmGASIioijHMEBERBTl/j9gPJ+41oPzcAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -2568,7 +2692,7 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 81, "metadata": {}, "outputs": [], "source": [ @@ -2577,7 +2701,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 82, "metadata": {}, "outputs": [], "source": [ @@ -2586,7 +2710,7 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 83, "metadata": {}, "outputs": [ { @@ -2595,20 +2719,18 @@ "Text(0, 0.5, '# Members')" ] }, - "execution_count": 91, + "execution_count": 83, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtMAAAE/CAYAAACEmk9VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAiFUlEQVR4nO3deZxkVZXg8d+BApRmh2xEoCxEEHFDqUZatEFgWgRH0EGB9qOA9FTrqDBoD5bLiO24VIv7tKLVsqmsogiKKMgiOspSFEuBJVpisTVLISoqDOvpP95LCYLMqng3X2REZv6+n0988sV9L06ceHEz4sSNG+9FZiJJkiSpudUGnYAkSZI0VVlMS5IkSYUspiVJkqRCFtOSJElSIYtpSZIkqdCsQScwEZtssknOmTNn0GlIkiRpmrvqqqvuycyR7vYpXUzPmTOHRYsWDToNSZIkTXMRcfNY7U7zkCRJkgpZTEuSJEmFLKYlSZKkQhbTkiRJUiGLaUmSJKmQxbQkSZJUyGJakiRJKmQxLUmSJBWymJYkSZIKWUxLkiRJhSymJUmSpEKzBp1A2+bMP7en7ZYv2KfPmUiSJGm6c2RakiRJKmQxLUmSJBWymJYkSZIKWUxLkiRJhSymJUmSpEIW05IkSVIhi2lJkiSpkMW0JEmSVMhiWpIkSSo07c6A2CbPpihJkqSVcWRakiRJKmQxLUmSJBWymJYkSZIKWUxLkiRJhSymJUmSpEIW05IkSVIhi2lJkiSpkMeZniQes1qSJGn66dvIdEQcHxF3R8T1HW3HRMQvIuK6iDgrIjboWPfeiFgWETdGxCv7lZckSZLUln5O8zgR2Kur7QLgeZn5AuCXwHsBImJ74EDgufVtvhgRq/cxN0mSJGnC+lZMZ+alwL1dbedn5iP11cuALerlfYHTMvPBzPwNsAzYqV+5SZIkSW0Y5A8Q3wKcVy9vDtzase62uu1JImJeRCyKiEUrVqzoc4qSJEnS+AZSTEfE+4FHgJOb3jYzF2bm3MycOzIy0n5ykiRJUo8m/WgeEXEI8Gpgj8zMuvl2YMuOzbao2yRJkqShNakj0xGxF3AU8JrMvL9j1TnAgRGxVkRsBWwDXDGZuUmSJElN9W1kOiJOBXYDNomI24CjqY7esRZwQUQAXJaZb83MGyLiDODnVNM/3p6Zj/YrN0mSJKkNfSumM/OgMZqPW8n2HwU+2q98JEmSpLZ5OnFJkiSpkMW0JEmSVMhiWpIkSSpkMS1JkiQVmvTjTGvi5sw/t6ftli/Yp8+ZSJIkzWyOTEuSJEmFLKYlSZKkQhbTkiRJUiGLaUmSJKmQxbQkSZJUyGJakiRJKmQxLUmSJBWymJYkSZIKWUxLkiRJhSymJUmSpEIW05IkSVIhi2lJkiSpkMW0JEmSVMhiWpIkSSpkMS1JkiQVspiWJEmSCllMS5IkSYUspiVJkqRCFtOSJElSIYtpSZIkqZDFtCRJklTIYlqSJEkqZDEtSZIkFbKYliRJkgpZTEuSJEmF+lZMR8TxEXF3RFzf0bZRRFwQEb+q/25Yt0dEfD4ilkXEdRHx4n7lJUmSJLWlnyPTJwJ7dbXNBy7MzG2AC+vrAK8Ctqkv84Bj+5iXJEmS1Iq+FdOZeSlwb1fzvsBJ9fJJwH4d7V/NymXABhGxWb9ykyRJktow2XOmN83MO+rlO4FN6+XNgVs7trutbnuSiJgXEYsiYtGKFSv6l6kkSZK0CgP7AWJmJpAFt1uYmXMzc+7IyEgfMpMkSZJ6M9nF9F2j0zfqv3fX7bcDW3Zst0XdJkmSJA2tyS6mzwEOrpcPBs7uaH9zfVSPnYE/dEwHkSRJkobSrH4FjohTgd2ATSLiNuBoYAFwRkQcBtwMvKHe/HvA3sAy4H7g0H7lpSebM//cVW6zfME+k5CJJEnS1NK3YjozDxpn1R5jbJvA2/uViyRJktQPngFRkiRJKmQxLUmSJBWymJYkSZIKWUxLkiRJhSymJUmSpEIW05IkSVKhvh0aTzOTx6yWJEkziSPTkiRJUiGLaUmSJKmQxbQkSZJUyGJakiRJKmQxLUmSJBWymJYkSZIKWUxLkiRJhTzOtIaWx6yWJEnDzpFpSZIkqZDFtCRJklTIYlqSJEkq5JxpzQjOv5YkSf3gyLQkSZJUyJFpqaFeRrnBkW5JkmYCR6YlSZKkQhbTkiRJUiGLaUmSJKmQc6alAWpz/rVzuSVJmnyOTEuSJEmFHJmW9CSOckuS1BtHpiVJkqRCFtOSJElSoUbFdESsFhHr9SsZSZIkaSpZ5ZzpiDgFeCvwKHAlsF5EfC4zj+l3cpKmh17mYDv/WpI0FfUyMr19Zt4H7AecB2wFvGkidxoRR0bEDRFxfUScGhFPiYitIuLyiFgWEadHxJoTuQ9JkiSp33o5mscaEbEGVTH9b5n5cERk6R1GxObA4VRF+gMRcQZwILA38JnMPC0ivgQcBhxbej+SpidHuSVJw6SXkekvAcuBvwIujYhnAPdN8H5nAU+NiFnA2sAdwO7AmfX6k6iKd0mSJGlorXRkOiJWA+7KzM072m4BXlF6h5l5e0R8ErgFeAA4H7gK+H1mPlJvdhuw+Vi3j4h5wDyA2bNnl6YhSZIkTdhKR6Yz8zHgqK627Ch6G4uIDYF9qeZeP51qxHuvXm+fmQszc25mzh0ZGSlNQ5IkSZqwXuZM/zAi/hk4HfjzaGNm3lt4n3sCv8nMFQAR8S1gF2CDiJhVF+pbALcXxpeknrQ5/9qzRkrSzNRLMX1A/fftHW0JPLPwPm8Bdo6ItammeewBLAIuBvYHTgMOBs4ujC9JkiRNilUW05m5VZt3mJmXR8SZwGLgEeBqYCFwLnBaRHykbjuuzfuVJEmS2tbLSVvWBt4FzM7MeRGxDfDszPxu6Z1m5tHA0V3NNwE7lcaUJEmSJlsv0zxOoDraxkvr67cD3wCKi2lJ0vicfy1JU0cvx5neOjM/ATwMkJn3A9HXrCRJkqQpoJdi+qGIeCrVjw6JiK2BB/ualSRJkjQF9DLN42jg+8CWEXEy1WHsDulnUpIkSdJU0MvRPC6IiMXAzlTTO47IzHv6npkkSZI05HoZmQbYFXgZ1VSPNYCz+paRJEmSNEWscs50RHwReCuwBLge+KeI+EK/E5MkSZKGXS8j07sDz8nM0R8gngTc0NesJEmSpCmgl6N5LANmd1zfsm6TJEmSZrRxR6Yj4jtUc6TXBZZGxBX19ZcAV0xOepIkSdLwWtk0j09OWhaSJEnSFDRuMZ2ZP+q8HhHrrWx7SZIkaaZZZXEcEfOADwP/H3iM6ljTCTyzv6lJkiRJw62Xkeb/BTzPE7VIkiRJT9TL0Tx+Ddzf70QkSZKkqaaXken3Aj+NiMuBB0cbM/PwvmUlSZIkTQG9FNNfBi6iOgPiY/1NR5IkSZo6eimm18jMd/U9E0mSJGmK6aWYPq8+osd3eOI0j3v7lpUkqRVz5p/b03bLF+zT50wkaXrqpZg+qP773o42D40nSZKkGW+VxXRmbjUZiUiSJElTzSoPjRcRa0fEByJiYX19m4h4df9TkyRJkoZbL9M8TgCuAl5aX78d+Abw3X4lJUkaPs6/lqQn6+WkLVtn5ieAhwEy836qU4pLkiRJM1ovxfRDEfFUqh8dEhFb03FUD0mSJGmm6mWax9HA94EtI+JkYBfgkH4mJUmSJE0FvRzN44KIWAzsTDW944jMvKfvmUmSJElDbtxiOiJe3NV0R/13dkTMzszF/UtLkiRJGn4rG5leBFwPjI5Cd/7oMIHd+5WUJEmSNBWsrJh+F7A/8ABwGnBWZv5pUrKSJEmSpoBxi+nM/Czw2Yh4JnAgcGFE3Ax8LDOvmcidRsQGwFeA51GNcr8FuBE4HZgDLAfekJm/m8j9SJKGU9vHrO4lnse/ltQPqzw0XmbeBJwNnA/sBGzbwv1+Dvh+Zm4HvBBYCswHLszMbYAL6+uSJEnS0FrZDxBHR6T3BW6lmurxscx8YCJ3GBHrA39HfXi9zHyI6ljW+wK71ZudBFwCvGci9yVJkiT108rmTC8DrqMalb4PmA28LaL6HWJmfrrwPrcCVgAnRMQLqU5VfgSwaWaOHjHkTmDTsW4cEfOAeQCzZ88uTEGSJEmauJVN8/gwcBbwGLAOsG7XpdQs4MXAsZn5IuDPdE3pyMykPuNit8xcmJlzM3PuyMjIBNKQJEmSJmZlP0D8UJ/u8zbgtsy8vL5+JlUxfVdEbJaZd0TEZsDdfbp/SZIkqRWr/AFi2zLzTuDWiHh23bQH8HPgHODguu1gquklkiRJ0tBa5enE++SdwMkRsSZwE3AoVWF/RkQcBtwMvGFAuUmSZjAPsyepiYEU0/VxqueOsWqPSU5FkiRJKrbKYjoiPpCZH6mX18rMB/ufliRJU5+j3NL0N+6c6Yh4T0T8LdUpxUf9rP8pSZIkSVPDykamfwG8HnhmRPy4vr5xRDw7M2+clOwkSZKkIbayo3n8Hngf1clbdqM6BTjA/Ij4aX/TkiRJkobfykamXwl8ENga+DTV2RD/nJmHTkZikiTpcb3MvwbnYEuTbdyR6cx8X2buASwHvgasDoxExE8i4juTlJ8kSZI0tHo5NN4PMnMRsCgi3paZL4uITfqdmCRJkjTsVnkGxMw8quPqIXXbPf1KSJIkSZoqGp1OPDOv7VcikiRJ0lTTqJiWJEmS9LiBnE5ckiQNTptHBvEoI5rpHJmWJEmSCllMS5IkSYUspiVJkqRCFtOSJElSIYtpSZIkqZDFtCRJklTIYlqSJEkqZDEtSZIkFbKYliRJkgpZTEuSJEmFLKYlSZKkQhbTkiRJUiGLaUmSJKmQxbQkSZJUyGJakiRJKmQxLUmSJBWymJYkSZIKWUxLkiRJhSymJUmSpEIW05IkSVKhgRXTEbF6RFwdEd+tr28VEZdHxLKIOD0i1hxUbpIkSVIvBjkyfQSwtOP6vwKfycxnAb8DDhtIVpIkSVKPBlJMR8QWwD7AV+rrAewOnFlvchKw3yBykyRJkno1qJHpzwJHAY/V1zcGfp+Zj9TXbwM2H+uGETEvIhZFxKIVK1b0PVFJkiRpPJNeTEfEq4G7M/Oqkttn5sLMnJuZc0dGRlrOTpIkSerdrAHc5y7AayJib+ApwHrA54ANImJWPTq9BXD7AHKTJEkDMmf+uT1tt3zBPn3OROrdpI9MZ+Z7M3OLzJwDHAhclJlvBC4G9q83Oxg4e7JzkyRJkpoYpuNMvwd4V0Qso5pDfdyA85EkSZJWahDTPP4iMy8BLqmXbwJ2GmQ+kiRJUhPDNDItSZIkTSkW05IkSVIhi2lJkiSpkMW0JEmSVMhiWpIkSSpkMS1JkiQVspiWJEmSCllMS5IkSYUspiVJkqRCFtOSJElSIYtpSZIkqZDFtCRJklTIYlqSJEkqZDEtSZIkFbKYliRJkgpZTEuSJEmFLKYlSZKkQhbTkiRJUiGLaUmSJKmQxbQkSZJUyGJakiRJKmQxLUmSJBWaNegEJEmS+mHO/HNXuc3yBftMQiaazhyZliRJkgpZTEuSJEmFLKYlSZKkQhbTkiRJUiGLaUmSJKmQxbQkSZJUyGJakiRJKjTpxXREbBkRF0fEzyPihog4om7fKCIuiIhf1X83nOzcJEmSpCYGMTL9CPDuzNwe2Bl4e0RsD8wHLszMbYAL6+uSJEnS0Jr0Yjoz78jMxfXyH4GlwObAvsBJ9WYnAftNdm6SJElSEwOdMx0Rc4AXAZcDm2bmHfWqO4FNB5WXJEmS1ItZg7rjiFgH+CbwPzPzvoj4y7rMzIjIcW43D5gHMHv27MlIVZIkzXBz5p+7ym2WL9hnEjLRsBnIyHRErEFVSJ+cmd+qm++KiM3q9ZsBd49128xcmJlzM3PuyMjI5CQsSZIkjWHSR6ajGoI+DliamZ/uWHUOcDCwoP579mTnJkmS1G+Ock8vg5jmsQvwJmBJRFxTt72Pqog+IyIOA24G3jCA3CRJkqSeTXoxnZk/AWKc1XtMZi6SJEnSRHgGREmSJKmQxbQkSZJUyGJakiRJKmQxLUmSJBUa2ElbJEmSNDEeZm/wHJmWJEmSCllMS5IkSYUspiVJkqRCFtOSJElSIYtpSZIkqZDFtCRJklTIYlqSJEkqZDEtSZIkFbKYliRJkgpZTEuSJEmFLKYlSZKkQhbTkiRJUiGLaUmSJKmQxbQkSZJUyGJakiRJKmQxLUmSJBWymJYkSZIKWUxLkiRJhSymJUmSpEIW05IkSVIhi2lJkiSp0KxBJyBJkqTBmzP/3J62W75gnz5nMrU4Mi1JkiQVcmRakiRJrZpJo9yOTEuSJEmFHJmWJEnS0GpzlLsfI+ZDNzIdEXtFxI0RsSwi5g86H0mSJGk8Q1VMR8TqwBeAVwHbAwdFxPaDzUqSJEka21AV08BOwLLMvCkzHwJOA/YdcE6SJEnSmCIzB53DX0TE/sBemfmP9fU3AS/JzHd0bDMPmFdffTZwYw+hNwHuaSlNYw0uVtvxjGWsfscz1vSI1XY8Yxmr3/GM1Z9Yz8jMke7GKfcDxMxcCCxscpuIWJSZc9u4f2MNLlbb8YxlrH7HM9b0iNV2PGMZq9/xjDW5sYZtmsftwJYd17eo2yRJkqShM2zF9JXANhGxVUSsCRwInDPgnCRJkqQxDdU0j8x8JCLeAfwAWB04PjNvaCF0o2khxhraWG3HM5ax+h3PWNMjVtvxjGWsfscz1iTGGqofIEqSJElTybBN85AkSZKmDItpSZIkqZDFtCRJklRoqH6AqN5ExEuApZl5X0Q8FZgPvBj4OfCxzPxDw3g7AZmZV9anb98L+EVmfq8gt+2AzYHLM/NPHe17Zeb3m8ZrQ8eRYf4jM38YEf8AvBRYCizMzIcHkVdHfttRnelz87rpduCczFw6uKyeLCK+mplvbiHOy6jOdnp9Zp4/8cy0MhFxOHBWZt466FwkVSLimcDrqA4H/CjwS+CUzLxvoImpiD9AHKCI2Dgzf1twuxuAF9ZHP1kI3A+cCexRt7+uQayjgVdRfbC6AHgJcDHwX4AfZOZHG8Q6HHg7VZG6A3BEZp5dr1ucmS/uNVabIuJkqse3NvB7YB3gW1T7KzLz4EHkVef2HuAg4DTgtrp5C6ri/7TMXDCgvLoPSRnAK4CLADLzNQ1iXZGZO9XL/52qj5wF/D3wnUE9xpkiIv4A/Bn4NXAq8I3MXNFi/L/OzLvbitcPEXFoZp7Q47azgMOA1wJPr5tvB84Gjhv0h29NffV75auBS4G9gaup3pteC/yPzLxkgLmtDbwDSOD/Ur0XvQ74BfDhzkGywvi/zMxtJ5zosMnMGXMBzmu4/frAAqpOdC/wW6pCcQGwQcNYC4BN6uW5wE3AMuBmYNeGsZZ2LC/uWndNw1hLqA5DuDZwH7Be3f5U4LqCWOvUy3OARVQFNcDVDWOtA3wYuAH4A7ACuAw4pOB5v67+Owu4C1i9vh5NH2Mf+uQvgTXGaF8T+FXDWHt1LK8PHAdcB5wCbNow1mLg68BuwK713zvq5ab99eqO5SuBkXr5r4AlA9z3TwOOBb4AbAx8qO7DZwCbDbJftPw4r6aa0vf3dZ9YAXwfOBhYt2GsjbouGwPLgQ2BjQb9WFeS9y0Ntj217hc7U32w3aJePhY4veH9rgd8HPga8A9d67446P0yRr5/3WKsjQtvN5dqQOfrVKO2F9TvAVcCL2oYa3Xgn4D/A+zSte4DLT7WhQ23X9LxPrQ2cEm9PLvgvXIx8AFg65YeyxnAp4AvAhcC/wa8HDgG+FrDWH+kqivuq5f/SDUK/0fgvrb2/zBcpt2c6Yh48TiXHalGS5s4A/gdsFtmbpSZG1ONzv2uXtfEPpk5et73Y4ADMvNZVCPAn2oY6/qIOLRevjYi5gJExLZA01GTRzLz0cy8H/h11l8xZeYDwGMNY62W9afWzFxOVYC9KiI+TVW4NnEy1QeOVwL/AnweeBPwioj4WNO86qke61K9cK1ft68FrNEwFhHxtIg4NiK+EBEbR8SHImJJRJwREZs1DPcYj49+ddqM5vu/c798iqr4/a9Ub0JfbhhrLnAV8H7gD1mNlDyQmT/KzB81jLVaRGwYERtTfROwAiAz/ww80jDWSkXEeQ02P5FqatStVG/eD1CNEv0Y+FLBfa8XER+PiK/VU4k6132xYay5EXFxRHw9IraMiAsi4g8RcWVEvKhhapmZj2Xm+Zl5GFV/+yLVdK6bGsa6h6pfjF4WUU1PWlwv9ywiFkfEByJi64Y5jBfvunEuS4BNG4TaMTPflpmXZeZt9eWyzHwb0HTfn0D12vdN4MCI+GZErFWv27lhLCJir47l9SPiuPoxnhIRTR4jEbFR12Vj4Ir6f3WjhrEWRMQm9fLciLgJuDwibo6IXZvEouqbnwDOBX4KfDkz16eaztjo/4jqdW9XqoGwz9fvRaN6/gYXxtxfnftt74Z5wePTbNeiGjwiM2+h+XvShsAGwMURcUVEHBkRY72n9GrbzHw31TeIzwXemZk/Bo4CXtgw1gnAt4FtMnPdzFyX6oPtupm5XpNAdX9fEBG/iIh7I+K3EbG0btugYax1IuLDEXFD/bq6IiIui4hDmsR5gkFX821fqD71XET15th9eaBhrBtL1o2z/VJgVr18Wde6RqNzVMXgiVRf215OVUDfBPyIappHk1iXA2vXy6t13cfihrEuAnboapsFfBV4tGGsa7uuXzmaI9V87iaxjqz3z83A4VSftv+danTg6II+9n3gnVQv7tcB76EaQXkncHbDWHtRfUNxHtVB4xfW8ZfRMdLcY6zFHcvXdK27pkmsjtttAXyDanSi59G9rhjL6/3/m/rvZnX7OiV5Uf0+YKzLjsAdDeJc3bF8S9e6kry+SfUN1H5UZ279JrBW93PTY6wrqKZfHURV7O9ft+8B/KxhrKtXsm7thrHeXffP53e0/aawX/wG+CRwS/14jwSeXhKrjncX1YDJM7ouc6h+L9FrnMuA1/PE18PVgAOofgvSJKdruq6/H/h/VCP6jfpEdz8CvgJ8pH6MRwLfbhjrsfo56Lw8PPp/2jDWko7li4G/qZe3BRaV9tcx/i+vbhjruo7lWVSvr9+iKmCbxnq043Vs9DJ6/aGGsY6geu/4d6pvvg+t20eASyfQJ15O9YHjzvp5mFfQx67pWD6+a921BfF2pKoNDq//jxr1rY44P6B6r31aR9vT6rbzG8Y6GziE6v3tXcD/BrYBTqL63Vnz/EpuNMwX4HqqT0Fjrbu1YazzqT6NbdrRtmn95P2wYax31vF2p/o6+XNUn5j/hYZfnXTEXI/qk+KONPwavyPGWuO0b0LHG2aPsbbo7Ohd63ZpGOunwMvq5ddQzd8eXdfog0x9m6dTv1FTfYrfH9ipcJ9d3bHcRhG2GtUo1X+rLztTfwXYMM5t9QvDu+sX+ehYN6HpLMA+pS8yK4m5NrBVwe1a+cDc+cYAfKRrXePpJ93PPRMonFbRx65uGGvblp+30Q9Yn6b6tqf0zbHtIuC40deMMdad0iDOHOB04G6qaVi/rJdPb9pfqQZRVutqO4Rq+trNE9xn3f3tmoax2vxg1OZg0c+opiS9nmoAZL+6fVeaF+ZPGngBjq7/L5tOo/sVMHucdY1qi/o2z6V6H9quZJ+P1Sc62lanGqg5oSDeV6ina3a1bw38pDDH1aiK6R/T4INtV4w2BzdbG6z7S4yJPInDeKk757PHWbdfw1gbAv9K9cnxd1TzppfWbY3nB1JNezidag7jEuB7wDzGmDM70y9UHxKuqPf7T0afU6pP7ocPOLdWi7AW8zq66zI6N/lpwFcH/Zy2+Dhb+cBMNSd/rDeNZwFnFuTVWuHUZkHRx+fhNVSjuHcW3r7VIqDlx/YSqiPObAzsAvwzsHdBnE8Ae47RvhcNi7n6dq1+YKa9D0atDRbVr/0/oPq2brs61u/r/6OXNoz1dcb4hg/4R+DhhrHezjjf/FJNhRhUXz2tDzF34vFvF7av+9w+nf2tMNbLgQ8W/i+1ObjZ6mBd5jQspuudsR3V16HrdLU3+tq8I9aeLcZqJa+ZcAGe09a+bzmvVouwlnOb9n2Mdj8wt/la0Vrh1GZB0Yf9/5d9RvVD5eeV7LN+FAEtPb6jqT4kLKL68eCFVF8DXwq8fyL7q6v9VYW5tf6BmQl+MKpj7MbYg0WzCmI9p8X/y7EKw8bFXNux2ry0/DrW3f8vKu3/bf4v8cTBzXt54uDmhg1jvYAnDtZtW7cXD9YNtAP0qVMdDtxINel9ObBvx7qmX7UOZayZcKn31y+m2v6invs2oPt+50zvY032/2Turzb7xYD72KS8jg34MbZ5hKMp08d44gejgfXXNl/76W9hWByr5ee91T7Wcv9vLVabfawfsQby5PfzQruHZxvKWDPhMlX3F4U/0pvJ+2xQ+38y91eb/WIm9LEBP8arx1qur18zjPur7X02yFh9eN+dUoVhwf5ttY+13P9bi9VmH+tHrOl4BsQnHJ4tInYDzoyIZ9D88GzDGmsmGNr9FRHXjbeKZofgatvQ7rM2tbj/W91fbfaLmdDHhvgxPhQRa2d1uNAdRxsjYn0meLjQ6drHWn4u29xnj2Tmo8D9EfGEQ79GRNPnss1YbWr7db/N/t9arCHur8D0PJ34XRGxQ2ZeA5CZf4qIVwPHA8+fJrFmgmHeX5tSHf/6d13tQfXDhkEZ5n3Wprb2f9v7q81+MRP62LA+xr/LzAcBMrPzDX8NqhPdNDFT+libsdrcZ0NZGLas7T7WZv9vM9aw9ldgehbTb6brRBCZ+Qjw5ohoeuKKYY01Ewzz/vou1ddq13SviIhLJj2bxw3zPmtTW/u/7f3VZr+YCX1sKB/j6Jv/GO33UJ20pomZ0sfajNXmPhvWwrBNrfaxNvt/y/9Lw9pfq9vVc0QkSZIkNTTtTicuSZIkTRaLaUmSJKmQxbQkDYGIeFpEnBYRv46IqyLiexGx7aDzGktEPD0izqyXd4iIvQedkyQNisW0JA1YRARwFnBJZm6dmTsC72Wwh4gbV2b+R2buX1/dAbCYljRjWUxL0uC9Ang4M7802pCZ1wI/iYhjIuL6iFgSEQcARMRuEfGjiDg7Im6KiAUR8caIuKLebut6uxMj4tiIuKzebreIOD4ilkbEiaP3FRF/6ljef3RdffvPR8RP69vvX7fPqXNaE/gwcEBEXBMRB0TEryJipN5utYhYNnpdkqYji2lJGrznAVeN0f46qpHfFwJ7AsdExGb1uhcCbwWeA7wJ2DYzdwK+QnWK4VEbAn8LHAmcA3wGeC7w/IjYoYfcNgNeBrwaWNC5IjMfAj4InJ6ZO2Tm6cDXgTfWm+wJXJuZK3q4H0makiymJWl4vQw4NTMfzcy7gB8Bf1OvuzIz76iP5fpr4Py6fQnVaYVHfSerY6AuAe7KzCX1cXJv6NpuPN/OzMcy8+f0Nu3keKpj3wK8BTihh9tI0pRlMS1Jg3cDHWdV61HnCREe67j+GE88IdeDY2zTvV3nCQeespL7WeXpiTPzVqqzsu0O7ASct6rbSNJUZjEtSYN3EbBWRMwbbYiIFwC/p5qPvHo97/jvgCv6cP93RcRzImI14LUNb/tHYN2utq9QTff4RmY+2kaCkjSsLKYlacDqaRivBfasD413A/Bx4BTgOuBaqoL7qMy8sw8pzKc6xe5PgTsa3vZiYPvRHyDWbecA6+AUD0kzgKcTlyS1KiLmAp/JzJcPOhdJ6rdZq95EkqTeRMR84G08fkQPSZrWHJmWJEmSCjlnWpIkSSpkMS1JkiQVspiWJEmSCllMS5IkSYUspiVJkqRC/wnfLX9PYi6QawAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAHECAYAAABMe8vEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXhU9dn/8c9MEkICWUwghEhIAipLWQWJAcpeIKQsmqogKCoCWhaBupBHVKC2ieKjWEvh0QqoJaJUCkUuadkEqYAsImIRWQUbEhUeEgGZALl/f/hjHkYWCTNJTuD9uq5zXTnne+bc94Es8znfMzMuMzMBAAAAAADHcVd0AwAAAAAA4PwI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA4VXNENOEFJSYny8vIUEREhl8tV0e0AAAAAAK5wZqbvvvtOCQkJcrsvPJ9OaJeUl5enxMTEim4DAAAAAHCVOXDggOrUqXPBcUK7pIiICEk//GNFRkZWcDcAAAAAgCtdUVGREhMTvXn0QgjtkveW+MjISEI7AAAAAKDc/NRLtHkjOgAAAAAAHIrQDgAAAACAQxHaAQAAAABwKEI7AAAAAAAORWgHAAAAAMChCO0AAAAAADgUoR0AAAAAAIcitAMAAAAA4FCEdgAAAAAAHIrQDgAAAACAQxHaAQAAAABwKEI7AAAAAAAORWgHAAAAAMChKjS0Z2dn66abblJERITi4uLUr18/7dixw2efEydOaMSIEYqNjVX16tWVmZmpgoICn33279+vjIwMhYeHKy4uTo888ohOnTpVnqcCAAAAAEDAVWhoX7VqlUaMGKF169Zp6dKlOnnypLp3765jx4559xk7dqwWLVqkefPmadWqVcrLy9Ott97qHT99+rQyMjJUXFysDz/8UK+99ppmz56tJ598siJOCQAAAACAgHGZmVV0E2d88803iouL06pVq9ShQwcVFhaqZs2ays3N1a9+9StJ0ueff65GjRpp7dq1uvnmm/Xee+/pl7/8pfLy8lSrVi1J0owZM/TYY4/pm2++UZUqVX6yblFRkaKiolRYWKjIyEifseTxi0t9HvtyMkr9GAAAAADA1eNiOfRsjnpNe2FhoSQpJiZGkrRp0yadPHlS3bp18+7TsGFD1a1bV2vXrpUkrV27Vk2bNvUGdknq0aOHioqK9Nlnn523jsfjUVFRkc8CAAAAAIDTOCa0l5SUaMyYMWrXrp2aNGkiScrPz1eVKlUUHR3ts2+tWrWUn5/v3efswH5m/MzY+WRnZysqKsq7JCYmBvp0AAAAAADwm2NC+4gRI7Rt2zbNnTu3zGtlZWWpsLDQuxw4cKDMawIAAAAAUFrBFd2AJI0cOVLvvvuuVq9erTp16ni3x8fHq7i4WEeOHPGZbS8oKFB8fLx3n48++sjneGfeXf7MPj8WGhqq0NDQQJ8GAAAAAAABVaEz7WamkSNH6m9/+5tWrFihlJQUn/FWrVopJCREy5cv927bsWOH9u/fr7S0NElSWlqaPv30U3399dfefZYuXarIyEg1bty4fE4EAAAAAIAyUKEz7SNGjFBubq4WLlyoiIgI72vQo6KiFBYWpqioKA0ZMkTjxo1TTEyMIiMjNWrUKKWlpenmm2+WJHXv3l2NGzfWXXfdpWeffVb5+fmaMGGCRowYwWw6AAAAAKBSq9DQPn36dElSp06dfLbPmjVL99xzjyTphRdekNvtVmZmpjwej3r06KE//elP3n2DgoL07rvv6sEHH1RaWpqqVaumwYMHa/LkyeV1GgAAAAAAlAlHfU57ReFz2gEAAAAA5alSfk47AAAAAAD4P4R2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcqkJD++rVq9W7d28lJCTI5XJpwYIFPuMul+u8y5QpU7z7JCcnnzOek5NT3qcCAAAAAEDAVWhoP3bsmJo3b65p06add/zgwYM+y8yZM+VyuZSZmemz3+TJk332GzVqVHm0DwAAAABAmQquyOLp6elKT0+/4Hh8fLzP+sKFC9W5c2fVq1fPZ3tERMQ5+wIAAAAAUNlVmte0FxQUaPHixRoyZMg5Yzk5OYqNjVXLli01ZcoUnTp1qgI6BAAAAAAgsCp0pr00XnvtNUVEROjWW2/12T569GjdeOONiomJ0YcffqisrCwdPHhQzz///AWP5fF45PF4vOtFRUVl1jcAAAAAAJer0oT2mTNnauDAgapatarP9nHjxnm/btasmapUqaLhw4crOztboaGh5z1Wdna2Jk2aVKb9AgAAAADgr0pxe/wHH3ygHTt26P777//JfVNTU3Xq1Cnt27fvgvtkZWWpsLDQuxw4cCCA3QIAAAAAEBiVYqb91VdfVatWrdS8efOf3HfLli1yu92Ki4u74D6hoaEXnIUHAAAAAMApKjS0Hz16VLt27fKu7927V1u2bFFMTIzq1q0r6YfXm8+bN0///d//fc7j165dq/Xr16tz586KiIjQ2rVrNXbsWA0aNEjXXHNNuZ0HAAAAAABloUJD+8aNG9W5c2fv+pnXpw8ePFizZ8+WJM2dO1dmpgEDBpzz+NDQUM2dO1cTJ06Ux+NRSkqKxo4d6/M6dwAAAAAAKiuXmVlFN1HRioqKFBUVpcLCQkVGRvqMJY9fXOrj7cvJCFRrAAAAAIAr0MVy6NkqxRvRAQAAAABwNSK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcqkJD++rVq9W7d28lJCTI5XJpwYIFPuP33HOPXC6Xz9KzZ0+ffQ4fPqyBAwcqMjJS0dHRGjJkiI4ePVqepwEAAAAAQJmo0NB+7NgxNW/eXNOmTbvgPj179tTBgwe9y5tvvukzPnDgQH322WdaunSp3n33Xa1evVrDhg0r69YBAAAAAChzwRVZPD09Xenp6RfdJzQ0VPHx8ecd2759u5YsWaINGzaodevWkqSXXnpJvXr10nPPPaeEhISA9wwAAAAAQHlx/Gva33//fcXFxalBgwZ68MEHdejQIe/Y2rVrFR0d7Q3sktStWze53W6tX7/+gsf0eDwqKiryWQAAAAAAcBpHh/aePXvq9ddf1/Lly/XMM89o1apVSk9P1+nTpyVJ+fn5iouL83lMcHCwYmJilJ+ff8HjZmdnKyoqyrskJiaW6XkAAAAAAHA5KvT2+J/Sv39/79dNmzZVs2bNVL9+fb3//vvq2rXrZR83KytL48aN864XFRUR3AEAAAAAjuPomfYfq1evnmrUqKFdu3ZJkuLj4/X111/77HPq1CkdPnz4gq+Dl354nXxkZKTPAgAAAACA01Sq0P7VV1/p0KFDql27tiQpLS1NR44c0aZNm7z7rFixQiUlJUpNTa2oNgEAAAAACIgKvT3+6NGj3llzSdq7d6+2bNmimJgYxcTEaNKkScrMzFR8fLx2796tRx99VNddd5169OghSWrUqJF69uypoUOHasaMGTp58qRGjhyp/v37887xAAAAAIBKr0Jn2jdu3KiWLVuqZcuWkqRx48apZcuWevLJJxUUFKStW7eqT58+uuGGGzRkyBC1atVKH3zwgUJDQ73HmDNnjho2bKiuXbuqV69eat++vV5++eWKOiUAAAAAAAKmQmfaO3XqJDO74Pg//vGPnzxGTEyMcnNzA9kWAAAAAACOUKle0w4AAAAAwNWE0A4AAAAAgEMR2gEAAAAAcChCOwAAAAAADkVoBwAAAADAoQjtAAAAAAA4FKEdAAAAAACHIrQDAAAAAOBQhHYAAAAAAByK0A4AAAAAgEMR2gEAAAAAcChCOwAAAAAADkVoBwAAAADAoQjtAAAAAAA4FKEdAAAAAACHIrQDAAAAAOBQhHYAAAAAABwquKIbwA+Sxy8u9WP25WSUQScAAAAAAKdgph0AAAAAAIcitAMAAAAA4FCEdgAAAAAAHIrQDgAAAACAQxHaAQAAAABwKN49/irDu9QDAAAAQOXBTDsAAAAAAA5FaAcAAAAAwKG4PR5lgtvwAQAAAMB/zLQDAAAAAOBQhHYAAAAAAByK0A4AAAAAgEMR2gEAAAAAcChCOwAAAAAADkVoBwAAAADAoQjtAAAAAAA4VIWG9tWrV6t3795KSEiQy+XSggULvGMnT57UY489pqZNm6patWpKSEjQ3Xffrby8PJ9jJCcny+Vy+Sw5OTnlfSoAAAAAAARchYb2Y8eOqXnz5po2bdo5Y8ePH9fmzZv1xBNPaPPmzZo/f7527NihPn36nLPv5MmTdfDgQe8yatSo8mgfAAAAAIAyFVzaB2zevFkhISFq2rSpJGnhwoWaNWuWGjdurIkTJ6pKlSqXfKz09HSlp6efdywqKkpLly712fbHP/5Rbdq00f79+1W3bl3v9oiICMXHx5f2VAAAAAAAcLRSz7QPHz5cX3zxhSRpz5496t+/v8LDwzVv3jw9+uijAW/wbIWFhXK5XIqOjvbZnpOTo9jYWLVs2VJTpkzRqVOnyrQPAAAAAADKQ6ln2r/44gu1aNFCkjRv3jx16NBBubm5+te//qX+/ftr6tSpAW9Skk6cOKHHHntMAwYMUGRkpHf76NGjdeONNyomJkYffvihsrKydPDgQT3//PMXPJbH45HH4/GuFxUVlUnPAAAAAAD4o9Sh3cxUUlIiSVq2bJl++ctfSpISExP17bffBra7/+/kyZO6/fbbZWaaPn26z9i4ceO8Xzdr1kxVqlTR8OHDlZ2drdDQ0PMeLzs7W5MmTSqTXgEAAAAACJRS3x7funVrPf3003rjjTe0atUqZWRkSJL27t2rWrVqBbzBM4H9yy+/1NKlS31m2c8nNTVVp06d0r59+y64T1ZWlgoLC73LgQMHAtw1AAAAAAD+K/VM+9SpUzVw4EAtWLBAjz/+uK677jpJ0l//+le1bds2oM2dCew7d+7UypUrFRsb+5OP2bJli9xut+Li4i64T2ho6AVn4QEAAAAAcIpShfbTp0/ryJEjWr16ta655hqfsSlTpigoKKhUxY8ePapdu3Z51/fu3astW7YoJiZGtWvX1q9+9Stt3rxZ7777rk6fPq38/HxJUkxMjKpUqaK1a9dq/fr16ty5syIiIrR27VqNHTtWgwYNOqc/AAAAAAAqm1KF9qCgIHXv3l3bt28/JxRXrVq11MU3btyozp07e9fPvD598ODBmjhxov7+979LkveN785YuXKlOnXqpNDQUM2dO1cTJ06Ux+NRSkqKxo4d6/M6dwAAAAAAKqtS3x7fpEkT7dmzRykpKX4X79Spk8zsguMXG5OkG2+8UevWrfO7DwAAAAAAnKjUb0T39NNP6+GHH9a7776rgwcPqqioyGcBAAAAAACBUeqZ9l69ekmS+vTpI5fL5d1uZnK5XDp9+nTgugMAAAAA4CpW6tC+cuXKsugDAAAAAAD8SKlDe8eOHcuiDwAAAAAA8COlfk27JH3wwQcaNGiQ2rZtq//85z+SpDfeeENr1qwJaHMAAAAAAFzNSh3a33nnHfXo0UNhYWHavHmzPB6PJKmwsFC///3vA94gAAAAAABXq8t69/gZM2bolVdeUUhIiHd7u3bttHnz5oA2BwAAAADA1azUoX3Hjh3q0KHDOdujoqJ05MiRgDQFAAAAAAAuI7THx8dr165d52xfs2aN6tWrF5CmAAAAAADAZYT2oUOH6qGHHtL69evlcrmUl5enOXPm6OGHH9aDDz5YFj0CAAAAAHBVKvVHvo0fP14lJSXq2rWrjh8/rg4dOig0NFQPP/ywRo0aVRY9AgAAAABwVSp1aHe5XHr88cf1yCOPaNeuXTp69KgaN26s6tWrl0V/AAAAAABctUod2s+oUqWKIiIiFBERQWAHAAAAAKAMlPo17adOndITTzyhqKgoJScnKzk5WVFRUZowYYJOnjxZFj0CAAAAAHBVKvVM+6hRozR//nw9++yzSktLkyStXbtWEydO1KFDhzR9+vSANwkAAAAAwNWo1KE9NzdXc+fOVXp6undbs2bNlJiYqAEDBhDaAQAAAAAIkFLfHh8aGqrk5ORztqekpKhKlSqB6AkAAAAAAOgyQvvIkSP129/+Vh6Px7vN4/Hod7/7nUaOHBnQ5gAAAAAAuJpd0u3xt956q8/6smXLVKdOHTVv3lyS9Mknn6i4uFhdu3YNfIcAAAAAAFylLim0R0VF+axnZmb6rCcmJgauIwAAAAAAIOkSQ/usWbPKug8AAAAAAPAjpX73eMApkscvLvVj9uVklEEnAAAAAFA2Sh3aDx06pCeffFIrV67U119/rZKSEp/xw4cPB6w5AAAAAACuZqUO7XfddZd27dqlIUOGqFatWnK5XGXRFwAAAAAAV71Sh/YPPvhAa9as8b5zPAAAAAAAKBulDu0NGzbU999/Xxa9AI7Ea+cBAAAAVBR3aR/wpz/9SY8//rhWrVqlQ4cOqaioyGcBAAAAAACBUeqZ9ujoaBUVFalLly4+281MLpdLp0+fDlhzAAAAAABczUod2gcOHKiQkBDl5ubyRnQAAAAAAJShUof2bdu26eOPP1aDBg3Koh8AAAAAAPD/lfo17a1bt9aBAwfKohcAAAAAAHCWUs+0jxo1Sg899JAeeeQRNW3aVCEhIT7jzZo1C1hzAAAAAABczUod2u+44w5J0n333efd5nK5eCM6AAAAAAACrNShfe/evWXRBwAAAAAA+JFSh/akpKSy6AMAAAAAAPxIqd+ITpLeeOMNtWvXTgkJCfryyy8lSVOnTtXChQtLdZzVq1erd+/eSkhIkMvl0oIFC3zGzUxPPvmkateurbCwMHXr1k07d+702efw4cMaOHCgIiMjFR0drSFDhujo0aOXc1oAAAAAADhKqWfap0+frieffFJjxozR7373O+9r2KOjozV16lT17dv3ko917NgxNW/eXPfdd59uvfXWc8afffZZ/eEPf9Brr72mlJQUPfHEE+rRo4f+/e9/q2rVqpJ++Nz4gwcPaunSpTp58qTuvfdeDRs2TLm5uaU9NaBCJY9fXOrH7MvJKINOAAAAADhFqWfaX3rpJb3yyit6/PHHFRQU5N3eunVrffrpp6U6Vnp6up5++mndcsst54yZmaZOnaoJEyaob9++atasmV5//XXl5eV5Z+S3b9+uJUuW6M9//rNSU1PVvn17vfTSS5o7d67y8vJKe2oAAAAAADhKqUP73r171bJly3O2h4aG6tixYwFp6kyd/Px8devWzbstKipKqampWrt2rSRp7dq1io6OVuvWrb37dOvWTW63W+vXrw9YLwAAAAAAVIRS3x6fkpKiLVu2nPOGdEuWLFGjRo0C1lh+fr4kqVatWj7ba9Wq5R3Lz89XXFycz3hwcLBiYmK8+5yPx+ORx+PxrhcVFQWqbQAAAAAAAqbUoX3cuHEaMWKETpw4ITPTRx99pDfffFPZ2dn685//XBY9Blx2drYmTZpU0W0AAAAAAHBRpQ7t999/v8LCwjRhwgQdP35cd955pxISEvTiiy+qf//+AWssPj5eklRQUKDatWt7txcUFKhFixbefb7++mufx506dUqHDx/2Pv58srKyNG7cOO96UVGREhMTA9Y7AAAAAACBcFkf+TZw4EDt3LlTR48eVX5+vr766isNGTIkoI2lpKQoPj5ey5cv924rKirS+vXrlZaWJklKS0vTkSNHtGnTJu8+K1asUElJiVJTUy947NDQUEVGRvosAAAAAAA4Taln2s8WHh6u8PDwy3780aNHtWvXLu/63r17tWXLFsXExKhu3boaM2aMnn76aV1//fXej3xLSEhQv379JEmNGjVSz549NXToUM2YMUMnT57UyJEj1b9/fyUkJPhzagAAAAAAVLhLDu1dunS5pP1WrFhxycU3btyozp07e9fP3LI+ePBgzZ49W48++qiOHTumYcOG6ciRI2rfvr2WLFni/Yx2SZozZ45Gjhyprl27yu12KzMzU3/4wx8uuQcAAAAAAJzqkkP7+++/r6SkJGVkZCgkJCQgxTt16iQzu+C4y+XS5MmTNXny5AvuExMTo9zc3ID0AwAAAACAk1xyaH/mmWc0a9YszZs3TwMHDtR9992nJk2alGVvAAAAAABc1S75jegeeeQR/fvf/9aCBQv03XffqV27dmrTpo1mzJjB55wDAAAAAFAGSv3u8WlpaXrllVd08OBBjRgxQjNnzlRCQgLBHQAAAACAALvsd4/fvHmzVq1ape3bt6tJkyYBe507gLKVPH5xqR+zLyfDsXUAAACAK1mpQnteXp5mz56t2bNnq6ioSIMGDdL69evVuHHjsuoPAC6KiwMAAAC4kl1yaO/Vq5dWrlyp7t27a8qUKcrIyFBwsF8f8w4AAAAAAC7iklP3kiVLVLt2be3fv1+TJk3SpEmTzrvf5s2bA9YcADgBs/kAAACoKJcc2p966qmy7AMAAAAAAPwIoR0AAAAAAIcq9Ue+AQAAAACA8kFoBwAAAADAoQjtAAAAAAA4FKEdAAAAAACHIrQDAAAAAOBQlxXaR44cqcOHDwe6FwAAAAAAcJZLDu1fffWV9+vc3FwdPXpUktS0aVMdOHAg8J0BAAAAAHCVu+TPaW/YsKFiY2PVrl07nThxQgcOHFDdunW1b98+nTx5six7BAAAAADgqnTJM+1HjhzRvHnz1KpVK5WUlKhXr1664YYb5PF49I9//EMFBQVl2ScAAAAAAFedSw7tJ0+eVJs2bfSb3/xGYWFh+vjjjzVr1iwFBQVp5syZSklJUYMGDcqyVwAAAAAAriqXfHt8dHS0WrRooXbt2qm4uFjff/+92rVrp+DgYL311lu69tprtWHDhrLsFQAAAACAq8olz7T/5z//0YQJExQaGqpTp06pVatW+vnPf67i4mJt3rxZLpdL7du3L8teAQAAAAC4qlxyaK9Ro4Z69+6t7OxshYeHa8OGDRo1apRcLpcefvhhRUVFqWPHjmXZKwAAAAAAV5XL+px2SYqKitLtt9+ukJAQrVixQnv37tWvf/3rQPYGAAAAAMBV7ZJf0362rVu36tprr5UkJSUlKSQkRPHx8brjjjsC2hwAAAAAAFezywrtiYmJ3q+3bdsWsGYAAAAAAMD/uazQDgAIvOTxi0v9mH05GWXQCQAAAJzisl/TDgAAAAAAyhahHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKEI7QAAAAAAOJTjQ3tycrJcLtc5y4gRIyRJnTp1OmfsgQceqOCuAQAAAADwX3BFN/BTNmzYoNOnT3vXt23bpl/84he67bbbvNuGDh2qyZMne9fDw8PLtUcAAAAAAMqC40N7zZo1fdZzcnJUv359dezY0bstPDxc8fHx5d0aAAAAAABlyvG3x5+tuLhYf/nLX3TffffJ5XJ5t8+ZM0c1atRQkyZNlJWVpePHj1/0OB6PR0VFRT4LAAAAAABO4/iZ9rMtWLBAR44c0T333OPddueddyopKUkJCQnaunWrHnvsMe3YsUPz58+/4HGys7M1adKkcugYAAAAAIDLV6lC+6uvvqr09HQlJCR4tw0bNsz7ddOmTVW7dm117dpVu3fvVv369c97nKysLI0bN867XlRUpMTExLJrHAAAAACAy1BpQvuXX36pZcuWXXQGXZJSU1MlSbt27bpgaA8NDVVoaGjAewSAyiB5/OJSP2ZfTkYZdAIAAICfUmle0z5r1izFxcUpI+PiTxy3bNkiSapdu3Z5tAUAAAAAQJmpFDPtJSUlmjVrlgYPHqzg4P9reffu3crNzVWvXr0UGxurrVu3auzYserQoYOaNWtWgR0DAAAAAOC/ShHaly1bpv379+u+++7z2V6lShUtW7ZMU6dO1bFjx5SYmKjMzExNmDChgjoFAAAAACBwKkVo7969u8zsnO2JiYlatWpVBXQEAAAAAEDZqzSvaQcAAAAA4GpDaAcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcqlJ85BsAoPJJHr+41I/Zl5NRBp0AAABUXsy0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKH4yDcAQKXGR8sBAIArGTPtAAAAAAA4FDPtAABcgvKY0eeuAQAA8GPMtAMAAAAA4FCEdgAAAAAAHIrQDgAAAACAQxHaAQAAAABwKEI7AAAAAAAOxbvHAwBwleFd6gEAqDyYaQcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgULwRHQAAKBO84R0AAP5jph0AAAAAAIcitAMAAAAA4FCEdgAAAAAAHIrQDgAAAACAQxHaAQAAAABwKEI7AAAAAAAOxSGNNwEAACAASURBVEe+AQCASo2PlgMAXMkcPdM+ceJEuVwun6Vhw4be8RMnTmjEiBGKjY1V9erVlZmZqYKCggrsGAAAAACAwHF0aJekn/3sZzp48KB3WbNmjXds7NixWrRokebNm6dVq1YpLy9Pt956awV2CwAAAABA4Dj+9vjg4GDFx8efs72wsFCvvvqqcnNz1aVLF0nSrFmz1KhRI61bt04333xzebcKAAAAAEBAOT6079y5UwkJCapatarS0tKUnZ2tunXratOmTTp58qS6devm3bdhw4aqW7eu1q5dS2gHAAABxWvnAQAVwdGhPTU1VbNnz1aDBg108OBBTZo0ST//+c+1bds25efnq0qVKoqOjvZ5TK1atZSfn3/R43o8Hnk8Hu96UVFRmfQPAAAAAIA/HB3a09PTvV83a9ZMqampSkpK0ttvv62wsLDLPm52drYmTZoUiBYBAAAAACgzjn8jurNFR0frhhtu0K5duxQfH6/i4mIdOXLEZ5+CgoLzvgb+bFlZWSosLPQuBw4cKMu2AQAAAAC4LJUqtB89elS7d+9W7dq11apVK4WEhGj58uXe8R07dmj//v1KS0u76HFCQ0MVGRnpswAAAAAA4DSOvj3+4YcfVu/evZWUlKS8vDw99dRTCgoK0oABAxQVFaUhQ4Zo3LhxiomJUWRkpEaNGqW0tDTehA4AAFRavOEdAOBsjg7tX331lQYMGKBDhw6pZs2aat++vdatW6eaNWtKkl544QW53W5lZmbK4/GoR48e+tOf/lTBXQMAAAAAEBiODu1z58696HjVqlU1bdo0TZs2rZw6AgAAqPyYzQeAyqNSvaYdAAAAAICriaNn2gEAAFB5MaMPAP5jph0AAAAAAIcitAMAAAAA4FCEdgAAAAAAHIrQDgAAAACAQxHaAQAAAABwKEI7AAAAAAAORWgHAAAAAMChCO0AAAAAADgUoR0AAAAAAIcitAMAAAAA4FDBFd0AAAAA4I/k8YtL/Zh9ORll0AkABB4z7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKGCK7oBAAAAoDJIHr+41I/Zl5NRBp0AuJow0w4AAAAAgEMR2gEAAAAAcChCOwAAAAAADkVoBwAAAADAoQjtAAAAAAA4FKEdAAAAAACH4iPfAAAAAAfho+UAnI2ZdgAAAAAAHIrQDgAAAACAQxHaAQAAAABwKEI7AAAAAAAORWgHAAAAAMChePd4AAAA4CrEu9QDlYOjZ9qzs7N10003KSIiQnFxcerXr5927Njhs0+nTp3kcrl8lgceeKCCOgYAAAAAIHAcHdpXrVqlESNGaN26dVq6dKlOnjyp7t2769ixYz77DR06VAcPHvQuzz77bAV1DAAAAABA4Dj69vglS5b4rM+ePVtxcXHatGmTOnTo4N0eHh6u+Pj48m4PAAAAAIAy5eiZ9h8rLCyUJMXExPhsnzNnjmrUqKEmTZooKytLx48fv+hxPB6PioqKfBYAAAAAAJzG0TPtZyspKdGYMWPUrl07NWnSxLv9zjvvVFJSkhISErR161Y99thj2rFjh+bPn3/BY2VnZ2vSpEnl0TYAAAAAAJet0oT2ESNGaNu2bVqzZo3P9mHDhnm/btq0qWrXrq2uXbtq9+7dql+//nmPlZWVpXHjxnnXi4qKlJiYWDaNAwAAAABwmSpFaB85cqTeffddrV69WnXq1LnovqmpqZKkXbt2XTC0h4aGKjQ0NOB9AgAAAAAQSI4O7WamUaNG6W9/+5vef/99paSk/ORjtmzZIkmqXbt2WbcHAAAAAECZcnRoHzFihHJzc7Vw4UJFREQoPz9fkhQVFaWwsDDt3r1bubm56tWrl2JjY7V161aNHTtWHTp0ULNmzSq4ewAAAAAA/OPo0D59+nRJUqdOnXy2z5o1S/fcc4+qVKmiZcuWaerUqTp27JgSExOVmZmpCRMmVEC3AAAAAAAElqNDu5lddDwxMVGrVq0qp24AAAAAlEby+MWlfsy+nIwy6ASovCrV57QDAAAAAHA1IbQDAAAAAOBQhHYAAAAAAByK0A4AAAAAgEMR2gEAAAAAcChCOwAAAAAADkVoBwAAAADAoQjtAAAAAAA4VHBFNwAAAAAA/kgev7jUj9mXk1EGnQCBx0w7AAAAAAAORWgHAAAAAMChCO0AAAAAADgUoR0AAAAAAIcitAMAAAAA4FCEdgAAAAAAHIrQDgAAAACAQxHaAQAAAABwKEI7AAAAAAAORWgHAAAAAMChCO0AAAAAADgUoR0AAAAAAIcitAMAAAAA4FCEdgAAAAAAHIrQDgAAAACAQxHaAQAAAABwKEI7AAAAAAAORWgHAAAAAMChCO0AAAAAADgUoR0AAAAAAIcitAMAAAAA4FDBFd0AAAAAAFQGyeMXl/ox+3IyyqATXE2YaQcAAAAAwKEI7QAAAAAAOBS3xwMAAACAg3AbPs7GTDsAAAAAAA51xcy0T5s2TVOmTFF+fr6aN2+ul156SW3atKnotgAAAADAkcprRr886lxJ5/JjV8RM+1tvvaVx48bpqaee0ubNm9W8eXP16NFDX3/9dUW3BgAAAADAZbsiQvvzzz+voUOH6t5771Xjxo01Y8YMhYeHa+bMmRXdGgAAAAAAl63S3x5fXFysTZs2KSsry7vN7XarW7duWrt27Xkf4/F45PF4vOuFhYWSpKKionP2LfEcL3VP5zvOT6FO6etcSedCHWfXuZLOhTrOrnMlnQt1nF3nSjoX6ji7zpV0LtRxdp3KeC5ntpvZRR/vsp/aw+Hy8vJ07bXX6sMPP1RaWpp3+6OPPqpVq1Zp/fr15zxm4sSJmjRpUnm2CQAAAADAOQ4cOKA6depccLzSz7RfjqysLI0bN867XlJSosOHDys2NlYul+uSjlFUVKTExEQdOHBAkZGRZdJnedSgDnXKqwZ1qFNeNahDnfKqQR3qlFcN6lCnvGpQp3zrmJm+++47JSQkXHS/Sh/aa9SooaCgIBUUFPhsLygoUHx8/HkfExoaqtDQUJ9t0dHRl1U/MjKyTP/zy6sGdahTXjWoQ53yqkEd6pRXDepQp7xqUIc65VWDOuVXJyoq6if3qfRvRFelShW1atVKy5cv924rKSnR8uXLfW6XBwAAAACgsqn0M+2SNG7cOA0ePFitW7dWmzZtNHXqVB07dkz33ntvRbcGAAAAAMBlC5o4ceLEim7CX02aNFF0dLR+97vf6bnnnpMkzZkzRw0aNCjTukFBQerUqZOCg8vu2kd51KAOdcqrBnWoU141qEOd8qpBHeqUVw3qUKe8alDHeXUq/bvHAwAAAABwpar0r2kHAAAAAOBKRWgHAAAAAMChCO0AAAAAADgUoR1XJN6qAQAAAMCV4Ir4yDfgx0JDQ/XJJ5+oUaNGFd2KI3377beaOXOm1q5dq/z8fElSfHy82rZtq3vuuUc1a9as4A4BAAAASLx7vKMcPHhQ06dP15o1a3Tw4EG53W7Vq1dP/fr10z333KOgoKCKbtFxxo0bd97tL774ogYNGqTY2FhJ0vPPP1+ebQXU3r17tWvXLtWuXVtNmjTx+3gbNmxQjx49FB4erm7duqlWrVqSpIKCAi1fvlzHjx/XP/7xD7Vu3drvWuVpxYoV5/zs9OnTR9dff31Ft3ZZPvroo3MuqqSlpalNmzYV3FnpbN++XevWrVNaWpoaNmyozz//XC+++KI8Ho8GDRqkLl26+F3jnXfeUXp6usLDwwPQ8cWZmfbt26fExEQFBweruLhYf/vb3+TxeNSrVy/VqFHD7xoej0dut1shISGSpN27d2vmzJnav3+/kpKSNGTIEKWkpPhdR5K+//57bdq0STExMWrcuLHP2IkTJ/T222/r7rvv9rvOJ598ok2bNqlTp06qV6+ePvvsM02bNk0lJSW65ZZb1KNHD79rnO3YsWN6++23vb87BwwY4P17gP8zatQo3X777fr5z39eoX387//+rxYtWhSQ77WK0qVLF82aNUtJSUkV3QoklZSUyO0+94bikpISffXVV6pbt24FdAX4wfCTnnvuOdu3b1+Z1tiwYYNFRUVZq1atrH379hYUFGR33XWX3XHHHRYdHW1t27a1oqKiMu3hjPz8fJs0aVKZ19m/f7/de++9fh3D5XJZixYtrFOnTj6Ly+Wym266yTp16mSdO3f2u9dNmzbZnj17vOuvv/66tW3b1urUqWPt2rWzN9980+8aZmYPPvigfffdd2Zmdvz4ccvMzDS3220ul8vcbrd17tzZO365UlNTbdiwYVZSUnLOWElJiQ0bNsxuvvlmv2qc8dJLL9ldd93l/fd5/fXXrVGjRtagQQPLysqykydP+l2joKDA2rRpY26324KDg83tdlurVq0sPj7egoKC7JFHHvG7xhkej8feeustGzNmjPXv39/69+9vY8aMsbfffts8Hk9AahQUFFj79u3N5XJZUlKStWnTxtq0aWNJSUnmcrmsffv2VlBQEJBax48ft1dffdXuvfde69mzp/Xq1ctGjhxpy5YtC8jx33vvPatSpYrFxMRY1apV7b333rOaNWtat27drEuXLhYUFGTLly/3u47L5bLIyEgbOnSorVu3LgCdn9/nn39uSUlJ5na77brrrrM9e/ZYq1atrFq1ahYeHm41atSwL774wu86HTt2tHnz5pmZ2Zo1ayw0NNSaNWtmd9xxh7Vs2dLCw8Ptww8/9LvOjh07vN9XbrfbOnToYHl5ed7x/Px8c7vdftd55513LCgoyGJjY6169eq2dOlSi46Otm7dulmPHj0sKCjI5syZ41eNRo0a2aFDh8zsh78tycnJFhUVZTfddJPFxMRYXFycz+/wQDhw4MB5fx8XFxfbqlWrAlrrbCkpKQH5PjMz7//99ddfbzk5OXbw4MGAHLe0tmzZEpDvtR8rKSmxFStW2Msvv2yLFi2y4uJiv4+5cOHC8y5BQUH2xz/+0bseKN9++62tWLHC+/39zTffWE5Ojk2aNMn+/e9/B6zOhRw+fNhee+01v49z4MAB++abb7zrq1evtjvvvNPat29vAwcODMjvNDOzwsJCu+2226xq1aoWFxdnTzzxhJ06dco7Hqjfa2esX7/epk6dauPHj7fx48fb1KlTbf369QE7vpnZokWL7IknnrA1a9aYmdny5cstPT3devToYf/zP/8TsDqnT5++4PYvv/wyIDVKSkpsz5493ud/Ho/H5s6da6+99prP90dZ6Ny5c5nnuT179tg///lP+/TTTwN+bEL7JXC5XBYUFGTdunWzuXPnBuzJ+dnatWtnEydO9K6/8cYblpqaamY//MJs0aKFjR49OuB1z6es/niWRZ3s7GxLSUk554l/cHCwffbZZ34d+2zNmjWzpUuXmpnZK6+8YmFhYTZ69GibPn26jRkzxqpXr26vvvqq33Xcbrc3kGVlZVmdOnVsxYoVduzYMVuzZo3Vr1/fxo8f71eNqlWr2vbt2y84vn37dqtatapfNczMfvvb31pERIRlZmZafHy85eTkWGxsrD399NP2+9//3mrWrGlPPvmk33XuuOMO69evnxUWFtqJEyds5MiRdvfdd5vZD3/YYmNjberUqX7X2blzp9WrV8+qVq1qHTt2tNtvv91uv/1269ixo1WtWtWuu+4627lzp991MjMzLS0tzT7//PNzxj7//HNr27at/epXv/K7zs6dOy0pKcni4uIsMTHRXC6XZWRkWGpqqgUFBdltt93m90WVtLQ0e/zxx83M7M0337RrrrnG/uu//ss7Pn78ePvFL37hVw2zH35HT5482Vq2bGkul8t+9rOf2QsvvGDffvut38c+W9++fa1Pnz62detWGzNmjDVq1Mj69u1rxcXFduLECevdu7cNGjTI7zqRkZHeUNaxY0cbO3asz/iECROsXbt2ftfp16+fZWRk2DfffGM7d+60jIwMS0lJ8T45C9ST2xtvvNGefvppM/vh+yA6OtomT57sHX/uueesRYsWftVwuVze350DBw60tm3b2pEjR8zM7LvvvrNu3brZgAED/KpxRl5ent10003mdru9F9jPDu+B+nd78cUXz7sEBQVZVlaWd90fLpfLli1bZg899JDVqFHDQkJCrE+fPrZo0aILPoG/HIWFhRddPvjgg4D8m6Wnp3v/3w8dOmSpqanmcrmsZs2a5na7rWHDhvb111/7VePMhQ6Xy3XBJVDPodavX29RUVHmcrnsmmuusY0bN1pKSopdf/31Vr9+fQsLC7NNmzYFpNaFBOo5YZs2bWzRokVmZrZgwQJzu93Wp08fe+yxx+yWW26xkJAQ77g/Ro8ebTfccIPNmzfPXnnlFUtKSrKMjAzvc/f8/HxzuVx+1ymvC+wzZsyw4OBga9WqlUVGRtobb7xhERERdv/999vw4cMtLCzM7+c45XWho7wufJfXhbXymGg7G6H9ErhcLps1a5b17dvXQkJCLDY21h566KGAXkUJCwuz3bt3e9dPnz5tISEhlp+fb2Zm//znPy0hISEgtT755JOLLm+99VZAfjgv9ENzZnnhhRcCUuejjz6yG264wX7zm994r6IHOrSHhYV5r861bNnSXn75ZZ/xOXPmWOPGjf2uc/YTzyZNmlhubq7P+MKFC+2GG27wq0ZycvJFr5q/9tprlpSU5FcNM7P69evbO++8Y2Y//NEPCgqyv/zlL97x+fPn23XXXed3ncjISNu2bZt3/ejRoxYSEmKFhYVm9sMFsAYNGvhdp1u3bta3b1/vcc9WWFhoffv2te7du/tdp3r16rZ58+YLjm/cuNGqV6/ud5309HQbPny4946LnJwcS09PNzOzL774wpKTk+2pp57yq0ZkZKT3Qsbp06ctODjY59w+/fRTq1Wrll81zHx/bjZu3GgPPvigRUdHW2hoqN122232z3/+0+8aZmY1a9a0jz/+2Mx++D5zuVz2wQcfeMf/9a9/Wd26df2uU61aNe+FtVq1atmWLVt8xnft2hWQ74G4uDjbunWrd72kpMQeeOABq1u3ru3evTtgT9SqVatme/fu9dYICQnxqbt7926/z+fs74F69eqd83/+r3/9yxITE/2qccbdd99tqamptmHDBlu6dKm1atXKWrdubYcPHzazwIUCl8tlderUseTkZJ/F5XLZtddea8nJyZaSkuJ3jTP/bsXFxfbWW295735ISEiw//qv/wrIxcgzT2IvtAQq6J59Pg8++KA1btzYe4fFgQMHrFWrVvbAAw/4VaNnz56WkZFxTiAL9PMOsx/+7tx///1WVFRkU6ZMsTp16tj999/vHb/33nutX79+ftUorwsq1apV8/5fpKamWk5Ojs/4Sy+9ZC1btvS7Tt26dW3lypXe9W+++cbatGlj3bt3txMnTgTs91p5XWBv3Lix9znnihUrrGrVqjZt2jTv+KxZs6xRo0Z+1SivCx3ldeG7vC6slcdE29kI7Zfg7D8CBQUF9swzz1jDhg3N7XbbTTfdZC+//LLft64nJSV5b3sx++FKvsvlsuPHj5uZ2d69ewMy+2l28W/mQP/xLK+r0d99953dfffd1qxZM/v0008tJCQkoH88Y2NjbePGjWb2wxPd8z2JDgsL87uOy+XyzgLUqFHDJ4yame3bt8/vOn/84x8tNDTURo8ebQsXLrR169bZunXrbOHChTZ69GgLCwvz+YNwucLCwnxupwoJCfE5n3379ll4eLjfdWrWrOnzf338+HFzu93eWwl3795toaGhftcJCwu76IW6rVu3BuR7IDY21t5///0Ljq9cudJiY2P9rhMeHu5zRdvj8VhISIh3dnrBggWWnJzsV43IyEjbtWuXd7169eo+Fyf37dsXkN9rZ/+OPuP777+3119/3Tp16mRut9vvczE793u6evXqPue3f//+gHyvdenSxZ599lkzM2vbtu05F9n++te/BuTiQERExHlvrx0xYoTVqVPHVq9eHZDf0fHx8d7fn4cPHzaXy+XzpPqjjz6y+Ph4v2qc/bszISHhnJ/VQH2vnTn+2be/nnmy2aJFCzt06FDAQsHw4cOtRYsW5/wfBTIcnu9nx8zsyy+/tKeeeso7K+avyMhIe+aZZ+z9998/7/LKK68EPLQ3aNDgnNm0ZcuW+X2hw8zs+eeft8TERJ+Z4bII7ddcc433/7+4uNjcbrfP996mTZvs2muv9atGeV1QiYqKsk8++cTMfngedebrM3bt2hWQ5wRhYWHnvBSmqKjI0tLSrEuXLrZnz56AnE95XWA/33Ops3+/7d271+9/t/K60FFeF77L68JaeUy0nY3Qfgku9Edt9erVNnjwYKtWrZpVq1bNrxoPPfSQNWnSxN577z1bsWKFde7c2Tp16uQdX7JkidWvX9+vGmfExsbaq6++avv27Tvvsnjx4oD8cCYkJNiCBQsuOP7xxx8H/Db8N99802rVqmVutzugP5iDBg2yIUOGmJnZbbfdZhMmTPAZ//3vf29Nmzb1u47L5bLhw4fb2LFjLS4u7pzZok2bNlmNGjX8rjN37lxLTU214OBg7wWU4OBgS01Ntbfeesvv45v98LrL9957z8x+mLl1u9329ttve8cXL14ckCB1yy23WGZmph09etSKi4ttzJgxPjP469at8zsQmJnVrl37orfu/f3vf7fatWv7XefXv/61JSUl2fz5831m9QsLC23+/Pn2/9q716CqqvcP4N99uIgJCqgoJggYigiUY15AA2Q0ykS0ZkzNQbyLl2QsVBpJy0teZnzhJVInMUzNSvNW4BiKjuMFkfHSCIYgiQjahIA3jDjP/4XD+XsEVDybzeH8vp8ZXpyzD/tZz2Ivzl5rr722h4eHzJo1y+Q4nTp1MppWeefOHVEUxTAAmZ+fb3IHNCAgwHAMiDy+sv7klPvjx4+rcgL95Gh3XXJzc42m5b+srl27Gp1gfP3110YDtufOnVPlWDt58qS0adNGFi1aJOvWrZN27drJwoULZfv27fL555+Lo6OjrFy50uQ4ffr0keTk5Dq3zZw5UxwdHVX5Hz1u3Djp16+ffP/99xIRESHh4eHSv39/yc7OlpycHAkJCTH5ipSiKOLv7y+9evUSe3t7+fnnn422Hzt2zOTOTY1WrVrVmsJZVVUlI0aMkICAALl48aJq32179uwRNzc3WbduneE9LTrtNfR6vSozVUJDQ595zJ4/f1612Qk1gzcuLi51DnyrMbAm8vgcxtfXV6ZOnSr3799vlE77k7NURGoPfP71118mD0ZpNaAyfPhww1XH8PDwWrd2bN68Wby9vU2O0717d/n1119rvX/37l0JDAyU119/XZV8tBpgrxlAFREpKioSRVGM8ktPT5fOnTubFEOrgQ6tBr5FtBlY0+JC25PYaX8BzzshLC8vrzVduqHu3r0ro0aNMnSigoKCjBrQoUOHjDo8pnj77bdlyZIl9W5X68szIiJCEhISGj3O0woLC2Xv3r1y79491fZZVFQkHh4eEhwcLHPnzpWWLVvKwIEDZcqUKRIcHCy2trZ1fkk0VEhIiNGCeps3bzbavmTJEgkJCTE5To1///1Xbt68KTdv3lRlgZ4nLVy4UNq3by+TJ08WT09PWbBggbi7u0tiYqJ888034ubmVute3ZeRl5cnXbt2FWtra7GxsRFHR0fD+gMij6eOqTE9KSEhQZycnGTNmjVy4cIFKSkpkZKSErlw4YKsWbNGnJ2dTZ5OLvL4qt306dPF1tZWdDqd2NnZiZ2dneh0OrG1tZWYmBiprKw0Oc748eMlJCREsrOzJT8/37DIWY309HSTpxMnJibKwYMH690eHx9vGAwzxfM6HmqZNm1arTb5pK+++kqGDh2qSqyTJ09K//79a81OevXVV1VZo0Hk8WBjzS0RdYmJiVHlf3RJSYkMGTJE7O3tJTw8XMrKymTWrFlGi6A9eeL2MhYvXmz0k5qaarT9008/ldGjR5sUo4a/v3+tQQGR/++4u7u7qzogfePGDQkLC5N33nlHiouLVT3x9PDwUH3th7ps2rTpmfffl5SUGK3r87IURZGhQ4fKyJEjxcnJqdZA6+nTp1W5JafGgwcPZNq0aeLt7S1WVlaqd9p9fHyM1uw5ePCgYQamyON8TO2waTWgcvnyZWnbtq1ERUXJkiVLxN7eXsaNGyfLli2TqKgoadGihSQlJZkcZ/bs2fUOAlZUVEi/fv1UaZ9aDbDPnDlTvL29ZenSpdK3b18ZP368+Pj4SEpKiqSmpoq/v79MnDjRpBhaDXRoNfBdo7EH1rS60FaDnfYXoNUJocjjKZ1qLlpQlz179si2bdvq3V5aWipbt241Oc7x48eNrrI97d69e88cpTQ3d+7ckfnz54uvr6/Y2dmJra2tdOnSRcaOHStnz57VpAx5eXlSWFioSSxTVVdXy7Jly2TYsGGyfPly0ev1snPnTnFzc5O2bdtKdHS0agMr9+/fl0OHDsmBAwcadfXRFStWiKurq9F0QkVRxNXVVZUrn08qLy+XI0eOyI4dO2THjh1y5MiROu+nf1m3bt0ydAp1Op106dLFaKrfTz/9JGvXrlUtXmMqKCio82kIWsvPzzdafV0Nt2/fltOnT8vJkyeNrrhZgry8vFqzL5qDefPm1bt+RVVVlQwfPlz1AWm9Xi/Lly83PBVD7c6hpYiOjjb6eXrmWFxcnISHh6sed9++fRIbG6v6ueLixYuf+XSazz77TN5//32TYmzatOmZA4FqDaiIPJ4CP3r0aHFwcDAMRNrY2EhQUJD88ssvqsQoLS2tdcXzSRUVFaqce2o1wH7v3j2ZMmWK+Pn5ydSpU+XRo0eyevVqsbW1FUVRJDQ01OTjTquBDi0Hvms05sCa1hfa+Jx2IqIGunbtmtHz09V6ZnZTyM3NxaNHj+Dj4wNra+umLg6R2fvvq87XBQAACt9JREFUv//w4MEDtG7dut7tRUVFjfK87nPnzuHEiROIioqCk5OT6vu3dPfv34eVlRXs7OyauiiqePDgAaysrNCiRYumLkqDiAhu374NvV6Pdu3awcbGpqmL9NIqKipw7tw5o3OC3r171/v/QS2VlZWoqqqCg4ODyfu6c+cObt68iZ49e9a5/e7du8jKykJISIjJsZ7l2rVrsLOzg6urq+r73r9/P44ePYr4+Hi4uLiovv+65Ofnw9bWFp07d1ZlfzpV9vI/rrCwEBMnTmzqYqjG0vJpbh4+fIgTJ07g8uXLtbZVVlYiOTm5CUpl3rSuM09PTwQGBiIwMNDQYVez3WiZj7e3N/z8/Gp12Jvb/wGt6szS4mjFkvKxtrZ+5gl5cXExvvjii0aJ3bt3b8yZMwdOTk5soy+htLQUM2bMMHk/5pALAPzzzz+IiYkxeT/Z2dlISkpCTk4OACAnJwcxMTGYOHEijhw5YvL+n6YoCjp06ABXV1dDh705fodmZ2dj9+7dcHV1xZgxY9CrVy/8+OOPiI2NbZR6e5KdnR0cHBxUqTcnJyfodLp6j4GzZ8+q1mF/1rF27do11TrsT8fp1q0bHj58iAULFqj6t6mJc+XKFQDG+RQUFKjWYQcATo9XgVbPNdeKpeXTnFy5csXwjE+dTifBwcFG023VWsHTkphLnanVburKp6ioyLC9ueWjBa2OAUuLoxVLy+d5tGo7bKMNp0admUsuIurkk5KSIra2tuLs7Cx2dnaSkpIi7du3l8GDB0tYWJhYWVkZ3VffWBrzO7Qx/j6WVG9a5cI4puFcyBewf//+Z27Pz8/XqCTqsLR8LMn8+fPh5+eHzMxMlJWVITY2FgMGDEB6ejrc3d2bunhmSas606rd1JXPwIEDm20+WtDqGLC0OFqxtHy0ajtsow2nRZ1peTxrkc+XX36JuLg4LF26FD/88APGjh2LmJgYLFu2DAAQHx+PFStWICwszKQ4Tfkd2hh/H0uqN61yYRwTqdb9t2BaPm9cC5aWjyVxcXGRixcvGl7r9XqZPn26uLu7S15ensVdkVKDVnWmVbuxtHy0oFWdWVocrVhaPlq1HbbRhtOizrQ8nrXIp3Xr1pKbmysijxeQtba2NlqU9NKlS6qsuG9p36GWVG9a5cI4puE97S/A1dUVe/bsgV6vr/MnKyurqYvYIJaWjyV5+PCh0b3FiqIgMTERERERCAkJwZ9//tmEpTNPWtWZVu3G0vLRglZ1ZmlxtGJp+WjVdthGG06LOtPyeNbqGFAUBQCg0+lgZ2eHNm3aGLY5ODigvLzc5BiW9h1as2/AMupNi1wYxzTstL+A3r1749y5c/VuVxQF0owW4be0fCyJj48PMjMza72/fv16REZGYvjw4U1QKvOmVZ1p1W4sLR8taFVnlhZHK5aWj1Zth2204bSoMy2PZy3y8fDwQG5uruH1qVOnjKaRX79+XZXFwSztO9SS6k2rXBjHNOy0v4C4uDgEBQXVu/21117D0aNHNSyRaSwtH0sycuRI7Ny5s85t69evx5gxY5rNSZpWtKozrdqNpeWjBa3qzNLiaMXS8tGq7bCNNpwWdabl8axFPjExMaiurja8fvppIikpKarck2tp36GWVG9a5cI4puFz2omIiIiIiIjMFK+0ExEREREREZkpdtqJiIiIiIiIzBQ77URERERERERmip12IiIiIiIiIjPFTjsRERGZLUVRsHfv3qYuBhERUZNhp52IiKiZKCkpwezZs+Hl5YUWLVrAzc0NERERSEtLa+qiNZri4mK8++67AICCggIoioLz5883camIiIi0Y/38jxAREVFTKygowIABA+Do6IjVq1fD398fVVVVOHToEGbOnImcnJymLmKj6NixY1MXgYiIqEnxSjsREVEzMGPGDCiKgoyMDHzwwQfo1q0bevbsiblz5+L06dMAgOvXryMyMhL29vZo3bo1Ro0ahVu3bhn2sXjxYrzxxhvYsmUL3N3dYW9vjxkzZqC6uhqrVq1Cx44d4eLigmXLlhnFVhQFGzduxLBhw/DKK6+gR48eOHXqFK5evYrQ0FC0atUKQUFByMvLM/xOdHQ0RowYYbSf2NhYhIaGGl6Hhobi448/xrx58+Ds7IyOHTti8eLFtWLXTI/39PQEAPTq1QuKoiA0NBTHjx+HjY0NSkpKasV66623Xq6yiYiIzAg77URERGautLQUqampmDlzJlq1alVru6OjI/R6PSIjI1FaWopjx47h8OHDyM/Px4cffmj02by8PKSkpCA1NRU7d+7Et99+i/feew83btzAsWPHsHLlSixcuBBnzpwx+r0lS5YgKioK58+fh4+PD8aOHYtp06YhPj4emZmZEBHMmjWrwbl99913aNWqFc6cOYNVq1bhyy+/xOHDh+v8bEZGBgDg999/R3FxMfbs2YPg4GB4eXlh27Zths9VVVVh+/btmDhxYoPLQ0REZG44PZ6IiMjMXb16FSICHx+fej+TlpaGS5cu4dq1a3BzcwMAJCcno2fPnjh79iz69OkDANDr9diyZQscHBzg6+uLQYMG4cqVK/jtt9+g0+nQvXt3rFy5EkePHkW/fv0M+58wYQJGjRoFAJg/fz4CAwORkJCA8PBwAMCcOXMwYcKEBucWEBCARYsWAQC8vb2xfv16pKWlYciQIbU+2759ewBA27ZtjabNT5o0CUlJSYiLiwMAHDhwAJWVlYbyEhERNWe80k5ERGTmROS5n8nOzoabm5uhww4Avr6+cHR0RHZ2tuE9Dw8PODg4GF536NABvr6+0Ol0Ru/dvn3baP8BAQFG2wHA39/f6L3KykpUVFQ0IDPj/QKAq6trrdjPEx0djatXrxpuE9i6dStGjRpV56wEIiKi5oZX2omIiMyct7c3FEVRZbE5Gxsbo9eKotT5nl6vr/f3FEWp972a39PpdLUGG6qqql6oPE/Hfh4XFxdEREQgKSkJnp6eSElJQXp6eoP2QUREZK54pZ2IiMjMOTs7Izw8HBs2bMD9+/drbS8rK0OPHj1QWFiIwsJCw/uXL19GWVkZfH19tSwugMdT2YuLi43eM/VRbba2tgCA6urqWtsmT56MXbt2YdOmTejatSsGDBhgUiwiIiJzwU47ERFRM7BhwwZUV1ejb9++2L17N3Jzc5GdnY21a9ciMDAQgwcPhr+/Pz766CNkZWUhIyMDUVFRCAkJwZtvvql5ecPCwpCZmYnk5GTk5uZi0aJF+OOPP0zap4uLC1q2bInU1FTcunUL5eXlhm3h4eFo3bo1li5d+lL31hMREZkrdtqJiIiaAS8vL2RlZWHQoEH45JNP4OfnhyFDhiAtLQ2JiYlQFAX79u2Dk5MTgoODMXjwYHh5eWHXrl1NUt7w8HAkJCRg3rx56NOnD+7evYuoqCiT9mltbY21a9di48aN6NSpEyIjIw3bdDodoqOjUV1dbXIcIiIic6LIi6xuQ0RERGTmJk2ahL///hv79+9v6qIQERGphgvRERERUbNWXl6OS5cuYceOHeywExGRxWGnnYiIiJq1yMhIZGRkYPr06XU+352IiKg54/R4IiIiIiIiIjPFheiIiIiIiIiIzBQ77URERERERERmip12IiIiIiIiIjPFTjsRERERERGRmWKnnYiIiIiIiMhMsdNOREREREREZKbYaSciIiIiIiIyU+y0ExEREREREZkpdtqJiIiIiIiIzNT/AYDaKy+PDR3+AAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -2620,7 +2742,7 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 84, "metadata": {}, "outputs": [ { @@ -2629,7 +2751,7 @@ "16" ] }, - "execution_count": 92, + "execution_count": 84, "metadata": {}, "output_type": "execute_result" } @@ -2640,47 +2762,71 @@ }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 85, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0:gas,oil,weinberger,barrels,republican,agencies,pdvsa,ecuador,opec,tehran\n", + "1:change,inflationary,coins,acreage,sheet,economy,feet,subject,mint,country\n", + "2:price index,deferred,figure,sectors,mln dlr,steam,distribution,expansion,performance,holder\n", + "3:reflected,special,chief,heller,overseas,commodities,economics,hillards,mid,profitable\n", + "4:scheduled,program initiative,bushels,bonus,whites,glickman,tonne,program initiative announced,lanka,soybeans\n", + "5:block,montreal,norway,champion,entertainment,norwegian,calgary,field,tells,transcanada\n", + "6:million,area,sao,education,upland,utility,normal,zimbabwe,plains,closure\n", + "7:test,adverse,von,sharing,final,stock split,immediately,mining,myers,cathode\n", + "8:manhattan,pincus,security pacific,ameritrust,gaf,center,started,diagnostic,jacobs,security\n", + "9:comdata,acquire,satisfactory,instrument,resulting,drexel,post,wtc,colorado,originally\n", + "10:deposit,fed,rises,mutual,yesterday,england said,dividend payable,repurchase,liquidity shortage,maturity\n", + "11:action,sale,adopted,safety,colonial,approved,automotive,advertising,reduction,decision\n", + "12:crude,fuel,edmonton,posting,company said,postings,eia,marathon,cuts,sulphur\n", + "13:francs,indonesian,conference,sight,swiss,paper,like,israel,consider,indonesia\n", + "14:elevator,bids,rite,credits,lifts,franc,unions,protective,governments,chemlawn\n", + "15:union,deliveries,workers,increase,produced,obligations,meet,cominco,load,long\n", + "16:institutions,davis,greek,athens,conrac,turkish,voting,waters,central,ual\n", + "17:election,leading,psbr,interstate,bureau,currency,great,acquisitions,gerhard,values\n", + "18:primary,shr primary,diluted\n", + "19:end,mths,mthly div,meeting,dlr tax,set,results exclude,share,revs,year\n", + "20:park,the commerce department,little,laws,working,piedmont,florida,press,predicted,tonight\n", + "21:james,swedish,levy,baldrige,varity,purposes,reorganization,continental,organisation,goodyear\n", + "22:committee,cds,taiwan,reuters,told,spokesman told,mercantile,subcommittee,slaughter,versus\n", + "23:reuter,spend,insurance,funding,shipments,life,sprinkel,operators,software,facilities\n", + "24:external,totalling,gross,money market,brokers,assistance,strong,self,remain,positive\n", + "25:quarter ended,itc,gordon,tin,ghana,preference,actively,weight,manufacturing,arango\n", + "26:fujitsu,oaks,trading,minister,periods ended,oecd,economic,dispute,growth,tamura\n", + "27:australian,siemens,local,circuit,cable,m3,final div,stake,internal,issue\n", + "28:extended,near,pakistan,american motors,closing,deadline,vista,motors,renault,studying\n", + "29:pan,mts,bancroft,director,controls,publishing,recapitalization,holiday,worth,remaining\n", + "30:earned,higher,quarter,ended,sees\n", + "31:south korea,african,planning,korean,social,wash,benefits,puts,net profit,jobless\n", + "32:unit,sell\n", + "33:turnover,parent\n", + "34:definitive agreement,combined\n", + "35:profits,years\n" + ] + } + ], "source": [ - "nodes = communities[communities==17].index" + "for comm_index in set(communities.values):\n", + " nodes = communities[communities==comm_index].index\n", + " print(f\"{comm_index}:\" + \",\".join(nodes[:10]))" ] }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 86, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Index(['pharmaceutical', 'worth', 'american motors', 'parts', 'auditors',\n", - " 'qualified', 'midland', 'salomon', 'consolidated', 'taft', 'goldman',\n", - " 'rejects', 'plants', 'wednesday', 'tvx', 'miami', 'jersey', 'broadcast',\n", - " 'dudley taft', 'earn', 'audit', 'opinion', 'closing', 'directors',\n", - " 'liquidating', 'stations', 'controls', 'radio', 'chrysler',\n", - " 'statements', 'gets', 'motors', 'year ending', 'aluminum', 'beverage',\n", - " 'near', 'employs', 'renault', 'kentucky', 'bass', 'marine', 'semi',\n", - " 'staff', 'share payable', 'brand', 'adding', 'broadcasting', 'car',\n", - " 'financing', 'smelter', 'guinness', 'bidder', 'henderson', 'houston',\n", - " 'extended', 'david', 'amc', 'mitsui', 'toledo', 'alcan', 'importer',\n", - " 'institutional'],\n", - " dtype='object')" - ] - }, - "execution_count": 94, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "nodes" + "comm_index = 28\n", + "nodes = communities[communities==comm_index].index" ] }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 87, "metadata": {}, "outputs": [], "source": [ @@ -2689,14 +2835,14 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 88, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt4AAALeCAYAAACdlBZfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3iN5xvA8e97VhKZhNh7r1i1R+1Re9QoLR38rLaqOtAWLS1aVUWpLlWzttpb0drUJrFCEhKRvc56f3+kSYUg+5wk9+e6XHLOecd9TpKT+zzv/dyPoqqqihBCCCGEECJLaWwdgBBCCCGEEHmBJN5CCCGEEEJkA0m8hRBCCCGEyAaSeAshhBBCCJENJPEWQgghhBAiG0jiLYQQQgghRDaQxFsIIYQQQohsIIm3EEIIIYQQ2UASbyGEEEIIIbKBJN5CCCGEEEJkA0m8hRBCCCGEyAaSeAshhBBCCJENJPEWQgghhBAiG0jiLYQQQgghRDaQxFsIIYQQQohsIIm3EEIIIYQQ2UASbyGEEEIIIbKBJN5CCCGEEEJkA0m8hRBCCCGEyAY6WwcghBBCCJFakSYLwbEWjBYVi6qiVRQMWgUvJx0uehlPFPZNEm8hhBBC2K1Ys5WzIXH4hhsJirNgtqroFAUVNWkbBQWzqqLTKHg5aqngbsDb0xEnnSTiwr4oqqqqz95MCCGEECL7BESbOBYUi0+4EQUwpyFb0SmgAhXdDTTwcqKYsz6rwhQiTSTxFkIIIYTdiDVb2e4XxbUIIxYVMpKkKIBWgfJuBjqWcpERcGFzkngLIYQQwi74hMez+VYUZquKJROzE60COo1Cl9IuVHR3yLwDC5FGkngLIYQQwqZUVWWvfzRnQuIwWbPuPHoN1PZ0pHVxZxRFyboTCfEEkngLIYQQwmZUVWWbXxSXwuKzNOlOpNdAVQ8HOpVykeRbZDspdhJCCCGEzez1j862pBvAZIVLYfHs9Y/OnhMK8RBJvIUQQghhEz7h8VleXpISkxXOhMThEx6fvScWeZ4k3kIIIYTIdrFmK5tvRWV70p3IZIXNt6KINdsoAJEnSeIthBBCiGy33S+he4ktma0q229H2TQGkbdI4i2EEEKIbBUQbUrq021LFhWuhRsJjDbZNhCRZ0jiLYQQQohsdSwo1uZJdyKLCkeDYm0dhsgjJPEWQgghRJYpU6YMu3fvTroda7biE27M0IqUmUkFfMKNUustsoUk3kIIIYTINmdD4sjK7tnj6xbivt/1NO2jkBCXEFlNEm8hhBBCZBvfcCNmexnu/pdZTYhLiKwmibcQQgghstSZM2fw9vbG3d2dr94cgik+YXT52Lrf+LJbfT5tWZElYwYREXwXgNAAP8bXLYTFbE46xqKh3Tm+/jcA7vtdZ9Eb3Zjcohyfta7M8g/eAOD717sC8G3/VkxqWpqzO9Y/9TyQMEJ+dM1ixrSri4eHB6NGjUIW9RZZRRJvIYQQQmSp33//ne3bt3P2qi8BPhc59cdKrh07yI55U3lpxo9M2Hkej6IlWPHh0FQdb9eC6VRs1JJP9vvy4bZ/aNI/IfH+309/APDWyn1MOXwL7w49U3WeS3/u5M2lu/j75Bl+//13duzYkbkvgBD/ksRbCCGEEFnqrbfeolixYlic3KneogMBV85zZtsanuv2EsWr1kJncKDDmx/hd+4EoQF+zzyeVqcnNPAOkcF30Ts4UqZOoydum5rztHz1LVzdPHAoVIxWrVpx5syZzHjaQjxGEm8hhBBCZKkiRYoAYLSo6B2dMMZEExF8F4+iJZK2ccjnQj73/IQHBT7zeJ3e/gRQmf9ye2b3acaJDcueuG1qzuPi6YWKitGiki9fPqKiZFEdkTV0tg5ACCGEEHmD5aHaabdCRQgLvJN02xgbTUx4KO5eRdE75QPAFBeL1sUVgKiQoKRtXQsWptfHswG4efoIP43oQ5m6jSlYqtxj53zaeR6mPhKfEFlBRryFEEIIkS20yn+NBGt17MXJTSsIuHIOszGeHfOmUbJGXfIXK4VL/oK4eRXl9NbVWC0WTmxYRsidm0n7ntu1kfB7AQA4uXmAoqDRJKQ0Lp6FeOB/K1XneZjySHxCZAUZ8RZCCCHsVKTJQnCsBaNFxaKqaBUFg1bBy0mHiz7njZ0ZtP8lthUaPk+7kR+y7L3XiI0Io5R3fQZ88UPS470+/pqNX3zAznnTeK7HQEp710967M6FM2z+6iPioiJw8fSi67hpFChRBoC2/3ufNZNGY4qLo+dHs/Bu3+Op50mkoCSLT4isoKjSM0cIIYSwC7FmK2dD4vANNxIUZ8FsVdEpCupD6zwqKJhVFZ1GwctRSwV3A96ejjjp7D8RjzRZWHgh1G6Wi3+YVoER1QvkyA80IueQEW8hhBDCxgKiTRwLisUn3IgCyRaYebzuOOG2xaJyO9pMYIyZPwNjqOhuoIGXE8Wc9dkWd1q56rVoFewy8dZpFEm6RZaTxFsIIYSwkVizle1+UVyLMGJRIT35aGKSfiXMiG+4kfJuBjqWcrGrEfDo6Gi2b9/O2rVr8Wg/iFK1Gtg6pMd4OWptHYLIA6TURAghhLABn/B4Nt+KwmxVM3UEWKskjN52Ke1CRXeHzDtwGoWHh/PHH3+wbt069uzZQ8OGDenVqxcV2vbkTJTWrpaN1ynQvGg+GhbOZ+tQRC4nibcQQgiRjVRVZa9/NGdC4jBZs+48eg3U9nSkdXFnlGzq1hEcHMzGjRtZt24dhw4domXLlvTu3ZuuXbtSoEABIGGUf975B3ZVbqJVYHSNAnZ1lUDkTlJqIoQQQmQTVVXZ5hfFpbD4LE26AUxWOBMSR7xFpVMplyxLvv39/Vm/fj3r1q3j5MmTdOjQgcGDB7Nq1SpcXV0f295Jp6Giu4ErYcZ0ldZkNgWo6G6QpFtkC0m8hRBCiGyy1z86W5LuRCYrXAqLx0Gr0KaES6Yd9/r166xbt45169Zx+fJlunTpwttvv0379u1xcnJ65v4NvJzwDTfaRbmJVoGGXs+OWYjMIIm3EEIIkQ18wuOzvLwkJYkj36Vc9Rmq+b506RJr165l7dq1+Pv706NHDyZNmkSrVq0wGAxpOlYxZz3l3Qz4/jup1Fa0CpR3N1DUjjvBiNxFaryFEEKILBZrtrLwYijxNswyHbQKw6vlT3VJhaqqnD59mnXr1rF27VoiIyPp1asXvXv3plmzZmi1GesCYi+vyYhq+XGUMhORTSTxFkIIIbLY+usRdjG6W8HdQM+ybk/cxmq1cuTIkaQyEo1GQ+/evenVqxf169dPWpY9s/iEx7PpZmS2XwWAhMmn3cq42rTzi8h7pNRECCGEyEIB0aakPt22ZFHhWriRwGhTstIKs9nMn3/+ybp161i/fj358+end+/erF+/Hm9v7yztiFLR3YHanqZsL8FJ7PgiSbfIbpJ4CyGEEFnoWFCszZPuRBYVjgbF0qmYlT179rBu3To2btxI6dKl6d27N3v37qVy5crZGlPr4s7EW9Rsm3Sq10A1DwdaF3fO+pMJ8QgpNRFCCCGyiD32rLaaTczt04TyJYsnlZGULl3apjHl5t7mQjxMEm8hhBAiixy9F8PBwJgU2+ZdP3GYVR+NYPz2s9kblMVMPXeFdhULZ+95UyG3r+YphEzjFUIIIbJIdvWqXjS0O8fX/5a6jbU6glT7TD4rujswvFp+KrgZ0CkJi9tkhELCcvAV3A0Mr5Zfkm5hc1LjLYQQQmSRoDiLrUNIkb3GBQkrW/Ys50ZgtImjQbH4hBtRIE0fYHQKqCSsSNnQy0n6dAu7IYm3EEIIkQUiTRbMVpUZnevSsPcrnN6ymoj796jeshPdJ3z52Pb7f5nD8fVLiXoQjEfh4rQfNYHqrTsDcHLTCo5vWEqpms9xfMMynFzd6T5+BpWbtmXHvGncPH2E2+dOsvmrj6jbtT/dPpjOllkfc2bbWszGODyKlqT/599TpEJVAMxWlSiTFRe9/V74Luqsp0dZPbFmK2dD4vANNxIUl/Ca6hQFFRWVhFFtBQWzqqLTKHg5aqngbsDb01GWgRd2RxJvIYQQIgsEx1rQ/TuB78y2tbw6/3cMTvlYMmYg+378mgoNn0+2vWeJMvzvpz9w8fTi/K6NrPpoJOM2HsWtUBEAbp8/Rd0u/fl47xWOrVvC2iljGL/jHB1GT+TWP8eo80If6vd8GYCrf+3lxqm/eXfDERxd3Ai+4YOj63/9u3WKQlCsGRd92lactAUnnYaGhfPRsHA+AKJMVoJizRgtKhZVRasoGLQKXk46u/4gIQRIjbcQQgiRJYyWxDFZaNzvdTyKFCefe35avv4O/+xY/9j2Ndt1x61QETQaDd4delKwVFnuXDid9LhHkRI06PUyGq2Wul36EXn/HlEhQSmeW6vTEx8TRfANH1RVxatcpaQEHkBFxWhPrVbSwEWvoZybgSr5HahewJEq+R0o52aQpFvkCDLiLYQQQmQBy0NNw9wLF0v6On/RkkQE331s+1ObV3Fo6QJCA24DYIyNJjosJOlx14JeSV8bnBJGf+NjonFN4dzlGzSncb/X2Tj9A8Lu3qF6q8688M4UHF0StlYfiU8IkT3k46EQQgiRBbQP9YkOvxeQ9HXY3TvJRp8BQgNus+6zsXT7YDof77vKpD+vUbh8FUhlcpxST+qmA4bx5vI9vLPmEPf9rvHnknn/bf9IfEKI7CGJtxBCCJEFDFoF5d+GeH///jPh9wKICQ9l30+z8W7XPdm2xrgYFEXBOX9BAE5sXM69a5dTfS6XAoV4cOdW0u3bF07jd+4kFpMJg1M+dAYHFOW/P/kKCXXRQojsJaUmQgghRBYo5KTF/O+Ide2Ovfh55ItEBN+lasuOtHpjbLL67cLlKtNs0AgWDOmEotFQp3NfStdqkOpzNRkwjNWTRnNkzWLqdH6Ras93Ysusj3ngfxOdgyMVG7eixeBRSdubVRUvJ0kBhMhusnKlEEIIkUVmnw3h04516P3J7Me6mNiSg1bhHW9PW4chRJ4jpSZCCCFEFvFy1No6hBTZa1xC5HaSeAshhBBZpIK7IcPLnme2xCXUhRDZT0pNhBBCiCwSa7Yy7/wD7KlltlaB0TUKyKqOQtiA/NYJIYQQWcRJp6GiHY16K0BFd4Mk3ULYiPzmCSGEEFmogZcT9tK5T6tAQy8nW4chRJ4libcQQgiRhYo56ynvZrB58q1VoLy7gaLOetsGIkQeJom3EEIIkcU6lnJBp7Ft5q3TKHQq6WLTGITI6yTxFkIIIbKYk05D3YKONju/XgNdSrvgKLXdQtiULFslhBBCZCFVVdnrH82ZkDibnF+vgdqejlR0d7DJ+YUQ/5HEWwghhMgiqqqyzS+KS2HxmKzZf369Bqp5ONC6uHP2n9zGIk0WgmMtGC0qFlVFqygYtApeTjpc9DLyL2xDEm8hhBAii+z1j7Zp0l3b05HWxZ1RFDtpq5KFYs1WzobE4RtuJCjOgtmqolMUVP5roq6gYFZVdBoFL0ctFdwNeHs6SntFkW1kAR0hhBAiC/iEx7PpZqRNkm6AxoWdeL5Y7h/pDog2cSwoFp9wIwpgTkNWo1NAJaG3eQMvJ4pJxxeRxSTxFkIIITJZrNnKwouhxNtwyUoHrcLwavmfOpqbk8sxYs1WtvtFcS3CiEWFjLzSCv+2W3Qz0LGUi4yAiywjibcQQgiRydZfj8D334TQVrQKVHA30LOsW9J9uaUcwyc8ns23ojBb1Ux9jbVKQtvFLqVdZDKqyBKSeAshhBCZKCDaxHKf8DSVPGQVnQIDK7qjQq4ox3i4Q0xWlvDktfp4kX0k8RZCCCEy0YYbEVwJM2ao9CGzKICLTiHWoub4cozs7hCj10BVDwc6lXKR5FtkGvu5biSEEELkcLFmKz7h9pF0Q0KiHWlWMWcw6U48llkF3wgjCy+G4hMenwkRpl52d4gxWeFSWDx7/aOz54QiT5DEWwghhMgkZ0PisPXY6Pi6hbjvdz3Ljm9RId6isulmJHvuRJEdF859wuOzvLwkJSYrnAmJy/YPGSL3ksRbCCGEyCS+4Ua7qO1OtHrSaHbO/zxLjp2YlG7zy9rkO9ZsZfOtKJu1ZTRZYfOtKGLNNgpA5CqSeAshhBCZJCjOAoDFbLZxJNkjO8oxtvsldC+xJbNVZfvtKJvGIHIHWblSCCGEyASly5ShevdXOL11LcG3fHlj4Vq2zfmUoOtX8Chakq7vTaPcc00BWDS0O2XqNOL68YME+lyklHd9+k9biHN+TwCWvf8aN08fwRQfR9GK1ekx4UsKl6+StG+dF/pQv+fLAJzctILjG5Yy/OctyeI5tnYJZ7atRUHh8PLvKfdcMwbPWZbpzztx5LuUqz7TW/AFRJuS+nTbkkWFa+FGAqNNFJVFdkQGyIi3EEIIkQksKvyzfT2Dv13Oe3+cYMnYV2j1xjt8vN+HF96ZzNL3XiUq9H7S9v9sX0fvyXP5aPclLCYjB3+bn/RY5SZtGLfhGB/tvkSxKt6smjg8zfE06P0KtTv1psXg0Uw5fCtLku5EWVWOcSwo1uZJdyKLCkeDYm0dhsjhJPEWQgghMoGqqjR76Q08ihTnzNbVVG7alirN2qHRaKjYqCUlqtbiyqHdSdvX69afQqXLo3d0oma77gRcOZ/02HM9BuLg7ILO4EDb4e8TePUCcZERtnhaqZbZ5Rj22CHGJ9wotd4iQ6TURAghhMgkHoWLAxAaeIfzuzdx+c8dSY9ZzGbK1W+WdNvV0yvpa4OjE8bYhDppq8XCzvnTOLf7D6JD76MoCWNk0WEhOLr+twqlvcmscowhQ4ZQokQJStZ/ni/fHsHY9UcyMcqMUUjoXNOwcD5bhyJyKEm8hRBCiEySuNCKR+Fi1On8Ir0+np3mY5zZtpaL+7fz+oI15C9WirioCD59vkJS5xCDUz6Mcf+VPESGBD05nmxubphYjtGjbMbroF2q1s+SpPv6icOs+mgE47efTfO+ZjWhc40k3iK9pNRECCGEeIJIk4XrEUYuh8Zz4UEcl0PjuR5hJCqF3naKoiQlurVfeJFLf+7g6l97sVosmOLjuH7iMOH3Ap55zviYKHQGA/ncC2CKi2HHvGnJHi9aqQYX9m7BGBvDfb/rnNjw5NptF89CPPC/lcZnnX6ZWY6R2CEmJbbsGhMYJT29RfpJ4i2EEEL8K9Zs5ei9GJZdDWP22RAWXghl441ItvpFsuN2FFv9Itl4I5IFFx4w+2wIy66GcfReDLFmK1oFLP+OSnsUKc7LX//G/p+/YWqbKszoVJs/l8xDtT47Ia3bpS8eRUvyRceazO7djFI16yV7vNnA4Wj1Bqa1q8aaSaPxKleZuz4XUzzWcz0GEnT9ClNalOe3sa9k6LW5fuIwX3T0fuZ2ieUYqXX69Gnq1q2Lq6sr/fr1Iy4ujniLlSvHDiU734zOdTmw+Fvm9H2eSU1LYzGb8Tt7ggVDXmBKi/LM6deS6ycOJ20fEx7Kmklv8nn7Gkx5vgK/jX0FY2w0v7zZn8jgu0xqWppJTUsTEXwXszGeP76cyOfta/B5+xr88eVEzMb4ZM/7wOJvmdauGis+eZObgUF06dIFDw8PChQoQPPmzbGm4nsrhKJmx5JTQgghhB0LiDZxLCgWn3AjCqRpERydkjDSW9HdwLUIY7Yv9PKkdoKZLS0lGiWddQys5PHM7YxGIxUrVmTMmDGMHj2ajRs3MmDAAIaNGQeVG7F04n/nm9G5Lk6ubrzyzTKcPQoQExHGnH7P0/ez+VRq0oZrx/5kxfhhjF33Fy75C7L4rQEYnJzpOfErDE7O3Dp7jHL1mqb4PHYtmI7P3/t55ZvfQFH47Z1XKN+gOe1Hjuf6icP8NKI3zQaNpN2ID9CjcnPVt6gxEcydOxeAI0eO0KxZs6RSIyGeREa8hRBC5FmxZivrr0ew3CecK2EJ/aLTuvKkWU2obb4SZsRk44VenkVV1WwZmX20TMT8hNKQI0eOYDKZGDNmDHq9nj59+lC/fn0sqppiN5Mm/YfiUaQ4ekenp3aOiQi+y9XDe+g58Suc3DzQ6vWUq9f0ifGe2baW1sPexaVAIVzyF6TNsHGc3rI66XFF0dB2+PvoDA7oHR1RtDoCAwO5desWer2e5s2bS9ItUkUmVwohhMiTfMLj2XwrYVXEzOgVnXAIBVVVsywJC7vrz+YvJ3Lz9BGsqpVaHXpSolptALbOnsTxDctwcnWn+/gZVG7aFkhYcKd0rQbcOHkY/8vnaDf8A/7ZsZ43l+9JOu7BpQu4cfIvXpn9G5cP7WLb7MmE3fPH0dmVpgOH0+KVUY/FEhF8l00zPuTmqSMY8jnTdOD/aDpgWEIs383gQNA1XPI5sWnTJr7++mveeOONx44REBBA8eLFk71epUuX5knX4t2LFE/6+mmdY8LvBeDknh8nN49Uva4RwXfJX7Rk0m2PoiWJDL6bdNs5vyd6B0cg4fs8ZPQ7rPp2Ou3btwdg2LBhfPjhh6k6l8jbJPEWQgiRp6iqyl7/aM6ExGVJWUhWJd1Wi4Vf3x5I+frNeH/qSRSNFv+LZwi5fYPb509Rt0t/Pt57hWPrlrB2yhjG7ziXFMvprat5de5KCpaugGq1sP+XOQRdv4pXuUoJj2/5ndZvjAVg3adjGDD9R8rWbUxsRFiKkzOtViu/vj2Qai070f+LRUTcC+DHEX0oVLoClZq0RgNs+WMTq1evZsmSJcTHpzwhsWjRovj7+yf7sOLn50fN4qVT3P7h1/ZpnWMigu8SGx5KbGQ4Tq7ujxzk8eO6FSpCaODtpNVBw+7ewbVQkYdPnGx3Nzc3Zs2axaxZszh//jytW7emfv36tGnTJsW4hUgkpSZCCCHyDFVV2eYXlWVJd1a6ff4UkcF36TRmMgYnZ/QOjpSp0wgAjyIlaNDrZTRaLXW79CPy/j2iHmozWK9rfwqXr4JWp0NncMC7fQ9Ob00opbh37TKhAbep0jxh9Faj0xN0/SpxUZE4uXlQvGqtx2K5c+E00WEhtBk2Dp3eQIESZWjQcxBnd6xP2qZW/Yb06NEDjUaDk5NTis+pcePG6HQ6vv32W0wmE+vWrePYsWNolWc3Qnxa5xi3QkWo1LQNG794n9iIMCwmEzdO/gWASwEvYsJDky1IVKtDT/b9OJuo0PtEh4aw94evqPNCnxTPq6BwaNdWfH19UVUVd3d3tFotGo2kVOLZ5KdECCFEnrHXP5pLYfE5LukGCL/nj0fREmh1j1+sdi340GI8Tgk9puNjopPucy9cPNn2dbv045/t61BVldNbfse7XXd0BgcABn75C1cO72ZG5zoseqMbt/45/tj5wgJvExl8lyktyif92/fzN0Q+CAYSyjGKFC/xzOdkMBhYt24dixcvpkCBAqxatYpevXqRT6fw5GaCCZ7VOabvZ9+h0en4ulcTpratyuHliwDwKluRWh16MrPbc0xpUZ6I4Lu0emMsxavV4tt+zzOnXwuKVfGm1b9XAB5lVlXu+92gbdu2uLi40LhxY0aOHEmrVq2e+XyFkFITIYQQeYJPeHyOHOlO5F64OGF3/bGYzSkm30/zaPVLKe/n0Or13Dz1N2e2r6P/tIVJj5WsXodXZv+GxWTi71U/seLDN/hw2z+PxZK/WCnGbTyW8vkATSpLbp577jlOnz792P2zz4Yk6zzywZZTj21TqmY9hv24KcXj5nPPT99P56f4WJ/J3z52X7f3v6Db+188dn+555omi0OnUXhv3Fg+HJdyYi7E08iItxBCiFwv1mxl862oHJt0A5SsURfXgoXZMfczjLHRmOLjuHnmaLqPV7dzXzbNGI9Wp08qWTGbjJzeuoa4yAi0ej0OLi5JS9Y/GouDswsHFn+LKS4Wq8XCXd9L3L7wXwKd2sT7SbwctRnaP6vYa1wiZ5DEWwghRK633S+he0lOptFqGfzNUkJu32D6C3WY3qkWZ3duSPfx6nTuy71rl6jdKXkt8+ktvzOjS10mNy/L0TW/0m/agpRjmbOcgCvnmdm1Hp+1rsy6T98hPiqhbtoKOGozlnhXcDegs7MOfTolIS4h0ksW0BFCCJGrBUSbWO4Tnub+3Nlp/y9zOL5+KVEPgvEoXJz2oyZQvXXnhMVx1v9Giep1OblpBU7u+ek39Tvu37rGrgXTMRuNdBoziXpd+wNgiotl53dfcH73H8RGhVOkQlVe/24NesfHJzea4mKZ2rYqby7fQ8FS5TP1+ThoFd7x9szQMWLNVuadf5AprR4zi1aB0TUK4KSTcUuRPlLjLYQQIlc7FhRrV8lbSjxLlOF/P/2Bi6cX53dtZNVHIxm3MaGM5Pb5UzzXYxAf77vK7oUzWDF+GFWbt2fcxmNcP/kXy957lRptuuCQz4Wtsydx7/oVhi/eiqunF7fPn0R5QreNI2sWU6JanUxPuiFzyjGcdBoquhu4EmZMcTGd7KaQsDqpJN0iI+SnRwghRK4Va7biE24fidvT1GzXHbdCRdBoNHh36EnBUmW582+9dP5ipXiu+0totFq82/cg/K4/rYeNQ2dwoFLjVmj1BkJu38BqtXJi0wq6vjcNd6+iaLRaStdqkNSt5GEzOtflr+WL6Dx2SqY/l8wsx/B2U7CaTZlyrIzSKtDQK+W2iEKklox4CyGEyLXOhsQ9sx+0PTi1eRWHli4gNOA2AMbYaKLDQtBotLh4FkraTvfv6omunv+1D9Q7OGKMiSYmLARzfBwFSpR55vlS6hCSWVTA29MxY8dQVVavXs17771H/+k/4lmlNlYbfie1CpR3N1DUWW+zGETuIIm3EEKIXMs33GjXtd0AoQG3WffZWN5YuJZS3vXRaLV8278lT1w3/QnyeXiic3DkwZ2bFK1UI2uCfYbMKMc4c+YMb7/9NuHh4SxZsoQGTZuz8GIo8TasF9JpFDqVdLHZ+UXuIaUmQgghcq2guGctw5J5LGZzuvYzxsWgKArO+QsCcGLjcu5du5zm42g0Gp7rNoAtsz4hIvguVouFW/8cx2xMebn2rJCRcoz79+8zfPhwOnTowIABAzh58iTPP/88TjoNXUq7oLdRxqLXQJfSLjhKbbfIBDLiLYQQIleKNFnS1EIw7K4/m7+cyM3TR7CqVmp16EmzgcNZ99lYAn0uoCgKFRu3ovuHM3BydQcSaqUbvTiEM1vXEnzLlymHb6V5cZvC5SrTbNAIFgzphKLRUKdzX0rXapCmYyR64Z0pbJ87lfmD2hEfG03RitV5bf7v6TpWWqW3HMNkMrFgwQKmTp3KgAEDuHz5Mvnz50+2TUV3B2p7mrJ9ASS9Bmp7OlLR/fE6eSHSQ9oJCiGEyJWuRxjZeCOS+FQk31aLhbkvtaF8/Wa0HzUeRaPF/+IZXDy9CA3wo2zdxsRFR7Js3KsUq+JN1/emAQmJt5OrG698swxnjwIptu3LKxy0CiOq5U/TyPDu3bt5++23KVasGN988w3Vq1d/4raqqrLNL4pLYfHZknzrNVDNw4GOpVxQMrgYkBCJZMRbCCFErmS0qKip7Gdy+/wpIoPv0mnM5KQR68TVHAuWKgeAi8GBZoNGsGfRl8n2bdJ/KB5Fimdi5DlPWssxrl+/ztixYzl79ixff/013bt3f2ZyqygKnUq54KBVOH0/Lktr9xNHulsXd5akW2QqSbyFEELkSpY0XNANv+ePR9ESj5WJRIYEJZWfxMdEoVqtOLl5JNvGXZLuVJdjREVF8fnnn/P999/z7rvvsnLlShwdU98BRVEU2pRw4dj2jZirNsXR2SVTe7RrlYSJlF1Ku0h5icgSMlNACCFErqRNw0ile+HihN31f2yC5M5500BRePv3P5l88AZ9py7g0QrNvDwimliO0bq481O3U1WVpUuXUqVKFfz8/Dh79iwTJkxIU9Kd6MyZM8ye8A4DSmip4JawrHxGvwMK//UfH14tvyTdIsvIiLcQQohcyaBVUFAgFeUmJWvUxbVgYXbM/Yy2w99PqPG+9A/xMVE4urjh6OJGeFAgB5fMy/rAc4jUlmOcOHGCt956C6PRyO+//06TJk3Sfc74+HhefvllZs2aRYXSJakABEabOBoUi0+4EQXSVIKiUxJ+Oiq6G2jo5SR9ukWWk8RbCCFErlTISYs5leUmGq2Wwd8s5Y8vJzD9hTooikKtjr1oM+w9fv94FFNalMOzZFnqdO7LoWULszhy+5bacox79+4xYcIEtm7dyrRp0xgyZAiaJyxfn1qffPIJlSpVYtCgQUn3FXXW06OsnlizlbMhcfiGGwmKS+hoo1MUEiv9FUBBwayq6DQKXo5aKrgb8PZ0lGXgRbaRriZCCCFyrdlnQ2y68EpuovBfy8COJV2emKwajUa+/fZbpk+fzpAhQ/j4449xd3fP8PkPHTpE3759+eeffyhUqNAzt48yWQmKNWO0qFhUFa2iYNAqeDnpcLFVU3CR58mItxBCiFzLy1HL7ej0LWwjEij//qvk8exyjK1bt/LOO+9Qvnx5Dh8+TOXKlTMlhsjISAYPHszChQtTlXQDuOg1uOgNmXJ+ITKLjHgLIYTItfbfDOHIfRNo7WecyWIyotcbyMZ1YDJEo0BVDwNdSrs+sZb76tWrvPPOO/j4+DB79mw6d+6cqTH873//w2w289NPP2XqcYXIbnKtRQghRK5z7tw5hg8fzoDnn8NqZ+NLqlXl2p9bUKw5YyTeqsLVcCN7/aMfeywiIoL33nuPJk2a0KpVK86fP5/pSffWrVvZuXMns2fPztTjCmELkngLIYTIFUwmE6tXr+b555+nY8eOFCtWjFNH/qJaQecMt5vLLApQ3cuFDqXcuHP8AKbYGFuHlComK5wJicMnPB4Aq9XKzz//TOXKlQkJCeH8+fOMGzcOgyFzSztCQkIYOnQoixcvxs3NLVOPLYQtSKmJEEKIHO3u3bssWrSI77//ngoVKjB69Gh69OiBXp9QixwQbWK5T3iWrnSYWjoFBlZ0p6izHlVVWXPuNj5xOjQ5pBbZQatQL9qXd98ajU6n49tvv6V+/fpZci5VVenXrx8lS5Zk1qxZWXIOIbKbJN5CCCFyHFVV+euvv5g3bx7bt2+nX79+jBo1ipo1a6a4/frrEfhGGDN1lcO00gIVPAz0LJt85NYnPJ7NNyOJN5tBYz+16Cmxmk1cO7KPlh4WBg4cmOH2gE+zYsUKpk6dysmTJ9O10I4Q9kgSbyGEEDlGTEwMy5cvZ968ecTExDBy5EiGDBmCh4fHU/eLNVtZeDHUpq0F46MiaOcYSpP69R57LNZsZbtfFNcijJitVlDstxL04VH7rOLv70+dOnXYtm0b9eo9/noJkVPZ72+2EEII8a9r167x7rvvUqpUKTZt2sSMGTO4fPkyY8aMeWbSDeCk09CltAu2at+s10CZKD96dO7ErFmzsFqT9zRx0mnoWc6NgRXdqZLfEa0C2lSsuGkLFhWOBsVm2fFVVeW1115j9OjRknSLXEcSbyGEEHbJarWydetWOnfuTKNGjdDpdBw/fpxNmzbRoUOHNJc5VHR3oLanY7Yn34lLqw/u1JKjR4+yevVqunbtyv379x/bNmEVRjdG1yhAi2LOlHTWYdAAdnRxWgV8wo3EmrOmIeLChQsJDQ1l/PjxWXJ8IWxJEm8hhBB25cGDB8yaNYtKlSrx8ccf8+KLL+Ln58eMGTMoW7Zsho7durgzVT0csi351mugmocDrYs7A1C2bFkOHjxI9erVqVOnDgcOHEhxPyedhoaF8zGwkgfON08zq1fj7Ak4lRTgbEhcph/Xx8eHjz/+mCVLliRNjhUiN5HEWwghhF04c+YMQ4cOpXz58pw5c4alS5dy4sQJhgwZgpOTU6acQ1EUOpVyyZaR78SR7o6lXJItPKPX65k5cyaLFi2if//+fPrpp1gslicex6Vqfd5dfyRrg00jswq+4cZUbbt48WKaNWv27GOazQwePJhPPvmEKlWqZDREIeySJN5CCCFsxmg0smLFCpo1a0bXrl0pW7YsV65c4bfffqNRo0ZPXCkxIxRFoU0JF7qVccVBq4D1yUlvemiVhLZ73cq40qaEyxOfQ6dOnTh58iT79++nbdu2BAQEPLaN2WwmKC5z48ssmR3Xl19+iZOTE6NHj052v9mcMxYaEiI1JPEWQgiR7fz9/Zk0aRKlS5fmxx9/ZOzYsdy4cYMJEybg5eWV7uNGmixcjzByOTSeCw/iuBwaz/UII1Gmx+uRK7o78Gr5fFw7sg9zfCxYn1yzvP+XOXzZrT6TmpVhdu+mXNi7Jemxk5tWsPDVF9j81UdMaVGeWd2eo3bYJQ6vX0HJkiXx8vLi119/Tdo+Pj6ecePGUapUKerUqUPFihVp3rw59erVY8aMGZQoUYIZM2ZQpEgRBg0ewpVjh/iio3fS/mF3/Vn67hCmtq7Cp60qsXH6BwCE3L7BD8N68mmrSnzWujIrJw4nNjI8ab8Znevy55L5zOn7PJNblGP5B29gik+5XOTR5zSz63Pc+ucYJzetYHqnWkxtU5UjG1Ykva7h4eG88sorFCpUiNKlSzN16lSsViuXLl1i+PDh/P3337i4uCRNhH10+1GjRjFr1ix++eUXlixZQtOmTXnnnXfw9PRk8uTJ+Pr68vzzz+Pu7k7BggXp169fKn4ahLA/9t0wVAghRK6hqioHDx5k3rx57N69mwEDBrBnzx6qVauW7mPGmq2cDYnDN9xIUJwFs1VFpyioD3UEUVAwqyo6jYKXo5YK7ga8PR1x0mn4aeF3nFi6FP+DNRn2+Tx8IoxYzGbQJv/z6FmiDP/76Q9cPL04v2sjqz4aybiNR3ErVASNArfPn6LrS0NYueAbFs6cyuBBL9G1a1d8fX05cOAAvXv3pnfv3ri4uPDhhx9y7do1zpw5g16v56WXXqJAgQKsWrWK3r17ExISQnBwMLdu3eJaWBzz/9ifFIfVYuHXtwdSvn4z3p96EkWjxf/imaTXt+Vrb1O2bmPioiNZNu5Vdi+cSdf3piXtf27XRl6dvwqdwYGFr3bm1B8radhnSIqv7e3zp3iuxyA+3neV3QtnsGL8MKo2b8+4jce4fvIvlr/3Kh+98RI1ixXgzTffJDw8nOvXrxMSEkL79u0pWrQor7/+OgsXLuTHH3/k0KFDScd+ePuAgAC8vb0ZNGgQpUqVAuDo0aP079+fe/fuYTKZeO2112jfvj379u3DaDRy4sSJdP/MCGFLMuIthBAiS0VFRfH999/j7e3N//73P1q0aMHNmzeZP39+upPugGgTG25EMO/8Aw4GxnA72ky8RcWiQrxVxWgl6V+89d/7LSq3o80cDIxh3vkHrL4awuL1W7h9+zZT3x9Dj3JuNIq7zv4fZ1FAMeKgVRLKRjQK9Tp0J38hL8xxMdRo2ZGCpcpy79JpSjrrqORuoGzZssx9fyQl3Bzp168ft2/f5pNPPsHBwYH27dtjMBjw9fVFVVUWLVrE7NmzKVCgAK6urkyYMIGVK1fSokULfvzxRwAOHDhAQEAAGoNjsqaCt8+fIjL4Lp3GTMbg5IzewZEydRoBULBUOSo2aonO4IBL/oI0GzSCG6f+Sva6Nek/FLdCRcjnnp+qLToQcOX8E1/j/MVK8Vz3l9BotXi370H4XX9aDxuHzuBApcat0OoTnpPFYmHlypV88cUXuLq6UqZMGd59911+++23FI/76PY///wz1apV49q1a0nbFCtWjDfffBOdToeTkxN6vZ5bt24REBCAo6NjqmrGhbBHMuIthBAiS1y9epXvvvuO3377jRYtWvDNN9/QunXrDNVtP7zQjEUlXZ2uE5eO94200O+rX4n3v0ZV79r4+/vTv3dPFi5cSNfaxQCIMlkJijUzc9qnLF20AKsxHp1eR0xUFE1cjAys5MHivxwoUrhw0vETJ4IWfuS+qKgogoODiYmJSdafWlXVpMmV7u7uFC1alAEDBtCwYUNmLFmTLPbwe/54FC2BVvf4n+/IkCA2fzmRm6ePEB8ThWq14uTmkWwb14L/lfHoHZ2ICL77xNfJxbNQ0tc6h4SVI109H9rfwZGoqEju37+PyWSidOnSSY+VLl0af3//FI/78PaHDh1iyZIlfPPNN3z00UdJ25QsWTLZPjNnzuTjjz+mQYMG5M+fn3fffZfXXnvtibELYa9kxFsIIUSmsVgsSX22mzdvTr58+Th9+jTr16+nTZs2GUq6fcLjWXgxFN8II+Z0Jt0PUzQadA5OuJWrwcILDxjxyReMHj2arl27Jm2TTwvzJn/I9zOnMWv650RGhBMRFkaNGjVIz8LPBQsWxMnJiQsXLhAWFkZYWBjh4eFERUX9F5eiMHbsWLZs2cKypb9hNP7XPcS9cHHC7vonlMM8Yue8aaAovP37n0w+eIO+UxekK8a00CgKBQsWTBqRTuTn50fx4sWTns/DEre/ePEigwcPZuHChYSHhydtn9I+RYoU4YcffiAgIIDvv/+ekSNH4uvrm4XPTIisIYm3EEKIDAsJCWHmzJmUL1+eadOmMWjQIG7dusXnn3+eVLebXqqqsudOFJtuRiaVk2QmCxBvhYbDxtPg5TeTktWIiAh69+7N3r17cXBwoGXLlgD88ssvnD//5BKNp9FoNAwdOpR33nmHoKAgIGGi6Y4dOx7btn79+sz+ciaq+t+kz5I16uJasDA75n6GMTYaU3wcN88cBSA+JgqHfM44urgRHhTIwSXz0hVjWug1Clqtlr59+zJx4kQiIyO5desWX3/9NYMGDQISRv7v3LmT9AEicfu+ffvSpEkTateunWz7lKxevZo7d+4AkD9/fhRFSfMCSkLYA/mpFUIIkW4nTpzg1VdfpUKFCly8eJHVq1dz9OhRXn75ZRwdHTN8fFVV2eYXxZmQOFJoTJKptAYHzoTEsc0viitXrtKoUSO8vLw4evQo7777Lo0bN6Zw4cKcO3eOpk2bpvs8M2bMoEKFCjRq1Ag3Nzfatm3LlStXUty2TEE39A7/vY4arZbB3ywl5PYNpr9Qh+mdanF25wYA2gx7D/9LZ5nSohy/vjWA6q27pDvG1PJw0AIwd+5cnJ2dKVeuHM2aNeOll15KKgVp3bo11atXp0iRIhQsWBCArl27EhwczLZt2x7bPiXHjx+nYcOGuLi40K1bN+bMmUO5cuWy/PkJkdkUNauvQwkhhMhV4uPjWb16NfPmzSMwMJCRI0fy+uuvJyVVmWnPnexJuh+mWC0cX7eEdqXc+N///pd9J35IXFwcx48f5+DBg1hbDkTn5GyTOJ7GQavwjrdnmvcLCQnB29ubZcuWJV1FECKvkMmVQgghUuX27dtJreFq1arFhAkT6Ny5M1qtNkvO5xMen+1JN4Cq0dKg92Bal3fPtnOGhYXx119/cfDgQQ4ePMiZM2eoVq0azZo1o7RiJjbbIkk9L8e0f99VVWXEiBH069dPkm6RJ0niLYQQ4olUVWXfvn3MmzeP/fv38/LLL/Pnn39SuXLlLD1vrNnK5ltR2Z50J7IqGjbfimJ4NT1OusyvygwICEhKsg8ePMj169epX78+zZs3Z/LkyTRq1AgXFxcAjt6L4WBgTFI3FnugU6CCuyHN+61cuZLz588nW1BIiLxESk2EEEI8JjIykiVLljB//nw0Gg2jR49m0KBBSclgVlt/PQLff1sG2or23+SyZ1m3DB1HVVWuXr2aLNEODw+nWbNmNG/enObNm1O3bl30en2K+8earcw7/8Cmr8WjtAqMrlEgTR9K/P39qVOnDtu2bUvWTlGIvERGvIUQQiS5dOkS8+fPZ/ny5bRp04bvvvuO559/PkNtANMqINqU1KfbliwqXAs3EhhtoqhzyklxSsxmM2fOnElKsg8dOoSTk1NSkv3BBx9QpUqVVHflcNJpqOhu4EqYMcMtFDODAlR0N6Qp6VZVlddee43Ro0dL0i3yNEm8hRAijzObzfzxxx/MmzePCxcuMGzYMM6ePUuJEiVsEs+xoFibJ92JLCocDYqlR9knJ94xMTEcPXo0Kck+cuQIpUqVonnz5vTp04dvvvkmwy0VG3g54RtutItyE40ChRy1XA6Nx6BV8HLS4aJ/ehK+cOFCQkNDGT9+fDZFKYR9klITIYTIo4KCgvjxxx9ZuHAhJUuWZPTo0fTu3RuDIe21u5klJ5RVPHjwgEOHDnHo0CEOHjzI2bNn8fb2ThrRbtKkCZ6eae/28Sz2UH4DCSPeiXm2goJZVdFpFLwctVRwN+Dt6ZhsNNzHx4fGjRtz6NAhqlSpYpughbATkngLIUQ6RJosBMdaMFpULKqKVlFSPfpnS6qqcuzYMebNm8fmzZvp3bs3o0aNok6dOrYODUjfRMIZnevS+5PZVGj4fJrPl5p9tai43rvCPxuXcfDgQfz8/GjUqFFSot2gQQPy5cuX5nOnVazZysKLocTbOvN+Cp2SsKJoRXcDDbyc8HJQaNGiBf379+ett96ydXhC2JyUmgghRCrEmq2cDYnDN9xIUJwFs1VFpyioD1Xdpmb0z1ZiY2NZtWoV8+fP58GDB4wcOZI5c+ZQoEABW4eWTGI5RUaS6cxmQcEvTkPlypV5/fXXqV27Njpd9v/5dNJp6FLahU03I23W7eVZEj8wXQkz4htuxBR4HdcCBRk9erRtAxPCTkjiLYQQTxEQbeJYUCw+4UYUSDYSa3nsgmHCbYtF5Xa0mcAYM38GxiSN/hVLwwS9zHLz5k0WLlzIzz//zHPPPcfkyZPp2LFjlvXezqigOIutQ0hRoXKVGdOjia3DoKK7A7U9TTbpb54WKgm/K5b8xWk/9SeuRZqo6O5g67CEsDlJvIUQIgWxZivb/aKSumuk5+L+o6N/5d0MdCzlkuUj4Farld27dzN//nwOHz7M4MGD+euvv6hQoUKWnjejIk0JVxJWfTSS8Lt3+HXMIDQaDa2HjqNQ2YrsmDuViKBAilauQY/xX+JVrtJjx7Barfz561yOr19KbGQ4FRo0p8eEr8jnnh+AU5t/Z9d3XxAfG03zgcOT7Ws2xrNtzqec27URgJrtutPp7U/QGRwwW1WiTFa7KCNqXdyZeIvKpbB4u06+AXQODphU2HQzktqeJloXd87WDjlC2Bvbv4MIIYSd8QmPZ+HFUHwjEsoeMlpRmzj65xthZOHFUHzC4zMjzMeEh4fz7bffUrVqVd5//326dOnCrVu3mDVrlt0n3QDBsRZ0ikK/qd/hXqQEg79ZypTDt6jW6gVWjv8fXcZN5aM9l6nctC2/jhmI2WR87Bh/r/yBi/u2MeyHjUzYcQ4nVw82Tv8AgHvXr7Dxi/fo+9l8Juw4R3R4KBFBAUn77vtpNrfPneStlft4a9V+7lw4zd4fvwZApygExZqz54V4BkVR6FTKhdqejtjB54BUMVnhTEgc2/yikKllIi/LIb+yQgiR9VRVZc+dKDbdjCTeomZ69wiLCvEWlU03I9lzJ/MSkPPnzzNixAjKlCnD33//zU8//cTp06cZOnQozs7OmXKO7GC0qMlq5hOd3bmBKs3bUrFRS7R6Pc1fGYU5Pg6/f44/tu3RNb/SftQE3AsXQ2dwoM3/3uP8nj+wmM2c3/0HVZq3p2y9JugMDrQf+SGK8t+fwTPb1tJ62Lu4FCiES/6CtBk2jtNbVgOgomK0o0mNiqLQpoQL3cq44qBV0OaAQWSTFS6FxbPXP9rWoQhhM1JqIoQQJCTd2/yisuXyfeLoX7xFpVMpl3RdejeZTGzYsIH58+fj4+PDsGHDuHjxIkWLFs2CiLPH4zXzCSKD7+JRpGTSbY1Gg3vh4oQHBT62bdjdOywdNzhZQq3RaIl6EExE8F3cCxdPut/g5Ew+j/xJtyOC75K/6H/n8Shaksjgu0DCVYsnxWdLFd0dGF5Nn+GyqOyS+LNfylUvNd8iT5LEWwghgL3+0dlaM5s4+uegTRi5TK27d++yaNEiFi1aRPny5Rk1ahQ9e/Z84nLjOYn2oQ8gD38YcS1UhHu+F5Nuq6pK+D1/3L0e/5DhXrgYvSfNoUztho895lqwMME3ribdNsbGEBMWmnTbrVARQgNvU7h8Qq/psLt3cC1UJCGeR+KzJ046DT3LuREYbeLoEyYC2xOTFTbfimJ4Nb1ddPwRIjvJT7wQIs/zCY+3SZeIxNG/Z9V8q6rK4cOHeemll6hatSr+/v5s3bqVAwcO0Ldv31yRdAMYtAoKCcmtS4FCPLhzCwDvdt25fHA3vkf/xGIycfC379AaHChVq/5jx2jYewg7539OaMBtAKJC73Nx/zYAarbtyuWDO7l5+ghmk5HdC2egqv9902t16Mm+H2cTFXqf6NAQ9v7wFXVe6AMktIo02Hk9R1FnPT3KujG6RgGaF81HSWddUhmKg0bBoElY+MYenoXZqrL9dpStwxAi28mItxAiT4s1W9l8K8pm3SGeNvoXExPDihUrmDdvHlFRUYwaNYrvvvsODw8P2wSbxQo5aTH/W87R8rW32TRzPNvmTKHVG2PpN/U7/pg5nvDgQIpVqsHgb5ai0z++wmaTl4ahovLzqBeJCL6LS4FCeLfrTrWWnShcvgrdPpzByonDMcbG0HzgcNy8iiXt2+qNscRFR/Jtv4Te4TXadqPVG2MBMKsqXk4540+mk05Dw8L5aFg4YVGfKJOVoFgzRovK/Tgzf92NtXk5ikWFa+FGAqNNFLVBm00hbEVWrhRC5Gn2sAy3VoEK7gZ6lnUD4Nq1ayxYsIDFixfTuHFjRo8eTbt27dBocv9FytlnQ+xyZUYHrcI73pm/DHx223AjgithRpsn3pAw8l7Zw0CPf3/uhcgLcv+7uBBCPEFAtClpQpotJY7+rd31J507d6ZRo0ZoNBqOHz/OH3/8QYcOHfJE0g3g5WifC/vYa1xpEWu24hNuH0k3JEwC9Qk3Emu282bkQmSinHHdTAghssCxoFibJ92JjGYLe64H0adPH9asWYOTk5OtQ7KJCu4GAmPMdjUxUPfvFYmc7mxInF3Udz9MISGuxLIYIXK7vDGEIoQQj7C30T+NVkvZhi3p//LgPJt0A3h7OtrN9ySRSkJcOZ1vuDHDH2hmdK6L79EDmRMQ/y4sFf74QkhC5FaSeAsh8iR7Hv3Ly5x0Giq6G+zme6MAFd0NuaLtXVCcxabnt5hTXvnT1nEJkZ1y/juJEEKkQ2aM/j3JoqHdOb7+tzTvJ6N/CRp4OdnNSoxaBRp65fwrEKXLlGH3L3OZ0/d5PmlSmrVT3iYyJIhfRvdjUrMy/Di8N7ERYQBcPLCd2X2aMaVFeRYN7U7Q9YTe56s+Gkn43Tv8OmYQk5qW5sDiuU/dHhJGyA8s/pY5fZ9nUtPSWMxmDiz+li861GRSszLM6tmIS38fIMpWbYWEyGZS4y2EyJOyYpRNVdUMLwMvo39QzFlPeTeDXXSbKe9uyBXt7iwqnN+zmdcWrMZqsTB3QGsCrpyj9yffUKhsJRa/OYDDK36gVsderBz/P17++lfK1WvKoWUL+XXMQN5Ze5h+U7/j5ukj9P5kNhUaJrRcDL517YnbJ7Z7/Gf7OgZ/uxxnjwI8uHOTv1f9xKiluxIWLArwQ6cmtDt0SaE9pBC5jSTeQog8J9JkwWxNntHN6FyXhr1f4fSW1UTcv0f1lp3oPuFLzPFxrPpoJHfOn8JiMVO6VgN6TvwK98IJ/Z8XDe1O6VoNuHHyMP6Xz1G9dWdunj7C7XMn2fzVR9Tt2p9uH0xny6yPObNtLWZjHB5FS9L/8+8pUqHqY7GZrSpRJisu+rx9QbJjKRcWXgzFYsPMW6dR6FQy9auK2jNVVWnW/w1cPb0AKFOnIS4FClGsijcA1Vu/wLVjB1E0Gqo0b0vFRi0BaP7KKP5asQi/f45T7rmmjx337M4Nz9y+Sf+heBQpDoCi0WA2Ggm6fgVnD0/yFyuFQQNGe5nlLEQWk8RbCJHnBMda0CkKlkdGp89sW8ur83/H4JSPJWMGsu/Hr2k6cDjPdR/ASzN+RLVaWTPlLTbN+JCXv16StN/prat5de5KCpauAKpKRFAgdV7oQ/2eLwNw9a+93Dj1N+9uOIKjixvBN3xwdE25d7FOUWT0j4Ra7y6lXdh0M9ImixvpNdCltAuOuaC2O5GrZ6Gkr/UOTrgUePi2I/Ex0UQG38WjSMmk+zUaDe6FixMeFJjiMVOzvfu/STdAwVLl6DJuKru/n8m9a1eo1LgV3cd9hiWXfMAR4llyzzuKEEKkktGioqbQO6Nxv9fxKFKcfO75afn6O/yzYz3OHgWo0aYrBqd8ODi70Or1d7h+8q9k+9Xr2p/C5aug1enQprB8u1anJz4miuAbPqiqile5SrgVKpJibCqqjP79q6K7A7U9HcnuwX+9Bmp7OlLR3SF7T2wHXAsVIezu7aTbqqoSfs8fd6+iACiKkqbtU9qndqfeDP95Cx9sOQ2KwtY5n6JV7KSoX4gsJom3ECLPeXSkO1Fi+QhA/qIliQi+izE2hvVT32XGC3WY3Lwsi97oRlxkOFaL5aH9iqd0uCTlGzSncb/X2Tj9A6a1rcq6z8YSFxWZ4rbqU+LLi1oXd6aqh0O2Jd96DVTzcKB1cefsOWE2URQFJRW9Yrzbdefywd34Hv0Ti8nEwd++Q2twoFSt+gC4FCjEgzu3Ur39o4Jv+nLt2EHMxnh0Dg7oHRxRFA0Ge5lNK0QWk1ITIUSe86TRtfB7AUlfh929g1uhIhxcuoDgW76MXLId14KFCbhyjrkDWiebRPno4R4d4QNoOmAYTQcMI+pBMMs/eIM/l8yj/cjxj22nPCW+vEhRFDqVcsEUG83ZUCN6x6xbaCVxpLt1cecUv4c5mVZJ3Qe6QmUq0G/qd/wxczzhwYEUq1SDwd8sTZoo2fK1t9k0czzb5kyh1RtjafHKqKdu/yizMZ7tcz8j6MZVtDo9pbzr0+fjr/FyknRE5A3yky6EyHMM2sTRv+SJyN+//0yV5u3ROzqx76fZeLfrjjE6Cr2DI46u7sSEh7Jn0VfPPP6jo4K3L5xGtVopXsUbg1M+dAYHFCXlIVwFRUb/HmGxWPj6f/1oP/ANHBq9gNmqZmq3E62SMJGyS2mXXFtecuvmTWafDSH+3xeu37QFyR6v3/PlpDkJ1Vt3pnrrzikep1rLTlRr2SnZfU/b/oMtp5LdLlqpOqN+25nsPgetkucnE4u8QxJvIUSeU8hJizmF0b/aHXvx88gXiQi+S9WWHWn1xljioiJYOeF/TG1dGddCRWg+aCQX92196vGbDBjG6kmjObJmMXU6v0i15zuxZdbHPPC/ic7BkYqNW9Fi8KgU9zWrqoz+PWLKlCkYDAY+fP0ljKrCdr8orv3bajAj+XfC1YWEloEdS7rkikVynsbLUcvt6JQXsbElL0etrUMQItsoakabzgohRA708OgfJLQTfLg/sa04aBXe8fa0aQz2ZPfu3QwePJhTp05RuHDhpPsDo00cDYrFJ9yIAmlaDEmnJCTsFd0NNPRyyhV9ulPj6L0YDgbGZNnCUemhU6B50Xw0LJx1JURC2BMZVhFC5Eky+mf/AgMDeeWVV1i6dGmypBugqLOeHmX1xJqtnA2JwzfcSFBcQn92naKQ2LdGIaF8x6yq6DQKXo5aKrgb8PZ0zPUj3I/y9nTkz8AYW4eRjEpCXELkFZJ4CyHypHKuOu5ExqNq7CfR1SlQwT1v9+9OZLFYGDRoEMOGDaN169ZP3M5Jp6Fh4f9GTKNMCasgGi0qFlVFqyTUzHs56fJ8HbGTTkNFdwNXwowZKtHJLAoJVx3y2gcgkbdJ4i2EyFP8/f358ccf+W3l77z66y60/ybej04CswUZ/fvPtGnTsFqtfPzxx2naz0WvyfOLDz1NAy8nfMONdlFuolWgoZeTrcMQIlvJx0whRK5ntVrZvXs3vXv3pmbNmgQFBbH+95VUL+SSis7G2UNG//6zf/9+FixYwLJly9Bq7eeKRG5QzFlPeTcDtm6ckzipNa/U1wuRSEa8hRC51oMHD/j1119ZsGABTk5OjBgxgsWLF+Pq6gqAZ7RJRv/sTFBQEIMGDeLXX3+lWLFiz95BpFnHUi4svBiKxYYrpOo0Cp1kmXiRSSJNFoJjLTmixEwSbyFErqKqKsePH2fBggVs2LCBLl26sHjxYho3bvzYoiiJo3++/7amsxUZ/UtgtVp5+eWXGTx4MO3bt7d1OLmWk05Dl9IubLoZicma/efXa6BLaRcc5eqOSKenTapOZK+TqqWdoBAiV4iOjmbFihUsWLCAsLAwhg8fzquvvkrBggWful+s2crCi6HJWgtmNwetwohq+fN8IvLFF1+wdetW9u3bh04n40JZbc+dKM6ExGVr8p24OmibEjLaLdIuINrEsUxoI9rAy4liNhrokMRbCJGjXbp0KakeuFmzZowYMYL27duj0aQ+ifUJj7fp6F+3Mq65dsXE1Dp06BB9+vThxIkTlChRwtbh5AmqqrLNL4pLYfHZ8rOv10A1Dwc6lnJ57OqTEE8Ta7Zm/sJZbgY6lsr+hbMk8RZC5DhGo5ENGzawYMECLl++zBtvvMHQoUMpVapUuo8po3+2c//+ferWrcvChQt54YUXbB1OnqKqKnv9o7P8Zz/xZ711cWdJukWa+ITHs/lWFGarmqklgVolYa5Bl9Iu2TrwIYm3ECLH8PPzY9GiRfz0009UqVKFkSNH0qNHD/T6jF8ylNE/27BarXTt2pXq1aszc+ZMW4eTZ+W25EbkfLn1Q6Ek3kLkcjlptndKrFYrO3fu5LvvvuPw4cMMGjSI4cOHU7Vq1Uw/V259o7dnX375JevXr+fAgQOZ8gFKpF+WXM53N9CxZPZfzhc5my0GQqp6ONApGwZCJPEWIpfJybO9HxYcHMwvv/zC999/T/78+RkxYgT9+/fH2dk5y8/tEx7P5puRRMfFozNk3iidjP4l9/fff9OjRw+OHTtG6dKlbR2O+FdgtImjmTCBraGXU57v1CPSJzeX/kniLUQukRtme6uqyl9//cWCBQvYsmULPXr0YOTIkdSvXz/bY5m7cBE38pWgmHcDGf3LAg8ePKBu3brMmTOH7t272zockYLED/Fr/zxOwXKVUbS6pA/xKgk/1zHRMSg6HfkcHez2Q7zIWXL7ZHdJvIUgZ5dj5IbZ3pGRkSxbtozvvvuO+Ph4hg8fzuDBgylQoEC2nP9R4eHhVK5cmZ07d1KofFUZ/ctkqqrSo0cPypUrx+zZs20djniG6dOn4+/vzxdfzyEo1pzsfXLlst/45dtZ3Lp6ydZhilzAXtq7Dq+WP8v+/kniLfKk3FKOkdMnRJ07d44FCxawcuVKWrduzYgRI2jdurXN654nTJhAYGAgv/zyS9J9T/uZSRz9ywk/M/bgm2++Yfny5Rw6dAiDwWDrcMQznD59mn79+nH16tXHHtu3bx9t27bFbDbb/PdW5Hzrr0fYxYJmFdwN9CzrliXHl8Rb5Cm5oRwDcvYkwPj4eNasWcOCBQu4efMmw4YN44033rCb5cFv375N7dq1+eeff57aTzrKZH1s9C+nXCWxpePHj9O5c2eOHj1K2bJlbR2OSAWr1UqxYsX466+/KFeuXLLHYmJicHZ2xs/Pj5IlS9ooQpEbBESbWO4Tnqa/y1lFp8DAiu5ZcpVSlgYTeUJmlGMkvhlcCTPiG260WfP97JztbbLCmZA44i1qhmd7X79+ne+//57FixdTq1Yt3n33Xbp27Wp3KxR+9NFHDB8+/JmLuLjoNbjoZbQ2LcLCwujXrx8LFiyQpDsH0Wg0tG/fnh07djBixIhkj+XLlw9HR0f27t3L4MGDbRShyA2OBcXadKT7YRYVjgbF0qNs5ifeMiwjcj2f8HgWXgzFN8KIOYM10JCwv1kF3wgjCy+G4hMenxlhptpe/+hsa7EECcn3pbB49vpHp3lfi8XCH3/8wQsvvEDDhg2xWCwcOnSInTt30rNnT7tLus+cOcOOHTv44IMPbB1KrqOqKm+88QYvvPACvXv3tnU4Io06dOjAjh07UnzMy8uLQ4cOZXNEIjeJNVvxCTdm+O9zZlEBn3AjsebM/0MribfItVRVZc+dKDbdjCTekrk10JDwiTjeorLpZiR77kSRHVVbPuHx2d5iCf4b+U7th4y7d+8ybdo0ypUrx7Rp0+jfvz9+fn589dVXVKxYMYujTR9VVXnvvff45JNPcHPLmtq+vOy7777j+vXrfPXVV7YORaRDu3bt2L9/PyaT6bHHKlSowLlz52wQlchJrly5Qu3atXF1dUWj0fDZZ58lPXY2JI7sniEwqWlpHty5+cTHFRLiymySeItcKbEcIzuS1MSkdJtf1ibfsWYrm29F2aTFEiQ8z823op44AqCqKgcOHKBfv35UrVqVW7dusWHDBo4cOcIrr7yCk5NTNkecNjt27MDPz4+hQ4faOpRc59SpU0yZMoXff/8dR0dHW4cj0sHLy4vy5cvz999/P/ZY7dq1uXnzZvYHJXKUmTNn0qpVKyIjI7FarXz88cdJj/mGG7O9tnvK4VsUKFHmiY+b1YS4Mpsk3iJXyknlGKm13S+he4ktma0q229HJbsvPDycuXPnUqNGDUaOHEnz5s25efMmixYtok6dOjaKNG0sFgvvvfceM2bMkNUTM1lERAT9+vVj7ty5VKhQwdbhiAx4UrlJixYtCAkJsUFEIie5desW1atXT/GxoDhLNkeTOlkRlyTeItfJKeUYaREQbUqaGGpLFhWuhRsJjDZx6tQphg4dSpkyZTh8+DALFizg/PnzjB49Gnd3d9sGmka//vorHh4espBLJlNVlWHDhtGmTRv69etn63BEBnXs2DHFxLt58+aYzWaCgoJsEJXICVq3bs2+ffsYPXo0Li4uvPTSS3z00UcAbN29hyntanLwt++Y2qYqn7evzomNy5P2vXxwJ98OaMXk5mWZ3qkWuxfOTHosNMCP8XULcfKPlUx/oTafta7Mvh+/TnrcarGw76fZfNmtPpOalWHuS20Iu+sPwPi6hbjvdx2A1ZNGs/GL91n81gAmNSvD/Fc6EHL7BmarSpTJys6dO6lcuTLu7u6MHDmS559/nh9//DFdr4Uk3iJXsfdyjPSyp9neZouVacv+oGfPnpQtW5bLly+zcuVKWrRokSP7+EZHR/PJJ5/w1Vdf5cj47dkPP/zApUuXZJGcXKJx48b4+vo+lmAXKFAAvV7Pn3/+aaPIhL3bu3cvzZs3Z968eURFRSXr3x8WbyUyJIi4qAjGbz9Lr0++YdOMD4mNCAPA4ORM30/n88mBawyes5yjaxZzYd/WZMe/deYo7677mzcWrmXPD7MIup7Qc/7Q0gX8s2M9Q75dweSDN+gzeQ56x5TLHv/ZuYE2w97jk/2+eJYsy875n6NTFC7fuUufPn344osvCAkJoXLlyvz111/pfi0k8Ra5ir2WY2SEvc32RqOh5HPNuHDVlwkTJlC4cGFbR5QhX3/9NU2bNqVhw4a2DiVXOXv2LBMnTuT333+3+/p+kTp6vZ6WLVuya9euxx4rWLAgBw8etEFUIqczW1U0Oj2th45Dq9dTpVk7DE7OBN/0BaDcc00pUrEaGo2GopWq492hJzdOJk982wx7D72jE0Ur1aBopeoE+lwA4PiGpbQfOZ5CZSqgKApFK9XA2SPlFZGrt3qBkjXqotXpqN2pN4FXz6Oisnv7NqpXr06vXr3Q6XS89dZbFClSJN3P1756eQmRAfZYjpEZzfdtMdv7WbQaDRfCTDQsnLProe/du8c333zD8ePHbR1KrhIVFUXfvn2ZPXs2lStXtnU4IhMl1nkPHDgw2f1ly5blzJkztglK5GgWFZzd86N9qL2s3tEJY2zCnCm/cyfZMfcz7vlexmw2YjEaqdG2W7JjuHh6Jd83JmHwK/xewFMnUD7M9aFjGBzzER8TjQrcCwxItjiUoijPXOfhaWTEW+Qa9lSOkdh8PzPYYrb3s2TVbO/sNnnyZAYPHvzYanwi/VRVZcSIETRt2pRBgwbZOhyRyTp06MDOnTuxWpOX09WqVYtr167ZKCqRk2mfMbK0auJwqrboyAfbzjD5z+s06D0YUtlBzL1wsae2DHwWBShcpCh37txJuk9V1WS300oSb5Er2Fs5RmY237flbG+L2fzEx+x1FnpqXb58mTVr1iRN8BGZY/HixZw6dYq5c+faOhSRBcqVK4erqytnz55Ndn+zZs0IDg62UVQiJ9Npnp55x0dH4eTugd7BkdvnT/HP9nWpPnb9HoPY9d107vtdQ1VVAq9eIDrsQar3V1Bo2+kFzp07x4YNGzCbzcyfP5+7d++m+hiPksRb5AoplWOc3LSCha91ztBxT29dw08jX0zXvpnRfD/SZHlizfqMznX5c8l85vR9nsktyrH8gzcwxSec79KfO/m2f0umtCjPgiEvEHj1QtJ++3+ZkzTDe3bvplzYuyXpsZObVrDw1RfY/NVHfNqqEnu+n/nYeRMlzvbOqT744AM++OADChRIud5PpN2FCxd4//33+f3338mXL5+twxFZJKW2gs2bN8dkMhEaGmqjqERO5eHw9FS0+/gZ7F4wg0nNyrBn0VfUbNftqds/rNmgEdRs342fR/ZlcvOyrP10DOb41P9dNqsqVUoUYfXq1bz//vt4enpy8eJFnnvuORwcHFJ9nIcpanYstydEFlt2NYzb0clHZ09uWsHxDUsZ/vOWJ+yV9Uo66xhYySPd+1+PMLLxRiTxKSTfMzrXxaVAQV7+egk6gwMLX+1M05eGUbJGXX4e1Y9XvllKiWq1Ob11NbsXzuTd9X+jMzhwbtdGStduiIunF+d3bWTNlDGM23gUt0JFOLlpBes+e4fO735Gwz6vYjWbnjgD3EGj0L2sK+XcDCk+bs8OHDjAkCFDuHTpkizokkmio6Np0KAB48aN49VXX7V1OCILbd68mVmzZrFv376k+1RVRafTsWXLFjp27GjD6ERONPtsCPH2Uiv6EAetwjvensnus1qtlChRgmXLltGqVas0H1NGvEWuYK9lDxmNy2hRUZ9SQNOk/1DcChUhn3t+qrboQMCV8xxb9xsNer9CqZr10Gi11OvaH53BgN+5EwDUbNcdt0JF0Gg0eHfoScFSZblz4XTSMV0LFaFJ/6FodbonJt0AKipGO3yjfBar1cq4ceOYNm2aJN2Z6M0336RevXoMGTLE1qGILNayZUtOnDhBVNR/3ZsURaFAgQLs37/fdoGJHMvLUWvrEFKUGNeOHTsICwsjPj6ezz//HFVVadSoUbqOKV1NRI4XabJwP+AOG2dO5ObpI1hVK7U69KREtdrJtrv1zzH++HIi9/2uUbBUebq+N43StRoACaPje36YRXTofZw9PGk3cjx1Xujz2Kj5+LqF6DHhSw7+9h3RoSHU7tSbbh/OQFEUrBYL2+ZM4dTmVTjkc6HZoBH8MXM8r8bE4+H09FFhVVWJiYkhKiqK6OjopP9vmfSYnEuAJuVfVdeCyWdyRwTfJSYilFObV/H3yv+a+1vMJiKC7wFwavMqDi1dQGjAbQCMsdFEh/236pxH4WKpet1VwJIDL5itWrUKVVXp37+/rUPJNX777Tf++usvTpw4Ib3Q8wAXFxfq16/Pvn376Nq1a9L9pUuX5tSpUzaMTORUFdwNBMaY7aqRgE5JiAvg77//5qWXXsJoNFKtWjU2bNiQ7japkniLHO9ulJFf3h5Iueea8f7UkygaLf4XzxBy+0bSNjHhoSx+6yW6vvc5tTr24tzuTSx+6yXGbTyG3sGBP76cwKjfdlGoTAUigu8mNe5PyaU/dzJq6S7ioyKZN7AtVVp0oHLTNhxf/xtXD+/hrRX7MDjlY9n7rwPwyczZhPqeJyoq6rHEOvH/mJgYHB0dcXFxwdnZOen/ck3aUO3F4egcU/+r6lG4OK1eG0OrN8Y+9lhowG3WfTaWNxaupZR3fTRaLd/2b5l8hngqEycF0OawJCs+Pp4JEybwyy+/oNHIBb/McPnyZcaOHcuePXtwcXGxdTgimyTWeT+ceNeoUYMDBw7YMCqRU3l7OvJnYIytw0hGJSEuSOiANXny5Ew5riTeIsc7cewYEcF36TRmclIf0DJ1GiVLvC8f3EXBUuWo26UvALU79uKvFT9w+c8d1GzXDUXRcO/aJTyKFMetUBHcCj25OX7LV9/CydUdJ1d3ytVvSuDV81Ru2oazOzfSZMAw3P8dMW756ltcO/YnZStW4rmyRZMl1Y8m2Pny5UOrffxS29NqvJ+kfq+XWfruYMo3fJ6SNepiiovh+onDlK3bBGNcDIqi4Jy/YMJrt3E5965dTvWxH6agYHhWHyg7M2/ePGrWrEnLli1tHUquEBsbS9++fZk2bRre3t62Dkdkow4dOvDii8knnjdp0oRVq1bZKCKRkznpNBTRxHPbpLeLQREFqOhuwEmX+bFI4i1yvAD/2+QvWiJZ8/1HRd6/i0fR5A3v8xctQURQIAYnZwZM/4GDv33H2iljKF27AS+88yleZSumeKzHG/VHJ53Dvch/ZRruhYsD0LptO2p5pW8ksJCTFnMayzlKVKtNz4++ZtOMDwnxu47e0ZHStRtStm4TCperTLNBI1gwpBOKRkOdzn2Tym3SyqyqeDnlnLeQBw8eMH36dFnWOhONGTOG6tWrM3ToUFuHIrKZt7c3kZGRXLt2jfLlywPQokUL4uPjiYiIwM3NzcYRipwiMDCQKVOmcPj8VQZ+swx7mH6oVaChV9asuJtz/moK8QTFipckLNAfi9n8xOTbtWARwgKTN7wPu+tPpSatAajUpDWVmrTGFBfLzu++YP1n7/C/nzenKQ7XgoWJuBeYdDv8nj+QsXIMV70WnUbBksIkxg+2JK+lbDv8/aSvKzdtQ+WmbVI8ZofRE+kwemKKj9XrNoB63QakKjadRsFFb5s3yEiTheBYC0aLikVV0SoJo+9eTronxjRt2jR69+5N1apVszna3GnlypXs3buXkydPSl13HqTRaJLKTUaOHAlAhQoVADhz5gwtWrSwZXgiB4iIiOCrr75i/vz5vPrqqxzYtIYDYTp8bbwCtVaB8u6GTFl5OiWSeIsc77kGDXAtVJgdcz+j7fD3E2q8L/2TbJvKzdryx8zxnNm2lprtunNhzx8EXb9ClebtiQwJ4va5k1Ro2AKdgxMGJ2eUdFzqqtmuO4dXLKJy83YYnPJxYHHCAiIZLcfwctQ+1irRHmTnLPRYs5WzIXH4hhsJikvoba5TlGQdXxQUzKqKTqPg5ailgrsBb09HnHQarl+/zuLFi7lw4cJTziJSy8fHhzfffJOdO3fKyGYe1qFDB1atWpWUeOt0Otzc3Ni/f78k3uKJjEYj33//PdOmTaN9+/acOnWK0qVLA9DRzcrCi6EpDjZlF51GoVPJrJuvIom3yPGKuBgY8s1SNs6cwPQX6qAoCrU69qJ4lf9qTp09CjB4zjL++HIiG754D88SZRk8ZxnO+T2JCL7LoaUL+P2TUSgoFK1cg+4TvkxzHPV7vsz9W9eY0+95HJ1dadJ/KNdPHqaoS/qa7Cey99neWSkg2sSxoFh8wo0okOw1eLyjSsJti0XldrSZwBgzfwbGUNHdwKa53/P2229TpMiTa/dF6sTFxdGvXz8mT55MnTp1bB2OsKF27doxYsQIjEYjBkPC+0GJEiU4fvy4jSMT9shqtbJ69WomTpxIxYoV2bFjB7Vq1Uq2jZNOQ5fSLmy6GYkt1mfTa6BLaRccs6C2O5EsoCNyBXtsvn/l8G42fv4eD/5t25desWYr884/sOmlt0dpFRhdo0CWTDyBhOe83S+Ka/9ecszQU1dVTPFxVCnoTJeyHlkWc14xevRo7t27x++//y4lJoLnnnuOWbNm8fzzzwPQt29fzpw5w9WrV20cmbAne/fu5YMPPkBVVWbOnEnr1q2fuv2eO1GcCYnL1uRbr4Hano60KZG13ZnkL5DIFeyh+b4pLpbLh3ZhMZsJDwpkz/df0aBdlwwf10mnoaK7AXtJcaxWC+f3bmH8uLFcv34904/vEx7Pwouh+EYYMWc06QZQFPSOTtyMTriE6RMenxlh5klr1qxh27Zt/Pjjj5J0C+Dx5eMbNWpEQECADSMS9uTs2bN06tSJoUOHMm7cOI4dO/bMpBugdXFnqno4kF3TiPQaqObhQOvizll+Lkm8Ra5Qwd2AzsZ5gKqq7F44k09bVmDugNYULleR9z+elCnHbuDlhL107jNotbzTow0ODg40aNCAXr16cejQITJ68UxVVfbciWLTzUjiLWqmj/BbVIi3qGy6GcmeO1EZjjevuX79OiNHjmTVqlW4u7vbOhxhJx5NvJs3b05MTAzR0dE2jErY2q1btxg8eDDt27fnhRde4NKlS/Tr1y/VrQIVRaFTKRdqezpmefKdONLdsZRLtgwoSKmJyBXyQjnG+usRdjHbu4K7gZ5lEybURUVF8euvv/LNN9/g4eHBO++8w4svvohen7bZ4Kqqss0vikth8dlyaVGvgaoeDnTKpjfanM5oNNK0aVMGDRrE22+/betwhB0xmUwUKlSIK1euULhwYWJiYnBxceHvv/+mYcOGtg5PZLMHDx7w+eef88svvzBq1CjGjRuX4QnYPuHxbL4VhdmauQMyWiVhImWX0i5UdM/YXKy0kBFvkSvYWzlGVjTf71jKBZ3Gts/w0dneLi4ujBo1iitXrvDxxx/zww8/ULZsWWbMmEFoaGiqj7vXPzrbkm4AkxUuhcWz119G5VLjgw8+oHjx4rz11lu2DkXYGb1eT6tWrdi1axcA+fLlw8nJSfrl5zGxsbHMmDGDypUrExUVxfnz5/n0008zpetRRXcHhlfLTwW3hCvbGf0rqPBfg4Dh1fJna9INkniLXMSeyjGyovl+4mxvG7XOfupsb41GQ7du3di3bx9//PEHFy9epHz58owaNeqZk6x8wuOzfRINJCTfZ0LipOb7GTZu3Mj69ev5+eef5eqASNGj5SbFihXj6NGjNoxIZBeLxcIvv/xC5cqVOXbsGIcOHWLhwoUULVo0U8/jpNPQs5wbAyu6U9nDkDBanca3I52S8Le5soeBgRXd6VnWzSaT7aXUROQq9lCOoUGloodDUjlGZssps70DAwOZP38+ixYtomHDhowdO5aWLVsmS95izQkTHm3ZkcZBqzC8Wn7pdpKCW7du0aBBAzZu3EijRo1sHY6wUzdu3KBRo0YEBgai0Wjo2rUr165d4+LFi7YOTWQRVVXZunUrH374IR4eHsycOZPGjRtn2/mftraDSsKo9tPWdrAlSbxFrmIPiVxcZDhFfQ8y7NXBWTJCqKoqc/f9Q7hTAfSO+TL9+I9KnO2d3oknMTExLF26lG+++QaDwcA777xD//79cXBwsIsPSo/WrYsEJpOJFi1a0Lt3b8aNG2frcISdq1SpEqtWraJOnTp8+umnfPXVV0RERNg6LJEFjh49yvvvv8/9+/eZPn06Xbp0sfnVsCiTlaBYc5pWM7YV+4pGiAyyh3KM5wvAgm+/oU+fPjx48CDTz7F7926mDehA5Xwq+ix+r8uM2d758uVj2LBhnD9/nunTp7Ns2TLKlCnD1LmLkvp025JFhWvhRgKjTbYNxM5MnDgRT09Pxo4da+tQRA7wcLlJixYtiIqKIjY21sZRiczk4+PDiy++SO/evXnllVf4559/6Nq1q82TbgAXvYZybgaq5HegegFHquR3oJybwe6SbpDEW+RCFd0dsqUF0aMSk9RWNcpz5MgRSpUqRe3atdm/f3+mnePUqVMMHDiQtWvX0rdWafLfPkN8VCSZ3cVcqySUYHQr40qbEpnT+UOj0dCxY0d27tzJrl27iC1cHqPZkgnRZpxFhaNBkiQk2rJlCytXrmTx4sWpbv8l8raOHTsmJd41a9ZEURSuXLli46hEZrh37x4jR46kSZMm1KtXj6tXr/L666+j08ni5+kh76giV7J1831HR0dmz57N999/z0svvcTEiRMxmTI2onr9+nW6du3KwoULadasGffu3WP8GwNp5/iAMq76TPllzq7Z3uWrVMOjUi00WtsvfAQJi/T4hBuJNdtgjWI7c+fOHV5//XWWL19OwYIFbR2OyCFatmzJiRMniIyMxNPTE71ez19//WXrsEQGREZGMnnyZKpVq4ajoyOXL1/mww8/JF++rC9xzM0k8Ra5kr003+/UqROnT5/m1KlTNGvWjGvXrqXrHMHBwXTs2JGPPvqIXr16EWOyMOXXdbz523aOOpThZpQJrSb9bZaye7b32ZC4NMUaFniHSU1LY7Vk/gj5pKaleXDnJsq/ceVlZrOZAQMG8Pbbb9OsWTNbhyNyEGdnZxo0aMC+ffsAKFy4sCTeOZTJZGL+/PlUqlQJX19fTp48yddff42np6etQ8sVZHKlyPXsofm+1Wpl7ty5TJ06la+//pqXX3451eeJjo6mVatWtG/fnpHjJ3EsKJYrD2IxmUzoHBzTHHfiqLYVbDbbe9nVMG5Hm9O9/6Kh3anzQh/q90z965gaJZ11DKzkkanHzEkmTJjAqVOn2Lp1q5SYiDSbOXMmt27dYv78+bRt25b79+9z5swZW4clUklVVdasWcOECRMoV64c06dPp06dOrYOK9eRAh2R6yU039ez3S8qaTJfRvJvhYSku7y7gY4lXVKVrGo0Gt5++21atmzJgAED2LFjB999990zFxcwmUz07dsX73r1qfva+yz3CcesqqDRonNIX5mGSkLSXcZVT5fSrjZprRQUZx+13Y+y17iyw44dO1iyZAmnTp2SpFukS4cOHejduzcAdevW5YcffrBxRPYr0mQhONZiN1049u/fz/vvv4/ZbGbBggW0bds222PIK2TEW+QpgdEmjgbF4hNuRAHMafjpN8bF4uTkREV3Aw29nCjqnLZl0RPFxMTw7rvvsmPHDpYvX/7E/siqqvLaa69hLlCcuq+MwaySK5bLjTRZWHghFIsKMzrXpXHf1zi9ZTUhd25Sq0MP2o+eyJpJb3LzzFFK1qjHwJk/ERcVwcwu9Zh6LJDdC2dwYPG3aHV6NFotdbv2p9sH09ky62PObFuL2RiHR9GS9P/8e4pUqPrY6PjJTSs4vmEpw3/eAsD4uoV4d8NRCpYqh1aBEdUL2OVM+KwUEBBAvXr1WLFiBS1btrR1OCKHUlWVYsWKcejQIS5dukS3bt2Ii4vDYDDYOjSbe1rf6US26Dt97tw5PvzwQy5dusS0adPo16+ffPDOYjLiLfKUos56epTVP/VNMCIyCjdXl8feBHdt/J2u9arQo3bnDMWQL18+FixYwIYNG+jevTtvvvkm48ePR/vIRMOPP/4YTdXG1Grfi/gsmPNnUcFiUdl0M5LaniZaF3fOlrZQwbEWdIqC5d/P/Of3bOa1BauxWizMHdCagCvn6P3JNxQqW4nFbw7g8IofqNe1X9L+HUZP5NY/x5Il01f/2suNU3/z7oYjOLq4EXzDB0fXtPfl1ikKQbFmXPR5J1GwWCwMHDiQESNGSNItMkRRFNq3b8+OHTvo0qULGo0GHx8fqlevbuvQbCYg2sSxJwz2WB4b90y4bbGo3I42Exhj5s/AGCq6G2jg5USxdA72pMTPz49JkyaxdetWJkyYwLp163BwyN6l0/MqSbxFnuSk09CwcD4aFk6YnZ3YfD/WaOaVISNZ9ttvj132C/dyYv2qFfTumrHEO1GPHj2oX78+L7/8Mrt27WLp0qWULFkSgPnffYe/Rzmqt+2aplH59EhcOj3eotIpA/26U8toUZON8jTu/waunl4AlKnTEJcChShWxRuA6q1f4Nqxg/BQ4p0SrU5PfEwUwTd8KFGjLl7lKqUrNhUVo60bi2ezTz/9FI1Gw8SJE20disgFOnbsyIoVKxgxYgQAJ06cyJOJd6zZmuHyxsT3/ithRnzDjZR3M9CxVOrKG58kNDSUL774gp9++okRI0Zw9epV3N3d0308kXZyPUEI/mu+X7WAI6e3rkmx+X6vXr3YsmULcXGZ1/miePHi7Nq1i06dOvHcc8+xZs0a1q1bx4G7cVRr0xWzmj0LE5iscCksnr3+0Vl+rkdHeVw9CyV9rXdwwqXAw7cdiY95dkzlGzSncb/X2Tj9A6a1rcq6z8YSFxWZ5tjUFOLLzfbs2cMPP/zAsmXLHrviIkR6tGvXjgMHDmAymShUqBAHDx60dUjZzic8noUXQ/GNMGLO4JwiSNjfrIJvhJGFF0PxCY9P8zHi4uL46quvqFy5MmFhYZw7d46pU6dK0m0DkngL8RBFUVBVlZSmPhQpUgRvb2927tyZqefUarV8+OGH/PHHH4wZM4YpCxbzXI9BWNLdHDB9Eke+0/OmnhbaTBhRT2lUvumAYby5fA/vrDnEfb9r/LlkHgAGp3wY4/5bHCcyJOjJx82k+HKCe/fu8corr7BkyRKKFCli63BELlGwYEEqVarEX3/9Rfny5Tl79qytQ8o2qqqy504Um25GEm/J3C5akFAeGP9veeCeO1Ep/p16bB+LhV9//ZXKlStz+PBhDhw4wKJFiyhWrFjmBidSTRJvIR6iKAoajQbLE/pFv/jii6xevTpLzu3s7IxicKTP5G+xKrb51TRZYfOtqCxdSMagVVAy+KHCpUAhHty5lXT79oXT+J07icVkwuCUD53BAeXf17BopRpc2LsFY2wM9/2uc2LDsiceVyGhs0BuZ7FYGDRoEK+99pp0LxCZLnH5+Fq1anHjxg1bh5MtVFVlm18UZ0LiMGXxOlyJgyTb/J6cfKuqytatW6lTpw6LFi1i+fLlrF+/nqpVq2ZtcOKZJPEW4hFarfaJiXfv3r3ZvHkz8fGZOyp8+/ZtOnXqxLhfNuDo7JKpx04rs1Vl++2oLDt+ISdtQkvEDGgyYBjn9vzBlOcrsGnmeOKjIln/2Vg+bVmBGZ3rks+jAC0GjwKg2cDhaPUGprWrxppJo6ndqc8Tj2tWVbyccv/Uly+++AKj0cikSZNsHYrIhRIT72bNmvHgwQPCYo1cjzByOTSeCw/iuBwaz/UII1FZnaFmo73+0VwKi8/ypDvR08oDjx8/TuvWrXn33Xf59NNPOXToEE2bNs2ewMQzSTtBIR7h5OTEgwcPcHJySvHxFi1a8P7779OlS5dMOV9oaCjNmzdn8FvjUBp0yfLJlKmhU2BgRfd0t0x8ltlnQ4i3w0mMDlqFd7xz9+psBw4coH///pw4cYLixYvbOhyRC0XExtPn7Qn0GPYW92LMOLu6oddobN46L6v4hMez6WZktiXdD9NroFsZVyq6O+Dr68vEiRM5dOgQkydP5tVXX0Wny/0DCTlNzvsJFyKLPa3UBKBPnz6ZVm4SFxdH9+7dad++PRXb9cr0msD0sqhwNCj22Rumk5ejfU7ks9e4MktwcDADBw7kl19+kaRbZLqAaBMbbkTw/ZVInn99LBFaZ5xc3bGiEG9VMVpJ+hf/70rC8f+2zjsYGMO88w/YcCOCgGiTrZ9KqsWarWy+FWWTpBsSRr7/uBHBm2Pfo1GjRnh7e3P16lWGDh0qSbedkhFvIR7h5ubG7du3nzjb29/fn5o1axIYGJihvqcWi4W+fftiMBj48dff+O5imN0k3pCwwM7oGgWyZATq6L0YDgbG2MXofiKdAs2L/tdiMrexWq107tyZ2rVr88UXX9g6HJGLZEbrvERJKwNnQuu87LD+egS+/z5vWzHHx2MKvMabzatRsGBB2wUiUsW+f6KFsIGn1XhDQgvAatWqsXv37nSfQ1VV3n77bUJDQ1m8eDHnQ42Z2sMkNMCP8XULYTGb030MBTgbknmtEx/m7emY4RZbmU0lIa7c6ssvvyQiIoJPP/3U1qGIXMQeW+dll4BoU9KHDVvSOTjgWrYaJidpDZgTSOItxCO0Wi1W69OvG7744ousWbMm3ef44osvOHToEOvXr8fBwQHfcKNdjf7Cv3/8wo1ZcmwnnYaK7oZsbpj4ZApQ0d1g96Nr6XX48GFmz57NypUr0euzpm5f5C322Dovux0LirV50p0oq8sDRebJnX9lhMiAZ9V4Q0J3k02bNmE0pj0xXbx4MT/88APbtm1LKmcJinv6+WwlK+Nq4OWEvXTu0yrQ0CvlybQ5XUhICC+99BI//vhj0sqoQmSEvbXOs4VYsxWfcKPdXLlTAZ9wY5a2ghWZQxJvIR7xrFITgBIlSlClShX27NmTpmNv27aN9957j4oVK+Lt7U3ZsmWZOfsbzFaV3Qtnsuz911g1cQSTmpXhm74tCL51jf0/f8PUNlWZ3qkWV//el3SsRUO7s33uZ8x/uT2Tm5dlyTsvExMemuJ5I4LvsmTMID5tWZEvu9Xn2LrfAIi8f49PmpQiOuxB0rb+l/5hausqWEwm7t68RrMWz+Pu7k7BggXp1+/pS7enRTFnPeXdDDZPvrUKlHc3ZFkHF1tSVZUhQ4bw4osvZloXHiHsqXWerZwNicv0K3YzOtfF9+iBdO+fleWBIvNI4i3EI1KTeEPau5scO3aMV155BU9PT5o1a4a/vz979uxh3pw5+P6bUF/+cyd1Or/IJ/t9KVa5Jr+M6otqtTJ++1laDx3Hhmnjkh3z9Obf6T1pDhN2nkej1fLHzAkpnnvFh0NxK1yM8TvOMfDLn9k5bxrXjh3EtWBhytZrwrldG/875pbVeHfogVavZ9eC6TR8vg2hoaHcuXOHN998M9XPNzU6lnJBp7Ft5q3TKHQqadve6Vll9uzZBAUF8fnnn9s6FJFL+ITHZ8tI96Oya2Xd1Mpr5YEi80jiLcQjUlPjDQmJ98aNGzGZ/mt9FWmypLhQxNkrvnTv3p0PPviAmJgYPvnkEwwGA+XKlaPPK69xevs6AMrUaUSlJq3R6nTUbNuN6ND7PP/q22j1emp16ElogB+xkeFJ56vT+UWKVKiKwcmZdiPHc27XRqyPfGgIu+vPrX+O0emtT9A7OFKsck2e6zmQU1tWAVCvSz/ObE34AGG1WPhnxzrqdO4LgEan57bfLQICAnB0dKRZs2YZe3Ef4aTT0KW0C3obvRPpNdCltAuOubC2++jRo0yfPp1Vq1ZhMBhsHY7IBeyhdV5Wr6ybWk8rw/O/9A/fDmjFpGZlWPb+ayz/4A12zk/48Hvpz518278lU1qUZ8GQFwi8egGAVR+NJPzuHX4dM4hJTUtzYPFcTPFxrJo4gk9bVWJKi/LMG9SOyJCgdMcl7IM0eRTiEamp8QYoWbIk1evUY8Xf59EWKUtQnAWzVUWnKMkWilBVldh4J8ZsOsWtw9sJCAjAw8Mj6XGT2ULJWg1wK1ISlwKFku7XOzqSz8MTjTaht7TOIaHjhjEmGifXhNpw98L/9WLOX7QEFrOJ6LCQZHFGBN8ln1t+HB5aETN/0ZL4X/wHgKotO7H+8/d44H+L4Ju+OLq4UbJGXQA6j/mEC7/OokGDBuTPn593332X1157LVWvY2pVdHegtqcp20fR9Bqo7elIRff0t4S0V6GhofTv359FixZRpkwZW4cjcontflGYrbYd5k1cWbdnWTebxRBpsjzxdTCbjCx9dwjNBg2n0YuvcenPHawcP4wWg0cTcPksa6e8zSvfLKVEtdqc3rqaJe+8zLvr/6bf1O+4efoIvT+ZTYWGzwNwdM2vxEVF8OHWM+gMDgReOY/e4elzUcxWlSiTFRdbjWaIZ5LvjBCPSE2pSeJCES9MX8Idx8LcjjYnzex/dKEIk6qgMzig6vSYPYqQv1gpJu73ZfFpPy76B7P/0g0GzPgpXbGG3/NP+jos0B+tTo+zR/KVF90KFSEmIpT46KiHtr2Dm1cRAPQOjni3687prWs4vXU1dTq/mLSde8HCTJ2zgICAAL7//ntGjhyJr69vumJ9mtbFnanq4ZBtI996DVTzcKB1cefsOWE2UlWV1157jW7dutGjRw9bhyNyCXtpnWdR4Vq4kUAbLrITHGtBp6RcInf77AmsFjNNBgxDq9dTo00XStSoA8Cxdb/RoPcrlKpZD41WS72u/dEZDPidO5HisbQ6HTHhoYTcvoFGq6V4tVo4urg+NTadohAUm/42siLryYi3EI94WuL96EIRaHVo0rDYYckadTE4u7D3l2+J7z+Uqw9iufb3HrTO6Ru9Ob11DXW69CN/0ZLsWjidGm27Jo2QJ/IoUpzS3vXZPvczXnhnCvdvXePExuX0m7YgaZs6Xfqy+pPRRD0IpsOoiUn3/7NzEw27tIT85cifPz+KoqDRZH52rCgKnUq54KBVsnzkO3Gku3VxZ5Qn/PHMyebNm8ft27dZuXKlrUMRuYg9ts7rUdY2E6KNFjXZVc2HRdy/h5tX0WTvLYlXJkMDb3Nq8yr+Xvlj0mMWs4mI4HspHqtO576E3Qtg5fhhxEaGU+eFF2k/agLap7QEVVEx2ss3SqRIEm8hHvGkGm+f8Hg230q41Jre9zWNVsvgOcvZ8vUnzOhaD7PRSMFS5egweuKzd05Bnc4vsmbSmwTf9KFs3Sb0GP9litv1/2IR66eN44sONXFy86Dt8PeTLmcClKndEEVRKF7Fm/zF/ms5d+vCaV785mMiwsMpXLgwc+bMoVy5cumK9VkURaFNCRdKueoz/DqnRKskTKTsUtolV5aXAJw8eZLPPvuMv//+O0OrqgrxMHtunWeL3vsWVeVJnQ1dC3oRERSIqqpJyXf4PX88S5TBo3BxWr02hlZvjE1x30cHArR6PW3/9x5t//ceoQF+LH5zAAXLlKd+j0FPjE39Nz5hvyTxFuJfkSYLwbEWyjRqhZ9JjyY0HoNWoZCjlmNBsZk2EutWqAgDvlj02P0PJ8KJtz/Ycirptlan44tTwcm28SxRho5vfvzYsfIXK5VsW/fCxRjy7fKnxuVeuDi1O/VKdl/3sZN5Z/Hcp+6X2Sq6OzC8mj7zl6B2N9CxpP0vQZ1e4eHh9O3bl/nz51O+fHlbhyNykYy0zgsN8GNml3pMPRaIVqfjl9H98O7Qk3pd+wOwc/7nHF37KxqtllFLdjK7T1Mm/Xn9sSt3j0psndewcD4Abt68SdmyZTGZTOh06U9tzGYz9+7dw9/f/7F/AQEB+Pv741rRm87vT8fB+fGyj1Le9VG0Wv5e9SMN+7zKlUO7uHP+NOXqNaV+r5dZ+u5gyjd8npI16mKKi+H6icOUrdsEB2cXXAoU4sGdW9Aw4VjXjh/C2aMAXuUq4+DsikanR1Ge/v6V8H6X+67k5SaSeIs8K9Zs5WxIHL7hxmQTIxu/8T7nrE5c9ItEQcFofdJFxdzj9oXTBFw+yyuzf0t2v5djGupoMpGTTkPPcm4ERps4GhSLT7gRBdLUvkunJCTsFd0NNPRyypV9uhOpqsrQoUPp0KEDL7744rN3ECINMrN13qvzViV9HRZ4h4NLF/DBllNJE8unHL6VquMkts5LTLyfRVVVIiIinphMJ/4LDg6mYMGCFC9ePNm/1q1bU6xYMYoXL44lf1H2BKvEpzDBUqc3MOirxaz7dAw75k6lUtM2VGneHq3BgRLVatPzo6/ZNONDQvyuo3d0pHTthpSt2wSAlq+9zaaZ49k2Zwqt3hiLm1dRNnw+jvB7gTjkc6Zm++5JHaeeREHBYOvFEcRTSeIt8pyAaBPHnpDMWVQVvZMzFsBihYyNteYMv38yiov7t9F13LRknU90ClRwt20buqLOenqU1T/2ISnOaAKrBQcHB1QSRnkUFMyqik6j4OWopYK7AW9Px1w7wv2whQsX4uPjw5IlS2wdisiFsqpFXdjdO+Rzz5+sm1NaJMZlMpnw90+YaL527doUR6wDAgISyukeSqaLFStGlSpVaNOmTdJ9RYoUeeaIeaTJgjko5cXKAEpUq81bK/cn3Z7/SgeqtGgPQOWmbajctE2K+1Vr2YlqLTslu692x14pbvskZlXFy0lSO3sm3x2RZzw6MTKnp9TDftj47I1Soe+n81O8XwW8PR0z5RwZ5aTT0LBwvqTRrddHvslzrdrTqm17LKqKVkkY5fFy0uW5Nlpnzpzhk08+4fDhwzg62sf3S+RMp0+f5vXXX8fHx4cXXngBRVEoWbYcfk5FObp+KcN/3pK07fi6hXh3w1EKlirH5YM72fndFzy4cxNHFzee6z6QtsPfT/Eci4Z2p84LfchfrBS/jhmExRjPpKalqdG2K23/936yspS4yAi2fP0xVw7vRlE01Os2gLbDP0Cj1WK1WFj71STGrfoRq8WCu3tCi9Xly5dTsmRJihcvTvXq1ZMl2W5umdOC0FWvRadRsDxhEsr1k4cpVLoC+Tw8ObNtDXd9LlKpSetMOfez6DRKnnsPzGkk8RZ5QmZMjMxLFBJKNOx1tPjG5QsM6NWdKvlz9gTCxHkFRouarg8QkZGR9O3blzlz5lCpUqVsiFjkVkajkR49ejBmzBhGjx7Nxo0bGTBgAMPGjEPzjApvg5MzfT+dj1f5KtzzvcTPI1+kaOUaVG/1whP3qdDweV6du5JVH41g/PazQEI9+MNWT34Tl/wFGbfxGMbYGH59eyDuhYvTsM9gjq//jauH97DxwBEaVipN37592b9/P2vXrs1QjXdqeTlquR2dctu++zevseKDoRhjoylQvAwDZ/6EW6EiWR5TYlzCvkniLXI1VVXZ6x9tkyWOczKtAg29nr5Qgy35+flRqlQpW4eRZk+aV/DwLILUlsyoqsrw4cN5/vnneemll7L7qYhc5siRI5hMJsaMGYOiKPTp04evv/46oYPHM64PlnuuadLXRStVx7tDT26c/OupifezRIYEceXQbiYd8EXv6ITByZmmA4dzfN0SGvYZzNmdG2kx6H9UqFaTQvkdGD9+PPv370/3+dKqgruBwBhzirXvDXq/QoPer2RbLInsoTxQPJsk3iLXUlWVbX5RXAqLl6Q7LawWyue338mIVquVO3fuULJkyWdvbCeeNa8guYTbFovK7WgzgTFm/gyMoaK7gQZeThT79/vy008/cfbsWY4ePZo9T0LkagEBARQvXjxZS7vSpUs/sW3ew/zOnWTH3M+453sZs9mIxWikRttuGYonLPAOVrOJz9vXSLpPVa1JPbEj79/FvXCxpN+f0qVLZ+h8aeXt6cifgTHZes5nsafyQPFkkniLXGuvf7Qk3elgjI3h1+lv0XDObIoVK2brcB4TFBSEu7s7Tk72OyKfKDPmFSQm6VfCjPiGGynvZqBUlB/jx4/nzz//JF++1HV1EOJpihYtir+/f7L+035+ftQsXhoHp3yY4mKTto28n3zBl1UTh9O47+sMmbsSvYMjf3w5kZiwBxmKx71wMbQGBz7aewVtCqUjrgULE34vIKl1np+f32PbZCUnnYYKbnquhMXDM1r8ZQd7Lw8U/5HvkMiVfMLjpbwkHfQaeLGqF7WqVaFOnTosW7YM1c4WY8gpZSY+4fEsvBiKb0RCK7aMvooq/7VQ2xyej2mLfqNq1aqZEaoQNG7cGJ1Ox7fffovJZGLdunUcO3YMraJQrHIN7l27QsCVc5ji49j9ffKFuuKjo3By90Dv4Mjt86f4Z/u6DMfjVqgIFRu1ZOvsT4iLisRqtRJy+wbXTx4GoGa77hxa8QMhd/0JDQ1l+vTpGT5nWhw5coTv3h+B2WjM1vM+ib2XB4r/SOItcp1Ys5XNt6LsKuk+uWkFC1/rbOswnipxKfWqns5MmTKFbdu2MX36dHr27Mndu3dtHV6SW7du2XXiraoqe+5EselmJPGWzJ/MawEcXNyILPcce+5E2d0HI5EzGQwG1q1bx+LFiylQoACrVq2iV69e5NMpFChVnjZD3+WnEX2Y1aMhZWo3TLZv9/Ez2L1gBpOalWHPoq+o2S5jZSaJ+n46H4vJxOw+Tfm0ZQWWvf8akfeDAKjf82UqNm5F12b1qVu3Lr16pa3tXnrdvXuXIUOG0Lt3bwb3eIFqXm7Yum124gJh9loeKJJTVHnXFrnM+usR+P57ad9enNy0guMb/mvH9XArLnug10A1Dwc6lnJJVuMZHx/Pp59+yo8//sicOXPo16/fY8saZ7dZs2Zx584dZs+ebdM4UpLd8wr0Gqjq4UCnR75vQmSGIUOGUKJECTz7vkO8Pb2h/stBq/COt2e2nMtkMjF37ly++OILXn31VT7++GNcXV2JNVtZeDHUpq+Pg1ZhRLX8OEqZSY4g3yWRqwREm5LqaXMriznlFlbplTjS/WjSDeDg4MC0adPYvHkzn376KS+++CJBQUGZev60sudSk+yeV2CywqWwePb6R2fPCUWeZK8t6rIrrl27duHt7c2uXbs4dOgQM2fOxNU1Ybl4J52GLqVdsFXrbL0GupR2kaQ7B5HJlSJXORYUm66k+8Dib/lrxQ/ERUfiVqgI3T+cyc3TR7h3/TI6vQMXD2wjf7FSDPzyFy7s+YNDy75HZzDQ65NvqNS4FcBTF3t42PevdwXg2/6tUBTo/ck3eHfoyaU/d7Lru88JDbiNV7nK9JjwJUUrVQdgRue6NH5xCKe3riX4li9TDt9KccJRWmiVhMUWupR2oaL70/th169fn1OnTjFp0iS8vb2ZN28effr0ydD508vPz48WLVrY5NxPY6t5BSYrnAmJo5Sr/pnfRyHS42mt82yptGvWllbcvHmTsWPH8s8//zB79my6du2a4pWliu4O1PY0Zfvvf+Kgifze5yzyEUnkGrFmKz7hxjRPYgu+6cvfq35i1NJdTDl0k9fm/07+Ygmt6i7/uZM6nV/kk/2+FKtck19G9UW1Whm//Syth45jw7RxScdZPflNNFod4zYe480Ve/E5sp/j65c+dr7//fQHAG+t3MeUw7fw7tCTgMtnWTvlbXpMnMXH+67SoPcrLHnnZczGeCBhxvqFnet5fe5yJh/wzVDSrfBfv9fh1fKn+k3b0dGRGTNmsH79eiZOnEj//v25f/9+uuNILz8/v2xvHfYstp5XYLLC5ltRxJrtaGKDyPEWL17M1KlT8fZ0tMuVfu/GZO7Vv0SxsbFMnjyZ5557jnr16nHhwgW6dev21HKu1sWdqerhkG0j34nlga2LO2fPCUWmkcRb5BpnQ+Kesb5agkcnOioaDWajkaDrV7CYTOQvVgrPkmUBKFOnEZWatEar01GzbTeiQ+/z/Ktvo9XrqdWhJ6EBfsRGhict9tBl3FQMTs64FChE04HDObtzfapiP7buNxr0foVSNeuh0Wqp17U/OoMBv3MnkrYZNnI0o5pXo0YR94TR6jSW9OqUhFHuyh4GBlZ0p2dZt3S1nmrcuDFnzpyhePHieHt7s3596p5jZrHHUpPtfgmrotqS2aqy/XaUTWMQuZOTTkNFd0Oq3l+z081IE4HRpkw7nqqqrF27lqpVq3Lp0iVOnz7NxIkTcXR8dm9sRVHoVMqF2p6OWZ58P608UNg/KTURuYZvuDFdl0ILlipHl3FT2f39TO5du0Klxq3o/O5nALgUKJS0nd7RkXwenkmlIzqHhDdjY0w0EcF3n7rYw7OEBt7m1OZV/L3yx6T7LGYTEcH/9cvVFijKg3gLVTwcqOxh4H6sBb8o02MrIKokjGqndgXE9HBycmLWrFn07NmTV199lbVr1/Ltt99SoECBDB/7aaKjo4mKiqJQoULP3jib2Mu8AosK18KNBEabpLuByHQNvJzS/R6bVSwqHA2KpUfZjP+8X7x4kbfeeot79+7xyy+/0KpVqzQfQ1EU2pRwoZSrns23Ej6MZ+b7QlrKA4X9ssvEO9JkITjWgtGiYlFVtIqCQavg5aTDxVYzGITdC4qzpHvf2p16U7tTb+KiIlk/7V22zfkUzxJlUr3/sxZ7eBaPwsVp9doYWr0xNsXHVeB6pIkd/45oPppUl3TR4+WkBZRs/Z1p1qwZ//zzDxMmTKBmzZosXLiQrl27Ztn5bt++TcmSJe1qlCe98wqyQmYmIkI8rJiznjKuenwjMm+EOaNUwCfcSKzZmu4BhfDw/7N3nlFRXV0YfqbQO0hVlCqIiF3sIpbYey/RGI0lRmPvPfYSTWwxtsReYou9996xoVgABUWQXqd9PyaMIqCAwAx+86zFWjNzzz1nz2Xmzj777LPfWKZOncrGjRuZNGkSgwYNQvyF+2fczfQY4KXzxeJZ6Qh4XzKwiaOxViSniKMRjneyVM7dqBSCYtMyRe/SKcjonZaiT7xElmmp//S6JVzbvZGEd28xty1O4x/HU9Y/cy3th2ePcnzlXKLDghGKdDCzdcDWzZPYiHAeXzrJtLqu6OjrU6JspQw1kydWsweUmyWT42IwsbLhwKJJNB40Hl1DI6JfBRMbEYZL5VqZxjS2subdq2BVOcGq7XqycUQvXH3r4ehdCUlKEs+uX8C5Uk30jIwBkANpqhTezLLiCsgkK14YGBoasnjxYtq2bUufPn34559/WLx4Mebm5vk+lqalmeR1X0FBkR+OiBYt2WFnKNYoxxuUTundqBR8bXOn4CqXy/nrr78YP348LVq04P79+9jY2OSbXQZiIW1dTAlPlHAlIpknsWkIIFcrBmIBqvu6r42BdiXrK0Gtd+awRAl7nsex9N47zoUnEZooVQlOpMoVpMlR/aX+t2ST+p+jcS48iaX33rHneRxh+ZjjpaVo8jZZhvijKKhVCSf6r/mXKWef0eCHkWybOIi4txmFYFITE9g59ScSoyORSiTIpBLEevo0+WkSAoGA4p7lmXgykIHrDxEWGEBqUuYc2l5LNjF02xlSExN49/JFlmIPH9Ow/2h2ThnMtLqu3D26hxJeFWg7cRH75o5lej03FrSuxo1/t+b4/UsVymhnYEwam5/EsvtZXKFvtKtXrx537tzB2NiYcuXKcejQoXwf40sc79OnT1OiRIl8tSen+woKk3RHJDvKli3L6dOnv2iMqVOn0qNHjy/qQ4tmkZP/aXD8+9/aZ9cvMLuJT0Gb9VnS1Vw/ZP369dSuXTvbc65du0bNmjX5448/2LdvH3/++We+Ot0fYm+kQxtnUwZ7W1LH3hBHIzF6IgEiAegJBegKlTnbukLlc5FAWZfb0UhMHXtDBntb0sbZVOt0f0WoJeKdLJV/8RJM+qwxMCaNoNg0XE11aVJSuwTz/0qaTJFhhQSUksLp+HzTltPrlvDy/q0MbR6eO4qZrQNDtpzK1Ge7SYtUjy0cSlK7+wCe37yUoU3/Nf9i6+oJgGu12jh4+tD7ty2Z+qrcqiuVW3VVPfft0BvfDr0ztPGo1QCPWg2yfH9jDtzM8vWPUcmKx6Wx8kF0oecCGhsbs3TpUtq1a8f3339PgwYNWLhwIWZmZvnSv6ZVNNG0nFd474j42hqqBFB++eUX1fH79++r0TotRZkvSecrSHJqV0REBOPGjePgwYPMnj2bb7/9FqGwcHwGA7EQX1tDVWQ+QSInIlmqTan9P6TQ/7tPYlNZ+SCaoDjlD9aX/mZ97Gg8iU3NDzO1FDFkWQiw3ty/jd+6+DGtrivT6rry5ukjEmOiMrSJff0q21zut8FPWT+kGzMbeTG1jjNHl80iKTrj+cZW76MkOvoGpCVphpBJ+urQvhfxapEV9/f35+7du4jFYsqVK8fRo0fzpV9NSTWR/idiVNQdES3/n8ydO5fixYtjYmKCh4cHBw4cYNasWWzbtg1jY2PKly8PwLp16yhTpgwmJiY4u7hwfvt6ANKSE1n3Uxfi375mSq1STKlVSrnBXC7n9LolzG9Vlen1S7N5zPckxUYDEB0WwrhK1lzfu5k5TcszrZ4bV3auJ/T+LZZ0qse0uq7snTMmg53X92xiUbuaTKvnxtpBHYkOC1UdG1fJmis717OgdTXG13Lhh4GDUCgUPHz4kAEDBnDp0iWMjY0xNzdHIpHQv39/HBwc2LBhAwKBgMjIyEJzurPCWEeIi6kunhZ6lLXUx9NCDxdTXa3T/X9Aof2HFQoFJ14msO9FvCqdJD9Rt6OhRb2IPkoziQ4LZdeM4bQaM4dJpx4z5exTZWT6o8+FmV1x3r0KzrLPvbNGYePszsg9V5l67jmNfxyfKaqu6aSLqxwKKfzvhImJCStXrmT16tX07duX/v37Ex8f/0V9BgcHf9bxdnJyYvbs2Xh5eWFhYcF3331HSsr71IuFCxdiY2ODvb0969atU71+4MABKlasiKmpKY6OjkydOlV17MWLFwgEAtasWUPJkiXx9/dn5Zq1LPm2KfsXTGRaXVfmtaxC8J2r3Ni3hTlNy/NLgzIZ0oUenTvKb13rM7WOM3Oaluf4ynkZ7H5x6zIrejdjWl1X5jQtz419ypUTaVoqB3+dwpxmFZjZ0IvdM0ciSUkGMpfGBKVD8vrFU35bsZJNmzYxb948jI2NVZtenZycOH78OAAymYxZs2bh6uqKiYkJlStXJjRU6dwMHToUR0dHTE1NqVy5MufOncvR/0iLZhMYGMjSpUu5du0a8fHxHDlyBE9PT8aPH0/nzp1JSEjgzp07ANjY2LB//37i4uKYtXQV/y6cxKuHd9A1MOK737diYm3HtAvBTLsQjKm1HZe2/smDU4f44c+9jD8SgIGJeSZnOvTeTUbsuULXOX+yf8FETq/5le9X7uTnnecJOLaPZzcuAPDg9CFOrV1MjwXrmXjiEU6VqrN1fP8MfT08e5QfNx5j1I6z/LNjB0eOHKFMmTKsXLmSGjVqkJCQwK5du6hYsSLr169n3bp1pKWlcf/+ffz9/QvngmvR8hGF4ngrFAoOhSQUiqqTOh0NLepDVyRA8EG2bVpKEgKBACOLYgBc37uZN08fZTqvTJ3GxEe+4fymlUjTUklNTCAk4AYAqUkJ6BmZoGtoRMTzJ1zZub5Q3kt+o25Z8caNGxMQEIBMJqNcuXKcOHEiz33lNOK9adMmjhw5wtOnT3n8+LEq1eL169fExsby6tUr1qxZw48//kh0tDIiZ2RkxN9//01MTAwHDhxgxYoV7NmzJ0O/Z86c4eHDhxw5coS4NDmh925i5+7FpFOPqdCkHVvG/cDL+7cYufcqnX5Zzr65Y1X7AnQNjOg0fRmTzzyl15LNXNm5nvunDgLKieK6n7pQo0tfJp54xE9bTmHvoSxNefi3GUQGP2XIllOM3HuVuIhwTvy54JPvXyQQ0KJ7H7p3787o0aNJSEjg33//zdRu0aJFbNmyhYMHDxIXF8fatWsxNFQuhVetWpXbt2/z7t07unXrRseOHTNMYLQUTUQiEampqTx48ACJRIKTkxOurq5Ztm3evDmurq4IBAIq1qhD6ep+vLh1Odu+r+z8i8Y/jsfM1gGxrh4N+o/i3ol/kUnfC9349xuBjp4+pWvUR8fAkPLftMXY0hozG3ucKvoS9ijgv77W49dnKDYupRGJxfj1GUb443sZot5+3w3BwMQMc/viVKtdj9u3b6uOpaam0rFjR77//ntmzJiBra0tSUlJxMXFYWFhQaVKlb7wSmrRkjcKxfE++SqRhzGphabqpm5HQ0vhY20gQvrBRMvWxYPaPQayondTZjby4nXQQ0qVr5bpPD0jY/os38mjs0eZ2agsC9pU49n18wA0+3kqdw7/w9TaTuyeMQyfxm0K6+3kO+kTUnWlYpmZmbF69WpWrFhB7969+fHHH0lIyJ3Yi1wu5+XLlznaIDl48GAcHR2xtLRkwoQJbNmijB7r6OgwefJkdHR0aNasGcbGxgQGBgLg5+dHuXLlEAqF+Pj40LVrV86cOZOh36lTp2JkZISBgQEyuQJLh5JUad0NoUiET+M2xL5+hf8PIxHr6lG6Rn1EOrpEhT4HwKVKLezcvRAKhdiXLovPN215fuMiAHcO/4Obbz0qNGmHSEcHI3NLHDzKoVAouLprA81HzMDQzAI9I2P8+vzM3SN7PnMFFKTlYFlx9erV/PLLL3h4eCAQCChfvjxWVlYA9OjRAysrK8RiMSNGjCA1NVV1rbQUXdzc3Fi8eDFTp07FxsaGLl26EBYWlmXbQ4cOUb16dSwtLanmZMuj88dJjHmXbd8xr1+ycWQvVXrfr+1rIRSKSHj3VtUmgzaCnn7GdD09A9KSlb/bMeEv2T9/gqqvGX7uKBQK4t6Gv+/rv3MVgJ6BAQkJCaSkpLBv3z5u376Nt7c3Dx48oG3btvzzzz8cPHiQUqVKUa9ePS5dyrhfR4uWwqLAN1c+iU0tlEj3x6Q7GiVNdLSF5v8PMNERIRYKkH3gbHwzeALfDJ6QZfsPNzrauZWh7x+7MrVxrlyT4bsy3pwbDRyrejz75tsMxzpOW5on2wuLdFnxAV46atuE3LRpUwICAhg2bBjly5dn7dq11KtXL0fnvnnzBnNzcwwMDD7b1tHRUfW4VKlSKsci3ZFMx9DQUDUBuHLlCmPHjuXevXukpaWpImbZ9StXKMtCppMuqGSSwZHQV+X9hwTc4MjvM3gT9AipNA1ZWhreDVsBEPMmLMu9BonRkUhSkljavaHqNQUKFLJP53AryHrfw8eEhoZmG+1csGABa9asISwsDIFAQFxcHJGRkZ/tU4vm061bN7p160ZcXBz9+/dnzJgxuLm5ZWiTmppK+/bt+fvvv2ndujVPE+R0aNf2fbpeFuV8zGwdaD9lCU4VfDMdiw4LyZWNZrYO+H0/jIrNOny2rQAQCJRpNF5eXlhaWlKhQgWmTJmialO1alX27t2LRCJh6dKldOrUSZVWpUVLYVKgv77JUjn7gxMK3elOJ93RKOyyalrUg42+SN0maDyaICtubm7OunXrWLJkCd26dWPo0KEkJn5+dSo3FU0+/EENCQnBwcHhs+d069aNVq1aERoaSmxsLAMGDFClq6WnWNy4cYODBw+yfv16bt++hSIXMvHbJgygTN0mjDl0m6lnn1GtfS+VE2Nu60DUyxeZzjE0t0JH34Cfd55nytmnTDn7lKlnnzHtgnJfgq6BoSrfGyA+Uql0qhTcEHxWaMjR0ZGnT59mev3cuXPMmzeP7du3Ex0dTUxMDGZmZtr0va+AwMBATp48SWpqKvr6+hgYGCAUCrG1teXFixfI5crfy/TJp7W1NWKxmIsnj/D48mlVP8aWNiTFRpMSH6d6zbd9b44um6VKB0mIjuTB6byVFfXt0Jsz65aoUgRT4uMIOLY3y7ZyuZzbt25x6tQpVq1axS+//MLbt29JS0tTvZdNmzYRGxuLjo4Opqamat1YqeX/mwKNeB8OScgkalLYpDsabZ1N1WqHloLHzUyX8CSpxpV30yQ0SVa8RYsWBAQEMHToUCpUqMC6des+WXs3NxVNli1bRosWLTA0NGTmzJl07tw5w3GpVEpkZCQSiYSbN2/y9u1bIiIiOHnyJA8ePCAwMJBLly6hr6+PqampyvEeNGgQtra22NjYkJyauwl9amICBmbm6OjpE3rvJncO78K9uh8AFZp24NTaxdw9uoey/i1ISYgj9s0rHDzKUbVtDw4snEirMXMwtrQmNiKcN0EPKV3TH7vS3rx5GkhYYADWTu4c/2P+f6MpS5PZ2try7NmzbG3q27cvkyZNwsvLCzc3NwICAihevDjx8fGIxWKsra2RSqXMmTOHuLi4bPvRUnRITU1l7NixPHz4EB0dHWrWrMmqVavQ09Nj48aNWFlZ4ezszM2bN/ntt9/o1KkTqampNGneAq+636j6sXF2p/w3bZnXqgoKmYxh/1ygZrcfUKBg7Y8diXv7GmNLa3watcbLr2mu7Szr35zUpES2jPuBmPBQ9I1NcfOtl6FMbDopaRKKmZnQpU1LGjZsSFpaGmXLlsXOzg6hUEhYWBgbNmxg8ODByGQyPDw82LRp0xddRy1a8opAUUAhjLBECZufxGqEEyQWQHd3M7U7GloKlmSpnKX33mmMfLemIgA8zHVpo0GT0T179jBo0CC6dOnCzJkzs0wnWbBgAWFhYSxatCjTMYVCQXR0NG/fvsXPzw9/f39OnjxJdHQ0Tk5OlClThufPn3P//n3MzMyIjY3F0tKS6OhoypYti4eHB3FxcVy8eJGUlBS8vb0pVaoUUqmUv//+m3fv3uHi4oJEIlGlqqxcs5a5S/+g/9oDAESGPGNhG98MKUizm/jQdfYqnCpWJ+D4Pg4umkJSXDTOlWpi4eBISnwcnWeuAOD5zUscXDyVt88fo29sSqNB46jcsguS1BROrlrAnaN7SIqJwtTaHt+OvanV9QcATq1exPnNf6Cjp883gyeyfdIgRu+9wqSmVQh/8ZSOHTvy4sUL/Pz82LNnD05OTqxevZqGDRsik8mYPXs2a9asITIyEk9PT3bv3o29vT39+vVj586dGBkZMWzYMJYvX646b+rUqQQFBbFx48Z8/yxo0Vx+vRtFqgbeYHUFCoZXsP58Qy1aNIACc7z3PI8jMEYzpJQ10dHQUjAUxOfu1w61aT12Li5VMku/55V1gzvj801bKrfski/9Pb95iV0zhjFid/YVBz5EJIDB3pa5zvUuSIcrMjKSn376iZs3b7J+/Xp8fHyIiIhQ/S1evBgDAwPc3d1VEer0v8jISIyMjLC2tiYkJIQqVarg7e2NjY2N6s/a2lr12NLSEpHoy1OTNNUR0RMJGOZjpW4ztHxlbHocQ2ii9PMNCxlHIzHdS5ur2wwtWnJEgaSaJEvlPInVDKcblBuNnsSmkSyVa5Utv3Kq2Rjku5rgsJ3nv+j84yvnERX6XBXZBPhu6TbV4xv7tnBtz0YG/Bc5zQnjKlkzYs8VipV0AcC5Uo0cO93wXlY8XUWtMEhLS8vkMH/8PCIignfv3lGzZk3EYjEODg6q1I6goCAqVaqEo6MjlSpVyuBUFytWDD095SZqJycnpk6dSsOGDT9jUd5QKBTcu3ePAwcOEOVaAyu3sgUyzpeg3e+gpSDQxHQ+sUBplxYtRYUcOd7pS5NXr17l2bNnrF69+pPt70alZLXhOQOfiiI+u36BbRMHMu7w3ZyYl4ndM0diamNPg34jVK+pw9HQUvg4GOngaqpLUFyaNuXkE3woK55XZDIZ7969+6QT/eHrCQkJGaLOH0ah3d3dM7wOMGrUKB48eMDSpUupVq0alSpVYsKECVSpUiW/LkOOSUpK4uTJkxw4cICDBw8iFApp3rw5VWuY8FaA1hHR8n+Bj5U+p17Gg1BzJnYKlHZp0VJUyFXEe/z48Tlql5OI45dGEdPJKlrYdkJmcYn8cDS0FA2alDRm5YPoDKUFv4S5zSvRfvKvvLh1hYjngYh19bl/6gDmdiXoOH0pJbwqAHBm/W9c3PInKYnxmFrb0XrsPGRSCafXLkaBggenD2JZwpmh206zql9rKjbrQKnyvuyZNQqZVMKUWqUQisRMOftUdbxq255Axs/5H98rFQh/61IfgQDaT16MsZVNhslqxLPH7Jk9ivDAe5ja2PPNTxPxqtcEgB1TBqOrb0js61AG3LqMl5cXmzdvxsXFhbi4OIYMGcLhw4eJj4/H2tqaRo0aYWhoSEREBFeuXCE6OhpbW1vevXuHmZlZlqkc5cuXz/S6ubl5rioJ7Nixg+3bt9OyZUu+//57goODc1TV5MWLF7n472bP8+fPOXDgAAcOHOD8+fNUrlyZ5s2bc+jQIcqUKYNAIFDtK9AktI6IloIiLTGex+ePUbrON8r6fWpGALib6WpXsrUUKQok1SQi5dM1ZtWFptqlJX8xEAtpUcqYfS/i872U5cMzR+i+YB0dpv7G0eWz2DdnLIP+PszbF0Fc2raGHzcew9TajuiwEOQyGVaOzvj1+TlTqkk6Ni6laTN+fq5STfqv+ZdxlawZsvWUKtXk2fULquMyiYS/fu5Oldbd6LN8B8G3rvD38J4M3ngcaydlrd47R/fQa/FGXu5fz4WTxylXrhwymQw9PT0MDAxwdHTE3t6eiIgItm7dytSpU6lRowa6urpERUWxZs0aihUrlqEmdn4jEAjo3Lkz9erVo1+/fkRHRxMcHIy1dcFsopJIJJw/f56DBw8q00iiomjatCl9+vRhy5YtmJubZzrHQCzE3UxXo/azaB0RLQXFjBkz0NcxQixsohGrPCIB+Np8vq6/Fi2aRK7uzlOnTqVHjx6q5xs2bKBUqVJYWVkxc+ZMnJyc2Hf4CFK5gh1TBnN02SxV22fXLzC7iY/q+dzmlQi6olSFk6Qks2PKYKbVc+PX9rV4ef9WhnFPr1vC/FZVmVLbiV/b1+L+SaWDEvHsMXtmjSLk7nWm1CrFtLpKIYgPx04f99yG5Uzy88TO3p5169ap+o6KiqJly5aYmppStWpVJk6c+MmSZlqKBu5melSw0kcnn/2PUhV88azdCKFIRMXmnQh/ch8AgVCINC2NiGeByCQSLBxKYuXonL+D55CQgOukJSdS77uhiHV0ca1WB886jblz+L1IUNn6zXDyrkiPAUOZMmUKDg4OxMTEEBcXx5s3b7h+/Tr//vsvV65cQUdHh0aNGtG1a1dcXFywsLDAzs6uQJ3uD7Gzs2Pu3LnY2trSrFkzJk+erKrP+6W8efOG9evX07FjR2xsbBg9ejRGRkasX7+e8PBw1bGsnO50qtkYIFJ/8A/QOiJaCo5Hjx7x119/MeXnQbia6qr9My8SgKuZrrZamZYiR57dkgcPHjBw4EA2bNhAWFgYUVFRvHz5kthUOeJcLkGdWDWfd6EvGLXvGt8t287N/dsyHLcq4UT/Nf8y5ewzGvwwkm0TBxH39rUqWljSpwrTLgQz5WxmIQiAhKgIUhLimHo0gJm/r+THH38kOjoagB9//BEjIyNev37NX3/9xV9//ZW3C6JF4/AvbkQZc718db4/VCXU1TdAmpqCTCqlWEkXWoz8heN/zGNmwzJsGtWHhDevEKvhxyn+7WvMbItnSOuwsC+RQWrZxMoGkVgHO68KlC5bjpSUFFUJvwULFlCmTBnMzMwwNzcnNjZW7YqFoaGheHt7c/v2bW7dukXVqlW5fft2rvuRy+Vcu3aNadOmUa1aNTw8PNi/fz/NmjXj4cOHXLt2jalTp1KtWrUcp8Wk7yvQOiJavlYUCgU///wz48ePx9bWliYljREL1fuBFwsFNHU0VqsNWrTkhTy7JDt37qRFixbUrVsXPT09ZsyYgVAoRCJXoMjlouvdY/vw+34YhmYWmNsVp2aXfhmOl2vUGlNrZSF8n2/aUqykc6ao+KcQinXw7zcSoY6YWg2aYGxsTGBgIDKZjH/++Ydp06ZhaGiIl5cXvXr1ypXtWjQXgUBA05LGBRL5/hgdIfT7tjsBVy5y6UEQ8S+fcmbROMpb6SP83A9UFhNVXQND0j5UJIyKyLEtJtZ2xL55pVKgA4h5/QpTa/sM7aQKuBaRzN4X8SRI5Gx6HMMfe49ppGJhuniOg4MD+/btY/jw4TRu3Jjp06cjkUg+eW5sbCw7d+7ku+++w8HBgW+//Zb4+Hjmzp1LRESE6pidnV2e7dM6Ilq+Zvbv309wcDCDBw8G3qfzFfR9NTt0hNCilDH62pQqLUWQPH9qw8LCcHR0VD03MjLCysqKvAhVxr99jbldcdVzc/sSGY7f3L+N37r4Ma2uK9PquvLm6SMSY6Jy3L+hmQUisRgFIFMoMDQ0JCEhgbdv3yKVSjO8jw8fayn6CAQCGpQwppWTCXoiQYFEJfVEArwl4QgeX0VXIaWMjSlpcdHoKyQ4GutgamVNdHhIBkf4Q4wtrYl9E45U8j59wr60N/dPHiAtOYnIkGdc35NRZc3Yypp3r4Kz7M+xXGV09A05+9fvyCQSnl2/wMOzR/D5pm2mtlIFyBXKDXmhiVKuhkSSohByPVmfkNhkpk+frhGKhR+qVgoEAnr16sWtW7e4fPkyvr6+BAQEqNoqFAoePnzIggULqF+/PiVKlGD16tVUqlSJixcvZjimq5s/1T+0joiWr5XU1FSGDRvGkiVL0NF5v5qSns6H9NMT3/xGRwgVrPRxN9Mr1HG1aMkv8pykaW9vz8OHD1XPk5KSiIqKIj3oo6uf84idSTFbYl6/wtbVE1BG59KJDgtl14zh9F35DyV9qiIUifitix+kR+BykdYiAEQftLe2tkYsFvPy5UtKly4NKJe0tXx9uJvpMcBLh8MhCTz9r9Tgl8RwlZ8l5eP+XhY8f/yGvh/IMAuFQvr27YuuSECFRq25fmAHM+qXxrJ4SX7afDJDX67V6mDr6sGsRmURCIVMOhlI7e4DePngNjMbeWHv7kWFph0IunpGdU7D/qPZOWUwkpQU2k5ciLHl+w2HYh1dei3eyN7Zozm9bglm1vZ0mr4MG2f3z74v1xr+lK7pz0D/SugaGNKmz4+U0IDJaEhICPXr18/wWvHixTlw4ADr1q3D39+f5s2bY2RkxKFDh5BIJDRv3pzhw4fj7++PkZFRgduodEQk3I5KyfdNvZ9C64hoySnxEhlvk2WkyRTIFApEAgG6IgE2BmKMs5k1/vrrr5QtW5bGjRtnOvZo3988StSjbMNWyD5bRPjL0RGCl7ke/sUL/vusRUtBkWfHu0OHDvj6+nL+/HmqVavG5MmTkcvl6AgFCBBg71GO8xuXk9R3ODJJGhc2/ZFtX+UatebMuiWULFeZtOQkLm19Xyc8LSUJgUCAkUUxAK7v3cybp49Uxz+MFop1Ph29EqC8yaQjEolo164dU6dOZfXq1YSEhPD333+rImtavi4MxELaupgSnijhTEg0T2LTMNDX/+zu/DEHbgLg5lsPsUDpsLub6eJbuhyz/psA+vj4cPXqVdU59evXx9raGmsDEXpmFpkqlvzw517VY7GOLr1/25LhuJGFFd8v35HhtYYDRqse+3bojW+H3hmOf1j33tbVkx9W78vy/XSctjTDc5cqtVTnCkUiOkz9jQ5TfwOUk4uK3X+kVCllCsPUqVOz7LOg+TDinU5oaKiq3F9ycjJ79+7FyMiI33//nTZt2iBQQ7kz/+JGpMoUPIxJLRTnW+uIaPkUyVI5d6NSCIpNIyJFhlSuQCwQZEgHFSBAqlAgFgqw0RfhZqaLj5U+BmIhr169YsGCBVy5ciVT33/99Rdz58zh9OkzPNc1KPAJZ/oE07+4kVq+21q05Bd5XpcsW7Ysy5Yto1u3btjb22NhYUGJEiUw0xMiVSio2Lwjdu5lmdeiEmsHdcKncZts+2rww0jM7R2Z16Iyawd1pGLzjqpjti4e1O4xkBW9mzKzkRevgx5Sqnw11fEPo4Uz/D0+abNUocDGIONcY+nSpcTGxmJnZ0fPnj3p2rWrSgFPy9eJvZEOkSe282ztL9SxN8TRSKxKQ9ETCtAVKm/yukKQpiQhkMvQEwlwNBJTx96Qwd6WtHE2/eQmNoVCgVAoxERHpPbc3y9BpoBUmYJ9L+I58TJBbbnewcHBODg4cO7cOcaNG4ePjw8VK1bk/PnzdOvWjZCQEN69e8fkyZPp168f8+bNQyotfGnrwt5XUMFKnyYljbWOiJYMhCVK2PM8jqX33nEuPInQRCmpMoXy+yxXkCZH9ZcqV6i+56GJUs6FJ7H03jv2PI9j2uLl/PDDD7i6umbof8eOHYwbN45jx47h4uJcoOl8IoEyna+VkwkNSmg/61qKPgJFPv6SpitcBthUJFUDZQP1RAKG+Vh9ss2YMWNUFU60fL3Url2bcePG0bx5c9VrCRI5EcnSDMuwG9avxVCWwoSRw3LVf926dfnll1+oW7cumx7HEJpY+E5gfqMjhDLmejQtREcvMjKSgwcP8t1332Fubk7JkiVp3rw5zZo1w9fXF5Eos4Leixcv6NOnD0lJSaxfvx5PT89CsfVjnsSmsj84Ael/jk1+IRIoN1K2KGWsTS/RkoFkqTzf0ulQKJCkpuBpZUQLF3NVbfgDBw7Qp08fjh07ho+PT4ZT8nP89HQ+VzNdmjgaa2vTa/lqKJBCvDb6Io10NGz0M/9IP3r0iLS0NMqVK8e1a9dYs2YNq1evzuJsLV8LISEhPHz4kEaNGmV43VhHiPFH6UquZnqcOXM512PI5XKVc+pmpkt4klQjBCe+BIkcHsakoidSblgtCBQKBbdv31ZJs9+/f58aNWpgZGTE3bt3KV68+Gf7cHJy4vjx46xcuVI1wfr555+zdNILkvzeVwAKJCkpuFga0tLVQuuIaMlAvk/0BAJ09A14kSRn5YNoWpQyJuT6eb777jv279+fyemGjOl8Bx6E8kaunBiKdHM+QcyQzmdjoC2PqeWro0Du3G5mumqpX/wpxAKlXR8THx9Pu3btMDIyonPnzowYMYLWrVurwUIthcX27dtp165djipalC5dmsePH+d6jPRUE1DKdxdxn1uFRA63o1J4Epuab33Gx8ezZ88e+vXrR4kSJejUqRORkZFMmzaNiIgIpk6diqenZ46c7nSEQiGDBg3i6tWr7Nu3j7p16/LkyZN8szmnpDsi3d3N8DBX1vrO7b1RLFBG/jzN9Xizfy3X18zVOt1aVCgUCk68TGDfi3hVOkl+kp6GsvtpLCtO3mTHzp1Uq1Yt2/ZhYWGM6v8d09rVwyn4Mg2dLLJN5xPKpSTHxyKQy0lNiEf69mWO0/m0aCmq5GvE+8WLF4ByuelseFJ+dv3FKFA6QB9TtWpVgoKCCt8gLWpj69atzJ07N0dtS5cuTWBgIAqFIlfpFXK5XOV4a5qs+JcikcP+4AQGeOnk2QF88uSJamNkeknA5s2bM2rUKFWFoXRCQkIoVapUnsZxcXHh1KlTLF26lBo1ajBp0iR++umnHIvj5IXsKkc0LGHMN45ku9lNgXJ5/VOb3XwH/4C3tzeDBg3CycmpwN6DlqKBQqHgUEhCoWzmlQuEVGv3LYnFDLO8H6amprJ48WLmz5/PDz/8wMOHDzE2Vq6M+doaApnT+eJioun1Uz92/bWamvUrULNmTSYePlywb0SLFjVTIKkmmuZoCFAuW2mjRFqePHnCy5cv8fPzy1F7a2tr5HI5UVFRFCtWLMfjfJhqAkpZ8aDYtCKfbpKOVK7gcGgCbZ1Nc9Q+NTWVc+fOqZzthIQEmjVrxqBBg9i1axcmJibZnptVRZPcIBQKGTJkCE2bNuW7777jn3/+Yd26dZk2jOWVvFaOaOeij0xBpn0FnyrvZm9vz5AhQxg3bhxbtmzJdFzL/xcnXyUWWgUdALlQlGW62aFDhxg6dCgeHh5cvnwZNze3LM//OJ1PYWFH0OXTpMZFY2xszNWrV3Md5NCipahRII43aJajIRKAr42Bus3QogFs27aNjh075jjfVyAQqNJNcuN4f5hqAu9lxYP+y/Ut6sgU8DQ2jfBESbbLwWFhYRw8eJADBw5w8uRJvLy8aNasGVu3bqVixYo5/nENDg7O9oc8N7i7u3PmzBmWLFmCr68v06ZNY+DAgXmOfoclSrgakcyT2DQEkOFeJ8u0Z135XPZf5YjwJClnw5NwN9Olmo0BLqY5F/IZOXIkpUuX5sqVK/j6+ubJdi1FnyexqYVeMx7ep5uVNNFBGPmSn3/+mUePHrFkyRKaNWuWq74EAgEGBgZcv36dmjVrcuzYMUJDQ7UlfbV81RRYCDjd0SgIpcDckL4rWpsrpgWUjnfnzp1zdU5e8rw/TDVJRxNkxfMTmQKuRLwXyZLJZFy6dImJEydSqVIlvL29OX78OO3atSMoKIhLly4xadIkKlWqlKuI1pdGvD9EJBIxfPhwzp8/z4YNG2jYsKEqRS6nJEvl7H4Wx+YnsQTGKCdSuQ0wSBXK6xcYk8bmJ7HsfhZHsjRnHpSRkREzZsxg5MiRaivvqEW9JEvl7A9OKHSnOx2JHHY+eku9ho2pVasW9+7dy7XTnY6lpSUBAQH4+vpiaWnJjRs38tlaLVo0iwLNvdAER0MsFNDUsWAqMGgpWty7d4+YmBhq1qyZq/M8PDzyxfFWt6x4fqMAnsSmsWn7P/Ts2RM7Ozt++OEHpFIpixcvJiIigq1bt9KzZ0+sra0/21925KfjnY6npycXLlygSZMmVKlShT/++CNHTuyT2FRWPogmKE65mvelbq8CpRMeFJfGygfROd602qtXL+Li4ti9e/cXWqClKHI4RFm9RJ0ohCLm7b/I2LFjv0j7wt7ensePH+Pr64tEIuH69ev5aKUWLZpHgboA6nY0JCnJVBTFoq/N7dbC+2h3blML8hrxziqqq5QVV4qrzG1eiaArZ7I4O38ZV8mayJBnBdJ3clISZ4LCqFmzJtevXycgIIA5c+ZQt25dxOL8yWQrCMcblNHv0aNHc/bsWdasWUPjxo0JCQnJsm1hVY7IqVCRSCRiwYIFjBkzhrS0tPw1RotGE5YoUZWnVCdCsQ5hEhHhiZIv6sfZ2ZnQ0FAqV65MZGQk165dyycLtWjRTArcI/3Q0ShMdIRgEvOSTvWrc+jQocIdXIvGoVAo2Lp1K126dMn1uemVTXI7XnYOvn9xI8qY6/E1JJ3oGhhSr0NPBg4cmOfKI58iISGB5OTkXOXX5xYvLy8uXryIv78/lStXZvXq1Rkc3/TKEYWRT5ueP3so5PPOd6NGjXBzc2PlypUFa5QWjeJqRLLane50Pk43ywtlypQhIiICIyMjXF1dVRsstWj5WikUdzjd0Sgs51tHCF7megxtUp3du3fz/fffM2/ePO2X+f+YmzdvolAoqFy5cq7PdXd3JygoCLk8515XVqkm6aTLiusWgLxyfiLLoeR6RIqswGxI32hV0FUOxGIx48aN4+TJk6xYsYKmTZvy8uVLoPArR6QLFZ18lfjZtvPnz+eXX34hJiam4A3TonaSpXKexGpGtTB4n26W0/0JWVGpUiXi4+MBqFWrFnK5PNuVJy1avgYKxRVOdzQKI/KtI4QKVvo0+U/WulatWly5coXt27fTo0cPkpO/bHaupWiSHu3OiwNnbGyMpaUloaGhOT4nu1STdAQCAfoiARZvn/Bb53pMq+vC5jF9kaSmAPDw7FF+6+LHtLqurOjdjPDH91Xnzm1eibN/L2NJp3pM/eg8gLN/LWVW47LMauzN9T2bMowrTUvl4K9TmNOsAjMberF75kgkKcrvxLPrF5jdxIcz639jZiMvdk4dQmJ0FOuHdGNaXVem+7nzR58WqglIxLPHrOrXmvG1XCjjVZZ9+/apxunduzc//vgjzZs3x8TEBF9fX54+fZrj65dOcHBwoVY4KFeuHJcvX6ZWrVpUrFiRlbsOcTtSfZUjPpfz7e3tTevWrZk5c2YhWaZFndyNSimwlbLjK+exbcJAAGLCXzKlVinkss9PqgX/2ZVXqlSpgkQiIS0tDV9fX0xMTLQbLLV81RRaAohAoKz72crJRKVglZ+IBKAnEtDKyYQGJYwzOD2Ojo6cO3cOgDp16uTKgdJS9JHL5XmqZvIhud1g+alUkw85uW8X544f4Y8zd3kT9ICb/24l7NFd/pk2lDYTFjLp1GOqtf+Wv4f1RJr23gkLOLaX75ZtY/S/N3j9RHkeQOCFE5zbsJw+y3cycu8Vgq6ezTDe4d9mEBn8lCFbTjFy71XiIsI58ecC1fGEqAiSYmMYc+AW7SYu5NzG5ZjZOjDxxCMmHHtA48ETEAgEyCQS/vq5O+7V/Zh+6hET5i6ie/fuGVJytm7dypQpU4iOjsbNzY0JEybk+PqlU1D53Z9CR0eHSZMmceDocSJsPJGoKbyYLlT0uWji9OnTWbt2Lc+fPy8ky7Soi8Iq0WtuX4JpF4IR/ld2dVW/1lzbvSHLtlKF0q68Ym9vj0Ag4MGDB/j6+pKSkqJ1vLV81RT6rkN3Mz0GeFngZqqUlf9S/1vAezn4AV4WuJtlvbvawMCAjRs30rlzZ3x9fblw4cIXjqylqHD58mVMTEzw9vbOcx+53WD5qVSTDxkyZAiuJUvwbSUn2rduSdLzB1zbtYHq7b+lZLnKCEUiKrfsglhXl5CA97v9a3bph6m1HYZmFpSp+w1hgfcApUNeuVUX7NzKoGtgRIP+o1XnKBQKru7aQPMRMzA0s0DPyBi/Pj9z98geVRuBQEjDAaMR6+qho2+ASKxDfOQbosNDEeno4FypBgKBgJCA66QlJ1Lvu6GIdHSoUtuPFi1aZBB1adu2LdWqVUMsFtO9e3du376d4+uXjjoc73RemTljYJy9sE9hkC5U9Cns7e0ZOnQo48ePLySrtKiLgkzr+hK+xK70Wt7Xrl2jTJkyJCcnc+nSpXy0TosWzaLABHQ+hYFYSFsXU8ITJVzJRoDic4gFyvwydzNdfG0MclSnWyAQMGrUKLy9vWnbti2zZs2ib9++eX4fWooGX5Jmkk5eHO+cjGdnZ6d6bGNmQtzbN5AQxZkD27i0bTVyAAXIpBLlsf8wKWajeqyjb0Dc29cAxL19TfEy5VXHLOxLqB4nRkciSUliafeGqtcUKFB8sJxsZGGFjp6+6nndbwdz/I95rP2xEwDV2vXE77uhxL99jZltcYRCIQqUgjGlSpXi1atXWb43Q0NDEhI+7UBmRUhICP7+/rk+70vRlMoROREqAhgxYoRWVOcrJ14iy7KE4Ol1S7i2eyMJ795iblucxj+Op6x/c46vnEdU6HM6z1wBQHRYCPNaVOaXq+GIxGLevQpm55SfePXoLiXLVaFYqfdKrh+2Pb5yLi9uXSY04Ab7F0ykUssutB47N4MNUrmCBIk8S7XVnFDCtTSP3yXxJE5Ki34/8+L5U57GpmJrqJPnPrVo0VTU4ninY2+kQxtnnU9KLitQRrWzklz2sdLPkwx806ZNOXfuHK1bt+b27dv8+uuv6OhoBXa+RmQyGTt27ODMmS8r21e6dGmOHTuW4/Y5jXhnhVPJktSdMEGVmpEgkXPjbTLXIpI/Ozk1LWZL7Jv3zm/M65eqx4bmVujoG/DzzvOY2dhn3cFHkwU9I2OaD59O8+HTeR30kNX921HCqyIm1nbEvnmlnGAIhYgEAkJCQihdunSe3nN2qCvirYmVI9o4Z3+PShfVGTFiBOfOndNKbn+FvE2WIRYIMqmiWpVwov+afzG2suHesb1smziIkXuvfLa/reMHUNKnCn2W7yA04Abrh3bDq17TTO2+GTyB4DtXqdisA1Xb9syyL7FAQESyNIMc/Kf4+Df/29UHUEglHAyJp0L3Hymblsae53HIEeTLb74WLZqERnyCDcRCfG0N6V7anGE+Vgwsa0lrZxOalTShiaMxzUqa0NrZhIFlLRnmY0X30ub42hp+0RfQw8ODK1eu8Pz5cxo3bkxkZGQ+viMtmsKZM2dwcHD4YocwtyUFc5rjnRX9+vVj5cqVXLlyBYVCgSAtmaALx5AkfT5iXK5xa278u5U3zwJJS07ixB/v87eFQiFV2/bgwMKJJLx7C0BsRDiPL57Mtr+HZ48SGfIMhUKBvrEpQpEQgVCIY7nK6Ogbcvav35FLpNy8eJZ///03T+UaP0VISEiBlCn8FEW1ckSvXr2Ij4/Xiup8paTJ0kNRGSnXqDWm1nYIhUJ8vmlLsZLOvLx/65N9xYS/5NWDWzQeNBaxrh7OlWtSpu43ebZNgYK0HMxUwxIl7Hkex9J77zgXnkRoopRUmQKRji5iAyPS5CDU0UPPyASJQqCqbx+aKOVceBJL771jz/M4wr6wdrgWLepEIxzvjzHWEeJiqounhR5lLfXxtNDDxVQ335eczMzM2LdvH9WrV6datWrcvXs3X/vXon7yWrv7Y5ydnQkLCyM1NWfKgl8S8a5SpQp//vkngwcPxsLCAjc3N/Zv3ZijVCyPWg2p1a0/q/u3ZUHrarhWrZ3heJMhk7Eq4czyXk2ZWseZNQPa8zY4KNv+okKesWZgB6bUcmJF76b4duyDa9XaiHV06bV4I48vnGBS/dJMHzmUv//+G09Pzzy956yQyWS8evWKEiVKfL5xPlKQlSNyw4cb2m4d3Ilfw0afbK8V1fm6+TjSnc7N/dtUFZCm1XXlzdNHJMZEfbKvuLevMTAxR9fASPWauX3ev2fp6WbZkSyVs/tZHJufxBIYo0zhyu0mUalCufoTGJPG5iex7H4W90VlDLVoURcChba4NQBbtmxhyJAhrFy5kvbt26vbHC35QFpaGg4ODty4cSNfoqYeHh7s3r0bLy+vz7YtVaoUZ86cwcnJ6YvHTefXu1Gkakr+wwfoiQQM87HK935fvXpFlSpVCA8Pz/e+P8WmxzGEJuashnlBsqpf6wzL+45GYrqXNv/seU2bNqVJkyYMHTq0gC3UUpg8ik7lYEg8aR/4mtFhoSxsW52+K/+hpE9VhCIRv3Xxo0bn70mOiyXk7nV6LFwPQMjd66zo3ZRfroYTFxHOgtZVmXL2qcr53jphAAIEdJ65IlM++J8/tKFC0/bZpproCqFZSRM8LTIXN3gSm8r+YKXEfX7evkQCEAsFtChlnG1RBS1aNBGNjHirg65du3L48GGGDx/O5MmTcyWWokUzOX78OKVLl863VIXcbLD8klST7LDRF+Vrf/lFQdmlrvzunFRoyKm4UH6S08oR8+fPZ+bMmURHRxewRVoKE12RAMFHazFpKUkIBAKMLJTKrtf3bubN00cA2Ht48/zWJWLCX5ISH8fpdUtU51k4OFK8TAWOr5yHVJLGi1uXeXT2SLZjG1ta8+5lcLbHBQjQ/ahGsEKh4MTLBPa9iCdVlr9ON6BKQ9n3Ip4TLz+v9KpFi6agdbw/oHLlyly9epWTJ0/Srl07lZqWFs0jXiLjWVwaj6JTuf8uhUfRqTyLSyPhA6WTbdu25WvOcW4c7y9JNckONzNlCU5NIr2UZ0GQF8d7/vz5mVashgwZoor+xsbG8v3332Nvb0/x4sWZOHEisv+qujx9+pR69eszsa47M/w92DphAMnxsap+5javxJn1v7GkUz2m1CqVpfMd8fwJawZ2YLqfOwvbVufu0T2qYzumDGbv7NGsH9KVKbWdWPbtN0SFvq+9/eTyaRa1q8HUui7snTMGPnAkbuzbwm+9mqk+3wKBgJUrV+Lu7o65uTk//vijyvEoU6YMdnZ2FC9eHGdnZ5YuXYpAIECqhsmClvzD2kCE9CPn0tbFg9o9BrKid1NmNvLiddBDSpWvBoB7dT98GrVmSed6/N69AZ51Gmc4t8uslYQG3GCGnzsnVi2gYvNO2Y5ds+sPBJz4l2n13Ng3b1ym41KFAhuD97UaFAoFh0ISuB1V8OJT6WJTh0K0zreWooFaq5poIra2tpw8eZLBgwdTo0YN9u7di6ur6+dP1FKgfKryTTofVr6x0hUQrleMlu075psNpUuX5tq1azlqm9NygrnBx0qfs+FJ+drnl6JAaVd+EC+R8TZZRppMgUyhIDhFiKuvX67KlPXo0YOpU6cSExODubk5UqmUrVu3cujQIUCpqGljY0NQUBCJiYm0aNECR0dH+vfvj0Kh4Puho2hRvAKx8XFsGvkdx1fOo+Wo96qQdw7votdvmzEyt0Qkznj7TEtOZO2gDjQcMIbev2/lTdAD1gzqiK1bGWxdPJTnH93Dd79vxcHThx1TBnN02Sy6zvmTxOgoNo7sTYepv+FVrymXtq3h6j9/UbH5+8+vgIyVI/bv38+1a9eIi4ujcuXKtGzZkiZNmvDnn3+SkpKCnp4eu3fvZuTIkV/0f9GiGZjoiBALBcg+Ch1/M3gC3wzOWpyq9bh5tB43T/W8Wrv3qSKWJZzov3Z/ludZOJRk9s23quelyldl5J7sK6WIhYIM39GTrxJ5GJNaaIqvEjk8jElFT6QU6tOiRZPRRryzQFdXlz/++INBgwZRs2ZNjh8/rm6T/m/Jbhe8TAGpcgVpclR/qf/lEKbKFIQly6n3/TB2vtXJt13wualsUhCpJgZiIe5muhqx8Q+UZT7dzXTzXF0oWSrnypskNj2O4de7Uay8H83e5/EcDInnSGgCUs8amNdry4r77/j1bhSbHsdw5U3SJzdU2dvbU7duXXbs2AHA4cOHKVasGJUrV+bNmzccPHiQxYsXY2RkhI2NDcOGDWPrVqXqp5ubG9XqNUCkq4uxRTFq9xjI85sXM/Rfs0s/zO2Ko6NvkGnsR2ePYmHvSJXW3RCJxTh4+uDt34KAY/tUbcrWb4ajdyVEYjEVmrYn/LFS+CjwwnFsXTwp17AVIh0danXvj7GVTYb+P64cMXbsWMzNzSlZsiT169dXCRRt376dESNGMGzYMObMmcPYsWNz8V/RoskUhXSzJ7GphRLp/pj0yPeT2JxtgNeiRV1oI97ZIBAIGDRoEF5eXnTt2pUxY8YwdOhQbX3cQiJZKudwSIJKxCQvC4giXX3VLvig2DRcTXVpUtI4z46iulNNAKrZGBSabPTnEAnA1yazA/o5whIlXM1GOOvDyghCXf3/XgPZfyXFwpOknA1Pwt1Ml2o2BjhkISrTq1cvVqxYQb9+/di4cSM9eyqjfMHBwUgkEuzt39cwl8vlODo6AvDmzRuGDRzMxfPnSU1KQCGXY2BqnqFvM7vi2b6v6PCXhN67ybS671fI5DJphiV8kw+caV19Q1KTEgFllQkzOwfVMYFAgJlt5rE+vD7ZCRSFhYXh6OhIjx498PDwoG3bttnarKVo4WamS3iSVCO+/+l8mG6WLJWzPzih0J3udCRy2B+cwAAvHW29by0ai9bx/gx+fn5cunSJ1q1bc+fOHVasWIG+fv4srWvJmvzeBa9A6dwFxaWx8kF0nnfBOzg4kJiYqEpj+BQF5Xg7GOngaqpLkJpVFUUCcDXTzZFibDr5MZlKdzg+NZlq06YNAwcO5N69e+zfv59585RL7Y6Ojujp6REZGYlYnPnWN378eIQCAaN2nkVsYsH9UwfZNzdjtPhTE28zu+I4V67J9yt25vp9mRSzJfZ1mOq5QqHIIISUjigHE397e3tevnypEtWZMWNGru3RoploerrZ4ZCELNU1CxOpXMHh0ATaOpuq1Q4tWrJDOyXMAU5OTly8eJGEhAT8/PwKvbzZ/wuavgteIBBQunRpnjx58tm2BZHjnU6TksaIhepdeRELBTR1zHku5ZPYVFY+iCYoThmt/9J/7ceTqQ+Xl/X19enQoQPdunWjWrVqqg2a9vb2NG7cmBEjRhAXF4dcLufp06cqVdP4+HiMjU0wMDYjNiKcc38vzZVNZeo0JjL4KTf3b0cmkSCTSAi9f4uIZ59fJfGs3Yg3zx5x78R+ZFIpF7esIiEqIkObrCpHZEWnTp1YsmQJr169olWrVgQHZ1+NQkvRwkAspJQBKDSk6taH6WZhiRLVpFqdyBTwNDaNcK3IjhYNRet45xAjIyO2b99OixYtqFq1KlevXlW3SV8VRWUXfE7TTQoixzsdA7GQFqWMyWc9qRyjI4QWpYzRz8FSrromU7169SIgIECVZpLO33//TVpaGl5eXlhYWNChQwfVRHrKlCk8DrjN+NrO/DWkK2X9W+TKFj0jY/os38Hdo7uZ/U05ZjYuy+El05FKPp9zamRhRbe5azj8+wxm+JcmMuSZqjpFOgoyVo7Ijn79+tG4cWN8fHyoUqUK3bt3B1BVb9FSNElLS2Px4sX80rczCplmVKj5MN3sakSy2p3udGQKuBKRrG4ztGjJEq2ATh7Yu3cv/fr1Y8GCBXz77bfqNuer4MTLwnG6P0RHCBWs9HO1C37y5MkIBAKmTZv2yXbm5ua8ePHisykpX4KmX7P0yVRhVTfQEUIZcz2aljQmNDQUT09PXr9+jalp7pacvzahokOHDtGuXTvmzJmjFdUpgigUCvbs2cPo0aNxd3dn/vz5PDZw1Ih0MzczXdo6m5IslbP03juNcbxBad9gb0ttrrcWjUP7icwDrVu35tSpU0yfPp0RI0Zo6+N+IUVpF3xOK5sUZKpJOv7FjShjrldokW8dIXiZ6+Ff3OjzjVFfSbHjofEsWrSILl265NrphqJROeJTJCcnc/DgQaRSKa9evWLatGl06NBBK6pTBLl+/Tp+fn5MmTKFZcuWcfDgQcqWLatx6WZ3o1LyVG3p+Mp5bJswEICY8JdMqVUKeT6tzAj+s0uLFk1D63jnkbJly3L16lUCAgJo3ry59gctj2jKLvhPlaj7EE1INUlHIBDQtKQxFaz0C9z5To90NylpnKMJhbomU4mJibTwtOfAkaOfXZXIjqIuVKRQKJgyZQoWFhZUrFiRMmXKsGzZMtq0acPMmTM/34EWtRMSEkKPHj1o1aoVPXv25NatWzRu/F4AR93pZiIUGdLN8qPSkrl9CaZdCEYoUk4wV/VrzbXdG/Lcn1ShtEuLFk1D63h/AZaWlqoIRLVq1Xjw4IG6TSpyaNIu+JyQ7nh/LkOroKqafIxAoBSMaOVkgp5IkO+5nyKBMsWhlZMJDUrkzOlW52RK18CIaReCGbTtHMXssy/99yl8rPS/ePNnfpMboSJDQ0OuXbtGfHw8ERERrFu3DlNTU6ZPn866det49uxZwRqrJc/Ex8czYcIEKlasiIuLC48fP6Zv376IRJlXO9zN9Apl0v0xCqmEm3s3IQ17/zmKSNGs/QMKhQK5XK5xdmnRAlrH+4sRi8UsWrSIiRMn4ufnx7///qtuk4oMRXEXvLm5OUZGRp+tbFMYqSYf4m6mR0dbBY8vnECE4otFdgS8j7IO8LLIVfnFojaZ+pivTagoHTs7O37++WfGjx+fP4ZpyTekUil//PEHpUuX5uXLl9y5c4fp06djbPzpvRTqSDerYGOM9P4FvL29MTQ0xLOMF7ePKxUwP0wdAYgOC2FcJWtk/6VjvnsVzKq+rZhS24k1AzuQGBOVZdsjS2fy4tZl9s0dx5Rapdg7ZwwAwXeusrRHI6bWdWFpj0YE33lf5GBVv9YcWTqTld81Y3LNkrx7+YLLezbj7OKCiYkJzs7ObNq0qTAukxYtn0Rbxzuf6NWrF56enrRv3567d+8yfvz4fHO8PpbSFgmUZcVsDMQ5ltLWRDRxF3wb58/XpU6Pejs4OGTbpjBSTT7m13mzMUxJoUffTlzJRqDmc4gFyuiqu5kuvjYGuarTDZo5mcrte4CvQ6goK4YPH46HhweXL1+mevXq+dKnli/j8OHDjBw5Emtraw4cOEClSpVyfG56upmeSFDgqV3p6Wb+xY1I6NSJ9u3b89NPP+HXoi3rJgxixN7sJeXT2Tp+ACV9qtBn+Q5CA26wfmg3vOo1zdTum8ETCL5zlYrNOlC1rbIyUVJsNOuHdKPlqFmUb9KOgOP7WD+kGyP3XsXI3BKAWwd38N3vWylWyg1JchJ7541n/5mLNKxcjvDwcN69e5e/F0WLljygdbzzEV9fX65evUq7du24c+cO69atw8goZxvRPiRZKuduVApBsWlEpMiQyhWIBQIUHyyACxAgVSgQCwXY6ItwM9PFx0q/yOzgTpbKeRKbpjFL+grgSWwayVL5Z69huuPt5+eXbZvCSjVJJzQ0lPXr13Pv3j3sjXRo46zzyc+RAmUkNb8/R0V1MvUxRVmo6FOki+qMGDGC8+fPa5V41UhAQAAjR47kxYsXzJ8/n5YtW+bp/5GeblbSRCdfhcfSEQmUGyk/FB7r2LEjAF5eXgydtRgrRyde3r/1yX5iwl/y6sEt+q7ciVhXD+fKNSlT95sc2/Ho3DGKlXShUgulEmyFJu24uOVPHp09QuVWXQGo3LILtq6eAMjEIgQCIQ/u3aeWlxv29vYZVGu1aFEXRcNLK0I4ODhw+vRpDA0NqVWrVq7EK8ISJex5HsfSe+84F55EaKJUVfs4Va4gTY7qL/W/m2vqf1La58KTWHrvHXuexxGmocIB69evp3bt2kDed8Fnx+6ZIznx58Iv6iOnu+BzUtmksB3vadOm0b9//ww/LAZiIb62hnQvbc4wHysGlrWktbMJzUqa0MTRmGYlTWjtbMLAspYM87Gie2lzfG0N8+x0a/JkKi9oWuWI/OLbb78lMTGRXbt25Wu/WnLG69ev6devHw0bNqRly5bcu3ePVq1affEkyN1MjwFeFriZKjcHF2S62d9//02FChWoW7cu1w/+w5tngRnSRrIi7u1rDEzM0TV4H4wyty+RY3viI19nam9hX4K4iPdpf2a27/d16BoY0XPen2xZ9yf29vY0b96cR48e5Xg8LVoKCq3jXQDo6+uzbt06evfuTfXq1VXKeNmRLJWz+1kcm5/EEhijjLDldolbqlBG+AJj0tj8JJbdz+Ly7HAUBvm9jN92wgIa9BvxRX3kdBd8TiqbFGaO96NHj9i3bx+jR4/+ZDtjHSEuprp4WuhR1lIfTws9XEx1c52uVLZsWU6fPp3p9fyeTOUHX1JSTN2VI3IjVJQbRCIRCxYsYMyYMaSlaas+FBZJSUn88ssveHt7Y25uTmBgIIMHD0ZHJ39WM0D5mW3rYkp3dzM8zHWV0epcfinFAmWU28Ncl+7uZrR1Ns0wGQ8ODqZfv34sXbqUqKgorgVHYOfqCQoFugaGSFLeC9fER75XXzUpZktyfAxpyYmq12Jev8rWjo/vnybF7IgJf5nhtZjXrzC1sf/gnIx9eNb0Z93ug4SHh+Pp6Um/fv1ydhG0aClAtI53ASEQCPj555/ZsGEDnTp1YsWKFVm2K0wpbU1CU3eb58QuDw+PzzrehZnjPWnSJEaMGFGgYj0fcv/+/SzTbAo7J3pu80oEXfn0pPZLS4qpq3JEej5tbja15oaGDRtSunTpbO9LWvIPuVzO33//jYeHBwEBAVy9epX58+cX6PdVmW5mymBvS+rYG+JoJEZPJFBWKRIK0BUqP2O6QuXz9OpFjkZi6tgbMtjbkjbOplmmOCUmJiIQCLC2tgZg35a/ef1UGUm29/Dm+a1LxIS/JCU+jtPrlqjOs3BwpHiZChxfOQ+pJI0Xty7z6OyRbN+DsaU1716+XzH2qN2QyOCn3D70DzKplLtHdhPxLBDPOo2zPD8+KoL7pw4hTUlCT08PY2PjQt93o0VLVmg/hQVMw4YNuXDhAkuXLmXAgAGqCJO6pLQLgzlz5uDq6oqJiQleXl7s3r07w/F4iYyIl8EZdrtDxrqtN/ZtYeV3zdi/YCLT6royr2UVgu9c5ca+LcxpWp5fGpThxr9bVefumDKYo8tmAfDs+gVmN/Hh3Ibl/NKgDLMal+X63s1ZjqMaq09zQFkNQyAQsHz5ctzd3TExMWHSpEk8ffqUmjVrYmpqyuTJk3nx4gUSSdYpPenXujAi3tevX+fixYv89NNPBT7W5yisyZQsl4JVWdmVXm4sJ2i6UFFemT9/vlZUp4A5ffo0VatWZcWKFWzbto1t27bh4uJSaOMXRLqZl5cXI0aMoEaNGtja2hLy+D6lylcDwL26Hz6NWrOkcz1+794gk1PcZdZKQgNuMMPPnROrFlCxeadsx6nZ9QcCTvzLtHpu7Js3DiNzS3ot2cS5DcuZ4V+aM38tpdeSTRhZZK3mqpDLObVhBbU8nbC0tOTMmTPaiaYWjUC7ubIQcHNz4/Lly/Ts2ZMGDRqwc+c/3EgxKBRVv3R1xlSZgqY5FD/5UlxdXTl37hx2dnbs2LGDHj16EBQUpDr+NlmGOAdJCaH3blKlTQ8mnXrM8ZVz2TLuB8rUaczIvVd5duMim0Z9h3eDFugZZs6BTYiKICUhjnGH7/Lkymk2j/6esvWbYWBq/skxxf9dnyNHjnDjxg1CQ0OpVKkSFy9eZOPGjVhZWVGjRg1MTU158eIF7u7umfoozDST8ePHM2nSJAwNDQtlPAAnJydWr17N+fPnuX//Pnp6euzduxdjO0e6zV/H/RP/cn7TH4h1dWk3eTGla9QHlBOekj5VeHr1HG9fPMGlSm06TP0NQzMLAB6cOcyR338hLiIcew9v2oybj41LaUAZ3a7esTe3D/7D2+Agyvo3J/b1S/76uQdCoRD/fiOp1/snQu5e58CiyUQ8C8Tc3pGWo2biXrUWCRI5LRr5U6tWLU6fPs3NmzcJCAjAzc3ts+9XXZUjCvozVLZsWdq2bcvMmTNZsGBBgY71/8bjx48ZPXo0d+7cYc6cOXTq1EkjNrIa6wgx1smZENOnmDlzZgYxpl/vRpH6X/So9bh5tB43T3WsWrueqseWJZzov3Z/ln1aOJRk9s23quelyldl5J6MlVKcKlbnp80nsjz/hz/3Znhuam3HT+v+ZZhP1o65Fi3qQhvxLiRMTEzYtWsX9evXZ+jyzdyLSi50Ke2TrxI/3zgf6NixIw4ODgiFQjp37oy7uztXr76vt5omU2So0JIdFg4lqdK6G0KRCJ/GbYh9/Qr/H0Yi1tWjdI36iHR0iQp9nuW5QrEO/v1GItLRwbN2I3QNjHj7IijLth+Sbtfo0aMxNTWlbNmyeHt707hxY1xcXDAzM6Np06YYGhpmm25SWGkmJ0+e5NmzZ3z//fcFPlZ2/Pvvv/Ts2ZMbwW8o4VmOdT92QiGXM+7wXfz7jWTPzJEZ2t/av532U5Yw/ug9hCIR/85T1pR+G/yUreP602LkL0w88QiPWg356+fuSCXv00TuHN5Fr982M+VMEF1nr8LMrgS9Fm9k2oVg6vX+idiIcNYP7Ub9vsOYdPoJzYZNZeOo70iJjiIiWRkl37BhA6tWrSI+Pp5SpUrl+H1+LFQkymcfKi9CRfnBtGnTtKI6+UhUVBRDhgyhVq1a1KpVi4cPH9K5c2eNcLoLEhv9zAI/moCm2qXl/xut412ICIVCeo6YQMVWXZELCvfSp0e+CyPnO33Hu7m5Oebm5ty7d4/IyEjVcVkO016MraxVj8V6StU+Eysb1Ws6evqkJWU9mTA0s0Akfr+go6NvkGFTT3akW2Zra6t6zcDAINNzY2PjbB3vwqhoolAoGDduHDNmzMjXzVm5pU6dOnzzzTfIBSJ8GrUiMTqSet8NRaSjQ/lv2hIdFkJyfKyqfcXmHbFzK4OugRGNBo0j4Nhe5DIZd4/uwbNOQ9yr+yHS0aHOtz8iTU0h5M411bk1u/TD3K44OvpZ17S+fXAHHrUa4lm7EUKhEPfqfpQoU54H54+R9l80rnfv3pQtWxaxWJyn65b/lSMUeRYqyg/SRXXGjRtXqON+baSmprJgwQI8PT2Ry+U8ePCAUaNGoa+fM7XRoo6bmW6uN3EWNOnfKy1aNA1tqkkhki6lrRCqZxYukcP+4AQGeOkUWL3v9B3vJ06coEaNGohEIipUqJAhx1wkEKBroEyNkKQkIzI2AZTpIYWBroEhaR/uvP9g3Jz+dpiZmWVbUrAwHO+9e/eSmppK586dC3Scz5E+IZEpFOjo6WNoboXwP3nr9MlSWlIiBiZmQMZyXxb2JZBJJSTGRBH/9jXmdo6qY0KhEDPb4sR+WCrM7tMS8NHhL7l3fF+GDVsyqRT3arVVkz1HR8fsTs8x6ZUjwhMlXyRUlCaRIH/9nG/9q+Zbne68kC6qc+nSJWrUqKE2O4oiCoWCnTt3MnbsWMqWLcu5c+fw9PRUt1mFjo+VPmfDk9RtRgYUKO3SokXT0DrehYgmSWm3dTYtkP4/3vG+bt067t27l6GNrkiAiaU1pjb23Dq4A9/2vbj571aiXr4oEJs+xr60N/dPHqBqmx7EvX3N9T2bVNF1QQ5dbzMzs09GvAtyaVkmkzFhwgTmz5+vMbv0RTl8v7Fv3pcPiwl/hUisg5G5FSbWdrwJeqA6plAoiH3zCrMMpcIyjvHxc3NbByo270i7Sb9meF1X+N6+/Py/fKlQke7bFzT7oT2jc1HrvyAwMjLil19+YeTIkVpRnVxw+fJlRowYQVJSEn/++Sf+/v7qNkltGIiFuJvpEhijOXX8DcUColNlRUZUTsv/D9pPZCGhiVLaBcHHO94DAgKoVatWhjbWBiKkCgXtJi3i3N/LmFG/NG+eBVLKp2qB2PQxtbsPQKSjy8xGXuycMpgKTTuojklzmAbzKce7oHO8N27ciKWlJU2bZpZaVhe6IkGOJi23Du7kzbNA0pKTOLZyDt4NWypz+Bu15tG54wRdOYtMIuHchuWIdPUoWT77z8TH5cYqNOvIw7NHeHzxJHKZDElqCs+uXyD2TTi6+Z2U/QF5rRxR0duLMmXKaISQTc+ePbWiOjnkxYsXdOnShQ4dOtCvXz+uX7/+f+10p1PNxiDf9z58CfESRZHQtNDy/4dAUZh15v6P2fM8TmOiAQKU4ghtCijqnRM+3AWvSeiJBDnaBS+XyzEyMuLt27cYG2esqhIfH4+DgwPx8fH5bl9qaioeHh5s3LhRpQJa2HxY1SQoKIiNGzcSL5ExYs0edkwfxpgDNwFlmsfEavaMPXQHM1uHTFVNnCvVpMPU31TlwO6fPMDRZbOIfRuOQ2lvWo+bp5J/ntu8Eu0n/4qbbz2VHQ9OH2LfvHGkJsRTv+9w6n77IyEBNzi8ZBqvgx4iFIoo4V2RduPnM76hDy0a+dOjRw/69u1b+BctG3bt2sWiRYs4f/68uk3h+PHjDBgwgAcPHqCrq82N/ZjY2FhmzZrFmjVrGDJkCCNGjMDIqGBLPhY1dj+LI0gDAkwfkpXkvRYt6kTreBcCyVI5S++907ib0WBvS7Utw216HENoYu7qMRcGjkZiupc2z1HbcuXKsWHDBipUqJDh9djYWBwdHYmLi8t3+3777TeOHj3K/v1Zl+RSJ5+bTK3q15qKzTpQtW3PbNsUBDmdTKkDqVSKi4sLe/fupWLFiuo2h+bNm9OoUSN+/vlndZuiMUgkElatWsWMGTNo0aIFM2bMwN7e/vMn/h+SLJWz8kG0RgZVCrNUpxYtn0KbavIZpk6dSo8ePb6oj6Impd27d28mTpyY/bkCQYa63Hnha9gFn510fEGlmsTHxzNr1ixmzZqV733nB5pauktT7QIQi8UMHDiQpUuXqtsUAObNm8esWbO0ojoov8f79+/Hx8eHPXv2cOTIEVavXq11uj+BgVhIi1LGha70mhPSK3sdCilcQTktWj5GA78eXx+FLaWdE75USvtL8bHS14i0mw/J7S740qVLZ1nZpKCqmixevJgGDRrg4+OT733nB1/DZEod9O3bl127dhEVFaVuUzKI6vw/c/v2bRo2bMjo0aNZuHAhR48epXz58uo2q0jgbqZHBSt9jXW+C1PTQouWrNDAr8bXR7pkdW6lrguawpL4zor0XfCa4qfJZTLkr58jT03+fOP/8PDwyDLiXRBVTSIjI1myZAnTp0/P137zk89Npn74c2+hp5kUhZJi1tbWtGrVirVr16rbFEApqrN+/fr/S1GdV69e8d1339GkSRM6duzI3bt3adasmTY1IZf4FzeijLmexjrfhaVpoUVLVmjg10I9zJ07l+LFi2NiYoKHhwcnTryXpU1LS+Pbb7/FxMSEsmXLcv36ddWxOXPm4OrqiomJCV5eXuzevVt1bP369VSvWZNd8yYwvX5pTvwxD2laKgd/ncKcZhWY2dCL3TNHIknJ2tm7sW8LK79rxt45Y5ha14VF7WoQdOWs6vj1vZtZ1K4mU2o7Ma9lFa7s/Et1bHHHOjw880E9Y4mEGf4ehD26C8Cm0X2Y7F8GMzMz6taty/379zOMHRkZSaNGjTAxMaFevXoEZ1PyLDU1lZEjR1KyZElsbW0ZMGAAyck5c141aRe8WCTg/oGtuLq6Mm/ePBISEj57TmGmmqTLTru6uuZrv/mJpk2mBIC7mW6RKCc2ePBgli9fjkymvslwOv+PojqJiYlMnToVHx8f7OzsePz4MQMGDEAs1lbczQsCgYCmJY01OvK9PzhBW+1Ei1rQwK9E4RMYGMjSpUu5du0a8fHxHDlyBCcnJ9Xxffv20aVLF2JiYmjVqhWDBw9WHXN1deXcuXPExsYyZcoUevToQXj4e9GP61evYl3CiQnHHlD/+2Ec/m0GkcFPGbLlFCP3XiUuIpwTfy7I1rbQezexKuHMpBOBNOw/mo2jepMUq8y/NLYsRq8lm5h67jkdpi7hwKJJvHp4B4CKzTtx6+CO9+/xwnFMitni4KlMU/Co2YDx+65yOegllSpVonv37hnG3bRpE5MmTSIyMpIKFSpkOp7O2LFjefz4Mbdv3yYoKIhXr17lOCrrYKSDq6mu2p1vkQDczfX5+/eFHD9+nJs3b+Li4sKsWbM+uUEy3fH+OF8wv1NNQkNDWbduHZMmTcq3PgsKTZpMiQTga5O1yqWmUbVqVWxsbDh48KC6TQGUojoXLlzg0qVL6jalQJHJZKxdu5bSpUvz5MkTbt68yezZszE1VV/Fp68FgUBAgxLGtHIyQU8k0Jj7QjrpmhZatBQ2WscbEIlEpKam8uDBAyQSCU5OThkii7Vr16ZZs2aIRCJ69uzJnTt3VMc6duyIg4MDQqGQzp074+7uztWrV1XHbezsqd21LyKxGLGePld3baD5iBkYmlmgZ2SMX5+fuXtkT7a2GVkUo1b3/oh0dPD5pi3Wpdx4dO4YAJ51GmPl6IxAIMClci3cq/vx4tZlQCnNHXjhOCkJypJ2tw5sp2Kzjqp+q7Tpjp6RMQKxLlOnTuXOnTvExr6X9m7evDl169ZFT0+PmTNncunSJUJDQzPYplAoWLVqFb/++iuWlpaYmJgwfvx4tm7dmuNr36SkMWKheu/IYqGApo7KkoDe3t5s3bqVM2fO8ODBA1xdXZk+fToxMTGZzrOyskIgEBAZGZnh9fx2vKdPn84PP/xQJDZ1adJkytVMV62KkLll8ODBGrPJ0tDQkF9++YURI0Z8tRvRjh8/TqVKlVi7di27d+9m06ZNlCpVSt1mfXW4m+kxwMsCN1PlHhBN8b8LWtNCi5bs0DregJubG4sXL2bq1KnY2NjQpUsXwsLCVMft7OxUjw0NDUlJSUH6X77233//TYUKFTA3N8fc3Jx79+5lcMRsi5dQPU6MjkSSksTS7g2ZVteVaXVdWfdTZxKjMzpuH2JqY58hv9DcvgTxka8BZRR7+bdNmO7nzrS6rgSeP05izDvledZ2lCpfjXsn/iU5PpbACyep0EwpFCOXyTj823RmtahKlZLWquj+h3Z/KK1tbGyMpaVlhmsC8PbtW5KSkqhcubLq/Tdp0oS3b99+5oq/R9274HWE0KKUMfofpSOUKVOGjRs3cvHiRZ4/f46bmxuTJk3KsAFOIBBkmW6SnznegYGB7Nmzh9GjR+dLf4VBk5LGIFdvysSHk6miQseOHbl9+3aWG3bVQc+ePUlKSuKff/5Rtyn5ysOHD2nRogUDBgxg8uTJnDt3jmrVqqnbrK8aA7GQti6mdHc3w1hHABoymZMp4EpEzvf1aNGSH2gd7//o1q0b58+fJzg4GIFAwJgxYz57TnBwMP369WPp0qVERUURExODt7d3hgiR8AMHzNDcCh19A37eeZ4pZ58y5exTpp59xrQL2UtGx0WEZ+gv5vUrTIrZIU1LZdOoPtT5dhATjj1gytmneNRumOGGVqllF24f3EnAsX2U9Kmikt++fegfHpw+TP8/dnItOIIXL14AZBjnw+h2QkIC7969w8HBIYNtxYoVw8DAgPv37xMTE0NMTAyxsbE5yo/+EHXtgk+v6/opUQV3d3fWrVvH1atXef36NaVLl2bcuHGqyYWHh0cmRyk/c7wnTZrEiBEjsLCwyJf+ChqFQsHK35ewa9pQhAr1ON/ZTaY0HX19ffr27cvy5cvVbQqgXAlcuHAhY8aMIS1NfRWQ8ouIiAgGDRpE3bp1adCgAffv36d9+/bajZOFiLmeiCSpAnJxzafUKsW7ly/yvS0oN18/iU0r8rne8RIZz+LSeBSdyv13KTyKTuVZXBoJkqL9vr5WitYvUwERGBjIyZMnSU1NRV9fHwMDgxw5TomJiQgEAqytrQFYt24d9+7dy9BGIHgvpS0UCqnatgcHFk4k4Z3ScYuNCOfxxZPZjxEdycUtq5BJJAQc28vb54/xqN0QmUSCNC0VIwsrhGIxgReO8+Ty6QznlvVryqtHd7m4ZRWVWnRSvZ6alIBYVxdjMytkqcmMHz8+07gHDx7k/PnzpKWlMWnSJKpXr54hCp7+fvr168ewYcOIiIgAlFUBjhw5kqm/z1HYu+B1hOBlrod/8Zwpz7m4uPDnn39y8+ZNYmJi8PDwYNSoUTg4OGQZ8c4Px/vGjRtcuHCBIUOGfHFfhUFCQgJdu3Zlw4YNbF48m8o2Rho5mdJkBgwYwIYNGwpE9TQvNGjQAE9PT42ZDOSFlJQU5syZg5eXF7q6ujx69Ihhw4ahp1c0PyNFmbxoWky7EIxlCad8b5vOpzQtNJVkqZwrb5LY9DiGX+9GsfJ+NHufx3MwJJ4joQkcDIln7/N4Vtx/x693o9j0OIYrb5KK/ATja0HreKOszDF27FiKFSuGnZ0dERERzJ49+7PneXl5MWLECGrUqIGtrS0BAQHUqlUrQxsdIUg/iCQ3GTIZqxLOLO/VlKl1nFkzoD1vg7MXo3H0rkRkyDNmNPDgyLJZdJu3FiNzS/SMjGk5ahZbxvRjej03bh/aRZm632QcW98A7wYtePcqhLL+zVWvV2rRCXN7R6Y29qZZ9QpUr14907jdunVj2rRpWFpacuPGDTZu3JilfXPnzsXNzY3q1atjampKw4YN87RUXpi74NOdsyYljXMd7SpVqhQrVqzgzp07pKSk8Pvvv7Nz584MaTj5lWoyfvx4Jk6ciKGh4Rf3VdA8efKE6tWrY2BgwIULF3B2di70yZQkJYmSOpIcT6Y0EUdHR+rXr5/t900dpIvqvHv3Tt2m5AqFQsGWLVvw9PTk6tWrXLp0icWLF2NlpZkqpv8PaDUtvoywRAl7nsex9N47zoUnEZooJVWmQKaAVLmCNDmqv1T5f6/LFIQmSjkXnsTSe+/Y8zyOMG1eu1rRSsYXAp+T0s6OG/u2cG3PRgasPZDnsU+sWkBk8FM6z1yR6ZimSmk/iU1lf3AC0v9uHPmFSKDM/W1RyjjfIqLHjx+nS5cuyOVyunXrxpgxY5BKpfj7+/P8+fM893vq1Cn69evHw4cP0dHJ2wbBeImMt8ky0mQKZAoFIoEAXZEAGwMxxvnoDe/bt4++ffsyffp0+vfvn2HSoVAoOPkqkdtRKRTkqqeOEGTBD1g1vA9nz57NlBZVlDh16hSDBw/m3r17GpMG0b9/f4yNjVm4cKG6TckRFy5cYPjw4chkMhYtWkTdunXVbdL/PQ8fPqTlt3159egepjb2fPPTRLzqNWHHlMGIdfV59/IFIQHXKe7pQ8fpy7BwUK6wjqtkzYg9VyhW0oUdUwajq29IdHgoz29ewsbFgy4zV2Ll6JypbUp8HPvmjePxhRPo6BtQtV0P/PoMQygUqn5bS5arwrU9mzA0MWPj6pU0bdpUnZcoW5Klcg6HJPA0Lg2Zgi8SnxPw3+ZzU12alDQuEuVWvza0RUoLARt9EaGJhS+ekxQbzfU9m+g0Y1mWxy1EmrnspNwFr5P/NxozXZo45u+NpkaNGiQmJvL06VMWL15M+fLladKkyRfVY1YoFIwbN47p06fnyulOlsq5G5VCUGwaESkypHIFYoEAxQdXT4AAqUKBWCjARl+Em5kuPlb6ebomMpmMKVOm8Ndff7Fv374sV07SS4qVNNEp+MlU+brIH/SlQYMGnD59Gltb2/wbqBDx8/NDIBBw6tQp/P391W0OoBTVKVu2LD/++CMuLi7qNidbnj59ytixY7ly5QqzZs2iW7duBaIiqyV3SCQSmrdsiUfTzvRetoPgW1f4e3hPBm88DsDtQzvpvWQzjuUqc2jJNLZNHJBtwOnO0T189/tWHDx92DFlMEeXzaLrnD8ztds3bxwpCXGM+vc6SbHvWDOoIybFbKnapgegLNVbqUUXJp0M5Pquv+nz/feEvXqlMZPddPI7EKXgvyh/XBorH0TnayAqncIK+hRVtFegEFCHlPbVXRuY07QCpWs1wLlyzUzH5ZI0Ni2eTdOmTTUqpzSdD3fBe5gry9Pl9hqKBUrHzMNcl+7uZrR1Ns332b2RkRHFihUjLS2NefPmERgYiKmpKa9evaJv3748ffo0133u27eP5ORkunTpkqP26lh+jIqKolmzZly4cIHr169n6XR/SH6XFBPwXg5+gJeF6odj7NixdOnShYYNG2Yq81hUEAgEGlVaEJSVnYYNG6axojrR0dGMGDECX19fKlasSGBgID169NA63RrC5cuXiY9PoH7vnxDr6OJarQ6edRpz5/AuADxrN8K5ck3Euno0/nE8IXevE/P6VZZ9la3fDEfvSojEYio0bU/443uZ2shlMu4e2c03P01Ez8gYC4eS1OkxiFsH3mtbmNuVoFq7nghFInxbdeF1eDhv3rwpmAuQBxQKBSdeJrDvRbzqfp6fpP8O7HsRz4mXCV9UNlSbc547tHelQuBzUtrZUblV1zynmVRr15PpF4NpOyFrcR4dXV22LJzOt99+y/bt2ylRogSdO3dm7969pKZqjpSuvZEObZxNGextSR17QxyNxCoxBj2hAF2hMs1AV6h8LhIoU2gcjcTUsTdksLclbZxNC7Se84eVTaytrRk+fDhOTk4UL14cX19fevXqlaXCZVbIZDLGjx/PrFmzPus0JEvl7H4Wx+YnsQTGKFcGcps/KVUob8CBMWlsfhLL7mdxn70Z3rx5kypVquDj48OxY8dyHFn+cDJlSxLStNQCmUxNnjyZli1b0qhRI6Kjo3M3gIbQo0cPzpw5Q0hIiLpNUTF8+HAuXryoUaI6aWlpLFmyBA8PDxISErh//z7jx4/HwKBoCCf9vxAWFoZd8RIZVgIt7EsQ91YpNmdmW1z1up6hMYamFsS9fZ1lXyZWNqrHuvqGpCYlZmqTGBOFTCrBwv59OV9z+xLERbwXtzMp9r4fnf8+L7mtyFVQKBQKDoUkFHiKHihVPG9HpXAoJPfOtzbnPG9oHe9CQFOltIuZGtO1a1f+/fdfnj17hr+/P4sWLcLBwYF+/fpx6tQpjZCwBuU19LU1pHtpc4b5WDGwrCWtnU1oVtKEJo7GNCtpQmtnEwaWtWSYjxXdS5vja2tYKPlrH9fylsvl6OjoMG3aNIKCgnBzc6NWrVp0796dBw8efLKvTZs2YWlpSbNmzT7Z7klsKisfRBMUp9ys9KXBkI+XH5/EZj35WrduHd988w3z5s1j/vz5eZLUtjfS4eHWZSQfWlMgkymBQMDMmTOpX78+33zzTQZhqKKCsbExPXv2ZOXKleo2RYUmieooFAr27NmDt7c3hw8f5uTJk/zxxx9FNr3oa8fBwYHwVy8zlKWMef0KU2tlidvYN++j26lJCSTFRWNqbZepn5xiZG6FSKxDdPhL1Wuxr19hapO1CJmmbXQ7+SqRhzGpBe50pyORw8OYVE6+yjyJyQp1BX2+FrSOdyGh6VLaVlZW9O/fnzNnznD79m1Kly7N8OHDKVmyJCNGjODGjRtq/7H9EGMdIS6munha6FHWUh9PCz1cTHXVkj+WleOdHq02Nzdn0qRJPH36FG9vb/z8/OjcuTMBAQGZ+klNTWXy5MnMnj072zxDdS0/pqamMmDAAObMmcOZM2fo2LHjZ3rKHrlczpYtW+jaoV2BTaYEAgELFy6katWqNGvWTGMiWblh0KBBrF69mpQUzSl11qNHD5KTk9UqqnP9+nX8/PyYNGkSS5cu5dChQ3h7e6vNHi2fx9fXFx0dHc5vXIlMIuHZ9Qs8PHsEn2/aAkoxuBe3LiOVpHFs+RxKlquMuV3xz/SaPUKRiHKNWnN02SxSExOIDgvl/KYVVPxPRO5jNOSnGVAGVQoj0v0x6ZHv7IIu6agr6PM1oXW8C4miJKXt6OjIqFGjuHXrFseOHcPQ0JBOnTrh6enJtGnTePLkSSFarPlk5Xh/7Dibmpoybtw4nj17RpUqVWjUqBHt2rXj1q1bqjarVq3C29ub2rVrZzmOupYfQ0JCqVu3LhEREVy7dg0vL68v6vvChQuYm5tncpbyezIlEAj4/fff8fLyomXLliQlJX2R3YVN6dKlqVSpEtu3b1e3KSpEIhELFixgzJgxhZ6SFhoaSs+ePWnVqhU9evTg9u3bNG7cuFBt0JI3dHV1adurL0FXzzCjgQd7Z4+m0/Rl2Di7A1C+SXtOrFrADD93Xj28Q6dfMlfhyi2txsxGV9+Q+S2r8Mf3LSjfpD2VW3fPsm1cXBwA06dPZ9WqVZw/fz6DSnFhkSyVsz84odCd7nQkctgfnJBl5Lko5ZxrOtpygoVIslTOygfReSotmF/oiQQM9LLItaqfQqHg6tWrbN68mW3btuHo6Ei3bt3o3LlzkS7dlh8EBQXRqFEjVfnAgIAAunXrlmVUO52kpCRWrVrFvHnzqFKlCiNGjKBz584cOXKE8uXLZ3nOiZeF43R/iFAh4/quDVQ2kTF69Oh82fE/cOBASpUqxdixY/PBws8jl8vp3bs3r1+/Zt++fejr6xfKuPnB/v37mT59OlevXlW3KRlo3rw5DRs2ZNiwYQU+Vnx8PHPnzmXFihUMGjSI0aNHY2JiUuDjask/FAoFlWrWpuuy3cgFGX97dkwZjJmNA41/zCzkVljIJWms/a4JIU8eYWZmhlAoJC4uDgMDA7y9vfH29sbLywsvLy/KlCmDnZ1dgVQ/2f0sjqD/KnmpC9F/m9bbOpuqXksP+hRW+ouOEMqY69E0D1obRQGt413IPIlNZd+LeLXMaHWE0MrJ5ItLB0mlUk6dOsXmzZvZs2cPlSpVolu3brRr167ISJvnJ1KpFGNjY2JiYtDX1+fOnTt8++233Llz57PnJicns2bNGiZMmICRkRH//PMPNWrUyNROnZ8boUJGW1fzfCk5lZaWRvHixbl+/TqlSpXKB+tyhlQqpUePHsTHx7N79250dXULbewvQSaT4e7uztatW6lWrZq6zVHx4MED/Pz8ePToEZaWlgUyhlQqZe3atUyZMoXGjRszc+ZMSpQo8fkTtWgcAQEBtGjRgp/33SRVntHl0ATHO13TIi4ujrt373Lr1i1u3rzJtWvXCAoKwsLCAmNjY2QymSoS7u3tTZkyZVTOuJeXF46OjnmupBOWKGHzk1iNEBgSC6C7u5lqZVwdQZ90obsGJYwLb9BCQptqUsi4m+kVijrjx+SnlLZYLKZRo0asW7eO8PBwBg0axMGDB3FycqJt27bs2LGD5OTkfLC6aCAWi3F2dlaVDsyNcqWBgQFdu3ZFLBYzcOBAunTpQuPGjTl37pyqjbqXH+UCUbbLj7nl6NGjeHp6FqrTDcr/0YYNG9DT06Nz585IJEVjF71IJGLQoEEaVVoQlKq97dq1Y+bMmQXS/5EjR6hQoQKbN29m//79/PXXX1qnuwizY8cOOnTogI2BSN2mZImNvtIuU1NTateuzU8//cS6deu4d+8ecXFxHDp0iPHjx9OiRQt8fHyQy+U8ffqU69evs23bNsaOHUu1atUwMTGhSpUqfPvtt8yZM4e9e/fy5MmTHBUpuBqRrNZI94fIFHAlQvkbruk550URbcRbDahj2cbLXC9PEum5ISYmht27d7N582auX79Oq1at6NatGw0aNMhT9YuiROvWrenVqxft2rXj5s2b9O3bl5s3b+bo3FGjRpGYmMjy5ctJS0tjw4YNzJw5k1KlSjF58mSiS1VWCQmpi6yWH/NCt27dqFOnDgMHDswny3JHWloa7dq1w8jIiE2bNhWJz+W7d+9wdXUlMDAQGxubz59QSLx+/ZqyZcty9epVXF1d86XPe/fuMXLkSJ49e8b8+fNp1arVV7nU/P+Gl5cXa9euReDsw7nwJI2I6qYjFkAde0N8bQ1zfI5cLufZs2fcunUrw19aWhqurq5YWVkhEomIj48nJCSEN2/e4O7uniFdxcvLC3d3d3R1dUmWyll6753GON6gvOd/72nOX49j1Z4eO8DL4qtS2NQ63mqiMKW0K1jp41/cqFB/wMLDw9m+fTtbtmzh+fPndOrUiW7dulG9evWv8od01KhRWFlZMXbsWK5fv86AAQO4fv36Z897+fIl5cuX5969e9jbvy91JZFI2Lx5Myu37KL51GWI9dSfl/zx8mNuSUhIoESJEgQFBVGsWLF8ti7npKSk0KpVK+zs7Fi3bh0ikWZG4T6kb9++uLi4MH68+pbjs+KXX37h7t27X7wB9PXr10yePJm9e/cyYcIEBgwYUGTSgbR8mvv379O0aVOCg4NJkSk00sEc7G2ZL47d69evMznjr1+/xsvLi5IlS2JqaopcLufdu3cEBgYSHByMk5MT/n2G4li/DQJxwelN5BaxACx0hbxLk38VQR9N4uuZQhQx0qW0WzmZqGoY5yfptY9bOZnQoEThb1Cwt7dn6NChXL58mQsXLmBra0ufPn1wcXFhwoQJ3L9/v1DtKWg+rGzyYTnBzzF9+nR++OGHDE43gI6ODr169WLUsr8Ra4gD8uHyY17Yt28ftWrVUqvTDaCvr8+ePXsIDQ2lf//+yOWaXzt28ODBrFixAqlUqm5TMjB8+HAuXbqUZ1GdpKQkZs6cibe3N6ampjx69IghQ4Zone6viB07dtC+fXsEAgFhwc959+gWcg3Rh0jXtMivaKqdnR1NmzZl/Pjx7Nixg6CgIMLCwli4cCF169ZFoVBw+/Ztjh07ho6ODm3btqVly5YUr1hTo5xuUJb4e5uqXqcblL87T2PTCP+KRHa0jreaKSwpbXXi5ubGxIkTefDgAbt370YikdCkSRPKly/P3LlzCQ4OVreJX0zp0qUJfv2WZ3FpvMYAR9/6PIpO5VlcGgnZLGk8fvyY3bt3M3r06CyPJ0vlPI2XgEAzvqYK4ElsWp5zvTdt2kS3bt3y16g8YmhoyL///svDhw/56aefNL50VYUKFXBycmLv3r3qNiUD6aI6w4cPz9U1lMvlbNiwAU9PT+7cucPVq1dZsGDB/+Xm7K+dHTt24Ofnx4ABA6hWrRqGEU/RFWvGKlNWmhb5jampKXXq1GHIkCGsW7eO27dvExMTw4YNG2jUqBEpKSnIDc0L1AaZhk3Yc8uXBn00DW2qiQYRnijhSkQyT2LTEJA7JSiBXIZQJMLdTJdylnoIBALSZApkCgUigQBdkQAbA7FaBGayQi6Xc/78eTZv3szOnTspU6YM3bp1o2PHjmqPiOaUZKmcu1EpBMWm8TpJQnJqGkb6+khlUlJSUzEyNESAAKlCgVgowEZfhJuZLj5W+hiIhRgZGdG1a1dWr16dZf9X3iR9FfmQAG/fvsXd3Z2XL19ibKw5u9RjY2Np1KgRtWvXZuHChRqdBrVt2zZWrlzJqVOn1G1KBuRyOZUrV2b8+PE5ElY6c+YMI0aMQCwWs3DhQmrVqlUIVmpRBxcuXKBJkyaIxWL69evHmDFjsLKy0tiyeeogXiJj5f3obK9F3NvX7Js7lhc3L6NraESt7v2p1fUHQu/d5N/5E3j7/DE6+vqU9W9B8xEzEOsoV4vGVbKm1Zg5XNj8B3KZjA5Tf2PbxIHU7j6AM+t/RygS0vjHCVRprRnBkM+RnylB6kbreGsgHzp0ESkypHIFYoEABQoUKKPaHzp0kugIYt6+wbNcBaJSM7ZP51MOoLpJS0vj6NGjbN68mYMHD1KrVi26du1K69atNbJeb1iihKt5nCCJBcrIcTF5Iv1rerJr5w5atGiRZdtNj2MITdS8SIWjkZjupc1zdc6KFSs4d+4cmzdvLhijvoDo6GgaNGjAN998w6xZszTW+U5LS8PJyYmjR49qnFLjyZMn6devHw8ePEBPL+tVtsePHzN69Gju3LnD7Nmz6dy5s8Zeay1fRnx8PIsWLWLu3Lm4ublx+PDhDHoPRVnTIr95FpfG3ufxmcosgnJSu6xHI7z8mlLvuyHEvQlj9cAOtBk3DyNzK2RSCcW9KhAXEca6wV2o1v5bancfACgdbzffenSd8yc6evqE3rvJmoHt8evzM/59R/Dkymk2j/6ecYfvYmBqniNbb+zbwrU9Gxmw9kB+XoIcjTl43YE8BX00EfV7XVoyYSAW5khKu52zKc4mOmBaDIPiroQlSVWKUqlyBWlyVH+pcoVKGSo0Ucq58CSW3nvHnudxhKk5d0pXV5cWLVqwefNmXr58Sffu3dm6dSslSpSgS5cu7Nu3j7S0NLXaCMofi93P4tj8JJbAGGW0JrfRaKlCuWwWrtDHyLIY16Nl2aZuRKQUbB5kXpcf82LX5s2bNSbN5GMsLCw4evSoSqxGU9HV1aV///4sW7ZM3aZkwt/fnzJlyrB8+fJMx6Kiohg6dCi1atWiZs2aPHz4kC5dumid7q+Q5ORkFi1ahJubG0FBQTg6OrJixYpMImsGYiEtShkXelnddHSE0KKUsdqdboA0mSJDkOxDXt6/RWJMFA1+GIlYRxfLEk5Ua9uDu0d2U9yrPCV9qiASi7FwKEm19t/y/GbGvRZ+3w3F0MwCHX1lOo1QrIN/v5GIdHTwrN0IXQMj3r4IKvD3mB9IFRAUq34/ID/Q/FpaWjDWEWKs836zUbJUzuGQBFWJOQUC1Rcrp6Q7jIExaQTFpuFqqkuTksZqj4AbGxvTrVs3unXrRmRkJDt37mTBggX06dOH9u3bq8rR5VWkIK88iU1lf3ACUnn+SOUKhSJAwJWr13CeOprkqAjatW3DihUr0NfXZ/uevcwfM4HosFBsXDxoM34+9qXLcmb9b7y8f4vu89ep+vp3/ngUCgWtRs8mJT6OA4smEXjhOAKBkMqtutJwwBiEIpEycrB7AyXKVuLmge1U79Cbyq26smvGcMKf3EcgEOBeoz6tx87FwMQMgFcP7/DP9J+JCn1O6Zr+CARCrEu50G/5Aox1hOzfv5+JEyfy4sULvLy8WLlyJT4+Phnea3BwMA8fPtRoee9ixYpx/Phx/Pz80NPTKzRVzdzyww8/4OXlxezZszE3N1e3ORmYN28e9erVo1evXlhaWpKamsrSpUuZM2cOnTp14sGDB1hbW6vbTC0FgEQiYf369UyfPp0qVapw4sQJxGIxDRo0yFIQDNI1LSRqE2bRhP1PALJPJB3EhIcS//Y10+q+L9cpl8twqlidt8FPObBwEq8e3kaSkoxcJqO4Z8Z7r5ldxgmPoZkFog9KqOroG5CWnJhP76TgKehgVGGh/umellzxJDaVlQ+iCYpLQ6ogm3lyzlHw30wyLo2VD6I1qlh9sWLFGDBgAGfPnuXmzZu4uroydOhQSpYsyciRI7l582aBb4pTKBSceJnAvhfxqtWE/OTWoX/ovXQ7I/dd5dq9h8yYMYNbt24xsF8/Ok1axKRTj6nW/lv+HtYTaVoqPo3bEnjhBKmJCQDIZTICju2lQpP2AOyY+hNCkZiRe6/y05aTPLl8mmu7N6rGC713E8sSpZhw7AH1vx+GQqHAr89Qxh8JYNg/F4h9/YrjK+cBIJWksXFEbyq37MLkU08o/007Hpw6iBABEclSbt26RZ8+ffjjjz+Iioqif//+tGrVitTUjJ+hLVu20KFDB42vVGFra8uJEydYs2YNv/76q7rNyRJ7e3uaNGnCX3/9pW5TMuHl5UX79u2ZMWMGO3fuxMvLi9OnT3P27FmWLVumdbq/QuRyOVu2bMHLy4tt27axc+dOdu/ejbe3t6qayaeCJP7FjShjrldoke90TQv/4kaFM2AOEH1i5cfMtjgWDiWZcvap6m/a+Rd89/tW9s4ahY2zOyP3XGXquec0/nF8psj57l9Gqh5vmzCApNho1fM5Tcsjk6QRHf6KNQM7MN3PnYVtq3P36B5Vm8SYd/z9cw+m1nFmWc/GRL18kaH/cZWsubJzPQtaV2NaXVf2zh6d4Tf5+p5NLGpXk2n13Fg7qCPRYaGA8nd1/4KJ/NKgDFPrOLO4U11eBz387JhSuYJBPw3B0dERU1NTKleurBKbe/36NYaGhiplUYCbN29ibW2tcYJpWse7iFDQDmB6Gsq+F/GceJmgcVUeSpYsyejRo7l9+zZHjhxBX1+fDh06UKZMGaZPn86TJ0/yfcx0oaOCjMjU6Pw95nbF0TGxoHqvoazduJk//viDTr2+p2S5SghFIiq37IJYV5eQgOtYODji4FmO+6eUOXZPr51DUSgNFAAA1+NJREFUR9+Qkj5ViI+KIPD8cVqM/AVdAyOMLa2p1X0Ad4/uVo1nYm1HzS79EInF6OgbUKykC+7V/RDr6mFsUYzaPQby/OZFAELvXkcuk1Kz6w+IdHTwbtCCEt4VAQVpMgWrVq2if//++Pr6IhKJ6NWrF3p6ely+fDnDe9y8eTPdu3cvmAuYzzg4OHDixAl+++23LNMmNIHBgwezbNkyjSyD2KpVK5YuXcrkyZP5888/+ffffylTpoy6zdKSzygUCvbv30/FihVZvHgxK1eu5Pjx4/j6+qra7Nix47ObbQUCAU1LGheKmnN6pLugheRyi65IgCCbemaO3pXQMzLmzPrfVFHt10EPCb1/i9SkBPSMTNA1NCLi+ROu7Fyf6fyXD24jl8uJe/samVSKTKJM1Xj38gWpSYmIxGKO/Dad8k3aMeH4Q7rOXsXeOWN48ywQgH1zxiDW02P80Xu0n7KEG3sz79F5ePYoP248xtBtZwg4to/HF08C8OD0IU6tXUyPBeuZeOIRTpWqs3V8fwCeXDrF85uXGLHnMlPOPqPbnNUYmll8dkyxQICbTyVu377Nu3fvVAUZUlJSsLOzw8/PL4OmwIYNG+jSpQs6OppVqlHreBcBCsMBTCddpvVQiOY53+mULVuWX375hadPn7J+/XoiIyOpXbs21apVY/HixYSHh+fLOCdfJRa4uqiZ7fulQBM7RyLfvObW4+esX76ECbVdmVZX+Rf7Joy4t28AKN+kPXcO7wLgzqF/KN+kHQAx4S+RSyXMauytOm/PzBEkvItUjWFum3HpMT4qgi1j+zH7m3JMrePM9okDSYp5B0Bc5BtMbewz/EiZ2RZHgXJ5NDg4mIULF2Jubq76Cw0NJSwsTNU+ICCAmJiYIlW5omTJkpw8eZI5c+awZs0adZuTiZo1a2JkZMSxY8fUbYqKFy9e0LVrV3744QdatmxJ2bJl8ff3V7dZWgqA06dPU6tWLcaOHcv06dO5fPkyDRo0yNAmMDCQyMjIHH3vM2haCEGalr+rrurWtPgc1gYipNn81gpFInot2UxY4D3mtazMDH8Pdk0fRmpCHM1+nsqdw/8wtbYTu2cMw6dxm0zn6xoYEh4YwPOblyhRtiJCoYiI5094duMizhWrI0lJwdjKmiqtuyESi3Hw9MHbvwUBx/Yhl8m4d3I/DQeMRdfACDu3MlRq0TnTGH7fDcHAxAxz+xK4VK1F+ON7AFzZuR6/PkOxcSmNSCzGr88wwh/fIzosFJFYh9SkBN4+f4JCocDGpTSm1nafHVOBgmYdumJlZYVYLGbEiBGkpqYSGKicKPTq1YuNG5UrvDKZjC1bttCzZ88v/RflO9oc7yJAYTiAHyKRw8OYVPREyhuipiIQCKhevTrVq1dn0aJFnDp1ik2bNjFt2jQqV65Mt27daNeuXZ5yYZ/EphbKRCf2zXsnNeb1S0yt7RBa2tHtp1GU7fYTaVmMX65RKw7+OoXYN2HcP3WQgesPAUonXqSrx8STgRny+DLw0Y/O0aUzQSBg6PazGJpZcP/UQfbNVeY3mxSzIS4iHIVCofqxin3zChtHJ0QCAY6OjkyYMIEJEyZk+/62bNlC165dCz0n/0txdnbmxIkT1K9fH11dXY26eQsEAgYPHszSpUv55ptv1GpLbGwss2fP5s8//2TIkCGsXr0agUCAh4cHFy9epGbNmmq1T0v+ce3aNSZMmMDTp0+ZPn06Xbp0yVb1NSdpJh/jbqZH5O65yMvUwsqj/H/7l/KOAKXT7WqmSxNH9e9fyg4THRFioQBZNsvYptZ2dJ29Kstjw3dl3EzZaOD7vSmzb75l24SBPLtxkajQ55Rv0g5bFw+e37hISMA1nCvXpFQFX44tn50xh1wmpWLzTiRGRyKXSjH/IE/c3N4RbmUc09jKRvVYR9+AtCRlznhM+Ev2z5/AwUVTVMcVCgVxb8NxrVaHGp2/Z++cMcS8fknZ+s1pNmwakpSkT46pAFb/vogDW/4mLCwMgUBAXFwckZHK4FLr1q0ZMGAAz58/JzAwEDMzM6pVq5bltVMnmvlJ1KKisBzAj0mPfGtSzvenEIvFNGrUiPXr1xMWFsbAgQM5cOAApUqVol27duzcuZPk5JwV4E+WytkfnFAo1/zS9rXEvgkjKTaaU2t+xadRayq37ck/f60mOECZw56WnMijc0dVed3GFsVwqVyTnVOHYFG8JDYupQHlDdq9uh8Hf51MSkI8crmcqNDnPLtxIdvxU5MS0DM0Qt/YlNiIcM79vVR1rKRPVQQiEZe2rUYmlfLg9CFe3rsFKOvC9+vXj5UrV3LlyhUUCgWJiYkcOHCA+Ph4QHmT1eRqJp/D3d2do0ePMmbMGLZt26ZuczLQtWtXLl26xLNnz9QyvlQqZfny5Xh4ePD27VsCAgKYMmUKRkZGKlGdESNGaOyqmZac8+DBA9q3b0+bNm1o164dDx8+pHv37tk63ZCzNJOPef78OX8s/Y3BtT3p7m6Gh7kuIoGyBGtuEAuUDreHuS7d3c1o62yqsU53Ojb6BSMo5Fy5Js+vX+DFrcu4VK6Jc+UaPL95kec3LuFcuSZmdsVxrlwzYw75hWDajJ+PkUUxhGIxMa8zBodyipmtA20mLMzQ94xLoZQqr3SEa3X9gZ82n2DYzvNEhjzl7N9LPzvm85uXWPf7r2zfvp3o6GhiYmIwMzNT3Wf09fXp1KkTGzduZMOGDRoVMPkQzf40/p9TmA5gVkjksD84Ic9KherCwMCA9u3b888//xAcHEzLli35448/cHBwoHfv3hw9evST0tuHQ5TVSwqDCk3asXZQR+a3rIJlCSfq9x1OCa8KtJ+4iF2zxzC9nhsLWlfjxr9bM5xXvkl7gq6cUW2qTKfT9GXIJBJ+7VCL6X5ubBrdh/jIiGzHb/DDKF49vMu0ui78NaQrZf3f1xQX6+jSY8F6ru/ZxPR6rtw6uAPPOo0R6uhiYyCmSpUq/PnnnwwePBgLCwvc3NxYv3696vyLFy9iZGSUqcpJUcLLy4vDhw8zdOhQdu/e/fkTCglDQ0O+++67Qs9DT8/tLVeuHLt27eLw4cOsWbMmU7m4nj17kpKSws6dOwvVPi35x/Pnz+nVqxd+fn7UqFGDJ0+eMGDAgM9ukn78+DERERG5Ti8bNWoUw4YNo3jx4tgb6dDG2ZTB3pbUsTfE0UiMnkigTBsRCtAVKnO2dYXK5+npJI5GYurYGzLY25I2zqbYG2lWbm92uJnp5nqCkROcK9fk6fXzSFKSMbN1wKliDR5fPElS7DscPMpRpk5jIoOfcnP/dmQSCTKJhND7t4h49hihSETZ+s058cc80pKTePMskJv7cx6A8O3QmzPrlvDm6SMAUuLjCDimVN4NvX+LkIAbyCQSdA0MEevqIRAIPztmamIiYrEYa2trpFIp06dPJy4uLsO43377LevXr2ffvn0a63hrBXQ0GK26V/4SHh7O9u3b2bx5M8HBwXTq1Ilu3brh6+urSqUIS5Sw+UmsRqlFahLLvv2G6m17sPynHp+tUvHjjz9SvHhxxo8fX0jWFRw3b96kadOmrF27lubNm6vbHACePXtGtWrVCAkJwdCw4EUl7ty5w4gRIwgLC2P+/Pk0a9bsk/myORHV0aJ5hIeHM3PmTLZs2cLgwYMZPnw4ZmZmOT5/1qxZhIWFsXTp0s83/o9Tp07Rp08fHjx4gIFB9qVxEyRyIpKlGq3KnBeSpXKW3ntXIL/1sxqXpXQNfzpM+x2Apd0bYmRhxXdLlQ7t2xdBHFg0iZf3biFXyLF3L0vzEdNx8ChHQnQkO6cM4cWtS1g7ueNeoz7Prp9XCeiMq2TNiD1XKFbSBYAdUwZjZuNA4x+V9/yb+7dz9u+lxISHom9siptvPTpM/Y2gK2c5sHAS7169QKynj3uN+rSdsAA9Q+NPjimQy7j3+1j27voHIyMjhg0bxvLly1m9ejUNGzZUvWd3d3ccHBw4c+ZM/l/QfEDreGsomuQAigXQ3d2syEQPckJQUBBbtmxh06ZNpKWlqWqHPzYoQWBM2heXafxaeHbjAtal3DA0t+L2oZ3smTWKAcu28PfwXri6utK4cWMaNWpErVq10NfXV50nkUgoXrw4V65cwdnZWY3vIP+4cuUKLVu2ZNOmTTRq1Ejd5gDKKiKtWrWib9++BTZGWFgYEydO5ODBg0yZMoV+/fohzm4PwUe0aNECf39/hg8fXmD2ackf3r17x/z581m1ahW9e/dm7NixeSoBWbFiRX799Vf8/Pxy1F4qlVK5cmUmTZpEhw4dcj3e18Ke53Ha357PoCcSMMzH6rPt/P396datW4HeF7+EojtF/Mq5GpGs1kj3h8gUcCUiZ/nRRQU3NzcmTZrEw4cP+eeff0hNTaVV+47cj4jX3vg+IPLFU37rUp/p9Vw5v2EF385fQ48WjYmMjOS3335DV1eXiRMnYm1tTZMmTVi0aBEBAQEcO3YMNze3r8bpBvD19WXXrl10795dYyIp6ZssCyJ+kpiYyNSpUylXrhw2NjYEBgYycODAHDvdAPPnz2f27Nm8e/cu3+3Tkj8kJCQwc+ZMSpcuTVRUFLdv32bhwoV5crqDgoIIDw+nTp06OT5n9erVWFhY0L59+883/oqpZmOASEMKrmiIGZnISS78tWvXuHnzJp07Z67AoiloI94aSEEuO+UVkQAGe1tq/CaVz+Hk5JRpWSqdy68TORuWiFygnvd4Y98Wru3ZqFrG00REAujtYUa8RJFhuTc1KZHA6xc5dfgAR48eJSwsjHLlyv2PvbsOizL7Ajj+fScIARFQbLGwW1fX7lbMtXPt7nbt7nVtf6669tq1dseqa62N2AEKIh3Tvz9YRlFQkIEZ8H6eZ5+VeevMKHDe+957DgMGDKBWrVpkzpzZ3KGbzMmTJ2nTpg27d+82e5lEvV5PwYIFWbNmDZUqVTLJOXU6HX/88Qfjx4+natWqzJgxg5w5c37z+fr06YOtrS0LFiwwSXyCaahUKlauXMnMmTOpXr06kydPxt3dPVHnnDlzJi9fvoz32oOAgAAKFCjAkSNHKFGiRKKunRpYyvRSZ2s5ASqdRTxxj6aQoHLmNJTLGPe0us6dO7Nnzx5+/fVXunTpknzBJVDKzqJSqVv+kWa547zx1w7W9I19JbpEVFyp2eNgTYKT7idXLzCzXspdPJhQBgOs8wxi79MQ/noRwpGXofz1IoST7ww8d/uRfH2mMfHAP1Ts0IeW7TqwZ88eChUqRLFixRg2bBhHjhwhPDzc3G8jUWrUqMGGDRto1qwZV65cSdS5QjQ6ngSreRCg4u77SB4EqHgSrCY0niuqZTIZ/fr1S9B82i85ceIEpUuXZs2aNezatYvNmzcnKukGmDRpEuvXr+fRo0cmiVFIHK1Wy++//06+fPk4duwYhw8fZvPmzYlOuiHh1UymTJlC06ZNRdL9n3o57FHIzDverJBJNM/tYHFPfg1AMRebL+6zfv16goKCLDrpBlHH2yI9ClKb5U6zZIOWlGwQ+xw7rSEqri/dbaZ0vpE6c4dg8fQAhqgGOjFFfa3TGfDWGajefRiStTUdm3RhkYsVr+/d5NixY0ybNo2bN29Srlw5ateuTe3atSlRokSKq/Ndt25d1qxZQ+PGjTl8+DAlS5aM13ERWj23/CN5FKTGN1KHVm9AIUkxWj1LSGgNBhQyCVcbOXkdrSjmYhPn06bOnTszceJEvL29P6suEl/3799nxIgR3L9/n9mzZ9OiRQuTNRrJmDEjQ4cOZcyYMWzfvt0k5xQSTq/Xs2PHDn755RcyZ87Mli1bTFpn/fHjx7x+/ZoqVarEa/8HDx6wceNG7t27Z7IYUjpbhYxGbvbsexZilmpmShk0crPHyVqBu6OVxcw5lwB3R6sU/8Q9Wup4F6mMpSaAlhrXt7p//z65cuViy5Yt/LlnL3N/qsrkKnlY3qUBPg/vGveb3bAUZ/9Yyq+tqjKpSm42j+qORhWJOiKMtQPaEOL3hokV3ZhY0Y1gvzdsn9ifo0tnGI//dFQ88M1rNg7rwrQaBZhSPR97Z42KNb6/Fk5ixc8NubZ/K0vax+wMd27jcv4YYpmlkgDkVtboDOAZqGbbk1B8XAsxfMw4zp07h7e3N4MGDeLVq1e0a9eOTJky0bZtW37//Xdevnxp7tDjrXHjxixfvpwGDRpw586dL+7rHaZhz9Ngltx5zzmfcF6GaVHpDOgMoNIbUOsx/qfS//e6zsDLMC3nfMJZcuc9e54G4x2m+ezcjo6OtG3bllWrYm+y8SV+fn7069ePKlWqUKNGDe7du0fLli1N3t1vyJAhXL58mYsXL5r0vMLXGQwGDh06RJkyZZgzZw6//fYbp06dMnlzox07dtC8efMv1vf+2NChQxk7duw3zSVPzdwdrSnhYkNyF2lRyqCEiw3ujlEViCxpzrlcgnKucVe7SWlE4m1hQjS6OGtIn1m3mJl1izKxUk7mN/uRR5fPotfrOb32V+Z6/MCU6vnYPKob4UEBAAR4v2BMqQxc3buZWfWLM7lqXi7vWMfLuzf4tVVUkvlx0ndt3xZW/Bx3qTSt3hDvR+CW7vr169StW5fffvuNAgUK0KdHD1r9soBfTj2kbItO/DGkY4zWxbeP7aXr0m2M3H+NN173uL5/K1a2dnT9bSsOGTIx+cJzJl94TtoMmb54Xb1Ox/pB7UmXORsjD15jzOFbFK/bLOY+ej27pg7hjdddfl66nR/qNeP96xf4Pnlo3OfGwT8p1aiVaT+UJGDgv6clwWpW3AvAK0iFg4MDjRs35rfffuPBgwdcvXqVWrVqcfToUUqWLEnBggUZNGgQBw4cIDQ01Nxv4YuaN2/OwoULqVOnDg8ePPhse4RWz+4nwWz2CsIzMGruZkKfZmkNGG9iNnsFsftJ8Ge19fv168fKlStRq9XxOmdkZCSzZ8+mYMGCKJVKHjx4wNChQ5Os7J9oqmMe586do0qVKgwbNozx48fzzz//UKdOnSRpm56QaSZ//fUXjx8/pl+/fiaPIzWokdWOgumsky35VsqgUDpramS1M76WxU5JnrRWZk++o7uPpqaqamKqiYXxi9ChkKTPHuX7PXvE39vW0G/jMdJmyESA9wv0Oh1/b13NvVOH6Ll6L3ZOLuyfM5a9s0bFaDH78s51hu25zNPrf7NhSEfyVahBtxU70Gm1/Na2BkVre5C79NcXiSkkCd8ILfbKLzdQSAiDwYBOp0Ov16PT6Yz/fe3rbzlGr9cTERHB6tWrOX78OP379yckJIThw4dTrnotMhUoCnI5pRu34fTvi3hx+6rxc6nQpocxqS5YpS7enl8e4YzLyzvXCfF7Q/3Bk4xt3XOW/NG4XafVsnVMT/Q6LZ1+3YRCaYVCBrWatODWoe3U6jeOt48fEOD9kgKV6yTy008+OkPUNJR9z0Io4aKhRlY74y//HDly0K1bN7p164Zer+fGjRscO3aMBQsW0LZtW0qVKkXt2rWpU6cOpUuXjveIWnJp06YNKpWK2rVrc+rUKfLmzQtEdZ098DyqGZMpFkt9ehPTyM3eODpVuHBhChYsyK5du2jTpk3c5zAY2Lp1K2PGjKFkyZJcvHiRfPnyJT64eOjQoQMLFy5k+/bttGpl+TeNKdmNGzcYN24c9+/fZ9KkSXTo0CFJv2+ePHnCixcv4jXNRK1WM2TIEBYuXPjVZjzfK0mSqJ/DHmu5lOSdq6NHuj/+mRytXg57VtwLiLOdfXJQyCTqZ7c32/WTgki8LYxaZ4gx3zOaJJOhVavxfeKJXToXnLLkAODyjvV4jJqFY8aouZ01e41gdsOS6D7qzFijxzCU1jbkK18dpW0aitdthr1z1OO9nCXL4f3gdrwS79CwUIaOnMarq+dMkgTrdDoMBgMymQy5XG78f/R/Cf06PvuEhISwd+9e0qdPz/379/H09OT+/fv4vTvHqUMfqonotBqC/d4av3ZI72r8s9LGlmC/Nwn8m40S9PY16TJnMybdn/J/+ZQ3D+/S948jKP67wTEAbdp3ZFiPztTrP5YbB/+kWO0mKKxSXlMSjR5u+kei0hmon8P+sx/0MpmM0qVLU7p0aUaPHk1YWBhnz57l2LFjdOvWjdevX1OzZk3j/HBLKVfYuXNnVCoVNWvW5PTpMzxRpk+yX5hx3cT079+fBQsWxJl4X7x4kaFDh6LValm/fj1Vq1Y1fXBfIJPJmD9/Pt27d6dJkyaiqU4S8PT05JdffuH8+fOMGzeO3bt3J8vnvGPHDpo1axavUpNLliwhT548NGjQIMnjSskkSaJmNntyOChNegMfTS5FJbUf38B/ylLmnNukkrnd0UTibWE+X7QWJX2O3DQaPo3jK+fw9rEn+cpXp+GwqQS+ecXG4Z2RPqrGIZPJCX3vZ/w6OskGUFrbYO/yURJpbYs6IixesdnY2NC1W3eydm9vkiRYJpMhk8mS5LFnXHLmzMnChQuZPXs2WbNmZeHChfTq1QvbDFnI8VM/1An94RJL6FY2aVBHfqh7HuL/oWW7Y8asBL55jU6rjTX5ds3lzo+turFuQBu6r9xNhpx5kYBSZX8kra01+ofX+PfwLlpPX5HAQC2HRg/3A1VYy6N+sXyJnZ0d9evXp379+kBUM5fjx49z9OhRJkyYgIODgzEJr1GjRoI67Jlaz549UanVTN5xnMK1mqBL4tpEn97EeHh4MGjQIG7cuBFjsefjx48ZPXo0ly9fZsaMGbRr185si1lr1KhB4cKFWbp0qWiqY0IvXrxg8uTJ7Nu3j2HDhrF27Vrs7Oy+fqCJbN++nZkzZ351P19fX2bOnMm5c+eSIarUwd3Rmt6FlBx+Ecrj/0oNJib/lvgwfaNedvuvLliMmnOuSfKR9099Ouc8NRGJt4WRfyEJLVG/BSXqtyAyNITd04dx6NcpOGbMQouJv5KzRLnP9g/wfmHa2ORy8ufKSwGnlP2N4ODgwOHDh6lZsyajR4+mR48eNG7ajNYFypOxUEk0keE8uXqBXKUqYG335cTQ3tmV8KAAIkOCsXFIC0Dm/EU5v3EZ4d2HotOoubBppXH/7EVK4ZA+I0d+m0qt3iORZHJe3/83xt9fiXrN0WnUrOnTgh6r9pDFLTdWcolOnTqxcdpIbK2scC/9o1lGIEwlOmnM4aBM0A/WLFmy0KlTJzp16oTBYOD27dscPXqUFStW0KlTJ4oWLWrsplm2bFmUyuSdF1ioaRfC3oQkedId7dObmD59+rBkyRLWrFlDQEAA06ZNY/369QwZMoT169cnS2v5r5kzZw5VqlShc+fOuLh8vQudELe3b98yc+ZMNmzYQJ8+ffDy8iJdunTJGsPTp0959uxZvDpV/vLLL3To0IECBQokfWCpiK1CRrPcafEJ03DZNwKvIDUSCVsvopCiEnZ3RyvKudomaM50jax2qHQG7geqkuX3TmxzzlOT1DV+nwpYySWkWH5p+z17xOMr59CqVSisrVFa2yDJJMq16MLRpTMI8I6qBhEa8I57pw8lSWwSElbmXmlhIunSpePYsWMcOnSIvXv3snTFCnbOHMWUqnmZ16Qs1/Zvjdd5XHO5U7xuM+Z4lGFylTwE+72hZMOfyORemDmNSvF731YUq9PUuL9MLqfzoo34v3zKrAYlmVW/OLeO7vnsvKUbt6FGj+H8r1dzfF8/x9VWQceOHblz5w49unTEI6cD1nLJ7AtfEkOjhwPPQz9bKBhfkiRRrFgxhg8fzpEjR/Dz82PKlClERETQv39/MmTIQNOmTVm6dCleXl5JvqjPK0jFTf9IkCdvsh99E+MVpKJHjx7s2rWLmTNnUqBAAUJDQ7lz5w7jxo2ziKQboGDBgrRs2ZJp06aZO5QUKzAwkPHjx1OoUCEMBgP37t1j2rRpyZ50A+zcuTNe00xu3rzJnj17mDBhQjJFlvpktlPSNFda+hdxpnLmNGS3Uxh/D1jLJKxkUUmrlSzqa7kU1WY9u52CypnT0L+IM01zpU3wQsXoOefJUW0leqS7XixTEVML0bnSwoRodKy4G/DZXC6fh3fZNXUIvk8fIlcoyVHsB5r/sgB7F1cubF7JlZ3rCfZ7g71zBorVbkLdAeMJ8H7BnEalmXbFxzitYWa9YrSetpzcZaLmdG8b14cMufJSo/uwr3ZOlEvQp7Az9sld5yiZLLzlj8qS2oX+x1ouMaSYCxEREbi6unL9+nXc3d2J0OpN9vjRXOQS5HW0olmutCY/t6+vL8ePH+fYsWMcO3YMhUJhXKRZs2ZNnJ2dTXatCK2eFfcCzPrvx1oukePZ33Tt0I7MmTOzc+dOihQpYrZ4vuTt27cULlyYS5cuGRejCl8XFhbGb7/9xvz58/Hw8GDChAm4ubmZNaZy5coxbdo0ateuHec+BoOB6tWr07ZtW3r16pWM0X0fQjV6fCO0MboJW8klXG0VJv99bepF49HiM+c8tRCJtwWy9AQwtdr0MJCXYdqv75jMstspaJ8vHQsWLODAgQOcPHkyxvbEPH60BAoJ2rs7Jmm5KIPBwP379zl27BhHjx7l3LlzFChQwJiIly9fPlEVFiyh1bNOo+bVjYsUVHmzcOFCHj16ZHEVYD42Y8YMbty4IZrqxINarWb16tVMnz6dSpUqMWXKFIuYrvH8+XNKly6Nj4/PF6d17dixg6lTp3L9+nWL/jcpxI8pB30SOuc8NRCJtwWy9AQwtbr8NpxzPuEWlbgqJKicOQ2ty0U9Ut6zZ0+cXRK/1BXRQNQPuOiuiAbDf10oLYAE5E9nRdMkGPWOi1qt5u+//+bo0aMcO3aMBw8eULlyZeP88IIFC8b7Mad3mIbNXkEW8e8m+iamaY1KjB8/nsaNG5s7pDiFh4dToEABtmzZQsWKX6+q9D3S6XRs3LiRSZMmUbBgQaZNm0apUqXMHZbR/PnzuX//Pv/73//i3CciIoKCBQuydu1aqlevnozRCUnNXHPOUzqReFsgS04AU3PL+AitniV33pt11PJTcgn6F3H+plGAuB4/plXKWOsZmGrepyn4+/tz8uRJ44i4Vqs1VkupVasWrq6ucR6752mwRbVWzp/OipDze9m4cSNHjhwxd0hf9Mcff7Bs2TL+/vvvVDuf81sYDAZ2797N+PHjcXFxYcaMGVSuXNncYX3mxx9/ZPLkydStWzfOfaZNm8bNmzfZsWNHMkYmJKeEDPooZBKuNnLyOlpRzMXmuxjh/pRIvC1QaksAUxJLTKJMPRIcfWM3vUEpWkxYSN5yyVvPGWB2w5jXtqQbO4PBwKNHj4yj4adPnyZXrlzG0fBKlSphY2MDWO73ave8dhTIk5OzZ8+SP39+c4cUJ71eT5kyZRg9erRoqkPUv73jx48zduxYtFotM2bMoF69ehZ5U/LixQtKlSr1xWkmr1+/plixYly9etViau4LSS8555ynROITsEC2ChnujlbJVJDs6ySiHgel9qQboKyrrcVUCpFLUM7V1uTnfRSktqinKfBfR8ag+LU7T2qSJOHu7k6/fv3Ys2cPfn5+LFmyBFtbWyZMmECGDBmoW7cu8+bN4/Dtp3F+n+6ePpwTq+cna+wQ9f36MMxA9+7dWbZsWbJfPyFkMhnz5s1j9OjRqFQqc4djVn///Tc1atSgf//+jBgxgmvXrlG/fn2LTLohat52kyZNvji3e/To0fTu3Vsk3d8Ze6WM3GmtKOBkTWFnGwo4WZM7rZVIuv8jPgUL9T0kgJYoi52SPGmtzP7ZRy82SYp5b76RugTt/3EX1KSU0LiSi1KppGLFikyaNImLFy/y6tUr+vTpw5MnTzh970mcNzHNxs2jZo9hyRssH25ievfuzYYNGwgJCUn2GBIiuqnOkiVLzB2KWdy6dYvGjRvTunVrOnbsyN27d2nVqpXZmhzF144dO/jpp5/i3H7p0iVOnjzJmDFjkjEqQbB8lv2d/R37HhJAS1Uvhz0KmXk/eFV4GD/aa0x+3hBN1Py7aK/u3mBhi4pMrpqXHRMHoFFF8uTqBWbWK8aZdYuZXrsQOyYNJCI4kHUD2zGtRgEmV83LuoHtCHrrbTzPqh5NOLpsJiu6NmBipZys6fsTYQH+xu3XD/zJ7AYlmVI9H6f+tyDW2LR6A6EpoCuQo6MjTZs2ZdmyZeQsajkL3T7mG6kje/bsVK9enY0bN5o7nK+aM2cOs2bNwt/f/+s7pxJeXl60a9fOOIXp4cOH/Pzzz/Fqu25uL1++xNPTk5o1a8a6Xa/XM2jQIGbOnIm9/ZebkAnC90Yk3hbMEhJAhUyifvbv6wenrUJGIzf7JG8UEBeFBCEXD/BjmVJcuHDBpOf2i9Ch+OjR9c1DO+m69E9G7PuHdy8eG5PiUH9fwoMCGXXwBs3Hz4+ai9ukLSMPXmf0XzdR2tiwb/boGOf+9/AuWkz6jfHH76PTqDm3YSkAb594snfmCFpNXcrYI7cJCwog2NebTykkCd8Iy6vmc/36dUqWLImDgwM//fQTrVu3Zvz48axY8zuLOzeIse+YUhl49+IJANsn9ufo0hkAxpuZcxuWMa1mQWbUKczVvZuNx22f2J+9M0eybmBbJlbKydJOdfF/+dS43fepF2v6tGRKNXfmN/sxRtOlB+ePsbBFRSZWysnMukU5+8dStHoDz3x88fb2pn///jg7O1O5cmX0+qgbmxCNjifBah4EqLj7PpIHASqeBKvNduNTsGBBfvrpp++iqc6rV6/o2bMn5cuXp3Dhwjx69IiBAwca1w2kBDt37sTDwyPOaSbRN3sdOnRIzrAEIUWw/Fvr71h0ArjvWYhZ2oMrZdDIzR6b72Bu96fcHa0p4aLhpn9ksn720V27ag7vR8V82WnevDkDBw5k9OjRJql/q9ZFrzOPUr51N9JlygpAtW5D2D9nLHnLVUWSZNTqPRKFVVQjA6WNLUVqfihNV73bEFb3bBbj3KU92pDBLQ8ARWs34f6ZwwDcOb6fApXrkKt0BQDq9B3NpW1rPotNo9Py7517vJUiUCgUKBQKlEql8c9f+08ul5t8PqxaraZZs2YMHTqUvn37sn//ftq0acPIkSMJVutj7TIbl1B/XyJDgxlz+BZel0+zeWQ3CldvgG3adAD8e3QPXX/bSpYCxYxJe9tZq1FHhPF735bU6j2KLr9t5e2je6zp+xMZ8xYkY+787JoymLaz/keuUuWJCA7k/evnKCSJ2XPnUaxYMYKCgpj762+8Ctez2SsIP5U+RtWBaOauOjBp0iQKFSpEv379UmVTHT8/P2bNmsW6devo0aMHDx8+NGkTp+S0fft2xo0bF+u20NBQxowZw86dOy1+uowgmINIvC2cuRPA1N5B6ktqZLVDpTNwP1CVLJ+9UgaF0llTI6sdAB4eHpQqVYp27dpx6tQpNmzYQObMmRN1Dd0nRYwcM2Yx/tkpc3aC/d4AYOfkgtL6wwicOiKcg/N/4eHFk0SEBAKgCgtFr9Mh+++GwMHlQ8k9Kxtb1BFhAAT7vcExY9YP22ztSJPO6bPY1CoVW7dv58Wlk2i1WjQaDVqtNl7/aTQa9Hp9vJP0+Cb0AQEB+Pn5ce3aNXr37o1CocDFxYWjR4+SIW9h4whyfMgUSmr0GI5coaBApdpY2drh9+wROYqVAaBw9QZkLxI1daVE/Rb8tSCqtfaDs0dxypydMk3aAZClQDGK1GjE7WP7yNhrBDKFEt8nD8mcrwi2adORNW06DBiQ5AqevfbGY+RM/nUsiFUGKwLCP8yj//TfQnQbDJ3OwMswLT7hWs76hOPuaEVZV1uyJPF0M1dXV4YOHcro0aNTVem54OBg5s+fz5IlS2jbti137txJ9PexOb169Yr79+9Tq1atWLfPnDmTmjVr8uOPPyZzZIKQMojEOwUwdwL4vZIkifo57LGWS0l+4xN9o1Mjq12MUdts2bJx8uRJY+OMtWvXUq9evW++jvyTEeGP52kHvnlF2gyZor74ZL9zG5fj9/wRff84jEP6jHh73ua3tjWITzVSh/QZ8Xv60Pi1OiKc8MCAz/ZLkyYNkydMoIDT9IS8JSO9Xo9Op/tqgp6QZP7s2bO8ePGCmjVrGl+/du0a6dKlw97ejoSUHkrj6IT8o/m7yo9uTuDTG5c0qMKjtgX4vOLlnetMrpLnw3vVaSnZMKr8Xvu5azn1vwUc/m0qmd0LUXfAL+Qp8QPF2vTm7qJZrB4/CANQtnlHqnUdFO94oxeNegaqeRSkJk9aK+rlSNrOcoMHD6ZAgQJcuHAhxTfViYiIYOnSpcyZM4f69eunmpJ60dNMYuv0+uTJE1asWMGtW7fMEJkgpAwi8U4BLCEB/F5JkkTNbPbkcFBy4HkoWr3BpDWbtSoVNtZKPHI6xvl0QaFQMGnSJKpVq0aHDh1o374906ZN+2IZr7hYyaX/pkdEvYm///ydApXroLSx5dSahRSr3STW49RhoSitbbBxcCQ8KIATq+bF+5pFazVmWae6PLtxiWxFSnF8xWwMhs//EUtE1Xr9VjKZDJlM9k2fS1zSp0/Pjh076NSpk/H7YcOGDZQtW5b0eQpx4dxZ474h796a7Lofc8yUlVylK9BteeyjwNkLl6TTwg3oNBr+3raGLaO7M/rQvwTL0lB/6BTqD53Cm0f3+V+v5mQrVJK85aok6PoG/quUEqxmxb0AGrnZJ9mTsDRp0jB9+nSGDRuWYpvqaDQafv/9d6ZOnUq5cuU4deoUhQsXNndYJrN9+/Y4K5WMGDGCoUOHkjVr1li3C4IgFlemGNEJoEdOB6zlksmrncglsJZLeOR0oGY2+xT5Cy8puTta07uQE3nTWqGQEjTQGSuJqEWUtmF+7BvenjwOX08Wq1Wrxo0bN7hz5w6VK1fm6dOnXz3mUxls5Wg/GqUuUa85v/f9ibmNy+CcLSfVuw+N9biK7XuhUUUyrUZ+lnWuR77yNeJ9zYx5CuAxejZbx/VmRp0i2Do4ktY1y2f7aQ0GXG0tayygfPnyyOVylixZglarZe/evVy5cgWAosWL8eaxJ96et9GoIjm+cm6SxFCwch3ePX/M9QN/otNo0Gk0vLx7A98nD9Fq1Nz4aweRIcHIlUqs7e2RpKgf63fPHuXdiycYDAZs7NMik8uQEjHnVmcAlc7AvmchnHgVGq+nHd+iffv2qNVq/vzzzzj3sbTFoRDV3n3Tpk0ULFiQnTt3snv3bnbu3Jmqku7Xr19z7949ateu/dm2U6dOcf36dYYOjf1niCAIUSzrt5zwVVEJoJLDL0J5HKxGZyBRXRYlPpQMrJc9aR8jp3S2ChnNcqfFJ0zDZd8IvILUSJCgZjQKKervy93RinKutmQs5syuCeGsXLmSPn36fPX4DBkycODAARYtWkS5cuVYunTpF2vpfspBKUchk9DpDIw6eB2Aaj8PjrFP7jIVGXM45qPitBky0XP13hivlWvZ2fjnT7eV9mhLaY+2H75u3IbSjdsYv44twVfIJItrsGBlZcWuXbvo3r07Y8aMoX79+jRq1Ahra2vKFi1IrZ7DWNOnJUprG+r2H8+VnetNHoO1nT0/L9vOwQW/8NeCCegNejK7F6bhsCkA3Dj4J/tmj8ag15HeLS+tpy8HwP/FE/bNHk1YgD+2aR0p99PP5PmhUqLj0ejhpn8kKp2B+jlMf5Muk8mYP38+P//8M02bNsXa2vqLLamjmWtxqMFgYN++fYwfPx4HBwdWr15N9erVk/Sa5rJr1y4aN2782TQTrVbL4MGDmTt3Lra230fPB0H4VqJlfApmygTwe6rTbSpfSgYMRN3UxCcZuHPnDtWrV+fff/8lS5bPR4LjcvXqVdq0aUPNmjVZuHAhadLEr936poeBvAyzvLJ92e0UtM+XztxhfFW5cuXo3bs3Xbt2ZeEtf1SW1C8+GRkr8GRLmnKjHh4eVG7UAvfazRL9My6pFoeePHmSsWPHEhERwfTp02nYsGGqflpYpUoVRowYQePGjWO8vmLFCrZu3cqpU6dS9fsXBFMQiXcqYKoEUEicUI0e3wgtap0BncGAXIqas+xqq/jqSO64cePw8vL64uP12AQHB9OrVy9u377Ntm3b4vVY+/LbcM75hFtU23iFBJUzp6FcxvjdPCSnM2fOkD9/ftKnT8+mTZvo3bs3T548IXPmzBZ7E5NclDLwyOlg8jnfEVo9f9714UW4HqVN4kZQjU/1TLg49PLly4wbN47nz58zZcoUWrdunepL5/n4+FCoUCHevHmDtfWHv++AgAAKFCjAkSNHKFGihPkCFIQUQkw1SQVsFTLKZfyQtCQmARS+nb1Shr3y85X+8TF+/HiKFi3KwYMHadiwYbyPS5s2LZs3b2bt2rVUq1aNmTNn0q1bty+OOhVzseGsT/g3xZlUDETFZYk8PT1p1aoVYWFh5M6dmx07dhjLweV1tMInXGtRNzHJSaOHA89D6V1IabKbeK8gVdRCZoM1ShP8kzDl4tA7d+7wyy+/cPXqVSZMmECXLl1MupjXku3cudM4zepjU6ZMoVmzZiLpFoR4EiPegmAhjh8/Tvfu3blz5843tVm+f/8+rVu3plChQqxcuRJHR8c4993zNBjPQHWi1geYigTkT2dF01xpzR1KgkVo9Sy5896klW5SGrkUdQPSLJF/fwaDgZOvwyyyctOTJ0+YOHEiR48eZdSoUfTp0+e7m8tctWpVhg0bhoeHh/G1+/fvU6VKFe7du0eGDBnMGJ0gpBxi+FMQLEStWrWoXLkyEydO/KbjCxYsyOXLl3F2dqZUqVLG6huxKetqa/LKON9KLkE515SZxNgqZLg7WiW6yk1KpjPA4yA1PmGabz6HwWDg0IvQZGkUFr049NCLr1dm8fb2pm/fvpQtW5a8efPi5eXF0KFDv7uk28fHh1u3blGnTh3jawaDgSFDhjB27FiRdAtCAojEWxAsyIIFC9iwYQM3btz4puNtbW1ZtmwZs2fPplGjRsyfPz/W7opZ7JTkSWtl9uQ7uqJOSl7ca0k3MeaiM8Bl34hvPv7k67BkaxAGUcn3/UAVJ1+Hxbrd39+fkSNHUrRoUezs7Hjw4AETJ04kbdqU91TGFHbv3k3Dhg2xsfkw9+evv/7i2bNn9OvXz4yRCULKIxJvQbAgGTJkYNasWfTs2ROdTvf1A+LQsmVLrly5wo4dO2jUqBF+fn6f7VMvhz0KmXkzRoVMon72pKmKkVxs1aG8f/gvWrXK3KGYjQHwClIToU145uwVpEqWke5PRY98ewV9+HsLCQlh6tSp5M+fn5CQEG7dusXcuXNJnz598gZnYbZv3x6jbKlarWbo0KEsWLAg1g6WgiDETSTegmBhunbtip2dHUuWLEnUeXLmzMnZs2cpXrw4JUuW5OTJkzG22ypkNHKzx1zrbZUyaORmj00Krqyzf/9+ihQpQujlw9jZJE03x+QQ4P2CMaUyoNNGVWhZ27811/ZvTdA5JOCWf2SCjonQ6jnwPDTZk+5o0YtDA8MiWLhwIXnz5sXT05NLly6xfPny76ID49eaEb19+5YbN27EmGayZMkS8uTJQ4MGDcwVtiCkWGJxpSBYoAcPHlCpUiVu3LhB9uzZE32+o0eP0qVLF7p168bEiRNRKD4UNDrxKnnm1n4sqWtAJ7X3798zaNAg/v77b9asWUPVqlXxClKx71mI2ZLIxAjwfsGcRqWZdsUHueLbi10ltBb77ifBPPqvEZjZ6HU8+vsk745vY+rUqRQtWtSMwSS9hDYj0gb48vLaeWYP7IatQoavry+FCxfm3LlzFChQwIzvRBBSJpF4C4KFmjRpEjdv3mTPnj0mOd+bN2/o2LEjkZGRbN682ZjQRy9sS645tkoZFEpnTb0k6HqYHPbt20efPn1o2bIlM2bMwM7OzrjNHDcxsdFptQlKoE2VeFvLJYYUc4nXvt5hGjZ7BVlEKUaZQU/H/E4peq3B13iHabjyjQ3XJL0OmVyOu6MVJ37/FUXoexYuXJhksQpCaibqeAuChRozZgzFixdn9+7dNGvWLNHny5QpE0eOHGHOnDmUKVOGVatW0aRJEyRJon4Oe6zlkkWWcrMU/v7+DBo0iMuXL7N161YqV6782T41stqh0hmSdaFgtNkNS/HjT124+ddO/J4/okaPoVzbt5XQ936ky5iVOv3GUrhGVI14vU7H4cVTuLZ/K9Z2DlTu0CfGuVb1aELJBi35oVlH9Ho9p39fyD+7NqJRRZKvQg08Rs7ExuHzhYZavYFQjT5e/QKu+EZYTBlGgyTjsm8ETXOlvsQ7Qqvn8ItQHv/3ZOFbPnKDTI7OAA8CVbg26EI+Z1sitHrRgE0QvoH4rhEEC2Vtbc3KlSsZOHAgwcHBJjmnTCZj9OjR7N69m0GDBjFw4EBUKhWSJFEzmz0eOR2wlksmr9Ihl6JGQz1yOlAzW8ob6d6zZw9FixYlQ4YM/Pvvv7Em3YDxJqaEi41Z5s7/e3gXnRdvZuKZR2Rwy0uvNfuZePYJNXsOZ9v4vgT7vQHgn90beHDuKAM2n6T/xmPcObE/znNe37eFa/u20mPVbkbs/wd1eBh7Z4+OdV+FJOEb8fVOnhFaPV5BllFHHhK3ONSSeQWpWHEvgEfBarTfmHTHJKG0seVFBKy4FxBjYaogCPEjEm9BsGBVq1alTp06jB8/3qTnrVChAjdu3OD169eUL1+ehw8fAuDuaE3vQk7kTWuFQiLR9aklotrB53W0onchJ5O3Fk9q7969o127dowcOZLt27ezcOFC0qT5clv7pL6J+dIP7QptepAuU1aUNrYUrd2EtBkyIZPJKFa3Gelz5OLV3agylbeO7qViu16ky5SVNI5OVO06KM5z3jy0k0od+uCcLSfWaeypO2A8t47uNi7E/JgBA+p4DGPf8o/86r+tMaUy8O7Fk6+ey1S+ZXGopTIYDJx4Fcq+ZyGodAaTP1nQGUClM7DvWQgnXn29HrogCB+IxFsQLNycOXP4888/v9gQ51s4OTmxY8cOevToQcWKFdmwYQMQVe2kWe60tHd3JH+6qFrfigQmjwopapQ7fzor2rs70ixX2m9+LP21qgtJZdeuXRQtWpTMmTNz8+ZNKlasmKDjk+omJmMaeZyj6Y6ZPlThuH5gG4vbVGNylTxMrpKHt48fEBboD0DIuzc4Zsxi3Ncpc9wLeIP93uCUOZvx63SZs6HXagl9/3mJSgOgi0cS9ihIbRFzuz+mNUTFldJZajMiQRCiiDnegmDhXFxcmDdvHj179uSff/5BqTTdPFRJkujTpw8VK1akdevWHD9+nKVLl2Jvb09mOyVNcym/WAXBQFRC+HEVBFcbOXkdrSjmYvNNyXZCqy4k9nqf8vPzY8CAAdy4cYOdO3dSoUKFbz5X9E2MT5iGy9+4sE0hRSW07o5WlHO1JUit568XIbHuGz2FJ8D7JbumDqX7ip3kKPYDMrmcxW2qwX/JkUP6jAS99TYeF/jmVZzXT5shEwE+rz7a9zUyhQJ758+7FUqAPB7TiHwjv71GfVKy1LgSwlzNiKzlUoqtUiQIyUkk3oKQArRv357169fz66+/Mnz4cJOfv1ixYly9epWBAwdSunRptm3bRokSJYCo5LFcxjSUyxg1xSJUo8c3QotaZ0BnMCCXJKzkEq62ingtqovLl6oufD6KGvW1TmfgZZgWn3AtZ33CcXe0oqyrLVm+sTrFjh07GDBgAB06dGDt2rUmaw0e35sYVaQKmQRyK+s4byoidGokJL40Y1cdGY4kSdg5RTV+ubp3M28fPzBuL1q7CRe3rKZA5TpY2abhzNrFcZ6reL1mnFn3G/kr1sTOyYWjS6ZRrHbTWKufSET9W/jU7NmzWbx4McHBwWTKnIXqw2aiTGPP/rnj8Hv6EKWNDYVrNKLhsKkolJ83ZIkMCWbfnDE8vHACpY0tPzTvQLWfhyCTybi2bwv/7N5AtsKluLZvC7aOTrSetox3zx9zbPkstGo19QdPpHTjNl8916U9mynfZxsVy//ImjVrSJcuHcuWLaN+/fpxfj6WxNzNiHI4KFPcdDJBSG4i8RaEFECSJJYvX86PP/5Iy5YtyZkzp8mvYWdnx5o1a9i8eTO1a9dm4sSJ9OvX77OFkPZKGfaxJEffyhRVF6KTdM9ANY+C1ORJa0W9HPbxHgH39fWlf//+3Lp1i127dlG+fPlviOLrvnYTc+TwOV4/f8bk4YPivInJYCtH+5XH+hlz56dShz4s71IfSSajZMNWuBUva9z+Q7OOvHv+mF/bVMPGzoHKHfvy+J9zsZ6rdJP2BPu9ZVV3D7QqFe7lq+Mxamas+2oNBlxtY/5a8fT0ZMmSJfzzzz9kyZKFs7cfcuR5MMFBQTQaNpWshUoQ7OvN2v5tuPTn71Rq3/uz8+6bM4bI0GBG7L9KeNB71vT9CYf0GfmhaQcAXt65TpmmHfjl1EOOr5jNljE9KVi5DsP3XuHJtYtsGtGVIjUbYZ3G/ovnkiFx9cplfu7SmXfv3rFq1Sq6devG69evLX5BsKU0I+pdSCmqnQjCF4g63oKQgsyYMYPz589z8ODBJE0EHj16ROvWrcmePTu///47zs7OSXIdryAVB56HotWbdgGYXIpqR9/Izf6LI3AGg4Ht27czcOBAOnfuzKRJk0w2yv0t9u7dy//+9z/274+7ygjAwlv+qCylFt9HYqvj/ejRIypUqMDmzZupWrUqj0OjpsqoP0kQz29awdPrf9Nx/noganHlsD2Xcc7qxoTy2Rmw9RQZc+cH4PKO9fx7ZBc9V+/l2r4tnFqzkOF7o9ZAvPG6x6+tqzL22F0cXFwBmFI9H91X7CRT3kJfPNfN/Vv4e90inj95DEB4eDh2dnb4+PiQKVOmJPvcTMESmhHJ/1tI3SzX56UmBUGIIm5LBSEFGT58OC9evGD79u1Jep28efNy8eJFcufOTcmSJTl//rxJz28JVRfevn3LTz/9xKRJk9i7dy+zZ882a9INkCNHDp4/f/7V/Vxt5MkQTcLFFlfevHlZtGgRkyZNwtXVlSHdOhDk+wa/549ZN7Ad02sXYlLlXBxdOoPwAP/Pjg8L9Een1Xy2wDPY18f4tb3Lh/nmCmsbAGPSDaC0tkEdHhavc7m4ZjT+ObqCTWhoaII+h+TmHaYxPjEyJ50BHgep8QnTmDcQQbBgIvEWhBTEysqKlStXMnjwYAIDA5P0WtbW1ixYsIClS5fSsmVLpk2bhk6X+MVn5q66YDAY2Lp1K8WLF8fd3Z3r169Trly5pA0kntzc3OKVeOd1tEpwpZmkFl02Mjbt2rXj/PnzPH/+HJkkcfDXKeydMQLXXO4M33OFSeeeUqff2BgLaKPZpXNBrlDGWOAZ9OY1aV0zJzjG+JzLwj7WeLGkZkQ6A1z2jTB3GIJgsUTiLQgpTMWKFfHw8GD06NibmJhao0aNuHbtGsePH6dOnTr4+Ph8/aAvMFfVhZOvw3jz5g0tWrRg6tSp7Nu3j5kzZ2JjY5M8gcSDk5MTer3+qzdVxVxsLKb5TDQDUXF9ytPTk5MnT6JSqbCxsSFNmjRIkgxVeCjWdg5YpbHD96kXl3esi/W8MrmcorWbcHTpDFRhoQR4v+T8puWUbNAywTF+7VwSksXP5f5UcjQjurR9LdNrFWJiRTfCAt/z7OZl5jUpy8SKbtw99VeMfVNrMyJBMBWReAtCCjRr1iz279/PxYsXk+V6WbNm5cSJE1SpUoVSpUpx6NChbzqPOasuXH0bRrOegyhYsCDXr1+nbNmyXz8wmUmSFK9Rb1uFDHdHK4sZnZWIKncY26I6lUrF6NGjSZ8+PZkyZSLkvR91B4ynweBJ/Ht4J5Mq5WT31CEUq9M0zvN7jJqJlU0a5jYuw8pujSherwWlm7T/pli/dC49BpQyS/lU4yc+zYg+dnzFHLaN6xPv/XUaDQcXTODnZX8y+cJz7NI5c3z5bMq37sbkC88pXL3BZ8ekpmZEgmBqYnGlIKRQf/75J1OmTOH69etYWZmuysjXnDlzhg4dOtCmTRumT58e72tHaPWsuBdg1kWBCoOOfsUyWHTVhYYNG9K7d28aN278xf28wzRs9gqyiEY0CgnauzuSOZ5lHFPS4lBLt+lhIC/DPu8iGpfjK+bg//Ipracvj9f+QW+9mVW/ONOu+BhLSM71+IFm4+aRt1zVOI/Lbqegfb508Y5LEL4XlvvbRxCEL/rpp5/IkSMH8+bNS9brVq1alRs3bvDgwQMqV67Mkyfxa+t9+EVU9RJzMsjkHH5p2Qvl4jvPO4udkjxprUzekj6h5BLkcbSKd9INKWtxqKX7UtOfM+sWM7NuUSZWysn8Zj/y4NxRTv++iFvH9jCxohu/tq4GRNV5X9C8AhMr5WRO4zJc3hFVWcbv+WPmN4sqrTmlah5W92zGXI8fCHj9nPWDOzCxohtatSrBcQnC90zU8RaEFEqSJJYtW0aZMmVo1aoVefPmTbZrp0+fnn379rF48WJ+/PFHlixZQqtWreLc3xKrLiQkUUxO8U28AerlsGfFvQB05nyKIJOonz1hHQvzOlrhE661iNH6aF9aHGqpQjS6OG9m/Z494u9ta+i38VhU91HvF+h1Oqr9PPizEW975/R0/nUTztly8vT6RdYNaEu2wiXIWrA4Q3acY06j0kw489g44j27YSlaTFj4xRFvrd5AqEafqKZagpAaie8IQUjBcubMyejRo+nTp0+sJfOSkiRJDBo0iEOHDjFu3Dh69uxJeHh4rPuKqgvxF9+SghA11zt7wGM0kbF/7klNKYNGbvbYJHDqTkpaHGrJ/CJ0KOJYDCrJZGjVanyfeKLTaHDKkgOX7Lli3bdA5Tq4ZM+FJEnkLl0R9x+r8ezGpUTFppAkfCPiPwVGEL4XIvEWhBRu0KBB+Pn5sWnTJrNcv3Tp0ly7do2wsDDKli3L3bt3Y2xPjqoLCWHpVRcSMuK9atUq+rf2IIcUTnIPLCplUMLF5ptahKekxaGWTK0zxFqCESB9jtw0Gj6N4yvnMK1WQbaM7kGw35tY9/W8cJxlneoxpZo7k6vkwfP8ccIC3ycqNgMG1JZyty0IFiRl/ZQRBOEzSqWSVatWMXz4cPz9P29AkhzSpk3Lxo0bGT58ONWqVWP16tXGEfjoqgsLW1biydULZonvU5ZcdSE+ibdOp2P48OHMmzePc+fO0alcfgqms0625Fspg0LprKmR1e6bz1HW1dbs89OjySUo52re5knfQveVp1wl6reg9+8HGXXwBkgSh36dAp+MkGvVKjaN+JnKnfoy7tg9Jp59TP5KtSCRT9AM8YhPEL5HIvEWhFSgbNmytGrVipEjR5otBkmS6NKlC+fOnWPJkiW0adOGoKAgHgWp0RpgyI7z5C5T0WzxfUxrgEdBanOHEavMmTMTEBBAZGTsNwZhYWG0aNGCq1evcunSJdzd3ZEkifo57CnhYpPkyXf0SHe9HPaJqnmdkheHWgr5Fz5/v2ePeHzlHFq1CoW1NUprGySZhINLBgJ8XqDXRz3x0Wk0aNUq7JxckCkUeF44jtel04mOTfpKfILwvRKJtyCkEtOmTePo0aOcOXPGrHEUKFCAS5cukT59ekqWLIlPaOxVD+JDp026OaKWWnVBJpORLVs2Xr58+dm2169fU6VKFZycnDh69CjOzs7GbZIkUTObPR45HbCWSyZPaOVSVLk9j5wO1MyWuKQ7Wr0c9ijMXDf7WxaHWgoruYQUx4QdrVrF4d+mMrVGfmbULkzo+3fUG/ALRWp5ADC1ej5+a1cDazt7Go+YwZZRPZhSNS83D+2iYJW6iY5NQsLK3HdVgmCBRB1vQUhFdu/ezZgxY/j333+xtk743FtT+3PvAR5mKonCytpYCSH3D5U5u/43/tm9kYiQIPKWrUzTsfNI4+hEgPcL5jQqTfMJCzmxah5OmbPz87Lt7JoyBM+LJzDodLjkyE3nXzfh4OJKZEgwBxf8gueF40iSjNIebanVexR6vY4ZtQvTc/VeMrkXAiD0vR9zGpVm5MHr2DulRy5Bn8LOFll1oUaNGowdO5ZatWoZX7tx4wZNmjShb9++jBo16ouJb4RWz+EXocZKMon5IR81chk1Klwvu73J50F7BanY9ywk2ZsqQdTovUdOh2+ap24JQjQ6VtwNsJiFyx+z5O8vQTAn8R0hCKlIs2bNKFCgALNmzTJ3KACUqV4HW+uYJdr+3rqae6cO0XP1XsYeuY2tQzr2zhoVY5+n1/5m6M4L/Lz0T67v30ZkaDCj/7rJL6ce0mzsPJTWUfNxt08agEyuYPjeKwzYchKvS6f5Z/dGFEoritVtxo2/dhjP+e/hXeT5oTL2TukBy6668Gllk/3791OnTh3mz5/P6NGjvzrabKuQ0Sx3Wtq7O5I/XdR0DkUCBx8VUlTylD+dFe3dHWmWK22SLD50d7ROlikyn0rM4lBL4aCUm/2JQVwUMkkk3YIQC/FdIQipzG+//cZvv/3GgwcPzB0Kap3hsyTx8o711Ok3FseMWVBYWVOz1wjunNgfY1pJrV4jsLK1Q2lji1yhIDwoAP+XT5HJ5WQtVBwbewdC/H3xPH+cRsOnYWVrh71zBiq2782to7sBKNWoNf8e2WVc5Hnj4HZKNvzJeA1LrroQvcDSYDCwaNEievfuzYEDB/jpp5++fvBHMtspaZorLf2LOFM5cxqy2ymM01CsZRJWsqgE1EoW9XX0dJLsdgoqZ05D/yLONM2VNsnnP9fIapfiFodaCktt+mOpcQmCuYkGOoKQymTPnp1ffvmF3r17c+rUKZPMxf1WsVU1CHzzio3DOyNJH7IsmUxO6Hs/49eOGbMa/1yyYSsC33qzdUxPIkKCKNngJ+r0G0ugzyv0Wg0z6hQx7msw6I3H5ihaGisbW55cvYBD+oz4v3xKwar1PuwbR3yWwM3NjVOnTtGvXz/OnTvHxYsXcXNz++bz2SpklMuYhnIZ0wAQqtHjG6FFrTOgMxiQS1HzcV1tFWYZpYxeHGotl7jpH5mk0040kRE4hL2lXrHSZv3eMBXRjEgQUhaReAtCKtS/f382btzIunXr6Nq1q9niiK2qgWPGLLSY+Cs5S5T7bFuA94uoP3x0nFyppFavEdTqNYIA7xesG9CW9DnzkL9iLeRW1ow/6WnsqPepUo1ac/Ov7di7uFKkVmOU1h8apFhy1QUXFxcOHjxIuXLluHDhAmnTpjXp+e2VMuyVlpUYRS8OzeGg5MDzULR6g0nnLsulqOkPpWzCaO9Rn2qnT1O4cGHTXcBMirnYcNbHPA2U4pISmxEJQnIRU00EIRWSy+WsWrWK0aNH4+fn9/UDkkhsVRfKtejC0aUzCPCOqtoRGvCOe6cPxXmOx/+c543XPfQ6HdZ2DsgUSiRJRtoMmXD/sRp/LZxAZGgIer0e/5dPeXLtQ63wEg1+4u6pv7j51w5KNYzZ0t5Sqy48e/aMESNGoNVq2b9/v8mTbkvn7mhN70JO5E1rhUGrwaBPXPUZiQ8jsL0LOVGnZAHmzZtH8+bNCQ4ONk3QZiSaEQlCyiK+MwQhlSpZsiQdOnRg6NChZoshg60c7SfTOSq060nBqvX4vd9PTKyUk+Wd6/Py9rU4zxHi78umkT8zqXJuFraoSK7S5Sn5XxLdaspSdBoNC1tWZEq1vGwa+TMh73yNx6bLlJUsBYqBJJGzVPkY59UaDLjaWtZDv0uXLlGhQgV69+5NZGRkqpgK8S1sFTJqZZDYNLgd2a10Jl8c2rlzZ6pVq8bPP/9MaijsJZoRCULKIcoJCkIqFhoaSpEiRVi9ejW1a9c2SwwLb/mj0hmY1aAEracuI1fpCsl6/R2TBpI2Qybq9Bsb43VrucSQYi7JGsuX/Pnnn/Tr14+1a9fSqFEjsmTJwpUrV8iWLZu5QzOLBQsWcPnyZbZt20aEVs8t/0g2HztP9sIlMEgytOqo+vBW1tZIRD3B0BoMKGQSrjZy8jpaUczFJs6R18jISCpXrkzbtm3NenNqKrufBPPov/KR5iL/78lCs1zf11MaQUgIyxruEQTBpOzt7Vm6dCl9+vTh9u3b2Nom/0iUq42c+6/eEBbgj1OWHMl67QDvF9w9eZABW07GGpclMBgMzJw5kxUrVnDs2DFKlCgBfCgp+D0m3mq1mgULFrBv3z4gagTczRDMhoFtePfuHeE6mL54OU7pM1Cvscc3LQ61sbFhx44dlCtXjjJlylClSpWkfEtJrl4Oe1bcC0Bnxsw7JTcjEoTkIqaaCEIq17BhQ0qVKsW0adPMcn31k9vMb1KOCq27ky5z8iWRR5fNZNFPlanSqR/OWWNWBLGUqgsqlYquXbuya9cuLl26ZEy64UNJwe/Rpk2bKFSoEKVKlTK+du7cOSpWrIhMJsNeKePt3Ws4a4Ip7GxDASdrcqe1SnBFFjc3N9avX0/btm3x8fEx9dtIVrYKGY3c7JO9Hno0pQwaudljI+Z2C8IXiRFvQfgOLFq0iOLFi9O2bVuKFCny9QNMqE2tirw79zjZH4HX6TuGOn3HxLrNEqou+Pv707x5c5ydnTlz5gx2djFrSn+vibder2f27NksXbo0xuvnzp2jcuXKxq8DAgJwdnZO9PXq1q1Lr169aNWqFSdPnkSpTNqa5UnJ3dEaw4sraNK7obRJk2zXTQ3NiAQhuYhbU0H4DmTJkoUpU6bQq1cv9Prk7c0tqi58zsvLi/Lly1OuXDl27tz5WdIN32/ivW/fPhwcHKhRo0aM1z9NvN+/f2+SxBtg/PjxODg4MHr0aJOcz1yWLFnC0oGdCPW6hVYVmSzXTE3NiAQhOYjEWxC+E9FJ9+rVq5P92qLqwgdnzpyhcuXKjBgxgjlz5iCTxf5j2M3NjRcvXiRzdOZlMBiYNWsWo0ePjlHRJSgoCC8vL0qXLm187f379zg5OZnkujKZjI0bN7Jr1y62b99uknMmt6VLlzJv3jzatWvHoXljKe2aJsmnnUSPdNfLYf/dVuARhIQSU00E4Tshk8lYtWoVNWrUwMPDg8yZMyfbtbPYKcmT1soiqi7kcbSKtQV6iEaHX4QuSbs5rlu3jlGjRrF582Zq1qz5xX2/xxHvs2fP8v79e5o2bRrj9b///psffvgBK6sP8/JNNdUkmrOzMzt27KBevXoULVqUAgUKmOzcSW3ZsmXMnTuXESNGMGvWLP7++2+yZXMmb5AqSZsRNXKzF9NLBCGBRDlBQfjOjBkzhqdPn7J169ZkvW6EVs+KewGozJh5W8sl+hRywkYhM5aoexSkxjdSh1ZvQCFJGPgQX0JL1MVFr9fzyy+/sHXrVg4cOEDBggW/ekxQUBBZs2YlJCTkuxlNrF+/Pi1atKB79+4xXh83bhwymYypU6caX0uTJg2+vr7Y25u2isb//vc/FixYwJUrV0x+7qSwYsUKZs6cydy5c+nfvz/Hjh2jePHixu0RWj2HX4Ty+L+b3sR890V1e426ea2X3V40yRGEbyASb0H4zoSHh1O0aFGWLFlC/fr1k/XaXkEq9j0LQZO808yBqMfiHjkdsFPIuOIbgVeQGgnQJuAnoEKKSlzcHa0o62pLllhGzj8VERFB586def36NXv27CFDhgzxvl66dOl4/PgxLi6WU288qdy8eZMGDRrw9OlTrK1jjqJWqVKF8ePHU6dOHSCqBnfatGlRqVRJclPSrVs3wsPD2bx5s0Xf9KxcuZIZM2awZs0aOnTowB9//GH8jD7lE6bhsgn+3ZdztY31iZEgCPEjEm9B+A4dPXqUXr16cefOnVgX9iWlE69CuekfmazJt1IGRZysCdcaTDvyl9aKejniHvl7+/YtTZo0IU+ePKxZswYbm4RVUilevDhr166NUVYvtWrXrh0lS5ZkxIgRMV5XqVS4uLjg4+ODg4MDAD4+PpQsWZI3b94kSSwRERFUrFiRLl26MHDgwCS5RmKtWrWKadOmsWPHDtq2bcu4ceP4+eefv3rcl570GOCbmhEJghB/Yo63IHyH6tSpQ4UKFZg0aRJz585N1mvXyGqHSmfgfqAqWZJvpQyyplFwL1BtsrmuBqJGDB8Fq1lxLyDWua537tyhUaNGdOnShYkTJ37TyGn0PO/Unng/efKEo0ePsmLFis+2/fPPPxQoUMCYdINpF1bGxtbWlh07dlC+fHlKly5NxYoVk+xa3+J///sf06ZN4+DBg3Tv3p0OHTrEK+mGqCpD5TKmoVzGqHKDoRo9vhHaJF3bIAjCByLxFoTv1MKFCylSpAjt27eP0bglqUmSRP0c9ljLpSQf+VZI4Gwt53WYFk0SPNvTGUCnM7DvWQglXDTUyGqHJEkcOXKEjh07snDhQtq3b//N5/9eKpvMnz+fnj17kjbt563GPy0jCKZfWBmb3Llz8/vvv9O6dWuuXbtGxowZk/R68bVmzRomT57MsWPHGDNmDAUKFGDSpEnffD57pQx7pfmbSQnC90Ik3oLwnXJ1dWXmzJn07NmTv//+G7k8+VqoS5JEzWz25HBQJlnVBbkUVU3ldZgmSZLuj2n0cNM/EpXOwLO/NjJ1yhR27dpFpUqVEnXe76Gyia+vL1u2bOH+/fuxbj937txniy1NWcP7Sxo2bEjXrl1p06YNx44dQ6GI/6/MpKiS8/vvvzNx4kROnjzJkiVLCA4OZtu2bRY9D10QhJhE4i0I37GuXbuyfv16li1bxoABA5L9+u6O1vQupDRZ1QW9Tgd6HXmdbHGwVnInIPnmkmv0cPNtCPfeaTl//jx58uRJ9Dnd3Nz4+++/TRCd5Vq8eDGtW7eOdURZp9Nx8eJF1q1bF+P1pJ5q8rFJkybRoEEDxo8fz6xZs+LcL6mr5Kxdu5YJEyZw8uRJDh48yKlTpzh//nyMEouCIFg+kXgLwndMJpOxcuVKKleuTLNmzciWLVuyx2CrkNEsd1qTVF3I66jkyIpFnPF9R62h09Elc48wmdKKEo3bok/v8PWd4yFHjhypesQ7ODiYFStWcPny5Vi33759m0yZMuHq6hrj9eSYahJNLpezadMmSpcuzY8//vhZjXHvME2cVXJ0n9UuiPpapzPwMkyLT7iWsz7hX62Ss379esaPH8/Jkye5ffs2CxYs4OLFizg6OprujQqCkCxE4i0I37mCBQvSr18/Bg4cyK5du8wWR2Y7JU1zKRNddaHBrGn8dvNtsifd0bQGOPA8lN6FlImuApHap5qsWrWKWrVqxfl0ILb53ZC8I94A6dOnZ/v27TRq1IjChQvj7u5ukvrY0Um6Z6CaR0HqWKvk/PHHH4wdO5YTJ07g7+9Pnz59OHLkCNmzZzfNmxMEIVmJxFsQBMaMGUPx4sXZu3cvTZo0MWssia26cORlGDKllVk7ZGr1Bg6/DKVZrs8XCyaEq6sroaGhhIWFJXvZx6SmUqlYuHAhBw4ciHOfc+fO0ahRo89ef//+fbJ3lixbtixTpkyhefPmbD5+geNvNUleJWfDhg2MGTOG48ePI5fLadGiBX/88QclS5ZM/EUFQTALkXgLgoCNjQ0rVqygc+fO1KhRI0bpNnNLSNUF7zCNcQTSnHQGeBykxidMk6hmIzKZjOzZs/PixYt4dbtMSTZu3EjRokXjTCINBgPnzp1j9uzZn21LzqkmH+vZsyePFC7sfx6CTGn6VukfV8mx9r3FjFGjOH78OOnTp6dChQpMnTqVevXqmfy6giAkH1GkUxAEAKpXr07NmjX55ZdfzB3KN7viG2H2pDuazgCXfSMSfZ7UWFJQp9Mxd+5cRo0aFec+jx8/Ri6XkzNnzs+2JfdUE4i6ETj8MoxMZaonSdL9MY0eAuwyMu/QZXLmzImHhwetW7f+rLqLIAgpj0i8BUEwmjt3Llu3buXq1avmDiXBIrR6vILUiaqKYkoGwCtITYQ2cWVVUuM877179+Lo6Ei1atXi3Of8+fNUrlw51lJ55hjxPvk6jPuBqgQt+k0MpW0afAy2jFm3l7x58zJ16tTkubAgCElKJN6CIBilT5+eOXPm0KNHD7RarbnDSZBb/pGYqprxqTUL2TllcKLPIxEVV2KktsTbYDAwa9YsRo0a9cX60+fOnYuzDnpy1fGO5hWkSvJmT7HRGCBDqcqMXbRC1OoWhFRCJN6CIMTQsWNHXFxcWLx4sblDSZBHQWq0Bji+Yg7bxvWJ93FPrl5gZr1iMV6r3m0ILSYsSnRMWkNUXImR2koKnj59muDg4M/K8n0qroomkLxTTSK0eg48D032pDuawtqGw68jE/3kRBAEyyASb0EQYpAkieXLlzNjxowUlfD5RurMHUKsEhtXahvxnjVrFiNHjkQmi/vXz5s3b/Dz86NIkSKfbdPr9QQFBSVb4n34RVRnVXOKrpIjCELKJxJvQRA+4+7uzuDBg+nXrx+Gz5qAWI7Zs2eTNWtWHBwcmOFRjgfnjnL690XcOraHiRXd+LV1NQCu7t3MguYVmFgpJ3Mal+HyjvUAqCPCWDugDSF+b5hY0Y2JFd0I9nvz2aj5vTOHWdiyEpOr5GFVjyb4Pnn4IYaGpTj7x1J+bVWVSVVys3lUdzSqqOklYQH+rOrflnTp0uHs7EzlypXR6xM2cpmaEu8bN25w9+5d2rdv/8X9zp8/T8WKFWNNzoODg0mTJk2C2rd/K0uskiMIQsomygkKghCrkSNHUrJkSXbu3EnLli3NHc5nPD09WbJkCf/88w+R9ulZe/4ukVot1X4ejP/Lp7Sevty4r71zejr/ugnnbDl5ev0i6wa0JVvhEmQtWJyuv21l2/g+jDl8K9br+D1/zNYxvei4YD25S1fk/KYVrB/cniE7L6D4r8zh7WN76bp0Gwora1Z0bcj1/Vsp17IL5zYuwyljFvY8fk3utFZcunQpwXN1s2XLxps3b9BqtcmSbCal2bNnM2TIEKytv1wV5GvTTJJrfrclVslpmuvby1MKgmB+YsRbEIRYWVlZsXLlSgYNGkRQUJC5w/mMXC5HpVJx7949wiLVOGXNjkv2XLHuW6ByHVyy50KSJHKXroj7j9V4duNSvK5z6+geClSuhfuP1ZArlVTu1A+tKpIX//5j3KdCmx6kzZCJNI5OFKxSF2/PO1ExKpQEv3vLs2fPUSqVcVbp+BKlUknGjBl5/fp1go6zNI8fP+b48eP07Nnzq/t+KfFOroomqbVKjiAI5iUSb0EQ4lSpUiUaNmzImDFjzB3KZ/LmzcuiRYuYNGkSlfJlZ8OoHgT7vYl1X88Lx1nWqR5TqrkzuUoePM8fJyzwfbyuE+L3hnSZPrTnlslkOGbMSpCvj/E1h/Suxj8rbWxRh4cBUKVTf1yy56J7i4bkzp2bWbNmfctbTRXTTebNm0fv3r2/2pwpODiYhw8fUqZMmVi3J9fCyvhWyQnwfsGYUhnQxVEF6ONpS4E+r5hY0Q297tvm/ZuiSo4gCOYlEm9BEL5o9uzZ7Nmzh7///tvcoXymXbt2nD9/nhP/PgRJ4tCvU+CTEWWtWsWmET9TuVNfxh27x8Szj8lfqRZEz13/SnblkCETgW9eGr82GAwEvX2No2vmr8ZnbWdPk2FTOHbjAfv27WPBggWcOHEiwe8zpVc2efPmDVu3bmXgwIFf3ffixYuUKVMGK6vYu5Um14h3dJUcU0qXORuTLzxHJpd/0/GmqJIjCIJ5icRbEIQvcnJyYsGCBfTs2RONxnIWd3l6enLy5ElUKhX2drZYWdsiySQcXDIQ4PPCuIhRp9GgVauwc3JBplDgeeE4XpdOG89j7+xKeFAAkSHBsV6nWO0mPDh3nEeXz6LTaDi3YRlyK2tyFP/hqzHeP3uUdy+eopSBo6Mjcrn8i9U84pLSR7wXL15Mu3btcHV1/eq+X5pmAsk3xzu1VskRBMG8UvZKHUEQkkXr1q1Zt24d8+fPZ/To0eYOBwCVSsXo0aO5f/8+CqWSTEXK0Gz8AuRKK278tZ2p1fPhnDUHAzafpPGIGWwZ1QOtWkWBKnUpWKWu8TyuudwpXrcZczzKYNDpGLLzQozrZMiZl9bTlrF/zhiC/HzIkq8InRdtNC6s/BL/F0/YP3s0vwb54+TkRN++falevXqC36ubmxvXrl1L8HGWIDg4mFWrVvHPP/98fWeiEu/x48fHeC1Eo8MvQodaZ+C9jTOuRcvxJFiNq60Ce6Xpx49CNDqO/W8Rl3dvJPS9H+kyZqVOv7EUrtEQvU7H4cVTuLZ/K9Z2DlTuELNm/PvXz9kxcQCvH9wiR9EypHfLY9wW4P2COY1KM+2KD3KFglU9mpCz5I88+eccPl73yFHsB9pMX4GdkwsA1w9s49iyWagiwqjYrhdX92zipwkLCS3YLEnetyAISU8yWHKtMEEQLMbTp0/54YcfuHz5Mnny5Pn6Acls4S1/VJZSguIj1nKJIcVcEnWOQ4cOsXDhQo4ePWqiqJLP3LlzuXHjBps3b/7qviqVChcXF56+8uaJSsGjIDW+kTq0egMKScKAgUiVCpkkYW1ljdZgQCGTcLWRk9fRimIuNtgqEp+QPglWM3nlRrIWL4u9iyt3ju1lx+TBDN97mftnDnNh80p+XrYDK9s0bBrRlSdXLxiT6WWd65OjWBnqDRjPy9vXWDeoHYWq1qf19OWxJt5Bb73p8ttW0mXMwtoBbchRtDT1Bk7g7RNPlnWsQ9cl28hWpBRHl0znwpZV9FyyjRFtG5E77ddv/ARBsDzillkQhHjJlSsXI0eOpG/fvhZZ29vV5tvmzSY1U8Tl5ubGixcvTBBN8lKpVCxcuJBRo0bFa/+T127TecF61j1Tc84nnJdhWlQ6AzoDqPQG1HqQKa1BYYVK/9/rOgMvw7Sc8wlnyZ337HkajHci612rdQaK1/EgbYZMyGQyitVtRvocuXh19wa3ju6lYrtepMuUlTSOTlTtOsh4XKDPK17fu0GdvqNRWFmTq3SFGE9XYlPaow0Z3PKgtLGlaO0mxoo4d47vp0CVuuQs+SMKpRW1eo9CIurmQ22BN5iCIMSPSLwFQYi3IUOG8ObNG7Zs2WLuUD6T19EKRcIq9SU5hRQVV2JFJ96WeMPzJRs2bKB48eIUL178i/tFaPXsfhLMv1ZZyVa6MjoDCV7YqDVE1br2DFSz2SuI3U+Cv7n0ns5g4Or+bSxuU43JVfIwuUoe3j5+QFigPyHv3uCYMYtxX6fMHyreBPu9wdYhHVa2dsbX0mXO9sVrObh8mPduZWOLOiLMeK50GbN+2GabhjTpnDD8F58gCCmTSLwFQYg3pVLJqlWrGDZsGO/fx68cX3Ip5mJjMTWXoxmIiiux7OzsSJMmDX5+fokPKpnodDrmzJnz1TUBXkEqVtwL4FGwGuRKpG9YfPoxA/9V/whWs+JeAF5BqgSf482rF/w5ZSgeo2bxy6mHTDz7mIx5CoDBgEP6jAS99TbuG/jmlfHPDukzEhESaEyeo7Z/W/11h/QZCfL9cB1NZAThgQFIgDyBteAFQbAcIvEWBCFBypUrR4sWLeI9fSC52CpkuDtaxav2cnKQAHdHK5PMOYaUV1Jw9+7duLi4UKVKlVi3GwwGTrwKZd+zEON0ElOKnoay71kIJ16FJuhpgTYyAkmSsHNKD8DVvZt5+/gBAEVrN+HiltUEvfUmIjiQM2sXG49zypKdrAVLcHzFHLQaNc9uXOLB2SPfFH/RWo25f/YIz/+9glaj5vjKuRgwICFhJbeUf+WCICSUSLwFQUiw6dOnc+jQIc6dO2fuUGIo62qLpeQkcgnKudqa7HwpqaSgwWBg9uzZjBo1KtZOnQaDgUMvQrnpH4kmiRsxavRw0z+SQy/in3xXKFmEKh37sLxLfabXLsSbR/dxK14WgB+adcS9fHV+bVON39rVpHCNhjGObTNjBS9vX2NqNXdOrJpHyYatvinujHkK4DFyJlvG9GRGnSJYpbHD3ik9klKJq60oSCYIKZWoaiIIwjfZuXMn48eP5+bNm1hbW5s7HKPdT4J5FKw2+QhqQmjVKgK9btG/UkFy5sxpknMOHjyY7NmzM2zYMJOcLymdOHGC/v37c/fu3Vjrlp94lTxJ98eUMijhYkPNbPbx2t/SquSowkOZUjUvY/ZdYVqDUuYORxCEbyRGvAVB+CbNmzfH3d2dOXPmmDuUGOrlsEchM++wt52NNc7edylTpgwzZ85ErU58t8GUNOI9e/ZsRo4cGWvS7RWkSvakGz6MfMd3zrclVMm5f+YI6ohw1BFh/LVwEhnzFqRAnlzmDksQhEQQibcgCN9EkiSWLFnCr7/+ysOHD80djpGtQkYjN3vM1V9EKYNGOR0YO3I4//zzDxcuXKBEiRKcPn06UedNKSUFr127xv3792nfvv1n2yK0eg48D032pDuaRg8HnofGq9qJJVTJuXfmEDPrFmVG3aL4v3hCh1mrcU9nOU+XBEFIODHVRBCERFm0aBH79u3jxIkTsc7nNRdLmc5gMBjYs2cPgwYNomrVqsybN4+MGTMm+NzXrl2je/fu3Lhxw5Qhm1zr1q0pV64cQ4cO/WybJUwDkv9X4rFZrrRf3C9Cq2fJnfdmjfVTcgn6F3E22YJdQRCSn/juFQQhUfr3709QUBDr1683dygx1MhqR8F01sk28q2OCCeDNoQaWe1ivC5JEs2aNePevXtkypSJIkWKsHz5cnQ6XYLOnxKqmnh5eXHy5El69Ojx2TbvMA2PzZx0Q1S1k8dBany+0mQntVfJEQTBPMR3sCAIiaJQKFi9ejWjRo3i3bt35g7HSJIk6uewp4SLTZIn30oZZNIEMKpRBR48eBDrPvb29sydO5eTJ0+yadMmypcvz/Xr1+N9jfTp06NSqQgJCTFV2CY3b948+vTpg4ODw2fbrvhGmD3pjqYzwGXfiK/ul5qr5AiCYB4i8RYEIdFKlSpF+/btLa7ihiRJ1Mxmj0dOB6zlksmTKLkE1nIJj5wO9KxanNmzZ1O3bl2ePXsW5zFFixbl7Nmz9OnTh/r16zNgwACCgoK+ei1Jkix61NvHx4ft27czYMCAz7ZFaPV4BaktpsGRAfAKUn91rncWOyV50lqZPfmWS5DH0YrMdkrzBiIIQqKJxFsQBJOYMmUKp0+f5sSJE+YO5TPujtb0LuRE3rRRC+YSm0dJfGgH37uQE+6OUQveOnXqxIgRI6hduzZv3ryJ83iZTEbXrl25d+8ekZGRFCpUiC1btny1zrQlVzb59ddfad++PRkyZPhs2y3/yHh/5oE+r5hY0Q19AqfixMepNQvZOWUwEPV3eMs/8qvHWEKVHIVMon72+JVBFATBsonFlYIgmMz+/fsZOnQot2/fxsYm8a3Sk4JPmIbLvhF4BamRiGovHl8KKWq01N3RinKutnGOQE6ZMoWdO3dy+vRpnJycvnreixcv0qdPH1xdXVm6dCn58uWLdb9evXpRokQJ+vTpE/+gk0FQUBC5c+fm2rVrsdYt3/QwkJdh2uQP7Cuy2ylony/dV/fzClKx71mIWaqxKGXgkdPBeHMnCELKJka8BUEwmcaNG1O8eHGmT59u7lDilNlOSdNcaelfxJnKmdOQ3U6BXK9Dp1FjLZOwkkUlO1YysJZJxukk2e0UVM6chv5FnGmaK+0XH/v/8ssv1KhRg4YNGxIWFvbVmCpUqMC1a9do0KABFSpUYMKECUREfD4H2VJHvFesWEH9+vXjbBbkG2n60WtTiG9c7o7WybJW4FPRVXJE0i0IqYcY8RYEwaRev35NiRIlOHPmDIUKFTJ3OPGycuVKrt25z+jpc1DrDOgMBuSShJVcwtVWgf03ZFx6vZ5u3brx+vVr9u/fH+/unq9evWLIkCFcv36dJUuWUL9+feO2TZs2ceDAAbZs2ZLgeJJKZGQkuXLl4siRIxQrVuyz7SEaHSvuBjCjQSnKt/qZGwe34//qGcXrNqVO/3HsmDiAZzcvk71IadrPWUNkaDBzGpVm2hUf5AoFV/du5uz6JQT5emPnlJ6qnQdQrmVnAJ5cvcC28X2o0KYH5zYsQyaX0WTMXORKJQfmjSc88D2VO/alerchABxfMQf/l09pPX05EDV3uk9h53j9/Ua3ub8XoErQU5JvpZRBoXTW1Mthb1FlOgVBSBwx4i0IgkllzZqVSZMm0atXL/R6M3VKSSBPT0/yZs9C7rRWFHCyprCzDQWcrMmd1uqbkm6Imse9evVqHBwcaN++PVpt/KZaZMuWje3bt7N06VL69+9Py5YtefXqFWCZJQX/+OMPSpUqFWvSDeAXoUPxX+J458QBfl6+nWF7LnH/7FHWDWhD3f7jGH/iAQa9ngtbVn92vL1zejr/uolJ557SctKvHFzwC6/v/2vcHurvi1atYszhW9TqPZrdU4dy868dDNh0gl5r9nPyfwt4/zr2z0whSfhGxO/vJbpKTsCti+jU8et++a2iR7pF0i0IqY9IvAVBMLnevXuj0WhYs2aNuUOJF09PT/Lnz2/y8yoUCjZv3kxQUBC9evX66uLJj9WrV487d+5QqFAhSpQowYIFC8iaNatFJd46nY65c+cyevToOPdR6wwY/qtnUr5NdxxcXHF0zUzOkuXIXqQ0WQoUQ2ltQ+EaDfDxvP3Z8QUq18Eley4kSSJ36Yq4/1iNZzcuGbfLFEqqdxuCXKmkeN1mhAX6U6FtT6zt7MmYpwCuufLh8/BurLEZMKBOQI3D7du3s3XyEBpms0UpGdCaOAH/uEpOzWwi6RaE1Egk3oIgmJxcLmfVqlWMGzfui9U9LEVSJd4A1tbW7N69m3v37jF8+PAEJd+2trZMmTKFixcv8tdff9G0aVN8fX1Rq9VJEmtC7dq1iwwZMlCpUqU499F99H4dXD5UPFFa22Lv/PHXNqjCP58P73nhOMs61WNKNXcmV8mD5/njhAW+N25P4+iETC4HQGFt8/l1bGxQx3JeiFooq4vn38fDhw/p168ff/75J25pJDb0aIR10NskrZIjCELqIxJvQRCSRLFixejatStDhgwxdyhfpFKpePXqFblz506ya9jb23Pw4EGOHj36TQtP8+XLx7Fjxxg7diwGg4EOHTrg7++fBJHGn8FgYNasWYwePfqLI7PyRIzaatUqNo34mcqd+jLu2D0mnn1M/kq1wERLk6R4xhceHk7Lli2ZOnUqRYoUoXnz5tSoXJERdUrR3t2R/Omian0rEvhWFVLUKHf+dFa0d3ekWa60ojOlIKRy4jtcEIQkM3HiRC5fvszhw4fNHUqcHj9+jJubG1ZWVkl6HWdnZ44ePcq6detYsmRJgo+XJIk2bdpQrlw5tFothQoV4vfffzfbPPoTJ04QGRlJo0aNvriflVxC+sYxYZ1Gg1atws7JBZlCgeeF43hdOv1N54qNRNQC2q/p378/RYsWpWfPnnTr1g1nZ2fmzZsHxF4lJ7pZk6mq5AiCkHoozB2AIAipV5o0aVi2bBl9+/blzp07pEmTxtwhfSYpp5l8KnPmzBw7dowqVaqQLl06OnTokOBz5MmThxo1ajB+/Hj69OnD77//zvLlyylatGgSRBy3WbNmMXLkSGSyL4/fZLCVo/3GEWprO3saj5jBllE90KpVFKhSl4JV6n7TuWKjNRhwtf3yr8G1a9dy6dIlrly5woQJE3j8+DEnT5787H3bKmSUy5iGchmj/o2HavT4RmhNViVHEITUQZQTFAQhybVt25YcOXIwe/Zsc4fymZkzZ/L+/Xvmzp2bbNe8d+8eNWrUYNWqVXh4eCTo2F9++QWFQsHEiRPR6XSsXr2aCRMm0KlTJyZNmoS9fdJ3OLx69SrNmzfn0aNH8XpSsPCWP6oELGJMLtZyiSHFXOLcfuvWLWrWrMmZM2e4cOECc+bM4eLFi7F25xQEQYgPcdstCEKSW7RoEWvXruXWrVvmDuUzyTniHa1QoULs37+f7t27c+rUqQQd+3FJQblcTu/evbl9+za+vr4UKlSIXbt2JWgB57eYPXs2Q4cOjff0HFcbeZLG862+FFdwcDAtW7Zk4cKFPH/+nAkTJnDo0CGRdAuCkCgi8RYEIcllzJiR6dOn07NnT3Q6y+piaI7EG+CHH37gzz//pHXr1vzzzz/xPi627pUZM2bkjz/+4I8//mD8+PE0atSIJ0+emDpkIKq6x+nTp+nevXu8j8nraJXghYdJLbqKSGwMBgPdu3enevXqFC5cmM6dO7Nr1y7y5s2bzFEKgpDaiMRbEIRk0a1bNxQKBStWrDB3KEYGg8FsiTdAtWrVWLNmDY0bN+bevXvxOuZLbeOrVavGzZs3qVSpEmXLlmX69OmoVKatNT1v3jz69u2boCktxVxssLSJJgai4orN0qVL8fLyYtiwYTRu3Jjly5dTvnz55A1QEIRUSczxFgQh2dy7d4+qVavy77//kiVLFnOHg5+fH/ny5eP9+/dmbVayceNGxowZw9mzZ8mVK9cX942IiMDJyYnw8PAvLmx89uwZAwcO5OHDhyxbtowaNWokOk4fHx8KFy7Mw4cPSZ8+fYKO3fM0GM9AtUUk4BJRJfya5kr72bYrV67QqFEjjhw5QseOHenWrZvFl8QUBCHlECPegiAkm0KFCtG7d28GDhxo7lCAD9NMzN0hsEOHDowePZratWvj4+PzxX1tbW1xdHTk7du3X9wvZ86c7Nu3j9mzZ9O1a1fat2+f6GZGixYtokOHDvFKukM0Op4Eq3kQoOLu+0hcbRWJbjRjKnIJyrnafvb6+/fvadWqFUuWLGH48OHUrFmTwYMHJ3+AgiCkWqKcoCAIyWrcuHEULVqU/fv307hxY7PGYs5pJp/q168fAQEB1K1bl9OnT+Ps7BznvtHTTTJnzvzV8zZp0oRatWoxdepUihYtyqRJk+jduzdyecIWPAYGBvK///2P69evx7o9Qqvnln8kj4LU+Ebq0OoNKCTJ2C7eUkhATgflZ3Wz9Xo9nTp1olmzZhw4cIC0adOyYMECs9+UCYKQuogRb0EQkpWNjQ0rVqygf//+hIaGmjUWS0q8IeqmpHbt2jRs2PCLn83HlU3iw87OjlmzZnH69Gn+/PNPypUrx9WrVxMU2/Lly2nYsCFubm4xXvcO07DnaTBL7rznnE84L8O0qHQGdAZQ6Q2o9Rj/M0+rn5gMwNOQqJi9wzTG1+fMmcP79+9JkyYNDx8+ZNOmTQm+OREEQfgakXgLgpDsatasSbVq1ZgwYYJZ47C0xFuSJObNm0ehQoVo3rx5nAsjv7TA8ksKFy7M6dOnGTBgAI0aNaJfv34EBgZ+9biIiAgWL17MyJEjP7ym1bP7STCbvYLwDFSjM4DWsga346QzgGegms1eQex+EszxM+dZtGgRzZs3Z9u2bezbt88imz0JgpDyicRbEASzmD9/Pps2beLatWtmi8HSEm+ISr5XrVpF2rRpadeuHVqt9rN9vjXxjj5/586duXfvnrH1/KZNm75Y+3v9+vWUKVOGIkWKAOAVpGLFvQAeBavRGrCwySTxYyDqRsErSMV5WRYGTJ3HvHnz+Ouvv3B1dTV3eIIgpFKiqokgCGazbt06fvvtNy5fvoxCkbxLTjQaDQ4ODgQGBmJjE3tZOXNSqVR4eHiQJUsW1qxZE6OCyd69e1m9ejUHDhxI9HUuXbpE7969cXFxYenSpRQoUCDGdq1WS/78+Vm/fj0VK1bk5OswbvpHorGEeSMmpIkMJ6c8kg4/uIt53YIgJBkx4i0Igtl07twZR0dHlixZkuzXfvr0KVmyZLHIpBvA2tqaXbt24enpybBhw2KMSLu5ufHixQuTXOfHH3/k6tWreHh4UKlSJcaNG0d4eLhx+86dO8mcOTMVK1bk0IvQVJl0Ayht0uBr7cyhF6FJ3vlTEITvl0i8BUEwG0mSWLFiBdOmTTNZIhlfljjN5FN2dnYcPHiQkydPMnXqVOPriZlqEhuFQsGgQYP4999/efToEUWKFOHgwYMYDAZmz57N6NGjOfk6jPuBqlSZdEfT6OF+oIqTr8PMHYogCKmUSLwFQTCrfPnyMWjQIPr375+sI40pIfEGcHJy4siRI2zYsIHFixcDkC5dOgwGQ7wWRiZE1qxZ2bZtGytWrGDw4MFUrlyZsLAw3CvWSrUj3Z/S6OGmfyReQabt+CkIggAi8RYEwQKMHDkSLy8vdu/enWzXTCmJN0CmTJk4duwYc+fO5Y8//kCSpASXFEyIOnXqcPv2bV6/fs37kDB2e/l/F0l3NI0eDjwPJUL7Hb1pQRCShUi8BUEwO2tra1atWsXAgQMJCgpKlmumpMQbojpRHj16lJEjR7J3795vmm7yaTfJBwEqngSrCY0lq7516xZ6vZ55hy6hs5iek8lHqzdw+KV568wLgpD6iKomgiBYjB49emBtbZ0siy0zZszI9evXyZo1a5Jfy5SuXr1KgwYN+PHHH6lduzYDBgyIc9/4dJOUkNAaDChkEq42cvI6WlHMxYYOrX+iUsPm6ErVTTH1uU1NIUF7d8fPulwKgiB8K5F4C4JgMd6/f0/hwoXZvXs3P/74Y5JdJzAwkOzZsxMcHJwiS8edPn2aRo0a0aRJEzZt2vTZdu8wDVd8I/AKUiORsMY2Cgn0BgP3zxymZr2GvI7Qp8g63aYgAfnTWdE0V1pzhyIIQiohppoIgmAxnJ2dmT9/Pr169UKj0Xz9gG/k6elJvnz5UmTSDVCtWjX69OnDzp07uXPnjvF1U3ST1BpAj0S+ynV59R0n3RDVZMcrSC3meguCYDIi8RYEwaK0bduWTJkysXDhwiS7hqen52eNYlKa5s2bkzVrVurVq8eTJ09M3k1Skn0fvx62T+zP0aUz4twuAbf8I2Pd1qVLF8aPH59EkQmCkBp9Hz9ZBUFIMSRJYtmyZcyZM4enT58myTVS2sLK2Li5uREWFsbYceMYv2E/e54Eo9IZ0JlhiHp2w1I8unwmSc79tcQ4qWkN8ChIbbbrC4KQuojEWxAEi5MnTx6GDx9Onz59kqS294MHD1J84p0pUyYCAgLIXrctRRu0+i4rjyQX30iduUMQBCGVUJg7AEEQhNgMGzaMzZs3s23bNtq0aWPSc6eGEW+ZTEaLsXN4EKRBUpiv6sa28X0JevOK9YM7IJPJ0Ov11B80kQptuhv3+bV1NWr2HI5MrmDzqJ+xsrXDxj4tRWt7cGXnH8itrGnxy0IKVq2LKjyUxW2qU7PncLQqFTcP7URC4sLmleQuU4nOv24i2O8N+2aP5tn1S1ilsaNi+15UbNsTgOMr5uD71BOFlQ13Tx0kXaZs/DRlCdkKlQDA+8Etdk4ZzLsXT8hfsdZn8/zvnz3KsWUzCPB+iWvu/DQdO5ds+QsTqtHjdedfunXrhpeXFw0aNEixawQEQTAfMeItCIJFUiqVrFy5kqFDhxIQEGCy8+p0Oh4/foy7u7vJzmkOXkEqCtdrYfaR7tbTluGYKRudF21k8oXnNBs3j1tHdhm3v33iSaDPS/JVrMmJVXPJXqQMmdwL0fnXTZzftJLi9VvQaupSdk0bQuh7Pw7O/4Us+YtQqlFryrboRIn6LajSuT+TLzyn86+b0Ov1rB/Unsz5ijD6yC26r9jJhc2reHjxpPGa988coVjdpkw885iCVeuyb9ZoALQaNRuGdqZkg1ZMOOVF0doe3Dl5wHic94Nb7Jw8iKbj5vPLqYeUbdGJP4Z0BI2aV0HhNG3alI4dO/L+/Xt++ukndu7cmXwftCAIqYJIvAVBsFjly5enadOmjB492mTnfP78ORkyZMDOzs5k50xuEVo9B56HIreyMXconylcvSHenncJ8H4JwM2/dlC4RkPeeN0jLNCf7it2ogoLZcuYnjhlyY4mIpx85atTtJYH/+vdAs/zx2k6bn6c53919wZhgf7U7DkchdIK52w5KdusA7eOfOh66laiHAUq1UYml1OyYSt8vO4C8PLWVXRaDRXb90KuVFK0lgfZCpU0Hndl1wbKtuhEjqKlkcnllG7cBoWVFc9u/cM/ly+h0WgYPHgwSqWSli1b8sMPPyTRpygIQmolppoIgmDRZs6cSeHChTl//jyVKlVK9PlSwzSTwy9C0eots9CftZ09BSrX4tbR3VTtMpB/j+ym+fgFBPq8JMTvDdNqFkCrVqNVR6KwtiE04B0AZZt34u9ta6j282Ds0jnHef7o80yuksf4ml6vI2fJD3XfHVxcjX+2srFFq4pEp9US/O4taV0zx5giki5zNuOfA3xecv3ANv7e+j/jazqthiC/t7wx2JA1a9YYx7q5uX3jpyQIwvdKJN6CIFg0R0dHFi1aRK9evbhx4wZWVlaJOl9KT7y9wzQ8DlabpXpJXD6d61y8bnNOrJpLzpLl0aoiyf1DJV7evoZTlhz0WL2XxW2qUbxeM17f+5eO89ej1+nYNW0YJRu14tL2tZT2aEv6HLmjzv3JVBrHjFlxypKD4XuvJDhOh/SuBPv6YDAYjDEHvXmFS7acAKTLmJXqPw+mevehMY6zkkH6lzd4/fp1jGNfvHhBnjx5EARBiC8x1UQQBIvXokULcuXKxZw5cxJ9rpSeeF/xjbCopBvA3jkD7189N36dv1ItAnxecXzFbIrVaYpMJiN7kVJYpbFjdY8mlGrYimbjF2BlZ8fOKUM49fsiJEmi5cTFVOnUj+0T+qPXRVUSsXfJwPvXH86dvUgprO3sObNuMZrICPQ6HW8e3efl3RtfjTNHsR+QKRRc3LIKnUbDnRMHYhz3Q/OOXN65nhe3r2EwGFBHhPHg3FFUYaGU/bE8CoWCxYsXo9Fo2LVrF1euJDz5FwTh+yYSb0EQLJ4kSSxdupRFixbh5eWVqHNZauKdM2dOjh8//sV9IrR6vILUJu0meXzFHLaN65Ooc1T7eRAn1yxgcpU8nP1jKQora4rUaMijy2coXr8FADK5nMLVGxIW4M+NQzuippxERnL35EHOrvuNn6YsQSaXU7XLQCQJzqz9FYAyTdvj+8STyVXysGFoJ2RyOZ1/3Yy35x3mNC7N1Br52TVlCKrQ4K/GqVBa0WHeOq7t38qU6u7cOrqHwtUbGrdnK1SCZuMXsG/2aKZUzcu8JmW5tn8rWgNkc0zDrl27WLduHc7Ozmzbto3mzZsn6nMTBOH7IxmSokiuIAhCEliwYAEHDx7k+PHj31zKLWvWrFy8eNHi5ufmzJmT//3vf9SqVSvOfS6/DeecT3iC28B/yfEVc/B/+ZTW05eb7qQfWdWjCSUbtOSHZh2T5PzJwVouMaSYi7nDEAQhFRAj3oIgpBgDBw4kICCADRs2fNPxISEhUU1nsmc3cWTJ41GQGpVGa+4wvjuuNnJzhyAIQiohEm9BEFIMhULBqlWrGDlyJO/evfviviEaHU+C1TwIUHH3fSQPAlRcfPiComXKIZNZ5o++f/75h0KFCuHk5ETXrl2JjIzk9OnTZMuWjdmzZ9OnQn52TBqIVq1i/9xxzKhThBl1irB/7ji0ahUAEcGBrBvYjmk1CjC5al7WDWxH0Ftv4zXev37Oqu4eTKyUkzV9WhIW6B8jhmc3LrG8SwMmV8nDrPrFubZvCwAPzh1lcdvqTKqci1n1i3N8xYf59hpVJNvG9WFK9XxMrpKHJR1qE+Lvy5El03l24xL7Zo9hYkU39s4alQyfomkpJMjrmLgFvYIgCNHEVBNBEFKcwYMHExQUxNq1a42vRWj13PKP5FGQGt9IHVq9AYUkYfhoRrRGo0FnAFtrK1xt5OR1tKKYiw22CvMn4jlz5sTe3p5Dhw5hZ2dH48aNqV69OrVq1aJWrVoMGDwE11aD0er0nF77K15/n6bTog0gSWwY0ok8ZStTp+8YwgLf8/TaBfJVqIlBr2fH5IHotVo6LvgDgGWd65OjWBnqDRjPy9vXWDeoHYWq1qf19OUEeL9kUavKNBu/gKI1GxMZFkLQ29dkyV+UJ1cvkMbRCdc8BXj76D6/9/2JpuPmUbh6Ay7vWM+Dc0dpO2s1CitrfDzv4JIjNzb2Dil+qolcgv5FnC3i34ggCCmf+EkiCEKKM3XqVE6cOMGpU6fwDtOw52kwS+6855xPOC/DtKh0BnQGUOkNqPUY/zPIlcgUSlQ6Ay/DtJzzCWfJnffseRqMd5jG3G+L/v37kz17dpydnRk3bhxbtkSNNstkMloMHINcaY3Sxpabh3ZSo+cw7J0zYO+Unpo9h3Pj4HYA7NI5U6RmY6xs02BtZ0/1bkN4cu0iAIE+r3h97wZ1+o5GYWVNrtIVKFilrvH6/x7eSd5yVSlRrzlypRK7dM5kyV8UgNxlKpLJvRAymYzM+QpTrG4znv53XrlCQXhQAP4vnyKTy8laqDg29g7J+dElCQlwd7QSSbcgCCYj6ngLgpDiODg4sGjpcrY9eEdepyB0Br6p0kf0IkXPQDWPgtTkSWtFvRz2Zku0Pp577ubmhre3NyqdHgfn9Fz016P/b1uw3xucMn/YN13m7IT4vQFAHRHOwfm/8PDiSSJCAgFQhYWi1+kI9nuDrUM6rGztPjo2G0FvoqaiBL71Nta0/tSL29c48ttU3j56gFarRqdWU6SWBwAlG7Yi8K03W8f0JCIkiJINfqJOv7HIlUoTfTLmIZegnKutucMQBCEVEbfxgiCkOF5BKp67/UiOMpXQfmPS/TEDUUn4o2A1K+4F4BWkMkWYCfby5Uvjn1+8eEGGTJnZ9ywEnQFj0g2QNkMmAnw+7Bv45hUOGTIBcG7jcvyeP6LvH4eZdO4pPf+3DwCDwYBD+oxEhASijgj76NjXxj+ny5gF/1fPYo1t27jeFKxSj1GHbjLp7BPKtugM/81UlCuV1Oo1giE7L9Bn3V88OHeU6we3AZ8310kp5BLkcbQis13KvnkQBMGyiMRbEIQUw2AwcOJVKPuehaDSGZApTJsU6Qyg0hnY9yyEE69CSe4lMEuXLuXVq1f4+/szYuIU3Gt4oNF/fmNRvG4zTv1vIaEB7wgL8Ofk6nmUbNASAHVYKEprG2wcHAkPCuDEqnnG45yyZCdrwRIcXzEHrUbNsxuXeHD2iHF7ifoteXT5DLeO7kGn1RIW+B5vz9tA1Ki5rWM6lNY2vLxznX8P7zIe9/if87zxuodep8PazgGZQokkRf16+bS5TkqhkEnUz25v7jAEQUhlROItCEKKYDAYOPQilJv+kWj0X98/MTR6uOkfyaEXyZt8t2vXjjp16uCWKw82GXNQtdvQWPer3n0oWQsVZ3HrqvzaugpZChQztjmv2L4XGlUk02rkZ1nneuQrXyPGsW1mrODl7WtMrebOiVXzKNmwlXFbuszZ6LJ4C+c2LmdqdXd+a1sdn4d3AWgyZjbHl89mYqWcnFg1j6K1PYzHhfj7smnkz0yqnJuFLSqSq3R543krtO3J7RP7mVw1L/vmjDHp55VUlDJo5GaPjZjbLQiCiYmqJoIgpAgnXiVP0v0xpQxKuNhQM1vyjXya431aKhlRo/3J+UvKHH/ngiB8P8TtvCAIFs8rSGWWZDR65Du55nyb631aIqUMijhbU8TJCmUy/aaSdFry2smokdXu6zsLgiB8A5F4C4Jg0SK0eg48DzVbMqrRw4HnoURokzYAc79PSxI96lw/hz0N3Bwo4WKT5Mm3pNfx6tJxOpfJTYcOHTh8+DBaregSKgiCaYmpJoIgWLTdT4J5FKxGZ8afVPL/uhc2y5U2ya5hCe/T3ORS1KLGRm72uDtax9jmFaTiwPNQtHqDST+jT6/p5+fH1q1b2bBhAy9fvqRdu3Z07NiR4sWLp9gKLRDVydUvQodaZ0BnMCCXJKzkEq62CuyT65GCIAgi8RYEwXJ5h2nY7BVkrLdtTgoJ2rs7Jkl5OUt6n99CInHzsCU+lO+rlz3uOuoRWj2HX4Ty+L8blKS+5oMHD9i4cSMbNmwgbdq0dOzYkfbt25M1a9ZEXDl5xKeTq4SE1mBAIZMsrpOrIKRWIvEWBMFi7XkajGegOlkX18VFAvKns6JpEox6W9L7TAgJyGGvwFYhwytIjQQJunlQSFHJs7ujFeVcbeN9U+MTpuGyb0SyXVOv13Pu3Dk2bNjArl27KF26NB07dqR58+bY21vWIkzvMA1XTPDZlHW1JYuoYS4IJicSb0EQLFKEVs+SO+8tauqFXIL+RZxNOiJoie8zvj5+CuDt58/inYcJsXUie6ESyJVWxhFWA1FJuqlHWL80qptk14yIYN++fWzYsIHz58/TqFEjOnbsSK1atZDL5d90TlNIkqcBZu7kKgipkUi8BUEwmZw5c/K///2PWrVqJfpcl9+Gc84nPF4jdsdXzMH/5VNaT1+e6Ot+iUKCypnTUC5jGuzt7bl16xa5c+dO1Dkvvw2nfskCNJ+wkLzlqsbY9vT63+yaOoRhuy/Feuz2if1xdM1CnX5jY90+plQGhu25TPociYsxNtHz3htnT8OqVauYNGkSLVu2ZMqUKaRPn55QjR7fCG2yzilO7mv6+voa54O/fv06xnzw5JRc898FQUg8hbkDEARBiM2jILXFzHle1aMJJRu05IdmHXkUpKZcxjSEhoaa5NyPguKeYpKrVPk4k25zU8gk7J/foFSTAbi4uHD8+HGKFStm3G6vlGGvtErWmJL7mq6urgwcOJCBAwdy//59Nm7ciIeHB46OjnTs2JF27dol6Xxwg8HAyddhSVaCUmcA3X+dXEu4aKiR1S5FLzAVBEsgnh8JgpDs4lOmzTdSlwyRJJyp47LE96n7yt+PHAO3Ny+hZ9cuTJw4kZMnT8ZIur9HBQsWZPr06Tx9+pTFixfz4MEDihQpQu3atdmwYYPJbtSifQ+dXAUhNRKJtyAIJvXPP/9QqFAhnJyc6Nq1K5GRkZw+fZps2bIxe/ZsMmXKRNeuXVGpVAwePJgsWbKQJUsWBg8ejEoV1ajmhe87VvVvy7QaBZhcNS/rBrYj6K238RrvXz9nVXcPJlbKyZo+LQkL9I8Rw7Mbl1jepQGTq+RhVv3iXNu3BYAH546yuG11JlXOxaz6xTm+Yo7xGI0qkm3j+jClej4mV8nDkg61CfH35ciS6Ty7cYl9s8cwsaIbO2aMJFSjR5IkHj16BECXLl3o168fDRs2xMHBgXLlyvH48WPjuY8ePUr+/PlxdHSkb9++VK1alf/973+EaKLmJQO8unuDhS0qMrlqXnZMHIBGFcmTqxeYWe9DQuv94Ba/tavBxEo52TyqO1pVzMY+Z9cvYUadwsyoU4SrezbF2KZVq/hr4URmNSjB9FqF2D19OJrICADjdc6sW8z02oXYMWlgnH+/Bq2GS9vXkttezr1792jRooUYBf2ITCajWrVqrFmzBm9vb7p3787WrVvJli0bHTt25OjRo+h0ib/ZOvk6jPuBqmSr+67Rw/1AFSdfhyXPBQUhlRKJtyAIJrVp0yaOHDnC48ePefjwIdOmTQPgzZs3vH//nufPn7Nq1SqmT5/OpUuXuHnzJv/++y9Xrlwx7usXrqFck3aMPHid0X/dRGljw77Zo43X2Dq2N1kKFueXk57U6D6U6we2GbcFeL9k7YA2lG/TnfEnHjBgyyky5y8CgJWtHa2mLGXCmcd0/nUzl3es4+6pvwC4vn8bkaHBjP7rJr+cekizsfNQWttSt/84cpb8EY9RM5l84Tktx8zBN+LzEeGtW7cyceJEAgICyJs3L+PGjQPg3bt3tGzZkpkzZ+Lv70/+/Pm5ePFi1PuM0KH4L2m9eWgnXZf+yYh9//DuxWNO/W9BjPNrNWo2DO1MyQatmHDKi6K1Pbhz8oBxu+eFE5zbsIyfl+1g+N7LPLpyNsbxhxdP5d3zxwzccorhe68Q7OvDidXzjNtD/X0JDwpk1MEbNB8/P9a/W01EOO/v/cOiPu0YP348tra2cf47EMDW1pbWrVtz8OBBPD09KVOmDGPHjiV79uwMHz6cW7dufdN5v5dOroKQGonEWxAEk+rfvz/Zs2fH2dmZcePGsWVL1GizTCZj8uTJWFtbY2try6ZNm5gwYQKurq5kyJCBiRMnsmHDBgDsHJ0pVqsRVrZpsLazp3q3ITy5FpWsBvq84vW9G9TpOxqFlTW5SlegYJW6xuv/e3gnectVpUS95siVSuzSOZMlf1EAcpepSCb3QshkMjLnK0yxus14+t955QoF4UEB+L98ikwuJ2uh4tjYO3z2/gwYUMeygq1Zs2aULVsWhUJB+/btuXnzJgB//fUXhQsXpnnz5igUCgYOHEimTJkAUOsMxrrK5Vt3I12mrKRxdKJatyH8e2R3jPO/vHUVnVZDxfa9kCuVFK3lQbZCJY3bbx/bS2mPNmTKWxArWztq9hr5IWaDgSu7NtBw2FTSODphbWdPtZ8Hc+vIHuM+kiSjVu+RKKysUdp8nlBrVZHkVEQyp1NjsmfPFttfvfAFGTNmZNCgQVy9epUTJ05gZWVFo0aNKF68OPPmzcPb2/vrJ8H8HU6Tq5OrIKRWYnGlIAgmlT17duOf3dzcjAlFhgwZsLGxMW7z9vbGzc0t1n1Dw8LYPnUYDy6cJCIkEABVWCh6nY5gvzfYOqTDytbOeGy6zNkIehN1bOBbb1yy5Yw1the3r3Hkt6m8ffQArVaNTq2mSC0PAEo2bEXgW2+2julJREgQJRv8RJ1+Y5ErY9YyNgC6WOa5RifTAGnSfFh86e3tHeMzkSSJbNmiEtePz+OYMYvxz06ZsxPs9ybG+YPfvSWta+YY0zrSZf6QAAf7vSFrweIfnePDtrCAd2giw1nS/kO1GQMGDB9NebBzckFp/eHvJ5pGFYlCglb505PP6fPtQsIVLFiQGTNmMG3aNM6cOcOGDRsoXLgwP/zwAx07dqRZs2Zx1gc//CLUOD3JXLR6A4dfhiZpJ1dBSK3EiLcgCCb18uVL459fvHhBlixRCeWn84CzZMnC8+fPY933j2W/4vfsEX3/OMykc0/p+b99QNTIrUP6jESEBKKO+DDXNPDNa+Of02XMgv+rZ7HGtm1cbwpWqceoQzeZdPYJZVt0hv+SX7lSSa1eIxiy8wJ91v3Fg3NHuX5w22exR9U4jv+c5syZM/Pq1Svj1waDwfj1x+f5eA574JtXpM3wIZEHcEjvSrCvT4zFbUFvPpw3bfqMBL19HeMc0dKkc0FpY8vgHeeZePYxE88+ZtLZJ0y+8OHz55P3ZDAY0GnUaLwfM7h0FpF0JwGZTEb16tX5/fffef36NT///LNxPninTp04duxYjPng3mEaY51uc9IZ4HGQGp8wjXkDEYQUSCTegiCY1NKlS3n16hXv379n+vTptG7dOtb92rZty7Rp0/Dz8+Pdu3dMmTKFDh06ABAZForSxhYbB0fCgwI4serDXGSnLNnJWrAEx1fMQatR8+zGJR6cPWLcXqJ+Sx5dPsOto3vQabWEBb7H2/M2EDVqbuuYDqW1DS/vXOffw7uMxz3+5zxvvO6h1+mwtnNAplAiSVE/Iu2dM/D+VVSSKhFVGzq+GjZsyO3bt9mzZw9arZalS5fy5k3UaLaVXEIi6lx///k7QW+9CQ8K4NSahRSr3STGeXIU+wGZQsHFLavQaTTcOXGAl3dvGLcXrdOEa/u38vaJJ+qIcE6s/PCZyWQyfmjWgYPzxxP63g+AIF8fHl48GWfcksHAhbULGVmntGigkgzSpElDmzZtjPPBS5UqxejRo8mRIwcjRozg1q1bXPGNMHvSHU1ngMu+EeYOQxBSHPHTVBAEk2rXrh116tQhd+7c5MmTh/Hjx8e63/jx4ylTpgzFihWjaNGilCpVyrjv8KGDUUdGMK1GfpZ1rke+8jViHNtmxgpe3r7G1GrunFg1j5INWxm3pcucjS6Lt3Bu43KmVnfnt7bV8Xl4F4AmY2ZzfPlsJlbKyYlV8yha28N4XIi/L5tG/sykyrlZ2KIiuUqXN563Qtue3D6xn8lV87Jz1mhcbeM/Sy99+vRs376dkSNH4uLiwr179yhTpgzW1tZksJWj/W8Eu0S95vze9yfmNi6Dc7acVO8+NMZ5FEorOsxbx7X9W5lS3Z1bR/dQuHpD4/b8FWtRsV0v/terGfOalCXPD5ViHF9v4ARcsuViWef6TKqcizW9W+D3/FGccWu1Gro1rGFxLdG/BxkzZmTw4MFcu3aNY8eOoVAoaN6mHXd9QxLVkdKUDIBXkFrM9RaEBBKdKwVBsEgLb/mjspThvY9YyyWGFHP55uP1ej3ZsmVj06ZNVK9e3WLfpzYinPEVcpg7DOE/l96EccY7DIP0beNlsxuWosV/3VFPrVnI+9fPaTFh0Vf3/ZKPO7l+qy5dupAtWzZjRSNBSO3E4kpBECySq42cl2Ffb7ST3Fxt5Ak+5siRI5QrVw6twooZs+ei0RtIm68EDwJUOChlqExQ19nUsqQVLcItyeNgzTcn3Z+q3m2ISc6jNcCPmezw8vIib968JjmnIKR2IvEWBMEi5XW0widcazFt4yFqhC+vY/xbkkdo9dzyj2TlgVM0b90WrUZNptz5aTdvHWfe6YAQdJb4pF6npXAWUbHCklhih1NBEBJOzPEWBMEiFXOxsZj5rNEMRMX1Nd5hGvY8DWbJnfec8wmn7M/D+eXUQyaff0afP46QuXBp1HpQ68ES0ym5QhGv9yl83cuXL2nevDkZMmTAxcWF/v37o9frmTZtGm5ubri6utKpUyeCgoIAePbsGZIksX79enLkyEH69OmZMGWqsYTgyzvXWdK+FpMq52J6rUIcmP+L8Vr3zhxmYctKTK6Sh1U9muD75GGsMR1fMYdt4/oYv75+4E9mNyjJlOr5Pmvc9PLOdZZ1rs/kKnmYUacwe2eNQqtRA7CyW2MAihcvjr29Pdu2RVUBOnDgACVKlCBdunRUqFAhRqOgGzduUKpUKRwcHGjdujWRkZGJ/YgFIUURibcgCBbJViHD3dEKS2lGLgHujlZfrPARodWz+0kwm72C8AyMKvtmSSP28WIwfPV9CvGj0+lo1KgRbm5uPHv2jNevX9OmTRvWrVvHunXrOHXqFE+ePCE0NJT+/fvHOPb8+fN4enpy4sQJZk+fhv9TLwD2zx1HhbY9mXTuKcP3XTFWv/F7/pitY3rRaPg0xp94QP6KtVg/uL0xSY7L2yee7J05glZTlzL2yG3CggII9v1Q2lImk9No2FTGn/Skz7pDPL5yjkt//g5ArzX7o2I6/w+hoaG0bt2aGzdu8PPPP7Ny5Ur8/f3p1asXHh4eqFQq1Go1/2/vvsOjKtM3jn/PtCTMhCQEAqEktCC9KvxoinSQpqiIoO5iAevqrgUVK3bdVVZUFl3FdVEsgAIKiKCisIAiiApqaAmEQCCQXqad3x+RkZgAAUJmAvfnurzMzJzyzpBM7rzznucZNWoUV111FQcPHuSyyy5j7ty5lfZ6i1QHemcVkZDVNS6CE6jcd1pZDegWd/QW6cnZxczYfIitOW68JiE3W19RNotxzOcpFbdu3Tr27NnDs88+i9PpJDw8nF69ejF79mz++te/0rRpU1wuF08++SRz5szB6/39moaHHnqIiIgIOnTowDlt25P2649AyacRmbt2kH8ok7AaLhLanwvApk8/pGXv/iT9Xx+sdju9r74Zb3ERqd9/c8wx/vjZQlr2HkiTLj2wOcIYeNPkQBlNgAatO5DQ/lysNhsx9RPoOvpqdnz3v1LHOLKL5syZM5k4cSLdunXDarVyzTXXEBYWxpo1a1izZg0ej4fbb78du93OpZdeynnnnXeqL7NItaI13iISsuo77TSr6WBrkJuGWA1oFuUg3mkv85hpmqxIy2djZlHQ2nhXFitHf55y4nbt2kViYiI2W+lfteV1bfV6vezbty9w35GdUMMiIiguKOmEOvqhF1j2ytP8Y3QPYuon0O+Gu2h1/kBy9+8lut7vHVItFgtRdRuQnZF+zDHm7N9LVN0GgduOCCc1omMCt/enbOPjvz9A2paNeIoK8ft8NGjZvtQx/EcUR0tJSeHNN9/kxRdfDNzndrvZs2cPhmHQoEGDUg2pjnwdRM4GmvEWkZA2OMGFzRLcaW+bxWBIo7L1rE3TZHFq3hkRugFs1vKfp5ycRo0akZqaWmomG8rv2mqz2ahbt265xznyu792QjPGPjmT+z/bwgV/upW3756AuzCfyDr1yNr7e9dY0zTJ3pdGVFz8MccY+YeOp+7CAgqyDgVuf/TEXcQ1SeLOD9fx8Fc7GHjzfZh/+DzHckSQbtSoEffffz9ZWVmB/woKChg7dizx8fGkpaWV6r6ampp6zPGJnGkUvEUkpEXYLAxLdGEP0ruV4fcxLNFFeDlrnlek5bMlq/iMCN12C0d9nnJyunbtSnx8PJMnTyY/P5+ioiJWrVrF2LFjef7559mxYwd5eXncd999jBkzpszM+GEW4/cOpxs+fp+8QwewWCxEREYBYBgW2g8Yyc9ffcbWtSvxeTx89dbLWB1hJHQ49lKOdv2H8/NXn7Jzwxq8HjefzXga0/z9G7q4II8wZySOGk4ydiSz9oNZpfaPjI1jb+qOwO3rr7+eGTNmsHbtWkzTJD8/n48//pjc3Fy6d++OzWbjn//8Jx6Ph3nz5rFu3bqTeWlFqi29w4pIyEuKCqNjbHiVh2+L6WP9/Lf4au7sMo8lZxefMTPdVkw6xoaTFKXa3ZXJarWycOFCtm7dSkJCAg0bNuTdd99lwoQJXHXVVZx//vk0adKE8PDwUksz/shuAd9vs8S/rl7BC5f25qGeiSx89n6ueHIm9vAI6jRuzpjHXmbhM/cytd85/LxyKde88F9s9mOXv6zbrCUjJj/NnPsn8cTAtkRERlEzrn7g8aG3P8z3S+bycK/GzJ96B+0Hjiq1f/+Jd3HPTdcRHR3Ne++9x7nnnsurr77KLbfcQkxMDM2bN2fWrFkAOBwO5s2bx6xZs6hVqxbvvvsul1xyycm9uCLVlDpXiki1cHhZR1XNMPs9bnZ/8wU39GzDxRePYuLEidxzzz0YhkGh18+MzYdCsuPkCfN56FDHxeAEV6m1txJaQrXD6al2chU522jGW0SqBcMwGJLgqpKZb7sFusbXJHfNYqZMuZ8vvviC2bNn87e//Q2/38+S1LxAXeXqzFtcRJc4he7q4GQ6plaFUB2XSKhS8BaRasMwDPo1dDGicSRhVqPSSw36vR5MdxEjGkfSv5GL118vqVc8ZcoUvvjiC9atW8ekex5gW5CrrJwqK1CUm8259hwGJEQqdFcDzaMc2ELsn+lEO7mKiIK3iFRDSVFhTGodQ/OaJWHkVPOIQUmIaOy08PLYPnjStgFgt9t577332LlzJ48++ihLly4lsl1P3L5Q7Dd5fIefZ1byJrIXvcrgLq2DPSSpoOrcyVVEfqc13iJSraXne1ibUUhythuDE+sUaTNKwkNSlINucRHEO+289NJLzJkzhy+//BKLpWRuIisriwsuuIDLrhxP2KA/V7vZbsP0Y7GUdAK1797CpCsvZfPmzURGRgZ7aHICPtyRwy9Z7pAI4AZwTrSDUU1qBnsoItWKZrxFpFqLd9oZ1aQmt7StRe/4GjRy2gLLUMIsBg5LyZpth6XkttUouSCskdNG7/ga3NK2FqOa1Aw0jZk0aRJut5s33ngjcI7o6GiWLFnCt+k5+P5Qk/lI7z90C5++9MQpPZ/5j9/J8lf/ftTH7+1chwOp23+/wzSxGmB6ivF7iss8T/+BNHLWL+eWtrUYUj+MO2/4Ey+++KJCdzVUnTq5ikj51LlSRM4IETYL3erWoFvdGgDkefxkFHpx+0x8ponVMHBYDeIibLiOcXWm1WrlX//6FwMHDmT48OHExcUBEB8fz7AJN3PAd3rfNi++/7kT28EwiHFY+OCFx7jx5ls4J6F5qee5ceMuLr3xAR677goee/IZWrRowahRo07L2OX0qg6dXEXk2BS8ReSM5LJbcB2nhvHRdOzYkauvvpo777yT//znP4H7c7FDSHzQX1p2sZcfli1g+OsvBZbHHNahQwfcbjdLlixh2rRpfPfdd0EapVSGwQkuZmw+hC+IyftonVxF5Pi01EREpBwPP/wwX375JStWrAAg1+MrU0Jwz8+bePHKvjzUqzFv33Md3uJiAApzsph125U81rclj1zQnFm3XUn2vj0AbFo6n+nj+pc6ztf/ncF/bh8PlF2usvLN6TwxsA1PDGzLtx+WbeQD4Pb5uWTs+DKhG0oqwQwbNoxbb72V+++/n4SEhJN8RSQUBLuTqzqcipwa/eSIiJTD5XIxffp0Jk2aRFFREfsLfdiOKLvn9bh566/X0Gno5Tz4eTLtBozgxxWLAPD7/Zw7cix3f/wdkz/ZiD08nAVPTwag5fmD2J+ylQOp2wLH2rhkLh2GjC4zhl9WLeert15mwssfcOdHa9m6bmW5Y/UUF3HhiLL7H+Z0Otm7dy+33nrrSb0WElqC1cnVbkEdTkVOkYK3iMhRDB8+nHbt2vHkk0/i9pmYRywz2bXpW3xeDz3HTcRqt9Ou/wgatu4EgDO6Fm37DccRUYMwp4sLr72D7etXA+CIqEHrC4bw/ZL5ABxI3cb+ncm0On9QmfP/sOwjuoy4gnrNW+GIcNJv4t3ljtM0Tc5p3bbcxzIzMwPLZQ4dOnTyL4aElL4NnLSKDquy8G23QOvoMPo2cFbNCUXOUAreIiLHMG3aNF566SV2pe0pdX/OgX3UjIsv1XwmOr4hAO7CAuY/9jeeHtqJh3s3YeZ1IyjKzcb/W/3vDkMu4fsl8wDYuHgerfsMxRFRo8y5c/bvJapug8DtmN+O/0c2ux3KWWYCcPfdd3PFFVcwaNAgPvnkkxN45hLKqrqTa8fYcHU4FakECt4iIsfQsGFDHnzwQV57dWap+yNrx5GTkc6RrRCy9+4G4Kv/vsL+lK3c9J8lPPzVDm54bQFAYNukbn3Iz8pkzy8/sGnpPDoOuaTcc9esXZfsfWmB21m/Hf+P7DYb1nIC0cqVK/n000+ZOnUqw4cPZ+HChSfwzCXUne5OrodLUo5oHEm/hgrdIpVBwVtE5Dhuvvlm8rIO4vF4AvcltD8Pi83G6ndm4vN4+HH5Inb9tAEAd34e9rBwwiOjKMg+xPKZpUsEHl6asviFRyjIzqJ5tz7lnrfdwJGsXziHfdt/wV1YwPJ/lV9q0Gaz4fhD6iouLmbixIlMmzaNmjVrctFFF7Fs2TKKf7sAVM4cp6uTa/MoB5Nax2hNt0glUvAWETkOq9XKfbfdiMfnD9xnszsY/9ws1i+cw6MXJrHp0w9pc+FFAPQcNxFPcRGP9T2Hl68ZTIvufcscs8PgS9i69kva9R+O1VZ+Zddzevan55UTeW3ixTw3sivNzutV7nY+E+IiSh/j2WefJSkpiYsvvhiAOnXq0LZtW7744ouTeQkkxEXYLFzctCbjkqI4J9qB1SgJzyfCZpTMcp8T7WBcUhQXN6lJhKqXiFQqtYwXEamgJ9buxuIID/YwygizGtzRPjZwOzk5me7du/Pdd9+VKh/41FNPsXv3bqZPnx6MYUoVKvT62ZRZxNZsNxlFJaUwbYbB4UuEDcDAwGua2CwGceFWmkc5aB8brrAtchopeIuIVNCbWzJJLwq9t8xGThvjWkQDJevIBwwYwNChQ/nrX/9aarvNmzczePBgUlJStF73LHOynVxFpHKpc6WISAW1rBXB3t25mBZrsIcScHgt7mGzZ88mMzOT2267rcy2rVq1wm63s2nTJjp06FCVw5QgO5VOriJSefRnrohIBbWPDcdiDZ3QDeA3S8YFJTW777zzTmbOnImtnHXjhmEwYsQIFixYUNXDFBERFLxFRCoswmYhKcoBhMpyk5L1ukt35bEn38M999zD5ZdfznnnnXfUPVRWUEQkeLTGW0TkBOzJ9/B2cjbeEHrnNADD9PPr6uU8MW4ocTFRR93W4/EQFxfH5s2biY+Pr7pBioiIZrxFRE5EfaedZjUdld6s5FSYgN+w0Lx7X2bv8pKcffRa3Xa7ncGDB7No0aKqG6CIiAAK3iIiJ2xwggubJYSS92EWK8U+kwU7c1m+O4+jfaCp5SYiIsGhpSYiIichObuYBTtz8fiPv20w2C3QKjqMIQllW30fOnSIxMRE9u7dS40aNYI0QhGRs49mvEVETkJSVBgdY8NPuDtgVfH4YUtWMSvS8ss8FhMTQ5cuXVi+fHkQRiYicvZS8BYROUl9GzhpHROG4fcFeyjl8vhhY2ZRuWu+tdxERKTqaamJiMgpME2TFWn5rEnLxuoIC/ZwyhVmNZjUOqZUK/Dk5GTOP/980tLSsFg0ByMiUhX0bisicgoMwyAh0o7D4TjqxYzB5vWbLNmVV+q+pKQkoqOjWb9+fZBGJSJy9lHwFhE5SaZpsnx3Hgt25uLDKHMRY6jwmbAt2016vqfU/VpuIiJStRS8RUROgmmaLE7NY2NmUchWNjmSz4S1GYWl7lP7eBGRqqXgLSJyElak5bMlq7hahG4oabKTnO2m0Pv7gLt3705aWhqpqanBG5iIyFlEwVtE5AQlZxcHZabbU1TIm38Zx8PnN2X23RNOeH8D2JRZFLhttVoZMmSIuliKiFQRBW8RkRNQ6PWzKCWv0kL30xd1ZuvaLyu07Q+fLSTv4H4eWPEr4555nfcfuoVPX3qiwufymrA1213qPi03ERGpOgreIiInYElqHl5/cKqXZO3dRe2EZlhttpM+RkZR6ZrjAwcOZPXq1eTm5p7q8ERE5DhUx1tEpIL25Ht4OzkbbyW9a7475Sa+X/wBVkcYFouFvtffye7NG9i5YQ2e4iLik9ow6r5nqdusJcteeZov35iGiYnN7mDoHY+y4JnJGBhY7XaantuLa6bNPu45rQbc2KYWLvvv8y6DBg3ihhtuYPTo0ZXzxEREpFwK3iIiFfThjhx+yXJTmW+aT1/UmdEPPk/zbhcA8O2Hs2k3YCRWu53F0x5lx/pV3DbnCwA+m/EMmbt2MObxVwB4/6FbiIqrz8Cb76vw+cIsBiObRNK0piNw3/Tp0/n222+ZNWtWpT0vEREpS0tNREQqoNDrJzm7ckN3ec4dNY4wpwubI4z+k+4m/defKMrNqbTjm5i4faWfxfDhw/n444/x+XxH2UtERCqDgreInPX+9Kc/MWXKlGNusymziPLa46xf8A4zJlwUuH1v5zocSN1+UuPw+3ws+eejPDviPB7u3YRnLuoMQH5W5gkfa+fGtTw3sisP9Uzkp88/CdxvAr4/fNCZmJhI/fr1WbNmzUmNW0REKkbBW0SkArZmuyttbfeRjux2uXHxXDZ/sYRrX/mAh1Zu5+6PvwMgddO3PDm4fdl9y/1ToMRnrzxN9zHX8siqFNpcODTwB4EBWMvpsPnHLpa5Hh/bc9z8fKiYnw4W8fOhYrbnuMmrLoXLRURC0MlfGi8ichb5YzWQyuKqVYeDu1OgGxQX5GFzOKgRVQtPUQFLpz9+7H1j63AwLaXcxw6l76Jus5Zl7jcwcFjLBu/Bw0cy7f3FzP41i4wiH16/ic0wMI9YXGNg4DVNbBaDuHArzaMctI8NJ8KmORwRkYrQxZUictbZsGED1157LcnJyQwdOhTDMGjevDmPPfYYs2bN4rXXXuPrr78ObG8YBnd/tJaYRk3JzzrI3IdvY/v6VdRpnERS9wvZ/u3XTHr9Y6BkqcnfPlxL7YSmeN3FfPrSE2xa9hE+t5vWFw5l2N+mYg+P4IXLejPolimYpp8Fz9xLUW4Ofp+Xhq07kfbz99SoGcOAmybz/oO3YHOE4fO4sVhtmKafez7ZSPa+Pcx//G/sTd6MaZrExDfir/P/h83u4NkR53EoLSVQLaVu89bs+uFb7OE1MAyY+eprXDNuLFBSqWVdRiHJ2W6KCguxh0dU+HW0GSVLV5KiHHSNi6C+016p/04iImcaTVOIyFnF7XYzatQorrrqKg4ePMhll13G3Llzj7vf4eUZC566B1tYGPd9+iOjH5rG+o/ePuo+S/45lQMp27jtnc+586N15GSks/zV5wDodNHlbPjkfVr3GcLkTzZy+dSXqNWwMTe89hGPfL2Tez7ZQOdhY3jyu/38efq7RNapx2Pr9vD4N3upWaceFouVUfc+y9Q1ady98FtsjjDWvPc6AHct+Iaoeg255oX/8siqFG56czEAt835nKfWpHLNuLEUev3M357D28nZ/JLlxmdyQqEbShry+Ez4JcvN28nZzN+eU6olvYiIlKbgLSJnlTVr1uDxeLj99tux2+1ceumlnHfeeRXY08Tv8/HjikX0nzQZR4STes1b0XnYmPK3Nk3WzXuLi/42lRpRMYQ5XfSZcDubln4IQKeLLuOXVZ9RlFfSuGbDx+/RaehlFX4eDVp3IKH9uVhtNmLqJ9B19NXs+O5/x90vLtxKcnYxMzYfYmtOybr1U/3Y0+S3rpg5bmZsPkRydvEpHlFE5MykNd4iclbZs2cPDRo0KHVRY2JiYoX2zT90AL/XS3S9+oH7ouMbwYaygTf/0AE8RQVMH9c/cJ+Jiflbyb6adeqR2KErPy5fSJu+F/HLqhUMu6vi7d/3p2zj478/QNqWjXiKCvH7fDRoWfYCzCNZKQnJC3bmVlrL+yP5TPD5TBbszKVjrIe+DZylXmcRkbOdgreInFXi4+NJS0vDNM1AKExNTaVZs2YAOJ1OCgoKAtvv3bs38LUzpjYWm42svXuIa5IEQNbe3eWep0Z0LPbwCG7/4Gui4uLL3abz8Cv4dv5/8ft8JLQ/96jblVe85KMn7qJ+y3aMfXImYU4XX8+ewY/LF5bd8Ag+YG+B97RUZzmSxw8bM4so9pkMSXApfIeQXI+P/YU+3D4Tn2liNUouto2LsJXqZioip4d+ykTkrNK9e3dsNhv//Oc/8Xg8zJs3j3Xr1gUe79ChAz/99BMbN26kqKiIhx9++LdHDCxWK20uvIjl/3oGd2EB+7b/wneL3i33PBaLhfMuHs/Hf59C3sH9AGRnpPPr6hWBbdr0GULaz5tY/c5MOg+7/KhjdtWKoyD7UKlGOsUFeYQ5I3HUcJKxI5m1H8w65vN2xdYhc9eO0x66D/P4YUtWMSvS8qvmhFKuQq+ftfsKmP1rFs9vymTGT4f4aEcun6TmsnRXHp+k5vLRjlxe+ekgz2/KZPavWazdV6C1+iKniYK3iJxVHA4H8+bNY9asWdSqVYt3332XSy65JPB4ixYtePDBB+nfvz9JSUn06tUL+L3pzIjJT1FckM8TA9vwwUO30mXE2KOea/BtDxLbsAkvXzOEh3s34d+TRrM/ZWvgcXt4BG37DeNgWipt+l501OPENUmiw6CLeWbEuTxyfjNy9u9l6O0P8/2SuTzcqzHzp95B+4Gjjvm8+0+8m7mP3MYj5zdj06cfVuCVOnWHZ7615rvq7cn38OGOHKb/eJCv0gvYle+l2GfiM6HYb+L2E/iv2P/b/T6TXflevkovYPqPB/lwRw578j3BfioiZxSVExQRqYDnN2VS7Kv8t8vlM5/jQMo2xjz+SqUf+7Ajl9UEQ5jVYFLrGNX7rgKFXj9LUvPYllNSqeZUvmNLmi1Bs5oOBie49O8nUgn0UyQiUgFx4dZKP2ZB9iG+/XA2XS+5qtKPHUq8fpMlu/KCPYwznqrViIQ+BW8RkQpoHuXAVomTxuvmvcVTQzrSomc/mnTpUXkHLkewL270mbAt2026li2cFqZpsnx3Hgt25gaWk1Smw8tQFuzMZfnuPPRBucjJ01ITEZEKKPT6mf7jwUoPNaeTwanPelYWAzgn2sGoJjWDPZQzimmaLE7NY0tW8WkpEflHdgu0ig5TtRqRk6QZbxGRCoiwWUiKcpRX2S8keYoK8PtDpzKFCSRnu1Uto5KtSMuvstANqlYjcqoUvEVEKqhrXATWapC87QbUCTMwfd6jbnNv5zocSN1e7mPrF7zDjAlHr7JysgxgU2ZRpR/3bJWcXczGzKIqC92HqVqNyMlT8BYRqaD6TjvNajpCNnxbjZIKIiOaRBLpisRidwR7SKV4Tdia7Q72MM4IhV4/i1Lyqjx0H+bxw6KUPH2CIXKCFLxFRE7A4AQXNktoJW8DsBklF4BOah1DUlQYGUW+YA+rXKE6rupmSWoeXn9wV/CrWo3IiVPLeBGRExBhszAs0cWCnblBm208zGbAri3fs/CxO8hI3cGQwYOZY7GQ0LQZcWP+yrp5b/HlrH9SmJNF447dGHX/c9SsU6/McfKzDjL34dvYvn4VdRonkdT9wlKP39u5DiMmP82q2TPIzcyg55UT6TL8Ct574Gb2bdtCix59ufyxV7DZHRTmZPHulJvY/eN3+HxeEjt05eL7nyOqbn0Apk8Ywd6BF/L1l5+zadMmunfvzttvv03t2rWr5DU7E+zJ9wTqdAfTkdVq4p324A5GpJrQjLeIyAlKigqjY2w49iC/g0biZd49E/jLDddy6OBBxo4dy/z58ynwmuz45iuWTn+MK59+jfs+/ZHo+Ia8M/n6co+z4Kl7sIWFcd+nPzL6oWms/+jtMtsk/+9zbpm9nJveXMLKN6cz/7G/Meaxl5n8yffs2/oz3y+ZB4Df7+fckWO5++PvmPzJRuzh4Sx4enLgOAYw5523eeONN8jIyMDtdvPcc8+dltfnTLUuozDoofswnwlrMwqDPQyRakPBW0TkJPRt4KRVdFhQw/fG9evIKXIz5JqJ2O12LrnkErp27YrPNFn/yQecO+JKGrTqgM0RxqBbp5D6w7cc2pNa6hh+n48fVyyi/6TJOCKc1Gveis7DxpQ51/nX3EK4K5K6zVpSt1lLkrr3oVbDxoRH1qRFz37s+fkHAJzRtWjbbziOiBqEOV1ceO0dbF+/utSxRl15NS1atCAiIoLLL7+cjRs3nrbX6ExT6PWTnO0OmTKRqlYjcmK01ERE5CQYhsGQBBdhViMolSUAsvbvo2ZcPAtT8uiY56VvAyeNGjXCNCFn/17qndM+sG1YDRc1omLIzkgnpn5C4P78Qwfwe71E16sfuC86vhFs+F+pc7lq1Ql8bQ8PL307LJzczAwA3IUFfPz3B/h19QoKc7MAKM7Pw+/zYbFa8Zsmh3JyWbBgAS6Xi/T0dDIyMkhJScHlcuF0OgkLC1ON6KPYlFl0Wkpazn/8TmrGxdPv+r+d8L6Hq9V0q1uj8gcmcoZR8BYROUmGYdCvoYuESDuLUkoudqvKJQCRtePIyUjH7TPZmFlEsc9k165dtG2QSM069chK3x3Y1l2YT0H2IaLi4ksdwxlTG4vNRtbePcQ1SQIga+9uTtZX/32F/Slbuek/S4isXZc9v/zAi2P7/t7t0DRJ2bmTV1/9lfz8fHbu3MnevXvp3bs3+fn55OXl4fP5cLlcgf+cTmep2+Xdd7xtnE4ndnv1X4e8NbukHXxlu/j+k1/uc7hajYK3yPEpeIuInKKkqDAmtbazJDUvcNFbVeTvhPbnYVit/O/d1+h26Z95f/5i1q5bR4fuvek8eDRvTb6BDkMuIa5JC5ZOf5xGbTuXmu0GsFittLnwIpb/6xlGPzSNQ+m7+G7Ru8TUb3RSY3Ln52EPCyc8MoqC7EMsn1k60FksFgYPHMC9t04CYNasWbz22mt8/fXXvx/D7Q6E8MP/P/K/I+/Lzc1l7969x9zm8G2r1XrKAb68QG+xVN16o9NRFebwpxGnQtVqRCpGwVtEpBJE2Cxc3LQm6fkePkvLJy3/6M1rKovN7mD8c7OY9+jtLH3xMVr07EfL3gPBZqdpt/MZcNNkZt81gcKcLBLan8fYJ18t9zgjJj/FBw/dxhMD21CncRJdRoxl+7dfl7vt8fQcN5E5903ksb7nEFmnHr3H38Tmzz8JPG4CkY5jB1WHw4HD4SAmJuakxlAe0zQpLi4+bjg//HVmZiYpKSnH3CYvL4+CggIiIiIqZVb+yNsRERFlltskNm5M24v/xHeL3idz9046DBrFwFvu54OHbmXnxrU0atuFcc/8m4ia0cy+ewI7N6zBU1xEfFIbRt33LHWbtQTg/YduwR4WwaH0XexY/z+ufv4/bPjkfaLi6jPw5vvY/u0q3p1yI73GTeLLWS9isVoYePP9nDvySgC87mI+fekJNi37CJ/bTesLhzLyzqnkeWJwBfuKY5EQZ5iBz/9ERORUFXr9zNh8iOIglZ146epB9LrsT5w38krcQa7zXB6HAX/teOaUDvT7/RQWFlZoxv1EtnG73YEQfvj/v27dRq2EZlw9bTZ+n48Xx/Ylqm48ox98gTpNWjDr1rE06dKD/hPv4tsPZ9NuwEisdjuLpz3KjvWruG3OF0BJ8P7p80/40z/fIaH9efg8bj584s5SwfvfN46mz4Tb6Xvd30he+wVv330t9y7ZRETNaBY9N4WDu3dy6SMvYrXZmXPfROonteLV55+hac3QatokEmo04y0iUomqurHJ9vWrqJPYnBrRsWxc/AF7kzfTvPuFIdtdM/m7NZx3/SMMGDCAAQMG0KNHD8LCwoI9rJNmsVhwOp04nU7q1q1bacf1er3k5+eXCuODLxpGr7HXExkbB0DjTt1w1apD/ZYlF9G26TuUbeu+AuDcUeMCx+o/6W4evaA5Rbk5hEfWBKD1BUNo3LFbyXMICy/7vGx2+l5/J1abjZa9BuCIcLJ/51YatevCunlv8Zd3v6BGVMknEn0m3M5790/C/dzTlfb8Rc5UCt4iIpUkGI1NDuzcxjv3XI+7MJ9aDRoz7pl/46xdjyKfiRUIpZW3NgPGDzqfMU2fZdmyZdxzzz38/PPP9OzZkwEDBtC/f3/atWuniiaAzWYjKiqKqKiowH12u52oOr+He3tYRJnqMsUF+fh9Pj596XF++Gwh+YcOYBglyz/yszIDwftwQ6OjqREVg9X2e0Swh0fgLswn/9ABPEUFTB/XP/CYiYnp8+HTB+gix6XgLSJSSYLR2KTr6KvpOvrqMvf7/T58Jqd80VxlMoHOdV1ENOhDnz59ePzxxzl48CCff/45y5Yt46WXXiI/P5/+/fsHZsTr1z92QJSyNi6ey+YvlnDtKx8QUz+BorwcHr2gOUeuLD3ZP25qRMdiD4/g9g++LlUhx2EBq/5gEjkuXQUhIlIJQq2xiWGxYrFaTkvN55NhAElRDiJspX/t1KpVi9GjRzNjxgy2bdvG6tWr6d27NwsXLqRt27a0adOG22+/nY8//pi8vLzgDD5EVDQsFxfkYXM4qBFVC09RAUunP15pY7BYLJx38Xg+/vsU8g7uByA7I51fVn+OI1TXN4mEEAVvEZFKcKzGJk9f1Jmta7+s0vEAWDEIlUlIqwHd4iKOu13Tpk2ZOHEiH3zwAfv372fWrFnExcXx3HPPUa9ePc4//3ymTp3KmjVr8HpPf+WYYCv0+lm7r4DZv2ZR4PFXqIZ352GXEx3fiCcHt+P50b1IaNelUsc0+LYHiW3YhJevGcLDvZvw70mj2bsjmbgIfYgucjyqaiIiUglm/5rFrqOUEHz6os6MfvB5mne7oIpHBRFWA3cVN/b5I6sBzaMcXNyk5ikdJz8/n5UrV7Js2TKWLVvG7t27ufDCCwPLUpo1a3bGrA/fk+9hXUYhydluDDgtTXMqU5jV4I72scEehkjI05+nIiKVIFQbiHj9JsWFBdjCg9dV0GYxGNLIdcrHcTqdDBkyhCFDhgCQnp7O8uXLWbZsGVOnTsXhcARCeL9+/YiNrX5BsNDrr/JGTJUhLjx0riUQCWWa8RYROUW5Hh8zfjp01Fnlpy/qTLfRV7Ph4/fJObCPNn2GMPK+Z/EWF/HulJvY/eN3+HxeEjt05eL7nwtUnFi/4B2Wv/p38g8dwBkdy4Cb7qXT0Es5kLqdeY/ezp5ff8Rqs9PsvN5c+fRr5Z7b53aT8eV8Gg0cE5RZU7sFRjSOJCnq9JYMNE2TzZs3B2bDv/rqK1q0aBGoltKzZ0/Cw8uWzQslydnFLEopKUcZzE8oTpTNgN7xNdQyXqQCFLxFRE7R9hw3H+3Ipfgo9bufvqgzYTWc/OnFOTgiavCf28fR9Nxe9Bw3iR3rV9GiRz9Mv58PHrkNv9fLVf/4D+7CfJ4Y2Jab31pGncbNydm/l8KcLOo2a8k7995AvWYtuWDC7fg8btI2b6Rxp/8r99yG18Nl58SyI8fNxswiPP7T+UqUZrdAx9hw+jU89dnuE+V2u1mzZk0giP/000/06NEjMCPerl27Km31fiymabIiLb/K/30qi9WAW9rWKnPhrIiUpZ8SEZFT5PaZmMdZFNB9zLVE12tAjagY+lx7B98vnY8zuhZt+w3HEVGDMKeLC6+9g+3rVwf2MQwL+7ZtwVNUSM069QItv602O4fSd5O7fy/2sPCjhm4Au8OO22fSt4GTVtFhVFVHb7sFWkeH0beBs2pO+AcOh6PUhZipqalMnDiRbdu2MXr0aOLj4xk3bhxvvPEGu3fvDsoYoSR0L07Nq7ah+2jVakSkfPpJERE5RRVpHHJkw5KY+Ebk7N+Lu7CA+Y/9jaeHduLh3k2Yed0IinKz8ft8OCKcjH3qVdZ+8CZPDGzLrNvGkrEjGYAhf3kQMHnpqoE8f2kvvv1w9lHPa/42PsMwGJLgomNs+GkP34dnugcnuELmYseYmBguueQSXnnlFbZu3cqaNWvo06cPixcvpkOHDrRq1YrbbruNhQsXkpubW2XjWpGWz5as4moZuqHi1WpEpIQurhQROUUVaRySvW9P4OusvbupWaceX/33FfanbOWm/ywhsnZd9vzyAy+O7RtodNKiR19a9OiLp6iQT19+kvlT72Di64uIrF2XSx54HoCdG9bw7xsvpXHn7tROaFrmvMYR4zMMg34NXSRE2k/LWmKrUXIh5bBE12lf032qmjRpwvXXX8/111+Pz+djw4YNLFu2jOeff56xY8fSqVOnwPrwrl27YrNV/q/L5OziajvTDSX/3s2iHMQ77cEeiki1oRlvEZFT5LAaGMdpVfO/914ne98eCrIP8fm/n6f9gJG48/Owh4UTHhlFQfYhls98LrB9bmYGm79YjLswH6sjDEeEE+O3Nck/LPsoEOQjakaDYRx1vbKBUaaxSVJUGJNax9C8pgObwSk32TEoucCueZSDSa1jQj50/5HVauXcc8/l3nvvZcWKFWRkZDBlyhRycnK48cYbqV27NqNGjeKll17i119/pTIujSr0+lmUkldtQzdUXrUakbOJZrxFRE5RnQgr3uOEsY6DL+H1my4jZ/9eWvUZzIXX/ZWivBzm3DeRx/qeQ2SdevQefxObP/8EANPv5+v/vsJ7D96MgUH8OW0Zed+zAOz+aSOLnptCUV4Ortg4ht/5OLUaNi73vF7TLLexSYTNwsVNa5Ke72HtSdaLthklS1mSohx0i4s4Y2Y+a9SowaBBgxg0aBAA+/bt47PPPmPZsmU88cQT2Gy2QFv7fv36UadOnRM+x5LUkk8cqiu7BYYlugjX2m6RE6KqJiIileD5TZkUh2ANuIo2Nin0+tmUWcTWbDcZRT68fhObYXD4slGDktlzr2lisxjEhVtpHuWgfWz4WXVhnWma/Pzzz4FqKStXrqRZs2aBaim9evU6btnCPfke3k7ODvmmOEcTzGo1ItWdgreISCU4VufKYGrktDGuRfQJ75fn8ZNR6MXtM/GZJlajZMlKXIQNV1WVRqkGPB5PoGzhZ599xg8//ED37t0DM+IdOnQoswzowx05/JLlrjbNcY50uFpNKF04K1KdKHiLiFSCtfsK+Cq9IKRmMdXYpOplZ2fz+eefB2bEs7Ky6NevX2BGvHZ8A6b/eLDURa1Z6bt5/tKePLRyOxZr2Q6Qn814hsxdOxjz+Csc2pPKM8O68Ni6dKyVfMHn+gXv8M2H/2XS6x+X+/jhme6+DZwK3SInSdMWIiKnINfjY3uOmwibJeS6DZpA+9jQ7tZ4pomKiip1IeY333xDv379WLp0KZ06dWL8PY/icbtL7RMd35BHVqWUG7pDgdUoWbI0onEk/RpqplvkVOjiShGRE3CstdChRI1NQkNiYiLXXXcd1113HX6/n5kb95BlOII9rAopKUVZUjJwcCOXvpdEKoGCt4hIBezJ97DuKNU/KtJAp6qpsUnwNW7cmJtvvpm33nqLbdu2ccUVV5A4/k5mT7mGnRvX0qhtF8Y982+K8nJKLR85mJbCBw/dStrPm0hody61E5sd9RzffvQ2K9+cTnbGHpwxtbngmlvpduk1AGz/dhXvTrmRXuMm8eWsF7FYLQy8+X7OHXklAPlZB5n78G1sX7+KOo2TSOp+IXDmVqsRCQUK3iIix1Do9bMkNY9tOW58JiE2r10+NTYJHXPnzmXZsmV4vV46duqEY/U3jH7wBeo0acGsW8ey6p1X6TJ8TKl95tw3iYT25zLh5ffZ9cN6Zv3lSlpfMKTc47tq1eaaabOp1bAxO75bzaxbx9KwTUcatOoAQF5mBkV5Ody7ZBPJa7/g7buvpc2FQ4moGc2Cp+7BFhbGfZ/+yMG0VN64+XLqNUqkd3yNs65ajUhV0U+ViMhRJGcXM2PzIbbmuPFWk9ANamwSSm699Vbq1q1LgwYN6PJ/PWncrgv1W7bHHhZOm75DSf/lh1LbZ6XvJm3zBgbeNBmbI4wmXXrQ6vxBRz1+y94DiW3UBMMwaNqlJ0n/14edG9YEHrfY7PS9/k6sdjstew3AEeFk/86t+H0+flyxiP6TJuOIcJKQ1IpxV11NnQgb3erWUOgWOU004y0i8gemabIiLb9atvNWY5PQUrdu3cDXjvBwXLV+b7ZjDwunuCC/1PY5+/cSERmNI8IZuC86viHZe/eUe/xfVn3G8n89x4HUbZh+P56iQuo2bxV4vEZUTKnqJ/bwCNyF+eQfOoDf6yW6Xv2SBwyo27ARrD2lpysix6F3ZhGRI5imyeLUvGobujvGhle7lu1ni4o0qoysXZfC3Czchb8H8qy9aeVu63UXM/uuCfS++ibuX7aZh1Zu45xe/aEC1xw4Y2pjsdnI+i3Qm0Darl0Veh4icvIUvEVEjrAiLZ8tWcXVLnRbjZLGJn0bOI+/sQSFpQJV+GLqN6JBq458NuMZvB43Ozes4eeVS8vd1ufx4HUX44yJxWKz8cuqz0he80XFxmK10ubCi1j+r2dwFxawb9svLJgz+wSejYicDAVvEZHfJGcXV8uZbiiZ5Cz0mRSFWjFxCbBUsP71FU/MYNcP65naJ4nlM5+j00WXl7tdmNPF8Lue4J17rufRC5qzcfG8Y64H/6MRk5+iuCCfJwa2Yc6Dt3Lp+KsrvK+InBx1rhQRoaR6yYzNhyiuxsHVapRcWDks0aXlJiEo1+Njxk+HQq7REpR879zYphYuu+bjRE4n/YSJiABLUvPwVmQRbgjzmVDsM1mwM5flu/PQvEpoibRbsVVkvUkQ2CyGQrdIFdBPmYic9fbkewJ1us8EHj9szCxicarCd6iJCw/NtvChOi6RM42Ct4ic9dZlFJ4xofswjx+2ZBWzIi3/+BtLlWke5cAWYpPeNqNkXCJy+il4i8hZrdDrJznbXW2a45yIwzPfydnFwR6K/KZ9bHjIfa+ZlIxLRE4/BW8ROattyiyiIhOQb9wyhvUL55z28VQ2jx8WpeRR6K2GpVrOQBE2C0lRjgp9z1UFA0iKcqhTpUgVUVUTETmrzf41i1353io512czniFz1w7GPP5KlZzvMOtvSwkublKzSs8r5duT7+Ht5Gy8IfDb12bAuKQo4p32YA9F5KygP3FF5KyWUeQDwOetmvAdDD4TtmW7Sc/3BHsoAtR32mlW04E1yNPeVgOaRTkUukWqkGa8ReSsldi4MW1GXs2GT+ayP2Ur182Yy+Jpj5Kx/Rei4xsx/K7HaXpuTwBmXj+STkMv5byLrwLg2w9ns/I/L5GbmUGjNp24eMo/iKnfCIB9235m0XNTSNvyPVabnR5jr6d+y/a8dcdVmJjY7A5qNWzCX979gvUL3mH5q38n/9ABnNGxDLjpXjoNvbTSn6sBnBPtYJRmvUNCKNSND7Ma3Ng6hnAtMxGpMrZgD0BEJFh8Jny/ZD7X/PNtDIuFaWMu4PKpL9GiRz+2rVvJf+/6M3+dtxpXTO1S+23+YjGfv/4C17wwm9iEpnw5axpz7pvIjbM+oTg/j3/fOJreV93M1S/8F7/Xy77tv5DQrgt9JtxeaqmJuzCfhc/ex81vLaNO4+bk7N9LYU7WaXmuJpCc7abQ69d63hAQYbMwLNHFgp25QemUarfAsESXQrdIFdNPnIictUzTpNeV1xFdrwEbP3mfc3r2p2WvAVgsFpL+rw8NW3Xgl68/K7Pf2g9m0WfCX4hr2gKrzUafCXeQ/uuPHNqziy1ffYorNo7eV92EPSycMKeLhHZdjjoGw7Cwb9sWPEWF1KxTj7rNWp7087m3cx0OpG4/+rkouZhUQkNSVBgdY8Op6r41dgt0jA1Xd1ORINCMt4ic1aLrNgDgUPpufvxsAT+vXBp4zOf10vS8XmX2yUrfzaJn7+eTfzwUuM80TXL2p5O9N43Yho0rdG5HhJOxT73KV2+9zNxHbiexY1eG3vEocU2SjrvvH5e+VITXhK3ZbrrVrVHhfeT06tvASbHPZEtWcZXMfNst0Do6jL4NnKf/ZCJShoK3iJzVDKPkCrfouvXpdNFlXPLA88fdJ6puffpce0e5a7EPpe9m06fzj3ayMne16NGXFj364ikq5NOXn2T+1DuY+Pqio57bNM1T6kZ5+GJSCQ2GYTAkwUWY1WBjZtFpDd+HZ7r7NnAGvu9FpGppqYmInLUMw8D4raJyx6GXsWXlUn5dvQK/z4enuIjt364ie9+eMvt1u/RPfPnGNPZt+xmAotwcflj2EQCteg8k98A+vp49A6+7mDXvvcGMCcMAiIytw4/LFzL7rgkA5GZmMLXvOaR8v47dWzbx/ZJ5pGz6lunjB5Dy/brA+WZeP5Kl0x9nxp+H8mCPBN574CZ2bljDgqfv5aGeiXz01D2BbbetW8lzI7vyyPnN+OjJu8uEdK/fJC8Yi4rlqAzDoF9DFyMaRxJmNSq92onVKLmQckTjSPo1dCl0iwSRZrxF5KxlNcD3WzCNrteAq/7xFkumPcKc+yZisVhp2LYTo+59tsx+bfpeRHFBPu/cewNZ6bsId9WkebcLaDdgJGFOFxNe/oBFz97P8pnPYbFacRfk4/f7SezYDdM0+XHFIl68si8jJj9NUW42r98yBnd+HrUbN+fPL73Lvm2/MOu2K7nzo3U4o2sBsOGT9/nzi3OondgcTJOcjPRyl5psWfkpN/93GcV5uUwf15+W5w/inJ79Ao/bDIOMQi8uu1qEh5qkqDAmtbazJDWPbTlufCan1OXS4PeSgYMbuXRRrUgIUPAWkbNWys6dPL8pM1DSLaFdF254bUG525p+P9YjwmrnYZfTedjl5W5br3krrvvXvMDtp4Z0IP2XHziQup3Ow8aQ/uuPXPboS6Ru+oZzevanbf8R/O/d17j5rU8BiE9qw+p3XuXnlUvpMmIsAF2GX1GhCy/7/Pk2IiKjiIiMoul5PUn/9cdSwdvExB3EEnZybBE2Cxc3rUl6voe1GYUkZ7sx4ISa7diMksCeFOWgW1yE6nSLhBAFbxE5q8WFW4/budJdWMDBtBRi6iec1DmadO7B9vWrydy1gyZdehARGcWO9atJ/eEbmnTpQe6BvUTHNyy1T0x8Q3Iy0gO3o367CPR4XLFxga/t4RG4C/JLPW7y+yy/hK54p51RTewUev1syixia7abjCIfXr+JzTAwMTEpmdU2MPCaJjaLQVy4leZRDtrHhmuGWyQEKXiLyFmteZSD9ALvUWcU8w7u57mRXWl5/iAad/q/kzpHky49+HnlUg7uSeXCCbcTEVmTjYvnkrrpW7qPuY6M7b+Slb671D5Ze9No0aNv4PYfl+We7DrdkuUHWuNbXUTYLHSrWyNQiSbP4yej0IvbZ+IzTayGgcNqEBdhw1XVdQlF5IQpeIvIWa19bDgr0wuO+rirVh0e/mrHKZ2jSZcefPyPB3DVqkNU3fqEOSN574Gb8fu81D+nHTH1E1j4zL1sXDyXdgNG8tPyhWRs/4WWvQcec1wHd6ec8FgMSoKaVE8uu0Xr80WqMf15LCJntQibhaQoB6czitZJbEZYDSdNfpsxD3dFUqtBIokdumKxWnFG1+KaabP56q2Xmdq3BV++OZ1rps3GGRN71GP2GHsDPyxfyCMXNGfBM/dWeCxe0yQuQnMuIiLBYJinUhBWROQMsCffw9vJ2Sd0AVt1FWY1uKP90QO9iIicPprxFpGzXn2nnWY1HZVePzkUxYVbgz0EEZGzloK3iAgwOMGFzXJmJ2+bUXIxqYiIBIeCt4gIJWu9hyW6OJMLQ5iUXEwqIiLBcQb/ihEROTFJUWF0jA0/I8O3QUlDFdV2FhEJHr0Di4gcoW8DJ62iw8648G01oFtcRLCHISJyVjvDfrWIiJwawzAYkuA6o2a+rQY0i3KodbiISJCdIb9WREQqj2EY9GvoYkTjSMKsRrWvdmKzGAxp5Ar2MEREznqq4y0icgyFXj9LUvPYluPGZ5ZcoFid2C0wonEkSVFhwR6KiMhZT8FbRKQC0vM9rM0oJDnbjQEn1GzHZpRsb1C1wd1ugY6x4fRrqNluEZFQoOAtInICCr1+NmUWsTXbTUaRD6/fxGYYmJiYlIRrAwOvaWKzGMSFW2ke5aBdrTC+2FPAlqxiPP7TP067BVpHhzE4wYVhVPO1MiIiZwgFbxGRU5Dn8ZNR6MXtM/GZJlbDwGE1iIuw4frD1ZmmabIiLZ+NmUWnNXwfnunu28Cp0C0iEkIUvEVEqlhydjGLUvLw+k18lfgObDVKLqQclujSmm4RkRCk4C0iEgSVedGm6fdjt1poFuVgcCOXmuSIiIQoBW8RkSA61Ys2fT4fmT9/xx2j+qtOt4hIiFPwFhEJASdy0WZ+bg6NomrQtm5NCpI3MuWeu1i1alWwn4KIiByHLdgDEBERiLBZ6Fa3Bt3q1gCOfdHmn6+8keYjR9Jt/Hi25saxd+/eII9eREQqQsFbRCQEuewWXHZHuY/16NGD1atXM378eOrVq0d6ejqmaaqCiYhIiNMVOCIi1UzPnj0DS0tcLhdWq5Xc3Nwgj0pERI5HwVtEpJrp2LEj27ZtIycnB4D4+HjS09ODPCoRETkeBW8RkWrG4XDQuXNn1q5dC0C9evW0zltEpBpQ8BYRqYaOXG6iGW8RkepBwVtEpBo6fIElaMZbRKS6UFUTEZFqqHv37owfPx6fz0e9xKYcIIyfDxWXKT3osmt+RUQkVKiBjohINXO42c47y1fTsFV7vH4Tn8dNREREYJvDzXZsFoO4cCvNoxy0jw1XO3kRkSBS8BYRqSb25HtYdwrt5U0gKcpB17gI6qu9vIhIlVPwFhEJcYVeP0tS89iW48ZnlgTok2UAVgOa1XQwOMGlGXARkSqk4C0iEsKSs4tZlJJXspykEt+trQbYLAbDEl0kRYVV3oFFROSoFLxFREKQaZqsSMtnY2YRHv/pO4/dAh1jw+nbwKmW8yIip5mCt4hIiDFNk8WpeWzJKj6tofswuwVaRYcxJMGl8C0ichppcZ+ISIhZkZZfZaEbwOOHLVnFrEjLr5oTioicpRS8RURCSHJ28WlfXlIejx82ZhaRnF1ctScWETmLKHiLiISIQq+fRSl5VR66D/P4YVFKHoXeIA1AROQMp+AtIhIilqSWVC8JJq/fZMmuvKCOQUTkTKXgLSISAvbkewJ1uoPJZ8K2bDfp+Z7gDkRE5Ayk4C0iEgLWZRQGPXQf5jNhbUZhsIchInLGUfAWEQmyQq+f5Gz3KXWkrEwmkJzt1lpvEZFKpuAtIhJkmzKLCIXq2TOvH8k3898CSlrLb8osCu6ARETOMAreIiJBtjXbjfcUp7s/m/EM795/Y+UMCPCaJeMSEZHKo+AtIhJkGUW+034O0zTx+09s6UhVjEtE5Gyi4C0iEgS7du3ikksuoXadOkw5P4mPnroHv9/Pitf+ztNDO/FYv1a898DNFOXmAHBoTyr3dq7D+oVzeGpoR6b2PYfPX/sHAL+sWs4Xr7/ApmUf8lDPRKaN6QOULB1ZOv1xZvx5KA/2SODg7p2kfL+O6eMH8PD5TZk+fgAp368rd3wHUrfz4p+HExUVRe3atRkzZkyVvC4iImcyBW8RkSrm8/kYNmwYiYmJfLHpVx769Ac6DLqY7xa8w/oFc7h+5nzuWvgN7oJ8Pnp6cql9Uzau5W/z/sd1M+ay/NW/k7H9V87p2Y8+E26n/YBRPLIqhb+8+0Vg+w2fvM/FU/7Bw1/tIMzpYtZtV9Ljiut5YMWv9Bp/I7Nuu5L8rINlxrjslado2f1C1qfsY/fu3dx6662n+2URETnjKXiLiFSxdevWsWfPHp599lls4TWwhYXRuNP/sXHxXHqNv5FaDRsTVsPFoFunsOnT+fi83sC+/W64C3t4BPEt2hLfog3pyT8d81xdhl9B3WYtsdpsJP/vC2onNKXzsMux2mx0HHwJdRon8fPKpWX2s9rsHErfxe7daYSHh9OrV69Kfx1ERM42Ct4iIlVs165dJCYmYrPZ8Jm/X1WZs38vMfENA7ej4xvi93rJO7g/cJ8rNi7wtT08AnfBsbtMRtVtEPg698Beoo84PkBMfENyMtLL7DfkLw9imiaX9+9FmzZteP311yv+BEVEpFwK3iIiVaxRo0akpqbi9XqxGr8XEqxZpx6H0ncHbmftTcNis+GqVef4BzXKL0h45N2RteuRdcTxD5+jZlx8mf0ia9fl8oeeZ+WWnfzrX//ipptuYuvWrccfh4iIHJWCt4hIFevatSvx8fFMnjwZb1EB3uJidm5cS4fBF7Nq9gwOpqVQXJDHp9Mfo/2AUVhttuMeMzK2DofSU49ZueScXv05kLKNjYvn4vN62bR0Phnbf6Fl74Fltv1h2Udk70vHYTWIiYnBMAwsFv3KEBE5FXoXFRGpYlarlYULF7J161bOb9ucRwa1Z9OnH9Jl5Dg6XXQ5M68bwbPDzsXmCGfEPU9W6Jht+48AYOqFLXjxyr7lbuOMrsU102bz1VsvM7VvC758czrXTJuNMya2zLa7f9rIC+MH0r5+LUaMGMG0adNo2rTpyT9pERHBME0zVLoUi4iclZ7flEmxL/TeisOsBne0LxvKRUTk5GjGW0QkyOLCrcEeQrlCdVwiItWVgreISJA1j3JgK//ayKCxGSXjEhGRyqPgLSISZO1jwwm1hSYmJeMSEZHKo+AtIhJkETYLSVEOQmXS2wCSohxE2PQrQkSkMuldVUQkBHSNi8AaIsnbakC3uIhgD0NE5Iyj4C0iEgLqO+00q+kIevi2GtAsykG80x7cgYiInIEUvEVEQsTgBBc2S3CTt81iMKSRK6hjEBE5Uyl4i4iEiAibhWGJLuxBeme2W2BYootwre0WETkt9O4qIhJCkqLC6BgbXuXh226BjrHhJEWFVe2JRUTOIgreIiIhpm8DJ62iw6osfNst0Do6jL4NnFVzQhGRs5RaxouIhCDTNFmRls/GzCI8/tN3nsMz3X0bODGMECmrIiJyhlLwFhEJYcnZxSxKycPrN/FV4ru11Si5kHJYokvLS0REqoiCt4hIiCv0+lmSmse2HDc+k1Pqcmnwe8nAwY1capIjIlKFFLxFRKqJ9HwPazMKSc52YwDeE3j3thklgT0pykG3uAjV6RYRCQIFbxGRaqbQ62dTZhFbs91kFPnw+k1shoGJiUnJrLaBgdc0sVkM4sKtNI9y0D42XDPcIiJBpOAtIlLN5Xn8ZBR6cftMfKaJ1TBwWA3iImy4glUUXEREylDwFhERERGpApoKERERERGpAgreIiIiIiJVQMFbRERERKQKKHiLiIiIiFQBBW8RERERkSqg4C0iIiIiUgUUvEVEREREqoCCt4iIiIhIFVDwFhERERGpAgreIiIiIiJVQMFbRERERKQKKHiLiIiIiFQBBW8RERERkSqg4C0iIiIiUgUUvEVEREREqoCCt4iIiIhIFVDwFhERERGpAgreIiIiIiJV4P8BcDWBmcMD/E8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/sAAAP7CAYAAAAEeJ46AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdZ3RU5drG8WvPTHohIQQChi5KlY4IIv0oBqQIWBBEFCseOK9dD4iiqFgO2EBUQAR7QYqIBkEBG4QiCCgCCSAJJBBILzOz3w8xkZAEQjJhMsn/txYfZtd7ctY647XvZz+PYZqmKQAAAAAAUGVY3F0AAAAAAABwLcI+AAAAAABVDGEfAAAAAIAqhrAPAAAAAEAVQ9gHAAAAAKCKIewDAAAAAFDFEPYBAAAAAKhiCPsAAAAAAFQxhH0AAAAAAKoYwj4AAAAAAFUMYR8AAAAAgCqGsA8AAAAAQBVD2AcAAAAAoIoh7AMAAAAAUMUQ9gEAAAAAqGII+wAAAAAAVDGEfQAAAAAAqhjCPgAAAAAAVQxhHwAAAACAKoawDwAAAABAFUPYBwAAAACgiiHsAwAAAABQxRD2AQAAAACoYgj7AAAAAABUMYR9AAAAAACqGJu7CwAAoDoyTVMOU7KbppxOyWKRbIYhqyEZhuHu8gAAgIcj7AMAUMFM09TxbIcSMuxKyLArPsOuhEy77M6ix9osUoSfTXX9bYr4+19NHysPAAAAwDkxTNM03V0EAABVUXK2Q1uSsrTtWJayHXk/txZJxWT8Ik49zsdqqG2Yr9rX8lWoj7WCqgUAAFUJYR8AABdymqb2puQoJjFLsam5MiS54oc2/zqNgrzUMdxXTYO9ZaHbDwAASkDYBwDARQ6m5WpFXKpO5DhdFvJPl3/dEG+LohoGqX6gVwXcBQAAeDrCPgAA5ZTrNPXd4XRtSsyqsJB/uvz7dAr3Vc96AfKy0OUHAAD/IOwDAFAOB9NytTwuVSk5zvMS8k9nSAr2tmggXX4AAHAKwj4AAGW0KTFT0YfSz1s3vyT59+8XGaBO4X5urAQAAFQWhH0AAM6RaZr64Uim1sVnuLuUInrU9Ve3On4s1QcAQDVncXcBAAB4msoa9CVpXXyGfjiS6e4yAACAmxH2AQA4B5uOVt6gn29dfIY2JRL4AQCozgj7AACU0sG0XEX/le7uMkol+lC6DqblursMAADgJoR9AABKIddpanlcqjzlTXhD0vK4VOU6mZoHAIDqiLAPAEApfHc43W3L65WFKSklx6nvD3vGSAQAAOBahH0AAM7iYFquNiVmeUzQz2dK2piYxXB+AACqIcI+AABn4DRNrfCg4funMyStiEuVk5V2AQCoVgj7AACcwd6UHJ3woOH7pzMlnchxal8K3X0AAKoTwj4AAGcQk5jlsV39fIakGJbiAwCgWiHsAwBQguRsh2JTcz22q5/PlLQ/NVfJ2Q53lwIAAM4Twj4AACXYkuT5Xf18hqStSVnuLgMAAJwnhH0AAIphmqa2Hav4Gfg/fnyCnovqUMF3yevubz2WJZOJ+gAAqBYI+wAAFON4tkPZjqoVjLMdppKzne4uAwAAnAeEfQAAipGQYXd3CRWiqn4vAABQGGEfAIBiJGTYq9yPpMWQEjIJ+wAAVAc2dxcAAEBlFJ9hV0kD3vdt2qAv//e4juzdreDadXXFmAlKTTqi1XOf1zObEwuO27LiY61fPEdH9/8hLx9fNevaSwMmTVVIxAVnvLfT6dSPH7ypjUsW69iBffLxD1S9FpfoX/c8qsiW7SRJDrtda+fP0uZlH+jkkcMKqlVH7a4apr53PCCbt0/x1zWlw+m5Zfp7AAAAz0LYBwDgNKZpltgBP7z7V82fcJ2CatVRvzsflNPh0LdvvqCA0LBCx6156yV9M/tZtek/WJ2H3qT05GP68YO3NPe2a3Tv+9/KL6hGiff/7ImJiln2gS7q3ledh4yS0+FQ7JafdODXTQVh/7Npk7R52Ydq3W+QLr/pLh3cEaO182fpaOwejX7xnRKvnZBpl2maMoyqss4AAAAoDmEfAIDTOEzJXkJbP3rODBkWq+6cv0LB4RGSpDb9B+t/w7sXHJN8+KCi35ih/nc/ot63/qdge6s+UXrlxj766aN5hbafau/G9YpZ9oG63TBegx6YXrC9x+i7C2bSj/9jhzYv+1Cdh96kYZP/J0m6bOQ4BYaGa927r2nvxvVq2vnyYq9vd+Z1+K1kfQAAqrSq9joiAADlZi9heTqnw6E/f/leLXsPKAj6klSrQRNd3K1vweffvl0h0+lUm/6DlZ58rOBfUFht1arfRPs2bSjx3jtWL5NhGOp7+wNF9uV3439fHy1JunzUXYX29xh919/7vynT9wMAAFUHnX0AAE7jLKGrn3Y8UblZmQqLbFxkX836/2xLOrhPpmnqxSGXFnsdi82rxHsfPxSroPAI+dcILfGY5PhDMiwWhdUvXEdQrTryDaqh5PiDJZ4rSQ6nJOsZDwEAAB6OsA8AwGks5Rz3ZjqdMgxDY1/5QBZr0VTt7RdQvhvkK+N791bG9QEAUOUR9gEAOI2thBAdWDNcNh9fHTu0v8i+4wf/2RYW2UimaSr0goYKb9j0nO5dM7KR9vy4Rhknk0vs7ofWjZTpdOrYgX2q3eSigu2px44qK/WkQuvWP+M9Svp+AACg6uDZPgAAp7Eakq2YX0iL1aoLu1yhnWtWKiUxoWB70oF9+v2H1QWfW/WJksVq1eq5zxdMqpfPNE2lnzhe4r1b9x0k0zS1eu7zRfblX+viy/tJkja890ah/esXzfl7f/8Sr2+zSBayPgAAVR6dfQAATmMYhiL8bDqUXnT5vX53PKg9P63VnFuidOnwsTKdDv344duq07S54n/fIUkKq99Y/e9+RKteeUonDh9Qy15XyycgUMf/OqDf1qxQl2FjdMWYe4q9d9POl6t91Ej98P6bSjqwTxd16yPT6VTslp/UpNPl6nb9bap7UWt1GHSdfvlsoTJTT6pxx2469NtmbV72oVr2vrrEmfglKcLPxrJ7AABUA4R9AACKUdffpsPpdp0+V98FLdvqllc+0JczH9c3s59VjTr11O+uh5S4f48SY/8sOK7XLRNVq0FTbVg8p6BLX6POBWrWtZda9LzqjPcePvVlRTRrqU1LFmvlzCfkGxisC1q2VcO2nQuOGTZ5pmpe0Egxyz7QzjVfKrBWbfW6ZaL63lF0Fv98FkOqF1Dy5IAAAKDqMMzTxxcCAAD9djxLy+LSSn38u/83Rkf27tb9X/xSgVWV3zUNg9Sypo+7ywAAABWMd/YBAChGhH/Jg99yszILfU46sFe/r49Wk07dK7qscjvT9wIAAFUHv/gAABSjpo9VPlZD2Y6iA+Cev6aTOgy6XjUvaKQT8Qf10ycLZPXy0hU3T3BDpaXnYzUU6sNzfgAAqgPCPgAAxTAMQ23DfLXxaKZOj/sXXdZH2776XGnHjsrq7a0GbTrpygmPqVaDc1tm73wyJLUL82VyPgAAqgne2QcAoATJ2Q69sTPZ3WW4zB0tQxXqY3V3GQAA4DxgLB8AACUI9bGqUZCXPL0XbkhqHORF0AcAoBoh7AMAcAYdw32LDOP3NKakjuF+7i4DAACcR4R9AADOoGmwt0K8LR7b3TckhXhb1CTYy92lAACA84iwDwDAGVgMQ1ENgzy2u29KGtgwSBYm5gMAoFoh7AMAcBb1A73UKdzX47r7hqTO4b6KDKSrDwBAdUPYBwCgFHrWC1CwBw3nNyQFe1t0Rb0Ad5cCAADcgLAPAEApeFkMDfSg4fz5w/e9LJ7yeAIAALgSYR8AgFKqH+ilfpGe0SnvFxmg+gzfBwCg2iLsAwBwDjqF+6lHXX93l3FGPer6qxNL7QEAUK3Z3F0AAKDqMU1TDlOym6acTslikWyGIashGVVgVvhudfKC9Lr4DDdXUtQVdf11WR2CPgAA1Z1hmqanvH4IAKiETNPU8WyHEjLsSsiwKz7DroRMu+zOosfaLFKEn011/W2K+PtfTR+rxz4A2JSYqehD6TIkt77Ln3//fpEBdPQBAIAkwj4AoIySsx3akpSlbceylO3I+ymxSCom4xdx6nE+VkNtw3zVvpavQn2sFVRtxTmYlqvlcalKyXG6JfDnz7o/sGEQ7+gDAIAChH0AQKk5TVN7U3IUk5il2NRcl3W086/TKMhLHcN91TTYWxYP6vbnOk19dzhdmxKzzluXP/8+ncN9dUW9AGbdBwAAhRD2AQClcjAtVyviUnUix1lhgTb/uiHeFkV5YKeavxEAAKgsCPsAgDNyZ9e6U7ivenpY19ppmtqXkquYxEztr4DRD42DvNQx3E9Ngr08avQDAAA4vwj7AIAS8T56+SRnO7Q1KUtbT53XwJCcpfhjnnqcj9VQuzBftfPQeQ0AAMD5R9gHABSLmeZdxzRNJWc781YsyLTrcHruWVcsqBfgpQi/vBULQn0sHrtiAQAAcA/CPgCgENM09cORzEq5hnyPuv7qVsevSgRf0zTlNCW7aerhRx7T2jXfatPPP8liqEp8PwAA4F42dxcAAKhcKmvQl1RQV/cIfzdXUn6GYchqSFYZ8veyKDnxiKweNDcBAACo3CzuLgAAUHlsOlp5g36+dfEZ2pSY6e4yXCooKEhpaWnuLgMAAFQhhH0AgKS8yfii/0p3dxmlEn0oXQfTct1dhssEBgYqNTXV3WUAAIAqhLAPAFCu09TyuFR5yiByQ9LyuFTllmZaew8QFBSknJwc5eTkuLsUAABQRRD2AQD67nC625bXKwtTUkqOU98f9oyRCGcTGBgoSQzlBwAALkPYB4Bq7mBarjYlZnlM0M9nStqYmFUlhvMHBQVJEkP5AQCAyxD2AaAac5qmVnjQ8P3TGZJWxKXK6eGryOaHfTr7AADAVQj7AFCN7U3J0QkPGr5/OlPSiRyn9qV4dnc/fxg/nX0AAOAqhH0AqMZiErM8tqufz5AU4+FL8dHZBwAArkbYB4BqKjnbodjUXI/t6uczJe1PzVVytsPdpZQZnX0AAOBqhH0AqKa2JHl+Vz+fIWlrUpa7yygzOvsAAMDVCPsAUA2Zpqltx85tBv7oOTP0SIdwpScfK/GYjx+foOeiOpS/wHNkStp6LEumh07U5+3tLZvNRmcfAAC4DGEfAKqh49kOZTs8MxiXJNthKjnb6e4yysQwDAUFBRH2AQCAyxD2AaAaSsiwu7uECuHJ3yswMJBh/AAAwGUI+wBQDSVk2KvcD4DFkBIyPTfs09kHAACuZHN3AQCA8y8+wy5XDHhPPnxQb905TF4+vrp1zqfF7D+gGQM7asCkqfLy8dW6RbOVduyoGra7VNdOmakaderp27de0i+fvqOMk8lq1rWXhk99Wf41Qs+5FqcpHU7PdcG3cg86+wAAwJUI+wBQzZim6ZIO+LGD+/XWHcPkVyNEt77+iQJCw0o8duvKT+TIzVW3625TRkqyvn/nVb330G1q2vly7Y/ZoJ5j79Wxg/v14wdv6cv/Pa7hU18uU00JmXaZpinD8Lx1BujsAwAAVyLsA0A14zAleznb+kf379Hbdw5TcO26GvfaR/ILDjnj8SlHE3T/kp/lGxQsSTIdDq2dP0v27EzdsyhaVlvez1F68jFtXfmphjz6vGzePudcl92Z1+G3el7WV1BQEJ19AADgMlXtlU0AwFnYy7k83ZG9u/Xm+MEKrVdft87+9KxBX5La9BtUEPQlqX6bjpKkdlePKAj6klS/dQc5cnOUcjS+zPWV9/u5S2BgIJ19AADgMoR9AKhmnOXs6r8zaZS8/QN0y2sfyTcwqFTnhNSNLPTZNzAv+IfUqVfs9syUk2Wuz+GZq+/R2QcAAC5F2AeAasZSzv/nb913oI4fitXWL4tOyFcSw2Itfru1+O2myt6dt3roLxudfQAA4Eq8sw8A1YytnJPXDZg0VRarTV88+6B8AgLVbsC1LqrMNcr7/dyFCfoAAIArEfYBoJqxGpLNUvZJ+gwZGvrfl5SdnqaPH58gb/8Atex5lWuLLCObRbJ4ZtZn6T0AAOBSHjrYEQBQVoZhKMKvfM96LRaLrntqtpp17aX3H7pNe39Z56LqyifCz+aRy+5JeZ399PR0Ocs7qQIAAIAI+wBQLdX1t5X7B8Dq5aVRM+apfpuOWvh/o3Vge4xLaisriyHVC/Byaw3lERgYKElKT093cyUAAKAqMEzTQ9coAgCU2W/Hs7QsruoNGb+mYZBa1vRxdxllsmLFCg0cOFB//fWX6tWrd/YTAAAAzoDOPgBUQxH+VXPKFk/+XkFBecsY8t4+AABwBcI+AFRDNX2s8rF65rvtJfGxGgr18dyftfxh/MzIDwAAXMFz/6sIAFBmhmGobZivqkrcNyS1C/P12Mn5JDr7AADAtQj7AFBNta/lq6oyaYspqV0tX3eXUS509gEAgCsR9gGgmgr1sapRkJfHd/cNSY2DvBTqY3V3KeWS39kn7AMAAFcg7ANANdYx3PO7+6akjuF+7i6j3Pz9/SUxjB8AALgGYR8AqrGmwd4K8bZ4bHffkBTibVGTYC93l1JuFotFgYGBdPYBAIBLEPYBoBqzGIaiGgZ5bHfflDSwYZAsHjwxXz7TNFUjJFRpWTnKyHUqy+GU3WnKND31fx0AAOBOhsl/RQBAtRd9KE0xiVkeFfoNSZ3CfdU3MtDdpZwz0zR1PNuhhAy7EjLsis+wKyHTLruz6LE2ixThZ1Ndf5si/v5X08fq0SsPAACAikfYBwAo12nqrV3JSslxekTgNyQFe1t0W4tQeVk8J/QmZzu0JSlL245lKduR95e2SCom4xdx6nE+1rylE9vX8vX4iQkBAEDFIOwDACRJB9NytXjPSXeXUWqjmtVQ/cDK/66+0zS1NyVHMYlZik3NlSG55IFK/nUaBXmpY7ivmgZ7V4nXGQAAgGsQ9gEABTYlZir6ULq7yzirXhE+6lo3yN1lnNXBtFytiEvViRyny0L+6fKvG+JtUVTDII94AAIAACoeYR8AUMiGhAyti89wdxkl+nbu87L/vlFLlixRcHCwu8spVq7T1HeH07UpMavCQv7p8u/TKdxXPesFeNTrDQAAwPUI+wCAQkzT1A9HMitl4L+irr/se2J0zaBBaty4sVauXKmIiAh3l1XIwbRcLY9Lddv8B/nzGQykyw8AQLVG2AcAFCt/SP/56kyXJP/+/SID1CncT5K0fft2XXnllfLz89PXX3+tpk2burHCf1TmvxkAAKheCPsAgBJV5i51bGysrrzySp04cUJfffWV2rdv74YK81Tm0RA96vqrWx0/luoDAKCaIewDAM7Ine+fdw731RVneP88KSlJUVFR2rVrl5YsWaI+ffqch+qKquzzHPSo66/uEf7uLgMAAJxHhH0AQKlU1pnl09LSNHz4cK1Zs0aLFi3SiBEjKqCykm06mqnovyr/CgYM6QcAoHoh7AMASs1pmtqXkquYxEztd+Ga8U6HXRarTY2DvNQx3E9Ngr3Oac34nJwcjRs3Tu+9955eeeUV3XPPPS6o6uwOpuVq8Z6T5+VerjCqWQ0m7QMAoJqwTp06daq7iwAAeAbDMFTT16rWNX3VqqaPrIahpCyHHH8nfotRuvB/6nFecmrtu6/rssAcjerRTjV9ref8frnVatWQIUOUkpKiKVOmyOFwqHfv3hX6nnqu09QHf55UjsMznpkbkuLSctWulq+svL8PAECVR2cfAFAupmkqOduphAy7EjLtOpyeq4RMu+zOosfaLFKEn031ArwU4WdThL9NoT4W9erVS15eXoqOji53Lc8//7weeughjR8/Xq+//rpsNlu5rlmS6ENpiknMcuus++fKkNQp3Fd9IwPdXQoAAKhghH0AgMuZpimnKdlNUw6nZLVINsOQxVCx3fZ33nlHY8eO1f79+9WoUaNy33/BggW67bbbNGjQIL3//vvy9fUt9zVP5WnD90/HcH4AAKo+i7sLAABUPYZhyGox5GO1yN/LIh+rRVaLUeKw+uHDhyswMFALFixwyf3Hjh2rL774QqtWrSpYns9VnKapFXGp8tSB8IakFXGpcvKsHwCAKo2wDwBwu4CAAF1//fVasGCBnM5ixv+XQVRUlFavXq3t27friiuu0OHDh11y3b0pOTqR4/So4funMiWdyHFqX0quu0sBAAAViLAPAKgUxo0bp7i4OK1Zs8Zl17zsssu0fv16JScnq3v37vrjjz/Kfc2YxCyP7ernMyTFJGa6uwwAAFCBCPsAgEqha9euat68uebNm+fS67Zs2VI//PCD/Pz81L17d23cuLHM10rOdig2Nddju/r5TEn7U3OVnO1wdykAAKCCEPYBAJWCYRi65ZZb9Omnnyo5Odml165fv77Wr1+vZs2aqXfv3vrmm2/KdJ0tSZ7f1c9nSNqalOXuMgAAQAUh7AMAKo3Ro0fLbrfrgw8+cPm1a9asqejoaPXq1UtRUVF6//33z+l80zS17ZhnLbWXL2bp+3qkQ7iSDx8o2PbG+MEaP+RfYlEeAACqJsI+AKDSqFu3rq6++mqXD+XP5+/vr88//1w33nijbrzxRs2aNavU5x7PdijbUbWCsdOUkrNdMyEiAACoXGzuLgAAgFONGzdOQ4cO1a+//qpLLrnE5df38vLS/PnzVadOHU2aNEkJCQmaPn16icsC5kvIsLu8Fnca9/rHkvK+V01fq5urAQAArkZnHwBQqURFRal27dqaP39+hd3DMAw999xzeumll/Tss8/q1ltvld1+5jCfkGE/5x/N3Owsly0l6Go2L295e3srIbNqPcQAAAB5CPsAgErFy8tLo0eP1qJFi5STk3NO565Zs0aGYejzzz8vsu+9996TYRj68ccfC7YNGDBAnTt31vz58+Xj46MOHTpo6dKlhc47fvy47r//fo3t20WTuzfU1B6NNX/CdYr/Y0eh4/Zt2qBHOoRr26rP9fVr0/XMlW30eLcGyk5PLbFep9Op9Yvn6H/DL9fkrpF6ul9Lff7UfcpMOVHouOeiOmjBv29U7Jaf9Nrof2ly10jNGNRJm5d/WOSaR/bu1pu3D9Xky+rrmasu0bdvvSizmAcOc8cP1pzbButweq4kae3atTIMQx999JGefvppRUZGytfXV3379tWff/5Z5PzXXntNTZo0kZ+fn7p06aJ169apV69e6tWrV4nfFwAAnD+EfQBApXPLLbcoKSlJy5cvP6fzevXqpfr162vx4sVF9i1evFhNmzbVZZddJkn67bff1LVrV6Wnp+vWW2+VzWbT3r17NWTIkEIPC/bt26clS5ao2eX9FfV/09RjzAQl/LlLc28brJTEhCL3+fbNF7V7/TfqMfoe/WvCY7LavEqsd8nT92nlrCfUsG0XDbz/aXW85nptXfmJ5t0zUo7c3ELHHj+0X4sfHKcLL+2pq//zhPyCauiTx+/Vkb27C45JTTqiN28fqvg/dqjn2H+r+413aPPyj7Th/TdLrCEh015okr5nn31Wn3/+ue6//3498sgj+umnnzRq1KhC58yePVsTJkxQZGSkZsyYoR49emjIkCE6dOhQifcBAADnF+/sAwAqnVatWunSSy/VvHnzNGzYsFKfZxiGbrrpJr300ks6efKkatSoIUlKTEzU119/rccee6zg2IkTJ6pBgwbauHGjfHx8dPvtt2vAgAHy9fXVfffdp6FDh0qS2rRpo527f9dL2/9ZDrBD1Ai9NKybNi5ZrL7j7ytUgz0nWxMWfSMvX78z1hq75Sdt/HyRrnt6jtoNuLZge5NOl2v+hOu0PXppoe2JsX/q9reWqnGHvIcVbf41WM8NaKeYpe/r6v88IUn6bsErSk9O0t0LV6l+6w55tQ66Ti8OvrTEOuzOvIn68mVlZWnr1q3y9vaWJIWGhmrixInasWOHWrdurZycHE2ePFmdO3fWt99+K5st7z8lLrnkEo0dO1aRkZFn/N4AAOD8oLMPAKiUxo0bp5UrV+rw4cPndN6YMWOUnZ2tTz75pGDbhx9+KLvdrptuuklS3tD8b7/9ViNHjlRqaqqSkpLUpEkTrVixQt7e3tq/f7/Wrl0rSfLx8ZHz78n7nA6H0k8cl7dfgGo1vFCHd/9a5P4dBl531qAvSdujl8o3MFgXdu2p9ORjBf8uaNFW3v4B2rdpfaHjaze5uCDoS1JgaC3Vanihjh+KK9j2+4Zo1W/TqSDo5x936kOD4thP6ezfcsstBUFfknr06CEpb4SDJG3atEnHjh3T+PHjC4K+JI0aNUqhoaFn/d4AAOD8oLMPAKiUrrvuOk2aNEkLFy7Uww8/XOrzmjdvrs6dO2vx4sW69dZbJeUN4e/atasuvPBCSdKff/4p0zQ1efJkTZ48udjrDB48WKtWrVKXLl00638z9cLLryr58AE5HY6CY/xrFA23ofUalKrOpAP7lJWWoqf7tih2f9rxpEKfQyIuKHKMX3ANZab+837/ifhDqt+6Y5HjajW68Iy1OE55pb9Bg8L15wf45OS8kQ1xcXkPF/L/lvlsNpsaNWp0xvsAAIDzh7APAKiUatSooWuvvVbz5s3TQw89dNal8U41ZswYTZw4UYcOHVJ2drZ++uknvfrqqwX782fIv//++3XllVcWOT81NVUzZsxQnz59NHz4cL377rvqNPhG9b/7EfkFh8hisWj5C/+VaRad+M7L17dUNZpOpwJrhuu6p2cXuz8gNKzQZ8NS/PJ4p75vX1bWU8b5Wa0Vdx8AAHD+EPYBAJXWuHHjtGjRIm3YsEGXX355qc+7/vrr9X//9396//33lZmZKS8vL1133XUF+5s0aSIpb+b/fv36FXuNq666SjfccIPeffddtWjRQtc+PqvQ/szUk/IPqVmGb5UnLLKR9v7yvRq27VKqYf+lEVI3UkkH9hXZnhRbdDb9U9nO4UFKw4YNJeWNjujdu3fBdrvdrtjYWF1yySWlvhYAAKg4vLMPAKi0evbsqcaNG2vevHnndF6tWrU0YMAALVq0SIsXL9ZVV12lWrVqFeyvXbu2evXqpTfeeEPx8fFFzk9MTJSfn58++eQThYWFadeuXZLjn9nxt3/zhVKOFj3vXLT512A5HQ59++aLRfY57HZlpp4852te3L2fDiegEGQAACAASURBVG7fpIM7NhdsS0tO0taVn5Z4js0iWUqf9dWpUyeFhYXpzTfflN1uL9i+ePHigqH+AADA/ejsAwAqLYvFoltuuUXPPfecZs2apaCgoFKfO2bMGA0fPlySNG3atCL7X3vtNV1++eVq06aNxo8fryZNmujIkSP68ccfdejQIW3btk02m0133323pk2bpvmTRqtVr6uVsHeXtq78VDUjG5XruzXp2F1drr1Za+fP0uE/dqhZ116y2ryUdGCfdkQv1cAHnlabftec0zWvuHmCtnz5seZPuE7dbrhd3n7++uWzhQqpW18Je34r9pwIP9s5vSLh7e2tqVOn6t5771WfPn00cuRIxcbGasGCBWratOk5XQsAAFQcOvsAgErt5ptvVkZGhj7++ONzOm/QoEEKDQ1VjRo1dM01RUNzy5YttWnTJkVFRWnBggW65557NGfOHFksFk2ZMqXguMcee0z33XefEnZt1fIXHtPh3b9q7Kz3VKNOvXJ/t6GPvaCh/31J6ceT9PVr07Xq1ae0b+N6tbt6hBq27XLO1wsOj9D4Nz5XRLOW+m7By9rw3hvqMHCkut8wvtjjDUn1ArzO+T4TJkzQyy+/rAMHDuj+++/XunXrtHTpUoWEhMi3lHMWAACAimWYzLgDAKjkrrzySmVkZGjdunWlPsdut6tevXoaNGiQ3n777XLX8NvxLC2LSyv3dSqbaxoGqWVNn3Jfx+l0Kjw8XMOGDdObb77pgsoAAEB50NkHAFR648aN0/r16/XHH3+U+pwlS5YoMTFRY8aMcUkNEf5V8823snyvrKysIrPzL1y4UMePH1evXr1cVBkAACgPOvsAgEovKytL9erV0x133KFnnnnmjMf+/PPP+vXXXzVt2jTVqlVLmzdvPuPxpWWapmZuP65sR9X52fSxGprUpuY5v2e/du1a/ec//9GIESMUFhamzZs36+2331aLFi0UExMjb2/vCqoYAACUFp19AECl5+vrqxtvvFHvvPNOoRngizN79mzdddddql27thYuXOiyGgzDUNswX1WV6ecMSe3CfMs0oV6jRo1Uv359vfzyy7r33nv1xRdfaMyYMVq9ejVBHwCASoLOPgDAI2zevFkdO3bU8uXLFRUV5ZYakrMdemNn1Vle7o6WoQr1sbq7DAAAUAHo7AMAPEL79u3Vtm1bzZs3z201hPpY1SjIy+O7+4akxkFeBH0AAKowwj4AwCMYhqFx48Zp6dKlSkxMdFsdHcN95elD4kxJHcP93F0GAACoQIR9AIDHGDVqlCwWixYtWuS2Gvb88K1SEg7J6Tjz3AGVWaDNUJNgL3eXAQAAKhBhHwDgMcLCwjR48GDNmzevyNJvFS02NlZDhgxR1NVX6/dP5spi9dwh8KakKrSoAAAAKAZhHwDgUcaNG6cdO3YoJibmvNwvKytLTz75pFq0aKFNmzbpww8/1CdvvaZO4X4e++5+ht3U94fT3V0GAACoQIR9AIBH6d+/vy644ILzMlHfsmXL1KpVKz311FOaOHGidu/erZEjR8owDPWsFyB/m2fGfVPSxsQsHUzLdXcpAACgghD2AQAexWq1auzYsXrvvfeUmZlZIffYu3evBg4cqGuuuUZNmzbV9u3b9eyzzyowMPCfOgx5bGdfyqt9RVyqnKzACwBAlUTYBwB4nLFjx+rkyZP6/PPPXXrdjIwMTZkyRa1atdL27dv16aefatWqVbr44ouLHLs3JUdpds8NyqakEzlO7Uuhuw8AQFVkmOd7hiMAAFygZ8+e8vLyUnR0dLmvZZqmvvjiC02aNEnx8fF64IEH9Oijj8rf37/Ecz7486TiUnM9ehk+Q1KjIC9dd2ENd5cCAABcjM4+AMAjjRs3TqtXr1ZsbGy5rvPHH3/o6quv1tChQ9WyZUvt2LFDTz311BmDfnK2Q7EeHvSlvO7+/tRcJWc73F0KAABwMcI+AMAjDR8+XIGBgVqwYEGJx5imKbvTVJbDqYxcp7IcTtmdpkzTVHp6uh599FG1adNGu3fv1pIlS7RixQo1a9bsrPfekpTl0e/rn8qQtDUpy91lAAAAF2MYPwDAY40fP15ff/219u/fL8MwdDzboYQMuxIy7IrPsCsh0y67s+h5htOhv3b/qtitv6jTRY1124jBqlvDX4Zx9ghvmqZmbj+u7EqwUP3c8YMlSbe/+UW5ruNjNTSpTc1SfX8AAOAZbO4uAACAsho3bpw++ypa7/y0WycC6xQEcIukYjJ+AdNiVd0W7XRBy3YyZWjh/kz5WLPUNsxX7Wv5KtTHWuK5x7MdlSLou1K2w1RytlM1fUv+3gAAwLPQ2QcAeBynaWpvSo5iErPy3p13OmRYyh9UDeW9x94oyEsdw33VNNhbltO63b8dz9KyuLRy38sV7Lk5kiSbl3e5r3VNwyC1rOlT7usAAIDKgc4+AMCjHEzL1Yq4VJ3IcRa8N++KoC+pYMK9uNRcxabmKsTboqiGQaof6FVwTEKG/awjBypaTmaGvP38XRLyJcliSIfTc9TE35Svr69LrgkAANyLCfoAAB4h12kq+lCaFu85qZM5eVG7ooam5V/3ZI5Ti/ecVPShNOU687b+tv+APn5ioqb/q7X+e+kFmjGwo5ZMf6Cgy378UKwWPzhOT/ZqpindGuj1MVdp97qvC10/Zun7eqRDuJIPHyi0fd+mDXqkQ7j2bdpQsG3u+MGaOaKH/tq5TW/cOkhTujXQqlefLtiX/95+PntOtr6Z/Zyev6az/nvpBXp2QFutnPmE7DnZhY57pEO4vnj2IW358hO9eO3luqpJTX311Vfl/tsBAIDKgc4+AKDSO5iWq+VxqUqp4JB/uvz7xCRmac/JHHXyStHka/sqMzVFXYaNVnijZkpJjNeO6GXKzcpUZsoJzb7lauVmZarb9ePlX6OmNi//QAv/M1qjZsxTqz5RZaoj4+Rxzb/3el1y5RC1v3qEAsPCiz3O6XRq4aSbFLv1F3UZNlq1G1+khD93av17c5R0YK9Gv7Sw0PH7Nq7X9m+W6rLrblVQaE01bNiwTPUBAIDKh7APAKjUNiVmKvpQesH79O5gSkrJceqOhx9S6rGjunvhKkW2bFewv/9dD8s0Ta14cbLSjiXqjreXqVH7rpKkzsNu0qzremnFS1PUotcAWSznPqguNemohjz6gi4dfvMZj9u28lP9+cv3uv3NLwruL0l1mrbQkun3K27bL2rYtkvB9sS4PzXxo+9Vp8nFkqRL2oadc20AAKByYhg/AKBSMk1TGxIyFH0oPe+zm+txOJ3auXalWlxxZaGgn88wDP2+IVqRrTsUCto+/oHqMmy0kg8f0NF9v5fp3jZvH3UcfMNZj9sevVS1G1+k8EbNlJ58rOBf0y6XS8rr5J+qcYduBUFfkuzM2QsAQJVBZx8AUCn9cCRT6+Iz3F1GgfTkJGWnpapO0+YlHnMi/pDatO5YZHvtxhf9vf+gIi5scc73Dq5dt1ST8R07sE9H9/+hp/oWX2NaclKhzzUvaFDos8MpidX3AACoEgj7AIBKZ9PRyhX0Xe605fzyOR2OYrd7+ZRuhnzTdCriwpaKuu/JYvfXqHNBoc+2065rZbwfAABVBmEfAFCpHEzLVfRf6e4uo4iA0FryCQzSkb27SzwmpG6kEuP+LLI9MXbP3/vrS5L8gkMkSZmpJxV6ynEn4g+Wq8aakY0U/8dvatrlChklPFA4E1sZzgEAAJUTz/ABAJVGrtPU8rhUVcbIabFY1LLXAO36fpUO7dxaZL9pmrq4ez8d2rFZcds2FmzPyUzXL5+9q9B6DVT77/fjwyIbSZL2b/6x4Dinw6FfPnu3XDW26T9YKUfjtbGY6+RmZSons+SHKDaLZKmMf3gAAFAmdPYBAJXGd4fTlZLjdPtkfCW5csJ/9edPazX3tsEFS9ulJB3RjuilumPecvW85d/atuozLbj3enW7Ybz8gkO0efmHSv4rTqOen18wE3+dps1Vv00nrXrlaWWePCG/GiH6ddUSOR32ctXXPmqktn/zhZZMv197N61Xw7ZdZDodSoz9U79+84XGvfZRsZMLSlKEn61MowEAAEDlRNgHAFQKB9NytSkxy91lnFGN2nV19zur9PXsZ7R15afKTk9VcO26uqhbH3n5+skvqIbumv+lVr78pH744C3Zc7IV0aylxsxcpOY9/lXoWtc/PVufP32/vlvwsnyDgtVp8Cg17Xy53r5reJnrs1gsGv3iQq1fPEdbVnyknWu+lJevn2pe0FDdb7hdtRo0LfHcxEy7Dqblqn6gV5nvDwAAKg/DNFlnBwDgXk7T1NydyTpZibv61UWncF/1rBcgL8b0AwDg0XhnHwDgdntTcnSCoF8pxCRm6a1dyTqYluvuUgAAQDkQ9gEAbheTmCUx0KxSMCWl5Di1eM9JbUrMdHc5AACgjHhnHwDgVnvjExWbapS49jzOv/zHLtGH0pXtMNWtjl+pJ+8zTVMOU7KbppxOyWLJW9LPaogJAAEAOI8I+wAAt3A4HJozZ46iD6aq8/Cxslj5SaqM1sVnSJK6R/gX2Weapo5nO5SQYVdChl3xGXYlZNpldxa9js2SN+N/XX+bIv7+V9PHygMAAAAqCBP0AQDOux9++EH33HOPtm3bpmk/xMnq41fh99y3aYPevH2Ixs9doiadulf4/aqafpEB6hSe979TcrZDW5KytO1YlrIdef8ZYZFUTMYv4tTjfKyG2ob5qn0tX4X6WCuibAAAqi3aKACA8+bIkSN66KGH9M4776hTp05a/VOMfvaq+KCP8os+lK5cp1NxqXbFpubKkApNqFiaoH/6cdkOUxuPZuqXo5lqFOSljuG+ahrsLQvdfgAAyo3OPgCgwtntdr3++uuaMmWKrFarnnnmGd16663afTJXy+LSzksNTqdTjtwcWb28ZbEwP21lk//wIMTboqiGQaof6OXukgAA8Gj81w4AoEJ9//336tChgyZNmqQbbrhBf/zxh26//XZZrVYlZNjP2w+RxWKRl4/vWYN+TmbGeaoIp8rvPJz8eyWA6ENpynXSjwAAoKwI+wCAChEfH6+bbrpJPXv2lL+/v3755RfNnj1bYWFh/xyTYS/18O+SJB8+qCXPPKgXh3bV5Mvq68neF2nxg+OUfPhAoeP2bdqgRzqEa9+mDQXb5o4frJkjeuivndv0xq2DNKVbA6169elyVoTyyI/3MYlZemtXsg6m5bq1HgAAPBXv7AMAXCo3N1evvPKKpk6dKh8fH7399tsaO3ZskY66aZpKyLSX+36Hdm7RgW2/6JJ/DVWNOvWUfPiAfv5kgeaOH6L/fLJe3n5FZ5E/VcbJ45p/7/W65Mohan/1CAWGhZe7JpSfKSnl7y7/qZMDAgCA0iHsAwBcZu3atbrnnnu0e/du3XXXXZo2bZpCQ0OLPdZhqtgl2s5V88v7q02/awpta3HFlZo9doB2rF6uDgNHnvH81KSjGvLoC7p0+M3lLwYuld/ljz6UrmyHqW51/FiqDwCAUmIYPwCg3P766y/dcMMN6t27t0JCQhQTE6NXX321xKAvSXYXzQ/r5ftPx9eRm6v0E8cVVr+xfINq6PDuX896vs3bRx0H3+CSWlBx1sVn6Icjme4uAwAAj0FnHwBQZjk5OZo5c6aefPJJBQQE6J133tHo0aNL1X11uqCrL0m5WZlaO3+WYpa+r5Sj8Tp1kZmstJSznh9cu65sXt6uKQYVal18hnysBkP6AQAoBcI+AKBMoqOjde+992rPnj2aMGGCpk6dqpCQkFKf76rV75bOeEQxS99X9xvvUINLOsk3MFiGYej9R26XaZ79iYKXj69rCsF5EX0oXXX8bCzNBwDAWTCMHwBwTg4ePKgRI0aof//+Cg8P1+bNmzVz5sxzCvqSZHPRu9c7opepw8DrFPV/T6pNv2vUrGsvNWx3qbJST7rk+uVx+jeMnjNDj3QIV3ryMbfUUxUYkpbHpbIsHwAAZ0HYBwCUSnZ2tp555hk1b95c69ev16JFi/Tdd9/pkksuKdP1rIZkc8GvkGG1Sqe9///jB2/J6XCU/+JlZLNIoy4MVrC3pUjgd6W4bb8oes4MZRbzYGPN2//Tb2u+rMC7u0f+LP3fH053dykAAFRqDOMHAJzVV199pX//+9/av3+/Jk6cqClTpig4OLhc1zQMQxF+Nh1KL9/ye8179NeWLz+WT2Cw6jS5WAd+3ag/f/le/iE1y3XdsjJNU+mHD2jNtt/UvWMnHalVXzFJ2RVyr7htG7V67vPqeM318guqUWjf2nkz1brfILXqfXWF3NudTEkbE7N0UYgPw/kBACgBnX0AQIliY2M1dOhQDRgwQJGRkdq2bZteeOGFcgf9fHX9beX+IRr0wHS1jxqpbSs/1Yr/TVFK0hHdOvtTefsFuKTGc2U6Hfpj4wbdfPPNatu6lYa2qKsfZj4qZ06WW+qpqgxJK+JS5XTRqg4AAFQ1hmnyKwkAKCwrK0vPP/+8pk+frrCwML344osaOXKky9c4/+14lpbFpbn0mpXBNQ2DVM+SqS1btmjTpk2KiYlRxDW3aft3q/Tt3Bd035Kftebtl7RzzUqZMtW6d5Suefg5efv5K/nwAc0Y2FHDp76sjtcUXhLwkQ7h6nv7A+p354OKnjNDq+c+X+TeDy6P0YyBHYts7zDoOo144lVJ0uHdv2rVq08rbtsvMp1O1W/dUf+651E1uKRTwfExS9/XJ1P/rTvmLdeO1cu1dcXHysnKVLPLemnof19UYGgtF//VymZ4k2BdWIPVFAAAOB3D+AEAhaxYsUITJ07UgQMH9J///EeTJ09WYGBghdwrwr9q/gxF+NsU4hui3r17q3fv3jJNUy/+ekw7vvtakvT+w7cptF4DXXnvf3V496/a+PkiBdQM14CJU0p9j1Z9opR0YK+2ffWZou6bpoCQMElSQGiYRk57XZ9N+48iW7VXl2FjJEk1IxtJko7s3a03bh0kn4AgXXHzBFltXvr504V68/YhGv/mF2rQpvCDgmUzHpFfUIj63H6/TsQf1Ib33tDSZ71043NvueAvVT6GpJjETMI+AADFqJr/lQUAOGf79u3TxIkTtXz5cvXv31/Lly9X8+bNK/SeNX2s8rEaynZUnUFmPlZDoT6FX05wmJL9lFUA613cRtc+Pqvgc8aJZG36YvE5hf26F7VSveaXaNtXn6lV76sVWq9Bwb72USO0ZPr9qhnZUO2jRhQ67+vXn5HDbted85YXPABoHzVSLw27TF/NekK3v7W00PH+NWpq3OsfF4zqcDqd+vGDN5WVmiLfINe8zlFWpqT9qblKznYo1Mfq1loAAKhseGcfAKq5zMxMPf7442rZsqW2bdumTz75RKtWrarwoC/lTdLXNsy3QmesP58MSe3CfIu87mA/7Y25LsPHFvrcqH1XZZw4rqy01Aqtz+lwaM+Pa9Wy14CCoC9JweERanvVtYrd+nORGroMG13o+zRu31VOh0PJ8QcrtNbSMiRtTWI+BAAATkfYB4BqyjRNffHFF2rZsqWeffZZ3Xfffdq1a5euvfZal7+bfybta/mqqvT1TUntavkW2e50Fv4cEnFBoc9+wXkz6WemnKio0iRJ6clJys3KUHijC4vsq924mUynUyeP/FVoe42IyEKf/YJDJEmZqWevde74wZo7fnA5Kj47U9LWY1liCiIAAAoj7ANANbRnzx5FRUVpyJAhat68uXbs2KGnn35aAQHnfwb7UB+rGgV5eXx335DUOMir2OHkFsvpn0sacm7+faWinA5HueorK4u1hForMFvnZGYoes4M7du0oVTHZztMJWc7z34gAADVCGEfAKqR9PR0PfbYY2rdurV27dqlJUuW6Msvv1SzZs3cWlfHcM/v7puSOob7FbvPdg4jJf7pnJ8stP1EMcPmzzgCo5h9AaG15OXrr8TYP4vsS4z9U4bFohp1Liiy73zLzcrU6rnPlzrsS1JChr0CKwIAwPMQ9gGgGjBNU59++qlatGihF198UQ8//LB27typwYMHn9ch+yVpGuytEG+Lx3b3DUkh3hY1CfYqdr/VkGyl/MX1DQxSQEiYYjf/VGj7Tx/PL3Kst5+/pKIPBvL3ZaWmFNpmsVrV7LJe2vXdV0o+fKBge+qxo9r61adq1O5S+QYGlVhbTmZ66b7EeWYxpITMs4f99PTKWT8AABWB2fgBoIr7/fffde+99+qbb77RwIEDNXPmTDVt2tTdZRViMQxFNQzS4j1FQ6snMCUNbBgkSwkPTgzDUIRf6X9yOw0dpe/mv6xPn5ykyJbttH/zj0qK21vkuHot2kqSvn5tuqw2b+1c+6UmLF6t7xbMUsaJ49q5dqXeuHWgOg8drVoNL1RQWLh2rvlSVi9vzRk3UF1H3CKL1aZfPluo7LRUhTVoUnDt39aslCQdPxSn9Ytm6/cNqxVar74G3veUJClm+Yf69MlJOnnksIJq1VG7q4ap7x0PyObtU+L3sufmaM1bL2n3um907NB+Oe0OXdC8jfrd9bCadr5ckpR8+IBmDMxb/m/13Oe1eu7zkqS+tz+gfnc+KEna+8s6Rc95Tn/t3i6rzabGHbvJfGiq+lxwacG9pk6dqieeeEK//fabnnrqKa1cuVKNGjXSli1bSv2/AwAAnozOPgBUUWlpaXr44YfVpk0b7d27V8uWLdOyZcsqXdDPVz/QS53CPW9mfkNS53BfRQYW39XPV9ffVurv1nf8/eo0ZJR2RC/TyllPyOlwaOyrHxQ5rn6r9up/98OK/+M37fwuL5x/8Ogdsmdnq9ctkxRQs5Zit/ysj6dM0M+f/DMyoNe4iarTtLnWzp+l1XNfUMjfk/DVqF2vyD2+emWacrMydeWEx9R56OiC7ZuXvq96zdso6r5patzxMq2dP0vvP3L7Gb9XdlqqNn6+SE06ddeAf09RvzseUPqJY5p/z0gd/n27JCkgNExDHs0L+K16R2nktNc1ctrratUnSpL058/fad6EkUpLTlK/Ox7Q5TfdpQPbNuqJ66/S/v37i9xzxIgRysjI0PTp0zV+/Pgz1gcAQFVCZx8AqhjTNPXRRx/pvvvu07FjxzR58mQ98MAD8vUtOkt8ZdOzXoD2nMxRSo7TM97hN50K9rHpinpnn9gwwt+mvnc+qL5/d6dP1fGaG9TxmhsKPnv5+unaKTN17ZSZhY57ZnNikXP73Haf+tx2n6LnzNDquc8rvNGFGvO/dyVJ/e9+WF8886B++ni+Lh91V8E5oXXrq98dhet4pEN4oc/1Lm6tXd+tVIM2HXX99DcKtsf/sUOS1HnoTRo2+X+SpMtGjlNgaLjWvfua9m5cX9ClP51fcIgeXLFZNi/vgm2dh43WS8Mu048fvKVrH58lb78Ate47SEumP6CIZi3VPmpEoWt8OXOq/INDddeClfKvESpJatlrgF65sY8ef3yqFi58p9Dxbdu21XvvvVdsPQAAVGV09gGgCtm5c6f69eun66+/Xp07d9auXbs0efJkjwj6kuRlMTSwYZBnBH1JpikdWLFQFvPsM8FH+J+f5+tdR44r9Pmy6/O62b9viC7T9S699uZCn39fn3edUx8eSFKP0Xf9vf+bEq9lsVoLgr7T6VTGyWQ57XZd0KKd/tr961lrSUlMUPzvO9Rh0PUFQV+S6l7UShde2lMrV35Z5Jw777zzrNcFAKAqorMPAFVAamqqnnjiCc2aNUuNGjXSypUrddVVV7m7rDKpH+ilfpEBij5U+SdT894XoxmP3Kff1n+rxYsXKyio5MntavpY5cjKkNXXv0JrqnXKe/eSFBbZSIbFouTDRWfzL43QCxoW+pwcf0iGxaKw+o0LbQ+qVUe+QTWUXMyqAaeKWfaB1r87W4mxe+Sw55Z4n+KciD8kSQpvWPRVlNqNL9KeH9coPT290BKSjRs3LnIsAADVAZ19APBgpmnqvffe08UXX6zXX39dTzzxhHbs2OGxQT9fp3A/9ahbsaG4vHrU9dd9IwZo+fLlWrt2rbp37664uLgSjzdNU5uXvS/TeZ7Xgy80aWDxswY4HY4ST/fyKWFUSBlWcdiy4mN98vi9qlm/kYZNmalbXv1Qt87+RE0796iwv4ufX/HLIQIAUNUR9gHAQ23fvl29evXSqFGj1L17d+3evVuPPvqofHxKng3dk3SrU3kD/xV1/dWtTl6IHDBggH788UelpaWpS5cu+uGHH4o9Z/PmzVr77hwZlor96U06sK/Q52MH98t0OhVar778gkMkFV2q78RZuvGnCq0bKdPp1LHT7pN67KiyUk8qtG79Es/dsXqZakY20k0vLFCHgSN1Ubc+uvDSnrLnZBU+sIQHCSF18yYSTCxmZYLE2D2qVatWoa4+AADVGWEfADzMyZMnNWnSJLVv315HjhzR119/rY8//lgNGjRwd2kuZRiGukf4q19kXnhz9yz9+ffvFxmgbhH+Mk4JpK1atdLPP/+siy66SL1799aiRYuKnP/VV1/JnnJcDQOsFfpdfvpoXqHPP37wpiTp4u595RsYpICQMMVu/qnwOR/PV2ldfHk/SdKG994otH39ojl/7+9f4rn5DzpM859ZGQ5sj9GBXzcVOs7bN+9ByukPJYLDI1T34tbavPyDQvsS/tylPT+t1dVXX13q7wEAQFXHO/sA4CFM09S7776rBx98UGlpaZo+fbomTZokb2/vs5/swTqF+6mOn03L41LdNku/ISnY26KBDYNUv4Ql9sLDwxUdHa0777xTo0eP1q5duzRt2jRZ/g64X331lfr166dOdfwVty+1wmpN/uuAFk66Sc269dGBXzdp65cfq+2Aa1X3otaSpE5DR+m7+S/r0ycnKbLl/7N331FRHl0Ah3+7CyyISBNFBUXFhg3F3mLXqFhiFKPR2CvGklhjTewlGnvXaGyxiwU+sMUYFcEae+8F6Z0t7/cHgbgBlbKUxXnO8STuvu/MsC6wGX3svQAAIABJREFUd+7MHVceXjzL21Qy5e9TpGwlqrt74L93M7GR4ZR0q8ez6xe56LUTlyZt3luJH6B8w5ZcP36Y3777hvINWhDy4jHnd/9KoVLliI/5t0aDsakZhUqV45rvfgqWKE0+S2sKly6PvXMF2oycxsbh3Vj5zefU6NgDVXwcZ3esI59FAaZNm5bh100QBEEQ8hoR7AuC8MmQJAmNBGpJQqsFuRyMZDIUMnSytLnR5cuX8fT05MyZM3h4eLBgwQIcHBxyeljZxjG/Mf0rWHPqRTQBQXHIIFuC/qR+atiZ0qioOcbyD79PlEolGzZswMXFhXHjxnHr1i02b95MQkICZ8+eZdWqVZQuYIKViZzwLJq4+GrOWnxXzcFn6U/IFUbU9ejH5yOnJT/fbMD3RIcG87efF9d8D1C2XjN6L9vBzGYV0tzHF5MXY1PMiUCvHdw4cYT8BQvRuM8Img0a88H73Np/RVTwG87v2czdsycoVKosHjNWcM3vIA8CdLc/fDF5EV7zJnB44WQ0qgSaDRyDvXMFnGt/Rp+lO/FbPRe/VXORGxlRslodqjdqxpYtW6hZsyY1a9ZM12smCIIgCHmRTHp3LZ0gCEIeIUkSIfEaXsWoeRWj5mWMmlexatSp1AAzkoO9mRFF8hlh/88fG6UiV0wAhIaGMnnyZFauXEn58uVZtmwZTZo0yelh5ainUSoOP44kLEGbZUF/UrtWJnLafiCb/yEHDx6ke/fulC1blkGDBjF48GAeP35M8eLFeRqlYuvd8I83kg5+q+ZxbM18Jh27hbm1rV7bNgTXty/jyPqlhISEAODk5JQc+NesWRM3N7cPnpYgCIIgCHmNCPYFQchTQuM1XHobx5XgOOI1iT/e5EBa6ny/e51SIaOqrSnVCppirVRk0WjfT6vVsmnTJsaPH09cXBzTpk1j+PDhGBunP+jMi7SSxIMIFYFBsTyMVOkt6E9qp6SFMW52ZpQqYIw8E5M+V65cwd3dnbdv32Jvb8+DB/8WtfN7FkVgUJzeJis+9WB/YAVrrJVyHjx4wIULF5L/XLx4kejoaGQyGeXLl9eZAKhatSqmpu85bUAQBEEQDJwI9gVBMHhaSeJ+RAKBQXE8yoLAz8nCGDc7U0oXMMlU4JdWgYGBDBs2jPPnz9OjRw/mz59PkSJFsrxfQxUar+Hy2zguvzvBIwNtGt4E716nVMhwtTXFVc8TPC9fvsTJyQmNRsO2bdvo2rUrACqtxLqboXqrQ/ApB/tKhYyRlW1SXY2j0Wi4efOmzgTAlStXUKlUGBsbU7lyZZ0JABcXF4yMxC7HT4Uhb+8SBEH4GPHbTBAEg/bfJd2gv2XdSe08jlTxKFKVqSXdaRESEsIPP/zA6tWrqVSpEqdOnaJRo0ZZ0ldeYq1U0KSYOY2L5iM0Xpu4dSNWzYto1Ue3bhQ1N8beLHHrhrVSniUf7oODg0lISKBp06Z4eHhw8+ZNpkyZgrFcRrsSFnpfzv+pkQGutqbv/bdTKBRUqlSJSpUq0adPHwDi4+O5evVqcvD/559/smbNGiRJIl++fFSrVk1nAsDZ2VkEfnlAXtneJQiCkFYisy8IecinlKFQaaUcLdb2WRqKtaWVRqNh/fr1TJw4EZVKxU8//cTQoUNFdlEPJElC+8/3xKQpUzl6+BBXLl5Eno3fEwsWLGDKlCkEBwfz888/M2nSJDw8PNi4cSNmZmYEBMXi9yz64w0J7zXIxTrTqzGioqK4ePGizgqApG0XVlZW1KhRQ2cCoFixYnnu52pelVe2dwmCIKSXCPYFwUB9yhmKp1GqXH8MW1r5+/szbNgwAgIC+Oabb5g7dy6FCxfWz0AFHZMnT+bXX3/lyZMn2dpv8+bNUSqVHD58GIA9e/bQs2dPKlWqxIEDByhSpAhnXsVw+mVMto4rL5CRuM3Gw9kyS9oPDg4mICBAZwLg5cuXANjb2+sE/zVr1sTW9tPaPpGb5bXtXYIgCBkhgn1BMDCfeoYiKQuaXdn890nqv7mDOTXszNJ9f1BQEBMnTmT9+vVUrVqV5cuXU69ePb2PU/jXrFmzWLRoEUFBQdnWZ1RUFLa2tixYsIDhw4cnPx4YGEj79u2Ry+UcPHgQV1dX/nodKwL+DPiyVAGcLU2yrb/nz5/rBP8BAQGEhoYCULJkyRQnAOTPnz/bxiYkMpQTOwRBELKaCPYFwQCIDEXiSobcGgw1LJKPeoXN0rRSQqPRsHr1aiZNmoQkScyYMYPBgwejUBjOhIuhWrRoEZMnTyYqKirb+jx06BDu7u7cuXOHMmXK6Dz34sULOnTowI0bN/jtt9/o1KlTrpnMMgQywNJEzkAX6xz9uSVJEvfv309xAkBMTAwymYwKFSqkOAFAqVTm2Hjzsry0vUsQBEEfRLAvCLmcyFAkyu3LnBsWyUd9+3wfvObs2bMMGzaMS5cu0a9fP2bPno2dnV02jVBYtWoVw4YNQ61WZ9sWFk9PT44ePcq9e/dS7TMmJobevXuza9cuZs2axfjx43kWrc7RbSqG5Osyljjkwp9XarU6xQkAV69eTT4BoEqVKsnBf61atahQoYKY8MukvLS9SxAEQV9EsC8IuZTIUPwr4E0sfs9zfwGz9y3pf/PmDePGjWPTpk24ubmxfPlyateunQMj/LT9+uuv9O7dm/j4eExMsmfZt7OzMy1btmTFihXvvUar1TJ9+nR+/PFHvv76a9auXYvCRJnt3/+GREbiz6lmDoazRD4uLk7nBIALFy5w8+ZNJEnC3Nyc6tWr66wAKFWqlMHWVcluuWVFTGa3dwmCIOibCPYFIRcSGYp/PY1SGdTRZD3KWCa/Zmq1mpUrVzJ58mQUCgWzZs2if//+IoOXQ37//Xc8PDwIDQ3Fysoqy/u7d+8eZcqU4cCBA7Rv3/6j12/fvp0+ffrg5ubGvn37KFSoULas7NFqNMgVCpAkMIDgMunnU/8K1rlmQjKjIiMjU5wA8PDhQwBsbGxSnABQtGjRHB5x7pJXtncJgiBkFRHsC0IuIzIU/1JpJdbdDDWY5czvBiHnzvyJp6cn165dY+DAgcycOVNU6s5hXl5etG/fnhcvXlCkSJEs72/58uWMGjWK4OBgLCws0nTP+fPn6dChA6ampnh5eVG5cmW0ksSDCBWBQbE8zIKaHUVNtKyfP4PW3042mMDk3Um1vObt27cEBATg7++fPAHw+vVrAIoWLaoT/NeoUQMbG5scHnHOyQvbuwRBELKSCPYFIZcQGYqU/J5FERgUZxCB/r8k3gaeYuGALtSqVYvly5dTo0aNnB6UAPj5+dGiRQvu379PqVKlsrw/d3d3oqOjOX78eLrue/r0Ke7u7ty/f5/t27fTrl275OdC4zVcfhvH5XdP45CBNg3fJO9ep1TIcLU1xfWf0zhat25NhJUj7cfNTtdYc8KntkRakiSePXuW4gSA8PDEFU+lS5fWmQCoXr065ubmOTzqrGfo27sEQRCygwj2BSGXEBkKXYa2fP9dkqTF+s4ZBnbtgFwuz+nhCP84c+YMDRo04O+//6ZixYpZ2ld8fDw2NjZMnTqVsWPHpvv+qKgoevbsyYEDB5g/fz6jR4/WmWyTJInQeC2vYtS8ilXzIlrFq1g16lTO4DSSg72ZEUXNjbE3M8I+nxHWSrlOey9fvqRYsWJ4TJxD1c59M/Q1ZweRKU2k1Wq5d++ezgTApUuXiI2NRS6X4+LiojMBUKVKlWyrU5EdDO33Q15eiSIIQu4mgn1ByAVEhkKXVpJYcyOUcANZvv9fueVIMEHXxYsXcXNz48KFC1m+2uLYsWM0b96cK1euUKVKlQy1odVq+eGHH5gzZw59+/Zl5cqVHwzYJElCK4FaktBoQSEHI5kMuYw0rcpp3bo1Pj4+LDl8mugi5TM05qzUqEg+6oo90O+lVqu5fv26zgTAtWvXUKvVmJiYULVqVZ0JgPLlyxtk/RBD3t5l6DUmBEEwPCLYF4QcJjIUKd0Nj2fPg8gs7SM7fFmqAM6WeSebZuhu3ryJi4sLf/zxBw0bNszSvsaMGcPWrVt5/vx5poPTzZs3M2DAAOrUqcOePXsoWLCgnkap68WLFzg4OKBQKOjy/TSqdB0kaocYuNjYWK5cuaIzAXD79m0kSSJ//vwpTgAoWbJkrp9MMcTtXYZ4eoQgCHmDCPYFIQeJDEXqdtwL53GkyiBek/eRAU4Wxng4W+b0UIR/PHr0iJIlS+Lj40PLli2ztK/KlStTs2ZNNmzYoJf2zpw5Q6dOnbCwsMDLywsXFxe9tPuu6OhoihQpQmRkJEeOHKFSw+biVJA8KCIigsDAQJ0JgMePHwNga2ub4gSA7ChmmVaGNjn+X2I5vyAI2U0E+4KQg0SGIqXQeA2rb4RmSds5YZCLNdZKw1sqmxe9fv0ae3t79u/fT4cOHbKsn2fPnuHo6MjOnTvp2rWr3tp99OgR7u7uPHnyhJ07d9K6dWu9ta3VaunatStHjhwhLi6OihUrcu3aNVRaiVMvogkIisu2LH9SPzXtTGlU1Fwsfc4Gb968ISAgQGcC4M2bNwAUK1YsxQkA1tbW2T5Gsb1LEAQh/YxyegCC8Kl6GqUiICgup4eRbhJwISiOslbKLMlQXHqbfUFFVpMBl9/G0aRY3q+MbQjMzBKXgcfGxmZpPz4+Psjlcpo3b67Xdp2cnDhz5gzdu3enbdu2LF68GE9PT70su546dSp79+5l7969rFixAl9fX/z9/alVqxbNHfJTzkrJ4ceRhCVos+z7M6ldSxM5bUU2P1sVKlSINm3a0KZNGyCx/sPTp091gv+5c+cSEREBgLOzc4oTAPLly9rCifcjEghLSKUCpYGQgLAELQ8iVGJ7lyAI2UZk9gUhB4gMReokSWLxtZDkI8WyS+DB7eye9i1jDwViXbS4XttWKmSMrGyT6/fBfgpUKhUmJiZs2LCBPn36ZFk/Xbp04fnz5/z1119Z0r5Go2Hs2LH8/PPPDB48mCVLlmBsnPHAeNu2bfTo0YM5c+Ywbtw4nj9/jqOjY3J2P4lWkngQoSIwKJaHkSq9Bf1J7ZS0MMbNzoxSBYxF5jMX0mq13L17N8UJAHFxccjlcipWrJgc/NeqVYvKlStn6n35X2J7lyAIQvqJzL4g5ACRoUhdSLwm2wP9rBavSTwizcZULOXPacbGxigUiizN7KvVanx9fRk9enSW9aFQKFi4cCEVKlRgyJAh3L17l127dmVoafX58+fp27cvvXr1Sj4isFixYjRv3hxfX18uXLhAzZo1AZDLZDhbmuBsaUJovIbLb+O4HByX/D0rl4E2Dd++716nVMhwtTXFtaCp2O6Sy8nlcsqVK0e5cuX4+uuvgcQJtP+eAPDrr7+i0WhQKpW4urrqrAAoV65cho4jDY3X8ChSpe8vKdtJwMNIFaHxGvF+FwQhW4hgXxByQGA27n/NKjIgMChWr8H+qxi13trKTV7FqEWwn0uYmZllabB//vx5wsPD9bqf/n369++Ps7MznTt3pk6dOnh5eVG2bNk03//06VM6dOhAjRo1WLNmjc7qk40bN+Lo6Ei/fv24evVqinutlQqaFDOncdF8hMZreRWj5lWsmhfRKl7FqlGnMpdpJAd7MyOKmhtjb2aEfT4jrJVyserFgBkbG+Pq6oqrqysDBgwAErfJXL58OTn49/X1ZdmyZQBYWFjg5uamMwFQokSJj74HxPYuQRCEjBHBviBkM5GheL9XMWrkgOGueUhJLoNXsWpcUOb0UASyPtj39vbG1tYWNze3LOvjXY0bN+b8+fO4u7tTu3Ztdu/eTbNmzT56X1RUFO7u7piamrJ3716USt335/uy+/8lk8mwMVVgY6pIfo9LksSzFy8pU64cO3ftpnXLFhjJZMhliMD+E2BmZkbdunWpW7du8mPh4eHJJwD4+/uzY8cO5s+fD0DBggV1gv+aNWtSuHDh5HslSeJKcPYUsp1Q3Y5mA8fQfPDYLOtDAi4HxzG9R1sATp48mWV9CYIgpH8tlSAImZKUocgLkjIUGfH8+XP69u1L4cKFUSqVVKxYkR2bNyUH+g8CzjChuh1X/7cfv9Xzmd2qMlMbOLF1TB/iIiNQJ8TjNf8HZjSrwNT6Jdg9dTjqhHidPiZUt+PAnHFcOrKbhZ3qMLmOA0u7N+NhYNr2Up/9fQOLvmzApNrFmNWyEgdmjyU28t9jn3xXzuWHWkWICn2b4t69P41meqPSxMfF8SJaRUBAAK1ataJgwYKYmZlRsmRJ+vbtm6HXTsi47Aj2W7RogUKRfSs5nJ2dOXv2LLVq1aJVq1asXr36g9drtVp69uzJ/fv38fLyolChQqlet2HDBmQyGf369UvXeGQyGQoZxEdHYSxpUCrkKOQyEeh/wiwtLWnatCnjxo1jz549PHnyhFevXuHl5cXQoUMBWLFiBe7u7tjb21O8eHE6d+7MnDlzOHzyTJ7c3qVOy54XQRCETBKZfUHIRh/LUDwIOMPagR0ZsGY/pWrU13v/awYkHjc2cO0BvbSXlKFoXDRfuj7Iv379mjp16iCTyfD09MTOzo6jR4+y7ofhtA0Jo0GPwcnXntz4C8ZKMz7r8y3BTx9ydsc65EbGyORyYiPCaDZoDE+vBRLotQPrYiVoNvB7nb4eXjzLtf8doO5XAzAyNuHcro1sHN6NoZt9sHeu8N4x+q2ax7E183Gu/Rm1v+zN28f3OL97E89uXGbwhsMojI2p1rYLx9cu4KrPfup16598r1qVwN/HvKjUrB3GSlPuPX/Jt51bYmdnx/jx47GysuLRo0fs3bs37S+2oBdZGewHBQURGBiIp6dnlrT/IVZWVhw+fJhRo0YxePBgbty4wcKFCzEySvlrftKkSRw4cICDBw9SuXLl97bp4OCQpux+akTtX+FjChcuTLt27WjXrh2Q+J55/Pixzv7/WbNmUap+C7rN+vAElr78ePYpckX2fDRO0EoYiWMlBUHIYiLYF4RsJArQJfrhhx/QaDRcu3YNW1tbAPoPHIRbm84cWz2f2p2/Sb5Wq9EwcO0BFP9UdY4ODeaqzz7K1GtKn6U7AKjbtS/BTx8ScGBbimD/9b2beP7mRzGXqgBUbdWJhV/UxW/lXL5euCnV8UWFvuXkxl8oU6cxvZftTC4oZedUhoNzx3PpyC5qdOhOweKlKF6lJpeP7NYJ9m+f9iU2IoxqbRPPWL9/6QKhoaH873//o0aNGsnXzZgxI82vmaAfWRns+/r6IkkSLVu2zJL2P8bIyIilS5dSoUIFvv32W+7cucOOHTuwtPy38veWLVuYPXs2CxYsSA6yPmTDhg0UL178vXv3UyNJEhoJlPkt0MiNidNoMfon2y+y+8L7yGQynJyccHJyokuXLkDiKpQ9fz/jvkoLGSjsl17GStOPXpMQG42JWeb228tlkKCRyCc+hQuCkMXEMn5ByEY5XYCu74pd9F2xS+/tpufrkiSJPXv24O7ujiRJvH37lrdv3/IqKIiydZsQFxXB81v/BhXV23ZNDvQBHCtVR5IkanTortOuY6XqhL9+jkatO5biVWomB/oAVkUccPmsNXfOnkCr0aQ6xnvn/0CjSqB+j0E6laNrftETZX4Lbv/p++/42nXl6d+BBD99mPzY5aO7sbQvRkm3egCYWSQGW4cOHUKlMvx6DYYsK4N9b29vXF1dKVKkSJa0n1ZDhw7F29ubc+fOUbduXe7fvw/AX3/9Rf/+/enbt2+aTwtwcHCgWbNmXLt2jQsXLqR4XpIkguPUXA+J49izKH67E8bCq8FsC1Iy7Y8HXC9cjcVXQ1hwJZiFV4P57U4Yx55FcT0kjuA4tVgBILzX8+fP6d+/P/2b1mBSXUcWfdmAgP1bAVDFxfLzF3X5+Yu6qOL+/X6OCQ9lVsuKrOzdJvnn+66pnkytX4KQZ4/YMLQLU+qVYFbLShxbsyDF+29CdTv8Vs1L/rvfqnlMqG7H6we32TFxENM/c2ZV338nyS4d3sXS7s2YXNeRHxuXYfv4AYS9ep7ia/Hfs5n57Wsyua4jy3u25H7gWeLFMn5BELKBCPYFIRslFaDLKUbGJhgZ6696PvxbgC6tgoKCCAsLY82aNdjZ2SX/cbQvzO5p3wIQHfLvHngr+2I695vmLwCAZeGUj0taLXFRETqP2xYvmWIMBUuURhUXQ3Qqe+0Bwl4+BcCuhLPO40bGJtgUK0Hoy2fJj1Vp2REjEyWXj+4BIC4yglunfXH9vHNyFrOkWz06dvqC6dOnU7BgQTp06MDGjRuJj9etMSBkvawK9rVaLT4+PtlShT8tmjdvzrlz51Cr1dSuXZvff/+djh07Urt2bVauXJmuDPvGjRtT7N0Pjddw/Hk0i6+FsPZmGF6PowgMiuNZdOqV+AHUWngWrSYwKA6vx1GsvRnG4mshHH8eTWh86hNvwqcpaauXn58fdTz64T5mJraOJdnz40j+3LoKY1Mzvpy+jOCnD/FZPiv5vgNzxhEXFcmX05cif6duhlarZYOnB/ltC/H5iCkUq1AVv1Vz8Vs1N03j2Ta2H6q4WFp5/kDNTj0BOLHuZ3ZNGUbB4qVoO/pH6ncfxH3/06zp316ntsuF/b+xb+Z3WNja8fmIKZSoWovNo3ry5kXKSQFBEAR9EwuIBCEbvYxRE/rmJX4r53D7zDFiwkMpYGdP2XpNaTdm5nvvu+Z7gJMbl/Dm4R1MzPJRtm5TWo+YgmWhfzOIkW9f47N0BnfPnyI6NJh8llY4VKyO+5iZWBctDqTcs59UI+CrOWsJfvKAc7s3ERMWQomqtej4wwIKFi+lM46zO9dz+reVRL59jb1zBdqMmo7vyjkoFTJunv8z+bq4uDhCQ0MJCwtL8d8nT54AULp0aezt7YmKiiIqKoo4lZrWExYCYF/GhTcP7gAge0+hM/n7CqBlc6bQrIAV5Ru24PLR3TQb+D3Xjh1EnRBPtTZdkq+RyWTs2LWLSxf88fLywsfHh759+7Jw4ULOnTtH/vz5s3XMn7KsCvYvX77Mmzdvck2wD1CuXDnOnTtHp06d6NatG7a2tuzZswcTk/RN+CVl948dP87RgOuEWznwKFKV4ii0tJ6i8e518RqJC29i8X8Ti5OFMW52ppQuYIJcLPf/pCVt9bp05Sob/5lbrf1lb7ZPGJi81at4ZTca9fLk1K9LqdikDVEhQVz12Ue772dgV6K0Tnvq+DjK1mtK+7GzAajTtS+/jujBqU1LqddtAObWth8cT5GyFXXqBoS+eIrf6nm0GDqBJv1GJT9esWlblnZvyrnfN9Ck3yg0KhX/WzaLIuUq0X/N/uTJ9kKlyrFvxmik0iX08XIJgiC8lwj2BSGbSJLE7cfPWNGzJbGREdT6oid2TmWICHrJ335eOksR3xV4cDu7p32LQ8VqtPL8gaiQIP7avpbHV/wZvv148hLxrWP68Pr+bep26491UUeiQ95y99wpwl4+Sw723+fUpiXIZHIa9hxKXFQkf/y6jJ2ThjBss0/yNed2beTg3PE4VatDgx6DCH3xlC3ffYOZhSUF7OypUKFCclD/voy1sbExVlZWyOVywsLCKFOmDI6OjlhbW2NlY0uB2p8lX5sU7GdW8JOHKR57+/g+xqb5MLcumOo9VkUcAQh6fA8bB6fkx9WqBEKfP8G5diOd66u182DLqJ48vX6Jy0f2ULR8ZQqXLq9zjZFMRp06dahTpw4zZ85k27Zt9OjRgx07dtC/f3+E7GFmZkZYWJje2/X29sbCwkLnuLHcwNLSEgsLC4yMjHj79i3z5s1jzpw56T4tYO6aTWz/+yVXFIWR/XN0qL6m1ZLaeRyp4lGkCisTOW1LWOCY3/iD9wl5U9JWr65du6LSaokODU1+rmzdJlz12cfzW1dxcq1Ns8FjuXXal11Th5MQE01Jt3rU+2pgqu3W9fj356xMJqOuRz9u/+nLPf8/qNqq0wfH9G4dGYDrxw8jabVUbtGB6NDg5MctbAtR0LEUDwLO0KTfKJ7duExUSBDNB4/TWVXn5t6No4unZffctCAInyAR7AtCNtFIcHjJT0QGv2HoZh8cXFyTn2sxZHyqe1c1KhXeS36isHMFBq47mFw8yMm1Nr+O6MGfv62ixZBxxEaG8/jKBT4fOY1GvYYl39+478g0jU0dH8/wHSeSP4yYFbDk0PwfeHXvJvbOFVCrEvBdOQeHitXov3ofin8qfNuXcWH31OFYFi7K523bYlWgQGLgbmWV6n/NzMyQyWT06dOHbdu2MX/+fCpVqgQkfsBbeDWYsOC35H9PEJ4RT65e4PnNKxSrkLhvP+zVc26c8qZsvabvXR3gXLsRCmMT/tq+lrL1miUveQ7Yv5W4qAjKNWihc325es0wt7Llj01LeHjxLz4fOU3n+YSoMGTYwDuHLrq6Jv77i6X82cvMzIyXL1/qvV1vb2+aNWuW7qx5Vps4cSJHjx7Fy8uLu3fvMnr0aG7fvs3WrVuxsLD46P0qrcSpF9EEhCmx+WcSLKvik6R2wxO0bL0bTg07Uz4rao6xqFj+SXl3q9eaNWtSvSZpq5eRsQmdp/3C8q9bYKQ05ctpS1LdoiKTy7EppptFT8r+h7548tExWf/n3rdPHyT+zupYO9Xr5UaJE1VhrxKXJfx3lZzC2BgbB5HVFwQh64lgXxCySYJGw42TR6nQqJVOoJ8ktQ8oSVmBZoPG6FQJLt+wJXZOZbj9py8thozDWGmKwtiEBwFnqNmxB2YFrNI1Nrf2X+lkHUpWqwNAyPPH2DtX4PmNy8SEhdDKc1JyoA/g+vmXHF44GYDZc+ehVKStIsGcOXM4ceIEtWvXZsCAAbi4uBASEsK+U+e59tdJppy8m67xf0hh5wpsHOahc/QeQPNBY997T37rgjTuM4Jja+azcVhXKnzWmqDH9zi/ayMOFavpLNGHxA9uVVp15OzO9cgVihRZojtHd1G+30Y6depE6dKliYyMZO3atRQaltDLAAAgAElEQVQoUIA2bdro7WsVPi4rlvGHh4fz119/sXz5cr22m1mbNm1i3rx5LFq0KPl9VrZsWTw8PKhfvz5eXl6UKPH+gONplIpDjyOJSEhceP++LTX6lhT0BwbFcTc8gXYiy/9J0WoT329ff/01X33dk70PI1NcY1/GJfn/7/51HEhcqv/2yYMUQb0+/LdKv6TVIpPJ6L10R6qTxpmt1i8IgqAvItgXhGzy+nUQ8VGRKZZ3f0hSVuC/heIA7EqW4fGl8wAYmShp/e1kjiyayszmLjhWdqN8w5ZUb9cVi4KFP9rPf4vgJU0WxEYkLndOKkhn66hb7E5hZIR10cRsn0YLpDEWKFy4MP7+/vz444/s3buXFStWYGtrSxHn8nz+7ZS0NZJGJavXpXiVmhxbM5/wV88pVKosXaYvpUjZih+8r/ngsZhb23J253oOL5yMmaUVNb/oRSvPH3ROB0hSrZ0HZ3eup3TNhhSws09+XC6Dhp99hvbRNXbs2MHr16+xtLSkVq1abN26lZIlUxYQFLJOVgT7x44dQ6PR0KpVK722mxl//vknAwcOZMCAAYwYMSL58c8//5yzZ8/i7u5OrVq12LdvH/Xq1Utxf0BQLH7PolPsy89OEhDxT5a/uYM5NezMcmgkQnays7PDwsICjUZDyxYtuHol+L3XvrxznWNrF+LW/ite3vmbvT+NYuTOPzC1KKBznaTVEvL8sc5e/qDHiadUfGybW2psHZyQJAnrYiVS1Ad4l5W9AwBvnzygdK2GyY9rVCpCnj/BubBNuvsWBEFID1GNXxCySVYfEdygx2C+23eOVsMnYaQ0xXflHH7uXJ8Xtz5+NvZ7M3bp2FCYxqR+skKFCrFs2TKePHlCQkICL1++ZMuBo9T8IrHScaka9Zl9MYjKzdvr3OfW/itmXwxKsTqi+eCxzL4YlGqhpWptvuT7/ef56dwzhm87Tqka9VNt878f+up69GP03r+Y4f+CH3xv0HHCvOQaCf9l9M8EgOt/sv5aCRrWdGPbtm08fvyYuLg4Xr9+jZeXF25ubml4pQR9yopg39vbm/Lly+Pk5KTXdjPq4cOHdOrUifr167Ns2bIUq4YqVqzI+fPnKVu2LE2aNOG3335Lfk6SJM68isHvWXTi37N15Ckl9e/3LJozr2LEUX2fAIVCQefOndmzZw83r/+N0X9+t0T9c4qKRqVi97ThFLCzx33MLL6ctpSo4CAOLZyUartnd65L/n9Jkji7cz0KI2OdIDytKjZti1yh4Nia+Snek5IkER0WAoCDiyvm1gU5v2cTalVC8jWBXjuIiwxHbFARBCGricy+IGSTIoUKocxvwev7t9J8T1JWIOjxvRQfSN4+uodVEQedx2wdS9Kw51Aa9hzK2yf3WdKtKae3rMRj5spMjd36n36Cnz6kdM0GyY9r1GpCXzzFvowLRnqonm2fz3B/JPnv3YJJPnMqNWub4jlD/rryGn0H+5Ik4e3tTefOnfXWZmZERETg7u6OpaUlu3fvfm8NATs7O/z8/Bg8eDA9e/bk5s2b/PTTT5x9E8fplzHZPOq0SRpXfft8OTwSIaslbfWqU6cODb/sRT7HMsREhPLi1lXunf+DKSfvcnzdz7y8/Tf9Vu1FaZ6fImUr0mzAd/xvxWwqNXen/Du1VYyUptz56zi/TxmGYyU37pw5xu0/fWncd2SGasTYOpakxdAJ+CydQdiLJ7g0boPSPD8hz59w/cRhan3Ri0a9hqEwNqbl0Ansm/kd6wZ1okrLjoQ8f0Lgwe0UcnTS4ysmCIKQOvEJVBCyibFCTqXGn3PxyG6e3bicIjOdWsbKwcWV/DZ2nN/9KzU6dMfIRAnA7TN+vHl4h6YDvgcgITYGmVyus6/QxqEkSnNz1KrMF4Ar5uJKPisbLuzbglv7r5L37V8+upvYiDBkJC5XzywbpQKlQka8xnCydzdP+fDm4W0u7N1CHY9+KfZqKhUyrJViEVVuoe9g/+bNmzx9+jRXHLmn0Wj46quvePbsGefOncPW9sPHiSmVSjZs2ICLiwvjxo0jxKIIJVp1y6bRZszplzEoFTKxpD+Pe3er1+/7DhDy5jX5rKwpVKo8rb+dwvObVzi5cTF1PPrpTEB/1mcEN055s++n0Yzc/WfySiy5XE7fZTvZP2sMRxdPR2luTrOBY2g68PsMj7FxnxEULF6aM1tXcWzNfAAsCxejTJ3GVPjs358HtTr3QqvV8Mfm5RxdPJ3CzhXovXgLZ9fOy3DfgiAIaSWCfUHIJjKZjF5jp3Ln3EnW9O9ArS96UqhkWSLevuZvv4MM2nAoxT0KY2NafzuZ3dO+ZU3/DlRt3Ymo4CDObF+LddHiNPh6MABvn9xn3eDOVGnRgUKlyiJXGHH9xBGigoM+eqRQWhgZm9Bs4Bi85k1g3aBOVG7RgbCXTwn02oGNgxNKhTzVAoPpJZPJqGpryoU3sTm+fDitDs6bQFRIEOUaNKfF4HE6z8kAV1tTvbw2gn7oO9j39vbG1NSURo0affziLDZ27Fh8fHw4cuQI5cunrTaITCZjzJgxOFauwcNCH65jkVv4PYumsJmRKNqXxyVt9Rry4wK8HkeleH6mf8pTNeQKBcO2/C/V9mwcnOi7YtcH+5x9MUjn780Hj6X54PcXc63UrB2VmrX7YJsAdbr0oU6XPjqPDT/sh4uN8qP3CoIgZIYI9gUhG1UsWZxhv/rgs3I2l4/uIT46kgKFilC2XlOMTVPPVLm1/wpjUzNObVqC95KfMDbLR8UmbWg9Ykpy1sKycDGqturEff/TXDr8O3KFEXZOZeg+dx2VmrnrZez1uvUHJE5vWcnRxdOwL1uRXou24DVvIvnz6S/LVq2gKf5v9BOM/feDW1YYd/jie5+TANeCpu99Xsh++fLlQ6VSodFo0n3WfGq8vb357LPPMDPL2UzzunXr+Pnnn1m6dCktW7ZM170qrUSoY1VkCZosGp1+yYBDjyPpX8FaHMv3Ccir26Dy6tclCELuIpNEtRtByDbXQ+JSzVAYKq1Wy4xm5WnTviO7N2/QW7s77oXzOFJlMNn91MgAJwtjPJxTL+gn5Izt27fTvXt3IiMjyZ8/f6baiomJwcbGhjlz5jBy5Eg9jTD9Tp06RfPmzenfvz8rVqxI90oSv2dRBAbFGdT3mwyoYWdKM4fM/RsKuZ8kSSy+FpLh7V27pnryt58X08881vPIMk6pkDGyso1Y9SUIQpYTG0kFIRsZ8ky+Kj4uRV2BS4d2EhseSosmTfTal5udqUEFHqmRADexrzjXScrA62Mp/6lTp4iPj8/R/fr379+nc+fONGrUiCVLlqQ7eHgapSLAwAJ9SPz+uhAUx9MoVU4PRchiSdu78kpYLLZ3CYKQnQw38hAEA2SIBeiSPL0WyKGFk6jcvD35LG14cesqAQe2Yu9cgd7du+q1r9IFTLAykROeoDW4IAQSP8xZmsgpVUDsKc5t9Bnse3t7U6JECcqVK5fptjIiPDwcd3d3bGxs2LVrF8bG6Xu/aSWJw48jkZHzR+xlhAw4/DiSgS7WyEXglKdlZntXl+nL6DJ9mZ5HlHFie5cgCNlJBPuCkI0MsQBdEuuijlgVLsZfO9YSGx6GmaUV1dp2ZeKPM1Eq9VtkSC6T0baEBVvvhIEBfoiXgHYlLEQAkgvpO9hv3bp1jmTo1Go1Hh4evHz5knPnzmFjY5PuNu5HJBCWoM2C0WUPCQhL0PIgQoWzZepHDAp5g7VSgZOFcZ7Z3mWtzHy9EEEQhLQQwb4gZDN9FqDLTtZFi9Nr8W8pHm9S3lrvfalUKtYvmElgtDH1ug1AJjecHUdJe4kdRKXwXElfwf6DBw+4c+cOc+fO1cew0u3777/Hz88Pb2/vDK8sCAyKM9isfhIZEBgUK4L9T4CbnSmPIg1724bY3iUIQnYznE/QgpBHJGUoDD3nKwNKZkGG4saNG9StW5cZM2bgVkDCUqkwmNdKBhQwkdOoqHlOD0V4D30F+z4+PhgZGdG0aVN9DCtdVq9ezS+//MLSpUtp3rx5htoIjdfwyMCzpJAYPD2MVBEabxgnCQgZl7S9y1B+H/yXDLAS27sEQchmItgXhBwgCtClpNVqWbRoEdWrVyc6Oppz584xbfIk3J0KGMxrlbR8XxwHlnvpK9j39vamfv36FChQQB/DSrPjx4/j6emJp6cnQ4YMyXA7l97GGWzQ9F8y4PLbuJwehpDFkrZ3Gcrvg/8S27sEQcgJItgXhBxg6BkKrUaNPC6KEub6+RHy6NEjmjZtyujRoxk6dCgXL16kRo0aADjmN6a5g2Fkyps7mOMolu/navoI9hMSEjh27Fi2V+G/e/cuX375JU2bNmXRokUZbkeSJK4EG14F/veRgMvBKU8LEfIex/zG1LAzvMr8MqCm2N4lCEIOEMG+IOQAQ89QyOQKVgzxoF7duly4cCHD7UiSxPr166lcuTKPHj3ixIkT/Pzzz8kBWZIadmY0LJIvs8POUg2L5KOG2IuZ6+kj2D9z5gzR0dHZGuyHhobSrl07ChUqxM6dOzEyynjJnZB4jUGeCPIh8RqJ0HjDLTYopN1nRc0pYECT5WJ7lyAIOUkE+4KQQww5Q1GrkBnbVixCrVZTu3ZtBg0aRHBwcLraefXqFe3bt6d///507dqVq1ev0rhx4/deX69w7g34GxXJR73CItA3BPoI9r29vbG3t6dq1ar6GtYHqVQqunbtSlBQEIcOHcLKyipT7b2KUetpZLlLXv26BF3GchntDGiyXGzvEgQhJ4lgXxBykCFnKOrVq8eFCxdYsmQJO3fupGzZsqxduxat9uPZtd27d1OpUiUuXLjAwYMHWb9+/Uf3PstkMurb50te0p/Tr1lS/80dzKlnny9Hjl8T0k+pVCKTyTId7Ldq1Srb/s1HjRrFyZMn2bNnD87Ozplu71WM2mB++SfExqTpOrkMXsWKYP9TIbZ3CYIgpI2h/L4XhDzJ0DMURkZGeHp6cvv2bdzd3Rk4cCB169YlICAg1ftDQ0Pp0aMHXbp0oXHjxvz999+4u7unaww17MzoUcaShIgQtNqcqcCdNOnRo4ylWLpvYGQyGaamphkO9l+8eMHVq1ezbQn/ihUrWL58OcuWLaNJkyZ6afNljJqkKbnwNy/ZPe1bZjZ3YVLtYiz6sgEB+7cmX/sg4AwTqttx9X/78Vs9n9mtKjO1gRNbx/QhLjICdUI8XvN/YEazCkytX4LdU4ejTohP0eelw7tY2r0Zk+s68mPjMmwfP4CwV891rlkzoAOLuzTk+Y0rrO7nzpR6xfFZNpPfpwzjp6bl0KhSHru2fmgXFnaqg1aCF9GGfSybkD5ie5cgCMLHiWBfEHJYXshQFC5cmE2bNnH69Gni4uKoVasWQ4YMISQkJPkaHx8fKlWqxJEjR/jtt9/YtWsXBQsWzNA4rv95jJ9au2L25gGQfVn+pH5q2JnSv4K1yNYYKDMzswwH+z4+PshkMlq0aKHnUaXk5+fHt99+y4gRIxg0aJBe2pQkKTkDHhn8hpXftOae/x/U8eiH+5iZ2DqWZM+PI/lz6yqd+05u/IW7Z0/wWZ9vqdGhO9ePH2bfrO/ZPX0Eb5/cp9mgMVRs2o5Arx2c2rRU594T635m15RhFCxeirajf6R+90Hc9z/Nmv7tiY0M17k2JjyEjcO7UaRcJdp9N4PSNRtQvW1XYsJCuHP2hM61kW9f8+DCaVzbdAESM/uiSN+nRWzvEgRB+LCMV/gRBEFvatiZEa+ROP0ybUtWc0JaMhQNGjQgMDCQFStWMHnyZHbt2sWPP/7ItWvXWLVqFS1atGDDhg04ODhkeBxhYWH079+fxg0bMLJ1HZ5Fqzn8OJKwBC0yyJJVElqNGrnCCEsTOW1LWIgg38BlNtivWbMmtra2eh6Vrtu3b9OlSxdatGjBggUL9NauRgL1P2n9/y2fhVajYcTvf2BuZQNA7S97s33CQI6tnk/tzt8k36fVaBi49gAK48T3fnRoMFd99lGmXlP6LN0BQN2ufQl++pCAA9toNvB7AEJfPMVv9TxaDJ1Ak36jktur2LQtS7s35dzvG3Qej3z7ho4TF1D7y3f61mqxLFyUy0d2UaFRy+THr3jvQ9JqqdbmSyDx69JKoBA7aj4ZSdu7lAoZfs+is+x3QJrH80//zR3MRUZfEIRcQWT2BSGXyCsZCiMjI7799ltu375NjRo1GDZsGGvWrGH8+PH4+PhkKtAHGD16NBEREaxbtw6ZTIZjfmMGuljzZakCOFkkBiL6+qyf1I5R+Bu2jOpJC7NwEejnARkN9jUaDf/73/+yfAl/SEgI7u7uFClShB07dmSq8v5/qf/JfEuSxN/HDlGhUSuQJKJDg5P/lK3bhLioCJ7fupp8X/W2XZMDfQDHStWRJIkaHbrrtO9YqTrhr5+jUSeuHrh+/DCSVkvlFh10+rCwLURBx1I8CDijc7+RiRK3Dl/pPCaXy3H9vDM3//AhPjoq+fHLR3dTvGpNbIqVSPH1CZ+WpO1dOVkDR9Jqya9AbO8SBCFXEZl9Qcgl8lKGIj4+nsWLF+Pr60vFihVRqVTMnTuXiIgIZsyYgbW1dYbGdOTIETZu3Mi6desoXrx48uNymQxnSxOcLU0Ijddw+W0cl4Pjko8Xk8sSM34f8+51SoUMV1tTXAuaotTkY/71AH5euIDly5dnaOxC7pHRYP/ChQuEhoZmabCvUqno0qULISEhnD9/HktLS722n1Q/Mzr0LXGR4fjv3Yz/3s2pXhsd8hazAomV/63si+k8Z5o/saCmZeGUj0taLXFREZhb2fD26QMkSWJhx9qp9iE30p08K1CoCEbGJimuq9bOg1OblnL9xGGqt/Mg6NE9nt+8QseJuqseNFpAkfrXLuRtjvmN6V/BmlMvogkIisu236GJ/UgE7P0V40dXGLb1t2zoVRAEIW1EsC8IuUwNOzNkgN+z6JweCi0czHFLZ6B/5coVevbsya1bt5g5cyZjxoxBq9WybNkypk6dyq5du5g7dy7ffPMNcnnaFxeFhoYyYMAAWrduTd++fd97nbVSQZNi5jQumo/QeC2vYtS8ilXzIlrFq1h18hLmdxnJwd7MiKLmxtibGWGfzwhrpfydauv5GDFiBDNnzmTKlCkULlw4Xa+JkLtkNNj39vbG2tqamjVrZsGoErPtw4cP5/Tp0/j5+VG6dGm995H0LSf9E/W7tumCm7tHqtfal3HhzYM7AMgUqUfQ8vc8TtIKAq0WmUxG76U7Ur3WxEy3Xomx0jTV5gqXKkexClW5dGQ31dt5cOnILhTGJlRp2UHnOoVYr/hJM5bLaO6Qn3JWyizf3pXUbtL2rpJVitNt1lg6urejW7duWdCjIAhC+olgXxBymYCg2FwR6EuA77NoJEhTZl+tVjN//nymTp1KhQoVuHDhQvI55AqFglGjRtGtWze+//57+vbty9q1a1mxYgWurq5pGs/IkSOJjo5m7dq1aTryTCaTYWOqwMZUgQvKxK9JktBKiUt9NdrEwMBIJkMu46NtDhs2jLlz57J48WJmz56dpjELuVNmgv0WLVrodVn9u5YtW8bq1atZt24djRo1ypI+jP55n5tbF0Rpnh9Jq8G59mfvvT4p2M8oWwcnJEnCulgJ7EpkbvKiWruuHPl5ChFBr7jivZfyDVokrzxIYiSOwBQgeXvXgwgVgUGxPIxU6S3oT2rHycIYNzszShUwRi6T4eHhwb59+xg6dCiNGjWiaNGieuhNEAQhc8QcuCDkEpIkceZVTK4I9N/l9yyaM69iPljl+u7duzRs2JBJkybx/fff4+/vnxzov6tIkSJs3bqVEydOEB4ejpubG8OHDycsLOyDY/Dy8mLz5s0sXrw4U3v+ZTIZCrkMpUJOPmM5SoUchVyWpskDa2trhgwZwooVKz46XiF3y0iwHxwcjL+/f5Yt4ff29mbkyJF899139OvXL0v6gMTidUbyxIx8pabt+PvYIV7du5niuqjQt3rpr2LTtsgVCo6tmZ/iZ4gkSUSHhbznzpSqtv4CZDIOLfiBkGePcP2nMF8SI3niVhxBgH+3d3k4WzLIxZpahcxQvlO9Ma3vlXevUypk1CpkxiAXazycLXG2NEH+zu+P5cuXo1Qq6devnzgZQhCEXEFk9gUhl/jrdWyurcafNK769roFBLVaLStXrmTs2LEULVqU06dPU69evY+217hxYy5fvsySJUuYNm0av//+O/PmzaNXr14pAu+QkBAGDhxI27Zt+eabb97TYvYYNWoUS5YsYcWKFUycODFHxyJkXEaCfV9fXyRJolWrVnofz82bN/Hw8ODzzz9n7ty5em//XTKZDHszI55Fq2n17WTuB5xhRa/W1Oz0NYVLlSMmIpQXt65y7/wfTDl5N9P92TqWpMXQCfgsnUHYiye4NG6D0jw/Ic+fcP3EYWp90YtGvYalqa381gUpW7cp13wPYmphSfmGuscf2psZpWniTvj0ZM32rpRsbW1Zv349bdu2Ze3atQwcODALvypBEISPE8G+IOQCAW9yb6Cf5PTLGJQKWfKS/mfPntG3b198fX0ZOnQo8+bNw9zc/COt/MvY2JjvvvsueWl/7969WbduHcuXL6dKlSrJ140YMYK4uDhWr16d4x/kixQpQu/evVm8eDEjR44kX77ceXqC8GFmZmaEhKQ9owyJmfcqVarofWlucHAw7u7uFC9enG3btqF43x54PSqSz4gX0WosbAsxbIsPx9Ys4PqJw5zftZF8VtYUKlWe1t9O0Vt/jfuMoGDx0pzZuopja+YDiYX9ytRpTIXP0rdSonq7rtw6/T+qtOiAkYky+XG5DIqai5MyhA/T9/au1LRp04YBAwYwevRomjVrliW1NwRBENJKJol1RoKQo55Gqdh6Nzynh5FmPZwLcHL/ToYPH07+/PnZsGEDLVu2/PiNH3H8+HE8PT25c+cOnp6eTJ8+nRMnTtCpUyc2b95Mz5499TD6zLt//z5ly5bll19+wdPTM6eHI2RA//79uXbtGufPn0/T9VqtlqJFi/LNN9/oNfOekJBAy5YtuX79OhcuXMDJyUlvbX/I9ZA4vB5HffzCXOjGyaNsGd2LgesOUrJ6XZ3n2pewwMVG+Z47BSH7REZGUrVqVYoVK8bJkyezZRJPEAQhNWLPviDkIJVW4tDjyBw7Fzi9ZEhsCHhAv4GDcHd359q1a3oJ9AGaNm3K5cuXmT17NuvWraNs2bJ88803tGvXjq+//lovfehD6dKl8fDwYP78+ahUqpwejpAB6V3Gf/XqVV6/fq3X/fqSJOHp6clff/3Fvn37si3QB7DPZ7iL+vz3bsHGwQmnanVSPGfIX5eQt1hYWPDrr79y5swZFi1alNPDEQThEyaCfUHIQadeRBORoM2Ws4D1QUKGcQEblhz5iy1btmBtba3X9k1MTBgzZgy3bt3C1NSUiIgIgoKC+Pvvv/XaT2aNHz+eJ0+esH379pweipAB6Q32vb29MTc3p379+nobwy+//MLatWtZs2YNDRo00Fu7aWGjVOgUKjMEV3z24bN0Brf/9KXeVwNSLK9WKmRYK8VHGiH3aNiwIaNHj+aHH37Idb/DBEH4dIjfjIKQQ55GqQgIijOYQD+JXC4nzMqBp1FZl9U+f/48T548Yfz48YSFhVGtWjVGjx5NRERElvWZHlWqVKFt27bMmTMHrTaVyk5CrpaRYL9Zs2aYmJjopf8jR47w3XffMXbsWHr37q2XNtNDJpNR1dbUYFYUAeyYMJC/dq6jRsce1OnSV+c5GeBqa5rjNT0E4b9mzJiBs7MzvXr1IiEhIaeHIwjCJ0gE+4KQA7SSxGEDWr7/XzLg8ONItFlQ8iMoKIghQ4bQsWNHZs2axdWrV5k5cyarV6+mXLlybNu2LVccaTRx4kRu3rzJwYMHc3ooQjqlJ9iPiIjgzJkzelvCf/36dbp160a7du2YNWuWXtrMiGoFTQ1qonH2xSCm//mIzlMWozDSXa4vAa4FTXNmYILwAaampmzZsoVr167x008/5fRwBEH4BIlgXxBywP2IBMIMaPn+f0lAWIKWBxH6z+57enqi1WpZtWoVMpkMExMTxo0bx61bt2jQoAE9evSgSZMmXL9+Xe99p0e9evVo1KgRs2fPzhWTD0LapSfYP378OGq1Wi9H7gUFBeHu7k7JkiX57bffcrRol7VSQTGlhKTV5NgY9EEGlLQwxlopCqAJuVP16tWZMmUKs2fPxt/fP6eHIwjCJ0YE+4KQAwKD4gw2q59EBgQGpe+s8o/ZtWsXv//+O8uWLaNw4cI6zzk6OrJr1y58fHx4+fIlrq6ufP/990RGRup1DOkxYcIE/P39OXHiRI6NQUi/pGA/LZM0Pj4+lClThlKlSmWqz/j4eL744guio6M5ePAgFhYWmWovMyIjI5k+fTqLRg1AJjfsIFkC3P45DlQQcqsJEyZQvXp1evXqRUxM7j5mVxCEvEUE+4KQzULjNTyKVBlsVj+JBDyMVBEar5/M4Js3bxg6dCidO3fGw8Pjvde1bNmSq1ev8uOPP7JixQrKly/Pjh07ciS73qpVK6pVq8bs2bPTdL0kSai1EnEaLTEqLXEaLWqtJFYGZDMzs8TgMD4+/oPXSZKEt7d3ppfwS5LEkCFD8Pf3Z//+/ZQoUSJT7WVUfHw8ixcvplSpUsyePZtmVctiocBgJx5lgJWJnFIFjHN6KILwQUZGRmzevJnHjx8zYcKEnB6OIAifEHFOjSBks0tvE7P6eSG8kwGX38bRpJh5ptqRJImhQ4cCsGLFio8W2lIqlUyYMIHu3bszatQovvrqK9asWcOyZctwcXHJ1FjSQyaTMX78eDw8PLhw4QI1a9ZMfk6SJELiNbyKUfMqRs3LGDWvYtWoU6nnZyQHezMjiuQzwv6fPzZKhSg4lkWSgv3Y2FhMTd+/1/vOnTs8evQo0+hlk7gAACAASURBVMH+woUL2bhxI1u2bKFu3bofv0HPNBoNW7ZsYerUqTx79oy+ffsyZcoUHB0deRqlYuvd8Gwfkz5IQLsSFsjF94lgAMqXL8+cOXMYOXIkHTp0oGnTpjk9JEEQPgEisy8I2UiSJK4E51wF/tAXT5hQ3Y7Ag/o5Mk4CLgfHZTozvXPnTvbs2cOKFSsoVKhQmu8rUaIEe/fu5ciRIzx9+pSqVasyduxYoqKiMjWe9OjcuTNlypRJzu6Hxms4/jyaxddCWHszDK/HUQQGxfEsOvVAH0CthWfRagKD4vB6HMXam2EsvhbC8efRels5Ifzr3WD/Q7y9vVEqlXz22WcZ7svLy4uxY8cyceJEvv766wy3kxGSJHHgwAGqVKlCnz59qFWrFtevX2ft2rU4OjoC4JjfmBp2hlWZHxInGmvameKQX2T1BcMxfPhwmjRpQu/evQkPN8xJNkEQDIsI9gUhG4XEa4jX5K6c/q0/ffFbNS/D98drJELjM3783KtXrxg2bBhdu3alS5cuGWrj888/59q1a0ydOpWlS5dSvnx5fv/992xZHq9QKBgzdiw3g6NZf/kFq2+EcuFNrM6/c1pfnXevi9dIXHgTy+oboey4F87d8PgsOf3gU5SeYL9Ro0aYm2ds5cq1a9fo3r07HTt2zPZK3KdOnaJevXp07NiRokWL4u/vz65duyhfvnyKaz8rak4BE7nBBPwyoICJnEZFM7eiSBCym1wuZ+PGjYSFhTFy5MicHo4gCJ8AEewLQjZ6FaPO6SGkcPtPP46tmZ+pNjL6dSXtZVYoFCxbtixTYzA1NWXSpEncvHmTGjVq4OHhQcuWLbl161am2v2Yp1Eq1HU68c3irbzRJBY701dIntTO40gVex5EsuZGKE+j9H8CwqcmLcF+bGwsJ0+ezPAS/jdv3uDu7o6zszNbtmxBLs+eX7eXLl3i888/p3HjxqjVanx9ffH19dXZYvJfxnIZ7UpYGMzWoqTl+8ZyQ5meEIR/lShRgl9++YVNmzZx4MCBnB6OIAh5nAj2BSEbvYpR57lvOrkMXsXqBvuSJKXpaLPt27ezf/9+Vq5ciZ2dnV7G4+TkxP79+zl06BAPHjygSpUqjB8/nujoaL20n0SllfB7FsXWu+FEqBLDpKyqbJ4UhIUnaNl6Nxy/Z1GotIYSmuU+aQn2//jjD+Li4jIU7MfHx9OpUyfi4uI4ePBghlcGpMe9e/f46quvqF69Og8fPmT37t34+/vTvHnzNN3vmN+Y5g6GkSlv7mCOo1i+Lxiw3r174+7uzsCBAwkKCsrp4QiCkIfltbhDEHKlyMhIRo4cSbc6LkysXYwZzSqwfsiXPL95hf+zd9/xNd1vAMc/596Mmz0IQhSxGmKPEnuvGCWo2lttRe0gasVoa4VQilItfrVHG1WrZooKSqwYiQqJ7H3P7480IU1CQnLPvXzfr1debe4953ueG8m957ueB8B3cEe+7tqAkJtX8R3UAU+3D1jUoRZX/PYAcMf/FCv7tGJG3eIs+bgOt84ey3SNiCch7Jg1mrnNKzD9o2J85VGfC7u2vDKu7TNHcuan9QBMqe6Q/pVGq9VycstqvvKoz4w6TsxtXoGfvxxPXOTzF8fI0P0jF9zd3Tl8+DA1a9bEzMyMNWvWvPLaISEhjBw5kk8++YQuXbrk7AeZC+3atePq1atMnz6db775BhcXF3bu3JknS/sfRCex7no4/qHxgO6SLaZdxz80nnXXxSz/m9JozFAbmxAZG59tVYRDhw5RvHhxXFxcctW2LMsMGTIEf39/du/enb43Pr8EBwfz2Wef4eLiwsmTJ1m3bh0BAQF06dIl1wkeazqY0cDRPJ8izRsNHM2pKUrtCQZOkiTWrl2LVqtl6NChoiKLIAj5RmTjFwQdGDZsGDt27KBO94EULFWO2OfhBF06y5O7gRRzqQJAXORzNo7tSZWWH+PavANnd3zHtilDkFNS2LdkOrW79KNq684c37SSLRMHMPngZUwtLAGIevYEn76tQZKo030glnYFuHHqCDu9xhIfE0X9nsOyjKt2575Ehv7DrTO/023OqkzP75o7Hv+926jRvgdunwwmPDiI0z9+S/CNKwxbvx+1cersWooWbty4QY8ePRg6dCiDBw+mfPny2f48ZFlm6NChmJiYvPXy/VfRaDR4enrSq1cvxo4di4eHBy1btmT58uWUK1fujdq8EBqH38MYRSsqyEDkv7P8zZ0sROfnFbKqihASZ8+XZx9xHjgfEJZ+7MtVEW5EJtP+k9wn1PP29mbTpk1s3bqVjz76KA9fSUbh4eF4e3vzzTffYGZmxoIFCxg+fHj6qoU35VY49fwTIfpXC7yhozl1C4vfdeHdULhwYVavXo2Hhwfff/89vXv3VjokQRDeQZIshhMFId/Z2tryac+efDBodpbP+w7uyF3/P+g+bw1VW3cGIPTeLZZ2roukUjFswwE+qFQDgJunj7JhRDc8Zi2jRoceAOz0GsuNk36M+ek4Frb26e3+MGUIN08dYeovARhrzAgPvo+3e40M5+5eMIkzP61n/p8ZlxLeu3iGNQPb033uaqq2eTHzfvOP39gwsnuGxxe2q87zkAccOnSIVq1avfbnsXnzZvr06cOuXbvo2LFjTn+Mb23v3r2MGTOGhw8fMnHiRKZOnZrjJdayLPPHP3F62Qlq4GiOW2EzUarvJeEJKVx8Gs/lZ/HpyRJV5CxZooSM/G+6OlO1RJUCGqoV1GBn+uptGrt27aJz585Mnz4dLy+vt3wFWYuNjWX58uUsWLCAxMREPv/8cyZMmICNjU2eXkcfBrWA9OuLQS3hXdW7d2/27t3LlStX8n0lkCAI7x+xjF8QdMDW1paz584RGfo422NMzC2o0urj9O8dSpZBY2VDoVLl0jv6AB+4pv5/2KMgILUTGnBkHy4NW4EsExP+LP2rXN0mxEdH8ujvv3Id8xW/PWgsrSlTp1GGNou5VMHE3II7F05mOL5kqVI56ug/evSI0aNH07NnT5129AHat2/P1atXmTp1KkuWLKFChQr8/PPPOVpCqa8dfUidhf3jn9fnSHjXaWWZwIgEtt2KeKuqCPJLeelzWhXh0qVL9OrViy5dujBr1qy3fCWZJSUlsXr1asqUKcOMGTPo1asXd+7cYc6cOXne0YfUJf09y9oomqU/Let+z7I2oqMvvLOWL1+OpaUlAwYMQKt988o2giAIWRHL+AVBB7y9venbty8X21ShmEsVytdrTnX3btg7lUw/xqZQ0UwzsxpLa2wKF834mJU1QPq++Zjwp8RHRXDuf5s4979NWV4/JuxprmN+ev8O8dGRzG2W9Z7l6P+0WaJkqde2mbafWaPRsGzZslzHlBfMzMyYNWsWvXv3ZvTo0XTu3JnWrVuzbNkyypYtm+U5F57ob0c/zYmQWEzV0nvbKXoQncT+oCieJ2rTO6f5URXhXlQStiYq2pWwSk8S9/jxYzp06MCHH37Ixo0b8zTzvlar5aeffmLGjBncvn2bnj17Mnv2bJydnfPsGtkpbmnMIBc7jgXHcCE0Xnez/LIWJBU1HTQ0LGohsu4L7zRbW1vWr19Pq1at8PHxYcSIEUqHJAjCO0R09gVBB7p160Ytt3qMXbmFW2d+5/imlRzbuJxeizdQvl5qtmyVOuslwtlleE+bjZb/nQmo2rYrNdp3z/LYImUr5DpmWavF0t6B7nN9snzewq5Ahu/NzTSvbXPjxo0cOHCAPXv2YG9v/9rj81Pp0qXZt28fe/fuZfTo0bi6uvLFF18wZcoUzM1fJCl7EJ2E36O8zeSfX/wexlDYzOi9ylSepJUzdEYh/zqk/62KUNNBw0f2ajp16kRycjK7d+/O8LvzVteSZQ4fPsyUKVO4dOkS7u7u7Ny5k8qVK+dJ+zllrJJo7mRJeVvTDIMp+fEzTms3POQhfauVoEJRy3y4iiDon5YtWzJ8+HAmTpxIy5Ytsx14FgRByC3R2RcEHSletCh1uw2gbrcBRIeFsvzTZhz99qv0zv6bsrAriKmFJbI2hTIfNcr1+dnt8y7gVJLb545TokptjDWvny2WXrPY9+HDh4wZM4Y+ffrQvn37XMeZHyRJokOHDjRv3pwFCxawcOFCNm/ezDfffEOHDh1IlmFfUJTi+5ZzSiI13kEudu/FbOiD6CT2BUURmZg64KVEVYQ/Ap8SJpuwZ88eihUrliftnz59milTpnDs2DHq16/PyZMnqVevXp60/aaKWxozpIIddyKT8A+N425UUp79XaS1U9LKmNLG8TRt3ITEAQP46quv8qB1QTAM3t7e/PLLL/Tp04cTJ05gZCRu0QVBeHtiz74g5LOUlBQiIiJQS6nZvgEs7R2wdihCcmLiW7evUqtxbepOwJF9PL51PdPz0eGvXsJvYpY6ExkXFZHh8UotO6JNSeG3tUsynZOSnJzheAl4VW44WZYZPHgwlpaWfP3116+MRwnm5uZ4eXkREBCAi4sLnTp1wt3dnT3Xg4lM1BpERx9eZOk/HmwYKxHexoXQOLYERij67yMDRla2DPDZCSUqvnV7V69epVOnTri5uREeHs7+/fs5fvy44h39NCpJooyNCd3L2DC0gh21C5lhqpZeej6n7bz4f1O1RO1CZgytYEf3MjbULFGYyZMmsXLlSm7dupXHr0AQ9JeFhQUbN27k3LlzLFq0SOlwBEF4R4hhQ0HIZ1FRUTg5OeHh4UFS0XLEqc24dfYYD69epO3neZOxu9XoGdy+cIpVfVpT6+NeFHYuT2xkOMF//8Wts8fx/D0w23PTSv/t9Z5K2bpNUKnVVGn1Mc416lG7S19+3/ANwTcDKFunMWojY57ev0OA3x7cJ86lUvMOyLJMSnIS169fZ9OmTVSqVAkXFxc0mhfL+tevX8+hQ4fYv38/dnZ2efKa80PZsmU5cOAAu3fvZsGaDdxMMH7lIIY+koHzofGUszV9J5fz/7cqgtIDMSp16seo38MYElLkN6qKEBQUxMyZM9m0aROlSpViy5YtfPLJJ3m69z+v2ZmqaVLMgsZFzQlP0KaWNoxLJjgmicdxySRnkWcsrbRhUQtjipgZUcTcCDtTVaaf17hx41i9ejWTJk1i586dOnpFgqA8Nzc3vvjiC2bOnEnbtm2pUqWK0iEJgmDgRGdfEPKZubk5w4cP55dffiFw5/9ITkmhQPFSdJziTZ2u/fPkGlYFCjFi82GO+C7m6tH9nN2+AXNbOwo5f0jr0Z6vPLdiU3fqfjKIvw7v4tKB7ciynF4V4ONpiynmUoVzOzfyy8p5qNRq7Bw/oGrbrpSoUju1AVmLnJJMSEgIffv2BUClUlG2bFlcXV354IMP8PHxoXPnzjnK1q80SZLo0LEjwWUaEJGQgmKpyN+CBOwPimJIBTtUhjZa8Rr6XhUBoF6RnO3bf/LkCfPmzcPHxwc7OztWrFjBoEGDMDExyc8w85QkSdhr1Nhr1FTAFEgdkNHKkCzLpGhBrQIjSUIlZb9t6GVmZmbMmzeP3r17c/LkSerXr5/fL0MQ9MasWbM4cOAAvXv35vz585iamiodkiAIBkySc1JzShCEPHE1LJ69QdFKh5HnOpSwooK9KZGRkVy7do0rV64QEBDAlStXOHnyJElJSQBoNBoqVKhApUqVcHV1Tf9v0aKZKxEoKTAigZ13opQO4615OFtTxsZwOo6vc+FJnEEkS3xdTfjIyEiWLl3KkiVLUKlUTJo0iTFjxmBhYaHDKPWbVqvlo48+QqVScfr0ab1e5SAIee3y5cvUqlWL8ePHM3/+fKXDEYR3lizLpPw7OK3VgurfwWl1DgenDYHo7AuCDj2LT2bt9edKh5HnhrjYYa/JXDXA19eXoUOHsnXrVgoVKpRhEODq1avExKR23Ozs7DJ0/tP+a2trq+uXAsC2WxEERSUpvkT8bUikJjzrXibva7Ar4UF0ElsCI15/oJ7oWdYm0zaK+Ph4Vq9ezdy5c4mOjmbUqFFMmjSJAgUKZNPK++348eM0atSIrVu30qNHD6XDEQSdmj9/PtOnT+fEiRO4ubkpHY4gGDxZlglLSEnddhabTMi/289ete3M0Tx1y1kRcyPsTdUGOQAgOvuCoEOyLPP1lTASUt6dPztTtcTYSvaZ3gCDgoJwdXXlk08+Ye3atZnO02q13Lt3L73zn/bfGzdukJycDICTk1OmQYD/5gPIa+EJKay5Fp5v7eva0Ap22JlmXb7RUCRpZdZdDzeYZIkSYG2iSq+KkJKSwubNm5k5cyaPHj1iwIABeHp64uTkpHSoeu/jjz/m4sWL/P333/n6dy8I+iY5OZmGDRvy5MkTLl++LFb+CMIbCk9I4eLTeC4/i0+//1YBWfTxM3n5OFO1RJUCGqoV1BjUfZXo7AuCjv32KIbzT+IMotPyOhJQu5AZTYplvAnRarW0aNGCwMBAAgICsLa2znGbiYmJ3LhxI9MgwL1794CM+QBeHgQoXbo0avXbv/m+D/8+hsbvYTT+ofEG9W8iATUcNERf8GPatGlcu3aNrl27MmfOHMqXL690eAbj5s2bVKxYkS+//JJJkyYpHY4g6FRgYCBVq1alX79+rFy5UulwBMFgaGWZ25GJ+IfGcy+fSsXWcNBQ2tpE73Mjic6+IOjY+zBz7OPjk56UsEWLFnlynaioKK5evZre+U/7evo0tbRgWj6A/w4C5CYfwPu08sJQGNry/ZfJssyage0p52DNvHnzqFmzptIhGaTRo0ezceNGbt26hYODg9LhCIJOrVy5kpEjR3L48GFatmypdDiCoPceRCexPyiK54naPOvk/1dau7YmKtqVsNLr6keisy8ICniX94TfvXuXSpUq0atXL1avXp3vcfzzzz8EBARkWAkQEBCQKR/Ay4MArq6uWZYAfN9yKug7rSzjey2cCANZvv9f2pQUzEhmTI2iej/yr8+ePn1KmTJl6Nmzp5jdFN47Wq2W1q1bpye/1efytYKgpCStzLHgGC6ExudbJ/+/0q5T00FDo6IWGKv077NedPYFQQHvarZ3rVZLs2bNuHv3LleuXMHKykqRuHKSD6BYsWJUqlQpwyoAHMtwOCRBkZjzU1q1BEPzrv6dCLm3ePFiJk+eTEBAAB9++KHS4QiCTj18+BBXV1fc3d35/vvvlQ5HEPTOg+gk9gVFKZbbJy1Xj7sezvKLzr4gKMDQZywlwMZElamOe9pyQz8/P5o1a6ZcgNl4XT6Adp97UfeTQaiN9OuN+lUS42IwMct+T75KgpoOZjQ1wH377/IKGCF3EhIScHFxwdXVlT179igdjiDo3Pfff0/v3r3ZsWMHXbp0UTocQdAbF0Lj8HsYo7PZ/OykXf915Xd1TXT2BUEhhrwXGaBXWRucXhq9vH37NpUrV6Zv376sWrVKwchyLy0fwMlEO5IsX7+/3W+1N0d8FzF+11mOfruUa0cPIiPj2qQdHSYvxMTMPP3Yi/u3c3LLap7cvYmxqYaydRrTZuwsbIsUSz/m7p+n+WPbWh4E/En0s1As7Qvi2qw9rUZOw1jz4gNj+8yRBPjtZfS239njPYV7F89QpnZDei/d9Mp4nSyM6FVOmTKGb+p9yG0h5M5PP/1E9+7d+e2332jSpInS4QiCTsmyjIeHB8eOHSMgIIAiRYooHZIgKEqWZf74J44TIbFKh5JJA0dz3Aqb6UW+JJXSAQjC+6q4pTE1HTQo/zaQOxJQy0GToaOv1WoZMGAAhQoVwtvbW7ng3pCVlRUfffQR2BTI1RvzD5MHkRATTatR06ncoiP+e7dxxHdx+vNH1y1lu+cICn7gTLvPvaj36VBunzuB76AOxEW9GOi54reHpPg46nj0o8MX8ylbtwmnf1zHT54jMl1Tm5LC+hHdsLQvSNuxs6nY1P21cT6OS8bQxnUvPo03uL+N7EjApafxSodh8Lp27UqdOnUYP348Wm1OiiYJwrtDkiRWr16NWq1myJAhBveeLgh5TV87+gAnQmL54584pcMAwEjpAAThfdaoqAWBEYkGVz+8YdGMS8JXrFjB8ePHOXr0KJaWlsoE95ZSZEjOZf+haPlKdJn5Tfr3sc/DubB7C23GeBIe/AC/Nd60GD6FJgPHpR9TsWk7ln/alDM/rU9/vM1ozwwz+LW79KFA8VL8smIuz0MeYuv4oh57cmIClVp0oPWoGTmOM1kLWhnUBtJ7lmWZy8/iuX/1IvsWTSPk5lWS4mMZ9cNvFC1f6a3a9h3cEYAha3e/0bmxz8MYu/1Ers6TgUvP4mlc1FwvRvkNlSRJLFmyhHr16rF582b69u2rdEiCoFMODg74+vrSqVMnvvvuO/r37690SIKgiAtP9Lejn+ZESCymaknxJf1iZl8QFGSsknAvYWUQHX1I7bS4l7DKkG00MDCQyZMnM3LkSBo3bqxYbG8r+Q1mSWp79MvwfclqdYh9HkZ8dBRXf9uPrNVSqUVHYsKfpX9ZFShEweLO3LlwKv28lzv6iXExxIQ/o0TlWsiyTPCNK5muW8cj9zd4b/L6lBKWkEJsfCJbvxhIXGQ47uPn0G3OKuwciysdWo5Ehj7Gb7V3hn+7hBSZ8AQxG/223Nzc6Nq1K9OmTSM2Vr9v9AQhP3Ts2JF+/foxZsyY9HwzgvA+eRCdhN+jGKXDyBG/hzE8iE5SNAYxsy8ICituaUxzJwv8Hur/G1dzJ4sMWUZTUlLo378/jo6OLFiwQMHI3t6brAp+ed89gJl1ahK2uMjnPH1wB1mWWdLpoyzPVb2UBPB5yEN+Xb2A68cOExeZsfRffHTkf84zwrpw0VzHmqIFDGTL+OPYZJ49vMfzkAd0nrGUWh/3zrO2B6zanmdtZScy9DFHfBdhV7R4hpUIj2OTDbIEor5ZsGABLi4uLFmyhBkzcr7CRRDeFV9//TW//fYb/fv358iRI6hUYu5OeD8kaWX2BUUpnowvpyRgX1AUg1zsFCvLJzr7gqAHajqYkZAi6/WSpAaO5pmWIi1btoxTp05x7NgxLCwML9v7y97kXkmlyq7jJiNrtUiSRL/l21CpMx+XlkFfm5LCt8M9iIt4TqN+o3AoWRYTM3MinoSwY+Yo5P+MQhgZm7zRjZ3agO4FH8cmExsWCoDG6tVZ7F9XjeC/jIyVKYGnklJzJ1TA8Eog6htnZ2dGjRrFwoULGTx4sEhUJrx3bGxs+O6772jatCnLly9nzJgxSockCDpxLDjGYLa+QuqARGSiluPBMTRzUmabq+jsC4KecCuc2pHW1w7//ahECpmpKW1tgkqSuHHjBlOnTmXMmDE0bNhQ6fDemlEe76Uu4FQSWZaxK1YChxKlsz3u8a1rPA26TVevFVR3757+eOCZ3/M0nrx+fflp1ughnPz5BwC2fjEQgFI13LArWjzbagRarZY/fvDl/M/fE/bwHhpLayo0bkPr0TMws35RiSCrPfvhwQ/Y6z2FW+dOYGJmTtU2XSjn1pQNI7sz2HcXzjXrZYjvnzs32LNgEg8C/sTMyga3HkNo1G8UAHcunGLtkE4A7Jg1mh2zRgPgMWsZRXvk3QqF9920adPYsGEDnp6e+Pr6Kh2OIOhckyZNGD16NJMnT6ZVq1Z8+OGHSockCPnqQXQSF0INL9mtDJwPjaecrWmG1bG6YkBzPYLwbpMkiXpFzGnulDpLqW9ds/vRyey8E4XvtXCCIhPo378/Tk5OzJs3T+nQ8oRaAqM8fEes2LQdKrWaI76LMmVNlmWZmOdhwIvVAS8fI8syp7bmXQfGSJU6s2wIZFmmSqfeNB4wFgC3HoPpNmdVejLD7KoR7Jo7noPfzKZEldq4T5hLjQ6fcOngDtaP6EZKUvb75RLjYlg3rDO3zh3HrccgmgwcS9Bf5zm0zCvL4+Min7NhZHeKlK1I23GzcShZlkPLvLhxyg8Ah1Jlaf7ZZABqd+5Dtzmr6DZnFaWq1zXIqgj6ys7OjpkzZ/Ltt98SEBCgdDiCoIj58+dTokQJevfuTdIr3ucEwdBpZZn9/y7fN0QSsD8oCq0C9wBiZl8Q9ExNBzMKmxmxLyhKr5YqpcURkajlh1uR2Lu1ZcHHTTE3N3/leYZCkiSKmBnxMCY5T9orULwULYZP4fDyL3kefJ8KjdtiamFJ2KP7XD26n9qd+9CwzwgcSpbF3qkkB7+aReSTEEwtrLj6275Me/ffRhEzI4PJAp8ig1OlWiQmJPL7+q8pWa0OlZp3AODSwR1ZViO4d/EM53/+nu5zV1O1TZf0x51r1mfDyO5c8duT4fGXnd25ibCH9+i9dBMVGrcBoHaXvizv0TTL4yNDH9PVayXV3bsBULNTT7zbVePCri2Ur9ccqwKFKF+vGX4+C/igck2qteuafq6hVUXQd8OGDWP58uVMmDCBQ4cOKR2OIOicubk5mzZtws3Njfnz5+Pp6al0SIKQL25HJvI80XCT3MrA80QtdyKTKGOj2+2EYmZfEPRQcUtjBrnYUcNBA7JMSkredEDzggwgSdT7dAhXbT9UPMtoXnI0N8rTN8XG/cfQc9EGJEnFEd9FHPhqJtePHaJsnca4NGoNgNrYmL5fb8GxvCu/b/iG33wXU6C4M129VuZJDCoJilroftnYm8pJ1YD/ViO44rcHjaU1Zeo0ylD5oJhLFUzMLbhz4WS2bd384zesCzmm/3sAGJtqqNU56yX3JuYWGTrwRsYmOFWsTtijoNfGDYZVFUHfmZiY4O3tzeHDhzl8+LDS4QiCImrXrs3UqVOZM2cO/v7+SocjCPnCPzTeYGf100iAf2iczq8rZvYFQU8ZqyQaFjJh9mf9aDJmNuYFCutV9lFJUhGZqGVLYATNnSwUryOaF4qYG5GTcePmw76g+bAvMj1eo0MPanTokeEx12buuDZzf2V7hZzLMdBnR6bH5/8ZmuH7rrNX0HX2ihxE+IJWTp3ZNxSvq4qQVTWCp/fvEB8dydxmLlmeEx32NNv2noc8pzA1pAAAIABJREFUoIBTyUwrHwoUL5Xl8TaFimY61szahseB114d+L8MqSqCIejUqRMNGjRgwoQJNG/eHHUWyTAF4V03ffp09u3bR58+ffD390ej0SgdkiDkmfCEFO5FGf7EkgzcjUoiPCEFO1PdfVYZzh2gILyHVq9ezan9/2PFl55YlLTGPzSOu3r0hpc28OD3MIaEFBm3wmYGs1w8zfPnz/Hz8+PQoUOcuXKdXqt3v/4kA1PE3HDe6l9XaCCragSyVoulvQPd5/pkeY6FXYG8Ci/LygpAjvfiG1JVBEMgSRJLly6lVq1arF+/nsGDBysdkiDonImJCZs2baJGjRpMnz6dxYsXKx2SIOSZi0/j9Wqy621IwKWn8TQpprsKVuK2QxD0VHh4OLNnz2bAgAFUqVKZMjYmOCmQxTOnToTE8sc/ul+elFtarRZ/f3/mzp1L/fr1KViwIF27duX06dO0ql8HtVZ/tkzkheS4GH7eupGwsDClQ8mRN6kaUMCpJLERYZSoUpsyHzXK9OVYzjXbc20di/Ps4b1MnfVnD+7mOo400isWGxpSVQRDUbNmTXr27MmMGTOIjo5WOhxBUISrqytz585l6dKlHD9+XOlwBCFPyLLM5WfxueroL2xXne9Gf/ra46ZUd8BvtfebB/cGZODSs3idJusVnX1B0FPz5s0jISGBOXPmAHDhSZzeluVLcyIklgsK7Ed6ndDQULZu3Urv3r0pUqQINWvWZOHChRQqVIhVq1YRFBTE1atXWbJkCTWKWBn8vrB0spb7f/zK4EGDKFy4MK1bt2bdunU8fZr9snalvUlVhEotO6JNSeG3tUsyPZeSnExcVES255ar24TIJyFcP/YiwVtSQjzn/7c5d0G8xNgsNWnlf69rSFURDM28efOIiIjA21u3N26CoE/GjRtH/fr16du3L1FRUUqHIwhvLSwhhYQU/ZnTv3RwJye3rH6rNhJSZMITdJds0HDWdgrCe+Tu3bssW7aMadOm4ejoyIPoJPwexSgdVo74PYyhsJmRIrVE06SkpHDu3DkOHjzIoUOHuHDhArIsU7VqVQYOHEibNm2oW7cuxsaZY6xWUMO5J/o3YPFGJBULR/Vnds92/Pzzz2zfvp2hQ4cybNgwmjRpgoeHBx9//DGFChVSOtJ0aVURbubiHOca9ajdpS+/b/iG4JsBlK3TGLWRMU/v3yHAbw/uE+emZ/T/r9pd+nD6x2/ZNnUobj0GY1WwMJcO7sTI1PTfgHL/Ggo4lURjZcO5nRsxtbDExMyC4q7VqVyutMFtczEUH3zwAePGjWPx4sUMGTIEJycnpUMSBJ1Tq9V89913VK5cmfHjx+Prm3clXAVBCY9j82+1pdfpB6jUuesKXzq4k39u/039nsPe6tqPY5Ox1+hm376Y2RcEPTR58mQKFizI+PHjSdLK7DOg2qISsC8oiiStbkdiQ0JC2LBhA927d8fBwQE3NzdWrFiBs7MzGzZsIDg4mIsXLzJ//nwaNmyYZUcfwM5UTUkrY4P5eWdHAkpZGWNnqsbR0ZHhw4dz9OhRgoODWbFiBbIsM3z4cBwdHWnatCk+Pj48fvxY6bCB1KoIuf35fzxtMR9PX0pM2FN+WTmPwyu+5M75k1Rt25USVWpne56puSWD1vwP55r1+eOHtRxd9xWlqtWh6aDxABiZ5D7RldrYmK5eK5BUanbNm8i2KUO49+cfBlUVwRBNnjwZS0tLpk+frnQogqAYZ2dnli5dytq1azlw4IDS4QjCW3kcm5xvnVVjUw1qI93Pe6skeBynuy2jkqzLTQOCILzW6dOncXNzY8OGDfTr1w+/h9H4h+Zuv5LSJKCmg4ZmTpb5do3ExET++OMPDh06xKFDh7h8+TKSJFGrVi3atGlD69atqVWr1htl5w6MSGDnHcNfAunhbP3Keq6hoaHs2rWL7du389tvv6HVamnYsCEeHh506dIFR0dHHUb7wtWwePYGKbv3+uSW1exfMoPJh/7CplDe/Bw6lLCigr1pnrQlZM3Hx4cRI0bg7+9PtWrVlA5HEBQhyzLt2rXj4sWLBAQEUKBA3iUpFYS8NmvWLGbPns3169fx9PTk0KFDGBsb06tXL6oMmsKT5NQO+YXdW7m4fzv/3P6b+OhICjiVpO4ng6jTNWM53oXtqlO49If0W7Y1/TH/vdv4n9dY6n06jLbjZgGpe/abDZmYXl0pISaaX1bN59rvB4l6+g8aS2scy1Wk9egZFHOpgu/gjtz1/yPDtWwdizNp/58kJyVydN1S/j7xK88e3kWbnEKxDyvR/LPJlK5VP/348OD7eLvX4JMvvGhSujALFy7k4cOHVK5cmVWrVlGrVq08//mKZfyCoEdkWebzzz+natWq9OnThwfRSVwIjVc6rFyTgfOh8ZSzNc3T5fxBQUHpnfsjR44QFRVFoUKFaN26NZMmTaJFixYULFjwra9T2toEWxMVEYlagxpkSSMBNiYqnK1f/bN3cHBg8ODBDB48mGfPnrFr1y527NjBuHHjGD16NPXq1aNr16506dKFYsWK6SZ4dF89ICk+DmPNi9KRSQnxnNu5iQIfOOdZRx8MqyqCoRo8eDDLly9n/PjxHDlyRGybEN5LkiSxbt06XF1dGTFiBNu2bVM6JEF4rW7dulGyZEnmz5/PmTNnWLZsGdXvPKar10oAzu74jsLO5XFp1AqV2oi/jx9m9/wvkLVa6nYfmG2753ZuYte8CTQeMJaWI6Zme9zP8yYQ4LeXut0HUsi5HLHPwwm6dJYndwMp5lKFJgPHER8dSeQ/IbQbn5pPy8Q8Nat+QnQU53/+niqtO1O7c28SYqK5sHsLG0Z0Y/jmwxQtXynDtU7s2c6F5DiGDh2KJEl4e3vTuXNn7ty5k+3K0zcl7jwEQY9s376dM2fOcOTIEZAk9v+7fN9QO5z7g6IYUsEO1RvecMfHx3P8+PH0Dv7169dRq9W4ubkxefJkWrduTdWqVTOVYntbKkmiXQkrtgRmn9hNn8mAewmrXP3cCxQowMCBAxk4cCBhYWHs2bOH7du3M2HCBMaMGYObmxseHh54eHhQvHjx/AsesDdVY6qWdJaU5/sJ/bAt4oRjeVfioyO5dGAHofcC6T737ZLwvMxULWFnKnbO5TcjIyMWLVqEu7s7+/bto3379kqHJAiKKFq0KKtWraJHjx506tSJTz75ROmQBOGVSpUqxe7dqeWPR4wYgaWVFat9fKjfaziO5SoyZO3uDAPzbp8MYv2Ibpzcsjrbzv6pH3zZv3g6zT+blL49Lzs3TvxKrY970e5zr5ceHZX+f2XrNObUVl/iIiOo1q5rhnPNrG35Yv+fGBm/WE1Zq3Nvlnauy+lt6+gy85sMx4c/fsSlW4EULGAPQPny5enYsSOHDx/G3d39lXHmlrjzEAQ9kZCQwOTJk2nXrh1NmzbldmQizw10ZhlSO5zPE7XciUzK1XmBgYEsX76cdu3aYW9vT6tWrfjpp5+oV68eO3bs4OnTpxw/fpypU6dSvXr1PO/opyluaUxNB43B7d2XgFoOmrcq02hvb0+/fv3Yv38/T548YePGjRQoUIDJkyfzwQcfUKdOHZYsWcK9e/fyLO6XSZJElQK6+9mXrduEoMvnOPj1LI74LkZtbEKP+b5UbdMlT9qXgKoFNGKWWUfatm1Ls2bNmDhxIklJuXv/EYR3ySeffEL37t0ZPnw4wcHBSocjCK80YsSIDN8PGzESgBun/AAydPTjoyKJCX+Gcw03wh7eIz4qMlN7x75bzr5F02g92vO1HX0AjZUNDwL+JDI09/mLVGp1ekdfq9USGxGONjmZYi5VefT3X5mOr9yiI1a2tunfN2jQAIA7d+7k+tqvI2b2BUFPLF++nPv377N//34A/EPjDXZWP40E+IfGvXLfeExMDEePHk2fvb99+zbGxsY0bNgQLy8vWrduTcWKFRXpKDUqakFgRCKRBjLoIgHWJioaFrXIszZtbW3p06cPffr0ISIign379rF9+3amTZvGhAkTqFWrVvqMv7Ozc55dV5dVEer3HPbWmXVfRQaqFsx9oj/hzUiSxJIlS6hWrRpr165l+PDhSockCIpZuXIlrq6uDBo0iP3794tBR0FvlS1bNsP3JUuVRlKpCA9+AMC9S2fxW+3N/b8ukBSfsRR1fHQkGivr9O/v/vkHN07+SqN+o2jYd2SOrt9mjCfbZ45iQZsqFHOpQvl6zanu3g17p5I5Ot9/7zZObvYh9F4gKckvBprtipXIdKytoxMpWuDftFJ2dnYAhIeH5+hauSFm9gVBDzx9+pQvv/ySIUOG4OLiQnhCCveikgyig/kqMnA3KonwhJQXj8lyek37Fi1aYG9vT/v27Tlw4ACtWrViz549hIWF4efnx4QJE3B1dVXs5sRYJeFewspg/h3Slu8b51MxdxsbG3r27MmuXbsIDQ1l69atFC9enJkzZ1K6dGlq1KjBggULuHXr1ltf612sipATsiyTrJWJT9ESm6QlPkVLslZG5NLNnSpVqtCvXz9mzpxJRIRhbscRhLxQoEABvv32Ww4ePMjatWuVDkcQckytfnEH8OzBXb4d1oXY589o97kXfZdtZaDPDur9O1Avyxnr1hd2/hCHkmW4uH87YY+CcnS9yi07MXHPedp/MR9rhyIc37SSr7o2SF9Z8CoX929nx8xR2BcvSWfPr+m/4kcG+uygdK0GyFptpuMllRp1Fr3w/PisFzP7gqAHvLy80Gq1zJo1C4CLTw1/Vj+NBJx9FEHspd/TZ+8fPHiARqOhSZMmLFq0iDZt2lCmTBm9nHEobmlMcycL/B7GKB3KazV3ssjThIivYmVlRY8ePejRowfR0dEcOHCA7du34+XlxZQpU6hatSoeHh507dqVcuXKvdE1ajhouBdl2MuwZaCGg1nWz8kyYQkpPI5N5nFsMiGxyTyOSyY5830BRiooYmaEo7kRRf79sjdV6+XfjL6YM2cOP/74I/Pnz2fBggVKhyMIimnbti2DBw/m888/p3nz5m+8CkuWZVJkSJZltFpQqcBIklBLiPci4a0FBgZSqlSp9O/v3b6NrNViV7Q4148fJjkxgT5ffY+to1P6MbfPn8yyLXNbe3ouWs/qAe6sG9aFYev3Ye1Q5LUxWDsUoW63AdTtNoDosFCWf9qMo99+Rfl6zYHsf88DjuzF3qkkvRZ/l+EYv9ULs72WkY7+ZkRnXxAUdvPmTXx8fJgzZw6FChVClmUuP3vzUnt3Lpxi7ZBODPbdhXPNenka65uQgdMPw5nj4UH58uXp0qULbdq0oUGDBpiZZd0J0jc1HcxISJE5ERL7+oMV0sDRnJrZdCrzm6WlJd26daNbt27ExMRw8OBBduzYwfz585k+fTqVKlWia9eueHh44OLikuN239WqCOEJKVx8Gs/lZ/HpSQhVQBZ9/HTJWngYk0xwTHL6cabq1NwG1Qpqcrxy4H1SrFgxJkyYwMKFCxk2bBglS5ZUOiRBUMySJUvw8/Ojb9++/P77768tSysGIwVdW7lyJS1btkz/ftWK5QCUr9eMu3+eBjLOfMdHReK/54ds27MpXJSBPjvwHdSebz/zYMi6PVjY2md5rDYlhcTYmAxbASztHbB2KEJyYmL6YyZm5sRHZ84PIP2bP0qW5fTf+/tX/Ln/1wVsijhlOl4lpX7pgujsC4LCJk2aRNGiRRk7diwAYQkpOstCritmVjZcCrxL5dKZ9y0ZCrfCqR1pfezwN3Q0p25h/Rg4sbCwSN/DHxsby+HDh9m+fTve3t54enpSsWLF9Bn/ihUrvrKtd6kqglaWuR2ZiH9oPPeikjKt3HlVR/9lLx+XkCJz/kkc557EUdLKmBoOGkpbm7xx9Yt30cSJE/H19WXq1Kls3br19ScIwjvKysqK7777jsaNG/PVV18xYcKELI8Tg5GCUu7evUuHDh1o3bo1p0+f5vvvv6euuweO5VwxMtGgNjZh09he1O7Sh8S4GM79bzOW9gWJevpPtm0W/MCZASu34zukExtGdGPQmp/RWFplOi4hNpoFrSvj2rw9jmVdMTG34NbZYzy8epG2L2XnL+ZShb9+2cW+JTNwqlgNUzMLXBq14sMGLbn6236+H9+XD+u3ICw4iLM7NlLIuTwJsZlXhloZq3Q2GCb27AuCgo4dO8auXbuYP38+Gk1qAq/HsckKR5U/jOxev3xKn0mSRL0i5jR3Sk1+p3R3Ku36zZ0scCtirpczKObm5nz88cds3bqV0NBQdu3aRbVq1fjqq69wdXWlQoUKeHp68tdff2W7T+1dqIrwIDoJ32vh7LwTRdC/2xLyajgvrZ2gqCR23onC91o4D6INe+tDXrK0tOTLL7/khx9+4Ny5c0qHIwiKatiwIZ9//jnTpk0jICAg/XGtLBMYkcC2WxGsuRbO+SdxGSYd3mYwcs21cLbdiiAwIgGtyD0ivMKPP/6IqakpkydPZv/+/YwcOZIZX/mgAhxKlqGn93qQJA58PYuzOzZSu3Mf3HoMeW27RcpWoP/ybTy9f5tNY3uSFJ85+a+xxow6XQcQciMAvzUL2b9kOk+DbtFxijcNen2Wflydbv2p0qYL/nt+4MepQ9njPQWAGh160GrkNEJuXmXvoqkEnj5K9y9XUaxClSxjsjHR3QCYJIusP4KgCK1WS+3atVGpVJw5cya9hNyRh9H4h8bn+MP1v/RtGT+kLlWq6WBG02J5lyVeSQ+ik9gXFKVYlv60rPvuJax0tkc/LyUkJPDrr7+yfft2du/eTUREBOXKlUuf8a9SpUqGwYskrcy66+EGVxWhb3lb/ngcywUdVtZIu05NBw2NilrkW7JGQ5KSkkL16tWxtrbm+PHjejkwJgi6Eh8fT40aNTA1NeXMmTP8kyixPyiK54nafHufSmvX1kRFOwP93BLyz6xZs5g9ezahoaEULFgww3NXw+LZGxStUGT5p0MJKyrYm+rkWmIZvyAoZOvWrfj7+3PixIkMteJDYpOz7OiHBz/g2Mbl3D53nOePH2GsMaN0rfq0HTsLu6IfvPZ696/4c8R3Eff/ukBKUhIFnEpSs9On1Pt0aOp1b17l5BYf7v55hqjQx2isrClfrzltxs7KsMfJb7U3R3wXMX7XWY5+u5RrRw8iI+PapB0dJi/ExMw807W1MgTHvDuzjcUtjRnkYsex4BidduRkrRYkcDHX0rZcYYPtyJmamuLu7o67uzuJiYn4+fmxY8cOfHx8mDdvHmXKlEnfClC9evX0qgiGspxfBmoXMmPjjedEJmrTH9PVtSG1dGdgRKLBDgjlJbVazeLFi2nZsiU///wznTt3VjokQVCMRqNh06ZNNGjUhIW7j2Fcplr6yqn8ep9KazciUcuWwAgxGCnkWBHzd7OrqsvXJZbxC4IC4uLimDp1Kp07d6Z+/frpj8uyzOO4rJfxP7x2kfuXz1G55ce0nziPj7r05fa5E/gO7kRi3Kv3kQee+R3fQR14cucm9XoMod3ns3GuVY+/T/yafsyts8cIexhEjQ49aP/FfCq3/Ji/ftnFd6N7ZLnE+ofJg0iIiabVqOlUbtER/73bOOK7ONsYHsclv1Plw4xVEs2dLOlZ1gYbk9S30vy6bUlr19pExU8T+rJ15ph35ibJxMSEtm3bsn79eh4/fsyhQ4do1KgRvr6+1KxZk9KlS/PFF1/w+PolmhfLPJCkj8rZmvDrwxhFVyLIQOS/N9YXQjMvWXzftGjRgjZt2jBp0iQSX0q2JAjvo0LlKzPj8CXUzpUBZQYj110XW46E17M3VWOqfjfud9KYqiXsTHXXBX83h0sEQc999dVXhISEZCoHlSKTZaZbgA/rt6BS8w4ZHnNp2Aqffm0IOLKP6u7dsjxPm5LCz3MnYFWwMKO3HcXMyib9uZc733W69qdB7+EZzv2gck22TRnCvYtnKFW9bobnipavRJeZ36R/H/s8nAu7t9BmjGeWcSRrU2f437H3bIpbGjOkgh13IpPwD43jbhbJ195UWjupydfMcLY2xmZAT3r37s3AgQMzZK19F5iYmNCqVStatWqFj48Pv//+Ozt27GDDhg0sWrSIEiVK0HvWUiyqNFQ61GyVsDTm5vPUzqTSQ1tp1/d7GENCioxbYbP3egn7okWLqFy5MqtWrUpPiCoI75sLoXH4PYxBZW6tF4ORzZ0sFKskI+g/SUpN9Hj+SZzin6l5QQKqFtDo9LNYzOwLgo79888/zJ8/nxEjRlC2bNkMzyW/YubbWPPiwzAlKYmY52EUKF4KjZUNwX//le15wTeuEP4oiHqfDsnQ0YeM9UJfbj8pIZ6Y8Gd8UKlGahtZtF/bo1+G70tWq0Ps8zDio6OyjeVVr8+QqSSJMjYmdC9jw9AKdtQuZJZhJDqnk/AvH2eqlqhdyIyhFezoXsaGMjapWdZ79uxJo0aNGDFiBPHx8Xn8SvSHsbExLVq0YM2aNYSEhHDkyBHatGmD76TP+GXlfKXDy1IJS2OC9HSm6kRILH/8837P8FesWJFBgwbh5eVFWFiY0uEIgk7Jssypx7H4PUzNDK70p/HLg5GnHse+Uyv/hNyZNWsWsixn2q+fplpBjeK/r3lFBqoW1Oj0mmJmXxB0bObMmRgZGeHpmXkGXPuKrHxJ8XH8vuEb/Pf8QOSTkIy1RrOo+Zkm7MFdAIqUeXV989iIcI74LuKvw7uIDgvN8FxWHXjbIsUyfG9mnTqQEBf5PMuyJgApWuAdr8BjZ6qmSTELGhc1JzxBm1qjOC6Z4Jik19YoLmphTBGz1BrFdqZZl2WRJIlVq1ZRpUoVFi1axIwZM3TwqpRlZGRE06ZNadq0KStWrODEiRMcPH0A2zqt0Wq1qNXKfZSlrb4oZ2PCzQj9Xh5+IiQWU7X0Xs+ieXl5sXXrVr788kuWLl2qdDiCoDN//BOnl6Vj4UVJ23pFDGOrlqBbdqZqCqkS+SdJjaQ23JtIidSVmrouRSk6+4KgQ1evXmXt2rUsWrQIe3v7TM+rXrHWZo/3FPz3/EC9T4fyQeWaaCytkSSJH6YMQZbfNHf/C1snDeL+X+dp0HsERcun1hiVtVo2jOyemhguU6zZvVllP/6qfo/WEkmShL1Gjb1GTQVSM67KsoxWTl3hkKJN/XkYSRIqiVwt6apQoQLjx49n3rx59OzZE2dn5/x6GXpHrVbTuHFjGjeGoMgE/hf4jHhZiyTp/pcrLet+7UJm/Powcx1dfeT3MIbCZkbvbdK+woULM3nyZGbPns3w4cMpU6aM0iEJQr678ER/O/ppxGCkkJXg4GBmz57NyZv36b10s9LhvBUZqKHA7/d7dOstCMqbOHEiJUuWZMSIEVk+b/SKDl+A316qu3en3edeVGregbJ1GlOi6kfER706Q7l98VIAPL51Pdtj4iKfc/vccRr1G02LzyZRsWk7ytZpjL1TiRy8qpx71et7H0iShFolYapWYW6swlStQq2S3mjv1owZM3BwcGDUqFHv7fLHEtamjKzmSK1CqbNB2pQUnVw37V+rpoOGvuVtOfckLt+SM+Y1CdgXFEWS9v38nQEYN24chQsXZsqUKUqHIgj57kF0En6PDGcwUiTtEwCeP3/O1KlTKVOmDDt27GBA+5bYGEsG81n7XxKppSedrXU/0C46+4KgI7/++isHDx5k4cKFmJpmXVtTLaUu6c6KpFbDfzp1p7ete20Hp+iHlbErVoJTW32J+8/AQFonUfp3lv6/ncZTW9a8su3cMFLlfO+68HoWFhYsW7aMAwcOsHv3bqXDUUxaVYQ6qqeEB98H8r8qgo2Jip5lbWjmZMkfj2MVzbqfW2mJsY4HG8bNf34wNzdn3rx57Nixg1OnTikdjiDkmyStzL6gKIPpIInBSCE+Pp4lS5ZQunRpvv76az7//HPu3LnD+M/H4V5SuaSSb0sG3EtYoVJg0kss4xcEHUhJSWHChAnUq1ePLl26ZHucJEkUMTPiYUzm8nsfNmjBxQPbMbW0prBzee7/dZ5b545jbpt5O8DLVCoVnaZ4s2lsL5Z90oQaHXpgXbAwT+4F8uT23wxYtR2NpRWlqtfl+MYVaJOTsC7kSOCZ3wl/FPTWrz1NETOj9zoTeH7o2LEj7dq1Y/To0bRo0QILCwulQ1LM6vmzOHf+PAfOXeFyeFK+V0VQSRIPopO4EGp4SRJl4HxoPOVsTd/b5fw9e/bk66+/Zvz48Zw+fVq8NwnvpGPBypYAza2XByObOVkqHY6gQykpKWzevBlPT0+Cg4MZPHgwnp6eODo6ph9T3NKYmg4a/EPjDeZ3GlLvIWo6aHBS6PNWzOwLgg5s3LiRv/76iyVLlrz2ptLR3CjLP8z2E+dRrV03Lh/cyf6vPIl8+g8DfXZiYvb6Dl45t6YM8v2ZgiVKc/L7VexfOoPb507wYcNW6cd0n7eGcnWbcPqn9Rxe/iVqIyP6Ld+W25eaJZUERS3ez05FfpIkiWXLlhEaGsqcOXOUDkcxN2/e5KeffuKLiRP5sIB59lURINPqmKzkpCqCVpbZb0AzZv8lAfuDotC+p1tAVCoVS5Ys4ezZs/z4449KhyMIeS5tMNLQ/sLTBiPFcv73gyzL7NmzhypVqtC/f3/q1KnDtWvX8PHxydDRT9OoqAXWJiqD+exNy+3TsKhykzGS/L5u9hQEHYmOjqZcuXI0atSIH3744bXHXw2LZ29QtA4i060OJayoYJ/19gXh7cyZMwcvLy8uX75MhQoVlA5H5wYMGMChQ4e4c+cOGk3GkjayLOe4KkJiXCzJYY8pbq2h9ofOFLc2y7YqQmBEAjvvZF9m0lB4OFtTxsZE6TAU07FjRy5fvszff/+d6XdHEAyVVpbxvRZOhAHN6r9MInW71JAKdoosexZ049SpU0yaNIlTp07RtGlTFixYQK1atV573oPoJLYEvjpflT7pWdZG0VV0YmZfEPLZ4sWLCQsLY/78nNUGL2IqkLaxAAAgAElEQVT+bu6ueVdflz6YOHEipUqVYvjw4e9dsr6goCA2b97MhAkTsuyspVVFqGBvStNiFvQqZ8v4ygWYWKUA4yrbM9rVnrGV7Ijfs4qZ9Urw4/jeDGlUhYZlizFmcD/27t1LfHzmpfr+ofEGM7OQHQnwD41TOgxFeXt78+jRI5YtW6Z0KIKQZ25HJvLcQDv6kDq7/zxRy51IMbv/Lrp69SodO3akfv36xMTEcPjwYfz8/HLU0YfU5fzNnQxj22JzJwvFt8uJzr4g5KPg4GAWLVrEmDFjKFmyZI7OsTdVZ1h6/C4wVUvYmYq3m/yi0WhYsWIFx44dY8uWLUqHo1OLFi3CxsaGoUOH5vic/1ZF0BipadSwAQB79+7lypUrjBs3jj///JOOHTtSqFAhevbsyc8//0xcXBzhCSnci0oy2BvpNDJwNyqJ8ATdVDHQR+XLl2fYsGHMnTuX0NBQpcMRhDwhBiMFfXT//n369+9P5cqVCQgIYOvWrfj7+9OyZctc502p6WBGA0fzfIo0bzRwNNeLUpLi7lsQ8tH06dMxMzPLVYknSZKoUkBj8B/UaSSgagGNSICVz1q2bEm3bt0YP348z58/VzocnQgJCWHdunWMGzfurZMTOjs7A3D37l1cXV2ZNWsWV69e5erVq0yYMIErV67QuXNnHBwcmLNhO8hZ7AMwQBJw6anhJRnMSzNnzkSSJLy8vJQORRDemhiMFPTNs2fPmDBhAuXKlePAgQN88803XL9+nR49eqBSvXlX1K2w/nb4Gzqa41ZY+Y4+iM6+IOSbS5cu8d133zFr1ixsbW1zdW61ghqD/6BOIwNVC4q9sLqwdOlSYmNjmT59utKh6MTSpUsxNTVlxIgRb92Wk5MTRkZG3LlzJ8PjFSpUwNPTk7/++ou///6bKVOmYOtaB6S3+/gMD77PlOoO+O95fR6PvOY7uCO+gzsCqX+fl57Fv3fbP15WsGBBpk2bxurVq7lx44bS4QjCW7n41PBn9dOIwUjDFhsby/z58yldujRr1qxh6tSp3Lp1i5EjR2Ji8va5YiRJol4R8/Ql/Ur/3qddv7mTBW5FzPVmkkt09gUhH8iynD6KmZvlxWnsTNWUtDJW/I3rbUlAKStj7EzVSofyXihWrBheXl6sWrUKf39/pcPJV8+ePcPHx4eRI0fmejAtK2q1mhIlSmTq7L+sfPnyDBs/CROL/CkJ9ffJX/Fb7Z0vbb9KQkpqEsP32ahRoyhWrBhffPGF0qHkKVmWSdbKxKdoiU3SEp+iJVkrv9eDO++qWbNmIUkSl5/pNgP/9pkjWdiueobHplR3yPBe5r/nB6ZUdyA8+H6u2haDkYYpOTkZX19fypQpw8yZM+nbty+3b9/G09MTKyurPL9eTQczepa1UTRLf1rW/Z5lbfRi6f7LRMYsQcgHBw4c4MiRI+zevRtj4zdLzFHDQcO9KMNOTiMDNfTsTe9dN2rUKL777js+++wzTp8+jVr9bg60LFu2DFmWGTt2bJ616ezs/MrOPsDj2OQ8uZatY3G8Tj9AbfTi/eHGST/O/LSe5sPyt8M5YNX2TI89jk3GXvNu/q7khEajYcGCBfTo0YPff/+dxo0bKx1SrsmyTFhCSmrlidhkQv6tQJFV5QkjFRQxM8LR3Igi/37Zm6r1ZiZKeHMJKe9WxzhtMPJ9fn8yFLIs87///Y+pU6cSGBjIp59+ipeXV/o2ufxU3NKYQS52HAuO4cK/OSt08ZeQdp2aDhoaFrXAWKV/76Gisy8IeSw5OZmJEyfSuHFj2rdv/8btlLY2wdZEZfClc5ytlc1C+r4xMjJi1apV1K9fn3Xr1r3RyhJ9FxkZybJlyxgyZAgODg551q6zszNnz5595TGPY5NRAW87Dy5JEsamymxvMTLOuHxSJcHjuGQq8H6XxuzevTtff/0148eP5/z582+1l1SXwhNSuPg0nsvP4tM7eq/7HU3WwsOYZIJjktOPM1Wn5oupVlAjVmMJeapau25UbvUxRiZv9h7zvg9GGoKjR48yefJkzp07R+vWrfnxxx+pWrWqTmMwVkk0d7KkvK0p+4OieJ6ozbdOf1q7NiYq2pWwUjzj/qsYxieZIBiQdevW8ffff7NkyZK3miVRSRLtSlgZZEcfUt8E3UtYiRq5CqhXrx4DBgxgypQpPHnyROlw8pyPjw+xsbFMmDAhT9tNm9l/1ZLRkNgXnSO/1d5Mqe5AaNBtfpz2GbMaOvNl0w/5ZdV8ZFnm+eNHbBrXm1kNSjG3RQVObF6V3s5/9+xvnzmSMz+tB1KXwKZ9pbl8+GeWf9qMmfVLMqtBKb7u1pBTW9ekP58Wy39ltXz25T37AFoZgmMMexVRXpAkiaVLl/Lnn3/y/fffKx3OK2llmcCIBLbdimDNtXDOP4nLMKOb08Gol49LSJE5/ySONdfC2XYrgsCIBLRi+bTB0ccbe5VajbHpmyXqTRuMFPTTpUuXaNOmDU2bNgXgt99+4+DBgzrv6L+suKUxQyrY4eFsTUmr1E54Xt2JprVT0soYD2drhlSw0+uOPujne4IgGKzIyEg8PT3p3bs31atXf/0Jr1Hc0piaDoaXmV8CajlocNLzN8B32cKFC5EkiUmTJikdSp6KjY1lyZIl9O/fn2LFiuVp287OzkRGRhIWFpbl87IsZ3nT+cPkQciyltajZuDkWp2j65Zyassa1g/3wLqQI61He1KgeCkOfDWTu/5/ZNl27c59KVOnMQDd5qxK/wIIPPM726YMwczaltajPWk1agbONdwIunwub144qTfTYl8suLm54eHhwdSpU4mNjVU6nCw9iE7C91o4O+9EEfTvVq+8+pdLaycoKomdd6LwvRbOg2gxEKRvTp48Sa1atdBoNOnJz9K8PIBzcf92ln/ajBl1i+PVuCw/TB7M88ePMrR198/TbPliAAvaVmX6R8VY0KYK+xZP5//snXVc1OcfwN93R3dOQDAQVNTNbh06RexAZ+sMpk5nbNb0p4LO7pizY86aLixmoc6cU6xZmwgGBooS0nH3/f3BuMkAqYPj9Hm/XrzkvvfE54sXz6dTk7K2vbt54leWftyUqQ2cWfpxU24eD8iTvNkZHee1q8XmUb25f+U8K/u1YmoDZ+Z3qMPlAz9kmquSIPjpC8aMGYOLiwuGhoa4ubkxb948VKp3u9aINrl37x59+/alZs2ahIaG8uOPP3L+/HmaN2+ubdGAdIeZm6UBPdwsGVrFmnrvGWdqa53XaPvXxxkqZNR7z5ihVazp4WaJm6WBTji0RBi/QKBB5s6dS1xcHLNmzdLYmp5OpgTHpPBKR8L5M4qUfOhUuFZogsJhZ2fHnDlzGDp0KIMGDaJp06baFkkjrF+/nsjIyCIxYrzefs/W1jbL80qJbPOfXarWosuURQDU8+nP/Pa1+HXJNLxHTsFzwCgAqrf2YY73+wTt20752o2yrFG2el3syrhy9/xv1Gz3cabn/jp9FEMzcwat3IW8iGowpKnSD9WKkn9uKXLmzp2Lh4cHS5Ys4X//+5+2xVGTqpIy5aNC0eWkZqwbk6JiW3AMdeyN8Cyh+ajvGtevX6dVq1bY29vj7+9PWloafn5+lCpVKtO4E+sXc3TVXN736kTdLn2Jj3rJ7zvXs9a3IyN3HMfY3DJ9vcB9pCYl0qDbAEwsbQi7eZnff1hPzPMn9Jm/Ub3end9PsG38QN5zrYT351NIiInkR/9RWJZyKvC9RD66x7YJg6jTqQ+12vcgaO92fvQbSWmP6pSqUBmAlMQEpg9sR8rLcIYOHUqZMmU4d+4ckyZN4unTpyxdurTA+wvyz/Pnz5k5cyarV6/Gzs6ONWvWMGjQIPT0Sq5KaW2ooHlpU5o5mRCVrEqva5KYxpP41FzrmjiZ6uNgnF7XxNpQrpN1TUru/4xAoGM8fPiQJUuWMG7cOJydnTW2rr5cRvuy5mwLjtHYmkVJRvi+OBRqH19fXzZs2MDw4cO5fPlygYtFlhRSUlJYsGABvXv3pnz58hpfP0PZDw0NpU6dOlmeT8vB812nS1/173KFgtJVahDz7Al1OvVRXzc2t8SubAUiHz3It1zG5pakJiYQfP43KjVuke/5eSVNklDoXByR5qlQoQIjR45k7ty5DB48GAcHB22LRFhcKgcexPIqJf1UWlyG34x9LkUkERyTQvsSnpv6LjBt2jQkSeL06dOUKVMGgK5du/L++++rx0Q9CSNwzXy8hk+i+eAv1NerftSOFb0/4vyujerrbUZNQ9/o30K69br2x9alPEe+mUX000dYOaafZw4tn4GZjT3DNhzAyNwCgPK1G7Fx+MdYOboU6F4i7t9lyPp9lK/VEID3W3ViXpsaXNq3g7ZfTAfgzLZVvAy7x7UrV6hcqSIAQ4cOxcnJiQULFjB27FhcXAq2vyDvxMbGsnjxYhYuXIhCoWD69OmMHj0aE5OS2ec+O2QyGTZGCmyMFOoaNZIkoZLSv/+UKlDIQU8mQy5DJxX77BBh/AKBhpg8eTKWlpZF0rrJxUyflqV14wO1pbOpOAyWEORyOatWreLWrVssX75c2+IUmi1btvD48WMmTZpUJOtbWVlhbW2dY0X+nCJGrRwypxMYmZmjZ2iEqbXtf65bkBibf6Ndg+4DsStTgc0jezKn9Qf86D+Kv88ey/c6uaEUEbFq/ve//6Gvr4+fn5+2RSEoIpFtwTFaje6SgFf/ePmDIrKGdwuKB6VSyeHDh+ncubNa0Qfw8PDAq1Ur9eObxwOQVCre9+pEfNRL9Y+57XvYubgSGnRWPfZ1RT8lMZ74qJeU/aAukiTx5O/rALyKCOfp3zeo1aGHWtEHcG/QjPdcKxX4ft5zraRW9AHMrO2wK+uWySh6/eh+ytVsgLmVFS9evFD/tGzZEqVSyalTpwq8vyB3UlJS+Oabb6hQoQJz5sxh2LBhhISEMGnSJJ1S9HNCJpOhkMswVMgx0ZdjqJCjkMveGkUfhGdfINAIFy9eZNu2baxZs6ZIeohKksSWmV9xM1Efr+FFo+hogqaOJiWuv+i7Tq1atRgxYgR+fn706NFDo1EnxUlaWhpz587Fx8cHDw+PItvnTe33cirOLpdnDa3PsZJ7AfLizWzsGbnzBMHnTvD3uWPcOXuMS/t2ULN9d7rPWJk+KIeDiUqlzPM+CmH+V2NjY8O0adMYO3YsI0eOpFq1asUugyRJnHuWyOmn6bUDtJ3GlbF/4KN4kpUSjUoZv1UHYl0gIiKCxMRE3N3dszznVrESHDwIwIuw9EKjizrXz3Yd+WstP6OfPuLo6rncPnmYxFfRmcYlxb1SjwGwc8naQs2+rBuP//qzQPfzX0MpgLGFJYmx/8rxMiyU8OCbODuUyjIWKFFFaCVJSk/3kiRUqvTvDD2ZDIUOeolVKhU//PADU6ZM4f79+3zyySf4+/tnMjIJdAOh7AsEhUSSJMaOHUvVqlUZNGiQxtdXqVSMGDGC1atXs3rNGqo5mqgPfyWJDx1NaFhKKPolka+//ppdu3bxxRdfsHt31h7rusCuXbsICQkpcvnLly+fo7KvV8SHtTcdBvX0DfDw9MbD0xuVSsXeORO48NN3fOQ7FrsyrhhbpOffJsbGqHNx4d9Del4o6vvTNYYPH87KlSsZP348B/9RooqT1xX9kkaGXI0ddN+z97bw+rtXUqmQyWQMWLEz2zofBsbpNXVUSiUbhncjMSYazwEjsS/njoGxCTHPn/Kj30ikIi6AJ8vGUApkKhYqqVS4NWjGMv9JGGRjkaxYsWKRyfcmJEkiMlmZnv+dkMbTf/LA35T/7WiSnvvtYKKHjaGiRBoAJEniyJEjTJo0iStXrtCxY0f27dtH1apVtS2aoIAIZV8gKCR79uzh9OnTHDx4UOMFSlQqFUOGDGHjxo1s3LiRgQMHAukVQQMfxRdZ/9C8krF/S2dT4dEvwVhaWrJ48WL69OnDoUOHaN26tbZFyhcqlYpZs2bRtm1batasWaR7ubq65mhQUMjSD23ZHeY0gYFxuuL0X4U9PjoSUysb9WO5XI6DexUAlKkpANg6lwPSK2tX8Uz//01JjOfy/syVrXNCplISFHQRdzc3bGxscp/wDmBgYMC8efPo2rUrR44codVrYdJFTdDzkqvoZ3D6aQKGCpn47C9G7O3tMTY2Jjg4OMtzd+/cUf9u61wOSZKwLl0W+7IVclwv/O4tXjwI4eMZ31CrfQ/19eDzv2Ual5G3/yIsqyE04sHd/N5GvrBxLkdKQjzeXl4oSkAtoKhkJVdeJHHtZZK63aWcN7e7TFPBo/g0nsT/27rVUCGjuq0RNe2MsDYsmsKr+eXixYt89dVXHD9+nMaNG3PmzBkaN26sbbEEhUQo+wJBIUhJSWHChAm0atVK4wqUUqlk0KBBbN26lS1bttC3779FwOrYG1PKWE9dsEkbCn9G1X1RsEk36NWrF+vXr+fzzz/nxo0bGBkZaVukPLN3715u3brFunXrinwvV1dXHj58SGpqapaChjKZDAdjPR7FF03P59Ie1QHYP38y7g2bI1coqO7dhZ+//oLEmChc6zbFspQj0U8fcW7nehwrVcO+fLpXy71Bc6wcnPl5+hgi+o9ArlAQtHc7pta2RIe/2bsvSRL3rl7gK9+OQHoIu5ubG+7u7ri5uWX6PbsuBW8zXbp0oWnTpowbN44rV66gKKJuCK8TFpdK4OP4It9HEwQ+iqeUsZ74DigmFAoF3t7e7Nmzh4cPH6pDqm/fvs2RI4fV46p+1I7D38zk2NoF9Ji5KpMHWZIkEmKiMLWyUacgZfKkSxJnt6/NtK+FvQOOlapxef8PNBswWp23H3z+N56H/l3gAn154X2vThxbM5+jRw5nOWdFR0djZmZW5JXgVZJEyKsULkUkcT82NYujJa/239fHJSslLj5P5MLzRMqZ61Pb3ogKFtpp5Xbnzh2mTJnC7t27qVq1Kvv27aN9+/YlMvJAkH+Esi8QFIJVq1YRGhrKzz//rNF109LS6N+/P7t27WLbtm307NkzyxgXM318PawztWIqDqU/Y5869kZ8KFox6QwymYyVK1dSvXp15s2bVyIKj+UFSZKYNWsWzZo1o1GjrC3rNI2rqytKpZKwsDB1df7XcTTRy+Sd0SRVP2pPw56+/Hl4D1d/3Y0kSVT37kLNtt248NMW/ti9icTYGMxt3+ODVp1pOXS8ujaAQl+fvos2s3fORI6umou57Xs07j0UYwtLfvQf9cZ9FXIZnZs3ZtjlywQHB3P37l31v4GBgTx79kw91traOpPy/7pBwNbW9q07HMpkMhYtWkS9evXYvHkzgwcPLtL9UlUSBx7Eaj1qK6/IgAMPYvH1sBbfBcXE9OnTOXToEE2bNmX48OGkpaWxYsUKqlatyp9/pufO27qUx2v4JA6vmEn0k4dUadYWQ1MzIh8/5OaJAOr59OfD/iOwL+eOjXM5Di7x59XzpxiamnPz+IEsufsA3p9P4bvRvVk9uD11OvYm4VUUv+9cT6kKlUlOKDrj1If9RxBy5jAdOnRgwIAB1K5dm/j4eK5fv86PP/7I/fv3sbOzK7L9w+JSCXgQS3SKSuMtLzPWeRCbyv3YVKwM5LQrRgfK06dPmT59OuvXr8fJyYlNmzbRr1+/YjFqCooPmSQVoFqQQCAgKioKNzc3fHx8NOpxTE1NpU+fPvzyyy/s2LGDbt265Trnv19GRfGmzli3uL+MBJpl8uTJLF68mJs3b1KhQs7hnSWFw4fTvTlHjx6lZcuWRb5fSEgIbm5uOe53MzKJ/Q/iilyO4qZjWXOq2Bhm+1xsbCwhISFZDAHBwcGEh4erx1lZWWVrCHB3d9d5Q0CfPn04fvw4wcHBmJmZFdk+gY/iuBSRpBOKfgYy0o2/LZyL7u8iyMypU6f48ssvuX79Os7OzkyYMEGtuM27HKE2Rt44doCz21arq+pblipNhXpNadRriDq8/3noHfYvmMzD60HoGxhRpXlbGvYYzPKezejmv5zaHXup971x7ABHv51D5OMH2DiXo9XwSdw6eZDQoHNMDLisHjeplj0thoyn5bD07kSX9u3gR/9RTDhwCWun9GiEee1qUapCZQYs357p3tZ+2gmAIev2AiCXQVUTJWc3L2P37t08fPgQCwsLKlasiI+PD6NGjSqStrKpKkmrzhTPInSmxMTEMH/+fJYuXYqRkRGTJ09mxIgROhXxJ8g7QtkXCArIuHHjWL16NXfv3tVYH+aUlBR69uzJgQMH2L17N506dcrzXJUkEfoqlUsRidzLJsysoGSsU95cn9r2xrha6GslzEygGRISEqhSpQoeHh78+uuvJV4B+/DDD0lOTub8+fPFImtqaipGRkasWrWKIUOGZHn+ZVIa625n9XrpOkM8rLExyr83Jy4ujrt376p/XjcEPH36VD3O0tIy27QAd3d37OzsSvzr8MGDB1SqVImJEycyffr0ItkjLC6VbcH5b81YUujjbimMwFrmXTRGFgVhcalvZZpkUlIS3377LbNmzSIxMZEvvviC8ePHY2VlpbE9BCUPEcYvEBSA0NBQVqxYwZQpUzSm6CcnJ9OtWzeOHDnCL7/8Qrt27fI1Xy6T4WZpgJulAVHJSq6+SOLq6wVkZKDKw7fW6+MMFTJq2BpRowQVkBEUDhMTE5YtW0bnzp355Zdf8PHx0bZIOXLq1ClOnz7N3r17i00Z1NfXp0yZMty7dy/b520MFRgqZOr31duAoUKGtWHB+u6ZmZlRo0YNatSokeW5uLg4QkJCshgBTp06xZMnT9TjLCwssk0LcHd3x97evkQYAsqWLcuYMWNYsGABQ4YMoXTprC3DCoNKkgjQofD9/yIDAh7EMqSKtTAGaxEHk7fzWF+c9xUUkaj1AsgS8CpFxbbgGI0UQFYqlWzdupVp06bx+PFjfH19mTZtGk5OTpoRWFCiEZ59gaAAdO/enXPnznHnzh1MTArfeigxMREfHx9+++039uzZg7e3twakTM93jkpWpbeGSUzjSXxqrq1hnEz1cTBObw1jbSgvEQdtgWaRJImOHTty9epVbt++XaRhyYXB29ub8PBwrly5knPf+iKgRYsW2NnZ8cMP2VeyP/44novPE3VSKfsvMqDee8Y0L21arPvGx8dnawi4e/cujx8/Vo+zsLDINhrAzc2N9957r1g/n2JiYnBzc6N9+/Zs2rRJo2sHxyTzU2isRtfUBt1cLXCzNNC2GO8skiSx9HrkW2eMHPO+TZG/1yVJKrHtLps6mtColHG+/waSJBEQEMCkSZO4ceMG3bp1Y+bMmVSqVKmIJBWURN5OE6BAUIScO3eO3bt3s3nzZo0o+gkJCXTq1ImzZ89y4MABWrRooQEp05HJZNgYKbAxUlCF9BA4SZJQSdD4Q09q1q7N0sWL0JPJkMve3Odb8PYgk8lYvnw5VapUYcaMGcyfP1/bImXh4sWLHDlyhJ07dxarog/pRfquXr2a4/M17Yy48DyxGCUqOiSghl3x52mamprywQcf8MEHH2R5Lj4+ntDQ0CyGgHPnzvHo0b+dBczNzXM0BJQqVUrjn2eWlpZMnz6dzz//nNGjR2cbzVBQLhVjXnBRIQMuRSQKZV+LyGTp7dzeFmOkSqnE8GUYycmmRZ5PXlIVfUAtV2OHvJ85z507x8SJEzlz5gzNmzfnjz/+oF69ekUloqAEIzz7AkE+kCSJRo0akZSUxKVLlwqthMTFxdGhQwcuXrxIQEAAnp6eGpI0d2rWrEnDhg359ttvi21PQcli1qxZ+Pv7c+XKFapVq6ZtcTLRpUsXbt26xa1bt4q9MvDs2bNZtGgRL1++zHHMzrsxPIhN1ekDtQwoZ65PDzdLbYuSZxISEggNDVUbAV43CISFhanHmZmZ5dg+0MHBocCGgLS0NN5//32cnJwIDAzUiEEhKlnJmltRhV6npDC0irVI+9Iib9PrSZIkFnaqhxQfQ79+/Rg8eHC2BsLCEvQ8USfaXeYlpP/WrVtMnjyZvXv3qrvvtGrVSjhz3mGEZ18gyAe7du3i/PnzHDt2rNCKfmxsLG3btuXatWscPnyYxo0ba0jKvKFUKkV7lXeccePGsWXLFoYPH87JkydLzGHgxo0b7Nmzh40bN2rlNerq6kpkZCTR0dE5Fi6qbW/E/djUYpZMs0hA7ULmghY3JiYmVKtWLVvjVGJiYiZDQMa/58+fz2QIMDU1zbFrQG6GAD09PRYsWECHDh349ddf811bJTuuvNB9r34GMuDqi6RiTwsR/Iu1oYJy5vpvhTGyvIUBvx87zMaNG9m8eTPLly+nbt26+Pr60rNnTywsLAq9T1hcqk4o+gCBj+IpZayXbdG+sLAw/Pz8+O677yhbtqy6bXNxR8YJSh7Csy8Q5JGkpCQ8PDyoVq0a+/fvL9RaMTExtG7dmlu3bnH48GEaNGigISnzTtWqVfHy8mLp0qXFvreg5BAYGIiXlxffffcd/fv317Y4QHqbszNnznD37t0iaamUGxcuXKB+/fpcvnyZmjVrZjtGJUmsvRVFjJaqNRcWGWBpIH9nCqolJiZy7969bNsHhoWFkXEUMjExydEQ4OjoiEwmQ5IkWrZsydOnT/nzzz/R0yu436Sk5Fhn1xqtoBRXjrUgZ97GGhCpqakEBASwfv16Dh48iJGRET169GDw4ME0atSoQK+3VJXE+ttRWqu6n18yqvT7elir2/JFRkYyZ84cVqxYgYWFBVOnTmXo0KEYGIh0GkE6wrMvEOSRFStWEBYWxsGDBwu1TlRUFN7e3gQHB3Ps2DHq1KmjIQnzh/DsCwBatmxJz549GTduHB06dMDa2lqr8ty9e5edO3eyfPlyrSj6kO7Zh/SuGzkp+3KZjHZlzXW2VZoEtC9r/k4o+gDGxsZUqVKFKlWqZHkuKSlJXSPgdUPAzp07efjwYRZDgJubGy4uLpw4cYLx48czbtw4HB0dC+RBi2PLjTMAACAASURBVExWal3R1zTJyvTCsAVp5SjQDBUsDLAykOu8MdLV4t/vAH19fTp37kznzp15/PgxmzdvZsOGDWzatInKlSvj6+tLv379eO+99/K8z8kn8Tqj6MO/VfpPPYmnoY2c5cuXM3fuXJRKJV999RVjx47F3Nxc22IKShjCsy8Q5IEXL17g5uZGnz59WLlyZYHXefnyJV5eXjx8+JCjR4/mqEgUB25ubvj4+JTI4myC4uXJkydUrlyZvn37ar2Gg6+vLwEBAYSGhmJsrJ0Qc0mSsLS0ZOrUqYwfP/6NYwMfxXEpIklnDouQfpCuY29EC+eS2YWhJJGcnJxtscC7d+9y//599ThjY+MstQEyfndycsrREFBS+qJr0rMPxd8XXZCVsLhUnTVGAvR1t8Q5lx7zKpWKEydOsGHDBn766Sd1pxlfX1+8vLze6NDQ6b+PJPHjxIH8efIIw4YNY8qUKfkycgjeLYRnXyDIAzNmzECSJPz9/Qu8RkREhDr08/jx40VSZCY/KJXKQoWfCt4enJyc+Prrr/niiy8YNGiQ1qJNwsLC2LJlC7Nnz9aaog/pFa1dXV0JDQ3NdaynkynBMSk64x3KCAP90EnkVOcFQ0NDPDw88PDwyPJcaGgoVatWpX379jRq1EhtCNi9ezcPHjxApUrvcWpsbEyFChWyTQ94KrNGDmTTDVVnkcsgPDFN3QFGoB0cDCE1+AoK1w+Q61AUX4YxMjdFH0Aul9OiRQtatGjBy5cv2bZtG+vWraNNmza4uLgwaNAgBg4cSNmyZTPNU0kSAQ9idbZWhlKlpMPkhexcbYBbBVdtiyMo4YiTvkCQC3fu3GHVqlXMnDkTe3v7Aq3x7NkzWrRowYsXL/jtt9+yDSUtbkQYv+B1RowYwaZNm/jss884f/68Vl4bCxYswNzcnGHDhhX73v8lr8q+vlxG+7LmbAuOJv2YWrLJCN/PyPcUFBxXV1fGjx/P/PnzWbhwYSaFIjk5mfv372eJCPjpp5+4f/++2hAwbFMAZT6om22+cXJ8HEe+ncOt3w4S++IZRmYWOFasSutRUyntUR2Ah9cvcWztAh7+GYQyNRVb53LU6dybxr2HAvD0zk3ObFvFvcvniY0Ix8jcgkqNW9JmjD+mVja53uPfZwP5bcNSHv91HZlcRvlaDWkz2o9SFSrnOEclwZN43S5eqeuEhITQp08frl2/ybQj15CZWOiEUlsYY6StrS2jRo1i5MiRXLx4kfXr17No0SJmzJiBl5cXvr6+dOzYEUNDQ0JepRCdorsmNoVCD4WVHdgVvkCh4O1HlGgUCHJhwoQJlC5dmtGjRxdo/tOnT2nWrBlRUVGcPHmyRCj6IJR9QWb09PRYtWoVQUFBrF27ttj3f/bsGevWrWP06NGYmWk/vNzV1ZV79+7laezDaxc4uuLrIpZIM7R0Ns22krOgYEyYMAFra2smT56c6bqhoSGVKlWiXbt2jBkzhm+++YbDhw8TEhJCYmIif//9N/sPHKBstVo5Fhb7ZfY4/vhxM9VatKfTpHk07TccfUMjnt8LBiD4/G+s9e3I89A7NO41hHZfTse1bmP+On1UvcbdP04S+egBtTv2osOEOXzQqgt/HtnD5lG9yC2L8/KBXXw3qjcGJqa0HjWVj3zH8jz0DqsHtSfqycM3zg1PTMt1fYHmkSSJ7777jho1ahAREcGJY0fpW91FJxR90IwxUiaTUa9ePdauXcvTp0/ZsGEDcXFxdO/eHWdnZ7788ktO3XuhA6bZNyMDLkUkalsMgQ4gPPsCwRs4efIke/fuZfv27RgZGeV7/qNHj/joo49ITEzk5MmTuLm5FYGUBUMo+4L/0rBhQwYPHsykSZPw8fGhVKlSxbb3kiVL0NfXZ+TIkcW255twdXXl/v37ub5PDhw4wMcff0z9+vWpay3nYlTJ9RY1dTTJtUezIH+YmZnx9ddf8+mnnzJ69Gjq1auX6xwDAwMqVqyIq5s7N669zHHc36ePUrdLX9p9OeO1q+nvD5VSyS+zxmFuV4pRO09gbG6pHvG6kt3g44E07Tc807plPqjDzklDuH/lPOVrNcx27+SEOPYvmEydzn3xmbpYfb1Whx4s7tKQExuWZrr+X9JU6R5+ha5rVDpEdHQ0w4YN44cffqB///7q6uyQbuQLfFTy28tp2hhpZmbGwIEDGThwILdv32bDhg3sOXKc9/pNzn1yCUcC7sWmEpWsxNpQnOUEOSM8+wJBDqhUKr788kvq1atHz5498z3/wYMHeHp6kpycXOIUfRDKviB75s6di0KhYMKECcW2Z2RkJCtXrmT48OFa7waQgaurK6mpqTx+/DjHMVu2bKFz5860bt2aQ4cO8VFZa5o6mhSjlHnnQ0cTGpUSin5RMHDgQKpVq8a4cePy5c1Oy2WskbklYTcu8yoiPMtzT/6+TtTjBzTuPSSTog9kihTQN/r3/zw1OYn4qJeUeb92+hp//Znj3nfPnyQpNobqrX2Ij3qp/pHLFbhUq0Vo0JlC359Ac5w+fZrq1atz6NAhduzYwXfffZepB30de+MS+9mUQVEbIz08PFi4cCGrDvwGUsk1yuYHGXD1RZK2xRCUcIRnXyDIgW3btnH58mVOnz6d7/6t9+7do3nz5sjlck6dOpWlOExJQCj7guyws7Nj3rx5fPrppwwaNAhPT88i33PFihUolUq+/PLLIt8rr5QvXx5IL8JWpkzW6uSLFi1i3Lhx+Pr6smrVKnWxy8YOJhgqZAQ+itd68aeM/Vs6mwqPfhGiUChYuHAhrVu3Zs+ePXTp0iVP81S56BttRk9jt99I5rapTmmP6lRq3JJa7btj41yOyLD0FBMHt6yFA18nISaKY2sX8OfhPcRFRmR6Liku5z7sLx6m16tYPzT7ezE0y729l1IFiK+YIiU1NZUZM2Ywe/ZsGjVqxNatW3M8b2QY+04/TShOEfPEh44mNCwGY6QkSdyITgVZ8fk6Q4POsm5IZz5duwfXOo01urYEXH2ZRDMnk3yfUwXvDkLZFwiyISEhgcmTJ+Pj40OTJk3yNffu3bs0b94cIyMjTpw4gbOzcxFJWTiEsi/IiUGDBrFhwwaGDx/O1atXi7TffWxsLMuWLePTTz8tUa2DypYti0wmIzQ0lGbNmqmvS5LEV199xfz585k8eTIzZ87McsiqY29MKWM9DjyI1VqV/oxCV+3Lmosc/WLA29sbb29vJkyYQLt27TAwMMh1Tg7d+NR80Koz5Wo24OaJX7l7/jdObVnJye9W0HfhpjzLtX2iLw//vEjTfiNwqlQNAxNTJJWKTZ/3QHqDtUH6x/PZ/etvMbfL+r6UK3I/PipE7GiRklGELygoiOnTpzNp0qQ3fqfLZLJ30hh57tw5jhw5wpgxY1AamZGsfLsiTpKVElHJKmyMxHlOkD3io1ggyIYlS5bw7Nkz5s2bl695f//9N56enpiamnLy5MkSq+iDUPYFOSOXy1m1ahV//fUXS5cuLdK9Vq9eTVxcXK797IsbIyMjSpcunakif1paGr6+vsyfP58lS5Ywa9asHL0pLmb6+HpYU9s+vdZHcflcMvapY2+Er4e1UPSLkYULFxIaGsqqVavyNF4vD544C3sHGnYfRL/FW5hwIAgTS2tObFiCjUt65En43ds5zk18FU3IhVN4DhiF12cTqfpRO9wbNMPGOfdIM1vncgCY2tjhVt8zy09ePJR5uT9B/pEkiS1btqiL8J05c4YpU6bk+fu8jr0xfdwtsTCQa61IXYYxso+7ZZFHHZ07d47p06cTHR1NeEJake6lLd7W+xJoBqHsCwT/ITw8nLlz5zJixIh85dnfunULT09PrKysOHnyJE5OTkUoZeERyr7gTdSoUYORI0fi7+9PWFhYkeyRmJjIokWL+OSTT0qkYez19nuJiYl07dqVLVu28P333zNmzJhc5+vLZbR0NqOPuyWWBulft0V1uM5Y1/KfA3QLZzPRXq+YqVatGoMHD2bGjBlERUXlOl4hA70cTmEqpZKk2FeZrpnZ2GNh70BaSgpOlT/AunRZzm5fS2JsTKZxGXUDZHJFpscZnN22JlfZ3Bt+hKGZOb9tXIoyNWsbvbioF2+crycH8fLTPNHR0fTq1YtPPvkEHx8frly5QoMGDfK9zrtqjAxPSNN5xSclMXOhRbksvfuFQJATIoxfIPgPfn5+6OvrM3Xq1DzPuX79Oi1atMDR0ZHAwEDs7e2LUELNIJR9QW7MmDGDXbt2MWbMGH766SeNr79x40YiIiKYOHGixtfWBK6urty+fZvo6Gg6duxIUFAQe/fupW3btvlax8VMnyFVrAl9lcqliETuxaZqLIQ2Y51y5vrUtjfG1UIfufCoao0ZM2awY8cOZs6cyaJFi944ViaT4WCsx6P4rAf15IQ45rb+gGotO+Donh5+f/ePkzy6eYW2X85ALpfTedJ8tozpy/KezandsRcWdqV4fj+Y5yF/Mejb3RiZmVO+VkNOffcNqrRULN5zJPj8b0Q9fpDrfRiZmdN50gJ2TR3Oij4tqN6qM6bWdkSHP+KvM0cpW70enb7KOfLNwVhP5BBrmNOnT9O3b19iYmLYsWNHgQoHv06GMbKSlSEBD2KJTlEVWWh/xrqWBnLaFWNqkb+/P9OnTwf+rcMCMOHAJaydynAlYDdntq3m+b076Bsa4d6gGW3G+GPlUFo9du2nnUiIjqTXvPXsmzuRsBuXMTa3pFGvIXgOyNw9JubZE/bN+4rg8ycxMDahRpuuVGz0UbayPbx+icDV83h4PQhVWhrOVWrQ6vP/Ua5GffWYwNXzObZ2AWN+PMOJ9Yv5++wxrJ1cGLXjBLEvnnF4xUyC/zhJQtRL7GxtqFevHsuWLaNcuXIa/CsKdB2h7AsEr3Hz5k3Wr1/PwoULsbGxydOcq1ev0rJlS8qUKcPRo0extbUtYik1g1D2BblhYWHB4sWL6dWrFwcPHqRNmzYaWzslJYV58+bRs2fPEtepIgNXV1f279+Pp6cnYWFhHDt2jIYNs29VlhtymQw3SwPcLA2ISlZy9UUSV18mqfNH5bL0VmW5r/PvOEOFjBq2RtSwMxKtl0oIDg4OTJw4kRkzZjB8+HAqVKjwxvGOJno8iU/jv9nz+kbGNPh4EMHnT3DzeACSSoWtS3k6TZpPg48HAlCx0Uf4rv2FY2sXcmbrt0gqFTbO5anbpa96nR6z17B/3iR+37URJAn3hs0YsGInc7zfz/VearTpioW9A79tWsapLStJS03Bwt6B8jUbUKdj7xznyWXgZCrSRzRFforwFYS32Rjp4+PDnTt32LFjB4sXL+ZCohEqFZha23Ji/WKOrprL+16dqNulL/FRL/l953rW+nZk5I7jmbpcJL6KZtPnPajavB3ve3XiRuB+Di2fgYO7B5UatwQgNSmR9cN8iA5/TKOen2JhX4orAbsJuZi1c0XIhdNsGtmT0h7VaTFkPDKZjEv7drJ+qA9DN+zHpVqtTOO3TxiMXRlXvD//nzpSZ9v4gTwL+ZuGPX2xK+1CDYMEAgMDefjwoVD2BZmQSfnpEyMQlGAkSUIppbf7UanSix/pyWQoZOTZw9C2bVvu3LnDrVu38lRgKSgoiFatWuHm5sbhw4dLTNuw3JAkCblcztq1a/n000+1LY6gBCNJEl5eXty7d48bN25gbKyZ/MqNGzcyePBgbty4QdWqVTWypqZZvHgxY8eOxdHRkaNHj2pcTklKL6wUnpBGeGIaT+JTCU9MIy2buml68nRvqZOpPg7GejiY6GFtKBfe0xJIQkICFStWpFGjRuzateuNY29GJrH/QVwxSVZ8dCxrThUbQ22LofO8XoTP398/1yJ8mkBTxkiZMpV6jhZaN0YuXLiQ8ePHExwSyo8x6V0kop6EsbBTXVoOm0jzwV+ox4bfvc2K3h/RcugE9fW1n3bi3qVzfDxjJbXadwcgLTWF+e1qUrZ6PfosSC+YeXb7Gg4snELveet536sTACmJCSzv2YyXYffU1fglSWJRlwbYlC7LwG9+UH+GpyYlsuTjpti6lGfwt7uBfz371Vv70HP2v+k3ibExzPB0o80Yfz7sPwKA8dVtUYjcGUE2CM++QCeRJInIZGX6ITkhjaf/HJbfdEh2NEk/IDuY6GFjqMhySD569CgHDx7kxx9/zJOi/8cff+Dt7Y2HhweHDh3C0tIy1zklBdU/VZiFZ1+QGzKZjJUrV/L+++8zb948/P39C72mUqlk7ty5dOnSpcQq+levXmXmzJkAbNq0qUjklMlk2BgpsDFSUIV0xUiSJFT/GC2VqvSK5noyGfJ8GC0F2sXExIRZs2YxYMAAzp07R6NGjXIc62Dydh7D3tb7Ki4kSeL7779nxIgR2Nvbc+bMmQLl5hcEa0MFzUub0szJpMDGyBH9euBgYcLEHduLRea8oHzNt5kRLfO+Vyfio16qr5vbvoediyuhQWczGQEMTEyp2e5j9WM9fQOcq9Yi8rWUmL/PBGJuV4pqLTv+O8/YhHo+/Tm4bLr62tO/r/PyYSgf+X5JQnRkJhnd6jXlSsBuVCoV8tfaddTv+kmmcfqGRij0DQgNOkvdzn0wtrAiTZJQaK3koqAkIz6NBTpFVLKSKy+SuPa6xRmyhEC+TpoKHsWnZQqVNFTIqG5rRM1/LM5KpZKxY8fSpEkTfHx8cpXj7NmztGnThurVqxMQEICFhUWh7604USqVgFD2BXmjUqVKTJgwgblz59KnTx/c3d0Ltd7u3bsJDg5mx44dGpJQs5w8eZKOHTtSvnx5oqKiSEpKKra9Zf9EIymQiR7lOky/fv1YtmwZY8eO5dy5czkaamwMFRgqZG9VOzBDhQxrQ10vg6Y9oqOj+eyzz9i5cyf9+/dnxYoVWjljFMYY2bT2B6xcubJEpQu+3mnyRVhouoe9c/1sx8r1MqehWL7nlOU9bGxhSXjwLfXj6PBH2LqUzzLOrlzmNLUXD9OLvu6e9nmOsibHvcLYwkr92Lp05rQNPQNDWo+ayq9L/JjVsgou79cm7ePO+A78BAcHhxzXFbybCGVfUOJRSRIhr1K4FJHE/Wxyyd6k6Gda57Xfk5USF58ncuF5IuXM9Ym8epobN29y/vffc/WenTx5knbt2lG3bl3279+PmZlZPu9I+whlX5BfJk+ezNatWxk5ciQHDx4ssJdZpVIxa9YsvL29qV27toalLDx79uyhZ8+eNGnShJ9//hlHR8dM7fcEgrwgl8tZtGgRH330Ebt27aJHjx7ZjpPJ0g3PF58narXnuaaQATVsjUQUSgHRdBE+TZNXY2Tr1q35+uuvuXjxYrFFJOTGa45yJJUKmUzGgBU7kWdzDjIwNs08N4ezUkEyoTPmtBnjj1OlatmO+e/++oZGWcY06TMMjw+9ufXbQe78foKv/aexaP5cjh8/Ts2aNfMtl+DtRSj7ghJNWFxqpiqxoLlKsRnrPIhNRarQAL/AmzhWeXMxpWPHjtGhQwcaN27M3r17MTEx0ZA0xYtQ9gX5xcTEhBUrVtCxY0d++uknunXrVqB19u/fz40bN/j22281LGHh2bBhA0OGDKFr1658//33GBoaUr58eaHsCwpE8+bN6dChA1999RWdOnXCyCjrgR2gpp0RF54nFrN0RYME1LDL/j4FOZOWlsaMGTOYNWtWkRThK27q1auHtbU1Bw8e1Lqyn2F4UrxmgLJ1LockSViXLot92Tef+/KKlYMzz0L+QpKkTMauF/fvZhpn41wOACNTc9zqexZqT1uX8jTtN5ym/YbT2SSS2rVqsmjRIrZu3VqodQVvFyLOSlAiSVVJBD6KY1twDDEp6T75ovJ6ZKxrZGXLtuAYAh/FkZpNJZrDhw/Tvn17PD092bdvn84q+iCUfUHB6NChAx07dmTMmDHExsbme74kScyaNYumTZvStGnTIpCwYEiSxNy5c/H19WXo0KHs2LEDQ8P0sFVXV1eh7AsKzPz58wkLC2PFihU5jrE2VFDOXF/ns21lQHlzfdEZIp+EhITQtGlTZs+ejb+/PydOnNBpRR9AT08PLy8vDh06pG1RMDVN95LHxkSj94/WU/WjdsgVCo6tXZDFOy9JEvH/yaXPC5WatORVRDg3Avepr6UkJnDh5y2ZxpX2qI6NczlOfb+S5ISsxTnjol7kuldKYgKpyf+ml+nJwd2tAubm5iQnJ+dbdsHbjfDsC0ocYXGpHHgQy6siVvL/i/TPUetSRBLBMSm0f60XbEBAAD4+PrRq1Yrdu3fn6KHRFYSyLygoy5Yto0qVKkyfPp2FCxfma25gYCAXL17k8OHDRSRd/lGpVIwbN44lS5bg5+eHn59fJq+Mq6triZJXoFtUrlyZYcOGMWvWLAYOHIidnV2242rbG3E/NrWYpdMsElDbXjPdOt4FtFmErzho06YNgwYNIiIiAnt7e63JkZEuNmXKFFw8OxCjUuDxYSu8hk/i8IqZRD95SJVmbTE0NSPy8UNungignk9/dZX7vFK3Sz9+/2EDu6Z9zuPb1zC3S2+9p2+U2TEkl8vpOm0pm0b2ZGm3ptTu2AuL9xx59fwpoUFnMDQ155Nl296414uHIawf1pUPvDrxnmtFbIwNaDP+MM+ePStxqR8C7SM8+4ISRVBEItuCY3iVotJa/qIEvEpRsS04hqCIRPbu3UuXLl1o27YtP/30k84r+iCUfUHBKVeuHFOnTmXp0qVcv349X3NnzZpFnTp18PLyKiLp8kdqaioDBgxg6dKlfPPNN/j7+2fJNXZ1deXevXvqDhYCQX7x8/NDkiRmzJiR45gKFgZYGch11rsvA6wM5Lha6Oc6VpBehK9379588skndOnShatXr75Vij6At7c3kiRx9OhRrcpRt25dvv76a65du8a6SSPYOWkI8VEvaTZwNH0WbEImk3Ns7QJ+XeLH7ZOHcG/QDA/P1vnex8DYBN/VP+PeoBnndm7gxPollK1Rnzajp2UZ61qnMZ9t/pXSVarz+64N7J8/iUv7d2Jm+x5N+gzLdS/LUqWp7t2F0KCzHF4xkx+XfM2rV6/YtWsXXbt2zbfsgrcbmVSQ6hICgYaRJIlzzxI5/TRB26JkIXD1PKwj77N9+3b09d+Og0x4eDiOjo7s27ePDh06aFscgY6RkpJC9erVsbW15dSpU5laBOXE2bNnadKkCb/88gudO3cuBinfTEJCAh9//DFHjx5ly5YtOXpDDhw4QIcOHXj06BGlS5cuZikFbwvz5s1jypQp3Lx5k4oVK2Y7JiwulW3BMcUsmebo626Js9nb8R1ZlJw5c4a+ffsSHR3NqlWr6NWrl7ZFKjJq1qxJtWrV+P7777UtCgA3I5PY/yBr6Lyu07GsOVVsDLUthqCEIjz7ghJBSVX0AVoOm8ioZZveGkUfhGdfUDgMDAxYuXIlZ8+eZcuWLblPIN2rX7VqVTp2TO9BLEkSaSqJJKWKhFQVSUoVaSqpQNWN80tkZCReXl6cPHmSAwcOvDHs0dXVFUDk7QsKxejRoyldujQTJkzIcYyLmT517I10zrsvA+raGwlFPxfS0tKYNm0anp6euLi4cO3atbda0Yf0UP7Dhw9rPTIqMjKSbdu2MX9Kzu8/XcbBRGRlC3JGvDoEWifoeclV9DM4+ywJY30Fdd6SfESh7AsKy0cffUTv3r0ZP348HTt2xMbGJsexQZcucfHWHWZ/s5YTTxJ4mpBGeGIaadmc//Tk4GCsh6OJHg7//NgYKjTWyuvx48d4e3sTHh7O8ePHqVev3hvHlytXDkhX9ktSUUGBbmFkZMScOXPo3bs3J0+exNMz+yrcnk6mBMekaDWVLT/IAAsDOR86meY69l0mJCSEvn37cvHiRfz9/Zk0aRJ6em//Ebx169bMmTOHy5cvU6dOnWLd++7du+zbt4/9+/dz+vRplEolderWpfKAZGT6b48X3FAhw9pQ+G4FOSNeHQKtEhaXSuDjeG2LkScCH8UTFqfbBZQyEMq+QBMsXLiQlJQU/ve//2X7fFSykuOP4zmUYs/YX87zsvQHXIpI4lF89oo+QJoKHsWncSkiPdxy3e1oll6P5PjjeKKSlYWS9++//6ZRo0a8evWKM2fO5KroQ3rLQUdHR+7du1eovQWCnj17Uq9ePb788sscPZ36chnty5rrhKIPICHRvqw5+nJdi0coHiRJYsuWLdSoUYNnz55x+vRppk6d+k4o+gANGzbEwsKCgwcPFvleSqWSs2fPMnHiRDw8PHB3d2fy5MmYmpqycuVKHj16xMULF6hf2krnomdyQgbUsDXSmDFc8HYilH2B1khVSRx4EKszH7oy4MCD2Gzb8ukaQtkXaAJHR0dmzpzJmjVruHDhAgAqSSI4Jpmdd2NYcyuKi88T0HutGnFegzlfH5eslLj4PJE1t6LYeTeG4JhkVPkM9w8KCqJJkyaYmppy7tw5KleunOe5ov2eQBPIZDIWL17M5cuX2bYt52rbLmb6tHTWDU/5kWXTuXE6UNtilEiyK8LXsGFDbYtVrOjr69OyZcsia8EXGxvLTz/9xIABA3BwcKBJkyZs3ryZRo0asWfPHl6+fMmBAwcYOnSouuZKTTsjnTGm5YYE1LDT/aLRgqJFKPsCrXHySbzOhCrCv1X6Tz3RjUiENyGUfYGm+Oyzz6hevTqfffYZD14ls/ZWFD+FxvLgnzZikobMeRmfEw9iU/kpNJa1t6LyHGlz7NgxmjdvToUKFTh9+jTOzs752rt8+fJC2RdohMaNG9O1a1cmT55MQkLO6Wt17I1p6miS4/Mlgfo2CswiH9K+fXuWLl1aLPU2dIUzZ85Qo0YNfv31V7Zv386WLVuwsLDQtlhaoU2bNpw/f57IyPz3rs+OsLAwvv32W1q3bo2dnR3dunXj0qVLfPrpp/z+++88ffqUDRs20KlTJ0xNsxrNrA0VlDPX1xlHU07IgPLm+lgbinOc4M0IZV+g181/IQAAIABJREFUFcLiUgmKSNIZRT8DCbgYkaTz4fxpaWmAUPYFhUdPT49vVq3GsXkXdtx9RUxKuk++qN7bGevG/NMeM/BR3BujbXbv3k3btm1p3Lgxx44dw9bWNt97Cs++QJPMnTuXZ8+esXTp0jeOa1Sq5Cr8Hzqa0KyMFb/88gtjx47liy++YOjQoaSkpGhbNK3yLhbhy43WrVujUqkIDCxYBIhKpSIoKAg/Pz9q1qxJmTJlGD16NGlpacyfP5+QkBCuX7/O7NmzadCgQZ66w9S2133vvgTUfkvqSAmKFqHsC4odlSQRoEPh+/9FBgQ8iM13GHFJIsOz/67kDQqKjrC4VP40d6dxryEgkxXbASpjn0sRSay/nb2Xf9WqVfTo0YNu3bqxb9++bL08ecHV1ZWnT5++0RMrEOQVNzc3RowYwZw5c3j27FmO42QyGY0dTNQh/dr+zszYv6WzKY0cTJDJZCgUCubPn8/GjRvZvHkz3t7evHz5UqtyaouMIp6zZ8/G39+fEydOqAt8vss4OztTrVq1fOXtJyYmEhAQwLBhw3BxcaFu3bosX76cKlWqsHPnTiIiIggMDGT06NHqjin5oYKFAVYGcq2/pwqKDLAykONqITpgCHJHKPuCYifkVQrROhS+/18kIDpFRegr3fXuizB+gSYIikhkW3AMr1JUyPLgTSkKMtJrtgXHEBSRmH5NkpgxYwbDhw9n5MiRfP/99xgYGBR4j4zD5P379zUgsUAAU6dORV9fHz8/v1zH1rE3po+7JRZaVE4yqu73cbfMtivNwIEDOXbsGDdu3KB+/fr89ddfxS+klpAkie+///6dLcKXF1q3bs2hQ4femOrx7NkzNm7cSOfOnbGzs6N9+/YEBgbSo0cPTpw4wfPnz9m2bRs9evTAysqqUPLIZTLa6VAhzP8iAe3LmiMXhfkEeUAo+4Ji51JEks5aUzOQAZf+USx0EaHsCwqDJEmcDU8g8FF6/QptH5gy9g98FM+Zp/GMHDkSPz8/Zs6cydKlS/MU1vkmMpR9Ecov0BQ2NjZMnTqVdevWcfPmzVzHu5jp4+thTW379GJcxfUdmrFPHXsjfD2scTHL2ZPYtGlTLly4gJGREQ0aNODIkSPFI6QWySjC179/fzp37vxOFuHLC23atCE8PJxr166pr0mSxM2bN5kzZw4NGzbE0dERX19fXrx4gZ+fH7du3SI4OJjFixfTrFkz9PU168V2MdOnjr2Rzp1HZUBdeyOc3/BeFAheR5gdBcVKVLKS+7G66xHPQALuxaYSlazUyeIoQtkXFIZzzxI5/bRkhrSfCU/kdooRa9asYciQIRpZ09HREUNDQ6HsCzTKiBEjWLlyJePHj+fXX3/Ndby+XEZLZzMqWRkS8CCW6BQVMorG2JaxrqWBnHZlzd+o5L9O+fLlOXfuHL169aJt27YsXbqUzz//vAgk1D5nzpyhb9++REVFsX379nc+N/9NNG7cGFNTUwICAnj58iX79+9n37593Lt3D1NTU7y9vdm0aRNt27bF3t6+2OTydDIlOCZFZ4pFZ0TYfOikG906BCUDoewLipUrL5KK7HBS3MiAqy+SaF5a9z50hbIvKChBz0uuop+B12dfUUuDrcvkcrmoyC/QOAYGBsybN49u3bpx9OhRvLy88jTPxUyfIVWsCX2VyqWIRO7FpmrsezVjnXLm+tS2N8bVQj/focIWFhbs27eP8ePHM3LkSG7dusWyZcs07pnVFmlpacyYMYNZs2bRsGFDfvvtN5Gb/waioqI4ePAgVlZW+Pn5oVQqcXZ2pkOHDnTs2JFmzZphZKSd9nH6chnty5qzLThGK/vnl4zwfX25rsUjCLSJCOMX5Bl/f39kMhkvXrwo0HxJkrj2UnMV+EODzjKplj2hQWc1tGL+kICrL5N0st2QUPYFBSEsLpXAx7rRejLwUbxGu2aIivyCosDHx4fGjRszduxY9edyXpDLZLhZGtDDzZKhVayp954xhgrZa8/ndZ1/fzdUyKj3njFDq1jTw80SN0uDAucEKxQKFi9ezLp161i3bh1t2rQhKiqqQGuVJP5bhE8o+tlz9+5dlixZQvPmzbG3t6dPnz4oFAokSeLkyZM8fPhQ3T5PW4p+Bi5m+uoimCWdls6meY6yEQgyEJ59QbERmawkWal7ivGbSFZKRCWrsDHSLaVZKPuC/JKqkjjwTxcNXXgXy4ADD2Lx9bDWiBfE1dWVEydOFF4wgeA1ZDIZixYtokGDBnz33XcMGjQo32tYGypoXtqUZk4mRCWrCE9IIzwxjSfxqYQnppGmyjpHTw4Oxno4merjYKyHg4ke1oZyZBou+OXr64ubmxtdu3alQYMG7N+/n4oVK2p0j+JAkiS2bt3KiBEjsLOz4/Tp0yI3/zWUSiXnz59Xh+ffvn0bQ0NDWrRowcqVK2nfvj0pKSm4urry4sULjb/OCksde2OSlVKJjlpr6miSbXFMgSA3hLIvKDbCE9K0LUKREJ6QJpR9wVvPySfxOpPXCP9W6T/1JJ4WzmaFXq98+fJs3LgRSZJK3EFVoNvUr1+fnj17MmXKFLp3746ZWcFerzKZDBsjBTZGCqpgCKQrqSoJ0iQJpQoUctCTyZDLKLbXcbNmzfjjjz/o0KED9evX58cff6RFixbFsrcmiI6OZvjw4ezYsYN+/frxzTffYGFhoW2xtE5cXBxHjhxh3759BAQE8OLFC+zt7Wnfvj2zZ8/Gy8srS7vTSpUqcejQIXx8fLQkdc40KpWuSJdEhf9DRxMalhKKvqBgiDB+QbERnpBWol9wKYn5D0+WyyA8UfeMGELZF+SHsLhUgiI0l4JTXEjAxYgkjYTzu7q6kpCQwPPnzwsvmEDwH+bMmUNkZCQLFy7U6LoymQyFXIahQo6JvhxDhRyFXFbsBis3Nzd+//136tWrh7e3N6tXry7W/QvKmTNnqFGjBgEBAWzfvp0tW7a804r+o0ePWLVqFW3atMHW1pauXbsSFBSEr68v586d4+nTp+r2ef9V9CG9Kv/BgwdLZPqjTCajsYOJOqRf2ybdjP1bOpvSyMFEGJkFBaYk616CEkp0dDQDBgzAysoKS0tLBg4cSEJCZkvo1q1bqV27NsbGxtjY2NCzZ09uhNzn9WjCtZ92YunHTXkW+jfrhnRmWqMyzPF+n5ObV2TZM+bZE77/sj/TGpVlZgsPDiycQlpKcrbyPbx+iY0juuP/oSvTGpVhrW9H7l/9I9OYwNXzmVTLnmehf7Nz8lCme7qxelB7AGJfPONHv5HMaf0BU+qXZnarqmz5oh9RTx5mWuP3XRtZ1LUJ3uVtcHJyYsSIEURHR2ca06xZM6pVq8atW7do3rw5JiYmlC5dmvnz5+f1z10kCGVfkFdUkkTAP+H7uogMCHgQi6qQh0vRfk9QlJQrV47Ro0ezYMECnjx5om1xigQrKysCAgIYPnw4n332GaNGjSItrWQay9PS0pg2bRqenp44Oztz7dq1d7LaviRJXLp0CX9/f2rVqoWLiwujRo0iJSWF+fPnExISwo0bN9Tt83I7U7Ru3ZpHjx5x69atYrqD/FPH3pg+7pZYGMi19r2XUXW/j7ulCN0XFBqh7AvyTffu3YmNjWXOnDl0796dzZs3M336dPXzs2bNon///ri7u7N48WLGjBnDsWPHmN67HYmxmSueJr6KZtPnPXBwr0rbL6ZjX86dQ8tn8PfZQPWY1KRE1g/z4c7vJ2jYYzDNB4/h/pXzHFw2I4tsIRdOs9a3I8nxcbQYMp5WIyaTGPuK9UN9CLtxOcv47RMGk5qUiPfn/6Nul34AbBs/kJsnfqV2x150mjSPRj0/JTk+juinj9TzAlfPZ9/ciVjYO9B+7HR8fHxYs2YNrVq1IjU1sxcxKiqK1q1bU716dRYtWkTlypWZOHEiBw8eLNh/gAYQyr4gr4S8SiFah8L3/4sERKeoCH1VOO9++fLlAaHsC4qOyZMnY2JiwpQpU7QtSpGhp6fH8uXLWbVqFd9++y3t2rXLYiTXNq8X4fPz83vnivAlJSXx66+/MmzYMFxcXKhTpw7Lli2jcuXK7Nixg4iICI4dO8bo0aPVRtC84unpibGxsVbPP3nBxUwfXw9ratunFw8sLqU/Y5869kb4eliLYnwCjSBy9gX5pmbNmmzYsEH9+OXLl2zYsIF58+bx4MED/Pz8mDlzJpMnT1aP6di5C7Vr1+L8ro00H/yF+vqriHA+nrGSWu27A1Cncx/mt6tJ0J5tVGrcEoALP2/hxYMQes9bz/tenQCo26Ufy3s2yySXJEn8MnscrnUaM/CbH9QhT/W7fsKSj5ty5Ns5DP52d6Y5jhWr0nP2GvXjxNgYHly7SJsx/nzYf4T6erNBY9S/x0W94LdNy3Bv0IwB3/yAXC5nfHVbPDw8+Pzzz9m6dSsDBw5Uj3/y5AlbtmyhX790Y8LgwYMpW7YsGzZsoE2bNvn4y2sOoewL8sqlCN1vlykDLkUk4mZpUOA1zM3Nsbe3F8q+oMiwtLTE39+fkSNHMmrUKGrUqKFtkYqMYcOG4e7uTrdu3WjYsCH79+/Hzc1NqzK9y0X4nj9/TkBAAPv27ePIkSMkJCRQoUIFunfvTocOHWjSpIlGWicaGRnRrFkzDh06xLhx4zQgedGhL5fR0tmMSlaGbLsWBiYWyJCQikD1z/iOtTSQ066suVDyBRpFePYF+WbYsGGZHjdt2pSXL1/y6tUrfv75Z1QqFd3/z96Zx8d0vX/8PUv2TTYSEiKWkFD7Elsp1YQk1FrUXqmWoqVVbWlLraXaX2unqNraohVEixL7lqBfsYsgJCQx2deZub8/phmmCbLMZDJx36+Xl8ydc8957iRz7/mc5znPM2AASUlJ2n8u1arh4uldqEyeubUNzXr2176Wm5nj4decR/dua49dPbofO5dqNOoW8vg8K2ta9xmm01f81f+RfCeGpoF9yUp5RKYimUxFMnnZWdRt3ZHYqBOo1bppidv0Ha7z2szCEpmZOTFnj5GdVrS34capw6jy82g/5G2kUs1XSCkIjBkzBnt7e3bv3q3T3tbWljfffPOx7ebmtG7d2qiiQRT7IsVBkasiNj3fpIU+aCZRt9LzUeQWv7RZUYjl90QMTWhoKPXr12fKlCkVcl+zPunatSunTp1CpVLRpk0bDh06ZDRbUlNTGTJkCMOGDaN3796cP3++Ugt9QRCIjo5m3rx5tGvXDjc3N0aPHs3Dhw+ZMWMG0dHRXL9+nW+++YYuXbroRegXEBgYyJEjR8jIyNBbn4bERabku/4dSNizHi87zYKxvuR+QT9edmb087Yn1Ff05ovoH9GzL1JiatasqfPa0dER0ISrX79+HUEQqFevXpHnSuW6NzGHqtULJR2xsncg4frj/VwpCXE4e9Yu1M7FS9cLkHRHMwn/dcb4p9qem5GGlX2Vx7bXqKXzvtzcgoAJ09mz+HNmd/PFs3ELGnTsTvOgAdi5VNPYE38XANdaj8dXqcHa3Bxvb29u376t06eHh0ch2x0dHfnnn3+eaqehEcW+SHE4l2T6Xv0CJMD5pBy61Ch9PWVR7IsYGjMzMxYsWECvXr0IDw+nR48exjbJoNSvX59Tp07Rv39/Xn31VZYtW8Zbb71VrjYcPXqUN998E4VCwaZNmyrt3vz8/HyOHDnCzp07CQsLIyYmBhsbG7p3786PP/5Ijx49qFq1qsHtCAgIYMKECRw8eJDg4GCDj1dW1q1bx8MHDxg/sBd16zqgyFVxPimH88k52nLSUgmoi/GgfLKdhUxCU2dLmrpY4mghzsVEDIco9kVKzNMEoiAIqNVqJBIJ4eHhOu3yVGq230rH3Ep3oi19Rl8lpeCcwElfUN2nUZFt/ju+mYVloTYdhoylYafXuHQonGsnDrJv2TwOrf2OMSu2U73BS0X2K3tGjMyzPi9jIYp9kechCAIXkk0vA//TEIDzyTl0rl76rMbe3t4cOXJEv4aJiPyH4OBgOnfuzJQpU+jevTtyeeWeqjk6OhIeHs7EiRMZM2YMly5d4uuvvzb480mpVDJz5kxmz56Nv79/pdybr1Ao2Lt3Lzt37iQ8PJzU1FRq1KhBSEgIwcHBdOnSBUvLwvMgQ1KvXj3q1KlDeHh4hRf7SqWSBQsW0L9/f+02E0cLGV1q2NC5ujWKXDUJWUoSspXcz8wnIVuJUl24H7kU3KzkVLcxw81Kjpu1HEcLqZhhX6RcqNxPEJFyp06dOgiCQO3atalfv772uFIt8M+F5FL1WcXNgwc3rxSqb50Ue0OnnZOHFwCWNnbUbfNyqcYqwNmzNh2HvkvHoe+SdOcm//fGKxzZsIyBs5dRxd0TgMTbN7RjyiUS8vLyuHXrFt26dSvT2OWBKPZFnsejXJXWa2FMDq5ZTFVvH/y6lN3DmasSUOSqcbIs3d+9t7c39+7dIycnp9wnyCIvDhKJhEWLFtGyZUtWr15daOtcZcTMzIylS5fi6+vLxIkTuXr1Kps3bzZYmbuYmBiGDBnCmTNn+Pzzz/nkk08qzaLKzZs3td77w4cPo1KpaN68Oe+//z7BwcE0a9bM6CIzICCA3bt3F5rXVTS2bNlCbGwsO3bsKPSeRCLByVKGk6UMXyyAf51egmZrp0qtcQTJJRKkEir0dYpUbsQ9+yJ6pU+fPshkMr788ksdz7VMAjKJQGbKoxL36dOhG2mJCVzcv1N7LC87i9Pbf9JpV6NhE5w8vDi8YQm5WYX3gmUokp47Vl52Fvm5OTrHnDxqY2FjgzJfU+qvbptOyMzMOb55FYIgIJdqQrPWrFlDamoqPXv2LPE1ljei2Bd5HglZFaMk1qEfv+XSoT16668s1+Xt7Y0gCIW26oiI6JvmzZszdOhQZsyYQVpamrHNKTfGjx9PeHg4x44do127dnrfNiMIAhs2bKBp06Y8ePCAI0eOMGPGDJMW+iqViuPHj/Pxxx/j5+dH3bp1mTZtGlZWVvzwww/cvXuXyMhIPv/8c5o3b14hRGdgYCCxsbFcu3bN2KY8FbVazbx58+jRo0exk2VKJBJkUgkWMinWZlIsZFJkUkmF+MxFXlxM9+4mUiGpU6cOX331FdOmTSM2NpbevXtjZ2fHrVu3+OmXbTTrPVQny31xaPX6UE5sXcMvM8Zz7/IF7FyqcW73r5hZWuu0k0ql9J3xLWvfe4Nv+3WkRcgg7Ku6k/YwnpizR7GwsWP4dxufOVbSnZusHtuXl17tRVXv+khlcqIP7iEjOZEmr70OgK2jC51HTuTAyq9ZO24A/t17MHHNXZYuXUqrVq10kvFVVESxL/I8ErKUSIEiIhINjiAIKHNzMLPUb31hqQQSspVaL0xJKSi/d+vWLXx8fPRpmohIIWbPns2vv/7KvHnzmDNnjrHNeS6CIKD616upVoP0X6+mrIReze7du3Py5EmCgoJo06YN27dvp2PHjmW2LzU1lXfeeYfNmzczdOhQfvjhB4NFDhiajIwM9u3bx86dO9m9ezeJiYm4uroSFBTEV199xauvvoqtra2xzXwqnTt3xtzcnL1791bYe+muXbuIjo5m+fLlxjZFRKRMiGJfRO98/PHH1K9fn8WLF/Pll18C4OnpSZuXu1Lv5YAS92duZc1by7ezc8E0jm9Zg7mlFU0C++LTvitrxw/Uaevdsj3vrNvD36sWceKXNeRlZWLrXBXPRs0LZd4vCodqNWjy2uvcPH2Ec7t/QSqT4+pVj8HzV9Oo6+O9Zd3GfoSNozMnflnDprmf4uzkRGhoKHPmzNFr1lpDIYp9kecRn6V8qtDfv3wBB1Z+zfvbjrN/+TyuHf8bqdyMZj36ETBhhjYXxtk/NnFu9688uHmFnIw0nD288H/jLdr2H6nT3/yezalWpwHt3niLv5bM4cHNK7z23mfsXjQdgKiwrUSFbQWgefBA+n/5A7mZGfy1dC6XDoWTnvQAS1t73Ov7ETBhOjUaNinSbrUA9zPzS/2ZeHh4IJfLxSR9IuWCh4cHkydPZuHChYwdO7ZQclxjIggCj3JVmv3KWUri/923/Kz9yu7Wmr3KbtZynCxkz1wAaNCgAadOnaJfv3507dqVlStXMmLEiFLbe+zYMYYMGWLSSfji4uLYtWsXO3fu5O+//yY3NxdfX19Gjx5NcHAwbdq0MZlnuo2NDS+//LI2V0NFQxAE5syZQ4cOHejQoYOxzRERKRMSobLXdhGpMEQ/yiHstmmUWikJIbXs8HUqnafQWKxYsYJ33nmnUClCERHQTHQW/ZNc5MQdHot9t7q+OFb3pJ5/F+78L5Lze36lWc8BDJi1BIAlQ7tTzdsHt/p+SGVyrhz+k+snDxEydR7+A0dr+5vfszkyuZysVAWt+w7D0b0mrl51SX1wn+2z3sfDr5m21KaThxe1mrRiy6djubg/DP+Bo6nqXZ+sFAW3z5+icffeNOvR76nXJpfC5JecSx1WWa9ePXr16sXChQtLdb6ISElIT0+nXr16dOvWjZ9//tnY5qDIVXEuKYcLT2Yip3gRQE+2s5BJaOJsSbPnZCLPy8tj/PjxrFq1ig8//JC5c+eWSNAqlUpmzZrFV199hb+/Pz///LPJJOETBIFz585p999HRUUhk8no1KmTNsFenTp1jG1mqfnmm2/49NNPefToEVZW+o3iKisHDx7klVdeYffu3ZW+IoZI5Uf07IuUG27WlfPPzRSvS6VSmYwHQKT8UQk8Veg/iWONmgxbvAEA/4GjsbSx5eSva+k49F3c6/sRuuoPnVD8dm+8xY/jBnB043IdsQ+QfPcWI3/YSv12r+gc/33OFJw8atGsZ3+d41eP7KPV62/S84OZTxx977k2K9UaD7+slFsoxfJ7IuWJnZ0dM2fO5O2332bSpEm0bNmy3G1QCwI30/KITMwhNj2/UDnO4i4ZP9kuVyVw5mE2px9m42VnRgtXS+rYmyP9zyKcubk5K1aswNfXl8mTJ3PlyhU2btyInZ3dc8czxSR8OTk5HDx4UCvw7927h4ODAz169GDKlCkEBARoyx2bOoGBgUyePJlDhw4RGBhobHN0mDt3Lk2aNKlwdomIlAYxQZ9IueFkIcOitDPsCoqFTIKjhel9jUSxL/IslMUM+Go7YJTOa/83xgBw9dh+AB2hn5OeRqYiGe8W7XgUF0tOum7SMccatQoJ/WdhaefA3YtRpCUmFPucAop7fUUhin2R8mbUqFH4+fkxefLkci/Zejcjn5WXFGyLSed2umYLjL4sKOjndno+22LSWXlJwd2MwttsJBIJkyZNYteuXRw6dIj27ds/M0mmqSXhS0xMZN26dfTp0wcXFxd69OjBX3/9Rf/+/fn7779JTEzUbj2oLEIfNFs1atasyd69e41tig6RkZHs27ePjz/+WEysJ1IpMD2VImKySCSasL3KcuuUAE2dLU3yYSCKfZFnUdzdHS41vXVeO3t4IZFKUdy/C0Ds+VOsHtuXGe1q8eXLdfiqawP+/GE2ADkZumLfqXrJ9iMHTpzBg5tXmBfYhCVDu7N/+QIexcUW61xVGXavFIh9cQecSHkhl8tZuHAhhw8f5o8//iiXMfPVAvvjMth4PZXUPM0XxlB/8QX9puap2Xg9lf1xGeSrC48WGBjIiRMnyMjIoHXr1hw/frxQm9TUVIYMGcKwYcPo1asX58+fx9/f30CWlw5BELh06RLz5s2jffv2VKtWjVGjRpGQkMBnn31GdHQ0N27cYPHixXTp0sUk8gCVBolEQmBgIOHh4cY2RYe5c+dSt25d+vfv//zGIiImgCj2RcqVZi6WBpswlDcC0NTFNGtti2Jf5FlIS/tkeGLhK/nuLdaM7UtWSjI9P5jJ8P/bxOhlv9F+iKZmuCDoKm65Rcm+Sy91782HO88Q/NFc7F3dOPzTEhb376iNKngWsjI8+by9vUlPTyc5Obn0nYiIlJCAgAC6d+/ORx99RF5enkHHupuRz+rLCiITNWVoy+uZXTBOZGIOqy8X7eX38/Pj9OnT+Pj40KVLFzZs2KB979ixYzRp0oTdu3ezceNGNmzYUGGy7efn53Pw4EHef/996tati5+fH7NmzaJatWqsWbOGhIQEbfk8X19fk3QilIaAgACuX7/OzZs3jW0KAFeuXGH79u189NFH4hxJpNJQMWOaRCotjhYyvOzMuJ2eb9KiXwJ42Zk9M7FQRUYU+yLPQl7MiWbSnRicatTSvk6+ewtBrcaxuieXD/+JMi+XYYt/poq7h7bNzTNHS2bMM2yxd3XDf8Ao/AeMIuNRIt8P7srBNYvxad/tmV0W9/qKwttbE80QExODi4tLqfsRESkpCxcupGnTpixfvpwJEyYYZIyzidnsj8sstC+/PBGAtH+9/N08bGjpqpu8zcXFhf379zN27FiGDRtGdHQ05ubmzJ49G39/fw4dOlQhkvClpKQQHh5OWFgY4eHhpKSkUL16dW1yvVdeeQVLS9N0GOiLrl27YmZmxt69exk3rmRlmQ3BggULcHd3Z9iwYcY2RUREb4iefZFyp4Wr6Xv3BaCFa8XKHlsSlEplhd2/KGJ8ZBJN1vrncfKXH3Ven9iyCgCf9l2R/ruY9GS4e056GpE7N5fIFnMr60L7+9UqVaFjtk6u2Lu6oXyO11MuBWkZnGZPin0RkfKkcePGjBo1ii+//BKFQqHXvgVB4FhCFvvjMjWv9dp7Kez59//9cZkcS8gqtG3G3NycNWvWMG3aNObPn8+sWbOYOnWq0YV+TEwM3377LV27dsXV1ZXBgwdz9epVJk6cSGRkJHFxcSxbtowePXq88EIfNAkoO3ToUCFC+e/cucOGDRv44IMPsLAwrQpLIiLPQpzti5Q7dezNqWIuJTVPbfQJRWmQAA7mUrztTXcfnejZF3kWEokENys5cZnKZ7ZT3LvDT5PepF67V7jzz1nO7/mVJoF9ca/fCLm5JTIzc36a9Cat+w4jLzuT09s3YOsTaAjuAAAgAElEQVTkQnrSg2LbUqNhE26ciuDIz8uwd3XDsbqmLN+8gJdo1C0Y93qNMLe24capCOKiz9FDJzt/Ydys5GUKkXVwcMDR0VEU+yJGYebMmWzevJnZs2frtfzj8QfZHInP0lt/+qTArvZu1jrHN27cyA8//EC1atVIS0sjPDycd955B09Pz3KzTaVScfr0aW32/IIog65du/J///d/BAUFlas9pkhAQABffvklOTk5Rl0AWbRoEXZ2doSGhhrNBhERQyB69kXKHalEQs9adiYp9EHjcQiqZVeoRJApIYp9kefhbi1/7gNi0LxVyMzN+fP7WVw9ug//gaPpO+NbAFy96jJkwY8gkbDn2y849dt6WvcZRrtBJZtI9fxgFjUaNmHf0rlsmRbKqd/WYmZpRdv+o4i/epH9K+aze9FnJN2+Qa9pC+j45jtP7Usqgeo2ZV+k8/b25tatW2XuR0SkpLi7u/PRRx/x/fff623B6ezDiiv0CzgSn8XZxGzgcRK+oUOH0qtXL65du8apU6dQKBS0atWKU6dOGdSWzMxMfv/9d0aNGoW7uzvt2rVj9erVtGrVim3btpGcnMyePXvKfeHBVAkMDCQrK4sjR44YzYbExERWrVrFhAkTilXWUUTElJAIYkphESOxPy6DyMQckxL9EqClqyVdPWyNbUqZmD59OuvXr+fOnTvGNqVSIwiCpma9IKBWaxLfySUSZBIqfAKm6Ec5hN3OKPK9/csXcGDl13x24Ao2js7lbFnZCKllh69T2UI0BwwYQHJyMgcOHNCTVSIixSczM5P69evToUMHtm7dWqa+7mbks/F6qp4sMzwv5dzh3UF9UCgULFu2jMGDB2vfe/jwIa+//jqRkZGsXbuWQYMG6W3ce/fuERYWRlhYGAcOHCA3N5eGDRsSEhJCSEgIbdq0ERfQS4kgCHh6ejJw4EAWLVpkFBumT5/O4sWLuX37Ns7OpvVMExF5HmIYv4jReLm6DddT80gzkXB+CWBvLqVTdRtjm1JmRM++/hEEgUe5KhKylCRkKYnPUpKQrURZRJk3uVQTTu5uLcft339OFrIKtQDgZl05Hw/6uC5vb2/OnDmjB2tEREqOjY0Ns2fPZuTIkUyaNKnUpeXy1QK7bqcbNRlfSRDUag4lQ02v2hw8eJDatWvrvF+1alX+/vtvQkNDGTx4MJcvX+aLL75AWoryIoIgcP78eXbu3MnOnTuJiopCJpPRqVMn5s6dS3BwMHXr1tXXpb3QSCQSAgICCA8PN4rYT0tL44cffiA0NFQU+iKVkso5mxMxCcykEoJq2ZmMV6EgfN+sLNm9Kgii2NcfilwV55JyuJCcQ65KM2WWAs8q5a5UQ1ymkvuZSm07C5mEJs6WNHOxrBBVHpwsZFjIJNprqgxYyCQ4WpR995q3tzd37twhPz+/0tbAFqnYDBs2jO+++44PPviA48ePl2qhMOJ+pskstgNIpFIcq3sy/aed1K5ZdKi1hYUF69atw9fXl2nTpnH58mXWr1+PtbV1ke2fJCcnh4MHD2o9+HFxcTg4OBAYGMiUKVMICAjA0dFR35clgmbf/po1a7h9+za1atV6/gl6ZMWKFWRmZvLBBx+U67giIuWFuGdfxKh42prRzcM0POXdPGzwtK0cE3tR7JcNtSBwPTWXLTdSWXFJwZmH2Tqi+FlCX6efJ37OVQmceZjNiksKttxI5XpqLmoj7rKSSDSLD4K6uFdTsZEATZ0t9RI94e3tjVqtFrfBiBgNqVTKokWLOHnyJL/++muJz7+bkc9ZE9tGB5r7UmRyLncz8p/ZZurUqWzfvp09e/bQqVMn7t27V2TbxMRE1q1bR9++fXFxcaFHjx7s3buXvn37cuDAARITE9m8eTODBg0Shb4B6datGzKZjL1795bruDk5OXzzzTcMGzYMDw+P558gImKCiHv2RSoExxKyKnSCoI7u1oUyAZsy77//Pn/++SeXLl0ytikmx92MfHbfTiclT22w8NeCfquYS+lZy85oi0x3klLYdPfZGflNibd9HfUSNRETE0OdOnX466+/ePXVV/VgmYhI6QgODiY6OprLly8Xu1yYWhBYeUlh8hVxQn0dn5so9/z584SEhKBUKtm5cyctWrTgypUr2vD8EydOANC2bVuCg4MJCQnB19e3Qm2pelHo2LEjLi4u7Nixo9zGXL58OePGjePKlSvUq1ev3MYVESlPRM++SIWgXTUrOrpXTDHdyd2adtWsjG2GXhE9+yUnXy2wPy6DjddTSc3TeLsNNVEu6Dc1T83G66nsj8sgX13+0/KfVy7lxqkIJCYpCR4jAWrbmelte4SnpycymYybMTEo1QI5KjVZ+WpyVGqUaqFQTXAREUOxYMEC7ty5w/fff1/sc26m5ZFiokIfNPfHlDw1MWlP9+4X0LRpU44dO0aVKlVo27Yt7u7u+Pr6MnPmTKpWrcqaNWtISEjg+PHjTJs2DT8/P1HoG4nAwED2799PXl5euYynVCpZsGAB/fr1E4W+SKVG9OyLVCjOJmazPy7T6AmDCsbv5mFDS9fKJfQBxo0bx7Fjxzh//ryxTTEJ7mbks+t2utH2txYkhwwqRy9/ZmYmXl5eDJv8Ga6vDSmXMQ1JP2976jqYl/r8/yZg3BlxErf6fkjkhX8fppCAUaTy8O6777Jp0yZu3rxZrARjW26kcjs932TFPmjuiV52Zgys61Dk+ykpKezdu5ewsDD27NlDSkoKVlZWZGdnM2TIEFauXFmsffwi5UdUVBQtWrTg4MGDdO7c2eDjbdq0iSFDhhAVFUWzZs0MPp6IiLEQPfsiFYqWrlYMqeeAvbkUY02LBbUae3MpQ+o5VEqhD6JnvyScTcxm4/VUoyayEoC0f738BbWmDc3KlStRKBSMG9iLKkb8PpYVCZrtEN72pVskUeSq+PteJt/+7xGrLqcQdltTMtStYZMihT48TsAYmagpX7jqcgrf/u8Rf9/LRJGrKsPViIgU5osvvkCtVjNz5szntlXkqog1caEPmnvirfR8ne9TTEwM3333HV27dsXV1ZVBgwZx+fJlJkyYwNmzZ8nIyOCrr75i48aNjB49muzs8rmXihSPpk2bUq1aNcLDww0+liAIzJs3j4CAAFHoi1R6RM++SIUkXy0QcT+Ts4k55ebll6B5ABzduJxBreoz5I2B5TCqcRgzZgwXLlzg9OnTxjalwiIIAscfZFfIXBId/91aYihPcW5uLt7e3rz66qusW7fO5Gpx/5c36zngUYKICLUgcDMtj8jEHGLT8/V2Dyrox8vOjBaultSxN3/unmMRkeIwb948pk+fTnR0NPXr139qu7/vZXLmYbbJi33QfJ88lAqid6xl586dREdHY25uziuvvEJISAhBQUF4enoWOm/btm0MHTqURo0a8ccff+Du7l7+xosUyfDhwzl//jwXLlww6Di7du0iODiYiIgIOnXqZNCxRESMjSj2RSo0xkiG9uFbQ/nrr7+Ijo6utJOAUaNGcfnyZW1yIpHCvMhJI1esWME777zD5cuX8fHxAWB/nMajbUoPDAnQ0tWSrh62xT7nRUrAKFJ5yMnJwcfHh+bNmz81wdnp06cZGDqee1ejyc/J4r3Nf1Pdp3E5W6pfTvzyIzvnTaVv374MHjyYV199FTu7osvyPUlUVBQhISEAhIWFid7dCsKWLVsYNGgQcXFx1KhRwyBjCIJA+/btkUgkHD16VNxeJVLpEcP4RSo0nrZmhPo60s/bHi87zYRYX7flgn687Mzo521PqK8jnrZmLFmyBHNzc0JDQyttoi0xjP/ZnH1YMT36T3IkPssgIf1KpZL58+fTv39/rdAHeLm6jVG315SUgjwHnaoXr7Tni5iAUaTyYGlpydy5c/n999+JiIgo9H5+fj79+g8gM1VB0ORZDJi1FEf3wl5vU8PcUrPVbuHChfTp06dYQh+gefPmnD59Gnd3dzp06MD27dsNaaZIMXn11VeRSqX8+eefBhvj8OHDnDhxgk8++UQU+iIvBKLYF6nwSCUS6jqYM7CuA2/7OtK6qhUWMskT71MsUS594p5uIZPQuqoVb/s6MrCuA3UdHofTOjs7s3LlSnbt2sX69ev1fj0VAVHsP527Gfnsv5dpbDOKxf64zGfWmy4Nmzdv5tatW3zyySc6x82kEoJq2ZmMZ18AgmrZYSZ9/mTubkY+qy8riEzM0Z5bHhSME5mYw+rLCr3/LkVeLN544w1atWrF5MmTUavVOu/dvHmTu3du03Hou7TuO4xmPftjZV/FSJZWDKpXr05ERARBQUH07duXOXPmVNoFflPB2dmZ1q1bG3Tf/ty5c3nppZfo0aOHwcYQEalIiGJfxKRwtJDRpYYNkxo7EdrQkZBadrR0tSLj7k1UeblFniOXgoeNnJauVoTUsiO0oSOTGjvRpYbNU0txhYSEMGzYMCZOnMjdu3cNeUlGQRT7RZOvFth1O92kvNe7bqfrzSusVquZM2cOQUFBNGnSpND7nrZmdPMonqfc2HTzsClWePyLmoBRpPIhlUpZtGgRkZGRbNq0See9hw8fAmBlV3T2+pKSl10xFkTL6pi1trZmy5YtfPHFF3z66acMHTqUnJwc/RgnUioCAgLYt28fSqVS731HRUXx559/8vHHH4tefZEXBnHPvkiloEOHDtSpU4cf165DKQio1CCTglwiQSqhVDf1lJQUGjVqhJ+fH3v37q1UD4YBAwagUCjYt2+fsU2pULwo+9Kfxm+//Ub//v05ceIEbdu2fWq7ypDP4EVOwChSuenTpw9nz57l6tWrWFlZMWLEiEJRarVbtCN01R/cPH2E/cvnc+/K/5DJ5dRu0Y6A96ZT1ftxkr/9yxdwYOXXTPrtKAdXf8PVYwdwrO7JhM0Hmd+zOdXqNKDTsHHsWfw5D2Ku4uxZm5CP5uLdsj0XD+xi/4oFJN+Joaq3D31nLKZ6g5d0bHl46zr7ls7h5pmj5OdkU61OA14JnYLvywE67R7cvMLO+dO487+zWDs40qbfcOxd3Ng2cxK3bt3Cy8urTJ/b1q1bGTFiBE2bNuX333+nWrVqZeqvJAiCgEoApSCgVoP03/mLrJTzF1Pm9OnTtGnThiNHjtChQwe99j1gwAAiIyO5evUqcrlcr32LiFRURLEvUimoU6cO/fr1Y/78+Xrtd+/evQQGBrJ8+XLefvttvfZtTPr27UtmZiZ79+41tikVBlPPOD+knkOZEr0JgkCLFi1wdHTkwIEDz21bUYVyJ3dr/IshlCvDgoWISFFcv34dX19fZs6cybRp0zhx4gRhYWHMnTuXdoPG4OHbDFtnVyQSCWvfewOnGrVo1ftN8nNzOLFlNWq1ivc2HcCxek3gsdiv6u2DS01v6vl3QRAE/AeMYn7P5phZWJCTkU7rvsOxtLXjyIal5GSk0fuThfz1w2zaDhgJwKEfv8PG0ZkPdpxEKtUElj64eYXlI3tiX9Wd5kEDMbey5n/7/iD23EmGfL0Wv1d6ApCe9IDvBnZGrVLSblAo5lbWnN7+E2YWViRcjyYmJobatWuX+bM7c+YMvXr1Qi6XExYWVmSEU1kRBIFHuSoSspQkZCmJz1KSkK1EqS7cVi4FNys57tZy3P7952Qhq9QLACqVimrVqjF27Fi++uorvfV77do1GjRowLJlyyrVfE5E5HmIy1oiJo8gCMTHxxskc35AQABjxoxh8uTJdO/eXS+TiYqAGMavi1oQ2P1v+L4prn5KgN230wn1dSx1Kbfw8HDOnTvH33///fzxJBLau1ljIZOwPy7T6J9bwfjdPGxo6Wr13PamkoDRQiYp1vWIiDxJvXr1GDduHHPnzmX06NH4+/uTlZ3D3Llz8WrWlsbdNFno/29QF6ztHXlnXTjWDo4A+HYO5PvBr7Bv+XwGzFyi0697fT/emLOi0HiJsTcYu3YPtZq0AqCqtw9rxw1gx1cf8MG241Rx9wDAyq4KO2ZPJjbqBN4t2wMQ9vWnVHHzYNzPfyE3twCg7YBRrBjVk/D/m6kV+xHrvidTkcS7P/2JZ6PmADQPHsiiXm0A0Fd+y1atWnH69Gl69epF+/bt2bRpkzZrf1lR5Ko4l5TDheQcclUag6VAERpfi1INcZlK7mcqte0sZBKaOFvSzMXyqVsRTRmZTMZrr71GeHh4IbFflgiI+fPn4+bmxvDhww1pvohIhUPcsy9i8qSnp5OdnW2wMnmLFi3CxcWFkSNHFkp6ZKqIYl+Xm2l5pBhxz3ZZEYCUPDUxaaVL8CYIArNnz8bf35/OnTsX+7yWrlYMqedg1Cz9BVn3h9RzKJYwftETMIq8GMyYMQOZTMbnn38OgOo/QZxpiQnEX71I8+A3tEIfNIK+bpuXuXa0cHRPm75Fi6Sq3j5aoQ9Qs1ELALxbdtAKfQDPxhqR/iguFoCsVAUxZ47QuHsIuZkZZCqSyVQkk5XyiHr+r5B8J4bUh/EAXD22H8/GLbVCH8DW0YWmgX0BjfjTFx4eHhw+fJiAgAB69+7NggULSp24Ty0IXE/NZcuNVFZcUnDmYbZW6MOzhb5OP0/8nKsSOPMwmxWXFGy5kcr11FzUlSxINyAggHPnznHt3gOiH+VwIC6Dn6+lsOifZBZeSObbfx7xfxcf8e0/j1h4IZlF/yTz87UUDsRlEP0oh+Qcpc7vLC4ujg0bNvDBBx9gaWlpxCsTESl/RM++iMkTH6+ZDBhK7NvZ2bF27VpeeeUVfvjhByZMmGCQccoTlUqFhYWFsc2oMEQm5hjdO11WJEBkYjZ1HcxLfG5ERATHjx9n165dJQ4P9bQ1462GjkTcz+RsOX6OBeO0dLWkU3WbYmXdfzIBoyn8rgsSML7V0LFY1yciUoCTkxPTp0/nww8/5L333ivk+U6JjwPAtVadQudWrV2f6ycOkpedibnV44ScjjVqFTlWFTfdeuiWdvZFH7fVHM9O12yXSr57C0EQ2Ld0HvuWziuy78xHiThUdSclPg7PfxcRnsTFqy4A+l6Ht7Gx4ZdffuHzzz9n6tSpXLp0iRUrVpTouXk3I5/dt9NJyVNrF0P1dd8p6Od2ej6x6flUMZfSs5ZdmbZyVRQUuSoc2wYw/dB1tj+UARlljoBYtGgRtra2Yvi+yAuJKPZFTB5Di32ALl26MH78eD7++GMCAgKoX7/+80+qwIie/ccoclXEppu+91QAbqXnayZKJQztnD17Nk2bNi11KSIzqYRuHrb4VLHQmdwaQlAX9OtQisltxP1Mo2bdLykFWfoP38/USwJGkReLcePGsWTJEj788EPefW9imfszsyjaIyqRFn2/kUiLDh4t8LgK/yr0jkPHUb9dlyLbOnt6F8u2pwxVJqRSKbNmzaJhw4aMGjWKGzdusGPHDlxdXZ95Xr5a0Fn8BMMtLhb0m/pvNY+Wrpa8XMzFz4qEWhC4mZZHZGIOsen5SJDoVI4oSwTE6YfZZPh0ZOJXL2FjK95HRV48RLEvYvIUiH03NzeDjjNv3jzCw8MZMWIER44cMWmxLIr9x5xLMn2vfgES4HxSDl1qFL883qlTp9i/fz+//PJLmZM+edqaEerrSExaPpGJ2dxKz9fbZ1vQj5edGS1crfC2NytRfoK7GfmcTTS9kloCcCYxh/pVLCqF106k7AiCQFpaGomJiSQlJZGYmFjo54LXGRkZ7Nmzh71//qXTR0F4feLtm4X6T4y9jk0VZx2vviFw8tBECsjkcuq2efmZbau4e5B0J6bQ8aTYG4Bm37ahGDx4MN7e3vTu3ZvWrVsTFhZGo0aNimx7NyOfXbfTScvTyM7yeq4UjBOZmMP11DyCTMjLXx4REF4t2iGTy1l5SVFpIiBERIqLKPZFTJ74+HhsbGyws7Mz6Dg2NjasW7eOTp068c033/Dhhx8adDxDIop9DYIgcCG57KX2CrJVz41K1ItdpUUAzifn0Lm6dbGF++zZs/Hx8aFPnz56sUEqkVDXwZy6DuYoclWcT8rh5L0UJGYW/75fvGRaT7azkElo6mxJ01ImpBITMIpUZFQqFcnJyUWK9qIEfFJSEnl5eYX6qVKlCq6urri6uuLi4kLjxo3p0qULW7duJTMzk8TEx/cne1c33H0aEbVrC51HTdR6URNuXOb6yUM07dHP4Ndt6+SKd8v2nNr+E/5vvIW9q+6CfYYiCVtHFwB82nfj2KYV3L0Ypd23n6FI4nz4NkBzvzAkbdu25fTp04SEhODv78+WLVvo2bOnTpuzidlGT1haEA208XpqsROWGovyjICQ/Vtmz9QjIERESoMo9kVMHkNl4i+KDh068P777zN9+nR69uyJr69vuYyrb0Sxr+FRrkonWVJlIFcloMhV42T5/N/vP//8Q1hYGOvXrzfI34OjhYwuNWyYM/J1HNw9mbl4KQnZSu5n5j+31FR1GzPcrDSlphwtpGWKOihIwGiqPJmAsTQ5GUTKl+zs7GKJ9oKfFQpFoQRwcrkcFxcXXFxctAK+QYMGOq+f/NnZ2Rkzs6K9lb1798bf37/Q8R6TvmDte2+wbHggLXsP0Zbes7S1p9vbHxnks/kvIR/PZ8WoIL4b+DKtXn8TpxpeZDx6yJ1/zpL6IJ6JWw8B0Gn4eM7t+ZW14wfqlN6r4u5BwvVLLFy4kPbt29OoUSN8fHwMkpOmZs2aHD16lDfffJPg4GAWLlzI+++/D6BTitTYT5SC8ffHZZKrEmhXjFKk5Y0YASEiUn6IYl/E5ElISCg3sQ/w1VdfsWfPHoYPH86JEyeQy03vaySKfQ0JWUpjm2AQErKUxRL7c+bMwcvLi0GDBhnMlvz8fI4fO8YXX3yBr5MFvmgm4YIgoP63hJJKDbJ/SyhJi1FCqaS86AkYRUqPIAikpqYW2+uemJhIZmbhag/W1tY6Ir127dq0bt26kGgveF2lShW9fQ/atm1Lly5dOHjwoE7VjLptXmbk91vZv2I++5fPRyqX4928HQETZuD0lGR8+qaatw/jf97H/pVfExW2hawUBTZOLlT3aUzX0MnadvauboxZsYOdC6YRse7/sHZwpE2/4dg5V2X7rA/Ytm0bS5cuBTSl2+rVq0ejRo3w8/PT/l+vXr0yP69tbW3Zvn07n376KZMnT+bSpUsM+2IxxxNzy9SvoShYgGjvZm1kSx4jRkCIiJQvEqG09URERCoI3bp1w9nZma1bt5bbmKdOnaJdu3Z8+eWXfPbZZ+U2rr5o06YNjRs3ZvXq1cY2xagciMsgMjGn2Ml/nkZFCeMHTThrS1crXnnOvv1r167RoEEDli5dytixYw1mz8mTJ/H39+fUqVO0bt3aYOM8DUWuihWXFOU+rqF429exUtbWLi+USqU2FL44XvekpCSUysKLgk5OTkWK9Kf9bG1tXLF169Yt+k/4mH4zlxjVDkMQUssOXycLUlJSiI6OJjo6mosXL3Lx4kWio6N5+PAhAObm5jRo0EBnAaBRo0bUrl0baSky/P3000+s3neCHh/M0vcl6Z2KIGgFQdCJgKhIdHS3rpARECIi+sD0XJIiIv8hPj7+qclyDEWbNm2YOnUqM2fOJDg4mCZNmpTr+GVF9OxriM9Slljox547ya5F03lw4zL2Vd3pNGx8oTYqpZJDa78jKmwLqQ/uY+dSjaYBfej69ofIzTWe7V2LphO1ayvT/76qnWDsnP8xJ7auIejD2bQfFApAevJD5rzqR69pC2jbf+Rz7VMLcD/z+dUF5s2bh5ubGyNGjCjB1ZeciIgIbGxsaNasmUHHeRovegLGyk5WVlaJvO4KReGFHzMzM604L/jf19f3qV53Z2dnk4voql27Nt1aG+c7aGjcrDW/iypVqtC+fXvat2+v835iYqJ2AaDg//DwcFJSUgCwsrLC19e30CKAp6fnM8Vflz6DuN8o0HAXpkf2x2VSzUpu1JD1iir0oWJGQIiI6AvTelqJiBRBfHy8wTPxF8Xnn3/Orl27GDZsGGfOnMHc3HTCa0Wxr/EyJGSXLIw/4folfhw3AJsqznR9+0PUKiX7V8zH1qmqTrvtsyYRFbaVRt2C6fDmO9y9GMmhtd/xMPY6QxetB6B2s7Yc27icBzev4Fa3IaBZSJBIpcSeO6kV+7HnTmraNy+85/apdmYrEQThqRPV27dvs2HDBubPn4+lZdHltPRFREQE7du3f+p+YkOirwSMpSVy52Z++2ICH+2KxLF6TQBWjukFQOiqP0rcX2kSMJoSarWalJSUEnnds7IKiwdbW1sdkV6vXj38/f2L9Lq7urpib29fKT/P/zJ1/Nt8d1GhrXdfGbCQSXC0eLZX3tXVlc6dO9O5c2ftMUEQiI+P11kAiI6OZvv27WRkZABgZ2dXaAHAz88PNzc3lALsup2ORCIxiYVECRp732roaJSkdGcfVlyhX8CR+CwsZBKjR0CIiOgbUeyLmDQ5OTkoFIpy3bNfgIWFBevXr6d169bMmjWLWbMqfihfAaLYB5VAkQninsW+5fMRBIG314RpS1c1eiWY7wZ20raJv3aRqLCttHr9TfpMXwyA/4BR2Dq6cmTDEm6eOUqdVh2o1awNoBHzbnUbkpOeRsKNyzTqGsStqBPa/mLPncTKwZGq3j7FtlOp1nj4ZU+Z0y1YsAAHBwfefvvtkn0AJUSlUnH06FE+/vhjg47zNF70BIzGJj8/XyvOiyPgk5KSUKlUOn1IJBKcnJx0RHqLFi2e6nV3cXHBykqcrBeFo6MjdikXybG01mYnN2UkQFNny1It1EgkEqpXr0716tXp3r279rharebu3bs62wAiIyP5+eefycnRlO50cnKi32cL8erUE0kpwv+NQcEe9cP3M+nqUb615u9m5LP/XuE8FhWRihABISKib0z/bi/yQvPgwQMAo4h9gGbNmvHZZ58xa9YsQkJCaNWqlVHsKCmi2NckhisJapWK6ycO4ts5UCv0Aap616eefxeuHt0PoP2/w5B3dM7vOM5jeyIAACAASURBVPQdjmxYwtWj+6jTqgO2ji64etXjVtQJ2vYfSeyFU0ilMjoOG8//9u0k6c5NXGrWIfbcSbyatinxhFYpCMgofE58fDxr1qxh+vTp2NgYNhz8/PnzpKen06lTp+c3NgDGTsDYrOcAXnrtde3WDX1R3ASM+kQQBDIzM0vkdS8Ik34SMzMzHYHu7u5O48aNn+p1d3JyeuHvVfoiNjaWh1GHcQxpaGxT9IIANHXRb2SSVCqlVq1a1KpVS6e0nkqlIiYmRhMFcC8JmX+QyUWDCMCZxBzqV7EoNzGbrxY0ERCYxlYqY0dAiIgYAlHsi5g08fHxgPHEPsAnn3zCzp07GT58OFFRUQYPi9YHotgHdQm9+pmKJPJzsnGp6V3oPZdadbUiXxEfh0Qqxdmztk4bO5dqWNo5oIi/qz3m1awtV49pzos9d5Iavk3x8G2KlYMjsVEnsXWqSvy1aJoE9C3h1YFKDRTxK/7mm2+wsLBg3LhxJe6zpERERGBpaWm0RbCELCVSKHMCxifJy87E3Kp4iyRSmQypnr9nUolmm0ZBVYPSolarUSgUxRLtBT8XeDafxM7OTkeo+/j40KFDh6cmr7OzszM5kWTKqNVq/vrrL5YuXcquXbuwt7dnrG977LwamLR3XwJ42ZmVW7LKggz/derWJeGSgtQ8tUmI1/8iAXbfTifU1xFpOXwPI+5nkmZCn5UxIyBERAyF6d7pRUSoGGLfzMyM9evX06JFC2bMmMGCBQuMZktxEcU+GDz6shgTKa9mbTizYwOP4mI1HvxmbZFIJHg1bUPsuZPYubohqNV4NWtb4uFlRVxfcnIyy5YtY+LEiVSpUqXEfZaUw4cP4+/vb5Ca18WhNAkYn6SgysKk345ycPU3XD12AMfqnvT/8geOblzGraiTpCcmYGlnj0/7bgRO+gKbKk7a84vas19WnpaAMS8vr0Re9+Tk5CJD5p2dnXVEeu3atZ/qdXd2djaJxc0XkUePHrFu3TqWLVvGjRs3aNKkCStWrGDw4MHcz5ez7Va6sU0sEwLQwgh7q2+m5ZGSp8/lw/JFAFLy1MSk5Ru8jOfdjHzOJhZeIKzoGCMCQkTEkIhiX8SkiY+PRy6X4+Tk9PzGBqRRo0Z8+eWXfPLJJ/Tu3Zt27doZ1Z7nIYp9TU33kmDj6IKZpRVJd2IKvZd0+4b2Z0d3DwS1muQ7MVT1rq89np78kJz0VBzdPbXHCkT89ZMRxEWf5+UREwFNMr6Tv67FztUNcytrajQsebWHoq7vu+++QxAEJk2aVOL+SoparebIkSNMmDDB4GMVRWkSMD6NTR+NxqWmN6+N/xRBELhxKoJHcbdpETIIO+eqPLh5hTM7NvAg5irvrt9rcM/1nZQsgoOH6gj4tLS0Qu0sLCx0hHqNGjVo2rTpU73ujo6OL/x9wdSJiopiyZIlbN68GaVSSf/+/Vm/fj3+/v7av8s6goCVkE+mWoJUZnrTQAngYC7F2778hVhkoulX95AAkYnZBhX7akFgtwmF7/+X8o6AEBExJKZ3lxcReYKCTPylqZGrb6ZMmcLvv//OiBEjOH/+vNHrKj8LUexrktfJpcVP0ieVyajn34VLh8JJiY/T7tt/GHON6ycOatv5dOjGnz/M5timFbz+2SLt8aM/L//3/Ve1x5xq1MK+qjvHNi1HrczHq6mmDr1Xs7bsWfw5Fw+E4dm4ZYnDbeVSTbj3k6SlpfH9998TGhqKq6triforDRcvXuTRo0dG269fmgSMT8O9vh9vzFmhfZ2fk03Hoe/qtKn5Uku2TAsl9tzJElVOKA1SM3OkcjkNGzakU6dOT01WZ2trK4bMvwDk5uby66+/smTJEk6ePImnpyefffYZo0ePplq1aoXaSyUS+tR34edrhXMqmAICEFTLrtxFmCJXRWz688uaVnQE4FZ6PopclcG2QYgRECIiFQdR7IuYNPHx8UYN4X8SuVzO+vXradq0KZ988gnffvutsU16KqLY14Qsu1nJicssvve329sfce3436wYHUzbASNRK5Uc37qaqt4NSLgeDYB7/UY0Dx7I6e0/kZ2eSu0W7YiLjiIqbCu+XXpQp1UHnT69mrXlnz934FbXFyt7TWh99QYvYW5lTdLtm6Xar+9mJS8k8pYuXUpWVhZTpkwpcX+lISIiAnNzc9q2LfkWBH1Q0gSMz6JN3+E6r80sH4cP5+fmkJeVSc3GLQC4f+Ufg4t9gF9+24ZFUXs1RF4Ybt++zfLly1m9ejVJSUl069aNHTt2EBQUhPw5C4SetmY0tFJxKUuCVGo6zwIJ0NLVEg8jhFefSzJ9r34BEuB8Ug5dahgmSasYASEiUnEQZwoiJk1CQkKFEfsAPj4+zJkzh++++46IiAhjm/NURLGvwd1aXqKboHt9P0b9sBUbR2f2LZvP2Z2b6fb2VPy69NBp12f6t3QbO5W4S+fZvfAzbp45SueRExk0d2WhPgtC+QtK8QHI5HJqvqRJale7hPv1pRKobqM7Ec7KyuKbb75h5MiR1KhRo0T9lZbDhw/TunVro5VBK2kCxmfhWKOWzuusVAVhX3/C7G6+zPD35KuuDVgQpBH7ORnlsxdaZbpOM5EyUJBwr1evXnh7e7Ns2TKGDBnClStX2LdvH717936u0C+gp081yM5ArTJu1YriIgHszaV0qm7YKiL/Zd26dUgkEg7+c00v4jVy52amNXdFcf+O9tjKMb1YOaaXHnovHgJwPjkHQY+LogUURECYstAH3QgIERFTRvTsi5g08fHxFa7c3cSJE9mxYwcjR47kn3/+wda24mV0FcW+BjdreYkTuNVu0Y7xG/cXOt5t7Efan2VyOV1Dp9A19PledP8Bo/AfMKrQ8dHLfiuhZRrUgsaz/ySrV6/m0aNHTJ06tVR9lhRBEDh8+DBjxowpl/GKQp87e8wsdJPQbZr6Fnf+OUPHoeOo7tMIc2sbBLWateMHIuhzleEZiE79FwuFQqFNuHf9+nVeeuklrdAvbQlNM6mEvvVd2B6Xq2drDUNB+L6xSqLlqQXKd5nBsOSqBPYeOUEr3/q4uLjorV8xAkJEpGIhThdETJqCPfsVCalUytq1a3nw4AEffvihsc0pElHsa0i/d8vYJhgEN+vHYj83N5evv/6awYMHU7t27WecpT+uXLnCw4cPjbZfH0qegLG4ZKelcPP0YV4eMYFX35mK3ys9qde2M04etZ5/sh4x1PWJVCzOnz/PmDFjqFGjBlOnTqVly5YcPXqU8+fPExoaWmqhX4BPVQes7/yjJ2sNSzcPG6NkRx86dCiR9xRUeSK5qr4ZtfRXRi391WD9P41pcxbi6upKtWrV6Nq1KxMmTGDlypUcP36c1NTUEvcnCAIXknMqvNAvKrqiKEoSATFixAi8vLz0Y6CIiB4Rxb6IyaJSqXjw4EGFCuMvoE6dOnz99dcsX76cffv2GducQrzIYv/q1avMnDkTPz8/2jXxIyejcBZzU8ZCJsHR4vGt/aeffuLevXtMmzat3Gw4fPgwMpnMqFUpChIw6hvJv/ub/zv5O7ZxRVHNDUJRCRhFKg+5ubls3LiRdu3a0axZM/bu3csnn3zCnTt32LRpE+3bt9dr4sVxQZ05/9savfVnCDq6W9PSCKX2AGQyGQq1HJkBF9jkZubIzcp3b7gU+HTBt/zyyy+MHTsWR0dH/vrrL9555x3at29PlSpV8PT0JCAggClTprB27VrOnDlDZmbmU/t8lKsiV/VsYXzl6D72L6/4JYoLyFUJKHLFfVMiposYxi9isiQmJqJWqyuk2AcYO3Ys27dvZ9SoUVy8eBEHB4dS9SMIgiazuCCgVmvCk+USCTIJpZ7wvWhiPyYmhq1bt7J161YuXLiAra0tvXr1Yt68eVjWciYq2fT3F4Im5LCps6X270KpVDJv3jz69OlDw4YNy82OiIgIWrZsadQtLKVJwFgcLG3tqN3cn8Prf0CtzMe+qjvXTx5Cce+2Xsd5FkUlYBQxfe7cucOKFStYtWoViYmJdO3alW3bthESElLsffilQS6XM6zDSyxcMpfu48pvUbC4dHK3xr+acYQ+aPbsjxw5ko92ReJYvSbzezanWp0GdB45gd3fzCDh+iXsXN3o9vaHNA8aqHPug5tX2Dl/Gnf+dxZrB0fa9BuOvUvhaMSC/fqhq/4AQJmfx8HV33DlyD6S426hVqqo0aAx3d75WCfJq+L+HRYEtSBw0hdY2tgRsf57Uh/cx62eL72mLcDTr5m2bfy1aI5uXMatqJOkJyZgaWdP85e7s33ld/Tv31/bLicnh6tXrxIdHc3Fixe5ePEiO3bsYNGix9VlateuTaNGjfDz89P+36BBAxKynv95Xj26n5O//Kiz9a2ik5ClxMnyxZkziVQuRLEvYrLEx8cDVFixL5VK+fHHH2nUqBHvv/8+P/7443PPEQSBR7kqErKUJGQpic9SkpCtLLKEmFyqmfS7W8tx+/efk4WsWCLgRRD7d+/e5ZdffmHr1q2cOXMGKysrgoODmTFjBoGBgdrEcYpcFZHJCiNbqx8EoKnL4/3lW7duJSYmht9+K93+/1LZIAhEREQwZMiQchvzadiqskGQgUS/Lv6Bc1YQNn8aJ375EQSBev6dGfH9Fua+1liv4xRFUQkYRUwXtVrNgQMHWLJkCWFhYdja2jJ8+HDeffddGjRoUG52BAYE8O3ixZxcu5i2I983+p7rgvG7edgYzaNfQFEh3I/ibrHxo1G07DWE5kEDOfvHJn77/D1qNGxCtTqa31t60gNWhb6OWqXk5RETMLey5vT2nzCzeP715Gakc2bHzzQJ6EPrPkPJzczg7B8bWTtuAO9u+JPqPrr3mgt7t5GbmUHrPsOQSCQcXv8DG6eM4MOdZ5GZae4XN05F8CjuNi1CBmHnXJUHN69wYscGevS4zsmTJ7VzB0tLS5o0aUKTJk10xsjMzOTy5ctcvHhRuxCwceNG7t69C2jmPIO++BbfwP5IZZVHXkglkJCtxBcLY5siIlIqKs+3UeSFIyEhAai4Yh+gZs2aLF68mLfeeos+ffoQFBRUZDtFropzSTlcSM7RhsBJ4ZnJ45RqiMtUcj9TqW1nIZPQxNmSZi6Wz6yfW1nFfnx8PL/++itbt27l+PHjWFhYEBgYyOTJkwkKCipyf6ujhQwvOzNum3j2YAngZWem/b2r1WrmzJlDjx49aNas2bNP1iM3b97k/v37vPzyy+U2JmiuNzo6mqNHj2r/Ofq25I05pQ+v7zb2oyK9Tw5V3Xlz0bpCx+dGJeq8bhEyiBYhg3SOFXjuSktRCRhFTI+UlBTWr1/P0qVLuXbtGo0bN2bp0qUMGTLEKBExEomEr7/+mmbNmtG5RSMsWr5GWp7aKPfEgqz7QbXsjLJH/7+oi/gQEmNvELp6p7bMZuPuvZgf2JTInZvp8f6XAESs+55MRRLv/vQnno2aA9A8eCCLerUp3OF/sLKvwke7o3RC+1v1Gco3ffw5sWU1fT//Tqd9SsI9pvx+Slu+1cWrLhveH8q1Ewdp2Kk7AG37j6Tj0Hd1zqv5Uku2TAvl6NGjdOzY8Zk2paSksHTpUnbv3k1KSgp169bliy++oG/fvkRFRTFo0CD+XLmI+l17Yf7vPSorVcG3/TvgWL0Wb68JY9vMiUSFbQVgWnNXbd8F9061Ws3xzSs5s+NnHsXFYmlrj2/nQAImTNdeG2CQ6AqAq8f2c2jNt9y78j8kUgm1m/sTOPFz7ls30mn3+++/89lnn3Hjxg3q1q3LrFmznvnZiYgYE3HGIGKyFHj2q1WrZmRLns2oUaPYvn07Y8aMITo6GicnJwDUgsDNtDwiE3OITc8v5Ekp7g6xJ9vlqgTOPMzm9MNsvOzMaOFqSR17c6T/8fZXJrGfmJjItm3b2Lp1KxEREcjlcrp3785PP/1Er169sLe3f24fLVwtiU3PLwdrDYcAtHjCA/bHH39w6dIlVq1aVa52HD58GKlUSocOHZ7fuAzk5ORw9uxZrbA/duwYKSkpyOVyWrRoQf/+/WnV+VUqYwrGJxMwipgWFy5cYMmSJWzcuJG8vDz69u3L6tWr6dChg9G3ZjRp0oSRI0fy1eT3uHztOheyLDlbjvXSC8Zp6WpJp+o2Rsu6/1+KWvKo6u2jFfoAto4uuNSqy6O4x9t5rh7bj2fjllqhX9CuaWBfTv669pljSmUypLLHC7c56akIajU1Gjbl3pXCCRVferWXjhguKNn66F6s9piZ5ePnQ35uDnlZmdRsrCkZGhUV9Uyx/+DBA9q2bYtEImH8+PG4uroSHh7O6NGjSUtLY9KkSfz++++079CBv5bOJWiyRvz+MW8qORnp9Pvye6QyGa37DCct8QE3Th5iwKylhcb5ffZkIsO20CJ4EO3eGIPi/m1ObF3D/av/Y+yPu7VRCqD/6IqoXb/w2+fjqeffhYAJ08nPyebUb+tYPiqI97f8jVCvGRKJhL/++ou+ffvi6+vL3LlzSU5OZuTIkXh4eDz18xMRMSbijEHEZImPj8fFxQUzM+Ov/D8LiUTCqlWr8PPz47333tOEvWXks/t2Oil5agqmM/qaTBX0czs9n9j0fKqYS+n5Hw+JqYv9R48esWPHDrZu3crff/8NQNeuXVm9ejWv/z975x0dVdX14edOeu8QQiB0JIC0SEtCkaogTTpSRAjFzifttYBIFewmSJEiNRI6ihSFVOkivUNCSUggPaTO3O+POANDAqRNZiacZy2X5M659+w7de9z9t6/vn1xcnIq1vVq25vjaK4gRU87WaVFAhzMFdSyz3+NZVlmzpw5dOjQodyb5IWGhtK0adMS96h4EklJSURFRWmC+yNHjpCTk4OtrS1t27Zl0qRJ+Pn50apVK6ytrYH85+Hb04nPbBhlTDzegFFg+OTk5BASEkJQUBCRkZFUrVqVadOmMWbMGIPLTPviiy/YuHEjC+fP48svv6S+o4XWb5UuPknq6zoU8ltlCBS2s+/oXrXAMSt7BzLTkjV/J8feolqjFgXGudaoU6R5j+/cSMSaxSTcuIwy7+FitFPVgsofjlW0A0114J+Z+rCj/oOUJP5cupBTe7aRnqidhfSszvsff/wxSqWS06dP4+LiAuT3JRoyZAgzZ85k3Lhx+LRsRbsR7xC6+gcadnyV9MQETu3ZSs+PZuPmVRsAryYv4Vq9FlcOHaRZjwFac9z45xBHt65l0JyfaPrK65rjtXz8WPnOIE7v36F1vCyzK7IfpLNz4f/w6fMG/T79WnO8+WuD+LpvG/Yv/5Yvuq/GRIKpU6dSuXJlIiIiNL9z7du3p2vXrnh5la8qi0BQFESwLzBaYmNjDc5RehIeHh788MMPjB4bgP/BkyQ7eJZ5kP846uum5KhYdzkFHzdL2nvYYPLfI8YW7KemprJ9+3aCg4PZu3cveXl5tG/fnh9//JHXX38dNze3Z1/kCSgkiR5edqy7XHypIUNArT+tzuDYs2cPx48f14sSRGhoKH379i31dWJiYjSBfXh4OGfOnAHA3d0df39/Fi5ciL+/P40bN35i8zJJyi9rORqfaZSLOI/zeANGgWFz8+ZNTcO9+Ph4OnbsSEhICL169TLYRWoPDw+mTJnC3LlzmTBhAjVr1iTA24lrqbkcT8jkeiFZaCVFfZ38LDQratmbFchCMwQKSzBQq3I8TlEk2orCP79tImTGu3h3fBX/EW9j6+yKwsSEgyu+4/6tG0W2h0fsWT91DDGnjuI//G086jfC3NoGWaVi5TuDUKmenEsoyzKbN29m4MCByLLMvXv3NI9169aNjRs3cuLECVq0bkOn8VO4EL6PTTPeJedBBjVbtKXtkIAi3fPp/TuwtLWnTuv2ZCTd1xyv2qAJ5tY2XDsWoRXsl2V2xZVDoWSlpdCkez+tuRUKE6o1as61YxHkyTLxsXGcPHmSadOmaS1od+nSBW9v76cqFQgE+kIE+wKjxZiCfYD2vQfyPw8fEu2cUFB+zY/U8xxPyOJySg7dq+anrxlDsJ+RkcHOnTsJDg5m9+7dZGdn07ZtWxYtWkT//v3x8PAos7mq2Zrh42bJ8QTD1wh+FIn8tFfPR3bD5syZQ8uWLenUqVO52hIdHU10dHSx6/UfrbcPDw8nIiJC0/TphRdewM/Pj8mTJ+Pn50fNmjWLFew2c7XkSHxmsewxVB5vwCgwPGRZ5s8//yQoKIjt27djY2OjabhXnooYpeGjjz5i6dKlTJ8+nY0bN6KQJOo4mFPHwZykbCUn72Vx8tH+MlLhu9+P8+g4CxOJpi6WNH1GfxlDQEHJFiAcq3hyL+ZageP3blx55rln/tyJs2cN3li0Suv7bv9PC0pkS2ZqMlePhNF5/FQ6BXz00JaYq888NyEhgeTkZJYuXcrSpUsLHRMfH49KlS8h+PrM7wh8owumFpb0n/l9kb+v78VcIys9lTmdCv+cpCfe0/q7LLMr1K/T8nGFL1Rb2NqhVOX/xgHUrVu3wJj69etz4sSJQs8XCPSJCPYFRktcXFyhX7iGyLGETPbfysDKyQW5hI5DaZGB1BwVwdczaDNojMEG+5mZmezevZvg4GB27txJZmYmL730ErPnzOH1/gOo4umpkSDMU8mlkiB8nPYeNlxOydFbY6riom5k1c7jYePBsLAwIiIi2L59e7nvAIeFhQE8s9HTo/X24eHhREVFadXbDxw4EH9/f9q2bVuqjA2ouA0YBYZFSkqKpuHexYsXadiwIT/++CNvvPEGdnZ2+javWNjY2DB79mxGjx7NBx98QOvWrTWPOVmY0LGqDe2rWHE9LZerqTnczsgjKVtJzlMazZgr8s+tamNKbXtzatqZoVAYRzlKSVsH1PftTOT6Jdw8c0Kzs5yedI+Tuzc/81zpv+dGlmXN93jM6ePEnDqGg3vxa8PVO/+PZx5ErX92A1P1rv8bb7zByJEjCx3z4osvon45L0fll9blZWdxL+YazoWUHRSGrFJh6+zGoDmLC33cxslF6++yzK6Q5fx7HPhFEHaulQo8rjAxxcQ43q4CQQFEsC8wWmJjY2nXrp2+zXgqsiwTdTeT8Nh88Vl9Bfoae/77f6+p80iPv6zlSOiT7Oxs9u7dS3BwMNu3bycjIwPfrq/y2eLV1PNpywMzG+Iy8whOBBITtc4tjQTh45gpJHoaUTq/On3/0UZWc+bM4cUXX3yi8oMuCQ0NpXHjxpqaTjXqenv1rv3Ro0e16u3/7//+Dz8/P1q2bKmpty9LKmIDRoFhcOrUKQIDA1m7di05OTn069ePpUuX4u/vbxDfrSVlxIgRfPfdd0yaNInIyEjNvZREOQYgRwUJmUruZio5cS+7yMoxhkBJX8d2I9/hn983sfKdQbQdEqBpDudYpRpxl88+9dwX/Lty9q/fWPt/I3nBrwuJd6I5HLKaSrXqk/2g+KnilrZ21GzehrDVP6LKy8W+UhUuHzpIemzMM891c3PDzs4OpVJJ586dnzguTyUTe+ksfy77iha9hhB76QxbvviQD4LDsLR72Cj3Sc+ni2cNrh4Jw6tJS61mgqWhqNkVLp41ALBxdqVOq8Iz00wlSVOTf/ny5QKPX7x4sZTWCgS6QQT7AqNElmViY2Nxdy9cPsVQeDTQNzRSKtUl6m4mvu5lH1wVhdzcXP766y82btzI1q1bSUlJoWWHzkxbsQXLOk3IJX8Z/UoOqHLynnid0kgQFkY1WzM6e9qw/5bh19519rTRamZ19OhR9u7dm596q4dds9DQULp166apt1cH9+p6+ypVquDn58eiRYvw8/N7ar19WVLRGjAK9EtOTg5btmwhMDCQiIgITZ372LFjy7S0SJ+YmJiwaNEiunTpwqaQEJp17aUX5RhDoriW2bu5M3bJVnZ8OZ3QVd9ryb5tnvXBU89t0WsI6ffjObz5Fy7/fYBKteoxaHYQp/fv4NqxqBLZP2juEnYumM7fv64AWaZumw4sWreNgS2e3jDQxMSE119/nfXr13PmzBkaNdKWoUtISMDNzQ1VXi6bZ76LvZs7r02eS+LtaAKHd2XXV5/Qf+b3mvHmVvk+R2ZaClZ2D+veG3ftzaFNK/lr2Vd0e/cTrTmUeXnkZGZojS8KRc2uqNvmZSxs7Ti44ltq+/hpdf0HyEq+h0JyoUqVKjRt2pTVq1dr1e3v27ePc+fOiQZ9AoNEksuqm4hAUI4kJyfj5OREcHAwAwcO1Lc5hXIsPpP9t40jYPQppx1DpVJJaGgowcHBbN68mfv371OvXn2GvDcFT99u3JMtdNT8qfiOZGTcA4NdqAHwr2JdYKGmT58+nD9/nnPnzpVbmYa63n7nzp18/PHHuLi4cP9+foOjBg0a4Ofnp/mvuPX2ZcnN9FyjydgojDfqOmj1ZRCUP7du3dI03Lt79y4dOnTg7bffpnfv3gbbcK+0DJn4ATVfG4W9u6fOu/EXphxjKJxNzGJndLq+zShzennZ4e1s8cxxd+/epVWrViQkJDB27Fi8vb1JTEzkxIkT7N+/n8TERGbMmMEXX3zBWz9tofZL+dKrB5Z/zd6geYz8fj0v+HUB4PS+7ayfOoZmPQZSt01HFCYmNOmWXyu/dc5HHNm8mnq+najbugMmpmbci7nGmf076Dl5Do079wJgQY/mVK79AqO+X69l59KxvQEIWLYdgNSEOL4b1B5ZpdLKrjCzsCLu8lmm7DqOk0d1AE7u3syvn06kUq36NOnaBxsnV5LjbnEhYh8NfVqzb22+jO0ff/xBjx498Pb2ZvTo0SQmJvLDDz/g6elJeno6N27cKOWrIhCULSLYFxgl58+fx9vbm7CwsGfWB+sDYwsshtV10JmDpVKpiIqKIjg4mJCQEOLi4vDy8mLQoEF0HTSCyxZVykXWqbiO5OMlGIZEuyrWtKlspRU4nz59mhdffJEVK1bw5ptv6mzurKwsjh49qqVvn5KSgkKhQKVSMWHCBLp161YmSjimnAAAIABJREFU9fZlzf5b6UbbgLGTp62+TXkukWWZAwcOEBgYyPbt27GysmLEiBFMnDiRhg0b6ts8nZGrkgm9k8GxhExUSiUKE91n4Ki/q9XKMWYlLZbXAfez8lh2PvnZA42MgAZOOFsWbWE4Pj6eWbNmsWPHDuLi4nBxcaFhw4YMGjSIFi1a0KpVK3oOH0Obd7/QZHGolEoWj3qF1PhYPgiJwMrOAZVSya6vPuHUnm08SL6PLMvMO/FQCvDIljUc2bya+OuXUJiY4FSlOvV8O+E7NAB7t/xszqIG+wBxl8+x48vp3DxzokB2xaPBPsC1Y5EcXPkdN08fJy83B3s3d2o2b82Y8W8z/hU/zbgtW7bwySefcO3aNWrXrs3s2bPZvn07Bw8eFMG+wOAQwb7AKPnrr7/o1KkTly9fpk6domnWlhe5Kpnl55OMrsnbmAZOZeZcybLMkSNHCA4OZtOmTdy6dYuqVasyYMAABg8eTDOflwiLfcCxhCydBfmPU1JHUt1csbzsfBLq+Z+UiTF06FAiIyO5cuVKme4yJiUlERkZqQnu1fX2dnZ2tG3bVrNrv27dOsLDw7lw4UKZzV3WiM+moKikpKTwyy+/EBQUxIULF/D29ubtt99m+PDhRtdwr7jcTM9lV3Sa3j4n6vd9TwPa5ZdlmW9PJ2r6FFQELEwkPmjsXKbZVs97BoRAYIiImn2BURIXFwdgkNJ7oXcyjCaYgIdd+sPuZJRq91CWZU6ePElwcDDBwcHcuHGDSpUqMWDAAAYNGoSvry8KhYKb6bn8fCGZ1P9aN+tLgrCojqSPmxWVrUwN2vm9cuUKwcHBfP/996UO9KOjozWB/eP19v7+/gwaNKjQevuJEycWW3KvvKkIDRgFuuXMmTMEBgayZs0asrKy6NevH4sXL6Z9+/ZG3XCvqBjC4qb6N2nd5ZRyLTN7GpKU3wfmaHym0fy2Pw0JaOpiWebvaXfrihlWVNT7EjwfiHevwCiJjY3Fzs4OGxubZw8uR26m53IsIUvfZhQbGTiakEU9R4ti76ScOXNGE+BfvnwZZ2dn+vfvz6BBg2jfvr1W7bixOpLVbM0Y08Dpv7RW/WQjtHtKNsL8+fOpVKkSo0ePLtb1VSoVZ86c0Qru1fr26nr7oujbx8fHc/78eT755JNCHzckjLkBo0A35OTksHXrVoKCgggLC6NKlSp89NFHBAQEVJiGe8+ioHKMnu357//7b2WQrZRp+1jZkj5o5mrJkfhMvdpQVshAU1fLMr+us4UJFiZShcuAcLIQunsC40UE+wKjxBA78atkmd+i0/Se7l1SJOC36DQCvJ2e2cju4sWLmgD/3LlzODg40LdvX77//ns6depUYHe5IjiSZgqJzp621He04LfotHLpM+BQhD4DMTEx/PLLL8ydOxcrq6cvXDyp3t7U1BQfHx/Nrr2vry+urq5Ftjc8PBzA4KUw1fi4WZGtlA2yH4Ma/yrWBrGjWZG5ffs2S5cuZenSpcTFxdG+fXuCg4Pp27dvhW249yQMtT8JoLFLX8oxapwsTKhhZ0Z0Wq7ef8NKg0R+41pdSB6KDAiBwPAQwb7AKImNjTW4FP6rqTkk5xRVhMjwkIHkHBXXUnOp42Be4PHr169rAvyTJ09ia2tL7969mT9/Pl27dsXC4sn1bBXJkaxma0aAtxPXUnM5npDJ9UKkqEqKtoKAFbXszZ658LJw4ULs7OwYP358gccSExOJiop6Yr39Rx99VCb69qGhodSqVQtPT88SX6O8aVs5P5A2xPelugGjoOyRZZmDBw8SGBjItm3bsLKyYvjw4UycOLGApNjzwrF4w/1+VhMe+wALE0nvC2At3Cy5kZarVxtKiwy00OHzKDIgBALDQgT7AqPEEIP94+WY3q0rJOB4QqYm2L958yabNm0iODiYI0eOYGVlRc+ePfnkk0949dVXn7mTDBXTkVRIEnUczKnjYE5StpKT97I4eT9Lk7qokEBVhDfCo+MsTCSauljS1NWyyDsud+/eZfny5UyfPh0bGxutevvw8HDOnj0LaNfb+/v707hx4zKV5gsNDTX4ev3HkSQJX3drLEwkvZeWwLMbMApKR2pqKmvWrCEoKIhz587RoEEDvvvuO4YPH469vb2+zdMbN9NzjUIiFvIzsSpbmeq1tKW2vTmO5gpSjKgvz6NI5GeM1bLX3XMoMiAEAsNCBPsCoyQ2NpYmTZro2wwNSdlKo1/th/xg43paDt8tW8mm1T8TGRmJubk5r776Khs2bKBnz57Y2ha9id/z4Eg6WZjQsaoNHTysScpWEfcgj7jMPO5k5BKXmUdeIckepgpwtzLFw8YMdytT3K1NcbJQFCtVUKlUMm3aNGRZ5tSpU1SvXp1bt24BD+vtp0yZgr+/PzVq1NBZGmJiYiKnT59m0qRJOrm+rjGGBoyCknP27FlNw73MzEz69OnDjz/+SIcOHZ771NxclcwuIyo9k4Bd0Wl6VadQSBI9jKjJ5+Oom34+K2OstIgMCIHAcBDBvsAoiYuLM6id/X/uGf+uvhplnpK952NwcHBg9erV9O7dGwcHh2Jf53lzJCVJwtnSBGdLE7zJL2mQZRmVDHmyjFIFJgowlSQUEsUONB6ttw8PDycyMpLU1FQUCgW3b99m8ODB+Pv707Zt22LV25eWiIgIZFk2mnr9wjD0BoyC4pGbm6tpuBcaGoq7uzuTJk1i7NixRlVqomueV+WY0lLN1gwfN0uOJ2QZzXMH+d83Pm6WeJbDgqLIgBAIDAfRXlJgdGRmZpKcnKyXBn2rVq1CkiSOHTumOSbLMv/e19+P/rVjkUxv7sa1Y5Flcj0TU1M6jXibXbt2MWLECLZu3YokSdy4caNY1zFmR7KskCQJE4WEhYkCazMFFiYKTBRSkQL9xMREdu3axdSpU/H19cXBwYF27doxb948VCoVPj4+mJubc/XqVf7++28WLlxIr169yjXQh/wU/mrVqlGjRo1ynbesUTdgHFbXAQfz/J9GXYXe6us6mCsYVteBTp62ItAvA+7cucPMmTPx8vJi0KBBqFQqNm7cSHR0NJ9//rkI9B9BrRxjLN/PatTKMTfT9btr3N7DBntzhc6+I8oadfZQO4/yUTBSZ0AY2/tLTXllQAgE5YHY2RcYHXFxcQAGs7OfmK2sUDIzADkyJGWrcLYsWa3a8yhBWKp5ZZmYmBjNrn1ERESBevshQ4Zo9O0fPHiAl5cX48eP13uQHRYWVqE0yAtrwCirlEiK0tdtlqQBo+DpyLJMWFgYgYGBbN26FQsLC03DvcaNG+vbPIPkeVKO0RVmComeRpTOrw5ey3NRUWRACASGgQj2BUZHbGwsYDjBftyDPL3OX6N5G2b9fRMTs4Id9EtD3IO8EgX7wpF8NkqlkrNnz2oC+4iICK16e39/f6ZOnYqfn1+h9faLFy8mPT2dyZMn68S+opKamsqJEycYN26cXu0oax5twHg3LZNxs7+hVb+RSOYW/z1ePg0YBU8mLS1N03Dv7NmzvPDCC3z99deMGDGiRGVHzxMVXTmmvKhma0ZnTxv23zL8vjSdPW300g+kvYcNl1NyjCbLr7wzIASC8kAE+wKjwxCDfQWgL9dJoVCgsChbaRiFBHGZeZra8+IgHMmCZGVlceTIEU1gHxUVRUpKCmZmZvj4+Gh27YtSb5+ZmcnXX3/NyJEj9Z6WHBkZiUqlMup6/WdxPPwA27/8mFnDXsOznne5NWAUFM65c+cICgril19+4cGDB/Tu3Zvvv/+ejh07iue3iFRE5Rh94eNmRbZSNmjFGf8q1npT+BAZEAKB/hHBvsDoiIuLw9zcHGdnZ51c//bt23z22Wfs3r2b+/fv4+HhQffu3fnuu+80Y7Kzs5k0aRJr1qwhNeMBdVp3oO8nX2HrpB2oXYzcz8Gfv+X2hdNIComazdvwyvszqFz7Bc2YTTPe4cz+nXwYEsm2eVO4fjwSS1t7Ooz+gDaD3iLu8jl2LvyYm2dOYOPoTLd3P6HpK69rzr92LJJlAX0Yu3QbtXx8NcdjTh/nz6ULiTl1DGVuLi6eNfDpMxTfofm7sLGXzhKxbjHXTxwiLSEOSzt76vt25pUPZmLj6MydjCfXRB47doyPP/6Y48ePk5GRgbu7Ox07dmTFihXCkSS/3j4yMlIT3B87doycnBzs7e1p27YtkydPxs/Pj5deeqnY+vY///wzCQkJTJ06tUS2lSXq5md169bVtyk6IyQkhHr16tG4cSNNE0ZdNGAUPJnc3Fy2b99OYGAgBw8epHLlyrz//vuMGzdO7wtexkbFUo7JJSlbqfdMmbaV8wNpQwz421Wxpk1l/XaUFxkQAoF+EcG+wOiIjY3F3d1dJ870nTt3aNmyJcnJyQQEBPDCCy9w+/ZtQkJCePDg4Q/5u+++i5OTE5999hkhxy4QsW4JO+abMXTBcs2YE7t+JWTGO9Rt05Hu731KblYmh0NW8dPonry34S+cPKprxqpUKla+O5iazdvQ/f0Z/Ls7hB0LpmFuZc3ewLk0faU/DV/uwZHNq9n02dtUf9EH56peT7yPy4cOsvr9Ydi5VsZ3SAB2rpWIv36JC+H7NMH+lcOhJN6KpkWvIdi5VOLu1Qsc3bqGu9cuMnH1H8Rl5iHLBUP2+Ph4unbtipubG9OmTcPR0ZEbN26wZcuW59KRlGVZS9/+0Xp7Dw+PAvX2pdG3z8nJ4csvv2TIkCHUqVOnxNcpKypavf7j5Obmsm3bNiZMmFDoPUqShIkEJkggMvPLnNjYWJYtW8aSJUu4c+cOfn5+bNiwgX79+mFurt8dXWOlIinHSMDJe1l0rKrflGtJkvB1t8bCRGL/rQy9P7/q+Tt72uhtR/9xRAaEQKA/RLAvMDrUwb4umD59OnFxcRw+fBgfHx/N8VmzZmkFvi4uLuzduxelDBn/3kepVPH3xmVkpaViaWdP9oN0di78Hz593qDfp19rzmv+2iC+7tuGAz9/q3U8LzuLZq/2p8PoDwBo+srrzOvWmM2fv8/guUt4sVtfAOq27sDX/dpwYmcwncdPKfQeVEolW+d8hJ1rZd7beAAru4f1q4/eQ+sBb+I/fKLWudVf9GHj9ABu/HOIms3bFFqXHBUVRVJSEnv37tV6jmbPns1ft/Xv6JQVT3IklUolZ86c0Qru1fX23t7e+Pn5PbXevjSsXbuWmzdvMn369DK7ZknJyMjg6NGjDB8+XN+m6IwDBw6QlJRE//799W3Kc4Msy4SHhxMYGMiWLVswNzdn+PDhTJgwgSZNmujbPKOmOMoxm2a8w7VjUUz97YTO7SoJavs+++MfOnhYG8SCo4+bFZWtTNkVnaa3GnV1zXlPLzuD26EWGRACgX4Qwb7A6IiNjdVJvb5KpWLbtm289tprWkGsmkediYCAACRJIk+VX7Bbs1lrItf9RFLsTarYNeTKoVCy0lJo0r0fGUn3NecpFCZUa9Sca8ciClzfp+8bmn9b2Tng6lWb+zev07hrH81xtxp1sLRzIPF29BPv487F0yTdjqbH/32hFeg/fg9mlg9/2HKzs8h5kEH1xi3yr3HhFDWbtyGvkJ19R0dHAHbt2kWTJk0wM8t3KPQtQVhcFvRoTi2ftgz4/MdCH5eBk/ezaOWUL7X4rHp7X19fXFxcdGavUqlk3rx59O3bl4YNG+psnqLy999/k5eXV6Hr9UNCQqhVqxZNmzbVtykVnrS0NNauXUtQUBBnzpyhfv36fPXVV4wcOVI03CsjKqJyTLZSLpVyTFlTzdaMMQ2cCL2TwbFyLGlTz+PjZkk7DxuDrDkXGRACgX4Qwb7A6IiNjaV169Zlft2EhARSU1Np1KjRM8dWr56fgv9frI+VfX4AnJmWDMC9mGsALB/Xt9DzLWzttP42tbAsUO9vaWuPQyWPAjsWlrb2ZKYmP9G2xJvXAXCv0+Cp9/AgJYk/ly7k1J5tpCcmaD2WlZ4GgLKQ5mPt27fn9ddf5/PPP+ebb76hQ4cO9OnTh279BlZIR7J24+bEXbuoVW/v7+/PSy+9hJVV+TkIv/76K1euXGHjxo3lNufTCAsLw9XVFW9vb32bohPy8vLYunUro0ePNohdw4rK+fPnCQoKYvXq1WRkZNCrVy+++eYbOnXqJJ73MkbfyjG6oqTKMbrCTCHR2dOW+o4W/BadRnKOSmeBrfq6DuYKehjgbn5hiAwIgaB8EcG+wOjQ1c5+cVDXXSsUjz3w36+WLOdHyQO/CMLOtVKB8xUm2h89RYELqccV7sAUVktfXNZPHUPMqaP4D38bj/qNMLe2QVapWPnOIOT/VjFMCjFLkiRCQkI4dOgQO3fuZM+ePYwePZo6Xy7ijeW/YWFtW2rbDIkpc77k5QZeNGrUqFT19qVBpVIxd+5cunXrRosWLfRiw+OEhobSrl27ChuQhYWFce/ePZHCrwPy8vLYvn07QUFB/PXXX1SqVIn33nuPcePGUa1aNX2bV2HRt3KMLiiNcoyuqWZrRoC3E9dSczmekMn1tNwyC/rV16lhZ0YLNytq2ZvpTCpWF4gMCIGg/BDBvsCoUCqVJCQk6CTYd3Nzw97enjNnzhT5HNMn/Li6eNYAwMbZlTqt2peFeUXGuVpNAOKunH/i3JmpyVw9Ekbn8VPpFPCR5vi9mKta4550fwCtW7emdevWzJkzh/Xr1zNs2DBO79mKT9+KU8OtkKCJfyea6LkB1M6dOzlz5gxBQUF6tUNNVlYWhw8fZsGCBfo2RWeEhITg5eVVaEmPoGTExcVpGu7dvn0bX19f1q1bx+uvv46FheEFa4bAqVOnaNKkCdu3b6dXr14AHD9+HB8fH5o1a8aJEw9r6l955RUSExM5fPgwALt372bu3LmcOHEChUJB7RZt6PjOZ1pqMABnD/zOvqB53L95HZdqNekyYVoBO5LuxPBlzxa88sFMLG3sCF39Ayl37+Be15ve07+kWsNmWuPjr19mX9Bcrh6NIDcrk8q1X+DlgI/wbt9dM0aZm8uBFd9y8vdNpNy9g5mVNZVq1qVTwGTqtu5QJPtUMhrlmEWLFrFlyxYuXrzIgwcP8Pb2Zvr06VoLdu3btyc5OZl///23wD3Wr1+fGjVqsGfPnme+LkVFIUnUcTCnjoM5SdlKTt7L4uT9LE0WnEKi0N44Ba/zcJyFiURTF0uaulrqXYmgNIgMCIGgfCh8O1EgMFDi4+NRqVQ6adCnUCjo06cPO3fu5NixYwUeL2w33UTK19R+nLptXsbC1o6DK75FmVuwO3160r0ysbkwPF54EaeqXkSuX0pmmra2rfoeJIWJ1t9qItct0fzbVJHvYDxOUlKS5rxRo0ZRo0YNTU1zbk4OAPt/+pLpzd005+RmZbLjy+l88XJ9ZvjV4JcP3iAlPpbpzd3Y/9OXD6995ybb5k3hq76t+bRNNWZ1rMe6KaNJuhOjZcPxHRuY3tyNGycPs+urT5n98gt81taLNf83ssBzK8syfy3/inndX+SzttVZFtCHu1cvFLivBylJ/P7NDL4d2I4Zvl7M9K/Jz28P4u/j+m1QJcsyc+bMoV27dvj7++vVFjWHDx8mOzub9u3LdyGrvFAqlWzZsoX+/ftX2MyF8kLdcG/w4MFUq1aN+fPn8+qrr/LPP/8QERHB0KFDRaD/FBo1aoSjoyNhYWGaY+Hh4SgUCv79919SU1OB/OyfqKgoTQ+NNWvW0KNHD2xtbVmwYAGffPIJMZcv8tPonlrfp5f+PsC6yW+CJNHtnU/w7vAKITPf4/a5gsEwwL9/bCbslx9p2W8EXSdOJ/nOTdZ9NErrd+7u1QssHtmd+OuXaT/qPV798HPMraxZO2kEZ//6TTNu/5Iv+WvpQmr5+NFr6jw6vvUhju6e3Llwqlj2qZVjvvvuO5o1a8asWbOYO3cupqamDBgwgN9+ezjn8OHDOXXqVIFF/aNHj3Lp0iXeeOMNdIWThQkdq9rwQWNnAho40cvLDh83KzxtTAv1IyD/d9jTxhQfNyt6edkR0MCJDxo707GqjVEH+o+izoDoX8ueGnb5QXhZfeuqr1PDzoz+tewJ8HYSgb7guUPs7AuMitjYWACdpfHPnTuXvXv30r59ewICAmjQoAGxsbFs2rSJiIiCTfUkScLdypRLjx23tLWjz/SF/PrpRH4Y1okmXftg4+RKctwtLkTsw6tJS3pP082uqEKhoM/0L/nlgzf4fnBHWvQagr1rZeJvXCb+6gVGB23C0taOms3bELb6R1R5udhXqsLlQwdJeqTxn7uVaaGBzurVqwkKCqJv375cunSJ1NRU+vXrh6WtHfX9Ohdq06YZ73J633aa9RhItcYtuH48itXvDSkw7ta5f4j59wgvdu2LQ2UPku7EcDhkFUvH9uHDkAjMrbQ16Xd+OR0rO0deDviI5NibRK4vKIG4b/F8Diz/mvp+nanv25k7F06xYuKAAoswibejOXvgdxp36YWzhxdpiQkc2bya2cN6MurCOapWrVqs16Gs2L9/P0ePHi3T3abSEhYWhqOjI40bN9a3KTohMjKSu3fvihT+UpCens66desIDAzk9OnT1K1bl4ULFzJq1ChNk0/Bs1EoFPj6+hIeHq45Fh4eTp8+fdi+fTtRUVF0795dE/j7+/uTnp7Oe++9x5gxY1i6dCkAeSqZ1BavFVCD+eP7Wdg6uzH+511Y2tkDULNFW1ZMHIBjlYIlFclxt/lo22FNnxrXGnVY8+FwLv19gAbtugKwc+HHOLp78vbavZia5y/ktB44miWje7D7+1k0fLkHABcj9lHPt7OWMs3jFMW+PFX+rvelS5e0+qi88847NG/enK+//poePfLnHDBgAO+++y5r165l/vz5mrFr167FxsaGfv36Ffm1KSmSJOFsaYKzpYmm/ECWZVQy5MkySlV+CZ2pJKGQeC4WHIuSAaFUyc98LipiBoRAUFpEsC8wKnQd7FetWpXDhw/z6aefsm7dOlJTU6latSqvvPIK1tbWhZ5Txdq00FXopq+8jr2bOwdXfkfYL4Hk5eZg7+ZOzWat8ek1VCf2q6nX9mXGLN3Kn0sXEbE2CFmlwtmzJi890vF/0Nwl7Fwwnb9/XQGyTN02HRj1w0bmdWuMJIGHTeGr3+3bt+fIkSNs3LhRIznXtq0vXT4NxLmqV4Hxt8//y+l92/EdOo6eH80GoM3A0YTMeJfYS2e1xr7g14XGnXtpHWvQrhuLR73CmT930bznQK3HrB2cGR20SeMAqFTaEojpSfcIW/0j9f26MPK7dZpxe36cw8EV32pdy71OA/5v22Gt/gnNewzg635tWf7zz8z47LMnP+E6ZPbs2fj4+NClSxe9zF8YoaGh+Pv7662Hga4JCQnB09OTli1b6tsUo+PChQuahnvp6em89tprfPXVV3Tq1OmJvUkET8ff359PPvmEjIwMbGxsiIiIYO7cuURHRxMeHk737t0JDw9HkiT8/PzYt28fycnJDBkyhHv38jOdspSqAmowqQlxxF48Q/s339ME0pAv8VqpVn1yMgtKpL3Ypbcm0Id8JRqAxNs3gPwMqWtHw+k8YSrZGelkZ6Q/vG6bl9n/0wJS4mNxqFQFSzsH4q9d5F7MVVyr1y4wV3Hsy5NlrUA/KSkJpVKJv78/GzZs0Bx3cHCgd+/ebNiwgXnz5iFJEkqlkuDgYPr06YONjX5KtiRJwkQCEySomF+rRUadAdHBw5qkbBVxD/K4k5FDyL5QarzoAyYFQxdTRf4GhYeNGe5Wprhbm+JkoXguFkoEgmchgn2BUREbG4skSVSuXFlnc1SvXp3Vq1cX+tioUaMYNWqU1jF3a1Nq+vgy70RCgfG1fHyp5eP71PkGfP5jofJvAcu2Fzr+cd3jWk+Yu0bTVrwVtOmJ8zpUqsIbX60qcFx9LXer/K+Hx++5WbNmrF+/XvPYwYMHCdm+nW9PJRY6z6WovwBoPfBNreNtBo/h+E7tzvKPygEqc3PJykjDpVpNLO0cuHPhVIFgv2W/4Vo/5gUkEA+HoczNoe3gMVrjfIeNKxDsq3egAFRKJZlpKZhb2eDqVUerLrY8iYiIICwsjK1btxqM05KTk0NUVBSzZs3Styk6QaVSsXnzZgYMGCCC0yKSl5fHzp07CQwM5M8//8TNzY133nmHcePGaZRLBCXH39+fvLw8/v77b6pVq0Z8fDz+/v6cPXtWs+MfHh6Ot7c3zs7OXL58GYCXX3650Oup1WCSY/MXa12r1Sowxs2rDrcfSadX41jFU+tvjRJNan7J2P2b15FlmX1B89kXNL/A+QAZiQk4VKpCl/FT+WXSCL7q05rKdRpQr83LNOsxgCr1GhbbPqUKdu3exezZszl58iTZ2dmaxx7/7hwxYgTBwcGEh4fTrl079u/fz927dxk+vOL0m6kIPJoB4ZB5jyVvvcaOnTt59dUez20GhEBQEkSwLzAqYmNjcXNzw9TUcN667taGY0tZUpz7Uj2lvXNy7C0khQInD+1df5dCHLjcrEwOrvyO4zs2kBofq9VTICs9tcB4B/cnOJ7/SSAmx94EwLW69ly2Tq5au1P596Aiav1SDm1aQdKdGFRK5cN7qFpQUaE8mDNnDg0bNtQ05jIEjh07RmZmZoWt1z906BB37twRKfxF4O7du5qGe7du3aJNmzasXbuW/v37izr8MsTHxwdLS0vCwsKoXr06lSpVol69evj7+xMUFER2djbh4eH07Zsv9ar67wt5zZo1mv42OUoVW67nS6o+rgZTHNT9Xgrw33e1WsnFf/jb1GvbsdCh6u/+mi3aMnnHUc4d3M3lQwc5um0tket/os//FvJSMRu9/h0ZTq9evWjXrh1BQUFUqVIFMzMzVq5cqVmcVtOtWzcqV67M2rVradeuHWvXrsXd3Z3OnQsvQxPon+jo/BLDGl5emCgkkQEhEBSDihmlCCoscXFxOmnOVxqcLUywMJEqlMa8hYmEk8WzdzXVK+nXDYhqAAAgAElEQVSPb4CqVMpCRj+bHV9O5/iODfgOHUf1F32wtLVHkiQ2TA/QyBk+ypOkCUvSzvfgim/YFzQfn95D6TJxOlb2jigUCnYt+kTjwJYnx48f548//mDdunUGtcMcFhaGnZ0dzZo1e/ZgIyQkJIQqVarQtm1bfZtikMiyTFRUFIGBgYSEhGBqasqwYcOYOHFihX1P6Btzc3NatmxJeHg41atX1zTq9Pf3Jzs7m3Xr1nH37l1Nc77atfNT4itVqqQJYPNUMqf+va91XfUu/b2b1wrMmRB9pUS2OnvmL+qamJoWSYnG2sEJn95D8ek9lOwH6Swd04v9S/KD/eLYt2PrFiwtLdmzZ4/WQtPKlSsLnGtiYsLQoUNZtWoVCxYsYNu2bYwdO7bCliVVBNTBvpdXwVJBgUDwdAzHgxQIikBsbKzO6vVLiiRJNHGxLLPusfpGApq6WBYpJc7JyYnk5OQCEn3q9EvIdyhllYqkO9FaY+4X4sCd2b+T5j0H0WPSLBp37kXd1h3watqKrMdUBYqKuoHTvRjtudKT7pGZmlxg7lo+frw+4zuadOtLvTYdqdOqPZlpKegjO3Du3LnUqVOHgQMHPntwORIaGoqvr69BZdeUFbIsExISQr9+/QxqgcUQyMjIYOnSpTRr1gw/Pz+OHj3KggULuH37NsuWLROBvo7x9/fn8OHDHDhwQBPsu7q60qBBA40Epvp4t27dsLe3Z+7cueT+14j0UeUYtWKJvZs7Veo34sTOYLLSHmZOXT50kPhrF0tkp62zG7V8fDm85RdSE+IKPP6oWkpGsnbpl4W1LS7VaqL8T9WlqPaZKvIDeHX9vZobN26wbdu2Qu0cPnw4SUlJjBs3jvT0dJ124ReUnpiYGBwdHbG3t3/2YIFAoIXwZgRGhSEG+wDNXC11og2rD2SgqatlkcbWrl2blJQUzp4+pXEkUxPiOHvgodRRvTb5daOHftXeYfl743IeRzIx0aSDPjru0ZT64lCnVTtMTM2I2rhcqyTgUYlBzdwKEx5PCTi9bzup8bHlvpBz9uxZtmzZwrRp0wwqqM7LyyMiIkKzg1jROHr0KDdv3hQp/I9w8eJFPvjgA6pWrcqECRPw8vJiz549XLx4kQ8//BAnJyd9m/hc4O/vT2ZmJjdv3tSS4GzXrh2XLl2iRo0aeHrm74Tb29uzePFiwsPDad68OXPmzGHZsmWE/zSf74d05M8lCzXnd3vnE9ITE/jprZ5ErP2JvUHzWD/lLSrXfqHEtvaatgBkme8GteePH77gyJY1/LX8K1a9N4Sfxz/8bH3b34/1U8cQuuoHjm5dw9Y5H3Fm/05e7N63WPa5W5nSs2dPHjx4QPfu3fnpp5+YNWsWrVq1ok6dOoXa2KxZMxo1asSmTZto0KABzZs3L/H9CnRPdHS06P8hEJQQw/EiBYIiEBsbS8eOhdcB6hMnCxNq2JkRnZZr1EG/RL4ebVFlagYPHszUqVPp168fbQePJSE1nUMhq3CtXlujlVzVuwmNOvUkcv0SHqQkaaT37sVc/W/Sh6H0C/5d+Of3TVjY2lO5Vn1iTh3lypEwrB2dS3Q/tk6u+A+fyMGV37H6/aH50nsXT3Mp8k9sHF20xr7g35W/li0iZMa7VG/Skrgr5zi5ezOVqtUo0dylYd68eVSrVs3gGkadPHmS9PT0CluvHxISgpubm1Yw9TySl5fHrl27CAwMZP/+/bi6ujJhwgTGjx8v0mj1RNu2bTExMcHa2pomTZpojvv7+7NkyZIC79mhQ4fi4eHB/PnzWbhwIdnZ2ThX9sDjxZZaajD1fTsxdMHP7Auax54fZ+PsWYP+M7/nXOhurh2LKpGtlWvV5521+9i/dCEndm7kQXISNs6ueNRvTKeA/3t4T4PHcC5sD5cPHUSZm4OjuyddJk6n3Yh3imyf4j/lmJdffpmff/6Z+fPn88EHH1CzZk0WLFjAjRs3OHWqYKNByG/UN2XKFIP7nhUUJDo6Wnz3CAQlRAT7AqNBlmWD3dkHaOFmyY203GcPNGBkoIWb1TPHqXFxcWHr1q1MmjSJ4EUzcPSoTrd3PuF+zDVNsA8wYFYgti6V+HfPVs4e+I06rdozZP5yvu7bGrNH6itfmzwXhcKEf3dvJjcnC68mLXlr8WZWvF3yVPYub/8PUwtLDoes4tqxSKo1as7ooE2sek9b/rDjWx+Qm/WAk7s3c2rfdjxeaMyb368ncvGcEs9dEq5evcqGDRv49ttvMTc3L9e5n0VoaChWVlb4+Pjo25Qy59EU/ue1djc+Pp7ly5fz008/cfPmTVq3bs2aNWvo378/lpZFy/YR6AY7Ozvy8vIKHB82bBjDhg0r9JwOHTrQoUMHzd9nE7PYGZ1eYFyjTj1p1Kmn1rGGL/fQ+tvJo3qhqi9AocedPWswcFZgoePVdBwziY5jJj11zLPsU8kPlWNGjx7N6NGjC5w/c+bMQq9rbm6OJElPfP4EhkN0dLRBbvQIBMaAJMuyMW9ECp4jkpKScHZ2ZtOmTQaZZquSZZaeSyIlR2WUu/sS4GCuIMDbCUUJitSf5Eg+iTsXT/PDkJcZOHsxzV41vNdTTS8vO7ydy6+zeEBAANu3b+fGjRtautGGQK9evcjIyODPP//UtyllzvHjx/Hx8WHfvn3PVVduWZb5+++/CQwMZNOmTZrmZW+//bZIba5g3M/KY9n55GcPNDICGjjhbFm8BTpZlmnSpAkuLi4cOHBAR5YJygJZlrG3t+ezzz5j8uTJ+jZHIDA6xM6+wGiIjY0FMLhu/GoUkkQPLzvWXS5ZMzl9IwM9vexKFOjD06X6crMyMbPUDlwj1y9BUiio2bxNieYrL8pTWvHWrVusWrWKL774wuACfaVSSXh4OB9++KG+TdEJISEhuLi4VNgShcfJyMhg/fr1BAUFcfLkSWrXrs38+fMZNWoUzs4lK5sRGDbPs3KMmoyMDHbs2MGBAwc4ffo027dv16F1grIgOTmZ9PR0kcYvEJQQEewLjAZ1sG+oafwA1WzN8HGz5HhCllHt7kuAj5slnrZmJb7G0xzJ0NU/cuf8v9Ty8UNhasLFyD+5FPknLfuNwNG9aiks1y3FdSRLy6JFi7C1tWXChAnlNmdROXPmDMnJyRUyGFan8Pfp0wczs5J/BoyBS5cusXjxYlauXElqaio9evRg3rx5dO3aVSgQVHDUyjFH4zON6vfpSRRHOUZNQkICQ4cOxdHRkf/973/06tVLdwYKygQhuycQlA4R7AuMBmMI9gHae9hwOSWHVCNJ55cAe3MF7TxsSnedpziSXk1e4srhg/y1/CtyHmTg4F6VTuOm0PEtw90lLokjWRri4+NZunQpU6ZMMUh5odDQUMzNzWnVqpW+TSlzTp06xZUrV/jhhx/0bYpOUCqVmoZ7+/btw8XFhfHjxzN+/Hhq1Kihb/ME5UgzV0uOxGfq24wyoTjKMWpq1KiBqF41LmJiYgAR7AsEJUUE+wKjITY2Fnt7e6ytrfVtylMxU0j0NKJ0fnX6vpmi9EHtkxzJuq07ULd1h1JfvzwpiSNZGr755htMTEx47733ym3O4hAaGkqrVq2MplGbLMsoZciTZVQqUCjAVJIwkSiwgBMSEoKjoyMvv/yynqzVDQkJCZqGezExMbRq1YrVq1czcOBAo3kdBWXL86ocIzBeoqOjMTc3p1KlSvo2RSAwSkSwLzBICnPUY+/GG/yuvppqtmZ09rRh/60MfZvyTDp72lCtFOn7jyIcyZKRlJREYGAgEyZMMMh6aVmWCQsLY/z48fo2pVBkWSYxW0ncgzziHuQR+yCPuMw88lQFx5oq8rt3V7E2xd3alMpWpmwKCaF3794Gp35QEmRZ5tChQwQFBfHrr7+iUCgYMmQIb7/9Ni1atNC3eQID4HlUjhEYL9HR0VSvXl2UGQkEJUQE+wK9U1RHvdKwqQwf8D5rLyVrHHV3a1OcLUzKLdW6OPi4WZGtlAmPfaBvU56IfxVrfMrYYRKOZPH58ccfycnJYdKkZ8tQ6YPz589z7949g6vXT8pW8s+9LP69n6XpFaEAConxNeSp4FZGHncy8jTjBi3ZRTUySMpWGu1O4YMHD9iwYQOBgYH8888/1KpVizlz5vDmm2/i4uKib/MEBkRte3MczRVGrxxTy75i99cQ5BMTEyNS+AWCUiCCfYHeKImjbmJuWcBRtzDJrxVv5mppcI5628r5AaMhBvztqljTpnLZB7TCkSwe6enpfPvtt4wZM8ZglSZCQ0MxNTWlTRv9KyeoZJmrqTkcT8jiRlouEmi9z572/aF1nUf+bWXnwH0cWHIuiRp2ZrRws6S2vXmJlSnKkytXrhAUFMTKlStJSUnh1VdfZc6cOXTr1k3shAkK5XlXjhEYF9HR0TRs2FDfZggERosI9gXlii4c9WylzNH4TI7EZxqcoy5JEr7u1liYSOy/lVHgfsvdHvJfg79XfMW0H+frZA7hSBaPJUuWkJqaypQpU8plvpIQGhqKj48PNjala+JYWm6m5/JbdBrJOSrUr05ZfZ7U14lOy+VGWi6O5gp6eNmVWYlLWaJUKvn9998JDAxkz549uLi4EBAQwLhx46hVq5a+zRMYAc+zcozAuIiOjubVV1/VtxkCgdEign1BufE8O+o+blZUtjJlV3Sa3rr0q7vux/z2Cxf2bgF0E+yDcCSLSlZWFosWLWLEiBFUr169XOYsLup6/REjRujNhlyVTOidDI4lZJX5d8fjqK+bkqNi3eUUfNwsae9hUyYNLEtLQkICP//8Mz/99BPR0dG89NJLrFq1ioEDB2JlJeqXBcXjeVWOERgPWVlZ3L17V6TxCwSlQOT4CXROrkpm/6101l1OISUnf0++vBz1/bfSyVUZhhtTzdaMMQ2caOGW3wW7vEIH9Tw+bpaMaeBEdlwMJia6L3do72GDvbmi3O6ztOjDkVyxYgXx8fFMmzat3OYsLleuXCE2NlZv9fo303NZfj6J4wlZQPllxqjnOZ6QxfLzSdxM108fClmWOXz4MCNGjMDT05OZM2fSoUMHjhw5wpEjRxg5cqQI9AUlQq0cYxi/kM+mLJVjBMbBzZs3AQx2MVwgMAZEsC/QKc+7o/44ZgqJzp62DKvrgIN5/sdPV26L+roO5gqG1XWgk6ctZgoJpVJZLsG+cCSfTm5uLl9++SUDBw6kbt265TJnSQgNDUWhUODr61vucx9LyGTd5RS97jzKQOp/i4fHEspPnzwzM5MVK1bg4+ND69atiYiIYPbs2dy+fZtVq1bx0ksvlZstgoqLWjnGGChL5RiBcRAdHQ0gdvYFglIg0vgFOuNYQqbe69QfddQ7e9qUeef5klLN1owAbyeupeZyPCGT64X0Lygp6uvk9y+wopa9mVb9eXkF+/D8ShAWhXXr1hEdHc3OnTvLbc6SEBoaSrNmzbC3ty+3OWVZJupupqaxpb4XjNTz77+VQbZSpm1lK50pgFy9epXFixezYsUKkpOTeeWVV9i1axfdu3cvt8+t4PnieVWOERg+0dHRSJJEtWrV9G2KQGC0iGBfUOY8z456cVBIEnUczKnjYE5StpKT97I4+agygQRFqUB4dJyFiURTF0uaPkWZoDyDfRCOZGEolUrmzZtHr169aNy4cbnNWxLCwsLo379/uc756PeHoaG2y9fdusyuqVQq2b17N4GBgfzxxx84Ozvz1ltvMX78eGrXrl1m8wgET+J5VI4RGD4xMTFUqVIFc3NzfZsiEBgtItgXlDnPm6NeFjhZmNCxqg0dPKxJylYR9yCPuMw87mTkEpeZR15hMgXKPDztLfGwMcPdyhR3a1OcLBTPXMgo72AfhCP5OJs3b+bSpUusWbOmXOctLjdu3CAmJqZc6/WPxRvu94ea8NgHWJhIpV4gunfvHitWrGDx4sXcuHGDFi1asGLFCgYPHizq8AXliqEpxyDLIEkGlZEnKH+io6NFvb5AUEpEsC8oU54nR10XSJKEs6UJzpYmeGMB5GdKqGTIk2WUKjBRQE2v6owPCOCNzz4r9hz6CPYNzZFUz68PR1KWZebMmUOXLl1o2bJluc5dXEJDQ5EkCT8/v3KZ72Z6LvtvG37JB+RnClW2Mi1R6ceRI0cIDAwkODgYgEGDBhEcHGzw7wdBxccQlGNklYr0hFhG+dSkrqvh/U4Lyo/o6GhRry8QlBLRoE9QZhibo24oTfuehSRJmCgkLEwUWJspsDBR4F6pEnfu3CnR9fQR7KvxcbNiWF0HvXbpV3fdH1bXQS8LPrt27eLUqVN8/PHH5T53cQkLC6Nx48Y4OzvrfK5clcyu6DSjUm/YFZ1WZLWPzMxMTWO9Vq1aERYWxqxZs7h16xarV68Wgb7AYNC3ckwds2x+GNKRbz4zXJUSQfkggn2BoPSIYF9QJlR0R93Q8PDwMMpgH/TvSKolCPXR1Vm9q+/r60u7du3Kff7iEhoaWm4p/KF3MoxG7xseNv8Mu/P0Bc5r164xefJkPD09efPNN3F1dWXnzp1cuXKFKVOm4OrqWj4GCwTFQJ/KMQNerMaCuXNYvHgxv/32m45mFRg6SqWSW7duiTR+gaCUiDR+QZlgzI56J09bfZtTbDw8PDhx4kSJztV3sA8PHcn6jhb8Fp1Gco5KZ6n96us6mCvo4WWnV+mmv/76i8OHD/P7778bRJPIp3H79m2uXr1aLosSN9NzOfafPKcxIQNHE7Ko52ih9b5SKpX88ccfBAUFsXv3bhwdHRk9ejTjx4+nTp06+jNYICgm+lKOGT9+PLt27WL06NGcPn2aSpUqlcGMAmMiLi6O3NxcsbMvEJQSEewLSk1Fc9SNAQ8PD3bt2lWicw0h2FejTwlCfTBnzhyaN29O9+7d9WpHUQgNDQXQebCvkmV++y8ryFgWCx9FAn6LTiPA24mkxERNw73r16/TvHlzli9fzuDBg7G2NqymoAJBUSkr5RhkFUj5WQLPUo6RJIkVK1bQuHFjxowZw/bt2w1+gVRQtkRHRwOIYF8gKCUi2BeUiorkqOs7ECwOHh4e3L17l7y8PExNi/cxNqRgH/QnQVjeREVFceDAATZv3mwUTmtYWBgNGjTQ+Y7a1dQcknMKk5swDmQgOUfFe7MW8vP8GahUKgYNGsSGDRto2bKlUbzWAkFRKYlyjKkC3K1McTbJ439vB/Dem8N4c2C/Z342KleuzPLly+nduzfLli0jICBAR3clMERiYmIAEewLBKVFBPuCUlFRHPVrqbnUcTAeHVcPDw9UKhXx8fF4eHgU61xDC/YfpTSOZHElCMubOXPm4O3tTZ8+ffRtSpEIDQ2lQ4cOOp/neEKW0S4WqlHm5aHyfIEZM2bw1ltv4ebmpm+TBAKdUlTlGFNJQiGh+T6ecusSh//ay+hBrxdpnl69ehEQEMCHH35Ihw4dqFevns7uSWBYREdH4+DggL29vb5NEQiMGhHsC0pFRXDUJeB4QqbRBfsAd+7cqVDBvpqSOpKGyj///MPvv//OmjVrUCgMvy/q3bt3uXDhAp+VQNqxOCRlK7mRZhyqGE/DxNSU6s3bMs67h8FkkggE5Y0kSZhIYIIET/gY+Pn5ER4eXqzrfv311xw4cIA33niDyMhIzMyMq+xOUDJEJ36BoGwwfK9TYLCoHXVjDvQhf6HielouSdlKfZtSZKpWrQpQoo78JUn9NwQKkyA0UUgGH+gDzJ07l1q1ajF48GB9m1Ik1M64rjvx/3Mvy2gUPJ6FBJy8Z3y9SwSC8sTPz49z585x//79Ip9jY2PD2rVrOXHiBLNmzdKhdQJDIiYmRgT7AkEZIIJ9QYkRjrr+cHNzw8TEpETBvjHs7Fckzp8/z+bNm5k6darRLLKEhoZSp06dYmeNFAdZlvn3fhZLxvZm6djeOpunvJCBk/ezqFGjBqNGjdK3OQKBQeLn5wfk9zApDi1btmTGjBnMnTuXyMhIXZgmMDCio6OF7J5AUAaIYL+CIUkS77zzjs7nUTvqxr6rr0btqMty0e5I1w69JEnMnDnziY8rFAqqVKnC7du3i31tEeyXL/Pnz8fDw4ORI0fq25QiExoaqvNd/cRspaYJY0UhWykXrSu5QPCc4uXlRdWqVYmIiCj2udOnT6d169YMHz6c1NRUHVgnMBRkWRZp/AJBGSGCfUGJqKiOelL2ww5wUVFRzJw5k+TkZD1a9WQ8PDzEzr6Bc/36ddatW8fkyZOxsLDQtzlF4v79+5w+fVrnkntxD/IAGB20idFBm3Q6V3my49Apli1bpm8zBAKDRJIk/Pz8ShTsm5qasmbNGhISEnj//fd1YJ3AUEhOTiYtLU0E+wJBGSCCfUGJUDvqFY1H7ysqKorPP/+80GD/4sWLenfoRbBv+CxYsABnZ2fGjh2rb1OKjNoJ1/XOftyDPBSAqZk5pmbG0xzzaSgkSFSZiAZiAsFT8PPz4+jRo2RmZhb73Fq1avHDDz+watUqQkJCdGCdwBBQy+6JNH6BoPSIYF9QbDIyMjSOekVCIUFcZtEWMSwsLPTu0Itg37C5ffs2K1eu5MMPP8Ta2lrf5hSZ0NBQvLy8ir2jcurUKSRJYseOHZpjx48fR5IkmjdvrjX2lVdeIaBHB1TA0kJq9qM2LuOb/n581rY6n7evw4/DOnNy92atMSnxsWz+/H3mdm3EJ62q8mXPFmybO5m83BzNmMRbN1g3ZTSzOtTls7bVCRrRnQvhe7Wuc+1YJNObu3Fq7zYOLP+aed1f5NPWniwf1497Mde0xt6Lucraj0Yxp4s3n7b2ZF73F9kwbSxZafkpxSoZBrVqoFXis2rVKiRJIjIykkmTJuHm5oaNjQ19+/YlISGhWM+xQFAR8PPzIzc3l2PHjpXo/JEjR/L6668zbty4EpWyCQyf6OhoALGzLxCUARUtXquwzJw5E0mSuHDhAgMHDsTe3h4XFxfef/99srIKNpbbtm0bjRo1wsLCgoYNG/LHH39oPR4dHc3EiROpX78+VlZWuLi4MGDAAG7cuKE1Tu2ohoaGMnHiRCpVqoSnpyexD/L4aWxvvh3gT+ylsywd04vP2lZnYa+XOL0/39m/djySwBHd+LRNNb7q25orh0O1rp105ybb5k3hq76t+bRNNWZ1rMe6KaNJuhNT4H7+n70zD4uqeuP4Zxj2fREERWVxAwVMFBUH9zW03CrNJTU10yxb1Cx/ZZaaS1kupZaRpmW5L2nlkgiCopjglrsDLigq+z7M/f2BjCAooMMM0Pk8zzwP3HvuOe+9zAzne97lZKWlsHPhDOYFt2RGm7rM7eXLb/+bSEbSg4q+qtwc9nw7jwXPtWZGm7p83tuP3V99gio3p8iYcUxv6Uj09l9KjDHtGUeWfv6p5nlPmTIFAHd3d2Sygqrvhc+ntJz95ORk3n77bdzc3DAxMcHV1ZURI0Zw584dAHJzc/noo4/w9/fHxsYGCwsLgoKC+Pvvv0vYUh6E2K/afPHFF5iZmTFhwgR9m1IhQkNDnyiEv3nz5tja2nLw4EHNsbCwMAwMDIiJidHk2KrVaiIiIqjXom2p/URt/okd8z/AyaMxfd79jG7jp+LSpDnxp6I1bVITE/hmeA9i/tyKb49+9J0yh2eCX+BKdAR52QXewrS7t/l21LNciPybti+MoseED1DlZrPm7eGc3v97yfv+cTGn/95F0PAJdBz1FnEno/l1xuua86q8XH6Y+BLxJ6MJfGkMz73/OQEDRnDvupKstBRNu3x1ia4BmDRpEjExMXz88ce8/vrr7NixQyf1VQSCqoaPjw9WVlZPFMoPBakAK1aswMTEhFGjRqFWP+JDJ6i2KJVKjI2NqV27tr5NEQiqPdWjNLRAw4svvoibmxtz587l8OHDLF68mKSkJNasWaNpEx4ezubNm5kwYQJWVlYsXryYgQMHEhcXh4ODAwBHjx4lIiKCwYMH4+rqytWrV/n222/p1KkTZ86cKeGJnDBhAo6Ojnz00Uekp6drPOBZqcmsnjwUvx79ad7tOY5s/JH108ch5eez84sZBAwcSYteAzi4Zhnrpozm/d0xmFhYAnDtzD/ExUTh26M/NrXrkHQjjiMbf2Tl2H68vTEcY7MCG3Iy01nxal8Sr5zH/7mXqevlS0byXc6G/knK7RtY2DmgVqtZM3kYV09EETBgOE7ujUm4eIbwn5dzJ+4Sw79cQ3lIz1MjSRIDBgzg/Pnz/PLLLyxatIhatWoBBVXwS70uPZ2goCDOnj3L6NGjadmyJXfu3GH79u1cu3aNWrVqkZqayvfff8+QIUMYO3YsaWlprFq1ip49exIVFUWLFi0q8E4oEPt37twhJyenQvngQuxXPnfu3GHFihW888472NjY6NuccpOSksKJEyeeaIHCwMCA9u3bF9tDOywsjH79+rFt2zYiIiLo1auXRvjXf6Z0sX8ufA+1PZsydP4PjxzrjyWfknb3NhPW/Imr94PPTffX39cU2QwNWUz63UReW7UDt/tjtR4wjK9f6sTvX36EV6feGBg8WO9W5eQwaf3fmpQCM2sbdi74kISLZ3Fu6MXty+dIuq7k5fmr8On2nOa6ruPeK2abBJRW59PBwYG//vpLs1WkWq1m8eLFpKSkVKv3iEDwtMjlcgIDA59Y7EPB5+nHH3+kZ8+eLFmyROTw1zDi4uKoX79+se9ogUDwZAixX81wd3dn27ZtAEycOBFra2u++eYb3nvvPXx9fYGCrb7OnDmDp6cnAJ07d8bPz49ffvlF40kKDg5m0KBBxfru27cv7dq1Y9OmTQwfPrzYOXt7e/bt24dcLkelllgYU+BRT01M4KU5K2jRawAAjdp24ssB7Vj/4XjGh+yivo8/AI7ujQmZ+CKn9u3A/7khADRVdC82aQbw6tCTb0f25tS+nbTs8yIAB1cv49bFswxb+CPNugRr2nYZ865mYh+zexMXow4y7rttmok9QG1PL7bOeQ9lTBQN/ALKfDQqVlgAACAASURBVL5qqeDl6+tLy5Yt+eWXX+jXrx9ubm6PvW7BggWcOnWKzZs3079/f83xGTNmaGy0s7Pj6tWrGBs/yE8eO3YsTZs2ZcmSJaxatapM+4pSuC1aQkJChULdhNivfL766itkMlm1m4AeOnQItVr9xPn6QUFBzJgxg4yMDCwsLAgPD2fOnDkolUrCwsLo1asXYWFhyGQy3Fq0KbUPUytrUm7dIP70P9Rr9kyJ82q1mjMHduPVoWcxoV9IoZg+d2gvrs1bFvs+MDG3JGDAcP5c8hm3L5/DuaGX5pz/c0OK1Q5wv3/dvetKnBt6YWppDcCFyL9p0r6bZjGyNNSl7FMybtw4jW2Fz2rRokUolUrNd7dA8F9BoVCwcOFC1Gr1Ewu6Hj168NZbbzFt2jS6dOmCj4+Plq0U6Aux7Z5AoD3Eklk1Y+LEicV+nzRpEgC7du3SHOvWrZtG6EOBcLW2tuby5Qf5p2ZmZpqf8/LyuHv3Lg0bNsTW1pbjx4+XGHfs2LEagagq4rYyNrfAr+cDcevo1hBTKxuc3BtrhD5A/eYFP9+7rtQcMzJ9YEN+Xh4ZyfdwqOeOqZUNN/6N1Zw7vX8nLo2bFRP6hRROnk/u3Y6Te2Mc3RqRkXRX8/IMKNjT9/LR8nsQVOXcfq8omzZtws/Pr5jQf9hGuVyuEfpqtZp79+6hUqlo1apVqc+8LArFfkVD+YXYr1ySk5NZsmQJ48eP10SEVBdCQ0OpU6dOse+PihAUFIRKpSIyMpJz585x+/ZtgoKC6NChg8bjHxYWRlMvb8xt7Erto+Mrb2JsbsE3w3uw8PkAts2dytUTRzTnM5LukJOeRm3Ppo+1JfnmNRwbNCxx3Mm98f3z8cWO2zrXLfa7mbUtUBC9BGBftwGKYa9zdMtaPuvalB8mvEDkr6s0+fpFKe0r5OGJq51dwf0nJSU99j4EgpqIQqEgJSWF06dPP1U/c+fOpWHDhgwdOrTUlEZB9URsuycQaA/h2a9mNGrUqNjvnp6eGBgYFMu1L2011M7OrtikMisri7lz5xISEsL169eL7S+fkpJS4np3d3fNz0XT42yc6hTzVgGYWlpjU7tO8WNWBV6xwokzQF52FgdCviZ6+y+k3r5ZzIbs9AcT6LvXrtK8S58SNhXlbtxlbl85z2ddSxcA6Ul3Hnt9UfLVQAW18KVLlxg4cGCZ7VavXs0XX3zBv//+S15enuZ40edbXoTYr5osW7aMnJwc3n33XX2bUmEK8/Uf/kyXl1atWmFqasrBgwepX78+Tk5ONG7cmKCgIL755htycnIICwvjuX79HtmHk0dj3t0Syb8H/+J8xH5O7d/J4Q0hdBn7Ht1fn/akt1Ymskd9Jop8LwW/Mwv/voM5E7qbC5EH2LHgAw6EfM2E1X8U+84r7fE96jMnPcHiokBQ3QkICMDQ0JDw8PCn8sibmZmxbt06AgICmDFjBgsXLtSilQJ9oVQqefbZZ/VthkBQIxBiv5pT2qS8PJPKSZMmERISwuTJk2nXrh02NjbIZDIGDx5carGbopEARSPuDB4xlsygbBu2z59O9PZfaP/ya9T3bYWppTUymYxfpo9DkipWcEeS1Dg39Cb43VmlnrepXei1K13EqPPzNT/LKyneZe3atYwcOZJ+/foxZcoUnJyckMvlzJ07l0uXLlW4P3t7e0xMTITYr0JkZGSwaNEiRo8ejYuLi77NqRDp6elER0eXKDxZEYyNjQkICCAsLIz69esTFBQEFHj8c3JyWLduHbdu3aJDUAeuPa4fMwt8e/bHt2d/VHm5rH13JAd+WESn0W9hYVcLE0srbl3697G22Lq4kqi8WOJ44tUL98/Xe6J7dG7kjXMjb7qMeRdlTBTLRwVzZOOP9Jj4gaaNwSO+ZwQCQQHm5ub4+/sTHh7O66+/XvYFj8HPz4/Zs2czZcoUevfuTdeuXbVkpUAfZGdnc+vWLRHGLxBoCSH2qxkXLlwo5gW+ePEiarW6zJzyh9m4cSOvvPIKX3zxheZYdnZ2qXvKP4zhE3r9HubU3h207PMSwe88EOh5OdlkpxWPLHBwdePWpbOP7cve1Y2b50/jGfB4r6QmNPehMYqG9BbeX0W8m56enpw6deqxbTZu3IiHhwebN28u1vfHH39c7nGKIpPJnqgivxD7lcfKlStJTk5m6tSp+jalwkRGRqJSqZ44X7+QoKAgvvzySy5duqSJbqhVqxZeXl7MmzcPgGbe3tyQ8lHLSr4PM5LvYWFrr/nd0MiY2h5NOB+xD7VKhZGJKd6denNi10aunTlRIm9fkiRkMhlN2nfj0M8rUMYcpYFfawByszKI2vwTdnXq4+TRpEL3lZ2ehpGpGXLDB/82nRt6IzMwQJX7YLs/GaV79gUCQXEUCgUbNmzQSl/vvPMOu3bt4pVXXuHkyZOaNBlB9SM+vmA+JsL4BQLtIHL2qxnLli0r9vuSJUuAgn2rK4JcLi8RPrpkyRLyi3i4H3mtDAy18M6RyeUlklsj139fzMsO0KxLH26eP13qdlmF9+DT/XlSb9/k6OafSrTJy84iNysDAFNLKyxsHbh6/HCxNoc3hABgICt4AVhYWACUawFk4MCBxMTEsGXLlkfaWCiwiz73I0eOEBkZWWb/j6JOnToV3mdYiP3KIScnh4ULFzJs2LAKL75VBUJDQ3F0dKRp08fnwpdFUFAQWVlZxMfHExAQwD///MPq1asxMjLi/PnzGBgY0LLlM1w6cbTUEPYfJrzAj28O4e9Vizi6dS27Fn1MxPrvaKrortnJo+cbM7C0r8XKMc+zc+EMojatYe+KBXz1QpAmBajjqDexdHDkx0mD2fPt54SvW87y0X1Iuq4k+J1ZFS4KduloGPP7tGTnwhkc3hBCxPrv+H78AAwM5DTv+iDNqLIigwSCmoZCoSAuLo64uJLb7VYUAwMDVq9eTUZGBuPHjxfpMdUYpbKgtpMQ+wKBdhCe/WrGlStXeO655+jVqxeRkZGsXbuWl19+GT8/vwr106dPH3766SdsbGzw9vYmMjKSvXv3arbmexwymQxns6d/6zQN6s4/uzZgYmlNbY8mxMUe5WLUQcyLePUAOrwykVP7dvDztFfvb73nR1ZqEmdC/6T/hwtwadycZ4Jf5OSebWyd8x6XjoXTwC8ASZ1P4tWLxO7Zxuhlv2k8gK36DyU0ZDGbZk3G1bsFV45HckdZEEZvaWSg8br7+xcUFfzwww8ZPHgwRkZG9O3bV7MIUJQpU6awceNGXnjhBUaPHo2/vz/37t1j+/btLF++HD8/P/r06aOp1h8cHMyVK1dYvnw53t7epKenP9EzLK9nX5Ik8qWC4oNGFlbITcxQqSXksopFMAgezY8//sjNmzeZPn26vk15Ip4mX1+SJOLj44mNjeXo0aPIZDJkMhkKhUKTFlS4bWXz5s356KOPoEkLLuWVHKvNwFc4sXsj4euWk5uZgbWTC4GDx9J5zDuaNjZOLkxY/Sd/fTuXE7s3kZORhrWTC40Du2gKf1o5OPF6yC52L55FxPrvUeXm4NzImxFfraVpUI8K36NL42Y0bteZswf/JDUxASNTM1waNWPkkvXU920FFCwUysXnSSAoF+3btwcKdgHRRsh2vXr1WL58OYMHD6Zv374MGzbsqfsU6J7CxR9XV1c9WyIQ1AyE2K9m/Prrr3z00Ue8//77GBoa8sYbb7BgwYIK9/P1118jl8tZt24d2dnZtG/fnr1799KzZ89yXe9ibvjUWal9p8zBwEBOzO5N5OVm08AvgFe/3cQPE18s1s7E3JLXVu1g7/J5nP57F8d3/oqlfS08A4KwdiooimVgYMDwL9YQvm45//z+G2f+3oWRqRn2dRvQfsg4atV/UF2869j3yEi6y6m9Ozi5ZxuNA7sycul6Znf1Ijv5LpcvX8bd3Z3WrVvz6aefsnz5cv744w/UajVXrlwpVexbWloSFhbGxx9/zJYtW1i9ejVOTk507dpV8w9r5MiRJCQksGLFCv7880+8vb1Zu3YtGzZs4MCBA0/0DOvUqVMifUCSJO7l5JOQqSIhU8XNTBUJWSpU98sgjFy9F4CFMXcxNABnM0NczA1xvv+yN5GLBYAKkpeXx+eff84LL7xAkyYVCw+vCmRlZREVFVWu4lZpaWmcOnWK2NhYYmNjOXnyJLGxsZrCnjY2NigUCnx9fTWvZs2aYWVlVayf0/eyuaBMZ9x324odDxg4goCBI8q0w9bFlRdnLXtsG3tXN4bO/+GxbTxatWfu8cQSx+3q1C923L5uAwZ+/PVj+1JLsD/mPN72JppjI0eOLLUOQqdOnYT3UfCfxtHRkSZNmhAeHs6QIUO00udLL73Ezp07mThxIgqFolpGWf3XUSqVuLi4YGJiUnZjgUBQJjJJzDaqBTNnzuSTTz4hMTGxSmzndfpeNjuUT+aNrsqsnz6OmD+3ULt2bQIDA2nXrh2BgYH4+/tjamqqb/NKMH/+fObMmUNycjJJOfn8cyebmLvZ5OQXfKwNgPKUOizazkQuw8/BlGdqmWJnIsL9y8OaNWt45ZVXOHHiRIWjbKoCBw4coHPnzsTExGj2fM/Pz+fSpUvFBH1sbKxmC0+5XE6TJk2KiXpfX19cXV3LtVh0N1vFd2fLTpGpbozzssPeVHxuBILyMGbMGI4ePUpMTIzW+kxJScHX15cGDRrw999/i7S1asbIkSM5d+7cU6U4CgSCBwjPvuCJcDavmW+dTT+u5N/oV4mIiCAyMpKZM2eSmZmJkZER/v7+GvEfGBio2fpOn7jUqYOLXxvWnbtHfKYaGVB09a68exoUbZeTL3H0dhZRt7NwszLC39EUT2tjDGqwt79omoNaXbDjhKFMVq40B7Vazdy5c+nTp0+1FPoAu3fvxsrKin379rF48WJiY2M5deoUWVlZANSuXRtfX1/69++Pr68vPj4+eHl5PdUCmL2JHBO5TLMwVRMwkcuwMxFJ+wJBeVEoFPzwww8kJydja2urlT5tbGz46aef6NSpEwsWLOD999/XSr8C3RAXFyfy9QUCLVIzFZug0qmpE3WP2vZ4BgcTHBwMgEqlIjY2ViP+t2zZwqJFi4CC4jFFxb+vry9GRkY6szc+PY87TTvzyle9uJaZD8jQ1l+jsB9lWh5X0/KwNTYguIEV9Sx1d3+VRVlpDkUpT5rD5s2b+ffffwkJCdHhXTwZubm5/Pvvv8U89bGxsZq6D9OnT6dZs2b4+voyZMgQfHx88PHxoXbt2lq3RSYriCA5ejtLa+9bfSIDWjiYihQYgaACKBQKJEkiMjKywoWGH0eHDh2YNm0a//vf/+jevbumBo+g6qNUKmnVqpW+zRAIagwijL+aUNXC+AH2X8+oURP1ACczOtctmY//MDdu3CAyMpLIyEgiIiKIjo4mNzcXc3NzWrdurRH/bdu2rZS/VZ5aIvRGBscSsymQ5ZUvLgojBlo5mtKxjgVGBtVP0FRGmoOtsQH+/v7Y2dmxb9++SrK84kiSxI0bN0qI+rNnz6JSqYCCxarCfPovv/ySyZMnM3v2bAwNdbcGnJSTz4ozSTobr7J5zdtOpL4IBBVAkiRcXFx49dVXmT17tlb7zs3NpW3btmRmZnL8+HHMzc212r9A+6jVakxNTVm0aBETJ07UtzkCQY2gxon9pwnHFVQMMVEvIDs7m+PHj2u8/4cOHeLWrVsANG7cWCP+AwMD8fLyqvCWX0WJT89jpzKN1Fy1XhZZZIC1sQF9qomXXy1JXErNJToxm6tpeSXSHJ6Uwn4ss5NZ9v5Els18ny6dO2uh54qTmZnJ6dOni4n62NhY7t27BxQUjywMvS/Mq2/evLkmZPbQoUMoFAqOHTumF+/X+ospKNPyqvWioQxwszLipYY2+jZFIKh2DBo0iMTEREJDQ7Xe99mzZ2nZsiWjR48usXWxoOpx/fp1XF1d2bFjB3369Cn7AoFAUCbVOoxf2+G4gophZyLHzcqoxkzUn9QjZ2pqqhHzUPC+vHr1qkb8R0REsGbNGtRqNTY2NrRt21ZT/K9NmzZYW1uXa5xjiVnsvZahNcH6JEhAaq6adRdS6OZqQStHMz1ZUjbx6Xn8rkwjOVetiX3QdppDqpEVr3y1jvPGBjRKz6vUBRC1Ws3Vq1dLiPqLFy8iSRIymYxGjRrh6+vL5MmTNcK+QYMGj11gCg0NxcrKSm/1BvwdTbmalqeXsbWFBPhX4c+CQFCVUSgUTJ8+nZycHK1XYPfy8uKLL75g4sSJBAcH8+yzz2q1f4F2Kdx2TxtbMQoEggKqpWdfVB2vOlxIyWHT5TR9m/HUDPKwpqGNcaX1n56eztGjR4mIiNAsAiQlJSGTyfDx8SlW+d/T07PYIpQkSUTcyiLsZmal2fekBLmYE1jbrEotmhVNc9DVwoi20xySk5NLhOCfOnWK9PSCHTAcHBxKVMH39vZ+ojDVXr16YWBgwK5du57K5idFLUmsPJNEip6iVZ4WGWBjbMA4b7saXcRSIKgsjh07RuvWrYmIiKBdu3Za71+SJIKDg4mOjubkyZM4OTlpfQyBdli/fj1DhgwhOTkZGxsRKSUQaINqI/YrOxz3v1J1XNuIifqToVarOX/+vEb8R0REcPbsWaBg7+HCSIF27dqR7+bL4TtV1/MZ5GJOe+eqkQtZ3dIcVCoV58+fL7FnfaF3w8jICC8vrxLC3tnZWSsLLCqVCjs7O2bMmMG0adOeur8nJT49j3UXUvQ2/tMyrJENrtUgrUUgqIqoVCpsbW35+OOPmTJlSqWMkZCQoFlY37p1a5VaoBY8YN68ecydO5fk5Jq3LatAoC+qhdh/OBy3Mgwu7LcmVR3XFWKirh3u3bvHkSNHNOL/yJEj+PV9mb5T5+jbtDKpCiH9VSHNAR58lzz8TG7dulVC1J85c4acnBwA6tatW0zQ+/j40KRJE4yNKy/iJCoqijZt2lSaR60i7L2WTnRidrVaNJRREM3R1dVS36YIBNWabt26YWFhwbZt2yptjG3bttGvXz9WrlzJ2LFjK20cwZMzceJEwsPDiYmJ0bcpAkGNoUqL/ZoQjvtfQUzUtc/VlGzWX05DF9X2tcHQRjZ6WSSrymkOGSdCOfzzcmJjY7l9+zYA5ubmNG/evISwt7e317l9CxYsYObMmSQnJ+t028jSyFNLfH82SW9RGRWlMIpjjJed+D8hEDwlM2fOZOnSpdy+ffupitiWxbhx41i3bh0nTpygUaNGlTaO4Mno06cPMpmMHTt26NsUgaDGUGXFfnULx/2vIybq2kU8z/JzKCGzSgr9Qq79vZVaqdc01fA9PDyQy6tGjZC+ffuSnZ3Nnj179G0KUP2ihPS1wCUQ1DT27t1L9+7dOXPmDF5eXpU2Tnp6Os888wz29vaEh4frfZFTUBwfHx86duzI0qVL9W2KQFBjqLzl06fgWGIW6y6k6FXoFK06fiwxS09WVB+MDGT0aWBVLYQpFPx9+zSwqpJCHyD0Rka1Efrw4PNy8EaGTsc9drtqevSL4tq5H30mTmPgwIE0atSoygj9/Px8wsLC6Nixo75N0VDP0ohurhb6NqNcdHO1EEJfINASbdq0QS6XEx4eXqnjWFpasnbtWqKjo/nss88qdSxBxZAkCaVSSYMGDfRtikBQo6hSYl+SJA4lZLL3WoFg0LfQKRx/77UMDiVkUkWDIKoMYqKuHeLT8zhWzVIioODzcjQxm/h03RQTjE/PY+913S4uPCl7r2Xo7LmUl9jYWFJSUujQoYO+TSlGK0czglyqRsHHRxHkYq73GhUCQU3CysqKFi1aVLrYh4KFhY8++ojPPvuMiIiISh9PUD5SUlJIS0sT2+4JBFqmSon9qpp3CxB2M5OIW8LDXxZiov50qCWJ35Vp1SRLvyQy4HdlGupKXhjLU0vsrEbPSQbsVKaRp646SzgHDx7ExMSEgIAAfZtSgsDaVfd7pMP97SYFAoF2USgUOhH7AB988AEBAQEMGzaMtLTqv31wTUCpVAIIz75AoGWqjNivDuG4YTczRUh/ORAT9SfnUmouydUofP9hJCA5V83l1Mr1Yos0h6cnNDSUtm3bYmpqqm9TSiCTyVBfiGbnwg+RJEnvizqF43dztSDQ2Vxs2yUQVAIKhYLLly9z48aNSh/L0NCQtWvXkpiYyFtvvVXp4wnKRoh9gaByqBJiX4Tj1ixkMhntnc01If36nhZXp4l69P2dJ6ozMiC6EhfFRJrD06NWqzl48GCVC+EvJD4+nkGDBmF4/RyDPSyxNjbQ2+eisPjk0EY2VTYiSCCoCbRv3x6AQ4cO6WQ8T09PFi9eTEhICJs2bdLJmIJHExcXh7GxMbVr19a3KQJBjULvYl+E49ZcWjmaMbSRDeYGatTqfL3YUJ0m6kk5+VxNy6t2IvZhJOBKWh5JOdr/m4s0B+1w5swZ7t69W6WK8xWSlZVF//79MTU1ZcOGDbjbmjHGyw5/x4IIBF397QvHaeVoyhgvuypb40MgqCm4uLjg6emps1B+gJEjRzJgwADGjRunk4gCwaNRKpXUq1evUrdeFAj+i+j9EyXCcWs2rhaG7Jk5npjtPwNiov44/rlT/b36hciAE3eyn7oftVrNpUuX2Lp1K7NmzWLsB7NEmoMWOHjwIEZGRrRr106vdjyMJEmMHz+eM2fOsGXLFhwdHYGC3T66uVoytJENNsYF/7Yq67NS2K/N/UXCrq6WVXbXDoGgpqHLvH0oiERcsWIFJiYmjBw5ErVarbOxBcURlfgFgsrBUJ+DF4bjVjcKw3Eb25pUCxGpT9auXcuOrVvYNmokzzSy4XdlGsm5amRUzm4Lhf3aGBsQ3MCq2vx9JEki5m71C01/FBIQEXeXs9vX0D4wkObNm5e55VxycjInT54kNjZW8zp58iQZGQULaw4ODoxc+iuSOh+ZQdXYvu5JKExzaGhjrDcbQkNDad26NebmVau2xtdff82aNWtYt24dLVu2LHG+nqUR47ztuJyaR3RiFlfS8rT2XVLYj5uVEf6OZnhYG2FQhVN+BIKaiEKh4KeffiItLQ0rKyudjFmrVi1CQkLo1asXS5cu5c0339TJuILixMXF4e3trW8zBIIah0zS035yakli5ZkkUqqpl05GgaAc522nlQmhJEnkS6CSJNRqMDAAQ5kMuYwqnWP+OG7evEmzZs3o3bs369atAwr+7pU5UXevphP1u9kqvjubrJexI3/7AWNTM/yfG6L1vr8a1J5bl89jaWlJmzZtCAwMpE2bNjg4OHD16tViwj4+Ph4AIyMjvL298fX1xcfHB19fX3x9fTGxc2Slnp5RZfCatx12JrpftJAkCRcXF0aNGsXcuXN1Pv6j2LdvHz179uTtt99mwYIF5bomKSefE3eyOXE3m5z8gm8SAxmUJ8uqaDsTuYwWDqa0qGWql7+JQCAo4OzZs3h7e7Nnzx66deum07HfeustVqxYQXR0NM2aNdPp2IKCNI7XXnuNmTNn6tsUgaBGoTexfyElh02Xq/92J4M8rCvsoZMkiXs5+SRkqkjIVHEzU0VClgpVKdFjhgbgbGaIi7khzvdf9ibyKr8AIEkSAwYMICIigjNnzuDg4FCijZioP+D0vWx2KNP1MvZXLwRhbmvPuO+2ab3vtuZZRO/8jf379xMbG8vNmzfJz3+Qy29hYYGnpydt2rShY8eO+Pn50aRJE4yMSkZk7L+ewdHbWdVycfBhZECAkxmd61rofOzz58/TpEkTdu/eTa9evXQ+fmlcuXKFVq1a4e/vz65duzA0rFjQmSRJJOWoC75Ts1TcyMgr8zu1joURzmYF36l2JgZV/jtVIPgvIEkSjo6OvPHGGzoXfVlZWbRq1QojIyOOHDmCiYmJTsf/L5OdnY2ZmRk//PADo0aN0rc5AkGNQm9h/IVVx6vzxL2i4bhJOfn8cyebmKLiFnhchphKDdcyVNzIUGnamchl+DmY8kwVFre//fYbW7duZePGjaUKfQA7Ezmd61rQqY75f36inpCpKvO9UN3IV+Uxf/kP7P5qJubm5jRv3pyePXvi4uKCSqXi5s2bHD9+XBO6v2nTJtq1a0dgYCCBgYG0bt0aC4sCMazNNIeVY58H0OrixvSWjnQdN4Vu46eWq70EnLibTac6ut8dIjQ0FLlcrql8rW8yMjLo168ftra2rF+/vsJCHwqin+xN5dibyvGmYIIuSRLq+9FS+WqQ34+WMqjG0VICQU1HJpPRvn17nebtF2JmZsa6desICAhgxowZ5Y4wEjw9hZF9ImdfINA+ehH7hVXHqztFq44/SnSrJYlLqblEJ2ZztZSw9fKKu6LtcvIljt7OIup21v38UlM8rY2rTNh6YmIib7zxBi+88AIDBw4ss72YqMPNTFW53gtJN+IJXb2ES1EHSU64jpGpGZ6tFTw7eSZ2depr2u1dPp99Kxcw93hiseujt//CxplvMnVnNHZ16jMvuCXJNwv+yU5vWVAMzd0/UCOE7127yu7Fs7gUFYYqNwfnht50GfsOTYN6lGmrgdyQni8MZfHEoXh4eDyywm5KSgpHjhwhMjKSiIgI5s2bR2pqKnK5HD8/vwLh36kbOR4F4lQZE8WFyAO0H/oaZlY25XhqVZOc/AJvtL2pbhfsQkNDadmypc7yYR+HJEmMHj2aS5cucfjwYezt7bXWt+x+GpQcGVTNNVGBQFAKCoWCTz75hLy8vFKjvCqTFi1aMHv2bKZNm0bv3r3p0qWLTsf/rxIXFwdA/fr1y2gpEAgqil7EfmHV8ers1S+ksOp4aeG48el5xQrSgfbuubAfZVoeV9PysK1CBeneeOMNJEli6dKlT9zHf2miLkkSCVmqcrW9duYf4mKi8O3RH5vadUi6EceRjT+ycmw/3t4YjrFZxQqu9XnvM3bMn46xmQWdX30bAEuHAtGfdvc23456lrzsLAIHj8Xcxp7jO9ez5u3hDJ3/A826BD+243JurwAAIABJREFUb5lMRp6FLZ6eDo9doLGxsaFHjx706FGwgJCfn8+ZM2c04v/PP/8k7OINBs8pFPtH2bdyAf7PDa7WYh8KIjp0KfYlSSI0NJSXXnpJZ2M+jnnz5vHbb7+xadMmmjdvrm9zBAJBFUChUJCRkUFMTAytWrXS+fjvvPMOu3bt4pVXXiE2NhY7Ozud2/BfQ6lUAlCvXj09WyIQ1Dx0LvZrYtXxh8Nx89QSoTcyOJaYrXWRX9r4ACm5atZdSKGVoykd61jobauozZs389tvv/Hzzz/j5OSkFxuqG/kSpaYslEZTRXd8uj1X7JhXh558O7I3p/btpGWfFys0drPOz7Lnm7mY29rzTPALxc6Fhiwm/W4ir63agdszbQFoPWAYX7/Uid+//AivTr3L3A9XpS6orSCvwNtRLpfj4+ODj48P48aNA2DnhUROpalBpvfdQrWGgQwSslSaaBZdcPXqVa5du0bHjh11Nuaj2L17Nx988AEzZsxgwIAB+jZHIBBUEVq2bImpqSnh4eF6EftyuZw1a9bg4+PD66+/zi+//FIjIwqrEkqlEhcXF1EnQSCoBHQ+c76Xk6/JV69s/g3fw97l8yt9nMJwXCjw5n9/Nono+1sK6mpRo3Cc6MRsvj+bRHy67tMk7t69y4QJE3j++ecZPHiwzsevrqgqUCPTyNRM83N+Xh4ZyfdwqOeOqZUNN/6N1apd5w7txbV5S43QBzAxtyRgwHCSbsRx+/K5cvVTkft7FMmSEcgM2Lt8Pru/mgnA/D7+TG/pyPSWjiTdiCNfpWLfd1+w4LnWzGhTl3nBLflzyWeocnPKtjE3hz3fztNc+3lvP3Z/9UmJa1W5OexcOIPPujTlY4UbayYPI+XWjVL7vPFvLCFvvMTMIHc+bt+A718bQFzsMc15tQQ3MnT7OQ0NDUUmk6FQKHQ67sOcP3+eIUOGEBwczCeffKJXWwQCQdXCxMSEgIAAveTtF1KvXj2WL1/Or7/+ys8//6w3O/4rxMXFiXx9gaCS0LlnPyGzfOHK2uBc+F4O//ZDuYtmPQ0JmSoup+Wy91qGXlMUJCD1vpe/m6sFrRzNyrxGW0yePJmcnBy+/fbbGr8KLkkSeXl55OTkkJubS05OTrFXeY/l5OSQiwGmvceUa9y87CwOhHxN9PZfSL19k6KbaWSnp2r1HpNvXsOnuX+J407uje+fj8e5oVeZ/eSreapUjKJpDs26BHMn7hIxf2wm+N1PsbAtKP5oYefA5k8nc3zHrzTv1hfFsNeJPxXNgZCvuX31AsO/WP3I/tVqNWsmD+PqiSgCBgzHyb0xCRfPEP7zcu7EXWL4l2s0bTfNepsTuzbg13sgDXxbc+loGD+++XKJPm9d+pcVr/bFxMKKDq+8gdzQiCOb1vDduH6M/W4b9X0KnmtClgpJknT2eQkNDcXX11evYampqan069cPZ2dn1q5dW2Z0iEAg+O+hUChYtWqVTr8fH2bw4MHs3LmTCRMmoFAohBitRJRKpcjXFwgqCb2I/epcdVySJFQ52cU8rDIg+k4W1zMKBIm+UxQKx997LYOcfInA2maV/s9y586drF27lh9//BEXFxet9p2fn19hEf1IYa3F658GY2NjTExMMDExwdLWntfKKfa3z59O9PZfaP/ya9T3bYWppTUymYxfpo9Dkop8qh7x91ar80s9XpnIn1LLFU1zcGncjDpNfYn5YzPNOj+rKUp48/wpju/4ldb9hzHgf4sAaPfiaCztHAn7aRmXjobj2bp0b3bM7k1cjDrIuO+2FYtiqO3pxdY576GMiaKBXwA3z5/ixK4NtH1hFM9PL4gYavfSq6z/cDwJF04X6/Ovb+aSr1Ix/oed2Lu6AfBM8It8OaAdf3z9CeO+3w48WZrD0xAaGkrfvn11M1gpqNVqRowYwfXr14mKisLGpnrXXBAIBJWDQqFgzpw5XLp0iYYNG+rNjqVLlxIWFsaIESPYv38/cnkNLyKkJ5RKpV5SNgSC/wI6FfvXr19n1uT3+Sd0D5kpSVg7OtM4sAt9pszG0MiYrLQU9i6fz+n9O0m/dweb2nUIGDCcoBFvaLw/STfimN/Hn96TZ2JqYUXo6iWk3LqBcyNvnp8+n3rNngFgw8dvcHzHr8CDKuOApjq5Wq0m4peVHN2ylnvXrmJqaY13p970evN/mFnbatrPC25Jbc+mBA4ew1/L5nDr0r/0nDQDxdDxXDh8gH0rF3Dr4r+o81VYO7nQvEsfek6aoatHWiZhNzMBaO9cduE2SZI0YrYiYjkpKYkPP/wQb29vbt++zezZs7Uqtovuy15R5HK5RlQXvooK7YeP2dnZlatdRfp8+JixsXGxxReVWmJhzN1y3c+pvTto2eclgt+ZpTmWl5NNdlpKsXZm1gUiKistpVgRu+Sb10p2+oiFAVsXVxKVF0scT7x64f758hXSMXzKhabypAGcC98LgGLo68WOBw1/nbCflnEufM8jxf7Jvdtxcm+Mo1sjMpIe/B08AwraXz4aTgO/AM0YgUPGFbu+/cuvEbN7k+Z3dX4+FyIP4N2pt0boA1g7OuPXayBHt/xEdnoappZWmvuTU/lqPz4+nitXrug1X3/WrFls376dHTt20KRJE73ZIRAIqjbt2rVDJpMRHh6uV7Fva2vLmjVr6Ny5MwsXLmTatGl6s6WmolariY+PF5ETAkEloTOxf+PGDQICAki8l0zAgOE4ujUiNfEmp/buIC87C7VKxcoxz5OaeJOAASOwdXZFGRvFn0s+IzXxFn2nzC7WX8wfm8jJSCdgwAhkMhkHVy9l3XsjmbL9GHIjIwIGvEJq4i0uHj7Ai59+U8KerbPfJXrHevz7DiFw8FiSbiiJ/HUVN86dZPwPvyMvst3LHeVF1n/wGgEDR9C6/3Ac3Rpy69K/rH5rKM6NvOn2+jQMjUy4G38FZUxUpT/LihJ2M5PlS77m3J4tjxXWubm5TzVOVlYWn332WblEr4WFBfb29k8kmMvb1tjYuEquwufm5hIXF8fly5c1L5uBbyE3LrswjUwuh4fEb+T671E/tCDicF9kXjkeiXfHXgXjZmVoFsCKYmxqXmKxAKBJ+24c+nkFypijNPBrrekjavNP2NWpj5NH2WLN0KCgEN3ToC5HGFDSzWvIDAxwqOde7LhVrdqYWtmQdH97wdK4G3eZ21fO81nXpqWeT0+6U2yMogIewLFB8YloRtId8rIzcXQrOUF1cm+EpFaTcus6ppYF4z1tmkN5OXjwIABBQUGVP1gpbN26lU8++YTPPvuM4ODH7+QgEAj+29ja2uLj40N4eDgjR47Uqy0dO3Zk6tSp/O9//6N79+60bNlSr/bUNBISEsjLyxNh/AJBJaEzsT99+nQSEhJ4fc2fuHq30Bzv/vr7SJLE36u+5N61K0z6ZT+16nsC0GbQK1g7OhO2ZhlBwydg61xXc11ywnXe23pE44Wv5daQn94ezvnIv/Hq0IMGfq2pVd+Di4cPlKgyfvWfwxzdspaXZi+nRe8H+8B7tFIQ8sZLnNy7vdjxu/FXGLX0VxoHPthvNXzdcvLzchm1ZD0Wdg7afViVgPfAMdga5CMlJTyRN/pRx8LCwujfvz8rV65k7Nix+r7NKoEkSdy5c6eYmC98Xblyhfj4eNT3FayhoSENGjRgUNvnsHFrUma6RdOg7vyzawMmltbU9mhCXOxRLkYdxNy2+P7kjdp2xtbZlc2fTCZxxEQM5HKObfsZCzsHkhOKe/frevlyZOOP7P/+CxzqeWBpVwvPgCA6jnqTmD838+OkwQQOGYuZtS3Hd/5K0nUlQxeElCvX2tnM8KlTSCqU0v0EY0mSGueG3gS/O6vU8za165Z6XFs8bZpDeQkNDcXb2xtHR8eyG2uZ06dPM3z4cAYNGsQHH3yg8/EFAkH1Q6FQsG/fPn2bARREJf35558MHTqU6OhozM0rts2t4NEUbrsnPPsCQeWgE7GvVqvZunUrz/bpU0zoFyKTyTi5p2B7LzMr22KhtA0DOhIaspgrxyN55tlBmuO+3Z8vFm7vfj/X9t71q2Xac3LvdkwtrWnYtmOxsep6+WFsbsHlY+HFxL5d3QbFhD6gCY0+E7ob/+dervJFpgxkMrwHT2CMl53WtuVLTU3lzTffpFu3bowZU76c85pCdnY2SqWyVEF/+fJl0tPTNW0dHBzw8PDAw8ODdu3aaX728PDA1dUVQ0ND9l1LJzoxu8xaFn2nzMHAQE7M7k3k5WbTwC+AV7/dxA8Ti2+5JzcyYtgXP7Jt7jT2fPs5Vg5OtH/5Ncysbdg4881ibbuMe4+km9c4uHopORnpuPsH4hkQhJWDE6+H7GL34llErP8eVW4Ozo28GfHVWpoG9SjzGRnIoI6FUZntyuLhNIDSFg/sXFyR1Gruxl3GyaOx5nja3dtkp6Vg95iUA3tXN26eP41nQIfHLkwUjnHv2tViXvuHUx0s7GphZGpO4tXSUiAuIjMwKLaA8LRpDuXl4MGDdOnSpeyGWiYpKYl+/frh5uZGSEhIjS/eKRAItINCoeCbb74hMTFRL4uURTE2NmbdunX4+/szdepUli5dqld7ahJC7AsElYtOxH5iYiKpqal4ezd/ZJu78ZdJuHD6kaG0GffuFPvd1sW12O+Fwj8rtWQ48sPcibtMdnoqs7uWXkk8/aGx7OuUDC3y7dGPo1vXsnnW2/y5+DM8A4Jo1iWY5t2eq5LCv7BK/8EbGXR1tdRKn1OnTuXevXt89913NW4CL0kSt27deqSYv3HjhqYSvpGREe7u7nh4eKBQKBgxYgQeHh64u7vj7u5eriJkzuaG5SpaaWZlw6CZi0scn/b78RLH6nr5MWHNHyWO+z83pNjvVg5OjFxc+tZC9q5uDJ3/QzksK4laKvDsPy1yWUE6QGGRPmOzAo9KVloKhTXlmyi68efS2Rz6eQX9Z3yhuTZ87fL757s/sn+f7s9zLnwvRzf/RMDAEcXO5WVnIUlqjM0saNy+K38unU3ELys1BfoADv28otg1BnI5jdp14mzoHyTdiNMUEUy7e5sTf2zCrUUbTb6+NtIcykNCQgLnzp3T+TZ3+fn5vPzyy9y9e5ejR49iaamd7x6BQFDzKdwi9NChQ/Tr10/P1oC3tzcLFixg0qRJPPvsszz77LP6NqlGEBcXh7W1tSjYKhBUEjot0Pc4PSip1TRs24mOr7xR6vnC0H5NXwaPSHItRzEvSa3G0t6Rl2Z/W+r5h8PyDU1MS7QxMjVj3Pc7uHw0nH/D93AhYj+xf23Fs/UaRn+zAYMqmCsuAUcTs2lsa0I9y6fzuO7fv58VK1awbNky3NzctGKfrsnMzOTKlStcuXKlVEGflZWlaVu7dm2NoO/YsWMx73ydOnWeujaAs7nON8bQCdq4L5lMhrOZIdfu73ZRx8sPgL+WzcG3R3/kRkZ4dehBy74vEbV5DVlpKbj7B3Lt9HGO7/gV787PPrI4HxRUyT+5Zxtb57zHpWMFxfgkdT6JVy8Su2cbo5f9hqt3C+o08cGv1wAObwghOz2N+n6tuRR1kLvxV0v02WPCdC4ePsDy0X1o+8IoDOSGRG1eQ35uLr3e+vjB89FCmkN5KMzX79ChQ6WPVZQPP/yQv/76iz/++ANPT8+yLxAIBIL71KtXj/r16xMeHl4lxD7AxIkT+f333xk9ejQnT57Ue8RBTUCpVAqvvkBQiehEYTg6OmJtbc3Z06dp90Lpbexd3cjNzKBhG+1Vin7UJNrB1Y1LUQdp4BdQbAu9imJgYEDDNh1o2KYDvPspf69axF/L5nD5WLhW70ObyIDflWmM87bD4AlFRnp6OmPGjKFTp06MHz9euwZqEbVazc2bNx/pnU9ISNC0NTU11Yj5Ll26MGbMGI2Yd3Nzq3SPpL2JHBO5jJx8fW/cqD1M5DLsTLQT5eJibsiNDBVqoF6zZ+g+4X2ObFzN+Yj9SGo1U3dGM+B/X2Ff143oHes58/cuLGs50WnUW3R9bcpj+zYwMGD4F2sIX7ecf37/jTN/78LI1Az7ug1oP2RcsYXGgR9/jYWdAyd2b+LMgV14tg5i5OKf+by3X7E+a3s25bVVO/hjyWccCPkaSS1Rr3lLXvz0G+r7+BeMq6U0h/IQGhpKo0aNtL4t5uP49ddfmTdvHgsXLqR790dHVggEAsGjUCgUhIeH69sMDTKZjJCQEHx8fBg7dixbtmypcZGNukaIfYGgctGJ2DcwMKBfv36sXbsWt5dO4OJVPG9fkiR8uj/PvhXzOR+xv0R+fFZaCsZmFsgNK2Zu0XDfotuP+fR4nsMbQtj/3RcltsnLV6nIzcoo1r40MlOSMLexK3bMpUlBmoIq9+n2YK9MJCA5V83l1Dwa2hg/UR8ffPABCQkJ7NmzR+8pC2lpacU88w//nJPz4G9Rp04dPDw8aNiwId27dy/mnXd2dtbrvchkMvwcTDl6O4uaIPdlQAsHU61Ngh5Oc+gy5l26jHm3RLuu496j67j3HtvXuO+2lTgmNzKi48hJdBw56bHXGpmY0nfKHPpOmVPseOGWnkWp09SX0ct+e2Rf2kpzKA8HDx7U6ZZ7J06cYNSoUQwdOpR33nlHZ+MKBIKahUKh4LfffiMzM7PKFMVzdnbmu+++o3///qxateo/V7NI28TFxek86kwg+C+hs9jhOXPm8Ndff7F8zPO07j8cJ/fGpN65xam923nth510GDGRs6F/sHryUPz7Dqaulx+5WZkkXDzDqb07mLrzeIWr3te9H+67Y/4HNGrXGQO5HL+e/fHwb0/AwFc4EPI1N86folHbTsgNjbgTd5lTe7fTZ8psfLo999i+961cyNV/Immi6I6diyvp9+5weEMINrXr4Nai7RM/J10gA6ITs55I7IeFhbFkyRIWLVqkk7Dc/Px8rl+//kjvfGLiA5Flbm6uEe+9evUqJubd3NwwM3vyKA5d8EwtU6JuZ5XdsBogAS1qlUx/eVJEmsOTc+fOHU6dOqWz/aHv3LlDv3798PLyqpH1PAQCge5QKBSoVCqioqLo1KmTvs3R0K9fP8aMGcNbb71Fx44dadSokb5NqrYolUqx7Z5AUInobAZdt25djhw5wph33ydi9yZyMtKwdnKhcWAXjEzNMDQyZtz32ziw6itO7t3O8Z2/YWphRa0GHnQbPw1TS+sKj9msSx/aDR5D7J9bObFrA5Ik4dezPwD9P1xIXS8/ojat5q9lczCQy7FzqU+LZ1+ggV9AmX17d+xF8s14orf9TEbyPSxs7XH3D6Tb+KmYWlXcVl0iAVfS8kjKycfOpPy55pmZmYwePZrAwEAmTXq8B7QipKSkPFLMK5VK8vLygALvt6urKx4eHnh7e9OnTx9N6L2HhwdOTk7VWljYmchxszJCmZZXrb37MsDNyqhC762yEGkOT05YWBigm3z9vLw8XnzxRTIzMzl48GCVX2ATCARVm2bNmmFjY0N4eHiVEvsAixYt4u+//2bYsGGEh4djZKSbtKyaRHJyMqmpqSKMXyCoRGSSVI6Kdlrk9L1sdijTy24oqFRkQICTGZ3rWpT7mvfee49ly5Zx4sQJmjRpUu7rVCoV8fHxjxT09+7d07S1srIq5pEv+mrQoAEmJiYVuc1qx4WUHDZdTtO3GU/NIA/rJ04TeRT7r2fUqDSHin7+npTJkyezbds2rly5opOxli1bxr59+0RYpkAg0ArBwcHk5+fzxx8ld5fRN4cPH0ahUDBjxgxmzpypb3OqHTExMbRo0YLIyEjatq3aUbECQXVF57GxNTUct7zsXT6ffSsXlJrjq0sk4MTdbDrVMS+XN/zw4cMsWrSIzz//vITQlySJpKSkR4r5uLg48vPzgYL6DfXr18fDw4MWLVowYMAAjZh3d3fHwcGhWnvnnxZPa2NsjQ1IyVVXS1ErA2yMDfCw1r6HQ6Q5PBm6ytdfvXo1X3/9NUuXLhVCXyAQaA2FQsHcuXPJz89/6p1vtE3btm353//+x6effkrPnj1p166dvk2qVsTFxQGIMH6BoBLRufKuieG4lU1qYgJRm9bg3bk3dZr4aK3fnHyJpBw19qaP/+eZnZ3NyJEjadasGc2aNWP58uUlBH1KSoqmvZ2dnSa8/oUXXijmna9fv74IdXsMBjIZwQ2sWHchpezGVRAJ6NPA6ol3engcIs2h4iQnJ3PixAmtpt2URlRUFK+99hqvvvoqEyZMqNSxBALBfwuFQkFaWhonT56kRYsWZV+gYz788EN2797NsGHDOHHiBFZWVvo2qdqgVCoxNjbG2dlZ36YIBDUWnYv9mlZ1vKJ0HvMOHUe9WaFrUhMT2LdyAXZ16mlV7AMkZKqwN5UjSRJ37twp1TN//PhxUlNTgYJwOkNDQxo0aICHhwcBAQEMHjy4mHfezs6ujFEFj6OepRGtHE2JTsyuVp8RGdDK0RRXy8pbzPF3NOVqWl6l9a8LJMDfUTe57OHh4UiSVKme9oSEBAYMGMAzzzzDsmXL/tOROQKBQPu0bt0aY2NjwsPDq6TYNzQ0ZO3atbRo0YLJkyezatUqfZtUbVAqldSrV0/vOzsJBDUZvcTU16Rw3IoiNzSs8BaClYWUn8+K9Rs5sGI+ly9fJj39QS2FWrVq4eHhga2tLWlpafTr149Jkybh4eGBq6srhlXkHmoqHetYcCEll9RqEs4vA6yNDehQp3Jz0EWaQ8U4ePAgdevWxcPDo1L6z83NZdCgQajVajZt2lTja2oIBALdY2pqSqtWrQgPD+eNN97Qtzml0rBhQ77++mvGjBlDcHAwAwYM0LdJ1YK4uDhRnE8gqGR0XqCvkPUXU6p9OG5RTu7dzs9TX2Xsd1vx8G9f7NyRjavZOuc93vrtIKf27iiRs3/h8AH2rVzArYv/os5XYe3kQvMufeg5aQaXjx3iu3H9Sow3aOZi/J8bwpXjkUSs/474U8dJv5uIpX0tmnftS883PsTI9PHeQ0mSSLl6jrR9vxQLtXd3d8fa2prc3FxatWqFoaEhR44cEeH3OiY+Pa9ahfMPbWRDvUr06hdS3Z7LwwxrZFOp0Q9FadOmDQ0bNmTdunWV0v/48eMJCQkhNDRUFFcSCASVxrRp01i7di3Xrl2rstFDkiQxcOBAQkNDOXnyJHXq1NG3SVWetm3b4uXlRUhIiL5NEQhqLHpzz9aEcNyiNFV0x9jcgpN/bSsh9mP/2kptz6Y4N/Ti1N4dxc7duvQvq98ainMjb7q9Pg1DIxPuxl9BGRMFgKN7I7q9/j57v/2cgAEjcHumYELdwK81ULDIkJedRdtBIzG3sSf+9HEif/2elNs3GDr/h8faLJPJqOXZlLn9l5b6z3P27NmcPXuWY8eOCaGvB+pZGtHN1YK91zL0bUqZdHO10InQB5HmUF7S0tKIjo5m9OjRldL/ihUrWLFiBd9//70Q+gKBoFJRKBTMnz8fpVKJm5ubvs0pFZlMxsqVK/Hx8WHUqFHs3r1bhKeXgVKppFevXvo2QyCo0ehN7Ff3cNyHMTI1w6tDT07t20nfqXMxuF8xNu3OLa4cj6Dra1NLve7C4QPk5+Uyasl6LOwcSpy3cnCiSfuu7P32c+r7tuKZ4BeKne/95kfFPPgBA0fgUM+dv5bOJvnmNWxdXB9rt0oNagnkD2n9mJgY5syZwwcffICfn195HoGgEmjlaEZOvkTYzUx9m/JIglzMaaWjHPRCRJpD2URERJCfn18plfjDw8OZNGkSEydO5NVXX9V6/wKBQFCUwMBAoOC7p6qKfShIgfzxxx/p1asXy5Ytq/TiqNWZ7OxsEhISRBi/QFDJ6G3JsbDqeHWYqJcX3x79SL+XyOVjhzTHTu7dgaRW49ujZCg+gJmVDQBnQnejVqsrPGZRoZ+blUFG0l0a+LZGkiRunDtZrj5UD2Vy5OXlMWrUKLy8vPjwww8rbJNAuwTWNiPIxVzfZpTKvuXzyDl7ROfjGhnI6FONvj8KdykwMtBd+OnBgwepXbt2ia0yn5Zr164xaNAg2rVrx6JFi7Tat0AgEJSGg4MD3t7ehIeH69uUMunZsyeTJk1i6tSpnD59Wt/mVFmuXbsGiG33BILKRq/xRYXhuFUz+6riNA7sgqmlNbF/bdUcO/nXVlyaNMexgWep1/j26EeDFgFsnvU2c7p588v7Y4n9a2u5hX/yzWts+PgNZnVqxMft3fisa1NWjn0egOz01HL1kf/QUPPnzyc2NpaQkBCMjY3L1Yeg8pDJZLR3Nqeba4FXWN+fl8LxOzmbILsSw/PPPUdUVJTO7ShMc6gO6DLNoZDQ0FA6dOig1fzW7OxsBgwYgLGxMRs2bBDpPQKBQGcoFIpqIfYB5s2bh7u7O8OGDSMnJ0ff5ugdSZJQqSWy89Vk5qnJzldzRRkHIDz7AkElo/eS6tUtHPdxGBqb4N25N2f+3sXz0+eTfi8RZUwUPd54tHfcyNSMcd/v4PLRcP4N38OFiP3E/rUVz9ZrGP3NBk06QGmo8/NZNWEQWSnJdBw5CUe3RhibmZNy+yYbP56EVM4FA3mRJZ/Tp08za9Yspk6dir+/f7nvXVD5tHI0o7aZITuVaXr7vEiSGhsTQ/o0sKKepRFbtmyhR48e9O7dm9DQUJo3b65Te1JiIziwaS+dxr6r03Ergj7SHDIzM4mKiuLLL7/UWp+SJDF+/HhOnjxJeHg4Tk5OWutbIBAIykKhULBy5Uru3buHvb29vs15LGZmZqxbt442bdrw0UcfMW/ePH2bpDMkSeJeTj4JmSoSMlXczFSRkKVC9fCU1N6XTw4piVBZoryWjrO5Ic7mhtibyKtsEUaBoDqi98oh1S0ctyx8e/QjI/kul6IOcnLPNiRJemQIfyEGBgY0bNOBPu9+ytubDtFj4gdcOhrG5WMFK9iyR/hyEy6e4Y7yEs++8wkdR76Jd6feNGzTEWtH5wrZbHj/S1WlUjFq1Cg8PT356KOPKtS5iejmAAAgAElEQVSHQDfUszRijJcd/o6mgO68/DIASeLQuhU0Tjyp8VJbWFjw+++/U69ePXr06MHly5d1ZBHs2rWL4OBgDK7G0K5W1fQwd3AxJ7C2boU+wJEjR8jLy9Nqvv7ixYtZvXo133//vVgIFAgEOkehUAD/Z+++w5q63gCOf2/C3qAoIC7cuEdxRa2KE+usq44OLV1Wa6l1tFbr7NCqraN1S39ardI66gS1Km6oe1XrRKSi7BUgub8/MFRkBQRC8Hyep89Tk5tz3yAm973nnPfNqEdiDJo2bcqsWbP49ttv+fPPPw0dTrGLVms4cD+RhReiWHElhh13EgiNTCEsMYdE/wkzSyvCk7WERqaw404CK67EsPBCFAfuJxKt1pTsGxCEMsrgyT4Y13Lc/NT06oClvSPn923l/L5tuDdohlOl3JcoJcVGZ3vMtU7G7Gh6asbSL1PLjP3ayfFZ240pFBmz/k93T5RlmaMblusdr4kCdNuIFyxYQGhoKKtXr8bCwkLvMYSSZaqQ8Ha3YVgte+zNMv4JF1fSrxvX3kzBazXtiD21j3ffHk1S0n8FAx0cHNi7dy82NjZ4e3sTHh5eTNH8Z+vWrfTt25fu3bvz+++/06GyfanZ5qDVZFygeLtb08bFyiAzFIcOHcLJyYn69esXyXgHDhzAz88PPz8/hg0bViRjCoIgFES1atVwc3MzmqX8AH5+frRv356RI0cSHZ39es/YaWWZ67FqNt6I5afL0Zx+mIxa8981qb6VqJ4+Tq2ROf0wmZ8uR7PxRizXY9VoDdMlXBDKBIMv49cxhqrj+lCamtKgkw/n9v5OWnISPcZ/mefx+5fP4/aZ49RRdcHR1Z2EqEec2LwG+4puVGuS0c6qnHs1LGztORWwDnNrG8wsrancoBnO1Wrh5F6N3QumE/fwAebWtlw68AfJcTF6x+tiaYIkSVy7do2pU6cyfvx40UbLSFS2McXX05GbcWmERiZzKz4NCYpklYxunGq2pjR3tsTDzhSFJLFy5UoaN27M9OnT+eabbzKPr1ixIoGBgahUKrp06cLhw4cpVy57d4misGnTJoYNG8aAAQP43//+l7lvvDRscwCZ2IgwUkMDaTFtkkEigP/26xdF26fbt28zaNAgOnXqxFdffVUE0QmCIBScJElGtW8fQKlU4u/vT6NGjfjggw/YsGGDoUMqMvcS0th5J56YVG3mTfai+t7VjXMnPo3b8Wk4mCnwebJ9UBCEgikVM/s6pbnqeCVrE71/WI269iU1KaM3eqMuffI81rNDdxxc3AndtoFtX03ixK+rqd6sNaN/+g0LWzsg4wbCwBmLkRRKts6ZwMbJvtwKPYbS1JTXF67HtU4D/lyziAPL51GusgcDZyzRK06FBG7Wpmg0Gt566y2qVKnCzJkz9XyXQmmgkCRq2psxuKY973g64lXBEpOn7pHrW/z96ePMlRJeFSx5x9ORwTXtqWlvhuLJ7HSdOnWYPn068+fPJyQkJMsYVatWJTAwkMjISHr06EF8fPxzv79nrVu3jtdee43XXnuN9evXZysQZ6htDjypj/GSsyXVwv9i4fTJBAQElNTZs1Cr1Zw4cYL27ds/91iJiYn07dsXe3t7Nm7ciIlJqbk/LAjCC0ilUnH69GlSUlIMHYreqlSpwtKlS/nll1/KRLKfppUJCktg/fVYYlMzvvuK6+a6btzYVC3rr8cSFJZAmlbM8gtCQUiyXPrWxoREJhMUllhks5SFpTu/t7s1lkqJHXcSDBhN8ehd1ZZ9/sv4+OOPOXToEO3atTN0SMJziomJoVbj5ny1bBXVG79EeGJazsVxyNjG4WJpgpu1KS6WGcVxHM0VeS49T0tLo2XLlmg0GkJCQrIl3GfOnOHll1+mWbNm7Nq1C0vLotmzvnz5ct555x3efvttfvzxx3xnrZ+ddSiOzxLduNHhd3mjeXXquTgiyzKDBg0iMDCQs2fPlnhP6ODgYNq1a0doaCjNmjUr9DiyLDN06FB27NjBiRMnaNiwYRFGKQiCUHBnzpyhWbNmHDlyJHMPv7EYNmwYO3fu5Ny5c0Zbgf5eQppBV89JgJ2ZIrNIsCAI+SuVyT6Uvg+UxynprLii//J4Y9HdOp42TeozevRovv/+e0OHIxQBWZaxsbFh1qxZjB8/PvMxrQzpsoxGm9GBwUSSUEgUak/5mTNneOmll/jyyy/57LPs3SaCg4Pp2rUr3t7eBAQEPHeLtu+//55x48bx4YcfsmjRIr1j1spysW5zqG5rSnVlEh0b1mL8Rx8xa9YsIOOGS9OmTXFxceHw4cMl2qJu9uzZfPPNN0RFRaHMo5tHfr7++msmTZrE5s2befXVV4swQkEQhMJJT0/HycmJKVOmMGmS4bZKFUZMTAyNGjXCw8OD/fv3P9fnsyGUxom4ku50IwjGqFQt43+aQauOAy2cLRhdzzHzzqGTuRJzpaFLfxUtc4XER++8hYuLC3PnzjV0OEIRkSQJNze3LIXyJElCqZAwVyqwMlVgrlSgVEiFLh7XtGlTJkyYwIwZM7hy5Uq251UqFb/99ht79uzhjTfeQKtnG8icfPPNN4wbN44JEyYUKNGHnLc5PP3vWJ9tDrIsI2v/qwr87DYHr+qufDhmDAsWLCAiIgLIKFq4ceNGQkJC+Pzzz/V/s0Xg0KFDqFSq57qQ3LNnD5MnT+azzz4Tib4gCKWGiYkJrVu3Nqp9+zoODg74+/tz+PBh5s+fb+hw9CbLMkcjkggKy9ieaugZQt35g8ISORqRRCmdsxSEUqPUzuw/rSSX4+ZVBOTA/UROP0w2+AddUZAA0/tX8XulHQcOHKBjx46GDkkoQh06dMDd3Z3169cX2zmSk5Np0qQJ5cuX58iRIzkuq9+8eTNDhgzhnXfeYcmSJQVK1GVZZubMmUybNo0vvviC6dOnF0lle1mWiVZrM3oAJ6fnu83h4d+XSI+KYPTAvrluc4iOjsbDw4Phw4fzww8/ZD7+7bff8umnn7Jnzx66dev23LHnJy0tDUdHR7744gs+/fTTQo1x/fp1vLy8aNu2Ldu3by+SIn+CIAhFZebMmXz33Xc8fvzYKD+fJk6cyIIFCzh58iRNmzYt9DiyLKN5smJPqwXFkxV7ykKu2MvN0YikUl08u52rFW1dSme9L0EoDYwi2YeSWY77dNXxnESrNfx0uay0TpFZMrgDvTp3YNmyZYYORihiQ4cOJSIigoMHDxbreY4cOUL79u354YcfGDNmTI7HrFq1itGjRzNlyhRmz56t17iyLPPZZ58xd+5cZs+ezZQpU4oy7BzP98GHYwn56wx/HjqcZZvD+++/z7Fjxzh37lyeY8ydO5dp06Zx7do1qlevDoBWq6Vnz5789ddfnDt3DldX1+eOM6+Lu5MnT9KqVStOnDhBy5YtCzx+fHw8rVq1QqPRcPLkSezt7Z8rXkEQhKJ28OBBOnXqxIULF2jQoIGhwykwtVpNq1atUKvVhIaG6lXXRpZlotSajJvUSek8eHKzOq9aPK5WGXV4XKxMcDJXFuoGQMjDZILuJxb4dSVNLOkXhNwZTWll3XLcmvZmRKs1nH2UwtnHKZn9PBUS6FOg8+njzJUSTcpZ0KS8BY7m+S95dTRXUs3WlDvxaUY9uy8Bj66dR0pJ4OuvvzZ0OEIxcHNz46+//ir287Rr14733nuPSZMm8corr+RYdGjUqFHExMTwySefYG9vn++MsyzLfPzxxyxcuJDvvvsus+5AcZIkiYS4WCxMMrY5PM3T05PVq1eTnp6eZzX6sWPH8v333zNt2jT8/f0BUCgU+Pv706RJE4YPH86+ffv0Xl5fmIu7sAfJePUZSrX6jZFluUAXd1qtlpEjRxIWFiYSfUEQSi0vLy9MTEwIDg42ymTf3Nyc9evX07x5cyZOnJhnvaRotYYzj1I49/T1Lnn3r0/XQlhiOuGJ6ZnHmSslGpezoKme17uQsarWGBJ9yFjSX9HSRBTtE4QcGM3Mfk4Kuhy3oFXHc3I9Vk3AzaJvKVbS1o17jYWf+ZXI0mKh5M2fP5/p06cXS/u7Z8XFxVG/fn3q16/P7t27c/03NXXqVGbNmsVPP/2Er69vjsdotVo++OADfvzxR5YuXcp7771XnKFn0a9fP1JTU9m5c2eWx/fv34+3tzfXrl2jdu3aeY6xdOlSxowZw/nz57NchB44cABvb29mzpyZY0HDpxXm4k5Hq0lHocy4IVHQi7svv/ySL7/8ku3bt9OrVy89ziYIgmAYLVu2pFatWvzvf/8zdCiF9sMPPzB27Fh2795N9+7dMx/XyjL/xKUSGpnC7WJYyVrN1pTmzhbUsDPLdSVrmlZm5ZVogxXJLihdUe3R9Rwx1bfnsCC8IIw62c9JUVcdf5ZWlll+OZpYI/kAfJaETNT9uzzauoxVK1caOhyhmGzcuJGhQ4cSFxeHra1tsZ9v586d9OrVi3Xr1jFy5Mgcj5FlmbFjx7JkyRI2bNjAkCFDsjyv0Wh4++23Wbt2LStXruStt94q9rif1qVLF5ycnNi0aVOWxyMiInB1deX333+nb9++eY6RmppK3bp1adiwIdu2bcvy3NSpU5kzZ05mAb2nGfribtu2bfTt25eZM2eWeEFBQRCEgvLz8yMgIIDbt28bOpRC023zOnfuHOfPn8fZ2bnU1KgKCksgNDLFqK5zJTKKa3d2tzF0KIJQqhhfZZN8FHXV8WcpJAmfqrZG9QH4NK0M+xd+wfx58wwdilCM3NzcALJU5C9OPj4+DBs2jPHjx/Pvv//meIwkSSxatIjhw4czYsQIdu3alflceno6I0eOxN/fn59//rnEE33I2K+e042RihUr4ujoyKVLl/Idw8zMjJkzZ7J9+3aOHz+e5blp06bRpk0bhg4dSlRUVObj9xLSWH45moCb8dyJTwOK7gJPN86d+DQCbsaz/HI09xLSshxz+fJlhg8fTv/+/Yu9NoIgCEJRUKlU3Llzh3v37hk6lEJTKBSsXr2atLQ03n1/DEFhCay/HktsasY6ruK6ztSNG5uqZf31WILCEkh7ah/svYQ0Qows0YeM93U6MiXbd5wgvOjKXLJfEirbmNLC2aLE2gEWGVnm6Pofmf7Rezg4OBg6GqEYlXSyD7Bw4UIUCgVjx47N9RjdxY2Pjw8DBgzg8OHDpKamMnjwYH799Vc2bdrEsGHDSizmpyUkJGBjk31GQJIkPD09uXz5sl7jDB06lIYNGzJ58uQsLYFMTEzYsGEDSUlJvPnmm6RqtAa/uIuJiaFPnz5Uq1aNdevWGWVla0EQXjxt27YF4OjRowaO5Pm4ubmxyH8TNV7/lJCHyUDJtbbTnSc0MoWVVzJuBGtlmZ134o3v+vYJCdh5Jx5t2Vq0LAjPRVzZFVIHN2vszBRG84EoIRPzIAynqFtiP+4LQFf1/f79+yV2zvLly/P999/z66+/snXr1lyPMzExYePGjbRp04ZevXrRuXNn/vjjD3777TcGDBhQYvE+K7eZfYD69evrnewrFIrM5fr79u3L8lzlypVZs2YN5+7+y4JTdwmNTAEMdHF3OZp3J0/n8ePHbN26NccbHYIgCKVRhQoVqFWrltEn+yGRydxzbYyja2UownZ5BSEDcU9uBO+9l0CMkW5ThYz3EpOq5WacmN0XBB2R7BeSqUKilxEt59fKsO+7KSycL5bvvwisra2xt7cv0Zl9gCFDhtCrVy/ef/99YmJicj3OwsKCDRs2oFAoCA4OZvHixbzyyislGGl2uc3sQ0ZF/qtXr6LRaPQay8fHhzZt2jB58mS02qyl9dxad+GdVTvQmFoY7PNDBmLU6TQePYXvt+6nRo0aBopEEAShcFQqFcHBwYYOo1BkWeZoRBJBYRnV7iUDr6rSfRede6w2aBxFQQJCI5MNHYYglBoi2X8OlW1M8Xa3NnQYetnxzRSmjvHFycnJ0KEIJcTNza3Ek31Jkli2bBkJCQlMmDAh1+Pi4+MZPHgwaWlpVK9enS+//NLghZbi4+PzTPZTUlK4deuWXmNJksRXX33FmTNn2LJlC5D14k6SpMyq+YYiKRRICgVhtpU5GpFEGavVKghCGadSqTh//jyxsbGGDqXAjv2bzJEHSYYOo0ySgVvxaUSr9bs5LwhlnUj2n1MLZ0vauVoZOow8Ba9ZSGU5jn79+hk6FKEEGSLZB3B3d+fbb79l5cqVHDhwINvzsbGxdOvWjTNnzhAYGMjRo0exsLDA29ubBw8elHi8kFFFPy0tLddl/J6engB6L+UHaNeuHT169ODzzz8nLS2tVF/cHXmQxLF/xUyIIAjGQ6VSodVqOXHihKFDKZCQh6X3u6CskICzj1IMHYYglAoi2S8CbSqW3oQ//NB2Tv7yE4sXLzZ0KEIJM1SyD/D222/ToUMH3n77bZKS/ruoiYqKonPnzly9epX9+/fTpk0bXF1dCQwMJDk5ma5du2apVF9S4uPjAXKd2Xdzc8Pe3l6vivxPmzNnDtevX2fZrsOl/uLuyIMkQsTSR0EQjEStWrVwdnY2qqX89xLSCLqfaOgwSj11UgIBMz5idhdPJjdzZse3nwEQ//gh6ye8yYyOtZnczJng9T/m+HoZOPs4RaxYEwREsl8kJEmirYtV5pJ+Qxft053f+dF1fhg/isWLF+Ps7GzQmISSZ8hkX6FQsGLFCsLDw/niiy8AePjwIR07duTOnTscPHiQFi1aZB5fvXp1AgMDefDgAT179iQhIaFE49WdL7eZ/YJW5Ndp0qQJo/ymkFi54XPHWBKCwhJF2yJBEIyCJElGtW8/TSvzhxFXutfX2d0BuSbh+vpz1UL+2rGRlq++yaCZS2nmMwiAnfOn8vfxg7z85jgGzVxK7Tadcx1DrZGJVmtzfV4QXhQi2S9CLZwtGVbL3qBV+iXAzkxBrwowZXhf+vXrx6BBgwwUjWBIumTfUHe2a9WqxZdffsmCBQvYuXMnL7/8Mg8fPuTQoUM0btw42/Genp7s2bOHy5cv07dvX1JSSm4JXn4z+0Chkv00rUyj4WORtcZxwSEBf9yJz9JzWRAEobRSqVScPHmS1NRUQ4eSr0PhicQZcaV7fZ3dHcDRDcufa4x/TgdTuWFzvN+ZQFOfgVTybPzk8SN4duhB+5Ef0NRnIBWq18pznIik9OeKQxDKApHsF7HKNqaMrudIc2cLoORm+XXnaeFsweh6jsz9dBxpaWksXboUyUDtXATDcnNzQ61WEx0dbbAYPv74Yzw9Penfvz9xcXEcPnw4c/97Tlq0aMGOHTs4evQoQ4cOJT29ZL6o85vZh4z2e1euXMlWXT8vh8ITSZaVBi/Gpy9dC6bD4WKZqSAIpZ9KpSI5OZkzZ84YOpQ83UtIIyQypcwn+kUlIfoRFjb22R5PjHqEha2dXmMoJIhIFsm+IBjHFaiRMVVIeLvbUMfBnJ134olJ1SJRPL20dePamynwqWpLZRtTtm/fzoYNG/D398fFxaUYzioYg0qVKgEQHh5usC4M9+7dIyoqitTUVAYNGkStWnnfhQfo0KEDW7ZsoW/fvowaNYo1a9agKOa2RPrO7CcnJ3P79m08PDzyHVN3cWdsZOB0ZAq1HcypbGNq6HAEQRBy1bRpUywtLQkODqZly5aGDidHWllm55Pl+2Uh2VcnJrBv6Vwu/7mb+Ef/YmFjh2vt+nQfO5Wd333BrdBjAExulrF91MG1MhN3/kV6WioHV37H1SOBPA67hTZdQ6W6DfF+bxI1XlIBcDPkKCt8+wIQff9O5hivTv+eLdPHAnDi19Wc+HU1AHP/isw1Tq0M4YliW5ogiGS/GFW2McXX05GbcWmERiZzKz6tyD7sdeNUszWlubMlHnamKCSJ6Oho3n33XXx8fBg+fHgRnEkwVm5ubkBGst+gQYMSP//ff/9Np06dsLa2ZsyYMSxevJjRo0fnObOv4+Pjg7+/P8OGDcPe3p5FixYV6woVfWb2n67In1+yb+wXdxKw8048vp6OKMTKIEEQSilTU1NatWpFcHAwfn5+hg4nR//EpRKTahxbufTx+5xPuBi0g9aDR1HBozZJMdHcOXuSh7eu03HUeFIS4oj79wE+fjMBMLPKqGelTojn9O//o3H3/nj1H4E6MYGQbetZ88Eg3v95L251GuJcvRaDZi5l5/yp2FV0pd3w9wFwq9uQQTOX8uvU96nZ6uXMPfz5iUhOR5ZlscJVeKGJZL+YKSSJmvZm1LQ3I1qt4eyjFM4+TkGtkZ88n3H3Mf9x/jvOXCnRpJwFTcpb4GiuzHLcxx9/TFJSEj/99JP4cHvB6VZ13H8QQYpGi1YLCgWYSBJKiWL9/bh06RKdO3fGycmJ/fv34+joSGBgIKNGjSI4OBilUpnvGEOHDiUuLo53330XBwcHZsyYUWzx6jOz7+7ujq2tLZcuXaJXr155jmfsF3cyEJOq5WZcGjXtzQwdjiAIQq5UKhXLli0rtUldaGSK0d74zcm1I4G81G84Ph8//Z38Yeb/Hd2wnOS4WJr6DMzyOks7Bz7d+Rcmpv99p7zUfwTf9W/N8Y0rGTBtEbblKtDUZyD7ls7Fztk1yxgVa9Tl16nvU76KR7axc5Ouzbh2Vpa+XwtBKDEi2S9BjuZKOlay5mU3K6LVWiKS0olITic8MY2I5HTSc8gNTBTgYmmCm7UpLpYmuFiZ4GiuyPELbffu3axdu5ZVq1ZlLuEWXhyyLBOl1mT8XiWl8yApnRnH7vKvhSULz2dtZ6f7vXK1yvidcrEywclcWSQXSmfPnqVLly64ubkRGBhIhQoVAFi1ahXt2rVj8eLFjBs3Tq+x3nnnHWJiYpg0aRIODg58/PHHzx1fThISEjA1NcXc3DzXYwpSkb8sXNxJQGhkskj2BUEo1VQqFTNnzuTvv/+mTp06hg4ni2i1htvxZWspuYWtPfcu/kVcZAR2zvpvFVUolSie3OjXarWkxMcia7VUqteE+1fPF1e4pMsyyjLfA0EQcieSfQOQJAknCyVOFko8yUguZFlGK2d8KGm0oHwyA6vQcwY2Li4OX19funbtyptvvlncb0EoRaLVGs48SuHc0ytGAC1gamGZ42vStRCWmE54Yjq6e0zmSonG5SxomsOKEX2dPn2arl27UrNmTfbu3ZulVkDbtm354IMPmDJlCn369KFatWp6jTlx4kRiYmLw8/PD3t6eUaNGFSq2vMTHx+c5q6/j6enJhQsX8jymrFzcycCt+DSi1ZpC/z4IgiAUt1atWqFQKAgODi51yf6ZR8Z/4/dZPcZ9weZpH/JVj8ZUqteYOm29adZrEE7u1fJ9beiOjQT/vIzI29fRpP/3PelYqWqxxavRAuIrTHiBiWr8pYQkSSgVEuZKBVamCsyVCpQKSe+Z1gkTJhATE8OKFStK5TI2oWhpZZnrsWo23ojlp8vRnH6YnJnoA+i7gPzp49QamdMPk/npcjQbb8RyPVaNtgBt+44ePUrnzp2pV68eQUFBORYFnDNnDuXLl8fX17dALQHnzJnDu+++i6+vL5s3b9b7dfpKSEjIc7++Tv369bl8+XKeFfl1F3dlgQScfWR8RQYFQXhx2NnZ0bhxY4KDgw0dShayLHPucdmrwN+oa18mbD/NK5/Oxc7ZhcP+S1gwsB3Xjgbl+bozOzezZdqHOFWuRv8vFvLm4k2MWraFGi+1K9b2tEqR6QgvODGzXwbs37+f5cuXs2zZMqpUqWLocIRidi8hLUuXByi6WQPdOHfi07gdn4bDU10e8nLw4EFeeeWVzNZ5uSXOtra2/PTTT/To0YN169bxxhtv6BWXJEksWbKEuLg4hg0bhq2tLd27dy/AO8tbQkKC3jP7SUlJ3L17N8eVCWXt4k4Gzj5O4WU3K3ETURCEUkulUrF7925Dh5FFlFqT5SZ8WWLn7ELrQW/RetBbJERF8sNrnTm4agF12nrn+l1xcf8OnNyrMXze2izHBP34dbHGaiK+u4QXnLjfZeQSEhIYPXo0HTt2xNfX19DhCMUoTSsTFJbA+uuxxD4p/lZclxG6cWNTtay/HktQWAJpuVSS3Lt3Lz179qRt27bs2rUr3xny7t27M2LECMaPH09ERITeMSkUCtauXUu3bt3o379/kc7ixMfH6zWz/3RF/pyUxYs7tUYmWm28xQYFQSj7VCoVN27cKNB3SnGLSCp7Pd61Gg0p8XFZHrNxcsbO2YX01FQAzCytSEmIy/Za6UkL3adX9d29EMrd8yHFFq+JIqPAtSC8yESyb+QmTZrEw4cPWblyZbH3IhcM515CGiuvRBP6pG97SaWTuvOERqaw8ko09xKy7kXfvn07vXv3pkuXLmzbtg0rKyu9xl2wYAGmpqaMGTOmQPGYmpry66+/4uXlhY+PD2fOnCnQ63Oj78x+lSpVsLGx4dKlSzk+XxYv7qDsvi9BEMqGtm3bAhnbyUqLiKT0UnGRrUlPJz0ttUjGUiclMLd7QzZPG0Pw/37k1G8/s2HiaMIunaFx9/4AVKrXmJT4WP6YP5Wze37jyqG9ANRt15WosNv8z+91TgX4s+eHmawZM5gKHsVXZ8HF0kSsShNeeGIZfwmTZRnNk0J8z9sK7fDhwyxZsoRFixbl2/dbMF4hkckEhSUatMiPDMQ9meX3dremhbMlmzdv5rXXXqNPnz5s2LABMzP9q7aXK1eOxYsXM3jwYH777Tf69++v92stLS3Zvn07nTt3plu3bhw5cuS5izLpO7MvSRL16tXLdWZfd3FX2ubB09QpKE3NCnVDUCFl9CrWFRMVBEEobSpVqkT16tUJDg5mwIABhg4HgAdJ6Xp/F8Q+fEDg0rlcCw4iOT6WcpWr0274e7ToOwyA9LRUDq78jqtHAnkcdgttuoZKdRvi/d4karykyhwnOvwu3/RqTo+PpqNQKjm+aRXR4XcZsz6Iywd3s3/5t/htPcnBVd9x+eBuZGQadPSh96SvMbPM/2a9qQDWdx8AACAASURBVIUlrQa+xfUTB7l0YCeyVku5ytXpM/kbWg3MKA7datCbhP99kdDtv3B0/Y84uFamXoduNO89lITHDzkZ4M/14wep4FGbwbOWciFoOzdDjhX455sfhQRu1nlvQRSEF4EkF6RKllAgObVCy6/Fnr6t0JKSkmjUqBGurq4cOnRIzOqXQbIsc+zfZI48SDJ0KNnY/fs3H/q0Y8iQIaxbtw4Tk4LfN5RlmX79+nHy5EkuX76Mo6NjgV7/6NEjOnToQHx8PMHBwc9Vr6JDhw5UqVKFn3/+Od9j33jjDa5cucLJkyezPfe/v2MISyz8LHjswwcELfuKa0f3kxQbjZ2zC7XbdKLXhNmkJiXy5+qF/H38INH37yApFFRt7EX3sVNxrd0gc4ybIUdZ4duXIXOX8++NK4Ru/4X4R/8y9c/rWNraFyoud2sThtd2KPT7EgRBKG4jR47kypUrnD592tChIMsy888/zvF671nxjx+yZHgXkCRe6jcCG8dyXDu6nyuH9uDjNxPVsHdJjH7MosEdaNy9P+WreKBOTCBk23qiwu7w/s97cavTEPgv2a/gUYf0VDVe/UegNDWjQadehGzbwP7l3+JWtyGOblWo2bID4VfPc/r3/9H+9Q/pMe6LYv6plLzeVW3xdBI3qoUXm5jZLwZ5tULLTUFboX3++efcv3+f3bt3i0S/jCqtiT5AXMXajF/sz9e+Q1AqC9fTRld0z9PTk08++YRVq1YV6PXly5dn3759qFQqunTpwuHDh6lYsWKhYtF3Zh8yKvIHBAQgy3KWm3GyLBORXPhEPy4ygqUjupIcH4dX/xE4V6tFXOQDLgbtIC0lmaj7d7h0cBcNu/TGya0q8VGRnApYx/LRfRgfcDRbv+MDK+ajNDWl3YgPSE9TozQp/AxHRHJ6tvcrCIJQmqhUKjZs2KD3tqzipJHRK9EH2LdkDlqNhnG/HsbaIaOLTctX3+CXyb7s/+lbWg54HUs7Bz7d+Rcmpv+toHup/wi+69+a4xtXMmDaoixjxj4M55Ntp7BxLJ/tfG51GmY5PikmmpBt68tksu9iJdIcQRD/CoqIVpb5Jy6V0MgUbsenZVty/Tyt0E49TKaarSnNnS2oYWfGiePHWbhwId9++y21atUqujchlBohD0tvoq9TvlU3zkSl0sLZstBjVKpUiXnz5uHr68vQoUPx9vYu8OuDgoJQqVR069aNP//8EweHgs9AF+Ti0NPTk4SEBO7du5dlNUFBLu5ysueHmcQ/fsj7/ntx92yS+XiX9yYhyzIuNevht/Vklpt7zXwG8l3/Npzeup7Ob/tlGS89Vc2Y/wVialH4v5/MsbSglUEpcn1BEEoplUqFRqPh5MmTdO7c2aCxpOu5aFaWZS7u/4NGXfqALJMY/TjzudqtO3J+7+/cv3qeak1aonhyY12r1ZISH4us1VKpXhPuXz2fbdwGnXrlmOgDeL36RpY/V2vaiksHd5KSEI+FjX43vY2BuVLC0VxMhgmCSPaLQEm2QrM3lfjl64V4eXnx0UcfFdFZhNLkXkIaQfcTDR2GXoLCEqloaZJva768jB49ml9++QVfX18uXLiAtbV1gV5fo0YNAgMDad++PT4+Puzbt6/AY8THxxco2YeMivxPJ/v6XtzlRKvVcvnP3dRr3y1Loq8jSRImZv8tRdRqNCTHx2JmaU35qjUJz+Fir1mvwUWS6OukyzJKRLYvCELpVLduXZycnAgODjZ4sq9v2/jE6EekxMdy6jd/Tv3mn/MxUY8ACN2xkeCflxF5+zqa9P+K5TpWqprtNTk9puPgUinLny3tMrZ3JcfFlJlkXwKalLMQq9EEAZHsP5c0rcyh8ERCIlOKPMl/lm7cGLWGHtMWU8MkBa2koHALqIXSKk0r88edeIMW4ysICfjjTjyj6zliWsj+NpIksXz5cho1asTUqVP57rvvCjxGgwYN2LNnD507d6Z///5s374dc3P99+klJCTovYy/atWqWFlZcenSJbp37575uL4XdzlJjH6EOiGeijXq5nqMVqvl2IblnNi8mujwu2g1msznrOyz1ztwdCt8DYOcaLQgPnAEQSitFAoFbdu2LdK2rIWPRb/j5CdfHE16DqT5K4NzPMallidndm5my7QP8ezYk3YjP8DGqTwKpZI/Vy/icdjtbK8xNbfII7bcPsiN4apDPzLQpHzuPwNBeJGIZL+Q7iWk8cedeOKKud/5s3R9Sm9prFh5JZpeVW2fa1ZVKF0OhScSl6o1mq9cXZX+w+GJdHYv/B7JmjVrMmPGDD799FMGDRpEq1atCjyGl5cX27Zto2fPngwbNoyNGzfqVThQq9UWaBm/QqHIsSJ/cZfO+HP1AgKXfkWLPq/R5f3JWNo5oFAo+GPe58hy9jsNphZFe6GjFKshBUEo5VQqFTNmzCA9Pb1QhWOLiomeM8rWjuUxt7ZB1mqo2bJDrsdd3L8DJ/dqDJ+3NstsddCPXz93rGWNBFSzNc1W60oQXlTi8q0QQiKTWX891qBJ2dOt0EIikw0UhVCU7iWkERKZYjSJvo4MnI5M4V5CWr7H5uWjjz6iefPmjBo1CrVaXagxOnXqxKZNm9i6dSu+vr5o9ZhuT0rKqI2g78w+ZCzlfzbZ1/fiLifWjuUxt7Hl33+u5nrMxaAdeLRQMWDaIhp360ft1h2p2bIDyfGxhT5vQTzP+xMEQSgJKpWKxMREzp07Z9A4lFJGl6X8KJRKGnTqxcX9fxBx40q25xOiM5bw6yZ6nm6gdfdCKHfPhxRNwGWIDDR/jlpCglDWiGS/AGRZ5mhEEkFhGfupDZ2U6c4fFJbI0YgkRBdF46WVZXY+Wb5vjCRg5514tM/xO2hiYsKqVav4+++/mTt3bqHH6dOnD2vXrmXNmjX4+fnl++8iPj4eoEDVmz09Pbl48SKHDx9m7dq1fPHFF7w+Yjjp6pRCxaxQKPB8uQdXDu8l7PLZbM/LsoykUPLsp86FwG3EPXxQqHMWhIkio2exIAhCada8eXPMzc0NvpRfkiRcLPVbWdBt7FRsy1dk6cju7Pj2M04F+PPnmkVsmDiK7/q1BqBuu65Ehd3mf36vcyrAnz0/zGTNmMFU8KhTnG/D6EiAg5kCDzux4lUQdMQy/gIoza3QdHG1dbEycCRCYfwTl0pM6nNs+jYwGYhJ1XIzLo2a9mb5Hp+bRo0aMXnyZObMmcOrr75KgwYN8n9RDoYPH05sbCxjxozB0dGRL77IvaVQQkICkH1mX61Wc/v2bW7evMk///yT+d/Nmze5fv06qampdOiQsezSzc2NGjVqUOPRA5Ru1QpVFKjbmM+5ceJPlo/ug1f/EVSoXpu4R/9yMWg776z+g7rtunJgxTy2TPuQKo29iLhxmbO7A3Byr1bgcxWUi6WJKHQkCEKpZ25ujpeXF8HBwYwbN86gsbhamWRpp5wb23IV+ODnvexfPo9LB3dycvMarBwcqeBRl+5jM767mvceSsLjh5wM8Of68YNU8KjN4FlLuRC0nZshx4r/zRgJGehV1RaF+L4ShEySLKaD9RLyMNkoKqR7u1s/Vys0wTA23ojlTnyawVeLPA/dPrnBNe2faxy1Wk3Tpk2xtbXl2LFjKJWF33c3Z84cPvvsMxYtWsTYsWOzPR8TE8POnTsZPnw4H3zwAWq1OjOpv3fvXuaqADMzM6pXr46Hhwc1atTA3t6e2bNn89NPPzF8+HCsrDJusu0PSyA0MkXvVpvZ4nkQxr5lc/n76AHUifHYVXCldptO+PjNBFlm35I5nN0dQEpCHG51G9Lzoy/Z88NMAHxXbAPgZshRVvj25bVvVtHQu3chI/mPQoIWzpZ0qlSwDgeCIAiGMGXKFNasWUN4eLhBb1Jeikphx50Eg53/RSMBLZwtnqt+kCCURSLZ18O9hDTWXy+ZfbFFYVgte1G0z4hEqzX8dDna0GEUmXc8HZ+7MM7x48dp27Yt8+fPZ/z48YUeR6PR8P7777N8+XLeeustXFxcsszSR0f/93O3s7OjVq1aGTP0T/7TJfeVKlXKctNBo9Fga2vLnDlzGDduHBo5ozXd5Sg1+8JK/03Bgupd1RZPJ/27GwiCIBjKrl278PHx4caNG9SoUcNgcTxOSWfFlRiDnf9FIgF2Zorn6gwkCGWVSPbzkaaVWXkl2mgqpIsPPONz4H4ipx8mG8XvV34kwKuCJR2LYBZ43LhxrFixgosXL+Lh4ZHrccnJydy+fTtLEq9bbn/r1q0sxf7Kly9PgwYNsiTyDx48YPz48dy/fx83N7c8Y5JlmSi1hoikdOYtX0uVhs2xda9OuvHuwNCLbz1HnCxEZWNBEEq/6OhoypUrx5o1a3j99dcNFocsyyy8EIVaUxa+3Us/MdElCDkTyX4+gp4syzWmH5JYymQ8CnMx8LVPMzxatGHgl4uLMbLCM1dKfNTQ6bmXTyYkJGQm5ps2bcqyd/7p/79//37maywsLPDw8MhM5HX/Va1alWnTprFjxw527tyJt7d35ms2bdrEkCFDiIuLy7Uif7Raw5lHKZx7nJL5d6XVpCMplGV+L3tR/X0KgiCUlEaNGtGyZUtWrFhh0DjK0s380kxsYRWE3IkCfXnQtUIzNrpWaLUdzMVdzlIuSq0plXf9z+4OICEqEtWwdwv8WrVGJlqtLdBMsEaj4d69e9kSeVNTUw4cOICzs3PmseXKlctM4tu3b58lsXd1dUWRS8P7DRs20LdvX/r27UtgYCCtW2dUOdZV47e2zroaQSvL/BOXSmhkCrfj05DIWgtfoSz7H58S0KSchUj0BUEwKiqVioMHDxo6DJqWt+DUQ9EeuTi1c7USib4g5KHsX60W0tOt0EpfKpY/XSs0X09HUZW0FItISjd0CDk6uzuAf/+5WqhkHzLe17PJfmJiIrdu3cpxuf3t27dJS0sDMtrQValShRo1atCxY0fs7Oy4evUqv//+Oy1btsTevnAFAM3MzNiyZQvdu3enZ8+eHDp0iEaNGpGQkIC1tXWWmwT3EtLYeSeemFRtZjtEY/wceF4y0KS8haHDEARBKBCVSsWyZcuIjIzMcrO4pDmaK6lma2r0BXhLq/auVrSuKBJ9QciLSPZzIVqhCSUhIikdBRS6entpJMkyB0LPs/nYriyz9BEREZnHWFlZZc7Iv/LKK1kK4lWtWhUzs/9+Z6OioqhXrx7Lli2jS5cuzxWblZUVO3bsoGPHjnTt2pUjR46QkJCAjU3Glpc0rcyh8ERCIlNe6CQf/uuu8LzFFgVBEEqaSqUC4NixY/Tp08egsTR3tuB2fJpBYygKoVvX07zva0hIBv1e1E3CiaX7gqAfkeznIvTJxb4xX+hLQGhkskj2S7EHSf/14A368Rv2L/+W8QHHCPrxK/4+dgCFiSlNe75K97FfYGqe8wxrUmw0f65eyN/HDxJ9/w6SQkHVxl50HzsV19r/9anXtWQb+tUKHt+9yYkta0mKiaJqYy/6fjaP8lUyiuAtf7sPt0Iz+vZObpYxI+LgWpmJO/8C4NjGFZzcso7o8LsoTc0o514N1fD3aNJjAJBx4+LC3Qi2Ll2amcR7e3tnWW5fsWJFvZeGOzk5sWTJEgYOHEhAQACvvvpqQX/MWdjb27N3717at2+Pt7c3Pj4+2Nraci8hjT/uxBP35CafMf/bLwoy0FxcSAmCYISqVKlC5cqVCQ4ONniyX8PODAczBbFGUuj5WbJWS9T9OwxtUoWXajlkfk8a4r3oilD3qmortqkKgp5Esp+DaLWmTNyFlYFb8WlEqzVidq4UkmWZiOTsy/h/mTgaR7fKdBvzOXcvhHLslxUkx8UyaOaSHMeJun+HSwd30bBLb5zcqhIfFcmpgHUsH92H8QFHsXN2yXL8obXfI0kK2o14n5SEeA6vW8ymz9/jA/+9AHQcNZ6UhDji/n2Q0d8dMLPK2M9+6ref2fHNFBp4v0Lbob6kpaYQcf0y9y6GZib7kiRRq3lrIiIiimyv94ABA+jXrx9jxoyhU6dOODk5Pdd4zs7OBAYGolKp+OWXX+j05oesvx5r9Df4iooE2Jsp8LATF1OCIBgnlUpFcHCwocNAIUn4VLU1qhbOWUjgEHaO/u+PBmB0PccsK+BK4jtTd54Wzha0d7MW3aYEoQBEsp+DM4+Mf1ZfRwLOPkopklZoQtHSyOTYss2xUhVGLvgZgNaDR2FhbcOJzWtoN+J9XGvXz3a8S816+G09mWXPeTOfgXzXvw2nt66n89t+WY5PV6v5cONBTEwzVnxY2tnzx7efEXHjCi4161Gr1csc3bCc5LhYmvoMzPLaa8GBVKxRl2HfrM7zvaXLoJVBWUTfx5IksWTJEurVq4efnx9r1qx57jHd3d3Zty+QDxes4qURY4Gy8W++KMhAr6q2ot6HIAhGS6VSsWXLFpKSkrCysjJoLJVtTGnhbGF03Z20Wg1Rfx3m2/dGZT5mqpDwdrehjoN5lto2xfG+dOPamynwEbP5glAoOZetNhJr165FkiRu375dZGPKssy5x3l/GE9u5kzQj98U2Tnz87VPMzZPG1Oo18rA2ccpFFWHxenTp4vK3EUkPZe/k1aD3sry59ZD3gbg2tGgHI83MTPPTPS1Gg2JMVGYWVpTvmpNwq+ez3Z8895DMxN9gOpNWwEZKwTyY2FrR+y/4dy7dCbfY3N7f4Xl6urK/PnzWbt2Lfv27SuSMSPtKtHR95MiGauskICXnC1wFxdVgiAYMZVKRVpaGqdPnzZ0KAB0cLPGzkyBsVxBaTXpJD+O5IvXfHK87qtsY4qvpyOvethRzTbj+6Ko3ptunGq2przqYYevp6NI9AWhkMTM/jN0rdCuBgcSdvEM3u9+mu9r7pw7xfXjf9J22DtY2hauUnhRjJGbwrRCE4qfNpeqfLq98zrl3KshKRREh9/LZRwtxzYs58Tm1USH30Wr0WQ+Z2XvmO14B5dKWf5saecAQHJcTL4xd3h9LDdOHmbpiK6Uq1ydWq1epnGPAVRr0jLbsRotUMS/cm+99RYbNmzA19eXixcvZhbWK4yQh8kceZBUhNEZP91+yPZuYiWQIAjGrX79+tjb2xMcHEyHDh0MHQ6mColeRrScX1IoGFCnPHbWua+KUEgSNe3NqGlvRrRaw9lHKZx9nJLZUlghZazyy8/Tx5krJZqUs6BJeQuxBVUQioBRJ/sjRoxgyJAhmJubF9mYulZo14KDOPHr6hyT/RnH72XpsX3n3Gn2L/+W5r2HPEeyn/sYfr8fR5KebxFGTq3QBMPKpR18dvmspPhz9QICl35Fiz6v0eX9yVjaOaBQKPhj3ufIcvY7CpIyl98DPWbiK3jUxu/341w9vI+/jx3g4oE/OLF5DZ3e/oQu703McqyyGNYNSZLEihUraNCgAZ9//jkLFy4s1Dj3EtIIup9YxNEZP93yfbEfUhAEY6dUKmnTpk2p2LevU9nGFG93a4LCSv/3T23NY5pUraf38Y7mSjpWsuZlNyui1VoiktKJSE4nPDGNiOT0HLctmijAxdIEN2tTXCxNcLEywdFcIVaQCkIRMupkX6lUoswtcSkkXSu0vORWFb24mJg9380MhQQRyel4UnQ3RYTnZ5LLl9mjuzdxqlQ188+P791C1mpxdKuc4/EXg3bg0ULFgGmLsjyeHB+LlUPhCtnl9UVrZmlNo279aNStH+lpqfzP7w3+XL2Al98al+XfRm7v73l5eHgwe/Zs/Pz8GDx4MK1bty7Q69O0Mn/ciS8zdTmKkre7tVgqKQhCmaFSqfj666/RaDRFfr1YWC2cLVFr5FK9sizox68Jvn+Fnps3Y2lZsK4skiThZKHEyUKZed0pyzJaOWN7n0abMRlgIkkopLyvNwRBeH5las9+tWrV6NWrF8HBwXh5eWFhYYGHhwf+/v5ZXpeWlsaXX35JrVq1sLCwoFy5cqhUKgIDA3mQlM6maWM48WtGAbLJzZwz/9N5es9+0I/fsHvhdAC+6dU889jo8LtEh99lcjNnQrf/ki12fceAnPfsR4XdZv2nbzHj5Vp80aYKS0d25+qRrPuYb4YcZXIzZ87u3cqyeXNxd3fHwsKCzp07c+PGjSzHHjlyhIEDB1KlShXMzc2pXLky48ePJzk5Wd+/DqGAlFLGXe1n6X73dI5vXAFAnbadcxxHUih5Nm29ELiNuIcPCh2bmaUVKQlx2R5PjInK8mcTUzMqetTJ+CJP/6+zgIki4yZTcRk7diwvvfQSo0aNQq1WF+i1h8ITDdY2qDRr52olehYLglCmqFQq4uLiuHjxoqFDyaJNRUvauRq2aGBuNFdP8kl/bw4ePEi3bt2Iicl/i19+JElCqZAwVyqwMlVgrlSgVEgi0ReEEmDUM/s5uXHjBq+++iqjRo3i9ddfZ/Xq1bzxxhs0b96c+vUzKplPnz6duXPnMnr0aLy8vIiLiyMkJITQ0FBMKjTFq//rxEX+y40TfzJo5tI8z1e/kw+P7v7DuT2/4eM3E2uHcgBYO5YjMfqxXjHnNUZO4h8/ZNmbPUlLSabNkLexsnfirz824j9+BMO+WU39Tj5Zjj+09nsUCgV+fn7ExcXxzTffMGzYME6ePJl5zObNm0lKSuK9996jXLlynDp1ih9++IGwsDA2b96s1/sQCkaSJFwsTQhLzNp+L/r+Xfw/Gk6tNp24ez6Es7s207jHAFxrN8hxnLrtunJgxTy2TPuQKo29iLhxmbO7A3Byr1bo2CrVa8z5fVv5Y/5U3Os3xdzSmnodurH6/YHYlq9A1cZe2JRzJvLWdY5vWkVdVRfMrf/bP+9iaVKsX+JKpZJVq1bRrFkzZs+ezYwZM/R63b2ENEIiU4otLmPV3tWK1hVFoi8IQtny0ksvYWpqSnBwMI0bNzZ0OJkkSSLxfDA71m6h1yezUUiSYW9AyzIyMuH7A/j+k3eRJImgoCB69uxJx44d2bNnDxUrVjRkhIIgFFKZS/avXbvG4cOHadeuHQCDBg2icuXKrFmzhnnz5gGwc+dOevbsyfLly7O8Nl0rM+/cY6o2fonyVTy4ceLPbK3HnuVauz5udRtxbs9v1O/YE0e3KpnP6Zvs5zVGTg6t+Z6Ex5G8s2oH1Z5UUn+p/3AWDX6Znd99Qb2Xe2Rpw6ZrtTa2hStKhYSjoyPjxo3j4sWLNGiQkUB+/fXXWZZq+fr6UrNmTaZMmcLdu3epUiXvmITCcbUyITwxnae3sg39agWBP37F3h9molCa0HrwKHp8ND3XMTqO+oi0lCTO7g7gfOA23Oo25I1FG9jzw8xCx9Vq0JuE/32R0O2/cHT9jzi4VqZeh260HPA6Z3dvIXj9j6QmJWJXwZU2Q96m4+iPM1+rkMDNuviXgjdo0IApU6Ywe/ZsXn31VRo1apTn8VpZZqdYvp9JflIhskLUP7RpWrCtEIIgCMbA0tKSFi1aEBwczAcffGDocDLdvn2boUOH4uXlxWs17dh1z5ArzmRi/73PWf+F/LZ6WeaN+tatW3P48GG6du2aufq1WrVqBolQEITCK3PJvqenZ2aiD+Ds7EydOnW4efNm5mMODg5cunSJ69evU6tWrczHi7pVWHG5djQI9wbNMhN9AHMrG7z6j2DvD7N4ePMaLjX/K6qia7WWLssokTJ/Pjdv3sxM9p9O9BMTE0lOTqZNmzbIssyZM2dEsl9MXKxMeLZmjbVjuTz72E/c+VeWP5uYmdNz/Jf0HP9llsd9V2zL8mePFm2Z+1dktvEc3apke9zM0pohs3/MdqzXgJF4DRiZa2yQUVHXxbJkPlomT57Mli1bGDVqFMePH8fEJPfz/hOXSkxqLi0QXjASYG9hQsjqecxctpAmR47QvHlzQ4clCIJQ5FQqFb/8kn07paEkJyfTv39/7O3tWb9+PU525oyuZ8ah8ERCIlNK7Ia07jw3grYS9OPXHDtyONv+/IYNG3L06FG6dOmCSqVi3759eHp6lkB0giAUFaPes5+TnJJSR0dHoqOjM/88Y8YMYmJiqF27Ng0bNmTChAmcP38+11ZopU3MgzCcq9bM9niF6rWfPJ+1RZuu1ZrmyftzdMxox/b0z+Tu3bu88cYbODk5YWNjg7Ozc2armthY42gTY4xcrMrc/Tag5N6Xubk5q1atIjQ0lEWLFuV5bOiTi6gXme79t3C2YHQ9RxbPmkrDhg3p3bs34eHhBo1NEAShOLRt25awsDDu3r1r6FCQZZl3332Xq1ev8vvvv+PklFFE11Qh4e1uw7Ba9tibZVyaF9f3lW5cezMF//yyiA3TxhHw6ybc3NxyPN7Dw4Pg4GCcnJxo164dp06dKqbIBEEoDmUu2c+t2qr81Kx9+/bt+eeff1i9ejUNGjRg5cqVNGvWjHVrVhZxNDl/VD/dB70k6FqtPdsKTfcz0Wg0dOnShZ07dzJx4kS2bt1KYGAga9euBTL6uAvFw8lcibmybKWg5koJR/OS+2hp2bIl48aNY+rUqdkKT+pEqzXcjk97YZfvP31xN6yWPZ3dbTBVSFhaWrJ161YUCgW9e/cmKan0VocWBEEojDZt2gCUihZ8y5Ytw9/fn+XLl+dYQ6CyjSm+no686mFHNduM7XBFdYWgG6earSmvetgRte0nVn47i3Xr1uW7ssvV1ZVDhw5Rp04dOnXqxP79+4soKkEQiluZS/b15eTkxJtvvskvv/zCvXv3aNSoEbOfKvJVkOJiuR1raecAZLRAe9qzM+8FPZ+DqzuRd7InNZG3rz95PucWbbm1Qrtw4QJ///038+fPZ+LEifTp0wdvb+9c7/IKRUeSJBqXsygzM85aTTqPzgRz9uzZEj3vrFmzqFixIr6+vllu7OmcefRizurr9uXrLu58PR2ztdZzdXVlx44dXL16lddff13c3BMEoUxxdnambt26Bk/2jx07xrhx4xg7dizDhw/P9TiFJFHT3ozBNe15x9MRrwqWWSYFtOnpOX7PZR/nv/83hRaoWAAAIABJREFUV0p4VbDkHU9HBte058KBnXz22RSmT5/OwIF516bScXR0JDAwEJVKRc+ePfntt9/0ep0gCIb1Qib7jx9nLZxnY2NDzZo1UavVma3QzCwzWqI8m6jnJLdjLWxssXYox+2/TmR5/MTmNXqPkZM6bb0Ju/gXd86dznwsNTmRU7/9jKNbFSp41Mn2mrxaoelWQzz95SHLcr7LooWi0bS8BTLg/e6nzP0rMtcuDMZAUij5bdFsmjVrRvPmzVm2bFmJbAOxtrZmxYoVHDx4kFWrVmV5TpZlzj1OeSFm9Z/+N65NTeH05tW8VcuGwTXtqWlvhiKXG35NmjRh/fr1BAQEMG3atBKKVhAEoWSoVCqDJvsPHjxgwIABtG7dOrNYtD4czZV0rGTNRw2d8LgfwraZH3Fx1yYcpdQcW/dCxvWeu7UJLZwt6V3VFt96jnzU0ImOlaxxNFdy9uxZhg8fzsCBA5k6dWqB3oe1tTXbt2+nX79+DBw4kNWrc68vJAhC6VA2Nwznw9PTk5dffpnmzZvj5ORESEgIW7ZsYcyYMZmt0CrVy1heteObKdRq3RGFUknjbv1yHM/tybH7lsyhUdd+KE1Nqde+K2aW1rToN4xDa74nYMZHuHs24dZfx3l0558CjfGsDm+O5dze31j74RDaDH0bSzsH/vpjE9H37zDs2zVZKvHr5NUKrW7dutSoUYNPPvmE+/fvY2dnR0BAQJY9/ULxcTRXUs3WlDtGvsxcAqrbmXHh1DF2797NypUr+fDDD/Hz82PgwIGMHj0alUpVbC35vL29eeutt/Dz86NHjx5UqlQJWZa5GZeKWmPMP9n8KWQtbjZmuFmb4mJpgouVCfevX+Gzryfzeut69OnTJ98x+vTpw1dffcXEiROpW7cuw4YNK4HIBUEQip9KpWLVqlVER0dn1i0qKampqQwcOBBJkvj1118xNS1Yt5rU1FQmTZrEggULGDBgAMs+egN7e3tkWUYrZxSX1mgztmqaSBIKKffVohEREfTu3Zt69eqxdu3aHK8X82NmZsb69etxcHBg1KhRREVF8cknnxR4HEEQSsYLmeyPHTuW7du3s2/fPtRqNVWrVmXWrFlMmDCBw/+qCU9Mp36nXrQeMprze7dydtdmZFnONdmvXL8pXd6fxMkt6/j72AFkrZZP/wjFzNKazm9/QmL0Yy4G7eBC4DZqt+nMG4s3MrtzPb3HeJZtuQq8t2YXu7+fwbGNK0lPVeNSy5ORC/9H3XZdsx0vkXcrNFNTU3bs2MHYsWOZO3cuFhYW9OvXjzFjxpSqvrRlWXNnC27Hpxk6jOciA82dLTExMeGVV17hlVdeITw8nHXr1rFq1Sr8/f2pXbs2o0ePZuTIkcXSs3fevHns2rWL8Z9N491ZCzkXpS6ziX43d2vq2JvSskVzXCpWIDAwMMvzTg0b0LRpU/z9/fVK9gEmTJjA5cuXGTVqFB4eHrRuLVryCYJg/FQqFbIsc/z4cXr27Fmi5/bz8+PUqVMcOnQIFxeXAr327t27DB48OLMI7YcffpiZyEuShFICJRLkXK4qi5SUFPr160d6ejrbtm3DysqqMG8HyFgRumzZMsqVK8eECROIiopi9uzZxXYzXxCEwpNkfTb+vEAuRaWw406CocMocr2r2uLpZG7oMIRcaGWZ5ZejiTVYn93nI5FR/M3X0zHHpeJarZZDhw6xcuVKAgIC0Gg09O7dm1GjRtGtW7dcC2sWhFaW+Sculd0X75Bk5QSyFqSyuVNJIUELZ0s6VbJm69at9OvXj6CgIDp37pzluAULFjBp0iQiIiL0ns1Sq9V06dKFa9eucerUKapWrVocb0EQBKHEyLKMm5sbb775JnPmzCmx8/r7+/P666+zdOlS3nvvvQK9dteuXYwYMQIbG5v/s3ff8THffwDHX9+77CkiJJFIrJCgCGLvnVi1G1sVRdFSrdKi9bOrlFIrVmNvsWOLGbVqBhW7IiK5RMbl7vv7IxJOgkQuLuHzfDw8HvK97/jc5XL3fX/G+82aNWuoWrXqO7dDlmW6d+/OunXrOHToEFWqVHnnc71q+vTpDBs2jH79+vHHH3/o5ftcEAT9EcH+KyITkllw+amhm6F3fT3tyG8mPoBzszuxagLD8m6Zw64lbXGxevv0xCdPnrBixQoWLFjA+fPncXFxoVevXvTu3Rt3d/d3uvadWDXbwlU8TdJmq0Zx1P07HFw6ixsnD/H04T2MzcwpXqUWvkPHYuf8oqzn6S0rWTd2MP0WbeX8ns2c37kRTbKaT5q0oeV3E1EnxLN1yg9cPrQLAJ9Pu9FsyE86ox5arZZjqxZwalMgkbdvYmphhbPnJzQZ+AMuXhXe2lYXSyO6euRDlmWqV6+OVqvlxIkTOtd4+PAhhQsXZs6cOfTr1y/Tr8Pjx4/x8fHBysqKkJAQrK2tM32sIAhCbtShQwf+++8/Dh069F6ud+bMGWrUqEHnzp0JCAjI9Kh3cnIyP/74I5MmTaJFixYsXbo0rUTfu5o0aRIjR45k5cqVdO7cOVvnysjixYvp06cP7du3Z/ny5ZiYmOj9GoIgvJsPc9grG0QpNMFQXK2MqeyQ9zLzS0AVB7NMBfqQUglj0KBBnD17llOnTuHn58eMGTMoVqwYTZo0Yc2aNSQmJmbqXGqtTPDdWALDoolOSskin53ey7uXznD73Ek+afIpLb+dQNV2Pbhx8jDzv2hDUnz6snRbpowk8vZNGvYfgWfdZpzcsIw9cyaxbEgXtFoNTQeNwr1CVQ4tm82ZbWt0jt0wbghB00ZjW8iZZoN/pG6vwRibmnH7fGim2vowPiUjsyRJTJgwgVOnTrFx40adfRwdHWnatCnLli3L0utQoEABgoKCCA8Px9/fH817LhcqCIKgb7Vq1eLkyZM63y+yLJOslUnQaHmm1pKg0ZKslTOV7f5NIiMjadu2LV5eXsyZMyfTgf79+/dp2LAhU6dOZfLkyWzevDnbgf7mzZv54Ycf+PHHH3Mk0Afo1asX69atY9OmTbRs2ZK4uLgcuY4gCFknRvYzsO9eHKcexefJ6dSvkgCfgubUL5x+7b+Q+6i1MgsvRxGTR6bzS4CNiYI+nnYYv67cQybExcWxdu1aFi5cSEhICPb29nTv3p3PP/+cMmXKZHjMnVg1QeEqvb5W6oR4jM3MdbbdPh/K3J7N6fDzH3i36Ai8GNkvWb0+vWavTruRm9vTlzsXQvFp14M2P0wFQKvRMKWFN/ld3Om7YDMAN04dYWG/T6nx2Re0/FZ3SmlqAJ8Z35a3R/n8dW/SpAl3797lwoULOtMoV65cib+/P9evX6d48eJZej127tyJn58fX3/9dZYySAuCIOQ2oadP07xdJxas3oh14aI8eJbMw/hkkjOoNmqkSEls7GSRkvDU0cKI/KbKTH02azQafH19OX36NKdPn870Uqjg4GD8/f0xNjZm9erV1KpVK6tPMZ1z585Rs2ZNmjVrxpo1a94pIV9W7N27lzZt2lCuXDmCgoKy3VEhCEL2ieHeDKSWQvsQyECFAmaGboaQScYKiZo2yWjzSB+cDLRws85WoA8p5Xx69uzJkSNHuHTpEj179mT58uWULVuWGjVqEBAQQGzsi1waoRHxBIZF671T5OVAX6NWE/f0CfauRTGztuX+lfPp9q/SpovOzZ9rWW9kWaZymxeZ7BVKJYW9KvDkXnjatn/2bkWSJBr2/TbdObOS4Cj5pffJhAkTuHz5MsuXL9fZp3Xr1lhbW/PXX39l+rypmjVrxowZM/j111/TlTQUBEHIC6ISNey7F8dhIzeGbTzOFRMnTkckcDcu40AfIFkLd+OSOR2RksdpweWnzLjwhH334ohKfPNMp59++ong4GBWrVqVqUBfo9Ewbtw4mjRpQoUKFThz5oxeAv3//vuPVq1a4eHhwdKlS3M80Ado2LAh+/bt49q1a9StW5cHDx7k+DUFQXgzEexnILUUWl6bTv0qCShqbYydqVirn1dcuXKFNnWrceDPiYZuSqY0crHENZPT9zPL09OTadOmce/ePdatW4etrS19+vTBycmJL774gtWnrhF8N2WKoL67RNQJ8eyZO4lJzcvzY7XCjG9QivENS5OgiiYhNibd/raOLjo/m1nZpGwv5PzKdmviY17kAnly9xbWDo5Y2GavBJTmpRvVypUr0759e8aMGaMzTdXCwiJtHeW7TOQaNGgQ/fv3p3///hw4cCBb7RUEQXgftLJMWHQiq65HM+9SFKcexZP40ufla2L89Od56f+JGplTj+KZdymKVdejCYtOTNcxv3HjRiZMmMDEiRNp1KjRW8//6NEjmjVrxrhx4xg3bhw7duygYMGCmWzd6yUmJtK2bVuSkpLYsmULlpbvb3ZnlSpVOHz4MFFRUdSsWZMbN9KXmxYE4f0Rwf5rVHLI+6P7qaXQhLzhwIEDVK9eHQsLC+aPGkJtp3cvi/M+1HayoHIOvr9MTExo164dO3bs4NatWwwfPpzIfEX41yjnpgVumTKS/Yt+o1zj1nw2eSG956zl87nrsMiXH1lOf3uoeE3WYYUig+05MFtD+con+C+//MLdu3f5888/dbZ369aNGzducOzYsSxfQ5Ikfv/9d+rWrUu7du24fv16dposCIKQo+7Eqpl/KYr1N1WEPy9pq69P39TzhKvUrL+pYv6lKO7EplzjypUr9OjRg3bt2vHtt+lnbb3q0KFDVKhQgfPnz7Nnzx5+/PFHvWSyl2WZfv36cfr0aTZt2oSLi8vbD9IzT09PQkJCMDIyolatWpw/n35mnCAI74cI9l+juI0J+UwUeXZ0XwLymSgoZqPfUVchZyxbtowmTZpQuXJlQkJCcHNzo0Yh81wb8NdxsqBGoffXkVSkSBH8vhyBj3/WShdl1T/BW/Fu0Qm/b36mXKNWlKxWD7cKVUlQ6bdKQn4Xd1QRD3kWHZWt8xi9MuW/dOnS9OrVi/Hjx6NSqdK2161bF1dX1ywn6ktlbGzM2rVrKVCgAC1btuTp0w+vYokgCHmbvhO2vknqeaOTtASGRbPjZhTtO3XGxcWFxYsXv3E5llarZfLkyTRo0AAPDw/Onj2brmxqdkybNo2lS5cSEBCQrXJ92eXm5saRI0dwdHSkbt26HD161GBtEYSPmQj2X0MhSfi5WefZ0f3UtdQZ1TwXcg9Zlhk7diw9evSge/fubN++HVtbWyBlRLWmowWNXFKm3xn6N5l6/UYultRwtMjS2vLsuhOrJvhezmf3lZTKdCPwx1YtRKvnbPRlG7ZElmX2zp+a7rHMTrU3UkBGqRLGjBmDSqXit99+S9umUCjo2rVrliodvMrOzo6goCD+++8/OnbsSHJy8judRxAEQd/uxKpZeDmK0xEJQM4F+a9Kvc7ZKDV+EwJYsG7rG0uVRkZG0rJlS77//nu+//57goODcXJy0lt7tm7dynfffceoUaPw9/fX23nfVcGCBTlw4ADlypWjUaNG7Ny509BNEoSPjgj23+BjKYUmGEZiYiI9evRg3LhxTJgwgQULFmBsnP53VtnBnC4lbbEx4EyT1Kz7XUra5ujU/YyotTJB4ar38txL127Mme1r2Tp1FCfXL2PdmK84umoBFvn0u3SgeJVaVPTryNGVC1j8VWdCVs7nSOCf/DW8J8dWZy4RnqO5UYYdLq6urgwcOJBp06bx+PHjtO3dunUjKiqKbdu2vXO7S5YsyYYNG9i/fz9Dhgx55/MIgiDoS04lbM0KSaHAzsmVw4m2hEbEZ7jP8ePHqVixIidOnGD79u2MHz8eIyMjvbXhwoUL+Pv706ZNG37++We9nTe7bG1t2bVrFw0bNqRVq1asXr3a0E0ShI+KCPbfoq6zpUGDrKxKDcrqOItSe7nZkydPaNq0KWvWrGHlypWMHDnyjSPlrlbG9PG0o5JDSmWF9/V+TL1OZQcz+nja6T0ZX2YcvB/33m7iWn47gYp+HTm3Yz3bfvuJmMf/8fnc9ZiY6//vqf3Y32k+dCxR926zY8Y4DgTMRJ2YgFv5Km89ViGBs+XrfxcjR44EYOLEF4kePT09qVy58jtP5U9Vr1495s6dy5w5c5g9e3a2ziUIgvCuZFkm5OGzHEvYmmXPv8OD78YR8vBZ2iwtWZb57bffqF27Ni4uLpw5c4bmzZvr9dIRERG0atWK4sWLs2zZsveSeT8rzM3N2bBhA506deKzzz5j3rx5hm6SIHw0JPld0jN/ZO7EqgkM0++a3ZzUpaStQYIyIXNu3LiBn58fjx8/ZvPmzdSsWTNLx9+JVbMtXMXTJC0SOXODk3refCYK/NysDfZ+ymt/e+9TKzdrvPKbvvbxcePGMXHiRMLCwnB1dQXg999/Z/jw4Tx48AB7e/tsXX/YsGHMmDGD7du307Rp02ydSxAEIatCHj7j8INnhm7Ga9V2sqCMWRK9e/dm48aNDBs2jIkTJ2Y4gy87EhMTadSoEWFhYZw8eZIiRYro9fz6pNVqGTp0KLNmzeJ///vfWwc6BEHIPhHsZ1JoRHxa73Fu1sjF8r1PsxYy79ixY7Rq1Qo7Ozu2b99OiRIl3uk8WlnmZoya0xHx/KtS6y3oTz1PUWtjKjmYU8zG2GB5H7SyzPxLUUQbcGpmbtbX0478Zq/P3KxSqShWrBitW7dm4cKFQEqZJ2dnZ37//XcGDBiQretrNBpat27N4cOHOXbsGF5eXtk6nyAIQmaFPop/L3lcsitk4TSOrJjHkiVLaN26td7PL8syn3/+OYGBgWkVfXI7WZb5+eefGTt2LN988w3Tpk0TAb8g5CAR7GdBXuhFrumYO7O3C7B27Vq6deuGj48PGzduzPbIaqqoRA1nHydwNjKBRE3Kn7NCAm0m/rJf3s9UKVHB3owKBcywM81++Z/sCotOZP1N1dt3/AiZKiWGlsv/1hukGTNmMGzYMC5evEjp0qUBaNmyJRERERw/fjzb7YiJiaFmzZo8e/aMEydOUKBAgWyfUxAE4U3y0owvWZZpaB2PT8mcGW3/9ddfGT58OMuXL6dr1645co2cMmvWLAYPHkyvXr2YP3++XvMXCILwggj2s0CWZY7+F58rA/46ThZUL2QuekdzIVmWmTJlCt9//z3+/v4EBARgavr66dfZuU5UopaHz5J5GJ/M/Tg1D+OTSU5fHh4jRUqCN2dLYxzNjXC0MMLOVJGr3j+rrkcTrlKLUf1XSIBPQXPqF357HoGEhARKlSqFj48Pa9euBWDNmjV06tSJq1ev4uHhke4YWZbRyJAsy2i1oFCklPhTSmT4/rh16xY+Pj54enqyZ88eTExMsv0cBUEQMqLWyiy8HGXQZHxZkZpHqY+nHcYZlU/Jhm3bttGyZUu+++47nfwseclff/1Fz549admyJStXrsTMzMzQTRKED44I9t9B6pT+nFovnVmp1xdT93MvtVrNwIEDWbBgAT/++CPjxo17rwG1LMtonwduGi0onwduitcEbrlFVKKGeZeyV4P+Q9bPyy7Tsy8WL15M7969OXXqFJUrVyY+Ph4nJycGDx7MuHHjeJKoSekgepbMg+cdRW/qIHKySOkccrQwIr+pEkmSOHr0KPXr16dLly4sWrQoV7+3BEHIu4LvxnI6IiFPBPqpJFKS3DZ0sdLbOS9evEj16tVp0KABGzZsyHUJ+bIiKCiIDh06UKNGDTZt2vTG0oWCIGSdCPbf0Z1YNUHhKoP1Lqf2FrcwYPI04c1iYmLo0KED+/btY8GCBfTs2dPQTcoz9t2L49Sj+Dx1Q/c+SIC7tTGdSthm+pjk5GQ++eQTXFxc2L17NwBfDvuOp1aO+LTtTuLzdRwKIIMYP52X9zNVSpS3N6NiATO2r1tF165dmTJlCt9++21WnpYgCMJb5aXp+xnRV/Lkx48f4+Pjg7W1NSEhIVhZ6a8TwVAOHTpEy5YtKVWqFNu3bxdLwgRBj0Swnw1qrczB+3GERiS8t1H+1OtUcTCjjrOl3qeFCfpx584d/Pz8uH37Nhs2bKBBgwaGblKeIcsyMy48Scs/kFcE/zmFvfOnMvHviBy9TvtiNpSwzdpU+Q0bNtC+QwfWHjiO2smDWyo1muRklHpYI5n6meRubczlXesYP6QfGzdsoFWrVtk+tyAIAuT9hK0SYGuioK+XXbaS3iYlJdG4cWOuXLnCyZMncXNz018jDezMmTM0bdqUAgUKsHv3blxcXAzdJEH4IOTdeT+5gLFCopGLFV1K2mJrkvJS5lTonXpeWxMFXUra0tDFSgT6udTp06epWrUqKpWKo0ePikA/i54kavJcoP86+xf9xsX92/VyLq1Gg4WkoZhN1keGqjRuwQ87zhJmVZRwlRpAL4E+vOjkDFepMa/Rmh93X+C7idM5e/asXs4vCIJwIyaJp3k00IeUz8mnSVpuxqjf/RyyzIABAzh+/DgbN278oAJ9gIoVK3LkyBHi4uKoWbMm165dM3STBOGDIIJ9PXC1Mqavlx3ti9ngbp1yI66vMDz1PO7WxrQvZkNfLzsxbT8X27p1K3Xq1MHV1ZXjx4+LcmTv4OGzZEM3QW8OBMzg0gH9BPuSQsHvfdryw8iRxMbGZuoYtVYm+G4sgddjsCrgCOTcDKTU85rbOdD9j7VM3nyQuw8e5tDVBEH4mJx+PoMyL5OA0xHx73z8zJkzWbRoEQsWLKBGjRr6a1gu4uHhQUhICBYWFtSqVYu///7b0E0ShDxPBPt6opAkStia0KmELf287PApaI6pUnrp8cye58X/TZUSPgXN6edlR6cStpSwNTFYzXPh7WbNmkWbNm1o1qwZ+/fvp1ChQoZuUp708FmyzgdTUnzur6Wc07RaLXbR9+jeqikzZ87E09OTdevW8aZVWHdi1Sy8HMXpiISUDe/ps0MmJfljuRadmffPY65HZq5jQhAEISNRiRpufQCVWWTgX5WaqERNlo/dsWMHw4YNY8SIEXTv3l3/jctFXFxcOHz4MO7u7tSvX59Dhw4ZukmCkKeJYD8H2JkqqV/YkqHl8tPX045WbtZUdjDHxdIIo9e84kYKcLE0orKDOa3crOnracfQcvmpX9gyV9Q8F15Po9EwZMgQBg8ezDfffMPatWuxsLAwdLPypLFjx9LI1ZoHN6+y6od+jKtbgj97twDgzLa1zPJvyI/VXfm5XklWfv8FTx/e0zl+/hetmdGhNv/dvMqCvm34qUYRJjYtx8Els3T2S1YnsWfuJGb5N2RsnWL8VMONeb1bcOPUEZ39boaGMNLbgZuhITrbo+7fZqS3A6e3rHztcxnp7UBS/DP+3rqakd4OjPR2YO2YQVl+TSRkkqIjGexbg/v37xMaGoq3tzcdOnSgadOmXL16Nd0xoRHxBIZFG7Q8lUKhxNyuAGvD4wl9lPvKlQqCkDeceZz3R/VTScDZxwlZOuby5ct07twZX19fJkyYkDMNy2UKFCjA3r17qVy5Mk2bNiUoKMjQTRKEPEs/izaFDEmSRH4zJfnNlHiRUlc9r5ZCEzIWFxeHv78/QUFBzJkzhy+//NLQTcrTUkeqV4z4nAJFitF00ChkWWb/wunsmTuJco1bU+XTrsRFRXJs1ULm92nFVyv3YW79Ijt9fMxTFg/qRJn6fpRr3Jp/grey8/efcSzpSamajQBIjFVxauNflG/WFp+23UiMiyV0cyCLB3ZkwPJdOJcql+3n0vGXOWz45WtcylTEp23KSEx+F/esvyZIfF6lOE4zfuPrr79m//79rFixgi+++IIhQ4ZQrlw5hg0bxujRo7GwsODof/EcfvDs+bGGpVCmfMUE33tGohZqFDIXn3OCIGSaLMuci8x+qb35X7QGoO+CzVk+du2YQdwMPcp327I/pVwGzkYmUM/ZIlOfhZGRkbRs2ZIiRYqwYsUKlMqPZ/DH2tqabdu24e/vT5s2bViyZAldu3Y1dLMEIc8Rwf57JkkSSgmUSPDxfGZ/kB48eECLFi24du0aQUFBNG/e3NBNyvNSb+icPMrQecI8AKLu32Fa6yo0HjCS+p9/nbZvmQZ+zPJvwPE1ATrbYyIe0uHnP/Bu0RGAym26MMWvIqGbAtOCfXObfIzY9jdGxi+y2ldp243pbatzbNVC2o2Zme3nUtGvA5smDCe/ixsV/Tq883kauVjiam1Cv379qFevHl26dKFatWr8/PPPnD9/nl9//ZWJEycSGBjI6MXreZK/aLbbnhNSOyBqOopZL4IgZM6HlLA1VaJGJipRS36zN98EJiUl0b59e6KjowkODv4o68+bmZmxZs0a+vbtS7du3Xjy5AmDBw82dLMEIU8Rwb4gvIMLFy7g5+eHVqvlyJEjlC9f3tBN+iA8L/lO1XY90rZd3LcNWaulXOPWxEVFpm23ti9IAddi3AwN0Qn2TSwsdYJrI2MTXMp48+ReeNo2hVKJ4vkIiVarJUEVjazVUtizAveunM+pp5dltZ0sqOxgnvZzqVKlOHr0KGPHjmXUqFHs3LmTZcuW0bVrVyatDMq1gX6qww+eYaqUdJ6TIAjC6+grYWvvOWvf+di2o39DlrV6aUeqh8+S3xjsy7LMV199RUhICPv27cPd3V2v189LjIyMWLRoEfnz52fIkCE8efKEMWPGiFligpBJItgXhCzavXs3HTp0oGjRogQFBYlasHqUmm/OrvCLkkKP79xElmV+bVM1w2MURrrVKWwLOqe7CTC3seVh2CWdbae3ruLI8rlE3ApDk/yiHNLL1zak4jbG1CiUPig2MTFhwoQJNGvWjG7dulG+fHmmL15BMV9/A7Qy64LvxlLI3EhUFREE4a1SE7ZmN9R+eRZXVimN9ftZpZDgYXxy2vLOjMyaNYv58+cTEBBArVq19Hr9vEiSJKZOnYq9vT0//PADT548YcaMGSgUIvWYILyNCPYFIQsWLlxI//79adq0KatWrfoop9XlpNQY3djULG2brNUiSRI9Z61KG41/mYm5pc7PGe3UpWtIAAAgAElEQVQD6GSuP7NtLevGfIVXfV9qdx+IVf4CKJRKDgTMJPLurZcalHE7tZqsZ1POqhsxau7GJb82KK5Tpw7nzp1j0JChXDEuhJ1Wg6TI/WuDtBotW/6NoW+Z/BhntkyJIAgfnTNnzvDNkG+5+vcJZK0W17KVaDLwB4p8UhmA01tWsm7sYPou2MzZHeu5sHcr2mQ1XvV8afnt/zC3yZd2rlfX7N8MDWFB3zZ8NmkBkbdvcnzdEp49fYJbeR/ajJpGgSLF0o7NaM1+Unwce+ZO5sKezcQ+eYydsytVPu1G7W4DdDqbR3o7UK1jb0pUrcueORN5fPsm9q5F6TFyPA36tM/wee/atYuvv/6aYcOG0atXL/29oHmcJEmMHDmS/Pnz8+WXXxIVFUVAQADGeu6MEYQPjQj2BSETtFoto0aNYtKkSQwYMICZM2diZCT+fPQto9jP3sUdWZaxK+yGg1txvVznn71bye/iTtdpS3RuzIL/nKyzn7l1ys1ivCpaZ/vTB3czd6FsTDOUgKBwFX087V4bFOfLl4+e/5tN6KP491ZaL7sUSiUxSRoO3oulkavoLBMEIb2LFy9Su3ZtlBZW1OkxCKWRMSfWL2NB3zZ8sWAzRcpVStt3y+SRmFnb0Kjft0Tcus6JdUt4+uAOXyzY/Nap3geX/I4kKajdbQAJsSoOLZ3N6tFfMnDZrtceI8syy4Z242boESq36YKTR1nCju1nx4yxxDx6QIvh43X2Dz97gov7tlGtYy9MLaw4umohM77qwYg29ShQoIDOvleuXKFTp040b96cyZN1v4+EFP369SNfvnx069aNp0+fsmbNGszNc3ZpmCzLaJ4n19ZqQfE8ubZSJNcW8gARrQjCW8THx9OzZ0/Wrl3Lr7/+ytdffy0+3HNIRq9qmQZ+7Jo9nr3zp9Jp/Fyd116WZZ5FR2GZL3/WrvN86p8sy2nnu33hNLfPh2Lr+GJZhp2TKwqlkn//PkaZ+r5p24+vDcjUdUzMLUhQxWSpbalkIDpJw6H7cTR0scpwnzuxakIjEvJMoJ9KUig4FZFAKTszMZ1fEIR0Ro8ejVqtZsCioLQqJhX9OjK9bXV2zhxH34Vb0vZVGhvT588NadPt7Zxc2TFzHJcP7cKrbrM3Xic5MZGvVu1Pm+ZvbmNL0NRRPLx+GccSnhkec/ngTm6cOkyTASOp3+cbAKp3+pzAEb05unI+1Tt9jr3ri/wpj/4N4+t1R9K2Fatci98712PFypUM/uqrtP2ePHlCy5YtcXFx+egy72dVp06dyJcvH23btqVp06Zs3boVW1vbtx+YCbIs8yRRw8NnyTx8lsyDZ8k8jE8mOYO1JEYKcDQ3wsnCCMfn//KbKsU9opCriGBfEN4gIiKC1q1bc/bsWdavX8+nn35q6CZ90DL6grR3LUrjASPZNWs8T+/fxqueL6aWVjy5d5uL+7fh07Y7dboPzNJ1StduwsV92/hrWA9K12rMk/vhnFi3lILFSpH4LC5tPzNrG8o2asWx1QtTSmm6uHPl8G7injzO1HUKe5bn+omDHP5rLjYOjtg5F9EZkXo7iZOP4rl8YAfdWjbRuZnRyjLbwlVIGL7E3rvQajWs+uc+w6oWQSFujARBeE6j0bB7925atm6tU67UxsGR8s3acWrjchJiVWnbfdp211lXX7VDT3b98T+uHgl+a7BfqdVnOuv5i1asBsCTe+GvDfavHglGoVRS47O+Ottrdx3AP8FbuRqylxqd+6RtL1G1jk7w7+RRBlMra27cuJm2Ta1W06FDB6Kiojh58iQ2NjZvbLcATZs2Zc+ePfj5+VGvXj127txJoUKF3vl8UYkazjxO4FxkQloFiLfli0jWwt24ZO7HJaftZ6qUKG9vRsUCZtiZig4bwfBEsC8Ir3H16lV8fX2JjY3lwIED+Pj4GLpJH41XU+7U6zWEAkWKExL4J3vnTwXAtlBhSlarh+dbbuYyUqnVZ8RGPuLE+mWEHdtPwWIedBo/hwvBW7gZelRn31YjJqJNVnNi3VKMTEwo17g1vkPHMqND7bdex++bX9g4/hv2zJmIOiEe75adshjsA7KWcNuiOBcuTPt27ejTpw+1atXiRkwST5P0myH6fVIqjdAojQg6fpZW1SsaujmCIOQSERERPHv2jJIlS6V7rGDRkshaLdH/3UvbZv/S+noAUwsrrAsUIur+7bdeK59jYZ2fU9f5x8c8fe0xUQ/uYO3giKml7oyrgkU9gPTLvPI5pk/ia26djydRUWk/DxkyhMOHDxMcHEyxYsXS7S9krEaNGhw8eJCmTZtSu3Zt9uzZg5tb5pPsamWZGzFJnI5I4JZKna7zPLPfsC/vl6iROfUonpOP4nG3NqaSgxnFbUxEp7ZgMCLYF4QMHDp0iDZt2uDk5MTevXs/6rI379PYsWPpMPh7tobHpnusbMMWlG3Y4o3HpyZfelWHcbN1fpYkiXq9h1Kv91Cd7aVrN0l3rKWdPV2mLk63feLfETo/N+o/gkb9R+hsc3AvoTPd9F1ICiX2Lu6MnjGPRZPGsGzZMjw8POj1xxoke2fk12URzAO0Gg3bLtyinGM+ihbN3WUDBUF4v95HbCS9bqq8rL/5UtJrM8anXOOPP/5g7ty5LFy4kDp16ujtuh+LTz75hJCQEBo3bkzNmjXZvXs3Xl5ebz3uTqyabeEqniZp075F9fVbTz1PuErNLZWafCYK/NysxbI1wSBEzQpBeEVgYCCNGzemYsWKhISEiED/PXO0EH2Qr5KAYvVacO3aNfbt20eNhk3BvnCeDvQhJVmfe+VafPZ5P2Ji3i23gSAIHxYHBwcsLCy4fu1auscibl1HUiiwLfRiRD7y9k2dfRKfxaJ6/B92zkVypH12Tq6oIh6SGKfbKf3oVhgA+ZwyV45XgcSePXsYMmQIX3/9NZ9//rne2/qxKFasGEeOHMHOzo46depw6tSp1+6r1soE340lMCya6Oez43JqKVzqeaOTtASGRRN8Nxa1Ni8uvBPyMhHsC8Jzsizz888/07VrV/z9/dmxYwf58uV7+4GCXuU3VWKqzNtBrL7JwL8qNdFqmfr169Nt1MQ8Hua/oJDAsUo9OnfuTHJysqGbIwiCgSmVSpo0acKWLZuJefBiKr4q8hFnd67HvUJVzKxeVPI4uWEZGrU67ecTa5egTU6mVM2GOdK+UrUaodVoOLZ6oc72kMA/kSQpU9eVgJiYGDp27Ejjxo2ZOnVqjrT1Y+Lk5MShQ4fw8PCgQYMG7N27N90+d2LVLLwcxemIBOD95btJvc7piAQWXo7iTqz6jfsLgj6JYF8QgKSkJHr16sWYMWMYP348AQEBmJiYvP1AQe8kKSW5zYcSzOqNrGXXpXCSk5M5F5nAJD9v1o4ZZOhWZZuMRM2OvdmzZw/Dhw83dHMEQcgFxo8fj5GREX/2bsn+Rb9xcMks/uzlhyYpiWZDxujsq1GrWdi/LUdXLWTL5O/ZOesX3CtUfad8LplRuk5TilWuxe4/JrBx/DCOrQlg+TfdOb97EzU+66uTjC8jsiyjTkpk8+ZNJCcnU7ZsWTZs2MC1a9fQavNuHpbcwM7Ojj179lCjRg18fX3ZuHFj2mOhEfEEhkUTk6Q1WFJbGYh5PsofGhFvoFYIHxsR7AsfvaioKJo2bcrKlStZsWIFo0aNEmVTDKxiATO9fhmf3rKSkd4O3L10Vo9nfXc3Q0MY6e3AzdCQzB8kKbiskilRoXJapuAPhUZhxG/zA5g5cybz5s3L0rETJkxg06ZNOdQyQRAMoUyZMhw+fJjipb04sHgme+dPI5+jC33mbUyX5LTVdxMpWNSD4D8nc3rrKso3bUu335bn2Pe4QqGg+4zl1PDvx5XDu9k2bTT/3bxK86Fj8Rv2y9uPl0DWJCNJEt7e3gQGBtKxY0dKlSqFtbU11apVo3///sydO5ejR4+iUqneek7hBUtLS7Zu3UqbNm1o3749iwICCHn4jOC7KZV2DP3tmXr94LtxhDx8hqzH/BCCkBFJFu8y4SN28+ZN/Pz8ePToEZs3b6ZWrVqGbpLw3Krr0YSr1Hr5Yj69ZSXrxg5m4F97cPGqoIczZs/N0BAW9G3DF/M3UaxyzSwdK18+huRZneSkRCRJoVNyKi9r5WbN3DHDmTt3Lrt27aJhw8xNwbWysqJ9+/YsWbIkZxsoCMJ7d/FJQoYJWyH3fa5nxZrRXzL924HUq1cPSKlAcO7cOZ1/ly5dSlvaVLx4ccqXL6/zz83NTQxMvIFGo2HgwIGEaSxpPGCkoZvzWrWdLKjpaGHoZggfMJEJS/hoHT9+nFatWmFra8vx48cpWbKkoZskvKSSgxm3VGJd28tkWcb1kyrcV4ORiamhm6M3Cgkexifz22+/ERYWRvv27Tlx4gQeHh4GaU9cXByWlpYGubYgCC98qAlbv+j4aVqgDylJCRs1akSjRo3StiUlJXH58mWdDoBZs2bx+PFjAGxtbfnkk090OgDKli2Lubn5+346uZJSqeTzn6ez994zQzfljQ4/eIapUqKyg/i9CTlDTOMXPkrr1q2jfv36eHh4cOzYMRHo50LFbUzIZ6J4b2v3o+7fYdPEEfz6aTV+rO7Kz/U9CBzRmyf3wlEnvFhbl7ok4NaZ42yZMpLxDUozrk5xNo4fRrI6iXhVNGt+HMi4uiUYV7cEO2aMSzdNL3Vd5toxX/FjNRf+18iLjeOHpavtPNnPmyWD/bl2dB+zuzTip+qubFy2CO3zx1LX7CfFp0xPjFdFEzRtNJP9vBldtTATm33Cmh8HEhcVCUCyOok9cycxy78hY+sU46cabszr3YIbp4688lrcZqS3A4eW/cHJ9cuY2qoKo6sWZnbXxty5eOatr2VWX6Ntv43jXmwSRkZGrF69GicnJ3x9fRk4cCCurq6YmppSqlQppk2bpvNaSpJEXFwcS5cuRZIkJEmiZ8+eaY+fOXOG5s2bY2Njg5WVFQ0bNuT48eM6bV2yZAmSJHHw4EEGDBhAwYIFcXFJyaatUqkYOnQo7u7umJqaUrBgQRo3bszff//91tdAEITs+xATtmoTE+jf/bO37mdiYkL58uXp3r07v/76K8HBwTx69Ih79+6xfft2vv/+ewoXLszevXvp168fPj4+WFlZ4enpSefOnZk4cSLbt2/n3r17H+VU8Tux6lwf6KcKvhsnkvYJOebD7DIVhNeQZZlp06YxYsQIOnfuzOLFizEzMzN0s4QMKCQJPzdrAsOiM7V/9KMHBM+dxNWQvTyLjsLGwRGPGg1o8e3/0vZJTkok6NcfObttLUkJ8ZSsXo9PR/+KlV0B7l46w+1zJ4mNjMDetRiFinlwIXgr/wRvpdngn7h6ZA/xqhhqdekHwJYpI7G2L0jD/iPYNWs8Jzcsw8zaltvnTqKVZUwtrVBFPOTQstmc3bmeOt0HUtM/5dgjf80BoFDx0tTrNYSo++EcW72If88cJ18hZ27/cxptcjJarRatJplVP/TDp113qnzajVvnT7HB2wHrAo78+/cxxtUtgZ2zK/0WbWXe5y2J+PcalVr5U9jzE+KeRnL54C6iH93H0s6exFgVpzb+RflmbfFp243EuFhCNweyeGBHBizfhXOpcjqv6bmd60mMi8WnbXckSeLQ0tkEDu/Jt1tCM7V84OXX6M6F0zqvka2TC00HjeLqkWAOLZuNU8nSdB01AFtbW7Zs2YKnpydz5syhd+/eeHt7s2vXLr799lvu3bvHb7/9BsDy5cvp06cPPj4+9O3bF0iZ7gpw8eJFateujY2NDSNGjMDY2Jh58+ZRr149Dh48SNWqVXXaOmDAABwcHPjpp5+Ii0vpPOnfvz/r1q1j0KBBeHl5ERkZyZEjR7h8+TLe3t6Zel8KgvDuUhO2nnoUb/C11vogazRULWz7ztPvJUnC2dkZZ2dnmjdvnrY9Pj6ef/75R2cWwM6dO4mOTvn+tLe3T7cMwMvL64NNRKzWygSFq5Aw/Br9zJCAoHAVfTztMFZ8WJ1bguGJNfvCRyM5OZlBgwYxb948fvjhB3755RcUCjG5JbcLvhvL6YiEN35hx0Q85I+ujYlXxeDTthsO7iWJiXjAP8Fb6b9kO5f2b2fd2ME4ly6HuXU+vOr78vTBHUJWzKNMgxb4T16IOiEeYzNzJvt5ozQy4ll0FKVrN+HMtjXU7TUEexc3NvzyDY2//J49cydRsnp9es1ezd1LZ5nTrQn2rkV5cvcWpWo15srh3RT3qYNXvebsmTsJEzNz3Cr44D95EbfOHGfe5y0BdNbsH1j8O7tm/YJ9kWJUbd8TSZLYMfNntMlqWgz/HzX9U4LZ4D+nsHf+VBRGRljbF6Je7yHIskxsZAT7Fkyj67QllGngp/P6yLKMJEloNRq0Wg1Gxi9u8OJV0UxvW53StRrTbsxMIGVkf0qLSljky8/wTScwt0kpQXnp4E6Wf92N7jMC8azT5LW/j9S1tKmvUeqN7dyevty5EIpPux60+SGl1JRWo2FKC2/yu7gTdvIISoXE5s2badOmDQqFgj59+vDnnyklrTp06MD69esJCwtLC+pft2b/008/Zfv27Vy+fJlixYoB8ODBA0qVKkXFihU5ePAgkDKy36tXL2rVqsWBAwdQKpVp58iXLx9du3Zl9uzZb3j3CYKQk6ISNcy7FGXoZuhNPy877EyVb98xm2RZJjw8PF0ugBs3bgBgZGSEp6dnuk6AggUL5njbclpm7htyGwmo7GBGQxcrQzdF+MCIkX3hoxATE0OnTp0IDg5m0aJF9O7d29BNEjKprrMlYdFJbyyXs3PWL6giHzFg2S6dRE2Nv/xeZ/qihW1+es9ZmxZ8arVajq1aQIIqBjNrm7T9Iu/8y2eTF1K8ci0uH9pFcmIC5Rq1ZsuUH7h9PhSAKm26IEkSZ7evxcTcgpLV63N8TQAmFpaYWlnT+481KJRKbpw6zL3L5/CfvAiAC8FbMDazQJ3wjHhVNHFRkciyzKkNy5AUSop6V6d21y8BOBL4J6qI/7hyZE9asJ9KaWRCcZ9aVOvQC4AZHWrj5FEmXaAPpD1fhVKJ4nkwq9VqSVBFI2u1FPaswL0r59Md90nj1mmBPkDRitUAeHLv1mt+E7pSX6NUrmW9uX3+FJXbdEnbplAqKexVgXuXz5EsyyiR2L59O0qlklmzZjFgwAA8PT0ZOnQow4YNY926dezYsYNBg15fdlCj0bB7927atGmTFuhDSh1mf39/FixYQExMDDY2L37nX3zxhU6gDynB/okTJ7h//z7Ozs6Zes6CIOiXnakSd2tjvSVsNRQJGXdrk/cS6EPK5767uzvu7u60bt06bbtKpeLChQs6HQAbN25Mm9Hk6OiYrgOgVKlSGBnljZDhTqya0IgEQzcjy2TgVEQCHvlMcbX6MBLvCrlD3vjLFYRsuHPnDi1atODWrVvs2LFDJwGOkPsZKyRavGE6v1ar5dKBHXjWaZphRuaXg02ftt10fi5asRohgX8S9eAOBYyLcWDxTKL/uw/Ayu/6pO2XEJvSGeBVtxnXT6SMCNs6uqDVaDi/exNe9XyxzGcPgE1BJ9Txzwg7foBSNRtiZmWtsxb/8e2bqBNS1hH+NaxHuvZGP3qQtsZelmUs7Qpw6+9jaLVanZkopha6CeQi796ibIMWGb5GLzu9dRVHls8l4lYYmuQXawTtCrul2zefk4vOz6mBf3xM5pZW2DrqHm9mlRJc2xZyfmV7ymuk0QJKCA8Px9nZmS+//JJbt24xbNgwPDw8qFkzZRZEeHj4G68bERHBs2fPKFWqVLrHPD090Wq13LlzhzJlyqRtL1o0fW3sKVOm0KNHD1xdXalUqRK+vr50795dpwNBEISc9yEkbJWRqJQLkrBZW1tTo0YNatSokbZNq9Vy48YNnQ6AVatWMWXKFABMTU0pU6ZMuk4AOzs7Qz2NDGllmW15aPr+qyRgW7iKvl52KESlBUFPRLAvfNDOnDlDixYtMDY25ujRozo390Le4WplTCMXy7Q6uS+Li3pMYqyKQsVLv/U8rwafacGr6ilbpozk9JaVmJhbks+pMH7f/IIkSawc2RdZTkmoV7FFR87vTqnprlAquX7iILGREVT06/BixL91F64dCWbJV52xKeiEsakZ2uflkwBkrRYza1sSVNH4fj0WJ4+y3Dx9lP0LpwMQdnQf4xumfy6JsTE6o+yKdxhlObNtLevGfIVXfV9qdx+IVf4CKJRKDgTMJPLurXT7S4rXjEBlcvWXQpnx8YqMzivLKDNYVTNhwgSuXLlC586d2bVrV6aum1myLKPRpjwXydiUBI0WI0lCKaV0EnXs2JHatWuzceNGdu/ezdSpU5k8eTIbNmzQWS8rCELOSk3Y+jRJA+8tbav+SICtiYJiNrlzxFahUFCyZElKlixJ+/bt07ZHRUVx/vx5nU6AFStWkJiYCICrq2u6DoASJUoYbInkjZgkniZpDXJtfZCBp0labsaoKWH7YeZTEN4/EewLH6ygoCA6d+6Ml5cXW7ZswdHR0dBNErKhsoM5iRqZww/ePbvu64JPZPgneCveLTpx49QR8jm6UrJaPdSJCSSoXoxie1RvgKmlNYlxKgDObF+HdYGClKhaNy3Yt7Sz56tV+wk7up+rR/dyJmgNyUmJrPlpIB1//gN7F/e02QGFPStQrHJN4p4+AaD50LE4lyqbdr1Vo77EztmVpgN/wMT8lVJwr/T627u489+Ny298/v/s3Up+F3e6TluiM8Mh+M/JbzzufTF63iY3NzeCg4NRqVRYW1sTGBhIrVq1aNeuXdrjqTJKdOXg4ICFhQVXr15N2ybLMk8SNRw9exGFQsHRRGt2nI/kxJ2UGt6rbsRwxDTl92CkAEdzI5wsjHC0sKNT7758+eWXRERE4O3tzf/+9z8R7AvCeyQBTw9vRvbxy5O15WWghZt1nhuttbOzo27dutStWzdtW3JyMteuXdPpAAgICODBgwcAWFhYUK5cubTgv0KFCpQrVw5ra+scb+/piIQ8O6qfSgJOR8SLYF/QGxHsCx+k2bNnM2TIEFq1akVgYCAWFhaGbpKgBzUKpUyBfDngt7QrgKmVNf/duJKtc0tKZboR62OrFqLVaNJ+ViiVFClXibDjB0iIU3HpwHaqfNotXSeCkbEJnnWb4lm3KUnxcZzbsYEzQWto0GcY5Zq05vjaxTr753dxB8DE3ILCXhUwt7YFwNjUDMt89pSoWpe3KdOgBfsWTOPivm2vTdAnPR9tSf0Z4PaF09w+H5pu1oMhpCYh9vX1Zf78+cyePZuRI0diZWXFli1b8PDwAKBBgwZpx1haWvL0qW7JQqVSSZMmTdi8eTPnrt4g0sqRc5EJPH70H5vXrcKtQlUiJQt4zQBQshZuxyRy4+ETTJ/ncjBVSpS3t6SQk1PaqJYgCDnv0aNHNGnShHPnzvHp95Px6dArXWdnbpaaeM3lA1mHbWRkhJeXF15eXnz22YsSghERETodAMePHycgIIDk5zPbihcvnm4WgJubm946b6ISNXl+qQekdFT8q1ITlah5b/kdhA+bCPaFD4pGo2H48OHMmDGDb775hilTpqRLuiXkXZIkUdPRAlOlRPDdOCRSph961WvO2e3ruHvpbLp1+5ktOFK6dmPObF+LsZk5Tx/eZd2Yr7h+8hAW+fLr7FekfBXCjh/gwKIZJD2Lo6Jve53Hn0VHYWlnr9NmSSGBBjTqJIpVqknpOk25cmgXO37/mfJNP0WhVGJmZcPWKSMxsbDE26+jzjljox5jZVfgje2v02Mg/+zdyorvPn9eeq888TFRXDq4i09HTcXJoyylazfh4r5t/DWsB6VrNebJ/XBOrFtKwWKlSHyWfonE+yRJUtpNX8uWLalfvz6jRo3i1q1blC9fnt27d5OYmIhSqWTSpEksXboUSZKoVKkSwcHBTJ8+HWdnZ4oWLUoVHx+++O4nduzeQ506taneoReS0oiTG5ahSUqi2ZAxb21P4rNYJjX7hLKNWuJUsiwmFpYsOXGQ86GhdB05nrDoRIrbmOS5kTpByEuWLVvGF198QVJSEo0bNybghwGsvP3mhK25iQTYmCio42z51n3zOgcHBxo1aqSTFykpKYnLly/rdALMmjWLx48fA2Bra8snn3yi0wFQtmxZzM2zntvgzOO8P6qfSgLOPk6gfuEP/30j5DwR7AsfjLi4OLp27cqWLVuYPXs2AwcONHSThBxS2cGcQuZGBIWriEnS0nTQaK4fP8D8Pq3xaduNgkU9iHn8H/8Eb6FfQFCmztny2wkoFEr+3rqaRzevYePgyOdz1xMwUDfwtnNyBeDGyUMULOpBYc/yOo9v+/VHkuLjKFalNraFnLh/5QIatRqnUmVxKJoyMl2765dcObSLhJhodv8xAYVSiYWtPUnxceyaNZ4nd25hU9CJeFU0t8+fYv3YIfSYGQiAyWv6rkwtrOi3aCvBf07m4v7t/B20Gqv8BSjuUxubgikJ8Sq1+ozYyEecWL+MsGP7KVjMg07j53AheAs3Q49m+vXXNwndVbgKhYItW7bw008/sXr1ahYvXoy7uztTp06lcOHC+Pv74+npyciRI5k+fTp9+/Zl9OjRxMfH096/Gw1/KMlTU1f6LtzCzlnj2b94JrJWxrWsNx1/mUORcpXe2iZjM3OqdehN2PH9XNy3DVmrxd61KK1HTqFsh16sv6kin4kCPzdrkTlZEPQsJiaGdu3aERwcjImJCUuXLqV79+4AtHBTvzZha26TOn3/Y62dbmJikhbEp5JlmQcPHuh0AOzdu5c5c+akJaL18PBINwvA2dn5tbMAZFnmXGTWS+2llokdEXQaO+ci2Xim+iUDZyMTqOdskSeXrQi5iyRndthLEHKxhw8f0rJlSy5fvszq1avx80tffkz48Ki1MgfvxxEakUD0g7vsmjuRayH7SIxTYVPQCY8aDfAb9gvndqxn3U4Xw8gAACAASURBVNjBDPxrj87I/83QEBb0baNT736ynzeFipem5+8rXnvdQ0tns2PmOJoOGkW93kN1Hvtn71ZOrl/Gg2sXiVdFY21fEI+aDWnU71usCxR67XUB7l+9wL4Fv/Lv38dIehaHlX1BXMt6U7VdD4r71EaSZU4t+ZX1syYzeu8VnRkEeV0rN2u88ptmat+xY8cybtw41q9fT9u2bQHd98L7Gt1JvU5lBzPqOlt+tDf0gqBPu3btokOHDqhUKj755BN27dqVLudOaER8hglbc5tGLpZUzgUZ+POC+Ph4Ll68qNMJcO7cOaKjUzp27O3t03UAeHp6YmpqSmRCMgsuP33LFdLLyWB//6LfKFisFGXq+77zOfp62pHfTMxOFbJHBPtCnnfx4kV8fX1JTk4mKCiIihUrGrpJwnt2J1bNtnAVT5O07yXQC1kxj22//siIoL/TlafLacF//I9GA0e912u+D1m5qdFqtXz22WcEBQVx+PBhHDzKpc3yMMQXWupU3RZilF8Q3llCQgJ9+vQhMDAQhULBuHHjGDVq1GtHNkMePstWwtacVtvJgpqOIl9QdsiyzO3bt9MC/7Nnz3Lu3Dlu3LgBpOQP8PT0pE6nXrj4dsvy+XMy2B9T042yjVrSYdzsdz5HVjrBBeF1xDR+IU8LDg6mXbt2uLu7s23bNlxcDJ9kTHj/XK2M6etlx80YNacj4vlXpc6xoF+WZUI3raBopRrvPdAHqFemGOr4OIxfzc6fhyk0yVigBjIX7CsUCpYsWULdunUZPX8Fdfp9h4RksLWaMhCTpCUwLFqM5AnCOwgNDcXPz49Hjx7h4uLC7t278fT0fOMxGSVszS3qOFlQvZD4HMguSZJwc3PDzc2NVq1apW1XqVRcuHAhrRMgwcQKjVqN0vjD6WxVSPAwPhkvRLAvZI8Y2RfyrICAAPr160ejRo1Ys2bNeynrIuQNUYkazjyO5+SjBL2dMyk+jksHd3Hz1BFObVxOt9+W41W3md7OnxmmSomh5fKz//4zTj2K/yASEWmSkzkSOJeQgN/o3Lkz3bp1o2bNmm+t0yzLMruuP+JsbO6b4ljbyYIahczFWktBeAuNRsN3333H9OnTkWWZvn37Mnv2bIwzGbRpZZldd2I5F2n4ChmpHcyiw+/9++vaU+7GJWf5uIxG9o+tCeD4mgAi7/yLha0dZer70mTQqLQqOQCPb99g5++/EH7uJAmqGCzy5ce9QlU+HfUrZtY2jPR2SHct75adsjzK72JpRFePfFl+XoLwMjGyL+Q5Wq2W0aNHM3HiRPr378+sWbMwMhJvZeEFO1MlDQpbIctwKkI/AX9cVCSrf+iHmbUt9XoPfe+BvgRUsDdDkiQqFjDj5KP493r9nKJUKvn34Hbi4+NZs2YNCxYswM3NjS5dutCtWzdKly6d4XFH/4vPlYE+vBhpFFN4BeH1wsLC8PX15fr169ja2rJp0ybq1auX6eNfXr6VG4ilPIYhyzIP47Me6Gck+M8p7J0/lRJV61K1fU8eh1/nxLol3L10lv4B21AaG5OsTiJgYCc0SYnU6NQHqwIFiXn0kCuHdxOvisbM2oaOv8xhwy9f41KmIj5tUxJLppbYzYqH8ck6pXIF4V2ICEnIUxISEujZsydr1qxh2rRpfPPNN+JDUHgtbwdzvQX7ds5FmPh3hF7O9S5koEIBs5S2mCpxtzYmXKXO06P7slaDk4lM6OH9jB8/nunTp1O4cGFKly7NH3/8wYQJE6hUqRJdu3bls88+o1ChlASHoY/ic+XU3ZcdfvAMU6UkRvgE4RWyLDN9+nS+++47NBoNvr6+rFq1KtOz815NxmlIWk0yCqWSKg7m1BFJOg1CI0OyHvp7YqMec2DxTEpWq0fP2avTZpc5uJdky+TvObN9LZVb+/Po5lWi7oXjP2UR5Rq9WFrQsO/wtP9X9OvApgnDye/iRkW/Du/cpmQtaGVQireVkA1vnicpCLnI48ePadSoEZs3b2bt2rUMGzZMBPrCG9mZKom8eg6tRj+9/oYiAUWtjbEzfTGSXcnBLE8H+gCSQsm0wb359ttvGThwIOfPn8fT05Ndu3ZRu3Zt5syZg6urKyNGjKBw4cI0b96cgA3bCL6X+7NwAwTfjeNOrNrQzRCEXOPBgwdUrVqV4cOHY2RkRGBgINu2bct0oH8nVs3Cy1Gcft6Ja7A8HdqU6NIMDV1K5qOhi5UI9A0kWU+rka+fOIRGnUTNLv10lpFVadsNUytrrh7ZA4CZlQ0AYcf2kxSf853O+np+wsdLBPtCnhAWFkb16tW5du0a+/fvp127doZukpAH7Nmzh6C5U1Ao8/YkJhmo9MoIcXEbE/KZKAw+svWuJMDGWKJrs3qsXbuWEiVKMGvWLAICAlizZg1nzpzhm2++oVKlSty6dYs//viDuIRErpg45pnOGwkICleh1oqbNUEIDAykWLFinDp1Cm9vb/7991/8/f0zfXxoRDyBYdEGq7qRRpZBkjB6EMbQSs5i2r6BafW0iuPpgzsAOLiV0NluZGxC/sJuRD24C0D+wm7U6volpzb+xfiGpQkY0IFjqxeRoIrRT0Neockdq1SEPEwE+0Kud/jwYapVq4aRkREnTpygWrVqhm6SkAdotVpGjhyJXXJcng+K85koKGaje0OpkCT83Kzz7Oi+DLRyt+H770bw77//MnbsWFauXEnJkiU5fPgw+/fvZ/DgwYwbN446depQpEgRflq+hfyFi+SZzpvULP2H7ueNmQiCkBOePn2Kr68vXbt2JSkpiYkTJxIaGoqTk1OmjpdlmZCHzwi+m/J3ZPDPPElCkiSSnUpy7L94RJ5rw3pLLtcc4ffNzwxZfZB6vYegTvw/e+cdFcXZxeFnlw7SRUBRFLGAFUVjr1gBOzZQo/HTaCwpGrH32KIp9hIb2KJGI6ixxd5AYq9gV0BQinSW3fn+QFZXUEGBZXGeczgHZt+ZubNsmd/73vu7qQQsmMAvXk2Ifxae7+fSEpWayCcivoREijSbN2/Gzc2NWrVqcebMGSpUqKDukEQ0hJ07dxISEsLcOT9pvCj2sDdGmkPJStkSOrha6WvcRIYEqGelj92rFTFjY2PGjx/PgwcPmDRpEn5+ftSsWZP09HSOHDmCvb09wyfOIDgq5dXemoNApkmkmM4v8jly4MABypcvz/79+7G3t+fq1av4+vrmqQTvzLOi69FxMiKZM8+Kh1mqpqKdT+WcZrZlAYh+GKayPUOWTuzTR5i/1WrXppIzrQb/wNA/Ahj6RwAvoyI4v2P96wH5FFd+XZ/I54so9kWKJIIgMGvWLLy9venTpw///PMP5ubm6g5LREOQyWRMnDiRDh060KxZs2IjinOieWkjTDQoc0FCpmt1s9JG2R4zMTFh0qRJPHjwAF9fX9atW0f79u2pVbs2w5ZuUdbJahoSYO/DBBTiCqDIZ0JycjJffvkl7du3Jz4+nuHDh3Pnzh2cnZ3zdBxNMeO8EC0KfnWhJQHtfFAzjl80Q0tHlzNbVqtka1zYvYnUxJdUadIGgNTEBOQZqqVkNo7OSKRSMtLTldt0DQw/ObVfWwqiFYTIp6IZuZAihYYgCJnOpoKAQpGZHqUtkaAlodDM8NLT0xk6dCjr169nxowZTJo0STTiE8kT69evJzQ0lD///FO5rXlpI0Lj09Vf75lL3ieK30RHKsHD3phNofGFE9gnkpWp8D4zK1NTU6ZOncro0aP55ZdfCDh/mZ4+JTR2dloA4tIV3Hspw9FUV93hiIgUKEFBQXTp0oWIiAjMzc3566+/8tRSL4vHiTKNMuO0NtAW6/fVgEQiwcZAmydJn+blUsK8JC0GjubIqgWs+6YnTs3bE/0wjPPb12FXzQWXjpmu+neDT7Jnni813DpR0r4iCnkGF/duRyrVonprD+XxyjjVIuz8cU76L8fEygbz0uUoV6NunmKyMdAW739FPhmJIBYbfbYIgkBMmpzI5AwikzOISM4gMiUjxxYm2tLMDx1bQ21sXv1Y6Gnl+4dQXFwc3bt359SpU6xduxZvb+98Pb5I8SclJQVHR0eaN2/O5s2bVR57nCjTGFEM4F3JNNc3jxeiU5Q1rUUZNzujPLej87v5nCfJCiTqKM7MJyRAeWMdejmaqjsUEZECQSaTMWnSJBYsWIAgCHTq1ImNGzdiapr317xMIbDmZqzGTc4OdjIXXfnVwJEniYREp5LX3K+QPVvYMW0UPwaGYF66HABnt/3B2W1/EPPkAQamZlRr5UG7ERMxMM58Hcc8fcjRNYu4F3KGl9GR6OgbYFupGi2/+g7HL5opjx39IIxds77nyY1LyFJTqOPZC6/pS3Idm1QCrlYGtCrz/gl/EZEPIYr9z5DYNDkXn6dy+UUqafLMf78UcvUh+eY4PS0JtSz1cSmpr9IS7GO5f/8+7u7uPHv2jF27dtGsWbMP7yQi8hbz589n4sSJ3Lp1i4oVK2Z7vDiL4tORyUU65fXfVQuQ37lAy5YtadWqFfXq1UNH5/2TGbFpclbeiC2kCAueoc7m+fJ5KSJSlLh16xadO3fmzp076Onp8ccff3zSZP3hV+JNk25QJYCrlT6t7UqoO5TPjusxqQQ8TFR3GPlOJ3tjnC301B2GiIajucskInlCIQiExqexNSyelTdiCY5KUQp9yJ3Qf3tcmlwgOCqFlTdi2RoWT2h82kfXpAYFBdGgQQPS09M5e/asKPRFPorY2FjmzJnDkCFDchT6kDlT3tTWsJAjyxtNbQ3zLPQBGlkX3WtzJI52lawxNDRkwYIFNG7cGHNzc9q3b8+8efMICgoiIyN7GubF56ka40fwISTApeep6g5DRCTfUCgULFy4kOrVq3Pnzh1cXV0JCwv7JKH/OFHGBQ0T+iCacaoTG8PiWZVcXK9LpHARV/Y/Ax4nytj7MIG4dAUSCqZtTdZxzXSluNsb56lubdeuXXh7e+Pi4sLu3buxsrIqgAhFPgcmTJjAb7/9RlhY2HvbOgmCUGQdnpvZGtLQ2uCTSmSyshcK6v2eW7LO/3aWQkZGBhcvXuTo0aMcPXqUkydPkpSUhImJCU2bNqVVq1a0bNmSmjVr8vv1OJWJSU1HT0vCtzUsxDpMEY3n8ePHeHl5cf78eaRSKT/99BNjx45F+gnlNgpBYNWNWOI1JH3/bSSAqa6UIc7mOXZQESkYBEHg16sx4neFiEgOiGK/GCNTCBwPT+JCdGqh3fRnncfVSp/mpY3eW7smCAKLFi1i7NixeHl5sWHDBvT19QshSpHiSEREBBUrVuS7775j9uzZudonKDKJI+HJCAoFUi31pVa/SxR/Co8TZQQ+TFBbzWtWDatHLib/ZDIZwcHBSvF/+vRpUlNTqVijDoM3HCiwGNNTkjmxYQkOro1xcG1cYOd5myFO5ljoi6n8IpqJIAj4+/szZMgQUlNTKV++PHv27KFGjRqffOzQ+DR23kvIhyjVSw8HE9GMs5D592kSwVEpGjlJ9DYSoH4pA1qK9foi+YCYxl9MeZwoY83NWEKiM1NGC+vDL+s8IdGprLkZ+850toyMDL755hvGjBmDr68vW7ZsEYW+yCcxc+ZM9PX1GTt2bK732bt8Pmv+1xkDiUJtqeJZoti7kmm+CX2AsiV0GOxkTl2rV++rQprXzXoeXa30GexknqssHx0dHRo1asTEiRM5fPgwcXFxHD9+nAGjfijQWGWpKRxZtYB7F04X6HneJjL501yjRUTUxYsXL/Dw8KB///6kpqbyzTffcPPmzXwR+pB576Dp65gSIERsxVfouJTULxZCHzLvpWuXFO+JRfIHUewXQy5Ep7ApNF6tLrYC8DJdwabQ+Gz9ZxMSEujUqROrVq1i9erV/PTTT5+U9iciEhYWxurVqxk/fjxmZma52uf48ePMmjWLL7t0YISLjVIUF9aN5seI4ryiI5XgZlcCb0cTEqMjVM6b32Qd1/TVxEVruxIf7Uqtp6dHs2bNaNS+k0Z+SaWnvNsAUiqByBRR7ItoHvv27cPR0ZH9+/djbm7OkSNHWLJkSb5N1MemyXmQINN4wSYA9xNkxKbJ1R3KZ4W5nhbljXWKxWRRBWMd0chVJN8Q0/iLEUW5DrmprSGNrA14+vQpHh4e3L9/nx07dtCmTRt1hyZSDOjTpw8nT54kNDQUA4MPr47HxMRQq1YtHBwc+Pfff9F6lcJf1P0tPpa//vqLHl5e/HUiiDRrR+4nyPLt+rKOU8FYh7pWBjiY6ORLreq0adOYPn063+86x7+rfubmyQNoa+tSv8cA2gzzJf5ZOHvm+XLvwil09A1o1n8ETfsNV+6fGBPNgcWzuHXyEKmJLylp70gTn6+p69kbgNjwR8z3yN7zuPWQsbh9/SMAd4NOcnjFPJ7euoqWtjYV6jai/cjJlHKorBx/eMV8jqxawLc7TnF0zSJunz6CeemyjNpylITnzziweBah54+TFPsCQ1Mz7KrV4X9T5vFdq5qf/ByJFC8EQUAuQIYgoFCAVAraEglaEtRat5uYmMiIESPYsGEDAJ06dWL9+vWYm5vn63nENGyRT0UsAxERyY5o81iMKKpCH+BkRDKRERGM8miGtrY2p0+fpnr16uoOS6QYcPHiRbZu3crq1atzJfQFQWDw4MEkJSXh7++vFPqQmfo+xNmcey9lhESnFIgoLp/PovhDKBQKpk6dSquWLenSOFPcxqbJufQ8lUtvtt+UgCIXF/rmOD0tCbUt9amdT+033yRrHnqL72BKVahM+5GTuXXyEEfXLMLQxJygvzbgUK8p7UdN4dL+Hez7ZSp2zrWpULcRstQUVv+vCy8e36dBr6+wKFOOq4f2sGPqSFIT4mncdyhG5pZ0mbCA3T+NpVpLd6q1cgfAppIzAGHnj7NuZG8sytjjNnQssrRUzm5dw4pB7ozcfETZkzmLzT9+RclyDrQbMVEZ+6axA3l29zYNew/GvHRZkmKeE3ruOKEPHiAINUTjpc8YQRCISZMTmZxBZHIGEckZRKZkkJFDaxxtKdgYaGNrqI3Nqx8LPa1Cef2cOXMGLy8vIiIi0NfXZ/Xq1Xh7e+f7uQVB4PKL/HXgn+deBwfXRsre5vcunGb1kC78b9XuAvfoEIBLL1JpUdpQfJ8XIhVNdDHTlWq8waODScEvAoh8Pohiv5hwIaroCv0sQjGlifdQfv3uf+91ShcRyQsTJkygcuXKfPnll7kav3LlSnbt2sVff/1F2bJlsz0ulUhwNNXF0VRXI0Txh9i+fTvXrl1j5cqVym3melq0LGNEi9KGxKYpMgVHSgbhSbIPCo7SRjrYGGQKDnM9aYHdyGY9xWWr1aHrpIUA1O/Wn/keddj3yxTajZxE8y9HAVCrfTfmtKvBhT2bqVC3EUF/bSTq/h16zlqOS8ceAHzR/UtW/a8zB5fNwbWzN3pGJaje2pPdP43FppIzLu5eKuff9+s0DE3MGbZ+P4ammSuYzi06sLhvKw6tmEfPGUtVxttWrkbvn14/xykJ8Ty8HEyHb6fRrP83yu0tBn0LZL42tEQN8NkRmybn4vNULr/5mcL7299mKOBJUgbhSRnKcXpaEmpZ6uNSQJ8p6enpTJw4kYULFyIIAvXq1WP79u3Y29vn+7kAYtLkanFSv7R/J4kx0TTx/jrfj50mF4hNU4hmnIWIVCLB3d6YTaHx6g7loxAAD3tjsZODSL4iiv1iwONEGYefvrtGtCjh0mc4Gcam6g5DpJhw7Ngx/vnnH7Zv34629oc/zq5fv853333HsGHD6Nq16wfHa4Iofh9yuZxp06bRvn17GjVqlO1xiUSChb4WFvpaOKMHZK6wKV6lEssVoPUqlVhayKnEWRMlrl19lNukWlqUca5N/LNwXDu/7uNtYGxKSfuKxDx5CMDtU4cxLlmKWu27Kcdo6ejQqM//2Dp+CPdCzuDUrO07z/0yOpKI29doNmCkUuhDpqB3/KI5d04dybbPF90HqPyto6ePlo4u9y6cpl4XbwxMVL0kMgQBLY2vLhXJDQpB4O7LdEKiU3mQQ7bQ+4S+ynHe+D1NLhAclUJQVMqrbCF9Kpro5otIuHr1Kl5eXty+fRupVMrs2bP58ccfVbKg8pvCMK0sX6chM84+RkvndXr0pf07eXb3VoGIfci8LlHsFy5lS+jgaqVPSHT+ZooUNBIyPXzsCqG0T+TzQhT7Go5MIRD4MEHt/bRziwQIfJjAYCfzjzbvEhGBTFE6fvx46tatS/fu3T84PiUlhd69e1OxYkUWLlyYp3MVZVH8PrZs2cKtW7fYuHFjrveRvKoR1kICarxHzXKTMbMpo7Jdv4Qx2nr6GJlbvrXdhOT4WADiIp9gWdYhm/FnqQqVMh+PePzec8dFPAHAyr5itsdKVahM6NmjpKckoWvwuh7XvIzqiqe2rh7tR01m3y9Tme3mTNkadanatC11PHpiXNIauQK1Pr8ihcPbPiCQf9/VWcd5mCDjQYLsk31A5HI5CxcuZMKECSgUCipUqMDOnTtxcXHJp4jfTWRyxgczHD4VqVSKVK/gHc7lGRkIggJdXV0iUzKU3xkihUfz0kaExqer1ag6L2R15WlWWvR4EMl/NNHoWOQNjocnacyHGbx26T8RrhmZCCJFlz179nDu3Dnmzp2bK3E9duxYwsLC2Lp1a65q+z+ERCJBSypBT0uKoY4UPS0pWlJJkRH6GRkZTJ8+HU9PT+rVq6fucPJM1tMolWZXxO/s3qFGv1mdHEREE++v+WHXOdqNnIS2nj6Hls9lUffGhN+6QmDAHlJTU9UQqUhhIFMIHH6SyKbQeOLTMyVsQb06s44b/6oDzuEnichyU2v0Bvfv36dx48aMGzcOuVzOsGHDuH79er4L/YcPHzJ8+HCqVKmCgYEBlpaWeHl5ceXOPRWhf3jFfMbXscq2f8ieLYyvY0Vs+CPlNkEQ+HfNQua0r8mURuVYPaQLz+7eyrbvvQunGV/HStlqc9X/OnP71CHiIh4zvo4V4+tYMc+9jnJ8Ykw0O6ePZrabM5Mb2PFbrxaEBGxVOWZs+CPG17HixMalnNq0ggWd6jG5QRmi7t1GIcD6FUupVq0ahoaGmJub4+rqyubNmz/xWRT5EDpSCR72xhp1b+xhbywugokUCOLKvgbzOFHGhWjNu1kUgODoVCqb6RWKE7lI8UMulzNhwgTc3Nxwc3P74Pi///6bpUuXsnTp0s/GGNLf35+wsDD+/PNPdYfyUXzKPY+ZjR2RYTdQKBQqEwPR90MzH7d95dXwjokZM1u7zPEP72Z7LPpBKEZmliqr+u/DsmwFmvYbTtN+w3n+6C6/927FSb/lLDv0N8YljPDy8sLHx4cmTZqILUiLCY8TZQQ+TOBlAYv8t8k6T0h0KqHx6XjkYpVfEATWrVvHN998Q3p6OhYWFmzevJl27doVSIzBwcGcOXOG3r17Y2dnx4MHD1i+fDlHTp/n2x2n0DUwzPMxDy2fy9E1i6jSxI0qjd0Iv3WFtcO9kMtk792v5VffkZr4kpfPInD/YSYAuoaZ7+vcmHy+ScieLWSkp1G/Wz+0dHRfmYj6sWvWOHr06MHo0aNJTU3lypUrnD9/nr59++b5OkXyRtkSOrjZGXH4SdFfXHKzMxLvh0UKDFHsaygKQWCvBqXvv40E2PswgSHO5qIRiUie8fPz48aNG6xfv/6DY588ecKgQYPo3Lkzw4YNK/jgigAymYwZM2bQrVu3QknBLQg+5VOhShM3Qs8d48rB3dR+Vbcvz8jgzLY16Boa4VA3079AVz8zwyMlQdXMycTKBtsq1fkvcCstBo3G4JXPSGTYTULPHaP2K9O/95GekoxEKlVZ8bewq4CekRHy9FT8/f0IDgpi586drF69Gnt7e7y9vfHx8cHJyekTrl5EnVyITuHwkyS1fjdnZdBtCo3Hzc4IV6ucM5mePXvGoEGD2LdvHwCenp6sW7cOS0vLHMfnB+7u7vToofr+6eDuQdPGjbh2JJA6Hj3zdLzE2Oec2LCEKk3aMOC3TcrMqgNLZnNs7a/v3bdSgxac3ryKlJfx2Qw6c2vymUV8VDhj/g6ihHlJ5bbbpw5hXbEqW7f9iZa4YqsWXK0MSJMLRdrAuqmt4TvfoyIi+YEo9jWUuy/TiUsvyOq2gkUA4tIV3HspE3uJiuSJ1NRUpk6dSo8ePT6Yni6Xy+nXrx8GBgb88ccfRSbFvqBZv349Dx48YM+ePeoO5aP5lP9V/W79Cdq5kR1TRxJ+8zJmtmW5diSAh5eC8BgzS3mTrqNvQCmHKlw9tJuS9hUxNDXHumJVbByd6PjtNNaN7M3yAR1w7eKtbL2nX8IEt6E/fjCG54/usubr7tRs05lSDpWRamlz/eg+El9EY125On169wbAzMyMqlWrIpPJWLRoET/99BNVqlTB29ubwYMHi51LNARBEFTa36p7Ej7r/IefJJEmF2hkbaDyntq9ezcDBw7k5cuX6Ovrs3z5cgYMGFDgn5FvllDJZDJevnxJ+YoV0Tc2JfzWlTyL/bDzJ5DL0mnUe7BK7I29h35Q7L+PvJp8Vm/loSL0AfSNTYh/Fs65oCAaN/jio2MR+TQaWWe+5oqi4G9ma0hDa1HoixQsotjXUEKiUzV2VT8LCRASnSKKfZE8sWLFCp4+fcqsWbM+OHbu3LkcP36cf//9t0BXq4oSaWlpzJw5k549exaLkoWPSWzX0Tfgf6t388/vM/kvYBupSQlY2TvSY9rv1O3UR2Vst8m/EDB/PHsXTkYuS6f1kLHYODrh+EVzBi7exuGV8zi8Yh5SbW0c6jSi/agpWLxlxpcTptZlqNWuK3eDTnJx759ItbSxKl8J7/lr8O7elfn/60lYWJjKT3JyMhEREdy+fZspU6YwZcoUjI2NcXJyomnTpjg7O+Po6IijoyO2trafzeSVJvCm0C9qZMXV2MaQ+Ph4Ro4ciZ+fHwCurq5s27YNBweH9FDmygAAIABJREFUQoklJSWFOXPmsG7dOp4+fYrwhs9GauLLPB8vy2yzZDnV+EuYl8zWASNPx82jyefbBp0AzQeMIuz8CZo0bICjoyNt27alb9++NG7c+KPjEsk7EomExjaG6GlJ1J51AyjP/76sGxGR/EQU+xpIbJqcBwnvr0XTBATgfoKM2DR5ofceF9FMXr58yezZsxk4cCBVqlR579izZ88ydepUJk6cSIsWLQonwCLAH3/8wdOnT5k2bZq6Q/kkpk2bhtcoXwIeJqps95q+BK/pS7KNH7L6b5W/S1hY0WPa7x88j32teozYdDjHxxy/aIbjF83eu7/b1z/i9nX2lX4jMws6+87L+ZxmRjg7uORYYpGUlMS9e/e4ePEif//9N2fOnCEoKIjg4GAVYWRoaEjFihWV4v/NHzs7O7H+vxC5EFV0hX4WJyOSeXwvjB+8OhAZGYlUKmX69On4+vrmqm1pfjFy5EjWrVvHt99+S8OGDTE1NUWmEPDq3QdBeCNb8R0TWQqFvJAizRs5GXSWcqjMD7vO4vDwDEcOHmTnzp0sW7aMKVOmMH36dDVE+XnjamWAtYG20k9DHYI/y3U/N34aIiL5hSj2NZCLzzV/VT8LCXDpeSoty4jtRkQ+zKJFi0hMTGTq1KnvHRcfH0/fvn2pX7/+B8cWJ1JSUpg9ezZ9+/alatWq6g7nk7ExLJ5fUZY67y7BMjIyokaNGtSoUYP+/fsDmU7pmzZtYuPGjYSGhmJubk7NmjUpVaoUcXFx7Ny5kwcPHqBQZB5XT08PBweHHCcCypUrV6jirrjzOFHG4adF3wAM4L6eDXrW5bDX02Pbtm1q6dKxY8cOBgwYoNL+NDE5hdS3fDMMTDJ9MlIS4pWeGfC6LWYWWWabzx/dw8Ku/Otjxj4n5WXcB+N5V3ZMrk0+P4CugRF9evXGp08f0tPT6datG7Nnz2b8+PHo6xd8G0ARVcqW0GGwkznHw5O4UIgZslnncbXSp1lpI9F1X6RQEaf+izDTpk1DIpHw/Plz5TZBELj8IrVYCH3I/PC79CJVZcVKRCQnoqKiWLhwISNHjsTOzu6d4wRBYOjQocTExLB58+bPStisWrWKZ8+eMWXKFHWHki9Y6Gmhp1W8bopSEuKpXNaWXr164efnx4sXLz64T4UKFZg0aRK3b98mODiYfv36cePGDbZv387Tp08ZPHgwt27d4s6dO+zbt4/58+fj5uZGRkYGgYGBjB49mnbt2lGxYkUMDAyoXLkyHTt2ZNSoUfz+++/s27eP0NBQ0tPTC+EZKD7IFAKBr4xyNQGFoGDgLxv57/IVtbXj1NLSyvZ9v2zJYhRy1RV7y1fC/f5/Z5Xb0lOS+C9gm8o4xy+aoaWtw5mta1SOe3rTylzFo2tgmGP5QJUmbiQ8j+LKwd3KbTmZfL6PpLgYtKWvO4vo6uri7OyMIAjIPtApQKTg0JFKcLMrgXclU0x1M2VQQb2Hs45rqivFu5Ipre1KiEJfpND5fO6CiwkxaXLS5OoXxrdOHeLJtYs5pq/mlTS5QGyaAgt9MZVf5N3Mnj0bLS0tfH193ztu/fr1bNu2ja1bt1K+fPnCCa4IkJyczJw5c+jfvz+VKlVSdzj5gkQioZalPsFRKcViglMCOBlLGPPDDwQEBNC/f3+kUikNGzbE09MTDw8PnJ2d37naKJFIcHV1xdXVlZ9//pnDhw/j5+fHzJkzmTBhAs2bN8fHx4f+/ftjZva6XjkjI4NHjx4pvQHu3r1LWFgYR44cYdWqVaSlpQGZQqxcuXI5ZgQ4ODiIK5FvcTw8SW3pwB+DlpY22ibmhMRDa2P1xODh4YGfnx+mpqY4Oztz9uxZDh8+TAkzC5VxlRq0xMzGjr+mf0t0/2+Qamlx4e/NGJlbEhf5enW/hHlJmvYbzrF1v7FhdN/M1nu3r3Ln9BGMzD7s01LGqRZXDu4mcOFk7Kq5oGdghFPzdrk2+Xwfa4d7YWVtTXrbFlhbW3Pz5k2WLFmCu7s7xsZq+geIKClbQochzubceykjJDqF+wmyfFvpzzpOeWMd6loZ4GCiI3aeElEbotjXMCKTM9QdApDpVHvuz7X5IvYh87pEsS/yLrJ6MU+bNg0LC4t3jrt9+zYjRoxg0KBB9OrVqxAjVD/Lli3jxYsXTJ48Wd2h5CsuJfUJikpRdxj5ggC0c7ant8tkJk+eTGRkJHv37iUgIIAZM2bg6+tLhQoV8PDwwNPTk+bNm6Orm7OBqY6ODh06dKBDhw4kJCSwa9cu/P39GTp0KCNGjMDDw4N+/frRoUMHdHV1cXBwwMHBgbZt26ocR6FQ8PTpUxWjwNDQUE6dOsX69etJScl87iUSCXZ2djlOBFSsWBEjo8+rFOtxoowL0anqDiPPCEBwdCqVzfTUUjP822+/IZVK8fPzIzk5GRsbG2xtbXlxOxRB8bq8RUtHB5+F6/l7zjgOLZ+LsWUpGvcdioGJKTumjVI5ZptvJqCtp8/5Heu5d+E0ZavXYdCy7awf9eFe9g16DiT8zjVC9mzh9KYVmNmWxal5uzyZfL7z2D0GEHboL2X5mZ2dHaNGjWLSpEl5e9JECgypRIKjqS6OprrEpsm59DyVSy9SlYtqUgkocqH+3xynpyWhtqU+tUvqi35UIkUCiSDmTxdZpk2bxvTp04mOjqZkycyWLkeeJBISnYq6m+79PXcc5/5cy5z/oj/5WFJJpnFKK7FuX+QdDBgwgAMHDnD37t13ioq0tDQaNmxIcnIyISEhn5X4SEhIwMHBgW7durFyZe7SVzWJrWHxPEyQacwKak5IyFzl6eVomuPjqampHD16lMDAQAICAnj8+DHGxsa0bdsWT09POnbsiJWV1QfPEx4ezpYtW/D39+fSpUtYWFjQq1cvfHx8aNiwYZ4c/AVBICIiQiUb4M0JgYSEBOVYW1vbHCcCHB0dMTExyfU5NQGFILDqRizxGrSq/yYSMtOKhzibF8pqY1xcHMHBwQQFBSl/IiMjAShbtiz169enXqfeCDVaFHgshU0ne2OcLfTUHYZIHhCEzGzTyOQMIlMyCE+SEZmSQUYON97aUrAx0Ka0kQ42BtrYGGpjricVO6WIFClEsV+EyRL7oaGhzJo1i927d5MuV+Dc0p1OvvPQNTAEMuvIjq37jf8CthL/LBzjktbUbt+N1kPHoq37+ktmfB0rWg8Zm201fp57HRxcGykdruUyGUfX/sqlfduJfxaOjoEhpSpUovWQsVRq0ILtU0dkq5sDlMI/PSWJQ8vncfXQ3yTGPMe8dFnqde1H037DVT4Ax9exokHPQTh+0ZyjK+YQ/fAejo6OLFy4kPbt2+f78ymimVy7do2aNWuyZMkShg8f/s5x33//PUuXLuXcuXM5upwXZ+bMmcO0adMIDQ2lXLly6g4n37kSEce+yKKR1fQp9HAwyVWrUUEQuHr1KgEBAQQEBBAUFARAgwYNlKv+1atX/+AN5bVr1/D392fTpk08efIEBwcHfHx88Pb2pnLlyp90LYIg8Pz582ztA7MmAmJjY5Vjrays3jkR8L5MnaJKaHwaO+8lfHhgESe3r8e8kJaWxuXLl5Wi/vz589y5cwcAU1NT6tWrxxdffJEp8OvVw9bWFoCg63f4N13zXgsfYoiTuZi1WAwQBAGFABmCgFwBWlLQlkiQSt5t8igiUlQQxX4RJkvsu7i4UKFCBVq3bs2Gw2cJ2uVPswEj6TA604QrS3xXd/PEwbUJj6+FcDHwT5xbdqTfwg3K4+VW7B9YMpvj637DtYsPZau7kJqUyNMbl7CtXI3mX47i4eVgDq+cT9i5Y/ScuUx5HBd3LwRB4I+vu3Pvwilcu3hjW7k6oWePcvPEARr3HYrHmFkq8dhWrkZizHMa9RpIe0drFi9eTGRkJI8ePfps+qKLvJ/OnTtz7do1bt68+c6U5v3799OxY0d++eUXvv3220KOUL3Ex8dToUIF+vbty5Il2VvSaTIZGRmsWbOGadOn039VIOalyyLRwJZyn7qS+uzZM/bt20dgYCAHDx4kMTERe3t7pfBv0aIFenrvXj1UKBQcP34cf39/duzYwcuXL6lfvz79+vWjV69eucoYyCsxMTHZsgGyfqKiopTjzM3N3zkRYGVlpfYbaUEQkL+6yVcoQCqFXfde8jBRsyefPpRpkhsUCgV37txRWbG/dOkSMpkMXV1dateuTf369ZU/lSpVUjrbKxQKLly4wK5du9i1axd37txhyrFQ9I0/Pp6ihp6WhG9rWKj9NSwiIvJ5I9bsawAuLi788ccfZCgEXjbsSVJcLBf+3kSH0VOIuHON/wK2Ua+rD90m/wJAw56DKGFuxUm/pdwNPkXFek3ydL7bpw5RubEb3SYvyvFx+1r1KFnOgbBzx3Bx91J57Obxf7gbfJK2w8fTcvD3mfH0+opNPw7izJZVNOz1FZZlKyjHR90P5bsdp7AsW4GRtSxp1aoVtWrVYsuWLYwYMSJPcYsUP06fPs2ePXvYvHnzO4V+ZGQkAwYMoEOHDowePbqQI1Q/v/32G8nJyYwfP17doeQbgiCwd+9exo4dy+3bt+nfvz+9qtlwKF7zhD5k1kl72Bt/dMq0tbU1AwcOZODAgaSlpXH8+HHlqv/SpUsxMjKibdu2eHh44O7ujrW1tcr+UqmUli1b0rJlS5YsWUJgYCB+fn589913fPvtt7Rv3x4fHx86deqEoaFhPlwxWFhYYGFhkaPr+8uXL3OcCDh+/Djh4eHKccbGxu+cCLC1tc13ESUIAjFp8sz03eQMIl6l8eaUvqvpCMD9BBmxafJc1xVHRESoCPvg4GDi4zNb5lWpUoX69evTv39/vvjiC2rWrJltAkomk3H06FF27drF7t27efr0KZaWlnTq1IkFCxYQlhBJsoERWsWgg4oEqG2pLwp9ERERtaP5n6ifAV9//TWQubIAUN6lAdeP7iU1MYHbpw4D0MR7mMo+TfsN46TfUm6fOpRnsa9vbErUvds8f3SXkuUq5mnf26cOI9XSolGfIarx+Azn2uEAbp8+QqPeg5XbHb9ophT/GYJAzZo1MTEx4d69e3k6r0jxQxAEfH19qVWr1jvN9hQKBQMGDEAqlbJ+/frP7sYqNjaWRYsWMWzYMMqUKaPucPKFkJAQxowZw7Fjx2jVqhWbN29WlmXEvvIs0aR0NAmZvZXt8skMTU9Pj7Zt29K2bVt+//13rl+/TkBAAIGBgQwePBhBEKhfvz6enp54enpSs2ZNlfeFgYEBXl5eeHl58fz5c/7880/8/Pzo06cPxsbGdO/eHR8fH1q0aIGWVsGkH5uYmODi4pJjuU1SUlKOEwHnzp3j8ePHynGGhoZUrFhRKf4rVaqk/L1MmTIqvdE/RGyanIvPU7n8pjEXqN0bp6CRAJeep9IyB7+chIQEQkJCOH/+vFLcP3mS6YJvY2PDF198wY8//kj9+vVxdXVV6f7wJsnJyRw8eJBdu3YREBBAbGws5cqVo3v37nTt2pUmTZqgra1NcnIy45q1ov/qwIK85EJDAGqXFLtXiIiIqB9R7GsAWTW4WUa1BiaZaW4pL+OIjXiCRCpVWS0HMC5pjb6xKbERj8krbb4ex8bv+7OwSwOsHZ2o3LAVLu5e2Fau9sF9YyMeY2xlk60tTakKmfWhcRFPVLab2bzuly5XAFqZaZ1v1nuKfJ7s37+fU6dOsW/fvnfeuC9atIiDBw9y4MABSpUqVcgRqp9FixaRnp7OuHHj1B3KJ/Po0SMmTpyIv78/zs7O7N27lw4dOqgI1ealjQiNT9eYdmcSwERXSrPSBWMWKZFIqF69OtWrV2f8+PFER0ezf/9+AgICmD9/PpMnT6Zs2bJ4eHjg4eFBq1atVNrnlSxZkuHDhzN8+HDCwsLYtGkTfn5+rF+/njJlytC3b198fHyoWbNmgcSfE0ZGRtSsWTPHc6akpHD//n2VSYC7d++yc+dOHjx4gOLVl6Senp5yIuDNCQFHR0fKlSuHtrY2CkHg7st0QqJTeZBDy63iLvQh83ovvUilsZUO165dU1m1v3HjBoIgUKJECVxdXenbt68yHd/Ozu69E6uxsbEEBgaya9cu/vnnH1JSUnB2dmb48OF07dqVOnXqZNt/8eLFhF4OwVpLRpRcRyPe3+8iq0RCdGIXEREpCohiXwPIWl3Jrnfe+Dr8hBVNQSFX+btC3UaM3RPMjWP7CT13jODd/pzevIIuExZQr2u/jz5PTrxZf6v1xvWJVhKfNwqFgvHjx9OsWbN3mjVeuHCB8ePHM3bs2GztxD4Hnj9/zq+//sqIESOwsbFRdzgfTXx8PHPnzuWXX37BzMyMlStXMmjQILRzSOXVkUrwsDdmU2i8GiLNO1np+zrSwsk4sbKyon///vTv35/09HROnDihTPdfvnw5hoaGuLm54enpibu7u9IcDcDR0ZGpU6cyZcoUzp8/j7+/P2vXrmXBggXUrFkTHx8f+vTpg52d3XsiKFgMDAxwdnbG2dk522Pp6ek8fPhQaRCYNRkQGBjI/fv3ycjIrLHX1tamQfvOtBo9HQNLa1AouHRgF4kx0TTx/vqj4kpPSebEhiU4uDbGwbXxJ11jYZMmF6hQvTbhoTfR0tKiZs2aNGnShB9++AFLS0suXLjAoEGDKF++/HuP8/TpU3bv3s3u3bs5duwYGRkZNGjQgGnTptGlS5f3GkLGxMQwZ84cvv76a5rYW2i8+aEA1LUyUHcYIiIiIoAo9jUK7RwEvbmtHYJCwYtH9yjl8PrLNOFFFKkJ8ZjbllVuMzAxIyVB9SY5Q5ZOwvNn2Y5raGqOa+e+uHbuS1pyIqsGd+Lwytdi/12z+ua2ZbkbdIK0pESV1f2oB6EAmNm++0Yxp+sT+TzZunUrV65c4fTp0zm+1hISEujTpw+1a9dm1qxZORyh+PPzzz8jCAJjx45VdygfhUwmY9WqVUybNo2kpCR+/PFHxo4di7Gx8Xv3K1tCBzc7Iw4/SSqkSD8eNzsjtfQyB9DV1cXNzQ03Nzd+/fVXbt68qWzrN3ToUBQKBa6urnh6euLh4YGLiwsSiQSJREKDBg1o0KABixYt4sCBA/j7+zN58mTGjRtHy5Yt6devH926dStSLfV0dXWpVKkSlSpVokOHDiqPZWRk8OjRI+6E3eWGzIg020ogvFq7l0q5tH8nz+7e+mixL0tN4ciqBQAaJ/YBvp/6Ew0rlMLFxQUDg9cidceOHcycOZNWrVrlKPZv376tNNgLCgpCW1ubli1b8vvvv9O5c2dKly6dq/PPmTMHuVzO5MmTKWmii5muVOPbGjqYqOd9LyIiIvI2mul29JmiJcns6fkmVZq4AXB6s2pv7VP+K1493ka5zcKuPA8unlUZF7RzIwq56sp+UlyMyt96hiWwLFsBeXq6cltW27+3Jw+qNHFDIZdzdtsale2nN61AIpFQpXHrHK9NWwqFtPglUsRJT09n8uTJdOrUiUaNGuU4ZsSIEURGRrJly5Z3GvcVZ549e8bixYsZPXp0gTipFySCIPD3339TvXp1Ro4ciaenJ6GhocyYMeODQj8LVysDmtrmj5FcQdHU1hDXIrK6J5FIcHZ25scff+TkyZNERUXh5+eHg4MDCxcupG7dutjZ2TF06FACAwNJTk4GMgW0p6cn27Zt49mzZ6xZswZBEBg0aBDW1tb07t2bvXv3IpPJ1HyF70dbWxudUmW5X6YustKVMyc1pGKKNWR+77q0aEOjRo1UhH5OCILAhQsXmDhxIs7OzlStWpWZM2diZ2eHn58fUVFRHDx4kGHDhuVa6D969IjFixczZswYSpUqhVQiwd3eWCOFPny6GaeIiIhIfiOu7GsQEokEGwPVf5lt5erU8exF0F8bSUmIp0LdRjy5/h//BWzDuWVHFXO+el182P3TGPzHfEmlBi2IuHOdO2ePYmSm2uLu1x5NqFC3EWWcamFoasaTG5e5djiABr2+Uo4p41QLgID5E6jUsCVSLS1qtetK1WbtcHBtwsGlPxEb/hibytUIO3eMG8f207jv0GzeAlnYGGh/duZqIjmzevVq7t+/z549e3J8fNOmTWzcuJGNGzfi6OhYyNEVDebPn4+2tjY//PCDukPJE8HBwYwZM4YTJ07g5ubGn3/+Sa1atT7qWI2sM4XJyYjk/AwxX2hma0hD66Ih9HPC0tISHx8ffHx8kMlknDx5Urnqv2rVKgwMDGjdurUy3b9MmTKYmpoyaNAgBg0axOPHj9m8eTN+fn54eHhQsmRJevfuTb9+/ahXr16R+yw/fj+KCRMnc+PYfhKeP0O/hAm2lavRftRk9i6awv2QM0BmO1gAM9uyjNv7HxmydI6uWcStk4d48eQ+igw5ZarWwG2Yr/K7NTb8EfM96gJwZNUC5Qr/m21uo+6HcmjZT9wNPoUsNQXrilVpNWQMzs1flyiF7NnCjmmjGPpHAFcO/c2Vf3Yhz5BRs20XPMfNQZaaQsD8Cdw8cQCA+l370X70FJXnWqFQcGbLKoJ3+RPz5AH6JUxwbtGB9qMmY2Dy2kBvnnsdrCtWpcXAUexdNIVnoTewK1OaadOm0b9/fwDWr1/PwIEDAWjZsqXK82lhYUHDhg3R09Pj8ePH7Nu3j//++49///2XtWvX5ul/M3XqVExNTfn++++V28qW0MHVSv+zN+MUERERyQ9Esa9h2Bpq8/ZtVLfJv2JRpjwhAVu5cXQfJUqWosXA0bQeqpreW69bP2LDH3Jh92bunDlKeZcv+GrZdtZ83V1lXKPeg7lx4gCh544hl6VjZmNHm+Hjadb/dSu8aq08aNh7MFcO7ObSvu0IgkCtdl2RSqX0/9WPQ8vncfXgbkL2bMGsdFk6fDuNpv2G53hNUgmUNhK/HEUgMTGRmTNn0r9/f6pVy24Iee/ePYYNG4a3tzf9+uWvf4SmEB4ezrJlyxg3bhwWFhbqDidXPHjwgIkTJ7J582aqVavG/v37adeu3SeJQolEQmMbQ/S0JBx+kpTNYK2wyTq/m51RkVnRzw06Ojq0atWKVq1asXDhQm7fvq0U/sOHD0cul1OnTh08PDzw9PSkTp06lC1blnHjxvHjjz9y+fJl/P392bx5M0uWLKFSpUrKiQQHBwe1XpsgCJx5lsLobzK7wTTs9RWlHCqTHBfLw0vnibofSsuvviM18SUvn0Xg/sNMAHQNMw0V0xITCN7lT6323ajfrR9pSYlc+HsT677pyXC/A5SuUgMjc0u6TFjA7p/GUq2lO9VauQNgUynTV+DZ3VusGOiOSSlbmn85Cl0DQ64e+hv/7/vjvWCdcnwWe+aPx9iyFK2//pHHV0MI+msj+samPLochKmtHe1GTOT2qcOc2LgEa8eq1PF43alk9+wfCAnYSl3PPjTq/T9iwx9ydtsfhN++ytdr96Kl8/p7NubJfTb9OAjXzt64evbi0cE/+fLLL6lbty4ODg6kp6fj5OTEzZs3gUzjXFdXV4YMGUKjRo2oXr06VlZW+Pr6YmZmxoMHD/jrr7/y9P+5evUqGzZsYPHixdmyekQzThEREZH8QSKITmgaxfWYVAIeJqo7jHynk70xzhZ6Hx4oUqyZPXs2M2bM4Pbt29lqRGUyGU2aNOH58+dcvHixSNULFyajRo3Cz8+P+/fvv7PdVVEhLi6OOXPm8Ntvv2Fubs7MmTP58ssvczTf+xQeJ8oIfJigNmGQdaPvYW+sthr9giAmJoZ//vmHwMBA9u/fT1xcHLa2tri7u+Ph4YGbmxtGRpniRi6X8++//+Lv78/OnTtJSkqiUaNG+Pj40LNnTywtLT9wtvzndGQyJyOSmd6sIrU79qCz77wcx60f1Zdnd28xbu9/KtsVcjkKhRxtndelQikJ8Szq1pCqTdrQfepvACTFvmBW66oqq/lZrPm6O0kxz/nG/yDaupnfcYIgsHKQO4mxLxiz+zzwemW/UsOWDFyyTTkRtvzLjjy+eoH63QfQZcICZVzzPepgYVeeIav/BuDBxXOs/MqTXrNXULvD6wn8O2f+Zd2IXirb57nXIS7iMUPW7KFCnYYAdC0RS41q1Shfvjzh4eEkJSVRunRpwsPDWb58OUOHDlXGtHv3brp27UpwcDCurq55/bco8fDw4Pbt29y4cQMdnezvm8eJMo0x4wTwrmRarN7/IiIixQOxZl/DsDEsnskYxfW6RHLPixcvmD9/PsOGDcvRDGrKlCn8999/bNmy5bMV+k+ePGHlypWMGTOmSAv99PR0Fi9ejKOjI0uWLMHX15fQ0FAGDx6c70IfMtN+BzuZU9cqs61cYSWRZ53H1UqfwU7mxe5G38LCgr59+7J582aioqI4duwYffv25cSJE3Tp0gVLS0vc3d1Zvnw54eHhtGnThg0bNvDs2TM2b96MqakpI0eOxNbWli5durBjxw5SU1MLJfYLUSnKEg99Y1MeX/uPl9GReTqGVEtLKfQVCgXJ8bEoMjIo41Sbp7eufHD/5PhY7gWfpEbbTqQlJZIU+4Kk2Bckx8VQqWErXjy6R3xUhMo+9bp4q2S8lK1eB0EQcO3irRJXGefaxDx9qNx29fAe9EuY4NigufI8SbEvKONUC11DI+5dOKVynlIOVZRCH6BuvfrIZDKio6OZOHEiN2/e5LffMiczqlatqhJT1mdPYGDgR/s1HD9+nL179zJ79uwchT68NuPUBNRpxikiIiLyPkSFpWFY6GmhpyUhTV58EjL0tCSY64nzTp87c+fORaFQMGHChGyPHTlyhHnz5jFnzhzq16+vhuiKBrNnz8bY2JhRo0apO5QcEQSB3bt3M27cOMLCwhg0aBAzZszItVnXp6AjleBmV4IqZnrsfZhAXLqiwFL7s45rqivFvZit5r8LHR0dmjdvTvPmzfn555+5c+cOgYGBBAYGMnLkSIYPH06tWrWU7v69evWiT58+PHv2jG3btuHn54eXlxempqZ4eXnh4+No5NhqAAAgAElEQVRD06ZNkWbvKfvJPE6Ucfjp624NHUZPYfvUkcztUIsyTrWo0tiNOh49sbAr/8FjhQRs5ZTfcqIfhCLPeC1szcvYf3DfF4/vIwgCh5bN5dCyuTmOSYqJxrTU6xaIpjaqHWv0S2RObJpal35ruzEpL+OUfz9/dI/UxJfMbu2U43kSY56r/G1mU0bl7zlz57N5w1r09fUZP348ANeuXcvxWM2bN6d79+5Mnz6dX375hRYtWtClSxf69u2Lnt6HM/QEQWDcuHG4urrSo0eP9451tTIgTS4USW+OLIqSGaeIiIjI24hiX8OQSCTUstQnOCpFI+rYPoQEqG2pX+QMnUQKlydPnrB48WJ8fX0pVaqUymPR0dH069eP1q1ba2ybufzgwYMH/PHHH8yaNSvXrvWFyfnz5xkzZgynTp2iXbt27Nixg5o1axZ6HGVL6DDE2Zx7L2WERKdwP0GWb6I/6zjljXWoa2WAg4nOZ+u6XblyZb7//nu+//574uLiOHDgAAEBASxdupRZs2ZhbW2tTPcfNGgQo0aN4tatW2zatAl/f3/WrFlDuXLl8Pb2xsfHB2dn53yJS6YQCHyYoPI/r9m2C+VdGnD96D7Czh3jxMalHN+wGJ+f11Glsds7j3Vx73Z2TB2Jc8uONO3/DSUsSiLV0uLY2t948eTBB2MRFJnt/Zr2+4bKjVrmOMayrKqvgVQr5y4B0py6B7xRhSkoFJSwsKLX7OU57m9krlpG8XY3giH/+4qdWzeRm8pOiUTCjh07OHfuHAEBARw4cIBBgwaxcOFCzp07R4kSJd67/65duzh//jxHjhzJ1WSPaMYpIiIi8vGIYl8DcSmpT1BUirrDyBcEoHZJfXWHIaJmpk2bhrGxcTZ3eUEQGDhwIDKZjI0bNxbIKqCmMGvWLMzNzfnmm2/UHYoK9+/fZ8KECWzdupWaNWty4MAB2rZtq9aYpBIJjqa6OJrqEpsm59LzVC69SFVmREkloMiF+n9znJ6WhNqW+tQuqY+5nti27U3MzMzo1asXvXr1IiMjg7NnzxIQEEBgYCBr165FV1eXli1b4unpyeDBg5k+fTpnzpzB39+fFStWMGfOHOrUqYOPjw+9e/fG1tb2wyd9B8fDk3L0bjCxsqFhz0E07DmIxJhoFvdtzdE/fqFKY7d3TjZfOxKAhV15fH5erzLm8Iq3av/fsb+FXebqv5a2No5fNP/oa8oNlnbluRt0Avta9dHRz7v41M7hGnJ6XgRBQC5AhiBQs259aterz/SZs9i2ZTM+Pj5s3bqVwYMHv/M8GRkZjB8/nnbt2tGqVatcxSaacYqIiIh8PJ/vnbMGY66nRXljnUKrSy0oJEAFYx3xxvkz59atW6xbt45JkyZlW7FesmQJe/fuZf369Z8kADSdu3fvsn79enx9fZWGaOomNjaWMWPGULVqVY4fP87atWv577//1C7038ZcT4uWZYz4toYFQ5zM6WRvjKuVAXZG2mi/4xtQWwp2Rtq4WhnQyd6YIU7mfFvDgpZljMTPqw+gra1N06ZNmT9/Pjdu3CAsLIz58+eTkZHBt99+S/ny5alduzb79u1jwIABPHnyhL/++ovy5cvj6+uLnZ0d7dq1w9/fn8TEvJnRPk6UceGtdm0KuZzUhJcq40pYWGFiZUNGejoAugaGpCaqjgGQvJpcfHO1+9HVEB5duaAyTveVuE5JUDWTK2FhhYNrY87/tTFHv4DE2OfZtn0sNdp2RiGX8+/qhdkek2dkZIvtTbSlmRNbb2NoaAjAlcdRHHmSiP+dOBZeecHMk3f55fILfr8Ww69XYvj58gsuGZTPHBv5kusxqbxIzcgxS2Dt2rWEhoYyd27OZQ3vw9XKAO9KppjoStV2/5NlxuldyVQU+iIiIhqBuLKvodS10udBwscZ4xQVBKCu+GX52TNp0iTs7Oz4+uuvVbZfvnyZMWPGMGrUKNzd3d+x9+fBjBkzsLKyyvYcqYP09HSWLVvGjBkzSE9PZ9KkSXz//fdFZhLiXUgkEiz0tbDQ18KZ167oilerlHIFaEkzVzilkpxXNUXyTsWKFRk9ejSjR48mPj6egwcPEhAQwKpVq5gzZw5WVlZ07NiRvn37smjRIg4cOIC/vz/9+vXD0NCQrl27Kst43mfuqBAE9r6Vvg+QlpzI3PY1qe7miW2l6ugaGhF2/jhPrl+k4/czACjjVIsrB3cTuHAydtVc0DMwwql5O6o2bcv1f/fi/8MAqjZpQ0z4Q87v2EAphyqkJb/2BNDRN6CUQxWuHtpNSfuKGJqaY12xKjaOTnTyncfKQR781qs59br6YFGmPIkxUTy6coH4ZxGM3nYsX55nh7qNqd99AMfW/Ub4nWtUatACLW0dnj+6x7XDe/AYO5sabp1y3NfGQFvl9R6bJufi81SC9OyRamnx84IFNLwfhVRXj4r1mnBp/07ObV9HtZbuWNqVJy05keBdfuiVMMawdnNlxyA9rcyyQ5dX2TBJSUlMnToVb29vateu/VHXmWXGeTw8iQvRqYW2yp91HlcrfZqVNkInp9kRERERkSKIKPY1lIomupjpSonXkB60byMh09zKwaT4G1uJvJvg4GB27tzJ+vXrVYydkpKS6N27N05OTsybl3O7LE3izdRXhQKkr0SlVi5E5e3bt/H39+fXX3/FwEB9k2OCILBz5058fX25f/++Mh3bxsZGbTF9KpJX/wMtJCAu2Bc4WeZ8Xl5eyOVyZc13YGAgGzZsQEdHhxYtWtCjRw9mz57NiRMn8PPzY9OmTVhbW9OnTx/69euHi4tLtvfN3ZfpxKUrsp1TR9+ABl6DCD13lOv/7kVQKLAsW4HO4+fTwGsgAA16DiT8zjVC9mzh9KYVmNmWxal5O+p26kPiiyjO79xI6NmjlHKoTK9Zy7h6eA/3LpxROU+3yb8QMH88exdORi5Lp/WQsdg4OmHtUIUR/oc4vGoB/wVsJTkuFiOLkpSuUoPWQ37IFu+n0HXiz5RxqkXQzg0cXPoTUi0tzG3LUbujF/a1cjY2lUqgtJEOCkEgJUNBgkzByhuxSAA981J0mbCAY+t+Z8eMb1HI5fxv1W4c6jbiyfWLXDmwi8SYaPRLmGBXzYVes1Zg9oZxYZpcIDgqhaCoFMob63D3aACxcXHMnDnzk65TNOMUERERyT0SITduLCJFEk3rQfs2PpVMsRO/OD9r3NzciIiI4MqVK2i9YUw1ZMgQNm3aREhICFWrVlVjhHlHEARi0uREJmcQmZxBRHIGkSkZZGTXIWhLM1fVbA21sXn1Y6GnpSJk+vbty8mTJwkNDUVfXz3+FmfPnuWHH37g7NmzdOzYkfnz51OtWjW1xCJSPLl37x579+4lICCAY8eOIZPJcHZ2xsPDg8qVK3P58mW2bdtGVFQUTk5O+Pj44O3tjb19prjcGhbPwwSZRk5+q5vG1gZcj00rFNGckRDLgDrl8000KwShQM04K4hmnCIiIhqOKPY1nMNPEgl5q0axqCMhMxWutd37HXtFijeHDx+mTZs27N69m86dOyu379ixAy8vL1avXv1eo6eiRlbq6+U3jeCAHDR+Nt4c92bqa3jYLWrUqMGyZcvUksJ/9+5dxo8fz/bt26lVqxY///wzbm7vdi8XEckPEhISOHjwIIGBgezdu5fo6GgsLS1p37495cqVIywsjL1795KcnEyzZs3o89VQ4moULa8ITUMd6fDN8zkdXjTjFBEREcmOKPY1HJlCYM3N2Bzdh4siWeY2g53MxZq3zxiFQkH9+vXR1dXl9OnTypXshw8fUrt2bdq0acO2bduKfN20QhC4+zKdkOhUHhTAqlL8vRuc2bKaA5vWoJ+L/tX5RUxMDLNmzWLJkiWUKlWK2bNn4+Pjo5J9ISJSGMjlcoKCgggMDCQgIICrV6+ira1N48aNKVOmDA8fPsS0Xhsa9x2K9D01/SJFi6x7AY8CSI0XBIHYNEVmdlVKBuFJsg9mV5U20sHGIDO7ylxPWuS/e0RERERyiyj2iwGals7vXclUrHv7zNm+fTs9e/bk+PHjNGvWDMhsydSiRQseP37M5cuXMTP7P3v3HR5Vmf5//H1m0nuAkBASmqACIl0FAkO1gQgiFlBkVUDRn+hiWdxVil2/rr2groIKIk2WIl1pEakCgiuiIMUECBBIIWUyc35/xERCKEmYyWQmn9d1ca05c+Y592RlPPd57ud+ojwc5bntz7K7fb2oo6AAq58fUZW0XjQvL4933nmHZ555hoKCAv7xj3/wyCOPFHflFvG0vXv3Mn/+fObPn88333yD3W5n7KrfCAwNP/+by2n3xmQ+HN6vcJ16u04AzBj7ILs3fscTCzYXn5d3Mov5//cvfl69hKyjaXS8fThJg0fwcp+23DzuTdr2vd0l8Wya+wUzxz3E4/M3ER1fzyVjelJlbmGnZpwiUl3pMbgPSAzzp2dCKMsOZJ//ZA/rmRCqRL+as9vt/POf/+S6664rTvShcB/5tWvXsmrVqiqd6NudZolO0OC+8lfrnzOVJ/KdTNl1wi2lr1B4Izxjxgz+8Y9/sG/fPoYNG8a4ceOIjY116XVELlT9+vV54IEHeOCBB8jKymLBt2vY44ZEvzxW/Od1Ns+bRrd7R1MzoQG1G17s0Xi8RdH35rID2eQ5TDrGBrst8VYzThGprpTs+4h2McHkOUxWp570dChn1blOiPal9QEX0lkeYNKkSezatYvp06cXH1u9ejXPPPMMY8eOpVOnTu4M/4Lsz7Izf28mGX92/a6ssqii62xKy2XXiXyXlr4mJyfz6KOP8v3339OnTx/mz59Ps2bNXDK2iDuFhYVxWaeu7Plzq7fKcNO/XsM0S9aD/7ZhDYkt2tJzxGPFx0zTZMLa/Vj99HC7LIruXTrFqYpIRMSVlOz7kI6xhYl0VUz4u9QJoUOsEn1v4+rO8jk5OYwbN47bb7+9eJ/lY8eOMXjwYJKSkvjnP/9ZWR+t3Dam5bDsQHalNbI6ExPI+HOW/0JLX3/99Vf+8Y9/MGvWLFq3bs3y5cvp3r2764IVqQQHTxaUuRGmK1j9SyfvWelHSs3mG4aBf6Bnds/wVqtTTxJoNTQpICLiQkr2fYhhGHSKCyHQang8KYHKXY8nrlWRzvIFTjiQXUBKdsEZO8tHB1p5++23OXz4MBMmTAAKHyYMGzaMrKwsPv/88yrZAM40Tb47lFP8EM3TTU4utPT16NGjPPPMM7zzzjvExcXx6aefMnjwYCwWi3sCFnGBNWvW8Mgjj/Djjz9St25dHn/8cVJTUxk/fjwvbE4jPWXfWdfIj2kTQ4/hj9HzvscBSE/Zz8rJb/Hb+lUcP/gH/kHBXNQ+iesfHnfetfCnrtkvWtMPkP7HXsa0iQHg8fmbAM4Yz+E9u1j67vP8tmEN9twcYi+6lO7DH6WZ7doS1zn028/MfWkM+37cSEhkNFfefBcRteIu7JfoBZYdyCY22E/L/UREXETJvg9qFxNMbLBfcbmxJ5ITd3baFfc4X2f5ss6cnXpensNkw+Ec1h/OISEIpq/4nuEjRtC4cWMAPvjgA2bPns3s2bNJTEx00SdxrVMT/aqmPKWvubm5vP322zz77LM4nU4mTJjAww8/THCwHsRJ1fbjjz9y9dVXExMTw7hx4ygoKGDs2LEV7ilx4Kcf2Ld1PZdf3Z/I2HjSU/axbuYkPhjWj0dmriEguGyl5DENm3DLM++y4NWniIitQ+c7RgIQGl2T7PSjpc4/9NvPvP+33kTUroNt6EMEBIfw49L/8vnfhzD4lU9o3r03AJlHDvHh8P44HQXF562f/Sn+gb7/d9UA5u/N1I49IiIuomTfRyWG+XNv0+gSjcQqew/dLm5oJCbucXpneXDdvy9F4+w/6WTAsxMJs5rsz7KTsfcXHn74Ye677z769+/voqu51sbDVTfRL3K+0len08mXX37JmDFjOHDgACNGjGDs2LHUrl27kiMVqZinn34a0zRZvXo19eoVzrwPGDCAFi1aVGi8S5N60aJn3xLHmna5hveGXsf25fNp0+eWMo0TXrM2rXsPZMm7LxARU4fWvQcWv3amZH/eK/8kKi6BBz5fgl9A4VaaV91yNxPv7s3CNycUJ/srJ71FdvoRRn66mMTL2gDQ5oZbefXGKyv0eb1J0VKlVSnZ9EgI83Q4IiJeT3WbPszfYtAzIYzBTSKJDCj8v9pdqXfRuJEBFgY3iaRHQpgSfS9gd5osO5DFlF0nOOHmpnPGn2Xi2Q6DKbtO8Mq81TS5tCmvvvqqm654YfZn2Vn2R9Xf4QIKS1/3Z9lLHV+9ejVXXXUVgwYNolWrVmzfvp133nlHib54DYfDweLFi+nXr19xog/QtGlTel19dYXG9A/668GYw24n+/gxaiY2JCg8kpSft11wzGdy8kQ6uzespsXVfcnLziI7/SjZ6Uc5efwYTTp05+i+3Zw4nArAzuRlJLZoV5zoA4RF16LVdQPcEltVYwIb0nLP+J0mIiLlo5n9aiAxzJ/hzaLZnWFnU1oOe85Qol1RReM0CPenbUwwjSL8sWjPWq/g6c7yF/fqT+tr+nHU6U9V679sd5rM35vp8b4XZXV66esvv/zCE088wZw5c2jbti0rVqzAZrN5OkyRcktLSyMnJ4cmTZqUeq3xxZfAwoXlHtOem8OKT95g09wvyDicimn+9bc8NyvjguI9m6P792CaJkvffZGl7754xnOyj6URWbsOx1MPkHhZ21Kv12rQ2C2xVUUGsGBvJsObReueQkTkAijZryYshkHjyAAaRwaQnudgy5FctpzafM0AZxmymlPPC7QatKoZRKs/m6+J96gKneUtFiu54JLO8q62MiXbY/0uKqKo9HXRb0dY8uYE3n//feLj45kyZQq33Xabmu+JTzLO8VMRp8NR6tjcl8ewae4XdBo0gnqXtyMoLALDMPhizPBS2+q5iuksHLfznQ9wccduZzynZmIjt1zbG5nA8XwnuzPsNI4M8HQ4IiJeS8l+NRQdaKVb3VC6xoeQnucs3FYtp4CUbPt5t1WLD/UnLrhwW7XoQEu5uoCL5/laZ3l32J9lZ2NarkdjqAgT2J5p8s0PO3juued46KGHCArS1l/i3WJiYggODmbXrl2lXvv1l1+K/zk4IgqAnMwTJc45nrq/1Pu2L5tHmz630vvvE4qP2fNyyT3tva5UI6E+AFY/Pxpfee4qm6g6CRzZt7vU8SO//+qW2KoqA9iUlqNkX0TkAijZr8YMw6BGkJUaQVaaUdgsyDRNnCYUmCYOJ1gt4GcYWAw8noTJhfOVzvLu4jRNFnhR+X4pJox8dzr3t6ip0lfxCVarlWuuuYY5c+awb9++4nX7//vf/1iyZHHxeUFh4YRG1eT3zd+TNPi+4uPfz/ik1JiG1Qpmyb/ha6d9dMYqAFcJqxFDo3adWDf7Uzrcdi8RMSW30ctKP0JYdC0ALunUk+SpE9m/fXPxuv2s9CNsWTjLbfFVRSawJ9NOep5D1YMiIhWkZF9KMAwDqwFWDNB/W32KL3SWd7ffMvI5nu+eMt7KYFgsZDpQ6av4lPHjx7No0SI6d+7MyJEjKSgo4K233qJ58+Zs2/ZXQ712/Qez8pM3mTXhYRKatWLP5rUc2ftbqfEu7dyLH76eQWBYBLGNLmHftg38un4VIVE13Po5+v7jJSbe3Yc3brXRvv8d1KjbgKxjh9m3bSMnDqUy6ssVAHS560F++HoGnzx4Kx1vH1689V5UnUQO7trh1hirGgPYciSXbnVDPR2KiIhX0kJOkWrAFzrLV4ZNf25T6c2KSl9FfMXll1/O4sWLiYmJ4emnn+bjjz9m/PjxxVt2Ft3I9Bj2KO36DWb7snksfGM8ToeDoW9PKzXeDY89T+vet7B14SwWvPY0GUcOcc97swgIdm9CGdvoEh78fCmXJPVk87xpzH3xCdbNnIxhWOgxfHTxeRExcQyb+BVxTZqxctKbJE+dSJs+t9Dp9mFujc+VXurdhhljHyz+effGZMa0iWH3xuRyjWMCW47mlmiiKCIiZWeY+gYV8Wl2p8lH/0v3moZzBhARYCnuLF9Z0vMcTPwpvdKu524jmkWr9FV82rhx4xg/fjwvbE7zdChVQlVafvRS7zY0ateRgePfBgqT/Q+H92PYB3No1K4TAFsWziLrWFqJZRdnM7xpNDWC9H0mIlJemtkX8XHe2ll+VUrlViL8cMT7Z/WLFJW+iojvcxQUAJCVlkr6xuUejubMGrTpwIS1+2nQpkPxsS0LZ5E89YMyvf/gyQJ3hSYi4tOU7Iv4sKLO8t6S6BcxgQ1puW4v5x83bhyGYWCaJluP5vLiaaWn3kqlr1KdBFp95TFd+RR+apNo50msW5ezd8r/cejIMRx2zyyDOheLxYJ/YFCFtgG1GHAwR8m+iEhFKNkX8VGndpb3RgawYG8mzkpIWI/lOchzeC4x3rt1Pcvef7nUtmEXIs9hkp7nvc0GRcqqZc0gr/2eK49TVzUFWg2uqB3MiGY1GHllIx4beiufTp5MzwG3Y/X3P+P701P2M+eFx3m1/1U81SGRCd0uZsrjd5Oesq/Eecvef5kxbWJKvX/T3C8Y0yamxPmmafLNR6/ywrWX83THenw4vB+Hfvu51HtPX7P/wbAb2blmKcdT9zOmTQxj2sTwUu82Z4zbaUJKdtV7gCEi4g3UjV/ER3l7Z3kTOJ7vrJTO8kUloqO/WothVP4z0L1bN7D8g1do2/c2gsMjXTbuwZMFWucqPmvcuHGMGzeO9DwH6w/7blNKPwvEBfsRH+pPXLAfcSF+RAdaSm2Ha5rmOWfAD/z0A/u2rufyq/sTGRtPeso+1s2cxAfD+vHIzDUEBJd/29Ol773Itx/9m0uSenJJp56k/LyNj0cOPG91Qbd7HiE3K4OMQ6n0Hv0MAAEhZ2+QeDCnANM0tQWwiEg5KdkX8VFFneW9uZC7qLN8ZST7FsAvIPC85+bnZLu9a7crGJjsPZZJsxrn/0wi3iw60EqDcH/2Ztq9/vuufpg//RuF43CC1QJ+hoHFoExJrsOEgnM83700qRctevYtcaxpl2t4b+h1bF8+nzZ9bilXvFnpR1g1+W0uSerFXW9MKY5x8dvPseLj18/53iZXdSV56gfkZJygde+B571WgbNwhr+artgQEakwlfGL+KD0PAe/e/mNLxQ+qNiTaSc9z3HBY61Zs4b27dsTFBTERRddxMSJE4tfSz1ZgJPS20UVla3u3pTMnBce59keTXnh2pbFr+9MXsbEu/vwdMf6jE1qwKSHbj9jCevhPbuY+sQ9PNv9Up7qkMir/a9i8dvPAYUlswtfHwfAy33aFpe0FpXKOgoKWP7hq7zStz3/urIuL/Vuw+K3nqUgP6/ENV7q3YZJDw3il+++4e3BPfnXVYlM+fhDAJYuXUpSUhJRUVGEhYVxySWX8OSTT17w71SkqmgbE+QT33ftagcTaLUQ4m8h0GrBajHKPJtdcJ4lT/5BwcX/7LDbyT5+jJqJDQkKjyTl523ljvfXdatw2PPpeNu9JWLsNHhEuccqi/N9PhERKU0z+yI+qKizvC/cGhV1lu9Wt+Kz6T/++CNXX301MTExjBs3joKCAsaOHUtsbCxw/uZP/33hCUKja9J92GjsuScB2Dx/OjPHPkiTDt249qGnsOfmsG7mJN6/uw8PffEN0fH1AEj9ZQcT770Bq58/V/S/k+j4ehw98Ds/r1rCNQ/+k+bde3Nk329sXTSb3qOfITSqJgCh0YX/O/uZh9k870su63kDSXfcz/7tm1jxyRsc/n0Xd746uUScR/b+yrQnR3DFgCG0738n4Q0bs337dvr06cPll1/OhAkTCAwM5NdffyU5uXz7XYtUZRdFBBAVYOGEF+08cioDiAyw0CjizOvty8J5nlVb9twcVnzyBpvmfkHG4dQSDTxzszLKfb3jqfsBqFWvUYnjYdG1CI6IKvd45+NwAlqVJCJSLkr2RXxMUWd5d93wfjDsRgCGf/jfcr3vTPssl0VRZ/mu8SEVXq/59NNPY5omq1evpl69wiR8wIABtGjRAjh36StASEQU974/G4u18E4z72QW8155knb97uCmp/5dfF6bG27l3/078O1/Xi8+Pu/lMWCa/L8py4mqk1B87rUPPQVAnYubE3/p5WxdNJvm3a4vfkgAkPrLdjbP+5L2/e/gpqdeA6DDLXcTFh3D6s/e4bcNa7iofVLx+Uf37+Fvb3/JxR27Fx9bsvQz8vPzWbhwIbVq1Sr3707EG1gMg971w5myy3VNLiuTCfSpH47lAtakn6/R/dyXx7Bp7hd0GjSCepe3IygsAsMw+GLMcEzzlC/Bs8TgdF54hdWFsKoWVUSk3PTVKeJjjuU5WDd/JmumvO/pUFzmQjrLOxwOFi9eTL9+/YoTfYCmTZtyzTXXlGmM9jfdWZzoA/z6/UpyM0/Q8tqbyE4/WvzHYrGSeFkbdm9cAxSuad2zeS1t+w4qkehD2dbg7lyzDICkwfeXON75zvv/fH1piePRdeuXSPQBwiMLG/7997//xXm+qT8RL5YY5k+7GO/rzG8A7WOCSAir+Kw+FK7vP5fty+bRps+t9P77BFr07EuTq7pSv9WV5J62C0hwROF3xum7gxxPPVDi56g6iQAc2be7xPGs9CPkZBw/b7zlfXh7vs8nIiKlKdkX8TEHTxawZeEskqd+4OlQSmjQpgMT1u6nQZsOFXp/Ucf88kpLSyMnJ4cmTZqUeu2SSy4p0xinzrbDXze3H43oz7M9Li3xZ9f3K8hKPwLAsQN7AYhrfGmFYk9PPYBhsVAzsWGJ4+G1YgkKjyT9zzLaIjVOixPgpptvpVOnTtx7773ExsZy2223MX36dCX+4pNs8aFEBFi8JuE3gIgAC13iL7zpp9Uo7Nx/1mtZrXDauve10z7C6Sg5Y18zoQEAezavLT6Wn5PN5nlflnc7hkIAACAASURBVDiv8ZVdsPr58920j0osCUieMpGyCAgOKfPyAT9Lya0HRUSkbFTGL+JjDp4sqJI3uhaLBUtgUMXeaxSuq2+GZzrLn9rYCigueb3lmXcJr1W71PkWq4u/Wss4o+V3ht9vWGgwq1at4ttvv2XBggUsWrSIL7/8ku7du7NkyRKsVi2CFd/hbzHo40Xl/EXl+/4uyGQNwyAu2I8D2Wd+MHpp51788PUMAsMiiG10Cfu2beDX9asIiapR4rwmV3UjKi6B2eMfJm3IA1isVjb+dyqh0TU5fvCv2f2w6Fp0vnMkKz55g8mjBhVuvbfzR35JXl7ce+Rc6jZtybYlc5j/6lMkNG9NYHAoTW1nrraKC/bTtnsiIhWgmX0RL5SZmcnDDz9MgwYNCAwMpHbt2vTq1YvNmzfz4IBr+XnNUo6n7i/u7P5S7zbAX93lizq9F9m9Mbmw6/zGkk3b1s/6lFf6tuepDom8c+fVJWZ6oHDt+tMd6zPvldKd3U8cSuHJdrHFWzCd6RofDLuR1wd25tDunXw4vB9Pd6zHC9e0YOWkt0qM5TRh2y+/0bdvX0JDQ6lduzaPPPIIixcvxjAMVqxYcdbfVUxMDMHBwezatavUazt37jzr+86laOYrtEYtGl9pK/WnqCdBjYT6ABz8tXSH/lOd7SY2uk4CptPJ0dPKZDOPHiY38wTRf5bRnoufYWCxWOjRowf//ve/+emnn3juuef45ptv+Pbbb8/7fhFvkxjmT8+Eqr89JkDPhFASL7B8/1R1QvzOemN3w2PP07r3LWxdOIsFrz1NxpFD3PPerFJbiVr9/bnj1UnUSGjA0vde5LsvPqR9vzvocOs9pcbs9cCT9LzvCVJ+/pGFb4zn2IHfufvdGfgHh5w31qtu+RstrxvAprlf8OWTI5j78pgznmcxID7Udb8jEZHqRDP7Il7ovvvuY+bMmTz44IM0a9aMo0ePsmbNGn766Sc6/+1hTpw4QcahVHqPfgaAgJDy3/humPM5Xz03mvot29Np0HCOHdjLp4/cSUhkNJGx8QAEhoTRvNv1bFsyh95/f6bEuvati2aDadLqupvPeZ2cjON88uCtNO/Wmxa9bmT7snksenMCcU2ackmnnkBhCekrQ24k5+ghRo0aRVxcHFOnTi1Tsmq1WrnmmmuYM2cO+/btK163/7///Y/FixcDhSWi52vSd6omHboTGBbOio9f56J2SVj9S96IZqUfISy6FmHRtWjYpgOb5k6l8x33l1i3b5pmcZIf8OeNcU7mCaJPGeeSpJ4sfvs5kqdOpP+/Xi0+vubz9/98vdc54/SzwPH0Y9SsWXKWrVWrVgDk5eWd6W0iXq9dTDB5DpPVqSc9HcpZda4TQruY4POfWA5xIX6c7assODySm8e9Wer4Ews2lzpWt2lLRn66qNTxtn1vL/GzxWKhx/BH6TH80XOO2ahdJ17YnFbiWEBwKLc9d/7eMk6zcGZfRETKT9+eIl5owYIFDBs2jFdf/SsBfPzxxylwmhzYepSImA/IyThB694DKzS+w25nydvPU+eSy7j3gzn4+QcAULvRJXz17N+Lk32A1n1uYcvCmez6fgWXdOpRfPyHr2fSoE2HUo3pTpeRdpCBE96hTZ9bAGjXbzAv927NxjlTipP9dbM+5diB35k9+yv69+8HwIgRI2jdunWZPs/48eNZtGgRnTt3ZuTIkRQUFPDWW2/RvHlztm3bds7S1zMJCgun35hXmP7USN4a3IOWV/cjNLoWxw8e4Oc1S6nf8gpu/MdLANzw+PO8f3cf3hrco3Drvbr1SU/Zx841S3lo2goA4pu2BGDJO89z+dX9sfr707TL1dS5+DLa3HAr62d/Sk7mCRq27ciBHZvZPO9LmnW7vkQn/jOJC/bjmWfGsWrVKnr37k39+vU5fPgw7777LgkJCSQlnfv9It6sY2xhIl0VE/4udULoEOvaRB8Kk31f5KufS0TE3fTtKeKFoqKiWLduHSkpKcTH/5V4F5iu2XDvwE9byDqWRs/7nihO9AHa3nAbC18fV+LcxlfaiIiJY8vCWcXJ/sFf/8fBXTtKbEt3NgEhoSUeSvj5B5DQvA3H/thbfOyX774honYdrrvhhuJjQUFBDBs2jNGjR5/3GpdffjmLFy/m73//O08//TQJCQmMHz+e1NRUtm3bRp0QP1LKkewDtLpuABExcaz45A1WffoOBfZ8ImLiaNj6Ktr1HVR8Xp2LL2Pk5EUsffdFvp85iYL8PKLrJNCi143F5yQ2b02vkf9g3czJ/PLdN5hOJ4/P30RAcCg3PfU6Neo2YNO8afz07deE1apN17+NoseIx84ZX1Hpa9++ffn999/5+OOPOXLkCLVq1cJmszF+/Hgi/+zUL+KLDMOgU1wIgVaDZQeyMcBtW5KWKZ4/r98zIdTlM/pFagRaCbQa5Dk8+UldK9BqEB2oVaciIhWhZF/EC7388svcddddJCYm0rZtW66//nqGDBlCXGIDl4xf1ISpVr1GJY5b/f2L16EXsVgstLruZr6f+Qn5OScJCA5hy8KZ+AUG0aLnjZxPZO34UmvWgyMiObjrp7/iSd1PzYQGOM2S5zVu3LjMn6lLly5s3Lix1PFx48ax41guTkqXnrbte3upstVTNWrXqXh9/rnEXnQpd7w66ZzndL93NN3vLf3gwurnd8Yy2dOdHntR6Wuz7t3p3r37Wd4l4vvaxQQTG+zH/L2ZZOQ7PZLwF3Xd71M/3KVr9EtdxzBoWTOIDYdzPPpgw1UMoFXNIDXnExGpID0qFfFCt9xyC7t37+att94iPj6eV155hebNm7N08cJzv/EsN0ynb71UXq373EL+yWx+WrEQ0zTZunA2l3buRVB4xHnfazlLN3jzDFUKVjd9Y/lqiaivfi6R8koM8+feptG0jSncsaKyUsei67SLCeLeptFuTfSLtK4V5BOJPhRWQrSqVbFdXERERMm+iNeqU6cOI0eOZM6cOezZs4eaNWvy8osvAGfv7h4cEQUUNoI71fHT9muPiitcZ3/ktC7wDrudY3+U7OQPENe4KfGXtmDLwpn8vnktxw8eoHXvWyr2wc4gqk4iRw/8zumPBX799VeXjF9U+upLVPoqUpK/xaBnQhiDm0QSGVD4d8Ndf+uLxo0MsDC4SSQ9EsJcsr1eWUQHWmkQ7l8lt2AtDwNoGO5PdKC2BxURqSjdCYp4GYfDwYkTJZP12rVrEx8fT35eHn6Wwu7uuVkZpd5btGXcqVvoOR0O1s/+rMR5Cc1aERpdi3WzJlFgzy8+vmneNHIzz7x/devrb2HX9ytInvoBIVE1uKRjjzOeVxEXd+hGxuFU5s+bW3wsNzeXDz/80CXjF5W+evvNcRGVvoqcXWKYP8ObRXNzowgahBfOtLvqb0rROA3C/bm5UQTDm1XObP7p2sZ4/+y+CbR1U28DEZHqQjWeIl4mMzOThIQEbr75Zlq2bElYWBjLli1jw4YNvPrqq9QO9qNu05ZsWzKH+a8+RULz1gQGh9LUdg2xF11KYot2LH7rOXJOHCc4Mopti+fgdJRsTmf19+fqkWP46rnRfDSiP5df3Y9jf+xj09wvqPHnA4PTtbzuJha+OZ4d3y7gyoF/K7Ud3YW4YsAQ1k//D4MGDWLUqFHUqVOHKVOmEBT0Z0muC5La1rWCWH8454LHqQpU+ipybhbDoHFkAI0jA0jPc7DlSC5bjuYWN7azGIV9L87H6SjAYi28lQq0GrSqGUSrWkEen42+KCKAqAALJzzUo+BCGRRWRTSKqPwHJSIivkTJvoiXCQkJYeTIkSxZsoTZs2fjdDpp3Lgx7777Lvfffz/LD2TR8Za/kfLLdjbN/YLkKe8TVSeRprZrALjtuff46rlHWTnpTYLCI2h342Auap/Ef+6/ucR1rhgwBKfTwapP32Hh6+OJbdyUIa99xtL3XjxjXOE1a9Pkqq7sXLOM1tdXbMu/swkODeP1GV/zxXNP8MYbbxAWFsaQIUPo2LEjAwYMKE76L0RR6eveTLtX3hwXMSicVfR0siHiLaIDrXSrG0rX+BDS85wcPFnAwZwCUrLtHMwpoOAMG9f7WQobYO7dtoW5X0zmv5/9h1rB/lWmmsZiGPSuH86UXWeuxKrqTKBP/XAsVeT3KSLirQzzTF2wRMRr7TiWy7y9WR659mej7+Lgrp94bO4Gl4/dt344zWoEljj2+uuv88gjj3DgwAHq1q17wdfYdSKPWbszL3gcT7u5UQSNIwPOf6KInJNpmjjNwm1NHc7CJqF+hoHFKKwoWrlyJV27duWHH36gVatWng63lGUHstiUlutVDzANChsa9kgI83QoIiJeT2v2RXyMpzqwZ6QdZOfqpS5tzHeqSMNe4ufc3FwmTpxIkyZNXJLow1+lr946l2QAUSp9FXEZwzCwWgwCrRZC/C0EWi1YLUbxDP6VV15JYGAgK1eu9HCkZ2aLDyXCi77TirYo7BIf6ulQRER8gsr4RXxMUWf5orWn7nbsj73s3bKeDXM+x+Lnz5UDhrj8GoFWg3sHDaRevXq0atWKEydO8Pnnn/Pzzz8zZcoUl11Hpa8iUh5BQUFceeWVrFy5klGjRnk6nFL8LQZ9vOg7reg7rLJ2LhAR8XWa2RfxMZXdWX7Ppu+Y/tRI0v/Yx8AJbxFeK9al4xd1lr/mmmtITk7mscceY/z48QQGBjJt2jQGDRrk0uslhvnTLsb7OvMbQPuYIBI80PlbpDqz2WysWrWKqroqMjHMn54J3jFT3jMh1CO7F4iI+Cqt2RfxQel5Dib+lO7pMFxmRLPoSm04Z3eafPS/dDK8pJN1UenrvU2jNSMmUsmWL19Oz5492b59O82bN/d0OGeVfPAkq1NPejqMs+pcJ4ROcSGeDkNExKdoZl/EBxV1lvf2tM8AGnqgs3xR6as3JPqg0lcRT+rQoQN+fn5Vdt1+kY6xwXSuUzWT6S51QugYG+zpMEREfI6SfREf1TYmyGuS1bMxgbYxnrkBVOmriJRFSEgI7du3r/LJvmEYdIoLKf5e8/SjwaLr90wIpWNcSJXZtlBExJco2RfxUeosf+HaxVTdmbAineuE0M5DD0REpJDNZmPlypVVdt3+qdrFBDO4SaRHu/QXLT0a3CRS318iIm6kZF/ERxV1lq/6t55nVlU6y6v0VUTOx2azcejQIX755RdPh1ImiWH+3Ns0mrYxQUDlzfIXXaddTBD3No1WRZKIiJsp2RfxYeos74JYVPoqIufRqVMnrFZrlS/lP5W/xaBnQhiDm0QSGVB4O+iub5OicSP/nM3vkRCmHiMiIpVA3fhFfJw6y7vO/iw78/dmeux3WfS76VM/XDNiIlXMFVdcQZMmTZgyZYqnQyk3p2myO8POyt/TOFzgX/gQ0QUPEg0Kq7QahvvTNiaYRhH+Hq/WEhGpTjSzL+Lj1FnedVT6KiJn403r9k9nMQwaRwaw64u3+HBIL9rWCiDQapzyelnH+eufA60GV9QOZkSzaG5tHEnjyAAl+iIilUwz+yLVxMa0HJYdyPZ0GOfVMyHUKxo27c+ys2BvJsfzncWzV65WNG5UgIXems0XqdLmz5/PDTfcwK+//spFF13k6XDKzeFwUK9ePfr168c777yDaZqk5zk5eLKAgzkFpGTbOZhTQIGz9Hv9LBAX7Ed8qD9xwX7EhfgRHWjRMiMREQ/z83QAIlI52sUEk+cwWZ160tOhnJU3dZZPDPNneLNodmfY2ZSWw55Mu8uS/qJxGqj0VcRrJCUlYRgGK1eu9Mpkf9myZaSkpDB06FCgsF9JjSArNYKsNCMQANM0cZpQYJo4nGC1gJ9hYDFQYi8iUgVpZl+kGjFNk+8O5VTJhL9LnRA6xAZ77Q1jep6DLUdy2XI0lzxH4deqxQBnGb5hTz0v0GrQqmYQrWoFER1odWPEIuJqbdq0oUWLFkyePNnToZTboEGD2LJlCzt27PDa72ERESlJM/si1UhRZ/lAq8GyA9luKz8vczx/Xt9bSvfPJTrQSre6oXSND1Hpq0g1ZbPZ+OqrrzwdRrmdOHGCr776ivHjx+v7R0TEhyjZF6mG2sUEExvsp87ybqDSV5Hqy2az8frrr7N3717q16/v6XDKbPr06eTn53PHHXd4OhQREXEhlfGLVGN2p8nKlGw2puVW2ix/0XXaxwTRJT60SnbdFxGpiKNHj1KrVi0+/fRT7rzzTk+HU2ZJSUmEhYWxaNEiT4ciIiIupK33RKoxf4tBz4QwBjeJJDKg8OvAXal30biRARYGN4mkR0KYEn0R8Sk1a9akRYsWrFy50tOhlNmuXbtITk4ubswnIiK+Q2X8IqLO8iIiLmKz2bxqhvzTTz8lMjKSG2+80dOhiIiIi6mMX0RKUWd5EZGKmTFjBrfccgt//PEH8fHxng7nnJxOJw0bNuTaa69l4sSJng5HRERcTMm+iJyVaZrqLC8iUg6HDh0iLi6OqVOncvvtt3s6nHP65ptv6NGjB8nJyXTs2NHT4YiIiIsp2ReRclFneRGRc2vatCk2m43333/f06Gc01133cXatWvZuXOnvr9FRHyQGvSJSLkYhoHVYhBotRDibyHQasFqMXSjKCLyJ5vNVuWb9GVmZjJz5kzuuusufX+LiPgoJfsiIiIiLmSz2fj55585dOiQp0M5q1mzZpGTk+NVWwSKiEj5KNkXERERcSGbzQbAqlWrPBzJ2U2ePJnu3btTr149T4ciIiJuomRfRERExIXi4+Np3LhxlS3l37NnDytWrOCuu+7ydCgiIuJGSvZFREREXKwqr9v/7LPPCAsL46abbvJ0KCIi4kZK9kVERERczGazsX37do4cOeLpUEowTZPJkyczcOBAQkNDPR2OiIi4kZJ9ERERERcrWre/evVqD0dS0po1a9i9e7dK+EVEqgEl+yIiIiIuVq9ePRo0aFDlSvknT55Mw4YN6dy5s6dDERERN1OyLyIiIuIGVW3d/smTJ5k+fTpDhgzBYtEtoIiIr9M3vYiIiIgb2Gw2tm7dyvHjxz0dCgBfffUVmZmZDBkyxNOhiIhIJVCyLyIiIuIGNpsN0zRZs2aNp0MBYNKkSXTp0oVGjRp5OhQREakESvZFRERE3KBhw4bUrVu3SpTy79+/n+XLl6sxn4hINaJkX0RERMQNDMOoMuv2P//8c4KDgxk4cKCnQxERkUqiZF9ERETETWw2G5s3byYzM9NjMZimyaRJk7jpppsIDw/3WBwiIlK5lOyLiIiIuInNZsPhcJCcnOyxGNatW8cvv/yiEn4RkWpGyb6IiIiIm1x88cXExsZ6tJR/0qRJJCYm0q1bN4/FICIilU/JvoiIiIibeHrdfm5uLl9++SV33nknVqvVIzGIiIhnKNkXERERcSObzcaGDRvIzs6u9GvPnTuX48ePq4RfRKQaUrIvIiIi4kY2m42CggLWrl1b6deeNGkSHTp04OKLL670a4uIiGcp2RcRERFxo2bNmlGrVq1KL+VPTU1l8eLFmtUXEammlOyLiIiIuJFhGHTp0qXSk/3PP/8cf39/br311kq9roiIVA1K9kVERETczGazsW7dOnJycirleqZpMnnyZPr160dUVFSlXFNERKoWJfsiIiIibmaz2cjPz2fdunWVcr3NmzezY8cOhg4dWinXExGRqkfJvoiIiIibtWjRgujoaFatWlUp15s0aRJ16tShV69elXI9ERGpepTsi4iIiLiZxWKhc+fOlbJuPy8vj6lTp3LHHXdgtVrdfj0REamalOyLiIiIVIIuXbqwdu1a8vPz3XqdBQsWcOzYMXXhFxGp5pTsi4iIiFQCm81GTk4OGzZscOt1Jk+eTLt27WjevLlbryMiIlWbkn0RERGRStCqVSvCw8PdWsp/+PBhvv76azXmExERJfsiIiIilcHPz4+kpCS3JvtTp07FMAxuu+02t11DRES8g5J9ERERkUpis9lITk7Gbre7ZfzJkydzww03ULNmTbeMLyIi3kPJvoiIiEglsdlsZGdns3nzZpePvXXrVrZs2aISfhERAZTsi4iIiFSatm3bEhoa6pZS/smTJxMTE8O1117r8rFFRMT7KNkXERERqST+/v507NjR5cm+3W5nypQp3HHHHfj7+7t0bBER8U5K9kVEREQqkc1mY82aNTgcDpeNuWjRIg4fPsxdd93lsjFFRMS7KdkXERERqUQ2m42MjAy2bNnisjEnT55My5YtadmypcvGFBER76ZkX0RERKQStW/fnqCgIJeV8h89epS5c+eqMZ+IiJSgZF9ERESkEgUGBtKhQweXJfvTpk3DNE0GDRrkkvFERMQ3KNkXERERqWQ2m43Vq1fjdDoveKzJkydz/fXXU7t2bRdEJiIivkLJvoiIiEgls9lspKens3379gsa56effmLDhg1qzCciIqUo2RcRERGpZFdeeSUBAQEXXMo/efJkatSoQe/evV0UmYiI+Aol+yIiIiKVLDg4mCuuuKJUsm+aJgVOk1yHk5N2J7kOJwVOE9M0S41RUFDAZ599xqBBgwgMDKys0EVExEv4eToAERERkerIZrMx4+sl7DiWy8GTBaSeLOBgTgEFZ1jG72eBuGA/6oT4Effnn/UrlpGamqoSfhEROSPDPNOjYhERERFxi/Q8Bz8cyWXTwUwclsJ5FwtQllZ9p57nyD3JzuVzef3R+6gRpPkbEREpScm+iIiIiJs5TZPfMvLZlJbL75l2DMAlN2BOJ1gsNAj3p21MEBdFBGAxDFeMLCIiXk7JvoiIiIgb7c+ys2BvJsfzna5L8k9TNG5UgIXe9cNJDPN3w1VERMSbKNkXERERcQO702RlSjYb03LdluSfrug67WKCsMWH4m/RLL+ISHWlZF9ERETExfZn2Zm/N5OMfGelJPmnM4CIAAt9NMsvIlJtKdkXERERcaGNaTksO5BdabP5Z1N0/Z4JobSLCfZgJCIi4glK9kVERERcwDRNvjuUw+rUk54OpZTOdULoGBuMoeZ9IiLVhsXTAYiIiIj4gqqa6AOsTj3Jd4dyPB2GiIhUIiX7IiIiIhdo4+Gqm+gXWZ16ko1pSvhFRKoLJfsiIiIiF2B/lp1lf2R7OowyWXYgm/1Zdk+HISIilUDJvoiIiEgF2Z0m8/dm4i0r4Q1g/t5M7E61bBIR8XVK9kVEREQqaGVKtse216sIE8jId7IqxTsqEUREpOKU7IuIiIhUwP4sOxvTcr0m0S9iAhvSclXOLyLi45Tsi4iIiJST0zRZ4EXl+6czgAV7M3FqB2YREZ+lZF9ERESknH7LyOe4F5Xvn84Ejuc72Z2h2X0REV+lZF9ERESknDal5XrtrH4RA9ikrfhERHyWkn0RERGRckjPc/B7pt1rZ/WLmMCeTDvpeQ5PhyIiIm6gZF9ERESkHH444v2z+kUMYMuRXE+HISIibqBkX0RERKSMTNNk61Hv68B/Niaw5Wguphr1iYj4HCX7IiIiImV0LM9BnsMzifGWhbNYM+V9l4+b5zBJz3O6fFwREfEsJfsiIiIiZXTwZIHHrr1l4SySp37glrE9+blERMQ9lOyLiIiIlNHBkwU+d/NkMeBgjpJ9ERFf4+fpAERERES8RerJAspT8L57YzJfvzaWQ7/9TETtOnQZ8iCZRw6x/INXeGFzWvF5PyyYwZop73N4zy/4BwbR5KquXPfwOKLi6gLwwbAb2bPpOwDGtIkBIKpOIk8s2AzAd9M+ZN3MyaSn7MPqH0DNhAYk3XE/ra4bcN4YnSakZNvL8alERMQbKNkXERERKQPTNMs1A57y8zY+efBWwmvF0vO+x3E6HHzz4f8RGl2zxHnffvRvlr73Ii163Uj7/neQnX6UtdM+4oN7+/L/vviG4PBIut3zCLlZGWQcSqX36GcACAgJBWD97M+Y9/KTXNbzBjrdPhx7fi4Hd/3E/u2bypTsQ+HMvmmaGIav7DMgIiJK9kVERETKwGFCQTmm9Ze9/zKGxcp9nywgIiYOgBa9buS1mzsVn5Oesp9lE1+m18gxdLvnkeLjzbv35q1B3fl++sd0u+cRmlzVleSpH5CTcYLWvQeWuM7ONUuJvehSBr/8cYU/W4GzcIbfqlxfRMRn+NqyMxERERG3KCjH9nROh4Nf16+iWbfrihN9gFr1GnFJxx7FP+/4ZgGm00mLXjeSnX60+E94zdrUSmzE7o3J571WUHgEJw6lsH/HD+X7QKcpz+cTEZGqTzP7IiIiImXgLMesftaxNOy5OdRMaFjqtRqJfx07sn83pmnyar8rzziOxc//vNey3fUQv65bxbt3Xk3NxIY0uaorLa8bQINWZx7zbBxOwFqut4iISBWmZF9ERESkDCxuqIc0nU4Mw2DoW9OwWEtn2gHBoecdo3ajixn91Vp+XrWEX777hu3fzOf7GZ/Qfdij9Lr/iTLHYlW9p4iIT1GyLyIiIlIGfuVoXhdWIwa/wCCOHthT6rVj+/86VjOhAaZpEl23PjH1LzrnmOdqnhcQHMrl1/Tn8mv6U2DP5/PRQ1nx8Wt0vXsU/oFBZYq5PJ9PRESqPj3DFRERESkDqwF+ZbxzslitNL6iCz99u5CMtIPFx4/s283O75YX/9y8e28sVivLP3gF87Q186Zpkn38WPHPAcEh5GZllLrWqecA+PkHENvoEkzTxFlQtt0D/CxgUa4vIuJTNLMvIiIiUgaGYRAX7MeB7LIl0D1HPM6u71fw/t96c+XNQzGdDtZ++R9iL7qU1J3bAaiZ2JBeI8ew+K1nOZ6yj2ZdrycwNIxjf+xjx7cLuOKmIXQZ8gAAdZu2ZNuSOcx/9SkSmrcmMDiUprZr+HjkQMJr1aZ+yysIqxlD2p5drP3yP1ya1IvA0LAyxRoX7Kdt90REfIxhnv4YWURERETOaPmBLDal5VLWXn2/rV/N16+P5dBvO4mMjafr3aMKk/HpH/PM2v3F521fPp/kKe+TsvNHd9bGJAAAFERJREFUACJj63LRFZ3pePvw4vL+/JxsZj87mp1rlpGbeYKoOok8sWAz62d9ypaFMzm0eyf5J7OJqF2Hy7r3odu9fycoLPy8MVoMaBcTTPe65+8PICIi3kPJvoiIiEgZ7TiWy7y9WRc0xmd/H8Kh337m0f+ud1FUF65v/XCa1Qj0dBgiIuJCWrMvIiIiUkZxIeVbAWnPzSnx85F9v7FzzTIatevkyrAuWHk/l4iIVH36ZhcREREpoxqBVgKtBnmOshVGvtK3HW1uuI0adRtwPHU/38+chNXfny53PejmSMsu0GoQHaj5HxERX6NkX0RERKSMDMOgZc0gNhzOoSzp/sUdurN10VdkHT2MNSCAei3acc2D/6RWvXNvs1dZDKBVzSA15xMR8UFasy8iIiJSDul5Dib+lO7pMFxmRLNoogOtng5DRERcTDVbIiIiIuUQHWilQbg/3j4XbgANw/2V6IuI+Cgl+yIiIiLl1DYmqExl/FWZCbSNCfZ0GCIi4iZK9kVERETK6aKIAKICLF47u28AUQEWGkX4ezoUERFxEyX7IiIiIuVkMQx61w/32tl9E+hTPxyLGvOJiPgsJfsiIiIiFZAY5k+7mCCvm903gPYxQSSEaVZfRMSXKdkXERERqSBbfCgRXlTObwARARa6xId6OhQREXEzJfsiIiIiFeRvMejjReX8ReX7/hZveTwhIiIVpWRfRERE5AIkhvnTM8E7Zsp7JoSSqPJ9EZFqQcm+iIiIyAVqEWFh95IZng7jnDrXCaGdttoTEak2lOyLiIiIXICCggIGDx7Mp2MfISHnoKfDOaMudULoGKtEX0SkOlGyLyIiIlJBTqeT4cOHM2fOHKZPn84dHS8rLun39Kr4ouv3TAilY1wIhrbZExGpVvw8HYCIiIiINzJNk9GjR/PJJ5/w2Wef0bdvXwDaxQQTG+zH/L2ZZOQ7PdK8r6jrfp/64VqjLyJSTRmmaXpLA1kRERGRKmPChAmMHTuWt99+mwceeKDU63anycqUbDam5WJApST9RddpHxNEl/hQdd0XEanGlOyLiIiIlNObb77JqFGjeO6553jyySfPee7+LDsL9mZyPN/ptqS/aNyoAAu9NZsvIiIo2RcREREpl8mTJzN06FAee+wxXnrppTKthXeaJrsz7GxKy2FPpt1lSX/ROA3D/WkbE0yjCH8sWpsvIiIo2RcREREps9mzZzNw4EDuueceJk6cWKGmd+l5DrYcyWXL0VzyHIW3YRYDnGW4Izv1vECrQauaQbSqFUR0oLXccYiIiG9Tsi8iIiJSBsuWLaN3797069ePqVOnYrVeWIJtmibpeU4OnizgYE4BKdl2DuYUUOAsfa6fBeKC/YgP9Scu2I+4ED+iAy3qsC8iImelZF9ERETkPNauXUuvXr3o0qULc+bMISAgwC3XMU0TpwkFponDCVYL+BkGFgMl9iIiUi5K9kVERETOYdu2bdhsNlq0aMGiRYsICQnxdEgiIiLnpWRfRERE5Cx27dpF586diY+P59tvvyUyMtLTIYmIiJSJkn0RERGRMzhw4ABJSUkEBwezatUqYmJiPB2SiIhImVk8HYCIiIhIVZOWlkavXr0AWLp0qRJ9ERHxOn6eDkBERESkKjlx4gTXXnst6enprF69moSEBE+HJCIiUm5K9kVERET+dPLkSW644QZ2797NypUradKkiadDEhERqRAl+yIiIiJAfn4+N998M5s2bWLZsmVcfvnlng5JRESkwpTsi4iISLXncDgYMmQIy5cvZ/78+XTo0MHTIYmIiFwQJfsiIiJSrZmmyf3338+MGTOYMWNGcWM+ERERb6ZkX0RERKot0zR54okn+PDDD/nkk0+46aabPB2SiIiIS2jrPREREam2XnzxRV555RVef/11hg4d6ulwREREXEbJvoiIiFRL7733Hk8++STjxo1j1KhRng5HRETEpQzTNE1PByEiIiJSmaZMmcKdd97JqFGj+Pe//41hGJ4OSURExKWU7IuIiEi1Mm/ePPr378+QIUP46KOPsFhU6CgiIr5Hyb6IiIhUG99++y3XXXcdffr0Ydq0afj5qVexiIj4JiX7IiIiUi2sX7+eHj160LFjR+bOnUtgYKCnQxIREXEbJfsiIiLi83bs2EGXLl249NJLWbJkCaGhoZ4OSURExK2U7IuIiIhP2717N0lJSdSuXZsVK1YQFRXl6ZBERETcTsm+iIiI+KyUlBSSkpLw8/Nj9erVxMbGejokERGRSqGuNCIiIlKpTNPEYUKBaeJ0gsUCfoaB1cClW+AdPXqUq6++GrvdzooVK5Toi4hItaJkX0RERNzGNE2O5Tk4eLKAgycLSD1ZwMGcAgqcpc/1s0BcsB91QvyI+/NPjUBrhR4AZGZmct1113H48GFWrVpFvXr1XPBpREREvIfK+EVERMTl0vMc/HAkl61Hc8lzFN5qWIAz5PilnHpeoNWgZc0gWtcKIjrQWqZr5+TkcP3117N582ZWrFhB69atK/IRREREvJqSfREREXEJp2nyW0Y+m9Jy+T3TjgG44iajaJwG4f60jQnioogALGeZ7bfb7QwYMIBly5axZMkSkpKSXBCBiIiI91GyLyIiIhdsf5adBXszOZ7vdFmSf7qicaMCLPSuH05imH+J151OJ0OGDGH69OnMnTuXa6+91g1RiIiIeAcl+yIiIlJhdqfJypRsNqblui3JP13RddrFBGGLD8XfYmCaJg8++CDvv/8+06ZNY+DAgZUQiYiISNWlZF9EREQqZH+Wnfl7M8nId1ZKkn86A4gIsNCnfjjvvzCO559/no8++oh77rnHA9GIiIhULUr2RUREpNw2puWw7EB2pc3mn41BYcf/uS8/yYD2lzJ69GgPRiMiIlJ1KNkXERGRMjNNk+8O5bA69aSnQymlc50QOsYGV2irPhEREV9j8XQAIiIi4j2qaqIPsDr1JN8dyvF0GCIiIlWCkn0REREpk42Hq26iX2R16kk2pinhFxERUbIvIiIi57U/y86yP7I9HUaZLDuQzf4su6fDEBER8Sgl+yIiInJOdqfJ/L2ZeMtKeAOYvzcTu1NtiUREpPpSsi8iIiLntDIl22Pb61WECWTkO1mV4h2VCCIiIu6gZF9ERETOan+WnY1puV6T6BcxgQ1puSrnFxGRakvJvoiIiJyR0zRZ4EXl+6czgAV7M3Fql2EREamGlOyLiIjIGf2Wkc9xLyrfP50JHM93sjtDs/siIlL9KNkXERGRM9qUluu1s/pFDGCTtuITEZFqSMm+iIiIlJKe5+D3TLvXzuoXMYE9mXbS8xyeDkVERKRSKdkXERGRUn444v2z+kUMYMuRXE+HISIiUqmU7IuIiFQjGzZsoGPHjoSGhmIYBv369cMwSqb1pmmy9WjV7cA/Y+yDvNS7TZnPN4EtR3Mx1ahPRESqET9PByAiIiKVw263M3DgQIKCgnjttdcICQlhw4YNpc47lucgz+FbiXGewyQ9z0mNIKunQxEREakUhqnH3CIiItXCzz//TNOmTfnwww+59957ASgoKKCgoICgoKDi83Ycy2Xe3ixPhXleDrsd03TiFxBYrvf1rR9Osxrle4+IiIi3Uhm/iIhINXH48GEAoqKiio/5+fmVSPQBDp4sqNI3CFZ//3In+hYDDuYUuCkiERGRqqcq/7dcREREXGTo0KHYbDYABg4ciGEYdO3alXHjxpVas98zMZyvXnyCHd9+zesDO/OvK+vy2s1J7ExeXuK89JT9zHnhcV7tfxVPdUhkQreLmfL43aSn7Ctx3qa5XzCmTQy/b1nH/Fef4tnul/J0x/p8NvoustKPlIp1Z/IyPri3L2OTGjCuc0PevqMXWxbOKn799DX76Sn7GNMmhlWfvsP6WZ/ySt/2/OvKurx9Ry/27/gBAKcJKdn2wvfPmEGzZs0ICgrisssu46uvvmLo0KE0aNCg4r9gERGRKkZr9kVERKqBESNGULduXZ5//nkeeugh2rdvT2xsLMnJySXOK1rdt3fLOnZ8s4CrbvkbgSFhfDftI6Y8djdPfP0DoVE1ADjw0w/s27qey6/uT2RsPOkp+1g3cxIfDOvHIzPXEBAcUmLseS+PITg8iu7DH+V46n6Sp05k7ov+DHrpo+JzNs39glnjR1H7okvp+rdRBIVHkrrzR3757htaXTfgnJ9x66JZ5GVnccVNQzAMg1WT32bKo0N5bO5GrP7+HMwpYP78+dx66620aNGCF154gfT0dO655x7q1q3ril+ziIhIlaFkX0REpBro0KEDeXl5PP/883Tu3Jmbb74ZoFSyX9SX7/CeXTwycw01ExsC0KhdEm/e1pWti2bT8bbC9f6XJvWiRc++Jd7ftMs1vDf0OrYvn0+bPreUeC0ksgZ3vzujuJLA6XSydtqH5GZmEBQeQW5mBvNeeZKE5m0Y9uEc/AP/Wl5QlhZDxw/+waNz1hEcUbhMoVaDxnz2yJ38svZbmna5mgInPPnkk9StW5fk5GTCwsIA6NGjB127dqV+/fpl+l2KiIh4A5Xxi4jI/2/v/mKzqs84gH/P25a+pX+kYENpQAayYRw6HLi5EcEluCwpjMULlyxIQpZMr5ZsyxK92QVLiNnFjItmLiHRmCUsWeRC57zQLLBdLJt/JjIXsrFNhgqKo1pACv3z7gLbWVug1kLp4fO5aXvO+z7nuev7fZ/f7xwYMfBBqF72xbUjQT9JFnzms2lsac2xNw6OHGuoNo38Ptjfn5PvHsu8RUtSbb0qb+5/ZUztL9xx16gtA0tuuiVDg4PpOXwoSfKPP+3O6ZMnsm7rd0cF/SRjthqM58bbN40E/eH6SXLsjdeSJL1Hj2Tfvn3ZsmXLSNBPknXr1uWGG264YH0AmElM9gGAEUNDZ3/O6Vw45lxT65z09b478nd/36nsfvTBvPjkzvS+fXjU9L3vRO+Y91/1kZrDwfzU8bM1j73+WpJk/rXXTar3OQvOUb/3vSRn7zGQJMuWLRvz3mXLluWll16a1HUB4HIk7AMAIyofrPkrKuMv/qvl/4H+yZ/clxef3Jk137o719y4OtWWthRFkZ33fSe12tDY2nXneMb9FD0EuKicq76nDANw5RH2AYAR9RNYLj/sr889lc9v+Ga6v79t5Fj/6b70HX9vUteeu/BTSZK3/rk/V1+zdFI1zqe9a1GS5MCBA2POjXcMAGYye/YBgBF1E8/6KerqxkzN//irHRkaHJzUtT99y1fS2NyS3Y8+mP7TfaPOTeQGfRcyd35nVqxYkccffzwnTpwYOb5nz57s27fvE9cHgMuJyT4AMGIiN8Ibdt2tt+cvv/11GlvaMn/p8vznledz4M+/z+wPHs33cVVbWtP9gx9n17bv5eG7vpqVX7sjTW1zcvjvr+ZM3/u5c9vDk6o7rLOpPtu3b8+mTZuyZs2abN26NT09PXnooYeyYsWKUV8AAMBMZ7IPAIwxkci/8Yfbc1P3ndn7zBN5+oEfpfedt/Ltnz+RWU3Nk77uzd/YnC0P/DLV5pb8bsdP88zPtuWN/a9k+Zr1k66ZJJUi6WpuyMaNG7Nz586cOXMm9957b3bt2pXHHnssy5cvT7VavXAhAJghitpUrIsDAErj1WN9eepg+abcX1/cmuvnNo57buXKleno6Mizzz57ibsCgIvDZB8AGKVzdjl3+XXOrk9/f38GBgZGHd+9e3f27t2b2267bXoaA4CLoJz/zQGASZvbWJfGuiKnB8uz+K+xrkh7YyUHDx7K+vXrs3nz5nR1dWX//v155JFH0tnZmXvuuWe62wSAKSPsAwCjFEWRz82r5vm3T6UMcb9IsnJeNUVRpL29PatWrcqOHTty9OjRNDc3p7u7O/fff3/mzZs33a0CwJSxZx8AGKPn9GB+8bee6W5jytx9fXvaG+umuw0AuGTs2QcAxmhvrMunWhsmdFf+y1mRZElrg6APwBVH2AcAxrWqozrjl/HXkqzqaJruNgDgkhP2AYBxXds2K3NmVWbsdL9IMmdWJUvbGqa7FQC45IR9AGBclaJI9+LWGTvdryXZsLg1lWKmfl0BAJMn7AMA57SopSGrO6ozbrpfJLm5o5qFLab6AFyZhH0A4LzWdTWnbQYt5y+StM2qZG1X83S3AgDTRtgHAM6roVJkwwxazj+8fL+hMlO+ngCAqSfsAwAXtKilIesXzoxJ+fqFzVlk+T4AVzhhHwCYkNUdTbl1wezpbuO8bl0wO6s9ag8AUj/dDQAAM8eX558N0n84/P40dzLW2gWz86X5gj4AJElRq9VmyhY8AOAy8cLRU3nu9ZMpkmndyz98/fULm030AeBDhH0AYFIOnejPbw4eT++ZoWkJ/MN33d+wuNUefQD4CGEfAJi0/qFa9rx5Mi8c7btkU/7h69zcUc3armZ33QeAcQj7AMAnduhEf54+eDzvnhm6aKF/uO6cWZV0m+YDwHkJ+wDAlBiq1fKv3v68ePRU/n28f8pC/3CdJa0NWdXRlKVtDakUpvkAcD7CPgAw5XpOD+bld/ry8n/7cnrw7EeNSpEMTeBTx4df11hXZOW8alZeXU17Y91F7BgAykXYBwAumlqtlp7TQzny/kCOnBrImyf7c+TUQAaGxr62vpJ0NtWnq7khnU316Zxdn/bGSgpTfAD42IR9AOCSqtVqGaolA7VaBoeSukpSXxSpFBHsAWCKCPsAAABQMpXpbgAAAACYWsI+AAAAlIywDwAAACUj7AMAAEDJCPsAAABQMsI+AAAAlIywDwAAACUj7AMAAEDJCPsAAABQMsI+AAAAlIywDwAAACUj7AMAAEDJCPsAAABQMsI+AAAAlIywDwAAACUj7AMAAEDJCPsAAABQMsI+AAAAlIywDwAAACUj7AMAAEDJCPsAAABQMsI+AAAAlIywDwAAACUj7AMAAEDJCPsAAABQMv8D1wy84wWsOjMAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -2723,7 +2869,7 @@ }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 89, "metadata": {}, "outputs": [], "source": [ @@ -2738,16 +2884,16 @@ }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 90, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "480" + "436" ] }, - "execution_count": 98, + "execution_count": 90, "metadata": {}, "output_type": "execute_result" } @@ -2758,16 +2904,16 @@ }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 91, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "62" + "57" ] }, - "execution_count": 99, + "execution_count": 91, "metadata": {}, "output_type": "execute_result" } @@ -2778,14 +2924,14 @@ }, { "cell_type": "code", - "execution_count": 100, + "execution_count": 92, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt4AAALeCAYAAACdlBZfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXiT1xfA8W/Spt5SL+7a4u6F4VAGDN+A4dYNd5ggY7iOoUOGbLDhOqxYcXco7lSpS+T+/sjIjw7aJlCF+3mePBvJK+etpCf3PfdchRBCIEmSJEmSJElSmlJmdACSJEmSJEmS9CmQibckSZIkSZIkpQOZeEuSJEmSJElSOpCJtyRJkiRJkiSlA5l4S5IkSZIkSVI6kIm3JEmSJEmSJKUDmXhLkiRJkiRJUjqQibckSZIkSZIkpQOZeEuSJEmSJElSOpCJtyRJkiRJkiSlA5l4S5IkSZIkSVI6kIm3JEmSJEmSJKUDmXhLkiRJkiRJUjqQibckSZIkSZIkpQOZeEuSJEmSJElSOpCJtyRJkiRJkiSlA5l4S5IkSZIkSVI6kIm3JEmSJEmSJKUDmXhLkiRJkiRJUjqQibckSZIkSZIkpQOZeEuSJEmSJElSOpCJtyRJkiRJkiSlA5l4S5IkSZIkSVI6kIm3JEmSJEmSJKUDmXhLkiRJkiRJUjqQibckSZIkSZIkpQOZeEuSJEmSJElSOpCJtyRJkiRJkiSlA5l4S5IkSZIkSVI6kIm3JEmSJEmSJKUDmXhLkiRJkiRJUjqQibckSZIkSZKU5al1ghi1Do1OZHQoSTLP6AAkSZIkSZIk6X1ohSDgVQInA2N5GaNBqQCdgJy25lT1sKaQgwVKhSKjwzRQCCEy78cCSZIkSZIkSXqHOI2OP++EExKvRa17+3WVEjyszWlXKBsWZpkj+ZalJpIkSZIkSVKWotUJ/rgTTmDcu5NuALUOnsdo+OtuOLpMMs4sE29JkiRJkiQpS7nxKp7QeC0plXNrBbyI1XA3IiF9AkuBTLwlSZIkSZKkLOXky9gkR7r/S63Tb58ZyMRbkiRJkiRJyjJiNDrC4rUm7fMsWpMpup3IxFuSJEmSJEnKMuK1AqWJcyWVCkjQysRbkiRJkiRJkoxmoVSkWNv9XzpBpuhsIhNvSZIkSZIkKcuwMVfgYGFaCpvdxhxzU4fJ04BMvCVJkiRJkqQsIzw8nAcHt5IQG2PU9iolVPGwTuOojCMTb0mSJEmSJCnT02q1LF26lOLFixN2/Szu9tYpJrJKBbhYmlE0m0W6xJgSuWS8JEmSJEmSlKn5+/szYMAArK2t2bVrF+XLlydarWNdQDgh0XFgrnprH5USnC3N6FA4W6ZZNl6OeEuSJEmSJEmZ0tOnT+nUqRPt27dn6NChHD16lPLlywNgq1LSMb8V++ZPwBY1Zgp9sm2mADcrMxrnsaNLUUeszDNPuitHvCVJkiRJkqRMJT4+nlmzZjFz5kx69+7NzZs3sbOze2u71atWYhP2hG/L5SBGrSNeJ7A0U2CTiZLtN8nEW5IkSZIkScoUhBDs2LGDwYMH4+XlxalTpyhUqNA7t1Wr1UybNo1169YBYKNSYpOewb4HmXhLkiRJkiRJGe7WrVsMGjSI+/fvs2DBAho1apTs9n/++Sf58+enWrVq6RThh8uc4/CSJEmSJEnSJyEiIoJhw4ZRo0YNGjRowOXLl1NMunU6HT///DNjxoxJpyhTh0y8JUmSJEmSpHSn0+lYuXKlvj1gWBjXrl1jyJAhWFik3Ppvy5Yt2NraUr9+/XSINPXIUhNJkiQp61GrIT4ebG0hk7QJkyTJeKdPn+bbb79FoVCwZcsWKleubPS+QggmT57M2LFjUWSx33854i1JkiRlDVFRsHgxFC4Mlpbg5ATW1tC9O1y5ktHRSZJkhBcvXtCtWzdatmyJr68vx48fNynpBti3bx+xsbG0aNEijaJMOzLxliRJkjK/mzf1CffQoXD3LggBGo1+1Hv1aqhSBb7/Xv+8JEmZTkJCAjNnzqRkyZK4ublx8+ZNunTpglJpeio6efJkRo8e/V77ZjRZaiJJkiRlbk+fQo0aEBb27sRao9E/Zs4EKyvIYpOtJOljt2fPHgYNGkTBggU5fvw4RYsWfe9j+fv78/DhQzp06JCKEaYfhRByeECSJEnKxLp1049qa7Upb2tpCU+egKtr2sclSVKy7ty5w5AhQ7hx4wZz5syhWbNmH3xMHx8ffHx86Nu3bypEmP6y3hi9JEmS9OmIiID1641LugGUSli2LG1jkiQpWVFRUYwePZqqVatSo0YNrl69mipJ98WLFzl//jxdu3b98CAziEy8JUmSpMzrwAFQqYzfPjYWfv897eKRJClJQgjWrl1L8eLFefr0KZcvX2bkyJFYWlqmyvGnTJnCkCFDsLKySpXjZQRZ4y1JkiRlGnFxcQQFBREYGEhgYCD227dTKTYWk/5sR0SkVXiSJCXh3LlzDBgwgPj4eDZs2ED16tVT9fi3b9/mwIEDLF26NFWPm95k4i1JkpSKAmM1PIxUo9YJrMwUFMlmgb2FWUaHlWE0Gg3BwcGJkunXjzefe/78OYGBgcTHx2NjY4OZmRlarZam0dEs0elMSrzDtVrCHz0ib968aXZdkiTpBQUFMXbsWLZt28akSZPo1q0bZmap/543depUfH19sbe3T/VjpyeZeEuSJKWCh5EJHHgaTWicFgHoBJgp4MDTaPLaqWiYxw4ny/RJwJ/HqDn9MpY7EQlodGCuhEIOFlR2tyaHjfkHLTghhCAsLOytxPldyXRgYCDh4eE4OTnh7u6Oi4sLVlZWKJVKNBoNUVFRhIWF8eLFCzQaDcWKFaN48eIULVr0/w8nJxxKloS4OKPi05ibc8DRkb4VK2Jvb0+dOnWoW7cudevWJVeuXO993ZIkJaZWq/n111+ZNGkSnTp14ubNmzg6OqbJuR49esTmzZsJCAhIk+OnJ9nVRJIk6QNdD41j16MoNMm8m1ooFXxVJBseNmk33qHVCbY9jORueAJaAW+Go0CfgOe3V9EivwPmSn3yLYQgOjo6ycT5v88FBwdja2uLu7s7bm5uuLu7J3o4OTkZkuqQkBCePn1KQEAAAQEBBAcHU6hQIUNSXaRIEcP/u7u7J/2BoHVr2LzZuB7dlpZw5w4iVy6uX7+On58ffn5+HD58GGdnZ+rWrWtIxrNnz/7BX3NJ+hTt37+fgQMHkjNnTubOnYunp2eanm/gwIFYWFgwffr0ND1PepCJtyRJ0gcIitWw6tarZJPu16zNFPTzcsbCLPWXOBZCsOleBPcj1cnGolMnEHbvOodnjyXw5UsCAwMB8PDwSDKZfvM5V1dXVCoVT5484fbt29y+fZuAgADD/z9+/JhcuXIlHrX+N8nOkyfP+92CvnkTKlXSr1yZHBsb6NoVFix4+7p1Oq5cucKhQ4fw8/PjyJEjeHh4GEbD69Spg5ubm+mxSdIn5MGDBwwdOpQLFy4wa9YsWrRokeZLtgcGBlK8eHGuXbtGjhw50vRc6UEm3pL0EdAJQWCsljitDkulAncbc8zS+M1Q0tv+IJLrYfEY80aqUkL9XHaUcTVtRr5WqyUkJCTZkg7hkosK3UegsrZJ8XhKnRYvbSCebna4u7tja2v71jZCCIKCghIl1a8fd+/excnJ6a1R66JFi1KgQIFU62CQiL8/NGkCCQn61Sr/y9YWWrWClSvBiOReq9Vy6dIl/Pz8OHToEEePHiV37tyGRNzb2xsXF5fUvw5Jygyio+GPP+CXX+DZMzA3h4oVYdgwqFUL/vP3IyYmhilTpvDrr78yaNAghg4dirW1dbqEOnbsWEJDQ1m4cGG6nC+tycRbkrKwOI2OM0GxnAuKQyf075Xi3/+Wd7Wikrs1Nuaya2haidfqmH8l1KjR7tecLJX0LuFEeHh4ivXRrx+vXr3C0dExyVFod3d3XuapQLj52wl0UnLbmtOpqCMRERGJkus3/1+hUFCsWLG3SkMKFy6cMROcnj6FefNg0SJ9X2+lUp+EV6sGI0boE/P3/MCp0Wi4cOGCoTTF39+fggULGkbDa9eujZOTUypfkCRlgN27oW1b/e/Km3eRFAr9XaPCheGff8DDAyEEGzZsYPjw4dSoUYNp06aRJ0+edAs1PDycggULcubMGQoWLJhu501LMvGWpCwqPEHLmtvhxGh0aN/xW2ymACszBZ2KOqbbpL5PzYsYDesCwknQGf82qtNq+bF6HqytrZMt6XjzORcXF8zNk64NV+sEsy+FoDMhdp1Ww8K21QkNfEnhwoXfWRri4uKS5reR30tCAjx+rE+6PTwgDUam1Wo1586dMyTiJ06coGjRooYR8Vq1auHg4JDq55WkNPXPP/o7Q7GxSW+jUkHOnFxdvRrfceMIDw9n3rx51K5dO/3i/NfPP//M9evXWb16dbqfO63IxFuSsiC1TrD0RhiRCbpkSxwUgK1KSa8SjliayZHv1PY8Ws0fd8JJMCXjRTCohH2qLgARqday+FqYSSPvSqGjhUsCRfLkRKmUPxspSUhI4PTp04Ya8dOnT1OiRAlDIl6zZk3s7OwyOkxJSlpCAri7Q3h4ipuqlUrWWVgQO3s2vXr1SpP2gCmJiYmhYMGCHDhwAC8vr3Q/f1qRibckZUGXQuLY/yQKtREJn7kC6uS0oaJ7yrW/kmmi1DoWXgt95x2HpFibKRhYOnVHaOO0OuZdDjVpxNtMAb4lnWUp0nuKi4vj1KlThhHxc+fOUbp0aUPHlBo1amBjI3/npExk/Xro2TPlScr/EtbWKIKC9PMnMsD8+fM5ePAgmzdvzpDzpxWZeEtSFrT4eihh8canWfYqJf29nDJn2UAWt+b2K55Ea4za1kwBld2t8c6Zun/IhBAsvh7GKxOG3rNZKOnrKX8mUktsbCwnTpwwJOIXL16kXLlyhhHxqlWrpttkNEl6p7p14dAh47e3t4dly6BduzQLKSkJCQkULlyYjRs3UqlSpXQ/f1qSC+hIUhaToBWEm5B0A8RodMRoBLYqmWSltmoeNmx5EGHU3QcFUN4t9UpMDMdVKKjiYc3Bp9FGxaFSQhV3a5l0pyJra2s+++wzPvvsMwCio6Px9/fn0KFDjBkzhitXrlCxYkVDIl6lSpW06f4iSUl5/ty07RMS4OXLtIklBWvWrKF48eIfXdINMvGWpCxHrRMoFfqVEY2lVOj3k1JfQQcVBax0XAuNQ2WVdGmBuQIa57HDXpU2tZIlna048SIWjS7lun8rMyUlnVP/A4D0f7a2tjRs2JCGDRsCEBkZybFjx/Dz82PYsGHcuHGDypUrGxLxSpUqYWFhkT7BabWwaxdcuqRPrvLlgzZtIFu29Dm/lDFM/aBnZmb6PqlAq9UyZcoUlixZku7nTg+y1ESSshiNTjDLxA4WSgUMKOWMlZxgmepiY2OpU6cOzQf/gFXxyqAAzRvfHJUSlChokteW4k5pm+wa0+nG2lxJpyLZcJSdbjJUeHg4R48eNZSm3Llzh2rVqhnaF1asWDHZTjbvRQiYOxd++knfESY6GnQ6fQ2vVgvt2+tflwn4x2nwYP3iUmq1cdvb2MDJk1CqVNrG9R8bNmxgzpw5+Pv7f5R35WTiLUlZ0Po74dyPNPLNk//3bJZSl06no0OHDqhUKtasWUO8VnAlNI7brxJI0AlszJWUcrGiWDYLzJTp8wckTqPjXFAcZ4NiiYyOxtLSEjMzM5QKBRXdrKjoZo2VnFCZ6YSGhiZKxB88eECNGjUMI+LlypX7sM4SQkD37rBhA8TEvHsbS0vInRtOnwZn5/c/l5Q53bsHXl4QF2fc9mXKwMWLaRrSfwkhKFeuHJMmTcLHxyddz51eZOItSVnQg8gENt4zrq5YpYTP89tTJJusJ01t48aNw8/PjwMHDqRqe8DUoBOCMjXrsnL1WnJl98DdWp98S1lDcHAwhw8fNqys+eTJE2rVqmVIxMuUKWNaG8gFC/SLDCWVdL9mYQE1asDBgx92AVLm1LYt7NyZfB9vAGtr2LQJGjdOn7j+tWvXLkaPHs3Fixc/ytFukIm3JGVJQgi2PIjkbnhCsr2b1XGxOBNP/6qFPto3sYyyatUqxo8fz6lTp3Bzc8vocN4SExODs7MzMTExsk/3RyAwMNDQQ9zPz4+goCBq165taF9YsmTJpL/POh3kygUvXhh3MmtrOHcOSpRIvQuQMoe4OGjQQP/9TSr5traGGTOgf/90DU0IQc2aNfn222/p0KFDup47Pcl3Y0nKghQKBZ/nt6eooyXmCv2EuUSvAyoF5FBpmdTGmwMHDmREmB+tI0eOMHz4cHbs2JEpk26ABw8ekC9fPpl0Z7T4eFi7FsqW1Sc0Fhb6co7JkyEoyOjDuLu7065dOxYuXMjNmze5evUq7dq149q1a7Ru3RoPDw/atGnDggULuH79OonG1A4c0NdzG0uthvnzjd9eyjqsrODgQYIGDOCFQoGws9O3DXRw0L9Ws6Z+RDydk26Ao0ePEhgYSNu2bdP93OlJjnhLUhb3MkbDmcBYAsITUOsE5koFhRxUVPawJoeNimPHjvHFF1/w119/4e3tndHhZnl37tyhZs2arF69mgYNGmR0OEnasWMHCxYsYPfu3Rkdyqfrxg197+To6LcXLXnd03vVKv3t/w/05MmTRCPi0dHRhtHwLx4+xG3WLBQJCcYfsGJFOHPmg+OSMqehQ4dirlQytWVLePJE/4GwTBkoWDDDYmrcuDFt27alR48eGRZDepCJtyR9Ag4ePEiHDh3YsmUL1atXz+hwsqywsDCqVavG4MGD6dOnT0aHk6z58+dz8+ZNFixYkNGhfJoePIDy5eHVK/3ExqTY2MAff8Dnn6fq6R8+fGioDy+ydSvDX73CpGaF5crB+fOpGpOUOcTExJA3b17OnDlDgQIFMjocAM6ePUurVq24e/du+rXVzCDyHqQkfQI+++wzVq9eTcuWLTl9+nRGh5MlJSQk0Lp1a5o2bZrpk26Ae/fuZZo/qp+kAQMgPDz5pBv0kx2//jrlFm8hIfoEfeFCfelKCvXa+fLlo2vXrqxcuZIxS5Zgbsqy3woFFCli/PZSlvLnn39StWrVTPX+8PPPPzNs2LCPPukGmXhL0iejUaNGLF++nObNm3NejmSZRAhB//79sbOzY/r06RkdjlHu3btHwQy8bfxJe/EC9u7VT2o0hlYLW7e++7X79/VLdufODX36wNCh0Lcv5M8PPj5w/XqKh1c0b25Srb/O2hq++cbo7Y0lhCBSrSU0TkuMMS2ZpFQnhGDBggX4+vpmdCgG169f59ixY/Ts2TOjQ0kXcuVKSfqE+Pj4sGjRIpo2bcq+ffsolc4LI2RVM2bM4OzZsxw7duzDeimno/v378vEO6Ns26Zf9c9YkZGwfLl+9cg3Xb4MtWvrX9fp3u6/vGsXHDoEe/boJ8UlxcpKn7QvWJBiGzkd8CAujoZdu1Ln39aFdevWJWfOnMZfz38kaAVXQuI4FRhLtEZnWHnX2dKMqh7WFHeyxEx2XUoXp06dIjw8nEaNGmV0KAZTp05lwIAB2JpyVyYLkzXekvQJ2rBhA4MGDeLAgQOUkC3DkrVlyxa++eYbTpw4QZ48eTI6HKMIIbC3t+fp06dkk6sQpr/Jk+G774wf8QZ9Pfi5c///d3g4FCqkLzFJib29fiJnrlxJbxMXp0/Or11LcgEVLaB0cICTJ7mm1Romah4+fBhXV1fDqpp169bFw8PDqMuKSNCyJiCcGLXuna1PVUpwszKnfWEHLOXKummuc+fOlC1blqFDh2Z0KIC++1KFChW4e/cujo6OGR1OupA/5ZL0CWrXrh3Tpk2jQYMG3L59O6PDybTOnTtHr1692LJlS5ZJugGCgoKwtLSUSXdqOncOvvwSXF3Bzg5y5tSXfdy///a2NjagUpl2/P+O9q1alfIiJ68lJMAvvyS/jZUVHDkCPj7EKxRo34xPqUTY2vLM1pa5X36JokQJSpYsybfffsumTZsICgpiw4YNFC9enD/++IPixYvj6emJr68vf//9N0FJtEWM1+pYczucyIR3J90Aah28jNXw190I5Dhg2goMDGTHjh1069Yto0MxmD59Or179/5kkm6QI96S9Elbvnw5P/74I4cOHZJlCf/x5MkTqlatyrx58/jiiy8yOhyTnDp1im+++YYzsh3ch4uN1bf78/PTjxS/OYptYQFKJQwcCD//rJ+UCHDpElSvnvIqkf/SWllhNmECDB+uf0IIyJtX3+bNWNmy6fuCp5DwX7hwgd5Nm3Kya1fMTp/WT+osXBj69eNFnjyULVuWTZs2Jdv9SKvVcvHiRUP7wmPHjpEnTx5DWYq3tzfOzs6cfhnDkecxyS7y9ZpKCa0KOFDQ4eOfXJdRfv75Z+7cucNvv/2W0aEA8OLFCzw9Pblx44bRd1A+BjLxlqRP3MKFC5k2bRqHDh0iX758GR1OphAVFUWtWrXo0KEDI0eOzOhwTPbHH3+wefNmNmzYkNGhZG0ajX6Vv5MnkyzPAPQj3P366Vf7e610abhyxajTxAHdGzVi+M8/U65cOX3C7uCgn3RpLBsbfblJ3rzJbta1a1eKFy/OqFGj3vn65s2bGTZsGJcuXcLOzs6oU2s0Gs6fP29oX+jv70+hwoVpM38jZjb2Rl9CPjtzOhZxNHp7yXharZaCBQuyefNmypcvn9HhADBy5EhiY2OZN29eRoeSrmTiLUkSc+fOZf78+Rw+fJhcydWJfgK0Wi1ffPEFrq6uLFu2DEUWnPT1008/ERkZyZQpUzI6lKxt9Wp9Qm3Mqo/W1nD6NJQsqf/3/v363twplYvY2KDp3ZtfCxRgypQpVK1alQlDhlCyXj19CYmx7Oz0fbeTaQP48uVLihcvzp07d3BxcUlyu+7du2Nubs6SJUuMP/8b1Go1R89d4pRZLhTmxpfcKIARZV2y5O9cZrd161amTJnCiRMnMjoUQL8mQuHChblw4QJ5U/iw+LGRNd6SJDFw4ED69OnDZ599xosU+gN/7EaOHElERAQLFy7MsgmA7GiSSqZONX6p9YQEmDPn//+uX1/fc9va+v8lKP9lawutW2M+cyYDBgwwrIraoHVrEjQa02JNSAB392Q3WbRoEe3bt0826Qb9B/H9+/ezbds202L4l0qlwqt0WSzfoyezVg4FpokFCxbQPwOWgU/KL7/8QosWLT65pBtk4i1J0r+GDx9O586dqVevXpKTpT52S5YsYdu2bWzcuDFLL+QgF89JBQ8fwr17xm+v1cKffyZ+7uuv4ehRaNUKnYUFEQoF4QqFPhmvUAFWrtRPovy3x7aNjQ1Dhgzhzr173C5XjhSW1DEQgKhTR1/nnYT4+HgWLlzIgAEDUjyevb09v//+O3369CEwMNDIKBKzNFOgM/GGugIwy5qfdTO127dvc/HiRdq2bZvRoQD6Ur758+dnyTK+1CATb0mSDMaNG8cXX3xB/fr1CTGmjdlHZP/+/Xz//ffs3LkTZ2fnjA7ng8jFc1JBYKDpnUmio9+uy65QATZu5NCaNYwpV47WKpW+pd/Zs/q+3e8YDbe1taXk8uWYW1sbddpYhYJRISHcuXMnyW3Wr19PmTJl8PT0NOqYNWvWpGvXrvTq1eu9uo1ks1BiqzItxSjgoMqyd5kys19//ZUePXpgZWWVvicWQv/Bs2VLyJdPvwhUjRoc6tePerVrU6xYsfSNJ5OQibckSYlMmDCBRo0a0bBhQ169epXR4aSLGzdu8OWXX7J+/XqKZPGlstVqNc+fP/8kb+GmKmvrlJd7/w9hZmYYvf6vW8HBJFSogJ9Gg8aY1pSlS6MYMUI/aTI5trZY9uyJe8eOVK1alfHjxxP3n4mgQgjmzJnDwIEDjb0UAMaPH8+jR49Yvny5SfsBKBQKqrhbY25klqFSQhX3FK5VMll0dDSrV6+mb9++6XviZ8+gTBlo0kS/oNSjR/D0KRw/jvfatazetw8ySb15epOJtyRJiSgUCqZOnUqtWrVo3LgxERERGR1SmgoODsbHx4dp06bh7e2d0eF8sEePHpEjRw5Upo7WSokVLZp0bXYSLigU9OzVi507d76V/L6+C2FnZ0dUVJRxB/zhB/jhB3SWlvy30jzBzAydpSX4+mK2aBFDhw7lwoULXLp0idKlS7N//37DtseOHSM6OprGjRubdD0WFhasWbOGUaNGcffuXZP2BSjlYkU2C7MUEw1zBeS1U5HHTi6mndrWrVtHzZo107djVXAwVKqk77ITHf3WB1h7ITCPiNDPgzh1Kv3iyiRk4i1J0lsUCgWzZ8+mfPnyNGvWzPhEIYuJj4+nZcuWtGvXjq5du2Z0OKlClpmkEgsL/TLrxtb629mRa948SpYsybRp08iePTtt27Zl3bp1vHr16v0Sb4UCRozgp3792FS2LDesrCB/fjSenhypWRNPa2v6vHrFo3/7fefJk4dNmzYxa9YsevXqRceOHXn+/Dlz5sxhwIABKJMYjU+Ol5cXY8eOpXPnzmhMnPCpUir4qkg2nK3MeGfViRAkxMaQy0ZJqwIOsswklQkhWLBgAb6+vul74oED9T3lU/p5iYmB1q1NW+H1IyATb0mS3kmhUPDLL79QrFgxmjdvToyRi4FkFUIIevbsSfbs2fnpp58yOpxUIzuapKJBg/QlJykxN4dcufDo2ZNBgwZx+PBhAgICaNKkCX/++Sd58+Zl3759nD9/HktLS5M+yKrVan7980/ut2rF1Pbt4f59zK9do/6hQ/j/2xawXLly9O/fnyf/JuA+Pj5cu3aNAgUKULJkSfbs2UOnTp3e84sAAwYMwNrammnTppm8r425km7FHWma1x4PazPDBEoFkM/egkdbf+PWunmYK2XSndqOHz9OTEwM9evXT7+ThoXBpk36hZmMER4OBw+mbUyZjEy8JUlKklKpZPHixeTJk4eWLVu+dfs8K5s0aRK3bt3i999/f6+RwMxKdjRJRTlz6vtxZ8umT67fxdJSP2nMzy/RZEw3Nze6d+/Otm3bePr0KRqNhnv37vHo0SPatm3LlClTuHnzZoohbNu2jaJFi/LixYu3Fj5xcXFh8uTJ3Lx5Ezs7O0qXLs2AAQN49uwZNjY2TJ48mc8//5ySDg5sKVaM2IIFIX9+KF9ev8S8kWVkSqWSlStXMmfOHM6fP2/UPm8yUygo4WRJt+JODC3jwjclnRlW1oWORbLxXf/uzJ8/n0ePHpl8XCl5r1sIpuv726ZNYGZm/PZRUbB4cdrFkwl9PH9tJElKE2ZmZixfvhxnZ2fatGlDgimLemRS69evZ9myZWzduhWblCavZTGfdKlJQgK8fAmhoal3+7piRf0S8N276yc6OjgQa2lJtJkZ0ZaWMHIkXLwIOXIkeQi1Wo2FhQXr16+nevXqfP311zx58oT69etTokQJRo8ezenTp9G9I+bFixfTu3dvzp8/n+SKg25ubkybNo0bN25gbm5OyZIlGTx4MHdv3eKzdes4ERbGVyEhWN+/r2+TeOECjBoF2bPD0qVGfRny5MnD3Llz6dSpE7EpLQqUDHOlAmtzJWb/lpXky5ePb775huHDh7/3MaW3vXz5kt27d6d/Cd3z5/oSElM8fJg2sWRSMvGWJClF5ubmrF69GgsLC9q3b4/a2NuImdCJEyf45ptv2LZtGzmSSZayqvv37396I97nz8NXX+mXWc+fXz9S7eEBP/2krzX9UPny6UflXr6ErVs52L07U7y9Ke3hgfjxx2T7Z8P/70IoFAocHBwoVqwYv/zyC48ePdLfcRGCue3a0cvVlV+aNePQX3+RkJDA3bt3uXDhAi1atODKlSuUKVMm2fN4eHgwa9Ysrl27htBquebpSWu1GmV8POb/rbeNjtavqjlokH702wgdO3akTJkySS43/75GjhzJiRMnOHLkSKoe91O2dOlS2rZti6OjY/qe2NLStBFvgPRuc5jBZOItSZJRVCoVf/75JxqNhq+++srkiVaZwYMHD/jiiy9YsWJFiklMVvVJjXgLAT/+CDVr6heviY+HuDj9f4ODYdIkKFw49dqW2dlBnTqoGzbkir09aiGMKhd583tib29PZGQkAMq4OCr98w8//fYba0NDWaJW0/PgQaq1b89eOzuGNWxI1apVuX79Orlz58be3t6oMHPkyMGsatWoJwQ2KbVEjImB4cPh8WOjjr1gwQI2bdrEvn37jNreGDY2NkybNo2BAwei/W8fdMlkGo2GxYsXZ8xKlZUrm5ZIW1nBZ5+lXTyZkEy8JUkymoWFBX/99Rfh4eF07do1S/2RDA8Px8fHh1GjRuHj45PR4aSJ8PBw4uPjcXNzy+hQ0sfMmTB9un7k9l2lJXFx+jrmhg3h+vUPO5dOpx89f/6cnC4uPHv2jKZNm7J79+4Ud31zwquhq8mrV1Clin5UPjgYIiMxi4rCKi4OSyFoptGw9t49it29i7e3N1FRUfz2229GryQZOW4ctkb2Ideo1WjeXO4+Gc7OzqxYsYLu3bsTGhpq1D7GaN++PXZ2dvz222+pdsxP1bZt28ibNy9ly5ZN/5PXro1wcjJ+eyEgvXuMZzCZeEuSZBIrKyu2bNnCs2fP6NWr1zvrUjMbjUZD+/btqV27tlFLZmdVr8tMPom2bOHh8P33xtWTRkfDsGHvd56XL/Wj6m5ukCcPFCpEpfr1GXX1Kh2KFmXXrl0pHuKtEe+ICGjaFG7f1n84eAeFENgAMx4+ZEzz5nh7e7N3716KFi1K7dq1mTVrFveSWtL+wQOsHjww+hLNtVoi58zhn3/+MWr7+vXr07p161RtU6dQKJg7dy7ff//9J7NwV1rJkBaC/woMCmK6oyOxxkzotLaGDh30cw0+ITLxliTJZNbW1mzfvp07d+7g6+v7XktKp6dBgwYhhGDevHkfdVL6SZWZ/P678QvcCKHvOvL0qWnnOHoUihSBqVP1Ezbj4yE2FkVCAp/HxuI9bhzeR46k2B7wzU4zdnZ2ON24AZcv6yeDpiQujpoHD9KjRw/Wr1/PixcvGDVqFDdu3KBatWqUKVOGH374gYsXLxp+D+/5+xNn4u+koxD079eP9u3b8+zZsxS3//nnn7l06RLr1q0z6TzJKV++PM2bN2fChAmpdsxPzY0bN7h27RqtW7dO93MfPHiQ8uXL88rHB4vRo5NfddXGBqpVgyVL0i/AzEJIkiS9p4iICFG1alUxYMAAodPpMjqcd5o3b57w9PQUr169yuhQ0tz06dPFoEGDMjqM9FG1qhD6lNq4h62tEMuWGX/8y5f1+6Rw3BilUlzu3j3ZQxUsWFDcunVLCCHE1KlTxZXChYVQKIyOPRZE6O3bbx1Xo9GIY8eOiaFDh4qCBQuK/Pnzi0GDBolBtWqJWEtLk74+GjMz8fLlSzFu3Djh6uoq5syZI9RqdbLXde7cOeHm5iYePXpk/Nc1BS9fvhQuLi7i+vXrqXbMT8m3334rxo4dm67nVKvV4rvvvhM5cuQQe/fu/f8LW7YIUaaMEDY2QtjbC2Fnp39kzy7E9OlCpPDz9bGSI96SJL03e3t7du/ejb+/PyNGjMh0I987d+5k8uTJ7Nixg2wpdJ74GHxSHU3Cw03bXq02bZ9Bg/QlKimw1ukotmoV/Dth8r80Gg1PnjwxLNltb29PvidP3lpGOzkJCgVO9++/9byZmRk1atRgxowZ3Llzh23btmFlZcVyf39EfLzRxwd45OBAqVKlsLe3559//mHr1q1UrlyZ06dPJ7lP+fLlGTRoEF27dk21kjN3d3fGjBnD4MGDM937SWYXFRXF2rVr6dOnT7qd88mTJ3z22WecOHGC8+fP06BBg/+/2KKFvtXmyZP6rkALFsCOHfo7T8OGJd0b/yMnE29Jkj6Io6Mje/fuZd++fXz33XcZHY7B5cuX6dq1Kxs3bvxkktFPqtTEwcG07VWqFNv+GTx8CMePG31otU6HWL36na89efIEDw8PLC0tAX2piZmJk5LNlEpECrXsCoWCUqVKkS1bNr7o0gVt27bojF04xd6eAgsXcvDgQc6dO0fTpk1p2rQp33zzDS1atKBfv36EhYW9c9eRI0cSFxfHvHnzTLqm5HzzzTc8ePDAqPp56f/WrFmDt7c3efLkSZfzbd++nYoVK9KkSRP++ecfsidVq12qFHTsCF26gLc3fEQLlr2XjB5ylyTp4xAYGCi8vLzEhAkTMjoU8fz5c5E3b16xbt26jA4lXRUrVkxcu3Yto8NIH3Pm6G9hG1tOYWkpxOPHxh170SLTjg0iqnz5dx7qwIEDwtvb2/DvTZs2iRfW1iYdOwJEfTs7UadOHTF48GCxatUqcfnyZZGQkJDoXAkJCSJ37tziwoULQty8adw1KJVC5MkjRHy84TiXLl0SX3zxhciRI4eYPHmy6NWrl8iePbtYvXr1O0vK7t69K1xdXcWVK1eM+/oaYdeuXaJIkSIi/o24pKTpdDpRsmRJsX///jQ/V1xcnBg4cKDIly+f8Pf3T/PzfWw+8Y8dkiSlFjc3N/bv38/atWuZOnVqhsURGxtLixYt6N69Ox07dsywONKbTqfjwYMH5M+fP6NDSR9ff23a6pS1a+uXdjdGeLhxEx/fEHLvHocOHeL27dtEv1Gi8ubEStCXmuzMnl3f0cFIFo6OrLl9m1GjRuHh4cGuXbto27Yt2bJlo2LFivTs2ZNffvmFn3/+mXz58unbyBUrxqnhw4kBkvoqJQAhSiW/tmvH9Tt3DKUdpUuXZuPGjezatYtTp06xa9cuvvrqK2bOnEm9evXe6l1esGBBpkyZQqdOnYg3scQlKU2aNKFIkSKpOpL+MTt69CgajYbP0rgndkBAANWrV+fhw4ecP3+e6tWrp+n5PkYK8fo3TZIkKRU8ffoUb29vfH19GTx4cLqeW6fT0aFDB1QqFWvWrPmoO5j815MnT6hUqRLPnz/P6FDSz88/6xfJSaEMQ9jaojh5EkqWNO64ixfDkCEmLX19UqViZLVqPHv2jKdPn6JSqciZMyexsbE4OjrSqFEjcuXKRVRUFDtXruToo0cojUhSYwH12LE4TJr01mvR0dFcvnyZixcvcuHCBdatW4darSZfvnzkz5+f48ePM6hWLXyOHaOKWo1CpdJ/WDEzA40Gbbt2nPDxYcORI2zZsgVra2tatmxJy5YtqVKlCsp/SwLOnTtn6JxSvXp1/Pz86NOnD2PHjsX63w8QQghatmyJp6cnP//8M0IIXsRqiFELzJWQ3cYcSzPTxvpu375N9erVuXr1atJlDBKg74Nes2ZNvv322zQ7x7p16xg4cCA//vgj/fv3/6TeX1OTTLwlSUp1jx49wtvbm+HDh6fr6mljx47l0KFDHDhwAKtPbBnio0ePMmrUKPz9/TM6lPQjBIwZA/Pm6fth/2cEXG1uTrxWy8SqVZl89Chmxi5l/eABlCiRZI/tt8KwsWGwRsPE4GDs7e0RQhAeHs6zZ8/w9fWlWLFi5M+fn6dPn3Lz5k38/f0ZZGXF2LAwbJM5rlal4oZOR/GwMMxTWLXy1KlTdOjQwXD8du3aUblyZfz8/FCpVBS2tKRDzpwUzpkTD09P3L/6ikJlyxqSayEE58+fZ8uWLWzZsoXg4GBatGhBy5Yt+eyzz7CwsOD06dP88MMPXLlyhRw5chASEsIvv/xC06ZNAQgMDKRC5SpM/3MnQbYeqHUCBfrkTCsEJZwsqZ7dBidL45cUHzZsGGFhYXJhnWQ8f/4cT09PHjx4kCaTyKOjoxkwYADHjh1j/fr1GbMwz0dEJt6SJKWJ+/fv4+3tzffff0/Pnj3T/HyrVq1i/PjxnDp16tNZufENq1atYt++faxZsyajQ0l/p07BjBmwfbt+NFcIsLJC6+tLg40bealQ0LBhQ2bPnm38MT/7TN/72xjW1nxepQrdBw6kZcuWiV6qUqUKc+bMoVq1agA8fPiQWrVq8ejRI3S//opiyBDi1Wqs3vjQoFMoiFcquaJS4aPT8UoIXF1dyZkzZ6JHrly5DP8/fvx4qlevTr9+/fD29uaLL75ApVJx/PhxNm3axOPHj7lw4YJhdPzixYuEhIRQpkwZypYtS7ly5ShbtiwlS5bE0tKSgIAAtm7dyubNm7l+/TqNGzemVatWNG7cmKtXrxoScCEENWvWZO7cubhmz8nCc4+JEkpUlm+X0igAcyW0LZSNvHYqo7604eHhFC9e3DCRT3rb+PHjef78OYsWLUr1Y1+5coX27dtTqVIlFixYgJ2dXaqf41MjE29JktJMQEAAdevWZfLkyXTp0iXNznPkyBHatGnDoUOH8PT0TLPzZGY//PADQohPe/GR2Fj9su4WFvqVJs3MOH/+PI0aNSJbtmwMGzaMvsYuT335MlSvnnJLQRsbmDiR2QoFN2/eZPHixYlednNz48qVK4ZSiZCQEIoUKWJYbj3k5k3mlymDr5UVqshIHN3c9PXow4bx3fbtKJRKvv/+e16+fMmzZ88Mj6dPnxr+/+HDh9y6dQuVSoWZmRl2dnZUqVKF/fv3079/f8qUKZMoYc+WLRsKhYLQ0FAuXbpkSMQvXrxIQEAARYoUMSTiZcuWJUeOHBw9epTNmzdz7NgxatasSatWrXB3d2fWrFlcuXIFtVrN2O2nUGZzT7Km/DWVEroXdzJ65Pu3335j+fLlHDt2TJY3/IdarSZ//vzs2bOHUqVKpdpxhRAsXryY7777jpkzZ6bp+/enRibekiSlqZs3b/LZZ58xa9YsOnTokOrHv3PnDjVr1mT16tWJe8h+Yrp06cJnn31G165dMzqUTGfcuHGcOnWKK1eumPZzcuQI+Pjoe4D/p+xEC8QBVt99h9mECdy8eZMGDRrw6NEjQ3IYERFB9uzZiY6ONjyXkJCAra0tCQkJKBQKFi5cyOHDh7l48SK5cuXiwIEDhnM0a9aMXr16vTWK/l9jx44lIiIClUqFv78/U6dOZfr06URERFC9evW3EnWtVvvW6Pnrh5ubG1FRUTx9+pTr169z8eJFLl++jIuLC+XKlaNEiRKo1Wpu3brFkSNHKFmyJCVLliQgOIrag3/C0ia54hk9BVDS2ZJm+ZIvnzF8rbVaKleuzNChQ/nyyy+N2udT8ffffzNv3jyOHDmSasd89eoVvXr1IiAggPXr11OsWLFUO7YEn2b3ckmS0k3x4sXZu3cv9evXR6VSpepSxqGhoTRr1owff/zxk066Qd89o0ePHhkdRqb03XffUa5cOfr27ctXX33F4cOHKVGiRMo71q4Nt2/DwoUwfz7ExqLR6RAaDdtVKhZYW7O6b19yAsWKFcPc3Jxr165R8t9JnPfv36dgwYKJRmktLCxQKBQkJCRgaWnJ2rVr6dKlCzt27KBVq1aJTn/+/HnKly+fbIixsbEsXbqUgQMHsmrVKk6cOEFoaCinTp3ixo0b7yy7ioyM5Pnz54kS8idPnnD69OlEo+qWlpbkzJmTypUr4+DggBCCM2fOEBQUxKNHjwD9h4sTJ05Qqc9YVFbGdWoRwI2weOrntjVqwqWZmRlz586lY8eOtGjRAlvblJP7T8WCBQvw9fVNteOdOnWKjh070qxZM1avXv3JzZVJDzLxliQpzZUsWZLdu3fTuHFjLCwsaN68+QcfMyEhgTZt2tC0aVPjywc+Yp/U4jkmsrS0ZMWKFbRo0YLvvvsOHx8fTp48adxcgOzZYfx4+P57CAnhxvnzdBs2jHrNmnF15UqePXtGzpw5USgUNG3alN27d7+VeP+XnZ0dUVFRPHv2jFu3bnHr1i2KFi1Kjhw5DNs8f/4ctVqd4mIoa9eupVChQsyfP5+jR4/i4uJCnz59GDp0aJLXZ29vj729PUWLFk3yuEIIwsLCEiXirx92dnZYWlry+PFjbty4gaWlJa1KVTJM1DSGmULBy1gtee2M26dmzZrUqlWLKVOmMHHiRKPP8zG7du0at27deusD2/vQ6XTMnDmTGTNmsGjRolQ5pvRustREkqR0c+bMGZo1a8bvv/9O48aN3/s4Qgh69erFy5cv2bJli/HdKj5SsbGxODk5ER0d/cl/LZIzbNgwnj59SoECBThy5AgHDhwwrChprJiYGFxcXLh48SKlS5dm3bp1hrs4O3bsYObMmfj9Oylz1qxZPHr0iDlz5iQ6Rr58+Th8+DBr167l8ePHbNq0iYoVK9KlSxdDOdbOnTuZO3cue/fuTTIWIQRFixYlODiYLVu24O3tzfHjx+nQoQO3bt0ytPpLS1qtluDgYFY9U6AzYTFsS6WCFgXsKehgYfQ+jx8/pmzZspw7d+7T6VefDF9fX1xdXRk/fvwHHScwMJCvv/6aiIgI1q1bR758+VIpQuld5AI6kiSlm0qVKrFlyxa6dOmSqJbVVDNmzODs2bP88ccfMtEEHjx4QN68eeXXIgUTJ07k3LlzVKxYkezZs9OzZ09MHXuysbEhZ86cALi7u7Njxw7Da3Xr1uXs2bNEREQAby+e85qdnR2RkZGsWbOGnDlzUqpUKWJjYxONUJ8/f55y5colG8umTZt4+PAhs2bNwtvbGyEEw4YNY9KkSemSdIO+DMTDwwNrc9N+9nQIbMxNS0Hy5MnDoEGDGD58uEn7fYwiIiL4448/6N279wcd5+DBg5QrV45y5cpx6NAhmXSnA5l4S5KUrqpXr87ff/9Nx44d32tC0ObNm5k7dy7bt2+Xra3+JctMjGNtbc1vv/3Gt99+y9y5c7l58yY//fSTycfx9PTk2rVr1KhRg/379xuet7W1pXr16obnkvq+2Nvbc+7cOeLj4w2L0QQFBeHu7m7Y5sKFC8nWd8fHx9OrVy/q169Pt27dANi4cSOxsbF06tTJ5Gv6UKWcrTAzoeGIpZkCD2vTPygOGzaMM2fOGO4qfKpWr15NvXr1yJUr13vtr9Fo+O677+jUqRMrV65k8uTJqFTGtXiUPoxMvCVJSne1a9fmjz/+oE2bNpw4ccLo/c6dO0fv3r3ZsmVLirWvn5Kkaomlt9WqVYsvvviCsWPHsm3bNpYsWcKGDRtMOoaXlxfXr1/H29ubsLAwLl26ZHitSZMm7N69G0g68bazs2PHjh00btyY69ev07JlSwIDA98a8U4q8RZC0K5dO2JiYvjrr78A/ZyHkSNHMmPGDJNqrVNLeTcrjM27zRVQyc36vVoDWltbM336dAYNGoRGozF5/4+BEOKDJlU+fvyYunXrcurUKc6fP//JT0xPbzLxliQpQ9SrV4/ff/+dFi1acObMGf2iJydPQps24OCg78Xs5AQ9esC1azx58oQWLVqwePFiuZDGfyRV0iC9288//2xo4bd9+3Z8fX05deqU0fu/HvHOkycPOXPmTLRwyesJllqtlocPH77z+2Jra8vBgweJi4uja9eumJmZERYWhqurK6Dv9R0aGkqhQoXeef6JEydy6tQpvv32W0OHj19//ZXixYtTr149U74UqcbBwozq2W1QpZBVmCnA2dKM8m7vXwrTpk0bnJycWLp06XsfIys7dOgQCoUCb29vk/fdtm0bFStWpFmzZuzZs8fQX15KPzLxliQpwzRu3JjffvuNts2aEV6zJtSvD5s3Q2Skvnfyq1ewahWiUiVOlSnDAF9fvvjii4wOO9ORpSamsbOzY9myZfTp04cCBQqwfPlyvvjiCx4+fGjU/q9HvHPmzImFhQXr168nMjISgCJFimBpacnBgwfJli0bNjY2b+0fHR2Ng4MDO3bsoFevXoSGhuLg4IC5ub7R2IULFyhXrtw7R67XrVvHsmXLiIuLY+DAgQCEhYUxefJkpk2b9r5fklRRzcOaah42mClAkxCf+EWhQ6WE7DbmfFkkGyrl+y+Eo1AomDNnDj/++KNhIaJPyYIFC+jfv79Jdwzi4+MZOHAgAwYMYPPmzYwaNSpD7oxIMvGWJCmDNW/ShNMeHlgcP65fJVD3n3XvtFoUsbH4REQwPCAgY4LM5GSpienq1atH48aNGT58OM2bN2fo0KE0b97cMDEyOSVKlOD27du4ubkRHBxM3bp1Wbt2LaBPCps0acLGjRuT/J48efIEDw8PSpcuTeHChd+q706qzMTf359BgwbRvn17mjRpQu7cuQGYPHkyLVu2xMvL632+FKlGoVBQPbsNBZ+e5Z7fNlQ6NdqEeJRaNSG3LtGuUDY6FcmGlYmTKt+lbNmytGrV6oM7emQ1T5484eDBg3Tu3NnofQICAqhWrRqPHz/mwoULVK9ePQ0jlFIiE29JkjLW33/jfv8+Kd14ttRoUGzYoC9HkQyEELLU5D1Nnz6d3bt3c+DAAQYPHky1atXo2LFjirXDNjY25MiRg6ioKEJDQ+nZsyeLFi0ydEhp2rQphw4demfiHRsby4MHD3jx4gV9+vQBMKq++969e7Rp04YVK1awceNGBg0aBOg72qxYsSJTJaArFy2glocVee4e5eKMQXydR8my/u3Iaa1M1SXfJ06cyLp167h27VqqHTOzW7JkCR07dsTBwcGo7deuXUv16tXp2bMnGzduxMnJKY0jlFIiE29JkjLW1Kn6kW5jxMbCzJlpG08WExwcjEqlwtHRMaNDyXKyZcvGokWL6NWrF9HR0fzyyy/Ex8czbNiwFPf18vLi5s2buLm54eXlRXR0NCf//VBYp04d7t+/b2g7+Kbt27fj7u5OSEgILVq0AEhxxPvVq1c0a9aM7777DrVajYeHB1WqVAFgzJgxfPvtt4kW38lIT548wd/fn3bt2hEaGoqzszMeHh5kz56dK1eupOq53NzcGDduHIMHDza5LWRWlJCQwNKlS+nfv3+K20ZHR9OtWzcmTJjAvn37TC5NkdKOTLwlSco4L17AjRvGb6/Twdat+omYEqAvM5Gj3e+vadOm1KpVi7Fjx6JSqfjrr7/Ys2cPCxcuTHY/T09PQ53369Hr1/vY2Njg6upKTEzMW/utWbMGGxsbSpQogYWFfvGYN0e8IyIiePr0KcWKFQNArVbTtm1bGjZsSP/+/Zk7d66htvvMmTMcPnzYqA8K6WXFihW0b98eW1tbQ+IN+k5Ghw8fTvXz9e/fnydPnrB9+/ZUP3Zms3nzZooXL55iSdHly5epWLEiQgjOnTtH2bJl0ydAySgy8ZYkKeMEB+u7l5hCCHhHQvOpkhMrP9zs2bP566+/OHbsGE5OTuzcuZPx48fzzz//JLmPl5cX165dI2fOnDx//pyuXbuybds2QkJCAP0y9ffv30+0T3BwMIcPHzasnvnamyPeFy9epFSpUpibmyOEwNfXF0tLS2bNmsXFixcJCAigdevWhsVyxo8fb+hsktF0Oh2//fYbvXr1AkiUeHt7e6dJ4q1SqZg9ezZDhgwhPj4+5R2ysJRaCAohWLhwIfXq1WPMmDGsXLlSrnWQCcnEW5KkjGNj8/ZkypRotWBllTbxZEEy8f5wzs7OLFiwgO7duxMbG0uhQoX466+/6Ny5c5L1w69bCubIkYNnz57h6upK8+bNWblyJQBRUVGcO3cuUQnEX3/9haenJ/nz50/UUeLNEe83y0xmzZrFqVOnDCu0zp07F19fX1QqFdu2bSM0NNSweE5msG/fPlxcXAzx/3fE++jRo2lSEtKoUSM8PT2ZM2dOqh87s7hy5Qr37t0zlCf916tXr2jbti1LlizB39/fpMmXUvqSibckSRknXz4wdWnrMmVALo1uIEtNUkerVq0oX748P/zwA6BfaGfGjBk0b96coKCgt7YvUaIEAQEBeHh48OzZMwD69evH4sWLiY6OJiIiAjs7Oy5fvmzYZ+3atURFRdGsWTOioqIMz7854v16xcotW7Ywe/ZsduzYgb29PYGBgWzZsoXevXujVqsZOXIk06dPxywT/S4sXbrUMNoNiRPv3Llz4+DgwPXr19Pk3LNmzWL69Ok8f/48TY6f0RYsWEDv3r3fubrkyZMnKVeuHDly5ODEiRMULVo0AyKUjCUTb0mSMo6ZGQwaZPwItp0djBqVpiFlNXLEO/XMnz+f33//3bCYTpcuXejYsSMtW7YkLi4u0ba2trZkz54dlUplSLyrVauGtbU1f/75J/ny5TMspgP6D0jXr18nMDCQevXqGfp+g37E+3Xiff78eaytrenVq1eiFVoXLVpE27ZtcXFxYenSpeTJk4dGjRql+dfEWC9fvuTAgQN8+eWXhufeTLwh7cpNAAoXLkyPHj0YPXp0mhw/I4WHh7N+/fpEH2pAX9ozbdo0WrRowezZs5k/fz5W8m5gpicTb0mSMlbfvmBvDynNuDc3h5w5oVWr9Ikri5A9vFOPm5sbc+bMoXv37oZ64YkTJ5IzZ0569OjxVpmEp6cn8fHxhsRboVDQt29fli9fTsGCBWnSpAm7du0C9Avf5M2bl+7du+Pk5PTWiLebmxsxMTHcuXOHkSNHJlqhNT4+noULFzJw4EAiIiKYMGEC06dPz1RdKlatWkWrVq0StblLz8QbYOzYsezdu5fTp0+n2TnSWoxGx/EXMSy/GcbCa6EsvxnG0v2nadqiVaLONYGBgTRt2pStW7dy5swZWrZsmXFBSyaRibckSRnLxQUOHwZn56QnWlpZQZ48cOiQ6ZMxP2JqtZqnT5+SN2/ejA7lo9G+fXuKFCnCpEmTAFAqlaxatYqAgADDc695eXkRFhaWqLyhU6dOXLhwAXd3d+rUqcPFixcJCwtj9erVPHjwgJ49e2JnZ5co8X494n3q1CkUCgUDBgxItELrhg0bKFWqFF5eXkydOpXGjRtnqk4VQgiWLVv2/xHZiAi4eJHcL17gqtUatvP29ubIkSNp1vrPwcGByZMnM2DAAHSmzh3JYEIIjjyPZsHVUI6/iCEwVkt4go7AWC2xuYpTesAUjr+IQQjBgQMHKFeuHBUqVODw4cPy9z+LkYm3JEkZr0QJuHYNBg4EBwf9I1s24i0siLK2hu++g4sXIZP0Ks4sHj9+TPbs2Q1t6aQPp1AoWLhwIYsXL+bChQuAvj3g1q1bWbZsGevXrzds6+npyfPnzw0j3gD29vYULlyYFy9eYG1tTc2aNVmyZAmhoaFUqlSJQoUKYW9vbyg10Wg0hIeHky1bNgYOHEiePHkYPny44XhCCObMmcPAgQN5/PgxixYteusDQEY7cuQIKpWKqnZ20KkTeHggvL1ZHxJC9qpVoU4d2LOHfPnyoVKpCEjDFWi7dOmCTqczrCSaVRx4Gs2ZwFi0AjT/+VyisrRGKJQcfxHDxD9306VLF1atWsVPP/2Eubl5xgQsvTeZeEuSlDl4eMC0aRAYCHv3wsaN3Fy0iNpFisCYMfpkXEpElpmkjRw5cjB9+nS6d++OWq02PLdt2za++eYbw0I5Xl5e3L17l1evXpGQkGDY38XFhXPnzqHRaGjSpAmrV6/G2tqavn37AiQa8Q4JCcHJyYlRo0YREhKCr69vohISf39/IiMjadKkCd999x39+vUzLBWfWSxdupTpFSqgqFoV/vwT4uJQRESQDVDEx+vvaLVpg2LAALzTqJ/3a0qlkrlz5zJq1KhEdxUysydRai4Fx6FOYZBeI8CsYBn2njxP/fr10yc4KdXJxFuSpMzF0hKqVIF69fDq3Jn7jx7x8uXLjI4qU5JLxaedLl26kCNHDqZOnWp4rkyZMqxYsYIvvviCBw8eULx4cW7fvo27uzsvXrwwbBcSEkLOnDnZuXMnDRs25MaNG8TExPD5558D+sQ7OjoaIQRBQUGYmZmxa9cuXF1dqVy5cqI45s6dy4ABA7h06RL//PMPI0aMSJ8vgJFCQ0OJ2LKFJn//re+v/0ZpSSLR0bB8OQMjIjhy5EiaxlStWjU+++wzJk+enKbnSS0nA2NQG1l9Y25hyR2NiZ2gpExFJt6SJGVa5ubm1KlTh/3792d0KJmS7GiSdhQKBYsXL2bu3LmJenn7+PgwfPhwmjdvjk6nw8PDAxcXF0O5iRCCe/fu0b9/fxYtWsTjx49RKBQ0b97c0ArOzMwMS0tLYmJi2LlzJyEhIWzevJmAgABKly5tONfDhw85ePAgX3/9NcOHD+f7779PNHkxM1izZg2/mJujiI1NeeOYGMrv3cs5P780X+J9ypQpLF68mHv37qXpeT5UglZwP0Jt9PYCuB2egFYnV+/NqmTiLUlSptagQQP27duX0WFkSrLUJG3lyZOHn376iW7duqHRaAzPDxo0iBo1atChQwc8PT2xsrIyTLAMCgrC0tKSr7/+mrNnz7JgwQIUCkWi7h6gH/U+e/YskydPpkaNGsTFxVGgQAFsbGwM2yxYsICuXbty7Ngxnjx5Qs+ePdPnwo0khODwvHnk+k+rxeQozM1pGRHBgwcP0i4wIFeuXAwdOpRhw4al6Xk+VKxWh/I9mtPEaWXinVXJxFuSpEytYcOG7Nu3L81HyLIiWWqS9nr16oW9vT2zZ882PKdQKJg/fz4ajcZQYvJ6xPv1XQhra2s6duzIzp07KVGihKE3+GvW1tZ06tSJFi1a4OXllWjFStCvfLl8+XL69u3L8OHDmTZt2jsXT8lIp06dosKrVyhN+N1UREfzpbV1mtZ5vzZkyBAuXLjAgQMH0vxc78tMocDUtzYBmGWeTpKSiWTiLUlSplaoUCEsLCzSbMW7rEyWmqQ9hULB0qVLmTp1Krdu3TI8r1Kp2LBhA8+fP+fJkyeGxPvNuxAFCxZEo9EwfPhwLl26RFhYGACxsbEEBwfTtGlT8ufPj5ubm2HFytd+//13av87EdHFxYXmzZun41UbZ+nSpdQqVw6F2vhSCQA3a+s0r/MGsLKyYubMmQwcODDRHYvMxMZcgbmJQ97WZgosZeadZcnEW5KkTE2hUMhyk3eIiIggNjbWsOKhlHYKFizIDz/8QI8ePRL1h3Z0dGTBggW8ePGCM2fOAIk/DG3duhWlUv9ntlatWuzbtw+dTke3bt2wsbGhU6dOhh7eb45463Q65s2bR+/evfnhhx+YMWNGplosB/Q/f5s2baJYtWpoTGxpZ5MvX7qMeAO0atUKDw8PFi1alC7nM5VSocDTVqAz8sOLuQIquVtnup8HyXgy8ZYkKdNr2LAhe/fuzegwMpX79+9ToEAB+Qc4nfj6+gLwyy+/JHq+QYMGmJmZ4efnx7Vr1wzlP8HBwRw/fpymTZuydOlSw/LxP/zwA48ePaJs2bJERUURFBSEs7Mzly9fNiyK888//2BjY8PJkyepU6cOlSpVSu/LTdbz58/p27cvFhYWeM+ahS6pTibvYmeHna8vERERPHnyJO2C/JdCoWDOnDlMmDCBkJCQND+fKYQQrFu3jn4+dUAY9zU0Uyoo4yKXhc/KZOItSVKm99lnn3Hs2DHDMt6SLDNJb0qlkuXLlzNhwoREnTLs7Oxwc3PD1dUVHx8fbt68ScGCBQ0LuMyYMYM7d+5QsGBBNm3axNq1a9myZQvZsmUjKiqKwMBA4uPjyZEjB9myZQP0LQS//vpr5s+fz08//ZQh1/tfAQEBTJs2jWrVquHp6ck///xDz549OfPiBRaffQbGfgA0N0fRqhW1a9dOl3ITgFKlStGuXTt++OGHdDmfMR48eEDTpk2ZMmUK61b+xtclPVAlm5EJEmKicL57EmtzmbplZfK7J0lSpufs7Ezx4sU5ceJERoeS8eLiICCA8BMn8MqZM6Oj+aQULVqUkSNH0rNnz0STfT09PYmOjuarr77i3Llz5MqViwULFuDl5UXRokXp2bMnS5cuJTo6mmnTpuHu7m5YvTIoKIjnz58bykxu3LjBxYsXuXTpEj169CB//vwZcq1CCM6dO8e4ceMoWbIk3t7e3L9/n/Hjx/PPP/9gZ2fHhAkTsLOzgwULwN4+5YPa2MCyZaBS4e3tnW7lJgDjx49nw4YNXLlyJd3O+S4ajYZZs2ZRsWJFateuzblz56hSpQq5bFV0LeZIYQcVZgpQKfVlJRZK/UTKotksaWAXzfA+3fDz88vQa5A+kJAkScoCxo4dK0aPHp3RYWScu3eF8PUVwtZWCDs7EatSCbW5uRCNGglx8GBGR/fJ0Gg0onLlymLRokWG54YNGybMzMzEq1evhFKpFM2aNRPm5uZiw4YNQgghjhw5IhQKhWjevLmYOHGiEEKIb775RsydO1c4OTmJvn37iilTpgghhOjbt6/o16+fcHNzE2FhYel6bWq1Wvj5+YkBAwaIvHnzisKFC4vhw4eL48ePC61Wa9iuX79+Yvz48Yl3Pn9eCBcX/c8nJH5YWgphbS3E6tWGzS9cuCCKFSuWXpcmhBBi/vz5om7dukKn06XreV+7cOGCqFChgqhbt664fft2kttFJmjFlZBYcS4wRlwNiRXRCf//2h88eFC4ubmJy5cvp0fIUhqQibckSVnCoUOHRMWKFTM6jIyxa5c+oVGp3k5qQP/aoEFCZFBC8am5evWqcHV1FQ8fPhRCCLFixQphY2Mj/Pz8RN68eYW7u7tQqVQiISFBhISEiKJFi4rSpUuLQYMGierVqwshhBg1apSYMGGCMDc3F97e3uKff/4RISEhwsnJSXz22Wdizpw56XItMTExYuvWraJr167C1dVVlC9fXkycOFFcvXr1nQlqVFSUcHJyEo8fP377YJGRQixaJEShQkIolUILQuPkJMS4cUI8fZpoU41GI5ycnMTz58/T6tLeolarhZeXl9i0aVO6nVMIIaKjo8WIESOEm5ubWL58+Qcn/n/88YfInTu34edPylpkqYkkSVlCtWrVuH37dqabIJXmTp+GNm30S24n1fkgOhqWLIGJE9M3tk+Ul5cXAwcOpE+fPmh0OlxLVsJn1DROx9vTbNhPuBb2RKVS8eeff9K6dWt8fHyYOnUqhw8f5vLly4SGhmJvb09gYCDOzs5cuHCBcuXKsWzZMipUqMDDhw/p169fmsX/6tUr1q5dS5s2bciePTuzZ8+mXLlynD171lBe4uXl9c6Ju3/99RfVq1cnd+7cbx/Yzg769IE7d0CjoWKZMlzct0//c/mfsigzMzNq1qzJ0aNH0+oy32Jubs7cuXMZOnQocSYs+vMh9u/fT6lSpXj06BFXrlyhW7duHzwhukOHDgwePJgmTZoYWlRKWYdCCLkqhSRJWYOPjw9dunShXbt2GR1K+qlRA44fN25bKyt48QL+naQnpR21Wk2HYT9QudO3mKtUqP/9Syp0OhLiYrG3MGNh//Zkt1Jy6NAhFAoFhQsXJleuXPj6+hIYGMiJEyc4d+4ccXFxhm4oNjY2/PTTT7Rp0yZV43327Blbt25l8+bNhm4prVq1onnz5ri6uhp9nBo1ajBixAhatGiR4rYNGzZkyJAhNG7c+J2vz5gxgwcPHrzVKSattWrVikqVKjFmzJg0O0dwcDBDhw7l0KFDLFy4kKZNm6b6OYYMGcLZs2fZu3cvVlay00lWIUe8JUnKMj65ft537sD588Zvr1TCqlVpF49kcCpYTZWugxDm/0+6ARRKJZY2tiSYW9Fl3p/E2Trz+PFjlEqlfoRco2H37t3Y2dkRGhqKhYUF5cuXZ/PmzdjY2ODi4kLr1q1TJcbbt28bOpGULFkSf39/+vTpw7Nnz9i2bRvdunUzKem+du0a9+/fp1mzZkZt7+bmRnBwcJKvp/cEy9dmzpzJzJkzefr0aaofWwjBmjVrKFmyJM7Ozly7di1Nkm7Qf3DJkSMHnTt3RmtKS0cpQ8nEW5KkLOOTWz5+717j27QBxMTAhg1pF48EwMPIBE4FxqBL4U+oysqa1hMX8UW7DoSHh9OtWzeuX7/Orl27sLW15dWrV+h0OsqXL8/MmTMJCQn5oMVyxBudSLy8vKhTp46hE8mLFy9Ys2YNrVu31ncieQ/Lli2jW7dumBu5YI6bmxtBQUFJvl6uXDkePXqU7uVjBQsWpE+fPowaNSpVj3v//n2aNGnC9OnT2b59O7Nnz37vr7UxlEolv//+O8HBwQwePPjTeV/M4mTiLUlS5hIWBkePwv79cO2afvrgv4oXL45GoyEgICADA0xHUVFJ13UnJSIibWKRDE68jEWtS3k7AHOVivpf96dDhw44OzvTzMeHQlXr8ihbQSr1/Y6qfUZjk9+T2wF3qFOnDtWrVzcpFo1Gg5+fHwMHDiR//vx07NgRtVrNb7/9xpMnT1i4cCENGzbEwsLiPa70/+Li4lizZg09evQweh9XV9dkE29zc3OqV6+ernXer40ePZqDBw+mSotSjUbDzJkzqVSpEnXq1OHs2bPptuiRpaUlmzdvxs/PjxkzZqTLOaUPY9o6r5IkScYKCoILF/R9pz08oFIlfSlEUq5ehUmTYOtWsLTUP6dW6ydljRoFXbuiMDMzlJsULVo0fa4jIzk6goUFaDTG7+PsnGbhSBCt1vE4yvgPQxoB+bybcXHrGkbPXkT5ITMpFheH1saO3B4FAIiLj+XbTSep7aYy6pixsbHs27ePzZs3s2PHDvLly0fLli3ZtWsXnp6eabKa6ebNmylbtqxJiza5ublx9uzZZLepXbs2hw8fpmXLlh8YoWns7e2ZMmUKAwcO5OTJkyiTe29Kxvnz5+nVqxeOjo6cPHmSwoULp3KkKXN0dGT37t3UqFGDnDlz8tVXX6V7DJLx5Ii3JEmp6/JlaN0a8uSBdu2gc2do0ABy5YLp0/WJ+H9t2QJVqsBff+lfDw/XP2Ji9HXOAwZA48YQH/9pLR/frBnojBxaBX1Xia+/Trt4JMITtJibmNhGqQUTlq0jW62WaJTmWNokLj8wt7TG2sGRCwm2nAmMfecxXr16ZSgVebMTyblz5zh79myynUhSw9KlS+nVq5dJ+6RUagIZV+cN8NVXXxnKNUwVExPD8OHDady4Md9++y379+/PkKT7tdy5c7Nr1y6GDBnC/v37MywOKWWyq4kkSalnxw5o316fPL8rYbS2Bk9P8PP7/0p3Z85AnTr6JDs51tbQvDmB8+dTtGhRgoKCUKmMGyHM0po2hT17EpXcJMnODgID9V8rKVXFxsZy48YNLtx7wss85VFaGN9FQoF+lMuY6W/mCuhc1BEPG/O3OpHUrVuXVq1a4ePjY9KkyA91584dqlevzuPHj7F8fTfKCEePHmXUqFH4+/snuU1CQgIuLi48efKEbBnQjef06dO0bNmSmzdv4uDgYNQ+e/fupW/fvlStWpU5c+bg7u6exlEa78iRI7Rp04a9e/dStmzZjA5Hegc54i1JUuq4eFGfdMfEJD1KGxurLyl587by6NEpJ92v9922DfeICAoUKMDp06dTI+rMb/ZsfUKdEhsbmDtXJt0fKD4+nsuXL/PHH38wduxYWrZsSZEiRXB2dubrr7/m4M5tKMxMq9JUx8Wi1RnXdUIrBCv8zlC1atW3OpFs3bqVrl27pmnSrdUJbobFc/hZNAeeRHEuKJbla9bRuXNnk5JuSLmrCYCFhQWVK1fm2LFjHxL2e6tcuTINGzbkp59+SnHb4OBgOnfuTO/evVmwYAHr1q3LVEk36Et3FixYgI+PDw8ePMjocKR3kCPekiSljs8/1494G/OWYmMDR46AmxsULQrx8cadQ6WCPn0YaWODlZUV48eP/7CYs4pz5/TlOvHxb39IUanA3BymToVvv82Y+LIgtVpNQEAA165d49q1a1y9etXQLq9AgQJ4eXlRsmRJvLy88PLyokiRIoY7LBvuhnMvwrg6b01cLCiVmFsYn7TqNGoqvLpGXe/aHzwp0lhCCE6+jOXky1gEgoR/PzubKyAuPp48VoJ2XjmxNjd+vC44OJiiRYsSGhqa7HYTJkwgKiqKadOmfcglvLfnz59TqlQpTpw4QZEiRd56/XWLwOHDh/Pll18yYcKENO1WkhrmzZvHr7/+ir+/Py4uLhkdjvQGmXhLkvThXryA/PmNT6CVSujQAZo3h969ITLS+HMVKcL+X3/l+++/57ixC8t8DMLD9T26Z8yAp08RCgUxOh22vr76Gvh3JAwSaLVa7t69+1aCfefOHXLnzv1Wgl2sWLEUR3afRKn58044GiP+eqqUoNbqQGF8wqpSQo/iTjhamhm9z4cQQrD9YRQBr+IT9SR/kxlgq1LydTFHbFXGXYtOp8PCwoLY2Nhky8IOHz7MiBEjOHXq1HtEnzqmTp3K8ePH2bp1a6Ln7927R9++fQkMDGTp0qXp1q0kNYwYMQJ/f3/279+PtbwTlmnIxFuSpA+3fTt06mRaK7ucOWHCBBg4UL/kubFy5yYuIAA3NzceP36Mo6OjyeFmeQkJCLUa51y5uHX7dsbe7g4IgPnz4dQpffeVwoWhf3+oXdu0HuQfSKfT8eDBg7cS7Fu3buHh4fFWgl28eHFsbGze+3z+zyI5/jIOLUlfY0JsDBvG9KHD1GUmjXibKwS9PJ3JZpE+iffZwFgOP49OsUWiEshuY06XYo5GH9vd3Z3Lly+TPXv2JLeJi4vD1dWVFy9eZNhIcnx8PF5eXvz66680bNgQjUbD7NmzmTp1KiNGjGDw4MFZbk6JTqejc+fOxMTE8Pfff2Nmlj4/T1LyZDtBSZI+XGyscSUmb4qP15eamNrGy9UVKysrqlevjp+fH61atTJt/4+BhQUKCwsqVKzIuXPnaNKkSfrHEBGh71pz+DBotf/vN37hAuzcqW8huW0beHml6mmFEDx+/PitBPvGjRs4OTkZEut69eoxYMAAPD09jU7mEhISCAwM5OXLl7x8+ZIXL14Y/v/Nx4sXL4iIiKBG26+p02ck5hZWmFv9O6IodCiEDkudmgrmoewXMWBkffdrMTGxlC5WBJ+mTejbty8lS5ZMs24lQgiOv4wxqi+5DgiM1RAYq8Hd2rRFdJJLvK2srChfvjzHjx+nYcOGRkaeuiwtLZk5cyaDBg1ixYoV9OvXD2dnZ06dOkWhQoUyJKYPpVQqWbFiBU2bNmXAgAH88ssvafZzJBlPJt6SJH04d3fTRzddXKB+fdPa5dnaQs+ewP+Xj/8kE+9/VahQgbNnz6Z/4h0VBVWrwr17b5cXCaG/g3H/PlSrBidOvFfyLYTg+fPnbyXY169fx8bGxpBg16hRg969e+Pp6fnOux/x8fE8fvw42ST69f9HRkbi5uaGh4cH2bNnx8PDAw8PD/LmzUulSpUM/86ePTsuLi4olUp0QnAvQs39yATitQI7cyXFnSzJbmMO5KHmnj0MXrCGvLWboVSlXK+tVSdw9+ge8ubOxbp161i0aBG2trbUrl2bPn360KhRo1St+34QqUajM/5Ds1boR8ib5rM3antjWgrC/9sKZlTiDVCvXj1iYmKoX78+CxYsoHPnzlk+UbWwsGDTpk3Url2bKVOmMHr06IwO6ZMnE29Jkj5czZpgwm1MYW2Nolcv/STLr7+GZcsgISHlHXU6fV9w9MvHt27d+n0j/ihUrFiRNWvWpP+JR4x4d9L9JiH0CXqLFvpylGQSmKCgIENi/fq/165dQ6lUGspDKlSoQJcuXfDy8sLW1jZR8nz9+nX8/PzemVxHR0fj5uaWKJH28PAgf/78VKlSJdHzzs7OJi+kolQoKJzNgsLZ3p0MW1tbM7H3lyy5HmbU8bQaDXsWz0D9KpiCBQvSrVs3Hj58yKZNm2jZsiVKpZLSpUvTuXNnOnfu/MET54LjtGhNuFklgJexxi/oZExnE9An3hk5Wfqff/6hb9++hkmWTZo0yfJJ92sODg7s2rWL6tWrkzNnTr6Wvf4zlKzxliQpdXz/fdIL5PxHvELBA39/ilWrBiEhaEuVQvf8OclVUMYoFBxu25Ym69cD+hHRHDlycOLECQoUKJBKF5G13L9/n1q1avHkyZP0O2l0tP4OhzEtIEF/l2L3bqhVi9DQUENS/WaSnZCQgKenJ/nz5yd79uw4OztjZWVFTExMotKP14/Y2Fjc3d0TJdL/HaV+/XBycnrvVQlT043gKDbdDccsmVpvdVws5S2i8PvjNxYsWIBOp8PFxYVs2bIxZswYmjZtyqZNm1ixYgXnzp1Do9GQM2dOPv/8c3x9ffH09DQ5rtOBsRx+Fm1S8u1mZUaPEk5GbduvXz9KliyJr69vsttFR0fj4eFBUFBQuk4EDAoKYvDgwfj7+7Nw4UIaN27MwIEDSUhIYOHChekWR3q4ceMGderU4ffff6dRo0YZHc4nSybekiSljqgoqFQJcfcuCnXSrdaEjQ2HW7WizZ49jBw5kn79+tGxdm1WPHqEa0LC2x1OrKxAoSD0xx+psWIFX3zxBZMmTUKhUNCpUydq165N79690/jiMichBK6urly9epUcOXKkz0nXroV+/YzuRKMD9js50QH9an9ubm7Y2dmhUqnQ6XRER0cTHBxMQkJCikn06+cdHR2z5GjkvdBoVpwOwMrJDYWZOcrXd4m0auJeheLw9CrLp0/E398fa2trxo0bx7x581AoFHh4eAAwatQounbtikql4ujRoyxcuJD9+/fz6tUrQ0lKv379aNSoEebmKd/Uvv0qnu0PI42q8X6tuKMFLQsYt9jM999/j1Kp5Mcff0xx22rVqjF58mTq1q1rfDDvSQjB77//zogRI+jcuTPjx4/H1tYWgLCwMIoXL87evXspU6ZMmseSnvz9/WnZsiV79uyhQoUKGR3OJ0km3lIiz2PUnH4Zy4NINVohsDRTUtLZkvKuVtin0wx7KQsLDeVO4cLkiYrCUqNJPOHS2lr/77lzoXdv7t+/T48ePbh8+TJVq1Zl+5YtKPbsgWnT9BP0NBpwdoY+ffQtB7NnJygoiCZNmlCxYkUWLFjA2rVr2bZtG3///XfGXXMGa9iwIQMGDMDHxyd9Tvjzz/Ddd/oJlUa6bGnJkJo1DSPa70qws2XLliWTaVPFx8fT2Xcwr1QOfDt0OA42VuSx1FHNszB+fn7Mnz+fBw8esH37dszNzYmPj2fQoEEsX74chUJBzpw5iY6OZsSIEfTp08cwcfTBgwcsWrSIjRs3cu/ePZRKJaVKlaJz585069btnfXv4eHhLF66jNgqrbC0My6RNlcIOhR2JLedcR0+5s+fz82bN1mwYEGK244aNQorKyujkvQPcffuXfr27UtISAhLly59ZwK6cOFC1q9fj5+f30f3c7l582Z8fX05duwYBQsWzOhwPjkZf/9NyhQStII/74SzLiCcm68SiNXqF1CIVOs4HRjLouthHH8Rg/ycJiVn69GjNHVxgV27wMdHP4HSwUHf43vcOHj0SJ9EAwUKFKB69eo4ODhw8uRJZs2di7ZJE/3COpGR+k4pT5/qS1j+7Yjg5ubGwYMHuXXrFl999RW1a9fm4MGDaE1IAj82Ff/tbJJuVCqTO9GULl+e/fv3s2zZMiZNmsS3335Lu3bt8Pb2plixYll2BPt9WFpa8uOQbzi2ah4rRvSimquKgi72fPPNN8yYMYN58+ah1WoZPHiwYfuFCxdy7949GjZsSHBwMFFRUcyZM4c8efIwYcIEQkNDyZ8/P1OmTCEgIICIiAiWLFmCra0to0ePxsXFhbx58+Lr68vNmzd5/Pgxw4YNo2DBgly6cJ7itgJzI778Qqcj8PED9m9cZ/TfAmMnV4K+zvvIkSNGbfs+NBoN06ZNo0qVKjRs2JDTp08nOerbu3dvwsLC2LhxY5rFk1FatWrF2LFjady4sVH191LqkiPeElqdYN2dcF7EaJKt81Mpoaq7DTVyvH/vW+njFR4eTsmSJVmzZg3e3t4pbv/777/z448/cvLkSSIjI+nevTsajYYVK1ZQtGjRZPeNi4ujQ4cOxMfH8/DhQ1auXEnlypVT61KylNc1v9u3b0+fE+7bh7ZlS8yMrfFWqeCbb2DWrLSNKwvZuXMnc+bMMZQ2bNiwgaioKAoXLsylS5ewt7enevXq9O/fn2+++SbRvocOHaJfv34IIQgPD0er1RITE0OfPn0YPnz4W237dDodx48fZ8GCBezZs4dXr14B+g++3333HV26dAGFknV3wnkZo0lyUSAFYGGmoJL2Gd9270L27NlZvHgxefPmTfZaDxw4wKRJk/Dz80vx6xIREUGuXLkIDg42eXn6lJw9e5ZevXrh6urK4sWLjRrp9fPzo1u3bty4ceOjXIBmzJgxHDx4kIMHD35QT3vJNHLEW+JySBwvY5NPugHUOjjxMoZX8Z/u6GJ6UusEl0Pi+O1GGLMvhzDncgirb73i1qt4dJnw8/KoUaNo2rSpUUn30aNHGTZsGDt27MDd3Z1ChQrh5+dH+/btqV69OrNnz052FNvKyoq///6b7Nmz8+rVq7dWm/uUvG4pmNZ0Oh3bt2/ns59+IsSICbQGZmb6xFsyuHXrFiVKlGDDhg0oFAratGmDra0t3bp1Y/bs2Tg6OrJjxw5++ukn9uzZk2jfOnXqcPnyZfr164daraZGjRp4enqyZMkSChYsSI8ePXjw4IFhe4VCQWxsLCEhIdjY2DB69GiGDBmCSqWiZ8+eWFlZUaliBYJ2raKQrRKF0KGJ///3V4F+2Xg3azO6FnOkZrlSnD59mpo1a1KhQgUWLVqELpmWoMZ2NQF9941ixYpx5swZk76eyYmKimLIkCE0a9aMIUOGsHfvXqPLK+rWrUvFihWZMWNGqsWTmfz0008UK1aMDh06oNEY36lG+jByxPsTJ4Rg0fUwwhOMm1ljBpR3s6Je7oxZXexT8ThKzd93I9Ah3pr0ZKEECzMlHQs74GKVOTqCHjlyhC+//JKrV6+muJLknTt3qFmzJr///vs7e/beuXOHbt26AbBixQoKFy6c5LF0Oh2tW7dm3759BAQEpN8Ew0xECIG7uzuXLl0iZ86cqX786OhoVq1axZw5c3BwcGDIkCG0Dw3FbOTIlDubWFpCvXr6BXUkgz59+lC6dGl8fX1Rq9V06NCBhIQE5syZQ6VKlQgICMDFxYVjx47xxRdfcPDgQUqWLPnWcV6+fMnIkSPZv38//fv359KlS4YPoY0aNaJGjRqsW7cOjUbDsGHD6Nix4/9HkoUg/tgxng0divv586i0WmKALa4eXO47hNJtOmFta4ujpZKyLtZ42Lz9XnP9+nW6d++OtbU1y5Yte+dCM8+ePaN8+fK8ePHCqK/N0KFDcXFxYcyYMcZ/QZOwZ88e+vXrR61atZg5cyZubm4mH+PBgwdUqFCBixcvkidPng+OKbNRq9X4+PiQL18+Fi9e/MmUfGUkOeL9iQuJ0xKjMX46uxa4GppM717pgz2NVrP+TjjxureTboAEHUSpdfx+OzxT3H2Ii4ujV69e/PLLLykm3WFhYfj4+PDjjz8muVBG4cKFOXz4MK1bt6Zq1arMmzcvyRE1pVLJ6tWrDSN/9+7d+9DLyXIUCgUVK1ZM9VHvp0+fMmbMGPLnz8++ffv47bffOHPmDF9++SVmvr7QqZO+VWBSrKygaFH4889UjetjcOvWLYoXLw6ASqXizz//xNLSkgEDBtC8eXPDRMSaNWsya9YsmjdvTmBg4FvH8fDwYOXKlWzYsIG///6bFy9e8Pfff1OtWjW2b9/OqFGjUKvVrFy5kq5du/4/6Y6Lg88/x7JJEwqcO4etVosF4Ah8FfySSZNGoiibi37l8zC/X0fO+v3zzt9BT09P/P39ad68OVWqVHnnnSpXV1dCQkKSHRV/U+3atTl8+LDRX8t3CQwM5KuvvqJ///4sXryY33///b2SboD8+fPTv39/Ro4c+UExZVYqlYq///6bs2fPMmnSpA8+XmSCluMvYtj2IJIdDyM5GxhDnAk5xqdAJt6fuBiNQIlpn3DjTWn4KplECMHW+5FJ1lm+KUEr2PMoKu2DSsHEiRMpVaoULVu2THY7tVpNmzZtaNJEvwx2cpRKJYMGDeL48eOsX7+eunXrJplU29nZUaNGDRo3bkzt2rW5evXq+15KlpWa5Sbnz5+nc+fOlCpViqioKE6cOMHmzZupVavW/0fDFApYtAhmzIAcOcDeHiwswNxc//+vVxg9eVL/bymRmzdvUqxYMcO/VSoVf/zxB7a2tty/f59ffvmF6OhoADp16kSnTp1o2bIlcUmU+FSvXp3NmzdjYWHB559/zrNnz9izZw8LFiwgLCyMatWqUbJkSQ4cOKDvRvP557B/v74n+38SYhVgA3S2tsYvb17u3rnD559/jpWVFRUqVGDWrFlERf3/fcfMzIwhQ4Zw8uRJtm7dSs2aNblx44bhdQsLC2xtbQ215SmpVasWJ06cQJ1MS9KkCCFYuXIlpUqVImfOnFy5ciVVVsIcNWoUR48e5dixYx98rMzI3t6eXbt2sWLFCpYvX/5ex4jV6Pj7bjiLrofh/yKG62HxXA2N59CzGH65Gsquh5EmrZD6MZOJ9yfO/D1+ApTyTlSaeRSlJlZr3OiAAB5Hq4lIyLhR70uXLrF06VLmz5+f7HZCCPr164eNjY1J9ZJFixblyJEjtGjRgsqVKxsWFfmvBg0aoFKpmD59OvXq1ePkyZMmX0tW9qEj3jqdjm3btlG3bl1atGhBqVKluHv3LvPmzUu61EehgL594ckT2LQJpkyBn36CJUsgMBDmz9evTColEh4eTlRUFLly5Ur0vEqlYt26deTMmROFQsGiRYsMr40fP57cuXPTvXv3t7qJXL58ma+//ppy5crh5eXF2bNnqVOnDl9//TXW1tY8fvyY7du3Y2ZmRsOGDent4YH6yJEUF7pSxsZS5sEDbixZQlxcHMuXL8fe3p5x48bh4OBA3rx56d+/P3fu3AH0d6oOHjxIly5dqF27Nj///LMheTals4mzszMFChTg/PnzRm3/2p07d2jQoAHz5s1j9+7dTJ8+3TB59UPZ2toydepUBg4c+NF2UMqePTu7d+9mzJgx7Nq1y6R9YzU6Vtx8xf0INVpBovliGqF/XA+LZ11AuEy+kYn3J8/VyhytiWX+OW0zR13xx+hKSLxJC1kA3AjLmNIfrVZLz549+fnnn1OsrZ4xYwZnz57ljz/+wMyEpeXh/yNq/v7+rFmzhnr16nH//v1E2zRs2JB9+/bRsWNHVqxYweeff86+fftMvqas6nVLQVOn7ERHR/Prr79SvHhxJk6cSO/evbl37x4jRozAycm4lQlRKqF+fRg8WL+UfIcOMuFOxq1btyhatOg7a2nNzc1Zs2YNZcqUYdy4cURERAD6O0CrVq3i7t27TJw4ESEE+/fvp3HjxjRu3JjixYtz9+5d5syZQ/ny5Vm8eDHbt29n0aJF1KxZEzc3Ny5dusSVK1cYolajijfyPSMmBqZPR6VS0alTJw4dOkRMTAynT5/G29ubTZs2UaRIEbJly0azZs3YvXs3ffv25ezZsxw6dIgqVapw8eJFkxJvAO/atbm0eTOcOQPXrkEyo99qtZopU6ZQtWpVmjRpwunTpylfvrzR5zJWx44dsbKyYuXKlal+7MyiWLFibNmyha5du5o0wXXrg0ii1DqS+0iiERAYq8HvafSHB5rFycT7E2dhpqCks6XRPwgJMVGc/Wu50RNlJNNEmph1a4W+3jsjzJ07F3t7e7p3757sdlu2bGHu3Lls377dsNjH+yhWrBjHjh2jadOmVK5cmYULFxpGv8uVK0dgYCBPnjwxLKvdqVOnT2Zhndejp8YuHf/06VNGjx5Nvnz52L9/P8uXL+f06dN07NgRlcq4hVGk9/Nmffe7mJubs2vXLrJly0b16tWJ+XcCq7W1NX///Tfz5s2jQIECDBgwgHbt2nH//n1Gjx791gelihUrcvz4cXr16kWzZs3o168f2VUqipvSkUYI2LNHv5jVf469evVqXrx4QVBQEIMGDeL+/ft8/vnnWFpa0qpVKxo0aECvXr0MvcefP3+e8vkSEuC33/hp40a6TJ+u/0BXtSq4u+vXAfhPnfuZM2eoVKkSfn5+nDlzhqFDhxq1Wuf7UCgUzJs3j3HjxhEeHp4m58gMqlatyrJly2jRogV3795NcftX8VqeRKkx5q+QRsClkDgSPvFyVZl4S1T1sDGq5EQJeGSzQxHyFC8vr4/+DSgjqN6jjsciA2p/7t27x+TJk1myZAlBcVp2Pozk16uhzL8Swm83wjgXGEu8Vse5c+fo1asXW7ZsSZWOAGZmZgwfPpwjR46wcuVKGjRowIMHD1AqldSrV88wyl2zZk327t3LwIEDWbp06QefN7MzdoLl+fPn6dSpE6VKlSImJoZTp06xadMmatasKbsZpJP/1ne/i7m5OStWrODJkyc0b96cly9fMnv2bGrWrEmBAgUICwtj2bJldO/ePdl+10qlku7du3Pjxg3Mzc1pVrUqCaZ+n5VK+Hfk/V1cXV0ZP348169fJyEhgVWrVuHo6MgPP/yAr68vKpWKZ8+e8c0333D69OmkzxMZCbVqwcCB2D9/jpVOpz9vVBS8eqWfT+DpCVevEhUVxeDBg2nevDnDhg1jz549FChQwLTreg8VKlSgadOmTJw4Mc3PlZE+//xzfvjhBxo3bvzOSb1vuhAchynVIwoF3Hz1aTdokIm3hKOlGW0LZUOlJMlplpqEeBRxUXQq5szMmTO5cOECT58+pWjRosyaNSvJST+SaQrYq1CZ8HfRQonRSzenFiGEfrGO0WM4hxu/33rF1dB4ItQ6ojWCoDgtfs+imXc5hOGzF7N48WIqVqyYqjGUKFECf39/GjZsSKVKlVi8eDENGjRg7969hm3KlCnD4cOH+fnnn5k6dWqqnj8zSmoFy9f123Xq1KFFixaUKVOGe/fuMXfu3He2f5PS1q1bt1JMvAEaN25M7ty5uXPnDrlz58bf35+NGzdy5swZ1q5dS5s2bRL1606Ok5MT8+fPZ9kffyBMnbSo1RpdOmRmZkbHjh05ePAg0dHRnD17lvr16yOEIDAwkKpVq1KwYEE2bdqUuCxKCP1Kt5cu6Sd8vkt8PISEkFC9OnVLlCA0NJSrV6/SqVOndP3Q+NNPP7Fy5Upu3bqVbufMCH369KFjx474+PgYJvq+S2CsxqjR7tfUOn03tU+Z7OMtGYTG6dsA3XwVn2gCpVKhII8ugm8/r8NRv4OJ/lhfu3aNMWPGcPHiRX788Ue6dOlicg2v9H/xWh3zr4Qa1dUEwE6lwNfLOV3/8KxatYr5C37lm9/3EBSnTX7hJa0anwJOlHSxSrN4rl27RteuXbG2tubatWsEBQWhfGNJ86dPn9KwYUN8fHyYMmXKRzuyu23bNn799VfDgivR0dGsXLmSOXPm4OjoyNChQ2ndurUsJclgpUqVYvXq1ZQtWzbJba5evcrMmTP566+/sLOzo2bNmgQHB7Nz507DhME5c+bw22+/4e/vj4ODg3En1+kQuXKhMKVU0NNTX2f9AWbOnMmdO3ewt7dn8eLFREREYGZmRunSpfnyyy/xLVkS67Zt9aPbKYgHnrVrR4H16z8opg8xY8YMzv/zD+vq1oWlSyE0VN/Vp3p1GD4catTQD+1mcUIIevTowcuXL9m6des7y3jW3wnnfqRpH+aquFtTN1fqTHzNiuSIt2TgbGWGT357vinpTKsCDvjks6ddoWwMKOVM67IFGDFkMJ06dUq0wpWXlxdbt25l3bp1LF++nNKlS7N161aTJ3lJepZmSiq4WaEy4jdTEx9HORtNuiaSL1++ZMSIEYxZtIbglJJuADMVex5HEZuGfVy9vLw4ceIEjRs3Jjw8nB9//DHRz1+uXLk4cuQIhw4donfv3h9tV4LXpSaPHz9m1KhR5MuXj4MHD7JixQpOnz5Nhw4dZNKdwbRaLXfu3KFIkSJvvSaE4ODBgzRp0oQGDRpQpEgR7t+/j52dHd9++y2FChWiadOmhlZ+AwcOpEaNGqatOqhUohg6FIxd/tzODkaNMvbykuTm5kZkZCTTpk0jPDycv//+GwcHBwIDA/nhhx840KQJOiOSbgBLoMCePfoR8AwyyMaG5QcOoBk/Hh480JfEBAfD9u3QuDFUqwZhYRkWX2pRKBQsXrwYIQR9+/Z95991ZfQrhNb4VS9VSnCx+rQH52TiLb3FylxJAQcLijpakttOhfLfxG7AgAE4ODi8s8l+jRo1OHLkCNOmTWPcuHHUrFmTo0ePpnfoH4U6OW0pms0y2eRbEx/Ls2O76NKgOgEBAekW28CBA+natStPVc5Gj8oDXA5J21Ikc3NzxowZQ7t27Vi+fDlNmjRJNNHQxcWFAwcOcP/+fTp06EB8Bv7RTivPnz8nOjqaUqVKERsby6lTp9i4caOs385EHj58iJubW6I2dxqNhj/++IOKFSvi6+tLmzZtuH//PmPGjMHNzY0RI0Ywffp0li5dStGiRWnSpAmRkZEoFArmz5+PWq1m6NChxgfRsydky5byiKyZmX5SY9u273m1//ffriatW7fm7t27NGjQAHd3dxpZWJiWjAgBGdWvf+lSzIcPx0oIzBMS3o4rOhouXICaNZMum8lCVCoVGzZs4NKlS4wfPx6A4OBg5s+fT6VKlfiuWxv9dRtJCCjumPS8hE+BTLwloymVSlauXMmiRYs4fvz4W68rFAqaNWvGxYsX6du3L507d8bHx4crV65kQLRZl0KhwCefHY3z2OFiZYZKCZZKBZZKBeYKyGVrjnc2DX9PG0ebNm2oXbu2Sa2f3tf27ds5d+4cfUd+Z1LLQ43QT8BJDx06dKBo0aLUrFmT8uXLs2LFCsMojZ2dHTt37kSn09G8efNEi4BkVVqtlq1bt+Lt7U2rVq0oUKAA8+bNk/XbmdSb9d2RkZHMmTOHwoULs2jRIsaPH8+1a9fo0aMHVlb/L83q0qUL58+f5+rVqyxevJgSJUoYkm+VSsVff/3F3r17+fXXX40LwtERDh8GNzd9ecQ76CwtIXdu/XZWH14m5urqSnBwcKLnnJycWLFiBYsWLULx3wQ2JUplxiS1ISEwYIC+zWJyEhLg3j2YOTN94kpjdnZ2bN68mcWLF1O2bFkKFSrEyZMnmTRpEtfOnKSAkw3GjGGbK6CMixUWZp/2QIBMvCWT5MiRg0WLFtGpUydDj9n/MjMzo3Pnzty6dYsGDRpQv359unTpYvREIEmffHs5W9GrhBNdijrik9+Oz/Pb07OEE52LOlKrRAFWrlzJmjVrmDx5Mk2bNuWff/5Js3giIiLw9fVlyZIlqJUq9Mv3GC/WlOHxD1CnTh3OnDnDkCFD2L9/P/PmzcPHx4enT58CYGlpyfr168mbNy/169cnNDQ0XeJKbVFRUfzyyy8UL16cn376iX79+nH37l3at2+faNVAKXO5desWuXPnZvTo0RQoUIDjx4+zYcMGDh8+jI+PT6K5Ca9ZWVkxaNAgpk2bhlKpZNGiRZQsWZJGjRoRERGBo6MjO3bsYMKECca/BxQtqh8xHjpUP/rt4ADZshGtVBJpackUpZJ5PXqQ4O6eKtedXB/vRo0aYWZsjfprWi0Y22c+Nf32m/G123FxMG/eW60YsxIhBGfOnOGbb76hXLly5MmThwcPHrB06VLWrl2r/96ZmdEivz12FspkE0pzBbhbm3/Std2vycRbMlnLli2pX78+3377bbLbWVpaMnDgQAICAihQoAAVKlRg0KBBJi2kIIGbtTlFsllSKJsFjpb/H1do2rQp/fv3Z8mSJfz11198/fXXrF69Ok1iGD16NI0aNaJu3bqYKxUokux/827p1fHQwcGBsmXLcvToUUqXLs3p06epUqUK5cqVY9WqVQghMDc3Z+nSpdSuXZvatWvz7Nmz9AkuFTx58oRRo0aRP39+/Pz8WLlyJadOnTLUbyfV2UTKeNeuXWPRokVs2LCBqKgoTp8+zYYNG6hcuXKK+/bp04fdu3dz//59lEolv/76K2XLlqVRo0aEh4dTqFAh/v77bzp37sw1YydCurnB5MkQFKRfPn7TJha0bcuSCRNoe+kSe06coEyZMuzfv/8Dr/z/iXdSc38UbdroS1uM5eAAXl4fHJfJli6F2Fjjt1er4R13hzO7J0+eMGXKFLy8vOjQoQPu7u6cOnWK06dPs3fvXnx9fTl16pRhe2tzJV2LORL/9C46jZo3B7TNFWCmAC9nS74skg1zufQ1CEl6D1FRUaJo0aLizz//NHqfFy9eiG+++UY4OzuLH3/8UURERKRhhJ8GnU4nvvjiC9GrVy9x/fp1kTdvXjFt2jSh0+lS7RxHjx4VOXPmFKGhoUIIIaIStGLahSDx83njH3/deZVq8aRk/PjxYujQoYmeu3DhgihdurRo1qyZePr0qeH5KVOmiAIFCoiAgIB0i+99nDlzRnz55ZfCyclJDBw4UNy9e/ed2z1//lw4OTml6vdfen86nU4cPHhQNG3aVHh4eIj8+fOLv//++72ONWrUKOHr65vo2L6+vqJy5coiLCxMCCHEqlWrRIECBURgYOB7nWPNmjWiTZs2huNv3bpVFChQQLRu3Vo8fPjwvY75mrW1tYiMjHz3i1euCGFtLYS+BDj5h7W1EDNnflAs783JybgYXz8cHIT466+MidVEUVFRYvXq1aJ+/frCyclJ9OrVSxw9evSd7yU7duwQ2bNnF7du3TI89+LFC+Hs7Cxu3H8kjj+PFtvvR4gdDyLEmZfRIlatTc9LyfRk4i29tzNnzgg3Nzfx6NEjk/a7e/eu+PLLL4WHh4eYN2+eiI+PT6MIPw0RERHC09NTLFq0SDx+/FiULFlSDB48WGi1H/5mFxsbK4oXLy42btyY6PkNd14ZnXTPuBgkHkYmfHAsxjpx4oQoXbr0W8/Hx8eL77//Xri5uYnff//d8Adl8eLFImfOnOLixYvpFqMxNBqN2Lx5s6hdu7bIkyePmD59uiHBSk6uXLmSTMyl9KFWq8Uff/whKlSoIIoVKyaWLFkiYmNjRY4cOd47gX39oerly5eG53Q6nfj2229FpUqVDD8bY8eOFdWrVxexsbEmnyMgIEDkzp070XMxMTHixx9/FC4uLmLSpEkiLi7uveLPmzevuHfvXtIb9OsnhI1NsolsPAh1kSJCREe/VwwfLHt20xPvHTsyJlYjaLVa4efnJ7p27SocHR1FkyZNxJ9//iliYmJS3Hfp0qWiYMGC4sWLF0IIIQYMGCAGDhyYxhF/HGTiLX2QyZMnC29vb6HRaEze98KFC6Jx48aiQIECYs2aNamSKH6qbt++Ldzc3MSxY8dEaGioqFWrlujQocN7/5F8bdy4caJVq1ZvPf88Wi2mGzHqPfV8kFhxIzRdR2DVarVwdHQUz58/f+fr586dE6VKlRKff/65YZv169cLd3d3cezYsXSLMymRkZFi3rx5olChQqJy5crizz//FAkJxn9wadGihdiwYUMaRiglJTIyUsyZM0fky5dP1KpVS2zdutXwvhYeHi5sbGw+6H2ub9++YuzYsYme0+l0YuDAgaJixYoiNDRUaLVa0aZNG/HVV1+Z/Hun0+mEi4tLortCr927d0+0bNlSFC5cWOzcudPk2CtUqCBOnTqV9AYajRB9+ghhYyO0SuVbSWyCpaV45u4u6pctK6Kiokw+f6po106Id8SW1ENtbi4Cr1zJmFiTcfv2bTFu3DiRL18+UapUKTFjxgzx7Nkzk4/z448/ivLly4urV68KZ2fnRB8KpaTJxFv6IBqNRtSuXVtMmTLlvY/h5+cnqlSpIsqUKSN27dolb5O/p507d4qcOXOKp0+fipiYGNGqVStRr149ER4e/l7Hu3z5snB1dX3nH2EhhJiwZLWYePJxkkn3xBOPxdzzz0R0BtxmbNWqlVi9enWSr8fHx4tx48YJd3d3sXbtWqHT6cSePXuEq6ur2LVrVzpG+n+PHz8WI0aMEC4uLqJ169bC39//vX4XJkyYIEaMGJEGEUpJefbsmRgzZoxwdXUVrVu3FidPnnxrm9OnT4uyZct+0Hnu3LkjXFxc9GV6Wq0Q4eFCxMUJnU4nBg8eLMqXLy9CQkJEdHS0qFSpkpgwYYLJ52jatKnYtGlTkq/v3r1bFClSRDRv3jzlOys6nRCPHglx5YroVLu22GnM6O/58+Jo/vwiQaUSOhBapVJElikjvs2fXzRt1Ei0bdtWNG3aVKjVahOvLBWcPp3iqPzrh06hEOfz5hWOjo6iffv24tChQxn6ty00NFQsWrRIVKtWTbi7u4tBgwaJCxcufFBMOp1O9OzZU+TKlUuMHj06FaP9uMnEW/pgDx48EG5ubuLs2bPvfQydTic2bdokihcvLry9vcWJEydSMcJPx6RJk0TVqlVFXFyc0Gg0om/fvqJcuXJJjv4mRaPRiMqVK4slS5a88/V169aJfPnyicsPn4s/br8S0y4EiZkX//+YdTFYzNt9XJSvXOWDR93fx8KFC0Xnzp1T3O7MmTPCy8tLtGrVSrx48UIcP35cuLu7i3Xr1qVDlP+P4XX99qBBg5K/HW+EXbt2ic8++yyVopOSc/36ddG9e3fh6OgofH19xZ07d5LcdvXq1aJ9+/YffM5RDRuK6+XKCWFhIYRKpR+BLVxY6JYsEaMHDBDlypUTISEh4tmzZyJv3rwmzcMRQj9HIqUPbnFxceLnn38WLi4u4vvvvxfR/y39iIkRYvFiIQoVEsLKSgh7exFnZiYiXVyEWLBAiGRGrDUajXB1dRUPHz4U348ZI3784QchhBAJCQli4sSJwsXFRXh6eooePXpkTCLr7S2EpWXKybeNjRAXLoiwsDAxb948UaJECeHp6SnmzZtnVMlYakhISBA7duwQbdu2FQ4ODqJNmzZi+/btJt1BS8nVq1eFhYWF6Nixoxw0M5JMvKVUsW7dOlGsWLG334BNpFarxbJly0Tu3LlFq1atxPXr11Mpwk/Dm5MtX/974sSJomDBguL27dtGH2f27NnC29v7nbfF/f39haurq7h06ZLhufB4jbgRGieuhMSKe+HxQqPVCZ1OJz7//PMMGQm5c+eOyJEjh1F/COLi4sTo0aOFh4eH+PPPP8WlS5dErly5xK+//ppm8Wk0GrFp0yZRq1YtkTdvXjFjxgzx6lXqTEB9+fKlcHR0lH8E04hOpxOHDh0SPj4+wt3dXYwfP14EBQWluN+4cePE999//yEnFmLIEKG1shLqdyV6trZClyOHmNqzpyhbtqwIDg4WFy9eFK6uriYNZPzzzz/C29vbqG0fPXok2rdvL/Llyyc2bdqk/5kLDBTC01MIW9ukE9LChYVIorTh5MmTwsvLSwghxNSpU9+aKH316lVRoUIFYWdnJwYNGmT0daWa8HChLVNGxCgU774+hUJ/jdu3J9pNp9OJw4cPiw4dOghHR0fRo0ePDxqsSs7FixfF4MGDhYeHh6hatapYuHChYXJ8amvXrp2YMGGCqFy58ltlUNK7ycRbSjWdOnUSffv2TZVjxcTEiGnTpglXV1fRo0cPkydwfsrenGz52tKlS0X27NnF6dOnU9z//v37wsXF5Z2J+r1790T27NmNrvF88eKF8PDwEP7+/sZfQCopUKCAuGJCfeWpU6dEiRIlROvWrcWpU6dEwYIFxaRJk95KYLU6nXgVrxEhsRqTZ+u/rt8uWLCgqFy5sli/fn2a3DLPkydPpu/UktWo1Wqxfv16UalSJVG0aFGxePFioyahvda2bdsPu5MyenTSyezrh1IpdG5uYqKvryhTpowICgoS27ZtEzly5BAPHjww6jRhYWHCzs7OpJ/LAwcOCE9PT9G0fn0RV6SIfiQ+uTjNzYUoWlQ/Mv4f33//vRg+fLgQQohff/1V9O7d+61tNBqN+P7774VSqRQdOnR4rzlGH2Ly99+L5cWLC52HhxD29vpJlNmy6Uf3v/hCiDcGJd7lxYsXYvLkySJfvnyiUqVK4rfffvvgQavnz5+LmTNnitKlS4u8efOKsWPHJuo6khbOnz8vcuTIIaKiokRgYKAoUqRImg5YfCxk4i2lmlevXon8+fOLrVu3ptoxQ0NDxahRo4Szs7MYNmyYCAkJSbVjf8zenGz52tatW4Wbm5vYvXt3kvvpdDrRsGFD8fPPP7/12qtXrwy3Sk2xceNGUbhw4XSfENWnTx8x08S2Y7GxsWLkyJEie/bsYvHixYk6xEQmaMXhp1Fi9qVgMeNikJh5MVhMuxAk1t4OE3fD45MdYX706JEYPny4cHFxEW3atHnv+m1jtWrVSvzxxx9pdvxPSVRUlJg3b54oUKCAqFGjhti8efN7TZAsVaqUOHfu3PsF8fixPqkzZlKfSiV0/fuL0aNHi1KlSonAwEAxa9YsUbJkSaPnexQrVszkLj8JCQliZ6dOItLYjh+2tkL89ttbx6lYsaLw8/MTQujLczp27JjkOffs2SNUKpUoXry4uHHjhknxvq+AgADh4uKi/yCj1Qpx4oQQW7YIsWePfrTfBBqNRuzcuVP4+PgIFxcXMXDgQJOuIzY2Vqxfv140bdpUZMuWTXz99dfi4MGD6daooEmTJuKXX34x/Pv1ncbNmze/vbFOp39IMvGWUtfRo0dF9uzZTa4pTsnTp09F7969haurq5g8efIHjw58Ct6cbPmav7///9g767Ao2i4O/3bp7k5FQAExALFeERQbsVvs7lbsRjGwxe7uQuzWV1AEsRUsGulaNs73x77sJ1KzwAIq93XNJc48cWZ3dubMeU6Qrq4uHThwoNA+Bw4coPr16xfwAeRyudSmTZt8eYTFYeDAgTR27NhS9S0tp06donbt2pWq75MnT6h27drUpUsXcnR0pNGz5tPaFwlF5i9f8yKBLkSmEf+XB8vTp0+pb9++5ea/zZTly5fT9OnTK2SuP5XY2FiaO3cuaWtrU7du3ejRo0elHovP5xefx7okvL2Z+RX/7HaSkUFz584lOzs7io2NpZEjRzIOShw0aBD5+/uLL2e9euKl27O0zKeMxcbGkpqamuj+c+7cOerUqVOxUz548ICUlZVJTU2NVq5cKdGgS4FAQK1bt6Y1a9aU+9ifP38mb29v0tPTo5YtW9Lx48cLTbUrEAjowYMHNHLkSNLU1KTWrVvTgQMHKtywce/ePTI3Ny8gY1BQEGlrawtXOZOSiHx9iYyNiaSkhJu5OdHGjcLA4L+UasW7mnJn3rx51K5dO4lY9N6+fUs9evQgQ0ND2r59e7kGifyJ/BxsmUdRhXbi4uJIV1e3gN+hQCCgMWPGULt27Ur9UEtOTiYTExMKDAws3YmUgqSkJFJRUSl1cGdWVhbNmDGDrOo70pKHX0pMnegbkkCBX9NF/tvNmzcnU1NTWrt2bbn5bzPl6tWr1LJlywqd80/hzZs3NHz4cFJXV6cxY8aIFRtRFJGRkQXyY4tFjRri548OCCCBQEDz588nGxsb+vbtG7Vq1YpRruWtW7fS0KFDxZMxI0PoQiKOnLKyRD/5x+/fv5+6desm+v/NmzcZ+ZufPXuWdHV1qVmzZuTg4JAv/qQ8OXToENWrV0+iyj2Hw6Hjx49Ty5YtSV9fn+bOnUufP3+myMhIWrJkCdWqVYusra1pxYoVleaCKRAIqHnz5rRv375CjwcEBFBPdXXiKyoWngVGSUl4jd6/X8GSVw2qFe9qyp3c3Fxq1KiR2C4J4vD06VNyc3MjS0tLOnHiBHMlXyAgys7+a5a8fg22zOP79+9kZ2dHkydPFi1L9u3bV+Rb+TN+fn5iLVMXxbVr18jY2FhiQT6F4ezsTDdv3izTGDuffqLlQbHMCgYFx1LdRk3I2dlZYv7bTEhISCBVVdXq3PgMyQt88/DwIF1dXVq0aFGpqz8WxtWrV6lVq1alH0BLSzyFVkWF6CdXo4ULF1KdOnXozZs3ZG1tXaIf7rNnz8jGxkY8GWNjmbvD/KyA/bQK1Lt3b9q1a5fo/0+fPqWGDRsymn7r1q1kaWlJfn5+pK2tTQsWLCjX4mw/fvwgfX39QlNFSoqnT59S69atSVpammRkZKhjx4706NGjSg+cDggIoDp16hTtW3/vHnFlZZl9/6V1v/qNqVa8q5EIHz58IG1tbbGC28RFIBDQtWvXqGHDhuTo6Eg3btwovCGXS3T6NFGjRsLUW2y20NLSpw9RUJDE5KsqFBZsSUT5Cu2cPXuWLCwsCrjwXLx4UazArJIYN24cDRgwoFzGYsK8efNo9uzZpe6fxeUX6V5S2Lb8aTQdeirZgCammJubSzy46neHx+PRiRMnqFGjRlSrVi3atm2bRNzY/Pz8yuZqZWIivsX7l5zZixYtotq1a9OjR49IT0+v2NWn3NxcUlJSEu9lOytL6EogjpwyMkJ3BBK6s2lqatL3799FQ75584YsLS0ZizBnzhxydnamjx8/koeHB9nZ2TEKKGfCiBEjKsRdjsfjUWBgIPXv35/U1NTI09OTjh49Stu3bydHR0cyNzenFStWVFqxGj6fTw0aNChQzViEQCDeCk0hVYb/dKoV72okxu7du8ne3r5UpYvFgc/n07Fjx8jCwoLc3d3zu0rExRHZ2hIpKxf8wbPZwmWwoUOFVdP+YAoLtiQSBud4eHiQnJwcXbhwId+x0qQiK4mMjAyytLSkU6dOlduYxXHv3j1ycHAodf+3yTm09gVzxXvl8wTaFl41AoB79OhBhw8frmwxqiQZGRm0adMmqlmzJjVp0oTOnDkj0cwYY8aMoQ0bNpR+gAkTSs4U8vMmL09UiHvTkiVLyNrams6cOUM6Ojr06tWrIqds3rx50caMomjWTDzF+ydr9oMHD6hevXr5hvv+/TsZGBgwnl4gENDAgQPJw8ODcnNz6ciRI6Snp0czZswQKwPNrzx48IAMDQ0l6jL26tUrmjlzJhkaGpKDgwNt3Lix0FWXoKAgGjZsGKmrq1OfPn3o7t27FWoBP3nyJDk4OBQ95/37JWff+XlTVCwxC8yfBhvVVCMhhgwZglq1asHb21ui87DZbPTu3Rtv3rxB165d4eHhgd69e+PjixfAP/8A798DGRkFOwoEQFYWcOwYMHasRGWsbCwtLbFv3z706tUL0dHRov3y8vIwNTVFjRo1sGDBAsTGxgIAYmJi4OHhgc2bN6Nx48blJoeSkhIOHDiAcePGieaSJI0bN8aHDx+QmJhYqv65fAKJ2YcrELeHZHBwcEBwcHBli1H+EAFfvgDh4UBUlFhd4+LiMH/+fJibm+PmzZs4ePAgHj16hK5du0JKSkpCAgPv3r1D7dq1Sz/AxIkAU/mkpICePQE1tQKH5s+fj4EDB2L27Nnw9vZGp06dkJCQUOgwzs7OePLkiXhyzpoFKCsza6ukJGz/H1euXEGHDh3yNVFRUUF6ejrj6VksFnbt2oWcnBxMmDABffr0QVhYGL58+YL69evjwYMHjMfKIzc3F6NGjcL69euhVshnWhYSExOxadMmODk5wd3dHQBw7do1BAcHY8KECdDR0SnQx9HREbt27UJkZCSaNGmC0aNHw87ODps2bUJqamq5yvcrPB4P8+fPx4oVK8BisQpvdPiw8LnKFA4HOH68fAT8Xahszb+aP5vExEQyNjama9euVdicGRkZtGzZMlqgoEAcpkufCgpEEnSLqSr8Gmz58OFDMjAwoB8/fogK7YSGhpKjoyMtXbpUYnJ4e3uTh4dHhVhqOnXqJHb1vjzeJefQ2heJYlm8/V9VDYv39evXqUWLFpUtRvmRnk60YYPQ7UJBQejHLC9PZG1NtGcPUTFBtG/fvqWRI0eSuro6jRo1qsJdcAwNDcvurjV0KLNy5aqq+fymC2PlypVkaWlJ48ePp2bNmhUagHzy5Eny8PAQT0Yej8jVtURfb4GcHFHTpkI3wP9o0KAB3bt3L99wfD6f2Gy22LEKaWlpVL9+fVq2bJlo35kzZ8jQ0JAmTJggVnaZlStXUvv27cvtXsXhcOjMmTPk6elJampq1K9fPwoMDCz1ikteQafevXuTuro6DR8+XGKFefbu3UsuLi7FfxaenuKtegDCa/svolrxrkbiXL9+nYyMjBhVdys3+Hzi6+oy/+FLSf0VP/6fgy1zcnKoTp06dPLkSdFxf39/kpOTK9cHTWFwOByqV68e7dmzR2Jz5LFx40bxMzT8Rw6PT75i+HivDkmg+9EVm9arKPKyulR0cRGJ8O0bkZlZ0YqnkhJR/foif2Ei4bV+//596ty5M+no6NCCBQsqxS82LS2NFBQUyh7oyuUS9exZ5DJ+NkC5SkqM41ZWrVpFFhYW1KFDBxowYECB3/vXr19JV1dX/PtARgZRq1aFu/cBlCklRR8NDPKlk4uOjiYNDY1Cg5GVlJQoLS1NPBn+G9Pc3Jz27t0r2vfjxw8aNGgQmZub0/Xr10sc49OnT6SlpVXmNKACgYCePn1K48aNI21tbWrRogXt3r27zAHrvxIbG0vLly8XFebZs2dPucUs5OTkkJmZWQF3xQJ4eYmveE+ZUi4y/i5UK97VVAjTpk2jrl27VpwvWmhokTf+Ijc1tYqRrZLJC7bs2LEjeXp65vtOZs+eTTY2NqSlpVVsoZ3yICwsjLS1tSkyMlKi87x584ZMTExKde3FxMTQuG3HaNnTaEaK94qgGErJKr9MCmWlZs2a9Pr168oWo2ykpwuV7pJWr2RliRwciJeTQ6dOnaLGjRuThYUFbdmypVLz/gcHB5N9eQWQCQTCoMl//hGer4qK8GVEQ4Pe9+tHjczMxIqp8fX1pRo1alDdunULrHAJBAIyMDAondLJ5xMFBhK1akV8gPhSUkRsNoXr6FDAxIlkYmiYz398z5491KtXr0KH0tfXz1eLQBxev35Nurq6dPXq1Xz7r1y5QqampjR8+PDC/bb5fBIEBNA1Q0P6ZGVF1Ls30ZEjRGJmSfn27RutXLmS6tSpQxYWFrR48eIKyeXP4/Ho0qVL1LFjx1IV5imMjRs3UseOHUtuePy48Lpk+txVViaS8LOmqlGteFdTIeTk5FC9evVo586dFTPh7dtCRVocxVtaumJkqwJcunSJWCxWvgpje/bsIQsLC0pISKCHDx+Snp5ekYV2yotVq1aRi4uLRNPeCQQCMjY2prdv3zLuw+VyycfHh+Tk5Mi4ljWtCoqm5cFxxefxfh5PI1dtJ2dn53LJ/Vwe9OrVS+LfocTZuJGZiwVAHDk5GqWvT87OznTq1KkqYe0/fPhwkUplmUhMJHrzhigyUuSy0aVLF7FdxNauXUtmZmZkYGBAx48fz3esPCqguvzzD927fJmIx6Nx48bRhg0bKCAggExNTUVKb48ePfJZpn/G0tJSrN/urzx48IC0tbULVA1NTU2l0aNHk7GxMV28ePH/B65eJTIwoFx5eeL/fH3llYYvIRVjRkYGHTx4kFq3bk0aGho0YsQIevDgQaWlAPy5MI+rqyudOHFC7DSLGRkZpK+vTyEhISW2FeTkEEdBgflzV19f+KL2F/FnKt45OcIb0osXwtyi1VQJwsPDSUtLq2L8K4OCxHvrzluu/gvg8Xjk7OxM48ePF1W2vH37Nunq6uaziuQV2lm1apXEHho8Ho+aNWtG69evl8j4eQwdOpRxXvnHjx9TzZo1SU5Ojvr27UspKSnUfdAwmnfzDa0MiimgcPv8Vzzn1vcM4vF4tHHjRtLW1iZ/f/9Kz7e7evVqRgVTqiwCgdip9FJtbSv9c/+Z+fPn0/z58ytkrsjISNLU1BR7FWn9+vVkZGREGhoa+fJU+/j40OTJk8skU82aNenDhw9EJExpOG/ePCIiGjlyJA0ZMoRyc3NJXV29yGrHDRo0oKAypn3N8+8uzNp869YtqlmzJvXv35/S9u8Xxg8Ud40pKhItXpxvDD6fT7dv36bBgweTuro6tW/fno4dO1amTCrlDYfDoWPHjpGLi4uoMM+XL18Y9V2xYgX17t27xHbfv3+nTp060RJDQ+IxyemuoED0F2Ze+rMU7y9fiCZPFipceW+neUEc58//NUVTqjKbNm0iJycnyVeczMkRfv9MH9gsFlHnzpKVqYqwYcMGatGiBfH5fFq2bBnVr1+fdHR0Ck0dVlihnfLm48ePpKWlJVGXiKNHj5YYKJaYmEiDBg0iBQUF0tHRERXemTp1KpmYmFC3nr3pWXwmLb//kVYEx9GqEKFP9/nINIrJzO+b+urVK2rQoAF16tSJYivx5f/mzZvUrFmzSpu/zHz9WrIi9OvGZucL2qtsevXqRYcOHaqw+ZYuXUpdunQRu9+GDRtIV1eXdHV1RQrZnevXaaaVlbDst68v0YULYn22AoGA5OTkRAroli1baNSoUUQkdHmrUaMGrVixotiUny1atKBbt26JfT6/smnTJrKysio01igjI4MWjBxJmUyvMUVFovv36f379zRv3jwyMzOjunXr0po1a4p8gahKvH79miZOnEiamprk4eFBly9fLnJ1KCkpibS1tYs1mAkEAtqzZw/p6OjQwoULhRb1hQuLXqlisYTH1q6V0BlWbf4cxfvuXaGyXVS1JCUlYcGUKrD0+DcjEAioffv2NHfuXMlPNmNG0ddDYdfHLxH1fyKfP3/Ot+qQkJBASkpK9M8//xTZJzk5mVq0aEG9e/cudfn1kti2bRs5OjpK7IUsr5JjYePz+XzatWsXqampkbKyMg0dOlQUzLV9+3YyNjYmfX190QO7TZs2dP7iJcrm8ou1rHI4HPL29iZ9fX06d+6cRM6rJJKTk0lJSalKuFyUilevxF+5kpHJF7hX2dSrV6/MFltxyM7OJgsLC7py5YrYfTdt2kQaGhpkY2VFObNnk0BNjVIBEsjICD9XFRUiTU2iZcsYPUvj4+NJS0tL9P/jx4/nKwl/9+5dUlJSoqlTpxY5RseOHen8+fNin0thzJw5k5o0aVK4z/+iRcRj+LzgA/RAXZ10dXVp8uTJjFwwqiIZGRm0a9cucnBwIHNzc1q5cmWBAGRvb28aPnx4kWN8/fqV2rVrR/Xr1y/4Ody+TeTuLjSAqqkJN3l5ok6diB4+LO/T+W34MxTvV6+YJWxXVCQaPbqypf3riYmJIX19/QKpo8qd2FhhqWUWq9jrIhugDGfnP35FRCAQULt27WjFihVEJFQMXVxcaOLEiYVWtvyZ7Oxs6tatG7m5uZV7JH6ebG3btqVFixaV+9h5NGzYsMA1FxISQk5OTqSrq0sGBgb5Mh1cu3aNdHR08vmACgQC0tTUFMuq9eDBA6pZsyYNGzasVNkZyoqlpSWFh4dX+LzlQnS08KEtjuItJVVlfEb5fD4pKipW+Pd+5coVqlWrVqmKl23x86NbUlKUxWYX/yzt0KFE5fv58+f5iuLcunWrwEu+trY2ubm5FfkS26dPn3JbMeDz+dS/f3/q0qVLwZdRbW2xrjOejAzl/kGurEFBQTR06NB8hXliYmJIU1OTvn79WqC9QCCgnTt3kra2Ni1ZsqR4o0lsLNGTJ0T//ktUkdnNqih/huLduXOJypVok5cXuqRUU6lcvHiRzMzMKDk5WbITvXolvKEW5W+mpESxlpZUS1+/2CpufwKHDh0ie3t7ys3NJYFAQIMGDRI9gIqqbPkzPB6PxowZQ/Xr16fo6Ohyl+/79++ko6MjMevgrFmzRL62qampNGnSJFJXVyctLS0aPnx4vheKV69ekY6ODnXo0CGftefjx49kbGws9txpaWk0bNgwqlmzJj2sYEtPnz59aN++fRU6Z7lSu7Z4ire7e2VLLOLz589kaGhYKXN7enqWLhf/2LGUy6RKpqKicFWxGC5cuJAvE8bLly+pTp06ov9/+/aNtLS0qHbt2kUGcY4YMYK2bdsm/nkUAYfDoVatWtHYsWP/r+xzucx1iLxNVVUYR/aHkZSURH5+flS7dm3S1NSkli1bFsj88vnzZ3J3dycHBwcKCwurJEl/X35/xTs2VjyLiKws0cyZlS11NSQso9yvXz/JT5SQIAyG0dISpi5SVRUq4ra2RPv3E+Xm0sGDB8nAwIBe/qFFdOLj40lPT0+k1K5YsYIaNmxIGRn/zzl9+fJlUbBlUQgEAlq2bBnVqFFDIkGyR44coTp16kgkKOnmzZvUuHFjOnLkCOnr61Pt2rXJyMioQKqxuLg4qlGjBk2aNIlq1qyZz1p59OhR6tq1a6llOHv2LOnp6ZG3t7fYmQVKy5o1a2j8+PEVMpdE2LuXeQlqZWUiBvmZK4rAwEBydXWtlLkjIyNJS0tLvEDLlJQSi98UUL4zis5bv3XrVpFPN5Ewz7S2trbo/zt27KC+ffvS06dPSVdXt9B7z9SpU2n16tXMz4HRaaaQvb09rVy5UriDxyNBaRTvP1jpjIyMJBUVFercubOoME9QUBBt27aNtLW1acWKFYXmXa+mZH5/xVvcnJEAkZVVZUtdDRFlZmZS7dq1Ky7wiMsleveOKCREGLT1C0ePHiV9fX0KDQ2tGHkqkP79+9O0adOISFiRztjYmL5//16g3a+VLYti165dpK+vT//++2+5yikQCKhnz57F+nyWlhcvXpCUlBSZm5uTgYEBDR06tIAlJzs7m5o0aUKTJ08mfX19un//fr7jU6dOFbnqlJbY2Fjq1KkTNWzYsEJybN+5c4eaNGki8XkkRk4OUcOGJcdrKCgQtW9fpVzGNm7cSGPGjKm0+ZcsWSJeoOWmTYxTN+atGNLu3UUO5+3tnc/qzuVySUpKSuTm0aVLFzp48CARCbO/dOjQoYDLycKFCyWSFSYqKorMzMzowIEDJBAIKEGcF4681fMqFEtQ3gwZMkSUgSYmJoamTZtGcnJypKSkREuXLq3U3Pi/O7+/4r17N3NrSN5mZFTZUlfzH8+ePauQIipMOXHiBOnp6dHz588rW5Ry48qVK1SzZk3KyMigf//9l7S1tYs8v58rW5bEhQsXSFtbu1RBXMWRkJBAhoaGdOfOnXIZLyMjg+bMmUNaWloi15LLly8XaCcQCKhv377Us2dP6ty5M82aNatAmxYtWjCqeFcSAoGA/P39SVtbmzZs2CDRPOapqamkqKj4e1unkpOJnJyIU5TyrawsVLpL4dMsScaNG0d+fn6VNr/YgZb9+4v3LAWKjZvy8vIqkJ9bQ0OD4uPjicPhkJqaGsXHxxOR0AWkQYMGBWo9rFmzpswpDYvi1atXpKurS/PnzycfXV0SMH3pYLOFyRr+UN68eUPa2tqUnJxMfD6fNm/eTFpaWuTj40Pnzp2jDh06kJaWFk2ePLlMOdb/Vn5/xfvMGfHSxgFCF4NqqgyrVq2i5s2bV5nMC6dPnyY9PT0KDg6ubFHKTFpaGpmamtL169fpy5cvZGhoWGKGgLzKlsUFW+bx6NEj0tPTo/3795eXyEQkLPBjbm5epkBOgUBA586dIzMzM2rdujWZmZmRo6MjDR48uND2CxcuJGdnZ/L39yd7e/sCVn8ej0cqKiqU9FNZ8rLy4cMHcnZ2Jnd394IrEF++CN3itLWFAYNyckTOzsJ7nphKtLW19W+/kpObnU1DtbUpzd5eqPhISws/l7ZtiW7erFKW7jxatWol8QqwJXH58mWqVasWs4xEPXuKr3gPGVLkcG5ubgVeVGvXsaHQ8Nd04+ZNatSoUb5jL1++LGCI8ff3LzarRlkJCAggNptNBzduZL56rqBA9AcZZ36lZ8+e5OPjQx8/fiQXFxdq0qRJgcqXkZGRNGfOnHyFeSSeJvgP4fdXvFNTxcvzqqBAtGpVZUtdzU/w+XxydXWlZcuWVbYoIs6dO0e6urrl7kpR0UycOJEGDx5MaWlpojyzTGASbJnH69evyczMjHx8fMq1cMnw4cNp2LBhpeobERFBnTp1IisrK+ratSsZGhrSxYsXKSwsjGrWrFmg/aFDh8jMzIyePn1K2trahSqp4eHhVKtWrVLJUxxcLpeWLFlCurq6dOzYMeFOPz/hUnZhFl5lZSILi0LdpYqif//+tGfPnnKXvSI5cOAAubm5Cf/D4xGlpVWZ7CVFYWxsXCElwkvC09OT2f3V21uYNpDh85QnLU2chQuLHM7KyorevHlDHJ6Ansdn0bbwH7QiOI58nsXTiqAYWnbuHsVl5X+J/LWa7ZEjRxgVbyktEyZMIDc3NzIyMqKY48dLLvyioEBUURWYK4Fnz56RgYEBrV69mrS0tGjt2rXFGsU4HA4dPXqUXFxcyMDAgObNm8e4MM/fyu+veBMJ37ilpZn7ZSUmVrbE1fzC169fSUdHp0opuhcvXiQdHR16/PhxZYtSKh49ekQGBgYUHx9PHTt2pJEjR4qlGDMJtswjr9DOpEmTys1tIi0tjczNzfOXcy6BnJwcWrp0KWlpadGoUaPIwsKCBgwYQD9+/CAioRVcX1+fPn78KOrz4MED0tHRodDQUHJxcaFVRbyY7927l/r27Vu2kyqGp0+fkrW1Ne1xdCRBScYEKSmhyxzD1Fzr1q2jsWPHSkx2SSMQCMjOzq5AIGxVJiMjgxQUFKrESh7jipYfP4oVXMlhs8lGVZUGDRpEt27dyvfbFwgEpKioSF8SU2hjWCKteZFQsOrrszjyDUmgO1EZonsTj8ejpk2bilx0Ll68SB06dJDI5/L06VPS09OjxMRE8vPzI0tLS2qrrU2pFhZCBVtK6v/nq6REZGYmLMb3B9OiRQuqWbMmNW/enN6/fy9W31evXtGECRNEhXmuXLlS6utfIBBUqQq05cmfoXhHRTHK15wB0MfqPN5VlhMnTlCtWrUoPT29skURceXKFcaW36oEh8MhGxsbOn78OE2aNIlat25dqmVApsGWRP8vtNOrV69yK7Rz584dMjAwKLTa3K8EBgaSpaUlderUiYYNG0YGBgaFFq4ZOHCgKD3Zp0+fSF9fnwICAmjt2rX0zz//FPmgGDt2LK1bt65sJ1QCmd+/E+fnh31xm6wsEcNsJffu3SuwrP87ceXKFbK3t/+tHsTPnz+nunXrVrYYIhgHWrZowcyQJSND1K4dxcTE0Lp166h+/fpkYmJC3t7e9PbtW0pKSiIjCytaH5pYQOH+dVvzIoEexPw/WO/Dhw+kpaVFb968oTt37hRb4Ku0cLlcatCgAR04cICIhIqepaUlGRgYCLMqvXwpzIY1bpxwJeDevSrpzlRe8Hg8Gjt2LLHZbFq7dm2ZDChMCvMURhaXT09iM2nzyx+ia2PTy0R6HJtJWdyqvbolDmz8CRgaAo8eAXp6gJJSgcN8Nhs5bDZiBw9Gk1OnEBgYWAlCVlMSPXv2RLNmzTBlypTKFkVE+/btcejQIXTt2hX37t2rbHEYs3LlStSqVQsJCQkIDAzEyZMnISMjI/Y43t7eMDQ0xIQJE0psq66ujsDAQPD5fHTo0AFpaWmlET0fLi4u6Nu3L8aMGQMiKrRNVFQUevXqhdGjR2PkyJF4//49srKy8PLlS3h6ehZo7+7ujuvXryMlJQUdO3bEvHnzYGJigpUrV2L//v2QkpIqdJ7g4GA4OTmV+ZyKQ/HYMcjKyTFrnJsL7NsHZGeX2LRBgwYIDw8Hl8stm4CVxOrVqzFz5kywWKzKFqVkEhKABw/w4+xZ/GNsXNnSiJgxYwZevnyJgICA4hseOQJoaABF/A4AANLSgLY2sH8/9PX1MWXKFISEhODSpUvgcDho2bIlXFxc4DpiOjj8wn+3P8MVAI9is5DFFQAAatWqhcWLF2PQoEFQUFBAenq6OKfKiE2bNkFDQwMDBgwAAOzfvx+ysrJo3rw5BgwYAH6dOsCCBcDmzcDy5cA//wC/w/VXCt6+fYvmzZvj8OHD8PHxwdSpU8Fml149VFJSwrBhwxAcHIwTJ07g/fv3sLa2Rr9+/XD//v1C7+Wf03Ox7VUS7sdkIf2/6wAAMriEBzFZ2PoqCZFpuaWWqUpR2Zp/uZKZSbRnD5G1tdD6zWYTKSoSf8QI8qhVi86cOSNaVq6sEs7VFE9qairVrFmTzpw5U9mi5OPGjRuko6NDt2/frmxRSuTVq1ekra1NBw8eLOBWURrECbYk+r/lpF69euVSaCc7O5tsbGzo8OHD+fbn5ubS2rVrSUtLi2bPni1KAXjq1Klix4uOjiZ1dXVq1aoVTZw4kTgcDtWvX5927dpVZB8Oh0OKior58p5LBBsb8QLbVFWJLl1iNHSdOnV+y9LW//77L5mamlb9wK1//yXy8BC6aqipUbacHOVKSxM5OBCdOlUlrKWXLl1iFmj59StR/frC1II/VbDkAsJ9Tk7CqqJFwOVyafHyFbTk8bcSrd15m29IAj38yerN5/OpdevWNGXKFLKwsCivj+C/0/tKWlpaoloEHz9+JG1tbQoLC6OcnBxydXWlCRMm/FYrLKWBy+WSj48PaWlp0bhx46h27doSc436uTCPra0tbdq0SZTO9XtGLvmGMLtGvqZX8fsAA/4sxftn+Hxh/tf/uHHjBtWoUYOys7MpKCiI9PT0/h/IVE2V4tGjR0UWU6hMbt++TTo6OnTjxo3KFqVIeDweNWnShObNm1euLjLiBFsSlX+hneDgYNLR0RFl/rh//z7Z2dmRu7s7nThxgmrXrk29evUSpSYrSTZNTU1q2rQp8Xg88vb2Jg8Pj2IfssHBwWRnZ1fm8ygRAwPxFG9lZWERKAYMHDiwQKq234EePXpUako+Rvj7CxXSotwdlZSIBg+uEsGgnTt3Zh7IHhxMNGgQkYMDfdHTo4OysoyrNW4+cZGWiaF4r3yeQDte5c8Y9PXrV9LU1CQNDQ0xz7J4PD09adGiRUQkVD4bN25M69evFx1PTk4mOzu7ci/cU5UIDw8nJycncnNzo48fP1KDBg3o9OnTEp9XIBDQrVu3qGfPnqLCPBueRTO+RraF//jtX4ikK9viLjHYbOCnJdtWrVqhXr16WL9+PebMmYNr166hXbt2yMnJwaBBgypR0Gp+pUmTJhg7diwGDRqEwMDAMi15lSctW7bE6dOn0b17dxw6dAht2rSpbJEKsG3bNggEAhw8eBDr169Hs2bNymVcS0tL7Nu3D7169UJQUBAMDQ2Lbc9isTB37lwYGBjAxcUF58+fR6NGjUo9v4ODA8aPH4+BAwfC1NQUN27cwKpVqxAWFoYJEyZg06ZN6NmzJ6Ox1q9fDzabDVdXV/z777/YvXs3QkNDi3VjCAoKkribCQBAXl689mw2oKjIqKmjoyOePXuG4cOHl0KwyuHDhw+4c+cO9u7dW9miFE1AADB5cvEuP5mZwIkTgIEBsGJFhYlWGH5+fnB0dMSAAQNgZmZWfGMHB6E7E4DP9+7Bq2VLuGprA1FRSEtLQ1paGtLT0/P9m/f3hywW6ve1RzEOKwX41S3FxMQEK1aswJgxY8DhcCDH1A2rGM6dO4c3b97g+PHjAIBly5ZBRUUFEydOFLVRV1dHQEAAmjZtCiMjI/Tr16/M81YVuFwuVq9eDT8/PyxfvhwjRozAqVOnwGaz0bVrV4nPz2Kx4OrqCldXV8TGxmL3qQtI5XAhI8/MFTKTJ0B0Fg9GSuK7TlYVWERFOE7+gXz69AnOzs4ICwuDoaEh3r59C3d3d3h7e2PMmDGVLV41P8Hj8dCiRQv07NmzSvl8A8DDhw/RtWtX7N+/H+3bt6/w+XP5hFdJOXibkotcAUFBigU7TXkopMehkaMDjIyM4OnpicWLF5f73MuXL8elS5dw584dxg/BS5cuYejQoQU/r/h4oTLy9atQ4XR0BDp2LNS3lM/nY/v27Zg8eTJcXFwwb948jBs3DrVr18a2bdugq6vLSJbz589j7Nix8PHxwfbt2xEXFwdfX98SHzjDhg2Do6Oj5O8TEyYA/v4AU19sOTkgMlKo0JXAw4cPMXnyZAQFBZVRyIpj9OjR0NHRwdKlSytblKKpXRt4945ZW3l5ICYGUFeXqEg/Q0TIzs7OpxRv3rwZb9++xbhx4wpVmgv7Oy0tDRkZGZCXl4empiZUVVWhoqICVVXVQv8O+paIhgMnQ0qO+cukmgwLY+y08u0TCASQkpLCrFmz4OPjU6bPIj09Hba2tti/fz9cXV3x+PFjdO3aFc+fPy/UmBAeHg43NzccPXoUrVq1KtPcVYGwsDAMGTIE2tra2LlzJ0xNTcHj8WBnZ4eNGzdWijHp1vcMPE3IEauPg7Y83E2UJSSR5PmrFG8AmDNnDqKjo7F//34AQEREBFq1aoUJEyZg6tSplSxdNT8TEREBZ2dn3LhxA/Xq1atscfLx5MkTeHp6Yvfu3ejUqVOFzElEeBKXjYexWWCxhAFJeciygaysLPy7Zy2UM+Jx5MgRiQSiERF69OgBLS0t7Nixg3G/vAfcqlWrMKh9e2DMGODKFWGwUp6lUEUFkJUVBjRNmCAKZAoODsaYMWMgLy+PyZMnY+DAgVBUVMTmzZvRu3dvxuf5/PlztG3bFleuXIGtrS3U1NTQq1cvHD58uMS+9vb22LNnDxwdHRmfc6n48AGwtwdyGDyIWCygQwfg0iVGQ2dmZkJHRwcpKSmQlZUto6CSJy4uDrVr18a7d+8Yv1hVOEFBgKur0KLNBEVFYaDe5MklNuVwOIwU4pL+Tk9Ph6ysbD7FWElJCc+ePYOzszOsra2LVJ5//dvS0hLdu3fH1q1bS5S/U9fu+Gf+NhCL2Yoln5uLpyf3QCPhI7y8vNCyZUvRaqeysjKUlJRw7tw5NGnShNF4hTFlyhQkJydj3759SEtLQ4MGDbB27Vp06dKlyD53795Fz549cePGDdjb25d67sqEy+Vi5cqV2LRpE1atWoUhQ4aI7pt79+7F/v37cfv27UoJXr7wOR2vkzli9amtLosuNVQlJJHk+esU7/T0dNSuXRtnzpyBs7MzAODbt29o1aoVvLy8MHfu3N8jcv4vYf/+/fD19UVQUBAUFBQqW5x8BAUFoVOnTtixY0eh2TPKm9tRmXiemJ1P4f4VHicHbc1U4WQguZtSeno6GjdujIkTJ2LUqFGM+719+xZerVvjZloalHNywCrKqqukBAwYgOQVKzB33jycOXMGq1atgp2dHQYPHgwAkJeXx5MnT4rMQPIrUVFRaNy4MdavX48ePXogICAA3bp1w969e9GnT59i+2ZlZUFbWxvJycnlstRdIn37AufPl5ytRFFRmM1JjJfSunXrYv/+/WjYsGEZhZQ88+bNQ1JSEiMlr9Lw9QXmzmW+QgEgokYNbO3WrVhFOS0tDQKBAGpqaiUqwyX9raKiUmhGo8uXL2Py5MkIDw9nfF23adMGcXFxCA0NLbGtra0txu86i2RZNbDZJf9OeZwcvNu9DDUMdHHx4kX8+PEDAwcOhJeXF9zc3DB//nysW7cOL168gCJD96qfef78Odq3b49Xr15BW1sbgwcPhoyMDHbu3Fli3+PHj2P69Ol4+PAhTE1NxZ67Mnnx4gUGDx4MIyMj+Pv7w/inTDscDgdWVlY4evQomjZtWinyXfuWgeeJ4lm862nKob2ZioQkkjx/ro93EaioqGDFihWYOHEiHj9+DDabDRMTE9y7dw+tW7dGVlYWli9fXq18VxG8vLxw5coVzJo1Cxs3bqxscfLh5OSEK1euoGPHjuDz+ejWrZvE5vqazsWzhGzwSnhNlpaTx924XFhq8qEuJ453JXNUVFRw7tw5NGvWDHZ2doz9yGtbW+OhmhoQFYVif12ZmeDu3YuFR48C/fsjNDQUW7ZswYwZM7B+/Xr06dMH7u7uWLNmDWbNmlXivJmZmfDw8MDYsWPRo0cP/PjxA8OHD8fAgQPx8OHDEhXvkJAQ2NraVozSDQh9ajt3Bh4+LNSSSmw2WPLywJkzYindgNBXPjg4uMor3hkZGfD398fjx48rW5TiycwUS+kGAJncXOjp6cHS0rJYhVlOTk6iz6GOHTtix44dWLNmDebOncuoT5s2bbBw4cIS2xERIiIisG5MfwzbeQEoQfGWYQO22grI0dPGli1bMHToUHTu3Bnnz59Hy5YtkZKSgqioKNjb22P27NliPwv4fD5GjRoFHx8faGtr4+TJk3j06BGeP3/OqH/v3r0RFRWF9u3b48GDB9DQ0BBr/sogNzcXy5Ytw/bt27FmzRoMHDiwwPW0Y8cO2NvbV5rSDQA1VWXxMimnWIPSz8iwAQu1qr9iVxx/ncUbEPqMNWnSBOPGjYOXl5dof2JiItq0aYN//vkHfn5+1cp3FSE5ORn16tWDv7///32EExKApCRAWVmYx70Sv6sXL16gXbt2YgX4icuJj6mISGf2gJcC0FBHHq2MJesDd+XKFYwYMYJRsCUA4MkToHVrxsvyHAMDvLl8GYOHDIGJiQn8/f1F83z58gWOjo64efNmscu/fD4f3bt3h4aGBvbs2QNA+BA1NjZGpwFDcfzJKzi2bAMCoCUvBUcdeZgqy+T77fv5+eH9+/cVa3nl84HDh4FVq4Q+3LKyABG4WVkItrREk7NnAWtrsYfdvHkzwsLCxHITqgz8/Pzw6NEjnDhxorJFKZ4tW4AZMxjlUhfh6QmcOycxkcQhMjISjo6OeP78ecmBlgDev3+P2rVrIzY2tkj3n/j4eAwdOhQBAQEICQmBlkUdHP+YBj4RCkvpLcMGrNTk0NFMGWwWC9HR0Vi8eDHOnDmDGTNmYMyYMXBwcIC5uTmePHkCLpcLb29vzJo1i7HL1KZNm3Dq1CncuXMHUVFRcHBwwKVLl8QOmJ46dSqCg4Nx7do1yIsbCF2BPHv2DEOGDIG5uTm2b99e6P05MzMTtWrVwtWrVyvVlVNAhM3hScgqyar0H/JSLEysqwn2b6yfVY10ERUMm83Ghg0bMGfOnHyJ+bW1tXHr1i08ffoUo0aNAp/Pr0Qpq8lDQ0MD+/fvx8ihQ5G6fTtQvz5gbCwMxqtVCzA1BTZuBCRQZIEJ9evXx7Vr1zBx4kQcPXq03MfP4QnwJYO5VY0PIPSHeD5zpaFDhw4YO3YsunfvDg6HwXzr14unoCQmYq6bG6ZOnYoLFy7ke3iYmZlh9erVGDhwYLFzz549GykpKfD39weLxcLRo0cRGROPOsPnIkRKH2aNWuIHh48kDh8fUnNxKiIN/q+TkZTz/99+hWU0+RkpKcDLC3j1CggNBS5eBK5fR3RICDzi45HDQEkqjLzMJlUZLpeLdevWYcaMGZUtSsl07SpMGMiQXHl58KtQFq0aNWpg0qRJjAPYLS0tIS0tjatXrxZ6/MKFC6hXrx4MDAxgYWEBe3t7GCnJYISNOpx0FSDHZkGGLYxJkWIBJsrS6GKuik7/Kd0AYGhoCH9/f9y/fx9PnjyBra0tpKSkMG3aNHz79g2jRo3C8uXLRYW9goKCiiyuBQjdzBYvXgx/f38QEby8vDBx4sRS/abXrFkDAwMDeHl5QSBgaKKtQDgcDry9vdGhQwfMmjUL58+fL9IosnHjRrRs2bLS46fYLBZaGSlBmoEeLc0C3IyUfmulG/hLLd55eHl5wdjYGCt+Se+Unp6Ozp07w9jYGHv37oW09F/nkVP1yMhAZO3a0I+NhUJhL0SKioCWFnD/PlBKpaSshIeHo02bNli9erWoGlp5kJDNw8H3KcgV4z7PAjCtnhak2ZK9QYkVbClO9gcA2VJSyPHxgcb06UXO3aVLF9ja2hb4DQPAzp074evri8ePH0NLSwvfv3/HP63bYMLR2+BCCsXd+OSkWBhsrQ4NOSlYWVnhzJkzsLOzYyy7JHF3d8ewYcNKdJEpjOzsbGhpaSEpKanKWuwOHTqEPXv24NatW5UtCjM6dAACAwEGiliqtDSaWlhgyfLl6NatW5VYVc3JyYGtrS22bNmCdu3aldi+Vq1acHBwEKXjA4TPzKlTp+LGjRs4cOAAcnJysGrVKty4cSNfXz4R0nMF4BFBSZoNBemSbX+PHj2Ch4cHlJWVsXXrVnTo0AGjR49GUlIS6tatiwMHDkBWVhZeXl4YMGBAPh9mAOjRowdsbGywZMkS+Pr64sKFC7hz5w7j+JBfycnJQdu2bdGwYUOsX7++VGNIgqdPn2LIkCGwtrbG1q1boa+vX2Tb5ORkWFlZ4eHDh7CysqpAKYvmaVwWbn5NBdhSYBWSQliaBTTTV0QTffH9+6saf6XFO4+VK1fC398fERER+farqKjg8uXLSEhIQJ8+fZCb+4eUKf1dIQI8PGCemFi40g0AWVlAVBTQvDmQklKh4uVhZ2eHGzduYNasWaKsOeWBUHcW7wFNRIj6/r1YS1B5wGKxsG/fPjx8+BD+/v7FNxZzBUleTg4aqkUHibJYLOzYsQN79uwp4At88+ZNzJs3D5cvX4aWlhYEAgGGDBmCkRsOlah0A8KUjecj05GSkoKYmBjUqVNHLNklyfDhw7Fr165S9VVQUIClpSVevnxZzlKVD0QkKg//27BlC6CqCipJiVZQgOqFC1j7X/7kRo0a4fr16xL/jZaEvLw8Nm7ciAkTJjBauXJycsqXkvLhw4eoX78+BAIBQkND8c8//+D79+8FFGAAkGKxoC4nBW15aUZKNwA0bdoU7du3R7du3TBjxgy0bNkSvXv3xrNnz9CgQQN8+PABO3fuRGRkJOzt7eHu7o6DBw8iIyMDly5dQmhoKLy9vRESEoLVq1fj4MGDpVa6AeHnde7cOVy/fh3r1q0r9TjlRU5ODmbNmoXOnTtjwYIFOH36dLFKNwD4+vqiS5cuVUbpBgDd7HgcmToAxnICSLGEqyLZ6WlgkQC1VGXQp5baH6F0A3+54m1kZIRp06ZheiEWNUVFRZw/fx48Hg/dunVDDpP0XtVIhlu3gOBgsEp6KAgEwI8fwjzIlYSNjQ1u3ryJuXPnYvfu3eUypqqsFARiPpzTf8Shnn1dGBoaomvXrvDx8cGtW7fyuVaVF3nBlvPnz8fDhw+LblirlljjsqSkgBo1im2jp6eHLVu2wMvLC5n/+Y6/efMG/fr1w4kTJ2BpaQkA2LJlC3jScpDWMy1R6QYAApCYw8ODF+GoX79+mR7U5U2XLl0QGhqKyMjIUvWvyu4mgYGBAIC2bdtWsiRiUKMG8OABOKqqyCys2JeCgnBF7uhRsNq3R7t27RAcHIwZM2Zg/PjxaNWqFZ48eVLxcv9Ex44dYWNjg7Vr15bY1sPDA9++fRO5NfTo0QPr1q3D7t27ofrfi3JRindpUVFRgaWlJcLCwuDl5QUvLy+YmJhg2LBh+PHjB5o1awZ/f39ERUVhxIgROH78OIyNjdGnTx+MHDkSPB4P/fv3h5+fH8zNzcssj4aGBgICArB+/XocO3as7CdYSh4/foz69esjMjISYWFhjNKrxsbGwt/fHwsWLKggKZkxdepU9G7rioF2+hhvp4l+luo4MKE35J+cQQ8LNRgr/74Fc37lr1a8AeGXHRISgps3bxY4Jicnh5MnT0JZWRkeHh6iB3s1Fczq1UBGBrO22dnAunWMln0lRe3atXH79m0sXry4XILYZNgs2GrKMf6xCrgcqCV/hYODAzIzMxEXF4cHDx7A29sbBgYGsLOzw7Bhw7Bjxw6EhoaCx+OVWcafK1tGf/8urObn6ipMDSgrC+jqCv8WJw2YnBzg5lZis+7du6Nx48aYNWsWEhMT0alTJ6xatQouLi4AhGkMlyxZgmm+4gVH8gkIT+ZWvH93CcjJyaFfv36lrubo6OiI4ODgcpaqfMizdlcFFwxx4NSqhQaamoicNUuYaUZBQXj9mpoCS5YA374Jgyr/g81mo1evXnj16hX69euHnj17okuXLggPD6+0c/Dz88PatWvx5cuXYtu1b98ePB4PDRo0wMuXL/HixYsC6VQloXinp6dDWloaw4YNw/v379G+fXtRatOYmBgAwhWdXr164dKlS+jXrx+sra1x5MgRGBgYgMViwcHBodxkMjExwZUrVzBx4kTcuXOn3MZlQlZWFqZNm4Zu3bph2bJlOHHiBONc9ytWrBC9uFQVAgMDERYWJjKCKkizoa8ojcyYL3gXHlbJ0pU/f73iLS8vj7Vr12Ly5MmFKiAyMjI4fPgwjI2N0a5dO6SlpVWClH85t2+L1z4zE3j/XjKyMMTS0hK3b9/G8uXLyyUbRiNdBTB11yaBAFvnTsGIESPw8eNHDB48GLm5uXjz5g3atm2L/v37w9bWFo8ePUKfPn2goaEBFxcXzJw5E6dPn8b3799LJWOHDh0ww8sL2VZWoF69gDt3hC5AXK4wC83Fi8L/M0FREZg2rdAqloWxadMmUeqx3r17i/J9c7lceHl5YcmSJZBW1Sg0q0JREIBkDr/KKd6AsJLmvn37ShUAnpdSsKoRFBSEjx8/onfv3pUtiths3boVFjY2sFuxAnjxQnid5+QAX74A06cDmpqF9pOWlsbw4cPx4cMHtGjRQlRPorSrGWUhL9CyuEJyAoEA+/4rIV+nTh1cuHABenp6BdpJSvHOQ1FREbNnz8aHDx+QnJwMS0tLLFiwQPR8Dg0NxalTpxAQEIBly5ZBWVkZbm5ucHV1hbOzM7Zs2YIfP36UWa66devi+PHj6NWrV4W5b92/fx/169dHdHQ0Xr58iR49ejDu++XLFxw+fBje3t4SlFA8OBwOJkyYgA0bNhSIO9HS0irgCvwn8Ncr3gDQtWtX6OjoFGmdlJKSwu7du1G3bl20bt0aSUlJFSzhXwyfL3aeXEhLA1XgBcnCwgJ37tyBr69vmXOQa8lLw8NMpcTIbxk2MKSuPo7s34sVK1ZgwIABcHV1xbVr1xAREYEOHTrg3r17WLx4MdLS0jB//ny8evUK8+bNg6qqKvbt24eGDRvCyMgI3bp1w6pVq3Dnzh1mLippaZh04gTMcnLAKmyF4r9YCQJQ7HqEoiLQuLFQYWGImpoarK2tERERgWnTpon2r1ixAlpaWhg9enSpAk1/JMRXScXb3t4eenp6uH79eqn6vn//HtniZJipAFavXo2pU6cWWuylKpOUlISVK1di9erVpR5DXl4eU6dOxYcPH2BhYQEnJyeMHz9eZMmtKGbOnIkXL16IXH5+5uvXr2jdujVOnToFW1tbpKWlFbky8f37dxgZGZWbXL8q3nkYGxvj6tWrUFBQwOvXr2FlZYUNGzZg5MiRWL58OQCIXE82bdqEb9++YfHixXjw4AFq1qyJbt264dy5c2WK43J1dcWGDRvQsWPHUhstmJCZmYlJkyahd+/eWL16NY4ePQptbW2xxli8eDHGjRsHHR0dCUkpPn5+frC2tkbHjh0LHNPX18e3b98qQSrJUq14Qxik5efnh0WLFhWpVLPZbGzZsgUtWrSAq6sr4uPjK1jKvxQpKeGSrThwuYC6ukTEEZcaNWrg9u3b8PPzK3MEvLWGHHrXUoOOHAvcnGzwubkAEaRYwtRcpsrS8LJSh6GSDJo2bYpnz56hbdu2aNKkCZYsWQJlZWUMGzYMAQEBiIyMROfOnXHkyBHY2dlh8+bNMDMzw6FDh0SuKb169UJsbCy8vb2hr6+PunXrYvjw4di5cyfCwsIKWltXrwYrKgrSJfij5z2qBfLywM8+sXnL8/36CV1VxMgmtGzZMqSlpWHgwIGY/F857qCgIGzduhW7d+8Gi8WCoZIMZMW440mzCJHPn8DCwoJ5pwqktEGW8vLyqF27NsLCqs4S7sePH3Hnzh0MHz68skURm2XLlqF79+6wsbEp81iqqqpYuHAh3r59Czk5OdjZ2WHOnDlITk4uB0lLprBASyLCoUOH4ODgAHd3d9y7dw+tWrUq1sJb3hZvZWXlIl/+nZycMGbMGGRnZ+Pq1asiFzpFRUUMGTIEgwcPRosWLQAIVxjatWuHo0eP4uvXr+jYsSPWr18PIyMjRqkJi6Jv376YMGEC2rdvjxQJBPffvXsX9erVQ1JSEsLDw4stcV8Ub9++xaVLl/IZJiqb79+/w9fXF35+foUeNzExQVxcXMUKVRFQNSLGjBlDEyZMKLaNQCCgBQsWUO3atSkqKqqCJPvL6dKFiMUiEuY3KXGLk5OjE8ePE4fDqWzJRXz58oUsLCxo9erVZR7r5MmT5Nl/MLUePoWufUqgoPgsSs7hFTt3ly5dyMrKim7cuFHgeHJyMh04cIA6d+5MKioq1LFjR9q7dy8lJSWJ2nA4HAoKCqLNmzfTwIEDycrKipSVlcnFxYVmzpxJZ44fJ76qKuPvSKCgQDRqFPGGDKEbAAnatyfy8SFKSBD78zh69CiZmppSTEwMZWRkkKWlJR0+fJisra3p2LFjonZcvoDWvkiglc+ZbT7P4qhtJw+x5akoUlJSSE1NjeLj48XuO3z4cNq8ebMEpCodo0ePpnnz5lW2GGLz4cMH0tLSotjYWImM//XrVxo+fDhpa2vTihUrKCMjQyLz/IqHhwctX76cEhMTqWfPnmRjY0PPnz8XHb9z5w6xWCzicrkF+mZlZZGcnBwJBIJyk+fYsWPUo0ePIo9zOBxq0KABrVmzhrS1tWn37t1kampKioqKFBAQUOL4nz59osWLF5OFhQXVqVOHVq5cSV+/fhVLRoFAQBMnTiQXFxfKyckRq29RpKen07hx48jIyIguXrzIvCOXS/TlC9G7d0TJyURE1LNnT1q1alW5yFVe9O7dm+bPn1/k8YULFxKbzSYer+jn2+9IteL9EwkJCaStrU0vX74sse3KlSvJwsKCPn/+XAGS/eU8eECkpMRYoQv28iJXV1fS1dWlmTNn0vv37yv7DIiI6Nu3b2RpaUkrVqwo0zg9evQgPz8/UlFREevhdv78eTIzM6P+/fsXqSikpqbS4cOHqWvXrqSqqkrt2rWjXbt2UWJiYoG2SUlJdPXqVVqyZAnNbtyYUsV4OSKAqEYNSkxMJA0NjVJ/Fo8ePSIdHR0KDQ3Nt09BQYG6du2ar+2HDx+o/4I1tOzJtxKVbt+QBFp68gbNmTOn1LJVBF5eXrR27Vqx+23fvp0GDx4sAYnEJzY2ltTV1SkuLq6yRRGbHj160PLlyyU+z9u3b6lXr15kYGBAmzdvlrhRISIiglRUVEhfX5+mTJlC2dnZ+Y7n5uYSi8Wihw8fFuj74cMHqlmzZrnKc/nyZWrbtm2xbcLCwkhWVpbGjh1Lr1+/Ji0tLVq/fj1ZWFhQ27ZtKSQkpMR5BAIBPXjwgEaOHEkaGhrUqlUrOnDgAKWnpzOSk8fjUffu3al3797E5/MZ9SmKGzdukLm5OQ0ePDifEaRYYmOJFiwg0tAgUlQkUlYmkpWlNAcH6q+pSZkV9OLGhFu3bpGZmRllZmYW2cbf358UFBTo27dvFSiZ5KlWvH9hw4YN1KpVK0YKzYYNG8jU1JQ+fPhQAZL9xQgERF27EikoFK/IycgQWVsT/XdzeffuHc2YMYN0dXXJzc2Njh07Vm6WiNISFRVF1tbWtGTJklL1T09PJ1VVVbp58ybVq1dP7P4ZGRk0c+ZM0tbWpm3bthX7cEhLSxNZmlRVVcnd3Z127NhRuIX15EkSiGHxJoBIQ4MiIyPJ1NRU7PMgEioH+vr6dPny5Xz7r1+/TioqKtS2bVsSCAQkEAho3759pK2tTRs2bqTzEam0phjLt29IAh37kEIdOnWiM2fOlEq2iuLu3btkY2MjtnUxODiY6tatKyGpxGPevHk0evToyhZDbB48eEAmJibFKg7lzbNnz6hdu3ZUo0YNOnDggEQsgRkZGTR27FhSU1Oj5s2bF9lOV1eXpk6dWmD/7du3qUWLFuUq071796hp06bFtrly5QppampSs2bNqEGDBuTv709EQmv45s2bSU9PjwYMGECRkZGM5szOzqYTJ05Qx44dSU1Njby8vOjGjRslKtTZ2dnUvHlzmjZtWr79yTk8ikzlUGQah9I4RX9vqampNGrUKDI2NqYrV64wkpWIiIKCiNTVieTlC73f5srKEvXvT1QFrMe5ublkY2NT4v317NmzpKGhQffv368gySqGasX7F/IuiHPnzjFqv2PHDjIyMqJXr15JWLK/nJwcIk/Poi3fyspENjZEhVjNcnJy6Pjx49SqVSvS0dGh6dOn07t37yr+HP4jJiaG6tSpQwsWLBBbYTp27Bi1bduWTp48SV26dCm1DGFhYdSsWTNydnZmZAnKyMigkydPUu/evUlNTY3c3Nxo27Zt/7ecX75MJK7ibWBAYWFhZGtrK7b8KSkpZGNjQxs3bsy3Pzk5mUxMTOjy5ctUr1492rx5M/Xt25fq1KkjsooLBAIKjs+iTS8Tac0LoaLtG5JAvs/jaP6tt3T/eyrx+HzS0dGp8pYWgUBAlpaW9OjRI7H65eTkkIKCQoUqjYWRnp5O2trav53xQiAQkLOzMx04cKBS5r979y41bdqUbG1t6dy5c+Xm1vHkyROytLSkAQMGUHR0NNWsWZOuXr1aaFs3NzdydHQssP/gwYPUr1+/cpEnj5CQkGJfFDMzM6lGjRp06dIlMjQ0JDs7uwKfSVpaGi1YsIA0NTVp8uTJlCCGW1tsbCytX7+e6tevTyYmJjRnzhx68+ZNke1//PhBderUofV+fvQuOYf2vk0m35AEWvcikdaFJtLqkAQ6/D6ZPqflX7kIDAwkMzMzGj58OKWkpDCWjz59Ynb/VVQkGjWK+bgSYu3atdSmTZsSr9sHDx6QlpYWHTx4sIIkqxiqFe9CuHbtGtWsWZOxdfTgwYOkr6+fzweuGgkgEBDduEHUti2RlBSRrCwRm01Uvz7RsWNEDJZfP3z4QLNmzSI9PT1ycXGhI0eOFFhGrQji4uLIzs6O5s6dK9ZDs1u3brRnzx5avXo1TZkypUwy8Pl82rVrF+no6NCUKVMoLS2NUb/MzEw6c+YM9evXj9TU1MjFxYV2+viQQE6OudItJUU0cCA9fPiQGjduLJbcXC6X2rRpQ+PGjStwrH///jR+/HgiIjpw4ACx2Wzq379/oQqmQCCgz2kcep6QRc/isygilUPubdrQoUOH6PPnz6Svr1+ufqqSwsfHh4YNGyZ2PwcHh0JdBSoSPz+/Yn13qyrHjh2jhg0bltmdoCwIBAK6dOkS2dvbk7OzM928ebPUY+Xm5tLChQtJV1eXjh8/Ltp/8eJFsrS0LPRZuGLFClJVVS2wf+XKlTRz5sxSy1IYHz9+JHNz8yKPz549m3r37k23bt0iXV1d0tDQoLdv3xbaNiYmhsaOHUtaWlq0YsUKsV8+Q0NDafr06WRgYECNGjWizZs3F+qKFxn5mfot20I+wbHFrq49ismklJQUGjZsGJmamlJgYKBY8hARUb9+wnsqk3uvvDwRQ6u/JIiOjiYtLa0iv5+fef/+Pamrq9OyZcsqQLKKo1rxLoLOnTuTj48P4/anTp0iXV1devLkiQSlqkYEl0uUlMRI2S4MDodDJ0+epDZt2pCOjg5NnTq1WAuGJIiPjyd7e3uaNWsWIwUvLS2NVFVVKSkpiUaPHk2bNm0qNzkGDx5MxsbGdPr0abGUzezsbDp//jwNHDiQzsjIEI+p4q2oSBQSQlevXiV3d3fG8wkEAho9ejS1a9euQGDXiRMnyMrKitLS0mjp0qWkq6tLAwYMoJYtWzJWkM6ePUtNmjShkydPUqdOnRjLVZnExMSQuro6Yz/UPEaNGlVgxaAiyc3NJVNTU3r69GmlyVAacnJyyNzcnG7dulXZohCR8AX6yJEjZGFhQa1btxb783z79i05OTlR27ZtC00YkBdo+Svv378nAAUCPseNG1fu11VcXBxpaWkVeuzly5ekra1Nr1+/JhMTEwoICKDNmzdTo0aNCg3+/Fn+nj17kpGREe3cubPYtoXB5XIpICCA+vbtS6qqqtSlSxc6e/asyP/+QUwmrXoeV3IQd3AsufYfQaNHj6bU1FSxZCAiYfBkEe4lhW6yskTTp4s/TzkxYMAAmjVrFqO2KSkpJC8vT8OHD5ewVBVLteJdBHnR6tHR0Yz7XLp0iXR0dOju3bsSlKya8ubTp0/k7e1N+vr69M8//9DBgwcpKyurQuZOTEyk+vXr07Rp00pUeA8fPkwdOnQgIqK2bdvSpUuXylWWO3fuUJ06dahjx44UEREhdn/OixfEZfIAkJcn+u88Tp48WSAIsjjWr19PdnZ2BR5Q0dHRpKenRxcuXKAWLVpQy5Yt6du3b8Tj8ahp06bk5+fHaHwul0smJiY0ePBgWrx4MfOTr2Q6d+5Mu3fvFqvPjh07yMvLS0ISlcyhQ4eoZcuWlTZ/afH19SUPj6qX7SY3N5e2b99ORkZG1K1bN3r9+nWx7QUCAW3evJm0tbVpy5YtRd5/Pn36RJqamvTly5cC/WVkZOjEiRP59nt6epZ7bERWVhbJysoW2M/n86lp06a0ZcsW6tWrF02cOFG0v1WrVowCX//9919ycXGhOnXqlNptJyUlhXbt2kUtWrQgbW1tGj9pMq16VrLSnbetCY4u/era+fPiu/nVqFG6ucrIvXv3yNjYmLGRIO8ac3V1lbBkFUu14l0MM2fOFDvy/8aNG6StrU3Xrl2TkFTVSIrc3Fw6c+YMtWvXjrS0tGjSpEkUHh4u8Xl//PhBDg4ONGnSpGJvvp6enrRv3z4iIrKyspJIXAGHw6EVK1aQlpYWrVy5UvzsCTdvEikpkaCIZU++ggJR8+ZE/y3v7tmzh7Hyd+HCBWqko0PxW7YQHTwodDvickkgEFD79u2pZ8+epKurS8uXL88XdJb3El2SIpLHsmXLyNDQULzApkrm/PnzJQaf/crz58/JxsZGQhIVj0AgIHt7+9/qMyb6f+aril4dE4esrCxavXo16ejo0ODBgwvNvBUVFUVt27YlJycnRkv+ixYtom7duhXYX6NGDRo4cGC+fQ4ODuW+iiEQCEhKSqrA/cjf35+cnZ1p7969ZGtrm89g8uXLF9LW1qYXL14wGv/y5ctkZ2dHzZo1owcPHpRa1oiICFq65wQtfviFueL9IoEiUkuZqebQIWGMkziKt65uqc+vtHC5XLK3t8+X4pUJenp6xboZ/Y5UK97FkJqaSgYGBmLfRO7fv086Ojp04cIFCUlWjaSJjIykefPmkaGhITVr1oz2798vUSt4cnIyNWrUiMaNG1eo8p2SkkIqKiqUnJxMfD6f5OTkJBoY9+nTJ2rfvj3Z2NiIv4Lz4QPR0KFECgqUq6BAyf9F1MerqNAUJSVq1LAh+fj40MePH2nDhg2F+mr/yvvdu+mhtDTxZWWF1h1lZeG/Ghr0pF07MtHWpho1ahTp6rVt2zZydHSk3NzcEueKjo4mAPTx40fxzrsS4XK5ZGBgwPjlgkj4kqWoqCi2i0p5EBAQQHXr1v0tfOh/ZuLEiTR27NjKFoMRKSkpNG/ePNLU1KSJEyeK0jUeP36cdHV1adGiRYx+D0RCZb6wQMsePXqQtbV1vn16enpirRQzRV1dnX78+CH6f2xsLOno6NDly5dJW1s7X0rRPPbu3Uv29vaM47V4PB7t27ePTExMyNPTU6zf08+c/pTKWOnO2+5EiZ/qTyAQ0JctWyhHnPgagKhWrVKdV1nYtGkTubq6iv2br1evHsnIyFRqPEV5U/UU74QEYSENIyNhsICMDJGVFZG/vyhNXEWyZ88eaty4sdgXy9OnT0lXV7fAMlw1vxdcLpfOnTtHHTp0IE1NTZowYQKFhYVJZK6UlBRq3LgxjR49usBN5sCBA6Ll7W/fvpG+vr5EZPgZgUBAp06dIiMjIxoyZIhYWQCIiCgtjQIXLSJPVVV6dvAgkUBAXC6Xbt68SaNHjyZdXV0yMDCgFi1aFJtlJmndOsoqJkd4JkARKiqUWkwGEoFAQG3btmXkPvL27VtSUlJi7J5SVZg9e3aBFGYl4eTkVCmpulxdXX+7TAXv3r0jLS2tUhUsqkzi4uJo0qRJpK6uTnZ2dlSrVq1SWaQLC7Tcu3cvycnJif7P4XBIRkZGImkOTUxM8lnv+/XrR9OmTaMmTZrQunXrCu0jEAioc+fOYufjz87OJl9fX9LW1qbhw4fT9+/fxep/7EOK2Ir3ta/MXoBTUlLo9OnTNGLECDIxMaE6JibEYRpYmefqV0zRmjLD5RKFhhLdv0/08iURn09xcXGkra1dqhXktm3bkrq6+h9VsLBqlYy/eBEwMwMWLwaiogA+X1j++/17YOpUwMQECA6uUJEGDRoELpeLI0eOiNXPyckJ165dw8SJE3HgwAEJSVeNpJGWloanpycuX76M58+fQ0NDA+3bt0fTpk2xb98+ZGVlldtcampqCAwMxMuXLzFq1CgIBALRsRMnTqBXr14AgMjISNSoUaPc5i0KFouF7t274/Xr11BTU4OtrS327NmTT65iUVFBXM2aCFJWRoyGBsBiQVpaGm5ubti2bRuio6PRsmVLcDgcuLi4wN7eHkuXLsWbN29EQ2Rfuwb5adOgQFTkNIoAauTmQtXLq9hz2b17NzZv3oxnz54VK3ZQUBCcnJywdetW5udaBRg6dCgOHjyI3Nxcxn0cHR0RXMH31KCgIHz8+BG9e/eu0HnLyuzZszF9+nTo6OhUtihioaurCw8PDygqKoLH4yElJQW3b98W+97VqVMn1K5dG+vWrRPt69q1KzgcDmJjYwEA0dHRMDAwgJSUVLmeAwCoqKiIysZfv34djx49gry8PJSUlDBp0qRC+7BYLPj7+2PPnj148uQJ47nk5eUxffp0vH//HpqamrC3t4e3tzdSU1MZ9VeWEU+1YhfTRyAQ4Pnz51ixYgVatGgBExMT7Ny5E7a2trh+/TpeffkC2aFDAWlpZpMRAaNHiyUfI5KSgCVLAH19oHlzoFMnoEkTwNAQdzt2xPBevWBrayv2sLq6utDQ0MDnz5/LX+bKorI1fxHXrpVcIAUQLjFXgN/tzzx8+JCMjIxKtST7+vVrMjY2pu3btxc4xuULKJXDo7RcHvF+syXXvxkul0sXLlygTp06kYaGBo0dO5aRHyFT0tPTqUWLFjR48GDi8XiUnJxMqqqqooDCffv2Uf/+/cttPqY8f/6cnJycqHnz5oyquxIR7d69m2rUqFGkdXPs2LG0ceNG4vP5dP/+fZo4cSIZGRmRjY0NLViwgELV1Jhbcv7LlFIchw8fpjp16hTrNjRp0iTy8fEhe3t7un79OqPzrCq0aNGCTp8+zbj97t27acCAARKUqCA9e/ak9evXV+icZeXu3btkampaYUHX5UVWVhZNnjyZjIyMRG4ir1+/pu7du5OhoSFt27aNsbsJUeGBlkpKSrRhwwYiErpZihtrwBRnZ2d69OgRZWVlkYWFBa1Zs4Z0dXUZWUJPnjxJVlZWpXbP+/r1Kw0ZMoR0dHRo3bp1JbqufEnLLbZIV2FpBZNy/r9KEB8fT4cPH6aBAweSrq4uWVtb06RJkyggIKDwazAqikhLi6ik6sGKikRz55bqMyiWiAgiQ8Mis6tkAcQ3MxPKKSZTp04le3t7OnLkSPnLXUlUDYu3QAAMHAhkZ5fcNjMTGDlS8jL9RNOmTeHi4oJVq1aJ3bdOnTq4c+cOfHx84OfnBwBIyObhypd0+IX9wI7XyfB/lQy/sB+4/i0DKRx+OUtfTXkjLS0NDw8PXLx4EaGhoSKLkrOzM3bv3o2MjIwyja+srIwrV67g8+fPGDJkCM6cOQM3NzeoqqoCqDiL9680aNAAjx8/Rr9+/eDq6orZs2cjMzOz2D5cLhcKCgpITk4u9HhGRgZUVFTAZrPRvHlzbNiwAV+/fsWuXbsQevYsLBlamAAAHA7wkzWuMPr27Qs7OzvMmzevyDZBQUFo1KgRxo4di61btzKfvwowbNgw7N69m3F7BweHCrV4f/z4Ebdv38bw4cMrbM6yIhAIMH36dKxYsQIKCgqVLQ5jQkJC4OjoiKioKISGhqJt27YAhM+kU6dO4fz58zhz5gzq1KmDI0eOMFrdqVmzJiZOnIipU6eK9llYWCAwMBAA8P37dxgbG0vkfPIs3suXL0fdunWxbds2bNu2DYaGhiX27dGjBxwcHDBnzpxSzW1iYoI9e/bg1q1buHXrFmrXro1Dhw4V+ZmZKEtDQYq5eqWrIIU3z/7FggUL0KhRI9SqVQsnTpxA06ZN8eTJE7x9+xZ+fn5o165d4degoSHw8CGgqwsoKRU8zmYDiopCS/fSpYzlYkR6OtCiBRAbC+TkFNpEAQA7KgpwcSmyTVHo6upCXl7+j7J4Vw3F+9o1oULNBCLg+XPg40fJyvQLq1atwtatWxEZGSl2XwsLC9y9exdbtmzBioNnsP9dCsKTOOARRBtXAIQk5mDXm2S8TRbvwqym8jAxMcHChQsRGRmJhQsX4uLFizA1NcWYMWMQEhJS6nGVlJRw+fJlREdHY968eejevbvoWEREBGrWrFke4ouNlJQUxowZg5cvX+Lbt2+wtbXFpUuXimzP4/GgoKCAlJSUQo+np6dDRUUl3z42m43Xr1/DND4ecsrKzIXj84H794ttwmKxsHXrVhw7dgx3794tVN7Q0FA4ODigf//+uHv3Lr59+8ZchkqmR48eePz4Mb5//15iW76AwDasBddZa7HlZSL8Xyfh8pd0xGXxJCbfunXrMGrUKCiL871WMseOHQMRoW/fvpUtCiN4PB5WrFiBtm3bwtvbG8ePH4eWllaBdo6Ojrh27Rp27tyJjRs3okGDBrh06RKoGLcuAJg5cyaeP3+Oa9euAQCaNWuG0NBQAJJVvJWVlfH69Wts374dcnJyaNmyJbp168a4/+bNm3H69GncunWr1DLY2dnh4sWL2LdvHzZv3oyGDRsiMDCwwGfGYrHQ2VwF0qwSBiQCn5ONJT1bY+zYscjNzcXq1auRkJCAc+fOYfTo0cyNLNbWQr1ozRqgRg1ASgqQlRVuvXsD9+4Ba9cCrJKEEpN9+4RuJiW9uPF4QuX85EmxhtfV1QWLxapWvMudgwcBcayEfD5w5ozk5CkEY2NjTJkyBTNmzChVf1NTU+wLvA+BZSPwCCjsEhVAqIRf+pKBz+nM/TSrqXykpKTQoUMHnDt3Di9fvoSRkRG6dOkCJycn7Ny5U+SbKA6KiorYv38/EhIScObMGXC5XACVZ/H+GX19fRw+fBi7du3C1KlT0a1bt0IV1JIs3oUp3rdv34a3tzfmTJki/g2KgX+ztrY2/P39MXjwYOH3QgQ8eQIcPoyoNWvQWkcHqqqqUFZWRv/+/bFjxw5xpag0FBUV0bt3b+zbt6/Ydl/Sc7ExPAnXorNhWq8R0nlAMkeA8CQODr5PweH3Kcjhla9/e3x8PI4ePYoJEyaU67iSJCcnB97e3li7di3Y7KrxuCyOT58+oUWLFrh58yaePXuG/v37g1WCouXq6orHjx9j6dKlmDNnDpo3b17oS2keCgoK2LhxIyZMmAAOh4Nu3bohNjYWRCRxxXvbtm3w9PTEs2fPRCvITNHU1MSOHTswdOhQpKWllUkWFxcXPH78GPPnz8fEiRPh7u5eIHbEWFkGPS1UIctmQaaQr4AyM8DLyoDu56e4d/UiXrx4AR8fH7Rs2RKysrKlE0xZWWjVjogQWqLj4oSeBEeOAA4OpRuzOIgAX1+AabxARgbg4yPWFLq6uuDz+fjy5UspBKyaVI07yX+BGYzhcnHnxAksWrQIa9euxY4dO3D06FFcunQJd+7cwbNnz/D+/XvExMQgIyOjxDd4pkybNg3BwcG4ffu22H0FRAjKkIG0nHyJbXkEBH4rP7mrqViMjIwwb948REREYOnSpQgICICpqSlGjRpVYmDfrwQGBqJTp07Izs5G3759weVyq4TinUfr1q0RFhaGevXqoUGDBli7dq3oBQEQKt6KioqMFe93796hT58+OHbsGPTr10cuT0zrq74+o2adOnVCazc3nG/fHjA3B9zdgTFjYLB4MY5/+wbY2AAnTmDMmDHYtWuXWAGLlc2wYcOKDYL9kp6Lk5/SwOETuL80IQjvP9FZPBz8kIpcfvndgzZv3ozevXtDT0+v3MaUNBs2bECDBg3QokWLyhalWIgIO3fuROPGjdG7d29cv34dJiYmjPuzWCx07twZL168wJgxYzBkyBC0a9cOz58/L7R9p06dYGVlhXXr1qFly5ZgsaXw5EU44tOzYWhiWl6nlY+oqChkZGTg4sWLOHToUKlWTTp06IA2bdpgypQpZZYnL/g8PDwcPXr0gIeHB/r27YuIiAhRG37Cd9hunIXmK2ZC7ctHSGdnQSYrEzrvwtHRdw5md6iPEc//hSHD+5ZYKCgA6upCNxNJERcHJCSI1+fdO+aKOgAdHR1kZ2f/URZvFlUF7a5LF+D8ecbNBQAet26NwCZNkJGRgfT09EK3vGPZ2dlQUlKCiopKoZuysjLjYzdu3ICvry+ePXsGaaZRxADep3Bw6Us6chkakWTYQN9aajBUkmE8RzVVl5iYGOzduxc7d+6EpqYmRo4cib59+4r8touibdu2GDZsGDw9PdG9e3ew2WwEBgYiKytLIpkDysL79+8xbtw4xMfHw9/fH40bN8bKlSsRFBQEIsLZs2eFL9nbtwOXLwNZWXj6+TMM5s2DydSpSExPR5MmTTB79mx069YNY0eMgP/Zs1BlmllEWRnw8wOGDSu5LZ8Pbteu4F66BMWiboGKisDIkWgVGooRI0eiT58+jD+LyoSIUL9+faxfvx5ubm75jvEFhE3hSchhoFBLsQAHbQW4GRfiMyomGRkZqFGjBh49egRLS8syj1cRJCQkoE6dOnj06BGsrKwqW5wiiYuLw/DhwxEVFYVDhw7BxsamzGPm5uZi165dWLZsGZo3b46lS5fC2to6X5uIiAi4e3aH7/ErCE/hQkZGBnw+D7KycqitqQBnXQXoKTJ/RhaFgAjPviVi+dY9UNHQRG0zY4zu4g4t+dKNnZ6eDnt7e2zatAmdOnUqs3x5ZGRkYNWqVfDz80PNmjWRkZGBrgkJWJ6VBTl+MbFbiopA377Azp3l7wYiaT59AtWrBxZTV2EAkJMDvn0DGGYH+vz5M1q0aIGEhARkZWWVuILzO1A1FO89e4CJExn7eQsUFcG+ehX45x9G7fl8fgEFnYnCXtSWk5MDeXl5aGpqMlbYsy2dkalqINbH0lRPAS0My/7Qq6bqIBAIcOPGDezYsQM3b95Ejx49MHLkSDg6Oha4oSQmJsLCwgLR0dFQUlICh8NBhw4d8OTJEyQlJUFOTq6SzqJoiAjHjh3DtGnT0LlzZ2hoaODbt2+I+fYNN21sgL17hQ+XnwJsBEpKYLHZmG9kBG7nzvDw8MCAAQPg6emJtQoKkN6wgVlAjpISEB8vfJCVxLRpwheAkiwviooI6dcPk969w71790oet4qwadMmPH78uEAa1DfJHAR8zUCugNltX5bNwsS6mpBml+1ht3HjRty7dw+nTp0q0zgVyfjx48Fms7Fx40bhjrxHZRV68J87dw5jxozB0KFDsXDhwtK7KBRBZmYmNm3ahLVr18LT0xMLFy4UWdLfJufg7MdkEFhg/2KEYkH44tbCQBGN9Bj8HosgJDEbd6OzkJmdDSlZ4WoxGwCbBegqSKOjmXKpFPC7d++iX79+CAsLK9T/nSlEhDdv3uDq1au4evUqHj9+DHt7exAR0l6+REhODmSYrNopKQHHjwMdO5ZaloogMzMToaGhCAkJQUhICD4GBSEwLAxiPYmkpYW6HsNrNTMzE9ra2lBSUsKrV69+qxWzoqgaindWljAal6Hi/YXNxtZp0zBz1qwy/WhKS3BwMDp06ICbN29CSkqqRIU9IyMDuu0HQs3CTqx5GmjLoa2JSskNq/ktiY2Nxb59+7Bz506oqKhg5MiR6N+/P9TU1AAAO3fuxI0bN3D8+HFRn4sXL2L48OFwdHTE6dOnIS9fsutSZZCSkoK5c+fiwIEDaOTkhNnPnsGdxytW0eVISeG8pycmPXqEXbt2oWPHjsJ7grMz8OFD8f7bCgpCP8YuXUoWLjVV6JLCMLqetLRgJieHy1evom7duoz6VDZJSUmoWbMmIiMjoaGhIdp/+H0KvmUyd9+RZbPgYa4MS7XSv+RxuVxYWlri5MmTcHJyKvU4Fcm7d+/QvHlzvA0KglZAgDBbTmSkUPnW0wPGjwdGjGBstStv0tLSMHnyZNy7dw8HDhxA06ZNJTpfcnIyfH194e/vj0GDBmHwlDm49oMFXgnagzQLaGOiDHst8e9Td6Iy8SwhG9xi5pBlAwOs1KGrIL7yPWXKFMTExODYsWNi9UtNTcXNmzdFyjabzUa7du3Qrl27fNmnkocPh/LevZBhumL3zz/CAMgqQmJiokjBztu+fv0KW1tbNGjQQLQ5TZgAKXEyI7VpA/yXBYcpysrKsLKywrZt2+Ds7CzmmVQ9qobiDQCrVgnT3JSkfCsoIHHTJswLCsKpU6cwYcIETJkypcQl+/Jm9OjRkJeXZxzgcfFzOl4lc8Sao9ri/XcgEAhw69Yt7NixA9evX0fXrl0xcuRIzJs3D2PGjMmX0WTr1q0ICQlBamoq0tLScPbs2QLppYgIAgBSVcAyN2jQICidO4fVaWlg4pGZw2YjNTQUenY/vaSmpACdOwPPnoGflYV8DjZ5qbMOHWKmdAPAxo3AnDnM/QxVVHDMwwN3VVWxbds2Zn1KCZ/PR25ubr6Ny+UW2Mdk27t3L0xMTODg4CDap9ZpBKRVNRnLwxLwYZwZBSsFPjQ0NKChoQF1dXWx3JzygnBLExtTWXh6eqKHmRkGHjokfOH79bmkoCC0fB85Anh6Vqhs9+7dw6BBg+Du7o5169ZVaIaY2NhYLF++HPKt+kPLrBajPnL/rZpIibFq8jE1F+c/pxWIQSgMRWkWxtmKNz4AZGdno0GDBli8eHGxxZwEAgFevHghUrRDQkLQrFkzkbJtbW1duPuDhobw3sUUOTng82fGcSrlBRHh27dvCAkJwfPnz0VKdlpaGurXr59Pya5Tpw5kZH5xfz1zBvDyYmY4VVICzp0DWrcWS8YaNWqgdu3aGDx48G9XeKswyu6AVV7MnCl01N+xo/AvkMUS3uzWrIH2sGHYPmwYZs6cicWLF6NWrVqYPn06xo0bB6XCclhKgKVLl8LGxgYjR45k5FNXW0MWH1I5jH28pUCwVC/fZcNqqiZsNhutW7dG69atER8fj/3796Nv3774+vUrOnTogJSUFKirqwMQZjSxsLDA9OnTMXDgQHTu3Bnnz5+HrLwC3iRz8CQ+Gz9yhP6EMmzAVkMOTroKpfaHLCs6OjqYISfHSOkGADk5OehduAD8rHirqwP37iHjzh0EuLuju4EB2Fyu0PI4dizQr5/Qv5spt2+LFdyD9HSYRkdj/9mzMDIyApvNFlsJZqo8ExHk5OQgKytbYJORkSl0f1GbhYUF7t+/jwYNGkBRURHq6uoQSEtBHEsLj8dFYMAVrL9+DsnJyUhOTkZaWhqUlJRESnieQv7rpq6uDnV1dSxcuBCzZs1CfHw8NDQ0Cj64qxh37txBdnAwBty8WbQykVdzom9foSLRpo3E5eJwOFiwYAEOHjyIHTt2lKt/MlP09fXhvWodDr1LAdOKEwIQ3qfmoo4G81WTh7FZjJRuAOAKxB8fEFan3LNnD7p06YJ69epBS0tL9DuMi4vD3bt3cf/+fTx69AgqKipwdHSEu7s7JkyYABaLhdzcXPz777+4f/9+gd84j8PBwpQUiPUqICcHREdLVPHm8/l4//59AUu2rKysSLn28vLC+vXrUaNGDWaZfDw9gcaNhXnEi1tFVFAQ/k5atRJb7rzqlX9KZpOqY/HOIzAQWLkS+Pdf4YUICAtjtGsntFI1alSgy5s3b7Bw4UI8ePAAc+bMwciRIyvE/9XPzw8BAQG4evVqiQ7/AiKsex4HHpuZAvTj6yckXdiBhQsXwtRUMlHi1VRdtm7dilOnTkFPTw8BAQHo0qULRo4ciXXr1qFXr17o1asXeDwehgwZgqQcHtrN34Tc//LB/0yeP2QTfUU01VOo8MCUZV5emHXsGGR+ynRSIsbGwuCbXzhz5gx27tyJgICAfPuJCGlpaUhKSkJycjKSkpKK/Ds5ORnLgoPRTMwiRzft7DCGw4GpqSmcnZ3LRTEurH15BswKBAJYWFjg9OnTaNiwIQAg4Gs6wn5wGCvf0izAyzr/Ur5AIEBaWppIEU9JSRH9/ev24cMHvHnzBsbGxqK2cnJyJSrsRR2TtGuVQCCAk5MTrqanQ+fDB2ad9PSECpO42SNycoBTp4QBwV+/Co1LdesK4w/ats033suXLzFgwADUrFkTO3bsqNSy9Q9iMvEwNlusFzgDVjbqChIKKKiF/Z3DlkVmvbaAFHNjQfr3CARtmlfki25Rc0pJSYHFYoGIoKSkBIFAIFSceTwoKSlBTU0NWlpaUFFRyfd7/fW3W+CYjAwWLFkCljjqlaoq8OCB8BooB3JychAeHp5PwX758iX09fXzWbEbNGgA/bIq+9nZQLduwjoKWVn/j4cAhNexvLzQf/3QIca+3T/j4eEBQ0NDSElJ/XZFzQqj6ineeURHA1++CJPAW1gADHy5X7x4gfnz5yMsLAzz58/HoEGDJGpd4XK5sLe3h6+vb7HWBy6Xi0WLFuHeu2/oNMcXxC7+4SrNAjroSeHIlrXYtm0bvLy84O3tXak322oqFjc3N0ycOBFdunRBQkICDhw4gB07duDr168YO3Ys5s6dC01NTaTmcLHpWRTY8gpgF3NdybCB5vqKcC5DoFNp2ODpidHXrkFOjGplAhkZPLp1q4DCnOfTrqurm+9YSkqKyAKrqakp+vfnv3/eV3fLFmidPQsWU99LOTlg+XLcdXTEmDFj8OrVq98msn7p0qWIiYkRPawSs3nY9y6lRN/cPHTkpTCsjkbJDYugVatWGDx4MAYOHAhA+JKUkZGRTzkvTnH/9RiLxRJbWc87pqSkVOL3dvDgQVxYuxYn3r0Di+k1q6ICnDghNA4x5eFDoFMnYVGRX18ClZWFvuM3boBvZob169dj1apV8PX1xaBBgyrl2uNyuYiJiUFUVBRe5MgjVZ15qkIAiAl/hvvr5xSpvP78t0pNG2i79QRblvlLFlvAQ/0fYcWO+6uyHB8fj+vXr+PKlSs4d+4cDA0N0a9fP7Rr1w5NmzYte6CqlZUwNoUpCgrC1HylWLVPTU3Fixcv8inZHz9+hKWlZT4Fu169eqIYonKHCHj0SJjX+9o14YuloqJQ4Z4+HShDfMewYcOgqKiIT58+4cqVK+UodOVQdRXvMpCX2P7Lly9YtGgR+vTpI7HUa1evXsWECRPw6tWrQn+oHz9+RL9+/aCjo4M9e/YgVkoV179nQlBIER0pltA62dlcRRTMlOdTd+TIEUyYMAFTp06tcH/2aiqW2NhY1K5dG7GxsfksfEQEVVVVtGnTBjdv3oSHhwdcxy9AoqxGoQWZfkWKBYy304SCtOTyugoEAqSmpoqU4uPjx2Px8+dQFMPincViwb1Jk3zKs4aGBjZs2IA5c+bAzs4un0Ktrq4u3gv2v/8KlzuZpsCSkwM+fgQZGaFu3brYtGkTXF1dmc9XiXz79g3169fH9+/fRbEAxz+m4msGFyVlFJRmAV1qqKKWWukUkODgYHTr1g2fPn0qFwMIESE7O5ux0v7rcR6PV0BB//n/ysrKWLNmDU46OaHlzZtgi5NDvl8/4PBhZm2fPgVcXYt3d2KzwVdTQx9ra8TJyGD//v0Sy92fkZGBqKgofP/+HVFRUfn+zvv3x48f0NXVhbGxMRx7DYeRiwdYJRiQfkbmxzd0NlNGrVq1Snxx+Jiai9MffoCkmF8zcmwWptQr3jjH4XDw8OFDka92VFQU3N3d0a5dO5iYmKBPnz4ICgqCubk543mLZdcuYMoUZsUBpaWBQYOEfUogJiamgKtIXFwc7O3t8ynZtra2VTb4Xlxmz56NrKws3LhxA69fv65sccrMH6l453H79m3MnTsXaWlpWLJkCbp27SoRa0GnTp3g4uKSr6olEWHfvn2YOXMmFixYgPHjx4vmTsrhIyghC+FJHORl9ZJisdBAWx4NdeShJlvwhpZXkjwwMBCzZ8/GmDFj/pgfVTX52bJlCx4/foxDhw7l25+cnAwzMzOkpqbix48fOHDkKLIadWVUlAkQKlLNDRTRmIHVO0/BYeq+kbcvLS0NysrKIqWYExWFZ/HxkBPnNuPkJFROfuL169fo0KEDIiMjy/4bJhIWyHn7tuS2UlLCQKCrVwEIXYBu376Nk2KWPa5M2rdvj/79+2PAgAEAAA5fgEPvU5HE4RepfEuzgH8MyrZC0rt3bzRu3LhcipWUBxwOp1ilPTAwEN+/f8cGKSl4/lQEhQkxdeogdN066OjoQFdXFzo6OoXfn4mE5bwZ+KryAHyuXRs1wsNLZTgiIiQmJhZQon/9Ozc3F8bGxjAyMoKRkZHo75/36enpiepWxGXxcPA981UTFp+Lr5cP4vxOYVpGNzc3uLm5wdXVFWZmZgXaf4xJxNHP2ZCRVyhwrCh05aUwtJCVmYiICJGifffuXdSpU0cUFOnk5JTvc/Xx8UFgYCBu3rwJNpuNbJ4AGVwB2CxAVVYKMuKm1MzMFH7XDArMkIICWCEhwrLv/yEQCBAREVFAyebxeAVcRSwtLatcXYfyZN26dfj06RP27duHjIyM32bFsSj+aMUbEN58AgICMG/ePLBYLCxbtgzt2rUr1y/u/fv3aNq0KcLDw6Gvr4/k5GSMGjUKb968wdGjR2FnV3gaQQERsnkEFguQl2KBzUCm8PBwzJs3D8+fP8fChQsxaNAgsQr5VFP1cXFxwfTp0+Hh4ZFv//PnzzFkyBCEhoYCEL8oEwBIczKg+PxKiUo0ERXpqlHcPjU1tXzX48CBA7HszRsYP3sGRo8FFRVhXv8ePfLtXrduHd6/f4/t27czP9niCAsDNW0Kyswsunwvmy3MTPDihdDvHMI0bubm5nj58iWMjIzKRxYJc+rUKWzZsiVfVhGugPAwNgshiTkgIhAJH/Sc3FwYqivBxUAJFqW0dAPC0uXOzs6IjIzMV5m0qhIXFwdbW1s8efIEtQ4fBhYvzu+nWgLBRkbwtrFBQkKCaJOVlYWOjk6+zTk7G0PPnoUs00qocnLCNIYG+WtA5Obmilw/ilKsY2JioKysXECJ/lWxVldXF/t5uPtNMhJymIVXyksJs5qwIFwBvnXrFm7fuYuv2QTnPiOgbW4FaRlpKMtIobG+MnwmDYdR15HQt7RlNL4MG2hrogw7TXlkZWXhzp07ImU7LS1NpGi7u7sXm36Yz+ejefPm6DV6EgybtcfXDC6kWADAgoAIdppyaKSrCE15MRTc8HBhmsC0NKAI17ZsFgv/TpkCDS+vfAp2aGgo1NTURMp1w4YN0aBBAxgbG//2iqe4HDp0SBRP9/bt29/e7faPV7zzEAgEOHv2LObPnw9NTU0sW7YMLVu2LLfxZ8yYgaSkJHh5ecHLywtdunTBqlWrJGaVfvz4MebMmYPY2FgsW7YM3bt3/+t+jH8i0dHRsLOzQ0xMTIEA4dOnT+PgwYM4d+4cACDsRw6uf89gHP0PALnpKYg9tq5EhVpBoXwCMbt06QLl9++x480blGg7ZbMBIyPg0yfgF9eENm3aYOzYsejCNGUgA1b27ImxFy9CVVYWrPT0/AeVlYW1BW7cEFqtfmLcuHHQ0dHBokWLyk0WSZJn0Xz06BFq1cqfAo4vIHxO5yKdKwALAvRq64ZbF06X+aVi3LhxUFdXx/Lly8s0TkWRt4K4fv16YYBbu3bMXZGUlYENG4ChQ0W7iAjp6en5FPGEhAQ02rQJNi9eFP2y9wscNhu7LS1x0sAAWVlZotWu1NRU6OnpFWqdzvvb0NCwQKrR8iIqk4ujH1IZ5fHuaKaMOhr/fw4mc/g48iEVHL6ggNEgNztL+NmFP4G+cytGVnUZCIC7RxB45QoeP34MBwcHkbJtb2/PLDMHhN/Z6VdReJ0ugKy8AvBLThI2hLcoz59cQRkRGSkMmA0IAKSkQLm54BKB+HxEqKtjRFoangAF/LEbNGhQKXVKqiLXrl2Dr68vfvz4AX9//9+mHkBR/DWKdx58Ph9HjhzBokWLULNmTSxbtqxcErInJibC3Nwc8vLyOHjwINq3b18O0hYPEeHatWvw9vYGm83GihUr0Lp162oF/Ddm48aNePbsGfbv31/gmK+vL2JiYrBu3ToAwNtkDq58Fc/irSHLxihb5nmcy8KVK1fQvXt3tGnTBh1SUjD08eOis5tISQmty0+eCIOpfyIzMxP6+vqIiooqt/iGkydPYvbs2Xj+9CnU7t0D1q9HzMOH0NXTg5S9vfBB2apVoZkqXr16BXd3d3z58qXKp8bLY9q0aZCTk8OKFSuKbdezZ094eHjAy8ur1HMlJCTA2toab968+S2qzL1+/RouLi549+4dNDU1hZbumjWFOZWZIE7F1JYtgbt3xZJvv4EBtpmags/nIzs7G+np6UhKSgKHw4G2tnY+95biNg0NDcZKKBMi03JxJjINAkIBlyUWCFIsFtyNlVBP+//Kf1ouH3vfpiCHT8VmReHnchAR/AA1HJpCWq7wlwciAXicHFxcMAYNLUwKFLARl4exWXgSV3IaQ2kW0KeWGoyVS/7t//jxQ2TB/vT4MTQfPwY/MRGKOjo4nZKC4T4+mDNnDmRlZZGQkFC9el0EISEhGDx4MCwsLNCvXz/0+GVF9Hfjr1O88+Byudi7dy+WLl2KBg0aYOnSpahXr16pxsoLoMwrJf/vv/9WqPIrEAhw+vRpzJs3D0ZGRli5cuUfUd3pb6R58+aYM2eOsGrjL4wdOxZ16tTBhAkTAACZXAG2vkoqMUguDykW4KCtADdjyea6z8rKwvTp03H58mUYGxtj5syZePjwIeqnpqLf8+fghYWBy+WCTQSSkYG8lBTQtSuwZg1gaFhgvCtXrmD16tW4c+dOucgXEREBZ2dnXLlyJZ/lRFFREQkJCYxqAbRs2RLjxo1Dz549y0UmSfP69WvRy0JxD3d/f388fPgQBw4cKPVcCxcuRFxcXOFuQenpwpRiJ08KK4hqagIDBgC9egmzOlQCnTp1gpubG6ZOnfr/nRcvAr17/z9fd1EoKgrdUqZPZzZZ+/aieAFGsFjC8efPL3AoJycHiYmJBazqRW3p6enQ1NQsUUHP27S0tEpUBDO4AjxPyMbzxBzkCggsANzcXEjFfsTIts2gIZffLeN0RBo+puYySkWoIMWCHicBH7iKIBBkFYS/Sz6fB+JxIc3loKUWwblOyQGbJcHhC7DpZRJjv3UDRWkMslYX/f/nIjQ/b6mpqYUWoZGWloaxsTHu3r2LqVOn4uXLl9i3bx9cXFzKdB5/KlFRUXByckKfPn1gaGiI6Ux/b1WUv/b1SkZGBiNHjoSXlxf8/f3Rrl07tGjRAosXL0bt2rUZjfFrAOWYMWPg7OyMY8eOoW/fvhI+g//DZrPRs2dPdO3aFfv27UOPHj3g6OiIZcuWwdaWmZ9cNZXP9+/f8ebNG7i7uxd6PDIyEh06dBD9X0mGjZqqsviQytBfFICDrmQDcoODg9G/f384OTkhNDQU/fr1g7S0NDQ0NBDGZqNfUBDWDRkCtbAwpMXEoIaTE3rs2ye0dhfB1atX0U6cVG3FkJubi969e2Pu3Ln5lG4ulwsOhwNFJlZLCF+Ctm7d+tso3jY2NjA1NcXVq1eLTX3aunVrLF68GERUKmUmMzMT27Ztw8OHD/MfIALWrgUWLBCuIvzsxvHkibAE+y/uGhXBzZs38ebNG5w+fTr/AQ8PYP16YOpUofJdmH1KSQkYM0a4OsKU1q2FZcGZFnBSUgKaNCn0kLy8PIyNjWH8X/xBSXC53CIV9fDw8AL7kpOToaamVqKCrquri57aOlDV1IK0jAxuXbsKH9+VmNX5fr75M7kCRKQxU7oBICeXi0tHD+Lkdj+06jccDm07Q0lVHfy0ZASfP4Jb507gYr16cHV1hZubG5o0aVJq15rwHxywWABT4eKyuNh/6hzC/32IkJAQvHjxAjIyMiLleuDAgVi3bl2xRWhat26NGzduwNXVFdHR0bh48WK14l0EOjo6SEhIgKmpKT5+/FjZ4pSZv9bi/SuZmZnYtGkT1q5di44dO2LhwoXFen/R0gABAABJREFUpm/6OYDyyJEjqPtf0vsHDx6gb9++ePv2bYVV0fyV7OxsbN26FatWrUL79u2xePHi8kuRVE35IBAI/Yf9/IB37wAWCx/l5XHaxASzrlwRWrp+wdraGmfPns1XKTUxm4f971MYLY/aaMihg5lkAt14PB58fHywceNGbNq0SVTW193dHTNmzMCnT5/w4sUL+Pv7w8XFBQ4ODrhx4wb69++PWbNmFTu2lZUVTpw4gfr165dZzqlTp+LTp084d+5cPsUyKSkJFhYWSE5OZjRObm4uzM3Ncf369d/m5XbXrl24fPkyzp49W2QbIkLNmjVx+fJlRhV5f2Xjxo24d+8eTp06lf/AvHnCa704v2lFRcDHB/hvRUfS8Pl8ODo6wtvbu+gXqOBgoUyXL/+/oFtODtC0qbCgWxEvyUXx7eVL6NWvD1mmOeQNDYXFpMrRRYQpfD4fSUlJjC3qiYmJUFJSgpaWFr58+YLWrVvD2NhYpKArWjVEqkGdEutY/EzUi8dQj3iKpUuXFjiWlZWFR48e4fbt27h16xZevnwJJycnkSLeqFEjxrm4D79PwbdM5ukjebkcRN85D2N+SqmL0Bw8eBAXLlzA3Llz4enpCXl5ebx7906sMf4mNDQ0sGnTJhw/fhwXL16sbHHKRLXi/QspKSlYv349Nm/ejF69eoncN37m3r17GDhwILp06QIfH58Cb9l9+/aFlZUVFi9eXJGiFyA1NRVr167Fli1b0L9/f8ydO/e38Ln843n7Vhi89eNHvhyvAgACeXlIm5oKK7j+9LIkEAigqKiIpKSkAlbZr+lcnIxIBV9QMDc8IIz6r6kiC88aKowy54jLp0+fMHDgQCgoKGD//v35LHCurq5YsGAB4uLicPbsWRw5cgTq6uqYP38+Dhw4gLFjx2Ls2LHFjt28eXNER0eXeTn54sWLGD9+PEJCQoS+vD/x+fNnuLi4iFWSeOHChfjx4wc2b95cJrkqivT0dJiYmODt27fFKgkjRoxA3bp1MXHiRLHG53K5sLS0xPHjx/O7uj16JFRQmVh5FRSAX9KqSYr9+/eLXGtKvLaSkoCICIDPB0xNC2QZKYmcnBysWbMGfn5+uFirFhq/fAlWSZ+HoiKwbRtQBn/7ioSIkJKSgoSEBIwaNQp2dnawt7dHfHw8EhISAIsG0GvaHiwxXiJi3r3E8k5OUFZWLrFteno67t+/L1LE87KN5SniDRs2LNJ1Zu/bZMRlM8vSAgjDLv8xUERT/dKn24yOjkbdunURGxsLfX19yMjI4N69e7Cysir1mH8yVlZWWL16NebPn4+XL19WtjhlouJfo6s46urqWLx4Md69ewcVFRXUrVsXU6dORXx8PLhcLubOnYs+ffpg+/bt2LBhQ6FLW6tWrcLmzZvFeohLAjU1NSxZsgRv3rwBi8WCjY0N5s+fj9TU1EqV66/mwwegcWNhiehfCiuwAUjn5AAfPwKOjvnKpkdHR0NDQ6NQVwhTFRkMr6OBhjrykGEDsmxAls0Cn5sLhdwMdDJTQRcJKN1EhD179qBx48bo2bMnrl+/XmDZm8vlilxNkpOT8fbtW+jp6UFKSgp8Pr/EVHOBgYFo27ZtmZXub9++Yfjw4Thy5EgBpRsQpgkUNyhrxIgROHLkCNJ/zYhSRVFRUUH37t1L9N/OWwIXl5MnT8Lc3LxgfMmqVSX7SufB4wkt4xImKysL8+bNw9q1a5ldW5qawt+ks7NYSjcR4cKFC7C1tUVISAiCg4PR5OFDsNq1Kz4YU1ERmDHjt1G6AYiqilpZWWHo0KH4+vUrRowYgblz58LPzw99e/WEtJiWex1NdUZKNyC8vjt06ABfX188e/YMX79+xZgxYxATE4Nhw4ZBW1sbHh4eWL9+PV68eAHBT6sO8lLiySX1XwrgsmBoaAg9PT2EhYXBxcUFNjY2v70lV5Lo6upCVlYWnz9/xu9uL65WvItAW1sbq1evxqtXr5Cbmwtra2uYm5vj6dOnCAkJKTZriampKSZOnIiZM2dWoMRFo6uriw0bNuDZs2f49u0bLC0tsWbNGmQzfRhWU3706ycMMCvuxiEQACkpwODBol2RkZHFuj6pyUqhtbEyJtXVgpeVOvpZqkFw5yi+ndwMa3W5cg/2TUhIQLdu3bBhwwbcvn0bU6ZMKdSXkcvlQkZGBurq6khOTkZQUBCcnJzA4XAYKd7l4d/N4/HQt29fTJkyBc2aNSu0TWkUb2NjY7i6uhYodFSVGTZsGHbv3l3sg8vNzQ337t0DV4xqo0SE1atXF7znpacLgwmZPii5XGD//iJzHpcX69atQ5MmTdCkCP/p8uDdu3fo0KEDZs2ahe3bt+P06dNClz8pKWFw6YYNwlSVSkqAqqpwU1AQKvgnTgC/SbrKwujYsSNu376NrJ+s+ibKMmJ5zHBzstGoRsFga6ZoaGigS5cu2LBhA16+fIn3799j4MCBeP/+PXr37g1dXV10794dW7ZsgWbOD8iIIRsBpa7o+jM/+3lLS0tXK97FoKuri+zsbEhJSTF2CayqVCveJaCvrw9HR0ewWCyYmprixYsX2LVrV4lWrhkzZuDJkye4d+9eBUlaMubm5ti3bx/u3LmDR48ewdLSEjt37gRPnNLI1ZSe8HDg1StmSgWfL1yi/2/VpCTFOw9pNgvaCtLQV5SGW7PGuHnzZlmlLkBAQADq1auHWrVq4enTp0UWiAKESq+MjAw0NDSQkpIiUrxzcnLA4/GKVbw5HA7u3r1bZLApUxYuXAglJaViX4RLo3gDwnzVW7du/W0sME2aNAGbzS4Y/PgTOjo6qFmzJoKCghiPe/36dfD5/IIGidhYgKGfrQgeT6iwS4jY2Fj4+fnBx8dHIuOnp6dj5syZaNasGdzd3REWFlbwGmazgeHDhTnr794Fdu8G9u0TutkEBQGFZDX6ndDU1ISjoyOuX78u2megKA0VMbRbKWlpNK9RfoVSdHV10atXL2zbtg3v3r1DaGgounbtiufPn2Nc9/bIzGCYtx3ClwjVQipMi8vPivfHjx/x/PlzJCUllXncPxFdXV3Ex8fD3Nwcn5mm+qyiVCvexZCcnIw+ffpg7dq1uHv3Lh4/foyHDx/i1atXqFWrFtatW1ek1VhRURGrV6/GpEmTwOcz9x2rCGxsbHDmzBmcPn0ax44dg42NDY4fP55v6a0aCbB3L8C0Yh0gVND/s6ZGRESgZs2aYk3XqFEjREREIDExUax+RZGVlYVx48Zh9OjROHLkCHx9fQsU+fmVX11Nfla8uVxusYr3w4cPUadOnTIVkbh27Rr27duHgwcPFpvDuLSKt6urK3g8Hu7fv19y4yoAi8XCsGHDsGvXrmLbietusnr1asyYMaPgyoqMjFgVIAEI20swP/rChQsxePBgsX9PJUFEOHToEGrXro34+HiEh4dj6tSpxed6Z7EABwdhpdauXSvEt72i8PT0xPnz50X/Z7FYcDNShjSDxbfc7CwYUzoUpSWnohgZGWHAgAHYvXs3Pr5/h3+02AC/ZCOULBtwL6eUrC4uLnjy5AksLCyQmZkJZ2dnBAQElMvYfxo6OjrVivefzr1791C/fn3o6enh6dOnoqwlVlZWOHLkCG7cuIH79+/D0tIS27ZtQ24hClWvXr2goqKCXXv341lCNg69T8GuN8k49D4FzxOyweFXrqLr7OyMmzdvYuvWrVizZg0cHR1x9erV38Z699sRGSm0ZDMlN1dUxIOpxftnZGRk0Lx583LJfx0cHIyGDRsiJSUFoaGhjKu+/uxqkpKSgpcvX6Jhw4bIyclBbm5usYp3Wd1MYmJiMHjwYBw6dAi6urrFti2t4s1isUSpBX8XvLy8cO7cOaSlpRXZRhzF+9mzZ3j37h369OlT8KChYaEZeopFS0tiOb3Dw8Nx9uxZzJ07t1zHDQkJwT///AM/Pz+cOnUK+/btEzvLxZ+Gp6cnLl26lM/wVEtNFq5GSsUr33wuol48waoh3RAVFSV5Qf/DtbYJ2pipgp/LAQQF79PcnGzwOdnQjPgX3JTyMWaoqamhbt26ePz4MVq2bAljY+Nqd5Mi0NXVRUJCAszMzCo9fq6sVCvev/BzAOW2bduwcePGQgMo69ati7Nnz+Ls2bM4f/48rK2tsW/fvgJuG5M37Ea8rTtuR2XieyYPiTl8fM/k4XZ0Jja9TEJQPMN8rhKkdevWePr0KebOnYspU6agZcuWePToUWWL9edRgnW4UP679kqjeANCf92yuJvweDwsX74cHTp0wKJFi3D48GGoq6uL1V9GRgYyMjKQlZVFjRo1oKSkhJycHHA4HIkp3nw+HwMGDMDIkSPh6upaYvvSKt6AUJENDAxETExMqfpXNLq6umjVqhWOHTtWZJvmzZsjJCQEGb8EABeGr68vpkyZUnjqNllZYNgw5hZsBQVh7mwJFSCbMWMG5s6dC41i8saLw48fPzBmzBi0b98egwYNwr///itRv/HfCXNzcxgYGODx48f59jvoKKB3LTWYq8hAigXIsVmQEvDB4+RAS46NO1uXo39dA3h5DUSLFi0QGRlZYTK/u3EeAfOHw0FHEbJsFkggAIigIsNCPYVcKD+7hHP7d8LGxgY2NjYYP348Tp8+jR8/fpR6zlatWoncTZTj4uB69izI0lKYPadhQ2Fmm98kgFuS/EmuJqBqRHz48IEaNWpE7du3p9jYWLH63r17l/755x+ytramY8eOEZ/Pp7vRGbTmRQKtfF70tuZFAj2IzpTQGYkPl8ul3bt3k4mJCXl4eFBYWFhli/TnsHUrkZISkXAxvcQtU0qK/p08mXJycsjIyIg+f/4s9pQhISFkZWVVKnE/ffpETZs2JTc3N/r69WupxjAzM6OIiAgiItLQ0KCePXsSEZGXlxfJy8tTSkpKof2+f/9OmpqaxOPxSjXvkiVLqGXLloz7z58/nxYtWlSquYiIRo4cSUuWLCl1/4rm8uXL1KhRo2LbuLq60uXLl4tt8+nTJ9LS0qK0tLSiG0VEkEBRkdl1r6pKlJhYmlMqkcDAQKpVqxZxOJwyj8Xj8WjLli2ko6NDEyZMoKSkpHKQ8M9j/vz5NH369CKPp3F4FJHKodCoH2RmW4+OHz9Ozs7OJBAIiIhoy5YtZGxsTK9fv5a4rGlpaWRkZEQPHz4U7Rs1Zixt3b69QFsej0fBwcHk6+tL7du3J1VVVapXrx5NmTKFLly4UOR9rTDu3LlDTR0cKLV9e8oGiPPrb0JJiUhRkWj//nI5z9+VW7dukYuLC505c4Y6d+5c2eKUiWqLN/5fgbJJkyYYMGAALl++LHa+6xYtWuDu3bvYuHEj1q5di1bd+uBxdEaJhU24AuBxXBbisqpGgKO0tDSGDh2K9+/fw83NDa1bt8bAgQMRERFR2aL9/gwYIF62BhYLc4KCYGRkhJiYGERHR4vtBmRvb48fP37g+/fvjPsQEfbu3QtnZ2d0794d169fh4mJiVjz5pHnapKHpaUlAIgs3kUVmQoMDIS7uzukpMQPYLp79y62bt2Kw4cPM+6flpYGNTU1sefKY+zYsfD39/9tApXbtm2LqKioYvPhMnE3WbduHUaNGlXsygXf1BS+jRohpxgfewKQASDUx0foalLO8Pl8TJ8+HatWrWJcVKUo7t+/DwcHB5w4cQI3b97Exo0by82C/qeR5+dd1H1LRVYKNVRlYW+oCemcDCxbtixfrMDYsWOxfPlyuLm5ISQkRKKyLl68GK1bt0bTpk1F+1gkKPSeLSUlBQcHB0yfPh1XrlxBYmIitm3bBm1tbWzYsAHGxsZo1KgRZs+ejcDAQGQWUziqsaMjlr94AZXbtyEPoMDVmZkpzIE/ZowwTugvJc/H28zM7Le3eP/1ivfPAZS3bt3ChAkTSp16jcVioU2bNvj333/RY/pi8BnqSHwCnsZXrdR+8vLymDx5Mj58+IBatWrByckJ48ePR2xsbGWL9vuiogKMG1d8/t7/ECgo4IyVFb7ExmLatGlQV1fHwIEDYWtrCx8fH8a+j2w2G66urrh16xaj9omJiejevTvWr1+PW7duYerUqcUGJZZEnqsJIMxSYmpqCkBYKVZGRqbIghaldTNJSEhA//79sXfvXhgaMk9FVhZXEwCoV68ezM3NceHChVKPUZFISUlh8ODB2L17d5FtSlK8ExIScOTIEUwoptIkEWHMmDG4ymIBt24Jc9grKADy8sLMHv/9zXJ1RZi/P9osWoS3b9+W6dwKY//+/VBTU0PXrl1LPUZUVBT69++Pfv36Yc6cObh9+7Yo9qeawmnYsCGys7MZfaempqaIj49Hly5d8u338vLCli1b0K5dO4m5QL5+/Rr79+/HqlWr8u1nsViMkg7IyMigSZMm8Pb2xo0bN5CYmAhfX1/Iy8tj+fLl0NPTQ/PmzbFgwQLcvn0bOTk5or5yhw7BGQDrp32FkpUFjB0LxMeX5hR/e/J8vM3Nzat9vH9nigqgLCt8ArKUdcBmaG0jAG9TOOBXwaBGVVVVLFy4EG/fvoWsrCxsbW3h7e2NlJSUyhbt98THR1jFrwhLLwBAURHsHj0wIDwcW7ZswebNm8Fms3Ht2jXs3LkTERERqFu3Ltq0aYPDhw/ny5VbGEz9vPPSBFpYWCAoKKhcfg95WU0yMzORk5MjKl6TkZFRaOwEIFTWb9y4gbZt24o1l0AgwKBBgzBgwACxlfayKt7A/1ML/i4MHToUhw8fBofDKfS4g4MDvn//XuTL9ubNm9GzZ88igwiJCFOmTEF4eDguXLgAeRcX4PFj4MULYVGdJUsAX19hJddbt9B05EisWrUK7du3L9cX/IyMDMyfPx9r1qwplVGFw+Fg1apVopert2/fonfv3uWeG/9PhMVioXPnzvmymxRFTEwMbG1tC12l6tatGw4cOABPT89SFXcqDiLC+PHjsWDBggIr3Ww2u1TJBuTk5ODi4oJFixbh3r17iI+Px8KFC8Hj8TBnzhzo6OjAzc0Ny5YuRfb/2DvrsKbaN45/N7pBQLoEA0FREEExEAXFQmywu1sM7FZsFFtExe7ExNdWRDBQQMXAQkC6xtju3x972SsyYIMR+tvnuriUc564N7Zzvud57li6FArCBt0zGMDu3SLb8zegqamJtLQ0qKiogMvl/tkapPq8XKqP/Px88vX1JV1d3TJ9GMtDOquA1kaW7tv9+49fZBJl5XPEbou4+fTpEw0fPpy0tLRo9erVlJ0thH/6t29EISFE584RhYUR/eu/938Lh0O0eTORvj6RsjLPh09Jifd/ExOiXbuKvEf+/v5kb29PmpqatHjxYsrJyaGcnBw6cuQIderUidTV1Wn48OF0+/Ztvm/kr8TGxpKBgYHAc0RE2dnZNGHCBDI2NqbQ0FCxvlRlZWVKT0+nu3fvkqamJgUGBhIRUfPmzUlfX19gn/v375ONjY3Ic/n5+VGLFi0oPz9f5L6urq509epVkfv9Sl5eHuno6FB0dHSFxqlKXFxc6NixYyWe9/T0pEOHDhU7npWVRdra2hQbG1ti3/nz51OTJk0oNTVVJJuWLl1Ktra2lJmZKVK/kli8eDH179+/XH0vXbpEdevWpa5du9Lbt2/FYs//G1evXiVHR8dS27x+/ZrU1NSodevWpba7c+cOaWtr09mzZ8Vm39GjR6lx48bEZrOLnZs4cSJt3rxZbHMVkp6eThcvXiS/QYMom8kUOu6HACIjI7Hb86egra1NCQkJ1KhRI4qMjKxuc8rN/92Kd1xcHD9i/9mzZ+jcubPY5yhPaW4WiwUL8zqwsrKCq6srhgwZAl9fX2zduhWnT5/G48eP8fnzZ5GqyVUGxsbG2Lt3L+7cuYMnT56gbt262LFjh2C7CgtBmJkB/fsDgwYBLi68aG1/f16Vuv9HmExg8mReSfiLF3kV7Pz9gatXeSkHR40qktUhPj4ePXv2REREBF6+fAlra2vcuHED/fv3R0hICF69eoUGDRpg/PjxMDc3x+LFi4v45NetWxcMBgNv374tZsrTp09hZ2eH1NRUPH/+XKgMIKJQUFAAaWlpPHnyBPr6+vxVipycnFL9u0VdsX748CHWrVuHI0eOlJ43uQTS09MrvOItJyeHESNGYPv27RUapyoprGRZEiW5mwQGBqJ169aoV6+ewH6rV6/GqVOncO3aNZGy4ADA/PnzYWtriz59+lT4evft2zf4+/tj1apVIvV79+4dunXrhilTpmDTpk24cOECLCwsKmTL/yvOzs6IiYkpdRdj/fr1GDNmDJ4/f16qa0fr1q1x+fJljBkzBkeOHKmwbVlZWZg5cyYCAgIEur0xGIxKSa+rqqqKLl26wGfAACiWUb23GGKqy/An8quf95/sbvJ/I7zp3wBKR0fHcgdQlgWXy8WTJ0+weskiZGeJlv5HWUEeUZFPcezYMfj4+MDZ2RlKSkqIjo7GgQMHMGnSJLRo0QJKSkrQ1dWFra0tunbtijFjxmDJkiXYvXs3Ll++jGfPniExMbHSi+FYWlri5MmTOHv2LE6dOgVLS0scPnz4v3kPHwacnYGQEIDFAtLTgYwMICsL+PIFmDuXJ8L/n8vWM5lA27a8dGvDhwMtWwpMo1aYStDY2BgnT57Ejh074OPjg65duyIuLg76+vrw8fHBy5cvceLECaSkpMDBwQFt2rTB3r17kZmZWczdhMPhYMWKFXB3d8fChQtFThMoLIXBlU+ePEGdOnX4pX5zc3OhrKwssM+VK1dEcjNJTU2Fl5cXdu3aBRMTk3LZKQ5XEwAYM2YMgoODSw2mqkl4enoiPDy8xJtYofD+VXwUFBRg/fr1JVYC3bJlC/bs2YMbN25AW1v0yoMMBgPbtm0Dg8HAuHHjKiR8Fi5ciBEjRvBKtQtBdnY25s2bB0dHR7Rq1QpRUVGVsjjz/4SsrCw6duxYYn7q79+/4/Tp0/Dx8YG6unqZgfzNmjXDjRs3MHPmTOzatatCti1btgzt2rVDq1atBJ4vr6uJ0JQnxWwlFpeq6fzq5/0nB1gKjmz6y0hNTcXYsWPx6tUrhIaGijUghsVi4datWzh37hzOnz8PVVVVeHh4oKEcG18ZECrAUooB2GvLQ1NTCZqamqWW4OZwOEhMTMS3b9/w9etXfPv2Dd++fcOjR4/4///69SsyMzOhq6sLfX19GBgYQF9fX+D/VVRUKuSraG9vj+vXryM0NBRz586Fn58ftg0YgBaLFoFRmqjOyQHCw4EBA4DTp8s9//8Dv+fwLixDvWnTJjg4OGD8+PGYM2cOFBUVYWdnBzs7O6xbtw6XL1/G/v37MWPGDDRs2BDv37/H6NGjER8fj0GDBkFWVhZPnz4td8aSsiAicDgc/op37969+cI7Ly8PBgYGxfokJycjJiYGTk5OQs8xfPhw9OjRAx4eHuW2VVzC29jYGK1bt8ahQ4cwevToCo9X2SgoKMDLywv79u3D4sWLi50vzELz9u1b/ur2iRMnYGJiAgcHh2LtAwMDsW7dOty5c0ek4NbfkZGRwfHjx9G2bVssX74cCxYsEHmMFy9e4MKFC4iNjS2zLRHh+PHj8PHxQevWrfH8+XOBn08J5aNHjx4IDg7GqFGjip3bsmULvL29oaWlBVtbWzx9+rTM3QVra2vcvn0brq6uyMzMxIwZM0S2KSYmBoGBgaVm9hE2uLLcNGoElBVU+TtNm1aOLX8Af0su779eeN+5cweDBg2Ch4cHgoKCSgzoEoW0tDRcvnwZ586dw9WrV2FlZQUPDw+Ehoai/r8lf7PYXOx6nSKk8GagiZZwdklJSUFPTw96enqws7MrsV1eXh4SEhKKiPOvX78iKiqK///CzBi/C3JBv8vLy5dql4uLCx49eoSzZ89CdsCA0kX3f0YCV64Ab98C/97gJRRHULl4WVlZzJo1C97e3pgxYwasrKywadMmdO/eHQwGA7KysujRowd69OjBT3W1ePFiaGlpgcViYeLEiVi9enWFMpaURUFBAaSkpJCWloaEhATUr1+fv+qen58vUOhev34dzs7OQqd827p1Kz5//lxqMRhhEJfwBnhBljNnzsSoUaP+iAC8kSNHwsPDAwsWLCgW2MZgMPir3vXq1QMRwc/PD8uXLy82ztGjR7FgwQLcunWr3DsPv6KsrIxLly6hRYsWMDIywtChQ0Xq7+Pjg/nz55e5k/Py5UtMnjwZqampOHToEFq3bl1+oyUIxN3dHaNHj0ZWVlaRna7MzEzs2rULYWFhAHhZUCIiItCvX78yx7SwsMCdO3fQoUMHZGZmYtGiRUJ/34gIkyZNwrx580qtMFrpK96amkDXrsCZM8KlmlVWBkrYafp/oFB4m5iY4P79+9VtTrn5a4U3m83GkiVLEBgYiD179lR4uzA+Ph7nzp3DuXPnEBYWBmdnZ3h4eMDf31+gy4qyDBO966jhxPv0UnN5yzCBPuaqUJIRrwCSl5eHqalpmVusmZmZxcT5x48fcf/+ff6x79+/Q1lZuczV89q1a8PTxka0C1VBAc/HeevWir3gv5S0tDQUFBRAs4TcxoaGhjh27Bhu3ryJSZMmYefOnfD39y+yYqSlpYVx48bBz88PqqqqaNeuHYKDg/HPP/9gyJAh6N+/f4njV4RCN5Pw8HA0bdoUmpqa/BVvFoslUOiKkkbw6dOnWLZsGR4+fAi58mzZ/guHw0FOTk6Jri+i0r59e+Tm5uLBgwdCr9xXJ02aNIGWlhZu3rwJNze3Yuc7dOiAkydPYvz48bhx4wbYbDbc3d2LtDl37hymTp2K69evl+j3XR50dXUREhICZ2dn6OvrC7RPEFeuXMGHDx8wduzYEtukpqZi4cKFOHbsGBYvXozRo0eXmN5SQsVQU1ODo6Mjrl69il69evGP7927Fy4uLvyFBVtbW2zatEnocY2MjHDnzh24ubkhMzNT6Mw1p06dQkJCAiZOnFhqu0pf8QaABQt4LpllZKeCtDRgYACImO3pb6LQx7tly5Z/9Ir3X5nV5N27d+Tg4FCuCpSFcLlcioyMpMWLF1OTJk1IU1OThgwZQqdPn6asrCyhx0nIZtPhN6nkF5lEayOTaE0E71+/yCQ68iaNEnOKR1LXNDgcDiUmJtKzZ8/o0qVLtHv3blqyZAmNHj2aunbtSra2tqSrq0vS0tI0QU2NskSN0i5nZcX/ByIiIqhRo0ZCtWWxWLR27VrS1NSkefPm8TPOhISEkL6+PjVu3JhWrVpFRLwKpVeuXCEvLy9SU1MjT09POnv2bLkygpREWloaqaio0IoVK2j69Ol09+5datmyJRERKSgo0Lhx44q053A4pKOjQ3FxcWWOnZ6eTubm5qVm5BDVTnGyYcMG8vb2FuuYlUlAQAD17dtX4LmEhARSV1cnNptNHTp0oP2/VdC7du0aaWtr05MnTyrNvrt375K2trZQmQzYbDZZWVnRmTNnBJ4vKCigXbt2kY6ODo0ZM4aSkpLEa6wEgWzdupUGDRrE/z0/P5+MjY0pLCyMf+zbt29Uq1atEjMwlURKSgo5ODjQyJEjy6xWm5mZSUZGRnT79u0yx/Xx8aE1a9aIZEu5OHWKSEGh5HukrCwvm8nXr5VvSw1m+/btNHr0aEpKSiINDY3qNqfc/FXCm8vlUlBQEGlpadHmzZtF/vLm5+fTjRs3aNKkSWRiYkJ16tShadOm0e3btwWmGhKFNFYBRSTl0KOEbIpMyqV0VvlKYddk8vPz6aefHxXIy4skvPP19MpdGvxv5+TJk+Th4SFSny9fvpCXlxcZGRmRu7s7GRkZ0c2bN+nEiRPk7u5erH1aWhrt3r2bWrVqRdra2jR58mR6+vSpyN+f30lOTiYNDQ3q0aMHHTlyhF6+fEkNGzYkIiJpaWmaO3dukfYRERFClbfncrnUr18/GjNmTIXsKyQ+Pp4MDAzEMlYhKSkppK6uTj9+/BDruJVFamoqqamplShCGzVqREFBQWRoaFik5Hphere7d+9Wuo0nTpwgAwMD+vTpE/9YPodLnzPz6X06i75ns4nL5dKuXbuoTZs2Aj+/Dx8+JDs7O2rZsiU9ffq00m2W8B/x8fGkqanJv5ceOnSI2rZtW6ydrq4uffz4UeTxMzIyqF27duTl5VXqAsKcOXOEfiieNWsWf7Gi0nn0iBKsrSmPySSWvDzlSkkRqaryUs1OmECUnFw1dtRgTp06RT169CAul0uKioqUnp5e3SaVi79mXy0tLQ1jx45FVFSUSAGUmZmZuHLlCs6dO4eQkBCYm5vDw8MDFy9ehJWVldh8NNVkpdBUSD/uPxUZGRnUql8fkJUVKWDk9c+faKGigvr168PKygrW1tawsrKClZUVTE1NK9UPuabze2ClMBgYGGDmzJm4f/8+Hjx4AFtbWxgaGsLGxgbDhw8vVsZdTU0NI0eOxMiRIxEXF4cDBw6gV69eUFZWxpAhQzBgwADo6ekJPX8+h/AqJQ/RSRz0XROI7JREmDV1hLqSDFJTU0FEKCgoKOZ7K6ybyZ49e/D69Ws8fvxYaJtKQ5z+3YVoaGigV69e2LNnD3x9fcU6dmWgrq6Obt26ITg4GFOnTi12vkOHDli/fj2mTZvG979/8uQJevXqhcOHD5eYFUKc9O7dG1++fIG7uztC/rmL6DwZvPzJApPBAAMAgSDFAK6/+Ai/9RuKXLsTEhIwZ84cXL9+HWvWrMGAAQP+CP/7vwkjIyOYmJjg3r17aNu2LdauXSswVqDQz1vUOAEVFRVcunQJffr0Qa9evXD8+PFisUmxsbHYvXs3Xrx4IdSYlZVOUCAODpC6dQt2Zmb4Z8UKLJ07F5uCgsDs2FGoasf/DxT6eDMYDH4Fyz+xeuxfoWju3LkDGxsbaGtrC1Vx79u3b9ixYwfc3d1hYGCAvXv3wsnJCS9evEBYWBjmzZsHa2tryYW5PLi6ChckUoiyMmy2bUNiYiJ27tyJ9u3bIzk5GQEBAWjbti1UVVVhb2+PYcOGYd26dQgJCcHnz5+r7mJYzQgKrCxCdDRw6hRw/Djw5Ak4BQVYtWoVOnXqhFWrViEpKQldu3aFk5MT1q9fD1NTU34gkyDMzc2xZMkSxMXFYevWrXj9+jUaNmyIzp0749ixY0VKHf8OEeHOt2z4v/yJ0G/ZiGcxYdqsFSw7eOBenjLOp8lDQdcYbDYbTCYTampqRfoLI7xfvnwJX19fHD9+XCyB0kDlCG8AGD9+PHbs2AGOsFXpqpnCnN6CvlvW1taIjo7mZ6V48eIFunXrhr1796JDhw5VZuPUqVPR2WsI9r/NxPNkFgoIyOcSWFxCPhfI5QAtB03AC8U6yC3ggs1mY8OGDbC2tkbt2rURExODgQMHSq7t1YSHhwfOnTuHmzdvIj8/v1isAPCf8C4PCgoKOH36NBQUFNC1a1dkZWXxzxERJk+eDF9fX6Ez7lR6cOVvaGlpQa5ePcTa2eGakRGem5pKRPcvaGtrI/HHD+DmTWzIyEDt4cN5mdGOHQPy86vbPKGpmSveeXnAyZPA3bu8PM+mprziK79lvhA2gJKI8Pr1a35w5Nu3b+Hu7o5hw4bh2LFjlXLT/b9FQQEYOhTYtUu4LwIR4OUFZUVFNG/eHM2bNy9yOi0tDa9fv8arV68QFRWFK1eu4NWrV8jJyUHDhg35q+OF/+rq6v5VN9UPHz4I/lyfOwcsXgzExvLyuhKBy+HgB4cDGRMThIeFwfjfwNrp06fDy8sLPj4++PjxI7Zs2YKWLVuW+j4xmUy0bdsWbdu2xZYtW3DmzBns2bMH48ePR+/evTFkyBC0aNGCPwYR4VJ8FmJTeWII9OtYUmBzATaXMGTrccT+SAOTyYTKL4Uj0tPTERERgbZt25ZoU3Z2Nvr27Yv169ejQYMGoryNpVJZwtvW1hYGBga4ePFihVIdVhVt27ZFbm4unjx5Uux7+OjRIzAYDDCZTLx58wadOnXC5s2b0a1btyq1MSOfA/1uI8DiEkp6vGfKyCKVxcGuyC/YMaQTTIyNcf/+fX7GKQnVh4eHBzw9PREVFYWZM2cK3M20s7PD7gqURZeVlcXhw4cxevRouLm54fLly1BXV8eZM2fw9etXTJo0SeixqiS48jfat2+PGzduoF27drh16xaa/h+nD/wd/eho/PP+PdCjB1yzssD88oWXlvjCBWDMGGDNGt6/NRwG1aSlQyJgxQrAz4/3/8KnVRkZQEoKsLMDDh4EzMwQFxeHAQMGoFatWti3b1+xzCIcDgf379/ni+38/Hx4eHjAw8MDbdu2LVd1OwlCkpYGNGkCfP3Ky1pSEgoKQFAQ0LevyFP8/PkTr1694gvywn+5XG4RV5XC/5enkEdNoEGDBjh16hSsrKz+OzhvHrBpU4lR8KSoCEanTrxV8N/Sw/n5+WHp0qVo0aIFtmzZIrKA/fz5M4KDg7F//35wOBwMHjwYgwcPRpaKDq58zio1g08h0uBiURsLHD18iC/czpw5gx07duDq1asl9hs2bBi/EJY4OXHiBI4dO4aTJ0+KdVwAOHjwIIKDg0t9XTWJlatWIREKaNt/OHILuJCTYkKfyUJ3B2uYm5lh3LhxWLBgAZYsWYJhw4ZVuX03vmQhIimvRNH9K/m52TDP/AhvtzZ/1cP4nwwRwcDAAAUFBfj8+bPAbETx8fFwcHDA9+/fKzQXl8vF9OnTcfv2bZw5cwZt27bF/v374ezsLPQYCxYsgKysbLnyyJeXa9euYdmyZZg0aRIOHjxYYuGh/zsuXgT17Vt6qmJFRWDOHF6mmBpMzRHeRLyV0pMnS06rw2SCVFVxds4cjF63DgsWLMCkSZP4F9WcnBxcu3YN586dw8WLF2FoaMgX202aNJFcfKuSHz94bicfPvz3AFWIoiLv7x0YyCslLyaICImJiUXEeOH/5eTkiolxKysraGhoiG1+ccPlcqGoqIiUlBQoFm43BgYCkyaVnXpKUZH35L9hQ5HDhYWVFi9eDD8/PwwfPhwLFiwQOZUeESEsLAz79+/H8ePHMfbgdSjrCleIh8nl4NTy6VgzZRT/JjhmzBg0aNAA06ZNE9jnwIEDWLVqFZ48eSK2tH+F7N27F/fv30dgYKBYxwV4+fSN/11xrVvDc9XHpObh8qdMZGZlQ07pv/eY2Pkg4iI78h8EzJmI5cuXl5mGrTIo4BI2v/wp1MNdIcbK0vCuq15pNkkQnQYNGsDY2BjXrl0TeJ6IoK2tjZcvX4oUW1LSWIsWLcK2bdvg5OSEc+fOidR/4cKFkJKSwqJFiypkhyjk5OSgdu3aePHiBWxtbZGcnCxJc5mYCJiZlX3fA3j3vqtXgSqIOykvNcfHe98+nq9qaW8slwtKS0PzBQsQeuMGJk+ejKSkJOzduxfdu3eHrq4utmzZgqZNm+LJkyeIjIzE4sWL0bRpU4normp0dIDnz4GzZ3l5RzU1AVVVwMICWLaMtxouRtEN8LYFdXR04OLigsmTJ2Pnzp24d+8eUlNTERERgTlz5sDMzAxhYWGYOXMmjI2NYWBgADc3N0yfPh179+7Fo0ePkJGRIVa7RIGI8DWbjYikXITGJaJZ1z6Qkf/Xl5nLBXx9hbv45OQA27fzdh9+QUVFBU2aNEGTJk3w8uVLJCQkwNLSEseOHRPJl5HBYMDBwQHbtm3D87h4qNQWvkohlykFx/6j+a4mRFSqf3dsbCxmzJiBY8eOiV10A5XnagLw8ukPHz4c27dvL3riyxfe39Lenle9rmNH3vWPza4UO8ri5c88XPyUhXxiFBHdAMCQkQVTVh7yNm3RZujkahHdAJCcxwEvjFJ4vmaXsuMmocqJj4/H169fkZycXGIbBoPBr2BZURgMBgYNGoTc3Fw8e/aszHL0v1PVPt4AoPiv22V0dDSMjIwQGRlZpfPXSHbtEj52LDcXWL26cu2pIDVjxZsIMDfnrY4KAUdREae9vbE5OhpRUVFwdXVFjx490Llz5xq9gimhZsHlcvH58+diq+MxMTHQ0tIqsjpubW0NS0vL/1aeK4HXKXm48z0H2QVcEAEcLhf5eXlQVFJEY015OD+/CxmvfkBmpnADKioCK1cCU6YUObxw4UKw2WysWrUKAHD//n1MmDABmpqa2LJlCxo2bCiS3W/TWbj4MQssrvCXktyMNLjLJaNZs2Z4+/YtOnXqhI8fPxZ7QM7NzYWjoyMmTJhQaSXYlyxZAg6Hg6VLl1bK+B8/fkSzZs0QHx8PRWlpYNQoXjAQALBY/zVUVuZlBDpyBBCyUIw4SGNxsCc6leebXwbsvFz0MpZHQwPxuW6x2WykpqYiJSWlyL+/H+OoaqGB12TIKAr/8MUAMLuplthslVAxpk+fDi6Xi4MHD+LFixcwMDAQ2G7OnDlQVFTEwoULKzQfEaFz585wcXGBiooKVqxYgatXrwp9javsa0NJrFy5EsnJySgoKICBgQFmz55dpfPXOHR1ebvowiIvz1vcqITCcOKgZuxfhIXxthKEhJGTg4ZXrmDerl1wcXGpUNU6Cf+/MJlMmJiYwMTEBF26dOEf53A4+PjxI1+QX716FRs2bMCbN2+gr69fzIe8fv36xdJWicrtb9l4kpSLgl8f6hlMyCgogs0FniXnodalf2CbmSn8ml9ODnD9ejHh3b59e/j4+PB/d3JyQnh4OHbs2AFnZ2cMHjwYixYtKhL8WBoMMCDq0ztxuXB3d0dmZiakpaUhIyMDW1tbaGhooFatWtDQ0ICGhgbu3LkDGRkZqKmp4fr16/zjGhoaUFNTK1bivDxkZGRUeEu7NExNTdGiRQscPXQIw0+cAO7dKyq4Cyl0yerRg7f6LSDjQ2XwNCkXwi6/SMnK4kZcYjHhzeFwkJ6eLlAw/37s9/MsFqvI37Xw71/4r4mJCZo2bQpFbX18UFAUyr+7EFmmZKezppCWloagoCA8f/4cP3/+xPnz5zFu3DiBbW1tbXH48OEKz3nu3Dl8/PgRU6ZMgaysLJSVldG+fXtcunQJtra2Zfav0nSCv9C+fXuMGjUKS5Yswc6dO/+/hTeXK5I+BMBbwIiPlwjvUnnzBhDBFYQJwEpKClZVdGOS8P+FlJQUzM3N+TndCykoKMC7d+/4q+Pnzp3DypUr8f79e5iYmBTzIa9Xr55QQbzRqSyE/y66f4NDADszQ8SNdgjMp+7o6Ijo6GikpaXxc2lLS0tj4sSJ6Nu3L+bMmQNLS0usXbsW/fv3L9NNS1NeClwRb07J8XGIj4+HkpISXF1d0adPHzRv3ryIKLt9+zZiY2PRo0cPnDx5ki/aCn8yMzOhoqIiULT9/vP7cVVVVX5GhYyMjErPeDF+/Hg8Hz0alJJSenAQwNsq7dMHSEjgrYJXIkSEZz/zIGzCQyZTChly6ujUtRuSE77z/16//i1+fa8L/6+trY369esLPK+srCyUKyARYcfrVKTnCye9mQAsa8kK+cokVDY7duxAly5dYGRkBA8PD+zZs6dU4T1z5swKzZeTk4Np06Zhz549/NzzAwcOhJKSEjp16oTTp0+XmX++OlxNAF5ml8+fP6NBgwZ48OBBsdoL/3cwGBB6daCQGlz/o2a4mhw8CIwfXzwIrzSMjYFPnyrPJgkShCQ/Px9v3rwplmUlPj4e5ubmxQS5ubk5P1iGiLArOhWprLLFRLNDO+C8ZTmk8wWslgqAA+CkggLOenjAwcEBjo6OaNKkCeTl5eHm5oYJEyaUmObu4cOHmDBhAlRVVbF161ZYW1uXOtf+2DR8zxHOn5aTn4cjvmPx4vp55OXlQUdHB1++fCmS1/v9+/dwdHRESEgI7OzsBI/z2yqroJXVko5lZ2dDTU0NGhoaSElJgaGhISwtLQUK99+PqaioiBwzwuVwkCAnB31hc3orKQHr15crNVZeXl6pK8y/HsvIyUXndUfAlBJ+DSY/Jws2uR+hr6bEf2/EtftQFpFJuQj9mg22EHctaQYwrIE6NOVrxvrS/zMsFgtmZmYICQmBjY0NMjMzYWBggC9fvgiMr+ByudDQ0MC7d+/KnZFq4cKFiI2NxbFCt65fuHbtGgYMGIDDhw/D1dW1xDFWrFiB7OxsrFy5slw2VARPT0/06dMHa9euRUBAAFq2bFnlNtQYjIx4riPCIifHW7j4rUhbTaFmXJHKE+0vyckqoYYgKysLa2vrYuI0Ly8PMTExfDEeFBSEV69e4fv376hXrx5PjDu1A9OhG8AsW7TEuHrAeUvxSm8lUSAjg0Py8nh65w7evHmDHTt28Ct9SUtLIyAggP8g8LuQbNGiBZ48eYKdO3fCxcUFAwcOxOLFi0sMQrRgZOAziwlpuTJcboiLgrxcvLl3HUwmE7dv34atrW0R0Z2fn49+/fph/vz5JYpugLczUatWLdSqVUvo96SQgoICpKWlITU1FYMHD0aXLl1gYWHBF6Y/fvxATEyMQNGel5cHdXX1MgX6r8d04uOhKSUFCCu8s7NRsGkT3rdrJ7SILvyXy+UKXHUu/H/dunX5x1Q1auGBlJRorkIMBkxNTGBTV7SKquKgsaY8XqSwkJhbAE4pRufn5sBQOhea8hL/7prAoUOH0KhRI9jY2ADgBXm3atUKV65cQV8B6WSZTCaaNm2KyMhIuJUj3iEuLg7btm3Ds2fPBJ53c3PDmTNn0LNnT+zatQs9evQQ2K66VrwBXrXYX/N5/z8KbyLi7XwqKmIQgwFFYf4WTCbQrVuNFd1ATRHeDg48XxxhV7yVlYHp0yvXJgkSKoi8vDw/g8ivZGdnIzo6Gq9evcLbPCkoFBRASrZs4Z1VWw+fmjnB9PFtSAkh4OSMjHD2zRuEPXmCkydP4uTJkzA0NET9+vVRUFCAS5cuoV27dsjNzUXz5s3h4OAABwcHNG/eHLVq1YKUlBTGjx+PPn36YO7cubC0tBRYbvvGjRsYOHAgfHYeAdfYGpwSHGIYAMApwIPN8yH17zagoGwmc+bMgYGBgUiFLkRFWloaWlpa0NLSApPJRLt27eDk5CRU38JgwJJW1b9+/YqoqKgixx2/fcO6/HyIEo2SERuLLl26CBTRBgYGaNSokUBhraCgIPSKPBEhMioFOcJEVv6LtLQMHt66BJu6o0R4NeJBislAfwtVnIzLQEJuQbHUgkwAnAI2Pt0Nwdb1C2Bx/jwcHR2r3E4J/8HlcrFu3Tr4+/sXOe7h4YGzZ88KFN7AfxUsyyO8p0yZAh8fHxgaGpbYplWrVggJCUGXLl2QlZWFgQMHFmsjxeGAWU0VETt06IA1a9Zg69at8Pf3x7x586rFjuqAy+XiwoULWLVqFVJTU7Fg4kQozJsnXGIBOTleLu8aTM1wNQGA3buBqVPLTpXGYPC2HT58qNE+PBIkCMPTf7fOS1u9+xWVhK8Y4d0O8hnppadXUlICbt/mFZ36FyJCREQEX4S/f/8eY8eOhbu7O/Lz8xEWFoZHjx7h6dOn0NfX5wtxBwcHNG7cGJGRkZgwYQIUFRWxdetWNGrUCBs2bMC6detw5MgRtG3bFoPnLoeV51DIyiug0BWXyeCJbn0laTBf38eKebMRHx/P960+evQovzrb+fPnMWnSJERGRpZrJbs8NGrUCIcPH0ajRo3ENiYR4du3b4iOjkZ0dDSkQ0Iw6No1KItSPr52bdEi+cvJg4QcPEjIESqrCROA/M9PuLtzNU6cOFHptpUEEeFLdgHCEnMQn1mAAiLIMhloqCGHxupS6Ni6Bdq0aYNjx47h4sWLsLe3rzZb/9+5ePEiFixYgIiIiCIPhN++fYO1tTV+/Pgh0H/50KFDOHfuHI4fPy7SfBcuXICPjw9evHjB9+0ujVevXqFjx46YP38+xo4dC/z8CezdC2zcCO6/3z+mqirP7WvCBJ6baxVARDAyMsL58+fRtm1bJCcn//WJJNhsNo4cOYI1a9ZAQUEBc+fORY8ePXhubHfu8ALOS9OICgo8F70SYgdqCjVHeBMBAwbwSmGXUkAHKirAo0eAGEtGS5BQXbxJY/HyJ4uQis869Su6jvQEkpKK7xIpK/MqvYaE8HaSSoCI4OLiAnV1dcTExCA7Oxu9evVC7969YW9vj5iYGDx+/BiPHz/Go0eP8OHDBzRp0gT29vbIzs7G6dOnoaWlBXl5eVy4cAHGxsY4fPgw/Pz88OTJE8TnEL5ks5HPIajIMtFAXQ7qclIIDQ3F8OHDkZWVhbCwMLRs2RLfvn0Dk8lEfHw87O3tcebMmSrdVjU2Nsbdu3dhYmIict+CggK8f/+eL7ALf2JiYqCgoABLS0s0aNAA9traGLx6NWRKq+T6O66uQAlFRsRJDpuL7a9ThKs6ygC6aOSjlW0jJCYmVolfd3l4/fo12rRpg+XLl2PRokW4fPlyqW5LEiqPtm3bYsyYMfD29i52zsHBAStWrECHDh2KnYuOjka3bt3w7t07oefKzc2FlZUVdu7cWarv9u/ExcWhQ4cOWNmpE7wOHeJVXP49CFpWllcJePdunlapAoYOHQoHBwfs27cPa9euRdu2batk3qomJycHgYGBWLduHczNzTFnzhx06NCh+M5deDhYgweDGxMDBSbzP9c9ZWWea8nmzUDPnlVuv6jUDFcTgLeSHRwMLF7Mq7bHYPwnKqSleWKiUSPg0CFeERYJEv4C6qiKlnWBm58HTWMt4N07nihbtw54/Zp3ATI1BaZN4114yljpYTAY6NmzJ54/f47o6Gi8fv0aJ0+exLhx45CcnIyePXuid+/eGD58OKSkpJCRkYHw8HA8fvwYt27dQnp6OtLT0yEtLY3p06fD29sb06dPx7lz5yAjIwNzNcBcrbgNGhoayM7OhpycHK5evYqOHTuCyWSCzWbDy8sL06dPr3JfRmEK6GRnZyM2NpYvqgsF9vv376GnpwdLS0tYWlqiTZs2GD16ND9QMykpCYGBgVi+YweaysvDVhR3ul9SPlYmijJM9K6jiuPv0kt0EwL+Fd0myrDUkIeOjg6ePXtWY8Vsw4YNsWzZMuzevRsBAQHo3Lkzrly5wt9ZkVA1hIWF4dOnT+jTp4/A8x4eHjh37pxA4V2vXj0kJCQUyb5UFn5+frC1tRVJdAOAubk5Hm3bBpUuXUrOnlHocjJqFG8BsHt3keYoDx06dMCZM2f4ft5/m/BOTU3Ftm3b4O/vj5YtW+LYsWNwKGXBCM2agR0Whvba2njs48NLM6imBnTqBDg7i5QdrzqpOSvev5KTwyswcecO76nT1BQYMgSwtKxuyyRIEDuhX7IRkZwr1FZ/XnoqtvZpicGDBmHu3LnljvgHeFusXbt2xYffClfFxsbi1KlTOHnyJL5+/QpPT0/07t0bbdu2xd27d+Ht7Y3Zs2fD09MThw8fhr+/Pz+or0GDBkVcVKysrIqUO/7w4QMaN2mC2lpasLa2Rv/+/eHl5QVfX19ERETg8uXL/DR/VQERQVpaGiwWC9LS0khOTi62ch0dHY0fP37AwsKCL7ALf+rVqwcFBYViYz5+/Bjbtm3DhQsX4OnpiXHjxsE+Oxvo0qVsdzppaV5Bsdevq8ydjsvloseQUXAa6QMpNS2wCwrAkJIGl8OBnLQUVOWk4GqoBFMV3sPU5MmTa3xhDyJCjx49UL9+fTg6OmL8+PG4evUqP8BPQuXTp08ftGrVClN+qyVQyKtXr+Du7o5Pnz4JjEtwcnLC8uXL0a5duzLnev/+Pezt7REZGQnj8riD2NsD4eHCtdXS4mXNqOQdn+/fv8PKygoHDx6En58fbt++XanzVRXfv3/Hxo0bsXfvXnTr1g2zZ8+GpZD6joigpKSEpKQkKCkpVbKllUPNFN4SJPwfweYSDsSmIYXFKdXXW5oBvD2yGTdPHUGzZs1w/fp1TJw4EdOnTy+SFURYiAh6enp4+PAhzMwEZ6h4//49X4S/evUKHA4HCxcuxIwZM/j+kw8ePIC7uztkZWXh4uICe3t7vHz5Eo8fP8bXr19hZ2eHFi6uMGndGVnqBnyXhtRv8ehmbYrMN5EYPWIYIiIiULt2bZFfh6gUViyNjo7Gs2fPMH/+fLRo0QIxMTFgs9l895BfBbaZmVmZbhU5OTk4cuQIAgICkJGRgXHjxmHo0KHQ/LWIQ0AAyMen5FzeMjKAtjavqFgJVf0qg4CAAAQHB+PevXtIZRPmbtgOm2YOuB5yCTtXLICuYtHN0QsXLsDf3x/Xr1+vMhvLQ3JyMpo0aYL9+/cjJSUFkydPxvXr18tMjymh4sTFxcHR0REfPnyAcgn56IkIdevWxYkTJwTuRkyaNAmmpqaYMWNGmfN1794djo6O8PX1Fd3Y6GhePExZOfYLUVHh7b536yb6XCJibW2Nbdu2oXPnzkhKSir2oP8nERcXBz8/P5w4cQIDBw7EjBkzyuXiZ2pqilu3bpV436rxkAQJEqqdvAIOHXubRmsjk2hV+A9aFZHE/1n3LIk2v0imr1n5RER06NAh0tLSovnz59OQIUNIW1ub1q5dSzk5OSLP6+XlRbt37y61TU5ODg0cOJAaNmxI8+fPJycnJ9LQ0KDBgwfTmTNnqFGjRhQcHEw/f/6ksWPHkq6uLgUGBhKHw6GUlBQKvh1OK598pxVh34q8rlURSbQ6/DstCI2lS7cflOt9Kw0Wi0VRUVF04sQJWrZsGXl7e1PTpk1JUVGR9PX1qX379jRs2DBSVVWlmzdv0rdv34jL5Yo8z5s3b2jatGmkqalJ3bp1o5CQEOJwOCV3uHSJvmtqEktamkhenkhGhkhZmff/wYOJEhMr8KpF5/3796SpqUnR0dH8Y/Xr16eXL1+SrKws5ebmFuuTnp5OysrK5frMVTXXrl0jAwMDSk5OpiNHjpCenh69evWqus366xk/fjz5+vqW2W769Om0aNEigecCAwPJ29u7zDEuXrxIdevWpby8PFHN5LFyJZG0NBHP0US4n379yjeXiEyZMoVWrVpFLVq0oBs3blTJnOImMjKS+vfvT5qamjR//nxKLM81jsslunWLqEsXSpGSIraSEpG5OdHatUQpKWK3uTKRCG8JEmoQP3MLaHbQOZp+4i75P/1Kx96l0bs0FnF+E4RxcXHUvHlzcnd3pzt37lDPnj3JwMCAduzYQfn5+ULPt2fPHvLy8irx/KdPn8jW1pa8vb0pOzubf/zLly+0ZcsWMjc3J2lpafLy8qJTp05RdnY2hYeHk4ODAzk6OtL5pzG8h4mIkn9WhP+gJXff0/gZsykwMJBevXpVunD9jfT0dHr8+DEFBQXR7NmzycPDg+rVq0dycnJUr1496t69O82ePZuCgoLo8ePHlJaWRkREP3LYdDMqjlwHjKLEHLbQ8xERFRQU0NmzZ8nNzY1q165Nc+bMoQ8fPgjd/927d+Sirk6sDRt4N44DB4j+tasq4XA41K5dO/Lz8+Mf43K5pKCgQJmZmWRubk4xMTEC+7Zs2fKPEQIzZsygHj16EJfLpeDgYNLX1y/yoCFBvCQlJZGGhgZ9//69zLZ37tyhJk2aCDz37NkzatCgQan9c3NzydzcnK5cuVIuW4mIaPp00UQ3QNSuXfnnE4Hz589T+/btydfXl+bNm1clc4qLO3fukLu7O+nr69PatWspPT29fAMlJhLZ2vIWKBiMon8HRUUiBQXeNfQPQeJqIkFCDcPGxgYfP34ss2obm83G4sWLERQUhH379kFDQwPz5s3D+/fvsWTJEnh5eZXpL/3hwwe0aNEC379/L+Zjefv2bfTv3x8zZ87E9OnTi53//PkzmjZtivPnz+Ply5c4efIkwsLC0LFjR/Ts2RM/09KRYuMOGXnFsl80EZg/v+B50Do8evQIP3/+RLNmzfgVN5s3bw4iEpg9JDU1FfXr1y/mHmJhYVEs/RYR4XUqC/cTcpHJ5oDL4SA3Nw+KSkrQkJOCk64iGmiUnLLrx48f2Lt3L3bu3AkDAwOMHz8evXv3hrx8GYWDBNC5c2f07dsXQ4cOFbmvuNixYweCgoJw//59vitNcnIy6tevj58/f8LV1RUzZ85Ex44di/VdtGgR8vPzsWrVqqo2W2RYLBYcHR0xbtw4jB49Gvv378e8efMQGhqKevXqVbd5fx1LlizBly9fsHv37jLbcjgc6OrqIjw8vJjbAZvNhpqaGhITE0t0V1m2bBkiIyNx+vTp8hu8bBkvsUNpKVp/p0cP4MyZ8s8pJBkZGTAwMMCxY8ewYsUK3L9/v9LnrAhEhEuXLmH16tVISEjArFmzMHjw4HJdIwEAGRk8N6BPnwA2u+R2ioq8jDMCsufUOKpV9kuQIKEI2dnZJC8vT8rKykK7PYSGhpKhoSHNmDGDWCwWhYaGkqOjIzVq1IjOnTtX5jhmZmYUFRXF/53L5ZK/vz/p6OjQ9evXS+zn6elZbIs4KSmJ9uzZQ506daJW/YbT8oefS13t/vXHLzKJ0vPy6e3bt3Tw4EEaNmwY2djYkJqaGjEYDGIymaSlpUWOjo40efJkOnv2LH348EHo1XEul0sXP2bQumcl27DuWRJd+5xZ5D3jcrl079498vb2JnV1dRo5ciQ9ffpUqDlL48KFC2Rvb1/hccrLhw8fSEtLi16/fl3k+NOnT/krkCNHjqTt27cL7H/nzh1q1qxZpdspLqKjo0lLS4u/0r13714yNDSkt2/fVrNlfxfZ2dlUu3ZtkXYUhg4dSv7+/gLPNWvWjO7duyfw3IcPH0hTU5M+fvxYLlv5PH7MWzkVdrVbWZkoOLhic4pAy5Yt6eLFi6SkpESZmZlVNq8osNlsOnToEDVq1IhsbGzo6NGjVFBQUPGBfXyI5OSE+7soKhJlZFR8zkpGUoFGgoQaxPPnz2FmZgYzMzOhqw+2a9cOz549w7t379CiRQsYGBjgwYMHWLFiBebPn4+WLVvi1q1bJfZv3749bt68CYBX5n7YsGHYs2cPHj58KDDNF8ALrouKisKc3yqEaWlpYcSIEQgJCcGIhWsgVVYJ+V/Iy81BxwEj0b59ewQHB0NNTQ3jx4/HhQsX8P37d7x69Qrr1q1D06ZNce/ePXh7e6NPnz6YPHkyDh48iDdv3pRa3vl+Qi5iUlml5qtmc4EXP/MQnpSHrKws7Nq1C02bNsWwYcNgb2+P9+/fY/fu3bC1tRX6dZWEu7s7EhMT8eTJkwqPJSpEhJEjR2LmzJnFsgl8+vSJnxXCzMysWNabQhwcHPDmzRukpKRUur3ioEGDBli+fDm8vb3BYrEwfPhwLFy4EO3bt8f79++r27y/hqCgIDg6OqKBCLU2CtMKCsLOzg4RERECz02bNg1Tp04tV4BeEeztgVKqXBaDwQB6967YnCLQoUMH3Lt3D3Z2drh3716VzSsMeXl52L59O+rVq4edO3fCz88PkZGR6NevX8Xz/LNYwM6dvH+FoTAtdQ1HIrwlSKhBhIeHw9DQUORobU1NTZw5cwYjRoyAk5MTgoKC0LVrVzx79gyTJk3CqFGj4ObmJlDkubi44ObNm/j8+TNat26NvLw8PHjwoEQbsrOzMWnSJGzbtq3U7UM2RLvoysopYO2mzfj06ROuXLmCjRs3YvTo0WjdujV0dHTQoEEDDBkyBNu2bcPTp0+RlJSEjRs3wszMDBcuXICrqyu0tLTg7u6OxYsXIyQkBD9//uTZwiU8TswBWwjHOjYXuP4+GWZ1zBESEoK1a9ciJiYGU6dOhYaGhkivqTSkpKQwbtw4bNu2TWxjCsvu3buRkZEhMFtEfHy8UMJbVlYWrVq1KvWhrqYxevRoGBsbY/78+QCAUaNGYe7cuXBxccHHjx+r17i/AA6Hgw0bNsBHxBz0rq6uCAsLQ1paWrFzhaXjfyckJAQvX77EzJkzy2vufzAYwNatvMqHZaGoCKxezStNXkV06NABN27c4Ofzrgmkp6dj9erVMDMzw+XLlxEcHIzbt2+jU6dOQi8alYmorzU7myfUazgS4S1BQg0iPDwcampqqFOnjsh9GQwGxo8fj1u3bmH9+vXw8vJCRkYGvL29ER0djV69esHT0xM9e/bE69ev+f0KhbeDgwP69OmDI0eOlJofdenSpXByciq2Gs7hcBATE4OjR49izpw5+PA2ViT7pZgMKMkLfzNTVFREq1atMGPGDBw/fhyfPn1CVFQUxo4dCxaLhbVr18LMzAz16tXD9DVbwC7NP/A3GEwpnLkfgTNnzsDV1bXScosPHz4cZ8+e5T8gVAWfPn3CvHnzsG/fviI51gv5VXibmpqWKkgLBcGfAoPBwJ49e3DkyBG+3WPHjsXMmTPh4uKC+Pj4arbwz+bMmTPQ1taGk5OTSP2UlJTg7OyMy5cvFzsnSHizWCxMnjwZ/v7+5fcd/h1XVxTs2IFcBgNcQd93BoMnuufMAcaPF8+cQuLg4IDY2FjY2dlVu/D+8eMH5s6dizp16iAqKgrXrl3DhQsXKqfwWWLif9UphSUpSfx2iBmJ8JYgoQYRHh4OBoNRofyk1tbWePLkCTQ1NdG0aVM8ePAAMjIyGDNmDN6+fYuWLVvC2dkZQ4YMwfv373Hy5Enk5eVhzpw5mDVrVqmrFS9fvkRgYCCWLVuGsLAw7Nq1C+PGjUOLFi2gpqaGLl264OTJk1BWVkYdFSmAI0KJdIBfoKW86OnpwcPDA6tWrUJoaChSU1Nx+vRp1LFvDUjJCD0OQ0YWufKi50YXFW1tbXTr1g379u2r9LkAnovJqFGjMH36dFhZWQlsI+yKN/DnCW+A5w4VFBSEoUOHIjk5GQAwceJETJ48Ge3atcPnz5+r2cI/EyLC2rVr4ePjU64Vz5LcTaytrfH27Vvk/pJje926dWjYsCE6d+5cIZt/Z1lcHGa0aQPGkCG81W8VFd6PnByvUuWNG8CCBWKdUxgKd5eys7MRHR2N9PT0Krfhw4cPmDBhAiwtLfmVjIODg9GoUaNKmY/FYiHm40ewCkS7h1TlTkR5kQhvCRJqCFlZWfjw4QMyMjIqXBhAQUEBAQEB2LRpE3r27Illy5aBw+FAQUEBM2fOxLt372BoaIiGDRti4cKF8PT0RE4JFRWTk5Nx48YN+Pn5wcXFBTIyMrC2tsbYsWPx6NEjWFpaws/PD1+/fkVcXBwOHjwIdXV1+E0aAY4IWQJ0FKWhISfeSnBSUlKwtraGSR1zkfvmc6sm4dP48eOxfft2cEXJqFBO9u7di5SUlFJdAX4V3jo6OsjOzkZWCaXura2tkZmZ+ce5aXTo0AFeXl4YOXIkPy5g6tSpGD9+PFxcXPD169dqtvDP4+7du0hJSYGHh0e5+nft2hVXr14F6zd/Xnl5edSrVw8vX74EwNux2bhxIzZt2lRRk4sQERGBHTt2YP7hw2AEBvJWTp88AR49An78AM6eBVq0EOucotChQwfcvn0bzZs3x927d6ts3qioKAwcOBD29vZQU1NDdHQ0AgICxF68JjU1FZcuXcLcuXPRunVraGpqYubJk2CKIrylpAAXF7HaVRlIhLcECTWEmEuXMMjUFCrR0bDQ0RHLmB4eHnj69Clu3bqF9u3b81fzMjMzcePGDbi5ucHb2xtXr17Fjh07+Gm5FixYgG7dusHQ0BAWFhZYvnw5rl+/DlVVVVy6dAlpaWmIiIhAYGAgJk+ejNatW4PJZGLt2rWoU6cObty4gaULfBF16RjYuWWUSAevKmd7g8or/6sqy4Qoa3DMf/tUBQ4ODlBTU8O1a9cqdZ74+HjMnTsXQUFBAl1Mfm1XKLwZDEap7iYMBqNIcO6fxIoVKxAfH49du3bxj82YMQOjRo2Ci4sLvn//Xo3W/XmsXbsWM2bMKHdAnY6ODqysrAS6UvzqbjJ9+nRMnjxZrMKPxWJh6NCh2LBhA/T19XkHlZSA+vWBhg2BclQGFjcdOnTAzZs34eLiUiXuJg8ePEC3bt3g6uoKa2trxMXFYeXKldARw72JiPDx40cEBwdj7NixvMURExNs2rQJ8vLyWLx4MRISEnDxxQvItG0r/MCyssC0aRW2r7KRCG8JEqoTLhc4eBCwtobNoEHYGBeHPfHxaNC2LTBsGBArmp+0IAwMDHD9+nV07NgRzZo1w8qVK2Fvbw8HBwf06NEDTCYT9erVw6dPn9CsWTPMmzcPBQUFGD58OO7evYvU1FScOHECz58/x6lTp9C0aVN+uXiAt1KxdOlS1KlTB0+fPsXVq1fRp08fTJo0CS9O7UXs7RBw2fkCbSMuB5x8FjxMVaCvJLwriKg0qiUPKRGUN5MBWGmIyXe0DBgMBiZMmICAgIBKm4OIMHr0aEydOrXUcuksFgspKSnQ1dXlHzM1Nf3r3E0A3vb94cOHMX/+fERHR/OPz5o1C0OGDIGLiwt+/PhRjRb+Obx+/RphYWEYMmRIhcYpyd2kUHhfu3YNz549w6xZsyo0z+8sW7YMderUgXcNzgFtbW2N9PR0WFpaIjQ0tFLmICKEhISgbdu2GDhwIDp37oz3799jzpw5UKvAwweHw8GzZ8+wdetW9O/fH0ZGRmjRogXOnTsHS0tL7N+/HykpKbh+/ToWLVqE9u3b/5e3fcUKnm99WcjLA87OQAkudDUJifCWIKG6yM8HunUDxo0DXr2CDJsNxfx8qAFg5OXxBLmtLXD1aoWmSU9Px71796CoqIjatWtj3rx5+PHjB27cuIFbt27B2NgYa9asQdOmTREUFIQmTZogKCgInz9/hr6+PhgMBnx8fDBw4EA0adKEP25iYiLmzp0LCwsLfPjwAffu3cP+/fuxa9cuLFq0CObm5iAuFwk3T6CHqQo+Rj4CcQogy2RAhgHk5+ZApyADF3yHI+Lq2Qq9xrIodGMhKtudg/Fv+1ry4nV7KQ0vLy88fPiw0lw29u3bh6SkpDIFy5cvX2BgYFBk1bIsP+/CFe+qcJURNw0aNMCKFSv4KQYL8fX1hZeXF1xcXJCYmFiNFv4ZrF+/HhMmTICCMFlBSsHDwwPnz58v9lmytbXF06dPMWnSJGzevFl8AZXgxdXs2bMHO3bsEF82jkqAyWTCxcUFycnJiIuLE2saTw6Hg2PHjsHW1hazZ8/GmDFj8ObNG4wbN65cf9OcnBz8888/WL58OTp16oRatWrBy8sLz58/h7u7O27fvo1v377hxIkTmDJlCuzs7ErehXN0BPbt4/ncl/T3UVAAbGyAEydEtrVaqL4U4hIk/J8zYACv1K0wRQEiI8scjsvlUnx8PJ0/f56WLl1Knp6eZGZmRsrKyuTo6EgNGzYkPT09OnjwIPXr148sLS3p2bNn/P5z5syh+fPnExFRZGQkdenShUxMTGjWrFlkaGhIGf8WJvjy5QtNmTKFNDQ0aNy4cfxS6fHx8eTg4EBdu3YlZ2dnatmyJZmamlJycjIdOXKEpKWl6V38V/qezabEHDaZ1DGngQMH0uPHj0lHR4cSExPF/hYXwmazaeKcBbT0wSdaFZFYaiGf9c+S6WeuGAo/iMi0adNo9uzZYh/38+fPpKWlRc+fPy+zbWhoKLVt27bIsbVr19LUqVNL7VevXj2KFOIzWhPhcrnk6elJM2bMKHZuwYIFZG1tTUlJSdVg2Z/Bt2/fSF1dXWzvUYMGDSgsLIyIzSb6tzhWVlYWycjIUOfOncUyRyF5eXlkZWVFhw8fFuu4lcWePXvIy8uLOnbsSKdPn67weHl5ebRz504yNzenli1b0oULF4Qu3PYriYmJdObMGZoxYwY5ODiQoqIiOTo60syZM+ns2bPiubaHhxN17corpqOmRqSqyitkpKdHtH49EYtV8TmqCInwliChOnj3jkheXrhqXAwGkbt7ke5sNpuioqIoODiYZsyYQe3btydNTU3S0dGhTp060Zw5c+jo0aMUGxtL8fHx5OjoSD179uSLZyKiAwcOkJaWFvn7+xOXy6Xr169Ty5Yti8wTGhpKCgoKZGBgQFu3bqXRo0eThoYGTZ8+nb5+/cpvd/36ddLR0aFly5aRq6srderUiTQ1NfnCvlmzZlS3bt0iY48YMYK0tbWJiMjHx4f69u0r1re4kMzMTOrcuTN17NiR4pLSaNPzZFovoHrl+mdJtOVFMiXmsCvFjrKIjY0lbW1tys3NFduYXC6X3N3dacmSJUK1DwoKokGDBhU5dvLkSerRo0ep/caPH09r164tt53VTXJyMhkaGtK1a9eKHOdyueTr60s2NjaUnJxcTdbVbObMmUMTJkwQz2Dx8RTq4EDZ8vK86x6TSWRmRj+XLyc1JpMuXLggnnn+Ze7cudSzZ89yic3q4OPHj1S7dm1atWoVTZo0qdzjZGRk0Nq1a0lfX5/c3d3pzp07Qvflcrn09u1b2rdvH40YMYLq169Pampq5O7uTitWrKB//vmHsrOzy21bmXz/ThQSQnT2LNGjR/yHsz8JifCWIKE6mDyZSEZG6BLFHFlZ2rdiBY0aNYrs7e1JUVGR6tWrR3379qWVK1dSSEgIff/+vdg0Dx48IAMDA1q+fLnA0upv374le3t76tq1K338+JGUlJSKiPPly5dT27ZtqX379iQlJUW6urp09OhR/o2Kw+HQ8uXLSVdXly5fvkxubm7k6elJpqamdPToUSIi+vr1K8nKytLq1auLzP3o0SNiMpkUHx9POTk5VL9+fTp58qQ432X6/v072dra0ogRIyg/P5+IiAq4XIpOyaP9Mam0+UUybX6RTAdjUyk2NY841XwDdnV1pYMHD4ptvH379lGTJk34r70sli5dSvPmzStyLDw8nGxsbErtd/r0aerYsWN5zawR3LhxgwwMDIqt3HK5XJo1axY1bdqUUlJSqsm6mklGRgZpampSXFxcxQfbt49IQYE4Aq6LOVJSlColRWcXLqz4PP9SuNOWkJAgtjGrAgsLCzp06BBZW1uL3DcxMZHmz59PWlpa1L9/f6F2qfLz8yksLIw2btxIvXr1Ih0dHTI0NCQvLy8KCAig58+fi6c0/P8REuEtQUJ1YGEhtOgmgDKZTNrRrh0FBATQ/fv3i4jjkti1axdpa2vTxYsXS23HYrFo9uzZZGBgQDY2NnTp0iUiIrpw4QLJysqSpqYmLVu2jFJSUujEiRNUv359atOmDYWEhFC3bt2oRYsW9O7dO+rYsSP169eP2rVrR7NmzeKPv2LFCpKTk6NPnz4VmZfD4ZCcnBx/Nfb+/fukq6srti3r169fk6mpKS1btuyPWdE6e/YsOTo6imWsL1++kJaWlkguICNHjqSdO3cWOfbz509SVVUt9T1MSUkhZWVlysvLK6+5NQIfHx/q3r17sdfK5XJp+vTpZGdnR6mpqdVjXA1kw4YN1KdPn4oPdOwYz6WulGsgF6AcGRmimJgKT5ebm0uWlpZ07NixittehXzLzqd5x2/SqiffaGX4D/KLSKTj79LoU2Z+qd/PT58+0aRJk0hDQ4NGjx5Nb9++LbFtRkYGXbt2jRYuXEguLi6krKxMjRo1onHjxtGhQ4eKXccliI5EeEuQUB0YGIgkvElJiSgwUKihWSwWjRkzhho0aEAxItykbty4QSoqKtSgQQPq3LkzycnJUZcuXSgzM7NIOzabTYsXLyZpaWkyNTWle/fu8UX3tGnTyM3Njb8CwuVyydDQkBo2bChwztatW5OlpSX/92nTppG3t7fQNpfE7du3qXbt2nTgwIEKj1WVsNlsMjIyoqdPn1ZoHC6XS126dKFFixaJ1M/V1ZVCQkKKjaWqqko/f/4stW/z5s3p1q1bIlpas2CxWGRra0vbt28vdo7L5dLkyZOpefPmlJaWVg3W1Szy8/PJyMiI549dEVgsnr+uENfBAoDIza3Cts+aNYt69+5d4XGqigIul869T6e1kUm06umPYm5y654l0eE3acQqKCq+X716RYMHD6ZatWqRj48Pffv2rdjY3759o+PHj9PkyZPJ1taWlJSUqHXr1jR37ly6dOmSZJenEpBkNZEgoTqoVUu09lJSgKZmmc0SEhLg4uKChIQEPH78GPXr1xdqeCKClJQU6tSpg9jYWDx+/BiGhoY4c+bMf2md/iU4OBhbt27F3r17MXHiRLi4uCA6Ohp2dnY4d+4cjhw5ws+K8fDhQ2RmZmLo0KEC5x00aBDevn3Lr8S2fPlyhIWF4fz580LZLYgjR46gd+/eOHz4MAYNGlTucaoDaWlpjB07Ftu2bavQOAcPHsTnz5/h6+srUr9fc3gXUlYu70L+1LSCv1KYYnDBggVFUgwCvPdh06ZNsLe3R6dOnZCRkVFNVtYMjh8/jjp16sDe3r5iA50+zUurKgRSAOjOHeDLl3JP9+jRIxw4cKDC37Gqgohw4WMm3qTno4AAMIrLNjYX+JLNxom4dHCJ8PjxY3h6eqJdu3aoV68e3r17Bz8/P+jq6iI6Ohq7d+/GkCFDYG5uDmtraxw8eBAGBgbYsmULfv78iTt37mDlypXo3LkzNDQ0qv5F/+1Ut/KXIOH/kg0bytxaLZbZpIyAlUePHpGhoSEtXrxYoD+3ILhcLl2+fJmcnJzIwsKCdu/eTcrKyqSqqkpqamq0f/9+/hZmbm4ujRo1iurXr09RUVGUm5tL7u7u5OnpSePHjycGg0G9evWiz58/88cfPnw4KSkp8TOf/E5CQgJJS0sX8Wu+ffs26evri7zSwuVyafXq1WRkZEQvXrwQqW9NIiEhgdTU1Mq90vTt2zfS1tamiIgIkfpxuVxSUFAQ6Mbk4eFRpv99aGgoOTg4iDRnTWXXrl1kY2Mj0HWGy+XS2LFjycnJqdhu0P8LXC6XbGxsynRjE4qOHUXa/ePIyREFBJRrqsJYkhMnTlTc7iriU0Y+rRMQDC7oZ014AnlNm0fGxsbk7+9Pqamp9ODBA/Lz86Pu3buTpqYmmZmZ0aBBg2jnzp306tUroe8VEsQHg4iqpi6yBAkS/iMtDdDTA/Lyym4rIwOMGAFs315ik8DAQMyZMwd79uxB9+7dyxySy+Xi3LlzWL58OfLz8+Hr64u+fftCSkoKpqamMDc3x8aNG+Hl5YUmTZpgzpw5GDZsGMzMzLB3717IysqiZ8+eUFZWhr+/P1q0aIEFCxbg7du32LVrF4YOHYpJkyahcePGMDMzw/Pnz0u0xdjYGHXr1i1S/XDSpEnIzMxEUFBQ2e8PgIKCAkyePBn379/H5cuXYWBgIFS/moq3tzeaN2+OqVOnitSPiODh4YEmTZpg6dKlIvVNTk5GvXr1BOYHnjZtGgwMDDBz5swS++fl5UFbWxufP3+Gurq6SHPXNIgIvXr1gpmZGdavX1/sPJfL5ec6vnz5MpSUKq/qak3k+vXrmDZtGl68eAEms4Ib582aAU+fCt2cA+CAuTlOW1pCXl4ecnJy/J+yfj9+/DjS0tIwf/78MtvLy8uXWuG1qjgRl464DLbQ7QtSEpB1PRgPHz7E06dPUa9ePbRq1QqtWrWCk5PTH39t/Buo/k+VBAn/j6irAxs2ADNnAjmllFSXkgK0tIASRFR+fj6mTZuGmzdv4s6dO2jQoEGp0xYUFOD48eNYuXIl5OXlsWDBAnTv3p1/8wwPD0dKSgratWuHxo0b48mTJ+jTpw+aNm2KCRMmYNOmTcjPz+eL7v3796Nr167o168fhg8fDgCYPHkyVqxYAWtra0hJSaFnz56l2tSjRw/s2rUL+fn5/IqYq1atQuPGjXHp0iV06dKl1P7Z2dno378/WCwW7t69C1VV1VLb/wlMmDABw4YNw+TJk0USNocPH8bHjx9x8uRJkecU5GZSiJmZGd68eVNqf3l5ebRs2RL//PMPevToIfL8NQkGg4Hdu3ejSZMm6NixI9zc3IqcZzKZ2LlzJ0aMGIGuXbvi0qVLUBSmut5fwtq1azFz5syKi24AUFERqTmHyUSLDh2g2bkz8vLywGKx+D+//p6eno4fP37wf//y5Qvu3r2L1q1bY+3atcXa//573r+LIsKK+sr4XUZWDu8zRCvqw1TRhKyyGubNmwdHR8e/4nr4tyER3hIkVBfjxgEFBcifOhVSTCakCgqKnldR4Ynuf/4BtLWLdf/x4wd69+4NdXV1PH78uNSSvvn5+Th48CBWr14NXV1drF+/Hm5ubkUqtXE4HIwdOxYzZ85EcHAwuFwu1q5di2fPnmHJkiXw9/eHpqYmHj16BCUlJRw6dAizZ8+GjIwMVqxYwR9HT08PW7duxZMnTxAZGQl/f38oKSmVWNmuV69eCAwMxO3bt+Hq6goAUFZWxt69ezF48GBERUWV+Np+/PiBrl27olGjRti5cydkZCqv7HxV0rJlSygoKODmzZv896QsEhISMH36dFy+fJn/ACMKpQlvU1NTXBWigmqhn/efLrwBQFNTE/v378egQYPw7NkzaP/2HWQymdizZw+GDRuG7t2748KFCxWu3Pgn8OzZM7x+/Vp85dV79gSePAGys4VqzgXQYOJENLC2FnqKnJwcNGnSBIcPH4anp6fQ/QoKCkoU5sII98L/Z2dn4+fPnyKPBWlZjD9xH1Iywn+f5eVkMGamDzTlJfKuxlK9ni4SJEhoaWhIyaNGEWlpEYfJJBaTSWRvT3TyJFEJ+ZfDwsLIyMiIFi5cWKqPXk5ODm3dupWMjY3J1dWVbt++XWJbf39/atu2LRUUFJCGhgY5OztT69at+ZHw7969o1q1apG2tjZ9+PCBDh48SObm5gKzXcTFxZGamho1btyYoqKiyNPTkwwMDGjHjh3FckqzWCySl5enYcOGFRtn7NixNGLECIH2RkdHk5mZGS1ZsuSPSRcoCjt37iQPDw+h2nK5XPLw8CiWg1sUNm/eXGIhlBcvXhTJPlMSERERVL9+/XLbUBOZNWsWdevWrcTPWEFBAXl7e5Obm5tYix/VVAYMGEBr1qwR34BpacIXEwPoGZMpsl/ytGnTyMvLS3w2VzJ5eXn0+PFj2hKwjVaGF89iUtrP2sgkSmdJ8mrXZCTCW4KEaiQpKYlUVVX5N5KQkJAyC5Hs27ePtLS06MyZMyW2yczMpLVr15Kuri51796dHj9+XOqYX79+JS0tLXr9+jWFh4eToqIiderUiS+S8/LyqGvXrtSzZ09avHgxaWhokKqqaolBjAsWLCAbGxtavnw5/1hYWBh16NCBzM3N6dChQ0Vuni4uLlSrVq1i4iYjI4NMTEzo6tWrRY7fuXOHateuTUFBQaW+rj+ZzMxM0tDQECpv7uHDh8nKyqpCebRnzJhBfn5+JdqioKBQ5gMOh8MhTU1Nio+PL7cdNQ0Wi0V2dna0bdu2Etuw2Wzq168fderU6Y/PZV4aHz9+pFq1aok/neKSJbyUqWUJbwUF6l27Nr1580booe/cuUN6eno1tvJoQUEBRUVF0b59+2jcuHHUrFkzUlBQIBsbGxo5ciT53XsrkvD2f5H8Vy5E/E1I0glKkFCNPH36FHZ2dnxfSXV1daSlpQlsy2azMXnyZKxcuRK3b98WuJ2flpaGZcuWoU6dOggPD8fVq1dx7tw5NG/evFQ7pk2bhtGjR+PevXvo1KkTBgwYgNq1a0NGRgYsFgu9e/eGrKwsjh49ivHjx/P9ELdv347c3NwiY3G5XOzfvx/fvn1D7969+cft7e1x/fp17Nq1C/7+/mjSpAkuXLjAD2Rjs9mIjIwsMpaKigp27dqFUaNG8dO3HTt2DL169UJwcDCGDBlS1lv8x6KsrIyBAwdi165dpbb78eMHpk6diqCgIMjJyZV7vtJcTZSVlaGkpITExMRSx2AymWjfvn2RQNk/HVlZWRw6dAgLFy7E69evBbaRlpZGcHAwlJWV0atXL7BYrCq2smrYtGkThg0bVqpbW7lYsAAYPhzcklx1pKQARUXgwAFwnJwQEREh1LDZ2dkYPnw4tm/fDk0h0rFWNkSET58+4cSJE5g1axacnZ2hoaGBHj164Nq1a6hbty42bdqE5ORkPHv2DLt370YXSyPICKnUpBlA89oKRVwIJdQ8JMJbgoRqJDw8HHZ2dvzfSxLeiYmJcHV1RVxcHMLCwtCwYcMi55OSkuDr6wtzc3PExcXh7t27OHr0KBo3blymDVeuXEFYWBg+f/6MTZs24d69e/Dx8cHNmzeRl5eHPn36QEZGBkePHgWDwUC/fv0wbNgwvH37FqmpqbC3t0dUVBR/vNDQUMjLy0NHR0dgHnEXFxc8fPgQy5cvh6+vL5ycnKCurg4Oh4OzZ88Wa+/m5gY3Nzf4+Phg3bp18PHxwY0bN4T2ff6TGT9+PPbs2VOikCMijBs3DiNGjECzZs0qNFdpwhvg+Xl/+PChzHH+hnzev1O/fn2sWrUK3t7eJf4tpKWlcfjwYcjKyqJfv37Iz8+vYisrl9TUVOzfvx9TpkwR/+AMBuDvj93u7nhjaIgCaWnkysoCqqqAggIwaBDPD7x3b9ja2gotvH19feHo6AgPDw/x2ywESUlJuHz5MpYsWYIuXbpAR0cHjo6OCA4OhqqqKnx9ffHx40e8ffsWhw8fxrRp0+Dk5FQkULe+uixUZaR4tTvLQF6KCRst+cp8SRLEQTWvuEuQ8H9Njx496OjRo/zfv3//Tjo6OkXahIeHk7GxMc2bN49fEbKQL1++0NSpU0lDQ4PGjh1L79+/F2n+nJwcMjIyojp16lD//v35eYm5XC4ZGBhQu3btyNPTk+9yMnXqVHJ3dy9SmTIoKIi0tLRo69atxOVyycvLi5ydnWnx4sVlzl9QUEDBwcFUp04dkpOTIyMjI4Htfv78ScrKymRmZvZfnnAOh+gv3tYvxMXFhQ4fPkz06RNReDjRq1e8an9EdPToUWrYsKFY3Bv09PToy5cvJZ7v06cPz44yeP/+Peno6Px1291cLpd69uxJ06ZNK7Udi8Wi7t27F/ne/A2sXLmSBg0aVGnjJyYmkoaGBn358oVmDR1Kh318iF68IPotV/qlS5eoQ4cOZY73zz//kL6+fpkVV8VFZmYm3b59m9auXUt9+/YlU1NTUlNTIxcXF5ozZw6dOnWKPn/+XK7vxaOI5zTrwhNaLaBq5aqIJFr28Av5v0imlDyJb/efgER4S5BQjRgaGtK7d+/4v+fm5pKcnBz/9wMHDpCWllax4iUfPnygsWPHkoaGBk2bNq1UwVQaffr0ITk5OfL39y9yQ2CxWGRkZEQ2NjbE+lfkHThwgCwsLAQWdomNjSU7Oztyd3cnVVVV0tfXp6ioKKHtyM/PJ2dnZ2IwGNSpUyd69eoV/1xWVhZ169aNmjRpQubGxpS7fz+RrS0Rk8n7kZMj8vLiidK/DTabwiZNojgFBV4AmqoqkbIykZoaZU2aRI20tMr03xeGvLw8kpWVLfZg9yuzZs2iFStWCDVenTp16OXLlxW2q6bx8+dPMjQ0LBZz8Dt5eXnUpUsX6t27N7HZ7CqyrvLIy8sjPT09ev78eaXN4evrS2PHjiUiIjc3txKL83z//p00NDRKFbBZWVlUp04dOn/+fKXYymKxKDw8nLZt20bDhg0ja2trUlRUJAcHB5o0aRIdOHCAYmJixFKcJiEhgUxMTOjI8ZO0+uhlWnonjtY9S6INz5Jp/bMk2vg8mbpPX0yv34q26CKh+pAIbwkSqomEhARSV1cvdgORk5OjjIwMmjp1KpmbmxcRMDExMTRkyBCqVasW+fr6UmJiYrnmLigooNGjRxOTyaRz584VOcdiscjDw4NsbW3J09OTiHir7lpaWqWKKRaLRR06dCBZWVkyNjYWeWXn4sWLVLt2berevTtpa2vTkCFDKCwsjOzt7WnIkCHE+viRvqmqUq6MTPGgKykpXnXPceN4K+F/A9nZRG3bEreEoDMWk0k5cnJET59WeKq4uDgyNTUttc22bdto1KhRQo03evRo2rhxY4XtqomEhoaSvr5+md+93Nxc6tSpE/Xv3/+PF9979uwpM+i7IqSkpFCtWrX4FW7Nzc0pOjpacOPISNqvoEA5LVoQubkRLVxI9PVrkSYTJ06kIUOGiMU2DodD0dHRdODAAZo4cSI5ODiQoqIiWVtb0/Dhw2n79u0UHh7OX6AQJ3l5edSyZUt+9qo6derQw0ePKDGHTfGZ+fQjh02cf3cZ9+zZI/b5JVQOEuEtQUJV8vEj0YIFRH360Jc2bWh73bpEv22F1q5dm1q2bEkdO3bkry4/f/6c+vbtS9ra2rRs2TJKTU0ttwmJiYnUoUMHUldXL7aCWSi6PTw8KC4ujmrVqkXfv38nY2PjMkuGExE1b96cWrVqRcrKyjRnzhyRttqzsrJIXl6e2rRpQ2lpaTR+/HhiMplkb29P32NjiczMiCstXXrWA0VFokmTRH5PaiTu7sKlWVNT47mhVIDQ0FBq06ZNqW1CQkKE2uInIjp+/Dh16dKlQjbVZGbPnk1du3Yt8+EyJyeHXF1dacCAAaXuJtRkOBwONWjQgG7cuFFpcyxdupSGDh1KRLwMMbKyssXdp+LiiGxsiBQVqYDB+O/zLy/P++nblyg7m0JDQ8nQ0LBc10gul0vx8fF06tQpmjNnDrm4uJCamhqZmZlR3759ad26dXT79m2+S15lwuVyadiwYdSrVy/icDh06dIlsrOzE/iZ27VrFw0YMKDSbZIgHiTCW4KEquDHDyJXV94NQlb2v1VLaWneseHDiXJzKSIigqSlpWnkyJFUUFBAjx8/pu7du5Oenh6tXbu2whf8R48ekZGREXXp0oVsbW2LiAEWi0U9evSg7t2781dv6tatS3Z2duTr61vm2FFRUaSvr08mJiYUGhpKnTt3pubNmxdxpSkLZ2dnkpeXp8uXL5OOjg5t3LiRpk2bRivk5SlfSkq4XL8KCkSxsaK/OTWJsDDeQ4Qwr1dGhrfSXwGCgoJo4MCBpbaJiYkhc3NzocZLTk4mVVXVv8rH+VcKUwwGBASU2TY7O5tcXFxo8ODB/33fOByiq1eJZswgGjmS9zBeQ11zzp8/T02bNq00n/2MjAzS1tam2H+/s3FxcWRsbFy00bt3RBoaPNeykr4H8vJU0LQp1TM2pkuXLgk198+fP+nKlSu0bNky6tatG+nq6lLt2rWpS5cutGTJErp8+XK5dxUryvr168nGxoaysrKIiKhz584UGBgosO27d+9IX1//r4ur+FuRCG8JEiqbhAQifX2eQCpFLCZaWJC+pibVrVuXAgICyNXVlYyMjGjr1q2Uk5NTIRO4XC4FBASQtrY2HThwgHR0dCj8F5/o/Px88vT0LCK6iYgaNWpEDRo0EGq1bsaMGTR06FCysLAgLpdLXC6XNm3aRFpaWhQcHCyUnWvXriVtbW1SVVWlK1eu8A4WFFCBhobQBTZIRoZo/HjR3qCaRt++pYsMQSv9/96gy8PSpUvLfLjKzc0t0w/8V5rZ2lLEvn1E//zDc4f5y0R4bGwsaWlpCRXLkJ2dTc7OzjRs2DDiHDpEpKvL89X/1VVKQYGoaVOiyMjKN14EWrduLVRQbXlZs2ZNkeI2165do3bt2v3XgMslsrQU6vvAkpKiK1ZWAufJzs6me/fu0YYNG8jLy4vMzc1JRUWFnJ2dycfHh06cOEEfP36sEeL10qVLpKenx8/hHxcXR1paWiXeB7hcLhkZGVFMTExVmimhnEiEtwQJlY2TE1FZLhIA5QAU6eJCGhoapKenR3v37hWL32BWVhYNHDiQGjduTG/fvqURI0bQpF/cMQpFd7du3YrMt3//ftLT0xPKvSA/P590dHRo9OjRNGfOnCLnIiMjqUGDBjRo0CDKyMgocQwul0szZswgJpNZdM6wMCIVFeFFKECkpSXCO1QDEeVBA+AFXZZSlbQsRo4cSTt27CiznZ6eXtnFcTIyiFavpgxFRcqTleW5wqioEKmrE82fT5SUVG47axp79uyhxo0bC1WxMjMzk7aamVFeWTs3SkpE9+9XgfVl8+jRIzIxMak0H/Xs7GzS0dEpEjuybds2Gjly5K9GCFdc598frpIS5aenU2RkJO3cuZNGjhxJjRs3JkVFRbK3t6fx48dTUFAQvXr1qka6/7x69Yq0tbXp/i+fgZkzZ9LMmTNL7Td48GDavn17ZZsnQQxIhLcECZXJ69e8lSwhbxpZDAa1bd6cDh48KJbpY2NjydramgYNGkTZ2dl09+5d0tfX51eey8/Pp549e1LXrl2L+FQ+efKEf/FXUVEp8wHg7Nmz5OTkRBYWFkVW0gvJysqiUaNGkbm5ucAsHAUFBTRp0iSysrIibW1tUlZW/s+eK1d44k0UISovX/43rSYgwmeGAN77c/lyuadzc3Ojy0L0b9myJd0uTeB/+0ZkZlay/XJyRDo6RG/fltvWmgSXy6VevXrR1KlTy2587x5xhf27qqnxHmCqmV69etGmTZsqbfzNmzfzA7gLmTFjBq1ateq/AwMHirT7k8Vk0mA5OWrYsCENGTKEAgICKCws7I+oKJqcnEzm5uZFKvLm5OSQlpYWxcXFldp337591Ldv38o2UYIYkAhvCRIqk4kThVrt5q/WKCtToItLqeWpheX06dOkra1N27dvJy6XS/n5+WRlZUXHjh0jov9Ed5cuXYrclBISEsjY2JhOnz5NRERNmzale/fulTqXh4cHLVq0iExNTUvdqj1x4gRpa2vTqlWr+Km2srOzqUePHuTi4kKpqak0bNgwMjMzo5CQEF6ne/d4K7qiCFF19Yq8ddVP7dqivV4VFaKHD8s9XYMGDYRymRgwYEARUVCEvDyiunXL/rwzGER6ekQVCBCuSfz8+ZOMjIz++7yWROfOvNcuzN9TSYlIDNeAivD27VvS1NSstEDCvLw8MjAwKPag3qNHDzp+/Ph/B+ztRfoucJhMyl20qFJsrkzy8/PJxcWl2Mp2YGAgde7cucz+Hz9+pNq1a9cIVxkJpSOpXClBQmUSFQUUFAjdnJGVBSMWq8Sy8cJQUFCA2bNnY+rUqbh48SLGjh0LBoOBjRs3wsjICH369AGbzYaXlxdYLBZOnTrFLzXOZrPRt29fDB48GJ6engB4lSZLKwH+48cP/PPPP8jJyUHv3r1LLVfcu3dvhIeH4/Lly3Bzc8OLFy/g4uICFRUVhISEQF1dHR07doScnBzOnTvH62RrC3DLrtrGh8kE3NyEb18T6d8fkJERvr2sLFDOypVEVGbVykLMzMzw8eNHwSdPngS+fy/7804EpKcDe/eKbmwNpFatWjhw4ACGDx+OxMREwY2SkoCbN3mvXRiys4H168VnZDnYsGEDxowZA2Vl5UoZPygoCDY2NkUq9wJAXFwcLCws/jsgJSXSuEwmE/JKSuIwsUqZOnUq5OXlsXr1av4xIsLWrVsxYcKEMvubmJhASUkJr1+/rkwzJYgBifCWIKGGIS8vj9TU1HL1/fHjB1xdXREZGYmnT5+iefPmAICPHz/Cz88PW7duRUFBAby9vZGXl1dEdAPA9OnToaKigiVLlvCPtW/fHqGhoSXOGRwcjB49euD8+fPo06dPmTYaGxsjNDQUDRs2hK2tLUxMTLB//37IysoC4JUc/xIfj4xjx0BTpgDjxgH16wPS0sK9CQoKwIwZwrWtqUyeLLzgkJfntRf2/fmNlJQUyMnJQUVFpcy2pZaNX7MGyMoSbtKcHJ6wFOWBqgbj7OyMIUOGYMSIESBB4joujvd3EoX4ePEYVw6SkpJw5MgRTJo0qVLGZ7PZWL16NebPn1/kOBEhLi4O5ubm/x1s1ky0z7aCAmBlJSZLq4Zt27bhn3/+wZEjRyD1y/f+8ePHSEtLQ6dOnYQap127drh161ZlmSlBTEiEtwQJlUmTJqKtXCorI8/UtFwr3vfv34ednR3atGmDkJAQaGlpAeDdzCZOnIhp06bB2NgYAwYMQE5OTjHRHRQUhKtXryI4OBhM5n+XhtatWyM8PBw5OTnF5iQi7Nu3D87OzsjJyYG9vb1QtoaFheH48eOYOXMmHj9+jMmTJyMvLw8AoHn1Kj7m52NnWhoY/v7A/v1ARIRQOwd5DAbiDAxA5Vz9rTGYmwMTJgCKiqW3k5YG9PWBqVPLPZWwq90Ab8VboPBmsYBXr0SbOC0N+PpVtD41mCVLliAhIQHbtm0rflLYle6K9ikv0dHAxYvA5cvA+/cICAhA7969oaurWynTHT58GHXq1EGLFi2KHE9ISICioiJUVVX/OzhxomjXUDk5oGNHMVla+YSGhmLp0qU4f/580dcNICAgAOPGjStyPS4NFxcXifD+E6hOPxcJEv563rwRrghK4Y+yMp04eJD69Okj9BSFaftq164tMH/t6dOnqUGDBpSVlUV9+vQhd3f3YlkYwsLCSEtLq0ip9l9xcnKia9euFTseFhZGderUoUWLFtG0adOEsvfkyZOkra3N94lNTU2lvn37UqNGjei7j4/w+asF+MXmtmhBzaysaOLEiTUyY4FIcDhEU6fyAhUFZMLIlpIiql+f6Pv3Ck1z9uxZ6tatm1Bt379/T0ZGRsVPpKQUyU8vtF/6X5b+7M2bN4JTDH77xgssFeX9+T2XtbjhcomOHCGytuZ959TUiNTUiCsvT2HS0hS/c2elTFtQUED16tWj0NDQYufu3r1LDg4OxTu5uBBXmM+XoiLRunWVYndl8PbtW6pdu7bA9+LHjx+kpqZGP38rsFYaX79+pVq1aomlVL2EykMivCVIqGzatRNOlCgqEs2eTVevXiVXV1ehhs7MzKR+/fqRg40NJa5fT+ToSGRiwgtyGz6csh49IkNDQ7px4wb16dOHOnXqVEx0JyQkkJGREZ05c6bEeRYuXEizZ88udnzcuHG0bNkysra2LpL+qiQ2btxIBgYGFBERUeQ4l8ul83PnUraIQptUVXkPNo0aER08SMRmU2pqKjk7O1OvXr2ESvNW43n+nGjoUJ4AZzCIpKSI06wZjdbSokdlBL0Kg7+/P02YMEGotvn5+SQjI1M8y01BgUhBxATwvhN/UWrBQvbu3UuNGjUq/tlr107490ZRkWj9+sozksslGjas9DR9iopElRCkeOTIEXJychIYBBgUFETe3t7FzU1OpgQVFWKVFpyqpETUrx/vtf0BpKWlkaWlZYkpAFeuXEnDhg0Tedx69epRZA3LBS+hKBLhLUFCZZOczBPDpYlvRUXejTk/nx4/fkz29vZlDvv69WuytLSkjW5uxFVRKVqQAyCSkiKWtDS91NWlwZ6eAkU3i8Wi1q1b08KFC0ud659//qFmzZoVOZaTk0O1atWi0NBQ0tfXL3WVpaCggKZMmUINGzakjx8/Cm7UtStxhc36oKBA5OvLKzby+XOxofLy8qhv377Upk0bSklJKfW1/VGw2XxhERAQIJay7DNnzqQ1a9YI3d7ExERwNdIuXYTP2gEQ2dlV2PaaCJfLpd69e9OUKVOI0tKINm/mPRAbGwudFo+rrMzbRagsFi0SbmdJUZFo3z6xTcvhcMja2rrEDDALFiwQeC1avXo1tbGxoQu1ahFbRoZyf33IK8wRv3Ilb5foD6CgoIDc3d1LfOAtKCggY2NjgalZy2LMmDG0YcOGipoooRKRCG8JEqqCnz+JevTgbTf/4nqSLyfHE5GTJvEr+8XGxlLdunVLHe7YsWOkpaVFV6ZMKTPnM4vJpDgVFcoVcCOfMGECdevWrcytyby8PFJWVi4iYg8fPkyurq60fPnyIgV5ficnJ4c8PT3J2dm5ZBGcnCz6VryJSak2czgcmjJlCllZWdFnAeL8Tyc3N5f09fXp6dOnFRqnb9++dOTIEaHbOzs70/Xr14uf+Ocf4QudKCkR/ZvW8m8k5edPWqWmRgWysiK7TuUwmbS5a9fKcxfIyhLNJh0dsQnaM2fOkJ2dXYkp77y9vWn//v3F+hgaGtK2bdvI1taWQo4cobmamsSaPp1o4UKiU6f+uKqoM2bMoPbt21N+CXafPXuWHB0dyzX20aNHhXYdk1A9SIS3BAlVyffvRH5+RCNG0JNmzehUp05Ev+XJ/fHjB2lrawvsnp+fT1OnTiUzMzOKuH9f6IqOXHl5ogULioy1d+9eql+/Pr+YTlm4uroWcUdxdXWlw4cPU5MmTUosqpKYmEiOjo7k7e1degGLJ09Ez9UtJVXmtjKXyyU/Pz8yMjISKk/1n8bGjRuLFSARFQcHB6HchAoZNmwY7d69u/gJLpe31V+GqOPKyRG5uPDcU/5WZs+mAlFiOxgM3sOIqSllhYRQixYtaOzYsZUjvnfuFKkSJCkrE5WVo1wIuFwu2dralurS1rx58yI1AyIiIkhLS4vu379PZmZmdO7cOTIwMBDoE/2nEBgYSBYWFqX6bru6upa7iFpCQgKpq6v/+TEufzES4S1BQjVx+vRp6tq1a7HjeXl5JCMjU2xV6OvXr+Tk5ESdO3fmXbSDgoq7l5T2o6HBXxl69OgRaWtrU3R0tND2rl69mr+y/enTJ6pVqxa9fPmSdHR0BF7k3759SxYWFuTr61u2gAgLE706JZMptD/nwYMHqXbt2nTnzh2hX++fQHZ2Nunq6tLz58/LPYaenp5IOwJLliwhX19fwSfz83mVBhUViweEMhiUJy1NkXp6RNnZ5ba3xvPwofArylJSRG3bEo0eTXT3Lv/znJ6eTi1btqRRo0aJX3z37Cna9wwgmju3wtNevnyZGjVqVOrr0dTUpO//Bgt/+/aNjIyM6MSJE7R+/Xrq2rUrDR48WOh4hJrIvXv3yrzuxsbGUu3atStUabNhw4b05MmTcveXULlIhLcECdXEmzdvyMzMTOA5BQUFyv5FnPzzzz+kp6dHS5cu/e/GJWJFN1JVJbp6lb5//06GhoZ07tw5kewNCwujhg0bEhHR0qVLady4cbR69WoaN25csbYPHjwgXV1d2ilsZoTERNFdTQwNRbL/6tWrpKWlRadOnRKpX03Hz8+v3KWiCx/yRFkdO3DgAHl5eZXeKCKCJ8BVVHjiUkmJyNOTcm/epHp169KJEyfKZe8fgaen8L7uUlJEgwcLHCYjI4OcnJxoxIgR4hXfHTuKLrwnTqzQlFwul1q0aEFHjx4tsU1aWhopKSkRl8ulnJwcsre3p2XLltHPnz9JS0uLAgICqE6dOpVWSbOy+fjxI+np6dHly5dLbTdlyhSaW8EHnYkTJ5Kfn1+FxpBQeUiEtwQJ1URBQQEpKioKvJHo6enRly9fiMvl0tq1a0lHR4euXr1atJGBgWg3TyUlYu/ZQ05OTrSoHNkKCgoKSF1dnb5+/kwNTU0p7PFjatasGd28ebNIu9OnT5OWlpbA1IalIoIgYMvKEq1dK/JrePr0Kenp6dHWrVtF7ltTyczMJG1tbXr9+rXIfePi4sikDF/537l79265/U+JiB4+fEg6OjqUkJBQ7jFqLNnZoqdVlJPjBc0KICMjg1q3bk3Dhg0Tn/geMUK0IFgZGaLVqys0ZWhoKNWrV6/UB7ynT59S48aNicvlUr9+/WjAgAHE5XJp+vTpNHToUNLX1y/Rpa2mk5mZSTY2NmUGPWZlZVGtWrXo06dPFZrv1KlT1KlTpwqNIaHykAhvCRKqkaZNm9Ljx4+LHbe0tKRHjx5Rz549yd7eXnAmEDMz0W7wKiq0t0MH6t69u+g3cTab6OxZitbQIA6DQWyAuNLSFCIrS+xbt/hb5Js3byZ9ff1yRePT7dtCb9FnMxg0uGtX+vr1q8jTxMXFUd26dcnX17fEIK8/jeXLl9PAgQNF7nfr1i1q3bq1SH0+f/5Murq6Is/1K76+vtS9e/e/5v3n8+GDaP7ThcK7lLSKmZmZ1LZtWxo6dKh4/Hbv3RPNRnl5ovfvKzSli4sLBQUFldrm+PHj5OnpSYsWLSJHR0fKzc2luLg4qlWrFvXq1YsmT55cIRuqCw6HQ56enjR8+PAyP+87d+4kDw+PCs+ZnJxMKioqJQZvSqheJMJbgoRqZNCgQbR3795ix5s0aUJGRkY0duzYkn39BgwQWFilxFViGRnqaGZG6enpohn58ydR06YC/ck5/66kc3v1opmTJ1ODBg3ow4cPor8RhSxdWrb4VlQk1oULNH/+fNLW1qadO3eK/CCRmJhI9vb2NHTo0L/i5pSWlkaampr05s0bkfrt37+fBgwYIFIfDodDcnJylJOTI1K/X8nLy6PGjRuXKcb+OL58KTPLULEfWVle2sFSyMrKImdnZxo8eHDFxTeXS1SnjnC2MZlEbdpUaLrCwMiyvmcrV66krl27komJCX83pF+/fuTl5UUWFhaUlZVVITuqi/nz51OrVq3K9NnmcrnUuHFjgYXKyoONjQ09ePBALGNJEC8S4S1BQlURH080ezaRpSUvp6+NDd3o2pXm/uYjfejQIZKRkSm7EuTTpyKlBQuTlhYpmJKIiHJzecVpytg+z5OSolAtLUoRocpaiezcycvL+0vGFk5h1gczM6JfAiRfvnxJjo6O1Lp1a4oRsQpiVlYWde7cmdzd3f9Yv9FfWbRokcgFN5YtW1ZyoGQp1K1bt1yuLb/y7Nkz0tbWpvj4+AqNU6Ngs0UPEtbWFipIODs7m1xcXGjgwIEVFt8pV65QTlnuJgwG77W8fVuhudzd3YWK9ejWrRspKyvzA4UfPXpEenp6pKOjQ3fv3q2QDdXFkSNHyMTEhH78+FFm27t371K9evXE5lI0depUWrFihVjGkiBeJMJbgoTKhs0mGjOGt2X7WwAhW06O8phMos2bicVi0cSJE8nCwoI6d+5MwcHBZY/durVQPqU5DAY9WLZMdNu3bxda3HMVFYnEtcKSn0904gTRsGH0tnFjutmgAW+LXIBAKSgooC1btpCWlhYtXbq0eFXFUmCz2TR8+HBq1qyZUDfHmkxKSgrVqlVLpB2HUaNG0Y4dO0Sey83NTXQffgGsWLGCOnTo8He5nMyZI3SgcL6MDHFEEEfZ2dnUvn178vb2JnYJfuFlkZSURI0aNaKdgwcTV01NcGYkZWUiXV2iCqbgDA8PJ0NDwzJXe+Pj40lWVpaWLFlCRLzV31atWlHz5s3LXoCooTx58oS0tLTo2bNnQrXv378/bdq0SWzz39q4kc4bGBB16EDk7k60bBnR3xhX8QciEd4SJFQmXC5R375lileOggL5GxuTh4cHpaam0vjx44ULAExN5a2gl3Kjz2Uy6VJ5KhxyuaL5kTMYvFRlYiYmJoYMDAzKFGfx8fHUtWtXsrKyoocPHwo9PpfLpfnz55OFhYXgiox/EHPnzqUxY8YI3b5jx45lZlkQxOjRoykgIEDkfr/DZrPJwcFBLGPVGL5+FTrNZ6aUFHV1dKS3Iqwq5+TkkKurK/Xv319k8Z2cnEw2NjY0Z84c3vcpJ4dXmbJRI97qtoYGUfPmvIdeMbhgeXp60ubNm0ttUxh4qKamRu//9SU/ffo0GRsbk4WFRZHsTn8KX79+JUNDw1Jzlv/Kt2/fSF1dnVJTUys++bt3RDY2xFVQIPavn7fChZ9Bg3g7mRKqDYnwliChMjl9WuhApnxpaeLExhIRL/hs+fLlws2RlUU0axZxVVUpHSCOoiLvxq+gQO+1tWlRy5bl276Miyufv6qY4XK5ZGJiIlQBHC6XS8eOHSM9PT2aOHEiZWRkCD3P9u3bSU9Pr3yBoTWEpKQk0tDQENp9w9LSslyFhVatWkUzZ84UuZ8gYmJiSEtLSyTxWeO5dav07z2DQaSsTAX37tHGjRtJU1OTNm7cKPT3NCcnhzp27Eh9+/YVWnz//PmTmjZtSj4+PlWyw/DixQvS1dUtVThzOBzy8PCgIUOGkKysLLHZbMrPz6c6deqQhoaGSIWdagqFqRBFcfNYsmQJjR49uuKTv33Lc9NjMkv+7CkoELVoQSTCzqAE8cKEBAkSKo/Vq4HsbKGayjAYYG7dCgBQV1dHWlqacHMoKQFr1iDuwQNM0dYGc/NmYNs2nJgzB501NTE9JARMZjm+6qmpgIyMaH3YbN6PGGEwGOjUqROuXLkiVNu+ffsiKioKOTk5sLKywsWLF4WaZ+zYsdi2bRs6deqEq1evVtTsakFLSwsjRoyAn59fmW2JCPHx8TAyMhJ5HjMzM3z48KE8Jhajfv36mD9/PoYOHQoOhyOWMasdZ2fg/n2gfXtAXh5QVOR9l5SUeL+7uQGPH0PKyQlTp07Fw4cPcerUKbRp0wZv3rwpc3gFBQWcPXsWGRkZ8Pb2BruM71xqairc3NzQrl07rFmzBgwGQ0wvtGRWrlyJ6dOnQ1FRscQ2vouWQNawLvpO9YWTR39wGVLYtWsXcnJyMHz4cLRs2bLS7RQnRIQRI0bAwsICc+fOFaoPm83Gzp07MWHChIpODnTpAqSnA1xuye1yc4Fnz4DFiys2n4TyU93KX4KEv5avX0UvCqOqSkREu3btopEjR4o03aFDh6hXr15ExCtgo62tLXLAYRFiYkRPjSZEGffycPr0aXJ1dRW5X2hoKFlYWFDfvn35FfHK4t69e1S7dm06cOCAyPPVBL5//04aGhr07du3Utv9/PmT1NXVyzXH48ePyc7Orlx9BcHhcMjZ2fnvLPrx6RPRrl1E69YR7d7Ny3wiAA6HQ5s3byZNTU1av369UAGUubm51LlzZ+rVq1eJWUNSU1PJ3t6epkyZUmW+9DExMaStrV3ijlNyLps23HxOyx59oXWRSbQm/Dste/CJ1kYmUZ9Fm6hB46YVyppTXaxYsYLs7e1Fsv3EiRPUqlWrik8uappIVVXJqnc1IVnxliChskhIAOTkROuTmQkUFEBdXR2pqakidX3y5Ans7e3x7ds39OnTB4GBgahfv75o8/+KhQVvpU4UWrcGKmE1zcXFBQ8fPkROTo5I/dq1a4cXL17A3NwcjRs3RmBgIIio1D5OTk64desW5s+fjzVr1pTZvqahq6uLQYMGYd26daW2+/TpE4yNjcs1h6mpqdhWvAGAyWRi37598PPzQ1RUlNjGrREYGwOjRgEzZgAjRwIGBgKbMZlMTJ48GY8ePcK5c+fQunVrxMbGljq0vLw8Tp8+DRaLhX79+iE/P7/I+YyMDHTq1AmOjo7YuHFjlax0A8Dq1asxadIkqKioFDv3JYuNva9/IldVB9KycmATwGVKQ1peEQUENO7cByP3XQaLKVsltoqLc+fOYfv27Th79iwUFBSE7hcQEFDx1W4A2LIFEOX6SARculTxeSWIjER4S5BQWcjK8i5uosBgAFJS0NDQEN7V5F+ePHmCJk2aoHfv3hgzZgy6du0q2ty/IyUFTJvG2xoXBmVlYNasis1ZAmpqamjatClu374tcl8FBQWsXLkS169fx44dO9C+fXu8ffu21D4NGzbEgwcPcOjQIUyZMuWPc4GYNWsW9u3bh8TExBLbxMfHl1t4a2trg8ViISMjo7wmFsPU1BSrVq3C4MGDy3Sd+JuxsLDArVu34O3tDScnJ6xbt67Uz5+cnBxOnjwJDoeDvn378sV3ZmYmOnXqBDs7O2zevLnKRPeHDx9w/vx5TJo0qdi5jHwOjr5NA5chBaaUlMD+0jKyKGBI49DbdBRw/4yH3hcvXmDUqFE4ffo09PX1he736tUrxMbGomfPnhU3IjZWtPtNXh7w/n3F55UgMhLhLUFCZWFuXrqvnSAaNAAYDNF8vAEUFBTg2bNnOHr0KHR0dDBv3jzR5i2JsWPBUVdHmbJTVhawtgY6dhTPvAKoqO+1jY0NHj58iO7du6NFixZYtWpVqQLPwMAAd+7cwYsXL9C/f3/k5eWVe+6qxsDAAP3798eGDRtKbFMR4c1gMMS+6g0AI0aMgJ6eHlasWCHWcf80mEwmJk6ciLCwMFy6dAmtWrVCTExMie3l5ORw4sQJAEDv3r2RnJwMd3d3NG7cGFu2bKky0Q0Aa9aswdixY6Gurl7s3P0vaWAJ8VBFAPI4XMSkscRvoJhJTEyEh4cH/P39YW9vL1Lfbdu2YdSoUZCVFcPqvqhxPP8u8kioeiTCW4KEykJBARgyROgARa6SEjB7NoBSgitTU3lbiqNG8batN24EkpPx6tUrqKioICwsDAcOHChfMKUgNDRwcNQopCso8F6PIJSUgMaNgStXRL/4i0DHjh2FCrAsDSkpKUydOhXh4eG4c+cOmjVrhrCwsBLbq6ur48qVK/wAT1F3IaqT2bNnY/fu3fj586fA8xUR3gBvhfrjx4/l7i8IBoOB3bt3Y/v27QgPDxfr2H8iderUwc2bNzFo0CC0atUKfn5+KCgoENhWVlYWx48fB8ALWK1Xrx62bdsmvmuBEHz58gXHjx/HtGnTip1j5bPx9EcOpGSEE5lsLvDoR664TRQrLBYLvXr1wsCBA9G/f3+R+mZkZODIkSMYPXq0eIyxsxNNSMvJAQ0bimduCSIhEd4SJFQmM2bwVoPLgAsgX04O6NMHgADhnZsLDBsG6OsDc+YAe/YAe/cC8+YBhobgenkhPyUFZ8+eFehXWRE2X7iAF4cPA0uWALq6gKIiOMrKyGMwgPr1eQ8C9+4Bampinfd3mjZtipSUFLGIPVNTU1y+fBmzZ89G9+7dMW3aNGRlZQlsKy8vj6NHj8LGxgatW7fG169fKzx/VWBiYgJPT09s2rRJ4PmKCm9xZjb5FX19fWzevBmDBw/+o3YZKgsmk4nx48fjyZMnuHLlCpycnPD69WuBbdlsNtLS0qCqqoqEhIRiPt+Vzbp16zB8+HBoaWkVOzd3+SqRx0vO49TYGAsiwvjx46GtrY0lS5aI3P/gwYNo3749DErw+ReZyZOFutfwUVQEOnQQz9wSREIivCVIqEzq1AHOneNd5Era7pWWRra8PI6NG8dfVVZTU0N6ejrvppObCzg5AUeP8vzyfg2gyc0FWCw0iI5GlKIi6urqitX8yMhIpKSkoE337oCPD/D1K/DiBej2bTSSlUVORATvgUDUINJywGQy4ebmJrZUfwwGA97e3nj16hVSU1NhbW2NkJCQEufetGkTBg0ahJYtW5YofGoac+fOxfbt2wWu1NdU4Q0A/fr1g7W1NebPn18p4/+JmJmZ4caNGxg2bBjatGmD1atXF1n9zsnJQbdu3VCnTh3ExMRAWVkZnp6eVfbw8uPHDxw4cAAzZswodm7Hjh14FPZEpKBDAGAA4NRM3Y3NmzcjPDy8XDuMRCS+oMpCrK15q97C7LAqKgJz51bqDqWEkpG86xIkVDbt2wMPHwLu7rxARRUVQFEROdLSKJCVBQYNwplFi3Dvxw9+FxkZGcjJySE7OxuYMAGIjuaJ7hJQAKCTkwOMGCFW0/ft24ehQ4f+d2NhMgFzc0jb2kK+bt0ysy6Im44dO4o9x7ampiaCgoKwe/duTJw4EQMGDBAYlMhgMDBr1iwsX74c7dq1w71798RqR2Vgbm6OLl26YMuWLcXO1WThzWAwsG3bNhw+fBh3796tlDn+RJhMJsaOHYvw8HDcuHEDLVq0QFRUFHJzc+Hh4QFDQ0Ps3bsXcnJyOHz4MNTU1ODh4YHc3Mp32diwYQO8vb2hp6dX5PiNGzewePFi7PLfBBEjXiDFAKSZVeefLixXrlyBn58fzp8/D2VlZZH7//PPP2AymWjbtq14DTtzhrcrWtrKt5IS4OHBWyGXUC1IhLcECVVB48a81E1xccDOncDmzbg1aBCm9e8PBAbCzMmpWBo1dXV1pH/6BBw5UqroLoSZnw9cuAD8IuArAovFwpEjRzB06FCB5y0tLat85dfNzQ2hoaGVkvXC1dUVL1++hIGBARo1aoT9+/cL3OYeNGgQDh48CE9PT5w5c0bsdogbX19f+Pv7IzMzk38sPz8fycnJImVg+J3K8PH+FS0tLezYsQNDhw4t0Q3o/xVTU1Ncv34do0aNQrt27dC4cWNoaWlh3759kPrXz1daWhrBwcGoVatWpYvvnz9/Ys+ePZj1W1aj2NhYDBgwAMeOHYN1PXPUVpAWekxOARusj69KjFGoLmJiYjB48GCcOHECJiYm5RojICAA48ePF3/Qq5YWEBkJ9OiBfCYT7F8FuIoKoK4OzJ8PHDpUKWlfJQiHRHhLkFCV6OsDXl7AyJEwmjoVVx48AABYWVnh1atXRYSeuro67wIp6nZgYKBYTL1w4QKsra1hZmYm8LylpSWio6PFMpew6OjooE6dOnj06FGljK+oqAg/Pz+EhIRg8+bNcHNzQ1xcXLF2bm5uuHLlCiZMmIDt27dXii3ion79+nB1dUVAQAD/2NevX6Gnp8cXaeWhcMW7Mn1wu3fvjjZt2sDHx6fS5vhTYTAYGDx4MKysrJCZmYk3b94UexCWlpbGwYMHoa2tje7du4ucB19Y/P390bNnzyI7KCkpKejWrRtWrVrFX9ltogpw8oXLVCIjLY0v966gbt26mDJlSqU+5AlL4Wvy8/ODk5NTucb48uULQkNDMWjQIDFb9y8aGkjftQv1FBWRv3w5z0Vw/nxg3z4gMZEXIyQR3dWKRHhLkFBNWFtbIyUlBV++fEGtWrWgoqKC+Ph4/nl1dXUwo6JEK4qQl8crBywGAgMDMWzYsBLPV4fwBiB0+fiKYGtri7CwMHTs2BEODg4Cs0nY2dnh7t272LBhA+bNm1djg8AAYN68edi4cSPPdQkVdzMBeJ9PaWnpSl+R3LRpEy5fvix2F6M/ncKMGrVr18bnz58xbtw4uLi4YPny5UV2hKSlpXHgwAHo6uqiW7duYhff6enpCAgIwJw5c/jH2Gw2evfuDQ8PDwwfPhwAL9d1X2cH5H5+C+kydJ8MA3DUVcT2davw8uVLyMnJwc7ODgMGDMDz58/Far+wsNls9O3bF927dy9xF1AYdu3aBW9vb7EHwf/K6dOn0aR9eyj5+AB+fsCyZUCvXkJn2JJQuUiEtwQJ1UShj19hURhra2u8evWKf15DQ6PKsxIU8vXrVzx8+BC9evUqsU3Dhg2rRXhXhp+3IKSlpTFz5kyEhYXh+vXraN68OSIiIoq0MTc3x/3793H9+nWMGDGixhZ+sbKyQuvWrbFz504A4hHeQOX6eReipqaGwMBAjBw5UuRqrn8r+fn56NOnDxQUFHDo0CHIyMhg5MiRiIiIwL179+Dg4IAXL17w20tJSSEoKAiGhobo0qUL/wFMHAQEBMDd3R3m5uYAeIGDEyZMgJKSElavXg0iQmBgINq3b4/58+djSa+2sNSQgzSjuACRYvB+HHUV0VqXVzXXwMAAfn5+eP/+PWxsbODu7o5OnTrh1q1bVfqwO336dMjIyMDPz6/cY+Tn52P37t0YP368GC0rzqFDhzBgwIBKnUNC+ZEIbwkSqpF27drhn3/+AcAT3r/6eaurqyNRS6vk/NmCkJcHGjWqsF0HDx5E7969oaSkVGKbevXq4cOHD1UuNlu0aIF3796VWpVRnNSpUwfXrl3D1KlT4e7ujpkzZxYRLrVr10ZoaCgSEhLg4eEhVlEjTubPn49169YhNzdXbMK7sv28C2nfvj169OiBKVOmVPpcNZ38/Hz07dsXUlJSOHLkCGR+WcU0MjJCSEgIJk6ciPbt22PJkiX8h3cpKSkEBgbC1NQUnTt3FovffHZ2NjZv3gxfX1/+sc2bN+Px48c4fPgw8vLyMGzYMKxbtw63b9/GoEGDIMVgoIuJCkZYaqCpljzUZJlQlGZAQ46JljoKGG9VC066isX8n9XU1DBr1ix8+PABffr0wbhx49C8eXOcOHGi0ivL7tixAzdu3MDRo0cr5J516tQpWFpaomEl5s/+9u0bnj59WvHKxRIqDYnwliChGnF2duYLbysrq2LC+5m1tWhlgImAf7d2hSYiAhgwgOd/rqkJqlsX0uvWYZSnZ6nd5OXlYWBgINAHujKRlZWFs7Mzrl+/XmVzFvrTRkVFISEhAY0aNcK1a9f455WVlXHu3Dno6OigXbt2SEpKqjLbhKVJkyawt7fHnj17/qgV70JWr16Nhw8f/hEBrZUFm81G//79QUQ4duxYEdFdCIPBwPDhwxEZGYnHjx+jefPmePav+5mUlBT27t0LCwsLsYjvnTt3om3btrC0tAQAXL58GWvXrsX58+fx5csXODg4gMvl4smTJ8XEpoacFFyNlDHOqhYmN9LEmIa14KSnBCWZ0mWJnJwcRowYgdevX2PevHnYsGED6tevjx07dlRKAOmtW7ewaNEiXLhwAWqi1ir4/JlX4+DhQyA5WfwpBAVw9OhR9OjRQ+TUjRKqEJIgQUK1weFwSFNTkz5//kyPHz+mpk2b8s/Nnz+fli5dSjRwIJG8PBFPVpf8IydH5OEh/OSZmURubkSKikRSUkXGymEwiCsvT7R1a6lDdO3alU6fPl3OV19+tm/fToMGDaryeQu5fPkymZiY0KBBgygpKYl/nMvl0rx588jCwoLi4uKqzb6SePLkCRkaGpKrqytdunSpwuNt2bKFxo4dKwbLhOP+/fukq6tLP378qLI5awr5+fnUu3dv6tKlC+Xl5QnVh8vl0r59+0hbW5sWLlxILBaLiHjXnZEjR1KrVq0oIyOjXPbk5uaSnp4ePXv2jIiIXr58Sdra2vTgwQM6ePAgaWlp0Z49e4jL5ZZrfGHhcrl09+5d6tatG+no6NDy5cvp58+fYhn73bt3pKOjQzdv3hSt44ULRC1a8K7bampEamrEkZWlK/LyxL5/Xyy2lYStrS1dv369UueQUDEkwluChGqmZ8+eFBwcTJmZmaSgoEAFBQVERLRu3TqaPn06TyBbWZUuvuXkiCwsiNLShJuUxSJycChb0CsqEvn7lziMj48PLV++XBxvg/Cw2ZSwbRuFSUsTV1WVSFmZqG5doi1biNLTq8yMzMxMmjZtGuno6FBwcHARgREQEEB6enoUHh5eZfYIS6dOnUhXV5devnxZsYHS0uj5+PF00dCQaNQoog0biH55CKksZs+eTT179qx0QVeTYLPZ1LdvX3J3dxdadP/Kly9fqEuXLtS4cWOKiIggIp74Hj16NLVs2ZLSy/G92bp1K3Xr1o2IiH78+EGmpqYUGBhIo0aNorp16/IFeVUSFRVFQ4cOJQ0NDZo6dSp9+vSp9A5v3xJNmvQ/9u46LMrsbeD4d+gQAQXBxMDuXLu7Vl1bsWvtxlxddW3sWAvsbtcG12DVVbE7MLFFpGvmvH/MKz9dQWZghgE8n+viWpd5nvPcQwz3nOc+9xHC3l49+WBhIUSNGkIcPCg+BQaKwoULi6VLl2oegEolRP/+Qlhbx/t6qlQo1K+pf/6ZrOeZkDt37oisWbPG/Q2RUieZeEuSgS1atEj06tVLCCFEnjx5xP3794UQQqxevVr06NFDfVBIiBDt2glhbi6U5uZxL+SRRkYi1tRUiBYtNE+6hRBi4UL1H4DEZtFB/cfo1at4h/H09BSdOnVK1vPXyoMHQuTMKYSNzbdxWlurP3Qwk6uNCxcuiBIlSogGDRqIx48fx31+165dwsHBQRw9ejRF40mMr6+vUCgU4v3790kbIDJSiL59hbCwELGWlv/7+ltaqt8Atmun1zdAkZGRolixYmLDhg16u0ZqEhMTIzp06CAaNGggIiIikjyOSqUS69atE46OjmLChAkiMjJSKJVK0a9fP1GpUiURpMXrR1RUlMiZM6f4999/RWRkpKhcubLo37+/KFmypGjbtm2SEnldev78uRgxYoSwt7cXbm5u377JVKmE+O039Wubqek3ryWqDBmEv42NGNW1q3YXnjJFs9dVS0v1rLiOTZgwQT1ZI6VqMvGWJAO7fv26cHV1FUII0axZs7jSjZ07d4pWrVp9ffCbN+J6p07iVPbsQrRvL2bZ2IgnZ89qd0GVSogcOTRLuj8n3pMmxTvUuXPnRJkyZbR9yknz7JkQmTIJYWSU+Cx9Ct9qjY6OFjNmzBCZM2cWHh4eIiYmRgghxOnTp0WWLFlSVZL44cMHYWxsLNasWaP9yZGR6jslXybc8d19KVhQr8n35cuXhaOjo3j+/LnerpEaxMbGik6dOol69eqJ8PBwnYwZEBAgmjVrJooVKyYuXrwoVCqV6N+/v/jpp580Tr5Xr14t6tevL1QqlXBzcxMVK1YUmTNnFkuXLk1VdyI+fvwopk+fLpydnUXjxo3FyZMn1fFNnpxoghytUAiVq6sQmpbihIR8//fivx/58qlfi3VEpVKJvHnzCj8/P52NKemHTLwlycC+rPMeM2aMuq5bCOHt7S1q1ar1zfGzZ88Ww4YNEwEBASJz5sza/6G7fFldnqHpHwgQInv2eIcKCgoS1tbWQqlUav28tda8+Te16Al+ODgIYYDbrffv3xe1atUSZcuWFVeuXBFCqG9/58yZU8yaNStVJCVXrlwRefLkEfny5Yt7g6Cx/v01Sy60XW+QBFOmTBENGjRIFV9TfYiNjRVdunQRtWvXFmFhYTodW6VSiY0bNwpHR0cxbtw4ERERIQYOHCgqVKggPn78+G0sKpWIilUJlUolYmJiRL58+cTp06fFlClThKOjo3BxcUmVZVWfRUREiJUrV4r8+fOLZqVKqe8SajrpMHmyZhdZvjzBEpN4P6ythdB20uQ7zp49KwoVKpRufx/SE9nVRJIM7HM/75MnT37VUtDe3p6goKBvjn/8+DF58uTh4sWLlC9fXvtth9+8AW1bYiXQP9nW1hZbW1ueP3+u3XjaevMGjh0DTduGRUXBoUP6jSke+fPnx8fHhwEDBlC/fn3GjBlD3rx5OXv2LBs2bGDo0KGoVKoUj+tLz549o0iRImTLlo2tW7dqfmJIiHr3O006R0RFwdGj8PJl0gNNxJgxY/jw4QMrV67U2zUMRaVS0atXL549e8aBAwewsrLS6fgKhSJuM5pbt25Rrlw53NzcqFixIvXq1ePjx4/EqATXPkSy4nYgc65+YMH1D8y99oFlp29SqHxlbt68ydSpUylTpgxXr16lbNmyOo1RlywsLOjduzd37txhTu7c32yGlaDISFi8GDQ5fv9+0KaVaGQk/P235scn4nPvbp1vQy/pnEy8JSkV+NxW8MtNdOzs7DRKvLVmYaH9Od/Z8SxFdrDcsweMtHi5CgmBNWv0F893KBQKunfvzo0bN3jy5AnFixfn3r17nDlzhqtXr9K+fXsiIyMNEhuoE28XFxcmTpzIH3/8oXkP5G3btPseCAF6TIpNTU1Zv349EyZMwN/fX2/XSWkqlYo+ffrg7+/PX3/9pfOk+0tZs2Zlz549jB8/nmbNmmFpaUnFihVp0bELy29+wPtFKB+j1G8UVYBSQKiNM5WHzWT/3VcMHDiQw4cPY2dnp7cYdcnY2JiCFy9iLoTG54ioKF7v38/Vq1f5+++/2b17N2vWrMHDw4MJEyYwYMAAOnbsyI3z57ULRqkEHfRSB3Wbye3bt9OxY0edjCfpl0y8JSkV+LyRTsGCBXn06BHR0dEJJt7+/v7kzZuXCxcuUKFCBe0vVrKkekZSG5UqJfhQiiTe795pNtP6BaHH2VZNODk5sXXrVhYsWED37t0ZPnw4W7ZsQQhBw4YN4/3epoTPPbzr1q2LnZ0dO3fu1OzEGze0m9GLioL/7x+tL4ULF2bs2LF069ZN75uopASVSsWvv/7KvXv3OHjw4Hc3sNIVhUJBhw4duHbtGvfv38f34mXqTVhEaLSSmHhuzhiZmGBkakb1zr/SctTUVDvDGh0dzevXr7l58yZHjhxh9erV/P7770S+eaPVOMGhoYzt04cuXbowefJk1q9fj6+vLy9evMDMzIxChQrRuHFjMmu7KY65OTg6andOAo4fP46rqyt58+bVyXiSfpkYOgBJktTbr3/69Il3796RO3du7t+/T6FChQgODkalUmH0/zONKpWKp0+f4uLiwqVLl5I2421vDy1bqmcwNSl7yJABRo1K8OHChQtz5coV7ePQhqUlmJiAFrtknvHz49eiRcmbNy/58uUjb968cf/OnTt3im0w0bRpU2rUqMH48eMpW7YsHh4enDt3jurVq3P48GGyZ88OQGCkkkvvwnkWGotSCGxMjSjjYEl+OzOMk5vcXLkC8+eDnx9Dnj+HfPlQlCrFxPHjcR87ljZt2sT9jOmUFjOLSTV06FD27dvHwoULGT58uN6vpy9CCAYOHBiXKGbIkCFFr+/s7MyuXbtYdvIqQaYWGCVSjqYwMeX8mwhKO1iSIZFNb5JKCEFYWBjv3r3j6dOnPH/+nICAAF6/fs27d+94//49Hz9+5NOnT4SEhBAeHk5kZCQxMTGoVCoUCgVCCIyMjDAzM8PS0pKBKhXa3POzzZgRr23boE6d7x9obw8dOqjvtmlCoYBWrbSIJGEbN26UW8SnITLxlqRU4HOd96lTp+J2sCxWrBhWVlaEhoaSMWNGAF69eoWdnR2vXr0iQ4YMODk5Je2CEyYg9u1DER7+/eNMTSF/fqhVK8FDChcuzObNm5MWhwYiIyM5HRlJNaUSjVNlS0t+GjuWLT//jL+/P48ePeLevXscPnyYR48e8ezZMxwcHL5Kxr/8t6Ojo05n8mxsbFi0aBEdO3akV69e5MqViyZNmlClShUOHDrMXfNsPA2JQSXUt/QBPkapeB0egtFzBS3z2OBiY6b9hd+9g2bN1LPVUVGgVJId1DPRrVvTyM6O9TY27Nu3j5aJ7FRK4cJgZQWJ/cx8ZmYGxYtrH7OWjIyM8PLy4qeffqJhw4Z63Y5bX4QQDBo0iCtXrnD06FFsbGwMEkeMCiLsc2Ks4fslBXDlfQTVsn5/Zl6pVH6VPL948YJXr17x5s0b3r9/T2BgYFzyHBYWRmRkJNHR0V/VYn9Ons3NzbGyssLGxgZbW1vs7e1xdXUlS5YsODs7kz17dnLmzEn27NnJlCkTtra2mJh8keq0awc7d2o26QDqN/uaTHA0bKieINAk8VYooGJFcHHRLIbvCA0N5dChQyxcuDDZY0kpQyFECkxJSJKUqCVLlnD16lVy5MhBbGws06ZNI1euXPj6+sZt7+3r68uoUaMYNGgQu3btYteuXUm6llKpZHqNGow6fx5zlQpFfC8DFhaQMyecPQsODgmO9fr1a4oWLcr79+91lqwKIbh06RJeXl5s27aNMqVLs+vWLTK+fq3ZAObmEBAAmTPH+7BSqSQgIIBHjx7FJeb+/v5x/46Ojo5LxL9MzPPly4eLiwtmZklIgv9fdHQ0s2fPZsGCBTRq0oTMjbuTNX8RhCLhWUMTBbTOl5Hc2iTfHz9C6dLqBY7fuVMQY2lJJxcXtt2+/f3vX1AQZM2qXhSmCQsLuHtXJ8mFJlauXMmqVas4e/ZsvFupp1ZCCIYOHcr58+c5duyY9tuS69CjT9HsexJCtErztCDm03uuLBrHhw8fCAoKIjg4mLCwMCIiIoiOjiYmJobPaYaRkRGmpqaYm5tjaWlJhgwZyJgxI/b29mTKlCkuec6aNSs5c+YkV65cODs7kzFjRoy1XRCekIsXoWZNzd5AGhuDm5t6UbEmjh5V301MrCwuY0a4cAEKFtRs3O/YuHEjW7Zs4eDBg8keS0oZMvGWpFTi5s2btGjRgpkzZ7Jp0yb27NlDiRIl2LhxIyVKlABg/fr1HD16NO4PlLu7u9bXEULQv39/7t+/z+HZszH74w91BxBz8/8dZGwMAwbA6NGQyOybEILMmTNz9+5dsmTJonU8X3r79i0bN27Ey8uLsLAwunfvTpcuXXBxcYEDB9SzVYn9UbOygt69YcGCJMcRFBQUl4j/NzF/8eIFzs7O38ySf/6vvb29Rm9A7t27x+xd3uSp/TMm5onf/DY3UjCoeCZMjDR8c+PmBtu3Q3T0dw8TCgXPTU25vnMnTZs1+/6YPXrAli2JJ99mZlC7Nhw+rFmsOiCEoFGjRlSpUoWJEyem2HWTQwjBiBEjOHPmDMePHzfIIsXPs9GvX7/m9scontvkQhhr/sYl4lMge4e0wc7OjkyZMuHo6IiTkxNZs2Yle/bsuLi4kCtXLuzs7PRTzpQUDRrA6dOJ/xzb2KjLtPLl03zs/fvVJSdCfPtalSGD+g3p8eNQqpTWYcenUaNGuLm5yYWVaYhMvCUplVCpVDg5ObF9+3b69OnDgwcPqF69OtOmTaN69eoA/P7778TExHDy5EmmTJlC7dq1tb7OlClT2Lt3LydPnowrYeHtW/VMUHi4esFPlSrf7WTyX1WqVGH69OnUqFFD63hiYmI4dOgQXl5enDx5kp9//pnu3btTvXr1b/9QL1kC7u4Jz1ZZW0PjxurkUFczZPHE+/z5829myT//V6FQxFu+kjdvXnLlyhV321slBItuBBKp1Owl2MwIGuTMQNFMGlSoajk7HWNuzq9587Lq1q3vv2kID1cvtL1/P+GxzczU1758GTJl0uj6uhIQEECZMmU4fPgwZcqU+fpBpRKOHIETJ+DTJ8ieXf1GzkClKUIIRo8ezYkTJ/D29sbe3l6n40dFRfH69WtevXoV9/Hf/3/16hXv37/Hzs6OrFmzUqx2E4q0+xVjc83XP2Q0M6J/0ZT9PidbWBjUr68uuYrvtcTUVJ0gHzkClStrP/6HD+quSosXw+vX6m5A+fKp18q0b68uSdGBt2/fUqBAAQICAlJkIa6kG7LGW5JSic913s+ePePFixeEh4djZ2fHxy96aD9+/JjKlSsnuW/uihUrWL9+Pf/888//km6ALFmgSZMkx/65s4k2ifetW7fw8vJi48aNuLq60r17d9avX/91XP81cKB6pmjKFDhz5n+z9DExkDs3jB0LnTqpayj1xNTUNC6h/i8hBIGBgV8l4xcvXmTr1q34+/vz+vVrcuTIQd68eSlavT7ODTuBiWblI9Eq8HsXqVnivXOnVm88TKKjaR4QwPHjx6lfv37CB1pZqUuPevVSt3hUKOIScJWpqfqNUp06sGFDiifdANmzZ2fevHl06dIFPz8/zD//fKxdq757Exn5vxpcExOYM0edeK9dC8WKpVicQgjGjh2Lt7c3Pj4+GifdQghCQkLiTaD/m1yHhITEzTx/+VG+fPm4fzs7O+Pk5BRXmhMWFcOiGx80fh6q2FgyEQmkscTb2hpOnlSXkMyeDa9eqZNtIdRv0Lp3h5Ejk14mlTmz+udt9Gidhv1f27Zto2nTpjLpTmNk4i1JqUjNmjU5c+YMBQoU4M6dO99souPv70/VqlXJmTOn1rWge/bs4ffff+fMmTNJX5SZgMKFC3P79u1EjwsKCmLLli14eXkREBBAly5dOHXqFAW1qXWsWlW9mU5AANy5o97cIlcug81cfkmhUJA5c2YyZ84cb8eZqKgonj59ir+/P3dDVIQL7Xq6vg4KZtu2o2TIkAEbGxsyZMgQ92FjY4O1tbU6+X3+XKvWfwohqOjkRKspU6hXr973Z72trdV3FN6+VScuV65w1tcXm4oVKT5/vnpdgAF17NiR3bt389tvvzFr1iyYOhVmzvx2ZjM2Vv3h56eexf/7byhXTu/xCSGYMGEChw8f5sSJE2TKlAmVSsWHDx8SnZ1+9eoVCoXiq8T587+LFi36VYKdKVMmrUo73r59S+fOnSnU9leyl62KIPE3rwoEv/dqx5pMGRkxYgQNGjRIte0Fv2FqCn36qMvS7t1TL0S2tFS/juixd7oubdq0iUmTJhk6DElLstREklKRmzdv8vPPP1OxYkXq16/P5cuXyZs3L0OGDAEgZ86cDBgwgNu3b7N+/XqNxz19+jStW7fmyJEj396C14FDhw4xf/58jh8//s1jSqWSEydO4OXlxcGDB2nQoAHdu3enXr16X3cb+MHcCozkyPPQeHslJyT60wduLptIaGgooaGhhISExP07NDSUsLAwLC0tGa9Q4B4WhjbFNu9LlKB0YCATJ06kVq1acYm9lZVVogncqFGjcHBwSNKaA3149+4dJUqUwHvsWIqOHavZQjp7e/WbOR22mYyJieHNmzdfJc6bN2/mxo0bVKhQgcDAwLjuHjY2Nt/MTn+ZWH/+0EfHkzNnztCxY0fc3NwYNn4SGx6GEJ3Yz6UyhhvH9tMghyVCCDw8PBBCMHz4cDp27Pi/uw2SXjx8+JAqVaoQEBDwQ7+OpkXyuyVJqUiRIkUIDg4mR44c3Lp166tNdKKionj79i0PHz7Uqn/39evXadOmDVu2bNFL0g3xb6Lz6NEj1q5dy7p163BwcKB79+4sXryYzAl0GvnROFmZaNXmWgGUcsnKb9u3J3iMSqUiPDyc6P37UfTpo/Gsd7SREUf/P2kfMWIETk5OcYl9REREXPu2/86wf/63v79/XM/5hI758v+trKz0OjPq6OjI8uXLCenQQfMuLDEx6t723bolemhYWJhGs9NBQUE4OjrGJc2vXr3i2bNnjBkzhgIFCsQl1s7OzgZJVFUqFXPnzsXDwwMvLy8aN24MQHtXI7Y9DCY8MgrjeDr4REeE8/rGRQbUKkHXLl2oXbs2//77L76+vnh4eDB+/HgGDBhAv3795O+7nmzevJm2bdvKpDsNkt8xSUpFjIyMqFmzJjExMdy9e5d69erx7NkzQL3jYPbs2fHz86N3794ajffkyRMaN27M4sWLqZPYBhDJ4OLiwsePH3n16hXHjh3Dy8uLW7du0alTJw4cOEDJkiX1du20ysHChMwWxryJ0GzHRRMFVHD6/i1wIyMj9cYr7dvDsGEaJ95mpqZ0On2ato6OFCxYkLVr11K1alVAfcciPDw83hn2z/9vbGzMqVOn+PTpEwEBAQnOyH/+/8jISKytrb+bzGv7/5aWll8l8y3KlSM6kY4uXwkNJXbWLO6VL//d2ulXr14RExMT76x09erVv5qddnBwiGuDN23aNDZv3szNmzd1XuqVFB8+fKBr1658+PCBixcvxrUsBchmbUreV5fZfv4m5Vp2QfX/hSdKAc5WJhzyWsr9f7wJLlyYS5cu0adPHypXrsyOHTs4cuQIN27cYN68ebi6utKpUyeGDh2Kq6ur4Z5sOiOEYNOmTaxbt87QoUhJIBNvSUplatasyalTp7h58yZt2rTh+vXrgLq+28XFhX///VejRPbdu3c0aNAAd3d32rZtq7d4hRCcPXsWCwsLChYsSPXq1Rk0aBDNmjVLVr/rH0GNbNbs9g8mNpGZb2PA0dIEZysNX7KNjGDyZPUCscTKLCwt1b2Hs2XDFBg7dixTp07l6NGj6msbG2NjYxNXChGfChUqcPbsWWbOnKlReEqlkrCwsAQT8y8/Pn78yPPnzxNN5qOjo79KymsKwVyFAm1+AqPu3qV169ZfJc85cuSgXLlyX33O1tZWqxn7GTNmsHHjRk6ePJkqku5///2Xdu3a8csvvzBjxoxvfk+FEEybOI7Ro0fTqkQmgqNVxKoE1iZGWJka8dPAnlTatJqoqCg8PT3ZunUry5cvp1KlSixbtow2bdrg5eXF9OnTWbJkCZUqVaJatWqMGDGCypUrp5068FTKz88PpVLJTz/9ZOhQpCSQNd6SlMrcunWL5s2b8+bNG/7880927drFnj17+PPPPzl06BABAQH4+fl9d4zQ0FBq165N/fr1mTZtml7iDAgIYP369Xh5eWFsbIyFhQXdunWLq0eXNPPvm3DOvApPMPk2VqhbtnUpYIeliRZLMYWAQYPUHTsSmPmOUCgw/+knjP7+W90+DfUGP66uruzcuZMKFSpodKng4GCyZctGSEiIwZKq2NjYr5J5xd9/k3fUKEy1WGSKpaXmO3NqaPbs2axevZqTJ0+SLVs2nY6tLSEEixYt4o8//mDFihUJ7lZ68OBBxo4dy9WrVxOs7584cSJXr17l4sWLbN68mdq1a+Pn50fbtm1p3Lgxc+fOjSufCQsLY+3atcybNw9HR0dGjBhBy5YtZZlEEg0bNgwbGxumTJli6FCkJEgl3ewlSfqsSJEihISEkC9fPj5+/BhX4/348WNUKlWiyVB0dDS//PILJUqUYOrUqTqNLSoqiu3bt9OoUSOKFy/O48ePWb9+Pbdv3+aXX37h1atXOr3ej+AnJyta5MmIo4UxJgriPsyMFJgaQanMFnQrqGXSDepWf4sXq3ufu7iou5FYWqoTbBsbhJ0dBwoW5Ldq1eKSbgAzMzPc3d21+tnJmDEjpqamfPigeSs6XTMxMcHW1pYcOXJQqFAhCjZqhKlSszKeODruyOLh4cGqVav4+++/DZ50f/r0idatW7N+/XrOnz+fYNIthGDy5MlMmjTpu4tqx44dy82bN+MWUz59+pSyZcvi5+dHQEAAVatW5fHjxwBYW1szYMAA7t+/z+jRo1mwYAEFChRg0aJFhIaG6uX5pldKpZKtW7fSqVMnQ4ciJZWQJCnVad26tahWrZqYMGGCKFmypBBCiDZt2ogqVaqINWvWJHieUqkUnTp1Es2bNxcxMTE6iUWlUgk/Pz8xcOBAkTlzZlG7dm2xYcMGERYW9tVxO3fuFM2aNdPJNX9Ur8NixNV3EeLS23Bx92OkiFaqdDOwSiWEr68Qf/4pxJIlQvz1lxDR0eLNmzfCyclJnD9//qvDIyIiRLZs2cTly5c1vkSpUqXEpUuXdBOvrlSsKIR67j/xD2tr9ddHR+bNmyfy5csnnj9/rrMxk8rPz0/ky5dP9O/fX0RERHz32P3794sSJUoIpVKZ6LgHDhwQBQoUELNmzRKlS5cW4eHhQgj1a8b8+fOFo6Oj2Lt3b7znnjt3TrRu3VpkzpxZuLu7ixcvXmj/xH5Ax44dE2XLljV0GFIyyMRbklKhJUuWiAoVKohu3boJFxcXIYQQZcuWFTlz5hTXr1+P9xyVSiWGDRsmqlatGvcHMDnevn0r5s+fL0qUKCFy584tJk+eLB4/fpzg8bdu3RKurq7Jvq6UsrZv3y4KFiz4zc/M/PnzRcuWLTUe5+effxa7du3SdXjJ89dfQlhZaZZ4Z8woREiITi67cOFCkSdPHvH06VOdjJdUKpVKLF++XDg4OIitW7dqdHyZMmW0+j42b95cTJ06VXTs2FF07txZqFT/e7N4/vx54eLiIoYPHy6io6PjPf/Ro0di0KBBwt7eXri5uYmrV69qfO0fUdeuXcW8efMMHYaUDDLxlqRU6ObNmyJr1qyievXqwtbWVgghhJ2dnbCyskpwJnv27NmiaNGiIjAwMMnXjYmJEQcOHBAtW7YUtra2onPnzsLHx0ej2a+oqChhbm6e6IyalPq0bdtWjBgx4qvPhYWFCScnpwTf6P3X4MGDhYeHhz7CS55hwxJPvq2shDh1SieXW7JkicidO7d48uSJTsZLquDgYNGhQwdRvHhxce/ePY3O2bdvn8az3Z89fvxYZM6cWdy6dUuULFlSLFiw4KvHP3z4IJo2bSoqVqz43TcigYGBYsaMGSJbtmyibt264vDhw18l8ZIQ4eHhws7OTrx8+dLQoUjJIBNvSUqFVCqVyJw5s8icObMwNjYWHz9+FBYWFqJatWrxHr927Vrh4uKS5Nu1t2/fFqNGjRLOzs6iUqVKYuXKlSIoKEjrcQoVKqRxoialHu/evRNZs2YVvr6+X31+1qxZol27dhqNMW/ePDF48GB9hJc8KpUQHh5C2NgIVYYM/0u2jYzU5SWurkL8p9QmqZYvXy5cXFyEv7+/TsZLquvXr4sCBQqInj17anz3S6VSidKlS4vdu3drfb0//vhDNGvWTPj7+wsnJydx4sSJrx5XKpVi9uzZwsnJSfz111/fHSsqKkqsW7dOFC9eXBQtWlSsWbNGREZGah1TerRt2zZRt25dQ4chJZNMvCUplWrdurWwsrISNjY24vTp0yJLlixi+PDh3xz3119/CScnJ3Hnzh2txg8KChJ//vmn+Omnn0TWrFnF6NGjtR7jv1q2bCm2bduWrDEkw9i9e7dwdXX9qnY/ODhYODo6avRzsWvXLvHzzz/rMcJkiowUYsMG8b5RI3HIzEyEdukixNmz6sRcB1asWCFy5swpHj16pJPxksrT01M4ODiIdevWaXXe3r17RalSpZI0yxwZGSkKFCgg9u/fL44fPy6cnZ3jnd329fUVOXPmFO7u7omuQVGpVOLYsWOiQYMGImvWrGLatGni/fv3WseWnjRv3lx4eXkZOgwpmWTiLUmp1NKlS0WWLFmEk5OT+PPPP4Wzs7PYsmXLV8ecO3dOODo6frM4LiFKpVJ4e3uLTp06CVtbW/HLL7+Iv/76S2cLMceNGycmT56sk7GklNepUycxZMiQrz43bdo00blz50TPvXTpUtxC4NRu0qRJolGjRjorZVi9erXIkSOHePDggU7GS4qwsDDRrVs3UbhwYXHz5k2tzlWpVKJUqVJiz549Sb7+8ePHRe7cuUVYWJiYO3euKFOmTLyz7W/fvhUNGjQQVatW1fgO3Y0bN0T37t2Fvb296N+/v0G/zoby4cMHkTFjRvHp0ydDhyIlk0y8JSmVunXrlrCxsRHZs2cXw4cPF9bW1l/Npt2+fVs4OTmJQ4cOJTqWv7+/+O2334SLi4soWbKkWLhwoXj37p3OY96wYYPGpQlS6vPhwweRLVs2cfLkybjPBQUFicyZMyea7Lx//17Y2dnpO0SdiI6OFmXKlBGrVq1K9lheXl4ie/bs4v79+zqILGlu374tihYtKjp37ixCkrBAdM+ePUme7f5Su3btxPjx44VKpRIdOnQQXbp0iXdMpVIp/vjjD+Hs7CyOHj2q8fgvX74U48aNEw4ODqJFixbC19f3h6kD//PPP0Xbtm0NHYakAzLxlqRUKFqpEtfeh4thO33FtH9fiumXXovxx2+J0wGhIiRaKZ4/fy5y5cr13dvJYWFhYv369aJWrVrCwcFBDBo0SKv2cElx6dIlUbx4cb1eQ9Kv/fv3izx58nyVwP3222+iR48e3z1PpVIJa2vrJK0NMISbN28KBweHZNVjr1u3TmTLlk3cvXtXh5FpZ9OmTcLBwUGsWrUqSUmoUqkUJUuWTLDtnzZevHghMmfOLO7evSvCwsLi3uQn5O+//xbZsmUTEyZMELGxsRpfJzQ0VCxZskTky5dP/PTTT2L79u06u2uXWlWtWlXs27fP0GFIOiB3rpSkVOZ9RCybH34iRiWIUX39mPH/bwp4cskUahXKxciRI796XAjB+fPn8fT0ZNeuXVSsWJHu3bvTvHnzuF3k9CksLAwHBwdCQ0MxNjbW+/Uk/ejWrRvW1tYsXboUgMDAQPLnz4+fnx+5c+dO8LyiRYuyZcsWSpQokUKRJs+cOXM4ePAgJ06c+O5mMfHZtGkTo0ePxtvbm8KFC+spwoRFRkYydOhQfHx82LFjB6VKlUrSOHv27GHatGlcunRJJ7uOzp8/n0OHDnHs2DGePHlCpUqV2Lp1KzVr1oz3+Ddv3tCpUydUKhWbN2/G2dlZ42splUr279/P3LlzefnyJUOHDqVHjx7Y2Ngk+3mkJp83J3r58iVmZmaGDkdKJrlzpSSlIkFRSjY8+ER47LdJN4BSqD+q9h1Ls16D4j7/8uVLZs2aReHChenWrRv58uXjxo0bHDp0iDZt2qRI0g3qHeqyZMkSt2OdlDYtWLCA/fv34+PjA0CmTJno27cvM2fO/O55uXPn5unTpykRok4MHz6c2NhYFi9erNV5W7ZsYdSoURw/ftwgSffDhw+pVKkSgYGB+Pn5JTnpVqlUTJ48mcmTJ+sk6QYYNGgQb968YceOHeTJk4cNGzbQoUMHnj17Fu/xTk5OHD16lBo1alC2bFlOnDih8bWMjY1p2bIl//zzD1u2bMHX15c8efIwZswYAgICdPJ8UoPNmzfTunVrmXSnEzLxlqRUxPtFKNHKxG9CKUxMOfg0hB07d9GkSROKFi3Kw4cP8fT05O7du4wZM4bs2bOnQMTfKlKkCHfu3DHItSXdsLOzY9WqVfTs2ZPg4GAAhg0bxvbt23nx4kWC57m4uKSpxNvY2Ji1a9cybdo07t69+9VjCd0M3r59O8OHD+fYsWMUKVJEtwFFRUFwsLrhYQJ27dpF5cqV6dWrF9u2bSNjxoxJvtyePXswNTWladOmSR7jv0xMTFi2bBnDhw8nJCSEevXqMXz4cFq1akVERES85xgbGzNp0iTWrVtH586dmTp1KkqlUqvrVqxYkR07dnDhwgUiIiIoXrw4Xbp04dq1a7p4WgYjhGDTpk1yi/h0RCbekpRKhMaoeBwSg6a1XyGhoez+5zLt2rXjxYsXrFq1isqVK+ts5iqpChcuLBPvdKBhw4bUq1cvrpzJ0dGRHj16MHv27ATPcXFx4cmTJykUoW64uroyZcoUunbrzr3ACDbeD2L21ffMuvoBj2vvOfg0hLcRsQDs3LmTwYMHc/ToUYoVK6abAMLCYMUKcHUFKytwcAALC3Bzg6tX4w6Ljo5myJAhjBw5koMHDzJgwIBk/a6rVCp+//13nc52f1a1alXq1avH5MmTARg5ciSurq7069cvwTc0AHXr1uXSpUt4e3vTqFEj3r59q/W18+bNy8KFC3n06BFFihShcePG1K1blyNHjnz32qnV9evXCQkJoUqVKoYORdIRWeMtSanE1feR+LwIJUaL38g8Nqa0c7XVX1BJsGrVKs6ePYuXl5ehQ5GSKTg4mOLFi7Ny5UoaNGjA69evKVKkCLdu3SJr1qzfHL9t2zZ27tzJjh07DBBt0oXHKPnj6BUyOGVDYfL17XwF6rUVGT69ZHL7Bhw5fDjJpR3fuH8fatSAkBB1Av4lY2MwM4OBA3ny66+0a98eZ2dn1q5di729fbIvvXPnTmbNmsWFCxf08mb97du3FCtWDB8fH4oXL05YWFjcTP2gQYO+e25sbCy//fYb69evZ/PmzVSvXj3JcURHR7N161Y8PDxQKpUMHz6cTp06pVj5XXKNHj0aY2NjZsyYYehQJB2RM96SlEpExKqI1fJtcFhsPIXgBiZnvNOPjBkzsmbNGnr37k1QUBDOzs64ubkxd+7ceI9Pa6UmADEqwaYHwWTM7vJN0g0ggFgB78zsmHfwH90l3S9fQuXK8ObNt0k3gFIJERHELlrEzmLFaNu2LXv37tVJ0q3P2e7PsmTJwpQpU+jfvz9CCKytreMWcp46deq755qYmDB9+nRWrVpF27ZtmTlzJipV0l7rzMzM6NKlC1evXmXBggXs2LGD3LlzM23aND58+JCkMVOKSqViy5YtsswknZGJtySlEqZGCoy0/Btopu0JKaBw4cLcvn07Td7Wlb5Vt25dmjZtyvDhwwH1DJyXlxfv3r375ti0WGpy+V0En6KVCL7/u2RqYcVLo4y8j4zVzYV//x0+ffpuPTeASVQUw2NjGdGpk86S5F27dmFpaUnjxo11Ml5CevfuTWRkJOvXrwfUZSCfF1s+f/480fMbNWrExYsXOXDgAM2aNUtWoqxQKKhbty6HDx/G29ubx48f4+rqyoABA3j48KFmgwQGwqJF0K8f/PorLF+u/h7qyenTp8mUKZPuypqkVEEm3pKUSuSyMU3kT//XTBTgapv6VrlnzpwZCwsLXr58aehQJB2ZPXs2J0+e5K+//iJ79uy0a9eOefPmfXOck5MTISEhhIeHGyBK7QkhuPA2QuM7TUoBl97Gv0BQK6GhsHEjxGqWxBsZGcHKlcm/Likz2/2ZsbExy5cvx93dnY8fPwJQv359hg4dSqtWrYiMjEx0jJw5c3Ly5EmKFClC6dKlOXv2bLLjKlq0KGvWrOHOnTvY29tTqVIlWrZsia+vb/wTBqGh0KULZM8OY8eqa/L//BNGjgRnZ+jTBzR4LtqSiyrTJ5l4S1IqkcXShEwW2vW+LpnZQk/RJI8sN0lfMmTIgKenJ3379iUwMJAxY8awYsWKb2YgjYyMyJkzZ5opN3kboSRapfmdGQHcCYpO/oVPngQTE82Pj4xUJ+o6sHPnTjJkyECjRo10Ml5iypUrR6tWrRg/fnzc50aNGkXevHn59ddfNbozZmpqypw5c1i6dCktW7bEw8NDJ3fUnJ2dmTZtGk+ePKFevXp07949rjtK7Oc3RaGhULEi7Nih/j58+aYyPPx/35tq1XSafEdFRbF79246dOigszGl1EEm3pKUitTJbo2JBpNQpkZQ1tECS5PU+SssWwqmPzVr1uSXX35hyJAhuLi40KpVKxYuXPjNcWmpzjtSqcJIq/tMEKNBu89EffwI2tYs/39bx+RQKpUpNtv9pT/++IM9e/Zw6dIlQF324enpiZ+fH8uWLdN4nGbNmvHvv/+yfft2WrRoETeLnlzW1tb079+fu3fvMnbsWBYuXEj+/PlZuHAhMV27wqNH30+qIyLg1i1IZNGoNg4dOkTx4sXJmTOnzsaUUofU+Vdbkn5QLjZmNMqVARMFCaYDpkZQyM6cmtmsUzQ2bcgZ7/RpxowZnDt3jr179zJ27FiWLVvGp//UuKalTXTMjBQIjRt4qhkn8a9mbGwsN27cwMvLixWbNxOqbTmOdfJ/33fs2IGNjQ0NGjRI9ljasLe3Z+bMmfz6669x/bk/L7acMmUKp0+f1nis3Llzc+bMGfLkyUOZMmW4ePGizuI0NjamRYsW+Pr6snXrVm76+KDcvVuzmeyICPXMt45qvmWZSfolE29JSmWKZrLArYAdBe3MMFaACSqiwkIwUUBWKxOaudjQOFcGg/fr/h6ZeKdP1tbWrF27lv79+2Nra0vjxo2/2fUxLS2wdLTUotzj/+XMYJroMSqVinv37rFp0yaGDh1K1apVsbOzo3Xr1nh7e6OsUgVLbUpNzMygZUutY/2SUqlkypQp/P777wZ57ejSpQsWFhasWrUq7nP58uVj/fr1tG/f/rsbM/2XmZkZCxYsYO7cuTRp0oRFixbpfDH3Tz/9xKrKlTHTpu2gkZFOSoI+ffrE8ePHad26dbLHklIf2cdbklKxyFgV9168pnvPnvx9+C9szbSrATeUFy9eUK5cOV6/fm3oUCQ9GDFiBAEBAfz+++9UrVoVf39/bGxsANiwYQOHDx9m8+bNBo5SM94vQrnyLhJN9kk0NYI2eW3JZfO/5FsIwePHj7l06RKXLl3i4sWLXL58mUyZMlG+fHnKlStHuXLlKFu2LLa2X/Tc79ABtm/XrOTEwgLu3IHcubV+fp9t2bKFRYsWcfbsWYO9ab9x4wZ16tTh5s2bZMmSJe7zs2bNYteuXZw+fRoLC+3WrTx69Ii2bduSJ08e1qxZ8/XXOLnatVN/j7TRt6964WUyeHp6cuDAAfbs2ZOscaTUSc54S1IqZmFiRC5bS/z9zqWZpBsge/bshIeHExgYaOhQJD2YNm0aV65c4fr169StW/erOt20VGoC8JOTJSbGiSeisdFREPwBRdAb9uzZw/jx42nQoAEODg5Ur16dzZs3Y2try5gxY3j06BGPHz9m+/btjB49mtq1a3+bEE6dqln5iJWVuqNGMpJuQ892f1a8eHHc3Nxwd3f/6vOjR48md+7ccT2/tZEvXz7++ecfnJycKFu2LJcvX9ZdwEmZl9TBXKYsM0nfZOItSamclZUVERE6aGGWghQKBYUKFZLlJumUpaUl69atY9CgQfTr14/58+cT9v+bwKSlUhMAG1NjOrraYqYQ6uQ6HiI2htBXz5jQuDyFCxdi9erVmJiYMGjQIG7evMmLFy/Yu3fvV8l4olxdwdsbbG0hoXIGa2v4+WfQYgFifLZt20amTJmoV69essbRhcmTJ3P8+HF8fX3jPvd5seXFixdZvny51mNaWFiwdOlS/vjjDxo0aMCff/6pm9KTYsUS/t7Ex9ISihRJ1iUDAgK4cuUKTZs2TdY4UuolS00kKZUTQmBiYkJUVBQm2tSFGljXrl2pVq0avXr1MnQokp64u7vz6NEjVCoV1apVY9iwYcTGxmJtbU1ISAhmZqmvz3xCWnXoRN6azclcuipKlQplbCxGxsbEhAajeHKDEpktyJ4tK927d6dFixZMnz5dN7PHr17B0qXqj5gYdZ1wVBRUqgSjRkHjxpCM6yiVSooWLcrixYtTReINsH37dqZNm8bly5e/ek179OgRlStXZufOnVSrVi1JY9+/f582bdpQpEgRVq5cGVcC9RWVSr0ZTmwsZMqkrqGPT0CA+g2Spm0CLSzgxQvInDlJsQN4eHhw69YtPD09kzyGlLrJxFuS0oAMGTLw6tWr+P+IpFKzZs3i7du3eHh4GDoUSU8iIyMpW7YsnTt3ZvHixTx69AhLS0vy5MmDt7c3+fLlM3SI8QoODsbPzy+uLvv06dO8efOGqlWr8lOlSpSoWI2CRYrh6pIDe3PjrxLs9+/f07hxY0qUKMGff/6puzfDsbHw/Lk66c6SRZ0Q6sCmTZtYvnw5Z86cSTULsoUQ1K9fn8aNGzNs2LCvHjty5Ag9evTgwoUL5MiRI0njR0REMHjwYE6fPs2OHTsoUaKE+oE3b9Sb3yxapO7P/fnr0bo1jBgBpUp9O1jz5nD0KER/v397rKkpJm3awKZNSYr5szJlyjBnzhzq1KmTrHGkVExIkpTqOTo6itevXxs6DK3s27dPNGrUyNBhSHp24cIFkSVLFlGvXj2xePFiIYQQNWrUEN7e3gaOTC00NFT4+vqKBQsWiE6dOomCBQsKa2trUblyZTF48GDh6ekp8uXLJ3bt2qXxmCEhIaJevXqiRYsWIiIiQo/RJ09MTIwoUKCAOH78uKFD+ca9e/dE5syZxYsXL755bPr06aJChQrJ/tpu2LBBODg4iNWrVwvVqVNC2NgIYWEhhLoS+38fxsZCWFoKMXXqt4MEBgqRJ48QZmbfnvf/H0ozM3HPxER4LlqUrHhv374tsmXLJmJjY5M1jpS6yRpvSUoD0mKdt2wp+GMoX748vXv3JjIykpkzZxIVFYVr8dI8fBfM6/BYYrTYGTK5oqKiuHDhAsuWLaNHjx4UL14cR0dHhg4dyr1796hduzbbt28nKCiIf/75h4ULFxIcHEzevHlpqUW7vgwZMnDgwAHMzc1p2LDhN73MU4utW7eSJUuWVDl7WqBAAfr168eIESO+eWzMmDHkypWLAQMGIEJC1F1CChcGGxt1TfxPP6l3koyJ+e41OnfuzKlTp/hr+nSi6tSBkJD4y0aUSnUf7hkz1LPhX7K3Bz8/qF9fXUryZc33//+/UfPmGF+8yO8eHixYsCAJXw21TZs20b59e4yN085Cekl7stREktKAIkWKsHPnTookc+FOSoqNjcXGxob3799jrYPNP6TUKyoqigo//UTuSnWp4tYfpaklqFSYW1ggEBTPZEGFLJbYmesuoYiJieHWrVtcvHgxrmTkzp07FChQgHLlysW18itWrBjmCSyQe/v2LUWLFuX06dMULlxY6xiUSiWDBw/m7NmzHDlyBCcnp+Q+LZ2JjY2lSJEi/Pnnn9SuXdvQ4cQrPDycokWLsmrVKurWrfvVY6GhoQwpVozlr19jZmIC/794N46NDWTIACdOQKFC371ObI0aGJ0+rVk3CSsrdUlKhgzfPvbiBaxZo96lEqBkSejZE5ydAXj27Bl169ala9eujBs3TqvSHiEEefPmZdeuXZQpU0bj86S0J+2s1JKkH5ilpSXh2u50Z2AmJia4urpy7949+YcknTM2NWOA5wFeRwpUllZxu65G//9s99X3kdwMjKRNPluNNqD5L6VSyd27d+P6ZF+6dIkbN26QO3fuuD7Z3bt3p2TJklhaWmo87vjx43Fzc0tS0g3qnQ6XLFnClClTqFq1KkePHiVv3rxJGkvXNm/ejLOzM7Vq1TJ0KAmysrJi0aJFDBgwgOvXr3/1BinDlSusevMGo6godd37f4WEqOu0K1WCy5chT574L/LkCSYXLmgelEKhrtPu2/fbx3LkgEmTEjw1V65cnD59mnr16hEaGqrVAtyzZ89iYWFB6dKlNY9VSpNk4i1JaYCVlVWaS7zhf+UmMvFO3/Y9CSHYyBKzBHJeFRCtgu2PPtG9oD2ZLBKe+VapVDx8+DBuFvvSpUtcuXIFZ2fnuFnstm3bUrp06WQtNr506RJ//fUXd+/eTfIYoG6FN2nSJBwdHalevTqHDh3632I+A4mNjWXq1KmsXLky1SyoTEizZs1YtWoVHh4ejBs3Tv1JlQo6dMAosW4iQkBwsDpJPnYs/mOOHNGuK0xYGGzeHH/irQFnZ2dOnjxJgwYNCAsLY8GCBRgZJT7X/rl3d2r/fknJJxNvSUoD0mKNN6hLZGSdd/r2NiKWx8HRxGpQtBirAt/X4TTPrU6YhRA8ffr0q3IRPz8/7Ozs4mayJ02aRJkyZbC3t9dZzCqVisGDB/PHH3/obKfD/v37kzlzZurVq5esdni6sGnTJrJnz56qZ7u/tHDhQsqXL0/Hjh3JnTu3unxE07p5lQrOnFGXgcTXBeXTp0Rrwb8RFKTd8f+ROXNmfHx8aNy4Mb1792blypXfrduOiYlhx44d/Pvvv8m6rpQ2yMRbktKAtDzjvV3bLZelNOXi2wg0XT8pgDsfwrm4fiEXz/py6dIlzMzM4mayR44cSbly5XB0dNRrzJs2bSImJoZu3brpdNx27dphb29Pq1at8PT0pFmzZjodXxOfZ7tXr16d4tdOqjx58jBs2DCGDBnCvn37wNNTXUaiKSFg504YOvTbxzJmBFNTdbtGTdnZaX5sAmxtbTl27Bg///wznTp1YsOGDZiaxl9mdfToUQoUKJBqypQk/ZJdTSQpDUiLNd4gO5v8CB4Hx6DS4viY6CiMM2elf//+XL9+nZcvX7Jv3z4mTpxIo0aN9J50h4SEMGbMGBYvXqxRCYC26tevz8GDB+nduzfr1q3T+fiJ2bhxIzlz5qRmzZopfu3kGDlyJHfv3uXAgQPqjWu0ERUFr1/H/1jDhlpt4660sID27bW7fgKsra3566+/CAsL45dffiEygdIZuUX8j0Um3pKUBqTVGe8CBQrg7+9PjLa3eqU0I0bLxlhWVla079iZ5s2bky1bNj1FlbBp06ZRr149KlasqLdrVKhQgb///pvffvstRTeQiomJYerUqUyePDnFrqkr5ubmLF26lMGDBxNrYaHdyUZG8XchAfWiy59+0nio6Kgo2h04wI0bN7SLIQEWFhbs3r0bS0tLmjdvTth/urOEhIRw6NAh2rZtq5PrSamfTLwlKQ1IqzXeFhYW5MiRg4cPHxo6FElPLIy1XQymwMLEMAvI7t+/z5o1a5gxY4ber1W4cGF8fX1Zs2YN7u7upETn3o0bN+Li4kKNGjX0fi19qFu3LhUqVOAIgBYtSMOArQEBvHz5Mv4DFixQtwlMjJUVJrNmUblBA+rVq4ebmxv+/v4ax5EQU1NTNm/eTPbs2b/p+753716qVauGg4NDsq8jpQ0y8ZakNCCtzniDLDdJ74ram6NtHp3TWvuWgrowbNgwxowZQ9asWVPkejlz5uTMmTOcPHmSXr16EatNnbGW0vJs95fmzZvHoIsXUWnxtTJ2cOBYZCRFixalQYMGbNy48euZ5VKl4NAhde/v+Hq6GxmpE/NRozAdNYohQ4bw4MEDXF1dqVChAgMHDuR1QqUsmsZobMyaNWsoWbIkdevW5cOHD4AsM/kRycRbktKAtFrjDTLxTu/KOFqi6VyusQJKO1hgbJTyM94HDx7k4cOHDB48OEWv+7nDxYsXL2jdurXe7lytX7+ePHnyUL16db2Mn1KyZ8/OoAkT2ObsjNBwltpi8WI8vbwICAigW7dubN68mRw5ctC1a1e8vb1RKpVQowbcuwejRqkXT1pYqJNtc3No1w5On4Yv3rTY2NgwadIk7ty5g5mZGUWLFmX8+PEEJaPjiZGREYsXL6Z27drUrFmTGzducP78eZo3b57kMaW0RybekpQGpOUZb9lSMH3LYGpEFWcrTBP5a2IEWJsYUclJ8w1udCUqKoqhQ4eycOFCzMzMUvz6n7eYt7S01MsW8zExMUybNi3Nz3Z/NmjQIGba2PC0bNnvl5xYWamT5f+vj7aysqJDhw4cOnSIu3fvUrp0aUaPHo2Liwvu7u7c/PABpk6F9+/hyRN1Ih4UpO7bXbZsvJdwdHRk3rx5XLlyhdevX1OgQAFmz56d5NdjhULBzJkzadu2LXXq1KF27dpyZ98fjEy8JSkNSKs13iBnvH8ElZws+SmLJSaK+P+omBmBrbkRbgVtsTBJ+T87CxYsoHDhwjRs2DDFr/2ZmZkZmzZtokSJEtSoUSPZpQtfWrduHfny5TNo73BdMjU1Zeny5VR99IiIRYugWDF1km1rq/6wsICaNeHAAfUMdjycnJwYOnQoly9f5ujRoygUCho1akTp0qWZt3Ahr4VQ9/3WcCFnrly5WLNmDadOneLChQsUKFCAFStWJGnhuEKhYOLEiVhaWvLPP//w6NEjrceQ0i6FSIkVH5IkJYuXlxenT5/Gy8vL0KFo7dOnT2TPnp3g4GC9tG+TUo/ASCWX3kVwMzCSqFgVxsZGOFmaUNHJkvy2ZhgZYFe+ly9fUqJECc6fP4+rq2uKX/+/hBBMnTqV9evXc+zYsWT3bo6OjqZgwYJs3LiRKlWq6CjK1KFbt25kzpxZ3Rnm7l31LLWxMRQsCLlyaT2eUqnk5MmTbNiwgX379lGxYkXc3Nxo0aIFVpqUtXzh4sWLjBs3jidPnjB16lTatm2r1evbgwcPqFq1KpMmTWL69OkcO3aMIkWKaPuUpLRISJKU6m3ZskW0bdvW0GEkWbZs2cSTJ08MHYaUQj5+/ChsbW0NHYYQQojOnTuLsWPHGjqMbyxbtkxky5ZNXL16NVnjrFy5UtSrV09HUaUub968EY6OjuL69es6Hzs0NFRs2rRJNGzYUNjZ2Ylu3boJHx8foVQqtRrH29tblC9fXpQqVUocOnRIqFQqjc6bPHmyGDRokBBCiA0bNghnZ2dx5coVbZ+GlAbJxFuS0oB9+/aJpk2bGjqMJGv8S1ux/fhp8SI0WoTHaPeHTUp7AgICRNasWQ0dhvD19RXZs2cXISEhhg4lXtu2bROOjo7i9OnTmp0QGyvEq1dCPHsmRHi4iIqKEi4uLuKff/7Rb6AGtGzZMlG1alWhio4WYs8eISZOFGL0aCGWLhXi3TudXOPly5fCw8NDlCpVSuTIkUO4u7uLmzdvany+SqUSu3fvFoULFxbVq1dP9PuhUqlE/vz5xfnz5+M+t3PnTpElSxZx7ty5JD8PKW2QpSaSlAZ4e3szc+ZMvL29DR2KxoQQPPgUzbk3EbwMjkAhBObm5sQKgWtGMyo5W+FsZWLoMCU9ePjwIY0aNeLBgwcGi0GpVFKhQgVGjBhBx44dDRZHYry9venYsSNr1qxJeIv5ly9h2TJYulS9S6NCAUolj4oVY4GJCYvPn0/ZoFOQMjaWRXny0P/jR8yNjCAkRP2AlRUolfDzz+qvTebMOrnejRs32LBhA5s2bcLZ2Rk3Nzc6dOiAk5NToufGxsayYcMGJk+eTMmSJfnjjz8oXrz4N8ddvHiRDh068ODBAxRflF8dOnSIrl27smPHjjS386ikOVlwKUlpQFrraiKE4PCzUA48DeFVeCwKE1MwNSNKJVAKuP8pmo33g7jxIf4tlKW0LTw8XOuaWV3z9PTE0tKSDh06GDSOxNStW5eDBw/Sp08f1q5d++0BJ09CoUIwd666A0dEBISHQ1QUuf38WHDtGkycqNW26GmGEBj37cvg9+8xDwv7X9INcV8D9u6F0qXh7VudXLJ48eLMnj2bZ8+eMWvWLC5fvkzBggVp0qQJW7du/e4idxMTE7p37879+/epU6dOgpvwfO7drfjPmofGjRuzfft22rZty+HDh3XyfKTURybekpQGpLU+3qdfhXPnYxQxqvgfF0CsgKPPQ3kcHJ2isUn6Z+jE++PHj0ycOJHFixd/k9ykRuXLl+fvv/9m8uTJzJkz538PXLsGTZqoE86oqG/OMwaMIyNh3jxIwa3pU8zKlbB1q/o5JiQ6Gl6/hoTuFiSRsbExdevWZf369QQEBNChQwe8vLzIli0bPXv25OTJk6hU8b/AmZubJ7gJT2xsLFu3bk1w05xatWqxf/9+unXrxu7du3X6nKTUQSbekpQGpKUZ78hYFRffRhCjwQRcrACfgLDED5TSlLCwMIMm3pMnT6ZFixaULl3aYDFoq1ChQvj6+uLl5cXo0aPVW8wPG6ae2U1MeDj89hsEB+s/0JQihLrntibPPyYGbt6EK1f0Eoq1tTWdO3fm6NGj3Lp1i8KFCzNkyBDy5MnDuHHjEmyXGt8mPG5ubmTLlo0CBQokeL2KFSty5MgRBgwYwMaNG/XynCTDkYm3JKUBaamP9/VA7cpHgqKUvA7X31baUsoz5Iz3zZs32bJlC9OmTTPI9ZMjR44cnDlzhtOnTzOqTRvE2bOan2xkBBs26C+4lHb6NGiz0VBUFCxYoLdwPsuWLRsjR47k2rVrHDhwgJiYGOrUqUP58uVZtGgRb+MpeflyE56LFy9y//79RDfhKV26ND4+PowZM4YVK1bo8ylJKUwm3pKUBqSlGe+Hn6KJ1aLcVABPQ2S5SXpiqMRbCMGQIUP47bffcHBwSPHr68LnLeZz3blDlDabs4SFwZYt+gsspd26BbFavCFXKvU2452QEiVKMGfOHJ4/f84ff/zBxYsXKVCgAM2aNWP79u3fTJY4ODjw/v17Dh06pNEmPEWKFOHUqVPMnDmT+fPnp8RTklKATLwlKQ1ISzXe0QnUdSdEKdAqUZdSP0Ml3rt37+bt27f069cvxa+tS9bW1vTv3BkTbRdM6ngreoNSKrVeMBr4/j2nTp3i7du3pGTDNmNjY+rXr8+GDRt48eIFbdq0YdWqVWTPnp1evXpx+vRpVCoV+/fvp0KFClSvXp2dO3eyZ88edu7cSZEiRdi6dWu8NeP58uXj9OnTLF++nKlTp6bo85L0Q/bykqQ0wMLCgqioKFQqVarf/dHaRLvFbCYKsDRO/QvgJM0ZIvEODw9nxIgReHl5YWKS9v+0mWTOjLC01KzG+TM7O73Fk+Ly5AEzs3gXlcZHBTwxM4uruVYoFBQuXJgiRYpQuHDhuH/nzJlTrwtuM2TIQJcuXejSpQsvXrxg8+bNDBgwgJCQEExNTenZs2fcseXLl+f48eP4+PgwduxYZs2axfTp02nYsOFXMebMmZPTp09Tr149QkNDmTlzZppYNCzFT/bxlqQ0wsrKivfv3xu8TVti7gZFcfBJiEaLKwGU0VFkuXeSzm1aYWlpqd/gpBQxZ84c3r17x+zZs1Psmr///ju3bt1i+/btKXZNvXr2DAoU0DjxxNoa5syBX3/Vb1wpJSYGsmRRt1DUQCiwoHZtGs6aRdmyZXn79i23b9/mzp07cR+3b98mODiYQoUKfZWQFy5cmHz58untDZsQgpMnT9KwYUPs7OzInTs3bm5utG/fPq4kSgjB3r17GT9+PI6OjsyYMYPKlSt/Nc6HDx9o0KABFStWZNGiRal+EkaKn/yuSVIakVbqvB+fP0loiGbdFVRKJR8f3Wb7hrXkypULd3d3njx5ot8AJb1L6Rnvp0+fsmjRoq9b8aV1uXIRXLIkGlduqVTg5qbPiFKWqSkMGQKavBlXKLDMlQurxo355ZdfqFGjBufOnaN69er079+fxYsX4+3tzcuXL3nx4gVLliyhZs2aBAYGsnr1aho3boyNjQ3FihWjTZs2TJo0ia1bt3Lt2jUiv9fKUEMKhYK7d+/SokULAgIC+P333zl37hyurq40b96cnTt3EhUVRcuWLbl+/TrdunWjQ4cONG/enBs3bsSN87n+/9q1a/Ts2ROlUpns2KSUJxNvSUojUnud98uXL2nbti0DB/SnUOwbNKk4sTA1hjtnuXnzJmPHjiUmJoZy5crx888/c/z4cVnPmEaldDvBkSNHMmTIEFxcXFLsmvqkVCqZMWMGTR88QGlunvgJVlYwcyZkyKD/4FLS+PFQrtz3k2+FAmxsMD5yhOEjRvDo0SMGDhzIjBkzKFiwIEuWLCE0NDTucDs7OypWrEiPHj2YM2cOf/31F48ePSIwMJCNGzfSqlUrVCoVO3fupGPHjtjb2+Pq6kqzZs0YPXo0a9eu5d9//yVYy9aNnzfNMTExoWHDhmzatInnz5/zyy+/sHz5crJnz06fPn04d+4c3bp1S3ATHltbW44cOcKLFy/o2LEj0dFyYXpaI0tNJCmNKFiwIPv27aNQoUKGDuUrSqWSZcuWMWXKFPr168e4ceOwtLTkzsdIDj5V/8H77+JJUyMwNVLQwdUWR0sTLly4QK9evciRIwceHh74+vqyePFioqOjGTBgAF27diVjxowGeHZSUgwcOJBChQoxcOBAvV/rxIkT9OzZk9u3b6eLUqXHjx/TpUsXTExMWLduHbmeP4fGjdUbxfx39tXYWF0HPXasevfK9CgqCvr2ha1b1Un256+BkRFYWEDu3LB7NxQs+NVpQgjOnTvHvHnzOHnyJL169WLgwIHkyJFDq8vHxMTw6NGjr8pV7ty5w71797Czs/uqXOVz+Yqjo+NXNdhPnjyhXLlyvHz5EjMzs3iv8+LFCzZt2sSGDRsIDw+nc+fOuLm54ezszPz581m0aBHt27dnwoQJODs7ExkZSdu2bRFCsGPHDiwsLAB4HR7LtQ8RfIpWYaJQ4GJjSrFM5pgby3nW1EIm3pKURpQuXRpPT89UtSnIpUuX6NevHxkyZGD58uUULlz4q8fDYlRc+xDJ5fcRhMUIjBRgb27MT1ksKWRvjqnR//44xcTEMGfOHObNm8dvv/1G//79OXfuHEuWLOH48eN06NCBAQMGUKRIkZR+mpKWevToQdWqVenRo4derxMbG0upUqWYMmUKrVq10uu19E0Iwfr16xk5ciTu7u4MHz78fzW8b9+qd3FcuBBCQlAB0VFRPK9UifzLl0PJkgaNPUW8fQurVoGvr/pNSN686oS8XLlET/X392fRokWsX7+eJk2aMGzYMMqUKZOscFQqFc+fP/+qjvzzvxUKxVc15NeuXSM2NpYNGzYkuihSCMHVq1dZv349W7ZsIU+ePLi5uVGnTh1WrFjBunXr6NevH6NGjcLa2ho3Nzfev3+P5/Y9HH0TS3C0kliVuk0rqCc5hIAyjhbUzGaNkVyUaXAy8ZakNKJKlSrMnj2bKlWqGDoUPn36xIQJE9ixYwezZ8/Gzc1NZ6vs7927R58+fYiKimL16tUUK1aMgIAAVqxYwcqVKylatCiDBg2iadOm6aJ7RXrUvn17WrRoQfv27fV6ncWLF7Nv3z6OHz+eprs8fPjwgb59+3Lv3j02bdpEiRIl4j9QpVIvNoyJ4d67dzRo2pT+/fszevToFI03rQoKCmL16tUsWrSIfPnyMXz4cJo0aaLTRYpCCN6+fRuXiN++fZu1a9fGdaYqWLDgN51W8ubNG+9rWWxsLMePH2f9+vUcPnyYmjVr0qhRI86dO8ehQ4cYOXIkv/76K6OnziR7y36YWCR8x8fUCPLamNEij02a/l1JD2TiLUlpRN26dXF3d6devXoGi+Hzbc1hw4bRpEkTZs6cSaZMmXR+HZVKxZo1axg/fnxc+crnP1y7du1iyZIlBAQE8Ouvv9KrV680u1lKetW8eXN69epF8+bN9XaNd+/eUaRIEU6ePEnRokX1dh19O3r0KD179qRdu3b88ccfcSUDmnjx4gUNGjSgcePGzJ49WyZUGoqJiWHnzp3MmzePT58+MWzYMLp06YK1tbXOr3X16lVatGiBv78/wcHB3L1796vZ8Tt37vDy5Uvy5cv3TaeVggULxv08BAcHs2vXLjZs2MD169epU6cOb9++5cHDRwzaeRaVqRkKxfffQJgqoHZ2a0o7pv2SrLRMJt6SlEY0b96cnj178vPPPxvk+o8ePWLAgAEEBATw559/psjM+8uXLxk0aBC3bt1i1apVVKtWLe4xPz8/li5dyp49e/j5558ZOHAg5TS47SzpX926dRkzZgx169bV2zX69u2LpaUlC1Jgm3B9CA8Px93dnX379rF27Vpq166dpHECAwNp0qQJBQsWZPXq1fIukBaEEPj6+jJv3jx8fX3p06cPAwYMIFu2bDq7xqhRozA1NWX69OkJHhMREcG9e/e+KVnx9/cne/bs3/Qjz5AhA/v372fDhg04FC1H3aFTMbPS7E1DRlMjfi1qL9+kGZBMvCUpjUip2/f/FRUVxZw5c1iwYAHu7u4MHToUU1PTFI1h9+7dDB48mGbNmjFz5kxsbW3jHnv//j2enp4sW7YMZ2dnBg4cSJs2bTDXpBuEpBeVK1fGw8ODSpUq6WX8y5cv07hxY+7evYtdGtw05vLly3Tq1InSpUuzdOlS7O3tkzVeWFgYrVu3xsTEhO3bt6eLRaYp7eHDhyxcuJBNmzbRrFkzhg0bRqlSpZI1plKpxMXFhaNHjybprsx/F3Z+Tso/L+wsVKgQFQdNJUOu/BqPaWoE7V1tyW6dsq/h0v/IZa6SlEYYoo/3yZMnKVWqFBcuXMDPzy9u9ialtWrVips3b6JSqShatCh79+6Ne8zBwYHRo0fz6NEjxo4dq+4EkSsXEyZM4MWLFykeq6TfdoJCCAYNGsS0adPSXNL9uU1gw4YNmThxIps3b0520g3qLeb3799PxowZqV+/PkEabjoj/Y+rqyuLFy/m0aNHFClShKZNm1KnTh0OHjwY71bu8VEJwZOQaK5/iOTGh0gO/3MBBweHJJdCmZqaUqhQIVq2bMm4cePYsGEDfn5+BAcH888//zBixAgyZNFudl6BgqAo2f/bkGTiLUlpREr28X737h1du3alS5cuzJgxg3379hm8R7KdnR0rVqxg8+bNuLu707p1a169ehX3uLGxcVz/75MnT/Lp0ydKlChBmzZtOHXqlOwJnoL0uYHO5s2biYqKonv37noZX18eP35MzZo1OXbsGJcuXaJjx446Hd/U1JQNGzZQpkwZatSo8dXvhqQ5e3t73N3d8ff3p0ePHkycOJEiRYqwYsWKBF9/VUJw/k04S24Gsts/mOMvQjn2IpTrFi60X7yTux813H1UQ0ZGRri4uNCoUSNsbGy0Pl+BLDMxJJl4S1IakRIz3iqVKq6TiKOjI7dv36ZFixapqh6wevXqXLt2jUKFClGyZElWr179TVJduHBhFi9ezJMnT6hZsyb9+vWjRIkSrFixgrCwMANF/uPQV+IdEhKCu7s7ixYtwtjYWOfj64MQgrVr11KhQgVatGiBj48PuXLl0su1jIyMWLBgAW3btqVq1ao8fPhQL9f5EZiZmdGpUyf8/PxYsWIFBw8eJHfu3EycOJHXr1/HHadUCbY+DMb3VTjhsYJoFcT8/4eRqRlksOPg0xBOBujndcfBQrvfAyEEmbQ8R9ItmXhLUhphZWVFRESE3sa/ceMG1apVY82aNRw7doy5c+eSIZXuhGdhYcG0adPw9vZm1apV1KpVi/v3739zXMaMGRkwYAC3b99mwYIFHDlyhFy5cjFs2DAePHhggMh/DPpKvKdPn07t2rWpXLmyzsfWh/fv39O6dWs8PDzw8fFhxIgROm1dFx+FQsH48eMZPXo01atX58qVK3q9XnqnUCioUaMG+/fvx9fXlw8fPlC4cGF69OjBjRs3OPI8lJdhMd9sEvalGAGX3kdw40Pyt5//rwpZLDHV4kfKxswYZyu5ANeQZOItSWmEvma8w8LCGD16NHXq1KFLly78888/lEwjG3KUKFGCs2fP0rJlSypXrsyMGTOIiYn55jiFQkGdOnXYs2cPly9fxtzcnMqVK9OoUSMOHTqkcQ2npBl9JN4PHjxg5cqVzJw5U6fj6suRI0coWbIkuXPn5uLFiwn35taTvn37smjRIho0aMCpU6dS9NrpVYECBVi2bBkPHz7E1dWVlu07cvVNyHeT7s9iVXDqVZjOS95y25hibWKkUfGIqQKqZtVPCZikOZl4S1IaoY8a7wMHDlC0aFFevXrFjRs36Nu3r95n5HTN2NiYIUOGcOnSJU6fPk25cuW4ePFigse7uLgwc+ZMnj17Rrt27Zg4cSL58+dn3rx5fPz4MQUjT59iY2OJjY1NcGvspBo+fDijR4/Waas3fQgPD2fgwIH06dOHDRs24OHhoVVvbl1q3bo1W7dupU2bNl8tSJaSJ3PmzIwbN441R//RquQpSil4GvrtxEByKBQK2rvaYmH8/cptUyMokdmCIvay25Ohpa2/sJL0A9PljPfz589p2bIlI0eOxNPTkw0bNuDk5KSTsQ0ld+7cHDp0CHd3d5o1a8bw4cO/W89taWlJt27duHTpEps2beLy5cvkzZuXPn36cP369RSMPH2JiIjA2tpap+sCDh06xN27dxk6dKjOxtQHPz8/ypYtS2BgINeuXUtyb25dql27NocPH+bXX3/F09PT0OGkKwERKjDSPPGOVcHr8Fidx2Fnbkz3Qna42JhirADjL371zIzAwlhBjWzW1M2h+w2CJO3JxFuS0ghd1HjHxsYyb948SpcuTenSpbl+/XqqSA50RaFQ0LFjR27evMn79+8pVqwYR48eTfScihUrsnHjRu7evUuuXLlo3Lgx1atXZ8eOHfGWrkgJ03UrwejoaIYOHcqCBQtSbW92pVLJH3/8QaNGjfjtt9901iZQV8qWLcupU6eYOnUqs2bNkh1+dCRWywo1kYRzNJXRzJj2rrb0LWJP9axWlHEw56csljR1sWFw8UyUc7RMVYvkf2Sywl6S0ojkznifP3+efv364ejoyLlz58ifX/NNF9IaBwcH1q9fz9GjR+nXrx/VqlVj3rx5iW4t7+TkxIQJE+J2FFy8eDFDhw6lX79+9O7dG2dn5xR6BmmXruu7Fy5cSP78+WnSpInOxtSlx48f4+bmhpmZGX5+fuTMmdPQIcWrQIEC+Pr60qBBA969e8fs2bPTXFlZamNrZsRLLV6STY0ggzYrIZMgo5kxPznJOu7UTP7WSVIakdQa748fP9KvXz9atWqFu7s7x44dS9dJ95caNGjAjRs3cHBwoFixYmzatEmj2T5TU1Nat27NqVOnOHz4MC9evKBw4cJ06tSJc+fOyRnD79Bl4v3q1StmzZrF/PnzdTKeLgkh8PLyokKFCrRq1Qpvb+9Um3R/lj17dk6fPs3Zs2fp3r27vJuTTKUcLLTqKCIEFLTT7doHKe2RibckpRHazngLIdi4cSNFihTB2NiY27dv06FDhx/udmOGDBmYN28eBw4cYPbs2TRu3JinT59qfP7n/t/+/v6UK1cONzc3ypUrh5eXl17bO6ZVuky8x4wZQ8+ePSlQoIBOxtOV9+/f88svvzB//nxOnDjB8OHD08zscaZMmfD29ubdu3e0atUqxXfDTU9yZTDF0liz77sRkN/WDEuTtPFzIumP/AmQpDTCysqKCA03f7l37x5169bFw8ODffv2sXTp0jS3vbaulS9fnkuXLlG9enXKli3LggULUCo13zrZ3t6eYcOGcf/+faZOncqOHTvIlSsX7u7uPHnyRPuAnjyBS5fg9m1IRzOPukq8z507h7e3NxMmTNBBVLpz+PBhSpYsSd68eblw4QLFixc3dEhas7KyYt++fdjZ2dGgQYOvu/k8eQLu7lC3LtSsCb/+CnKxcbwUCgWt8mZMdNbbCLAyNaJeztS5L4KUsmTiLUmpmRBw4QK0a0fpKlXwu3oVzMzUfxSPHYP/9J+OjIxk0qRJVKlShWbNmnHx4kUqVKhgmNhTIVNTU8aOHcvZs2fZu3cvlSpV0rqDiZGREY0bN+bQoUOcO3eOmJgYypYtS4sWLfD29v5+GUpMDHh5QaFCUKQI1KkDP/0EWbLAxInw9m0yn6Hh6SLxVqlUDBo0iJkzZyZpS2x9CA8PZ8CAAfTr14+NGzcyd+5cg7UJ1AVTU1PWrVtHuXLl1FvM37sHTZpA4cKwYAH4+MCpU7BqFVSsCOXKwfPnhg471XG2MqGjqy0WRhAVHvrN46ZG6t0luxW0w0rOdkvIxFuSUq+YGOjUCWrVgp07MYqK+t/nfXzgl1+gWjUIDgbg+PHjFC9enFu3bnH16lWGDh2KiYlcPx2fAgUKcOLECfr06UPdunWZMGECkZHa7yrn6urKvHnzePbsGY0bN2b48OEULlyYJUuWEPz/35c4oaFQvToMGgT37kFEhPp7FxoKQUEwZ4466blxQzdP0kB0kXh7eXnFbdmdGvj5+VGmTBmCgoK4du0atWrVMnRIOmFkZMS8efNwa9mS0OLFUXl7Q2QkREf/7yClUv2zevUqlCkjk+94ZLU2JeTAn9zbuZLAh7fIaGqEnZkRBWzNaJfPlu6F7PS+qFJKQ4QkSamPSiVE+/ZCWFoKoZ73jv/D3FxElSolOrdtK3Lnzi3++usvQ0ee5rx8+VL88ssvokCBAuLkyZPJGkulUolTp06JNm3aCHt7ezFgwABx+/Zt9fezVi0hzM2///0EITJlEuLlSx09u5S3du1a0aVLlySf//HjR+Hk5CQuXryow6iSJiYmRkybNk04OjqKLVu2GDoc/eneXcSYmCT+s2lsLET58oaONtWJiIgQTk5Ows3NTUybNs3Q4UipnHwLJkmp0blzcOCAeqbpe6KiiLl6leZhYdy6dSvVtlxLzbJmzcrOnTuZNWsWnTp1om/fvgQFBSVpLIVCQfXq1dm+fTvXr1/H3t6eWrVqMbRcOWLPnYPPdy2+JzQU5s1L0vVTg+TOeP/+++80a9aMcuXK6TAq7fn7+1OjRg1OnDiBn58f7du3N2g8evPpE2zZgkmsBhu7KJVw86b6Q4qzadMmSpcuzdWrV6lTp46hw5FSOZl4S1JqNHcuaNhtwBpo8+iRTnsn/4hatGjBrVu3MDIyolixYuzZsydZ4+XIkYOpU6fy9OlTRgqBkaalLNHRsGKFZkl6KpScxPv27dts3LiRP/74Q8dRaU4IgaenJz/99BOtW7fm+PHjqb5NYLJs3w5abHtOTIz651MC1OsRPDw86NmzJ8+ePTP4G0Yp9ZOJtySlNkLAX3+p/6upJ09k7aUO2Nrasnz5crZs2cLYsWNp1aoVL1++TNaY5ubm5Lh/X/sX2zTaSSKpibcQgsGDBzNhwgSyZMmih8gS97lN4MKFC/n7778ZNmxYmmkTmGT+/qBhtyQAYmPh7l39xZPGHDlyBDMzM6Kjo6lZs6ZcVyMlKp2/okhSGhQZ+U23kkSZmUFgoH7i+QFVq1aNq1evUrRoUUqWLMnKlStRafs9+ZKWs9cqhUK7ZCgVSWrivXfvXl69ekX//v31EFXiPrcJdHV15cKFCxQrVswgcaS4pCSK2syQp3MeHh6MGDECHx8f6tata+hwpDRAJt6SlNqYm2s32w3q2ktra/3E84OysLBg6tSpnDhxAk9PT2rVqsW9e/eSNpiW35vw4GDqtWtHo0aNGD16NBs3buTatWtEpYHyk6Qk3hEREQwfPpyFCxdiamqqp8ji92WbwE2bNjF79mzMzc1TNAaDKlYMMmjeX1qYm0P58noMKO24evUq9+7do23btnh7e8v6bkkjMvGWpNTGyAi07b1tbQ158ugnnh9c8eLF+eeff/jll1+oUqUKf/zxB9Fftlv77MULGDcOiheHvHnVfY+XLYOQEGjdWquZRWtnZ1adO8evv/6Kra0tf/31Fx07dsTOzo6iRYvSoUMHpk+fzoEDB3jy5Emq2sI+KYm3h4cHZcqUSfEZw0uXLlGmTBk+ffrEtWvXqFmzZopeP1Vo0UL9mqOhqKgoFkVF8enTJ/3FlEZ4eHgwaNAgnj9/TmxsLIUKFTJ0SFIaoBCp6RVbkiS1vXvBzU3d4SIxFhYwaRKMGaP3sH50T58+5ddff+XFixesXr1avTlRbCwMHAhr16oP+nJW2tpaXTbk7g6zZiXepQbA0hKmTIGRI795KDIykrt373Ljxg1u3LjB9evXuXrE1Q8AAJVOSURBVHHjBqGhoRQrVozixYtTvHhxSpQoQfHixQ2yW2nHjh1p0qSJxj24nz9/TqlSpfDz8yN37tz6De7/xcbGMnPmTBYtWsTixYtp165dilw31Zo8Wd1HPrEF3RYWhFStysBs2Th06BADBw5kyJAhP+SuuC9evKBEiRL4+/uzdetWzp07x7p16wwdlpQGyMRbklKj2Fj1jGli24krFODkpD7O3j7l4vuBCSHYunUrw4YNo0P79sx++hTTY8e+n7RYWak3H7l8+fvHmZqqZ8v9/LQqT/nw4UNcMv754+bNm9jZ2X2ViBcvXpxChQphZmamxTPWTosWLejWrRstWrTQ6Pj27dtTsGBBfv/9d73F9KVHjx7h5uaGpaUl69atI0eOHCly3VRNqYSWLdUbcyX082lhAfnzw9mzkCEDDx8+ZPr06ezfv5/+/fszdOhQMmXKlLJxG9Do0aOJjo5mwYIFtG7dmubNm9OlSxdDhyWlATLxlqTU6sMHqFEDHj+O/4+hhQXY2cGZM+DqmuLh/ejev3/Pltat6XH6NNaavIyam6tLTvbsUc+KK5VfP54hg7pcyMcHHB2THZ9KpeLJkyffzI4/efIEV1fXb2bHc+bMiUKhSPZ169evz8iRI6lfv36ix546dYouXbpw584dvbfDFELg5eWFu7s748aNY8iQIem/Y4k2lEqYNg3mz1ffpQkJUX/+810bNzf1Y//5Pvn7+zNjxgx2795N3759GT58OA4ODgZ4AiknJCSE3Llzc+nSJXLlykWWLFm4fv062bNnN3RoUhogE29JSs0iIsDTU30b+N07MDUlLDgYC1tbjIcPh/79IXNmQ0f54ypXTj07rQkzMxg6FNq3Bw8P2L1b3cHGyEi9WG3MGGjSJGldJrQQGRnJnTt34hLxz0l5REQExYoV+2p2vHjx4tja2mo1ftWqVZk5cyZVq1b9+oG3b9U/w5aW4OJCrBCULVuWCRMm0KZNGx0+w2+9e/eOPn364O/vz6ZNm36cjiVJER0N+/fDrVvqZDxvXvUbxkQWYD59+pSZM2eyfft2evbsyciRIw3WFlLfFixYwNmzZ9m+fTt+fn64ublx+/ZtQ4clpREy8ZaktEAIePgQPn6k38iRNBo6lJ9btTJ0VD+2Z8+gYEF18qypTJnUdzI+i41Vt2bTwUxzcr1///6b2fFbt26ROXPmb2bHCxYsmGD3kTJlyrB69WrKlCmjnindvVtd337jhvrNh0oFFhZcqFiR6R8/ssfXN0kz7SohiFYKTI0VGH/n/EOHDtG7d286derE1KlTf6yOJQbw/PlzZs2axebNm+nevTujRo3C2dnZ0GHpTGxsLK6urmzbto2ffvqJWbNmERAQwKJFiwwdmpRGyMRbktKYsWPHYmVlxcSJEw0dyo/t/Hlo2FC95baGhELBKR8f7Oztsbe3x87ODhsbm1Rb8qBSqXj8+PFXs+M3btzg6dOn5M+f/5vZ8Rw5clC4cGH27t1LoTx51B0zzpyJtyd5BGBqa4vJmTPqTjAaEELwLDSGf99G8Dg4BoVC/Z7U0dKYik5WFLQ1w9hInYSHh4czcuRIDh06xLp166hRo4YOvzJSYgICApgzZw7r16/Hzc0Nd3d3smXLZuiwkm3btm0sWbKEM2fOAFCvXj0GDhzIzz//bODIpLRCJt6SlMZs3ryZPXv2sGPHDkOH8mO7fBlq1YLgYI1PiVUoqFOtGkFBQXz8+JGgoCDCw8PJmDEjdnZ2cR+fk3JN/m1paamT2mxtREREcPv27W9myKOiooiIiKBt27ZMvnkTl9u3MU6s97i9vXo2PJH6WKVKsP9JCP4h0cTEs5eRqRFkNDWmY35bbl/1o3PnzlSoUIElS5ZoXS4j6c7r16+ZM2cOXl5edOzYEXd3d3LmzGnosJJECMFPP/3EuHHjaNGiBZGRkTg6OvLixQv5MyZpTCbekpTG3Lx5k9atW3NXbttsWKGhkCWLZi0CPytRAq5d++pTsbGxfPr0iaCgoK8S8v/+O6HHlErlVwm5Nom7ra2tTjucvH37lvz58zO3c2e6rFiB+X8XkMbH1BT69oXFixM8RAjBvichPPwUTex3/mIpAFVoEEs712PenFm0bdtW+ych6cXbt2/x8PBg9erVtGnThrFjx+Li4mLosLRy5swZevTowd27dzE2NubEiROMHz+ec+fOGTo0KQ2RibckpTExMTFkzJiRwMBALC0tDR3Oj61nT1i37tsOJfHJkAFWrICOHXUaQmRk5FfJ+feS9/8m8kFBQZiZmSWYnCeWuGfMmPGbMhlLS0uCW7bEdPt2zb4uQLSZGSe3baNo+fJky5btmxn8l2ExbHn4Kd6Z7v9SRkdRwd6YegXST11xevL+/XvmzZvHihUraNWqFWPHjiVv3ryGDksjLVq0oH79+vTv3x+AcePGYWRkxLRp0wwcmZSWyMRbktKgkiVL4unpSdmyZQ0dyo/t/n11f+54api/YmQEWbPCo0fqtoKphBCCsLCwJM20BwUFERISgo2NzVcJ+cmTJwk2N8dGi+3tI8zMGF+sGBv/fwfA//Yef5G5IP5hKjT9Y5XBVMGAoplSvARH0lxgYCALFixg2bJlNG/enHHjxuGaitui3r9/n6pVq/LkyZO41pcVKlRg9uzZP+aOp1KSycRbktIgNzc3ateuTffu3Q0dinTokLrdWkIlJyYm6n7r586lu37rSqWS4ODguIT81atXtGrVilDANDpa43GCjYyYlC8ft3LnxtLSktjYWCIiIggODubdu3f02uqLqYXmd3dMjaBrQTscLPTbmlFKvo8fP7Jo0SKWLFlCo0aNGD9+PAULFjR0WN/49ddfcXBwYOrUqYA67ly5cvH+/XvZKUfSinxVkqQ0qHjx4ly/ft3QYUgAjRurO3e4u8M//6gTbaVS/d+YGGjTBmbOhHTQ0eG/jI2Nsf//Di158uTh3bt3ZMyYEVNjY3jzRuNxrC0t6T1qFM9z5Yp3Zl2bpBvACAVRSjmnlBbY29szadIkhg4dypIlS6hWrRr16tVj/PjxFClSxNDhAerymK1bt3Lnzp24z508eZIqVarIpFvSmky8JSkNKlGiBMeOHTN0GNJnZcuCtzc8fQqnTqlLTzJnhgYN4AfqdhAeHq6+Dd+8ubqePSZGo/OMTU0p0q0bRRLoDT7n6nu0yaNVCMyMZJlJWmJra8v48eMZPHgwS5cupVatWtSsWZMJEyZQXMN2k/qyfPlyWrVq9VU/cm9vb+rUqWPAqKS0KnU2j5Uk6btKlCjBtWvXkJViqYyLC3TpAr/+Cm3b/lBJN3yReA8erN4YSBPm5uodWBNIugFcbBJ+LD4mCgWZLTS8vpSq2NjYMGbMGB49ekS5cuWoV68erVu35tp/ugGllMjISJYuXcrw4cO/+ry3tzd169Y1SExS2iYTb0lKg7JmzYpKpeKNFrfzJUnf4hLv/PlR9uxJZGLJt7ExODrCiBHfPeynLJaYavjXykQB5RwtMZILK9O0DBkyMGrUKPz9/alSpQqNGjWiRYsWXL58OUXj2LRpE2XKlKFo0aJxn3v+/DkfPnygZMmSKRqLlD7IxFuS0iCFQkGJEiW4ceOGoUORpDhhYWFYWVmhUqno8ekTPtmzI6ys1F1d/itDBsiVC86ehUyZvjturgymZLMyxTiRXFoBmBsrKONokfQnIaUqVlZWDBs2jEePHlG7dm2aN29Os2bNuHDhgt6vrVKp8PDwYMR/3hj6+PhQu3btVLvjrJS6yZ8aSUqj5AJLKbUJDw/H0tKSkSNH8tDfn1p37qA4eVK9wNTUVL3gVKGAYsVg+XK4fRs02MVQoVDwS96MZLUySXDmOzYqEqLCcStgh6WJ/NOW3lhaWjJ48GAePnxIo0aNaN26NY0aNdLr5jVHjhzBzMyM2rVrf/V5WWYiJYd8dZKkNErOeEupTXh4OAEBARw/fpy//vpLXXZSvjxs3QpRUfDxI0RHq7eI79wZLDSfmTYzVtAxvy2NctmQxdIYYwWYGalLSzKYKCiVQcmidjUIevVcj89QMjQLCwv69+/PgwcPaNGiBR06dKB+/fr4+vrq/FqfZ7u/7AcvhMDHx0cm3lKSyT7ekpRGXbhwgX79+qV4zaMkJaRXr15s3bqV+/fvk03P7RPDYlREKlWYGimwMTVCoVAwa9YsfHx8OHr0qNw85wcRHR3N+vXrmT59Orlz52bSpEnUqFEj2eNevXqVpk2b4u/vj5mZWdznb926RbNmzfD390/2NaQfk5zxlqQ0qmjRoty9e5fY2FhDhyJJ7N69m507d9KkSRO9J90A1qZGZLYwIaOZcVySPWLECD58+MC6dev0fn0pdTAzM6NXr17cu3ePLl260LNnT2rUqIGPj0+yuj55eHgwePDgr5JukG0EpeSTibckpVHW1tZkz56dBw8eGDoU6Qf3999/069fP3r27EnWrFkNFoeJiQmenp6MHj2aV69eGSwOKeWZmprSrVs37t69S69evejfvz/VqlXj2LFjWifgL1684ODBg/Tp0+ebx2R9t5RcMvGWpDSsRIkScoGlZFCXL1+mXbt2bNu2jcyZM6vrug2oZMmS9OnTh4EDBxo0DskwTExMcHNz4/bt2wwYMIChQ4dSqVIlDh06pHECvmjRIrp06YKdnd1Xn4+JieH06dPfLLaUJG3IxFuS0jDZ2UQypAcPHtC0aVP+/PNPatWqFddO0NAmTpzI7du32blzp6FDkQzE2NiYDh06cOPGDYYPH467uzsVKlTgwIED303AQ0JCWLNmDUOGDPnmsYsXL5InTx4cHR31GbqUzsnEW5LSMNnZRDKUly9fUr9+fX7//XdatWoFfLGBjoGZm5uzZs0aBg8eTGBgoKHDkQzI2NiYtm3bcu3aNcaMGcOECRMoU6YMe/bsQaVSfXP8mjVrqFu3Lnny5PnmMVlmIumCTLwlKQ2TM96SIXz8+JEGDRrQp08fevfuHff51JJ4A1SuXJk2bdp8s9W39GMyMjLil19+4cqVK0yePJlp06ZRunRpdu7cGZeAx8bGsmDBgm82zPlMthGUdEG2E5SkNEypVGJra0tAQAC2traGDkf6AYSHh1O/fn0qVKiAh4fHV2373NzcqF+/Pm5ubgaM8H9CQ0MpXrw4y5cvp2HDhoYOR0pFhBAcPHiQKVOmEBYWxsSJExFCsGzZMs6cOfPN8aGhoTg7O/PmzRusra0NELGUXsgZb0lKw4yNjSlatCg3b940dCjSDyAmJoY2bdqQJ08e5s6d+02v7NQ04w2QIUMGVq5cSb9+/QgJCTF0OFIqolAoaNq0Kf/++y8eHh4sXLiQHj16UK5cuXhbtJ45c4ayZcvKpFtKNpl4S1IaJ8tNpJSgUqno0aMHCoUCT09PjIy+/fOR2hJvgHr16lGnTh3Gjh1r6FCkVEihUNCwYUNmzZpFpkyZuHDhAkWKFGHdunVfJeCyvlvSFZl4S1IaJxdYSvomhGDkyJH4+/uzfft2TE1N4z0uNSbeAHPnzmXPnj3xlhBIEsC8efOYMGECvr6+rFixAi8vLwoWLIinpycxMTGyvlvSGZl4S1IaJ3t5S/o2c+ZMjh8/zl9//fXdxDq1tBP8L3t7e5YsWUKvXr2IiIgwdDhSKnP//n3Onj1L165dUSgU1KpVi5MnT+Lp6cnmzZvJly8f9+7do2TJkoYOVUoHZOItSWlc8eLFuXHjRrK2R5akhKxevZpVq1Zx9OhR7O3tvz1ApYIjR2DIECY8eECe5cvh4sWUDzQRLVu2pGTJkkyZMsXQoUipzPz58+nbt+83bxpr1KiBt7c3PXv2xMbGhsKFC7N8+XKioqIMFKmUHsiuJpKUDmTPnp2zZ8/i4uJi6FCkdGT37t0MHDiQU6dOkT9//m8P2LYNhg6F0FD1ByCMjFBYWECuXODpCZUqpWzQ3/HmzRtKlCjB4cOHKVOmjKHDkVKB9+/fkz9/fu7cuYOzs3O8x/Tu3ZvixYtToUIFpk6dyrVr13B3d6d3795YWFh8d/zX4bE8+BRFRKzA0kSBq60ZWa3iL9WSfgxyxluS0gG5wFLStb///pt+/frx119/xZ90L14MPXrA69dxSTeAQqWC8HC4exfq1gUfnxSM+vucnJyYO3cuPXv2JCYmxtDhSKnA8uXL+eWXXxJMuoUQHD9+nLp161KxYkUOHjzI3r17OX78OHnz5mXBggWEh4d/c97z0BhW3f7IpvtBnH0dweX3kfzzOoLNDz6x8vZHnoXIn78flUy8JSkdkAssJV26fPky7dq1Y9u2bfHPDF+8CGPGqBPs7wkPhxYt4MMHvcSZFJ07d8bZ2Zk5c+YYOhTJwCIjI1m6dOl3N1ny9/cnOjqawoULx32uXLly7N+/n4MHD3L69Gny5cvH3LlzCQsLA+DBpyi2PfzEhyglMQK+LCuIUUFglJLtjz5xP0iWrPyIZOItSemAXGAp6cqDBw9o2rQpK1asoFatWvEfNGsWaLpIUalUl5ykEgqFghUrVjB//nzu3Llj6HAkA9q0aRNlypShSJEiCR7j7e1NnTp1vulZD1C6dGl2797NkSNH+Pfff8mbNy8zFy5h3+MQYhMp4o0VcOBpCEFRyuQ+DSmNkYm3JKUDstRE0oWXL19Sv359pkyZQsuWLeM/KCgIDh4ETZcHRUTA/Pk6i1EXcuXKxe+//07Pnj1RKmXi8yNSqVR4eHgkuD38Z5q0ESxZsiQ7duzAx8eHN+aZidRw8aVKBX7vZJedH41MvCUpHShUqBCPHz8mMjLS0KFIadTHjx9p0KABffr0oVevXgkf+PQpmJlpN/jr1+osIxXp168fJiYmLF261NChSAZw5MgRzMzMqF27doLHqFQqTpw4QZ06dTQas0jRouSsVB8TM3ONjlcC1z5EopI9Ln4oMvGWpHTA3NwcV1dXeetcSpLw8HCaNm1KvXr1GDNmzPcPTmqSkMqSCyMjI1avXs2UKVN48uSJocORUpiHhwcjR46Mt4Tks6tXr+Lg4ECOHDk0GjMyVqDU8udcJSA8sboUKV2RibckpROy3ERKipiYGNq0aRO3QOx7iQgALi6gbR/jLFnA2DjpQepJgQIFGDVqFL1795Z98H8gV69e5f79+7Rr1+67x2m7W6UAEvntSeA8+bP3I5GJtySlE7KziaQtlUpFjx49UCgUrFmzBiMjDf4k2NtDgwaQWIL++RoWFjB4cDIj1Z8RI0YQGBjI2rVrDR2KlEI8PDwYNGgQpqbf76ft7e2tVeJtYZKUtBusjGUq9iOR321JSifkjLekDSEEI0aM4PHjx2zfvj3RJOQrY8ei1LDOOyIykt2ZMycxSv0zMTHB09MTd3d3Xr16ZehwJD178eIFBw8epE+fPt89LjIykrNnz1KzZk2NxzZWKCiWyVzjxEoBFLE3x9goaQm7lDbJxFuS0gk54y1pY+bMmXh7e3PgwIFvtspOzIYHD5hmYoLSPJFFZJaWvFq0iAkLF9KhQwc+fvyYjIj1p2TJkvTp04cBAwbIkpN0btGiRXTt2hU7O7vvHnfu3DmKFCmS6HH/VT6LJZrm0cYK9fHSj0Um3pKUTuTIkYPIyEjevn1r6FCkVG7VqlWsWrWKo0ePYm9vr/F5QghmzZrFhAkTaHPhAsZ//gmZMoGNTdwxKgBra8idGw4fxnXQIPz8/HB0dKRkyZL4pKKdLL80ceJE7ty5w65duwwdiqQnISEheHp6MmTIkESP1ba++7PMFibUyWFNYlUnJgqond0aR0sTra8hpW0y8ZakdEKhUFC8eHE56y191+7du5k0aRJHjx4lW7ZsGp+nUqkYOnQoGzdu5OzZs+pNR7p1gzdvYP166NGDZ+XLc9zVFQ4fBn9/qFEDAEtLSxYtWsTq1avp2rUrw4YNI0LTDXhSiLm5OZ6engwePJgPqWinTUl31qxZQ506dcidO3eix37eOCcpSjtY0jhXBiyMFZj9J8syMwILYwWNcmWgjKOc7f4RKYS8ryZJ6cbAgQNxdXVl6NChhg5FSoX+/vtv2rVrx9GjRyldurTG50VFRdGlSxdev37Nvn37Erz9fvr0acaOHcs///yT4FiBgYH069ePW7dusWnTJkqVKqXls9CvoUOH8vHjR9atW2foUCQdio2NxdXVle3bt1OhQoXvHhsUFETOnDl59+4dFhYWSb6mSggeformblA0EbEqLIwVFLI3J7+tGUYaLk6W0h854y1J6YjcOl5KyOXLl2nXrh3bt2/XKun+9OkTDRs2RKlUcvTo0e/WvObKlYvnz59/d7xMmTKxbds2xo4dS/369Zk1a1aq2j1y2rRpnD59msOHDxs6FEmHdu3aRc6cORNNugFOnTpFpUqVkpV0AxgpFBSwM6d5bhvaudryc56MFLQzl0n3D04m3pKUjsjOJlJ87t+/T5MmTVixYoVWXRpevnxJ9erVKVq0KNu2bUs0EcmePTuvX79ONJFWKBR07tyZS5cuceTIEWrVqpVqNrHJkCEDK1eupF+/foSEhBg6HEkHhBBxG+ZoQts2gpKkDZl4S1I6UqxYMe7cuZOqZhAlw3r58iUNGjRg6tSptGzZUuPz7ty5Q+XKlWnfvj2LFy/GWIMNcExNTXFwcNC4LV+uXLnw8fGhefPmlC9fnrVr16aKriL16tWjbt26jB071tChSDrg6+tLUFAQzZo10+j45NR3S1JiZOItSemIjY0NTk5OPHz40NChSKnAx48fadCgAX379qVXr14an3fu3Dlq1arF5MmTGTt2bOK7WX4hV65cPHv2TOPjjYyMGDlyJD4+PsybN4/WrVvz/v17jc/Xl7lz57Jnzx7OnDlj6FCkZPLw8GDYsGEabRAVEBDA27dvU93aAyn9kIm3JKUzsp+3BBAeHk7Tpk2pV68e7u7uGp+3f/9+mjdvjpeXF926ddP6ujlz5ky0zjs+JUqU4MKFC+TNm5eSJUsavMba3t6epUuX0rNnz1TXgUXS3P379zl79ixdu3bV6HgfHx9q166t0R0eSUoKmXhLUjojF1hKMTExtGnThnz58jF37lyNZ6xXrVpF3759OXjwII0aNUrStZOaeANYWFgwZ84cNm3aRL9+/RgwYADh4eFJGksXWrRoQalSpfj9998NFoOUPPPnz6dv374abxIly0wkfZOJtySlM3KB5Y9NpVLRo0cPFAoFa9as0ej2uhCCKVOmMGPGDE6fPq1R54eEJCfx/qxmzZpcu3aN4OBgSpcuzcWLF5M1XnIsXrwYLy8v/Pz8DBaDlDTv379n69atDBw4UKPjhRByYaWkdzLxlqR0Rpaa/LiEEIwYMYLHjx+zfft2TE1NEz0nNjaWfv36sXfvXs6ePUv+/PmTFYO2Nd4JsbOzY8OGDUydOpWmTZsyZcoUYmNjkz2utpycnJg7dy49e/YkJiYmxa8vJd3y5cv55ZdfcHJy0uj4O3fuYGZmRr58+fQcmfQjk4m3JKUzrq6uvH79WrZC+wHNnDkTHx8fDhw4oNGt9YiICFq3bo2/vz+nTp3C2dk52THoYsb7S23btuXy5cv4+vpStWpVHjx4oLOxNdW5c2eyZs3K7NmzU/zakoaiouDUKdi7F3x8iPzwgaVLlzJ8+PDvnxcZCdevw4UL/LtjB3Xr1tVqMbEkaUsm3pKUzhgbG1O4cGFu3rxp6FCkFLRq1SpWrVrFkSNHsLe3T/T4wMBA6tati7W1NQcPHsTGxkYnceg68QZ1f/AjR47QqVMnKleuzIoVK1K07aBCoWDFihUsWLCA27dvp9h1JQ28fw+jR0OWLNC8OXTtCq1aYZwtG55mZhRJ6Of62TMYMgQcHaFqVahfn45TpjDn2DHYvBlkS1ZJT+SW8ZKUDvXo0YOKFSvSp08fQ4cipYDdu3czcOBATp06pVGpyLNnz2jYsCFNmjRh1qxZGtWBa0qlUmFpacmnT5+SvfNffO7cuUPnzp3Jli0bq1ev1riMQBeWLVvGxo0bOXPmjOx6kRo8eQKVK8OHDxAd/c3DKmNjjGxs1DPhJUr87wFfX2jcWD3bHV/5kLU1VKumnj03N9db+NKPSc54S1I6JBdY/jhOnDhBv379OHjwoEZJ940bN6hSpQq9e/dmzpw5Ok26Qd2XO3v27Lx48UKn435WuHBhzp07R8mSJSlVqhT79u3Ty3Xi069fP0xMTFi6dGmKXVNKQEQE1KgBb97Em3QDGCmVEBQEtWrBu3fqT96/D40aQUhI/Ek3QFiYOlnv0kU/sUs/NJl4S1I6JBdY/hj8/Pxo374927dvp3Tp0okef+rUKerUqcOcOXMYNmyY3uLSR7nJl8zMzJg2bRo7d+5k+PDh9OrVK0XWNBgZGbF69WqmTJnC48eP9X496Tu2bYPAQFCpEj82PBz+/FP9799+U/9/YiIi4MABuHMneXFK0n/IxFuS0qHPvbxlJVn6df/+fZo2bcqKFSuoWbNmosfv3LmTNm3asGXLFtq3b6/X2PSdeH9WpUoVrl69CkCpUqU4e/as3q9ZoEABRo0aRZ8+feTvlyHNmgWhoZodGxkJCxeqZ7337dMsWQf1jPiCBUkOUZLiIxNvSUqHHB0dMTc319vtfsmwAgICaNCgAVOnTqVly5aJHr9kyRKGDBnCsWPHUmRzkJw5c+qkpaAmbGxsWL16NR4eHrRq1Yrx48cTnUDpga6MGDGCwMBAvLy89HodKQHR0eqSEW1ERMD+/WBmpvk5sbFw6JB215GkRMjEW5LSIaUQ1G7XjRP+77jwNoJHn6JRydm5dCEwMJAGDRrQt29fevXq9d1jhRCMGzeOxYsX4+vrS6lSpVIkxly5cqXIjPeXWrRowbVr17h27RqVKlXijh5LBExMTPD09GTMmDG8fPlSb9eREhAZCdoubjU2Vtd7a/s6GBGh3fGSlAiZeEtSOqISAt9XYSy6EUixToN4ZZ2dUy/D2PckmMU3Ajn/JlzeHk/DwsPDadasGQ0aNMDd3f27x8bExNC9e3dOnDjBP//8Q548eVIoypQrNfkvJycnDhw4QN++falevTqLFy9GpWlZgZZKlixJ3759GTBggPydSmkZMmh/TlQUuLiAtj26bW21v5YkfYdMvCUpnVAKwbaHwZx/E0GUUmBkag7GxigFRKsgQinwfRXO7schcvY7DYqJiaF169bky5ePOXPmfHeTj9DQUJo3b867d+/w8fHBwcEhBSM1XOIN6p7bffr04ezZs2zatIlGjRoREBCgl2tNmDCBu3fvsnPnTr2MLyXAyAhatlT/V1NlykDTpprXdwNYWKj7gkuSDsnEW5LSCe/noQSExRD7nZw6VsCTkGjOvNJgVb+UYoQQvAyLYe/jYBZe/4DHtfcsuRHI3wFhBEcrUalU9OjRAyMjI9asWfPdFoBv376lVq1aZMuWjX379mFtbZ2Cz0RNV9vGJ0f+/Pnx9fWlSpUqlClThh07duj8Gubm5nh6ejJ48GA+fPig8/Gl7xgxQp0Ya0BpYaHeZMfCAnr31q7OW+6FIOmYTLwlKR2IjFVxPTDqu0n3ZzEquPQughiVnPVODaKV6jsVWx5+4l5QNBFKQYwKQmNVXHoXwYrbH5m4dg9Pnjxh+/btmJqaJjiWv78/VapUoWHDhqxevRoTE5MUfCb/Y2dnh1KpJDg42CDX/8zExITffvuNAwcOMGHCBNzc3Pj06ZNOr1GpUiXatWun1/aMUjwqVICuXYlNZIMbpZkZx1QqNn3ugDJ+PMEWFsQmMnysuTlMnAjOzrqJV5L+n0y8JSkduBkYiZaVi9z9GKWXWCTNKVWCrQ8/8TwshhgV/PetkFKoPywKV2Diur1YWVklONbly5epWrUqw4cPZ+rUqd8tRdE3hUJh0HKT/6pQoQKXL1/GxsaGEiVKcPLkSZ2OP23aNHx9fTl8+LBOx5W+78nIkawxMkJpZvbtLLaJCVhaYtyqFbnOn2fCb78xceJEZq1eTdNMmSBXrvhrxU1NUZmbM8/IiBtNm6bME5F+KDLxlqR04EVYrEaz3Z/FqOB1eGJzPpK+Xf8QydvIWJSJfO9MLSy5Hiz4GKWM9/Hjx4/TsGFDlixZwq+//qqHSLWXmhJvAGtra5YtW8aff/5Jp06dGDlyJFFRunnzmSFDBlauXEm/fv0MPsv/o4iKiqJt+/aETZuG8d27MGAAZM0KNjbg5KSuzb54EbZsoWjp0vz7779s3LiRqVOn4nn8OCYPHsCaNera788dUmxsoFcvjK5fJ8fq1fzcogXvPu94KUk6IhNvSUoHklI1opQLLA1KCMH5txHEarjWSyXg0ttvW5tt2rSJzp07s2vXLlq1aqXjKJMuNdR5x6dRo0Zcu3YNf39/ypcvz/Xr13Uybt26dalbty5jx47VyXjS940YMYIcOXKoS3zy5IF58+DlSwgOhtevYfVqKFo07vht27YhhKB+/fp06NCBl+/fQ9u24Oen3ihHqVSfu2wZFChAx44dadeuHa1bt9Z7X3jpxyITb0lKB+zNjbX6ZTZWgJ25ln1wJZ36EKUkXNOsG1ABt74oDxJCMHfuXMaOHcuJEyeoVq2aHqJMutQ24/0lBwcHdu3axYgRI6hTpw5z587VSdvBuXPnsnfvXk6fPq2DKKWEbN26lSNHjuDl5aVRSdWyZcuYN28ep06dYteuXbRs2ZKffvqJy5cvqw9QKOLtkPLHH39ga2vLoEGDZMtISWdk4i1J6YBjdCCxsTEaHy+EoGim7y9KkvQrPFZgpGVlftT/16SoVCpGjBiBl5cX//zzD0W/mNlLLVJz4g3qOvSuXbty4cIF9u3bR506dXj69GmyxrS3t2fp0qX06tWLCLnxil7cvXuXQYMGsXPnTmw16LG9cuVKZs2ahY+PDy4uLigUCsaNG8f8+fNp0KABe/bsSfBcIyMjNm3axD///MPSpUt1+TSkH5hMvCUpDXv16hWDBg2iRrlSqILeapbGqZQ8OH+SGZMmEhYWpu8QpQSYKkB8s5zy+4wV6trWTp06cenSJXx9fcmZM6eeIkyelNw2Pjny5MnDyZMnadiwIeXLl2fjxo3Jmt1s0aIFpUqV4vfff9dhlBJAWFgYrVu3ZsaMGRrtwurp6cnUqVPx8fEhb968Xz3WunVrDh8+zKBBg5g5c2aC33MbGxv279/PtGnT8PHx0cXTkH5wMvGWpDTo3bt3jBw5kqJFi2JmZsadO3cYVKMYFsaK7ybfRkAGMxPGNKvCkydPKFKkCLt27ZK3UQ3AwdJEy7QbspgraNy4MVFRURw9ehR7e3u9xKYLhtg2PqmMjY1xd3fn6NGjzJgxg3bt2hEYGJjk8RYvXoyXlxd+fn7qT9y+Dfv2qT/0uJV9eiaE4Ndff6Vs2bL07Nkz0ePXrVvHb7/9ho+PD66urvEeU65cOc6fP8/27dvp1q1bgott8+bNy9atW+nYsSMPHjxI1vOQJJl4S1IaEhgYyPjx4ylUqBCRkZHcvHkTDw8PsmTJgq2ZMV0L2pHZwhhTI75KwBWAiQKyWJrQrZA9+XJkY/Pmzaxbt45JkybRoEED7t27Z6in9UMyNVJQLJO5xi/CJgrBluljKFSoEDt27MDS0lKv8SVXzpw5efHiRZp6U1e6dGn8/PzInj07JUuW5Pjx40kax8nJiblz5rClVStEiRJQvjx06aL+KFcOSpYEudulVlavXs2VK1dYtmxZonXdmzZtYty4cXh7e1OgQIHvHpsjRw7OnDlDSEgIdevWTbCLSc2aNZk8eTLNmzfXeS946ceiEGnpVVGSflDBwcEsWLCARYsW0bJlSyZMmICLi0u8xwoheBUey6V3kXyIVLcMzGJpQllHS5ytvt1QJSYmhsWLFzN9+nR69+7NhAkTDLLb4Y8oKErJ6tuBxCZSJKRA8P7JA+xu/824ceMM2qNbG5kzZ+bu3bs4OjoaOhSt+fj40L17d1q0aMGsWbO0e6MjBGLAACJXrsRSGX8LSKytoXt3WLRIvbhPStCVK1eoX78+vr6+FCxY8LvHbtu2jaFDh+Lt7a3V2geVSsWECRPYtm0bBw4coEiRIvEe179/f548ecKBAwcwNpYL1CXtyRlvSUrFwsLCmDVrFq6urjx48IDz58+zatWqBJNuUC8ay2ZtSvPcNnQvZE/3QvY0cbGJN+kGMDU1Zfjw4dy4cYPnz59TuHBhdu7cmaZmKtOqsPev2TW+N8TGJJh6GwkVgS+eUDDEn/Hjx6eZpBtSb0tBTdSpU4dr167x7t07ypQp878OGJqYOxfF+vUJJ90AYWHg6Qnz5yc/2HQsKCiI1q1bs2TJkkST7p07dzJ06FCOHTum9YJjIyMjpk+fzqRJk6hZsyZHjx6N97iFCxcSGRnJmDFjtBpfkj6TibckpUKRkZEsWLCA/2vvvsOavNo4jn8TCEsQQXHh3lvcOKoWZ62rzrq1jrp3ta111D3raLVua91atVate++JC7XiXqA4QGQned4/UnmlMhIMhHF/rourNnnGjTJ+OTnnPoUKFeLChQscPnyYVatWxTlX0Rxy5MjB6tWrWbVqFT/++CP169fn5s2bSXa/9O7Zs2fUqVOHFp9W5+syWSnlaou1CmzVKmzVKmzUYKWL4ujKn6lu9YIenTtaumSTpfTOJglxcXFh3bp1jBkzhoYNGzJ58mR08YVpgIgImDDBEKwTEhoK48eD9ImOlaIodOvWjUaNGtG2bdt4j926dSv9+/dn9+7dlC5dOtH37Ny5M1u2bKFr16788ssvHzyv0WjYtGkTW7ZsYeXKlYm+j0jHFCFEihEREaEsWLBAcXd3V5o2bap4e3tbpI7IyEhl9uzZSubMmZWRI0cqwcHBFqkjrQoICFBKlSql/PjjjzEeD9fqlHtvIhTfwAhl4botSvYcOZTTp09bqMqP17dvX2XevHmWLsMsHj58qHh5eSnVqlVT7ty5E/eBa9YoiqOjooBxH46OirJuXfJ9IqnIzJkzlcqVKyvh4eHxHrdt2zYla9asyoULF8x27zt37iglSpRQ+vbtq0RFRX3w/LVr15QsWbIoJ0+eNNs9RfogI95CpABarZbly5dTtGhRtm3bxpYtW9i2bZtRLbOSgkajYfDgwVy9epUnT55QvHhxNm7cKNNPzCAwMJD69evTuHFjRo8eHeM5Wys1eR01rP95OtO+H8bhQ4eoUqWKhSr9eKl9xPt9uXPnZt++fbRq1YoqVaqwfPny2L8fDh6Et2+Nv/Dbt3DokPkKTSOOHz/O9OnT2bhxI7a2ce85sHPnTnr06MHOnTspX7682e5foEABTp48yd27d2nUqBGBgYExni9ZsiQrVqygZcuWaeZrXCQTSyd/IdIzrVarrF69WilcuLBSq1Yt5dixY5YuKVZHjx5VSpcurdSpU0e5fv26pctJtd68eaN4enoqgwYNUvR6/QfPa7VapXfv3oqHh4fy9OlTC1RoXmvWrFHatm1r6TLM7urVq0rZsmWVZs2aKc+ePYv55JdfGj/a/e6jfXvLfCIp1LNnz5RcuXIpO3fujPe43bt3K25ubkn6rlBUVJQycOBApVixYsrt27c/eH7q1KlK+fLllZCQkCSrQaQtMuIthAXo9Xo2b95MmTJlmD9/Pr/++iuHDh2iRo0ali4tVp988gkXL16kSZMm1KxZkxEjRhAcHGzpslKV0NBQGjduTJkyZZg9e/YHiyTDwsJo3bo1vr6+HDlyhBw5clioUvNJSyPe7ytVqhRnzpyhaNGieHh4sGPHjv8/mScPmNLtwtoaUugmSJag0+no0KEDnTt3plGjRnEet3//fjp16sSff/6ZpO8KWVtbM3fuXAYOHEj16tU5evRojOdHjBhBiRIl6Natm7wjKIxj6eQvRHqi1+uV7du3Kx4eHkr58uWVnTt3xjrymZL5+fkpnTp1Utzd3ZX169enuvotISwsTKlXr57SuXNnRafTffD8q1evlBo1aijt2rVTIiIiLFBh0rh3756SO3duS5eRpI4cOaLky5dP6dWrl2EtxJUrimJvb/xot729oly7ZulPI8UYM2aM8umnn8Y6r/qdgwcPKlmyZFGOHj2ajJUpyt69exU3Nzdl+fLlMR4PCwtTKleurIwfPz5Z6xGpkwRvIZKBXq9X9u7dq1SpUkUpVaqUsmXLllQfWI8dO6aUKVNG8fLyUnx8fCxdTooVERGhNG7cWGnTpk2sYeLhw4dKiRIllCFDhsQaylOzyMhIRaPRxBui0oKgoCClS5cuSqFChZRTp04pSrlyiqJSJRi69SqVolSoYOnyU4zdu3cr7u7uip+fX5zHHDlyRHFzc1MOHTqUfIW958aNG0rBggWVb775RtFqtdGPP336VMmVK5eyefNmi9QlUg8J3kIksSNHjig1a9ZUihYtqqxbty5NhauoqChl3rx5SpYsWZThw4crb968sXRJKUpUVJTSqlUrpVmzZkpkZOQHz1+9elXJnTu3MnPmTAtUlzxy5sypPHz40NJlJIs//vhDyZYtm/Jznz6KNoOjoo8vdIMSkcFReXPpqqXLThEePnyoZMuWTTly5Eicxxw/flxxc3NT9u/fn4yVfejFixdKzZo1lWbNmsXo+HTu3DklS5YsyqVLlyxYnUjpZI63EEnk9OnT1KtXj65du/LVV19x7do1vvzyS9TqtPNtZ21tzYABA7h27RoBAQEUL16c9evXy1xHDHNVu3XrRnBwMBs2bECj0cR4/ujRo9SpU4cpU6YwbNgwC1WZ9NLqPO/YtGzZEm9vb47pNSxf8AehLpmJcHD84LgIB0dCXbKweslfrLHOme6/XyIjI2nbti1DhgyhZs2asR5z6tQpvvjiC1avXk2dOnWSucKYMmfOzL59+8icOTM1atSI/vquWLEi8+bNo1mzZjx//tyiNYqUS7aMF8LMvL29GT16NJcvX2b06NF069btg9CVVp04cYJ+/frh6urKzz//bPLucWmFXq/n66+/5vbt2+zcuRMHB4cYz2/ZsoXevXuzZs0a6tWrZ6Eqk16kTqHvDxPwrFmLGp6e5HbUkEGTdl54xmWdbyAPgqNQa6MocuhvKq3+FZdH9wB4nTs/Zzv1xbd2I/QaDVaKnhYFM1HQ2cbCVVvOkCFDuH37Ntu2bYt1YOLs2bM0btyYlStX8tlnn1mgwtgpisLMmTOZM2cOW7dupXLlygCMGjWKo0ePcuDAAWxs0u+/q4idBG8hzMTHx4exY8dy8uRJvvvuO3r27ImdnZ2ly0p2Wq2WhQsX8uOPP9KlSxfGjh2Lk5OTpctKNoqiMHDgQC5evMiePXtwdIw54rlgwQImTpzIjh07zNp3OCUJidJzzD+Eay8jiIwIR622wsZGg06B/E4aauXMgJu9taXLTBJvInUsuv4anQm/WXPaqehcPHPSFZWCbd68meHDh3PhwgVcXV0/eP7ChQs0atSIZcuW0bhxYwtUmLC//vqL7t2788svv9C2bVv0ej0tWrQgS5YsLFmy5IMORiJ9S/tDD0IksVu3btGhQwe8vLzw9PTk9u3bDBgwIF2GbjBMP+nfvz/Xrl3j5cuXFCtWjHXr1qWLt9N1ej0jR43m1OnT/P333zFCt6IojBo1ijlz5nD8+PE0G7oDI3Qsv/maKy8i0CqgtrEDaw2RetApcPtNFL/fCuR+cNrcJv1FuA5rE4PWw9cmbLiThvj6+tK7d282bdoUa+j29vamUaNGLF68OMWGboCmTZuyb98+RowYwfjx41GpVKxatYozZ84wb948S5cnUhgZ8RYike7fv8/48ePZvn07gwcPZuDAgelqZNdYJ0+epF+/fjg7O/PLL79QqlQpS5dkVjq9wj9BkZx+FsqzUC2KTouVtYaCzhqqZHUgVwZrtFotX3/9NdeuXWPnzp24ublZuuwkodMrLLr+muAoPQn9YtGooXsxFzLZmtDzOhXwDYpgx/23ROiN/9UaGfqW/HeP0alTpySsLGUJCwvD09OT3r1706dPnw+ev3z5Mg0aNGDBggW0aNHCAhWazt/fn2bNmlGwYEGWL1+On58fVatW5ffff6d+/fqWLk+kEDLiLYSJHj9+TJ8+fahQoQK5cuXC19eXUaNGSeiOQ7Vq1Th//jytW7fm008/ZejQobx588bSZZnF2yg9y28GsuthMM/DdKhUKtTWGhTgdlAUG+8EsfV2IM1btMDf35+DBw+m2dAN8E9QJGG6hEM3gE4PZ56HJnlNyS2jxgrj/gb+z8XBlqFDh+Lr65tEVaU8/fv3p2TJkvTu3fuD565du0bDhg2ZN29eqgndANmzZ+fw4cPo9Xpq166Nvb09GzZsoGPHjty6dcvS5YkUQoK3EEby9/dn8ODBlClThowZM/LPP/8wfvx4MmXKZOnSUjwrKyv69euHj48PgYGBFC9enDVr1qTq6SeROoU1twJ5FaEjSh/7MVF6uP4yhDLt+rFt27YP5nunNaefhcb5d/FfeuDqywiiTBgZTg2y2luRwdr4X61R4WEc+f1X6tatS5s2bYiIiEjC6lKGFStWcOrUKRYvXvzB/Ofr169Tv359Zs2aRZs2bSxUYeLZ29uzbt06GjZsiKenJy4uLkycOJEmTZoQGBho6fJECiDBW4gEvHz5kpEjR1KiRAkUReH69etMmzaNLFmyWLq0VCdr1qwsX76cP/74g1mzZlG7dm2uXr1q6bIS5eKLMKOmVFjb2pG5REVeRqX9BVYBYTqTjlerVLwKN+2clE6lUuGZzR5js7eDgz09Pq9FaGgoPj4+VK1alX/++Sdpi7SgK1euMGLECP74448PXoj+888/1KtXj2nTptG+fXsLVfjxVCoV48aNY+rUqdStW5ccOXJQv359vvzyS7RaraXLExYmwVuIOAQGBjJmzBiKFClCUFAQly9fZu7cuWTPnt3SpaV6VatW5dy5c7Rt25Y6deowZMgQgoKCLF2W0RRF4dzzMLRGDtbqFDj3PCxpi7IwRVFMnGABKkCXit/1iEvZzHbkddRgncBrLWsVNMuXkYZ167Bt2zbOnz/PnTt38PT0pG7dumzdujVNBbU3b97QqlUr5syZQ4kSJWI85+vrS926dZk0aVKamev+5Zdf8tdff/H111+TJ08eoqKiGDFiBBE6PRcCwljo84oZl14w49ILFl9/xeUX4USa0g5HpEoSvEXa9uABfPMN5MkDLi6QKxf06wfxzLcLDg5m0qRJFC5cmEePHnHu3DkWLlxI7ty5k7HwtM/Kyoq+ffvi4+NDcHAwxYsXZ/Xq1ali+klAuI7QyCijj1eAW0FpewqBSqXC1sq0UX2doqTJvt4qlYoWBTJSwtUWKxX896/FRg12VoZjCr3Xv7tMmTLs2LEDW1tbmjdvzqxZs8ifPz8TJ07E398/mT8L81IUhe7du+Pl5UWHDh1iPHfnzh3q1KnD2LFj6dq1q2UKTCKenp6cPn2a1atX4+7uzrnbj5nj/YzDT0IIjNSjUwwvzF9F6Nn/5C3zfV7xNMT4ny0i9Ul7P/GEANDrYdgwKFYM5s2DR48gMBCePIElS8DDA7p1g/dGk0JDQ5k5cyaFChXCx8eH48ePs2LFCgoUKGCxTyM9cHNzY+nSpWzZsoXZs2dTq1Ytrly5Yumy4nXgyDHCQ01bGKg1cu5zalbK1dakXyqZ7axwtklbXU3esVKpaJTHiT4lXfHMZk8OB2vc7KzI76ShUV4nBpR2pUDGDzdX+eSTT+jXrx+bN2/myJEjbN++nUePHlG8eHHatWvHsWPHUsWL0//6+eefuXv3LnPmzInx+L179/Dy8mLUqFH06NHDMsUlsTx58nD8+HG0jplp8P1PKFYaomL5J4zSQ4ROYd3tIJ6Fpp13OkRM0k5QpE39+8OKFRBfOHJwgEaNiFi1isVLljBlyhSqVq3Kjz/+mOZa3qUWOp2OxYsXM3bsWNq3b8+PP/6Is7OzpcuKYc+ePQwdN5mu8zehUxkfM61VMNwjba8LCIzQsfTGa6Om4GjU0CiPE8VdbJO+sFRGp9NRt25d6tSpww8//AAYpr79/vvvLFiwABsbG/r27UvHjh1TxYLd06dP07RpU06fPh1jIOPBgwfUrl2b4cOH069fPwtWmPQUxdBqMzDSuFfg2eyt6FbMJYmrEpYgI94i7TlzJuHQDRAaStT27XydOzd79uxhx44dbN68WUK3BVlZWdGnTx+uX79OSEgIxYsX5/fff08xI3yHDx+mU6dOLJo1BWtr00Zq82XUJFFVKUcmWytq5HBIcGGhtQryOmoolkm2046NlZUVq1ev5pdffuH48eMAZMqUiYEDB3Ljxg1mz57Nvn37yJMnDwMGDOD69esWrjhuL1++pG3btixdujRG6H706BFeXl4MHjw4zYdugCchWkJMeNvrZbiOgDAZ9U6LZMRbpD2tW8OWLYbpJkYI8vDA2ds7iYsSiXHmzBn69euHnZ0d8+fPp2zZshar5eTJkzRv3pyNGzdSu3Ztjj4N4czzMKO2BteooU1BZ3I7pv3wDXDueShHnhpe+L4/+q0G1CoomsmWRnkdsZKttOO1Y8cO+vXrh7e3d6w7Oz5+/JjFixezZMkSihcvTt++fWnWrBkaTcr4OtPr9Xz++eeULl2a6dOnRz/+5MkTateuTZ8+fRg6dKgFK0w+ex4F4/3C+HUeKqBqNntq5syQdEUJi5DgLdIWnQ7s7SHKhMUpNjbg729YfClSHJ1Ox9KlSxk9ejRffvmlRXqnnz9/nkaNGrFq1SoaNGgAQKhWz88XnqKz1qBWxz36baWC3Bk0tC2U8YOexWlZmFbP5ZfhXH0ZQbhOj0atomBGGypmtcclje1WmZQGDx7Mw4cP2bx5c5xfP5GRkWzdupX58+dz584devXqRa9evciRI0cyVxvTxIkT2bNnDwcPHox+MeDn50ft2rXp3r07I0aMsGh9yWnz3Tf4BkWadE4ZV1sa5ZWN2dIamWoi0hQlKAjF1HBjYwMBAUlTkPhoVlZWfP3111y/fp3w8HCKFy/OypUr0Rv5jsbHunLlCo0bN2bJkiXRoRtgyfyfWTukPXZqwyYosdGoIaeDNS0KpK/QDWBvrcYzmwM9S7gwoHRmepd0pV5uRwndJpo2bRr3799n4cKFcR5jY2ND27ZtOXr0KLt378bf358SJUrQpk0bjhw5YpGpWgcOHGDBggVs2LAhOnQ/e/YMLy8vOnfunK5CN4CN2vTvfxsTuwSJ1EFGvNOZcK2eq6/CufYqggidgkatolgmGzyy2KeKtl6RkZE8efKEhw8fRn88ePAg+s/PHzzAPzQUa1Mu6uAAN2+CtAtMFc6ePUu/fv2wsbFh/vz5eHh4JNm9bt68iZeXF3PmzImxi9706dNZvHgxBw8eZNHy3wh1zUP+T5sQqVNQqwztwTLbWeGZ1YFiLjao01noFuZ169YtqlevzoEDByhTpoxR57x58yZ6MaZarY5ejJkxY8YkrhaePn1KhQoVWL16NXXq1AEgICCA2rVr06ZNG8aOHZvkNaQ0px8EcOh5FCpr49Y1aNSGHu/vt5sUaYME73Tk3LNQjviFgipma7N3L6oruNnxac4MFhuZUxSFwMDAOEP1w4cPef78OTly5CBPnjzkyZOHvHnzRv/53UfG8uXhzh3jb5wli2GqiZWMxKUWOp2OZcuWMXr0aNq0acOECRPMPv3kzp071K5dm0mTJtG5c+foxydMmMCaNWs4cOAAer0eDw8PLl++jLu7O0GRerR6BXtrdap4IStSj99//52pU6dy7tw5MmQwft6voigcPnyYBQsWcODAAdq1a0efPn2SbBF5VFQUXl5eNGjQILojy4sXL/Dy8qJZs2aMHz8+Xb374+Pjw5w5c9i67S+G/HUBK1s7o85zsFbRv5SrvGhPgyR4pxMn/UM56R8ab5svazWUdLGlYW7HJPnBqNVq4x2tfvjwIUB0mI4tVOfMmRNr6wTGsxcvhqFDISQk4aLs7GDUKPj3F4RIXV6+fMmoUaPYtm0bkydPpkuXLqjVHx94Hzx4QK1atfj+++/p1asXYAgwY8aMYcuWLRw4cIDs2bPTqVMn8uXLx4QJEz76nkIkpHPnztja2rJkyZJEnf/kyROWLFnC4sWLKVy4MP369eOLL74w62LMESNGcPXqVXbu3IlarebVq1fUqVOHhg0bMnny5HQRuhVFYc+ePcyePZsrV67Qp08fevfuzQOcOOIXkmBPf2sVNMjtSOnMxoV0kbpI8E4HAsK0rPwn0Ojeui3yZyR/LBs7JCQoKChGiP5vsPb39ydbtmxxjlbnzZvXPD2bQ0JQChdG7+dHgmPYrq6GaSZubh9/X2Ex58+fp2/fvlhbWzN//nzKlSuX8EmKArGEgKdPn1KzZk0GDBjAoEGD/j1UYeTIkezdu5d9+/bh5ubG+fPnadKkCbdu3cLJSRZAiaQXHBxMhQoVmDBhAm3btk30daKiovjzzz9ZsGAB//zzDz179qRXr164u7t/VH3btm1j4MCBXLhwgSxZsvD69Wvq1q2Ll5cX06dPT/OhOywsjFWrVjFnzhw0Gg1DhgyhXbt22NoaetUrisLhp6FcfBFGVBzh21oF1bI7UC27QzJWLpKTBO904O8HwVx9FYGx/9B5HTW0KxwzAOt0Op4+fRrvaLVWq40Rpv8brN3d3ZOlzVVUVBT9GzZk2okTOOv1qGLrcGJtDY6OcPgwWLBFnTAfvV7P8uXLGTVqFK1atWLixIm4/LdTjb+/4R2RBQsMC2rVaihcGL75Br78kufBwdSqVYsuXbrw7bffAoZflkOGDOH48ePs3bsXV1dXFEWhdu3adOjQIXpEXIjkcOHCBT777LMPNqNJLB8fH3799VfWrl2Ll5cXffv25dNPPzU5JN+9exdPT0/++usvPD09CQoKol69elSvXp2ffvopTYduPz8/5s+fz+LFi6lSpQpDhgyJ9+/w7ptITvqH4heqxfrfY7SKQq4MGqpltyevk8zrTsskeKdxiqIw6/JLo0a7o+l1BG9fxIPbt6JDtZ+fH1myZIl3brWLi4vFf7jqdDo6dOhAaGgomxcsQDNjBixfbghY70RFQYcOMHo05MljuWJFknj58iU//PADW7duZfLkyXTt2tUw/WTdOuje3TDSHR4e8yRHR/S2trR2daVUu3b8+OOPgCHM9+vXj0uXLrFr167oeeTbtm1j1KhRXLp0KeGpT0KY2Zw5c1i3bh3Hjx8322BGcHAwq1evZv78+eh0Ovr27Uvnzp2NehcyPDyc6tWr06VLFwYOHMibN29o0KABFStWZN68eRb/vZBUvL29mT17Ntu3b6d9+/YMGjSIIkWKGH3+m0gdgRF6UIGLrRonjawzSg8keKdxkTqFOVdeYkrjNX1kOPpTf5LHNWN0qM6VKxc2Nin7Vbher6d79+48fvyY7du3Y2f37/y4sDA4cQICA8HJCapXN4x2izTt/Pnz9OvXD7VazepWrSg4Zky8u5nqgQhbW+yuXUNVqBA6nY6ePXvi6+vL33//HT2dJCoqilKlSjF37lwaNmyYTJ+NEP+nKApNmjShZMmSTJs2zezXPnbsGPPnz2fv3r20bduWfv36Ubp06TjP6d27N69evWLDhg28ffuWhg0bUrZsWebPn5/mQrdOp2PHjh3Mnj2bO3fu0L9/f3r27BnrBkdCxEaCdxqn1RtGvE35R9aooXsxFzKlon67iqIwcOBAvL292bNnj0mr/kXapdfr+W3JElr26YOzET/qFLUaVYMGaP/6i65du/L06VO2b98e4+vp559/ZseOHezZsycpSxciXgEBAZQvX55ly5ZRv379JLmHn59f9GLM/Pnz069fP1q0aBFjEGb16tWMHz+e8+fPY2VlxWeffUaxYsVYuHChWRY6pxRv375lxYoVzJ07F1dXV4YMGUKrVq1SzC6hIvWQ4J0O/OrziqBI48e8bdQqBpV2xSoRDf8tQVEUvvvuO/bv38+BAwfMs0BTpB2bNqH/6ivUb98adbhia0vvevV4EBXF1q1bsbe3j34uMDCQokWLsn///nhHAIVIDocOHaJDhw5cvHiR7NmzJ9l9oqKi+Ouvv1iwYAE+Pj706NGDr7/+mjdv3lC7dm0OHDhAoUKF+Pzzz8mfPz9Lly5NM6H74cOH/Pzzz6xYsYLatWszZMgQqlWrluZG8kXySRvfGSJelbPaozHyZ4SVCjwy26Wa0A0wadIkdu7cyZ49eyR0iw+tWGF06AaIiIqi7P37/PnnnzFCNxi+1po0aSKhW6QIn376Kd27d6dz585JupOrRqOhZcuWHDhwgEOHDvHmzRvKli2Lp6cnXbt2pVChQjRt2pTcuXOzZMmSNBG6T58+Tdu2bSlXrhw6nY5z587xxx9/UL16dQnd4qPIiHc6EKHTs9DnNWG6hP+pNWroWdyFjDapY5rJ7Nmz+fXXXzl69GiSjviIVKxiRbhwwejD9YB+3Dis/7O73r1796hYsSLXrl0jR44cZi5SiMTRarXUrl2bpk2bJts27Iqi0KZNG54+fcqbN2+4e/cuxYoVY+/evWTOnDlZakgKWq2WLVu2MHv2bJ49e8bAgQP56quvkmW3T5F+pP6XpSJBtlZq2hV2xtZKRXyv0zVqaFUgY6oJ3YsXL2bevHnRm5kIESsTe2yrbGywjuUX7XfffcegQYMkdIsUxdramrVr1zJr1izOnDmTLPdcuHAht27dYufOneTOnZsqVapQpEgRChUqRK9evbh06VKy1GEugYGBzJw5k4IFC/Lzzz/zzTff4Ovry+DBgyV0C7OT4J1OZLW3plvRTBTNZIOVyhCyrf/9r5UKCjhp6FQkU6rpH/puQc++ffvInTu3pcsRKVnTpuBg/GYUKisr8PKK8djp06c5fvw4w4YNM3d1Qny0PHnysHDhQtq1a0dgYGCS3uv8+fOMGTOGtWvX0rlzZxwcHNizZw/r1q3jxo0b5M2bl6ZNm1K9enXWrFlDREREktbzMe7cucPAgQMpUKAA3t7ebN68mWPHjtGiRQusrFLHAJRIfWSqSToUptVz900kEToFGysVeZ00qap/6JYtW+jXrx8HDhygRIkSli5HpHSBgZAjx4e9u+PwOnduMj14ED2PU1EUqlevTq9evejatWvS1SnER+rXrx8vXrxg/fr1STIP+dWrV1SoUIGpU6eyfv16ADZu3PhBZw+tVsuOHTuYP38+V65coXv37vTu3Zs8KWDfBEVROHr0KLNnz+bEiRP06NGD/v37f/SunUIYS0a80yF7azUlXe0o72ZPKVe7VBW6d+/eTe/evdm5c6eEbmGcTJlg2DAwosVklLU1IzQaGjduzMOHDwH4448/CA0NpVOnTklcqBAfZ+bMmdy4cYNly5aZ/dp6vZ4uXbrQtGlTNm3ahE6nY8OGDbG207O2tqZ58+bs27ePo0ePEhYWRrly5WjWrBl79uxJ0oWgcYmMjGTVqlVUqFCBXr160aBBA+7fv8+UKVMkdItkJSPeItU4cuQIrVu3Ztu2bVStWtXS5YjURFHg669h7VoICfnwebUavY0NA2xtqTJvHo8ePWLOnDl8//33/PLLLyxevJg6deokf91CmOjGjRvUrFmTI0eOmHVwYtq0aWzdupXcuXMTGhrKli1bsLW1Nfr8kJAQ1q5dy/z58wkJCaFPnz5069YNFxeXhE9+9cqwA/Fffxm+f7NmhW7doHlzSGBjtxcvXrBo0SIWLFhA8eLFGTJkCJ999lma6LwiUilFiFTg1KlTipubm3Lw4EFLlyJSK71eUf76S4moWFEJU6mUUFtbRe/srCh2dory5ZeKcumScvXqVSVbtmzKxo0blRs3bij58+dXXFxclOvXr1u6eiGMtnTpUqVUqVJKaGioWa53+PBhJVu2bEqzZs2U+vXrK2FhYYm+ll6vV06ePKl06NBByZQpk/LVV18pFy5ciP1gnU5RvvnG8D3q4KAohpfQhg9HR0XJlElRtm6N9dTr168rvXr1UjJlyqR069ZNuXz5cqJrFsKcZMRbpHiXLl2iQYMGrFixgkaNGlm6HJGK+fn5UadOHbo3aMDQ1q1R2dhAoUKG6Sj/evf1NnPmTIYOHUqfPn349ddfGThwICNHjoyxa58QKZGiKLRr1w5XV1cWLFhg1Dn+oVquvQonOEqPjVpFPicNRTPZ8uL5MypUqEDx4sUB2L59+wf97RPr+fPnLFu2jIULF5IjRw769etH69atsbOzM8Trr76CjRshNDTui9jbw4oV0LYtiqKwb98+Zs+ejbe3N71796ZPnz5ky5bNLPUKYQ4SvEWKduPGDby8vPj5559p1aqVpcsRqdjjx4+pU6cOXbp04fvvv4/32AsXLvDJJ5/w6aefsnPnTh49ekSfPn148OABS5cupUqVKslUtRCJExQURPny5ZkxYwYtWrSI87hnoVq2PwgmMEKH9r00oFGDCriy9Xcub1tFpkyZ2LlzJw4mdAgylk6nY+fOnSxYsICLFy/y1VdfMSRfPrINHx771LD/UOztWTtxIlOWL0etVjN48GDat29vCPBCpDASvEWKdffuXWrVqsWkSZPo3LmzpcsRqdiDBw/w8vKib9++RrUE9PX1pWLFimg0GtauXUv9+vVRFIUNGzYwZMgQvvzySyZOnEgGIxZsCmEpZ8+epXHjxpw7d468efN+8PzTkCjW3Q4iKp61jlHhYTw+tZ9ZvVrj6OiYhNUa+Pr6snDhQjrMnUt5nc6oc8KATYULk3PBAurUqSM7S4oUTYK3SJEePXpEzZo1GTlyJL1797Z0OSIVu3PnDnXq1GHYsGEMGDDAqHNatGhBpUqV+OSTT/jiiy/YsGEDXv/29n7x4gVDhw7l+PHjLFy4kPr16ydl+UJ8lBkzZvDnn39y5MgRrK2tox+P0ivMv/aKcCN2NLZWQdN8ThTJZPxiyo/y8CFK0aKojGwBChhahj59mnQ1CWEmsqxXpDjPnj2jbt269O/fX0K3+Cj//PMPtWvX5vvvvzc6dB87dowLFy4wePBgatSowaZNm2jbti3Hjh0DIEuWLPz+++8sWLAgurf3q1evkvLTECLRhg0bhpOTE+PGjYvx+M3XEeiMHHfTKnDyWVgSVBeHhw9RmdAxBYCAgKSpRQgzk+AtUpRXr15Rr1492rdvL7sEio/i4+ODl5cX48ePp1evXkado9frGTZsGJMnT45eQFa7dm3Wrl1Ly5YtOXXqVPSxDRs25Nq1azg7O1OqVCk2btyIvIEoUhq1Ws3KlStZvnw5Bw8ejH787POweKeY/NeLMC2vI4yb+vHRYukNniDZaVKkEhK8RYrx5s0bGjZsSIMGDRgzZoylyxGp2OXLl6lbty7Tp0+nW7duRp+3fv366I4Q76tXrx6//fYbzZo14/z589GPOzo6MnfuXDZv3syPP/5Is2bNePz4sdk+DyHMIVu2bKxcuZLOnTsT8O/IcFCkaZvYWKlUyRe8Cxc2eqfZGOcIkQpI8BYpQkhICI0bN6ZixYpMnz5dFseIRLtw4QINGjRg3rx5dOjQwejzwsLC+O6775g1a1asm2s0atSIJUuW8Pnnn+Pt7R3juapVq3Lx4kUqVKhAuXLlWLhwoUV25xMiLvXq1aNjx4507do15X9turpCkyZg7CY3jo4wYkTS1iSEmcjiSmFxERERNGnShBw5crBixQrZUUwk2unTp2nWrBmLFy+mWbNmJp07depUzpw5w9atW+M9bvPmzfTr1499+/ZRunTpD5738fGhR48e2NjYsGTJEooUKWJSHUIklaioKD755BPatm2L82ddeR5m/Ai2tQp6FHchk20yTenw9oYaNeLv4Q2gUoGbGzx4ANI+UKQCknCERUVFRRl+CTg7s2zZMgndItGOHz9O06ZNWbFihcmhOyAggJkzZzJt2rQEj23ZsiWzZ8+mQYMG3Lhx44PnS5YsyfHjx2nZsiXVqlVjypQpREVFmVSPEElBo9Gwbt06pkyZgsOz2+gijZ/OkdXeOvlCN0C5crBokWGDnLio1eDsDIcOSegWqYakHGExOp2OLl26EBUVxZo1a2K0uhLCFIcOHaJFixasXbs2Ububjhs3jg4dOhg9Ot2uXTumTp1KvXr1uHXr1gfPW1lZMXDgQC5cuMCRI0eoVKkSFy5cMLkuIczN3d2dBg0a0LlBTSLCjOtUolFDtezm3zgnQR07wo4dULYsODiAra0hbL/7c6NGcPEilCiR/LUJkUgy1URYhF6vp1evXty7d48dO3aYbQtikf7s3buXjh07smnTJmrVqmXy+Tdu3KBmzZrcvHmTzJkzm3TusmXL+PHHHzl06BAFCxaM9RhFUVi9ejXDhw+nS5cujBs3Lkl2/xMiPoqisGPHDoYOHYqNjQ137tzBq3kb6nz3U7zdTaxVUMHNnk/dLbxZ1OXLhpHt0FDInBmaNYPs2S1bkxCJIMFbJDtFURg8eDDnzp1j7969ybIbmkibduzYwVdffcXWrVupXr16oq7RpEkTateunej2lb/++ivTpk3jyJEjse4O+M7z588ZPHgwZ8+eZfHixdEb8giR1K5fv86QIUO4e/cumTJlwsrKimXLltGmTRuGjpmAuuynvAzXoVPgXSCwUYNapaJmDgfKu8nAiBDmIsFbJLtRo0axa9cuDh48SKZMmSxdjkiltm7dSu/evdm+fTuVK1dO1DUOHjxIjx49uHHjBrambtjxnrlz5zJv3jyOHDlCrly54j12x44d9O3bl/r16zNjxgxcXFwSfV8h4vPq1SvGjRvHunXraNWqFX/99Rddu3Zl3LhxaDQarl69ipeXFydOnMAldwGuv44gOFKPxgryOdlQ2NkGtXSYEsKsZI63SFaTJ0/mzz//ZO/evRK6RaJt2LCBPn36sGvXrkSH7neb5UydOvWjQjfAoEGD6NOnD15eXvj5+cV7bOPGjbl27Rq2traUKlWKzZs3f9S9hfgvrVbL/PnzKVasGBEREbRp04YdO3awevVqJk2ahObfDWpKly7NhAkTaNu2LRnVOmrlzEDjfE40yO1E0Uy2ErqFSAISvEWymTt3LsuXL2ffvn1kyZLF0uWIVGrVqlUMGTKEffv2Ub58+Y+6jr29Pa1btzZLXe/mcHt5efHs2bN4j82YMSPz589nw4YNjBo1ihYtWiQY2IUwxv79+/Hw8GDLli0sW7aM8+fP8+TJEy5dusSnn376wfFff/01BQsWZIT0wRYieShCJIMlS5YoefLkUe7fv2/pUkQqtmzZMsXd3V3x8fH5qOuEhIQouXLlUk6ePGmmyv5vzJgxSqlSpZSAgACjjg8LC1NGjRqluLm5KUuWLFH0er3ZaxJpn6+vr9K0aVOlQIECypYtW5Tly5crWbJkUebPn5/g19SrV6+UvHnzKn/99VcyVStE+iVzvEWSW7duHcOHD+fw4cMUlm19RSL9+uuvTJkyhf3793/0pjQTJkzg2rVrbNiwwUzV/Z+iKHz//ffs3r2bAwcO4OrqatR5V65coXv37jg5ObF48WIKFSpk9tpE2vPmzRsmTZrEsmXLGD58ON26dWPw4MFcvXqV9evXU6pUKaOuc/LkSVq0aMH58+cTXKcghEg8mWoiktS2bdsYMmQIe/bskdAtEm3u3LlMnz6dw4cPf3To9vPzY86cOUydOtVM1cWkUqmYPHkyXl5eNGjQgKCgIKPOK1OmDKdOnaJx48Z4enoyY8YMtFptktQoUj+9Xs/y5cspWrQoz58/5+rVq9SqVQtPT09cXV05d+6c0aEboFq1agwYMICOHTui0xm/o6UQwjQy4i2SzJ49e+jUqRO7du2iQoUKli5HpFLTp09n8eLFHDhwIN52fcbq1asXGTNmZObMmWaoLm6KojBw4EDOnz/P3r17cXJyMvrcu3fv0qtXL16/fs2yZcvw8PBIukJFqnP8+HEGDRqEra0tc+fOpXz58kyZMoVffvmFRYsWmbxz6zs6nY769etTq1YtxowZY+aqhRAgwVskkaNHj9KyZUu2bt1KjRo1LF2OSKUmTJjAmjVrOHDgAO7u7h99vWvXrlGnTh1u3ryZLG38FEWhd+/eXL9+nd27d5Mhg/GbkCiKwm+//cbIkSPp3r07Y8aMkY2m0rmHDx8ycuRIjh8/zrRp02jXrh1PnjyhY8eOqNVqVq1a9dHfJ0+fPqVChQps3LiRTz75xEyVCyHekakmwuzOnj1Lq1atWLdunYRukSiKovDDDz+wfv16Dh8+bJbQDYbOI6NGjUq23tkqlYpff/2VQoUK0aRJE0JDQ006t1u3bly5coXbt29TtmxZjh49moTVipQqNDSUcePGUa5cOYoUKcLNmzdp3749f/75JxUqVKBBgwbs27fPLN8nOXPmZNmyZXTo0IGXL1+aoXohxPtkxFuYRFEUnoZqeRKiRadXyKBRU8TZBjtrw2u4K1euUK9ePZYuXUqTJk0sXK1IjRRFYcSIEezbt499+/bh5uZmluvu2bOHAQMGcO3aNWxsbMxyTWPpdDq6dOlCQEAA27Ztw87OzuRr/Pnnn/Tv35/GjRszbdo0nJ2dk6BSkZIoisL69esZOXIk1apVY9q0aeTNm5fQ0FCGDh3K3r17Wbt2LZ6enma/97Bhw7hz5w5bt25FJf28hTAbCd7CaDdfh3P4aSghWj16BfQKWKtBUaBIJlvyhj3lszqfMnv2bNq2bWvpckUqpCgKgwcP5sSJE+zdu9fojiAJ0el0eHh4MGHCBJo3b26Wa5pKq9XSoUMH3r59y5YtWxK1aU9gYCAjR47k77//Zv78+TRt2jQJKhUpwfnz5xk8eDChoaHMnTs3etrHlStXaNeuHR4eHixYsCDJXoBFRkZSrVo1unbtSv/+/ZPkHkKkRxK8hVFO+Ydywj8UbRxfLSoUgl8GkM/vEj06tU/e4kSaoNfr6du3L5cvX2bXrl1m3dl06dKlrFq1isOHD1t09C4qKoq2bdui1+vZtGlT9A6Cpjp8+DA9e/akfPnyzJs3j2zZspm5UmEp/v7+fP/99+zatYuJEyfStWtXrKysUBSFX375hfHjxzNr1iw6deqU5F/Lt2/fpmrVquzfv5+yZcsm6b2ESC9kjrdI0J2gyHhDN4CCCkeXzFDxM+S1nDCVTqejR48e+Pj4sHfvXrOG7rdv3zJmzBhmzZpl8bfMNRoN69evR6vV0r59+0S3C6xduzZXrlwhf/78lC5dmt9++02+71K5iIgIpk2bRqlSpciSJQv//PMP3bt3x8rKioCAAJo2bcrvv//OqVOn6Ny5c7J8LRcqVIg5c+bQtm1bQkJCAIjSK/iHann0NopX4Tr5uhPCRDLiLRL02z+B+IcaFxA0amhdwJk8TokbyRNpkFYLO3fC339DUBBkzw7t2kHlyqBSodVq6dq1K0+fPmX79u0mdf4wxpgxY7h79y6rV68263U/Rnh4OM2bNydz5sz8/vvvWFlZJfpaFy9epEePHmTJkoVFixaRP39+M1YqkpqiKGzbto3hw4dTsmRJZs6cGWPPgwMHDtClSxc6dOjAhAkTkn19AkDXrl2xcc5My+HjuPYqAhUqVIBOUXCyUeOZ1YFSmW2xkrngQiRIgreI18twLStuBsY72v1fhTJqaFVQFn4J4LffYPhwiIyE4GDDY2o12NtDzpxoly6l/S+/EBQUxNatW3FwcDDr7R8/fkzZsmXx9vYmT548Zr32xwoLC6Nx48bkzp2b5cuXo1Yn/g1IrVbLrFmzmDFjBqNGjWLgwIEfFeZF8rh27RqDBw+O3tSpXr160c9FRUUxevRoVq1axcqVK6lbt67F6vQNeMM639fY2NmD6sOvU40KsjtY06aQMxq1hG8h4iPBW8Tr5usI/n4YTKTe+HOcNGr6lTLPojiRik2dChMmQDwt9MKtrJhQqRKjDx1KVKePhHTt2pWcOXMyefJks1/bHEJCQmjUqBFFihRh0aJFHxW+AXx9fenZsydhYWEsXbqU0qVLf3DMs1At3i/CCAjXoQKy2VtTwc0eVzsJ6snlxYsXjB07lk2bNjFmzBh69+6NtbV19PN37tyhXbt2ZM2alRUrVpits09ivI7QseLm6wR/B1ipIK+ThjYy6CJEvGSOt4iXXgEwbQRDL6/lxIkTCYZuADudjonXrmEXFmb2Ery9vdm9ezfffvut2a9tLhkyZGDHjh34+PgwYMCAj54vW7hwYQ4ePEiPHj3w8vJi9OjRREREAPAmUsdvNwNZdSuQyy8jeBKi5XGIFu8X4Sy/+Zq1vkGEaU14hS1MFhUVxbx58yhRogRqtZobN27Qv3//GKF71apVeHp60qlTJ7Zv327R0A1wwi+UKCO+LHQKPHobZfS0RCHSKwneIl4ZbdSAaWHASSNfVune5MlgZJhW6fWwfLlZb68oCsOHD2fs2LFkzJjRrNc2NycnJ3bt2sW5c+cYOnToR4dvtVpNz549uXz5MteuXcPDw4ODJ8/w2z+BPAvTolVifkfrAa0Cj99G8ds/gYRL+E4Se/bsoWzZsuzYsYNDhw7x888/kzlz5ujn37x5Q8eOHZkyZQoHDhxgwIABFl8MHK7TczMwwujfAFo9nH1u/hfRQqQlkpBEvNwzWIPO+BEMGzVUzCrbWqdrL17AwYOGBu/GCA2FOXPMWsLOnTvx8/OjZ8+eZr1uUnF2dmbPnj0cOXKEb7/91iydInLmzMmWLVuYMGECW+8EEhKhjTdA6YG3UXp2PXz70fcW/3fr1i2aNGlC//79mTp1Knv27KFkyZIxjjlz5gzlypUjQ4YMnD9/njJlylio2pj8QrQmLZhUgPvBkUlXkBBpgARvEacHDx7QoUMH9i/9yejwrUJFsUymbwwi0pD798HUzWGePjU+qCcgKiqKb775hhkzZsR4Cz+lc3FxYd++fezatYuxY8ea5ZoqlQqvxl+Qp3QFVEYsttQpcPtNJKHGzC0Q8QoKCmL48OFUq1aNmjVrcu3aNZo2bRpjFFuv1zN16lSaNm3KjBkzWLRokdkXGH+MKL2CYuI7nvKGiRDxk+AtPvDmzRu+++47ypcvT5EiRVg/bTR5ne2xTmDgw1oFLQtkxFpWtYvk8PAhjBgBWbOCRgMODvDJJ+wdOJDcOXPSqFEjS1dossyZM7N//342b97MxIkTzXLNyy/DTXpNowJ8XkeY5d7pkU6nY8mSJRQtWpTAwEB8fHz45ptvPtip9OnTp9SrV49du3Zx/vx5WrRoYaGK42ZvrcbUNT62VvLzX4j4pJ7hIJHktFoty5YtY9y4cTRs2JArV67g7u4OQJsMCrsevuVGoOEXsu69X+QaNWjUKr7In5HcjtK/O93Llw8iTAxu7u5gynzWWbPghx9Arze0KgRDv/Djx6l14gR18uZF5e8POXKYVkcKkDVrVg4cOECtWrWwsbFhxIgRH3W9lxE6TBmE1CrwOkIWyCXG0aNHGTRoEI6Ojvz999+UL18+1uO2b99Oz5496devH99//32Kbf3onsEaU8ZRrFRQ2lXe8RQiPhK8BQC7d+9m2LBhZM2alZ07d37wC8NKraJxPidqRTngHRDOg+AotIqCk0ZNuSz25M+oQS2bJwiALFmgTh3DhjnGDLU6OMDgwcZff84cGDMGwsNjfdpRUeDxY6haFS5dAjPugplcsmfPzsGDB6PD92BT/n7+IzFvaz5++JDXjjlxcXFJ9H3Tk/v37zNixAjOnDnDjBkzaN26dawLI8PCwvjmm2/YuXMnW7ZsoVq1ahao1nhqlYryWew48zwsxmBLfMplMX9bUCHSEunjnc5du3aN4cOHc/fuXWbOnEmTJk0svpJepAEnT0K9egm2EwTAyQkePABjQt6LF5A7d5yhOwYbGxg4EGbMSPjYFOrhw4fUqlWL4cOH069fv0Rd49SzUE74hRq9CVZE6Fv+nvkDF3dsIEuWLFSvXp3q1atTqVKl6AWAwiAkJISpU6eyYMECBg8ezPDhw7G3j31xuY+PD19++SUlS5Zk4cKFZEolLwgjdHpW3AzkTaQ+3ndONCrwzOZA9RwpZ466ECmRzPFOp549e8bXX3+Nl5cXjRo1inXhjxCJVq0ajBtnGM2Oj4MD/PmncaEbYPFi46ekREYajjd12ksKkidPHg4ePMj06dNZsmRJoq5R1tXOpOVxjo6O/Dr2GyZNmkT+/PnZuXMn06dPp23btmTOnJnSpUvTvXt3Fi5cyIULF4iMTH9dLPR6PatXr6ZYsWLcvXuXS5cuMXr06FhDt6IoLFy4kNq1azNkyBDWrVuXakI3gK2Vmk5FMuFiZ4VNLIlBjWF9T+Vs9lTLLh2thEiIjHinM2FhYcyZM4dZs2bRpUsXfvjhB3k7WSSd33+HYcMM4fffLeN1gDpDBlS5chm2lPf0NP56RYqAr6/xx2fMCJs3gwW32zaH27dvU7t2bSZNmkSXLl1MPn/H/WBuBkYkOOptrYKKbvbUdv//qHZYWBjHjx9n37597Nmzh3v37lGgQAEcHBx48eIFjx8/pnTp0lSqVCn6o2jRoil23vLHOnv2LIMGDUKr1TJ37tx4p4u8fPmSHj168ODBA9atW0fRokWTsVLz0isKd95EcuZZGH6hWnR6hcjQt1TN60bFrPa42KbNf28hzE2Cdzqh1+tZv3493333HRUrVmTatGkUKlTI0mWJ9ECnM8z33rULgoJY9NdfNF61CvfmzU2/lpubYbqJsZycDKPeX35p+r1SmJs3b+Ll5cXMmTNp3769Sedq9QprfIMI+HcDndhYqyGPo4ZWBTLGu17j2bNn7N+/n71797Jv3z5sbW0pXbo0rq6uBAcHc/nyZZ4/f0758uWpWLFidBjPnz9/qn5H7enTp3z33Xfs37+fyZMn06lTJ9TquN80Pnz4MJ06daJNmzZMnjz5g64mqd2bN2/ImTMnb968iffvQQgRkwTvdODEiRMMHToUvV7PTz/9xCeffGLpkkQ61qRJE7p27UrLli1NPzl3bsPCSWNlzAirVkHTpqbfKwW6du0a9erVY968ebRu3dqkc7V6hYOPgjn95DX29vboUKPC0JFIpYJKbnZUy+5g0iJpRVHw8fFh37597N27lxMnTlCiRAlq1KhBjhw5CAkJwdvbm3PnzhEeHh4jiFeqVIkcqaDrTHh4OD/99BM//fQTPXv25Pvvv8fJySnO46Oiohg3bhwrVqxg+fLlNGzYMBmrTV65c+fm2LFj5MuXz9KlCJFqSFeTNOzOnTt8++23nDlzhsmTJ9O+fXsZmRAWV65cOS5dupS44F2/PqxcaRhFN0ZkpKG7SRpRqlQpdu/eTYMGDdBoNDQ34V0Da7WKV6f+5ujyFcxb/xevI3WogMx2VhRytjFph8J3VCoVpUqVolSpUgwZMoSIiAhOnDjBvn37WLt2Lbdv36ZWrVqMHDmSsmXL8vr1a86fP8+CBQs4d+4c9vb2MYJ4xYoVk27qm14P+/YZ3gF59Ajs7Q3dd77+GrJl++BwRVHYsmUL33zzDR4eHpw9e5YCBQrEe4t79+7Rvn17MmXKhLe3N9liuW5aUrx4cW7cuCHBWwgTyIh3GhQYGMjEiRP57bffGDJkCEOGDElRu6GJ9G3Lli0sX76cHTt2mH6yjw9UqgRhYQkfq1LBF18Y5ninMRcuXKBRo0YsX76czz//3OjzatasyaBBgxL3oicRAgICOHDgQPSIuEqlon79+tSrVw8vLy+Cg4M5d+5c9MfFixfJnj17jDBulk4qp05By5aGdQZv3/7/cTs7Q8vLDh1g4ULDRkzA5cuXGTx4MC9fvmTOnDl4eXkleIt169YxaNAgvvvuOwYNGpQuBjkGDx5M7ty5GTZsmKVLESLVkOCdhkRFRbFo0SImTJhAs2bNGD9+PNmzZ7d0WULEcO/ePT755BMemzJl5H3Nm8PevQmHbwcHOHsWSpZM3H1SuDNnztCkSRNWr15N/fr1Ezz+6tWrfPbZZ9y7dw+NJvk3ulIUhX/++Sd6bviRI0coWrQo9erVo379+lStWhVra2tu3rwZI4z7+PhQsGDBGGG8dOnS2NjYGHfjY8egYcP4W1va28MnnxCwciWjx41j69atjBs3jp49e2JtHf8bw8HBwQwYMIDTp0+zbt06ypUrZ8LfSuq2ePFizpw5w7JlyyxdihCphgTvNEBRFHbs2ME333xDnjx5mDVrFqVLl7Z0WULESlEUXFxc8PX1xc3NzfQLhIfDZ58ZQnVsYcrKyjCS+eefqb6bSUKOHz/OF198wYYNGxIcle3duzc5c+ZkzJgxyVRd/CIjIzl9+nR0EL9x4waffPJJdBAvXrw4KpWKiIgIrl69GiOM3717l5IlS8YI48WKFfuwk0pEBGTPDoGBCdYTpdEwRqMhrGdPxo4da9SUl/Pnz9OuXTtq1arF3Llz012P82PHjjFy5EhOnjxp6VKESDUkeKdyly5dYtiwYfj5+TFr1iwaNmyYqjsHiPShdu3ajBo1inr16iXuAlotrFyJMnUqYbdvY5fx304ckZHQrh2MHGloPZgOHD58mNatW7Nly5Y4F04HBQWRL18+rl+/nmIXNL569YqDBw+yd+9e9u7dS1RUVPS0lLp165I1a9boY0NCQrh48WKMMP78+XPKlSsXI4znP3kSVZ8+MaeXxCMqa1Y0/v4J9orX6/XMmjWLGTNm8Msvv9CmTZuP+txTq5cvX1KwYEFev34tv3eEMJIE71Tq6dOn/PDDD/z999+MHTvWqLdEhUgpBg8eTM6cORkxYsRHXefxo0e09fDg+ObNqOzsDNNK4uk4kVbt37+f9u3bs23bNqpWrUq4Vs/VV+FcfRVBuFYhOOg1fpfP8GOPtjjbpPx+y4qicPv27ei54YcPHyZ//vzRQbxGjRrY2cXcmvzVq1ecP3+ec+fORf/3L39/yhu7EBfA0RH27DFsABUHPz8/unTpQkhICGvXriVv3ryJ/TTThKxZs3Lp0iVy5sxp6VKESBUkeKcyISEhzJo1i3nz5tGjRw++++47nJ2dLV2WECZZuXIle/bsYe3atR91ne3btzN//nx2795tpspSr127dtGlSxcW7jrGXavMoALte3t8qxQ9arWaUq62NMjtaFLbQEuLiori7Nmz0dNSrl69SrVq1aKDeOnSpWOMuIaFhfHy5UvcypTB9vVr025mYwO5csGAAdC1K7y3y+Tff/9N9+7d6dWrF6NHj5bBDgzvXo0ePZo6depYuhQhUgUJ3qmEXq9n1apVjBo1ik8++YQpU6ZICyeRal2+fJkvv/ySGzdufNR1fvzxRyIiIpg8ebKZKkvdVhw8x2P77Gjs4t6621oFBZ1taJ7PKUVPD1AUhdDQUF69esWrV694+fJl9J+fPHnClStXuHnzJo8ePSIyMpIMGTKgUqkICwtDURQyZ87MxefPyabVJq6Ad52gNmwgol49Ro4cydatW1m9erXshfCevn37Urx4cQYMGGDpUoRIFeTleipw6NAhhg0bhp2dHX/88QeepmyxLUQKVKJECR48eEBISMhHLUi7ePEinTp1MmNlqVdghI6XrvnRJDCUolXg7ptI/gmMpJhL0u+mqCgKb9++jQ7NsQXpuB63trbG1dX1g4/MmTNTtWpVPv/8c1xdXQkPD+fGjRtcuHCBkydPkidPHurVq4fq2DGUc+dI1MuLfxfu6lu3ZnCOHASUL8+lS5eSrs94KlW8eHGuX79u6TKESDUkeKdgt27dYsSIEVy+fJlp06bRunXrFD1CJYSxNBoNxYsX5+rVqx/1QvLixYvMnj3bjJWlXucDwjD2/csoPZx+HmZS8FYUheDgYKMC838/bGxsyJw5c6whOlu2bJQoUSLW5/47j9sYWq2W8+fPs2/fPiaGhTEJ+JhZ/+rwcGY/f47t+vWoZGrJB0qUKMHmNNgrX4ikIlNNUqCXL18yfvx41qxZw4gRIxg4cGCifgEJkZJ1796dSpUq0bt370SdHxAQQOHChaWjwr9mX3lJhM74H+dqFKpqHxH6KsCoEP36tWGr+fdHneMajX7//11cXLC1TfqR9VgpCrrixVH5+qLW6xM+Pi6OjrBmDTRtar7a0gg/Pz/Kli3L8+fPLV2KEKmCvHxPSlFRcPeuYaOPrFkhgVXfkZGRzJ8/n8mTJ9OmTRtu3LiRuD7HQqQC5cqVw9vbO9Hne3t7U65cOQndGEajTQndAKFvg+k9ciiv79/Czs4Oe3v76P86ODjg4OBAvnz5KFmyJBkyZCBDhgzY2NhgZWUV50dkZCTPnz/n5cuX8R6XHB8qlQpUKqz27zfsdvrihaENZWK8fQvLlknwjkX27NmJjIzkxYsXZMmSxdLlCJHiSfBOCv7+MG8eLFgAOh2o1Yb+wiVKGPoLt2xp2OTjX4qisHXrVkaMGEGxYsU4evQoxYsXt+AnIETS8/DwYNWqVYk+/+LFi5QvX96MFaVuKsCU6G1v78DQwYNQhwSi0+mM/oiMjDTpeEt86PV6VCpVdAjPrlYzE2gM6AD7f/++THrJ5u9vytHphkqlokSJEtEbIAkh4ifB29wuXDDslhcWZtg17X0XL8JXX8GKFYZd9WxtOX/+PEOHDiUwMJBff/018RuKCJHKlC1blmvXrqHVahPVls3b25umMgIJGMJPZjsrXoQb37Paytqazq2ao1GnvXcMFEVBr9d/EMjDAgKw3r6d0C1bsDt+3LRfgO+6nIgPlChRguvXr0vwFsIIaksXkKbcvw916hi2J/5v6H4nJASOHCH0iy/o1KkTTZs2pUuXLnh7e0voFumKk5MTOXPm5NatW4k6/+LFi5QrV87MVaVentns0Rj5E10NlHK1TZOhG4ge7baxscHe3h5HR0ecnZ1xKVQIpyFDyDBzJnH8hI6dvT00apRU5aZ60tlECONJ8DaniRMNwTohYWGwaxdVHBy4desW3bt3x8oq5e8mJ4S5JXaed1BQEH5+fhQtWjQJqkqd3PRvCX79Er0+4VFvKzVUyZZ+R3BVlSvzTKMx/gRFge7dk66gVO7dVBMhRMIkeJtLcDCsXWv04h07Kyv6R0Xh6OiYxIUJkXJ5eHgkKnhfunSJMmXKyAvWf125coWqlSsTfnQzdmoVuqioOI+1VkGL/BlxsU3Hf3cqFUuKFUNnTLcVBwfo2xdcXZO+rlTq3VQTIUTCJHiby5kzYMIIilqng7//TsKChEj5ypUrx6VLl0w+z9vbWxZW/mvTpk3UqVOHiRMnMnXM92wa0o57J/ZirQIbNWhUoI+MAJ2WAk4aOhXJRP6MNpYu2+IelSnD2bZtDcE6js44IcDLGjVgxozkLS6VyZ07N4GBgQQFBVm6FCFSPAne5vL2rennhIWZvw4hUpF3I96mbicg87tBp9MxatQovvnmG/bs2UP79u3ZunUrF04e48vS7gwo7UqjvE7UyeVI1he38P75e9oUciabg6ypB3B3d+dQ0aKwbx80bAh2dkQ6OBBibY3ezg4fKysOtmuH5507vP13F0sRO7VaTbFixbh586alSxEixZPgbS6JeRvS6WP2UxMi9cuRIwcajYbHjx+bdF56byUYGBhI06ZNOXnyJOfOnaN8+fIEBgbSq1cvcuXKRZ06dbC1UlMsky0eWexoUKYQh3btMPkFTlrm7u7OkydPoFo1w7uPd+9y7rvvmFaxIurLl7m2Zg2Dz5zBs2pVBg4caOlyUzyZbiKEcSR4m4up217b2EC7dklTixCpiKkLLENDQ7l79y4lS5ZMwqpSrhs3blClShUKFizI3r17ozfZGjlyJI6OjowYMeKDTYVy586Nvb09vr6+lig5RYoO3u/kyMFrDw8uuLpCkSK0bduWhg0b8ubNG44fP87GjRstV2wqIJ1NhDCOBG8zUTQafGrWNL5FlVoN/fsnZUlCpAoeHh4mzfO+evUqxYsXx8Ym/c1T/uuvv6hVqxbffvst8+bNQ/PvupIjR46wfft2AgMD6dixY6zn1qhRg+PHjydnuSnaB8EbsLKyQqf7f1eYn376icePH9OkSRP69+/Pw4cPk7vMVEM6mwhhHAneZvD06VOaNWtGr9u3UWXNGmNXylg5OMDAgZA3b/IUKEQKZuqId3qc363X6xk/fjx9+/Zl+/btdOvWLfq5sLAwevToQY0aNejYsWOcnZJq1KjBiRMnkqvkFM+Y4G1ra8umTZtYtWoVrVu3pmPHjjGeF/8nU02EMI4E74+gKAq//fYbHh4eeHh4cPDSJWzOn4c8eSC2X35WVoaNGL7+GqZOTf6ChUiBTB3xTm/zu4ODg2nVqhW7d+/m3LlzVKlSJcbz48ePp2zZshw9epS+ffvGeZ3q1avLiPd7smfPTkBAANr3WsD+N3gDFChQgEWLFrFjh2GO/FT52R2r/Pnz4+fnR4gxe1kIkY5J8E6kR48e8fnnnzN37lz27t3L+PHjsbW1hdy54eZNWLIEypY1TClRq8HODjp2hFOn4Kef4mxfJUR6U6hQIV68eMHr16+NOj49Be/bt2/j6elJlixZOHToEDly5IjxvLe3N8uXL6du3bqULFmS4sWLx3mtkiVL8uzZM54/f57UZacKGo2GLFmy8OzZs+jHYgveAF988QUtWrTA1taWefPmcebMmeQsNVWwtramcOHC/PPPP5YuRYgUTYK3iRRFYcmSJZQvX56qVaty9uxZPDw8Yh5kYwNffgmXLkFUFISGGloH/vabIYwLIaKp1WrKlCnD5cuXEzw2MjKSGzduUKZMmWSozLL27NlD9erVGTBgAIsXLza8sH+PVqulR48eTJs2jdWrV9OvX794r2dlZUW1atVkusl7/jvdxMrKCr1eH+ux06ZN4+3btzRo0IAOHToQHBycXGWmGjLPW4iESfA2wf3796lfvz6LFi3i4MGDjB49OnpxU5zUajBmdzQh0jFj53lfv36d/Pnz4+CQdrc7VxSF6dOn061bN/744w969+4d63GzZ8/G1dUVDw8P7t+/T9OmTRO8dvXq1SV4v+e/wVutVsc5h9vGxoaNGzeyZ88eihUrxoABA5KrzFRDOpsIkTAJ3kbQ6/UsWLCAihUrUqdOHU6fPk3p0qUtXZYQaYax87zT+jST0NBQ2rdvz8aNGzlz5gyffPJJrMfdvn2badOmsWjRIn799Ve+/vprrK0T3hhHOpvEFNuId3yLJ/PkycPy5cvx9vbm2LFjbNiwITnKTDVkgaUQCZPgnYA7d+5Qp04dVq1axbFjx/j222+N+gUnhDCesSPeaTl4379/n+rVq6PRaDh27Bi5c+eO9ThFUejVqxfff/89rq6ubNy4kZ49exp1j0qVKnH16lVCZSdGwPTgDfD555/TqVMnsmbNyoABA3jw4EFSl5lqyFQTIRImwTsOer2euXPnUqVKFRo3bszx48fjXbgkhEi8kiVLcvv2bcLDw+M9ztvbO00G70OHDuHp6UnXrl1ZuXIl9vb2cR67bNky3r59y6BBg1i5ciUNGjQge/bsRt3HwcGBMmXKcO7cOXOVnqolJngDTJw4EWtra8qVK0enTp2kxeC/ChcuzP3794mIMHpHCyHSHQnesbh16xY1a9bkjz/+4OTJkwwbNgyrhHpzCyESzc7OjkKFCuHj4xPnMTqdjsuXL3+4mDkVUxSFefPm0a5dO9asWcOgQYM+2HXyfX5+fnz//fcsXboUtVrNggULElxU+V/SVvD/Ehu8ra2tWb9+PZcvXyY4OJgpU6YkZZmpho2NDfny5ZMdUoWIhwTv9+h0OmbOnEm1atVo27YtR44coUiRIpYuS4h0IaHpJrdu3SJ79uw4OzsnY1VJJzw8nG7durFs2TJOnTpFnTp1Ejynf//+9OrVizJlynDgwAFsbW2pUaOGSfeVed7/l9jg/e7c33//HT8/P+bOncvp06eTqsxURaabCBE/Cd7/un79OtWrV2fnzp2cPXuWAQMGoFbLX48QySWhBZZpaX7348ePqVmzJmFhYZw8eZL8+fMneM6WLVvw8fHhhx9+AGD+/Pn069cv3hHy2FSvXp1Tp07J9Ahi72oSVzvB2NSvX59evXqRPXt2OnTowJs3b5KizFRFOpsIEb90nyy1Wi1TpkyhZs2adOnShQMHDlCgQAFLlyVEupPQiHdamd994sQJqlSpQsuWLVm/fj0ZMmRI8JzAwEAGDBjAkiVLsLOz49GjRxw5coQOHTqYfH83NzeyZ88e77Se9CJjxowoihIdmE0Z8X5n7NixuLm54ezsLC0Gkc4mQiQkXQfvq1ev4unpyaFDh7hw4QJ9+vSRUW4hLKRs2bJcuXIlzhHHixcvUq5cuWSuyrwWLVrEF198wdKlSxk5cqTRo9XffPMNzZo1i24vuGjRIjp27Iijo2Oi6pB53gYqlSrGqHdigreVlRVr167Fz8+PgwcPsn79+qQoNdWQqSZCxC9dpsyoqCjGjx+Pl5cXvXv3Zs+ePeTNm9fSZQmRrrm4uJAlSxZu3779wXOKoqTq4B0ZGUnv3r2ZO3cuJ06c4LPPPjP63EOHDrF7926mTp0KQEREBEuXLqVv376Jrkfmef/fxwZvgOzZs7Nu3TrCwsLo379/um4xWLRoUXx9fdFqtZYuRYgUKd0Fb29vbypVqsSZM2fw9vamR48eJs+RFEIkjbjmed+7dw8nJyeyZs2a/EV9JH9/f7y8vPD39+f06dMULlzY6HPDwsLo2bMnCxYsIGPGjABs3ryZkiVLUqxYsUTXJMH7/8wRvAFq167NkCFDcHJyokOHDuk2eDo4OJAjRw7u3r1r6VKESJHSTfCOiIhg9OjRNGjQgKFDh7Jjxw5y5cpl6bKEEO+Ja553ap3ffe7cOSpVqkS9evXYsmVLdHg21rhx46hYsSJNmjSJfiwxLQT/q1ChQoSHh/Pw4cOPuk5aYK7gDfDdd99RpEgRHj9+nK5bDMp0EyHili6C97lz56hQoQJXrlzh8uXLdO7cWUa5hUiBypUrF+uId2qcZrJy5UoaNWrEzz//zNixY01eP3Lx4kV+++035s2bF/3Y5cuXefDgAU2bNv2o2lQqFTVq1ODEiRMfdZ204L/B25SuJv+lVqtZvXo1kZGR/PTTT5w6dcpcZaYq0tlEiLil6eAdHh7Ot99+S+PGjfn+++/5888/yZEjh6XLEkLEwcPDI9YR79TUSjAqKopBgwYxadIkjhw5QvPmzRN1je7duzNjxowY02vmz59Pr169sLa2/ug6ZbqJwfvBW61Wf3SbRTc3NzZt2oSiKLRt2zZdthiUziZCxC3NBu9Tp05Rrlw5bt++zZUrV2jfvr2McguRwuXKlQutVou/v3/0Y+8WVqaG4P3ixQsaNGjArVu3OHv2LCVKlEjUdX766SeyZs1Kp06doh8LDAxk06ZN9OzZ0yy1yoi3Qc6cOc021eSd6tWrM2rUKMLDw+nTp89HXy+1KV68uEw1ESIOaS54h4aGMmzYMFq0aMGECRP4448/yJYtm6XLEkIYQaVSfTDq7efnh6IouLu7W7CyhF26dIlKlSpRpUoVduzYQaZMmRJ1HV9fX2bMmMGiRYtiDBasXLmShg0bkj17drPUW65cOe7cuUNQUJBZrpdamXOO9/uGDRtGxYoV2bVrF2vXrjXLNVOLd8H7Y6btCJFWpangfezYMTw8PPDz8+Pq1au0atXK0iUJIUz033ne7+Z3W+QdK0WB06dhzhyYOhV++w1ev/7gsPXr11OvXj2mTZvGlClTsLKyStTt9Ho9PXv25IcffiBfvnwxHjfHosr3aTQaKlasmG7nIb+TPXt2AgIC0Gq1Zg3e7+Z729nZ0adPH+7du2eW66YGzs7OuLi4yOJdIWKRooP3y3Att4Mi8Q2K4GV43K2ZQkJCGDhwIF9++SUzZsxg7dq1ZMmSJRkrFUKYy39HvC02zWTrVihSBOrWhW+/hR9+gAEDIGdO6NABAgLQ6XSMHDmS7777jv3799OmTZuPuuWyZcsICwv7YAfEAwcOYGtrS/Xq1T/q+v8l87wNL0CyZMmCv7+/WYM3gKurK3/++Sc6nY5WrVqlqxaDMt1EiNilyOB9KzCCFTdfs+JmINvvB7Pj/ltW3Axk+c3X3HwdEePYQ4cOUbp0aYKCgrh69SrNmjWzUNVCCHOIbcQ72YP3zJnQsSPcvg0hIRARATodvH0L4eGwaRP6MmXoXKcO58+f59y5c5QtW/ajbvn06VNGjRrF0qVLPxgxfzfabe5Rf5nnbfBuusnHdjWJTeXKlZk4cSK+vr78+OOPZr12SiYLLIWInUpRFMXSRbyjKAoHn4Rw6WU4UXH87NOoobSrHZ7OekaOHMmOHTtYuHAhn3/+efIWK4RIElqtFmdnZ/z9/XFyciJv3rwcPHiQggULJk8Be/fCF19AaGi8h0UBL11dyeLvj7VG89G3bdGiBaVKlWL8+PExHn/48CEeHh48fPgw0VvExyUoKAh3d3devXqFjY2NWa+dmjRr1owuXbrQpEkT7O3tzT4yrSgKjRs35tChQ+zfv59q1aqZ9fop0aJFizh79izLli2zdClCpCgpasT7fEA4l17EHboBovRwKSCETqOnExUVxdWrVyV0C5GGWFtbU6pUKbwvX8H/+QsCAwPJnz9/8hUwZkyCoRtAA2SPjMTaDFM1Nm/ezI0bNxg1atQHzy1atIiOHTuaPXSDYS5uoUKFYm3hmJ68P+Jtzqkm76hUKtauXYuzszNffPFFuljQKlNNhIjdxzeDNROdonDcP5QoI8bf9SorqncewNByWbFWS4tAIdKK0Cg9l16G0/SnDZy0z8DJxwrDd13hiF8Y5d3scLZJ3KJFo/n6wpUrxh//9q1hWsqnnyb6lq9fv2bgwIFs3LgR21ev4Pff4dYtsLYmysODtYsXs+vYsURfPyHv5nlXqVIlye6R0r0L3u82OdLr9SZveJQQZ2dndu7cSfXq1enUqRN//fWXWa+fovj5UWH7dpadOYOSNy8qZ2fo1Am6dwdXV0tXJ4RFpZgRb9/ASEyZ9WJtbcU/gREJHyiESBUeBEey8PorTvqHYuXgCCoVqFRo7DNwPiCMJddf4/MqPGmLuHoVTJ02EstOm6YYPnw4HT/7jOrTpkGBAjB2LCxfDosXw5Ah3Hj1imKLFkFU1EfdJy7Vq1dP9/O83d3defr0KWDeloL/Vb58eaZNm8bevXtZsWJFktzDovR6GDYM8ucnwy+/UFyvR/XwoeH7auxYcHc3dAdKOTNchUh2KWbE+8HbSCJNWNMSqYf7wVGUdLVLuqKEEMnCLySKTXfeoI3j97Hu38d3PXyLjZWKws62ZrlvZGQkDx8+5P79+9y/fx/Hv/+maWgoDqZc5CPmAx84cIALu3dzUaWC588/CNeaiAg0YAjh167Brl1ghl0r31ejRg0GDRqEoijpdpOx2Hp5a8wwbz82AwYM4O+//6Zv377Url07eadRJSVFgV69YN06w2Lk/woLM/x3wgTDn9PRQlMh3pdigndkIgYYovTyqlmItGD3o7dxhu73aRVD+C5Yyga1ESExMjKSR48eRQfr9z/u3btHQEAA7u7u5MuXj3z58lEjc2Y01tamhelEbuwTGhrK119/zRkXF9S3bsU/oh0aCidPwrhxMHFiou4Xl9y5c2Nvb4+vry9FihQx67VTi6TaRCc2KpWKTZs2UbBgQerXr8+NGzewNvOLKYvYvx/Wr094fURoKMyYAS1bQpkyyVObEClIivluz2ijRgUYG6VVgJMmxcyUEUIk0vMwLS/DjQ86Wr3C3TdRFHK2ISoqKt5g/fz5c3LmzBkdrPPly0fdunWj/+zu7h4z9CiKYVT53xCWIEdHGDTIxM/YYOzYsTQvWpTMhw4ZN40kNBR+/hlGjwZb84z4v/OuraAEb5KkpeB/OTk5sW/fPipVqsSgQYOYP39+kt4vWUyfbmi9aYzISJg9G9LidBshEpBi2gm+CNPy2z+BRo16AViroFORTGRzSDGvHYQQiXDSP5RjfqFGv+gGeHrhKNsmDMHf358cOXLECNbvf+TKlcv00cSffzZsmGNEZxMyZgR/f7C3N+kWFy5coFGjRtxv0gT7lSuNH2F3coJly6B1a5Pul5AFCxZw4cKFdNv6TVEUnJycePr0Kblz5+bBgwdkypQpye/7008/MWLECHbv3k3dunWT/H5JJjAQsmUzBGpj2doavsfMvIhViJQuxaTWLPbWZLGzxj/MuF9ALrZWErqFSANCtHqTQjdApGJFZGQk2bJlAwy9rh8/fszJkydRq9Wo1WpUKlX0n2P7iOt5a5WKSfb2lAwPxy6ekc8IKytmVKjAzZ49TbqHoiisXbuWypUr479nD/lNmdYSEgL//GPi31bCatSowdy5c81+3dRCpVIleUvB2AwdOpSdO3fSvHlzHj9+nCxhP0k8fw42NqYFb0WB4GBwdk66uoRIgVJUcm2cz5Hf/wlMcJGlRg1N8jklT1FCiCRlZ2X6gr5qlSsy6uxZFEVBr9fH+ZHY519ERPBi7lxyHD0KgNV7U0Gi7OzQ2dhwfNAg8hctSj4T77Fv3z5cXFyoUaMGVteumfaJJ9EblCVLluTZs2c8f/6crFmzJsk9UjpLBG+A7du3kytXLho2bMiJk6e4FRTJ1VfhhGoVbNUqimSyoZSrLbZWKWNkODw8nHv37uHr68vt27fx9fUl+OpVFoeEmLYoWacz+5QpIVKDFBW8s9hZ06FwJjbcCUKrh8j/LJ60UYOVSkXbQs5ktU9RpQshEqlARhvOPg+Ld+Os92nDw1gwbSSrQgJo0qQJjRs3pkCBAuYvrEkTePoUFi40LBwLDwd3dzRff43ms8+oa2V6T/Fbt24xadIkLly4QN68eeHBA1iyxBBCjJEhAxQqZPJ9E2JlZUW1atU4efIkzZs3N/v1UwNLBW8HBwf2799Pt2/HM/38U2xt7WL87nsaEsWhJyFUze5AtWz2ydJ5Jjw8nDt37nD79u3ocP3uv/7+/uTNm5dChQpRuHBhSpQoQZHPP8e2fXvDCLax3N3BTrqSifQnxczxfp9Or3ArKJIzz0MJjDD8Nna2UVMlqwNFMtnIpjlCpCGKorD4xmteRxiXvG3UKroXsOHQgQNs376dnTt3kjlzZpo0aUKTJk3w9PTEKhGhOKnp9Xo+/fRTWrRowaB3CzKvXYPKlf/fai0hjo4QEJAkgWXSpEm8fv2amTNnmv3aqcG3335LxowZmT9/PmfOnCFXrlzJdu+rL8PZce81Kqu4WxhqVFA2ix11c5lnB9OwsLA4w/Xz589jhOv3/5s3b97Y1018+y3MmRN7K8H/ypDB0M+7f3+zfC5CpCYpctjYSq2iuIstxV3kbSgh0jqVSkW9XI5suRt3H+93rFXg5e6As5M9zZs3p3nz5uj1es6dO8f27dvp27cvT58+pVGjRjRu3JgGDRqQMWPG5PlEErBkyRIiIiLo/37YKFXK0FLtwoWEF1ja20OfPkk2SlijRg1GjhyZJNdODdzd3bl582aydDV535tIHXsevY03dANEKXD5ZTgFM9qQP6ONUdcODQ2NM1wHBASQL1++6FBdpkwZWrZsSaFChciTJ4/pi5IHDIAFC4wL3vb20LmzadcXIo1IkSPeQoj0x+dVOLsevkWnfNhWVAVYqaB6dgeqZo9/JumDBw/YuXMn27dv58SJE1SpUiV6NNxSm5U8efIEDw8PDh8+TMmSJWM+6ecH5cvDixdxh297e8MxBw8aFrElgdDQUNzc3AgICMDBwaTZumnCli1b+P3337l06RKHDh1Ktq+Vw09COBcQFr1JVELyOmpoV/j/CxJDQ0M/CNbv/vzixQvy588fPVr9/sh1njx5zP/O0IkT0LChYRFwbNFCrTZ0Ajp2zPCiU4h0SIK3ECLFeBGm5ezzMK6/jsAwo0yFTlEomNEGz2z25Mxg2m6Cb9++Zd++fdFTUtzc3GjcuHGyTklRFIUvvviCsmXL8mNcu/X5+0PHjobgotf/vzuEg4Ph/zt3hnnzknwxmqenJ9OmTaNWrVpJep+U6MyZM/Tv359Xr16xZ88eCiXBXPrYzLnyknBjUzeATsvd36Zw69plfH19efnyJQUKFIg1XOfOnTv5p13duGGYdrJ3L2g0hvULVlaGXvUtWsDkyZA3b/LWJEQKIsFbCJHiROkVgiP1KCg4atRm6ejw/pSU7du3R09JadKkCfXr1zfPlJTr1+H+fcO27iVLgrs7mzZtYuzYsXh7e2ObUHC+f9/Qp/uffwyhpXJlQ+h2cfn42owwfPhwXFxcGDVqVLLcLyV5/PgxlStXxtHRke3bt1O0aNEkv6deUZh+6aVp50RGkPGfYxR3d6NQoULkypUrRa5p4Nkzwzs0wcGQKRPUq5dsX8dCpGQSvIUQ6dKDBw/YsWMH27dv5+TJk3h6ekaPhps0zUBRYM0aw0jegweGwAwQEUFU5cq09vFh5PbtVK1aNWk+ETP6888/WbRoEbt27bJ0KclOq9Xi4OBAwYIF2bx5MyVKlEjyeyqKwjQTg7eNWkXHItLZS4jUSoK3ECLdCw4OZt++fezYsSN6Ssq7eeFVqlSJe0RRp4N27eDvv2PdLlsPaK2tsZk9O1V0cAgICKBw4cK8fPkyZY6iJrGcOXPi5OTEH3/8QenSpZPlnr/6vCIooc0r3mOtgoGlM2OTiP73QgjLSxkd+YUQwoKcnJxo0aIFy5cvx8/Pj6VLl6JWq+nduzfZs2enS5cu/PHHH7x58ybmicOHw86dsYZuMPyAtdFqYcQI2L496T+Rj+Tm5ka2bNnw8fGxdCkW4e7ujl6vT9Y+3pWz2qMxMkOrgWIuthK6hUjFJHgLIcR71Go1np6eTJo0iStXrnD+/HkqV67M0qVLyZUrF/Xr1+fnn3/mobc3/PorhIYmfNGwMBg6NMl2njSnGjVqcPz4cUuXYRHu7u7odLpkbSdYytUWKyP3plCroEpW+ySuSAiRlCR4CyFEPPLmzUu/fv3YvXs3T548oXfv3ly8eJEVNWoQ9q77iDGePoWzZ5OuUDNJ78Fbq9Um64i3rZWaLws5Y5PAb2NrFXye1xE3mdstRKomwVsIIYz0bkrKihUrGFOpEvamjGBHRRn6F6dwNWrU4MSJE5YuwyIsEbwBsjtY06VoJvI6arBSGUI2GEa4rVWQ1d6K1gUzUtxFtlgXIrWTl85CCJEIKmOmmLxPqzV+a3gLKlSoEGFhYTx8+JA8efJYupxkoVcU7ryJxK76F3Qo4cU5TS7ePHpLRTd7XO2SZ5FpZjtr2hV2JihSx+2gSMJ1Chq1inxOGulgIkQaIt/NQgiRGDlzmna8vT24uSVNLWakUqmiR73TQ/B+/DaKLffeoNUrRGZ0I3NGN0KASy/CufIynDxOGprny5hsCxqdbayo4CbzuIVIq2SqiRBCJEaPHuDkZPzxer1h575UIL3M8378Nor1t4MI1Sr8t6OfHtAq8CA4ijW+gWj1KX9hrBAi5ZPgLYQQifHZZ2Bn5JxbKyuoXx+yZk3amsykevXqaX6et15R2Hz3DdoE8rROgZfhOk74mzi1SAghYiHBWwghEsPKCtatAweH+I9Tqw1bZv/yS7KUZQ7lypXj9u3bBAUFWbqUJOMbFInOyMWxWgUuvgg3+nghhIiLBG8hhEisOnVg82bIkMHw8V9OTuDuDqdOQe7cyV9fItlYW9O7YEEC+vaFYcNg1ix4+NDSZZnVhYCwD6aXxEdRFO69iUq6goQQ6YJsGS+EEB/rzRtYtQrmzgU/P8NoeIkShh0rGzcG61S0jn31ahgxgoiXL9FERhpGZ2xtQaWCatVgyRIoUMDSVX6UkJAQlt8OIURv/NiTtQrq5MpAuSyy8FEIkXgSvIUQQhhMmgSTJ8e9G6daDRkzwsmTULx48tYWD51Ox4sXL3j+/HmMj2fPnn3w2PPnz9HpdAzceBSXXPmNvodGBfVyO1Ims/TSFkIkngRvIYQQsG8fNG8ed+h+R6WC7NnhwQPQaJKkFEVRCAkJiTM4//fx169f4+LiQtasWT/4yJYt2wePOTo68vfDt1x7FYGxvwA1auhQOBPZHVLRuxdCiBRHfoIIIYSAceMSDt0AigJv38L27Sa1R9Rqtbx48cLoMK1SqWINzfnz58fT0zPGY5kzZ8baxOk8Fd3sufE6IsGuJu8421hJ6BZCfDQZ8RZCiPTu3j0oWdKknTWVKlUI3rs33ikd7z8eFBSEq6trnKPQ/30sQ2yLVc1sza1AnoZq0SXwW9BaBU3zOVEkk22S1ySESNskeAshRHq3axe0awcmtA98DeRxdIwzSP/3cVdXV6yskmf7dWOFa/X8fiuQoEh9nOHbWgWe2RyokSOBtpFCCGEEed9MCCHSO53O5FMyZcxIcCrv821nraZL0UwcfRrKlVfhqDBsmKPCMJXdUaOmVs4MFJORbiGEmUjwFkKI9K5AAYgyrUe1Kk+eJComedlaqamX25Ha7hm4ExRJcJQeazVks7cmh4M1KpXK0iUKIdIQCd5CCJHelSgB+fODj49xxzs6wpAhSVtTMtOoVRRzkZFtIUTSkp0rhRBCwKhR4GDkPGa1Gr78MmnrEUKINEiCtxBCCEOQbtky4fDt4GBoJWhsSBdCCBFNgrcQQgjDasLffjNMIbG3jxmsVSrD9JI8eWD/fqhZ02JlCiFEaibtBIUQQsQUHAyrVsGePRASAu7u8NVXhsAtiw2FECLRJHgLIYQQQgiRDGSqiRBCCCGEEMlAgrcQQgghhBDJQIK3EEIIIYQQyUCCtxBCCCGEEMlAgrcQQgghhBDJQIK3EEIIIYQQyUCCtxBCCCGEEMlAgrcQQgghhBDJQIK3EEIIIYQQyUCCtxBCCCGEEMlAgrcQQgghhBDJQIK3EEIIIYQQyUCCtxBCCCGEEMlAgrcQQgghhBDJQIK3EEIIIYQQyUCCtxBCCCGEEMlAgrcQQgghhBDJQIK3EEIIIYQQyUCCtxBCCCGEEMlAgrcQQgghhBDJQIK3EEIIIYQQyUCCtxBCCCGEEMlAgrcQQgghhBDJQIK3EEIIIYQQyUCCtxBCCCGEEMlAgrcQQgghhBDJQIK3EEIIIYQQyUCCtxBCCCGEEMlAgrcQQgghhBDJQIK3EEIIIYQQyUCCtxBCCCGEEMlAgrcQQgghhBDJ4H/hZeG4ZkaAWgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/sAAAP7CAYAAAAEeJ46AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3xUVeL+8efOpAeSAIEIgqEjRZqrq6uoYEFBLKBrW1l0FwQRv6joDwRsCAgLomCjiaIorA6iwEqRIlVUipSIoQWQ0EsSSJ2Z+/tjDDZKkik3M/N5v168FsjMuQ+LCXnuOfccwzRNUwAAAAAAIGTYrA4AAAAAAAB8i7IPAAAAAECIoewDAAAAABBiKPsAAAAAAIQYyj4AAAAAACGGsg8AAAAAQIih7AMAAAAAEGIo+wAAAAAAhBjKPgAAAAAAIYayDwAAAABAiKHsAwAAAAAQYij7AAAAAACEGMo+AAAAAAAhhrIPAAAAAECIoewDAAAAABBiKPsAAAAAAIQYyj4AAAAAACGGsg8AAAAAQIih7AMAAAAAEGIo+wAAAAAAhBjKPgAAAAAAIYayDwAAAABAiKHsAwAAAAAQYij7AAAAAACEGMo+AAAAAAAhhrIPAAAAAECIoewDAAAAABBiKPsAAAAAAIQYyj4AAAAAACGGsg8AAAAAQIih7AMAAAAAEGIo+wAAAAAAhBjKPgAAAAAAIYayDwAAAABAiKHsAwAAAAAQYij7AAAAAACEGMo+AAAAAAAhhrIPAAAAAECIoewDAAAAABBiKPsAAAAAAIQYyj4AAAAAACGGsg8AAAAAQIih7AMAAAAAEGIo+wAAAAAAhJgIqwMAAAAAQHlwNN+pH44W6HiBSwUuU9F2Q5Wj7WpRJUaVY+xWxwNKxTBN07Q6BAAAAABYZUdWodYcytOek0UyJP22IBX/+qIKkboiJVZ1E6KsCQmUEmUfAAAAQFgyTVMrDuRq5YG8P5X8Pyr++NUXxOmqC2JlGEZgQgJlxDP7AAAAAMLSygN5WnkgT9K5i/5vP77iQK5WH8zzay7AFyj7AAAAAMLOruxCrTiQW6b3Ltufq4ycQh8nAnyLsg8AAAAg7Hx7yLN0vywMSd8dYnYf5RtlHwAAAEBYOV7g0q6covMu3T8bU9KO7CKdKHD5MhbgU5R9AAAAAGFl09H8Ms/qFzMkbTqW74s4gF9Q9gEAAACElROFbt+MU+CbcQB/oOwDAAAACCuFbrPMS/iLmZKK3JxijvKLsg8AAAAgrETbDJ8s44+yezsK4D+UfQAAAABhpXKM3SfjVIn2zTiAP1D2AQAAAISV5pWjfTLOJVVifDIO4A+UfQAAAABhpWKUXQ0So8pchmySGiZFqUIkdQrlF/91AgAAAAg7l1eLVVn30ndL+mu1WF/GAXyOsg8AAAAg7NSsEKkba8aX6b3ta8WrRnykjxMBvkXZBwAAABCWLq0aq5tqxkumKZez6JyvtcmzA//NtSqoVTKz+ij/KPsAAAAAwlZ15wm9+8gdKsj48XShP9P/Nq4Upa6NEtUymU35EBwM0zRNq0MAAAAAgBW6deumOXPmKD09XdEVk7TleIGOF7hU6DIVZTdUKdquZpWiFcdmfAgyEVYHAAAAAAArrF69Wu+//77Gjx+vypUrS/Js3AeEAmb2AQAAAIQdt9utyy+/XG63W999953sdrvVkQCfYmYfAAAAQNiZMmWK1q5dqxUrVlD0EZKY2QcAAAAQVk6cOKGGDRuqffv2+uCDD6yOA/gFu0wAAAAACCsvvPCCcnNzNWLECKujAH7DMn4AAAAAYWPLli164403NHToUNWoUcPqOIDfsIwfAAAAQFgwTVM33nij9uzZo02bNik6OtrqSIDfMLMPAAAAICzMnDlTixYt0ty5cyn6CHnM7AMAAAAIebm5uWrcuLEuueQSzZkzx+o4gN8xsw8AAAAg5P3nP//RgQMH9NVXX1kdBQgIduMHAAAAENIyMjL0yiuv6Mknn1SDBg2sjgMEBMv4AQAAAIS0u+66S6tXr9ZPP/2kChUqWB0HCAiW8QMAAAAIWYsWLZLD4dCHH35I0UdYYWYfAAAAQEgqKipSy5YtValSJS1fvlyGYVgdCQgYZvYBAAAAhKS33npLP/74o9auXUvRR9hhZh8AAABAyDl06JAaNmyoe++9V++8847VcYCAo+wDAAAACDndu3eXw+FQenq6kpOTrY4DBBzL+AEAAACElO+//16TJ0/WuHHjKPoIW8zsAwAAAAgZbrdbV111lU6dOqV169YpIoL5TYQn/ssHAAAAEDI+/PBDffPNN1q6dClFH2GNmX0AAAAAISE7O1sNGzbUddddp+nTp1sdB7CUzeoAAAAAAOALQ4YMUXZ2tv7zn/9YHQWwHGUfAAAAQNDbunWrXnvtNT377LOqVauW1XEAy7GMHwAAAEBQM01Tt9xyi9LT05WWlqaYmBirIwGWY8cKAAAAAEFt9uzZmj9/vmbNmkXRB37BzD4AAACAoJWfn6+mTZuqfv36mjdvngzDsDoSUC4wsw8AAAAgaL366qvas2eP5s6dS9EHfoOZfQAAAABBae/evbr44ovVq1cvjRo1yuo4QLlC2QcAAAAQlO677z4tWbJE6enpSkhIsDoOUK6wjB8AAABA0Fm2bJmmT5+uKVOmUPSBM2BmHwAAAEBQcTqduvTSSxUbG6tVq1bJZrNZHQkod5jZBwAAABBUJkyYoI0bN+rbb7+l6ANnwcw+AAAAgKBx9OhRNWjQQHfeeacmT55sdRyg3OI2GAAAAICgMWjQILlcLg0fPtzqKEC5xjJ+AAAAAEFh/fr1Gj9+vF599VVVq1bN6jhAucYyfgAAAADlnmmauuaaa3Ts2DFt2LBBkZGRVkcCyjVm9gEAAACUex9//LFWrFihhQsXUvSBEmBmHwAAAEC5dvLkSTVq1EhXXHGFHA6H1XGAoMAGfQAAAADKtWHDhunYsWMaPXq01VGAoEHZBwAAAFBubd++XaNHj9Yzzzyj2rVrWx0HCBos4wcAAABQbnXq1EkbN27Ujz/+qLi4OKvjAEGDDfoAAAAAWMPplL74QnrvPWn3bikvT0pKki67TOrZU//bu1dz5szRJ598QtEHSomZfQAAAACBVVgo/ec/0rhx0sGDkt0uuVy/fjwiQnI6tS4mRjMaNtQrGzbIMAzr8gJBiLIPAAAAIHCys6U77pC+/lpyu8/5UqckuyTj1VelJ54ISDwgVFD2AQAAAARGYaHUvr20fPnvZ/JL4u23pZ49/ZMLCEHsxg8AAAAgMF55RVq2rPRFX5J695a2bvV9JiBEUfYBAAAA+F9hoecZ/fMs3T8rm80zuw+gRCj7AAAAAPxv1izpyJGyv9/plCZPlk6d8l0mIIRR9gEAAAD435Qpnl33vXHqlOemAYDzouwDAAAA8L+MjLI9q/9bERHS3r0+iQOEOso+AAAAAP/zxfJ7w5Byc70fBwgDlH0AAAAA/peU5P0YbreUmOj9OEAYoOwDAAAA8L9LL/Usw/eGyyU1b+6bPECIM0zTNK0OAQAAACDErVkjXXGFd2PUri3t2OE5hg/AOfFZAgAAAMD/Lr/cMytf1qJus0l9+lD0gRJiZh8AAABAYMycKXXpUvr32e1SpUrSTz9JlSv7PhcQgrgtBgAAACAwOneWXnihdO+x26WoKGn+fIo+UAqUfQAAAACB89xz0siRkqSi873WZvPs4r98udS6td+jAaGEsg8AAAAgcAxDmQ88oL/FxGhds2ZSdLRkGFJkpOdH8Y79NWtKw4dLW7d6dvIHUCpenn0BAAAAAKUzePBgpcfHq9Hy5ZJpSg6HtG+flJvrmclv2VK66SbPEn4AZcIGfQAAAAACZsOGDWrdurXGjRun3r17Wx0HCFmUfQAAAAABYZqmbrjhBmVmZmrjxo2KjIy0OhIQsljGDwAAACAg5syZo8WLF2vOnDkUfcDPmNkHAAAA4HdFRUW65JJLVLNmTS1cuFCGYVgdCQhpzOwDAAAA8Lvx48crPT1dM2bMoOgDAcDMPgAAAAC/On78uBo0aKA77rhDkyZNsjoOEBZsVgcAAAAAENqGDh2q/Px8DRkyxOooQNig7AMAAADwmx07dmjs2LHq37+/qlevbnUcIGywjB8AAACA39x9991avXq10tPTFRcXZ3UcIGywQR8AAAAAv1ixYoU+/fRTTZ06laIPBBgz+wAAAAB8zu1264orrpDb7da3334rm40niIFAYmYfAAAAgM99/PHH+u677/T1119T9AELMLMPAAAAwKdyc3PVqFEjXX755XI4HFbHAcISt9gAAAAA+NSYMWN08OBBjRgxwuooQNhiZh8AAACAzxw4cEANGjRQ9+7d9eqrr1odBwhblH0AAAAAPtOjRw85HA5t375dlSpVsjoOELbYoA8AAACAT2zcuFGTJ0/WmDFjKPqAxZjZBwAAAOA10zR10003ac+ePdq8ebMiIyOtjgSENWb2AQAAAHjtyy+/1FdffaVZs2ZR9IFygJl9AAAAAF5xOp1q3ry5UlJStHjxYhmGYXUkIOwxsw8AAADAKxMnTtTWrVv14YcfUvSBcoKZfQAAAABllpWVpfr16+vWW2/VlClTrI4D4Bc2qwMAAAAACF7Dhg1Tbm6uXn75ZaujAPgNyj4AAACAMtm1a5dee+01Pf3007rwwgutjgPgN1jGDwAAAKBM7rnnHi1fvlzbtm1TfHy81XEA/AYb9AEAAAAotdWrV+u///2vpkyZQtEHyiFm9gEAAACUimmauvLKK1VYWKjvv/9eNhtPBwPlDTP7AAAAAEplxowZWrNmjRYvXkzRB8opZvYBAAAAlFheXp4uvvhitWzZUp9//rnVcQCcBTP7AAAAAErs9ddfV2ZmphYsWGB1FADnwMw+AAAAgBI5dOiQ6tevr4ceekivv/661XEAnANlHwAAAECJ9OrVS9OnT9f27dtVpUoVq+MAOAeW8QMAAAA4ry1btmjChAkaNWoURR8IAszsAwAAADivW265Rdu3b9eWLVsUFRVldRwA58HMPgAAAIBzmj9/vubNmyeHw0HRB4IEM/sAAAAAzsrpdKply5aqXLmyvv76axmGYXUkACXAzD4AAACAs3r33Xe1ZcsWfffddxR9IIgwsw8AAADgjLKzs9WgQQO1b99eU6dOtToOgFKwWR0AAAAAQPn0yiuvKCcnR0OHDrU6CoBSouwDAAAA+JPdu3fr1Vdf1VNPPaVatWpZHQdAKbGMHwAAAMCf3H///VqyZIm2bdumChUqWB0HQCmxQR8AAACA31mzZo0+/vhjTZo0iaIPBClm9gEAAACcZpqmrr76ap08eVLr1q2T3W63OhKAMmBmHwAAAAgzLtPU3pNFOlnklsuUou2GqsdFKDHKrk8//VSrVq3SwoULKfpAEGNmHwAAAAgTOUUu/XCkQOuO5CnX+ecaUDverrcHPKaKhdmaM3u2BQkB+AplHwAAAAgDPxzN1/w9J2VKOmsBcLslm02VjCI92DRFcZEc3gUEK8o+AAAAEOK+O5SnRftOlfj1hqTEKJu6Nkyi8ANBis9cAAAAIIRtyyooVdGXPDP/WYVufbIzW27mBoGgRNkHAAAAQpRpmlq6L7ds75W0P9ep7VmFvg0FICAo+wAAAECI+vmUU0cLXGV+vyFp7eF83wUCEDCUfQAAACBErTuS59U3/Kak3SeLdCy/7DcMAFiDsg8AAACEqL0nnXL7YJzM3CIfjAIgkCKsDgAAQHmQ53TrlNMtl1uKthtKiLLJZhhWxwIArxS4fFH1pXwXm/QBwYayDwAIW27T1M7sIq09nKddOb+ftYqLMNQqOUYtqsQoIcpuUUIA8I7dMFQk74u6nXufQNCh7AMAwlLmqSLN2pWj7CK3zvQ9bK7T1KoDeVp1IE8tk6N1Q80KsjPTDyDIxEfYlO/y/nn7+Aie/gWCDZ+1AICwsyu7UNO2ZSmnyLO89WxzXuYvP9YfKdAnO7LldLOMFUBwaVo5+ow3NEsjymaoTkKUT/IACBzKPgAgrBzMdcqxM1su8+wl/0x25xTpf3tyZJoUfgDBo0WVGK/eb0hqUSVakTZWNgHBhrIPAAgri/edUln2mTIlpR0v1L5TTp9nAgB/iY+06eJKUWWe3TcltUqO9WUkAAFC2QcAhI1j+S7tPln2rapsktYezvNlJADwu+svrKAKkbYyFf62NeJUOYZNSoFgRNkHAISN9UfyvHp21S1p64lCnSryzVFWABAIFSJtuq9+ouIjbTJKcbvzbymxurwas/pAsKLsAwDCxrasQq8PoDIlZeQU+iIOAARM5Ri7ujVK0on0jXK7XWe88Vn8exUjbep4UQVdUyNeBqeQAEGLsg8ACBv5ZXlY/wzyfDQOAATSrq1bNOK+G5W4/n+66oI4JUbZFGF4CkGM3VCdhEjdXTdBjzatpEu83NgPgPUirA4AAAAAwP8GDhyounXrqsc//6HIyEhdXT3O6kgA/IiyDwAIGzF2wyez+7F2lrUCCC6rVq3S7Nmz9dFHHykyMtLqOAACwDA5MBgAECYW7zul7w7lefXcviHpsWaVFR/Jk3AAgoNpmrr22muVnZ2tdevWyWbj6xcQDpjZBwCEjVbJMfr2UNmPzrNJurhSFEUfQFCZN2+eli9frrlz51L0gTDCzD4AIKxM356l3TlFZZ7d/0eDRNWswBJYAMHB7XardevWSkhI0Ndff83u+kAYYWYfABBW2l0Yr6npJ+Ryq9SFv2mlKF0Yzz+dAILHjBkz9MMPP2jFihUUfSDMMLMPAAg7GdmF+mRnttxmyQt/nYqRuqtuguw2vlkGEBwKCwvVuHFjNW3aVF988YXVcQAEGNMTAICwUzshSv9omKhZu3KUVeiW2+WUzf7nfxKLa32r5BhdXzNedmbFAASRyZMna9euXZo1a5bVUQBYgJl9AAhBOYUubTiar+1Zhcpzer7Mx0YYapAYrZbJMarABnOSPDtUz/lmgz799kc1bnOj9JsyHxdhqHVyrFokR6tipN3ClABQeqdOnVL9+vV14403aurUqVbHAWABZvYBIIQczXfq68xcbcsqlPT7JerZRdKhvFytPJCrhklRuq5GvCpFh3eJNQxDSz75QAs+/lhvP7pX+S5DTtNUjN1QhUibbMzkAwhS48aN09GjR/Xiiy9aHQWARZjZB4AQsfdkkT7Zka0it3ne59ANSVF2Q3+vl6AL48N3Z3nTNFWnTh116NBBb731ltVxAMAnjh8/rrp16+rBBx/U2LFjrY4DwCKs4wSAEHAw16n/7sgqUdGXPDP+hS5T07dn6XCe09/xyq21a9dq9+7d6tKli9VRAMBnRowYoaKiIg0cONDqKAAsRNkHgCBnmqY+25UtZymPkjMlOd3SZ7tyFK6LvGbOnKkqVaro2muvtToKAPjEvn379Prrr+uJJ55QSkqK1XEAWIiyDwBBLiOnSCcK3aU+M17yFP5jBS7tOVnk61jlnmmacjgcuv322xURwRY2AELDkCFDFBcXp379+lkdBYDFKPsAEOTWHs7z6ou5TdK6I/m+ihM0tmzZovT0dJbwAwgZ27Zt06RJk/Tss88qMTHR6jgALEbZB4Aglu90a3t2kdxejOGWlH6iUAUub0YJPg6HQwkJCbr++uutjgIAPjF48GBVr15djz76qNVRAJQDrFsEgCB20umbgm5KynWaCqeT+BwOhzp16qTo6GirowCA19atW6cZM2Zo0qRJio2NtToOgHKAmX0ACGI+6vq/jBU+m/Rt27ZNmzZtYgk/gJAxcOBANWrUSP/85z+tjgKgnGBmHwCCWLTdKJdjlXcOh0NxcXFq37691VEAwGtLly7VvHnz9Omnn7LhKIDTDDNcz1sCgBDgcpsau/mYClzefSmPtRvqc0ll2YzwKPyXXXaZUlNT9emnn1odBQC8Ypqm/va3v8npdOrbb7+VESZfxwGcH8v4ASCI2W2GWlaJkTff2hmSWlWNCZuiv3v3bn3//fcs4QcQEr744gt98803Gj58OEUfwO9Q9gEgyLVKjpG3S7RaVonxSZZgMHPmTEVFRaljx45WRwEAr7hcLj377LO6/vrrdcMNN1gdB0A5w0M9ABDkkqLtalopWmnHC0pd+g1Jl1SOVkJU+GzD73A4dNNNNykhIcHqKADglQ8//FBpaWl67733rI4CoBxiZh8AQsAtF1VQ9biIUi3nNyRdGB+hm2pV8Fescmf//v1atWoVS/gBBL2CggI999xz6tKliy677DKr4wAohyj7ABACImyG7q2fqLoJkZJ07tL/y76sUVkHdE/9REXYwucZz1mzZslut+u2226zOgoAeOWdd97Rzz//rJdfftnqKADKKXbjB4AQYpqmdmQXae3hPO3KKZJpmpLbLbvdLvcvr6mbEKlFU8bJMf51/ZiWpqpVq1qaOZBuuOEG2Ww2LViwwOooAFBmOTk5qlevnm677TZNmjTJ6jgAyilm9gEghBiGofqJUbqnfqJ6NqmklRNHKm/zSl1dPU7ta8WrZ5NK+nu9RA15vIdMt1tPPfWU1ZED5ujRo1q6dClL+AEEvTFjxig7O1vPP/+81VEAlGOUfQAIURUjpPmTXtMFuQf0twvi1Co5VknRno34qlWrptGjR+uDDz4Im1nuzz//XG63W3fccYfVUQCgzA4fPqxRo0apd+/eqlWrltVxAJRjlH0ACFGZmZlyOp2qXbv2GT/+z3/+U23btlXPnj2Vm5sb2HAWcDgcatOmjVJSUqyOAgBlNnz4cEnSgAEDLE4CoLyj7ANAiMrIyJCks5Z9wzA0fvx4ZWZm6sUXXwxcMAtkZWVp4cKF6ty5s9VRAKDM9uzZozfffFNPP/20kpOTrY4DoJyj7ANAiCou+6mpqWd9TYMGDfT8889r9OjRWr9+fYCSBd6cOXNUVFRE2QcQ1F544QUlJibqiSeesDoKgCBA2QeAEJWRkaGqVasqPj7+nK/r16+fGjdurO7du8vlcgUoXWA5HA5dfvnlPN8KIGilpaXp/fff1+DBg1WhQgWr4wAIApR9AAhRGRkZZ13C/1uRkZGaNGmS1q1bp3Hjxvk/WICdOnVK8+bNYxd+AEFt0KBBuuiii9SjRw+rowAIEpR9AAhRJS37kvTXv/5Vjz32mAYNGqTdu3f7N1iAffnll8rLy6PsAwhaa9as0WeffaaXXnpJ0dHRVscBECQo+wAQokpT9iVp6NChqlSpknr16iXTNP0XLMBmzpypFi1aqF69elZHAYBSM01TAwYMULNmzXT//fdbHQdAEKHsA0AIcrlc2rNnT6nKfsWKFfXmm2/qyy+/1H//+1//hQuggoICzZkzh1l9AEHrq6++0pIlSzRs2DDZ7Xar4wAIIpR9AAhBmZmZcjqdpSr7knTbbbfprrvu0uOPP67jx4/7J1wALVy4UDk5OZR9AEHJ7XZrwIABuvLKK3XrrbdaHQdAkKHsA0AIKj52r7RlX5LGjh2rgoICPf30074NZQGHw6GLL75YTZo0sToKAJSaw+HQ2rVr9corr8gwDKvjAAgylH0ACEHFZT81NbXU761evbpGjBihyZMna+nSpb4NFkBFRUX6/PPPmdUHEJSKioo0cOBA3XLLLbrmmmusjgMgCFH2ASAEZWRkqGrVqoqPjy/T+7t3766rr75ajzzyiPLz832cLjCWLl2q48ePU/YBBKX33ntP27Zt07Bhw6yOAiBIUfYBIASVdif+P7LZbJowYYJ27dqloUOH+i5YADkcDtWuXVstW7a0OgoAlEpeXp5eeOEF3XfffXwNA1BmlH0ACEHeln1Jaty4sZ599lm98sor2rx5s2+CBYjL5dJnn32mLl268JwrgKDzxhtv6NChQ3rppZesjgIgiFH2ASAE+aLsS9KAAQNUv3599ejRQ2632/tgAbJy5UodOnSIJfwAgs6JEyc0fPhwde/eXfXr17c6DoAgRtkHgBDjcrm0Z88en5T96OhoTZgwQatXr9Y777zjfbgAcTgcqlGjhv76179aHQUASmXUqFHKz8/X4MGDrY4CIMhR9gEgxGRmZsrpdPqk7EtSmzZt1KNHD/Xv31/79u3zyZj+5Ha7NXPmTHXu3Fk2G//MAQgeBw4c0JgxY/R///d/ql69utVxAAQ5vgsCgBBTfOxenTp1fDbmiBEjFB8frz59+vhsTH/5/vvv9fPPP7OEH0DQefnllxUVFaVnnnnG6igAQgBlH0DYKnKbOlHg0pE8p7ILXXKZptWRfKK47KempvpszKSkJI0bN06fffaZPvvsM5+N6w8Oh0NVq1ZVmzZtrI4CACW2c+dOjR8/Xv3791elSpWsjgMgBERYHQAAAsk0Te3PdWrd4XylnSiQ+zf9PtpuqFVyjFpWiVFStN26kF7KyMhQtWrVFBcX59Nxu3Tpok6dOumxxx5Tu3btlJiY6NPxfcE0TTkcDt1xxx2y24P37xBAiPrxR+n996Xdu6XcXCkhQWreXOrWTc8995yqVq0aFCuoAAQHwzRDZCoLAM7jRIFLs3Zl60CeSzZJZ9pb3pBkSmpcKUodLqqoSFvwHdv2r3/9S5s3b9aaNWt8PvbevXvVpEkTde3aVW+++abPx/fWDz/8oJYtW2revHlq37691XEAQDJN6fPPpTFjpGXLpIgIye32/LDbJdOUaRj6yOVS9LPP6q6hQ61ODCBEsIwfQFg4nOfUez+d0ME8l6QzF33JU/QlaevxQn2YfkL5ruA5bq6Yr47dO5NatWpp2LBhevvtt7Vq1Sq/XMMbDodDSUlJatu2rdVRAEByuaS+faU775RWrvT8ntPpKfrFH3e7ZbhcukdSl5EjpWnTLIsLILRQ9gGEvJwil6Zvz1KBy1RJlzKZkg7luTRzZ47cQbYAyp9lX5IeffRRXXbZZerevbsKCwv9dp2ycDgcuu222xQVFWV1FADhzjSlPn2kceM8v3a5zvnyCEmG0yn94x/SjBn+zwcg5FH2AYS8VQfylOssedEvZkrac7JIPx4v8Ecsv3C5XNqzZ49fy77dbtfEiROVnp6ukSNH+u06pbV161alpaWxCz+A8uHDD6W33/aU/tIwDE/hT0/3Ty4AYYOyDyCkFUao7YcAACAASURBVLjc2nQ0v9RFv5ghae3hfF9G8qvMzEw5nU6/ln1Jat68uZ5++mkNGTJEP/30k1+vVVIOh0Px8fG68cYbrY4CINyZpvTKK57iXpb3StJbb/k2E4CwQ9kHENI2HyuQ04tV+KakzFynDuU5fZbJn4qP3fN32ZekwYMHq1atWurRo4fcbuv3NnA4HOrYsaNiY2OtjgIg3K1eLaWllX5Wv5jTKU2eLJ065dtcAMIKZR9ASNue5f0z5YaPxgmE4rKfmprq92vFxsZq/PjxWrZsmaZMmeL3653Lzp07tX79epbwAygfJk707LrvjZMnJYfDN3kAhCXKPoCQdsrp/YyzYUj5ruDYpC8jI0PVqlVTXFxcQK53/fXXq1u3burXr58OHDgQkGueycyZMxUTE6MOHTpYlgEATtu61TM7743ISGn7dt/kARCWKPsAUAJmkOzI7++d+M9k1KhRioiIUN++fQN63d+aOXOm2rdvrwoVKliWAQBOy8nxzTjZ2b4ZB0BYouwDCGnxEd5/mTNNKdYH4wSCFWW/SpUqeu211zRjxgzNnTs3oNeWpH379mn16tUs4QdQflSs6JtxEhJ8Mw6AsBQc370CQBnVTfD+vHXTR+MEghVlX5Luv/9+tW/fXo8++qhOnjwZ0Gt/9tlnioyMVKdOnQJ6XQA4q4sv9v6Z/aIiqUED3+QBEJYo+wBC2iWVo2Uvw8lHxdwup37esl7//vsdWrp0ablezu9yubRnzx5Lyr5hGHr77bd1+PBhDR48OKDXdjgcuv7665WUlBTQ6wLAWfXo4f0z+xUrSqxYAuAFyj6AkBYTYVPTStEqa9+32SO0+r+TNX/+fLVt21atW7fWBx98oMLC8rc7/759++R0Oi0p+5JUp04dvfTSSxo7dqy+++67gFzz8OHDWrZsGUv4AZQvV1whNWsm2cr4rXZEhPTvf0sB2mwVQGii7AMIeVdVj1OM3Sh14TckXRgfoY9GDTldJrdt26auXbsqNTVVw4cP17Fjx3yet6yKj92zquxLUt++fdWiRQt1795dRUVFfr/erFmzJEm33367368FACVmGFL//pK7DCfCGIbnx6OP+j4XgLBC2QcQ8hKj7LqnfqKibCUv/IakKjF23VU3QY0aNtD06dP1/fff66qrrpLkWTL//PPPq2bNmnr00UeVnp7ut/wlVVz2U1NTLcsQERGhiRMnatOmTRozZozfr+dwOHTttdeqatWqfr8WAJTK/fdLffqU7j3GL/9KffSRVL++7zMBCCuUfQBh4YK4CHVtlKjK0XZJOmvpL/79egmRerBh4u924b/00ks1f/58LVq0SHXq1FFRUZFq1Kih6dOnq1GjRurUqZOWLFli2XP9GRkZqlatmuIsXvZ56aWXqm/fvnrhhRe0Y8cOv13n+PHjWrRokTp37uy3awBAmRmG9Npr0hNPSJLO+wR/RIRkt3uK/l13+T0egNBH2QcQNqrEROjfjZN0X/0ENUyK+lPhdxbkq3XVGP27cZLuqpeoaPuZv0S2a9dO33zzjWbOnKnIyEgdP35cl112mdLT09WuXTu1bt1aU6dODfhz/VbtxH8mL774oqpVq6aePXv67ebH7Nmz5XQ6deedd/plfADwms0mvfqqVg8YoKXFv1dc6g3D83ObTYqMlB54QPr+e+neey0MDCCUGGZ53loaAPwo3+nWSadbk6a8r3GvjlJh9nEdOrBfhlHyp/udTqemTp2q559/Xvv379fNN9+s3NxcLVmyRNWrV1fv3r3Vs2dPValSxY9/Eo927dqpatWqmjFjht+vVRJffvmlOnTooKlTp+rBBx/0+fi33367Dh8+rFWrVvl8bADwFdM0demllyopKUmL33lHev99ac8e6dQpKTFRuuQS6Z//lALw7wSA8ELZBxD23nvvPT300EOSpF27dpVpdjw/P19vvfWWhg4dqry8PD3wwAMqKirSjBkzZBiGunbtqr59++riiy/2cfpf1a1bV3fffbdGjBjht2uU1v33368FCxZo69atSk5O9tm4OTk5qlq1qoYOHaqnnnrKZ+MCgK/NnTtXt956qxYvXqy2bdtaHQdAGGEZP4Cwl5KScvrn69atK9MYMTExevLJJ7Vz50499dRT+uijj/T555+rX79+6tevn2bNmqXGjRvr1ltv1aJFi3y+tN3pdGrv3r3lZhl/sTFjxsjtduvJJ5/06bhffvmlCgoKeF4fQLlmmqaGDBmiq666Stddd53VcQCEGco+gLBXXPaTk5PLXPaLJSYmasiQIdq5c6f+8Y9/aMSIEZo0aZIGDRqkiRMnau/evbrhhhvUsmVLvf/++yooKPDFH0GZmZlyOp3lruynpKRo9OjR+uCDD7Rw4UKfjetwONS6dWvVqVPHZ2MCgK8tXLhQa9as0eDBg0v1iBgA+AJlH0DYKy77tWvX9rrs/3bMcePGaevWrWrXrp0ef/xxjRw5Us8++6wWLFigmjVrqlu3bqpdu7ZefvllHTlyxKvrFR+7V97KviR169ZN1113nXr27Knc3Fyvx8vLy9PcuXPVpUsXH6QDAP8ontW/7LLLdNNNN1kdB0AYouwDCHvVqlWTJF1wwQVau3atT5fY161bVx9++KHWr1+vhg0b6t5771X//v31f//3f0pLS9Ptt9+uoUOHqlatWnrkkUf0448/nn2wkyelOXM8mztNmSLNmiUdPSrp17Kfmprqs+y+YhiGJkyYoH379unFF1/0erwFCxbo1KlTlH0A5drXX3+tFStW6LnnnmNWH4AlKPsAwl5kZKQqV66sxMREHTp0SPv37/f5NVq0aKE5c+Zo2bJlio2NVfv27dW7d2899NBD2rt3rwYNGqQvvvhCTZo0UYcOHfTVV1/9etPhxx+lxx+XLrhA6tRJ6tZNevhh6c47perVpW7dVLhihapVq6a4uDifZ/eFBg0a6LnnntPo0aO1YcMGr8ZyOBxq2rSpGjVq5KN0AOB7Q4YMUatWrdSxY0erowAIU5R9AJBn2X1UVJQkaf369X67Tps2bbR8+XLNnj1bhw8f1hVXXKEePXqoc+fOysjI0Pvvv6/MzEzdeOONatm8uTbdcovUpIn09tueY5r+qKhImjZN/544Ue87nZKP9gDwh379+qlx48bq3r27XC5XmcYoLCzUF198waw+gHJt5cqVWrx4sQYNGsSsPgDLUPYBQJ4l/Lm5uapcubLPnts/G8MwdOutt2rDhg2aOnWq1q9fr2bNmunRRx9V27ZttX79ei1etEijT5xQs3nzPG9yOs8+4C8fu+nYMalDB6mw0K/5yyoqKkoTJ07U2rVr9cYbb5RpjMWLFysrK4uyD6BcGzJkiJo1a6Y77rjD6igAwphh+vr8JwAIQvfdd58OHjwou92uChUq6LPPPgvYtQsKCjRhwgQNGTJE2dnZ6t27t4bExChu2LDSD2azSQ89JE2adPbXHDwoLV8uHTvmeX3VqlK7dlLFimX/Q5RCnz59NGXKFG3ZsqXUewx0795dS5cuVXp6OrNlAMqlb7/9Vn/96181ffp03XPPPVbHARDGKPsAIKlv375auHChOnbsqBkzZmj37t0Bz5CTk6MxY8Zo/H/+o20nT6rMT98bhrRtm1Sv3q+/Z5rSihXSm29KDsefVwrExnpuEvTqJTVrVtYrl0h2draaNGmili1bavbs2SUu7U6nU9WrV9fDDz+sESNG+DUjAJTVbbfdpvT0dG3ZskV2u93qOADCGMv4AQREoctURk6hth4v0NYTBdqdUyinu/zca0xJSdHBgwfVunVr7dmzR0d/2eU+kCpWrKjnnntOWwcNUqw3A9ls0vjxv/46L0/q0kW65pozF/3i10yYIF1yifTMM5Lb7U2Cc0pISNCbb76puXPn6pNPPinx+5YvX64jR46whB9AubV+/XrNnj1bAwcOpOgDsBwz+wD86mi+U+uO5Gvj0XwV/aE/RtsNtawSo1bJMUqKtvabonfffVf/+te/tHnzZjVr1kwLFy7UDTfcEPggpunZkO+nnzw/L6vEROnAAc/Pb7xRWrWqdAX+oYekyZM9qwT8pEuXLlq5cqV+/PFHVapU6byv79Onjz7//HPt3r2bJfwAyqUuXbrohx9+0NatWxUREWF1HABhjpl9AH7hNk0t3HtSE388oXWH/1z0JanAZerbQ3l6J+24lu0/5dPz7UsrJSVFkmfWuUKFCn7fpO+sTp6Utm71ruhLUlaWlJ4u/etfpS/6kjRlivTKK95lOI9x48YpLy9PzzzzzHlf63a7NXPmTHXu3JmiD6Bc2rx5s2bOnKkBAwZQ9AGUC5R9AD7nNk19npGjtUfyJUnnqq3FH1t1IE/z9560rPAXl/3Dhw+rVatW1pX948d9NtSIBx6QPvqo7Evyhw713Hzwkxo1amjEiBGaNGmSvv7663O+ds2aNcrMzGQJP4Bya+jQoUpNTdWDDz5odRQAkETZB4Le8QKXfjiSr28O5urbQ3nafCxfuU7/PW9dEkszc/XTidIf/7bhaIG+OZjnh0TnV1z2i5/bt6zsR0f7bKiWP/+sIm8GyM313Czwox49euiqq65Sjx49lJ+f/+sHsrOlnTs9Gw0ePSrHp58qJSVFf/vb3/yaBwDKYuvWrZoxY4b69++vqKgoq+MAgCSe2QeCkts0tSO7UGsP5ysjx1Pnihc2m5JshtQ4KUqtq8bqwvjIgGbLKXLprc3Hzzmbfy4RhtTnksqKtgf2XmRBQYFiYmI0ZcoUGYahbt26KSsrSwkJCQHNocJCKT7+zJvolZIZFycjN7fsAxiGZ/+AzZu9znIuaWlpatmypZ595hm90Lq19MYb0pIlv3vNT5GR+v7KK/XA3LlShQp+zQMApdW1a1ctXrxYO3bsULQPb9oCgDeY2QeCTL7TrY+3Z8mxM0e7c36dtzX165J4tymlHS/UB+lZmr83R+4A3tP74UiBV+93mtLmY96NURbR0dFKSko6PbMvSRs2bAh4DkVFSZ07S94872mzSY0be1f0Jc++AVu2eGb4/ahJkyaafNdd6jl0qOfUgGXL/vSa+kVFun/ZMumCC6Rx4/yaBwBKY8eOHfroo4/0zDPPUPQBlCuUfSCIFLjc+nBbln4+6Zn1Lcmz8OuPFGh2Rk5AnoV3m6bWHckr86x+sbWH8y15dr/4+L3GjRsrJiZG69evD3gGSVLv3t7N7LvdUqdOvsuTleW7sc5k6lT9Y8YMVSv+tcv1p5fY9cvqlVOnpMcfl/r1834TQwDwgeHDhys5OVndu3e3OgoA/A5lHwgin2fk6Gi+q9Rl+scThVp5wP/Pwp8ocCvX6X0BO1bgUr7LurIfERGh5s2bW/fcfps20sUXS2U5o9kwpKQk6aabfJfHn8+fzp8vPfSQDLe7dP8gjR7t+QEAFtq9e7fef/99Pf3004qNjbU6DgD8DmUfCBL7c4u0M7uozLPm3xzKVYHLvxv35ftwfCvLviRrN+kzDGnaNCky0rMkvyzvTU31TZbISCkx0Tdj/ZHbLfXoUfYZ+gEDpF/+vgDACiNGjFBSUpJ69uxpdRQA+BPKPhAk1h3O9+oT1umW0o7791l4mw/PP7dZcJT6b8t+q1atlJaWplw/P69+Vq1bS3PmSDExJZrhN202z+umTpU6dJDq15datiz9zYLfioiQ7r3Xu/0DzmXBAmnPnrKXfbdbevdd32YCgBLat2+fJk+erCeffFLx8fFWxwGAP6HsA0Eg3+lW2vECeTtv/v3h/PO/yAtxET5q6KYpw1n6o/u89ceZfbfbrU2bNgU8x2nXXy+tXi0VHzd3htLt+qXMG82aSQsXSg888OsHH3/cU4jLyun07B/gL2+84d2NBLfbM8YZnvEHAH8bOXKk4uPj1dufXycBwAuUfSAIHMl3yRer2o/mu+Ty46ZmCVF2XRBrlzeV3+1yauvKRapRraq6dOmi9957T4cPH/ZZxnNJSUnRkSNH5HQ61axZM0VERFi3lL9Y8+ae3em3bJF69ZIuuECFdruKDENKTtY3dero4aZNpQ0bpLZtf//ee+7xLMEvy4oLu91z7csv982f449cLunLL70/YjAzU7LyhgyAsHTgwAFNmDBBffv2DfwRrQBQQpR9IAgU+PD59QIfbKB3Ln+pFuvVbvw2e4T+ed1fNGjQIO3fv18PP/ywUlJSdPXVV2vkyJHaunWr33bqT0lJkWmaOnLkiGJiYtS0aVPrduT/oyZNpLFjpf371bNrV1135ZXS4cMafNFFym3W7MyFPi5O+uij0l/LZvM8PjBtWtluFJREVpZ3qw5+68gR34wDACU0evRoRUVF6fHHH7c6CgCcFWUfCAIRPvxMjfDzw/AXJ0Urxl62axiSEiJtuq5ZPfXv31+rVq3S/v37NWnSJCUnJ+uFF15Q48aN1ahRI/Xr10/Lli2T09uZ4d9ISUmRpPKxSV8JZWRkqHbt2md/QYcO0gcfeGbqS/L8vt0uxcd7Zt2bNfNZzj/xVdGXOIIPQEAdPnxYb731lvr06aOkpCSr4wDAWVH2gSBQIdI3n6qRNs8Pf4qwGeqYWqFM7zUk3Vq7oozfzCanpKTo4Ycf1qxZs3T06FHNnj1b1113naZNm6Zrr71WKSkp6tq1qz799FNlZ2d7lf1MZX/Tpk0qLAz8/gHnY5qmnE6n9u7de+6yL3me4//qK6lFC897z7ThX/HvtW0rrVnjOf7Pn5KSfLdqoHJl34wDACUwZswYGYahvn37Wh0FAM6Jsg8EgSoxEarm5bPwhqRmlWN+V6T9pUFitDpcVKHEeQ15dt+/vU5FXVQh8qyvi42N1a233qoJEyZo3759WrNmjXr16qUNGzbo7rvvVnJystq3b68333xTe/bsKXXuP5b9Vq1aqbCwUGlpaaUey5+K/w4zMzPldDrPX/Yl6brrpHXrpG+/1e5rrtF+SWZMjGcWv1YtqW9fKT3ds8lf48b+jO8REeHZgLAEJw2cU9Wqnr0FACAAjh07pjfeeEO9e/dWcnKy1XEA4Jwo+0CQ+EtV756FNyW1So7xVZzzal4lRnfXS1Cl6F92iz/Da4q/AFWJsev++olqlBRd4vFtNpsuv/xyvfzyy9q4caN27dql0aNHy+12q2/fvkpNTVWrVq30/PPPa+3atSV6zj82NlYJCQmny36LFi1kGEa5XMpvmqZ27dolSSUr+8Uuu0zvXXONWlStKiMvTzp50nP83ahRUoMG/gl7No895t1O+na79OijUuTZbxABgC+NHTtWTqdTTz31lNVRAOC8KPtAkGhcKVrRdqNMs/uGTF0YH6FqsX46L/0s6iZEqUfjSrqvfoIaJkX9bu+BKJvUuFKUHmyYqH9dnKSa55jRL4natWurT58+WrhwoY4cOaLp06erSZMmGjt2rP7yl7+oVq1a6tWrl7788kvl55/9CMLfHr9XoUIFNWrUqNyV/eKZ/YyMDElSampqqd6/adMmXXLJJb6OVXodO0rVq5d9Ob9pSt27+zYTAJxFVlaWXn/9dT3yyCOqVq2a1XEA4Lwo+0CQiLQZurN2xVK/z+1yKTf7hFKzdvkh1fkZhqHUilG6s06C+rVI1gt/u0gJ33yqJ1skq1PtBF0YH+nzRwsSExN1zz33aNq0aTp06JAWL16su+++W/Pnz1eHDh2UnJx81mP9flv2Jc9z++VmR/4/yMjIUEpKimJjY0v1vnJT9iMipDfeKPv7Bw6ULrzQd3kA4BzeeOMN5eXl6emnn7Y6CgCUCGUfCCK1E6J0R52KshlnXhb/R4akuEi7vhn3nDq2u0ZLlizxd8RzcrvdKsjPU3RU4JZdR0ZGqm3bthozZox27NihzZs3a+DAgcrMzDzjsX7VqlX7U9nfsGGDXN4sN/cD0zTPvxP/GeTm5mr79u1qXl6ec+/c2XOkoFS6Gf6HH5ZefNE/mQDgD06ePKkxY8bo3//+t2rUqGF1HAAoEco+EGQaJUXrHw0SVeuXZe9/rEemacr45fcbJUXpocaVNPP9Sbryyit1yy236Isvvgh05NOKiookSVFRUZZc3zAMNW3aVAMGDNDq1avPeKzfokWLtG7dutPH+rVu3Vq5ublKT0+3JPOZ/HYZf2nLflpamkzTLB8z+8Uee0z6+GOpgucUh7PeVrHZPKsBXnxRmjTJd7v5A8B5vP3228rOztb/+3//z+ooAFBilH0gCNWIj9T9DRLVvXGSLq0ao8rRNsVFGMrPOqYD29JUM/+gHmtWWXfUSVBilF3x8fGaPXu2OnXqpM6dO+uDDz6wJHdBQYEkKTq65Bvx+dOZjvWrX7++jh07dvpYv/Hjx0uSVqxYYXHaPytL2d+4cePpmx7lyr33SgcOqOCtt7TlTCW+Zk1p+HApM1N67jmKPoCAyc3N1ahRo9StWzfVqlXL6jgAUGKB3a0LgE9ViYnQDTV/PdO+W7enNHXqVI0ZM0bxV/6+zEVHR2v69Ol65JFH1LVrV504cUJ9+vQJaN7i8+qtmtk/l+Jj/fbt26devXpp1apVmjt37umVED179tSnn36q2267TZ06ddJFF11kaV632629e/eWuuxv2rRJ9erVU1xcnH+CeSMuTotr11YH09S2RYtUPynJs1t/pUpSnTreH9MHAGUwYcIEHT16VP3797c6CgCUCjP7QAipU6eO7Ha7fvjhhzN+3G63a+LEierXr58ef/xxvfTSSyU6ks5XytvM/pmkpKTINE3Vq1fv9LF+N998s+rVq+fVsX6+ZBiGCgsL5XK5ylT2y9US/j+YN2+eUlNTVa9tW6l1a+myy6T69Sn6ACyRn5+vkSNH6sEHH1TdunWtjgMApULZB0JI7dq15XQ6z3lUnGEYGjlypIYNG6bnn39eTzzxhNxud0DyleeZ/WIpKSmS9LtN+tq0aaNDhw5pwYIF5zzW73//+985j/Xz2oED0muv6a5vvtEze/ZoqKRLfvpJ+mUvhJIIhrJ/8803+/yEBgAoi3fffVcHDx7Us88+a3UUACg1yj4QQorPW09LSztdrM/EMAwNGDBAb7/9tsaOHauHH35YTqfT7/mCZWZf0p925M/KytKuXbvOeaxfx44dlZycrM6dO5/xWL8yW7FCuucez3PrTz2ldlu26O7jx9VP0oV9+0o1anieY9+//5zDHDp0SIcOHSq3ZX/nzp1KT0/XzTffbHUUAFBhYaFeeeUV3XvvvWrQoIHVcQCg1Cj7QAgpLvtFRUXaunXreV/fs2dPTZs2TdOmTdNdd93l31lpBe/MfqtWrSTpTysmznas3/79+894rF+pl/ubpqfEt2kjzZzpeX7d7VaE261ISaf/XzxyRBo2TGrSRFq9+qzDbdq0SZLKbdmfP3++IiIi1K5dO6ujAICmTp2qn3/+WQMHDrQ6CgCUCWUfCCE1a9aUzeb5tN6wYUOJ3nPfffdp1qxZmj9/vjp06KCcnBy/5QuGmf34+HjFx8f/ruynpKSoRo0a53084nzH+jVq1Ej9+vU7fazfeT3zjDRkiOfn53u9yyXl5Eht20rffHPGl2zatEkxMTGqX7/++a9tgXnz5umqq65SQkKC1VEAhLmioiINGzZMXbp0UZMmTayOAwBlQtkHQkhkZKRq1KihpKSks27SdyYdO3bUggULtHbtWl1//fU6evSoX/IFw8y+5Cn3vy37kmcp/7nK/pnG+OOxftddd52mTZt2+li/rl276pNPPlF2dvafB5g2TRo1qnTBXS7PTYEOHaQz/B1u2rRJTZs2lb0cbnZXWFioRYsWqX379lZHAQB99NFH2rVrlwYNGmR1FAAoM8o+EGJSU1NVsWLFEs/sF2vTpo2WLl2qjIwMXXPNNdq3b5/PsxWX/fI8sy+du+yXZef94mP9JkyYoH379mnNmjXq1auXNmzYoL///e9KTk5W+/bt9eabb2rPnj2e5fsvv1y2s+RdLikrS3r33T99qDxvzrdy5UqdOnWK5/UBWM7lcmnYsGG6/fbb1aJFC6vjAECZUfaBEJOamirDMLRhw4ZSF9NWrVppxYoVysnJ0dVXX63t27f7NFvxMv5gndk/fPiwMjMzvRrbZrPp8ssvP32s386dOzVq1KjfHev3cMOG0tatntJfFm63NG6cp/j/wuVyafPmzeW27M+bN08pKSl8Yw3Acv/973+Vnp6uwYMHWx0FALxC2QdCTO3atZWbm6tjx47p559/LvX7GzZsqJUrVyo6OlpXX321Nm7c6LNswb6MX/rzJn3eqlOnjh5//HEtXLjw9LF+/yoqUskP0zuLvXulhQtP/3Lnzp3Ky8sr12W/ffv2p/ecAAAruN1uvfzyy7rlllt06aWXWh0HALzCd1VAiElNTdWxY8cklXyTvj+qVauWli9frgsvvFDXXnutVq1a5ZNswbBBn3Tmsl+zZk1VqVLF52X/t4qP9bsqPl6R3g5mt0tpaad/WZ534s/MzNTGjRtZwg/AcjNnzlRaWhqz+gBCAmUfCDGpqalyu91KSEgoc9mXpKpVq2rJkiVq3ry5bvz/7N15eEzXG8Dx78xkD0mEkFoSe2KLJNReqmKpLqhSaqfVhdbSqtq7qFaLKqookdpia2tpa6hWFPWrLSTULrEG2URC1pnz++OaSGSfmWQiPZ/nmYfc5dxzRzLy3vOe93TuzM6dO03u2+M0sn/79m30en3mNpVKVeQifUbLrWBfUanVytz9B8LDw6lUqVLm0oKlya5du1CpVHTu3NnSXZEk6T9MCMHMmTMJCAigdevWlu6OJEmSyWSwL0lljKenJwC1a9cuUkX+3Dg5OaHVaunYsSMvvPACmzZtMqm9x2nOfkZGBvHx8dm2l1iw7+Bgeht6PTg6Zn5pKM6nMqboXzHTarU8+eSTVKpUydJdkSTpP2z79u2cOHFCjupLklRmyGBfksoYDw8PQAlYTRnZN7C3t+fnn3+mT58+9OvXj+XLlxvdVlpaGhqNplQuDJFaRAAAIABJREFU/ZaVYfQ7t3n7165dIzo6ung7UKeOkoZvCp0OHjz4gdJbiV+n07Fr1y6Zwi9JkkUJIfj0009p37497du3t3R3JEmSzEIG+5JUxjg4OODm5oajoyMXL17MfQ33IrK2tmb16tW8+eabvP7663z11VdGtZOamlrq5+sDuLu7A7kH+wChoaHF24ERI7JV0jeKkxO8+CIAycnJXLhwoVQG+4cPHyY+Pl4G+5IkWZRWq+XIkSNyVF+SpDJFBvuSVAbVrFkzc765uarpq9VqFi1axNSpU/nggw+YNGlSkZf2S0tLK/Up/JD3yH7t2rVxcnIq/lT+F1+EypWNP1+jgZEjwd4egH///Re9Xo+Pj4+ZOmg+Wq2WChUq8OSTT1q6K5Ik/UcZRvVbt25Np06dLN0dSZIks5HBviSVQZ6eniQkJGBjY2OWVH4DlUrFp59+yty5c/niiy94++230RVhBPpxGdkvV64c9vb2OYJ9tVqNr69v8Qf71tYwZgwYO79epYI338z8Mjw8HJVKRaNGjczUQfPRarV07twZKysrS3dFkqT/qD///JODBw8ybdq0UlnXRJIkyVgy2JekMsjT05OrV6/SsGFDk4v05Wb8+PGsWLGCZcuWMXDgwMwq+wV5XEb2VSpVrsvvQQkW6fvgA+jSRamqX1SBgcq8/wfCwsKoXbs2jlkK9pUGsbGxHDp0SKbwS5JkUZ9++inNmzeXn0WSJJU5MtiXpDLI09OTK1eu0LRpU7OO7Gc1fPhwNm3axE8//UTPnj25f/9+gec8LiP7oKTy37x5M8d2f39/Ll68SEKWZe2KhZUV/PgjdO1auBF+jUZ5MLBsGQwalG1XaS3O9/vvvyOEoGvXrpbuiiRJZVxCmo5j0ckcuHmf/VH3ORqdTGxKBn/99Rd79+5l6tSpclRfkqQyRwb7klQGeXp6kpaWRu3atQkPDycjI6NYrvPSSy/x66+/8tdff9G1a1fu3LmT7/GPy8g+kO/IPlBsD1GycXSEbdtg3jyoWVPZ9kiVfp1KpTwMCAiAPXvg9ddzNFNag32tVouPjw9Vq1a1dFckSSqDhBBcupvGposJfHcqnl3X7nEg6j5/37zP79fu8f3pO/xyS/Dc8FE8/8ILlu6uJEmS2clgX5LKIM8HS65VqlSJ1NRUzp49W2zXCggIYPfu3Zw6dYqOHTvmGiAbPG4j+7ndi5eXF/b29iWTyg/KCP/YsXDxIuzcCf36ceGJJzhtZ8dxNzc21agB58+DVgu5LBcVHR3NrVu3Sl2wr9fr0Wq1Mm1WkqRikaEXbIlMZOPFu1y6m565Xf/gZeBcy4t2oz9i48VEUnX6HO1IkiQ9zmSwL0llkCHYNwTWxT0K3apVK/bu3cvNmzd56qmnuHz5cq7HlYWRfSsrK5o2bVpywb6BWq3M4V+zhm9696a/lxe/vPsubycmImrXzvO08PBwgFIX7IeFhXHr1i0Z7EuSZHY6vWDTxbucu6PUk8lv3RiNRikOeiUpnbXnE0jTFW2VGUmSpNJMBvuSVAa5uLjg7OxMTEwMNWvWLJGU8yZNmnDgwAEyMjJo164dZ86cyXFMamrqYxXs3759O9flBf38/Eo+2M+Fn58f8fHxXLlyJc9jwsPDsbW1pW7duiXYs4JptVocHR1p27atpbsiSVIZ88f1JC4npecb5D9KANHJOn65nFhc3ZIkSSpxMtiXpDLK09OTy5cv07Rp02KpyJ+b2rVrs3//flxcXHjqqac4evRotv1paWmPVRp/WlparnUI/P39OXPmTKGKEhYXIQR+fn4A+T54CA8Pp2HDhqVuaTutVsszzzzz2Dz8kSTp8ZCUric0JtWocwVwLiGNmJTiqXMjSZJU0mSwL0lllCHY9/X15fjx47mOUBeHqlWrsnfvXurUqUPHjh0JCQnJ3Pe4pfEDeRbp0+v1hIWFlXS3ADIrRj/xxBNUrlyZ0NDQPI8NDw/Hx8enpLpWKHfv3uXAgQMyhV+SJLMLi00x6XwVEBpjWhuSJEmlhQz2JamMyhrsR0dHExUVVWLXdnV1Zffu3bRs2ZJu3bqxfft24PEr0Ae5B/uNGjXC2traoqn8QghUKhX+/v55Bvt6vZ6TJ0+Wuvn6f/75JxkZGTLYlyTJrIQQHI1OLlL6fo42UB4YpOvl3H1Jkh5/MtiXpDIqaxo/lNBScVmUK1eOX375heeee45evXqxdu3aMjOyb2trS+PGjS0W7GddCzq/+gGXLl3i/v37pS7Y12q11KtXj9r5FBaUJEkqquQMwb0M04P0dD0kpOrM0CNJkiTLksG+JJVRnp6eJCUl4eTkhLOzc4kH+6AExRs2bGDw4MEMHDiQiIiIx2Zk39nZGRsbmzyXEvT39y81Rfpu3LjB7du3c+wrjZX4hRDs3LlTjupLkmR2qWYcjU+RVfklSSoDZLAvSWVUzZo1AbLN27cEKysrli9fzrhx47h06RKnTp0qsfoBplCpVHkuvwdKkH3y5ElSU40rBGUqw3vo7+8PkGsqf3h4OBUrVsTd3b1E+5afc+fOERkZKYN9SZLMzkpV8DGFbkttxsYkSZIsRAb7klRGeXp6ApR4Rf7cqNVq5s6di7u7O0ePHuW9995Dr9dbrD+FlV+w7+/vT3p6OqdOnSrhXmVP469VqxZOTk65ZhmEh4fTpEmTbMdbmlarxdbWlg4dOli6K5IklTH2VmrMFaOXt5a/IkuS9PiTn2SSVEa5ublhb2+fObJ//vx5kpKSLNYflUpFhQoV6NixI19//TUjRowgI6N0L2+UX7Dv4+ODWq3OtxJ+SVCr1fj6+uY5sl+aUvhBCfbbt2+Po6OjpbsiSVIZY6VW0dDFFlPifRVQs7w1jjLYlySpDJCfZJJURqlUKjw8PDKDfSFE5hxuS0lNTaVly5asWbOG1atX07dvX1JSSu8SR/kF+46Ojnh7e1ts3n7WqRB+fn45gv3k5GTOnz9fqoL95ORkQkJCZAq/JEnFxt/NzuRq/M3c7MzVHUmSJIuSwb4klWGGivwNGzbEysrKYvP2DQzV+AcMGMCWLVvYsWMHzz//PImJiRbtV17yC/bBckX6Hk3L9/f358KFC9y9ezdz2+nTp9Hr9aUq2P/rr79ISUmRwb4kScXmCQcrqthrjBrdV6Gk79dxejxWjZEkSSqIDPYlqQwzBPu2trY0bNjQ4sF+ampq5tJ7zz//PFqtlkOHDhEQEEBsbKxF+5YbQ7CfV0FBPz8/Tpw4YfHpCH5+fkD25RUNWRyNGze2SJ9yo9VqqVGjBg0aNLB0VyRJKqNUKhU9ajpho1EVKeBXAWoV9K7thLoU1TmRJEkyhQz2JakM8/T0JDIyEgBfX1+LFukDZWQ/69J7HTp0ICQkhEuXLtGhQwdu3Lhhwd7l5O7uTkpKSp6ZB/7+/iQnJ3P27NkS7ln2NH5vb29sbW2zpfKHh4dTu3ZtypUrV+J9y4tWq6Vbt26lqmBgidDrYfduGDQI2rUDX1945hkYPx4s8L0jSWWdq52G/nWdsdOoUBUiqV8FWKmhbx0n3B2sir+DkiRJJUQG+5JUhtWsWZO4uDiSkpJo2rQpYWFh6HQ6i/Un68i+gb+/P/v27SMhIYF27dpx8eJFC/UupypVqgDkmcrv6+sLUOKp/I8Gy9bW1vj4+GQL9sPCwkpVCn9kZCRnzpz5b6Xw63SwaBHUqwedO8P69XDgAJw4AXv2wMKF4O0NHTsqDwMkSTIbdwcrhnq7cPfscXQZ6ej1Ongk8Fc9eNV1tmGIlwue5WX6viRJZYsM9iWpDMu6/J6vr29m0TZLeXRk38Db25v9+/djZWVFu3btLF5IEIC7d6l/4ADTAfuPPoJZs+CXX5QA7gEXFxfq1Klj8Yr8oKTyZ33oUNoq8e/cuRONRkOnTp0s3ZWSkZwML78M774LERHKtkenexi+3rcPunSBb74p2T5KUhkXf+MqXw7qzrqRzxOxcxNPOFjjbKPGyUaNu72GNu72vNWoAr1rO1HJTo7oS5JU9shPNkkqw7IG+y1btgSUed3e3t4l3peMjAz0en2OkX0DT09P9u/fT9euXenQoQO//fYbrVq1KuFeAidPwrffQlAQT6SkMAXQbNgAKpUSnFWtCqNGweuvg5ubxYr0PVpHwM/PjxUrVpCSkkJSUhI3b94sVcG+VquldevWODs7W7orxU+ng/79Yft2yKPeQ47jAcaOBVtbePPN4u2fJP1HfP755zg7O/Pv8WNMGPMOQ7xcLN0lSZKkEiVH9iWpDKtatSpWVlZcvnyZihUrUqNGDYsV6UtLSwPIdWTfoHLlyoSEhNCoUSM6derE77//XlLdU3z7Lfj4wPLlkJKCCrABNDrdw1HYGzdg2jTw8oJ//sHf35/Q0FD0en2JdTO3Oe/+/v7odDpOnjyZmRlRWoL9tLQ0/vjjjxJJ4RdCkJKh5166Hp3elAW4TLBwIWzbpszVL6q331YeOEmSZJIrV66wcuVKWrVqha2tLb169bJ0lyRJkkqcDPYlqQzTaDRUr16dy5cvA8occ0sF+6mpqQB5juwbODs7s3PnTjp06MBzzz3Hjz/+WBLdg6++gtGjlZHYgqrr6/Vw9y506MDTdnbcvXuXS5culUw/89CkSRM0Gg2hoaGEh4dja2tLvXr1LNong4MHD5KYmFhswb4QgqtJ6WyNuMtXx2OZHx7HwpNxfHUilqAz8ZyMSyGjpAJ/vR7mzSvciH5uNBpYvDjndiEgJARefRWaNoXatZU/X3lFme9v7PUkqYwyjOrfuHGD7t27/zeyiiRJkh4hg31JKuMMy+9BCVfkv3ULPvsMXnwR2rTB4cUXWQXUCA/PNu89Nw4ODmzZsoXevXvTt29fAgMDi7evO3bABx8U7ZwHo/0tPvoIN0q+SN+jafz29vZ4e3tz7NgxwsPDadCgAVZWpWOmllarxc3NLXOJQHOKup/O8tN3WHs+gbN30nh0LP1Wso5fLiex8GQcx6KTzX79HHbuhKtXjT8/IwOCgpSHSaAE8YGBSiZJx46waROEhSl1AMLC4KeflOJ/devCkiUy6Jck4OrVq6xYsYIhQ4YQGhpK//79Ld0lSZIki5DBviSVZdHRDE5Lo8OBAzBjBr2vXKHGzZvcjIoqvmuGhUG/flC9OkyfrsxbPngQ2/376Qe0/OQTqFVLGUl/kNqfGxsbG9asWcPIkSMZMWIEc+fOLb4+f/opqI34ONTpUCcm8r6TU4kW6ctr6To/P7/Mkf3SksIPSrDftWtX1Ma8x/mIuJvGmnMJxKUqD49yS5o3hL6pOsGua/fYc/1ejgclZhUYCKY+ZElJgR9/VB4ovfUWjBgBFy4o+/Iq8hcRoRw7dCikp5t2fUl6zM2ePZvy5ctjb29PuXLleO655yzdJUmSJIuQwb4klUX/+x8MHAhVqzLs4EFGXL0Kn3+Oz+rVHAIc2rVTgpJkM490btsGLVoogUpGRo45y9aGv1y9Ch9+qIxI3rmTZ3MajYbFixczadIk3n//faZMmWL+QC0sDA4eNG5+NYBez2upqRw/csS8/SpAbu+Dv78/YWFhhIeH4+PjU6L9ycvNmzc5fvy42VP4b97P4MdLd9GJRxfTyt8/t5M5dLsYR/gvXix4GkhBrKwgMhLGjYNly5RtBX3fG/avXq0E/XKEX/qPun79Ot9//z3jxo3jp59+okePHjg4OFi6W5IkSRYhg31JKkv0epgwAVq3hg0bICMDFQ+C7PR0VA8C2nIREcpoob+/aSnHWf3+O7z0kjJaX5hgR69X1hx//nl4MJ8/NyqVilmzZvHll18ya9YsRo8ebd5ieEuXmjwS65qaSvX//Q9x8aIyAhsXV6zBVn4j+8nJydy/f7/UjOzv2rULlUpFly5dzNrujiuJ6Ix8i0Nu3OduWv5TSYoqPT2diIgI7sfEmKfBsDCl0F9Rv4+EgBUrlJ9/SfoPmj17No6OjjzzzDP8+++/MoVfkqT/tNIxoVOSJNMJoSzZ9f33ytf5BNxqQwBx4QK0bAmHD0O1asZfOzYWevVS+lCU4ESnU0bVJ0+GAtL0J0yYQIUKFXjjjTe4c+cOQUFBWFtb53tOoRw9avJIrAC+T0pS5k0b+Pgoa6z37w8lNKrk6+ub+ffSEuxrtVqaNWuGm5ub2dqMup/OrWTTgvXjsSm0f8Kx0McnJSVx+fJlLl++zJUrVzL/bvj6xo0b6PV6/ge0NKlnKD9Dx48rxfoKqG+RK7Ua5s9XptNI0n/IjRs3WLZsGVOmTGH79u24urrSuXNnS3dLkiTJYmSwL0llxcKFDwP9wsrIgOhoePZZOHbM+BHuoCBlSoAxI+56vTK6/vHHUK5cvoe+9tpruLi48Oqrr5KQkMDGjRtNT8/MZxqBSU6ehNdeU1Kxv/zS7Gun55bG7+LiQoUKFUhOTuaJJ54w6/WModPp2LVrF2+99ZZZ2z0WrSyLaGzuhABCo1NoW8UBjVqFEILbt29nC+IfDejj4+MzzzescuHp6UmdOnXo2LEjnp6eeHp64rV8OeLnn1GZ8gApI0NJ4zeWXg///KM8MMjyAEiSyrovv/wSe3t73nnnHfz8/Ojdu3eBK8BIkiSVZTLYl6SyID1dKTJnjIwMCA+H335TKucXlV6vPGgwJbX+/n1Ytw5Gjizw0JdffhknJyd69epFt27d2L59e/Ylle7fh+BgZe7y1avKtAIXF2jTRpnL/GjwY4ZR91yT6g3vR2Kict1r12DmTJOvBXmn8YOykoFer8/3mJJy9OhRYmNjzT5f/+ydNKMDfYNknaDfm+8StncXV65cISUlJXOfo6Mjnp6eeHh40LJlS/r27YuHh0dmQF+1alU0Gk3uDVesqFTMN4WDgzK1xZhRfQMrK1i1Sgb70n/GzZs3Wbp0KR9++CFnzpwhMjJSpvBLkvSfJ4N9SSoLtmwBU+YKazRKwG5MsL9vHzxY2s8ky5YVKtgH6NKlC7t376Z79+507NgRrVZLZQcHmDFDyW5ITASV6uGUgmvX4MwZ5RotWypZBF27Kvtq1VLmR5sSWBXGZ59BlSrwzjvFepnU1FRSUlIQQlg84NdqtTg7O9OypcmJ7Zn0QpCmN089hPikZBwdHWnZsiXOzs44OTnh7OyMvb09Go0GlUqFSqUiKSmJ06dPc+bMGVQqFWq1OnPfoy+1Ws3QatWofOPGw+kyRbk/lYp4V1cq3LhhWlEdvV75vpek/4ivvvoKGxsbxowZw4wZM3jiiSdo3769pbslSZJkUTLYl6Sy4NtvjZ/fC8p5u3crlcTr1CnauRERxl0zKyHg0qUindK6dWv27t1Lly5d6Nm6NSG2tticO/fwPXg00DKkVR8+rExbWLgQRo1Slir76SfT76Ew3n8fBgwAV1eTm8otjT8lJYW4uDj0ej2RkZHUqlXL5OuYQqvV0rlzZ6xMXYouC3PWPbSxsyUlJYXk5GRu3ryJECLXl16vz3NfbvtPpaay2oiO6oB7QvD3tWt0N/Xm9Hq4d8/UViTpsXDr1i2+++473n//fcqXL8/GjRvp169f3hk4kiRJ/xEy2JeksuDYMfOMTIeFFT3Yv3cv+yi6sYxYBtDHx4cDWi1pLVqgLuza4ob0+tGjlRoBD5Yo5MaNIl+/yNLTlfoG48eb1ExeI/anT5/OXKkgNDTUosF+XFwc//zzD8sMS8eZiUatwkoFGWYI+hd/8zU1yxfTfN6PP4aPPir88Wo1GrUap927eWH1avjhB9MKR2o0yvQVSfoPmDNnDlZWVowdO5a9e/dy8+ZN+skClZIkSXLpPUl67AkBSUnmacuYYnVOTuYZbi2gOF9e6ixfjrdOZ9yTy9deg+vXYcwY5YFFSTC1vkE+wsPDAahSpQrHjh0rlmsU1u7du9Hr9XQ1TJcwo5rlrXOvk1AEaSnJvNKtEx9//DHHjh3LNVPCJNOnwxdfKH8vKLNBowFHRyW7pkMHZZ69qQ/vhICmTU1rQ5IeA7dv32bx4sW8++67uLq6EhwcTO3atWnRooWluyZJkmRxMtiXpMedSgW2tuZpy5hidQ0bmnxZoVZDo0ZFP/HuXQgMRGVs8CyEMo9//HhlDn9xp3wKoVRZP3vWDE3lDE7Dw8OpVasW/v7+hIaGmnwNU2i1Who3bkz16tXN3ra/m71JBfp0GRmE79hMRsp9vv76a5o1a4aHhwdvv/02O3bsyFasz2gqFUycqFTF79dPCfjVarC2Bmtr0gzHubrChx/Cv/8qgT4o2Sam/kyr1TBsmGltSNJjYN68eajVasaNG0daWho//vgj/fr1s3jNEkmSpNJABvuSVBZUrWqedqpVK/o5/v7KmvJq4z9OVHo936JUby+SNWvAlMBMp4PvvlNG2jdvhs6dS2aEPzbWpNPz+iU2PDycJk2aWDzYF0Kg1WrNXoUf4PLly0wcMZD4G1cQwriHPBorKw5uDOTYsWNkZGQwaNAgXnzxRbRaLd27d6dSpUr07t2boKAgoqOjTetwixbKyhA3bsA33yhLMY4cyZa6dfm8aVOIilJWacj6UMTFBQYNMn4pTCsreOUVcHMzre+SVMrFxMSwaNEi3nnnHSpWrMjOnTuJj4+XVfglSZIekMG+JJUFw4ebFGwD4OGhLE9XVCoVvPuuSanp9x0cmB8RQfPmzWndujXr1q0jLS2t4BMDA42+Zqa4ONi5U0mj3r4dPv8cHqxRb8KM6fyZO2X8gbCwMJo0aYKfnx9RUVHcvHmzWK5TkPDwcKKiosyawn///n1mzJiBt7c3Bw7sp056NCqVcd/zTVxt+ffQAcaMGUNGRgarV69mxYoVPPvss4SEhDBlyhRu3LjB8OHDqVKlCu3atWP27NmcPn3a+HR/NzelTsTs2bBoESf69mVRdDTktQb4uHFKpklRHz6pVMrr/feN66ckPUbmzZsHwPgHdVDWr19Po0aNaNy4sSW7JUmSVGrIYF+SyoIRI0wL9tVqZUk4Y9vo318JkI1Mg3eYMYMzly6xZcsWHB0dGTBgAB4eHsyYMYOoqKi8T7x61fTAWaVS5u2DMiI6cSJcucKuUaP4BdA1aqQULfT3N+06WRVDNf7Y2FiioqIyg33AYqP7Wq0WBwcH2rVrZ3JbQgg2btyIt7c3X3zxBWPHjuXs2bOM7NmVgOqORW6vVnlrunmUw8nJifnz5xMTE8PkyZNRq9UsXryYTp06ERYWxqpVq4iKimL58uVUqlSJjz/+mIYNG1K/fn3Gjx9PSEgI6YUtCpmLpk2bcuPGDWLyWjKzQQPYuPFh8F4YhuNWr1bm/UtSGRYbG8vChQsZNWoUlSpV4v79+2zdulWO6kuSJGUhg31JKgvc3aFvX+OCbZVKGV00ZX6vg4MyOm5nV7Q+qFTKfOb330ej0dCjRw92797NqVOneOmll5g7dy4eHh7079+fv//+O+eoqjnmVqvVOVcCsLIi+N49PmraFM3Jk3DhAhw9Cu3amT6vv2pV8PY2qYnc0vgNxfmaNGlCrVq1cHZ2tmiw37FjR+zs7Exq58SJE3Ts2JFXXnkFPz8/Tp06xeeff0758uUBaO5mzwue5bAqIBY27G5a0ZaX6zihyfL+lStXjs8++4yYmBg+++wz7O3tWb9+PfXr12fw4ME0btyYLVu2EBsbyy+//MIzzzzD+vXr6dixI5UrV2bAgAFs2LCBhISEIt2bj48PoGRj5OnFF5Vsk8L8XGk0Sj2AH39UUvglqYz7+uuv0ev1vP8gi2X79u3cu3dPVuGXJEnKQgb7klRWLFwINWsWaZ5vZuL9+vVQsaJp12/SBPbtQ7i6UmAdcUPgMnw4rFqVI6OgYcOGLF68mOvXrzNnzhyOHDlC27Ztad68OStXriTZEJw7O5vWZ1Dm7efSzt9//03btm2zb3znHdOqpKvVSip3MRQCDA8Px8bGhnr16qFSqfDz87NIsJ+YmMj+/ftNmq8fExPDW2+9hb+/P7du3UKr1bJ161bq1q2b49hGrnaMbuJK5+qOVLDN+V+ajVrFk5XtGdmgAs96lM8W6Gfl4ODA5MmTuX37NnPnzsXZ2Zldu3bRsmVLWrRoQUhICN27d2fp0qVcu3aNw4cP88477/Dvv//Sr18/KlWqREBAAAsWLCAiIiJ748eOwYwZMGoUvPUWTJlCvWvXsLO1zT/YB+jeXSno+OGHmRkheo2GNEAYftZdXJS0/bNnoVevAt9fSXrcxcfHs2DBAt5++23cHtSmCA4OpkWLFtQp6vKxkiRJZZmQJMm80tKE2LxZiEGDhOjWTYguXYTo31+IwEAh7t8v3mtfvixE/fpCaDRCKAnueb7SQaSBSPj2W7N24begIDENRIqLixAg9FZWIhVEukol0g3X79xZiG3bhNDrC9WmTqcTO3bsEN27dxeAqFixovjwww/Fva5dhbCyKvBeC3yFhma73u3btwUg1q5dm70jqalCVKpk/HWsrIS4dcvk9/jDDz8UtWvXzrbt9ddfF02bNs38ety4cTmOKQlbt24VgDh//nyRz01PTxcLFy4UFSpUEE5OTmLevHkiLS2t0Ofr9XoRfT9dRN5NFZcSUsWNpDSRpivc99ijkpOTxaJFi0TFihUFIABRt25dsWrVqhx9unz5sli0aJHo2rWrsLa2FoDwbdRIbHj+eZHYoMHDf3tra+X14Hv2sq2tWN2ypRBJSYXrVGqqEJs2iWN9+ohZINKmTBFi1Cghhg4VondvIV55RYjRo4UICSn0z5YkPY6mT58u7O3txc2bN4UQQsTHxwsbGxsxb948C/dMkiSpdJHBviSZS0KCEB99JETlyg9/uTcEeYbg28lJiPHjhYiKKr5+xMUJ8c47Qjg6CqFSKa+sAeeDvlypV0+0BTFlyhSzXTojI0M0bNhQdOrUSXno8eOPImb4cLEUhLZePTGvYkUhjAgCszp//rwYO3ascHJyEgGP3lsRXzqVSuiaNctxjS1btghAREbIEuBCAAAgAElEQVRG5uzAunXGX3PmTJPu3WDSpEk5AvlWrVqJgQMHZn69atUqAYg7d+6Y5ZqF9fbbb4s6deoU+bw//vhDNG7cWKhUKvHaa6+JW2Z4KGIOqampYunSpcLd3T0z6Hd3dxfz5s0Td+/ezXF8QkKC+PmHH8RJd/fMh2p5fv89eImGDYW4dq3QfQqeN098DkL/4IGasLJSfs7V6oefO15eQnz7rfKAQJLKkPj4eOHs7CzGjRuXuS0wMFCoVCpx/fp1C/ZMkiSp9JHBviSZw9WrQjRoUKgRdaHRCPHEE0KEhxdvnxIThVi6VIj27YWoV08IDw8hfH2FGDNGiDNnhE6nExqNRjg4OIgbN26Y5ZJBQUECEIcOHcrcdvz4cQGIPn36iMaNG5vlOkIIkZiYKL5bvFhctrZWAiYjX+MqVRLBwcFCn2UkdMKECaJatWrZtmUzZ06Rr3OjVy+zjbZOmjRJ1KpVK/NrnU4nypUrJ2bPnp257eTJkwIQISEhZrlmYej1elGrVi0xatSoQp8TEREhevfuLQDRpk0bceTIkWLsofHS0tJEYGCgqF69ugCESqUS5cuXF5MnT84cXRRCKNk7LVoU7rPgwUtvZaX8fBbmAUdoqLhXvny+DxEEPHzQ16GDEPHxxfa+SFJJ++ijj4SdnZ2IyvLQvHPnzuLpp5+2YK8kSZJKJzlnX5JMFRMD7dvD+fOFm8+t08Ht28o5Fy8WX7/KlYORI2HvXjh3Di5fhtBQmD8fvLxQq9X4+fmh1+sZOXIkQgiTLpeamsr06dPp3bs3Tz75ZOZ2wxJ6er0eW1tbk66RVbly5XjzrbeosWKFccVHNBrSatTgSsuW9O/fn1atWrFv3z4ADhw4QNu2bfNcz5733lNqDTg6IiDXGgV6w8vamqU1a+J34ADXDFX/TfRovy5fvkxSUlJm0TcALy8v7OzsOHbsmFmuWRgXLlwgIiKiUPP17927x/Tp02nQoAEHDx5kzZo17N+/n2bNmpVAT4vO2tqaYcOGERERwapVq6hZsyaJiYnMnj0bDw8P3njjDc6dO6fMyz9ypEi1HVQZGYjr1xE9eyqhel5On4YOHbC7d48CK3MYwv79+6Fbt5xFKCXpMZSQkMD8+fN54403cHd3B+D27dv88ccfsgq/JElSLmSwL0mmGjIErlyBjCKsyq7Twd278MIL+f9yX8yefPJJKleuzC+//EJQUJBJbS1ZsoRr164xc+bMbNsNwb5Op8MmrzXFTaAaNEgpXlYUVlbg7IzNnj1s/uUX9uzZg06no3379vTo0YPDhw/nLM73qEGD0EdFMcnVlZsuLjn3V6/OgmrVaOTigu/69djY2tKrV6+HxQXNKGslfgMrKyt8fHxKtEifVqvFxsaGp59+Os9jhBCsX78eb29vZs+ezfjx4zl79iwDBgzI++FKKWJlZcWgQYM4f/4869ato06dOqSlpREUFERHLy90QUGg1xfYzqNUOh2qgweZ06cPu3btIjU1NfsB6enw7LNw/z7qorSv08HhwzBuXJH7JEmlzYIFC0hOTuaDDz7I3LZp0ybUajW9e/e2YM8kSZJKJxnsS5Ipzp2D334zrkK7TqeM1P35p/n7VUi+vr5cv36dQYMGMXbsWK5cuWJUO4mJicycOZNhw4bh/ciycoagRafTmXVkP5tZs5QX5LsagTCsWV6jBhw6BA+qNj/99NMcOnSINWvW8L///Y/09HQOHjyY9xroD+w5dIjZcXFEbt8OkZHK8nyHDsGFC6gvX2ZAaCjC1ZV+/fqxbNkyTp06ZZYsCiBbG2FhYVSoUIGqVatmO8bf37/Eg/2nnnqKcuXK5br/+PHjdOjQgf79+9OsWTP+/fdfPvvsszyPL800Gg39+/fn9OnTbNy4kbp16zICTHp4p1OpqL1jB127dqVSpUr06dOH1atXExsbC9u2Kdk5RXmoaKDXQ2AgxMYa3TdJsrS7d+/y9ddfM3LkyGyfdcHBwXTp0oWKpq4oI0mSVAbJYF+STLFkiWnLqFlZwaJF5utPEfn6+qLT6RgxYgTOzs6MGDECvRGjkvPmzSMxMZEZM2bk2GcY2c/IyCiWkX1ACeAnTVKmKQwbpqxLDmQAGSpV5hKDZ4B17dtzZtOmzEDfQK1WM2DAAMaMGYO1tTW//vordevW5auvviIlJSXXy65cuZL69evTpm1b8PQEf3948kmlbbUaNzc3fv/9d3Q6He+99x7z589nzZo1fP311ybebvYR8PDwcJo0aZJju5+fH6dPny6WbIJHpaSksGfPnlxT+GNiYnjzzTdp1qwZMTEx7Nq1iy1btpSJJbLUajV9+vQhPCyMyc7OmLKookYIeqWlcXLfPiZOnMiVK1cYPHgwlStXJnTECPSmZD7odLBypQm9kyTLWrRoEffu3WPixImZ265cucKBAwdkCr8kSVIeZLAvScbS6WD5ctPWXc/IUEbsoqPN168iaNy4MWq1mgsXLhAYGMju3btZsmRJkdqIjo5mzpw5jB49mho1auTYXyIj+wa+vrBsGURFQVAQ8ypUYG/btqi//proLVtYP3Uq48+coUHz5gQEBLB161Z0j/z7HTp0iHbt2nHhwgUGDhzIpEmTaNCgAevXr882mp6QkMBPP/3E0KFD800/r1GjBr///jvR0dGsWLGCsWPHMmHCBHbt2mW22zYE+4/y8/NDp9NlpvkXp3379pGcnJwt2M/IyGDhwoXUq1eP9evXM2/ePE6cOEHnzp2LvT8lTZ2YiF1CgsntqDIyaGRvz9SpU/nnn3+4ceMGaz/5BL+EBNSmZITo9fDddyb3T5IsITExkblz5/Laa69RrVq1zO0bNmzAzs6OHj16WLB3kiRJpZcM9iXJWPHxkJhoejt6vTLn3wIcHBzw8vLi+PHjBAQE8NZbbzFhwgQuXLhQ6DZmzZqFWq1m0qRJue5PS0vDGnC4dw8nlapkahS4uMCQIcyxsuKfZ5+FsWNx69GDjz/5hCtXrrB27Vru3btHz549M0fv4+LiEELw999/07ZtWypXrsyiRYs4efIkPj4+OYr4bdy4kdTUVAYPHlxgd7y8vNBqtZw5c4YTJ04QEBBAv379ivQ+P8rw4CE1NZVz587lGuw3adIEjUZTIqn8Wq2WatWq0ahRIwD++OMPfH19GTNmDH369OH8+fOZWRNlkjk+CwyyPDR44okn6Ne8uXnajYw0qp6AJFnat99+S2JiIh8+Up8lODiY559/nvLly1uoZ5IkSaWbDPYlyVj37pmvLXMGCkXUtGlTjh8/DsCXX36Ju7s7w4YNyzHinZvLly+zePFiJkyYkHO+ZFISLF1K53HjSAN+PnCANdu2gaMjvPEGnDhRDHfzaBeScswHt7Gx4dVXX+XgwYMcPnyY9u3bM3XqVKpVq0bfvn2Jjo7OVpzP29ubrVu3Zivi99JLL/Hdd9/RpUuXbKNM+fH392f79u0cPHgQKysrKlWqRI8ePUg04t8+aybB6dOn0el0uQb7dnZ2NGzYsMSC/W7duhEZGclLL71EQEAALi4uHDlyhGXLluHm5lbsfbAoR0fztfVoDQNzfT7o9XD/vnnakqQSkpSUxJw5cxgxYkS27LGzZ88SGhoqU/glSZLyIYN9STKWOUcSnJzM11YRtfD2psrRo+h/+IFyP//M1jff5MT+/cyfP7/Acz/66CNcXFwYO3bsw41CwMyZUKUKvPUWzjduZD8pOVkpFubrC23agAmj2/nR6XQkJyfnW/ytefPm/PDDD1y7do1p06bxxx9/APDJJ5+wceNG0tPTM4/NWsTv4MGDmQF0QUX8smrfvj2bN29m165dNGrUiKtXrzJ48GCj6iQYGFL0GzdunOt+Pz+/Yl9+78qVK/z777/cuXOHBg0acOjQIdatW8e+ffvw9/cv1muXGs7OOYN0Y6hU4OGRfZu5PmvUanBwME9bklRCvvvuO+7evZsjeyw4OJjy5cvTvXt3C/VMkiTpMSAkSTKOTieEq6thNWvjX1ZWQsTGlnz/jx8X4o03RIaNTY4+pVpZicVqtbiwdWuep588eVKo1WqxcOHChxszMoQYMKDw967RCFGhghBHj5r99hISEgQgNmzYUOhzhg0bJjw8PESHDh0EIKpVqyY+/fRTcfPmzWzHvffee8Le3l6UK1dOODs7iy+//FIkJycX+jpr164VKpVKvPjii0KlUokZM2YU+lwhhJg6darw8PAQQggxYcIE4enpmeexX3/9tbCzsxPp6elFukZh6fV68dprrwlA2NjYiClTpoikpKRiuVapN2aM8vNs7GeBRiPEs8/mbPfCBdM/Z0CImjVL/j2RJBMkJSUJNzc3MXLkyGzb9Xq98PLyEoMHD7ZQzyRJkh4PcmRfkoylVsObb5pejb9vX3B1NV+/CpKRoaTR+/rCihVoHlTLz8omI4PX9Xrq9OiB/t13cy1COHXqVDw8PBg5cuTDjePHw7p1he+LTgd370KXLsp8YjO692CahWMR0qv/97//0b17d0JCQjhx4gTdu3dn1qxZeHh4MGjQIA4dOkRGRgbr1q1j2LBhXLp0KbOIn7e3N8HBwYVaVu/VV19l4cKFbNu2jU6dOvHxxx/z888/F7qfWdP4w8PD8fHxyfNYf39/UlJSOHPmTKHbL6zQ0FDat2/P8uXLcXV15fTp08ycObNI73mZ8tZbxi2NZ6DToXvrrZzb69SBp54y7bNGrVb6J0mPkSVLlhAfH59jVP/48eOcPXtWpvBLkiQVxNJPGyTpsXb5shAqlWmjbQcOlFx/MzKE6NGjSH3WgxD9+imZDA8cPHhQAGL16tUP2z582LQRzZdeMuutnjt3TgAiJCSkUMfHxsYKQKxatSrH9jlz5ohatWoJQNSvX18A4kCWf7czZ86IF198UQCiRYsW4q+//irUNT/99FMBCD8/P+Ho6CjCw8MLdd60adMyR/arVasmJk+enOexhgyHH374oVBtF8bt27fFyJEjhUqlEg0aNBAODg7ik08+MVv7j7UuXZTv5yL+DKSBuADCq25dERQUlDMTY+NG0z5nrK2FiI62zHsiSUa4d++eqFy5shgxYkSOfRMmTBCVKlUSaWlpFuiZJEnS40OO7EuSKTw84JVXjBtxs7JS1mRv3dr8/crLhAnKUn+FGH02UAFi/XqYMQMAIQQffvghTZo0yT6q8u23yj0ZQ6eDLVvg0fn9JkhKSgLId85+Vn///TdAtuJ8AK6urrz33nucP3+ebdu2kfCgUnrPnj2ZNm0a169fx8vLK9cifufOncv3mlOmTGHcuHGEhoZSsWJFevToQVxcXKH6K4QgLi6O69ev51qcz8DJyYk6deqYpUhfeno633zzDfXq1WPjxo3Mnz+fb7/9lvv372dbcu8/bdUqqFq1SD8LerWaZODi11/j3agRQ4cOxcvLi8DAwId1I3r2VD5vjPmsUath6FCoVKno50qShSxdupTY2FgmT56cbbter2f9+vX06dOn7K7uIUmSZCYy2JckU33/PTRsWKRfwtOBNBcX2LpVKchVEqKiYMGCIgX6BipAfPklxMaya9cu9u7dy6xZs9AY7jkuTknfNyWFGZT30kyKGuwfOHAAd3d3atWqlet+jUZDmzZtiI+PZ+LEibzyyivMnz8fT09P+vbty759++jQoUNmEb8jR47QqFEj3n333TyL+KlUKubMmcPQoUO5fv06MTExvPLKK2QU8D4a0vgNxfnyC/ZBSeU3Ndj//fff8fX1Zdy4cfTr149z587x7rvvsnv3bipVqkSzZs1Mar/MqFIF/voLPD0L95lgZQXOzjwD3KlalS1bthAaGoqfnx8jRoygXr16LFu2jFS9HnbsAAcHdEX5zNBooFkzKETBTUkqLZKTk/nyyy8ZPHgwtWvXzrbv4MGDXL16lX79+lmod5IkSY8PGexLkqnKlYOQEGjRQgnc8/lFXA8IlYooOztaC0FkamqJdZPvvzcq0DcQaWnoV65k0qRJtG3blueee+7hzp07IZe5/0Wi18OGDaa1kYUxwX7btm2zzYd/VHBwMHq9nvHjx7Nw4UKuX7/O/PnzCQsLo3379vj5+REYGEivXr04e/Ysn376KUFBQdStW5evvvqKlJSUHG2q1Wq+//57XnjhBZKTk9mzZw8TJ04ssL9CCMLDw7G2tqZ+/fr5Huvn50doaKhRVf8vXbpEr1696NKlC66urhw9epQlS5ZkLqWn1Wrp0qULarX87yRTzZpw+DC8/z64uCjbsrw/+gcvYWcHr72G+vhxoqpW5cSD5Sh9fX3ZvHkz4eHhtGrVijfffJN69eqxOCSE1F27SLK2LjjgN3wWtWmj/HzKKvzSY+T7778nOjqaKVOm5NgXHBxM9erVadeunQV6JkmS9Jix8DQCSSo7UlKEWLxYCG/vh1X2rayU+bvW1kKAiLa3F5+5uIjr//4r6tSpIxo2bCji4+OLv2/p6UJUqWLSnF8diHgXF6ECsW/fvuztf/ONEGq16dXC3dzMdssbN24UgLhz506Bx6ampgo7Ozsxb968fI/z9/cXPXr0yLFdp9OJnTt3iueff16oVCrh6uoqJkyYICIiIsTt27fFqFGjhEajEZ6enmLdunVCl6X+gUFycrJ45plnhJ2dXYFz7GfMmCGqV68uRo4cKXx8fAq8vx07dghAXLhwocBjDRITE8XkyZOFra2tqF69uggODhZ6vT7bMbdu3cq1zoGURXKyEKtXC9G7txBPPSVE69YiqlUrMQrEhWPHMg/r1q2beP7553Nt4t9//xUDBgwQarVaVK1aVTxdv77YVKuWEM7OQoDIUKmEDpSfQcNqAPXqCbFwofK5JEmPkeTkZFG1alUxZMiQHPvS09NF5cqVxXvvvVfyHZMkSXoMyWBfksxNrxdi3z4h3n9fiKFDhRg8WIixY4X45RdxKixMqFQqsWTJEnHmzBlRoUIF0alTp+IvMmSupbtA9O/YMWf7c+caVZQsx6tCBbPdcmBgoAAKteScoeDgP//8k+cxJ06cEIDYsmVLvm1dvHhRvPfee8LFxSVzeb3ff/9dnD59WvTo0UMA4sknn8y1iN/du3dF8+bNhZ2dnbCxsRGHDh3K9RqGYL9169ZiwIABBd7fzZs3BSA2bdpU4LF6vV6sWbNGVK1aVdja2opp06bluZTe6tWrBZBjaUIpf4mJicLKykosXrw4c9vEiRNFjRo18j3v7NmzYsiQIQIQtra24psvvhApy5aJXR4e4kCVKkL06SPEqFFC7NmjfA5J0mNo4cKFQq1Wi3PnzuXYt3PnTgGII0eOWKBnkiRJjx8Z7EtSCevXr5+oUaOGSElJESEhIcLa2loMHz48x6ipWR05YrZg/4MXXsjZ/sqV5mm/Th2z3fKCBQuEnZ1doY6dO3eusLe3z/ehy9ixY0XlypUL/WAmKSlJLFu2TDRp0kQAwtvbWyxatEj8+uuvolmzZgIQvXr1EmfPns12XkxMjPD29hY2NjbC3d1dREVFCSGESE7XiUO37ouVp+PErAMRYtqfZ8WErYfE59v2i6h7BT/QqFq1ar5V+4UQ4ujRo6Jt27YCEL179xYRERH5Hj9gwADh7+9f4LWlnNq1aydeyrICxdq1awUg4uLiCjy3devWolatWsLKykq4ubmJGjVqyPXGpTIhJSVFVKtWTQwcODDX/cOGDRN169Yt3v8vJUmSyhA5yVKSStj06dO5du0agYGBdOjQgRUrVhAYGMgXX3xRfBe1sTFbU5u3b2fv3r3ZNz79tOmFBq2soGtX09rIIikpqUjz9Z988sk8KzunpaWxZs0aBg4cWOjqz46Ojrz++uucOHGCkJAQGjVqxJgxY+jfvz9t2rThq6++yrWIX8WKFdm9ezdubm7ExMTwcv8B/BJxh4Un4/jj+j1uJutQ2ZfDwcUV1xq1oFo9gs7eIehMPBF3866b4Ofnx7Fjx3Ldd/v2bV5//XWaN2/OnTt3+OOPP9i8eTM1a9bMsz29Xs/OnTtlFX4jBQQE8Oeff6LT6QDw8fEBHhZdzI+VlRVt27bl/PnzvPTSS1y9epVNmzYxa9Ys7t69W6z9lqTiFBgYSFRUFFOnTs2xLzU1lZ9++on+/fvnW1tFkiRJekgG+5JUwho0aED//v2ZNWsWqampDBo0iBkzZjB58mQ2mLFAXTaVK5ulGaFSUb9NG4YNG0ZiYuLDHTVrwrPPGrcsmEFGBrz9tsl9NChssC+EyCzOl5dff/2VmJgYhg4dWuR+qFQqOnTowObNm4mIiGD06NEEBwczYcIEvL29GTBgQI4iftWqVSMkJIQa9RvSevxswuNS0eVVW1GlfIzfStax4eJdQmOScz3MUKQvq/T0dObPn0/9+vXZvHkzCxYs4Pjx4zzzzDMF3texY8eIiYmRwb6RAgICuHPnTua/iZeXFzY2NplF+vKTnp6OtbU1NWvW5LvvvsPa2prmzZvz8ccf4+npySeffMKdO3eK+xYkyaxSU1P5/PPP6devH15eXjn279ixg4SEhOxLvkqSJEn5ksG+JFnA9OnTuXHjBsuXLwdgxowZDBw4kCFDhmSu925WVarAU0+ZFIzrVCpU3brx7erV3L59mwkTJmQ/YNQoeDBKWWRqNbRtC40aGd2/RxU22L906RK3bt3KN9hfuXIlzZo1K3CJu4LUqFGDzz77jKtXrxIUFERcXBw//PADFStWpHHjxkyaNAlvb2+Cg4Nx96jJmDU7cXGvjkpd8L+b4VnAzqv3OBWXs+q/v78/t27dIioqCoBdu3bRtGlT3nvvPfr378/58+cZPXo0VoVcH16r1eLk5ESrVq0Kff/SQy1atKBcuXLs3r0bAGtraxo2bEhYWFiB5xqCfYD4+HjS09MZM2YMly5dYsiQIXz++ed4enoyffp04uLiivU+JMlcgoKCuHbtWq6j+qBU4W/atCkNGjQo4Z5JkiQ9vmSwL0kW4OXlxauvvsqsWbNISUlBpVKxfPlyWrRoQY8ePbh48aL5L/rOO8YH44BGCBg9mtq1azN37lyWLl3Kzp07Hx7QrRsEBCCK+kBBpVIeQnz5pdF9y01hg/0DBw4A0Lp161z337p1i99++41hw4aZrW92dnYMGTKEw4cPc/DgQdq0acOhQ4ewtrZGpVLx6quv8sHKLSQLDZpCBt9Z/XoliaT07Mvs+fn5Kft+/ZUePXrQtWtX3NzcOHbsGN999x2VKlUq0jW0Wi0BAQGFntYgZWdtbU2HDh0yg32Apk2bFjnYv3nzJgDu7u5Uq1aN+fPnExERweuvv86cOXPw9PRk8uTJmdNEJKk0SktLY9asWfTt2zfXYD4pKYnt27fTr18/C/ROkiTp8SWDfUmykOnTp3Pr1i2+//57AGxtbfn555+pUKECzz33nPlH5Hr2VNL5jVgPXa9SQY0amXPqR44cSZcuXRgxYgTx8fHKQWo1YvNmrjo7k1HYhtVqJdhfu1ZZD9yMihLsN2zYEFdX11z3r1mzBo1GUyypoyqVilatWrF27VquXLnCpEmTSE1NpZyrG9X92xldB0EICIvNPrpfsWJF7OzsePPNNwkNDWXDhg2EhITQtGnTIrcfHx/PwYMHZQq/iQICAti/fz/JycrUCx8fH8LDwzPn8ecla7BvyNRwd3fP3O/u7s6cOXOIjIxk1KhRLFiwgJo1a/LBBx9w69atYrobSTLeDz/8wNWrV5k2bVqu+7dt20ZycrIM9iVJkopIBvuSZCH16tVj4MCBzJo1K/OX/YoVK/Lbb78RExPDSy+9RFpa3gXXiszaGtatUwLIIgSRekBlZaWc+2DU3pCJkJSUxJgxYzKPnbNsGQ3j4rjh66tsyGNUWseDtPPy5WHHDujTx7h7ykdhg/2///47zxR+IQQrV66kZ8+eeT4MMBd3d3emT59OZGQkXwVvQ2XEQxkDARyNTkavrLjCmjVr8Pb2Ji0tjXr16nHmzBn69u1rdJGrP/74A71eT1czFlT8LwoICCA1NTVz6o6Pjw/JyckFZvbkNbL/qMqVK/PFF18QGRnJ2LFjWbJkCbVq1WL8+PGZDwkkydLS09OZNWsWL7/8Mo3ymMoVHBxM69at8y0aKkmSJOUkg31JKqp79yAoCCZMgDfegPHjYcECMCJNdtq0aURHR7N06dLMbXXr1mXr1q0cPHiQ119/HSHyqsxmhE6dYP16JWgvRDCZAaQDvwwdCu3aZdtXo0YNFixYwOrVq9myZQtbtmxh4sSJvDtpEh6hoXDsGAwbRs7Z43C7ShXesrEh4fRp6NLFHHeWQ2GC/Tt37nDq1Kk8g/0jR45w6tQps6bwF8TGxgZV9fomBfsA9zIEu48q9zZo0CDatGnD8OHDSU1NxcHBwaS2tVotDRs2xMPDw6R2/usaNWpElSpVMlP5DVkWBRXpezTYL1++PI6OjnkeX6lSJWbOnElkZCQTJkwgMDCQWrVq8e6773Lt2jUz3Y0kGWf16tVERkbmOaofFxfHzp07ZWE+SZIkI8hgX5IK68IFGDsW3N1h2DD45hsIDIRFi2DcOKhaFQYNgsOHC91knTp1GDx4MF988QX379/P3N62bVuCgoJYtWoVM2fONO99vPwy7NkDD5b6ym30Pf3Bnyetrfm2b196rljBrl27chw3aNAgevTowYgRI3j11Vfp3bv3w/76+cGyZXi5uBDg4EBPGxvlumfOoD96lOU6Has2bzbvvWVRmGD/4MGDCCFok8cUgpUrV1KtWjU6d+5cHF3M06Pz7Y314YxPSExM5M8//2TTpk08/fTTREREPJx6YQQhBFqtVqbwm4FKpaJTp06Zwb6bmxvu7u4Fztt/NNjPbVQ/N66urnz88cdERkYyZcoU1qxZQ506dXj77be5cuWKaTcjSQVJSFD+Hz19GqKiQK8nPT2dzz77jN69e+dZAPWnn35Cp9PRpxgywCRJkso6GexLUmFs3w5NmsC333UQ40AAACAASURBVEJSkrItPV1ZLi49HfR65c/166FlS5g/v9BNT506ldjYWJYsWZJte//+/Zk5cybTp09n7dq15rwbZZQ+NBQOHYKBA6FiRSXot7ZGVKzIOmtr/IAjixczZt06unbtSt++fTl79my2ZlQqFR999BF37tzBzs6OoKAg1I+MSN9KTuZk+fL87ewMTz8NXl5Uq1aNXr16sXjxYvNmLmRRmGD/wIEDuLm5Ubdu3Rz7UlJSCA4OZvDgwWhMWVLQCDrzxPoMGjqM0NBQOnbsCDws0nf8+HGj2zx16hTXr1+XKfxmEhAQwNGjRzMfwPj4+BRbsG/g4uLCtGnTiIyM5KOPPmLjxo3UrVuXkSNHEhERYdyNKB1Tgrhz55Q/09MLPkcq23Q6+OUXpYBrhQpQrx40bKg8HK9dm+ODBnHn0qU8R/VBSeHv2LFjkb/PJUmSJBnsS1LBtm+HHj0gNVUJ7vOTkaFURxs3rtDV5WvXrs2QIUOYPXs29+7dy7Zv8uTJDB06lOHDh7Nv3z5j7yBvTz4JK1cqUxDS0iA1FVVMDFMqV+aUtTVDhgxBo9EQHBxM1apVeeGFF7KNCiclJTF8+HAqVKhAfHw827Zty9Z8Wloaqamp2NvbU758+Wz7Ro8ezZkzZ/jzzz/Nf18UPthv27ZtrnPXt2zZwp07dxg6dGix9C8/Nhrj5tI/6tmAZ7Itpefl5YW9vX3m2u7G0Gq12Nvb0759e3N08T+vU6dOCCHYs2cPoKTyFyWNPyoqyuggyMnJiUmTJhEZGclnn33Gli1bqFevHsOHD+fChQuFb+jsWSXrydVVCeK8vJQ/K1ZUPgvPnTOqf9Jjbt8+qFkTXngBdu9W/m/MQly+TLMNG7ipUtH0xx+Vh+aPiIqKYs+ePTKFX5IkyUgy2Jek/Fy8CH37Kn8v6gj0xImQS+p7bqZOnUpcXBzfffddtu0qlYqlS5fStm1bevbsyfnz54vWh6J4ULgvJCSE69evk56ezrkHv6Q7Ozuzbds2YmNj6du3LxkZGeh0OgYMGMD58+f5888/6devH6NGjcpW+MuQCWBra5sj2G/fvj2NGjVi8aJFoNXChx/CyJHw9tswYwYUEPAUJCkpKd95zOnp6fzzzz95ztdfuXIlbdq0oX79+ib1wxhPOFhhjnC/ikP2KRoajYamTZty7Ngxo9vUarU8/fTT2NnZmdo9CfDw8KBevXqZqfw+Pj5cvnyZhISEPM95dGT/iSeeMKkP5cqVY8KECUpxyK++YseOHXh7ezNkyJAc2TzZxMZC9+7g7a1MZzJkPRkk/p+9846K4mrD+DNb6EhHEQXE3lCwUTSiICqCgt1oFKwRO8aej8TYFSF2okbUWLBgQxAQ7CKK2LBgF7GAioj0be/3x8rGdRdYiprE+Z2zB3bunTt3Zts892250u2NGwO9egHVXWGE5Z/L4cNA167AixfS50oqTDCQ3oTyiYAFC6RhcJ8I/n379oHH46Fv376ff84sLCws/0FYsc/CUhZr1vxtra8oXC6wdKlKXa2srODr64vly5crWPfV1NQQHh4OU1NTuLu7f9Z62USEOXPmwNbWFrq6uggPD5e1NWjQAPv378epU6fg7++PWbNm4ejRowgLC4ONjQ3Wrl0LdXV1uaSCKSkpAKQ1xT8V+8z799jYqBFWHjoE9OwJrFwp9TLYvBlYtAho3RpwcJBWASinFJmy8yjPsn/9+nUUFhYqFfvPnj3D8ePHP29ivvx84PZtIDERSEkBPvKYsDPRQFWCGxgAVrp8GKgrhh/Y2tpW2rKfl5eHs2fPsvH61Yyrqyvi4+MB/J2kr+Szo4yquvGXhpaWFqZNm4ZHjx4hODgYcXFxaNasGYYOHYrbt2/Ld37xQhqyVLKgWdpntMQbKiYGaN9e6t7P8t8mMVG6SC4WK7XWl8ru3cDMmZ9s2o0ePXrAwMCgmifJwsLC8m3Ain0WltLIzwf+/LN81/3SEIulCenKsox9xLx58/Du3TusW7dOoc3AwACRkZHIycmBl5cXioqU5bivOkeOHEFiYiKWL18ODw8PHDhwQK69S5cuWLNmDdasWYOVK1ciKCgIvXr1AiAtG7hp0yZERkYiNDQUAHDjxg0wDAMikhfejx4BdnZwOHwYsnzuItHfORBKhMOlS8DQodIwik8WQcqiqKgIEomkTLF//vx5qKurw87OTqFt+/bt0NDQwMASr47q5Pp1aRUHY2OgeXPpgoaNjfT5h+SJ9XX50OFXrfReGxPllnc7OzukpqbKJYRUlVOnTkEgELBiv5pxcXHBvXv38PTpUzRu3Bh8Pr9UV34igkAgAJ/Ph0AgQFZWVrXHMmtqamLSpEl4+PAh1q5di7Nnz6JFixYYNGiQdBEiLw/o3h1IS1N9IU4slvbv3l3RA4Dlv8WECZVbJCeSLvreuQMAePz4MRITE1kXfhYWFpYqwIp9FpbS2Lu36jelPB6wcaNKXS0tLTFy5EisWLECeUqOa21tjSNHjiA5ORkjR46s9sR2YrEYc+fOhYuLC1xdXdGvXz9cv35doeZ3w4YNwTAMOBwObEoy+n/Aw8MDvr6+mDp1KtLS0pCSkgKGYSAQCP627KenSwXu06dgJJKyv4RKrELR0VJ3YYFApXMpuX7lif127dpBXV1dbjsRITQ0FP3790eNGjVUOp5KvH0rLTPYurW0isOnCzYSicz1ldOyJTpxcit1GAaAqSYX9WuoKW23tbWFRCIp03JcGjExMahXrx4aNmxYqbmxKKdLly5gGAbx8fFQU1ND06ZNS03SJ/4grtXU1JCZmQkAny1xmYaGBsaPH48HDx7gjz/+wKVLl2BjY4O/7O1Bt25VfCFUJAJu3QLWr/8s82X5B5CUJC27WhGL/sdwucCHZLVhYWHQ0tJC7969q3GCLCwsLN8WrNhnYSmN27eBD66ylabk5lZF5s6di5ycHKxdu1Zpu729PbZv347du3fjl19+qdrcPmHHjh24ffs2lixZAgDo0aMHNDU15Vz5U1NT0a9fP7i4uMDZ2Rn9+/fHo0eP5MYJDg6Gvr4+Ro4cievXr4OIIBQKpWJfIvk7drciQkEsBs6dA6ZPV6l7eWKfiHD+/HmlJffOnz+PBw8eVK8Lf2am1OW5JBlhaedesv3ePbRyao12qJjgF4tEKMh+A8/aauAoSToIAC1atACPx6tU3H5JyT1lCQ1ZKo+hoSHatGkji9svK0mf8EOGez6fj4yMDACfT+yXoKamhjFjxuDevXsI3bwZrqmplV9slEikcfyVFYMs/2zWr1dazlVlxGKpR11+PsLCwuDp6Vlm7hUWFhYWlrJhxT4LS2m8f18941QgKZWFhQXGjBmDFStW4H0pxx8wYACWLl2KBQsWYNu2bdUyxeLiYgQEBKBfv35o164dAEBbWxs9e/aUif03b96gV69eMDc3x/79+7Fv3z4YGhrC09NTbq56enrYsmULTpw4gefPn4OIUFxcLBX78fHS+PTKhEZIJFIvCRWuZ0neg9LEflpaGl68eKE0Xj80NBRWVlbo3LlzxeeojMJCqVfC48equzyLREBuLrr0sIfG7QsAALGo9DJmJdK7BkeMEJ+eGDl0MESlXGN1dXU0a9aswnH7Dx48wIMHD1gX/s9ESdw+EcHGxgYpKSmQKBHEysR+VRP0qQqfz4dPzZowE4urdvOQni6N4Wf573HkSOVD30rIz0fazp24ceMG68LPwsLCUkVYsc/CUhrVZU2ooCv4nDlzkJeXhzVr1pTaZ+bMmRg9ejTGjBkjK9lVFUJCQvDs2TMsXLhQbnvfvn1x6dIlPHjwAN7e3sjNzcXRo0ehp6cHQ0NDRERE4Pnz5xgyZIjMvRiQChdvb2/Z8+LiYqnwXru2alYfoRDYurXcbuVZ9s+fPw8ACpb9/Px87N27Fz4+PuBwqunrcft24OrVCicZhFgMyatX4A/rjQ0/dEPy4V2QCKVhDMyHR4l11UyLh96WuvCzrY1tGzcgOjoaY8eOLdX6amdnV2GxHxMTAz6fjy5dulTsPFhUwsXFBZmZmbh16xZsbGxQUFCg4DUDKIp9DocDExOTLzfRiIiqfYYB6f4REdUzH5Z/DkTAu3fVMtSlY8egr6/PLi6ysLCwVBFW7LOwlIalZcUF2qfweIC1dYV2qVOnDsaOHYuVK1eWWn6LYRisX78ezs7O6Nu3L1JTUys9xdzcXCxcuBC+vr5o0qSJXJuHhwf4fD6GDBmCpKQkHD58GPXq1ZO1N2nSBGFhYYiOjsbs2bPl9u3YsaPs/8LCQpgRSW/wq2r1UZLA8FNUEfuNGzeGsbGx3Pb9+/cjLy8PI0aMqNocSyACVq+u9O48AGP4fLy9dQ3Gr+5i3QBHFF6MQldzbXSurQX9FzexalBneJoSmhmqg8th0KNHD2zduhWhoaGYM2eO0nFtbW1x48YNmXBUhejoaHTs2FGhqgJL9eDk5AR1dXXExcXJMvIrc+X/WOy/fPkSJiYm4HIVqy58NrKyqv69KJEAn7GqCMu/nwsJCejbt69CThUWFhYWlorBin0WltL4/nugqtZdkQgYObLCu82ZMwcFBQVYXYZQ5PP52LdvH8zNzeHu7o7Xr19LG8Ri4NgxIDAQCAgAli0D9uyRupMrISgoCLm5uUpzAOjp6aFevXq4fPkyQkND4eDgoNCnR48eCAoKQmBgILZ+ZHW/e/curKysAEiz45vn51euhOHHEEkz+ZezYFCe2E9ISCjVhb9Lly6yeVeZhARp7ocqnDdfKMRwDgc+Pj548TQNnRvVQTtTTdjX1IJbUwtk3L+NCxcuyO0zdOhQBAUFYdmyZQgODlYY09bWFgKBAHc+ZL0uj+LiYpw4cYK1sn1GNDU10bFjR8TFxaFmzZowNTVVmqTvU8v+547XV6A6EoMSVc84LP8sGAbQ06uWoW6/eoXBgwdXy1gsLCws3zKs2GdhKQ0TE2DQoEq7rIoB5FhaShOzVZDatWtj3LhxCAoKwrsy3CL19PQQGRmJgoICjHB3h3DBAqlHgrs7MHs2sHQp8PPPwODBgJkZ8NNPwEfZ9V+/fo3AwEBMnDgRdevWVRh/7969uHfvHgCga9eupc5j8uTJGD16NMaNGydzkU9JSYGtrS0Aqbu5sAK5C8olt+zEdWWJ/ffv3yMlJUVB7D969AinT5+u3sR80dFVdnkmAGPr1kViYiI0NDTkQg+sra1Rs2ZNnDt3TmG/adOmYdasWfD398fOnTvl2lq3bg0AKrvynzt3DgUFBazY/8y4uLjg9OnTEAqFaNWqlUpi/0vF68swNJRmTK8KXK50HJb/Hr16Vfk7T8Dj4Z6xMRsyxMLCwlINsGKfhaUspkyptMsqF8CUtDS4duuG7OzsCu8/e/ZsFBUVYdWqVWX2s7S0xMlFi7Dr8mVwAwJAz59LG8RiaYx7iRU8Jwf4/XegSRPgg/hbvHgxOByOUnfvixcvYsSIEejbty+4XC4OHTpU6hwYhsG6devQoUMH9O3bF48fP8bNmzflSrQd+ZBpvFooJ59CXl4euFyuUhfQxMRESCQSBbG/bds26Orqol+/ftU3z6wsqbWrCnAANDc1RXx8PJycnKChoSFrYxgGHTt2lC2wfMqSJUvg6+sLHx8fREdHy7br6uqiYcOGKmfkj46OhpmZGVq2bFmlc2EpG1dXV+Tl5clK3JXnxv9VLPvdu1c9FEckAtiFo/8kgjFjqvT+IB4Pu9TV0WvwYPCqmhuChYWFhYUV+ywsZdKuHbByZcX3YxgUDB6MFFtbxMfHw8zMDJs2bapQuSozMzP8+OOPCA4OLtO6j3Pn0NTPDzUYBhz8nZldKWKx9EZs2DBkLV+O9evXY8aMGTAyMpLrlpaWht69e8POzg47d+5E586dceDAgTLnq6amhvDwcGhpacHd3R25ubmw/ihfwYUPmcOrjKkpoKa8hnwJeXl50NHRUVoi7vz58zAyMkKjRo1k2yQSCbZt24ZBgwZBS0ureuYJVD0MpGQYLhdnzpyBi4uLQpuTkxMuXboEgUCg0MYwDDZu3IiePXuiX79+uHjxoqzN1tZWZcs+W3Lvy2BnZwd9fX3ExcXBxsYGjx8/VqjK8dXFfp8+0s9gFXjF4SD4wQOZBw7Lvx8iQnh4OJr6+OAGgMoWVmREIgTm57NZ+FlYWFiqCVbss7CUx9Sp0rh3oHz31RJx5+MDre3bkXzlCkJCQgAAY8eORZs2bZCWlqbyoWfNmgWBQKA07hoA8Pw54OEBiETgVDAG1mDWLLhpaWHq1Kly29+/fw8PDw9oa2vj0KFD0NDQQL9+/XDixIlyPRRMTExw5MgRPHnyBADkYt87+/riHACqigDmcoGxY8vtViL2lXH+/Hk4OjrKCdeTJ08iLS2tel34AcDIqMqxycQwyFZTQ15eXqliv6ioqFQrPY/HQ1hYGGxtbdGrVy9ZMkc7Oztcu3ZNaXm3j3n27Blu3rzJuvB/AbhcLrp06YL4+HhZkr6UlBS5PiVin8fj4eXLl19e7PP5gJ9fpT/HxOHgXKtWmDl3LqysrLBgwYJKeT6x/HNISkrCd999h/79+6NJ06aosW0bOJW0yr9mGLgYGMD+Q6gRCwsLC0vVYMU+C0t5MAwwc6Y0/rokw/ynNzIlz5s2BUJDgT//lN4UAxg3bhzS09PRqVMnXL16FfXr18f8+fPlStWVRq1atTB+/Hj8/vvveKss5n39eiAvT5rduoJIAKypXVtOFItEIgwePBhPnz7F0aNHZSW9vL29IRaLceTIkXLHbdmypcwVPiwsTLZ90qRJOGJpCaYSc/170pIqiX2RSITExEQFF/7Q0FA0btxYaQLCKuHpWWWXZ4YI5wwNoaenhzZt2ii029raQlNTs1RXfgDQ0tJCREQEzMzM4ObmhmfPnsHW1ha5ublKy7t9TExMDDgcDlxdXat0Hiyq4erqigsXLqBOnTrg8XgKcfslYr+4uBhFRUVfPmYfwC0XF6QzDCr8zubxwFhZoW98PB4+fIjvv/8eixcvhoWFBWbNmoWM6vL+YfkiPHv2DD/88APat2+Pd+/eISYmBpGRkbAaPlwaKsblVti7yYAIq7KzQbVqqVR5hYWFhYWlbFixz8KiKt27A6dOSbOrT5oEuLlJ3fy7dgV8fKSZ11NSpP9/4u5sYmKCM2fO4K+//oKamhp+/fVXlWOmZ86cCaFQiKCgIPmG4mIgJKTSOQV4ACzv3AEeP5Zt8/f3R2xsLPbv349mzZrJtpuZmcHR0RHh4eEqjS0UClGvXj257PyGhoYYfuAAngMQV8YdnMsF+vUDlCQS/JTSxH5KSgry8/PlxH5OTg7Cw8Ph4+NTbW7qYrEY4eHhcJoyBcmQJmusNDVqYN3r13B2dlZaYo3P56NDhw5lin0AMDAwQHR0NBiGQffu3WVeF+W9B6Ojo9G+fXsYsgnVvgiurq4QiUS4ePEimjRpUqrYLynL+aUt+5GRkbDv2RMTGjUCY2KiejI2Hk+a9PT4ccDAABYWFli9ejWePHmCSZMmISQkBFZWVvDz88Pjj76TWP555OXlISAgAI0aNUJsbCz++OMPXL16FW5ubn93GjhQWhWmJERMxaSOJe8mbm4uMHEiMH06W7mBhYWFpSoQCwvLF+XNmzfUvXt3gjTROo0bN47y8vLK3Oenn34iHR0devPmzd8bw8JKClhV/sHlEs2eTUREa9euJQC0YcMGpXNYuXIlqaur0/v378s9xyZNmtCECRPI1dVVdp5v374lIqI/J06kfIAkHI7q8+TxiBo1IvowRnkMHTqUOnfurLB9zZo1pKamRoWFhbJtf/zxB3E4HHr+/LlKY5dFTk4OBQcHk5WVFQGg2rVrk08VXx/BxInE5/Np9erVpR533rx5ZGJiQhKJpNw53rlzh4yMjMjR0ZFq165Nsz+8/soQCoWkp6dHv/76a6WuB0vFkUgkVLduXZo2bRoNHTqUHBwc5NpPnjxJAGjHjh0EgO7evfvF5hUUFEQcDof69OlDubm5RM+eEbVt+/dntLTPLkDUrh1RGZ+x7OxsWrhwIRkbGxOXy6UffviBbt269UXOjUU1RCIRbdmyhczMzEhdXZ3mzJlDOTk5Ze9UXEy0Zw+RrW2lvwclixd/mRNkYWFh+Q/Cin0Wlq/E/v37SVdXlwCQkZERRUVFldo3MzOTtLS0aM6cOX9vnDWLiM+vuuDv3p2OHTtGHA6Hpk6dWuocHj9+TAAoLCyszPMqLCwkDodDGzdupEOHDsnE/pMnT4hIKiBHN2tGORwOSUoTCJ8uSLRoUaZQ+JQ+ffpQr169FLYPHjxYQTzZ29tTz549VR5bGY8fPyZ/f3+qUaMG8Xg8atu2Lenq6lKNGjVoyfz5dE1Pj4QVvcHlcoksLCg+LIwAlCl8jh07RgDo3r17Ks334sWLpK2tTaampuTm5lZqv3PnzhEASkxMrPA1Yak8Pj4+ZGNjQ8uWLSMdHR0Si8WyttjYWAJAq1evJgDli61qQCAQ0NixYwkAzZw5U24+JJEQJSQQDR2qKPh5PKJhw4guXJD2U4G8vDz6/fffydzcnACQt7c3JSUlfaYzY1GVEydOUOvWrQkADR48mB4/flyxAdq1I6rIAu9HDzFAggcPPst5sbCwsPzXYcU+C8tXJCsri7y9vWWCuE+fPpSRkaG076xZs0hHR4dev34t3TBuXLWI/fzmzUlXV5c8PDxIJBKVOd82bdrQgAEDyuyTnJxMAOjChQtyYr9t27aUn59PRESpqanURE2NzjdvThJ1dRIDJPlU4AP0CiDh3LlEKngTfIyLiwsNGjRIYXvdunXpp59+kj2/c+cOAaA9e/ZUaPwSEhISaMCAAcThcMjAwIAGDRpEDRs2JIZhaOzYsZScnEzNmzcnSz09ym3QQHZe5T1EDENUsybR3bs0Y8YMMjMzK9Nq/+7dO2IYhkJDQ1Wee0xMDDEMQxoaGvLi7SN+/vlnMjQ0LPd9wVK9lFjtd+/eTQDowUdC5+jRowSAfv31V9LU1FTJm6MqvH37llxcXIjH49Gff/5ZdufsbKKUFKLz56V/372r9HGLi4tp8+bN1KBBAwJAbm5udOrUqc9+vizy3L17l3r37k0AyN7enhISEio+yJUrVfqNEgK03cJC3rONhYWFhUUl2Jh9FpaviKGhIQ4cOICIiAgYGBjgyJEjsLa2xp9//gkikuv7008/AQACAwOlGzQ1q2UONx48QL169bBr1y6lMeEf069fP0RFRaGwsLDUPiXZw1u0aIHi4mIAgL6+Pm7fvo2RI0eCiNC4cWP8uHw5nG7dwq/jxsEfgKBHD8DJCejSBejfHzGjRqE2gKWamoCuboXOKS8vD9ra2nLb0tPTkZ6eDkdHR9m2rVu3wsDAAL1791Z5bJFIhL1798LBwQGOjo64du0aAgIC4ODggD179qBWrVpITk7Gjz/+CA8PD+Tn5yM6MRE6V68CAwZI8zmUcp2FJcdo0wa4fBlo1AgnTpxA165dy8wnoKenhxYtWuDcuXMqn4ebmxumTp2KoqIiTJgwQWmfmJgYuLm5lfu+YKleSqoulCTl/DhuvyRmPysrC2ZmZp+1HOKDBw9gb2+Pq1ev4vjx4xg5cmTZO+jrAy1aAI6O0r96epU+tpqaGkaNGoXU1FSEhYUhMzMTzs7O6NixIyIjIxW+H1mql7dv32Lq1Klo3rw5rl27ht27dyMhIaFySUzXr1c9t4MSeAB6paejU/v2smoiLCwsLCwq8pUXG1hYWD6QnZ1NQ4YMkVnC7e3tFeJx58yZQ9ra2vTq1SuiwMBKu0V+bDHZq6FBT58+VWmOd+/eJQB08ODBUvv4+/uTtbU1ERH99ddfBIAsLS1p3759BIAWLFhARERisZg6d+5M2traZGdnpzCOWCwmDQ0NMjU1VfUSymjevDlNnjxZbluJlbTEc0IoFJKZmRlNmDBBpTHfvXtHgYGBZGFhQQCoS5cutGfPHpo5cyapqamRhYUF7dmzhyQSCUVFRZGOjg61bdtW0VPj8WOiOXOIDAzkXgsBl0shAP3s4SHrmpWVRQzD0JYtW8qd3/jx46lJkyYqnUsJaWlpsvdbYGCgXNurV6+IYRjaunVrhcZkqR6aN29OI0eOJGNjY7mcCXv37iUANGTIEHJ0dPxsxz916hQZGhpSo0aNVA4P+ZxIJBKKjIwkR0dHAkA2NjYUFhbGep1UM8XFxRQcHEwGBgakq6tLS5YsoYKCgqoNqq9f9XAzgEZYWpKenh7FxMRUz8mysLCwfAOwYp+FRRkSidR1PCOD6KNkbl+CqKgoMjExIYZhiMfj0W+//UbFxcVEJE3up6urSzNmzJDGsFdR7BNAqWvXVmh+zZs3px9++KHU9m7dupGXlxcREW3evJkAUMuWLYmIaP78+QSAwsPDiYjo3r17BECp2CciGjZsGAGgU6dOVWiOlpaWNHfuXLltEydOpAYNGsieR0ZGEgC6fPlymWM9fPiQpkyZQjo6OsTn82n48OGUnJxMoaGhVKtWLdLU1KT58+fLQhQ2btxIXC6XPD09y068KBQSvXxJlJpKr69dIx0+nzgcjlwsbHh4OAGgtLS0cs+5xPVbFuahAhKJhAwNDalTp04EgLZt2yZr27lzJwGgFy9eqDweS/UxZcoUsrCwoK5du5K3t7dse8nr4uLiQn379v0sx96yZQvx+Xzq2rWrLLHmPwWJREKnT5+WJTlt0KABbdq0iYqKir721P7VSCQSOnToEDVs2JA4HA6NGzeu1JCyCiEWEzFMtYj9/G3bqGfPnsTlcmnNmjVsSAcLCwuLCrBin4XlY1JTiaZOJapRQ/5Go149opUribKyvsg03r17Rz4+PgSAGIahBg0a0Llz54hImnldS0uLMjMzifr1Kz0LdjkPMUCPGIaCAgPlstOXR0BAAOnp6ckWID6lZs2a9L///Y+IiNavX08Mo1PPRQAAIABJREFUw5CTkxMRSW8oBw4cSFpaWnT16lU6f/68zLJ87NgxhbFevnxJAKhDhw4Vun5GRka0+JMMznZ2djRixAjZ8/79+1PLli2V3jBKJBI6e/Ys9e3blzgcDhkZGdG8efPoxYsXlJCQQG3btiUA9P3338u8IiQSCc2dO5cAkJ+fX4UsjpMmTSKGYWjo0KFy2/38/OQWKMqiJIHi4cOHVT4ukTS/gZeXF40aNYq4XC5FRkYSEdEPP/xArVu3rtBYLNVHREQEASBfX1+qX7++bPvWrVtlC2h+fn7VekyxWEwzZ84kADR27FgSCATVOn51k5SURH379iUAZG5uTsHBweVWNmFR5MqVK+Ts7EwAqFu3bnTjxo3qG1worBahTwDRB0+OadOmEQAaP378P/49ysLCwvK1YcU+CwsR0YsXRN26SW8olIlnhpE+1NSkiwFf6AYjJiaGatWqRRwOhwBpmb5Hjx5RjRo1aPr06USnT1f6xkkC0G4HB+JyuVSnTh3auHGjSjdO169fL1Wcv3r1igDQ3r17iYgoODiYuFwu9ejRQ9YnPz+f7OzsqG7dujR16lQyMDAgNzc3ql27tlIrYuvWrYlhmApZGNXV1eVK1eXm5hKXy6WNGzcSkdRDQk1NjYKCguT2EwgEtGvXLmrXrh0BoCZNmlBISAjl5+dTeno6DR06VOaJULL4QiR1fS1pW7FiRYUsTs+ePSMej0cMw9D9+/fl2ho3bkzjxo1TaRyJRELm5uY0c+ZMlY9NJC3raGlpSUKhkPr06UOampp07tw5MjU1LbMsH8vnJScnh7hcLg0fPpwASEvdEdGmTZsIAJmamspCYqqDvLw88vLyIoZhKCgo6F9lNb116xYNHz6cuFwuGRkZ0YIFCyg7O/trT+sfz/Pnz8nHx4cYhqEmTZpQZGTkZ3ndJdra1SP2P3Lf37RpE/F4PHJxcaGsL7QIz8LCwvJvhBX7LCz37xOZm6ucKZ0YhsjN7Yu59+fk5MjKXnG5XDIxMaH+/fuThoYGvXz5kmjevArfNAkBOlmjBuXl5NC9e/fo+++/J4ZhqH79+rRz585Ss7MTSUVlgwYNaPTo0Qpt8fHxBIBSU1OJiGjZsmXE4/Gof//+cv3S09OpVq1apK2tTQMGDKD09HTS09OjYcOGKYwZFRUlszSqgkAgIAByce5xcXEE/F2+bvXq1cTj8aS5D0iacXzZsmVUp04dAkCurq4UGRlJYrGYCgoKaMGCBaSlpUWmpqb0559/yl2f7Oxs6tKlC6mrq1cqq//YsWOJw+EoVA949uyZ3MKJKgwcOFDmRaEqu3btIgCUlZVFBQUF1KlTJ1lJyIqGT7BUL46OjuTq6koAZFnQ169fTxwOhxiGoU2bNlXLcdLT08nW1pa0tbXpyJEj1TLm1+Dx48fk5+dH6urqpKurS7Nnz64eV/T/GPn5+TR//nzS0tIiY2NjWrduXbVbyAUCAcXGxtL48ePpmLo6Caoq9DU0FKo7nDx5kgwNDalhw4YK+W1YWFhYWKSwYp/l2+bVKyJLy4q7wnM4RAMGSOMRvxBxcXFUp04d4nK5MuE/atQoaX4Bf3+ptV6F2EgxQEcB0mYY8vT0lLmbX79+nTw9PanERfjIkSOlWnlmzZpFxsbGJBQK5bYHBweThoaGbMwFCxYQn88nX19fhTFKRLyTkxNJJBLavn07AaADBw4o9DU0NCRtbW2VrE7Z2dkKInn+/PlkYGAgE+m2trbk5eVF9+/fp4kTJ5K2tjapqamRr68vXb9+nYikixr79u0jS0tL4vP5NGPGDIWa5k+ePKFmzZqRoaEhnT17tty5fcqjR49kwu3OnTtybdu2baOKxuCvWrWK1NTUKhSWUVJ+MC4ujoik169mzZrEMIxcyTeWL09AQAAZGhoSh8OhkJAQIpK+xurq6gSAIiIiqnyMpKQkMjMzo7p169K1a9eqPN4/gZcvX9LMmTNJV1eXNDQ0aOLEifTkyZOvPa2vjlgspu3bt5O5uTmpqanRjBkzqtUDIi8vj/bv30/Dhg0jfX19KknOur5v3yoJfQmPJy01q4T79+9TkyZNSF9fn44fP15t58LCwsLyX4EV+yzfNhMnqm7RV/b4wlaw9+/fk5+fn0zs89TUacGfYbT1zls6unA9vbFsIBX0n5yTpKRuPZdLeT//TC6dO1NJrPyUKVPkjpGQkCCL37S3t6cTJ04ozOPixYsEgE6ePCm3feTIkdSmTRvZ859//pn4fL5CZnyivzP1A6Dly5eTRCIhLy8vMjExkVncS5g9ezZ9mkCuNNLT0wkARUVFyba5ubmRu7s7ERFdvXqVAFD79u2JYRgyNjamgIAAOQvgtWvXqPOHa+Tp6ak0G3lycjLVqlWL6tWrJ/NkqCgjRowgDodD/fr1U2gbPnx4hWPmk5OTCYBciEF5PHtfRP3+F0RL4q7T1tRs2n3vHY0O/JMsmrWipk2bsrWtvyJnzpwhAGRtbU3jx48nIqLAwEDS0tIiAJSUlFSl8ffv30+amprUvn17qZfQf4y3b9/SggULyMjIiHg8Hvn4+Cgsqn0rnD59mtq0aUMAqH///tW2kPfmzRsKDQ2l3r17k4aGhmyxOCAggK5cuSJdoBWLiaytq5So78Zff5U6h3fv3lH37t2Jy+XS+vXrq+W8WFhYWP4rsGKf5dslN5dIS6vyQp/LJere/atMPf7ECeo99X8UcPoBLbnymhZdzqAlV17TkuRX9NfmI3SzRz96Zd2YckzN6LW5BV00NaVh2tp094Mbu0AgoEaNGsnE9sfx7URSq/bx48epffv2VJL5OzExUa69bt26NHHiRLn92rZtSz4+PrLnM2fOJB6PR/PmzVM4h++//57s7Oxo7ty5xDAMRUREUEZGBhkbG1Pfvn3lrPiFhYXE5XJVSlZXYqk+c+YMERGJRCLS1dWl3377jf766y8yNTUlANS0aVPatGmTXFmpV69e0bhx44jD4VDTpk0pOjpa6TEiIyNJW1ub2rVrJ02UWAnu3r1LDMMQAIWEWCXx99OnT6/QmEKhkLS1tWnZsmVl9pNIJHQrq4i23Hkrff8kvZS+fz48Fl6SPp/4Vwx5jZnMJj37ShQXF5OWlha1atVKFp6xZMkS0tHRIQD07NmzSo0rkUho8eLFBIAGDhxY9dJq/3Dy8vIoKCiIateuTQzDUP/+/Sk5OflrT+uL8ODBA1kSw7Zt21bKA+lT0tLSaNWqVeTs7ExcLpcYhiFHR0dasWKFQt4RGYcPV0rsSxiGIj54t8yePbtUryWhUEiTJ08mADRhwgQFrzMWFhaWbxVW7LN8u4SEVL0kEMMQfWFXZ7FEQocf58iJs7Ieiy9n0IwjSRR9St7am52dTUZGRjLBr8wluKQcU/PmzQkA9enTRyZMp0yZQrVr15a5xotEItLU1JRLejdlyhTicrm0ZMkSuXFFIpEsw71YLKY+ffqQjo4OpaSk0L59+wgA7dy5U26fbt26EYBya35fvnyZANCVK1eI6G/raMm58vl8hcUEgUBAwcHBpKenR/r6+rRq1apSY1j/+OMP4nK51Lt37yqJ4EGDBhGXy6U+ffootKWmpip4J6iKi4sLeXp6ltoulkgo5mkuLbnympaW9/5JfkVLrrymHwM3lVp9geXz0rNnT2rQoAHp6uqSRCKh3377jWrUqEEAKhVnXVRUJEv6FxAQUGZ+jv8aRUVFtHHjRqpfvz4BoO7du9Pp06e/9rQ+C9nZ2TR9+nTi8/lUp04d+uuvvyr9WkskErp58yYtXLhQ5h3A5/OpR48e9Mcff6juFbJu3d+/m6r8vnI4RK6uJMzPp0WLFhGfz6dmzZrRxYsXSz1ESEgI8Xg86tatG5ukkYWFhYWIOGBh+VYJD6/6GAwDHD5c9XFUhIhw/FkebmcLVN6H4XBhaG6BNJNmKBJJZNv19fVx6dIlaGhoAAD69++Pq1evyu/LMOjTpw+uX7+OHTt2ICUlBa1atcKwYcNgb2+PFy9e4OLFiwCAhw8forCwEC1btpTtLxAIIBaLoaurKzducnIysrKy0KNHD3A4HOzYsQPW1tbo3bs3nJ2dMWTIEEycOBEvXryQ7RMUFAQA8Pf3L/N88/LyAACvX7+Gn58fXFxcAACenp74/fffIRQKMX/+fDAMAwCIjo6GjY0Npk+fju+//x7379/H5MmTwefz5caVSCSYO3cuxo0bh/Hjx+PAgQPQ1tYu5+orJyUlBXv27IFYLMYvv/yi0B4fHw8ej4dOnTpVeOyOHTsiISEBRKTQRkSIf56PK2+KpM/LG+zDNbLs6oXZm/ZAIpGUswNLdePq6oqnT58iNzcXT548gVAoBAAYGxsrvEfL482bN3B1dcWePXuwY8cOzJ8/HxzOt3MboK6ujjFjxiA1NRW7du3C8+fP0blzZ3Tq1AnHjh1T+pn5tyEUCrF27Vo0aNAAISEhCAgIwN27dzFs2LAKvdYSiQSJiYmYNWsWGjdujBYtWmDp0qWoX78+du3ahdevX+PYsWMYO3YsatWqpdqgfn7A7t2Apqb0u+XD94sCXK70r68vEBkJnpYW5s6diytXrkBLSwsODg6YPXs2ioqKFHYdN24cYmJicPnyZdjb2+P+/fsqnzMLCwvLf5Fv51eeheVTMjKk9oOqwOUCb95Uz3xU4GmeEFffFFd8R4aD7GIxzmUUyG22trZGXFwcOBwOiouL4ebmhmfPninszuVyMXToUKSmpmLDhg04efIkfvjhB2hoaGDr1q0ApAIWAGxsbGT7FRYWAoCC2D927Bj09fVhb28PANDR0cGRI0eQl5eH/v37IygoSHZjXnID3qJFC1hZWSE6OlomeD6FiJCQkAAA6N69O8LDw9G0aVPY2toiNDQU8fHxaNu2LVq0aIF79+7Bw8MDPXv2RK1atXD16lWsX78exsbGCuMWFxdj2LBhWLJkCVauXInVq1eDW3JDWgkCAgLA5/Ph7u4OW1tbhfb4+HjY29tDR0enwmM7OTkhKysLd+/eVWi7myNA8mvFG2RVMHXsiXmBayu1L0vlcXFxgUAgXdy7ceOG7L2vssD6wJ07d9ChQwfcvXsXJ06cwNChQ6t9rv8WeDwehgwZguvXr+PIkSMQiURwd3eHnZ0d9u3bB7FY/LWnWGGICJGRkbCxscHkyZPh5eWF+/fv4+eff4aWlpZKYwgEAsTGxmL8+PGoU6cOHBwcEBoaiu+++w5Hjx7F69evsWfPHgwZMgR6enqVm+jgwcDLl8DatUCjRorturrAlCnAvXvA5s2AmpqsqUWLFrhw4QIWLlyI4OBg2NnZyRabP6Zr166y7R06dMDJkycrN1cWFhaW/wCs2Gf5dhGJqjyEUCjEru3bMWDAAEycOBELFy7Epk2bEBERgUuXLuHp06coLq6EOC+FK6+LUIotpFwIwPWsIgjE8gscTk5OMsGelZWFbt26ITc3V+kYfD4f48aNw4MHD7B06VIAwKZNmzB9+nQkJibC1NQUpqamsv75+fkAlIv9bt26gcfjybZZWlriwIEDSEhIQEBAADZt2oSoqChs2bJF1mf27NkQiURYtmyZ3HjFxcXYtm0bbG1tMXfuXADAunXrkJaWhvfv38PZ2RkZGRmIiorC4MGD8dNPP6FFixa4desWwsPDceLECblFio/Jzs5G9+7dceDAAezbtw/+/v4yr4DKcPnyZRw6dAhCoVCpVV8sFuPkyZMyj4SKYm9vDw6Hg3Pnzim0XcosrPT7BxIJnvH0sWLFisqOwFIJWrZsCRMTE2hoaMjEvkQiqZDYj42NhYODAzQ1NXHp0iU4Ojp+xhn/e+BwOPD09ERCQgJOnjwJExMTDBw4EM2aNUNoaKhskeWfzo0bN+Dm5gYPDw+YmZnhypUr2Lx5M8zMzMrdNz8/H+Hh4Rg2bBhMTU3RvXt3REdHY/DgwThz5gxevnyJzZs3o1evXjIvsCpTo4bUyn/nDnDrFnDyJBATA1y6JF2EX7kSaNhQ6a48Hg9z5szBlStXoK2tDUdHR8yaNUvByt+wYUMkJiaibdu2cHNzwx9//FE9c2dhYWH5l8HQf8FvjYWlMnz3HXD2bJWGEAFYZWyMbWZmEAqFePv2LV6/fq3gDqqvr4+aNWuiVq1aqFWrluz/T/+ampqW6pqbKxRj/c3s8l2vy6FnXR20Mla8aQsICMCCBQvAMAxcXFxw7NgxOTGujEOHDsHb2xva2tooLi5G3bp1ce3aNdSoUQMA4OHhgcjISMTGxqJbt24ApAsKJiYm2Lx5M0aOHKkw5pYtWzBq1CisXr0a165dw969e5GSkgIrKysQEbS1taGrq4vMzEy8efMGISEhWLduHTIyMuDu7o4mTZogKCgIIpEImZmZMDc3x/79+/Hw4UPMmzcPenp6KCoqwty5c+Hv71/mDeyTJ0/g7u6OV69e4fDhw3BycqrIpVZKjx49cOrUKXTu3BkxMTEK7cnJyWjbti3OnDlTKTd+ALCzs0OrVq0QGhoq2/aqUIQtqe8qPW9Aaj1c2rMVVi9fghEjRlRpLBbVGTJkCCIjI+Hm5gZzc3Ns3rwZ/fr1w/bt28vdd8OGDZg0aRLc3NwQFhYm+2yyKCcpKQlLlizBwYMHUbduXcyYMQOjRo1S2Tr+JcnIyMD//vc/bNmyBQ0aNEBgYCA8PDzKXYx88+YNIiIicPDgQRw/fhxFRUVo2bIlvL294e3tjVatWlVpQfNLIRKJEBgYiF9++QXW1tbYunUrOnTooNBn2rRpWLt2LaZMmYLAwMByf9dYWFhY/kuw33gs3y5ubsD580AV4pB5APa+eYOUD678tWvXRv/+/dGyZUtYW1tDX18fb968QWZmJjIyMmR/b968iYyMDGRlZSmMaWRkpHQhQKdZe1Dt5qXHOaoAkQQ33xYqFfvz58/HvXv3sGfPHsTFxcHPzw9//PFHmTd9vXr1goGBAXx8fLBlyxY8ffoU9erVw5w5czBhwgQUFEjDBj627MfGxoKI0KNHD6Vjjhw5Erdu3cLUqVOxf/9+xMXFYeTIkbJwgwEDBmD79u3w9PREXFwcAGDEiBGYMmUKmjZtilWrVkFLSwtcLhfnz58HILXg/fLLLzJ33SVLlsDc3LzMa5WcnIxevXpBW1sbCQkJaKTM5bSCnDt3TibwAwIClPaJj4+HlpaWwk1rRXByclJYSLiRVQQOgKpE3XMYBuPmr8CoUSNgZGQEDw+PKozGoiolcfZXr16FiYkJRCJRuZZ9kUgEf39/rFmzBpMnT8bKlStZkaMC7dq1w4EDB3Dr1i0sXboU06ZNw4IFCzBt2jT4+flV3n29GiksLERwcDCWLFkCPp+P4OBg/Pjjj1D7yOX9U54+fYpDhw7h4MGDOHPmDIgIjo6OWLhwIby8vFC/fv0veAbVA4/Hw+zZs+Hp6QlfX184Ojpi+vTp+O2332SLuDweD2vWrEHTpk0xefJkpKamYs+ePf+I15GFhYXlS8Ba9lm+XTIygDp1gErGZxKHg6JGjbB25EgcPHgQFy9ehEQigaampiwxnYaGBtq1awcHBwc4OjrCwcFBzs1dKBTi1atXcgsBn/4t+b/t4LFw9p0CLr/0GzpVePf8CfoYCeHg4KDQJhQK0alTJ1m8Y2BgIKZPn17meL6+vkhISMD9+/excuVK3Lt3D5s3b4apqSnU1NTw5MkT3Lx5E82bNwcADB8+HDdu3MC1a9dKHVMsFsvca3///Xf4+vpi9erVaNq0KZYuXSpLYPfrr79i3LhxcnH2ixYtwurVq5GZmYlRo0Zhz549snCC4OBgTJ06tdxrFBkZiYEDB6Jly5aIiIiAiYlJufuUBxHB2dkZSUlJcHBwQHx8vNJ+3bt3B8MwiI6OrvSxwsLCMGTIEGRkZKBmzZoAgAOP3uNeTtXckjkAWhioYdO0EYiJiUFcXNy36RL+7Jk0wWdGBiAQAPr6gIMD0LUr8BkS3t14mIZ5ITvR2MkF+qa1UFRYCB01HpwamKG1kQZ01eTzR7x//x6DBw9GbGwsVq9eDT8/v2qf07fCo0ePsGLFCmzZsgUaGhqYMGECpk6dKvc9rioZBSI8fC9AwYdEqZpcDqxr8GGmxVPJkk5ECAsLw+zZs/HixQtMmjQJP//8MwwNDZX2vX37Ng4ePIiDBw/iypUr4PP5cHV1hZeXF3r37l3hvA//ZEQiEVauXImAgABYW1sjNDRUlhOmhLi4OAwYMABmZmaIiIj4Vy5wsLCwsFQUVuyzfNsMGgQcOFD5+P0tW6QZgwHk5OQgLi4OUVFRiIyMRGZmJtTU1GBsbIyCggK8eyd1oa5fv75M+Ds6OqJFixYqJXuLf5qDy1kCUOWjrgEA7148xTKPNvDz88PixYsVLBw5OTlo1aoV0tLSAAAHDx6El5dXqeNFRESgd+/eAKTx6G3atMGjR4/w66+/4q+//gIgFdmTJk0CwzAwMzODr6+vLOa/NHJycuDg4AChUIjatWvj7NmzICK0atUK2dnZSE9PR1ZWFgwMDOT2mzNnDvbs2YPhw4fjt99+g7q6OhwdHXH37l2kpaWVe61DQkIwYcIE9O7dGzt37qw29934+Hi4uroCAE6ePAlnZ2eFPsXFxTAwMMD8+fMxY8aMSh/r2bNnqFu3Lg4cOABvb28AQNj9HDzJU57YUFUYAE0N1OFWi4/u3bsjJSUFZ8+elS3k/KchAk6dAlavBo4ckW4reS8RSb9DrK2BSZOk3wnVYDl8kS/EyRf5SM8TQSIWgcOVt8yXfBM01FNDV3Nt6Ktz8eTJE3h4eCA9PR379u2Dm5tblefBArx8+RJBQUHYsGEDJBIJxowZg59++gl169Ytcz8xEe5kF+Pyq0JkFIrB4G/nLCJpLhVTTS7amGiiuYE6eBzl3+8JCQnw9/fHxYsX4eXlheXLl6PhJ3HtEokEFy9exMGDB3Ho0CHcv38fOjo6cHd3h7e3N9zd3f/zYRy3b9+Gr68vLl++DH9/f/z222/Q1NSUtd+9exeenp7IysrCgQMH0Llz5684WxYWFpbPDyv2Wb5t7twB2rUDCgsr5s7P4wEtWwIJCYCSmG8iwrVr1xAVFYWoqChcuHABRAQLCwuYmpoiLy8PDx48gEgkgo6ODjp06CBbALC3t1cQsABwMbMAp14UVDlmP/3mFRyZO0omlNeuXSsThCU8efIErVq1wvv378Hj8XDhwgW0bdtW6XhFRUXQ19eHQCBAfn6+3I2VtbU1Hj9+DABo1qwZfH19MWPGDFnMelm8evUKCxcuxNq1a0FE0NLSgpWVFa5fv44TJ06ge/fuGD16NDZt2iTbpyQ8oCT7slgsxtKlS7F48WKMHz8eixcvLvV4JaX1li1bhsmTJyMoKKhKGfc/hojg4OCAmzdvwtbWFmfOnFFqyTt9+jScnZ2RnJwMOzu7Kh3T0tISAwYMQGBgIADg4OP3uPuuapZ9EouhkZWGrrXUYW5uDhcXF2RlZSEhIQEWFhZVGvsfjVgMTJsGrFkj/eyXtjhY8prWrQscP64827iK3HtXjMNPciGh8kskMgDUuQya5j/BD316QldXFxEREWjWrFmlj8+inLdv32LNmjVYvXo13r9/j+HDh2PWrFlKw3yKRBKEP36P9DwRGJT+Opa01dLiYqC1HrT4f3uHPHnyBLNmzcLevXtha2uLoKAguYVCgUCAU6dO4eDBgzh8+DBevnwJExMT9OnTB97e3ujatWv1Jdb7l/Cxlb9evXoIDQ2V82R7+/YtBg4ciNOnT2PDhg0YPXr0V5wtCwvL10RChAIRQSAmqHEZaPIYcP8FOUsqApuNn+XbpmlTqZVOTe1vK115cLnSm/moKKVCH5DWp7e1tcW8efNw/vx5vHnzBrt370bnzp3x5MkTpKamQltbG126dEHPnj3B4/GwYcMGuLu7w9DQEM2bN8fo0aOxZcsW3LlzBxKJBHV0+FUW+gyAjs3qQ19fH0KhEDo6Oujbty+8vLzkSu5ZWVnh+PHj4PF4EIlE6Nq1K54+fap0TA0NDVhaWkJNTU1O6JdcBwA4f/48zM3NMWPGDHA4HBQUFJRa0/rWrVsYPXo0LCwssHnzZnh6eoLH46Fnz564c+cOgoKC4ObmBiMjI+zevVs2zpUrV/Ddd98hNjYWurq6CA0NhUQiARHh3bt38PHxKfW6FBcXY+jQoVi+fDmCg4OxatWqahP6ABAVFYWLFy8iPz8fAQEBpbrsxsfHw9DQEK1bt67yMZ2cnOQy8htrcKvoEwKAYbB/22a0bt0aFhYWUFdXR25uLuzt7XH58uV/Tp3yrCypBX7yZGDkSGkpr3XrgOzsio9FBIweLS0VBpTtBUQkfTx/LnXrf/iwUtN/kivAwce5EKsg9AFpnyKRGAlCfdh2dMbFixdZof+ZMDQ0xC+//IK0tDQsW7YMx44dQ5MmTTBo0CC50CSBmLD7QQ6e5UnfL2W9jiVtmQVi7LifgyKRBDk5OZg9ezaaNGmCs2fPIjQ0FJcvX4azszPy8vKwf/9+DB06tNQM+ps2bYK7u/s3J/QBaZz+rFmzcPXqVejp6aFjx46YMWOGrBSsoaEhjh07htGjR2PMmDHw9/f/V5ZbZGFhqTzZxWKcfJ6PVSlvsfbmW2y8k421N9/i9xtZiE3Pw+vCqlfs+qfAWvZZWAAgKQnw9AQyM6ViXtkPf4lFr1Mnqeu/knrsqiAWi5GcnCyz+iclJQEA2rZtC3t7exgaGiIjIwOJiYlISUkBEcHAwACNGjXCd3NWQd/cCpwqCNEfmxlAEyIsWrQIixcvRt26dZGXl4fi4mKZBbxE6B44cAD9+vUDANStWxcpKSnQ09NDdrEYN98W4b1AAqGEEHEwHHcunceWRXPRpL617Fh16tTBy5cvZTdSLVq0wMuXL/H27Vs4Oztj0aJFcHR0BBEhNjYWQUFBiI2NRe3atTFp0iSMHTsWhoaGCAn8lYzWAAAgAElEQVQJwfjx49GtWzecPn0aV65cwa5du7B48WKsWbMG169fx59//olmzZrB0NAQGhoa6Ny5M1asWIH27dujoKBAaSk6QGrl8fb2xqVLl7Bjxw7Z+VYXEolEFtrQtGlTXLhwoVSx7+TkBDMzM+zfv7/Kx12/fj2mTp2KnJwcaGpqIkcgxoZblRC7H8FlgJHWGrhz4xouXbqES5cu4fz587KFIkNDQ3To0AHt2rVD+/bt0b59+2rJd6AyV65IRf6uXdLPMJcrFd8MI/3sqqkBQ4dKxX8ppRYVCA4G/P0rPhceD7CwkHoPlZE47VNEEsLam29RLKYKL+6RRIxaWnz4NlWM4Wb5PBQVFWH79u1YtmwZHj16BHd3d8ydOxdvzFsiNVtQ4deQAcDNfonlg12Ql5eHmTNnyoRqSQb92NhYFBcXw8bGRpZB38bG5l+RQf9LIxKJEBQUhICAAFhZWclZ+YkI69atw5QpU9CjRw/s3r37Px/mwMLyrVMsliAyLQ/3cgSlelyVbLfU4aO3lS60+f9u2zgr9llYShAIgIMHpa66H7K4y+DxpPH9EyYA9vZVyoj/KZmZmYiJiUFUVBRiYmLw7t07GBsbo0ePHujcuTMePnyIHTt24NmzZ2jfdzi85gVW6qZOIhbhRUoS+lpqo2vXrgCk1nBfX1/cvn0brVq1QnJyMjp06ICNGzfK6s6vWLECM2fOBAB4+IzHkDmL8DRfLGclFomE4HC4YEiCVqbaaGeqCWMNHkxNTZGbm4vCwkJkZ2fD2NgYGzZsQO3atTFv3jzcuHEDNjY2yMvLw6NHj2BnZwd/f38MGDBAIbP0xIkTERISgjp16sDIyAjHjx+HsbExGIaBvr4+FixYgLFjx8LT0xOampooKipCQUEBzpw5g02bNmHUqFEK1+Tx48dwd3fH69evERERoTRpYVUJDw9H//79AUgT/7m7uyvtl5ubC0NDQ6xevRrjx4+v8nGvX7+O1q1b4/Tp0/juu+8AAPsf5uDhe2GlPEQ4AFoYqsPdUlehLS4uDp6enqhTpw4aNmyIpKQkvPlQocLKykom/Nu3bw87Oztoa2tX4cxKYeNGYPx4aYK8sqzvJRnpt2wBfvih7DGFQqB2beDDuVSK3buBwYNV7n7zbRGOpuVV/ngAfBrro5YWm3n/SyISibBnzx4sWbIEz9++x8yjyVUS34/+WoGRA71lMfglOUucnJzg7e0NLy8vWFtblz8QCwDgzp078PX1xaVLl+Dv748FCxbIPNFiY2MxcOBAmJubIyIigr2uLCz/UQqEEux6kIOsIrFK90EMAF0+B0Mb6UFPrfq8Pb80rNhnYVHG48dAejpQUCBNtNWoEWBk9NkPKxKJkJiYiKNHjyIsLEyWJE9XVxdeXl6YMHkKkrjmyCMOwKi+0kgSCcQiEY7N90PCscMYOnQoAgMDUatWLQgEAixZsgQLFy6EhYUFiAjp6en46aefEBAQAA0NDYwdOw4vdOug0w9+IIkYDKf0Lz0GAIcB+ljpokO9WjI3+r1792LQoEF4+vQp1NTUsG7dOvz+++/Izc0FAHTt2hXr169H48aNlY4rFArRs2dPJCUlIS8vD/r6+sjOzgYR4dKlS2jXrh0AoFOnTrCyssLRo0fRpk0bXLhwARkZGXLl/wBpMsFevXqhRo0aiIqKUkh2VR2IxWK0bNkSGRkZsLa2RlJSUqkCIDIyEh4eHrh79261lPkTi8UwNDTErFmzMHfuXABAep4QO+/nVGo8DgCfJvow1VQuIuPi4uDu7o6BAwdi27ZtePr0qcz6n5SUhOTkZBQUFIDD4aB58+ZyCwAtWrSoWlm4DRuAymScDw0FygjvwL59wMCBlZ4WuFygQwfFxcMy2JqajcxC1W5ElMEAaFnKogzL50cikeDPMzfwWses0h5YJBHj4alI/PnTKKipqcHFxQXe3t7o3bu3rLoGS8URi8UICgrC//73P1haWiI0NFRWTSQ1NRUeHh7IycnBgQMH0KlTp688WxYWlupEJCHsuP8OmQUV+31lAOirczCikT40eP9OCz8r9llY/kEUFxdj27ZtWL58OR4+fAhnZ2e0b98eDx48wPHjx5Gbm4uGLVtj+Ppw8LR0VBL8RBIwYHB/fwi2LAlAr169kJiYCKFQiEWLFsnc9q9fvw4fHx+kpKTAyckJFy5cgIWFBTaEhEDcsD2uZhVX2FK1d/ZoPL92AZmZmRg5ciTOnDmD7777Djt37gSfz4evry/8/Pxw/vx5zJ8/Hy9fvoSvry8CAgKUZrm+cOECXF1dUVBQAIZhZKUBvQcPxYzgjXgnEONIVDS01dVw8UQMXiafhVM7O2zbtk1unIiICAwePBg2NjY4cuTIZ3M137FjB374YD0ur6rB/9k787iY8z+Ov+bomG6VIkUl5ShUyhU5WyK3de2PLZtdVo6wwrKIEFn3OlZuu651s+w6tkuiRMndYZGU7nNmvvP+/TFmVnTMkWv3+3w8vg9pvp/P5/2daWa+r8/7CgwMxKFDh/D48eM6C8ft06cPeDweTp8+Lf9dQnYZzj8pAREptc4Aa320rKdV4zkHDx7EyJEjMW3aNISFhVWaXywWIyUlRb4BEBcXh+TkZDAMA4FAABcXF7i7u8tTAGxtbRWzLyYG8PCQhusrC48HxMUB1RVD7NYNiIpSuT2nnORkQIGOBfkVDDanqJdqAUjTLWa0MQGXDet+70iIsDZJmoah1jwiIWzSo9Gvz2dsaHkdc/fuXfj6+uLq1auYPn06goODoaOjg5cvX2LYsGGIjo7Gli1b4Puq0w4LC8unT3x2Gf54UqLSWA6Ajg0E6NrwHUQlvgdYsc/C8hFQXFyMrVu3IiwsDJmZmRg2bBiCgoIqVWQXCoWIjo7GmTNncCnmKjpPWYyG9o6QMEzVHiSS5vyKykuxd6YvHly5BCMjI+Tn58PBwQHNmjXDqVOn4OzsjJ9++gnt27eHSCTCihUrsHjxYjRp0kTqDbeww+fBm1S6LlFFOX6dPBShixZgyJAhEAqFsLS0REBAAPz9/St1HSgvL8fmzZsREhKCgoICTJo0CXPmzIGZmRny8vKwePFibNiwAQ0aNMDLly+hoaEBlx59YddrEGzadwOPxwcHgJhhIM224oBIAjNJCXycrOVhzZs2bUJAQAAGDRqEvXv3vlVUsK4QiURo0aIFCgsL0bBhQ9y4cQPcGnqwt2nTBs7Ozti5c2ed2RAcHIzVq1fj5cuX8rUjIyPx3bpwDAhaAR6Xi5p6UEgYMfg8Pnys9dGiFqEvY+PGjZg8eTKWL1+O2bNn13huSUkJbty4gWvXrsk3AFJTUwFI8/9f9/67ublV3dt88GDg1CnV2mfy+dIQ+1ctIt/C2Fi1on5vkLFiBV726gWGYcAwDMRisfzn139XxNdBhrmCtQRqYZqT8SfrhfiUKRIx2Jis/t8MAPi3MIKJNpuO8S5gGAY//vgjvv/+ezRu3Bg7duxA586dIRQKMXnyZGzbtg0zZ87E8uXL67RYKwsLy/uHiLDtTj5yK1TfuBfwOJjsZPxJVupnxT4LywfkzTZO//vf/zB79uxqQ9lfJzUtHadib+AJ1xD1mjmC84aX30iDAzdzHTgaayEv+wWuXLmCmJgYnDlzBikpKQAADQ0NaGlpobi4GJ999hnWrl0LBwcHJCUlwdfXFzdu3MDc0/EQ1LeoUahWh4QRI3rvTzizdjEAYN68efjhhx+goaFR7ZiioiKsXbsWK1euBMMw8PT0RGxsLIRCIb7//ntMmzYNly5fRsi+E/Cevqj6zY5XyD6WvSx18MvKhVi5ciWmTZuGVatWvdObuJ9//hn+/v4ApB7v4cOHV3vuixcvYG5ujt27d8sjAeqCixcvomfPnkhKSoKjoyMyMjLg5uYGR0dH7Dl2BjfzRLidVwGGpKkXr/ZIICGAB0LUgXB81sIKk8aNVmrdBQsWIDg4GOHh4Up7x3JyciqJ/7i4uEr5/68X/3M1N4duy5bKtc18Ez4fyMysuuCmpqY0b19NJgDYVutZQFP3rvhq8xG11wOAbx3rQV+DFSnvm5flYmy7k18nc421N4SFbvWflSzq87qXf9q0aViyZAkEAgHWrVuHwMBAeHt7Y//+/W+lgbGwsHw6PC4WYb+KKYyvM8haH80VdHx8TLBin4XlA/Ds2TOsXr0amzdvhkQigb+/P2bMmKFyr/IXRaW4fP0mEm4lIz7uKu7cuI7sR3fg6ekJb29veHt7o1mzZvKw6OTkZPTv3x9ZWVlwdXVFcnIyCgqkH4RmZmbw8vJChw4dkJZXCtN+6oUylhUV4MWBH7F75w7k5uZCS0uxD8oTJ07gq6++QnZ2NjQ1NTFz5kzMnTsXurq6uJpVikvPSpW25bfg6Rjj2Q5Tp05VeqwyVFRUoFmzZhCLxTAyMkJycnKNmyUHDhzAyJEj8fTpU1hYWNSZHSUlJTA0NMTGjRvxxRdfwMPDA/n5+bh27RpMX4nbcrEEKXkVyKtgIJIAmjwOTLR4aF5PE35j/4e//voLDx8+VKqFFxHhm2++wfbt23H06FH4+PiofA1EhIyMjEriX5b/v4DDwQIiqCVpuVwgNBSYMaPSrxmGAdfICJxi9YrlAcAXAPa99n89PT0YGBjIDy6XC5FIBIG5FfotUWRboHZmtDGBBvfT80B86tRF1wsZ45sboX41NTJY6g6GYbBmzRp8//33sLKyQnh4ODw8PHD27FmMHDkSjRs3xsmTJ2Ftbf2hTWVhYVGBi09LcP1FWY2RjLXBAdCynhZ8rD+9jT9W7LOwvEdSU1MRGhqKHTt2QCAQYPLkyZg6dWqd54w/ePAAZ8+exZkzZ3D58mVUVFSgadOmcuHv6ekJoVCIMWPG4OzZs1i2bBm6d++OwMBAREVFQU9PD2VlZRg8fw3aeg8Fj6+ed6k46ykyo89gy6Ig8GsRIOnp6Zg1axYOHz6MDh06YMGCBThz5gy2bNkCExMTzA5di3LHHkrbQETgABjX3AgNdd6tt2zDhg2YMmUKiAj79u3D6NE1e8YnTJiAyMhI3Llzp85tcXNzQ4sWLVBRUYHTp08jJiZG3mmhNu7fv4+WLVsiLCxM6Q0ShmHw+eef48yZM/jjjz/g4eGhivlVIsv/1/X3h/W1a+Cp8TUm5nBwycoKwU2aID8/X34UFRUhGUALSIsTqsODn3+GRs+e0NLSQnp6Om7evIn4+HgkJCQgKSkJIpEIXC4XTs4u+PynE+Cq+X6rp8XFhBb12FZsHwCxhPDjrZdQM2UfHABT2VSM98q9e/fg6+uL2NhYTJ06FUuXLkV6ejp8fHxQVFSEo0ePonPnzh/aTBYWFiU5nVGE5NwKlQvfyrDV18DndoZ1YtP7hBX7LCzvgaSkJCxfvhy//vorTE1NMX36dEycOBGGhu/+Q6OkpASXLl3CmTNncObMGWRkZEAgEKBHjx7o06cPUlJS8NNPP2HMmDHYtm0bYmNjMWnSJNy/fx/zTsZBp2ETtW0giQQcLhdaPA7c6gvQqYHgreJhJSUlWL58OVauXAkTExOEhoZi9OjRcsGSnp6ORYsWAa590KyDJ7g85T1eXAAt6mnCx/rdFbwqLS1F06ZNoaGhAW1tbdy5c6fWdIGmTZuib9++2LBhQ53bM23aNOzevRt5eXk4cuQIhgwZotT48ePH49SpU0hNTVW6ZV55eTn69u2LxMREREREwMnJSanxteLtDZw9q9YUEgBXGjbEll69YGRkVOloFxkJp127wFHxa5IAFNWrh2kDBuB6QgJSUlLAMAz4fD5atWoFV1dXuLi4wMXFBa1bt4auri7O/V2MxJxytW5KelvqwrX+u6lFwVI7pzOKcDu3QmUvEgeAvaEmBtuyhfneN697+S0tLbFjxw40b94cQ4cORWxsLLZu3Ypx48Z9aDNZWFiU4NSrz2R1Ba+NvgZGsGKfheUTp7wcOH8eePYMqKgAjIwANzegZUuVpouNjcWyZctw4sQJNG7cGN999x38/PzeWVG42iAi3LlzRy78IyMjIRaLYWFhgRcvXsDW1hZnz56FpaUlwsLC8LJlT5g2rvuew00NNDDYxgB8LgdEhP3792P27NnIycnBrFmzMHv2bOjp6b01TlqtPBf/ZOIrDxfAZEdj6Gi8G4/ZqlWrEBQUBIZhsGPHDnxZU2s3SDcxbGxs8Ntvv2Hw4MF1bk9QUBBWrFiBwMBAhIWFKT0+PT0d9vb2CA4OrrXgXlUUFBTA09MT2dnZiImJQZMm6m8eyfn8c+DIEfVz9r/4QtqG703y8oCGDaWfBSrAAJjH4+GCs7Nc1Lu6usLR0bHatIgXZWKE31U955vPASY7GUObx3qEPxTPS8XYeU+9vP1RdgZooq9ZRxaxKMu9e/fg5+eHK1euYOrUqfjhhx8wY8YMhIeHY/bs2QgJCVGpjg0LC8v7QygU4tq1a4h4IQRZtVDJSSSDA6BFPS0MYMP4WVg+UVJTgS1bpEdBAcDhSA+ZiPDwAAICgEGDpEW7aoCIcOHCBYSEhODSpUto3rw55syZg1GjRtVYmO59Q0RIT0/HoUOHcP78ecTGxqKkRNqWREdHBwzD4Kvtp2DZsm2dr80BYG+kiUY59zBt6lRcuXIFw4YNQ2hoKGxsbKodF/GsBFeyytTaneUA6Gahg/bmOmrMUjWFhYWwtbWFoaEhiAj37t2r9TUPDw+Hv78/cnJyKnUnqAtSUlLg7u6OkpISHDhwAJ+r2DN+0qRJOHDgANLS0lRqA/b8+XN07twZfD4fUVFRldNWKiqk3vmMDKC0FDA0BJycpO+52sLQg4KAsDDVKvHL4PGABQukR1VMmACEhyvdfk8CAFpaYNLTodGggVJjj6QW4H5eBTgqiIlOn3B7oH8Tu+/lI7NUrPRnFQeAsRYPX7UwYtMwPjAMw2Dt2rWYN28eLC0tsX37dly/fh0zZ87EgAEDsHfv3io3pVlYWD4MpaWluHr1Kv766y9ERETgypUrKC8vR+se3hi1alftE9RCv8Z6cDJRvH7RxwK7LcnCsmkT0KyZVDS8KlIHosrewitXgBEjAGdn4MmTKqeRSCQ4evQo3N3d0bt3bxQWFuLIkSO4ffs2xo4d+96FPhEhOzsb165dw6FDh7By5Up8++236NevHxwdHaGvrw9bW1vMnj0bFy5cAIfDgY2NDQQCAUpLS1FRUYHs9IeQMGoIqepsA3AvX4hvFq2UpxkcOnSoRqEPAC8rGLXDsDiAWu1XamLt2rUoLCxEWloa5syZo9BrfuHCBbi4uNS50M/NzcWAAQNgY2MDa2trxMTEqDzXvHnzUFJSgjVr1qg0vkGDBjh37hzy8/PRr18/FBcXS8X9nDlSz/ngwUBgoFRwT54MdO0KNG8ObNwIFBZWP7Gvr3pCH9IUE1QTlvvixQuc/+wzZJmaglFCeMn+Rle1bw8yNlbOHiJc3RaKp3dvAaRcxEJzI010aVD3m1gsyjPQRh8CPkepGCQOpAUyh9oasEL/I4DH4yEwMBA3b96EmZkZunXrhsePH+PQoUO4cOECOnfujMePH39oM1lY/rMUFhbi999/x9y5c9G5c2cYGRmhR48eWL9+PQwMDBASEoLr16/j+u/HYKCpnuTV4nIUbkH8scF69ln+26xYIfUOKgqfD9SvD8TFAZaWAKT91H/55RcsX74cd+7cQbdu3TB37lz06tXrnd6wycR8enp6lUdGRgZKS/+pWK+vrw9ra+u3jiZNmsDa2hrGxsbgcDgQCoUICAjA1q1bMdB3IjoELH4n9ksYBhplBQjs1FThFni/PixAepF6rdA4kIqigTZ1mw+bm5sLGxsbWFhYoKSkBA8fPoSmAlEgFhYWGDduHJYvX15ntojFYnh7eyM+Ph7Xrl3DwoULcefOHVy7dk3lOQMDA7F9+3akpaXBWEkBKyMhIUH6/mjSBLPv3pXmwlfnMZe9d8zMpKk11RUV7N4diIxU2vMOAGIAv3M4ODtxIvz8/PDs2TN54byEhAQ8ffoUAGBnYIDjQiHsy8tRaxAgjwdwOLgyeTI8N25Ejx49cOTIEYXqHUgkEkydOhUbNmzAmg0bYf7ZGKQXiSDriljNIIDLhSWKMbptk7dqYbB8OHLKxfj1YSFKRJJaNyk5ALR5HIywM0QDHbYC/8cGwzBYt24d5s6di0aNGmH+/PlYuHAhSktLcezYMXTs2PFDm8jC8q8nNzcXkZGRiIiIQEREBBISEiCRSGBubg5PT0907doVnp6eaNmy5VtpNlezSnH5WalKDiMOAHczAbo3+jSj5lixz/Lf5bffgKFDlR/H5wP29iiLicGOffsQGhqKjIwM+Pj4YM6cOXX2pU9EePHiRY1ivqysTH6+gYFBlWJeJujr1VO8OndcXBy+/vprJCYmYubxqzC2tHlnGxdfOhjVenOblZWFGzdu4AYZA2bWKoU3y+ACcDLRQt/GdZt3NW/ePKxevRpCoRDr16/HpEmTah1z+/ZtODo64vz58+jdu3ed2RIYGIh169bh/Pnz6NGjB7Zs2YJvv/0WBQUFShfZk/HixQvY2Nhg6tSpCAkJUdm2OzNmoMXq1SAoWHmBxwO0tYGoKKBtFSklp04BarT2G2dpiT1Pn0L2VWhiYoJ27dpVyrHX1NREe0dHrLOwwJDnz4HcXGnLvtejf3g86f/79QPmzwfc3fHnn39i8ODBaNWqFU6fPg0TE5Nq7WAYRt6ucPPmzZgwYQKICGlFIsRnl+FRgRDgcMB59cwRAGLEaGUswOpAf5RlZiAmJkbhjTOW90OJSIKYrFLcelkO0RuBGiSRABwONLgcOJloo6O5AAaa7Ov3MfPgwQP4+voiJiYG48ePx+3btxEfH4/t27fjiy++qHYcIyEUiSQQSggaXA50+Vxo8tiNORaWmnj+/DkiIyPlYflJSUkAACsrK3h6esoF/uutpaujgpFg970C5CoZIcoBoKvBha+DEXTfUa2ndw0r9ln+mxBJi+7duyf9WQW+NjTEz0VFGDFiBIKCghRuZyZDIpEgKysLGRkZ1Yr58vJy+fmGhobVinlra2sYGRmpdB0yiAi///47QkNDcfnyZTRr1gwDBgxAwotSeE1/N959LgDX+troaSnNe5RIJEhNTcWNGzeQmJgoFfg3buD58+cAgAEzl6D9iK/AVUPQcAB0baiDjnUY7iwrbmhra4ucnBykpqYq1Jd+3bp1mDVrFvLy8qCjUzf27Nq1C19++SXWr1+PyZMnAwCSk5Ph5OSECxcuoEcP5dsWypgzZw7Wr1+P1NRUmJmZKT/BX38BPXpIuzMoM47HA0xMgJQU6b9vEhQkjdJRkpV6eojo1g0tW7ZERkYGTp06BSLCtGnTMGPGDBgbG4OI4O3tjZs3byIpKQkm+vrSjcL9+4GnT6U1B4yNgS5dpPn9bxQgvH79Ovr27Yv69evj3LlzsLKyessOsVgMX19f7N+/Hzt37sT//ve/t875cfPPOPhnJFav3wg+j4eD+3bj970/Iyn+GqKjo+Hh4YGffvoJ33zzjdLPA8u7R8gQUvIq8LCgAiVi6XdOZnoqzu3fjpNbfoSeNluM71OBYRisX78ec+fORcOGDWFvby8PJQ4ODq7kUcyrYHAjpxw3c8pRIfnnXoMDoHk9TbiaCtBIl8+mbbB8GIiAixeBAweArCzp91m9ekCnTsDYsdIaOu+Rv//+Wy7sIyIicO/ePQBAs2bN0LVrV7nnXtVCv4VCBnvuF6BYgWgr4J+IqzH2hjDV/nQjrlixz/LfJDJSmhesImIA6ebmQFQU7OzsqjxHIpHg+fPnNYr5iteqfBsZGdXomVdXzFeHSCTCwYMHERoailu3bsHd3R2zZ8/GwIEDwePxkJaWjpATkbD1+Ewtj3rVELRznyL1eDhu3LiBmzdvoqioCABgYWEBZ2dntG3bFs7OznB2doZ+Aytsv1eg1oocAJMc60Ffo+48aDNmzMDWrVtRVlaGVatWYdq0aQqNGzhwIAoLC3Hp0qU6sSM2Nhaenp743//+h23btslvICUSCUxMTBAYGIj58+erPL8sVeGrr75SqbI/evaUCn4VQu7B5QIhIUBVHQEkEki++w7csDBIOBxwa/hakz1eFBgI/VWrKhUBfPnyJVatWoV169aBz+cjMDAQhoaGmD59Os6cOYO+ffsqbzeA+/fvw8vLCwzD4Pz582jRooX8MaFQiDFjxuDYsWPYv38/hg8fXuUc48ePR2JiIuLj4wEABw4cwMiRI5GZmYkGDRrgq6++wpEjR3D37l2Ym5urZCfL+yU2NhYdO3ZEbGws2rdv/6HNYVESmZc/OjoanTt3RkxMDAYNGoQ9e/ZAQ1sHZx4X4W6+sNo0HC6khTzra/MwxNYA9bTYqA6W94RIBGzeDKxdCzx6JI1YldW/4XKlmwBaWtJ6NjNnAtXc56oDEeHRo0eIiIiQC/z09HQAQKtWreRe+y5dusDCwqLO1i0RSXA0rRBPSsQKvTeH2hrA6BN/b7Jin+W/yahRwOHDahf3yvrzTzzU1q5S0GdkZEAoFMrPNTY2lufHVyXmDavZQZVIJCgvL0d5eTkqKirkPyty1HS+LK88LS0NFRUV0NfXR7169cDlct86l8vjYeCcULgPGQsJw6jlWX/z2lIunsb17Ssqifq2bdu+5Tm+f/8+Fi5cCN1uw2Hj0kklG7gAmhlpYnAd5us/ffoUdnZ2aNmyJZ48eYK0tDSFvPRisRgmJiaYNWsWvv/+e7XtePbsGdq1awcbGxtcvHgRWlqVC8n069cPDMPg999/V2udRYsWYfny5Xj48CEaNWqk+MD79wEHB7XWhqUlkJ4OkUSCO3fuyHPr4+PjkZiYCK/SUswC0AmAmMMBj0j+Zc6R3cx06QJ89x3Qv3+1y2RlZWHFihXYuHEjhEIh3N3dcfHiRZVTIADp38lnn32GzMxMnDlzBu3bt/4fgWQAACAASURBVEd5eTk+//xznDt3DocOHcKAAQOqHe/u7o5WrVphx6sWgc+ePUOjRo1w8OBBDB8+HC9fvoSDgwO8vb2xe/dule1keX+IRCLUq1cP8+fPV6mtJcuHh2EYbNiwAXPmzIGBgQEKCwvh2NYF4zf/hnyGq7D3UIvHwSg7Q5iz9RpY3jWFhdKiuDInQ00ykM+XptGdPAl066bWskSElJSUSuI+MzMTXC4Xbdu2lXvtPTw8YGpqqtZaipBZIkJ8TjlS8irwWtANOAAcjDThUl8Aq39J1A0r9ln+mzRuDPz9t9rT+ALY+epnPT09mJqawtjYGEZGRjAwMICenh50dHSgpaUFIlJakJeXl0NPJMKXAL4A0BCAJoB8ABEANgG4XoVdfD4f2traVR48Hg8vXrzAkydPIBKJYG1tDWdnZ1hYWFR5fnZ2NlasWAFnZ2cYNXeBTXcfNHZqJ883VeeDUMKIgacP4GnKhaura5Wh72lpaVi8eDF2796Nhg0bImjVRhQ7dFZ5zS+aGcJSr+46I3z77bfYt28fSktLsXTpUsyaNUuhcVevXkWHDh0QExOjdp2H8vJyeHp64tmzZ7h+/XqVnt2QkBAsX74ceXl5auV1FxQUwNbWFiNHjsTGjRsVHzhjhtSLoIpX/zUC7e3x0+PHKC8vB4fDgYODgzy/3tnZWdpxwsoKq1q0AB48kHbYMDKSbjR89ZU0fUcBGIZBx44dce/ePZSWlsLY2Bhz5szBN998o1CKRlXk5ubCx8cHiYmJ2L9/PzZt2oSIiAgcO3YMn332WY226OvrY+nSpZg+fbr893Z2dujbty/Wr18PANixYwf8/Pxw8eJFdO/eXSUbWd4vffr0AYfDwdmzZz+0KSxq8ODBA/j5+SEmNhYTthyFVet2SvX05gAQ8Dn40sGIrdvA8u6oqJBG2MXGKv5dzOVKRf9ffwEdOii8FMMwuHXrllzYR0ZGIicnB3w+H25ubvKw/M6dO1fr7HofVDASFAolqGAImjwO9DW4EPA/zdz86mDFPst/EyOjf9rsqYgYwHcAfqziMS0trbdEc1W/q+kwFInQ/fffYR8XB65EArzyUsogHg8chkFFy5YonjsX6NNHvg6f//ZNRlpaGsLCwhAeHg4OhwN/f39Mnz69xtynFy9eoF27dtDW1oaPjw/WrFkDLpeL+rbN4R24CE3duqgl9okIp0ODEH0gHBoaGnBxcUHHjh3RsWNHWFtbIzw8HNu3b4eJiQnmzp2LCRMm4Pjx4wiPuInuXwUqvV6PRrpwNxOobO+bpKenw97eHu3atcP9+/eRnp6ucN9lmfjOzc2t8vVSFCLCuHHjcOjQIURFRcHV1bXK8yIiIuDp6YnExES0adNG5fUAYMWKFZg/fz4ePHigeO6chwcQHa3WumIAJ9q2xRNfX7i4uKBNmzbQ1/+n0KIsd/2PP/5Ar1691ForNDQUQUFBiIiIgJWVFYKDg7Fz506Ym5vj+++/x/jx42vttlAVpaWlGDJkCM6fPw9NTU2cPXu2VmF+//59ODg4vHVdfn5+SEhIQGJiIgBppIynpyeys7Nx8+bNt6I7WD4+li9fjqVLlyIvL0+tzwGWD49EIsGPv56EqIVqm9EcAG1MtNGnsWLfISwsShMYKN10lyjX1hU8njR/PyMDqOYeRyQSIT4+Xu65j4qKQmFhIbS0tNChQwd5WH6HDh3UipJjUR5W7LP8NzEzA7Kz1ZqCAGTNn49yP79KIl1TU/Otlh9Kk5oq3X198qT2VANZftWGDUAVFeBv3LiB0NBQHDx4EMbGxpgyZQomTZpUbWXwnJwcREdHIyIiAtu2bZPn0Mu8webm5sjMzISmji7m/pECTW3VxbNEJMSkFgZIfXAfV65cQUxMDCIjI/H3q6gLLpcLR0dHjBkzBt26dUN0dDQCAwOho6OD3TG38UCiB4lYDG4NN8kkYcDh8mCPfAxu27ROQ7L8/Pxw8uRJFBUVYcGCBZg7d67CY3v27AkdHR2cPHlSLRvCwsIwc+ZM7N+/H6NGjar2vLKyMhgaGmLNmjUKdQqoiZKSEtja2sLHxwc///yzYoNatZIW2FMHDQ1g8mRg9eoqHx43bhyioqLw4MEDtd6Dt27dgpubG6ZNm4YVrxX+e/jwIRYtWoR9+/ahcePGWLBgAcaOHauUSMvPz0ffvn0RHx8PkUiEdevWISAgoMYxR44cwbBhw5CVlVUpvWXHjh0YP348cnNz5TU9kpOT4ezsjIULF2LevHlKXjnL+0aWt3/16lW4u7t/aHNY1GT3vXw8KxVBwV4jb8HjAAFOxtDm/bs8iywfAUVFgLk58FoXJ6XgcIAtWwB/fwDSiMKrV6/Ki+nFxMSgtLQUurq66Ny5szws383Njd14/sCwnyYs/00aNapUmEsVOAAaODvD2toaDRo0gJGREbS1tdUX+tnZ0t7high9QLpDSwR8+y2wdy8Aqbf3woUL+Oyzz+Di4oKrV69i3bp1yMjIwPz58+VCn4hw//59uWho3rw56tevj0GDBmH9+vUoKiqCqakpeDweGIYBwzDIzc2FpaUlvgucjnsXT4JRse6BhBEj9vAueHp0hra2NkaMGIFGjRohJycHBgYGGDVqFAICAqCvr48FCxagffv2CAwMBJ/Px9ixY3F05ffYGTAKZZlpAN64tSIJJIwYRIS8h8m4FDoL878YWKm7gbrcv38fu3btQqtWrSAQCOSV7xWhrKwM0dHR6Nmzp1o2nDt3Dt999x1mz55do9AHAIFAABcXF0RFRam1JgDo6upizpw52LlzJx48eKDYIEEdRVRUM09eXh4OHjwIf39/td6DQqEQY8eOhb29PRYvrtyFws7ODnv27EFycjLc3d0xfvx4tGzZEvv27QOjQEjky5cv0bNnT9y7dw9RUVEIDAzElClTsGDBAtS0737r1i2YmZm9Vceia9euICJEvxYx4ejoiMDAQCxZsgSpqalKXj3L+8bV1RW6urq4fPnyhzaFRU2ySsV4ViqGqkIfABgCknMraj+RhUVZ9u4F1LgHIgBFISH4ft48dO3aFYaGhujWrRtWr14NgUCARYsW4erVq8jLy8O5c+cwb948eHh4sEL/I4AV+yz/TcaOVX8OAwOgTx/153mTKVOkLb1UENHk54cTW7bAzc0NvXr1QnZ2Nn755Rfcv38f3377Lfh8PmJjY7Fq1SoMGjQIpqamcHBwgJ+fHw4fPoxnz57J5xKJRLC1tcXgwYPh6uoKU1NT3Lp1C+Xl5Zg4cSLOnj2Lc1tWQVxRDomSedgkkYARViB6/xY8efIErVu3hqWlJTZt2oQZM2YgPT0d+/fvx5o1axAVFYURI0YAkLYf7NevH44fP459+/bhXvSf2Dt1NO6Hh0Dj6R2YoxRN9PgwERfj8o51qPhjN1aN6o1pYz/Ho0ePlPK818bChQthbm6OuLg4TJ06FQYGihf9i4mJQUVFhVpi/8GDBxg5ciT69u2LpUuXKjTGw8OjkjBUh2+++QYNGjTAokWLFBvQuLE0FFAdxGKgmqq8e/fuhVgsxpdffqnWEosWLUJKSgr27NlT7U1Ky5YtcfDgQdy4cQPNmzfHF198gdatW+Pw4cOQVBMemZWVhe7du+Pvv//G5cuX4e7ujlWrVmHFihUIDg7GxIkTq90wSEpKqrK1p62tLSwsLBAREVHp9wsWLICZmRkmT55c4yYCy4dHQ0MDHh4erNj/F5BaKFRD5v/DwwJh7SexsCjL5s1qDecQQT89HVc3bYKZmRlWrlyJxMRE5OTk4MSJE5g5cybc3d2hoVF3NZFY6gY2jJ/lv0leHtCwobRYiSrweMC0acCqVXVr1/Pn0orjKhYxYwAsBHClZ0/Mnj0brq6uuHLlCiIjI/Hnn3/i1q1bEIlE4HK54PF4EIlEAKQiWlbgjMfjYdWqVZgxYwZWrlyJ27dvw8nJCRs3boRIJMK0adPA4/FQv359vHjxAi69+mPg4p/A4XIVqpAvYcSQMAzu7FmNzJQbldrO9e7dG3v37pV7MIkI/fr1w9mzZ9GiRQskJiZCU1MTXbt2RWRkJKZPnw4iQkxMDG7cuAGRSARdXV24uroiKioK48ePx2+//YYxY8bAxsYG06dPr5N87qSkJLRp0wa9e/fGlStXkJGRgXr16lV9slgMnD4NREVJ/+40NXEhKQkLU1IQkZOjUlpBQUEBOnToACLC1atXFS5uc/ToUQwZMgSPHz+ust+7smzevBmTJk1CUlISWrVqVdviwJAh6i3I50s3wt7wcBMRWrduDQcHBxw+fFjl6a9cuQIPDw8EBwcrtTEUFxeH+fPn4/z582jbti0WL16M/v37y1/bp0+folevXigoKMCFCxcqtd4DgPDwcPj7+2Pw4MHYt2/fW5sMdnZ2GDhwYJXtDkeOHInHjx8jJiam0u9PnDiBgQMH4vDhwxg6dKjC18Ly/mHz9v8dXHxaguvZZZUqe6uCmYAHv+bVfJ+wsKiKvj5QXKz2NPTLL+CMHFkHBrG8L1ixz/LfZfx4YNcu1Xt+37tX971HlywBfvhB+eIpryAAxbq68O3VCzFxccjMzAQAcDgcuYfP3Nwcbm5ucnHv7OyMxo0bg8Ph4O7du2jfvj26dOmC48ePg8fjYejQoUhISMD27dvh4+ODsrIyuLi4ID4+HpMnT4ZAIMC5q4kYtHgTtPWk3m1ODWHUmhzCrimjcCvyAgBpKHJubi5SUlKgra0NXV1d7Nq1C15eXmjfvj3i4+PRpUsXXL58GVwuF6dOnYKPjw/c3NwQFxcnn7esrAzx8fHy3P9Tp05B/Co6gsPhYOTIkbhx44Z8repqFijCkCFDkJCQgJycHEydOrVqz/rLl9Kd9I0bgcxMab45EcDhQCwSgQ9I28AFBABDh0r/phSAYRgMHDgQUVFRiIuLg729vcJ2Z2VloUGDBvjll18wsg6+rIVCIRwcHODq6lq7yBaLpRtZWVmqLcbnA8OHA/v3v/XQlStX0KlTJ5w7dw5eXl4qTV9SUoK2bdvC1NQUkZGRNYsuhgEuXpTW1igulkb5NG+OKADfz5+Pv/76C+7u7ggODoa9vT169uwJsViMCxcuwK6az4zjx49jxIgR6Ny5M44ePSqPFCkuLoa+vj527NhRZdTCpk2bMHXqVBQUFLzV8nHgwIGIj4/HnTt3KhUyZPm4kP39snn7nzas2Gf5qOHxVL63rMTPP0vvn1k+HYiF5b/Ky5dEdnZEfD6RVIYpfqxb925satpUeVuqOHoAxOFwyMLCggYMGEChoaH0559/UnZ2dg1Px0uys7Ojli1bUkFBARERXb9+nQBQjx49CNK9BGrUqBFpamrS9u3biYjou+++IwDUwqkN9fKbQnPO3KBlCdm0LCGbQuJfyH/enJxDqw6cJisbW+LxeNSgQQPi8XgEgPr160fTp08nPp9P+vr6BIAMDAwIAA0dOlRuY3l5ORkZGRGPx6MnT57U+FQGBARQ48aNaf369cTlcqlRo0bE5XIJAPH5fPLy8qIffviBzp07R/n5+Qq/RLLnxMfHh3R1dat+Tm/fJrKwIOJya36teDzpv59/TlRWptD6c+bMIS6XS2fPnlXY5tdp1qwZTZ48WaWxVREeHk4AKCEhofaTg4Nrf05qOqKjq5x23LhxZGNjQwzDqHwdkyZNIoFAQPfv36/+pKwsopAQokaN3n4NAaJmzUiydi1dOnaMOnToQABIS0uLLCwsKD09vVYb/vrrLzIwMCAXFxfKysoiIqLY2FgCQPHx8VWOuXXrFgGgCxcuvPVYeno66ejo0PTp0xV7Elg+CEKhkHR0dGjFihUf2hQWNYjJLKHlr77v1Dl+ua/49xELi8Lo6dXJ/SUdPPihr4RFSVixz/LfJiNDKvhfv2Gv7uBwpP8uWfLu7NHVrZMP4wc//EAlJSUKLysSiahXr15kYmJCjx49kv/excWF+Hw+6erqUr9+/QgAmZmZ0ZUrV4iIiGEYatasGQEgLpdLa9asoe3h4dSkjTu59B9Bo4OW0PVnBbR+z0G52Pb19aXU1FQqLi6mjh07kp6eHpmbm5NAIKBvv/2WmjdvLt9YqFevHt26dUtuz4QJEwgAfffdd7Ve0y+//EIAKCsri0aPHk02NjaUn59P8+bNIwDUtm1bMjY2JrzaGHF0dCR/f38KDw+nu3fvkkQiqXLevn37UrNmzUhfX59mzZr19gn37hEZGSn2NyU7uFwib28ikUiha1q5cmWt118dX375JTk7O6s8/k1EIhE1a9aM+vfvX/vJFRVEXboo99zIjgULqpwyNzeXtLW1KSQkROVrOHfuHAGgDRs2VH/S778T6ejUvFnB4UgPExN69OuvZGxsTFpaWgSAevXqJX/f1ERiYiKZm5uTnZ0dpaWl0datW4nL5VJpaWmV5zMMQ/Xq1aOFCxdW+fiKFSuIx+PRjRs3FHouWD4MXl5e1Ldv3w9tBosaPC8RqS30lyVkU1xW1e91FhZVefToEWU2akTiuhD7N29+6MthURJW7LOwvHxJ5OdHpKn5z8366x9sMs+/vf2739HU0KibndetW5VaNiAggPh8Pl26dImIiLKysqhnz55yURwWFkZcLpd0dXXp6dOn8nFhYWFyYW5hYUFlZWX0zTffUIsWLYjL5RKHwyFtbW0CQKNHj6Z79+5VWjc3N5ecnJyoYcOG5O/vLx8jE+ACgYA0NDRozZo1lJycTBwOh8zMzEhUiygmIsrIyCAAdOzYMbp69ar8ZyKikSNHkpGREWVkZNDdu3dpx44d5O/vT46OjvL1jY2NqV+/frRkyRK6ePEiFRUVUVRUFAGgYcOGkUAgoOfPn1deVCgksrFRTcxyOETz5lV7PfHx8SQQCOiLL76odiNCEbZt20ZcLpcKCwtVnuNN9u/fTwAUErOUl0fk4aGch3/GDKJqrnn9+vXE5/MpMzNTJdtzc3OpUaNG1Lt37+ojA44dk9qroM0SLpfKABpja0uZmZn022+/UatWrUgWxVKdl17Go0ePqGnTptSwYUMaNWoUNW/evMbzfXx8qEePHlU+JhQKqVWrVtShQwe1Ih9Y3i0hISGkp6en0Gcby8fLzrt5ann3Q29kU5mIfZ+yqIdEIqHbt2/T4sWLqU2bNgSAvtbQIIk695VcLpGr64e+NBYVYMU+C4uMly+JwsKIWrcmMjUl0tcnsrQkGj6c6PLlasVGnVKvXt2IfSU2JbZs2UIAaPPmzSSRSGjXrl1kbGxMfD6frKysKCAggACQhoYG/fDDD/JxycnJpKWlRd26daPXvc1OTk7k4eEh3wTQ0NCgxo0bU0pKSpXrZ2ZmUtOmTcnS0pI0NDTk47y8vMjOzk4e6q+jo0PVhStXhUQiIQsLC5o9ezYREXXs2JG6detGRP8IvJ49e74lgPLz8+ncuXO0cOFC8vLykqcTcDgc0tPTo3r16pGOjg59+eWXb4vugwfVe9309IiKi9+6lufPn5OlpSW5ublV6+FVlDt37hAAOn/+vFrzvA7DMOTo6Ei9evVSbEB5Ob38+mvKe/0moqoNtqZNiXburHYaiURCTk5ONGTIEJVtHzNmDBkaGtLff/9d9Qm3bhFpab29CVjLIQaIMTAgejWvWCym/fv3k729PQGgIUOGUFJSUrV2ZWZmUtu2bYnH41Ur5GWsXLmSBAIBVVRUVPl4REQEAaAtW7Yo9qSwvHdiYmIIAF29evVDm8KiBkkvy1QW+ssTsul0et1twrL8t5BIJHT9+nWaO3cuOTg4EADS19enUaNG0eHDh6n4xQvpfa069yi7dn3oy2RRAVbss7B8TPTpo5pX+M3jtVD8mrh8+TLx+Xz69ttvKS0tjby8vOj1HH0nJyfi8/k0adIkAiAXJxUVFeTs7EwtWrSg9u3bEwBKTEykXbt2ycU6APrpp5/o4cOH1KpVK9LX16cTJ05Uacfr4/bv30+7du2i+vXrk76+vjzCQJZrf/z4cYWfzmHDhlGXLl2IiOjAgQNyO4mI/vjjDwJAP/74Y41zMAxDSUlJNH36dHq9loAspWHQoEG0YsUKioyMJHHnzuq/ftu2VVq/oqKCOnfuTA0aNKi1ToEiSCQSMjExqbRxUxccOXKEANDly5cVOt/Pz4+sGzSgiu3bibp2JbKykm6y2doSDR1KdOFCrRtsV65cIQD0+++/q2TzoUOHCADt2bOn+pNGj1atrgcg/VsICqo0nUgkoh07dpCNjQ1xOBwaNWrUWxEvMvLy8ojP5xOfz6eTJ09Wa6IscqWmyApfX18yMjKS1wJg+bhg8/b/HYglEtpzT3nv/vKEbFp7K4cKKsQf+hJYPiEYhqHo6GgKDAwka2trkkUl+vr60smTJ6nszVpA8+YpvXEt/y5r0IBITWcDy4eBFfssLB8TJ0+qJxR5PCIvL4WWevToEZmYmFCPHj1o1apVpKOjQ1ZWVnTq1Clq1aoVaWlpkampKV2+fJm+/vprsrW1lXuy582bR3w+n3bs2CEXvrLcfQC0bNkyer1oW2FhIQ0aNIg4HA4tXbq0kkd8z549xOFwSENDgwwNDaljx45UXFxMubm5NHHiRJJ51V//d8KECQrVJAgLCyOBQEBCoZCEQiFZWlqSr6+v/PGpU6eSlpYWJScn1ziPRCKhDh06kKurK5mYmJCfnx+dOnWK5s6dS927dyddXV1qpu4GDV55uNu2rbSuv78/aWpqKhYiryA+Pj7Us2fPOpuPSGqrs7MzdenSpdY0g4yMDOLz+bRq1Sq11vT19aUmTZqoFJ6emZlJJiYmNHTo0OrtzcpSXejLDiMjovLyt6auqKigzZs3k6WlJXG5XPryyy8pNTW10jlPnjwhANS+fXvi8Xi0qxqviiJCMTs7m4yNjWns2LGKP0ks7xU2b//fQZmIoe0puQoL/pDrz2n1zRzKLGFTOFhqRyQS0YULF2jSpEnUsGFDAkANGjSgiRMn0h9//EFCobCmwVKnkjJpdDyetF4Nm6v/ycKKfRaWjwmxuHKlb1WOarznr1NQUECtWrUiKysrcnV1JQ6HQwEBAVRYWEgzZ84kAGRnZ0cZGRnEMAw1bNiQAgMDiUgabsrlcmnRokXUunVreQEyR0dHGjt2LNWvX5/OnDlDAOjx48fyNRmGoQULFhAA+vzzz6m4uJhWrlxJAEhXV5fu3r1LcXFxpKenR71796byVwKpY8eO8k0EWU49l8slW1vbWivAy0Jjr127RkREy5cvJy0tLbl3s7S0lFq2bElt27atNgSaiOjUqVMEgPz9/UlDQ4MyMjIqPS4SiejR6tXqi32ASFtbPu+GDRsIAO3YsaPW11RhJBLaPWkSbeXzienXj6h7d6knPTiY6NkztaY+ffo0AaBz587VeF5AQAAZGxtTUVGRymvl5+eTQCCgJSoUzJRIJNS/f38yNzenFy9eVH/ismXqdQ+QHXv3VrtEWVkZrV27lszNzYnP59PXX38tTymQvY8ePHhAX331FQGodoOkV69e8iKJEomkyg2Mn3/+mQDIa3OwfFyEhISQvr4+m7f/L6BCLKEjjwrkXvsqhX58Fi1LyKapB/6i81GxH9pklo+Y8vJyOn36NPn5+ZGJiQkBoMaNG9P06dOlUYViJSJCSkuJBg/+x8FQm9A3MSF6dQ/F8mnCin0Wlo+N8HDVBAWfT+TiIt0wqAGxWEx9+/YlTU1N4vP51KJFC4qOjiaxWEyzZ88mAGRubi73nMtaf0VERFBxcbG8PZ+jo6N8UwAA/frrr9S9e3caNGgQ7d27lwBU6X0/fPgw6ejoUP369QkAmZiYVCp0d+nSJdLS0qKhQ4fS2bNnCQA1adKE1q1bR4aGhmRoaEjGxsZy0b9ixYpqPbvl5eWkqalJa9euJSJpe0GBQECLFy+Wn5OQkEAaGhoU9Ea4tQyGYcjZ2Zk6d+5MZmZm5O/vX/UTu3t33Yh9gIhh6OLFi8Tj8WjatGk1vp4KwzDSvy0nJyKAhMA/xXo4HOmXPo8nrVGh4he7RCKhjh07kpubW7Xe8ufPn5O2tjYtWrRInauhjRs3Eo/Hq1QwUlFkore6tBI5Q4aoFvL4+qGhQTRlSq02lZSUUGhoKJmYmJCWlhZNmTKF5s2bR/r6+nLxPnfuXJJ1o3jz+V28ZhONWvoT/Xgzh5a/Ehg/3syhk2mF9LRYSBKJhBiGoU6dOlGLFi1q3Nxi+TDINifj4uI+tCksdcTLMjH9+XcRhSXmvBW2fzS1gLzH+JGuri45ODjIN7hZWIiIiouL6ciRIzR69Gh5+qC9vT3NmTOHrl27plahXhKLifbsIXJz++f+kc+X3gfICkXXq0c0Zw6RCt+xLB8XrNhnYfkYmTVLeaHfuDHRm9Xhq2DMmDEky39fsGABlZeXU15eHvXt21ceJh/9Wj/zoKAgMjU1JbFYTIMHD5b3qtfR0SEHBwcSiUTE4XBo06ZNpKOjQytXrqQ1a9aQ9mse6jfp27cvydr1VdUv/sSJE8Tj8eSV/GVFqzIzM+mLL76Qb0jIPP6dOnWqNp+9Y8eONHLkSPn/v/76a2rQoEElsRMSEkIcDociIyPfGn/48GECQAEBAcTj8Sq1JqzEkSN1I/S1tCg1NZVMTEyoV69edePlKy8nGjlSsZ182Zd+Dd7omrhw4QIBqLa2wuzZs0lfX59yc3NVvhyJREKtW7emQYMGKT02NTWV9PT0yM/Pr/aTPT3Vfz35fCIlQucLCwspODiYDA0NicfjUaNGjSg7O1v++I8//kgAyNfXl0QiEf1dJKTwO7m0LCGblsQ9e8t7uOLVv9vv5NLjIiHdunWLeDyeWq0KWd4NsnSM0NDQD20KSx0jYiSUVy6mzBIRvSwTU7lYukF98eJFAkA8Ho8WVNNelOW/Q35+Pu3bt4+GDBlCAoGAAFDr1q1p4cKFlJSUpJ7Ar46EBKLZs4m+/FJao2bSJKJ9+6pMP2P5NGHFfi9ftwAAIABJREFUPgvLx4hEQhQS8k8YVXVCQvZYmzZEtbQeKywspN69e5Ms/EtWbO/27dvUrFkzMjIyIktLS+rXr1+lcc2bN6cBAwZQu3btCAA1bNiQgoKC6PXK+AYGBjRlyhQCQDExMTR//nxq1KhRFZclkRfca9myJXl6ehKfz6effvrprXM/++wz+U72m19wly5dkrf309HRIQ6HQzo6OnT48OG35pkxYwY1btxY/v/bt2/Tm0XZxGIxde7cmaytramgoKDS71u2bEk9e/YkCwsLGjduXPVPcEJCnYh9pmlTcnJyoqZNm9LLly+rX09RGEbqrVc2HJ3DITp0SKUlu3XrRm3atHkr4iI3N5f09fXlHRJURRZtUtVGUU0wDENdu3alJk2aVHqdq6VPH/VfUw0NogkTlL7G3NxcMjMzIz6fT3p6ejR//nzKy8sjIqK9e/cSn8+ncd/9QCtqChN+w5O4IiGb7uSW08yZM0lbW/utGgEsHx4vLy/y9vb+0GawvEd69Oghf6/XVj+G5d9HdnY2bd++nby9vUlTU5MAkLu7Oy1fvpzu37//oc1j+RfAin0Wlo+Z27eJJk+WFkeReWVfF/8eHkQHDhDVEpJ7+vRpuSfc3d1d7i0+duwY6evrk6Oj41tF9YiIjh8/Lvee83g8at26NZWXl5Ojo2OlAm9WVlbk5eVFWlpaVF5eTpMmTaI2bdpUskEkElHr1q0JAPXs2ZMkEgkJhUKaPHkyAaCvv/5a7m2/ffs2cblceSu+4ODgt66poqKCli9fTgKBQL4DDoBGjBhRKRdc5pl/Pdzby8uL2rVrV2kT4dGjR6Snp1epgJ8sHWHWrFnE5XKrrZpORNINGkdHtXK8JVwu7XByIj09vbq76fvxR9Xs4XCkQjUtTeklIyMjCQAdfKMF5OLFi0lbW7tS2oYq+Pn5UZMmTZTLUyRpwUYOh6NwxwAaP179An08HtHChUpfY0VFBWloaNCKFSto1qxZJBAIyMjIiJYsWUKFhYV08I9IWhL3jEKuZyld9ftOVj5ZWVmRt7f3u/EUsagMm7f/3yM6Olq+kd6xY0eVCo6yfFo8ffqUNm7cSD169CAej0ccDoe6du1Ka9asqVTriIWlLmDFPgvLp0BhoVTUr1tHtHKltD2bAmLwxYsXNHr0aAJAmpqa5OLiQuXl5cQwDC1atIhk/b5zcnKocePGNGzYMCIiunv3Lo0cOZJkFfDbtWtH9erVo6dPn8oFcGzsPwWFHB0dyc7Ojjw8PIiIaMSIEZV6gxcXF1OTJk0IAI0aNeotO7dt20YaGhrUpUsXyszMJCcnJwJAmzdvpsWLFxMA2rBhQ5XXmJ6eToMGDSJZaoKsJZ4s9P/p06cEoJLXX1b4LCoqqtJc27dvJwD022+/kVAopKZNm1L//v3JysqKRo8eXevzTVu3qiUMRTweGaP6EHilEYuJLC3VE6oqeuH79OlDzZs3lwvyoqIiMjY2psmTJ6t1Sfn5+aSjo1PlBlBNJCcnk5aWFk2fPl3xQRcv1km0BtW0SVQNt27dIgDy1JLMzEyaMmUKaWpqkml9M1p2JZ2Wxb9QqZf3uls59NvRYwSAjhw5orRtLO8OmfBj8/b/W3h7e5OVlVWN33UsnzZpaWkUFhZGnTp1Ig6HQ3w+n7y8vGjz5s1qb4CzsNQEK/ZZWP6FSCQS2rt3L5mampKxsTE1adKErKys6Pnz51RYWEiDBw+We8wZhqENGzYQl8ulc+fO0bhx44jL5ZKlpSXZ2tqSi4sLyQrwyQTwgAEDKq3XqVMnEggE8vDsnj170vDhw4lIWpBNVj1WVtG/KqKiosjc3JyMjIxIFubPMAxJJBJ5j/u9NeSRnzx5kqysrCq16QsKCiKxWExNmjSptDbDMGRvb09f+fgQLV1K5O1N1L49Sbp2pb8sLWmMvj6FhYYSAFqwYAFxOBy6fft27U98cTGRsbFK3n0xQFtQdRSDypw6pb5QNTIierNXrwJcu3aNANDu3buJSOpV5/P5b3UyUJZNmzYRj8ertkZDVQiFQnJxcaEWLVpQqTJ9giUSIjs71Yv08XhEr216KYNsU00Wui/j8ePHNC3kR6VF/pvHndwy6t+/P1laWlJhYaFKNrLUPRUVFWze/n+Q+Ph4AkCenp6kr68v78jBUrcwEgk9yK+gE2mFtO9+Hu26m0cHH+ZTVGYJFQnrPqLizp07tHTpUvl9lJaWFg0YMIB27txZN2l6LCwKwCEiAgsLy6dJTg7w+DFQUgIYGADW1sjIz8fEiRNx9uxZjBgxAmVlZfjzzz8RExMDXV1dDBw4EH///Tf27dsHHx8flJaWwtraGkZGRkhLS4OpqSnmzp0LHx8f2NraQiAQYODAgdi/fz+2bt2Kb775BomJiWjdurXcjO7du+Py5cs4ceIEfHx84OzsjA4dOmD69OlwcXFBSUkJQkNDMWvWrBovJyEhAe3atQMRYfny5Zg9ezYAgIgwfvx47N69G0ePHoWPj0+V40tLS7Fs2TKEhISApJuZcHBwgL29PXJychATEyM9MSkJD3x9YR0fDz6XC45EIp+DeDxwGAbPAFxydERwURFau7vj4MGDir0m0dFA9+4AwwCvzVsTEi4XiRIJvPX0EJ2YiKZNmyq2Vm0MGgScOiW1RR0OHgSGD1dh+UFISkpCYmIiHBwc0KdPH4SHh6tsBhHB2dkZ1tbWOHbsmMLjfvjhB4SEhCA2Nhaurq7KLbpxIyggABxVvyqPHQMGDlR6WFBQEH755RdkZGS89dgvDwrwuFgIAkclkzgArPQ00EkjDy1btsTEiRMRFham0lwsdY+Xlxc0NDRw+vTpD20Ky3tk2LBhuHbtGoRCIdzc3HD8+HFwOKq9x1kqw0gI17LLEJ9djiKRBBwAr3+iy55leyNNdDLXgbkOX6V1iAg3b97Eb7/9hiNHjiAlJQW6urrw9vbG0KFD4e3tDX19fXUvh4VFKbgf2gAWFhYlkUiAP/+UCggzM8DVFejaFWjbFoyJCSKbNgX3+nWcOHECrVq1wokTJ7B37148f/4cbm5uEIvFiIuLg4+PDzIzM+Hl5YXs7Gzk5ORg2bJlePToEQICAnDu3DkQEQwMDLBhwwaUl5dj8eLFGDlyZCWhDwAVFRUAgE6dOgEAXr58iYqKCjg5OaG0tBR79uypVegDwOLFi0FEaNq0KYKCgjB37lwwDAMOh4OtW7di4MCBGD58OC5fvlzleB0dHQQHByMlJQVdunQBANy7dw+nT5/GtWvXpHaePg24u8Pu5k1oAJWEPgBwXgnjhgBGJScjPCMDP0yerPjr07kzcPYsIBAA/NpvGIjLxU0NDXxrZwddMzO0b98ekZGRiq9XEw8eqC/0+XwgNVWloYsXL0ZqaiomTpyIrKwsBAUFqWXK9evXcfPmTUyYMEHhMXFxcf9n77yjorjaMP5sYelFBUEsKKhRFAu2JPbeYlSsicYe1NiJDUtixRoLGsUWuzEm9s8kJDH2xCBWrKDYOyi9LTvP98e6G1d2YWGXYpzfOXs8zNy5973jlnnufQvmzp2L6dOn517oA8gcPBgR7u7IzO2FEgkwZAjw8ce5HhMALl26BB8fnyzH0zIF3E1S5lnoA+qH3HtJSpQsUw5fffUVli9fjkuXLuW5PxHz0qxZM5w4cQKZmbl+14m8xcycORP379/Hxx9/jIMHD+Knn34qbJP+E6RlCth5Mx5HH6UgUan+vX9z6ZavXpFxGdgSGYfIuHSj+xcEAf/88w8mTpyIihUronbt2ggODkadOnWwb98+PH/+HLt27UKvXr1EoS9SKIg7+yIibxNRUWrxcP26WoTpeRhUSSSQkXhetSq8r13D6FmzYGVlhcmTJ6Ndu3bYvn07lEolFi5ciJUrVyI9PR1169bF4cOHdX6IqlWrhqtXryI0NBRt2rTB0qVLMWHCBFy7dg2VKlXSGbNatWq4desW0tLSAABWVlbIyMiAVCrFzz//jDZt2uQ4tdDQULRr1w6Ojo64c+cO1q1bh0mTJqFDhw7Yvn07HB0dkZ6ejk6dOuHvv//GkSNHULduXYP9kcSuXbswdOhQxMfHAwCGeHpi7d27aoFv5FefCoCsbl3g2DHAxsaoawAAN24A8+cDO3ao/580zt0AIJMBKhVYqhTWW1tjVnw8Tp49Czs7O3Tv3h2nTp3C2rVrMWDAAOPH04eHh9rzwxQsLICJE4E5c/J0ea9evbB792507doVP/74o0mmfP755wgNDcXt27chk8lybJ+amoratWvD3t4ef/31FywsLHI1XkZGBvr06YPQPXsQ6e0NtytXjH7foE8fYNMmoxZ89FGmTBn069cPQUFBOsdfpKmw9trLPPX5JkOqOMFBJqB27dpwdHTEyZMnIZWKewCFzV9//YWGDRsiLCwM9erVK2xzRAqQvn374siRI6hTpw7CwsJw7do1FCtWrLDNemvJFIgdUfF4nJKZReBnhwRADy8HeDoo9J5XqVQ4efIkdu/ejT179uDhw4dwcXFBly5d0K1bNzRv3hwKhf5rRUQKGvFXXUTkbeHiRaB+fbXgB/QKfQCQvRIjxa5dwxUbGzwOD8fEiRMxefJkbN68GYsWLUKFChWwZs0aNGjQAAqFAnv27NER+mfPnsXVq1fRqFEjtGnTBomJiQgKCsKgQYOyCH0AeP78ufaHbfXq1UhPT4dMJsM///xjlNBPSUnRCtuVK1fCyckJEyZMwKFDh3Dy5Em8//77iIqKgqWlJfbs2YPq1aujXbt2uHr1qsE+JRIJevXqhXv37mHw4MFwBPBNdDQElcp4wQZABoDnzqkFb2547z1g40bg0SNg4UL1Ik2jRkDLlkDv3sCBAxjr54cv7t3D9j174OHhgRIlSiA0NBT9+/fHwIEDMXnyZAhGhgLoxRy7CIKgDhHJI76+vlCpVKhYsaJJZiQkJOD777/HkCFDjBL6ABAYGIi7d+9iy5YtuRb6qamp6NKlCw4cOICte/bA7dw5YPp0wMlJ3eBNUayxyc0NWLIE2Lo1z0L/xYsXePjwYRYPGgBQmXF9XkVAoVBg9erV+Pvvv7Fhwwaz9S2Sd+rWrQsbGxuDHkwi/11mzJiBp0+fwtfXF6mpqZiY298dER2OP07JtdAH1Lv8e28nICXz39/fjIwM/Prrr/D390epUqXQrFkz7NmzB35+fjh69CgeP36MtWvXom3btqLQFylSiDv7IiJvA48eAbVrA7GxuXLLzgRwQyLBhZAQ3HryBEuWLIFSqcSoUaMwZMgQ1KlTB4MHD8aSJUu01yiVSlStWhW3bt3ClStX4O3tjdmzZ2POnDm4efMmypYtqzNGXFwcihcvDhsbG0ydOhVTpkwBAKxfvx6DBw82ys4JEybgm2++Qb169XD69GmdOMUbN26gc+fOePr0KXbu3Im2bdvi5cuXaNq0KV68eIGTJ0+ifPnyOY6xqGxZfPngQd5XOK2sgCdPAEfHvPagw4YNGzBkyBCsXr0aw4YN0zlHEkuXLsX48ePRuXNnbN26FXZ2drkfpHdvYPdugwtDRrN/f57c0QVBQPXq1ZGYmIjMzEzcunULNrnxjniNkJAQjBgxAnfv3kWZMmVybP/nn3+iZcuWWLZsGcaMGZOrsRITE/Hxxx8jLCwM+/btQ+vWrf89mZYG/PQTsHYtcOsWkJSkXlTx9ga++AL46KM8i3wNx44dQ7NmzXD58mVUq1ZN51xChgqrrphnZ394tWJwVKgXKQYOHIj9+/fjxo0bcHFxUTcggdRU9fvH3l4dmiBSIIhx++8un3/+Ofbv348pU6Zg3LhxOHLkCJo1a1bYZr11ZKiIFZdjoTRhvbyRiwVizx7F7t27cfDgQcTFxcHT0xPdunVDt27dUK9ePdEbSqTII75DRUTeBhYsAF68yHX8tRyAN4mIceMQFBSEgQMHIjo6GvPnz8f69euhUqmyxFHPmzcP0dHRqFSpEry9vfHixQssXrwYX3zxRRahDwCnT58GSaSkpGDKlClal0N98cb6iIiIwJIlSyCRSLBx48YsCYnee+89/PPPP/jwww/RoUMHLF68GE5OTggNDYWVlRVat26NJ0+eZD8IiUFJSUbZY7CL9HRgyxaT+tBw6tQpDB8+HMOGDcsi9AG1V0JAQAD279+PP/74A40bN8b9+/dzP9DQoaYL/ZIlgQ4d8nTp3r17ce3aNSxbtgwxMTFYvXp1nvohiTVr1qBjx45GCf34+HgMGDAAzZs3x6hRo3I11osXL9CqVSucO3cOv/32m67QB9SLPn37AsePAw8fAvHxwIMHwG+/qRMimij0AfVnQqFQoHLlylnO2VtIYW9h+k+33Rv9LFy4EAAwYfx44K+/1GEI1taAra16gUsuVyee3LvX9PeUSI40a9YMJ0+eFOP230GmT5+O+Ph4pKSkoFGjRvD390dqamphm/XWcfVluklCnyQOXb6Drl274uzZsxg1ahQuXLiAmzdvYuHChWjQoIEo9EXeCsR3qYhIUSc5GdiwIc8P2AQQIJfjZlQUli5dCldXVzx58gTBwcEYM2YMSpYsqW0bHh6OmTNnQqFQ4NNPPwWgFgEqlQqBgYF6+z916hTkcjlIonz58ti2bRsAoESJEjnaJggC+vfvD5IYM2YMvL299bZzdHTEgQMHMHHiREyYMAH9+vWDk5MTfv/9d6SkpGh3+w1y+jRKxMWZ9IVHEkJIiAk9qLl//z78/PzwwQcfYPny5dm27dSpE06dOoUXL16gfv36CAsLy91gzZoBFSvmfUdWKgVGjMiTgCWJoKAgtGjRAt26dcOgQYMwf/58JCYm5rqvs2fP4sKFCxg6dKhR7ceMGYO4uDhs3LgxVw9jT58+RfPmzXHr1i0cOXIEDRs2zLWt5uDSpUvw9vbWG3ogkUhQx8XKhPR86nhUX2crSF97X7i4uOC7YcPw5ZYt6iSTu3YB6a8lqRIE4MQJwM8PKFNGnYtCJN9o1qwZEhIScOHChcI2RaSAKVeuHPz9/bFo0SIsXrwYd+/exZw85kx5l7kQY9oCiUQigaNraRyLiMKVK1cwa9Ys1KxZU6yQIPLWIYp9EZGizo4dYHJyni+XAiiZkIAyN29qjwUFBUGhUGD8+PHaY6mpqfjss8/g5eWF9PR0dO7cGY8fP0ZwcDDGjh2rsyigQaVSYcWKFdrdp+PHjyP5la3GiP01a9bg/PnzcHZ2xqxZs7JtK5PJMG/ePOzYsQO7d+9GkyZNoFAo8Ntvv+HBgwfo2LGjduws3L6doy05IQWQocmXkEdSUlLQpUsXWFlZ4ccffzQqrq9GjRoICwtD+fLl0bRpU/zwww/GDyiRAFOm5CpHgRapVL2z+/nnub8W6oSL586d04Z1TJs2DQkJCQgODs51X2vXrkWZMmXQrl27HNvu27cPmzdvRnBwMDw8PIwe4/79+2jSpAmeP3+OY8eOwdfXN9d2mgtDmfg1VLGTQBBMq7JQs4SV7oFffkHnJUugXW7Tt7io8Sx6+lS98z9/vkk2iBhGjNt/t5kyZQrS09Nx6NAhTJ06FQsXLhQrZuSSuAwTtvVfw9GttFn6EREpLESxLyJShCGJ++vXw+SfLLkcCA0FANy7dw9r1qzBhAkTdLL8Tp48GXfu3EG9evVQrlw51KpVC0FBQbC0tNRZFNCgKa0XHx+vde9PTk5GTEwMZDIZHHOIbX/06JG231WrVhkdk/7JJ5/g5MmTePLkCerWrYuEhAT8+uuviIiIgJ+fn7YMoA4mLJa8jlypxC+//JKna0liyJAhuH79Ovbv36938cQQrq6uOHLkCPz8/NC7d2/MnDkTRqdbGTBAHUueG6RS9evAAaBUqdxd+4q5c+eiQYMGaNGiBQCgbNmyGDZsGBYtWpS9F8YbJCYmYseOHUYl5nv27Bn8/f3RuXNn9O/f3+gxbt26hcaNGyM9PR0nTpzIEidfkAiCgMuXL+tNzgcAFy9eRNMP38fxzSuNfw+8Qf2S1rB9PRTgn3+Arl0hyciAcakPXxEYCKxblycbRLJHoVCgYcOGoth/RylVqhRGjhyJpUuXYsiQIahcuTKGDBkClamlVN8hMgXzpCTLMFM/IiKFhSj2RUSKKA8ePMDHH3+M6LCw3D2AG+LFCwDA7Nmz4eDgoJO07I8//kBwcDDmzZuH48ePo0uXLrh79y7WrFmDSZMmwUmTgfwV8fHxqFixIq5duwYAWhfD+Ph4xMbGokSJEjm6uo0cORJpaWlo3rw5unXrlqup+Pr6Ijw8HBUrVkSzZs0QERGBAwcO4NixY+jbt2/WByITssm/TppcjkGDBiEmJibX1y5cuBDff/89Nm3ahFq1auX6eisrK2zbtg2zZ8/GjBkz8OmnnxoXxymRACtWAAEB6r9zymQvk6nj0n/+GXgl1HPLiRMncPLkSUydOlXnfRAYGIiMjAydhJA58f333yM1NRWDBg3Kth1J+Pv7A1B7Ahjrann16lU0btwYlpaWOHHiBLy8vIy2LT+4ffs2kpOTs+zsZ2ZmIigoSFuKbd6g7vAuZpnr/t9zUqCp+2tJEklg0CBAqcybB8jIkerEoSJmp2nTpjhx4oQYt/+OosnEv2zZMqxbtw7h4eFYuXJlIVv19qCQmcfd3lIquu2LvN2IYl9EpIghCAJWrVoFb29vnD17Ft7Vq5veqUQCSKWIiorCxo0bERgYqN1Jj4uLw8CBA9GiRQs0bNgQDx48QJcuXTBz5kwUL148S4Kzhw8fokKFCnjw4AFatmwJS0tLvP/++wB0xX52/O9//8PevXshkUiwZs2aPMXAubq64vDhwxgwYAAGDx6Mffv2YceOHdi7dy+GDh2qu+tpIBdArpBKYVGzJjIyMrL2nwOHDh1CYGAgpk2bhh49euTZBIlEgmnTpmHXrl3Yv38/mjdvnnNywle245tvgF9+Adq0ASQSqCQSKCUStbjXxIbb2QGjRgEREcCbielywdy5c+Hj44OOHTvqHHdzc8PIkSO1CfuMYe3atejQoYPe5JCvs2XLFuzfvx9r1qwx2mvi3LlzaNKkCVxcXHD8+PEcxygIIiIiAEBnZz8yMhKNGzfG9OnTMX78eISFhaFWrZroVN4edV3U7viqbASh5tPl62yJzuXtdWL18ddfwNWr6pj8vJCZCWzalLdrRbJFjNt/t3F2dsa4ceOwcuVKVKhQAcOHD8fUqVNx9+7dwjbtrcDZSm5SbhNtP9Zm2W4RESk0RLEvIlKEuH79Opo2bYoRI0bgk08+wdWrV+Hi7Z21pnduIYESJTBjxgy4urpi+PDh2lOjRo1CQkICNm7ciAMHDqBYsWJwcXHBli1bMHXqVNja2mrbXr16FZUrV8bLly+xfPlyFC9eHHXr1tWW6jJG7CclJWHo0KGQSCSYPHkyKlWqlOdpKRQKhISEYNWqVVi1ahW+/fZbrFixAhs2bMCECRP+FeQ+PkD9+qAp91EQYDluHNauXYs9e/Zg69atRl12/fp1fPrpp+jUqRNmzpyZ9/Ffo0ePHjh+/Dju3buH+vXr4+LFi8Zd2K6desf+1i18V7Ysjnt5AZ9+qs7av2GDurTg0qWAp2eebQsPD0doaCimTJmiNzmeZrdKk/09O86ePYuzZ89qd+wNce/ePYwePRr9+vVD165djbLz1KlTaN68OSpWrIgjR47A1dXVqOvym0uXLsHZ2Rlubm4QBAErVqxArVq1EBsbi5MnT2pDawBAKpGgVRk7yE7vRfjeLZBJsi5AySVAbWcrDK7ihDZl3xD6APDtt6ZVEBAEtedIXhcLRAxSr149WFtbi6787zABAQGwtLREUFAQ5s2bBycnJ3zxxRd5DuF5l/B1toIpd0kCoKSVDG7WpldYEREpVCgiIlLoZGRkcM6cOVQoFKxYsSKPHj3678nt20m1XDfpdXPHDkokEq5evVrb9Y8//kgA3LJlC0nSx8eHn332GXv06MFy5coxLS1N2/b48eO0sLCgVCrl999/T0EQ6O7uzokTJzIzM5MAuG7dOrZv356dO3c2ONdx48ZRKpWydOnSTE5ONts9PHr0KJ2dnVmhQgVOnjyZADh37tx/G2zZYto9dHIiX92Pfv360d7enrdv387WppcvX7Jy5cr09vZmfHy82eaq4f79+6xduzZtbW25f//+XF3r7OzMmTNnmt2mrl27smLFiszMzDTYZvr06bS2tuajR4+y7Wvo0KEsXbo0lUqlwTYqlYotWrRg2bJl+fLlS6Ns/P3332ljY8NmzZoxISHBqGsKim7durF58+a8e/cuW7RoQQAcOXIkk5KS9LbPyMhg2bJlOWDAAKZnCrwVn87LsakMjbjFyh+25C+//2F4MEEgFQqzfL/w3Ll8uiPvNq1atWLHjh0L2wyRQmTu3Lm0sLDgnTt3uH//fgLgjh07CtusIk+mIHD5pRjOO/c8z68LMamFPQ0REZMRxb6ISCETFhZGHx8fymQyTpo0iSkpKboN0tLIYsXy/hAulZI1a7Jrly6sUKEC09PTSZKP7txhDUdHBrRqRSEykrcuXiQALlq0iAD43XffaU3Ys2cPpVIp5XI5Dx8+TJK8ffs2AfDAgQMkSTs7Oy5evJj169fn4MGD9c713LlzlEqlOteZk9u3b7NGjRq0tbVl7969CYCrVq0if/qJrFKFBCjk9T6+tnAQFxdHDw8PNm7c2KCozczMZLt27VisWDHevHnT7HPVkJSURD8/P0okEi5cuJCCIOR4TWxsLAFw586dZrXlypUrBMD169dn2+7ly5d0cnLiqFGjDLZJSEignZ0dv/rqq2z7Wr58OQHwjz+yEbWvsW/fPioUCrZv3z7rZ60IULlyZbZu3ZoODg4sW7Ysf//992zbf//99wTAixcv6hwXBIHOzs6cNm2a4YsTEswj9AHyt9/MMX2RN5gzZw4dHByyXfAS+W+TmJhIFxcXDhkyhCTZvXt3uri4MCa5xbUfAAAgAElEQVQmppAtK9qoVCrO2bY/TyJ//rnnXHEphumZOf+eiogUdUSxLyJSSCQlJTEgIIBSqZS+vr48l93OWGAgKZPl+UH89rRpBMDNmzeTt25RGD+eiXK5ThuVVMqdUinH1avH9ypX1j5crl69mhKJhFZWVjqCYtu2bQSgfeAoXbo0p0+fTi8vL06cODHLFDIzM+nr60u5XM4OHTqY92a+RlJSErt3704AfP/99zlFM0eJJE/3TpBIyO7dSZVKZ5yjR49qBbY+xo8fT6lUmqNYMwcqlYqBgYEEwIEDB2oXdAzx119/EQAvXLhgVjv69u3LsmXL5jg+Sa0ny927d/WeX7t2LSUSicHzJHnt2jVaWVllu2jwOjt27KBMJmP37t2NsrGgiY6OJgACYP/+/RkXF5dte0EQWLduXbZq1Urv+a5du7Jp06aGO3jxwnxi/9AhE2YuYoiTJ08SAM+cOVPYpogUIkuWLKFMJmNUVBQfPXpER0dHDhgwoLDNKrLExsayffv2BMBP569lUPjTXAn9xRee81mKuMAm8t9AFPsiIoXA77//zgoVKtDKyooLFizIedfmxQvSy4t8Q6Dn+JLJyEaN2LF1a9aqXJmqXr1IiYQqqVRv+1f5uPmyXDkyKopfffUVAdDR0ZF37tzRMWn48OGsUqWK9m9vb2+OGTOGTk5OXLBgQZYpaHZgFQoFo6OjzXIfDSEIAmfPns1RJogX1avFgYu1a5MZGXrHmTBhAi0sLLKI5q1btxIAly5dmq/zfJPNmzdToVCwSZMmfP78ucF23333HQGYNYzi1q1blMlkDA4ONqp9QkICnZ2d6e/vr/d83bp1s10UUiqVrFevHitXrmzUPDSLB/379y+Su6Q//fQTHR0dCcDgAtKbnDhxggD4888/6z2/dOlSWlpa6oTj6KBSqT1/zCH2//orr1MXyYb09HRaW1tz0aJFhW2KSCGSkpJCd3d39unThyS5bt06AiiQxeS3jfDwcHp4eNDBwYGOjo6sUbMmd19/phXyOQn95Zdi+CS56P1GiIjkFVHsi4gUILGxsRw4cCABsFmzZoyKijL+4uhoskwZ4wW/TEbWrs2/Dh2iA8DYChWMfrAX5HImKRSsCdDNzY2xsbFZzKlRo4aOu/4HH3zAfv36UZ8b971792hjY0OJRMJZs2bl+f7lihs31LvyeRUvZcpwk58fLeRygzvgaWlprFGjBqtXr87UVHVsX1hYGC0tLTlgwACjXOrNzYkTJ+js7ExPT09evXpVb5tJkyaxXLlyZh136NChdHFxydUCwuLFiymXy7OEOZw9e5YAss1DMGvWLMpkMv7zzz85jrNkyRIC4IgRI6h6w0OjsHnx4gX79OlDAPT19aVEIjH6Hnbt2pVVq1Y1OKfw8HAqAIZv2UKePEmeOUPeu6fbqHFjk7yGCJAODqQZF45EdBHj9kVIctWqVZRIJLx8+TIFQWDTpk3p6elp1kXbtxlBELhmzRoqFAp6e3vT0dGRderUYUxMDAVB4M24dO6MitOK+gXnn3PBq3/nnXvO4EsxPPk4mUkZRes3QkTEVESxLyJSAAiCwF27dtHV1ZWOjo5ct25d3oTgkydky5bqB2xDol8mU7us9+5NITGRzRo14j92dhRy+UCvBBgjkzE1MjKLGXFxcZRIJDpx/e3atWOHDh0IgPv27dNp37lzZyoUClaoUEErivOdsWNz7wnx+svGhmnPn9PHx4c1atQwuDt66dIlKhQKfvnll3z06BHd3d35/vvvG95NLQCio6NZrVo1Ojo6MjQ0NMv5Ll26sHXr1mYb78GDB1QoFJw3b16urktOTmapUqXYr18/nePDhg2ju7u7wR348PBwyuXy7OPRqf7czZw5kwA4efLkQll8yY5ff/2V7u7udHR05NatWzl69GhWqlTJqGtv3rxJiUTCtWvX6m9w+zZVEyfyhb73doMG5LZt6nwgu3aZJvRlMjIgwIx3ReRNNHH72SW9FPnvk56ezvLly7Nbt24kyRs3btDS0lJv2Ny7RnJyMvv3708A7Nq1Kx0cHPjBBx/oTdr6Mi2Tpx4n87f7ifzlbiL/fJDE6y/TqCpivw8iIuZCFPsiIvnMgwcP2LlzZ+2P0MOHD03v9PJlcuRI0sZG98G7eHFyyhTyVZxzaGgoe5rwIC/I5aSeZHu//vorAfDGjRvaY7169WKDBg0IgCdOnNAe37t3LzVxyL/++qvpczeGpCTSzs40ESORkKtX8/z585TL5QwMDDQ43OLFiymRSFi1alWWLl06xyzzBUF8fDzbt29PmUzGFStW6JyrWrWq0XHuxjBu3Dg6OTnlqeLAypUrKZVKee3aNZLqZFT29vacPn263vapqan09vZm7dq1s427FwSB48ePZ5aqDEWAxMREDhs2jADYunVr3r9/nyTZokUL7YN8TowaNYrOzs5ZkwxmZJD+/ur3r6EFPo2HT/Hi5P/+Rzo7m/ZZ0bMgKGI+NHH74eHhhW2KSCGzceNGAuDZs2dJqjP1y2Sy7HP+/MeJiopijRo1aG1tzcDAQNra2rJJkyZFrtKKiEhhIYp9EZF8QqVScc2aNXRwcKCbmxt/+ukn8w+SkaHe7b95k3z+nHxt50eTvOuCvT0FU+JyLS3JN1bHp0+fThcXF52dUn9/f7733nsEoHUfj4+Pp7u7Oy0tLenn52f++RvC1N1Kjdhv0IAkOXv2bEqlUv799996h8vMzKSbmxsBaKsVFAWUSiXHjh1LAPziiy+oVCqpVCppYWHBlStXmmWM58+f08bGxqA4z4m0tDSWLVuWvXr1IkmuX7+eEokkS44IDV9++SUtLS15+fJlg32qVCqtmF6+fHme7MovTpw4QU9PT9rY2HDVqlXaz5AgCCxRooRR5RBfvHhBW1vbrJUK0tPJ1q2NT0Yplapfw4bl/TNiIOeCiPnQxO0vXry4sE0RKWSUSiUrV66sDevIyMigj48PfX19i2Qukvxm7969dHBwYKVKlRgSEkIrKyu2bt1aDG0QEXkNUeyLiOQDN27cYNOmTQmAgwcP5osXLwrchr1797KaqYJX80C/bJlO3y1atGDnzp3VfwgCeeQIDzRrxm/s7DgZYPyKFWR8PEePHk25XE5ra2veezNWOD9Ztsw8icdKlyapfsCqX7++wWRwy5YtIwBaW1uzb9++BTdPIwkJCaFcLmebNm0YHh5OcyZ2mjZtGm1sbLJNCJgTmmRTFy9eZP369dm+fXu97TQVELITPUqlkn379qVUKuWGDRvybJO5SU1N5YQJEyiRSNiwYcMs+ToePXpEANyzZ0+OfS1YsIAKhYJPnjzRPfHZZ3l63wsyGbdbWub+e6FjR4PJK0XMS6tWrfjRRx8VthkiRQBNuc2/XiXFPH36dI7fi/81lEolJ06cSI3H5M6dO6lQKNixY8eCCxUUEXlLEMW+iIgZycjI4Lx582hpaUlPT89C2+XNzMxk9erVucbLy/TkWwDZooW2b6VSSVtbWy6bNYsMDiYrVSKhzl6fDjAD6lr2mZaWXA3QB9CbnT9fWbDAtHh9zatECW2Xhsq8/f7775TJZBw/frw2C/8PP/xQsPM1gsOHD9PJyYllypQhALMsvsTFxdHR0ZEBJsZsZ2Rk0MvLi82aNSMA7t27N0ubhIQEli9fno0bNzYYu5yWlsauXbtSLpcXqf+Ds2fPslq1alQoFFywYIFe+0NDQwkgS7LCN8nIyGDp0qU5aNAg3RNhYXl+n2cCvGJlxcSFC0kLi+wXDDSfK39/UegXILNnzxbj9kVIqj2XfHx82OK13+XRo0fT2tqat27dKkTLCobHjx+zWbNmlMlkXLx4MX/88UfK5XL6+fkVyZKqIiKFjSj2RURe5/59cutWtYhduZLcuVNd9s4Izp49y1q1alEqlXL8+PGF6ka2Y8cOAuDDvn2pMofo9fHR9h0eHk5vgGnOzurdvWxchjMAqgAq589XewAUFCEhps8ZID09dbrV7OD/8ccfJNWxgsWKFWO7du2YmZlJQRDYo0cPFitWjA8ePCi4+RrJjRs36OzsTAA8cuSIyf0FBQVRoVCYJQ+FZqGkRIkSzNAjIocMGUI7OzuDD7PJycls27YtLS0tefDgQZPtMQdKpZKzZs2iXC5nrVq1eOnSJYNtFy1aRFtb2xyrBWzfvp0AGBERoXtiwADTF7jCwshnz8j589WVP948b29PjhtHvparQ6Rg0JRZFOP2RUhy3759fD1sLCEhgeXKlWPr1q2LXCJSc3LixAmWKlWKbm5uPHbsGLdv306ZTMZPPvnknQxjEBExBlHsi4gIAvn772Tnzv/uaEml/4pYS0ty0CDyVUKcN0lOTuaECRMok8lYs2bNQn8YUyqVrFSpEj/66COmjRnDdHOI3urVtf1vnTyZ8UCus/uzoErukWR4uOlzlsvJVzWNNahUKjZv3pxly5bl/fv36e3tzUqVKulk/I2NjWWpUqXYunXrIlfmjST79etHOzs7WlhY6FRTyC3Jycl0cXHh0KFDzWJXfHw8pVIpPd9YYCHJgwcPEgDXrVtn8NrGjRvT1ta2yORMuHr1KuvVq0eZTMZp06bluOPUr18/NniVI8IQgiDQ19eXbdq00T0RE0MqFKa/3wcM+LfPzEz15+iXX8iDB9Wl+8Q42EIjLS1NjNsX0aLJyfPhhx9qxf2hQ4cIgFu2bClk68yPIAhcsmQJZTIZGzduzEePHnHDhg2USCQcOHCg6PEiIpINotgXebdJTCQ7dNB1TzX0IAyQo0frJMH7888/6eXlRUtLSwYFBendkSxo1q9fTwA8f/48d9WtS6U5xH7z5urOExIYY22d9z7zI0mhIWrXNj1u/1VM5OvcuXOH9vb2LFu2LB0cHLRZ5F9HU60gODi4IGaaKxo3bsyePXvS39+fADh+/Pg8PSgtX76cMpmM0dHRZrFrw4YN1FRteL2aw/Pnz+nq6sqOHTvq3bGKiYlh3bp16ejoqI1hLUxUKhWXLl1KKysrvvfee/znn3+Muq5WrVr8/PPPs21z7Ngx6q1qsW+f6Z9xgHRxyeu0RQqAli1binH7Ilo0vzOHDh3SHuvduzdLlCjBZ8+eFaJl5iU+Pp7du3fX/l5lZGTw22+/JQAOHz68SC6qi4gUJUSxL/LukpxM1q+fu5h2iYT89FO+jI3lkCFDCICNGzfm9evXC3s2JNW7P+XKlWOPHj24b98++phDAEgk5JIlJElh5UqqTOmnevWCc+ffuNG0OWdj60cffUQA2WagHzlyJK2srLSVCYoKJUuW5Ndff01BELh06VJKpVJ+/PHHTExMNLqP9PR0lilThp999pnZ7GrQoAHbtm3LmjVrsmnTphQEgYIgsHv37ixevLjecoaPHz9m9erV6eLiwvPnz5vNlrxy+/ZtbWLOMWPGZC2LZ4CMjAwqFIocF4c6d+5Mb2/vrIse331nHrGvUOR16iIFgBi3L/I6giCwUaNGrF27tvY74cmTJyxWrFiRTBSbFyIiIli5cmXa29tz9+7dJMlvvvmGADhu3Lj/dMiCiIi5EMW+yLtL9+553vldYGdHBwcHhoSEFKlV5eDgYEqlUp48eZIuLi7s1KkThQ8+MC1Jn6WlOm+BIDDD0zPvYl/zKqjd15QUsmLFvMcxG8iKvmvXLgJglSpV6OrqajALfXJyMqtUqUJfX98ikzTo5cuXBMAdO3Zoj/3vf/+jvb09a9Sowbt37xrVj8Z75MqVK2ax68KFC9Rkoj9w4AA1eRE08em7du3Kcs2dO3dYsWJFuru76/WuKEgEQeC6detoZ2dHDw8P/vnnn7m6/sqVKwTAo0ePGmwTGRlJiUTC9evXZz25aZN5xL6VVW6nLlKAiHH7Im+i8fbRCGGS3LhxI/V6AL1lbNu2jTY2NqxevTpvvMoTMmfOHAJgYGCgKPRFRIxEFPsi7yYRESY9FKdJpXxYRHbzNSQnJ9PV1ZX9+/dn586d6eLioi7NtWNH3ucql5MDB6oHOHHCdDEhl5MFueMQHU06O+da8N94M9P5K86fP08bGxt+8sknfPjwIYsXL87u3bsbfOg4c+YM5XI5p06dmp+zNJrTp08TAM+dO6dzPCIigh4eHnR1deXff/+dbR9KpZIVK1akn5+f2ewaMWIE3dzcmJGRQUEQWL9+ffr6+tLR0ZGffvpplvaRkZEsW7YsK1SoUOjZpx89esSOHTsSAAcNGsT4+Phc96EppRUbG2uwzYgRI+ji4qK/rNTBg+YR+25uubZdpOAQ4/ZF9NG6dWtWq1ZN6/EhCAJbtmzJ8uXLMykpqZCtyz1paWn84osvCICfffYZk5KSKAgCp02bRgCcNWuWKPRFRHKBKPZF3k2++MKkzNWCREKuWlXYs9BhwYIFlMvlnD9/Pl8vXyakp/NWuXK5j7OXydSl5+7cUQ8QHGz6rj5Avvdewd6Y6Gj1Dj+QvSeHTEZBIuG33t60s7PLsnv27Nkzenh40NfXV1tp4YcffiAAbt++3eDws2fPplQq5alTp/J1msawadMmAtD7APj06VN++OGHtLS01Nn5fxNNpQdz7S4mJyfTwcGBU6ZM0R7TxKIWL16cL96ohnHp0iW6urqySpUqhV7xYOfOnSxevDhdXV154MCBPPcTGBjI0qVLGzwfGxtLGxsbzpgxQ3+DhATSxsb0hbgRI/I8B5GCQYzbF3kTzSLutm3btMeioqJoZWVlclnUgubu3busX78+FQoFQ0JCtOFc48ePJwAuXLiwsE0UEXnrEMW+yLtHYiJpbW3ag7FEQlapUtgz0RIXF8fixYuzT58+tLe354BXWbWVSiUHDRpER4BPS5c23p1fLicdHdXZuDXMmsWMt3X3MCVF7ers66u7mKER//b2ZEAAGRnJpKQk1qtXjyVLltTWPE9PT2eTJk3o6uqapT5979696eTkZFB4KpVKfvDBB/T09MxVXHx+EBgYyDJlyhg8n5qayr59+xIAv/rqqyy7JyqVitWrV2e7du3MZpPG5fT1RH+a5EteXl46NoSFhbF48eKsVatWoSagiomJYa9evQiAPXv2ZExMjEn9ffTRR2zfvr3B8/PmzaOlpSWfPn1quJMRI0wvvXf5sknzEMl/xLh9EX106tSJFStW1EkSvGDBAkqlUoaFhRWiZcYTGhrKEiVKsFy5clqbVSoVR44cyaKa8FZE5G1AFPsi7x5nzpguWDUvIxNw5Tdff/01rays+P7779PDw4Px8fFMSUlh586dKZPJ1KV4EhPVeQo0QteQyAdIb+8stbRT58wxT2b/ChUK6S694uxZcs0acsECMjhYXSHgjZJiz549Y6VKlejl5cWnT59y2LBhtLCw4MmTJ7N0pym1165dO4OuhVFRUbS1teWQIUPyZUrG4ufnx5YtW2bbRhAEzp07VytkX08yt3//fgLg8ePHzWbT+++/r1NKLjIykjY2NuzcuTNfj0U9duwY7e3t+cEHH+iUOixoDh06RDc3NxYrVozff/+9WfosV64cJ06cqPdceno63d3dc37vXL6c98+kTEY2bGiWuYjkL5q4/bMGSsGKvJto8p68ntNDqVSyVq1arFmzZpGoFGQIlUrFmTNnUiKRsF27dtrF08zMTA4ZMoQSiYRr164tZCtFRN5eRLEv8u7x++/mE/t6MoTnG5mZZFQUGRZGnjtHvtpJjomJob29PZs0aUKJRMKjR48yLi6OTZo0obW1Nf/3v//p9hMZqd7FdnDI+sDfowd59KjeLPQXAgNNv19SKdm0aQHcLNOJjo6mm5sby5Url+Uh6k009Y3XrFljsM3atWsJgPv3788Pc42iWrVqHGGkq/ZPP/1Ea2tr1qtXj48ePdLG0jdu3Nhs9ly8eJEA+NOrkowaLwgvLy8mJSVpY1EPHTpEa2trtmjRotC8IxISErQVONq3b8+HDx+apd+4uDi+6YL7Olu3biUAXjZm1z0ggEJePpPW1mQRqGYgkjOauP1vvvmmsE0RKWL07NmT5cqVY1pamvZYeHg4pVIp58+fX4iWGSYmJobt27enRCLhzJkztQmPlUol+/btS6lUqt6sEBERyTOi2Bd59zh+3Hxi/4144nzhyRNyzhyyVKms49erx+87dqSTlRUtLCwYEBDAx48fs2bNmixWrFj2ceJpaeStW+qFg+vXybi4bM2YPXkyE81xzzZtMvMNyj/WrVtHACxbtmyOGfWHDBlCW1tbgwnjBEFgp06d6OLikr07dj6RmZlpVHm31zl79izd3d1ZpkwZrl69mubO8Dxy5Ei6urpqd52CgoJ08htoYlFlMhk/+ugj/cnpCoCjR4+yfPnytLOz49q1a82aHEqzU3vp0qUs5wRBYO3atY0Om/j155+5VSLJ3Y6+lRX5229mm49I/tOyZUt26tSpsM0QKWJcvXqVUqmUK1eu1DkeEBBAKysrRkVFFZJl+jlz5gw9PDxYvHhxnd+VjIwM9ujRg3K5nD/88EMhWigi8t9AFPsi7x43b5pH6CsU6t32/EKlIgMD1a71BhLLCa+Ov5RI+EW5crxy5Qo9PT1ZunRp43YCc0GLFi2439PTtDJ+jo5FJvQhJ+7cuUNnZ2fWrFmTFhYW7Nu3b7ZlFhMSEli+fHk2btzYYDztkydP/i2JWMDZhG/evEkADA0NzdV1Dx8+ZJ06dSiVSrPE0JtCcnIyHR0dOXnyZJJqN1QLCwvt3yS5ZcsWAqCdnZ3RNevNSUpKCseNG0eJRMImTZrkS+b/b7/9lnK5XO9i0pEjRwiAvxkhxk+dOkUbGxu2a9uWmzw9mYpXiUT1iX9NuE6lSuqwJpG3ilmzZtHR0VGM2xfJQr9+/ejm5qZNIkuSSUlJLF++PFu0aFEkstgLgsCQkBAqFArWq1ePdzRJgKn2XPn4449pYWHBffv2FaKVIiL/HUSxL/Ju4uubfWb2nF5yOfkqCV6+kJlJ9u5ttD2qVw/2ox0cWLlyZZ0fT3OgVCppa2vLdePH5/2+SaWkgbjkokZSUhJr1qzJChUqMCYmRlsazVBctYajR49SIpFkWxpLE/e+bt06c5udLZpQg7y8N/78808CoEQi4fz5883ywKipDHDz5k2mpaXRx8eHNWrU0LqgajwJNLH73333nclj5oYzZ86watWqtLS05DfffJPtQo8pDBs2jD4+PnrPderUidWrV8/xfl+8eJFOTk5s2LAh27VrRysrKx7dv1+dk0JTieL1z2G3buSff+oN1xEp+hw/fpxi3L6IPm7dukW5XM5FixbpHA8NDS2U79E3SU5OZr9+/QiAw4cP1wk5SE5OZtu2bWllZcWff/65EK0UEflvIYp9kXeTTZtM39nPzx2xgAD9O3LZvASAmQBf7txpdnPCw8MJQJ2gbtWq3N8rmYxs0OCt2NUXBIE9evSgra2tjmv10qVLCYBLly7N9vpx48bR0tIyW88Kjcu/Jtt/QbBkyRJaW1vnSbR27NiRVapU4dSpUwmA/fv313lIywsffvghW7duTZKcNGkSLSwsePHiRZLkwoULCYCjR4+mSqVi9+7d6eHhkWMohTnIyMjgV199RZlMxjp16vDKlSv5Ot6HH37ITz/9NMvxGzduGPVwHhUVRVdXV9asWZMdO3akQqHQDbUQBHW4UXS0Os/HW/AZFMmetLQ0WllZiXH7InoZOnQoS5QowYSEBJ3jffv2ZbFixfjkyZNCsSsyMpI1atSgtbV1ljj8xMRENm/enDY2Njx8+HCh2Cci8l9FFPsi7yYpKWSxYnnbpZbJyDp18s+2yMg8L0AIEgnp5WX2Hbvly5dToVBoY6Z31a+vHs+Y+yeVqoW+ieXJCoo5c+YQAPfs2ZPl3IQJEwgg2yzsKSkprFq1Kn19fQ1mQE5ISKCnpyc/+OADKpVKs9meHUOHDmXNmjVzfd358+cJQPtwtm3bNioUCjZq1CjP5e8iIiIIgD/++CNPnjxJiUTCefPmURAETp8+nQA4depU7Y72lStXKJFIuGrVqjyNZyyXL1+mr68vZTIZZ8yYke8ZrAVBoL29vd7kWcOHD6erq2u2iyoPHjxg+fLlWalSJa3r68GDB/PTZJEiQosWLcS4fRG93L9/n5aWlpw9e7bO8WfPnrFEiRLs3bt3gdu0d+9eOjg4sFKlSlnyk8TFxbFhw4a0t7fniRMnCtw2EZH/OqLYF3l3CQ0lZTK1QM6NK7qDA3ntWv7ZFRBgWlw8QJqyMp6YqC5N99FHapHeoAHPlCrFBZ6eZGKi1oX0f8OHk/Xqqcd7s763ZhHAyYmcMuWt2U3UuNjPmDFD73mVSsW+ffvSwsIi292HM2fOUCaT8euvvzbY5tSpU5RKpZwzZ46pZhtF06ZN2bNnz1xf17NnT1aoUEFnUeKvv/5iyZIlWaFChRxzQwiCwFSlignpmUzPFCgIAkePHs2SJUsyNjaWXl5e/PDDD6lUKjlu3DgC0Ct++/TpQ3d393yJ3c/MzOSiRYtoaWlJb29vhoeHm30Mfdy+fZsAsrisxsTE0NramrNmzTJ4bUxMDL29vVm6dGl26dKFMplM7wKVyH8TMW5fJDvGjBlDR0dHvngjibCmukeWKj35hFKp1C6S+/n5MT4+Xud8bGws69WrRycnJ/7zzz8FYpOIyLuGKPZF3mlUO3dSKZEw09gdfScn8vTp/DMoOTlrSbzcvuRy0s8v92M/ekSOGkXa2qpDCF5bBFG9ChMQbGy41cmJHX19/3UHP3uWHDKE9PEhy5Yl33uPbNWK3LZNnfH/LeHy5cu0s7Njt27dsnV1T09PZ5s2bWhvb8/z2ZQr07iCZyccp06dSrlcXiDi0s3NjdOnT8/VNdevX6dEImFISEiWc3fu3GH16tXp4ODAX375Jcv5ZylKht5L5OILzznv3L+vFZdi2GboBE6ePoPDhg2jjY0Nr1+/ri1r9+233+q1JTIykjKZLMcwitxy69YtNmrUiADRfn4AACAASURBVBKJhF9++WWBZvzXLC7dv39f5/jcuXNpZWVl0HMiISGB9evXZ4kSJejn50epVCpmrX7HEOP2RbLjyZMntLGx4ZQpU3SOC4LAtm3bsmzZslnc/M3N48eP2aRJE8pkMi5evDhL7pFnz56xZs2aLFGiBM+dO5evtoiIvMuIYl/knWbZsmX8AOCLqlX171BrRL5Eot7pjozMX4OOHjVN6GteVla5G/fyZXVpP33zf+OVATDD2ZmMiMife1AIaHaYfXx8jKrjnpiYyLp169LNzY3R0dF626Snp7N27dr09vY2KCDT09Pp6+vLKlWq6GRPNjfx8fHMrpa7IQYMGMBSpUoZtD8hIYEdO3akVCplcHAwBUFgQnomt0fGcd6555x/Tlfozzv3nPPOPuPc8CecF/6UnSYEccW33/KTTz6hVCrlphzKMg4ePJglS5Y06v8oJzQZoW1tbVmhQgUeO3bM5D5zy5w5c1isWDGdh+C0tDS6ubnR399f7zWpqals0aIF7ezs6OfnR4lEkuv/V5G3HzFuXyQnJk+eTFtb2yylXqOjo2ljY8PRo0fn29jHjx+nm5sb3dzc9H63Pnr0iN7e3nR1dWXEf+hZQkSkKCKKfZF3lkuXLtHS0pJjxozRHCCHDyc9PNQl4ooVU5emmjqVvHu3YIzavds8Yh8wflc9OposUSJ3oQMyGVm8uPratxylUslWrVqxRIkSBoW7Pp4+fUovLy9WqlTJ4A5sREQEFQoFv/zyS4P9XL16lVZWVhw1alSubTeWsLAwAsiVB8GdO3col8tzFBOZmZkMCAggAI6aPI3Bl2L0i3w9r6Dwp5z04zFa29nzxx9/NMomCwsLzps3T30gMVG9UPX33+rP7xsuq4Z48OAB27VrRwD09/fP9x0uQ/Ts2ZNNmzbVObZ582YC4NWrV7O0VyqV7NKlCxUKBf38/FgUsmuLFB5i3L5IdsTGxtLBwYEBAQFZzn3zzTeUSCT8+++/zTqmIAhcvHgxZTIZmzRpwsePH2dpc+/ePVaqVImlS5fm9evXzTq+iIhIVkSxL/JOkpqayurVq7N69eoF6rabI3v2mE/sG5O5XBDI2rWN2tHXGy5Qq9ZbX75r7NixlMlk/PPPP3N97c2bN1myZEnWr1+fSUlJetssXLiQEokk253j4OBgAmBoaGiubTAGTZxmbkTtiBEjWKJECYPzepM1Gzdz8i8XOPfME6OEvuY198wTrvrrhtHl/EaMGMGm9vZM79ePtLTMugjVsyd57Jje96UgCNy+fTudnJxYqlSpQi/vVKVKFY4cOVL7tyAIrFmzJjt06JClrUql4oABAyiVStmlSxcC0BteIfLuIMbti+TEjBkzaGVlxQcPHugcVyqVrFOnDqtXr262Kifx8fHaRcgJEyboTT4bHR3N8uXL08PDg7du3TLLuCIiItkjhYjIO0hgYCCioqKwY8cOWFlZFbY5/+LsbJ5+rK0BhSLndqdPA+fPA5mZuR8jMxO4cAH4++/cX1tE2LRpE5YtW4bly5ejefPmub7ey8sLP//8M65evYqePXtCqVRmaRMQEICGDRtiwIABSExM1NvPiBEj0Lp1awwcOBAvXrzItR05cf36dbi7u8Pe3t6o9k+ePMH69esxduxY2NraGnVN+ZZ+cCzpDqlMlivbpDIZ4q2K42ZCRs6NY2LwzfnzOJqYCNm2bUB6uu55lQrYswdo2hSoWROIjn7t0hj07NkTffr0Qfv27XH58mW0b98+V7aak7S0NERGRqJGjRraY0eOHMHFixcREBCg05Ykxo8fj02bNqFjx47Yt28fgoODMXTo0II2W6QI0axZM8THx+PSpUuFbYpIEWXs2LGwsbHB3LlzdY7L5XKsX78e165dw6JFi0we5/Lly6hbty7++OMP7NmzBwsXLoRcLtdpExUVhSZNmkAul+P48ePw9PQ0eVwREZGcEcW+yDvHb7/9hmXLlmHBggXw8fEpbHN0qV8fcHIyrQ+5HOjc2bi2336rbm/KWN9+m/frC5HTp09j6NCh+Pzzz/HFF1/kuZ86depgz549+O233+Dv7w+SOudlMhk2bdqEZ8+eYfz48Xr7kEql2LhxI1JTUzFs2LAsfZjKjRs38N577xndfunSpVAoFBgxYoRR7dNVAi7FpgESSZ7skwA4+zwt+0aPHgH168MyLAwAIBME/e00C1fXrgH16gFXruDgwYOoXr06jhw5gl27dmHHjh0oXrx4nmw1F1evXoUgCDrfQUuWLEGNGjXQokULnbZBQUFYunQp2rdvj4MHD2Lx4sUYNWpUQZssUsSoX78+rKyscPTo0cI2RaSI4ujoiIkTJ2L9+vW4ffu2zrlatWrhyy+/xOzZs3Hjxg31wbNngenTgWHDAH9/YPJk4I8/AEPftwC2bduGBg0awMrKCuHh4ejatWuWNlevXkWTJk1gZ2eHY8eOoVy5cmadp4iIiGEkNPdTpYhIESYmJgY+Pj6oUaMGfvnlF0ilRWu96/nz54jo1AlN/vkHJkhw4MQJoFGj7NskJQHFiuVtV/915HLgxQvAyF3josDDhw9Rt25deHl54c8//4TCGC+IHNi+fTv69u2LKVOmZNlFAYCQkBAMHz4cv/zyC9q1a6e3j127dqFXr17Ytm0b+vTpo/a6WL0aOHMGiI8HbGwADw9g4ED1go6FhVG21ahRA40aNcKqVatybPvixQt4eHhg5MiRmDdvnlH9n3ueit8eJBvVNjuGehdDMUs9ngHJycAHH6gFfC7er5TJEKdQoGpqKup99BHWrVsHNzc3k+00B5s3b9Z6e9jZ2eH69euoWrUqNm3ahP79+2vbrVq1CiNGjEDLli1x+PBhBAUFITAwsBAtFylKtGzZEnZ2dti/f39hmyJSRElOToaXlxc6dOiA7777TudcSkoKfH180E8uR6CdHSTnzql/0yUSdXAUoP7O9fQERo0CBg/W/tanp6dj3LhxWL16NT777DOEhITAxsYmy/gXL15Eq1at4O7ujt9//x0lS5bM9zmLiIj8S9FSOiIi+QhJDBkyBEqlEps2bSpSQv/ly5eYOnUqPD09MSoiArlzhH4NqRSoWhVo2DDntk+emC70AXUfT56Y3k8BkZqaiq5du8LCwgK7d+82i9AHgD59+mDx4sUICgrCypUrs5wfOnQo2rRpg8GDB+Ply5d6+9C4mR/w90d6zZqAry+wcaM6XOL2beDKFSA0FOjRAyhdGpg9G8jI3v1dEARERUUZvbO/YsUKZGZmYty4cUa1B4AbcUa44OeABEBUvIF+NmwALl/O9ftVolLBPjUVf7RpgwMHDhQZoQ8Aly5dgpeXF+zs7AAAy5Ytg5ubG3r37q1ts2PHDowcORJNmjTB4cOH8fXXX4tCX0SHpk2b4vjx41CpVIVtikgRxdbWFlOmTMHmzZsRGRmpc84mMxN/OTpiSmQkeP68+mBmJqBUqv/VfOfevg0EBKi9D+/fx927d9G4cWNs2LABISEh2Lx5s16hf+bMGTRv3hweHh44cuSIKPRFRAqBoqN2RETymfXr12P//v3YsGEDSpUqVdjmAADi4+Mxc+ZMlC9fHsuWLcOIESNw7O5dSL76Km8dSqVASIhx7tTJpu/E5ktf+QhJ+Pv74/Lly9i3bx9cXV3N2v+XX36JgIAAjB49Gj/99JPOOYlEgg0bNiA5ORkjR4402Me6ihXxQ0oK5Jo43DcFruah/vlzYMYMoE0bICHBYH/37t1DWlqaUWI/MTERy5cvx+eff56rh7LkTMMunsYikQCp+vohgeDgPPcrB1D99GlIUlPzblw+cOnSJa0Lf0xMDDZv3oyRI0fC0tISAHDo0CH0798f9erVw/HjxxEYGIivv/66ME0WKYI0a9YMcXFxYty+SLb4+/vD3d1d9zskNRVo0wbFX713pNk5+mrSoN68ibTatdGuVi08e/YMp06dwtChQyHR88xx6tQptGrVClWqVMHhw4cLPXRKRORdRRT7Iu8EkZGRGDt2LPz9/dHZ2Hj2fCQpKQnz5s1DhQoVMG/ePAwePBjR0dGYP38+nJ2d1SLO39/4DqVStevdjh1AkybGXePgkCfb872vfGTJkiXYtm0bNm7cCF9f33wZY9GiRejduzf69OmTJZa2TJkyWLlyJXbs2JFlMQAAEBwM65kzAcA47w5BAE6eVLv0G9jhv379OgAYJfbXrFmDpKQkTJgwwZjRtZglFoyAoK+jI0eAW7f+dSnNCwkJwA8/5P36fCAiIkKbnC8kJAQSiUSbcO/48ePo3r07qlWrhrCwMAQEBGDu3Ll6H6hF3m3q168Pa0tLROzYAfz5pzq++ty5HD1+RN4trKysMH36dOzcufPfhaGRI9UhYrnxCsnMhCw2FntJnA0PR926dfU2O3r0KNq2bYtatWohNDQUjo6OZpiFiIhIXhBj9kX+82RkZODDDz9EYmIizp07Z3R28fwgJSUFq1evxoIFCxAXFwd/f39MmTIF7u7uWRuTwIIFwMyZ/2Ydf/PjKpOpf6jd3YGtW4E3EntlS3o64OICGMgQbzR2dupd5qJU1UAPoaGh6NChAyZNmoSgoKB8HSsjIwMdO3ZEWFgYTpw4oZNxnSS6d++OY8eO4fLly/+6ll+5Avj45E3USqXqBaLp07OcWr58OSZNmoTk5GTIssmUn5aWhgoVKqBjx45Yv359robfFhmHB8mmhYQIqkxcP7gdxeLuoW7duqhbty4qV64MWWAgsHSpaSEnUinQrRuwa5dJNpqLp0+fws3NDT/++CM6deoEDw8PdO3aFatXr8a5c+fQvHlzuLu74/r16xg5ciSCg4NFoS+SldhYYONGPJk2DW5vVqYoXhwYPly9aCwmQxMBoFQqUaVKFdSoUQN7V60CypbNndB/EwO5gUJDQ9GlSxc0btwY+/bt0+veXxQhCYGATCp+14r8txB39kX+88yYMQMXL17E9u3bC03op6WlITg4GF5eXpg8eTK6dOmCmzdvYuXKlfqFPqD2a548WR0PHxwMVKyYtU2LFsCBA8C9e7kT+gBgaalOtpPLUmk6yOXqPoq40I+MjESvXr3Qvn17zJ49O9/HUygU2L17N7y8vNC+fXvcvXtXe04ikSAkJAQymUw3e/+33+b9/0IQgBUr1HGWb3Djxg21aM6h7++++w7Pnj3DpEmTcj28p4MCpj4eSWVyWCQ+w6+//op+/frB29sbTk5O+N/WrVBlkwnaKAQBiIkx0ULzERERAUCdOPH777/H06dPMXbsWNy4cQPt2rWDs7Mzbty4AX9/f1Hoi+hn9Wr1Iu+kSXB9U+gD6qSp8+cD5csDEydmm01d5N3AwsICM2bMwL59+/Bw5kzTvKUMVOI5ePAgPv74Y7Rq1QoHDhwo8kI/MUP1f/buO6yp6w3g+DcJGyeIWsU9qkXcyk8R924VrXVbtWitVRwV6l6oqHXWUfe2Ks462rq3dQ9cFVy4wAmCgKwk5/dHlEoFhSQQoOfzPDxqknvuezGE+57xHo4/juaXa2FM8w9l+uVQpvu/YFXAS66ExpKQ7HQzScpa5Mi+lK0dO3aM+vXr4+vra5LCVvHx8axYsQJfX19CQkLo3r07Y8aM0W9/WSF0I+gvX+qqsOfLZ/j0+cBAKFfOsDYCAiAN27pltIiICFxcXFAoFJw+fTpDpxM+efKE2rVrY2lpyYkTJ7C3t098bseOHbRp04aVK1fS88svoWBB3RpKQ2zapCve945GjRphZ2fH5s2bUzwsISGBMmXKUKtWLTZs2JDm00YnaJl/LUzv6fwKoIC1ip7l8gK6/7OLFy9y/vx5qi5cSN2gIFK378AHNGwIBw8a2opRzJ49m1GjRvHq1SuqVq1KsWLFWLBgAa6urmi1Wh4/fkz37t1Zvnx5piokKmUSPj66mTxp0akTrFunm+Ui/WdpNBoqODnxV1AQdoYu9TAz0w1GvPm9tmXLFjp37oy7uzvr1683WvHb9BCj1rL3YVRicdl//+5SvHnMQqngfwWsqVXAWna6SlmW/NSXsq3w8HC6deuGm5sbQ4cOzdBzq9VqVqxYwaeffkq/fv2oW7cuN27cYOXKlfol+qAb6c+fX5dYlyxpnHXyn36qW++tz4iySgWtW2fqRF+j0dC1a1eePn3Kzp07M3zdYMGCBdm7dy8vXrygVatWvH79OvE5d3d3evTowaBBgwhdvtzwRF+l0lXu/5eAgICPrtdfv3499+/f17tDzNZcSbk8+o/uC6Cag3Xiv3Pnzk2DBg348ccfadShA+ZmBm1EqfvemLIK9KNH4Our2zKxfXuqL1jANDs7Tm7bxtWrV/Hw8KBJkybExsby9OlTOnfuzLJly2SiL71vxYq0J/oAfn4gd3L4z1OpVEweOdLwRB90S6vu3AF0W8927NiRDh064Ofnl6kT/Yh4DasDwwkMj0eQfM2Zt4/FawXHHr9m571ItHJsVMqi5Mi+lC0JIejSpQu7d+/mypUrFM2gNYsajYYNGzbg4+PD7du3+eqrrxg/fjxOTk4Zcn69vHql26rvxo3Ur99TqXRJ/qlTmbo434gRI5g2bRp//vknzZo1M1kc586do379+jRq1Iht27Zh9iZ5DQ8Px9nZmfEWFng8eIDC0K0QP/tMt/b/jcjISHLlysWaNWv4+uuvkz1Eo9Hg5ORE2bJl2blzp96nDo1VsyownHi1FkUaklQFkN9axddl82CW3FrJv/5Kdl1oWr2cP5+8/fsb3E6aHD8Os2bpltooFLovjQa1ECgVCoQQHMiVi/WffMLOp0+Jjo6mTZs2rF+/PvE9IkmJ4uJ0M4DCw/U7XqHQLflydDRuXFKWon34EKWR7okuTp3KrthYfHx86NGjB8uWLfvokjFTilVrWX0znPA4bZpnolWyt6R5kRxyhF/KcmSyL2VLv/76K19//TUbNmxIsm91etFqtWzevJnx48cTEBBA69at8fHxoXLlyul+bqMIC4MvvtAl70plyus73z5Xqxbs2pU4fS8z2rBhA126dGHGjBl4eXmZOhz27NlDq1at6NmzJ0uWLEm8YThw4ABnmjRhuEqFytC9sosX1+2H/MaFCxeoXr06Z8+epUaNGskesmXLFtq3b8/p06dxcXHR+9RarZbvR03A0b03KjNzlKm44dNq1ORUgUeF/Niap9BBIARUqKDrjNLz11UY8AngULhwYvG/6tWrU61aNRwcHPRq84OE0CX53t66qa4f6MRRo5tiN1il4mGrVmzatAlzc4MXLUjZ0bp10K2b/serVDByJEyYYLyYpKwnPBzy5jVKU7WA02/+rlQqyZ8/PwULFqRAgQIUKFAgxb/b29ubZObSgUdRXHgeq/eSs06lc1E8Z+adtSBJyZHJvpTtBAUFUblyZdzd3VmzZk26nksIwfbt2xk3bhxXr16lRYsW+Pj4pJhYZWpxcbBhA8yZA/7+uiTlbQ+2ELqEpVIlGDQIunTRFfjLpC5cuECdOnVo3749q1evzjQ98WvWrKFHjx6MHTsWnzdb7AFsr12bL06dwuCx3MqV4dKlxH+uX7+erl27EhERQa5kZmAIIahWrRp2dnYcOHBA79MKIejfvz+LFi3Ca8JUzGq0IHf+TxLXPf7b28ef/H2RIz+P4cThg+TIkSPlEyxerKssrsevK6FS8eq77zjYqBHnz59P/Hr58iUAxYoVe68DIK+hN8IzZ+oS/TRKmDsX8wEDDDu3lH3973+6rdIMKbaXLx8EB0MmnmYtpTOtFpE3L4pXrwxqRgCFgbodO9KxY0eePXvGkydPePr0KU+fPk38+5MnT4iOjk5yrEqlIn/+/Ek6AVLqGLCzszNKx0C8RjDvWigJev74KIHSuS34smTmnc0oScmRyb6UrajVaurXr09wcDCXL19ONsExBiEEf/75J2PHjuXixYs0atSICRMmULt27XQ5X4Y7dw7+/FO3tRPotnH6/HPIAp0YT58+pXr16hQqVIijR49ilcl2Cvjpp58YPnw4CxcupG/fvgDE7tyJlbu7Qe0KlQpFjx6wfHniY+PGjWPJkiU8fvw42WP+/PNPPv/8cw4dOkSDBg30PveIESOYOnUqs2bNYsqUKdSrX5+JS9Zy4XkMD6OSjmorFfBZXkuq5bMi4uEdqlevjru7O7/++mvKnTJxcVC/ftr3hDYz0207du6c7j38hhCCoKCgJMn/hQsXePXm5rdUqVJJOgCqVq2a+s+SI0dA3++lQgEnT+qSOkl6V2wsWFt//HWp4e+v67iV/ru8vND+/DNKPTuOtAoF+4Tg+MiRTJo06aMd6tHR0Uk6AFL6+5MnT5LUtgEwMzN7r2Mgpb/b2dmlGMvl0Fh2P4jS63rfUgD9nPKS0yLzLlWQpH+Tyb6UrUyaNIlx48Zx7NgxXF1djd6+EIIDBw4wZswYzpw5g5ubGxMnTqRevXpGP5eUdnFxcTRq1Ii7d+9y/vz5lLc1NCEhBIMHD2b+/Pls2bKFtm3bglZLXKFCmD99alDV1G+cnWn444+0b98eKysrOnbsyNOnTzly5EiycdSpUwetVsvJkyf1nv0wdepURowYwcyZM7lw4QJ79uzh+vXrFCxYENAVQ4qM16LWCixVCvJaqrAy++cq3y63WLRoEd99913KJwoNhXr1dLs/pCbhNzODAgXg2DFdQcuP0Gq13L59O0kHwMWLFxNHpD799NMkHQBVqlRJfivPzz+HvXv127/azAy+/BI2bkz7sVL29vixbqs9Yzh0SP8OKSl7uHULypY1qAm/bt3otHatkQL6R1RUVLKdAMk9FvOvwrbm5uYpdgyIas2JtbH7Z8ainpo42iYpKCtJmZ1M9qVs48yZM7i6ujJy5EgmpMOaxCNHjjB27FiOHz+Oi4sLEydOpHHjxplmivh/nRCCPn36sGbNGo4ePcr/MvHoqFarpXPnzuzYsYP9+/fj5uYGM2ag/fFHvZJ9oVQSXqIEHUqU4MCBA9jb2+Ph4cGuXbuoV68eixYteu+Yo0ePUr9+fXbt2sUXX3yh13UsWLCA/v37M3bsWKpVq4a7uztr166lWxrXFffr14/ly5dz6tQpqlatmvILX70CDw/Ytk1XPyK5hPrtGvl69XTLUj75JI1X9Q+NRkNgYGCSDoBLly4RGxuLUqmkfPnySToAKufJg9Vnnxm2f7VKpave/6azRJIAePZM13llDMeOgZubcdqSsq7mzRH79qFI4+dVAhBtZ0eeZ8/028nHSIQQyXYMpNRJ8N2afRQoZdhWw0oF/K+ANXU/SaajV5IyKZnsS9lCVFQUlStXJl++fBw/ftyoBa5OnjzJmDFjOHToEFWrVmXChAm0bNlSJvmZzPz58xkwYACrVq2iR48epg7no+Li4mjevDn+/v4cP36cCoUKIT79FM2LF/qt3d+xA1q35ubNmyxatIiVK1cSHh5OuXLlmDZtGi1btkxSJblp06Y8ffoUf39/vd7Lb4tgDho0iHHjxuHk5ETVqlXZtWtXmtuLi4vD1dWVsLAwLl68SJ48eT58wN27unX8ixdDRMQ/j1tbQ8+euvX9zs5pvqbUSEhI4MaNG0k6AC5fvkx8fDwTFQpGCIFBt79KJUyeDMOGGStkKTtISAArK8PW67/1999Qvrzh7UhZV1QUNG2qK8qbBmrgNbDUw4Mhy5Zl2vsgjUbDkydPePjwIY8ePeLBgwdEV22Jee58BrWrVEDN/NbULySTfSnrkMm+lC306tWLjRs34u/vT+nSpY3S5rlz5xg7dix79uzB2dmZCRMm4O7unml/uf2XHT58mCZNmjBw4EBmzZpl6nBSLSIigrp16xIaGsqpU6co8vw5WldXtLGxaUv4J09+bw/twMBAypUrR5kyZbh16xZFixblu+++o1evXjx48ICaNWvi5+dHx44d0xz39u3b+eqrr+jRowdLly6lT58+bN68mevXr+Oo57ZeQUFBVK1alfr167Nt27bU/Zyp1fDiBQ2qVqV5+/YMmz7dJIXH4uPjuXr1Krn79qXkhQsoDfm1amYG3bsnqb0gSQC0agW7d+u3RAR005dLltRN4Za/x/671Grde2n//jS9lwSgVSrZ7OlJ57lz6dWrF4sWLcrwbUI1Gg1Pnz5NTOST+zMkJATNO9dmbW1N35V/kr9sBYPOrQDqFbLhfwVsDLwKSco4ciNfKcvbunUrK1asYMWKFUZJ9P39/Rk7diy7du2iXLlybNy4ka+++sok28RIHxcUFET79u1p2LAh06ZNM3U4aZI7d252795N7dq1adasGSdOnMDur7+IcXND8fo1SnQ3F8kyM9PdqM2erdsh4V/u378PwO7duwkLC2PhwoVMnDiR8ePHkz9/fhwdHWnXrl2aYz5w4AAdO3bkyy+/ZMmSJRw8eJDly5ezZMkSvRN9gBIlSrB69Wrc3d2ZNWtW6rZLNDODggUJzpGDFxYWJqswbmFhQbVq1cDBwbAp/KAbuTWwSraUTXl6wu+/G9bGwIEy0f+vW7UK9uxJ82EKQCUEncqUIX71ajw8PAgLC2P9+vVGK4Sr1WpTTOTf/j0kJAT1O9uZWllZUaRIEYoUKULp0qVp0KABjo6OiY85OjqSN29ejj1+zemnMXpvuwe6Dg9HW7k1qpS1yJF9KUt79OgRFStWpGHDhmzevNmgUffr168zbtw4tm7dSunSpRk3bhydO3dOMvVZylyioqKoXbs2r1+/5uzZs9i9U3E9KwkMDMTV1ZVy5cqxf/9+zCMjWVCjBu1CQiisVuvWRSqVukRSo9Fte9izJ/Trl+J09Xnz5uHt7c3r168T38NhYWFMnTqV6dOnA+Dk5MT333/P119/napq8ydPnqRJkybUq1eP7du3ExcXh7OzM6VLl2b//v1GmfUydOhQZs2axdGjR1NdZNPZ2ZkGDRowd+5cg89vkI4dYcsWw6Zam5nB11/DihXGi0vKHrRa3cj8w4f6kBzbLgAAIABJREFUvcesrHSF/j62TEbKvoSAihV1Szn0eQ8pFFC6NAQGsuv33+nQoQO1atVi+/btH/0dotVqefbs2QcT+eDg4PcS+beJe0p/fqgC/7si4jUsvP4y7df8jnxWKnqVyyNneEpZihzZl7IsrVZLz549sbGxYcmSJXp/+AYGBuLj44Ofnx/FihVj+fLldO/ePcOnpklpo9Vq6d69O/fu3eP06dNZNtEHXaX333//nYYNG9K5c2e2bNlCs337KFu5MtNbtqRf7dq6tek2NuDoqKvY/pEbq8DAQMqUKZOks8rOzo7g4GAcHR1ZsmQJy5YtY9CgQQwbNoxu3brx/fffUymFLbn8/f1p2bIl1apVY8uWLVhYWDBkyBCeP3/O4cOHjXbz4+vry6lTp+jYsSOXLl3CwcHho8dYWloSFxdnlPMbpHRpw0dNhdC1I0n/plTCypW6tdb6JGrz58tE/7/uzBm4dk3/44XQLQM5epRWrVqxd+9eWrVqRYMGDVizZg0xMTHvJfDvJvIJCQmJTVlaWuLo6IijoyMlSpSgbt267yXy9vb2RvvdkttCRalc5tx9laD36H51B2uZ6EtZjhzZl7KsmTNn4u3tzYEDB2jUqFGaj79z5w4TJ05k7dq1FCpUiNGjR/PNN99gYaKpwFLajB8/ngkTJrBjxw5atWpl6nCM4o8//sDd3T1xLeS8efMYNGiQXu/xJk2akCtXLrZu3Zr42J07dyhbtixz5szB09MTgODgYJYuXcrSpUsJCQmhdu3a9OvXj6+++gpLS0tA13Hg5uZG0aJFOXToELly5eLYsWPUq1ePuXPnMmDAAON9E97EVKVKFSpXrszu3bs/OrvG1dWVMmXKsGrVKqPGkWZ37hieqCuV8OABFC5snJik7GfTJujaVZfwpzbpnzIFhg9P37ikzG/IEJg3T7duX08apZKzFSsy/7PPePjwIXfv3iU4ODjJaywsLBIT+Xen07/7Z758+TI8cX7yWs3am+Fo0pj5KAA7SxU9y+XBXCmTfSlrkcm+lCX5+/tTs2ZNBg0alDglObXu37/PpEmTWLVqFfny5WPkyJF8++23RltzJqW/bdu20a5dO3x9fRk5cqSpwzGqlStX4uHhgY+PD6NHj6Zx48bcvn1bVwAud+5Ut1O0aFG6devG5MmTEx/r06cPO3fuJCgoCGvrpPsEJyQksHPnThYsWMChQ4fIly8fvXr14osvvqBz587kypWLo0ePki9fPl6/fk2lSpUoUKAAx44dS5d6FgcOHKBp06aMGzeOcePGffC1DRo04JNPPmH9+vVGjyPNmjZFHDqEQp8iamZm0Lo1vNNBI0nJOnwYevfW7UzxdrvJd6lUuiU/Dg66uh5du5omTilz6doVNm7Uv8gjoAX22tgwpVq1xOTdysoqcYvXrVu3Urt27Uxb5+hmeBy/BUUCpGqEXwHYmivpXjY3uSzksk4pCxKSlMVER0eL8uXLi8qVK4vY2NhUH/fo0SPRr18/YW5uLvLlyydmzJghoqOj0zFSKT1cuXJF2Nraig4dOgitVmvqcNKFr6+vAMSSJUvEvXv3RM6cOUXPnj1TfXxUVJQAxKpVqxIfe/jwoTA3Nxc//fTTR4+/ceOGGDRokMiVK5cAhLW1tVi9erVQq9VCCCG8vLyElZWVCAwMTPvFpYGPj49QKBRi//79H3xds2bNxJdffpmusaRWqJ+fELrJrmn/UiiEOH7c1JcgZRUajRD79wutu7tQ//u95OYmxObNQsTHmzpKKTNp314IpVL/zygQWhCiVav3mg4ODhYVKlQQ9vb24syZMya4uNQLiogTM/1fiCkXn6f4NfXNn8tvhIlX8WpThyxJepPJvpTl9O/fX1hZWYnr16+n6vVPnjwRgwcPFpaWliJv3rxiypQpIjIyMp2jlNLD8+fPRfHixUXlypVFVFSUqcNJN1qtVvTv318olUqxY8cOsXz5cgGIHTt2pOr4ixcvCkCcPn068bFBgwaJPHnyiIiIiFS1ERoaKpycnETu3LmFk5OTAESxYsVEv379hEKhSFWngaHUarVo0qSJcHBwEI8ePUrxda1btxaff/55usfzMS9fvhSfffaZGKvvzfTMmaa+BCkLevjwoVCC2LN+vRDPnskEX0pZnz5CmJkZlOwLlUqI7t2TbT40NFTUqlVL2NrafrST1tRi1Rpx8flrseR6WLLJ/qbb4eJORFy2HVSQ/jtksi9lKX/88YcAxPz58z/62ufPn4uhQ4cKGxsbkStXLuHj45PqREfKfOLj40X9+vWFg4ODuH//vqnDSXdqtVq0a9dOWFlZiRMnTogvvvhC5M+fXzx79uyjx27YsEEA4uXLl0IIIZ49eyasra3F2LFjU3XuV69eCRcXF2Fvby+uX78utFqtOHPmjPj666+FQqEQCoVCdOrUSRw/fjzdb4SePXsmChcuLOrUqSPiU0hi2rdvLxo3bpyucXxMVFSUqFGjhlCpVMLezk48HzhQCBAJH7lx1rztGJg+XQh5UynpYf/+/QIQN2/eNHUoUma3Zo1hif7br6VLUzxFVFSUaN68ubCwsBCbN2/OwIvTj1arFY+jE8SCLX+Iik3biMCw1yI8To7kS9mHTPalTONFTII4+ChKbL4dLtYGvhSbboeL/Q8jxbPXCUIIIZ4+fSry588vWrZs+cEEIywsTIwaNUrkyJFD5MiRQ4waNUqEhYVl1GVI6cTT01OYm5uLY8eOmTqUDBMTEyPq1q0r8ubNK44ePSrs7e1Fu3btPppgjx8/XuTPnz/x3yNHjhS2trbixYsXqTpngwYNRK5cucT58+eTPDd69GhhZmYmvL29RenSpQUgnJ2dxYIFC8SrV6/0u8hUOHHihFCpVOLHH39M9vlu3boJNze3dDv/x8TFxYlGjRoJpVIp8uTJI65duya0Wq0Y4uwsjufIIbQKhW407G1ir1QKoVIJDYjDOXII7aFDJotdyvrmzZsnzM3NRUJCgqlDkTK7mBgh8uQxLNHPkUOIj8ysi4uLE507dxYKhUIsXrw4gy7OMG9n0L1driZJ2UXmrJ4h/afciYhn3a1wlt4I59yzGG6/SuBRtJo7rxK4+DyW5QHhrL0Zjve0eQghWLFiRbIVXF+9esWECRMoUaIEs2bN4vvvvycoKIhJkyaRN29eE1yZZCzLli1j/vz5zJ8/Hzc3N1OHk2GsrKzYsWMHhQsXplu3bvj6+rJ161Y2bNjwweMCAgL49NNPAQgPD2f+/Pn07dsXe3v7Dx6XkJBAhw4dOH36NL///jvVqlVLfO7SpUtMmTKFMWPGMH36dAIDA9m3bx+lSpXC09OTQoUK0a9fP65evWr4hf+Lq6srP/30E9OnT2fnzp3vPW/Krfc0Gg2dO3fm0KFD2NracuTIEZycnNi5cyezrl4lavNmFLdu6Sqht28PLVpAhw4wahTnN22iQVQUe2JjTRK7lD0EBgZSunRpuV2s9HFWVtCnj66Aox7UwN0GDcDW9oOvs7Cw4Ndff6Vfv3589913TJkyBZHJ64G/jU9urSdlN7Iav2QyQgj+ehLDiSevUfCRqqhCCwolDpEheLg5J/kwjoqKYv78+UyfPp3o6Gi+//57hg0bRsGCBdP7EqQMcOLECRo2bEjv3r1ZsGCBqcMxieDgYGrVqkXu3Ln59NNPOXjwINeuXaNwCtuzVa1alerVq7NkyRImT57MhAkTCAoK4pNPPknxHBqNhq+//potW7awc+dOmjdvnvhcQkICNWvWRKvVcu7cufe2p3z48GHi9n1PnjyhTp069OvXjy+//DJx+z5DCSH48ssvOXLkCBcvXqREiRKJz/Xv35+//voLf39/o5wrLTH17t2bFStWYGNjw7Fjx6hWrRoJCQlUqFCB4sWLs3fv3g8e7+LiQq5cuThw4EAGRi5lJ02aNCFnzpxs27bN1KFIWUFICFSqBC9fpqkqv1CpiFIqcUpIoGGPHvz888/kyZPnw8cIgY+PDz4+PgwZMoTp06dn2ir9y5Yt49tvv0Wr1cqEX8pWMudPnPSfcPKpLtGHjyT6AArdW/V5zkIce6w7JiYmhpkzZ1KyZEnGjh1Lp06duHPnDrNnz5aJfjbx4MED2rVrR+3atZkzZ46pwzGZwoULs3fvXoKDg3n8+DFWVlb07t07yUhJeJyGB1EJ3I2II8rMhrKfVSA6OprZs2fj4eHxwURfCEG/fv3YuHEj69evT5LoA0ybNo2rV6+yYsWK9xJ9gCJFijBhwgQePHjApk2bMDc3p0uXLhQpUoSRI0dy7949g78HCoWClStXYmdnR/v27Yl9ZzTcVCP7P/74IytWrMDKyopDhw4lzoRYvHgxt27d+ui2oAqFAi8vLw4ePJjhHRVS9hEYGJg4k0eSPqpQIdi7VzfKn9oRfpUKhYUFOY4eZcLKlfz22284OTmxe/fuDx6mUCgYP3488+bNY9asWXh4eKD+9zaRmYQc2ZeyK5nsSyZxLzKe42+S9rQ69TSG2b9upWTJkgwbNgx3d3du3brFL7/8kuJIp5T1vH79mrZt22Jtbc3mzZsxNzc3dUgmVb58eX7//XcuXrxIqVKl2LNnD4uXLuNaWCyrA8NZ9PdL1t+KYNPdSDwWb0dTtxO/HL2KVX5HfvzxxxTbFUIwbNgwlixZwrJly/jqq6+SPP/3338zYcIEfvzxxyTT+pNjbm5O+/btOXToEH///TedO3fml19+oWTJkrRq1Yo///wTjQH7O+fJk4fNmzdz7do1hgwZkvi4KZJ9X19fZs6ciYWFBfv378fFxQWAiIgIxo8fzzfffEPFihU/2k67du0oVqwYM2fOTO+QpWwoOjqahw8fUq5cOVOHImUlVavC6dPwdmAkpdH2t487OMDJkyhq1aJnz55cv34dZ2dnWrZsSe/evYmIiPjg6Tw9PVm3bh3r1q2jXbt2xMTEGPFiJEn6EJnsSyZx/lkM+vadajVq/o5W0LRpUwIDA1m6dCnFihUzanySaQkh6NWrFwEBAezYsQMHBwdTh5Qp1K5dm40bN3Lq1Cnqt+1ESJl6/H4/iiev3x8pEQolaofi9P91P+c0dsRptMm2OXnyZKZPn87PP//MN998k+Q5jUaDh4cHJUqUYNy4cWmKtXz58syZM4eQkBCWLFlCcHAwn3/+OWXKlOGnn37i+fPnaWrvrapVqzJnzhwWLlyYWLsgo5P9BQsWMHr0aMzMzNi7dy916tRJfG7y5MnExMQwceLEVLVlZmbG4MGD8fPz49GjR+kVspRN3bx5E0Am+1LaVagAd+7A+vXwprPyPdWqwdq1EBQElSsnPuzo6Mju3btZunQpmzZtwtnZmf3793/wdF26dGHnzp3s37+f5s2bf7SDIKPJVc1SdiWTfSnDRcRruP0q4eNT91OgVJlRqmZdZi9eQalSpYwam5TOYmN1Nw4tWujWDJYrB7Vr64qXBQUlvuynn37Cz8+P1atXU6lSJRMGnPm0bt2auRt+o/GIWVjlzA2kvAxG+aZgV1BkAmtvRhCrTprwz5s3j9GjRzNhwgQGDRr03vFz5szh7NmziVPV9WFra0vv3r25cOECp0+fxs3NjXHjxuHo6Ei3bt04efJkmm+y+vTpQ9euXfn2228JCAjI0GR/w4YN9O/fH5VKxR9//EH9+vUTn7t37x5z5szhxx9/pFChQqlus1evXtja2jJv3rx0iFjKzgICAgDkNH5JP5aW0LkznDyJT8eOtAYi5s+H7dvh2jU4exa6ddNN+f8XhUJB7969uXr1KmXLlqVp06b07duXyMjIFE/XokUL9u/fz5UrV6hfvz5Pnz5Nx4tLGyGEnMIvZUsy2Zcy3NXQOL1H9d9SAFfCZAXrLCMqSpfQFywI3bvDvn1w5QoEBsKpUzBjBpQqBS1acGLmTEaOHMmYMWPem1IuwZPXal6XrY1SZYYylestBRAaq2HL3Vdo3yTWq1atYuDAgXh5eTF69Oj3jrl16xajRo1i0KBB1K5d2+C4FQoFLi4urF69muDgYHx9fTl16hSurq5UrlyZxYsXExUVleq2Fi1aRNGiRfnqq69QKBTEx8cbHOPH7N69m65du6JUKtm+fTtNmzZN8vyoUaPImzcv3t7eaWo3Z86c9OnTh8WLF3/wRlmS/i0gIIACBQp8tFCaJH3M8Rcv+F2hIHf//uDuDk5OqTquWLFi7N+/n4ULF/Lrr7/i7OzMoUOHUny9q6srx44d4+nTp9SpU8coNV2MQSb7UnYlk30pw0XEawxO9gEi4vRf+ytloCdPdKP3M2bA22l72n9NKddoQAjE/v24eHvzU/XqjB8/PsNDzQqOhkSjFWkvIiSAR9FqbkXEs3XrVnr16sW3337L9OnT32tLq9XSu3dvChUqxKRJk4wYvY69vT3e3t7cunWLPXv2ULx4cfr160ehQoXw9PTk+vXrH20jR44cbNmyhaCgIH777bd0H9k/ceIErVq1AmDTpk188cUXSZ4/e/Ys69evZ9KkSeTIkSPN7Q8cOJDo6GiWL19ulHil/wZZnE8ylocPH2Jtba3XsQqFgr59+3L16lVKlChBo0aN8PT0TLED19nZmRMnTiCEwNXVlWvXrhkSulHIZF/KrmSyL2W4eK3Qewr/WwKI08r1VZleRAQ0bAg3bqRqix+FRoMK8D5/HuWff6Z/fFnMyzgNQZH6L4FRAPsDg+ncuTPt27dn4cKFyd7cLFq0iGPHjrFs2TJsP7KfsiGUSiXNmjVjx44dBAUFMXDgQLZs2UKFChWoV68eGzdu/OCI/WeffcbixYs5e/Ys8fHx6bbm0t/fn4YNG6LRaFi7di3t2rVL8rwQAm9vb5ydnenZs6de53B0dKRTp078/PPPmbZatZT5BAQEyPX6klE8f/4cOzs7g9ooUaIEBw8eZN68eaxcuZJKlSpx7NixZF9bsmRJTpw4gYODA3Xr1uXUqVMGndtQMtmXsiuZ7EsZzlJp+IepArBSybdvpjdkCNy8CWlIXpTo/n/p2BHCwtIrsizJ/0WsQbNiBBBlkQv3Lt1Zu3YtqmSWAdy/f59hw4bRt29fGjRoYMDZ0qZo0aJMmjSJBw8e4Ofnh0KhoFOnThQtWpTRo0fz4MGDZI/r1q1b4rr5c+fOGT2uW7duUbt2bRISEli6dCldu3Z97zU7duzg+PHjzJgxI9nvaWp5eXlx//59tm7dakjI0n+EVqvl5s2bcmRfMorIyMgPbtGaWkqlEk9PTy5fvkyhQoWoV68egwcP5vXr93dgKliwIEeOHMHJyYnGjRuzd+9eg8+vL5nsS9mVzJakDGdvpf/N8LvsLI3TjpROQkN1xfj02WpNCIiJgVWrjB5WVnb3Vbzhs2KEwHvyrGS3MhRC0KdPH/LmzctPP/1k4Jn0Y2FhQceOHTly5AjXrl2jffv2zJ07lxIlSuDu7s6ePXvQ/msZiIeHBwCdOnVKVYVntVYQGB7HmaevOfH4NWefxXD3VXxiPYO3goODqVatGjExMcydO5fevXu/11Z8fDxDhw6lWbNm763hT6vKlSvTsGFDZs6cKStDSx/18OFDYmJi5Mi+ZLCEhATUajUlSpQwWpulS5fm6NGjzJ49m8WLF1OpUiX++uuv916XJ08e9u7dS8OGDWnVqhV+fn5GiyGtZLIvZUcy2ZcyXAU7/ap6/1tFe0ujtCOlk5Ur9Uv03zVv3vvr+//DYjWGJ4BKhQKN0izZ51atWsW+fftYvHgxuXLlMvhchnJycmLevHmEhISwcOFC7t+/T4sWLShTpgzTp0/nxYsXgK7AHcCLFy/w8PBIMVGOiNdwNCSa+dfC+C0okiMhrzn55DWHg6PZdOcVC66/5NST17xO0PLixQsqVapEZGQkU6ZMYcCAAcm2uXjxYu7cucP06dONcs3e3t6cO3eOEydOGKU9KfsKDAwEZCV+yXD+/v6AbstUY1IqlQwePJjLly/j4OCAm5sb3t7exMTEJHmdjY0N27Zto2PHjnTp0oUFCxYYNY7UkB2sUnYlk30pw9maKymf10Lv6cgKoHRuC3JZyJH9TG3ZMsMSdSHg3j04edJoIWV1xhpzSG4lTUhICD/88AM9evSgRYsWRjqTceTIkYM+ffpw6dIlTp48Se3atRk9ejSOjo50796doDfbNs6cOZNt27Yxd+7c99oIeBnHkr9fcvppTGKniQC0/LN1YVSClmOPX7Po7zCadepBaGgoo0ePZvjw4cnGFR4ejo+PDx4eHjg7OxvlWps3b85nn33GzJkzjdKelH0FBARgYWFB8eLFTR2KlMW9XQJVtWrVdGm/bNmyHD9+nGnTpjF//nyqVKnC6dOnk7zG3Nyc1atXM3DgQPr378+ECRMyNAGX0/il7Eom+5JJ1Mxvo/exAnDJr1/FWCkDPXpknHYePjROO9mAjZnhNyICsDZL+tEvhKBv375YW1sza9Ysg8+RXhQKBbVq1WLt2rU8evSICRMmcOLECYYMGQLAs2fPGDBgAN7e3kluJK+HxbL9XiQawUeXQQggNkFD28lLGTplNhMnTkzxtZMnTyYmJoYJEyYY4ep0FAoFQ4YMYefOndy8edNo7UrZT0BAAGXLljWoToQkAVy9ehUAFxeXdDuHSqXC29ubS5cukTt3blxdXRk+fDixsf9so6xUKpk9ezaTJk1i3LhxDB48+L1lW+lFJvtSdiWTfckkCtqY0aJo2renAmjqaItjjvfXG0uZzDu/wA0SHW2cdrKBcnktDR7dVwClclkkeczPz49du3axcOFCg6sxZxQHBweGDh3K7du3E6fQjxkzhtWrV5MvXz7atm1LaGgoj6MT+P1+8ts/pUSpUqFSmVGgRTci4pNfinLv3j3mzJnD0KFDjVLU6l1du3Ylf/78zJ4926jtStmL3HZPMpZbt26hUCgoUKBAup+rfPny/PXXX/j6+jJ79myqVauWpLiqQqFg1KhRLFy4kHnz5tG9e3cSEhLSPS6Z7EvZlUz2JZOpaG9Fy6I5QAg06g9/kL/9+G1WxJaqDnJUP0vQY6/xZOXObZx2soGKdlYGJftK4NM8FuQw/+ej/+1oeMeOHWnTpo3BMWY0pVKZWI1/165deHp6olarefLkCWXLlmXzBf1GxxVKJQlauPg8+U6rESNGYG9vj7e3t76hp8jKygpPT09WrVrF8+fPjd6+lD3IbfckY3n48CHW1hl3b2VmZsbw4cO5cOEC1tbW1KpVi9GjRxMXF5f4mr59++Ln58emTZto06ZNstX8jUkm+1J2JZN9yaTK2sJmr668uHwK1ZvPWKVCl9y/+6dTXkt6fpqHKvlkop9lVKoExpheaqS10NmBjYH1LrRA1X/9DA0cOBCAefPmGRacCVla6op12tvb4+vrS3BwMCNGjCBBaU6UTT69dzAQgH9oLGpt0hbOnDmDn58fkyZNwtbW1rDgU/D999+jUChYuHBhurQvZW2RkZGEhITIkX3JKJ4/f26SWV0VKlTg1KlTjB8/nmnTplGjRg0uXryY+HyHDh34/fffOXLkCE2bNiU8PDzdYpHJvpRdyWRfMqlZs2Zx5cRhvq9bAc8KdjR2tKWyvRVOdpZUtreiYWFbPCvY8UXxnBS0Sb6CuJRJ9e9vWDV+lQrc3ECOXCVRr5At1maKNCf8QmhxymNOkRz//Bz99ttvbNy4kXnz5uHg4GDcQDPQ22Q/Pj4e0G3fN3nyZH6cs8zgtuM0goDwf0abhBB4e3tTsWJFevToYXD7KbG3t6dnz5788ssvSda0ShL8U4lfjuxLxhAZGWn05UipZW5uzujRozl37hwqlQoXFxfGjx+f+HnetGlTDh48yI0bN6hXrx6PHz9Olzhksi9lVzLZl0wmJCSEyZMnM2DAAMqWLYu1mZLqDtY0LZKDL4rlpGmRHNTIb42NmXybZklt2qDOm1f/4zUaeDPqLP0jl4WKTqVzY6VKQ8IvBAFH97LSuxdqtRqAsLAw+vXrR+vWrenUqVO6xZsR3ib7704BBSjvUgeF0rDPDyXw5LU68d+//fYbJ06cYMaMGeleGO2HH37g+fPn/Prrr+l6HinrkdvuScaSkJCAWq2mZMmSJo2jUqVKnDlzhlGjRuHr64uLiwuXL18G4H//+x/Hjx8nNDSUOnXqcOfOnXSJQSb7UnYksyjJZEaNGoW1tTVjx441dSiSkQkh+GXpUkZFRurXgJkZlCkD7u7GDSybyG9tRo9P80DEMwAUH5iorlJArYI2tC9rx++7dtKtWzfUajVDhgwhJiaGhQsXZvkbnJSS/ViN4TdvAt3oPuhmDgwbNozmzZvTpEkTg9pNjTJlyuDu7s6sWbMyrCK1lDUEBATwySefkCtXLlOHImVx/v7+gK5wnqlZWFgwfvx4zpw5g0ajoUaNGkyaNImEhAQ+++wz/vrrL1QqFa6urokdAcaSkdv8SVJGksm+ZBLnz59n1apVTJw4kTx58pg6HMmIHj9+TMuWLfH09CTq229Rd+0KaUm4VCpdUb69e8Fc7rqQErOEGGZ2qM/9DbOJDrxEfEzS4kV5LZU0drRlgLMd9QrZ8sXnn7Np0ya2bdtG06ZNWb16NbNnz6ZQoUImugLjsbDQ7S7w72TfXGl4J4ZancCBvXsYNmwYPXr04M6dOwwbNizDbgy9vLy4ceMGu3fvzpDzIQS8eAG3b8P9+3I3jExKFueTjOVtJfwqVaqYOJJ/VK1alXPnzjF06FDGjx9PrVq1uHbtGsWKFePEiRMUKlSIevXqceLECaOdU07jl7IrmexLGU4IweDBg6lQoQK9e/c2dTiSEW3btg1nZ2f8/f35888/+WXBAsxWrwZPT90LzD5Qd0Gh0H0VLQpnzkCJEhkTdBY1d+5cIiIisFbHMLFzM+wu7WJwRTs8K9jhXcme7z6zo7qDNVaqfz7m27Rpw7Jlyzh8+DCFChWie/fuJrwC40lpZD+XhdLgX3JKpYqo0GeS+AKcAAAgAElEQVT4+fnh5+eHEIIGDRqQO3duqlevTufOnRk3bhzr1q3j7NmzRi8g5erqiouLCzNnzjRqu+8JD4c5c6B0aXBw0M2sKV4ccuWC1q1h3z6QswsyDbntnmQsV69eBXRT5TMTS0tLJk2axKlTp4iJiaFatWpMnToVOzs7jhw5QuXKlWnatCl//PGHUc4nk30pu5LJvpThNm3axF9//cXPP/+M2YeSPynLePXqFT179qRdu3bUq1ePq1ev0qJFC92TKpUuiTh8GNq00f1bqdSN2pubo3n7y7VMGZg7Fy5fhlKlTHcxWcDLly+ZNm0aLi4uzJ49G19fXzz798dKpSSHuRKzD4xonz59GktLSx4/fkz//v2zxdTFlJJ9JzsrDE1PFUolM7z60qFDB2xsbDhy5Ai//fYbo0ePpkqVKoSEhLBkyRK6deuGi4sLefPmJX/+/Li6uvLNN98wefJktmzZwpUrV/TaOkqhUODl5cXhw4eTVKk2Gq0Wxo+HggXhhx8gKOj953fvhmbNdB0Bp08bPwYpTTQaDTdv3pQj+5JR3Lp1C4VCQf78+U0dSrJq1KjBhQsX+OGHHxg1ahSurq4EBwezZ88emjVrhru7u1HqmshkX8quZKYlZaiYmBiGDh2Ku7s7jRo1MnU4khEcP36cr7/+mrCwMFatWkX37t3f/4WpUED9+rqvkBDYtg2ePoW4OAJDQui3bh2r9+6lWPHiJriCrGfGjBnExMRw/Phxhg4dyogRI1J13OHDh1m0aBG//PIL1tbWeHh4YGFhwZw5c7L0TY6ZmRlKpfK9ZL+IrRl2lirC4vTbFUIBlMxlTljwA+bOncvo0aOpV69esq+NjIzk1q1b3Lx5M/HPGzdusH379iSj/Y6OjpQtW5YyZcpQtmzZxL+XKFEicTnCv7Vt25bixYszc+ZM1q1bp9e1JEurhZ49Ye3aD7/uTVFH7t+HevXgt9+gZUvjxSGlyYMHD4iLi5Mj+5JRPHz4EBsbG1OH8UFWVlZMnTqVNm3a0LNnT6pUqcKkSZPw8/Pj+++/T7wHGWhAUV+Z7EvZlUz2pQw1Y8YMHj9+zIEDB0wdimSguLg4xo0bx7Rp03B1deXw4cOUSM3U+0KF/pnWD+R/8YKj69Zx/MQJmeynwtOnT5kxYwYJCQn07duXqVOnpuoGJTo6mt69e1O3bl369u2LUqkkPj6evn37YmFhwfTp07P0jY6lpeV7yb5CoaBGfiv2PtRv3bkAqjtYM6LPCPLly8eQIUNSfG3OnDmpWrUqVatWTdqGEISGhiZ2ALztDDh9+jRr165NHO1XqVSUKFEisRPg3c6AIkWKMHjwYLy8vJg6dSpFihTR63reM3ToxxP9d2m1kJAA7drB8eNQvbpx4pDSJCAgAJDb7knG8fz5c/IasnNOBvrf//7HpUuXGDNmDEOHDmXbtm2sXLkSe3t7Bg0axIsXL/Dx8Un2d1m8RhAWpyFOo8VMqSCHuZLcFv/sqCKTfSm7ksm+lGGCg4OZOnUqgwYNokyZMqYORzLA9evX6dq1K3///bduP/Mff9R7G7J8+fLh5OTE8ePH6datm5EjzX6+++474uPj+eqrr/jll19SfXMyevRoHj9+zN69e1G+2Y7ubVsDBw5MXB+ZVW92kkv2ASrZW3H3VQK3I+I/sGdB8mo4WPH074ts3LiRFStWYGtrm+a4FAoF+fLlI1++fNSqVSvJc0IIQkJCkswGuHnzJnv37mXBggUkJCQkXlvJkiVRKpW0a9eO7777LrFDoECBAvr9n924AfrUARBCl/B7ev53pvRrtfDqFcTGQp48YGVl0nACAwOxsrKiaNGiJo1Dyh4iIyMpXbq0qcNINWtra2bMmEHbtm3p2bMnlStXZsqUKUyZMoURI0bw4sUL5s2bl3hP8jxGzaUXsVwJi0X9r3VdhW3NqOZgzae5LWSyL2VbMtmXMsyIESOwtbVl9OjRpg5F0pNWq2Xu3LkMHz6cUqVKcebMGaNU8HVzc+PIkSOGB5jNbd68mR07dlCuXDnWr1+fmLR/zMmTJ5kzZw4zZsx476ZuwIABxMfH4+3tjaWlZZbdCjOlZF+pUNC6eE52BL3i9quEVLdXJZ8lDQrZ4NbRi0qVKqVLMUOFQkHhwoUpXLgwDRo0SPKcWq3m/v37SZYGxMTEcP78ec6fP59YayFnzpzJLgsoW7bsh3c6WbBAVzDz7RT9tNBodEU0L1+GSpXSfnxWcfGi7vu0bp0u0X+rXDkYMAC6ddMVMMxgAQEBlC1bNtU//5KUkvj4eNRqNSVLljR1KGn2dvu9kSNH8sMPP+Dm5oavry9jxowhLCyM5atWsy8kjsCIeBSQbGdvSLSa4OhIbMwUkLegTPalbEkm+1KGOHPmDGvXrmXJkiXkzp3b1OFIenj06BE9e/bk4MGDDB48mMmTJ2NtbW2UtuvWrcuiRYt49uxZpi0SZGrnz5+na9eumJubc+zYMcxTuS1hbGwsHh4e1KxZk0GDBiX7Gi8vL+Lj4xk5ciQWFhYMHz7cmKFniJSSfdBtwfdlyVycfRbDuWcxRKvFezd/QqtBoVSRx0JJrYI2VLSzZNu2bZw8eZL9+/frPXNFX2ZmZpQqVYpSpUrRvHlzAIYPH07x4sWZNGkSrVq1SjIj4NatWxw9epTHjx8ntuHg4JDssoDSBQtis2KFfon+PwHCwoWwaJGhl5r53LqlS+TPnk2+QyQwUDezwdsbhg2DMWN0RUczSGBgoJzCLxmFv78/AOXLlzdxJPqxsbHh559/pm3btnh4eODr68s333yD35at+O6/TG5HXSdGSrO63j4eoxZQoyUlahqnsr8kZSYy2ZfS3dut9ipVqoSHh4epw5H08LYIjq2tLfv376dx48ZGbd/NzQ2AEydO8OWXXxq17ezg+vXrNGnShISEBKZMmYKDg0Oqj/Xx8SEoKIhLly59MGEdMWIEcXFxjBgxAgsLiw+uT8+MLC0tiY+PT/F5pULB/wrYUDO/Nbci4rn8IpankTE8eRGKOvY1CS+fM7BtY4rlMEehUBAfH8+wYcNo0aKF0d/v+ipcuDBdunRhwYIFeHl58dlnn733msjISG7fvp2kPsCNGzfYsWMHL1++BKAF8KehwajVukKb2S3ZP38emjSByEjdv5PrEHm7g0VMjG4ng4AA+PVX3U4jGSAgICDxM1OSDHHu3DkAo8zQM6V69epx+fJlhg8fzoIFCxiw6g9yfFI01Uu3BIBCSeuxc3jyWk1BG5keSdmHfDdL6W7Dhg2cPn2aw4cPZ/jomGSYly9f4unpyfr16+nYsSMLFizAzs7O6OdxdHSkRIkSHDt2TCb7/3L37l2aNGkCQKFChRg8eHCqj71w4QLTp0/Hx8cn2cTw38aNG0d8fDxeXl5YWFjg+U4hxczuQyP771IqFHyax5JP81gCuVm9ei89e/Ykb968zOoelvi6BQsWEBQUxI4dO9Ix6rQbMmQIa9asYcuWLXTq1Om953PmzEmVKlWSvXkPDQ3l5s2baFatgiVLDA8mPFyX+GaXqa937+q2GIyM1C1VSK2NG8HeHubPT7/Y3oiIiODJkydyZF8yiitXrgC8V08kK8qRIwfz58+nYYce3MyZimLB/6JQKFCqVBwJiaZTaTkDVco+5IIvKV1FR0czbNgwvvzyS+rXr2/qcKQ0OHToEBUrVuSPP/5g3bp1+Pn5pUui/1bdunU5fvx4urWfFQUHB9OoUSPMzc0JDw9n3LhxWKWyOFh8fDweHh44OzszdOjQVB2jUCjw9fVlyJAhDBgwgCXGSAgzSGqT/X/r0aMHDRo04OXLl4nvv5cvXzJhwgR69+6Nk5OTsUM1SKVKlWjcuDEzZsxIXLefWvb29tSqVYs6rq7GCSaN58/0vL11hfjSkuiD7vvwyy/wZpQ0PQUGBgLIbfcko7h9+zYKhSJNs8UyO3Whsujb/ahUmXEvMoGXem7XKkmZkUz2pXQ1ffp0nj17xvTp000dipRKsbGxeHl50ahRI8qUKcOVK1fo0qVLup/Xzc0Nf39/IiIi0v1cWcHz589p0qQJGo2GsmXLUqpUKb755ptUHz916lT+/vtvVq5cmer1/aBL+GfMmIGnpyffffcdq1at0iP6jKdvsg+6LUEBunTpwqtXr/D19SUhIQEfHx9jhmg0Xl5eXLhwgWPHjunXgLE67XLnzj6j+sHBsGOH/nUMzMx0xfzS2dtt92SyLxnDw4cPsbGxMXUYRhMep+FuZEKad155lwK4+DzGWCFJksnJZF9KNw8fPmTatGn88MMPWbLS63/R5cuXqVGjBvPnz2fmzJkcOHAgw7Z3qlu3LlqtlpMnT2bI+Uzi0iXo3RtKldJN+y1QACpWhClT4NmzxJdFRETQvHlzQkNDE/8ffHx8Up20X716lUmTJjF8+HAqV66c5jAVCgVz586lT58+eHh4sG7dujS3kdEMSfYrVqyIubk5z58/p3PnzsybN49hw4ZRsGBBI0dpHM2aNaNChQrM1GfrPIA6dcDS0rAgzMzg888NayMzWbrUsOPVali/HkJDjRNPCgIDAylcuDA5cuRI1/NI/w0vXrxI1xl7Ge1+VOp3XEmJAO6kYecWScrsZLIvpZvhw4eTK1cuRo4caepQpI/QaDRMnz6dmjVrolQqOX/+PEOGDMnQrZ1Kly5NwYIFs+dU/kOHoGZNqFoVVq/WrQ0OC9Ml+FevwujRULgwdO3K6zt3+OKLL7h79y779u1j8eLFODk5Jbs+OzlqtRoPDw/KlClj0DaXCoWChQsX0qNHD7p3787mzZv1bisjWFhY6J3sm5mZUaFCBerUqcOff/6JtbV1pi5QqFAoGDJkCLt27Uqc1p0mefLoqs2bGVC2R62G/v31Pz6z2bQJtNqPv+5D4uNh717jxJOCgIAAuV5fMprIyEg++eQTU4dhNLFqrd5T+JO0ozHws0CSMhGZ7Evp4tSpU6xfvx5fX19ymWAfYin17t+/T8OGDRk2bBiDBg3i7NmzODs7Z3gcCoUCNzc3/acmZ1YrV+qqe1+4oPt3ctOEtVpQqxEbN/LayYnXFy6we/duQkNDOXjwIJMmTUp1cctZs2Zx8eJFVqxYgaWBo7dKpZJly5bRuXNnunTpwvbt2w1qLz0ZMrIPutH9t9vWRUVFce3aNWOFli66dOlCwYIFmTVrln4NeHrqP2VdqYRKlaBGDf2Oz4xevDC8DaXSOO18gNx2TzKWuLg41Gq1nHmZjGyyOEmSAJnsS+lAq9UyaNAgqlSpQs+ePU0djpQCIQRr166lYsWK3Lt3j8OHDzNt2jSDE0RD1K1bl7NnzxITk03Wy23dCr166ZL5VIwaKjQa8sTFcdLKChdHR0aNGkWNGjVwd3dP1ekCAwMZO3YsP/zwAy4uLoZGD4BKpWLVqlW0bduWDh068McfmXMfYkOT/QoVKhAQEEDFihWpXr06HTp0ICzsn+r8hIXBhg0wdy7MmgWrVsG9ewbHrS9LS0sGDBjAmjVreP78edobqFwZPDz0W3OvVMKcOdlnvT6kvShfchQK47STArVaza1bt+R6fcko/P39AShfvryJIzEeGzOlQev1321HkrIL+W6WjG7dunWcO3eOn3/+WW61l0mFhobSsWNHunfvjru7O1euXKFevXqmDgs3NzcSEhI4e/asqUMx3MuX8PXXaT7MDLCMjORZmzacPn0aX19fFKlIqrRaLb169aJIkSJMmDBBj4A/EJOZGevWrePzzz+nXbt27Nu3z6jtG4OhyX5ERARarRYvLy82bdpEZGQkPXr0QHv2LHzzDXzyCXTpAj/8AEOH6h4rWVK3bn33bsOngOuhb9++KJVKFuhbGG7RImjZMvVJu1Kp20t+7VrIBJ8XRpU3r+FtaDTGaScF9+7dIz4+Xo7sS0Zx7s3uEVWrVjVxJMZTMpeFwaPyCnizNaskZQ8y2ZeMKioqiuHDh/PVV19Rt25dU4cjJWPfvn04Oztz4MABNm3axJo1a8idO3PsKVuhQgXy5MmTPabyr1oFsbH6bU+mVuNw4QIda9akcePGqTrkl19+4a+//mL58uXpUl3Z3NwcPz8/GjdujLu7O4cPHzb6OQxhSLIfFxfHmjVrAN1ezUWLFuXX1atp8vvvKF1c4NdfdeuxQZfUvx29FUK3RrtlS93+7K9eGeNSUs3Ozo5vvvmG+fPn6zcbxtwctm/Xrb1XKHSJfHLePp43L/zxB6SyfkRWom7SBK2hNUoUCkjHLWbltnuSMV29ehWA//3vfyaOxHhszZWUy2NhcHJTKZ9M9qXsQyb7klH99NNPhIaGyq32MqHXr18zYMAAmjVrhrOzM1evXqV9+/amDisJlUpFnTp1sn6RPq0W5s0zrAlgRpkyqRrVDwoKYvjw4fTv3z9dO9ksLS3ZsmULdevW5YsvvshU/0+GJPsLFizg0aNH2NnZceXKFRCCFn5+DHj7gg+tbX+b+B8+DHXrQlSUXjHoa/DgwYSGhrJ27Vr9GjAz071X79+HkSMJT65oX82auiUMISG6To1sJCgoiKFDh1J3wwaUhszOMDPTdfoUL2602P4tICAAGxsbHB0d0+0c0n/HrVu3UCgU5MuXz9ShGFVVB2v0/UnWatSUzW1BTnM5K1XKPmSyLxnN/fv3mTFjBl5eXhRPxxseKe0uXLhAtWrVWLZsGXPnzmX37t0ULlzY1GEly83NjZMnT5KQkIW3vjl/HoKC9BvVf8MMcDxw4KOvE0LQu3dvHBwcmDJlit7nSy0rKyt+++03XFxcaNmyJadPn073c6aGpaUl8W9H39MgLCyMiRMn8u2331KlShXdaJevL6xbl7bpoBoNXLsGnTunOQZDlC5dmrZt2zJr1iy0hiSrRYqgGTeOIioVnwIh27bBxYvw6BGcPKkbzbewMFrcpqTVatm3bx+tW7emVKlSLF26lNq9exNTvbpuqYI+1Gpd0cN09H/2zjusyauNw3cSNjjALYiCSl2g0jpR6kSrta5P655Va1UUte6B4t6rarXOuvdoLYp7YsWJiqjgAhdh75G83x8RWqpgSMJ+7+viEsk5530SSN7zO8/y9/fHzs4uR7ukiBRcgoKCsiUKLLexMtXD3iLrnnlBqSQpLpbmlqbZYJWISO4h3jFEdMbEiRMpXrw4kydPzm1TRD6gUCiYO3cuDRs2xMTEhFu3bjFq1Kg8vVl0dnYmNjaW27dv57YpmvP6tW7WCQn5bC74b7/9xtmzZ9m4cSNFihTRzXU/g4mJCcePH6dOnTq0bdsWHx+fHLluZmjq2Z8zZw7JycnMmjULBwcHnt65A5oemigU8McfkMN/u+PGjcPf358TJ05otc6DBw+ISUwkUE+PMt99B3XrqlpCFhCioqJYvXo11atXp02bNrx48YINGzYQHBzMkiVLMF69WpWykNXCgzIZuLiovrIRse2eiC4JCQnBwsIit83QORKJhLbWZlQtpv7hpAQgJZkTHq4UNxS9+iIFi7y74xfJV1y+fJm9e/cyf/58zMzMctscESAwMBBnZ2dmzJjBhAkTuHbtWr6ouuvo6IixsXGeChHPMgkJulnnQ0u+jAgKCmLcuHEMHjyY1q1b6+aaamJqasqJEyeoXr06Li4uaZWdcwtNxH5AQABr1qxh0qRJlClTBnt7exoFBiLExWluiJ4eaFowT0MaN25Mw4YNWbJkiVbreHt7I5FIqFy5coEqrvrw4UNGjBiBpaUlbm5u1KlTh4sXL3Lnzh1++OGHf7ybDRuq0hWkUvU9/DKZqg3hgQOaRwWoidh2T0SXxMTEUK5cudw2I1uQSSR0tilCg9JGyDI5u0t9qLSxjNgzO5EH+OWIfSIiOYko9kW0RqlUMmbMGL766iv69euX2+YUegRBYPPmzdSuXZs3b95w8eJF5s6di0E+CcE1MDCgUaNG+btIX/HiulnH0DDD0GlBEBg2bBhFihTRWuRpSpEiRfjrr7+wtbWldevWudqbXhOxP2nSJEqXLo2bmxsADg4OjATtWsqlpKgK+kVGar6GBowfP54LFy5w8+ZNjde4fv06ZmZmBaIAXEpKCkeOHKFly5bUrFmTgwcPMnbsWF68eMHevXtp2rTpp+thdO0Knp6QWrQ0AwGf8mGu8O23cPEiZHNUTVhYGO/fvy8QvxuR3CcxMZGUlBRsbW1z25RsQyqR0NzSjJG1LGhhaUoxg/TvZZkEaloY0t+uGAOrmaOIDs8lS0VEshdR7Itozfbt27l58yYrVqzI0+HhhYGQkBC6dOnC4MGD6d69O3fv3sXJySm3zcoyzs7OXLp0Sbsc5NykTp2MK5uri1QKX32V4cM7d+7kxIkTrFu3juK6OlzQgOLFi3Pq1CksLS1p2bIljx49yhU7sir2r169yoEDB5g3b16aZ7dGlSrUAiRa1FoAVJEdDx9qt0YW6dSpE7a2tixdulTjNVI9+1WrVtWhZTmLXC5nwYIFVK5cmc6dOxMfH8/OnTt5+fIls2bNUq9WSatWEBwM27apUhn+i5ERYV264ADs6NoVTLM/xze1Er/o2RfRBalpcvkh2k9bjPWk1C9tzI81zLk48wfurZ6May0LxtUuwbcVi1DOVB9QHaCrUxBXRCS/ISozEa2Ijo5m8uTJfP/99/lSVBYk/vzzT+zt7bl8+TKHDx9m06ZNOZbDrWuaNm1KeHg4D3NYMOmMsmWhc2dVSLemKJVQuTK4u6sKxm3aBHI5AG/fvsXV1ZVevXrx3Xff6cZmLbCwsOD06dOUKlWKFi1a8PTp0xy3IStiXxAExo0bR506dejTp0/az401KPCXIRERultLDWQyGWPGjGHfvn28fPkyy/MjIyPx8/MjOjoaOzu7bLAwe/Hx8WHAgAFYWVnh7u5Oy5Yt8fHx4erVq/Tq1SvrkU3GxtCvn6rY5pMnKu/9yZNw/Tq8f0/pAweo3KkT7u7uOVJMNFXs5+eDGJG8w40bNwBV2lxhQSKR8C74FUUNZJjoS5H+R9iLYl+koCKKfRGtmD9/PhERESxatCi3TSm0xMbGMnz4cL799lu++uorfH196dSpU26bpRUNGzZET08vf4fyjxiRecs2ddixA+bNUwn+H36A8uWhXz9W9uqFnp4eK1eu1ImpuqBkyZKcOXOGYsWK0aJFC549e5aj10+txi+o4ZXfv38/3t7eLF26NH00kpGR7gwyNtbdWmoycOBAihQpotHfxY0bNxAEAUEQ8o2gTExMZOfOnTRs2JB69epx/vx5Zs+eTVBQEJs3b+bLL7/UzYWqVIGmTVUF+OrXTwvZnzVrFoGBgWzbtk0318mER48eYW1tjWkORBGIFHxSU64aNmyYy5bkLHK5PMNWg6LYFymoiGJfRGOePXvGsmXL+Pnnn7G2ts5tcwol169fp27dumzfvp3169dz/PhxypYtm9tmaY2JiQlfffVV/i7S9/XX0LQpgjbh/EolJCf/c2iQnIxy507mnzvHxUaNKJnHKimXKVOGM2fOYGhoSIsWLTTyMGtKquf2c+33EhMTmTRpEt9++y0tWrRI/6CZGcn6+roxKBcKX5mZmTF8+HA2btxIZBZrBnh7e6cJybwu9oOCgpg+fTrW1tb06dOHIkWKcOTIEQICApgwYUKO9Q13cHCge/fueHh4aNQJIiv4+/uL+foiOuPJkydIJJIce6/kFeRyOSVKlPjkY6LYFymoiGJfRGMmTJhAiRIlmDBhQm6bUuhITk7G3d0dJycnzM3NuX37NsOGDStQNypnZ2cuXryolqc2TyKRELtzJ6/09dHSv58O6Yc6Bl8cOwY//QR57PUpX748Z8+eRSKR0KJFC4KDg3PkuoaGqr7KnxNdv/zyCy9fvvx0NJJEQnCLFmgTlK0E4uzsIJdC4UeOHElCQgK//fZbluZ5e3tjZWWFsbEx5cuXzybrNEcQBC5cuEC3bt2oVKkSK1asoHv37jx8+BAvLy86duyYKx0E3N3dCQoKyvLrnVXEtnsiuiQoKOifLhSFhPj4eOLi4kTPvkihQxT7Ihpx4cIFDhw4wIIFC8RWeznM48ePadKkCXPmzGH69Olcvnw5X+bYfg5nZ2dev35NYGBgbpuiEUlJSXQdMoSmMhkJtWqpfpiJGMmqZJcA/Por/PKLpiZmGxUqVODs2bMkJSXRsmVL3r59m+3XVEfsh4aG4uHhwZAhQzIsTKU/ahTa+PYlwMjHj3Fp0wYvL68cP6wqX748vXr1YsWKFWrnkguCkFaJv2rVqnmq0GpsbCwbNmygdu3aNGvWjPv377Ny5UqCg4NZvXp1rhcYq169Or1792bu3LnEx8dnyzWSk5MJCAgQPfsiOiMkJASLPBYZlt2EhoYCiGJfpNCRd+7oIvkGhULBmDFjqF+/Pr17985tcwoNgiCwfv166tatS3h4OFeuXGHmzJno6yrsOI/h5OSERCLJl6H8SqWSAQMGcO7cObYcO4bZ7dtw+LAqtD8VmQzhXxsLjbcYHh6qUP88RqVKlTh79izR0dG0atWKkJCQbL2eOmJ/zpw5KBQKZs2aleGYct98w3WpFKUmglcqhWLF+GbrVuRyOS4uLjg6OrJr1y5StK3fkAXGjRtHUFAQ+/fvV2t8YGAgcrmclJSUPBPC//TpU8aOHYulpSXDhw/H1tYWLy8vHj58yIgRIyhatGhum5jGjBkzeP/+PevXr8+W9Z89e0ZycrLo2RfRGTExMXkygic7kX8ocJtZ6oIo9kUKIqLYF8kyW7du5c6dO2KrvRzk7du3dOjQgeHDh9OvXz9u375NgwYNctusbKV48eI4ODjkuyJ9giAwevRo9uzZw65du1R54Xp60KkTnDkD/v6qyvoLF7K3cWP8pFLt8vrfv4djx3T3BHRIlSpVOHv2LHK5nNatWxMWFpZt10oV+xnl7D99+pRffvmFSZMmUbp06QzXkUqlLK1Thzg9vSy1T1QCgkSCZDOXYI4AACAASURBVN8+uvXvz82bNzl9+jRlypShd+/eVKlShZUrVxITE5Ol56UJ9vb2uLi4sHTpUrUiC7y9vQHVZjg3xb5SqeSvv/6iffv22NnZsW3bNn788UcCAgI4cuQIrVq1ypOb8SpVqjBw4EDmz5+fLb/f1HaWotgX0QWJiYmkpKRgY2OT26bkKJ8T+/k2ZVBE5DOISk0kS0RFRTFlyhR69epFo0aNctucQsGRI0ewt7fHx8eHP/74g3Xr1hWaisypefv5CQ8PD9asWcP69evp2rXrxwPs7GDQIAI6dcLd25vqSiUShULzC8pksGaN5vOzmS+++IIzZ84QHByMi4sLEdnUku5znv1JkyZRpkwZxowZ89m1LOrVY7C1NRQrppbgF6RSFMDWNm1UFdtReYhatmyJp6cnd+7coWnTpowfPx5ra2umTp2a7akN48aN49atW5w/f/6zY69fv06VKlV4/fp1rqQERUREsHz5cuzs7GjXrh1v375l8+bNBAUFsWDBAipVqpTjNmWVadOmERERwZpseC/6+/tjZmZW6DyxItnD7du3AahRo0YuW5KzpIp9sUCfSGFDFPsiWWLu3LlER0ezYMGC3DalwBMdHc3gwYPp3LkzTk5O+Pr60r59+9w2K0dp2rQpAQEBvH79OrdNUYt169Yxc+ZM5syZw9ChQzMd6+7uTlNdhCIrFPBh85ZXqVmzJqdPnyYwMJC2bdsSFRWl82tkJvavXLnCwYMHmTdvnlpFqRwcHDj0/DlJ166pIjJksk+Lfj09ACROThwfN45BJ06wadOmj4bVrl2b33//nYCAAAYMGMCqVauoVKkSQ4cOTeufrmtat26Nvb09S5cu/exYb29vqlevnuNt93x9fRk2bBiWlpZMnDiRBg0acPXqVXx8fBgwYADGudC+UFMqVqzI0KFDWbRoUZY7IXyOR48e8cUXX4hCREQn3LhxAwBHR8dctiRnCQ0NRV9fnyIfWmf+F1HsixRYBBERNXn69KlgYGAguLu757YpBZ7Lly8LNjY2gpmZmbBp0yZBqVTmtkm5wps3bwRA2LNnT26b8ln27t0rSCQSYfTo0Z/9ffn6+goSiUQ427u3IKjq6Wv3JZPl0LPUDh8fH6FYsWJCkyZNhOjoaJ2ufe/ePQEQvL290/1cqVQKDRo0EOrWrSsoFAq11rp06ZIACPfu3VP9IDhYEGbNEoQaNQShVClBsLAQhMqVBWHECEG4fz9t3o8//ijo6+sLly5dynT9sLAwYf78+ULZsmUFiUQidOrUSbhy5UrWnrAabN26VQCEhw8fZjgmPj5e0NfXF4YMGSIAwtu3b3Vux79JSkoS9u/fL3z99dcCIJQvX16YPXu28ObNm2y9bk4QHBwsGBkZ6fwe6eTkJPTq1Uuna4oUXoYOHSoAglwuz21TchR3d3ehXLlyGT7u6uoq1KxZMwctEhHJGUTPvoja/Pzzz5QuXZqff/45t00psCQlJTF16lScnZ0pV64cd+/eZdCgQYX2tLls2bJUrVo1zxfp8/Lyok+fPvTu3Ztly5Z99vc1Y8YMKlWqRNM2bXRjwAevdl7nyy+/5OTJk9y9e5cOHToQFxens7Uz8uzv27eP69evs3TpUrVrjNT60D3h3r17qh+ULw8zZsCDB6oaCaGh8PSpKn2iZs20eatWrcLJyYkuXbrw4sWLDNc3Nzdn0qRJPH/+nI0bN/Lo0SOcnJxwcnLiyJEjKD+0V9SWnj17Uq5cOZYvX57hmNu3b5OcnIyRkRFFihTJtJ6BNrx79445c+ZgY2NDt27dEASBffv28fz5c6ZPn07ZsmWz5bo5Sfny5Rk+fDjLli3TaX0Kse2eiC558uQJUqk0w3D2gopcLs+0OJ8gevZFCiii2BdRi3PnznH48GEWLlxY6Hqz5hR+fn40atSIRYsW4eHhwcWLF7G1tc1ts3KdvJ63//fff9O5c2dat27N5s2bPysob9y4weHDh3F3d0dPV7nI+SiXt0GDBpw4cYIbN27QqVMnEhIStFpPEAReRifzVGnGN2NmEiiz4Mb7eKKSFCQmJjJp0iQ6dOhA8+bN1V6zePHiWFtb/yP21URfX5/9+/djZmZGx44diY2NzXS8oaEhgwcP5sGDBxw7dgypVErnzp2pUaMGGzdu1Pq1MTAwYNSoUWzfvp137959coy3tzdGRkbExMRgZ2en082u8KGlX58+fahQoQLz5s2jXbt23LlzhwsXLtCtW7cC101k0qRJpKSksGTJEp2sJ5fLCQ0NFdvuieiMoKCgfJUioytEsS9SWBHFvshnSW2117BhQ3r27Jnb5hQ4lEolq1evxtHRkfj4eK5fv86UKVOQaVOhvQDh7OyMr69vtlZy1xQ/Pz/atWtH7dq12b9/v1rCZdq0aWm9uWncGCpU0M4IqRQGDdJujRymSZMm/PHHH1y+fJmuXbtm2i4vI5IUAjdD4tnoF8Gup5H4xuvTuOdQ3hqX5mxwLGsfhLP8wgMMytmwcOGiLK/v4OCAr69vlueVLFmSY8eOERAQQP/+/dXy0kulUjp06MClS5e4du0aNWvWZNiwYVSqVIl58+YRHh6eZTtSGTZsGHp6eqxdu/aTj1+/fp0vv/ySgIAAneXrJyQksG3bNurXr0/Dhg25du0aCxYsIDg4mA0bNlC7dm2dXCcvUrp0aVxdXVm1apVO2k2m1nQQPfsiuiIkJAQLC4vcNiPH+ZzYB7H1nkjBRBT7Ip9l06ZN3Lt3j5UrV4ofhDomODiYb775BldXV4YMGcLNmzcLXdGcz9G0aVNAVWQtL/Hq1StcXFwoW7Ysx48fVyvi5cKFC5w6dQoPDw/VYY5MBiNHImjzvpJKYfBgzefnEs2aNePo0aOcOXOG77//nuTkZLXnRiQq2PwoHK+gWMISVZ0MBCTo6RuAREpqAyWFeXkG/rKP56aWKLPYVsnBwSHLnv1UatWqxY4dOzh06BAeHh5ZmtuwYUMOHjzIo0eP6NSpE7Nnz6ZChQq4ubllmhqQERYWFgwaNIi1a9d+Mm3C29ubhg0b8uTJE63F/suXL5kyZQoVKlRgwIABlCpVij///JMnT54wduxYzM3NtVo/vzB+/HikUikLFy7Ueq1Hjx4hkUhytSWiSMEiJiamUHZ2CA0NzTR1QRBb74kUUESxL5IpkZGRTJs2jb59+1K/fv3cNqdAsX//fuzt7fH19cXT05NVq1YVytC6z1GpUiWsrKzyVCi/XC7HxcUFmUzGyZMn1fKSCILA1KlTcXR0pEuXLoDq/TXm3j0SBAGNsrRlMujRA7Ipzzq7ad26NYcOHeLEiRP06tWLlJSUz86JTFKw/XEEkUmff8VkH6rl3w1N5Pjz6Cxt5uzt7QkODtY4oqRjx47MmTMHd3d3Dh48mOX5dnZ2rF+/nhcvXuDm5sa2bduoXLkyvXv35s6dO1laa8yYMYSFhbF19z6uvo3j8LModj2JZMfD99Tp+RPVG37NmzdvNGq7JwgCZ8+epUuXLtjY2LB27Vr69OnD48ePOXHiBO3atVO7VkJBoUSJEowdO5ZffvlF604i/v7+VKxYUbw3iOiEhIQEUlJSsLGxyW1TchwxjF+ksFK47sAiWcbDw4PY2Fjmz5+f26YUGCIjI+nbty/du3enVatW+Pr60kZXhdoKIBKJhKZNm+YZsR8TE0P79u0JDQ3Fy8sLS0tLteZ5enpy5coV5s6di0Qi4dSpU9SqVYvNx45x+ccfs77J0NMDW1tYtUqDZ5F3aNeuHfv37+fIkSP0798fhUKR4VilILDvaRTxKQJZ9cH4RSTh/S5e7fEODg4AGoXypzJ58mR69OhBv379sizQUylTpgweHh68evWK5cuXc/XqVerWrYuLiwteXl5qHWAYl63AuO0niKj9DZfexOEfkcTLmGSCEiTU69KXkMqNcN17HrMvHNU+EImOjmbt2rXUrFmTli1b8vjxY9auXUtQUBDLly8v9J5oNzc3jI2Ntb53isX5RHTJrVu3AKhRo0YuW5LziGJfpLAiin2RDHny5AmrVq1i0qRJagsakcy5cOECDg4OHDt2jO3bt7N3795CVxFXE5ydnbl16xYxMTG5akdSUhJdu3bFz88PT09PtQWNUqlk6tSpNGnShEaNGjF06FDatGlDtWrVuH//Pq3XrUOybVvG/dz/i0wGlSvDmTNQAEKjO3bsyO7du9m7dy8//PBDhnnuTyOTCE1UZFnop+L9Pp4UpXqz7ezsMDAw0DiUH1QHVZs2baJ69ep07NiR9+/fa7yWqakpo0aN4smTJ+zevZvQ0FBcXFxwdHRk165dGaZBPAhLYLt/JBbVHZHKZOlfO4kEmZ6qzkQZ22o80ivN0efRmb5G/v7+jB49GisrK1xdXalRowbnzp3D19eXYcOGYWZmpvFzLEgUK1aM8ePHs2HDBl6+fKnxOv7+/mJxPhGd4ePjA1Do0gXj4uKIj48Xxb5IoUQU+yIZMn78eMqVK8f48eNz25R8T2JiIhMmTKB58+bY2Nhw7949+vbtK95Y1MTZ2ZmUlBS8vb1zzQaFQkG/fv04f/48R48ezdJm6dChQ9y+fZvOnTvj4ODA7t27Wb9+PadOncLa2lo1qG9fOHcOPtQo4EMIehoSierL1BRGjABvb+2L++Uh/ve//7F9+3a2b9/Ojz/++EnBfzMkAW3eMYkKgUcR6hUD1NPTo0aNGlqJfQATExOOHDlCUlISXbp0ISkpSav19PT06NGjBz4+Ppw+fZoyZcrQu3dvqlSpwooVK9IdiD0KT+T4ixiVwP/MZ430wyGTf0QSx1+kT3lQKBQcP3487YBq9+7djBo1imfPnnHgwAGaNWsmfpZ9AldXV4oWLcqcOXM0mp+UlERAQIDo2RfRGffv3wdUtUEKE3K5HEAU+yKFElHsi3yS06dPc+zYMRYtWiTmCmqJr68v9evXZ+XKlSxatIgzZ85QsWLF3DYrX1G9enVKlCjBpUuXcuX6giDg6urK/v372b17d5bauCkUCqZMmYKVlRXjxo2jatWqaV7QjzYWTZuqBL+fn0rQ164N1tZQtarqsfXr4e1bWLkSihfX8bPMfXr16sXmzZv57bffcHV1TSc4IxIVvIhJ1tirDyBBdWCgLtoU6fs3VlZWHD58mBs3bvDTTz/ppBCURCKhZcuWeHp6cvfuXb7++mt+/vlnrK2tmTp1Kk+C3nLsRXSW1xVQCf4bIQmEhoayePFiqlSpwnfffUdERATbt2/n1atXzJkzhwoF6LApOzAzM2PSpEls2bKFgICALM8PDAxEoVCInn0RnfHkyROkUmmhiygMDQ0F+GyBPlHsixRE9D4/RKSwkZKSgpubG05OTnTv3j23zcm3KJVKVqxYweTJk7Gzs+PGjRtpecAiWSO38/ZnzZrF2rVr2bBhQ1pxPXWZMmUKT548wdjYmHXr1n1a5P+XatVgxQotLM6/9O/fn6SkJIYOHYqBgQFLly5FIpEQkvD54n2fQwBC4tVfx8HBgQMHDqBUKrUuMtewYUM2btxI//79cXBwwNXVVav1/o2DgwPbt29n7ty5rFixglWrVnE3zgCnPsORaGS3wEn/YOa3rY0iJYUePXqwd+9esUirBgwfPpwlS5Ywe/Zstm3blqW5jx49AsS2eyK6IygoqFA6cETPvkhhRhT7Ih+xceNG7t+/z40bN8QPPg159eoV/fv359y5c4wdO5a5c+diZGSU22bla5ydnZkyZQqJiYkYGhrm2HXXrFnDrFmzmDdvHkOGDFF7XnR0NOPGjWPjxo2UKlWK69evF8oKyJowZMgQkpKSGDlyJIaGhsybN49EhW7aIqUI6m/q7O3tiYuLIzAwkCpVqmh97X79+uHr64ubmxvVq1endevWWq/5bypUqMDSpUuZPHUavz2NU7Vl1AgJ+mbFmb7yV37o2IZSpUrp1M7ChImJCVOnTmX06NFMnjw5S8Ld39+fokWLUrZs2Wy0UKQwIZfL1eoeU9BQR+wD4p5XpEAihvGLpCM8PJzp06czYMAAvvrqq9w2J1eJTVbyNi6FVzHJvItLIVGhXnO0Xbt2YW9vz9OnTzlz5gxLly4Vhb4OaNq0KQkJCdy8eTPHrrlnzx5cXV1xc3Nj0qRJas87e/YsDg4OaZ68M2fOiEI/i4wYMYJly5axYMECZs2ahZ70402YQWwMZR/cpuL1C1jd9qZY8Of70Msk6m/oUiNxdBHKn8qCBQto06YN3bt35/Hjxzpb99/IJSagr92BmASwa/GdKPR1wJAhQ7C0tGTWrFlZmvfo0SO++OILUYCI6IyYmBjKly+f22bkOHK5HENDQ0xNTTMco4v0KhGRvIjo2RdJx+zZs0lISGDevHm5bUquIAgCgVHJ3JTHExiVvrq1TAI1zQ1xLGVMWZOP3zrh4eH89NNP7Nmzh969e7NmzRqKF8C86tyiTp06mJmZcfHiRRo3bpzt1zt16hT9+vWjT58+LFmyRK0Nd0xMDBMnTmTt2rU4OzsTGxtL27Ztsbe3z3Z7CyJubm4kJSUxadIkDEpZIm3cGYDSj+9Td98Wav25D/3E9Dn4r2s54tNjCP6tOqAw+Fjwmumrf8ZdpkwZSpUqha+vb5bTNzJCJpOxe/duGjRowHfffcf169cpVqyYTtZOJSJJgQS0qm8gAGGJGbdBFFEfQ0NDpk+fztChQ5kyZYranwdi2z0RXZKQkEBKSgq2tra5bUqOk9p2L7P7uBjGL1JQET37Imn4+/uzZs0apkyZQrly5XLbnBwnJD6FXx+Gsz8wimdRH7exUghwPyyRrf4R7H4SSXzKP57+06dPY29vj6enJ3v27GHHjh2i0Ncxenp6NG7cOEfy9q9fv07nzp1xcXFh06ZNauVrnz9/HgcHB7Zu3crq1atp164d4eHhuLu7Z7u9BZmJEycye/Zspo4cin7Ia7q69WFQj+Y4HN35kdAHKPvwDt9NG86Itg5UuHk13WMSoHYJ9aNsJBKJzor0/ZtixYpx/Phx3r17R48ePVAodCuqkxTC54rvq72OiG4YMGAAtra2zJw5U63xgiCIbfdEdMqtW7cAqFGjRi5bkvOkiv3MEMW+SEFFFPuFjdu3YdUqmD0b5s2D336DD72fx40bh5WVFWPHjs1lI3OeN7HJbH8cQWSSSsBntMVNlfcvY1Tj5dFxjBkzhtatW1OtWjV8fX35/vvvc8TmwoizszNXrlzRuTj6Nw8fPqRdu3bUrVuXffv2oa+vn+n42NhYRo0aRfPmzalQoQL37t2jX79+LFq0iB9++KFQelF0zfTp05k9bhwdujen8iUvAGQZ/A1IP7TsM4qKoMePXaly4WS6x7Mi9kGVt69rsQ9QtWpV9u3bx6lTp7KUIqIOBjIJuohINZSJG19doa+vz4wZMzh8+LBaqUghISGEh4eLnn0RneHj4wOQpbaxBYXQ0NCMK/G/fQtbt+Jy7x593ryBTZvg+fMctU9EJDsRxX5hIDERduyA+vXB0RHc3GDOHJg5E4YMAUtLXrdoQdiff7J48eJCl18ekahgb0AUKUr1w16FD/MWet3mt81bWLFiBadOncLKyio7TS30ODs7ExUVlS3iC+Dly5e0adMGS0tLjh8/jomJSabjL1y4gIODA5s2bWLlypWcO3eOypUrs2zZMuLi4pg2bVq22FnoUCiYdusWVaLC08T855AqlUiVCjpNGESZh3eRADXMDTDNQhg/qPL2AwICiI2N1cDwzGndujXLli1jyZIlWa7UnhkljGRahfCDKgqipJFMF+aIfKB379588cUXzJgx47Nj/f39AUTPvojO8PX1BVSdQQobH3n2BQEuXIDu3cHKCgYO5H83bzL85Uv44QewtYX27eGvv0DNe46ISF5FFPsFnTdvoEED6NsXUr0JSiUkJ0PKhxZUKSmUPneOq0DXS5cgG72meZGrb+NIVAhZ3hwLSLCoZMe+y7cZPXq01q25RD5PvXr1MDAw4NKlSzpfOyQkBBcXF/T09PD09MTc3DzDsbGxsYwePZpmzZpRvnx57t27h6urK1KpFLlczrJly/jpp5+wtLTUuZ2FkhMnkJw7hzSL7mqJICBVKGi22gNzQxmtrcyyfGkHBwcEQeDBgwdZnqsOrq6uDB48mKFDh+Lt7a2TNSsXNcBETzuvvADULVm4Dn6zGz09Pdzd3Tlx4gTXrl3LdOyjR4+QSqU66QIhIgLw9OlTpFJpoa3Gnyb2k5Kgf39o1gwOH07b88oEgbTjTUGAkyehXTuV6I+JyQ2zRUR0gqhOCjLv3kHDhnD/vur/mZxOppabk6xeDYMHo5MY0HxAQoqSB+GJGnvBJBIJr/XNxSquOYSRkRENGjTQed5+dHR0Wo69l5dXptWKL126RO3atdm4cSPLly/nwoUL6TbkCxcuRBAEnYdmF2pWr0aQaeZllioV2Fy/QC/Je4z0sn7Lq1GjBlKpNNuiSSQSCb/88gv16tWjU6dOBAUFab2mVCLBsaQx2sh9c0Mp1maZp7CIZJ3u3btTq1atz3r3/f39sbGxKXSRdiLZR1BQ0Gej1QoqaWI/JQW6dIGdO1UPpDq9PkWq48vLC1q0gLi47DdURCQbEMV+QUWphA4dIDg4a556QYBt22DJkuyzLQ/hG5aItjWo5AkKXsdlcsMQ0SlNmzbl4sWLOjtgSUxMpHPnzjx+/BhPT88MPWlxcar6DF9//TVly5bl7t27jBkzJl1Ex+vXr1mzZg1ubm5iyzJdERAAXl5ItIg4EmQyzH7boNFcY2Njqlatmm1iH1TV2g8dOoSBgQGdOnUiTgebyjoljVCdbWj2PmlYxkQsVpUNSKVSZs+ezenTp7lw4UKG41Lb7omI6Aq5XF4ovfqCIPwj9idMgBMnshaar1CoImMHDsw+I0VEshFR7BdUzpyBGzc0D8mfNw8SPq50XdB4Fp2k9RoS+GT1fpHswdnZmZCQEJ30KFcoFPTt25fLly9z9OhR6tat+8lxly9fpnbt2vz6668sXbqUCxcuULVq1Y/GzZ07F2NjY8aNG6e1bSIqkk+e1D7/XKFQ5V5qiIODQ1q+a3ZRunRpjh07hp+fH4MHD9b6MMtMX4qzWSJKhQKlMmv3AceShjhYfNy2UEQ3dOrUCUdHR6ZPn57h71lsuyeia2JiYjKNWiuoxMXFkZiYSHkDA1izRrPIVaUS9u2DD7U0RETyE6LYL6isWQN6H/eCV5uICDhwQHf25FFik7UvvCKRQIJCLOCSUzRu3BipVKp1KL8gCIwcOZKDBw+yZ88emjVr9tGYuLg4xo4di7OzM6VLl+bu3bu4ubkh+0RI+bNnz9iwYQMTJ07Ued/0wkpMTAxbly1DJ3EzYWEaT02tyJ/d6Tp16tRh+/bt7Nmzh/nz52u11vv37+nTrgUnPEajJwFFZuGqgPDB02UtRNHaykz06mcjEomE2bNnc+nSJby8vD56PDExkWfPnomefRGNEQSBwKgkDgREsvZ+GMvvyhl//CatJq/ANzSBFGXhST2Uy+UA2GvjAAPVnnr9eh1ZJSKSc4hivyASFATHj2eei/Q5pFLVgUEBRycbWgGtcmNFskaRIkWoW7eu1mJ/5syZrF+/ng0bNtCpU6ePHr969Sp16tRh3bp1LF68mIsXL2JnZ5fherNmzaJkyZKMHDlSK7tEVISFhdGqVSteBAWhp4Pil5ExMaxZswZPT0+ePn1KcrL60TgODg6EhYXx+vVrre34HF27dmXmzJlMnTqVo0eParRGeHg4Li4uREdHs3XpXM7PdcX/1CFSGxEoUpIRlAoEhUJ1CCAI2BQ14MKyySwY0ClLr42IZrRr146GDRt+0rv/9OlTlEql6NkXyTKCIHBHnsC6B+HsC4giICqZqGQliUooVqY8JlY2/PkyhtX3w7jwOhZFIRD9qWK/0h9/aFdZPyVF1a46Pl5HlomI5AxauH5F8iy+vtoX2FMq4c4d3diThzHVsmI1qDJiNSn8JaI5zs7OHDp0SOP5q1atwsPDgwULFjB48OB0j8XHxzNt2jSWL19OgwYNOH78+Gc9bH5+fvz++++sXLkSU1NTje0SUfH69WtcXFx49+4deyZNQjJrllbrCcDr5GTGjh2bJmRlMhkVK1akSpUqVKlShcqVK6d9b2trm64wmoODA6BqXZUTHRZmzJjB/fv36dOnD1evXsXe3l7tuTExMbRv355Xr15x8eJF7t27x1+H9nHihwG0rFUCv4hE5qxcx5cNGhLy7i1+t30oHidn0qZfqTZuBPXqbWXu3LnM0vI1F8kciUSCh4cHrVu35rCnFyVrO/E4Mon4FCUJCeaMOXCZqHJViUhUUNxQbIEo8nkEQeBUUAy35Yn//Ow/YyQS1V4lUSHg/S6eoJhkulYuipGs4O5h5HI55oDBu3faLxYTo6ojU6uW9muJiOQQEkEsI17w2L0bevXSzVpJSaBfcCsy35Un8Ncr7VuqDKpWnNLG4tlZTnHkyBE6d+7MixcvsLa2ztLcXbt20bt3b8aNG8fixYvTRXdcu3aNAQMG8OLFC+bMmZNhyP5/6datGzdu3MDf3x9DQzHXWRsCAwNp3bo1SUlJeHl5Uc3cXNUHWYtIJQVw0smJNhcuEBQUxNOnT9O+AgIC0r6P/5fHxsrKKk3829jYMGfOHIYOHYqHhwdFihTRwTPNnNjYWJycnIiMjOTGjRvpe0RnQEJCAt9++y1///03Z8+epVatWtSoUYNq1apx4sQJQHWYZWJiwrZt21i+fDlSqZQXL17w/v17pFIp7u7uzJ07lxs3blCnTp3sfpqFmtD4FDz2naRMrXpIpdKPhRkqsWZbRJ9mlqbiPUYkU84Fx3L9fda8zhKggpk+31cpiqyApe7Ex8cjl8v5/fff2Th1Ks90tfClS9Ckia5WExHJdkSxXxA5cgQ6d9Z+HalUtcEuYDeAf5OkEFh9PxRNU/clQDkTPfp9gvGCYwAAIABJREFUUVyndolkjlwup1SpUuzYsYPevXurPc/T05MOHTrQu3dvtmzZkib04+PjmTFjBsuWLaNevXps2bKF6tWrq7XmrVu3+PLLL9m8eTMDxWq9WnH//n1cXFwwMzPDy8uLihUrqh7o2VNVQ0RDwa+QSLAzNsYnKAhzc/NPjhEEgbdv337yEODp06dERkamjS1duvRH0QCp/7ewsNBZvvuLFy+oV68eNWrUwMvLC/1MDl6Tk5Pp1q0bJ0+e5OTJkzg7O7NgwQKmT5+Or69vWkh4YGAglStX5tSpU3Tu3Jm+ffuyfv167t27h729PUlJSdSrVw+JRMKNGzcyvaaI5gTFJLMvIIokhfKz91gJoCeFrjZFqVTUIGcMFMlXvIhOYvfTKI3nNytvQsMyebMtnyAIxMTEEBoailwuT/dvZj/79+FtWeCNrgzy8YEvv9TVaiIi2Y54TFwQsbLSzTplyxZooQ9gIJNQu4QRN0MSNKr4LQBflTLWtVkin6FkyZLUqFGDixcvqi32r127RteuXWnbti2//fZbmiDz9vZm4MCBPHv2jPnz5zN27Fj0slDcctq0aXzxxRf07dtXo+ciouL69et88803VKxYkZMnT1K6dOl/HhwxAvbs0WxhPT2S27Uj+ORJ1q1bx5QpUz45TCKRUK5cOcqVK0fTpk3TPSYIAgMHDuTKlSu4u7unOwg4efIk79+/TxtbvHjxDA8CypYtm6WDgIoVK3Lo0CFatGiBq6sr69at++Q4pVLJwIEDOXHiBEePHsXZ2Zk3b94wd+5cRowYkS73+80b1ZZXX1+f2NhYWrRowebNmzl37hz29vYYGBiwZcsW6tevz/z58z/bD14k64TEp7A3IJIUJWrdYwUgRQn7A6PoU7UY5UzFAxiR9NwMSUAKaJqRfjMkgfqljZFm855PqVQSGRmptmBP/fdTdUQMDQ0pWbIkJUuWpESJEpQoUQI7O7u071N/fvDgQbz++AMhNBSJNrWsUilXTvs1RERyEFHsF0S+/BKqVoWnTzXP3ZfJYNAg3dqVR2lUxoRH4YlEJaYgVSNkOxUJULGIPtXMRU9LbtC0adNM+1T/mwcPHtC+fXscHR3Zt28fenp6JCQkMHPmTJYsWcJXX33FrVu3qFGjRpZsuHz5Mn/99Rd79+7N0gGBSHpOnz5Np06dqFu3LsePH6d48f9Eyjg5weDBsHlz1j7TZDIoXhyjVasYMH8+K1euxM3NDWPjrB3QSSQS6tevz65du+jWrRsGBunf81FRUWkHAP8+CLhy5QpBQUFp40xMTD46CEj93srK6pMpI02aNGHdunX88MMPODg4MHz48HSPC4LAiBEj2L17N3v27OGbb74BVIdQhoaGzJw5M9341CKDMTGq9CV7e3saNWrEuXPncHV1BcDR0ZFJkyYxZ84cOnXqlFazQER7BEHgyLNoUpQf51NnOg9QCnDoWTTDa5pnuygTyT9EJyl4EpmkVYvS6GQlgVHJVCmm/n5GoVAQFhamtmAPDQ0lLCwMxScq4puZmaUT6eXKlcPe3v4j4f5vYW9iYqLW4enx48exKFcOSatWsHev5ilhMhk0bQqFsH2hSP5G3J0WRCQScHVVfWmKUglDh+rOpjyMnjKZMwvHUWPABIpYlFLL0yIBypro0dmmiLjpyiWaft2Ma8/e4fk0BD0jYwykEooZyqhW3ADDfxUbevHiBW3atKFChQocP34cY2Nj/v77bwYMGEBAQABz585l/PjxWRbrgiAwZcoUateuzf/+9z9dP71Cw6FDh+jZsyctW7bkwIEDmJh8IpRUIoF161Tt844cUU/wy2RQtCicOgUVKzJ+/Hg2btzItm3b+PHHH7Nsp729PcnJyfj7+39UMK9o0aLUrVuXunXrfjQvPj6ewMDAj9ICDh48yPPnz1F+qA5tYGCAra3tJw8C+vXrx7179xg1ahTVqlWjefPmgOpvcOLEiaxfv57NmzfTrVs3QJVasmXLFtasWfNR2sLr168xMjLizZs3SKVSbG1tad68OStXrkSpVCL90Plg+vTpHDlyhIEDB+Lt7S2G8+uIlzHJhCZq1v5LQCXKAqKSqFpMrA0iosIvIknrNSSAz+sIEl69V9vrHhER8cl2pMWLF08n0m1sbKhXr16mwj07a93I5XJVzZMRI2DnTs0XUihA7LYjkg8Rc/YLKpGRYGkJcXFZ9+7LZPDdd6BFtfP8QkpKCj169OD48eMc+cuLUCsHgmJTMgyHS5X1tSwMcalghr5UFPo5TWSSgtshCdwMiSNZkICgRPqhwrAS0JOAQwkjHEsaIcSE06RJE1JSUrh8+TIWFha4u7uzaNEiHB0d2bp1KzVr1tTIjpMnT9K2bVv++OMP2rdvr8NnWHjYunUrgwcPplu3bmzfvv0jj/lHKBQwYwYsWwaJHypO//fzTU9P5blp2BB27IDKldMe6t69O7du3cLf31+twov/JiIiAnNzc3bu3EkvHRVATUpK4sWLFx8dBAQEBBAYGEhSkmoTL5PJsLa2JjIyktjYWMaOHUuDBg04c+YMq1evZsWKFYwePRpQHQA4OzsTHh7OnTt3PjrEmjRpEvv376dr164cOHCAwMBALly4QLNmzbh9+3a6onw+Pj40bNiQWbNmMXXqVJ0854xQKAX8I5O4FRKPPEFBslJAJpFQzEBKnZJG1LIwTHeIl185/CyKJxFJGodbS4BKRfT5vkoxXZolko85GxyLT0g82nbRe37nOr8O+jbt/1KpFAsLi0xF+n+/t7CwyHNRbi1atKBMmTLs3rUL6tSBBw9U95KsIJVC6dLw8mWBLlotUjARxX5B5s8/oUMH1ffq/pplMlWIko+P6oOtAKNUKhk8eDC///47hw4d4rvvvgPgfXwKt+UJ+IYmkPKvl81ET0LdkkbUKWFEEQOxFVJuEBCZxOFnUSiEzENgU49g/t6ylCv7tnDlyhXCwsIYMGAAT548wd3dnQkTJmi8KREEgfr166Ovr8+VK1d0VpCtMLFixQrc3NwYNmwYv/zyS9bEd0QEbN8Oq1er0pVSMTKCPn3gp5/gE152Hx8f6tWrx759+9K84FmhYsWK9OzZkwULFmR5blZRKBQEBQWlOwjw8/Pj1KlTJCcnp/OoWVpapkUDxMbGsmfPHtauXUvv3r0pWrRounX79etHYGAgpUqVIj4+Hk9PTxISEjA3N2f+/PmMGTMm3fjJkyezdOlSbt26Ra1saDclCAJ/v4/H+1088QohrQL9f9GTQO2SRjQrb5pvD1mTFALL74VqFW6dimstC0z08//hh4j2nHoVwx15gsYHSKkYJcXSQPk6TbgXL148LdInP1O7dm2cnZ1ZvXo1+PmpDoJjYlQRrOogkagE/vnz0KhRttoqIpIdiGK/oLNnD/TtqxL7nzvJlMnA2hq8vNJ5wwoigiAwevRo1qxZw44dOz7pqVMIAgkpAslKAUOZBCOZRBR1ucjTyCQOBkapvVEWBAGJRMIXihB8Du9g4cKF1KlTh61bt2otWg4fPkyXLl04d+4czZo102qtwoYgCMycORMPDw8mTZrEvHnzNH9fCQLEx6vEv7ExFCum8sBkQsuWLdPa2WX1ut9++y1KpTKtjV1u4Ofnh6OjIwkJCXz//fe0adOGgIAAAgICePz4Mbdv3053EFCqVKl0aQH79++nbNmyBAcH07JlS9asWQOovF9FihTh6NGj6a6XkJCAo6MjpqamXLt2TadeO6UgcPxFNH7h6oUhS4AyJjK+r1wMY738J0IiEhWsfxiuk7XEdq8iqVx4Hcv1d/Fai/2KZvr0rFrwIkYsLS0ZOnToP/VL/v4b2raFqCj19sX6+nD4sGqOiEg+RLxTFHR69FAJ+OnT4exZ1QfXvz7cBFTFpzA0hP79Yc4cUKOfc35nxowZrF69mvXr12cYkiuTSDDVF8V9XiAsQcHhZ+oLffjwdy0IPJKUYO+pC7i7uzNx4kStc48VCgXTpk2jVatWotDPIkqlkjFjxrB69WoWLFjAxIkTtVtQIgETE9WXmkycOJE2bdpw7tw5WrRokaXLOTg4sH379qxaqVMePnyYFt5vY2OTrt3jnDlz8PX15cqVKwiC8FEbwdTOAQ8ePADg+fPneHt7U6VKFRQKBV5eXpw/fx47OzvKlSuHRCLByMiILVu20LhxY5YuXar97+wDgiDg+TJGbaEPqvvVuzgF+wOi6FW1GHr5zMOv0KFvJUXbmG2RAkM5Ez2thb4EKG9a8CSBIAjI5XJKlCjxzw/r14cbN2DiRJWIl0g+Fv0ymcrz37o1zJ+vCv8XEcmnFLx3tsjHNG4MZ87A48ewfr3q+/BwXsvlRBobU33WLJX3v1jBO9H9FIsXL2bOnDksWrSIYcOG5bY5ImpwU65hPqJEgqBUMGXDbgbVraATW3bv3s3Dhw/ZsmWLTtYrLCQnJzNo0CB27tzJhg0bGDJkSK7Y0bp1a+rUqcPChQs1EvvBwcGEhYVhYWGRTRZmjKenJz179qRHjx7Url2biRMnYm9vT69evQgODmb+/Pm4urpSr149AOrXr//RGubm5nTq1ImtW7fSs2dPZDJZWopAfHx8WvE/ExOTtAKBlStXpmXLlkyfPh1HR0datGiR5ZoH/yUgKpl7YYlZnicAb+JS+Pt9PI3L5s2+4Bmhy5oDRgWgfoGIbqhSzABTPQmxKZofAAlAnZJGujMqjxATE0NSUpKqQN+/qVwZDhyA4GD47Tc4eBBCQ1UC39wcvv0Whg0r8FGuIoUDUewXJuzsVIWtPjBr2DD+/vtvbhei6qK//vorEyZMYOrUqfz888+5bY6IGiQpBO6FJmic5yqV6fEePSKTFBTTstZCcnIyM2fOpGPHjp8UUiKfJiEhge7du+Pp6cmePXvo3r17rtkikUiYMGECvXr14vbt25+soJ8RqVX4fX19+frrr7PLxE9y6dIlunTpQtu2bdm6dSt6enrcv3+fwYMHU7VqVVavXo2pqSnTp0/PcI34+HgiIiIo/aEey9SpU6n8YTObmJiIubk5I0eOpEmTJulqBRw+fJhnz56hVCpxcXFBT0+PypUrp+sckHooUKlSpc8XWgRuhsRnmJ//OYQP8xuWyf6+4LrERE+itSgDMJRJKGogin0RFVKJBMdSxlx+E6fR+0mRkoL80R1e6ll+1GkkvyOXywE+FvupWFrCzJmqLxGRAooo9gsxNjY27N27N7fNyDF2797N8OHDGTVqFB4eHrltjoia+IUnkqxljKIEuCtPwLm8qVbrbN68mWfPnnHkyBHtDCpEREVF0bFjR65fv86xY8domwfyHrt168aUKVNYvHgxu3btUnuenZ0dBgYG3Lt3L0fFvo+PD+3bt6dRo0bs27cvLRVlw4YNPH78mHbt2iGXy/n1118plkmE1ps3bwDV4Yuenh4VK1ZMe8zQ0BAnJyf8/PxYtGjRR3OTk5M5fPgwPXr04Ntvv6VSpUo8ffoULy8v1q9fn5ZaIJVKqVix4idbCNra2mJiYkJ4ooJn0clavSaxKQJPI5OwK55/WtBpK8pA9VlWp4RRvkthEMle6pQwwud9PAkKIct/WzKZjJv7f2P1wCOMGjWKWbNmfVTYM78SGhoKZCL2RUQKAeLRcCHG1taWyMhIwsN1UzAoL3Ps2DH69u1Lv379WLFihVhoLx/xPiEFbfe1AhASn6LVGvHx8cyePZuePXsWOO9HdiGXy2nZsiW3b9/Gy8srTwh9AD09PcaNG8fevXt59uyZ2vP09fWpUaMGvr6+2Whdeh4+fEjbtm2pWbMmR48excjon1BbIyMjDh06RFRUFMbGxvTu3TvTtV6/fg1AeHg4tra2HxXba9asGRcvXiQl5eP3ir6+Pt27d8fNzY2//vqLYcOGcfz4cR4+fEhcXBwvXrzg7NmzrF+/nm7dulG0aFGuXbvGzJkz6dy5M/b29piammJlZcXYhasR1K2EnQESVAeB+Y2UZ/dRZLXt178QEKhbAMOtRbTDVF/K91WKIZOAMot/X99WKsLpA7uYO3cuGzZs4IsvvmDXrl0UhPrdn/Xsi4gUAkSxX4ixsbEByNJmNz9y5swZunfvTseOHfntt98KRCuZwkSiQlC7c2RmxCu0W2TdunW8e/eOWbNmaW9MISAoKAhnZ2devnzJ+fPncXJyym2T0jFo0CDMzc1ZunRpluY5ODhw7969bLIqPYGBgbRq1QpLS0tOnDiBmZnZR2POnz9PUlISKSkp/Pjjj5lu0FM9++/evcPOzu6jx5s3b05UVBS3b9/OcA0PDw+sra0ZNGhQmmiVyWRYW1vTvHlzhgwZwsKFCzl48CB37twhOjqaN2/ecPnyZbZu3crAgQOxKGeJUqm54AXVAV60tiE/OUhERATDhw+nuVNDnl08gSYJDEqlkvunjnL+r+O6N1Ak31PWRI9XB9YSFxnG5/6+JIBMAp0qFaGWhREGBgZMnDiRR48e4eTkRO/evWnZsiUPHz7MEduzi1Sxn65An4hIIUNUPYWYVLEfGBiYy5ZkH97e3nTs2JGvv/6aXbt26bRtlEjOoC+VoIs4DEOZ5qtER0czf/58Bg0aRJUqVXRgTcHmyZMnNGnShNjYWC5dukSdPFjJ2MTEhFGjRrF582ZCQkLUnmdvb8/9+/dRaumZ/hyprfHMzMw4deoU5ubmH42JjY1l4sSJdO7cmW3btrFjxw6WLFmS4ZqvX7/GyMiIZ8+eUbVq1Y8e/+qrrzAxMeH8+fMZrmFiYsLmzZvx9vZm1apVn30eEomEsmXL4uTkRP/+/fHw8MCl7Tfo62nXFQNAy/O7HEEQBPbs2UO1atXYuXMnq1at4hfXvlQqYkBWTjElQDljKfE+p+jcuTOurq4kJua/yAaR7OPgwYOsmjsTy8ArtLYyw8Lwnxo1/777GcskNC5rzLAa5lQzT58GU6FCBQ4cOICnpydBQUFphUBjYmJy6FnoFrlcjomJCcbGxrltiohIriGK/UJMiRIlMDMzK7Ce/Xv37vHNN99Qp04dDh06hKFh/sntFPmHYgZSjfNbU5ECRbUozrdixQqioqIyLX4mouLu3bs0bdoUY2Njrly58kkPcl5h5MiRSCSStF7z6uDg4EBsbGy2fm6GhITQunVrlEolp0+fpkyZMp8ct3jxYt6/f8+SJUvo2bMnU6ZMYeLEifz555+fHP/6zRusbStnKPYNDAxo0qQJ586dy9S+Jk2a4OrqypQpU3jy5EmWn5+RFgdvaQgC+lo3HMteAgMD+eabb+jZsydNmzbFz8+PkSNHYqCnh33yG+6fPgaQ6WFm6mOVi+rTp1oJDuzby+rVq/n1119p3LixRq+/SMHj+fPnDB48mP/973/8+MNgvixlzJDqxeldtRhtKpjydXkTWluZ8j/booy0t6BpOdNM74lt2rTB19eXmTNnsmrVKqpXr86BAwfyXWi/XC4XQ/hFCj2i2C/ESCQSbGxsCqTYf/z4MS4uLtja2vLnn39iaqpdYTaR3KOGufaHNErA3kKzdcLCwliyZAk//fQTFSropn1fQeXq1as0a9YMKysrLl68iJWVVW6blCklSpTghx9+YM2aNcTGxqo1x8HBASDbQvkjIyNp06YNYWFhnD59Gmtr60+Oe/XqFYsWLcLNzQ1bW1tAFWLfoUMHevbsiZ+fHwDhiQrOBsey8l4o5t+PZ+CO88y6FkTSV+25G5pA8n96WjZr1oxLly59Mm//38ydOxdLS0sGDRqU5SiH8qba9wVXKpVsXb6QVq1asXjxYnx9ffOMEElKSmL+/PnUrFmTR48e8ccff7B//34sLS0BVYHE3j174LN5MZ2tDLArbpAm6iWkF/+Vi+rzfeWidLUtqopykkgYOXIk165dIyoqCkdHR3bv3p3TT1EkD5GcnEzPnj0xNzdn48aNaTWJJBIJFcz0qVvSmIZlTPiylDFVihkgU7NmkaGhIdOmTePhw4c4OjrSrVs32rZty+PHj7Pz6egUUeyLiIhiv9BTEMX+y5cvadWqFebm5nh6emZanVok71PUQEaVYgaah/ILAqWNZZQz0SyFY9GiRSgUCiZPnqypBYWCkydP0qpVK2rXrs3Zs2cpVapUbpukFm5ubkRGRrJp0ya1xpcpU4aSJUtmi9iPjY2lffv2PH/+nFOnTn3S+57KxIkTKVq0KFOnTk37mVQqZceOHVhbW/N9v4Hs8JPz68NwbryPT1ezQiqTEa9nzF8vY1jtG8rVt3FpQrl58+bExMRw8+bNTG01NTVl06ZNXL58OUuREQCVixpgpqfd9kMmk9K+dmUMDAyYOXMmDg4OWFlZMWjQIPbu3UtYWJhW62vKlStXcHR0ZPr06YwaNYoHDx7Qvn37dGMmTJiAn58fe/bs4YtSRelsU5SfapnTztqMZuVNaFbehG+szRhe05z/VS6GTVGDj4rKOjo6cuvWLb777jt69erFkCFDiIuLy8mnKpJHmDZtGj4+PuzZs4fixYvrfH0bGxuOHj3K8ePHefLkCfb29kybNi1f/L2FhoaKYl+k0COK/UJOQRP77969o1WrVshkMk6fPp1vBIdI5nxVykjzUH6JhIcn9hEfH5/lqW/fvmXVqlWMHj06rTe5yMfs37+f/7N333E1738cwF9n1Km0NGyXwpVoCBmFrISfcY2ErMK17kWRLXvvESHXTrjmJSlR9g4hKzMjGaV9xvv3x1FXt3VWndLn+Xicx73O+X4/n/eX0+m8v5/P5/3p2rUr2rVrh+Dg4FK1bVPNmjXh5uaGFStWQCgsfDs4DodTJEX6MjIy0LNnT0RFRSE4ODh7BkFeLl26hMDAQCxcuBB6eno5XtPT08Puw/+g26JteJUiLYKX98+ONHnMlACR71Jx/OU3SIjQqFEj6OrqFjqVHwBat26NsWPHYsqUKXj27Jmsl/p9CzothW/gcQD8aijAuFEjcPLkSXz+/BmnT5+Gm5sbrl27Bjc3N5iamqJZs2aYPXs2Ll++rFQFfFl8/vwZI0aMgKOjI3R1dXHz5k0sXbo016yyY8eOYd26dVixYkWOWhZ6GjxYG2uhaUUdNK2oAxtjLRgUsvRIT08Pu3fvRkBAAPbs2QN7e3vcv3+/SK6PKZlCQkKwdOlSLFy4EE2bNi3Svv73v//h/v37mDJlCpYtWwZLS0scPXq0xMyoyQsb2WcYluyXeWZmZnjx4kWRF5sqDl++fIGzszOSk5MRFhaWPWWSKf1q6GnCoZJiBXY0P76A34wJ2SNh8liwYAEEAgEmTpyoUN9lwdatW+Hm5gZXV1ccOnSoVBZC8vHxwatXrxAUFCTT8dbW1irdfk8kEqFfv36IiIjA8ePHC/zSLpFIMG7cONjZ2WHIkCG5Xk8WSnAxQx+6Rqbg8mSvU/HgSybC3qRAQ0MDjo6OBRbp+9GiRYtQqVIleHp6yvV7xNZECzp8xYpvcjlAi4o62X/W0tJChw4dsGLFCkRHR+PVq1fYvHkzqlevjjVr1qBFixYwNTWFq6srtm3bhri4OAV6zRsRYe/evahXrx6CgoLg5+eHixcvwsbGJtexb968wdChQ9G9e3eMGTNGJf1zOBx4eHjg+vXrAIAmTZogICCgRCdgjGq8e/cOAwcOhIuLC7y9vYulT21tbcyZMwf3799HvXr10KNHD3Tt2rXEFnpOSEhglfiZMo8l+2Wcubk5MjIy8P79e3WHopTk5GR07twZcXFxCA0NRa1atdQdEqNijpV00LyiNJGUNUFoUF6AcR0a4datW9DR0UGzZs2yp+UDACQSICwMmDgR8PAAPD0BHx8gMhIvX7yAv78/Jk2alGcldEZaIG748OEYNWoUdu7cCQ0N5Susq4O1tTVcXFywdOlSmZIkKysrPH36VOZ1/gWRSCTw9PTE8ePHcfDgQbRp06bA43fv3o0bN25g9erVeW4jGvE2BclCCSDjutwf3UpIx5tkIdq0aYMLFy7INNNBV1cXW7duRUREBDZu3ChzXzp8LtxqG8i120bWevbuNfVQsYBlOdWrV4enpycOHDiAjx8/4uLFi/jjjz/w8uVLDBs2DNWqVYOVlRUmTZqEsLAwhavaP336FM7OzhgwYACcnJwQExODUaNGgZfHTRaxWAx3d3fo6OggICAg17R8ZdWvXx/Xrl2Du7s7hg0bhgEDBiApKUmlfTAlR9b7ic/nY8eOHcW+pXDt2rVx8uRJHDp0CHfv3oWlpSXmzJmD9PT0Yo2jMGxkn2EADrHbv2VadHQ0rKyscOHChRK3D7as0tPT0aVLF1y/fh3h4eFo3LixukNiilDMlwxc/pCKD2licIEchb6y/lxewEXTCjqwMRZkf6nOzMzEzJkzsWzZMnR0dMTeNm1QfvduIDYW+O+WjCIR3hkYYLVYjJnPn0OXfVnIgYgwbdo0LF68GDNmzMDcuXNVnrwUt3PnzqFNmzY4efIkOnXqVOCxN27cQJMmTXD16lXY29sr3CcR4Y8//oCfnx/27t0LNze3Ao9PTk7Gr7/+CkdHR+zfvz/X6+kiCdZFf1Z4SzoOAMvymqgYH4OmTZvi0qVLaN68uUznjh49Gjt37sS9e/eyt3WVRUK6CEFPk/BNKAEHBe8OrsEFeprpw0xfU+b2c/WXkICwsDCEhITg1KlTeP/+PXR0dODk5AQXFxd07NgRderUKfD9nJmZiWXLlmHevHmoXLky/Pz8Cn3PzJ07F3PmzMHZs2fRqlUrheOXRWBgIEaMGIFKlSohKCgIdnZ2RdofU/wWLFiAmTNnIiwsDG3btlVrLCkpKZg/fz5WrFiBX375BevWrSv056E4EBE0NTWxZs0ajB49Wt3hMIzasGS/jEtOToaenh527tyJgQMHqjscuQmFQvTu3RunT59GSEhIkX+JYkqOd6lCRCWkIyFdjHQxQcDloLyAC2tjLfyiq5Hvl/WLBw7AqH9/1BWJclW+/pHk+2sce3vgn3+pc/N6AAAgAElEQVQAVv8BgHREaezYsdi0aRNWrFgBLy8vdYekEkSEZs2aQVtbu9Ap7KmpqdDT08PmzZvh6empcJ/Tp0/HwoULsWXLFgwbNqzQ42fMmIHly5cjJiYGNWvWzPX6tfg0hMcpN9uAC2BkPX1Uq2CCKVOmYNq0aTKd9+3bN1hZWcHc3BxhYWFyjTSKJISYrxm4EZ+G92m519YbaHLRyFQb1kYCaClZ2O9HRIR79+7h1KlTCAkJwfnz5yEUCmFmZoaOHTvCxcUFbdu2zVEX4fz58/j999/x5MkTeHt7Y9asWdDR0SmgFyAyMhJt2rTBzJkzMXv2bJXFX5CnT5+ib9++iI6OxvLly7O3mWRKvwsXLqB169aYPn065s6dq+5wssXExGDMmDEIDw9Hjx49sHr1atSoUUNt8SQlJcHAwABBQUFwdXVVWxwMo24s2WdQoUIFjB07FrNmzVJ3KHKRSCQYOHAgDhw4gKNHj5aIO8lMCZeQANjbg169AkfWgl18PlCnDnD5MlDGd3bIzMzE4MGDsX//fmzZsgUeHh7qDkml/v77b/Tu3RtXrlwptNiVhYUFOnbsiDVr1ijU15IlSzBlyhSZb5i8ePECFhYWmDhxIubPn5/nMTsefcW71IK3zJNFp190MX1wb2RkZCA0NFTm88LCwtChQwds3LgRI0eOVKjvD6kifEoXI0MiwdnQUGxctQwPLoYXyxKR5ORknD17NnvU/9mzZ+Dz+XBwcEDLli0RHR2NI0eOoHnz5vD394eVlVWhbX769Am2trYwMzNDeHg4+P+dRVSEMjIy4OPjg7Vr16JHjx7Ytm0bW5JUyqnz/SQLIsL+/fvh5eWFL1++YMaMGfD29oZAoPwWuvKKjY1FrVq1cObMGbXPfmAYdWJr9plSWZGfiDBmzBjs27cPe/bsYYk+IxtXV0CeRB8ARCLg8WMgj2JoZUlqaip69OiBQ4cO4cCBAz9dog8APXr0QJ06dbB06dJCj7WyslK4Ir+fnx+mTJkCX19fmWdG+Pj4wMjICFOmTMn3mBSh8oVWOQDSRBI4OTnh4sWLyMzMlPnc9u3bY8SIEZg0aRJevnypUP8VdfiwNBKgoYk2GlUxwNPrF4ptX29dXV107doV69evx9OnT/HkyROsWrUKiYmJmD9/Po4cOQI9PT3UqlUL9+7dw8ePHwtsj4jg6emJlJQU7Nmzp9gTM4FAgDVr1uDw4cOIiIiAra0tLl++XKwxMKpDRPDw8EBqair27t1b4hJ9QFowsm/fvoiJicHo0aMxa9YsWFtbIywsrNhjSUhIAABWoI8p81iyz5S6ZJ+IMHnyZGzatAlbtmxBnz591B0SUxrcugWcPQsosgWXWAwcOQI8far6uEqBxMREuLi4IDIyEv/88w969uyp7pCKBI/Hw6RJk3D48OFCE8ysivzyTo7bvXs3xowZg/Hjx8PX11emcyIjI3HgwAEsXrwYurq6+R6nij1VOADEBLRp0wZpaWm4du2aXOcvW7YM5cuXx7Bhw5SuCJ+1/aCqtzmUlUQiweHDhxEVFQVXV1ccPHgQo0aNwr179zBgwABUrFgRTZo0wYwZM3DhwgWIRDlnVfj5+eHo0aP466+/UL16dbVcAyC9iRUVFYVq1aqhZcuWWLJkyU+xA09Zs27dOhw7dgzbt29HtWrV1B1OgfT09LB8+XJERUWhUqVK6NChA/r27Ys3b94UWwxZyT4r0MeUdSzZZ0pdsr9w4UIsW7YMq1ev/ilHF5ki4ueXuxCfPHg8YNMm1cVTSsTHx6NNmzaIjo7Onqb9Mxs4cCAqVKiA5cuXF3ictbU1Pn36hHfv3snc9pEjRzBkyBB4enpi5cqVMq2hFovFGD9+POzt7eHu7l7gsdo85ddkSwBo8TiwtbWFgYGBzFvwZdHX18eWLVsQFhaGrVu3KhVL+fLlUb16ddy5c0epduSVkZGBuXPnwtraGi9evEBISAiCgoLQq1cvLFmyBFFRUYiLi8O2bdtQu3ZtbNy4ES1btoSxsTF69eqFzZs3Izg4GN7e3hgzZgy6d+9erPHn5ZdffsG5c+fg4+ODKVOmoHPnzoiPj1d3WIyMbt26hUmTJmH8+PHo2rWrusORWYMGDXDu3Dns2rULERERsLCwwPLly2Xa6UNZbGSfYaRYss/AzMwMb968KZYPX2WtW7cOM2bMwJw5czBu3Dh1h8OUFsnJwO7d0in5ihKLgS1bgFLwc6Iqr169QsuWLfHu3TtERESgWbNm6g6pyGlpaWH8+PHYsWNHgYl81nptWUedQ0ND0bdvX/Tq1Qv+/v4yF0vbvn07bt++ne9We0KhEGFhYfjjjz8QFrQDYmXe49/9oqsBHo+HVq1a4ezZs3Kf37FjR3h4eMDb2xuvXr1SKhZra+tiHdmPiIiAjY0N5s2bB29vb0RHR8PZ2TnXcVWqVMGQIUMQGBiI+Ph4XL16Fd7e3nj//j1GjhyJzp07A5BOaw4JCUFaWlqxXUN+NDQ0sHDhQpw6dQq3bt2CjY2NQv++TPH69u0b+vbtiwYNGmDx4sXqDkduHA4H7u7uiImJgYeHByZPngxbW1tEREQUab+fPn2Crq4utLS0irQfhinpWLLPwNzcHBKJROkvZUVtx44d+PPPP+Ht7Y2ZM2eqOxymNHn9GlBwL+0ckpKAQtbp/iwePXoER0dHCIVCXLhwQaZiZD+LkSNHQiAQYO3atfkeU7NmTejq6sqUiF68eBE9evRA+/btsWvXrjz3Yc9LUlISpk+fjv79++fYAi8xMRFBQUHo378/TE1N0aFDBxw9ehSVhF/AU2L2CgdAtXJ8mGpL23BycsKlS5cU2od+xYoV0NfXx4gRI5Sazm9jY1MsI/sJCQkYOnQonJycYGJigqioKCxYsADa2tqFnsvj8WBvb49Zs2bh4sWLGDBgAAQCAf73v//h8OHDcHFxgZGREVxcXLBq1So8fPhQ6SUOyujYsSPu3LkDS0tLtGvXDr6+vhArsryJKXJEhJEjR+LDhw8ICgpSS6E7VTE0NMTatWtx8+ZNGBgYwMnJCe7u7nj//n2R9JeQkMCm8DMMWLLPANl7Ipfkqfx///03PDw8MHz4cCxbtoxtIcTIJylJdW0lJqqurRLq1q1bcHR0hJ6eHi5cuIBatWqpO6RiZWhoiN9//x0bN25EUl7vHYkE3NBQHNfQwIAFC4Bq1YB69YDffgOCg4Ef1kPfvn0bXbp0QZMmTXDw4EFoasq+R/zChQuRlJSExYsX4/Xr19iwYQOcnZ1hamoKNzc3PHz4EOPHj8etW7fw8uVLrFowBzV0NfLdTrIwBKCR6b/JbZs2bZCeno6rV6/K3ZahoSE2b96MkJAQ/PXXXwpGJB3Zf/v2bfaUXFUjIuzYsQMWFhY4evQotmzZgsjISNSvX1+h9oKCgrB79274+fnh4MGDeP36NaKjozF//nxIJBJMnToVlpaWqFGjBkaMGIG///4bX79+VfFVFa5y5co4ffo05syZg/nz56Ndu3aIi4sr9jiYgm3fvh179+6Fv78/ateure5wVMLW1hYXLlxAQEAAQkJCULduXaxZsyZXzQtlsWSfYaTY1nsMhEIhtLS0sHHjRowYMULd4eQSEhKCrl27omfPntizZ4/Mo2IMk+3+faBBA9W09fq1NLn7SUVGRqJr166wsLDAyZMny+x6x7i4OJiZmWHBggWYNGmS9EkiYONGYOlS4OVLiDkc8H78FcrnS5eK/PILMGkSYtq1Q8tWrWBmZoawsDDo6+vL3P/Tp09haWkJBwcHJCUl4datW+Dz+XByckL37t3RtWvXPPewjksRYs+TREjk/M0uEYtRSYePwfWMwPt+M1UikcDExATjxo2TuZjgfw0ZMgRHjhxBdHS0QkXFYmJiUK9evSLZPismJgajRo3CuXPn4O7ujhUrVqBChQoKtxcbG4uGDRuic+fO2Lt3b543pVNTUxEREZG9vd+jR4/A4/HQrFkzuLi4wMXFBXZ2dnku2VAJoRA4ehQICACePQNSU5HC5+P0hw/YJhBg1J496NylS9H0zcjl4cOHaNy4Mdzc3BAQEKDucIrE58+fMX369OytLP38/ODg4KCStnv16oWUlBScOnVKJe0xTGnFkn0GAFCjRg30798fixYtUncoOVy4cAHOzs5o164dDh06VCx7LTM/ocREwMREuTX7ANI5HLy6cwe//qRT2k+cOIHevXujRYsW2duMlWWenp44deoUYmNjIeBygWHDgJ07ZT7/b21tzDc3R1hEhEw3TYRCISIjI3H06FFs3boVaWlp0NPTQ+fOndG9e3d06tQJhoaGhbYT8yUDR198A4EAWcb5ifA57iVub5yDw/sDc1T879GjBxITExVe2/3lyxfUr18fDRs2xD///CP3rCyRSAQ9PT0sWrQI48ePVyiG/0pPT8eiRYuwePFi/PLLL9i4cSPat2+vVJtCoRCOjo74+PEjbt++DQMDA5nOyyoAeOrUKZw5cwbfvn2DiYkJnJ2d0bFjRzg7O6NSpUpKxfY9QOlNqjVrpEuReLwcO5MQjweOWIwYALc6d0bvw4flmoXCqFZaWhqaNm0KkUiE69evo1y5cuoOqUhdv34do0ePxo0bNzBkyBAsWbJEqRtvANC6dWtUr14du3fvVlGUDFNKEcMQUevWralv377qDiOHmzdvkr6+PrVp04ZSU1PVHQ5T2vXtS8TnE0nHZ+V+SHg8CjQwIB0dHfL39yeJRKLuK1KpvXv3Ep/Ppx49elBaWpq6wykRHjx4QAAoYOtWIk9PIg5HrveMGKCUvn2JCnivJCYm0r59+6h///5kaGhIAMjExIQA0OTJkykjI0Oh2J8lZtD8y69o4c14WnQznhbd+pjrsfj7f3c9+kLnLl4mPT09cnBwoMTExOx2Vq9eTQKBQKn3xLFjxwgA7dixQ6HzGzduTEOGDFG4/x+dOXOG6tSpQxoaGjRjxgyV/W7x8fEhPp9PV69eVbiNzMxMioiIoGnTppGdnR1BurKCbG1tacqUKXT27FnF3g/JyUTOzjK9fyXf/7urcmV6Hhur8LUwyhk5ciRpaWnR3bt31R1KsRGJRLRp0yYqX748GRoakp+fH4lEIoXbq1+/Po0bN06FETJM6cSSfYaIiIYMGUL29vbqDiPbgwcPyMTEhOzt7SkpKUnd4TA/g8hIhRP9rEfq5cs0YsQIAkDdu3enjx8/qvuqVMLPz484HA4NHjyYhEKhusMpUbp3705/Vqmi3HsnMDBHm69fv6YNGzaQs7MzaWhoEACysbGhWbNm0bVr18ja2pqaN2+u1A2lc+fOkaZ2Odr4zzlafvl5non+4dhEevUtM7ufK1eukIGBATVr1oy+fPlCRERRUVEEgM6ePatwLERE7u7uZGhoSHFxcXKf6+HhQXZ2dkr1Hx8fT4MGDSIA1LJlS3rw4IFS7f0oJCSEANCSJUtU1iYR0fv372nXrl00YMAAMjU1JQCkq6tL3bp1Iz8/P3r27FnhjQiFRC4uRDye3O/bxQIBHTx4UKXXxBRu//79BIA2bdqk7lDUIj4+njw8PAgANWrUSL4baCkpRKdOEe3eTWP09SnQ3Z3o8+eiC5ZhSgGW7DNERDRnzhwyNTVVdxhERBQbG0tVqlShBg0a0KdPn9QdDvOzkEiIbG0VG93n84lat85u6siRI2RsbEyVKlWikJAQ9V2TkiQSCS1YsIAA0Lhx40gsFqs7pBLn0qVLdB4giZyj+tkPLpckzZpRVFQUzZ07lxo1akQAiM/nU7t27WjNmjX0/Pnz7P42bdpEAOjatWsKxywWi8nOzo6aNGlCYrGYVq5aRTUaNKQnX9Mp5ks6PU/KoOTMvP+tb9y4QeXLl6fGjRvTp0+fSCwWk7GxMc2aNUvheIiIPn36RBUrVqSuXbvKfRNjzZo1JBAIFLoRJZFIKCAggIyMjMjIyIgCAgJU+j5///49VaxYkZydnYv050csFtONGzdowYIF1LJlS+LxeASA6tSpQ2PHjqV//vmHkpOTc5+4YoXcM1J+fDgANHr0aDbbp5jExsaSgYEB9enT56ebPSavS5cuka2tLXE4HBoxYgQlJCTkf/CjR0QTJhDp6+d+HwsERB4eRDdvFl/wDFOCsGSfISKinTt3EgD69u2bWuOIi4sjc3Nzql27Nr19+1atsTA/oefPiYyN5Rvl4vOJqlYlevcuR1NxcXHk7OxMAGj8+PGl7suwRCKhiRMnEgCaM2dOmf9ima9795SeEUIAWQOkp6dHrq6utGfPHvqcx2jTly9fyMTEhAYNGqRUyH/99RcBoAsXLhCRdIp5rVq1ZD7/9u3bZGxsTLa2tpSQkEA9e/akli1bKhUTEdHhw4cJAO3evVuu886ePUsA6P79+3Kd9+DBA2rVqhUBoEGDBlF8fLxc5xdGLBaTs7MzVahQgd795/OhqH39+pUOHTpEv//+O9WoUYMAkKamJrVr146WLVtGd+/eJYlIRFS9usLvWQmfT0/s7EggEJCNjQ09evSoWK+xrMnMzKSmTZuSmZkZff36Vd3hlAhCoZDWrVtHBgYGZGxsTFu2bMl5U00iIZo+XfqeLej3etZN/oEDiRRcGsUwpRVL9hkiIrpw4QIBoHv37qktho8fP5KlpSVVq1aNXrx4obY4mJ/cgwfS5F2WhJ/HIzI3J8pnuqxYLKZVq1aRpqYmWVlZqfXnRx4ikYg8PT0JAK1Zs0bd4ZRsPj4kVmAK9I8PEYdDsb16UXp6eoFdeXl5kY6ODr1580bhcL99+0aVK1fOUYPF3d1d7mT97t27ZGpqSlZWVrRgwQLS1NSklJQUhePK0q9fPypfvrxcyfGnT58IAO3du1em41NTU2nGjBmkoaFBderUoTNnzigaboGWLl1KANQ+u0cikVBMTAytXr2aXFxcSEtLiwDQACMj5W9U8XgUHRZGv/76K5UrV4527typ1mv9mU2aNEnpug8/q/fv39PAgQMJADVt2pRu3rwpTfSHD5d7phW1b0+UmanuS2KYYsOSfYaIpKOUAOjYsWNq6T8xMZEaNWpEpqamFBMTo5YYmDLkwweiiROJDAyIABL+N8EHiIyMiKZOJZJhKcmdO3eoQYMGJBAIaM2aNSV6lDw9PZ169+5NPB6PfXGXRf/+JFEy2ScuV1ogsgCPHj0iPp9P8+bNUyrcmTNnkkAgyHHDtG3btuTq6ip3W/fv36eKFSuSubk5AaCwsDClYiOS3tStUKEC9ejRQ66fk2rVqtGUKVMKPS40NJRq165Nmpqa5OvrW2Qzbq5evUp8Pp98fHyKpH1lpKamUkhICN2sWzfnZ5ui791Vq+jbt2/ZNQ+GDBmS95IBRmHBwcEEgJYtW6buUEq0iIgIql+/PnG5XDrcvLli72kOh2jYMHVfCsMUG5bsM0QkHaEUCAS0evXqYu87JSWFWrVqRQYGBnT79u1i758pw1JTKXzwYNrH4ZCoTRvpHf9+/Yj27iUqZBQ2d1Op9OeffxIAcnFxKfZpvbJITk4mZ2dnEggEdOTIEXWHUzr89ptSa56zH926FdhN165dqUaNGkpVh3/58iVpaWnR1KlTczxfr149Gj9+vEJtxsTEUOXKlYnH46mssvXBgwcJAAX+p3BhQbp06UKdOnXK9/UPHz7QgAEDCAA5OTkV6U3jr1+/krm5Odnb21NmSR4hVDQZ+vGhoSG9Mfrd9u3bSUdHh+rVq1emKsUXpbi4ODI1NaVOnTqxuikyyMzMpLULF1KyMu9rDofo6VN1XwrDFAtuEe7qx5QiXC4XNWvWxPPnz4u138zMTPTq1Qs3btzAyZMnYWtrW6z9M2Wctjb2a2tjnqUleOHhQGgosHcv0K8fIBDI2ZQ21qxZg+DgYNy+fRtWVlY4duxYEQUuvy9fvqBDhw64dOkSgoOD0b17d3WHVDoYGkr3JFcGjydtJx+hoaE4fvw4li5dCm1tbYW7mTp1KgwMDDB16tQcz799+xZVqlRRqM26desiMjISmpqa8Pf3x+vXrxWOL0uvXr3g6uqKsWPH4sOHD8D9+8DYsUCNGoC+PmBgAJiZAd7ewJMnAABra2vcvXs3V1sSiQRbt26FhYUFTp06he3btyM8PBx169ZVOs68EBFGjhyJhIQEBAYGQkNDo0j6UYm0NJW3M3jwYNy8eRN8Ph/29vbYvHkziEg1/ZRBYrEY7u7u4PP52LFjB7hc9rW8MBoaGvjDyAg6yjTC5QL+/qoKiWFKNnXfbWBKDhcXF+pWyOiTKolEIurTpw9pampSaGhosfXLMD9q3rw5DRgwQKVtxsfHU9euXQkAjRw5UiVrnZXx7t07sra2JiMjI6WqvJdJa9cqP7LP4RCtXJln80KhkOrXr08tW7ZUavnHlStXCABt3bo1x/MpKSkEgHbt2qVw20REs2fPJgBUo0YNldRUiY+Pp/YGBnTfxET6d5TXLhlZyyfat6fgZcsIQI6K3NHR0eTg4EAAaOjQocWyFWZAQIDcsxLUpm1b1YzsT5+eq+nU1FQaOXIkASBXV1dWUE5Bc+fOJQ6HQ+Hh4eoOpXSxtFT+c9nAgKiUFdZlGEWwZJ/JNmrUKLKysiqWvsRiMQ0dOpR4PB4dPny4WPpkmP8SiURUrlw5Wrp0qcrblkgktGnTJtLW1qa6detKCwqpwfPnz6l27dpUpUoVuauZM0T05Yt06yZlvlRqauZb+2H9+vXE4XCUen9IJBJq1qwZ2drakkgkyvHa06dPCYDSReru379PAKhSpUpUo0YN2fZ4L8ixYyTi82VbU87jkVhbm9oAFB4eTqmpqTR16lTi8/lUt25dOnv2rHKxyOjBgweko6NDHh4exdKf0iZNkm/nkfweBw/m28X+/ftJX1+fzM3N6fr168V4caVfZGQkcblcpbe1LHO+fVP+PZ31iIpS99UwTJFjyT6TbenSpaSrq1vkxcUkEgmNGzdOJaNNDKOMR48eEQA6ffp0kfXx8OFDatiwIWloaNCSJUtyJWNF6f79+1SlShWqVatWjr3cGTl5euY98izLg88nGjIkz2Y/ffpERkZGSiePe/fuJXxPhP8rMjKSANDDhw+V6kMikVCFChVozJgxVKdOHapWrRo9fvxYscYiI4n4fJLIMTIn4XIpFaD5PXuSubk5CQQCmjt3bqE7HKhKWloaWVtbk4WFRekpTvf0qfLJkKlpoZXLnz17Ro0bNyYNDQ1auXJliS5QWlIkJCRQtWrVqFWrViQUCtUdTuny+rXqkv1iulHIMOrEkn0m24EDBwhAkU+FnDVrFgGgDRs2FGk/DFOY/fv3EwD68OFDkfaTkZFBPj4+xOFwyMnJiV69elWk/RERXbt2jYyNjcnKyqpEFgssVR48INLSkn/aKIcjnRUQHZ1ns3/++Sfp6uoq9e+TmppK1atXp+7du+f5+r59+wiASqZZu7q6UvPmzSkuLo4sLCyocuXK8hfCy8wkqlhRWuVdzi/mQoAeA9S2TZti3/N97NixJBAIKKq0jQQ6Oys+us/lEvn6ytRNRkYGeXl5EQDq2rVrjuUWuTx5Ip114OxM1LgxkZOT9IbYuXPS7dR+chKJhP73v/+RsbExvX79Wt3hlD7v36su2b94Ud1XwzBFjiX7TLabN28SgCJd07t8+XICQIsXLy6yPhhGVtOmTaPKlSsXW3/h4eFUrVo1MjQ0pP379xdpP7q6utS8eXP6/PlzkfVTphw7Jk1+ZE1SORzpsfnsevDgwQPi8Xi0aNEipcKaP38+aWho5DvKvmrVKtLR0VHJaOvGjRuJz+fTt2/f6P3791S/fn2qWLGifMtDDh5U+gu6RAVbAMrjyJEjBIDWrVtXrP2qRESEQjdWxBwOUfnyRG/fytXd8ePHycjIiKpVq0bnz5/P+WJ4uHTHEyD3DYismTO//kq0aRPRT1yVfvXq1QSAjh8/ru5QSqfMTNUsTwFYRX6mTGDJPpPt8+fPBICCgoKKpP3NmzcTgFzbQjGMunTu3LnA7byKwufPn6lPnz4EgAYPHkxJSUmFn/Txo3TU6+hRotOnie7fz3cE7MiRIyQQCMjZ2bn0TDcuLYKDibS1SVJI8iQCSKKlRXTiRL5Nubi4kJmZmVL7wL99+5bKlStHXl5e+R4zadIkql27tsJ9/Ojhw4cEgIKDg4lIWmTP2tqaTE1N6c6dO7I10rq1Ul/UMwES9+ihkuuRxevXr8nIyIi6d+9eeqenb94s19+xiMOhNICOKvi7+vXr1+To6Eg8Ho8WLFgg3U5u3TrpDbDC/u2zZs/07Sv39qelwY0bN0hDQ4MmTJig7lBKtz59FF9aBUhvgNnYlImZJAzDkn0mBwMDA6VHmvISGBhIHA6HxowZU3q/MDE/napVq6rl5pNEIqHt27eTrq4umZub06VLl/I6SDrFsF+/vL/U2NgQBQQQ/VDpf+fOncTj8ah3797Ftpa5zImLI/L1pa/fi/ZJeDxpxfLvSYzQ0JBmA7R/1ap8mzh58iQBoL///lupUIYOHUrGxsb05cuXfI9xd3enli1bKtVPFolEQpUqVaLJkydnP5eQkEANGzYkY2Njun37dsENvHunktE4CZdLVAw3soRCIbVs2ZKqVatW8LT00mDnTunnSGHJNpdLkvLlaUmvXsThcGjnzp0KdScUCmnGjBnE4XBopYWFYsmYq+tPNcKfmJhItWrVokaNGrHPZ2WdO6f8Z0lAgLqvgmGKBUv2mRxsbW1pxIgRKm3z+PHjxOfzaeDAgdI7/AxTAsTHxxMA2rdvn9piePr0KTVr1ox4PB7NmTPn30JNnz5J17EC+Y9eZI0uGxoShYXR2rVrCQB5enoWaxHAsurGlSvUDaAod3eiWbOIli0jOnyYKDOTevToQbVq1cqz8FZmZiZZWFiQk5OTUjc+b968SRwOh9avX1/gcW3btqW+ffsq3M9/ubm5kb29fY7nPn/+TE2aNI8+FaAAACAASURBVKHy5csXXJH99m2VJPsEEKlg+7/C+Pr6EpfLpYiIiCLvq1g8eyZdK29gIP07/M+NKqpRg2j5cqJPn0gsFtOwYcOIy+Uq9Rl5acsW6UwXRf+dS+PSiTxIJBLq168f6enp0VM2dVx5EglR3bqKzRLicIj09XPcKGeYnxlL9pkcfvvtN+rQoYPK2gsPDyeBQEC//fYbqzjLlCihoaEEQP4CYyomFAqzk4oWLVrQ8+vXierUkflLjITLJRGXS90BmjhxIps5U4zatWtHdnZ2uf7Ob926RQBo+/btuc5ZvXo1cblcpQq9SSQSat26NVlaWhb6uWphYaHSKcP+/v7E4/EoMTExx/Nfv36lZs2akYGBAV25ciXvk69cUV2yX8QF+s6dO0dcLpdmz55dpP2oRWoqUVAQ0dKl0gJ8K1dKlwf952a8WCymgQMHEo/HU3wWyqhR0tkvivwbczhEZmY/xeh+QEAAAaDAwEB1h/LzuHFD8cKpR4+qO3qGKTYs2Wdy8PLyUtn6zitXrpCuri516NCBTVljSpzly5eTjo5OiRkFv3jxItWuUYOuc7kklrOglhggIY9HkqtX1X0ZZcrp06cJAIXlUTAur9H9jx8/kqGhodKzpw4dOkQ/rp0viIGBAS1dulSp/n70+PFjAkAn8qhHkJiYSI6OjqSnp0cXLlzIfXJMjOqS/SLcQSMhIYGqVq1KrVq1KjGfD+oiFAqpb9++pKGhIX9BucREIm1t5f+ti3Br1OJw//590tbWpmHDhqk7lJ9PaKj0PSbLDaWsAqt53IRlmJ8ZFwzzAzMzM7x8+RJisVipdu7du4dOnTrB2toahw8fhkAgUFGEDKMaUVFRsLKyAo/HU3coAIAWLVrgjq8vGksk4Eokcp3LBcAHwJk5s0hiY/LWvn17NGzYEEuWLMn12qxZs/Ds2TPs3bs3+zlfX19IJBLMmzdP4T4zMjIwceJEuLi4wMXFpcBjU1JSkJiYiCpVqijc33/Vrl0bVapUwdmzZ3O9pq+vj+DgYDRq1AgdO3ZEREREzgPMzIDy5ZXqnwDE8XiAiYlS7eTbPhE8PDyQlpaGPXv2lJjPB3Xh8/nYtWsXunbtil69eiEkJET2kw8eBNLTlQ0ACAhQrg01SktLQ9++fWFmZoY1a9aoO5yfT/v2wKVLQNOm0j/z+bkOEXM40v+xsABOnQIGDy7GABlG/Viyz+RgZmYGoVCIt2/f5nyBCLhwARg4ELC2BmrUAOrXB7p3B44dA364OfDkyRN06NABNWrUwIkTJ1CuXLlivgqGKVxUVBRsbW3VHUYOOgEBgKLJhVgMnD4NPHum2qCYfHE4HPj4+CA0NBS3bt3K8VrDhg3Ro0cPzJs3DyKRCNHR0di0aRNmzZqFChUqKNznunXr8PLlS6xYsaLQY9+9ewcAKk32ORwO2rRpg3PnzuX5uq6uLk6cOIFmzZqhU6dOCA8P//dFTU3g998Vf49LA8AasRifvnxRvI0CbNiwAceOHcO2bdtQrVq1IumjtNHQ0EBgYCA6duyIHj165Pw3LciLF3kmX3IRiYDYWOXaUKMJEybg6dOnCAoKgo6OjrrD+TnZ2gIXLwJ37wLDhwOmpoCGBsDlIllTE2GGhtLvr9HRQIcO6o6WYYqfuqcWMCXLgwcPCEDOgkS7dxPVqyedBvXfYmFZU6eqVCFatoxePX9Ov/zyC9WtW5c+FOE0S4ZRRlpaGvH5fNq4caO6Q/nXvXvKT3fl8YgmTlT3lZQpQqGQzMzMaNhvv0mL9LVuTWRpSWRpSUmNGtEEgPauX0/t27en2rVrU0ZGhsJ9xcfHk76+Po0ePVqm4yMjIwkAPXz4UOE+87Jlyxbicrn09evXfI9JTU2ljh07kpaWFoWEhPz7wvPn8q+x/eEh4fPJGKDw8HCVXhMRUVRUFAkEAho7dqzK2/4ZpKenU8eOHUlHR4ciIyMLP8HLS1oAUNnPNQuLor+4IrB//34CQJs3b1Z3KGWPREIkkdCmTZuIx+OxbWiZMo2N7DM51KxZEwDw/Plz6a/ZiRMBd3cgJkZ6gEiU84SsEf23b0E+PnjcoAG0iBAWFqbU6BXDFKUHDx5AJBLBxsZG3aH869w5IGu6oaKyRveZYsN/8wYnTE2x4fBhkI8PEBEBPHgAPHgAvZs3sRxAr7Fj0S8sDH5TpkBTU1Phvnx9fcHhcDBnzhyZjs+aoaXKkX0AaNOmDSQSCc6fP5/vMdra2jhy5AjatWuHrl274uTJk9IXatYEPD0BrgJfPzgc0J9/IlkgwN27dxULPh8pKSno27cvLCwssGzZMpW2/bMQCAQ4fPgwmjVrhs6dO+Py5csFn6Cvr5qODQ1V004xio2NxbBhw+Dq6ophw4apO5yyh8MBOBw4ODhALBbj6tWr6o6IYdSGJftMDtra2qhUqRJiY2OBWbOArKmiRIWeyyGCU0oKblpYoFrlykUcKcMo7s6dO+BwOLCyslJ3KP/68kW56c0/tsMUjxs3gEaNYHHrFjQh/Qz8Ly4ATQCDALSfPBn4z3R/WUVHR8Pf3x+zZs2CiYzr1d++fQsdHR3o6ekp1Gd+zM3NUb169TzX7f9IS0sLhw4dQufOndGjRw8cO3ZM+sKGDYCTE0iehJ/DAbp3B3fpUjRo0AB37txR4gpy+/PPP/H69Wvs27cPWlpaKm37Z6KtrY1jx46hYcOGcHFxwY0bN/I/uH59QChUrkM+HyhJn9MyyMzMRL9+/WBiYoLNmzeDo+xNXEZhlpaWMDQ0xMWLF9UdCsOoDUv2mVzMzMygeeUKMH++3OfyAOiGhQH+/qoPjGFUJCoqCnXq1IGurq66Q/mXsmtbs5TxgmLFJiYGaNcOSEwE578znvLAB4CvX6XnPH4sV1dEBG9vb5ibm2Ps2LEyn/fu3TtUqVJF5ckGh8OBW8OGsNyzR1rHpVcvwMMDWL0a+Pw5x7GamprYv38/unfvjl69euHvv/+Wrt0/cQI3vs8ko4Les1k/F56ewIEDAI8Ha2trlY7sBwYGYtu2bVi3bh0sLCxU1u7Pqly5cjhx4gQsLS3h7OyMqKiovA/s1g0wNlauM5EIGDlSuTaK2fTp03Hr1i3s27cPBgYG6g6nTONyuWjRogVL9pkyjSX7TC5mZmZwvHlTueRj1SqZZgMwjDpERUWVrCn8gLS6uAxJY6EqVlS+DaZgREDPnkBKSo7ipIXhiMVAcrI0OZbj8zE4OBinT5/GsmXL5FoG8PbtW5VP4cexY0CbNlh67BgGffgACgwEDh8Gdu0CvLyAypWBoUOlxbC+yyrw1rt3b/Tt2xdBQUE4e/ky7GNjccjLCxxXV2S/879PvwUgvSng7g5cuwZs2ZL9O8nGxgbR0dEQqeDn5dmzZ/j999/Rr18/DB06VOn2ygo9PT0EBwfD3NwcHTp0QPQP/97ZNDWBUaMUvwHJ5QKNGwN2dsoFW4yCg4OxfPlyLF68GE2aNFF3OAwABwcHXLp0SeldphimtOIQsYyMyWnJn39i4rp1UHp8MDwcaNNGFSExjMoQEcqXLw8fHx9MmzZN3eH86/17oHp15RJ+Dke69GbCBNXFxeR27pzyn23nzwOOjoUeJhQKYW1tjcqVK+PMmTNyjdK3bdsWFSpUwL59+5SJVEosBry9gTVrpMlbQV+c+XzpezEwUHpj4zuRSAQPDw/s3r0bpqamsLCwwNmzZ5GZmYlfDQzg7+aGTk2bSs81NpZuq2VklKv5s2fPom3btrh//z4sLS0VvqTMzEw4Ojri06dPuH37NvRVtca8DPn8+TPatm2L9+/fIyIiAnXr1s15QFwcULcukJYGyLmlKADg0CHgt99UE2wRe/v2LWxsbGBvb4/jx4+Dq0hdCkblIiMj0bp165J5k59higH7JGJycXr/XvlG+Hxg507l22EYFXv58iUSExNL3LZ7qFRJmhgpM6NGUxMYMkRlITH52LBBuX8nPl/ahgw2bdqER48eYeXKlXJPx8+axq80IuDPP4G1a6V/LmyETCSSPvr0AY4cyX6az+fjr7/+gqWlJeLj49G5c2dwuVxcu3YNrzMzUWn8eGD0aOlosKtrnok+AFhbWwOA0lP5Z8yYgdu3byMwMJAl+goyMjJCaGgoTExM0LZtWzx9+jTnAVWrAkePSkfp5U1+Z84sNYm+WCyGu7s7NDU1sX37dpbolyBNmjSBhoYGm8rPlFns04jJpYpYDKUnO4lEwKtXqgiHYVQqa31pibzDP2aM4iP7PB7Qvz9QvrxqY2JySkqSTltXZgaGSAQcPAh8+1bgYV++fMHs2bPh4eGh0M0plU3j37UL8POTb2lW1rFubsDz59lPX79+HQ8ePEDTpk0xdepUbN26FZGRkdDX189O4gtjbGyMqlWrKlWkLyQkBMuWLcPChQthb2+vcDsMYGpqijNnzkBPTw9t27bFixcvch7Qrh0QHAwSCFDoT03WTbQFCwAZd50oCRYsWICIiAjs2bMHpqam6g6H+YG2tjbs7OxYss+UWSzZZ3IxVGJrqBySk1XTDsOo0J07d2BiYqL6tcyq4OgIjBgh/xZ8PJ50ZsCCBUUTF/Ovd+/kWqefL5EIiI8v8JC5c+ciMzMT8xUolpqSkoKkpCRUVnZnFCJg8WLFtoUkkl7npk0AgIyMDHh6eqJRo0Y4f/48Ro8ejeHDh2PPnj1wdHQET4613TY2NgqP7L9//x6DBg1Cx44d4e3trVAbTE4VK1bEmTNnoKmpibZt2+L169c5D2jfHnPd3LBeQwOSrN0hNDT+fXC50kS/d2/g4kVg2jTltyItJpGRkZgzZw5mzpwJJycndYfD5MHBwQEXLlxQdxgMoxYs2WdyKaeqJCifKZgMo05RUVGwtbUtmdshcTjS6d19+sh+Dp8vLe4XGiotjsYUrdRU1bWVkpLvS48fP8b69esxbdo0VKpUSe6m3717BwDK39S6eBF4+FDxgqtisXR3lvR0LFiwAE+ePMG2bdugoaGBdevW4Y8//kBMTAz4ci6LsLa2VmhkXyKRYNCgQeBwONixYwebbq1CVatWRXh4OIgIbdu2xdu3b7Nfi42NxYLdu5E6eza48fHS2SITJkh3cRg7Vlpr5M0baZ2HFi3UeBXySUhIQP/+/dGyZUvMnDlT3eEw+XB0dMSrV6/w5s0bdYfCMMWO/ZZjcuE2agSlx/Z5PKBhQ1WEwzAqVeKL9PD50i+8s2cD5crlrE7+o6xRUCcn6X7v9eoVZ5Rllyq30iqgrYkTJ6Jq1aqYoGCxxaxES+lk/4cq+ApLTMTL1auxaNEiTJs2DVbf903ncDgYMGAAAODYsWNYsWKFzE3a2NggLi4Onz59kiuU5cuXIzQ0FDt37kRFtnOFyv3yyy8IDw9Heno62rVrhw8fPgCQ1kcwNTXF+PHjAS0t6S4LS5ZIZ32sXAmMH1/qdhIhIgwdOhTp6enYs2ePXDNTmOLV4vsNJDaVnymLWLLP5NazJ74p++VOIpFOR2aYEuTr16948eJFySvO919cLuDrK63Qv2kTUL9+zoTf0FBaMO3RI+mIfrVq6ou1rKlaFVBBMbdELheifNb2njlzBsePH8eSJUugpaWlUPtZI/tKT+N/8EDpLSGJz0fw2rWwsLDItQNGZGQkdHR0MGXKFEycOBGLFy+WqU1FivRdvXoV06dPh4+PD5ydnWW/AEYuZmZmCA8PR2JiItq3b4+wsDAEBgZi7ty50NHRUXd4KrNmzRr8888/2LFjB6pWrarucJgCVKxYEbVr12bJPlMmsWSfyU1LCxcsLRUv0sfjAZ06ATVrqjAohlFeVmJQ4pP9LLq60ptm9+4BQiHw5QuQni7978qVwK+/qjvCskcgAIYPV3zvcADE5WKjRILAv//O9ZpYLIaXlxdatGgBV1dXhft4+/YtypUrB72s9dGKSkpS7nxIp86nvHuHgIAAaP6nJkxkZCSaN2+OhQsXYvbs2Zg6dSrmzp1baJu//vorBAKBzMl+YmIi3NzcYGdnp1ANBEY+derUwZkzZ/Dhwwf89ttvqFu3LgYPHqzusFTmxo0b8PHxgZeXF7p06aLucBgZODo6snX7TJnEkn0mT0+cnZEKyL9VDiBd2zl1qqpDYhilRUVFQVNTM/de0KUBjycd0RcI1B0JM3KkUkX6OESIbd8e8+bNg+g/o+bbtm3D3bt3sWrVKvnrSty8CXh5Af36of3GjdjB5YLj719o1f8CqWAWg0QiQYPmzXNVvReLxTh//jxatWoFDocDX19fzJ8/H76+vpg1axaogDoBfD4fDRo0kGndPhHh999/x+fPnxEYGAgNDQ2lr4kpXL169TB79mwkJydLb/gUUKOiNElKSoKbmxtsbGywaNEidYfDyMjBwQF37tzBN2U+DxmmFGLJPpMnk4YN0QUA8XjyJ/z+/tKq4gxTwty5cwcNGjRgX/YZ5dSuLd0HXpHRfS4XcHPDyCVL8OTJEwQGBma/lJSUhBkzZsDd3V327eAkEmDnTqBRI6BxY2DdOmD/ftR/8gTdk5Ol+9ZXrCjd1vHZM/njrVtX6TX7GgCchg3L9Xx0dDQSExPRqlWr7OemT5+OpUuXYt68eZg2bVqBCb+1tbVMI/vbtm1DUFAQNm/eDHNzc4WugZGfWCzGpk2bYGdnh/j4eHTu3LnUJ1pZN47i4+Oxb9++XDNVmJLLwcEBEokEV69eVXcoDFO8iGHycOnSJQJAT7ZtI9LXJ+JyiaRj9nk/eDwiPp9o1y51h84w+bKzsyMPDw91h8H8DJKTiezspJ99BX02/vdzsnFjopQUIiLq1q0b1alTh4RCIRERTZ48mbS1ten169eyxZCWRtSnj7Ttwj6j+XyicuWIzpyR7zrPnZP9+vJ5pAsEJPl+zT9au3YtaWpqUmpqaq7XVq1aRQDIy8uLJBJJnqGtXr2aBAJB9t9fXh48eEDa2trk6ekp33UzStu+fTsBoCtXrtC1a9dIX1+fWrVqRcnJyeoOTWFbt24lALRv3z51h8LISSwWk5GREfn6+qo7FIYpVmxkn8lT1uhHdPnywJMnwLx5/27rxeNBxOUie/Kpvr60km5MjLTCLsOUQEKhENHR0SW7Ej9TepQrB4SHAy1bSv9cwCi/5PvsqI8NGgBnzgDfi5T5+vpmj+4/f/4cq1atwqRJk1BNloKLYrF0dkHWun+JpODjRSIgLQ3o2BE4f77w9rO0aiUd3Vdwq0oRgHUZGWjcsiUOHz4MyQ9xRkZGwt7eHtra2rnOGz9+PNavX4+VK1di3LhxeY7wWzdogHoZGXj711/AP/9ItwlMTs5+PT09HW5ubqhRowbWrFmjUPyMYtLS0jBjxgz07t0bTZs2RZMmTRAcHIybN2+ie/fuSEtLU3eIcrt//z7++OMPDB8+HH379lV3OIycuFwuHBwcWJE+puxR990GpmSSSCSko6NDK1eu/PdJoZDo+HGiJUsorHlzWmpkRLR3b/YoFcOUZPfu3SMAFBERoe5QmJ+JUEgUFETk4PDv6L2GhvTxfdRf0rIlzbO2JrPq1enbt285Ts8a3e/VqxdVqVJF9lHP+fOJOBz5R9q5XCIDA6LPn2W/xoAAhUb0xQBJNDTo0q5d5OTkRACoQYMGFBgYSEKhkCpUqEDTpk0rsGt/f38CQCNHjiSxWCx98tMnohUrSFS9eu5+dXSIxowhio6mMWPGkEAgoDt37sh+rYxKLFmyhPh8Pj1+/DjH8xEREaStrU0uLi6Unp6upujkl5KSQvXr16f69etTCvvOU2otXryYdHV1C5wNxDA/G5bsM/mytLSksWPH5vnawoULydjYuJgjYhjF7dq1iwDQ169f1R0K87O6d49o6VKiKVOkj2XLiO7fJyKiZ8+ekba2Nnl7e+c45ebNmwSAANCOHTtk6ycjg8jISPGp9RwO0apVsl+XREI0bJhcNxfEWf+/f392M+fPn6eOHTsSAKpZsyYBoBMnThTafUBAAHE4HBo2bBiJ//qLSCCQxpJfPHw+EUDbAfKT5zoZlUhISCADAwMaM2ZMnq+HhoaSQCCgbt26UUZGRjFHp5gRI0aQtrY2RUdHqzsURgnnz58nAHTr1i11h8IwxYYl+0y+unTpQl26dMnzNT8/P+LxePmupWSYksbb25tq1qyp7jCYMmzx4sXE4/FyfNEUi8VkYGBAAoFA9sQnMFC5dfQcDpGZGVHWSLkshEKikSOJABIV0n4mQEIORzrzKw9Xr14la2vr7KR/y5YthV77zp07acL35F4iz8yCNm2IStEI8s/Ay8uLdHV16cOHD/kec/LkSdLU1KRevXqV+FHWoKAgAkBbtmxRdyiMktLS0khTU5PWrl2r7lAYptiwNftMvszMzPD8+fM8XzM0NIRYLP5pttJhfn537tyBra2tusNgyjAvLy9YWlpixIgREH/fum/37t1ITExERkYG9u/fL1tDmzYpthNAFiLg+XP51u7z+YCfHx7MnYvLPz6XtVsLjwficiHicHBEIEByeDjQr1+eTdnb28PKygr169dHo0aNMHz4cNSpUwd+fn5IT0/P85yB5cph5fd1+7JWD+AC4EREAHnsBMAUjRcvXmD9+vXw8fFBhQoV8j2uU6dOOHDgAI4ePYpBgwZl/zyUNLGxsdlr9D09PdUdDqMkLS0tNG7cmK3bZ8oUluwz+TIzM8OLFy/yLIxUvnx5AMDXr1+LOyyGkRsRISoqiiX7jFppaGjA398fN2/exIYNG5CSkoKpU6eiT58+6NatG+bNmweRSFR4Q48eSQv0KevpU/mO53DgfekSRjVoAMmdO9LCrH36AF27Av364W6/fqhMBM7u3TB0csq3GSJCREQEXFxccPDgQURHR8PBwQF//PEHzM3NsWrVKqSmpv57gkQCTJig2DVKJMDu3UBUlGLnM3KZMWMGjIyM4OXlVeix3bp1w759+7B//34MGzYsR/HGkiAzMxNubm4wMTHB5s2bwVGwSCVTsjg4OODChQt5frdlmJ+SeicWMCXZoUOHCAC9f/8+12uXL18mAHTv3j01RMYw8nnz5g0BoMOHD6s7FIahUaNGka6uLo0fP540NTUpNjY2e+3+Llm2L9XTU3o7POLxiH4swCqDrBj37NmT67WEhAQyNTWlnj17FtpObGwsAaCjR4/meP7Ro0c0ZMgQ4vF4ZGpqSosXL6akpCSi4GDlrpXPJxoxQq5rZeR369YtAkD+/v5ynbd3717icrk0fPjwf4swlgDe3t6koaFB169fV3cojAodOXKEANCLFy/UHQrDFAs2ss/ky8zMDADynMpvaGgIgI3sM6XDnTt3AICN7DMlwqJFi6Cjo4O1a9diwoQJMDMzg52dneyj++XKKR+EWCzdNlUOCxcuRK1ateDq6prrtfHjx0MkEmHDhg2FthMZGQkAcHR0zPH8r7/+ir/++gtPnjzBb7/9hpkzZ6JmzZp4PG4cSJllCyIRsHMnkJioeBtMoSZPngwLCwt4eHjIdV6/fv2wbds2bN26FX/++WeJGHE9ceIEVqxYgSVLlqBx48bqDodRoRYtWgAAm8rPlBks2WfyxZJ95mcRFRUFAwMD1KhRQ92hMAwMDAxQt25dSCQSWFtbZz/v6+uLx48fY9++fQU3ULeucmv2s9SuLfOhDx8+xKFDhzB58mTw+fwcr508eRK7d+/GqlWrUKlSpULbioyMhJWVFYyMjPJ83czMDP7+/nj27Bn69++Pao8fg6PssoX0dODaNeXaYPJ1+vRphIaGYtGiRbneH7IYPHgw/P39sWHDBkycOFGtCX9cXByGDBmCLl26YPz48WqLgykapqamqFu3Lkv2mTKDJftMvgwMDGBkZMSSfabUi4qKgo2NDVtzyZQI165dw/nz52FlZQUfHx98+/YNAGBnZ4euXbsWPro/cqRya/Y5HMDcHGjZUuZTFi9ejCpVqmDQoEE5nk9KSsLvv/+Ojh075notP5GRkWjVqlWhx1WvXh3rVq6EjsxRFuLLF1W1xPxAIpFg8uTJcHBwQPfu3RVuZ/jw4Vi/fj1WrlyJ6dOnqyXhF4vFcHd3h0AgwPbt29nvjJ+Ug4MDS/aZMoMl+0yBzMzMEBsbm+t5LS0tCAQCluwzpQKrxM+UFESECRMmwNraGkeOHMGXL18wY8aM7NdlGt3v2RPIZ1RcZn/88W8l/UK8ePECe/bswaRJkyAQCHK85uPjg69fv8Lf31+mxOjt27d4+vQpWrduLVucMsYoEwVGnJnC7d27F1FRUVi6dKnSyfGYMWOwYsUKLFq0CHPnzlVRhLKbP38+IiMjsWfPHpiYmBR7/0zxcHBwwN27d5HIlvYwZQBL9pkCFbb93hc2UsKUcMnJyXjy5AlsbGzUHQrDYP/+/bh06RJWrlwJc3NzzJ07F+vWrcP169cBAI0aNSp8dF9T8//s3Xd8zPcfwPHXXU4WicROao+YJUgkxKqtRimtUUpsJUVQMWrHSBWxBTVLKEVtv1BCECNixBY7MbP3je/vj6u0qZXcXXKJfp6Ph0e4u+/n+75zufu+P+P9AU9P7Qh9VsnlYGUFffpk+hAfHx9sbW0Z8K8t7I4dO8bKlSuZM2dOppfInPhru79GmZ1VYGICBQtmOtb3KlrUMO0I6VJSUpg4cSJffvll+lpofXl6ejJr1iymTp3KnDlzDNJmZhw/fpzp06czefLkzHdGCXlSw4YNkSSJM2fOGDsUQch2ItkX3utDyb4Y2RdyuytXriBJkhjZF4wuJSWFcePG0aFDB5o3bw7AiBEjqFWrFoMGDUpP7jM1uu/lBe3bZ23kWy7X/tm7F/7aPvVDIiMj+eWXXxg1ahT5/1EYMCkpiQEDBtCoUSOGDh2a6RCOHz+Og4NDptb2p+vWTf9R+aJFwdVVvzaENyxdupQnT54wa9Ysg7Y7fvx4pkyZwvjx41mwYIFB236bly9f0rNnTxo3bpxhpo3wcapUE3hWqgAAIABJREFUqRJFixYVU/mF/wSR7AvvVa5cOR4+fPjWESaR7At5waVLl1AoFFSrVs3YoQj/cQsWLODJkyfMmzcv/TaFQoGfnx+XL1/G19cXyOTovokJbNsGXbpo//2hpF+hAAsLOHgwS2v158+fj5mZGd99912G23/88UeePHnC6tWrkWehwyGz6/UzGDpUW1FfV3I5fPcd5MunexvCG6Kjo/H29mbgwIFUrlzZ4O2/TvY9PT0ztcuDriRJom/fvqSlpfHrr79iYojil0KuJpPJaNCgASdPnjR2KIKQ7USyL7xXuXLlUKvVPH78+I37RLIv5AWhoaFUqVIFc3NzY4ci/Ic9ffqUWbNmMXz4cBwcHDLc5+zszPDhw5k8eTIPHjwAMjm6b24O/v6wfj28nrmiUCDJ5WgAJSABScCLzp0hNBT+mlGQGVFRUSxfvpzhw4enF2UFCA4OZuHChUybNu2N5/I+L1++JCwsLMvJ/kVJ4rKFBbqm+xpJgoEDdTxaeJfZs2eTlpbGlClTsqV9mUyGt7c3np6eDB8+HD8/P90aevwYAgNh/37tzydPMty9YMEC9u3bx/r167G3tzdA5EJe0LBhQ4KDg1EqlcYORRCylUj2hff60PZ7ItkXcrvQ0FAxhV8wukmTJmFqasrkyZPfev+MGTOwtbVl2LBhSJKUYXRf/b7K+3I5fPstXLgA586Bhweyr79mn4kJ/goFe9u2pVbx4kwpUiRLW+0BLFq0CI1Gk2H7sdTUVPr160ft2rXx9PTMUnuvR9Eyux76dSJZr149ppcsiczcHEmHgn2jJYku339PSkpKlo8V3u7hw4csWrSIMWPGZG1JRhbJZDLmzZvH8OHDGTJkCOvXr8/cgWo17NsHbdtC6dLQpAm0a6f9WaoUfP457N/PueBgvLy8GD16NJ9//nm2PQ8h93FzcyMpKYlLly4ZOxRByF6SILxHcnKyJJPJpDVr1rxx35AhQ6Q6deoYISpByByVSiVZWlpK8+bNM3Yown/YxYsXJZlMJi1atOi9j9u5c6cESNu2bZMkSZLOnz8vAdKmTZuyfE47OzupXLlyUpcuXaRJkyZJVlZWUkJCQqaPj4uLk2xtbaURI0ZkuP3HH3+UFAqFdOnSpSzHNGrUKKlMmTKZeuzFixelWrVqSSYmJtKPP/4opaamSpojR6QUExNJCZKUyT+h7dpJxYoWlQDJ2tpa2r59e5bjFt707bffSsWKFZPi4uJy5HxqtVoaOHCgJJfLpc2bN7//wbdvS5KDg/Y9YGLy9vfGX7ffyZdP6vTpp1JqamqOPA8h90hJSZHMzMykhQsXGjsUQchWYmRfeC9zc3Ps7e3FyL6QJ925c4ekpCRRiV8wGkmS8PT0pHLlygwZMuS9j+3UqROdOnXi+++/JzY2Nn10f/r06e8f3X8LKysrbGxsCAsLo3///iQkJLB169ZMH79ixQoSEhIYM2ZM+m2XLl1i9uzZTJgwgZo1a2YpHsjcen2lUsm0adNwdnZGo9Fw9uxZpk+fjqmpKb6XL1NPrebK6we/rWjf6/XWhQvDqlXU2ruXJxERzJw5k+TkZLp27YqjoyPHjx/PcvyC1qVLl9i4cSNTp07FysoqR84pl8tZsWIFvXv3pnfv3uzYsePtDwwLg3r14PWWwe/6vfnr9tJKJdsfPsT09u1siFrIzczMzHB2dhbr9oWPn7F7G4Tcr2HDhlLPnj3fuH3OnDlSoUKFjBCRIGSOv7+/BEjPnz83dijCf9SuXbskQNq3b1+mHv/w4UOpQIEC0tChQyVJ0n1038nJSWrUqJFkYmIiJScnS23atJFcXFwydWxSUpJUvHhxacCAAem3KZVKqW7dulL16tV1GgWNiYmR5HK5tGrVqnc+JjQ0VHJ0dJRMTEykSZMmZThPcHCwlC9fPql8+fJSqVKlpOTAQEnq21eSzM3/Hq2VyyXJzU2S/P0l6S0xvnr1SnJycpLQljKQGjZsKB0+fFjSaDRZfj7/ZW3atJEcHByktLS0HD+3SqWSevToISkUCmn37t0Z73z6VJLs7N49mv+uPyYmkmRvL0nPnuX48xGMy8vLS7KzsxOfAcJHTST7wgf17t1bql+//hu3r1ixQpLL5eJDUsi1xo8fL33yySfGDkP4j0pNTZUqVqwotWrVKkufk76+vpJMJpNOnTolSZIkdejQQXJwcJBUKlWm22jWrJnUokULCZBCQ0Ol33//Pf3vH7J06VJJLpdLt2/fTr9tzpw5klwul4KDgzMdwz/t379fAqSbN2++cV9aWpo0bdo0SaFQSDVq1JDOnz+f4f6oqCipTJkyUuXKlTMsc5AkSZI0GklKTJSk6GhJUqs/GIdGo0l/LlZWVhIgubi4SHv37hXfZZkQEBAgAdKOHTuMFoNSqZS6dOkimZqaSgcOHPj7Di+vrCf6/0z4J0402nMSjGPPnj0SIIWHhxs7FEHINmIav/BB5cqV41FEJIlKDSqNlH67jY0NGo2GhIQEI0YnCO8WGhoqpvALRrNkyRLCw8P5+eefkclkmT5u2LBh1K1bl0GDBqFUKjNXmf9frK2t08959epV2rdvT4kSJVi1atV7j1Mqlfj4+NCtWzcq/lXQ79atW0yZMoVRo0ZRr169TMfwT4GBgRQvXpxKlSpluP3y5cu4uLgwffp0xo0bx/nz56lbt276/ZIk4e7uTlxcHEqlkqZNm9K1a9e/G5DJwNISbGw+vP0g2oJv48aN488//8TS0hJbW1sSExNp3749Tk5O7Ny5E41Go9Nz/NhpNBp++OEH6tevT+fOnY0Wh0KhYPPmzbRp04ZOnToREBAAqamwYsW7p+1/iFoNy5dDWpphgxVytQYNGgAQFBRk5EgEIfuIZF94p9g0NccjErFsP5hhO8+x+GoU8y69YsnVKE49TSK/bREAsW5fyLVEJX7BWF6+fMn06dMZNGgQNWrUyNKxJiYm+Pn5ce3aNX7++Wfq1q1L+/bts7R239ramuTkZEqWLMnVq1fJly8f/fr1Y+PGjSQlJb3zuM2bN/PgwQPGjx8PaBO8/v37U6pUKaZPn56l5/FPgYGBNGnSJL0DQqlUMmPGDJycnEhLS+PMmTPMnDkTMzOzDMctXLiQ3bt306lTJ+7fv8+iRYuy1HHyLo0bN07vDLx27RoDBw7E2tqaL7/8klq1auHv75/lOgmSJHE3No1DjxLYdS+OnffiOPgwgZsxqdrt//I4f39/QkJC8PHxMcj/gT5MTU3Ztm0bzZo1o2PHjlyfMQP0vRaJioJ31QIQPkqFChWiatWqYt2+8FETyb7whhSVht/D41geFs2ZZ8lICtMM9ycoNZyITCKsSE06T5rPy6hoI0UqCO/2/PlzIiMjRbIvGMXUqVORJEnnBLl27dqMHDmSadOmER4enuXRfWtra+Li4qhRowZhYWEADBgwgLi4OLZt2/bWY9RqNbNnz6Zjx458+umnACxfvpyTJ0+yatUqLC0tdXouSUlJnDt3Lr0435UrV3B1dWXatGmMHTuWCxcu4OTk9MZxwcHB/PDDDwwZMoTt27fz3XffpcdlCCVKlOB///sf48aNY9WqVRQsWJD9+/djb29Pjx49qF69Ohs2bEClUr23nTS1RPCzJJaFRfNbeByXXqZwMyaNmzFpXH6Vws578Sy9GsXJyCRSVHlz1kBqaioTJ07kiy++oGHDhsYOB9AWWNuxYwdubm6cnTsXzevijLpSKODPPw0TnJBnNGzYUIzsCx81kewLGcQr1ay/FcPtWO1UtneNRUiAJJPh9EVPgtJsSFXnzQsY4eP1eu9cMY1fyGnXrl1jxYoV/PjjjxQtWlTndqZNm0axYsUYOnRolkf3/5nsX716FdAuyWrVqhV+fn5vPWbnzp3cvHmTCRMmAPDgwQO8vLwYPHgwTZs21fl5nDlzBqVSSYMGDfD29qZu3bqkpKRw5swZvL293xjNB4iKiuLrr7/GycmJ5ORkTE1NmTZtms4xvItCoWDWrFn88ccfHD9+nOHDhzNnzhyCg4NxcHCgT58+VK5cmdWrV5P2lineCUoNm27FcCwiiXil9ntQw9/fna+/GRNVEkFPk1h7M4boVB2nmhvR8uXLefjwIbNnzzZ2KBlYWFiwe/duyhcsqPsU/tfUau3ovvCf4ubmRlhYGNHRYuBK+DiJZF9Il6rWsPVOHDGpmncm+f8mNzEhwcSC38PjUX8E0xSFj0doaCj58+enQoUKxg5F+I8ZPXo0ZcuWxcPDQ692ChQowNKlSzl8+DD+/v5ZGt23srJKT/bv3buXXltl0KBBnD59mitXrmR4vCRJzJo1i+bNm+Pi4oIkSQwaNAgbGxt8fHz0eh6BgYFYW1szYMAAJk+ezJgxYwgJCXnraP7rWPr27Ut8fDzjx49n/fr1eHt7U6hQIb3ieJ8OHToQEhKCjY0N9evX5/Lly+zevZuLFy9Su3ZtBg4cSKVKlVi2bBkpKSmAdhbcr7djeJGiztR3pgTEpWk7B+LT8k7CHxMTw4wZMxgwYABVq1Y1djhvsLS0xLVRI/0bksnevp2j8FFzc3NDkiROnz5t7FAEIVuIZF9Id+55Cq8yedGSgUzGgwQlYVGp2RGWIOjk0qVL1KxZExN9p3YKQhYcPHiQgwcP4uPj89YR66xq3749Xbt2ZeTIkZQvX5727dszY8aMD47uvx7Zr169OqCdbQDQsWNHihcv/kahvoMHD3Lx4kUmTpwIwPr16zl8+DArV67E2tpa5/hVKhUbN24kPj6e5ORkTp8+zaxZs9772syfP589e/awbt06vL29cXR0ZMCAATrHkFnlypUjKCgId3d3Bg4ciLu7Ow4ODmzfvp2rV6/i5uaGh4cH5cuXZ8GCBewOj8lS5zhoE/4klcSO8DikPNJBPnfuXFJSUpg6daqxQ3mnfHZ2yPRN1OVyKFLEMAEJeUaFChUoXry4mMovfLREsi8AoJYkQl4mZz3R/4sMuPAi2ZAhCYJeRCV+IaepVCpGjx5NkyZNDFqt3NfXl5SUFLy8vJgyZQo3b95k69at7z3G2toalUpF+fLlkclk6VP58+XLh7u7e4ZCfZIk4e3tjaurK02bNiUyMpJRo0bRq1cvPv/8c53jDgsLw8XFhfDwcJo2bUpISMgHq/mfPn0aLy8vxo4dS1RUFGfPnmXRokU51mlnbm7O8uXL2bBhA9u2bcPV1ZVbt25RvXp1Nm/ezPXr12ndujVzFi/nXmLWEv3XJOBpspqIpPfXAsgNHj9+zMKFC/H09MTOzs7Y4bxb587IPlBb4YNUKvjyS8PEI+QpbXq6E1WsMrv/Kqx54GE8YVEpGXagEoS8SiT7AgB3YtNIUun+oSYBz5LVRCYqDReUIOgoJSWFGzduiOJ8Qo7y8/Pj+vXrLFiwwKDVyu3t7Zk9ezarVq0iOTk5U2v3X4/Gv074XxfpA22hvpiYGLZv3w7AiRMnCAoKSh/VHzZsGKampixcuFCneFUqFbNnz6ZOnTq8fPkSAB8fH8zNzd97XFRUFN26dcPZ2ZkffvgBLy8vevToQSNDTNHOot69e3P27FlSU1NxcnJKf60cHBxYu3Yty/ceQ9LoPhVfBoTkgQ7yyZMnY2VlxdixY40dyvs1bw7lymmn4utCJoMKFeCzzwwbl5BrqTQSF14k43c9miq9R1OyQUtu/FVY88qrVPY8SGDJ1SiORySSqBR1qYS8SyT7AgC3YtLQ99JUDtyKFXvUCsYXFhaGWq0Wyb6QY6Kjo5k8eTJ9+/aldu3aBm9/yJAhuLi4MHjwYMaPH//B0f3Xyf6/i/SBdtpqixYt0gv1eXt7U7NmTdq1a8f27dvZuXMnS5YsoXDhwlmO89q1azRo0IBJkyYxcuRIBgwYQIECBT74u6jRaOjTpw+JiYls3bqVOXPmEB8fr3e9AH3UqFGD8+fP07ZtW7766is8PT1RKpVoJIn7SlNkct1nG0jA9ei0XF2d/8qVK6xfv57JkyfrtZQjR8jloGeNDL7/XvfOAiFPSVFp8L8Ty/8eJxKdqv0dNFHke6OwZopa4syzZH65Ec3z5Nw/E0cQ3kYk+wIAiUrdpiP+W1IuvnAR/jtCQ0ORyWRZ3t9cEHQ1c+ZMUlJS8Pb2zpb25XI5fn5+3L59m6NHj35wdP99yT5oC/UFBQWxdetWDh8+zIQJE4iKimL48OF07tyZrl27Zik+lUrF3LlzqV27NvHx8QQFBTF37lxOnTqFm5sbig+sp54/fz579+5lw4YNJCYm4uvry8SJEylZsmSW4jA0Kysr/P39WbRoEUuWLKFp06bcffSENAN81WmAuFw8Yujl5UW5cuUYNGiQsUPJnKFD0Tg5oc5qwm5iAq6ukFeep6AXpUZiy51YniRmLnl/XWfj19uxRKXkncKagvCaSPYF4O9eTH1IgFjeJOQGly5dwsHBgfz58xs7FOE/4Pbt2yxevJjx48dn67rmmjVrMnr0aGbOnEnfvn3fO7r/72Q/IiIiw9ZSX3zxBUWLFmXixIlUqlQpvQhgWloaS5cuzdIyhOvXr+Pm5saECRMYMWIEISEhuLq6olKpCAoKonHjxu89/tSpU3h5efHDDz/w+eefM2LECEqXLo2np2emY8hOMpkMDw8PAgMDefjwIe06djJY22nq3PmleezYMfbv38/s2bMxNTU1djiZolIoGFCiBNckCUmeyctbExOoUQP27IEPLDMRPg6HHyXwPDlrxagltL+r2+7GoskjhTUF4TWR7AsAWCpkek/jlwEWCvGWEowvNDRUTOEXcswPP/yAnZ1djiSnkydPxt7enmXLltGuXbt3ju7/M9l/XZH/n+v2TU1N6dChA3fv3sXT05NDhw6xadMmFixYkOkOC7VajY+PD7Vr1yYmJoaTJ0/i4+ODhYUFoO10i4+Pf2+y/+rVK7p3746rqyszZ85kz549HD58mAULFnxwjX9Oc3V15eLFi1SuUN5gbZqa5L5p4xqNhrFjx1KvXr0sz/AwFo1Gw6BBg9iwfz8Pt2xB1qOHNpF/V2FHuVx7X48ecPIk6LBkRch7EpUarkal6lxYMyZNw904sVxVyFtEZiYAUMYqn97T+DVAmQL5DBGOIOhMkiQuXbokKvELhqFWwx9/wOefQ6lSYGMD9vbQqBFs2MDxQ4fYtWsXc+bMSU9ys5OlpSXLly/n6NGjODk5vXN038rKCtAm+5UrV0ahULwxlf918TxJkhg8eDCtW7emT58+mYrjxo0buLm54eXlxfDhwwkNDaV+/foZHhMYGIi5uTnOzs5vbeP1Ov2kpCS2bNmCWq1m1KhRtG7dmg4dOmQqjpxWpEgRdmzdjKTU/4JfDljny32XYb/99hvnz5/Hx8fHoIUms4skSXh6erJu3TrWrVtHu+7dYdMmePgQJk+GEiUyPF5dvDhMnQqPHsHGjVCggHECF3Lc5Vcpeh2v3XlKvzYEIaflvm8ZwSiq25qj76C8VT455a1Fsi8Y1/3794mLixMj+4J+JAkWL4bSpeGLL+DwYXj8GGJjITISTp2CPn2o8/nn/PLJJ3TPwS27WrduTY8ePViyZAktW7Z86+i+ubk5CoWC+Ph4TE1NcXBwyJDsh4eHs2/fPhwcHJg+fToxMTGsXLnyg8mdWq3mp59+wtHRkejoaE6ePMm8efPe2tERGBiIq6srZmZmb21r3rx57Nu3j40bN1KqVCkWLFjAw4cPWbhwYa5OMk0VCpztrbXvER3JgCq2ppjnstlwaWlpTJgwgfbt29OkSRNjh5MpU6dOxdfXl2XLltGrV6+/77C31yb7kZGQnMztoCDKFCtG3RIliBo2DHLzVoJCtgh5maLXwJYE3I9XEpsm1u4LeUfu+pYRjMbUREbNQuY6T+WXAXWLmufqCzThvyE0NBRAJPuC7lQq6NdPW507IkJ727+nymu0lU6sNBr6RkQga9sW4uNzLMQFCxagVqsxMzN76+i+TCbD2tqauLg4gDeK9Pn4+FC4cGG6dOnC06dPGTlyJGXKlHnvOW/evEmjRo0YN24cw4YNIzQ0lAYNGrz1sRqNhsDAwHdO4Q8KCmLChAl4eXnRtm1bHj9+zMyZM/n++++pUqVKVl4Ko6hTxEKvyu3S6zZymZUrV3L//n3mzJlj7FAyZf78+UyfPp05c+YwZMiQdz/Q3JxKDRqw78gRHj9+TKtWrYiJicnwEEmSeJygJPhZEscjEjkRmcjFl8li27WPhFqSiDfQ/2V0qkj2hbxDJPtCOtfiFpiZZH3tvlqlwtpUjmPh3LW+UvhvCg0NpWjRopT419RNQcgUSdJu4bV+faYPkUkSBAZCly6gVGZjcH8rXrw4Pj4+7N27F1dX17eO7r8t2ZckiYiICNauXcuwYcPYunUrCoWChISEd55LrVbz888/4+joyMuXLzlx4gQ///zze5ctXLt2jaioqLcm+y9fvqR79+7Ur1+fGTNmADBu3DgKFCjA5MmTdXk5clwhcxMqWOfTqYNcBpSwMOGT/O/foSCnxcXFMX36dNzd3dPrPORmq1evZvTo0YwfP55x48Zl6pgaNWoQEBBAeHg4bdu2JT4+njS1xMWXyay+EcOm27Eci0gi+Fkyp58mc+hRIkuuRrH7XhyPEnLmd1vIHkoDFsPMrYU1BeFtRLIvpLM2NaFbRWsUcjJ/AaPRkBQTRfvi8lw3HVH4b7p06RKOjo5ilomgm4MHYcWKrE/RVqshIACWLs2euN6if//+uLm5ERER8dbR/X8m+9WrV+fVq1c8f/48PVF/8eIFT5484dtvv2XDhg2kpLy5FvXWrVs0btyYsWPHMnToUEJDQ3Fzc/tgbIGBgSgUClxdXTPcrtFo+Pbbb0lJSWHLli0oFApOnjzJ5s2bmTNnDgULFtTjFclZ7ctYYWMm13b2ZJIMbUHcL8tb57rPKB8fHxITE5k2bZqxQ/mgrVu3MmjQIIYNG5bl7S4dHR05fPgw165do0uvvqy5HsWhR4m8+mtbNQltDaLXY8AScDMmjV9vx3LkcQKSqMaeJ+UzYDHM3FhYUxDeRWRnQgZ2lvn41sEGK1PtW+NdH2evb495cp8lvVqgSYzNkfgE4UNEJX5BL4sWvbuCd2aP1+TMtF+5XI6fnx+RkZFUqlSJGTNmZBjd//fIPmi3uVuxYgVffvkly5YtY9q0aYwbN46oqCh+//339GPVajXz58+nVq1aPH/+nMDAQObPn4+lpWWmYgsMDMTZ2fmN7S9/+uknDhw4wMaNGylZsiRqtRoPDw+cnZ0zXRwwt7BQyOlkn49XD+8iZeL/XAZYm8rp5WCDtake77Fs8OTJE+bPn8/IkSP55JNPjB3Oe+3bt49evXrRq1cvFi1apFOniZOTE7sPHaHe995Ep3x4v/XX/7vnXqRw4KFI+PMiE5mMAgqZXrU2XrPJZb+/gvA+ItkX3lDUQsGQarZ8Wc6K0m+pri8DKhY0pezLa8z9woW455FvrH0TBGOIjo7mwYMHohK/oJvwcDh06M31+ZklSXDvHhw5Yti43qNatWqMGzeO8PBwbty4wbZt29Lv+2eyX6FCBczMzFixYgWSJHH69Glq167N6NGjcXBwoGnTpvj5+QHa0fwmTZowZswYBg8ezKVLl2jYsGGmY5Ik6a3r9U+ePMnEiRMZP348bdq0AbRTsUNDQ1m8eDHyzO6Nnot4jfqeVQM7UsMsBau/KuvLAUmjQaPRIGm07yVLhQy3Epb0rWyDrVnuSxSmTp2KpaVlpqfDG8uxY8fo2rUr7du355dfftH5PaORJG5bV6CAbWHkWezcuxyVynlRkT3PeP15N2jQIPatmIdGj85YGdpdp2xy4e+wILxL7lowJuQacpkMBxszHGzMiE1TE5emIU0tYWYiw8bMhAL55FC+MX6ffcaff/5JRESESLAEo7t8+TIgivMJOtq6Vbv/tq7JPoBCod32q2VLw8X1ARMmTMDf35+oqCimT59Okw5fcjVaiePACUhyBZtvx1LIzIT6rTtw7OAf1K5dmwsXLnD+/HkUCu1lwKBBg+jZsyfjx49n4cKFfPLJJxw/fpxGjRplOZ67d+8SGRmZIdl/8eIF3bt3p0GDBkyfPh2AqKgoJk6cSN++fXFxcTHMi5GDtmzZwrp161i7di0dapRGI0nci1NyOzaNZJWG8Hv3OHPiGGmR91jgNZLydrlzL/dr167xyy+/MH/+/Fy9jOLs2bN06NCBhg0b4u/vn/7e1cXt2DRepap1LrJ4+lkSdYqaY5LLlmIIf4uIiGDjxo2sW7eOGzduUKpUKfoOGoqJiVznivwS2mLUgpCXyCQxF0nQw/nz53F2dqZTp07s3LnT2OEI/3G+vr6MGzeOhIQEvS4Ehf8oDw9YuVL/InvNm2vX7+egI0eO8L33fJr09aD0p07I+XvqMZD+7yfXLxG0aTntnaqlJ90AYWFhODo6olKpGDFiBLNmzcr0lP1/W7NmDQMHDiQ6OpqCBQui0Who164d58+fJzQ0NH2auIeHB+vXr+fWrVt5rqBmeHg4tWvXpl27dvz666/vnEp+4cIFunbtSmxsLBs3bqRdu3Y5HOmHdezYkbCwMK5fv46pqamxw3mrq1ev0rhxY6pUqcL//ve/N5aHZNXm27E8SlDqtQ1bp7JWVLF9+7aSgnGkpqayZ88e1q5dy8GDBzE1NaVz5864u7vTrFkzTExM2PcgnqtRqVn+v3+9DGdwNVvkopNHyEPy3pw5IVepWbMmAHv27CEsLMzI0Qj/daGhodSoUUMk+oJuUlIMsp5Tk5hogGAyT5IkTKq60vvn9ZSsVlsbw79j+uunnUMNvvZeQYP+o5EkCY1Gg6+vb/r6+oIFCzJ37lydE33Qrtd3dHRMHyWeO3cuhw4dYtOmTemJ/pUrV1i2bBlTpkzJc4m+UqmkZ8+eFC5cmOXLl793zXjdunUJCQnBzc2N9u3bM2nSpDd2TTCmEyc7RXmvAAAgAElEQVROsGfPHry9vXNton/nzh1atmxJ6dKl2b9/v96JflSKmod6Jvoy4MKLZL3iEAxDkiRCQkLw8PDA3t6er776ilevXrFs2TIiIyPZvHkzLVu2xOSv5RotSxagmIVJlnbSkAGmchlfV7AWib6Q54hkX9CLqakpFhYW2NraMnz4cFG0RjCq15X4BUEnNjZ67Z0O2mme+4ODqVGjBl999RVTpkzB39+fy5cvv7XavSGciEzizDNt4vGh9cev7w+NUvJ72BOaNm3KyJEjGTBgAEePHiU2NpZdu3bpFc8/1+ufOHGCSZMmMWHCBFq3bg1oL86///57KlWqhIeHh17nMoapU6dy4cIFtmzZkqlp77a2tuzevZvZs2cze/ZsWrVqxfPnz3Mg0veTJImxY8dSt25dvv76a2OH81aPHz+mRYsWWFtbc/jwYWxsbPRu83nyhwvyfYgEPE/OPZ02/0UvXrxg4cKFODo6UrduXbZv307//v0JCwvjzJkzDB48+K3vF1MTGd0rFsQ+k1tfvt5Bo2elghQ2FwMJQt4j3rWC3mxtbWnWrBmbNm1iy5Yt9OzZ09ghCf8hKSoNKWoJpVLJ7Xv36devn7FDEvIqZ2f9p/DL5RRt25amZcty7do1/Pz8ePr06V93ySlfvjzVqlWjatWq6T+rVq1KgQIFdDrdvbg0Tj3TbYTxttIchX0Fjh2bQZMmTQBo3Lgxfn5+dOvWTac2Hz58yP3792nSpEn6Ov1GjRoxderU9Mfs2LGDY8eOceDAgVw7mvwuR48eZfbs2Xh7e2epzoBcLsfLywtXV1e6d+9O7dq12bp1a5YKHxrajh07CA4O5ujRo7myOOKLFy9o2bIlkiQREBBAsWLFDNJuqsYwgxJpBmpHyDylUsnBgwdZu3Yte/bsQSaT0aFDB7y9vWnTpk2mZ/VZKOT0qFiQ0JcpnH+RTEyaBpkkodZokJvIkSFDAsxMZNQubI5TMQttrSpByIPEmn1Bb9WrV6dVq1Y8evSIoKAgbty4kauL/Ah5n1IjcT06lQsvknn2r9EVa1UizSqVoFJBU1E8SciatDSwt4dXr3Rvw8QEHj0CO7v0m6Kiorh+/TrXr1/n2rVr6T8fPnyY/pjSpUtn6AB4/bNQoULvPd22O7Hci9dtSrKk0fBJfgXfVvn7HL/++iu9evXi1q1bVKpUKcttvj7+6dOn9OnTh5CQEEJDQ7G3twcgKSmJqlWrUqtWLf744w8dojaely9fUrNmTapWrcrhw4fTpwVnVWRkJN27dycoKIi5c+fi6emp0/Zx+lAqlVSrVo1KlSqxf//+HD13ZsTExNCsWTMiIiI4ceKETu/Fd7kWlcofD+L1bscEidG1CufKjpKPTVhYGGvXrmXTpk08e/YMR0dH3N3d6dmzJ0WKFNGrbUmSeJCgZP/5a5w8e4EvOnWigLkpZazyUcXGDIVcXEcIeZsY2Rf0ZmNjQ0xMDAsWLKBKlSpMnTqVBQsWGDss4SN16VUKRx4nkqaR3rrmLl6Rn1334rFUyGhbugCVCooCSkImmZrC0KEwe7ZOFfmVwHk7O8oCdv+4vVChQri5ueHm5pbh8QkJCdy4cSNDB8CePXvw9fVN3x6qePHiGToAXv+9ePHixKZpCI/XfSaCTC4nIlnDy2QVRSy0lwNdunTBw8OD1atXM3fu3Cy3efz4capVq8aaNWs4fPgwBw8eTE/0AXx8fHj69ClHcnB7QkOQJIl+/fqRlpbGxo0bdU70Aezs7Dhy5AgTJ05kzJgxBAUFsXbt2hztJPfz8+Pu3bvs2LEjx86ZWYmJibRv35579+5x/Phxgyb6AFam+ifnkkbDs0f3sGlSgXr16uHi4oKrqysuLi4Gm4HwXxcdHY2/vz9r167l3LlzFC5cmG+++QZ3d3eDLteTyWSUtTJFuhbE9h9H8esP/XK8800QspMY2Rf01q5dO/Lly8euXbuYO3cuEydOJCQkJL14nyAYyonIRIKeZm3KcttSBahVRGyVI2RSZCRUrw5xcVlK+CWZDI1cTisrK85rNMyaNYshQ4bolBSmpKRw69atN2YC3Lp1C+VfywxsbW35wnMqDm27I9NjZFEGOBezoNknfxc9GzVqFL/++iuPHz/O8jT7KlWqULlyZfbu3cuECROYMWNG+n3379+natWqjBo1ilmzZukcszEsWbIEDw8P/vjjDzp06GCwdnfv3k2fPn0oWrQo27dvz5EtbOPj46lQoQLt2rVj7dq12X6+rEhNTaVjx44EBQUREBCAq6urwc8hSRLLw6KJU+q+3zpAqeRIHgXuIzg4mDNnzqQv1ylbtmx64u/q6krt2rUxMxOdzpmhVqsJCAhg7dq17Nq1C5VKRZs2bXB3d6d9+/bZ+jpOmTKFNWvW8Pjx42w7hyAYg0j2Bb198803PHnyhGPHjpGWloajoyOFChUiMDBQTG8TDObiy2QOPdKtynmX8lZihF/IvLNnoWlT7bT+zCT8r0eBtm0jqlkzxo8fj5+fH87OzqxYsYI6deoYJCylUkl4eHh6B0BsqVoUrFoXuYnuk/RkQGUbUzqVs06/7dq1a1SvXp1t27bx1VdfZbqtZ8+eUaJECWxsbHB0dCQgICBDZ0fXrl05ffo0N2/e1LlGgTFcunQJFxcXBg0axKJFiwze/t27d+natSs3btxg2bJluLu7G/wc/zRlyhR8fHy4desWpUqVytZzZYVKpaJbt27s27eP/fv306xZs2w7V/CzJP6MSNL5eLkMhtcohKVCe40jSRKPHj3izJkz6cl/SEgIKSkp5MuXj9q1a2cY/S9fvrwYPf6H27dvs27dOjZs2MDjx4+pWrUq7u7u9OrVCzs7uw83YABDhw4lODiYkJCQHDmfIOQUkewLehs2bBhBQUGEhoYC2gJGzZs3Z926dfTp08fI0QkfgxSVhsVXo1Dr+GmVXyFjWI1CYsscIfNCQqB167/X77/rq1IuBzMz+O03+Mce6qdOnWLIkCGEhYXh4eHB9OnTsba2fnsbOtp1L46bMWl6bSEGUN46H19XyDiFvFGjRpibm/O///0v0+1s27aNbt26UbhwYa5cuZLhIv3IkSO0aNGCX3/9NU8VcU1KSqJu3bqYmpoSHByMuXn2zBJKTk5mxIgRrFq1in79+rFkyRIsLCwMfp7IyEgqVqyIh4cHc+bMMXj7utJoNPTr149Nmzbx+++/07Fjx2w9X7JKw9KrUah0+OWRAdULmdG+jNV7H5eWlsbly5cJDg5O7wC4ffs2AEWKFMHFxSW9A8DZ2dkgOw0YlCRBQgIkJoKVFVha6r1byT/Fx8fz22+/sXbtWk6ePEnBggXp3r077u7u1KtXL8c7Q7p27Up8fDyHDh3K0fMKQnYTw66C3l6v2X+tWbNmdO/enbFjxxIdHW3EyISPxZWoVJ0TfYBElcSd2DTDBSR8/OrUgbt3YfFi+Oea4X9Oy7ezg+nTITw8Q6IP0KBBAy5cuMDcuXNZtWoVVatWZfv27QbdntTURJalvaLfSpLI95bugoEDBxIQEMDdu3cz3dTrWi3+/v4ZEn2lUsmIESNwc3OjR48e+kaco0aNGsWDBw/w9/fPtkQfwMLCAj8/P9atW8eWLVuoX78+d+7cMfh5pk2bhrm5OV5eXgZvW1eSJDFy5Eg2bNjAhg0bsj3RB2019i/KvT9ZfxsZYGtmQot/LHt5F1NTU5ycnBg2bBgbNmzg1q1bvHz5kv379zNs2DBUKhULFiygVatW2NraUq1aNdzd3Vm5ciWhoaGoVPpvEaiT8HAYNw4KFwZra+3nXIECULIkeHvDs2c6N63RaDh27Bh9+/alRIkSDBgwAAsLC3799VciIyNZsWIFLi4uRpn18Pz5c1FvQfgoiZF9QW8//fQT3t7eGRL+iIgIqlSpQu/evVm6dKkRoxPyOkmSWHktmpg03ddXyoDSBfLRo5LYJULQgSRBUBBcvw6xsdoL33LloHlzyMRWTw8fPuT7779n9+7dtG3bliVLllC+fHm9wzr7PJmjT3Rb2vKaRq3m2Jr5SHdCaN68Oc2aNaNOnToolUrs7e0ZMmQIs2fP/mA7x44d47PPPsPR0ZGLFy9muG/RokWMHDmSCxcuULt2bb3izUnbt2/nq6++ws/Pj4EDB+bYeS9fvkzXrl159uwZ69ato3PnzgZp98aNG9SoUQMfHx88PT0N0qYh/Pjjj8ycOZMVK1YwePDgHD33tahU9vxVmf9DF8MyoLC5Cd0qWGNlqnuBxn/SaDTcvn07w+j/5cuXUalUWFpa4uTklGH6/yeffGKQ877Vq1fQrx/s2aOdsfS2JUxyufZPnz7ajtBMzj558OAB69evZ926ddy7d48KFSrQt29fvv32W0qXLm3gJ6KbKlWq0K5dO37++WdjhyIIBiWSfUFvq1evZtCgQahUqgxr9BcsWMDo0aM5d+4cdevWNWKEQl4WlaLG77phZoiMrlWYfGIbHcFIdu/ejYeHBy9evGDy5MmMHj1ar33mk/9a3qLXdt+ShMnJbfx5cB+BgYEkJiZSsGBBmjRpQnR0NGFhYURERLy3MNazZ8+oWbMmz58/Z82aNfTr1y/9vhcvXlCpUiW6devGypUr9Qg0Zz18+JBatWrRokULtm3bluMjjbGxsfTv358dO3YwZswYZs2aRb58+fRqs3PnzoSGhnLjxo1cUzBu3rx5jB07lrlz5/LDDz8YJYYniUpORCZxP16JjIxJv0atRm5igqlcRq3CZjS0s8TMJHsnxSYlJRESEpKe/AcHB/Po0SMASpYsmSH5r1u3LpaWlvqf9PFjbZ2S+/czV6dELgdnZzh8WDv6/47nsXPnTtauXcvRo0extLTkq6++wt3dnUaNGuW6mgWFCxdm7NixuWrWiyAYgkj2Bb29Hv2Ijo7OsOZMqVRSp04dLC0tOX36tCjWJ+jkcYKSTbdjDdLWd9VtsTbQiIwg6CIhIYFp06axYMECHBwcWLFiBY0bN9a5vb334wmLTtVp3b5apSLqRgiDXSri4OCAUqnk7NmzHD16lCNHjhAUFIRKpcLa2prPP/+cZs2a0bx5c8qVK5d+oa5Wq2nTpg3nz58nJiaGu3fvZpi1MGjQIH777Tdu3bpF0aJFdX6eOUmlUvHZZ5/x8OFDQkNDsbW1NUockiTh6+vL2LFjcXV1ZevWrRm2MXzfcWqJDPuDBwUF0bBhQzZt2sQ333yTnWFnmp+fH4MHD2bixInMnDnT2OEQnarm4ssUHiUoSVZpUCvTCDl9klafVuDLBo5G7SiOiIjIMPp//vx5EhMTMTExoWbNmhk6ABwcHLJ2vRUXB66ucPs2ZGXpgImJtoPgwAH4qyNKkiTOnDnD2rVr2bp1K3FxcTRu3Ji+ffvy1Vdf5drCnEqlElNT0zc6KwXhYyCSfUFvAQEBtGzZknv37lG2bNkM9504cYLGjRvn+DRI4ePxKEHJryLZFz4yly9fZsiQIZw+fRp3d3d8fHwoUqRI1tu595i9LxXI5PIsbcEnSRIyYOf4flz88xCjRo1i0qRJWFn9vY45KSkJZ2dnkpOTKVq0KOfPn0ej0VCmTJn0xD80NJSff/6Zrl27curUKR49epTeERASEoKTkxO+vr54eHhk+bkZy9SpU5kxYwbHjx+nYcOGxg6HU6dO8fXXX6NUKvH39+ezzz574zExqWouvUrh8qsUEv+qOieXQXELBXWKmDO0c2uSEuI5f/58ruh437JlC9988w3Dhw/H19c3143ygrYjq2DBgkyZMoWxY8caO5wMVCoVYWFhGUb/r127BmjrKNWrVy89+XdxcaFw4cLvbmzKFO1a/CxsNZrB2rVEtGrFxo0bWbduHTdu3KBUqVL06dOHPn36ULFiRd3azUGRkZHY29uzZ88e2rdvb+xwBMGgRLIv6O38+fM4Oztz8eJFHB0d37i/T58+7N27l5s3b+p0MSv8t71MUbH6esyHH5gJnjULY2qS+y4qhf8mjUbD6tWrGTduHHK5nJ9++om+fftmOhk7efIkHTp0oIxrM7rPWqmtLZCJpEmSJGQyGTVNYvmskj3z5s1j9uzZFCxYEB8fH3r16pWefK1btw53d3fCw8OxtbUlMDAwfeT/6tWrgLayuFwup3LlyuzatYtChQohSRINGzYkNjaW0NBQFJmobZAbnDhxgqZNmzJlyhQmT55s7HDSPX/+nJ49e/Lnn38yY8YMvLy8kMvlJCg1HHwYz524N6egA+m3JcfHUkmewDduNY2eWO/du5fOnTvzzTff8Msvv+SKzod3adiwISVLlsTf39/YoXxQbGws586dy7D938uXLwGoWLFihuS/Vq1a2iVESiXY28Nfj8sqjUzGXSsrqiQkYGpqSufOnXF3d6dZs2YZtt3M7S5fvkytWrU4c+YMLi4uxg5HEAxKJPuC3u7cuUOlSpX4888/adq06Rv3P3v2jMqVK/P111/j5+eX8wEKeZpGklgWFk2CUr8CfXaWCr6tnMu2NhIEtIncmDFj2LhxIw0bNmTFihVUr179vcesWLGC4cOHo1arad26NbPXbeXA42QkCUzek1jLkFCrNeyYPpIxPTqmV8d/8OABY8eO5bfffqNBgwYsXryYOnXqkJSUhL29PcOGDcPb2zu9nadPn1KzZk2KFStG3bp12bBhg7Z9mYzatWtjZ2fHvn372Lt3L+3+tVNBbhUVFYWjoyPlypXj6NGjuS5ZUavVTJs2jRkzZtCuXTsWr1nP/hcyEpSaTC/j+LSQGW1LFzDaNqR//vknbdu2pV27dmzdujXXdwKNGDGCAwcOcOvWLWOHkmWSJHHv3r0Mo/8XL14kLS0NMzMz6tSpw+BCheizb5/e59oxfjzNf/gh920fmEmvZ6iGh4dTrlw5Y4cjCAaVe7tThTzj9Yf7P6vx/1Px4sWZOXMmq1evJjg4OCdDEz4CcpmMukXM9dpiTAKcihp+z2pBMIRixYqxYcMGjh49yosXL3B0dGT8+PEkJSW98di0tDQGDx7M0KFDUavV9OvXj7179xKybzsLv2rE+Z0bUKelIkkSKmUakkb9108NChnUKmxBrcS7hOzxZ9myZentlilThm3btnHkyBFiY2NxcnJi8ODBJCUl0atXL3755ReUSiWgTTp79eqFXC4nICAgfQ14QEAAa9asoWLFihw4cACATp060ahRI6ZMmUJgYCCpqak58IpmnSRJDBw4kISEBDZt2pTrEn0AExMTpk+fzv79+7l0/SarQyNISFNnqV7DlahUvXdw0FVwcDAdO3akSZMmbN68Odcn+gB169bl9u3bxMYaZilZTpLJZJQvX54ePXrg6+vLmTNniIuL48yZM8ydO5eyZctie+wYem/wp1DQRS7Ps4k+aDtcAbH1nvBREsm+oLeCBbXbmUVHv7ti+tChQ3F0dOS7775Dreu6MOE/q2Zh/ZJ9cxMZDja6Vz0XhJzw2WefcenSJSZPnsyCBQuoXr06+/4x6vb06VM+++wz1qxZA8CkSZNYvXo1UVFRjB07luIFzAlYPIObKyZzcuVsgjavxCbhGUGbV7Jr9lhamb6kTekCtGvSgAoVKnDy5EkOHz6cIYZmzZoRGhqKr68v27Zto1KlShQoUICnT5+yd+9eAGbOnMmff/7Jli1bKFGiBIGBgRQpUoRmzZrh7u5O+fLlMTU1JSAggIULF1KsWDEWL15MkyZNsLW1pVWrVsydO5dz587l7PfB48cwezYMHAg9e8KQIeDrC1FR+Pn58fvvv7N69WpKlSqVczHpoG3btszfc4L8hYsh6TBCf/5FChGJymyI7N2uXLlC27ZtqVWrFr///nuu2Q3gQ+rUqQPwxnaSeZWZmRkuLi6MGDGCzZs309HFBb27XGQynZcB5BYvXrzAwsKC/PnzGzsUQTA4kewLesuXLx/58+d/58g+aEckli5dSkhISJ7afknIHfLnk9PQTvfthVqUzJ+hMrUg5FZmZmb8+OOPXL16lUqVKtG+fXu6dOnC3r17cXJy4uLFi6jVahYvXsyMGTOQyWSMGjUK0E7FHzx4MMePBmD+8gEHfafT3M6co8vncO73jYScPZN+ng4dOmBpaUmvXr148uRJhhgUCgUeHh7cunWLrl274uPjg4WFBXPmzOHo0aNMmzaNKVOmpBeKCwwMpHHjxshkMm7fvs38+fPx8vKiefPmDBs2jB07dvDixQsuXLjA9OnT00eo69WrR+HChenUqROLFy8mLCyMbFlZGBgInTtDmTLw44+wbh1s3Qpr1oCnJ5oSJbD47jtmdO3Kl19+afjzG1iKSsP9NAVyHWcfyIALL5ING9R73L59m5YtW1KmTBn27t2bpxKqKlWqYGFhQUhIiLFDyR6G6GyTpKxV8c+Fnj9/Lkb1hY+WSPYFg7CxsXlvsg9Qv359+vfvz8SJE9OnTAlCZtUvbkGdIlkfDWpqb0mNQubZEJEgZJ+KFSty6NAh/P39OXLkCB06dODVq1eoVCq2bt3K8OHDATh06BCbN2+mRYsWpKam0rlzZx4+fEiZMmUAKFWqFGXKlMHW1pazZ8+mt//pp5+SnJyMQqGgR48eqN5ysV60aFFWrVrF2bNnsbOz4+zZs7Rt2xY3NzcmTpwIQEpKCsHBwenbB3p6emJnZ/fGnukmJibUqVOHMWPGcODAAaKjozlx4gSenp7ExMQwZswYatSogZ2dHT179mT16tXcu3dPvxdRkmDWLGjSBPbuBY1Gm9yoVNq///VTrlTSU6Nh4s6dsGmTfufMAVeiUlHr0SciAdej00hS6V4HJbMePXpEixYtsLGx4dChQ3luqrdCocDR0ZELFy4YO5TsUaQI6FsgUSaDQoUME4+RiGRf+JiJZF8wiMwk+wBz5sxBLpe/cSEoCB8ik8moYZJA4Jqf0ahV75zWL0kaJElCIYPPSxfAtbjuMwIEwZhUKhWnT58mNjYWc3NzUlJSKF26dPoWp0lJSQwdOpQmTZoQGBhInz59uHLlCiYmJlhbW1OoUCEsLCwoXbo0VlZWGZL9GjVqIEkSM2bM4NSpU/z444/vjMPJyYkLFy5gYmJCmbpulGrXG59j1/jlehRrrzzls8HjcG7cjP3797N3717mzZuHhcX7a2SYmprSsGFDJk+ezLFjx4iOjubw4cP07duXO3fuMHjwYMqXL0+5cuXo378/mzdvJjIyMmsvoLc3/NUp8aGRRwUgU6uhd2/YvDlr58lh16P1r3ugAe7EpukfzHs8f/6cFi1aIJPJCAgIyLPJVJ06dT7eZL95c22nmD6USmjWzDDxGMmLFy8oWrSoscMQhGwhkn3BIDKb7BcpUoTZs2ezfv16Tp48mQORCR8LbQGtAYRsX8u3pRQ0tbfEKt+bH2FWcg27Zo2l2LX/UbOwGNEX8qaXL1/SunVrli5dSrFixbCysmLDhg1YW1vj6urKd999x4QJE4iIiKB58+Y8f/6csWPHEhAQgKurKy9fvuSTTz4BSB/lv3TpEsnJ2unb1apVA7TLsLy9vZkzZw779+9/aywaSWLxH38yevdZ+i3dxqctOyErZMfzFA2xigI0/vY7ArFj/zM1nfsNoUuXLll+vpaWlrRs2ZI5c+Zw9uxZXr16xa5du+jYsSPBwcF888032NvbU716dTw8PNi1a9d768Rw4IB2yr4u+vSBv7YVzI0SDDAiL4NsHdmPiYmhdevWxMXFERAQQMmSJbPtXNmtbt263Lp1i/j4eGOHYni9eoG5nt+TZcpAq1aGicdIxMi+8DETyb5gEJlN9gH69++Ps7Mzw4YNe+vUUUF4m9WrV7N//35Wr15NyeJFcCluyXfVbRlU1ZZvHQrSx6EgQ6rZMqxWcWziI1m8YH72rP8VhGx26dIlnJ2dCQ0NpWDBghQoUIDTp0/Tu3dvzp49y8KFC9mwYQO+vr60b9+edevW0bVrV8qXL8/Ro0dp0aIFjx8/zpDsx8XFoVKpCA0NBaBAgQKULVuWq1evMnbsWD7//HN69+7No0ePMsSSppZYcfYeiupu2NhpC9fJ/jXtV26iLfFlV8OZesOnczlK/5FnGxsbvvjiC3x9fbl69SpPnz5ly5YtNGjQgP3799O5c2cKFy6Mk5MT48aN49ChQyQm/qPK/Ny5oE9F/UWL9H4O2UVjgI81Gei1FOB9EhMTadeuHQ8ePODw4cNUrFgxe06UQ+rWrYskSem/Ox8VKytwdwddd0aQy8HDQ/+lAEYmkn3hY5a3fzuFXMPW1jbTyb6JiQnLli3jypUrLFmyJJsjEz4G4eHheHp60r9/f9q3b59+u0wmo5C5Cfb582GXPx82ZibIZDJGjBjB+fPnOX36tBGjFoSs27p1K/Xr1ydfvnyoVCpKly7NqVOnqFChAqBdQzx8+HAqV66MlZUVO3bsIDw8nJ49e3Lx4kWio6Np0aIFT548SR9NLV26NNHR0ZiZmb0xlf/q1avI5XI2bNhA/vz56datW/oWexpJwv/GC2JM8iOTy5F9oPK7iUIByDjwMIGwqBSDvi7Fixene/furFq1irt373Lv3j1Wr15NlSpV2LBhA23atMHW1pbGjRuzZNgwOH5c9+JjKhVs3AiZ/E7LaeYm+hcb1RionX97XTfi8uXLHDx4kE8//dTg58hp1apVw9zc/OOdyj9uHFhbZ71zTKGAChW0u1vkcc+fPxfT+IWPlkj2BYPIysg+aNeADhkyhMmTJ2d9Habwn6JWq+nbty+FCxdm/vz5mTqmTZs2VKpUCV9f32yOThAMQ61WM378eLp3746TkxMPHjzA2dmZY8eOUbx48QyPXbFiBSEhIezbt49y5cphbm5O9+7d8fLyokCBAri4uLwxsg/apCU4ODi9ndfJviRJFCpUiG3btnHu3DnGjx8PwKnIRJ6kkvWq75LEvgcJxKRm37Z6ZcuWpV+/fmzatImIiAiuXbvG/PnzKVKkCNKaNei9sczpfr8AACAASURBVFxqaq5du1/WKp9eW5G+VsLAu9+pVCp69OhBYGAge/bsoV69eoY9gZEoFApq1qz58Sb7pUvDoUNgaZn5hF+hgKJF4fBhbUdBHpaSkkJ8fLwY2Rc+WiLZFwwiq8k+aPdqNjMzY8yYMdkUlfAxWLhwISdPnmT9+vVYZ/KiQi6X4+HhwY4dO3j8+HE2RygI+omJiaFDhw74+PjQtWtXTp48SadOndi/f/8b7/mIiAjGjx/PwIEDSUhI4N69e+zcuRNPT0+OHj2KJEkcPXqUZ8+eZRjZB22CfPbsWSRJ4l5cGsXb9Kbfr8eYG/qKn0JfcS5/Jby3B7Bu2052/7GHEw+jkMl0uEyQyVCp1RwMu6/vS5PJ08moWrUqw4cP5/fff2d48+b67x3+f/bOOyyKq23j92yjVzUIggVFVCwgYsOChqAYe8WGvYsllhh7TKyJJZZEjd2osUQlBBXF6GdvMTZsIXYsKFhB6tzfHyv7ioAs7MICmd917ZW4O3POc7YMc5+nKRTAjRv6ME/veBQ3hi4R+GJqKu5ePIuaLmUxYcIEREZG6myTKIro27cvQkJCsGPHDvj4+Og8ZkHC09Oz6LbfA4BatYCTJwEndaqOmFVYflq4f/XqwLlzwLtioYWZp0+fAoAk9iWKLJLYl9ALuRH7tra2mDdvHjZv3oxDhw7lkWUShZmIiAhMnDgRo0ePRuPGjXN0bu/evWFmZoYff/wxj6yTkNCdq1evonbt2jh58iS6d++OHTt2YNiwYdiyZQuMjDK6XkeMGAETExPMnTsXc+bMQZ06ddCsWTNMmTIFSqUSdnZ2aN68OUjC1FTdicLJyQmCIKB48eIwKeeGZZdjsPXfV0i0LAFjc/VmggggLoVgaTeMDT6Nw4nWEIxy38lCJpfj2htg0JChmpvp/EJ4+VJ3zzcJvHqlD3P0TjFjBUqb5967L5PL0bamCwICArBixQq4uLjA19cX27dvR1JSziv0k8SIESPwyy+/YOPGjelSrYoKnp6euH79evq6EEUNNzcgMhL4/XdEfBBNBEDt9W/XDjh8WC30HRzy3cS8IK0VtBTGL1FUkcS+hM4ki4RZKWc4uNfFP88T8Cg+GaKWhdF69eqF+vXrY9iwYbm6yZAouiQlJaFnz54oX748Zs6cmePzLSws0LdvX6xcuVJTgVxCoiARHByMunXrQqVS4fPPP8fGjRvx7bffYvHixZBl4lkLCQnBb7/9hkWLFuHatWs4cuQIJkyYAEEQcPz4cSQlJWH37t2Y9K7d3ODBg7F8+XIoFArY29ujWK0m6D5vNd6kqK/PzEQupl25P3F21bnApYmFFS4+eo6KFStiyZIl+VeQVR9hxYKgLl5WQGlkb5orsS8AsDORw7dqefzwww94+PAhNmzYgMTERHTu3BmOjo748ssv8c8//2g95uTJk7Fs2TIsX74cAQEBubCq4OPp6QlRFItmkb73kcshfv45fFNTMWvIEODYMWDfPuDECeDhQ2DbNqBxY/Xvo4ggefYlijqS2JfINbEJqTj44A2WXI7BC9eG6LVoE3678wbrb7zEjxHPcfJxPOKSP97aRyaTYdmyZbhx44aUXy2Rjm+//RaXL1/Gxo0bYZzL1kBBQUGIjY3Fpk2b9GydhETuEUURM2bMQNu2bdG0aVNUqFABW7Zswc8//4xJkyZlWgjvzZs3GDZsGJo3b44uXbpgzpw5qFy5Mlq3bg0ACA8Ph52dHapWrQp3d3cAQOvWrTFkyBDUr18ftdv3hJXXZ+rBtLhR16YgX7ZjAJi1YDE6d+6MkSNHwsPDI3+iuCpUyH118TRSUwFnZ/3Ykwc4mivRsmzONiPE1FRYKGXoXN4Kcpn6szUxMUHPnj1x9OhRREREoHv37vj5559RsWJFfPrpp9i6dSsSE7PurjBv3jzMmjUL3333HQYOHKjTmgoyVapUgUqlKrp5++9x8eJFREdHo16nToC3N9CsGVCvHlBExbDk2Zco6khiXyLHiCTC7r3GymvPce5pApIy0fNvkkUceRSPZVdi8dfTj3tV3d3dMXz4cHz99ddSfrUEAODMmTOYNWsWJk+eDE9Pz1yP4+zsjFatWuGHH36Q2vBJFAhev36Njh07Ytq0aZg0aRJevnyJsLAw7Nq1C/3798/yvClTpuDZs2f48ccfERERgZCQEHz55ZeaCIDw8HD4+vpCEARERUXB2NgYGzduxJEjR5AsKFCr58h8/w0IAFQmZlixYgXOnj0LCwsLNG3aFJ07d8a9e/fybuK+fdUV9XVBLlf3IC/AVLExQkdnSyizuZNL27J5EPE3XuxbB7MsTqhSpQoWLlyIqKgobNy4EcnJyQgICICjoyPGjRuHmzdvpjt++fLl+PLLLzF58uQiX3tHpVKhevXqRTtv/x1hYWEwMzODt7e3oU3JF6Kjo2FhYZFrp4KEREFHEvsSOUIksfPWK/wdo97p/9itI6HOAz3wIA5HH308z23GjBkwNzfH6NGj9WarROEkPj4egYGB8PDwwMSJE3Ueb8SIEbhy5YpUF0LC4ERGRqJu3boIDw/HunXrEBoaigsXLuDAgQMaD31m/PXXX1i8eDG+/vprlCtXDnPnzoWTkxO6du0KAIiJicH58+fh6+sLAHjw4AEcHR0hCAIaNmyIRTv2QiaX6+ypzykEYPSuvZunpyeOHz+ODRs24OjRo6hUqRK+/fZbJCTot0UfAMDdHahTJ/e9vxUKoEsXoHhx/dqVB1SwUmFYVVt85mgGG6OM6xUAuFipEFDBEjY3j2LqhPE4derUR8c0MTFBjx49cOTIEVy9ehU9e/bEmjVr4OrqiiZNmmDLli1Yv349hg4diqCgIMyYMSOPVlew8PT0/E949vft24emTZtCpVIZ2pR84enTp1IIv0SRRhL7Ejki/MEbRL7KeVOj44/f4lJM1jd1VlZW+P7777Fjxw7s379fFxMlCjlfffUV7t69iw0bNkCpVOo8XtOmTVG1alUsXrxYD9ZJSOSOsLAweHl5ITk5Gdu2bcOMGTMQHR2No0ePokGDBlmel5KSggEDBqBatWoYNWoU7ty5gy1btmDs2LGam/FDhw6BJD799FMAQFRUlKbtnkjiQmxSvgt9QC32ixv/r5WXIAjo2bMnbt68ieHDh2PGjBmoUqUKgoOD9R91MG4cIH48jSxLUlOBkSP1a08eYiyXwbOECQZWtkFvV2uc/ukbPNy3CZ3LW2JoVRu0d7ZEWQsVpk+fDi8vL3Tr1g0vX77UauzKlStjwYIFiIqKwqZNm0AS3bp1Q+/evVGlShUMHjzYIN8tQ1CzZk1cvXoV8fHxhjYlz3j9+jWOHz+OZs2aGdqUfCM6OloK4Zco0khiX0Jrniem4vyzrHP3suNQVBxSxaxv6Lp3747GjRtj+PDhH80RlCi6/Pnnn1i8eDFmz56NypUr62VMQRAwYsQI/P7777h165ZexpSQ0BaS+O6779CiRQvUq1cPP//8M3r16gWlUokTJ06gatWqHz1/yZIluHDhAlauXAmlUonvv/8e1tbW6Nevn+aY8PBwuLq6wuld26wHDx5oxH5UXAriUpjvBbUoinjx+AGmDR+AEydOpBPzFhYWmDdvHi5fvgxXV1e0bdsWzZs3x/Xr1/VnQIcOuNWuXe5a1C1dqm5FVsgQBAElTRW4dfow+DASzpYqWCj/t9miVCqxefNmxMTEYOjQoTnaYDE2Nka3bt00XR9cXFzw+PFjuLm5oXHjxti0aVPeRGkUINKK9F26dMnQpuQZf/75J1JSUtC8eXNDm5JvREdHS559iSKNJPYltObvZwk6tTN6m0rcfJl1xX1BELBs2TLcunUL33//vQ4zSRRGXr58id69e8PHxwcjRozQ69jdu3eHjY0Nli5dqtdxJSQ+Rnx8PLp3747x48fjyy+/xMiRI9GyZUuUK1cOx44dQ5kyZT56/r179zBlyhQMHz4ctWvXRnR0NFavXo2RI0fCzMxMc1xavn4aUVFRcHR0xPPnz3HinGFyjAWZAOuXUTh27Ci8vb1RvXp1LFu2LJ1H2dXVFXv27EFwcDAiIyNRrVo1jB07Fq/00PLu0aNHqHf0KHaWK6d+Qi7/6PFUKEAAY5VKnK9bV+f5DUlcXJym7eKHlCtXDsuXL8fmzZuxcePGHI176tQptGnTBk2bNsXly5cRFRWFLVu2QC6Xo0ePHihVqhRGjx6Nq1ev6mMZBY6qVatCqVQW6VD+sLAwlC9fHuXLlze0KfmGFMYvUdSRxL6EVqSIxMVnCbnzkrxDAHAum2J9bm5uGDVqFGbOnIk7d+7oMJtEYWPkyJF48eIF1q1bl2nbMV0wNTXFwIEDsXr1arx+/VqvY0tIZMbdu3fRoEEDBAcHY+vWrahRowZatWqFhg0b4uDBgyieTT44SQwbNgzW1tb49ttvAQCLFy+GXC7HsGHDNMfdvn0b//77L3x8fHD58mWsXLkSd+7cwfr162Fra4tZs+fk6TozQ4A6tHxkR39ERkYiLCwMLi4uGDlyJBwcHNC/f3+cO3dOfawgoHXr1oiIiMDXX3+Nn376CRUrVsT69esh5jIMXxRFBAYGQqZQoOGpU8Du3UD9+uoXFYr/RTkIgnoTQBAgNG+OpP37ccTdHa1bt8ajR4/08E4Yhvj4+HSbQR/StWtX9OrVC8OGDUNkZKRWY166dAn+/v7w8PDAzp07YWRkBCMjIwQEBODPP//EjRs30K9fP/zyyy9wc3NDw4YNsXHjxiLV9tTIyAjVqlUrsmKfJPbt2/efCuEHpDB+iaKPJPYltOLp2xQkfiQEXxsIdUipmE3o4LRp02BjY4NRo0bpNJ9E4WH37t1Yv349fvjhh2y9nbll6NChiIuLw/r16/NkfIkiyt27wMSJ6jZsFhaAqSng4AD07AmcOgVkcj07fPgwatWqpfasnziBJ0+eoGvXrggICEBwcPBHhVgav/32G/744w8sWbIElpaWePXqFZYuXYpBgwbB1tYWMTExCA0NRVBQEACgT58+qF69OoYMGQJRFFGsWDE0adIE9iXyt8icAEAmAJ3LW8JEIYNMJoOfnx927tyJe/fuYcKECdi/fz+8vLzg6emJn3/+GW/evIGxsTEmTpyI69evw8fHB71794a3t7dmUyAnzJ8/H+Hh4diwYYPaY9emDXDkCHDlCjBiBNCuHeDrC3TooP5sb98GQkJg9Nln2L17NwCgTZs2hVaoxsXFZfsdW7JkCUqWLImuXbsiKSnriDsA+Oeff+Dn5wdnZ2f88ccfmUYNVKxYEfPmzcODBw+wdetWqFQqBAYGolSpUhg1ahQiIiJ0WlNBoWbNmkVW7EdGRuL27dv/qRB+QArjlyj6SGJfQivepuqveFJCNmNZWFhg4cKFCA4ORmhoqN7mlSiYREdHY+DAgWjdujV69+6dZ/M4OTmhffv2WLx4ca49hhL/IW7dAlq2BMqVA+bNUwvCN2+At2+BR4+AX39V956uUQN4V1SUJJYuXQpfX19Ur14dZ86cwbZt2zBixAiMHTsW69at06ro5MuXLzFixAi0adMG7dq1Q0pKCqZNm4bXr1/j3r17qFixIooXL46WLVti//79MDY2hrOzM5ycnDR52Ddu3MDTp09R0kQOiqk6vRVpvxcxm3Z2YmoqlALQzcUKDmYZ1+ng4IApU6bg9u3bCAkJgYODAwYNGgQHBwcMHToUFy9ehJOTE3799VccPnwYcXFxqF27NgYMGKDphZ0dZ8+excSJEzF+/Hh89tlnQHLy/zZk3NyA+fOB334DDhwAtm8HZswA3ttgdHBwQHBwMK5cuYK+ffsWypad8fHxWYbxp2FhYYEtW7bg4sWLmDx5cpbH3bt3D76+vrCxscG+fftgZWX10XGNjIzQuXNnHDx4EDdv3sSAAQOwefNmVK1aFQ0aNMCGDRsK7SYKoM7bj4iIKJL1CcLCwqBUKtGkSRNDm5JvxMXF4e3bt5LYlyjSSGJfQitkeqztpM1YnTp1gq+vL4KCggr1jYHExyGJwYMHgyRWrlyZ51WdR44ciX/++QdhYWF5Oo9EIefcOXWBtn371EIxNROxnCZ8IyIAf38k//QT+vfvj6CgIAQFBSE0NBQTJkzArFmz8P3332PevHlap6eMHDkSz58/R6lSpdCkSRNYW1tj0aJFIIljx44hMTERlpaWAIDk5GSIoggrKyu0bdtW4+m/ePEiJkyYgMhrV3Bh785shfrHkMlksHh0HRGH9gAgxNRUpCQnAaKouYkwlgEnfvkR97YsQKlMhP77yOVytGzZEiEhIbhz5w5GjRqF3bt3w93dHfXq1cO6devg5eWF8+fPY8mSJfjtt99QsWJFLF68GCkfWcfr168RGBCAcaVLY/bRo4CxMaBSqUP37eyA8ePVmzjZ4OnpiQ0bNuDXX3/VpFAUFpKSkpCSkqJV9EitWrUwc+ZMfPfddzhw4ECG1588eQJfX1/IZDKEh4fnONTZxcUFc+fOxYMHD7Bt2zaYmJigV69ecHBwwIgRI3D58uUcjacVZO67MGiBp6cnUlNTi2SRvn379qFBgwYwNzc3tCn5RtomohTGL1GUkcS+hFaYKvTzVZEBMNJC7QuCgKVLl+LBgweYO3euXuaWKHhs3LgRu3btwvLly2FnZ5fn89WvXx+enp744Ycf8nwuiUJKZCTg5we8epW5yP8QUQRFEYqhQxG3YQPWr1+PmTNnonPnztiwYQM2btyIMWPGZHl6cnIyzp07h6VLl6J79+5wcHDA+vXrkZCQgHXr1uHixYuaDU+SUKlUqFGjBkaOHIn58+cDAPbs2YMjR45g8eLFmloAjRs3Ro8ePWBsbAyvkmaQKRS5ejtIwkwhYOmYgXhzPBh+qhjsXTQdNw7swrngTSgvj0PbshYIqlYMDUqaYNmC7/DPP/9oPX7p0qUxY8YM3L17Fzt37oSlpSX69OmDUqVKYcyYMWjSpAlu3ryJgIAAjBo1Cu7u7jh06FBmhmLXp5/i2K1bmHXrFmRnzgBpXV1EEYiOBhYsACpUAD7/HHjw4KN2dezYETNmzMDUqVOxffv2nLxlBiWtLVx2nv00xowZg88++wyBgYF4+vSp5vnnz5/Dz88Pb968QXh4uKa7Q25QqVTo1KkTDhw4gMjISAwePBhbt25F9erVUb9+faxbt063dnYXLwKDBgHFiqk3dhQKwNIS6NxZnb6hx+iMatWqQaFQFLlQ/sTERBw6dOg/ma8PQPLsSxRpJLEvoRUljOWwUun2dREAVLRWae29dXV1xdixYzFnzhz8+++/Os0tUfC4f/8+goKC0KNHD3To0CFf5hQEASNHjkRYWJh+23xJFB369NFe6L9DgLomySa5HK0aNYKfnx/+/PNPhISEoEePHumOffToEXbu3Ilx48ahTp06MDc3h5eXF0aMGIGdO3dqCsPJ5XKUL18eLVu2hI2NDRo1aoSYmBjcvXsXv//+O2bMmAGSMDExQe3atbFz50589tlnmDp1KgRBQK9evXDlyhX4+Phg4tD+uH/+OJgLj6cgCDCLisD169cwadIkHPgjGMc2LUenak649tsqTO3aAk6qFMhl6t+Wvb09vvrqqxzPo1Qq0a5dO4SFhSEyMhKDBg3Cli1b4Obmhvbt26NRo0Y4efIkrK2t0bRpU3Tu3Bn37t1Tn0ziup8fAs+eRbG0ATP7/FJT1cJv/3515EY2VeMnT56MgIAA9OrVK1e1AwxBXFwcAGjl2QfUURvr169Hamoq+vTpA5J48+YNWrRogQcPHuDAgQN6rcxevnx5zJ49G/fv38eOHTtgYWGBPn36wMHBAcOHD8+Zx/z8eaBuXcDdHVizBoiNVW/skMDr18CuXUDjxkDlyuooHT1gbGwMNze3Iif2jx8/jvj4+P+c2E/b4JLEvkRRRmBhTEiTMAhnot/iz6g4ncbo7mIFJ/Psc1bTiIuLQ5UqVeDm5obQ0NA8D/OWyB9EUYSfnx+uX7+OK1euwNraOt/mTkxMRJkyZdC+fXv8+OOP+TavRCHgyhWgWrVcn05BwCw7OyxMTsaePXtQo0YNXLhwAceOHUN4eDjOnj2LmJgYAGqRlZYLb2Zmhpo1ayI1NRUnT57E5s2b0a5dOxgZGWHbtm3o0qULzp49i1of9H738fHB/fv38fbtWzx69Aj169eHQqFAXFwcVq9ejT59+uDSpUsYP348WrfvgB13E2BbpgJk2bShex9vOxMM968POzs77N+/Hy1btkRoaCgSExMRGRkJLy8vdOrUCevWrQMAbNiwAb169cLx48dRP60Cfi5JTEzE7t27sXz5chw+fBjFihVD7969UbJkSSxYsAAvXrzAhAkTMPjhQ3yyYkXOBpfLgU8+UadsODhkedjbt2/h4+ODBw8e4MyZMzp5uPODmzdvwtXVFYcPH0bjxo21Pm/Pnj34/PPP8f3332Pv3r04c+YMDh48CC8vrzy0Vs2tW7ewevVqrFmzBo8fP0adOnUwcOBAdOnSJetNi/371YUXk5Oz35gTBPVj5UqgXz+d7e3Xrx/+/vtvnD9vmLaWecH48eOxceNGPHz48D91n7VmzRr069cPSUlJWtVTkZAojEiefQmtqW5rBHlu/waQsDWSw9EsZ6GkZmZmWLRoEfbu3Yvg4OBcTi5R0Fi2bBkOHjyItWvX5qvQB9QFpIYMGYL169fj+fPn+Tq3RAHnp5/UIcC5hCQCoqNR28sLAQEBMDMzQ926dTF27Fjs27cPMTExKF68OPz8/DBlyhTs2rULt2/fxuvXr7F27VqcP38eY8aMQUBAAIyMjEASs2fPhq+vr0boi6KIvXv3olWrVvi///s/PHjwAG3btsWFCxdw/PhxGBkZIS4uDrVq1UJycjIOHDiAN2/eoEHdOtg1sR9uHD/4ztisvfziOw+4bykzvPjrT1y6dElTxC0iIgLm5uZQqVSoUqUKli9fjvXr12Pt2rUAgB49esDd3R1jx47VubidkZERunTpgkOHDuHatWsIDAzEmjVrMG7cOLi6usLPzw+7ZszIudAH1AIxOhr4SIoFAJiYmGD37t2QyWRo27atbuHm+UCafdp69tNo0aIFgoKCMH78eBw9ehQhISH5IvQBwNnZGTNnzsS9e/ewc+dO2NjYoH///prCjRcuXEh/wrlzaqGfmKhdBE5aHv+AAWpvv454enriypUrSExLEykChIWFwc/P7z8l9AF1GL+NjY0k9CWKNJJnXyJHXIxJwN57b3J0DikiNTkFZlcPYXSf7jmekyQ+//xzRERE4OrVqzm+iZEoWNy4cQMeHh7o27cvli5dahAbHj9+jNKlS2PWrFkYO3asQWyQKIBYWalD+HXEHcAlQYCDgwM8PDzg4+ODWrVqoXr16rCxsclwPEk0a9YMN2/eREREhOYaFxYWhubNm+PgwYNwc3PD2rVrsWLFCty5cwfly5fHv//+i6NHj6JBgwYAgL/++gve3t5ISkrCpEmT4ODggKlTpyIhIQHTpk1D1apV4e/vjwHjJqPiZ22RaF0K8g82N+Kex6CU+ArdGtWEhVKGevXqQalU4ujRowDUYczly5dP10qtf//+2LRpE86cOYNq1arh4MGD8PX1xY4dO/SeovP27Vvs2LEDy5cvx4kTJ7BSLkfv1FTk+lZdoVDn72dTM+Tvv/9GgwYN8Pnnn+PXX3/VuthifnP8+HE0aNAAERERqFKlitbniaKIHj16YMuWLXB0dMT169cN+rf2zp07WLVqFdasWYNHjx7By8sLAwcORECXLjD38lLX1shBqg0AtXffzAx4/Fj931xy6tQp1KtXL9Nom8LIw4cPUapUKWzevBldu3Y1tDn5ypgxYxAaGiql9UkUbSghkUNOPo7j7PNPtXrMOf+U8/5+yokLfyIAjhw5kikpKTmeMzIykkZGRvzqq6/yYEUS+UVycjJr165NFxcXvnnzxqC29OzZk2XKlGFycrJB7ZAoICQkkGofoM6Pf5ctY2JiotZT//LLLwTAPXv2pHu+UaNGdHV1ZZcuXahUKmlsbMzevXvz1KlTnDRpEosVK8bU1FQmJCTwq6++olwup1wuZ6dOnejp6UkADAwM5MOHD5mamsr69esTABcuXMgWLVrQzqksq3/aknXadWfLASPp7NWAU6dN18x/4MABAuC+fftIkrGxsQTArl27prMzPj6e1apVo6urK1+9ekWS9Pf3Z/ny5XP0PuSU1QsXMl7Xz0smI2fO1Gq+3377jQA4bdq0PFuTruzfv58AeOfOHa3PEUWRQ4YMoSAInD9/Pk1MTDhgwIA8tFJ7kpKSuGvXLvr7+1MQBDYzMdH9N/rzzzrZFB8fT7lczhUrVuhplYZl7dq1FASBT58+NbQp+U6PHj3YoEEDQ5shIZGnSGJfIldExCZw8aVnGkGfmcifff4pV16NZdSbJJLksmXLKJPJ2K5dO8bFxeV4zqlTp1KpVPL69ev6Xo5EPvHtt99SJpPx5MmThjaF586dIwDu3LnT0KZIFARevdKb2Ofu3VpPGxMTwxIlSrBLly6a52JjYzly5EhCXfePrq6uXLhwIWNjYzXH1K1bl507d+apU6dYuXJlKpXKdOfUrFmTx48f1xy/cuVKAmDJkiU5evRoKpVKGhkZUS6X09vbm3K5nB07dmRqaqrmHB8fH3p6elIURZL/25RYuXJlhnVcv36d5ubm7NatG0VR5OXLlymTyfjDDz/k6GPQlidPnnCAlZV+Pi83N63nnTlzJgHw119/zZN16cquXbsIgNHR0VqfM2HCBALgz+9EcNp3Zfv27XllZq64c+cOL1euzGRdN3eqViXffadzS7Vq1Thw4EA9rcywBAQEsFatWoY2wyD4+fmxffv2hjZDQiJPkcS+RK5JFUXeeJ7AzTdfpBP88/5+yuDbL3n/dZLmJjGNkJAQmpqask6dOnzy5EmO5ouPj2e5cuXoVj6lIwAAIABJREFU6+ubYVyJgs/58+epUCg4ceJEQ5uiwdvbm40bNza0GRIFAVFUCwF9iMfDh7Wetm/fvrSysuLDhw95+vRp9u7dm8bGxhQEgRYWFjx48GCG692LFy8ok8no5+dHmUxGDw8PfvHFFzQzMyMAfvHFF+kiqJ48eUIbGxv26tWLPj4+rFmzJgHQzs6OAGhsbEwLC4t00TbHjh0jAO7atUvzXO/evQmAUVFRma5ly5YtBMDly5eTJPv168dixYrx+fPnWr8f2pCamkp/f39+aW5OURB0/7xKlNB6blEU2b17dxobG/PMmTN6XZc+2LRpEwFovaE+e/ZsAuD8+fM1z4miyA4dOtDa2pp3797NK1NzTlISKZfr5zd686ZOpvTq1Yuenp56WpjhSElJoa2tLSdPnmxoUwyCh4cHBw8ebGgzJCTyFEnsS+gFURSZkJLKpFQxWyF+7tw5lixZkuXKlcuxl/6PP/4gAG7dulUXcyXymbdv39LNzY01atTI07DenLJt2zYC4N9//21oUyQKArVr6y74VSryPQ/8xzh8+DABsHv37vTw8CAAlilTRuOhX7NmTabnzZkzhwCoVCrZp08furq6aqKmAPDmB0KmR48etLW15dOnT9mmTRsKgkCVSsXTp09rxqlbt266c/z9/enm5pbO01+jRg0qlcqPrmnw4ME0MjLi+fPnGRUVRVNTU3755ZdavR/asnDhQgJgRP/++tmgsbbO0fxv375lnTp1aG9vz/v37+t1bbqS5pV//3PLimXLlhEAp06dmuG12NhYOjk5sWHDhrlKvcsTnjzRj9AHyGPHdDJl8eLFVKlUBervWW5IuwYcPXrU0KYYhFKlSnHKlCmGNkNCIk+RxL6EQbhz5w6rVKlCGxsbHjlyJEfntm7dmg4ODprcUImCz7hx46hSqXjx4kVDm5KO5ORkOjo6sk+fPoY2RaIgsHGjbgJCoSC1/C6dO3eO1tbWlMvllMlkbNWqFUNDQ5mSksLAwEA6OjpmEBJxcXEcNWoUAVClUrFp06YEwMaNG/PSpUvcuHFjBq9ueHg4AXD16tW8fPmyxvs/ZMgQBgYGEgCdnZ3p7e2dzjYA3Lx5c7r5LS0tWapUqY+u6+3bt/Tw8GCFChX48uVLTp06lUZGRnrzEJ8/f55KpZKjR48m167Vj/ArWzbHdjx69IhOTk6sWbOmweuPvM+iRYtoamqa7XFp35WRI0dmuUF/5MgRymQyfv311/o2M3c8eKA/sf/nnzqZcvz4cQLg+fPn9bQ4wzBjxgxaWVn9J2vXiKJIpVLJJUuWGNoUCYk8RRL7Egbj+fPnbNKkCVUqFbds2aL1ebdv36aJiQnHjh2bh9ZJ6IsjR45QEATOnTvX0KZkyuzZs2lkZJSjHFeJIsrbt2ovry4i4ty5jwz/lhs3btQUygPAQYMGpRPCd+7coUKh4MKFC9Ode/jwYZYvX55GRkY0NTWlTCajo6Mjt27dqhFrs2fPpo2NTbr5XFxc2LBhQ164cIHFixfnJ598QgAcOHAgAbBWrVq0t7dn7dq1Nee1b9+eLi4u6Ty6SUlJBEBfX99s38bIyEhaWlqyU6dOfPXqFe3s7NizZ8/s3/9seP36NStWrEgPDw8mJCSQ//yju+hTKMi+fXNlz4ULF2hmZpah1oEhmTlzJktkk5awa9cuyuVy9unTJ1u7p02bRplMxmM6esL1wps3+hP7OkZzvXnzhjKZTFPnoLBSv379/2zO+osXLyhFikr8F5DEvoRBSUxMZM+ePQmAs2fP1joX/9tvv6VCoeCVK1fy2EIJXXj16hXLlStHb2/vghMK+gHPnj2jiYkJv/nmG0ObIlEQ+OGH3IkHuZxs2TLTIW/evMkxY8bQ1taWAFivXj0qFApOmDAhw7FBQUG0tbXl69evSaoF7rBhwwiAlSpV0oj19u3bZ/AoDx8+nFWrVtX8e9q0aVQqldyxYwdtbW1Zs2ZNtm/fngAoCAInTpzI2bNnU6lU0sPDgyR55coVTSTA+6Tl8GcW8p0ZO3bsIAAuWbKEy5cvJwD+9ddfWp2bFX379qWpqWn69C9fX93zuHWwK60gXkEJBZ40aRLLlCmT5esHDhygSqVix44dtbomJycn09vbm6VLl9Z77YVcUbUqqWudBisr9caejlSpUqVQ53vHxsZSJpMVma4COeXmzZsEwD91jPKQkCjoSGJfwuCIoshp06YRAAcMGKBVOFlCQgJdXFzYuHFjqVhfAWbgwIE0MzNjZGSkoU35KAMGDKC9vT2TkpIMbYqEoRFFctiwnAv9mjXJdwKdVHvCd+zYQV9fXwKgra0tx4wZw+vXr7NRo0asUKEC4+Pj000dHR1NExMTTp8+naQ6BL9s2bI0MjKii4sLAdDd3T3LNllt27Zls2bNSKqr46tUKvbp04c2Njb08vJibGwsy5QpQwD09vZmamoqDx48SAB0cXEhSXbr1o2lS5fOkELw1VdfEQBPnTql9VsZFBREpVLJkydPsnLlymzatGmur9e//vorM61jsHt3rkVfCsDLxsY8nIOCipmRVuTuw7QHQzBq1ChWqVIl09dOnDhBU1NTNm/ePEe55nfu3KGVlRU7depk+L+3K1fqJPRTBYEpX3yhF1N69uyZLiKmsLF9+3bmtE1jUSJtA1NyGkkUdSSxL1FgWLt2LRUKBZs3b65VPn5YWBgB8JdffskH6yRyyp49ewiAP/30k6FNyZbLly8XmJt1iQKAKJJTp5LAx9t8KRTq/zZrpm7dR/Lu3bucMmUK7e3tCYD169fnxo0b+fadJ3HVqlUEwPDw8AzTTp48mWZmZrx9+zYHDRpEACxVqhTlcjkrVqzIvXv3skePHqxZs2amZnt5ebFfv34URZFNmzalg4MDraysWLduXb548UKTi//+7/Lly5cEQHt7e/7zzz+UyWRcunRphrF9fHwoCEKOcnsTEhLo5eXFcuXKcfPmzQTA0NBQrc9P49atW7S0tGSXLl0yis2UFLJ+/Vx590WZjCPc3AiAvXr1ynUqjyiK7NmzJ42MjHK0GZIXDBgwINM2ahcuXKC1tTUbNmyYq9a3acVMV61apQ8zc8+bN6SZWe7FPsCmZcpw586dOm9cLFq0iEZGRoV2k7h///6sVKmSoc0wGLlpUykhURiRxL5EgeLAgQO0tLSku7s7Hzx4kO3xHTt2pJ2dHV+8eJEP1kloy7Nnz2hvb89mzZoZ3hOkJZ9++inr1KljaDMk8pqEBPLly2z7bB8+fJhe5ubcXKIEU01N/ycY0kKIZTKybVsyPJwpyckMDQ1lq1atKJPJaGFhwaFDh2YoSJnWAi8wMDDDfK9evaK1tTXbtWtHR0dHqlQqmpub09zcnPPmzWNiYiJFUWTJkiU5bty4TG12cHDg1KlTuWHDBgKgqakp69evz5cvXzIxMZHly5fXRBm8X3StWLFitLS0ZL9+/ViyZMkMEQckaW9vT+scVq0n1TVWrK2t2bZtWzZq1Ihubm452jBISkpi3bp1WbZs2azDyGNiyIoVtRf8gqB+rF7N1NRUrlq1ira2trS1teWqVatylX//9u1b1qtXjyVLluS9e/dyfL6+6N69e4Z2ojdu3OAnn3xCT09Pvnz5Mtdj9+vXj6amprx27ZqOVurI99/nTuwLAmM6daK/vz8BsFGjRjz3kRob2XHkyBEC4IULF/S4uPxBFEU6OTlx1KhRhjbFYKxYsYKCIBTYFEMJCX0hiX2JAselS5fo5ORER0fHbKu3379/n2ZmZhw5cmQ+WSehDV26dKGNjY1WGzYFheDg4ByHKUsUEi5fJocOJS0t/3fjL5ORXl7qCvwf5O/u3LmTRkZG/PTTT9VRRq9fq8PFf/6Z/Okn8tdfyfv3+fjxY86aNYtly5bVhNivXbCAb/76i7x4kbx3T+15fkf37t1ZrFixTEPwv/nmG8pkMgKgpaUlAbBnz57petqn5dOHhYVlOD85OZkymYwLFy6ktbU1FQoFGzZsyFevXlEURfbt25eCINDLy4teXl7s+15RuurVq1OpVFKpVPK7777LMLYoipTL5VlGFGTH7t27CYCjR48mgBwVNZs0aRLlcjlPnDjx8QNjY8lGjdJHXGQl8o2Nye3b050eHR3NXr16aVIcLl++nON1Pn78mKVLl6a7u7vBKvS3bduW/v7+mn/fvXuXTk5OrFKlSqbfu5zw5s0burq60t3dXV0g0VCIIjlkSM6EvkymjsB554Xft28fq1atSgAMDAzMVQvF169fUxCEDPUtCgMREREEwL179xralPzl2jVy/HiyQwdGli/PYJWKnDyZvHXL0JZJSOQZktiXKJBERUXRw8ODFhYWmd7Yvs/cuXMpk8kK5e56UWTLli2FMiQ+JSWFzs7O7Nq1q6FNkdAXN2+S3t5ZC8C0Hu3W1uSiRaQocvny5ZTJZOzSpUumgkYURR46dIidO3emUqmksbEx+/bqxRvffUfR1zfjHA4O5MyZPLx1KwFw3bp1GcbctWsXZTIZBUEgAHp4eGRa/XzRokVUqVSZhmHfv3+fAOjl5aURrGmCc8GCBQRAuVzOJUuWsEOHDumq6rdo0YIAaGNjoykM+D63b99mWk2V3DJmzBgqFAr6+fmxZMmSfP3yJbl3LzlggDpColUrMjCQXLdOs/ly6NAhCoLAmTNnajeJKJKHD5OdOmXu5S9XjlywQB0JkAWHDh1ipUqVqFAoOH78+ByL9osXL9LMzIzt2rUzSIV+Pz8/duzYkaR688HFxYXlypVLt2mkC+fPn6dKpVK3PjQkokhOm6bevPlYREfa7753b/KDOgXJyclcuXIlP/nkE5qYmHDKlCmZfv8/RqVKlThs2DA9Lix/WLBgAY2MjHKV0lEo+eMPsnHj/30n3kVopQLq748gkP7+OrdklJAoiEhiX6LA8vr1a7Zo0YIKheKjO+eJiYmsXLky69evX2DaH/1XiYqKoo2NDTt37lxowvffZ+HChVQoFIUqIkEiC86eVYv4HORyn34nlIOCgjJcS2JjY7lw4UK6uroyrTL+okWL+Co0lCxVSj1GFnOJMhmTAf7q5ETxvRD2mJgYduvWjWl59JaWllyxYkWWYaWtWrVikyZNMn3t1KlTmnEqVaqkuYnfs2cPZTIZW7duzbRiXF988YWmIB9JBgYGEgD79++f6dhLly6lri2qkpKSWK9ePTrb23O8TMbnVlYZbrw175+VFeOGD2cNOzv6+PjkLsz20SP1ZsKWLeSuXeTp06SWfx8SExM5c+ZMGhsbs0yZMgwJCcnR1MHBwRQEgZMmTcq53Tri7e3NwMBAxsbGsnr16nRwcOC///6r1znSNo8KhFf433/Vntq079P7D2NjctAgMhtHwMuXLzlx4kQaGRmxZMmSXL16tdbfue7du7Nu3br6WEm+0qxZM/r5+RnajLxHFMmJEz96fU63MSQI5Pz5hrZaQkKvSGJfokCTnJysKVQ1efLkLAXkn3/+SQBcu3Zt/hoooUEURfr7+7NkyZJ89uyZoc3JFS9evKC5uTknT55saFMkdCEykrSxyVXRtqNNmmiuM6Io8tSpU+zduzeNjY2pVCrZpUsXHj58WH1McLD6BjEtQiCbhwiQ7dqRycnctWsXbWxsNN58Z2dnxsbGZrmkpKQkWlhYZOnlTquWb2lpqfFGR0RE0NLSki1btmT37t1ZrVo1kv8rLJa2zgYNGhAAZ82alenYHTt2JADGfMQjrg0P/v6b5+VypqR51D7ySBEEPhYEPt6/X6c5deHff/9l8+bNCYDt2rXLUS7+3LlzaYgCsh4eHuzXrx/r1KnDYsWKMSIiQu9zpKam0t/fn5988gkfP36s9/Fzxdu35IED6hSbTZvUGz05rOVz584dzeZbjRo1ePDgwWzPmT9/Pk1MTHJUh8LQxMfH09jYmPP/C6I2Tejn9LFwoaEtl5DQG5LYlyjwiKKouXHq0aNHlrmCXbt2ZYkSJT56wyyRd6xYsYIA+McffxjaFJ0ICgpiiRIlNNXTJQohn3+uU+/1N2fPcvny5XR3dycAli1blrNnz04vbE6dIlWqHPf8FgWBoaVLa7zwFStWJACeOXPmo0s6fvw4AfD06dMZXtu7d68m3z+t5sSzZ89Yvnx5Vq1albGxsSxWrJjG05xWhfrx48d89uwZVSoVBUHIMoWlYsWKNDIyyuWH8Y6XL0k3N6ZquTFCQH2slRV544Zuc+uAKIrctm0b7e3taWZmxvnz52sl7ERRZK9evWhkZMSTJ0/mg6VqXFxc6OTkRAsLC52Kz2XHkydPaGdnx2bNmhW5iLqTJ0+yXr16BMBWrVrx+vXrWR57+PBhAshVjQdDsW/fPgLIk42gAkVISK7/BlAQyOzqhEhIFBIksS9RaNi6dSuNjIzo4+OTqaB/+PAhLSwsOGTIEANY998mMjKSZmZmOuX0FhRu3rzJTPt5SxQObt/OsQD/0KP8o1KpCX3fs2dP5mKmbl2dNhQaWlpy8+bNrFmzJj/99NNsl/X111/TysoqQ3hxaGioRqxbWlqSVIeh+/j4sHjx4rx165amanjaRsBff/2l2TiYOnUqlUol5XI5y5cvn+ncJiYmdHZ2ztnn8CFdu+bu/ZLLyQoV0hU6NAQvX77kiBEjKJPJWKNGDa0EfEJCAr29vWlnZ8e7d+/muY1JSUk0NjamXC7n//3f/+X5fGntb4uih1gURW7dupVly5alQqFgUFBQphFraa0rM6vFUVAZNWoUHR0dC2WqXY5o3Dj312iFguzSxdArkJDQC5LYlyhUHD16lLa2tqxcuTJv376d4fWFCxdSEASePXs2/437j5KSksIGDRqwXLly6srlRYAWLVqwRo0aRf9mqCjy1Vc6iXACTFQqef8j3jxeuKDT+CmCwKQ+fbh//34C4IEDB7JdVsOGDdmuXbt0zwUHB1OpVNLOzo4mJib09vamKIocOHAglUoljxw5QpIcN24c7ezsNJsWz549IwCuX7+e1tbWbNKkCeVyOQFkqNj+4sULjYcz19y/r3WqQ5aPAhIxdO7cOdaqVYuCIHDQoEHZRpI9efKEZcqUYY0aNXJc/C0npKamakLQ+/Tpk2fzfMiYMWOoVCrzNIrAkLx9+5bz5s2jpaUlra2tOX/+/AzRhS4uLgwKCjKQhTmncuXK7Nevn6HNyFuuXtXtepMm+B89MvRKJCR0RhL7EoWOGzdu0NnZmXZ2dhlEfXJyMqtVq0YvL68iF1pYUJk3bx4FQcgXT1J+keaxOnz4sKFNkcgp5crpfpMHqFvtZcWgQVm3d9P2YWzMlg0b0tPTM9tNpdevX1OhUHDZsmWa53bu3EmFQsE6deoQAN3c3Ni1a1cuXryYALhq1SrNsZUqVUp3cy+KIs3MzNiiRQuqVCrOmTOHaWkFe/bsSTf377//TgCZtuTTmqlTdduAkcvVbdMKCCkpKVyyZAktLCz4ySef8JdffvnoZ3jp0iWam5uzTZs2efJ3SRRFDh48mDKZjEqlkkuWLNH7HFmRmJjImjVr0sXFJU83MwxNdHQ0hw4dqomA+e233zSfeUBAAOvXr29gC7Xj7t27BMDtH7SeLHKMHav7NVomI+fNM/RKJCR0RhL7EoWS6Oho1q1bl6ampvz999/TvXb06FEC4IoVKwxk3X+Hy5cvU6VSccyYMYY2Ra+IosjKlStn8KRKFALMzfUj9j/WC97OTi9ztAK4Y8eObJcUGhpKALzxLnd927ZtlMvlbN++PUuWLMm2bduyfPny7NixI2UyWbq2aGlpKbs/2LyoVKkSTUxMOHjwYK5Zs4YAWKxYMU6fPj3dccOGDaPOOcmffKL7+yUI6giBAkRUVBS7dOlCAGzatOlHc7tDQkIoCAInTJigVxtEUeT48eMJgD///DMB5Hvf9xs3btDMzCxfIwoMRUREhKZVZcOGDXn27Fl+9913NDU1zV3XiHxm5cqVlMlkRb+2Ubt2OqVzESCVSvXGroREIUcS+xKFlvj4eHbo0IEymSyDJ6NXr160tbXNEJIqoT8SExPp7u7OKlWqFMlidj/99BNlMlmm6SISBRgTE/2I/Z9+ynoOIyO9zDHBzk4rgTB69Gg6OTlRFEVu2bKFcrmc3bp149ChQ2lubs67d+9SpVLR2NiY/v7+6cacP38+jYyMMvSLr1SpEgHw1q1b3LBhAwGwWbNm9Pf3T3dc7dq1KQhC7oVMfLx+Pg+AfJeWUNDYt28fnZ2dqVKpOHXq1Cyvh99//z0BcMOGDXqbe+bMmQTAhQsXavLHf/31V72Nry1pG0aGmNsQhIWFsWrVqgRAX19fFpaCdx06dCg0UQg68emnul9v5HKyWzdDr0RCQmcksS9RqElNTeUXX3xBAPziiy80IZKPHz+mlZVVln2jJXRn0qRJVCgU/OuvvwxtSp7w5s0bWltbc+zYsYY2RSIn2NvrR1h+TLToSewf0dITWq1aNfbp04e//PILZTIZAwMDeeLECQqCwAULFjAyMpIA6OjoyBcftBvz8fHh559/nu65hIQEmpqa0tbWliS5ZcsWAuBXX33FYsWKpQtJt7W1ZfHixbV88zMhOlp/Yj80NPd25DHx8fGcPHkylUolK1SowP2ZtAwURZF9+vShSqXi8ePHdZ5zyZIlBKCJxnj06BEBMCQkROexc4ooiuzSpQstLS3/MxukKSkpXLlyJYsXL04AbNOmTYFOZUhOTqaVlRW//vprQ5uS97RvT1Efnv3Bgw29EgkJnZHEvkSRYMmSJZTJZOzQoQPj4+NJkkuXLiUAnjp6lNyxg2zShLS2VudxmZuTrq7qfCzJ+59jTp48SZlMxhkzZhjalDxl3LhxtLa2zuAVlSjA9Oypn1zNBw+ynkNPYfxJWuTNpgm4QYMGURAE9u3blwkJCXR3d6e7uzvj4+M1efsf5uHGxsZSLpdz+fLl6Z5Pa5NpZWVFkty+fTsBcOvWrQTAf//9l6S6ursgCKxXr14OP4T3ePtWf2K/gHr23+fatWv08fEhAHbt2pWPPijwlZCQwIYNG7JEiRK8c+dOrudZv349AXD06NGazZm0TR9t+sPnBc+fP2fZsmVZr169QtV3XldevXpFGxsbyuVylixZkqtXry6QIf3Hjh3j+105iiKJiYncv38/wzw9mazr9UYmIxcsMPSSJCR0RhL7EkWG4OBgmpqasm7duoyOjmZKcjLnODryWdqNf2YFomQy9e5t797kBx4xicyJi4tjxYoVWbt27SJ/Q3fnzh3KZDL++OOPhjZFQltOndLtBk+hUOd7foyBA3XeUEhWKMjnz7NdzqZNmwiAgiBwwIABTE1N5YIFCygIAk+fPs1hw4ZpKunfu3cv03MfvLdxkZyczHLlymk2CF6/fs3du3cTAK9evUoA3Lx5M8n/tegbOXJkzj+H99FHtIUgkFFRutmRT4iiyA0bNrBEiRK0srLismXL0om/6OholitXjtWqVdN0MEkRRV6LTeDWyBdceTWWP16J4eprsQy984qP4tJfZ3fu3EmZTMZ+/fqli8K4dOmSwcXciRMnKJfLOWXKFIPZYAg6d+7M2rVrazoiVK9eneHh4YY2Kx1Tpkyhra1tgdyI0IWnT59y/fr17NixIy0sLAiADeztKep6zVEqyUzaLUpIFDYksS9RpDh79izt7OxYwdmZzzt31v6iLpeTlSoVmptJQxIUFERjY2Neu3bN0KbkC+3bt2elSpWk7g6FBVEkq1fXrThTdp7Rv//W6SYyCWBS795aLad+/foEwCFDhjA1NZX37t2jmZkZhw0bxh9//JEA2KNHD8pkMiYlJaU7NyAggJ6enumeS8vPT8uxjoiI4B9//EEAjIqKYq0yZbiiTRvyl1+4MyCAjQDu/aAIao6ZMUO31nsKBflBKkJhICYmhgMGDCAA1q5dm+fPn9e8duXKFVpYWLBNu3Y8EvWaiy4+4+zzTznn/FPOfu+R9u8112J580UC9+/fT5VKxc6dO2cQbSdPniQAXrp0Kb+Xmo5vvvmGgiD8p7qZzJ07l+bm5kxNTeWpU6c0v9uWLVsWmL+VXl5e7FIEeseLosiIiAjOmTOH3t7elMlkmt/YN998wwsXLqg3wZo1y30XEIWCDAw09FIlJPSCJPYlihy3b9/malvbnO/qKhSkmxv58qWhl1BgCQ8PJwD+8MMPhjYl3/i///s/AuC+ffsMbYqEtuzfnztxmdbiLZtWeCTJOnV0E7B//53tFGmpSO7u7hoPbtu2bWlvb8/g4GDK5XIGBQVx2rRptLe3T3duUlISrays0lXXT01NZaVKldiqVStNC649e/YwbN8+1gP4uk0bJmeySZJaogQ5fXruN0MfPtSt9R5AFuLf3/Hjx1mtWjXKZDKOGjVK483/fc9eDlixi7P+epJO4Gf2SBP9vgPH0N/fn4mJiRnmOXjwIN9PwzAUKSkpbNy4MR0dHRkTE2NQW/KLAwcOEIBG2IuiyO3bt7NcuXKUy+UcPny4QQsGP336lIIgcO3atQazQRcSExN54MABjhgxgs7OzgRAU1NTtmnThqtWrcqQLkOSDA/P/fVGJiOLaD0iif8ektiXKHocP577C7xcThaxNnL64vnz53R0dGSTJk3+U15uURTp7u7OFi1aGNoUiZywapXau6+th18uJ2vWJN8JsWw5dYpUqXIcQZAKMF4Lj9EPP/xAAATAP/74g6Q6VQkAFy1aRBsbG/r5+TE5OZn9+/enl5dXuvPThN/7BTTTcvNPnTrF5ORkyuVy/rxwIaPr1iUBih8T5DKZ+j1atkz7z+B9AgNztzmiUJCVK5OF/JqTlJTEefPm0dTUlKVKleL2Hb/xl5vPOVsLof/h4/iDzFPOfv/9dwLIXPjkM/fu3aONjQ3btWuXLtWgqBITE0MA3LRpU7rn3759y3nz5tHS0pJWVlb8/vvvmZCQkO/2pRXhjCpE0YvPnj3jhg3olBk4AAAgAElEQVQb2KlTJ1paWjKtCOmQIUMYGhqqXRegOXNydy+Yz+0rJSTyEoEkISFRlOjeHdi2DUhJyd35lpbA48eAiYl+7SospKYCcnmGp3v16oXdu3fj8uXLKF26tAEMMxzr1q1Dnz59cOPGDVSsWNHQ5khoy2+/AYGBwNu36n9n9udOoVBfK1q3BjZtAszNtR//99+BDh0AUVQ/skEEcMXZGdVv3FDPmwULFizAmDFj4Ovri0OHDuHFixcAgCpVqsDV1RX37t0DAJw+fRrW1tbw9/eHsbExdu3apRlj9OjR2L59O+7fvw9BEEASHh4eKFGiBA4cOAAAqOzkhAMpKSgVHQ1BC/s1fPMNMHmy9scDQFwc0KgRcPGi+hqjDXI5YGUFnDsHlCuXs/kKKHfv3sWIESPw5pMK8B38JQSZLFfj9KtkjRIm6b9DW7duRUBAAF69egULCwt9mKsTu3btQvv27bF8+XIMGjTI0ObkOc7OzmjXrh3mz5+f4bWnT59i+vTpWLFiBcqUKYN58+ahffv2EAQhX2zr3bs3zp8/j0uXLuXLfLmBJK5fv46QkBCEhITgxIkTEEURXl5eaNWqFVq1aoUaNWrk7D0jgfnzgXHj/netzwqFQn0d//lnoG9f3RckIVFAyN1fGQmJgkp0tG5CHwBevQK2btWfTQWduDhg1SrAw0O9waFQACoV4OICfPcd8OwZdu3ahQ0bNmDx4sX/OaEPAAEBAShRogSWLFliaFMkckKHDsDDh8DixUCFChlfV6mAnj3VYjI4OGdCH1BvEPz5J1CypPrfmWySAQBkMogyGRYJAqzDwzMX+vHxwIYNONOoESzGjMHxWrXQ7dEjtPT0hLm5OaZPn45nz54hMTER0dHRCAkJgbW1NQAgKioKpUqV0gxFEr///jtatWqluTEODQ3FxYsXMWnSpLSDsCouDvZPnuRM6APAlCnA5s05O8fMDAgPB+rWBQRB/fgYcjlgbw8cP15khD4AlClTBjt370bzQWNyLfRlAM4/S8jwfFxcHADA1NRUFxP1Rrt27TBo0CCMHj0aV69eNbQ5eU7NmjXx119/ZfpaiRIlsGzZMly+fBmVK1dGx44d0ahRI5w9ezbP7SKJsLAwNG/ePM/nyinJyck4ePAgRo0ahQoVKqBKlSqYPn06bG1tsWLFCjx8+BBnzpzBlClT4O7unvPNEUEAxo4Fjh4F2rQBZDL1tUWhUP//+//t0gU4c0YS+hJFDsmzL1G0WLECGDIkcw+etshkQNOmwDvvV5ElNRWYPh1YtAh480a97g9v+mUyUC7HJpkMf/j6YktISL55IgoaU6ZMwaJFi/DgwQNYWVkZ2hyJnEKqvcpPngCJiWqPcfXqgI2N7mOnpAB79gBLlqgF7fvY2yNl0CB4/vQTavr7Y+3atelfv30bWLoUWLUKfPUKyQDkMhlkcjnE5GQIgoBXvr5oc/AgUurWxenTp7Fv3z74+vpqhrC1tcX48eMxYcIEAMDVq1fh5uaG0NBQtGjRAiRRr149KBQKHD16VP0bPnkSqF8/92t2clLbntUGR1YkJgKrV6s3YNIiHNKCZ2Uy9XtZogQwdCgwfDhQvHjubSygXH+eiN13Xus0hkIAgqrZwkj+vw2DpUuXYuzYsUhIyLgRYCji4+Ph5eUFuVyOM2fOwNjY2NAm5RmzZ8/G7Nmz8eLFC8iy2cg5cOAAxowZg8uXL6NHjx6YNWsWnJyc8sSuixcvwt3dHeHh4fj000/zZI6cEBMTg7179yIkJAT79u3Dq1evUKpUKbRs2RKtWrVC06ZNYZJXkZVRUf/P3n3H13j9ARz/3HuzESOJyLDFSO2UqCq1asVoaW1qS62atX5FqZpVexZVEmq0JSRm1aoitNSsxErEDpLIvPf8/ngapYLcnXHer1derdz7nOd748p9vs/5nu+BNWsgMhLi4pRKznLllAowNzfznFOSrOzldYSSlB3duqVcPKamGj6GTqfMBuZkycnQrh1s3/7vjZGMZvd0OlQ6HR2A9leuoLp3L9d+IAYGBjJt2jRWrlzJ0KFDrR2OpC+VCqpWNc/YNjbKLH+rVnD/Pty9CykpUKAAeHmx5rvvOH37NutHjXr+uJ074f33ledqtagAO3i6LEADIAR5d+/mV2D8kSN0mj//uUQ/MTGR2NjY52b2t23bhpOTEw0aNABg3759/P7774SGhv57s27hQrRqNRp9Z/XT3bihxN+8uX7H2dsriXxgoDLbtmUL3LunJPmFCkH9+tCmDdjaGhZXNnDmQRIqlIYMhkoTcOlhCpVc/k2eExISssysfjonJyeCg4OpWbMmo0aNYt68edYOyWz8/PyIi4sjIiICHx+fVz63cePGnDp1ilWrVjF+/Hg2bdrEiBEjGDVqlMmXYOzcuRMnJyfq1Klj0nEzSwjBxYsXn5bnHz58GJ1Ox5tvvsnw4cMJCAigWrVqlplI8PKCMWPMfx5JykLkzL6Us4wbp5SeG5PsA5QqBRERpokpq9HpoFMn2LgxU+uMn9JolFL/X3+FLHZBaSmdO3fmt99+4++//0aj74ymlCtptVp8fX3x9fV9bk09u3bBP7PuepXRjx+vrJn/x+XLl/Hx8WHv3r1Pk/u3336bwoULPz1fgwYNePz4McePH1cuqO/eBU9P45Y7aTTQuDGEhho+Rjan0+nQarWkpaXp9fWb2pMnanujzq0G6ng4UbvIv7+LP//8c1atWsWNGzeMfGWmt2DBAgYNGvR0eUlOdO/ePdzc3AgODqZDhw6ZPi4uLo7p06cze/Zs8ufPz5QpU+jRo4fJPmMaNmyIo6MjISEhJhkvM1JTUzl48CAhISFs27aNy5cv4+joSKNGjWjZsiUtWrTA09PTYvFIUm4mZ/alnKVAAf0S2JcpVMj4MbKqH380rCeBVgsnT8KcOcpNlVxoyJAhBAUFERISQuvWra0djpQN/PTTT1y6dIk1a9b8+80bN+D99/VP9AGmTFFuun3wAQBRUVEAeHt7A0ojsN9++40VK1YAcOTIEX755Re2bNny78zZiRPGJfoAWi3i4EFSU1L0Tnaz69d/E3udgZ81I7edoJBXceN+/ipI1T0/V/PkyZMsN7OfbsCAAezatYsePXpw+vTpHJnoubq6UqxYMcLDw/VK9vPly8eUKVPo27cvY8eOpU+fPsyfP5/Zs2c/V8VjiPj4eA4ePJhh00BTe/DgwXPl+Y8ePcLT05OAgADmzJlDgwYNsuz7U5JyMpnsSzlL7dqZ7/T8MhqN0jU6p5o/X3mNhvycdDplffFnn72ym3hOVbNmTWrVqsW8efNksi+9lhCCadOmUb9+ffz9/f99YMkSRHKy/ok+KOvav/rqabIfHR0N8LSMf8eOHQC0aNECgC+//JI33njj+fdrbKwBr+ZFqoQEHO3tMcHt1VeytbXFxsbGJF8ODg4Zfl+j0ZjsHK/7OiwK89jImkohwF7zfNlzQkICefLkMW5gM1GpVKxcuZLKlSvTrVs3du3a9dp17dmRn58fJ0+eNOjYYsWKsXbtWgYPHsywYcNo3LgxLVq0YObMmVSoUOG1x99LSuPUvST+fphCklZ5g4mUJN4b/Dlvv6fncptM+m95vlarxc/Pj6FDhxIQEED16tVzbZ8fScoqct/VupSz1a4Nvr5w/rzhTfq0WrR9+pAji7TPn1fK8I1x6xaEhCjranOhwYMH06lTJ86cOUOlSpWsHY6Uhe3du5cTJ06wc+fOf7+ZnIxYsgSVoTcldTplZj48HPz8iI6OpkCBAk+TvK1bt+Lv74+7uzsnT55kx44drFu37vnEykTr4XUqFatWrcLGhMn4f79yYkJ483ocZ+4nG3WTRADu/9l678mTJ1k22Qdl5vv777+ncePGzJw5k88++8zaIZmcn58fs2bNUqp2DExya9asycGDB9m8eTOjRo2iUqVK9O/fn4kTJ+KaQcPKW0/S2BsVz42EtBd7QdjYU7tDb3Y9seHC349o6JUHdyfDL/1TU1M5dOgQ27ZtIyQkhL///hsHBwcaNWrEokWLaNGixXP9QyRJsj65Zl/KeYzoyK8F9gHDK1Vi2rRpNGvWLGfdlZ48GSZNMq76QaOBDz+E4GDTxZWNpKamUqJECZo3b87y5cutHY6UhTVq1IjY2FhOnDjx9PeI2LABlR4lvhmysVG2h1q6lMGDB7Nv3z7++usvkpOTcXV1ZcyYMYwdO5Z27drxxx9/cOHCBWyercQ5cADq1TMuBlCadd65Y/w4ucytJ2msvvjQqDGc7dQE+hZ87vOpXbt2xMXFPX9zKQsaPXo0s2fP5vDhw9SsWdPa4ZhUaGgozZs35/Lly5QuXdro8ZKTk5k/fz6TJ09GpVIxfvx4Bg0ahL290vMh4lEKW648Ride3/BRBWhU0LaUMyWd7TIdQ2xs7HPl+Q8fPsTDw+Np9/yGDRvK8nxJysJy3i1zSerSRWmwZ0CZucbGBo8lSyhYsCAtWrTg3Xff5ejRo2YI0kpu31bKgI2h1Srj5FK2trZ88sknrF27lnv37lk7HCmLOn78OHv37mX06NFPEzKdTseOWbNIMXbwtDQ4cwZQyvjTZ9L2799PfHw8rVq14uzZs2zevJkxY8Y8n+gDWn9/kozdPtLGBjp3Nm6MXKqIkw1FHDUYcxvZz9XhhRvRWX1mP93kyZOpVq0anTp1Ii7OuC0Isxo/Pz8AwsPDTTKevb09I0aM4PLly3Tp0oXRo0dToUIFNm3axI14JdHXZiLRB+U5aQI2RT4mJuHVTYwvXbrE7Nmzeffdd3Fzc6Nz585cunSJwYMHc/z4caKioli2bBktW7aUib4kZXEy2Zdynjx5YPdudAUKkOkWVCqV8rVqFRX79WP//v1s376d2NhY3nrrLdq2bcuFCxfMGbVlpKYavrzhWVloH2dr6Nu3L0IIfpg+XemO/v778O67ytZrgwfDH39YO0TJ0v6z/n7atGn4+PjwwT9r63U6Hf379+fSiROm6bL9UJkZjoqKetqcb+vWrZQoUYI33niDr776iqJFi9K1a9dnDnnI7NmzKVO+PFMfPcKo7iZpadC/vzEj5GpvezgZtPWeCnDUqKjs8uJ+9Vlx672M2NraEhwczO3btxkwYIC1wzGpwoUL4+3tbfC6/Zdxc3NjwYIFnDlzBl9fXz5q354VxyPR6vR/F+kE/HQ1jmcLe9PS0ti/fz8jRoygXLlylCtXjvHjx5M3b14WLlxIVFQU4eHhTJo0iTfffDNHLq+RpJxK/muVciRd8eL0rlyZyPQPpFddXKvVyt7PW7YoVQEozYSaN2/OqVOnWLNmDSdOnKBixYr07dv3aUOsbKlgQeWmhrEyWDeYm7idO8cxNzf6z5qFmDYNfv5Z6YWwbRssXqx0S69ZU9n1QK6Uypni42HZMqhaFRwdld8xjo7g68vtsWPZt2ULo0aNQqPRoNVq6d27NytWrKBhq1ZoTHGh/M9e3Okz+0IItm3bRsuWLYmMjCQ4OJhRo0ZhZ2fHpUuXGDhwIN7e3owZM4Z33nmHtmFhaDQaw/Z612igfn0oV87415FL+eS3p56Hfol5ehl2+zL5cbR58T2UXWb2AUqXLs2iRYv4/vvvWbt2rbXDMSk/Pz+Tzez/V4UKFQgJCWHDviM4FnA16PNcAI9SdJyJiSU4OJhOnTrh5uZG/fr1WbduHXXr1uXnn3/m3r17hISE0K9fP7kOX5KyMZnsSznS7NmzWbVvHxE//qjsJ//22xk/0dtb6Wx9/XqGDec0Gg1du3bl4sWLzJw5ky1btuDj48OYMWN4+NC4NZdWUaeOMrtvDLVaGSe3mjcP6tenUkwMalAarT2b0KdvaRYeDh06wIABxu8QIWUdqakwZgwUKaLMbJ8+/W+lS1ISXLhA4a++4hbQ48QJtPHx9OzZk++++47vv/+eyq1bG7/tnY0NlCpFWloat27dwtvbm9OnT3Pjxg1atWrFtGnTcHV1pXjx4jRv3pxy5cqxceNGhg8fzrVr11izZg1VmjSBBQv0LyXXaJQbDcuWGfcaJN4q4kQjLyU5z8zFmINGRZeyBSjykgZr2WVmP13Xrl3p0qULgYGBREREWDsck6levTrh4eGYsyWW1qu8UctAdFotX28Mo1OnTpw/f55BgwZx7NgxoqOjWb58Oa1atco2N44kSXo12aBPynEOHz5MvXr1GDFiBNOmTfv3gQsXlAvzR4/AyUlJ9OvUefWs/388evSImTNn8vXXX+Pg4MC4ceMYMGAADg4vllRmSVotFC8OxlQn2NrCzZu5c3Z/0SIledeHSgX9+inH5qRmj7lRYqJyU3D37kxVbAi1moiCBakVG8vCoCDat28Pjx8rNwoSE42LZc8eosuXx9vbm5CQEE6ePMmsWbM4dOgQVatWxdXVlTt37lC1alU+/fRT2rdvn+HvqTOdO1MpKAgBr08eNBpwdoawMKVyRTKJu4lpnLyXxJn7SaQJ0GmVm0EajQ0CcLZV4+fmQGUXhwxn9NOVKFGCLl26MGXKFAtFbrzHjx9TrVo1XF1dOXToELbpO0WkpMCVK8o2kfb24O4Onp7WDTaTtm/fTkBAAFeuXKFEiRImH/9Jmo55Zx4YP5AQfOiSROniRY0fS5KkLEvO7Es5yr1792jfvj21atV68YKnfHn46CPo00dpLFWvnl6JPkD+/PmZMmUKERERtG/fns8++4yyZcuyevVqtNlh9lajgYEDDW/SZ2OjzFbnxkT/5EnlZ6cvIWDJEggKMn1MkuVotdCxI+zZk+mlGSqdjhL373O+bFnap1cOOTvDxx8b1EBUGVQFpUtDgwZPlxR5eXmxadMmPDw8qFGjBjqdjlq1avHrr79y8uRJunfv/tIbkkmffkoH4Eb6y8zohlT678l69eDYMZnom5ibow1NiuZlUKVCtCiWl4vbg4k9+Sv1PJ34qLQzgW8UxN/d6ZWJPmS/mX0AZ2dngoODOXnyJJ9//rlSZTd+PHh4KJ/Zb70F1auDl5dyc37DBuVGQBZm6iZ9/5WQasymjc9QqShUJHvcQJEkyXAy2ZdyDJ1OR7du3UhOTmb9+vUvdKA2JQ8PDxYvXsy5c+eoVasWPXr0oEqVKoSEhJi1dM8k+vZVZkj0bRKmVoOdHYwda564srr58/X/maVTq2HWLNPGI1nW+vVKbwadfhfaNoDbpUuwcOG/3xwwQO9xnhIChg0DlYobN5QUfdSoUZw+fZrr16+TlpbGp59+ys8//0zdunVfu3VosWLF2ACU0WjY2r8/xwsWJDH9fa7RQOHCStPJixdh714oU8awuKXXsteoqeTiwKnNq0j+6zC13J0o5WyX6e1fExISsmXpdc2aNfly4kSKTpuGKFECpk2DBxnMXB89qtxs9vJSbrplUUWKFMHDw8MkyX5SUhJXrlzhyJEjbN68mQULFjB3/gITRKlIM6DBnyRJ2Yv5siFJsrAZM2YQGhpKaGjo0+7U5la2bFl++OEHjh07xujRo2nZsiV16tRh+vTp1K5d2yIx6K1QIdi1S+lj8Phx5taTq9XKhf9PPymzLbnN/fvKzLyha611OqVD//HjUKOGaWOTLGPePOXfgSFJuhDKzaJPP1XGeOMNWLpUqTLSh1oN7duT0rMnG77/nnHjxgFw+vRpVCoV3bp1IygoSJkhzaTChQvj4OCATqcjomxZuut0jJg0iXGjRyvnk0tPLC4+Pp68efPqdYxOpyMxMTHbzewDkJLCyIMHlaUkQrz8Myn9+w8eQNOmEBwMH35osTD18bomfQkJCcTExDz9unnzZoZ/jo2Nfe44Ozs7ylZ9k86Nu5gkTgeN/PctSTmdTPalHOHgwYOMHz+esWPH0rRpU4ufv2bNmuzdu5ddu3bx2Wef8fbbb9OmTRumTp1KhQoVLB7Pa1WooJTjNm0KEREItRpVRklMenJToIDSaT6r3sAwt/XrjW9saGMDK1bIZD87OnVK+fdiKCHg6lVlNvK995Tv9e6tlCOnL6t51U03lQqEIKlNG2aVKcO3JUqQevs2Jb28cCxcmLJvvsn9Bw9Yt24dAwcOpGDBgpmLKzYW1erVhKnV5E1OpvDMmZR8+JCS9+4psTk6Gv6aJYMZMkOf+E8PiOw4s0+fPqh27858wzmdTvk30amTUu6fRRrGCiGIi4sjJiYGFxcXtmzZwqxZs7h169YLCf3jx4+fO9bR0RFPT088PDzw8PDA19f3uT+n/3/BggXRAQvOPCBRa9ysfB4bFXlsZYGvJOV0skGflO3duXOHatWq4ePjw549e8xavp8ZOp2O4OBgxo8fz/Xr1+nRowcTJ060WLWBXlJTYetWro4YQYmrV198vGJFGDJEWaucHS8iTWX4cGVm1tiEv2HDLF1+Kr3EmDHKMgxjuujb2EC3bvDtt89//9dflbLlnTtfTPptbCAtjcRSpVjv7s6WY8f4RAia6HTPrcE7p1Kxu3x5ply5wtlr1yhcuPCrY4mMhMmTlWqV1FSEEE8TLS3K+j6Vs7NSeTBmDLi4GP66Jb3lyZOHqVOnMmTIkEwfc/fuXQoXLsyPP/5Imwx2lsmyjh83vAeEWq1sc3rihGlj+g8hBA8fPsxwFv6/M/IJCQnPHevk5IS3t/fTpP3ZxP3Z/3d2ds70cg2AgzEJHLmVaNjWmSjNON/xcKJ2kWxYCSJJkl7kzL6Urel0Orp27UpqaipBQUFWT/QB1Go1nTt3pl27dixdupTJkyezbt06Bg8ezOjRozM/62YJtrbQti2dv/6aamXLsmDAAGW3grx5oUQJZQ9xWcar7KluCv+ZzZGyiTt3jB8jLQ1u337x+/XqKV+RkbB8Ofz5Jzx4gMiXj6vArLt3OfPnnwRdu0YPrRah0bwwA1pOCCqcP09/Gxvs16xRbk697N/tb79B8+bKe/qfmxfPPvNpV4rHj+Gbb+DHH5XdB0qVMurlS5mj0+l48uSJ3jP06UlmtpvZX7To6U0tvel0yhan4eHwT1M8fQghuH///ivL6NO/ktK31/xH/vz5nybqxYoVw9/f/7kkXq1WU7duXdauXcv777+v/2t7jSouDhy5ZdyOHlVcsskuQpIkGcX6mZEkGWHq1Kns3r2bnTt34pnFtuWxt7dn8ODBfPzxx8yePZvZs2ezbNkyxo4dy8CBA3HMIiWysbGxHD16lB5Ll0KrVtYOJ2tydjbNOFnpRo+UeSkpme7A/0rJyS9/rFQp+OorHj58yLfffsuCBQu4evUqY8qXZ79Go6xlBlQZlPunJ+j2aWkwcqSyZGD+/BcT/j//hEaNICkpc70HtFqlO/q77yozsO7umXqZkuGePHkCoPea/fTjstWafWN7oYByo2DRoucqZnQ6HXfv3n3tLHxMTAyp/6nWKlSo0NOkvUyZMrzzzjsvzMQXKVLktT9nIQTu7u6cPHnSLMm+s52Gaq72nLz3it8pr+Dn5iBL+CUpl5DJvpRt7d+/nwkTJjB+/HgaN25s7XBeytnZmUmTJhEYGMjkyZMZO3Ys8+bNY9KkSXTr1s3q1Qi7d+9Gp9NZpddBdiHKlYPU1MyvKc1oDI0GVW5sbpgTFCjw+nX1r6NWv7Ic/uLFi8ybN4/vvvuOlJQUOnToQOj48ZQPDFQSc31uNixcqCTm//vfv99LS4OWLZUbDvo0GUxLg5gY6NpVaewpmVX8P1VE+ib72XJm/+BB47fRS0vjcXAwXZ5J7m/fvv3CVrhubm5Pk3ZfX18aNWr0Qml9kSJFsLe3Ny6ef6hUqtc26TNWQ++8xCbruBKnx/IyISiT344GXtnofSJJklFksi9lS7dv36Zjx47Uq1ePCRMmWDucTClSpAgLFy5k6NChjB8/nl69ejF79mymTp1Kq1at9FqvZ0phYWFUrFgxa/YUsLKbN2+yZs0aNnz7LYcAYy6PVFotnfbvp9HKlbRv3z57XZTndnXqwAIjt7sS4oVGYkIIdu3axdy5cwkNDaVw4cIMHz6cwMBAiri7Q6VKyg0GQ6oKJkyA7t2hWDHlzyEh8M9WfXpLS1NK+S9ehHLlDBtDyhRDk/b0mf1s9Xslo+31DOCQlIROp6Nq1ao0b978hSTe3d0dW1tbk5xLH9WrV2fZsmVKTwwzfL5rVCralXJmx/U4zsamoAZedhsv/bFTIRto0uod1KoqJo9HkqSsSdbwSNmOVqulc+fOCCEICgpCY+je51ZSpkwZ1q9fz4kTJ/Dw8KBNmzbUqVOHQ4cOWTwWIQRhYWFyVv8ZycnJbNq0iebNm1O0aFEmTZrEG/7+PGjdGmFgFYbQaLhXvjwPPDzo3bs3Hh4e9O/fn5MnT5o4esks3n/f+CZ19vbK7DhKQrdkyRJ8fX1p2rQpt27dYvXq1Vy/fp1JkyZRpEgRZW392bOGbfUHSiXBsmX//nn+fGX7TEPZ2MCSJYYfL2WKsTP72aqM30QJsJ29PSEhISxfvpxJkybRv39/WrduTc2aNfH29rZKog/K9nt37twhOjrabOfQqFUEFM9H17L5qVDQLsOL+rTUFLzUSXQo4ciFzcvp1LHDC40EJUnKuWSyL2U7U6ZM4ZdffiEoKEi5KM6m/Pz82LNnD7t27SIxMZF33nmHVq1a8ddff1kshjNnzhATEyOTfeDUqVMMHjwYT09PPvzwQx48eMCiRYuIiYlh7dq1FJ0+XZmdMeACVaXV4jprFmFhYURGRvLpp5+ybds2/Pz88PPzY8mSJS9sxSRlIXZ2EBhoeLJsYwPdu3P90SNGjRqFt7c3AwYMwNfXl19//ZXw8HC6d+/+fAnxwoXKcYbSamHxYqVsPyoK9u0zbhlCWpqyLtrQmw9Sphg6s58ty/hNtctDFu2F4vdP00Bz39RVqVR45bGlZQlnBlYsROsS+XjPOw9Niuahmac9c1q9yc1dwZQomIf169dz/fp1vXZ6kCQpmxOSlI3s2bNHqFQqMWnSJGuHYlJarVYEB/PJjpoAACAASURBVAeLUqVKCbVaLT7++GNx7do1s593+vTpwsnJSSQlJZn9XFnR3bt3xdy5c0WVKlUEINzd3cWIESPE2bNnMz5g0yYhVCrlSymuztxXBu/X1NRUsXXrVtGyZUuhVquFk5OT6NGjh/jtt9+ETqcz8yuX9HbrlhCFCwuh0ej1d69Tq0Wqk5MY0LSpUKvVIn/+/GLEiBHiypUrrz5fnjz6vcde9nXggBCHD5tmLBDi4UOL/Lhzq507dwpA79//q1evFoBITk42U2Rm8OiREA4Oxr0fbWyEGDDA2q8kQzqdTri5uYnPP//cqnEEBASIunXrPv3zihUrBCDWr19vxagkSbIUObMvZRsxMTF06tSJhg0bMm7cOGuHY1JqtZoOHTpw/vx55s6dy/bt2ylbtiwjR47kgYnWNWYkNDSUBg0amKwpUXaQlpbG9u3badeuHZ6engwfPpxSpUqxdetWbty4wcyZM/H19c344LZtYcMGZcb1dbOu6Y9Pnfp8o7SnD9vQsmVLtm7dyvXr1xkzZgz79u3jrbfeonLlysybN8+sf/eSntzdlQZ1Tk6ZnuHXqdWkCkHDJ0/Yc+UK8+fPJyoqipkzZ1KiRImXH5iaCqYqs33wwHRjgWnHkl5gTBm/jY0NdnZ25gjLPJyd4eOPjatgSUtTqm6yIJVKRfXq1c3apC8zAgICOHz4MLGxsQD07NmT9u3b07dvX65cuWLV2CRJMj+Z7EvZQlpaGp06dUKtVrN27dpst04/s+zs7Bg4cCARERGMGTOGJUuWUKpUKaZNm/a0AZOpxMXFcejQIZo1a2bScbOqixcvMnr0aIoVK0ZAQACXLl1i+vTpREdHs2XLFlq2bJm5tZ0ffgh//AG9eoGDg1LWb2urJIC2tspaaY0G2rSBAwdgzJjXlv57eXkxfvx4IiIiCAsLo1y5cgwfPhxPT0+6du3KgQMHEKbY+k0yTpUq8PvvkL7N50t+D+lUKgRwX6djRM2ajAkN5dy5c3zyySeZS+JMWSqv05lu60gw7VjSC4xp0Jet1uun++QTw7fe02jg7bfhjTdMG5MJ+fn5Wb03S4sWLdBqtezcuRNQbkIsXboUFxcXOnbs+ML2g5Ik5Swy2ZeyhS+++IIDBw6wfv163HPBXs/58uVjwoQJRERE0K1bNz7//HN8fHxYvnw5acbsSfyMffv2kZaWlqPX6z9+/JgVK1ZQu3Ztypcvz9KlS/nggw84ceIEf/75J0OHDqVw4cL6D+zrqzQru3VLWVvdrx907gy9eysz+devw8aN8M47eg2r0Who0qQJmzZtIioqikmTJnH06FHq1atHhQoVmDVrFnfv3tU/Xsl0KlSAv/9W9gevWTPDp/wFrH33Xe6HhzPv6FGaNm2KWq3Hx629vXIjyRQKFgQfH+NmT9N5eUF2WhOeDcXHxxs0Q5+QkJC91uunq1QJhgzRvxdK+k3W+fPNE5eJ+Pn5ERMTQ0xMjNVi8Pb2pmrVqoSEhDz9Xv78+QkODiY8PJzPP//carFJkmQB1l5HIEmvs3PnTqFSqcSUKVOsHYrVXL58WXTs2FEAoly5cmLLli1Gr+vu37+/8PHxMVGEWYdWqxX79u0TXbt2FY6OjkKlUokmTZqI9evXi8TERGuHp7f019OxY0dhZ2cnbG1txUcffSR2794ttFqttcPL1VJTU8XOOXPEmAoVRFcQfV1dxepPPxUP7t83fvDWrZX1yMasZ86bV4iEBGW8Tp2MG0+tFmLqVONfl/RKM2fOFPnz59f7uFGjRonSpUubISILSEsTokOHTL8XU0Ho7OyECAuzduSvdfXqVQGIbdu2WTWO8ePHi0KFConU1NTnvj9t2jShUqnE7t27rRSZJEnmJmf2pSzt5s2bdOnShffee48xY8ZYOxyrKV26NEFBQYSHh1O8eHE++OADateuzYEDBwwaT+TALfeuXbvGF198QZkyZWjQoAG//fYb48aN49q1a4SFhdG+fXscTDVbakFqtZr69esTFBREdHQ006dP58yZMzRu3BgfHx+mTp1q1Vmj3Cg2NpZZs2ZRpkwZmgwdykEXF1pv2sTCmBi6z5lDwUKFjD/JwIGGlzeDMpPfu7fSYwBgwADjxlOrlaUrklnFx8frvV4fsvHMPijl+OvWKb1N7O1BpUJkNNP/T3XKdbWaLxo3hiZNLByo/ooVK0ahQoWyxLr9Bw8ecPTo0ee+P3LkSBo2bEjXrl25c+eOlaKTJMmcZLIvZVlpaWl06NABOzs7vv/+e/3KYHOo6tWrs3PnTnbv3k1qair16tUjICCAM2fO6DXOxYsXuXr1arZP9hMTE1m3bh2NGjWiZMmSzJgxg3fffZcDBw5w6dIlxo0bR9GiRa0dpsm4uroydOhQzp49y6FDh3jnnXeYMmUKRYsW5f3332fHjh1ojdleTXqlCxcu8Mknn+Dt7c24ceOoV68e4eHhHDx4kLZt22JjilL5dA0aQKlShu9F/t/GZW+9paxvNiTG9ETfkCUvkl4MTfaz7Zr9dGo1fPEFxMTA11+j++/vbbUaAgJgzx5+Xb6cidu3s337duvEqgeVSpUl1u3XqFEDNze3F35marWaNWvWoNVq6d69Ozq5taYk5TzWLi2QpJcZM2aM0Gg04uDBg9YOJUvSarViw4YNonTp0kKlUolu3bqJq1evZurYOXPmCHt7e5GQXuKbjeh0OnH06FHRr18/kT9/fgGId955R6xcuVLExcVZOzyLi42NFQsWLHi6fWDRokXFxIkTxfXr160dWo6g0+lEWFiYaNq0qQBE4cKFxYQJE0RMTIz5T759u/7bPIJyzMCBL453544QxYvrV86v0QhRp44QuXR7Tkvr37+/qF69ut7HffTRR6Jhw4ZmiMg6fj96VLiA+Ounn4S4dk2I+Pinj+l0OtG0aVPh6ekpYmNjrRhl5owePVp4eXlZOwzRvXt3UbFixQwfCw0NFYCYNWuWhaOSJMncZLIvZUk7duwQgJg2bZq1Q8nyUlJSxMKFC4W7u7uws7MTQ4cOFXfv3n3lMU2aNBHvvfeehSI0jZiYGDFz5kzh6+srAOHl5SXGjRsn/v77b2uHliXodDpx7Ngx0adPH5EnTx6hVqtF8+bNxY8//ihSUlKsHV62Ex8fLxYtWiTKly8vAFGtWjXx3XffiSRLJ73LlinJe2aTfpVKiLZtlXXQGYmOFqJixdePqdEo/23e/LlESzKvLl26PLcnemYFBASIli1bmiEi6wgKChKAePjwYYaPX79+XTg7O4sePXpYODL9/fDDDwIQt27dsmocGzduFIC4cuVKho8PHz5c2NraiuPHj1s2MEmSzEom+1KWc+PGDeHi4iKaN28uG5DpIS4uTnzxxRcib968wtnZWXz55ZciPoOL9CdPnggHBwfx9ddfWyFK/SQnJ4stW7aIli1bCo1GI+zt7UX79u1FWFiYSHtZMiOJx48fi2XLlokaNWoIQHh4eIixY8eKiIgIa4eW5V29elWMHDlSFChQQKjVatG2bVtx4MABoxtiGmXzZiGcnf9tlPeyBnpqtRDDh7880U+XkCDE4sVClC+vHGtjI4StrfKVnuS//bYQ69e/fizJpNq0aSOaNWum93H169cXHTp0MENE1jF58mTh4uLyyuesWLFCAGLHjh0WisowERERWSLOR48eCRsbG7FgwYIMH09OThZvvvmmKF26tHj06JGFo5MkyVxUQsjNm6WsIzU1lfr163Pt2jVOnTqFq6urtUPKdu7evcuXX37JokWLcHFxYeLEifTs2fPpHvJhYWE0a9aMc+fOUaFCBStHm7EzZ86watUq1q5dy927d/Hz86NHjx507NiRQqZofpaL/Pnnnyxfvpy1a9fy6NEjGjVqRJ8+fWjTpo3e23vlVEIIDh8+zDfffMOPP/6Is7MzvXv3ZsCAAZQoUcLa4SkSE2HDBpg3D06dev6xwoWV/cp791a2x8ssIeDQIdizB2JjlUZprq7QujVUrGja+KVMee+99yhQoAA//PCDXsf5+/tTqVIlVqxYYabILKtHjx6cO3eO33///aXPEULQtGlTzp49y9mzZ8mfP78FI8w8IQQuLi4MGzaM8ePHWzWWRo0aYWtrS2hoaIaPX758mWrVqtG6dWu+//57VIb2DJEkKeuw6q0GSfqPUaNGCRsbG3H48GFrh5LtRUZGii5dugiVSiXKli0rNm3aJHQ6nRg8eLAoVqyYdWcqM/DgwQOxcOFC4efnJwDh6uoqhg4dKk6fPm3t0HKEhIQEsXr1avH2228LQLi5uYkRI0aICxcuWDs0q0lKShLfffedqF69+tNtLRctWpT1ez9cuSLEsWNCHD4sxLlzQshlGjnGW2+9ZVBpesWKFcWgQYPMEJF11K1bV3Ts2PG1z7t27ZrIly+f6NWrlwWiMlzDhg1FmzZtrB3G0349GVX9pVu7dq0AxOrVqy0YmSRJ5iLbm0tZRkhICDNmzOCrr76idu3a1g4n2ytZsiTff/89J0+epFSpUrRr145atWrx448/0qxZs0zfsb+XmMb+mwlsuxrHj1ces+NaHCfuJpKUZnzXXq1Wy86dO+nQoQMeHh4MHjwYT09PtmzZQnR0NF9//TWVKlUy+jwSODk50b17dw4dOsTZs2fp3LkzK1eupHz58tSrV49169aRlJRk7TAt4vbt20yaNInixYvTvXt3ChcuTGhoKOfOnSMwMNCgbugWVaIE1KgBtWtDhQrwT9WOlP0ZuoVett56LwMRERGULl36tc8rVqwYs2fP5ttvv2Xnzp0WiMww1atXt/r2ewAtWrQgOTmZvXv3vvQ5nTt3pnv37gwYMIBLly5ZMDpJksxBJvtSlnD9+nW6d+9Oy5YtGT58uLXDyVGqVq1KaGgo+/btIzExkRs3bnD8+HH+/PPPlx4jhODiw2TWXnrIigsP+f12Iudik7n4MIW/HiSzJyqB+X89IPR6HPeT9N+7+/Lly4wfP54SJUrQtGlTTp8+zZQpU4iKimLr1q28//77ssTcjHx9fZkzZw7R0dEEBQWh0Wjo0qULnp6eDBkyhL/++svaIZrFyZMn6d69O8WKFWPGjBl88MEHnD9/ntDQUJo2bSq395SsLtduvfeMxMREoqOjM5XsA/Tu3ZtGjRrRu3dvHj16ZOboDOPn50fyjRs8+OUXOHYMLl6ElBSLx+Hj40PZsmUJCQl55fMWLFiAp6cnHTp0IDk52ULRSZJkDvLKRrK6lJQU2rdvT968eVm9erVcI2Ym9evXp3///mg0Gh49ekS1atXo2rUrV69efe55OiHYeSOeH6/EEZ2gJPLiny+A9Pl8rYAz95NZeeEhfz96/cVAfHw8q1atom7duvj4+DB//nxatGjB0aNHOXv2LCNGjKBIkSIme73S6zk4ONCxY0f27dvHpUuX6NOnD+vXr6dSpUrUrl2bVatWkZCQYO0wjZKWlsbmzZupW7cufn5+7N+/ny+//JKoqCgWLVpE+fLlrR2iJD0VHx+f62f2r1y5AkCpUqUy9XyVSsWKFSt4+PAhI0eONGdo+ktLgy1baDlnDreBQg0agL8/lC8PHh4wbhxcu2bRkAICAggJCUG8omVX3rx5Wb9+PX/99RejR4+2YHSSJJmaTPYlqxs7diwnTpxgw4YNsvmame3cuZM6depw/vx5Fi9ezJ49eyhXrhyffvopd+/eRQhB2PV4/rivJO+v696pQ0n6t0TGEfn4xVkKIQQHDx6kZ8+eFClShJ49e2JnZ8fatWuJiYlhyZIl+Pv7yxs8WYCPjw/Tp0/nxo0bbNq0CWdnZ3r16oWnpyeBgYGcPHnS2iHqJTY2llmzZlG6dGnatWsHwKZNm4iIiGDEiBEULFjQyhFK0osSEhL0ntkXQuSomf2IiAiATM/sAxQvXpxZs2axfPlydu3aZa7Q9HPoEBQrBm3b4njixIuPP3gA06dDyZLQp4/FZvoDAgKIiYnh1H8bff5H9erVmTFjBt988w3bt2+3SGySJJmeTPYlq9q6dSuzZ89mxowZ1KpVy9rh5Gjp6/SaNm2Kra0t/fr14/Lly0yYMIFVq1ZRunRppn6/hdMP9C/ZE8CWyMfEpWgBiIqKYurUqZQtW5a6devyyy+/MGrUKK5evcqePXvo3LlzjrkwzWns7Oxo27YtYWFhREZGMnjwYLZu3Yqfnx9vvvkmS5cu5fHjxyY51/2kNM7cT+LEnURO3Uvk70fJpOqM2yDmwoULfPLJJ3h7ezNu3DjeffddwsPDOXDgAG3btsXGxsYksUuSqel0OoOS/eTkZHQ6XY6Z2Y+IiMDBwQEPDw+9juvbty8NGjSgT58+JvsdZbCQEGjQAG7fBkCl1Wb8PK1W2RVj5Upo2hQs0DelTp06ODs7v7aUH2DIkCG0aNGCjz/+mJs3b5o9NkmSTE9uvSdZzdWrV6lWrRrvvvsuW7ZskbO7ZrZv3z4aNmzIH3/8QZUqVZ577N69e0ydOhWbBp0p6FEUlQFrl1VA/vuR/DTrc3bv3o29vT3t2rWjR48e1KtXT66HzsbS0tIIDQ1l+fLlbN++HQcHBzp06EDfvn2pWbOmXv92tULw96MUwu8mciP+xX4P9moVVVwdqObqQEF7TabG1Ol07Nq1i7lz5xIWFoa7uzuBgYH0798fd3f3TMcmSdaUnugHBQXRsWPHTB/34MEDXFxc2LRpE23btjVjhJYxePBg9u7dy9mzZ/U+9urVq1SsWJEuXbqwZMkSM0SXCSdOQJ06yky9PpfYajV8+CEEB4OZr4c++ugjrl69yrFjx1773Lt371KlShXKly/P7t270Wgy93tZkqSsQV59S1aRvk6/QIECrFy5Uib6FhAWFkaRIkWoXLnyC4+5uroyeOI0CnkVNyjRB2V2P1rtTFx8AkuWLOHWrVusWbOG+vXry0Q/m7OxsaFly5Zs3bqVa9euMXr0aPbu3UutWrWoUqUK8+fPJzY29rXjxKfq+O7iQ366EkdUBok+QLJOcPxOIkvPxXLibuKrx4uPZ9GiRfj6+tKsWTPu3LnDd999x7Vr15gwYYJM9KVsJT4+HkDvmf30vho5aWZfnxL+Z5UoUYKZM2eydOlS9uzZY+LIMmn4cGWtvr5zaTodbNgAhw+bJ65nBAQEcPz4cW7/U3nwKm5ubqxbt479+/czbdo0s8cmSZJpyStwySpGjRrFqVOn+OGHH+TaWQsJCwujadOmL72xcup+EsbecslT0JWVIXvo06cPzs7ORo4mZUXe3t7873//IyIigrCwMMqWLcuwYcPw9PSka9euHDx4MMPGT/GpOtZcfMjdRKWc9VWXwemP7YlK4PCtJy88fu3aNUaOHEnRokUZNGgQFStW5ODBg5w4cYJu3bphb29vglcqSZaVnuxnOmnXauG331Bv28YHgOf58/DwofkCtJCIiIhMN+fLSL9+/ahfvz69e/cmLi7OhJFlwrlzcOCA8ndjCBsbWLjQtDFlIH373R07dmTq+fXr12fs2LFMmDCBI0eOmDk6SZJMSSb7ksVt2bKFuXPnMnv2bGrUqGHtcHKF6Ohozpw5Q9OmTV/6nPtJ2tc25HsdFRCbbOBFjpStaDQamjRpwqZNm4iKimLixIkcPXqUunXr4uvry+zZs7l37x6g7PDwQ8Qj4lJ1er/HDsY84Xxs8tNmj23btqVUqVKsWLGCPn36EBkZyaZNm6hTp46sEJKytfQZ+tfO7N+5A1OnKs3fatfGa8AANgOVhw2DIkWgd294TfO1rEqr1XLlyhWDZ/YB1Go13377Lffu3eOzzz4zYXSZsHixkrAbKi0NNm16utbfXNzc3KhVq1am1u2nmzhxIv7+/nTs2DFTlVySJGUNMtmXLCoyMpKePXvStm1bBg4caO1wco2wsDDUajWNGjV66XNStMa371CpTDOOlL24u7vz2WefcfHiRfbt20e1atUYO3bs032atxw8wZ1Ew28mhVy8hZ+fH3Xr1uXcuXMsWLCAqKgoZsyYQfHixU36WiTJWjJVxr9sGXh7w//+Bxk1TEtOhu++g+rV4aOPIPHVS2GymujoaFJSUoxK9gFKlizJ9OnTWbx4Mfv27TNRdJmwbZuSsBsjLQ0sEHNAQAC7du0iOTlzTXltbGwICgri8ePH9OnT55Vb90mSlHXIZF+ymOTkZD766CNcXFz49ttv5SycBYWFhVGzZk1cXFxe+hxbjfF/H0KAnQnGkbIntVpN/fr1CQoKIjo6munTp3P69Gl2no9CpzX8Alhrn4fytesTFhbG2bNnCQwMzDHrkyUp3WvX3k+bBv36QWqqsr77ZdKTzc2boXHjbJXwG7Lt3ssEBgZSr149evXq9fRGitmZYsZbpVK25TOzgIAA4uPjOXDgQKaPKV68OMuXL2fz5s0sX77cjNFJkmQqMtmXLGbEiBGcOXOGjRs3kj9/fmuHk2ukpaWxe/dumjVr9srnudprjF6zL4ACmeygLuVsrq6uDB06lIPhpyld8x3UGsNLW1UI2g2bQJMmTWSzRynHeuXM/vr1MGaMfgPqdPDbb9C9uwmis4zIyEhUKhUlSpQweqz0cv47d+4wevRo44PLDFNNYlhgMqRSpUp4e3vrVcoP0K5dO/r27cuQIUMM2jFBkiTLkldNkkVs3LiRBQsWMGfOHKpXr27tcHKV33//nUePHr1yvT5AFVcHo9fsO2hU+DjbGTmKlJPcSjSypBUQqIhOSDVBNJKUdb20QZ9WCyNHGjaoTgcbN0J4uJHRWUZERARFixY1WZPN0qVLM23aNBYuXMj+/ftNMuYrFSpk/BhCwCuq8ExFpVIREBBASEiI3iX5c+bMoXTp0rRv357EbFQ5Ikm5kUz2JbO7fPkyvXr1on379gQGBlo7nFwnLCwMFxcX/Pz8Xvm8kvlscbYz/FeCCqju6oBGLcv4pX8lmaiHQ7LsBSHlcAkJCWg0mhcT3bAwiIoyfGAbG1i0yLjgLMTYTvwZGTBgAO+88w49e/Z8ulTCbN5/H4zdh97WFl7RX8eUAgICiIyM5OLFi3od5+TkxPr164mIiGDYsGFmik6SJFOQyb5kVklJSXz44Ye4u7uzbNkyuU7fCkJDQ3nvvffQvOYCRKVS4V/Y0eDzqFVQ1dXB4OOlnMnGRP/m5U0kKaeLj48nb968L35OLlhgXAKZlgbr1plmPbmZRUREmGS9/rPUajUrV67k1q1bjNF3KYS+AgMN33YPlBszHTtaZGYfoEGDBjg6Oupdyg9QsWJF5syZw5IlS9i8ebMZopMkyRRksi+Z1bBhwzh//jwbN26U+65bwZ07dwgPD39tCX+66q4OvFHQsPLJNiXz4Wwn1+tLz8tja5qPmbw28uNKytkSEhIybs63f79xCSQoXfqPHzduDAswR7IPUKZMGb766ivmz5/Pr7/+avLxnzmRMitv6M2ZtDT45BPTxvQKjo6ONGzY0KBkH6Bfv360bduW3r17c+3aNRNHJ0mSKcirJ8lsNmzYwOLFi5k7dy5Vq1a1dji50q5duwBo0qRJpp6vUqloXjwvlQopCf/r5lLVgEYF75fMh09+06yxlHKWEvlssTdyhwYVULGQfH9JOVv6zP5zUlIgKck0J8jiM/uxsbE8fPjQLMk+wKBBg6hTpw69evUybzn/nDng4AD6NhNVqaBXL/D3N09cLxEQEMChQ4eINeD9oVKpWL58Oc7OznTu3Jk0Y7cdlCTJ5GSyL5nFpUuX6N27Nx07dqRv377WDifXCgsLo3r16ri7u2f6GI1KRfNieWlVIh8eTkoHdTX/Jv7p/1WrwLegPd3LFaBcAZmISRmzUauo5upg1E4PKqCyi1wiIuVsGSb7Go3pOrPbZe3mqabcdi8j6eX80dHRjBs3ziznAKBiRdi2Tfl5Z3aGX6WCVq1g8WLzxfUSzZs3R6vVPp0c0FfBggUJCgri6NGjTJo0ycTRSZJkLJnsSyaXmJjIhx9+iKenJ0uXLpXr9K1Ep9Oxc+fOTJfwP0ulUuFb0J5u5QrQo1wB3izsSPkCdpRxtsW3oD0NvPIwqGIhAkrko7Cj4VuqSblDVSMSdRVQoaCdyZYDSFJWlWEZv0YDBQqY5gRubqYZx0zSk31TN+h7lo+PD1OnTmXevHkcPHjQbOehfn04fBjSX4vNi5+TApTZfxsbGD4cNm9WmvNZWNGiRalSpYrBpfwAb7/9NhMnTuTLL7/kl19+MWF0kiQZS149SSY3ZMgQLl26xMaNG8mXL5+1w8m1wsPDuXfvnkHJ/rPcnWxo4JWH1iWdaVc6Py1L5KNmYUcc5RpqKZMK2Gt4r2gGa5FfQwU426lp6JXBvuOSlMNkOLMP0KFDhsmiXtzdoVYt48Yws4iICAoWLEjBggXNep7Bgwfz1ltv0bNnT548eWK+E1WvDhcvwt690LLlC2X9t21t4auvICYGZs40vou/EQICAtixYwdaI3pDjBkzhnr16tGlSxfu3btnwugkSTKGvFqXMk2rE1yITebXmwnsuhHPvugETtxJJCFV9/Q569atY/ny5SxYsIDKlStbMVopLCwMZ2dnamXxCzwpd6jm6si7nk6Zfn56ot+xTH6c5Ky+lAu8tEFfYKDSuM1QajUMGGD8DQMzM1dzvv/SaDSsXLmSqKgoxo8fb96TqVTQoAFs2QKPH8PVq3DhAqunT6eYTseTgQPB1dW8MWRCQEAADx484OjRowaPodFoWLt2LcnJyfTs2RMh5HapkpQVyCso6bXiUrUcuJnAgr8e8NPVOH6/ncgf95I4cTeRvdHK93+++pgjZy/Tr18/unTpQs+ePa0ddq4XFhZG48aNsbVCWaAkZaSWuxPvl8xHIXtlBiujBT4qlA+mN/7pB1HAXu7wIOUOL53Zr1QJatc2fOZXpYLevY0LzgIslewDlCtXjilTpvDNN99w+PBhi5yTPHmgeHEoV44qjRuTqtVy8uRJy5z7NWrUWnY6AgAAIABJREFUqIGbm5tRpfwAXl5erFq1im3btjF//nwTRSdJkjFksi+90o34VJafe8hvtxNJ1Cp3aXXpX0JZcyaAC7EpHEgpQItB41i0aJFcp29lsbGxHD161OgSfkkytXIF7OlToQCdfPJTroAdeW3V2KnBQaPC1UFDPU8nBlZS+kE4yaUiUi7y0mQfYPlycHTUv8M7wNy54OFhXHAWEBkZabFkH+DTTz/F39+fHj16kJiYaLHzAlSqVAlHR0d+//13i573ZTQaDc2bNzc62Qdo2bIlgwcPZuTIkZw6dcoE0UmSZAx5JSW9VFR8KusvPyJVJ3hdMVb649U+6sOpOPm2srY9e/ag0+kyveWeJFmSSqWiWF5b2pR0ZmDFQgyr4sqnlV3oXaEgtdydZJIv5UovLeMH8PWF0FBwcsrUDH/6Z7Ju4kSlhD+LS05OJioqyqzN+f5Lo9GwatUqrl+/zv/+9z+LnRfAxsYGPz+/LJPsA7Ro0YK//vqLa9euGT3WjBkz8PX1pUOHDsTHx5sgOkmSDCWvqKQMJaTq2Bjx+OnsvT6O3E7kQmyyWeKSMic0NJQ33niDokWLWjsUSZIkKRNeObMPUKcOHD0KNWsqf85oDf4/NwJSChWiGzDbKfN9MqzpypUrCCEsOrMPUL58eSZPnszXX3/NkSNHLHruWrVqGbVG3tTee+89bGxs2L59u9Fj2dvbs379eqKjoxk0aJAJopMkyVAy2Zcy9Of9JFIyMaP/ModvPZHNWaxECEFYWJgs4ZckScpGXjmzn+6NN+DIEfjzT2Udfv78/z5mZ6ds+fbTT9jfvo3HqFGMGzcuy6wLf5X0bfcsnewDDBs2jJo1a9KzZ0+LlvP7+/tz48YNYmJiLHbOV8mfPz9169Y1SSk/KH0RFixYwOrVqwkKCjLJmJIk6U8m+9ILdEIQfjfR4EQf4G6SlpgnRnQPlgx25swZYmJiaNasmbVDkSRJkjJBp9ORkJDw6pn9Z1WuDIsXw8OHkJoKiYmQnAy7d0Pr1mBjw+TJk6lUqRKdOnUiISHBvC/ASBEREdjb2+Pl5WXxc6eX81+9epUJEyZY7Lz+/v4AWaqUPyAggH379pns/dK9e3c6depE//79n97QkSTJsmSyL70g8nEqCWnGzcqrgJP3kkwTkKSXsLAwnJycqFOnjrVDkSRJkjIhMTERIUTmk/1n2diAg8ML37azs2PdunVcv36d4cOHmyBK84mMjKRkyZKoDWlAaAIVKlRg0qRJzJ4922Kl9d7e3nh6emapUv6AgACSk5PZu3evScZTqVQsXrwYNzc3OnToQEpKivLAw4ewaBEMGgTduyt9JWbNgtu3TXJeSZL+JZN96QV3E9My3BJLHwK4kyhn9q0hLCyMBg0aYG9vb+1QJEmSpExIn0l9bRm/nsqXL88333zD0qVL+fnnn006tilFRERYtDlfRoYPH46fnx89evQgKcn8kxUqlQp/f/8sNbPv4+ODj4+PyUr5AZydnQkODuaPP/5gfr9+0KePsjvEwIGwdCmsW6fsNvHZZ+DtDR06wG+/mez8kpTbyWRfekGKTmCKnfOStXLNvqXFxcVx6NAhuV5fkiQpG0nvWG7QzP5r9OnTh9atW9OrVy9u3rxp8vFNISIiwirr9Z9lY2PD6tWriYyMZOLEiRY5p7+/P8ePH0er1VrkfJkREBDA9u3bTdp3qWbNmvz44YcMXr0a3apVkJQEQihLULRa5b86HaSlwebNULs2zJ6tPEeSJKPIZF96gY1apX8L/gzYqU1wx0DSy759+0hNTZXJviRJUjZirpl9UGaQV6xYga2tLR9//DE6nc7k5zCGTqcjMjLS6sk+gK+vL5MmTWLmzJkcO3bM7OerVasWCQkJnD171uznyqyAgABu3rzJH3/8YbpBg4MJCA5GA6hfd2Mj7Z+q0BEjYOZM08UgSbmUTPalF+S3U2PspYAKKGD/+r2AJdMKCwvDx8cnS1w0SZIkSZljzpl9AFdXV9asWcPu3buZO3euWc5hqJs3b5KcnJxlPrdGjBhB9erVLVLO7+fnh1qtzlKl/HXq1MHZ2dl0pfxnz0K3bqBS6Z90fPaZ0nRSkiSDyWRfek5CQgJHf15PWpJx288IoLKLXDNuSXLLPUmSpOzJ3Mk+QOPGjRk2bBijR4827aytkay57V5GbGxsWLVqFZcvX+aLL74w67ny5s1LxYoVs1Syb2dnR5MmTUyX7KffXDKkJF+jgRkzTBOHJOVSMtmXADh//jxDhgzBy8uLvr16cvvkQaPWSuW1VVPa2c6EEUqvc+nSJa5evSqTfUmSpGzGnGX8z5o6dSrly5enU6dOPHnyxKznyqzIyEgASpYsaeVI/lWxYkUmTJjA9OnTOX78uFnPVatWrSzVkR+UUv5jx45x29ju+I8ewfff/1uary+tFvbsgb//Ni4OScrFZLKfi6WkpPDDDz9Qv359fH19CQ4OJjAwkIiICCb2+giVEV36arg5oDZFlz8p08LCwrC3t6devXrWDkWSJEnSgyVm9gHs7e0JDg7mypUrjBo1yqznyqyIiAi8vLxwyGD7QGsaNWoU1apVo0ePHiQnJ5vtPP7+/pw7d47Hjx+b7Rz6atasGSqVih07dhg3UFAQGPuz02hgxQrjxpCkXEwm+7nQ9evXGT9+PMWKFaN9+/ZotVqCgoK4ceMGX331FSVLlsTFwYamxfS/6FABpZ1tqVHY0fSBS68UGhpK3bp1zT4zJEmSJJlWfHw8arXaIlum+vr6Mnv2bBYuXGjSLdYMlRU68WckvZz/0qVLTJ482Wzn8ff3RwjBiRMnzHYOfbm5ueHv78/27duNG+j8ebCxMW4MrRYuXDBuDEnKxWSyn0vodDpCQ0Np1aoVJUuWZN68ebRt25YzZ85w4MABOnbs+MJFRhUXBxp7K4ljZufoSzvb0qaks5zVt7DExER+/fVXmjVrZu1QJEmSJD0lJCSQN29eoyrq9BEYGEiLFi3o2bMnt27dssg5XyarJvsAlSpV4vPPP2fatGmEh4eb5RwVKlTA2dk5S5by79y5k5SUFMMHefzYNNvnPXhg/BiSlEvJZD+Hu3v3LtOnT6dMmTI0b96c69evs2jRIm7evMnChQupWLHiK4/3c3OkYxlniuVV7swK3fNbpqRfluS3U9PQKw8flHLGVm65Z3G//vorSUlJcr2+JElSNhQfH2/2Ev5nqVQqVq5ciVqtpkePHibdU11fWTnZB/jss8+oXLkyH3/8sXGJ70uo1Wpq1KiRpZr0gZLsx8fHc+DAAb2PTUtL4/Tp05y/cYM0U2z1mD+/8WNIUi4lk/0cSAjBoUOH6Ny5M97e3kyYMIE6depw5MgRTp06Rb9+/fS6qCiezw7vW2eY1dofr7SHFM9rS2FHDd55bPAtaE/70s709y1IjcKOckbfSsLCwihWrBjly5e3diiSJEmSnhISEiy+BKtw4cKsXr2asLAwFixYYNFzp3v48CEPHjzI0sm+ra0tq1ev5sKFC0yZMsUs5/D39+f333+36k2X/6pcuTLe3t6vXeqRnJzMyZMnWb58OYGBgfj7+5MvXz6qVKnCin37UBmb7NvYQKlSxo0hSbmYkQtppKwkLi6OtWvXsnjxYs6cOUPp0qX58ssv6dGjBy4uLkaNvW7dOvKo0uhSwwe1Wt4jymrSt9yzVAmoJEmSZDqWntlP17Rp0/+3d+fxUVZ338c/18xkBRIgYQlrAFlkT5BMFBQVVEREgggKrUWxWCtVW7tYvVvr/bjXu7WPVtSiVmmoATSAIFBEvNUEwhIgAoqQsC9CCJCELDOZuZ4/hvCwk8xMMpnJ9/16pZZk5ly/YUnme53fOYdHHnmE3/zmN1x//fX069evXq9fvRN/1wYe5vr3788f/vAH/vu//5uxY8eSnJzs1/FTU1N5/vnn2b17N4mJiX4d21uGYTB69Gg++eQT/vrXv2IYBuXl5eTl5ZGbm8v69evJzc1l8+bNOJ1OLBYLV155JYMGDWLSpEkkJyeT1K4d1l69vN+NHzzPvf9+/70wkUZGYT8E5OXlMWPGDP71r39RVlbGmDFjeOWVVxgxYoRfgrnD4WDu3LlMmzZNQb8B2rlzJ9u2beOFF14IdCkiIuKF0tLSgG2u+tJLL/H5558zadIk1q5dW6+74ufn5wM06Jn9ar///e/JzMzkvvvuY+3atYSH++94YbvdDkBOTk6DCfulpaUkJiZSUFDAuHHjyM/PZ+vWrbhcLmw2G3379iU5OZkHHniA5ORk+vfvT3R09PkDjR8P8+Z5F/gtFhg8GAYO9P0FiTRSCvtBqqKignnz5jFjxgyys7NJSEjgV7/6FT/96U/p0KGDX6+1dOlSioqKmDRpkl/HFf9YunQpNpuN4cOHB7oUERHxQvUGfYEQGRnJ7NmzGTx4ME888QSvvvpqvV07Pz+f2NhYWrZsWW/X9FZYWBjvvfcegwcP5vnnn+dPf/qT38Zu3bo1iYmJ5OTkMHHiRL+NW1PHjx9n48aNp2frc3Nz2bZt2+llBevXr2fUqFFMnz6dQYMG0bdv35qfHPHoo5CR4V1hbjc8/rh3zxURQGE/6OTn5/PWW2/x7rvvcvToUYYPH868efMYM2YMYWFhdXLN9PR0+vXrV+/tfVIzS5cuZciQIcTExAS6FBER8UJpaWlAv4f369ePl19+mUcffZSRI0fW22av1ZvzBcsStIEDB/LUU0/x3HPPMXbsWAYOHIjLbZJf7OC4w43TbRJuMYiPtNK5WVit9jFKTU2tlx35jx49ejrQV4f76g6LqKgoBg4cyIgRI/jtb39LcnIyTz75JGVlZbz55pveXTA1Ff7yF/jlL2v3PMPw3Ci46y7vrisigMJ+UKiqqmLx4sXMmDGDZcuW0aJFC6ZMmcKDDz5Iz5496/TaxcXFLFy40K93sMV/HA4HK1as4L/+678CXYqIiHjp5MmTJCQkBLSGX/ziFyxZsoQpU6aQl5dH69at6/yaDX0n/gt58sknyczM5Oe/+g3Pf/Axm4oclLtMDDwnFJmnPpqFWRjUKpL+cZFE2y6/BNJut5OZmYnD4fDbEoFDhw6dDvbV4X7Pnj0ANGvWjKSkJG6//XYGDRpEcnIyPXv2xGq1njXG7bffzvTp0zl+/DjNmzf3rpDHHvO08f/mN2C1gst18cdaLJ4Z/UcfhVde8e56InKawn4DdvDgQWbOnMnbb7/Nvn37SElJ4b333mPixIlERUXVSw2ZmZlUVFRwzz331Mv1pHaysrI4efKkjtwTEQligdqg70yGYfDee+/Rv39/pk6dysKFC+t8xr2goICUlJQ6vYa/hYeH89I/M1jnaMaqH8oxTu1lVB3yq5U43fzvgTJWHSpnfLcYOja9dPel3W6nsrKSvLw8rrrqqlrVZJom+/fvP6sNPzc3lwMHDgDQokULkpOTmThxIsnJyQwaNIhu3brVaB+m2267jYceeohly5b5tsTg17+GpCR4+WX4z3/OD/02m+eGQEqKp3V//HjvryUipynsNzCmafLFF1/wxhtvMH/+fMLCwpg8eTI/+9nPGDRoUL3Xk56eznXXXUenTp3q/dpyeUuWLKFt27YMGDAg0KWIiIiXArlB35natm3Lu+++y+23386bb77JQw89VGfXcjgc7N27N+hm9rceq2Qj8VjD3BjGpcOyCTjcJv/ecYK7u8XSqdnFA39SUhJhYWGsXr36kmHfNE127dp1Vht+bm4uR44cAaBVq1YMGjSIKVOmkJycTHJyMomJiV7fuOnYsSMDBgxg0aJFvu8nMHy452PHDpg5E777Do4dg9hY6NLFs+u+3s+I+JXCfm0dPAjz58MPP4DTCc2bw9ChnjVJPtwBP378OO+//z5vvvkm3333Hb169eJ//ud/uPfee71vm/LRoUOHWLFiBTNmzAjI9eXydOSeiEjwC+QGfecaPXo0P//5z/nVr37FsGHD6N27d51cZ9euXbjd7qAK+4fKqli0qwTgskG/mnnqf+YVnGDqlS2IDbde8HGRkZEMHDiQnJwcpk+fDoDb7WbHjh3nrbE/fvw4AO3atSM5OZmf//znp4N9+/bt/f6e4LbbbuOtt97C5XKd1+bvlSuugBdf9H0cEbkshf2aME346it4/XX4+GPPWiLbqd86t9vThtS3LzzyCEyeDBc6euQi1q1bx4wZM/j3v/+N0+lk3LhxzJgxg2HDhgU8wGVkZGC1WhmvVqoGaf/+/XzzzTc89dRTgS5FRER80BDa+M/05z//mZUrVzJp0iRycnJqvvN6LQTTsXvVVv1Qdlarfk2ZgNMN649UcGP7C3dwuFwuunfvzvLly/nlL39Jbm4uGzZsoKTEc3Ohc+fOJCcn8/jjjzNo0CCSkpJo27at9y+mFkaPHs3zzz9PTk4O11xzTb1cU0T8Q2H/clwuzyYhf/+7J+BXry9yOs9+3JYtMG2aZzOR5cvhEm3vZWVlfPjhh8yYMYN169bRqVMnnnrqKaZOnVpv37hrIj09nVGjRgXFkTiN0bJly7BYLIwYMSLQpYiIiJdM0+TkyZMNoo2/WnR0NLNnz8Zut/PUU0/xSh1slJafn09YWJjfjwuuKyVOF98fd3gV9sET+DcVVnBtQjS4qti6detZs/WbNm2irKwMgPnz55OSksJTTz1FcnIySUlJxMfH++211FZKSgrx8fEsWrRIYV8kyCjsX4ppwn33wb/+5fl1VdWlHwtQUAB2O6xdC+f8APvuu+948803ef/99zlx4gQjR45k4cKFjBo1yj9tUX60fft21q5dy5w5cwJdilzE0qVLSUlJIS4uLtCliIiIl8rLyzFNs0HN7IPnmLkXXniBxx9/nJEjR/r9xnJ+fj6JiYkN7v3PxeQdrfR5jEq3yd2P/p7F/3iVyspKDMOgZ8+eJCcnM378eNq0acOPfvQj3njjDW699VY/VO0fVquVUaNGsWjRIp5//vlAlyMitaCwfymvvAKzZtXuOVVVUFgIt94KGzfidLuZP38+M2bMYOXKlcTHx/Pggw8ybdo0unbtWjd1+0F6ejrNmjVj9OjRgS5FLqCqqorly5fz2GOPBboUERHxQWlpKUCDmtmv9thjj7F06VLuvfde8vLy/Dq7XFBQEFQt/IfKqrye1a/mqnLSLSmFl19+meTkZAYOHHjWTR7TNHn00UfJyclpUGEfPK38H3zwAbt376Zz586BLkdEaqhmu4s0RpWV8MIL3j23qgo2b2bW5Ml06tSJCRMm4HQ6SU9PZ9++fbz44osNOuibpkl6ejp33nlnvR3xJ7WTk5PD8ePHG9ybARERqZ2TJ08CNLiZfQCLxcI///lPHA4HDzzwAKbpa9z9//Lz84Mq7FdUuX0eI8wWxnXDb+KRRx5h6NCh5/2ZG4aB3W5n9erVPl/L326++WZsNhuLFy8OdCkiUgsK+xfz0Uee40C8VAW0nTePcePGkZeXx1dffcWkSZPqZJMbf1u7di07duxg8uTJgS5FTnG4TAorqjhw0klheRVLP/ucuLi4gBzHKCIi/lM9s98Qwz54dnyfOXMmCxYsYObMmX4Z0zTNoJvZD7P4vmmyy+2iYPv3bNq0CYfDccHH2O121qxZ49cbK/4QGxvLtddeq7AvEmTUxn8xr78OFotnt30v2IARbjc3/frXnrNDg0h6ejoJCQnccMMNgS6l0TtUVkXukXK2HKvEdcbP/ajbfsrUKwZzsNxN+yaWgJ/cICIi3qme2W+IbfzVxo4dy7Rp03jssce47rrr6Nmzp0/jHTx4kPLy8qAK+83CLVgAX+b3TRPmfzibR9/5CzabjSuvvJL+/fszYMCA0/9NSUnh2LFjbN++nR49evirfL8Yc+utrHnySZz33UfYiROe98nx8TBmDNxyCwTJ/gsijYlhNrRbhw1FkyZwaldUnyxY4PkmGCSqqqpo3749kydP5i9/+Uugy2m0ypxuMncVs7e06uJvLkw3GBbaRlkZ1zWGmIuc3SsiIg3XZ599xk033cTOnTtJTEwMdDkXdfLkSQYNGkSTJk1YtWoV4eHhXo/11Vdfcd1117F582b69Onjxyrrzp5SJ7O3n/B5nMmdwti7bQubNm0iLy/v9Ed1h0d8fDyFhYWMHDmSu+++mwEDBnDllVcGtjP06FH4v/+Xqtdew3bsGG6rFUv1ZJjV6lm+2rEjTJ8ODz/seQ8tIg2CZvYvxO32T9AHOOH7D4b6tGLFCg4fPqwW/gAqdrj41/YTlDg8P0gvOotgeFbh/FDu4p/bjvOj7s1pGanALyISTBp6G3+1Jk2aMHv2bFJTU/njH//Iiy++6PVYBQUFAHQJos7Hjk1stIywUlTp8ur5BpDYLIyOcbF0vOaas46wc7vd7Nq16/QNgFdeeYXs7GyWLl0KgM1mo1evXmd1AfTv35+EhIS67+zbvh1uugn27cN26vhpi+uM34Pqk6r27oXf/x5mz4YlSyAhoW7rEpEaUdi/EIsFwsLA6fR9rCDb4C49Pf30MTBS/xwukzn5xZQ43DXe9dcEyqtMPtxxgim9mhNt01YcIiLBIhja+KslJyfz7LPP8sQTT3DLLbd4vdwvPz+fhIQEoqOj/Vxh3TEMg8GtI1m296RXzzeBq1pd+D2hxWKha9eudO3albS0NAoKCtiyZQsrV65k8+bNp28CbNq0iYULF57VBXDuMoArr7ySyMhIb1/m2fbuhaFDoagIXDW4yeF2w5YtMGwY5ORAixb+qUNEvKawfzHt2sHu3b6P07Gj72PUk7KyMjIzM/ntb3+rNeABsqGwnKMVrlof72MCJU43aw+XM6xdw3/DKCIiHqWlpVgsFv8FtDr261//mqVLl/LjH/+YvLw8WrZsWesxgm0n/moD4iIpKHay44Sj1j+nr2oVSbfYmi19SE1NZfbs2dhsNq6++mquvvrq019zu93s3r37rBsAn3zyCX/9618BsFqtp7sAzrwR0K5du9q9tzNNuOMOT9Cvnr2viaoqKCiAe++FTz6p+fNEpE4o7F/MAw/A0097vUEfhgFdu0JKin/rqkPVd4snTZoU6FIaJdM0WV9Y4fU5viawobCCIW2jsflh12AREal7J0+epEmTJkFzk91isfDBBx/Qv39/pk2bxty5c2tde35+Pr169aqjCuuOxTAYk9iMBTuL2VFc8+7PAXER3Ni+5jfi7XY7VVVV5ObmMmTIkLNrsFjo0qULXbp0YezYsac/X1pael4XwKJFiygpKQEgLi7uvC6A3r17X/wm09dfw4YNNa75LC4XLFoEO3bAFVd4N4aI+IXC/sU88AD86U++jfHII57QHyTS09NJTU0NyrvtoWBniZNih2/n+Fa4TLYdr6RPy+CYIRIRaexKS0sb/Hr9c3Xo0IF//OMfjB8/nn/+85/cd999tXp+fn4+t912Wx1VV7fCLAbjusaw5nA5aw+Xc7LKxICzbtRX/zo23MLVbaIZEBdRqxsi/fr1IyoqipycnPPC/sU0bdqU1NRUUlNTT3/ONE127dp1ehPATZs2sXjxYv72t79hmiZWq5UePXqcdQOgf//+tG/fHuPvfwebrXaz+meyWuHNN+GVV7x7voj4hcL+xbRtCxMmwJw5NVundCbDgOhoTwtTkCgsLGTp0qWn28Ck/hUUO3w+1scACoqdCvsiIkEiGMM+wJ133sn999/PL37xC4YOHUr37t1r9Lzi4mIKCwvp2rVrHVdYdyyGQWqbaFJaR7H9hINNhRUUVbpwuk3CrQatIm0kx0fSuVmYVx0bYWFhDBo0iNWrV/tUp2EYp7sA7rjjjtOfLy0tZcuWLWd1AXz66acUFxcD0LV5c7adOIHNlwO7XC74xz/gxRc9Nw1EJCD0r+9SXn8d1q6FXbtqfmfTMDwfc+dC8+Z1Wp4/zZ07F9M0mTBhQqBLabTKq0yvW/ireTbr8607QERE6kF5OezcSev8fJINA374Adq0CXRVtfK3v/2NL7/8ksmTJ5OVlUVYWNhln1O9E38odBFaDIOezSPo2dz/x+LZ7Xbmzp3r93HB0wVgt9ux2+2nP2eaJrt37yYvL49DS5dimzHD9wsVF8OxY9Cqle9jiYhXtG33pbRsCZ9/Dt26edqRLsdq9dy9/PBDuPXWuq/Pj9LT07npppto3bp1oEsRXwXPyhERkcZn2zZ47DFo3Rr69OHXH3/Mh99/7+kovPlmz6Zmte0oDJCmTZsye/ZsNmzYwDPPPFOj5+Tn5wOhEfbrUmpqKnv27OHgwYP1cj3DMEhMTGTMmDFMu+ce/w18qltARAJDYf9yOnaE1avhF7/AFRWFCZjntmRZrZ7Z/Jtugq++grvuCkip3tq1axdZWVlMnjw50KU0atE2w+ecbgBRVv2zFhFpcE6e9CwP7NXL0zl46vi0s3z+OYwZA126wPr19V+jFwYPHswzzzzD888/z5dffnnZx+fn59OsWTPi4+ProbrgVT3rnpOTU/8Xb9bMf2PFxPhvLBGpNaWCmmjeHP76V56YMoVfx8bCDTdA796eGf/Bg+FXv/LsOLpkCZzREhUsZs+eTXR09Fm7ukr96xYb7tN6ffC08Xev4dE+IiJST4qL4brr4KOPPL++2Mx99ecPHPCcb75yZf3U56Pf/e53XHvttfz4xz/m+PHjl3xs9bF7wXL6QKB06NCBhISEwIT9zp39s84+NhZatPB9HBHxmsJ+DblcLtLnz6fqJz/BWLECtmzxBPw1a+Dllz3H7AUh0zRJT0/njjvuCMoNgkJJ56ZhNA/37Z9klNWge3OFfRGRBsPlgjvvhE2ban6cr8sFDodnln/r1rqtzw+sViuzZs3ixIkT/OxnP8O8xMZu+fn5Qb05X30xDIPU1NTAhP0WLWD8eN8Cv9UKP/2pNucTCTCF/Rr6+uuvOXjwIBMnTgx0KX6Vl5fH1q1b1cLfABiGwVWtorx/PpDUKhKrZktERBqg0mZfAAAfwklEQVSORYvgs89qvw7f7fZs4vfUU3VTl5916tSJt956i4yMDP71r39d9HEFBQVar19DdrudtWvX4grEHg4PP+z9sXvg+fv+s5/5rx4R8YrCfg1lZGTQsWPHs84vDQXp6enEx8dz8803B7oUAQbER9ImylrrtfsG0DzCQooPNwtERKQOvPZazTb5vRCXCxYuhH37/FtTHZk4cSL33nsvDz/8MAUFBZimSf4JBx8VFPP21iJe/+Yoaf8zmzYjJ5N/wnHJDgDxhP3S0lK2BqK7Y8gQSE72bmbeavV0peimjkjAKezXQFVVFfPmzWPChAlYLKHzW+Z2u/n3v//NhAkTanRcjtS9MIvBhG6xtIioeeA3gKZhFiZ2iyXSFjp/P0VEgt727bBihW+76xsGvP22/2qqY6+99hqtWrXiv96ezRtbiphbUMyOEw6KKt2UVpm0SrwCZ/N2zC0o5o0tx1h/pFyh/yKuuuoqLBZLYFr5DQMWLIC4uNoFfpvNE/Lff7/uahORGlMyqIEvvviCI0eOhFwL/5dffsm+ffvUwt/ANAmzcG+PWLrGeG7AXCz0V3++Q1MbU3o2p3mElzNHIiJSN5Yv94QmX7hcsHixf+qpB02aNeOpjOX0n/gzih2ePQrOi/Knfk9KnG6W7zvJot0luBT4z9O0aVP69u3L6tWrA1NAhw6QleU5maomk10WC/TtC//7v57NrUUk4LRrRg1kZGTQtWtXrrrqqkCX4lfp6el06dKFq6++OtClyDkibRbu6hbL0YoqNhRWsOloBc4z9nWyGdAvLpKk+EhaR+mfsYhIg3T0qKel2Ze1zwCFhf6pp46ZpsnSPaUctnqOW6vpjvtbjjmwGKWM6tRUu/Sfw263s2rVqsAV0K0brFvnOS7y73+Hw4c9s/cul+emjcXi+fvduTNMnw4PPQRNmgSuXhE5i1LCZTidTj7++GOmTZsWUj+AKisrmTdvHg8//HBIva5QExdpY0SHptzQrgknq9w4XCbhVoNomwWbRX9uIiINmr+W/gXJz+nvjjv4pqjSq+d+U1RJ15hwrmwR4eeqgltqaiozZ86kpKSEZs2aBaaIli3hj3+E3/8ePvkEli2DoiLP3++4OLjjDrjpJv/9fRcRv1HYv4zPPvuMoqKikGvh//TTTzl+/Lha+IOE1WIQE642fRGRoBIX59t6/WqtWvk+Rj1Ye7gcgwu07deAcer5Cvtns9vtmKbJ2rVrufHGGwNbTFgYjBvn+RCRoKBbcJeRkZFBz549GTBgQKBL8av09HSSkpK48sorA12KiIhIaLr1Vt/HsFggLc33cerY4fIqDpRVeRX0wXOD4EBZFYfLfVzyEGJ69epFs2bNArNJn4gEPYX9S6ioqCAzM5OJEyeGVKv7iRMnWLRokWb1RURE6lLnznDbbd4dX1bNYoEHHvBfTXVkS1Glz28qLcBmL5cBhCqr1UpKSorCvoh4RWH/EpYtW0ZxcXHItfB/9NFHOBwO7r777kCXIiIiEtqmT/d+gz6bDcaPh9at/VtTHShxur2e1a9mAqVn7kYrgKeVf/Xq1TqiUERqTWH/EjIyMujbty+9e/cOdCl+lZ6ezg033ED79u0DXYqIiEhou/lmT2Cv7eZlVivExMALL9RNXX7mdJt+CftOtwLtuex2Oz/88AN79uwJdCkiEmQU9i+irKyMhQsXhtys/v79+1m5cqVa+EVEROqDYcCsWXDDDTXfVd9mg2bNPLueJybWaXn+EmE18HXBo3FqHDmb3W4HUCu/iNSawv5FfPrpp5w8eTLkwv6HH35IeHg4d955Z6BLERERaRwiI2HJEs8Z5DYbWCwXnAU/3ezfpw/k5MBVV9Vjkb5pG2Xzy8x+2ygdFHWuNm3akJiYyOrVqwNdiogEGYX9i8jIyCApKYnu3bsHuhS/Sk9PZ/To0cTGxga6FBERkcYjLAz+/nfYuxfX009z6Jwvu61W/g0c/Phj2LABevQIRJVe69syAl8n5a2GZxw5n91u18y+iNSawv4FlJaWsnjx4pCb1f/222/ZsGEDkyZNCnQpIiIijVPbtqwfOZL2wLpPP4Xvv4e9eyk9cIAHwsPJ2L275u3+DUikzUKfFhFev7G0AH1aRBBp01vTC0lNTSU3NxeHwxHoUkQkiOg76gV88sknlJeXM2HChECX4lfp6enExsYyatSoQJciIiLSaGVnZxMeEUH/4cOhe3fo0IGY1q0ZMWIEmZmZgS7Payltory+T2EYkNI6yr8FhRC73U5FRQV5eXmBLkVEgojC/gVkZGSQkpJCly5dAl2K35imyezZsxk/fjyRkZGBLkdERKTRysrKYvDgwYSHh5/1+bS0NL7++muOHDkSoMp8Ex9pY2yXZrXeqM8AxnZpRrzW619UUlISYWFhauUXkVpR2D/HiRMnWLJkScidQb9q1Sp27typXfhFREQCyDRNsrOzGTJkyHlfGzNmDAALFy6s77L8pntsBHd1i8FmcNnQbwA2A8Z3jaF7rNbqX0pkZCQDBw5U2BeRWlHYP8f8+fNxOBzcddddgS7Fr9LT02nfvj3Dhg0LdCkiIiKN1u7duzlw4ADXXHPNeV9r3bo1Q4YM4eOPPw5AZf7TNSacB/u0YEjbaKJtnshv4HnTWX0DINpmMKRtNA/2aUG32PCLDSVnsNvt2pFfRGpF/VLnyMjIYOjQoXTo0CHQpfiN0+lkzpw5TJkyBYtF93dEREQCJTs7G+CCYR9g3Lhx/O53v6O4uJiYmJj6LM2vmoVZGZoQzdVtoygodnCs0k2ly02E1UKLCAtdY8KxBuFGhIFkt9t5/fXXKSoqomXLloEuR0SCgJLfGY4ePcry5ctDbhf+5cuXU1hYqBZ+ERGRAMvKyqJHjx7Ex8df8Otjx47F4XCwZMmSeq6sblgNg+6xEaS0juLahCaktI6ie2yEgr4XUlNTAVizZk2AKxGRYKGwf4bMzEzcbjfjx48PdCl+lZ6eTu/evRkwYECgSxEREWnULrZev1piYiJJSUlBvSu/1I1u3boRFxenVn4RqTGF/TNkZGQwbNgw2rZtG+hS/Ka0tJT58+czefJkDN1FFxERCZiSkhLy8vIuGfbBsyv/p59+SmVlZT1VJsHAMAxSUlK0SZ+I1JjC/imHDx/m888/D7kW/gULFlBWVsakSZMCXYqIiEijlpOTg9vtvuh6/WppaWmUlJSwYsWKeqpMgkVqaio5OTmYphnoUkQkCCjsn/LRRx9hGAZ33nlnoEvxq/T0dIYMGUJiYmKgSxEREWnUsrKyaNmyJT179rzk4/r06cMVV1yhVn45j91u59ixY2zfvj3QpYhIEFDYPyUjI4Phw4dfdMOcYHT48GH+85//aGM+ERGRBiA7O5urr776sifjGIZBWloaCxYswOVy1VN1EgxSUlIA1MovIjWisA8cOHCAL7/8Mnhb+IuL4Y03YOhQ6NYNOnWC/v05OGECvYC77ror0BWKiIg0ai6Xi1WrVl12vX61cePGceTIEbKysuq4MgkmLVq0oGfPngr7IlIjtkAX0BDMmzcPm81GWlpaoEupnaIi+MMf4L33oKLC87nqNVx799IH2Awwfjw8+6znZoCIiIjUuy1btlBSUnLZ9frVUlJSSEhIIDMzk+uuu66Oq5NgYrfbtSO/iNSIZvaBDz/8kFtuuYUWLVoEupSa27ULUlLgrbegvNwT8s/ZrOX0nZyvv4YbboD09PquUkRERPCs17fZbAwePLhGj7dYLIwdO5bMzExtxiZnsdvtbNq0ifLy8kCXIiINXKMP+3v27GHVqlXB1cJfWAg33gi7d0NN1vK5XFBVBT/+MSxcWPf1iYiIyFmys7NJSkoiOjq6xs9JS0tj9+7dbNy4sQ4rk2CTmppKVVUVubm5gS5FRBq4Rh/258yZQ0REBGPGjAl0KTU3fTrs2eMJ8LV1992e9n8RERGpN1lZWTVer1/t+uuvp3nz5tqVX87Sr18/IiMjtW5fRC6r0Yf9jIwMRo0aRUxMTKBLqZmDB2HevJrN6J/LND1r+99/3/91iYiIyAUdPHiQnTt31ni9frWwsDBGjx6tsC9nCQsLY9CgQQr7InJZjTrs5+fns27duuBq4f/HP85bm19rr70Gbrd/6hEREZFLys7OBqj1zD54Wvk3b96sc9XlLKmpqdqkT0Quq1GH/Tlz5hAdHc3o0aMDXUrNvfuub0HdNGHnTtDdYBERkXqRnZ1N586dadeuXa2fe8sttxAVFaXZfTmL3W5nz549HDp0KNCliEgD1qjDfkZGBqNHj6ZJkyaBLqXmDh70zzj79vlnHBEREbkkb9brV2vSpAm33HKLwr6cxW63A6iVX0QuqdGG/W3btrFp06bgauE3TXA4/DOWjmsRERGpc+Xl5eTm5tZ6vf6Z0tLSWL16NQcOHPBjZRLMOnbsSEJCglr5ReSSGm3Yz8jIoGnTptx6662BLqXmDAP81YXQvLl/xhEREZGLWrduHU6n0+uZfYDRo0djtVpZsGCBHyuTYGYYBqlDhrK96CTfHqtka1ElO4sdVLq0J5OI/H+Gafq621tw6tOnD8nJycyaNSvQpdSKMzUV65o1WHz5YzMMKCiAxES/1SUiIiLne+mll3j22Wc5duwYNpvN63FGjBiBxWLhP//5jx+rk2B0rNLFhsIK1hw4Abbws75mM6BfXCTJ8ZG0ivL+75uIhIZGObO/efNmtm7dGjQt/G63mxUrVnDPPfcwZd0634K+1QojRyroi4iI1IOsrCxSU1N9CvrgaeVfuXIlx44d81NlEmxM0+TLAyd5a+sx1h4uPy/oA1SZsLGwgne+O87SPSW4G+ecnoic0ijD/ocffkjz5s25+eabA13KJe3fv5/nnnuOK664ghEjRrBx40aueu453C1aeD+oywUPP+y/IkVEROSCTNMkOzvbp/X61caOHUtVVRWLFy/2Q2USbEzTZMmeUrJ/8Oy5dKkIX/21jUcr+bigWIFfpBFrdGHfNE0yMjJIS0sjPPz8O6KB5nQ6mT9/PqNHj6ZTp048//zzXH/99WRlZbF161Z++bvfYfnjH70b3GaDAQM8M/siIiJSp77//nuOHj3q03r9au3bt8dut2tX/kZq9Q/l5BVV1vp5O4qdrNh3sg4qEpFg0OjC/oYNG9ixY0eDa+Hfvn07TzzxBB07diQtLY3Dhw8zY8YMDh48yLvvvss111yDYRieBz/6KDzwQO0uYLNBmzawZImnlV9ERETqVHZ2NoZhnD4mzVdpaWksWbKEsrIyv4wnwaHS5SbrkPd/5rmFFRQ7XH6sSESCRaML+xkZGcTFxXHjjTcGuhTKysqYNWsWw4YNo0ePHrz99ttMnDiRTZs2sWbNGqZNm0ZMTMz5TzQMeOstePxxz68vtQ7QcuqPuGdPyMmBhAT/vxARERE5T1ZWFv369SM2NtYv46WlpVFeXq5N+hqZzUWVVPnYib/xaIV/ihGRoNKowr5pmsyZM4c777yTsLCwgNWxYcMGHn74Ydq1a8e9996LzWZj9uzZHDhwgL/97W/079//8oNYLPDKK7B6NdxzD1S/HpvN81Ed8pOS4P33Yd06aN++7l6UiIiInMVf6/Wr9ejRg969e6uVvxExTZP1R3wL6iaw4UgFLq3dF2l0GtWZHGvWrGHXrl0BaeE/fvw4s2fP5p133iE3N5eEhAQefvhh7r//frp16+b9wHa75+Mvf4GFC+GHH8DhgBYtYMgQGDTIfy9CREREaqSoqIhvv/2WJ5980q/jpqWl8cYbb+B0OgM6cSH1o9JlUlTpewt+ucvkeKWLuMhG9dZfpNFrVP/iMzIyaNOmDcOGDauX65mmyVdffcXMmTOZO3cuTqeT0aNH88wzzzBy5Eifj+E5S3w83H+//8YTERERr61atQrArzP74An7zz33HF9++SXDhw/369jS8FS4/Dcb78+xRCQ4NJqw73a7mTNnDnfddRfWOt6g7tChQ3zwwQfMnDmT7du3061bN55++ml+8pOfkKA18yIiIiEvKyuLtm3b0qVLF7+Om5ycTKdOncjMzFTYbwQshv/Gshp+HExEgkKjWbOfnZ3N/v3766yFv/rs27S0NDp27MjTTz+N3W5n5cqVp3faV9AXERFpHKrX6xt+DliGYTB27Fjmz5+P2+3269jS8ETZ/PdWPcqmsC/S2DSasJ+RkUH79u393k63c+dO/vCHP5CYmMjo0aPZuXMnr776KgcOHGDWrFlcf/31fv9BLyIiIg2X0+lkzZo1DBkypE7GHzduHPv372ft2rV1Mr40HGEWgytiwvDlnaQBtI2yEhuuo5dFGptG0cbvcrmYO3cukyZNwmLx/f5GRUUF8+fP55133uGzzz4jJiaGyZMnM3XqVJKTkxXuRUREGrGNGzdSXl7u9wmGakOHDiU+Pp7MzEzsdnudXEMajuRWUewodnr9fBO4qnWU/woSkaARUmHfNE32n6wi72gFRZUuHG6TCItB5dFDWGJb+dzC/8033/DOO+8wa9YsioqKuPbaa3n//fcZP3480dHRfnoVIiIiEsyysrKIiIggOTm5Tsa3Wq2MGTOGzMxMXnjhBU0yhLguzcKIDbdQ7HDjzRZ7kVaDXs0j/F6XiDR8hmkG/6GbpmmyuaiSnMPlFFa4MOCsb4am24VhsZIQZSW1bTQ9a/ENr6SkhIyMDGbOnElOTg6tW7fmJz/5CVOnTqVnz55+fy0iIiIS3CZMmMDBgwf56quv6uwaixYt4vbbb2fLli307t27zq4jDcO+Uiezd5zA7cW79vFdY7giNtz/RYlIgxf0a/bdpsnSvaUs3lNKYYXnHNJzvw8aFs8apUPlLjJ3lvC/B05yqXscpmmyatUqpk6dSkJCAg8++CBxcXF8/PHH7Nu3j5dffllBX0RERM5jmiZZWVl1tl6/2ogRI2jatCmZmZl1eh1pGDo0DWNclxisBjVav2+c+ritU1MFfZFGLKhn9k3TZNneUjYeraz1c4e2jWZowtmt94WFhcyaNYuZM2eydetWOnfuzNSpU5kyZQodO3b0V9kiIiISonbv3k1iYiILFixgzJgxdXqtCRMmUFBQwLp16+r0OtJwHDjpZNneUn4od2EBzj2PofpzcRFWburQhMQYBX2Rxiyo1+x/d9zhVdAH+PpQGR2b2ujYxMZnn33GzJkzmT9/PoZhkJaWxquvvsrw4cP9sqGfiIiINA5ZWVkAdbY535nS0tKYNGkSe/bsoVOnTnV+PQm8dk3CuK9XCw6WOck9UsH3JxxUujzzduEWg64xYQxqFUWHJjbt5SAiwT2z//624xwqq/JqsxIDE9fBnbz98wns3r2bPn368MADD/CjH/2I+Ph4v9cqIiIioW/69OksX76cbdu21fm1iouLadWqFX/+85955JFH6vx60jCZpokJWBTuReQcQRv2D5VV8c9tx30aw3S72T3rJabcfRd2u113QEVERMQnSUlJJCUl8e6779bL9UaNGkVZWRlffPFFvVxPRESCR9D2qH9TVOFz8RaLhZ888X9ITU1V0BcRERGflJSUkJeXVy8t/NXS0tL46quvOHLkSL1dU0REgkPQhv0Tla7zNiWpLQM44fB1FBERERHIycnB7XbX+U78ZxozZgymafLJJ5/U2zVFRCQ4BG3Yd/oho5uA05sDS0VERETOkZ2dTYsWLer1eN42bdowZMgQHcEnIiLnCdqwH2H1ve3e8NM4IiIiIllZWVxzzTX1fpJPWloay5cvp6SkpF6vKyIiDVvQhv34KCu+xnQ3EB9p9Uc5IiIi0oi5XC5Wr15dr+v1q6WlpVFZWcnSpUvr/doiItJwBW3YHxAX6dWRe2eyGdC7ZYRf6hEREZHGa8uWLRQXF9frev1qXbp0YeDAgWrlFxGRswRt2I8Nt3JFTJjXs/sG0LdlJJHWoP0tEBERkQYiOzsbm83G4MGDA3L9tLQ0Fi1aRGVlZUCuLyIiDU9QJ93UNtFez+5bDLiqdaRf6xEREZHGKSsri6SkJKKjowNy/bS0NEpKSvj8888Dcn0REWl4gjrsd2gaxi0dm3j13DGJzYiPtPm5IhEREWmMsrOzA7Jev1rfvn3p1q2bWvlFROS0oA77AEnxUdzaqSkGXLal3wCsBozr0oyezbVWX0RERHx36NAhCgoKArJev5phGKSlpbFgwQJcLlfA6hARkYYj6MM+eDbru69XcwbERVJ9kp7F8Lw4y6lfh1lgUKtIHriyBT0U9EVERMRPsrOzAQI6sw+eVv7Dhw+zatWqgNYhIiINQ8j0sbeOsjGyU1Oubx/Nd8ccHK904XCbhFsN4iKs9GweQbjV18P6RERERM6WlZVF586dad++fUDrSE1NpW3btmRmZjJ06NCA1iIiIoFnmKbp6wl2IiIiIo3W1VdfTZcuXZg9e3agS+Ghhx5i2bJl5OfnYxia5BARacxCoo1fREREJBDKy8tZv359QNfrnyktLY2dO3eSl5cX6FJERCTAQqaNX0RERKS+rV+/HqfTGfD1+tWGXDeMa++eyuKjNlZsOorTbWKzQPNwK0nxkfRpGUGEVXM9IiKNgdr4RURERLz00ksv8eyzz3Ls2DFstsDNobhNk68PlrHuSDmVLhPTdGOxWM97nM0CSXGRDGvXBJtFbf4iIqFMM/siIiIiXsrOzsZutwc06DvdJpkFxRSUOAHPMXyGcX7QB6hyw7ojFRwsq+KubjGa5RcRCWH6Di8iIiLiBdM0yc7ODuh6fdM0+WRXCTtPBf0aPQfYf7KKjwtKcKnBU0QkZCnsi4iIiHhh+/btFBYWBnS9/tZjlXx/wkFtI7sJ7C51srGwoi7KEhGRBkBhX0RERMQLWVlZGIZBampqwGpYd6QCX1berztSjrZvEhEJTQr7IiIiIl7Izs6mb9++xMbGBuT6h8qqOFhWVetZ/TMdq3Szp7TmSwBERCR4KOyLiIiIeCErKyug6/W/O1bp8xs5C/DtMYc/yhERkQZGYV9ERESkloqKivj2228Dul6/tMrt06w+gBs46XT5oxwREWlgFPZFREREamnVqlUAAZ3Zd/tpqb1LS/ZFREKSwr6IiIhILWVnZ9O2bVu6dOkSsBoirYZPm/MBGECkTW8HRURCkS3QBYiIiIg0ZG7TJL/Ywe4SJ+VVJhYDjrTowk13TQ5oXe2b2Mgt9G0M89Q4IiISegxT562IiIiInKeiyk1uYQW5RyoorXJjMaD6XVNVlROrLYxWkVauahVF37gIrIav8+y1U+U2eW1zEZU+9OHbDJjeryWRVs3ui4iEGoV9ERERkXMcq3Tx4Y4TFDtqtglep6ZhjOvarN5D8xcHTpLzQ7lXG/UZwIC4SEZ2aurvskREpAHQbVwRERGRM5xwuJj1/fEaB32AvaVOMnYU4/TXrnk1NKhVJBFerN03AJsF7G2i6qIsERFpABT2RURERE4xTZO5+cWUV5m1mi03gUNlVSzfW1pXpV1QszArE7vFYLNQ48BvABYDxneNoUWEtS7LExGRAFLYFxERETllV4mTwgqXV23xJvBNUSUnnW5/l3VJCU3C+FH35kTbPHH/cqE/wmowqXssnZuF131xIiISMFqzLyIiInLKvIIT5J9wehX2wRO0r02I5pq20f4sq0acbpNvj1Wy/kg5P5S7zvt6XKSVwa2i6N0ignBr/W4mKCIi9U9hX0RERAQodbp5fXORz+M0DbMwvW9LP1TkvR/KqiiqdOFwmYRbDZpHWGgbZcOo5xMDREQkcHSwqoiIiAieHfj9odTppsptYrMELli3ibbRJlpv80REGjOt2RcREREBHD6cV3+uSj+OJSIi4g2FfREREREgzI/r2LUmXkREAk1hX0RERARoHu6ft0VRVoOwALbwi4iIgMK+iIiICAAx4VY6Nw2r8Xn1F2IASfGR/ipJRETEawr7IiIiIqcMahXp9bF7ACYwQGFfREQaAIV9ERERkVOuiA0nNtzi1ey+AfSMDSc23OrvskRERGpNYV9ERETkFIthcFe3GMIs1CrwG0DLCCu3dm5aV6WJiIjUisK+iIiIyBniI21M6t6cSKtRo8BvAK0irdzTPZZIq95aiYhIw2CYpqmDYEVERETOUexwseZwOZuOVuB0e0J99Zum6v/fxGYwqFUUV7WK0nF7IiLSoCjsi4iIiFyCw2Wy9Vglu0sclLtMLAZE2yz0iA3nithwLIZCvoiINDwK+yIiIiIiIiIhRgvLREREREREREKMwr6IiIiIiIhIiFHYFxEREREREQkxCvsiIiIiIiIiIUZhX0RERERERCTEKOyLiIiIiIiIhBiFfREREREREZEQo7AvIiIiIiIiEmIU9kVERERERERCjMK+iIiIiIiISIhR2BcREREREREJMQr7IiIiIiIiIiFGYV9EREREREQkxCjsi4iIiIiIiIQYhX0RERERERGREKOwLyIiIiIiIhJiFPZFREREREREQozCvoiIiIiIiEiIUdgXERERERERCTEK+yIiIiIiIiIhRmFfREREREREJMQo7IuIiIiIiIiEGIV9ERERERERkRCjsC8iIiIiIiISYhT2RUREREREREKMwr6IiIiIiIhIiFHYFxEREREREQkxCvsiIiIiIiIiIUZhX0RERERERCTEKOyLiIiIiIiIhBiFfREREREREZEQo7AvIiIiIiIiEmIU9kVERERERERCjMK+iIiIiIiISIhR2BcREREREREJMQr7IiIiIiIiIiFGYV9EREREREQkxCjsi4iIiIiIiIQYhX0RERERERGREKOwLyIiIiIiIhJiFPZFREREREREQozCvoiIiIiIiEiIUdgXERERERERCTEK+yIiIiIiIiIhRmFfREREREREJMT8P3bWu1YQWipjAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -2823,15 +2969,15 @@ }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 93, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Computing transition probabilities: 100%|██████████| 2265/2265 [00:07<00:00, 321.05it/s]\n", - "Generating walks (CPU: 1): 100%|██████████| 10/10 [01:45<00:00, 10.55s/it]\n" + "Computing transition probabilities: 100%|██████████████████████████| 2267/2267 [00:01<00:00, 1299.13it/s]\n", + "Generating walks (CPU: 1): 100%|█████████████████████████████████████████| 10/10 [00:36<00:00, 3.62s/it]\n" ] } ], @@ -2845,7 +2991,7 @@ }, { "cell_type": "code", - "execution_count": 102, + "execution_count": 94, "metadata": {}, "outputs": [], "source": [ @@ -2856,29 +3002,27 @@ }, { "cell_type": "code", - "execution_count": 103, + "execution_count": 95, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 103, + "execution_count": 95, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD4CAYAAAAJmJb0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABQIElEQVR4nO29f5BU13nn/X26uYN6sEMPspSIFgMSVvCKHTFjY4mYeuuNlBTYwsKzWNJYgd1kNxXV7pvdN2AWGywsBgUHsrMWZGt3s2XvpipbwvYgCbeRkRfsSO9WvdggI/cA79jitWQh5LayIoZRYqYlerrP/tF9mtu3z7n3nHvP7V9zPlUqMT0991f3fe5znh/fhxhjsFgsFkt3kmj1AVgsFoslPqyRt1gsli7GGnmLxWLpYqyRt1gsli7GGnmLxWLpYua0+gDcfOADH2BLlixp9WFYLBZLR/Hyyy//HWPsJtHv2srIL1myBKdPn271YVgsFktHQURvyH5nwzUWi8XSxVgjb7FYLF2MNfIWi8XSxVgjb7FYLF2MNfIWi8XSxbRVdY3F0glkc3mMHTuPX0wVsDCdwra1yzA8lGn1YVksQqidVChXrlzJbAmlpV3J5vIYPTKJqUKx4Xc9ScK1UuVe6ut1sOuB5ULDbx8QljggopcZYyuFv7NG3mIJJpvLY8fhcygUS0rvd5KEsQdX1Blw0TYIAAOQsQbfEgE/I29j8haLAmPHzisbeAAolhh2PzcZuA3uYuWnCthx+ByyuXzUQ7VY6rBG3mJR4BdTBe2/uTJdrBntndlzyAdso1AsYezY+VDHZ7HIsIlXS8ezM3sOXz/1JkqMIUmER+5ZhD3DA0b3sTCdCjTSIsaOncfTpy/ixGuXld4f5mFisfhhjbylo9mZPYenTl6s/VxirPazyNDrJj75+8MYeKAShtH524XpVKj9WCwybOLV0jF4DfS9H7qpzsC7SRLhtb33173mfSAAgJMgjD20QloJo5NslR1HSfEec5KEeT1z8E6haCtvLFr4JV6tJ29pC0Qec5IIq27vw4VfVrxhXokCVDxkmYEH0GBYs7m88P3FMsPokUmhMdVNtnpJOUntZC0vz+SJWADW0FsiYROvlpbDPWZvWKPEGE68drn2us6aM0lU97O30sWNqO4dCBcf5/vNpFPYu2EAfb2O9jY4NhFrMYH15C0tJ6rHLOKRexbV/XxlWmzI/dBNthJQFyLamT0Xar9ubCLWEhXryVtajmlDtmlVv5Hqmm1rlyHlJJXf706aZnN5HPQJJ4XZpsUSBuvJW1pO2PJEEQkCVi5e0PB6OuVIwzLzepIYeuJ4zetOpxyMrq/IEpx+43KtPNMPJ0HYtnZZ7eexY+e1wksiCKjbpsUSBltdYwmFSQ0WE1UsXtyGmu/js+MTKHvel6iG7ssRbgMiYP/Dg3Xnv2T70fAbRMXAbzS0IrF0P7a6xmIUr1HOTxWweXwCnz00gTLT12Hh74tSj+5lqlCsq07h+3ALjPX1OmBMnnhVgdBo4MPiJICZMmz5pMUo1pO31KHioa/e90KgMU4AmN/rYGpav+bbtGfv99CJ4nH7edu62zWVR7DMTqwnP0sRNQ+9+MqlBgPulgVwI6vVVvG2y7he0aJb8+327H8xVQAIEPkiKSeBazMsMF4u2//Gr/4g8FhkyB4c/Jqrwmv/X3zlErK5vPXeLcaxnnyXouINE4AP3jwPP337qu+2MukUTmy/r7bdzeMToY6p10mgb95c7Th+NpfHtqfPoOgKnPNOVQDKXr/7PETdryoQgP0j4vBM1BVIykli74YBa+gt2lhPfpaRzeWx9dCZQA+XAYEGHqh4wnd+8TuYLnrTlnpMF8uYrq4C8lMFbBmfwOk3LgeGKbyevfcBcfqNy0oG212q+fVTb2ofPw/PyIxw1Hp/3vxkjbzFJNbIdxncm1TVS1ElqoEXwQA8dfIinjp5sabxIguDuJOnbrK5PMZfUjPY7ppz3eujkkw2Ue9vm58sprFGvsuIo3u0GXCjqxu/Hzt2vi6MIyPlJOtqzv2Ew0RTnVQwUe9vuvnJm5dZcmMKJ392pe7cgx6wls7GxuS7jNu2H43chNMOJIlQZiwwdq9yviLjJYvJ9yQJ/04wtk+lJyBKvgLwV8QMQ5gcgXscoSxRn83lsfu5yVpinaqJcfuQaB12xussQqW8sdPwK1X0O9++Xge5x9dIt6sybMTPUIqMWpSHbNDx6hLHd6HXSfiG7mzyuDU0ZcYrESWJKEdE367+fBsRnSKiV4lonIh6TO3LIkdXb6UTYAAOnrwonH+6be0yOAlqeN1JEnY9sNx3u3uGB/Da3vtxYd86vLb3fuFDxC/8JZrLGsVlmoooZuYljvh+UG7GKme2HyZj8n8C4CcAfq36858D2M8Y+wYR/RcAfwjgLw3uzyLAW4ky30ezpZNggLDyRNbJuuuB5Ua8SdW5rHxfOkNCvHjj8W6NfW/cHJBXG7m314pVnU0etxdGjDwR3QpgHYAvAfgsERGA+wD8XvUtfw1gFNbINwVvJUpcIRwnSSiWzIb73INBvHDjIYqRT+wyF+ZQPR7vcQEVieMw9fdOsl7gzBsmciemtz59BiVXslmWrN62dplxTSAVrHJme2HKkz8A4HMA3l/9+UYAU4yxmerPPwcgdKuI6FEAjwJAf3+/ocOxuInjZucepUm9GQBIV6UQRIaVARh64jjemS7WhMbyUwVse/oMgHATlPy6guenHKXwi9uo7RkewKmf/VKp/6AOz478wkQlQTWRqMZe1F+w5MYUfvCzy5EE2fzwVjFZWk/kxCsRfRLA/Yyx/4uIfhvAvwXwBwBOMsY+WH3PIgDfYYz9Y79t2cRrfESt/HDj7fo0uVLgSdaDJy9qxbd5VF63kzbqw8+daPRWneji7sgNk8AlAK/vWxf4vrhWdkkifPnh8NVBJpVNZxtxd7yuBrCeiO4HcAMqMfm/AJAmojlVb/5WAI1ZM0vTGB7KGPG6RV2fJlcKC9Mp7BkewMrFC7SO1z37dfP4BEaPTNZJDYuI2lPgrq4JK5Pgxh32CRNP9w4tkRnMuGLmZcaMyU27O6JXLl5Q9/D0ykhb/DFaQsk9ecbYJ4noaQDPuhKvZxlj/9nv760nHy8mPFeZWqLbqMxPOSAKN3LvwIg5XXZvOZ/X8IV94HlLHU2tkrwaQTqflXt1JXrgJBOE98+dg3cKRSQiJIf9cB+/LrqriwQBTxqSeO4GWqVd83kA3yCiPQByAP5bjPuyKCCqRNHlxVcu1f3srTX31rNnc/lI+4uCO06dzeWx7ZkztURxWAOfcpINpZkmSgbdsWz+MCoUSw3VOolqJthdyOheXWVzeeGKolRmtc8gDgMPAPd+6Cbf33vDWW6PXHd1UWaV4ezWyAdjm6FmKdlcHl84fFZbk8Yd95WFKETe/uDu48qGfl5PEtPXSliYTuHy1fdQiKibkzFYSuhdaQDRp0C5Y9kixU0RvU4ChWK5IRTjHmMYRIKiTcTy4ufJZ3P5hqogE8dCsENWgCY1Q1k6jzDGk8d9ZR4jIFZ4HF2/XLlJ6+q1Ehgq3vZMmUX6khLCe+0N26KK137b9qNYve8FZHN5ZHN5NLZi6VFyxbJHj0wqafEUimXsHxnEie331Rk3nRBZmVU0+U3h543vfm5SauD5sYSBf0+2jE9gZ/ZcuI10OdbIz1KCBk1vWtXfYJR5SIGHPmTIwgE3hDAoxRLD/F4HmRC11yo17jowVjEo3LDsOHwOj33zXOR9JOn6Y0J1tcObw6LifdBThCeWX3182IojVfy6omc71sjPUvy8rky1wmXvhgFk0ilQ9bW9GyohmK2Hzvg2QbmNVjaXx+Du49g8PhH6Rr8yXcS2tcu0POa0Yo27CFVDVyiWcPVa9IqisDFy0WeYTjmRjkXlUNIpR+oAtBJTD75uw0oNdwHe5Gavk8BcJ+k7X1VWXUJA7Wb1ds6qatU/cs+iuvebKK3c9vQZpHsd5QdFlEQvYxWjFeW4+3odvFssK20jSVQb/dencY4iGYS4cRKE0fWVxLNOTXu6SfIa3SbOZwJr5DscUaJuuliuJVR1Wt5NTD5KOYla0tWktn2xzMCY+RCMCG83b5h98goclW2UGMO2Z85oVyH5ySCEJUHA3DniB5y3Pl0n0Tm6frlSQtkEdlZuPdbIdzgqQzNUW96DvLEgL8lJEPZuuEv5/bq8Uyhi46r+SE1HKp7ykhtTtVVMmO7QlJNoMIRusTERxRLTMvC9rn0A5h6oZQbs3TBgvPM0qHyXa9KbwI5QrMca+Q4lyGh4EcVvZSP1ZPvz80adBBoGXkRRZBTh7oYNIx+QpIr8cJDHe+K1y9iZPYc9wwOhukNvEFQRua+1icEu08Vy7RgB812sfqWQYR8A/BqItqE6p1cFq4JZjzXyLUJlYIUbt1EP4/VEVQYMqsYploEdh8/isW+eM5KM9OIkSJgr2Jk9p6xz4y5V5EZG9ndfP/Um9gwPSHMXfg+wIF14UxLAB09exMrFCzA8lDEqKS3zhEXSA5vHJ7Dt6Qm4i3SCZAdEuZ5nXzaXT7AqmPXY6poWwJuIuJEoMYanTl6U1vnym4sbBl0Db6LyQcU7KhTLkQ38vJ5kQ+12OuVIx+LtGR7A/pFBpRJL/p7hoUxgd2aJMdy2/Simr800DCVJOUnfFcr8lIOhJ45jyfajWLL9KAZ3H69Lipoa7MJQCX/oNJqpIPusZSEhb7vFVKGIbU+fUU4Ejx6Z1A41CebE1Gh1lU+7YY18k9FtIsrm8tgyPqF1E/Q6CfT1OnWlj1FjlM3yjq7NlOtqt1NOMlCMangogxPb78OFfeuwaVW/sNTS/aDjD9mgZyVDpXyzWGZIOYm66+n3UPn7d4t1oaSpQhGbxydqxn54KFNXntrX6winW6kwVSgar1qRfdY6YZBimSmVM2Zzee3jdxKE37unH06y8Zpt8ikcmK3YcI1hooRVvN4hr5zRldz98Z9+QuMv1GjWAApvElmUNPZjz/AA9gwP+MaORQ/TIN6tdpi6j0NUneQkCdckPQRThWJdpZNsWHgrhUb8Vn06JayAWuJdt6495SSwd8NdGB7K1JRKoySIdcOmnYg18gbxxizD5Bzd5V8qlTNe4vK43cekG0/u63Ww7q5btDXiOTIP0s+Q+yWVwySDveMHZdVJQWqUsoeW+3jv/OJ3tDWFopAkQpmxQEOpe9lU1iaqqwPRMHedwgERXu0lHjYF0FWG3hp5g5goY+NyAWGU+dyNTHHgvql0BmQwhlAa8RzRg0uUBBT1A4gIW/WTnyrUPYRFRkZFctjvc92ZPSc08GEEvHqdhNLDosyY0rCRdzTDKqpTtWTfB9WHT1hkKzqedO8WbEzeICZKt4ql67HMdK9eizr3NpvR+Tg8lEHu8TU4MDIY2ErPjcPwUAbb1i6rkz0IQhY+ED1QuZccBO/IDcOOw+d8r6+KrIBstZXN5XFQkq9hqBhtFfp6HRwYGVQO26mu/uJYJfo5JSXGajpBu5+bNP69lj3o45JibhXWyBtkfkTdEM4vqh7jOyG0XrhH2yyhpuGhDCZ2VYy9zHi7lSu3PXPG9yZykoR0KjhpLHugqqwS9gwPSBO0QQQ9SEbXL/et/PCLefuVqTKGQK88k07hwMggco+vqV2zoKojncor3aqgqOqcbq5MF7HtGfWKHRVkx2fyuNsBa+QNkc3lcfXaTPAbFViYTmH0yCTCRmVVPVqTDA9l8OWHV/gKV+1+bjJQ2GzswRWY2LUGr+9bV5MWcEv7ApVrnfBZDagYgj3DA3h93zpc2LdO+6b2e5AMD2Xw5MOD6HOtwvj2gyqdoq4EvbLDQMUwyx46vU5Cq/LKWxXEHyqbVvUL379R8robne+pe5Vrgt4e8QNL9nqnYmPyhhg7dt7XgKniJEkpgReEisHYmT2Hg6cu1hJqvU4Cf1atXAhDkFSCX/xeNKpP1Hijcl12HD6rdQ5hmpOGnjiOXQ+ISzvDJgRNNEmJktGyb+V7M2ozWYO6XN1VS7pVKroPNtH7dbtw+ftlPR3TMTTztRJr5A1hqpV67MFK009UIx8UPxVNdZoulmv7jWLow/yt16OMksQuFMtaIlWi8lAnSZiTIOlglSvTReVErypRy1Rlw7D9hNGC8HYUyxLcvHRVF92yTJHy5mcPTdSS0twZOP3GZeHxqHRId1vHrA3XGMLEF8Pd3NGnmXR1oxJn9asVHz0yGXrffsiSkumU02Aooz40dZb1ojDE2IMr8JOAxKVfWCyby2P1vhcaQk1+7xs7dh639t2gfNxuUk5C+GD0M2ZBCXCeCPZuw2Q4UCfHyVe5br5w+Kyw6ugpwQAR2fm4aQddfNNYT94QJpqFiiWGzeMT2P3cJNbddQvGf/hmqBDQpz8S7E37eXFThaLv0OWwiORm3frkbqKGLnQfErIVSNB82PxUAav3vVAXIggq75SJy0U535ky0/77oCojv0SwqZWralmmk7i+ynXjl4x29yNkc3lsPeTfWJgJCPW4PzdehptJp3Dvh27Ci69cani9XebOWk/eENwbNDEz88p0EeM/fBMjH10Uauzdsy/nfZOPKolJ7yQnXT0SEcNDGYw9tKLeY5Zo0kTVd9EtP5Wxbe2yQMkBb0WTX3kn72I2LcOs4wwQKhpBB09e9F1l+BlyUyEN1e3MhKhCyE8VahpCW8YnfB0bbqy3HjqDJduPYumO5+u0pLz6UXxb+akCnjp5Ufh61PvFFMTaqCZ05cqV7PTp060+jEiE0R+XEUVjO5NOSeViowha+W3XNNlcHlsOTYS6BiknERhuUUWnAzWo0Uq1QamZeJPeHNl3mYAGiQdOmCSo6gpY9N27bcfRyDr0BOBjSxfgxGuXG363eukCXPhlIfQ9nU45mNi1JtoBKkBELzPGVop+Zz15wwQtY3kNuErTTNCX1y9u73ccUQStmqnVPTyUwf6HB0P9LU++RiWby2sZ5aBkZrsZeEAeYxetpvymh7m9Xfewc7/PwZsP8csTiL57G+8JLtP0g5/PyZ9dEf7+xGuXIzltzRh5GIQ18obxW35uWtVfqwE38XRfd9ct0nBOXBUCza48iBLTNJEc7NTB0Lq1/7KhMt6E9P6RQWHVCq9yEYWpghL5vBN6YTrl+5AUffdqjW0hOpiSRLXz6bYuVzc28WoYWQJ29dIFDTdHUFIviKdOXqzJ1LqTmUEVAjrDot24B3c0k7DXycSqo5krFx42iBIe4MxPOZg3d47ydmQPb5WSWFE5rpupQhE7s+fw4iuXhGEclZCNSJepIRGqIX9HqKy6+EPc9BSzdsIaecPozE41UZHDjXWvk0ChWFaKg+56YDm2PXNGK1lnoromLGGvk4lVh6kpTkGIru+S7UdDb49I/bpFEbbz09tx41drrzI0hAE4/cbl2n2V7nXwq3dnas6NioF2j690H8uW8Ql88OZ5+OnbVwO3oYtKWDZurJGPAdWGIP6erYf89VxUmC6WsckjxRq03yBFSJG8ayvgx+uneumdP6ta7xykJ75t7TLfhqKoeK+xO3EZxbucmi7Wrpu7WUjEB2+eF/rhHTQWkuNXa68at3avFnRXoumUg+UL3y9MrjIAr759FT0+swDCICsPbjaRY/JEtIiIXiSiHxPRJBH9SfX1BUT0XSL6afX/fdEPt/uQab6E4aCgAcRvvye234cDI4PCCTvplCONv7aK3p6KT8KTc1w75cK+dbURgDrTsFTGMA4PZZQ0WMLCUDFeq/e9gJ3Zc3WJyygPfr6KGR7KBEoUv/r21dBJ6ijhrF9MFWJrvHOTchIYXb8c3xcYeA4DjBp4v/LgZhO5hJKIbgFwC2PsR0T0fgAvAxgG8AcALjPG9hHRdgB9jLHP+22rG0oowyJqtAjjyfX1Osg9rpfU1S17azaimK2s7E+HpTueF17fJBFe23u/tGkpDGHzIPx4dL4H7mvDx0cG/XXY0tgoJcNpg8PHg4ia/9LlgKTENC78SiiN18kT0bcA/Mfqf7/NGHur+iD4fxhjvuvn2WzkRXBpXt2u12Z/weIiyMgGGaagUIxfzPvAyKCxcYf8OMMaRIK6xkuSCF9++LoHqbNPArQf8jp17m5SThI3OInQD75Ws2lVv2+yuZn9JEAT6+SJaAmAIQCnAPw6Y+yt6q/+FsCvS/7mUSI6TUSnL126ZPJwOp7hoQzGHlwhlK31o1llfyJ9FlXNFpVtuzsMRQRNWAoKxchqspNERqZ8AfW5gbBdvAxqTXEpJ1ln4AG9cAqvbdfp1PSWWcqag+f1JBvCaVMdaOCTREq5r2ZWZQVhzJMnovcB+J8AvsQYO0xEU4yxtOv3VxhjvnF568mr41e2RoDSOLewZHN5jB6ZbFhqOwkCqL7FPmxYZeiJ40penqzqJygUA8iv4aZV/aHn0fJjeqdQFHrFKiqIMkQjAHnCWaaVEra7OWynpmj16SRJqDujs8pwa8T8YqqARJNLHkWeud9KsJ08eSPVNUTkAHgWwEHG2OHqy/+LiG5xhWveNrGvTsNUvFu0nW+feUt4A8fVsCQz7hzR0HHZ4Oqg/agu46cKxZrOvNvQqYx2496YO6Sz6vY+vPjKpUjVNFOFIlJOAtPXZrBlfAJjx87XjuvbZ94Kve0yq8T2e3vm+H6f3GGqKOcQBp0S4ns/dJNvyMON12CqhIlMSkyIPHNZnD/uWcu6mEi8EoC/RiXJutn1+hiAX7oSrwsYY5/z21a3efKiL2KYskTZdj62dAF+dPEd4wlJEUENL37oriyiJPNSThIf7p8vLJUD6j15L2Hjy6rH9emPZEJfQ07QtYzyOXm5EONqEFD/nPlqzfvgAPzLaoPQKZkUeeam7m8TxO3JrwbwTwGcI6KJ6mtfALAPwCEi+kMAbwB42MC+OgqZvvdTJy/WulVl04VUtvP91y5j46p+aSehKbK5fCTDkSDSGuIRJZ5ZKJakBh5olNd1r5DiDAEUiiVfDX9VglZpJvYBRJtn4If7eqtcaSdB+OSKW+okqnneYOyhFcg9viZwhSlDp2Ty3g/d1PCazqqllUQ28oyx/xfyfODvRN1+JxNkrK5MF7H16TMA5Bot2Vxe6u0wAC++cin22N/u56LVMpcY05qiFFeXqTdh5vXEZAZep7rFj6gPEJUwgImHlJMk7HrAbBNPGEPMw2+jRyYbQoHFMsPokcna9+nv3403ifviK+KikLCT0JqJ7XiNERVjVSozfPbQBIBGA8iNkB/5qUKglxw1L2CizE0nNm9C7kGEdwmtWkGzMJ3C23/f+moJhorOvzvG7yWqBovKsAu/75PodwCUP09RuFE2CpM/MMaOnQ9s+IpKO1XL6GKNfIyotsSXGYSerqoR2jw+gdEjkw1VJiLvSTajsxmo3iiqsgu63Lb9aJ1RUjkeQrSJTXHg9xk+cs8iaWgtqCFIpSLEb8B6yklgpsxqlTX8OOfOSSjp54QNdzTj8+nkua+zxsjLPAzROC9TcbXhoQxOv3FZqWRO5OnqeA9ThWLDiDmZ96Rb8aLamZgA4FeroHOjuJfBt+84asRTc9eB8+MJMhBhd0uoiITF5WHKPkNRxZC7CcxvEIhKRYif4yEael4olgINfNDDRdYt3NfrIJvLN+gWxUF+qoClO55vaKjrBGaFkRd5H9ueOYNSidWMkntsl0lPd8/wAFYuXqBUBeA16rqxabfoU5Domc4DRDSblSPqJJXJEIQpK8vm8sYNZbHMsOPwWezdcJf0vKLAQw5bJGEGU8g+wz3DA1JDJAqF+Q0CUd1nWFS+FyLVVJ43UBVI0yEtkWnmDXVAY+ivnekqI+/11pfcmMLJn10RGjs/qYBCsYSth85gy/iEkYx5TQ1wfMLX0+3tqe+G3LZ2mTQeKYM/pILisrpeNaBeRWCq6kAlJxEW7nW+74Y5kXIO6ZSDT664paHCCYg2vlGFMCGEqJ9NmKR4X6+Dd4vlBo9etbpMdsxAPKGadwpFTOxaI22o+/qpNzvKyHfNjNdm1DhHKVXUrQnm29bVFFdJvIWtpW+2kJnKNUs5ydCfeSadUi7l89uGO9QQtpxPhncgDId/hoDYYHuPQ9WgBqEqeKZ6nLr75uHVKCGaAyODAOSrXf6Z+t17JnoIRKKEYcPFTRUoi0IUI29ygLYKuk0Pt20/qvyldLeq65yTzCC4CXuzt6LxI+ia8Rtix+GzwnhwEITKBKUoBtndnGTa0di0qh8rFy+QGgJRvoc7JOMvvSn8LpgY/qLacOUVS4uCzrX1a4jb5NHu91M3lXnyRMDre+VG3s94n37jMg6euui7wgvjhMUua9AONLvEiQG1iTgvvnIp8Gmss8x1T63Rwc/MRb3hRNN7eGPX4Zd/jj/bcFdDZY8s0a3qzfkZYML1BpV3Qw7HXphOYWr6Wqi/dW+DY0rUDKg8jLkxkg3NFiX0edOVbDXnTdCHgeeZ/FYspjuvda4t32+QCmlQ6EpWqUSAtGxZ1nuRnyoEDm/hhJEC8cN68hGRLRsTAJ50Sf7GGU5SwU80K4hsLh+YG3Cfr0iES1e8LJvLY+vTZ1DyuSuiyNXyfevmPETb4Mevs1rT2a6IqN930wJacYfyVK+tyfPy+9679xNH17SuFMis8OTv/dBNkZQDwyLbXxnAjsNna190b+13M8q+3HCPK0z1kIp0cRnAlkMTePr0ReEyWVe8bPdzk74Gnv992IcmN6JhjXzU1ZrOdkVEXbnmpwpYve8Fo+XCutsRedo8POV9WKhc27AVXDL8vvf8+qt2Tetisi6/K4x8NpfHsy/nQxtNt4Rrykng0x+5tRaCiYI3Tuy9EbK5fCSBpfDHpbccVDUojMFXN0aE+xqbnMTkRyadqp17mOlEMm8xqFM3SBBLxwuNmksA9B/4Jr11b1yflyd+7dTF2r3oPr6ga2sqsezG73s/vzqg22SIjmNaxbIrjHyUC+13Y5kIAflJDnCjn83lseXQRKzldl50PMG4tGQ4fCkeZnVDAG7QqLBxx/IB/x4AGbJr512tiXI0sge7kyBMX5tp6MqVnofK9BgFCsVSTZvIz4CLek2ixPZlQmrej4E7JPwejbN50Yvf9/7qtRlkc3njuUCdngXlbXZ6TF4lXizDSZDvsF0TMVbVVvEoseEw6HiN2Vw+lqYhUxwYGdQqW/TGvLO5fGDzmBsTcV+3Vzw/5eAf3ptpCE95q5d0FRx1cJLkmy+ROTyq32+vcdYh7iE4MoKqiOb1JPFusWxUuTTs6M6ujclHbZZ53w1zfC+oCQ826EnPDWgz0Y1d8msUtlQxTnjoRUcp0xuuun5+9eGAZIIaDK+puK87dDf0xHFh/oFXLwHAysULIiXug4yrtznQe41k32Ol77erWzWMQUwQNaxwTNaYy457/CV/2ear13wGlgi+O0EkiWJZkXS0Jx81nBLkIZioiAnydMKOZxORchKBRjhqKaWphhRdnCQBrD6B6/Y2dZvGgErNtLf81WswgPj1wsMce7OIImoWRxhS5Tun0gsQVF4Z1bY4CcJMmWnfH2GbrLrWk48aD+PJExneOtr5KQfFUtn3Ce4myOvL5vLGDDxQGYIQ1BBVZiyyRIOoHj6OmL13filg1uB6E3/u/199bwZAZ+iFx4WKAqdomAZw3UFSNfB89OJLF674So6obG6qUMSW8QmcfuOysFFPlvR96uTFyFLNnGKZVfImGpvKxKR02dFGPmo4RSV5JbrJVWPofrXOceiylMoMN/QkcXNvj/S6mJZMlYU6ZGxa1Y+jZ9+SVhQFDaaWXU+deZ0qmGgaUiVMhU8zULFPfJiGN8fwzrtFJQPvXlmu3veCr4HXgYe6jp59q6Hq5uApeZzdZHxdZ1Omyz/ddHS4Jmo4JUpC584vfsfXqASFaeJs3rqwb11gy7ZJVM8lSYQyY1iYTuHeD92k1CmsQpyJYdNNQyLaPbHtBwHYPzIYOaypEmoMi5MkzOuZg3cKRSOlp6qoOvIpJ4G9no5x7X11a7hGFE65NlNS9ujCerXZXN7X45A9lZtVBw40d/6katjM3eL97Mt5Yw8c0Xg4UzRDLiOuISlh0ekkXphOGakVjzOhXyyxmmFv9oopKHw6ryeJySc+HusxdLSRB8ThFFFbvReRIVbN2I8dOy/94JJE+PRHxCGeZsgaEOonIJn2QkUNMWHCZqb0OUznNbw0ayKQLCzYbCkMd/4jaN9OgmrTz+LCSVBNDrrZXeJRYahU8PX2NGrTc6YV83tRSMS+hxawZ3gA+0cGkUmnQKh8cTet6q/72etF8huKfxjeISLZXL72Xj/vjidxhp44Xvc3cXTGiWC4PgFp8/gE7vzid+qOIwrua8T3sePwOSy5MSWd5O6HCS9ZRXIhLHHGSVUYHspg74YBJE11PgXAQ1P8gbN3w0AtGeg9hHTKqfWYxPkgHHtoBXKPr8GFfetq9zSApl2TqExNF3Fi+33SpGoznIiO9+Rl6FZF+I81q3QFcg9WhSvT9Ym7Vg0Cni6Wse2ZM7XjCIusMaRQLOH7r10O5WGZ+ILHdV3jaJMPg25iOwreB5rqPRTX4HW3/IToeEwJwoXBSRLeNzd44Az/jouuUbOciK705MMQZCyuTBdrHqzqF8s9jq+Vg4CLJRbJ4w3q/At7o5n4gpu+rumUgwMjg8g9vqblBp7j9qoJlWNMGHZk+3qd0OcrOr6+Xqe2ak4HlCrLCPp+NOueurBvHQ54IgNjD67AVICB5+EsoPEaiaIJcdG1nrwucemz8IeHirejMvQj6nGEQaYzEoXVSxcY+YKb9iLnzfXvgm4Vov6EsOftjW2nnCR2PbDc6PG5CXOs6VTwQyfqZ9/X6/jGy4HrYSHR+fklykUNWa3qubCefJVta5ch5SSD36gJb7jyxjj5l4f/P5NOYeyhFdi0qj9UfDuIKF6PydphoFIrf/CPfsvItmTXNSyqD8NsLo/V+17AbduPYvW+F4zlPVTxnrcOvA+hWR6lbm7BSRBG1wc/dETecV+v+qrhynQRS25M+d73j9yzSPo7kc1IOUkcGBnExK72WQl2dJ28adzVNW754Sg4ScLYg3oyAqrj1bz7uXtJn1DqN8wxuJGNQePoVD3EXXcetUw1qE1ftm2R6Jm3Uquv1wFjCD28RYaup9yM2n8RouN0klRR4KyWUEYdTxhm1eCWt+CIpA5k+2vm3GMZs2LGq0lMl67p3lRhGqW4oiYA4wOcVR46JgeIe+V4VW/8qJ+b38NQddv8Oqg8+Ew2p6kqVMbVEKdKM4yirqprM2rV46alRp6IPg7gLwAkAfxXxtg+2XvbxcjH0Y2qIzwUtmogTg/NT0RLpVsxQcCTD/vLqGZzealksJ8stMkmM1nXbVwdynF8ZrJjNTlYu93R/bzCCoO1C35GPtaYPBElAfwnAJ8AcCeAR4jozjj3aQLTN7NunDhs/DzOMk2/2K9Kt+Kv3eCfSOOesqyxqVhm2HroTEPs29vfEBVRXwQQ37WNIwcgixXPFgMPxJdj60TiTrzeDeBVxtjPGGPXAHwDwKdi3mdkTJenlRiLfJOq4H04mEwORi13fCegK1WlWazEWIMBjqPJzF36yomrXI8BgZ+NqAlty/gEdmbFAncmyvV2Zs9h6Y7nsWT7USzd8bx0X+2KqKxTRme0VYUn7hLKDAB3/d3PAdzjfgMRPQrgUQDo7++P+XDUMF3FSEDd4AR+k8qkUPnNqDPtiG+Xh3rSKQdXr83U7TPqPM8oBBlJVU9cdZhFVLzb3bZ2WWzTu4I+G9GDjAE4ePIiVi4Wl6KGLdcT5V94FzeAwERkO+G9BrLc0sZV7WF34qLlJZSMsa8wxlYyxlbedJNYm7rTYWicvMOlUP28sYlda+qaMFSaYPhepgpF6bSfIGTyBWFxkhT4kNDxpvJThZqHGVdGyftQGh7KhG7qUaFQLAnDUYD8QcZgVtZh41d/4Jtgj6NfQpcoq9M9wwPYtKq/rnx5k2u8YrcStyefB+AuNL21+lpb00x9bz9vDBA3weh6+G5UPF+R5xil4SSouieby4cy1qbr9zkEcXhqdP3yWOUFeDgKqPfo/Rr1oqxk3Ku1dK8T2KIf1/VWxcQw8T3DA11v1L3EbeR/COAOIroNFeP+GQC/F/M+I5HN5ZWGiZiCe2OqX1Ju9MNW4LjnZXJNd285W9QQiG5dfpwiY2HYuKq/od6dS1lTzGopXp0k/jnJVFWjyGW7DaaKrHCrRcF2PzcpdD5MqJl2M7GGaxhjMwD+NYBjAH4C4BBjTH3icpPhX3yVL7xJwlSGpDU6+9yUGKuFYJ46ebEuJLN5fAJLfB4esnuch5Lcuh46N12rxNtEpFNOzdPzhq2mCkWj06dkuHWS8lMFjL/0Jj62dEFDSCuKwFWYhLVf92fc7MzK78v8VKHpHcedROzaNYyx5wE8H/d+TCDyFFRJpxx8csUtGH/pTW39GV0PKZvL41fvzmj9TVScBGHk7kUN5+dXv65KXLpBXlJOEp/+SAbPvpwXfs4pJ1nXTq9rCBNUKRU1Heorlhkmf/EP2D8yGLmRKGxPweqlC1oW5sjm8jgY0IzXrFGNnYgVKKuSzeVDe/BJIkzsWgMAWLl4gXbMXDfW6Te0JDaocm4rFy8w3rEYl1Stm14ngT+rlhHycwgaDqO7wmAILhUNy1ShGFngKkxHsJMAxh7yb2KLA3eYLEHBQTIbtpFjjXyVKHFh9zJWNuHHb4anrshUK8IbXK6YD5UwCd/eFw6fjS0c0jdvbm0/qsZSd4XBWOWz1PWSM+lU7aHp97c7s+ciedNhQjTz5jrYMj6BsWPnm6bL4n0YqTpB7RT2aydaXkLZLoT9gqgsY4eHMhh7aIWwBC9MXDVssi1q2izOkMrwUAZ98+bGtn3Z5+tXkqfblJYkCtXIdmL7fXh93zqc2H4f5vXI//bgyYuRYs9hvuNThWJdGW0zYt9hG9xaObOhnbGefBVdr02mcSKDe48mBJrCNuaknARmygzXfIaQBxHVm/QjTk9MZAC8s4C9JXmiQfFE8kqUR+5ZVPsb1c/Hm47x05LSrcTyEjX34Q2JmPgue0uC+xRKOUW0elRjO2ONfBWduHAUUSkTgwOGhzKhauVNhEKeCqjrj0JcCVjZ0HZRWWKhWMLokcnA0M7O7Dl8/dSbKDGmLEsrwm3Ts7l84Gek+yB0H6eJAki+fxM166Iwpp+B5/kT7/91Ha7ZhjXyVXQ8sHaI/cXdmONHXJUMogetkyCUAZQUE838hg/yMMeOnZcm86YKRSzZftTXeKxcvKDWY/Ab82/AysULAFw3fqq48zG7nwuuLtYJSXjb+E2k6vn+ZQ1zOisNnQKCVkskdzLWyLsYHsoolZe1Q+xPNyxgkqCb2buMlzVdefGGR9yaOW59eRncY1dZLak8qL3eqbv80K0X736fThmud4When6qmJYh4PIU2Vxeeo/kXZ5+0IM26DNIEqHMWEuHcXhplyEhOtihIR6yuXydmJiXdvMo4tI5D4IAvC7Q4A66fkC0aygrAwyST/DenNPXZpRjv0kirLq9D99/7bKvN6wyTcwvxOCn2R9m+Ivf9qLgNxCFa9bLvgPu8w767sq+Y61C9N1rF3vgpydvPXkP/MNye45E18vj2u3JLcslJADE2Zs5P+UIvZrdz036GnhAfVnv5zXpeFOi+LGTIDhJCjxWoFLCJxqr6CXIwAflcoKGr+h+71SmdYXBb4slxnxXl+5Vz7a1y3xLiwHUJDhUPmPTHrZ3m1ffmxGGqHYcPttWNsGL9eTbjI1f/UGdQVm9dEHg0Gvvl3HJjSkloxSFBFWMiPsG1Zn1GuSliVYEQeP5ZDe5zGN0EkATVApqBJ3z0BPHfVcXutOLwswKbhbplIN5c+dorUL5SinjCuOJwmdA5VpvVFCY9Iq08Rm88z1S3UG0Ws3SznjtELwGnqNi6DnZXB5bxicCjW2Ql8fjoYmYvEGgcrO64/UpJ4HCTBl+u+vrdZB7fE3da9lcHlufPlOXnE0mCF+uyi2EFXMzTZAnHxReCTOizl1d0004CQKoUcLbi2w+sHeOcFSSRHht7/1GthWGlo3/s+gh8751vHK/qhGgYmgu7FuH1/bejwv71uHAyKB0VNzr+9ahHKNx8IqkTRf9DTwgTk4+9s1zDdU3pXIlbLB63wuYH6MOvA73fsh/XoKfhlFYLfs9wwO1z1rWWS3a6x03z2vr8XnFMlPysqcKRWwen8DQE8drjVw7s+ewZXzCqBBhOz9ErZHvMvwqFkQ66UGj4tqhksiLtzv16jV5NUt+qoCr15or5ibjxVcu+f7ez1C4hdPCIpv9KlK4fPXtq/hw/3xtyY125cp0EVvGJ7Dxqz+QyjZHodUyzH7YxGuX4ddQ5NZJd+NXcqiSHGs2vM1+29Nn8Plnzwa+v1hiSpUvcRNUMijTvenr9R+C7kWWn5AlrUWrPwa9FaQOvJCh2cR5Tq2UYQ7CevJtxOqlC7ReFyHy1gjhE0N+ujutplhmeG9GLXNaZmi4Lo7pie0BBK2KZJ72rgfUvXjR6MbN4xNY/vj/wG3bj9aExrhWjokhMfXHWzEpMs/WSRA23tMPJ9m+nq8urU66BmGNfBtx8I9+q8Gg6yRdAXH4Zf/IYKQvIZ83K4vhOwlCTwfctIViCfN6krXrMnJ387wvlUamoNCZCjJxr6vXSlKhMZMhuRucJFJOUh564l8Tya87KTxEAA5EvLeaga2usWjjHYmnU2rmhg9aaXb1B/e8dBvJMppNVJwo2ja66FQS8eqmb595q2kzjQF5ZRevPoqriSsMBAi/46olms3CNkNZjOKO767e94K2gfA2la1cvKCpOjxfP/Um9gwPaIUpeNI6jIxEiTE8dfIinjp5MXaDryPyxqubmo3sgc4/D5kSZSvyKryvoRPlDDjWyFsioRvPFdWKexOCKScR6yxVbmRUDSL32oaHMpG1grjBB6Bk6HWNy7a1y5T6JFqJzJNPEPl68XPnJPDpj9yK8R++KVw5hpUpluEOHZlQj20VNiZviYROPNcvLj08lMGJ7fdh/8ggzIjiyuFbVxnwMa8nWZfTMJWADhIPy+byGHriODaPT9QlUYMGdwwPZbBxVX/kK7haUFZpgpSTxCP3LBJe96CQXaFYxrMv5zFHkjA3aeC7SZ/eGvkux2/ykQlkhrKv18GmVf3aScSwU4F0YKg0xHgTnTwpC1S8zU2r+jH5xMfrjnl0/XIjVTkyg5bN5TG4u2LcRUaL6/74sWd4APtHBtHrhL+9T7x2Gelex9hDzf0d2DM8UHfddWrMC8WSr76PCcIkvNsZG67pYkwMdggijGCY38ANlfAPTxiOv/Rm6Pp9d8hE51qYknj2GjadNnuVEBMPL7ivdaIq8KJqInU9Y1n9uyxEx6/lbW2UaD0w0vyh5XFjjXwXIxvs4J58ZAKdeKVXNMsbo/aLkxOA/a6bcOXiBaEmZHF4AlaGX1ORytwBP9zNM94xhCpkc3mla75neKDuHLO5PB775jnfLuEwOAnCyN2L8OzL+QYp3qCwR1wTwXTZJGkW7HRsuKaLkXnFU4ViUwYyi5DFovnrfgaBoX4Fwuv3w9ZW+8WARU1F7ni4rHGprzc4vDGvJ1kzvLIxhEEEhWz8mI5o4DPpVEMobuyhFQ1hGNWwR5jh5yZJp5yOqHcPi/Xkuxg/D+mxb57TmsXpHba87q5bcPTsW7UlvUztz4vMsPLXh4cy2HJoQrjsl4XCdebzuvGLBQeNt/ObYhU0NOWffPj6NQoSlJORnyooa627Cbs/N1ffm8HBkxexsNpo533w6nrDfiG/wd3HY6vhjzKruZOwRr4LcY+pk3H1WklpyS8btuytr54qFLHt6TMA/OP9svI5t8GVOdhlhpon7TUIezcM1F5TNWJ+eiOya+deHfkZtM8empDWdD/7cuUcXnzlUqQwhXuFwY8nCBMSBtzo5qcK2PbMmdrrUerIZdfynQADH6V2Pj9VwOp9L3RUzXsYbLimy3CHGYLYeuhMYNhGZ9hyscwCwwgyw8pfz+byvqV7Ow6fFYZRAODE9vvwuo+kLidIy8fvmqiUjA4PZfDkw43yD5xCsVSTWDaBSsUNx7SqaLHEsGV8QrvUUxW/4005SfzaDdGqf0wea7sSycgT0RgRvUJEZ4nom0SUdv1uBxG9SkTniWht5CO1KKFTglhiDNue8Tf0up4f9452Zs8JSzf3DA9g06r+mufOSxW5wQ0KJxSKZWkYhSOLlx8YGcSFfevw+r51vvHX3c9NSn+nWjvNyzObhernFEf8W/R56Tx4/PAr0d27YSDQ01fB1LG2K1HDNd8FsIMxNkNEfw5gB4DPE9GdAD4DYDmAhQC+R0S/yRhrTt/6LEbXKBdLDLufk1fbhKl88LbLcyXE0SOTGF2/vKHiw03YcII3jAKEDx/4lQ7qhiCiVuGoouqh8+OX5T1MYiI05Jf7MJFf4LRDdU9cRDLyjLHjrh9PAniw+u9PAfgGY+w9AK8T0asA7gbwgyj7s/iTzeVDjesTGTWVuL4uU4ViYPw4bDmd18i1Sxt6WL0bHXS7M4Nq/QlA2oBEgKnQkNvQ56cKsTyg2nnoR1RMJl7/BYDx6r8zqBh9zs+rrzVARI8CeBQA+vv7DR5Od6CqXRKm1trN0BPHQw8x1sFdoSIiTKWMk6C2bUEfHspEquXn8Jm7Cz1zccOKZQ0PZXD6jcsN35mUk6yVPeqqdLoxJQsgahILMvBhkrHtPL4vKoFGnoi+B+A3BL96jDH2rep7HgMwA+Cg7gEwxr4C4CtARWpY9++7Ga/hllVShK21duO+ieKWnfVbxnu9tmqTpi/FMsPokcm6v4+CTOhKpQZexOj65Q2DxnUgAF9+eIXxlcme4QGsXLxA6kSEDbeoltMG4e3YDoI3y217Wl7ZJPs+dZKOvS6BRp4x9rt+vyeiPwDwSQC/w66L0+cBuMsobq2+ZlHE2xnKKRRL2HqovlTRZGyyGQQt43moRecmVwkFqbLrgeUNte5OkpQmNIlWXgBCG3hAPLbRlPStN6zFtY5+MVXQHtPHy2PnzTUTINDVMertSVbLfcW/TxDwe/f0N3TlEoKHrHcykYaGENHHATwJ4P9kjF1yvb4cwNdQicMvBPA3AO4ISrzaoSEVsrl8YBzXvaxupyELQbiPO4gw4QJTDS5hjKjsoaSyGvEj40k2ilY4OtdVhq7nHISuR++95nEkQ/t6Hdx5y/vx/dcuG79+rcRvaEhUI/8qgLkAfll96SRj7F9Wf/cYKnH6GQCbGWPfCdqeNfIVhp44rpT04gZt6Y7nlWKKskHRzURHAEpnyhGHcH3QQ7OJEsM2QV+vg9zja0L/fRzHH2Q83Qn+qA9DVWT7SaccTOwKf/1aSWyToRhjH/T53ZcAfCnK9mcrqlUNPGaqYuAJ+mVifb0OpqaLwiEe/EaRdbCKyKRTvgbexA1vutlHB5MDscNwZbqI23ccRZldHznIY+75qULts/JO5uLEcfx+ifZsLl8XFmtWyFG2n6lCETuz57pOw8bKGnQw3KCpeOi6N9AdN8/D9LUypqaLeG+m8a+5gS8zpjyRZ/rajFRvxRsqCHPD8xF9raId1BR56J+re37t5MWatDB/GPO+BR4S5FpEYcpvVZA9PHY/NxlLBVcUDp68iJWLF3Rs2EaENfJtSDrlBFa4uEvURGWHYTxtNz99+2rt30GiYlemi0pla/xBwDVPRo9M4p1CEQurA7KjxoK9KpVRCTN6L+6aeF1UtONFWkQmka2uTE5yMgUDfEt8OxFr5NuQ0fXLG0TBgIpE7fS1UoPB8evwbFZSVrd4pFhidUJXJkgQaucbtYxPNnDl9BuXa8Ji3vAHED3J2o20aw+DjFaH3UxjjXwbEqYtX9bhGdaT70TcDxpVVUwR2VweWw+dabhuhWKprh/BG/6YzchWcquXykMfKScR+yi/MLQyrxMH1si3Kaba8ptp4Pt6Hfzq3ZnQI/mC0O1k5KqY7usoGj2oM2EqjjNzEoT33TBHKXzBH9rplINiqVyb8OQkIKwPT0B93F8UygyYOyeBmRITjnUUkYhRSiCsc9PqvE4cWCPfJcjmpqrE901AQK1ZKA5RLkKlkcU9qEQF99JbNnowznh0EEkijD10vZv1H33xO0LvVqW8T/YA81bXxMV7M2VcUCxfzebykUcQ1jpcBY1rYw+u0P4eEsSNZ52ONfJdgMx4vX7pV7h6bcb3b00tmRkqgld8yPbXTl0MPcxBtv2DJy/iY0sX4MRrl5X/zr30lo0ebAZOAgBRnTES1ZDv3XBXQz7GSRBG1wd328rUPUXdsqJJX1wPJ64qGzcmpH1rn633UKs/68TWZWWl3UCkZijT2GaocKg2Q3lJOUl8+iOZujK7bsJJ1HvJre4M5mGZqeki0r1OTRDOm3ORVfXIVmum8davu49/5O5FOHjqolDuQKeZKEyjm5dNq/ql07W4Fo2KJ98NYwBja4aytAdhDDz3XMaOne8KA+8kCD1zErUQgKi6ptVJ6GKZobdnDtbddYuv8JwoHyNbrQEwbuj5vt3qj+7ruXLxAulqQ7Xs1ERPAV95iMhPFZBOOUgmKFA3qNuqabxYI98FhDFe937opqYNtIgb0VKbG5st4xM1Y7Pq9j6tUE8c5KcKQsXQoM5QWd7g66fejK1Ds7ensupwC61x8TL3SmR+ygFRJVznLiH1mz8bdvi6G34cshwND0fNSRBmfAx9t1XTeLFGvgt45J5F2snDqNLEcTGvJwknmdBKFl99rz7vIKpx3/bMmbYoYPd7IIs8Sn4uMkqM4bbtR33DP7qIrp+3RJQb1rlz6j8r1YcX17Pn4ScvKSfZsG0vC9Ophs9ehJ+BN6V7385YI98FcE9Ox9DHbe90yx2TRA2a6aqDULwywyKJ2jja53WleAn+oTWRR6kit8tQ3z3q50H7IRrQEcR7M8HBPtHDK+izLRRLvufNB8VsidCf0M3JVjeRBnlb2oc9wwNtNfjgyYcHkUmnQKhUb6RT/gM3ylXj5x7+vXLxAuwfGVQazeYextysGOvHbl+gPBSbl+fJPiNZfXbYc9EdTs2TrXFIDXgfXjy/EPaxm045tYR62FALATix/b6uN/CANfJdhWyyvZdmTLMcHsrgxPb78Pq+dcg9vgaj65fDScr3nO51sOPwOeSnCmCo90bLiu4yN4jNirG+dOEKPv2RYCMxryeJ/SOD2DM8IPyM/Oqzo5yLzgNi7Nj5WFY73nAIn2KmSzrl4MK+dbiwbx0mdq2pXauwoZZuj8O7sUa+ixgeymDvhusePfeAuSdNqCxRN67qj9XQJwQbDzIiV6aLDcvzQrGEzeMTSDlqX1N+4+re+GEbL4slhhdfuRS4gkr39tTpDPHPiH8e/AEgYsmN4Y2RjiGLY/WTSaca+gDCTjGbKhSRzTUOlwvjic+GOLwbG5PvMnTkEOLq9BTF4qNU8Xi17EW4b9zhoQy2jE8oGxPGwguL8fPy+/v8VAFLth+tiwGrfEbZXB7fD1kNpNueb1omWdb5GuVhIqs+0hmGY2r+bCdhPflZyp7hARwYGQyMlXNSTgKbXDFlkbfO8Xq2O7Py6pAwZNKp2rFwb9jrMW5c1a+1TYZoYSyVBwSvUln++P+o80r5XNUl249i6Y7nsaSakxg9Mhk6bq3bnr9t7TLfcBonQaj7HugSR/hJFAJLOcmG78iBkcG6UM9swXrysxjuUaqMfePSB0H1zclq1YO7KcZkpJd7qEE3Kg9/uDtEV93ehwu/LEjPtVkVllevlSolnVXcjUVuZcuwbFrVr107L2qASjkJJIikDWZhOoh5RYzJqV9hVFtnE1bWwIJsLq9846lMgVq9dEHDoGSTRG1Db7W8ASeTTuHK1feUwlEiRNd5Xk8SX/onzRlIvWznd4QllHPnJHB+zyekfycqnyQAN/joKHExMmu4xfjJGthwjQXDQxnlZKxKid2JCAY+6RcHqtLqLl1TSev8VCG0gQfE15mvEkThIF6aKkpghuHPP31XQ9guQZXX/dgzPID9I4MNyee9G+6CI/n8u1EdsllYT95SI0wzTBS4AqZ3wtLTpy8Gyg9ESaBt/OoPWi5vAMSrpcNXO17NG+C6FK8Jo6k7IlFle16FzF0PzK5EaRj8PHlr5C0NiAyDm5STjKQ5IlNQ5AZD1VPn9eVhtFu8hn7unIRS96YpVISzosDDG7KJVX29DnKPixUjTRtuS/xYI28R4ncz+w2vGF2/XDgeLwjuQQKNSTIAoQWrTJTF6eQlVAiSPOh1EuibNze20FOmquvip/1ywBXjdj9gveWgXJKaqz5yQTK3eJnqtfd66sDsLGs0jTXys5CgZa9XhAqoH2KRzeWFcrK8nTysHvi8niTKDA3GPOoAbK92fBianZA9MDIYWYlRhJMkjHxUX7QuLKLhJyJE3ylOAsCTNrEaGpt4nWXwm8ntLV2ZLmLr02cwuPs4btt+FFsPnRF2mHK9k+GhDMYeWlHXPctnpmZz+dD1zleviYWnoroaxTLDlvGJSElFWe23ai+BLqLu1wMjg0p/myTCplX9DcfW1+tg7MEVePGVS+YPWIKqTs7YsfPS+b9lAKNHJg0fmQWwnnxXoRvTlkGAbxiFAHxs6QL86OI7xr3QqERJKvqtbuJISB+QeK4qfQuAvKsUMDN5SQcC8HrAfFeVY1KdEWupx3ryswBuoEzEeN0CYaNHJhsMOQOqScv2cRA4xRLD7ufCeYQiz3rvhkpS970YHmabxyeE3cAqQnME+K5ami3ApbK/2SQK1k4YMfJEtJWIGBF9oPozEdF/IKJXiegsEX3YxH4sclR0x3UpFEu+iTsTA8DjIIrHPTyUwba1y7AwncIvpgrY9vQENo9PRKpn9+OpkxcbDL1XaE4Eg/8wbFVFUhOoCn7NJlGwdiKykSeiRQDWAHBneT4B4I7qf48C+Muo+7H40+1zKpsF11XnksfNeI59/dSbDa9xqWa/8IXfZ67yoAhLOuWgr9eR6gb5HZNffiOu3Mdsx4R2zX4AnwPwLddrnwLw31kl4H+SiNJEdAtj7C0D+7MIMK0iyOnrdTA1XWzDwIycKMZi93OTseiq+xFUiiqTkvALf7jLY+f1JGv6M1EwUcE0un45tj1zpuEaJ6q/s5gnkidPRJ8CkGeMnfH8KgPA7Z78vPqaaBuPEtFpIjp96VLzKgK6jTiW5ykniV0PLMfHli4wut2oECpJywMjgw1t8E6CIhmLZnX7upFNvsrm8hh64rjwmJwkScMf7vwMA4wYePc0Jjc7s+dqyplLdzwfqDg6PJTB2IMr0Nd7/UGcTjm2fDJGAj15IvoegN8Q/OoxAF9AJVQTGsbYVwB8BahU10TZ1mxGpCIYlblzEjj9xmW8dOGKke0BwB03z8NP374a+u9FU5TarTtTt9GpxBiW7ni+rgs4aAaqkyDpecaRn5k3d47QwLtr8UuM1X7260LWmXlgiU6gkWeM/a7odSIaAHAbgDNU8URuBfAjIrobQB7AItfbb62+ZomZdzWDyL1OAnOdJKami5ifcnD12kxtKT1VKCoN0lbFSRD+7lfXIm1jfsrBysXXVxamDUY65fgmm4GK+qNMspgA/NmGuzA8lAmUh3DjNpArFy8IvO5+ieA48jOibYpyCQDwtVMXQ0lNWOIhdLiGMXaOMXYzY2wJY2wJKiGZDzPG/hbAEQD/rFplswrAOzYeHz+6HtyBkUH8+E8/gdzja/D6vnWYN3dOQ6zU5NKqWGaRVxlThSJ2HD5nTEnRy+j65VIlRN6AdPCPfktpVuvKxQt8h6uI+PqpN0OPyOP09pivqhHF/2W5hDLzL++0NJe4hoY8D+B+AK8CmAbwz2PajwWVG+qxb57Tjr16PeBOqdDhHZZxLPlVB1CovG/s2HnhKEQ/SowpfQ6y5HI2lzcSg3cjK5H0U9GM6/Ox6GPMyFe9ef5vBuCPTW3bIieby2Pr02dCKRpmc/m6GzGtMBAkKumUg/dmyg0dtLpHH+cDSTUE5DX0o0cmsfu5yZpwV9hqp16FahhZcllFXkCHJJG0RPKRe+T6OJ3iMMwGbMdrhzN27HxoydrN4xMYeuJ4bWkdt8JFyklidP3yhq7Sjav6tSuD4uqe1Bmw4a1imSoUcaVabhqlnPXqtZJ03iqhMt5P9hAyaVydBOHLD8tLJvcMDyDliE2I7W5tH+yM1w4n6k19ZboS4waAdwISjrqknAQWzJsrDGd4DcfKxQuUK4NUOyx18WrX5KcK+OyhCWw5NAHG6nXws7l8KLllVeYkCDe//wbkpwoNQ1X8Vhl+KwgdzXxV+d+9G+4S6v3Y7tb2wQqUdTiqYlZB8M5IUw1VqvKzXoLkflUMXVhUr2VPknCtCQ1TPIylc87ZXF46KIQnht3DzW+/qRc/uzRd+1k0zEVln+1WxjrbsHryXUyUmLwbPklIpG/e1+tg3V234OjZt6SeNi8rDHujB40e7EkSbnr/DbEakmYrN+oQ9NB0G1pAnOPwDkAPmilg6Rz8jLwN13Q4/GYMU13jZmE6FVgxwsMUXzh8tlanTQRsvCfcCD6OyNh4uVZiNS+bK2QCjWEf2fZV5obGJQ1hAlFFkd80Jy+iDllRyW2clUuW1mA9+S5ExWi6aZX3FlX/3uuZyvYhmkaUTBB6klSnpDmvJ4nCtRLaU1vzuma7aIReEOmUg4ld9c3pspWLija8pb2wnvwsw+2RuxN3fb0OGKtUgegk8+JA90EkQiXpLJtGVCozFDyvR60vTxB86+L59X+nUCmxDJrB6mVhOhX6uk0Vili974W6z1q2cmGo5Eb4nNpWfUcsZrBGvktpd30QE/oqKmV6zarX5iEgWdIzSYTc4/WetM7wcF6xEuW6ecNc29YuEypCcvgiXzc8ZmkvbJ28pSVENb6qZXqm67VFMgVcrXN4KIPVEsXOR+5Z1PDa8FAGG1f1I0j5IJ1yauG0qNfNO8d3jqLuguocV0v7YY28pSVEMb46gyq2rV0m1aKR4X03/zmTTuHJhysSx94RgfxYDv7Rb2HTqv6afDDXu5ElpvcMD2C/a3vegRwHRgYxsWtNbfs3SJqPdHA/KHSme9ku1s7EhmssLWHb2mXaseWUk8BP/vQTWvvhxtGdqPRLsDpJwshHF+HFVy4padeI2DM8oFVtpBpay+byRkYuhn3A2i7WzsQaeUtL8CaHg3AShL0b7gq9L68RFVWoyEorW4m7/j0hGS6igzfMJZs6FfR3ls7BllBa2oLB3cellSbtaHybgYkKJDduqQKd8lVbXdP+2BJKS9szun55g0HjbfizdQCFyQlPvE7eb6SgG9v52j1YI29pC1R13GcTphKdXP0zaKQgx3ru3YU18pa2od1r+5uNKZmFD/fP11b4tJ9D92BLKC2WNsVUovPEa5eVh8HYevjuwxp5i6VNGR7KSMf8xYmth+8urJG3WNoYv8HicWHr4bsLa+QtljZmeCiDsYdWNM2jt/Xw3Yc18hZLmzM8lMHErjW16V2mccso2LLJ7sNW11gsHUIcsXIVTX5LZ2M9eYulQzAdK7ehmdmBNfIWS4cQRlFThA3NzC5suMZi6RBEipq62PDM7MMaeYulg/B2BS/ZflT5b214ZnZiwzUWSwfT1ysurUwQsGlVv3S4iWX2ENmTJ6J/A+CPAZQAHGWMfa76+g4Af1h9/f9mjB2Lui+LxVLPrgeWN8xpdZKEsQdXWINuARDRyBPRvQA+BWAFY+w9Irq5+vqdAD4DYDmAhQC+R0S/yRgzo5tqsVgAWPVOSzBRPfl/BWAfY+w9AGCMvV19/VMAvlF9/XUiehXA3QB+EHF/FovFg1XvtPgRNSb/mwD+DyI6RUT/k4g+Wn09A+BN1/t+Xn2tASJ6lIhOE9HpS5cuRTwci8VisbgJ9OSJ6HsAfkPwq8eqf78AwCoAHwVwiIhu1zkAxthXAHwFqIz/0/lbi8VisfgTaOQZY78r+x0R/SsAh1llUOxLRFQG8AEAeQCLXG+9tfqaxWKxWJpI1HBNFsC9AEBEvwmgB8DfATgC4DNENJeIbgNwB4CXIu7LYrFYLJpETbz+FYC/IqL/D8A1AL9f9eoniegQgB8DmAHwx7ayxmKxWJoPVWxye0BElwC8IfjVB1BZIXQr3Xx+3XxuQHefXzefG9Bd57eYMXaT6BdtZeRlENFpxtjKVh9HXHTz+XXzuQHdfX7dfG5A958fx8oaWCwWSxdjjbzFYrF0MZ1i5L/S6gOImW4+v24+N6C7z6+bzw3o/vMD0CExeYvFYrGEo1M8eYvFYrGEwBp5i8Vi6WLa3sgT0b8holeIaJKI/p3r9R1E9CoRnSeita08xigQ0VYiYkT0gerPRET/oXpuZ4now60+xjAQ0Vj1cztLRN8korTrdx3/2RHRx6vH/yoRbW/18USFiBYR0YtE9OPqvfYn1dcXENF3iein1f/3tfpYw0JESSLKEdG3qz/fVhVXfJWIxomop9XHGAdtbeQ9evXLAfz76utuvfqPA/jPRJRs2YGGhIgWAVgD4KLr5U+gIgNxB4BHAfxlCw7NBN8F8I8ZY3cB+P8B7AC647OrHu9/QuWzuhPAI9Xz6mRmAGxljN2JiuDgH1fPaTuAv2GM3QHgb6o/dyp/AuAnrp//HMB+xtgHAVxBZchR19HWRh4KevWMsdcBcL36TmM/gM8BcGe/PwXgv7MKJwGkieiWlhxdBBhjxxljM9UfT6IiUgd0x2d3N4BXGWM/Y4xdA/ANVM6rY2GMvcUY+1H13/+AijHMoHJef119218DGG7JAUaEiG4FsA7Af63+TADuA/BM9S0de25BtLuRj6xX364Q0acA5BljZzy/6vhzE/AvAHyn+u9uOL9uOAcpRLQEwBCAUwB+nTH2VvVXfwvg11t1XBE5gIpDVa7+fCOAKZcj0lWfoZvIM16jErdefSsJOLcvoBKq6Vj8zo8x9q3qex5DJRRwsJnHZgkHEb0PwLMANjPG/r7i8FZgjDEi6riaayL6JIC3GWMvE9Fvt/hwmk7LjXw369XLzo2IBgDcBuBM9Sa6FcCPiOhudMi5Af6fHQAQ0R8A+CSA32HXGzI65vx86IZzaICIHFQM/EHG2OHqy/+LiG5hjL1VDRu+Ld9C27IawHoiuh/ADQB+DcBfoBIKnVP15rviMxTR7uGaLLpQr54xdo4xdjNjbAljbAkqS8UPM8b+FpVz+2fVKptVAN5xLZc7BiL6OCrL4/WMsWnXrzr6s6vyQwB3VKszelBJJB9p8TFFohqj/m8AfsIYe9L1qyMAfr/6798H8K1mH1tUGGM7GGO3Vu+1zwB4gTG2EcCLAB6svq0jz02FlnvyAcxGvfrnAdyPSkJyGsA/b+3hhOY/ApgL4LvV1cpJxti/ZIx1/GfHGJshon8N4BiAJIC/YoxNtviworIawD8FcI6IJqqvfQHAPlTCpH+Iigz4w605vFj4PIBvENEeADlUHnJdh5U1sFgsli6m3cM1FovFYomANfIWi8XSxVgjb7FYLF2MNfIWi8XSxVgjb7FYLF2MNfIWi8XSxVgjb7FYLF3M/wb/dUBPAx1V/AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGfCAYAAACX9jKsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOyde3hTVbr/v0mbpk2hadMiCQi0QBFq5VIUW6ucsZYBQVFEHVTm/EQGFamDzDgDKIw4oOhcHuScCowM4IwIzIzCgIL1tOAolFaUgqUWpZQWERq0txRSekvy+yPskMu+rH3LBdbneXweSZO9V7L3Xutd7+X7alwulwsUCoVCoVAoEYI21AOgUCgUCoVCEQM1XigUCoVCoUQU1HihUCgUCoUSUVDjhUKhUCgUSkRBjRcKhUKhUCgRBTVeKBQKhUKhRBTUeKFQKBQKhRJRUOOFQqFQKBRKREGNFwqFQqFQKBEFNV4oFAqFQqFEFNFqn+Ds2bNYuHAhPvroI7S3t2Po0KHYtGkTbr75ZgCAy+XCSy+9hPXr16O1tRW5ublYu3Yt0tPTiY7vdDpx7tw59O7dGxqNRs2vQqFQKBQKRSFcLhcuXLiAfv36QasV50tR1XhpaWlBbm4u7rzzTnz00Ufo06cPampqkJSU5HnPH/7wB/zP//wP/va3vyEtLQ1Lly7FxIkTUV1djdjYWMFznDt3DgMGDFDza1AoFAqFQlGJM2fO4Prrrxf1GY2ajRkXLVqE0tJS7N+/n/XvLpcL/fr1w69//Ws8//zzAACbzYa+ffvi7bffxowZMwTPYbPZkJiYiDNnziAhIUHR8VMoFAqFQlGHtrY2DBgwAK2trTAajaI+q6rnZdeuXZg4cSIeeughfPrpp+jfvz+eeeYZzJkzBwBQV1cHq9WK/Px8z2eMRiNuvfVWlJWVsRovnZ2d6Ozs9Pz7woULAICEhARqvFAoFAqFEmFISflQNWH31KlTnvyVjz/+GHPnzsUvf/lL/O1vfwMAWK1WAEDfvn19Pte3b1/P3/xZuXIljEaj5z8aMqJQKBQK5dpCVePF6XQiKysLr776KsaMGYMnn3wSc+bMwbp16yQfc/HixbDZbJ7/zpw5o+CIKRQKhUKhhDuqGi8WiwUZGRk+r40YMQLfffcdAMBsNgMAzp8/7/Oe8+fPe/7mj16v94SIaKiIQqFQKJRrD1WNl9zcXHz77bc+r504cQKDBg0CAKSlpcFsNmPv3r2ev7e1teHzzz9HTk6OmkOjUCgUCoUSoaiasLtgwQLcdtttePXVV/Hwww/j0KFDeOutt/DWW28BcCfpPPfcc1ixYgXS09M9pdL9+vXD/fffr+bQKBQKhUKhRCiqGi+33HILduzYgcWLF+P3v/890tLS8MYbb+Cxxx7zvOe3v/0t7HY7nnzySbS2tuL2229HUVERkcYLhUKhUCiUaw9VdV6CQVtbG4xGI2w2G81/oVAoFAolQpCzftPeRhQKhUKhUCIK1XsbUSgUij8OpwuH6prxw4UOXNc7FuPSTIjS0t5kFAqFDGq8UCiUoFJU1YCXP6hGg63D85rFGIuX7s3ApExLCEdGoVAiBRo2olAoquNwulBW24SXd1Xh6c0VPoYLADTYOvD05goUVTWEaIQUCiWSoJ4XCoWiKmyeFi4WbT+GCRlmGkKiUCi8UM8LhUJRjaKqBsxl8bRw0drejcJ9Jz3/Zjw2O4+eRVltExzOiC6OpFAoCkE9LxTKNUBXjxPvlNXjdHM7BpkM+HlOKmKi1d27OJwuvPxBNcSaG5sO1qEgbyg+rmrAkp1VaLZ3e/5Gc2MoFApAdV4olKuelXuqsX5/HbydFloNMOeONCyenMH9QZmU1TbhkfXlkj57z0gLPqzkzn95IjcVEzLMtEqJQolg5Kzf1PNCoVzFrNxTjb98VhfwutMFz+tqGTDF1VbJn+UzXABgY2k9NpbWU08MhXKNQnNeKJSrlK4eJ9bvDzRcvFm/vw5dPU7Fz+1wurDjyFnFj+uP1daBubRKiUK55qDGC4VylfJOWT2E8ludLvf7lOZQXTNa2ruF3ygT5uu9/EE1TealUK4hqPFCoVyl1DXZFX2fGP66v1bxY3Lhglsn5lBdc9DOSaFQQgvNeaFQrlJI01iVTnfdU9mAvd/8qPBRhSmutiJnSHLA6w6nC+WnmlBW2wTAhZzBKcgekkwTfSmUCIYaLxTKVUqUhmxxHnV9IspqmxTpM+RwurBkZ5Wkz8plY2k9xqWZfJJ3i6oasGj7MbR6hbAKP6lFokGH1x64iTXRlxo7FEr4Q0ulKZSrkKKqBjy9uYLovab4GDTbuzz/llPBI6c8Wi4aAGZjLA4szEOUVkP0G6ybmSVo7ADgNXYoFIo05KzfNOeFQrnKcDhdWLarmvj93oYLIK+C54cLZEq6auCd+0L6Gyzb9bUn0ZcxdvwNF8Ct/Et7L1Eo4QM1XiiUqwBvGf2F730Fa5t0I0JOBc91vWOJ3pdk0CHJoBM5MjJ+uOA2YEh+A2tbp2Rjh0KhhA6a80KhRDhiGh+S4u3FYEuC5WJcmgkWY6zgWF65PxOHT7dgQ2m9vIGyUN/YLur9UowdMb8JhUJRHup5oVBChBJNB8U2PhSL2DBQlFaDl+7N4K1gemp8GiaP7If8DLO8wXHw1me1+KGtk/j91/WOFfU9Qxkao1AobqjnhUJRCIfThUN1zfjhQgdSeukBl3uha7Z3wdRLD3PClUoeNm+J2ERZqY0PxUAaBvJmUqYFa2dmBXy/Xvpo/OL2NDx7VzqAK14aq61D0e9g73LglT3HodVAUKTPnKDHuDSTKI0YKb8JhUJRFmq8UCgKQBq6McXrMGZAIqsOSoOtA09vrsCaR7MweaSwAXOorlk1jwvgHuu4NJOozzAGXGePE396cBS+qG/CptJ62Dp6cLGzB2/srcG2L77Dsqk3YlKmBS/dm4G5myugARQ3wkgcWcum3ogorQbj0kwwJ8QKho4YY4dCoYQWarxQKDJhQjcki2+zvVtQwK1gawUKMQaTR/bjfZ/a4Ytpo/uL0jYhNeCsbZ14enOFp0yZzUujNhoN8OQdaR4vV5RWg2VTMwRLqxljh0KhhBaa80KhyECN0I3TBTyz5YhgWa7a4QsxOSlMmbEYA2TR9mNwOF2YlGnBgYV52DonG6tnjMaLk4dLGa44XMBbn9X5/MaTMi1YNzMLiSxVUIkGXYAmDIVCCR3U80KhyEDN0M3LH1RjQoaZc6evVs4IACTGkYeMunqc+PW/vhJ9jtb2bpTXNiE3PQVRWo2ngsfhdGHDgXpZ5d5CuOAWtfP/jSdlWjAhw0wVdimUMId6XigUGai5wAo1G2Qqe9RgVm4q52LtXSW1uuQExvz+/2DvdEg6z+bP6wNei9Jq8Mi4gZKOJwauho5RWg1yh6bg+Yk34PmJwz3GFYVCCR+o54VCkUHzRfKSXCn8cKHDp4qJrfeQ0aALUIVNMujw+G1psF3qwj+//B4XO3uIz5lk0KEgL531b0pryuyvaYTD6QowDlJTDIocnwRa+kyhRB7UeKFQZGCKj1H1+PWN7bj99X2sJdUAOBOFW9q7cYO5FyZlWvDilAwU7juJTaV1aL0UKH3vjwvuDs3++R1iEpNJudjpYBV9C2Y5stLnYiuZb7R3ym56SaFQrkCNFwpFBmZjnGrHTjTo8EbJiQBjgSmpToyL5jQk/PM55uenoyBvqGdRrW9sx6aDdbx9fLxLttXUlGHzfJCWLsuBaeQ4Ls2kmMEh5JkyJ8Ri2VRpTS8pFMoVqPFCociAVA5fKnzGQusl7lAQm7y/f1Ls1kOnec/tXbKtZmIym+eDyXtZVXJClXMypshL92aguNrKa3CQigeSeKasbW7D84ncVEzIMFNPDIUiEZqwS6HIQK2k2cmZfVm9ImLhyudw9/Lhz9dhSraXf/A1Sk/ya9NIQQO3YcBW1eRwunDcalPkPPH6KJgT9D6vmY2xWDszCwAE2yuQdNkW65naWFqPR9aX45ZXSvD7D76W3B6CQrlWoZ4XCkUmjD7Iou3HFDE4AMDF2x2InMYLndh59GxA+ENMkqoazRO9PR/+noeiqgb86p9fob1LWgWTP39+aBQmZJgDkp4B4PbX9wkaHFxl1d5I9Uw127uwsbQeG0vrRbeHoFCuZajxQqEoAKMPIiYxlo+Pqqyyx6TVAMt3H/f82xSvw7TR/ZE3oi9+UDGXhKGXPhp/emgkAASEZcwcCzUjdqcU/zWsDyZlWli9GmIMDqEu20pULDVc9vCspWJ4FIog1HihUBTCPzG29GQjCj85Kfl4JI0F+fD/bLO9GxtK61XxpPjTSx+FiqUTEBPtjkwzwm8HaxtxtuUS+iXGorde51Mm7XC6sGj7MUXHMT49hbMJ5t2Z4rtacxkpSlYsCYkTUigUarxQKIrDJMaOSzPh/YrvJSvgRnIKxJ8eGuUxXAB36fXC9yth80oyXvOfU0g06PDaAzdhUqYFhftqRIXdSJo5nmlu9/E+MVhtHdgowYjjMlKUUjsW8vBQKBQ3NGGXQlEJ72ReqXvoSTf2VSj7JThYjLEBPYCYUJCNpTqKKcveU3kOm0QaE1MIOm+/XcZeUcXksYhxbvC1TFDiWntDhfMoFH6o8UKhqAjTNbmvX7ULKUVfn4eRpVFgOJEcH4NVD4/C1jnZOLAwz8dwcThdWPS+cCjoxX9XicoTSo6PweoZY/DU+DTJxoIL4rxbfC0TgCvX2myUH0IKpkgfhRKJUOOFQlGZSZkW/Pnh0ZI/b7scSmHrdhwONNm7YDbGIYeleWF5bRORUdIiskpr+X2ZiNJq8NtJI9A3Qd5C//9yBgl6YPxbJnj3d/Iuc/bukD07NxVJIq8ZX/k4hUK5As15oVCCgJzqHibEEaeLwpuzs7D3m/P499FzaLZ3KTY+uXAp4ZadalT8XE+NT/Mo/7r1auSFWD6oPIfZt6di/f561r9rAKx84CZEaTVwOF0o3FeDTaX1PkaZd5kzk/OUMyQZL0zJwKriE6ISt9nKxykUii/U80KhBAG5hgaTyKnVavC7e2/EFy/mY+ucbDyRm4pe+ihlBikD7gaV5IswSZ+owhljsHiyO7fE4XThnbI64uNz0Wzvxvr99ZhzRxosfiEfy2Uxu0mZFhRVNWDsimKsKqkJ8CZ5C9l5e2XEJN6a4nW0TJpCIYR6XiiUIGDqJS3nxR+r7RLKapsu9yeyS6qYEUO8Tgt7t1PwfVyGR86QZCKvQ3yMFg+M7o+/lnIbI3PuSMM9o/sBcCcBKykKCAAbDtThf342Bsm99QEdvIWk/xnv2KLtx7BsV7WPN8icoEeiQQdbezfn55PjY1C2+C6fCi0KhcINNV4olCBglpmXwbB89/GghovGpprwWY1w6IerQWX24GQkGnSCRoa9y4kNB/m9KB9WNmDR3SNQXG1VvLs14E7eLdh2BOtmZuG+0f09r5NK/7uAy9/T97ueb+v0fNa/vJvxS70yLZMaLhSKCOjTQqEEAUYHRC7BznMhMVz4EkyjtBq89sBNROdyCVgHDbYOHDzZqFp3a4aXP6j2UeSV25SS8cokGnQBycVmr7AUhUIhh3peKNcUDqfLk+TZfLETpvgYd1mqBmi82BnQA0gpGB2QuZel74OpP2eIiVKsT5A/GggnmE7IMOPekWZ8UCm/5cHTmw/DrtJ3YfAXiVNCc4Xxyrwzawyio7WesNTYQUk4fLrFp/8UgIA+TDSBl0LxhRovlGsGNpl4NtRqkMfogJCMQSlenDwCT9yehuJqK17YUaWo50arAQofGcP7OxVVNQTkgMhBbcOFwdtgUVJz5dltR/DqtExc1zsWxdVWzNtS4XNNmHJ47zAbbdhIoQSicbmEnLXhTVtbG4xGI2w2GxISEkI9HEqYIpRw6Q2zx30ufxhSUwyK7367epy49dVitLQHKs4qhQbukMSBhXmecXf1OJG9sgTNduWSXLfOyeasphHzm4cb3t/L4XRh7IpiRZODxcDcdTS8RLnakLN+U88LJWJhQkB87nWH04Xy2iYsev8Y8SLKvG9VyQnPa0ruftf+p1Z1wwUIDOfERGvx6rSbFA1dcYVUSJNcwxFTPHcbAC40ABLiollbIMiFyZkhbdhI8lxQKJEONV4oEQlXp2BvA4M0TERCg60DT2+uCOjbI2Xc3kaRGph5DC2lQ1dcIRW5Sa6hZNro/j6L/aG6ZkGviwvACEsCyk81qzIm/4aNXAYKyXNBoVwNUOOFEnFwhSMYobC1M7MAQJWQxcL3K4l2v2ww3gi1eWHyCN6FalKmBRMyzKKVX71hwlJcHopIbiyYn2H2+Tfpd1HLcPHmhwsdnAbK1FEWvPVZXcA9zxjeC/LTUZCXTr0wlKsCWipNiSgcTheW7fqa1ShhXlu262ss26VOyMJ2qQfztx2R9NlgeSOW7frap9SXjSitBrlDUyQdnyss5Y2UJFdDDLlSMN/6K7ZbtPfn2Mq+w6lJYn1jO+Zurgi4j6y2DvyFxXDxZlVJDXJf24eiqgZ1B0mhBAFqvFAiiv/dWwNrG5cUvduAsbZ1KlbdwsaHlQ3YUyl+AQiWN6LJ3oVDdcJeAEZ7Rmid9/87iTYJ6bHjY6Jwd2ZfvDv7VhxbNhHrZmbx6uFoLv835440z/+zjZX5uxhcAJZOCTTISL+L2pgT9Nh66Dtew10Ia9uVNgYAd4NJCiXcCZrx8tprr0Gj0eC5557zvNbR0YF58+YhOTkZvXr1wvTp03H+/PlgDYkSYazcU4039taEehgAgKU7q0RP9MHcwZMYSoz2DMDdgWhB/jB8u+JubJ2TjdUzRmPrnGwcWJgnmD9BeuzKZROxdubNyE1PQZRW49OV+Ync1IC2A4zhtHhyBtbOzILZyC76xvydyxDi8sy8sOMYVpec8Lm2JN8lGNySmqSIUe6C2zu3p/Icbn99Hx5ZX475247ikfXluP116pmhRAZBKZX+4osv8PDDDyMhIQF33nkn3njjDQDA3LlzsXv3brz99tswGo0oKCiAVqtFaWkp8bFpqfS1wZ7Kc3hmi7RwjVrwlQmz4XC6cPvr+2C1dahehSNmbGomeco9tlDlDOnfrbZLaLZ3wdRLD3NCLJoudKBg21HO8yYadHjtgZt8xqhkArgU1BQb9GdB/jAU5A2l+TEUVZGzfqtuvFy8eBFZWVlYs2YNVqxYgdGjR+ONN96AzWZDnz59sGXLFjz44IMAgG+++QYjRoxAWVkZsrOziY5PjZerH4fThVteKVZUn0QJVs8Y7dMDhwQm2RgI7HGj1INo8dN3IUHN8tpwK91ljEghI0SDQG0Vh9OFt0vrsHz3cZVHGXrMCXosm3ojrVKiqIac9Vv1sNG8efMwZcoU5Ofn+7x++PBhdHd3+7w+fPhwDBw4EGVlZZzH6+zsRFtbm89/lKubQ3XNYWe4ANLCQEypMlu4Q0zCKh9Ccv1sRGk1yBmSjPtG90fOkGRFjQs1jy0F0sRpF9xdoktrGj1hpCitBo/npoVFDozaWNs6ffJjKJRwQtVS6W3btqGiogJffPFFwN+sVitiYmKQmJjo83rfvn1htXL3QFm5ciVefvllxcdKCV/CseyWrxmhEEypsrc34vNTTWGTz3O1I+Z+am3vxmMbPvcJdXn3qVLSYxaukIrjUSjBRDXPy5kzZzB//ny8++67iI1VLlFx8eLFsNlsnv/OnDmj2LEp4UlKvD7UQ/CBpBmhEN7eiHFpJrx9sF6xsfl3Rab4IsVjxmgIFVU1wOF0wRgXg1m5qUjySyi+2vAWxwNodRIlfFDN83L48GH88MMPyMrK8rzmcDjw2WefobCwEB9//DG6urrQ2trq4305f/48zGYz2yEBAHq9Hnp9eC1mFJUJ0oaPEV5bOiUDy3ezJ2aqoVZ6qK4ZrZeUCYv5K7FSAmFKn8Uk3jIS/Yu2HwtoNGmK12Ha6P5IiNNhy+encf6Ccs0vvUk06GBr7w6Jp+ejqgZ8fqoJfyurRwttGkkJA1QzXu666y4cO3bM57VZs2Zh+PDhWLhwIQYMGACdToe9e/di+vTpAIBvv/0W3333HXJyctQaFiUC2XjglOrn8BZem5RpwcRMM2uVihrJpmLCGEbC/jnhGGoLF5iwz9OXE6dJcYHp9uxraLbYu7GxtB5rZ2bh4OJ8xRN6mcRZACELVf297DTr6w1eqtbUgKEEE9WMl969eyMzM9Pntfj4eCQnJ3tenz17Nn71q1/BZDIhISEBzz77LHJycogrjShXP3sqz2HvNz8qdrw5d6Sil16HTaX1Pt4O/35ATFjHH8ZtrmTlDGkY48Gs6zEtqz8e++vnih3zWoOpfOrsceLekWZ8UMmdX0cKY0gwuSEpvZX1DP/54dEeNeS1M7Pwwo4qNNvV8e5IwQWaF0MJPiHtbbRq1SpotVpMnz4dnZ2dmDhxItasWRPKIVHCCIfThSU7qyR9Nl6nhb3b6fm3KV6HFfdlYvLIfgCAgrz0gPJdALyGiVp6KEwYg0//Jcmgw+sPjvSck+u9Qj2HrmXU1mlhwnX1jXZFj/vx11ZoNRqMSzNhUqYFn59qwqaD7J6QUEFDlZRgExSROjWhOi9XL6U1jXhsg7CXgY15dw7B7UP7sBoibLojxdXWgIWNyWXIG94XX9Q381YDrXk0C5NHyus2zab/AgTqjfBpxQCB2iThhP9vP3ZQEg6fblFdA4armafSzLptkGqGhcUYi6VTRmDJzq/DyvPCIEX3iHJtE9YidWpDjZerk6KqBix6/5jkRNaCO4fg+YnDWY/rb6QkGnSXcxmko9UAhY+M8Xh2pCDGs6OmKq5asI3ZP39Dje9AKkqnBL1jo3ChQx0V3HAvyxarOE2hUOOFGi9XFUrskt+dfSty0327Jgdj971OptdDjBptuCnX8iH2t5+dm4r8DLMi36mstgmPrC+XdQwKP8nxMTj0Yn7Y3n+U8ETO+h3SnBcKxZ+uHide2FEly8CI10ch+/IO0NPbpq0Dyz/8WvWdq9zERa5EYbnvDSUOpwsvf1At6rffUFqPDaX1inhiSqrlJ+VS+Fl+XyY1XChBhRovlLChqKoBL+w4JrsVwIybBwAAVpfUYFNpnWIaKiTQxMVASOX42WiwdeDpzRWSGwU6nC5sP3JW0rlDgT5ai84ep/Abw4inxqfJyveiUKRAjRdKWKBkSCchLgZjVxTLzmORCtVY8UWJ32NVyQlsPXRadKPAwn0nfUTVwhkNAF1U5BgvSQYdXrk/U1aeF4UiFdUbM1IoQkgJK3CRaNBhVcmJkBkuANVYYWA0cWrOX1DkeGIbBRZVNWBVyQlFzq02SQYdnssfhoudwgKEpngd1jyaBXNC6O6zBfnD8OWSCdRwoYQM6nmhhBw5YYVwgmqsXEFNTRWSvCLGIBYDXzWP2EofQ0wU2rvIq45euT8T3YR9gqaN7o/JI90q0IX7arCqRH5DzydyUzEhw4zGi514dusRzvclGnR47YGbwraijXLtQD0vlJCjRFghyaDDgvx0SR4XZglMNOgkn9+7vcC1nrjIhADVMFz8GwVyIcUgNvJcf7MxFgvyhxEfSx9NPrVqACzffRwpvciUefMz3L3forQazM8fhnUzs2Ax+npheumjPMfmw2KMxbqZWfjdvTciZ0gy7h3Vj/V4iQYdFuQPw+ElE6jhQgkLqOeFEnLkhllenDwCT9yehg8rz0n6PNMaYEKGu5/R38vq8FHVeUnHuNYndiVDgHwIGbxiKoxiojXo6nFxGr73jLRg9YwxAICth07D2tbJezxTfIwoETnGIINLmnrypEyL594VEl40xkVjwggzctNTOHt1cR3vWjfKKeEFNV4oQcHhdKG8tgllpxoBuEt8swcnI0qrwdhBSdBqAEKveQDXJegRpdWIMoKS42OwZMoImI1xPhNzzpBkjEszIfe1fT6dg/lYOmUEHs9No5M7pHk8kuNjMGqAEftE9LDiu9YOpws7jpJXGHX18N94H1Y2YHKmGZNH9sOyqTcKNnS8f3Q/bCytJz4/Q6O9E/eMtGD9/jrO93B59tjK5uUYIZFShk+5dqHGC0V1iqoasGj7MZ+dbeEnJz3xc2NcjGTDBbiykJH0CAIuu+nvy4QxTofSkz+i9GSjjzEVpdVg2VTyrsMpvfXUcLmMmBDgrNtS8dMbrwjRFVU1YNmual6jkSSv6FBds+xye39e/HcV8jPMMMbFYHZuKrZ9eQb2Tt+cliSDDisv389SjJeSaitvo8j8jOtEe/aoEUK5WqHGC0VViqoaOI2A1vZuPL25ArNuGyTp2P4LWZRWg5fu5Tc6eumjcWtaEn7z3leweyVUehtTkzItmJRpwYL8dKJkyMYLnXA4XdSAgbgQ4K6vzmHJPVc8CYyngCsJlTSvSI1S9Zb2bmQtL/apBjLFx+DWtCQM6dPbx/h1OF1ERrQ3+miNYIfr4uofsKeygWqqUCigCbsUFXE4XVi262vB970toZGd1ATZi5092PvNjz6GCwNjTDGluAV56UTlqMt3H8ftr+8jLuG9mhmXZkJiHFnic5O9C+W1TSg92Yg/ffwt/vTxNyivbUJBXjpr0qjZGEvUdFKtUnX/MuYWexeKqs4js38Ccoe6W1GU1Tbhw8pzmHHLAFF5P50CoSuGpTur4JDjpqRQrhJobyOKaqjZU4ZNNl6pBnwWYywOLMzzhDK4uj3749/9+VpldckJ4vLd+JioAEOS8YBJzddg7gMxng85MN2el+8+7tt0UgOoMbvSBoiUqwU56zf1vFBUQy2l2aVTRuDAwrwAI0EpvRjvUtxJmRasnZkFs1F4N++CW4PkWt8ZF+SlI/5yqa4QfB6w4morcoYk477R/ZEzJJnYw8aEDwHhUmElaLB14JktRwLuPbW2hVTBmUKhxgtFRdRy33MlyCo5qXsfa1KmBZ/+5k70jhVekEk0SMIZRhV359GzKKttkmSIRWk1+OP0kbLHsmzX13A4XZ4x7aj4Hhv2n8KOI8JjE2N0RhpUwZlCoQm7FBXw7uScZNAp3luGa/JWclL3P9bh0y240EGmmFpy2WPAwPwe4a6ZwaaKK7Wr8+SR/fDU9634y2fcZb9CWNs6UbjvJLZ98R2rR01obP6lwnXQgQgAACAASURBVKd+tGP1XvlqtKHEQhWcKRQA1HihKIxcWfjEuGi0XmLv7yJUJktaKi2EKT4m4BxivDo7jp7FC1MyvMp/v/YRNjMn6EU3GFQTh9PFWeHDdHVedzmXR4whtnhyBkZdn4QlO6t8RNsS43TEnb75ehM12Dowd3MFb56Rf6nwCEvvgLL9SEEDquBMoTBQ44WiGEp0huZrqOsC/+TN5DrM3VwhuheNNyvuyww4hxivTrO9G4fqmmG71MVatm1t6/QxCEIJibYKACx6vxJOJ7B8t7Bnxt/AKV98Fw6fbvH82+ly4bG/fq7YdyDpdcQwIcOMZbuqAUSW8SLVA0ahXK1Q44WiCErJwpN01eWDyXWQ6v15anwaq44G49UhPaa1rQMvf8BfJr5o+zHiRVcNxBibrZd68MyWQEOM8cwUzhiD5N56lFRbsePoWR+ROGbhvW90fwDue8WcEEusYMyHd68jkgocJpwZKcy6bRB+eqMlbEONFEqooMYLRRGC1Rl6McGCzyaL3mLvDChl9SbJoMMr92di8sh+rH8nEcDz5nB9k2BoorW9GwdPNuKOYX2IjqkkSvcgKtjG3YnY6hfeEatgTAJpWC/SKnWKvj6PJffcSA0XCsUParxQFCFYi0JLezcK99VgvkCHXzZZ9ImZFo9Bk9JLD7jc/WRIkmgdTheMcTGYddsgvF12mrcMVqsBNn9+huj7PL35S/z54dFBDwcEy9gEroTvXthxDHnD+yImWotJmRasm5nFmn+SaNBh1m2pxFoxAJASz96R2T+ExfW+cKXB1oG3S+uQ0lsf1sneaiEmx8rhdKH8VBPKapsAuJAzOAXZIkrsKZEFFamjKIKagnT+JMbpcHjphKBNSnKTkEkIdv7LzqNnMX/b0aCdj8EUH4NXp2V6vivXggNAlOCgd2sHBrbrZk6IRUePA7b27qAI2CnNtZT7Iqb6ja1/GsB+X1DCBypSRwk5TE5IMGi91B00LRUmL0RtL8Wi7ceCKm4XKq2QZrs7iXl1yQlPP6jswcnIHZqC9L69ob1skDJhOlLztLW9G3O9WjvsqTyHp1mu2/m2DrReNlwicT/OhOD8W1Eooc8TTnA9d8z331PZ4NH+ef6fR/H05grWMK1/yw/K1QMNG1EUQWxOiFystkuqn0PpvBA+Wtu7UV7bhNz0lCCcTXwCstKsKqnB1kNncN9oC3Z91cC5u35yfBqxVgyjcNzT48Iv/8Geg8MYLYkGHfTRWp8SdosxFjNuGYiBpjgs333cp7w7XGDG711hxeahMMXrMG10f+RnmCMu1MT33DGvFWytENWJfvH2Sk/IknJ1QMNGFEUR09dGDqb4GPy/nFSkphhUywUIZigMAAruHILnJw4P2vn4On6HEuYqvvnoGN4ka7m8+4tbodVoWPMpwvW38WbrnGzYLnUJVoz1jo3G9Kz+mBjiqiXS/BW1nrte+ij8YfpIzqR8SvCRs35TzwtFUQry0rH10BnVy1Gb7V0+AmZKCr8xk+xHQXc1B3dR4UuaDSWMd8EtbqfeuBovdnrKt/2ZlGnB7NxUbCitV+38crHaLuEPH38r6Bm80NGDtw+extsHT6uaM8NnnJDkr6j93F3sdOCZLUfw1PetWDw5Q5VzUIIHNV4oisKUwcoVqxOLEsJvjNLsptJ6YgVYJQlFp2CmrLxw30m8+Z+T6OJTCQwiLkBVwwUQzvvJzzCHtfHSbO8S7ZUiUSWWAptxkhinw6zcNKRf1wvztgTOB94l9ABUT4pn+MtndRh1fRKrnhMlcqABQIriMLkKciFphOiP1MTXoqoGjF1RjFUlNSExXJIMOmQPDr7xArgNzvn56dj0/24JyflDAUmPICYvSGl/WJJBh6fGp0EDbl8b3zk1cI/f1Eta2bfS3c+5kmtbL3VjVckJVsOFGQfgfmaDkRTvzZKdVRGf1HytQ40XiuI4nC7s+kq665eZnF++N1P0Z5nEV76x+VdlMJNvKEMnKx+4KeRJldlDkoNWMUaKKT6GyHgQ+8uR9AhiktCVZPHdw/HlkglYPDmDtet1okGHBfnD8OajY1iNG+bfL92bAXOC9GulVPdzh9OFRduP8XpZhf7WGoKy9WZ7V0R3f6fQsFHIuJoFlZQQQHvp3gwY42IkfbbsVCNr1Q57VUYMOrodIdP8CCfdDu/eUID03lBKkRinw4r7MjGPpS2BP2ZjLO4ZacH6/fyVSVoNUPjIGOLfm/EivrW/jleYkJTM/kbPM86mBO2dJ7JWqwnUqfG6XxxOl6xGpEoISxbuqwmrfCkxRJraMsUXaryEADZBpcJPaq8aQSU5k4JFkcnZ1wB057KcZO1QHKpy2P/OGYS7M8OvZw1Xbyjv0tsWexdrnyOlmZWbiskjLXjy+zSs31/HWRprio/BC5NH4NU9xwWPuXrGGFHVJkVVDcSl2iQ0Xuz0+TebEjSDkHHjb2yKRa7Wj8PpwqYwzgkSIlRaRxRloMZLkOErwWQElcKh27AcpEwK8TFReOvnN/t4n6R2ic4ZkuypXCiutmLHkbNoCbPd4d2ZFsEEXTHS6EoitGgCwDptFpbt+tpHJ0VJkgw6FOSlo6iqAW99Vsd77VvsXXh2K3dvJW9SROSJOJyuyx2olUPss8Fn3ADSG5GS5PwIcaiuOST5YXyQzhNKfH9KaKHGSxAhnQyX7fo6pN2G5cIkOpJ6TDQA/vzwKNZQj9jJOcmgg629S5S0fDDRwO36F5o4xUijqwHJoult4NQ3tuONkhOKhZpWPnATABCJBIo5Z0m1lbiqS+kO1GotmN7XYv3+Wuz75kfe92tAlvMjhFJhF320Fp0SqtySDNFYMuVGtLZ3wdRLD3NCLMYOSsLa/9Syelm9UeL7U0ILTdgNIqSTobWtE2+X1kVsNrx3oqPQ9GAxxgqWbU7KtODAwjxsnZON2bmpvMd7+ObrMW/LkbA1XADhiVNIGj1cpM4ZA+e+0f0xPz8da2dmyU741WqANY+6c1LUaB75z8NniMvBlc6JWDpFvQWTuRYbHx+HNY9mwRTPni9G8ryRolTYpcshrTz/8dvSMH3s9Zh9x2BMG9MfOUOSEROtxfz8dKybmYXEOF3AZ5IMuoj3bFPcUIXdILKj4nss+OdXxO83xevw+3tvRHLv2KCHDpSAvTGeHo+MG4jUlHjJ36eoqgHLdlX7GIIWYyyWTsnA8t3B0YoQIlanRWx0lI9bncRz4nC6eL1GjOfmwMK8sLwPvMN1G0vrRYX7AGDNo1ke/Q21mkf6N4fkQmml12B6zpjrYG3rQPPFTpjiY2A2xik6fzD3qtSEYbmsnjGaU2QQuFwUUduEslONANzGXfbgq6Mo4mpBzvpNjZcgsmH/KSzfLZxUyEc4Vaf4w5ajAUCVvA22cx2qaw6qnD8bbmGuVBTkpQMQ/91JF8ytc7IDwh+hypHhgiv0NXUUfz8jBrXbMyzIT0dBXjrnb+RwupD72j5RoaNe+ijckpqET75tDPibd9uDpHh92FwnOTBewlAsIu/OvhVarUZVA42iLtR4iRDjZceRs1jwD3k7SeaRVFIhU+qi5/25+kY7th76LqDRnRhDS+w4/N9vtV0S5dlSkkSDDm8+kiW73J3U27DqZ6NhTrjikWuxdwV4ncLB0OW6piTXOhg7e3NCLJZNvVLd5j+m4morUY8jxmid+5Oh+K8/fsLr/dNq4FM5xXadws0Q5WNP5TkUbD0iqlGiXDQAjAYda5l2ONz3FDKo8RIhxotSO0klQwd8st4FeUM5j8/2ObZxAtyGlhzjh0uzJRSlzxooZ0yWnmzEY3/9XPB98foo2DsdguOCgmMLBczOHlBXd+au4X1w5IzN5/5h7j8ArP2feumj8fDN12OCV+dmKc/4FY9MFpLiY1BcbcW/j57zGYu3kRVuyJ3X/I05JVDymaSoBzVeIsR4EcpnEAtb6EAMQi7fXvoo/OzmAcj3mpxJPucNl6Elx/jhOr/Y/AolUHKXV1TVgIXvV8J2qUeBkbkJ9xwZEthynILJgvxhmPuTIfiivllQVFJOng7JIu6fbBoOHhq5uUmTM/tiT9V5xZ9fS4Tf99cCtKt0hMBU4ZC4oUmQUw3hcLoEy1AvdjqwobQeG0rrPYv0hAwzUfkqgwtXpMgZQ4vU+GH+/sKOY8gb3hcx0VpeOfJgGS7J8TG4b3Q/nx23XPj0f+TA9vtHGpMyLeit1+GxDcIeKTVYVXICWw+dxrKpN+L5iTfwvldOBQ6J92Hx9mMeGYVQl9MzhlPN+YuyjrOn6jziY6Kgi9b6eLfidFpc6pbeKDTS73sKP9R4CTITMsyIidYq0r23vrFd8mfFlqEyZbrP5adL8hwxhhaJ0eRPs70b2Sv34tVpmfjWeoFIjtwUr1OlK7FQkqcUmN9ETcTom4QjjXZ1xPBIsbZ1EnVjZjSO1Kp4a2nvRvmpJlzo6GbdAHh3albTgCHxnIrB3uUAuhzopY/GxU6351GO4cJAWwBIIxjVanKhxkuQKa9tUsRwAYBtX3zHm5fCh9iH2gV3CEKqHDizI5Wq3dFs78LTmysQE0X2XZfec6MnobW+sR2bSutkq4FqAGz74oynkkgp1NAz8WdDaT3GDkoSJY0fToSLlPvLH1TzCkhGaTVYOmUEntlCpvgrhdKaRuw4epbX+yg0TjmoWWHEGC5KES73TTjjHXpM6aXHobom/O3gadb5MpySoanxEmTcmgPKwOcWFYqFi5FJZ3ABkgyARIPOUzYtdyfU5SCbMs0JsT6/S0HeUBTuOynLiFErBBOs3WHB1iMohMajoxJJiFVtVgPS658UL/7ZEsO+b84LGrtqhUykeE5DBZeicTjkCYULYj1oDUHy7JFAjZego+xD4r/wMU0I/Rdpf4vZSWgEKIH3Nw7GTsjbWGKI0mowPz8dBXlD3e5Q2yUs330cLfYu0ROxWGNDaLIM1u7Q6QKe2VKBddrQTzxikduEUEmErr/axuipRrIck2IVQoXB8BIqAVcLhD2VDViys8qnksu76ei1ZMhI9aC5oK5njxRqvASZaIUbMngvfGzdqhm8Y+EAsOj9Y8oOhIeW9m7PLjAYO+hZt6XxuvWZCT0uJkrSYsj85iQ7OPaSbt/JMthehXCYeKTA9Ll6YUdVyLqBA8LGptrGaBd/hbyHnUfP4UWFWxKESw5JosEt/S9G52XlnmrWDuHN9u6AwoRIM+7FIteDFg7J0NR4CSIOpwvbvjij2PG83aJC1SpMzsqi7cdga++WdNNqACRJTIRlJj21d9CJBh0K8oYSvVfKYsj85tz6OKmehF6unQ3bZCmle7ZUwmHikcqkTAvyhvdF9soS3vswyRCNlnZl8ycAdq+eP+PSTCHTHPKmyd6l+HUOZQ7J0ikjkNJb7w55u9xzSrO9C0mGGLS0d/Emle6pPMdquPgTrITnUKOEB81qu6TQaKRBGzMGEXf2tnJVE4xblLRaxQX3TkWq4QIAK+7LhMUYKzr45T3pMUaDKT6wcZpcXnvgJlE7zUmZFpQvvgvx+ijB9zKu6OJqK2vjxNZL3VhVUoOxK4qxp/Ic0c6GmSwBt56N2a+xYXxMFNHYxBIuO2gpxERr8eq0m6BBYBCWee2V+2+SdJ8K0drejeJqK+97orQa3D86PBKjlb7OjGEWbCzGWDyemwZ9tBbP/+srPLbhcyz451dYvvs4/vh/36J/UhymZV2PHBbtHYfThSU7q4jO453wHKmNcUlQ4r4ItXFOjZcgotRE4t15FwhOHDrRoMPamVmYPLIfccdo5j1siXOTMi1Yes+Nio3PYoyV3C02JlqLPz80ivc9SZe/P4nOTWt7N54h7GztXx3CdM9ePWM0ts7JRuWyiah8aSKWThlB/oUIiPQqDMYA9jf2zJe7Jou9T0nRgGxhm5BhVvCs0pGSmM9HqAyzGbcM5Nw0CHVbP1TXLMpb7J2YfTXhcLpQerIRfyz6Bv9UIAJgUvjeEgsNGwURpRaMwkeyfCpGgrGLdrlcngmZWThIFXLZEucAd0WQXOL1UVj36FjcOiQZh0+3YOfRs5IqCCZlWrBuZlaAkqt/KKistklxQ9G/ioXNzZ/SW5mJglHcFQp9RAKTMi2YkGHmzDviuk81GkCqrjhzrcpPNSF3aArn+9TWeyFGBefBhAwzNkqUTJDKQFMc56aBCYlz5XJJnR8j2TvpD18+pFSUmL/loKrxsnLlSmzfvh3ffPMN4uLicNttt+H111/HDTdcUans6OjAr3/9a2zbtg2dnZ2YOHEi1qxZg759+6o5tJAgNzGTK5ksGLvo1ks9PhO2/8LB1pvILJD8pkSiqr3TgafePQytRuOjESEl8U5oMQTUndD4jk16jRNio/HQzQOw4UBgfF/ImIxEvBOw2fC+psXVVmwsrZdsuHgz790KvDb9Js77yz+3i/SUjHE56UYzNh2slz1ONcT9QmGYNdu7eM/HGJWrir9F7tA+Ps+t1Pkx0r2TDGqod3OVoQcTVcNGn376KebNm4fy8nIUFxeju7sbP/3pT2G32z3vWbBgAT744AP861//wqeffopz587hgQceUHNYsnE4XSirbcLOo2dRVttEHBtlJjRAnCt7dm4qts7JxoGFeayTJTOZkByTydKXgruvyxWYheO+0f0xP38YShfd5RPy4Bqv9+eZ30MO7V2OAHGrBgFXMt+YmO/EFj9Xc0LjOzbJNU6Oj8GXSyZg6T0ZWDczCxaOkMrVnIjIRpRWg3FpJnxUxZ+rIobWS92C9xdXaCvp8jPIlq8DuI3Ln96oTNhJjfuVeW7Zco6Uhgk7k4YoCj+pxSPry3H76/s814Z5dsSg1QBjByWJHW7Y4XC6sGyX8urd4bABCmpjxh9//BHXXXcdPv30U4wfPx42mw19+vTBli1b8OCDDwIAvvnmG4wYMQJlZWXIzs4WPGawGzOK6SfCVUq7ck811u+v8+llogFgiIlyy2QLHJdrXHy7vCSDDisfuAkAJFvhBXcOwfMTh0v6LB9FVQ2qlb8mGXT4cskESQ8a2/UDoGhzTYbk+BiULb4LMTy19FzXmKuBJRXjuoJSHd29IW16yXYdiqutvPOIw+lC7mv7JDejDEZDTqVbBPhzpdv2GDTYOrB893HRx2Daefyh6DhRtZE3chvfhgNK3/daDVD4yBjFlLojpjGjzWYDAJhM7kXg8OHD6O7uRn5+vuc9w4cPx8CBAzmNl87OTnR2XnGFtrW1qTJWf8lkuIC935xnjfWylddxGTn3jDRj/f7AY7jg7u+xID8dqSnxohcbrvi+f84G4H6gV5XUkP8Yl8kZzB3jl4PT6c6pUYOW9m4U7qvB/Pxhoj7HZ6Qq2VyTocnehf/64ye8xirXNeYKzwmFVIJNKI0pNcJ9pIq7bNdBKEQZpdVg2VSy+8y/vD5Y4UHmO7xdWifJsBDCbIzF1FEWLN99XLKBtKqkBptK6yWpal8NOS9Kfwf/fMtQEjTjxel04rnnnkNubi4yMzMBAFarFTExMUhMTPR5b9++fWG1srt4V65ciZdfflnVsbKpMPLBTByLth9Db70OLfYuFGwL7G3SYOtgNVy82XSwHoclegpIcjYAoCAvHVsPnRG9q7PJ7A3EBpdwlJJsKq0X1UyRS5/F20hdNzOLMwFOqlYLicYE6TUOBXzGCZdY34r7MoPSb0nNcJ/UBYIkX4frPks06PDaZU8qqTGrBlFaDR7PTcNfD9QpJrLYSx+NtY9l4UJHD+Ztkd9DSWo7kKsh50Wp7xCO4n1BCxvNnTsXH330EQ4cOIDrr78eALBlyxbMmjXLx5MCAOPGjcOdd96J119/PeA4bJ6XAQMGKBY2CsZiKsSC/GE+MvbN9i6YeulhTlBuoZKSxKVBYGhCDnsqz6nawM4bUheww+niDQt5u+MBcLZimHHLAEnerWC4+9WAy1O1dEoGan64iFUlJzg/+9T4NCyeLD/3CeA2oJjrqoaKsRLhBT7Dz+F0ofxU0+WcMxdyBqcg2ysfKxzCg0o3a0wy6Dy6VKHAEoHPIBtyw493Z/bFf+ekqXZPhX3YqKCgAB9++CE+++wzj+ECAGazGV1dXWhtbfXxvpw/fx5mM3vCml6vh16vTn05qQqj2qz79OTlyp3AG04pC3hSpgVrHh2DeVuPiKq+UEpaXoxwlBKw7Y7ZJn0hzRz/UIF3vyT/3Bgp7mq1mj+qCdfC1WDrwDNbhA3kv3xWh1HXJwm6o4UWaaF8NDVUjJWouhAad5RWg9yhKZyl2aEODzqcLhjjYjArNxX/PnpOkdy1lhAZLQB3X6RIREz40R+LMRaFj44N299BVePF5XLh2WefxY4dO/Cf//wHaWlpPn8fO3YsdDod9u7di+nTpwMAvv32W3z33XfIyclRc2gBBHsx5eNStxOXutkX0AZbB57eXOFJRBObKOj9/skj++Hx+mZsOniaaFxKLqxihaPk4u8+ZVswzAl6ZA1M9P8oK97GENfiMSs3jdfjQHr8cEapLsNLd1ZhYqavUex9/7KW4ifo8ci4gUhNiUd9o53V08U8L2sedScZsuq+QLoxM3WURXByZ8ufa7R34rresWixd2LeliOshp/7OXd7YcN1AeEKB44ZkIgjZ2whV2EVSziGR5Qg0aAj9mJFiqSCqsbLvHnzsGXLFuzcuRO9e/f25LEYjUbExcXBaDRi9uzZ+NWvfgWTyYSEhAQ8++yzyMnJIao0UpJgL6ZyWVVSg62HzuB392QgKT4mwEAhrYr66Y0WYuOFQYmFNViLM5soG2dOS1sn9lSdJzouWyzZ31ic+5Mh2Fh6CrZL4nvsREq8XSl1Z/8+PCSVLNa2TuLQXMHWIyiEBpNH+uYMNV7olJVsuuurBvx20gjOSV7oewgZTqtKTmDrodNYNvXGsFtQuZ6jFns39n3zI958dAyS4vWwtnWg8UIHPq9rRsnxH0IyVj700VqsuD8T1ycZghJyC0aYjzlHSbUVG3gEBe+5yYwvT7eI0ucKF1Q1XtauXQsA+MlPfuLz+qZNm/D4448DAFatWgWtVovp06f7iNQFm0jZ6XpjbQt0y1suZ+i/9Vkd627OPyFUiuCUEgtrMBZnth2EEp4CtlABl7E4Pj0FH1SS64tEmgKuks8Ncyyl8ycAwOkCntlSgXVa973PGEk7j56VdVw+TyTJ9yD5jta2zrBrFsj3HDGKt8t3H8eBhXkeccCQqw1z8NitA/HQzQNUPUdXjxPvlNVjf82POPxdCy50SJPEYMPfGGqxdxJVaGkAHP6uFZ/9Ng+HT7eEXQGAEKqHjYSIjY3Fm2++iTfffFPNoQgSKTtdIRpsHbx5Oy745q14K4EKXS0lF1a5Kp3Mo/XLu9LhcDpR+6Md5aeafGLlbDsIJTwFM24Z6EkC5dvdWG0dogwXBjXctWrt9pR8bq7rHatYGIoL/5wtJcZferKRNUFY6e+hVL6ZEpDmhhXuO4k3Sk6o3ildDmr3oWLT9fJGTidrOVo7zDU6fLolYvLrvKG9jS4TNr1IgkCDrQNvl9Yhpbce1/WOxYQMs2CvIqXjoCRGkyEmCu1eon3eMBoQ//zyjM+Ye+mjcEd6H8zMHoTswYEKuUp4ClJTDESThpQJ+8nxaYrvrouqGrBs19cB+SJKhCKUaPEAuGPyJAnTcvH3lCgx/sJPTnr+n9lFG+NiFP0e4ZbILdRZm2FTaaAHOJxQW+aepHpVqDcTF0p5KCMx6gBQ48WDGA/E1YB3nJ+ZcA8szPP0gPGvGlAjDsolusbof0zMtFxJdIzXAxqg8SKT6NjFqgFxsdOBj6qsKDvVhNceCOw9o8ROu76xXbXd5L8Of49hfRPQ2q5MeTxXSby1rRNPb66Q3Imbwfu5kZP4Ous2dzJ/6clGyWMhxT/ZWskqJGYX/URuqswjsRMOC43D6cKOI2ThNqkaK8Fi6RTufCW5dPU4sX4/WfWqWONUSc9epEYdqPHiBWm35KsN/4qMnCHJeHFKRlC0I4RE19geZEazg+/BbW3vZl2c5XjYNAD6Juix9dB3qhm4zfZu/PpfX/m8JjUm7nC6sGj7Md73LNp+THYoQu5zk2jQIf26eFXaLrDhP1lzqlMbdOjucfq07BCC2UXvkJlLw0U4LDSH6ppDWsqsJEnx6shuAMA7ZfWcoSIuSI1TJTyUkZZf5w81XvzwX0xTeumxYFsFfrh4dTysfHhXZARTO0LsucQ8uP6uWGanLVXe/5FxAyWJz8mBLdGahPLaJsHyyNb2bpTXNiE3XV7rBzYjlDRx8JbUJNZyYaXhm6y5jGgAKNwnTmLeBbcRqo/WoLNHmW8VTgtNOHh/lELN73K6uV30Z0iNU6XGHe7l0HxQ44UF78V0dUnNNWG4AIEVGeGKmAeXzRU7KdOC7MEmlJ9qJj6OKV6HaaP7o9vhFDVWpfBPtCbhYC1ZCOZgbaNs4wVgN0LzM8zIXrmXV+9j7/EfgmK4APyTNZcRPT9/GAry0j2GTc35Cyj8pFbwnEoaLkD4LDRivD+m+BhZWi+meJ2qEhZqerIGmQzE7xVrnCox7l/ckRrW87wQ3C1sKSiqapAsMhbJvPxBNRxi/Z1BROyD62/sFFU1iDJcAPdOekNpPdGipRYNtg4UbDmMstomoutzrvUS0XFJ3yeFw6dbBBevYNxqZmOsKM+Vw+lCWW0Tdhw5iw37T2HX5TDQPSP7IXdoHzWHCn/7ROzY1WZcmgnmBOFwS6JBh//OHiT6+PH6KMzOTcXWOdkoX5wPizEWSptsGqifrPvznNSAa8mHGOOUCX/L+V3erzgb1vO8ENTzwgGTEHUtEk5VDWyIzVvxNnYi/bp+VHUeH1WdJ8qDudRNlqvRLylOqeEFoJR7u+DOIciwJIjuMBwfE4W3fn6zTy8gPhxOF2+YiOnXpESFFRerZ4xBSi992OpuRGk1+N09GYJ9ybp7nOhykOcLMax7bCzuGHbFQORKqOZLsPb+W6i6PzZ6nAAAIABJREFUbsdEazHnjjTBaiMpOW1KJJo327vDep4XgnpeOFC6ZFMDIDk+BqseHoWlU0Yodly1COe4NvPgCk07bLsrtUtxgwWTB1NU1cD6d4fThc/rmoiOddtg4ZAR44nYefQssecHUM4tnzu0DyaP7IcDC/OwdU42Vs8Yja1zsrHm0Szez/354VHITU8hWqSKqhowdkUxVpXUcOa3NNg6MG9LBaaOUs8LsnRnFcalmXDf6P7IITS6gg1Joqu9y4E1/zkl+ti/ee8rn/uaSag2G33vJaNBh0SDjvUYZmMs1l3u/u7/uWB6shZPzsBT49MCPDBaDZA3vA+2zsnGgYV5ksbC9buIIZzneSGo54UDJS8qc9++Mi0TkzItcDhd+OuBOlmL6Py7huJvB0+LKkVMjItGK6FUfThUNfDBPLiLth9jTUrl2l1F8sPKBlcejLsiRPha99JHI1tg50XaaoKNcWkmWXkL/rkAbHkp67RZWLar2qeRqdjdrBjNDBfcbQF+cUcacSmsGJRKolYTq029UON5FkVh/4RqIbmCpVOuXHu+akY28UYAilZaLp6cgV//dDjeKavH6eZ2DDIZ8POcVMREy/cdML/L26V1ktpchPs8zwc1XjhQ8qL6a6TI0ZTxnpRHWBIw93LVDN9xmMfutekj4XS6ULD1CGeeAbNYjB2UhLLaprB1XQNXHlw2N7//b85MUjXnL4RquIrDpw1BaqSNHZSEQ3XNnNeXsw8UYQVUlFaDaaP78/ZX4YLUvS9Ubi8EU1Iu5llssHVg2xdnRHxCHGWnlEmiVoOiqgZZ/aCE4BJtYwxXEqmEF/59DMY4nSdcyDwfQs0+GU+O94ZIjlRB+akmlNU2AXAhZ3AKHs9N470vmTYC/kYOW3PPHy50oNnu1oOSUrquds6P2mhcJBr+YUxbWxuMRiNsNhsSEhIUOy7zgMiNay+dMoLzhhUj7awB8PcnxuG2ob4ucLZjaDW+SZDe3Xev6x2LxoudeHZrYLyaOeqT49Ow66sGSTvtUMEnfy9HQjsSWD1jNO4b3d/ntbLaJjyyvpz4GGzXl3kG+H43izEWBxbm8U7IpGPxr0wJ1j23uuRE0MvfhSi4cyien3hDqIcRgBp9p/jYOic7wDAXc29730NS5wHmzhYTaiqqamD1CicadKzimQB7GwGtBrhrxHWoOtumeBpDOCSBy1m/qeeFA2/viBQYDwafpc3sGJftqsI75d/xHs8F4MT5Cz6JbN7H8F64xw5K8jTaqm9sx9ZD3/lMzhZjLJ5iMVAYyX22po5y+m8EA64y12BPtiTE6aKIk2lJYPMSipW9Z4QKH8zqj9z0PjAnxMLpdAlOmCTJ3UJjYZ6VT39zZ9AbxDmcLmyS4BVSm3BMopTioZILmwdRTOiXmbeeHJ/GOq+RIFa+n0vVGvAVz/Set4urz+PDysD8NacLKK5WthN3uG9ESaHGCw9CyqGJBh1a27tlZ7OfbyN7GLlEj9gW7pwhySiqamCNCzPNG1f/bDQaL3Z6XJQ/u2Ugxv+R3R0rtf9GKBEroa3RuA0Lrn5KUrlvlAUDTAYA7ut0S6oJ//XHT2R79fi0IaRWI7xXcRbvVbjLghPj2JMh/SmutvIutnxj8X5WYqK1QV+0D9U1h52EfZJBh+zB4WO8MF7Nv5fVCYoekiDmfmQzzMWE9JnzrN8vr8eSkHw/8xtZ2zrw+w++Fjzer//5FaKjjsEWxHsvb3gfzLljSFimAEiBGi8CeHs2rG0daL7YCVN8DMzGOIxLM6G42hpg3JD2AWJrmMcHl+gRW8jE4XThhR1VvA/s/H8c9fn3it3Hed9P+gCHS56M2Moilwu41OXAgvxhSE0xeHooLd8tL+Q0wBQfEAIQMizuGWnBl/UtPkmo3pAYyHJl+0kX9X98cQYvThHOS2Ebixo9s8QQjgnc08b0581DCiZqhFzFGBEt9sC5UUozTaXkTNjuFym/kbvlhLKbJD6McdF4+OYBYenRkwrNeVEAKYs2n2uRDa0G+Gb53QEZ6mwPTqJBh26HE/ZOdR4OthwLORUparHz6FnM33ZU+I1++Odx+Cf5bSytg42wagsA3v3FrcgdGph8KfSbMectqbZix9GzPhU7Yn5b5jgfVTXg72WniccthufuSsdzE4YRjyVcDFyxuUHBJNTPTziEXONjolC5bGLAPSJ2/lQK/xycPZUNeGZL8MchFmaTtCA/3ZP7GOpnD5C3flPjJQQ4nC6MXVEsygX71Pg0LJ6c4fNaqCYX/weYaxxSEt2URM7CxLcYM0JmG0vrBd2+SQYdvlwygXOSIF3MlVj0S2sa8diGz0V9RgxyO1SHAqUS89UglM8PSbJ2sBgzIBG/nTQ84J7//QdfY2OQ8pWYEK33pmZP5Tneys1wx5wQi2VTQ5v7Imf9piJ1IYCkYR6DVsNuuCjZEp0UNtE3vnEwr3G1G5AqfEaKHAntN/bWYOUeXyVeZrwfVp7DuLRkfPFiPhbkp/MeZ+UDN/EaGUy+kpAgGen7uCiqagjoVq004d5Wgg0mHyccEXp+1CScxByPnGnFI+vLkfvaPqwuqfHMF3cN7xuU87OFaIuqGvDMlsg1XADA2uZO0ucSugx3aM5LCCg7RdYwL3dIMjbNGscqZhSqycU/x0JoHFx5MmwhE1N8DFbcl4nJI5XZCcitGPvLZ3UYdX0iJo/sxxviWTdTvkiamgTLQ6d2Wwm1Qk5yc4PURCjPTC3CMRfI2tbh02vOnBALQ4yyCfZsOi9smlGR3GLEn8Xbj0VMEYY31HgJCWQ3yZiBSZwqjMGeXEzxOrw6LVCfgHQc3u/jWkyb7V14ZksFnvo+0NMklUmZFjw5Xri/CBdLdlYB0GDeFn6httJFeWGVy8EQbA+dWvel2jlV3on5xdVW/PvoOR/NmSSDDu1dDnT2hKareLCf90hQXuVKZhdDkkGHx29L8yTokyjsBnPjqJbOizct7d0oP9XEmpcXzlDjJQTkDElG4Scnid7HRTAnl4TYaJQvzg9QeryudyxMhhiiY6T0cvdCIVlMvT0ecnE4Xdj1lXS3aLO9G0t2sldtMa+9uKMKecP7hmUmf7A9dGrcl3JVfklhQnM5Q5Lx4pQMn/u8xd4p2IhQTYJtTIxLMyExThd2ZeRKo4/WoiBvaMBGg+9ZVtuQfDDrehj0UcQKu9+3XsJ7h7/HhQ7yIgJ/ymqp8UIhIHtwskcjhgshrQcp5YJSmXVZaI+1simO7BZyOtyjJF1Ml+yswsRMi2zvhRKLt/cOnI0mexeyV5aweqZCTbB27HyaM3JwOF1Ytos7p0ot7SF/SfnbX9+n2LHFEgoZ9yitBrNyU8NOeVhprG2dokNyahmSSQYdVnKo77K1ONBqNcjoZ8TjuWnI7GeUmdMWeck71HgJAVFaDV574CbeUj+SRE+5LdFJWb23Bn8rq2c1tkgbPX5e34Q7buhDvJg227uxbFcVsgaZYE6QHoYJ1uLdbO8OSwXiYO7YSUUZxVC4r4Y3PBCMnJBQJ6+q8buSUJCXjk0H2Z/7qwmxc4TSG8f4mCg8OX4wCvLSiSQ22MKnuUPkeU2itJFXuxN5I75KmJRpcbdrT/BdXCyXW7mTLIBcLdGTeFrFS0X+BOZ+KMUspu+Uf4cF/ziKR9aX4/bX90nKig+2uz3cKm7kVFyRYjHGqmK0FVU1EO/8i6utip7bG6UNYFI7RKsB1jw6JmTGMLPJUuveCYOUMADi5wjvCjUlvsLrD9yE+fnDiAyXuZsrAgxpq60D71V8L2sM/7O3JuKqjqjnJYTI7YbLdwwAXsJq/O3jgwGzKx6XZkLv2GjR8dkGifkNbAqdahGqyhA+1PbQPXdXOp69S3jHKBaxFR0bS+sxLs2kykKvpAG8dMoI/DwnFYdPt+D/vm7ApoPcooGFj2QpVnknFWaD5F9NJ4UkQzQevXUQNF5tMrx7WY0ekIgtn5/GZzWN+PTEj6p7lAG38TF2UJLozylZofbLfxyFVqvlvdYkkhRycCGyWr8A1HgJOVwNBZU4hvdrN5h74YUdx3xUWoOFISYKcLkfwCitBg+OvV5yMzwxD5jD6cLy3ccF3zc5sy8O1jai9ZIyJZdK7tSVKA9WsxT4llR1qqrEhmrU7Ls1Ls0EU7xOkWcnpbfe08MpZ0gybh2cHHbK1P5MyrSgt14nW+Cwpb0Hb35SCwB4v+J71u84+47BmH3H4KB1gncBWPufWswX0Gtig23j+G75aXx4TJwHw+kCntlSgXXawI0Z8/yXnmxU/bcIt42XENR4uUaYlGlB3vC+yF65VzABVWnauxx4bMPnsBhjsXTKCFyfGCfpOGI9G6QL4M9z0vBYdioe+6sy6rNyd+pKtQXwxn+iZbqN+2vT3DPSgg0H6ojFt8pONSI3XfkqBbEGoJperyitBtNG98cGBdRc6xvtPv9WwvsaDBoV9mByVYox935njxN/enAUvqhvxht71U0aXlVyAjeYe0kyFv0TaeduPix5HP7Gd7AMOG/CUd+HC2q8XEPERGvx6rRMj2hbsMNIDbYORcpNpWjLKPE+EhLjomVVhghNWHLKg/09dAV5Q1kXzTEDkkT0a1FnkZVqAKo1+eZnmBUxXjaW1gUkZirhfVW7Z5S/0SUXtkoxtns/WDacEl47uR3KvY3vULV+iQR9HwZqvFxjMCGEF3ZUBd0DoxSkD1hx9Xmi99U32jEuTZndeuulHhRXWyXt4kgmLG/JeLmTLdeiOXmkBc+dH4o39srTIpJDi8R7U63JV6kKE9ulHpTXNinqrWLrTm+Mi8YTuWlEFSwkx1ejZNrbW2a71MV67wcr910Jr50ShvMPFzoUFZbspY9CfEw0frjQKXi8UJTky4FWG12DTMq0YOmUEaEehmjYeitxsafyHD6sJIs9ryqpQYu9M6DySypSKo7ETlgNtg4U7lPPnf7sXcMEK9aSDDrckmpSvD+VO1dJvPx6kkHHem8o0UOLpMJEH0VmJJC2ByGB6a7sbbgAbiNpVUkNspb/n6wqEkZnR02sbR1B79PGhlzjQwnD+bresYqW5l/sdOB6k3CYXoPQleRLhXperlHMRml5J6GG5AFzOF2XZf3J0ABYvvs4fndPhiLt7aXs4qRMWKtKanCDubcqiZ0kWkRjBiYG5FApkWwqdfJmW/zEthXgC79wJT4nGnSYdVsaOnscWPOfWoKRKrNAOJwuLNp+jPc9tks9eHpzBZ67ayievUu4HNefQ3XNisjw89F8sTMsekqRGh9c94gc75y3yOOHledEj52Pw6dbMeeONHxY2cD6O4dbgjgp1Hi5RgmmQq8SiHnADtU1i6oMYdzXSfExWPNoFmsfI7GI3cVJ3fUt3l6JS91OXNfbLRneaO9ULOeB0SLyL5PVatzu/H3f/BjwGSUk+6X+Fq3t3SjcV4P5+cMAiG8rQGLo8CXYlp5sJDJelAq1ielO/8bek3i77DRe41Bw5ULMtUiM08F2qZv42WEWbFM8WYsRNWE8ukK5Q3sqz2HJzirOJHopsgT+XavVCH1urziLssV34fDpFljbOtB8sROm+BiYjXFhmSBOAjVerlHkdlwOJtNG98OfHh5N/IBJXfw+qmrA3ZkWrH54FH75TzlS2+JcyA6nC/tPBBoCJLS092DBP44GvE5i7JEkeXov1iXVVmworefNQ1BCsl/O5M14oyZkmHl1MdiSRUkNHa5cISXafohBbPiptb0bT2+uIBbBBMRdi1m5aXij5ATRwu29YBvjQm+8vHRvBoqrrZzG64QMM+ZvO8IaivbXoGLzzmk0gIvjR/HvWu0uzY9RNCexyd6Fw6dbIqYMmgRqvFzDKClApSYP3jxA1CIodfH7e9lp/L3sNCzGWEzIuA7F1T+IPoaYHj8OpwuF+07iL5/Vor1LGY0ZBiEPCJuXwZwQi0fGDcTAZEPAzmxcmgkL/kFWKSa3bJnxCkoNJbz8QTV663W8n2fGuPHAKbRe6sbbB+tl909Sou2HOKQdR4xhOS7N3Z5DaH4wJ+hRkDcUN5h7sYbVAF+Vbu8F2+F0hcwL3EsfjT89NBIAOI3XpzdXwBATxfuMeou8BcoS2HkTnpdOGeHzjEZpNbh/dD9sVKC6zZtIKoMmgRov1zjMg1a4ryYsm7D10keL3qnKXfystg5YbR2Yc0catn1xhlgNmNlxzrhlAD6sPBfgzfD2dNQ3tmNTaZ1qXXv5qpI4vQxtHVhVciLgWBZjLMYOSgpIChVC6mTp7RWUspg12DqIvRKv7PlG8D1ijDGuUJsaeQWk3en9EWNYRmk1WDY1g9cgA4BlU29ElFZDpPjt/1wEs0+bN730UahYOgFRWg1uf30fr3otyebC+3dlvHNCTT2ZfDv/JrQTMsyKGy+RVAZNAjVernGYBdWm0iJacOdQpPfthZR4Pb6ob8bbB+tFLdh/mD5S9E41SqvB1FEW/OWzOrHDBXBlt/1hZQN+N2UEfvM+f1Ikg/HyDtPbCGQWLQBBF5wC3BPqwve+wh3D+uC63m4jRGxlR4Otg7hyyxs5kyXjFVy0/ZjEvlrKx/BLT/5IlB8QLOE5kjAVF2IMS8YgY7sWiQZdQB4NieI32znUUoHm4k8PjUJMtBZltU2KndP/dxVKPucyjN0eL73oDQMXkVYGTQI1Xq5hgqHgmDs0BbZLXXj+va98XclxOtyenoLdlQ2cC+lT49Mk9XYpqmrAWxINFwZmUvk9QXsBANBFaVgXEcbtHEreqziL9yrOAoDisXQ2xITO+GCMgP/dewKr954UZXDlDEnG+xXfKxqKKPykFu8dPotlU4U9KEoIzwlBEqbiQqxhyVyL8lNNKKttAuBCzuAUZF/2MigBc45VxSckeZS48Pfm+HvBlAyn+P+uUoUy3R6vGxWZOzQAlk7JCHsVZ7FQ4+UaRW0FR2YBa7F3Yt6WIwHnsV3qxu7KBjw5Pg27vvIt4TPF67DivkxMHtlP9HmF9FI0cCdNdvQ4iVzBpCGjbgf7GcOtkisYhgsgXjOiq8eJd8rqcbq5HYNMBvw8JxUx0VpEaTW4dXAKXASCeQwmgw5ZA5Pws5uvJxLaE4O1rUN00quaeLwi7x8j9mhK3YVHaTXIHZqC3KFXBPYYDR2uEFFKvB7QAI0XyargorQa5AyWFg4T4oncVEzIMAeMQalwiik+UGeI9Nhs7+PzeLGRdNnz29LuWwk1dZQFy3eHd/8sKVDj5RpEqoLjTzP64v8IVWtdAF68ewSW7z7Omwi566sGfPqbO326y8rZFZQLuIBdAJolhSEoJPhXTpCwck811u/37af0yp7jmHNHGhZPzhC9M25u78aI3xWJ+oxYFm8/FjYdeK/krZElf/MZlmLaDLB5btmSc70hWTSdXGU5EmGO9lGVFS9OCfzucnPkGKZn9ec8NpcHUAOgb4IeTpcLO4+eZdUWmpBhRnltEzZ/Xo+PqgLnX+aMKx+4KSBc2WLvZG3JooSkQajRuFwK3ylBpq2tDUajETabDQkJCaEeTkghnXjKapvwyPpy0cd/9xe34ql3DuNiJ5k3Ij4mCnYC78bWOdmKuNiLqhpE7UApyjE5sy9+npMm2vBcuaeaNzfp3pFm9DhdrJN2qHn3F7f6eCHCAb4KtiSDDit5dF5IBf3c55CW4M/cGXxVcGo+w1xzDaNULAeLMRYHFuYhSqvxS85nrzZiwln+eUum+BjcP7ofq5dIjOiiw+nC2BXFnIYk4x1nxhwK5Kzf1POiImo3S/NGzE0tdifL3OS29i5iwwUAkeEiZTxshKqRGcV9n/3vo2NF39tdPU6s38+fm/RBpVXO0FSlrLYp7IyXKK0G8/PTUZA3FOW1TZerrtz5N9mDufNTSHVu3H2UpEsr8JWeB+MZLq62shovkzItmJ2bKqv5ZoOtA2+X1uFs6yX8++g5nxAtm86LPlqLjh5ngHHRbO/CxtJ6bCytFyWS6E/hvpO84SYmr+/gyUacOH8hIGQb7lDjRSXEypLLPRfbQ99wOVl0Qf4wFOQN9dzgYmK8zCOxdEqGpH4zJMiNOTP9V6jhElyk5rcwvFPGL3gX/oTv4KO0GuSmpxA1gOQLI3sbG06nizV/TSxsFTZKNiPkY+fRc6yhI0CZzuHLORL82eIbHT1OweN5z+GpKQaPsTIuzeQxYA7VNQcYMA6nC5tKyYoW/nvjIZ/f3TtkG85Q40UFxMqSy4HkoV9VcgJbD53Gsqk3YlKmRVRrACaHwRgXo3hVklJVKYX7ahQV2dPAXfZsayeXOleCxDgd7khPDmtvgzdS8lu8Od3crvCIgkvO4PDyukiFtJx3yc4qRZ8Hb4+rks0I+Wiyd3Fq3IRzyxRv/SVjXDR6nC7YO694tv03xofqmolDb2ydvJlQbjgbMOHvG4owhHYxLgDLdn2tSPddgPyht7Z1Yu7mChRVNRB1yJ2dm4qtc7JxYGEeJmVaFFdnlLtrB9y/9eqSE4qK61mMsVg7MwuvPXCTYsfko5c+GqseHoWtc7JxeOkE/O+jY7FuZhYS4/g7OocDTqcL31ovSu7WPMhkUGlkZBjjojH/rqGYnNlX9GcTDTpkXyVS66TPtph+YSSk9NKLHoMS7DnWgA37T2FHxfc+9y3JvBgO2C71+BguwBUPzZ7LTR2V+D3X/3/2zj0uqjr//6+ZYWaAUe7qoKag4AVREU0h0l8iKmlpt91Vq13LpZu0rbVrmlm2Ztpum7mLfa023d1Karcs3SQ3kLYLYpaoiGgigqUyKhdBQW4z8/tjPMNczuVzrjPAeT4ePXaFw5lzznzO5/P+vC+v99dVaCfwDvkK1fMiMSTGhKWpzSkcFtVHXEM9voPUVcKaThSKKbQltTqj2F272Ni7J2HBemxemOymW7F5UTKyc0tkDW1cbeuEOTTIbSeYmRiNvoF63Pu3b4nOQTVKVJoLV9rcdoR8w6L3p8ZgXd5xn4WOXl800RlWcYynY8SiYBsklfn3Lb5SXn3svYN4MC0W2enxil7DO/vPuP07wmS4Ls3gyCf5bcYIbC2qkk24U06ycw8hB9I0d7TZHaHdJVOHib8wGVCNF4khNSZchcNc4bsA8BmknrFmPslfUpUTLr1lOG6O7ycqeVmOxL7LLR3QajVu1xRuMiiysNKNmZRhkUQu7L6BAfj5pBuw9RuHm9f1WCWl1gH+YVFDgBZZU2MFKyGLIcKkx8WrbSiurMPk2Ajad6GhuR1/+NTdoDGHGJ3hV7lQMtEfICvnjTAZUCexRlDjtU5sLKjAtn3VWJwag7AgvU8qBeub2/HY9hLMPNwfZeeaFFfBlhKbHXhsewleX5QsSQjMn0O7qvEiMWItXsr9tyQtBhk0pXKe1AlwD7oulqRKoJRLVWw54UclZzF2cKioUJFciX1Fp2rdnrdSrmy6MUPa7+VKayfe/qYKMxO8J95QDs0NqRHSUXrlnATY7Ha89XW13JfnRn1zh7Mbt+uGwfNdmJ0ov8y/K3ml5/HszjK3EI3cgmJsY42607XzE7H8oyO42iZtA1HAMT5f2+v7vmpCGrH6K6s+OYp1dyRi6fZDojYxvg7tsqHmvEgMtYsRy9tF1Vj41n7c/HIh9pTR95XJK63Bb65PwHwQamBRio+UEJUQLrjk3ghBzsS+nC9OYeLafGwqqIDVZpfdla0Bu9opFdobEGKk/b0r+eUXserWUcjNSsGmBUlYljECjS0dihkuFK7ePVLSR5nluyACaq57jOjGJGXcz08a5Gy4Jxfr88rx2PZDXrkl1IZmU8FJwflFXFBjzewxd5mv54BptZDFcJELMXNUT6ChpQPHaprw24x4r/mDdAhrNY7Qrr+iel4kRioPBQWdK54SoqLrAMyGFNU9lHv96Q+P0Ia9uBCyO3dFbm/I5Wsd2FhwEtv2VeGlOxJlrz7gSljmk//y3H+O4btVMwGAsUuuUvD5npRM1mTCDuFjUgrySms4w2d0DT/5eGO4wlFsHaHZOiP7G1lTY7Hi1tE4UFWPz8pq8M/iM9x/JDO+yEvb/EUlAMAcEohlGSNwuaUN2/adIb6OrKmxfq33ohovEmO12REaZMCtiQMkUQX1XOzzyy28EgsppKjuodBpNXj5nvH4uuISLlzhHwdn6qRKglKJfZdbOvDY9kN4eFos3vyqSpb8kd9mjKBVxfRcPGqvkn3X9c0dTo+Hr+P2fL4nXyWMeiJ0TIrFarPj2Z1lvP6mhmd+EanuFF0YWcquy0rwUclZrLh1tPM+fGm8zBjVD7+eOhwTh4bj4JkG5JdbsFWklgxfLjS1YmPBSeIKKq0Gqs5Lb0OuLs3UYi9UkhsQX93jCuX5uSLSjSxkxz1xaLiiu5hdR2qweVGyV2MzKYiJco8nMy0wC24cQnxOS+M1VF5qluwahWAOMfLy7k2OjYA5JFBSrR6h+MILdKCqXlDDTFJvEZP0PRWOen1RMmv3dn/wjPGBMuJTh0f6TLsl0mTA2usVTIBjzrTZ7djB4q3WADAZdZKH5+we/8vGtPgo/O1XN/q1x4VCNV4kQglpa8oNyIewID0235vMKg3Ohz1lNcRdTrkQsuM+eKZBUfdrTWMrwk0GfPN0Og5U1aOg3CJahZPC9f7ZVJI3FpyEMUCLNgLNhbW7j8veOZqLhZOH8BprOq0Ga+ZJF2oVg5JeIMrLlnf0vOBzcHmLrDY7Vuw4ynqOpbkl2IwJjF3c/cUzxgfK4HJNRlaK1XNHY3FarLPHUU7hKWwrquKspLLDkVcUHqx36wztiZybt9Kzjd1GAsAvzKvNmzcjJiYGgYGBmDJlCg4cOODrS+KFUtLW7Vb+gkEv3ZmItLgoyQyXR94tkcRwCQv2bh9Pgi92gRevtDrd6atvH4NlGSNEn9PVO0EyfkgMFwDEhouc01NMlIn337Alg4cF6/H6oglYlhHvJd4Xfv14qe6nQSHDb09ZDW5+uRAL39qPd/b/KOpcbO8EV38bwCFd/9jmDkvcAAAgAElEQVT2Q4xJ9JT3QuklTSPiA10NLioZWYpCChKi+hqh02qwp6wGE1/Mx8aCk7xKwO+cMAgaeI9p6mc5C5OxLCNewivu4vK1Dl7J9r7E556XDz74AE8++SS2bNmCKVOm4LXXXsPs2bPxww8/oH///r6+PCKUkrYWwtrdx6HVakSHi6gFViout3Qgv9zC+7p8sQv0/Mzs9DjkHjjDO+/IlTXzxjgNSiXHD5W7I6ehLaaabWaCGftP16G4sg6AHanDotyEA7PT471ygvLLLV7htj4C3e9rd5djdqK8SbtSe2mZnjef/jYAcwjKF94LDYC/LJiA53eV8Vb2pavgc01G/vxYDT4sOYsrrfJUT/XvGyiqSzXVTdpzTLuH/h3zppTq4hTdJUzoc+Pl1VdfRVZWFh544AEAwJYtW7B7925s3boVK1as8PHVkeHPX7ZU/ZTkWGCFVHfwiWFHhwZi3vhovPmVt4AbCUzVWY4wxxjnZE6ni/HQtFh88P1Zr11vWLAeG+4a6/ZdiB0/ESY98QRvDg3ErYlm2ZIG2Uq/SdBpNUiLi6Lt1my12Z2Gjc1uw8WmNliaWmEOCcSXv5+Og2canEbNxKHhmPCHz4k7m1PInbQrtZc2wuTuwXRN+K690sZrx89275mJ0bg7eZCgCkO+hAfrsf76O6LXaWjfMyY0YC5KoLynqcMj8extY7D/dB0e+uf3vMcI22cPCDGi02rDio/YQ3VMmAw62Ox2zEwwcwqICvFwktBdwoQ+NV7a29tx8OBBrFy50vkzrVaLjIwMFBcX0/5NW1sb2tq6drxNTU2yXycX/vxliy1NppDDQKNayC9OiwUAIjEwLkEtO4AH02KcuxedVoMJQ8JpE2HnjY+mNTCocwHMEyFTewXX3dHyzNGsXgQKoeMne/pwpA6Lwr7TtUT5UNnTh2PZzJE4UFUvi/HCtnCIhSvXiqqcmZ80yHm80EVJirHOVJYs9Sbg/pQYfFp63qkILDaxnO3eg43SLheeuRthQXo8kBaD7PR45xhies9ImhOyQRnJC268QZIcNmruae204f6twtMemtutuPdv3xLdi9TrjlSNcpXCp8ZLbW0trFYrBgxwb4w2YMAAnDhxgvZv1q9fjxdeeEGJyyPGn7uRAuJKkymqa+WRiV67+zj++sUpAO5KsGwvL4nh4Hk80y5meeZo5BRWYFtRtdsulaQ6i6u9ApsXwZWGZmHhp6PnGrH9wE/EeS5pcf2g02oka/Xgiuf3JaXEPYkL3rV0eGaCWVSIU8ii4Hq/1bUtyD3wo1v1FPV8pMwn0Os02CSxMi3bvZOqrfYN1LGGZKhRkLMwGeEmA+cYYdOfETvGMhLMgowXjcaRK0QRZNChpd0qmSgkVQm2LGMEstPjWFu2cK07YUEBuHytk1XuQUopDaXQ2O12n62358+fx6BBg7Bv3z6kpqY6f758+XJ8+eWX+PZbb2EuOs/LDTfcgMbGRoSEhChy3XRQcWxA2X4yfNi0IMm5M+WDEpVUnlCvD1u4S8oFUul+Mq6fe/PLhYrkvOQsmIDbkhwVJXxj8p67ZKqEOyYq2Ot5kWqKkGC12ZG2oZCojJraOb7ys/HETS3p/v6bp9N5ffckEgnUwtHHGICrbZ3E5w5TsMVDNMe9t3faMGr1Z6yVLloNcOyFTBz+6TKnISdnfyhSqPeP78bTHGLEghuHYNu+atkbOLL10+Jadyjjhy4vzBVffSdNTU0IDQ0VtH771PMSFRUFnU6HCxfcxdwuXLgAs5leMtxoNMJo5JZLVxrKGyBVGbEc8N1RWm127K+sw4qPjipukJGEu0j7MtFBZ6woLU4GKJusm/3+IQQEOJK3MxOjsSwjnjjhL2fhBISbjJzGHZOhKzT36kBVPbH+C+VhdITp+CF050lq2FO/JzFc+gbq8If5Y2EO6fIw/Pb9Evyn1EJ8XULguneSRppZU2MRZNC5vUvZ6XE+2RiQQNpDzBNLU5ti/Zgs11uq0L07TF5oT2PE03sV1ccI2IHa5ja/+05I8anxYjAYMHHiROzduxd33HEHAMBms2Hv3r3Izs725aUJYmaCGWt2HfP1ZXghJJYpVnBPA4cIW5WIcJMU4S466O4twmTAHUkD3XJllEDpZG9XY/DRW+KwaW8FkWaElsBQZEtGFZp7Jez58De1hYg4yiWRcE/yYNw5octD2t5pw+6j8houD0+LJbp3SnX1ra+r3MYNmyqrmE2GEjAZAP6EHcDKHUdp3x2u8DWFv38PfPF5tdGTTz6JX/3qV5g0aRImT56M1157Dc3Nzc7qo+6EY5covHxWTvjsKKUIE/16agy2f/uTiDN04bqAiQ3vMN1bfXM7thZVY2tRtaz5G54oneztagzyEfwjMTq4vEhCjFEhzyd1WBQ+KjnHGAqgqkL+/PMk1F4VvvOUy2s2MMw9t+Sd4mrZhRn/9f1ZLM8cTdwJ/KlZo/BOcTXO1LdgaEQw7k+N6RaqrEy4GgBFp2qRcz0Pz59oaOlATmEFnqDRmaIzTHwVClcKnxsvv/jFL3Dp0iU899xzsFgsSEpKwp49e7ySeLsD/loynZk4AKFBBlhtds7BK8VuUgPgo5JzkpUgUgsYvcdEjxfnJzKqg7pCem+uyZ8AJMvfoMMXyd7UOOUzXkmMDtLz8flcvq0D+hgDkDI8krUiDXDo7HAlUjNBLQqfCeyMzsXlFvcE7K8qLsnyOa6wLYx0GAK0WDJ1mMxXpSyUATA5NgIflZz1ywKMbUXVbtVYTEiZd+av+IWpnJ2djTNnzqCtrQ3ffvstpkyZ4utLEoS/lkx/VnYBC9/aj5tfLmRU0aSQYjdpB3gLS9GhQZduCOUx8by2+mZHA8Xs7SXYefgciivrYGXYpvK9t6c/KsUjNJ9JVQJsKjjJ+FmkUDF3JSdJapzyHa/55eyhC9Lz1V5pI35uVOsAUqbGO0rRqVCA2UNV1RwaKErzyFUZV66Gf67KslabHd8qpHj6xlenRY/nngD1TgL0Kre+hEQBl0rG95y3qLwzrjWgu+AXxktPgdpF+yskg9ffvEfUJMLlMfm0tAZPvH+Y1Ujjc292AI3X2JMrNxZUIG0Dt0HIBZU8qwSubRn4jtetRdWs90oqI79293EiQ5oiMzEav51B9nzumxLj9nffPJ2O3KwUbFqQhNysFHzzdLoow4XOgJaa1GFdHqH9p+vQ2sG/LYgQWtqtyCn0v3CJL2Azfp8gHItywTaPWW12RoE8av584T/lPcJIVY0XCXG12P0RksErpfcowmQQvFMxhxidO2S+HhMmI00Oz5ilyfFZeaU1KK6s8/L+WG12t5+3d9q8jrPa7OgQ0LdKCKnDInGgqt4ZQuQzXqmEW6axw7Zj9YTvLvDxGfEIDWKPcocF65HiEdaiQgHzkwYhlUYgkBSl+pd53oOQyikxbNtX1SMWNilgMn5/MyOetgeXUrDNY0+8f4hVVdk176y74/Ocl55GZmI0Xl+UjOzcEkW7H5PClTQpZQ7GL1OGYtPeCl4liBTP3dYVm+XrDWKqbJGr6Z4d8Pq+TQYdbhnZDwfPXHbL1/BSFZVAxyPCpMf88YOw88g5znDdZ2UWfFZmcca/ZyaYERasJ/p8koRb0soNvtVHOq0GL989jlWbZsNdY2VLSNxfWadIJYr3PSg7iVxu6ZC1PUJ3g6lCZ8NdY1nH4sMM7UHEwFU1mld6Hp+Wkm0G/M3DLgTV8yIDc8ZFY+n0OF9fBitMg5fP7pmLoVEmetdriBHBBh3j32ngCC1QO0AhHhPPHYbVZsfa3dI1lvTE01Btbrdi91GLV6Kp53GXWzoET3BhwXq8t2QKvls1E8/PG4OX7hxL242WDsrzkVNYwfvzuSY+ase6eu5o1uP47gKpztPmEHedJ3OIEVtE9u5iI6+0Bg+/+70s56ZgugfXEJJSyLWwtXfa8PbXp/HczjK8/fVptBN2SvdHuMbi8szRCJSw+spVhwgArfd21SdlxOfz1/xMPqieFxnYU1aDd2RK5pMKtsErle5B/dU2LJk6zEuDwGa3syqgeu7wJ8dG8Go+6EpBuQWpwyP9uvO3UC63dECr1XD2gaGDsqHe+PI078/t3zeQswxTp9Ugqi+ZmCSfxZJU00Iq1ueVs4qySUEfYwC+Wp5OW2qcMjyS2DMmFXIsbOvzyr20YdblHWfUhlEaIWXFbGOxuLJOUtkMSocIgJciN6V23UA4RvoYdd2mfxEbqvEiMXJJ6Xv20og0GXB/ylDeKo+kgnVS6B5EmAy0P794heylphY1nVaDF+cn4rHth3hfw8eHz+GZuQk9wk1Kh+d9uX9vl5DD0bCxpYNfOXt0aCAamttoJ9DVc0e7qfBGmciMF76LpdxiW9RC9vmxGmzbJ/8m5GpbJw6eaaC9J51WwxmikAq5GvMxGYA2O5w/96UBI6asmGksSjnfLMuIR3Z6PPLLLYzq1RsLThKfb2p8VI/Qe1GNFwmx2uxYsUMeKX27HVg9dzSi+hrdGpN98P1PxPkpfCXQXXUPth84w9vzYQ4NYtRmIcF1UZszbiAePnuZ9y64vtkRw+8JblI66O6L+t7kMNjqmttpjciaxlavn5tDAhEWrEdjSwejWJy/dbEVqywtFLbvigpRrNl1zG0375k/JQa5GvO1d9rw1tfs7+xbX1fhqVmjnF23lRRVk7qdBYWU88373/2ER2+JY1Wv5oNrRV53RjVeJERI/gAfovoavRor8unLIUQCHRDm+XDs0NuxdDudmi33MzKHGGGz27Hz8DnnRDZhSDgA/i78/HILVs1NkLyTsq+J5lj45TDY+OQpXGjqMqqZxOJ80cW2vdNGqw7riwakFFzfFV2Igun9coUyEFfdOgrP/ecY47sndG4A2EMuJOrANjvwzI5SFHkkRcstqsbVzgIAnvn4KK512Jx9pkjHqpSFDzWNrXinuFqSuYuuIq+7ohovEmG12bFNQGt1PtDlGsxMMDM25lo9N4Go5TwJfDwfGji8RGt3Cy8tbe20ueXFmEOMaBWY4Le1qBqTYyPw/O0JirjfleIXk25g/f3k2AjF8yVcoSqKwoL1MAZo3bwGYhZLIVDvzd++rkThiUtu43Jd3nEsuTkGn5ZafGK4cBmhFHQhiv/TMjeDdTUQMxOjceu4gV2N+UxGQANR7REAek+VOcSIhZOHICbKhF1HzhOd58OSc14/o8QgX180gUhBmy8keXD1zR1Y9sFhAOxzKp0BJ6ThIxNn6oX3iHNFzoo8pdHY7XZfvK+SIaaltpQUV9Zh4Vv7ZTu/VgMsuTkWn5bW0O5OlEpizCutwbM7y1DPUHZMXU9okEHW58EHavf5zdPpyCk8xSs+7O+w7U4ppU1/4L1fT4FWo/FJnxVfhYJIEVspZbXZkVNYgW1F1W4aH3J7LpTyVGkAbF6UjDnjpPUK7Tx8Dk+8f1jUtUWHBmLe+GjsOkI/LwPe7UWE4NgMHuc8bllGPLbtq/YyZsOCArDh7nF+1xpAzPqtGi8SIcWLIARq+hcjec4X1wmBqbW6r54HG7lZKZgcG4G0DXsFVwIIrXqikFrnhen7t9rsXkm1vmTTgiSvkKcS+DIURMKyjHjifkJcWG127K+sQ/HpWgAOL03KMOHCfFyfpfT44mvk0W20XA26TQUVsm9klmWMwEPThmH1J0dpvUtcUBuvL38/Hf/vT1+wNhulNmgAFBsHYhGzfqthI4nwVUIoX7EvKSCp9vDHBNmLV1qv98oZg0eveyT4LGqr547G/akxrJMIyd8fPNPgthMEHJPN0u0lrOqYdHTF5stg0geg/lq7sxzdXwwXwDfjQSlVXKFEhwYiO12c1LzrRqK6thm5B350GuY5X5ySzfviC+mBNbuOEc9xTBVOVNPVzYuSkXvgRzku042NBSfxWsFJQWPQNexnCNByNht1zR9Li49CWrzyGkFKohovEuGL7sAUJMqnJEjZQt2Xz4MJagGl9FDW7Con7lYMOBKm2SYRJqhd0eK0WEbDT6vV8DZcXKlvbsf92w44/21iEQFUmpDAAEwcGq745/qzto8G4pOVScJhYqtmmPCF9IClqY1ojssrPc+am2cHsHpnGepkUtym+zwSPL26nnlhTDpOSueP+Quq8SIRlDLtoz7MMeAzoXgaKg3NbVi7+7hk2f7+8Dwo6EpyMxOj0deox71vM4vleeJp/JDEskmravgYUSQ0t/PTb5GTptZO/L8/faH4BOuv2j5hwXpsuGusqGdBGg6TyzPrK88q13dqtdnx+49KOc+jlOHCh9W3jYE5JJB186i0SKM/oxovEiKVMq1QSCcU0gRGsbu2Lg/HMUnUJjUAQoP1CAzQuS32VNLcm9d3W6QlubXN5NfkWRHCVLq6drewXVH9VenUOP2RrsoRYYmXQvDH0CUAbF6YLMqlzzccJpVn1hVfeVa5vtP9lXVobvMfw50P5pBAou9HbpHG7oJqvEgMtaj9vaiKKDtcCviIffFJYKSO4RNr9oR6HlJV+Wy4ayzjzmPCkHBeLlU+ixud8UM3icxOFLYrYlIj9gcmDQ3D92cuS3Ku7NwS5ECe0ldP/DF0GRIYgBtFivIJDYdJ6YnyhWdVq+FurupIUiUjwqRHQzO9gKKS+KNYY3dAbcwoAzqtBovTYr2adskBaVjCarOj6FQtVnzEXwHY0tSGnEL+7QEodFoNstPjRLWR12oc5ZKZidFOo2F+0iCkDu/KomdqYc/k9aAWNzbTQqsBXl9E7nliujYuzKFBRMcpTdbUWJy7LN2iZ7MDj20/hD1lZN1vxUDaZFSrAdJH9ZP9egBHCG3yugJsKqhwNh7li1AjRGpPFOVZVcrwttmBpdtLsKeshqXJI9n71scYgBfnJ/rccKHwhVhjd0f1vMiETqvBwslDsLGAX+8hvpCEJaTQudhYcBIjzX14hY9c82pqr7SJEkuz2YFwgkmSj0vVdffIlHybs3CCImGOiUPDJZV7l4qPSs6KKg1nQqnqOKZQbkhgACYMCce0+ChnBVjhiUuyXgvF5Wsd2FhwEtv2VQnKfRFihPQx6pxJ01Im5mcmRiN91ABMeSkfDS2dgs7Bl6f+fQQtbVYvocGsqbGYNqI/UR+2B9NioPUDY0GrAXIWKidz0ZNQjRcZiYkyyXJezx5HbBOPlDoXfBYcOYTB5EjAZFrc5Bb48uTgmQa/M1wAslYOQpA6B4MNkiRHygunZK7a5ZYOPPJuCW/9EkeXdQOjUCQdV9usmPbHQkyKicA3FbWSitkZArRYf9c4RQQR7QBtTgvV5PHkhSswGXWceS8ffPcj2qy+f+FIN2Uq3qjGi4zIkTAY7VJyy4XUOhc1ja3Yf7oOaXHsyYZyCYPJlYDpDxn8/loZIydK3jOXR87VC6f0ksbXC9XVa4yfsWBpasOnpd7hOqbEfD4empkJZizLiMcbX51Giw8r3b74gSzn5cIV/6k2sjRe8/UldEtU40VG5NjN8YmNyqFzsfS9Emy4m9nVLYcwmBIJbb7O4PfXyhg58bd79lW1oBAv1Jxx0Xj4bCzvLut0UO/qqo/LkD5qAHRaDXIKT2FbURWRh4bOyxqo12JafBRujInE2YYW/LP4jN/kl/gbfDxoKl2oxouMSLmbY4qNsu2O5NjZXr7WwVo+LbXB5Mvuw0oitDImIliP1bcloH9IIMrPN2FdnjIVbmLRaiCZcJ3UORyUF87SeA21V9uQ80UlGkUICJIg5F1dOScBQXodXtsrPJnelbrmdox74b/QaoCWdu8mqHQeGiYva2uHDZ+XX8Tn5RclubaeTEQf+Qs7eiKq8SIz1G7umY+ZmxmS8NrPxiPcZMDOw+ecE3R+uYU1V0POnS2Tq1uMwTQncQD2Vda77fZ6i3okSfKwK9RTf8kl4bNWQq0YKTrhsmGzO/J8xHq76Hb9YnM4XL1wxZV1shsuAD8vlKuxdmNMJMwhZyUTOWztYO7c7il4h+v/X/WoiMMc4l8eyO6CarwoAJWRn7K+QHAC5Jrdx92Mn7BgPW31juvuaGaCmfE4MbCJXokxmO5PjcVfF03steqRTGGL8GA97HBv3khn1ElprJpDA7HgxhtkrZYTauhSi3dBuQVvF1V7/V5KSXy583L4hkTpjDUxEgR8cX33cf3/K0VYsB6NLb7XZZEST/FLFXJU40UhDAFavHTnWEENAQHvuCiTQeK6Ozpec0Vyw8UVuoldaMlvWLDeaaj0ZvVIKmzh2RX2xpgIr4aOnkZdAw/FYNrPHjMAt46NdmsYmXvgJ8lbF1AIMbZIqtiklMSX03vJNyTKFKJplPEdZ+LilVbFquOCArR45JbhyE6Pxx/3HJckz0cqjDqNqKqlnh4OlxPVeFEQpRICqd3Rpr3yasxEmbxjtUJLfh+4iayCqjfgGQ507Q48P2kQ7d/sKavB0u2HRH3ud9UN2HzvRLfvYc28BFlKYNl2nJ45LBOHhuPgmQbkl1uwlcbTQodUkvhyqvTyCYmyJcL7whPRv28gys83KvJZT84aiaxpw2C12XHLyAE4dfEqCk9c8gsPjBjD5cG0mB4fDpcT1XhRGM+y3CiTEU/9+wguNPmPhDkxNLaGEDe7BsCjtwwXfz09AKbdNVsoRKoKr7rmdq/FPjMxGlvuS8aKHUcl9eIx7TjpPCtixPvEhn345iKREBasx+aFyUjhocDsTx2yKcNTqRLfyy3tyCut8eobFqjXsubo+DtU3pCKMFTjxQd4hkbk2t3KDV2CqBA3ux3SJG92d0h213ShECkXNrrF3hnKOl2H4so62O12bD/wIy4LyD9g66jMZLiJCU9IEfaR2mO64a6xvBsz+osOkAZdhqdSLS02/6+S9ufd1XBRexlJg2q8+AFyJdbKDd3CINTN7i+Tsy8hMULoQiFSPjumxV6n1SAtLsopUDh2cCitN4L6t+d4DgvW44GbYpGdHkfrbbDa7Fiz65hk3kepFwg6jyk0DgO+urYZ2789wyl8JkYK3h80ccKD9VjvYnj6QpW4u9NbpB+UQDVe/IADVfXdznAxhxhpFwahbnZ/mJx9DWlirOdxUjw7vos9kzeCyuPwVCym8lY+LT1Pm3CcU3gKliZpSr2ps66eO1rSyjW2ZPLs9HjOzuli+mRJkXujARB6vWIH4BcCyxwzAPenxKC2uQ3FlXXOZ/n87d3Ta+wrzKGBWD13NEKDDPj40DnUX21DhMkAc2hQr6qslALVePED/MXrwKcU8bnbxjC+aHzc7KoLtYt6Qp0Wz+O4FjbqGT8zZzQez/VO6hW6G+Rqq5A6PBJWmx05hRV49N2Dbvo9YUF6PJAWg+z0eOSXW1gXfb6YQwMxb3w0/vBpuZtBZA4xYs28MbIkSeq0GjyREY+R5j6y9Mli2xRQ39hD02LxwfdnaTdC1DEb7hoLALxDYAeqG7Dn2AXnv6l76m5Emgy4Z+IgxSuWNACemBGPEQP6euXuUESY9HhxfiLmjBuo6LV1VzR2u73b5Ym60tTUhNDQUDQ2NiIkJMTXlyOI4so6LHxrv2Kf5zn5uU5EpLuo9349hbPHEVU1QlWJME26Uuhx9AQ+LjmLZf86wnncxp+Px53Jg91+RuWLAOzPWA5RNyb2lNVwJvqGBgVAo9GI8jxS4+rBtBjMTDCjobmdte8P30aIfJFS8dcTru/PYSxyS/tT12hpasUf/nMMDTyfP/XMTQYdmn3Yy4gPESY9ip6egfQ//8+vQ10PT4vFyjndzzAUgpj1WzVe/ACrzY6bXy6UpRyTjsWpQzE7MZp2cn303YP4rMzCeY7s6XH43eyRbj9jm7SVXDS7K6RGbG5WCm34gvQZy7m4ul6LUk0OPRfviS/msxpDYcF6HHx2Zrd10ZN8f3y+YybDt6fx8LRY3DJygKIbRaG8vihZcIixOyFm/VbDRn6AHOWYbPy9+AxShkfSaoYM72ciPIv7VXItnP7QudnfIUmAZNNHIX3GcgsBytGck4lIkwFf/n46DAFaAMD+yjpOL87llg7sq6hFQIC2W45Fku+Pz3fMFOaNMOkFK4L7I7uO1GBUdKgs5w4PDkCHFbja1inJ+VbvLMPsRHECiz0d1XjxE5TuaMukPpo6LAo5X9CXJnoeR0GqTeIr9Vyni7zxGuqb2xHRxwhziP8tWFyNPF3LVNnO4euScyU1Seqa293K7B2qxNw8sv0gmtu6wh293QtIZ/hamlqx7IPDvr40yahpbCXOK+PLgslD8H//Oy3Z+eg0l1TcUY0XP8J1AmHq2yIVTOqjKcMjOcu2w4L1SLn+d1zaJFLJtAuFTU7eHxcsJiPWn66VKyShdAK6++eRjTFXwwWQth+SUrjmrUhRteJp+BZX1kl5uX5BWJBelOghEzWXpR/z/lLI4a+oxoufQU0gqcMjcWNshKyeGLqXQ6fVYMNdY1kTdzfcNdY5OXLtsqWSaRcCV95FTWMrHnm3xO/iy/4cYiPJq1G67N3181KHRyLni1O8z+EPhjYflDDK5WyNwEWAFuiUQYPu8rUOIsOFb/h+ULj0gn2qfAQ7Wl9fgAozmYnR+ObpdORmpWDTgiQ8MSMeUs6pTC8HJQlvDnHvXWQOMXpVapDuDpTeRfDJu8jOLUFe6XnZr4kPlBE7P2kQUnnIyMuF1WbHpoIKPPJuideCSRmBa/9zDMWVdZg4NByhQfLvizTwzgFKGRYpuMuyZ8dkV6w2O4or67Dz8DkUV9bBqlRXQhooo5xp01Bz3Yu0p6xG1OfotBqsnpugqOESHRqI1xclw2SUfvxEhwYioo93PzY6/nTPOESYyMeRXuL3U+02zY3qefFzPF25Iwf0ZS0DJYXq4swE6e6fdHeg9C6CT96FzQ48tv0Qtmg13SZkoCR7ymqwZtcxThG5t4uq8XZRNcKD9V5hGalh0qYh8Rxy4Wlo+1OlXHunDc98fJTToLBDvBfp08PnsPKTo7S/i76upSOlXsrquaOxOC0WB6rq0eUqR/wAACAASURBVHiNO/F17tho7KusJS7zXnDjEJhDyOahQeHBeOlOsnEUHRqIbfuqOY/LmhqLiUPDOb3pJLltKqrnpdsxZ5zDKxIdKs4YuNzSgfxy9pJokt0/5Vpmes3odsdKIMTT88J/yn26o/ZHqF0+H/XbhpYOdMr8HCNMBsb8FMpzGBokzAPjamgzeTksEnk3+LCnrAYp6/cSVwAxeZFIyPrnd8h+/zCutNIboavnjsbKOQlYkhYj6PyuUHPE4jRHZ3nSd3fWmAH4/tmZuDVxANHxMVHBqCM4t1YDTBwa7hxHTJ48zfX/fjHpBiJj65YR/d286Q/cFIO+ge7+g+jQwG6Vd+VLVM9LN8TTK1Jd23K9twr5AiNVfJ9E+dMXuwghnh7P3Bwl9FD8GSVLnvny7NzRTl0XukqymQlm9A3U496/fcvrvNTCBVD9lvwjGV2obo4QI37d7nLkl19kPWbt7uOYnRiNjASzqMICujmCjzdXp9Xgl6mx+KzsAufxUSYjHn+f25Nis3c1iqXmWjrhP6oVRtm5RqLrLT5di7T4KLe8xmdvS+jVc4wYVOOlm+IZTpoUE85ropYykZarz40vdhGTYyNgDjHy7pdDTfb+FCoQiljjS8mSZ76YQ4M4k1ZX3TqKd2WJzQ78ZW8F0uKisP90LWu/KaWS0cUYkXyN+PZOG/72DXcoiLpvoe8ZBd0cQdrugvLmcukjUcdDA2KvlavRR7V+yE6Po32fys41Ed6t97vnD9IG3RXVeOkh1ArULyBtBsiFv1XI6LQaLJw8BBsLKnj9Xf++gcS6Nf5MXul5PLuzzG2y5mt8+WOpJrUQNTS3Yen2Q6yVZNnvC9MoyfniFK+KJbmfkxgjMumGMF7Hv1NcDVLN9YtXWqHTarBm3hjeOUZhQXpsvjcZKcOu6/NU1rnNG3y8ua7eX7Acz2eOrK5t9voZk6FBWuGmGinSoua89BCEJsSu/fSYZHF7X1TIsFWBxESRqgV3xd2phDqmUAHg/7kx6/PK8dj2Q167TL5VKP5WqtnVLToBa3cf95twltzPSYxxtP3bM7yOP1PfQnwsdd+ZidF4eFos0d9QeSIb7h6LtLgo5JdbkLahEAvf2o8n3j+MhW/tR9qGQgCOflxmj9w+M0NOCOX9ZTuez/eUe+BH4necpMItPFjvNNRUpEH1vPQQSKTl6ahv7riudTKh23Uz5fIuRBGWRQIOw+T52xNw8EyDz3RrpMixySutYa0A4VOFInRMicUcYsT8pIHYdaSGNgwZGmTwm3BWdGggbDY7dh4+J5u3UYxxxMcYAYChEcFEx/UN1DnDNlabHR98f5bo71zDRHvKamg9NpYmR+n9lvuS8c3T6cTvBJf3l894tjS1Eb/jJBVu6120sVSkQTVeegiU61RoiWh27iHkQONXYm1srM8rp12kKe/Cr6fG4N/f/8T7vHLp1nAZJmJybFyVVp/bWcZ5LaTGl9gxxRfXUIJOq8HyzNG0z2zn4XOKXA8JLe2duPftrlwzOfKixIjFkRojFPenxmBd3nHOPKH1d3QtxvtPc/eTAoAVmSORNW04dFoNrDY7nuLooP7Uv4+g9Hkzr00CWw4J3/HM5x2nKpPW7Cp3C8V3tzy57oRqvPQgMhOj8fqiZGTnlvCWv3ZonZRgi7Y75HNwexfe+rqa1zmpypFX7hlPdDy1GybxlnAZJmJybNiSVtkgnZgzE6OxJC1G1lYVgHsogYJaiKhn/GnpefTvG4goE7lHTW48S2TlyIsS2rhVq3EYI3wwBGiRNTWW9f2amdAft7k0dSVtI7Bhzw9oaGnHyjkJ2HeqFs3t7FpAzW1W7DtVi6kj+pFdPAGZidFYljECGwtOch7L1+Plb3l/PR3VeOlhzBkXjRxMwGPbDwn6+zW7jvm1PLrVZsezBN4FvlDhoO+q61krVFwrHUi8JVyGyeZFyVi7W1g5rtDyWYDfxCy2HJYL12fmaQw2NLdj7W6PKraQQM7+W0DXd7V6bgKe+eQokXdALHKVUAtp3Jo1NdbZbZsPK+ckAADe+rrK7T3QaoAlN8di1dwEj78gH4GUUXSRsDppR8lZSY0XAMhOj0PugTOcFVINze28z61WDymHxm4nzS33T5qamhAaGorGxkaEhIT4+nL8BqE7cgBYljECT2TEy3BV4imurMPCt/b77PM1cCQSAqA1HKil6v/uS8bMBDNufrmQtYQzwmRAHcEkmZuVgsmxEc6FPaqPEU/967CgEtUIkx7frZpJvLBabXbc/HKh5D1ugg06vPXLSc4wEemYJfU+UN8VZRRt/aYK6/KOS3HpRORmpRAvZKT5Tp7HFZ6w4O1vqr2MjKypsU4jRCjtnTa8U1yNM/UtGBoRjPtTY2iNoaKKWrfQGRdaDTB9ZD/sPXGJ89hZCQPw5i8n8blsIvJKz3Nu8KJDA/HN0+l+u5HrCYhZv1XPSw/F1YVpaWrF2k+PEWscbCw4iZHmPoqGj5jExnzdsdgVrQbIWTjBaZSwVSSt2HEUP9Vf40z+JTFcACC/3IIn/3VYkkTVF+cnAvAuT2WapIWGLbh49efjnWEiPl4k6pjwYD2MAVpaA87TA6bTavDgzbHYWlSlWLIv6VjlU9buubNPHR6J388eTWRk8MUQoMWSqcM4jyPpRO+KzQ5oCO2BG2PCyQ7kSThB6NFXDWVVyJDFeKmursbatWtRWFgIi8WCgQMH4r777sOqVatgMBicx5WWlmLp0qX47rvv0K9fPzz++ONYvny5HJfUK3Gd6IL0Wl6Jlyt3HEVfox61zW2yx27ZdtwRJgNenJ/oTCT2ZfmuzQ5UXLyKcALdjcstHZLu8rdKFLZ5eFostFqNl0fI8zl7IiRswYTnwixUhK2hpQOr5oxGwsAQXGxqRX1zO8KCDbjc4jB+Q4MMznJXylux4MYbeGv/CIVkrHIlnpPkzpAaGXIhpJ/UAML3+L6UGIFXxY6/NpRVIUcW4+XEiROw2Wx44403EBcXh7KyMmRlZaG5uRmvvPIKAIe7aNasWcjIyMCWLVtw9OhRPPjggwgLC8NDDz0kx2X1ahzJvBOQnXuIKJm3oaVD9ioKgHvHXd/cjse2l+Dhsw43uBzlu3y8CRsLKrAkTdrcCZNBi+Z2m6Tn9CTSZMDa+YnQaunDXZ7PmQ66hMS6K61YvesYcXO87OlxWDZzhJshLEaEbV3ecefYHGQI8jKuKP0NV69AWLAe7Z02tHAkjArFUwGWCSnL2n0Nn0RYANAS3s/hny7L4vnw14ayKuTIIlKXmZmJbdu2YdasWRg2bBjmzZuH3/3ud9ixY4fzmPfeew/t7e3YunUrxowZgwULFuA3v/kNXn31VTkuSQXAnHEDkbMwWdDf8hU4I4HPjvuNr6qQV3reGcKQcirnEpjy5GOJS3XlNFyC9Vq89+spOLAqA7MTzZzPm3rOTHgKEd6WNAjfPzsT9yQPYvwbV9LiorwWYrG725pGhy7IIzQNFC+3dHiFMxpbOnCt3YrbxkUjTGDzRi64+nmRJp6Laa6oNNnpcejfx8B5nFYDJA0mU/4tOnXJ6T1jE6Tki782lFUhRzGF3cbGRkREdA2E4uJiTJs2zS2MNHv2bPzwww9oaGhgPE9bWxuamprc/lMhZ864aCwTmIxL7QSlUpflu+N+ekcpPj50DqFBBmxeJLyztgYOT8TGn4/He7+eAiPP/ID65g5EmAySGlBy0dJhw/fV9dBpNcTP+9mdZby+Y51Wg5fvGc9qBLItBkrvbqk7O3imAQdWZSA3KwWbFiQhe3qc6HP3DdQRhXoOVNWjnjDfSaoWHnKj02rwhzsSOY/LmhqLgeFk+jM5X1Ti5pcLsT6vHDe/7K7Ee/PLhYI3U9QmCPDuOOTLhrIq5ChivJw6dQp//etf8fDDDzt/ZrFYMGCAeytz6t8Wi4XxXOvXr0doaKjzvxtuuEGei+7BZKfHI1TgjlPKnSDfHfeVViuWfeCYuNbuLsfquaORm5WCJWkxxOegpqJ1dybizuTB0Go0gip27kga6HY+f2ZbUTWsNjvx865v7uD9HVN5D3TPg2sx4NoFywFVGk91D56fNMhNY0YodyQNJgqt8hn79QL7lvkCSqwt2KDz+p1G48i5cg3/knznNY2teOMr70Rri0hvMElLARX/hZfxsmLFCmg0Gtb/Tpw44fY3586dQ2ZmJn72s58hKytL9AWvXLkSjY2Nzv9++om/impvR6fV4ME0sl4kdEiVxCZmx21pbMXS7YfQeK0dq28fgy33eXti+hgDvCZRz4lJ6L3MTDDTTnz+yOVrDmOEz/MW8lyoxcDze+BaDNh2wXLjep9SGFExkWQeBT7fxdkGfhL/viYzMRpH18zGOw9Oxh1JAzEroT9WzRmNH9be6syn0mk1WD13tKjKNSl6jWUmRuObp9Od3rfcrBR883S6arh0A3gl7D711FNYvHgx6zHDhnVlvZ8/fx7Tp0/HTTfdhDfffNPtOLPZjAsXLrj9jPq32WxmPL/RaITR6D8Km92V7PQ4bCs6jcseCqEkSOXmF5N86ykGxqRuCYBVP4PvvbgmY+q0GsxMMGP/6To89M73aG6TJwFUCi5eacVt4wYiwmQgClcI/Y5nJpjR16hH8elaAI78GErHhQ0pq5n44HqfbCXhJEndfBRt6660EieK7zxyHs/eNqZbhTB0Wg2mjujHKDC3p6wGa3eLr8aToteYKizXPeFlvPTr1w/9+pGpHZ47dw7Tp0/HxIkTsW3bNmi17k6e1NRUrFq1Ch0dHdDrHSGM/Px8jBw5EuHh8tT2q3Sh02rwQFos77LRSJNBsiQ2x+4rAY9tF9Y7h5q4/l5Uhai+RsaSbraJaXJsBLFGBV34Q6fVIC0uCgsm3SC7hL4Y+vcNhE6rwYvzEzmfN59ERVfRtOraFuQe+NEtR+OjkrPEVWqeBmhEsAGPvPu9LAnNTBVBTEaUOTQQiYNCkF9+kfGcJIq2VpsdT7x/CJ+Wkoc6qDBeT1lgxShDM6GWNPc+ZCmVPnfuHG655RYMHToUr7zyCi5d6lJSpLwqixYtwgsvvIAlS5bg6aefRllZGTZt2oSNGzfKcUkqNMREmXj/zdr5iZLtAB27r3LR53HdwYUF6fFAWgyy0+OdDeC4lEtJRabNLOXickvoC8VzkZ4zLhoPn2XuXaMBWaKi1WZHTmEFthVV4/I1ZsOPb68fahe8p6wGyz8qlc1wAZjvk61Hzfq8clrZfBJF27zS8/j9h0cE3VNPWJytNjv2n67Dio+OSmq4AGpJc29EFuMlPz8fp06dwqlTpzB48GC331ELRWhoKD7//HMsXboUEydORFRUFJ577jlV40VB+L7wD0+LlazrtBy7L8CR37GxoALb9lXjF5MGY9eRGsbeQ1abHU9/eMSruR4dq+eOxuK0WMZFXUznX7lgWqRXzknA+MFhxKqurlhtdvx1bwW2fFmJ1k7uRVhIrx8px0Z4sB52uOu8sBmhFEyhhJVzEvDUrFG8FW3X7XYYPULp7ouzmHYlbJBq6sgJaWsHFWlRexv1Ykh71oQHB2DdHWMxZ9xAST9XydwGT2aM6of9VfXEeSqbFiRhfhK7lokUi26ESY/Vt41B/75GwA7UNrc5uihrgItX2ni1eeAyRvhOunvKavDkv44IFncj6fVjtdmRtqGQtTy4jzEAV9vYDU6TQYeHpg1Hdrqj/NmXi4sYw4VanLtzjx25NiqufcR8lWBL0pxVhRm1t5GKYBbcOIRVFXNZxghkp8dJOnGKUVSVCpKmcK5U13JXfFD5Emt2lQvS5tAAeOnOsayTXpBey7oQpMRE4BeTb4A5NMhtkWYyVEjzKPaU1fCSf6eDJPSRU1jB+eyutnViWcYIbNtXxZir1NJuxWsuPbp8lS+SV3pelOECdG+9EaGtHzyZPrIfTliueOUh+dJI4OoYr5Zby4tqvPRSuNy40aGBWHDjEMREBeNAVb2ku9XuGL//R3EVHr1lOGd4gMqXyCms4JUMHRakx4a72Q0XwFHNM3dcNGPC5/7qepy4eAUb7hrrzPnJKTyFbUVVbrkpfHaHVpsda3YdI74XJrhCH3vKaoifWUxUMIpXzMDklwpwpdXbCyMkXEXaRZkUq82O339UKvjv+SzOfL1oSoU6pNqo3BwXhb/96kbJr9nzOUwcGo6DZxqIunszGWVCxp4Kf1TjpRfC5cY1BmjR0t7p5pER6wp1nSRqr3Qf0S2K+uYOpKzfi5fuTOR8BjqtBk9kjMBIc1888/FRojDP5nuTOUXS9pTVYM2uY5yiepdbOvDouyV4aFosPvj+LK13gs/u0NGZXPh3xpWXYLXZsb/SkchJSnVtC9Je3ktruFDwKaOlS8Rdl3ecKBGXif2n6wSVzz9w01DMGhNNvDjTbUQiTAbckTQQMxPMXudhCnWsnpuAcJNBUuNAqo1KhMkgeUkz3XPQauA2BpjmPS6jTIoSbhV2VOOll9HeacMzH7Nn+7d12tDmkYwpxhUqV7Ke0tQ3t/N6BpmJ0UgfNQAp6/cyaqtQC3vKMPYJjm/egB3gbPoHcO8OrTY7ik7xC7G5whb6aO+04ZkdR5F3tAYtHeSLfFiwHq8VnCR+FlwLKFNnZ5u96xkKMWCKK+t4/w2lQEsK07iob27H1qJqbC2qdluAmY6vaWz1KqGXIndDqkRjc2iQ6HNQGyhL4zUUnarDhyVnvY7x1LpjmvfUrtS+RzVeehF7ymrwzMdlxAmfrgh1hcqVrOdLSBZ8V1f0i/PHYOn2QwC8hc8AsiZ+UuQN0FHT2Ir9lXVIi/f2+khhdDKFPtbnlePNr6sgtFyAz5/RLaBWmx37TtXi3wd/wq4j7Jorb31dhadmjRIQQiK/SpNBhz/dM55XNR/puKAaV/4qdQj+U2ohviopcjcmx0YgLEjPWk7PhRQNEoWOZaZ5T+1K7XtU46WXIIURwdcVKuei6yu4ngGTS/6habFeZdukOQ1yJzhnvfM9Xv35eLfrEDpeQgMD8ODNsYiJMjGGHpg8HSTckzyYdsdMB1O4ak9ZDZ761xE0E1ZN2ezAO8XVWDJ1GOexrqQOi0LOF5Wcx6XEhuO9rFTeIRq+4+IfxT/yOr8UuRsOMcwY3mKYFKS6Q2yInfvo3nkuaQR/KOHu6ajGSy9AaiOC1BXqD1VFckH3DNiqD978qgqbFyULyimQ2/Xc0m7FI++WYMv1HbbQ8TJ3bDQWTRmC2qttjPfX3mkTXH1jDjEiLT6K2HgBvBc+oVVTZ+r59xdKGR7Jqd4cbNAJMlwAZUISUuRuZKfHY9u+asbnoIEjFGgM0LrlVkkRtpJy7rM0XnP+f65WEkD3rhLrDqjGSy9AaiOC1BVaUM7cHVxKNAAGhBix5OZhWJcnvl8KCZ7PgKT6YO3uckF6HUq5np/5+CjSRw3AwTMNvMZLH6MOCyffgE9LLdh9tCsEQ7f4vFNc7ZVXwAX1tNbMG4PQIAPR30SaDFjnkVxttdl5JQW7MjSCrOGiK1SnbTZj6dWfjxe8wCkZkhBjKFHPgcn7YQew+KZYPHrLcMZKH6HVUVLOfc/tOgZjgM4Z2mNrJaHqvMiParz0AqTcoZHGn/eU1Sgql79m3hh8V1Uv+jzmECOutlkZRdCY3MFyVh8opd5LVVTdkUQmRmgM0OJvv5yExpYOZL9/yOv3njkTVpsd3wr4jsweqshczyLCpEfxyhleOSr7T9cJyr3g03DRk8zEaGy5L9mrSswcYsSaeWNELXBKqjqLNZS4Gm9uLDiJbUVVWHzTUNwYE4mLV1qdEg355RYv7SRzSCDWzOM2EKSc+660duKx7SV4+GxXUjVbKwkVeVGNl16AlDs00r43L/xHfM8iUh6aFgsAgoyldx6cjACd1m3iyS+34NHru2VSd7Cc1QdsLmqpoapUSGjrtOHgmQb8pZA+n8E1Z8Jmc3ie+OyCw4L02HxvsltXahJ3/Ut3jqVNrhVS/QOQNVxkQ64FTolxIWXuBvUc/rr3JF7be8rr95evdVz/edfvmMJulqZWt1AnE3J4p974qgrjB4c5FcfVrtS+QfgbqdJtoHZoYqZKrQZ4fRFZ1YHSuS67jtQIElELD9bjprgopA6PxPykQUgd7lgkqV2iOdR94jOHBjJWXshdfcB0Tb7mtb0VrGEgyuP02PYS3mNiw91jkRYX5bXIC/l+uq6GHK2Gf+kyE9QC5zrOpEDOcSFH7sZ/yyz4S6G34cIEV7f3lTuOwsoyAKm5T2p+/2Epvj55CUUVtdh5+ByKK+tYr0NFelTPSy9Aih1azsIJmJ1oRnFlHefuUWltA6GGEttz4LtbVqL6wPWa8sstxB6S7obJoMOfPaqfPBHizSCt/gGAZ24dhcVp4jwuSpGZGA2bzY7HtnuH7tig+miZQwLR0NyGtbuPy5q7saesxktLRiwNLR3Yf7qOUeDRde4jmfeC9Fpc6+BuONrcbsX9Ww+4/cxk0OHXU2Pxmxkj1LCRAqiNGXsRQrQOqKRLAMQNyIor67Dwrf3SXLTMkDQL9IQpeZCqNgLowxl89DJIEhTzSs8jO/cQUQLswyxqu/6CBsDccdHYtGCCLJO/1WbHxBfzOZ9B1tRYrJor3tsiBCGJqUIanWrgPR7lbBkgZzPW7Olx+N3skazH0Ckoy0WwQeclPaBCj9qYUYUIare6/3QdHvz7d14qunS8cs94XGnr4NWATMlEQrHkl1t4GS9cXWRJqw/YFgrSTrVzxg1EDjSsu1mTUYc//8wxkS7PHI2cwgq8+dVpYo0TpQjSa1GyehaCDDrZPoOk+mdmQn+fGS5MMv8vzk9kFa/jG6aNCNbjjgmDEBpkgNVmd8snkit3Q95QMvsss6esBm9+VaXYXOQpPaAiD6rnpRditdkxds1/0UKwgG38RRL+uOcE48RDhUM8S4Cl6ELMh8AADVo7hQ1l0kmGS+xqWUY8stPjAYB1B8tmnACg/Qw27w3d+foYdfj1zcPw+Ix4Wq0VtpYFXESY9GjrtAnq28OGEC+YEOh6RPUxarHhznG4LWmQ7J/vCmXEcoUB2bxBOw+fwxPvHxb0+REmPe5MGoQMmh5IUiLmGrl4b8kUWoVoQF6PDxfmECOKVsxQQ0gsqJ4XFV4cqKonMlwAoP5qm6AS4EM/Noi9TF4INVxIFURJxK42FlRg+7c/YtGUIYwKs2y9ZR55twR9jAG8O9Xyzf8wBGjx0p2Jgo3LhTcOweb/keWOAA43Osl4cy2FlRN/KW/lE8Z96+sqnLp4BQ9Ni/O61uraZsHXUN/cgbeLqvG2Rw8kqaCMs/+WsbdgEEpYsB4pDAav1WbH34uqfCaUaWlqUxszyohqvPRCSBNqgw061DWTdRN2PacYFVWlIdVfIXV7X7jS5iaFHu2hUcJlADHpy3BdK1+Xf2ZiNJZljHDrHE6Khucaf2NMOL48Wct5XP1V5bqN+7q8VYhk/Rc/1OKLH2q9Gi0Kld73RIpeRq4o0ZB1w11jaY1Of2kGqzZmlA//T6VXkRzSct2Wdite/99p3ucUoqJKMY3B/Ss335y6hFf++wNe+e8JFFXUepU9Cp2Eaq4vCHvKaiSL+xeduiRJeWZ8fxPv8vno0ECkDiP/jqJDAzFvPFkoJsJEpp7b3RErWU8ZGXmlNZLqKbl2Ghdb9ptXeh6PvMu/PJ4PS9JiaI0syjD0teECqI0Z5UT1vPRCqIRaKV5uuhJgIX1gAEf8fWikCajg3qVLzWaXEtqcLyoRFqzHhrvGOidHMZOQHY4FYTlHRQQpruW+Ql39e8pqsHT7Id4L6PO3JyBleCRRQjbVVI9U0t8cGsTzaronYo1YKoS4emcZ6gTmLbGdm8QTyZZwnldag+xcfmXbAPDL1KGYPcaM8vNNRG0+MhLMtNflL81gzSFGtTGjjKjGSy9Ep9Vg9dwE0ZoLTCJWQvrAAI74+zv7z4i6Jqm43NLhVjEwcWg4tBoI9ijVNLYKTpBlw3I9V+bBtBjMJEy6FDrBp4/q5zSSuHSDwoP1WH/d+KMk/dkWbNK2Ez0BKUIJdkByw8UVz2t0NVaqa5uRe+BH2iaKAATPK7cmRiN1eCRShkVia1GVIM0kf2oGu2beGDVZV0ZU46WXEi6Bi55JxOr+1BisyzuuiKaC3KzZdQwzE8w4eKZB9P1E9DFKXkJOnWdrUTW2FlUjwqS/XlrL3J9I6ARfeOIS9pTVIDMxGpmJ0fjrgglY+clRXGntytMJC9LjgbQYZKfHu5XgsgmFUR6a3jLRd4dQgus1kuSPUKGs0GA978/yNEbEdGyWoxlshMmAX6XGICYqGFWXrtK2NnDF02urIg9qzksvRezu7+7kQSh86haEBhm88i8MAVpkTY1l/fvbxkVj48/H+32eA1UxIMVu2RzStTuVi/rmDjy2/RDW57nnQlhtdhRX1mHn4XP4Z3G1oHNT1U5Wmx3r88rxmw8OuRkuGg3ws0mD8USGt8IopYHjKdUezSnp3/OQol2HXGjg7gUjzR+xX/+PrwgikzEipAVEXul5yZvBRpj02L9yBp7IiMf8pEH47cyR2EIzjvsYdbg1cQDeWzIFB5+d2avGs69QPS+9FLG7v49KzmFHyTm3XZFr/gXVD8ZT1VKrcWhWrJyTgOLKOllCKVz8MnUoQgIDiKXiqbi+GCJNBmdI5//uS/bqkis1b3xVhcRBYbh9/EDJKi+ofIgn3j+ET0u9S1/tdsf3rdWAth+QUySxsg7Fp2sBaJxhgt6Eko02Jw0Nw9mGVqKx5mlIWG12rNklb/4IWwsCPiXtQvJsXJ89nyaf/lJq39tRRep6KZR4k5QhDDohtfZOG94prsaZ+hYMjQjG/akxzslATuEqNnKzUgCAuIVBblYKJg4Nx4S1nwsWZnt9UTJmJ3ZNeFF9jDhQVYdNHC5oMWgATB8ZhcIfpE2A5lpwtRrgxNpbafsCkaoHdyeEyuorUc4bHRqIL38/QP/xEgAAIABJREFUHQfPNDjHHezA3hMX8Mnh826bh+jQQCy4cQhiooLRv28gvj1dh9f2SlOG7QmfHC0uhApiCml9oiItYtZv1XjpxTD14hEDk+IuHUr3QHK9NgBI21DIuSM1hxix4MYhePPr08TCfp7MTOiPu5MH006Q88ZH+33PISGsnjsaS6YOc/sZm7YJXa+d7oBYY8xVYdfTmJAKJuViriRcuXjgpqF4fl6iJOci7VdFcWuiGZmJZi8jU86+TirMiFm/1ZyXXgxTXJmvCJkrrqWWXMjVrh6AVz6Bp0tcp9VgzTzu/JOm1k68trdCsOECAPnlF2k1LyyNrXjzqyq8dMdYLMuIR7CMfX2kwhhANjg8y+W5KpzsAFbuOCpaX0RJmPJBLC7aPmx4tgaQK4TKlK9FCfUZA7R4raBCEcMFAGaNYTbqXHOzSHSMfvt+CS/D/5epMZifNAipwyPdjBPqWdD9TsU/UXNeejl08dv2dit+9Y/vRJ2XJMGViv1L1QOJ8qysnpuAtbu5myNmJkZjy33JWLHjqNcEaDLo0NxuFWW0cEHpdazdXY7VcxNwzc+aJdIxfnAYDlRzt364Idy9XJ6kwqmhpQM5hRV4ImOEqGtUgvZOG575+ChjKwcAeObjo0gfNYA4fCYXbPlaSuuihAXpYbPb3RpCUuSVnsezO8tQ39z1LrJ5sfJKa/CfUvLqot5Ujt8bUMNGKl5IkYvCp8nepoIKQTL1rnjm2/BxA1ttduw/XYfiyjoAdkyJjcTvPzyi2E4UcJRj+iJ5mS/vPDgZv9p2gLNsfEBfI56/fQzCTQZYGq/hq5OX8PHh85znDwvS4+DqmZLvfKUIC7h6Sv598KxbpRUTESYDXroz0bn4Wm125BRWSCbpz8WAvgbsW5nBeK9Kh24pzCGBWDi5K7+m8MQFxpYidCFFq82OG9cV8Hpn1C7P/ofamFFFUsRW1vDd4WSnxyH3wBlexkJYsN7NW+LpWeHTu0an1SAtLgppcQ7Z++LKOkUNFwDdwnCJDg3ETXFRWHJzLGfvqgtX2gSJlV2+1iF5MzspkoTzSmuuewX4fU/1ze3OfkEAZK8y8+RquxX55RbG+/RV7x1LUyvxhoVSqHZtSHqgqp74u9AA2Lxogmq49DBU40XFCyoXRWglEl/BMUf+yRii5GFq0ZGzVFFtpkbPvPHRyC+30JZJS4mUz58pSZhPE8L1eeV44yvhjUbtAFbsOIrGlg7FZeub26ys99kdBPMA75YFfMbIEzPiWUUbVbonqvGi4oUYHYplGSME7XCo5GG6HbJr+aarkSJXV2AlJ3QNgHCT3i3O76/86/uzohZxUvr3DZQszMOUz0HlG3nu6F3/9kBVPT4/VoNt+8S3rPB1NRnTfU6OjUBYkB6Xr/n/+CsotzjfedJ3tI9Rh8dnxMt5WSo+QjVeVGhhMibYMIcYkZ0eR/s7ksXIX8SfpGxcyQZ1V/dOGYq/Fsqn9yIVDQoswNGhgWhobvcqYw8P1mPdHextDzzhShJmakKoZDItG9T4CA3Wi/LasDVb1Gk1eCAtRrEcHDF8fPgcnpnr8OqSvqN/vHucWjnUQ1GNFxVGPI2J6tpmbCyooFWjtANYOHkIPi0972V08Mk54JOrIhdSV0ExQeXplJ1rlPVzAIfCr5yN/KRi3vho2lyZhhZH24OHz16mVe+lgzS0QB3nSKY9JTp5XCrMLiJqUoxFpueRnR6Pbfuqfe4d4qK+uQN/L6rC4rRYzn5ZAPDwtFg1XNSDUY0XFVY8jYmR5r5ehgjVjM119+aqXik258AXZCZG4/VFE5Cde0jSBpPZ04cjfkBfNwOv7FyTdB9A+5lx+M2MePy/P30hqaKylGg1wF9+kYRndx1jPe6Nr6owfnA45ozjHjOkoYX+fQOxp6wGz+8sw4UrvjfwlqTFIMNFfdZqsyPYoBNdts/0PHRaDTbcNVZ2Y10K1u4+js3/O+VsPrp5UbJXInWkyYC18xOJxohK90U1XlR44e2NacFrBSe9FsSaxlY88m4JTEYdqxYGUyzeH5gzbiByoBFUNcNEWlw/L89S6vBI5HwhX9goLS4KhgCtYv10hJCzMBmhHhVkTDy7swyzE7nHDFfiOaUL1NDcLul3TEcYQejHHGLEmnljvIz5/afrRBkunl2b5SIkMADzkwbinf0/yvo5VPPRsV9W4tzla275YhEmPdbOH6MaLr0AVWFXhTeUN+a2cQORe+BH1gmZqxdQTWMrcgr9N96ulfANCQsKoF1AUoZFIuy690pKPDsEMykqk54rLFgveSfk6NBAbLkvGXPGRV/X2eGmvrkdG/N/QNGpWhRV1DKqsVKhBer6XaH+vXruaDzzyVGRd8EMdX8b7hpLex0UyzJGoGjFDFovJOlzoTt/130m4EBVPe2zohKbxXJ38iDMGatcmObouSavRPeG5g4s3X6IU91Ypfujel5UBPOXvScl0azYWFCBkea+fhc+kmpSp7h8rRN/3HPcK2dDDre9ZzsEClfPWdGpWmKPz28zRmCkuQ+R5ybSZMBdyYPwaWkNbUJlhEmPO5MGuYVGHJD7g3K+qPTqCk6XR8WUeE7lk/Q1knl7SAkL0mPp9OGI6mOEOTTI7f6Yqum49WbInsvsMQPwXXWDWwjFfL1/lqfitOvnkqgfk/BhyVlMHBIuSmZBLFxVZCo9B1VhV0UQYrUvPIkmbOaoJHKpj76+aAJtIuGeshrBImYmo87Ny0WyKFptdkxcm09UJrtpQRLmJw2iTb42hxivq6Wa3HJ5qAozS+M11De3I6KPEeYQ5gqyoopa3Pv2tzzv3Bs6JVWmarc//fcENnsYQWJhU5cWUgJO+lw8VZojTHrcnTwIf/u62suQcFWkbuu0SdrdfWZCfxSUXwRAn9ivFHxUvlV8g6qwq6IoeaU1kut9MJVy+hK5xOocORvRjKXiQuTjm9usMBl0mDaiH+5LGYqUYdzN5RxlsrFE1TVUsiefcna2yjHXRTzKZAQ0wMWrbTAZtGhutxHcMTMrdhz12nVT5bXUZx6oqsfk2Aicb7gm6rPoYBs3QqrpUoZHeilK0+GpOFvf3IG3vq6mPdbVQ/HKPeN5XQ8X+eUXkTU11svzZg4NxLV2q2KaMqrYZM9GNV5UeGG12fHszjJZzu1vk41cYnX1zcwS+DqtBk9kjEB8/z68K52a2634rMyC4so6PJAWSyvs50l2ehy27atiXBjpkj09F2CqEzCpN0FuHZXLLR3IKTyFJzK6xMno5P2jQwMxfnCo5J8v9biRqxqI0n+x2e2IkFgocUfJORSvnIGDZxqc48Jms0viWSOlu6gHqwhDNV5UeMGnpwhf/G2yEdsmgQ0uQ23OuIHYZAcezz3E+9yXr3W4eVPYQkhsCyNT3owrfDR8lGxKuG1fFbLT46DTahhDnDWNrZIaUHJW9VAd0NfsOubWdys8WC9aPPDx3EOSe0Pqmttx8EyDm5G78/A5ST+DjUiTQe0g3cNRq41UeCGXd8Qf29WzVauI5aTlCm2FDMWeshq8lHdcks+iNHWYKjCohTHaowrJHBrIqsND9Q3yNADoPm9PWQ3SNhTyMlwigvWYcIOwPLbLLQ7vVl7peUVaGpAYemLJTIxG0YoZyM1KwaYFScjNSsFzt48RfV65wjiec4WSm5Ph/UyM75ZKz0D1vKjwQq4JSOpJX4reOAB7z6V546Ox6wh9RQ0Xm/9Xic3/q6T1Uuwpq5E0REBSgcG3NQOfvkH55RZWJVQm6ls6UC/Cq2BpvIa1u6WrFnOFq6u5XHiG7PiUUSuN51yhVNsNADhQ3YBRqz9D1tRYYkVmle6Faryo8ELqCcjRrl5alV0+oQwS2Bb25Zmjsf90HR577yAar3XyPneNh9Kw1WbHih3S646w9beh4JNMSto3aH9lHaORIzf1ze2yNLxcljEC2elxivfgojPI5QxtioHOk6pU2w0Kmx1Or5tqwPQ8VONFhRckPUX48JsZcZKqYVKhDKnbETAt7DqtBlqNRpDh4grlpcgpPCVrjxmpwn6k5yk+Xat4g0Mq9ySij1GW88dEBRMbelJ5ANkMcqUMggiTHhNuCMPeE5dYj9OA2ZMqV9sNNt76ugpPzRoFQ4CaJdGTUI0XFd4I6ThNR3iwHr+ZMUKy6+ITypBylyzWIHB6KU7XYVuRvPkZUoX9yM/jG92e529PQGiQQZZzn77UTHQcXYWTOSQQa+bx8wCSGOS3JprxWZmF+Jyk3J8yBJNiItwML7ZqMRIPpxxtN9iw2YF3iquxZOowRT5PRRlU40VFEK6hlIJyCz4+fI6Xi14DYP1dYyU1IkhDGa6daaVAKoOguLJOtuRJqSthSPsGyd23yRPXxdNqs8uSY/HO/mosnR7nVgbs6VFhqnCyNDl6ftEJ6dFBapDfOUEeWf7kIeGYnzTI7Weu7z6pAKEnc8ZFY8mZGLxdVC3LdXtypr5Fkc9RUQ7VeFERDOU6Tx0eiWeu904pKLdwTkhi8k/oaO+04Z3iavzvJLs7m2Lt7uP42zdVkl3D5NgImEOMbiWswpDHjy5HJYxr+NBTOdX181KGRQrOydBqQBRaiDQZMD9pIGZ6tBuQOsRJUd/cgZT1BW7GuuuYJqlwWkkjpEcHqUEeHixPiMwcGkT7cyFie55kJJgVM16GRgQr8jkqyqEGAVUkgZrMVt8+hrbsNtJkwINpMcjNSsE3T6dLZriszyvHqNWfYe3u4/i6opb477jKh/mg02qwZp64ktXo0ECkDosSfS10cJU8C4Wp0aPr57mWm/NBAyBraixr0GnGqH7IzUrBgVUZeO72MUgd7q0qTF2j53iMMOlhDBBuyHl6GanxlFd6Hqs+4RZxbGjpwP7T3JVCpCHJqL5GmAw6omNJkVu+gPLeKRFYHNBXHuNOxXeovY1UZEGqREU2xPZXokIbUvVU2lNWg6f+fYSzkzYdW+5LxswEM25+uVB05Yg5xIg//ywJtc1tilTCkHzXfPo2mUOMWDNvDDITo2nzKyJNBqydn8gr0ZvuGl/aXS7pzl8DIJyHUm329Dj8bvZI1mNI+2vlZqXgn8VV+KzsAtFnk7AkLYameaa0MOXzSI0/9k5T8fPeRm1tbZgyZQqOHDmCQ4cOISkpyfm70tJSLF26FN999x369euHxx9/HMuXL5f7klQUQAq3MhvtnTa89bW45Fau8mG+BlhmYjTSRw1Ayvq9vFSIl2WMcHpFmEIxfFg4eQjS4uXx4tBB8l2T9m2iypCp5+yWX9HUivqrbYgwGRBuMqC908aad8J0jdT3GiSxp8IOb48M9190hT3P1LdgaEQw7k+NcVbGkOYWTY6NwDcVlwCIN16ocN3bRdV4u6ha8jCvK5RnTGhDUlL8sXeaijhkN16WL1+OgQMH4siRI24/b2pqwqxZs5CRkYEtW7bg6NGjePDBBxEWFoaHHnpI7stS6ea8U1wtWamlp2uekrHfVlTtlkBLMokbArR46c5E4t2kOcSI7PQ457+lqOSKiTIJ+ju5ofo2jTT39VqsuFoYNF5rxx/3nHB7Jp45MdGhgVg9dzTCTUZHw8c+RsAONw9UfrlF1r5KfEgdFoX1eeV46+sqt/tYl3fcKa5GmluUX27B9gM/irqe9FH9UHjiktd7JVZmgAsxDUn54G+901TEIavx8tlnn+Hzzz/HRx99hM8++8ztd++99x7a29uxdetWGAwGjBkzBocPH8arr76qGi8qnEhZPeBaLbSnrAYrdhyl1VohncRJDBBq4Vkzbwxjd2nK63OxqQ3reLQK8LceUfS4r5AtbZ34wXKFNomVKbTgucjWNLbise3MvaBIOjOzEWkyoE6ivl5hQQH438kLtF2fPcXVmMYTpeoLQJTOiznEiOduS8Da3fRjTE6ZAYquhqR9kZ1bIosGTPd4L1RIkc14uXDhArKysvDJJ58gONg707u4uBjTpk2DwdClxTB79my8/PLLaGhoQHh4OO1529ra0NbWVdXR1NQk/cWr+D1SVQ+4JiVyxd/5TOKuBkh+uQWfHD7vrvfB4cXxDHNsLari9BaQlEMzhcKonwstfSWF6Rk3tnZiY0EFtu2rxoa7xrqFitZ+ekySnAg+hotWA2xaMAERwQYUn64FoMGU2Aj8/sMjuNDUJvp61t4xFk+8z95001VcjUnlGQAmvpgv+DqWZcQjOz2euKpJ7tDLnHHRyMEEViOUL3I2zFTxHbIYL3a7HYsXL8YjjzyCSZMmobq62usYi8WC2NhYt58NGDDA+Tsm42X9+vV44YUXJL9mle7F/akxWJd3XPQOjSofZtPTcIXPJO5aSr7qeim5kARmPiW/QjpAs/VokjLfgeQZX27pwCPvlqCPMQBX28SpFovBZneI0b303XHnc8n5wuG9oYxYIUMvNCgAL989DucarnGOXU9xNbrcoqJTtURGmUYD2D1CbK7fK2lIRYnQy5xxA7FFq/Eaq6Sl83TI2TBTxTfwMl5WrFiBl19+mfWY48eP4/PPP8eVK1ewcuVKURdHx8qVK/Hkk086/93U1IQbbrhB8s9R8W8MAVpkTY0VVW10T/JgtHXaUFxZB5vNzisPgu8kTi08lIfj09LzvIwYrlAUl5HB5PGoaWxlfYaevZfEwLW7d8WXhgvFxoKTXj+jDIUggxYt7TZe51s1ZxQevHkYdFoNntvJXU4NcIdHSRszzhrdH4vThjEaz6QhFaVCL3SepolDw3HwTAMsjdfwUclZfHOK+95NRh3+/LPxsjfMVFEeXsbLU089hcWLF7MeM2zYMBQWFqK4uBhGo3tt/aRJk3DvvffiH//4B8xmMy5ccM+Mp/5tNpsZz280Gr3Oq9I7oZqteSY8ajWAMUCLax3Mi4tWA3xYchYflpwFAIQF6Xl9tpBJXGzDSKHKpqReJTakyHfoSQmTlOESGqTHyAF9cKC6gfNv+ocEOp8fadiT+ziyb/WbU3V4/b5JjN8fn6ompaDzNFH/rrx0lch4WXxTjGq49FB4GS/9+vVDv379OI/7y1/+ghdffNH57/Pnz2P27Nn44IMPMGXKFABAamoqVq1ahY6ODuj1joUjPz8fI0eOZAwZqah4snJOAp6aNcqr1LTwxAXWJEZP9zMfWf4Ik573JC5Fw0jXfBVzaBDmJQ0iMib4eDzoEJLvQJdb0xMTJhuvdRAZLgAQZTI6n0t4sIEz9KTVOMKjbKQOi0LOF5Wcn93cbuXsKE5S1eQvoRfS+75JJuFHFd8jS87LkCFD3P7dp08fAMDw4cMxePBgAMCiRYvwwgsvYMmSJXj66adRVlaGTZs2YePGjXJckkoPxhCgpW26RlddIkY/heJOQqOBQoqGkWK8Nkp3kma61tVzEyRqo9A92XHoLJ769xFiPZMZo/tzdkJOGR6JYIMOLe3cwoj/v717j4qy3PcA/p3hMjAoFyEc8AYKpaaIRijipRTFpXtl2Xat3Oo57tPBG5y0Wiezs1P3aRdsreXaaYV69jGPmXTUdZZppFmWego0IUNETbfgFgU8GDdvoMxz/qCZGOb2vjPDzLzj97MWa8W87zAPD8T8fJ7f8/vZ+/nZO9XkTSsYYwZF2j09Fq4NwBjWdfFZHuttFBYWhi+++ALZ2dl47LHHEBUVhVWrVvGYNDnN1qkhV5xayRhqfVvTEmdPcji7auPOTtK2cmuyPy7Fb5J02Ffm+u7HSrCn9Kqs+w9VXMeB8hqbP1s/tQqLJgyymJ/TlZSfn7VTTd6y4mLgp1Yhb9Zwm6ureS5u/ErexS3BS1xcHCx1IUhKSsKxY8fcMQR6QLgiv8OWHhp/6PUCe09dlfyHXeq/tDv/y7jz0eU3Pjvr1KqNvXwGe6TmO9ibewHg8DlpzTO7W86TCUjs3QOX/u8m/qvoMhqcqP/SnV6V0MAxZ1ICtn5XaXUVQm6+SndXx3aVacNikD9vFNZ8esZkNa9zewnyXewqTT7F2fwOe2623sfcvx43fi7llM8b+89I+tr1La3Ye+oqqupvYeeJv0vaXpGSj2Irn0EqKfkOUub+loTtDXdIT4hCw61W/OWri54eik2Nt++h+G83bLZ7sLUK4Y35Kq6klJUicj12lSaf4u4TLba6Uxu2UKT0u1GrgDc+O4tlBaew/ssLsvNCvr1Yj3YbRTCsdYCOCQvCognxZl2XO1+XekxaCaeJVOj4nupvtiJnp+sKoXWnjiJ5thlWIbr+HLuro7g3MawUzUzuY7GzOPkmrryQT3H3iRbD1s2aT8+gZ1AA6m929NFJ7heO1/7ntORVDmeL7W38+iL2lFbbXAWy9a/UV6YNcbrCrrefJjJ8F0+NiMG/KCRw6SBt/rkKQQ8SBi/kUxputZpVE+1uAkBtcyvm/sev20nuHgMgLYHXWj6DK/IcUuN7ITw4QNaxc3fS/dK40VoPH28l5+eilHwVImdx24h8RmFZDZZ+/IPbgwZLPDEGw0v+cV+FzS2k7uKnVuH36fH2b/SA12cMwf+umISIEI1XdJSWKkIbgDEDGYwQdcXghXxCYdk15Ox0vLOur+icwOsJOZMSEK6VV624u/UKCcCC9Hj4qVU4VKGsY9q5PO5LZBGDF1K8A+UdKy4eWGzwWp5KnjWcfPEmhqKC7XqB/z5ZLeu53R02qABsmDMSulDzROp8H0+0JXIGc15I0Qy1RciUtyfPupOhqGDxpRuSGj6qALz3u5FQW+hs7GoCQFQPDb59dRITbYlkYPBCitbddV2UquGW9KPWXfsQGbr3OvJG6k3BZNfibFI7MGc+qsP0pFgAwJShOhRfuoHsHaXdlohc23yXibZEMjF4IUVz9/ZITFgQ3v7tCNTfakVUiAYv7/oRdc2OVa7tTv++vwKZw2LsBh2W+hB1JafztSuDyR4aP/j7qU0qx4ZrA9B0557khGjT4mzSnpQQHWL8bz+1CukJUch7djiW/FIErmvTQmEY1+17Dv0e/Hzzwez1ROQM5ryQorlze0SFjjfD9MQozEzug/TEKKx5aqjxmr3nAnBbMmttcys2HrZdPdZQRM9esFFjoxCf+eu6Lph84+nhKPnDFOzMGoO/PJeMnVlj8N6cUZICl8iQQLMj42kSOwxbus9akT/dL7kphjwfRzZ6eoUEOvAsogcbV15I0Zzt2yNVhDYAubOGm60+WOvEq1aZFp4zdOY1FBH74kwtPvyuqlvHvP7Ln5AY3QPTk8xXTOT2gBKw30MJcO0qgi40yGw7Ze8pac0N/zBjiNnPytlOxPaKwFn6PZBCFxYs634iYvBCCielb8/kwQ/hKwcbAmoD/LBo4kDkTEq0+qZt6U3NVt5I2qBIpA2KxONxEVj6cfdWes3eWYoFVQMw9dEYkzE4sr1jr4cS4LpVhHBtgMVGglJX2iwFBK7oRGwrN6Xz78G3F+ux8Wv7fZN6hVj+PonINm4bkeLZ6tuTNT7e4cAFALb8YwqWZTxsN3eka3+VQH+13X4r05NiLfajcSUhgK3fXcacLcUY9+fDxq0fR3OF7D3PVasIvx8bb3HODCtt1n4aht5F1gICQw8gXajG5HFdqMYlR5MNvwcvTnlY0s/1TzOH8VQRkQO48kI+wdLqx42Wu3jhk1MOfT3DSZXurm5qadwNt9rwxmfWtx8cLcHfuX2Ao7lC9p5nCC6cSdoN1wYgZ1KCxWu2VtqkdlB2Rw+gzuO0tjW3aEK88VQTEcmjEsIbiqk7rrm5GWFhYWhqakJoaKinh0Ne4kB5jc3tAVsMb2Ge7Mbb+fhyVIgGUMHY9FGvF5j71+P2v4gFhqDsyL8+idQ3v5QVBPUM8sOpVZmSTjDZetPOGh+HLceqrD5fygqIpVNSck5FuYulcUaGBOKNmcMs5iIRPUicef9m8EI+p10vMO7Phx3+139okD/W/jbJq94EO2vXC6TnfYXaZseTY3dmjcGJyp+x/sufJD9n43PJ+E1yH0n32gsuXBF8dK1P462F3ZQyTiJ3c+b9m9tG5HOcrTXyVHKs1wYuQMeWxJqnHnV4ZQnoyF3JmZSArd9V2jx9YzBlaLTkwAUw3ZqpbbqD+putaLxzD+VXm9EzKABThuqc3rpRSmE3pYyTSEkYvJDPcbbWSHxkiP2bFC66Z5Ck0zcqAP88Ph7/NmOo7NfwU6vQdKcNf9xfYRIgbfz6IsK1AcizcPSciEgKBi/kc5ypNaJWAfPT4lw3mG7gbAn+zqdxDKdvum7haAP8MH24Dm/NSkKgv/RDiZ23SKrqb1vdlmq8fQ+LPypl80EicgiDF/I5ztQayRofL+vN2hOc2RYzVAnuvD0zbVgMJj4cjbcKK1B14zbiIrV4bfpQBAf6yfraUloNdCWl8B0RUVcMXsjnOFJrRK3qCFxWTpe/PeJujtZo6aHxx9uzzRORcwsrsOVYpbEi8LELwI7jf5c1H4VlNVj6sfwcHCmF74iIumLwQj4nNb4XdKEaSadxJj4chQmJD2F+WpzXr7gYOFKjJUTjh9LXp5h9j7mFFdh0tNLsfr2A8XF7AUxh2TXk7HS8UrC7m2sSkfIp4681kQyG0zj2LJoQj23/NBrPjx+omMAFsF9l1pJ3Zo8w+x7b7uux5Zh54NLZlmOVaLuvt3r9QHkNln78g0kfJ7nc2VyTiHyDcv5iE8lgSES11MW5h8YP7/9upCK2iCwxVG8F7Hcxjvml67GlpNjtRVV2gw696LjPEmcThw3jY28fIpKL20bkswy1Ror/dgNFl+oBdNTbGDPQcq8hJbHWzTo8OAAZQ6KRnhAFXViwzdopl3++Lem1rN3nbD0dwH4pfyIiSxi8kE/zU6uQnhiF9MQoTw/F5Zzt0TOgl9ap+w5V1Eoea1cR2gDkss4LETmIwQuRgjlTvXV+WhzeLDxrc+vIWt2bA+U1+M9vq2S9XojGDwvS4jA2IconVr+IyHMYvBA9oAL91cgaH2/xtJGBpbo3juS6qNCRNMyVFiJyBQYvRA8wQ9Jy5zqoF9lvAAAJxUlEQVQvgO26N8WXbsjKdfHGbs9EpGzsKk1EaLuvx/aiKlz++TYG9NJarXtzoLwGK/acRtMd+80cn3g4CosmJrCLMhFZxK7SROSUQH81nh8/0OK1tvt6bPuuEvvLavBjdZPkr7loYgIr5xJRt2DwQkRW5RZWYPPRSshZnlUB0LF+CxF1IwYvRGSRtdYBUrB+CxF1J1bYJSIzbff12OxA4NJD448PrFT0JSJyFQYvRGRme1GVrK0ig39I68/AhYi6HYMXIjIjtXVAV+mDHnLxSIiIzDF4ISIzUlsHdBauDcAYni4iIjdg8EJEZuanxdntWN1V3qzhTNIlIrdg8EJEZgL91Vg4IV7SvbpQDfKZpEtEbsSj0kRkkaE1gKU6L0EBasxN7Y+MoTpW0CUit2N7ACKyyVBh9/uqBoQE+mHWqL4YmxDFgIWInOLM+zeDFyIiInI7Z96/mfNCREREisLghYiIiBSFwQsREREpCoMXIiIiUhQGL0RERKQoDF6IiIhIURi8EBERkaIweCEiIiJFYfBCREREiqL43kaGAsHNzc0eHgkRERFJZXjfdqTQv+KDl5aWFgBAv379PDwSIiIikqulpQVhYWGynqP43kZ6vR7Xrl1Dz549oVKxUVxXzc3N6NevH65cucLeTy7A+XQtzqdrcT5di/PpWl3nUwiBlpYWxMbGQq2Wl8Wi+JUXtVqNvn37enoYXi80NJT/87kQ59O1OJ+uxfl0Lc6na3WeT7krLgZM2CUiIiJFYfBCREREiuK3Zs2aNZ4eBHUvPz8/PPHEE/D3V/wuoVfgfLoW59O1OJ+uxfl0LVfNp+ITdomIiOjBwm0jIiIiUhQGL0RERKQoDF6IiIhIURi8EBERkaIweCEiIiJFYfDi41pbW5GcnAyVSoVTp06ZXCsrK8P48eMRFBSEfv36Ye3atR4apXerqqrC888/j/j4eAQHB2PQoEFYvXo12traTO7jfMrz3nvvIS4uDkFBQRg9ejROnDjh6SEpQm5uLh5//HH07NkT0dHRePrpp3H+/HmTe+7evYvs7GxERkaiR48eePbZZ1FXV+ehEStLXl4eVCoVli9fbnyM8ynP1atXMW/ePERGRiI4OBjDhw/HyZMnjdeFEFi1ahViYmIQHByMjIwMXLhwQdZrMHjxca+88gpiY2PNHm9ubsbUqVMxYMAAlJSUYN26dVizZg02b97sgVF6t3PnzkGv12PTpk04c+YM1q9fj/z8fLz22mvGezif8nzyySd46aWXsHr1apSWlmLEiBHIzMzE9evXPT00r3fkyBFkZ2ejuLgYhw4dwr179zB16lTcunXLeM+LL76Iffv2YdeuXThy5AiuXbuGWbNmeXDUyvD9999j06ZNSEpKMnmc8yldQ0MD0tPTERAQgM8//xwVFRV45513EBERYbxn7dq1ePfdd5Gfn4/jx48jJCQEmZmZuHv3rvQXEuSzCgsLxeDBg8WZM2cEAPHDDz8Yr73//vsiIiJCtLa2Gh9bsWKFeOSRRzwxVMVZu3atiI+PN37O+ZQnNTVVZGdnGz9vb28XsbGxIjc314OjUqbr168LAOLIkSNCCCEaGxtFQECA2LVrl/Ges2fPCgCiqKjIU8P0ei0tLSIxMVEcOnRITJw4USxbtkwIwfmUa8WKFWLcuHFWr+v1eqHT6cS6deuMjzU2NgqNRiN27twp+XW48uKj6urqkJWVhe3bt0Or1ZpdLyoqwoQJExAYGGh8LDMzE+fPn0dDQ4M7h6pITU1N6NWrl/Fzzqd0bW1tKCkpQUZGhvExtVqNjIwMFBUVeXBkytTU1AQAxt/HkpIS3Lt3z2R+Bw8ejP79+3N+bcjOzsaMGTNM5g3gfMr16aefIiUlBbNnz0Z0dDRGjhyJLVu2GK9XVlaitrbWZD7DwsIwevRoWfPJ4MUHCSGwYMECLF68GCkpKRbvqa2tRe/evU0eM3xeW1vb7WNUsosXL2LDhg1YtGiR8THOp3T19fVob2+3OF+cK3n0ej2WL1+O9PR0DBs2DEDH71tgYCDCw8NN7uX8WldQUIDS0lLk5uaaXeN8ynPp0iV88MEHSExMxMGDB7FkyRK88MIL2LZtG4Bf/x46+/8/gxcFefXVV6FSqWx+nDt3Dhs2bEBLSwtWrlzp6SF7Nanz2dnVq1cxbdo0zJ49G1lZWR4aOVGH7OxslJeXo6CgwNNDUawrV65g2bJl2LFjB4KCgjw9HMXT6/UYNWoU3nrrLYwcORILFy5EVlYW8vPzXfo67DSlIC+//DIWLFhg856BAwfi8OHDKCoqgkajMbmWkpKCuXPnYtu2bdDpdGbZ8obPdTqdS8ftraTOp8G1a9fw5JNPYuzYsWaJuJxP6aKiouDn52dxvjhX0uXk5GD//v04evQo+vbta3xcp9Ohra0NjY2NJqsFnF/LSkpKcP36dYwaNcr4WHt7O44ePYqNGzfi4MGDnE8ZYmJiMHToUJPHhgwZgj179gD49e9hXV0dYmJijPfU1dUhOTlZ+gs5k5hD3uny5cvi9OnTxo+DBw8KAGL37t3iypUrQohfE0zb2tqMz1u5ciUTTK2orq4WiYmJ4rnnnhP37983u875lCc1NVXk5OQYP29vbxd9+vRhwq4Eer1eZGdni9jYWPHTTz+ZXTckmO7evdv42Llz55hgakVzc7PJ38vTp0+LlJQUMW/ePHH69GnOp0xz5swxS9hdvny5SEtLE0L8mrD79ttvG683NTXJTthl8PIAqKysNDtt1NjYKHr37i3mz58vysvLRUFBgdBqtWLTpk0eHKl3qq6uFgkJCWLy5Mmiurpa1NTUGD8MOJ/yFBQUCI1GIz788ENRUVEhFi5cKMLDw0Vtba2nh+b1lixZIsLCwsQ333xj8rt4+/Zt4z2LFy8W/fv3F4cPHxYnT54UaWlpxjcPsq/zaSMhOJ9ynDhxQvj7+4s333xTXLhwQezYsUNotVrx0UcfGe/Jy8sT4eHhYu/evaKsrEzMnDlTxMfHizt37kh+HQYvDwBLwYsQQvz4449i3LhxQqPRiD59+oi8vDwPjdC7bd26VQCw+NEZ51OeDRs2iP79+4vAwECRmpoqiouLPT0kRbD2u7h161bjPXfu3BFLly4VERERQqvVimeeecYk2CbbugYvnE959u3bJ4YNGyY0Go0YPHiw2Lx5s8l1vV4vXn/9ddG7d2+h0WjE5MmTxfnz52W9hkoIIWRvahERERF5CE8bERERkaIweCEiIiJFYfBCREREisLghYiIiBSFwQsREREpCoMXIiIiUhQGL0RERKQoDF6IiIhIURi8EBERkaIweCEiIiJFYfBCREREivL/LiDbIUvkoU4AAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -2902,25 +3046,25 @@ }, { "cell_type": "code", - "execution_count": 104, + "execution_count": 96, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[('turkish', 0.9921346306800842),\n", - " ('lira', 0.987409234046936),\n", - " ('debts', 0.9794315099716187),\n", - " ('coastal', 0.9783217906951904),\n", - " ('athens', 0.9770432710647583),\n", - " ('greece', 0.9727554321289062),\n", - " ('benefits', 0.9630903601646423),\n", - " ('carolina', 0.962989330291748),\n", - " ('sharp', 0.9628170728683472),\n", - " ('jones', 0.9522427320480347)]" + "[('greek', 0.9903611540794373),\n", + " ('rules', 0.9876847267150879),\n", + " ('bags', 0.9872868657112122),\n", + " ('tonight', 0.9868422150611877),\n", + " ('turkish', 0.986126184463501),\n", + " ('greece', 0.9801620244979858),\n", + " ('beef', 0.9790815114974976),\n", + " ('cocoa', 0.9776081442832947),\n", + " ('cumulative', 0.9734506607055664),\n", + " ('lira', 0.9693236351013184)]" ] }, - "execution_count": 104, + "execution_count": 96, "metadata": {}, "output_type": "execute_result" } @@ -2938,7 +3082,7 @@ }, { "cell_type": "code", - "execution_count": 105, + "execution_count": 97, "metadata": {}, "outputs": [], "source": [ @@ -2947,7 +3091,7 @@ }, { "cell_type": "code", - "execution_count": 106, + "execution_count": 98, "metadata": {}, "outputs": [], "source": [ @@ -2959,7 +3103,16 @@ }, { "cell_type": "code", - "execution_count": 107, + "execution_count": 99, + "metadata": {}, + "outputs": [], + "source": [ + "comps = list(nx.connected_components(documentGraph))" + ] + }, + { + "cell_type": "code", + "execution_count": 100, "metadata": {}, "outputs": [], "source": [ @@ -2968,7 +3121,7 @@ }, { "cell_type": "code", - "execution_count": 108, + "execution_count": 101, "metadata": {}, "outputs": [ { @@ -2978,8 +3131,8 @@ "Name: \n", "Type: Graph\n", "Number of nodes: 10788\n", - "Number of edges: 12994465\n", - "Average degree: 2409.0591\n" + "Number of edges: 13061229\n", + "Average degree: 2421.4366\n" ] } ], @@ -2989,7 +3142,7 @@ }, { "cell_type": "code", - "execution_count": 109, + "execution_count": 102, "metadata": {}, "outputs": [], "source": [ @@ -2998,38 +3151,36 @@ }, { "cell_type": "code", - "execution_count": 110, + "execution_count": 103, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/Users/deusebio/.pyenv/versions/3.7.6/envs/ml-book-7/lib/python3.7/site-packages/matplotlib/axes/_axes.py:6694: RuntimeWarning: invalid value encountered in multiply\n", + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAPT0lEQVR4nO3dT4hd533G8eepi4Px0IHG6Swk01EYYSKsRfDFashmBtpmhDp2MMaRYkIVFA0KKCsvKkMW2YS4C2/cqJgpFuoi1VRokepfUFeDN15ICqVjR6gIoxDNwqqTMDDCEJT+upjr8WU8d3TOvefOOfd3vx8QzHnvuee+8/PV41fvee97HRECAOTyJ3V3AABQPcIdABIi3AEgIcIdABIi3AEgIcIdABL607o7IElPPfVUTE5O9vTcBw8e6Mknn6y2Q4lRr3KoV3nUrJx+6nXz5s2PI+JLWz3WiHCfnJzUjRs3enru0tKSpqenq+1QYtSrHOpVHjUrp5962f51t8eYlgGAhAh3AEiIcAeAhAh3AEio8nC3/RXbb9u+YPv7VV8fAPBohcLd9hnb922/v6l91vZt23dsn5KkiLgVESckvSLp69V3GQDwKEVH7mclzXY22H5M0mlJByXtk3TE9r72Yy9IuiLpamU9BQAUVmide0S8a3tyU/Pzku5ExIeSZHtR0ouSfhURFyVdtH1F0r9V2F8A6NnkqSsbP99941CNPRk8F/2yjna4X46IZ9vHL0uajYjvtY+/I+mApAuSXpL0BUn/HRGnu1xvXtK8JE1MTDy3uLjY0y+wtramsbGxnp47iqhXOdSrvCbXbHlldePn/bvGa+zJZ/qp18zMzM2IaG31WOWfUI2IJUlLBc5bkLQgSa1WK3r9hBafhiuHepVDvcprQs26jdCPdra/Or2TXepqUPXqJ9xXJD3dcby73QYAjdEZ9KOkn3C/Lmmv7T1aD/XDkr5d5gK25yTNTU1N9dENACgv+/x70aWQ5yS9J+kZ2/dsH4uIh5JOSrom6Zak8xHxQZkXj4hLETE/Pt6MuS8Ao2ny1JWNP1kUXS1zpEv7VbHcEQAap9btB2zP2V5YXV199MkAgMJqDXemZQBgMNg4DAASItwBICHm3AEgIebcASAhpmUAICHCHQASItwBICFuqAJAQtxQBYCEmJYBgIQIdwBIiHAHgIS4oQoACXFDFQASYloGABIi3AEgIcIdABIi3AEgoUJfkD0otuckzU1NTdXZDQDYMHnqysbPd984VGNP+sNqGQBIqNaROwD0qnOEjc9jzh0AEiLcASAhwh0AEiLcASAhwh0AEmJXSABIiHXuAJAQ0zIAkBAfYgJQmywf9W8iwh3AwBHiO49pGQBIiJE7gIFg75d6MXIHUJnJU1e0vLJKsDcA4Q4ACTEtA2BHdRvVc9O1WozcASAhRu4ANmw3V85oerjwHaoA+sLN02aqNdwj4pKkS61W63id/QBQDoHefEzLAChkFAN9mG/yEu4AGqdbqI7i/2B6RbgDI47AzImlkACQECN3AI3Gvyx6w8gdABJi5A6MCEbAo4WROwAkxMgdSGaY12ajOozcASAhRu4AUMCw/YuIkTsAJMTIHUiMFTKji3AHhtSwTRNgZw0k3G1/U9IhSX8m6Z2I+M9BvA4AYGuF59xtn7F93/b7m9pnbd+2fcf2KUmKiJ9HxHFJJyR9q9ouAwAepcwN1bOSZjsbbD8m6bSkg5L2STpie1/HKT9sPw4A2EGFp2Ui4l3bk5uan5d0JyI+lCTbi5JetH1L0huSfhERv6yqswC2xo1TbOaIKH7yerhfjohn28cvS5qNiO+1j78j6YCk/5H095KuS/qviHh7i2vNS5qXpImJiecWFxd7+gXW1tY0NjbW03NHEfUqp8n1Wl5ZrbsLW5p4Qvrok7p7MVj7d41Xdq1+3mMzMzM3I6K11WMDuaEaEW9JeusR5yxIWpCkVqsV09PTPb3W0tKSen3uKKJe5TS5XkcbOlp/bf9DvbmceyHe3VenK7vWoN5j/X6IaUXS0x3Hu9ttAIAa9Rvu1yXttb3H9uOSDku6WPTJtudsL6yuNvOflwAwrMoshTwn6T1Jz9i+Z/tYRDyUdFLSNUm3JJ2PiA+KXjMiLkXE/Ph4dfNXAIByq2WOdGm/KulqZT0CAPSt1rsetuckzU1NTdXZDaBx2FoA/ao13CPikqRLrVbreJ39AIYF69lRFFv+AkBCuRejAgkwWkcvah25sxQSAAaj1nBnKSQADAZz7gCQEHPuQEMwt44qMecOAAkx5w4ACTHnDgAJEe4AkBA3VAGgpGHY+4eNw4AdNAyhgBy4oQoACTHnDgAJEe4AkBDhDgAJsVoGqAnbDWCQGLkDQELsLQMACbEUEgASYloGABIi3AEgIcIdABIi3AEgIda5AwPGenbUgXBH47BzItA/1rkDQEKscweAhLihCgAJEe4AkBDhDgAJsVoG6AMre9BUjNwBICHCHQASItwBICHCHQAS4oYqUBH2kEGTMHIHgIRqHbnbnpM0NzU1VWc3gA0sbUQW7C0DAAkxLQMACRHuAJAQq2XQF+aogWZi5A4ACTFyB0piPTuGASN3AEiIcAeAhAh3AEiIcAeAhAh3AEiIcAeAhAh3AEiIcAeAhAh3AEio8nC3/WXb79i+UPW1AQDFFAp322ds37f9/qb2Wdu3bd+xfUqSIuLDiDg2iM4CO2ny1BUtr6yy3QCGUtGR+1lJs50Nth+TdFrSQUn7JB2xva/S3gEAeuKIKHaiPSnpckQ82z7+mqQfRcQ32sevS1JE/KR9fCEiXt7mevOS5iVpYmLiucXFxZ5+gbW1NY2NjfX03FFUdb2WV1Y3ft6/q5pv1KrymmWv1Xm+JE08IX30SV9dGDmjVrN+36P9/J2cmZm5GRGtrR7rZ1fIXZJ+03F8T9IB21+U9GNJX7X9+qdhv1lELEhakKRWqxXT09M9dWJpaUm9PncUVV2vo537ub9azXWrvGbZax3dNAXz2v6HenOZzVPLGLWa9fseHVSGVf5fICJ+K+lE1dcFABTXT7ivSHq643h3u60w23OS5qampvroBvAZbn4C6/pZCnld0l7be2w/LumwpItlLhARlyJifny8mrlaAMC6okshz0l6T9Iztu/ZPhYRDyWdlHRN0i1J5yPig8F1FQBQVKFpmYg40qX9qqSrlfYIANC3Wm9pM+eOJmCeHhnVurcMc+4AMBhsHAYACRHuAJAQc+5ohJ2Y92ZuHaOEOXcASIhpGQBIiHAHgISYc8eWOuen775xqMaeAOgFc+4AkBDTMgCQEOEOAAkR7gCQUK3hbnvO9sLq6uqjTwYAFMYNVQBIiGkZAEiIcAeAhAh3AEiIcAeAhAh3AEho6PeWWV5Z1dH2PijsgdJ87KkO7AyWQgJAQkzLAEBChDsAJES4A0BChDsAJES4A0BChDsAJDT069wxeHyfKjB8WOcOAAkxLQMACRHuAJAQ4Q4ACRHuAJAQ4Q4ACRHuAJAQ4Q4ACRHuAJAQ4Q4ACbH9ACrTbZuCfr5aj6/lQ9M1dXsOth8AgISYlgGAhAh3AEiIcAeAhAh3AEiIcAeAhAh3AEiIcAeAhAh3AEiIcAeAhAh3AEiIcAeAhAh3AEiIcAeAhAh3AEiIcAeAhCr/sg7bT0r6Z0l/kLQUET+r+jUAANsrNHK3fcb2fdvvb2qftX3b9h3bp9rNL0m6EBHHJb1QcX8BAAUUnZY5K2m2s8H2Y5JOSzooaZ+kI7b3Sdot6Tft0/5YTTcBAGU4IoqdaE9KuhwRz7aPvybpRxHxjfbx6+1T70n6fURctr0YEYe7XG9e0rwkTUxMPLe4uNjTL3D/d6v66JP1n/fvqu7r+pZXVjd+LnLdsucPqk/dzvm0feIJ6S/+vNzv02nz63Y7L4uJJ7Tx/kIxo1yzXv7ur62taWxsrKfXm5mZuRkRra0e62fOfZc+G6FL66F+QNJbkn5q+5CkS92eHBELkhYkqdVqxfT0dE+d+Kef/YfeXF7/Ne6+2ts1tnK080tvC1y37Pm9KPIa3c75tP21/Q/1SoFaH+3yxdSbX7fbeVm8tv/hxvsLxYxyzXr5u7+0tKRe8287lf8XiIgHkr5b9XUBAMX1sxRyRdLTHce7222F2Z6zvbC6mvuf9gCw0/oJ9+uS9treY/txSYclXSxzgYi4FBHz4+ODmaMGgFFVdCnkOUnvSXrG9j3bxyLioaSTkq5JuiXpfER8MLiuAgCKKjTnHhFHurRflXS11xe3PSdpbmpqqtdLAAC2UOv2A0zLAMBgsLcMACREuANAQoU/oTrQTtj/K+nX7cNxSZvXRm5u6zx+StLHA+raVn2p6nnbndPtsaLto1av7R4v+37afEy9ytVLGlzNqNfn/WVEfGnLRyKiUX8kLTyqrfNY0o2d7EtVz9vunG6PFW0ftXqVrRn1Gly9Blkz6lXuTxOnZbbasmBzW9dtDSrW6+sUed5253R7rGj7qNVru8d7eT9Rr+3bqNf27Y2oVyOmZfph+0Z02TgHn0e9yqFe5VGzcgZVryaO3MtaqLsDQ4Z6lUO9yqNm5QykXkM/cgcAfF6GkTsAYBPCHQASItwBIKF04W77Sdv/avtfbL9ad3+azvaXbb9j+0LdfRkGtr/Zfm/9u+2/rbs/TWf7K7bftn3B9vfr7s8waGfYDdt/1891hiLcbZ+xfd/2+5vaZ23ftn3H9ql280uSLkTEcUkv7HhnG6BMvSLiw4g4Vk9Pm6FkvX7efm+dkPStOvpbt5L1uhURJyS9IunrdfS3biXzS5L+QdL5fl93KMJd0llJs50Nth+TdFrSQUn7JB2xvU/r3wj16Xe7/nEH+9gkZ1W8XuitXj9sPz6KzqpEvWy/IOmK+tgefMidVcF62f4bSb+SdL/fFx2KcI+IdyX9blPz85LutEeef5C0KOlFrX9R9+72OUPx+1WtZL1GXpl6ed0/SvpFRPxyp/vaBGXfXxFxMSIOShrJadKS9ZqW9FeSvi3puO2eM2yYv6J8lz4boUvroX5A0luSfmr7kHbuY9HDYMt62f6ipB9L+qrt1yPiJ7X0rnm6vb9+IOmvJY3bnoqIt+voXAN1e39Na32q9Asa3ZH7VrasV0SclCTbRyV9HBH/1+sLDHO4bykiHkj6bt39GBYR8Vutzx+jgIh4S+sDCBQQEUuSlmruxtCJiLP9XmOYpy1WJD3dcby73YatUa9yqFc51KucgddrmMP9uqS9tvfYflzSYUkXa+5Tk1GvcqhXOdSrnIHXayjC3fY5Se9Jesb2PdvHIuKhpJOSrkm6Jel8RHxQZz+bgnqVQ73KoV7l1FUvNg4DgISGYuQOACiHcAeAhAh3AEiIcAeAhAh3AEiIcAeAhAh3AEiIcAeAhAh3AEjo/wG0pXVJypvkdQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGhCAYAAAC6URSFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAfLElEQVR4nO3dfWiVZ5o/8CuJGsmMccaGxqpxhGWmbMZWQZMgzIIWrXSLxbqFgjCTWpiB2Siz5DczKMs6yv7RsjsDgfVA2c4f3RlWEAs6MGX6MqFFaLv4slgoYncFO7h1zVaKpkY2puec3x8ds6OJMSc5L/eT8/lAkec5z7mf6+TKOfn2eblPQ7FYLAYAQCIaa10AAMCfEk4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRlXq0LKFWhUIjLly/HokWLoqGhodblAADTUCwW4/PPP49ly5ZFY+PUx0YyF04uX74cHR0dtS4DAJiBS5cuxYoVK6bcJnPhZNGiRRHx5YtrbW0t69hjY2Px5ptvxuOPPx7z588v69hUnv5lnx5mnx5mWyX7Nzw8HB0dHeN/x6eSuXBy+1ROa2trRcJJS0tLtLa2elNlkP5lnx5mnx5mWzX6N51LMlwQCwAkRTgBAJIinAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkperh5Nq1a7F+/fpYu3ZtrF69Ol5++eVqlwAAJKzq09cvWrQoTpw4ES0tLTEyMhKrV6+OHTt2xAMPPFDtUgCABFX9yElTU1O0tLRERMTo6GgUi8UoFovVLgMASFTJ4eTEiROxbdu2WLZsWTQ0NMTx48cnbJPL5WLVqlWxcOHC6OnpiZMnT97x+LVr12LNmjWxYsWK+MlPfhJtbW0zfwUAwJxS8mmdkZGRWLNmTTz//POxY8eOCY8fOXIk+vv746WXXoqenp4YGBiIrVu3xkcffRQPPvhgRER87Wtfiw8++CCGhoZix44d8cwzz0R7e/uk+xsdHY3R0dHx5eHh4Yj48psTx8bGSi1/SrfHK/e4VIf+ZZ8eZp8eZlsl+1fKmA3FWZxTaWhoiGPHjsX27dvH1/X09ERXV1ccOnQoIiIKhUJ0dHTEnj17Yu/evRPG+Ou//ut47LHH4plnnpl0HwcOHIiDBw9OWH/48OHx00MAQNpu3rwZO3fujOvXr0dra+uU25b1gthbt27FmTNnYt++fePrGhsbY/PmzfH+++9HRMTQ0FC0tLTEokWL4vr163HixIn44Q9/eM8x9+3bF/39/ePLw8PD0dHREY8//vh9X1ypxsbG4q233ootW7bE/Pnzyzo2lad/2aeH2TdXerj6wBt3LH94YOuMtsmaSvbv9pmP6ShrOLl69Wrk8/kJp2ja29vj/PnzERHxhz/8IX7wgx+MXwi7Z8+eeOSRR+45ZnNzczQ3N09YP3/+/Ir94ldybCpP/7JPD7Mv6z0czTfcsTzZa5nONllVif6VMl7VbyXu7u6Os2fPVnu3AFBRq/a+NmHdxy8+WYNKsq+stxK3tbVFU1NTDA0N3bF+aGgoli5dWs5dAQBzVFnDyYIFC2LdunUxODg4vq5QKMTg4GBs2LBhVmPncrno7OyMrq6u2ZYJACSs5NM6N27ciAsXLowvX7x4Mc6ePRtLliyJlStXRn9/f/T29sb69euju7s7BgYGYmRkJHbt2jWrQvv6+qKvry+Gh4dj8eLFsxoLAEox2SkbKqfkcHL69OnYtGnT+PLtO2l6e3vjlVdeiWeffTY+/fTT2L9/f1y5ciXWrl0br7/++j3nMQGAueruUOMalOkpOZxs3LjxvtPN7969O3bv3j3jogCA+lX179YBAJiKcAIAJCUz4cTdOgBQHzITTvr6+uLcuXNx6tSpWpcCAFRQZsIJAFAfhBMAICnCCQCQFOEEAEhKZsKJu3UAoD5kJpy4WwcA6kNmwgkAUB+EEwAgKcIJAJAU4QQASIpwAgAkRTgBAJKSmXBinhMAqA+ZCSfmOQGA+pCZcAIA1AfhBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUjITTkzCBgD1ITPhxCRsAFAfMhNOAID6IJwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJGVerQuYrlwuF7lcLvL5fK1LAYAZWbX3tQnrPn7xyRpUkrbMHDkxQywA1IfMhBMAoD5k5rQOAFTCZKdaqC1HTgCApAgnAEBSnNYBoK44jZM+R04AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkpKZcJLL5aKzszO6urpqXQoAUEGZCSe+lRgA6kNmwgkAUB+EEwAgKcIJAJAU4QQASIpwAgAkZV6tCwCAu63a+9odyx+/+GSNKqEWHDkBAJIinAAASXFaB4CKufv0zGScsuFujpwAAElx5ASA5E12BMYRl7nLkRMAICmOnABQNqsPvBH/0P3lv6P5hmk9ZzrXpVBfHDkBAJIinAAASRFOAICkCCcAQFJcEAtAJs2V799xm/REmQknuVwucrlc5PP5WpcCMKf440hqMhNO+vr6oq+vL4aHh2Px4sW1LgegrggwVFNmwgkA5VGueUUmG6e5qSxDl405VLJJOAFgAn/UqSXhBGAOEzLIIrcSAwBJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkmISNgDmBBPOzR3CCUBG+TI+5iqndQCApDhyAjCHOLXBXODICQCQFOEEAEiKcAIAJEU4AQCS4oJYAEjM3Rc219st4o6cAABJEU4AgKQIJwBAUoQTACApLogFqDLfiQNTE04AMsLU9NQL4QQgAfV+6yj8qapfc3Lp0qXYuHFjdHZ2xqOPPhpHjx6tdgkAQMKqfuRk3rx5MTAwEGvXro0rV67EunXr4i//8i/jK1/5SrVLAQASVPVw8tBDD8VDDz0UERFLly6Ntra2+Oyzz4QTgD/h+hLqWcmndU6cOBHbtm2LZcuWRUNDQxw/fnzCNrlcLlatWhULFy6Mnp6eOHny5KRjnTlzJvL5fHR0dJReOQAwJ5V85GRkZCTWrFkTzz//fOzYsWPC40eOHIn+/v546aWXoqenJwYGBmLr1q3x0UcfxYMPPji+3WeffRbf+9734uWXX55yf6OjozE6Ojq+PDw8HBERY2NjMTY2Vmr5U7o9XrnHpTr0L/vqpYfNTcVal1AxzY3FO/6lPKr1nqjke7CUMRuKxeKMf4MaGhri2LFjsX379vF1PT090dXVFYcOHYqIiEKhEB0dHbFnz57Yu3dvRHwZOLZs2RLf//7347vf/e6U+zhw4EAcPHhwwvrDhw9HS0vLTEsHAKro5s2bsXPnzrh+/Xq0trZOuW1Zrzm5detWnDlzJvbt2ze+rrGxMTZv3hzvv/9+REQUi8V47rnn4rHHHrtvMImI2LdvX/T3948vDw8PR0dHRzz++OP3fXGlGhsbi7feeiu2bNkS8+fPL+vYVJ7+ZV+99HD1gTdqXULFNDcW4+/XF+LvTjfGaKGh1uXMGR8e2FqV/VTyPXj7zMd0lDWcXL16NfL5fLS3t9+xvr29Pc6fPx8REe+++24cOXIkHn300fHrVX7961/HI488MumYzc3N0dzcPGH9/PnzK/bhVcmxqTz9y7653sPR/Nz/oz1aaKiL11kt1X4/VOI9WMp4Vb9b5zvf+U4UCoVq7xYAyIiyTsLW1tYWTU1NMTQ0dMf6oaGhWLp0aTl3BQDMUWUNJwsWLIh169bF4ODg+LpCoRCDg4OxYcOGWY2dy+Wis7Mzurq6ZlsmAJCwkk/r3LhxIy5cuDC+fPHixTh79mwsWbIkVq5cGf39/dHb2xvr16+P7u7uGBgYiJGRkdi1a9esCu3r64u+vr4YHh6OxYsXz2osACBdJYeT06dPx6ZNm8aXb99J09vbG6+88ko8++yz8emnn8b+/fvjypUrsXbt2nj99dcnXCQLADCZksPJxo0b435To+zevTt2794946IAgPpV9W8lBgCYinACACSl6vOczFQul4tcLhf5fL7WpQDc093fJvzxi0/WqBLIrswcOenr64tz587FqVOnal0KAFBBmTlyApBFdx9JAe4vM0dOAID6IJwAAElxWgdgmlzsCtWRmSMnvlsHAOpDZsKJu3UAoD5kJpwAAPVBOAEAkiKcAABJEU4AgKS4lRhghsz+CpXhyAkAkJTMhBPznABAfchMODHPCQDUh8yEEwCgPggnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSkpnp63O5XORyucjn87UuBQCqarKvSvj4xSdrUEl1ZObIiUnYAKA+ZCacAAD1ITOndQCqyTcOQ+04cgIAJMWRE4BwpARS4sgJAJAU4QQASIpwAgAkRTgBAJKSmXCSy+Wis7Mzurq6al0KAFBBmQknZogFgPqQmXACANQH85wAdcecJpA2R04AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkmKeE8i4u+fs+PjFJ2tUCUB5OHICACRFOAEAkpKZcOJbiQGgPmQmnPhWYgCoD5kJJwBAfRBOAICkCCcAQFKEEwAgKcIJAJAUM8QCmXX37LgRZsiFucCREwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFJMwgbMKSZmg+xz5AQASIpwAiRh1d7XYvWBNyIixv8F6pNwAgAkJTPhJJfLRWdnZ3R1ddW6FACggjITTvr6+uLcuXNx6tSpWpcCAFRQZsIJAFAfhBMAICnCCQCQFJOwwSzdPemXCb8AZseREwAgKcIJAJAUp3WAOW+y79sB0uXICQCQFOEEAEiK0zpA1TnNAkzFkRMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAIClmiAWSZBZZqF+OnAAASRFOAICkCCcAQFJccwLMyt3Xhnz84pM1qgSYKxw5AQCSIpwAAEkRTgCApNQknDz99NPx9a9/PZ555pla7B4ASFhNwsmPfvSj+NWvflWLXQMAiatJONm4cWMsWrSoFrsGABJXcjg5ceJEbNu2LZYtWxYNDQ1x/PjxCdvkcrlYtWpVLFy4MHp6euLkyZNlKRYAmPtKnudkZGQk1qxZE88//3zs2LFjwuNHjhyJ/v7+eOmll6KnpycGBgZi69at8dFHH8WDDz5YcoGjo6MxOjo6vjw8PBwREWNjYzE2NlbyeFO5PV65x6U6atW/5qbipHXY//SfM76+sXjHv2SPHlZPJd7rlfwcLWXMhmKxOOPfoIaGhjh27Fhs3759fF1PT090dXXFoUOHIiKiUChER0dH7NmzJ/bu3Tu+3TvvvBOHDh2KV199dcp9HDhwIA4ePDhh/eHDh6OlpWWmpQMAVXTz5s3YuXNnXL9+PVpbW6fctqwzxN66dSvOnDkT+/btG1/X2NgYmzdvjvfff39GY+7bty/6+/vHl4eHh6OjoyMef/zx+764Uo2NjcVbb70VW7Zsifnz55d1bCqvVv1bfeCNO5Y/PLC1avvO6v7vfs5tzY3F+Pv1hfi7040xWmgoS31Ulx5WTyXe65X8HL195mM6yhpOrl69Gvl8Ptrb2+9Y397eHufPnx9f3rx5c3zwwQcxMjISK1asiKNHj8aGDRsmHbO5uTmam5snrJ8/f37F/gBVcmwqr9r9G83f+QFc7d+dLO7/7udMeLzQcN9tSJseVl4l3+uV+BwtZbyafLfO73//+1rsFgDIgLLeStzW1hZNTU0xNDR0x/qhoaFYunRpOXcFAMxRZQ0nCxYsiHXr1sXg4OD4ukKhEIODg/c8bTNduVwuOjs7o6ura7ZlAgAJK/m0zo0bN+LChQvjyxcvXoyzZ8/GkiVLYuXKldHf3x+9vb2xfv366O7ujoGBgRgZGYldu3bNqtC+vr7o6+uL4eHhWLx48azGAgDSVXI4OX36dGzatGl8+fadNL29vfHKK6/Es88+G59++mns378/rly5EmvXro3XX399wkWyAACTKTmcbNy4Me43Ncru3btj9+7dMy4KAKhfNfluHQCAexFOAICk1GSek5nI5XKRy+Uin8/XuhSomlV7X7tj+eMXn6zZvqu9f6B+ZebISV9fX5w7dy5OnTpV61IAgArKTDgBAOqDcAIAJEU4AQCSIpwAAElxtw5QVu7yAWYrM0dO3K0DAPUhM+EEAKgPwgkAkBThBABIinACACRFOAEAkiKcAABJMc8J/JH5OSpnsp8twL1k5siJeU4AoD5kJpwAAPVBOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBSTsAERMb2J0kymBlRDZo6cmIQNAOpDZsIJAFAfhBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApGQmnORyuejs7Iyurq5alwIAVFBmwokZYgGgPmQmnAAA9UE4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApMyrdQHTlcvlIpfLRT6fr/i+Vh94I0bzDRER8fGLT1Z8fzBdq/a+VusSgETc/Xkwl/5eZebIiW8lBoD6kJlwAgDUB+EEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEjKvFoXMF25XC5yuVzk8/mIiFj9szeisbmlrPtobirGP3SXdUgybtXe1+5Y/vjFJ8syTiVNtq+Z1g1QC5k5ctLX1xfnzp2LU6dO1boUAKCCMhNOAID6IJwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApNQknPz2t7+Nhx9+OL75zW/GL3/5y1qUAAAkal61d/jFF19Ef39/vP3227F48eJYt25dPP300/HAAw9UuxQAIEFVP3Jy8uTJ+Pa3vx3Lly+Pr371q/HEE0/Em2++We0yAIBElRxOTpw4Edu2bYtly5ZFQ0NDHD9+fMI2uVwuVq1aFQsXLoyenp44efLk+GOXL1+O5cuXjy8vX748PvnkkxmWDwDMNSWf1hkZGYk1a9bE888/Hzt27Jjw+JEjR6K/vz9eeuml6OnpiYGBgdi6dWt89NFH8eCDD5Zc4OjoaIyOjo4vDw8PR0TEgqZiNDUVSx5vKs2NxTv+jYgYGxsr6z6onNu9mmnPmqfx+zTZ2Hc/bzrbVNt0fia1rjFi8vcg2aKHtVOOv1ez/RydztjT0VAsFmf8G9TQ0BDHjh2L7du3j6/r6emJrq6uOHToUEREFAqF6OjoiD179sTevXvjvffei3/8x3+MY8eORUTE3/zN30R3d3fs3Llz0n0cOHAgDh48OGH94cOHo6WlZaalAwBVdPPmzdi5c2dcv349Wltbp9y2rOHk1q1b0dLSEq+++uodgaW3tzeuXbsWv/nNb+KLL76IP//zP4933nln/ILY9957754XxE525KSjoyP+7P8diabm8oaT5sZi/P36Qvzd6cYYLTRERMSHB7aWdR9TWX3gjQnr5vL+797fTPd1e5zJ+lfK2JO9/rlqsp9HCq9/qh6SDXpYO+X4vB4bG4u33nortmzZEvPnzy9DVf9neHg42traphVOynq3ztWrVyOfz0d7e/sd69vb2+P8+fNf7nDevPjFL34RmzZtikKhED/96U+nvFOnubk5mpubJ6y/lW+IxnxlfvFHCw0x+sexy92cKfc7yeuZy/u/e38z3dfd4/xp/0oZe7LXP1dN9vNI6fVP1kOyRQ+rr5yf1/Pnzy/7538p41X9VuKIiKeeeiqeeuqpWuwaAEhcWW8lbmtri6amphgaGrpj/dDQUCxdurScuwIA5qiyhpMFCxbEunXrYnBwcHxdoVCIwcHB2LBhw6zGzuVy0dnZGV1dXbMtEwBIWMmndW7cuBEXLlwYX7548WKcPXs2lixZEitXroz+/v7o7e2N9evXR3d3dwwMDMTIyEjs2rVrVoX29fVFX19fDA8Px+LFi2c1FgCQrpLDyenTp2PTpk3jy/39/RHx5R05r7zySjz77LPx6aefxv79++PKlSuxdu3aeP311ydcJAsAMJmSw8nGjRvjfncf7969O3bv3j3jogCA+lWTbyUGALgX4QQASEpmwom7dQCgPmQmnPT19cW5c+fi1KlTtS4FAKigzIQTAKA+CCcAQFKEEwAgKTX54r/ZuD3HSmH0ZtnHzjcV4+bNfORHm6Lwx2/THB4eLvt+7mWy1zSX93/3/ma6r9vjTNa/UsauxO9Uqib7eaTw+qfqIdmgh7VTjs/rsbGxuHnzZgwPD5f9W4lv13e/udIiIhqK09kqIf/1X/8VHR0dtS4DAJiBS5cuxYoVK6bcJnPhpFAoxOXLl2PRokXR0PB/qbyrq+ued/JM9thk64aHh6OjoyMuXboUra2t5S9+mqZ6LdUcr5TnTWfb+21zr8enuz6V/kXo4UzX6+HsnjfbHs7kMT0s7/Nm+h6bzuPT+VtYyf4Vi8X4/PPPY9myZdHYOPVVJZk7rdPY2Dhp4mpqarrnD3Kyx6bavrW1taZvqqlqq+Z4pTxvOtveb5t7PV7q+lr3L0IPZ7teD2f2vNn2cCaP6WF5nzfT99h0Hi/lb2Gl+jfdL+5tOnDgwIGy771Guru7S3rs7nWjo6Px4osvxr59+6K5ubns9ZViqtdSzfFKed50tr3fNvd6fDrrU+pfhB7OZL0ezv55s+3hTB7Tw/I+b6bvsek8fr+/han0L3OndSppeHg4Fi9eHNevX6954qd0+pd9eph9ephtqfRvTh05KYempqbYuHFjzJuXuTNehP7NBXqYfXqYbSn0z5ETACApJmEDAJIinAAASRFOAICkCCcAQFKEEwAgKcLJNP32t7+Nhx9+OL75zW/GL3/5y1qXwww8/fTT8fWvfz2eeeaZWpfCDFy6dCk2btwYnZ2d8eijj8bRo0drXRIluHbtWqxfvz7Wrl0bq1evjpdffrnWJTFDN2/ejG984xvx4x//uGL7cCvxNHzxxRfR2dkZb7/9dixevDjWrVsX7733XjzwwAO1Lo0SvPPOO/H555/Hv/zLv8Srr75a63Io0X//93/H0NBQrF27Nq5cuRLr1q2L//iP/4ivfOUrtS6Nacjn8zE6OhotLS0xMjISq1evjtOnT/sczaC//du/jQsXLkRHR0f8/Oc/r8g+HDmZhpMnT8a3v/3tWL58eXz1q1+NJ554It58881al0WJNm7cGIsWLap1GczQQw89FGvXro2IiKVLl0ZbW1t89tlnNa6K6WpqaoqWlpaI+HKK9GKxGP7fOHv+8z//M86fPx9PPPFERfdTF+HkxIkTsW3btli2bFk0NDTE8ePHJ2yTy+Vi1apVsXDhwujp6YmTJ0+OP3b58uVYvnz5+PLy5cvjk08+qUrtfGm2PaT2ytnDM2fORD6fj46OjkqXzR+Vo3/Xrl2LNWvWxIoVK+InP/lJtLW1Vat8ojw9/PGPfxwvvPBCxWuti3AyMjISa9asiVwuN+njR44cif7+/vjZz34W//7v/x5r1qyJrVu3xv/8z/9UuVLuRQ+zr1w9/Oyzz+J73/te/PM//3M1yuaPytG/r33ta/HBBx/ExYsX4/DhwzE0NFSt8onZ9/A3v/lNfOtb34pvfetblS+2WGcionjs2LE71nV3dxf7+vrGl/P5fHHZsmXFF154oVgsFovvvvtucfv27eOP/+hHPyr+67/+a3UKZoKZ9PC2t99+u/hXf/VXVamTe5tpD//3f/+3+Bd/8RfFX/3qV1WrlYlm8x687Yc//GHx6NGjFa2Te5tJD/fu3VtcsWJF8Rvf+EbxgQceKLa2thYPHjxYkfrq4sjJVG7duhVnzpyJzZs3j69rbGyMzZs3x/vvvx8RX36d9IcffhiffPJJ3LhxI373u9/F1q1ba1Uyd5lOD0nbdHpYLBbjueeei8ceeyy++93v1qpUJjGd/g0NDcXnn38eERHXr1+PEydOxMMPP1yTeploOj184YUX4tKlS/Hxxx/Hz3/+8/j+978f+/fvr0g9df+VkVevXo18Ph/t7e13rG9vb4/z589HRMS8efPiF7/4RWzatCkKhUL89Kc/dYV5QqbTw4iIzZs3xwcffBAjIyOxYsWKOHr0aGzYsKHa5TKJ6fTw3XffjSNHjsSjjz46fq7817/+dTzyyCNVr5c7Tad/f/jDH+IHP/jB+IWwe/bs0buETPdztFrqPpxM11NPPRVPPfVUrctgFn7/+9/XugRm4Tvf+U4UCoVal8EMdXd3x9mzZ2tdBmXy3HPPVXT8uj+t09bWFk1NTRMuzBoaGoqlS5fWqCpKoYfZp4fZpn/Zl1oP6z6cLFiwINatWxeDg4Pj6wqFQgwODjrknxF6mH16mG36l32p9bAuTuvcuHEjLly4ML588eLFOHv2bCxZsiRWrlwZ/f390dvbG+vXr4/u7u4YGBiIkZGR2LVrVw2r5k/pYfbpYbbpX/ZlqocVuQcoMW+//XYxIib819vbO77NP/3TPxVXrlxZXLBgQbG7u7v4b//2b7UrmAn0MPv0MNv0L/uy1EPfrQMAJKXurzkBANIinAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFL+PxadxA0L2OpPAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ - "plotDistribution(degrees, 100)\n", + "plotDistribution(degrees, 100, minValue=1E0)\n", "plt.yscale(\"log\")" ] }, { "cell_type": "code", - "execution_count": 111, + "execution_count": 104, "metadata": {}, "outputs": [], "source": [ @@ -3038,31 +3189,37 @@ }, { "cell_type": "code", - "execution_count": 112, + "execution_count": 105, "metadata": { "scrolled": true }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", + " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" + ] + }, { "data": { "text/plain": [ "(0.01, 1)" ] }, - "execution_count": 112, + "execution_count": 105, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAARDElEQVR4nO3db4gc93nA8e8TRW6N1dgQXwX6A1KwOCp8L4KMTSiFFdT1GVtx6ppGighVUXz4hUpf6EVlCDRQit0XLsSJiKvWQgm0cg9jUslRUCFwUaB+ISmEyqpQEUbFJ0xEEjA91+Be+vSFVslqrTvN7s7e7O3v+wGB5re/mXlGM9pnf39mJjITSVJ5PtF0AJKkZpgAJKlQJgBJKpQJQJIKZQKQpEKZACSpUJ9sOgCA++67Lx944IGmw5A+5oMPPuCee+5pOgzpts6fP/+zzJzod/2RSADr16/n3LlzTYchfczc3BytVqvpMKTbioj/GmT9RruAImJXRBxZWFhoMgxJKlKjCSAzT2bmzLp165oMQ5KK5CCwJBXKBCBJhTIBSFKhTACSVChnAUlSoRq9DyAzTwInJycnn20yDq2MLYe+96u/X33xiQYjkQR2AUlSsUbiTmDJ1oG08kwAGprOL3VJo8cuIEkqlAlAkgpVexdQRHwC+CvgU8C5zPx23fuQJA2uUgsgIo5GxPWIeLurfDoiLkfElYg41C5+CtgE/C8wX2+4kqS6VG0BHAO+CXznZkFErAEOA49y44v+bEScACaBf8vMv4uI14Ef1Bqxxp4zgqSVUSkBZOaZiNjSVfwwcCUz3wGIiNe48ev/XeCjdp1fLrXNiJgBZgAmJiaYm5vrKXCNpgvX3v/V3w9OLV2v+3wfnFqsVG+lLSwsNB6DNCyDjAFs5MaX/U3zwCPA14FvRMTvAWeWWjkzj0TEe8CutWvX7vCtS+NhX8Wpn1f3tiqt111vpflGMI2z2geBM/N/gP0V6/ooCElqyCDTQK8BmzuWN7XLKvNhcJLUnEESwFlgW0RsjYi7gN3AiV424CshJak5VaeBHgfeAiYjYj4i9mfmInAAOA1cAmYz82IvO7cFIEnNqToLaM8S5aeAU/3u3DGA8eAzf6TVyRfCSFKhfCGMRlp368Ibw6T6+DA4SSqUXUCSVKhGE4DTQCWpOXYBSVKhGh0EjohdwK4NGzY0GYZ65LTP6nyyqUaZXUCSVChfCi8NyF/5Wq0cA5CkQjkGIK0QWwoaNY4BSFKhHAPQquUvamkwJgBV4tRPafw4CCxJhbIFIPVhNbWIfKKqluLD4CSpUM4CkqRC2QUkjYC6ZzStpi4qNcdBYEkqlC0AqTDeP6GbTAC6LbsQpPFnAtBYcKqj1LvaxwAiohURP4qIVyKiVff2JUn1qJQAIuJoRFyPiLe7yqcj4nJEXImIQ+3iBBaA3wTm6w1XklSXql1Ax4BvAt+5WRARa4DDwKPc+KI/GxEngB9l5g8jYj3wt8DeWiOWGuCYiMZRZGa1ihFbgDcz88H28ueAr2XmY+3l5wEy84X28l3AP2XmM0tsbwaYAZiYmNgxOzs72JGoVheuvT/U7U9tvLev/XWut9w63dvv18LCAuvWresrPlg6xuXq1RF7v/HWoe5j0dJ27tx5PjMf6nf9QQaBNwLvdizPA49ExNPAY8B93Gg13FZmHgGOAExOTmar1RogFNVt35B/8V7d2+prf53rLbdO9/b7NTc3R6vV6is+WDrG5erVEXu/8dah7mPR8NQ+Cygz3wDeqFLXN4JplG059D0OTi0OPRnebr+dVnJGU9V7BLyXYDwMkgCuAZs7lje1y7RK2c+tpXhtjKdBEsBZYFtEbOXGF/9u4Eu9bCAzTwInJycnnx0gDkkjypbCaKuUACLiONAC7o+IeeAvM/PViDgAnAbWAEcz82IvO7cLqHkl/LIb15vExvW4tHIqJYDM3LNE+SngVL87twUgSc3xURAqWgktIGkpvhFMkgrVaAvALiCpN+PUYnGAuHm2ACSpUL4TWJIK5SshJalQdgFJUqHsApKkQnkfgKSR5myh4TEBSGqcX/LNMAGoOOM0l14aRKMJwIfBSRqELYfBOAgsSYXyPgBJKpQJQJIKZQKQpEI5CCxp7Pi2tGocBJakQtkFJEmF8kYwaUw0dYObN9atXiYASSNl2AnFm8d+zS4gSSqULQCNJbslpDsbSgsgIu6JiHMR8eQwti9JGlylFkBEHAWeBK5n5oMd5dPA14E1wD9k5ovtj/4CmK05VtXAX8aSbqraAjgGTHcWRMQa4DDwOLAd2BMR2yPiUeA/gOs1xilJqllkZrWKEVuAN2+2ACLic8DXMvOx9vLz7arrgHu4kRQ+BP4wM//vNtubAWYAJiYmdszO2mBYCReuvd90CABMbbz3luWqcXWutxLHsv5u+OmH1etXPa5ejn+Yx7xcHHXvt99zXnUby8W71Gfd21ttdu7ceT4zH+p3/UEGgTcC73YszwOPZOYBgIjYB/zsdl/+AJl5BDgCMDk5ma1Wa4BQVNW+EekCurq3dcty1bg611uJYzk4tchLF6r/N6l6XL0c/zCPebk46t5vv+e86jaWi3epz7q3V5qhzQLKzGN3quOzgKQ7c9xGwzJIArgGbO5Y3tQuqywzTwInJycnnx0gDknqS+kPjRtkGuhZYFtEbI2Iu4DdwIleNhARuyLiyMLCwgBhSJL6USkBRMRx4C1gMiLmI2J/Zi4CB4DTwCVgNjMvDi9USVKdKnUBZeaeJcpPAaf63bldQJLUHJ8FJEmF8o1gBXAWicaF13K9Gk0AdgGpVH6RaRQ02gXkLCBJao7vBJakQjkILEmFMgFIUqGcBTSmHGSUdCeOAUhSoewCkqRC+VJ4qWB2FVbX+W81Lk8N9T4ASSqUYwCSVCjHACSpUCYASSqUCUCSCuUsIKlGzqopw7jMCHIWkCQVyvcBSBoLdbe+SmjNOQYgSYVyDECS2kr41d/JFoAkFcoWgCQNYLlWw6jPEKo9AUTE7wB/DtwP/CAzv1X3PlSu0pro0jBV6gKKiKMRcT0i3u4qn46IyxFxJSIOAWTmpcx8Dvhj4HfrD1mSVIeqYwDHgOnOgohYAxwGHge2A3siYnv7s88D3wNO1RapJKlWlRJAZp4BftFV/DBwJTPfycyPgNeAp9r1T2Tm48DeOoOVJNUnMrNaxYgtwJuZ+WB7+RlgOjO/0l7+MvAI8DrwNPAbwL9n5uEltjcDzABMTEzsmJ2dHexIdIsL195vOoRlTW2895blUY13/d3w0w+bjqIZneeojvPT5Dmv+1j62e8w7Ny583xmPtTv+rUPAmfmHDBXod6RiHgP2LV27dodrVar7lCKtm/EB0uv7m3dsjyq8R6cWuSlC2VOlus8R3WcnybPed3H0s9+R9Eg9wFcAzZ3LG9ql1XmC2EkqTmDJICzwLaI2BoRdwG7gRO9bMCHwUlSc6pOAz0OvAVMRsR8ROzPzEXgAHAauATMZubFXnZuC0CSmlOpczMz9yxRfooBpnpGxC5g14YNG/rdhCSpT74UXpIK5QthJKlQtgAkqVBlTnCWpAaM2ruEG00ADgJLGmej/vRa3wk8Jkb9QpM0enwjmCQVyllAklQoZwFJUqHsApKkQpkAJKlQTgOVpAaMwj0BTgOVdFtOLR5/3gksSSNmpVoHjgFIUqFsAaxiNtElDcIWgCQVyjuBJalQ3gksSYWyC0iSCmUCkKRCmQAkqVAmAEkq1FDuA4iILwBPAJ8CXs3Mfx3GfiRJ/avcAoiIoxFxPSLe7iqfjojLEXElIg4BZOZ3M/NZ4Dngi/WGLEmqQy9dQMeA6c6CiFgDHAYeB7YDeyJie0eVr7Y/lySNmMoJIDPPAL/oKn4YuJKZ72TmR8BrwFNxw98A38/MH9cXriSpLpGZ1StHbAHezMwH28vPANOZ+ZX28peBR4D/BP4EOAv8JDNfuc22ZoAZgImJiR2zs7ODHUmBLlx7v+kQ+ja18d5blkf1WNbfDT/9sOkoxkOT57xz36N4rS33b9P9WaedO3eez8yH+t3vUAaBM/Nl4OU71DkSEe8Bu9auXbuj1WoNI5Sxtm8VPwzu6t7WLcujeiwHpxZ56YLPTKxDk+e8c9+jeK0t92/T/VmdBp0Geg3Y3LG8qV1WiY+CkKTmDPrT5iywLSK2cuOLfzfwpaor+0pISWru0e69TAM9DrwFTEbEfETsz8xF4ABwGrgEzGbmxarbtAUgSc2p3ALIzD1LlJ8CTvWzc1sAktQcHwctSYXyhTCSVChbAJJUKJ8GKkmFsgtIkgplF5AkFcp73CWtiKZudtLSGk0A3gfQG/8DSaqTXUCSVChnAUlSoUwAklQop4FKUqEcA5CkQtkFJEmFMgFIUqFMAJJUKO8EHnHe/CVpWJwFJEmFchaQJBXKMQBJKpQJQJIKZQKQpEKZACSpULUngIj4TES8GhGv171tSVJ9KiWAiDgaEdcj4u2u8umIuBwRVyLiEEBmvpOZ+4cRrCSpPlVbAMeA6c6CiFgDHAYeB7YDeyJie63RSZKGplICyMwzwC+6ih8GrrR/8X8EvAY8VXN8kqQhGeRREBuBdzuW54FHIuLTwF8Dn42I5zPzhdutHBEzwAzAxMQEc3NzA4Qyvg5OLTYdwlB84x//5Zblg1MNBXIH6+8e33NQks7vl9V2Pof53Vj7s4Ay8+fAcxXqHYmI94Bda9eu3dFqteoOZSzs81lAjTo4tchLF3xk1mp3dW/rV39fbf+nOmOv2yCzgK4BmzuWN7XLKvNREJLUnEESwFlgW0RsjYi7gN3AiV424MPgJKk5VaeBHgfeAiYjYj4i9mfmInAAOA1cAmYz82IvO7cFIEnNqdS5mZl7lig/BZzqd+cRsQvYtWHDhn43IUnqk4+DlqRC+UIYSSqULQBJKpRPA5WkQtkFJEmFsgtIkgplF5AkFarRh5x4H4AkLW9Lx7OLrr74RK3btgtIkgplF5AkFcoEIEmFchqoJBXKMQBJKpRdQJJUKBOAJBXKBCBJhTIBSFKhvBN4BHXe+SdJw+IsIEkqlF1AklQoE4AkFcoEIEmFMgFIUqFMAJJUKBOAJBXKBCBJhTIBSFKhIjObjoGI+G/gctNx1OBe4P0x2e+g2+xn/V7XqVJ/0Dr3Az/rIaZR1sT1OS7XZq/rVa17p3p3+nwyM3+rYkwfl5mN/wHONR1DTcdxZFz2O+g2+1m/13Wq1B+0zrhcm3Wc01HZZxPXZq/rVa17p3oVPh/o+rQLqF4nx2i/g26zn/V7XadK/brqjIMmjnNcrs1e16ta9071hnrORqUL6FxmPtR0HFI3r02NskGvz1FpARxpOgBpCV6bGmUDXZ8j0QKQJK28UWkBSJJWmAlAkgplApCkQo18AoiIL0TE30fEP0fEHzQdj3RTRHwmIl6NiNebjkWKiHsi4tvt78u9VdYZagKIiKMRcT0i3u4qn46IyxFxJSIOLbeNzPxuZj4LPAd8cZjxqhw1XZvvZOb+4UaqkvV4nT4NvN7+vvx8le0PuwVwDJjuLIiINcBh4HFgO7AnIrZHxFREvNn157c7Vv1qez2pDseo79qUhuUYFa9TYBPwbrvaL6ts/JO1hXkbmXkmIrZ0FT8MXMnMdwAi4jXgqcx8AXiyexsREcCLwPcz88fDjFflqOPalIatl+sUmOdGEvgJFX/cNzEGsJFfZym4EfTGZer/GfD7wDMR8dwwA1Pxero2I+LTEfEK8NmIeH7YwUltS12nbwB/FBHfouIjJIbaAqhDZr4MvNx0HFK3zPw5N8ampMZl5gfAn/ayThMtgGvA5o7lTe0yqWlem1oNartOm0gAZ4FtEbE1Iu4CdgMnGohD6ua1qdWgtut02NNAjwNvAZMRMR8R+zNzETgAnAYuAbOZeXGYcUjdvDa1Ggz7OvVhcJJUqJG/E1iSNBwmAEkqlAlAkgplApCkQpkAJKlQJgBJKpQJQJIKZQKQpEKZACSpUP8PPCiqIVOGAdMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGhCAYAAACUFDUXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df2wcd53/8dfaWW9kGvvqWLHrdH0GVBBuWvt79novEgW7cjGBc5WGQqRIsEmkcuLWUU97FNl/EBzxU19+yBIZKbpDKICIzmoluxI90oJJZWiDHAe5IkQJhDNc1dTb/Lh667XYbHb3+weX/Z67k8a7O7uzn/XzIUXRfLz7mfdOZryvfOYzM55MJpMRAACAoWrcLgAAAKAYhBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKNtcruAfKXTaV2+fFlbtmyRx+NxuxwAALAOmUxGb731ltra2lRT4+xYinFh5vLly/L7/W6XAQAACvDqq6/q3nvvdbRP48LMli1bJEmLi4tqampyuRoATkomk3rhhRf0kY98RF6v1+1yADjo+vXreve73539HneScWHm1qmlLVu2qKGhweVqADgpmUyqvr5eDQ0NhBmgyiSTSUkqyRQRJgADAACjGRNmLMtSZ2enAoGA26UAAIAKYkyYCYfDOn/+vM6cOeN2KQAAoIIYE2YAAADsEGYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYzJsxwB2AAAGDHmDDDHYABAIAdY8IMAACAnU1uFwBsdB2jz+W0/ekbH3ehEgAwEyMzAADAaIzMAIZgBAcA7DEyAwAAjMbIDFBGdqMrAIDiMDIDAACMRpgBAABGI8wAAACjuRJmFhcXNTAwoM7OTj3wwAOKx+NulAEAAKqAKxOA9+/fr6985St66KGHdP36dfl8PjfKAAAAVaDsYeZ3v/udvF6vHnroIUlSU1NTuUsAAABVJO/TTLOzsxoeHlZbW5s8Ho+mp6dzXmNZljo6OrR582YFg0HNzc1lf/aHP/xBd911l4aHh/V3f/d3+trXvlbcJwA2sI7R53L+AMBGk/fITDweV1dXlw4ePKg9e/bk/HxyclKRSETHjh1TMBjUxMSEhoaGdPHiRW3btk03b97UL3/5Sy0sLGjbtm366Ec/qkAgoEceecR2fYlEQolEIrsci8UkSclkUslkMt/yAVf5ajPrep3dvl3Me01xq3aTPwMAe6U8rj2ZTGZ9vyHt3uzxaGpqSrt37862BYNBBQIBHT16VJKUTqfl9/t16NAhjY6O6vTp0xofH9fzzz8vSfrmN78pSXrqqads1zE+Pq4jR47ktJ84cUL19fWFlg4AAMpodXVV+/bt0/LyshoaGhzt29E5Mzdu3NDZs2c1NjaWbaupqdHg4KBOnz4tSQoEAnrjjTf03//932psbNTs7Kz+8R//8bZ9jo2NKRKJZJdjsZj8fr8GBga0detWJ8sHHLVj/PmC33tufKjg/uzea4pkMqmf/exneuSRR+T1et0uB4CDrl27VrK+HQ0zV69eVSqVUktLy5r2lpYWXbhw4a8r3LRJX/va1/ShD31ImUxGH/nIR/QP//APt+3T5/PZXu3k9Xr5ZYeKlkh5Cn6v3b693v6q4bjg+AaqTymPaVcuzd61a5d27dqV13ssy5JlWUqlUiWqCgAAmMjRm+Y1NzertrZW0Wh0TXs0GlVra2tRfYfDYZ0/f15nzpwpqh8AAFBdHA0zdXV16unp0czMTLYtnU5rZmZGO3fuLKpvy7LU2dmpQCBQbJkAAKCK5H2aaWVlRZcuXcouLy4uamFhQU1NTWpvb1ckElEoFFJvb6/6+vo0MTGheDyuAwcOFFVoOBxWOBxWLBZTY2NjUX0BAIDqkXeYmZ+f18DAQHb51pVGoVBIx48f1969e3XlyhUdPnxYS0tL6u7u1smTJ3MmBQMAADgh7zDT39+vO92aZmRkRCMjIwUXZYcJwAAAwI4rVzMVgtNMqGQ8RgAA3OPoBGAAAIByI8wAAACjGRNmuDQbAADYYc4MUGXs5u/86Rsfd6ESACgPY0ZmAAAA7BBmAACA0YwJM8yZAQAAdowJMzxoEgAA2DEmzAAAANgx5momoFJwt18AqCyMzAAAAKMZE2aYAAwAAOwYc5qJm+YBKBY3FASqkzEjMwAAAHYIMwAAwGjGnGYCgNvh9BGwsTEyAwAAjMbIDIANjVEdwHzGjMxwaTYAALBjTJjh2UwAAMAOp5mAd8CjCwCg8hFmgA2M+SIAqoExp5kAAADsEGYAAIDRCDMAAMBozJkBAMMw1wlYi5EZAABgNEZmABiFy+UBvJ0xIzPcARgAANgxJsxwB2AAAGCH00wAsA5MugUqlzEjMwAAAHYYmQH+BxNLUYnWu18ycoSNjJEZAABgNMIMAAAwGmEGAAAYjTADAACMxgRgAGswkRSAaRiZAQAARnNlZKajo0MNDQ2qqanR3XffrVOnTrlRBgAAqAKunWZ6+eWXddddd7m1egAG4N4/ANaD00wAAMBoeYeZ2dlZDQ8Pq62tTR6PR9PT0zmvsSxLHR0d2rx5s4LBoObm5tb83OPx6MMf/rACgYB+/OMfF149AADY8PI+zRSPx9XV1aWDBw9qz549OT+fnJxUJBLRsWPHFAwGNTExoaGhIV28eFHbtm2TJP3qV7/S9u3b9frrr2twcFAPPPCAHnzwQdv1JRIJJRKJ7HIsFpMkJZNJJZPJfMsHbstXm3G7hCy7fbuY+m53rKy3z3Ida7fWc+tvpz9zMZ/X7r3l2C6l+HcvtR3jz+e0nRsfcqESVJJS7o+eTCZT8JHi8Xg0NTWl3bt3Z9uCwaACgYCOHj0qSUqn0/L7/Tp06JBGR0dz+njqqad0//33a//+/bbrGB8f15EjR3LaT5w4ofr6+kJLBwAAZbS6uqp9+/ZpeXlZDQ0Njvbt6ATgGzdu6OzZsxobG8u21dTUaHBwUKdPn5b015GddDqtLVu2aGVlRb/4xS/0qU996rZ9jo2NKRKJZJdjsZj8fr8GBga0detWJ8tHlbL7X2Kls/tfbDGf43b/K15vn+X6X3UymdTPfvYzPfLII/J6vY5/5mI+r1ujDaX4dy81RmZg59q1ayXr29Ewc/XqVaVSKbW0tKxpb2lp0YULFyRJ0WhUjz32mCQplUrpiSeeUCAQuG2fPp9PPp9PlmXJsiylUilJktfrldfrdbJ8VKlEyuN2CXmz27eL+Ry3O1bW22c5jrWO0efkq83o//ZJ/+erv/if2pz9zMV8Xrv33vfFF3LanL7BYCn+3UvNrmZ+X6OU+0DZL81+z3veo1deeSXv94XDYYXDYcViMTU2NpagMgCoftzhGdXI0TDT3Nys2tpaRaPRNe3RaFStra1OrgoAUGYEIVQqR+8zU1dXp56eHs3MzGTb0um0ZmZmtHPnzqL6tixLnZ2d73hKCgAAbDx5j8ysrKzo0qVL2eXFxUUtLCyoqalJ7e3tikQiCoVC6u3tVV9fnyYmJhSPx3XgwIGiCuU0EwAAsJN3mJmfn9fAwEB2+daVRqFQSMePH9fevXt15coVHT58WEtLS+ru7tbJkydzJgUDMBunHJAP9heUUt5hpr+/X3e6Nc3IyIhGRkYKLsrO269mAgCUDs/Fgklce9BkvjjNBJiJ/5EDKDVjwgyA6sH/+gE4iadmAwAAoxkzMsOcGQDVhNNvgHOMGZkJh8M6f/68zpw543YpAACgghgTZgAAAOwYc5oJAFD9OP2GQhgTZpgzA8BUXL0FlJYxp5mYMwMAAOwYE2YAAADsEGYAAIDRCDMAAMBoxoQZy7LU2dmpQCDgdikAAKCCGBNmmAAMAADsGHNpNgAA74R71GxcxozMAAAA2GFkBoBjuDkcADcwMgMAAIzGyAwAoKIxFwZ3YszIDJdmAwAAO8aMzITDYYXDYcViMTU2NrpdDgDAUIz0VB9jRmYAAADsEGYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxmTJjhpnkAAMAON80DAMAGN9czhzEjMwAAAHYIMwAAwGjGnGYCAFQeu1MxQLkRZlBV+MUKk7H/AoUhzAC4I75kUWkqaZ9korD7mDMDAACMRpgBAABGI8wAAACjEWYAAIDRXAszq6ur+tu//Vt9/vOfd6sEAABQBVwLM1/96lf193//926tHgAAVAlXwswf/vAHXbhwQbt27XJj9QAAoIrkHWZmZ2c1PDystrY2eTweTU9P57zGsix1dHRo8+bNCgaDmpubW/Pzz3/+8/r6179eeNUAAAD/I+8wE4/H1dXVJcuybH8+OTmpSCSiL33pS/rNb36jrq4uDQ0N6Y033pAkPfvss3rf+96n973vfcVVDgAAoALuALxr1653PD30ne98R0888YQOHDggSTp27Jiee+45ff/739fo6Kh+/etf69///d/19NNPa2VlRclkUg0NDTp8+LBtf4lEQolEIrsci8UkSclkUslkMt/yUeV8tRm3S3CE3b5dzGe73bFSadvLV5NZ83cxitmGbr3Xaeutxa2ay7Fep7dBMa/b6Eq5TTyZTKbgPcfj8Whqakq7d++WJN24cUP19fV65plnsm2SFAqF9Oabb+rZZ59d8/7jx4/r3Llz+ta3vnXbdYyPj+vIkSM57SdOnFB9fX2hpQMAgDJaXV3Vvn37tLy8rIaGBkf7dvTZTFevXlUqlVJLS8ua9paWFl24cKGgPsfGxhSJRLLLsVhMfr9fAwMD2rp1a1H1ovrsGH/e7RIccW58KKetmM9m11+xfZaCryajL/em9cX5GiXSnqL6KmYbOr393bLez+HW5y3Hep3eBsW8bqO7du1ayfp29UGT+/fvv+NrfD6ffD6fLMuSZVlKpVKSJK/XK6/XW+IKYZpEqrgvwEpht28X89lud6xU6vZKpD1F11bMNnR6+7tlvZ/Drc9bjvU6vQ2Ked1GV8pt4uil2c3NzaqtrVU0Gl3THo1G1draWlTf4XBY58+f15kzZ4rqBwAAVBdHR2bq6urU09OjmZmZ7JyZdDqtmZkZjYyMOLkqAAAqVsfoczltf/rGx12oZGPIO8ysrKzo0qVL2eXFxUUtLCyoqalJ7e3tikQiCoVC6u3tVV9fnyYmJhSPx7NXNxXq7aeZALtfFgCAjSfvMDM/P6+BgYHs8q3JuaFQSMePH9fevXt15coVHT58WEtLS+ru7tbJkydzJgXnKxwOKxwOKxaLqbGxsai+AABA9cg7zPT39+tOV3OPjIxwWgkAAJSFq1cz5YPTTBsbp5QAALfj2lOz88XVTAAAwI4xYQYAAMCOMaeZAKBcOK0JmMWYkRnLstTZ2alAIOB2KQAAoIIYMzLDpdkAgHwxyrYxGDMyAwAAYIcwAwAAjGZMmGHODAAAsGNMmOE+MwAAwI4xYQYAAMAOYQYAABiNMAMAAIxmTJhhAjAAALBjTJhhAjAAALBjTJgBAACwY8zjDAAA+eFW/tgoGJkBAABGI8wAAACjcZoJAIAKYnd68E/f+LgLlZjDmJEZLs0GAAB2jAkzXJoNAADsGBNmAAAA7BBmAACA0QgzAADAaFzNBKAqccM4YONgZAYAABiNMAMAAIzGaSYAACocN9J7Z8aEGcuyZFmWUqmU26UAxmH+CIBqZsxpJm6aBwAA7BgzMgMAQKkwemk2Y0ZmAAAA7BBmAACA0QgzAADAaMyZAQCgDJiXUzqMzAAAAKMxMgMAQJXYqDfXY2QGAAAYjZEZAAAMxByc/6/sYebNN9/U4OCgbt68qZs3b+rJJ5/UE088Ue4yUME4QAEA+Sh7mNmyZYtmZ2dVX1+veDyuHTt2aM+ePdq6dWu5SwEAAFWg7HNmamtrVV9fL0lKJBLKZDLKZDLlLgMAAFSJvMPM7OyshoeH1dbWJo/Ho+np6ZzXWJaljo4Obd68WcFgUHNzc2t+/uabb6qrq0v33nuvnnrqKTU3Nxf+CQAAwIaW92mmeDyurq4uHTx4UHv27Mn5+eTkpCKRiI4dO6ZgMKiJiQkNDQ3p4sWL2rZtmyTpb/7mb/TKK68oGo1qz549evzxx9XS0mK7vkQioUQikV2OxWKSpGQyqWQymW/5MICvlpE6u317I2wXX01mzd8oD7f2NxP382qp2Q2lrMOTKeIcj8fj0dTUlHbv3p1tCwaDCgQCOnr0qCQpnU7L7/fr0KFDGh0dzenjn/7pn/Twww/r8ccft13H+Pi4jhw5ktN+4sSJ7OkqAABQ2VZXV7Vv3z4tLy+roaHB0b4dnQB848YNnT17VmNjY9m2mpoaDQ4O6vTp05KkaDSq+vp6bdmyRcvLy5qdndXnPve52/Y5NjamSCSSXY7FYvL7/RoYGGDScJXaMf682yW47tz4UE7bRtguvpqMvtyb1hfna5RIe9wuZ8Nwa38zcT+vlprdcO3atZL17WiYuXr1qlKpVM4po5aWFl24cEGS9Oc//1mf/exnsxN/Dx06pAceeOC2ffp8Pvl8vpx2r9crr9frZPmoEIkUX2J2+/ZG2i6JtGdDfV63ubW/mbifV0vNbihlHWW/NLuvr08LCwt5v8+yLFmWpVQqVYKqAACAqRy9NLu5uVm1tbWKRqNr2qPRqFpbW4vqOxwO6/z58zpz5kxR/QAAgOriaJipq6tTT0+PZmZmsm3pdFozMzPauXOnk6sCAACQVMBpppWVFV26dCm7vLi4qIWFBTU1Nam9vV2RSEShUEi9vb3q6+vTxMSE4vG4Dhw4UFShnGYCAAB28g4z8/PzGhgYyC7futIoFArp+PHj2rt3r65cuaLDhw9raWlJ3d3dOnny5G3vI7Ne4XBY4XBYsVhMjY2NRfWFysFzmAAAxco7zPT399/x8QMjIyMaGRkpuCgAAID1KvuzmQplWZY6OzsVCATcLgUAAFQQY8IMVzMBAAA7xoQZAAAAO8aEGU4zAQAAO8aEGU4zAQAAO8aEGQAAADuEGQAAYLSyP2gSAAC4y+6GpX/6xsddqMQZxoQZHmcAAED+NsKd1o05zcQEYAAAYMeYMAMAAGCHMAMAAIxGmAEAAEYzJsxwB2AAAGDHmDDDBGAAAGDHmDADAABghzADAACMRpgBAABGI8wAAACjGfM4AwAAUDomP6/JmDDDs5kAoDQ2wrN7UN2MOc3EpdkAAMCOMWEGAADAjjGnmQAAgPsqcW4NIzMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxmTJixLEudnZ0KBAJulwIAACqIMWGGm+YBAAA7xoQZAAAAO4QZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBoZQ8zr776qvr7+9XZ2akHH3xQTz/9dLlLAAAAVWRT2Ve4aZMmJibU3d2tpaUl9fT06GMf+5je9a53lbsUAABQBcoeZu655x7dc889kqTW1lY1Nzfr+vXrhBkAAFCQvE8zzc7Oanh4WG1tbfJ4PJqens55jWVZ6ujo0ObNmxUMBjU3N2fb19mzZ5VKpeT3+/OvHAAAQAWMzMTjcXV1dengwYPas2dPzs8nJycViUR07NgxBYNBTUxMaGhoSBcvXtS2bduyr7t+/bo+85nP6N/+7d/ecX2JREKJRCK7HIvFJEnJZFLJZDLf8lFhfLUZt0uoSHb79kbYVr6azJq/Ud1M3M9NrLkY6/286/k+LuV3tieTyRT8r+DxeDQ1NaXdu3dn24LBoAKBgI4ePSpJSqfT8vv9OnTokEZHRyX9NaA88sgjeuKJJ/TpT3/6HdcxPj6uI0eO5LSfOHFC9fX1hZYOAADKaHV1Vfv27dPy8rIaGhoc7dvROTM3btzQ2bNnNTY2lm2rqanR4OCgTp8+LUnKZDLav3+/Hn744TsGGUkaGxtTJBLJLsdiMfn9fg0MDGjr1q1Olo8S2zH+vNslGOPc+FBO20bYfr6ajL7cm9YX52uUSHvcLgclZuJ+bmLN5WC3Xd7u2rVrJVu/o2Hm6tWrSqVSamlpWdPe0tKiCxcuSJJeeuklTU5O6sEHH8zOt/nRj36kBx54wLZPn88nn8+X0+71euX1ep0sHyWWSPHltF52+/ZG2n6JtGdDfd6NysT93MSay2E938el/M4u+9VMH/zgB5VOp/N+n2VZsixLqVSqBFUBAABTOXrTvObmZtXW1ioaja5pj0ajam1tLarvcDis8+fP68yZM0X1AwAAqoujYaaurk49PT2amZnJtqXTac3MzGjnzp1F9W1Zljo7OxUIBIotEwAAVJG8TzOtrKzo0qVL2eXFxUUtLCyoqalJ7e3tikQiCoVC6u3tVV9fnyYmJhSPx3XgwIGiCg2HwwqHw4rFYmpsbCyqLwAAUD3yDjPz8/MaGBjILt+60igUCun48ePau3evrly5osOHD2tpaUnd3d06efJkzqRgAAAAJ+QdZvr7+3WnW9OMjIxoZGSk4KIAAADWq+xPzS4Uc2YAAIAdY8IMVzMBAAA7Zb/PDDaGjtHn3C4BALBBGDMyw2kmAABgx5iRGS7NBoDqwggunGLMyAwAAIAdwgwAADCaMWGGOTMAAMCOMWGGS7MBAIAdY8IMAACAHcIMAAAwGmEGAAAYjTADAACMZkyY4WomAABgx5gww9VMAADAjjGPMwA2Em7zDgDrZ8zIDAAAgB3CDAAAMBphBgAAGM2YMMPVTAAAwI4xYYarmQAAgB1jwgwAAIAdwgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGjGhBnuAAwAAOwYE2a4AzAAALBjTJgBAACwQ5gBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIzmSph57LHHdPfdd+vxxx93Y/UAAKCKbHJjpU8++aQOHjyoH/zgB26sHg7rGH3O7RIAABuYKyMz/f392rJlixurBgAAVSbvMDM7O6vh4WG1tbXJ4/Foeno65zWWZamjo0ObN29WMBjU3NycI8UCAAC8Xd6nmeLxuLq6unTw4EHt2bMn5+eTk5OKRCI6duyYgsGgJiYmNDQ0pIsXL2rbtm15F5hIJJRIJLLLsVhMkpRMJpVMJvPuD87z1WbcLgFVwleTWfM3UGnsvnf4HWi/XQp5TaE8mUym4H8Fj8ejqakp7d69O9sWDAYVCAR09OhRSVI6nZbf79ehQ4c0Ojqafd2LL76oo0eP6plnnnnHdYyPj+vIkSM57SdOnFB9fX2hpQMAgDJaXV3Vvn37tLy8rIaGBkf7dnQC8I0bN3T27FmNjY1l22pqajQ4OKjTp08X1OfY2JgikUh2ORaLye/3a2BgQFu3bi26ZhRvx/jzbpeAKuGryejLvWl9cb5GibTH7XKAHOfGh3La+B1ov13e7tq1ayVbv6Nh5urVq0qlUmppaVnT3tLSogsXLmSXBwcH9corrygej+vee+/V008/rZ07d9r26fP55PP5ctq9Xq+8Xq+T5aNAiRRfOnBWIu1hv0JFsvveYV+13y6FvKZQrlya/fOf/zzv91iWJcuylEqlSlARAAAwlaOXZjc3N6u2tlbRaHRNezQaVWtra1F9h8NhnT9/XmfOnCmqHwAAUF0cDTN1dXXq6enRzMxMti2dTmtmZua2p5HWy7IsdXZ2KhAIFFsmAACoInmfZlpZWdGlS5eyy4uLi1pYWFBTU5Pa29sViUQUCoXU29urvr4+TUxMKB6P68CBA0UVGg6HFQ6HFYvF1NjYWFRfAACgeuQdZubn5zUwMJBdvnWlUSgU0vHjx7V3715duXJFhw8f1tLSkrq7u3Xy5MmcScEAAABOyDvM9Pf36063phkZGdHIyEjBRdlhAjAAALDjyrOZCsEEYAAAYMeYMAMAAGCHMAMAAIxmTJjh0mwAAGDHmDDDnBkAAGDHmDADAABghzADAACMZkyYYc4MAACwY0yYYc4MAACwY0yYAQAAsEOYAQAARiPMAAAAoxkTZpgADAAA7BgTZpgADAAA7BgTZgAAAOwQZgAAgNEIMwAAwGiEGQAAYDTCDAAAMNomtwtYL8uyZFmWUqmU26UAAID/pWP0uZy2P33j42VbvzEjM1yaDQAA7BgTZgAAAOwQZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARjMmzFiWpc7OTgUCAbdLAQAAFcSYMMMdgAEAgB1jwgwAAIAdwgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDRXwsxPfvITvf/979d9992n733ve26UAAAAqsSmcq/w5s2bikQiOnXqlBobG9XT06PHHntMW7duLXcpAACgCpR9ZGZubk7333+/tm/frrvuuku7du3SCy+8UO4yAABAlcg7zMzOzmp4eFhtbW3yeDyanp7OeY1lWero6NDmzZsVDAY1NzeX/dnly5e1ffv27PL27dv12muvFVg+AADY6PI+zRSPx9XV1aWDBw9qz549OT+fnJxUJBLRsWPHFAwGNTExoaGhIV28eFHbtm3Lu8BEIqFEIpFdjsVikqRkMqlkMpl3f3CerzbjdgmoEr6azJq/gUpj973D70B7b99WpfzO9mQymYL/FTwej6amprR79+5sWzAYVCAQ0NGjRyVJ6XRafr9fhw4d0ujoqF5++WV985vf1NTUlCTpn//5n9XX16d9+/bZrmN8fFxHjhzJaT9x4oTq6+sLLR0AAJTR6uqq9u3bp+XlZTU0NDjat6Nh5saNG6qvr9czzzyzJuCEQiG9+eabevbZZ3Xz5k194AMf0IsvvpidAPzyyy/fdgKw3ciM3+/X66+/zqThEtsx/nxO27nxoXW9DiiEryajL/em9cX5GiXSHrfLAXLwO3D93r6trl27pnvuuackYcbRq5muXr2qVCqllpaWNe0tLS26cOHCX1e4aZO+/e1va2BgQOl0Wl/4whfeMZT4fD75fD5ZliXLspRKpSRJXq9XXq/XyfLxNolU7peJ3Ta3ex1QjETaw36FisTvwPV7+7Yq5Xd22S/NlqRHH31Ujz76aF7vCYfDCofDisViamxsLFFlAC65qhMAAAZQSURBVADANI5emt3c3Kza2lpFo9E17dFoVK2trU6uCgAAQJLDYaaurk49PT2amZnJtqXTac3MzGjnzp1F9W1Zljo7OxUIBIotEwAAVJG8TzOtrKzo0qVL2eXFxUUtLCyoqalJ7e3tikQiCoVC6u3tVV9fnyYmJhSPx3XgwIGiCuU0EwAAsJN3mJmfn9fAwEB2ORKJSPrrFUvHjx/X3r17deXKFR0+fFhLS0vq7u7WyZMncyYFAwAAOCHvMNPf3687Xc09MjKikZGRgouy8/armQAAACSXnppdiHA4rPPnz+vMmTNulwIAACqIMWEGAADADmEGAAAYzZgww6XZAADAjjFhhjkzAADAjjFhBgAAwA5hBgAAGM2VB00W4tZ9Zm7evClJeuutt3hqdomlE6s5bbFYbF2vAwqRqs1odTWlVKJWaZ5EjArE78D1e/u2euuttyTpjveqK4QnU4peS+g///M/9d73vtftMgAAQAH++Mc/6j3veY+jfRozMnNLU1OTJOm//uu/eEbTOgQCAWMmTbtZa6nX7XT/TvRXaB+FvG+974nFYvL7/Xr11VfV0NCQd20bDcd3Zayb43t971leXlZ7e3v2e9xJxoWZmpq/TvNpbGzkl9061NbWGrOd3Ky11Ot2un8n+iu0j0Lel+97GhoajNlv3cTxXRnr5vjO7z23vsedxATgKhcOh90uYd3crLXU63a6fyf6K7SPQt5n0n5oEpO2K8d3efvbaMe3cXNmYrGYGhsbtby8bMz/SACsD8c3UL1KeXzXjo+PjzvaYxnU1taqv79fmzYZd5YMwB1wfAPVq1THt3EjMwAAAP8bc2YAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABitqsPMq6++qv7+fnV2durBBx/U008/7XZJABzy2GOP6e6779bjjz/udikAivSTn/xE73//+3Xffffpe9/7Xt7vr+pLs19//XVFo1F1d3draWlJPT09+v3vf693vetdbpcGoEgvvvii3nrrLf3gBz/QM88843Y5AAp08+ZNdXZ26tSpU2psbFRPT49efvllbd26dd19VPXIzD333KPu7m5JUmtrq5qbm3X9+nWXqwLghP7+fm3ZssXtMgAUaW5uTvfff7+2b9+uu+66S7t27dILL7yQVx+uhpnZ2VkNDw+rra1NHo9H09PTOa+xLEsdHR3avHmzgsGg5ubmClrX2bNnlUql5Pf7iy0bwB2U89gG4K5ij/fLly9r+/bt2eXt27frtddey6sGV8NMPB5XV1eXLMuy/fnk5KQikYi+9KUv6Te/+Y26uro0NDSkN954I/ua7u5u7dixI+fP5cuXs6+5fv26PvOZz+hf//VfS/6ZAJTv2AbgPieO96JlKoSkzNTU1Jq2vr6+TDgczi6nUqlMW1tb5utf//q6+/3LX/6SeeihhzI//OEPHasVwPqV6tjOZDKZU6dOZT7xiU84UieA4hVyvL/00kuZ3bt3Z3/+5JNPZn784x/ntd6KnTNz48YNnT17VoODg9m2mpoaDQ4O6vTp0+vqI5PJaP/+/Xr44Yf16U9/ulSlAsiDE8c2ADOs53jv6+vTuXPn9Nprr2llZUU//elPNTQ0lNd6KjbMXL16ValUSi0tLWvaW1patLS0tK4+XnrpJU1OTmp6elrd3d3q7u7Wb3/721KUC2CdnDi2JWlwcFCf/OQn9R//8R+69957CUJABVrP8b5p0yZ9+9vf1sDAgLq7u/Uv//IveV3JJEnOPoO7wnzwgx9UOp12uwwAJfDzn//c7RIAOOTRRx/Vo48+WvD7K3Zkprm5WbW1tYpGo2vao9GoWltbXaoKQLE4toGNo1zHe8WGmbq6OvX09GhmZibblk6nNTMzo507d7pYGYBicGwDG0e5jndXTzOtrKzo0qVL2eXFxUUtLCyoqalJ7e3tikQiCoVC6u3tVV9fnyYmJhSPx3XgwAEXqwZwJxzbwMZREcd74RdgFe/UqVMZSTl/QqFQ9jXf/e53M+3t7Zm6urpMX19f5te//rV7BQNYF45tYOOohOO9qp/NBAAAql/FzpkBAABYD8IMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIz2/wBYf3vgMGYOzAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -3074,7 +3231,7 @@ }, { "cell_type": "code", - "execution_count": 113, + "execution_count": 106, "metadata": {}, "outputs": [ { @@ -3083,20 +3240,18 @@ "Text(0.5, 1.0, 'Edge Weight Distribution')" ] }, - "execution_count": 113, + "execution_count": 106, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs8AAAFDCAYAAADF6OOJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAos0lEQVR4nO3df5RcZ33n+fcHg4ljERFAUSLZYBOZPihod5lR7JBMMs0OITJGmDD5YY0nWSeONOasmclGmUEkTGB2QzCzeBIMnjAydsQkxMbHQ0CKxTqT2TQG4mxs2MzaxvEZxTGxDIkBg0I7TBzh7/5Rt3G51S3d6q7qW9X9fp2jY9dT9z73W8+teurbTz33uakqJEmSJJ3a07oOQJIkSZoUJs+SJElSSybPkiRJUksmz5IkSVJLJs+SJElSSybPkiRJUksmz1rVkswmeeGQ6vqFJO9r/v+cJJXk6UOq+/lNrKcNoz5Jk23YfcwoJLk0ye+13PayJJ9YgZjuTTI9pLqe8vqa87FlGHU39Q3t+0kry+R5DUvyYJKvJflqkq8k+cMkVyQZ+/dFkukkTzSdz2ySo0luTvLd/dtV1bqqeqBFXUdPdcyq+pWq+pnlxt4c88Ekr+ir+y+aWL8+jPoljZ++Pne27997VjiGNyX56Lyy/7ZI2SUnq6uqPlBVrxxSXDNJFu1f+/6YmGu3v0ryu0l+cF5M31VVM6c4Vqs/TEb9+tp8P2k8jX2SpJHbWVXPAl4AXAW8Ebh+FAcawajq56pqHfAs4HuAPwU+nuQfDfk4jPPoj6SJsrNJmub+XbnCx78d+N65/jjJdwDPAF46r2xLs+24eXbT7/+PwH8GfifJZcM+iH2+TsbkWQBU1bGqOgj8OPC/JHkJQJJnJnlnkr9o/tJ/b5Iz5vZL8q+SfD7J55L8TP/PWkkOJPn1JIeTPAa8PMmmJP8pyReS/HmSf95X19OS7EvyZ0m+1IwkP6dF7FVVR6vql4D3Ae/oq7M/nlcl+Uwz0v5wkp9PcibwUWBT34jGpiRvTXJLkt9K8tfAZU3Zb807/E83r/3zSX6+77gHkvxy3+NvjG4n+U3g+cCh5nj/av5ISBPDwSSPJjmSZHdfXW9t2uY/Nq/l3iTbT9VOksZXktOavvaLSR4ALpr3/LlJbm8+87+f5Nr+/ijJ96T36+FXkvzXLD514U56yfL/1Dz+fuAPgPvnlf1ZVX0uyfok1zd93MNJfrkvyX7KVIwkr0xyf5JjSf59ko/NH21tXuOXm/7/wqbsbc0x35OWo/FV9ZdV9S7grcA70vximr5f9ZKcn+SuJH/dfH/9u2b3uT8KvtIc72XNa/lkkl9N8iXgrfNfX+NVSR5oztP/2Xfcp3w/9Pfpi72+ed9P65s+/QtJPpvkzX11X5bkEwu1nbph8qynqKo/Bo7S+6BDbzT6RfQ61S3AZuCXAJLsAH4OeEXz3PQCVf4T4G30Rof/EDgE/Nemnn8E/GySH2q2fQPwWuAfApuALwPXDvgSPgT8vSYpnu964J81I+0vAf7vqnoMuJBmFLv597lm+4uBW4BnAx9Y5HgvB84DXgm8MX1TMRZTVT8B/AVPjkD92wU2u4needgE/AjwK0n+577nX9Ns82zgILCiP/1KGrrdwKuBlwLb6X3u+/028MfAc+kljD8x90SSzcCtwC8DzwF+HvhPSTbMP0hVPQ78P8APNEU/AHwc+MS8srkE8wBwnF4f/1J6fd0J0yuSPI9ef/mmJsb7ge+dt9kFTfnzgH8LXJ8kVfWLTQxXLmE0/kPAtwFTCzz3LuBdVfUtwHcCN/e9PmhGsavqjr74HgA20vveWsgP0zs/f4/ed8RPnyrAlq/v3cB64IX0vgN/EvipvucXbLtTHVujYfKshXwOeE7zwdwD/G9V9WhVfRX4FWBuHtyPAb9RVfdW1d/Q69Dn+0hVfbKqngC2ARuq6n+vqsebuV7X9dV3BfCLzSjy3zb1/UgG+/nsc0DoJZXz/R2wNcm3VNWXq+rTp6jrjqr6cFU9UVVfW2Sbf1NVj1XV3cBvALsGiHVBSc4Gvg94Y1X996r6E3oj6j/Zt9knqupwM0f6N+n9hClp/H24GR2e+zf3q9KPAb9WVQ9V1aPA2+d2SPJ84LuBX2r6zk/Q+6N5zj8FDjd9whNV9Z+Bu4BXLRLDx3gygfx+eondx+eVfSzJxqaOn236uUeAX+XJPrvfq4B7q+pDVXUcuAb4y3nbfLaqrmv6rfcD30EvUV2OucGOhX6l/DtgS5LnVdVsVf3RqeqqqndX1fGT9PnvaL4P/wL4NYbT559Gr03fVFVfraoHgavp+wOJ0bSdlsjkWQvZDDwKbAC+GfjUXEcP/F9NOfRGRR/q26///xcqewG96RFf6avvF3iyA3gBvflrc8/dB3ydwTqIzUABX1nguX9Mr4P/bPNz4stOUddCr+dk23yWXpss1yZg7o+V/ro39z3u/1L6G+CbBvwjQ1I3XltVz+77d11TPr8//Wzf/8/1CX/TVza/b/3ReX3rP6CXYC3kduAfpDctbkNV/Td6vwx+b1P2kmabF9Cb4vH5vnr/A72R3vmeEn9VFb1fz/r9Zd/zc69l3SIxtjXXLz66wHOX0/vl9E+T3Jnk1aeoq6s+/3n02rn/nC/a5w+x7bREftnqKdJbrWIzvZ/wvgh8Dfiuqnp4gc0/D5zV9/jsBbapvv9/CPjzqjpvkcM/BPx0VX1y4MCf9MPAp5vpGE8NpOpO4OIkzwCupPcT3tnzYnzKLi2Odza9CxWhN495bhTkMXp/eMz59gHqnhv5f1ZfAv18YKFzIGl1+DxP7UOfP++55yT55r7EqX/bh4DfrKrdtHMHvSkCu4FPAlTVXyf5XFP2uar68yT/Hfhb4HnNaPKp4v/G90Hzy+VZi29+gjb97UJ+GHiE3pSGp1bY+6NgVzN3+HXALUmee5Jjte3z723+f1h9/hfpjZK/APhMX932+WPKkWcBkORbmr/KbwJ+q6rubqZaXAf8apJva7bb3DdH+Wbgp5K8OMk3A//6FIf5Y+CrSd6Y5Iz0LpB5SZ5cXu69wNuSvKA51oYkF7eIPU1cb6E3F+8XFtjm9PTW7FxfVX8H/DXwRPP0XwHPTbL+VMdawL9O8s1Jvove/LQPNuV/Qu/Ckuck+XbgZ+ft91f05radoKoeojcK9PYk35Tkf6A3gjL/YkVJq8fNwD9PclaSbwX2zT1RVZ+lNw3jrU1f9jJgZ9++vwXsTPJDTb/6TeldpLxg8tpMSbiL3jUrH+976hNN2e3Ndp8Hfg+4uvmOeFqS70zyDxeo9lZgW5LXNr+C/a+cmECezKJ94kKSbExyJfAWetMdnlhgm3+aZEPz3Fea4ieALzT/Xcoay/8yybc20+v+BU/t838gvTX719Ob+93vZH3+1+md/7cleVbzHfhz2OePLZNnHUryVXojF78I/DueepHCG4EjwB+lt+rE79NcmFFVH6U3r+0P5rZp9vnbhQ7UdBCvpnfx4Z/T+2v7ffRGQKB3ccdB4PeamP6I3kUSi9mUZBaYpXcF+TZguqoWW7T/J4AHm9dxBXBpE9efAjcCDzQ/TQ7yM9zH6L32/wK8s+/Yv0nvwsgH6X35fHDefm8H3twc7+c50S7gHHqjGr8DvKWqfn+AuCSNp7lVdub+/U5Tfh1wG71+49P0LoTrdynwMuBL9C4M/CBNX9v8wX0xvYGDL9Drz/8lJ/+O/xi96Rf9q0l8vCnrX6LuJ4HT6Y2IfpneRYEnTAepqi8CP0rvYrYvAVvpJegLfh8s4F30rnH5cpJrTrLdV9JbveluetPwfrSqblhk2x3Avc33xLuAS6rqa83o/duATzZ98Pe0jBHgI8Cn6CXLt9Is7drMM/8g8P81z//ugK/vDfRGrx+gd05+G1jsdalj6U1LkpYvyYuBe4BntviJT5K0REk+CPxpVb2l61gW0kyVOApcWlV/0HU80jA58qxlSfLD6a0F/a301lc+ZOIsScOV5LubKRNPS2+Z0IuBD3cc1lM000aeneSZ9EbBw5O/SEqrhsmzluuf0btY48/orYzx+m7DkaRV6duBGXrT1K4BXl9V/2+nEZ3oZfS+C75Ib072a0+y5Js0sZy2IUlrXJLvpzen9unA1qqaf3MLSVLDkWdJWoWS3JDkkST3zCvfkd4tlI8k2QdQVR+vqivoXeT0/i7ilaRJYfIsSavTAXqrDXxDencyu5beLem30lsDd2vfJv+E3lX+kqRFdHqTlCQ7gZ3Petazdr/oRS8aeP/HHnuMM888c/iBTTDb5ES2yYlsk4UtpV0+9alPfbGqNpx6y5VVVbcnOWde8fnAkap6ACDJTfQuPPtMereAPjbvzpYLevazn11btmwZdshaJj/X48dzMp6W2293mjxX1SHg0Pbt23ffddddA+8/MzPD9PT00OOaZLbJiWyTE9kmC1tKuyT57Km3GhubeerthY/y5FrqlwO/sdiOSfYAewA2bNjAO9/5zlHFqCWanZ1l3Trv2DxOPCfj6eUvf/my+m1vzy1J4lTrBVfVfmA/wNTUVPnH1/jxj+Lx4zlZnZzzLElrx8PA2X2Pz2rKWkmyM8n+2dnZoQcmSZOi0+R5riM+duxYl2FI0lpxJ3BeknOTnA5cAhxsu3NVHaqqPf4MLWkt6zR5nuuI169f32UYkrTqJLkRuAOYSnI0yeXN3T+vBG4D7gNurqp7B6jTkWdJa55zniVpFaqqXYuUHwYOL7HOQ8Chqamp3cuJTZImmXOeJUmtOPIsSc55liS15JxnSXLOsyRJktSa0zYkSa04bUOSTJ4lSS05bUOSnPMsSZIktdbpUnVzyx5t377dZY+kVeKcfbeOtP4Hr7popPVrcUl2Ajs3bdrUdSgTY5DPg+9taTI4bUOS1IrTNiTJ5FmSJElqzeRZkiRJaqnTOc9z8+e2bNnSZRiSpBac89wz6nn9ksabN0mRJLXinGdJctqGJEmS1JrJsyRJktSSybMkqRVvzy1JJs+SpJac8yxJ3p5bkiRJas3VNiRJkqSWnLYhSZIktWTyLEmSJLVk8ixJkiS1ZPIsSWrFpeokyeRZktSSS9VJksmzJEmS1JrJsyRJktSSN0mRJEmSWvImKZIkSVJLTtuQJEmSWjJ5liRJklp6etcBSJK6k+RpwP8BfAtwV1W9v+OQNETn7Lu19bYPXnXRCCORVg9HniVplUlyQ5JHktwzr3xHkvuTHEmyrym+GDgL+Dvg6ErHKkmTxuRZklafA8CO/oIkpwHXAhcCW4FdSbYCU8AfVtXPAa9f4TglaeKYPEvSKlNVtwOPzis+HzhSVQ9U1ePATfRGnY8CX262+frKRSlJk8k5z5K0NmwGHup7fBS4AHgX8O4k3w/cvtjOSfYAewA2bNjAzMzM6CIdc3u3HR9Jvctt09nZ2RPqGCTWtXxOR2Whc6LJZ/IsSWtYVf0NcHmL7fYD+wGmpqZqenp6xJGNr8sGuAhvEA9eOr2s/WdmZph/XgaJdbnH14kWOieafE7bkKS14WHg7L7HZzVlrc3dFXZ2dnaogUnSJPH23JK0NtwJnJfk3CSnA5cABwepYO6usOvWrRtJgJI0Cbw9tyStMkluBO4AppIcTXJ5VR0HrgRuA+4Dbq6qewes15FnSWuec54laZWpql2LlB8GDi+j3kPAoampqd1LrUOSJp3Js7QG3f3wsZFd9KTVK8lOYOemTZu6DkWSOmPyLElqxZFngbf8llxtQ5LUinOeJcnkWZLUkqttSJLTNiRJmiiLTZvYu+241zJIK8DkWRpTg8wrHNTebSOrWquYFwyO1ig/85KGx2kbkqRWnLYhSSbPkiRJUmsmz5IkSVJLJs+SpFZcqk6STJ4lSS0551mSTJ4lSZKk1kyeJUmSpJaGvs5zkhcD/wJ4HvBfqurXh30MSZKGzXWWJbXRKnlOcgPwauCRqnpJX/kO4F3AacD7quqqqroPuCLJ04D/CJg8S9Iq4E1SNKhB/iB58KqLRhiJNDxtp20cAHb0FyQ5DbgWuBDYCuxKsrV57jXArcDhoUUqSeqUFwxKUsvkuapuBx6dV3w+cKSqHqiqx4GbgIub7Q9W1YXApcMMVpIkSerScuY8bwYe6nt8FLggyTTwOuCZnGTkOckeYA/Axo0bmZmZGTiA2dnZJe23mtkmJ5rUNtm77fjI6t54xmjrH6VRnstJfa9IklbO0C8YrKoZYKbFdvuB/QDbt2+v6enpgY81MzPDUvZbzWyTE01qm1w2wouX9m47ztV3D/3jvyIevHR6ZHVP6ntFGgYvmJTaWc5SdQ8DZ/c9PqspkyRJklal5STPdwLnJTk3yenAJcDBQSqYu9XrsWPHlhGGJEmStDJaJc9JbgTuAKaSHE1yeVUdB64EbgPuA26uqnsHOfjcldvr168fNG5J0gqbG/CYnZ3tOhRJ6kyrSY9VtWuR8sO4HJ0krQlVdQg4NDU1tbvrWLT6tJ1z7XrQ6lqnt+d22oYkSZImSaeX28+NYmzfvt1RDE0kr06XJGlt6XTkWZIkSZokJs+SJElSS855liRJklrqNHl2qTpJ6l6S6SQfT/LeJNNdxyNJ48xpG5K0CiW5IckjSe6ZV74jyf1JjiTZ1xQXMAt8E3B0pWOVpEli8ixJq9MBYEd/QZLTgGuBC4GtwK4kW4GPV9WFwBuBf7PCcUrSRDF5lqRVqKpuBx6dV3w+cKSqHqiqx4GbgIur6onm+S8Dz1zBMCVp4nS6znOSncDOLVu2dBmGJK0Vm4GH+h4fBS5I8jrgh4BnA+9ZaMcke4A9ABs2bGBmZmakgXZh77bjXYewLBvPmPzX0MYkvfdmZ2cnKl61401SJGmNq6oPAR86xTb7gf0AU1NTNT09vQKRrazLJvymR3u3Hefquzv9Wl8Zdz/WetOub+U9MzPDavysrHVO25CkteNh4Oy+x2c1Za3MLS86Ozs79MAkaVKYPEvS2nEncF6Sc5OcDlwCHGy789zyouvWrRtZgJI07kyeJWkVSnIjcAcwleRoksur6jhwJXAbcB9wc1XdO0CdjjxLWvO8YFCSVqGq2rVI+WHg8BLrPAQcmpqa8joVSWuWdxiUJLXiyLMkOW1DktSSc54lyeRZkiRJam0NLAgpaTU5Z4Rr8R7YcebI6l4N5q5T2bRpU9ehSFJnHHmWJLXitA1J6jh5nrv45NixY12GIUmSJLXiahuSpFZcbUOSnLYhSWrJaRuSZPIsSZIktWbyLEmSJLVk8ixJasU5z5Jk8ixJask5z5Jk8ixJkiS15jrPkiRJUkud3p67qg4Bh7Zv3767yzgkSdLqc86+W1tv++BVF40wEq0mTtuQJLXiBYOSZPIsSWrJCwYlyeRZkiRJas3kWZIkSWrJ5FmSJElqyeRZkiRJasnkWZLUiqttSJLJsySpJVfbkKSOb5IirYS7Hz7GZQMslC9JkrQYR54lSZKkljpNnufmzx07dqzLMCRJkqRWOk2e5+bPrV+/vsswJEmSpFactiFJkiS1ZPIsSZIktWTyLElrXJIzk9yV5NVdxyJJ487kWZJWmSQ3JHkkyT3zynckuT/JkST7+p56I3DzykYpSZPJ5FmSVp8DwI7+giSnAdcCFwJbgV1Jtib5QeAzwCMrHaQkTSJvkiJJq0xV3Z7knHnF5wNHquoBgCQ3ARcD64Az6SXUX0tyuKqeWMl4JWmSmDxL0tqwGXio7/FR4IKquhIgyWXAFxdLnJPsAfYAbNiwgZmZmZEG24W92453HcKybDxj8l9Dl0bxnp6dnV2Vn5W1zuRZkkRVHTjF8/uB/QBTU1M1PT29AlGtrMv23dp1CMuyd9txrr7br/WlevDS6aHXOTMzw2r8rKx1znmWpLXhYeDsvsdnNWWtzd0VdnZ2dqiBSdIkMXmWpLXhTuC8JOcmOR24BDg4SAVzd4Vdt27dSAKUpElg8ixJq0ySG4E7gKkkR5NcXlXHgSuB24D7gJur6t4B63XkWdKa5+QoSVplqmrXIuWHgcPLqPcQcGhqamr3UuuQpEnnyLMkqRVHniVpRMlzktcmuS7JB5O8chTHkCStLOc8S9IA0zaS3AC8Gnikql7SV74DeBdwGvC+qrqqqj4MfDjJtwLvBH5vqFFLklZckp3Azk2bNnUdijR057RcqvDBqy4acSQad4OMPB+g5e1e+zZ5c/O8JGnCOfIsSQMkz1V1O/DovOJv3O61qh4HbgIuTs87gI9W1aeHF64kSZLUneWutrHg7V6BNwCvANYn2VJV713mcSRJkqTOjWSpuqq6BrjmZNsk2QPsAdi4ceOS7v3uPeNPZJucaOMZvdvW6km2ycL8/Jycc54lafnJ85Jv91pV+4H9ANu3b6+l3Pvde8afyDY50bs/8BGuvtslzfvt3XbcNlnAgR1n+vk5iUlc57ntRWCS1NZyl6pb9u1eJUmSpEnROnkexe1e5xbcP3bs2KBxS5JWmDdJkaTBVtvYVVXfUVXPqKqzqur6pvxwVb2oqr6zqt42yMHnlj1av379oHFLklaYS9VJkrfnliRJklrrNHl22oYkSZImSafJs9M2JEmSNEmctiFJasULBiXJ5FmS1JIXDEqSc54lSZKk1jq9xdjc3aq2b98+MXer0miM8i5ge7eNrGpJkrTGOG1DkiRJasnkWZIkSWrJOc+SJElSS67zLElqxaXqJMlpG5KkllyqTpI6Xm1Dk2WUK2JIkiRNAkeeJUmSpJa8YFCSJElqyQsGJUmSpJactiFJkiS1ZPIsSWtckhcneW+SW5K8vut4JGmcmTxL0iqU5IYkjyS5Z175jiT3JzmSZB9AVd1XVVcAPwZ8XxfxStKkMHmWpNXpALCjvyDJacC1wIXAVmBXkq3Nc68BbgUOr2yYkjRZTJ4laRWqqtuBR+cVnw8cqaoHqupx4Cbg4mb7g1V1IXDpykYqSZOl05ukJNkJ7NyyZUuXYUjSWrEZeKjv8VHggiTTwOuAZ+LIsySdVKfJc1UdAg5t3759d5dxSNJaVlUzwMzJtkmyB9gDsGHDBmZmTrr52Ni77XjXIayYjWesrdfblUHe+7OzsxPzWVF73p5bktaOh4Gz+x6f1ZSdUlXtT/J5YOcznvGMvz89PT2C8Ibvsn23dh3Citm77ThX3+3X+qg9eOl0621nZmaYlM+K2nPOsyStHXcC5yU5N8npwCXAwbY7z93Yat26dSMLUJLGncmzJK1CSW4E7gCmkhxNcnlVHQeuBG4D7gNurqp7B6hzZ5L9s7OzowlakiaAv+9I0ipUVbsWKT/MEi8KnLtOZWpqyutUJK1ZjjxLklpx5FmSTJ4lSS0551mSXOdZkiSptXMGWMHlwI4zRxiJuuI6z6vM3Q8fW1NLM0laOXMDHps2beo6FEnqjNM2JEmtOG1DkkyeJUmSpNZMniVJrbjahiSZPEuSWnLahiSZPEuSJEmtmTxLkiRJLZk8S5Jacc6zJJk8S5Jacs6zJJk8S5IkSa11mjzP/QR47NixLsOQJEmSWuk0eZ77CXD9+vVdhiFJkiS14rQNSVIrXjAoSSbPkqSWvGBQkkyeJUmSpNZMniVJkqSWTJ4lSZKklkyeJUmSpJZMniVJrbjahiSZPEuSWnK1DUkyeZYkSZJaM3mWJEmSWjJ5liRJkloyeZYkSZJaMnmWJEmSWjJ5liRJkloaevKc5IVJrk9yy7DrliQNX5LXJrkuyQeTvLLreCRpnLVKnpPckOSRJPfMK9+R5P4kR5LsA6iqB6rq8lEEK0lqZ8B++8NVtRu4AvjxLuKVpEnRduT5ALCjvyDJacC1wIXAVmBXkq1DjU6StFQHGLzffnPzvCRpEa2S56q6HXh0XvH5wJFmpPlx4Cbg4iHHJ0lagkH67fS8A/hoVX16pWOVpEny9GXsuxl4qO/xUeCCJM8F3ga8NMmbqurtC+2cZA+wB2Djxo3MzMwMHMDs7OyS9lvNNp4Be7cd7zqMsWKbnMg2Wdga6FMW7LeBNwCvANYn2VJV752/Y3+fvWHDholpp7X0PvdzPX7WQJ+yJi0neV5QVX2J3ry5U223H9gPsH379pqenh74WDMzMyxlv9Xs3R/4CFffPfTTOtH2bjtum8xjmyzswI4z12SfUlXXANecYptv9NlTU1NL6rO7cNm+W7sOYcX4uR4/a7VPWe2Ws9rGw8DZfY/PasokSeNpWf12kp1J9s/Ozg49MEmaFMtJnu8EzktybpLTgUuAg4NUMNcRHzt2bBlhSJJaWla/XVWHqmrPunXrRhagJI27tkvV3QjcAUwlOZrk8qo6DlwJ3AbcB9xcVfcOcvC5jnj9+vWDxi1JOolR9NuOPEtSyznPVbVrkfLDwOGhRiRJWrZR9NtVdQg4NDU1tXs5sUnSJOv09txO25CkyeHIsyR1nDw7bUOSJodzniWp4+RZkiRJmiQmz5KkVpy2IUnOeZYkteS0DUlyzrMkSZLUmtM2JEmtOG1DkkyeJUktOW1DkkyeJUmSpNa8YFCS1IrTNiTJCwYlSS05bUOSnLYhSZIktWbyLEmSJLVk8ixJkiS19PQuD55kJ7Bzy5YtS9r/7oePcdm+W4cbVOPBqy4aSb2SNKnm+uxNmzZ1HYokdcYLBiVJrXjBoCQ5bUOSJElqzeRZkiRJasnkWZIkSWrJ5FmSJElqydtzS5IkSS252oYkqZW5AY/Z2dmuQ5GkzjhtQ5LUikvVSZLJsyRJktSaybMkSZLUksmzJEmS1JLJsyRJktSSybMkSZLUkus8S5IkSS25zrMkrXFJXpjk+iS3dB2LJI07p21I0iqU5IYkjyS5Z175jiT3JzmSZB9AVT1QVZd3E6kkTRaTZ0lanQ4AO/oLkpwGXAtcCGwFdiXZuvKhSdLkMnmWpFWoqm4HHp1XfD5wpBlpfhy4Cbh4xYOTpAn29K4DkCStmM3AQ32PjwIXJHku8DbgpUneVFVvn79jkj3AHoANGzYwMzOzAuEu395tx7sOYcVsPGNtvd5JMDs7OzGfFbVn8ixJa1xVfQm44hTb7E/yeWDnM57xjL8/PT29IrEt12X7bu06hBWzd9txrr7br/VxcmDHmUzKZ0XtOW1DktaOh4Gz+x6f1ZS1MrdC0rp164YemCRNCpNnSVo77gTOS3JuktOBS4CDbXeeW5t/dnZ2ZAFK0rgzeZakVSjJjcAdwFSSo0kur6rjwJXAbcB9wM1VdW/bOh15liTnPEvSqlRVuxYpPwwcXuFwJGnVcORZktSK0zYkqeOR5yQ7gZ1btmzpMowVd84Ir/7eu21kVUta46rqEHBoampqd9exSFJXOh15nps/t379+i7DkCS14MizJDltQ5LUkhcMSpLJsyRJktSaybMkqRWnbUiSybMkqSWnbUiSybMkSZLUmsmzJEmS1JLJsySpFec8S5LJsySpJec8S5LJsyRJktSaybMkSZLUksmzJEmS1JLJsySpFS8YlCSTZ0lSS14wKEkmz5IkSVJrTx92hUnOBP498DgwU1UfGPYxJEmSpC60GnlOckOSR5LcM698R5L7kxxJsq8pfh1wS1XtBl4z5HglSZKkzrSdtnEA2NFfkOQ04FrgQmArsCvJVuAs4KFms68PJ0xJkiSpe62S56q6HXh0XvH5wJGqeqCqHgduAi4GjtJLoFvXL0mSJE2C5cx53syTI8zQS5ovAK4B3pPkIuDQYjsn2QPsAdi4cSMzMzMDB7DxDNi77fjA+7Xx7g98ZCT1AuzdNrKqR9omk8o2OZFtsrDZ2dkl9UVrRZKdwM5NmzZ1Gsc5+27t9PiS1rahXzBYVY8BP9Viu/3AfoDt27fX9PT0wMd69wc+wtV3D/0lTLS9247bJvPYJieyTRZ2YMeZLKUvWiuq6hBwaGpqanfXsUhSV5YzreJh4Oy+x2c1ZZIkSdKqtJzk+U7gvCTnJjkduAQ4OEgFc3erOnbs2DLCkCRJklZG26XqbgTuAKaSHE1yeVUdB64EbgPuA26uqnsHOfjc3arWr18/aNySJEnSims16bGqdi1Sfhg4PNSIJEmSpDHV6VJyTtuQJEnSJOk0eXbahiR1K8mZSd6f5Lokl3YdjySNO29iIkmrTJIbkjyS5J555TuS3J/kSJJ9TfHrgFuqajfwmhUPVpImjMmzJK0+B4Ad/QVJTgOuBS4EtgK7kmylt8zo3A2vvr6CMUrSRHLOsyStMlV1O/DovOLzgSNV9UBVPQ7cBFxM7+6wZzXbOKAiSafQ6S3G5u5WtX37du9WJUmjtZknR5ihlzRfAFwDvCfJRcChxXZOsgfYA7Bhw4ZOb2PureUXtvEM22bczM7OdvpZ0WikqrqOgSRfAD7bPFwP9A9Fn+zx84AvDjmc+ccbxvaLbdO23DY5dRvML1tNbbLYc23KbJP2bQJLa5cXVNWGAfcZuSTnAL9bVS9pHv8IsKOqfqZ5/BPABVV15RLq/ipw/xDDHcSg77Nh1dN2+1NtN+h7erHyhcpG8bluo6tzMsg+Sz0vyy3v6pwsFMtK1TMJn5WpqnpWixgXVlVj9Q/Y3/YxcNeojz+M7Rfbpm25bXLqNligHVZNm7R5vS3fG7bJSdpkVO3S1T/gHOCevscvA27re/wm4E1LrLuzdhr0fTasetpuf6rtBn1PL1a+SFkn56Wrc7IS52UI31V+VoZ8TgY9L6P4rIzj/Lb5Pxue6vGojz+M7Rfbpm25bdLuNR86xfPDtJJtsthzbcpsk27bZJzcCZyX5NwkpwOXAAc7jmkphnXORvF+bbPdoO/pxcrH6b3b1TkZZJ+lnpdhlXfBz0q74wxsLKZtLFWSu6pqe9dxjBPb5ES2yYlsk4WtlnZJciMwTe8n478C3lJV1yd5FfBrwGnADVX1tiXWvyraabXxvIwfz8l4Wu556fSCwSHY33UAY8g2OZFtciLbZGGrol2qatci5YeBw0M4xKpop1XI8zJ+PCfjaVnnZaJHniVJkqSVNI5zniVJkqSxZPIsSZIktWTyLEmSJLW0apLnJGcmeX+S65Jc2nU84yLJC5Ncn+SWrmMZF0le27xPPpjklV3HMw6SvDjJe5PckuT1XcczLpp+5a4kr+46lknh52v8+D0wPsxVxs9SPh9jnTwnuSHJI0numVe+I8n9SY4k2dcUvw64pap2A69Z8WBX0CDtUlUPVNXl3US6cgZskw8375MrgB/vIt6VMGCb3FdVVwA/BnxfF/GuhAH7FIA3AjevbJTdWUL7nGCtfL5WypDOyZr4HuiKucr4GXWeNNbJM3AA2NFfkOQ04FrgQmArsCvJVuAs4KFms6+vYIxdOED7dlkrDjB4m7y5eX61OsAAbZLkNcCtDGcps3F1gJZtkuQHgc8Aj6x0kB06QPv22Zbkd+f9+7a+XVf752ulHGB450SjcQBzlXFzgBHmSWO9znNV3Z7knHnF5wNHquoBgCQ3ARcDR+m9Kf+E8f+jYFkGbJfPrHB4nRikTZLcB1wFfLSqPr2yka6cQd8nVXUQOJjkVuC3VzTYFTJgm6wDzqTXyX4tyeGqemIl411pg7RPVb0dOGE6S5KwBj5fK2UY50SjZa4yfkadJ03iidvMk3+1Qe+NuBn4EPCPk/w643V7zJWyYLskeW6S9wIvTfKmbkLrzGLvlTcArwB+JMkVXQTWocXeJ9NJrknyH1jdI88LWbBNquoXq+pn6f0hcd1qT5xPYrHP0WLW8udrpQx0Ttb490BXzFXGz9DypLEeeR5EVT0G/FTXcYybqvoSvbmHalTVNcA1XccxTqpqBpjpOIyxVFUHuo5hkvj5Gj9+D4wPc5Xxs5TPxySOPD8MnN33+KymbK2zXU5km5zINjmRbXJyts/48ZyMP8/R+BnaOZnE5PlO4Lwk5yY5HbgEONhxTOPAdjmRbXIi2+REtsnJ2T7jx3My/jxH42do52Ssk+ckNwJ3AFNJjia5vKqOA1cCtwH3ATdX1b1dxrnSbJcT2SYnsk1OZJucnO0zfjwn489zNH5GfU5SVcOLVpIkSVrFxnrkWZIkSRonJs+SJElSSybPkiRJUksmz5IkSVJLJs+SJElSSybPkiRJUksmz5IkSVJLJs+SJElSSybPkiRJUkv/P8qjbNWtRezkAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAAHHCAYAAADZOPmeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXhU9b3H8c8kJBPCEpaUhEAgCrY1EpI2CxdESdhiWKwihWutBKxI7cSlaW0Te2WRVixYGpepES1y3a4UWtHbIBAjGkG8hmiwNoULFahFCJsQEnQSJuf+0SdzHbKQZZIzy/v1PDx6fnPmnO+cTHLO55zz+x2LYRiGAAAAAABAtwsyuwAAAAAAAAIVoRwAAAAAAJMQygEAAAAAMAmhHAAAAAAAkxDKAQAAAAAwCaEcAAAAAACTEMoBAAAAADAJoRwAAAAAAJMQygEAAAAAMAmhHAhQ8+fPV1xcXLesKy4uTvPnz3dNr1u3ThaLRbt37+6W9aenpys9Pb1b1gUA6JhDhw7JYrFo3bp1ZpfSZTqzP0pPT9eoUaM8W1AHLV26VBaLpVvWdfE2e+utt2SxWLRx48ZuWX93Hi8hcBHK4dMaw13jv7CwMMXExCgzM1OPPfaYzp07Z3aJ3aJx59j4Lzw8XMOGDdPMmTP17LPPyuFweGQ9lZWVWrp0qQ4dOuSR5XmSN9cGAIHg4n3yxf/ee+89s0ts1sqVK2WxWPThhx+6tRuGof79+8tisejgwYNur3355ZeyWq363ve+152ltslnn32mpUuXqqKiok3zd9exVHvr6k7eXBsCQw+zCwA84cEHH9Rll12m+vp6HTt2TG+99ZbuvfderV69Wq+99ppGjx5tdond4sknn1Tv3r3lcDh05MgRbd26VbfddpsKCgr05z//WbGxsa55n376aTU0NLRr+ZWVlVq2bJnS09PbddZ43759Cgrq2nOArdW2bdu2Ll03AOD/Ne6TLzZy5EgTqrm08ePHS5J27Nihb33rW672v/71rzpz5ox69OihnTt3un2msrIy1dXVud7bVt2xP/rss8+0bNkyxcXFKSkpqc3va8+x1H/8x38oLy+vW+oye5t15HgJaC9COfxCVlaWUlJSXNP5+fl68803NWPGDF1//fX629/+pp49e3ZbPYZh6Msvv+zWdUrS7NmzFRkZ6ZpevHixXnzxRc2bN0/f/e533a5ShISEdGktX90GVqu1S9d1KaGhoaauHwACycX7ZG+XkpKisLAw7dixQ3fddZerfefOnRo4cKBSUlK0Y8cOff/733e9tmPHDklqdyj35v1Re46levTooR49ujZGnD9/XuHh4aZvs64+XgIkbl+HH5s4caIeeOABHT58WC+88ILba3v37tXs2bM1YMAAhYWFKSUlRa+99lqTZXz00UeaMGGCevbsqaFDh+qXv/ylnn32WVksFrfbpOPi4jRjxgxt3bpVKSkp6tmzp5566ilJ0pkzZ3TvvfcqNjZWVqtVI0eO1K9//esmZ10bGhpUUFCgq666SmFhYYqKitKiRYv0+eefd2o73HLLLbr99tv1P//zPyouLna1N9dH6uWXX1ZycrL69Omjvn37KiEhQY8++qikf93e9t3vfleSlJGR4brN7a233rrkNri4T3mj8+fPa9GiRRo4cKD69u2refPmNfm8FotFS5cubfLery7zUrU114fv+PHj+sEPfqCoqCiFhYUpMTFR//mf/+k2T2P/xkceeURr1qzRiBEjZLValZqaqrKysma3NwDg0s6cOaP58+crIiJC/fr1U3Z2ts6cOdPsvBs2bFB8fLzCwsI0atQovfLKK83uwzq6Hw0NDVVqaqp27tzp1r5z506NHTtWV199dbOv9evXz9XHu63rbm5/dPjwYV1//fXq1auXBg0apB//+MfaunWr237sqyorK5WRkaHw8HANGTJEK1eudL321ltvKTU1VZK0YMEC1/6wo/30WzqWaq5PeXFxscaPH69+/fqpd+/e+sY3vqH777+/TXU19pcvLy/Xtddeq/DwcNd7W+qH73Q6df/99ys6Olq9evXS9ddfr08//dRtnpaOP766zEvV1tx3rba2Vj/5yU9cx3bf+MY39Mgjj8gwDLf5LBaLcnJytGnTJo0aNUpWq1VXXXWVtmzZ0vwGR8DiSjn82q233qr7779f27Zt08KFCyX963a0q6++WkOGDFFeXp569eqlP/zhD7rhhhv0xz/+UTfeeKMk6ciRI66Al5+fr169eumZZ55p8arvvn37dPPNN2vRokVauHChvvGNb+j8+fOaMGGCjhw5okWLFmnYsGF69913lZ+fr6NHj6qgoMD1/kWLFmndunVasGCB7r77bh08eFBPPPGEPvzwQ+3cubNTZ2pvvfVWrVmzRtu2bdOUKVOanae4uFg333yzJk2apF//+teSpL/97W/auXOn7rnnHl177bW6++679dhjj+n+++/XlVdeKUmu/7a0DVqTk5Ojfv36aenSpdq3b5+efPJJHT582DWIS1u1pbav+uKLL5Senq4DBw4oJydHl112mTZs2KD58+frzJkzuueee9zmf+mll3Tu3DktWrRIFotFK1eu1KxZs/TJJ59wBh0ALnL27FmdPHnSrc1isWjgwIGS/nUn1Xe+8x3t2LFDP/zhD3XllVfqlVdeUXZ2dpNlFRUVae7cuUpISNCKFSv0+eef6wc/+IGGDBnSZN7O7EfHjx+vd955R4cOHXIFsJ07d+r2229XWlqalixZojNnzqhfv34yDEPvvvuuxo4d6+qa1dF119bWauLEiTp69KjuueceRUdH66WXXtL27dubnf/zzz/Xddddp1mzZmnOnDnauHGjfv7znyshIUFZWVm68sor9eCDD2rx4sW64447dM0110iSxo0b1+Jnv5TmjqUu9te//lUzZszQ6NGj9eCDD8pqterAgQOukxltqevUqVPKysrSv//7v+v73/++oqKiWq3rV7/6lSwWi37+85/r+PHjKigo0OTJk1VRUdGuOxXbu80Mw9D111+v7du36wc/+IGSkpK0detW3XfffTpy5Ih++9vfus2/Y8cO/elPf9KPfvQj9enTR4899phuuukm/eMf/3D9TgAyAB/27LPPGpKMsrKyFueJiIgwvvWtb7mmJ02aZCQkJBhffvmlq62hocEYN26cccUVV7ja7rrrLsNisRgffvihq+3UqVPGgAEDDEnGwYMHXe3Dhw83JBlbtmxxW/fy5cuNXr16Gf/7v//r1p6Xl2cEBwcb//jHPwzDMIx33nnHkGS8+OKLbvNt2bKl2faLLVmyxJBknDhxotnXP//8c0OSceONN7rasrOzjeHDh7um77nnHqNv377GhQsXWlzPhg0bDEnG9u3bm7zW0jZofC07O9s13fhzS05ONurq6lztK1euNCQZr776qqtNkrFkyZJLLrO12iZMmGBMmDDBNV1QUGBIMl544QVXW11dnTF27Fijd+/eRnV1tWEYhnHw4EFDkjFw4EDj9OnTrnlfffVVQ5Lx3//9303WBQCBqvFve3P/rFara75NmzYZkoyVK1e62i5cuGBcc801hiTj2WefdbUnJCQYQ4cONc6dO+dqe+uttwxJbvuwzu5Hi4qKDEnG888/bxiGYRw9etSQZLz99tvGuXPnjODgYKOoqMgwDMP4+OOPDUnGr371q3av++L90W9+8xtDkrFp0yZX2xdffGF885vfbLJPmzBhgiHJeO6551xtDofDiI6ONm666SZXW1lZWZPt2JqOHEs1Hnc0+u1vf9vqccil6mr8bIWFhc2+9tVttn37dkOSMWTIENf+2jAM4w9/+IMhyXj00UddbRcfK7S0zNZqu/h4qfH7+8tf/tJtvtmzZxsWi8U4cOCAq02SERoa6ta2Z88eQ5Lx+OOPN1kXAhe3r8Pv9e7d2zVy6OnTp/Xmm29qzpw5OnfunE6ePKmTJ0/q1KlTyszM1P79+3XkyBFJ0pYtWzR27Fi3AT8GDBigW265pdn1XHbZZcrMzHRr27Bhg6655hr179/fta6TJ09q8uTJcjqdKi0tdc0XERGhKVOmuM2XnJys3r17t3jGvD3bQFKrI6j269dPtbW1bre4t1dz26A1d9xxh9vVgzvvvFM9evTQ5s2bO1xDW2zevFnR0dG6+eabXW0hISG6++67VVNTo7fffttt/rlz56p///6u6caz6J988kmX1gkAvshut6u4uNjt3+uvv+56ffPmzerRo4fuvPNOV1twcLBbf27pX4Nv/eUvf9G8efNc+zFJmjBhghISEtzm7ex+dNy4cQoKCnL1FW+8up2amqrevXtr9OjRrqu+jf9t7E/emXVv2bJFQ4YM0fXXX+9qCwsLa/GKdO/evd36toeGhiotLa3L90dfPZZqTr9+/SRJr776aocHRbNarVqwYEGb5583b5769Onjmp49e7YGDx7cLccQwcHBuvvuu93af/KTn8gwDLfvuiRNnjxZI0aMcE2PHj1affv25RgCbrh9HX6vpqZGgwYNkiQdOHBAhmHogQce0AMPPNDs/MePH9eQIUN0+PBhjR07tsnrLY0e29xIs/v379dHH32kr33tay2uq3G+s2fPuupsab6OqqmpkSS3ndfFfvSjH+kPf/iDsrKyNGTIEE2dOlVz5szRdddd1+b1NLcNWnPFFVe4Tffu3VuDBw/u8seaHT58WFdccUWTEeEbb3c/fPiwW/uwYcPcphsDemf7+wOAP0pLS2t1oLfDhw9r8ODBbkFbUpMuT41/i5vb744cOVIffPCBa7qz+9F+/frpqquucgve3/rWt1y3QY8bN87ttcYw3Nl1Hz58WCNGjGjSZaulY42hQ4c2mbd///766KOPWv18nfXVY6nmzJ07V88884xuv/125eXladKkSZo1a5Zmz57d5qevDBkypF2Dul18DGGxWDRy5MhuOYaIiYlpckzV1mMI6V8/M44h8FWEcvi1f/7znzp79qxr59Z49vanP/1pi1d0O/rIlub6LzU0NGjKlCn62c9+1ux7vv71r7vmGzRokF588cVm52sp1LfVxx9/LKn1zzZo0CBVVFRo69atev311/X666/r2Wef1bx585oMgNaS7hxt3ul0dtu6goODm203LhrQBQBgDk/sR8ePH6/CwkKdOXNGO3fudOtTPG7cOK1du1b19fXasWOHkpOTFRYW5rF1t5UZ+6OLj6Wa07NnT5WWlmr79u0qKirSli1btH79ek2cOFHbtm1rse6Ll+FpLY1P43Q621STJ3AMgbYglMOvPf/885LkCuCXX365pH/dqjx58uRW3zt8+HAdOHCgSXtzbS0ZMWKEampqLrmuESNG6I033tDVV1/dJTuli7dDS0JDQzVz5kzNnDlTDQ0N+tGPfqSnnnpKDzzwgEaOHNmuwdfaYv/+/crIyHBN19TU6OjRo5o2bZqrrX///k1G5K2rq9PRo0fd2tpT2/Dhw/XRRx+poaHB7Qz+3r17Xa8DALrG8OHDVVJSopqaGrer5fv27Wsyn9T8fvfiNk/sR8ePH68nn3xSb7zxhj788EPdd999rtfGjRunL774QkVFRfrkk0900003eWTdw4cPV2VlpQzDcNuPtedY42Ke3le39RgiKChIkyZN0qRJk7R69Wo99NBD+sUvfqHt27dr8uTJXXIM8VWGYejAgQNuz1Nv7hhC+tfV7MZjQqn9xxBvvPGGzp0753a1nGMIdAZ9yuG33nzzTS1fvlyXXXaZqx/4oEGDlJ6erqeeeqpJqJOkEydOuP4/MzNTu3btUkVFhavt9OnTLZ4Jb86cOXO0a9cubd26tclrZ86c0YULF1zzOZ1OLV++vMl8Fy5caPExMW3x0ksv6ZlnntHYsWM1adKkFuc7deqU23RQUJBrx+ZwOCRJvXr1ctXuCWvWrFF9fb1r+sknn9SFCxeUlZXlahsxYoSr7/1X33fxlfL21DZt2jQdO3ZM69evd7VduHBBjz/+uHr37q0JEyZ06PMAAC5t2rRpunDhgp588klXm9Pp1OOPP+42X0xMjEaNGqXnnnvO1Q1Lkt5++2395S9/cZvXE/vRxj7iq1evVn19vduV8ri4OA0ePNj1+LGvPp+8M+vOzMzUkSNH3B7L+uWXX+rpp5++ZL0t8eS+urljqeacPn26SVvjmDxddQzx3HPPufVz37hxo44ePdrkGOK9995TXV2dq+3Pf/5zk0entfcYwul06oknnnBr/+1vfyuLxeK2fqCtuFIOv/D6669r7969unDhgqqqqvTmm2+quLhYw4cP12uvvea6xUz61wA048ePV0JCghYuXKjLL79cVVVV2rVrl/75z39qz549kqSf/exneuGFFzRlyhTdddddrkeiDRs2TKdPn27TWdX77rtPr732mmbMmKH58+crOTlZtbW1+stf/qKNGzfq0KFDioyM1IQJE7Ro0SKtWLFCFRUVmjp1qkJCQrR//35t2LBBjz76qGbPnn3J9W3cuFG9e/dWXV2djhw5oq1bt2rnzp1KTEzUhg0bWn3v7bffrtOnT2vixIkaOnSoDh8+rMcff1xJSUmuflJJSUkKDg7Wr3/9a509e1ZWq1UTJ05stZ9Za+rq6jRp0iTNmTNH+/bt0+9+9zuNHz/ebcCb22+/XT/84Q910003acqUKdqzZ4+2bt2qyMhIt2W1p7Y77rhDTz31lObPn6/y8nLFxcVp48aN2rlzpwoKClrtew8AaF3jPvli48aN0+WXX66ZM2fq6quvVl5eng4dOqT4+Hj96U9/0tmzZ5u856GHHtJ3vvMdXX311VqwYIE+//xzPfHEExo1apRbUPfEfnTYsGGKjY3Vrl27FBcXp5iYmCb1//GPf5TFYtHVV1/tkXUvWrRITzzxhG6++Wbdc889Gjx4sF588UXXcUtHri6PGDFC/fr1U2Fhofr06aNevXppzJgxlxz3pT3HUhd78MEHVVpaqunTp2v48OE6fvy4fve732no0KGuExgdraslAwYM0Pjx47VgwQJVVVWpoKBAI0eOdBsk7/bbb9fGjRt13XXXac6cOfr73/+uF154wW3gtfbWNnPmTGVkZOgXv/iFDh06pMTERG3btk2vvvqq7r333ibLBtrExJHfgU67+PEroaGhRnR0tDFlyhTj0UcfdXtUxlf9/e9/N+bNm2dER0cbISEhxpAhQ4wZM2YYGzdudJvvww8/NK655hrDarUaQ4cONVasWGE89thjhiTj2LFjrvmGDx9uTJ8+vdl1nTt3zsjPzzdGjhxphIaGGpGRkca4ceOMRx55xO1xYIZhGGvWrDGSk5ONnj17Gn369DESEhKMn/3sZ8Znn33W6nZofDRJ47+wsDBj6NChxowZM4y1a9e6Pf6t0cWP+Ni4caMxdepUY9CgQUZoaKgxbNgwY9GiRcbRo0fd3vf0008bl19+uREcHOz2uJbWtkFLj0R7++23jTvuuMPo37+/0bt3b+OWW24xTp065fZep9Np/PznPzciIyON8PBwIzMz0zhw4ECzjzlpqbaLH31iGIZRVVVlLFiwwIiMjDRCQ0ONhISEJo9CaXwk2qpVq5p8JrXwqDYACFStPRJNFz1u6tSpU8att95q9O3b14iIiDBuvfVW48MPP2z2sVQvv/yy8c1vftOwWq3GqFGjjNdee8246aabjG9+85tNaujofrTRzTffbEgyvve97zV5bfXq1YYk48orr2z2vW1Zd3P7o08++cSYPn260bNnT+NrX/ua8ZOf/MT44x//aEgy3nvvPbf3XnXVVU3We/H+3DD+9ejO+Ph4o0ePHpd8PFpHjqUufiRaSUmJ8Z3vfMeIiYkxQkNDjZiYGOPmm29u8kjYlupq6bM1t80aH4n2X//1X0Z+fr4xaNAgo2fPnsb06dONw4cPN3n/b37zG2PIkCGG1Wo1rr76amP37t3N/hxaqq257Xvu3Dnjxz/+sRETE2OEhIQYV1xxhbFq1SqjoaHBbT5Jhs1ma1JTS49qQ+CyGAajDADtce+99+qpp55STU1Ntw0SAgAA/l9SUpK+9rWvdeoxnt6soKBAP/7xj/XPf/5TQ4YMMbscAF2MPuVAK7744gu36VOnTun555/X+PHjCeQAAHSx+vp61/grjd566y3t2bNH6enp5hTlYRcfa3z55Zd66qmndMUVVxDIgQBBn3KgFWPHjlV6erquvPJKVVVV6fe//72qq6tbfMY5AADwnCNHjmjy5Mn6/ve/r5iYGO3du1eFhYWKjo7WD3/4Q7PL84hZs2Zp2LBhSkpK0tmzZ/XCCy9o79697RpYFoBvI5QDrZg2bZo2btyoNWvWyGKx6Nvf/rZ+//vf69prrzW7NAAA/F7//v2VnJysZ555RidOnFCvXr00ffp0Pfzwwxo4cKDZ5XlEZmamnnnmGb344otyOp2Kj4/Xyy+/rLlz55pdGoBuQp9yAAAAAABMQp9yAAAAAABMQigHAAAAAMAkPtenvKGhQZ999pn69Okji8VidjkAAMgwDJ07d04xMTEKCuJ8d2exrwcAeJuu3Nf7TCi32+2y2+2qq6vT3//+d7PLAQCgiU8//VRDhw41uwyf99lnnyk2NtbsMgAAaKIr9vU+N9Db2bNn1a9fP3366afq27dvp5ZVX1+vbdu2aerUqQoJCfFQhWgrtr+52P7mYvubz5M/g+rqasXGxurMmTOKiIjwUIWBp/EE/IULF7R//34dPHhQAwYMMLss+AD+pqK9+M6gvU6fPq3LLrusS/b1PnOlvFHjbWx9+/b1SCgPDw9X3759+WU0AdvfXGx/c7H9zdcVPwNute4cm80mm82m6upqRUREqE+fPp3e1yMw8DcV7cV3Bu1VX18vqWv29XR8AwAAAADAJIRyAADgFex2u+Lj45Wammp2KQAAdBufCeXsqAEA8G82m02VlZUqKyszuxQAALqNz4RydtQAAAAAAH/jM6EcAAAAAAB/QygHAABega5qAIBARCgHAABega5qAIBA5DOhnLPnAAAAAAB/4zOhnLPnAAAAAAB/4zOhHAAA+DfuigMABCJCOQAA8ArcFQcACESEcgAAAAAATEIoBwAAAADAJD4TyulnBgAAAADwNz3MLqCtbDabbDabqqurFRERYXY5AODz4vKKzC5Bhx6ebnYJ8CJ2u112u11Op9PsUnAJnfn7we89ALjzmSvlAADAvzHQGwAgEBHKAQAAAAAwCaEcAAAAAACTEMoBAAAAADAJoRwAAAAAAJMQygEAgFfg8acAgEDkM49E4zEpAAD4Nx5/2r284bGIAAAfulLOY1IAAAAAAP7GZ0I5AAAAAAD+hlAOAAAAAIBJCOUAAAAAAJiEUA4AAAAAgEkI5QAAAAAAmIRQDgAAvALPKQcABCJCOQAA8Ao8/hQAEIh8JpRz9hwAAAAA4G98JpRz9hwAAAAA4G98JpQDAAAAAOBvCOUAAAAAAJiEUA4AAAAAgEkI5QAAAAAAmIRQDgAAAACASQjlAAAAAACYhFAOAAAAAIBJCOUAAMAr2O12xcfHKzU11exSAADoNoRyAADgFWw2myorK1VWVmZ2KQAAdBufCeWcPQcAAAAA+BufCeWcPQcAAAAA+BufCeUAAAAAAPgbQjkAAAAAACYhlAMAAAAAYBJCOQAAAAAAJiGUAwAAAABgEkI5AAAAAAAmIZQDAAAAAGASQjkAAAAAACYhlAMAAAAAYJIeZhcAAAAAdLW4vKIOve/Qw9M9XAkAuONKOQAA8LiDBw8qIyND8fHxSkhIUG1trdklAQDglbhSDgAAPG7+/Pn65S9/qWuuuUanT5+W1Wo1uyQAALwSoRwAAHjUX//6V4WEhOiaa66RJA0YMMDkigAA8F7cvg4AANyUlpZq5syZiomJkcVi0aZNm5rMY7fbFRcXp7CwMI0ZM0bvv/++67X9+/erd+/emjlzpr797W/roYce6s7yAQDwKVwpBwAAbmpra5WYmKjbbrtNs2bNavL6+vXrlZubq8LCQo0ZM0YFBQXKzMzUvn37NGjQIF24cEHvvPOOKioqNGjQIF133XVKTU3VlClTml2fw+GQw+FwTVdXV0uS6uvrVV9f3zUfErIGG6astyt+po3LbG3ZHf28fAf9U1u+M8BXdeV3xWdCud1ul91ul9PpNLsUAAD8WlZWlrKyslp8ffXq1Vq4cKEWLFggSSosLFRRUZHWrl2rvLw8DRkyRCkpKYqNjZUkTZs2TRUVFS2G8hUrVmjZsmVN2rdv367w8HAPfCI0Z2WaOevdvHlzly27uLi4xdc6+nm7sl6Yr7XvDPBV58+f77Jl+0wot9lsstlsqq6uVkREhNnlAAAQkOrq6lReXq78/HxXW1BQkCZPnqxdu3ZJklJTU3X8+HF9/vnnioiIUGlpqRYtWtTiMvPz85Wbm+uarq6uVmxsrDIyMjRw4MCu+zABbtTSraas9+OlmR5fZn19vYqLizVlyhSFhIQ0O09HP29X1AvzteU7A3zVqVOnumzZPhPKAQCA+U6ePCmn06moqCi39qioKO3du1eS1KNHDz300EO69tprZRiGpk6dqhkzZrS4TKvV2uzo7CEhIRwsdyGH02LKervyZ9rad6ajn5fvoH/j7wzaqiu/J4RyAADgcZe6Bb45dFUDAAQiQjkAmGjU0q2mXa0COiIyMlLBwcGqqqpya6+qqlJ0dHSnlk1XNQBAIOKRaAAAoM1CQ0OVnJyskpISV1tDQ4NKSko0duxYEysDAMA3caUcAAC4qamp0YEDB1zTBw8eVEVFhQYMGKBhw4YpNzdX2dnZSklJUVpamgoKClRbW+sajb2juH0dABCICOUAAMDN7t27lZGR4ZpuHBk9Oztb69at09y5c3XixAktXrxYx44dU1JSkrZs2dJk8Lf24vZ1AEAgIpQDAAA36enpMgyj1XlycnKUk5PTTRUBAOC/6FMOAAAAAIBJCOUAAMAr2O12xcfHKzU11exSAADoNty+DiBgxeUVmbZua7ChlWmmrR7wSvQpBwAEIkI5AAAA0AU6c/L30MPTPVgJAG/G7esAAAAAAJiEUA4AALwCfcoBAIGIUA4AALyCzWZTZWWlysrKzC4FAIBuQ59yAAAA+ISW+sD8ibkAACAASURBVGg3Dp45aulWOZyWbq4KADqHK+UAAAAAAJiEK+UAAADoNmY+jhIAvBFXygEAgFdgoDcAQCAilAMAAK/AQG8AgEBEKAcAAAAAwCTdHsrPnDmjlJQUJSUladSoUXr66ae7uwQAAAAAALxCtw/01qdPH5WWlio8PFy1tbUaNWqUZs2apYEDB3Z3KQAAAAAAmKrbr5QHBwcrPDxckuRwOGQYhgzD6O4yAAAAAAAwXbtDeWlpqWbOnKmYmBhZLBZt2rSpyTx2u11xcXEKCwvTmDFj9P7777u9fubMGSUmJmro0KG67777FBkZ2fFPAAAA/AKjrwMAAlG7b1+vra1VYmKibrvtNs2aNavJ6+vXr1dubq4KCws1ZswYFRQUKDMzU/v27dOgQYMkSf369dOePXtUVVWlWbNmafbs2YqKiur8pwEAAD7LZrPJZrOpurpaERERZpfjE3jmNwD4vnaH8qysLGVlZbX4+urVq7Vw4UItWLBAklRYWKiioiKtXbtWeXl5bvNGRUUpMTFR77zzjmbPnt3s8hwOhxwOh2u6urpaklRfX6/6+vr2lu+m8f2dXQ46hu1vLra/ZA02r+uMNchw+2+gMvP758nfgUD+PQIAAJ3j0YHe6urqVF5ervz8fFdbUFCQJk+erF27dkmSqqqqFB4erj59+ujs2bMqLS3VnXfe2eIyV6xYoWXLljVp37Ztm6tvemcVFxd7ZDnoGLa/uQJ5+69MM7sCaXlKg9klmGrz5s1ml+CR34Hz5897oBIAABCIPBrKT548KafT2eRW9KioKO3du1eSdPjwYd1xxx2uAd7uuusuJSQktLjM/Px85ebmuqarq6sVGxurqVOnqm/fvp2qt76+XsXFxZoyZYpCQkI6tSy0H9vfXGx/adTSraat2xpkaHlKgx7YHSRHg8W0Osz28dJM09btyd+Bxru4AAAA2qvbH4mWlpamioqKNs9vtVpltVqbtIeEhHgsSHhyWWg/tr+5Ann7O5zmh2FHg8Ur6jCLN3z3PPE74A2fAwAA+CaPPhItMjJSwcHBqqqqcmuvqqpSdHS0J1cFAAAAAIDP82goDw0NVXJyskpKSlxtDQ0NKikp0dixYzu1bB6TAgAAAADwN+2+fb2mpkYHDhxwTR88eFAVFRUaMGCAhg0bptzcXGVnZyslJUVpaWkqKChQbW2tazT2juIxKQAA+De73S673S6n02l2KQAAdJt2h/Ldu3crIyPDNd04CFt2drbWrVunuXPn6sSJE1q8eLGOHTumpKQkbdmyheeQAwCAVnECHgAQiNodytPT02UYrT9XNycnRzk5OR0uCgAAAAhkcXlFHX7voYene7ASAF3No33KAQAAAABA2/lMKGegNwAAAACAv/GZUG6z2VRZWamysjKzSwEAAAAAwCPa3accADylM/3lAAAAAH9AKAcAAABawAlkAF3NZ25fBwAAAADA3/hMKGegNwAAAACAv/GZUM5AbwAAAAAAf+MzoRwAAPg37ooDAAQiQjkAAPAK3BUHAAhEhHIAAAAAAExCKAcAAAAAwCQ+85xyu90uu90up9NpdikAAACA1+rMs9UPPTzdg5UAaAufuVJOPzMAAAAAgL/xmVAOAAAAAIC/IZQDAAAAAGASQjkAAAAAACYhlAMAAAAAYBJCOQAAAAAAJiGUAwAAAABgEp8J5Xa7XfHx8UpNTTW7FAAAAAAAPKKH2QW0lc1mk81mU3V1tSIiIswuBwAAtCIuLk59+/ZVUFCQ+vfvr+3bt5tdEgAAXslnQjkAAPAt7777rnr37m12GQAAeDWfuX0dAAAAAAB/w5VyAIBp4vKKTFu3NdjQyjTTVu/VSktLtWrVKpWXl+vo0aN65ZVXdMMNN7jNY7fbtWrVKh07dkyJiYl6/PHHlZb2/xvUYrFowoQJCgoK0r333qtbbrmluz8GAAA+gSvlAADATW1trRITE2W325t9ff369crNzdWSJUv0wQcfKDExUZmZmTp+/Lhrnh07dqi8vFyvvfaaHnroIX300UfdVT4AAD6FK+UAAMBNVlaWsrKyWnx99erVWrhwoRYsWCBJKiwsVFFRkdauXau8vDxJ0pAhQyRJgwcP1rRp0/TBBx9o9OjRzS7P4XDI4XC4pqurqyVJ9fX1qq+v98hn8lfWYMPsEryCNchw+y86LlB+5xo/Z6B8XnReV35XCOUAAKDN6urqVF5ervz8fFdbUFCQJk+erF27dkn615X2hoYG9enTRzU1NXrzzTc1Z86cFpe5YsUKLVu2rEn79u3bFR4e7vkP4UfoguFueUqD2SX4vM2bN5tdQrcqLi42uwT4iPPnz3fZsgnlAACgzU6ePCmn06moqCi39qioKO3du1eSVFVVpRtvvFGS5HQ6tXDhQqWmpra4zPz8fOXm5rqmq6urFRsbq4yMDA0cOLALPoX/GLV0q9kleAVrkKHlKQ16YHeQHA0Ws8vxaR8vzTS7hG5RX1+v4uJiTZkyRSEhIWaXAx9w6tSpLlu2z4Ryu90uu90up9NpdikAAKAVl19+ufbs2dPm+a1Wq6xWa5P2kJAQDpYvweEkgH6Vo8HCNumkKx7Y1uH3Hnp4ugcr6R78nUFbdeX3xGcGerPZbKqsrFRZWZnZpQAAELAiIyMVHBysqqoqt/aqqipFR0d3atl2u13x8fGtXlUHAMDf+EwoBwAA5gsNDVVycrJKSkpcbQ0NDSopKdHYsWM7tWxOwAMAApHP3L4OAAC6R01NjQ4cOOCaPnjwoCoqKjRgwAANGzZMubm5ys7OVkpKitLS0lRQUKDa2lrXaOwAAKDtCOUAAMDN7t27lZGR4ZpuHIQtOztb69at09y5c3XixAktXrxYx44dU1JSkrZs2dJk8Lf2YvwYAEAgIpQDAAA36enpMozWn/eck5OjnJwcj67XZrPJZrOpurpaERERHl02AADeij7lAAAAAACYhFAOAAC8AqOvAwACEaEcAAB4BUZfBwAEIkI5AAAAAAAmIZQDAAAAAGASnwnl9DMDAAAAAPgbnwnl9DMDAMC/cQIeABCIfCaUAwAA/8YJeABAICKUAwAAAABgEkI5AAAAAAAmIZQDAAAAAGASQjkAAPAKDPQGAAhEhHIAAOAVGOgNABCICOUAAAAAAJiEUA4AAAAAgEkI5QAAAAAAmIRQDgAAAACASXqYXQAAc41aulUOp8XsMgBAdrtddrtdTqfT7FIAAOg2XCkHAABegdHXAQCBiFAOAAAAAIBJCOUAAAAAAJiEUA4AAAAAgEl8JpTb7XbFx8crNTXV7FIAAAAAAPAInwnlDP4CAAAAAPA3PBINAAB4BR6JBvi2uLyiDr3v0MPTPVwJ4Ft85ko5AADwb9wVBwAIRIRyAAAAAABMQigHAAAAAMAkhHIAAAAAAExCKAcAAAAAwCSEcgAAAAAATEIoBwAAAADAJIRyAAAAAABMQigHAAAAAMAkhHIAAAAAAExCKAcAAAAAwCSEcgAA4BXsdrvi4+OVmppqdikAAHQbQjkAAPAKNptNlZWVKisrM7sUAAC6DaEcAAAAAACTEMoBAAAAADAJoRwAAAAAAJMQygEAAAAAMAmhHAAAAAAAkxDKAQAAAAAwSbeH8k8//VTp6emKj4/X6NGjtWHDhu4uAQAAAAAAr9Cj21fYo4cKCgqUlJSkY8eOKTk5WdOmTVOvXr26uxQAAAAAAEzV7aF88ODBGjx4sCQpOjpakZGROn36NKEcAAAAABBw2n37emlpqWbOnKmYmBhZLBZt2rSpyTx2u11xcXEKCwvTmDFj9P777ze7rPLycjmdTsXGxra/cgAAAAAAfFy7Q3ltba0SExNlt9ubfX39+vXKzc3VkiVL9MEHHygxMVGZmZk6fvy423ynT5/WvHnztGbNmo5VDgAAAACAj2v37etZWVnKyspq8fXVq1dr4cKFWrBggSSpsLBQRUVFWrt2rfLy8iRJDodDN9xwg/Ly8jRu3LhW1+dwOORwOFzT1dXVkqT6+nrV19e3t3w3je/v7HLQMWx/czVud2uQYXIlgalxu7P9zdO47T3xN4i/Y807f/68rrzySn33u9/VI488YnY5AAB4JY/2Ka+rq1N5ebny8/NdbUFBQZo8ebJ27dolSTIMQ/Pnz9fEiRN16623XnKZK1as0LJly5q0b9u2TeHh4R6pu7i42CPLQcew/c21PKXB7BICGtvffJ74G3T+/HkPVOJ/fvWrX+nf/u3fzC4DAACv5tFQfvLkSTmdTkVFRbm1R0VFae/evZKknTt3av369Ro9erSrP/rzzz+vhISEZpeZn5+v3Nxc13R1dbViY2M1depU9e3bt1P11tfXq7i4WFOmTFFISEinloX2Y/ubq3H7P7A7SI4Gi9nlBBxrkKHlKQ1sfxM1/gw88Teo8S4u/L/9+/dr7969mjlzpj7++GOzywEAwGt1++jr48ePV0ND268MWa1WWa3WJu0hISEeC3KeXBbaj+1vLkeDRQ4nodAsbH/zeeJvkL/9DSstLdWqVatUXl6uo0eP6pVXXtENN9zgNo/dbteqVat07NgxJSYm6vHHH1daWprr9Z/+9KdatWqV3n333e4uHwAAn+LRUB4ZGang4GBVVVW5tVdVVSk6OtqTqwIAAF2kcVDX2267TbNmzWryeuOgroWFhRozZowKCgqUmZmpffv2adCgQXr11Vf19a9/XV//+tfbFMq7cvwYf2cNZlwKiXE6fJ0Zv+eMbYT26srvikdDeWhoqJKTk1VSUuI6o97Q0KCSkhLl5OR0atl2u112u11Op9MTpQIAgBZ0dlDX9957Ty+//LI2bNigmpoa1dfXq2/fvlq8eHGzy2tp/Jjt27d7bPwYf7Uy7dLzBBLG6fBNmzdvNm3djG2EturK8WPaHcpramp04MAB1/TBgwdVUVGhAQMGaNiwYcrNzVV2drZSUlKUlpamgoIC1dbWunbcHWWz2WSz2VRdXa2IiIhOLQsAAHRMWwZ1XbFihVasWCFJWrdunT7++OMWA7nU8vgxGRkZGjhwYBd9Ev8waulWs0vwCozT4ds+XprZ7etkbCO016lTp7ps2e0O5bt371ZGRoZrunEnmp2drXXr1mnu3Lk6ceKEFi9erGPHjikpKUlbtmxpMvgbAADwPW0Z1LW9umP8GH/FmBTuGKfDN5n5e87fGbRVV35P2h3K09PTZRit99fJycnp9O3qAADA982fP7/N8wZyV7W4vCKzSwAAmCTI7AIAAIDv6MpBXW02myorK1VWVtap5QAA4Et8JpTb7XbFx8crNTXV7FIAAAhYXx3UtVHjoK5jx441sTIAAHxTtz+nvKMY6A0AgO5h1qCugXz7OgAgcPlMKAcAAN3DrEFdOQEPAAhEhHIAAOCGQV0BAOg+PtOnHAAAAAAAf+MzoZyB3gAA8G/s6wEAgchnQjmPSQEAwL+xrwcABCL6lAMmissrMm3d1mBDK9NMWz0AAAAAEcoBAAAAmKgzFykOPTzdg5UA5vCZ29cBAIB/o085ACAQEcoBAIBXoE85ACAQ+Uwo5+w5AAAAAMDf+Ewo5+w5AAAAAMDf+EwoBwAAAADA3xDKAQCAV6CrGgAgEBHKAQCAV6CrGgAgEBHKAQAAAAAwSQ+zCwDMFJdXZHYJAAAAAAKYz1wpp58ZAAAAAMDf+Ewop58ZAAAAAMDf+EwoBwAA/o274gAAgYhQDgAAvAJ3xQEAAhGhHAAAAAAAkxDKAQAAAAAwCaEcAAAAAACTEMoBAAAAADAJoRwAAAAAAJP4TCjnMSkAAAAAAH/jM6Gcx6QAAODfOAEPAAhEPhPKAQCAf+MEPAAgEBHKAQAAAAAwCaEcAAAAAACTEMoBAAAAADAJoRwAAAAAAJMQygEAAAAAMAmhHAAAAAAAkxDKAQAAAAAwCaEcAAAAAACTEMoBAAAAADBJD7MLaCu73S673S6n02l2KfCwUUu3yuG0mF0GAMBk7OsBAIHIZ66U22w2VVZWqqyszOxSAABAF2BfDwAIRD4TygEAAAAA8DeEcgAAAAAATEIoBwAAAADAJIRyAAAAAABMQigHAAAAAMAkhHIAAAAAAExCKAcAAAAAwCSEcgAAAAAATEIoBwAAAADAJIRyAAAAAABMQigHAAAAAMAkhHIAAOBRZ86cUUpKipKSkjRq1Cg9/fTTZpcEAIDX6mF2AQAAwL/06dNHpaWlCg8PV21trUaNGqVZs2Zp4MCBZpcGAIDX4Uo5AADwqODgYIWHh0uSHA6HDMOQYRgmVwUAgHfymVBut9sVHx+v1NRUs0sBAMCvlZaWaubMmYqJiZHFYtGmTZuazGO32xUXF6ewsDCNGTNG77//vtvrZ86cUWJiooYOHar77rtPkZGR3VU+AAA+xWdCuc1mU2VlpcrKyswuBQAAv1ZbW6vExETZ7fZmX1+/fr1yc3O1ZMkSffDBB0pMTFRmZqaOHz/umqdfv37as2ePDh48qJdeeklVVVXdVT4AAD6FPuUAAMBNVlaWsrKyWnx99erVWrhwoRYsWCBJKiwsVFFRkdauXau8vDy3eaOiopSYmKh33nlHs2fPbnZ5DodDDofDNV1dXS1Jqq+vV319fWc/jk+wBnN7f2dYgwy3/yJwdPRvROP7AuVvDDqvK78rhHIAANBmdXV1Ki8vV35+vqstKChIkydP1q5duyRJVVVVCg8PV58+fXT27FmVlpbqzjvvbHGZK1as0LJly5q0b9++3dU33d+tTDO7Av+wPKXB7BLQzTZv3typ9xcXF3uoEvi78+fPd9myCeUAAKDNTp48KafTqaioKLf2qKgo7d27V5J0+PBh3XHHHa4B3u666y4lJCS0uMz8/Hzl5ua6pqurqxUbG6uMjIyAGbF91NKtZpfg06xBhpanNOiB3UFyNFjMLgfd6OOlmR16X319vYqLizVlyhSFhIR4uCr4o1OnTnXZsgnlAADAo9LS0lRRUdHm+a1Wq6xWa5P2kJCQgDlYdjgJkp7gaLCwLQNMZ/9GBNLfGXROV35PfGagNwAAYL7IyEgFBwc3GbitqqpK0dHRnVo2T1oBAAQiQjkAAGiz0NBQJScnq6SkxNXW0NCgkpISjR07tlPL5kkrAIBAxO3rAADATU1NjQ4cOOCaPnjwoCoqKjRgwAANGzZMubm5ys7OVkpKitLS0lRQUKDa2lrXaOwAAKDtCOUAAMDN7t27lZGR4ZpuHIQtOztb69at09y5c3XixAktXrxYx44dU1JSkrZs2dJk8Lf2stvtstvtcjqdnVoOAAC+hFAOAADcpKenyzBaf95zTk6OcnJyPLpem80mm82m6upqRUREeHTZAAB4K/qUAwAAAABgEkI5AAAAAAAmIZQDAACvwCPRAACBiD7lAADAK9CnHEB7xeUVdeh91mBDK9M8XAzQQVwpBwAAAADAJIRyAAAAAABMQigHAABegT7lAIBARCgHAABewWazqbKyUmVlZWaXAgBAtyGUAwAAAABgEkI5AAAAAAAmIZQDAAAAAGASQjkAAPAKDPQGAAhEpoTyG2+8Uf3799fs2bPNWD0AAPBCDPQGAAhEpoTye+65R88995wZqwYAAAAAwGuYEsrT09PVp08fM1YNAAAAAIDXaHcoLy0t1cyZMxUTEyOLxaJNmzY1mcdutysuLk5hYWEaM2aM3n//fY8UCwAAAACAP+nR3jfU1tYqMTFRt912m2bNmtXk9fXr1ys3N1eFhYUaM2aMCgoKlJmZqX379mnQoEHtLtDhcMjhcLimq6urJUn19fWqr69v9/K+qvH9nV0OOqZxu1uDDJMrCUyN253tbw62v/kat70n9gHsRwAAQEe1O5RnZWUpKyurxddXr16thQsXasGCBZKkwsJCFRUVae3atcrLy2t3gStWrNCyZcuatG/btk3h4eHtXl5ziouLPbIcdMzylAazSwhobH9zsf3N54l9wPnz5z1QCex2u+x2u5xOp9mlAADQbdodyltTV1en8vJy5efnu9qCgoI0efJk7dq1q0PLzM/PV25urmu6urpasbGxmjp1qvr27dupeuvr61VcXKwpU6YoJCSkU8tC+zVu/wd2B8nRYDG7nIBjDTK0PKWB7W8Str/5Gn8GntgHNN7Fhc6x2Wyy2Wyqrq5WRESE2eUAANAtPBrKT548KafTqaioKLf2qKgo7d271zU9efJk7dmzR7W1tRo6dKg2bNigsWPHNrtMq9Uqq9XapD0kJMRjQdqTy0L7ORoscjgJJWZh+5uL7W8+T+wD2IcAAICO8mgob6s33njDjNUCAAAAAOBVPPpItMjISAUHB6uqqsqtvaqqStHR0Z5cFQAAAAAAPs+joTw0NFTJyckqKSlxtTU0NKikpKTF29Pbym63Kz4+XqmpqZ0tEwAAAAAAr9Du29dramp04MAB1/TBgwdVUVGhAQMGaNiwYcrNzVV2drZSUlKUlpamgoIC1dbWukZj7ygGfwEAAAAA+Jt2h/Ldu3crIyPDNd04Mnp2drbWrVunuXPn6sSJE1q8eLGOHTumpKQkbdmypcngbwAAAAAABLp2h/L09HQZhtHqPDk5OcrJyelwUQAAIPDwnHIAQCDyaJ/yrkSfcgAA/JvNZlNlZaXKysrMLgUAgG7jM6GcHTUAAAAAwN/4TCgHAAAAAMDfEMoBAAAAADAJoRwAAAAAAJMQygEAAAAAMInPhHJGXwcAAAAA+BufCeWMvg4AAAAA8Dc+E8oBAAAAAPA3hHIAAAAAAExCKAcAAF6B8WMAAIGIUA4AALwC48cAAAKRz4Ryzp4DAAAAAPyNz4Ryzp4DAAAAAPyNz4RyAAAAAAD8DaEcAAAAAACTEMoBAAAAADAJoRwAAAAAAJMQygEAAAAAMInPhHIeiQYAAAAA8Dc+E8p5JBoAAAAAwN/4TCgHAAAAAMDfEMoBAAAAADAJoRwAAHjcp59+qvT0dMXHx2v06NHasGGD2SUBAOCVephdAAAA8D89evRQQUGBkpKSdOzYMSUnJ2vatGnq1auX2aUBAOBVCOUAAMDjBg8erMGDB0uSoqOjFRkZqdOnTxPKAQC4CLevAwCAJkpLSzVz5kzFxMTIYrFo06ZNTeax2+2Ki4tTWFiYxowZo/fff7/ZZZWXl8vpdCo2NrarywYAwOcQygEAQBO1tbVKTEyU3W5v9vX169crNzdXS5Ys0QcffKDExERlZmbq+PHjbvOdPn1a8+bN05o1a7qjbAAAfI7P3L5ut9tlt9vldDo9vuxRS7fK4bR4fLltcejh6aasFwCA1mRlZSkrK6vF11evXq2FCxdqwYIFkqTCwkIVFRVp7dq1ysvLkyQ5HA7dcMMNysvL07hx41pclsPhkMPhcE1XV1dLkurr61VfX++Jj+P1rMGG2SX4NGuQ4fZf4FIavyuB8jcGndeV3xWfCeU2m002m03V1dWKiIgwuxwAAAJWXV2dysvLlZ+f72oLCgrS5MmTtWvXLkmSYRiaP3++Jk6cqFtvvbXV5a1YsULLli1r0r59+3aFh4d7tngvtTLN7Ar8w/KUBrNLgI8pLi42uwT4iPPnz3fZsn0mlAMAAO9w8uRJOZ1ORUVFubVHRUVp7969kqSdO3dq/fr1Gj16tKs/+vPPP6+EhIQmy8vPz1dubq5rurq6WrGxscrIyNDAgQO78JN4j1FLt5pdgk+zBhlantKgB3YHydFgzt2P8C2N35kpU6YoJCTE7HLgA06dOtVlyyaUAwAAjxs/frwaGtp21dJqtcpqtTZpDwkJCZiDZbO60fkbR4OFbYl2CaS/M+icrvyeMNAbAABol8jISAUHB6uqqsqtvaqqStHR0R1ert1uV3x8vFJTUztbIgAAPoNQDgAA2iU0NFTJyckqKSlxtTU0NKikpERjx47t8HJtNpsqKytVVlbmiTIBAPAJ3L4OAACaqKmp0YEDB1zTBw8eVEVFhQYMGKBhw4YpNzdX2dnZSklJUVpamgoKClRbW+sajR0AALQNoRwAADSxe/duZWRkuKYbB2LLzs7WunXrNHfuXJ04cUKLFy/WsWPHlJSUpC1btjQZ/K09uvLxpwAAeCtCOQAAaCI9PV2G0fozn3NycpSTk+OxdfL4UwBAIKJPOQAAAAAAJiGUAwAAr8Do6wCAQEQoBwAAXoHR1wEAgchnQjlnzwEAAAAA/sZnQjlnzwEAAAAA/sZnQjkAAAAAAP6GUA4AALwCXdUAAIGIUA4AALwCXdUAAIGIUA4AAAAAgEkI5QAAAAAAmIRQDgAAAACASQjlAADAKzDQGwAgEBHKAQCAV2CgNwBAICKUAwAAAABgEkI5AAAAAAAmIZQDAAAAwP+1d/+hVdV/HMdf252bLHU1R7P9UgodTGsXtt0hNNhqIfvDkf2gv2oaGMQMYVkooSn9sQiNQVyQkiihQBQyMO1rjsnAjOlikojZatWauTLRzY2uene+f8Qu2X7dc++553PvPc8HSNxzPvvcd+/zuZ973vfcez6AIRTlAAAAAAAYQlEOAACSAndfBwB4EUU5AABICtx9HQDgRVmmA4hWMBhUMBhUOByWJK1683/KzMmNq88cn6V3Ak5EBwAAAACAfSlzpZxPzwEAAAAA6SZlinIAAAAAANINRTkAAAAAAIZQlAMAAAAAYAhFOQAASAosiQYA8CKKcgAAkBS4qSsAwIsoygEAAAAAMISiHAAAAAAAQyjKAQAAAAAwhKIcAAAAAABDKMoBAAAAADCEohwAAAAAAEMoygEAAAAAMISiHAAAAAAAQyjKAQAAAAAwhKIcAAAkhWAwqIqKCtXU1JgOBQAA11CUAwCApNDa2qoLFy7ozJkzpkMBAMA1FOUAAAAAABhCUQ4AAAAAgCEU5QAAAAAAGEJRDgAAAACAIRTlAAAAAAAYYqQoP3LkiMrLy7V8+XLt27fPRAgAAAAAABiX5fYT3rlzR21tberq6lJeXp6qqqq0bt06LV682O1QgWUAcgAADS1JREFUAAAAAAAwyvUr5T09PVq5cqWKi4u1YMECNTU16fjx426HAQAAAACAcbaL8u7ubq1du1ZFRUXKyMjQ4cOHp7QJBoNatmyZ5s+fr9raWvX09ET2Xb58WcXFxZHHxcXFGhoaijF8AAAAAABSl+2vr4+NjamyslIvvviinnrqqSn7Dxw4oLa2Nu3du1e1tbXq6OjQmjVr9P333+v++++3HWAoFFIoFIo8HhkZkSRl+yz5fJbt/v4tJ9O6678m3L5929hzmzb5/24y/16WDOPfy8i/eZO5d2Ie9vJcDgAA4mO7KG9qalJTU9OM+999911t3LhRGzZskCTt3btXX3zxhT788ENt3bpVRUVFd10ZHxoaUiAQmLG/9vZ27dq1a8r2t6rCys0N2w1/Wm9VTzjSTyyOHj1q7LmThcn8g/ybRv7N++qrr+LuY3x83IFIkOqWbf3CdAgAgBTk6I3ebt26pd7eXm3bti2yLTMzU42NjTp9+rQkKRAI6Pz58xoaGlJeXp6OHTum7du3z9jntm3b1NbWFnk8MjKi0tJSbe/1yZfjiyvenExLb1VPaPvZTIUmMuLqC/aRf7PIv1nk37zJY/DEE09o3rx5cfU1+S0uAAAAuxwtyq9evapwOKzCwsK7thcWFurixYv/PGFWlvbs2aOGhgZNTEzo9ddfn/XO6zk5OcrJyZmy/VY4Q5lhZ05kQxMZCjnUF+wj/2aRf7PIv3nz5s2LuyiP9+/T1bp163Ty5Ek9/vjjOnTokOlwAABISkbWKW9ubtalS5fU39+vl156yUQIAAAgwTZv3qz9+/ebDgMAgKTmaFFeUFAgn8+n4eHhu7YPDw9ryZIlcfUdDAZVUVGhmpqauPoBAADuqK+v18KFC02HAQBAUnO0KM/OzlZVVZU6Ozsj2yYmJtTZ2anVq1fH1Xdra6suXLigM2fOxBsmAACYQ7xLoAIAgOjY/k35zZs31d/fH3k8MDCgvr4+5efnq6ysTG1tbWppaVF1dbUCgYA6Ojo0NjYWuRs7AABIfm4ugTrT8qe3b99OqeXmcuJcqhWxY5lJ2OXkspjwhkSOFdtF+dmzZ9XQ0BB5PHln9JaWFn300Ud67rnn9Oeff2rHjh26cuWK/H6/vvzyyyk3fwMAAMkr3iVQ7Zhp+dOuri7l5ubaC9ygd2Ze4RUuYZlJ2OXEspjwhkQuf2q7KK+vr5dlzf4p5KZNm7Rp06aYgwIAAMkrmiVQ7Zhp+dOGhoZZV2hJNqt2/s90CJ7FMpOwy8llMeENf/31V8L6dnRJtEQKBoMKBoMKh8OmQwEAwNOiWQJVkhobG3Xu3DmNjY2ppKREBw8enPYeMzMtf+rEcnVuYnlD81hmEnal2jwDcxI5TlKmKG9tbVVra6tGRkaUl5dnOhwAADCHEydO2GrPB/AAAC8ysk45AABIXYlaApWVVgAAXkRRDgAAbEnkEqgAAHhNynx9HQAAuMfEEqh8fR0A4EUU5QAAYAoTS6By/xgAgBelTFHOp+cAALiHJVABAHBHyvymnJu/AAAAAADSTcpcKZ80+an9RGg87r7CPkvj42GFQz5NsKal68i/WeTfLPJv3uQxGBkZiXvt0ZGREUma88oyZjf5rbg7d+5IkkZHR1Nq/WAnzk0QG+ZU2OXkewC8YXR0VFJi3uszrBQ7g/jtt99UWlpqOgwAAKYYHBxUSUmJ6TBS3k8//aSHHnrIdBgAAEzx448/6sEHH3S0z5S7Ul5UVKTBwUEtXLhQGRn/fBJaU1Mz7dfap9v+720jIyMqLS3V4OCgFi1alPjgZ4kr0X1E036uNnbyPNN28h97G/Ifex/Rtp+tnd195N9+ezfzLzl7DCzL0ujoqIqKiuLqB//Iz8+XJP36668pccM3J15XbjxHrH3Y+Tsn3u/majPdPlNzaqwSPWac6j9Vxkws+xkziek/ncfMjRs3VFZWFnmPclLKFeWZmZlTrkL4fL5pX0zTbZ9u26JFi1x9Mc4UbyL7iKb9XG3s5Hmm7eQ/9jbkP/Y+om0/Wzu7+8i//fYm8i85dwxSoXhMFZmZ/9zyJi8vLyVOlp14XbnxHLH2YefvnHi/m6vNbPvcnlNjlegx41T/qTJm4tnPmHG2fy+Mmcn3KCf5du7cudPxXg0IBAJRb5/cFgqF9Pbbb2vbtm3KyclJaHzRxJXoPqJpP1cbO3meaTv5j70N+Y+9j2jbz9bO7j7yb7+9W/mXzB4DzC4Vj40Trys3niPWPuz8nRPvd3O1+e8+xkzi+k+VMWN3P2Mmcf0zZuxLud+UO2lyHdQbN26kxCdk6Yb8m0X+zSL/5nEMkhfHBnYxZmAXYwZ2JXLMpM2V8lj5fD7V19crKyvlvsmfFsi/WeTfLPJvHscgeXFsYBdjBnYxZmBXosaMp6+UAwAAAABgkvO/UgcAAAAAAFGhKAcAAAAAwBCKcgAAAAAADKEoBwAAAADAEIpyAAAAAAAMoSifxZEjR1ReXq7ly5dr3759psPxnHXr1um+++7TM888YzoUzxkcHFR9fb0qKir0yCOP6ODBg6ZD8pTr16+rurpafr9fq1at0gcffGA6JE8aHx/X0qVLtWXLFtOhYBbMV4gF5xiYDTUA7Ip3TmFJtBncuXNHFRUV6urqUl5enqqqqvT1119r8eLFpkPzjJMnT2p0dFQff/yxDh06ZDocT/n99981PDwsv9+vK1euqKqqSpcuXdI999xjOjRPCIfDCoVCys3N1djYmFatWqWzZ88y/7jsjTfeUH9/v0pLS7V7927T4WAGzFeIBecYmAk1AGIR75zClfIZ9PT0aOXKlSouLtaCBQvU1NSk48ePmw7LU+rr67Vw4ULTYXjSAw88IL/fL0lasmSJCgoKdO3aNcNReYfP51Nubq4kKRQKybIs8fmpu3744QddvHhRTU1NpkPBHJivEAvOMTATagDEIt45JW2L8u7ubq1du1ZFRUXKyMjQ4cOHp7QJBoNatmyZ5s+fr9raWvX09ET2Xb58WcXFxZHHxcXFGhoaciX2dBBv/hEfJ/Pf29urcDis0tLSRIedNpzI//Xr11VZWamSkhK99tprKigocCv8lOdE/rds2aL29na3Qk5rbr4fMF+lB84hEA9qANiVDHNO2hblY2NjqqysVDAYnHb/gQMH1NbWpjfffFPffvutKisrtWbNGv3xxx8uR5qeyL9ZTuX/2rVreuGFF/T++++7EXbacCL/9957r86dO6eBgQF9+umnGh4ediv8lBdv/j///HOtWLFCK1ascDPstOXE62Hy/gr//Xf58uVIG+ar9OHWmEF64hwUdiXFmLE8QJL12Wef3bUtEAhYra2tkcfhcNgqKiqy2tvbLcuyrFOnTllPPvlkZP/mzZutTz75xJ2A00ws+Z/U1dVlPf30067Ema5izf/ff/9t1dXVWfv373ct1nQUz/if9PLLL1sHDx5MaJzpKpb8b9261SopKbGWLl1qLV682Fq0aJG1a9cuV+NOV068HqbDfJW+EjVmLItzDC+gBoBdpuqWtL1SPptbt26pt7dXjY2NkW2ZmZlqbGzU6dOnJUmBQEDnz5/X0NCQbt68qWPHjmnNmjWmQk4r0eQfiRNN/i3L0vr16/XYY4/p+eefNxVqWoom/8PDwxodHZUk3bhxQ93d3SovLzcSb7qJJv/t7e0aHBzUzz//rN27d2vjxo3asWOHqZDTmhPvB8xX3sI5BOJBDQC73JpzPFmUX716VeFwWIWFhXdtLyws1JUrVyRJWVlZ2rNnjxoaGuT3+/Xqq69y10WHRJN/SWpsbNSzzz6ro0ePqqSkhDdbh0ST/1OnTunAgQM6fPiw/H6//H6/vvvuOxPhpp1o8v/LL7+orq5OlZWVqqur0yuvvKKHH37YRLhpJ9r5B+5w4ngwX3mLU69hzjG8iRoAdrlVt2Q5Em2aam5uVnNzs+kwPOvEiROmQ/CsRx99VBMTE6bD8KxAIKC+vj7TYUDS+vXrTYeAOTBfIRacY2A21ACwK945xZNXygsKCuTz+abcOGl4eFhLliwxFJV3kH+zyL9Z5N8s8p9cOB6wizGDeDB+YJdbY8aTRXl2draqqqrU2dkZ2TYxMaHOzk6tXr3aYGTeQP7NIv9mkX+zyH9y4XjALsYM4sH4gV1ujZm0/fr6zZs31d/fH3k8MDCgvr4+5efnq6ysTG1tbWppaVF1dbUCgYA6Ojo0NjamDRs2GIw6fZB/s8i/WeTfLPKfXDgesIsxg3gwfmBXUoyZmO7ZngK6urosSVP+tbS0RNq89957VllZmZWdnW0FAgHrm2++MRdwmiH/ZpF/s8i/WeQ/uXA8YBdjBvFg/MCuZBgzGZZlWc6V+AAAAAAAIFqe/E05AAAAAADJgKIcAAAAAABDKMoBAAAAADCEohwAAAAAAEMoygEAAAAAMISiHAAAAAAAQyjKAQAAAAAwhKIcAAAAAABDKMoBAAAAADCEohwAAAAAAEMoygEAAAAAMISiHAAAAAAAQ/4Pa8G7pHocMVwAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -3104,7 +3259,7 @@ "plt.figure(figsize=(12, 5))\n", "\n", "plt.subplot(1,2,1)\n", - "plotDistribution(degrees, 13)\n", + "plotDistribution(degrees, 13, minValue=1E0)\n", "plt.yscale(\"log\")\n", "plt.title(\"Degree Distribution\")\n", "\n", @@ -3117,7 +3272,7 @@ }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 107, "metadata": {}, "outputs": [], "source": [ @@ -3128,7 +3283,7 @@ }, { "cell_type": "code", - "execution_count": 115, + "execution_count": 108, "metadata": {}, "outputs": [ { @@ -3137,9 +3292,9 @@ "text": [ "Name: \n", "Type: Graph\n", - "Number of nodes: 1958\n", - "Number of edges: 7884\n", - "Average degree: 8.0531\n" + "Number of nodes: 1942\n", + "Number of edges: 7961\n", + "Average degree: 8.1988\n" ] } ], @@ -3156,7 +3311,7 @@ }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 109, "metadata": {}, "outputs": [], "source": [ @@ -3165,38 +3320,28 @@ }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 110, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/deusebio/.pyenv/versions/3.7.6/envs/ml-book-7/lib/python3.7/site-packages/matplotlib/axes/_axes.py:6694: RuntimeWarning: invalid value encountered in multiply\n", - " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD/CAYAAAAKVJb/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAOTklEQVR4nO3dT4hd53nH8e8TGZcg0VnUYRaS6SjImAp7UTzYdDeCph2Tyg6uIVJcUwfZgwPuKosqEGg3pcnCi9pxa9TYqCnGU2NKbFkK7mowBS8khcJYMW6FcbFmYZGoDMi4GIWni7m1b0ZzZ86dc/8+/n5gYO573/Oe50ovP86859xzIjORJNXypXEXIEkaPMNdkgoy3CWpIMNdkgoy3CWpIMNdkgoy3CWpIMNdkgoaeLhHxO9FxPMR8WpEfGfQ40uSdhZNvqEaES8CfwJczcy7utoXgb8D9gA/zswfdL33JeAnmflnO41/22235dzcXP/VAx9//DF79+7d1bbSTpxfGrY2c+zixYu/zMyvbPXeLQ3HOA38CPjJ/zdExB7gOeBrwBXgfES8npm/iIgHgO8A/9xk8Lm5OS5cuNCwlN+0srLCwsLCrraVduL80rC1mWMR8d+93mu0LJOZbwHXNjXfC1zOzPcz81NgGXiw0//1zLwfeGRXFUuSWml65L6V/cCHXa+vAPdFxALwEPBbwLleG0fEErAEMDs7y8rKyq6KuH79+q63lXbi/NKwDWuOtQn3LWXmCrDSoN8p4BTA/Px87vbPEv9s1jA5vzRsw5pjba6WWQNu73p9oNMmSRqzNuF+HrgjIg5GxK3AMeD1fgaIiKMRcWp9fb1FGZKkzRqFe0S8DLwN3BkRVyLiRGbeAJ4C3gTeBV7JzEv97Dwzz2Tm0szMTL91S5K20WjNPTOP92g/xzYnTSVJ4zHW2w8MYllmdW2duZNnmTt5doCVSdJ0G2u4uywjScPhjcMkqSDDXZIKmvo1d0nSzVxzl6SCXJaRpIIMd0kqyHCXpII8oSpJBXlCVZIKcllGkgoy3CWpIMNdkgryhKokFeQJVUkqyGUZSSrIcJekggx3SSrIcJekggx3SSrISyElqSAvhZSkglyWkaSCDHdJKshwl6SCDHdJKshwl6SCDHdJKsjr3CWpIK9zl6SCXJaRpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIJuGXcBXyRzJ89+9vsHP/j6GCuRVJ33lpGkgry3jCQV5Jq7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQYa7JBVkuEtSQd7ytzBvMSx9cXnkLkkFGe6SVNBQlmUi4hvA14HfBl7IzH8bxn4kSVtrfOQeES9GxNWIeGdT+2JEvBcRlyPiJEBm/jQznwCeBL452JIlSTvpZ1nmNLDY3RARe4DngPuBw8DxiDjc1eX7nfclSSPUONwz8y3g2qbme4HLmfl+Zn4KLAMPxoYfAj/LzJ8PrlxJUhORmc07R8wBb2TmXZ3XDwOLmfl45/WjwH3AfwJ/DpwH/iMzn99irCVgCWB2dvae5eXlXX2Aq9fW+eiTjd/v3j/Zz2JdXfv8QeCjqHXU+6vo+vXr7Nu3b9xlqLA2c+zIkSMXM3N+q/eGckI1M58BntmhzyngFMD8/HwuLCzsal/PvvQaT69ufIwPHtndGKPyWPd15yOoddT7q2hlZYXdzk2piWHNsbaXQq4Bt3e9PtBpkySNUdsj9/PAHRFxkI1QPwZ8q+nGEXEUOHro0KGWZWiYJvGbrpNYkzRJ+rkU8mXgbeDOiLgSEScy8wbwFPAm8C7wSmZeajpmZp7JzKWZGdeDJWmQGh+5Z+bxHu3ngHMDq0iS1NpYbxzmsswXg0so0uiN9d4yLstI0nB44zBJKshwl6SCxhruEXE0Ik6tr6/v3FmS1Jhr7pJUkI/Z08Tx6hqpPdfcJakgw12SCvKEqiQV5AlVSSrIZRlJKshwl6SCDHdJKsgTqpJUkCdUJakgl2UkqSDDXZIKMtwlqSBvHKbSvAmZvqg8cpekgrwUUpIKGuuyTGaeAc7Mz88/Mc46pH641KNp4Jq7vvAMa1XkmrskFWS4S1JBhrskFeSau6QtdZ+L2MxzE5PPI3dJKmisR+4RcRQ4eujQoXGWIU0cr+BRW97yV+ph7uRZVtfWt12ekCaVyzKSVJDhLkkFGe6SVJDhLkkFGe6SVJDhLkkF+Q1VaUC8Nl2TxCN3SSrIcJekggx3SSrIZ6hKUkHeW0aSCvJqGUlD4dVD4+WauyQV5JG7NGSTcgQ7KXVoNDxyl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCvLeMNELb3d+l+z2prYEfuUfEVyPihYh4ddBjS5KaaRTuEfFiRFyNiHc2tS9GxHsRcTkiTgJk5vuZeWIYxUrSKM2dPPvZz7RpeuR+GljsboiIPcBzwP3AYeB4RBweaHWSpF1pFO6Z+RZwbVPzvcDlzpH6p8Ay8OCA65Mk7UJkZrOOEXPAG5l5V+f1w8BiZj7eef0ocB/wV8DfAF8DfpyZf9tjvCVgCWB2dvae5eXlXX2Aq9fW+eiTjd/v3j/Zz2JdXfv8QeCjqHVQ+2s7Tr/bN+nfdMw2Y62urTP7Zfjok5vbe/Xfqb3b5np69dtum630W1+TcbarY1D7m0Sj+AzXr19n3759u9r2yJEjFzNzfqv3Bn61TGb+CniyQb9TwCmA+fn5XFhY2NX+nn3pNZ5e3fgYHzyyuzFG5bHuKyVGUOug9td2nH63b9K/6Zhtxnrs5Fm+e/cNnl695ab2Xv13au+2uZ5e/bbbZiv91tdknO3qGNT+JtEoPsPKygq7zb/ttLlaZg24vev1gU6bJGnM2hy5nwfuiIiDbIT6MeBb/QwQEUeBo4cOHWpRhqQ2fLZqTU0vhXwZeBu4MyKuRMSJzLwBPAW8CbwLvJKZl/rZeWaeycylmZnpXI+TpEnV6Mg9M4/3aD8HnBtoRZKk1ry3jCQVNNZ7y7jmLg3GNH6DcppNw3mKsR65u+YuScPhsowkFeSyjKTPTOvyzua6+10qmYZlln65LCNJBbksI0kFGe6SVJDhLkkFeUJVUt96nXhtckK218nLiic1x8kTqpJUkMsyklSQ4S5JBRnuklSQJ1SlKTWt3ybt1u9naHrSdVwnZyfppLAnVCWpIJdlJKkgw12SCjLcJakgw12SCjLcJakgL4WUCmtzD5gqJunyxFHyUkhJKshlGUkqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyC8xSZpK0/xFrO7aTy/uHco+/BKTJBXksowkFWS4S1JBhrskFWS4S1JBhrskFWS4S1JBhrskFWS4S1JBhrskFWS4S1JB3ltG0tD1ex+YUTzUuk1N08B7y0hSQS7LSFJBhrskFWS4S1JBhrskFWS4S1JBhrskFWS4S1JBhrskFWS4S1JBhrskFWS4S1JBhrskFWS4S1JBhrskFWS4S1JBA39YR0TsBf4e+BRYycyXBr0PSdL2Gh25R8SLEXE1It7Z1L4YEe9FxOWIONlpfgh4NTOfAB4YcL2SpAaaLsucBha7GyJiD/AccD9wGDgeEYeBA8CHnW6/HkyZkqR+RGY26xgxB7yRmXd1Xv8B8NeZ+ced19/rdL0C/E9mvhERy5l5rMd4S8ASwOzs7D3Ly8u7+gBXr63z0Scbv9+9f7If17e6tv7Z76OodVD7aztOv9s36d90zDZjra6tM/tl+OiTm9t79d+pvdvmenr167VNk/76TcP492v7f31wZg/79u3b1b6PHDlyMTPnt3qvTbg/DCxm5uOd148C9wF/CfwI+F/g35usuc/Pz+eFCxca1bHZsy+9xtOrG6cOhvUg3UEZxUN/h7G/tuP0u32T/k3HbDPW3MmzfPfuGzy9estN7b3679TebXM9TR7A3GRc9TaMf7+2/9enF/eysLCwq31HRM9wH/gJ1cz8GPj2oMeVJDXX5lLINeD2rtcHOm2NRcTRiDi1vu6fl5I0SG3C/TxwR0QcjIhbgWPA6/0MkJlnMnNpZmay18olado0vRTyZeBt4M6IuBIRJzLzBvAU8CbwLvBKZl4aXqmSpKYarbln5vEe7eeAcwOtSJLU2lhvP+CauyQNx1jD3TV3SRoObxwmSQU1/hLTUIuIWAf+a5suM0CvtZvbgF8OvKjh2+4zTfK+2ozV77ZN+zfpt10f59fk7Kvi/Nrp/TZz7Hcz8ytbvpOZY/8BTu32feDCuOsfxmee1H21GavfbZv2b9Jvhznk/JqQfVWcXzu9P6w5NinLMmdavj+NRvmZBrmvNmP1u23T/k36bdfH+TU5+6o4v/rZ18BMxLJMGxFxIXvcW0Fqy/mlYRvWHJuUI/c2To27AJXm/NKwDWWOTf2RuyTpZhWO3CVJmxjuklSQ4S5JBZUL94jYGxH/FBH/GBGPjLse1RIRX42IFyLi1XHXonoi4hud7PqXiPijNmNNRbhHxIsRcTUi3tnUvhgR70XE5Yg42Wl+CHg1M58AHhh5sZo6/cyvzHw/M0+Mp1JNoz7n10872fUk8M02+52KcAdOA4vdDRGxB3gOuB84DByPiMNsPBHqw063X4+wRk2v0zSfX1K/TtP//Pp+5/1dm4pwz8y3gGubmu8FLneOpD4FloEHgStsBDxMyefTePU5v6S+9DO/YsMPgZ9l5s/b7Heaw28/nx+hw0ao7wf+FfjTiPgHan6tXKOx5fyKiN+JiOeB34+I742nNBXQK7/+AvhD4OGIeLLNDho9iWmaZObHwLfHXYdqysxfsbEeKg1cZj4DPDOIsab5yH0NuL3r9YFOmzQIzi8N09Dn1zSH+3ngjog4GBG3AseA18dck+pwfmmYhj6/piLcI+Jl4G3gzoi4EhEnMvMG8BTwJvAu8EpmXhpnnZpOzi8N07jmlzcOk6SCpuLIXZLUH8Ndkgoy3CWpIMNdkgoy3CWpIMNdkgoy3CWpIMNdkgoy3CWpoP8DIetzTktsTukAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGmCAYAAACnVCQ9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAdqklEQVR4nO3df2jV970/8FcSNW029c7KYtWI/4yyzDWBmIhjlxuL1etKi+16KQh3mYMNtmMZZDD0j9mU+8ct37IhrAfK7hjdxgrSgg7Wu/5YaBG6DqPFcUfoNsEOV2daKTU1smN6cu4fuznfaqLJSc6P98l5PKCUz/t8Pu/363OSd/rs52dToVAoBABAIpprXQAAwMcJJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApVQ8nH3zwQWzdujW6u7tjy5Yt8V//9V/VLgEASFhTtV/8l8/nI5fLRVtbW0xMTMSWLVvi1KlTcccdd8xr+6mpqbhw4UKsXLkympqaKlwtAFAOhUIhPvzww1i/fn00N9/62MiyKtVU1NLSEm1tbRERkcvlolAoRCn56MKFC9HR0VGp8gCACjp//nxs3LjxluuUHE5OnDgRTz75ZJw+fTr+9re/xbFjx2Lv3r3XrZPNZuPJJ5+MixcvRldXV/zwhz+Mvr6+4ucffPBB/Mu//Ev8+c9/jieffDLWrl077/FXrlwZEf/YuVWrVpVa/i1NTk7Gyy+/HLt27Yrly5eXtW9gbuYg1FYl5+D4+Hh0dHQU/zt+KyWHk4mJiejq6oqvfe1r8dBDD834/OjRozE4OBhPP/10bNu2LY4cORK7d++OP/7xj/HpT386IiL+6Z/+KX7/+9/H2NhYPPTQQ/Hwww9He3v7rOPlcrnI5XLF5Q8//DAiIm6//fa4/fbbSy3/lpYtWxZtbW1x++23+8MINWAOQm1Vcg5OTk5GRMzrkoxFXXPS1NQ048jJtm3bore3N5566qmI+Mc1Ih0dHfHoo4/GwYMHZ/TxrW99K+655554+OGHZx1jaGgoHn/88Rntzz77bPH0EACQtqtXr8a+ffvi8uXLc575KOs1J9euXYvTp0/HoUOHim3Nzc2xc+fOeOONNyIiYmxsLNra2mLlypVx+fLlOHHiRHzzm9+8aZ+HDh2KwcHB4vL0YaFdu3ZV5LTOK6+8Evfee6//a4MaMAehtio5B8fHx+e9blnDyaVLlyKfz884RdPe3h5vvfVWRET85S9/iW984xvFC2EfffTR+PznP3/TPltbW6O1tXVG+/Llyyv2x6uSfQNzMwehtioxB0vpr+p36/T19cWZM2eqPSwAUCfK+hC2tWvXRktLS4yNjV3XPjY2FuvWrSvnUADAElXWcLJixYro6emJ4eHhYtvU1FQMDw/H9u3byzkUALBElXxa58qVK3H27Nni8rlz5+LMmTOxZs2a2LRpUwwODsbAwEBs3bo1+vr64siRIzExMRH79+9fVKHZbDay2Wzk8/lF9QMApK3kcHLq1KnYsWNHcXn6TpqBgYF45pln4pFHHon33nsvDh8+HBcvXozu7u548cUXb/ock/nKZDKRyWRifHw8Vq9evai+AIB0lRxO+vv753zc/IEDB+LAgQMLLgoAaFxVfysxAMCtCCcAQFLqJpxks9no7OyM3t7eWpcCAFRQ3YSTTCYTo6OjMTIyUutSAIAKqptwAgA0hqo/vr4ebBl6KXL5f7zS+e0n7qtxNQDQWBw5AQCSIpwAAEkRTgCApNRNOHErMQA0hroJJ24lBoDGUDfhBABoDMIJAJAU4QQASIpwAgAkRTgBAJIinAAASambcOI5JwDQGOomnHjOCQA0hroJJwBAYxBOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkpW7CiYewAUBjqJtw4iFsANAY6iacAACNQTgBAJIinAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJJSN+HEu3UAoDHUTTjxbh0AaAx1E04AgMYgnAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFLqJpx4KzEANIa6CSfeSgwAjaFuwgkA0BiEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASVlW6wJIx+aDL8xoe/uJ+2pQCQCNzJETACApwgkAkBThBABISt2Ek2w2G52dndHb21vrUgCACqqbcJLJZGJ0dDRGRkZqXQoAUEF1E04AgMYgnAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkVD2cnD9/Pvr7+6OzszPuvvvueO6556pdAgCQsGVVH3DZsjhy5Eh0d3fHxYsXo6enJ770pS/FJz7xiWqXAgAkqOrh5M4774w777wzIiLWrVsXa9eujffff184YV42H3xhRtvbT9xXg0oAqJSST+ucOHEi7r///li/fn00NTXF8ePHZ6yTzWZj8+bNcdttt8W2bdvi5MmTs/Z1+vTpyOfz0dHRUXrlAMCSVHI4mZiYiK6urshms7N+fvTo0RgcHIzHHnss3nzzzejq6ordu3fHu+++e91677//fnzlK1+JH/3oRwurHKpg88EXrvsHgMor+bTOnj17Ys+ePTf9/Ac/+EF8/etfj/3790dExNNPPx0vvPBC/OQnP4mDBw9GREQul4u9e/fGwYMH4wtf+MItx8vlcpHL5YrL4+PjERExOTkZk5OTpZZ/S9P9tTYXZrQ1gtaWwoy21Pa/2jXeOF5q38dSM/39+p6hNio5B0vps6lQKMz8az/fjZua4tixY7F3796IiLh27Vq0tbXF888/X2yLiBgYGIgPPvggfvnLX0ahUIh9+/bFXXfdFUNDQ3OOMTQ0FI8//viM9meffTba2toWWjoAUEVXr16Nffv2xeXLl2PVqlW3XLesF8ReunQp8vl8tLe3X9fe3t4eb731VkREvP7663H06NG4++67i9er/PznP4/Pf/7zs/Z56NChGBwcLC6Pj49HR0dH7Nq1a86dK9Xk5GS88sor8b1TzZGbaoqIiD8M7S7rGCnbMvTSjLbU9r/aNd44Xmrfx1IzPQfvvffeWL58ea3LgYZTyTk4feZjPqp+t84Xv/jFmJqamvf6ra2t0draOqN9+fLlFfvjlZtqily+qThOo5je549Lbf+rXeON46X2fSxVlZzfwNwqMQdL6a+sD2Fbu3ZttLS0xNjY2HXtY2NjsW7dunIOBQAsUWUNJytWrIienp4YHh4utk1NTcXw8HBs3769nEMBAEtUyad1rly5EmfPni0unzt3Ls6cORNr1qyJTZs2xeDgYAwMDMTWrVujr68vjhw5EhMTE8W7dxYqm81GNpuNfD6/qH4AD7MD0lZyODl16lTs2LGjuDx9serAwEA888wz8cgjj8R7770Xhw8fjosXL0Z3d3e8+OKLMy6SLVUmk4lMJhPj4+OxevXqRfUFAKSr5HDS398fc919fODAgThw4MCCiwIAGlfV30oMAHArwgkAkBThBABISt2Ek2w2G52dndHb21vrUgCACqqbcJLJZGJ0dDRGRkZqXQoAUEF1E04AgMYgnAAASRFOAICkCCcAQFJKfkIssHjebQNwc3Vz5MStxADQGOomnLiVGAAaQ92EEwCgMQgnAEBShBMAICnCCQCQFOEEAEiKcAIAJKVuwonnnABAY6ibJ8RmMpnIZDIxPj4eq1evrnU5kIwbnzbrSbNAvaubIycAQGMQTgCApAgnAEBShBMAICl1c0EsgIt/oTE4cgIAJEU4AQCSUjfhxEPYAKAx1E04yWQyMTo6GiMjI7UuBQCooLoJJwBAYxBOAICkuJUYmLcbb+WNcDsvUH7CCVBxnk8ClMJpHQAgKcIJAJAU4QQASIpwAgAkRTgBAJJSN+HE4+sBoDHUTTjx+HoAaAx1E04AgMYgnAAASRFOAICkeHw9ADN45QC15MgJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFKEEwAgKcIJAJCUugkn2Ww2Ojs7o7e3t9alAAAVVDfhJJPJxOjoaIyMjNS6FKACNh98IbYMvRQRUfw30JjqJpwAAI3Bi/8AFujGl+NFeEEelIMjJwBAUoQTACApwgkAkBThBABIinACACTF3ToADW62u46glhw5AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEmpm3CSzWajs7Mzent7a10KAFBBdRNOMplMjI6OxsjISK1LAQAqqG7CCQDQGLyVGGg4s72F9+0n7qtBJcBsHDkBAJIinAAASRFOAICkCCcAQFJcEAssKS52hfrnyAkAkBThBABIinACACTFNScALIjre6gUR04AgKQIJwBAUpzWAYiZpyicnoDaceQEAEiKcAIAJMVpHYB5mu3uFG7NHT0shCMnAEBShBMAICnCCQCQFNecADQY186QOkdOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJJSk3Dy4IMPxqc+9al4+OGHazE8AJCwmoSTb3/72/Gzn/2sFkMDAImrSTjp7++PlStX1mJoACBxJYeTEydOxP333x/r16+PpqamOH78+Ix1stlsbN68OW677bbYtm1bnDx5sizFAgBLX8nv1pmYmIiurq742te+Fg899NCMz48ePRqDg4Px9NNPx7Zt2+LIkSOxe/fu+OMf/xif/vSnSy4wl8tFLpcrLo+Pj0dExOTkZExOTpbc361M99faXJjR1ghaWwoz2lLb/2rXeON45RqrnPuxkBoXOn65tpttm9aWQnHutTYXbrrOfPqZq8bZ1plrm8Vsl5r57MeNyvld18N31KimfzaV+BmV0mdToVAo/bd0euOmpjh27Fjs3bu32LZt27bo7e2Np556KiIipqamoqOjIx599NE4ePBgcb3XXnstnnrqqXj++edvOcbQ0FA8/vjjM9qfffbZaGtrW2jpAEAVXb16Nfbt2xeXL1+OVatW3XLdsr6V+Nq1a3H69Ok4dOhQsa25uTl27twZb7zxxoL6PHToUAwODhaXx8fHo6OjI3bt2jXnzpVqcnIyXnnllfjeqebITTVFRMQfhnaXdYyUbRl6aUZbavtf7RpvHK9cY5VzPxZS40LHL9d2s22zZeilaG0uxH9snYrvnWqO04f/dcH9zFXjbOvMtc1itptPPwv5+Zfz51gu8/muU/u7Uk2pfx/T/x289957Y/ny5WXte/rMx3yUNZxcunQp8vl8tLe3X9fe3t4eb731VnF5586d8fvf/z4mJiZi48aN8dxzz8X27dtn7bO1tTVaW1tntC9fvrzsX9y03FRT5PJNxXEaxfQ+f1xq+1/tGm8cr1xjlXM/FlLjQscv13azbfPxdXJTTXOuM59+brbebOvMtc1itptPPwv5+Zfz51gu8/muU/u7Uk318n1U4r+xpfRX1nAyX7/5zW9qMSwAUAfKeivx2rVro6WlJcbGxq5rHxsbi3Xr1pVzKABgiSprOFmxYkX09PTE8PBwsW1qaiqGh4dvetoGAODjSj6tc+XKlTh79mxx+dy5c3HmzJlYs2ZNbNq0KQYHB2NgYCC2bt0afX19ceTIkZiYmIj9+/cvqtBsNhvZbDby+fyi+gGoB5sPvjCj7e0n7qtBJaSg0X4fSg4np06dih07dhSXp++kGRgYiGeeeSYeeeSReO+99+Lw4cNx8eLF6O7ujhdffHHGRbKlymQykclkYnx8PFavXr2ovgCAdJUcTvr7+2OuR6McOHAgDhw4sOCiAIDGVZN36wAA3IxwAgAkRTgBAJJSk4ewLYS7dYClbLa7McrRTz3c0VHrO1HKNX6t92MpqZsjJ5lMJkZHR2NkZKTWpQAAFVQ34QQAaAzCCQCQFOEEAEiKcAIAJMXdOgBlVI93y9QDd8I0lro5cuJuHQBoDHUTTgCAxiCcAABJEU4AgKQIJwBAUoQTACApwgkAkBTPOQGAG3heTW3VzZETzzkBgMZQN+EEAGgMwgkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKR4CBsAybnxIWg0lro5cuIhbADQGOomnAAAjUE4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCS4t06AHViqbxvppr7MdtYbz9xX836YX7q5siJd+sAQGOom3ACADQG4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJLircQAS9hSeZMxlfPx35HWlkL8v74aFvN/6ubIibcSA0BjqJtwAgA0BuEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJGVZrQuYr2w2G9lsNvL5fK1LAeAmNh98Ifmxq1njfMYqVz2z9fP2E/eVpe9qq5sjJ5lMJkZHR2NkZKTWpQAAFVQ34QQAaAzCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEhKTcLJr371q7jrrrviM5/5TPz4xz+uRQkAQKKWVXvAjz76KAYHB+PVV1+N1atXR09PTzz44INxxx13VLsUACBBVT9ycvLkyfjc5z4XGzZsiE9+8pOxZ8+eePnll6tdBgCQqJLDyYkTJ+L++++P9evXR1NTUxw/fnzGOtlsNjZv3hy33XZbbNu2LU6ePFn87MKFC7Fhw4bi8oYNG+Kdd95ZYPkAwFJTcjiZmJiIrq6uyGazs35+9OjRGBwcjMceeyzefPPN6Orqit27d8e777676GIBgKWv5GtO9uzZE3v27Lnp5z/4wQ/i61//euzfvz8iIp5++ul44YUX4ic/+UkcPHgw1q9ff92RknfeeSf6+vpu2l8ul4tcLldcHh8fj4iIycnJmJycLLX8W5rur7W5MKOtEbS2FGa0pbb/1a7xxvHKNVY592MhNS50/HJtN9s2rS2F4txrbS7cdJ359DNXjbOtM9c2892uUv0w00J+ro02fqnzc3oOVuLvail9NhUKhQV/m01NTXHs2LHYu3dvRERcu3Yt2tra4vnnny+2RUQMDAzEBx98EL/85S/jo48+is9+9rPx2muvFS+I/e1vf3vTC2KHhobi8ccfn9H+7LPPRltb20JLBwCq6OrVq7Fv3764fPlyrFq16pbrlvVunUuXLkU+n4/29vbr2tvb2+Ott976x4DLlsX3v//92LFjR0xNTcV3v/vdW96pc+jQoRgcHCwuj4+PR0dHR+zatWvOnSvV5ORkvPLKK/G9U82Rm2qKiIg/DO0u6xgp2zL00oy21Pa/2jXeOF65xirnfiykxoWOX67tZttmy9BL0dpciP/YOhXfO9Ucpw//64L7mavG2daZa5v5blepfkjPQn6vam2u38fpOXjvvffG8uXLyzr29JmP+aj6rcQREQ888EA88MAD81q3tbU1WltbZ7QvX7687F/ctNxUU+TyTcVxGsX0Pn9cavtf7RpvHK9cY5VzPxZS40LHL9d2s23z8XVyU01zrjOffm623mzrzLXNfLerVD+kZyG/V7VWypwp99/WUvor663Ea9eujZaWlhgbG7uufWxsLNatW1fOoQCAJaqs4WTFihXR09MTw8PDxbapqakYHh6O7du3l3MoAGCJKvm0zpUrV+Ls2bPF5XPnzsWZM2dizZo1sWnTphgcHIyBgYHYunVr9PX1xZEjR2JiYqJ4985CZbPZyGazkc/nF9UPAJC2ksPJqVOnYseOHcXl6YtVBwYG4plnnolHHnkk3nvvvTh8+HBcvHgxuru748UXX5xxkWypMplMZDKZGB8fj9WrVy+qLwAgXSWHk/7+/pjr7uMDBw7EgQMHFlwUANC4avJWYgCAmxFOAICkCCcAQFLqJpxks9no7OyM3t7eWpcCAFRQ3YSTTCYTo6OjMTIyUutSAIAKqptwAgA0BuEEAEiKcAIAJKUmbyVejOkHwJXy6uX5mpycjKtXr0Y+1xJT//eWxkqMk6qp3NUZbantf7VrvHG8co1Vzv1YSI0LHb9c2822zVTuauRbCnH1aj7yuZabrjOffuaqcbZ15tpmvttVqh/Ss5Dfq1qb6/dxeg6Oj4+X/a3E02PP9SDXiIimwnzWSshf//rX6OjoqHUZAMACnD9/PjZu3HjLdeounExNTcWFCxfinnvuiVOnTs1rm97e3nnd5TM+Ph4dHR1x/vz5WLVq1WJLrXvz/d5qpdr1VWq8cvW7mH4Wsm2p28xnfXNwJvOwOuOVo9/F9lHpeVjrOVgoFOLDDz+M9evXR3Pzra8qqbvTOs3NzbFx48ZYtmzZvL+4lpaWkr7kVatW+cMYpX9v1Vbt+io1Xrn6XUw/C9m21G1KWd8c/P/Mw+qMV45+F9tHpedhCnNwvi/ubRkaGhoq++hV0tfXV9Z1c7lcPPHEE3Ho0KFobW1dTGlLRinfcS1Uu75KjVeufhfTz0K2LXWbudY3B2dnHlZnvHL0u9g+Kj0P62UO1t1pnUoaHx+P1atXx+XLl5P+PxVYqsxBqK1U5mBdHzmphJaWlujv749ly+rujBcsCeYg1FYKc9CREwAgKR7CBgAkRTgBAJIinAAASRFOAICkCCcAQFKEk3n61a9+FXfddVd85jOfiR//+Me1LgcazoMPPhif+tSn4uGHH651KdCQzp8/H/39/dHZ2Rl33313PPfccxUby63E8/DRRx9FZ2dnvPrqq7F69ero6emJ3/72t3HHHXfUujRoGK+99lp8+OGH8dOf/jSef/75WpcDDedvf/tbjI2NRXd3d1y8eDF6enriT3/6U3ziE58o+1iOnMzDyZMn43Of+1xs2LAhPvnJT8aePXvi5ZdfrnVZ0FD6+/tj5cqVtS4DGtadd94Z3d3dERGxbt26WLt2bbz//vsVGashwsmJEyfi/vvvj/Xr10dTU1McP358xjrZbDY2b94ct912W2zbti1OnjxZ/OzChQuxYcOG4vKGDRvinXfeqUrtsBQsdg4Ci1fOeXj69OnI5/PR0dFRkVobIpxMTExEV1dXZLPZWT8/evRoDA4OxmOPPRZvvvlmdHV1xe7du+Pdd9+tcqWwNJmDUHvlmofvv/9+fOUrX4kf/ehHlSu20GAionDs2LHr2vr6+gqZTKa4nM/nC+vXry/853/+Z6FQKBRef/31wt69e4uff/vb3y784he/qE7BsMQsZA5Oe/XVVwtf/vKXq1InLGULnYd///vfC//8z/9c+NnPflbR+hriyMmtXLt2LU6fPh07d+4stjU3N8fOnTvjjTfeiIh/vGL6D3/4Q7zzzjtx5cqV+PWvfx27d++uVcmwpMxnDgKVNZ95WCgU4qtf/Wrcc8898e///u8Vrafhw8mlS5cin89He3v7de3t7e1x8eLFiIhYtmxZfP/7348dO3ZEd3d3fOc733GnDpTJfOZgRMTOnTvj3/7t3+K///u/Y+PGjYILlNF85uHrr78eR48ejePHj0d3d3d0d3fH//zP/1SkHu8kn6cHHnggHnjggVqXAQ3rN7/5Ta1LgIb2xS9+MaampqoyVsMfOVm7dm20tLTE2NjYde1jY2Oxbt26GlUFjcMchNpLbR42fDhZsWJF9PT0xPDwcLFtamoqhoeHY/v27TWsDBqDOQi1l9o8bIjTOleuXImzZ88Wl8+dOxdnzpyJNWvWxKZNm2JwcDAGBgZi69at0dfXF0eOHImJiYnYv39/DauGpcMchNqrq3lY0XuBEvHqq68WImLGPwMDA8V1fvjDHxY2bdpUWLFiRaGvr6/wu9/9rnYFwxJjDkLt1dM89G4dACApDX/NCQCQFuEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCS8r/xTSWLb4HDfQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ - "plotDistribution(degrees, 100)\n", + "plotDistribution(degrees, 100, minValue=1E0)\n", "plt.yscale(\"log\")" ] }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 111, "metadata": {}, "outputs": [], "source": [ @@ -3205,31 +3350,37 @@ }, { "cell_type": "code", - "execution_count": 119, + "execution_count": 112, "metadata": { "scrolled": true }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", + " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" + ] + }, { "data": { "text/plain": [ "(0.1, 1)" ] }, - "execution_count": 119, + "execution_count": 112, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAN80lEQVR4nO3dcYwc51nH8e+DExfohRiFa8TFkc4h0QmToKRUCVEAXQoVTtxLKhAQyyClmJxSKQhEJWQLREGiqsUfCFWKEh3EpBKtU9eUEieuQoFa+SeCOLSlTlwj1xjZFmBoReEqoWJ4+OOWsNneXfZuZ2/29vl+pJVuZ2feecZznt/N+87MRmYiSarnW9ouQJLUDgNAkooyACSpKANAkooyACSpKANAkoq6qu0CALZt25Y333xz22VI0qbyyiuv/GtmTq53+ZEIgOuvv56TJ0+2XYYkbSoR8Q+DLG8XkCQVZQBIUlEGgCQVZQBIUlEGgCQVZQBIUlEGgCQVNRL3AUhSP6b3P//6z+cP7m6xkvHgGYAkFdVqAETEXEQsLC4utlmGJJXUagBk5rHMnJ+YmGizDEkqyS4gSSrKAJCkogwASSrKAJCkogwASSrKAJCkogwASSrKAJCkogwASSrKh8FJGgurPSjOh8gtzzMASSrKAJCkogwASSrKAJCkohoPgIj43oh4MiKORsT7mm5fktSMvgIgIg5FxOWIONUzfVdEnImIsxGxHyAzT2fmo8BPA/c0X7IkqQn9ngE8DezqnhARW4DHgfuAncCeiNjZ+ewB4HngeGOVSpIa1VcAZOaLwFd7Jt8JnM3Mc5n5DeAZ4MHO/M9m5n3A3iaLlSQ1Z5AbwW4ALnS9vwjcFRGzwE8Ab2GVM4CImAfmASYnJzlx4sQApUiq4P23XXn9595jxno/q6zxO4Ez8wRwoo/5FoAFgJmZmZydnW26FElj5uHuO3r3zjbyWWWDXAV0Cbix6/32zjRJ0iYwSAC8DNwSETsiYivwEPDsWhqIiLmIWFhcXBygDEnSevR7Gehh4CVgJiIuRsS+zLwCPAa8AJwGjmTmq2tZeWYey8z5iYmJtdYtSRpQX2MAmblnhenH8VJPSdqUWn0UhF1AktSeVgPALiBJao8Pg5OkogwASSrKMQBJKsoxAEkqyi4gSSrKAJCkohwDkKSiHAOQpKLsApKkogwASSqq8S+EkaRxNN39pTIHd7dYSXMcBJakohwElqSiHAOQpKIMAEkqygCQpKIMAEkqygCQpKK8DFSSivIyUEkqyi4gSSrKR0FIGmndj2BQszwDkKSiDABJKsoAkKSiDABJKqrVQeCImAPmpqam2ixDkoDxfOb/arwPQJKKsgtIkooyACSpKANAkoryTmBJ2gC9dzSPwiCzASBJazQuVwvZBSRJRRkAklSUASBJRRkAklSUXwkpSUX5KAhJKsouIEkqyvsAJJVV/esmPQOQpKIMAEkqygCQpKIMAEkqygCQpKIMAEkqygCQpKIMAEkqygCQpKIMAEkqygCQpKIMAEkqygCQpKIafxpoRLwH2A18B/BUZv5Z0+uQJA2urzOAiDgUEZcj4lTP9F0RcSYizkbEfoDM/FRmPgI8CvxM8yVLkprQbxfQ08Cu7gkRsQV4HLgP2AnsiYidXbP8eudzSdIIiszsb8aIaeC5zLy18/5u4Dcz88c77w90Zj3YeX0mM/98lfbmgXmAycnJHzhy5Mh6t0HSGPvipa8tO/22G65dcb5+P1up7TdrY7X5VtK7fL/Lrebee+99JTPfsd7lBxkDuAG40PX+InAX8IvAjwHXRsTNmfnkcgtn5gKwADAzM5Ozs7MDlCJpXD28wrd2nd87u+J8/X62Uttv1sZq862kd/l+lxumxgeBM/PDwIebbleS1KxBLgO9BNzY9X57Z1rfImIuIhYWFxcHKEOStB6DBMDLwC0RsSMitgIPAc+upYHMPJaZ8xMTEwOUIUlaj34vAz0MvATMRMTFiNiXmVeAx4AXgNPAkcx8dXilSpKa1NcYQGbuWWH6ceD4elceEXPA3NTU1HqbkCStU6uPgrALSJLa47OAJKkoA0CSimr8PoC1cAxA0kabXuXmr2ocA5CkouwCkqSiDABJKsoAkKSiWg0AnwUkSe1xEFiSirILSJKKMgAkqahWbwSTpM2u98ay8wd3t1TJ2jkILElFtXoGkJnHgGMzMzOPtFmHJA3DqD92wjEASSrKAJCkogwASSrKAJCkorwKSJKK8lEQklSUXUCSVJQBIElFGQCSVJTPApKkBo363b/dPAOQpKIMAEkqyvsAJKko7wOQpKLsApKkogwASSrKAJCkogwASSrKAJCkogwASSrKAJCkogwASSrKAJCkogwASSrKZwFJUlE+C0iSirILSJKKMgAkqSgDQJKKMgAkqSgDQJKKMgAkqSgDQJKKMgAkqSgDQJKKMgAkqSgDQJKKMgAkqSgDQJKKMgAkqajGAyAiboqIpyLiaNNtS5Ka01cARMShiLgcEad6pu+KiDMRcTYi9gNk5rnM3DeMYiVJzen3DOBpYFf3hIjYAjwO3AfsBPZExM5Gq5MkDc1V/cyUmS9GxHTP5DuBs5l5DiAingEeBF7rp82ImAfmASYnJzlx4kSfJUuq5P23XVl2eu8xo3u+1T7rVxNtrKX9NvQVACu4AbjQ9f4icFdEXAd8ELgjIg5k5oeWWzgzF4AFgJmZmZydnR2gFEnj6uH9zy87/fze2RXnW+2zfjXRxlrab8MgAbCszPwK8GjT7UqSmjVIAFwCbux6v70zrW8RMQfMTU1NDVCGJG0+091nLAd3t1LDIJeBvgzcEhE7ImIr8BDw7FoayMxjmTk/MTExQBmSpPXo9zLQw8BLwExEXIyIfZl5BXgMeAE4DRzJzFeHV6okqUn9XgW0Z4Xpx4HjjVYkSdoQrT4KIiLmImJhcXGxzTIkqaRWA8AxAElqjw+Dk6SiDABJKsoxAEkqyjEASSrKLiBJKsoAkKSiHAOQpKIcA5CkouwCkqSiDABJKsoAkKSiHASWpKIcBJakouwCkqSiDABJKsoAkKSiDABJKqqv7wQeloiYA+ampqbaLEPSJjS9//m2S2hM77acP7h7Q9brVUCSVJRdQJJUlAEgSUUZAJJUlAEgSUUZAJJUlAEgSUUZAJJUlI+DlqSivBFMkoqyC0iSijIAJKkoA0CSijIAJKkoA0CSijIAJKkoA0CSijIAJKkoA0CSivI7gSVpGeP0ncMr8VEQklSUXUCSVJQBIElFGQCSVJQBIElFGQCSVJQBIElFGQCSVJQBIElFRWa2XQMR8R/Ambbr0BtcC3yt7SI2yGbZ1rbr3Kj1D3M9TbbdRFuDtjGTmdesd+FWHwXR5UxmvqPtIvT/ImIhM+fbrmMjbJZtbbvOjVr/MNfTZNtNtDVoGxFxcpD12wWklRxru4ANtFm2te06N2r9w1xPk2030Var+3RUuoBOegYgSWsz6LFzVM4AFtouQJI2oYGOnSNxBiBJ2nijcgYgSdpgBoAkFWUAaCgi4qaIeCoijrZdy7Btlm3dLHU2odK2DmLkA8Ad+eYi4saI+GxEvBYRr0bELw3Q1qGIuBwRp5b5bFdEnImIsxGxf7V2MvNcZu5bbx2r1PetEfHXEfGFzrb+1gBtDX1bI2JLRHwuIp4b5ToHFRHbIuJoRHwpIk5HxN3rbGfkt3VURcRbI+IjEfH7EbG3r4Uyc2gv4BBwGTjVM30XS3f+ngX299nW0WHWuplfwHcDb+/8fA3wd8DOnnneBlzTM+3mZdr6EeDty+yzLcCXgZuArcAXgJ3AbcBzPa+3DWu/AQFMdH6+Gvgr4AdHdVuBXwE+Bjy3zGcjU2cD++UjwC90ft4KbBvXbd3IF2s4hgI/B8x1fv54X+0Pufhv2plVd+QG/9L8KfCunmk/BfwF8JbO+0eAT6+w/PQyv3B3Ay90vT8AHOijlqHtN+Dbgb8B7hrFbQW2d+p4J8sHwEjU2cB+uBb4ezpXFa4wz1hs60a/1ngMPQDc3pnnY/20P9QuoMx8Efhqz+Q7gbO5dIr2DeAZ4MHM/GJmvrvndXmY9Y2jiJgG7mDpL+PXZeYngBeAj3dOD3+epf+U/boBuND1/mJn2kp1XBcRTwJ3RMSBNaznTXW6VT7P0l9Gn8nMUd3W3wN+Ffif5ZYboToHtQP4F+APO91dfxARb+2eYYy2dUOt5RjK0r/J9s48fR3b2xgDKLkjN0JETAB/DPxyZv577+eZ+TvAfwJPAA9k5uKwasnMr2Tmo5n5PZn5oYbb/u/MvJ2lX/Y7I+LWZeZpdVsj4t3A5cx85U2WHYd9chVLf6U+kZl3AF8HvqmPfky2dRSsdAz9JPCTEfEEfT5iYuQHgcd8RzYmIq5m6eD/0cz85Arz/DBwK/AnwAfWuIpLwI1d77d3prUmM/8N+CxL/aFvMALbeg/wQEScZ+kvtHdGxB+NYJ1NuAhc7DoTO8pSILzBmGzryMrMr2fmezPzfZn50X6WaSMA3JENi4gAngJOZ+bvrjDPHSzdNv4g8F7guoj47TWs5mXglojYERFbgYeAZwerfO0iYjIitnV+/jbgXcCXeuZpfVsz80Bmbs/M6c7yf5mZPztqdTYhM/8JuBARM51JPwq81j3PuGzriGjuGLoBgxjTvHEA4yrgHEv9hv83gPF9GzWoMo4v4IeABP4W+HzndX/PPPcAt3W9vxp4ZJm2DgP/CPwXS3/Z7ev67H6WrjD6MvBrLW3r9wOf62zrKeA3lplnpLYVmGX5QeCRqnPAbbwdONnZL58CvnNct7WFf9uhHUOH+iygiDjM0i//dwH/DHwgM5+KiPtZGiDbAhzKzA8OrQhJ2qSGfQz1YXCSVNTIDwJLkobDAJCkogwASSrKAJCkogwASSrKAJCkogwASSrKAJCkogwASSrqfwH3Ext0dyTF9QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGhCAYAAACUFDUXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAcy0lEQVR4nO3df2xddf348VfXbp3TrbJNOsZW5q+oddDp1i4LJm4wXWBOJ2JI/EGFRBJzS6b1V/eH/PhDmRrJVG4E8ceigk6MEHWAQMVNEV03NhWbodOBCK4w0HV0ptTb8/3DL/04exltd9vb993jkfDHPT33nNc5LLnPnHvuvVVZlmUBAJCoKeUeAADgRIgZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEhaTbkHGK3BwcF4/PHHY+bMmVFVVVXucQCAEciyLI4cORLz58+PKVNKey0luZh5/PHHY+HCheUeAwAYg0cffTQWLFhQ0m0mFzMzZ86MiIgDBw7E7NmzyzwNADASTz/9dLz85S8feh0vpeRi5rm3lmbOnBmzZs0q8zQAwEgMDAxERIzLLSJuAAYAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICk1ZR7AAAYL4s6tg1b9vCmtWWYhPHkygwAkDQxAwAkLZmYyefz0djYGM3NzeUeBQCYRJKJmVwuF93d3dHV1VXuUQCASSSZmAEAKEbMAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASasp9wAAUG6LOrYNW/bwprVjXo+J5coMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkLQJj5l//vOfsWzZsliyZEksXrw4brzxxokeAQCoIBP+cwYzZ86MHTt2xIwZM6Kvry8WL14cF1xwQcyZM2eiRwEAKsCEX5mprq6OGTNmREREf39/ZFkWWZZN9BgAQIUYdczs2LEj1q1bF/Pnz4+qqqq47bbbhq2Tz+dj0aJFMX369Fi+fHns3LnzmL//85//jKampliwYEF8/OMfj7lz5479CACAk9qoY6avry+ampoin88X/fvWrVujvb09rrzyynjggQeiqakp1qxZE0888cTQOi996Uvjt7/9bRw4cCBuvvnm6OnpGfsRAAAntVHfM3PeeefFeeed97x/v/baa+ODH/xgXHLJJRERcf3118e2bdviG9/4RnR0dByzbn19fTQ1NcUvfvGLuPDCC4tur7+/P/r7+4ce9/b2RkTEwMBADAwMjHZ8AE4itdXDb2Mo9tpR6vUYbjzPU0lvAH722Wdj9+7dsXHjxqFlU6ZMidWrV8f9998fERE9PT0xY8aMmDlzZhw+fDh27NgRH/rQh553m9dcc01cffXVw5bfe++9Q/feAEAxn2sZvuz2228f9/UY7ujRo+O27ZLGzKFDh6JQKER9ff0xy+vr62Pfvn0REfHII4/EZZddNnTj7+WXXx5nnnnm825z48aN0d7ePvS4t7c3Fi5cGKtWrfIJKACOa/FVPx227MGr1oz7egz31FNPjdu2J/yj2S0tLbF3794Rr19bWxu1tbXDlk+dOjWmTp1aytEAqDD9haphy4q9dpR6PYYbz/NU0o9mz507N6qrq4fd0NvT0xPz5s0r5a4AACKixDEzbdq0WLp0aXR2dg4tGxwcjM7OzlixYkUpdwUAEBFjeJvpmWeeif379w89PnDgQOzduzdmz54dDQ0N0d7eHq2trbFs2bJoaWmJzZs3R19f39Cnm8Yqn89HPp+PQqFwQtsBACrLqGNm165dsWrVqqHHz92c29raGlu2bImLLroonnzyybjiiivi4MGDsWTJkrjzzjuH3RQ8WrlcLnK5XPT29kZdXd0JbQsAqByjjpmVK1e+4M8PtLW1RVtb25iHAgAYqQn/bSYAgFISMwBA0sQMAJC0ZGImn89HY2NjNDc3l3sUAGASSSZmcrlcdHd3R1dXV7lHAQAmkWRiBgCgGDEDACRNzAAASRMzAEDSxAwAkLRkYsZHswGAYpKJGR/NBgCKSSZmAACKETMAQNLEDACQNDEDACRNzAAASRMzAEDSkokZ3zMDABSTTMz4nhkAoJhkYgYAoBgxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJK2m3AMAAP9nUce2Ycse3rS2DJOkI5krM740DwAoJpmY8aV5AEAxycQMAEAxYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGnJxIyfMwAAikkmZvycAQBQTDIxAwBQjJgBAJJWU+4BAKAUFnVsK/cIlIkrMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNB/NBoAJUOyj4w9vWluGSSqPKzMAQNLEDACQNDEDACQtmZjJ5/PR2NgYzc3N5R4FAJhEkomZXC4X3d3d0dXVVe5RAIBJJJmYAQAoRswAAEkTMwBA0sQMAJA0MQMAJE3MAABJ89tMAHCSqbTfiRIzADDJVVp8lJq3mQCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBIWjIxk8/no7GxMZqbm8s9CgAwiSQTM7lcLrq7u6Orq6vcowAAk0gyMQMAUIyYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGk15R4AACrNoo5t5R7hpOLKDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEmb8Jh59NFHY+XKldHY2BhnnXVW3HLLLRM9AgBQQWomfIc1NbF58+ZYsmRJHDx4MJYuXRrnn39+vPjFL57oUQCACjDhMXPaaafFaaedFhER8+bNi7lz58bTTz8tZgCAMRn120w7duyIdevWxfz586Oqqipuu+22Yevk8/lYtGhRTJ8+PZYvXx47d+4suq3du3dHoVCIhQsXjn5yAIAYw5WZvr6+aGpqiksvvTQuuOCCYX/funVrtLe3x/XXXx/Lly+PzZs3x5o1a+Khhx6KU089dWi9p59+Oi6++OK48cYbj7u//v7+6O/vH3rc29sbEREDAwMxMDAw2vEBqFC11dmI1iv22lHsuaVe70RmGelzR2qkx1FK47n9qizLRnbWij25qipuvfXWWL9+/dCy5cuXR3Nzc1x33XURETE4OBgLFy6Myy+/PDo6OiLiP4Hylre8JT74wQ/G+9///uPu46qrroqrr7562PKbb745ZsyYMdbRAYAJdPTo0XjPe94Thw8fjlmzZpV02yW9Z+bZZ5+N3bt3x8aNG4eWTZkyJVavXh33339/RERkWRYf+MAH4pxzznnBkImI2LhxY7S3tw897u3tjYULF8aqVatizpw5pRwfgIQtvuqnI1rvwavWjOi5pV7vRGYZ6XNHaqTHUUpPPfXUuG27pDFz6NChKBQKUV9ff8zy+vr62LdvX0RE3HfffbF169Y466yzhu63+fa3vx1nnnlm0W3W1tZGbW3tsOVTp06NqVOnlnJ8ABLWX6ga0XrFXjuKPbfU653ILCN97kiN9DhKaTy3P+GfZnrTm94Ug4ODE71bAKBClfRL8+bOnRvV1dXR09NzzPKenp6YN29eKXcFABARJY6ZadOmxdKlS6Ozs3No2eDgYHR2dsaKFStKuSsAgIgYw9tMzzzzTOzfv3/o8YEDB2Lv3r0xe/bsaGhoiPb29mhtbY1ly5ZFS0tLbN68Ofr6+uKSSy45oUHz+Xzk8/koFAontB0AoLKMOmZ27doVq1atGnr83CeNWltbY8uWLXHRRRfFk08+GVdccUUcPHgwlixZEnfeeeewm4JHK5fLRS6Xi97e3qirqzuhbQEAlWPUMbNy5cp4oa+maWtri7a2tjEPBQAwUhP+q9kAAKUkZgCApIkZACBpE/6leWPl00wATEaLOraVe4STXjJXZnK5XHR3d0dXV1e5RwEAJpFkYgYAoBgxAwAkTcwAAEkTMwBA0sQMAJC0ZGImn89HY2NjNDc3l3sUAGASSSZmfDQbACgmmZgBAChGzAAASRMzAEDSxAwAkDQxAwAkTcwAAElLJmZ8zwwAUEwyMeN7ZgCAYpKJGQCAYsQMAJA0MQMAJE3MAABJqyn3AADA+FnUsa3cI4w7V2YAgKS5MgMACSp2xeXhTWvLMEn5JXNlxpfmAQDFJBMzvjQPACjG20wAUCFOhpt9i0nmygwAQDFiBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKQlEzN+zgAAKCaZmPFzBgBAMcnEDABAMWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgacnETD6fj8bGxmhubi73KADAJJJMzORyueju7o6urq5yjwIATCLJxAwAQDFiBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSlkzM5PP5aGxsjObm5nKPAgBMIsnETC6Xi+7u7ujq6ir3KADAJJJMzAAAFCNmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBIWlli5p3vfGeccsopceGFF5Zj9wBABSlLzGzYsCG+9a1vlWPXAECFKUvMrFy5MmbOnFmOXQMAFWbUMbNjx45Yt25dzJ8/P6qqquK2224btk4+n49FixbF9OnTY/ny5bFz586SDAsA8L9qRvuEvr6+aGpqiksvvTQuuOCCYX/funVrtLe3x/XXXx/Lly+PzZs3x5o1a+Khhx6KU089ddQD9vf3R39//9Dj3t7eiIgYGBiIgYGBUW8PgMpUW52NaL1irx3FnjvS9U7EROxjpMb7NXU8t1+VZdmYz1pVVVXceuutsX79+qFly5cvj+bm5rjuuusiImJwcDAWLlwYl19+eXR0dAyt9/Of/zyuu+66+MEPfnDcfVx11VVx9dVXD1t+8803x4wZM8Y6OgAwgY4ePRrvec974vDhwzFr1qySbnvUV2aO59lnn43du3fHxo0bh5ZNmTIlVq9eHffff/+Ytrlx48Zob28fetzb2xsLFy6MVatWxZw5c054ZgAqw+Krfjqi9R68as2InjvS9U7EROxjpIrNUkpPPfXUuG27pDFz6NChKBQKUV9ff8zy+vr62Ldv39Dj1atXx29/+9vo6+uLBQsWxC233BIrVqwous3a2tqora0dtnzq1KkxderUUo4PQML6C1UjWq/Ya0ex5450vRMxEfsYqfF+TR3P7Zc0ZkbqnnvuKcduAYAKVNKPZs+dOzeqq6ujp6fnmOU9PT0xb968Uu4KACAiShwz06ZNi6VLl0ZnZ+fQssHBwejs7Hzet5EAAE7EqN9meuaZZ2L//v1Djw8cOBB79+6N2bNnR0NDQ7S3t0dra2ssW7YsWlpaYvPmzdHX1xeXXHLJCQ2az+cjn89HoVA4oe0AAJVl1DGza9euWLVq1dDj5z5p1NraGlu2bImLLroonnzyybjiiivi4MGDsWTJkrjzzjuH3RQ8WrlcLnK5XPT29kZdXd0JbQsAqByjjpmVK1fGC301TVtbW7S1tY15KACAkSrLbzMBAJSKmAEAkiZmAICkleVL88bCp5kAqDSLOraVe4SKkMyVmVwuF93d3dHV1VXuUQCASSSZmAEAKEbMAABJEzMAQNLEDACQNDEDACQtmZjJ5/PR2NgYzc3N5R4FAJhEkokZH80GAIpJJmYAAIoRMwBA0sQMAJA0MQMAJE3MAABJSyZmfDQbACgmmZjx0WwAoJhkYgYAoBgxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNKSiRnfAAwAFJNMzPgGYACgmGRiBgCgGDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJC0mnIPMFL5fD7y+XwUCoVyjwIAFWdRx7Zhyx7etLYMk4xeMldm/JwBAFBMMjEDAFCMmAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEhaTbkHGKl8Ph/5fD4KhUK5RwEgYYs6tpV7hGQUO1cPb1pbhkmOL5krM7lcLrq7u6Orq6vcowAAk0gyMQMAUIyYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSVlPuAUYry7KIiDhy5EhMnTq1zNMAMFkM9h8t6fZ6e3vHfR8pKnZeRuLIkSMR8X+v46VUlY3HVsfRX/7yl3jlK19Z7jEAgDH485//HK94xStKus3krszMnj07IiL++te/Rl1dXZmnoVI0NzdHV1dXuceoWCfr+U39uCfz/JNhtnLMMBH7HK99HD58OBoaGoZex0spuZiZMuU/t/nU1dXFrFmzyjwNlaK6utq/p3F0sp7f1I97Ms8/GWYrxwwTsc/x3sdzr+Ml3WbJtwgJyuVy5R6hop2s5zf1457M80+G2coxw0TsczKc29FK7p6Z3t7eqKuri8OHD5e9ygGAkRnP1+/krszU1tbGlVdeGbW1teUeBQAYofF8/U7uygwAwH9L7soMAMB/EzMAQNLEDACQNDEDE+Cd73xnnHLKKXHhhReWe5SKc7Ke25P1uCeCc5seMQMTYMOGDfGtb32r3GNUpJP13J6sxz0RnNv0VHTMqGsmi5UrV8bMmTPLPUZFOlnP7cl63BPBuZ14P/nJT+I1r3lNvPrVr46vfe1ro35+RceMuk7bNddcE83NzTFz5sw49dRTY/369fHQQw+VdB87duyIdevWxfz586Oqqipuu+22ouvl8/lYtGhRTJ8+PZYvXx47d+4s6RwT7Stf+UqcddZZMWvWrJg1a1asWLEi7rjjjpLuY7Kf202bNkVVVVV8+MMfLul2J/txj6fHHnss3ve+98WcOXPiRS96UZx55pmxa9eukm3/ZD63lezf//53tLe3x89+9rPYs2dPfP7zn4+nnnpqVNuo6JhR12nbvn175HK5+PWvfx133313DAwMxFvf+tbo6+sruv59990XAwMDw5Z3d3dHT09P0ef09fVFU1NT5PP5551j69at0d7eHldeeWU88MAD0dTUFGvWrIknnnhiaJ0lS5bE4sWLh/33+OOPj/KoJ8aCBQti06ZNsXv37ti1a1ecc8458Y53vCP+8Ic/FF2/0s5tV1dX3HDDDXHWWWcdd71KO+7x9I9//CPOPvvsmDp1atxxxx3R3d0dX/jCF+KUU04pur5zy3N27twZr3/96+P000+Pl7zkJXHeeefFXXfdNbqNZGWyffv27G1ve1t22mmnZRGR3XrrrcPWue6667Izzjgjq62tzVpaWrLf/OY3o97Pvffem73rXe8qxciU2RNPPJFFRLZ9+/ZhfysUCllTU1N24YUXZv/+97+Hlu/bty+rr6/PPvvZz77g9p/v32FLS0uWy+WO2df8+fOza665ZlTzT/Z/i6ecckr2ta99bdjySju3R44cyV796ldnd999d/bmN78527BhQ9H1Ku24x9snP/nJ7E1vetOI1nVuK8uJvp7fcsstx/w/+9znPpd9/vOfH9UMZbsy80KFra75X4cPH46IKPrz8VOmTInbb7899uzZExdffHEMDg7Gn//85zjnnHNi/fr18YlPfGJM+3z22Wdj9+7dsXr16mP2tXr16rj//vvHdiCTTKFQiO9973vR19cXK1asGPb3Sju3uVwu1q5de8x+i6m04x5vP/rRj2LZsmXx7ne/O0499dR4wxveEDfeeGPRdZ3bylKK1/MTNvYWK50oUnLqmv9WKBSytWvXZmefffZx13vkkUeyhoaG7KKLLsoaGhqyiy++OBscHBzRPor9O3zssceyiMh+9atfHbP84x//eNbS0jLi+c8999xs7ty52Yte9KLs9NNPH7a9cvjd736XvfjFL86qq6uzurq6bNu2bcddvxLO7Xe/+91s8eLF2b/+9a8sy7LjXpl5TiUc90Sora3Namtrs40bN2YPPPBAdsMNN2TTp0/PtmzZ8rzPcW4rz1hez++7775s/fr1Q3/fsGFDdtNNN41qvzWly6LSea6uN27cOLRMXZ/ccrlcPPjgg/HLX/7yuOs1NDTEt7/97Xjzm98cr3jFK+LrX/96VFVVTdCUz++ee+4p9wjDvOY1r4m9e/fG4cOH4wc/+EG0trbG9u3bo7Gxsej6qZ/bRx99NDZs2BB33313TJ8+fcTbT/24J8rg4GAsW7YsPvOZz0RExBve8IZ48MEH4/rrr4/W1taiz3FuK99IXs9bWlriwQcfjMceeyzq6urijjvuiE996lOj2s+kvAH40KFDUSgUor6+/pjl9fX1cfDgwRFvZ/Xq1fHud787br/99liwYIEQSlRbW1v85Cc/iXvvvTcWLFhw3HV7enrisssui3Xr1sXRo0fjIx/5yAnte+7cuVFdXT3shsSenp6YN2/eCW273KZNmxavetWrYunSpXHNNddEU1NTfPGLX3ze9VM/t7t3744nnngi3vjGN0ZNTU3U1NTE9u3b40tf+lLU1NREoVAo+rzUj3uinHbaacNC+HWve1389a9/fd7nOLeVbySv5zU1NfGFL3whVq1aFUuWLImPfvSjMWfOnFHtZ1LGTKncc8898eSTT8bRo0fjb3/7W9H7AZi8siyLtra2uPXWW+NnP/tZvPzlLz/u+ocOHYpzzz03Xve618UPf/jD6OzsjK1bt8bHPvaxMc8wbdq0WLp0aXR2dg4tGxwcjM7Ozor79zQ4OBj9/f1F/1YJ5/bcc8+N3//+97F3796h/5YtWxbvfe97Y+/evVFdXT3sOZVw3BPl7LPPHvbVCX/84x/jjDPOKLq+c8t/e/vb3x5//OMfY//+/XHZZZeNfgNjf2esdOJ/3mPr7+/Pqqurh73vdvHFF2dvf/vbJ3o8yuRDH/pQVldXl/385z/P/v73vw/9d/To0WHrFgqFbNmyZdn555+f9ff3Dy3fu3dvNnv27Ozaa68tuo8jR45ke/bsyfbs2ZNFRHbttddme/bsyR555JGhdb73ve9ltbW12ZYtW7Lu7u7ssssuy1760pdmBw8eLP1BT5COjo5s+/bt2YEDB7Lf/e53WUdHR1ZVVZXdddddw9at5HP7Qp9mqtTjHg87d+7Mampqsk9/+tPZn/70p+ymm27KZsyYkX3nO98Ztq5zW7nK9Xo+KWMmy/5zw1BbW9vQ40KhkJ1++umjvgGYdEVE0f+++c1vFl3/rrvuGrqx87898MAD2aOPPlr0Offee2/RfbS2th6z3pe//OWsoaEhmzZtWtbS0pL9+te/PtHDK6tLL700O+OMM7Jp06ZlL3vZy7Jzzz23aMg8p1LP7QvdAFypxz1efvzjH2eLFy/Oamtrs9e+9rXZV7/61edd17mtTOV6Pa/6/zufcM8880zs378/Iv5zo9i1114bq1atitmzZ0dDQ0Ns3bo1Wltb44YbboiWlpbYvHlzfP/73499+/YNe+8NACiPSfF6XrIsGqWRFLa6BoDJbTK8npftygwAQClU9KeZAIDKJ2YAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASNr/Ax8brY5BQFz8AAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -3241,7 +3392,7 @@ }, { "cell_type": "code", - "execution_count": 120, + "execution_count": 113, "metadata": {}, "outputs": [ { @@ -3250,20 +3401,18 @@ "Text(0.5, 1.0, 'Edge Weight Distribution')" ] }, - "execution_count": 120, + "execution_count": 113, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAFDCAYAAAAqKoi3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAdM0lEQVR4nO3dfZQlZ10n8O8PIihp6AiJ0UkCgw6bYyS7iyeC+DquLAbCGPANYtSNYsZ4NriuoARFYfeIBNc3oqzsIDguKJCDiBkTFnTXIYBxJbC6EEOOMSTkBeUlZKAjioFn/7jVm5tO9/TTM91Tt7s/n3P6zHRV3arfrap+7vc+97lV1VoLAABweA8YuwAAANgMBGcAAOggOAMAQAfBGQAAOgjOAADQQXAGAIAOgjNbWlUtVNWXr9O6frqqfmv4/86qalV13Dqt+5FDrQ9cj/UBm9t6tzEboarOr6q3dy57QVW96xjUdF1V7V6ndd3n+Q3HY9d6rHtY37q9PnHsCM7bWFXdXFWfqapPV9VdVfVnVXVRVc38eVFVu6vq80PDs1BVt1XV5VX1NdPLtdbmWms3dazrttW22Vr7hdbaDx9t7cM2b66qJ02t+8NDrZ9bj/UDs2eqzV2Y+vmNY1zDC6rqrUum/c0K0551uHW11n63tfbkdarrYFWt2L5OvZFY3G9/X1V/VFX/dklNX9VaO7jKtrrelGz08+t5fWL2zHxAYsPtaa09NMmjklya5PlJXr0RG9qA3tQ7WmtzSR6a5GuTfDDJO6vqW9d5O5nlXh9gU9kzBKbFn4uP8favTvJ1i+1xVX1Zki9I8rgl03YNy86aE4Z2/18l+eMkf1BVF6z3RrT5rERwJknSWjvUWrsiyTOT/LuqemySVNWDq+qXqurDwzv8V1bVFy0+rqp+qqo+UlV3VNUPT3+UVVX7q+o3q+qqqro7ybdU1Y6q+v2q+lhVfaiqfmxqXQ+oqkuq6m+r6hNDD/LDO2pvrbXbWms/l+S3krxsap3T9Ty1qv566GG/vaqeV1XHJ3lrkh1TPRk7qurFVfWmqnpdVX0qyQXDtNct2fwPDc/9I1X1vKnt7q+qn5/6/f/3alfVa5M8MsmBYXs/tbQHZKjhiqq6s6purKoLp9b14mHf/PfhuVxXVWettp+A2VVVDxza2o9X1U1Jzlky/9FVdfXwN/8nVfWK6faoqr62Jp8a3lVVf1UrD1d4TyZB+V8Pv39jkj9NcsOSaX/bWrujquar6tVDG3d7Vf38VMC+z/CLqnpyVd1QVYeq6r9W1TuW9rIOz/GTQ/v/lGHaS4Zt/kZ19sK31v6utfbyJC9O8rIaPimtqU/zqurxVXVtVX1qeP36leHhi28I7hq298Thuby7qn61qj6R5MVLn9/gqVV103Cc/svUdu/z+jDdpq/0/Ja8Ps0PbfrHquqWqnrh1LovqKp3LbfvOPYEZ+6jtfYXSW7L5I88mfRC/4tMGtRdSU5J8nNJUlVnJ/mJJE8a5u1eZpXfm+QlmfQK/1mSA0n+aljPtyb58ar6tmHZ5yR5epJvTrIjySeTvGKNT+HNSb56CMRLvTrJjww97I9N8r9aa3cneUqG3uvh545h+XOTvCnJCUl+d4XtfUuSxyR5cpLn19Twi5W01r4/yYdzb8/TLy6z2BsyOQ47knxXkl+oqn8zNf/bh2VOSHJFkmP6cS+w7i5M8rQkj0tyViZ/99N+L8lfJHlEJmHx+xdnVNUpSa5M8vNJHp7keUl+v6pOWrqR1tpnk/zvJN80TPqmJO9M8q4l0xbD5f4k92TSxj8uk7bufkMqqurETNrLFww13pDk65Ys9oRh+olJfjHJq6uqWms/M9Rw8RH0wr85yZckOX2ZeS9P8vLW2sOSfEWSy6eeXzL0XrfWrpmq76YkJ2fyurWcZ2RyfL46k9eIH1qtwM7n9+tJ5pN8eSavgT+Q5Aen5i+771bbNutPcGY5dyR5+PBHuTfJf2yt3dla+3SSX0iyOO7te5L8dmvtutbaP2TSmC/1h621d7fWPp/kzCQntdb+c2vts8PYrldNre+iJD8z9B7/07C+76q1fWR2R5LKJFAu9c9Jzqiqh7XWPtlae98q67qmtfaW1trnW2ufWWGZ/9Rau7u19v4kv53kvDXUuqyqOi3J1yd5fmvtH1trf5lJT/oPTC32rtbaVcOY6Ndm8rElMPveMvQKL/4sfpr0PUl+rbV2a2vtziQvXXxAVT0yydck+bmh7XxXJm+YF31fkquGNuHzrbU/TnJtkqeuUMM7cm94/MZMQt07l0x7R1WdPKzjx4d27qNJfjX3ttnTnprkutbam1tr9yS5LMnfLVnmltbaq4Z263eSfFkmIfVoLHZ0LPfp5D8n2VVVJ7bWFlprf77aulprv95au+cwbf7LhtfDDyf5taxPm//ATPbpC1prn26t3ZzklzP15igbs+84AoIzyzklyZ1JTkrykCTvXWzkk/yPYXoy6Q29depx0/9fbtqjMhkScdfU+n469/7xPyqT8WqL865P8rmsrXE4JUlLctcy874zk8b9luEjxCeusq7lns/hlrklk31ytHYkWXyjMr3uU6Z+n35B+ockX7jGNxjAOJ7eWjth6udVw/Sl7ektU/9fbBP+YWra0rb1u5e0rd+QSbhaztVJvqEmQ+FOaq39TSafCH7dMO2xwzKPymRYx0em1vvfMunhXeo+9bfWWiafmk37u6n5i89lboUaey22i3cuM+/ZmXxi+sGqek9VPW2VdY3V5p+YyX6ePuYrtvnruO84Al5ouY+aXJXilEw+tvt4ks8k+arW2u3LLP6RJKdO/X7aMsu0qf/fmuRDrbXHrLD5W5P8UGvt3Wsu/F7PSPK+YQjGfQtp7T1Jzq2qL0hycSYf2522pMb7PKRje6dl8qXEZDJuebH34+5M3nQs+tI1rHuxx/+hU+H5kUmWOwbA1vCR3LcNfeSSeQ+vqodMhabpZW9N8trW2oXpc00mwwIuTPLuJGmtfaqq7him3dFa+1BV/WOSf0py4tCLvFr9///1YPjE8tSVF7+fnvZ2Oc9I8tFMhjHcd4WTNwTnDWOFvyPJm6rqEYfZVm+bf93w//Vq8z+eSe/4o5L89dS6tfkzSI8zSZKqetjwbvwNSV7XWnv/MLziVUl+taq+ZFjulKkxyZcn+cGq+sqqekiSn11lM3+R5NNV9fyq+qKafBnmsXXvJeRemeQlVfWoYVsnVdW5HbXXUNeLMhl799PLLPOgmlyTc7619s9JPpXk88Psv0/yiKqaX21by/jZqnpIVX1VJuPR3jhM/8tMvkTy8Kr60iQ/vuRxf5/JWLb7aa3dmknvz0ur6gur6l9m0nOy9IuJwNZxeZIfq6pTq+qLk1yyOKO1dksmQy9ePLRlT0yyZ+qxr0uyp6q+bWhXv7AmX0heNrgOwxCuzeQ7Ku+cmvWuYdrVw3IfSfL2JL88vEY8oKq+oqq+eZnVXpnkzKp6+vDp17/P/cPj4azYJi6nqk6uqouTvCiTIQ6fX2aZ76uqk4Z5dw2TP5/kY8O/R3IN5Z+sqi8ehtT9h9y3zf+mmlyTfz6Tsd7TDtfmfy6T4/+Sqnro8Br4E9HmzyTBmQNV9elMeix+Jsmv5L5fSHh+khuT/HlNri7xJxm+hNFae2sm49j+dHGZ4TH/tNyGhsbhaZl80fBDmbzL/q1Mej6SyRc5rkjy9qGmP8/kCxEr2VFVC0kWMvmm+JlJdrfWVrog//cnuXl4HhclOX+o64NJXp/kpuHjyLV89PaOTJ77/0zyS1Pbfm0mX4K8OZMXnjcuedxLk7xw2N7zcn/nJdmZSW/GHyR5UWvtT9ZQFzCbFq+ms/jzB8P0VyV5Wybtxvsy+dLbtPOTPDHJJzL5EuAbM7S1w5vtczPpNPhYJu35T+bwr/HvyGTIxfRVI945TJu+DN0PJHlQJj2hn8zkC4D3GwLSWvt4ku/O5Itrn0hyRibhfNnXg2W8PJPvtHyyqi47zHJ31eQqTe/PZOjdd7fWXrPCsmcnuW54nXh5kme11j4z9Nq/JMm7hzb4aztrTJI/TPLeTILylRku3zqMK39jkv87zP+jNT6/52TSa31TJsfk95Ks9LwYUU2GIcHRq6qvTPKBJA/u+FgPgCNUVW9M8sHW2ovGrmU5w/CI25Kc31r707HrgfWix5mjUlXPqMm1nr84k+snHxCaAdZXVX3NMEziATW5FOi5Sd4ycln3MQwVOaGqHpxJ73fl3k8iYUsQnDlaP5LJFzP+NpMrYPzouOUAbElfmuRgJkPTLkvyo621/zNqRff3xExeCz6eyRjspx/msm6wKRmqAQAAHfQ4AwBAB8EZAAA6zMQNUE488cS2c+fONT/u7rvvzvHHH7/+BbGlOE/ocaTnyXvf+96Pt9ZOWn3JreOEE05ou3btGrsMpmjnZpPjMnuOts2eieC8c+fOXHvttWt+3MGDB7N79+71L4gtxXlCjyM9T6rqltWX2lpOPvnkI2qz2TjaudnkuMyeo22zDdUAAIAOowbnqtpTVfsOHTo0ZhkAALCqUYNza+1Aa23v/Pz86gsDAMCIDNUAAIAOgjMAAHQQnAEAoIPgDAAAHQRnAADoIDgD0GXxEqILCwtjlwIwCsEZgC6LlxCdm5sbuxSAUbgBCgAAdDhuzI231g4kOXDWWWddeCSPf//th3LBJVeuc1UTN196zoasFwCYPTuXyROyAEsZqgEAAB0EZwAA6CA4AwBAB8EZAAA6CM4AANBBcAYAgA6CMwAAdBCcAQCggzsHAgBAh1GDc2vtQGtt7/z8/JhlAADAqgzVAKDL4qeECwsLY5cCMArBGYAui58Szs3NjV0KwCgEZwAA6CA4AwBAB8EZAAA6CM4AANBBcAYAgA6CMwAAdBCcAQCgg+AMAAAdjhtz41W1J8meXbt2jVkGAMD97LzkyvtNu/nSc0aohFkxao/z4l2o5ufnxywDAABWZagGAAB0EJwBAKCD4AwAAB0EZwAA6CA4AwBAB8EZAAA6CM4AANBBcAagS1Xtqap9CwsLY5cCMArBGYAuizetmpubG7sUgFEIzgAA0EFwBgCADqMG58XxcocOHRqzDAAAWNWowXlxvNz8/PyYZQAAwKoM1QAAgA6CMwAAdBCcAQCgg+AMAAAdBGcAAOggOAMAQAfBGQAAOgjOAADQQXAGAIAOgjMAAHQQnAEAoIPgDAAAHQRnAADoIDgDAEAHwRkAADqMGpyrak9V7Tt06NCYZQAAwKpGDc6ttQOttb3z8/NjlgEAAKsyVAMAADoIzgAA0EFwBgCADoIzAAB0EJwBAKCD4AywjVXVV1bVK6vqTVX1o2PXAzDLBGeALaaqXlNVH62qDyyZfnZV3VBVN1bVJUnSWru+tXZRku9J8vVj1AuwWQjOAFvP/iRnT0+oqgcmeUWSpyQ5I8l5VXXGMO/bk1yZ5KpjWybA5iI4A2wxrbWrk9y5ZPLjk9zYWruptfbZJG9Icu6w/BWttackOf/YVgqwuRw3dgEAHBOnJLl16vfbkjyhqnYn+Y4kD85hepyram+SvUly0kkn5eDBgxtVJ0dgYWHBMTlKzz3znq7l1rKfHZetR3AG2MZaaweTHOxYbl+SfUly+umnt927d29oXazNwYMH45gcnQsuubJruZvP3929Tsdl6zFUA2B7uD3JaVO/nzpMA6CT4AywPbwnyWOq6tFV9aAkz0pyxcg1AWwqgjPAFlNVr09yTZLTq+q2qnp2a+2eJBcneVuS65Nc3lq7bsw6ATYbY5wBtpjW2nkrTL8qR3HJuarak2TPjh07jnQVAJuaHmcAurTWDrTW9s7NzY1dCsAoBGcAAOggOAMAQAfBGQAAOgjOAADQYdTgXFV7qmrfoUOHxiwDgA6LbfbCwsLYpQCMYtTgvPgN7fn5+THLAKCDq2oA252hGgAA0EFwBgCADoIzAAB0EJwBAKCD4AxAF1fVALY7wRmALq6qAWx3gjMAAHQQnAEAoIPgDAAAHQRnAADoIDgDAEAHwRmALi5HB2x3gjMAXVyODtjuBGcAAOggOAMAQAfBGQAAOgjOAADQQXAGAIAOgjMAAHQQnAEAoIPgDEAXN0ABtjvBGYAuboACbHeCMwAAdDhu7AIAADaLnZdcuez0my895xhXwhj0OAMAQAc9zitY6R3levCuFABg89HjDAAAHQRnAADoMGpwXrwm6KFDh8YsAwAAVjVqcF68Juj8/PyYZQAAwKoM1QAAgA6CMwBd3HIb2O4EZwC6uOU2sN0JzgAA0EFwBgCADoIzAAB0EJwBAKCD4AwAAB0EZwAA6CA4AwBAB8EZAAA6HDd2AZAkOy+5csPWvf/s4zds3QDA9qHHGQAAOgjOAADQQXAGoEtV7amqfQsLC2OXAjAKwRmALq21A621vXNzc2OXAjAKwRkAADoIzgAA0EFwBgCADoIzAAB0EJwBAKCD4AwAAB3ccptuG3lbbACAWafHGQAAOgjOAADQQXAGAIAOgjMAAHQQnAEAoIPgDAAAHQRnAADoIDgDAEAHwRkAADoIzgAA0EFwBqBLVe2pqn0LCwtjlwIwCsEZgC6ttQOttb1zc3NjlwIwiuPGLmA72nnJlRu27psvPWfD1g0AsJ3pcQYAgA56nNny3n/7oVywQb38evgBYPsQnGFGGdIDALPFUA0AAOggOAMAQAdDNQAAjtJyw+v2n338CJWwkfQ4AwBAB8EZAAA6CM4AANBBcAYAgA6CMwAAdFj3q2pU1dOTnJPkYUle3Vp7+3pvAwAAjrWuHueqek1VfbSqPrBk+tlVdUNV3VhVlyRJa+0trbULk1yU5JnrXzIAABx7vUM19ic5e3pCVT0wySuSPCXJGUnOq6ozphZ54TAfAAA2va7g3Fq7OsmdSyY/PsmNrbWbWmufTfKGJOfWxMuSvLW19r71LRcAAMZxNGOcT0ly69TvtyV5QpLnJHlSkvmq2tVae+VyD66qvUn2JsnJJ5+cgwcPrrmAk78oee6Z96z5cVvZkezHXpt1X2/kebJZ9/dG1r1ZLSws2C8AHNa6fzmwtXZZkss6ltuXZF+SnHXWWW337t1r3tav/+4f5pff767h024+f/eGrfuCZW4nuhk898x7Nuw82az7eyPr3qwOHjyYI2mHANg+juZydLcnOW3q91OHaQAAsOUcTXB+T5LHVNWjq+pBSZ6V5Ir1KQsAAGZL7+XoXp/kmiSnV9VtVfXs1to9SS5O8rYk1ye5vLV23caVCgAA4+ka+NlaO2+F6VcluWpdKwIAgBnkltsAANBBcAYAgA6jBueq2lNV+w4dOjRmGQAAsKpRL4LcWjuQ5MBZZ5114Zh1bCU7N+m1lgEAZp2hGgAA0MFt9wC2sap6epJzkjwsyatba28ftyKA2aXHGWCLqarXVNVHq+oDS6afXVU3VNWNVXVJkrTW3tJauzDJRUmeOUa9AJuF4Ayw9exPcvb0hKp6YJJXJHlKkjOSnFdVZ0wt8sJhPgArEJwBtpjW2tVJ7lwy+fFJbmyt3dRa+2ySNyQ5tyZeluStrbX3HetaATYTY5wBtodTktw69fttSZ6Q5DlJnpRkvqp2tdZeudyDq2pvkr1JctJJJ+XgwYMbWy1rsrCw4Jgcpeeeec+6r9Nx2XoEZ4BtrLV2WZLLOpbbl2Rfkpx++ult9+7dG1wZa3Hw4ME4Jkfngg24nOv+s493XLYYN0AB2B5uT3La1O+nDtMA6OQGKHAU3HCGTeQ9SR5TVY/OJDA/K8n3jlsSwObiy4EAW0xVvT7JNUlOr6rbqurZrbV7klyc5G1Jrk9yeWvtujHrBNhsjHEG2GJaa+etMP2qJFcd6Xqrak+SPTt27DjSVQBsanqcAejSWjvQWts7Nzc3dikAoxCcAQCgg+AMAAAdBGcAAOggOAPQZfHa+wsLC2OXAjAKwRmALr4cCGx37hwIAAAdRg3Oi70X8/PzY5YBAACrMlQDAAA6CM4AANBBcAYAgA6CMwBdXI4O2O4EZwC6uBwdsN0JzgAA0EFwBgCADoIzAAB0EJwBAKCDW24DAEAHt9wGoIvL0QHbnaEaAHRxOTpguxOcAQCgg+AMAAAdBGcAAOggOAMAQAfBGQAAOgjOAADQQXAGoIvrOAPbneAMQBfXcQa2O8EZAAA6CM4AANBBcAYAgA7HjbnxqtqTZM+uXbvGLAO2nZ2XXLlh67750nM2bN0AMKZRe5wXv2gyPz8/ZhkAALAqQzUAAKCD4AwAAB0EZwAA6CA4AwBAB8EZgC5uuQ1sd4IzAF3cchvY7gRnAADoIDgDAEAHwRkAADoIzgAA0EFwBgCADoIzAAB0EJwBAKCD4AwAAB0EZwAA6DBqcF68feuhQ4fGLAMAAFY1anBevH3r/Pz8mGUAAMCqDNUAAIAOgjMAXRaH1y0sLIxdCsAoBGcAuiwOr5ubmxu7FIBRCM4AANBBcAYAgA6CMwAAdBCcAQCgg+AMAAAdBGcAAOggOAMAQAfBGQAAOgjOAADQQXAGAIAOgjMAAHQQnAEAoIPgDAAAHQRnAADocNzYBQBby85Lrtywdd986Tkbtm4AWI0eZwAA6CA4AwBAh1GHalTVniR7du3aNWYZwCaxkcNA9p99/Iate6tYbLN37NgxdilwxDayHWHrG7XHubV2oLW2d35+fswyAOiw2GbPzc2NXQrAKAzVAACADoIzAAB0EJwBAKCD4AwAAB0EZwAA6CA4AwBAB8EZAAA6CM4AANBBcAYAgA6CMwAAdKjW2tg1pKoOJfmbFWbPJzm0wrwTk3x8Q4paP4erf5a2cSTrWMtjepZdbZkjnb8ZzpNk48+Vsc6TtT5uo8+V9T5PHtVaO+kIHrdpVdWnk9wwwqbX629kI9u7jTg3l5u+dNqY7dxYx2XWj0ky3nHZjn8rvcfq9NbaQzvqW15rbfSfJPuOcN61Y9d+NM9tlrZxJOtYy2N6ll1tmSOdvxnOk/U6jhu9/iNdxyydK5v9PJmFn7H21Xr9jWxke7dB5+b9pi+dNub5O9ZxmfVjMuZx2Y5/K73H6miPyawM1ThwhPM2g2NR/3ps40jWsZbH9Cy72jJHO3/WbXT9Y50na33cRp8rm/082c7W69htZHu3EefmctNn6Twe67g4Jivbjn8razlWR2wmhmocqaq6trV21th1MNucJ/RwnvSzr2aPYzKbHJfZc7THZFZ6nI/UvrELYFNwntDDedLPvpo9jslsclxmz1Edk03d4wwAAMfKZu9xBgCAY0JwBgCADoIzAAB02DLBuaqOr6rfqapXVdX5Y9fD7KqqL6+qV1fVm8auhdlVVU8f2pM3VtWTx65ns7DfZo82bzbIKbNprX8fMx2cq+o1VfXRqvrAkulnV9UNVXVjVV0yTP6OJG9qrV2Y5NuPebGMai3nSmvtptbas8eplDGt8Tx5y9CeXJTkmWPUe6ytsc1d1nbcbxtpnY6JNm+DyCmzaSMzwUwH5yT7k5w9PaGqHpjkFUmekuSMJOdV1RlJTk1y67DY545hjcyG/ek/V9i+9mft58kLh/nbwf507p+qOrOq/mjJz5dMPXQ77beNtD/rd0xYf/sjp8yi/dmgTHDcelS3UVprV1fVziWTH5/kxtbaTUlSVW9Icm6S2zI5Kf8ys/+GgHW2xnPlr49xecyItZwnVXV9kkuTvLW19r5jW+k41rJ/WmsvTfK0peuoqso2228baT2OCRtHTplNG5kJNuOBOyX3vmNLJifiKUnenOQ7q+o3M1u3vWQ8y54rVfWIqnplksdV1QvGKY0ZslKb8pwkT0ryXVV10RiFzYiV9s9K7LeNt6Zjos075uSU2bQumWCme5zXorV2d5IfHLsOZl9r7ROZjL+EFbXWLkty2dh1bDb22+zR5s0GOWU2rfXvYzP2ON+e5LSp308dpsFSzhV6OE8Oz/6ZPY7JbHN8ZtO6HJfNGJzfk+QxVfXoqnpQkmcluWLkmphNzhV6OE8Oz/6ZPY7JbHN8ZtO6HJeZDs5V9fok1yQ5vapuq6pnt9buSXJxkrcluT7J5a2168ask/E5V+jhPDk8+2f2OCazzfGZTRt5XKq1tr7VAgDAFjTTPc4AADArBGcAAOggOAMAQAfBGQAAOgjOAADQQXAGAIAOgjMAAHQQnAEAoIPgDAAAHf4fnT4nTRwJytIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAAHHCAYAAADZOPmeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5yVdb0v8O9wG+QuEvebqbscuUwHBl8gJihIeMuU9FjJpVSqoSw6FbRPXmrvrVkZZWuLl63u1E4E7cwTChJhJNlpJLHas3XHDsgQUEHkYnIZnvNHr1nbYQacYYb5zeX9fr146fqtZz2/76z1W+v3fNaznucpyLIsCwAAAKDRtUldAAAAALRWQjkAAAAkIpQDAABAIkI5AAAAJCKUAwAAQCJCOQAAACQilAMAAEAiQjkAAAAkIpQDAABAIkI5tFIzZ86MoUOHNkpfQ4cOjZkzZ+ZvP/DAA1FQUBDPPPNMo/Q/YcKEmDBhQqP0BcCx2bhxYxQUFMQDDzyQupTjpj7z0YQJE2LYsGENW9Axuummm6KgoKBR+jr8OXvyySejoKAglixZ0ij9N+b2Eq2XUE6zVhnuKv917Ngx+vfvH1OmTInvfOc7sXv37tQlNorKybHyX6dOnWLw4MFx8cUXx/333x/79u1rkH7Ky8vjpptuio0bNzbI+hpSU64NoDU4fE4+/N+vf/3r1CXW6LbbbouCgoJ49tlnq7RnWRYnnnhiFBQUxIYNG6rc9+abb0ZhYWF86EMfasxSa+Wll16Km266KdatW1er5RtrW6qudTWmplwbrUO71AVAQ/jKV74SJ598chw4cCC2bt0aTz75ZHzmM5+J22+/PR599NEYMWJE6hIbxZ133hldunSJffv2xebNm2P58uXx0Y9+NBYsWBA//elPY9CgQfll77nnnjh06FCd1l9eXh4333xzTJgwoU7fGr/wwgvRps3x/Q7waLU98cQTx7VvAP5b5Zx8uFNPPTVBNW9v/PjxERHx1FNPxXve8558+7//+7/Hzp07o127drFmzZoqf1NZWVns378//9jaaoz56KWXXoqbb745hg4dGsXFxbV+XF22pf73//7fMW/evEapK/VzdizbS1BXQjktwtSpU2P06NH52/Pnz4+f//zncdFFF8Ull1wS//Ef/xEnnHBCo9WTZVm8+eabjdpnRMS0adOiV69e+ds33HBDPPzwwzF9+vT44Ac/WGUvRfv27Y9rLW99DgoLC49rX2+nQ4cOSfsHaE0On5ObutGjR0fHjh3jqaeeik996lP59jVr1sRJJ50Uo0ePjqeeeio+8pGP5O976qmnIiLqHMqb8nxUl22pdu3aRbt2xzdGvPHGG9GpU6fkz9nx3l6CCD9fpwU799xz48tf/nJs2rQpHnrooSr3Pf/88zFt2rTo2bNndOzYMUaPHh2PPvpotXX87ne/i3POOSdOOOGEGDhwYPzDP/xD3H///VFQUFDlZ9JDhw6Niy66KJYvXx6jR4+OE044Ie66666IiNi5c2d85jOfiUGDBkVhYWGceuqp8bWvfa3at66HDh2KBQsWxBlnnBEdO3aMPn36xOzZs+O1116r1/Pw4Q9/OK655pr4f//v/8WKFSvy7TUdI/WDH/wgRo0aFV27do1u3brF8OHD49vf/nZE/O3nbR/84AcjImLixIn5n7k9+eSTb/scHH5MeaU33ngjZs+eHSeddFJ069Ytpk+fXu3vLSgoiJtuuqnaY9+6zrerraZj+F5++eX42Mc+Fn369ImOHTvGyJEj41//9V+rLFN5fOM3vvGNuPvuu+OUU06JwsLCKCkpibKyshqfbwDe3s6dO2PmzJnRvXv36NGjR8yYMSN27txZ47KLFy+OoqKi6NixYwwbNix+/OMf1ziHHes82qFDhygpKYk1a9ZUaV+zZk2MHTs2zjrrrBrv69GjR/4Y79r2XdN8tGnTprjkkkuic+fO0bt37/jsZz8by5cvrzKPvVV5eXlMnDgxOnXqFAMGDIjbbrstf9+TTz4ZJSUlERExa9as/Hx4rMfpH2lbqqZjylesWBHjx4+PHj16RJcuXeJd73pXfOlLX6pVXZXHy69duzbe+973RqdOnfKPPdJx+BUVFfGlL30p+vbtG507d45LLrkkXnzxxSrLHGn7463rfLvaahpre/fujc997nP5bbt3vetd8Y1vfCOyLKuyXEFBQcyZMyceeeSRGDZsWBQWFsYZZ5wRy5Ytq/kJp9Wyp5wW7eqrr44vfelL8cQTT8S1114bEX/7OdpZZ50VAwYMiHnz5kXnzp3jhz/8YVx66aXxox/9KD7wgQ9ERMTmzZvzAW/+/PnRuXPnuPfee4+41/eFF16Iq666KmbPnh3XXnttvOtd74o33ngjzjnnnNi8eXPMnj07Bg8eHL/61a9i/vz5sWXLlliwYEH+8bNnz44HHnggZs2aFZ/+9Kdjw4YN8d3vfjeeffbZWLNmTb2+qb366qvj7rvvjieeeCImT55c4zIrVqyIq666Ks4777z42te+FhER//Ef/xFr1qyJ66+/Pt773vfGpz/96fjOd74TX/rSl+L000+PiMj/90jPwdHMmTMnevToETfddFO88MILceedd8amTZvyJ3GprdrU9lZ//etfY8KECbF+/fqYM2dOnHzyybF48eKYOXNm7Ny5M66//voqy3//+9+P3bt3x+zZs6OgoCBuu+22uOyyy+JPf/qTb9ABDvP666/Hq6++WqWtoKAgTjrppIj42y+p3v/+98dTTz0VH//4x+P000+PH//4xzFjxoxq61q6dGlceeWVMXz48Ljlllvitddei4997GMxYMCAasvWZx4dP358/PKXv4yNGzfmA9iaNWvimmuuiTFjxsSNN94YO3fujB49ekSWZfGrX/0qxo4dmz8061j73rt3b5x77rmxZcuWuP7666Nv377x/e9/P1atWlXj8q+99lq8733vi8suuyyuuOKKWLJkSXzxi1+M4cOHx9SpU+P000+Pr3zlK3HDDTfEddddF2effXZERIwbN+6If/vbqWlb6nD//u//HhdddFGMGDEivvKVr0RhYWGsX78+/2VGberavn17TJ06Nf7n//yf8ZGPfCT69Olz1Lr+8R//MQoKCuKLX/xivPzyy7FgwYKYNGlSrFu3rk6/VKzrc5ZlWVxyySWxatWq+NjHPhbFxcWxfPny+PznPx+bN2+Ob33rW1WWf+qpp+Lf/u3f4pOf/GR07do1vvOd78Tll18ef/7zn/PvCYgMmrH7778/i4isrKzsiMt07949e8973pO/fd5552XDhw/P3nzzzXzboUOHsnHjxmWnnXZavu1Tn/pUVlBQkD377LP5tu3bt2c9e/bMIiLbsGFDvn3IkCFZRGTLli2r0vdXv/rVrHPnztl//ud/VmmfN29e1rZt2+zPf/5zlmVZ9stf/jKLiOzhhx+ustyyZctqbD/cjTfemEVE9sorr9R4/2uvvZZFRPaBD3wg3zZjxoxsyJAh+dvXX3991q1bt+zgwYNH7Gfx4sVZRGSrVq2qdt+RnoPK+2bMmJG/Xfm6jRo1Ktu/f3++/bbbbssiIvvJT36Sb4uI7MYbb3zbdR6ttnPOOSc755xz8rcXLFiQRUT20EMP5dv279+fjR07NuvSpUu2a9euLMuybMOGDVlEZCeddFK2Y8eO/LI/+clPsojI/u///b/V+gJorSo/22v6V1hYmF/ukUceySIiu+222/JtBw8ezM4+++wsIrL7778/3z58+PBs4MCB2e7du/NtTz75ZBYRVeaw+s6jS5cuzSIie/DBB7Msy7ItW7ZkEZH94he/yHbv3p21bds2W7p0aZZlWfaHP/whi4jsH//xH+vc9+Hz0Te/+c0sIrJHHnkk3/bXv/41e/e7311tTjvnnHOyiMi+973v5dv27duX9e3bN7v88svzbWVlZdWex6M5lm2pyu2OSt/61reOuh3ydnVV/m0LFy6s8b63PmerVq3KIiIbMGBAfr7Osiz74Q9/mEVE9u1vfzvfdvi2wpHWebTaDt9eqhy///AP/1BluWnTpmUFBQXZ+vXr820RkXXo0KFK23PPPZdFRHbHHXdU64vWy8/XafG6dOmSP3Pojh074uc//3lcccUVsXv37nj11Vfj1Vdfje3bt8eUKVPij3/8Y2zevDkiIpYtWxZjx46tcsKPnj17xoc//OEa+zn55JNjypQpVdoWL14cZ599dpx44on5vl599dWYNGlSVFRUxOrVq/PLde/ePSZPnlxluVGjRkWXLl2O+I15XZ6DiDjqGVR79OgRe/furfIT97qq6Tk4muuuu67K3oNPfOIT0a5du3jssceOuYbaeOyxx6Jv375x1VVX5dvat28fn/70p2PPnj3xi1/8osryV155ZZx44on525Xfov/pT386rnUCNEe5XC5WrFhR5d/jjz+ev/+xxx6Ldu3axSc+8Yl8W9u2basczx3xt5Nv/f73v4/p06fn57GIiHPOOSeGDx9eZdn6zqPjxo2LNm3a5I8Vr9y7XVJSEl26dIkRI0bk9/pW/rfyePL69L1s2bIYMGBAXHLJJfm2jh07HnGPdJcuXaoc296hQ4cYM2bMcZ+P3rotVZMePXpERMRPfvKTYz4pWmFhYcyaNavWy0+fPj26du2avz1t2rTo169fo2xDtG3bNj796U9Xaf/c5z4XWZZVGesREZMmTYpTTjklf3vEiBHRrVs32xBU4efrtHh79uyJ3r17R0TE+vXrI8uy+PKXvxxf/vKXa1z+5ZdfjgEDBsSmTZti7Nix1e4/0tljazrT7B//+Mf43e9+F+94xzuO2Fflcq+//nq+ziMtd6z27NkTEVFl8jrcJz/5yfjhD38YU6dOjQEDBsT5558fV1xxRbzvfe+rdT81PQdHc9ppp1W53aVLl+jXr99xv6zZpk2b4rTTTqt2RvjKn7tv2rSpSvvgwYOr3K4M6PU93h+gJRozZsxRT/S2adOm6NevX5WgHRHVDnmq/Cyuad499dRT47e//W3+dn3n0R49esQZZ5xRJXi/5z3vyf8Mety4cVXuqwzD9e1706ZNccopp1Q7ZOtI2xoDBw6stuyJJ54Yv/vd747699XXW7elanLllVfGvffeG9dcc03MmzcvzjvvvLjsssti2rRptb76yoABA+p0UrfDtyEKCgri1FNPbZRtiP79+1fbpqrtNkTE314z2xC8lVBOi/aXv/wlXn/99fzkVvnt7f/6X//riHt0j/WSLTUdv3To0KGYPHlyfOELX6jxMX/3d3+XX653797x8MMP17jckUJ9bf3hD3+IiKP/bb17945169bF8uXL4/HHH4/HH3887r///pg+fXq1E6AdSWOebb6ioqLR+mrbtm2N7dlhJ3QBII2GmEfHjx8fCxcujJ07d8aaNWuqHFM8bty4uO++++LAgQPx1FNPxahRo6Jjx44N1ndtpZiPDt+WqskJJ5wQq1evjlWrVsXSpUtj2bJlsWjRojj33HPjiSeeOGLdh6+joR3p/DQVFRW1qqkh2IagNoRyWrQHH3wwIiIfwN/5zndGxN9+qjxp0qSjPnbIkCGxfv36au01tR3JKaecEnv27Hnbvk455ZT42c9+FmedddZxmZQOfx6OpEOHDnHxxRfHxRdfHIcOHYpPfvKTcdddd8WXv/zlOPXUU+t08rXa+OMf/xgTJ07M396zZ09s2bIlLrjggnzbiSeeWO2MvPv3748tW7ZUaatLbUOGDInf/e53cejQoSrf4D///PP5+wE4PoYMGRIrV66MPXv2VNlb/sILL1RbLqLmeffwtoaYR8ePHx933nln/OxnP4tnn302Pv/5z+fvGzduXPz1r3+NpUuXxp/+9Ke4/PLLG6TvIUOGRHl5eWRZVmUeq8u2xuEaeq6u7TZEmzZt4rzzzovzzjsvbr/99vinf/qn+Pu///tYtWpVTJo06bhsQ7xVlmWxfv36KtdTr2kbIuJve7Mrtwkj6r4N8bOf/Sx2795dZW+5bQjqwzHltFg///nP46tf/WqcfPLJ+ePAe/fuHRMmTIi77rqrWqiLiHjllVfy/z9lypR4+umnY926dfm2HTt2HPGb8JpcccUV8fTTT8fy5cur3bdz5844ePBgfrmKior46le/Wm25gwcPHvEyMbXx/e9/P+69994YO3ZsnHfeeUdcbvv27VVut2nTJj+x7du3LyIiOnfunK+9Idx9991x4MCB/O0777wzDh48GFOnTs23nXLKKflj79/6uMP3lNeltgsuuCC2bt0aixYtyrcdPHgw7rjjjujSpUucc845x/T3APD2Lrjggjh48GDceeed+baKioq44447qizXv3//GDZsWHzve9/LH4YVEfGLX/wifv/731dZtiHm0cpjxG+//fY4cOBAlT3lQ4cOjX79+uUvP/bW65PXp+8pU6bE5s2bq1yW9c0334x77rnnbes9koacq2valqrJjh07qrVVnpPneG1DfO9736tynPuSJUtiy5Yt1bYhfv3rX8f+/fvzbT/96U+rXTqtrtsQFRUV8d3vfrdK+7e+9a0oKCio0j/Ulj3ltAiPP/54PP/883Hw4MHYtm1b/PznP48VK1bEkCFD4tFHH83/xCzibyegGT9+fAwfPjyuvfbaeOc73xnbtm2Lp59+Ov7yl7/Ec889FxERX/jCF+Khhx6KyZMnx6c+9an8JdEGDx4cO3bsqNW3qp///Ofj0UcfjYsuuihmzpwZo0aNir1798bvf//7WLJkSWzcuDF69eoV55xzTsyePTtuueWWWLduXZx//vnRvn37+OMf/xiLFy+Ob3/72zFt2rS37W/JkiXRpUuX2L9/f2zevDmWL18ea9asiZEjR8bixYuP+thrrrkmduzYEeeee24MHDgwNm3aFHfccUcUFxfnj5MqLi6Otm3bxte+9rV4/fXXo7CwMM4999yjHmd2NPv374/zzjsvrrjiinjhhRfin//5n2P8+PFVTnhzzTXXxMc//vG4/PLLY/LkyfHcc8/F8uXLo1evXlXWVZfarrvuurjrrrti5syZsXbt2hg6dGgsWbIk1qxZEwsWLDjqsfcAHF3lnHy4cePGxTvf+c64+OKL46yzzop58+bFxo0bo6ioKP7t3/4tXn/99WqP+ad/+qd4//vfH2eddVbMmjUrXnvttfjud78bw4YNqxLUG2IeHTx4cAwaNCiefvrpGDp0aPTv379a/T/60Y+ioKAgzjrrrAbpe/bs2fHd7343rrrqqrj++uujX79+8fDDD+e3W45l7/Ipp5wSPXr0iIULF0bXrl2jc+fOceaZZ77teV/qsi11uK985SuxevXquPDCC2PIkCHx8ssvxz//8z/HwIED819gHGtdR9KzZ88YP358zJo1K7Zt2xYLFiyIU089tcpJ8q655ppYsmRJvO9974srrrgi/uu//iseeuihKideq2ttF198cUycODH+/u//PjZu3BgjR46MJ554In7yk5/EZz7zmWrrhlpJeOZ3qLfDL7/SoUOHrG/fvtnkyZOzb3/721UulfFW//Vf/5VNnz4969u3b9a+fftswIAB2UUXXZQtWbKkynLPPvtsdvbZZ2eFhYXZwIEDs1tuuSX7zne+k0VEtnXr1vxyQ4YMyS688MIa+9q9e3c2f/787NRTT806dOiQ9erVKxs3blz2jW98o8rlwLIsy+6+++5s1KhR2QknnJB17do1Gz58ePaFL3whe+mll476PFRemqTyX8eOHbOBAwdmF110UXbfffdVufxbpcMv8bFkyZLs/PPPz3r37p116NAhGzx4cDZ79uxsy5YtVR53zz33ZO985zuztm3bVrlcy9GegyNdEu0Xv/hFdt1112Unnnhi1qVLl+zDH/5wtn379iqPraioyL74xS9mvXr1yjp16pRNmTIlW79+fY2XOTlSbYdf+iTLsmzbtm3ZrFmzsl69emUdOnTIhg8fXu1SKJWXRPv6179e7W+KI1yqDaC1Otol0eKwy01t3749u/rqq7Nu3bpl3bt3z66++urs2WefrfGyVD/4wQ+yd7/73VlhYWE2bNiw7NFHH80uv/zy7N3vfne1Go51Hq101VVXZRGRfehDH6p23+23355FRHb66afX+Nja9F3TfPSnP/0pu/DCC7MTTjghe8c73pF97nOfy370ox9lEZH9+te/rvLYM844o1q/h8/nWfa3S3cWFRVl7dq1e9vLox3LttThl0RbuXJl9v73vz/r379/1qFDh6x///7ZVVddVe2SsEeq60h/W03PWeUl0f7P//k/2fz587PevXtnJ5xwQnbhhRdmmzZtqvb4b37zm9mAAQOywsLC7KyzzsqeeeaZGl+HI9VW0/O7e/fu7LOf/WzWv3//rH379tlpp52Wff3rX88OHTpUZbmIyEpLS6vVdKRLtdF6FWSZswxAXXzmM5+Ju+66K/bs2dNoJwkBAP5bcXFxvOMd76jXZTybsgULFsRnP/vZ+Mtf/hIDBgxIXQ5wnDmmHI7ir3/9a5Xb27dvjwcffDDGjx8vkAPAcXbgwIH8+VcqPfnkk/Hcc8/FhAkT0hTVwA7f1njzzTfjrrvuitNOO00gh1bCMeVwFGPHjo0JEybE6aefHtu2bYt/+Zd/iV27dh3xGucAQMPZvHlzTJo0KT7ykY9E//794/nnn4+FCxdG37594+Mf/3jq8hrEZZddFoMHD47i4uJ4/fXX46GHHornn3++TieWBZo3oRyO4oILLoglS5bE3XffHQUFBfE//sf/iH/5l3+J9773valLA4AW78QTT4xRo0bFvffeG6+88kp07tw5Lrzwwrj11lvjpJNOSl1eg5gyZUrce++98fDDD0dFRUUUFRXFD37wg7jyyitTlwY0EseUAwAAQCKOKQcAAIBEhHIAAABIpNkdU37o0KF46aWXomvXrlFQUJC6HABauSzLYvfu3dG/f/9o08Z33Q3BXA9AU3M85/tmF8pfeumlGDRoUOoyAKCKF198MQYOHJi6jBbBXA9AU3U85vtmE8pzuVzkcrn8tSpffPHF6NatW73WeeDAgXjiiSfi/PPPj/bt2zdEmdBsGP+0Zg05/nft2hWDBg2Krl27NlB1VD6XGzZsiJ49eyauhubAnEZdGTPU1Y4dO+Lkk08+LvN9swnlpaWlUVpaGrt27Yru3btHt27dGiSUd+rUKbp16+bNSKtj/NOaHY/x72fWDafyuezatWu953paB3MadWXMUFcHDhyIiOMz3zv4DQAAABIRygEAACARoRwAAAASEcoBAAAgEaEcAAAAEhHKAQAAIBGhHAAAABIRygEAACARoRwAAAASEcoBAAAgkWYTynO5XBQVFUVJSUnqUgAAAKBBNJtQXlpaGuXl5VFWVpa6FAAAAGgQzSaUAwAtm1/FAdAaCeUAQJPgV3EAtEbtUhfQFAy7aXnsqyhI0vfGWy9M0i8AADQFQ+ctPer9tpdp6ewpBwAAgESEcgAAAEhEKAcAAIBEhHIAAABIRCgHAACARIRyAAAASEQoBwAAgESaTSjP5XJRVFQUJSUlqUsBAACABtFsQnlpaWmUl5dHWVlZ6lIAAACgQTSbUA4AAAAtjVAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOADQJuVwuioqKoqSkJHUpANBohHIAoEkoLS2N8vLyKCsrS10KADQaoRwAAAASEcoBAAAgEaEcAAAAEhHKAQAAIJFmE8qdkRUAAICWptmEcmdkBQAAoKVpNqEcAAAAWhqhHAAAABIRygEAACARoRwAAAASEcoBAAAgEaEcAAAAEhHKAQAAIBGhHAAAABJpl7oAAACAIxk6b+kR79t464WNWAkcH/aUAwAAQCJCOQAAACQilAMAAEAiQjkAAAAkIpQDAABAIkI5AAAAJCKUAwAAQCLNJpTncrkoKiqKkpKS1KUAAABAg2g2oby0tDTKy8ujrKwsdSkAAADQIJpNKAcAAICWRigHAACARIRyAKBJcP4YAFojoRwAaBKcPwaA1kgoBwAAgESEcgAAAEhEKAcAAIBEhHIAAABIRCgHAACARIRyAAAASEQoBwAAgESEcgAAAEhEKAcAAIBEhHIAAABIRCgHAACARIRyAAAASEQoBwAAgESEcgAAAEhEKAcAAIBEmk0oz+VyUVRUFCUlJalLAQAAgAbRbEJ5aWlplJeXR1lZWepSAAAAoEE0m1AOAAAALY1QDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOADSonTt3xujRo6O4uDiGDRsW99xzT+qSAKDJape6AACgZenatWusXr06OnXqFHv37o1hw4bFZZddFieddFLq0gCgybGnHABoUG3bto1OnTpFRMS+ffsiy7LIsixxVQDQNDWbUJ7L5aKoqChKSkpSlwIALdrq1avj4osvjv79+0dBQUE88sgj1ZbJ5XIxdOjQ6NixY5x55pnxm9/8psr9O3fujJEjR8bAgQPj85//fPTq1auxygeAZqXZ/Hy9tLQ0SktLY9euXdG9e/fU5QBAi7V3794YOXJkfPSjH43LLrus2v2LFi2KuXPnxsKFC+PMM8+MBQsWxJQpU+KFF16I3r17R0REjx494rnnnott27bFZZddFtOmTYs+ffrU2N++ffti3759+du7du2KiIgDBw7EgQMHjsNfSEtTOU6Ml+apsO2x/5LmWF9zY4a6Op5jpdmEcgCgcUydOjWmTp16xPtvv/32uPbaa2PWrFkREbFw4cJYunRp3HfffTFv3rwqy/bp0ydGjhwZv/zlL2PatGk1ru+WW26Jm2++uVr7qlWr8j+Dh9pYsWJF6hI4BreNOfbHPvbYY/Xq25ihtt54443jtm6hHACotf3798fatWtj/vz5+bY2bdrEpEmT4umnn46IiG3btkWnTp2ia9eu8frrr8fq1avjE5/4xBRfUJUAABkOSURBVBHXOX/+/Jg7d27+9q5du2LQoEExceJEJ4ejVg4cOBArVqyIyZMnR/v27VOXQx0Nu2n5MT/2DzdNOabHGTPU1fbt24/buoVyAKDWXn311aioqKj2U/Q+ffrE888/HxERmzZtiuuuuy5/grdPfepTMXz48COus7CwMAoLC6u1t2/f3sYydWLMNE/7KgqO+bH1fb2NGWrreI4ToRwAaFBjxoyJdevWpS4DAJqFZnP2dQAgvV69ekXbtm1j27ZtVdq3bdsWffv2TVQVADRfQjkAUGsdOnSIUaNGxcqVK/Nthw4dipUrV8bYsWMTVgYAzZOfrwMAVezZsyfWr1+fv71hw4ZYt25d9OzZMwYPHhxz586NGTNmxOjRo2PMmDGxYMGC2Lt3b/5s7ABA7QnlAEAVzzzzTEycODF/u/LM6DNmzIgHHnggrrzyynjllVfihhtuiK1bt0ZxcXEsW7bsiNchBwCOTCgHAKqYMGFCZFl21GXmzJkTc+bMadB+c7lc5HK5qKioaND1AkBT5phyAKBJKC0tjfLy8igrK0tdCgA0GqEcAAAAEhHKAQAAIBGhHAAAABIRygEAACARoRwAAAASEcoBAAAgEaEcAGgScrlcFBUVRUlJSepSAKDRCOUAQJPgOuUAtEZCOQAAACQilAMAAEAiQjkAAAAkIpQDAABAIkI5AAAAJCKUAwAAQCJCOQAAACQilAMATUIul4uioqIoKSlJXQoANBqhHABoEkpLS6O8vDzKyspSlwIAjUYoBwAAgESEcgAAAEikXeoCWruh85Ym7X/jrRcm7R8AAKA1s6ccAAAAEhHKAQAAIBGhHAAAABIRygEAACARoRwAAAASEcoBgCYhl8tFUVFRlJSUpC4FABqNUA4ANAmlpaVRXl4eZWVlqUsBgEbTbEK5b88BAABoaZpNKPftOQAAAC1NswnlAAAA0NII5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkIhQDgAAAIm0S10AtGZD5y1N1ndh2yxuG5OsewCAejvattTGWy9sxErg2NlTDgAAAIkI5QBAk5DL5aKoqChKSkpSlwIAjUYoBwCahNLS0igvL4+ysrLUpQBAoxHKAQAAIBGhHAAAABIRygEAACARoRwAAAASEcoBAAAgEaEcAAAAEhHKAQAAIBGhHAAAABIRygEAACARoRwAAAASEcoBAAAgEaEcAAAAEhHKAQAAIBGhHABoEnK5XBQVFUVJSUnqUgCg0QjlAECTUFpaGuXl5VFWVpa6FABoNEI5AAAAJCKUAwAAQCJCOQAAACQilAMAAEAiQjkAAAAkIpQDAABAIkI5AAAAJCKUAwAAQCJCOQAAACQilAMAAEAiQjkAAAAk0i51AUBaw25aHvsqCpL0vfHWC5P0CwAATYU95QAAAJCIUA4AAACJ+Pk6rdrQeUtTlwAAALRi9pQDAABAIkI5AAAAJCKUAwAAQCJCOQDQJORyuSgqKoqSkpLUpQBAoxHKAYAmobS0NMrLy6OsrCx1KQDQaJx9HWi1Up99f+OtFybtHwCA9OwpBwAAgESEcgAAAEhEKAcAAIBEhHIAAABIRCgHAACARIRyAAAASEQoBwAAgESEcgAAAEhEKAcAAIBEhHIAAABIpF3qAkhr6LylSfvfeOuFSfsHAABIyZ5yAAAASKTRQ/mLL74YEyZMiKKiohgxYkQsXry4sUsAAACAJqHRf77erl27WLBgQRQXF8fWrVtj1KhRccEFF0Tnzp0buxQAAABIqtFDeb9+/aJfv34REdG3b9/o1atX7NixQygHAACg1alzKF+9enV8/etfj7Vr18aWLVvixz/+cVx66aVVlsnlcvH1r389tm7dGiNHjow77rgjxowZU21da9eujYqKihg0aNCx/wU0a6lPNAcAAJBSnUP53r17Y+TIkfHRj340Lrvssmr3L1q0KObOnRsLFy6MM888MxYsWBBTpkyJF154IXr37p1fbseOHTF9+vS45557jtrfvn37Yt++ffnbu3btioiIAwcOxIEDB+pafhWVjy9sk9VrPdAcVY77lOO/vu/h+ipsm/a9n/rvb80qn/uGeA28jgBAfdQ5lE+dOjWmTp16xPtvv/32uPbaa2PWrFkREbFw4cJYunRp3HfffTFv3ryI+FvQvvTSS2PevHkxbty4o/Z3yy23xM0331yt/YknnohOnTrVtfwafXX0oQZZDzRHKcf/Y489lqzviIjbqv+Ap1Gl/vuJWLFiRb3X8cYbbzRAJQBAa9Wgx5Tv378/1q5dG/Pnz8+3tWnTJiZNmhRPP/10RERkWRYzZ86Mc889N66++uq3Xef8+fNj7ty5+du7du2KQYMGxfnnnx/dunWrV70HDhyIFStWxJefaRP7DhXUa13Q3BS2yeKrow8lHf9/uGlKkn4rDbtpedL+U//9rVnl5//kyZOjffv29VpX5S+4AACORYOG8ldffTUqKiqiT58+Vdr79OkTzz//fERErFmzJhYtWhQjRoyIRx55JCIiHnzwwRg+fHiN6ywsLIzCwsJq7e3bt6/3hlSlfYcKYl+FUE7rlHL8N9R7+Filft+n/vtpmLnE6wgA1Eejn319/PjxceiQn4sDAABAm4ZcWa9evaJt27axbdu2Ku3btm2Lvn37NmRXAAAA0Ow1aCjv0KFDjBo1KlauXJlvO3ToUKxcuTLGjh3bkF0BAABAs1fnn6/v2bMn1q9fn7+9YcOGWLduXfTs2TMGDx4cc+fOjRkzZsTo0aNjzJgxsWDBgti7d2/+bOwAAADA39Q5lD/zzDMxceLE/O3KM6PPmDEjHnjggbjyyivjlVdeiRtuuCG2bt0axcXFsWzZsmonfwMAeKtcLhe5XC4qKipSlwIAjabOoXzChAmRZdlRl5kzZ07MmTPnmIsCAFqf0tLSKC0tjV27dkX37t1TlwMAjaJBjykHAAAAak8oBwAAgESaTSjP5XJRVFQUJSUlqUsBAACABtFsQnlpaWmUl5dHWVlZ6lIAAACgQTSbUA4AAAAtjVAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkEi71AXUVi6Xi1wuFxUVFalLARrI0HlLU5cAAABJNZs95aWlpVFeXh5lZWWpSwEAAIAG0Wz2lAMAANTW0X6RV9g2i9vGNGIxcBTNZk85AAAAtDRCOQAAACQilAMAAEAiQjkAAAAkIpQDAABAIkI5AAAAJCKUAwAAQCJCOQAAACQilAMAAEAiQjkAAAAk0mxCeS6Xi6KioigpKUldCgAAADSIZhPKS0tLo7y8PMrKylKXAgAAAA2i2YRyAAAAaGmEcgAAAEhEKAcAAIBEhHIAAABIRCgHAACARIRyAAAASEQoBwAAgESEcgAAAEhEKAcAAIBEhHIAAABIRCgHAACARIRyAAAASEQoBwAa1IsvvhgTJkyIoqKiGDFiRCxevDh1SQDQZLVLXUBt5XK5yOVyUVFRkboUAOAo2rVrFwsWLIji4uLYunVrjBo1Ki644ILo3Llz6tIAoMlpNnvKS0tLo7y8PMrKylKXAgAcRb9+/aK4uDgiIvr27Ru9evWKHTt2JK4KAJqmZhPKAYDGsXr16rj44oujf//+UVBQEI888ki1ZXK5XAwdOjQ6duwYZ555ZvzmN7+pcV1r166NioqKGDRo0PEuGwCaJaEcAKhi7969MXLkyMjlcjXev2jRopg7d27ceOON8dvf/jZGjhwZU6ZMiZdffrnKcjt27Ijp06fH3Xff3RhlA0Cz1GyOKQcAGsfUqVNj6tSpR7z/9ttvj2uvvTZmzZoVERELFy6MpUuXxn333Rfz5s2LiIh9+/bFpZdeGvPmzYtx48Ydtb99+/bFvn378rd37doVEREHDhyIAwcO1PfPoRWoHCfGS/NU2DZr/D7b/K1PY4baOp5jRSgHAGpt//79sXbt2pg/f36+rU2bNjFp0qR4+umnIyIiy7KYOXNmnHvuuXH11Ve/7TpvueWWuPnmm6u1r1q1Kjp16tRwxdPirVixInUJHIPbxqTr25ihtt54443jtm6hHACotVdffTUqKiqiT58+Vdr79OkTzz//fERErFmzJhYtWhQjRozIH4/+4IMPxvDhw2tc5/z582Pu3Ln527t27YpBgwbFxIkT46STTjpOfwktyYEDB2LFihUxefLkaN++fepyqKNhNy1v9D4L22Tx1dGHjBlqbfv27cdt3UI5ANCgxo8fH4cOHar18oWFhVFYWFitvX379jaWqRNjpnnaV1GQrG9jhto6nuPEid4AgFrr1atXtG3bNrZt21alfdu2bdG3b99EVQFA8yWUAwC11qFDhxg1alSsXLky33bo0KFYuXJljB07NmFlANA8+fk6AFDFnj17Yv369fnbGzZsiHXr1kXPnj1j8ODBMXfu3JgxY0aMHj06xowZEwsWLIi9e/fmz8YOANSeUA4AVPHMM8/ExIkT87crT8I2Y8aMeOCBB+LKK6+MV155JW644YbYunVrFBcXx7Jly6qd/A0AeHtCOQBQxYQJEyLLjn7d4Dlz5sScOXMatN9cLhe5XC4qKioadL0A0JQ5phwAaBJKS0ujvLw8ysrKUpcCAI1GKAcAAIBEhHIAAABIRCgHAACARJpNKM/lclFUVBQlJSWpSwEAAIAG0WxCuZO/AAAA0NI0m1AOAAAALY1QDgA0CQ5VA6A1EsoBgCbBoWoAtEZCOQAAACTSLnUBAK3V0HlLk/a/8dYLk/YPAIA95QAAAJCMUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkIhQDgA0CblcLoqKiqKkpCR1KQDQaIRyAKBJKC0tjfLy8igrK0tdCgA0GqEcAAAAEhHKAQAAIBGhHAAAABIRygEAACARoRwAAAASEcoBAAAgEaEcAAAAEhHKAQAAIJF2qQuorVwuF7lcLioqKlKXAtAiDJ23NGn/G2+9MGn/AABNQbPZU15aWhrl5eVRVlaWuhQA4DjI5XJRVFQUJSUlqUsBgEbTbEI5ANCy+QIegNZIKAcAAIBEhHIAAABIRCgHAACARIRyAAAASEQoBwAAgESEcgAAAEhEKAcAAIBEhHIAAABIRCgHAACARIRyAAAASEQoBwCahFwuF0VFRVFSUpK6FABoNEI5ANAklJaWRnl5eZSVlaUuBQAajVAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQSLMJ5blcLoqKiqKkpCR1KQAAANAgmk0oLy0tjfLy8igrK0tdCgBwHPgCHoDWqNmEcgCgZfMFPACtkVAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOADQJuVwuioqKoqSkJHUpANBohHIAoEkoLS2N8vLyKCsrS10KADQaoRwAAAASEcoBAAAgEaEcAAAAEhHKAQAAIBGhHAAAABIRygEAACARoRwAAAASEcoBAAAgEaEcAAAAEhHKAQAAIBGhHAAAABIRygEAACARoRwAAAASEcoBAAAgEaEcAAAAEhHKAQAAIJF2qQuorVwuF7lcLioqKlKXAkADGDpvabK+C9tmcduYZN0DtDopP/OhqWs2e8pLS0ujvLw8ysrKUpcCAAAADaLZhHIAAABoaYRyAAAASEQoBwAAgESEcgAAAEhEKAcAAIBEhHIAAABIRCgHAACARIRyAAAASEQoBwCahFwuF0VFRVFSUpK6FABoNEI5ANAklJaWRnl5eZSVlaUuBQAajVAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJtEtdQF1lWRYREbt27ar3ug4cOBBvvPFGVOxrG4cqCuq9PmhOKtpm8cYbFcY/rVLl+N+1a1e0b9++XuuqnI8q5yfqr/K53L17d71fH1qHym26hnhPc3wc2vdG6hKqaMh5gNZh9+7dEXF85vtmF8orn4xBgwYlrgSavw+lLgASaujxv3v37ujevXsDr7V12r59e0REnHzyyYkrAVoy20Eci+3btzf4fN/sQnn//v3jlFNOibVr10ZBwdH37pWUlBz1Wqe7du2KQYMGxYsvvhjdunVr6FKblLd7LlpKHQ21/vqs51geW5fH1HZZ4/+/Gf+Nu566Pv54LN+Y4z/Lsti9e3f079+/Xuvhv/Xs2TMiIv785z83+S86GuPzJfV7u6HnqLdb5mj3H+m+5jSntfQxk+Iz3ZhpOn00l+3gYxkzr7/+egwePDg/RzWkZhfK27RpEx06dKjVJN22bdtavcm6devW5N+M9VXb56K519FQ66/Peo7lsXV5TG2XNf7/m/HfuOup6+OPx/KNPf6benBsbtq0+dspb7p3794k3rtH0xifL6nf2w09R73dMke7/+0e2xzmtJY+ZlJ8phszTaeP5rIdXJ8xUzlHNaS2N910000NvtZGMGbMmHovt2/fvrj11ltj/vz5UVhY2FClNVm1fc6Ot+NdR0Otvz7rOZbH1uUxxn/dGf+Nu566Pv54LG/8N1/N7fVpjM+X1O/thp6j3m6Zo91f033GzPHr43hv09R2eWPGmKnrss1pzBRkrfjMNLt27Yru3bvH66+/3uS/IYOGZvzTmhn/TZvXh7oyZqgrY4a6Op5jptnuKW8obdu2jQkTJkS7ds3ul/xQb8Y/rZnx37R5fagrY4a6Mmaoq+M1Zlr1nnIAAABIqeGPUgcAAABqRSgHAACARIRyAAAASEQoBwAAgESEcgAAAEhEKD+Cn/70p/Gud70rTjvttLj33ntTlwON7gMf+ECceOKJMW3atNSlQKN68cUXY8KECVFUVBQjRoyIxYsXpy6JI/BacSzMb7wdOYC6qu/nikui1eDgwYNRVFQUq1atiu7du8eoUaPiV7/6VZx00kmpS4NG8+STT8bu3bvjX//1X2PJkiWpy4FGs2XLlti2bVsUFxfH1q1bY9SoUfGf//mf0blz59SlcRivFcfC/MbRyAEci/p+rthTXoPf/OY3ccYZZ8SAAQOiS5cuMXXq1HjiiSdSlwWNasKECdG1a9fUZUCj69evXxQXF0dERN++faNXr16xY8eOxFVRE68Vx8L8xtHIARyL+n6utMhQvnr16rj44oujf//+UVBQEI888ki1ZXK5XAwdOjQ6duwYZ555ZvzmN7/J3/fSSy/FgAED8rcHDBgQmzdvbpTaoSHU9z0AzVlDjv+1a9dGRUVFDBo06HiX3SI15meR16plMH9RX3IAddUUPndaZCjfu3dvjBw5MnK5XI33L1q0KObOnRs33nhj/Pa3v42RI0fGlClT4uWXX27kSuH48B6gNWuo8b9jx46YPn163H333Y1RdovUEK9FcXFxDBs2rNq/l156Kb+M16rlaKwxQ8tlG4i6ahJjJmvhIiL78Y9/XKVtzJgxWWlpaf52RUVF1r9//+yWW27JsizL1qxZk1166aX5+6+//vrs4YcfbpyCoYEdy3ug0qpVq7LLL7+8UeqE4+FYx/+bb76ZnX322dn3vve9Rqu1pavPZ9HReK1aruM1ZrLM/NZayAHUVart5ha5p/xo9u/fH2vXro1Jkybl29q0aROTJk2Kp59+OiIixowZE3/4wx9i8+bNsWfPnnj88cdjypQpqUqGBlWb9wC0VLUZ/1mWxcyZM+Pcc8+Nq6++OlWpLV5DfBZ5rVoX8xf1JQdQV431udPqQvmrr74aFRUV0adPnyrtffr0ia1bt0ZERLt27eKb3/xmTJw4MYqLi+Nzn/ucMy7SYtTmPRARMWnSpPjgBz8Yjz32WAwcONAGDy1Cbcb/mjVrYtGiRfHII49EcXFxFBcXx+9///sU5bZotf0sOhqvVevSEGMmwvzWmskB1FVjbTe3a5BqW6BLLrkkLrnkktRlQDI/+9nPUpcASYwfPz4OHTqUugxqwWvFsTC/8XbkAOqqvp8rrW5Pea9evaJt27axbdu2Ku3btm2Lvn37JqoKGo/3AK2Z8d90eC2oK2OG+jKGqKvGGjOtLpR36NAhRo0aFStXrsy3HTp0KFauXBljx45NWBk0Du8BWjPjv+nwWlBXxgz1ZQxRV401Zlrkz9f37NkT69evz9/esGFDrFu3Lnr27BmDBw+OuXPnxowZM2L06NExZsyYWLBgQezduzdmzZqVsGpoON4DtGbGf9PhtaCujBnqyxiirprEmDmmc7Y3catWrcoiotq/GTNm5Je54447ssGDB2cdOnTIxowZk/36179OVzA0MO8BWjPjv+nwWlBXxgz1ZQxRV01hzBRkWZY1XMQHAAAAaqvVHVMOAAAATYVQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAifx/HkZb9ztPUhYAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -3271,7 +3420,7 @@ "plt.figure(figsize=(12, 5))\n", "\n", "plt.subplot(1,2,1)\n", - "plotDistribution(degrees, 13)\n", + "plotDistribution(degrees, 13, minValue=1E0)\n", "plt.yscale(\"log\")\n", "plt.title(\"Degree Distribution\")\n", "\n", @@ -3291,7 +3440,7 @@ }, { "cell_type": "code", - "execution_count": 121, + "execution_count": 114, "metadata": {}, "outputs": [], "source": [ @@ -3301,7 +3450,7 @@ }, { "cell_type": "code", - "execution_count": 122, + "execution_count": 115, "metadata": {}, "outputs": [], "source": [ @@ -3313,14 +3462,14 @@ }, { "cell_type": "code", - "execution_count": 123, + "execution_count": 116, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABO7UlEQVR4nO29bYxcWXrf97tVxSGH3c0e2ZK4ya4UOdqZWS1Hnssh2cPmy9rllSIZG8TUh/6QfEhgYJGE+WIHSJAYcbndaSMIjDiAPyQTJAoSwAiCpBVvr4xRZCNWK7Mzw2WRM3Nnd6hoZhYrOdFqdyMZGbLZ5HDYVScfzjn3nnvuObfurbeuqj5/gOzuqvv+8pznPM//+T+REIKAgICAgOmgcdQHEBAQEHCcEIxuQEBAwBQRjG5AQEDAFBGMbkBAQMAUEYxuQEBAwBQRjG5AQEDAFBGMbkBAQMAUEYxuQEBAwBQRjG5AQEDAFBGMbkBAQMAUEYxuQEBAwBQRjG5AQEDAFBGMbkBAQMAU0TrqAwgImATane5ZYAeIgQTY2Nte+/FRHlNAAASju9AwDM95oAc0gfewDNA8Gagqx6qW+RDEKkQA62qdr0z1YAMCHAjhhcXGDtLgLEsDxDKZAXItt+L5fpawC+Ia8livyb8L2DEMLkjnIp7GwQUEDELwdBcbMek9LjVAxnIzb6AuQaRPJpJ/FxAb56uRTPCYKmGeZhQBk0MwuouNBOm5mvf5kKIBSkBcgajp+X7mYRm0PvI89HnfBzaO5shy2AGxDlGLEPI4tghGd0GhjNAJpMvXAx6p39+jaIA2gG+CeFUuE51od7pnZ9QLuwOo40Sov0EaNHPgOECGzxJmJ4YdK4MLsz+jCJgQgtFdXOwAF5HJs0Mg2dtec3pVe9trP253up+B6CmjdZHZ9cJuYBlM9fl5dewgn+vm3vbaimcbu3KAiSKyuPD6ZA5XQhp63ZAwgjmdUQSMjmB0Fxcx9eK0sWW0Bi0/NtTxPNXnXzHW+bjd6SaAkI5vGss91e50H3i2VyUuXOd4bwKvDTj+HWDJOL4DjBnHsN53iBPPH4LRnVHUfZkcy98DcUkaUgFE/QEhg4Qs/js1L2wEepdmXOj4aGQlz1rk2Rjj9Nrtfb8FYmlArDY2BjWAhnUvzPBIbhsDngX7WGZ1hhKgEIzu7GK35hTYTtLcBR4axmyJ8hdyA/e0fdLelIvedb3d6b4xYD8xeU++Rz55Zm4vhvQ8dslTJdO4cPXzFLEVm7WP/7zjeBM8g5oKPVwpmWk4E3DqeK8gQ0iu9QJmEMHozi7qToFjyxBcguix8X0LOK+MWYxlVPS03bPt0qz7iEY5dtC7AK4DH7Y73RdVzNnex0cgLqh1hfrskfpegDhjfHfPOI9XjesK8AAZJ1bfl3uN7U73bIRoyuBsGpsFRMs4j57jfOxB7aZxL/pkhtM8HzLD6jTIOyAaxn7T9QJmF8HoLg4SWTSQGpQGee/vUP09zFQ0tgz6FStU4TVWhnepB407wA1j3YQirU1j1diWafivUzRsT3WisN3p3gIue87DtvDmNP88ee/5vMPYnxBEp6zYbMu4PqAMaNlgpAyucd65w+qTzTTKDKt9PuZ6ATOKYHQnhKoluCXwUaN82IDoB2QeU6R+v0X20ttGxTae9rHr9e4ZxwLSoH/Y7nQ1JesVa7vm9Nr2Ll8lb+xND7CPNLQm4uynbdhSexMB54zvznm+u0feGNueYc9KxvUoevkRRGZ4YhXJAzYHt/eMc/fNEGLc798hcMu4J3GJYU3Ihyxu1Qn7DJqhhCTdZBCM7uRgeH/pi1zHu7yBJ8bqgpqCv03+JXzPpIkp7+oaeeO50+507anvCRAXpbEQ6xDdJT8FjqzEFw5jpRFbRiPCiDuaYY0sqZYaXjP2mSA9XBfsxF+CPyloHuhD8te1STEZZ0/tjdlDuqklLF5wWVhAfdc31i/wij3noo9ZY+g4fLUEpvgN4HIo5hgvgtGdHGKqleA6MSDG6oP3JTS+t73hGLc3p5aJWkhP0TToWOeEZazM+GRC3tB7445q4HjRcw4bFA2yz1D5rsM5+0AhHYxiiuGYQ8fUXs04xGXrGjT2ttfOWNu0E3b6vHdALGeTmOgAuEpGO9tpd7raSN4EodbLJ0RrxOFz8XHj+4I+RWasRQwsGwNmSNKNCcHoTg4J1Upwx4ZBhtrhDYP0YM9bMVvbmzuNrG67izRcfeTLr78/NNY1p9cgDd4u+Ziu12v3nYPPIFed7pYUJ5jGyTbk5x1T+xvqGEyP2TWQnCdv4M2wQGwMaiAHqbc8XudryJix3k5V4xdb4RgzPq6/t9dJyF0PgbxmUUQo5hgbgtGdHLS3VYjplq00ahytwvq2x6imxuIwe9GiR6Q8X5rq30VkzPCMY2oKHq9T7Xss1V41vH9XLBWKxQk3gfetEEDqsVrJrjRm2u50Y0fIxC6dthN9Dz3JQ5Xg9KqixR7jOAgJxXBMbH1vDr5an+LjzFhHIAeLR1QIcQVUQzC6E8KQ4QEYXRSlyvrLxu+aZ3poOG/PAk+V8V0xlrve7nQ/QU6FG5aRWAW+xWwkW2zP/Twg7OIE4DVH+KBvVLIVKs3UcgnFeL1VOp2jkEGe0WBqYtwFXioxrMa+gOriPa5wTGJ9XxicVXWfPdCEOO4YEYzuFFHRi40tg1GlUKBs/dj6fpdczDU1Gq4pbELRuKwCb+EOnwyVbHFdF/XVsB6/i4XwHYrJtdhBITujVrwG/Pre9prLS9cG67pdFGGcy2krUWYyGi6SCfM8Vd/Z1/KKor59nczwa76xLn0uLZcuiY+XOQWD8gIBIyIY3REwRCigiheaUIH1ULLvJB+TK5T/WkUWzsIEbZRcxgWk4TW+S+GrxsrBxX1FeopWOGDoggybhdDEbUxMfrFdzeYtSDH0Hz6xwgImxSxSMeQ+kra3UVJ59rw6FrO6rImk171m8I/fqDMLGma2NcIMLaAigtEdDXVDAXEFL9bnRcXWtnY9ZcIbEJnx1kHlvxo+OURlXHL82fslhmdZn5P622UYHWyJXCnrFeBTR4jARNm1Nz1HTZ0rGBMHVc40ek5Y/Oslh3GPjZhoBDzKG81i5ZnySjWzxESOXgf9C9Aom8Xo43sdyZ2OgH1gfW977Z69bMDRIBjd0RDXDAUkDPBiDWN2i3xxhP3SOMuE1Qtsx1sNKlAOgoz3mZQc91VkSEEXAlw1vrO9SvOc8Ii4xNZ1sxXCmsDJEu4vuOO2GpWmyLYhdlxzV0GKi3+NWl6HEHwc4di6Vn0yD/gjitdSAEm70z3boPebkkWSC1nQ7nQ1c+QOklmxa5RHg4zJvwU857oGAdNHMLqjIaFeAYTPi3VWhmXbzL3cHoimMho38sfFIdJgm96vnva+TYVYqfKSnvN87YpHai/M4PvSAl5Rg9LpjIqkz61wfs5ElAFX3FYfrx64bPnHQed6g8HGOs7OtWBATwC/aHymGRIaCW42xBvAGcc1uK2OYadP44J17w6UvoRd6XfJsR27ym8olkyFku6ACghGdzRUDQUAOWNgVYaJJkQ/UBxa/fCfy16oKAJx2fKi9Uunth6BLHHdpWg8TlghgNy0d0Toa3AFGZrQhrQv/84ZxpOZ51s6mCgPXGhyvgA+sJZxxW2BnEG5oq4tVFBqqxjPTHDzrw9I49K5SrXXjG36PPDYcR2+ZYQlYmPwipAUroaDthZ7jvm+47NhWDKDSroDKiAY3RFgGVHflNIFqzIsJcibD39CuRfd8BisS45p84MhuZ4DYXmVdiw5svZrea+5QcAMH9xBeo2vlOy6ELc1vtMhAFufoZZYuQc+/vV5BlQglhj1hHJamPm9+Xy5Kv1OkNfJ6GGEg4yKs0qOgoW4hqEP8CAY3fGgFs3GUxkG+Yd/kBf9HvmXrgwJ5S91imGnkJ5Ysl1Wi4O/Cg4+qBooTDf+nLVO2TWPcT/bzXanexf42rBTYp/hLKqGAdWruG5ixcwdBS2uc93FXelnf/6nxra0h4sVHy4cZwXhoyAlOQSC0R0DRtRJMKbl2cNfwYvW5bX2S+BK/hS0XJH1/fpvM563a+kK6JBFlaqyxDrWu0geqt7PK+RLU3XDzITiIGBvKzG/HHDNjXULIYwLyOz+xQrnUwejVCC+Zc0QzJBE2bk670m7032qztvV7y4mX3EGitJmHdOODAWls4V15P28TWbQE+C0ncwLMd5yBKN7tDhh/K6rkzYsD+MemeZBgno5dHltSWFBCke4oYzv6UrElE7L253uOTJPTcc336WobOUqq63dyaICVDVWLo5toixsMRRGrED0lQDXgmJBDMoxJBQHRjCSjWTesJm8bAHniqI+OQ3nSjHe4y4ZGYzuEBhTFtdOSjSQQtw/tozTZeSU83nX9od82WOLbuVhT6RoeD7XuAVihbSyjcceY1rZkI5C0neEOmxUCclMC3HdeLs1yOlwxD3SmVNp6MC+BydsNTKkd2vbBlcIIh4yxjtqqftcIxhdhZqGtFYW1+ONxiUPbEz+3tgKUaMiodhlQm//Du6uC2VYsQzHisuIT7naKcEf896f0jFUQUJ9bQUzHKHLsp+jqF4GVujAk2S1n7X7ZLF4g6KWtnsyqh+ryXYGycgMgzyY44QdpPHUqlrakLoQOwzm+Xan+0a7032gfp61tr0OrMgRnh3kwymMZcwHNqGIuMa5DMKGonRpmAb/hmP5vuOzQfBdu2lhAxl/LKh9MSbVszFhA2kY95GCQS+WzZhUCMEOm2gebkKasOQQRTsbMANLHJ/pjiMPgQdK4nEVKZRkFL7krnGPjFfsgvZuV5C0Qv3sHzvJyODpZogp8pliz7IJxRG+VzJlisnoRC1VzvkdpDFrqJ9m9nmQQtRIIQ4He0IgEyK6fPfb1GsVpDm15mfxoOOYJMYpKTlJDOH9uwYzzcMthG8qtI1yPWvv7W2vqSRuTisCsnCUVmKrGlaLCZKRQDC6JhIqTpVwC3O/5IiT6gfzHhlxvtek92yPaA3Za6uQUBqkEKUwKlHdZk+YPOEbA/Zt4zJECdnzNHXv5RglZ2JrcBMoHq5HX8LID6RxXrvTsu9Ziy2Dq/YnGspjdcZjPQ6B8Q4cb8nIYHQzuAxpWc1+zosqPtw0jQfzLmmDyCjp0XoFoiW1qtZsOGeKklTwgOJRiOoGJe0Bec3cK+r7yi/E3vbavXan+wWOVhLQVAxb5ORMQpEBUiZmE+MuW07zBNWLNoTayECmhQ7VmQ7BbeR7cEl9bou+HxsEo6swhumoObU7TV5zwEG1Kaj61xUlSajumQ/YjjepVhlHJQloeFVm8s+lSrYocDJASsII5iyLmiEgYzYkVNlxpRY+sbUjVdyS9npz8YePDYLRHRNMo1OhLHgD+JH1WUGUZAAqe+aDt1No3R4PsZ2jwj8GXnZ8LhyfzT1KBredLP6aCyPsk3WnOEX+nbe1lp37UgwHNRsqj8e2007HNsQSFTVKFh3B6A6Bin3IfAkN/dkDZJcCjfuOoggwiiLMffg887qxTUdSbd6yyS6DC3B6qkdxRHBrKeTpe0j+94ri9yZGKfYS1bzNhHzSVX+mW/wYz1w/guh0fgIGMn8htISn9pL77U53H3eCb2FxrI3uCMmXUnK3gwtpi8GsA+8DXySvUWvEJXNJsoEKWfljS7dxHaI/ane68YC43yjVXwFHC5eWgo0r6hl8zdK+qOptGiXnIqKoj2y8D5HjGNLBQAsbPQZOkc7uKsmiLgyOldF1t4kRF+XDItYhqnrD4zxTQQwSL3eVer5gxnnV8cVkSQ87JlZVIcvcht5Xabx4zlu02G12NAbR3BYFcVFLIfUu9TI6Th/XrX7LIL6MP4nmOAaNwv7ejui3BNG6wzM/FiGH41YcYRYpXFXepMGfFVfbne4tT4GDiYRMNQtrlHYhrviwW9vNoammh4Pg2m7dePE84asUY4gf4y7yWEQkRqEBHm9Xx+kTsuIJqN5ZeAe3yLrunNwnX5RxHxlLvk9uf4KTPPpz0L/s2JZeN6lwPHONY+XpkvcCGw7D1jAUtsqmOmUdIFyKSwnVSj1d2zVRheGwAfwR+Xt737Ps3GNve83uO3bcYCVCnXFdu9FoTL1wWlx8HsUhskeczgMcYPXXs8TkGxBFT3j280DfEJcH+SIeUEGVbREQCbGQSV4nPJqnZdh3hADMEEUfmYxQCQZhTL+EgOgB8kEsTYo5jtN7U/a21waKtZQIogQsIEq0fAuGcPTtC4B+gz59muZMufCuGOubXHAc3ngP+PyiJ9A0jpuna470psHUMINhvqmOScI3H2yTm4viNOo47kUkid35UDqwT+4hTVHJYx3Q0yxg8eDV8h2TIbOkMvsNQfQIxDPK082VkTv2mVAQHyo0It1lDsq2x4FjZXQtLq32WF8BTiKvxUPgI+AFKjUmpAXiBETvoCq5MuQeqroJgnWk/sGy8dlD8l14AwKAySdCi1KZDYR0Wm4ZQuc2o8HEBsX2VDbsHoALi2NldE3kOzNoyg0rSBqXU7tWISGbavWbHD7bo3Utq9ZJY2o95Ae1ua/KU3V5ugEBR4WEHFdXPPsMT376Ka1IZGbE6Vx4uOAu21OHGjm3OG7sBRdiinqiZbKEhhRf9FaP1kFG7zJHcNEk6xN2l2OQIAhYaOjnXkllRs3PeOYFQeOxSqpBuXNhSljeAt6hmMmOUB5vCXNo7rHQnm7F4od7FEW7Y9823a1vXMm5XGb26aJPmQIWG26BpIauyFBiTv7CGk/BkGLqFFCmXjb3SnILbXTJJ71ycnYD1itLCtgwaF5OpFMu9dC8jowja6v8DiN0pw04Hpghg5OQDxO8N5pEo1CJv1yc19dCaiHa/Cx6eCHG3fbGhFVwoGUZS4sdUuxtr/1YPXQvIfUUchsiP+XaAXGB/BN2ARnHCggowy4y5rmCHOD/qGKxzLhhhwmGDZtpA6qSawIr2tAEPpLFSrcf/Cudb303ordOXrM6HnLfR4pF93QTih5o7FjGFnmGmjdVJb9WwdsTTe3bm7k9ltqiAZWhdWg1BpZ3TwJjZErEVunwQ+BZ8oUuZ7QGyVNOnIsQT9Q7Oo/CTCkW3egObHtDjrsbmdzdoW/qAFFoXxhiLqdKAZOH6otmT8FhBsu7a4RBEqwwhfxYWNWYOkndiIRc7g4D4sezjoU2ulXa3ni4u85lxwCLr5hDPOZ9BSwOfGGumSjvNjv9RoimgGdVkq1KKX2MfNduAr8OkTHdzM08BSPHj2cDC210od50aNwkc48Rfxl4m7yW7txOlQKmARE7vNxZKpZJBdRlVHZwiM7DArooVy6opIEsxphLz9bG3BvdYbK6o3TSrYldsl5R14Ddve21dWB1Cl51wAJAhRYcPHCWgQ+UCPj6tLU1rPZARidop9BOFcTkJElzSTXdC67wfs4Qq6My5t7okqORiKsN+r+tHsQY/01wNc4bKqY64KabyY+cJu6ca9gGTA87+U4MBawwpYRaUexJKJWxQhhACz0luNv5uN6XhII+Q4oDvZ38+iJp8vTP9jjxJakaOB80skUwurGRBW30acQg+gNuQowVrWf4mOrrkgYWoZIAP2p3uveQOq8BAaMiVs9yGaaVUDO7kuDxbvtAgQtvxH2vyhUiO+Zbps+wCuy0O10VB06drOs9WlQJZ8wSFoGnm5AXUO4ZD6nvJiTk5y/DdtIFeMXx8J1DPkx3jP0Ijk83g4DxIanQY3NaCbUYfwgA5Pv3dkn3lHX5bqZdUdL3U63zNnmRdXMf2kDHmZPVABo9a51n253u/iyXEs+Vp+tpM/0BUttAadVGJ0hbTntjShvIyrAL6u99ZPZ0GPjmfTHwPCFuGzAaNiCyO0ebeAh8T5XnJkw2ppmQo3lFB8h3MCcn6Vk3tjROoPh+WhKSTt68dQzcBX6BrN9aC6JlZjjUMFdGF/f0JqdVWyVBpahkj8jUjlaA95USUt2H1qd9m4S4bcCoUM/qodVQErJmpm+ROQ+TNjTDdp6AYkdhJQ2ZvZ9FCclq3S+Q7ZnsdWY21DBvRjcm33QRrItbw9AZ2yIiX/pb56FdB7rkW37fI3i1AePDk7yXKABaEf27gsapaRmaEZ0Ir8G2kmNq8UJniVvGOrYQToK7c0Yy5LFOFPNmdBPGd3Fd26r90CqqztIQ+w8IqIp3ybfLAaIlQYOKDU+PFI6w4HlUYkwZUU+CLsWjAUUR3s4Z4zyPcWHejO4GGb+2gZyi1NKqtR6AAyTfUT+9Mzs6zgosjrO+B2PlOc8j93LCMEvVT+PvwFC1u++0YTIOcDR+jUltUQOk4Sw0ALCei1p9B2cJc2V0VcznKemdE8h2OY2ddqcbU+3i75JxdAXSi3hESHYNhHroPwaxYvW3Gprn7IEpyTmzCZFpwSpVN/Wbx9Z8csKILXEbyM8qE/LxXpDnZXuspkd82djeXD0jM210PUmxmCyu25Qc2SIvt8RbsgsW4r3ttZm+DjOEHcvgaozCc3YhJteHbjYTIkeEUZJZR4UEd1jwnhpE1KxTLJP1W1tCJshNQxpTzOlAyTPiYTyNs2lnbcy6sTGnJVci+r8laPaN7w8l5y/twmtefFPwOBUwn+KxLyJiD0NuFJ5zARH97wq4oqaaIeRjYE4ZMb6Y6wlSY9xHPlulScGEokc8KCyY6kJ4QhtTx8wYXb9Xm05LmoLGK/LmpDUdBxD9X7h5uca6QCZgfod8eCEULFRHQq5UM33uR+E559DudM8+w2f/4mec1LSi0F9uzuFhHJwlV4HWAIRAGmUfx9708u2Y7k3lNcfkZwBx5pTNBp1sZowuloZCk8Pf6dESxoU6BCJomLKIDeAGbl5uglvAvHLBQkjoFKA4kWaIIQJJl3uN4bUrdpFhnyYIPuOk3m7oL7e42AHRyM+cIrBi1OYKbhlWET3Dk59qcrj3mKWfdJQXJ1RgPE3zXZ8loxubGgo9Wl+26CNOr7ZkuuUUMK85PXOGKI6rEVCJTBzk9VE8hx3dHcDa5qjbDZhtxEY5sEYENHSh0wCopFrU+oyTL8JJYZUXX1ee702kQ1CI6Tr4waeVVzzR8MMsGd2EfImhGauFcq+2AJ+Aec0RLfaEKOYtpjZOJBQ5lQKZFBlGMjN2vHwaIZ67uEioyblXPeHeQr6HhkdmPz+52O1rPo6vNMo63gtjciIGYpaMrp2VLWgo1E0ieNo+m97voBEtYXCPtRTqobiFLAvWdLRF6/R7E3jfmoVEyMacpp4FVKOSJSCuOQxvWoU0hmMOmD0MU9DwVqbLkJsSCak57NVr8CF2GFyY8GB/5EbX4x2ZvLyYmvzZEm92x7hpMPimVOmxZuK20hgF+d8F4HeRghxzDzWoJJ5+XcvkDS5Uo5JZcWIBRA+AFxZssAowMCQLY9Xx3O2ThQWoaTwTSjjPNY+tMmZB2lHF9GhiEO3VTdlAXoAYWTaYk2prd7pnlYTbA0vKTZOoV9TPXRXfue64aYnvwNQxvAh8iwEtp5VBWnJs/0veM58/vOUQXjHglCBMyjaorrEtchIFgxtgQr3bluwj+2TPl/nwHSLV1wbNlOx28i+qePIG0t7YdmUsOHJPl2JMLwLiLBSQeqauUIDJwbsCfNTudCNkNt3g7opXgf4wZZM1RuS3PHXjiwSXp2HAnN4JIHrIgOu7tbXVWuZK/yFndIFLiOMGuGA35xTA91Wiu+kQyhnYxLLIhhA77c7t8ypUcWpSSbVZMLoJ+TYdmmhfJRQQG9OKJgid9RRkpcI9+TOXlAPpvY6TFjLAIC0E7lPoUmAONKazEQnggwrX999/qfnu+9/u/UVBKMUO8CMmb69UHsEZVmiROW5Vk+Y7wFSSarNgdE0RG8hiuh9XCAUk5DKgucROD3gEUUIxKWeXF44DDoMEwO+PeT9HiavImG7LkbRQyN2Dc2Ub29ra+hLwH52KPr20t/3qH4z5WAMWC/eAy47PtSa2q0LN1PAYRPmMp5VUO3Kjqy7AuvmZGqH61qKuUIDJeOgj67ULhnVKnXe1oPSq2v8TJHthYby2ve21e+1O9ws41f2doZXEt62tra0m8D8Af2tzczMY3IACrPcWRwPMO8BTPKpjSHHzqpTPhCkl1Y7c6HqwQ6pRm05Zl5FNH+8DV/e21+65K1SKhnUa9epKV/e5Se5jFpCp+2u4DK4AokPKS4P/GvAp8N+M/ygDFgRlOrt9BnDAlbh5Vcrn1ISEIiEGNr2bOlS/J6sFTmGUu61+nzs9zXmHIpWrSr0+wD6yTXjTuk89ZLPBDWWsdenmK2f45OTZxh9f/W+3/mr3aM4iYNZRtAPps1UpROjg5WtjN3YN6DqYBcqYC0nxo8j6Q7yqWAmaFmZnNwMmhw2I7hphtI8huuPwRszsL2Rl1UsPeK7xcf/cfzHFYx4aJdTEgMkiIdfpO7rPAOqmCYvy2ZOshLQ1ly7cmTpmNbxgFyU4kKOZhRr9KaAYYwM1bp9HvgwuGPdGxKa+BkPcs6JADj0m77WYGhzXgB8M2cQ0oB5cTShB3v8fqDBXqdeqQ4vSa47M2fO4NaArYyaNrqGbsEsmOi7IuLdQzFb2p9SG+jjD1XYF+Ys4406siR5EydbW1ssrrJ/Y5wwj6uTukElzwmQ6V1joX4DGOJqYBtSAv4w/RyVtIlkNu1gJeQsJbmrq1DGTRhdKWQ0uPc2+Kr9tqTr+yp7IkCItxxUxxbYr5P9ODe596D0rP43W3j28fOfnG7//f3zcP3fpgJWTlGSFLWGTNHGaHYNz53YJ8liwtbW1fobLJx7wXM/ieofZ1fRhc/dNXHJ9aMBFTf2b7U73E9zP2cQws0bXBeUBu5pTYnDsKnsi6uV+39ISuAx8r93pfjEY3gISil1pcRRICOA7DcSZPo2XocEDnut9v//iL19qvfnlzc3NjwfsxxQ2WZV/p8yQhGJGGuDZ4U6piGwgFmvwqw2g36DX78uJlikh2G93umfH+Zy0O92/IvddwI297bVvjms/s4aKhQxx3QIkx3Y/r77aAX43E8opPGcTw8wa3ZLeRify+qtpyMHO4lTxRN4qEW8JU0ecs4u7yNmFLWRuQApJ92ka1zZq7nPmaQWDC8XqPjO2v0Gu40C203ane4sR2Sye5puNPs0G8C5EP28MCEuM/zn5hofz/A1mN/E9Duwa7/U13OGChKIcpIavA4xJO7u2zIOPIsQz+6yelPvyPmcTw8waXfy9jSIriaahiynqtFMvK92N6x7wvMLhDWjh5xgZullRia+LSKrOmXbndo+CESjI6hmf9QHeqXhI963ii/v6CzXbeRuES7xIx3qHircaMUNH880I4GXoPzFOexIhBtsQ5A5ggXHJeK8j3OECUw5SIDVWQIUEPduNySpWo4estCDqeWzIfcdnY8fYjW5JkUJd4nHsqYPu4Wbjv40/2+mDr3QXjpfoipkgW4fofVJP0jak4spXO7fOLnHw6ICV5cwwahQSaYAgQjwRNL9e8XiuArek8QNkuMdUkFOzn8IsRf8xrDEsixkCorHCg8Y+qzq+OwlxHp9q0uwR6qcATx5HJ8Gq2JGEXKVZQw/8tsd8H/ncTRyT8HRNd/7KCT77HUF0eMiJL6skTFUvJMGtLH9X/W7GdO+Q3YA63s1VwDAwKd5hgcp3KyA2EmQWM6FQcdYE8ccHrCh3z21k7dCDkL3tKvVRU+XGCZm4+cuknEo9+/HZpZQ8nwzajwmlMnWlxOAS0X/So/lFiP5nJldS/mu4Y7q/Nub9zBru4G4YazoESnshnfUW7IjD6fubwG8inasD5CzuT6nvBI4NkzC6cbbdqNmj9YIKVrvapJfBqyw/rgukXu7Pc4ybTxZ1LgbJU0bI+GYZe8G5Xl3vMzamgMa6JoPATuCJx8Czal/X253uIfCX9rbX3jA37GJHRPT/O+HdtjwvQfPw9e2v/oAJxvr3tte+2e50/wLwT8l0AL5qn8MC4gbuWWrsYcy0gCvqHkMWYjCN9NWI/j8RNE4YMXjdvufI8jWTMLoJhjvfp3lLfW6KSSSDNlLStnm33emOjd41DV2GGccuoCQxU80E67mwvd1SL9OHurzIhGzG1EeqxQHiqowv2yENAUQ2g6EJ/G670z1Qfy9ny6OPdxX6txv0l3oF5cAcDpGD/sShDOyJaexrVlDyHiZktsOmzJgzVM3Vjg0j3RA0TlrhyXisBz4EJmF0fXHVgQ0iXctZBnXHYi5MmBS/uDCuvyGXFwGiFdF/angHFVCqNGZu/HQNipV6jsT5M3xy6ieif/7v/TPxxT8BfujyQvM/c8cWQbTsXwcgWuqlkaoGGe0t0ifVJ/RrOyqY9sTk5puNCoC0wiwh3+D2gLz6YDL5Qy7HkQne5EVThDjNw/9XEPUes/Q5sg4COVELtxAOPbKWPiC936+TZd8TKoYMSmhqCxVy8FT2KAhWuH+4z6qjLc9Ab3YQBPBmXS3jra2t/wr4ZHNz8z9pd7qOB3aU48rFooV8SaMP1JdBTGlGodpv2RVmb1J0+kwmToJ1L4+iOOooKWOxMQ2IHrO0iqTLaD6OayqQkL/QyAw2F4xrf7nJ4Qc9mihqTx36kEtKzscZnEt4eKg5uA0ujIG1pL2Ruvh7QHdra+s/h798SE5Evepx+Qyz6SVH0d72mj2oB8wmnM0PPGGKsnd/6rPnozS6CcY0QNDQ2cqy2K++0NaU2ESEjM0NFcc5j7sLxaASw3nCbtHguqbeI3u1PiR1V9jc3Pz+f/y3/+63kt5aAnxGoSJOw1Ulp39WOhefaE/AjMElEzAkYouzO6xjUBlHaXQrxX7NFfSFVlMLM7huvXnRA4aL4/QmaGxmBZf8zAPz94ldg9pxUemdf+WXZGxWY5AnXuU8Cvf62Xanu88ChpTmEWpW9o+RlEET7wO/Mqb7kzBlIZwjM7ol2coqbr0dXD+hfm8ikx5N5EXsIXm9VV90F//T5AwuKKYx0GTau0rRv45R25UGd9wDQiFm3VKGPcg3zgZ2KBpc1Ge77U5Xt+pJGBC7tWHlb3SyLUK2bi/reDIyZrkM2AsPnczwfoV+QQ+BpzVemvfIe9B9skq3RcEdCg3+fFP0UWBO73OfmaLzAwdY9XK8Ovh4xjFw5EJKQb7x6BGXfHdJJT5b0L8OfGCEkdaRTSjTHmcOG7Cbj+UKodZ9lopFPMNipo1uTcHqmGI8ti4vb2p9ko4QN4DXgVeQF2of+D7w58lNsVL1pSEgaNATAMvsH55rvvf/dXtf+akeLaPYQcQVN7ZT7VjG4f0WDPdM8DqPMRLcinIKOhGvaX7me58yc9KB02gXdR7Zc9HclqMQZzKYyR5pGg5aCJD2R3uKnBroLsBNim/NpNqtLxRKelENi4c2CyA/E+mLZfb3L7bevrS5uflRvWObBFI5SgGY1XZDUdwCxoMBMd3HSAEmh+NYeH4fImexVzK9Dpd8S6R/ub23vTYxttJMe7r4BasvIS+Oo4MBPeARkjwdAeftUsEF9F5HRYK36+qgv7G/e0ghfAHkZhFR8mLzu78NvL21tfWfAX9/c3OzZy5sxNxOF7Y0EYiIotRfhCw1vUV4bqYOdb1j13dWcZV2vPRMV7/vOpHeUzUBptTopA57IObV09XJMhf28RuR4Lk4YDzAjqmcrW8Q6aIR13Lv7G2vXay6362trZ8H/nvgGeCvbm5ufmgckxmjV5/W5eZWQeXtfXuS3k/A8BggTZogZ8TLzpXd2N/bXjszzmM0MetG147pgjSqEe6LqKtSYvxT0ole0HmGZ5Az0QM+rzRtvwLi/5Qfp9O12td2a2urAfy7wBbwd4H/cnNzs+cKeTTocYqH/UesOgR3poLPBW93NlCnetSimGoIMltiesoTD0nOtBL93vbaj5V38TYINf0UK5KdkEJNH+ghY70b5Fs3m5g4B2/OsYG8hvp67pNrgc3byuCeBfGP5Me56Vrt2Ovm5mZ/c3PzvwbWgL8MvLW1tfULQCIzyhlO8fj+pyxPydo6nZEjadkd4IRSE2NZJs1YJkua2dhAamc8RKrKPUQ6Zy8oJ+FF9X3l9u6jYNZjuhoxRUFzjRayr306wqk+aj6F+UWif40VdpWPT5QoovdbgsYZx724P+y+Nzc3/2Bra+uXgH8beOPPN+588zv9i0a4I+IRy6v69+mgEL+Op7FXOYvgd8hmdz0cEpXHHDFFyUcn82CQkuC0lQZnOrygUZz2FlStAkthwsg3a8Q1vT8E4lG7qf5y583PtTi89Smnfq5YvjvJIg7XtnOx5F6EeFfQ+JQJUwrbnW4PhH2N+3vba748xrGDJ2QwlB2o2BRzbJhJT9cRrzlB7gksUD4Cn3Ly2EEWKfis3hdGfVC3trZ+7hRX33vI8qo78jVJD9dXViyA3uEyDz+F/isPWW0OIaRUF65BbaZDgdOEsg/aJvSQFWUNVEx3iG2ZinsTL4g5cqNrEJZj4P2fif7g32nws/9jn+Z5cq1jCll0czMzoZO54DhPSYJtWIOr4sM7EeLSCpebBywLaHj2My1P1xZsbx78o+1ffq7duf1AVdRBGOgnjhIPdAfJ0W2COIwQHwuixxDFwE67070J/DrV5BrtvngTv69HbnRJ5RSjFvSv3Rc/kQCtzKNy8eoKL95d4ITKeCdko90uJRd+2tOKOUeZGNDQ2hQR/W8IolcFjcYDniNjBKZi4rmlJ4fSbetYckLNDigBIyHXPh0irYdxnoyT2xJwwXg215GtmM6Q3dQyucbYce+TcZ6EjVkwujHpcTR4wE98Snl/e4u0KfqkSvKRWS+PTyfTMLZGhQrXkeWxlXmmxwyeZpDcx9/+2ons+vcvQHTaHlgb9D/rI54C70K0oRgTh/i52WOGN0FYt9v0sPj7wF+zPvsnE9rXLCPGaJ9OpodxgBz0dHeIiHwPxlVrOxF+7zUhb2vucwzYCwlF70E/3FfIv2haewHSbsBR09KHNZsY2u6x+jxtXmcbkgujn87CwisG5Jod2LOI0+z/6/9y48Pzf9h/4R/AynNyKbc326f5xMH3dQj1jAqf514IaX3PaDM08WTt3vbaXwf++qT3MwdIKDpfLaRNuEU2+J0gKwk+RBpl09Mto4rexGpSOunZ7iwYXZ/IzFfKpv958rw3vuvTyYwzuklARZgP5wPkw5ljKliCIs+Sesfi+iOW/ugP+l/kgGUGhIp80/avg/jAs86QGGRwU7xMUBs7CpjOVwN5Yw6B96w2XmYRlfaIddWqdtQK3qta7y0jprvEhBXGYAaMruk96Je23enGZEbWdwES8h6y1tAF2ev+QxztPBzrmngwwqnMPVyD3F9s/e8HwOdafPV/OuSEUmYSK6d4/PrW1tb/ivQoVoAzy1y5/pCV1aLqk/x5wCoDDKbAIKebSdaI/jMife+GwSCv1v49t2wron9pa2vrF4EPNzc3Pwv5gHJYbe7NC/sO8LUq16rM+bKXk9q6IkJ2ijalXcsoZFNPoumdTB3+iyg+BKpSN0wP+VlD/q8F/Obe9tpz+Nt56HVfAU6qde4DV4c/q4WAkbjoXz/DJ38MPAF+1Kfxs0aBSuMJJ/+Fh2L5yXd7F7/6GSe/0OLp959y4mTGbLINnPYeRU9tR4colHBROrUzvWcdBmoNZ3C9RtQ6LtfvWnksikD0T3PwEPhfgD+3tbX1/SWu/dQBy39WveRXIvq7W1tbVzc3N/t6C8fcMBseZE6a8wI1Zw0O4/txu9M1OwMnwHnS/oqVjWg87SQaTMHoug2s+A3gsprim6V7lUcdy0MW1sWzA+nedQNyiMknNQ+A1c3NTWGR0Q8Fzcd3e9f/hk5EPuWZLzc4pF8oaDARCWQcOKaaETrvqDqyMG4BHI1oH9mV5BxEyQErG5ubmz/e2to6Cbz4iKXbxkvebCBeBQ62trb+H+APgX92ir/wS5/y7M+ovMO6MszXNzc3D6HM+VgIQ71aMuDFvpUsD9lUnlO5HHFJXc/Lxrbt5JrGIIZJwpSTaDAdT9f0nq6d4f7/fcDKM71s12biy143Kduw8dAWdHSNxEdAdSTkQjZRsrm5qa2aMbMQAliRRid7sfo0adA77NP0dBPm3ZrVQqJCWEDxy1zLDTLETr73p5T0SNvc3HwCfKfd6d7BuFY9WreAXwV+Fvg54OeecPLfNGYHLWWYP93a2roP/OkyVz73kDPLylu++gxP9vo0nxzSeslySObRQbiP3/lJStYzPWQz0f0q0MctB2Am13RBVSqAU7KvI2laMA2jG2f7aUQPeO4zoIvMRNt8x7qjjp5+Rg6PZ14f1qNE4SHMPA+xGtF/HDduf/87/bVzPeejEyGg1eSQHq0+EBkMkvvA1+odjlgqMbj3kbEMbyv5/ArCCNxG+0guuK3V+7iGSlrhWm1ubj4Cfl/9o93p/hsUDXMb+DPATz5k5a7hLTcOOfG8Kv/VMZp5LsC4Suaxmjgg49TbIYIN/B6y/kN7s+YLX0iuVcFRzXinYXQT8t6THn3GMa2KPdPPsTysxy0m5+k9l5ZIChrPvt9f+4UWh7/fo/lFFwNE0KKHOIToLrK7R8wQ125rayuCX/VY0whKDW6O8iWAN38y+tHfeiKe/Z19ViNkllpTD02qUVL1+Cq+sC7D3AP+BPiT3+1038F4N/o0b6n15r4AQ8Xmn3O8Qwa9KxciuIZMfPs8ZIG8Z/qZchnsHKxQhStncCSYhtH1UsIcy9YddRLy3FHIRr6kzoYs2gnAHbXJiwsw1RsFOc+jT6vxGa0vgHgk+dFERc8kagHnhtEt1i9pxK+sRfT6gmYj85ZTYyogugf8AsUXVEDUA9GSoY5WvLe9dk/GpNOEThM5Xb1Nnu851nheBcNcyfkY5zFNG/Y1UB6uy1GKkO/ey/hjunW7d5h0sFW13edqnsLYMXGjO2EX/iYyMaOJ0AfAKfX7iZpx3Z18BVtuFAY5Ml8xS40X2es1YHkeAoiWQfAsj/75Y06flH/nMIqHtgOsCxotaTyjB2QcNGXE03tyFWk0tR6C5mR+/TQP33zE8nMg3lfx15ccL/lLdi+3aWKMzsc8IcFfbZp6yGPa16p1z0sT7NPCkfN0R8Rr5LsLLMmfEcgpTB3PNCZXwRYhS4xFn1R4h6ba33Hyes3YnMiuUYPHLD8DfBGPgv+Q+4vJPKEm0NjbXjujxGb0MhHSk75HaogztDvdN6T2bs6rdXGwe47PAiYLX7UpjKDh4YEdqrg/5u0PhakZ3brx0YrLx+SGspHiugmFCraoi4whqQdkuiTqWYDpedi0MSCZwEwmsfcB0OLp9w9pvax4wIM86Tg/gKZVSnZ/t6BPO2VYnNtdLEGqMe/OdBhmhoc/TU9315i+66C5o0uBiCP6v9ficPWQZ15QmVyfZ5ngbKYI1J/ibpB/CBLl3V7ALfZSZ9uLgmkIvtj7uNnudN+IaH45QnwqVKZ6wL4T8qL3QiVw0cUWyGTfexM4/oAKsLuUDILPSJc5bmMOVYwN0zS6lwzvQwfNTRjVR9GrhzxjTGW9nuUG8BHFKWYPVU5a1cN2tKq5iyzgoCjKMh0S9axhGhQbR+LlDRDrgmZL0b7uVKAGqQFUd7lIxY7+VYj+ToPeeounH3/GqWN3D+cYSkQ/9X4uAz9sd7ogudrDJNqOBLMU040zClID8iWiTq9V1Vy/QMFD5SmIuMXhbzc5/DNPOPUzyoDXicW+UlJR8+I83NwFQWzQAiuFdfQA2u7cvg/oXm4rqPLwra2t/wD4lzY3N8M9HDMsJ6dA6xrhvYnxV7805Syab7Y73c+YcYrnNI3uHbKRSnPuTCTkY3kFnmeJ12p6qCruGLUOacaHtKp4zC54605n8UYuMBKG5q1G9gxoFeBP+z/9e3/Y/+Jmu9P9t5jhl3OeYIQHjfxHoVR3oMNT8o4n5HMuFqJIGl4tgF++v2HCFePCNPsu3UC2Pd5XP29Y3+s2yboN8g01jXxeff8xspfROnkGgY0YQz8Aoj75NuJJxePd93z+bsX1A8YD+7moExKws9X3AT7ov/I3HrKyRPlzFFAB7U73bLvTvQX8EMR1chrVOR2Oqg6Plg1YQeZrPlQGcgPJq+7hiPepz3qGSRu0P0URpUnGcJnKczA1T3eENshmyw4q3MR75D3qBHhE/eTPOvBtQHNQBdLg1ixlDRgFI8aRPdnr6OUhZz8BRexKj9YpdDRMwVJM3i6tAjvKAVuHgpfaII3pplTRKrOi2MFwiSsc38iYpZiuDzG5CpbU8B4CiTkdieh/0OLwpw85YVRJ8XSY1uyqiklzUGPCNHTuUJK9TkBcNTQO+kEgaWhcKtG+uK1+ekt1HUgoMpJi8w8f88EhZl5WIJXgb3IwUcyD0U3IazfodssJGb1oHWgJWD/Md2uPkDe8gAFdKXR86iqZaMtxKohYdGwAHxttnpYI93bs2Nteq0wJM7CBbECgixoEcFrlakqdHpVYh4yx8ioWNdXazy7uJgcTxTwY3VL5NdVlwmQ96JiPd4qR9bpPb6xtUDV9zYx5h2nogsB4OTXCvR0edyj0rpOz0Xan+wk1RWbUvXmRrHGs7oN4DdDdgMuMr/ZyUT8vKYNdqJgcclAYGTNvdCvE9BLKWQ831UXXf2sjbpYH2i9d7FDQmlvFpwAnEhZAzWsGcAP4Hmnuw8xxiVXgbUXrrBymM6rWHkCk+yDqqsK6M86GURBDHSbFpDDzRrcCSpSaxPkIcUcQnbJCBLFjO4n1u6le1qd+5jxgtjGtduoLDeWZGrmPyNBCiQBxZon9Dw5Y/gmlpbGOZCSkIcISA5zg7gYc6z8c1K/HyHCRTgD1Kcq/HunM5qh7pLlc/lrJDI8G7BtZdRs4LnZCuWD6kSjKB0wPoWXT+GC1zvqE/CzywSOWlkk7PtAy5BavI/udPe95v3zdgBNjGUsdkGXyHUDM9uwaRzqzOSpP10UDG6fLHztGN8gudqlRDS9kQMDQsGh60VVB9Bpu2idIPq7zva/YDTi2qF/I/chOEmUO3khnOQKOyujG5GhgwHhdfpuru48cKXvIi7/DBLxXdYNfR3YZ1vt+l4otpwMC5h0uml670zWcnGiZIscstpb3GUqXR5zgrlSL1fHMnAN1VEY3oRirGcnlt0ZDjBFVt2d5qHpuTbILxOsgLliUtdotpwMCFglW+OEWebaDix9bZyasqV+mGM5MJ0anWQZsQpd2PkTGUx8yeqJqJysRFivWlKOp4kjayE8qkP5KccCFCe0rIGAecQNZ6dlT/25TfO9jKsyEDUfrnNrOtxmuXHyqOBJPd0Iuf5yP49qxo2I125j3r3fiwiT2FRAwd6ioo5tQCBkIILKLJHYMOthFiG4htVp2kAm6hBlMgh+VpzsJ3CMjCQpkby1THOMQ2bZ7kiOhSySnN6F9BQQsKjaQNE0bJk8XLNnPBodXT3HQrSCKdaSIhHAJ9sw2XNnMiN5vCRp6ei+Q042vM8UWzKrlsymS8xC4PAttnwMC5glWaygXvq1+6nbuhy2e/l6P5pcEzWeM5faH6Uo9ScxrcYQZaL+6zIOPH7O03MsnsC4jWzAvGfX1rzHBhJYyrkfWXTYgYFZQtyeiAyats0/W8VvjVSQz6ADV9feQZ34eWRzRYIYrDefV6MZkgfbGQ1aaEL2FNLTGOaUkbDAC8WN4IAICAixY71U/YwuJK8Bv4OlnWPI+fsX4/gfkG4lqKUY1VRctFWo4RBpiUxRrpjCvRjchVzffeIdsZDRurDd5ZgTgg3pYQMCYYL5XGLozzSaHV//Dv/33/tN3eld/SdB4ibxxLX0fVanx2xSlGMHNcmjMWkjBxMLEdA1ZRrtN+AFG++0mTz/q0fhFaJ4wNjlzcZ+AgHmDFKhxhtdEk6fvneTTLzxi6aegEYHoQfQQ6ZGeJufFih5EjzDebYfGQoJkKtjv7SFwaxgN7Wlhpo2uSkzVSoR5SgaNGHCfCPFE0GiqkVUL2gySjBt0rGPTkwgImEeUJL96wOeRLbcMo5zOQoX6Pco3m/Ab0Py+BBD1jK9nujPwrBvdT6y47P297bXnhtiOYwQWD5AsAy1SPvQIqQaHRMWVsDjC9wndgwMWFA4P9ACZtDYFam4pHQTbUJqb6iHballeL/tk3NuYzJGyDbhWFGsy497urPN0V60bs+pbcAAS0uaUKZX3DAhtcGG0KrW3MoMLjmOeOa5gQMCYsKO6/uoGj2eQxvM2RU680WQ0uk++YezbKsT3NsVGsmazSh3zTbLlxCGSm28omc1uFeisJ9Lukze0dnfXqjCSbNogpuPNIRa9xBcztj7XYY5zwEre0BZG8XjI4w4ImBqGZPXEjkLMFWRvwly81cFIMPelmw2cJ8vDaDWwj8lsVQvEKxB9F7njHkR31XdVm1IeKWbd6Hq6udaDIRH3BkVFohy9JGvlk4Y1jGyqUNqekWrZLKLiA6cN7sRLjgMCxg2TRVC1PU5CicqXD7YUgKmBLT3X6EBtYwe4p8p8WyBEk8PTPVprqp3WIbJTzNyI0s+00S3p5loLRqNJJbmYK6LI0UvUzbf4veL6r3Te+L0GrRf7tBrZui6phUKIYabFNwICDMSGKJRuj3Md2enBl5fQKl+mctgwjoax76hlOT13la5CDFHSo/UKREtqvRYQz6KEow8zbXTHCFMYgwFeaFw0phGf8cyXIngM4hmK/dNAJgIekoVDCsH8UJQRMONIcLMPdF7CJzS+7gi9nVAJ7IRqz7mx71x4rgWcKzpG89vf7rgY3dgibOtMaULRC01wPniNSGS90mL1oSHILJrkE38Hjm2HooyAWYbZHqdpfReXrVjUzE1b6FwnC1PcRJbixxSNsSl03kcyIHxGdW5CCS4cF6ObkB8Zy+gkds23efPf0+upkf0jyYKIcIQaGvnkm4iB5TGxJQIChoZvxmW1x/mQ/KwtqbGLS0U9a9aRLJ8VGYsV1yCyY8a+JFvOqHr6Is7NLHLWKWPjgkFVKY+xqofvK2o686JvPXVDl9xxXWfJ8QoQKT6hvUxAwDTxOojrSJbBdeCH7U43V3aLfPa/xfikUFvImaCyOYWW6inU/jeQ78d5ZEx5v93pvqGMqwtmEwOdBCxb/shwLDzdYYPsIwTn7wIn2p3bD5CGWT9oIL1nX2gjIGAasDucRMA/RXbOBao/+47iiDvIZ1v3CdTQJfl65qjhm/HVbV4bGyFE26DPVAjvWBjdYVBxunKHfNYWpM7nUytxJ+pWvc3TdClg7uCang1rC+wW6K8iCyPepFgSr2O6ZS3VNeLsmCo1r00o5mJmMoS3sEZ3VKMV0dsVNDQXMB0xHVnad8hu7B1kD6iPrcTdMN5tSLoFTAr7FIVpDl0LwsB3KbbitxEG28Ba9zWy539QIiyhXvNaMwk4yKAfKRbW6JKbnlQzWvIBEf9bhLgoaJy0RtgrkgIjAE6rAomLSM+1ZW0nMfatY7gJFQy/kXi7XjbCe6Z1MyvyURXBw58K1pHeqOa69oCvlizvLZrAXRzRb3e6Z9V92zU84WvA7t722jqDHYibZIVRh8ATpGi502mxkoAzzWxYKKNrMQWMWGreaJW82DvAZalAlia8VHmZaKhkGBWmOzeRyYcVVbU2ML5kHNMVtS98fGIlsPO+pKmlx/Jq2fbnCLUHy4B6UEVHywMXzBD7iiaQVaK/Dlw2ntdVVEEFeSZDROYkDMJrpIOCAKJ3q4Tl5qFIYqGMLhWKIL7auXU2Ivq+IDrtCM7HmWhGpOq6tfJR+rm5P9/05TUQyxaVrKyFdCwXtNcpVrWpdRLL4OqFc9ufU5wnV2fP+SM8lgCJBH/RxGt722vrchYYrVjfjSL0FGf7i1ogrsrEdJQw57OfRTO6sacIQlXIfPuggTiptHT1OuaLneDg83qE0cvagcRWnEsjMf+w4sZQzG+4Em878jicVLVkAabnPasiqVeybICFCd1/I15aGOxj9TOh2I4nRoa9XiWbut2puM+EjL0gAD3TnPvZz6LxdBPccnFPQVyCxuk+TfuhgezF9vF57c9f3NteO6P4vK4HOiGL5WrcRwnqSP7g7YeC6LIRAnHBxY+MPcseICk/P0DGzlYUF/OH7U731izyFT2wB5RFcwwmDZcM4khQz/hN4FHJTG+DvAqg/u4Gksmwr37eqLhbUwayX5HBMBdYtAfaVx4Ye8IDGk3wx4OGiBNpEZBCkivzmtMYWUEHUmHfE8NKKHgUQv93MTtP9GYjJK1tV+53/BizdyXIK7UttTvdv7K3vfbNcRzrMUBMPjxzXT1zo3q8uppM/y0wnAL1bL9ISYPJOrAq1OZaa8HGQhndkhuckL9pkJ37IZJDOBYYBugc7hZAcbbvHJ3sI+AFpIdSJmO5QV56Um1Hx4O9qJrAGAYj09vUdXs9fx7p+XyDBZiVjYNxkl2ntPhgH1g32lgl1CsqqAq7oUBkOwUTTGLNtdaCjYUyuiWwb1pBeKNs5Zqe3CADlFBdB8J1HLvSMEE+URi5qn2mhfOG5z5s8msHuOAZOEpHkzmCXUhwGfio3em+UMPw7oAwr9MKklr1nPrbIdifUh7PVtmPh3Y1roYCtTEPjIQ6OBZG13PTalSFCaW6NNhriOhfEjRMAxRbi4wyalsvrQAZj76Fu9pHo04CozLy3imMaBvjku9mt5FfPcSOBOsZ6nmhseM6p8awRLC/Ye+nnDqZOg6aGvavAb+p9rUPfK+qdOOicsqHxbEwuiNAP3ymzJ2H+tX/hw3EpQjRFEQ9sgZ5ibmsS02p3enGVIqF9i/I9tUaEcAjw1M2yeF2CeYkpmS216VRhwOqkVDMfmv82hDbm0UkuM8xHnEbLq9zA5lU1c9uRDG+qxyKAo88Jq8ZvQr8nb3tteeMzioXaoQudmUftYXjlA+FYHTLEVMULHcF8ncgutyn0TBajZRRygCI6H9DEK2VFU9oIxrRv9ikd6pHJAxvSdjHMuWpWDzGmf8GMlZ5wfjsHeBr8+ARVQxBObrYFu/hAOjrZMZ0C/F/ldh6m/L4bky+maM2yvcoaorE6ucO+fiuUa3pPe9LC8opHwrB6JYjIV/Oq0XMHTSulGvbwmoBZCLfOihash7e2LHKDoh1QaPVkx60blMNcpp2lEmFBLfn9qDuhtSLenHUAzpC7CiN2AjPAKoM4fMUp9qV72HN6+SL78bq9wS3Ub5LPoZrOhp6XQOiqTi016jOkkkGLrGgCEa3HIX4qzmKG97NabKndhClxayaM0uNIV+zrhEbBR9NpJf0LftYfBiVzmVky7UH+gC4orLlG8CPHKtdqbr9BcJ5YwbSAq61O91zBqsA8La32Wl3uul9GeaelazzFdnJIVegoI/JZ5TPAc/b21PfJxSq0yLzFxdLxiyQAOmdzzUDYRQEo1uCsqm6o2uwIEtqlT1QMXndTzNJtEQp22EoCtCodC7FKkhxBpUtV57bO9b379iG5pjArqSLyLMKbJRpTAyjP7FrC8uQ8ziLdHAr6ZbjwZbkHu4hPeFzyGfT1drHxg3mu0pyrAhGd3jsWF2DI/JJLR8S8g+4FhABtzDPCSmao3eRLndevSwx5Q9ybNG5YscyZXAtb1KHvsYCcShHgKvScdW1oEKMp4ih7LsSY1UmLHPO+u6ytb1BjBpz4L6MDD08rwZd24susGQWjfI1KoLRHR6x4yVLzD88fEf9gJ8H0UN6jmR829w2dkCoKrOCGHqvzIM1YsdLJdv3HqfxcieUZMvnvV9VXZSc23tUYxVoJPhnMGXfDWO8Rt1e7GAz6HVvEAbdWghGd3gk5GNb96nQ/Vd5wnpKd0UaUeFL0sUUxdAfIw2unUGOLYOgmmpGjZLte4+T7GW0WQUP8FfLGdtbWHlG37WqxCowoAZfp27y8yXf+VAmLDMooWber+soWcYBA28MwYsdBsHoDg9vkq2iEHlMXkbSFZpIsKrX5Mdi3dAmQH13j0J5sEY6tYxxJ22ukKcOpcdpZ8srcosXWZ4xtsI1ZqVXZfZFlXiqT3PAM4O64fhs4L6yc8L2ZE3Dq0rPh+4OHGAgGN0hMWCE3/EYxsRYJmHwC2UnLRTPM+f9gjTGJ9wGF8iLsDuSNlo0XS9b9kKJHaCUGsViyzMmBjUMHJVeZXAYzLKSdF+s1WTAXIfoQ2T3XnP53OA6YHsJRRGlVYwW6Wr7IYwwBgSjOxnEDsN4gHzBNAovgIMRcRGpzZByfq1WQKbm7wOHwb2PTNItWXSm2DpWc8U+jhfKKOW8XGHKayeVBmW3J4JxxJbdRjJ6n3ylV1xjk3bo5TVf8rWEQWCL6puC4Tp2uw5RbjAocRRsT1ZvNy3a0WGxGucZ4EEwupPBPdL4WurxLSE9mq+ANwH1hitWa227IN6jpo0mVxikwVXeibhW4skmFI24yzBp3QfzM59X/J61zfcGGcCy70fgrX5syBFeR8Zc6xZgFIwkUj3ONU0vOxZ9/KfJs1WqSi/ugLiqinBcWhSxsU20F1xl24Yso2V40+0tUnjoyDH3cnmzj8qJEKjAiNjbXvux8jqel5+I7yixcv0i95DFEzoeF1uebIQk7h8qus9N3MLtrmOzD87pFeMWg1dTYq+4dtn32vDVEebesfRfAS4MIeYek49Px/jF7suO5Qry+A2vP7WduXPKhO67D9TPs+SqHgsPiTb8Cal0aYGlUAr1rLyIfHYMoy4AlozjCBgRwdOdDM7hfzHKkDCYEaGh43rmwOlKyNnb1Ms1kd64d3rrODZTtUogO3MUPCiPF3+ecvnHsu9jioZvEGJPfLsuk+KeIdYigHuOzrMfq7BPIT5rDHyOEIt3QN51FDokFK//A4oaH2UshVIY57VPKloU6f8WjYVyZAhGdzJIKGo23AVODBAGKS07thBTTYzHoAsVEGGJlajPXcdgdsNoqnM6UVWjlcHJtbLvC4avwv4SRlf0GgSbPvaW5EUX6GS+Y/GVjrsKHT5PUTXMpfFRxlKoCjM8pDFMYU2AA8HoTgauLLERG5QZZ4sLWZfzmFA07IWpbom+qkIqVmJMQ4s8VEMzwHyhL1LB+1Eeod3Zwvb8BiXffG2NfBio6FUxjmwmDiPgkjFI2d65S33rLNIDTkC0LEYLVCsdd6iGlRrTUTst6PVNbeZAExsTgtGdADzT65h8mx6zqmcYOL1iHQ+0PyfvqaqQhIhsI0G+26vLuzHOo7L346Kl2S2SCsk34zu7jPXcoB1WVPQaoH+gaX8pVFfaNLZ8YFQJuqDpZGSGtqDP4OJn+wodKhnTKoN32YDjCJ+U7i+gHoLRnR4SPFU9w8BffitUBjpf6qk9VWPZB8rDNdEo4xar7askS1aUUUEDIq5ASyszKAlDTJftc3Ygxj+AxI7wTZ8886AJkfmZDYNOZlIIcwbYpSx3A8e1GHP11y6ZYXdKMoZqs8kgGN3pYRpVPTsUp7ixZ9mEfNzOcMG83OId8mGCA7WqqywWSA21uV0B3LENs4OTutvudLWHmlAsEhkHymLFiVUEIYCHihGhk5c9pBd6kWxAOCDrVWfcY3NbuYFtCeuaDTJ2o9DvDFwiu5E6bhwwBQSjOyUYXMhJTtdiR9jztIeraXuWJ0iNh5tbTJ62BNAEcQlPCbGCbairxGU1J1gv+wrwpk4a+UIoQ/B5Txi/63itVvragMhOXDWRIYUV4/qAjMnqfXoqzHLbouLA6MMgbYtF1r6YewSjO0VMYbqWUMw6O1sB2cdSseLM3L5SOstxvV3FErHDzp4bUA572sEtNo/DZ1Tsz3fbnS74GyLax6av1S7w1DgnnUh6DyLzOFpq25+3jHuOTqbOz/SITfH6usUVCUVtC7sIIh7wvb4WpZKMAZNBKI5YLJikfZNyNdCbUi/jU6ObBRSNqF0U0KwQq03IV1Dpbe4iY4kryFj3B3IKbhcQpOvc0wUDyKy6i9MbW59fkh4zTTJe8qBCAb3eNbVORJ5hYJ9PU52LDbvYA7Jrd1v9q1NcYW6rR64IAsgXQSQgyr4HGTd+Ux3Dm+rvgCkgeLoLBDXF1tVfqmWOU2zHh7jMiDq8Y5sPehdLgYw8awKkR3UT+C4FF9jLArgtf6SxYzyc3ntGWEIn/Mo85oR81wvUebTsQ9MMA3V9f2it44qHxhadzOURV4W9rWXkdfTNSjYg2ilTuQtJsqND8HQXD2qKncZZK/FAFRJSD4pDPBVnBmzPF6PcdR0plPJjpBf1NvAIOW3/9Sy5Nhh722vrwEt5NkFu9WXlAduVgI9we9nWRyn0tfKqoqnz6Vc47MTauEEfc0PFqm+pEu1D9ftZuS1hb+spsmTXvF+JPkY5SETO7wOOFsHTXTzE5PnAVVoIaVTigTpijFoH4geepNquVdba9+TTXAUQ2tjYFWvm94o7W+DARkgv2cfTjV0ebYUWNFXioRsUK8hix3Im7ASiDoe4knox/uaR5jEEnu2MIRjdxUPCkCWgNaacdvmr9uDMWKzpVdplrQ3SaTyo3z9FFkScAV42tvNutu2cgewhPVlDtatQyPCB8pIrQ4VMXkLqGjTVMdnG6gYDjFnNCjKN2BUO8W1r0P0KIYTZRDC6i4eJejflnSZyRs+nQKa/M2lWpTKOah27Yk3rCL+BW9egCmyP9cAYTNJ92CvVMGZ170VCUdQmGXJbATOKYHQXDFPwblwlvYn63TaKKh4s7gJai1cXRwwU7rbgMzoOAW5A7uylAedyw9rmK5QrodXCEPfClXScRDVawBEiGN2AuohLGA4Fo9judM82OVzqyUdNV3DdqLtTn9Gxik6uWXoSpW2CHGyMTwYooU0UFcqWAxYAwegG1EWCv9OEyxPb6dH6kuHlPh13O/a8Dmy0bHxVt03QTLQZClhsBMpYQF3U7ZoQW1P2eGJHJuO+JkXKVjKb9PoBAQMRPN2AWhgitpgwmqB2HfiafVbVYwjJqoCJIxI5znVAwHgxjo68I+7frppzMhICAqaF4OkGTBQzkHW3xWFGYiQEBIyKENMNWHT0HKW+AQFHhmB0AxYdgZEQMFMIRjdg0REYCQEzhWB0AxYddSluAQETRWAvBAQEBEwRwdMNCAgImCKC0Q0ICAiYIoLRDQgICJgigtENCAgImCKC0Q0ICAiYIoLRDQgICJgigtENCAgImCKC0Q0ICAiYIoLRDQgICJgigtENCAgImCKC0Q0ICAiYIoLRDQgICJgigtENCAgImCL+f9l89nrv5RmMAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9e5gc1Xnn/63unmtPz4xA0kg90rQZjRgNQhgZEM9CiIVtEiQRcLCxNw/yzzH4Jj0LSOv8rFwWG9bezZokIMwG2YRLFOH9ESfeWDEgUIwhyVpYN4R3DMNII0FLmhEjtaTp6bn1dHfV74+a011ddU5d+lrd/X6eJ8Hq6a6q7jp1znvey/eVFEVRQBAEQRBEzeIp9wUQBEEQBFFeyBggCIIgiBqHjAGCIAiCqHHIGCAIgiCIGoeMAYIgCIKoccgYIAiCIIgah4wBgiAIgqhxyBggCIIgiBqHjAGCIAiCqHHIGCAIgiCIGoeMAYIgCIKoccgYIAiCIIgah4wBgiAIgqhxyBggCIIgiBqHjAGCIAiCqHHIGCAIgiCIGoeMAYIgCIKoccgYIAiCIIgah4wBgiAIgqhxyBggCIIgiBqHjAGCIAiCqHHIGCAIgiCIGsdX7gsgCKL09IdjeP6NEZwYnUJ3RzM2rg1iVShQ7ssiCKJMSIqiKOW+CIIgSkd/OIatzw5AUQBZATwSIEnAY/f0kUFAEDUKhQkIosZ4/o2RtCEAqP9VFPV1giBqEzIGCKLGODE6lTYEGLKivk4QRG1COQMEUWMsaKtHJJbgvm4FyzUYHJkEFABQ0NvZQjkHBFHhkDFAEGWm5Ml8oiwhi+whlmvAwgqMg0NRHD4RpZwDgqhgyBggiDKiT+a7MFH8hfXc+Kyj1xks10Cfcqwgk3PwvS/2FugqiwtVUxBENmQMEEQZef6NkaydtqwAEvJbWK0Wuu6OZlyYiGblDXgk9XUzeLkGDKucAzctvuUwwAjC7VACIUGUkcGRSeNOW1FfzwW20B06HkUklsCh41FsfXYA/eFY+j0b1wYhSaoBAGRKC79wc9D02N0dzenP6DEzJuxcUynZ8cpJpGSqpiAILWQMEEQ5yTF+L8JO2eCqUACP3dOHa5e1YX6gDtcua8P2e/twZZdxV9wfjmHbzkHc9cgRxGaSAFTDQYsEc2PCTaWM/eEYBk4bDS2qpiBqHQoTEERZEaz6Um7WgN2ywVWhgGUYwuhOVysQVgT9GLkYVy9dUtAbbMEXbg5yjQkn12RFIUINZgaIVZiEIKoZMgYIooz0drbg4FA0yySQAPQGW3I6Xq75ADx4O3qPBASafPjp11c6uqbzMeN3dHJNhYrzmxkgVmESgqhmKExAEGVk49ogPJ7s+L3Hk/vCtHEt+1z2VjyX4xVqR3/Diva5q8kcTAFwY1+77WMUKtQgynvo6/QLPRvFQBt+2bZzsGz5EwTBIM8AQZQBrcv78qAfUNTSvu6OZlOXe67k0oGkUF6Gfe+NQZIARcmswpIEvHIkgl8OjNkSMLJjmNgJI2xcG8ThE1F4kN2XYfP6LkffKR+omoFwI2QMEESJ6Q/HsOWZgfTiFokl4JGA7ffmvxhkdsqS4XWnpYob1wZx6HgUc8kB6dedehlOjE5xKyYGTk/OGQmZ10UCRlaGid0FliVPao2GYhhfZuzYo1YzMGRFddFWkk4DUX2QMUCUDTfVnpeSHa+c5O5yd7xyEk9+zTwWb/WblaLvgFMvA28hFx1LJGB0w4p2HBjKGCb6CgZufgP4C6yd5Mli0R+OYWCYqhkI90E5A0RZcFvteSkZOsOf9EWvM+z8ZryYeD4JhCpGL4MTeLoGZvDc/0+8HIak8VAoAO7fEErv6Cul+RJVMxBuhYwBoiy4qfZci5sTu+yI5eQqKMSjUAvsqlAA960PoanOC0C95sY6D0Q2gd54Scsgaz7hkYBfDowBUO9ZIqlAnzSZqxFUTKiagXArFCYgyoIbd3KlSuzqWdTMdRX3LBIvXHbFcpzGxM3CDoVKIOwPx/D9l8Lp4ygAZhIy9708ASOzsaJtnqT1YFgJIZULUcikb0lpqxkIQg8ZA0RZEE2K0akktu0cLEv+gJO4cz5sWteVlUAIqIusWUa7E/ey3Zi43viJxKI4MBRFX6cfm9Z1CTPvnS6wrP8Cj7Ymn7pymwgYmRklouZJzfVedC1sxMMvDOWVj1LovBZhNcO60lUzEAQPSVFyKToiiPzQL0QZF6+UniBLXWp11yNHEIklDK/PD9ThH7652vLzThaO3ftH8dxrw4jNJBFo9OFLn+rEHWs6HF8bADzxFb6UsBXbdg7i0HF+Yp/Xo/7+APLOvDe7dju/rX6ssPGx/d4+PPzCkPDYjFzHk3GMqjBjaVUokJOxoP9MqasZCIKH96GHHnqo3BdB1B4d7Q1Y3d2KyHgCZ6OzkJXs5DAJQGQ8gVuunl+yazo8NI4zF+MGgeA6rwcru1rQ0d4g/CxbOEYuxDEZl3HmYhyvvh3B6u5Ww+f6wzH81x8PIZ6UIStAIiXjwLEo971W19bX6ceXPrlEeE2P7v4AT+09hcND41g0ryHr+E/tPYXJuNhdHxlP4O6PB3HL1fPxuRsX45ar52Nhm/g3EHF4aBzDF+Lcv13ZFbC8x9qxEk/IWLk0gG13duPKroDwd9FiNp7MfqNHd3+AkQtxg7EUiSWw9+0I2pp9+K8/HrJ1z/Xfx+lvanUvCSJfyBggygabFP/5wFlMzWYvSgqAeELG525cXLLrWTSvAa++HdFdhYTZpIy9JpN8fziGB390DNMJOb0omS1A+kVG/17exH/VRwJ49e1I2qPOlAof/HwPdzGxY5yYLaSF/P0XzWvAq0cihvN4JGDbZ7ptLYaiBZTdM/a7iOB9n937R/HtF4YwfCGOqVkZIxfiWffZylh699Rk2qBj5yiGEevE0CSIXKFqAqLsFLIcToSdKgGWfNfayFJpMp4KUaUDm6ij00nD30QJkaKEuMHhCWH5IADbnQYBfv5DSlYrEhis8oBHIX//VaEAtt/bh75OP+q8Euq8EvqW+PH4l3MLb+iPzX4Xs5JF/ffpD8ew/cVw1nsUALKcuc9mLZtlBYjNJEuSBOvWyhuiuqAEQqLsFCpRTYSTKoFVoQDqfMYVQDTJs4laRCKpoD8cM6jp6Rv3AEB0OqUKEsmZXa6sqA0MWRKj3URGnsEBqKp/7HrYQrrjlZNZlQqF/v0B9Xd9ktPcqBAJeixh0iwHQv99RAupgsx9ZuOS53LwSECg0Yfx6YSh5LG7o7mgiYdurLwhqg/yDBBlR7u7s7PrdYrTnZUTT4Vo0WWMzyQNwkAb1wa5Lm1JAo6OTBr+pgA4fCLqSPPAbFev/d6rQgE8+bWV+P6X+7Cmpzi/v4hCC0/pNRYY/nov7tMIFAHmCyn77di47Fviz/q7BKRzPdTQgHrHmBF1Q197wb5XfziG2aSMStBQICobyhkgXEEuSVV24cV+zWLii+Y14BVdjFsSxLcPD41jRJAcl/4ssuPIHe0N+On+UcR5tfYCw0JRYJq3wPsOe96KcP82MZ3Ef7wpe9dfzN9fxMN/P4Sz0URWngUUYN/AGH7y5oeOE+VYouH7Z6cRGc9UGCRSCn51NIoDx8bQtaAJHe0N6n27yL9vf6y5zx3tDdhw7UJcs6wV58cTmJhOYiapQJLU46pIaGv24aqQmtj40sFzpjkhdmHG0kwik1wLIG3wbLvTXr4FQdiBPANE1SOK/TIXvl144QDRLl8Lz6XbG/RzvQ9ek8C3kzjxqlAA/nqv4K8WesAlQCSipACITicRiSVwYCiKLc8421GvCgUQaPRx7/fA6cn0Dn3j2mB6J69l6+0hrkeEhSJ6O1vgyWqupJbC9gb9+N4Xe3FlV6Bgbn1RCKq10VcSzw1RW5AxQBSMUkr5OjkXcx9nJn51hh2fNrrwAf6CyxoJ6VkVCqCt2Tr1ZkFbPfea9LLBy4PNwqQ+pwuKj5P7AMANtoBto0b0u5thFrphBhULAVw3F5pa09OGJ77Sh9uvE2s9iI6tvS+FlEYWfY86n0SGAFFwKIGQyCLXxKdiSfnyrgeAo3Oxif/BHx2by/o3VgloE/PsJN9p6Q36hYlraXR/E8kGK4r63VKcY5ktKLzfqTfox8Hj0azdpTS3iy03TowaqwZODPYbRKeMlR0M7cKdS/dCMzXEtDSyDGhkFXOSRs4YFUZ4SakEkS9kDBBp8lnQiyHlK7qey4N+w7mgqH3ieRnrgLMqge6OZkRiUeH31H8ffTUEj3Pjs9xr4v022Rn+2fFi3oIi+p3uWx/C4RNq1UIxqjTywaytcS6I1AL15Jt4x+61pGRXfNzY165pqMRQ71trkw/f3bjc9m4+26gwwjxapVboJKobChMQafKpZxa5Tw8dj+YcMhBdz9AZwc59eNL0PHarBJj3gQdvR6uthqjzGg0OpwvQqlAAv8tJNJMV4Dhnl7xjD7+b4b73xnDf+lA6hh5o9Bmy6suFKPOfh1kDJ4Z+rPAohDHEOjDqT/PYz8J452SsIG59o1GRjdajRRCFgjwDRJp8Ep9EOz1mEOQSMhBdjygtDjD3RNjVM1gVCqCv02/oLChBvKizXb5IR9+pizgjiJO9Wm5/MYzuRc3p37E/HON2QJQVYHBkUvUMKBmRnCdeCqO7oznrPjgNDfWHY9ix5ySGPlTHRc/iZmy6tcvRvdWHSaJTSU12fjZmDZwYg8MT3IW4rcmL3s6WgvYB2PfeGFfxcHJWNrxeyFwBLfnqDLB7Pjg8AUAC5sJH5WgQRrgD8gwQaURZ96yToJ0kvcznM7NZroppop282U7RbIJ0omfwu6uNO3MFqjvYjEJoJlj9Ttq/m75XURX1tB4DrcIe4LzWvz8cw5ZnBjAwPIlESkEipWDg9CQeeNp5HT0zoP7hm6uF97Sv07q1b384huh0yvC6BKC3syV9Dpbtny8nRqdMd+36pFCnnogll/gA6GMEhdMZYPf84FAU0ekUotNJRKeSOJinzgNR2ZBngEhjjH2rE1AiZb271+701GS67FU8l50M73pkBRi5OAN/g8egHWBngrSbNLbvvTFIkrGc8JUjEdxu0l3QyTlEWP1O2r+bvTcpy4ZFSwHmdoMqTnM9RO2IFZjnbJjRH45hcMSYH2HV1ll7Tbx7paA4+RFmOSVtzT70Bv0GT4SV90X7dyU+BkA/jrN/F72R4cS7IwpDsNcK3bKbqAzIGCDSaBf0I++PI6HZbNlJCDSThRUt1GaTmPZ6BkcmEZ1KAFAQnUqlp0a2CBQ6Oe7E6BS3xltUUVBIzBYb9nft/+aFZ/qW+HHy3DT380nNm3nudTPDzcz4YGEDp2Q8FdkGZK8NrwC7Jt69amv2mX4+18qZjWuDODBkvD+sUkP/fOzeP5rVB+G8LjHXmPzYBFH9p0cCrl3WlhXu0CYcKgAisaiq0XBbCHdcbzRczcIQJHNcu1CYgMiCLei82nm7E4Wohl6/UNtxUafFXoJ+eCQJbMiyPWRro68oErp25XyLgVkCI6DK3Wrfq/+tvR5g87ouxBP8GZ+9nnGvG9+3oLXe8BpQHAlc0eJ0LmqswOAhCieZlVDmI4W8KhTAlttCWa+xe8Ab44aGSHOLPhtHxuRH/rTMDAF9uOP5N0ay+lkwtr8Y5n4fswZMJHNcu5AxQHDJp5Og3bi5k+oF3oKhQM3UziUebCVaZLYga93sxYC32GjZNzCW9V7Rby0SL2Kvi3bkopcA4IYVzBAxrt49i3NbRPLtWmnX+NQiqsCwa+jdcX1HVj+H60zGOA9FY1ib7dTtfCezHAbe+dMiXLrXJRu/G1G9UJigiBSyc1mpybeToJ24uaha4Mj749xOfyKxF8DZb21HT0FUUQCo3QWLHSq44/oOPPeLYa6Ajt47I/qtexY1c6+fJeuZeXlEu/J97zFDxGgtbF5nHd/nUYixxhNwEhmHZhUYTlzkdse4CDZ2RWO7N+hHoMln+Z3MwkpmpbC8aoJCVFsQlQkZA0WiWIp8pcLpBJsLonh3IqUYRFXMFgynvzXPI8ETLdq0rgv3Pz1g+LwklSbJiqds6GTHvGldFx54egCKJjFPQiYpz2wREZ1DtLi1NXsNY8OugVaIsSZamHnXYLb7L7SLXNSuGsgYO6KxvXl9l63fwCyHwaoUliAYZAwUiWIo8tmhkN6IYk8YZv3i9TLBZgvGtp2Djn5rodzwcHZyIOs7oN+dKw53kLmS744ZgCHLXvvvjWuDXBllXuybId7FtmS9j5UgsvdFYlEcOh7F9nvF1SiFHmsiI7GlUTztFdpFzu6hPqavbYiUrzHEwkra3ARRDgNBiKAWxkXCadvcQsAmv5ELcUzGZZy5GMerDtreOjnPo7s/wFN7TzluM6uFtZz9+a/Pc/MB9L+VqM2u09/68NA4hgVth8/r2sweOTGOMxfjBnulzuvByq6Wgv6uetjvExlPIJ6QsXKp2iLX7iLx6O4PMHIxDkXX/pa10u1ob8DHulvxweg0olNJeD0Sejv9+Nbne4TnWDSvAa++HUmL6zADRd9O9+EXhnBO00YYc+//YHQaG65d6PSnyIlHd3/AbSXc4PMgkTKWXfYt8eNLn1xS0Gtg9/D83D28siuAP/5MN2664hLD+/JpIb1iSUu6zXI8IeNKh2OFIMgzUCR4OygJCpZeWle0c5bCG1Ho8MeqUACrL2vNyx0uCjcwsSS9d0TkVgWMO/60Fj3YjlpdUkqlD5/PjtmOouSqUMCRNoDdXayozDDX8sNcEH1/QFF3ztC55XPMebCiVC55cv0T+UCegSLB20EBQGj2AOS6Vjz1WiTvnbUe0Q75bHQW/3zgbEHOJdptRXQ7aifofyt23NYmH7oWNFler/Hz6v+XFXC9Ix3tDThwbAwR3c7VIwErlwayvgfb2e0bGEM8KUObOJfv99ZTKI8L4/CQ0avB+45OsbOL3SUQJ/J6JHxhbWfO57ZLfziGn//6/Nw9y+CRgKtCrfjm73fn7HFxcg2FvJ+lpJKvncgNMgaKBM/Fu2VDJ86ePYvnDtVh5EIcU7OFdeXzJn+m2leoc4kMjjMX43j35EROkwb7rd4/O521QEdiCbx6JIKPWVyv9rc+G52dW4Sk9LXxFu2uBU3Ya8PdzY7/kzc/xNRs8cI+LMZ+em5cDF+IY89bEUzHk7huubkEsgi7Lv1i8Oag0dgCVCGhYocJmPdqJsHulzoKWBx9253dWBUK5OWWt3sN+YTs+sMxPPzCEB5/MYxdb4zgzcExW8axG66dqDzIGCgi+h1U8NJm/PQ3HoxcyMRxFcx1mBsYyzsGzdthq5gvjE7gGxwZgyDXSaOjvQEvHT5nWEAUAB+ctY4zs9/6nw+c5S7aIxfiePdUxlixisezndFfvxzGC//+IWLTKW6iXb67bAYvxg4A75yazNkgyDfnIB+6FjTh1SMRg1fiW5/v4S68hVz4mPcqc251/Lc1+fDIHxamP4Hda8jVg8aMw3PjCbWnhKJ+1o5xXO5rJyoTyhkoMe+PTmcldDGiuhh0LlUB/E5w2e/JV26U379ASh87nxyFIU57XrPXefBLuRQokHBQ11+BF2PtD8ew45WTGDhtrEPXIyvZaoD5cPSM+Hw/3jeK37rikpxzMsoRR14VCmD7vfYy5PWVB4Aq+/zAMwN4XFB9YIaoWsSqlXAhK3Hy6QAKiHtAMOXCYt7TfK+dqExIgbDEmEmBsnK6fKVSWZe21Ze15qXsJjo+U7xTj51/Q6JCsnFtkFOpOOcZsVCZY7+7HUOAHfWJl/iSr06R9U3qdFRi73rtWDRTiBQ2P1KAHa+cdHzeXBQN83nm9MfZtnNwrhw1+0s5efbMnqFiPF9aRc7J6Tj0XRNJprj6IWOgxDApUB5sIXUi02vnXPm2VNXDJvmMQZDB6aShnYTqvfzhaNaymHdtvL4KDDNjhf3udmEhnkIs1F6RhThHNe/KTJsfOfAKMXIZ94V45rQGRSJlNAScPHtmz1ChF2W9ITSdlABIaTO/0E3ACHdCxkCJYTvrtibjgsUW0kK56ez2CMiVfI0N/SQ0NWvsSW+3ja0WtakR/29mxoqZRryIQnlClgfNJ/hq3pUV+rvlMu4L8cwZGw6pg7DOKzl+9jauDXLHcDGEhHjXLUkSWpuK0wSMcCeUM5AHucYYV4UC+M7dy7Pq9bUL6a7XRzh18zL8dWrdvNM8Aqv4opNe69q/56ucpp+E2Nf1eQB/oy9nrfS0NoCS7ai1asQi0ivIkMmP0H8uXzbdyqSDjUio7l2Zme6DE6+QFie5Ev3hGBJJBfr769TLJTIm25p9jmP8LOdix56TaW2GnsXN2LzOnkSxE7hNwJRMEzA9ldxzhRAjKYoTxyjB0IvvMJnXtiYvejtbbD0g+oeKLXz6Y3skQFGUuTQ4CQqktPGQr+iNvte6BMDjgbDXeqHOCwB3PXIEkZgxgx5QzyOSrrUD+22dNGIx9pW3xxNfKcyuqT8cw1/tfh8nz82kjYLQgkb80acvq/pdmX4cAuoYePzLxd2RsnvOwgLpMkSozwFvRyxaDLftHOSKZ7G2w27FyXXzkj3zfVYJd0DGQI7wHiBGIRZM/YQzPp3A4PBkViVCvhNNfzjGb8QD4Loe9bjFnOC27RzEwSF+ExcA6Ov0p9XxSrUbYec58v64Ie5rdY1EfoiM42Iieo7bmnz47sblXENAZBwD4P6tFC72fJ4P0XfiXffmH7zD7fhIz0HlQ2GCHDGLLxdCBljv5rzrkSOGksR849XCXusw77XO2gzf9ciRvBbmG1a0C93DgCpdyyv1K2YHSPa7izw/egEfp/kMhJhylEE6KUPsD8fwJ393FClNor3+WS92p08e+UqEOwn3uUFmmigOZAzkiFV8udAldqJucfnEq3PttQ4oSKRUhcB8FuZ9740ZuuplnUVRd1opXdldKTpA8ibIG/rasW9grKQTPVFc7D5XPPc4Q/usl8OgKURPEuprQJAxkCNG8Z1sCl2XW4h2tnpy6bWuJ5+F+cTolGkpX0OdhOlZ/htKoWfAmyDvWNNR1HMSpcXucyXSQmAsaK0v7oWaUEqRoJ7FzVwdjp7F7qt2SecNjUzOZRIrtvO5ahEyBnJEu3McHJlEdCppcCE7XajN4n75Zu7zELnpP3djh7DXeiFVDc28Kx4J8Hkl4QRMIijuolIzzO0+V5bj21wmIi9EybDsN76sownnY7OGfKJcng+r+7jp1i5uAqFZx8dyjA1jYqjKwaHihRgrHUogLBBmyU92HoZiZu2L4CXwaZMHRZ8pVEKhKHu/b4kfm9d1YdfrI8IkTa8g05soLryxDPAT56ppwt22c9A0v2V+oI5bhpcv6UVN1usZqrQ1++D3zmAk5oEET9ZmxOnzYXcOspvo2R+OYceek1kJh6UaG1YJ3m6v8CgH5BkoEKKYm75k6rwgxs6L+0EBvvHce1h9WWtRrOkTo1PchkNmu6BChiusdmWiEEVfpx+b1xe+3poQw5vYI7EoDh2PYun8RtOkumpg49qgcHGRiuilYvOCaMcWnUoiCg8kSFjR6ce58dmcvYZ2cw/sapcUOt/HiYfBKsG7mhU9c4WMgSLSH44ZaqcVRVX91j8MosGbSCk4dLw4ri2Rmz6RVISVAoUOV5hNLMUIjRDOEU3sgDqxhs/NcF8fHLHX46ESYCJAf/XT9xGOZL4vU+AsliiUPVVMDyQJCDT5ci7v6w/HcOT98YLlHphJe+dyTKcVE1YhSAoxGiFjoIgIS/c4D4PZ4C3WTovfgRAYn05AgSR84EqZeUxZzuXHac8GRnQqif5wrGpCBatCAfztA1eVVA/BWhVTJZ/drpmxl+vCaWbE5HJMpxUTaRVSZOcMSKA+CyLIGCgidkr3GHay9p087HZcavqddyKppA0Bds5qc/cSzsmlZwOgTrzVOHZKaaCKpLX15LPbNTP2cl04zYwYp8dMpVJ49+RFyEp2Kx2zOVGf4K0KSyroDbaQd1EAGQNFxE7pHkM7eHnqd04edicuNe3EVgxhI6Lysbs71WOVf0JYk7WozVUTJGUFk/FUWqMj3zJjofCSV8Kj96zIaeEU5vvMJQebHVO7kVlyiQ/zp/8v6hPtkDDfUcUEeRWdQcZAEWEPhD4TeOvtIe7DIFK/c/qw73jlZE4JXcUQNiIqHzaOM4NYgZ1aOho7hYG3qBUyVCF67ldf1ppXLlAu+T76uS8Si0NCD7540zzs+uWY5ZxYqSWuboBKC4tMrg9tPp/j9RsArMufnGiU271uehirg/5wDA/+6Bii0wlkGwJ8w6CUuvyViJueE1H54tbfC+F2jshWMa/drHR549qgafl2ucoYqwUyBqoMs3roNSb6AYx8dhy8znMAsOW2EO64npT7Kh2zLpNa2ORNsVk+IkGccj4nhu6lc1USPI2BYmpKfPrP30J0Kml43WwjY5UASZoC9qAwQZVhFqNlLjUrpcNcHhxeGSVj+4thdC9qJuu8wrGTO0CTrzVM2li/DSvnc7LvvTF4pEx8n2kb6EOLheiDIKI/HOMaAlY6DoUuY6xVPNZvISqJ7o5meDjh3L5OP67sCmD3/lHc//QADgxFEYklcPB4FFufHUB/OJbXeUVllIwde07mdXyi/GxcG0zvGIFMcECa+x+F6JdRC5j15LB6joqBlcZAfziGbTsHcdcjRwqqRaDn+TdGuJkoimI+pgpdxlirkGegyhApBG5e3yUUQUopwJ/sGsSff6E3512J1WQwMDxZVTXntQgvKezGvnb8kjo5OqK7oxmRGD+Ux3uO8m24w+LprM1wz+JmbLq1C6tCAUsX+4K2ep1kOFt18++DoP1urO8JX3LZazqmClnGWMtQzkAVIor7W+mrSwAe/3Jusb9tOwdx8HjUVJzGTs4CQVQ7oiRfXl8QUX6BBMDjsY7V94djeODpAe4iu+W2EPa9N2ba/+PyxX4Mjkya7rxzTRQ19ibhGxpWYSerHidknNqDwgRVCIv7/8M3V+N7X+xNPwxWu3cFalliLmxcG1QnBpP3UOyOINTnc8ttoazX2OLOa52scPILFKivWYbnXjkpFCva/mIYg8MTQo2B7ff24dz4rPDv8wN1uHZZW84VI2zZgbkAACAASURBVPr8gzl9wPTf7YadmMfq2mVtmB+ow5qeNjzxlT48+bWVZAg4gMIEFUS+JT1mIkiMoTO5LdhaF/JbJ8aR1M0gFLsjiAx3XN+B7kXNtlon59Nw56hlfwgpK3EQyNYYMNMgyNfLZyZ21NbscxR2KoXAkJvKQYsBGQOojJvcH45l9RGPxKI4MBRF3xJ/Ov5nBcsn4MUHC0GhRJMIohaws4Dl23BHtnrW555NURdSnpKgrACx6fz7ThTT0Cg0ThslVSLehx566KFyX0Q5YTd55EIck3EZZy7G8erbEazubkVHe0O5Ly/Nwy8M4dy4scY7Mp7AXpvX29HegNXdrfhgdFpYL94b9GPDtQvzulZ2nsh4AvGEjJVLA9h2Zze57AjCIYvmNeDVtyOG11lYYdud3VjYZnzu+8MxPLr7AwxfiAuPLUnAVaEAvvn73cJnlT3L75+dRkQz/0RiCex5K4J5fh9WLGnJ67tJUMMezBARfady8ujuDzByIZ4pvYR6DyLjCdxy9fxyXlrBqPkEQjPFKzdZp7/z0EFDvwItfZ1+R+1LeQJBHklNIKRFmyDcg6GawKLhDj8xz5jN4/XYT/zbtnMQB4f4Icbv55h0zK7VjS3K9dc1cDqG2IzRzWKl6lpJ1HyYgBe30tbXuj18wHBaumc3ZkkQRHlxGg/nJ+Zl4zTT/sTolDDXKB/BoVI3E7Izp+uNqfOxMc13L0xJpRupeWOAH5OT4U1NYMszavmPG2JEPYubMXDaPBnI6UNJXb0IovoQJeblIxPtVBvBjEJtspwex27cX29MKZCyQhnVmgdV86WFelU1jwR4JA/i8ThkRc5KmrFTylMsNt3aZfkeKt0jCIKnQqoNfebakpiHlVSwHrYgHzyuKqAeGIri/qcHsHv/qKPrYcc5NHecQyZKqkxB8RvPvYeUDMs5nWdMKQDamn3p8sV8SirdSs17BkStNh96YQjQJdk5ld00U/6y81m91bvltpBQ/5/nsqqkMIeIavgOBFFKRCqk+eximTYCr5mRk+Pq26sznPZlsNsjQSRIxODN6aIqh96gv6o9qTWfQCgi38RCfSmg9hjb7zUPNRg6iCGjNgZA2KpTa6kKVbk6/di0zp5BUg76wzHseOUkjg5PQp8vaVd1jSBqnWIl5uVyXG0CJK8REcNMoVR/3ndPRTHBKZTQJ/Tx5nEtvDm9EK3cKxEyBgTkOyBybSUskioFgLYmH75z9/K0prjZQ2n2EHhduqCKDCg9JGtMEJWB3coGQJyZrz+GBEWY0Kdf2M3abpvN6W6tcigmNR8mECEKHzjJvs3lb2Y5CdHpJLY+O5BeyM0WRDPlMhYnc9uCylq7WvHOqYniXwxBEHljp7KBvSrKPcgnoU8k2lTnlbD6slbhnF6LydVkDJiQz4Awy741S7ix7B9gcyE3Uy5za49vu9cUT6SKfCUEQWjZvX8Uf7P3NCZnU5AAdC1oxDfuuMzSu2i2KdHC68tgdgyW0Ncb9Jtu1kT5E4/es6Lqd/pOIWOgSGxcG+S66a0Sbro7mnF+Qtz9z+5Czh4CXnGwW+tjzQwoLcWSUyYIwog+h0kBED43gweeHrDscmq2KWH0dfqxeb1Y8yCfhL58Pby1RM0bA4XOVtcer7fTj6mZFEYuqpkuPYubcevq+dj1uvh8bBGXYexUBthfyNlDsOOVk1n6BG6uj924NmjaYpnR2lTzw5YgSkJ/OIbvv8SvYGJdTp/8mlj5VL8zlyR1Xmtr9pqqKJodw+kcVosu/1yo6QRCUZJgrsl1Vsezez599q1eu9tpVmslJcPs2BPGj/eZ1xxvvT2E26/rKNEVEURtwuYrM09cnVfC3oeuE37++TdGMDg8AbUjkrqbN5t/WDUR657as6gZm9apGiuVModVKjVtDJiVD25cG+R6DMw8CaLj9Qb9CDT5cOT9cUN/AatyxUpayAvF7v2j+MGrpzCTyJ6F/PVefPXWJWQIEEQJsCrLA8TGQC4bLbNqoi23hXDH9dbPfT7aLrVOTRsDorKTRm8Ks7IXQPZAvm99CE+8HBYOcKsyFtFDdWmgDt/+fA+J6xAE4RrM5jOGtkGaduOSSCoYn05mpSyZbXz6wzE8+KNjiE6LdQisGiLlo+1C1HjOAC8xRYKCVCoFWZW4AZBRt3rutWGh6tXGtUEkkrzVXpl7L7+kBpAhT19wVR8EgiAIq+Q/CcDm9aoL346egCj52U44AuCrC2o3UNGpWcgK/7xuLKV2GzVtDPATUyQ0NzYblLJkBYjNJLkdDn994jwOHTdWAKjJMiIjgPVD8KCurg5yUobe+Nix5yQCTT7yFhAEUXL08yPD6wEuX5xdAWBHT0CU/Mw+a4XWkDB2FozOSRHx51s3llK7jZo2BkRlJ7teH+HG/gONPoNBoC7oCmQls5gzWht9CF7agMHhSVPRi4dfGAJg7IOglRw+T94CgiBKiJOyPCs9AbMKADtaBHpRIqMQEYNvELixlNpt1LQxAPDLTkSlLF/6VCeeeClseL2xsRHxKaMQTp1PwqZbu7D12QFT0Qu+O479Qx3YigLIKK67i5oCEQShxW5ZHj/kqpYB1/kkU0PCTjhCL0rENyD4XgGnzZRqlaoyBrQleZiLW/V2tjhe1Mws4u6OZtuehO6OZlvWtcgdpx/cShGVA/XCIpFYFAeGorazeAmCqF1EG6jvblyek44AoFZhnRuf5c6ZZkJEANLVBMFLGtBc78XDLwzRBseCqqkmYDEk1qOaUYpOd4XocqXdlUenkoYSREYxmvSYNUcCrLN4CYIg8imDdvpZO3NuoXVkqp2qMQbMamKdtB7OlULqAWz+wTtZ+QJatvxeCHesKexO3ex8AOBv8ODPv9BLDxBBEK5BP+fe2NeOXw6Mpf89Pp3A0ZEpg/eg2GtBpVI1xoBVTayoPabbsGrjW+j2w1ZegWKdlyAIolCI2xwb8wgqZS0oNR7rt1QG3R3N6ViTHrc25uFh1sIYyNTMlup8DKXA5yUIgjCjPxzDtp2DuOuRI9i2cxD94Zjwvbw2xzwqaS0oNVWTQMiSUCQYcwbsNLXIJZO+GNn3VmU2hU4itHsst7Y9JgiiehD1ZbESYjOrLmDqr25u0uYGqsYY0Gbtp6sJJMVWZyy9i8mOAmA6YVFWT1Wo7Hs7LT8LadnaOR9AFjVBEMXFqGKYKbDWqr3y4v2ieczrAVoafGCVZbXQ2yVXqsYYAHJvVal3Mellhnm7/+ffGEkbAlq2vxhG96LmtBHh1HvAPByGA2sopGUrLmvMQBY1QRDFxqhimI2Zd3Lj2iAOHTe2P0/JwPhMEh5JfQ8ZAmK8Dz300EPlvohy89TeU5iMZwtjKwAuxmbw4uEIRi7GMRmXceZiHK++HcHq7lb8dP8opmb5YtrnxxO45er5aUt35ILx8x3tDdzPdrQ3YHV3Kz44O43IuDEhcuvtIdx0xSV5f2f9+SLjCcQTMq7sCuCPP9ONdR9bgPNzr61cGsC2O7vpQSIIomjw5mEtHglYuTSAW66eb/hbR3sD9h8d486ZgBowiMzNywSfqqkmyAdeWaIEBV4kkIQP2jxLVpoCAAeGjJYokMlWNWuRbMeDUYvtiwmCqE2sysOttFusKsramn3oDfpJYVVAVYUJckXYsKihCePT2TLDzFX1rc/3cI0BSRNb5yW1yApwfHTKVvgg17AHQRBEpaGfh9VGb0Bbs9dW7pdZ/pMkAdGpZNrYoM6wRmoyTNAfjuHR3R/gqb2ncHhoHFd9JIBbVy9Iu8qZW3zkfBxnLsYNPblXLg3g7o8HMc/vw6+OZgwCSVL/vu3Obixsa8DhoXHD5wEZdYkx7H5L/Zvd8AFBEEQ1YwhZLlVDlvff9hHccvV8LGxrMMzdi+Y1pOfMRfMa8OrbEWG+FatMADLtjCh0kKHmwgROJCrtSl6KXPm8zwPA4pYUhmMeaAUxSBmLIAhCjJ25uz8cw45XTmLgtFZRNbvpmxa7AkS10MSt5owBURy/t9OPQKPPcLMNzY/myhXtDgaesfDwC0Pc2BYpYxFaamECIggR+vEfm0ka2sHzNlH83ANja2O7G7Ba6XFQczkDojj+wOnJtDiFPp60cW0wazAcOm4/3sSL+4s6blEdP8HIRfuCINxAIYxY3viXFeOCzis3zEeAiHftZqXn1eTJrTljgJ9kov5DVqS5/2bfbNFg2LHnJAJNRm+CFaJ2n8Ws49+9fxTPvTaM8ZkkvBLQ4PNgZVeAdpsupVYmIKK6KFQrdN74V8k2CHibKFEiob/ei66FjTgX5bdF5hkgh45H0eCVISvZyv3VqMhac8YAbyFmRoAW7c0WehOGJ+CRJMc7N61aYinKBvUPaFIBkrMyDgypg337vbTbdBuiMVeuCYhCFoQV/eFY1jyjRS/GZkUuu3ttSJdXUTCVSOHoyKRwjuYbIDKSySQk1GX1O6hGT27NGQO8hXg0Gkf43EzW+7Q329ybgPR/nezcSlk2+Nxrw8K/yQrwJ7sG4fN65r6SKttJk315cVMoiUIWhBlsET7y/rjp+5x4tUTjvzfoz/LGsk2UoWuhxHrUZDwJiqL+S3QdfAPEg+amJkzEU4acgWpTZK05YwDIXohZy2AeN/S1Y9vOQQwOT2QNMDveBDcRm0ma/l1V/coofx0cosm+3JQjlCSCQhaECF4/ARFO5kbR+N+8vovrQTV0LdQZAgyzOVpogMxtjqpdAK4mjQEtora8nZfW44mXwpr+2EwAQ1WxEmW2utF1FGj0ITptbhBoUZBpWUyTfXlgHqxdbwzj18cj8Hi9aKhvwK7XR4rmtekPx7Bjz0kMfahOlj2Lm7Hp1i5bIQsKI9QmVv0EtDiZG52GUs3CClrM5mgzA/zKruoXgKt5Y0DUMvh0ZBqAJx0nUpBxU33vi71pi9gNOzcrvvTJTmEsT4RbvRy1xKpQAF9Y24nDx6OQk8BMMumoksUJzEOmfRYGTk9iyzMD6O3048JEQmj4UhihdrFqua7F6dxoFkrVG5/+Bq9QithuC2OnBki1GcA1bwyIXEMeyYukrmeGdoEsdRJgPrAs3r/ZexqTsymLd6u41ctRa6ieq8wOp1gu+uffGOFO6rICYC5EJikKFEiGSZXCCLWL3RboW28PFWxu5Jcd8t8bWtCIjrYG23O0VS6XNkkxOpVMqxpWgwFc9caAlfUmcg0tX+znZqUmkgr6wzGsCgUqqnfAHdd34I7rO7J+jwWt9RgcmUyHBRgS3OvlqDVKVVVgdrxz47O4b30IP9hzAvGUB4HGOtzzqc70pOq2ygeidPDmT0AVcROV8OULP+vfmB8AAJMzKXzv/sLM0cb8CCXtOa4GA7iqjQFR3ah2oG5cG+Tu8BUF2PrsACQlW+o6Op3E/U8PoK/Tj03ruirOCtQbMCKFRbd6OWqNUlUVdHc0IxLjd+Fc0FqPJ14OQ5bVsFlsJonvvxTGZR1qqZibKh+I0lIOD2kh8gNywZgfYT85sRKoamNAJFzBdKu1rh2eNffYPX148EfHuMl3A8OT2PrsQEW7hQDqjOh2DJ3coECSpIJ7bTauDXLbx3okABIry+Lvgthn1YoUj6vzZ4jCU+o5hGd8Zld6FSeHyyo/otINYI/1WyoXq5snK5mseR6rQgHU+YwWJ8PsswRRCNjO69plbfDXJbGwPorH7llR8J3XqlAA2+/tQ1+nHx7IkJDC0nYFj3+5D+eis9wwwIGhKDb/8B0AwGd7z6OjfhzzA3W4dlmbad95gsiHjWuD6Q6xAMvxArb8XgjXLmsr2hjs7mhOn1NPNRjAVd3CmN9COBsFQDwh43M3LnZ8DKvPEkQh6GhvwC1Xz8f1S2Zx5tcv44ZrVqK1tbUo59lw7ULM81zAe++PYiLViDMXk/B5JZyf4GdqR8YT2PNWBEcjPsxvrce2u/pw98eDWNhGrbiJ4qBvdbxyaQB33bAI+wbGiprZz1oks6RBac4waGv24qpQK7bd2V3RBnBVdC0UJQnaEcSw6lzFjpGSjX+jtsNEKVEUBd/6y2dxCssxqQSKMullxnvG5Z9JMOUnaTEkAB5P9XVzI9wNryzWM9dqvtDj0KxlfaVT8caAqL3kfetD2PfeWCYxDgqClzSq/0b2e63cSbwe2XY/SxCFQp303p2b9DIlfoVcfPntX+0jAbiuhwxkonRs/uE7WXMzo2+JH09+bWXJriOrUqutHlDUSpxK0SCo+ARCXpKgpKiNMfTJJJvWdQEAdrxyEkNn5lTWFjXDyhxaFQrgya+trGqrkHA/pdAccCIiw0NBZWdUE5UHm8v1vHd6Enc9cqQki7F+U6oVQKoUDYKKNwZ4k5cy9/95LYk3rg3i6Mhk+qYNjmRU1rTlhrybRpn3RDkpRT2/XREZq2MQRCnoD8eQTPEHqwJ1US7FYmwmy1wpGgQVX00gzvDk14DyPAmyopYbRmIJHDoexdZnB9AfjhX92gnCCbyxXuhyJn2mNqConjUAmWZWc7KEAio5o5qoHNK7cYv3WVWN8Y67becg7nrkCLbtHLS1FtipXHO7x6ziPQM8BazsFpYqbNK0c9MqwYojao9SaA5oRWSOjoxDmjqHT//WcvzinShOXlCgQAEgY15DCtHZeshKdlJhIWVnCcIMtrEzYkx0FS3G+tDvDSva8cTLYdt9Ntjno1PmjeDMjHa39Dio+ARCQKOiNzwBQEJSVjAZT2UJUbBkv12vj9hKkJofqMM/fHN10a+53AOAqCzSY/10FJ6Zc9j62VW46aNdRTmXLMv4s+/9DfZPXZ0WHGITrVpepSCAMdS1zEfPIlKtJErLXY8cETQnUiBByvIY8Cq/eMnn6Q61Fp8FgN37R201gDNLNi9lJYQVFe8ZANTdzMa1wawby1oO+xu88M35OXe9PoIbVrRn7a54iKw4pwu43ZLH87EoDgxF0+2RyTAgRLC8lVQqhccffxwXPkgCRTIGPB4PwtKVOjdsposnAHi9Xvxk2zVFOT9BmCGSwe4NtuDomUlDhZnegybqcaDY8Cr0h2NCQ6DOK6FncXNWNYHIUN7xykluHtCOV06WtBICqBJjADDeWOYomoyn0hYfa//Kyg61zXoA84HDFnAWf4rMLeBbbguluwLy3m/oixD0Y+jDqSzdAjYWolNJHBhS31cOy5CoHLxeL9asWYM33ngDn/zkJ9HS0lKU85ydrjP5q4SxVAC7949ynwGCKAbafiranTybuzev70rnCJhVfuXT48As/6Ct2Wd7IRdVQoheLyZVYww4qSrY994Yt1mP2cBhLV71QZXtL4bRvajZsHAL+yIMG+th9cgKsGPPSTz59dJahkRlcc011+Df/u3fcODAAXziE58oyjlkjthWNpLwGSCIfLGK6bNQcFuTF72d2aEqq5wvbo8DZAwLs80h20CKjluJVI0xwC+JspdIYqdk8MTolFCPgJdsmG+99tCH7s48JcpPU1MTFiy7Djv+LY4nDx3BsiLknngkQFC5lUUpE24p36Y24HlXDwxFIWlc+SwnrLezxfH4E7Wvv39DCL/USBtzXfwmz4SThN6eRc3cDWLPotIbFFVjDPCrCvjSqWOTCWzbOehoEjFr8crLUi1EvTZBmNEfjuGFd9ogKzIQS+Ciw3pqO4tqY70Hk3FL90DJyqZ4C0QlCLoQzsknpm8Hs/bLt6+xCnvxJ/ZGn4Rdr9s3VDet6+ImEG5eX5w8IDMqXmeAoe3uxrpWhRY0ct+blOFYT2DjWr61J4HvFjLWazujZ3FlupqI0pGJW6qPsZN6araoHjoeNdXX8NkYwFIJW7fyFgjqHlqd5BPTtwvzCv/DN1fje1/stV0N09vZwu3SMZNUcGDI/JnSn3/7vX1Y06OuW2t62vD4l8sjcV/W0sJiu/vEpScqThsN6UtJWGMWUX8CvVb14LAxUfG+DSF8/8WwwTIs14AgKgfR+K7zSmhr9pk+U6IeBG1NPnzn7uXpz2zbOYgDQ3qPGPuQlDZ4S9Wj47OPHMF5zncudikwAHzn74/hF7+5mPWa16P2QaEEymxYP5djI1NIyQo8HuDyxX5sWtdle47njVFRTP++DaGidy3UYqcJHlBZzezK1sKY/ZgjF+KYjMs4czGOV9+OYHV3K85GZ/Ho7g/w1N5TODw0jkXzGtDR7rwlqlULYwXOWhCvWNKCa5a14vxc68wruwKmbStZ69nP3bgYG65diI/p2m5uu7Mbv33FJfhYt+6Yn6nsVpi1Sn84VpBxaxfR+JYVYGo2+5nSX8dTe09x3f/xpIy9ms8smteAvW9HoKTFhdSzLWwBmhrqceVS82egkKRSKby87yjGZ73Q7hA9ErByaQC3XD2/aOfmGQKA6pX41dEo5vl9WLGkOBUdlUZ/OIYHnhnAufFEprpLUaWBX3krgo8tM45HHvqWwR5J3XxtuS2EVArpefSzNyzCEy+FuWtJoZ4//bN91UcCuHX1AkTGEzgbnRUaBE7XmHJSNs8A3+pT0NkGjIxrsv/z6MxmZb2JhChy8VZQUlNtI+qeWcxYtnF8GxNmRTsTs+6E+s/s3j+K//niUSRRjzok8BHPUfz5/Xfg0ksvLcr30sKeq+OjU2iSo/DPfIBj8hUAnHUezZebHzxg+nefF/iXh9YU7fyVQn84hj/ZNWiaZ9LX6bddKZXlXW2tByQYesj8v3/7Ht46MW7wruazI9efl1d+zp5tMw90JXkGypZAyC8FlDAcTc0liGTioLnKA2sTRAZHJhGdShpqUrWZn2bJSQCEi31ag0BmzTHMNQiI6oMXyy62rLU+AerChHGHIkquYgm3PLeZ9jP94RieeDmMFOoASEiiDkPySozE6lBMW4DXNhxohEe6AvdvyOiEuKV7aDJV1tO7AjYPpizyTZ1USrGYvkGobSKKg0Nj+FTHEPpHl0JGdn5YPr0AzDoQsmNrn22zZHFeWaJbKZsxIFKP8np8SOhqmXK9sVrrrjfoxw0r2k0nEdGE/uSeMI6dmRJmMD//xkjaENDC6q/ZsclrUL2IOgq+d2oMs7OzqK+vL8p5tWWx//mZ3+DIBxPQ5gWLkquYIfHgj44hOp2tq679TEb/XT0mE3p9/l/P4HsfaS3KdxLLvKrXoNcJIdyBuFdA4Y6tDTtIAAanlyK0oBFDERjWklyTCs06EDK0a5K+ko3R1+nH5vVdZTdU7VI2Y0BU49mzqDmtLMXI5cbqJxS2W+9b4se3Pt/DXYxFE/rgcAyAJ13SorcMT4xOCfISFPzV/34Ppy4q6c9RKVR1whcwUeCbjeDRRx/FNddcgzVr1uDkmKdohuGXPhXC20+/O9dMSILaZdAj3JmsCgXwnbuXz3m1WMmWKtJ16HgUn3jwAHdcK5CKVkpoJvMKVEb3t1rFrrZKLpVSIk/ylBLAH93Rg63PDhjWklx35Ha+h3ZNMitRrCTKVlrIKwXcfm8fNq3ryirJy+XGmk0oA6cnheUeohaxHo/XtLZVbKhIOHkhCVmRqRSqytGXkqrjRsI3/+M1uOaaa3D48GE8/NhOPPD0u5blfLmyKhTA/7j7MlziOY9AvYyuQBzXNR5GV7t4ZmPP4VVdzfCCuUMVdZwKPlPotsla7DwXC9qK42Uxo95nXmL5yavmlehK3Iu4nXw2m9c5r6E3a98tWktyXYytvgdvTcq1RNFNlK2aAMjOtr/l6vlY2KZmX6/mZN07+XEf3f0Bhi/EhX+XAETGE4bsY172qiSpJTEXJhKGTlYsg3nRvAbseSvCPY9HkqDobK5KyjAl7CEatx/ruRTLli3Dddddh39+14fzU8iop0E8FnOlc74fl6bCkM78H/zpl9fh2G8OYWRkBKtWrYIk8We4jvYGdM5vxstvnZ97hfe+TDWBJEnY9pluLGwrfKXEU3tPYWrWPOi8IFCPDdcuLPi5zbj6slbuMw4AXfMb8Ng9V5T0etyIfv7ksfX2EG664pK8j83m5m13dqfXDf1aUqjvwc61YokfUJDTmlQJVEULYz1W+gKAuC6Z16dAUcDNFNdanwYNgrld4uWL/dywR6VkmBKFQzQu/b4ktt+9EN3d3fB47DvrWJLd0ZFJyDLg9UhYHmzGPTd34Of/+2l89KMfxbJly/CD/7UHU5f+B5yfrhOGJvh6AjwUeCSpaI20vvjoAZy8aKyK0FIKTQEe/eEY/ts/Hsfo2CwA9Tm+68YOfP13QyW/Frei11ax07kvl2MX2xVfynO5hao0BrbtHMTB41FhMksui7GdwZGrIUHUBrxxKUHBwoZx9KX2IRAIYF5oNX59YT6GLyZNcwp4fdC1dLam0DI5CHnBx3Dsw+n02Rj6Shc7BjSjWMbsP7/+azz2i+m56xQbA2t6yJAm7GHWRp6SurOpaGPA7EZr2w1rKcdiXItWJmFElCW/5bYuXLdUxov/9hu88E7rnIvVoy6Jc2MVyK5Iic0kdWV3PDJKgTz6lvix6VZVEc7KgObh9QCXBzPHYDiZaNPtaIfHMTk9gyTqhdfLeOIrZEgT1oi0P+5bH8rqfFgKTZBKoGKNAf2NZvEdf4MXPo+EZEqGz+sBJCB4SUNO7iqyHolCsm3nIA4ORbPiqRKA6+Z2unwhIBkdTQmcm1FjoJkmXHbOaO5uB9QFnelo2KkR58HkiLWGuL40S2t4MIxGu/X1drTX488+u4yewxrHztwsErark5KYVbzQl+A68XaljdiRyTmbW0FvZ0tFrxEV27XQUHc69/pkPKP+IUGGxwNsunW5oxvUH45hx56TWa0lqSSQyBdeCaoC4PhcVQq/pMmDc9N1kOfKBAG7hgBgtbACQEoGvvHce+hZ1IwllzZi+HwcSVmBnYWZISuZMltRjTar4tE+Pzv2nERK1p6HmfTi846OzWLLMwNFy1kg3M+OPWH8eN9o+t+sbDw0vxHf+PRl6XEhKkdMKD7YaW0vQuR5PjhU2WtExXYttFMLqsB5GR+70foe01QSWB30h2PY3X/MtAAAIABJREFUtnMQdz1yBNt2DhasrM8O/JIlGZ7ps3jhpTcxm+Rty+W5KoDiPaqJlIKB4UmEz80gKSvIFB3YdxqyifS4yXMpK8CDPzqGux45gq/v6MfA8ASMC7+1ASLTc1iz7N4/mmUIaAlHZrDlmUyprqgcsbWpTlimaAdm8Op96rmsN26iYo0BuzWtTkVKzFS0SPCksrHbtrdYcLUIJA+WXOLFD3/lwbhOCVBFQoMyAYnrU2D/JyK3CGD2+Fc0/xUfb3o2hVu+fRDnY7PC9ykKEJ1OIhJLYHBE/By1NflwSYsPXkl8PnoOa5PnXhs2/bvWUOQ9b5IE3POpzry0bMw2opW8RrjeGBDt5PQ3WoRTgRSzG11MsRWi+PDkpktpyfPEUR64LYQjZ1thzKBXL1KSJMxIgbl/qZ4DKf3/eZ/RLt723Px8RK57/sMxGZfnwgvmlQDZx+e/78ZLhnDVzM/QqkSE56PnsDaJzfAM5mzYYiwSI7p9TUdeIkVmG9FKXiNcnTNg1jhoVSiA+9aH8NxrwxifTmokUTKwbGx9MyKzhkOJpHg3IivADX3tRfmuRPERyU2X0pLX9hIA1CQnPnPCRHPX2xtsBpLTOHE2joQw416CByn4kIAML5IwxkadIXH+6yyfIIOdz6hf9t+H2zArfQIL2xswFuVXBFVK8xeisAQafYZeGnq0i7H+ebN63Q5MSl8CdGXCldWYSE9ZFQiteHT3Bxi5EDckCZ78cAxNnhn8xc9GMJuUswwBf4MXzfVeNNZLuCrUmqUUxYwLXt/rs9FZbH12ADPcuG0Gbe/yUvevJ/Lj8NA4zlyMC5Uky4EdxT0AmIhN4D90nEN4sh2JFMBfWGV0z1Pw7TvaceD4FKaSImMgH6+B3kDI9fPiv82iCSn4MBFXX+la0IipeApej4TeoNpbhEoLa5Omeg9+dVQsjuWRUDR1TAZTGz0/nsDETAqNPg93vak0XF1aKBJCqccM/IjhIi6Fk/IQUanJ4qZJ+HxenIo16noQiCfNLbdRrWqlYSx7UwdCoMmHvjKVBfHr+/XjTka7dwLRFAsXiBZUBc2YwIrWC/i/EyFY2LUmmOsT5I5zI4TUOgk93/n7Y/jFby4aXu9or8d/uWtZxS7G5cbVngHRTm7VR1oxlmjEjM5OUGCu+f/U3lOYjOtnSAmy5MHUrAcJxWv4Gx8Fh46eRUrJNDBi01whdeaJwqLtHzAxk0I8oY6s2aSC4Qtx7HkrggPHxtC1oAlno7Ml8fosmteAvW/rNe8lzf9SR1idMo04GmCe5iMhgQacibfNGTv57N4LbQiw4zozCKyeaaL2+PiVl2Ke34eBU5NIpGS0Nvmwef1S/Nlne4rqEah2XO0ZEClIbb+3D7teHzHs8nPxDLDPAOAIvpjBn9TKpZtOOIMv8KPCyz3xeIrn9dHnsdzQ1459A2NZipXf/l9HcWEyZX0w1+PMGNCKMhGEHUgsLjdcnUBo1ieaJXE46WFt9hlFgeFvZoZBW1MdYjNJg2FRqZmktYZZ1QiviE+WM8I6hYaXzHTHmo6sf/csbnEsF+xOnHkHFFRuQhZRevSS3+cFYnFWBkMtGhSuDhMA/DbH7HWnrY7NPsP72+duXIT9x4zJKh4J2HTrUhw4FhW21CTcCUv6PHF2yvHCWk539VQ8ZZo4VVnYNwgkCYhEE+kwjZOkXUrwrS36wzF8+4Uh7t/Oa8K3ZonkbIyZ/b1acXWYoJDwLD0AltYfaxM7dEYtP+tZ1IzN67twZZex8xU1IHI3okZBdilntzxeX4MMxUr4KzeqwSBBVUX8g+ub8f/tVzswWiXt8ro6ansoENWHWRtubfhWlEi+pGUaNy98H6+e7sTobBu0z1M+iaxW5exu8UDUhDHAyz3QQtUAlYvdh6k/HMP9Tw/keBZ1USpntzwnLYarA2NFhQ8JJFGH7CRKBR31Udy6dAQtLS1obW1FS0sLfvCmD6fGjEft6/Tjya+vLO6lE2XB7BnRGvKi9zV7E/jyR8/i2d8sxsSsMVE3l3wwUd6btjmYWyrSXJ0zUCh4ynP6yUZW1CmmWHFhorAwj422jS9rWLLlthDuuD475r5jz8m8zteASTz385M4GZktiwXf3dGMCxNOElwrEa2HQ+/l8CAlNXAECSVcnG1EOJzt8Tmd/B0A+uogYOjDypSKJazp7mjG+Rjfe6bNO+E9Sx4JuPKy+fj9378RvxrnJ5rnkg/GW3skRcF3d+6DLMtIyfOgbUBWzjWoqowB0S6RnyxmdKlWsq50LcGsbVG73e0vhvHqkUi6ZfXGtUEcOzPJf7MtJMTRjCPvT0CBVJYOlvrkV2vylSMuNeahDo+kqs/xknY/umwh/uizf4SLFy+m/+/ff+5BqqoNJ0IPe0ZkOdtm3Hp7KMujZ5V8rv+7NJdM/s6pGD79398CJKA36Le1IRB1TpyS2iD5JCCVPd7LuQa5PoHQDv3hGB5+YQi7/nUEwxfimJrNTvo4FZkx6BXwKLcaHWEPpkwpvp8KIrFE1jiQTQV4rBbO7IWqHJoSLMH1/bPTiIw7CRe4xSCw+o3NtQ08HuDrJkm7SxaoIYKOjg6EQiH86miU+zv1dvqx4dqFeX4Xwo1olQHjCRlXdgXwx5/pxk1XXMJ9nyj5XK9HMpNQJ49ESkE8KSOekDFyMY69gqRCbeJqIqkYupF6JOCjl7VjQVujqxRRK94zINolal0uPEvQ8F4bpYmEO7BuX50d/smUDYikec3gf7YcFvyqUACBRt4jy7tGvVpCucndKGlr8uG7G5fjyq4ALutotpW0u+nWLm4C4eZ1XTlfB+F+tGW6/eEYdr3Ozyey6k3A/i7SI1EU9enSu/T1ScrauhmtASsqZy/nGlTxxoCdlsMivQLWsY6qASqL7o5mRGJOyuwkeKBANuxOFaidAI2xZTssaKvP6XP5MDg8wXlVtNA6V/xzGx4JaUMAsN9gZlUogO338jVKiOqCFx4+8eFUtt5ALLfQnpN2xf3hmKFaiT19rU0+1PkkwzgU6eiUg4o3Buy2HBZNIpQsWHlsXBsUlhDx8EhAb2cLBocndTtFCb3BVgyOTJp4GsSS1LJ57KFImHk3xNdaiQaBBODxL+dewZFPZzqiMuB1tuXu5JGbcJhZ4q4+qVDUCl0BUOeTuJUIbhqjFW8MmN0srcvFTfWcerTXtqC1HlOzKYxciANQdQ02retyzbW6gVWhAPo6/RgYFicFMgVJ5nrbvK6L6wlSFLW8x35iHkPCqdFxJJNJ+HwlfIy4a7pVSKDyDAFA/Ua0kyfMEFeKAfpxr8B5aC/drljRSZRzXPpmx64EZdqKTyBcNK8Br74dMUyHfUv8ePBzaqvT3ftH8e0XhtLJhWbJH6WGiaOcnru2SCyB6JSaMS0rQCSWwJ63Ipjn9+G514YNamq1qrLWtaAJrx6JGJZAjwRs+b0QUilwVSb1apZZyULTScSTqsCNinmuQQAX0RB9BytWrIAklWbBPXJiHCMX41mvSZLaujvBTZ+vTEMAUK/8i5/oLPdlEC5G1HxONO6v7HKWnJfVrng6icY6LxrrPbgqZFS8PTw0nt7E6fnjIrdVLgRVITpkpgQoEpuRJOA6F7RG3fyDd0x3uCrqLZIkCYomAfKrn+zAU6+NAnCHaEWp6Q/HsGPPyXTteM/iZmxe15XXblI7lpq8CZwak5GZXDKpQBIUrPYeQKt0ETfddBM+8YlPFOAb2bs+nlDJfRtC2P6z3NUV3QhTfbOrFkqUnt37R/E3/5JZkL0e4PKgH5tuLY0306zhGI9iCoexZ5NX2nj7dR3Cz7mFqjAGzLArUZnlqm+rBxRk1akXa2D/zkMHBTs6PfYU2aj/e2H5n3/3In5xTMK07xJ4JA9mE7O4MtSOlYEPMfzevvT7brvtNlxzzTUluSaR8cvLZPZ4gCWXNiJ8bqYk11YYMh4Zj6RmbjPHSy0avW7FSt67r9Nf9BAnzzgWGQahBY342/uvKtq1sOtxS0KgU6reGLAjUakfUFqKPfHYNwaMSBK4lRTURrlwKIqCv/7rv8b58+exYcMGvP766+jr68Ntt92Gd955Bz/5yU/AHqE/+IM/wOWXX17W6+VNRg+/MFThUsbGcI0kAa2NmQxt8hSUntu+e4jjojfCUwQtJPoxf2NfOx5/MWwoK80nGbVQ16hWA0mOhItKhauMAVGSXz7Jf2YNXpjLyMrVVMzd9uYfvpMlqWsXM0U28gwUlpmZGTz22GNIJBK49tpr8dZbb+GBBx5AIBBAJBLBc889h6mpKUSVeUgFP46RMdkVCxR7bo68P56zwVkJkKegPNz84AHb7/3+l0t7bwqxQy9U0rkofCBJ6th1y7h1jTEgjIWuD+GJl8M5N3OwE8ex0wSmWLttXnc1HpJqTGb9BvdvCOH7Lxl/m+33ls8CrjbYhHDsTAzS1CgW+s7jXGo+4r5LcEXXPGxcG8SKYCP+8ql/xL98eNncGPOUfYEyjiur8kM3wyuNzH6NjODS84kHD9iWtSpkx0+RrsBzrw1jfCYJrwQ0+DxY2RXIaQHn9T3J53k222y6ady6ppqAScyyH0ytEFHw6xNjSKTUlC32uhMpWDsSlYeHxk3liospEdnR3oCP6bJVPR4AigJFUdXXNq9fij+4KWiQz7zpiktMZTWJ/NBWocwkFEzDj4h8KaaVZsymPGmp42t75uHASMtcJrGav1EOyWItD//9EM5lyfFKuv9WErxrNpaNxRMyPnfj4pJcEQG8/pvziE4lbb23UPeGbe5GLsQxGVflxvccieBXR6OIz8n+yooqHTx8wXnVGDv+2Wj25jCf55lf8ZA5rlvGrWt0BkQNHaaTxl2BUylYJuzALMqHXxjKcvuYNYEphUSkXeEJ3nvcJFpRTfDUxDKo41EreX1idCptsDLK2XRk6AzvvJVoCNgj165yRO58447LbLcFL9S9caIrACCtLWJ3jrSjaOsUJ8JF5cQ1xoCorWSgsY4bF7f6AfXVAVMzKYQjmYxqfec5rSykvpqgkjJCicIgUhMTGaa88SvBPQ+6OcUKIRRX+ZCn906UjlWhAPqW+C1znjwFvDd2O9AynC7gdhVtneBEuKicuMYYELWVvOdTnfj+S2FHzRz0+Qe8fAB972jaYRNaxBOIfoFTEJ1KIjajuktZaZMEBYCC311ZV+Qr5dOzqFmgX5HRSjD+txjkahBYf04B0NbkRW9nCxnsZWLTrV3CSiyfR8LyYP7aH1rMdtk8nC7gdhVtnaDdbOqrCdw0bl1jDIiaCTnpVMbQu5JElNONS7ib7o5mnI/pq1DYv2SopqT670RKweDcwtsb9OPc+CwuW9iESyaP4Nf//iau7/sq/H5/ya69PxzTrKP6RVW/wBY7l0B8XCaexX6zBa31gASMXIhjZlZVgzQ7hgS15wQZ8eXDbN4uBrxNowJ+iTXgfAEXhYz7Ov3YvN5o1NgtGayEzaZrqgkKiZ3qAMBdmZyEuxBVoXzuhg68G76Ad4fjkHWyp/rxND4+jh/+8IdYtGgR7r77bng8HhQbo2ZGcV31uVLnlbD6slbThWPHnjB+vG8UZt+BNDVqD17Z4PEzumqCOg9WLg0UpKRQdIxKKRm0S1UaA3YlKr0eKsMjxJhNCiKDU784nThxArt27cJv//Zv4+abby76NTuVZy0HTp67/nAM33juPaFOQiFL1giCh2j3H5tJGjqhMipxo+maMEEhMasOYPQt8Rc0lkVUH2auPX5sUcb85uxSq+7ubtx88814/fXXsWTJEixfvrx4FwzzBKgMhfUW6DMOJADavk1Z7laHz92qUACrL2vFweNRrivYLclXRHUi2v2LxiOjEkPQVWUMaHdylwf96YqABW31mIrr2gLfSoYAkTtGg1MNGjRF9uEn/+LBgZGWjCjKx6/G8uWn8U//9E/46le/ivb29qJdF7eqYU66d2o2NbfDLpwhoG2UtG9gzNAeuhCxZPZby8iODW+9PUTPMJGF3pt3w4p27HtvLGcVQZZ/pl/3rfzpbioZtEvVhAlECoaP3dMHAMK/2R0YlaAtTZQWNib63z+HJmUcy3zvI5lK4u3U9QA8WWVv/+Pubvxyz4/Q3NyML33pS/D5imOHi56D7ff2CXsU+DzA8qBf6PIU4fUA13S3lSQjupIbwBClQT/2We8WfQmqk3nfTv6ZwTM2lzNQaSHoqjEGeLFSCQqWXapAURScuODJEoXRtkcV6U+zCeidUxOYjKe452U3nQyC2uXNN9/Ez3/+c8iyjH55Dc7L88DrJPnALQE8++yzWL16NTZs2FC06xEtnLxnRPscOEk8LHfjF4LQw8+XyU+22kpKuDfoR6DJZ9gk3tDXnuUpq4RNY9WECUQKhqcuzM5ZbtlylLICDA5PZE2ATIjor/6wF8lkEt/cdVxTtsKfHGUF2LHnJJ78+soifTPC7VxxxRXYu3cvFixYgMkPW6A1BIBM/DAY7MW6devw4osvYunSpbjqquK0UxXlOmTETxQokLJET67sUkvE/u7103jr+BjkdOlkRotgnt8Hr0einTnhSuwIEjmN5VsJBonKDXnriturC4pf61Qiujua03XLDI8EfHTZQly1bCH3b4BkkLZMyTIefvb/4L/93a8gK7ImNiTeJQ19WFmJIkRhaWtrQ92ly7EvugJxxQeegE90KoltOwdRf+lyfPSjH8XPfvYznD17tqTXyWrCVwbrUY8ZfKRtNsuVuSoUwF/8YR/qPPr6fvW/sekkvvX5Hnzvi71kCBCug7cG6HEay2fPzHU9bWhr8qKtyYe2Zh+uW9YmDAM8/8YIZDl7XZFlM1VTd1A1ngGRgiFLZOL9DRKv2sADuXGB+obpqoigEEWmPxzDz0eXzZkAbCedreyXSAEHhtQdwl/+Px/HmTNn8OMf/xhf+cpX0NBgr4lKIVgVCuC/3BnED37wAyydtxRXdv2W4T2zshc84zcpq7k3bt/hELWJfg1gOQNaZAUYHJnEtp2Dtl33TgWDBocnjAmHUNeg/nDMtc+Oa7oW5gvrThgZT2BiJoUGnwf1dRKGz8dx1UcCuHX1AsPfoEiYTWV3k/JIwFUfacP81gbTToZaejv92HDtwuJ8MaLk9IdjeHT3B3hq7ykcHhrHonkN3K5n/eEYHn5hCLv+dQTIEiDSK/5l/q0owMWJFL76+9fhzTffxLlz53DFFVdAkiy2NAVkYHga//i2grejQfSfnDF8v7//5RkkBVUHEsrXiZEgzNCuAfGEjND8JpyfMCb/xRNyuuOok46Gdnnh3z9Md1DUoihw3EWxlFRNAiHDSVVBOho6Z0FqM68VRX2vrJiXkVAiVXVhNn60Fv3u/aMmXQ2doKC9EVh8aUu6MVYxk43Y90vJ2Yv9lttCuOP6DvSHY3jg6QEopPpHuBB9cqzZs2IlwFUsYaBP//lbwtbObhYjcm2YwMlN18JrcSkpCr67cx9kWUZKk+nNprvWRh/qfMbEqHRziZHJuTcrCM5rBCTgXJQ6GlYjvPHjAfB3r5/GX/xhH/rDMezYc1LQBCgXJIzNKBibO16xk42ef2Nk7rtlL/TbXwyje5HaA0Q1jvmGQCXWTxPVAS8x79DxaLq3hX6dsBLgKpYwUG/QLxQlcrMYkSuNgXyyMUVVBVNSGySfBKQk3d+AOp/E3elUQnMJIn+0hmd0KmkYP7ICHD4+hv/03efxbny5JjegUGSOpe+mWWhOjE4JPV3sNzDbSbmp5SpRW/AMdQBpw1y/Tlh1OGSGba4bTxEsd4GnoO1mY9qV1QRs95KVjanYy8YUVRVc0TUPfUvbuX9z680his/u/aO4/+kBHBiKIhJLCDXwFXjxTlEMASPF3D2YjXU2GfIysuu8Eq41yaAmiGJjZ6evaNaJjWuDaQEgPcywvaGvHVufHcCh4+rzf+h4FFufHcDu/aPYtnMQdz1yBNt2DqqdQG3CKhD6lmR3KnW7Me1Kz8DgyKRh96LMZYFakUtVgVtvDlFc+sOxHOL+xU/0kwAkkgrueuRIwXMINq4N4sBQlHtOdi7eM/LoPSvICCDKitVOH8g2pPXtlRe01acl6lmId9frHG+DoobNPFLuOgGrQgE8+bWVFaWc6coEwk//97cQnTYmYLQ1+fDTP/2Y5efT0sGaWH9vsAUb16qL/o49J9PaAD2L1T4Fbi33IIrH5h++g4HTIgPTXIGveMgAJEiSlJXUWsgcAn3yowTAo+kkWEkTGFE7GNtzG3GaoCeWG85PubAScakxcBjRaaP8b1uzFz/9k2tsHUOUFX7f+hCeeDmcV58Cojr4nYcOCsMC5UGBagx4oJ2IJADXFbhVLy34RCWiHbcL2uoxOJcvoO/DoW+SJfKuOWn5Xe1VNK4ME/R2tuDgUNTQFrU32GL7GKKqgidfGkJK8YFNtsVO2CLci2xqB5fLM5BtCLArUbXPCwclxxKViH7c8oxaVhZuJwGdFxbjCRbVQm6ZK40BdoP0u3cnsX1RVUFCYwgw7CRsFbo1JlF+Gus8mIwbxUFUSm0IWBkf5TBMCMLd8IzazT98B1otObMNnz6voLujGTf2teP7L4VVP10O64/ee6HNU3DzOuFKY4B3g5y6MXnJJh4JCDTWITaTNLxuZvXpY6yRWDQrCatSGlEQ2fi8HqhueacU2mtg43hkCxCEJf3hGDcPyGzDpzUo2ELe0jAnyT3XhdDu+qMPT2vzEdy+TrjSGAByd2Nq2w5ntzNWrbt7PtWJ778Utl1RIM44z0zgFGqoTHqDfm5mvTWFXpmtj9cb9Fu+hyBqHbPycys3vyjPbOPaIDexlrfL14entbh9nXCtMZAL7GbyJIQVAPdvCOH2NR24rKPZttdhxysnBWdzHmog3MXGtUHbyUPlhspfCcIasznY6hkSqY/uemMYX1jbaSsPoVyqh4Wg7MYAz9oC7GWC6mE3k5cX5pGAXw6M4fY1HY68DkNn7N24WkgwqTZWhQLYfm8f/mr3+zh5bsZWU6riow8ZKPBLk5hfP4nd+6fw3GvDiM0kEWj04Uuf7MQd13eU60IJwnWItAj6Ov2Wbn7eQi4rwK+HziIcDkOW26FYeIPtqh66kbIaAyKtaUYhpIi1xyqWRUbiRZXN6fMzmuxhO/kAxaw0MB5XURR8a8fLOCavTP89Op1Mh6/IICAIFebt0+KRgM3ruyw/K8oz+8j8RpyJ1qcNAQZvTdFXJ+ivw83rRFnliHluGVlR5v4v85pWYtIMkZQqkLtF1rPI/DNtzV6Saa1gjDE+1svSDDvvKRQSptCCEzLfk/Xca8Mlug6CqFyOn5mylBfWyxentWk+3Ye+rnm2pOxZ8vu1y9owP1CHviV+9HX6MT9Q5/p1oqyeAf5O3riai3b1vHI/vVWoJReLbNO6rrmWrka23h7C7dfRrqySsTsGjTCDoDRp/ikYS2IBYJyj1EkQtQpv06goii15YbMqNjOZez2VquFRVgVCu+pPPClIXuYnAHQEPDgzbiwX6+v048mvr8zpOvvDMex45WQ6f6BnUTM2r+9yrYVH2Ic3Bj0S0Nvpx9CZKZsKhaUyCoz5BABQ5/VAURQ0+LzweVXRLjfXMxNEsSimvLBI4KiQHQ/LSVk9AzxrS4uZBcZvZynjw/EUAK/hXOfGZ3O+TtZ0gqg+RBb/5nVd2PX6iM1qg1KJAOjPo3onmMGSnFUlvA8OubuemSCKhTiBL//qL576oajCAKg8I6HsvQnsWFu80j+RBVjnlZCSFcNOr9qbTBC5I9Lpt9MYxTl2vQj5JTIWo58BQbgNXqhY33tGVoxZPpIEtDb6kH6G5sSFnCzaIq/iZQvq8X5kFtDpFbjdOC+7MZArZu7do3MtkPXNK7QGhR0BiUJS6vMRhUHbATM6ldRMKuXqXcCwPn9bkxc//VN7jb0IotIwa0anlYq/oa8dT7yUMRD0fQcYLHnQatFmc4LIayghNVd5kMnPr4QNadl1BnLFzL17/Ex2PfY9n+qEoqgGxInRKSxorVfbGyP3ftVWpBeR4QkkZSVLA9/tspREBuYaNBqfuSQQFsaAaGv2IplSMBlPWRyPNIyJ6uX5N0ayBOaYB2Dfe2OGRbdbIzSXSCoYn04aksIVRX1CzRQCzYTtAHUd8kheJHVpa24WG2KUtbQwH1jmZ2+nH3VeCV6PhMsX+3H8zBSeeDmc7j8Qm0ni8RfD2PLMAP7/9s49yK3qzvPfq1a/JKvbZtq03TatuGnTbnCnbJ5Thuw6m2WDCQGSLGRq4pmEGHZi7wbsmhTOVC1JWKZmEmrCGqjCEwImDpDyDDVb41mIgRkmzIYwAQxmp5eINt3Ysuk2jdsPtVrdrZZad/+4OtJ9nHNfupKupN+nKgHU0r1HV/ee8zu/x/d3eCyBqWQGsfFUvoxROZaT8kU7sBvmrdEEEnOLhmY4Xp+PKD+iqgMJdpdcuw448/ft+mIUf/9nV6C3q93yzNPzWWEZFUHUOiN5D7AaWUZho6eGGfXP3bsRzUFJ+JRZLdp6A0SNlN+Qrl0ZtlWG6Ddq1hhgHJ1IYTGnJFG9P57CnuePa3IG2KKvXvx5eGm5FZQQTd5TC5YiUYSnYRGQlLj8Vf2d3L9Fu9pUr9g1G8TvkfIqmoCdhFgZsgwcHktg174YGQRE/SGaYC3sbjM9GkkCMllZqEfw4eQs1xAAlByEPdsGsX1LL1evwK9iQ4yaNgb0FQXF38i5e9RLy81Kn9rr8xHlRyRI8kef7RH+LdTWJJx0rJA4n5NVBqT1vVOUTSUvFFGfCCZZyXzyZc8rtzZHVrQ7ppIZgyE9HE8ikxUfuzkoYX1vxCA85HexIUbN5gwApQjGaFFP7F4k+lnpUwO1YSkSRazaavP+dv+BUddVCB1tQdNW206aLJEXiqhHBlYtwVujCW2VAICBniWmn1M/yyPjM2DVBMgbAux4OVmxK558+Ti2XR/FrqfeR07Q8VyC1kAkV+YAAAAgAElEQVSvReGhmq0mAPgVBSyti5WUiLQLAKXy4HRiAcs7WwAZmDg7j8TcYiHb1G1JSCHJJMe3XQdXhUm0qAHg3p+CTOYiSpLhri9G8cgLcdOqGJ4YFiRgJJ8Tw6iFTGai9ql0xdTBNyY17eWZd87tLlxUrt6CeXQ0pXBm8QJDfwI10eVtCLU04fT0Qk1WjNW0MSAqLbn7C1H8JnbelnaBVS2524lUXU2grmM1a5dM1Bei+3P1BW2IT81zPqHcgF8aknD37VcL9Q/cnLMW3JRE7aK/79imrDMUxEBPGJvWLcVLR6Yw+nHecF0ZwvYbel0vlqIN184vRnHL1d2uDBNRufqlPc2ITy0gmbbvda4VbQE1NW0MAGLBGLvYkUTuijTjuXs3ejBaotEQiWrd88Tv8pNYsUSxIzgPOTuHbCCMob7lrncWpT4TBOEUu9LyaiQJeHibu8WS7xWWMdjTjDs+14vvPvuhwSC2ox8gMqTtq5EWqTWPXM0YA+oJjrn1vXDHiLWsFWrtByX8zXA8ib2HTiA2PpN/RVL9vwxZCXLV5M6CaFys5lGRxsbg6rArqXczl34YSZxHl8alz+bxrZt7TD0GdtVIWRjailraSNZEAqH+h1DfBKUK+Jgl+9VKSQhRG7D7eDEH6CfGopegWAUgyeYCKAThF6yTpvkudpbv4sX5AhJwWfQCfPhxG2RdFC4nA/927Cx25rvaisTmRIl/vATi5HzWkJ+jptYqxmqitNDYc75IqaVThTIT3b0abmuqmZIQojZg97FdZCCfc0IQ/kZfXlvp87GN2zevj2JgtVH3Q4IMWc4hJ+c8E5v7/IYu4XeuxY1kTXgGrOr2nZZO6V1BX/n9bvzt65OFv0sA5hcWsXVzbcZaRcmLtZbdWm/Y0Z/QwnetEoTf0JfrJeYWbX2uf4W7nbNZqS9fql5CW1s70rNZzXHsrB2saif2UVHZkHkV1H0Q9OHrWsvVqYmcAavkFCdxfWPWq8wVK6qVXAFR1y59lq3dJhxE+XCVZAVF5ZAMOaKW0Jf9iXj0rvJ4Xnmx/8cOaRd0Rrg1gPaWJmEOQTG0p6VW1gi71IRnQG/pqXHqjjGqFhazudX4TaiFVyoDwNBP+83RBHjfx04TDqK8iO7jwVVhzC4sIn56DtrfTYYMCYfHqLEVUVvcck03AJgaBNHlbWXbOXNj/wIjPJXOIZXOcXMIzEJ7flsjSqUmjAG9S6gUd4xd1UI/JX8Mx5PY+WSsMO6pZAJvjSZwYSiNXK6lkDWr/F3sWq63m7fWELk2lVLDGOcTxd81ADLkiNrilmu60bciZHCxA8r8+p1b11R0PFb9PHjPmVloz09rhBfUhDEAeCfvyMtCVfsG1FKU1w4uLfl8XrD30AnDDSlDxuRsEHyFbT71dvPWIrz7ePf+EVU1AR8y5IhaZCgawWN/cpkvtC/syMTrnzOzz9RagqAVNWMMeAXPVSsD6F7agsnzRctRkoBHXohjTXeo6q5ZptqlRQLQZKh3ZXK3asOGvV5vN2+9YGeRJ0OOqGX8oNVvFm5m6J8zs9CeSFK+0rLMXtH0gx/84AfVHkQl6V7aio19HTg2OafRK0jNG7NfJQBT0xlcv6HL9fmG40k8dPA4Hn/5JN4encaKZa3oXtrq6BhP53to6wkGJHWPDQTySYL33BRFLgfMzGXR1tyEtpYAPh2NYPeX+2oqu7VReHt0GuNn0ybvkCFJEnZ/pQ8Xdjq7d4jaxYu5gyiinvvPpzLC3b76OWOfmZrOIJ3JYX1vBN/9Sh/u+Nxq7rPIEg4nzqaRSudw6lwaL707hY19Hb7/7RrOMwAoVmqkPWipIuXGNatRSuxowchEqnAstwJJ/StD3CzYtT2KvjfP/XbL1d2Oxk1UD6sOhAFJxnWd7+HS1VdWdmBERdGrrI6Mlz53EEaOnkpxqwMApQRbv2Fy4tXQJ6jnZACyEup97FvOlRYrSUMaA4C9mm+nrlkzpUTAfSLY9ht6NQmEbGw7tihuqmq734jSGIpGsGfbIP7s50eRWtB6qAISsH51CIFTJ/Hee+9haGioSqMkygl/7igmAzNFyvue/QDNQamm3M9+wkr4yyrJ0ArRuhIbT2E4nvT171UTCoTloK87ZKqWxUoWNw0uxe79I7jtwSPYvX8Ew/Gk8DNmSokMN94Gtlhc3d+Jrkgzru7vxMN3kjJiPTEUjeAv//gSNAWMqmp33bAG/f39eO2111ADsiCEQ4bjSdz37AdYzOnnDqNkdWIug6lkBofHEti1L2Y6HxFGyl0dYPZ5t0qHlaJhPQM8lSoAGFgVxumEUrK4aXApHlX1lLdy1ZXD28Bwk4BTq4ksjYqZqlrkuuvws5/9DEePHsXAAHmC6gUzURsjWk9BvZeblmP+Knd1wNbNPXmtFyN+rwZqWGNAqF2QKHZC3P/PJwv61YD1A2hVulJJvWp9v++ppCJI1N3ZggsizZrvSQaCfxAZfdFoFBdddBF+/etf45JLLoGkb6ZB1CTO+lX4WxjNS/QKhmeS3uRMuKkOcMJQNILB1WGuroLfq4Ea1hgAihOvPl53Jnkeb42eRxMWIEObAWr2ANrxNlSqvvaZVycMksQAMJlYwGRCiYtRUlJt8ZnPfAa/+MUvcPz4caxZU1nBFqI8mHkTJQlY1xPG6ekFZLIypuezGsPBDwvMwTcm8dN/PIlUWnFtNEnAJT1hbN/S63pOGY4nDcqFMoBcrnRPiJn3zS16D8bnN3Th6ERK0+64Fsq6G9oYYPAkiiXIaGlpRS4DQ+Ke6AF0e6N57Q4bjidx5Ni0SH2zQCO4Gu1QK+GU/v5+dHd347XXXiNjoE7o6w5hKsl3K6/rCRcy0AsbFvhngeH1H1iUlWS5u5+IYedN0YIssRNEsXUZ3nhCvNQ80G8k1Q2MXjoyVdCI6V8ZctSxtBo0bAKhGp51LkNCczDIbZMpegB5i4odQ2DXvhjeGk1gKpnBm6MJ3P1EDAffmDT9nNXxMov27rx6djXagV2vw2MJ3ydmSZKE6667DkfGzuKex/+vraRWwt+wHiM81JntbKNx5cVKErEf2qs/9cq46d/3PB93dW+azUfV9oTo4ZUS5nIy/uGNiXwJo4zMooyR8ZRv5xUGeQbAj/UHVG1/7ez0RRailQte5M7f83wcfSucqx86i0Eq+O0BKweFts4TqfzFlrG2J4TJM0nkcrKmv4Mky3j8xTH81TcG0draqvl8tb0HuSUX4d3F3wdOzkOGRKGeGmcoGsHgqjBi49YxZj+o+KlJzmct3+PG69jXHcKZmQR3HvObq120kTx2eh4yAqilhM+GNgbUC0RO1ir5MQ8Ar46ftzDwLEQ7P/6Hk7NCd76bG8dORYMevz1gXlNIpiwkgypZ2YfHElB+dX0Jl4SjH03jhz/8Ibq6uoCOT+F/fdAFQKq6AMyz//IxlMbbCrUwyRDmbN/Sq9lI+CEEYIdIWxCJOXODwI3XkeVe5QCNQbDr5qjvyqlFG8mA1ISsrkLE717YhjMGCgbA+AwSc4tFLf/8PzvbmzCwaokjD8DhsQTam2XkZOfZvmYxQzc3jp1mHGoGVxsVt+oNZqgVJxb2OwXA62sakIDBi5bi5itvxqlTp/DMkRbkZGNZ14///hjOp7JIzmcRaQvijs+twi3XdJfVi8AzHv0+yRDmlCOprRLc8blVpi2KAfdl1Hauhx+8dbykcUkC1vaEMTKesp1v5gcayhjQL+RAcYGQ8z/kwKolpjssrtwkckgvZCCh2E4YsPfji+pSJZc3jp1mHOpz7NjS6/gctYa5t0T5vZg0NXuY7/z8GqzvjWDjxo146v8dAeaNapLxqbnCMRJzWex5Po6Js/P4u99OOg4X2UW0E/HzJENY47cQgB1uuaYbE2fn8bev8/ObSvFuWF0PO2HZShgLZm3Jd+2LGYwEP3t7GqpR0UMHj2PibFq4MMgA0pkcbr92pfAYj79cLKMpImFJeyuyOdkQatj9ZfPmMt1LW7EsHMRvjxYNApa0aPVZ0fHUjTWiy9uxvLMFc+kcFnNyQbYkurwND/zhWt/vPrzg7dFpnDqX5oZjAhKwbnUYay4MIZ3J4bKLjA2d+J9n/yVpXvvdyaQSjsi/zq53qQ2vGCuWteLFI1OQkQMLbMmQcPu1KzCwaknJxycIJ1y1dimuuLgDvzs5g8SsEjKoxPyin8tlKBu645Nz+MKVF3IbBr14ZApvHD2Pn/3zuKeNn7qXtuL6DV24/dqVuH5DFy7sbDXMw7x5xW9IcgPpm9724BFDvwA1AQm48uJOU4t09/4RQ1MZ9jm7yYY8/NDvu14x5gwoSAACAVhmZfM8Smo1OC3818PNi/iLW8O4+OKLEQ6HC8d1s3PZc/AoDh4+p/oWCm5LuQii1jCbyx+5U9mpmzf/UjZdeo+dH0IP1aKhjIEdP3mP2/0PKN4cThcGu58jqouhmkCSMdAjzg3hfX7voROGrG8jRo+BBBndrdNYt/g6AKCnpwctv7cWP39Xce2r7yOrcMJwPIm7n4hBZHQ8cidVFRD1z+79I0LZ36v7O/Hh5Kzpxg8wbv5Ec3ujVOrUtTGgbwn6/kcprqu4MxTEQE/Y0cJgdxffyJZmvcAMgffH+fePGWpj8VMXSBgdHcXY2BgODIcwtbgMaqkPu54p0SQIAJ3tQTzwtbV0jxF1TdEoNtIVaUZfd8jUM6B+73P3bgQg9vpe0hNCR3tz3c/hdZtAaNVOmDG4Kuy4z7TdZB+32gOEfxiOJw3to+3Q3CShMxQ0GIsbNmzAhg0bcGDsCMBpcW1VFWD198RcFrv2xegeI+oaqx4AdhKp9Ym3vETjnAy8P57KZ+fUt65H3SoQ2mknDJTev5oxHE8aWh3zKg9k2f+tLIkiz7w64dgQCEjAxjUdeO7ejfjR1we4XqO+7hB4vYamkhns+Ml7QqWyvu4QN1NBDd1jhJrheBLfePjf8Nn73iz87xuP/Juv1fDssP2GXm7L7z/6bI9BsXFwVThf/298L8Osrb1alKxen6+69Qx40U6Y5+IHwH2Npz3QLGWRk7WXmGrCaws7v5UEZWJxUkK0ad1Sobs/9lEKO5+MYc824+6D7XjMWt7SPUYwRO70+On5kvoH+AErPQK9B5eF+0T9AniaAcoa0hjdIuvWGCi1nbAxzJAoTN6sfJC5jC7pCXO1ByAVxYzU56Wa8NrBTBQKUPJNHvjDtY4rQV5//7zp33MyX1VQPQGOTKSQms8alM7oHiMYew+dMP07Ew2qJYOglDyso6eK3QRZvwDm8ucZF8n5bM2JB7mlbo0BYTvhfEtQq0nbLMygl4IdPcXzQgTQ1tqMbHrRV53GCGds3dwjTESS8v0r3AjG2NlZiN6jPp+x7FFRwhyZmMHu/SN1m+xE2IPtgs2w6oPipyToUvKwRJLxe188gUhbkPv92Pn04kHXDi7F7v0jvrgmXlG3okNc0Yev9OGOz63WiEOI4IsLGZEBNAWKAjOMgAR8OtqBe7/UV1PCE4SW7qWtuLyvA787URRVAUoThgIUIaPxs2nT96zvjVgKFbH7/MPJWZxJpsFcmumMjFPn0njp3Sls7OvwRFyFqD2etpnzckYgisUWw/Ezacwu5DB+No1D70xhWTiIdasrL3LFExuyK+rFm9Pl/GdPnSuKE6mfGd46ctumFXjkhbhR0GjEe0GjSlK3ngGgNIlPuxr/AQnoXxHC0VMprvQkr9ERUVsMRSP42T2f9lQYyszjACj3kBMP0genZvNJTsX4JjUxIvpXhoTaKmpEXii3XVV58fntN/SWvHsWZfx/ODlr6cHgz+ly/hji7oL6dWT3/hFOWBgFDZJarTio22qCUtm6uYeb7a2GLfo7buz1Xa9xwnvYpGBWJeDkWHu2DWJwVRjBQHEJbwoozaMevtP+/VNsW228Yes12Ymwx/YbrHuPmPVBseqqyoOV48bGU8gsysgsyoWk2FIrGPgZ/znk5s9h55MxHB5LYCqZweGxBHbt056PzenqigJe11KrZ8YqOb1WKw7q2jNQCiyZRK86V+huGGoyKNiVc/dlJ27np9geYc1QNILHvnUZ93dzYmiYTU71muxE2GMoGsHOm6LC7oISzL1QbrqqispxRUmxVujF4wBtYzEggGAwiFwmB7a/Fe3wDQmCc9lCC3uG1TNjx2tci0Y4GQMmiCZrt0qFbhdnux26SOCo9jj4xqRmomZVK5esbMdPdgzZOobZ5EQJq8Qt13Sjb0UIe188gdFTs5BlGa3BJgSDkqXyqpuuqla7aicY5zVFqEufCH7/gVEA1iJevHJDp90F3Qga1QJ1LUdcDQoa+OMzSMwtFjwJTnWu1YZEJitjei5rSFAcWBUuZMFmsjKm57OGMkYreVuiephJqgLA5Wsi+PE3B20dx9hISVHX3HFjL4WriJLQG6zM1S4KhVr1DXAyH4kkgtVzn9kO387852azp/dWjOS9x7Xcr4aMAQ/hlXmp41FObk7e5M6jKIzBR629TfgLqz4DAPCrB662dSzqekmUE6f9WHgS3gEJjnJhAPPuhNpQQZFqLMj18PxRmMAjhuNJ3PfsBzplOHfKVXyNA61hoT6m6D216KpqJLyMKZZSOUM0NnbCmU7uL5Ycq68m2LHFuZfKdgUAx1tQyQW5Hp4/MgY8gO3kzSRiAfuLMz8hTLvI870B2vdUOl5MCYzOsFI3JIhyow8BnPEo14jlW5UKXyKYvyk6nVjAY39S+jkbFTIGHMLXt5aRy/F37gz14uymHlaSgI62IJqDkjBGJgHoaC++p5KWsWFSSVICoxWi5CxGk1VHIoIogeF40lBlIMtADv7RpvCqAoCwhnIGHMCPhbH/EM/cnaEgei5oBWRg4lwaidlsob8BL7FQnzPAi3/ZeU8lOPjGJP76pZOYzxjdIhKAqxwmDDUaf7ovhneO8Wuvd90cxc1X1Y5mPFFbmOWsVCPXyK5n0S9zX71Rt3LE5eChg8fxkUFCVhL8O9DZHsRf3TGAzw79Hn7xfyYwlcwYFk2enCZXSlknY2znPeVm76E4nnxlHFmTDMZ0Jofbr11ZsTHVGp/fuBwnT8/i2CfzhdeCAeCeL5IhQJSXx18+idkFfmzTjhS2l7AFXi3xK5LS9sPcV4+QZ8ABZpmtgDa7VW2p8spj9NRa1r9VWRzDaSkRQRCVYff+Ebw1muAqDD56V2V32bw5Uh8apRyk8kJyxA4wi0kNrg4L5Yit5CtrMd5lV2qTBG8Iwp9s3dyDQMAY4Nx1c7Tiu2zeHCnLQGIuK5QXJryFEggdIGouE5BgWjZjphDnJut/OJ4sqIkBSqOk7VtKbwLiBDtlcdWYVAiCsAcvOa9a9fHiEkJxAyHCWyhM4BBeNYFV/aw+4cWsv4Gd84sEPfZsq1zmvpVgDiW/EURj4qbE2K7QWq2FU2sJMgYqhP4BuXZwKX4TO++4Jt9Lqc9SEGkrdC9twX+/7WLyCBCEBfWoy2GQLgYQCNiTYbcjwU7y6uWDjIEKwzwL6k6ITvoWmCUxVtpqrgcJToKoBsyYzuXA7Tmy/YbKhv28QJRU7KbEmMoHKw/lDHiA0/pY/W7aSTzMTLWu0kmI9SDBSRDV4McHj3EVS3MyEPsohZ1Pxioa9vMCUVKxDPMcI9H86Zd8hkaBjIEScdI6mPUc4GG3b4FZEqPTJMRquyj9MAaCqDQH35hE/PS86XtycvmT5bx+/szmL9FGxUq5lDYblYOMAZewB+nIsWmNhW+2yzcrMbRbXlhoAqKrJnDSqtaJAVMu/DAGgqgGT70ybut9vMXVqwW8HM9fX3cIZ2YS3A0Pb6PClUMGkMtR1UA1IGPABVaZr6JdvlmJoZPywqFoxFVDDjcGjNf4YQwEUU2S81lb79NvDrxcwPWdUdnzt/fQCUTag66MDdZUKAdoDAJRibHbsIIa8i56BxkDLuC3GC4i2uXrO3Axwq0B3PWfLjI8MF7e6G4NGC8pJE3J4O4eKjEGgqg2kbYgEnPWBoF+cyBawN0Y0DwvZU6GJrF5KpnA4bGE7dwFp3F+N2EFNfoya6fjJbRQbwIXPP7ySaTSfE1vlvW6+8t9uLCTr6l97JM5TE0XKwIyizLe/CCBy1U63AffmMT3D4xi/Gwasws5TJxN42WBVrcdHjp4HBNn06YGzGUXudcjH44n8dDB43j85ZN4e3QaK5a1Gsb50MHjGD+bFuZNlDoGgqgF2lsC+O1R89bVu26O4jOXXqB5jTfvyAA+SSzgH978RPjc8Xh7dBqnzqV1UsTGpmsygOOfzOELV15oeUxAmeOu39CF269diRXLWvHMqxPCOeHt0WlMnNP3elGYmV/EkQ/Nv8/9B0ZxelpbWSUDOD5pf7w87Mxl9UhDyhEPx5PYvX8Etz14BLv3jziWuOzrDiHAaVLY3CQZpIj1DEUj4ImB52TFRcfGZxZLc4NVvoJTFUQ1bMd/eCxhKh364eSs0BAAShsDQdQKt1zTjds38QW5ol1tePSuQa5gF3/ekZFZlB1L9m7d3ANJQuF4yj8l8LqvstwkJ9iZE7Zu7inMPXoSs1nL78OE3+y+7tW465WGCxPoXdVTyQTeHE1g501R3HKNPcU8vbuf3dAPfXOdrSQ+q5vYi1iaHlG+QnOThI1rOlyV7TiN/5uVRTY3SbavnxcwSeejEynN2Jsk4JIarfMmaoftW6K47tILHJXOicKMDCdhA55L/50PE8jyHZ6O4YU0IAN/+tT72Limg1s+qBcaEn2mnJQjl6JWaDhj4JlXJ7gx6z3Px9G3IlSW2JhTSo2l8SjVgNHjJgdh6+YernqiBGDjmo6yGwLMeBkZn0FibpH7nsV8nfc9T8Tw8J0UeyTKh9PSOf28k5jNIqO7jZ3k3ejPv+Ov39PkDDD6Vzifc0SeyMyijMNj/PLB2x48wu2gyPsMoEjBxz7ijHelcbx286/McilYV9p6rXxquDCBmavaiQue3cTP3bsRP/r6gKOFjHezql/v6w5xXWeAezc6m0hEnRWd8syrE8jlnCVRDkUj2HlTVPMakystd3hA7f4TGQJqZBTDNgThF9TzzsY1HYawQSkdULdv6eUeb8eNvY6PJQqlAihsxvTzrdPPbL9BMN4t2vE6cf2LQjGArPEW8MZf6zScMWD2oFQqk93qJhbF0px2AdTnRgBwbcDoGRmf4VrxgHkOwi3XdOOROwdxdb9ilFzVX5pRYherChAepcQeCaLc8OL+peTdMA0T9mxe3d+Jh+9092zqx6ZH5Dl08hm74+W5/kWLud1cinqsfGq43gRe6meXOg6zMEOpuv8ibW+vXFu3/sU7wvKo5iapKm2VzTDr6SCiuUnCyz+4qkwjIojSEc0Tfqi/V+cUZRa1y4yo6ZCbz1ghevYjbQEMro4YrpH+2iXnsxgZT2k2EvXYNKnhjAFA3Fmr2k0wvHyAd+8fMcgWe3EDszG+NZoQegbYufTGRzUnKN71sGJwddiVuBNBVBNRPs/g6uokxrppOuRloyL+s6/8hwRAhmS6WWqUpkkNqTOwbvUSXHFxB85MZ5DO5LC+N4LdX+6ruiGwa18ME2fTSKVzGD+bxqF3pvDm0fPoXd5uq85VXR97/PScoRGKDCCdyeH2a1eWPEa5cES1+6z43+zfpqYzuH5DlyffrxRWLGvFS+9O5R9+ayQJ+N5X+w1aEQThd0SaIlPTmZK0StzC9FWm8vPtZRdZz7duPiNC/+wHJMUAYIYAYJyvyjUWP9OQngE/YrZzbbLRD9y4GzAKiOg9A0536ua7a71hoMDaKpf6/bxA/X2Xd7TgXCqDj88vGN4XXd6G79y6pu4edqIxMAuJleId9EPowS36sY9MpJCYNYY5K90G3k80XGmhXzETBWLJLmYPsDFBTrsw65OL9P3U7egtmI2RZwiwzObheBJHjk07+n7lmHh4pVyl5mYQ9UutLn5mPVDcJr5ZdRf0O/pnXxRGrXQbeD9BxoBPKPUBFi3UzU0SOkNBw0LHSgP1HzHTWzAbox5mfHyqu42bsKlG//0ME08Z63qpTWrj4GRx96opUDUMCqYpwouHuVnw6rG7oEh3pZEVUBsyZ8CPsLgWL2hjR7OfpzUekIAr+jrx+H9dj+s3dGni34+/fBKzC3y5sTOcuJl6jKK4uyQBne1BRNqbcNlFEfznTSvw5D9Zt2tVf7/heBLfPzDqaFwEYYU+Z+XUuTReMomf6+PuMhQPlhPde9E5O0NBPPXKeNm071mM+/jknCZcYNY3xQzWU4RHKTlI1aRR8gCcQJ4Bn8BEgfa+eEKjqmXXYnVq6ZpJA4u8EGoFNKbiJ0nKJMnO9+db1xZKm+579gPL760fp1CKuQ7reonK4bTjn8jTFhtPYTie5O7ueSVpPEnePc/HCwZ1udTshqIRPPaty7hhMFlW3OR2vRXlUEQVUUlPCnkFtZAxUGHMbvahaASP/Qn/AbayWJ1KJAulgS3ciOoHyKzGede+mKGaQU1nexDNQckwzkpOPETjIJKZFd1vZsYyz4DQhxXOJM1Lb/X6+3c/EVNamV9/ke0eKXbQL3huYv/LO1uECYleutW9Cs0Q7iBjoILYvdndWqxOPsekgTV6C3nlLbsPuOh8bBdmBvMg6OnrDgkn0kaO5xGlwct3MYufi4xlgG9A6D0Pbkq0Uulc4Xn00iBguI79C75MW3MA9x8Y9WwH79R7Q3hLw8kRVxMnspiVwCANXGK/AoZ51YG5rPLWzT0IBIy1CU6lmAlCjVHqVgZMDN+haASDq8OG10UGhNU974Sf/uNJW+9z2ordbTfU09PG8lsAmM/kPG3z69R7Q3gLeQbKjNqVnpjNenKzexlXK0fcTFR10NkeFHoE1OMpZ0dIov6w8zyo76vRj1PIpKYQCS8x3dluv6GXqzzHMyCcVNpYkUpb9xF241K3E4LjXUv+dyvqini1g+edR4KMZeGAoxwHwh0kOlRG3AgBOfMMScoAABqQSURBVD2m1z0HvKBR5DuJ6uPmeRiOJ7Hzyd8hJ8sAApZStHYMU6uW3k6QAPzzA1ebvseN3Pju/SN4ayzBDeE9etcgZBnca/ntG6N49Jdxy+9WqmAP77fM5QcrSZImUdlP8129QKWFZcQoC6rtfuWm1IdX8iSS0awWTst21DLK5Si1alQa4boKSwA/EZcAPnTwOCbOpW1L0V6/oQu3X7vSUJ6rfx+752fmskhnZWEbciuiy9twq0XOwOMvnzR4EGSYl/rNphfx26PGPIhdN0fxmUsvEM4tizng3i/1FZ7n5qYAFnTZwXbKn63gzRtL2gI4m8zY+q2I0qAwQRlxKgRkRqFBEMey92NczW74gTKIvefgG5N47MUTWMgWb5SpZAKHxxLYs62+rquwBPAjcQmgKDZ9eCyB3ftHXLuheZU2vO57ZkgAvnPrGsv3iVz3C9kcbnvwiMGdPhxP4tFfxg0aITu/GMXNVymGh+i6HDk2XfCMfO+r/QDyHgR4L9ijnzdue/BIwRBQj8lv8109QAmEZaSvO2TozR2QgI1rOvDcvRvxo68P2DYEdu2L4XDBENA+sbUso7n30Aks5vyTVFnrsNIxtSHAyMnK9a4nzO570T3Eey4B5fq8NepNMhxb1H58xzo0BXSJi7rnN9zShM5QEFf3d+KRu+yF0rgJkQCSc1luUh9LXtbfFU/903jhPfzrIiOzKGuOCShu+isvVhKPr/Qo8ZiHaA6t1fnOz1CYoIzwumW5VQAzhhsU3B6zFLxyPw/Hk3j6X4wTtt7dWY/u7nJ9p+/+/CjSWXEC2vlUBn/82VUln8cvrFjWikPvTHH/JnKZs+eySDEZDlCMUa/ULtWu708SC/lnWPv8bljTgSf/25BpGMLsuAXXfVYWutN5YQUASGdzhU6Gn/5URKAwajzm1/59j63wSal4NYcS1pAxUEa8krwUPcgsYaiSMppOZV3NMJM5Xd8b4bY+Fp2vlgwGL6+hnp/+40lzsRsZ+Pp/qB9joHtpK948ep4ritPcFMBlvUsM15Q9l6/HzucNJ6ObYGYuiz/4jLXb2859x/IO/uHNTwwS4FZxfjPU+QwHXjuF+Yz42Dy5coZ6gVfPV5lF2RA2KGW8biDZ4MpBOQNlxovSPZFgittWpCLslGh5KQxiFvdTyxNbna/W8g7KKa4SaQsiMWdszcpoKkNgcDiexN5DJzD6sfJ79q8MYfsNvRW79tu3KCWALMTE9rDTc1ns2hfj3gdD0Qiag2YZftbZf07vO6fCR3YZjie57XjVaqJmzYvUMXj1fOWXzn4kG1wZKGegBmDxQXV2ck4GNg0u9ewc6rwEXsyRCZzoJwc2FjcJPaLY7eDqcEHWmNf6WH8+v4k5WVFOcZU7Pme+61+70iikUwpKmV4MsfEUMotKfDn2UQp3PxHDwTcmPT2XCKYh0NHG9jZFt7bZfWC6qNmoBHB63+nj/F4l3j3z6gR3uLJcPDa7Rp3txv2faIEv13gJf0LGQA0wFI3g2zdGNVUEEoBHX4iXnOjEMJvY1IaCVi9BgTeZ2FFH4002TQFgx5bewjl5mdjq81kZDE5V2ipBOZOibrmmG7dv4pelSQB23Nhb8jnUPPPqhLD2fM/z3t2fVoh2+mZG1tbN4kVtoMfaaLKqStB/d7Yge5149+HkrND9//SvJgrjGIpG8MDX1moSGs0W+HKNl/AnlDNQIzz1yrgh5udlve1PXjohjGeenJp3lMBoNyZuFg9kSZO8SS4QUM43eX4Bu/bFwMuXC0hAb1c7fvHribLE5kthxbJWvHhkCjKUeLXXSVFXrV2KKy7uwPFP5pBIZdEUkDDQE8b3/qDf0URuJx5u1gobqGzbaVEbb1H9e/fSViwLBzW19xIUg9TObyGKw8uA6T3vdeIdfxxKqEQ/Dqcx+HKMl/AnlDPgY9Qx/POpjOeuZXb80Y9TmEnNQbkdtAt9X3dIWMvN8hb0WglOYuKieKCZRsND31yH9b0R7N4/ImyIJOX1nfzW+IRd85bAImQ5h7bWZgysWuK55DLrgFnKOO3Ew826+wGVrQfXt/EGZORkCcn5rFBz4JZrutG3IuRK/pp3Pq8leu1gHAdMx0ExeIIHhQl8ij6Gn2W9TlWU4lpWH//sTBYLsmIISBz3ocitzRIY9ROnFzFxM40GdbtjkcFw9xeiGD3lr8Yn6ms+v9iEhVwQM+lFbN3sv94LduPhWzf3cPM+AGU5qmSyGXNr6138VjkMbHF0ov2hPt+VF3fmr0F1xHGM49BCIj2EHcgY8Cn6yVgkZew2mYd3fAlAR1vQEB+0m0jE4vPnUxmUarjYOafIYOhfEcIjL8Qt8w0qjbHNreTbREeRQTcykdK8NhSNYM+2QUS72jSvS1DCOZVONhuKRhBpD+aNWu3NUY4cBmZI8BbiSt5rfhkHUbtQmMCneCllbPf4MoDmoGRoNmKnk6BZoxY3houdc+rdo+w8LDzAo9Rs6FI6RtZSi9a+7hDOzBilrxOzRpf7UDSCn93zaW5TH1lGxTvOfTg5K/z9y+W2F92LlTaG/DIOovagroU+xU1XsmoeX1R22NwkYeOajrK1IeYtQPcfGBWI0BTzDdzApH4ZzHNhV8+g3L+plwzHk7j7iZjhdQnAVf32xlutDpu794/gzVF+HoMXnfVExqDdDoflxi/jIGoL8gz4lHJb+Oz4Eoq76FK0C0SejM5Q0PVCZ7dPvf74Zr3ln/7VhKvd6XA8qTEEgHxyIuzvNjetW5pfpJREM8nHu7ahaASd7U1IzC1qXpdh35Ox90Wl7wSDpb3c9+wHeOBra23/Bk69MVs39wiNgcRs1lYzIt45AZgmVVYyMc/smtgZRykeLqI+odJCn1JuGc5PEgt478QMzqeKymUSlEYtbkrvnJZ1WVGKZK9ez5yRk8UlX1bc/zejmJo2ehsAe/Ksw/Ek/sffjkJxxBWDuvfcFMW/u/QC2+OoJEc+TLr+TYfjSTwtyIVQ6+Fb/QbsPhg/k8bsQg7jZ9M49M4UloWDWLd6CfczvJJBdifYuQcOvjGJ7x8YxfhZ5ZwTZ9N4+d0pHJucw9R0RpXzoS3vHY4ncf/fjOLh5+N4+tUJ/Ov759G7vN3WfeZETrtUOetyymETtQsZAz6mXDW+bDI4l+JImMKddoHXDUXuPzCKT6YzhYVIP/GawQypY5/M4YxuAXdyHDUPPx8XiuuwPgpmFHUTtEmgi4vwbV/2Un5Ts74TgP3f4KGDxzF+xljL/9ujCVxxsXjxWrd6Ca64uANnCg2CikaY2T0wHE/i+wdGjQeUgfOprMbTwY6VzuQwuHoJdj4Zw+m8sZCTgalkBi8dmcLSUBBPvTIuXOidLs76xmVO72ne52UZOD45hy9ceaHl54n6hKoJGhCW1c7DbUKbXbUyO4qAw/EkYuMpw+tOx3Z0IsUVLfI6ac+Om98sebASKoluzlGKAp3V9bX7G4jU9QDrKgzmLu8MafUzzM4vOiYbA69073wqg/ue/YBrLOZkpYpBJPPNzulE1lh0Lx05Nm3rdxWF9GLjKV8odBLVgXIGGhDRZACUVoZkFau0K2RjNsnbHZuZwWPnO+pjqj3LWhGfmje8L9rVZmtxFDWpWd7ZUnKTJav4bymNnNzGwa3EiCSb95nZcewadE4aBJkds39FyFBaCQDZHEybQwHmwldOq0xEOTGZRRk7n4xhYFUYpxMLwlwAs2taTUEuorqQZ6ABETUIAsqb0GZ3B2Snm6EVZgYPACTns8JdMq9p08kz84ZmMAEJ+M6X1tgaj0g3AbJRJdGJ9oBVgymgOo2czMSIAG0THavj8FAbE1ZeDycNd/q6Q5qGYGp23Nhrq2eBFfr+BfznUUY6s8j9Tuz7iI4d+yiFqWQGb44muGJLZj0Z/FjmSlQGMgYaEP3kyBhcFS5rI5Ixmzsgq26GeniLgegY4Vbllh8ZTzlaPAFg3eowru5XXOZX93fi4TvtXyuRy/309ILlNTFb7FijIPVYc7qFvhr6BkyMKCiwCDpDTcJrp/6+z7w6YWi8xO7dTYNLseMn7+HuJ2J4c1RsDDkJdzAjRr/Y7ro5ivW9EZyeXnB4JYzHAooGwa59MWxat1TzPLK3J+cXud+JfZ/mJhNrS4VebGkoGsHgaqNRQ+JEjQ2FCeoUq9IjK0GfcowjNTsPxf7UJtHpJyBRWeWOLcaOeyIX+LdvjBqOAQCQJc3C6MRtezqxUJLev5MyyExWLkzgO5+MFf4+lUzg8FgCe7YpLv6RiZQhHCLLWqVA0TmWd7a4/i7sdx0ZnwEgAZLS6U9/n13e18HVVhjo4VcCiH7PnTdF8fr75wv366bBpXj0hbghoU/UE4B37UXPiNmzYVa2KklAqCWAhazyx/4VIdxweRceeSEOGeL+Ba+/f15zzkxWxvR8VlPyy+svsHGN8dqK0F+P7Tf0cjUg/FjmSlQGMgbqEDsx4krURBtVCRV5QCmvECiagJwYK9xdvAy8dGRKc4zlnS0YGU8htbBoOIZ6lzwcTyKTNc6uZrsmuzXbvPfptQcY03NZ7NoXw+rfa+MaJntfPKEYJqKFQPX61s09ODxmjBGP5BPG3Ggu7NoXQy6nPf1bY8b7zKlehqjJ1evvn9fcr2ZNqnielb0vnsDoKeW1/hUhfH5jFx79ZVz4jIiejYI+h6z97mxn/8M/NvY2WNOtNEJSFm5+IqP6nLc9eMTw3XieHH6DIj76z1ZyQ0DUBmQM1BnD8STue/YDg9hLNbr1GfsfBAr9D5qDkukEZNdYMcuMBlA4xu79I8JjsIVevcgpKAu0BKbLP2MQrNGrEp5J8pPzeAZacYHWGgLsFVkGTpw2Ji0CKCxsQmtAKr4+FI1goCdsqNDIycCfPvU+Nq7pcCQ6w35X/ZnZa/od7LdvjOKnL3+E1MIiZBm4qKtNuJDbDWnYTYIdjic1nhVAuTdi46mCUcrOYecZUS+ieq+I1b0sUqBk9x4zWLI2e2roF/TlHS3cKhxRsiZ1LyTUkDFQR7AFR+86Baqjge+k/4Fb7GZGmy0ebKf69K/0i5y2Lj0xu4jDqt0vAKMqIYBczrioiPIQ1OfRY7bby8kydu8fwUza6OmQYHTDi2LdmUVZ853sGARm15K3K3/khaJGgwwgfnoeO5+MFUIdauxm/ovd9fm2xXPZgidGNFY7u28ebhdRkZfk2sGlBoNFjZk3RT8WkWQ2uf8JKyiBsI4otZzOa0RdBXnjcFtrbzczWpRQ2NkeLCSTmS1y7OWcXFzs9754Qvhe/aIyMpGyFdtVE5CAcEsT92+LOUUtkmf48RYOswoSp9UFZscCipK/ZouxPsmRwZJbJd17r9XJZPOTYIsnGplIYde+GLcU0Ax1robXiBIZfxM7L7w3mpskR/oOt1zTjUfuHCwkul7l4LNEY0OegTrCzu63ktiNF7upg1fH38OtAaTS2lVRb3SIxvLnW9faSg5TIwMYGZ/B7AJnJc6jPvdwPInErHkduvboUmF8/+Xzq7nqh2oXt56BVcaqC6v4shPPkShuzlB7G5a0iacY3kLNwgrK7jYfppGAR16IY013SJgEm8nKmJ7Laoy2ACDOqTCgnIvlapSrmRLPq2B23d309iD3P+EGkiOuI3j9AQBl9/vgN4yJTeXGbn8Fp/KqevlWFmNlJVw82Vw7Y+HJ74rWkrbmJmQWZaHh8N2vFM/Nvh8PNlb1YZoCEgZWhXHf7f34zKUX4PI+RVY3nclhfW8EM/OLmM+IDRHIMPRKUH9/RZ5X+xFJAtZfFMGKZa2WGvnsWGemM5iZy6KtuQmLOe21YL9hazCAdJY/1nQmx5UUfuqV8fx9XNz28+4HtVz33/3rxwbjTAbQ1iwhsyjbsAnMz1VO3h6dFko325G6JggvIM9AHWFn91tp7OxSnNbBP/PqhCaTnf3TKjHRaiy8DOv3PppBat4Yl4ekZKXzEraYKiHzXhweS3AXo85QEx74w0uw98UTiH3EjiNBlvNSyjJ/3Lv3j+CtUf4xzZT92HGKceVi4qIsA5+6sM22h0Y/ptsePGJoG10spRPDS9hzo4sgyjUYWLUEWzf3aKoJcrLMDa/YPZfXsGoP/XemWD9RScgYqCNqrVyILZaKC12bUW+W4zAyPiNYYmQ8d+/lJY2Ju/COJTQueUlVU69P/GKqhMaySi2s1n4oGkGkLYiAZC5Zq8asRa8dZb/X3z+f935od8MvHTmjMbJyslKUwBuHvkxyeUcLzs5kuIvxyPiMoRUyg7foOpEPZpiFpNb3RjT6ELysfjWVzq9hAk368scdN/b69tkl6g8yBuqMWokXmi2W1gIoouw1e4psTmCLjAz+IrNnG9/4YnXwIkNA/f2c7oSHohF0hoLcPITOUBNkWVnwRLoHvOY/MqCJuatfV0roivByPBgsxMK+A0v8ExkvvEXXqTYBUMw1eOqVcSTns4i0BfHN/7hKqDIoyp/wUnzHrv4EGz9P0MrJMQiiFMgYIKqCUYNAWcibmyRsXNNh7tGonC1g6W0RGV+iZM6ABFx5caelqp3V7nSgJ8z1WPRcYO3qF50vIClNd4xoLyyrEFDX6EsS0NvVhvjpeegT/759Y9SRG9yNh2s4nsSjv4wXPBuJuSz+5/9WRIVuuUYrZ2yoz+9sAWSl/NIrb1opzaG8PAZB2IWMAaIqiBZLO9nTooXQiyYyPNx4W8JtTYYYOqBk+uuP5WYnzFMulGVgdn6Rq+CndvWLztfa3IQsR7dAb2SJJJDHz8znwx3F8chQwhJ7tg1i76ETGP047wZfGcKOLWI3OLvmbGd8/4FR052xPo+Esef5OPpWhCxzHniUsisXKSk6Ef4SqWve9+wHeOBra8kgIDyFjAGiKrjZDTPMXPd+YDiezO+QOXAMIDc7YVHc/6Oz88KQg3pxu6QnbNgNP/2rCXtGliDWvshZjNVyu499y1lfByc7Y17og+FGebPUXbkXzaFEBnOizOWPRGNCxgBRFdzshhl+T5Q0E+8RKQE69T6I4v5cESIAyztadItbBpIEbh8BayOLv+w2BYpdExmlJOM52V2bKVG6qQzghkIE5+Z5EESaFUyQyY6XwUz3golE1UJ+EFEbkDFAVIVSF3Q/J0palcB5gV2BJCC/dOdFiswWVru/ycCqJYbSRgnA2pVhHD2VcmXg8RDtrnliRaIKC7NSSzPsdIMEjB6EqWQCb44mEF3eBgCqKhHlYJlF2JZ/ZsYZz/aqhrw4Ud+QMUBUDT8v6KXQ1x3CmZmEYTEBvAtl8DwrIsOgMxTEaY7QEG9BsfObFDwIsq7F9I29hR2rFx4b0XVMzGYN3RaHohHsvClq6BUhweU1FxlZuteNibAK8dPz+fLRMEY/nkVGlYrhtCnSfc9+gMSctnKkGvLiRH1DvQkIwmO2bu4pLJBqdt0c9SyUwdO5H1wd5vaCGOgJo687ZCi2kOBuQRFp7K/vjRSMiefu3Ygffb001cutm3u4BhVz1+vpW8HvmSCSbTZH8CFJ+7qZBDgARNqD6AwZ91xOmiI98LW1aAoU+zD4LUeGqA/IM0AQHlOpnAb9Lp65rHlu+rFTs8bqAxgbAFmhj49/76v9ZUtiG4pG0NneZBAsksFfSEW5Gm5i66JQiL4bpFm4hi34pSTLAv7PkSHqAzIGiIamXKIu1QiBmC0aT/9qIt/cSFV9IAG/iZ3HzVd3mxy1SDXq3gdWLTFoFIgWUic5BlaIQiH63bhZXJ+Ns5RkWUa9htQI/0CNioiGRd/w6NS5NF56dwob+4zNc0Sft2rq43Zcbo+rbt5z/YauQrOkx18+idm0sdQgnckZmhqJeOjgcYyfTRfc7mz9O1PGpj685lH6JlSMt0enMXHO2PBH1BDJDLtNttj7jk/OaXQl1OMcikZsHYsgqokky+4iagRR6/A06plCoB1BGl5fgj3bStsl63ffbFEpdfddyndl3PqX7wgkkIP4+z8rrSeEGXrvjchFPhxP4u4nYobXJQBX9dv/nuUeJ0H4EUogJBqWUoRh9h46wf3s3kMnShoTr7aeZeiXwtbNPZCkEpPQbGbYew1zkX/vq/0AgPsPjGL3/hEMx5OG93W2N3GHV4kyPC+TJwmi0pAxQDQkw/EkMlnjKmY3sYvJ6tp93S5eKNfxMKsAsI+9DPtywDwmh8cSmEpmcHgsgV37YgaDYGDVEm5FBZXhEYQ5lEBINBxsYckVQuhKhr3kg5KtUjPPzSg1Cc1uhn05sKtG6EWyHkE0IuQZIBoOtrAUFzVlK9nRFrS9W+5fyV+cRa/bZdO6pRrFOgn+Wcy2bu5BQFfvHghUZmx2PSbeeEAIovEgzwDRcIiEYpqDku1FY/sNvdwEwh1bel2Pi7XhVZcAygDu/oJ3YkWllFKKShdlWUlQHBmfASABeaEjr8o0AXE9//KOFu44qQyPIJxBxgDRcHjhih+KRrBnm7dCMAWPhW5cTrQAzPBCJ0AkdKRvH/yWTf19u2zd3IPDY8beAyMTKYM0MUEQzqEwAdFweJJZD++zx8uVPMgoR6WCMeSiIHtwbDVD0QgGVoW5f/PqHATRyJAxQDQcfo0r93UbtfW9zIQvh7Fhps3vdWe90wlj+2fq3kcQ3kBhAqIh8WNcudyZ8LwugG5b/KqPKdLm97qkr5yVFgTR6JBngCB8Qrk9FpvWLTV08JNlYJPDZkVqWMjF0BGxDCV9XoV3CIIwQnLEBNEg7N4/wtUJKFWql1Uo6KsJyiHHS5K/BFEeyBggiAbhtgePaJrpMLoizXju3o1VGBFBEH6BwgQE0SCUO0GRIIjahYwBgmgQKOZOEIQIChMQRANBMXeCIHiQMUAQBEEQDQ6FCQiCIAiiwSFjgCAIgiAaHDIGCIIgCKLBIWOAIAiCIBocMgYIgiAIosEhY4AgCIIgGhwyBgiCIAiiwSFjgCAIgiAaHDIGCIIgCKLBIWOAIAiCIBocMgYIgiAIosEhY4AgCIIgGhwyBgiCIAiiwSFjgCAIgiAaHDIGCIIgCKLBIWOAIAiCIBocMgYIgiAIosEhY4AgCIIgGhwyBgiCIAiiwSFjgCAIgiAaHDIGCIIgCKLBIWOAIAiCIBqc/w+E+SLL7Q+S+wAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -3335,7 +3484,7 @@ }, { "cell_type": "code", - "execution_count": 124, + "execution_count": 117, "metadata": {}, "outputs": [], "source": [ @@ -3345,19 +3494,25 @@ }, { "cell_type": "code", - "execution_count": 125, + "execution_count": 118, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", + " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAMU0lEQVR4nO3dT4hV9xnG8eepIhQnnUUbZqFSDRrpEBfFS0LoZgbSZkQmCWloFCkYrIMFs8pmAoFmU2oX3Uht02kjdlGcipTgv2LbxZCNC7UbFREkWKKL2iRlYKQQDG8X3uJ0MlfPvefcOWfe+X5gFvd3z++cd+blPBx+99wzjggBAHL5St0FAACqR7gDQEKEOwAkRLgDQEKEOwAkRLgDQEKr6zy47XFJ40888cT+p59+uqd93Lt3T2vXrq22MJRGX5qHnjRTmb5cvnz5k4h4crH33IT73FutVly6dKmnuTMzMxoZGam2IJRGX5qHnjRTmb7YvhwRrcXeY1kGABIi3AEgIcIdABIi3AEgIcIdABIi3AEgIcIdABKq9UtMTbBx8myp+bcO7ayoEgCoTq1X7rbHbU/Nzs7WWQYApFNruEfE6YiYGBwcrLMMAEiHNXcASIhwB4CECHcASIhwB4CECHcASIhwB4CECHcASIhwB4CECHcASIhwB4CECHcASIhwB4CEeCokACTEUyEBICGWZQAgIcIdABIi3AEgIcIdABIi3AEgIcIdABIi3AEgIcIdABIi3AEgIcIdABIi3AEgIcIdABIi3AEgIcIdABIi3AEgIcIdABIi3AEgIcIdABIi3AEgodX92KntVyTtlPQ1Se9HxF/6cRwAwOIKX7nbPmr7ru2rC8bHbN+wfdP2pCRFxAcRsV/SAUmvV1syAOBxulmWOSZpbP6A7VWSjkjaIWlY0m7bw/M2eaf9PgBgCTkiim9sb5R0JiKeab9+XtK7EfFi+/Xb7U0PtX/+GhF/67CvCUkTkjQ0NLR9enq6p19gbm5OAwMDPc2VpCt3ZnueK0nb1g2Wmp9V2b6gevSkmcr0ZXR09HJEtBZ7r+ya+zpJH897fVvSc5LelPSCpEHbmyPivYUTI2JK0pQktVqtGBkZ6amAmZkZ9TpXkvZOnu15riTd2tP7sTMr2xdUj540U7/60pcPVCPisKTD/dg3AODxyt4KeUfShnmv17fHAAA1KhvuFyVtsb3J9hpJuySdKjrZ9rjtqdnZcuveAID/182tkMclXZC01fZt2/si4r6kg5LOS7ou6UREXCu6z4g4HRETg4N8KAkAVSq85h4RuzuMn5N0rrKKAACl8fgBAEio1nBnzR0A+qPWcGfNHQD6g2UZAEiIcAeAhFhzB4CEWHMHgIRYlgGAhAh3AEiIcAeAhAh3AEiIu2UAICHulgGAhFiWAYCECHcASIhwB4CECHcASIi7ZQAgIe6WAYCEWJYBgIQIdwBIaHXdBax0GyfPlpp/69DOiioBkAlX7gCQEOEOAAkR7gCQEPe5A0BC3OcOAAmxLAMACRHuAJAQ4Q4ACRHuAJAQ4Q4ACRHuAJAQ4Q4ACRHuAJAQ31AFgIT4hioAJMSyDAAkRLgDQEKEOwAkRLgDQEKEOwAkRLgDQEKEOwAkRLgDQEKEOwAkRLgDQEKEOwAkRLgDQEI8FRIAEuKpkACQEMsyAJDQ6roLQDkbJ8+Wmn/r0M6KKgHQJFy5A0BChDsAJES4A0BChDsAJES4A0BChDsAJES4A0BChDsAJES4A0BChDsAJES4A0BChDsAJES4A0BChDsAJES4A0BChDsAJFR5uNt+yvb7tk9WvW8AQDGFwt32Udt3bV9dMD5m+4btm7YnJSkiPoqIff0oFgBQTNEr92OSxuYP2F4l6YikHZKGJe22PVxpdQCAnhQK94j4UNJnC4aflXSzfaX+uaRpSS9XXB8AoAeOiGIb2hslnYmIZ9qvX5M0FhE/ar/+oaTnJP1E0k8lfVfS7yLiZx32NyFpQpKGhoa2T09P9/QLzM3NaWBgoKe5knTlzmzPcyVp27rBUvPLHr+ssvV3UrYvqB49aaYyfRkdHb0cEa3F3ltdqqpFRMSnkg4U2G5K0pQktVqtGBkZ6el4MzMz6nWuJO2dPNvzXEm6taf3Y1dx/LLK1t9J2b6gevSkmfrVlzJ3y9yRtGHe6/XtMQBAzcqE+0VJW2xvsr1G0i5Jp7rZge1x21Ozs/UuTQBANkVvhTwu6YKkrbZv294XEfclHZR0XtJ1SSci4lo3B4+I0xExMTjYn3VfAFipCq25R8TuDuPnJJ2rtCIAQGk8fgAAEqo13FlzB4D+qDXcWXMHgP5gWQYAEiLcASAhwh0AEuIDVQBIiA9UASAhlmUAICHCHQASItwBIKHKn+feDdvjksY3b95cZxkr2sayz7M/tLOiSgBUiQ9UASAhlmUAICHCHQASItwBICHCHQASItwBICFuhUQpnW6lfGvbfe0teZtlEdyKCSyOWyEBICGWZQAgIcIdABIi3AEgIcIdABIi3AEgIf7NHgAkxK2QAJAQyzIAkBDhDgAJEe4AkBDhDgAJEe4AkBDhDgAJEe4AkBDhDgAJ8Q1VAEiIb6gCQEIsywBAQoQ7ACREuANAQoQ7ACREuANAQoQ7ACREuANAQoQ7ACREuANAQoQ7ACREuANAQoQ7ACTEUyEBICGeCgkACbEsAwAJEe4AkBDhDgAJEe4AkBDhDgAJEe4AkBDhDgAJEe4AkBDhDgAJEe4AkBDhDgAJEe4AkBDhDgAJEe4AkBDhDgAJEe4AkBDhDgAJEe4AkBDhDgAJra56h7bXSvqVpM8lzUTEH6o+BgDg0Qpduds+avuu7asLxsds37B90/Zke/hVSScjYr+klyquFwBQQNFlmWOSxuYP2F4l6YikHZKGJe22PSxpvaSP25t9UU2ZAIBuOCKKbWhvlHQmIp5pv35e0rsR8WL79dvtTW9L+ndEnLE9HRG7OuxvQtKEJA0NDW2fnp7u6ReYm5vTwMBAT3Ml6cqd2Z7nStK2dYOl5pc9flMNfVX653/6f5y6//5lj7+Uyp4r/VJ3D+o+fpm+jI6OXo6I1mLvlVlzX6eHV+jSg1B/TtJhSb+0vVPS6U6TI2JK0pQktVqtGBkZ6amImZkZ9TpXkvZOnu15riTd2tP7sas4flO9te2+fnGl8o90vqTuv3/Z4y+lsudKv9Tdg7qP36++VH72RcQ9SW9UvV8AQHFlboW8I2nDvNfr22MAgJqVCfeLkrbY3mR7jaRdkk51swPb47anZmdzrjsDQF2K3gp5XNIFSVtt37a9LyLuSzoo6byk65JORMS1bg4eEacjYmJwcPl8KAUAy0GhNfeI2N1h/Jykc5VWBAAojccPAEBCtYY7a+4A0B+1hjtr7gDQH4W/odrXIux/SfrHguFBSYtd0i8c/4akT/pU2uN0qrHf+ym6/eO2e9T7Rf/+ncbq6ktdPelmTq99KTvOudL7dk09V74ZEU8u+k5ENPJH0lSRcUmXmlZjv/dTdPvHbfeo94v+/R8xVktf6urJUvSl7DjnSvU96bYvS3muNPkD1U6PLuj4SIMaVFVLt/spuv3jtnvU+938/elJd3N67UtV43XgXCl2nMo0YlmmDNuXosODc1Af+tI89KSZ+tWXJl+5FzVVdwFYFH1pHnrSTH3py7K/cgcAfFmGK3cAwAKEOwAkRLgDQELpwt32Wtu/t/1b23vqrgeS7adsv2/7ZN214CHbr7TPkz/a/l7d9UCy/S3b79k+afvHZfa1LMLd9lHbd21fXTA+ZvuG7Zu2J9vDr0o6GRH7Jb205MWuEN30JCI+ioh99VS6snTZlw/a58kBSa/XUe9K0GVPrkfEAUk/kPSdMsddFuEu6ZiksfkDtldJOiJph6RhSbttD+vBf4T63/92/WIJa1xpjql4T7B0jqn7vrzTfh/9cUxd9MT2S5LOquTj1JdFuEfEh5I+WzD8rKSb7avCzyVNS3pZD/5R9/r2Nsvi91uOuuwJlkg3ffEDP5f054j4+1LXulJ0e65ExKmI2CGp1LLycg6/dXp4hS49CPV1kv4k6fu2f61mff16JVi0J7a/bvs9Sd+2/XY9pa1onc6VNyW9IOk12wfqKGwF63SujNg+bPs3KnnlXug/MS0nEXFP0ht114GHIuJTPVjXRYNExGFJh+uuAw9FxIykmSr2tZyv3O9I2jDv9fr2GOpDT5qJvjRP33uynMP9oqQttjfZXiNpl6RTNde00tGTZqIvzdP3niyLcLd9XNIFSVtt37a9LyLuSzoo6byk65JORMS1OutcSehJM9GX5qmrJzw4DAASWhZX7gCA7hDuAJAQ4Q4ACRHuAJAQ4Q4ACRHuAJAQ4Q4ACRHuAJAQ4Q4ACf0XZEP+VzdseVgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGhCAYAAAC6URSFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAZfUlEQVR4nO3db2iV5x3w8V+MGklrXG1orBrxTZGlrQnEJDg6iMNW3FBsVygIa2Zhg3EsHYEVffG0Kc+LlWd0COuB0pXRtUwQBS20rGsbLELbYbRYKMEOwQ1XZ1oRjUYW05PzvBgJFW1MYu6c6+R8PjDGuc/xun8JV5Jvz9+qYrFYDACARMwr9QAAAN8mTgCApIgTACAp4gQASIo4AQCSIk4AgKSIEwAgKfNLPcBUjY6OxtmzZ2Px4sVRVVVV6nEAgEkoFotx+fLlWL58ecybN/F9I2UXJ2fPno3GxsZSjwEATMOZM2di5cqVE96m7OJk8eLFEfG/L66urm5G1x4ZGYn33nsvHnnkkViwYMGMrk3lsq/Ign1FFrLcV4ODg9HY2Dj+d3wiZRcnYw/l1NXVZRIntbW1UVdX54edGWNfkQX7iizMxr6azFMyPCEWAEiKOAEAkiJOAICkiBMAICniBABIijgBAJIiTgCApIgTACAp4gQASIo4AQCSIk4AgKSIEwAgKeIEAEiKOAEAkjK/1ANMVj6fj3w+H4VCodSjTNvqXe9kuv4/X/xJpusDwGwom3tOcrlc9Pf3R19fX6lHAQAyVDZxAgBUBnECACRFnAAASREnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJAUcQIAJEWcAABJEScAQFLECQCQFHECACRFnAAASREnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJAUcQIAJKVs4iSfz0dTU1O0tbWVehQAIENlEye5XC76+/ujr6+v1KMAABkqmzgBACqDOAEAkiJOAICkiBMAICniBABIijgBAJIiTgCApIgTACAp4gQASIo4AQCSIk4AgKSIEwAgKeIEAEiKOAEAkiJOAICkiBMAICniBABIijgBAJIiTgCApIgTACAp4gQASIo4AQCSIk4AgKSIEwAgKeIEAEiKOAEAkiJOAICkiBMAICniBABIijgBAJIiTgCApIgTACAp4gQASMqsx8mZM2eis7MzmpqaYu3atbF///7ZHgEASNj8WT/h/PmxZ8+eaGlpiXPnzkVra2v8+Mc/jjvuuGO2RwEAEjTrcXLvvffGvffeGxERy5Yti/r6+rhw4YI4AQAiYhoP6xw5ciS2bNkSy5cvj6qqqjh06NANt8nn87F69epYtGhRdHR0xNGjR2+61vHjx6NQKERjY+PUJwcA5qQpx8nQ0FA0NzdHPp+/6fX79u2L7u7ueP755+PTTz+N5ubm2LRpU3z11VfX3e7ChQvx5JNPxquvvjq9yQGAOWnKD+ts3rw5Nm/e/J3X//73v49f/OIXsWPHjoiIeOWVV+Kdd96JP/3pT7Fr166IiBgeHo5t27bFrl274gc/+MGE5xseHo7h4eHxy4ODgxERMTIyEiMjI1Mdf0Jj6830umNqqouZrDsmq7m5PVnvKyqTfUUWstxXU1mzqlgsTvsvZlVVVRw8eDC2bdsWERHXrl2L2traOHDgwPixiIiurq64ePFivPXWW1EsFmP79u2xZs2a6OnpueU5enp64oUXXrjh+N69e6O2tna6owMAs+jq1auxffv2uHTpUtTV1U142xl9Quz58+ejUChEQ0PDdccbGhri5MmTERHx0Ucfxb59+2Lt2rXjz1d5880348EHH7zpmrt3747u7u7xy4ODg9HY2BiPPPLILb+4qRoZGYn3338/Hn744ViwYMGMrh0R8UDP32Z8zW/7vGdTpuszPVnvKyqTfUUWstxXY498TMasv1rnoYceitHR0UnfvqamJmpqam44vmDBgsx+ILNae7hQNeNrfptfUGnLcs9SuewrspDFvprKejP6Jmz19fVRXV0dAwMD1x0fGBiIZcuWzeSpAIA5akbjZOHChdHa2hq9vb3jx0ZHR6O3tzfWr18/k6cCAOaoKT+sc+XKlTh16tT45dOnT8eJEydi6dKlsWrVquju7o6urq5Yt25dtLe3x549e2JoaGj81TsAABOZcpwcO3YsNmzYMH557MmqXV1d8frrr8cTTzwRX3/9dTz33HNx7ty5aGlpiXffffeGJ8lOVT6fj3w+H4VC4bbWAQDSNuU46ezsjFu9+njnzp2xc+fOaQ91M7lcLnK5XAwODsaSJUtmdG0AIB2z/qnEAAATEScAQFLECQCQFHECACRFnAAASSmbOMnn89HU1BRtbW2lHgUAyFDZxEkul4v+/v7o6+sr9SgAQIbKJk4AgMogTgCApIgTACAp4gQASIo4AQCSIk4AgKSUTZx4nxMAqAxlEyfe5wQAKkPZxAkAUBnECQCQFHECACRFnAAASREnAEBSxAkAkBRxAgAkpWzixJuwAUBlKJs48SZsAFAZyiZOAIDKIE4AgKSIEwAgKeIEAEiKOAEAkiJOAICkiBMAICniBABIStnEiXeIBYDKUDZx4h1iAaAylE2cAACVQZwAAEkRJwBAUsQJAJAUcQIAJEWcAABJmV/qASgfq3e9k9na/3zxJ5mtDUB5cc8JAJAUcQIAJEWcAABJEScAQFLECQCQlLKJE59KDACVoWzixKcSA0BlKJs4AQAqgzgBAJIiTgCApIgTACAp4gQASIo4AQCSIk4AgKSIEwAgKeIEAEiKOAEAkiJOAICkiBMAICniBABIijgBAJIiTgCApJRNnOTz+Whqaoq2trZSjwIAZKhs4iSXy0V/f3/09fWVehQAIENlEycAQGUQJwBAUsQJAJAUcQIAJEWcAABJEScAQFLECQCQFHECACRFnAAASREnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJAUcQIAJEWcAABJEScAQFLECQCQFHECACRFnAAASSmbOMnn89HU1BRtbW2lHgUAyFDZxEkul4v+/v7o6+sr9SgAQIbKJk4AgMogTgCApIgTACAp4gQASIo4AQCSIk4AgKSIEwAgKeIEAEiKOAEAkiJOAICkiBMAICniBABIyvxSDwAREat3vZPp+v988SeZrg/AzHHPCQCQFHECACRFnAAASREnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJAUcQIAJEWcAABJEScAQFLECQCQFHECACRFnAAASREnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJCUksTJo48+GnfddVc8/vjjpTg9AJCwksTJM888E2+88UYpTg0AJK4kcdLZ2RmLFy8uxakBgMRNOU6OHDkSW7ZsieXLl0dVVVUcOnTohtvk8/lYvXp1LFq0KDo6OuLo0aMzMiwAMPfNn+o/GBoaiubm5njqqafiscceu+H6ffv2RXd3d7zyyivR0dERe/bsiU2bNsUXX3wR99xzz5QHHB4ejuHh4fHLg4ODERExMjISIyMjU15vImPrzfS6Y2qqi5msOyarucdkPX+Wsv7eTObcpZyBuce+IgtZ7quprFlVLBan/RenqqoqDh48GNu2bRs/1tHREW1tbfHyyy9HRMTo6Gg0NjbG008/Hbt27Rq/3Ycffhgvv/xyHDhwYMJz9PT0xAsvvHDD8b1790Ztbe10RwcAZtHVq1dj+/btcenSpairq5vwtlO+52Qi165di+PHj8fu3bvHj82bNy82btwYn3zyybTW3L17d3R3d49fHhwcjMbGxnjkkUdu+cVN1cjISLz//vvx8MMPx4IFC2Z07YiIB3r+NuNrftvnPZsyXT/r+bOU9fdmIlnvKyqTfUUWstxXY498TMaMxsn58+ejUChEQ0PDdccbGhri5MmT45c3btwYn332WQwNDcXKlStj//79sX79+puuWVNTEzU1NTccX7BgQWY/kFmtPVyomvE1vy3rX1BZz5+lFH55Z7lnqVz2FVnIYl9NZb0ZjZPJ+uCDD0pxWgCgDMzoS4nr6+ujuro6BgYGrjs+MDAQy5Ytm8lTAQBz1IzGycKFC6O1tTV6e3vHj42OjkZvb+93PmwDAPBtU35Y58qVK3Hq1Knxy6dPn44TJ07E0qVLY9WqVdHd3R1dXV2xbt26aG9vjz179sTQ0FDs2LHjtgbN5/ORz+ejUCjc1joAQNqmHCfHjh2LDRs2jF8eeyVNV1dXvP766/HEE0/E119/Hc8991ycO3cuWlpa4t13373hSbJTlcvlIpfLxeDgYCxZsuS21gIA0jXlOOns7IxbvTXKzp07Y+fOndMeCgCoXCX5bB0AgO8iTgCApIgTACAp4gQASErZxEk+n4+mpqZoa2sr9SgAQIbKJk5yuVz09/dHX19fqUcBADJUNnECAFQGcQIAJEWcAABJEScAQFLECQCQFHECACRlyh/8Vyr5fD7y+XwUCoVSj0IZWr3rnUzX/+eLP8l0fYBKUjb3nHifEwCoDGUTJwBAZRAnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJCUsomTfD4fTU1N0dbWVupRAIAMlU2ceBM2AKgMZRMnAEBlECcAQFLECQCQFHECACRFnAAASREnAEBSxAkAkBRxAgAkRZwAAEmZX+oBJiufz0c+n49CoVDqUeAGq3e9853X1VQX4/+1RzzQ87cYLlTN4lST888Xf1LqEQCuUzb3nHj7egCoDGUTJwBAZRAnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJAUcQIAJEWcAABJEScAQFLECQCQlLKJk3w+H01NTdHW1lbqUQCADJVNnPjgPwCoDGUTJwBAZRAnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJAUcQIAJEWcAABJEScAQFLECQCQFHECACRFnAAASREnAEBSxAkAkJSyiZN8Ph9NTU3R1tZW6lEAgAyVTZzkcrno7++Pvr6+Uo8CAGSobOIEAKgM4gQASIo4AQCSIk4AgKSIEwAgKeIEAEiKOAEAkiJOAICkiBMAICniBABIijgBAJIiTgCApIgTACAp4gQASIo4AQCSIk4AgKSIEwAgKeIEAEiKOAEAkiJOAICkiBMAICniBABIStnEST6fj6ampmhrayv1KABAhsomTnK5XPT390dfX1+pRwEAMlQ2cQIAVAZxAgAkRZwAAEkRJwBAUsQJAJAUcQIAJEWcAABJEScAQFLECQCQFHECACRFnAAASREnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJAUcQIAJEWcAABJEScAQFLECQCQFHECACRFnAAASREnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJAUcQIAJEWcAABJEScAQFLECQCQFHECACSlJHHy9ttvx5o1a+K+++6L1157rRQjAACJmj/bJ/zmm2+iu7s7Dh8+HEuWLInW1tZ49NFH4+67757tUQCABM36PSdHjx6N+++/P1asWBF33nlnbN68Od57773ZHgMASNSU4+TIkSOxZcuWWL58eVRVVcWhQ4duuE0+n4/Vq1fHokWLoqOjI44ePTp+3dmzZ2PFihXjl1esWBFffvnlNMcHAOaaKT+sMzQ0FM3NzfHUU0/FY489dsP1+/bti+7u7njllVeio6Mj9uzZE5s2bYovvvgi7rnnnikPODw8HMPDw+OXBwcHIyJiZGQkRkZGprzeRMbWm+l1x9RUFzNZd0xWc4/Jev65qmZe8br/T03W+4ZsZP37isqU5b6ayppVxWJx2r8xq6qq4uDBg7Ft27bxYx0dHdHW1hYvv/xyRESMjo5GY2NjPP3007Fr1674+OOP43e/+10cPHgwIiJ+/etfR3t7e2zfvv2m5+jp6YkXXnjhhuN79+6N2tra6Y4OAMyiq1evxvbt2+PSpUtRV1c34W1nNE6uXbsWtbW1ceDAgeuCpaurKy5evBhvvfVWfPPNN/H9738/Pvzww/EnxH788cff+YTYm91z0tjYGOfPn7/lFzdVIyMj8f7778fDDz8cCxYsmNG1IyIe6PnbjK/5bZ/3bMp0/aznn6tq5hXj/64bjf9zbF4Mj1aVepwblPu+yXr+VGX9+yoFWe4d+/7mstxXg4ODUV9fP6k4mdFX65w/fz4KhUI0NDRcd7yhoSFOnjz5vxPOnx8vvfRSbNiwIUZHR+PZZ5+d8JU6NTU1UVNTc8PxBQsWZPYDmdXaw4Vs/zBl/Qsq6/nnuuHRqiS/h+W+b+bqH+bJyvJ3YalluXfs+1uvP9PnmMp6s/5S4oiIrVu3xtatW0txagAgcTP6UuL6+vqorq6OgYGB644PDAzEsmXLZvJUAMAcNaNxsnDhwmhtbY3e3t7xY6Ojo9Hb2xvr16+fyVMBAHPUlB/WuXLlSpw6dWr88unTp+PEiROxdOnSWLVqVXR3d0dXV1esW7cu2tvbY8+ePTE0NBQ7duy4rUHz+Xzk8/koFAq3tQ4AkLYpx8mxY8diw4YN45e7u7sj4n+vyHn99dfjiSeeiK+//jqee+65OHfuXLS0tMS77757w5NkpyqXy0Uul4vBwcFYsmTJba0FAKRrynHS2dkZt3r18c6dO2Pnzp3THgoAqFwl+VRiAIDvIk4AgKSIEwAgKeIEAEhK2cRJPp+PpqamaGtrK/UoAECGyiZOcrlc9Pf3R19fX6lHAQAyVDZxAgBUhpJ88N/tGHuPlcHBwRlfe2RkJK5evRqDg4OZfOLj6PDVGV/z27L4nnxb1vPPVYXqYly9WojCcHWMJvipxOW+b7KeP1VZ/75KQZZ7x76/uSz31djMt3qvtIiIquJkbpWQf//739HY2FjqMQCAaThz5kysXLlywtuUXZyMjo7G2bNnY/HixVFVdfP/Cm1ra5vwuSnfdf3g4GA0NjbGmTNnoq6ubsZmztqtvt4Uz3M7a03130729tPdN7e63r6avXOV47661W3sqzTONd21Ut1X33V9lvuqWCzG5cuXY/ny5TFv3sTPKim7h3XmzZt3y+Kqrq6e8Jt6q+vr6urK6of9Vl9Piue5nbWm+m8ne/vb3Tf2VenPVY776la3sa/SONd010p1X93q+qz21WQ/G6+6p6enZ8bPnoD29vYpXz88PBwvvvhi7N69O2pqarIaLRO3+npTPM/trDXVfzvZ209n39zqevtqds9VjvvqVrexr9I413TXSnVf3ez6VPZV2T2sk6WxTzy+dOlSWf2XCGmzr8iCfUUWUtlXc/aek+mqrq6Ozs7OmD+/7B7xImH2FVmwr8hCCvvKPScAQFK8CRsAkBRxAgAkRZwAAEkRJwBAUsQJAJAUcTJJb7/9dqxZsybuu+++eO2110o9DnPEo48+GnfddVc8/vjjpR6FOeTMmTPR2dkZTU1NsXbt2ti/f3+pR2IOuHjxYqxbty5aWlrigQceiD/+8Y+ZnctLiSfhm2++iaampjh8+HAsWbIkWltb4+OPP46777671KNR5j788MO4fPly/PnPf44DBw6UehzmiP/85z8xMDAQLS0tce7cuWhtbY1//OMfcccdd5R6NMpYoVCI4eHhqK2tjaGhoXjggQfi2LFjmfwtdM/JJBw9ejTuv//+WLFiRdx5552xefPmeO+990o9FnNAZ2dnLF68uNRjMMfce++90dLSEhERy5Yti/r6+rhw4UKJp6LcVVdXR21tbUT8723ui8ViZHX/RkXEyZEjR2LLli2xfPnyqKqqikOHDt1wm3w+H6tXr45FixZFR0dHHD16dPy6s2fPxooVK8Yvr1ixIr788stZmZ103e6+gu8yk3vr+PHjUSgUorGxMeuxSdxM7KuLFy9Gc3NzrFy5Mn7zm99EfX19JrNWRJwMDQ1Fc3Nz5PP5m16/b9++6O7ujueffz4+/fTTaG5ujk2bNsVXX301y5NSTuwrsjJTe+vChQvx5JNPxquvvjobY5O4mdhX3/ve9+Kzzz6L06dPx969e2NgYCCbYYsVJiKKBw8evO5Ye3t7MZfLjV8uFArF5cuXF3/7298Wi8Vi8aOPPipu27Zt/Ppnnnmm+Je//GV2BqYsTGdfjTl8+HDxpz/96azMSfmZ7t7673//W/zhD39YfOONN2ZtVsrH7fzOGvOrX/2quH///kzmq4h7TiZy7dq1OH78eGzcuHH82Lx582Ljxo3xySefRMT/PlL6888/jy+//DKuXLkSf/3rX2PTpk2lGpkyMJl9BdMxmb1VLBbj5z//efzoRz+Kn/3sZ6UalTIymX01MDAQly9fjoiIS5cuxZEjR2LNmjWZzFPxH2V5/vz5KBQK0dDQcN3xhoaGOHnyZEREzJ8/P1566aXYsGFDjI6OxrPPPuuVOkxoMvsqImLjxo3x2WefxdDQUKxcuTL2798f69evn+1xKSOT2VsfffRR7Nu3L9auXTv+vII333wzHnzwwVmfl/IwmX31r3/9K375y1+OPxH26aefzmxPVXycTNbWrVtj69atpR6DOeaDDz4o9QjMQQ899FCMjo6WegzmmPb29jhx4sSsnKviH9apr6+P6urqG57UMzAwEMuWLSvRVJQ7+4qs2FtkIbV9VfFxsnDhwmhtbY3e3t7xY6Ojo9Hb2+vudabNviIr9hZZSG1fVcTDOleuXIlTp06NXz59+nScOHEili5dGqtWrYru7u7o6uqKdevWRXt7e+zZsyeGhoZix44dJZya1NlXZMXeIgtlta8yeQ1QYg4fPlyMiBv+19XVNX6bP/zhD8VVq1YVFy5cWGxvby/+/e9/L93AlAX7iqzYW2ShnPaVz9YBAJJS8c85AQDSIk4AgKSIEwAgKeIEAEiKOAEAkiJOAICkiBMAICniBABIijgBAJIiTgCApIgTACAp4gQASMr/BwiFEjtUqrueAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -3368,7 +3523,7 @@ }, { "cell_type": "code", - "execution_count": 126, + "execution_count": 119, "metadata": {}, "outputs": [], "source": [ @@ -3388,7 +3543,7 @@ }, { "cell_type": "code", - "execution_count": 127, + "execution_count": 120, "metadata": {}, "outputs": [ { @@ -3397,9 +3552,9 @@ "text": [ "Name: \n", "Type: Graph\n", - "Number of nodes: 1050\n", - "Number of edges: 7112\n", - "Average degree: 13.5467\n" + "Number of nodes: 1053\n", + "Number of edges: 7198\n", + "Average degree: 13.6714\n" ] } ], @@ -3409,7 +3564,7 @@ }, { "cell_type": "code", - "execution_count": 128, + "execution_count": 121, "metadata": {}, "outputs": [], "source": [ @@ -3418,38 +3573,36 @@ }, { "cell_type": "code", - "execution_count": 129, + "execution_count": 122, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/Users/deusebio/.pyenv/versions/3.7.6/envs/ml-book-7/lib/python3.7/site-packages/matplotlib/axes/_axes.py:6694: RuntimeWarning: invalid value encountered in multiply\n", + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAANEElEQVR4nO3dT4hd5R3G8edpRJAMnUUjs0ikkzIiBLMoDoq7GWjriIwVK5ggghIdXNhVFx2pYDeldpGNf1qZ1pAWxKlI0cSk2HYRpOAiSTejFWmQFDOLBE25kJAiKb8u5ja9TubOnHvPOffc+/P7gcC973nP+743eXlyeM97z3VECACQy9eaHgAAoHqEOwAkRLgDQEKEOwAkRLgDQEKEOwAkdEPTA5CkHTt2xOTkZF/nXr58Wdu3b692QEAb8wt1KzPHTp8+/VlE3LzRsaEI98nJSZ06daqvc0+cOKGZmZlqBwS0Mb9QtzJzzPY/ux1jWQYAEiLcASAhwh0AEiLcASAhwh0AEiLcASAhwh0AEhr5cF9ZbWly8ZgmF481PRQAGBojH+4AgOsR7gCQEOEOAAkR7gCQEOEOAAkR7gCQEOEOAAnV8jx32w9Iuk/S1yW9GhF/qqMfAMDGCl+52z5k+4LtD9aVz9n+2PYZ24uSFBFvRcSTkp6S9HC1QwYAbKWXK/fDkl6S9Lv/FdjeJullSd+VdE7SSdtHIuLv7SrPto9D+tK3aM8+f1+DIwGQnSOieGV7UtI7EXF7+/3dkn4aEfe03z/Trvp8+8+fI+IvXdpakLQgSRMTE3csLy/39QEuXGzp/JW113t3jvfVxqCsrLauvR72sWLNpUuXNDY21vQwkFiZOTY7O3s6IqY3OlZ2zX2npE873p+TdJekH0r6jqRx21MR8cr6EyNiSdKSJE1PT0e/vyH44mtv6+DK2sc4+0h/bQzKY51X7kM+VqzhN1RRt7rmWC03VCPiBUkv1NE2AGBrZbdCrkq6peP9rnYZAKBBZcP9pKRbbe+2faOkfZKOFD3Z9rztpVartXVlAEBhvWyFfF3S+5Jus33O9oGIuCrpaUnvSvpI0hsR8WHRNiPiaEQsjI9zcxEAqlR4zT0i9ncpPy7peGUjAgCUxuMHACAhwh0AEmo03LmhCgD1aDTcuaEKAPWo5UtMGA48ywb46mLNHQASItwBICHCHQASanTN3fa8pPmpqakmh4EtsHYPjB52ywBAQizLAEBChDsAJES4A0BChDsAJMSzZQAgIXbLAEBCLMsAQEI8OAwjiS9WAZsj3DF0CG6gPJZlACAhrtxRO67EgcFjKyQAJMRWSABIiDV3AEiIcAeAhAh3AEiIcAeAhNgKidTYhomvKq7cASAhwh0AEuJLTACQEF9iAoCEuKEK9IibtBgFhDu+8ghrZMQNVQBIiHAHgIQIdwBIiHAHgIQIdwBIiN0yADbUuYtoPXYVDT+u3AEgIcIdABJqdFnG9ryk+ampqSaHAQwdvliFsni2DNDF5OIxray2Nl17BoYVyzIAkBDhDgAJEe4AkBDhDgAJEe4AkBDhDgAJEe4AkBDhDgAJEe4AkBBPhQQqwiMDMEy4cgeAhAh3AEiIcAeAhAh3AEio0XC3PW97qdVqNTkMAEiH57kDQEIsywBAQuxzB1AL9v03iyt3AEiIK3egZsNyBTss48BgcOUOAAkR7gCQEOEOAAkR7gCQEOEOAAkR7gCQEOEOAAkR7gCQEOEOAAkR7gCQEOEOAAkR7gCQEOEOAAkR7gCQEOEOAAnxPHdggDZ7pnrnMaAsrtwBICHCHQASItwBIKHK19xtf0vSTySNR8RDVbcPAIMyyr87W+jK3fYh2xdsf7CufM72x7bP2F6UpIj4JCIO1DFYAEAxRZdlDkua6yywvU3Sy5LulbRH0n7beyodHQCgL4XCPSLek3RxXfGdks60r9S/kLQs6fsVjw8A0AdHRLGK9qSkdyLi9vb7hyTNRcQT7fePSrpL0nOSfibpu5J+ExE/79LegqQFSZqYmLhjeXm5rw9w4WJL56+svd67c7yvNgZlZbV17fUgxlpVf2Xb6fX8IvWLtlmmrZXVliZuks5fub68W/2tyjutH0+3epuds5Fex1eknc3GUVV/w2gQn+HSpUsaGxvr69zZ2dnTETG90bHKb6hGxOeSnipQb0nSkiRNT0/HzMxMX/29+NrbOriy9jHOPtJfG4PyWOfNmQGMtar+yrbT6/lF6hdts0xbjy0e04/2XtXBlRuuK+9Wf6vyTuvH063eZudspNfxFWlns3FU1d8wGsRnOHHihPrNv82U2Qq5KumWjve72mUAgIaVCfeTkm61vdv2jZL2STpSzbAAAGUUWpax/bqkGUk7bJ+T9FxEvGr7aUnvStom6VBEfNhL57bnJc1PTU31NmoAlRnlvdzorlC4R8T+LuXHJR3vt/OIOCrp6PT09JP9tgEAuB6PHwCAhAh3AEiIcAeAhBr9sQ5uqALV4Ic+BmsUbkI3euUeEUcjYmF8fDS/vQYAw4plGQBIiHAHgIQIdwBIiBuqAK4Z1Ruz68fd603OUbhB2ituqAJAQizLAEBChDsAJES4A0BChDsAJMRuGQA967arpshum247UzLuWGkSu2UAICGWZQAgIcIdABIi3AEgIcIdABIi3AEgIcIdABJinzswokb1CY6dev0MRffCN7Vnfpj26rPPHQASYlkGABIi3AEgIcIdABIi3AEgIcIdABIi3AEgIcIdABLiS0xAYmV+VCOLYfpi0SDxJSYASIhlGQBIiHAHgIQIdwBIiHAHgIQIdwBIiHAHgIQIdwBIiHAHgIQIdwBIiHAHgIR4tgyAkTTKz8fpHPvhue219MGzZQAgIZZlACAhwh0AEiLcASAhwh0AEiLcASAhwh0AEiLcASAhwh0AEiLcASAhwh0AEiLcASAhwh0AEiLcASAhwh0AEuJ57gBq1+uz1zvrn33+vqqHc10fddRvGs9zB4CEWJYBgIQIdwBIiHAHgIQIdwBIiHAHgIQIdwBIiHAHgIQIdwBIiHAHgIQIdwBIiHAHgIQIdwBIiHAHgIQIdwBIiHAHgIQIdwBIiHAHgIQIdwBIiHAHgIQIdwBIiHAHgIQIdwBIiHAHgIRuqLpB29sl/VLSF5JORMRrVfcBANhcoSt324dsX7D9wbryOdsf2z5je7Fd/KCkNyPiSUn3VzxeAEABRZdlDkua6yywvU3Sy5LulbRH0n7beyTtkvRpu9p/qhkmAKAXjohiFe1JSe9ExO3t93dL+mlE3NN+/0y76jlJ/4qId2wvR8S+Lu0tSFqQpImJiTuWl5f7+gAXLrZ0/sra6707x/tqY1BWVlvXXg9irFX1V7adXs8vUr9om2XaWlltaeIm6fyV68u71d+qvNP68XSr1+2cIvXxZXX8/ZX9t949vk1jY2N99T07O3s6IqY3OlYm3B+SNBcRT7TfPyrpLkk/lvSSpH9L+muRNffp6ek4depUoXGs9+Jrb+vgytqtg7PP39dXG4MyuXjs2utBjLWq/sq20+v5ReoXbbNMW5OLx/SjvVd1cOWG68q71d+qvNP68XSr1+2cIvXxZXX8/ZX9tz48t10zMzN99W27a7hXfkM1Ii5LerzqdgEAxZXZCrkq6ZaO97vaZQCAhpUJ95OSbrW92/aNkvZJOtJLA7bnbS+1WqwdAkCVim6FfF3S+5Jus33O9oGIuCrpaUnvSvpI0hsR8WEvnUfE0YhYGB8f7huhADBqCq25R8T+LuXHJR2vdEQAgNJ4/AAAJES4A0BCjYY7N1QBoB6Fv8RU6yDslqR/bFJlXFK3/wF2SPqs8kHVb7PPNMx9lWmr13OL1i9Sb7M6zK/h6Svj/NrqeJk59s2IuHnDIxHR+B9JS/0el3Sq6fHX8ZmHta8ybfV6btH6ReptMYeYX0PSV8b5tdXxuubYsKy5Hy15fBQN8jNV2VeZtno9t2j9IvU2q8P8Gp6+Ms6vXvqqzFAsy5Rh+1R0ebYCUBbzC3Wra44Ny5V7GUtNDwCpMb9Qt1rm2MhfuQMArpfhyh0AsA7hDgAJEe4AkFC6cLe93fZvbf/a9iNNjwe52P6W7Vdtv9n0WJCP7Qfa2fV7298r09ZIhLvtQ7Yv2P5gXfmc7Y9tn7G92C5+UNKbEfGkpPsHPliMnF7mV0R8EhEHmhkpRlGP8+utdnY9JenhMv2ORLhLOixprrPA9jZJL0u6V9IeSftt79HaL0J92q72nwGOEaPrsIrPL6BXh9X7/Hq2fbxvIxHuEfGepIvriu+UdKZ9JfWFpGVJ35d0TmsBL43I50OzepxfQE96mV9e8wtJf4yIv5Xpd5TDb6f+f4UurYX6Tkl/kPQD279Szq+VYzA2nF+2v2H7FUnftv1MM0NDAt3y64eSviPpIdtPlemg0C8xjZKIuCzp8abHgZwi4nOtrYcClYuIFyS9UEVbo3zlvirplo73u9plQBWYX6hT7fNrlMP9pKRbbe+2faOkfZKONDwm5MH8Qp1qn18jEe62X5f0vqTbbJ+zfSAirkp6WtK7kj6S9EZEfNjkODGamF+oU1PziweHAUBCI3HlDgDoDeEOAAkR7gCQEOEOAAkR7gCQEOEOAAkR7gCQEOEOAAkR7gCQ0H8BaGCRm9kPBQUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGhCAYAAAC6URSFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAae0lEQVR4nO3db2jV590/8E/+aMTWSK00Vo34pIylXQ3EJAgdxKL17opiu46C0KYW9iiWjgyGPliXcj9Y+Y1CYB4oWx90HStICzpod/dfsAhth9HhWAntECy4OrOKzNTIYjzn3A96J7/WpOaP5+R7nZzXC8Y4V77XdX2+J+eK737P909NsVgsBgBAImqzLgAA4OuEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASanPuoC5KhQKce7cuVixYkXU1NRkXQ4AMAvFYjG+/PLLWLt2bdTW3vjYSMWFk3PnzkVzc3PWZQAA83D27NlYv379DbepuHCyYsWKiPhq5xobG0s69vj4eLzzzjvxwAMPxJIlS0o6NjAzaxCyVc41ODIyEs3NzZP/jt9IxYWTia9yGhsbyxJOli9fHo2Njf4wQgasQcjWQqzB2ZyS4YRYACApwgkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkiKcAABJqc+6gBTd0/d2jOW/eqTzZ88/lHE1C2fj/jentFXT/gOQBkdOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkZcHDydmzZ6OrqytaWlri3nvvjddee22hSwAAErbg9zmpr6+P/v7+aG1tjfPnz0dbW1v84Ac/iFtuuWWhSwEAErTg4eTOO++MO++8MyIi1qxZE6tXr46LFy8KJwBARMzja51jx47Fzp07Y+3atVFTUxNHjhyZsk0ul4uNGzfGsmXLorOzM44fPz7tWCdPnox8Ph/Nzc1zrxwAWJTmfORkdHQ0Nm3aFE899VQ88sgjU35+6NCh6O3tjRdffDE6Ozujv78/duzYEZ9++mnccccdk9tdvHgxnnjiifjtb397w/nGxsZibGxs8vXIyEhERIyPj8f4+Phcy7+hifEaaotT2qpBQ11xSls17T/Zm/i8+dxBNsq5BucyZk2xWJz6L9JsO9fUxOHDh2P37t2TbZ2dndHe3h4HDx6MiIhCoRDNzc3x9NNPx/79+yPiq8Cxffv2+PGPfxyPP/74Defo6+uL5557bkr7q6++GsuXL59v6QDAArpy5Urs2bMnLl26FI2NjTfctqTnnFy9ejVOnjwZBw4cmGyrra2Nbdu2xUcffRQREcViMZ588sm4//77ZwwmEREHDhyI3t7eydcjIyPR3NwcDzzwwIw7N1fj4+Px7rvvxs9P1MZY4asH/33ct6Okc6Tsnr63p7RV0/6TvYk1uH379liyZEnW5UDVKecanPjmYzZKGk4uXLgQ+Xw+mpqavtHe1NQUn3zySUREfPDBB3Ho0KG49957J89X+f3vfx/f+973ph2zoaEhGhoaprQvWbKkbH+8xgo1k08lrqY/kBP7/HXVtP+ko5zrG5hZOdbgXMZb8Kt17rvvvigUCgs9LQBQIUp6E7bVq1dHXV1dDA8Pf6N9eHg41qxZU8qpAIBFqqThZOnSpdHW1hYDAwOTbYVCIQYGBmLLli2lnAoAWKTm/LXO5cuX4/Tp05Ovz5w5E6dOnYpVq1bFhg0bore3N7q7u2Pz5s3R0dER/f39MTo6Gnv37i1p4QDA4jTncHLixInYunXr5OuJK2m6u7vj5Zdfjsceeyy++OKLePbZZ+P8+fPR2toab7311pSTZAEApjPncNLV1RUz3Rpl3759sW/fvnkXNZ1cLhe5XC7y+XxJxwUA0rLgTyWer56enhgaGorBwcGsSwEAyqhiwgkAUB2EEwAgKcIJAJAU4QQASIpwAgAkRTgBAJJSMeEkl8tFS0tLtLe3Z10KAFBGFRNO3OcEAKpDxYQTAKA6CCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJJSn3UBs5XL5SKXy0U+n8+6FKrIxv1vfuP1Z88/lFElANWjYo6cuAkbAFSHigknAEB1EE4AgKQIJwBAUoQTACApFXO1DkRMvXomwhU0AIuNIycAQFKEEwAgKcIJAJAU4QQASErFhJNcLhctLS3R3t6edSkAQBlVzNU6PT090dPTEyMjI7Fy5cqsy4GK5qonIGUVc+QEAKgOwgkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKRUzH1OAK6/P4t7s8Di5MgJAJAU4QQASIpwAgAkpWLCiQf/AUB1qJgTYj34D6bnJFFgsamYIycAQHUQTgCApAgnAEBShBMAICkVc0IskL3rT76NcAIuUHrCCVB2rigC5sLXOgBAUoQTACApwgkAkBThBABIihNiIQOuegH4do6cAABJEU4AgKQIJwBAUiomnORyuWhpaYn29vasSwEAyqhiwklPT08MDQ3F4OBg1qUAAGVUMeEEAKgOwgkAkBThBABIinACACRFOAEAkuL29QBMcf0jFjxegYXkyAkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAklIx4SSXy0VLS0u0t7dnXQoAUEYVE056enpiaGgoBgcHsy4FACijigknwOK2cf+bcU/f2xERk/8PVCfhBABIinACACSlPusCACrVxv1vTmn77PmHMqgEFhdHTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCS4j4nAFVuuvu1QJYcOQEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkJSKCSe5XC5aWlqivb0961IAgDKqmHDS09MTQ0NDMTg4mHUpAEAZVUw4AQCqg3ACACSlPusCABbaxv1vTmn77PmHMqgEmI4jJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkiKcAABJcZ8TYFFxDxOofI6cAABJEU4AgKQIJwBAUpxzAsC8OL+HcnHkBABIinACACRFOAEAkuKcE4CYev6EcycgO46cAABJEU4AgKQIJwBAUoQTACApTogFmKXpbjrGjblRG/PhyAkAkBThBABIinACACRFOAEAkiKcAABJcbUOQJVx1RGpc+QEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEnJJJw8/PDDcdttt8Wjjz6axfQAQMIyCSfPPPNMvPLKK1lMDQAkLpNw0tXVFStWrMhiagAgcXMOJ8eOHYudO3fG2rVro6amJo4cOTJlm1wuFxs3boxly5ZFZ2dnHD9+vCTFAgCLX/1cO4yOjsamTZviqaeeikceeWTKzw8dOhS9vb3x4osvRmdnZ/T398eOHTvi008/jTvuuGPOBY6NjcXY2Njk65GRkYiIGB8fj/Hx8TmPdyMT4zXUFqe0VYOGuuKUttT2f6FrvH6+Us1Vyv2YT43znb9U/abr01BXnFx7DbXFb91mNuPMVON028zU52b6pWY2+3G9Ur7XlfAeVauJ3005fkdzGbOmWCzO/VM60bmmJg4fPhy7d++ebOvs7Iz29vY4ePBgREQUCoVobm6Op59+Ovbv3z+53fvvvx8HDx6M119//YZz9PX1xXPPPTel/dVXX43ly5fPt3QAYAFduXIl9uzZE5cuXYrGxsYbbjvnIyc3cvXq1Th58mQcOHBgsq22tja2bdsWH3300bzGPHDgQPT29k6+HhkZiebm5njggQdm3Lm5Gh8fj3fffTd+fqI2xgo1ERHxcd+Oks6Rsnv63p7Sltr+L3SN189XqrlKuR/zqXG+85eq33R97ul7Oxpqi/Hfmwvx8xO1cfLZ/5r3ODPVON02M/W5mX6zGWc+v/9S/h5LZTbvdWp/VxZS6u/HxL+D27dvjyVLlpR07IlvPmajpOHkwoULkc/no6mp6RvtTU1N8cknn0y+3rZtW/z1r3+N0dHRWL9+fbz22muxZcuWacdsaGiIhoaGKe1Lliwp+Rs3YaxQE2P5msl5qsXEPn9davu/0DVeP1+p5irlfsynxvnOX6p+0/X5+jZjhZoZt5nNON+23XTbzNTnZvrNZpz5/P5L+Xssldm816n9XVlIlfJ+lOPf2LmMV9JwMlvvvfdeFtMCABWgpJcSr169Ourq6mJ4ePgb7cPDw7FmzZpSTgUALFIlDSdLly6Ntra2GBgYmGwrFAoxMDDwrV/bAAB83Zy/1rl8+XKcPn168vWZM2fi1KlTsWrVqtiwYUP09vZGd3d3bN68OTo6OqK/vz9GR0dj7969JS0cAFic5hxOTpw4EVu3bp18PXElTXd3d7z88svx2GOPxRdffBHPPvtsnD9/PlpbW+Ott96acpLsXOVyucjlcpHP529qHIBKsHH/m1PaPnv+oQwqIQXV9nmYczjp6uqKmW6Nsm/fvti3b9+8i5pOT09P9PT0xMjISKxcubKkYwMA6cjk2ToAAN9GOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkJRMHvw3H27CBixm091kqxTjVMKNurK+wVip5s96PxaTijly0tPTE0NDQzE4OJh1KQBAGVVMOAEAqoNwAgAkRTgBAJIinAAASRFOAICkCCcAQFKEEwAgKW7CBlBClXgTtErgBmfVpWKOnLgJGwBUh4oJJwBAdRBOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASXH7egC4jscQZKtijpy4fT0AVIeKCScAQHUQTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBSPPgPgORc/+A9qkvFHDnx4D8AqA4VE04AgOognAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFKEEwAgKfVZFzBbuVwucrlc5PP5rEsByMTG/W9mXUJJLOR+TDfXZ88/lNk4zE7FHDnp6emJoaGhGBwczLoUAKCMKiacAADVQTgBAJIinAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASanPuoDZyuVykcvlIp/PZ10KQMXYuP/NrEsgcV//jDTUFeP/dWRYzP+pmCMnPT09MTQ0FIODg1mXAgCUUcWEEwCgOggnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBS6rMuYLZyuVzkcrnI5/NZlwLAt9i4/83k517IGmczV6nqmW6cz55/qCRjL7SKOXLS09MTQ0NDMTg4mHUpAEAZVUw4AQCqg3ACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACQlk3DyxhtvxHe+852466674qWXXsqiBAAgUfULPeG1a9eit7c3jh49GitXroy2trZ4+OGH4/bbb1/oUgCABC34kZPjx4/H3XffHevWrYtbb701HnzwwXjnnXcWugwAIFFzDifHjh2LnTt3xtq1a6OmpiaOHDkyZZtcLhcbN26MZcuWRWdnZxw/fnzyZ+fOnYt169ZNvl63bl18/vnn8ywfAFhs5vy1zujoaGzatCmeeuqpeOSRR6b8/NChQ9Hb2xsvvvhidHZ2Rn9/f+zYsSM+/fTTuOOOO+Zc4NjYWIyNjU2+HhkZiYiI8fHxGB8fn/N4NzIxXkNtcUpbNWioK05pS23/F7rG6+cr1Vyl3I/51Djf+UvVb7o+DXXFybXXUFv81m1mM85MNU63zUx9ZtuvXOMw1Xx+r9U2/1zX58QaLMff1bmMWVMsFuf9btbU1MThw4dj9+7dk22dnZ3R3t4eBw8ejIiIQqEQzc3N8fTTT8f+/fvjww8/jF/96ldx+PDhiIj4yU9+Eh0dHbFnz55p5+jr64vnnntuSvurr74ay5cvn2/pAMACunLlSuzZsycuXboUjY2NN9y2pOHk6tWrsXz58nj99de/EVi6u7vj3//+d/zxj3+Ma9euxXe/+914//33J0+I/fDDD7/1hNjpjpw0NzfHhQsXZty5uRofH4933303fn6iNsYKNRER8XHfjpLOkbJ7+t6e0pba/i90jdfPV6q5Srkf86lxvvOXqt90fe7pezsaaovx35sL8fMTtXHy2f+a9zgz1TjdNjP1mW2/co1DeubzucraTJ/HiTW4ffv2WLJkSUnnHhkZidWrV88qnJT0ap0LFy5EPp+Ppqamb7Q3NTXFJ5988tWE9fXxwgsvxNatW6NQKMTPfvazG16p09DQEA0NDVPalyxZUvI3bsJYoSbG8jWT81SLiX3+utT2f6FrvH6+Us1Vyv2YT43znb9U/abr8/Vtxgo1M24zm3G+bbvptpmpz2z7lWsc0jOfz1XW5rJmSv23dS7jLfilxBERu3btil27dmUxNQCQuJJeSrx69eqoq6uL4eHhb7QPDw/HmjVrSjkVALBIlTScLF26NNra2mJgYGCyrVAoxMDAQGzZsqWUUwEAi9Scv9a5fPlynD59evL1mTNn4tSpU7Fq1arYsGFD9Pb2Rnd3d2zevDk6Ojqiv78/RkdHY+/evSUtHABYnOYcTk6cOBFbt26dfN3b2xsRX12R8/LLL8djjz0WX3zxRTz77LNx/vz5aG1tjbfeemvKSbJzlcvlIpfLRT6fv6lxAIC0zTmcdHV1xUxXH+/bty/27ds376Km09PTEz09PTEyMhIrV64s6dgAQDoyeSoxAMC3EU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACQlkwf/zcfETdiuXbsWEV89ernUxsfH48qVK5Efq4vC/z2lsRzzpKowdmVKW2r7v9A1Xj9fqeYq5X7Mp8b5zl+qftP1KYxdiXxdMa5cyUd+rO5bt5nNODPVON02M/WZbb9yjUN65vO5ytpMn8eJNTgyMlLypxJPzD3TvdIiImqKs9kqIf/4xz+iubk56zIAgHk4e/ZsrF+//obbVFw4KRQKce7cubj//vvjxIkTs+rT3t4eg4ODM243MjISzc3Ncfbs2WhsbLzZUivebN+3rCx0feWar1Tj3sw48+k71z6z2d4anMo6XJj5SjHuzY5R7nWY9RosFovx5Zdfxtq1a6O29sZnlVTM1zoTamtrY/369VFfXz/rN66urm5Ob3JjY6M/jDH3922hLXR95ZqvVOPezDjz6TvXPnPZ3hr8/6zDhZmvFOPe7BjlXocprMHZPn6mrq+vr6/ksy+Qjo6Okm47NjYWzz//fBw4cCAaGhpuprRFYy7vcRYWur5yzVeqcW9mnPn0nWufmba3BqdnHS7MfKUY92bHKPc6rJQ1WHFf65TTxEMFL126lPR/qcBiZQ1CtlJZgxV95KQc6urqoqurK+rrK+4bL1gUrEHIVgpr0JETACApbsIGACRFOAEAkiKcAABJEU4AgKQIJwBAUoSTWXrjjTfiO9/5Ttx1113x0ksvZV0OVJ2HH344brvttnj00UezLgWq0tmzZ6OrqytaWlri3nvvjddee61sc7mUeBauXbsWLS0tcfTo0Vi5cmW0tbXFhx9+GLfffnvWpUHVeP/99+PLL7+M3/3ud/H6669nXQ5UnX/+858xPDwcra2tcf78+Whra4u///3vccstt5R8LkdOZuH48eNx9913x7p16+LWW2+NBx98MN55552sy4Kq0tXVFStWrMi6DKhad955Z7S2tkZExJo1a2L16tVx8eLFssxVFeHk2LFjsXPnzli7dm3U1NTEkSNHpmyTy+Vi48aNsWzZsujs7Izjx49P/uzcuXOxbt26ydfr1q2Lzz//fEFqh8XgZtcgcPNKuQ5PnjwZ+Xw+mpuby1JrVYST0dHR2LRpU+RyuWl/fujQoejt7Y1f/OIX8Ze//CU2bdoUO3bsiH/9618LXCksTtYgZK9U6/DixYvxxBNPxG9+85vyFVusMhFRPHz48DfaOjo6ij09PZOv8/l8ce3atcVf/vKXxWKxWPzggw+Ku3fvnvz5M888U/zDH/6wMAXDIjOfNTjh6NGjxR/+8IcLUicsZvNdh//5z3+K3//+94uvvPJKWeuriiMnN3L16tU4efJkbNu2bbKttrY2tm3bFh999FFEfPWI6Y8//jg+//zzuHz5cvzP//xP7NixI6uSYVGZzRoEyms267BYLMaTTz4Z999/fzz++ONlrafqw8mFCxcin89HU1PTN9qbmpri/PnzERFRX18fL7zwQmzdujVaW1vjpz/9qSt1oERmswYjIrZt2xY/+tGP4k9/+lOsX79ecIESms06/OCDD+LQoUNx5MiRaG1tjdbW1vjb3/5Wlno8k3yWdu3aFbt27cq6DKha7733XtYlQFW77777olAoLMhcVX/kZPXq1VFXVxfDw8PfaB8eHo41a9ZkVBVUD2sQspfaOqz6cLJ06dJoa2uLgYGBybZCoRADAwOxZcuWDCuD6mANQvZSW4dV8bXO5cuX4/Tp05Ovz5w5E6dOnYpVq1bFhg0bore3N7q7u2Pz5s3R0dER/f39MTo6Gnv37s2walg8rEHIXkWtw7JeC5SIo0ePFiNiyv+6u7snt/n1r39d3LBhQ3Hp0qXFjo6O4p///OfsCoZFxhqE7FXSOvRsHQAgKVV/zgkAkBbhBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkvK/mzLTaKQW1OQAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ - "plotDistribution(degrees, 100)\n", + "plotDistribution(degrees, 100, minValue=1E0)\n", "plt.yscale(\"log\")" ] }, { "cell_type": "code", - "execution_count": 130, + "execution_count": 123, "metadata": {}, "outputs": [], "source": [ @@ -3458,31 +3611,37 @@ }, { "cell_type": "code", - "execution_count": 131, + "execution_count": 124, "metadata": { "scrolled": true }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", + " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" + ] + }, { "data": { "text/plain": [ "(0.1, 1)" ] }, - "execution_count": 131, + "execution_count": 124, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAN50lEQVR4nO3df4wc91nH8feDExfohRiFa4TjSJc00QmToKSNEqIAOhdVOEmdICgQy1SkuDmlUiQQSMgWiIJE1cAfCFWKEh3EpBKtU2NKyQ9XAUGt/BNB7DYlTl1XbjCKLcDQiMBVQiHw8MdtwmZ7d969nb3Z2+f9klbamZ357jPe835uvt+Z70VmIkmq5zvaLkCS1A4DQJKKMgAkqSgDQJKKMgAkqSgDQJKKuqjtAgC2bNmS11xzTdtlSNKGcvz48X/LzOm17j8WAXD55Zdz7NixtsuQpA0lIv5xmP3tApKkogwASSrKAJCkogwASSrKAJCkogwASSrKAJCkosbiPgBJ6sfMvqffen7mwTtbrGQytHoGEBG7ImJhcXGxzTIkqaRWAyAzn8zM+ampqTbLkKSSHAOQpKIMAEkqygCQpKIMAEkqygCQpKIMAEkqygCQpKIMAEkqygCQpKIMAEkqygCQpKIMAEkqyumgJU08p5FengEgaSL4JT84u4AkqSgDQJKKMgAkqajGAyAifiAiHomIwxHx0abblyQ1o68AiIgDEXE+Ik70rN8ZEaci4nRE7APIzJOZeT/ws8BtzZcsSWpCv2cAjwE7u1dExCbgIeB2YDuwOyK2d167C3gaONJYpZKkRvUVAJn5LPBqz+qbgdOZ+XJmvg48Dtzd2f6JzLwd2NNksZKk5gxzH8AVwCtdy2eBWyJiDvgp4B2scgYQEfPAPMD09DRHjx4dohRJFfzq9W+89bz3O2Otr1XW+I1gmXkUONrHdgvAAsDs7GzOzc01XYqkCXNv981ee+Yaea2yYa4COgdc2bW8rbNOkrQBDBMAzwPXRsRVEbEZuAd4YpAGImJXRCwsLi4OUYYkaS36vQz0IPAcMBsRZyNib2a+ATwAPAOcBA5l5kuDvHlmPpmZ81NTU4PWLUkaUl9jAJm5e4X1R/BST0nakJwKQpKKajUAHAOQpPa0GgCOAUhSe+wCkqSiDABJKsoAkKSiHASWpKIcBJakouwCkqSiDABJKsoAkKSiHASWpKIcBJakouwCkqSiDABJKsoAkKSiDABJKqqvvwg2KhGxC9i1devWNsuQpAua2ff0W8/PPHhni5U0x6uAJKkou4AkqSgDQJKKMgAkqSgDQJKKMgAkqSgng5OkorwMVJKKsgtIkooyACSpKANAkooyACSpKANAkopqdTZQSbqQ7lk41SzPACSpKG8Ek6SivBFMkoqyC0iSijIAJKkorwKSpI5J/Lu/q/EMQJKKMgAkqSgDQJKKMgAkqSgHgSVpHfROaTEOg8yeAUhSUQaAJBVlAEhSUQaAJBXlbKCSVJSzgUpSUXYBSVJRBoAkFeWNYJI0oEmZNdQzAEkqygCQpKIMAEkqyjEASWX1TtBWjWcAklSUASBJRRkAklSUASBJRRkAklSUASBJRRkAklSUASBJRRkAklSUASBJRTU+FURE/CRwJ/A9wKOZ+ZdNv4ckaXh9nQFExIGIOB8RJ3rW74yIUxFxOiL2AWTm5zPzPuB+4OeaL1mS1IR+u4AeA3Z2r4iITcBDwO3AdmB3RGzv2uQ3Oq9LksZQXwGQmc8Cr/asvhk4nZkvZ+brwOPA3bHkd4EvZOaXmi1XktSUyMz+NoyYAZ7KzOs6yx8EdmbmRzrLHwJuAb4O/ALwPPBCZj6yQnvzwDzA9PT0ew8dOjTckUiaSC+ee23Z9ddfcemK2/X72kptX6iN1bZbSe/+/e63mh07dhzPzJvWun/jg8CZ+Ungk31stwAsAMzOzubc3FzTpUiaAPeuMGf/mT1zK27X72srtX2hNlbbbiW9+/e73ygNcxnoOeDKruVtnXWSpA1gmAB4Hrg2Iq6KiM3APcATgzQQEbsiYmFxcXGIMiRJa9HvZaAHgeeA2Yg4GxF7M/MN4AHgGeAkcCgzXxrkzTPzycycn5qaGrRuSdKQ+hoDyMzdK6w/AhxptCJJ0rpwKghJKqrVAHAMQJLa02oAOAYgSe2xC0iSijIAJKkoxwAkqSjHACSpKLuAJKmoxieDk6RxNrPKBHDVeAYgSUU5CCxJRTkILElF2QUkSUUZAJJUlAEgSUUZAJJUlFcBSVJRXgUkSUXZBSRJRRkAklSUcwFJ0oiM+7xDngFIUlEGgCQVZQBIUlHeByBJRXkfgCQVZReQJBVlAEhSUQaAJBVlAEhSUQaAJBVlAEhSUQaAJBXljWCSVJQ3gklSUXYBSVJRBoAkFWUASFJRBoAkFWUASFJRBoAkFWUASFJRBoAkFWUASFJRBoAkFWUASFJRBoAkFeVsoJJUlLOBSlJRdgFJUlEGgCQVZQBIUlEGgCQVZQBIUlEGgCQVZQBIUlEXtV2AJG1kM/ueftvymQfvbKmSwXkGIElFGQCSVJQBIElFGQCSVJQBIElFGQCSVJQBIElFGQCSVJQBIElFNR4AEXF1RDwaEYebbluS1Jy+AiAiDkTE+Yg40bN+Z0SciojTEbEPIDNfzsy9oyhWktScfs8AHgN2dq+IiE3AQ8DtwHZgd0Rsb7Q6SdLIRGb2t2HEDPBUZl7XWb4V+K3M/InO8n6AzPxEZ/lwZn5wlfbmgXmA6enp9x46dGiIw5A0qV4899qy66+/4tIVt1vttX6ttY3u/Vbbp7f9tdixY8fxzLxprfsPMxvoFcArXctngVsi4jLg48CNEbH/zUDolZkLwALA7Oxszs3NDVGKpEl1b89sm286s2duxe1We61fa22je7/V9ultvw2NTwedmd8E7m+6XUlSs4a5CugccGXX8rbOOknSBjBMADwPXBsRV0XEZuAe4IlBGoiIXRGxsLi4OEQZkqS16Pcy0IPAc8BsRJyNiL2Z+QbwAPAMcBI4lJkvDfLmmflkZs5PTU0NWrckaUh9jQFk5u4V1h8BjjRakSRpXTgVhCQV1WoAOAYgSe1pNQAcA5Ck9tgFJElFGQCSVFTjdwIPIiJ2Abu2bt3aZhmStO5muqeuePDOVmpwDECSirILSJKKMgAkqSgDQJKK8kYwSSrKQWBJKsouIEkqygCQpKIMAEkqygCQpKKcCkKSGtQ9xcO48yogSSrKLiBJKsoAkKSiDABJKsoAkKSiDABJKsrJ4CSpKC8DlaSi7AKSpKIiM9uugYj4T+BU23XobS4FXmu7iHWyUY617TrX6/1H+T5Ntt1EW8O2MZuZl6x151anguhyKjNvarsI/b+IWMjM+bbrWA8b5VjbrnO93n+U79Nk2020NWwbEXFsmPe3C0grebLtAtbRRjnWtutcr/cf5fs02XYTbbX6mY5LF9AxzwAkaTDDfneOyxnAQtsFSNIGNNR351icAUiS1t+4nAFIktaZASBJRRkAGomIuDoiHo2Iw23XMmob5Vg3Sp1NqHSswxj7APCDvLCIuDIivhgRX42IlyLil4Zo60BEnI+IE8u8tjMiTkXE6YjYt1o7mflyZu5dax2r1PedEfF3EfGVzrH+9hBtjfxYI2JTRHw5Ip4a5zqHFRFbIuJwRHwtIk5GxK1rbGfsj3VcRcQ7I+JTEfGHEbGnr50yc2QP4ABwHjjRs34nS3f+ngb29dnW4VHWupEfwPcD7+k8vwT4OrC9Z5t3AZf0rLtmmbZ+DHjPMp/ZJuAbwNXAZuArwHbgeuCpnse7RvW5AQFMdZ5fDPwt8MPjeqzArwCfAZ5a5rWxqbOBz+VTwEc6zzcDWyb1WNfzwQDfocCHgF2d55/tq/0RF/9tH2bVD3Kdf2j+Anh/z7qfAf4aeEdn+T7gCyvsP7PMD9ytwDNdy/uB/X3UMrLPDfhu4EvALeN4rMC2Th3vY/kAGIs6G/gcLgX+gc5VhStsMxHHut6PAb9D9wM3dLb5TD/tj7QLKDOfBV7tWX0zcDqXTtFeBx4H7s7MFzPzAz2P86OsbxJFxAxwI0u/Gb8lM/8UeAb4bOf08BdZ+k/ZryuAV7qWz3bWrVTHZRHxCHBjROwf4H0uqNOt8gJLvxn9VWaO67H+AfBrwP8ut98Y1Tmsq4B/Bf640931RxHxzu4NJuhY19Ug36Es/Zts62zT13d7G2MAJT/I9RARU8CfAb+cmf/R+3pm/h7wX8DDwF2ZObI/xJCZ38zM+zPz3Zn5iYbb/p/MvIGlH/abI+K6ZbZp9Vgj4gPA+cw8foF9J+EzuYil31IfzswbgW8B39ZHPyHHOg5W+g79HPDTEfEwfU4xMfaDwBP+QTYmIi5m6cv/05n5uRW2+VHgOuDPgY8N+BbngCu7lrd11rUmM/8d+CJL/aFvMwbHehtwV0ScYek3tPdFxJ+MYZ1NOAuc7ToTO8xSILzNhBzr2MrMb2XmhzPzo5n56X72aSMA/CAbFhEBPAqczMzfX2GbG1m6bfxu4MPAZRHxOwO8zfPAtRFxVURsBu4Bnhiu8sFFxHREbOk8/y7g/cDXerZp/Vgzc39mbsvMmc7+f5OZPz9udTYhM/8ZeCUiZjurfhz4avc2k3KsY6K579B1GMSY4e0DGBcBL7PUb/jmAMYPrtegyiQ+gB8BEvh74IXO446ebW4Dru9avhi4b5m2DgL/BPw3S7/Z7e167Q6WrjD6BvDrLR3rDwFf7hzrCeA3l9lmrI4VmGP5QeCxqnPIY7wBONb5XD4PfO+kHmsL/7Yj+w4d6VxAEXGQpR/+7wP+BfhYZj4aEXewNEC2CTiQmR8fWRGStEGN+jvUyeAkqaixHwSWJI2GASBJRRkAklSUASBJRRkAklSUASBJRRkAklSUASBJRRkAklTU/wGlPCgUv9AKOAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGhCAYAAACUFDUXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAcyUlEQVR4nO3dbWyddf348U/Xbp3TrbJNOsZWhjdB66DTrV0mJm6wuCBOJ46QoKGBRBI9JdN61z0QxgMFNZKpnAiKuqCgE+LwZoJAwS0ium5sKjZDpxMRXGEg6+hMqe31f+Cf/pw9wOl22tPv2euV8OBc/Z7r+lwXS84757Yqy7IsAAASNancAwAAHA8xAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJqyn3AKM1NDQUTzzxREyfPj2qqqrKPQ4AUIQsy+Lw4cMxd+7cmDSptM+lJBczTzzxRMyfP7/cYwAAx+Cxxx6LefPmlXSfycXM9OnTIyJi//79MXPmzDJPAwAU45lnnonTTz99+HG8lJKLmRdeWpo+fXrMmDGjzNMAAMUYGBiIiBiTt4h4AzAAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkrabcAwDAWFnQsXXEtr9ee34ZJmEseWYGAEhaMjGTz+ejsbExmpubyz0KADCBJBMzuVwuuru7o6urq9yjAAATSDIxAwBQiJgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaTXlHgAAUrGgY+uIbX+99vwyTMJ/EzMAnPBEStq8zAQAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRv3mHn22WdjyZIlsWjRoli4cGF84xvfGO8RAIAKMu7fMzN9+vTYvn17TJs2Lfr6+mLhwoVxwQUXxKxZs8Z7FACgAoz7MzPV1dUxbdq0iIjo7++PLMsiy7LxHgMAqBCjjpnt27fH6tWrY+7cuVFVVRV33HHHiDX5fD4WLFgQU6dOjaVLl8aOHTuO+vuzzz4bTU1NMW/evPjkJz8Zs2fPPvYzAABOaKN+mamvry+amprisssuiwsuuGDE3zdv3hzt7e1xww03xNKlS2Pjxo2xatWqeOSRR+Lkk0+OiIhXv/rV8dvf/jZ6enriggsuiLVr10Z9fX3B4/X390d/f//w7d7e3oiIGBgYiIGBgdGOD8AJpLZ65DP/hR47Sr2OkcbyOlVlx/EaT1VVVWzZsiXWrFkzvG3p0qXR3Nwc119/fUREDA0Nxfz58+OKK66Ijo6OEfv4yEc+Euecc06sXbu24DE2bNgQV1999Yjtt9566/DLVQDAxHbkyJG4+OKL49ChQzFjxoyS7rukbwB+/vnnY9euXbF+/frhbZMmTYqVK1fGgw8+GBERPT09MW3atJg+fXocOnQotm/fHh/+8IdfdJ/r16+P9vb24du9vb0xf/78WLFihTcNA/CSFm74+YhtD29YNebrGOnpp58es32XNGYOHjwYg4ODI14yqq+vj71790ZExKOPPhqXX3758Bt/r7jiijjzzDNfdJ+1tbVRW1s7YvvkyZNj8uTJpRwfgArTP1g1Yluhx45Sr2OksbxO4/7R7JaWltizZ894HxYAqFAl/Wj27Nmzo7q6Onp6eo7a3tPTE3PmzCnloQAAIqLEMTNlypRYvHhxdHZ2Dm8bGhqKzs7OWLZsWSkPBQAQEcfwMtNzzz0X+/btG769f//+2LNnT8ycOTMaGhqivb09WltbY8mSJdHS0hIbN26Mvr6+uPTSS49r0Hw+H/l8PgYHB49rPwBAZRl1zOzcuTNWrFgxfPuFTxq1trbGpk2b4qKLLoqnnnoqrrzyyjhw4EAsWrQo7rrrrhf9Hpli5XK5yOVy0dvbG3V1dce1LwCgcow6ZpYvX/6yPz/Q1tYWbW1txzwUAECxxv23mQAASknMAABJEzMAQNKSiZl8Ph+NjY3R3Nxc7lEAgAkkmZjJ5XLR3d0dXV1d5R4FAJhAkokZAIBCxAwAkDQxAwAkTcwAAEkTMwBA0pKJGR/NBgAKSSZmfDQbACgkmZgBAChEzAAASRMzAEDSxAwAkDQxAwAkLZmY8dFsAKCQZGLGR7MBgEKSiRkAgELEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAElLJmZ8AzAAUEgyMeMbgAGAQmrKPQAA8H8WdGwdse2v155fhknSkcwzMwAAhYgZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkpZMzPg5AwCgkGRixs8ZAACFJBMzAACFiBkAIGliBgBImpgBAJImZgCApIkZACBpNeUeAABKYUHH1nKPQJl4ZgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkpZMzOTz+WhsbIzm5uZyjwIATCDJfM9MLpeLXC4Xvb29UVdXV+5xAGBUCn0Pzl+vPb8Mk1SeZJ6ZAQAoRMwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSkvltJgCgNCrtd6I8MwMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSkomZfD4fjY2N0dzcXO5RAIAJJJkvzcvlcpHL5aK3tzfq6urKPQ4AjJtK+5K7UkvmmRkAgELEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASasp9wAAUGkWdGwt9wgnFM/MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJC0cY+Zxx57LJYvXx6NjY1x1llnxW233TbeIwAAFWTcf2iypqYmNm7cGIsWLYoDBw7E4sWL413vele88pWvHO9RAIAKMO4xc8opp8Qpp5wSERFz5syJ2bNnxzPPPCNmAIBjMuqXmbZv3x6rV6+OuXPnRlVVVdxxxx0j1uTz+ViwYEFMnTo1li5dGjt27Ci4r127dsXg4GDMnz9/9JMDAMQxxExfX180NTVFPp8v+PfNmzdHe3t7XHXVVfHQQw9FU1NTrFq1Kp588smj1j3zzDNxySWXxNe//vVjmxwAII7hZabzzjsvzjvvvBf9+3XXXRcf+tCH4tJLL42IiBtuuCG2bt0a3/rWt6KjoyMiIvr7+2PNmjXR0dERb3vb217yeP39/dHf3z98u7e3NyIiBgYGYmBgYLTjA1ChaquzotYVeuwodN9SrzueWYq9b7GKPY9SGsv9V2VZVtxVK3TnqqrYsmVLrFmzJiIinn/++Zg2bVrcfvvtw9siIlpbW+PZZ5+NH/3oR5FlWVx88cVxxhlnxIYNG172GBs2bIirr756xPZbb701pk2bdqyjAwDj6MiRI3HxxRfHoUOHYsaMGSXdd0nfAHzw4MEYHByM+vr6o7bX19fH3r17IyLigQceiM2bN8dZZ501/H6b73znO3HmmWcW3Of69eujvb19+HZvb2/Mnz8/VqxYEbNmzSrl+AAkbOGGnxe17uENq4q6b6nXHc8sxd63WMWeRyk9/fTTY7bvcf8009vf/vYYGhoqen1tbW3U1taO2D558uSYPHlyKUcDIGH9g1VFrSv02FHovqVedzyzFHvfYhV7HqU0lvsv6ZfmzZ49O6qrq6Onp+eo7T09PTFnzpxSHgoAICJKHDNTpkyJxYsXR2dn5/C2oaGh6OzsjGXLlpXyUAAAEXEMLzM999xzsW/fvuHb+/fvjz179sTMmTOjoaEh2tvbo7W1NZYsWRItLS2xcePG6OvrG/5007HK5/ORz+djcHDwuPYDAFSWUcfMzp07Y8WKFcO3X3hzbmtra2zatCkuuuiieOqpp+LKK6+MAwcOxKJFi+Kuu+4a8abg0crlcpHL5aK3tzfq6uqOa18AQOUYdcwsX748Xu7T3G1tbdHW1nbMQwEAFGvcfzUbAKCUxAwAkDQxAwAkLZmYyefz0djYGM3NzeUeBQCYQJKJmVwuF93d3dHV1VXuUQCACSSZmAEAKETMAABJEzMAQNLEDACQNDEDACQtmZjx0WwAoJBR/zZTufihSQAmogUdW8s9wgkvmWdmAAAKETMAQNLEDACQNDEDACRNzAAASRMzAEDSkokZ3zMDABSSTMzkcrno7u6Orq6uco8CAEwgycQMAEAhYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkpZMzPjSPACgkJpyD1CsXC4XuVwuent7o66urtzjAEASFnRsLfcIYy6ZZ2YAAAoRMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSkokZv80EABSSTMzkcrno7u6Orq6uco8CAEwgycQMAEAhYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApCUTM341GwAoJJmY8avZAEAhycQMAEAhYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkpZMzOTz+WhsbIzm5uZyjwIATCDJxEwul4vu7u7o6uoq9ygAwASSTMwAABRSU+4BAIDSWNCxtdwjlIVnZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASFpNuQcAAEZvQcfWco8wYXhmBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICklSVm3ve+98VJJ50Ua9euLcfhAYAKUpaYWbduXdx8883lODQAUGHKEjPLly+P6dOnl+PQAECFGXXMbN++PVavXh1z586NqqqquOOOO0asyefzsWDBgpg6dWosXbo0duzYUZJhAQD+V81o79DX1xdNTU1x2WWXxQUXXDDi75s3b4729va44YYbYunSpbFx48ZYtWpVPPLII3HyySePesD+/v7o7+8fvt3b2xsREQMDAzEwMDDq/QFQmWqrs6LWFXrsKHTfYtcdj/E4RrHG+jF1LPdflWXZMV+1qqqq2LJlS6xZs2Z429KlS6O5uTmuv/76iIgYGhqK+fPnxxVXXBEdHR3D637xi1/E9ddfH7fffvtLHmPDhg1x9dVXj9h+6623xrRp0451dABgHB05ciQuvvjiOHToUMyYMaOk+x71MzMv5fnnn49du3bF+vXrh7dNmjQpVq5cGQ8++OAx7XP9+vXR3t4+fLu3tzfmz58fK1asiFmzZh33zABUhoUbfl7Uuoc3rCrqvsWuOx7jcYxiFZqllJ5++ukx23dJY+bgwYMxODgY9fX1R22vr6+PvXv3Dt9euXJl/Pa3v42+vr6YN29e3HbbbbFs2bKC+6ytrY3a2toR2ydPnhyTJ08u5fgAJKx/sKqodYUeOwrdt9h1x2M8jlGssX5MHcv9lzRminXvvfeW47AAQAUq6UezZ8+eHdXV1dHT03PU9p6enpgzZ04pDwUAEBEljpkpU6bE4sWLo7Ozc3jb0NBQdHZ2vujLSMXK5/PR2NgYzc3NxzsmAFBBRv0y03PPPRf79u0bvr1///7Ys2dPzJw5MxoaGqK9vT1aW1tjyZIl0dLSEhs3boy+vr649NJLj2vQXC4XuVwuent7o66u7rj2BQBUjlHHzM6dO2PFihXDt1/4pFFra2ts2rQpLrroonjqqafiyiuvjAMHDsSiRYvirrvuGvGmYACAUhh1zCxfvjxe7qtp2traoq2t7ZiHAgAoVll+mwkAoFTEDACQtGRixqeZAIBCkomZXC4X3d3d0dXVVe5RAIAJJJmYAQAoRMwAAEkTMwBA0sQMAJA0MQMAJC2ZmPHRbACgkGRixkezAYBCkokZAIBCxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJC0ZGLG98wAAIUkEzO+ZwYAKCSZmAEAKETMAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkLRkYsY3AAMAhSQTM74BGAAoJJmYAQAoRMwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACQtmZjxcwYAQCHJxIyfMwAACkkmZgAAChEzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASasp9wDFyufzkc/nY3BwsNyjAEDFWdCxdcS2v157fhkmGb1knpnJ5XLR3d0dXV1d5R4FAJhAkokZAIBCxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkLSacg8wWlmWRUTE4cOHY/LkyWWeBoCJYqj/SFHrent7i7pvseuOx3gc43gUmu9YHT58OCL+73G8lKqysdjrGPrLX/4Sr3vd68o9BgBwDP785z/Ha1/72pLuM7lnZmbOnBkREX/729+irq6uzNNQKZqbm6Orq6vcY1SsE/X6pn7eE3n+iTBbOWYYj2OO1TEOHToUDQ0Nw4/jpZRczEya9J+3+dTV1cWMGTPKPA2Vorq62r+nMXSiXt/Uz3sizz8RZivHDONxzLE+xguP4yXdZ8n3CAnK5XLlHqGinajXN/XznsjzT4TZyjHDeBxzIlzb0UruPTO9vb1RV1cXhw4dKnuVAwDFGcvH7+SemamtrY2rrroqamtryz0KAFCksXz8Tu6ZGQCA/5bcMzMAAP9NzAAASRMzAEDSxAyMg/e9731x0kknxdq1a8s9SsU5Ua/tiXre48G1TY+YgXGwbt26uPnmm8s9RkU6Ua/tiXre48G1TU9Fx4y6ZqJYvnx5TJ8+vdxjVKQT9dqeqOc9Hlzb8ffTn/40zjjjjHjDG94QN91006jvX9Exo67Tds0110Rzc3NMnz49Tj755FizZk088sgjJT3G9u3bY/Xq1TF37tyoqqqKO+64o+C6fD4fCxYsiKlTp8bSpUtjx44dJZ1jvH3ta1+Ls846K2bMmBEzZsyIZcuWxZ133lnSY0z0a3vttddGVVVVfPSjHy3pfif6eY+lxx9/PD74wQ/GrFmz4hWveEWceeaZsXPnzpLt/0S+tpXs3//+d7S3t8d9990Xu3fvji9+8Yvx9NNPj2ofFR0z6jpt27Zti1wuF7/+9a/jnnvuiYGBgXjnO98ZfX19Bdc/8MADMTAwMGJ7d3d39PT0FLxPX19fNDU1RT6ff9E5Nm/eHO3t7XHVVVfFQw89FE1NTbFq1ap48sknh9csWrQoFi5cOOK/J554YpRnPT7mzZsX1157bezatSt27twZ55xzTrz3ve+NP/zhDwXXV9q17erqihtvvDHOOuusl1xXaec9lv75z3/G2WefHZMnT44777wzuru740tf+lKcdNJJBde7trxgx44d8eY3vzlOPfXUeNWrXhXnnXde3H333aPbSVYm27Zty9797ndnp5xyShYR2ZYtW0asuf7667PTTjstq62tzVpaWrLf/OY3oz7O/fffn73//e8vxciU2ZNPPplFRLZt27YRfxscHMyampqytWvXZv/+97+Ht+/duzerr6/PPv/5z7/s/l/s32FLS0uWy+WOOtbcuXOza665ZlTzT/R/iyeddFJ20003jdheadf28OHD2Rve8Ibsnnvuyd7xjndk69atK7iu0s57rH3605/O3v72txe11rWtLMf7eH7bbbcd9f/sC1/4QvbFL35xVDOU7ZmZlytsdc3/OnToUEREwZ+PnzRpUvzsZz+L3bt3xyWXXBJDQ0Px5z//Oc4555xYs2ZNfOpTnzqmYz7//POxa9euWLly5VHHWrlyZTz44IPHdiITzODgYHz/+9+Pvr6+WLZs2Yi/V9q1zeVycf755x913EIq7bzH2o9//ONYsmRJXHjhhXHyySfHW97ylvjGN75RcK1rW1lK8Xh+3I69xUonCpScuua/DQ4OZueff3529tlnv+S6Rx99NGtoaMguuuiirKGhIbvkkkuyoaGhoo5R6N/h448/nkVE9qtf/eqo7Z/85CezlpaWouc/99xzs9mzZ2eveMUrslNPPXXE/srhd7/7XfbKV74yq66uzurq6rKtW7e+5PpKuLbf+973soULF2b/+te/sizLXvKZmRdUwnmPh9ra2qy2tjZbv3599tBDD2U33nhjNnXq1GzTpk0veh/XtvIcy+P5Aw88kK1Zs2b47+vWrctuueWWUR23pnRZVDov1PX69euHt6nrE1sul4uHH344fvnLX77kuoaGhvjOd74T73jHO+K1r31tfPOb34yqqqpxmvLF3XvvveUeYYQzzjgj9uzZE4cOHYrbb789WltbY9u2bdHY2FhwferX9rHHHot169bFPffcE1OnTi16/6mf93gZGhqKJUuWxOc+97mIiHjLW94SDz/8cNxwww3R2tpa8D6ubeUr5vG8paUlHn744Xj88cejrq4u7rzzzvjMZz4zquNMyDcAHzx4MAYHB6O+vv6o7fX19XHgwIGi97Ny5cq48MIL42c/+1nMmzdPCCWqra0tfvrTn8b9998f8+bNe8m1PT09cfnll8fq1avjyJEj8bGPfey4jj179uyorq4e8YbEnp6emDNnznHtu9ymTJkSr3/962Px4sVxzTXXRFNTU3z5y19+0fWpX9tdu3bFk08+GW9961ujpqYmampqYtu2bfGVr3wlampqYnBwsOD9Uj/v8XLKKaeMCOE3velN8be//e1F7+PaVr5iHs9ramriS1/6UqxYsSIWLVoUH//4x2PWrFmjOs6EjJlSuffee+Opp56KI0eOxN///veC7wdg4sqyLNra2mLLli1x3333xemnn/6S6w8ePBjnnntuvOlNb4of/vCH0dnZGZs3b45PfOITxzzDlClTYvHixdHZ2Tm8bWhoKDo7Oyvu39PQ0FD09/cX/FslXNtzzz03fv/738eePXuG/1uyZEl84AMfiD179kR1dfWI+1TCeY+Xs88+e8RXJ/zxj3+M0047reB615b/9p73vCf++Mc/xr59++Lyyy8f/Q6O/ZWx0on/eY2tv78/q66uHvG62yWXXJK95z3vGe/xKJMPf/jDWV1dXfaLX/wi+8c//jH835EjR0asHRwczJYsWZK9613vyvr7+4e379mzJ5s5c2Z23XXXFTzG4cOHs927d2e7d+/OIiK77rrrst27d2ePPvro8Jrvf//7WW1tbbZp06asu7s7u/zyy7NXv/rV2YEDB0p/0uOko6Mj27ZtW7Z///7sd7/7XdbR0ZFVVVVld99994i1lXxtX+7TTJV63mNhx44dWU1NTfbZz342+9Of/pTdcsst2bRp07Lvfve7I9a6tpWrXI/nEzJmsuw/bxhqa2sbvj04OJideuqpo34DMOmKiIL/ffvb3y64/u677x5+Y+d/e+ihh7LHHnus4H3uv//+gsdobW09at1Xv/rVrKGhIZsyZUrW0tKS/frXvz7e0yuryy67LDvttNOyKVOmZK95zWuyc889t2DIvKBSr+3LvQG4Us97rPzkJz/JFi5cmNXW1mZvfOMbs69//esvuta1rUzlejyv+v8HH3fPPfdc7Nu3LyL+80ax6667LlasWBEzZ86MhoaG2Lx5c7S2tsaNN94YLS0tsXHjxvjBD34Qe/fuHfHaGwBQHhPi8bxkWTRKxRS2ugaAiW0iPJ6X7ZkZAIBSqOhPMwEAlU/MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJC0/wcvLaGB8X+/hwAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -3494,14 +3653,7 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 132, + "execution_count": 125, "metadata": {}, "outputs": [], "source": [ @@ -3511,7 +3663,7 @@ }, { "cell_type": "code", - "execution_count": 133, + "execution_count": 126, "metadata": {}, "outputs": [], "source": [ @@ -3523,14 +3675,14 @@ }, { "cell_type": "code", - "execution_count": 134, + "execution_count": 127, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABCdElEQVR4nO2deXwcZ33/33NIWt02CTEhIRBykTiO5UuyfMUicRJzpgVT2l+BcpRfaaGl/ZUCBfXJg1oKP45SjkIvaH/QAjUhaShNQkrkK7YlX8rh3CEXgVwklla3Zub5/fHMamdXu7JkSavr+369ZHlnZmefGe185jvf53s4xhgEQRCE0uDO9gAEQRAWEyK6giAIJUREVxAEoYSI6AqCIJQQEV1BEIQSIqIrCIJQQkR0BUEQSoiIriAIQgkR0RUEQSghIrqCIAglRERXEAShhIjoCoIglBARXUEQhBLiz/YAhNLR0tq5DNgJNABdwI72tsZnZnNMgrDYEEt3cbETaAZq4987Z3c4grD4ENFdXDSQfbrx49eCIJQQEd3FRReYMP5/YF8LglBKRHQXFzt8Ru51CULgALBjtgckCIsNEd3FRzTbAxCExYxELyxwciMWDAFlNeA4ZCfStszm+ARhsSGiu/DJRCzEf2sns1wm0gRhFhD3wsKngRzBHe3+LBNpgjALiOgufLrAxH7cUcENgcPIRJoglBwR3YXPB1yiICu4DtgXI5KNJgilR3y6c5BpTtf9eoRTlvDlgvhzBWHWEEt3brITzAamIV3XIVoLrpO3WPy5gjBLiKVbQiZhwTaA48X/P2WrVGu9uY6mVDdLTCy8BhunK4kRgjBLiOiWlkT4lmkGp1ic7HGgCXDAUMHgi1prRyllCmw7hpbWzmUewY9h25oK+nvAuQ+4BKksJgizjohuaWkgG77lu4TNWuvLgT3jCKrxGT4d+KLW+v8opQpmlGmtfaywNlWx+VP9VL0MXPqprQJnuL2tsW7aj0YQhEkjoltaushaukEZw48DXwecj1z3xX87Em54ncG9FKhidObLcfqp8YdMxZV3huuebmntSAFdr3Yf+KNz3EfPw1rEjcBq4CmgY4CqJVl3vSOTZoIwhxDRLS07GPXpOl1DVO4AngU23xuu3GngpcQuBYsDRNTQY46HDRf3U+3FyzY/Hy3rOMd99BagA/hL4JBS6gRAS2vnuWSz0GTSTBDmEI4xE3ITCjNMS2tnDzZaIcaEwKDPyMOXuHe23R2t+bbBrUysT7e3NRV0GUiHCEGYu4ilO3foIsc6dQ60tzXGk2ybaGnt/KO89V3FdhQLrBSyEYQ5iMTpzh12YEO50hQO6TrZekEQ5gHiXhAEQSghYukKgiCUEBFdQRCEEiKiKwiCUEJEdAVBEEqIiK4gCEIJkThdYc7R0tq5HLgDqAe6gY3tbY3HZ3dUgjA9SMiYMKdoae18M3CjTYXOVKN0AHqB9SK+wnxH3AvCXOOGhNAmflODrTMhCPMaEV1hruHktRZKUl3KgQjCTCCiKwiCUEJEdIX5RDjbAxCEqSKiK8w13lVkeQi8tpQDEYSZQKIXhGlD6vgKwskRS1eYTnbahpvUxr9PuXW8ICxURHSF6aQh7skGOL5DtE5rXTWrIxKEOYaIrjCddGF7sgEmrKK3D/iZ1vqTWuulszguQZgziOgK00miu4Wzv4+65djJr/OAR7TWn9danzWrIxSEWUYm0oSSoLV+BfDHwO8MmKqbD4UbL4zwL6LAhJtMyAkLGRFdoaRorV9yMLj86CCpV9oHLWPKGD6+1Hn+2mfNWd8CVgEpMH5ceyGvSacgzG9EdIWSk99u3iOghh7TzRInFmJyU4FNb3tbU23+fgRhPiI+XWE26GJ0wo0gwjnYw5Lh7NcxR3Cp40RKa/1+rbV8X4V5j3yJhdkgp528wbvW4HaSjXwg89sj4FLvaAB8Bjigtb5gFsYrCNPGgnEvxJMvNwLr4kWHgGtlAmZ+kJg8WwWEYDyf4OE13h2PVDoDrwMq4k1D4IvAJ5VSQZHdCXnkTU5mahIvRyYqS868F934y/RjMGvskpyygAfb2xqbZ2FYwjSitfaBNwCfANYAzrApHzocbnxsmNTLEeE4KS2tnXuAZka7xeT4zbuBi+T8lYaFILp7gM3jbJIGmqXjwMIgznD7xNGg6WM9LHHjibcQTEd72/qNsz2+uUr+5GUB9kqESGlYCKJ7ki+TAZwAGEAsogVDoQiIzf5t/wn8APiRUqp71gY3B7HGidkETrEK8en2tsa6kg5qkbIQGlN2Ma6l6xDHfMZFWJydgNzR5z9dZB+Xg8hOxF2PnaT7O631nvj1fyqlXpi1Uc4RTnOeedeIKX/IPh1kunOMuhgC7PkUSsBCEN0dwMPYHloFyOm35XsEmz6svvq2O6PGDyIZT/OZHSSy1gzuDqXUM8C3tdZ1wOuBtwJf0lofxFrANyqlnputAc8mK7yjjcDRYVO+4u5wTdRLbbnB7cf6Z45hz6dQAua9ewHGRC7kB3uGWOX1ITL1nABwulmS2TQAJONpgaK1rga2YwX4GuAIVoBvUEo9PVvjKnWqs9b6h2SLwB8FXqeUGpypzxOKsyBEdzwKfbnB/AycZMlB8WctArTWlcDVWAF+PXAXVoB/qJR6qpRjiX2szXEpzBm98Wuta4HngDKsVbtVKdU7E58lnJwFL7qFyAufEUt3EaK1rgC2YQX4jcADWAG+Xin1+Ex/foEJ4Bm58be0di6rYGBfQNn51aSHK52+5d/71K8/PN2fI0ycheDTPRVy/IGIP2vRoZQaAv4L+C+tdTn20futwMe11o+SFeBHZmgIXVlL1wTgdM3Q5+wcouJ8cOlhidtjln4TmUieVRalpSsIxYgTMS7HCvCvA09hBfgHSqkHp+tzMm4vj2BThNNp8N48Ez7dltaONDjJSWZxpc0yIrqCUASttQdswgrwW4Dn+0zNzUfD5itC/AuZhgkwrXUX8G6l1LFpGPIYrmnd9cgQlefG8bniSpsDiOgKwgSIK5w1dwRbvj9A5Vk28iUyKQYfW+/vfg9w7FQSMrTWtwJ/o5S6ZQbG7AyZiuOHwk0jAeXnIjUX5gSL1acrCJNCKRUBd7S0diYezV1nxIrZvwKnaa1/iQ3HGv1RSv3qJLt+Blg2I4OGNRXOUMUm/6eXKqWiOGJiAzgediJZEoVmARFdYc4wT9r0dJEb+dIV/7wFW9nuCHAWtjjPKq31i4wV4qfBHm8lW1oGqXxbS2vne5n+430P8K34hgGYVbHgEo+/YRo/S5ggUk9XmEvsxApaLVlLbK6RUws4xH+DUup3gUuAnwEfA14JfBxYig1L+z72mP4YOK61fkpr/aMUfZ0DVJ1lcCuY5uONY5J/A2uFo7V2qkmPgIkFWFJ/ZwuxdIW5RAPZ7+SctMRiS3TMI3lsvX5Sa/3XwLuBfwN+CXweG/nwfbDihxXl1UOkvpsoQONbS3Ta+HWgUyn1ZPz63Su8I08eDLceB1YioZKzhoiuMJfoSsSuhjMYuzpjKKX6gK9e3brneoOza4TyH4Jhf+vuR2uc3tde/yn1GPAY8FhLa2cHo66KiDq6U1rrfwU+o5S6b4pDeQ/wDQCt9dnAZ1PO4BXtbU13TXG/whSR6AVhzpD16Zo1dZwoW+b+YvM/6Hd3zPa4kkzU7xxPWm3OlgCx11mK/ide6jzzuv/3qbcfTxxvQxW9/Zd5h+9JOYO7gQ8CdwB/rZQ6NNkxaq3PBTqBs/cEVy2ppO++fmqq4pZIc9FPvqgQ0RXmJFrrDwLvBZrnUmGW3JoJJgRnf6G415bWg/3gVo7dg4nqOBGt9g9+E/iiUuoBgDgr7sfAQ8CfAu+Lfz8A/DXQrpSa0MX6Z9d9/vP3hKt/c4CaOjBVgJvXUSVE2lnNGiK6wpwk9n1+v99U9XeGl7+aORLRUKB4utns36aBL2XidLXW1UeC5ufT1KfyxC7G9G31b/k88AHgINbvuy/e717g35VSn42F+H8BHwVOYMX3R3H4V0GLW2vtHQnW96VZ4ttIhfx29jmMadMzTyJI5jUiusKcRWtddyRofiZNfVkc6lSyjKpi4pNbLMkEVfS+0Ojvq7Ov2fNCdNrfPRQt/9IQqZeDIcJLRAhle5K1tzUuiVsPvRP4E+BFrPh2YAX4Y0qpf4fRzLhfGzSp1uPhqvN7qXMNznBcKS+naJPW+qo9wbabI/yJRibltOnJi+WVDLYZQCbShDmLUqqnpbUjBCcVLyphRIOJw9ccn9xEgkSxJKern9odWCv0fcCfPx6dv3OASifOWMMhGjC4lXnWpgeglOoHvqG1/kdspbM/BV4OfGfIVHx5W+u+j9pMsu1d9nNNN1ARW7CpxP58YHNLa8ee9V7Kq6Z3KE19/mcWIydiwiFqNLgSyzuDiKUrzGliy2sjOG48GdUDzoUz/cj72taDAwY3KWwnLRSjtfb2BNtGIvyE2uU/3huANDgXFDoGrXUz8H+OBuvf3EO9HzfeDFzCrgjvYnCqx+478zuinhOc79330SNh81/YbXPa8hQaUzdwEZidLtF6h6gsxI/s+c61dMX1MD2I6ApzGnuhmweA+lhADDj7JvvImxCMVdiJJI+4TU2+cGit/SNBc3qybg2t9UePBk2fTnQpjtckIxisOILTE8fodhUaQ0trR29SYD0CqugdTFOXyljRLmFk3Qi5guoQGYPrZD87OY4xAtzvEh6PcNeC69jkCSeN/ZC8Wg2mHFgXCzJI6/ZTQtwLwpwm9qMm/aIORGtg0pZXJtst+Z3fhG3z1Jy37W8v944dORi2REyw5nIcpvVXl3rHhjvDLfcHuOfFPlcvu1VG7FzAZKzmIjUQnKMkYnhr6GG5dyx1V7i2t5dat4Z08Brv7i8eCTdcY2B9UkgNnpPXG5Cs8EJC/E0t3V4/tesSXa5cMG57W1NdXqTGBjBeXhJrff7YxRo+OSK6wnygi4QA1dLtaa1rYPvOrOvhpAVcGhj7fXewffVG0VqXAX+RcgZ/p72tcc/JBhZb4js9tm2qoYez3MffcFvbxp/G65KTbrHSjbE2fTANBXYd+45NQzW9wWu8u35a7gw3rPX3nx+v7wH+7FL36NvvjtbcyKgaJoU2/1Azvw32HwdwylP09fdRVxnf0Kiju/LPrvvCZ2HTxqxV63j2PcbJ23f+2Hcm2hBJUZ0CiOgK84HRyasKBp+71DtWB/x1XMAlY3qNmfTJs7qik4RPZXgX8IhS6qSCazE3AY0hPt0spTt6yf+0tHYeBK4ld9ItflQ3K1zCygg36YKobWnt2AvOWzNWYTLdWGu9BJvs8GlsdMO/AmuB6DT3uZtqop7eXmprsvs72TE6ZMQzTZ1JMXiikv4Xhqk4K0X/ieXesd57w4aP5O5o1FLuJdt5O6d+g9b6VQ5XNRm8OZ3KPduI6ApznjwBcgdNavfRoOkDgJt8VAa3K++tSZdCAIT2ETlHlEYzvuK42E8CvzWRcWmtL4RrGgtYl03AztgHXCBxonOZx8jNIayKrU0g2gQ81dLa6WF9pRvb2xqPAyilTmit3wzsBt6olFpnP5t/GTblzQ5RYsIsn0IinFzmOkOkTrvcv1UB52OrpXX0UveK3Pc5mX/uiResi1+X/YH6+yvPcJ9+L3BVisFnB6h6WaLhZte4J3ERIhNpwrwifpx/CKhNCE1YS/fIue6D77wratxD1rrN86mavlq6K9PUxyah04G1SAF2OkTrqugd6KPu4pP5IbXW7wC+uCu45vQiluVJox3GNqfMjSpob2tckveZbwK+BjQqpX4JcGXr/sMh7priVm7+JBq4hCbCS7g6TD+4oc/wz9Z5ey+ocIYrjgVNbjdL810JgEn7jDwaULY8k3zhEkSrvY5P1Tjpv9kVbK9EfLrjIpauMOeJ3QQ3Yq0rl1HfKMTCMbTGP/A7wMeIzIfIxteaONoh06rm6Br/wEZsXO23lFJ/Eu9/D5hmg+v3UVvGOH7IuJ351+KxbMNGQORjmJiF10XW50teVEF9/sZKqZu01iuBH2qttyqlhuK2QYlzkU+uteoQUE3aSbMkubwKIMBfeU+4pn+Fd8QJ8UaA8nzRdgmrI9wV2epoDhG+ezjcdEV7W6NW1tcsPtxxENEV5gM7sY/siTCoDIY6TpRhw8BCB7PW4Ga+1w4QegRuiH8AnB3YWgbVwP0Jn2+iMI3jUcQPqbVeDXwP2IP1qepaTmAFLGeCrIOJlU1M+nwrGb0eDR4BcVfiV+fVXPireHxf01r/rk2cSMYxj+fPNbgY+qkl96aVwaWPmqp7wtVBL7Xl2fA2RreNcF2PkNzPcojHJNELE0DcC8KcZ+xjeAaDR2BWewe+Uu30vQW48UjQ/N40dRU25pQAzIGt/i0rgVfvCrb7tZx4rJ+alIPpCigbBLM2DokiFo8xMblxHYg/xPp7P6SU+p7WumLYlPffHa52regawD1IXhGZSVQlW46tLFYPpnuNe0e61k2fHa++USn1a4nx1GILqf/drmD79TWceKSP2kqDWyjlOAeXMKyl2+1miTO2h4Ehex6KJlPgEhgH44T4ZPzpVfQ93+jv+/aB4PJrh6h85WTimxcb0jlCmA90xSFXMQYwJsXAY43enoFqp+9/YevHtlzo3vMrFzNit4kGwfkA8ODz0RmNwANp6lMhPgH+SjDrYzcECVE5QMJK1VqfDtyELTyzflewvb2ltXPPnuCqvo5wi5umPn6vEwAjBQR1Qt0w2tsaj7e3NS5pb2t02tualnxe/8krgLOBAeBarXWktf4DAKVUGnjzkKnQPsO3DlBTnWLg6Q3e7ax19yXOUT6GGrqdi707u+roHrZWbHI7J/Ez5v3xgshEePsM7ssczAEwfT7BPa/x7r4OeHaE8lchLYHGRdwLcxx5XANgBzg3glkHxquiN73CO3p7pTPQBNzRb6p+fl+48oY09ZENx3IyEQrVwNeBBx+Mlv8No1ltkPVJ5qTS5iiN1nor8G3gu8BblFLDu2L/b4TnjbqX7f6KCIxZlRX2yYmQUuopoEpr/bZ4DF/VWn8RWKWUuveq1n2/tDcPlwGqXn53uJq+0WiuwpZuD0udg+HWlWAG46MuH5tOnP9+B2zIXX8NaedC7/j3vnDdh58BNrS0di4LKN95NGz+bDXpoIKBngFqavKjF+R7nEXcC3Oc3AB7eVzTWl8C7BoyFdwVrk31UVtDjq+34Ax+IjHhpARgDm71b7kdeD/w7kx7dK21vzu4ujfuaZbZd+bzCrklVh4J1nekWVJGgVoGkyUujPO++OUzu4JrqsDJi36A4seZPDeFhLbY9hEVDD3S7O9aAVyGndS8WCl1IrcqmYmAQ+AMkyeur209eIfBaUyI8aL9HovoznHy/Zku4cgW/yfvw9ZhfWiiha0XElrrTUeD9e09tmZsgS1OFps6/nKXIGz09u7vCLeUGbzlQNdy9+inX+o+85nDwYZX9VJbn61/EI1E+IPkWW9a62uBf+w2Sz5xLGz+babRwtNa3w1cejjYQC91jBXSQsc3EXEtWJynH0zkYipr6Ile4931PZfokuPhqov7qKmwFn/Oe9Jb/VtagEsTP8v3BtteEeY+WJ80pG6hIqI7x8lLJQ0rGHys2d91GFiPFeMOrAAfBDp3BdsrmEePcXnhYDDBjgavbT3Ybwp2ZogYOxFUCDtp5BKFVjggY9WlGHxskMonwcmc96iOE8Fq/+C7+03Va+8PL3tHH7Xl1aSHz3Yfe9290ap7GC2mY0IHU1lDtznHffRNX9W/95MJnopJobWu3xNc+aKtaDaemCYnxsa78cBYwTWmlm7S1DuZOGCPwFTRZ9LUFSjqE2G7YnTcg02iGP3ZFVzzr9nzubgtXfHpzn1y6rcOUblDKZWxps7EhlKtB/4cWFPLCTfuWODaxz5+AGyepbGPSyy4D9iY1FFrrQmcncCW8fyABvcwY3qQGVNLt2Mnt6DwDLwZfV1LN692H/jvR6KLr+mlzofI8QjvGaTqSjAPM3p9OG4PS4aBI1VO/1dX+wd9rK/4fKXUT/NcQBhc0iwJjkerPwnMiOgqpbpbWjvzFLSQeCZvQMVvRC4hEV7+tvG5HC2GQ4jvWBHOiZM2DtGgS3Q8oOza2Bedw67WzsT3eHF3IhZLdwGhtfZ3BdecIK8k4Gb/tsPAYawVeRi4VykVTMdnTmaCJG/b48ClYGoKiEG6va2xbjx/9u+pf9r8VPTK/+mlrjwO2icjqtFoKFMxsqnD1tJ1R+vWgnNgq3/znx8NmnZnSzTaz97q39yDvcF5wC+AP9oVbL8beIqczLfc4xhnIFOipbXzBGTuMMXCvaC4hZtcT5FtCq4z2P5wvvXjOncsVqv1VBDRXWCMFSrTsdW/5c+wwfzr4t+vAO7ECnBGjB8s1nsr3nWRZWYDtvGhYy9E9re3NRW8APNawRSqWEUsHr3gng88TLa4Soa9l7jHPnWG+/S3gY8A3z8WNA13s4TxC75MdLkxG7zbMdB7JNz4i2FSLwe6LnMPfekl7vPfwYaUlWFdO6t3Bdt3j7W4C0+sTTfZ2F5T7xGQoo++0RC2yVLMxeAUWmeAHjBeDd2pPmruMfjnMQ/cWXMBEd0FxkQsT611HbCaXCF+KXC0I9hy3gBVZ8az0YFL2AUQ4a2Kl4Uu4bHcZVniRo1fAP4d6EpO9BVPcsiQnS134IDBvYQcS240FdV4hA+NUH52ioFnhyg/xxTtCZYfh5r7OfaF4+Suw1STPjFA9cX2kdvs9Ag3VdE7cIl35w2VTv96oBX48Z7gql9F2apamR30UaRA+kyhtY72BNucqKjHcLwJNZO3vNikWva1Qzhyuf+TbxwONrwzO7G4uH21E0VEVwBAa30asGZ3cPVNyZAojwDAhIkWNIWWWUxYxvADG/3b/xN4OzCEjS/9rlLqobxJwfg9xWbeDUCYL+qJdWSE0yWK8kolFthX/uuQbJxtUQu4G7gPTGPsIw9q6Q7W+AdexGaoffNo0FTdw1KmIyTsVGlp7VzmEN5ocNfbJeNNrGUoJLz5y0eFOnKIhg1ueXweogoGH232d31ld3D1Z3ND6BZvVMJEEdEVcsjvdlvB4OM+I0v6qDktFrUoRf/PXUxZP1VnJoTOVNL3K4+wpp/qFBAYHKroS1/mHY4qnKFHe03tTYfDjR/JxpZmv3sOYWDrsBYTy3FDngbApLIWa0EBz9sXiWXj7jvTL2z0vbV0D6zwjvjlzvAdj4QXffB5c8atg1SdbnA7mYXH65bWzsNg1kzMrTDRWF4TgNOH/QN3YdvFf52C3ZFHu0sE4IilexJKEr1Q4JG34B+wFGMRTsqYaIkhKgHzAzCrUww82+B1PuEQrbk7XJvupyaVov9Xl3mHn7o3bFjZQ32cqWV8cOijdumBsAXgtBp6LnMJy7OPwBnBM1QwMDxITd73MV8QCz0iG4DK4rP0hYyK/H0kX48RYDcWk9H6DGnqKg+HG++7tW1Li9baPY8HHGyW2H0nO7nTTVzqcoKCOxHsOaih27zaffB9f6s/+IPEykJiugOcnQ5RYxW9AwNUL9qohIky45bu2LCgMY84BluNHkSA5w1a6xR2Jv+K+OeyPcG2VIRfaBY/xsZ5hnjO2EmvibgFxuNkE2XJ/Y+3bTICIKKS/l8NkXo0wlub9550e1tjndZ6I/ANpdSKCQ50Woktzc2nfp4Knwuf4bs2+T89o9fUfvVwuPFqcBoY5/rUWvvYWPG/U0p9c5KHsagoRcGbneTEYY6xRhwwtZykIIgwt1BKDSqldimlWpVSG4AzPcL77eM4FLMww9Fg/vyLPd+3Wuj94xkIxUQn35qN8taPxu2ael40zd6uu+s4EXoEVDD4lEtY7cBalyBKvDfZEeFtzO53tmHyVm7+eRx7XiObifc/D4bL/wLbwHPc6zMOQXwv8Fmt9csnOaBFRSlEd9XYL0XR11KVaJ6ilEqPUHEFOHdgZ6likhf0eL5VQ4GnoMSyyVi9hTDUcwJvNGMtf92LXOAeD+8NG1b0UetV0tddzvDL+6hNhfgkWp2H2DC7D7S0duzZG2z70N5g2xvjJ7rZoItx70aFzn+Swha/R3A/cChNncNocaDxr0+l1J3A3wFfj8thCgUogegak3vhjFkfbwNIT6V5TXtb4zPxJEp/Yf9qvt81f10+xfy0SSbuHotwqCJNIXHvZqlzONrodbOEEJ9eauuz6a/JsRgDjGDnJDaE+E6I38DsWbs7sKngRSh2Xsd9HY5QcYVS6ssG76D1aQNEeIw8dJLx/BVwHvAbJ9lu0TLtPt3spJlpSNH/4hAVrzBjQoty6MXmZy9HfLrzkgITpWXY2N8CE7WTtVinauEm9xHF6a7Jibzk+oJRDyZh6WVIg3FJZP4xy6FScaJEB5jq4v5qOHmomAFMX3vb+pp4v6N/23IGf77G239GhTP0fqXUD4uNRWvdiK1BvEIp9dwpHtKCZSZENxlyFE+SjbYiCbCPZiNI5MKCIZ7MSbSMwTiYQTOameXE5RcNLkEB0cswHQKbv7/8zxkvSaDQWMaElwUO0eEaelalbZWzOdUh4arWvcdHKLs42zkDsNdedwX9w0NUvvRkYXgugdni33a2UuoX+eu01muAG4B/AtqKVbn76HWf/9o94aod/dSmkOs8h5lwLzSQLRSS8QcdANLx72vb2xq3tLc11sW/5Q8x/2nIxrI6gOMYqKzlhLvBu92r48XQJYiq6H2ukr6hwoI23RTLvMqfWIPC48hu5xJSTU9/vJ1bSd+lr3Qf+Qdw9pP9Xs+JUKlVXseeFIOPkx3X2bYbReOSIapWlDH8YG6URj6GMkaeBG6II1RyUEodwRZZeh3wfa11df42AEfD9Zv6qX4pMkE+hhm2dOeOBSBMD0VqM2Ra0uS4E+Lav/uwPr4zge69wbbTcjPZJmp5TgfFhBgKW8P2/7V0D0a4A33ULI1D3QzQE99ouphDVpzWugP4iFJqT7FtWlo7zHg+8ip6X2z0990B/ApbxH2MSMSC/A/YernXKqWeiJfXAJ/eG2z7YF7GomSqxcyEpbuDXMt2TlgAwrRxI6MhRGZT/DrzN8+0iQUIIryDSqnX7gq2N+4KrunYFVxTFeJFhSMSZkpwx4t+KGZw5ArwCu9I+QBVSxOTag62JkQt9lzcOE2DnRKx1XkptoDRODjd46xjiMqlwOVDpuLqA8HlD7e0dva0tHbuSUZoKKUGgXcB3x0yFZ3bWvd1tbQe7D8SrH9+wFSeEeHmTMCBuXNqR7dwmPaMtPiOL5btwmUdo6rkOGDWb/VvOQS8MGhSB+4O117UT9WSCgZ/sdzruknrm9/ic8VfBJRdQk7X3XwxnIqlO957T+bGyKwvnERhS0ZinDHbJOPMRwuwzzZNwJ1KqYGTbLeR0c7DpLHHEFdzM6aGHgeovjdsqBkiFR+oaSauc5zZSWwBf+6q1r3vzPRqS1Nv7grXbl7r7fvuXeG6M0YoP6eGbvdi7+4ntL7lQuAF4MSuYPtpzKNi+9OJFDEXJkuhp6MaYGnKGfTX+fu8eJtzhk35544FTQSUMU5yDFN3LZzsvYWEt5B/d6zwRvgcD1d5ZtzwNePFFdS6mF3x2ATsPdlG7W2Nx4Elmde5LiOn6yz38Tbg+l7qahPWve8QrtdabwbuUEqNZoqMUPHK7N5dZ4jUsmqnr7/Z3/XfwGnAr2GTSLYAlcCSOl40PdTHdYxHfb6LwlgT0RWmgzSQAqqw4WIjQO/d4ZqaNHWpk1uy462f7PJiTGTbwrHFaeoYa+mS939qC1mDJWYT8JXJvmns02kjWuslKfqfTRQ6wsE4Q6biGxXO0FKt9fVYobwDtneRLXoTxZbyh4E/BTLNNP83sAx4DfBCD0u646gWWGRJUaXISBMWFvl5tBHwO8CVwIVAlVKqUin10jRLgtzkgiT5mVLF3ADjuQemMgk8Xixr7tgcDOFoK5v8ibccC3jWxCOufbAe2D8d+1NKRX3ULQf6Mn+fCNfvChvrgRbgGazAP9no7X7QY+SBzFejh6WHB0zlLdjstMfjnzOA3cA/Y2Ofj5ENaVtUSVFi6QqT5RDWdxgrkNOplGovsm1Y2DrMkCwuA8Ut3olkVU2GYp8R4RFiIK7P6+ASmjCn+aPdzkYwuE7ucUWA0zWFgU2FlcCTSqlfTdcO49KNiZusyzCpswZM5Wc6wstPA+dcl+CBtd4d5dX0Xdhju1a4wOqOcOvQVv/mC4H/AH48ZCp+cXe45g39VNeWMfIgcC15lQana9xzHRFdYbJcy0kaDGbbyFBf3A86nsugFOFjYz+7nhPmAve4cyxa72bGEeE6uWOKqKXbOJiojzqvgoHBQVKpbMKHWReHTZbatzshf+4p0EWivnI1aXN/eNm1Cet37X3hykt6qTWJB2cfaFBK/QxYq7V+0/Fw1Q96qS0DlyHc8yHqACeKb1IFz9Vk+u/NJ6SIuTDt2IaJyVKep+KTLbXwGta6+zgcbSRrfRdMC+4+37n3Y2d7T3wQOPNwsL6+lyVe7vbGWEFhPyUSCq31TuA/lVLfmc795gufz/DbIrwn81oUAXTHKcgFi5m3tHb0MFq8HnJvYj39a/wD+7HNPp/O/OwLrvhYNuqFANsGac7FRk8WsXSFmSDPwh0rXg5hZPDc4sJ8KoI7NaF+KFpOcXfH6L6rHzbLf+tsnlgBXN1L/c0FIjMcbHfgGZ+Vj4uY7/TYtsngnNPS2nnbdIpRoRDQltbOA4w2GM2eF3D6XMLqMoYfHaIy5wmonKGfD1N+8dg6yi791FRhazKHwCAwAIwY3DPJqXA2WiJ2Xkc7yESaMG20tHYui+swMLZmQRJDs7fb1POicUfnUgqFdE2E8T5nohiq6aaXOgpYtuSJue8QNmFF4ig4iTKWY/DBNJzioE6K1rrGZ/hWYGOI70S4qylNuu0OcPbnnxcw3hb/J+9q9nfdnxR+rXX5Gm9/pU9wt0M04BEYsnWXA2PrsbwN+AI2yWYYOL2K9HB23jb/s+ZvtIO4F4QcJthNOAWcjW3lfk7m96Fg41sTqbLx1vmWrAGIfEbuWevdEaScwVXjd7GdaazVvdY78LkHwkv/tGfUVZBdn/+6nhfNKr/DAOZI0OzaEpA5URbGWmgRtfT0rfEPnKeUmpL1GZ/zy7CJGJmfV+0JtlXkdesoWbptfIONLd6IOrqDi727vn9fuOLtPSztz/hrt/o3vw1bq+ELwL8/F53xruPRmo+7BBs8wgdHqGgp8B2reS46Y/ND0SV/O0zqggI31L3ztbyAiO40EgvWjWQzlA5hC/zMG99TXpW4sIKBx5v93T8iIa7AUuAp4Engiczv3cHVXzC4ldm9GQP0xYJUk10+6svru8i75/PHwiYV4jNbPl6PgM3+bSODJnXsULhpXW53i8z1kXkoNN2rvQOfqHO6W4Gf9pqaR+4LV/7+IFUvqaHHnO/e+/yD0aV1/dRU1NDDcu8Y5c6wAX6KnVz8WfzzKPC0UirKv9Gl6H/7en/3S7HlMTMCezHwANYqPBT/3HMw2PLwIJXnZGtCOPumQ4xOdvPVWvtPROde9kT06m+GeBfX0V1+gXu8/2jUnIqybqPAwXRe7t96HvAx4HPAWzJ1IbTWbwX+WCm18SRjSdZzAegGLppP11USEd1pYmwvOIgvgh7mkfM/zqwanfBwCIcv93/y5yTEFXhGKTXmsTrX8jFgW6jvB8oYbWOeJFPqMZPEdrLohZkQXgOY3kZv73ernP4rno/O+MN7o5U3RHhl8VhCj8ADhxT9v3KJVt3UdtWTccv6zwJXA3+ELXdYjxXI9diwuvXYRJEKbAbYvcDdgyZ1/r1hw2V91JZX0dsf4g33U11vQ9Ai6jlhVvkdT2F7jt2BLVLelUnvTdSsXlVLd/UI5b8YofysanqiCO+VP2rb9vNTPRtaaw9YsifYdkuEtyr+W0bV9L6wzt93H3A6Nua2HugBnscWxvGPBU3rum07+tH9uQRho7d3771hw8Ye6kfAPUJ8HWxv3fXyMoYfSVMfgTO6PH9MCy2KQUR3mijeIHBUKOZFxbWpVIn70+v+5k8eCi/5TPyIHs9ImfgEFBPLghECjN0+2WZnqsKbL+52tn2rf/NXga/uCq6uBTdR1jAa2urfGgyb8uq7w9VDNunDOYp9dL4I+AbwMPAhpdTjmXfFLWtejRXf9wObAXM4aB7opb7S3oQyx5U9ptjyzh90APQDz3cGm07rpyYRHWK66jhxWS91rsHtN7gRmGOnOc++a4V3NMSm4p4GvCTx/2I/dUDPnmBbvW1RZHEJoi3+bXfGY8j8hNgDiIBoT7BtR66rw7piAKebpbHLxX6ntvo3X7UvuPKArdmQXT7Xr4/pQKIXpo+GcQQX7LnePEsxnJMh0YJ9YkHrWusK4Mu1DltW+wdX7Aq2H2LUWnYcO2liojj0J4/8CIHMsgz2Eb+S/qeGSJ01Md/veJaywSMk153h+GDWKKX+Q2t9l0t0PMqNYhgEdt0Trn5dmvoKcCrAbAQe3BVsd8Dcuc7bd0+103vkI9d98SuHw41XgrPSpseyo72t8d+Af9NaXwTsHqBmWXL2PjfZIqKanoixk9weVhDr+qkh7wbU0MOS+C2mKj7WzSOm7GHgl1hLNP/nSezfN/P6hfj3i0qpMP/mG+EfUEqNK4gtrZ1n5T3pEOGaPmrDxN/edwk2Ai9EOBW50Qnzd3JsMojoTh9d5PidDLZ7gknlPTrPdn7+uEy2Slzc+fUH2LTQJqVUz67Wzi5yrGUn0y1kc3HLttDEm11WRW+jwb0hmpALohiGWk6wwjs6Uu4M+3uDK3M6E3sElVrra5RSt7S0dvSTrQuAFRHe00ft84m0ZhdMPGHlrD8UbjZb/ZvX3xdedgjMkkKhTUqpB7TWZ6cY+GUf1acn/LC4BMYQmXJGfpZyBq7BPrp/DPhdbD2LIeBZ4GVgascee366tUua+gD4PWCPUqpnEicLTuHma7dxdsY3JBcc0tS5HmHs47U3mGp6h16ITntXhP+PWDcFLKJUYHEvTBNFinvjEt4c4a7KvUiioa3+rTVx2+p5i9Z6AzbN8xvApzOVpwqdi63+zc/tCq4Ji7sSxrNOMytHhTjEWn4F3lNoPyZuQfM/ZtiUc0+4yvSwND9KYWCrf8uLwFd3BddsB2eMi2Vb6x3HAryGsbGmQBw1MDYJYGw0QUtr57JyBncPU35R1rVggjJG7t/o//QBbB2LG7DFYo5gmzx+Angp4O8KtlWBl0jIyLhwcm9KFQw+2ezvehhoBO7CTubdDhzYFWyvZ4b8pC2tB/vArcq8dgmopYde6qgmHSz3jj11PGw427qhRsecBo6zCHoliqU7TSQtxOREB5i8licGl8gHOj+ovv6J49GajzMPJwi01v8baMN2Fvhxcl2+tay1rgLu9QgSj/WFCscUs2KTjSEdIPLy/aCWzD7zn86dzD72Hw9XbehhSX5SRsYa/03g+iZv93Md4ZZOcFeQuIEGlF2Tov/AMOWvBONGWReFwQoGcZhUUrC78s9dfH5e09Lakc5a1I4/QvkrlVIrtNbLgHcC/4J9QvgnbA3cS4E/AfeNeefNqecE3SzJOSdDpH6hlHqt1roS2ICNLf5rYHk1PUEftXXx5Oa0JRtord9Zx/qyHpaExKFktfSwyh9tWOwDr+yjjlzr3NQC6+PxZwrDN091PHMREd2ZYWfGtxWNVqfK4OBYK+2yn0fn/hgiZz7UFE12ea6ir2+lV9Fd4QxtVEoVbMmdDZ8zjXC1W0s3y50j/cfNmqoQH5cwBB6M8C8gFiiX0BjwDV6EPUcmV3AhK5TjWcxjl9nSjFT1UufkXeyA0wd8QCn1lNb68kpn4Ctb/VtfDaxVSj2Y+ZT2tsZntNbnAz8+FGzY2kfdmB5iTOqx3DnGaEnEiEoGTmit3Tim93Na689jvw/vAxRwC/C34LyenLuKE63yO57dE1x1eoSb6U+IR9Cktf6efQ+3K6V+CqC1ru+n5pdko0mm7E+NJw2vA955pvvkFT3R0r+y+3S7LvDuvR34C+I7JjBSQ095N0ucIk8NDnOnMPy0I+6FGSA/7KpAckBYztBDI5Sdb3Jz2OdsH6k4OiNTM9WAOdDetr5ofOXYaA5DLSfMGv/gj4APK6UeTbohfEYeWeftPaPCGfoU8OtKqatbWjv2APHETJJM/Gx+EkZyfSEr2ABmyE6E5VzsY2bOtdbvB/4SeI9S6r+Se9Jav3RvsO2ZqfYASx5/iv7nV3sHzi53hu8E3pzfiVdrvRT4beB3DwcbLuylriJjZbsEd23xb6s7Gqw/u4clTvw3Cirp/2WTvycTw/Ui1l3xHaXUz6azl2E8kfrPwAXAmwolgmitX4F1b5wPOL1RzfDRaH15VDw+O2xva1yQRqGI7gyQl2AQ2ToDrp834xwX8MgUCYlwMZ0/bWtumq1xF0Nr7ewOrh4wuBWJxeOKzNgbD4AJ29uaxlxIWmsXWxzma8D12PqrPx0yFVvvCVfXpqmPEy5sllcN6aF+qt1ELC0Tn1Sz/t0op1xj4ePRWmeePv4B+Mtkt4RtrfvuDPAvi8U7AueOqYY7aa2vxD5WB1i3zQ0FtnGei5Zd/Wh04beGSL2sgoEXA/yekLJXegSPDZN6moRfdKt/cw/wbqxP2AA1gyb1wJGwedkIFefETxJpoDnuKDHZMb8E639+HniHUqp/nG094GPDpry1I9xScZKEmIPtbY0L0r0gojsDFJlIcnYHVz+WJ1y9wDGgoYKBZ1d7ByoqnKErlVIPlHzQRdBanw388FjQtDaOtXSZgGVUJG55jPWSmVQK8C9IMfDsSu9QWYUzNIidqX+7UurBltbOZQ7hfzqYRgeDwXEivIgxyRYTJWP1jropih6P1vrMQZO68e5wzXl91JbHPtsdACn6OkeoOKeanvAl7vOrv6V/+65TG0/O510C/A+2E8f12Iyt3iLb1u4Pth4ZpuKCWPxDcPYXOY4y4O3Ax48EzeemqU8l/jYGmHQmW8bVAtwEfDR5UxqPK1vvOBrirxpHcANs6/h5Mb8xWUR0S0jeI/qY8nda63cDfwW8TinVNWsDZdRH926sP9D5VXT6O+6O1v0xE5z0i288D5G1dg3QkW+9xOdkYxyCFblEh7f4P7kaeARbk/XJ+PF115GgeWUsFk6ByIcAW53qODYDbjWjV3WxqIjR93YzTlppS2vHXqybw7VWLXe0tzVtiS23DmxNhH9SSv1+sfMxGeKJtB9j062j56JlHzwerf4EBc59/hOFSxhu8X+yVCmVLrJvd3dwdW9uujYwSfeI1noj9qZwnVLqGxM/umJPQUlMb3tb0zjr5zdSZay07ADngEM0VE26m7xJFqXUt4A/BG79kPr66+O212PaX880sf/tZuwN4EVgzZf1H9zQ3ta4pb2tsS7+Pa4VEq+/AFtYOw3swxZAz6cha7E6boR3sVLqBHbm/sPxNl8BvD5qEsH0OckLAIPx2Jrb2xrXbvVv+d5r3Ls+6hANZy3bJDmz//XAzuLn2FmZHKNHuElr/Y74zW/EWmbvi8VyysQ+0S3AsSFTEd0frbjZPjVQS3bCNUMXo21vTFhDN8CTWuvtRfYdGdzD5J4QwyRiZLXWv4F1g/zOZAV37JjzMaaOEymt9Ve11heewr7nPAvSUT1XyYRSxRWjjgOXQWNOvqdS6gda6/QT0at/BMaNJ5FmNLIhGZlQzuDTa7yKl1Q4Qz/H+lbfqJR67lT2O8FEiy4KhFg9EZ37nWejl3W2tHZ8GK5xa+gZcTD3Yv2VsWLmpPEeSx5PFZuu6KfmN4iD9MeK7pjwtPHOcWKMJqwmbbCJCwr4NPCO+L1fA956kuOdEEqpfq3127rCpsdz2wWNiTRIREs4XfXOiQ8A3wWu11r/EJua/GLe7ncwtjDTRDIPHeDj2ISLK5VSd57KsSXGvAobc53523vgHDvNfe5D8Tb7tNaHsU9bt03UfTHXEffCLKG1fjM2ZnKlUmokf31La0cfOFWJRTMW2ZDn9gAM1fQ9X+YMrb3hU697fCY+M/HZBYuZFIp+AOcgYwrnjLoHNmYmgnJdFkmSQmvicLTxJ9MKjfES95g+w336X7G+zAuB84dMxcC9YcNrulnaG98ApiXmusij+LhlDWP/7d8CvwUMnjBLP9IVrv9dphAPHu/zG1ihfEN+dMVMEMcX/ybwR0OmovJo2OwMkVrGOC1+5gNi6c4eNwG/D/wB8KWxq50jEG2OPUAznSLZwGhuvH1s76NmCab228xw3PA41nBDfnwzmOW1dA+nqS9jTNcCvp7YT0OBSbYA29mgppZub7l3bORIuOGJIVLnkS240jWxMTZmIht+jHWbXHdXuPamPlsToWaaU727GFvWcFyrNL6J/77W+iDw5Z+FF/0TmLL4OCf91KS1XoJN9R4AthSb2Jtu4qpq39Raf+tQuKkroGzFqR7DXEJ8urOEUsr8Mjqr7Wiw/v+2tHakC/htd/iM3B8XQ3GAshn063Yxxsc2e+3EY7rI8wk4RBXnufffji0XyTiP3F1kj8dgH2EPABdt8X+ydZXfYcqd4fJL3cPLHMxAbPkOAB+Y6OCUUk9iM6fOAz7eR62fSLqYzo4RO+Kxp7H+8QnXkVVK/T/gij5qM4IL9lxtmOh3SWv9Kmx5yXuBa0sluEmUUiag/Ny8Y2go9TimCxHdWeSB6LJPx2UQa8ibIGlva3wmoDz2pToetqD1TLViyVzYIVmhm+0CJDuAjuQkmMEpvzNqXBo/Wu8lK6z5Y00K1T7grMzk357gqocOB83hruBqjkSbag1OVZ61PGHiIjJvAH5RQ49jfcsQdwwu01q/9FQOPEl7W+Mzk5nALDDGIxFuR979y2UC3yWtdSM2fvrvlVJ/WKiGcgnpovjfe14hojurmIbxUzGdVXltrVfNxCgyFzZwFlak0ljRmkhlqRkhHlOzHUvGwHExuJfGL5LCmjPW8YQqwtvZS31sleZEQLicgvUUP8q//zXeXX9bTXcIkYldIakhU3Gv1nrlZPc53Rjca7E31AwOJzlWrfWvYd0nv6eU+vKMDW7iFP17zzfEpztLaK2ramkuS2cLfxS6e4d52VYzamlMtqxjaXC6wGyKY3ODeBJlKmNtKBa36xLddyojVEoZ4JNXt+55C/AacEhTz71hw+mr/I7dWuv3KqWuP5V9TwfxxOR+Rn3DkQGnYORBHKHwJ8AfA9copY6UcKhFmZvfzVNDRLeEJIrArIOrPYeQ2CoKsVWu8u/eeeUHyatBsPBZ4R7+/OPReU1p6k01PYFH9NtT3GUX1hebOLEGj4BV3sHbplLYapjUWdlXLmnqOBY01fVSt3N7a/uTAWVNt7VtevqUP2BqxGFapqGKvsEV3pFurW/x4oLliWJGm3tXep0nKpyhDUqpJ2ZprAsaCRkrIXEo06bshEDxgivZ7aenKMl8wwpBdL1LtMEjvC/Ef+0W/ydfA36hlPrDqe03c+OzN7EU/S+UMfySfmpNiL+PUwxHyqu5kViTEyccgjOrDUvjDL+bsZNjH9oVbN+dqHZmHDhw+zjFjISpIT7d0tKQmIFlnNn3DAvGj3UK7ARnfYTvjFBxYYS3E9tF4U1a6zed6k4zvuL2tiZ/q3/LORu820dGKF+aZkncScJs4NQnLOO/l4ndQPlZcw7xpGjTFD5jyiilhoBfA7b0mppPxTHN8VOv6xhbR1iYIcTSLSGxJZT3aDvKuAHvi40CSQHp9rbGurhbxQ3AGqXUKXe9zbC9ddfPBqk8dyJJEhPl5LUFpv4Z04HW+ryjQdODPSx1p1r8Rpg4YumWljgMagwnDXhfhHRRIERIKbUf+DLwnbjgzJQYpPL0XME1gKmeYr2LLorWFsjZZtbQWq8FdvdR5+bdcCLkuzijiOiWkEQY1MvIFoKZVMD7ImI818pnsOLwial/jNNFtmBMZpkbF5h54BSFNxH3XPBJMmSWhE1rXaa1VkA7cFYNPcZGMwD2POyX7+LMIu4FYV6itT4L27Rxh1Jq76nuJ7eugqkukD58ym6feN9PkRN1YgCn5K6kltbOZR7BfxlYXU16ZIV3tLzcGR4YMuUjB8Ot9xu8S5hnffrmKyK6wrxFa/0GbGWvVUqpF6a6v5bWjhNA/TT7d3MiGjwCc6l77O1f0h/8j6mNdsKfvwzMjcB6u8RGUngEptHb+2iFM/RZpdQ/lGIsgkXcC8K8Je5ddgPwz3FQ/xRx8uOiYeq+10xEQ18dJ0ZWeEfftdT91ZfjmgalYCejXXazkRQhvtMRbjlnX3DFTSUahxAjoivMdz46ZCrOOxBsfXAaCr4fI9e/O+UJzmxKclPNav/gPy5xXmjE+qR/GJcunGkaCgfLOER4fkB5SSxuIYuIrjCvUUoNdYRbhoaoOJ/CnRUmQ2yVRgM19KSZ/glOhe1TditwP/CN6bHQx6WLIrN5sRg3zPDnC3lIGrAw74nwL0q8POWyf4nOHuXAM4AHjVMfYIxS6vmPXPfFr9wXXravj9qyatLeCGWbW1o7T2fmJrHyu0RAdmJvXlfrmq+IpSssBLoYdQtEBqK7p7IzpdQw8N/AKWe+FeNwuHFbHzUvAae2j9rKYVLnMnULvSjZDLxGP+7EfBbZcMXFluU4JxBLV1gIJIu59F/mHR7Q+tayQm2QJkq3WXL7g+Hyz7W0dv5fptUKdVYmJrSSroWSFOZeSNW65iti6QrznsRkVV2jv+8VKWdwmCn6S4+FTe/po2YJ02+FdpHb1WKuFI0XSoSIrrCgiK3bHcAKQJ/6ntwV4M5Ee5hkpl1H/COP+osISY4QFiRa6zOwrWY+p5T6+8m+fzGX1RRmFrF0hQWJUupZ4BrgulMsBbmYy2oKM4hYusKCRmu9jjgSQSl1YLbHIwgiusKCR2v9uiFT8S8d4ZbH45jeLqSwizBLiOgKi4KrW3c/MEzFhYkmoOKjFWYFidMVFgXDVJ6ZeFmSmFhBKIRMpAmLhS7bwh1s1pop2IJcEGYaEV1hsbADnANg0tX0nmjy9jxegmIzgjAGcS8Ii4Jk+qvWugbYDXwSaJvNcQmLD7F0hUWHUqoXeD3wHq31u2Z7PMLiQqIXhEWL1vriIVOx53C46ZcjlL8KCSUTSoCIrrCo2da6ryvAXymhZEKpEJ+usKgJKH914qWEkgkzjvh0hcVOF9lSi1JeUZhxxNIVFjtxAXQaiH26szkYYXqJm5Tm/H1n22cvPl1BEBYUCaFdBSYF+HG3jjnhsxfRFQRhQWFrIZtNth2SoUAL+hA4BFw7G1av+HQFQVhoNGT7zyUFd9TA9IAmZqAR6EQQ0RUEYaHRVXixk/+iYcZHUgARXUEQFho7gO4JbNc1w+MoiIiuIAgLithPexGwF+u/LUTILEWqyESaIAgLljiS4UasDzfjX5jVKAYRXUEQFjxzKV5XRFcQBKGEiE9XEAShhIjoCoIglBARXUEQhBIiBW8EQVgU5NZkIMRmph2jxJNqYukKgrBYuBHYBNSAqbe/2Qw8FAtySRDRFQRhsbCO0VjdnJoMtcBTLa2de0ohviK6giAsFrzCi53MumZKUARHRFcQhMVCsZTgDCVp1ySiKwjCYuHQ+KsNVaT7tdYVMzkIiV6YQQqlHsar5kQ6oiAsMq5lbB2GGINLGDR4nfVDpuLhK1r3/zLCfw0zcI2KpTuz3IidLa0FsxnM0xA9bf9PLSXyIQmCYKuPtbc1NgNnYiuQ9WJLQPaCszfCP7vcGd50T7j6JRHuOmboGhVLd2YpMls6+n9p+S0IJSa2WotUGGt8pqW1M+n7nfZrVCzdmaXAbOmYfk1dJRiHIAgTpwtb/pH4d9d07lxEd9YwYB9tpOW3IMwtdgAHgHT8e1qvUSntOIO0tHaOUNCFM3rOQ3BmrSupIAilR3y6M8sQBc/xqIsh2ZV0RqrYz6XizYIgiHthpjlK1jdUjJnuSroTTDMSLSEIcwIR3Zkl6Rs6GP/kZ8UYZnQyzawGJ2NtS7SEIMwy4l6YQQqFpiQa5a2LFx1ihibTtNaVtTQ7aepDcDxmYCZWEITJIaJbYmIhbi7Rx33+Eq/r1o7w8tMZmxUnCMIsIKK7ACg0WbbVv7kReH2lM9DQ3tZ0YvZGJwhCEhHdhcFOMBtiF0KzQ3gjcC7wVqXUiVkdmTCtSDTK/Ecm0hYEZnUsuAC+wV1/MNgytCvY/tCsDkuYCXZi3VMSjTJPEUt3npK1eMwql7AqwsNGnxnAYZCqlzOD8b/CrNFA9rqVaJR5iFi685c4/tapifASBR0y/3XkglyYdIGJ4v9LNMo8RER3/tKQjb91KFBIRy7IhckOl+iQR2DAHESiUeYd4l6Yv3Rha/WOUduMi4EFfkEu1kmlCM9A5AAbgBtbWjuldsc8QkR3/rIDeIri5SP9hXwhtrR2LscKbeY7vBl4uqW1E+AI8PoFevw7wTTFD6mu/b8jvvt5hLgX5imxoOwnUbIsj+4SDmc2uIPiRsMabNbfQmQVOEkfvgNsbmntPFCK9uHC1BHRnd/sADoYK7whsLH0wykp9SdZv+4k6+crYZH77HoW7o1mQSGiO48p0PMpHf8+q72t8fisDm7mWeiW/BisJWtqCrrxLQv1RrOgEJ/uAmD8nk8Llo3A3RRXoJO0256X7KSgD1+YT4ilK8xLYkt+BYVLZR7EttteaDSMY+UaFuaNZsEhoivMW2LhPYtc18qZ7W2NzQs0cqGLbFF8g73hxC3E2cfCvNEsOKRHmiDMExZrXPJCQ0RXEAShhIh7QRAEoYSI6AqCIJQQEV1BEIQSIqIrCIJQQkR0BUEQSoiIriAIQgkR0RUEQSghIrqCIAglRERXEAShhIjoCoIglBARXUEQhBIioisIglBCRHQFQRBKyP8HMus6P9Wwi6kAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxcV3n4/8+9s2i0jCRrsWzJlmxZXmRb3u04C4mDkxASEgqUUqhJStLSlrZAyqulC+2PrhTaH4TSL/m2LCGJIVASQkoISchiGwheY8eyLcuWZUnWYlnraKQZzXbP94/RjGa5o8WSrWWe9+uVyJq5c+fOaOae557znOdoSimFEEIIIdKWPtMHIIQQQoiZJcGAEEIIkeYkGBBCCCHSnAQDQgghRJqTYEAIIYRIcxIMCCGEEGlOggEhhBAizUkwIIQQQqQ5CQaEEEKINCfBgBBCCJHmJBgQQggh0pwEA0IIIUSak2BACCGESHMSDAghhBBpToIBIYQQIs1JMCCEEEKkOQkGhBBCiDQnwYAQQgiR5iQYEEIIIdKcBANCCCFEmpNgQAghhEhzEgwIIYQQac460wcgZkZts5u9+9pp7PRQWZLFnl2l1FQ4Z/qwhBBCzABNKaVm+iBmUmyjWJxrBw26XP5520DWNrt57KUW6lqHku6z6rBycTZ/9O7yefe6hRBCpJa2wcBYjSKAroGmwVceqp43DWNts5tHvl1HyBh7O12DRx+eP69bCCHE2NIyZyDSKKYKBAAMBSEDPvP4WT77RD21ze7reITXxt597RjjBAIQfu1797Vf+wMSQggxK6RlMLB3XzvGBPtDAiHF0QsuHvl23ZwPCOrbBploN1Bjp+eaHosQQojZIy2Dgfr2ISYzOGIoUPPialmb8JaVJVnX8DiEEELMJmkZDEz48jiGoebB1fLEYwFuqs6/dschhBBiVknPYGDcaECZbuP1h/jgl47P2RyC1aXZaBMMCL720+Y5+RqFEEJMXloGA6vLckwuklXCz2RDPoNud2DO5hDs2VUanSUxnvkxLCKEEGIi0jIY2LOrFF0PT6GDSO+5Rl6WleyMSEuZusWcqzkENRVOvvJQNdtX5GHVx44I5sWwiBBCiAlJy2Ag0ihuW5FHkdPG9qo8vvb71fz4r7aQabcxkcH1udpY1lQ4+eKDq/nyQ2uwxAREiXRNkgiFECJdpG054kijmKiyJIset2vcrIK53lhGAqK9+9qpbx/C5QmiER4kiQwlfPT20pk+TCGEENdB2lYgTCVSkMgw4rMHNC3cX2Co0cby0YerWV8+P6r0Ja5V8NHbS+fNaxNCCDE2CQZMmDWMkRwBaSyFEELMNxIMCCGEEGkuLRMIhRBCCDFKggEhhBAizUkwIIQQQqQ5CQaEEEKINCfBgBBCCJHmJBgQQggh0pwEA0IIIUSak2BACCGESHMSDAghhBBpToIBIYQQIs1JMCCEEEKkOQkGhBBCiDQnwYAQQgiR5iQYEEIIIdKcBANCCCFEmpNgQAghhEhzEgwIIYQQaU6CASGEECLNSTAghBBCpDkJBoQQQog0J8GAEEIIkeYkGBBCCCHSnAQDQgghRJqTYEAIIYRIcxIMCCGEEGlOggEhhBAizUkwIIQQQqQ5CQaEEEKINCfBgBBCCJHmJBgQQggh0pwEA0IIIUSak2BACCGESHMSDAghhBBpToIBIYQQIs1JMCCEEEKkOQkGhBBCiDQnwYAQQgiR5qwzfQBCiKmpbXazd187jZ0eKkuy2LOrlJoK50wflhBiDtGUUmqmD0IIcXVqm9088u06lAJDga6BpsFXHqqWgEAIMWEyTCDEHLZ3X3s0EIDwT6XCtwshxERJMCDEHNbY6YkGAhGGCt8uhBATJTkDQsxysTkBxXl2UNA14KeyJIviPDu9g4G4gEDXoLIka+YOWAgx50gwIMQslpgT0O0ORO/rHXTFbGkAejRn4KO3l173YxVCzF0SDAgxiyXmBMSKJAxWLrTT09mGyiphVamTj95eyvpySR4UQkycBANCzGJmOQGxwr0FQTZZj/InH/8TCgsLr9/BCSHmDUkgFGIWqyzJQtdS369rsMgZjhby8vKu01EJIeYbCQaEmMX27CpFG8kDGBVu/CP5ATct8ZKdnY3VKh19QoirI8GAELNYTYWTrzxUzcbyTOwMs7zIQr7FjTPDYNuKPB59uJpcrY/8/PyZPlQhxBwmwYAQs1xNhZMvP7yed+b8mgc3DbLdfpi/2q344oOrWV/uxOVyyRCBEGJKpF9RiDlA0zSWLFlCa2srgUAAu90OhKce/rSpBI+Wx9En6mVdAiHEVZFgQIg5oqysjEOHDgGQkZERrUEQMvIAnaMXXBxrdMm6BDFkESchJkaGCYSYI5YsWcLw8DAAdrs9WoMg8jWWdQniRYKloxdcdLsDHL3g4pFv11Hb7J7pQxNi1pFgQIg5YsmSJdF/2+126tsGZV2CMcgiTkJMnAwTCDFHnO8McEbbSX8gk0s/6cflDRGeZjg671BD1iWIkEWchJg46RkQYg6IdHl3BfLx4+DCFf/IPfEViRSyLkGEWcEmWcRJCHPSMyDEHBDp8laMUY4QyM6w8NQbM5MwN9uS9fbsKuVIQ//Ib5os4iTEGCQYEGIOGG+NAgj3EQz5Qhy94MJQ0ON2cbjBRV6WldWl2de0cU5cXbF3cOZnNiwrgK32I/TlbMUVcFBZkiWLOAmRggQDQswBlSVZ9A66TAKCcM6AroUbYU0bTZiLbOryBK/ptMNQKMQ3X27EMFS058JQ4THIvfva+eKDq6f1+SbqzTffpNA2yD/+0WYcDseMHIMQc4UEA0LMAXt2lXKs0YXOSKOPQtM0cnDhJ5MNKxZy+tIgQ76Q6eMn2ziP1eUfDAZpa2ujubmZlpYWWlpaOOu9BUV8gzuTyXpDQ0McO3aMG2+8UQIBISZAggEh5oDIGgV797Vz6mI3hZkB/uLDW3nuiUcpKirill17+OQ368bcx0QbZ7Mu/6MXXDyw2YtyXaS1tZVQKERGRgbl5eXcdtttXD6Vw+k2X1zPxUwm6/36179G0zR27tw5I88vxFwjwYAQc0RNhZMvPrian/60gZaWFtYtvY1nDQOHw8Hefe1oGiNFiCLipx1OtHE2m58PBi+87eE3qzPZvXs3y5Yto6SkBF0PT0jKXRIOICI9FzOZrOf1ejly5Ajbt28nMzPzuj+/EHORBANCzDFFRUUcP34cvz88vTAzM5PGFk9CIADhQGA0p2CijfOFy0MmuQk6ZC3iQx96t+ljYnsuIkML1ztZLzK0UdfShy24kTuWbrxuzy3EXCfBgBBzTFFREaFQiK6uLgCys7NTJBgaZGfoZNptE26cr1y5gsXXBeQz2V6FSM/FTIgf2tDRKOSvvneRrzzkkLUIhJgACQaEmGOKi4sBaG8Pl9XNzs5mz4ZSjl5wAQago43MJfjn31nFxuX5E9rv+fPneeaZZ1ift4R9PQuAme/yn6jEoQ2FFi09PFMBihBziQQDQswxTqcTm81GR0cHADk5OdRUOPnTXXaefKONIZzkWT3cXmVMOBA4dOgQL7/8MitXruT9738/v3HZP6Nd/pMlpYeFmBoJBoSYYzRNQzkr+J/TOXQHb+fKUQuZJW6W5AbZaD0a3e6unXvG3ZdhGLz00kscOXKEnTt3cuedd6LrOjUVGXPqitpsmERKDwsxcbI2gRBzTG2zm9euVNHuzcGPg7OXQzzy7TrOXfZjtYbj++zsbJYvXz7mfoaHh3n66ac5evQo9957L+9617uiswPmmj27SlFKESm1NBeGNoSYTaRnQIg5ZnQJ3vhqf6+fh0pNQ9M01q1bN2bD3tfXx9NPP83AwAB79uyhsrLy2h/4NbS+PIebnLW0W9bgDmXPiaENIWYTCQaEmGMaOz1JCxYZCtoHNPqMTQwaOXS35LGk2W2aSX/p0iW+//3vk5GRwcMPPxxNSJzL2trasHnb+LsH72DZsmUzfThCzDlzs09QiDRmtjQvKLxBnV6jED8OTrX5eOTbddQ2u+O2qq2t5YknnqCoqIjf+73fmxeBAMDp06fJzs6mvLx8pg9FiDlJegaEmGMi6xSgRqYRaqDUaIEhCFciNIDHXmrB6bDS2OkhzzZMrusw79i4jvvuuy+aXzDXKaWoq6ujurp6zuY8CDHT5JsjxBxTU+HkT++pwEYQUCO9BPGlhyEcENS1DnL0gotud4ALvRpvGzup2rx73gQCEB4icLlcrFu3bqYPRYg5S4IBIeaY2mY3X3uxmQA2QCNkJAcCYeHM+tHpdjqgsXd/x3U5zuvlzJkzMkQgxBRJMCDEHBOptjcaAESGCGKpmPtGzbdCPEopzpw5I0MEQkyRfHuEmGPMqu0lBwSR3+M3nG+FeNrb23G5XKxdu3amD0WIOU2CASHmGPPZBJA8VKARGyRo87AQz+nTp8nKyqKiomKmD0WIOU2CASHmmD27StGiSYNj0eJ+5jqsPPpw9bwpxCNDBEJMH/kGCTHH1FQ4+cpD1di18GyCibJZtXkTCNQ2u/n0N07ys54tvNxallRPQQgxORIMCDEH1VQ4uTH//MhSxZGAIHVgMJ9yBWqb3eGCSpeG8ePgTHvAtMCSEGLiJBgQYo4qsA6w2XqEQr2HDD2IhUhPQXxwMN9yBSKzKVTM2gxKxa7ZIISYrPlTeUSINBMKhSiwesgLHSU3NxeXy4XfUcrF4HK6hjOw2+zYbFZWl2bPq0V7zGZTzLcpk0JcbxIMCDFHGYaBrusEg0GGh4cBsA+3syGjh2BGkL/+67+el4l1lSVZ9Lj74xZrmk/DIELMhPl3phAiTRiGES0rHAgEorf7fD7Wrl07LwMBgD23LQYYyZcIBwLzaRhEiJkgPQNCzFGGYWC326P/BtB1HcMwuOuuu2by0K6pPL2fTZaDBBffRodLUVmSNa+GQYSYCRIMCDFHGYaBxWIhMzMTr9cbvW3x4sXk5OTM8NFdO6dOnWJJbohHPr4RTTOtviSEmKT52Y8oRBpQSmGxWMjNzY27fT73ChiGwZkzZ1i3bp0EAkJMIwkGhJijIj0D+fn50duysrJYtmzZzB3UNdbc3MzQ0BDr16+f6UMRYl6RYQIh5qhIz4DHupC3g06GcFJus1Pb7KamYn6On586dYr8/HxKSyVZcDJqm93s3ddOY6eHypIs9uwqnbefEXF1pGdAiDlKKUVPwMl3T+bQRyF+HDT26vO2Gl8oFKKuro7169fLEMEkRCo2Hr3gotsd4OgF17z9jIirJ8GAmJNqm9189ol6Pvil43z2ifq0O7HVNrt5O7iVn3csw1CKyFd5Plfja2xsxOv1sm7dupk+lDnlqX1tKEW0UNN8/oyIqyfDBGLOiVzpRE5wvYMujjW6+MpD1WnR9Rl5/SFViFk8P1+r8Z0+fZqioiJKSkpm+lDmhFAoxOnTpznVOICh7HH3zdfPiLh6EgyIOSdSmz72Skcfuf2LD66e0WO7HiKvP1XH3nysxhcMBjl79iw7d+6UIYJxeDwejh49ypEjRxgcHKTAcSsdXntcCef5+BkRUzNvgwFJmJm/0r02vdnrj7jW1fhm6nvV0NCAz+eTWQRj6Orq4uDBg5w8eRKADRs2sHPnTi57HDzy7Tp0RgJnqdgoTMzLYCDdu5Hnu8qSLHoHXXENooZKmysds9cPCptFZ/Py3GtWjW8mv1enTp2ipKSEoqKipGNKp6A/6fXetpjM4BUOHjzIhQsXyMnJ4R3veAfbtm0jKyv8fSgGvvJQddzjpGKjSDQvg4F070ae7/bsKuVYoyt6paONLNu7bZFrpg/tuoi8fpQB6NEa/V9+aM2UT/BjNa4z9b3y+/2cO3eOW2+9NelYZ3PQP92BSuLr7XG7ONIQLs28pjST973vfaxbtw6LxZL02JoKp5z7xJjm5WyCdO9Gnu9qKpx85aFqtq3Io8hpY1tVHh+pGeTMwZ9RW1s704d3zUVef4HWQ64DyrI93LesbVoCgbGmoM3U9+rcuXMEAoGkWQRmwclsyZKPvJdHRt7Lww0uPvnNOp4/1HnV+0x8vZE/RWDxbfz+7/8+GzZsMA0EhJiIedkzYN6NapBv90WXfRVzW+KVjlKr+d//HeK5557DbrezevX8vgqqqXCy0XqMe951D8eOnaOspGzK+xzvyt/se3U9EtFOnz5NWVkZCxYsiN7mcrk43dyLoeIbv9kQ9AeDQb7+k3pChgLikx0ffaGZykVZk+ohUEpx6dIlTjf1YKj4U7ZC47JLSVKlmLJ52Sru2VWKpoVPVBBJmNFw9h/iySefxOWaWHdyus9ln0s0TeO+++5jzZo1/PCHP6SpqWmmD+maUyrcCAwMDCStT3A1xrvy37MrknA2skLidUhEGx4e5vz589FeAZ/Px2uvvcZ//ud/kqVcJDaBM5klPzAwwOuvv86jjz468p6ZN9AT7bkIBoMcP36c//7v/+bxxx8nRx+cVa9XzC/zsmcg0o2amDCTY5Tw3HPP8dhjj3HvvfdSU1OTch+zfTxSJNN1nfe///08/fTTPP300zzwwAOUlU39ink2MwwDj8eD0zn1z+R4V/41FU7uLmvmRE8hfuuCa56IVtvs5us/OUuj71Z6zzhpHThCc+1+fD4fN954I+8u38RfPNUQ/Y7ORJa8Uorm5mYOHz7M2bNnsVgsLFiwAKd7iB4jA7OAYLyeC5fLxdGjR3nrrbfweDysXLmS3bt347Uu5JHHz87o6xXz17wMBiBVwoyTP/zDP+TFF1/kRz/6EefPn+eee+7B4XAkPV6SEOcmq9XKhz70Ifbu3ct3v/tdfvd3f5eFCxfO9GFNOxUuNIDP5wOYlp6B0cTEcPd2YmPT39+P5/IZ/vy972XTpk1Tfr6xRIJxw1AoHJxoGuJEk+I3V6/l4/ffEn29M5Ul7/f7OXnyJIcPH6arqwuHw4HVaiUQCBAMBrl3g4MnTyQHAhrmV/JKKVpaWjh8+DB1dXXY7XY2bdrE9u3bKSwsjG4nswLEtTJvg4FUMjMz+cAHPsDKlSt58cUXaWlp4X3vex8DFMR9yerbhyQJcY6y2+185CMf4Tvf+Q5PPfUUN77rwzx/zD0vp58NDw8DTEvPQE2Fky99tIp/euLXGJnFrC7Li2tsTpw4gc1mY+3atVN+rlQiGfhvNboIGRC5slZo6JpGc2gFubm5SZn6f/ehquvyN+3u7ubIkSMcP36cQCAQzT9yOBysW7eOdevWsWjRIjRNo2BJJ4++0Bx9rAboevyVfCAQ4NSpUxw6dIjOzk6Kioq4++672bhxIxkZGUnPL7MCxLWSdsFAxIYNGygvL+fHP/4xX338x5wwdqKhRYcEDBW+KlJpOpd9rnM4HOzZs4d//68f8rkfXELTtHk13HMtegYAyvMNNlqP8uBHHoxbClkpxdtvv826deuw2+2pdzAF0TLLhvn9kWB8tNcgnFHf7XZxuMHFp99TwXtvmHqp4sRA43duW4TN284vfvELOjo6otvl5eWxfv36uAAg1ntvKKFyUZbplbzL5eLIkSO89dZbeL1eVq1axZ133kllZaUkA4oZkbbBAEB+fj4PPPAAD375MMo1OlUnOnUnoagLKHYuGbq+BymuWk5ODgP521H9Q9G/5XwZ7okEA16vF5vNZnoVeTXc7nCSbGJPQ1NTE/39/WzevHlK+081914pxTdeajTNwI9VnGdn7772aCAQa6KZ+mPN/0+ey9/PkYY+NlkOkaf1k5WVxcaNG6mpqTENAFI9x999qIr15Tm0tLTwP//zM86ePYvdbmfz5s1s376dgoKCybyNQky7WREMXO8qYrHPV5xnp9U1kUkVGqutZzn1Zgt33rCKnJyca3Z8Yvpc6gmQ2LjMp+Ge4eFhcnNzp+1qMlUwcOLECQoKCli6dOlV79usaM7hhn7sWpBs1Y+bXGCcoEbBhctDSYFAxHhB3niJwY/9rCWuZ0KNfHZ6sjfz53tWjhkAjPUcRy+42FVYj9HfSFFREe9+97vZuHHjNetlEWKyZjwYuN5Z+4nP1+0OpNgy/gpF18C6cAPGlSb+9us/5WJwJe7hIE6HlY/tLpuW7kkx/WZqbvy1FukZGB4enpZ8gQi3201GRkZcIzU8PMyZM2e49dZbrzro6O/v56s/OoNhWKINbORP4lc2/BQS/r6N3TPQ0etB93VBdPt44wV5qRKDn3yjlRtKh6hrC5nsV8OjnCxevHjc15nqOcDgnHcpf//Rm1m+fLkMBYhZZ0aDgdpmN3/73fNxkbgR7o3nsZ+18PU/nP51yxMj/9SSryabuobJK9rGictFQPiK0+UNRpOEJCC4NqbSc5RYuhgMlNLYc9vETuyzVWwwEJttPlWDg4NJwcXp06cJhUJs3Lhxwvvp7+/nxIkTnDt3ju7ubgKBAJeCt6OSTjmR75nOaHiQKiBQaN4uKiwX6KUwaTttnCBPKUV9a2IxsvDnoraxi8ZGN1Bk+tiJBo+hUIj6tgGThaR02j1Z/NcvAuyxDM7pfBUxP81YMDBeslBd2xBvNfSypWr6xtKeP9RJXdtEx/wTT0gGtkAvhy5HErXiT1aPv9YmwcA0q21289jPWuL+ZpPtOUqsObHQqXB0/pKm2iusr3jPnL1Ci80ZmM6egXOXfRx0VbPvS8ejgdeJEyfIXryOf36ug8bOC6YBWW9vL7W1tZw7d46uri4CgXCPm6Zp5ObmYitcib05E7/PIPWVv4ZdD+E3IoFB7HYKDcUySwN5Wj/r7Oc47Y8fDlAK3N4gtc3upM/GlStXePHFF9GHi9EoivZORPa9MNugd3gBBM2P7abq/DHft/7+ft566y2OHz+O7l1j8hzhoOPohfmRwCrmH00plRTDXg+ffaKeoxeSo/RRigKthw+s6WfNmjWsWhU/Tj/Zq8XaZjef/GZdyudKdSUSvt1AQ+Oh2wr41v5e0211DV77hx0pn19MzljBoqZBrsOKzapdVY7JiRMneP7557n55pu54447pvGop1+qz7nf7+cLX/gCuq5z1113ccMNN0zLc33qm2eAcNMb6bTXCWLEXDdohP8Gv7vVx/CVs1y5coVgMBi9Pzc3l4qKCjZs2EBlZSWnLw2Fs/9VJCk38r1KHoorsvZRZpylKVTFkJY/MnffTw4DLLM0UGB1c+utt3LLLbdw+tIQj73UQl3rUNw+NI1oY+vz+di/fz+HDh0Kz7jIXcbzjSUjfRCRRZ4UmyyHaLdU0+nPw+z7vaMqLykXwTAMzp07x7Fjx2hoaCAjI4OamhpyStfzjz/ujBsqiKVrsG1F8v6EmEkz1jMw1prsYRpDKoemphOcP38egJKSEtavX4+et5y/e6ZtUnkG45cATb4SseJHR5GNmyK9k2/vTz1skWmTBUKmU2Tc1YxS4PKGG5+ryTHZtGkTXq+XV155haysLG666abpOuxpNVY+zapF4TF9wzCmbVrh3n3tI41k7Ji+igsEIrcrZfDc0QE2Wtux2Wzk5eWRlZWFruv4fD6am5tpaGggGAxybHgjIVXIaPXz2EAg/FMjXFq5zDhLntbPRutRCgsL6enpiZ6lampquP/++7FawzfUVDhxOqzoWnIOwFP72nhga5CXX34Zj8dDXl4efX192IZO8478Hk65ShhUTvJtXjYs6CI7pKC/jk52mr43sbkIkV6A145coG6wlGFLBRVFq/j4u1ewerGDpqYmPrimjzcaNNPgYj4lsIr5Y8aCAfPFhGIpMnU/oVAoektnZyednZ28HdxGiNGTS+wJ4EsPrjHdW+ovnyJH9zJkOGJOhAYaUGN5C4CmUBUNxtq4E2XiPorybGO9XDFJYweLo4Hb1U4VvPHGG/F6vfz85z8nMzNzylPmroWxqmD+/YcqottNxzBBbbOb4xcHMEueM6czRPh5A4EALpcLl8uFruvouo7VasVms5GZmcnQcC7Jy6Bo2PBRYPfSH3BgUQECKpPjxk6s+Fmun4eeSwAsXbqU3/zN30wKetra2jhlsniPoeDUxR6ebXoVi8USLdkcOdZsazfbMjvx+/2goNBWQvmKVdxRXs5/HDA43zEc/0o1WF6SydmzZ6O9AEOWYo76tobrV4SgvtPgM985zybLQfK0fgoLC/noluW82Gzl7OXQvEtgFfPPjAUDyYldyWx2GwuLFjI4OMjQ0FB0nDR8Eoo/uRgKTl64wmOPvUF+fn7SfxXFGfS4AwlTksK/rdTeRrdZuMRKXIFMsnCzKrMFvx9OhG6IdimmptE7IJH+dBo7WEy+0qpt6qO/v5/8/LHHdmPdfvvteDwefvKTn5CZmcmaNeaB5EyZyJLBLpXPl19xcam766qn5Y6Xv2NOUVmSyQP3PkBeXh65ubnRK/aIpqYmnn/+eXI0Nz5lJ/HvlpsRYp06xCWtjPNq3cjXUSOInfPGOoKWXP7p926itDS+9n57ezv79u3j/PnzZHALHhJfr4Ej1A9WohcTfr8fCK9fUVxcTHl5OeXl5SxdujSuHPmfOuN7Y8KLnSnsnb/gBz9op7S0lJtvvpnvve0AX+xywuHeDW/RTXz+gdXRwKV85L2NnOdkPQExW81YMBCb2GWeO6DRM5zBC50bKHEq7tiqkRXqor6+nhy3mz6VEZego2tQXminoqKC/v5+Ll68SH9/fzSRyVD5wA2MjHgSCQQ+vMPBO6ruoru7m+bmZpqamgiFQliVlWOhTRMIBAAMrL4e6uvr5/3SudfLnl2lHL0wsdUlQeENavzDo0+wdWURW7duZdWqVeMuVa1pGvfccw/Dw8M888wz/M7v/A7Lly8f8zHj5apMtWZG7OMDQZVUBTNyVamUwqXyORG6Aa1paErTclMPyYw1zU/jj+9fw3KTuviBQIBXX32Vw4cPU1FRwZ3LS/n+EV/S/np9Wbz34U/yV0/Wj7SqWnTfABcD5fQEnESazY6ODvbt28e5c+coLCxk063v5cAbfpNjhmWWBiC8VkV5eTnLly+nvLyc0tLSpKAl0crFWTR0eEAZZCsXq+3nWVbgwO8v5vLly7S3t9MWvD0pQVCh0e2xxvVgpFo0TdYTELPNjCUQxhovmTAygrnJcpBbNixlYdUOPv9se1z0rmnw6MPVcV8ypRQej62IV0sAACAASURBVIfDdZ388FAvzT0hDGWglCLfMsgSVY9T9Ua3dzgc5OfnY7PZCAaDPNu6Fr8aryjISO+Cfpolllb++I//eFqneqWr2mY3n/5W3Th5JbEUC6yD3LnwHFeuXMHpdLJ582a2bNlCXl7emI8MhUI8/fTTXLp0iQcffDDpSjT2mBKvGmOT1ca7fyKvOfbxoyFruKGM/ZxXFlnY84U36KOIxCS8ySanffBLx1PU20gdDGQ7LLzwN1uTbm9paeH5559nYGCA3bt3s337dvZ84XUu+3JN97WjKo8jF1wp80N2VOXx6bty2b9/P/X19RQUFGApu5mXzyoGvJGkxfhcn0K7h0feaaeqqori4uJxg8KIX5/u4HM/aBn5zIXffW0kuTBP6wfC54hly5ZxoKfKtPtfEgPFXGX5/Oc///mZPohFCzJ4+UR3zMkvmQYsXLqKR/bsorwkl82VuXQPBPAFDNYtdfLZ91cmRduaplHf4eNvftBC96DCH9IwlI5C559/dzN77r+Fbdu2UV1dzfLlyykuLsZmsxEIBGjp02gcXhTz7BGJJ8iRUEXplOjtnDhxgp07d2KxSELhVHz5+Sba+3wpPw/JNIYNK+1uOxfVarqDC+hsOcvxg2/Q3t6O3W6noKDAdCqhruusWbOGCxcucPjwYVavXk1WVvKY7pefb6K91xfTNRz+63cPBFi0IIPPffccwwGVNFu+eyDAnZvM56+PtX9GHu+wGNj0EJsrC6Kf80AgwFO/7CFEfK6KAq64/GxanktJ/vglii9evMgbJ1oZDJkttxv7jYy/L8tmYV15TvQ5AoEAr732Gj/5yU8oLCxkz549rFq1ip/+9Kfsb8lOOs4I99AwGCFCKtJjF6+9d5jXj1zAEnDx3rtvo2GwiB+fAl8wMkUx+Zizs7L5zId3kJOTM+7UUcMwOHXqFM8//zxPvjmEl0wSEx31jAV85M5q7rnnHu68807Wr19P+UJn3DkrEqh99v2VLMybntLQQlxPs6JnAOK7R12eIIFQ8mEVOW388C8mnugVKWrk8gbjbp9IBP/ZJ+o50uAyzTEwO2nZGeYm6xsAGDlLGS66eV6ukjddzLrT15fn0NnZyblz5/jX13W8ocmWah2pWBUeoUUDNlkOUWgbJBgMkpOTw9atW9myZYtpBr7X6+Xxxx/H5/Px0EMPJfUopLqCzrQaDAe1lAmmhU4bz0zgc5tq/067wW1Zv+Izn/lM9LahoSE++q/76DeZzw5g0cfukfjlyVb+68UGrgzpZFn89Iecpsc+XkVAqx5uDp26m0qtjvft3syNN97I0NAQL7zwAufOnaPW2E6PYVYxULGAbor0Ts4bkZk6ZoG3GvlbHqQ2tIUgyfkHEam+27Gft+ULM3nH8gBXGg7T1tYWzUV6M3g7fpKXM0913kn8DEv3v5jLZrwccUTs0pxmwwaTzcAdKynKUHCmpY+WlhaWLFli2o3Y2OkxuSrV0AiNnJpiH2OQTbimu0vlc6J/LfT3o9Dm3Cp512OdCLMa9Uca+tlmP0q20Q2AI7QNL7HT0cYT+Wvp0Z8Kg6ZQFXnaUSBcXW///v3s37+fiooKbr75ZlasWIGu69HX3eDeidXXxcC3f8yf/8EHoz0EHo+HEqeix60SGl+DQDCAwpbiWA00z2VeeOEFNm3aRFlZWfRqNfG9Ls610zsYSPrcly2wMNgzSCAQwGYLX2ErFS7AcyJk3uOgVPIMi9pmN995rYW6S268QQ3IBDT80aAreXrtWIEAQHDkYPuMHN5iBw+WreFHr77F93/VhdsoI5tcFtm76fUXJn2fNIgWEfKqLFrVcmIDgNgcAoXiRGgHCj3lMaVKzqttGuDT3z6LUuG/Xbfbx9ELsMkySJ6msNvDQwqdV7Ko7zQmfN6R5YTFfDJrgoFYiTMNriYDd6x56hqKTKOfxx9/mezsbNasWUN1dTXLli2Ldu+nqmm/arGT+vYhVFxBotGEpaZQVdwV4lxaJW+y60SEQiH8fj8+ny/uv/Fue7F5EYaRk1CjXtHgX8ZGazgYWGa5QH+oMOZ9NhPbcGCy3ej0N5fKDxeywUk2blxNDTQ3fw+AnMXreLG1HIh83hawvzeP4a8+RcUCRX9/Pz6fD3s0CTW+98FqsRIMmQUC4eNzqzyePDbA60efpbLIwoYNG7AXreRzP7gU915Hjzo6bz489/4DO/L51c/C89uLi4uj2+Vp/XxgVTfPNRQnBb2Jsw5ONPbzme/Uj+w3scKfPvIuKsCIvraJrBUwKtwz8vd736LX50CxANAJkIErUMyn3lPBy8e7abjswTAUqAAaBg2hNdhsNgaVFSf9eMghhNXkOTUUFkZ7f7SEe8M9ApGr86GhIRobG7lw4QLfPZGBoRYQHygq3Pk7+MuPrKC4uBhN01gjmf8ijc3KYGA6MnBTz1MPn0yWqHryF4STBc+cOcOxY8dwOBysWrWK6upqPnxLScLUR4WhNFq6PeTQT1FRMW6fRo4+iM19jg7rWk77MgiYXCHOlSIjZvPaNaX40tPH2L2oKalhj606Z8Zut0cXvcnIyIj+5wpmmXRt6/itC1izZg1KKUKhEIvcLRzuKqbHH7kyS10UKogVN3mY9dhEsu4jM0P82OkPFUYTw351KRMj2giOvv56zxIc/qPY7XYWLVrE5sWLuclh5cBFK+39BksLbTi6fsUlVtHhzTGdEQMKn2Gly8inmxvI9dVx4MAB3vK5MWK6+CONz+qybJwOK3WX+rH6unnvpmx2rFnDr34GfX190WAgMlXO4cgYCQTiG8hInX6lFKdPn+YLP2rDULHvT2ImPFjx42SAIZysKnWSF2rjV53FSfseS68vI24GTqSS4Ztn+/mX3y7ja9/5X97oWTXSsNtwYw8v84GGP7pi4VjPZX7fn96zhA0LvTTWH+SXL16gs7MzfBS6zkDoNpJ7bTT6/Q4WLlwYvUUy/0U6m5XBAEy9Cy7VPPXcTCufuaeIHOMdtLe3097ezvBwuMhIZHW2kydPYrFYeFfpahoDy2gf0BjwhgCFx6+hkc9QT5BP3Z5Be8cQ/1O3DuWD0SuuhBMziuUlmVf9Wq4XswBKodHrs5Obm2vasI91W6rkrbdSDAOtW1bIhz6UXA3w+UOd0cWgINzQ6ZrGlx5Yz+rFGQQCAWqb3fx/z4SrTI7OD9d5Z5XBGw0rE6aIhocQmtVKNlmOmdatiO1V6Ak4OdVdxUBnFqX5Br+xNYPtq4vJz8/n0qUc/vPJF2hXO9A1LUVAEHluRd1QKWtVCx6cSQGRoaCte4hn/mIzVquVL37xi7SeCZH5npuxWCz09fVFtx0cHATgYFt2zKj6KKXgXWutfOtb36KtrY1BdYfJa4x7xEhAlYuuaTgyHVy5eIVwjf3UvR6Jt42k3CW9rhONvXz1q9/n7eC2hL9FcjLuRIIPbeR/DqtiU34np159mZOGgc1mi37uMjMzWbt2LVdacznT7p9Q9790/Yt0NWuDgalKNdTwz3tWjUT6FWzZsgWAYDBIZ2dnNDhobm6mr68Pz+UzLOIMncFtEDOFS6GhlMF3Xm/FbrcRn9Uc6VodHUYAWBw8g8+3nIyM2ZtpnGpoZP2yQt7//ukr2TvZYaD33lBC5aKsMa/YbtmQx6N5eSbb7GD/l45DUmKezpDKwTAMsix+/EnZ9Io8h8JnWcxbQxtQgfBjznUZ/NtLLjb9/BXytH6cTifLCmyonoN0OTZy2ZtFMEXxHoWG4VjIJz72CVq/e4ELPcn5B5bhHv7t3/6NLVu2cMstt/Daa6/x6quvkp+fHxcMuN3hHJUrQxbTGRcOS5BfvLiXhQsXUl1dzclT/XiScjASG10LQXRQGkcvDACpym8nzpeI/FuRzYBJD43Cb+i0sTRF4JUodnjCPOiwEmC9foxCyyC5Wi4dthLODpXhCeWyyKn47dsWctfOcK2JCun+F2Jcs2Y2wbUwlWxfv99PR0cHjY2N/Ns+G14jObO9IMeKrmmmGeBWHSzKR5YaYLnlAvkWFwsWLODDH/7wrK1DkGqefGL9hsi201Vc51p3x37i/542Wa1S4cTFVuuvOaFuNsmmV2TZdSoWZnG2bSgu/0RDUaD3UKMfAYjmmYRCIX4VfCcBzAM+DcXaUht//1sVtA5Yw2P4hiJSvQ4UVfppuo1FDOEkAy8APjIpzgqyrcTFpx96HwCHDh3ipZde4krxe5Lmu0fmx1fkBSgNnSU71IWRU87rXVVomh4d9oocVWqprv4VVfoZLhtlDJI3EtAY5OmDLLZ0cDYQubJOHtZxMkDfpBJDE481Pk9kpX6afNvwaGngmM9tbK6LZP4LMbZ5HQxMl1SzG7atCE89S3XfP32kkkcffTRaF91isWCxWPjgBz9IVVXV9XwJEzaRk+ZUi+tM5vmnYzbDJ/7rdNzKdmGKPH2ArdaDvBncxbBh1oCnbjCLnDa+8fHldHR0RP87fqGPY4HtKR6TXMAmmLWEek8ZA6FslhZY2bTUzo/eDqLUaIf76L7CyYqPPlzNhmV5fOdH+/jf40MEMhYy6Escmoqfkvepd2Zw4sDz1Nz8Hg5ctNFweRiP3xi5d2K5AKMMNo+8hsRcjPgqIebTFDdbDqZ4zFjHYTCatJk42wGc9Cf1RkgBICEmR4KBCUiuDBc++e7ZOMTWrdv4zHfqk+77woeXccPaRZw6dYpnn32WjIwM/H5/dE7z7t27ufnmm8ctijIbjRUcTeXke62CjFTz9wtzrPzRtj6+fsBHr+k8eDBvrBRbK538+8fWxh375757bqQqnnmDVWU5S6FtkKqqKhwOB5qm0djYiNfrxWKxcNC9bpyr5pF9WYZxhyLz4ceaTRF+/wr1HrY63sYwDLr92SON8dUEAqNX42X6Jd4ObktxvObvGYSTFBU62sjwmR0/HnImcCyp8ghSv/a8LCurS7Ol3ocQEzArKhDOdiX5GfEVD8tzeM9qL00n9zPY08pv370Nlxd8AYPqJVmsCL3FcFc9GzduZOHChZw8eZKlS5eOLslKuPJba2sr1dXVc65a4X+/cokhX/zAuCL8+n/r5sVXvd9UFf66BvzjVvCrbXbz5eeb+O9XLnGsYYBFCzKi1fGONQzQkVTN0CBfd/HwfVuoXl7Ca7X9I7cnT2kza9SWen7N9g0rcTgc0SBmOGDWYGnkZGjssBwgAy+GYTAwMEBbWxuXL1/G7/djsVjIL9/E8Z7CFMl68cfij67Sp8XdnkpQ6azKvkxhYSEnPStHqg1Opps+9vlhQOVTrl+k0VidorJgYlLgaINtYEFhGfmps95ynCGVM1LsZ6wppGb7jvxuHgQNBww6+nwM+cI/Xz7RzebKiVVmFCLdSDAwQSX5Gdy5qYjfunkxd24qYv3KpVRWVnL8+HEu1p9gz7vW8Qf3reWuzcWsqVzML3/5S1wuF2vWrEHXdQ4dOsRHPvIRFi5cSGNjI/1GPr/uKuXJA10cuzBAWWHWnDlJmTWuugbrljonVHY3lVRBRnevi9ZD3+Ps2bN0dnbi9YYb1YyMDCwWS3Qdg9ZeHx6/QVuvj5ePd7Nl5MSfWO463OOgsTnnPG8f3s+6qjLefeNK9p3qIRgaL5Ndw0aAFdopDh06hKZp/PB4iI4+v2kiHyhWL87gsx+7i+PHjxMKhQiFQuzYsYO77rqLtrY2egI5vNS2bORaeWJz+id+Va8w0OkaziYw2ElzYClGitLAExNu0JfpDVwxFo3RiJs12ok/FT6VyWpHE+3BRaSuG2E24yA1XWMkx2M0QTOy54mWhhYi3UgwMAV5eXls3LiR1tZW9u/fj1KKiooKcnNzyc0NL66Sk5PDxo0bOXr0KIFAgFtvvRXLgkq+V5uLl0xC2Ljs8o80XnlzIiBIbFw1FLquTbkuu1mQoaHI0/opUpdwu920t7dH15X/5S9/yZEjR3jiqIXhkIXYhkIBTVe83LttYXLPzlInn/1AJb/xzs309vayf/9+MvDSHSqm251YOyExOFDk0ceaAg/Dw8M0NTVxrGchQdOJOeFX0jvg5ej5Pn7r/jvoaKrD7/fT1tZGaWkpHo+Ho/0VDAbtJrUXrlZio6ozTCaX1VIMIr1Qib0dEw8uAHqMItxEloseq/s+1f3h2304WKhayNEG6FULY7afWA9ALB0DGz6c9BHEipHwN5mO3ish5isJBqbIZrNRU1ODruscOHCAS5cuUVVVRXl5OR6PhwMHDrBy5UoyMzM5cuQImSVr+NcfdzAcjD0Bj5RbPXOR8hIn//HTVtPu7tki0rh29Hnp7XdTYHXzLx/bTE1Fcr3/yTC7gtd1jX99eCu337SF7OxsvF4vQ0OjyYDd/myagsswayj6BwPsuW0xmqYl9ewszMvAarWyZs0a8vPzefPNNznpWkRQJQ7ZjIY8Ggpd03j41lwCg13Ruf69RhHDZJHcwIZ/Gtjo9cDPT/bxznfsQBtqw+PxcP78eZp8i6h3F05TIGA+TBH/M/Hf4wUCiYmJ4ceP1vBP3dCP/hzrOTQuqyX0qcjU3at7HyKzJ/7y7iw+uKuK5n4rl/uTe2s0DZ472Dlrv1tCzBQJBqaBpmlUVFRQXl7OkSNHOHbsGGVlZWzZsoXGxkaOHTvGHXfcwWtHGnjqRNbI2HLSXhgOwisnXbT3+fHM8nHOkvwM7tpUTOuhpykMtfCOHRtwOqeWnGV6Bf/+SmoqcsnOzmbZsmVs27aNG2+8kdLSUmw2G7/qLMFjhGvsJ1IqRPMvH+fUqVOEQiGKi4uT1rLXNI1Fixaxdu1afnL48sh4fHxjaSGInQBO+llrPcXNNWXcf//9rFy5kuHhYQa7m+lUZZE9MlrKFxKL6xxtHOQ3d2/EGO6jrj+PU96quPunxqwrPvH+VMGCmfGCi/GOeSIBQez7NF7OwFhBjMbiojx2blzByvJiFi9w8NLx7qRgIBBSePyz+7slxEyQ2QTTzO128+yzz9LS0sLu3bupqanhG9/4BgUFBRzoqaLJlWrFNQMrAYIJ5YynK0v/Wiw+VNvs5l+/e5ger42yBRY+/YEN1z1bO9VMgXAdgX62Wg/G3RqpSnfTTTdRUFAQvX20ymFyo2UlQI3lKHlaP5qmoZRCz1tOb85mWnuDLC20Mdz+Fq3+EgbJHXl2ALPE0PBKfZ+6I4cvvG7DZ8QPb0S2mZ7gYCL7SR4Gufrnnq7jjt0fFOdA96AWc4s5feSp/+AmyAx08sQJJz1+80Axsr1MPxTX2vVY/G06SDBwDRiGweuvv86vfvUrVq1axfbt23n66ac5pHYzFDAfW9YIT7syK1gz2aWbY12r6XqR/UaK5oDComvXfXVG86WmARS7Cs6iuZtJ9RHXNI2SkhIWr76Rr7w2PMazhF/hKmsdV4LFDJJLADuRue+RRshQKnrbWFPeIstd7wvebXr/9LqagOBq9z/dwUDYulIrNy7xsveYznDIrNZA7O8GC+hho/VoyiWJY03luyXEeBLPvxHVZdm8a3MRb57tnzVBwrwtRzyTdF3njjvuoLy8nOeee47Ozk527tzJ8QN9eJLWn1fYCLLecpTLtnV0DCf2HBhkhPoYHBwkJydn0sditvjQ1a6iGIlw69sGGfKFRhbIicl7UNd/dcZIaWPDiL9qfOT+Zdy//QaUCq862NDQQF1dHZcuXYousKSU4vLly7zceonYctPJNBQG9cHq6O+jjT4xFf1iu85jE/hihRdWajOWRn+/tgHBeGP2jHPfZB47uSTEiR0bnG33UHzlNYzQ7ZDUuCc+dnRNiWzcI4sfpe4ZmMyy6EJM1t597RiKpBV069qGqGsbin4Dut0uDje4qF6SzR/dXT4jQYH0DFxj/f39PPPMM1y+fBk9v5JXOyuj1dciV+lf/t3V6EOX+N99b/Nq54qYgjDhqnObLIdY6PBy7733sn79+kkVKkrVjT7ZK6LRnoCxu2pn4kprsqVmh4aGaG5u5uTJkzQ2NrLfe8u4V5Bh09FwK1bqpzlvROr+T/cMgsneN9V9T35fOiGyceMliyCRMt9j5wtsthykKVRlUuQo/tg0FCuLNT5xWwatLgv//vPUq4VadPNS20KMJ1XXv2EYdHV10dbWRktLC19/ayEBleqa2/x7ZdGnp5rrZEkwcB2EQiFeeeUVDh8+jNdWQp23kkFysVgsVC3K4o/eHY4ElVK8duQCT77RSuegTo7mpkJviJavdal8ujM34iGXFYuyJ9StNF3VAs32k0xhs+hsXp47411ek/Hn36nj6AX3OFtNJOueCW0TLp+bP8a212bsfWq5ARN5fRPbT2wuR7ik8Q6UaX7FqG0rcnlgVymPPH52tNqnFr7iip19kriWRuKKlxHVS7L5xLvLJRAQk2ZekRZ2ZB4nM9AZ3c6l8jke2jny28S/NzOVyyKzCa4DXddZuXIlxcXFnKhroim0DAUYSqN3MBCX1VxZVsD7blnGvZuclGjt9Hc2oZSK1oF3+a14/WrC2dCR6XrhfiotesKcbE0As4JA8cJfCEMx5zK1Fy9w8MqJ7qSuvFFjlcKNHQ4YfxodMEahnulqcM2ed6pJgokzFK42YNEw0CnXLwLgw0GXKhmpf5B6f/6gwW3rC7l42Uv/UBCLrrGqNJs9t5ViGMTNPolt4NcsyWHrilx6RmaorC938pcfqORju5dMqSaGSF+JlVIj33tP0MYivT26XX1ovcmU4/HNVD0M6Rm4zh75Zi0nmj3EfkDGigS9Xi9Hjhzhq68O0qsKiO0i1VBsSaiRHyt2jN83si7CxsrCq1qxbeyegeRGbK5latc2u3nsZy0mqxuOJ9VVd+JtiY8ZK7iYCyYauJjNVoD1mQ00exMLF6V+/VZdI2iopF6AmehOFekt1dBrhubjrvwj0YTln7t24FOTDzhn6twpCYTXWWtv4kI24avpxk7zsc3MzExuvfVW/uPgcUj4ACo0Tl3sob6+Hr+jNG4M66Y1+XztxeaYrqxwELFn19Ut3RpJ1NNU5HRudlU8sdc0G9VUOPn6H66LGwt0eYIEQhOJlVPNxZ/o9rG3X4+AYDqeI1WCZOLzJD5f+HHm9RVSH1PQGP3UwdQSYYWYisqSLHoHk4deN65YyJ89+GfR2648Uc+RC64xehyTRYLcj95eOo1HPDESDFxnqT5I42U1ryjJom8w8crcINcyxH89/RInQjuj67n3DoYzU2NP14pwBb2rPXnWVDj5ykPVcT0NvpBGqtXv5mqmdk2FM/r+pJ62GGu6G/Dr0TNwvY411Xsz9ntmw0cOA/QR6Qkz326uBZxifohcGOnET9dObMAj26W6nqguy+YT95RHZ2FNNAH6WpFg4DpL/CCBgVLauJFg8uPCzfASVU+zsRKFQqnwSTN21b9YCm1KJ8/YhtLr9fIb/3IMfzQbPN5MRbfTKdW0xXjRa1XGqy8wMdcqb2CmTHY4ROHAwzJLA32hnWNsN3cDTjG3xV4YjdWAJ15AgQYarC7NTtp+NvRuSc7ADIiMTzdc9mAogyyjn0/et4I7dlSN+7jIB7C8yI61Yz9Zwa4JFVeBcI7B9qr8afvg3fdPRxj0xZbeBVDoGnz199bOi0zt2mY3j73UQl1rci5B+FUrajIvcMmbxxBOMvCmWMBnor0HcylvINH0TL0MV+MMjkw7TL2/VFMD50rFNyFmE+kZmCHnOoZGxvM1BsnnX37SQ1FREZsq81M+JvbKHKC/v4zHHnuM7KB75Ao9ef716FBB+P/TebVusVhIvmbWsOuheREIQPg9dzqs6BoJQzQKC35uzD1HVYmNu4t1Skpy8Pls/N2LIZNVDCc7jW8uBgSpc0gmtw8LwTHXKgCLpvhIzSCuSyd5uy+H7OxssrOzaenT+JsftERzZXoHXRxrdEmioRDjkGBgBiRWBVQjBYa+9uPTfOvPbp7QPsJXP52c1+4ipPWMnINjk/rCPxXgsGoEg34suoWn3miftiul1aXZJgkyinzr4JT3PZs0dnpMZlFoWDTICnXR3Bzg4sWL0XucbKNvzIqGY5mLQUCsyOdvrBkTpLjPbD/m+8jXeumof4vWM6G4ctNvB7cRiilMJImGQkyMBAMzwLxx0Wnt89Pe3k5p6dhX78nrDeQTvlINEMJGYuZ2eLlkG0FD53DD9JW9jIyph2smQORE7w2Ej3G+XImNlT38lw/+JRAuLOX3+wkEApxsGuBvf9ieYm8z7Xr0OsQGBLG/g04QAyvJgetY+0memnhbZYAyZzUWi4V2t42D7dn0eG14NR2UHrcXSTQUYnz6+JuI6VZZkhVd3GaUQY7m5oc//CGhUGjMx5uuN6BpKQq3RH6P/1PXtQ7xyLfrqG0er/JeapEEmdVl2cSe+F2Gc8r7nk327CpF00ZXxTPLHj7T6uHz/9PCw//3Aj85PkRJfmQho9lmOsb0x9/GST+bLQdZQDd2hnHSD6iEz+h4gYky/blSP4W38ywOh4MFFZt49nwRrYOZDAWtGCr5lCaJhkKMTyoQzoBIVcDYAioAaywnwdfPuXPnqKmpwWo177gxqwY4Ul+QcFb7BBPXFPQMBLhzU9FVv5aS/AwOnO6jo8+HiumR0IDuKe57tijJz2BzZS7dI1XsEivdRXpq2nt9DPkM2nuHGRwOMfOFhab7uSa+Pz8OFuutVFgaWao30WUsGqnGFmmszaekxtI1jU/dt4yQoRj2B1mSZ7DV2YDT30IgEKC9vZ3nT1vxqExUin1dbcVNIdKNzCaYIckZz4vpbTrOvn37APA7ShnI28alvkiVH8Xqshz27AoXFzKvBhh7BRUbGER+T5aXaeHHf711Sq8lVUUuDfjUeyp47w0lU9r/bGdenTFVZcJIgzrZRtqsu3wi1f8Sj+F6GV1KGJjwjJdRiiV5is+/r5iCggJyc3NHElZBKUVLSwsHDhxg77mKMfcraxAIMTGSM3CdmE13SkpoqrgNp9PJ3v/9BScGa1CDfmJP5EcawpnRf3pPyQUEfAAAIABJREFUBccaXSY9tuGGP5I6aCGETpAADswbDzUtHdlmY+qMPGNkkZj5HBCkSjAM/y1U9C+iobi9fIDXW/JI9fcYe/w8ef9jzde348FP1jjbpTLVXgWdfgpwqXzytP6R5YTNZ7yY07ji8vF/nnqBplAVQzjJs3rYVjLA4mwfAwMDdHd3k6MV0KcyTHsGdA2cDmtcICDTDoUwJz0D15jZPPXx6qr/wX8c4lyX+dW8hmLNIgv3bcrmy6+4CZquHTR2qeBYNvy88Lc7sNvNiwdNRKSbPJRiHaO8TCs//ustV73/2S7VypCry7KxaUHqWwfIs3qoKMrgeIdljPnzk2mAY7+2Y2Xtp7p/vP1OR/AQ3lcmbobJRsUNESQ+V3LPR4YFfKHYEHd0Se/YlTxPhG5IWQmzIMfKD/98E7qumyTejv09FCKdSDBwDY3VSGoabE+xGEWqbvcIO8PcZH2Dt4Pbxl3ffWyKLAaxaiG8+gKAuCWVJ6O22c0nv1lnep+uwWv/sGNS+5tLzBoZgIoCnfYeDwsyfOTbhznrXjjyiFRZ8hNJpoufOjp6m9m2ZveNZyrBwFjHkipp0Oy1jPX64ocfAAb1Qk4GNuNXVtNtt2QcJz8/nwOuGrqG41eMnGsLaglxrcgwwTW0d197ilX+QCmobeqjsbGRioqK6HgoQHGePWUwoKHItQyhaRrLLA30hwpRcaVwJ3cS95ATfthIAe26tiE++c26SU89rKlwkpdpxeUNJB2D0zG/P2aJ5UmLc+2cbRvkYk8QcHDZZ+eyL3dk6/hpn/GN3nhz8xO3mcyUvMT9jffY6ZJqdkvi72b1CcyOUSfkKObjD30cu91Oe3s7ra2t5Dc08dqVFSMDXzrayH7ety2XyqLbOdvupaszeelomXYoRNj8PkvPsPr2oTFWrFIEg0Geeuop7HY7lZWVVFVVsXLlyjHPxQqNj96zhfu2343H4+EL/+d7XAyuoD/gwBOMVAScaECQutGITD2cTBfqx3aX8egLTUn7fOjOsgkez/zQ1OmOzqon+tPsfU5seCfSQE/1bzuRHoiryRUwa8yvZh9j0zVYsySPxYvDa70XFhZSU1PDu4F7L/TxrVebae7ykWf1slTV03jiMo1AnX5jyn3KtEMhZJjgmqltdvNn365LMaYfZsXHrfZ9OBzhbGiPJ3yF8mboDvzKluJR4dr/D+8I4fBfpra2NnrPvuDdTHfmuFWHP7lndEbA84c6efy1NtzDQZwOKx/bXRaXHPiJf3yS8/7lBLGTl2njoTvLuH/7/E0ehORhgrGv8KeSKzCZgMCsqM+1nNY41vj/WI8Zb6hkdL+aFr730YfXUFORy3iUUvT19XHp0iU+97yHwYDFdLuv/X7y+gZCpBvpGbgGxkuoC1MssIa7+yNBQERozAZFw1AG3z/kxkoGQ9xOjuZmTXY7GZ4QPsOs8NDVCxqKR19o4mBdJx0uaO4ejt7n8gZ59IXmcMW9D60EYGVODyUDF7FYLHzurz83bccxmyUWgZp8TsBEG9DJXH0ndr/H3jbdEvd/Nb0XqV/TArsfbwAy1QDLLA28+P03OL54MYsXL6a0tJTFixezYMECNC3+8Zqm0ea28b0TDoYNn+lzVJdlSyAgBBIMXBN797WPGwhoKJbpFzDrmDGvJBhLH1kZLzw+2qvs/HqwkCI66KKU5LFoxtnfWML7OXjBm3I/r5/qo3+ojv//oWoyMzMZGBgwfV3zVeqphRGReg+R3A4z090zYLbv6eoZSOwFuJpjCj8iN9OGxQLDvgCegPlQysryhXzxwdUMDQ3R3r6Kjo4OOjo6OHXqFG+++SYADoeDxSMBQiRIaBuw8sjjZxMCtbDITIJP3FM+6eMWYj6SYOAaCK9dbSZ8Rsq3uKl2NLLA4sEw7IRC4cVWDMPAMAziG/HU+4kdk1YYdLFo5Hezq8LEx4+VqJZqbDv1Cf+ti24e+1kzOdnZ4xz7/GNWZ0EDLPjRMci1DFFs6eKsf3VMsufVmkpjPpEeiMnMaoj9OfmhAU2Df9qzkvXlTt481c7f/OCS6SMiCX7Z2dmsXLkynFczYmhoiI6ODtrb25MChFpjB4ZRgEo4VptFY/PyXNM16IVIVxIMXBOpu4Ptmp9b82oJhUKEQsbIz9BIEBCWw8DIlf94U7BijZWkNpHjM+tNGO8x8Z79dSd/ujU8lptOPQM3rcnncIMr+rs20pW/wfIWCzO9ZGRksGHDBl44cBBv0U10DOgM+UJj5pOYm8x4/Fj7SGW8WQ3j7WPyPVKRj8ml078g31JIfyg+F2C8dQWys7OpqqqiqqoqelskQPiz7/egfMnPn5dllamEQiSQYOBaSHn+U2iazqsDN1CUFeTmimGqFlpxOBxkZGTgcDhwOBzc2qfxD893YzbNykKQkOmfbbJX+6kO+uobnJCCc+6C8LOmSTBQ2+zmay82xzSB4clt1fZzLNAGKCgo4ZZbbuGZZ57hrp3bufvu7dHHjZ9XkijxPR0rOXCyQ0Th7YtpTxhqSrVtquf6f+3daXxc5Znn/d85VaWltHuTJS+yZRt5k3eDg8EYwuYQCEmAZCZmCUs6yfNkOvR0h8nMpyf0dM9CPklDkueJQ9LQgTDJBHrSMEAMDiQmZrGxjIUFloVl2fIi2dbmUmmt7cyLUkm1SiVZspb6f1/YVqmWW6ryOde57+u+rnDx7hP5nM/tbuAvrnZw5MgRvnrN7fx4d29MUaDwhlDJCAUIy+b54xaD0u4BkVjqWjgGyooTTZUbeCw7XT47p90Z/PZwPr3pRWRlZeHxeGhsbOTjjz/m/LH9zEiPt/c5QACT4V/th/6drMFmCAb3+5p0XFb+iB47GYWSBwd+W8Hf91nPdBYvXsztt9/Oyy+/TElJCTfeeGP/vUK1CZbNGc6yikHs+5woodDAhi/sPuF/Rz9+4N89Q5YvHuzzFB5QxpuhirwtYMGxc1289tprzJ8/n1u3ruLx+5exYVEeM3IcbFiUxxMPjDzTP5lukyISpK2FYyB01RcIxF6fRf6yB6qppaWl4XQ6cTqdZGVl8evahXTG2QplN4MZ/mOXGX7xCmhitb2C733ve+M9lDGXqFpkdpqfF/5mLb/85S/p7e3loYcewumMf0VaVe9mx86THDnTGfcU67AF32uvP/a7afSwuCiLI2f9UUlyAXJw4SaPgRPxULNEwW2rAWsk2wKHzzRg8QyL4rbX+NrXvtZfO2A0RfciUJ6ASHxaJhgD0RXpSgud1DR04uryRd3TxMgu4j/9+/8U0674wwT17pcUZ1FzppOAFUxECx68x/xHGpZOUudgGz950GLZ/AJefvllWltbeeCBBxIGAhD8vPz06yuoqnfz7acOE7CCu0QMLEzT4B/vX8qv/tTA/toLRDbkCZBtuHnopnL++tmjGFawKZIRE1JELwElThQNWMGr58hLhGRzUYZ6zMBtoav1go4PWLdu3ZgEAhD83So/QGRoWiYYI6GD0AvfWctj95ZRVpzVfwAMMQ1YPDsrJhCA2ClOAwvLCnBlUSuP31/G3Kwe0o1e1i7MpmTmcFrDji0DyMI93sMYc1X1bh55poaahs6wQkPB98s0DVYVNHH48GE+//nPU1iYXNGlsqJ0rnB+SEmuh9x0iwKzhR/cG8y23741OLVtREz5GxgOJza7ncfvX8aCfC/pRg/TzFY2pB2gl0xi/4sbmEMsAVkWYZ/VkUSa8ZYl+n4/+DCMYInq60rayTddXHfddSN4DREZTbZHH3300fEeRCqYXZDO65XN/ddmofXLR75Qyqy89Jj7F+ans7Y0l+Z2L73eACvmZ3NTqZu6yj9i93fwjTs20XLoRdbPN7ll6zpeP9gcdugdr2WE4Ai8pHE8cBkv7j1PZprJ0rnZ4zCWsRNaBmpo7aXHO7AV1GYY2EyDudNsXDi+j5u2XsHGjRuTft59+/ZxqraK//z1W/nsujxOVrzE+pWLmD59OtOyTD5+5yVsuXNo76/7ZNDjd7Crspmb186kyHeEeeYJCs0GLvTAeWtOTI6JAdht5qCzSXmZNlaV5OLu7CHbamHm9Gm4uvxR90p05R9c+pphnKWDHKI7FVp94+n1Bai7kMbpwEJqGj3MLkinMD/2/4GIXBoKBi6RmJP7vBwe+ULpoOuXhfnp3LBmBndtLuKGNTNYvbSEmTNn8vbbb3Pq1Ck2btzI79/+mPcbs+n1m2TYTewmeP1waQOC4JklnW78OCIO+Hs/cVGQZZ9SAcE/vnSChtbeqIqDwWv2gAUXugKcs+byhetWJX2C83g8vPDCC6xcuZLVq1fjdDr58MMPAViyZAn19fXUHNqHMaOc8y4f4VP/BtDc7qXYcQ6v10tjZzr7e9bi7y9eFflZmDcjA3e3L2EK4KoFuTx2bxmbFwRo+PBVbr/hCt460hn1PPF3neTgotT2CUcDK7H6Xz9xYqHfMmho7WVXZTNrS3MVEIiME+UMXEIjWb+sqnez47WT1DYGdxcsnu3kzpv/LQff+lde3fMxlf5NWA3BToGhKeSljhpqvcH+AGMTEMTuUlhifsTxwGV9t0W+5j+/eSaif8FkF7/iYLhgHf3n3mrksQVD19AHeP/99+np6WHLli3BZzAMlixZwtGjR7Esi+PHj+N0OvmozR+VNxAMQGrOdNB4toDm7pl4/VbffaILAwVno5xptv46/7G5ARZf2jwDgKKiIkzTJMvfRJ7THifnJTaPoJdMTvgX930qktvOavWN47ndDVrfFxknyhmYwIIJZdVUn+7E67fw+i2qz3Ty9y+eJ5A9n+qOor5d7aGDqoGFxTnvdMptHxCZLGZFfX0xIgOBdXknme9oTBh8uHuiTyKTW2mhMyb/I1qyrXGr6t38zS+r+YddFnWZWzl5YeC/5JIlS7hw4QLNzc2cOHGChQsXUlrojEkQNABXt5/THZl0+9MGDQItC5raPTx+/zI2Lsojz2knL9NOuumjOLODDWkHaK47AIDD4aCoqIhTp05RVpwV5xlj6x74jXTajRkM99CiVsIi40vBwAT23O6GuFegFvDe6UzarVxi30IzLJt/sKIxydw2lOBU8XGXE8MwcOCL+zw5GVNrAio6uTOeZIrbhHIPDhxrp9dK52R7Og8/XU1VfTABc8GCBdjtdqqrqzlz5gwLFizoTyQM9jkIvo5F3w6AODMBicYVmqV68bvrePE/ruN/fN7JZd63uW7jIvbt20draysAc+fO5fTp0/0/c+h1B/6OTBb0Wwb+pLYmxh+XiIwPBQMTWOIrJYMLVn7fFWD0yTdAFm5O+Bf333fg78EO0okKDQ0VJJi0GzPZ7bkBL6G6CJGzEV/99NQq8hLaOhoqjrNsbnCnyHCL2wwULAo+MGANTJdD8MrcOXs5O/7cyzverfzPyuB6+qeyD1FAC9Oy7Wzou7pPplqIMci4li9fTlpaGmlpaWRnZ/PGG28AMG/ePNra2lg43eCH911GAS2k00MBLSwxPyaHCwwsG410SSqAZQUoyzpNb2/vCJ9DRC7G1Lpkm2JKC500u11xvmMR6H/roku+Giyw1fKxfy3xD87he83jlYu1SBwYxGMFWy5bBgP9EYK32/Gw0PyETJcL+psoTQ3R+R8jKW4TL/cgfLq8qt7NK/Vz+mtKHDrZzbefqma12cVqewX3ffk+SkpKeCROTQrDgNwMO/3vpxGsjJloXGlpaSxfvpyqqiquu+46nvnX3ez5WSUNrgCWbwNvfXCCW7as5Mq8arq6urAsC7cxndpAXpK/seAi1nUlHbjsczja2N03NIvCLIs8VwWnPm7mBzV72bx5M1deeSVpaWlJPreIXCwFAxPY9q3FEQ1wBsTP5A7dfiywHMt09FUjShQQxN5mw0MuLjrJIYCBDweDTx7FK14THEMBzay2VwCwd+8ZrrjiCvLykj1xTD4jSQ6NV7AofLo8NEMQeg9C9fpP+Bez2l5BW1sbJSUlbN9azP7a0BW62T8zEeoImKysohW8VWHnjZc9dPg3wZlegu/nDH74RifzS9xMnz6dzs5OAOq8C5NKFDQNWL8ojyuKO6nZ/z4lubn81X1fjCg05PGs5c0332T//v289dZbvPfee1x99dVcfvnlCgpELgFtLZwgqurd/ONLJ/j5rlMcqG1ndkE65SU57PukLW652/gBQfDrXtL7SsomChri32Zho5cMnHTiw0EAR4LRBq/yjL6TT7yx+bAz3zzef8uxY8eGtec+FQxVe+Lnu07R2RvZycgCenDSaU4nN93PmmULyM+Ej995iYA9m8ys3KS2rUarqnfzt8+fotty4vFD9JZAA2hp95KfafH22ULqAmV0kQ3ElswOZxqwYVEe3793KcsXFbNs2TJqamrYs2cPDR0OfvVeJz/fdYrK451ctXEFN15zOa2trTQ1NXH8+HEqKiowTZPZs2djsw3+WiIycupNMAGEEsnCu7VZWNxQWEdTUxMH/Vf03TOyFG1kOeKh6gqET//HCw7Cnz98ySDeyT64zBCsfR/dajnIgYfN9jcBmDlzJk1NTXz2s59l/fr1g4wx9Qy2vBBv+j96GWfZnGzKs+s5f2w/X/rSl1i6dOmIxhH/tSLlZtro6PH3L1sM3esggGmY/OjByGZDPp+PZ//1LZ47lAV9YWUoEHr8/mWUl+RQX1/Pq6++SlNTEwCZmZlcffXVbNiwAYcjUZAqIiOlmYEJILqITegQ29Rpssh+jAXFMzjRHio5bBA6yH771hL8fjjT2kNye7oHWzaInuqPfkx0wRnwkh7nsUF2E+YZx4I/j2VhGAZHjx5l06ZNusILE11YKrwaZWjmIJgdGO89MGh2eznckkFRZhdfuv2mEY8j3ixEpAAOu4HXH2/XQuz7bxhQmOZieX4LH55Nj5jxKpqWyf+q8NLY5ul/rtBP1tzu5YY1M8jPz2f9+vXk5eVx6tQpent7qa2t5YMPPsA0TQoLCzl8uitmNk1Fi0RGRsHABBD/QByc7r9y+Sw6T+6j2NmJLbOArl4fpTPtPPpvl3P18mnMLkjnzYON+BO2No58zuQrEw51wE8UQABY2AyLVn8BdYEyznvyuGHLehpPVNPQ0MDq1auTeH0JVa2sOd5IW8/g768nvYg7r5oz4tc6UNtOY1tv3LTR4C4JC4cJHn/8PJXwsZkGbFyUx52bpvPbShsNrb10eQI0tvXyel+lwRf3nYu7BNLrDXDX5mAugWEYFBUVsX79evx+Pw0NDViWxSeffMIb79fy1Ps2Gtp66eyNfG4FBCLDp2BgAjhQ286Z1vhbqk6c76Y9rYST3rn4ul1cX9rJ3z14DbMLMvuXF3xW6ESRzFJByEgCgkT3iT1B+C2DHpz4cdCDk73H/TSwgGPNBvmZFovnzUji9aUwP525aU3sP3KeXpwkmtnp9HBRZZ+j8xeMvpfJcwb7FKxMr6YzkInb64gKGGKXmCzgL7cV8UplFw2tvXGv/guyHTHBh2nAink53LAm8rNht9tZtGgRK1eupK2tjZaWFmr8K+gMZCScWRCR4VEwMAF09frZ+0n8XQMeMnD70vD4TbrJoKYtm6q3X6S68j2e/8CP2+sguZN2dCAw3BmC4Yg+QQT/9ls2esjknaM9rC3NoTB/4nRbnMi6u7s5WrWXs1boyj/+e1J9qpMvXz2yVsDRvTNWzsvhP3yxlH/32QXcsGYG3RfO0na2jtOeQiwCRL63kTNE+TY3/pYjvHMqM7jtNEzo6v9bny0ZVuMuAKfTycqVK5k3bx4vVnrwWZGboaJnFkQkeQoGxllVvZv/8nztIEVjYrO603NnsXYOvNuYjy+p3aHxZgQS7UYgzm3J3Cd0W+hEEW86eeB1j9Q1cvuVJUmMXQKBAIf276HAaKHTysZDZtz7ef0B7r125EsFg+UveDwejny4l08tn8XZ1m6cWbl4/VbchEN7WgaH23L6AoHIz0Ho6v8r1xQPu3FXyLRp0zh0sovGqNk0A3DYTP73e2eVQyAyTKozMM5CVeiSZWHQ4LI40nkEp5VNL9MZupBkoqv76ATBkPBs8fD7BMIeF7pP8LYcXPSSiR1v35azwZg0uCyam5uZMUNTukMJ1WeYZnezwdzHe9bN9PjidAwcw7LP8+bNA8ByHee2RU62b7857g4E0wCbaYOI2YMB4RUQR1KbIeTurXP4oK69fwcOBLAwaO/rxtja4eJAnat/d4KIDE7liMdZog54DptBycx40+gW6XQza9YsPrcuG9MY6FY4UFnQT3IVBINVAtONHgrT21lr28u2OfWkmwHitau142WtbR9rbXvJwYWBH6Nvi+Fi2xFKzNokAoGgdLr59a9/ndR9U92Rhh4+si7nbc81fOhbzwx/Xd93It/j+28Y+azAULKzs8nPz6e1tZVZs2YB8Xo09AWLRviOgwEOm8ETDywbVv2DRKJLQocCodBvJLq0s4gMTjMD4yxRFbq1C3Nxd8fv9ldUVMQ3vhHcRrZuXeQ+9Ts/NZ3/8nwt7t6h1vqDL+g0uvEaTjy9HrJys5mR1oFpBIj9aBiYWOQZF3BZ+XSQ1/cMJm7yOejfFHHf2NeKvM3pdHKi1eJrP9pLW286pYVOtm8t1lVclFCSaCAwDQuDXmbQygzS6MK0Z9Hjs3A64C+2LeC2jWPbJrq4uJjDhw9TWBh8ndAJOfT5s3uaWTO9hRbnGg4ca4/7mR6NQCAkfGbhzu8fxN0TuTshYMHRRveovZ7IVKaZgXEWfXUV3uSmqd0T5xEGrR3+/q9CB8QXvrOWv7o5n4/efQV7bwvRbW4TcVv5dAfSuMAM3usoZ+On76Rsbh7RV52mAasXz+Kee+6hLXtdfyAQGtPA34nqGERq6zao9F/B0WZodnupOOaK6NgnQdHNjEK/Yw/BSoFrbXv5my3dYx4IAOTm5gIwffr0/tvCP3//8G9K6Tlfw1UlnoSf6bESr620gQWd5/jNb37D2bNnx+y1RaYCBQPjLHq6c8OivP6p1HgHuHitXnt6eti5cydPPvkkHR0dfPHy/L7vDLS5jRU8qQwsMBhYFjy16ziZze9hEHswv+faOSxcuBCXN5PYj85wdh1YBCwrIqDQtG58iZaRQr/vE/7Fl6zT39nOdD70beBbvzrLI8/UxARuixYtYsmSJRz/8E/84N7L4n6mx0q8oNo0De69dg7Nzc08+eSTPP/885w/f37MxiAymakc8QQWr0yxYdB/YLUsi8rKSt544w18Ph+f+tSnaGtr49ChQ2QWLqPRvozTrT5KC53UNHTi6oq/7BAu3ejl83MOs27rF/iXva0xZXJbW1v5ix/vo8U/Le66cGLxEhVjHz8jx8EL31k7jOed2oYqE5xGD9/c0MbnPve5MR1HVb2bv/ynw31VBMyY8sEhzc3N7Nixg2uvvZarrrpqTMcUb4zxSjsHAgE+/PBD/vznP3PhwgVWrlzJ1q1bI2Y4RFKdgoEJLtEB7syZMzzzr29RcS4Pj6OAOfl2pnUeJN+8wA033MDatWsxjIGTbTK15yFAcWYnT/3VZjIyYpMXu7q6eOqpp2jx5rDnwvJguuKw+iJE30bE7aGmNiPNMJ+KQgGhP06lYAOw0Uu63caKBdPHNOfikWdq2F97ISIATPR+7dy5k8rKSr71rW+RnT2yIkhjwe/3c/DgQfbs2YPb7WbVqlVcc801FBQUjPfQRMadgoFJpqurizfffJM/Haij0r8JDKPvhBzAwOB/fGUhly+dFfO46FmG8Epz4Y//4X2XsXZR7MHR5/Pxq1/9iubmZh544AHOuB387f88iitBkuNwhRYsvn/3IjZcpu2G4V7ad44nd52k2zOwXW9gjiUYaCW6Uh8td37/YNzumfFmcrq6uvjJT37C8uXLufXWW0d9LBfL5/Nx4MAB9uzZQ3d3N2vWrGHLli2cvGBGBN5KaJVUoqJDE1h4W+OKWhdtZ+t4/f/8lqamJs7nXk1btxFWo8DANAxcXVbccqwxFebm53DX5tlccLlp7+imONvL321fyZrS2EDAsixefPFF6urq2L59O7Nnz6YwP53//d5ZujyDNbeBoTvbBU8oZcUZLPDsx2o/QXl5ecSsRioLFaXy+SO362Wlm/gCAzMuY12Od29NK2cv9BI9kxOvfLDD4cBut/POO++wdOnSCTU7AGCaJnPnzmXjxo2kp6dz8OBBfv/2Yf65Io1G9TqQFKWthRNU9JV8i9tDRa3FnUtXcc/tW7jv//+EgBV5pRawgglniUQXeTlw4ACFza9y4/rV3HbbbZhm/HzSP/3pT3z00Ufccccd/cVnIP62yEhDBwJ2k/4ryxMnsnn22Wf5wx/+wE03jbwD31QS2k0QvU3P47NiilUN9f6PVFW9mwvu6M6YwU6UiXYIbNy4kYqKCp598c80ZZRz/Fz3hLvadjgcXHnllaxfv57/d8cHWC30/04DVjC19bndDVq2kpSgYGCCij4JWH1X/id8pWRlZSWsTxC90yBceP5BQXov2W37uP7yjWzbti3hlXhojfX6669nxYoVEd/bvrWYA3WuQeobDd0r4ZoV0/pvWbBgATfffDM7d+5k9uzZ6m5I/N0EAQtsBN/v4bz/IzFQ5yA878Mihwt8967yhDsEbDYbC1dfyw93uTGMYM2BiVoVMD09nQueDGB4wbXIVKKthRNUopNA6OA0WH2CeEIH9YpjLprdXo42w4eBTcxbflXCQKCuro5XXnmF9evXc+WVV8Z8P7QtMi9zJDFl8DXbu/0Rt27cuJE1a9bw8ssv09CgbYaJtpcunu28JHv5Y+scBN85Oz68LbWDPvatOhtg9H+OJ/L20WS38YpMVQoGJqihDk6D1SeIJ3a6Odj2+Lm3GuPe//z58zz//POUlpbymc98JmHAUF6Sw99/ZQm2hJ+kUInkeAwO1Ubu+zYMg1tuuYXZs2fz29/+lo6OjkRPnBISBX3f/Mz8Yb3/IxUvKLUw6CSHyspuya7GAAAYTElEQVRKBss/Pn6uO2b76US92h5ucC0y1Wg3wQQ1VI2B4UomGzy0jFB7thN7bxMr887zna/fRXr60AlUVfVuduw8SfWZzmGMyiITN9l2H1ZmYcSastvt5uc//znTpk3jnnvuwWazDeN5p5ZE20svhUTNiPKsJlbbK3jooYcoLo5/wkz02Im6fXQ8f88i403BwAQ2mgenoQ7M0cEHWJhGsLHMcNZ3w8fs6vLhjW5oHyG8wVJsIZtTp07xy1/+knXr1nHLLbcM/4eWi5YoKL0yu4oM7znWrVvHzTffPKzHjnU1QhEZPm0tnMAG6y8/XLML0nm9srl/f3rowPzIF0qZlZfOP750gobW3rBgwcAwhr9VLXzMH9V30NjWO0iXhNAUcnCNIXS/lr7XzMvLIycnh927d5OTk5PwClTGTvSW1BXzcnjkC6U4ehpob2/n/PnzbNq0Ke4yUqLHKhAQmXg0M5BCBptpGE5RmeG8XvRsQ/T2tHg7DvKcdl787rr+r1999VU++OAD7rvvvoitjTJ+Kioq+P3vf8+FQB7ewi2cdTPhtg6KSPK0tTCFRNcZCDeSrYrJvF6oxW3NmY6+aoUDFfMSBQg+X2RVw5tvvrk/ofGhhx7q754n42f+/PlcCOQFq2A2eLAwJuzWQREZmnYTCDB22dShAOTnD85jrW0vy4vs/dnvWenBrWeRDHo9vRw9erT/FpvNxp133olpmjz//PMxwYJceue6MvjIv75vr0jwPZzIWwdFZHAKBgQY/lbF4aqqqqIws4cffW01L3xnLY/dW8aKeTlxQgHINdz85je/obFxYNtjdnY2X/rSlzh37hyvvvrqoFvaZGxV1bt5+J+P4MVBdDA3UbcOisjgFAxIv9BVfOhkPVqBgGVZVFVVsXz5cuz2gZWp7VuLCVZADp7Ygz3o4Zu3XgbA008/TVtbW//9i4uLufXWW6msrGT//v2jMjYZvlDNinj5HirUIzI5KRiQMXfy5ElcLherVq2KuL28JIfHv7qUaUYzuRn0z0Z8euNi7rjjDnw+H08++SRdXQNXmqtWrWLTpk289tprnDhx4hL/JALxCxGFqFCPyOSkBEIZc4cOHSIvL4/58+fHfG/ZXCerbBV8/tbPs2rVQHLj8uXLuemmm3j99df52c9+xre+9S0cDgcAN9xwA+fOnePJ37xO76zNnGrxKpP9EkrUoCov084/bF+irYMik5BmBmRM+Xw+Pv7444RtiXt7ewHiVjnctGkTV1xxBW63m1/84hf4/cE+BqZpsnzTNvZ1raHyRCfNbi8Vx1w8/HQ1VfXusf2BJG6yqc1EgYDIJKZgQMbU0aNH6e3tjVkiCBksGIDgtsKlS5fS1NTEs88+2584+MJ7rRiGoUz2cTDWyaYiculpmUDGRKjA0ccn2si1b+ZsVwYz49xvqGAA4K677uLpp5/m5MmT/Mu//At33HHHkF0dZWwNVrNCRCYfzQzIqAtvl9zps3O2JyfuFH5VvZv/9tI53vVdy/dfbU44xW8YBvfeey/Tpk3j8OHDvP7662o5KyIyihQMyKiLbpdsYcRM4YcChsMNHjxkcOhk96Br/na7nQcffBCn08m+fftYPb0lYt0aAoAy2UVERkLBgIy6ZKbwowOGZNb8MzMzefDBB3E4HBw98Af+ny3B9eq8DCighSsyD7JiXvZY/EgiIlOaggEZdclM4Y90zb+goICvfvWrmKbJobf/D9cuCbBkTg6d5HCkay4v7z40Wj+GiEjKUDAgoy6ZPgcXs+ZfVFTEl7/8ZVxWPt/f6eKDOjceMmhjOk/8sYdDJ1yj+eOIiEx5CgZk1CWz9exiGyMtWbKErumfwoKwGQYTC4sdrxwd5JEiIhLNsNTxRcZJaPth3bkuSgud3H1t8bD2qt/5/YM0u70xt2eYvbz6vc2YpmJdEZFkKBiQSeuRZ2qoOBZdFtfCIIAzzYbdZqNsTrbKFIuIDEGXTjJpRS81hLofWtjo9Fi4uv3sr1WZYhGRoSgYkEkrPDfBYQtFBJF/W6hMsYjIUBQMyKQWKoub57QzEAhEUpliEZHBKRiQKWHwLYkWc6epDYeISCIKBmRK2L518C2JjsY/U1VVdYlGIyIyuehySaaE8pIcls3JovpMZ8z3ls7JYtOsIn73u99x8uRJ5izbzG/2nOvf0qjdBiKS6rS1UKaMUPOjgZ4HFgbw44eWs2JeNgcOHOB//X4vH3g3YhgGAWug2NHj9y9TQCAiKUvLBDJlRFc+LJtlsMa2l3zThWEYbNiwAe/sLRFVC5NpkCQiMtVpZkCmrEAgwC9+8QsMw+DBBx/ENM2EVQtn5Dh44Ttrx2GUMlX9/W+P8seP2mJuz0o3eeiGeXzuisJxGJVIfJoZkCnLNE0+85nP0NjYyMGDB4GLa5AkkoyX9p3jur99P24gANDZG+CJV+p5ad+5SzwykcQUDMiUNm/ePFavXs2bb75Jd3f3RTdIEhnMS/vO8cQr9SQz3fqz10+N+XhEkqVgQKa866+/nkAgwB//+MekOiqKjNQvdp1O+r493sAYjkRkeLS1UKa87Oxstm7dyq5du1i3bh3lJUU8dm/ZeA9LpqBOj3+8hyAyIpoZkJSwceNGZsyYwc6dO1HOrIyV+AWxRSY+BQOSEmw2G9u2bePUqVMcOnRovIcjU9T8mRlJ39emo69MIPo4SspYuHAhK1as4A9/+AO9vb3jPRyZgv795xYmPTtwWXHWmI5FZDgUDEhKufHGG/F4POzevXu8hyJTUHlJDj96cBm5mbZB72cY8M1t8y/RqESGpmBAUkpubi5btmxh3759nD9/fryHI1NQeUkOL/3H9dx1ZWFMTQu7abBsbhY/flA7WGRiUQVCSTk+n48dO3aQl5fH3XffjWEo7UtEUptmBiTl2O12tm3bxvHjxzl8+PB4D0dEZNwpGJCUtHjxYsrKyti1axcej2e8hyMiMq4UDEjKuummm+js7GTPnj3jPRQRkXGlYEBSVkFBAVdddRXvvvsuLS0t4z0cEZFxo2BAUtrmzZvJzc3ltddeU2VCEUlZCgYkpTkcDm666SZqa2v55JNPxns4IiLjQsGApLyysjIWL17Ma6+9htfrHe/hiIhccqozIAK0tLTw3/6/X+PK3YDLm0FpoZPtW4spL1FhGBGZ+tTCWARo6EjjoP9yrFYL8NLa4eJAnYvH71+mgEBEpjwtE4gAz+1uwMAg9F8iYIFlBW8XEZnqFAyIAHXnughELZgFrODtIiJTnYIBEaC00BnTVMY0greLiEx1CgZEgO1biwn2KwpNDwQAuPva4vEakojIJaNgQIRg29kf3LOEAppJo4cCWrhu5idqMysiKUG7CUT6zMrsZrW9AoDc3FzaW9s5d+4chYWF4zwyEZGxpZkBkT7nz58HwDAMFi9eDMCuXbvGc0giIpeEggGRPufPn6egoIDMzExyc3PJyMigrq6Opqam8R6aiMiYUjAg0uf8+fMEsudxoHcNP/hzGkfTrsZl5bN79+7xHpqIyJhSOWJJeVX1bp7b3UBlbRMeHH23GpgGBCyLHC7gyJrB4qJslSgWkSlJwYCktKp6Nw8/XY1l0Vd0yALCCw6E/nsEgwPDQCWKRWTK0TKBpLTndjeEBQIQGQiEvg7ephLFIjJVKRiQlBavDPFgVKJYRKYiBQOS0uKVIR6MShSLyFSkYEBSWqgMcSggCMUFeU47y+ZmYYZ9DywClkVNQwePPFNDVb17HEYsIjL6lEAoKS+0m6DuXBelhU7uvra4vwxx6Hs1DR24unwEEwpNJROKyJSiYEAkCY88U0PFMVdEfoFpwIZFeTx2b9n4DUxEZBRomUAkCfESDZVMKCJThYIBkSTESzRUMqGITBUKBkSSEEo0NPqKEBlYGAbcfW3xOI9MROTiKWdAJElV9W5+9LuPON3mJcfs5D/ft5nyBbnjPSwRkYummQGRJJWX5PDVywNck/kOK433yaF1vIckIjIq7OM9gIkienuZGtJIPGlpafh8PnJzczl8+DALFiwY7yGJiFy0lAgG4p3ogf7bZuamUdPQCQQzxFs7XByoc2kPucRwOBwEAgHKysqorq5m27ZtGMYwShiKiExAUz5nINSVLhAY6D8Xa6AzXYj2kEu0qno3P3v1E2obO5kzI4vm5mbszuksKc7RTJKITGpTMhgInwnw+ixc3b6oe8Se/OOZkePghe+sHZMxyuQS2+oYQu2OVY1QRCa7KZdAGDpo7z/motntxdXtjXOvgba0iWgPuYSLbXUMam0sIlPFlAsGntvd0H9wDjIYbIEgntCVnvaQS8hQrY5VjVBEJrMpl0BYd66L2IWP5BO8QrkC4c1qREoLnbR2uBIGBJpJEpHJbMrNDFzsATmUNKhAQMJFtzoOp5kkEZnsptzMwJVL83m/1jXix+uALvGUl+Tw+P3LBraj5qWBBU3tnpi2xyIik82U203wyDM1Iw4GHr6thNs2Fo7yiERERCa2KTczkEwSlwHMn5GBM8NGk0tXdiIiktqmXDAwWKJXaG33iQeWpdSJX6WWRWSshI4vNWc6AAMMKCvO0nFmkplyywTRxWEMI7jNMM9po6w4O+VmAKJ/HyqQIyKj5aV953jilfqY20PJtjrOTB5TLhiA2CvhVAsAwj3yTA0VxyJnSlRqWUQuVqJAIFxepp2//8oSBQSTwJQMBmTAnd8/SLM7tgqjSi2LyEhV1bv5d/9UnfT9v/3ZEj53hZKzJ7IpV2dABvh8PnLtXUAg4nYVyBGRizHc0ttPvFJPVb17jEYjo2HKJRCmoqp6Nzt2nqT2bHAnxeIiJ1++IpvDe3eS1+7B4HLAwgprqqN6CiIyUiMpvb1j50l++vUVYzAaGQ0KBiahqno3O147SW1jF5Zl4Yu88Kf6dAffO91BmlFOtuFi67x2OtLnc/xcd8rnUIjIxSstdNLS4YpT+j2x6jOdVNW7lT8wQSlnYJKpqnfz7aeqB22aExRsr2tgYZqGsnpFZNSEdilFNoUbWl6mHYfd0BbnCUg5A5NMqCvj0IJF9C0MtdcVkVEVKs+9cVEeM3IclMzMSOpxrm4fzW4vFcdcPPx0tfIIJhAtE0wyNQ2dw36M2utKMqKXn+ymiS8QwDAMFhc5+cbN83UlJ/3KS3IitieHb+nu9vjp7I1av+ybrYS+micEL1K0xXli0DLBJPPZf6iI859scKorIEOpqnfzl09VDznlqy1ikozoYmfhgUA4h83gh19dqiBzAtAywSTT4x1+IKDdAzKUHa+dTGrtV1vEJBmhZYQNfcsIORk2ggFBJK/f0nLBBKFgYJIxjdjoOhG7abBhUV7K9WKQ4TvakPwy0o6dJ8dwJDJVhJYRXvjOWv7r9jJspkG8gEA5TRODgoFJZvHs5IoFmQY8/sBSHru3TIGADMmfXFYqQH89C5FkhWYKHLbYU45ymiYGBQOTzDe2zcccYnJg2ZwsfvSgZgMkeaaOBDLGyktyWLswN+b4pYqoE4N2E0wy5SU5PPHAsmDL0IZOfP4APd4ApmGweLaTb35mvoIAGbbLirKoPpPcTpXFRTpwy8hs31rMgToXJpFdVJXTNP60m0BEhtV45icPadZJRk5dZScmBQMiAiTXkvbh20q4bePoby2MPkGoOp3IpaVgQET6RRceSrfbsNuhrDh7zK7govekh6aOVUJb5NJRMCATmq4Yp75Hnqmh4pgrosy2CmWJXFoKBmRMjMZJXFeMqeH2//4Bri5f3O85bMFSyDetmcG7Ry4oKBQZIwoGZNTFO4ljwGNfKWVpcQaBQIBAIIDf7+//d/TXfr+fx3e5qG70jcoVo2YYJqaBxMXocrXhXwc/AMEenAoKRcaCggEZdfGmfSFAAS2stlck/Tzv+q7FQ2w3tOy0AD+5ezZz5szhSENP/xo3BIsyfWNbZEMdzTBMXI88U8P7ta4k7hkZLBgGbNQygsioUZ0BGVXt7e18XN9KwLJFfcckkDmLL3/xy5imic1mwzTNQf/d/rszVJ7ojAkqHJ4WnnnmdVxWAZX+K/qvGwGqz3Tyl/9UzV/flE1xtocLFy7wy/0mgUA6ljqmTTg1ZzqSvGdkpRrLGlkHTxGJT8GAjFj41HvJzHSWZzfSUPMead61dDKd8AKXpgFlc3IpK0v+5Hvfp208/HQ1WAHAxDTAsgwW2o6Rm5vLobZFEYFAiIXFP71+vH8WotF3bX8gEBKwoOaMC6/Xi8PhGNkvQC6aL+kyyHG63mlOU2TUKBiQEYmeem92ezhANjlsZLZ5hguB6RjGxVUZC9Uzf/SpPfjSZ7B0bh7/5upZNNe5ee+99+gy8sCKV5vZoNvIDf7LMJjp9NHQTURXPgMLs7uZH/zgByxfvpzy8nIWLFiAqbq8l1SvN9kzepz32VA0IDJaFAzIiOx47ST+iG7KwYO1m3zcgTzu/lQuNU22i64yVl6SwxrHAW6+8WY2buybVSi9nvLycj78eTU9HgexJwqLaRkebrnxFpYvX86xJn8wcCE8ODH46zvX4G3J5tChQ1RWVpKTk0N5eTmrVq2isLBQSYeXwDCacEY+jmDtAxEZHQoGZNiq6t1Un060Xhs8ulectPjp1y9+Pb6q3k2ldx0VuyyWHq5h+9ZiVs7Pxm6343Rm0uKJfkRwOvm72y/vDz7KS4LJgvFLoM5hy5YtnDlzhkOHDnHw4EHeffddzPxSdrdcBhgELGjtcHGgzqWkw1G2eLYzqZ4IoeY2qmcvMja0m0CGLZkMcIfNYNejGy/qdUJLEf5AeM6Axebcj7B3neYd36fxkhbzuDynnRe/u25Er+n3+6mtreW/vtjIqY4MovMeVAhndFXVu/n2U9UMljrw8G0lLJzlVD17kTGkmQEZtkvVe/y53Q196/zBE3LACs47nDHLuOPTn2L36x3E23JWVpw14te02WyUlZXRbXQB3ojvqe/66IvownmmA1/AotdrYRjEdOFUECYydhQMyLCVFjpp7YiuIxBpNNrc1p3rinkNCwO3P4u3jtkw+r6O+L41OtPH8X5G9V0fG+UlOTrRi4wzpU7LsG3fWoxhDKzjRjMN+Oa2+Rf9OqWFzpjXCJ2Q6851xd1Zlue0jcr0cezPGMCyLL6yZfZFP7eIyERje/TRRx8d70HI5FKYn87a0lya2730egOUzMxkZl4aWLByfg6PfLF0VE7IswvSeb2yuW8GYCBx7M4rZ7Pvkwt4/QGidxKUznJyy4ZZF/3a4T9jd6+PDG8Tc83j7D0Bv9rTzIHadmYXpFOYn37RryUiMt6UQCgTWvT2vs3L8vnxq/VR2xoHLJubxU//YsWoj+O7T7zI3paivq8MDMA0VdJYRKYG5QzIhBa9nvzIMzUMFr42tPaO+hiq6t3sbSkmPFnRAgIBlTQWkalBOQMyqcRLKowwBvNcz+1u6PtXdNlj7S4QkalBwYBMKvGSCiOMQYnawU742l0gIlOBggGZVEJZ/vGMVYna0kJnwtdUFTwRmQoUDMikEmpetGxuZGEh0wgm9I3FyXn71uL+nQzhHr6tRFXwRGRK0G4CmbSidxqMZYnaS/laIiKXmoIBERGRFKdlAhERkRSnOgMiE0xoSaKmobNvq6RF2Zxstm8tVoEjERkTWiYQmUBCbZsDFhHFlVTxUETGkpYJRCaQUNvm6BDdInjbQAEkEZHRo2BAZAIZrMJiwFLFQxEZG8oZEBlH0VsWszJsNLu9ce8bat8sIjLaFAyIjJNQfoBlBa/6W9yuQVorWAQsA3ePj6p6t/IGRGRUaZlAZJyE8gNCywJW2J+J1Jzp5OGnq6mqd4/18EQkhSgYEBkn8fMDEnVhCt4e2mWgREIRGU0KBkTGyZwCGxAY9uOUSCgio005AyKXUChh8NjZTvzdbUA2pkHCHQTxKJFQREabggGRSyQ6YTAYCBiUFWfR1O5hZm4aR850Dpo1EOqeqNbJIjKaFAyIXCLRCYOhPICcTDs//foKIKwU8ZmO4PcNKC5IBwOaXB51TBSRMaFgQOQSiZcwGL3+X16Sw2P3ll3ikYlIqlMCocglUlroxIzaLKD1fxGZCBQMiFwi27cWYxj0BwRa/xeRiUJdC0Uuoejyw1r/F5GJQMGAiIhIitMygYiISIpTMCAiIpLiFAyIiIikOAUDIiIiKU7BgIiISIpTMCAiIpLiFAyIiIikOAUDIiIiKU7BgIiISIpTMCAiIpLiFAyIiIikOAUDIiIiKU7BgIiISIpTMCAiIpLiFAyIiIikOAUDIiIiKU7BgIiISIpTMCAiIpLiFAyIiIikOAUDIiIiKU7BgIiISIpTMCAiIpLi/i84dLnRem4wHQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -3552,7 +3704,7 @@ }, { "cell_type": "code", - "execution_count": 135, + "execution_count": 128, "metadata": {}, "outputs": [], "source": [ @@ -3561,7 +3713,7 @@ }, { "cell_type": "code", - "execution_count": 136, + "execution_count": 129, "metadata": {}, "outputs": [], "source": [ @@ -3570,7 +3722,7 @@ }, { "cell_type": "code", - "execution_count": 137, + "execution_count": 130, "metadata": {}, "outputs": [], "source": [ @@ -3579,7 +3731,7 @@ }, { "cell_type": "code", - "execution_count": 138, + "execution_count": 131, "metadata": {}, "outputs": [], "source": [ @@ -3591,7 +3743,7 @@ }, { "cell_type": "code", - "execution_count": 139, + "execution_count": 132, "metadata": {}, "outputs": [], "source": [ @@ -3603,7 +3755,7 @@ }, { "cell_type": "code", - "execution_count": 140, + "execution_count": 133, "metadata": {}, "outputs": [], "source": [ @@ -3612,29 +3764,27 @@ }, { "cell_type": "code", - "execution_count": 141, + "execution_count": 134, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 141, + "execution_count": 134, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD5CAYAAADcDXXiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAASl0lEQVR4nO3df6zd9X3f8eermFCGMyCBXXnGqrPW3UTLCskdYaq0XYe1JUSKqZpGRDRxUib3B3SdyqbSblK6Zkh0LUEt7bK6I43T0jqUJrJFSVtKuIv4A1LMXJsfi+KkjrDlYCUkbm6SMjl774/7BR0u1z7nnnPPPfhzng/p6H6/n+/n+/2+Px+Z1/nme77nJFWFJKkt3zHpAiRJq89wl6QGGe6S1CDDXZIaZLhLUoMMd0lq0Lp+HZJ8J/Bp4Jyu/31V9f4kHwH+NXCi6/reqtqfJMBvAtcC3+zanzjdOS666KLavHnzUAP4xje+wXnnnTfUvq1wDpyDaR8/TOcc7Nu378tVdfFy2/qGO/AC8JaqWkhyNvBIkk922/5jVd23pP9bgS3d683Ah7q/p7R582Yef/zxAUp5pfn5eebm5obatxXOgXMw7eOH6ZyDJF881ba+t2Vq0UK3enb3Ot03n7YBH+32exS4IMmGlRQsSRrNQPfck5yVZD9wHHiwqh7rNt2W5ECSO5Oc07VtBJ7t2f1I1yZJWiNZyc8PJLkA+ATwc8BXgC8BrwF2Ap+vql9Ncj9we1U90u3zEPCLVfX4kmPtAHYAzMzMvGn37t1DDWBhYYH169cPtW8rnAPnYNrHD9M5B1u3bt1XVbPLbRvknvtLquprSR4Grqmq3+iaX0jy+8B/6NaPApt6druka1t6rJ0svikwOztbw94rm8b7bEs5B87BtI8fnIOl+t6WSXJxd8VOknOBHwL+z4v30bunY64Dnux22Qu8J4uuAk5U1bEx1C5JOoVBrtw3ALuSnMXim8G9VXV/kk8luRgIsB/46a7/Ayw+BnmIxUch37fqVUuSTqtvuFfVAeCKZdrfcor+Bdw0emmSpGH5DVVJapDhLkkNWtHTMq9GB4+e4L23/tlEzn349rdN5LyS1I9X7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KD+oZ7ku9M8pkkf5PkqST/pWt/Q5LHkhxK8rEkr+naz+nWD3XbN495DJKkJQa5cn8BeEtV/QBwOXBNkquAXwPurKrvAb4K3Nj1vxH4atd+Z9dPkrSG+oZ7LVroVs/uXgW8Bbiva98FXNctb+vW6bZfnSSrVbAkqb+B7rknOSvJfuA48CDweeBrVXWy63IE2NgtbwSeBei2nwBev4o1S5L6WDdIp6r6NnB5kguATwD/bNQTJ9kB7ACYmZlhfn5+qOPMnAu3XHayf8cxGLbm1bawsPCqqWVSpn0Opn384BwsNVC4v6iqvpbkYeBfAhckWdddnV8CHO26HQU2AUeSrAPOB76yzLF2AjsBZmdna25ubqgB3HXPHu44uKJhrJrDN8xN5LxLzc/PM+z8tWLa52Daxw/OwVKDPC1zcXfFTpJzgR8CngEeBt7RddsO7OmW93brdNs/VVW1ijVLkvoY5JJ3A7AryVksvhncW1X3J3ka2J3kvwL/G7i763838AdJDgHPA9ePoW5J0mn0DfeqOgBcsUz7F4Arl2n/e+DHV6U6SdJQ/IaqJDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoP6hnuSTUkeTvJ0kqeS/HzX/itJjibZ372u7dnnl5IcSvLZJD8yzgFIkl5p3QB9TgK3VNUTSV4L7EvyYLftzqr6jd7OSS4Frge+D/jHwF8l+d6q+vZqFi5JOrW+V+5VdayqnuiWvw48A2w8zS7bgN1V9UJV/S1wCLhyNYqVJA1mRffck2wGrgAe65puTnIgyYeTXNi1bQSe7dntCKd/M5AkrbJU1WAdk/XA/wJuq6qPJ5kBvgwU8AFgQ1X9ZJLfBh6tqj/s9rsb+GRV3bfkeDuAHQAzMzNv2r1791ADOP78CZ771lC7juyyjedP5sRLLCwssH79+kmXMVHTPgfTPn6YzjnYunXrvqqaXW7bIPfcSXI28KfAPVX1cYCqeq5n++8B93erR4FNPbtf0rW9TFXtBHYCzM7O1tzc3CClvMJd9+zhjoMDDWPVHb5hbiLnXWp+fp5h568V0z4H0z5+cA6WGuRpmQB3A89U1Qd72jf0dPtR4MlueS9wfZJzkrwB2AJ8ZvVKliT1M8gl7w8C7wYOJtnftf0y8K4kl7N4W+Yw8FMAVfVUknuBp1l80uYmn5SRpLXVN9yr6hEgy2x64DT73AbcNkJdkqQR+A1VSWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUoL7hnmRTkoeTPJ3kqSQ/37W/LsmDST7X/b2wa0+S30pyKMmBJG8c9yAkSS83yJX7SeCWqroUuAq4KcmlwK3AQ1W1BXioWwd4K7Cle+0APrTqVUuSTqtvuFfVsap6olv+OvAMsBHYBuzquu0CruuWtwEfrUWPAhck2bDahUuSTm1F99yTbAauAB4DZqrqWLfpS8BMt7wReLZntyNdmyRpjawbtGOS9cCfAv++qv4uyUvbqqqS1EpOnGQHi7dtmJmZYX5+fiW7v2TmXLjlspND7TuqYWtebQsLC6+aWiZl2udg2scPzsFSA4V7krNZDPZ7qurjXfNzSTZU1bHutsvxrv0osKln90u6tpepqp3AToDZ2dmam5sbagB33bOHOw4O/B61qg7fMDeR8y41Pz/PsPPXimmfg2kfPzgHSw3ytEyAu4FnquqDPZv2Atu75e3Anp7293RPzVwFnOi5fSNJWgODXPL+IPBu4GCS/V3bLwO3A/cmuRH4IvDObtsDwLXAIeCbwPtWs2BJUn99w72qHgFyis1XL9O/gJtGrEuSNAK/oSpJDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUoL7hnuTDSY4nebKn7VeSHE2yv3td27Ptl5IcSvLZJD8yrsIlSac2yJX7R4Brlmm/s6ou714PACS5FLge+L5un/+e5KzVKlaSNJi+4V5VnwaeH/B424DdVfVCVf0tcAi4coT6JElDGOWe+81JDnS3bS7s2jYCz/b0OdK1SZLWUKqqf6dkM3B/VX1/tz4DfBko4APAhqr6ySS/DTxaVX/Y9bsb+GRV3bfMMXcAOwBmZmbetHv37qEGcPz5Ezz3raF2HdllG8+fzImXWFhYYP369ZMuY6KmfQ6mffwwnXOwdevWfVU1u9y2dcMcsKqee3E5ye8B93erR4FNPV0v6dqWO8ZOYCfA7Oxszc3NDVMKd92zhzsODjWMkR2+YW4i511qfn6eYeevFdM+B9M+fnAOlhrqtkySDT2rPwq8+CTNXuD6JOckeQOwBfjMaCVKklaq7yVvkj8G5oCLkhwB3g/MJbmcxdsyh4GfAqiqp5LcCzwNnARuqqpvj6VySdIp9Q33qnrXMs13n6b/bcBtoxQlSRqN31CVpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkN6hvuST6c5HiSJ3vaXpfkwSSf6/5e2LUnyW8lOZTkQJI3jrN4SdLyBrly/whwzZK2W4GHqmoL8FC3DvBWYEv32gF8aHXKlCStRN9wr6pPA88vad4G7OqWdwHX9bR/tBY9ClyQZMMq1SpJGtCw99xnqupYt/wlYKZb3gg829PvSNcmSVpD60Y9QFVVklrpfkl2sHjrhpmZGebn54c6/8y5cMtlJ4fad1TD1rzaFhYWXjW1TMq0z8G0jx+cg6WGDffnkmyoqmPdbZfjXftRYFNPv0u6tleoqp3AToDZ2dmam5sbqpC77tnDHQdHfo8ayuEb5iZy3qXm5+cZdv5aMe1zMO3jB+dgqWFvy+wFtnfL24E9Pe3v6Z6auQo40XP7RpK0Rvpe8ib5Y2AOuCjJEeD9wO3AvUluBL4IvLPr/gBwLXAI+CbwvjHULEnqo2+4V9W7TrHp6mX6FnDTqEVJkkbjN1QlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGrRulJ2THAa+DnwbOFlVs0leB3wM2AwcBt5ZVV8drUxJ0kqsxpX71qq6vKpmu/VbgYeqagvwULcuSVpD47gtsw3Y1S3vAq4bwzkkSacxargX8JdJ9iXZ0bXNVNWxbvlLwMyI55AkrVCqavidk41VdTTJPwIeBH4O2FtVF/T0+WpVXbjMvjuAHQAzMzNv2r1791A1HH/+BM99a6hdR3bZxvMnc+IlFhYWWL9+/aTLmKhpn4NpHz9M5xxs3bp1X88t8ZcZ6QPVqjra/T2e5BPAlcBzSTZU1bEkG4Djp9h3J7ATYHZ2tubm5oaq4a579nDHwZGGMbTDN8xN5LxLzc/PM+z8tWLa52Daxw/OwVJD35ZJcl6S1764DPww8CSwF9jeddsO7Bm1SEnSyoxyyTsDfCLJi8f5o6r68yR/Ddyb5Ebgi8A7Ry9TkrQSQ4d7VX0B+IFl2r8CXD1KUZKk0fgNVUlqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUoMn8XxhJK7T51j877fZbLjvJe/v0Gdbh2982luNK42S4n4GWBt04g20pg046M3hbRpIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDVobI9CJrkG+E3gLOB/VtXt4zrXpPR79rpF0zhm6Uw0liv3JGcBvwO8FbgUeFeSS8dxLknSK43ryv1K4FBVfQEgyW5gG/D0mM4nNWcl/ytpNb/I5hfV2jCucN8IPNuzfgR485jOJWkVTfLW26TeWFocc6pq9Q+avAO4pqr+bbf+buDNVXVzT58dwI5u9Z8Cnx3ydBcBXx6h3BY4B87BtI8fpnMOvquqLl5uw7iu3I8Cm3rWL+naXlJVO4Gdo54oyeNVNTvqcc5kzoFzMO3jB+dgqXE9CvnXwJYkb0jyGuB6YO+YziVJWmIsV+5VdTLJzcBfsPgo5Ier6qlxnEuS9Epje869qh4AHhjX8XuMfGunAc6BczDt4wfn4GXG8oGqJGmy/PkBSWrQGRPuSa5J8tkkh5Lcusz2c5J8rNv+WJLNEyhzrAaYg3+V5IkkJ7vHUZsywPh/IcnTSQ4keSjJd02iznEaYA5+OsnBJPuTPNLaN8P7jb+n348lqSTT+/RMVb3qXyx+KPt54J8ArwH+Brh0SZ+fBf5Ht3w98LFJ1z2BOdgM/HPgo8A7Jl3zBMa/FfgH3fLPTOm/gX/Ys/x24M8nXfdajr/r91rg08CjwOyk657U60y5cn/p5wyq6v8CL/6cQa9twK5u+T7g6iRZwxrHre8cVNXhqjoA/L9JFDhmg4z/4ar6Zrf6KIvfr2jJIHPwdz2r5wEtfag2SA4AfAD4NeDv17K4V5szJdyX+zmDjafqU1UngRPA69ekurUxyBy0bKXjvxH45FgrWnsDzUGSm5J8HvhvwL9bo9rWQt/xJ3kjsKmqpv7nS8+UcJcGluQngFng1yddyyRU1e9U1XcDvwj850nXs1aSfAfwQeCWSdfyanCmhHvfnzPo7ZNkHXA+8JU1qW5tDDIHLRto/En+DfCfgLdX1QtrVNtaWem/gd3AdeMsaI31G/9rge8H5pMcBq4C9k7rh6pnSrgP8nMGe4Ht3fI7gE9V9+lKI6b9Jx36jj/JFcDvshjsxydQ47gNMgdbelbfBnxuDesbt9OOv6pOVNVFVbW5qjaz+LnL26vq8cmUO1lnRLh399Bf/DmDZ4B7q+qpJL+a5O1dt7uB1yc5BPwCcMrHpM5Eg8xBkn+R5Ajw48DvJmnmJx8G/Dfw68B64E+6RwGbevMbcA5uTvJUkv0s/newffmjnXkGHL86fkNVkhp0Rly5S5JWxnCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalB/x8sM624qysr8wAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de2zV9f3H8Vcvp6cWOa1F20OlVJRpqYIQkHL2U4fQC0jw1mRDGaIhsJFCop3K6lALqDBClGmqRIfiNisO4yUyBi11wNQC0tjIbUQIDh2ckklogYbDac/398fSE48tl9Oe0++np89HchLP93z6PZ/vm1afntPSOMuyLAEAABgk3u4NAAAA/BiBAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4iXZvoCsCgYCOHj2q/v37Ky4uzu7tAACAS2BZlk6dOqWsrCzFx1/4NZJeGShHjx5Vdna23dsAAABd8O2332rQoEEXXNMrA6V///6S/neBLpcrouf2+/2qrq5WUVGRHA5HRM+NC2P29mL+9mL+9mH2Pae5uVnZ2dnB/45fSK8MlPa3dVwuV1QCJSUlRS6Xi0/UHsbs7cX87cX87cPse96lfHsG3yQLAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjJNq9AVPdVLFJvraL/zpoU3yzbIrdWwAAIGJ4BQUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABgnrEB59dVXNWLECLlcLrlcLnk8Hv39738PPn727FmVlpZqwIABuvzyy1VSUqLGxsaQcxw5ckRTpkxRSkqKMjIy9Pjjj6u1tTUyVwMAAGJCWIEyaNAgLVu2TPX19dq1a5cmTJigu+++W3v37pUkPfroo/r444+1bt06bd26VUePHtV9990X/Pi2tjZNmTJF586d0+eff6633npLa9as0dNPPx3ZqwIAAL1aYjiLp06dGnL/ueee06uvvqrt27dr0KBBWr16taqqqjRhwgRJ0ptvvqlhw4Zp+/btGjdunKqrq7Vv3z5t3rxZmZmZGjlypJYsWaIFCxaooqJCSUlJkbsyAADQa4UVKD/U1tamdevW6cyZM/J4PKqvr5ff71dBQUFwTW5urgYPHqy6ujqNGzdOdXV1Gj58uDIzM4NriouLNXfuXO3du1ejRo3q9Ll8Pp98Pl/wfnNzsyTJ7/fL7/d39RI61X4+Z7wV0fNGW6TnYIf2a4iFa+mNmL+9mL99mH3PCWfGYQfK7t275fF4dPbsWV1++eX64IMPlJeXp4aGBiUlJSktLS1kfWZmprxeryTJ6/WGxEn74+2Pnc/SpUu1aNGiDserq6uVkpIS7iVckiVjAlE5b7Rs2LDB7i1ETE1Njd1b6NOYv72Yv32YffS1tLRc8tqwA+WGG25QQ0ODmpqa9N5772nmzJnaunVruKcJS3l5ucrKyoL3m5ublZ2draKiIrlcrog+l9/vV01NjZ7aFS9fIC6i546mPRXFdm+h29pnX1hYKIfDYfd2+hzmby/mbx9m33Pa3wG5FGEHSlJSkoYOHSpJGj16tL744gv94Q9/0C9+8QudO3dOJ0+eDHkVpbGxUW63W5Lkdru1c+fOkPO1/5RP+5rOOJ1OOZ3ODscdDkfUPpl8gTj52npPoMTSF1U0/1xxcczfXszfPsw++sKZb7f/HpRAICCfz6fRo0fL4XCotrY2+NiBAwd05MgReTweSZLH49Hu3bt1/Pjx4Jqamhq5XC7l5eV1dysAACBGhPUKSnl5uSZPnqzBgwfr1KlTqqqq0pYtW7Rp0yalpqZq1qxZKisrU3p6ulwul+bPny+Px6Nx48ZJkoqKipSXl6cZM2Zo+fLl8nq9WrhwoUpLSzt9hQQAAPRNYQXK8ePH9eCDD+rYsWNKTU3ViBEjtGnTJhUWFkqSXnzxRcXHx6ukpEQ+n0/FxcV65ZVXgh+fkJCg9evXa+7cufJ4POrXr59mzpypxYsXR/aqAABArxZWoKxevfqCjycnJ6uyslKVlZXnXZOTkxNTP3ECAAAij9/FAwAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4YQXK0qVLdcstt6h///7KyMjQPffcowMHDoSsGT9+vOLi4kJuv/71r0PWHDlyRFOmTFFKSooyMjL0+OOPq7W1tftXAwAAYkJiOIu3bt2q0tJS3XLLLWptbdWTTz6poqIi7du3T/369Quumz17thYvXhy8n5KSEvzntrY2TZkyRW63W59//rmOHTumBx98UA6HQ88//3wELgkAAPR2YQXKxo0bQ+6vWbNGGRkZqq+v1+233x48npKSIrfb3ek5qqurtW/fPm3evFmZmZkaOXKklixZogULFqiiokJJSUlduAwAABBLwgqUH2tqapIkpaenhxx/++239Ze//EVut1tTp07VU089FXwVpa6uTsOHD1dmZmZwfXFxsebOnau9e/dq1KhRHZ7H5/PJ5/MF7zc3N0uS/H6//H5/dy6hg/bzOeOtiJ432iI9Bzu0X0MsXEtvxPztxfztw+x7TjgzjrMsq0v/JQ4EArrrrrt08uRJffrpp8Hjr732mnJycpSVlaWvvvpKCxYs0NixY/X+++9LkubMmaN///vf2rRpU/BjWlpa1K9fP23YsEGTJ0/u8FwVFRVatGhRh+NVVVUhbx8BAABztbS06IEHHlBTU5NcLtcF13b5FZTS0lLt2bMnJE6k/wVIu+HDh2vgwIGaOHGiDh06pOuuu65Lz1VeXq6ysrLg/ebmZmVnZ6uoqOiiFxguv9+vmpoaPbUrXr5AXETPHU17Kort3kK3tc++sLBQDofD7u30OczfXszfPsy+57S/A3IpuhQo8+bN0/r167Vt2zYNGjTogmvz8/MlSQcPHtR1110nt9utnTt3hqxpbGyUpPN+34rT6ZTT6exw3OFwRO2TyReIk6+t9wRKLH1RRfPPFRfH/O3F/O3D7KMvnPmG9WPGlmVp3rx5+uCDD/TJJ59oyJAhF/2YhoYGSdLAgQMlSR6PR7t379bx48eDa2pqauRyuZSXlxfOdgAAQIwK6xWU0tJSVVVV6aOPPlL//v3l9XolSampqbrssst06NAhVVVV6c4779SAAQP01Vdf6dFHH9Xtt9+uESNGSJKKioqUl5enGTNmaPny5fJ6vVq4cKFKS0s7fZUEAAD0PWG9gvLqq6+qqalJ48eP18CBA4O3d999V5KUlJSkzZs3q6ioSLm5ufrNb36jkpISffzxx8FzJCQkaP369UpISJDH49Evf/lLPfjggyF/bwoAAOjbwnoF5WI/8JOdna2tW7de9Dw5OTnasGFDOE8NAAD6EH4XDwAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACME1agLF26VLfccov69++vjIwM3XPPPTpw4EDImrNnz6q0tFQDBgzQ5ZdfrpKSEjU2NoasOXLkiKZMmaKUlBRlZGTo8ccfV2tra/evBgAAxISwAmXr1q0qLS3V9u3bVVNTI7/fr6KiIp05cya45tFHH9XHH3+sdevWaevWrTp69Kjuu+++4ONtbW2aMmWKzp07p88//1xvvfWW1qxZo6effjpyVwUAAHq1xHAWb9y4MeT+mjVrlJGRofr6et1+++1qamrS6tWrVVVVpQkTJkiS3nzzTQ0bNkzbt2/XuHHjVF1drX379mnz5s3KzMzUyJEjtWTJEi1YsEAVFRVKSkqK3NUBAIBeqVvfg9LU1CRJSk9PlyTV19fL7/eroKAguCY3N1eDBw9WXV2dJKmurk7Dhw9XZmZmcE1xcbGam5u1d+/e7mwHAADEiLBeQfmhQCCgRx55RP/3f/+nm266SZLk9XqVlJSktLS0kLWZmZnyer3BNT+Mk/bH2x/rjM/nk8/nC95vbm6WJPn9fvn9/q5eQqfaz+eMtyJ63miL9Bzs0H4NsXAtvRHztxfztw+z7znhzLjLgVJaWqo9e/bo008/7eopLtnSpUu1aNGiDserq6uVkpISledcMiYQlfNGy4YNG+zeQsTU1NTYvYU+jfnbi/nbh9lHX0tLyyWv7VKgzJs3T+vXr9e2bds0aNCg4HG3261z587p5MmTIa+iNDY2yu12B9fs3Lkz5HztP+XTvubHysvLVVZWFrzf3Nys7OxsFRUVyeVydeUSzsvv96umpkZP7YqXLxAX0XNH056KYru30G3tsy8sLJTD4bB7O30O87cX87cPs+857e+AXIqwAsWyLM2fP18ffPCBtmzZoiFDhoQ8Pnr0aDkcDtXW1qqkpESSdODAAR05ckQej0eS5PF49Nxzz+n48ePKyMiQ9L9qdblcysvL6/R5nU6nnE5nh+MOhyNqn0y+QJx8bb0nUGLpiyqaf664OOZvL+ZvH2YffeHMN6xAKS0tVVVVlT766CP1798/+D0jqampuuyyy5SamqpZs2aprKxM6enpcrlcmj9/vjwej8aNGydJKioqUl5enmbMmKHly5fL6/Vq4cKFKi0t7TRCAABA3xNWoLz66quSpPHjx4ccf/PNN/XQQw9Jkl588UXFx8erpKREPp9PxcXFeuWVV4JrExIStH79es2dO1cej0f9+vXTzJkztXjx4u5dCQAAiBlhv8VzMcnJyaqsrFRlZeV51+Tk5MTUN3UCAIDI4nfxAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADBO2IGybds2TZ06VVlZWYqLi9OHH34Y8vhDDz2kuLi4kNukSZNC1pw4cULTp0+Xy+VSWlqaZs2apdOnT3fvSgAAQMwIO1DOnDmjm2++WZWVleddM2nSJB07dix4e+edd0Ienz59uvbu3auamhqtX79e27Zt05w5c8LfPQAAiEmJ4X7A5MmTNXny5AuucTqdcrvdnT62f/9+bdy4UV988YXGjBkjSXr55Zd15513asWKFcrKygp3SwAAIMaEHSiXYsuWLcrIyNAVV1yhCRMm6Nlnn9WAAQMkSXV1dUpLSwvGiSQVFBQoPj5eO3bs0L333tvhfD6fTz6fL3i/ublZkuT3++X3+yO69/bzOeOtiJ432iI9Bzu0X0MsXEtvxPztxfztw+x7TjgzjnigTJo0Sffdd5+GDBmiQ4cO6cknn9TkyZNVV1enhIQEeb1eZWRkhG4iMVHp6enyer2dnnPp0qVatGhRh+PV1dVKSUmJ9CVIkpaMCUTlvNGyYcMGu7cQMTU1NXZvoU9j/vZi/vZh9tHX0tJyyWsjHijTpk0L/vPw4cM1YsQIXXfdddqyZYsmTpzYpXOWl5errKwseL+5uVnZ2dkqKiqSy+Xq9p5/yO/3q6amRk/tipcvEBfRc0fTnopiu7fQbe2zLywslMPhsHs7fQ7ztxfztw+z7znt74Bciqi8xfND1157ra688kodPHhQEydOlNvt1vHjx0PWtLa26sSJE+f9vhWn0ymn09nhuMPhiNonky8QJ19b7wmUWPqiiuafKy6O+duL+duH2UdfOPON+t+D8t133+n777/XwIEDJUkej0cnT55UfX19cM0nn3yiQCCg/Pz8aG8HAAD0AmG/gnL69GkdPHgweP/w4cNqaGhQenq60tPTtWjRIpWUlMjtduvQoUN64oknNHToUBUX/+8tiGHDhmnSpEmaPXu2Vq1aJb/fr3nz5mnatGn8BA8AAJDUhVdQdu3apVGjRmnUqFGSpLKyMo0aNUpPP/20EhIS9NVXX+muu+7S9ddfr1mzZmn06NH65z//GfIWzdtvv63c3FxNnDhRd955p2699Va99tprkbsqAADQq4X9Csr48eNlWef/EdxNmzZd9Bzp6emqqqoK96kBAEAfwe/iAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCcsANl27Ztmjp1qrKyshQXF6cPP/ww5HHLsvT0009r4MCBuuyyy1RQUKCvv/46ZM2JEyc0ffp0uVwupaWladasWTp9+nT3rgQAAMSMsAPlzJkzuvnmm1VZWdnp48uXL9dLL72kVatWaceOHerXr5+Ki4t19uzZ4Jrp06dr7969qqmp0fr167Vt2zbNmTOn61cBAABiSmK4HzB58mRNnjy508csy9LKlSu1cOFC3X333ZKkP/3pT8rMzNSHH36oadOmaf/+/dq4caO++OILjRkzRpL08ssv684779SKFSuUlZXVjcsBAACxIOxAuZDDhw/L6/WqoKAgeCw1NVX5+fmqq6vTtGnTVFdXp7S0tGCcSFJBQYHi4+O1Y8cO3XvvvR3O6/P55PP5gvebm5slSX6/X36/P5KXEDyfM96K6HmjLdJzsEP7NcTCtfRGzN9ezN8+zL7nhDPjiAaK1+uVJGVmZoYcz8zMDD7m9XqVkZERuonERKWnpwfX/NjSpUu1aNGiDserq6uVkpISia13sGRMICrnjZYNGzbYvYWIqampsXsLfRrztxfztw+zj76WlpZLXhvRQImW8vJylZWVBe83NzcrOztbRUVFcrlcEX0uv9+vmpoaPbUrXr5AXETPHU17Kort3kK3tc++sLBQDofD7u30OczfXszfPsy+57S/A3IpIhoobrdbktTY2KiBAwcGjzc2NmrkyJHBNcePHw/5uNbWVp04cSL48T/mdDrldDo7HHc4HFH7ZPIF4uRr6z2BEktfVNH8c8XFMX97MX/7MPvoC2e+Ef17UIYMGSK3263a2trgsebmZu3YsUMej0eS5PF4dPLkSdXX1wfXfPLJJwoEAsrPz4/kdgAAQC8V9isop0+f1sGDB4P3Dx8+rIaGBqWnp2vw4MF65JFH9Oyzz+onP/mJhgwZoqeeekpZWVm65557JEnDhg3TpEmTNHv2bK1atUp+v1/z5s3TtGnT+AkeAAAgqQuBsmvXLt1xxx3B++3fGzJz5kytWbNGTzzxhM6cOaM5c+bo5MmTuvXWW7Vx40YlJycHP+btt9/WvHnzNHHiRMXHx6ukpEQvvfRSBC4HAADEgrADZfz48bKs8/8IblxcnBYvXqzFixefd016erqqqqrCfWoAANBH8Lt4AACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCciAdKRUWF4uLiQm65ubnBx8+ePavS0lINGDBAl19+uUpKStTY2BjpbQAAgF4sKq+g3HjjjTp27Fjw9umnnwYfe/TRR/Xxxx9r3bp12rp1q44ePar77rsvGtsAAAC9VGJUTpqYKLfb3eF4U1OTVq9eraqqKk2YMEGS9Oabb2rYsGHavn27xo0bF43tAACAXiYqr6B8/fXXysrK0rXXXqvp06fryJEjkqT6+nr5/X4VFBQE1+bm5mrw4MGqq6uLxlYAAEAvFPFXUPLz87VmzRrdcMMNOnbsmBYtWqTbbrtNe/bskdfrVVJSktLS0kI+JjMzU16v97zn9Pl88vl8wfvNzc2SJL/fL7/fH9H9t5/PGW9F9LzRFuk52KH9GmLhWnoj5m8v5m8fZt9zwplxnGVZUf0v8cmTJ5WTk6MXXnhBl112mR5++OGQ2JCksWPH6o477tDvf//7Ts9RUVGhRYsWdTheVVWllJSUqOwbAABEVktLix544AE1NTXJ5XJdcG1Uvgflh9LS0nT99dfr4MGDKiws1Llz53Ty5MmQV1EaGxs7/Z6VduXl5SorKwveb25uVnZ2toqKii56geHy+/2qqanRU7vi5QvERfTc0bSnotjuLXRb++wLCwvlcDjs3k6fw/ztxfztw+x7Tvs7IJci6oFy+vRpHTp0SDNmzNDo0aPlcDhUW1urkpISSdKBAwd05MgReTye857D6XTK6XR2OO5wOKL2yeQLxMnX1nsCJZa+qKL554qLY/72Yv72YfbRF858Ix4ojz32mKZOnaqcnBwdPXpUzzzzjBISEnT//fcrNTVVs2bNUllZmdLT0+VyuTR//nx5PB5+ggcAAARFPFC+++473X///fr+++911VVX6dZbb9X27dt11VVXSZJefPFFxcfHq6SkRD6fT8XFxXrllVcivQ0AANCLRTxQ1q5de8HHk5OTVVlZqcrKykg/NQAAiBH8Lh4AAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCcRLs3gL7rmt/+LeS+M8HS8rHSTRWb5GuLs2lXF/bNsil2bwEA+gQCBYhxPw7B8zEpEAlBALzFAwAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6/LBAIw6X+4j0AQPfwCgoAADAOgQIAAIzDWzwxgrceAACxxNZXUCorK3XNNdcoOTlZ+fn52rlzp53bAQAAhrDtFZR3331XZWVlWrVqlfLz87Vy5UoVFxfrwIEDysjIsGtbANAl3X0V05lgaflY6aaKTfK1xUVoVxf2zbIpPfI8fV1vfYXb7s8P215BeeGFFzR79mw9/PDDysvL06pVq5SSkqI33njDri0BAABD2PIKyrlz51RfX6/y8vLgsfj4eBUUFKiurq7Dep/PJ5/PF7zf1NQkSTpx4oT8fn9E9+b3+9XS0qJEf7zaAj3zfzH4n8SApZaWALO3iUnz//777219/q5IbD3TvY+3Yf5DH/trjzxPJO0onxjxc7b/e//777+Xw+GI+Pm7+7lhl2h8HZ46dUqSZFnWxRdbNvjPf/5jSbI+//zzkOOPP/64NXbs2A7rn3nmGUsSN27cuHHjxi0Gbt9+++1FW6FX/BRPeXm5ysrKgvcDgYBOnDihAQMGKC4usv+n0dzcrOzsbH377bdyuVwRPTcujNnbi/nbi/nbh9n3HMuydOrUKWVlZV10rS2BcuWVVyohIUGNjY0hxxsbG+V2uzusdzqdcjqdIcfS0tKiukeXy8Unqk2Yvb2Yv72Yv32Yfc9ITU29pHW2fJNsUlKSRo8erdra2uCxQCCg2tpaeTweO7YEAAAMYttbPGVlZZo5c6bGjBmjsWPHauXKlTpz5owefvhhu7YEAAAMkVBRUVFhxxPfdNNNSktL03PPPacVK1ZIkt5++23dcMMNdmwnREJCgsaPH6/ExF7xLToxhdnbi/nbi/nbh9mbJ86yLuVnfQAAAHoOvywQAAAYh0ABAADGIVAAAIBxCBQAAGCcPhkolZWVuuaaa5ScnKz8/Hzt3LnzguvXrVun3NxcJScna/jw4dqwYUMP7TT2hDP7vXv3qqSkRNdcc43i4uK0cuXKHtxpbApn/q+//rpuu+02XXHFFbriiitUUFBw0a8VXFg483///fc1ZswYpaWlqV+/fho5cqT+/Oc/9+BuY0u4/95vt3btWsXFxZA8MK0AAATaSURBVOmee+6J8g7RQWR+u07vsXbtWispKcl64403rL1791qzZ8+20tLSrMbGxk7Xf/bZZ1ZCQoK1fPlya9++fdbChQsth8Nh7d69u4d33vuFO/udO3dajz32mPXOO+9YbrfbevHFF3t4x7El3Pk/8MADVmVlpfXll19a+/fvtx566CErNTXV+u6773p457Eh3Pn/4x//sN5//31r37591sGDB62VK1daCQkJ1saNG3t4571fuLNvd/jwYevqq6+2brvtNuvuu+/uod2iXZ8LlLFjx1qlpaXB+21tbVZWVpa1dOnSTtf//Oc/t6ZMmRJyLD8/3/rVr34V1X3GonBn/0M5OTkESjd1Z/6WZVmtra1W//79rbfeeitaW4xp3Z2/ZVnWqFGjrIULF0ZjezGtK7NvbW21fvrTn1p//OMfrZkzZxIoNuhTb/GcO3dO9fX1KigoCB6Lj49XQUGB6urqOv2Yurq6kPWSVFxcfN716FxXZo/IicT8W1pa5Pf7lZ6eHq1txqzuzt+yLNXW1urAgQO6/fbbo7nVmNPV2S9evFgZGRmaNWtWT2wTnehTf2Xef//7X7W1tSkzMzPkeGZmpv71r391+jFer7fT9V6vN2r7jEVdmT0iJxLzX7BggbKysjoEOy6uq/NvamrS1VdfLZ/Pp4SEBL3yyisqLCyM9nZjSldm/+mnn2r16tVqaGjoiS3iPPpUoADommXLlmnt2rXasmWLkpOT7d5On9G/f381NDTo9OnTqq2tVVlZma699lqNHz/e7q3FrFOnTmnGjBl6/fXXdeWVV9q9nT6tTwXKlVdeqYSEBDU2NoYcb2xslNvt7vRj3G53WOvRua7MHpHTnfmvWLFCy5Yt0+bNmzVixIhobjNmdXX+8fHxGjp0qCRp5MiR2r9/v5YuXUqghCHc2R86dEjffPONpk6dGjwWCAQkSYmJiTpw4ICuu+666G4akvrYjxknJSVp9OjRqq2tDR4LBAKqra2Vx+Pp9GM8Hk/Iekmqqak573p0riuzR+R0df7Lly/XkiVLtHHjRo0ZM6YnthqTIvX5HwgE5PP5orHFmBXu7HNzc7V79241NDQEb3fddZfuuOMONTQ0KDs7uye337fZ/V26PW3t2rWW0+m01qxZY+3bt8+aM2eOlZaWZnm9XsuyLGvGjBnWb3/72+D6zz77zEpMTLRWrFhh7d+/33rmmWf4MeMuCnf2Pp/P+vLLL60vv/zSGjhwoPXYY49ZX375pfX111/bdQm9WrjzX7ZsmZWUlGS999571rFjx4K3U6dO2XUJvVq483/++eet6upq69ChQ9a+ffusFStWWImJidbrr79u1yX0WuHO/sf4KR579LlAsSzLevnll63BgwdbSUlJ1tixY63t27cHH/vZz35mzZw5M2T9X//6V+v666+3kpKSrBtvvNH629/+1sM7jh3hzP7w4cOWpA63n/3sZz2/8RgRzvxzcnI6nf8zzzzT8xuPEeHM/3e/+501dOhQKzk52briiissj8djrV271oZdx4Zw/73/QwSKPeIsy7LsevUGAACgM33qe1AAAEDvQKAAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwzv8DdcWvrlNHfccAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -3644,7 +3794,7 @@ }, { "cell_type": "code", - "execution_count": 142, + "execution_count": 135, "metadata": {}, "outputs": [ { @@ -3653,20 +3803,18 @@ "Text(0.5, 0, 'Entropy')" ] }, - "execution_count": 142, + "execution_count": 135, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEGCAYAAACevtWaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAASbklEQVR4nO3df5BdZX3H8fdXghZZS7Sx2zSkDZ1JO4NQEXYoVm1vSlsRp0Zbi2EYTAQnjmKrI86I/lFtHWb4o2hHbKFRqKGmrIjaRAQ7NGWltoOaUDT8kJpqqGRoghIDi6iT+O0f9wQum929Z++Pvfc+vl8zd/bc5zzn3Oe7Bz45+9xzz43MRJJUlmcNegCSpN4z3CWpQIa7JBXIcJekAhnuklSgJYMeAMCyZcty1apVHW37xBNPcPzxx/d2QANiLcPJWoaTtcDOnTu/l5kvnG3dUIT7qlWr2LFjR0fbTk1N0Wg0ejugAbGW4WQtw8laICIenGud0zKSVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklSgofiEajd27T3Ihsu+MJDX3nPFqwfyupLUjmfuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqUNtwj4iVEXF7RNwXEfdGxDuq9g9ExN6IuLt6nNuyzXsjYndEPBARr+xnAZKkoy2p0ecQcGlm3hURzwN2RsRt1boPZ+Zft3aOiJOBdcCLgF8G/jUifj0zD/dy4JKkubU9c8/MhzPzrmr5ceB+YMU8m6wFJjPzx5n5HWA3cGYvBitJqicys37niFXAHcApwLuADcBjwA6aZ/cHIuKjwJ2Z+clqm2uBWzPzphn72ghsBBgfHz9jcnKyowL2P3qQfU92tGnXTl1xQk/3Nz09zdjYWE/3OSjWMpysZTh1WsuaNWt2ZubEbOvqTMsAEBFjwGeAd2bmYxFxNfBBIKufVwIX1d1fZm4CNgFMTExko9Gou+kzXLVlK1fuql1GT+25oNHT/U1NTdHp72HYWMtwspbh1I9aal0tExHH0gz2LZn5WYDM3JeZhzPzp8DHeHrqZS+wsmXzE6s2SdIiqXO1TADXAvdn5oda2pe3dHsdcE+1vA1YFxHPiYiTgNXAV3s3ZElSO3XmM14GXAjsioi7q7b3AedHxGk0p2X2AG8ByMx7I+JG4D6aV9pc4pUykrS42oZ7Zn4ZiFlW3TLPNpcDl3cxLklSF/yEqiQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUoLbhHhErI+L2iLgvIu6NiHdU7S+IiNsi4lvVz+dX7RERH4mI3RHxjYg4vd9FSJKeqc6Z+yHg0sw8GTgLuCQiTgYuA7Zn5mpge/Uc4FXA6uqxEbi656OWJM2rbbhn5sOZeVe1/DhwP7ACWAtsrrptBl5bLa8Frs+mO4GlEbG81wOXJM0tMrN+54hVwB3AKcD/ZubSqj2AA5m5NCJuBq7IzC9X67YD78nMHTP2tZHmmT3j4+NnTE5OdlTA/kcPsu/Jjjbt2qkrTujp/qanpxkbG+vpPgfFWoaTtQynTmtZs2bNzsycmG3dkro7iYgx4DPAOzPzsWaeN2VmRkT9fyWa22wCNgFMTExko9FYyOZPuWrLVq7cVbuMntpzQaOn+5uamqLT38OwsZbhZC3DqR+11LpaJiKOpRnsWzLzs1XzviPTLdXP/VX7XmBly+YnVm2SpEVS52qZAK4F7s/MD7Ws2gasr5bXA1tb2t9YXTVzFnAwMx/u4ZglSW3Umc94GXAhsCsi7q7a3gdcAdwYERcDDwLnVetuAc4FdgM/BN7UywFLktprG+7VG6Mxx+qzZ+mfwCVdjkuS1AU/oSpJBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCtQ33iLguIvZHxD0tbR+IiL0RcXf1OLdl3XsjYndEPBARr+zXwCVJc6tz5v4J4JxZ2j+cmadVj1sAIuJkYB3womqbv4uIY3o1WElSPW3DPTPvAB6tub+1wGRm/jgzvwPsBs7sYnySpA5EZrbvFLEKuDkzT6mefwDYADwG7AAuzcwDEfFR4M7M/GTV71rg1sy8aZZ9bgQ2AoyPj58xOTnZUQH7Hz3Ivic72rRrp644oaf7m56eZmxsrKf7HBRrGU7WMpw6rWXNmjU7M3NitnVLOhzL1cAHgax+XglctJAdZOYmYBPAxMRENhqNjgZy1ZatXLmr0zK6s+eCRk/3NzU1Rae/h2FjLcPJWoZTP2rp6GqZzNyXmYcz86fAx3h66mUvsLKl64lVmyRpEXUU7hGxvOXp64AjV9JsA9ZFxHMi4iRgNfDV7oYoSVqotvMZEXED0ACWRcRDwPuBRkScRnNaZg/wFoDMvDcibgTuAw4Bl2Tm4b6MXJI0p7bhnpnnz9J87Tz9Lwcu72ZQkqTu+AlVSSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAbcM9Iq6LiP0RcU9L2wsi4raI+Fb18/lVe0TERyJid0R8IyJO7+fgJUmzq3Pm/gngnBltlwHbM3M1sL16DvAqYHX12Ahc3ZthSpIWom24Z+YdwKMzmtcCm6vlzcBrW9qvz6Y7gaURsbxHY5Uk1dTpnPt4Zj5cLf8fMF4trwC+29LvoapNkrSIlnS7g8zMiMiFbhcRG2lO3TA+Ps7U1FRHrz9+HFx66qGOtu1Wp2Oey/T0dM/3OSjWMpysZTj1o5ZOw31fRCzPzIeraZf9VfteYGVLvxOrtqNk5iZgE8DExEQ2Go2OBnLVlq1cuavrf6M6sueCRk/3NzU1Rae/h2FjLcPJWoZTP2rpdFpmG7C+Wl4PbG1pf2N11cxZwMGW6RtJ0iJpe8obETcADWBZRDwEvB+4ArgxIi4GHgTOq7rfApwL7AZ+CLypD2OWJLXRNtwz8/w5Vp09S98ELul2UJKk7vgJVUkqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSrQYL5ZWl1ZddkXBvbae6549cBeW1J9nrlLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKlBXtx+IiD3A48Bh4FBmTkTEC4BPAauAPcB5mXmgu2FKkhaiF2fuazLztMycqJ5fBmzPzNXA9uq5JGkR9WNaZi2wuVreDLy2D68hSZpHZGbnG0d8BzgAJPD3mbkpIn6QmUur9QEcOPJ8xrYbgY0A4+PjZ0xOTnY0hv2PHmTfk52Nv1unrjihp/ubnp5mbGysbb9dew/29HUXom7NdWsZBdYynKwF1qxZs7Nl1uQZur3l78szc29E/CJwW0R8s3VlZmZEzPqvR2ZuAjYBTExMZKPR6GgAV23ZypW7BnPn4j0XNHq6v6mpKer8HjYM8pa/NWuuW8sosJbhZC3z62paJjP3Vj/3A58DzgT2RcRygOrn/m4HKUlamI7DPSKOj4jnHVkG/hC4B9gGrK+6rQe2djtISdLCdDOfMQ58rjmtzhLgnzLzixHxNeDGiLgYeBA4r/thSpIWouNwz8xvAy+epf37wNndDEqS1B0/oSpJBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklSgwXyFkUbWqprfAnXpqYd6+o1Re654dc/2Jf0s8MxdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIK5CdUNRLqfjK2Hz5xzvEDe22pU565S1KBDHdJKpDTMlIbu/Ye7OlN0OryZmnqhmfuklSgvoV7RJwTEQ9ExO6IuKxfryNJOlpfwj0ijgH+FngVcDJwfkSc3I/XkiQdrV9z7mcCuzPz2wARMQmsBe7r0+tJxenH5Z91vkRlkHP9C6m5118IMyj9+n1HZvZ+pxGvB87JzDdXzy8Efisz397SZyOwsXr6G8ADHb7cMuB7XQx3mFjLcLKW4WQt8KuZ+cLZVgzsapnM3ARs6nY/EbEjMyd6MKSBs5bhZC3DyVrm1683VPcCK1uen1i1SZIWQb/C/WvA6og4KSKeDawDtvXptSRJM/RlWiYzD0XE24F/AY4BrsvMe/vxWvRgameIWMtwspbhZC3z6MsbqpKkwfITqpJUIMNdkgo0MuHe7nYGEfGciPhUtf4rEbFqAMOspUYtGyLikYi4u3q8eRDjbCcirouI/RFxzxzrIyI+UtX5jYg4fbHHWFeNWhoRcbDlmPzFYo+xrohYGRG3R8R9EXFvRLxjlj4jcWxq1jISxyYifi4ivhoRX69q+ctZ+vQuxzJz6B8035T9H+DXgGcDXwdOntHnbcA11fI64FODHncXtWwAPjrosdao5XeA04F75lh/LnArEMBZwFcGPeYuamkANw96nDVrWQ6cXi0/D/jvWf4bG4ljU7OWkTg21e96rFo+FvgKcNaMPj3LsVE5c3/qdgaZ+RPgyO0MWq0FNlfLNwFnR0Qs4hjrqlPLSMjMO4BH5+myFrg+m+4ElkbE8sUZ3cLUqGVkZObDmXlXtfw4cD+wYka3kTg2NWsZCdXverp6emz1mHlFS89ybFTCfQXw3ZbnD3H0AX6qT2YeAg4Cv7Aoo1uYOrUA/En15/JNEbFylvWjoG6to+Kl1Z/Ut0bEiwY9mDqqP+tfQvMssdXIHZt5aoEROTYRcUxE3A3sB27LzDmPS7c5Nirh/rPm88CqzPxN4Dae/pdcg3MXzft4vBi4CvjnwQ6nvYgYAz4DvDMzHxv0eLrRppaROTaZeTgzT6P5qf0zI+KUfr3WqIR7ndsZPNUnIpYAJwDfX5TRLUzbWjLz+5n54+rpx4EzFmlsvVbMbSgy87Ejf1Jn5i3AsRGxbMDDmlNEHEszDLdk5mdn6TIyx6ZdLaN2bAAy8wfA7cA5M1b1LMdGJdzr3M5gG7C+Wn498G9ZvSsxZNrWMmPu8zU05xlH0TbgjdWVGWcBBzPz4UEPqhMR8UtH5j4j4kya/+8M48kD1TivBe7PzA/N0W0kjk2dWkbl2ETECyNiabV8HPAHwDdndOtZjo3Ed6jmHLcziIi/AnZk5jaa/wH8Y0TspvnG2LrBjXhuNWv584h4DXCIZi0bBjbgeUTEDTSvVFgWEQ8B76f5JhGZeQ1wC82rMnYDPwTeNJiRtlejltcDb42IQ8CTwLohPXkAeBlwIbCrmt8FeB/wKzByx6ZOLaNybJYDm6P5ZUbPAm7MzJv7lWPefkCSCjQq0zKSpAUw3CWpQIa7JBXIcJekAhnuklSgkbgUUlqoiDgM7GppmszMK+bp3wB+kpn/2eehSYvCcFepnqw+5l1XA5gGjgr3iFhS3edDGhle564iRcR0Zo7N0r6H5r16/ojmh5T+FPgRcCdwGHgE+DPg4qr9JcB/ANcD1wDPpXnL5osy80BETNG8bfPv0jxZugjYATwA/HZmPhIRz6J5q9qXZuYjfSpZegbn3FWq41q+vOHuiHhDy7rvZebpwNXAuzNzD83g/nBmnpaZ/171O5FmQL+LZri/p7qZ2y6an2A94rnVXwlvo/mJ458CnwQuqNb/PvB1g12LyWkZlWq+aZkjN5/aCfzxPPv4dGYejogTgKWZ+aWqfTPw6ZZ+N0DznvAR8fPV/UOuA7YCf0PzbP4fOilC6pRn7vpZdOSOm4eZ/wTniZr7mzm3mZn5XWBfRPwezS9ouXVhQ5S6Y7hLTY/T/Bq3o2TmQeBARLyiaroQ+FJLlzcARMTLad5d8WDV/nGa0zOfzszDfRm1NAenZVSq41ruIgjwxcw86svIW3weuCki1tJ8Q3Wm9cA1EfFc4Ns88y6KP4qI/6L5Bu1FLe3baE7HOCWjRefVMlIXqqtl3p2ZO2ZZN0HzTdpXHLWh1GeeuUt9EBGXAW/l6StmpEXlmbskFcg3VCWpQIa7JBXIcJekAhnuklQgw12SCvT/Q6L7idYepk8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGwCAYAAACD0J42AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3BUZZ7/8U8n6XQI0IkBc1sCMooQBIFFAq2WBgkJl2IGZWsWh1VUBkYmsQazi4IFkoCzcSzXy1gZWUsH3B0zuq4LrohABAmrBpAAy0WWAhZFhYQdGBJDxqZJn98f/tIzTbj0Cd3pJ8n7VXVKzznPeZ7nfDkcPnX65rAsyxIAAIBBYqI9AQAAgAsRUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjBMX7Qm0hd/v1/Hjx9WzZ085HI5oTwcAAITAsix9++23yszMVEzM5Z+RdMiAcvz4cWVlZUV7GgAAoA2++uor9enT57JtOmRA6dmzp6TvT9Dtdoe1b5/Ppw0bNig/P19OpzOsfXc21Cp01Moe6hU6amUP9QpdJGrV0NCgrKyswL/jl9MhA0rLyzputzsiASUxMVFut5uL9wqoVeiolT3UK3TUyh7qFbpI1iqUt2fwJlkAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAceKiPQFTDSlZL2+zI9rTCNkXT0+O9hQAAAgbnqAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYx1ZAKSsr06hRo9SzZ0+lpqZq6tSpOnjwYFCb3NxcORyOoOXhhx8OanPs2DFNnjxZiYmJSk1N1fz583X+/PmrPxsAANApxNlpXFVVpcLCQo0aNUrnz5/XE088ofz8fH3++efq3r17oN3s2bO1dOnSwHpiYmLg/5ubmzV58mSlp6fr008/1YkTJ3T//ffL6XTqH//xH8NwSgAAoKOzFVDWrVsXtL5y5UqlpqaqpqZGd9xxR2B7YmKi0tPTL9rHhg0b9Pnnn+vDDz9UWlqahg8frmXLlunxxx9XSUmJ4uPj23AaAACgM7EVUC5UX18vSUpJSQna/sYbb+h3v/ud0tPTNWXKFC1evDjwFKW6ulpDhw5VWlpaoH1BQYHmzp2r/fv3a8SIEa3G8Xq98nq9gfWGhgZJks/nk8/nu5pTaKWlP1eMFdZ+Iy3cdbAzZjTG7miolT3UK3TUyh7qFbpI1MpOXw7Lstr0L7Hf79cPf/hDnTlzRh9//HFg+yuvvKJ+/fopMzNTe/bs0eOPP66cnBz9x3/8hyRpzpw5+vLLL7V+/frAMU1NTerevbvWrl2riRMnthqrpKREpaWlrbZXVFQEvXwEAADM1dTUpJ/85Ceqr6+X2+2+bNs2P0EpLCzUvn37gsKJ9H0AaTF06FBlZGRo3LhxOnLkiK6//vo2jbVw4UIVFxcH1hsaGpSVlaX8/PwrnqBdPp9PlZWVWrwjRl6/I6x9R9K+koJ2H7OlVuPHj5fT6Wz38TsSamUP9QodtbKHeoUuErVqeQUkFG0KKEVFRVqzZo22bNmiPn36XLbt6NGjJUmHDx/W9ddfr/T0dG3fvj2oTV1dnSRd8n0rLpdLLper1Xan0xmxC8zrd8jb3HECSjT/okXyz6GzoVb2UK/QUSt7qFfowlkrO/3Y+pixZVkqKirSqlWrtGnTJvXv3/+Kx+zevVuSlJGRIUnyeDzau3evTp48GWhTWVkpt9utwYMH25kOAADopGw9QSksLFRFRYXeffdd9ezZU7W1tZKkpKQkdevWTUeOHFFFRYUmTZqkXr16ac+ePXr00Ud1xx136Oabb5Yk5efna/Dgwbrvvvv0zDPPqLa2VosWLVJhYeFFn5IAAICux9YTlJdffln19fXKzc1VRkZGYHnrrbckSfHx8frwww+Vn5+vQYMG6e///u81bdo0vffee4E+YmNjtWbNGsXGxsrj8ejv/u7vdP/99wd9bwoAAOjabD1BudIHfrKyslRVVXXFfvr166e1a9faGRoAAHQh/BYPAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxbAWUsrIyjRo1Sj179lRqaqqmTp2qgwcPBrX57rvvVFhYqF69eqlHjx6aNm2a6urqgtocO3ZMkydPVmJiolJTUzV//nydP3/+6s8GAAB0CrYCSlVVlQoLC7V161ZVVlbK5/MpPz9fZ8+eDbR59NFH9d577+ntt99WVVWVjh8/rnvuuSewv7m5WZMnT9a5c+f06aef6vXXX9fKlSv15JNPhu+sAABAhxZnp/G6deuC1leuXKnU1FTV1NTojjvuUH19vV577TVVVFTorrvukiStWLFC2dnZ2rp1q8aMGaMNGzbo888/14cffqi0tDQNHz5cy5Yt0+OPP66SkhLFx8eH7+wAAECHZCugXKi+vl6SlJKSIkmqqamRz+dTXl5eoM2gQYPUt29fVVdXa8yYMaqurtbQoUOVlpYWaFNQUKC5c+dq//79GjFiRKtxvF6vvF5vYL2hoUGS5PP55PP5ruYUWmnpzxVjhbXfSAt3HeyMGY2xOxpqZQ/1Ch21sod6hS4StbLTV5sDit/v17x583TbbbdpyJAhkqTa2lrFx8crOTk5qG1aWppqa2sDbf4ynLTsb9l3MWVlZSotLW21fcOGDUpMTGzrKVzWslv8Eek3UtauXRu1sSsrK6M2dkdDreyhXqGjVvZQr9CFs1ZNTU0ht21zQCksLNS+ffv08ccft7WLkC1cuFDFxcWB9YaGBmVlZSk/P19utzusY/l8PlVWVmrxjhh5/Y6w9h1J+0oK2n3MllqNHz9eTqez3cfvSKiVPdQrdNTKHuoVukjUquUVkFC0KaAUFRVpzZo12rJli/r06RPYnp6ernPnzunMmTNBT1Hq6uqUnp4eaLN9+/ag/lo+5dPS5kIul0sul6vVdqfTGbELzOt3yNvccQJKNP+iRfLPobOhVvZQr9BRK3uoV+jCWSs7/dj6FI9lWSoqKtKqVau0adMm9e/fP2j/yJEj5XQ6tXHjxsC2gwcP6tixY/J4PJIkj8ejvXv36uTJk4E2lZWVcrvdGjx4sJ3pAACATsrWE5TCwkJVVFTo3XffVc+ePQPvGUlKSlK3bt2UlJSkWbNmqbi4WCkpKXK73XrkkUfk8Xg0ZswYSVJ+fr4GDx6s++67T88884xqa2u1aNEiFRYWXvQpCQAA6HpsBZSXX35ZkpSbmxu0fcWKFXrggQckSc8//7xiYmI0bdo0eb1eFRQU6De/+U2gbWxsrNasWaO5c+fK4/Goe/fumjlzppYuXXp1ZwIAADoNWwHFsq780duEhASVl5ervLz8km369esX1U+dAAAAs/FbPAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxrEdULZs2aIpU6YoMzNTDodDq1evDtr/wAMPyOFwBC0TJkwIanP69GnNmDFDbrdbycnJmjVrlhobG6/uTAAAQKdhO6CcPXtWw4YNU3l5+SXbTJgwQSdOnAgsv//974P2z5gxQ/v371dlZaXWrFmjLVu2aM6cOfZnDwAAOqU4uwdMnDhREydOvGwbl8ul9PT0i+47cOCA1q1bp88++0y33HKLJOmll17SpEmT9OyzzyozM9PulAAAQCdjO6CEYvPmzUpNTdU111yju+66S0899ZR69eolSaqurlZycnIgnEhSXl6eYmJitG3bNt19992t+vN6vfJ6vYH1hoYGSZLP55PP5wvr3Fv6c8VYYe030sJdBztjRmPsjoZa2UO9Qket7KFeoYtErez0FfaAMmHCBN1zzz3q37+/jhw5oieeeEITJ05UdXW1YmNjVVtbq9TU1OBJxMUpJSVFtbW1F+2zrKxMpaWlrbZv2LBBiYmJ4T4FSdKyW/wR6TdS1q5dG7WxKysrozZ2R0Ot7KFeoaNW9lCv0IWzVk1NTSG3DXtAmT59euD/hw4dqptvvlnXX3+9Nm/erHHjxrWpz4ULF6q4uDiw3tDQoKysLOXn58vtdl/1nP+Sz+dTZWWlFu+IkdfvCGvfkbSvpKDdx2yp1fjx4+V0Ott9/I6EWtlDvUJHreyhXqGLRK1aXgEJRURe4vlLP/jBD9S7d28dPnxY48aNU3p6uk6ePBnU5vz58zp9+vQl37ficrnkcrlabXc6nRG7wLx+h7zNHSegRPMvWiT/HDobamUP9QodtbKHeoUunLWy00/Evwfl66+/1qlTp5SRkSFJ8ng8OnPmjGpqagJtNm3aJL/fr9GjR0d6OgAAoAOw/QSlsbFRhw8fDqwfPXpUu3fvVkpKilJSUlRaWqpp06YpPT1dR44c0WOPPaYbbrhBBQXfvwSRnZ2tCRMmaPbs2Vq+fLl8Pp+Kioo0ffp0PsEDAAAkteEJyo4dOzRixAiNGDFCklRcXKwRI0boySefVGxsrPbs2aMf/vCHuvHGGzVr1iyNHDlS//Vf/xX0Es0bb7yhQYMGady4cZo0aZJuv/12vfLKK+E7KwAA0KHZfoKSm5sry7r0R3DXr19/xT5SUlJUUVFhd2gAANBF8Fs8AADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGsR1QtmzZoilTpigzM1MOh0OrV68O2m9Zlp588kllZGSoW7duysvL06FDh4LanD59WjNmzJDb7VZycrJmzZqlxsbGqzsTAADQadgOKGfPntWwYcNUXl5+0f3PPPOMfv3rX2v58uXatm2bunfvroKCAn333XeBNjNmzND+/ftVWVmpNWvWaMuWLZozZ07bzwIAAHQqcXYPmDhxoiZOnHjRfZZl6YUXXtCiRYv0ox/9SJL0L//yL0pLS9Pq1as1ffp0HThwQOvWrdNnn32mW265RZL00ksvadKkSXr22WeVmZl5FacDAAA6A9sB5XKOHj2q2tpa5eXlBbYlJSVp9OjRqq6u1vTp01VdXa3k5ORAOJGkvLw8xcTEaNu2bbr77rtb9ev1euX1egPrDQ0NkiSfzyefzxfOUwj054qxwtpvpIW7DnbGjMbYHQ21sod6hY5a2UO9QheJWtnpK6wBpba2VpKUlpYWtD0tLS2wr7a2VqmpqcGTiItTSkpKoM2FysrKVFpa2mr7hg0blJiYGI6pt7LsFn9E+o2UtWvXRm3sysrKqI3d0VAre6hX6KiVPdQrdOGsVVNTU8htwxpQImXhwoUqLi4OrDc0NCgrK0v5+flyu91hHcvn86myslKLd8TI63eEte9I2ldS0O5jttRq/Pjxcjqd7T5+R0Kt7KFeoaNW9lCv0EWiVi2vgIQirAElPT1dklRXV6eMjIzA9rq6Og0fPjzQ5uTJk0HHnT9/XqdPnw4cfyGXyyWXy9Vqu9PpjNgF5vU75G3uOAElmn/RIvnn0NlQK3uoV+iolT3UK3ThrJWdfsL6PSj9+/dXenq6Nm7cGNjW0NCgbdu2yePxSJI8Ho/OnDmjmpqaQJtNmzbJ7/dr9OjR4ZwOAADooGw/QWlsbNThw4cD60ePHtXu3buVkpKivn37at68eXrqqac0YMAA9e/fX4sXL1ZmZqamTp0qScrOztaECRM0e/ZsLV++XD6fT0VFRZo+fTqf4AEAAJLaEFB27NihsWPHBtZb3hsyc+ZMrVy5Uo899pjOnj2rOXPm6MyZM7r99tu1bt06JSQkBI554403VFRUpHHjxikmJkbTpk3Tr3/96zCcDgAA6AxsB5Tc3FxZ1qU/gutwOLR06VItXbr0km1SUlJUUVFhd2gAANBF8Fs8AADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBx4qI9AXRd1y14P9pTsO2LpydHewoA0CXwBAUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxwh5QSkpK5HA4gpZBgwYF9n/33XcqLCxUr1691KNHD02bNk11dXXhngYAAOjAIvIE5aabbtKJEycCy8cffxzY9+ijj+q9997T22+/raqqKh0/flz33HNPJKYBAAA6qLiIdBoXp/T09Fbb6+vr9dprr6miokJ33XWXJGnFihXKzs7W1q1bNWbMmEhMBwAAdDARCSiHDh1SZmamEhIS5PF4VFZWpr59+6qmpkY+n095eXmBtoMGDVLfvn1VXV19yYDi9Xrl9XoD6w0NDZIkn88nn88X1rm39OeKscLab6SFuw52xmzr2K7YjlVjqe3nerW16mqoV+iolT3UK3SRqJWdvhyWZYX1X4kPPvhAjY2NGjhwoE6cOKHS0lJ988032rdvn9577z09+OCDQWFDknJycjR27Fj96le/umifJSUlKi0tbbW9oqJCiYmJ4Zw+AACIkKamJv3kJz9RfX293G73ZduGPaBc6MyZM+rXr5+ee+45devWrU0B5WJPULKysvSHP/zhiidol8/nU2VlpRbviJHX7whr35G0r6Sg3cdsqdX48ePldDptHz+kZH0EZhVZba3z1daqq6FeoaNW9lCv0EWiVg0NDerdu3dIASUiL/H8peTkZN144406fPiwxo8fr3PnzunMmTNKTk4OtKmrq7voe1ZauFwuuVyuVtudTmfELjCv3yFvc8cJKNH8i9bWP4eOVN8WV1vnSF6znRH1Ch21sod6hS6ctbLTT8S/B6WxsVFHjhxRRkaGRo4cKafTqY0bNwb2Hzx4UMeOHZPH44n0VAAAQAcR9ico//AP/6ApU6aoX79+On78uJYsWaLY2Fjde++9SkpK0qxZs1RcXKyUlBS53W498sgj8ng8fIIHAAAEhD2gfP3117r33nt16tQpXXvttbr99tu1detWXXvttZKk559/XjExMZo2bZq8Xq8KCgr0m9/8JtzTAAAAHVjYA8qbb7552f0JCQkqLy9XeXl5uIcGAACdBL/FAwAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHHioj0BoCO5bsH7bTrOFWvpmRxpSMl6eZsdYZ7V5X3x9OR2HQ8AwoEnKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDhx0Z4AgMi6bsH70Z6CbYeW5Ud7CgCijCcoAADAOAQUAABgHF7iAWCcISXr9UzO9//1NjuiPZ2QfPH05GhPAehUeIICAACMQ0ABAADGIaAAAADjEFAAAIBxohpQysvLdd111ykhIUGjR4/W9u3bozkdAABgiKgFlLfeekvFxcVasmSJdu7cqWHDhqmgoEAnT56M1pQAAIAhovYx4+eee06zZ8/Wgw8+KElavny53n//ff32t7/VggULojUtAGiTaH1jryvWavNHsjviR6Ovts5XU6+uJtrf6ByVgHLu3DnV1NRo4cKFgW0xMTHKy8tTdXV1q/Zer1derzewXl9fL0k6ffq0fD5fWOfm8/nU1NSkOF+Mmv0d5+I9depUu4/ZUqtTp07J6XTaPj7u/NkIzMpMcX5LTU3+DnddRQv1Ct3V1Coa942rdbX3Da6t0J06deqq7vEX8+2330qSLMu6cmMrCr755htLkvXpp58GbZ8/f76Vk5PTqv2SJUssSSwsLCwsLCydYPnqq6+umBU6xDfJLly4UMXFxYF1v9+v06dPq1evXnI4wpuAGxoalJWVpa+++kputzusfXc21Cp01Moe6hU6amUP9QpdJGplWZa+/fZbZWZmXrFtVAJK7969FRsbq7q6uqDtdXV1Sk9Pb9Xe5XLJ5XIFbUtOTo7oHN1uNxdviKhV6KiVPdQrdNTKHuoVunDXKikpKaR2UfkUT3x8vEaOHKmNGzcGtvn9fm3cuFEejycaUwIAAAaJ2ks8xcXFmjlzpm655Rbl5OTohRde0NmzZwOf6gEAAF1XbElJSUk0Bh4yZIiSk5P1y1/+Us8++6wk6Y033tDAgQOjMZ0gsbGxys3NVVxch3iLTlRRq9BRK3uoV+iolT3UK3TRrJXDskL5rA8AAED74bd4AACAcQgoAADAOAQUAABgHAIKAAAwTpcMKOXl5bruuuuUkJCg0aNHa/v27Zdt//bbb2vQoEFKSEjQ0KFDtXbt2naaafTZqdXKlSvlcDiCloSEhHacbfRs2bJFU6ZMUWZmphwOh1avXn3FYzZv3qy//uu/lsvl0g033KCVK1dGfqIGsFurzZs3t7quHA6Hamtr22nG0VNWVqZRo0apZ8+eSk1N1dSpU3Xw4MErHtdV71ltqVdXvW+9/PLLuvnmmwNfwubxePTBBx9c9pj2vq66XEB56623VFxcrCVLlmjnzp0aNmyYCgoKdPLkyYu2//TTT3Xvvfdq1qxZ2rVrl6ZOnaqpU6dq37597Tzz9me3VtL33zh44sSJwPLll1+244yj5+zZsxo2bJjKy8tDan/06FFNnjxZY8eO1e7duzVv3jz99Kc/1fr16yM80+izW6sWBw8eDLq2UlNTIzRDc1RVVamwsFBbt25VZWWlfD6f8vPzdfbspX8wryvfs9pSL6lr3rf69Omjp59+WjU1NdqxY4fuuusu/ehHP9L+/fsv2j4q11V4fv6v48jJybEKCwsD683NzVZmZqZVVlZ20fY//vGPrcmTJwdtGz16tPWzn/0sovM0gd1arVixwkpKSmqv6RlLkrVq1arLtnnsscesm266KWjb3/7t31oFBQWRnJpxQqnVRx99ZEmy/vjHP7bTrMx18uRJS5JVVVV1yTZd+Z51oVDqxX3rz6655hrr1Vdfvei+aFxXXeoJyrlz51RTU6O8vLzAtpiYGOXl5am6uvqix1RXVwe1l6SCgoJLtu8s2lIrSWpsbFS/fv2UlZV12TTe1XXV6+pqDB8+XBkZGRo/frw++eSTaE8nKurr6yVJKSkpl2zDtfVnodRL4r7V3NysN998U2fPnr3kz81E47rqUgHlD3/4g5qbm5WWlha0PS0t7ZKvZ9fW1tpq31m0pVYDBw7Ub3/7W7377rv63e9+J7/fr1tvvVVff/11e0y5Q7nUddXQ0KA//elPUZqVmTIyMrR8+XK98847euedd5SVlaXc3Fzt3Lkz2lNrV36/X/PmzdNtt92mIUOGXLJdV71nXSjUenXl+9bevXvVo0cPuVwuPfzww1q1apUGDx580bbRuK74nl+EjcfjCUrft956q7Kzs/XP//zPWrZsWRRnho5s4MCBQT+Bceutt+rIkSN6/vnn9a//+q9RnFn7Kiws1KPVyJwAAAe8SURBVL59+/Txxx9HeyodQqj16sr3rYEDB2r37t2qr6/Xv//7v2vmzJmqqqq6ZEhpb13qCUrv3r0VGxururq6oO11dXVKT0+/6DHp6em22ncWbanVhZxOp0aMGKHDhw9HYood2qWuK7fbrW7dukVpVh1HTk5Ol7quioqKtGbNGn300Ufq06fPZdt21XvWX7JTrwt1pftWfHy8brjhBo0cOVJlZWUaNmyYXnzxxYu2jcZ11aUCSnx8vEaOHKmNGzcGtvn9fm3cuPGSr7t5PJ6g9pJUWVl5yfadRVtqdaHm5mbt3btXGRkZkZpmh9VVr6tw2b17d5e4rizLUlFRkVatWqVNmzapf//+VzymK19bbanXhbryfcvv98vr9V50X1Suq4i9/dZQb775puVyuayVK1dan3/+uTVnzhwrOTnZqq2ttSzLsu677z5rwYIFgfaffPKJFRcXZz377LPWgQMHrCVLllhOp9Pau3dvtE6h3ditVWlpqbV+/XrryJEjVk1NjTV9+nQrISHB2r9/f7ROod18++231q5du6xdu3ZZkqznnnvO2rVrl/Xll19almVZCxYssO67775A+//93/+1EhMTrfnz51sHDhywysvLrdjYWGvdunXROoV2Y7dWzz//vLV69Wrr0KFD1t69e61f/OIXVkxMjPXhhx9G6xTazdy5c62kpCRr8+bN1okTJwJLU1NToA33rD9rS7266n1rwYIFVlVVlXX06FFrz5491oIFCyyHw2Ft2LDBsiwzrqsuF1Asy7Jeeuklq2/fvlZ8fLyVk5Njbd26NbDvzjvvtGbOnBnU/t/+7d+sG2+80YqPj7duuukm6/3332/nGUePnVrNmzcv0DYtLc2aNGmStXPnzijMuv21fBT2wqWlPjNnzrTuvPPOVscMHz7cio+Pt37wgx9YK1asaPd5R4PdWv3qV7+yrr/+eishIcFKSUmxcnNzrU2bNkVn8u3sYnWSFHStcM/6s7bUq6vetx566CGrX79+Vnx8vHXttdda48aNC4QTyzLjunJYlmVF7vkMAACAfV3qPSgAAKBjIKAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAI2QMPPCCHw9FqmTBhQkjHb968WQ6HQ2fOnInwTAF0dHHRngCAjmXChAlasWJF0DaXyxXWMc6dO6f4+Piw9gmgY+EJCgBbXC6X0tPTg5ZrrrlGkuRwOPTqq6/q7rvvVmJiogYMGKD//M//lCR98cUXGjt2rCTpmmuukcPh0AMPPCBJys3NVVFRkebNm6fevXuroKBAklRVVaWcnBy5XC5lZGRowYIFOn/+fGAuLccVFRUpKSlJvXv31uLFi9XyE2NLly7VkCFDWp3D8OHDtXjx4ojVCMDVI6AACKvS0lL9+Mc/1p49ezRp0iTNmDFDp0+fVlZWlt555x1J0sGDB3XixAm9+OKLgeNef/11xcfH65NPPtHy5cv1zTffaNKkSRo1apT++7//Wy+//LJee+01PfXUU0Hjvf7664qLi9P27dv14osv6rnnntOrr74qSXrooYd04MABffbZZ4H2u3bt0p49e/Tggw+2QzUAtFlEfysZQKcyc+ZMKzY21urevXvQ8stf/tKyrO9/7n7RokWB9o2NjZYk64MPPrAsy7I++ugjS5L1xz/+MajfO++80xoxYkTQtieeeMIaOHCg5ff7A9vKy8utHj16WM3NzYHjsrOzg9o8/vjjVnZ2dmB94sSJ1ty5cwPrjzzyiJWbm3u1pQAQYTxBAWDL2LFjtXv37qDl4YcfDuy/+eabA//fvXt3ud1unTx58or9jhw5Mmj9wIED8ng8cjgcgW233XabGhsb9fXXXwe2jRkzJqiNx+PRoUOH1NzcLEmaPXu2fv/73+u7777TuXPnVFFRoYceesj+iQNoV7xJFoAt3bt31w033HDJ/U6nM2jd4XDI7/eH1G8kTJkyRS6XS6tWrVJ8fLx8Pp/+5m/+JiJjAQgfAgqAdtPyyZyWpxuXk52drXfeeUeWZQWekHzyySfq2bOn+vTpE2i3bdu2oOO2bt2qAQMGKDY2VpIUFxenmTNnasWKFYqPj9f06dPVrVu3cJ0SgAghoACwxev1qra2NmhbXFycevfufcVj+/XrJ4fDoTVr1mjSpEnq1q2bevTocdG2P//5z/XCCy/okUceUVFRkQ4ePKglS5aouLhYMTF/fnX62LFjKi4u1s9+9jPt3LlTL730kv7pn/4pqK+f/vSnys7OlvR9yAFgPgIKAFvWrVunjIyMoG0DBw7U//zP/1zx2L/6q79SaWmpFixYoAcffFD333+/Vq5cecm2a9eu1fz58zVs2DClpKRo1qxZWrRoUVC7+++/X3/605+Uk5Oj2NhY/eIXv9CcOXOC2gwYMEC33nqrTp8+rdGjR9s7YQBR4bCs//+FAQDQweTm5mr48OF64YUXLtvOsiwNGDBAP//5z1VcXNxOswNwNXiCAqBT+7//+z+9+eabqq2t5btPgA6EgAKgU0tNTVXv3r31yiuvBL7xFoD5eIkHAAAYhy9qAwAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACM8/8AcDSyysgPzJoAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -3677,17 +3825,17 @@ }, { "cell_type": "code", - "execution_count": 143, + "execution_count": 136, "metadata": {}, "outputs": [], "source": [ "topicsCorrelation = normalizedCommunityTopics.corr().fillna(0)\n", - "topicsCorrelation[topicsCorrelation<0.8]=0\n" + "topicsCorrelation[topicsCorrelation<0.8]=0" ] }, { "cell_type": "code", - "execution_count": 144, + "execution_count": 137, "metadata": {}, "outputs": [], "source": [ @@ -3696,14 +3844,14 @@ }, { "cell_type": "code", - "execution_count": 145, + "execution_count": 138, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAJOCAYAAABBWYj1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hT1f/A8ffN6l4UWlpK2XsPQZbsjWxUQL5upgtFtjJEEVBQAeWHqKggICp7yhAQFWTvUWbpoBW6m2be3x+xgUJH2iZNWs7reXge0txxkjY3n3vO53yOJMuyjCAIgiAIgpAnhbMbIAiCIAiCUFyIwEkQBEEQBMFGInASBEEQBEGwkQicBEEQBEEQbCQCJ0EQBEEQBBuJwEkQBEEQBMFGInASBEEQBEGwkQicBEEQBEEQbCQCJ0EQBEEQBBuJwEkQBEEQBMFGInASBEEQBEGwkQicBEEQBEEQbKRydgMEQRCcKcVgIl5rQm+SMckySklCo5QI8lDhrRb3loIgZCUCJ0EQHilao5lTdzKISNITl2HCaJZRSRIysnUbCQmjLKNSSAS5K6nqp6F+oDseKhFICcKjTpJlWc57M0EQhOItOs3A4Tgtl5P0SIAxH1c+lQQyUM1PQ7MgD0K91I5qpiAILk4EToIglGhao5ntN1O5kqzHJENhLngSoJSgiq+GbuHeogdKEB5BInASBKHEupykY/ONVIxmGZMdr3RKCVQKiV4VvKnm52a/AwuC4PJE4CQIQokjyzJ7otI4cScDg9lx51EroGGgOx3KeSFJkuNOJAiCyxCBkyAIJYosy2y7mcr5RJ1Dg6ZMagXU8neje7i3CJ4E4REgBugFQShR9kSlFVnQBGAww/lEHXui0ormhIIgOJUInARBKDEuJ+kcPjyXHYMZTtzJ4HKSrmhPLAhCkROBkyAIJYLWaGbzjdQiD5oyGcyw+UYqWqOTGiAIQpEQgZMgCCXC9puW2XPOZDTLbI9MdWobBEFwLBE4CYJQ7EWnGax1mpzJJMOVJD0xaQbnNkQQBIcRgZMgCMXe4Tit04OmTCYZDsVpnd0MQRAcRKxVJwguRCw4m39ao5nLSfpCVQS3Jxm4nKRHazSLyuKCUAKJwEkQnEgsOFt4p+5k4GrVkyQs7Woe7OnspgiCYGeiAKYgOIFYcNZ+Vl5KJDLN6OxmPKS8l4qh1f2d3QxBEOxM9DgJQhGyx4KzmUHWxUQ9EUn6R37B2bgMk7ObkC1XbZcgCIUjAidBKCL2XnBWxhJERSTrWXIu4ZFccDbFYLKpBEHU+ZP8MvNN7kReo3rLDkiSgtLhlanavC1rpo6i9dCR7Fu+EIVSQZcxU2jaZwgAa6e9ikrjzt1b17l5+gjlatZn0MzFBISWz/OcRrNMqsEsctMEoYQRn2hBcDBZltl9K5WN11PQmewTNN3PJIPOJLPxegq7b6XyKI2+x2tNqPJYH85o0LPi7edp8uQzvLf3Mg269ufc3q3W51PvxJGRmsyk7afo/96nbJwzEW1yovX5E9t+psPLb/HunouE1KjLmqkjbWqbSpKI0zp2CDHFYOJqsp4LCTrO3s3gQoKOq8l6Up1VBVQQHgGix0kQHKgoF5zNXPZDZ5IfmQVn9SY5SyJ9diJPHcFsMtJy8HAkSaJux16E1W1kfV6hUtPhlXEoVSpqtu6MxsOL+OsRhNdvCkDN1p2p1KQlAF3GTGbGE1VIjI3Cv2y5XM8rI6O3c5QsJhMIgvOJwEkQHMhZC866KSU6hnkXzUmdyGRD71ryv7fxDQrJEkj6Bd8Lejz9AlCq7l0K1e4e6LVp2W7r5umNp28AyfGxNgROtrXPFrlNJnj4HJbHJpNMZJqRmHQj+2PSxWQCQbATETgJgoM4e8HZcB91ic95UtrQq+ZTOojkuBhkWbYGT0m3owgMq2jTOZJuR1n/r0tPJT05Ad8yZfPcT7KxfbkRkwkEwfWIT44gOIBYcLZoaJQSUh5VnMLrP4akVPLXmmWYjEbO/b6NW2eO23yOiwd3cf343xgNen774iPC6zXJs7cJLENmGmXBA6fLSTqWnEsgIlmPsYBB0/0enExwOUlXyCMKwqNJBE6C4ABiwdmiUcZDiTGP4TCVWsOzHy/nyPqVzGxbheNb11KzTReUGtt64xp0G8DupR/zfrtqRJ0/yVOzvrRpP6MsE+SR/059MZlAEFybGKoTBDtzxQVnQ0poXouPWolKIWHK480Oq92Q11f/bn28+H9dqflEFyo3bcWk7aeybDthy7Esj738S9Fvysf5bptKIeW7FIGYTCAIrk/0OAmCnYkFZ4tWkLsyz22uHj1Iyr+3MRmNHN20mtjL56jesoPT2/UgZ00m2BOVlvfGgiAAosdJEOxKLDhb9Kr6aYhJN+a6bM2/16+wasIr6LVplCpXkaFzv7YpwbugVJKlXfkhJhMIQvEg1qoTBDupU6cOY97/hPTKTfO19pyjqSRoE+JZYhec1RrNLDpz12V6+QCUErxat5TNwarWaGbJuQR0TnwRbkqJkbUDSmyALQj2Ij4hgmAnZ8+exa/u4y4VNMF/M6mS9DZtWxwrUXuoFFTz0+Qxt67oSFgWYM5PACImEwhC8SGG6gTBjlx1Ydec2lVSKlE3C/IgIknvEkGrUoLmQR42by8mEwhC8SICJ0GwkwoVK9J14idcPX6IuGsXUWncObt3C/5lwxg0cxFhtRsCkBgbxeZ5U7h+/G/MspkGXfvRZ+IczGYzv3+zgH9+XYFBl0H1lh3oPX427j6+JETfZG6vJgyY9hm7lsxBl55Gt9emElqrAb/OeJPE2Fs07DGQPhPnWNtzZP1K9n+/mJQ7cYTXbUTX77+hdtVKQMmrRB3qpaaKr4YIJwcgSgmq+GnyFXi44mSCvpWc/zsVBFflOreMglDMmeR7laLP79tB/a59mbbvCrXadmXjRxMBMJtMfPfGUPxDwhi/5SiTtp+iQdd+ABzbuIqjG1fzytJ1vLPpH/TpaWyYMzHLOSLPHOPt9YcY/NFXbP54Kr9/vYCXlvzMmz//wenfNnL16EEAzv2+jb3ffMqzHy9n6u4LVGncgmeHDkFrNLPuajI/Xk7iYqIlyMhvL41RtrzWi4l6frycxLqryS5RaLNbuDcqhXMH7FQKie7lbV/qxpUnEwiCkD0ROAmCncjyvQVnKzRsTs3WnVEolTTq+RQxl88ClsAnJT6W7m9OR+PhhdrNnYqNHgfgxLZfaP3sKEqFVcTN05uur03l1M51mIxG6zk6vPI2ajd3qrdoj9rDkwZd++Fdqgx+QSFUbNSc6AunATj083LavfgGQZWro1Sp6PDSm5w7dZIPd50qsZWoPVQKelXwJp+lk+xGrYBeFbxxz8cQ5qk7GS6Tm5VJwtIuQRCyJ4bqBMEBfAKDrP/XuHtg1GVgMhpJuh2Ff0hYlkVlMyXHxxIQEmZ97B8ShtloJPVuvPVn3qXKWP+vdnPH+77zqN3uLU6bGHOLzfOmsHX+NOvzJlnm39hovILvncMeTLJlGG/j9RQaBhroUM7LacUUq/m50TDQUOTT+tUKaBjonu/p/K6Sl3W/zMkEJXUWpiAUlgicBKEI+QWXIzE2CpPR+FDw5FumLAkxt6yPE2OjUKhUeJcqQ3JcdD7PE0q7l8bSqMdAu7TbFq5SibpDOS90JrnICkmqFVDb340O5bzyvW9xm0wgCIIYqhMEu5GkvBecLV+3MT6lg9mx8H302jQMugyunzgEQINu/Ti4cgl3o26gS09l56JZ1O/cN9veqbw0H/g8+779jNtXLgCQkZLM6d825P9F5ZMrVKKWJInu4d40DHR3+LBdZk9TtwIEiikGk80lCKLOn+Tzwe2Z1roiK8e/yI8TXmbn4g/RJiey/PUhzOpQkxltq7L89SEk3b4XZB/duIq5TzZlWuuKzO3VhONbf7bpfEaz7NIlKATBmUSPkyDYiVLKbkZaVgqlkuc+XcGmeZP5qEcjJEmiQbf+VGzYnCZ9hpIcf5ulL/fGqNNRrUV7ek+YXaC21OnQE116GqsmDScxJhJ3b1+qNm9Lvc59CnS8/HCFStSSJNExzJtwHzWbb1hqJNlz5ppSsiSC96rgXeDXGK81oZKkPP9mjAY9K95+ntbPjuTxQS9yfv8OVk8azhPPvYrZbKZpn8EMmbMM2Wzm5xmvs3HORIbN/x69No1N8yYz5offKFOxKsnxsWiTE21qm0qSiNMa8Vbnr/q5IDwKROVwQbCjBafuOLX6sytxlUrUWqOZ7TdTrbWSCvPbkbhXcqBbee9CvbYLCTq23kxBn0fHzrWjf7J68ggmbj9l7dVa8mJPKjdpRZcxk7NsG33xNF8N78e0fRHotWnM7lqfAdM+pUarTqjdba8tpVFAj3AfagaIJVgE4UGix0kQ7CjIXUlkmjHvDR8BmZWo+1XydWo7PFQK+lX2JSbNwKEcalflRSVZAq5qfhqaB3nYpUBkXj1NmZL/vY1vUEiWoUC/4HIA6LXpbPnkXS79uQdtSiIAurRUzCYTGg8vBn/0FQd++IJfZrxJhYbN6DF2JkGVquV5Tjkf7ROER40InATBjmxZcPZR4WqVqEO81PStpM61WrqMpVepKKqlK23MifIpHURyXAyyLFuDp6TbUQSGVeTAii+JvxHB6O+341M6mOiLp1k4uAOZAwnVW3agessOGDK07PxiNuveH8uIbzbneU4pH+0ThEeNCJwEwY7qB7qzPybd2c1wGa5YidpDpaB58L1Fj1MNZuK0RvQmGZMso5QkNEqJIA8V3g7MLtcoMycT5B5lh9d/DEmp5K81y2g+8AUu/vEbt84cp3KTVujTUlG7uePu40d6UgK7l35s3S/lThyRp49StfkTqNw80Hh4ISlsez0SlvdAEISHiVl1gmBHrrbgrLMVh0rU3moFlX011Axwo04pd2oGuFHZV+PQoAmgjIcSow3DYSq1hmc/Xs6R9SuZ2bYKx7eupWabLig1brQaOgKDLoNZHWrwxXPdqN6ig3U/2WzmjxVf8mHXerzfrhrXjv1Jn8nzbGqbUZYJ8hD31YKQHZEcLgh2Fp1m4MfLScVquC5zLbxZh2MKVP4gNyoJ2oR4ioKK2SjoZILF/+tK8wHP0bTPEAe0ypLYP7Z+oEOOLQjFnehxEgQ7y1xwVox0WGRWohYeFuSutGm7q0cPkvLvbUxGI0c3rSb28jmqt+yQ944ObpcgPIpEX6wgZCPFYCJeaypw3ku3cG+WnEvAJEoTAKISdU5snUzw7/UrrJrwCnptGqXKVWTo3K/xLVPWIW1SSZZ2PeoKew0QSi4xVCcIkOtMq0z5nWl1OUnHxuspDlv2Y9/yz/lz1VdkpKXgW6YsfSbOpWKj5mz7bKa1Sni9zn3o/sZ7qDRufDqoDV1fnUqttl0BMBkMfNi1Li99sRYPX3/m9mpCvymfsOv/5gIyrZ8dzRP/GwOA2Wxm/3cL+WfdCrQpSVRt1oa+kz/G0y8AgJXjX+T68b8x6DIIqVaHvpPnEVylJgBrp72Km4cnPimx/HngALVr1+bHH3+kSpUqjnljihGt0cyiM3ftWpyzsJQSvFq3VKFmEBbHoMMR1wChZBI9TsIjLTrNwOEcavs8XMfG8thkkolMMxKTbmR/TDrV/DQ0C/Ig9IEp945ccDb+egR/rfmaMSt+s6xxF30Ts8nE3q8XEHn6KK+v3guSxA9j/8eeZfPpMnoSjXo+xfGta62B08WDu/ApHUxozfokRN8E4MqRPxi34RB3b91g2Yj+hNaoS9Xmbflr9Vec27uN4V9twCsgkE1zJ7PhowkMnr0UgBotOzJw2uco1Wq2fTaTNVNG8vrq363tPbljPSvWbWLLxuY899xzTJkyhdWrV9v3TSmGMicTXEzUF6owp71IWGpV5TcQKM5BhyOvAULJJMJk4ZGkNZpZdzWZHy8ncTHRUlE6v8ncRtky3f5iop4fLyex7mryQ7PHOpTzopa/m93XTJMUCox6PXFXL2IyGAgIDSewfCVObPuFDsPfxrtUGbwDStNx+DiOb1kLQKOeg7h4cBcZqSkAHN/yE416DMpy3I7D30Hj4UXZarVp0nswJ7f/CsChn7+jy5jJ+AWHotK40XHEO5zZvQmT0VLss2nfobh5eaPSuNFp5HhiLp0lIyXZety6HXpQq2FTVCoVQ4cO5cSJE/Z9Q4qxZkEeLpMPp5SgeZDtFcaj0wysv5bMojN3ORCTTmSaEZ3JsryNziyjN2P9p/tv2Rvdf0HHgZh0Fp25y/pryUSnGRz4qrJXVNcAoeQRPU6Cw7lat/3lJJ1d1y+T+S8BOlnPknMJWdYvy1xw1k0p2bXnqXR4ZXqNm8Wu/5vL7SsXqd6iPU++/T7J8bEEhJS3bucfUp6U+FgAfMuUpUKDZpzZvYk6HXpy8eAeer3zYZbj+pcNvW/fMGIjzgGQGHuLFeOeQ5Lu/b4UCiWpd+PxCQxi5+IPOL1rE2kJ/1q3SUu8g7uPpWq4T2CQ9e7d09OT1NRU+7wRJUDmZIKI/5aEcZbMpWRsKVZqj2VsMoOUi4l6IpL0VPHV0C28cMvY2KoorwFCySMCJ8HuXLXbXpZl9kSlOWToDCx3niaTzMbrKTQMNNChnBeSJDlswdmG3QfQsPsADGkprPvgbQ793wf4lSlLQkykNb8oMfYWPvclETd+8hmOrFuB2WQivH5T/IJCshwzMTbauiRHYmyUNQHZLziUAdM+o2LD5g+149jmnzj3+3Ze+vJnAkLDyUhNZmbbqtyfPikqUefOFSYTqBQS3ct757ldcQ46nHUNEEoWMVQn2I0rd9vLssy2m6kOu2Dez2CGE3cy2HYzNUvwUM3PjZG1A6jqq0ElUagimfHXI7hy+AAYdNQo40PdYD983FQ06tafvcsWkJrwL2kJd9jz1cc06jHQul+ddt2JunCKP1ctpXGvpx467p5ln6DXpnP7ygWOblxFvS59AWg+4Hl2Lv6QhOhIAFIT/uXc79sA0KWnotJo8PQrhSEjnR2LPsimxaISdW48VAp6VfC2+5CurdQK6FXBG/dcblxkWWb3rVQ2Xk+xfq7tKfN6sPF6CrtvZf3s2IMrXAOEkkH0OAmFVhy67fdEpXE+UefwC2YmgxnOJ+pwU1p6mzLZbcFZg47fv5jFqquX0KjVtGzZkvmLv+TnWIm01GQ+f7otAHU79ab9y29Z91W7e1C3Yy9Obl9HnQ49Hzp25cYt+bhPM2TZTJtho6neoj0ALYcMR0bmmzGDSI6PxbtUGep37kPtdt1p3OspLv+1l9nd6uHpG0Dn0RM5tPbbLMc1IypR58WRkwlyo1ZAw0D3XHt5MoOOovgMZQYdOpNM93Bvu/XYuMo1QCj+RDkCoVDs3W2fSSlZhg7s0W3v6LIAuVEroHdFnxxfg70XnLWlEvXupR/z740rPP3Bl3Z4hbYRlahtU5QBClj+Pmv7u9EtjwBl962i6al5sG0NA93tEnS48jVAKH7ELaBQIMUlV0BrNLP5RqpTLphguevcfCOVkbXV2QY69l5wNshdSWSaMcfn05MSOLJ+JU+9v7jgL6oARCVq2zhqMkF2MgOTvD5bl5N0RR40wb2ep3AfdaGCDle/BgjFj/gtCvlWnHIFtt+09IY5k9Essz3StllkhV1wtqqfJX8qO4d//YGPujekequOVGrS0tbmF5qoRJ0/mZMJelf0wU0p2b1UgVKy9AD2ruhDx7Dce5pcJegozBT/4nYNEFyfGKoT8q24dNu70mK7KgmGVvOzaap3YZTUStSPKnvkD2ayzGy0lBzoVt62/MF1V5NdokxCVT8N/Sr55nvfR/EaIDieuJIJ+eLsbvvLSTqb9zkcp3WZAMIkw6E4rcPPk1mJ2lXmrxW0ErVgkTmZYGg1P2r4WxaOzqlHMScqyRJ81PDXMLSaH/0q+dr0+4hOM1gDNmcyyXAlSU9MAWbbPorXAMHxRI6TYDNX6ba3JVdAazRzOck1lrEAS0/B5SQ9WqPZ4UFEsyAPIpL0LnGXnd9K1EL2QrzU9K2ktvtkgty4YtDRt5LtvTWP8jVAcCwROAk2c6Vcgby67U/dyXCZXpdMEpZ2ZSaCZ+fDDz/k6tWrLFu2jOvXr1OpUiUMBgMqle0f1eJYiVqwjb0nE+SkJAQdeV0D5vRszID3FlC1eVu7tNEWtlwDBNcnwl7BJsWt294ZPS4J0TeZ1LiMdf22BxllS7tyM3nyZJYtW1botnQL90alcG7oaGslaqHgCjuZICcFufFYMLA1V48ctNt2D8oMOmzlKr2u97PlGiC4PhE4CTZxxW773MRlmIqoNflTVO0qDpWoBddVkKBj7M9/ULlpK7tt96D8Bh2P+jVAcBxxVRPy5Ard9omxUax4+3lmdajJjPbVmTdpLGl6I7NmzaJChQoEBQXxv//9j6SkJFIMltyP68f/5svnezDjiSp81L0BRzeuAiAjJZmf3h3DrA41mdOjEXuWfYLZbEncOrpxFUte7MnWBdOY0bYqc3s14eLBXdZ2zOnZmIhD+6yPdy2Zy5opowD4v5d7AzCzbRWmtarAjZP/PPQ6jGaZyzdu0bt3b0qVKkXVqlX56quvrM9Pnz6dZ5991i7vmaUStXuRB0+2VKIWXJurfrnb2q7Ma0Bebp09zoIBrZjRtio/T3sNg87So3X41x+Y1/sxZrarxvdvPkvyfwtlA0xqXIaDq5Yy98mmvN+hBlsXTLdeP2xhNMukOitRVLALETgJeXJ2vpDZZOK7N4biHxLG+C1HmbT9FA279mP24q9Yvnw5e/fu5erVq6SmpvLqq68SrzWRHHOLb197hhbPvMzU3Rd4bdVeQmrUBWDj3ElkpCbzzqYjDF+2gWObf+Loxh+t54s8c4zSFary7p6LPPHcq/wy402bakiNWLYRgPf2XWHGwRtUaPDYQ9uoJImhQwYTFhZGdHQ0P//8M5MnT2bPnj12erey6lDOi1r+bkUWPGVWou5QzqtoTijYna1Bx4Mybyp2LZnLynde4McJLzOtdUUWDulAzKUzD21XELYGHfFaEyobCuae2PYLLyz+iXc2/sO/N6+wd9l8rhw+wI5FsxgyZxmTd57BPySMVRNfybLfub1beXXFb7y2cjfn9m3j6IaVNr8GlSQRp825SK3g+kTgJOTJ2bkCkWeOkRIfS/c3p6Px8ELt5k75ho+z7qfVvPXWW1SuXBlvb29mz57N6tWrSdcZOLbtZ6o2b0vDbv1RqtV4+ZcitEY9zCYTp3aso+trU3Hz8iYgNJw2z47m+Ja11vP5lw2jWf9hKJRKGvd6mpR/b5N6J84ur+Vu7C2O/v0nc+bMwd3dnYYNG/Lyyy/z/fff2+X4D8qsRF0UPU+ZPU15Ld8huDZbg47cnNu3nXqde/Pe3ss06DaAH956DpOh8It32xp06E2Z8wxz1+Lpl/AvWw5PvwDavTSWkzvWcWLbzzTtPYRytRqg0rjR9bWp3Dx9hITom9b9nnjuNTz9AvAPCaPVkBGc3L7O5tcgI6N3lbwHoUBE4CTkydHd9jklU2dKuh2Ff0gYygdmlv17O4YKFSpYH1eoUAGj0Ujc7VgSY6MJDKv40LHSEu9gMhoICAmz/sw/JIzkuBjrY5/SQdb/azwss1906Wn5ek2ZFgxszbRWFZjWqgLXjv1FUnwsfgGl8PHxydLuqKioAh3fFg9WolbYedA1P5WoBddna9CRm3I1G1CvU2+UajWtnx2FUZ/BzdNHCt02W4MOk411nf2CQ63/DwgpT3J8LMnxsfjfd31w8/TG0y+ApPuuEf5ly923X1iWoby8yPlon+CaRDkCIVd5ddsnx8eycc5Erh/7G42nF62GjqDV4OFEnjnGpnlTiL92CbW7O3U69KLn2++jUluW3pjUuAy9J3zEwR//D7PJxMDpn7Nm6ihaDx3JvuULUSgVdBkzhaZ9huAXXI7E2ChMRmOW4Mm3TFkuXb1Oz/8e37x5E5VKRVBwWfzLhnL9zPGH2uvlH4hSpSYh5hbBlWsAkBQbhW9QiE3vh8bDE33GvcT0lCw9UQ8HDGN//iPL47S4KJIS7pKSkmINnm7evEm5cuUe2tfeqvm5MbK2mpk/78G3Sh0UKnWRV6IWXJ89vtT9yt4LSBQKBb5BoaTkI7jIia1Bh9LG4D3pdrT1/4mxt/AtUxbfMmVJjLll/blem0Z6UgJ+910jEmOjCK5S0/p/3zJlbXwFmZ8bcXNRnIkrnZCr3LrtzWYz370xlJDqdZm44xQvL/mFgz8u5dKfe1AolPR6+32m7rnIqOXbuHL4AH//9E2W/c/9vo3R3++wBhepd+LISE1m0vZT9H/vUzbOmYg2OZHydRvjUzqYHQvfR69Nw6DL4PqJQzTu1p/PPl3AtWvXSE1NZfLkyTz99NN4uqlp0mMQEYf2cWrnekxGI2mJd4m+eBqFUkm9zn3YufhDdGmpJERH8sfKL2nUY6BN70dIjbqc2rEOk8HArXMnOLN7k/U5r4BAJIWCu1E3cty/VNkwGjdvwaRJk8jIyODUqVN8/fXXdksIz8v1yxf5+vUhDKroWeSVqIXiwR5f6kmx9wISs9lMclw0PvkILnJia9ChUUpINmRm/vXTNyTdjiY9KYG9Xy+gfuc+NOjWn6MbVxF98TRGvY4diz6gfN3GBISGW/c78P1itMmJJMZG8eeqpdTv0jcfr8FSa0sovkSPk5Cr3Lrtb509TlriHToOHwdAqbCKNOv3LKd2rGPgjIXW7QJCw2k24H9cO/YXrYeOtP683Qtv4OkXYH2sUKnp8Mo4lCoVNVt3RuPhRfz1CMLrN+W5T1ewad5kPurRCEmSaNCtP/3Hf0CQ/i5PPPEEGRkZdO3alYULF6LyUOJTthzPf76KrZ9O59f3x+Lu7Uvn0ZMIrVGP3hNms3HOJOY92RSVmxuP9RtGkz5DbXo/uoyayKrJI5jZriqVmrSkQbf+aJMSAUtvVPuXxvJ/L/TEZDTwwqI1hNdvmmV/oyyzYuWPvP3aaEJDQwkICGDGjBl06tTJpvMX1syZMxk7dixVy/hRtQxFWolaKB7uBR0F73mKunCSM7s3U6ttN/5c/RVKtRvh9ZrmvWMebA06yngoMdrQM9WwW3++GT2I5PhYarXrRvuX30Lj4Unn0RNZ+c6LaJMTCa//GINnf5Vlv1rturFwaCcyUpNp8uQzNO1r2/UDLNeAIA/x1VuciUV+hVydvZvBjshU9NlMZDm1cz1rpoxE43FvBpXZbKJio8fpNe4DtnzyLlHnT2DI0GI2mShXsz4jvtkMWIbq3l7/N6XDqwBw9chB1kwdxaTtp6zHyquyr1oB3cp7U6eU+0PPLTh1B50LJmC6KSXG1g90yrnPnj1Lhw4diIiIyJJjdT9HVaIWio8Ug4klZxPyXbct8/N6/fghbl85j6RQcvHgLgLLV2LAe59SrlaDLNsVpGK3UoJRdUrZ9LfoqGuA5dp1iNLhlQu0vzOvAYJ9iLBXyFVu3eJ+weUICA1n3IbDDz23bER/QmvWY/Dspbh5efPHyiVZhrUsCtddnVu3fZC7ksg015vyG+SudNq5Z86cyVtvvZVj0ASWStTe/+WhCY8mH7USlULClM+gY8KWYwBcP34Ilcadpz/4MtftCkKlkGwO4MU1QHAUcQsp5Cq3XIHydRvj5uXNvuWfW3uVYiPOE3n2OLr0VNy8fNB4ehF37TKHfl5u97bl1m1f1U+T79wdR1NJlnY5w5kzZ/j9998ZM2aMU84vFC+u+uWen3aJa4DgKCJwEnKVW66AQqnkuc9+JPriGeY+2YT3O9Tg15lj0aUm0+PN6Zzc/gvTW1dk3ftj85U8aavccgXqB7q7zAKlmWQs7XKGGTNmMG7cOLy9xdpxQt5KQtDhqGvA7GPxBR6mc+Y1QLAfkeMk5Km45gutv5bMxUTXWOFdwjILrW8l3yI/96lTp+jSpQtXrlzBy0tU9BbypjWaWXTmrsusTwmW/KZX65bK16QEcQ0QHEH0OAl5Kq7d9s2CPHCVWb9KCZoHeTjl3DNmzOCdd94RQZNgMw+Vgmp+GqcutXQ/Cajmp8n3TE5xDRAcQQROQp6Ka7d9qJeaKr4ap184M4tEhnipi/zcJ06c4M8//2TUqFFFfm6heCsJQYe4BgiOIAInIU/FOV+oW7g3KoVzr5oqhUT38s7JLZoxYwbjx4/H09PTKecXiq+SEnQ86tcAwf5E4CTkqTh323uoFPSq4O3wBW5zolZArwreuDuhWOTx48c5dOgQI0eOzHtjQchGSQg6HuVrgOAY4jcp2KQ4d9tX83OjYaB7kV841QpoGOhONT+3oj3xf2bMmMGECRPw8BB5FULBlJSg41G9BgiOIQInwSbFvdu+Qzkvavm7FdmFU62A2v5udCjnnITsY8eO8c8//zB8+HCnnF8oOUpK0PGoXQMExxGBk2Cz4txtL0kS3cO9i+QLIPOC3y3cG8lJq6BPnz6diRMnit4mwS5KQtDxqF0DBMcRdZyEfLmcpGPj9RQM2axd52hqBfSu6FPoO9DLSTo230jFaJbtWqdGKVkCu14VvJ3aNX/kyBH69u1LREQE7u6i2J5gH7IssycqjRN3Mhz6+c8MOjqU83JY0FHSrwGCY4nASci33bdSHX7xfFDmxbRjmH1mpmiNZrbfTOVKsh6TXJh14DPXzLMMIXYr753vWjP21qtXL7p37y6WVxEcoqQEHSX5GiA4lgichHyTZZltN1M5n6grkuAps9veEd3eMWkGDsVpuZykRwKM+fg0qCTLxbaan4bmQR4uUaPl8OHDDBgwgIiICNzcxB2v4BglKegoadcAwfFE4CQUSEnqtgfLF8GpOxlEJOmJyzBhNMuoJAkZGRnLxV1CwijLqBQSQe5KqvppqB/o7lJ3lz169KBXr16MHj3a2U0RHgElKegoKdcAwfFE4CQUSknptn9QqsFMnNaI3iRjkmWUkoRGKRHkocK7CKcXpRhMxGtNNrXj77//5qmnnuLy5cuit0koUiUx6HCVa4DgekTgJBRaSeq2d7bcvoAy5fQF1K9XD/r27SsKXgpOJ4IOoSQTgZNgNyWp276oRacZOFyI985sNnPp4C7eHdaPCv6iBIEgCIKjiMBJsLuS2G3vKPbsrcNsRqVUUMVXQ7fwR6+3ThAEoSiIwElwONFtn72Smh8mCIJQkonASRCKWEmbkSgIgvAoEYGTIBQhZ9TAquXvRnex9IMgCIJdqJzdAEF4lOyJSiuyoAnAYIbziTrclJLdqq4LQkmUn9IfwqNNBE6CUEQuJ+mKfKkasARPJ+5kEO6jFjlPgvCfwpT+EBMvHm1iqE4QioDWaGbJuQR09swCzyc3pcTI2gHioi880gpb+iOzbEqzIA9CH7GyKYKFCJwEoQisu5pMxH8lB5xFKUFVPw39Kvk6rxGC4CQOKdQrSn88kkTgJAgOFp1m4MfLSfm6s3UUlQRDq/k9cgVGhUebKP0h2JMIkwXBwQ7HaZ3a03Q/kwyH4rTOboYgFAlZltl9K5WN11PQmewbNIHl86QzyWy8nsLuW6mIfohHgwicBMGBtEYzl5P0hasIbkcycDlJj9ZYxBnqglDEMkt/FMWEjMwJGNtuiuDpUSACJ0FwoFN3MniwetK6D8ax+6tPALh65CCzu9Uv0jb9tmQu/Z4ZUqTnFISi5qzSH3ui0ormhILTiHIEguBAEUn6h3Kb+k352DmN+Y9ZhjS96HESSi5R+kNwJNHjJAgOFJdhcnYTspXhKklXgmBnWqOZzTdSizxoymQww+YbqWI4vAQTPU6C4CBHTp1h0YsjiL54Bt+gELq+NpXabbuxdtqr+AWF0mXM5If22bf8c/5c9RUZaSn4lilLn4lzqdr8CcxmM/u/W8g/61agTUmiarM29J38MZ5+AQDcPHWELfPfI+7qRfxDyvPkOx9QuWkrAO5G3eDnaa8RdeEU4fWaUrpCFWQsiy+LishCSbP9pmX2nDMZzTLbI1NF6Y8SSlw1XUCKwcTVZD0XEnScvZvBhQQdV5P1pDrrlkkoNIPBwIC+fajZoj1Tdp+n9/jZrJkykvjrETnuE389gr/WfM2YFb8x44/rvLj4JwJCywPw1+qvOLd3G8O/2sDkHafx8PFnw0cTAEiKi2H5G0No//JY3v39Mj3GTmfFOy+QmvAvAKsnjyS0VgPe3XORDi+/xbHNa5CAOK3R4e+DIBSl6DSDtU6TM5lkuJKkJybN4NyGCA4hepycQJT6L/n+/vtv0tPSaP/i6xhRUKVZG2q26cLJ7b/muI+kUGDU64m7ehEv/0ACQsOtzx36+Tt6T/gIv+BQADqOeIc5PRthMho5sXUtNVp1ombrzgBUe7wdYbUacPGPXVRp2pqoc8d5ecnPqDRuVGrSklpPdAVA7+xvF0GwM1cs/dG3kqiZVtKIwKkI5Vbq3/TQFFbLY5NJJjLNSEy6kf0x6aLUfzERHR1NcGg5FAoF/NdxGBASRnJ8TI77lA6vTK9xs9j1f3O5feUi1Vu0p+fb7+NbpiyJsbdYMe45JOle4KxQKEm9G09CzC3O7NrIhf07rM+ZjEYqP9aa5PhYPHz80Xh4WZ/zDwkj5XZ0Nn9zglB8VKxYkWXLltGpUyfA8aU/prWqwBtr9lEqrKJN299f+kPc8JYsInAqAvYo9Z8ZZF1M1BORpBel/l1caGgot6OjMJvNZI6IJ8ZGUTq8CgkxN3Pcr2H3ATTsPoCM1BTWffA22z6bydOzvsAvOJQB0z6jYsPmD+3jHxxKo56D6P/ugoeeS4iORJuSiF6bZg2eEmOjUEoSSunBQgmCUHxlV/rDnmYcvJHvfSQs7Woe7Gn/BglOI751Hexyko4l5xKISLZMSy/s3ZCMJYiKSNaz5FwCl5N09mimYGfNmzfHw8OD35cvwmQwcPXIQc7v30H9rv1y3Cf+egRXDh/AqNehcnND7eaOpLB8FTQf8Dw7F39IQnQkAKkJ/3Lu920ANOwxiPP7d3Dpzz2YTSYMugyuHjlI0u1oAkLLU65WQ3YtmYvRoOf68b+tPVMapQichJIju9IfzmaULe0SShbR4+QgsiyzJyrNYbVETLJlGG/j9RQaBhroUM4LSfQguAyNRsPP6zfwzEsj2fXNp/iVCeGpmYsJqlQtx32Meh3bF75P3LVLKFVqwus/Rv935wPQcshwZGS+GTOI5PhYvEuVoX7nPtRu1x3/suUYNv8Htn82g9WTR6BQKAmr24i+k+YB8MyHS1j73qu8364a4fUfo1HPp9ClJhPkIT7+QvF24sQJ3nrrLW7cuEHlx9vTf8Yi1G7uHP71B/Yt/xxtciIVGzan75SP8S1TloTom8zt1YRZh2NQqix//0tf6UOjHgN5rN8w/r15lV9nvkn0pTMoVWqqPNaGIXOWATCpcRneXn+I0uGVWTvtVTTuniTERHLt2F8EVa7BMx8sIbB8JQAu/bWXTXMnkXInjiY9BrI09grDhg3j5Zdfdtp7JdiPWOTXATJL/RdV1Vq1Amr5u9E93FsETy5mwak76FwlW/U+bkqJsfUDnd0MQSiwihUrEhQUxPr16zEo1TRr0YqWg4dTOrwKP058mRcX/0RwlZpsXTCNmEtnGfH1pjwDp1WThlO2Sk3avvgmJoOeqHMnqNjoceDhwOn8/p28sHA1oTXrs3baq8gmE4M/+oq0hDvM692UgdMXUqttNw6v/ZqtC6bz5ZdfisCphBBDdQ4gSv0LmYLclc5uQrZctV2CkB+vv/46oaGhmDz8qPNEV6IvnuHEtp9p2nsI5Wo1QKVxo+trU7l5+ggJ0TnnFmZSqtQkxNwiJT4WtZu7NWjKTp32PShftzFKlYqG3QcQc+kMABcP7iKock3qduyFUqWi7ZARlA4ua7fXLDifCJzszNml/kXOk2up6qdB5WKdgCrJ0i5BKO7KlrUEJHqTjNrdA316GsnxsfiHhFm3cfP0xtMvgKS4nGe0Zur+xnuAzOJhXVgwsDVH1q/McVufwCDr/zXunujSLTeuyfGx+JcNvbehBMEh5fL5ygRXJpIc7MhVSv2PrK0Ws+1cRP1Ad/bHpDu7GVnIWNolCCXF/aU1fMuUJTHmlvWxXptGelICfkEhqD0ss9sMGVqU3j4ApN6Js27rUzrYOjv1+vG/+XrUQCo2bkHp8Mo2t8WndDBJt+8FaWZZJjb6Vi57CMWN+Ha1I1cq9S+4Bg+Vgmp+GodOk84PCajmpxGBtVCi3F9ao0G3/hzduIroi6cx6nXsWPQB5es2JiA0HO+A0vgGhXB861rMJhNH1q/kzq3r1n1P/7aBpNvRAHj4+oMkWWqx5UPN1p2JjTjH2b1bMRmN/Lnma+7E3bbHyxRchLh62oko9S/kpFmQB64y818pQfMgD2c3QxDs6v7SGlWbt6Xz6ImsfOdFPuxSlzuR1xk8+yvr8/3fnc+B7xfzfvvq3L56kQr1H7M+d+vsCb74X1emtarA92OH8eS4D2wueJnJKyCQIXO+ZttnM3i/Q3VuX7lEvUZNcHNzK/TrFFyDmFVnJ+uvJXMx0XFVa/NDAmr4a+grFph0GeuuJhPh5MBa+V9uk1h4VChpUgwmlpxNcPqNa3Yk2cynvRry48qVtG/f3tnNEexA9DjZgaNL/efX/aX+BdfQLdwblcK53U4qhUT38t5ObYMgOIKPWun0z9f9Lv25B21KEka9jn3ffAqyzOOP5zxDTyheROBkBwUp9b/ug3Hs/uoTh7QH7pX6F1yDh0pBrwreqJ30iVMroFcFb9xFbpNQQrlSiY2bp44wr/djvN+hBpcO7GT9+vV4eIgh8pJCDNXZwcpLiUSmGZ3djIeU91IxtLq/s5sh3Gf3rdQiL1ehVkDDQHc6honeJqHkOnQ7nQMx6S617IpKgjYhnmKtuhJG3H7aQVyGydlNyJartutR1qGcF7X83Yqs50mtgNr+bnQo51U0JxQEJ6kf6O4y6RKZROmPkknUcSqkFIMp1xIEp3as45eZb1ofm4xGwus3JSC0PH5BoXQZM5mrRw6yZuooWg8dyb7lC1EoFXQZM4WmfYYAlpojO7+YzZldm9CmJlG2ai1e+uJn1O65d/0azTKpBjPezhofEh4iSRLdw71xU0oO73nK7GkS6xgKj4LM0h+uNEnHEaU/Ugwm4rUm9CYZkyyjlCQ0SokgD5W41hcRETgVUrzWhEqSshRgu1/9rv2o37UfABmpKXzxv6406Nqfm6f/ybJd6p04MlKTmbT9FJcP/c6P41+iTvseePj6s3XBNG5fvcjI5VvxCQwi8sxRJBtqi6gkiTitEW+1qBLtSiRJomOYN+W91aw5G4PazR2U9vsoKiVLInivCt5U8xNToIVHR7MgDyKS9C4xXGev0h9ao5lTdzKISNITl2G5UVdJEvJ94aGEhFGWUSkkgtyVVPXTUD/QXdRrcxAROBWS3iRn+QPOidlsZvXkEVRu2ormA597KHBSqNR0eGUcSpWKmq07o/HwIv56BGF1G3Nk4ypGf7cNv6AQACo0aGZT22Rk9K44P1cA4Nzv2/j1w4+Yumo711KMmGQKdacsYblYV/HT0K28t7hoCo+cUC81VXw1LlH6o4qfhhAvdYGPEZ1m4HCclstJeiTIEgw+fKNueWwyyUSmGYlJN7I/Jp1qfhqaBXkQWoh2CA8TgVMh5dTT9KCdiz9An57Kk+98mO3znn4B1tW6Acu6S9o00hPvYNRl5LsIG1g+Sra2TyhaGRkZvPXWWyxdupROVfyJSTNwKIeLZF5UkuV3Xc1PQ/Mgj0JdrAWhuOsW7s2ScwmYnBg5Fab0h9ZoZvvNVGtB5YK8iszrx8VEPRFJeqr4augWLm6m7EUEToWktCF35OSOdZzcvo4xK3aiVOfvS83TPxCVmzt3b10npHrdfO0r2dg+oeh98sknNGrUiE6dOgEQ4qWmbyW1tVt+zZ6/CK1RF1mhtHbLy1h+p6JbXhBylln6Y+P1FKesG1qY0h+Xk3RsvmFZussecZ+MJYiKSNaz5FyCGL63ExE4FZJGKSEhkdN9QfSFU2yaM4kXv1yLd0DpfB9foVDQtPdgtnzyHk/N+gLvUmWIPHOMcrXqo9Lk/gGQkLIsRSC4hsjISObPn8+RI0cees5DpaCBn4L2Lz3JnTt3MKnciNMaRSKoIORDNT83GgYanFb6I7/BiSzL7IlKc1h7TbJlGG/j9RQaBhrEhJFCEoFTIZXxUGLMZTjs3O/b0aYk8n8v9rL+rGKjx/EOLGPzOXqMncH2hbNY/GxndNo0QqrV4cXFP+W5n1GWCfIQv2JXM378eMaMGUOlSpWyff7UqVNUr17dWjBPJPcLQv51KOeFziRzPlFXJMFTQUt/yLLMtpupRdJOgxlO3MlAZ5LpHu4tgqcCKvEFMIti6uaCU3fQuWAStptSYmz9QGc3Q7jPgQMHGDp0KBcuXMDTM/uieF988QXHjh1j2bJlRdw6QShZHN2Tk6kwpT9EUdzip8R1Rzhj6maQu9IlK4e70hIEAphMJl577TXmzZuXY9AEcOTIEZo1s23mpCAIOcss/RHuo7Zr7lCmwpb+uJykK/KgCe71PIX7qEXOUwGUmMDJmVM3q/ppiEk3ukTtkEwqydIuwXV89dVX+Pn58dRTT+W63dGjRxk9enQRtUoQSr5qfm6MrK0u9Gy1TPYo/aE1mtl8I9UpCexgCZ4230hlZG21mFiST8V+qM4eUzczWT8M+Zy6qTWaWXTmrlPrhjxIKcGrdUuJD4SLuHv3LrVq1WLnzp00aNAgx+3S09MpXbo0CQkJuLmJO0FBsDdXKf2x7mqyS9SbquqnoV8lX+c1ohgq1j1OrjJ181Ep9S8U3LRp0xgwYECuQRPAyZMnqVWrlgiaBMFBHiz9kV1ah6NLf0SnGaw3+85kkuFKkp6YNIOo/5YPxTJwcsWpmyWx1L9gH6dPn2bNmjWcP38+z22PHDlC06ZNi6BVgvBo81ApaB7sSfNgS75hqsFcZKU/DsdpnR40ZTLJcChOS99KInCyVbELnFx16mZJKvUv2I8sy7zxxhtMmzaNwMC8ZzgePXqUVq1aFUHLBEG4n7daUSSlP7RGM5eTXGN0AiwjLZeT9GiNZjFKYaNi9y7tiUorsrocYAmezifq2BOVlue23cK9USmcWxejMKX+Bfv75Zdf+PfffxkxYoRN24seJ0Eo2U7dySCvb4k5PRsTcWhfkbQHLMOSp+5kFNn5irtiFTg5e+rm5SRdrttllvp3VkHnwpT6F+wvPT2dt99+m88//xyVKu/O3dTUVK5evUqdOnWKoHWCIDiDq6R03M8oW9ol2KbYfMO6ytRNrTH3BlhK/bsXefBU0FL/guPMmzeP5s2b065dO5u2P3HiBHXr1kWjEWUkBKGkisswObsJ2XLVdrmiYpPjtP2mZfacMxnNMtsjU/OcullcSv0LjnPjxg0+//xzjh07ZvM+R48eFcN0glCCpRhMNn+PRV88w5ZP3iMhNpLqLTowaOYi1G7uHP71B/Yt/xxtciIVGzan75SP8S1TFoBLf+1l09xJpNyJo2H3gcRduUCjnoN4rN+wPM9nNMukGsxiDUwbFIt3yBWnbuZGkiS6h3sXSc9TZk9TN7HukEOkGExcTdZzIUHH2bsZXEjQcTVZT2oeEfG4ceN44403qFChgs3nEvlNglCyxWtNqGy8Tp/+bQMvLF7D+E1Hib18jmObVnPl8AF2LJrFkDnLmLzzDP4hYaya+AoAaQl3+HH8i3R9dSrv7rlEmQpVuHHqH5vbppIk4rSutwKGKyoWPU7Fceqmq5f6F7JnjyV79u7dyz///MP333+fr3MfOXKEcePG2fX1CILgOvQmOcu1JDctn3nF2pNU64muRF88w62zx2naewjlalnqwXV9bSoz21UjIfom1479RVDlmtTtaFlQvuXg4Rz44Qub2yYjo3eVL1oX5/KBU3GfuumKpf6Fh9lryZ4mgRpef/11PvnkEzw8bK+llZyczM2bN6ldu3bhX4wgCC7p4WtJznxKB1n/r3b3IDk+lvSku4TWrG/9uZunN55+ASTFxZAcH4t/2VDrc5Ik4RsUiq3kfLbvUeby37q2TN3My96vF/DLzDft0Rwg/1M3PVQK+lX2ZWg1P2r4ayy9RTa8qPunpKokS8BUw1/D0Gp+9KvkK4ImO9Aazay7msyPl5O4mGgJbPM748UoW3oiLybqWXkpkU5vz6Z77775Osbx48epX78+arWovyUIJZWykOkUvmXKkhhzy/pYr00jPSkBv6AQfEoHk3Q7xvqcLMskx0XbfGzJDu17VNj9m3f69Ok8++yzhTrG77//TlhYGGCfqZvtXxrLgPc+LdxB7lOQqZvXr18n1FtDr/KevFq3FG1CPCnvpcJNKaGUwE0hoVFYcpY0CstjCVArJMp7qWgTYtmvbyVfUdzSTi4n6VhyLoGIZMvfWGHvtWQApYqQBs35v/OJeZavuJ9IDBeEkk+jlJAK0RXQoFt/jm5cRfTF0xj1OnYs+oDydRsTEBpOzdadiY04x9m9WzEZjfy15mtS7sTZfGwJS6V0IW9FPlQnyzKyLKNQ2BazueoUycK0y9ZS/59qFAyo7Eun6v52arUAjl+yx4yELocle1IMJuK1pod+1yfOX6JDq8ft3xhBEFxGGQ8lxkIMh1Vt3pbOoyey8p0X0SYnEl7/MQbP/goAr4BAhsz5mk3zJrN22qs07D6QcrUaolTblgNrlGWCPFw+e8clSLJc8N/inDlz+Pzzz0lOTiY0NJT58+fTr18/ZFnGzc2NKlWqcPLkSdq1a0erVq34/fffOXbsGKdPn+bAgQPMnTuXW7duUaZMGSZMmMCIESNIS0ujdOnS6HQ6PD09MZhl3l5/CO/AIPZ/t5B/1q1Am5JE1WZt6Dv5Yzz9AgA4tnkNv33xETptGq2GjODI+pUMeG8BVZu3ZdeSudyJvMbTH3wJwPXjf7Pts5nEXb2Im5c3nUdNpEnvwQ+9vqtHDrJm6ihaPvMKB374AoVSQZ9J81Cq1Wz5eCqmlATGjRvH5MmTATCbzcydO5evvvqKxMREOnbsyJIlSyhVqhTh4eFERkbi5WUpGfDbb78RFBTEK6+8wsmTJ5Ekia5du7J48WL8/f0BqFixIsuWLaNTp04F/RUJDyjKJXvAMsRa2l2JSiERn0uyeVpGBu4aNSFeGrstJCoIgutZcOoOuiJIwjabzXzUrT5Pf7CEKo+1znN7N6XE2Pp5LwslFGKo7uLFiyxatIh//vmHlJQUduzYQc2aNZk8eTJPP/00qampnDx50rr9Dz/8wNKlS0lJSaFChQoEBQWxefNmkpOT+fbbbxk7dizHjh3Dy8uLbdu2ERoayqnou3z01018y5Tlr9VfcW7vNoZ/tYHJO07j4ePPho8mAHD76kU2zB7P0x98yeSdZ9ClJpMcH5NtuxOiI/n2tWdo8czLTN19gddW7SWkRt0cX2fqnTiMeh2Ttp+i08iJrHv/LU5s/Zm3Vu3mx217eP/997l27RoACxcuZP369ezbt4/o6GgCAgIYM2YMAPv37wcgMTGR1NRUWrRogSzLTJo0iejoaM6fP09kZCTTp08v6K9EIO/yAUW9ZI9RhlitiVtpRnQmy8xKnVlGb8b6T2eWUWncMKIgMs3IgZh0Fp25y/pryUTnUfpCEITiJchd6bBjX/pzD9qUJIx6Hb9/swCQCa/XxOntKmkK3C+nVCrR6XScO3eOMmXKULFixVy3f/7557MsJdGzZ0/r/9u2bUuXLl04cOAAjRs3tv78/qmbh37+jt4TPsIv2DJLoOOId5jTsxEmo5EzuzZR84muVGxkGeroNHICf676Ktt2nNz+C1Wbt6Vht/4AePmXwsu/VI7tVqjUtH9pLAqlkgZd+7Fu1lu0HDwcNy9vKoaHULt2bU6ePEmlSpVYsmQJixYtsuZnTZ8+nfDwcH744Ydsj121alWqVq0KQJkyZXjrrbeYMWNGru+jkFV+ygcoJDCaC5/L5GiZOX0XE/VEJOmp4quhW7iYQSkIJUFVPw0x6UaHLLty89QRVk8ZicmgJ6hyDZ795HvU7nnP7lVJlnYJtilw4FS1alU+/fRTpk+fztmzZ+natSvz58/Pcfvy5ctnebxt2zZmzJjBpUuXMJvNpKenU69evSzb3D81MjH2FivGPYck3fvyUCiUpN6Nt0zDDC5n/bnGwxNP/4Bs25F4O5rAsIoP/zzmFgsG3luVfsbBGwB4+gWgUFoicZWbOwA+gWWsUzc9PDxITU0FLNWi+/XrlyV/S6lUcvv27Wzbcvv2bd544w0OHDhASkoKZrOZgIDs2y1kVaDyAa4eMT1A5r+JCMl6lpxLEDW7BKEEqB/ozv6YdIccu9PI8XQaOT7f+8lY2iXYplCZYEOGDGHIkCEkJyczYsQIJkyYYO1BedD9Va11Oh0DBgzg+++/p0+fPqjVavr27UtmulXmtvdPjfQLDmXAtM+o2LD5Q8f2KR3MvzcirI8NGVrSExOybYd/cCiRZ48//POQMGuwZIvspm6WL1+eb775hlatWj20/Y0bDx978uTJSJLE6dOnKVWqFOvXr+fVV1+1uQ2PIq3RbLeaWMWFSbbUjMou2VwQhOLFQ6Wgmp+Gi4muUZ9QAqr5aUSPdj4UKsdpz5496HQ63N3d8fDwQKFQEBwczPXr1zGbc04i0ev16HQ6ypQpg0qlYtu2bezcudP6fHBwMHfu3EGXmmydutl8wPPsXPwhCdGRAKQm/Mu537cBUK/Tk5zfv4MbJw9jNOjZ9X/zcqzO2rD7QCIO7ePUzvWYjEbSEu8SffF0vl9/dlM3R44cyZQpU6xBUnx8PBs2bAAsQ3EKhYKrV69at09JScHb2xs/Pz+ioqKYN29evtvxKLF3+YDixmCGE3cy2HYzlULM6RAEwcmaBXngKjP/lRI0D7K9WK9QiMBJp9MxceJESpcuTdmyZYmLi2P27NkMGjQIgMDAwCz5Svfz8fHh888/56mnniIgIIAff/yR3r17W5+vWbMmgwcPpn3DmkxuXZnk+FhaDhlOrbbd+GbMIKa1rsiXz3Un8vRRAIKr1KT3+NmsmjScD7vURePphXdAaZTqh8ds/UPCeP7zVRxY8SXvt6/GwsHtibl0Nt+vP7upm2+88Qa9e/emS5cu+Pj48Pjjj3Po0CEAPD09mTJlCq1atcLf35+///6badOmcezYMfz8/OjZsyf9+/fPdzseBbIss/tWKhuvp1gTrB9VBjOcT9SxJyrN2U0RBKGAQr3UVPHVOD14ylyFQtQGzJ9ClSMoCgWZuqlLT2Vm26q8vf4QpcrZvshqfoipm0WjqMsHFBdqBfSu6CNyngShmNIazSw5l1AkpQly4qaUGFU7AHcxTJcvLv9u2TpF8vy+Hei16ei1aWxdMJ3gqrUICA13eruEwinK8gGTGpfh35tX897QBRjMsPlGKlqjiCYFoTjyUCnoVcEbtZO+hdUK6FXBWwRNBeDy71hVP41N67qd27eN2V3r8WHXety5eZXBs79yWAKtmLpZNC4n6RxW3bso7VoylzVTRtn9uEazzPbIVLsfVxCEolHNz42Gge5FHjypFdAw0F30WBeQy9dXt3Xq5oD3PrXrenS5EVM3HU9rNLP5RmqxD5ocySTDlSQ9MWkGkaMgCMVUh3Je6ExykfWsqxVQ29+NDuW8HH+yEsrle5wyp266yAQEMXWziGy/mYrRbJ+x/yMbfuS7N4ZaH3/cpxkrx79offxR9wbWmZVXDu/n4z7NmPFEFTbMHp9l9tqR9SuZ378lM9pW5ZvRg6wzPAE2zZvMR90bML1NJRYO6ci1Y38BcPHgbn7/5lNO/baeaa0q8NnT7ezymjKZZDgUp7XrMQVBKDqSJNE93LtIep4ye5q6hXuLkiaFUCy+/cXUzUdLdJrBWqfJHio3acn1439jNptJjo/FZDBw89QRAO7euo4uPY2y1SxV7c/v38mYFb/xxpp9nP5tI5f+3APAud+3sfebT3n24+VM3X2Bio0fZ/XkEdZzhNVuxGur9vLu3ss07D6AHye8hEGXQY1WHWn34pvU79yXGQdv8Maa3+3zov4jA5eT9CLXSRCKMUmS6BjmTe+KPrgpJbt/3yklSyJ474o+dAwTQVNhFYvASUzdfLQcjtPateRAqbCKuHl5E3PxNNeO/UW1Fu3xLVOWuGuXuXr0Tyo1etxa7b3dC6/j4eOHf0gYlR9rRcylMwAc+nk57V58g6DK1VGqVLR7cSwxl85Ye50a9RyEl38plCoVbYaNxqjXZynK6kgScOpORpGcSxAEx6nm58bI2gFU9bXk9hb2K0/iXk7uyNoBIqfJTlw+xylTt3BvlpxLwOTEqZsqhUT38t5OO/+jQGs0cznJ/hV1KzVuydWjf3In8hqVmrTEw8ePa0f/5Obpf6jUpKV1O+/AIOv/1e4e6NMt9ZISY26xed4Uts6fZn1elmWS42MICC3P/u8Xc2T9SpL/jUVCQpeWQlrCXTu/iuwZZYhI0tM82LNIzicIguN4qBT0q+xLTJqBQzksK5UXlWTpja7mp6F5kIe42bezYhM4ZU7d3Hg9xSkJw2LqZtE4dSeD2T0a0/+9BVRt3rbQx1v6Sh8a9RhIpSYtubB/B3ejb9L+xTfx8PHlxLZfuHnqCC2efjnP4/gFh9LupbE06jHwoeeuHfuL/d8t4uUlvxBUpSYKhYIZbatirW2ej25xk9GIUpX/j2Vchinf+wiC4LpCvNT0raTOdSFzGUuvUuZC5iqFRJC7kqp+GuoHuotcXAcpNoETZE7dNBT5FHUxdbPoRDigtwmgUpOWbJn/Lt6lyuAXHIqblw8/vTsGs8lIaI16ee7ffODz/PblR4TWqEtwlZpkpCRz+e+91OvcB116KgqlEq+AQBKib/DdG8+SkZLEinHP06jnUwRXqcGRDSuZ06MRBl0G1Vt2oPf42bj7+JIQfZO5vZrQ/70F7F76MQEh5WnaZwj/rF9BeL2m/LN+JR4+fvSZNIcarTrl2D6jWSbVYMbbWUVhBEFwCA+VgubBntYe5VSDmTitEb1JxiTLKCXL8l9BHirx+S8ixSpwAjF1s6SzV8+JLMtZZsSVqVAFN08vKjV6HAB3bx9KlauAV0AgCmXexUzrdOiJLj2NVZOGkxgTibu3L1Wbt6Ve5z5Ub9GB6i078HHf5hh1OsrXa4JfcDn6TpmHu5cPURdOkXb3XxRqDaXKlUefnsaGORN5etYX1uNfO/oXb/1yEElScGrneiLPHKNxr2d4d89FDv/6Pb/MeJNJO07nmNSpkiTitEa8s1lmSBCEksNbrRCfcycrdoFT5tRNN6Xk8J6nzJ4msRp90UgxmKwlCG6dPc6muZNJ/vc2ddp1p8/keRh1GayZOppbZ45hMhmp0KAZ/aZ8jF9wKGAZlqvQoBnXjh4k6sJp3lizL8vxJ+88ay0pkHInjvJ1GtF38scAbJg9ntbPjqJ0eGXr9tqkREKq1bU+btzrKRr3euqhdiuUSgZO/5zH+g3jh7HDeGXp+izDbbuWzKXHWzNp8ZSlBEL89Qg+faoNA6d/bt2m04h30HjcC879y4bRrP+w/877NBtmjyf1Thw+pYOzfe9kZPSP8iJ+giAIRaRY9uuJqZslU7zWhOq/9/rEtl94YfFPvLPxH/69eYW9y+ZjNptp2mcw47ccY+LWE6jd3dk4Z2KWYxzfupZ+U+cz/cA1AkLKZ3kut5ICjZ98hpPbf8VstkTiaQl3iDi8nwbdbV94Oel2FP4hYQ/lKCXHxxIQEmZ97B8ShtloJPVuvPVnfsHlsuzjU/pekrrGw9JFr0vPeWFfGTC59rKTgiAIJUKxDJwyiambJYvelJnuCC2efgn/suXw9Aug3UtjObljHV7+pajb8Uk0Hp64eXnT/qWxXD36Z5ZjNHnyGYKr1ESpUqFUZ51JkltJgfJ1G+Pu7cuVw/sBOLljHZWatMTnvll2efELLkdibBQmozHLz33LlCUh5pb1cWJsFAqVCu9SZe5tVMjgXAKUIsAXBEFwuGI3VPcgMXWz5Li/xyRz+A0gIKQ8yfGx6LXpbPnkXS79uQdtSiIAurRUzCaTNU/pwZ6b++VVUqDxk09zfOtaqj3ejhNbf6blkOH5an/5uo3xKR3MjoXv02nkeCSFkqjzJ2nQrR/7li+kRquOeAUEsnPRLOp37lug2XM5kbAkiAqCIAiOVewDp0xi6mbxd3+PSdLtaOv/E2Nv4VumLAdWfEn8jQhGf78dn9LBRF88zcLBHbIkgefW6ZJbSQGARj0G8emgNsRcOkPc9UvUadc9X+1XKJU89+kKy/IrPRohSRINuvWn17gPSI6/zdKXe2PU6ajWoj29J8zO17HzYpRlgjxKzMdZEATBZZW4K62Yull8aZQS0n8Drn/99A0123RB7e7B3q8XUL9zH/Rpqajd3HH38SM9KYHdSz/O1/FzKykAlsAqrE4jfpo6hrodeqF2z//SOv4hYQyb//1DP+84fBwdh4976OcBoeHMPhaf5WdNeg+mSe/BWX724DYPUikk8fcsCIJQBEpc4PQgMXWz+CjjocT4X+9Rw279+Wb0IJLjY6nVrhvtX36LjNRkVk8ewawONfApU5Y2z47m3N6tNh8/t5ICmRr3epqf3h1Nr3c+sPvrc6Qg97xLKjwoxWAiXmsSNxWCIAj5IMmymIojuI4Fp+6gc+K0+mtH/2TNu6OZsOV4sZlNqZKgTYhnnkuu5DaMnUkMYwuCIOSuxPc4CcVLkLuSyDRj3hs6gMlg4OCqpTzW99liEzSBZWJD/UD3HJ+PTjNwOIeJEw+XMLA8NplkItOMxKQb2R+TTjU/Dc2CPAgVEycEQXjEicBJcClV/TTEpBvzNSvSHuKuXmLRs50JqV6HgdNHFO3JC0HCMhs0ux4hrdHM9pupXEnWY5Ip0FI2mb+Hi4l6IpL0VPHV0C3cW/RACYLwyBJDdYJL0RrNLDpzF1EE2zYqCYZW83uohMblJB2bb6RiNMt2fS+VkiURvVcFb1HnTBCER5K4bRRciodKQTU/TaGLmT4KFMhU8dNkCZpkWWb3rVQ2Xk9BZ7Jv0ARgkkFnktl4PYXdt1IR912CIDxqROAkuJxmQR52X0anJEpPSeb2nl+swYssy2y7merwNRwBDGY4cSeDbTdF8CQIwqNFDNUJTpfdtPh/4rXEphvFkF0O1AporEzirWEDqVSpEl999RUntG5FEjQ92I6Gge50DPMuupMKgiA4kQichCJny7R4ZNCLv8xs3R+s6HQ6Jk+ezOHrt3lyyieYpfzXc7JHe3pX9BE5T4IgPBJE4PSIcIVih7lNi3c1EmA2GEAh4a5W57hkTxk3BSYgXmsqktejVkBtfze6hXtbSyZojWYWnYzDpHDeJFk3pcTI2gFitp0gCCWeKEdQQrlSsUN7TIsvSpk9OkvGjqL3oGdo1e3JXANOWZbZE5Xm8GGyzHZ1KOeVpc7U9pupoFQ59Y01mmW2R6bSr5Kv8xohCIJQBESPk5PZuyeoML06Ksny3WvPYoeOmhbvKPf36NSuXZuffvqJevXq2bSvM0oARKcZ+PFykkv03uVUGkEQBKEkEYFTEXNUT5A9e3UkLF/WhSl2WFS9MPakkqBRaUuPjk6nIyAggKSkJDQa29c6dMjvwU9Dt/LZ/x7WX0vmYqLeJXrxJKCGv4a+otdJEIQSTAzVFRFHLnth754O+b/2RSTrWXIuId/FDjOnxZ9P1BWLoEkpQUZaKrpTe+k46gUALly4QJUqVfIVNIGlDlW/yr7EpBk4ZIeev+ZBHjn24GiNZi4nuUbQBJY2X07SozWaRa6TIAgllgicHMyRy164KyWH9uqYZEvwtvF6Cg0DDQ/l1uRkT1RasQia7u/RaVTGjccHTKJro1o8/vjjnDlzhrp16xb42CFeavpWUj/Uw5imzcDTzQ3+C44eTDbPT67ZqTsZDi0UmhB9k7m9mjDrcAxKlW2XCum/duW14LAgCMWbK0w4chYRODmQo3uCQjyURKUbi6zYoc4k0/2+2VzZuZykc/nhuex7dHz54osvGDZsGMePH+f06dM25zblxkOloHmwJ82DPUlOTqZa3ab8efoCBjOFvthEJOldIrfpfkbZ0i4ROAlCyeJKE46cTeQ4OUBxzO+xRV7FDrVGM0vOJaBzcha4EjO6jAzMZhk3dzc0KrXNH+bnn38eNzc3bt26xfDhw+nTp4/d2nX69Gmefvppzp07Z5fjLTh1x+b3Ou7qJdbPfoeYi2fwDQqh62tTqd22GxcO7GTnF7O5e+s67t6+NO0zlE4jxwPwUY+GJMVGofGwBEEvfvEzFRo8lue53JQSY+sHFvyFCYLgMlxtwpErED1Odlbc8nvyI7PnKdxHnW3O0/ablt41ZzIbDdw6f5JqGj3tO3ZEo1Llq0fn888/p0GDBqSmprJw4UK7tu3GjRtUqFDBLsdKMZhsfq9NBgPfvTmUpn2G8OIXa7lx/BDfvzWMV1fsQuPhxVMzFxNUpSa3I87zzehBhNSoS532PRixbCNzezXhvX1XbB6qA0tpglSDucR31wtCSebINJPi3gNVvFv/nxSDiavJei4k6Dh7N4MLCTquJutJdULkUlzyewrKYIbNN1LRGrO+wOg0g/UD5kwKlZqK9Zvy1JPdqV/Gi5oBblT21dj8Je7raxmyu3PnDp6e9h1uunHjBhUrVrTLseK1JlQ25JsB3Dx9BL02jbYvvIFKraFKszbUbNOFk9t/pXLTVpStVhuFQkFI9TrU79qPa0f/LFTbVJJEnNZYqGMIguA8l5N0LDmXQESyJR2gsJf1B9NMLifp7NFMpymWPU6uOtZaHPJ77CG7YoeH47ROD5oymWQ4FKelb6WCdQv7+vpStmxZRowYwfr1621KiLeFPXuc9CY5y997blLiY/ELLodCce9vPyAkjOT4GG6ePsqOhe9zO+ICRqMek15P3U69C9U2GRm9q/wxCIJgM0enmRR0wpGrKVY9TtFpBtZfS2bRmbsciEknMs2IzmRJvNaZZfRmrP90/yVk6/6b0n8gJp1FZ+6y/loy0WkGu7dNazSz+UZqiQ+awPLHfyVJT8x/76MrT4sviDNnztC1a1du3LjBN998Y7d2Xb9+3W6B08MlLHLmU6YsSbejMJvvvR+JsVH4lglhzZSR1HqiGxO2nWD6/qs0G/AcWI9dsAuanM/2CYLgfJlpJkVx85+Z9rHtZirFMc26WAROWqOZdVeT+fFyEhcTLcNB+Z1NZJQtX/gXE/X8eDmJdVeTC/zFmh1XyO8pSpm9OuD4afH5YcjQ8t0bQ3mvTWV69RtYoGOcPn2aBg0asHLlSiZOnMiVK1fs0jZ79jgp83GXVr5eE9Tunuz/biEmg4GrRw5yfv8O6nfthy4tFQ8/f9Ru7kSeOcbJ7b9a9/MKCERSKLgbdSNfbZPy2T5BEJyvqNNMDGY4n6hjT1Ra0ZzQjlw+cCoOY62ukt9TlO7v1XGlafGnd20i9W48U/dc4sVPCtZblFnDqU6dOkyZMoVhw4ZhNBY+Z8eegZNGKSHZGK6q1Bqe+3QFlw7u5v2ONdgwe7wlIbxSNfpMmsOuL+cwrXVFdi/9mHqd7w3TaTw8af/SWP7vhZ7MeKIKN08dsbl9d3Uml8g5FAQhb85KM8nseSpuOU8uW47A2Qun5ocrLXtxv11L5nIn8hpPf/Blts8vGNiaPhPnULlpqwIdXyVBmxBP/rytdXoJgkx7ln1C/LUInv7gywJNi5dlmTJlynDmzBnKli2L2WymS5cutG/fnilTphS4XRkZGfj5+aHVarPkGhVUisHEkrMJLhusayyVPa0elfouglDcuEIZGTelxMjaAcXmeuCSyeFFOaU/P8Uds+Nq+T35MfbnP/LcZk7PxrR46kWOb1nLnVvXadC1L11encLP017j+olDVG3QlKc+Woabjz/n9m1nx8JZJMfFEFKjLn0nzSOocvV7x3n6JY5v/omE2Eiqt+jAoJmLULu5A3B+/05+++JDEqIjCapcg76T5xFSvQ77v1vEzdNHePbj5dY2bZw7CUmSePKdD7O09bcv57Dv28+QkTn3+1Z6v/MBZxdfIOHfeH755RcAJkyYwJEjR9i1a1e2v+vY2FgkSSI4OBgAhULB8uXLady4MV27dqVp06YFeq9v3rxJ+fLl7RI0AfiolagUEiYXjZz0Mg90D+dvGSFBEIqGK6SZZDfhyJW5ZODkrLFWN6WUY3HHnLhSfo+jnNm9mRe/XIvZZGLh4A5EXzzNgPc+pUyl6nz3+mD+WvUVdbr2Z/WkEQyb/x2Vm7Tij5VL+O7NoYz95SAqtWW9t9O/beCFxWtQadxY8kJPjm1aTfOBzxN94RS/zHiD/326grDaDTm+dS3fjx3G2+v+omGPgez6v3loU5Lw8PHDZDRyasd6Xli4+qF2dh41AUmSrL1sbgqJLsFK+j3RjOXLl1OlShW+/vprTpw4kWOAnDlMd//zYWFhfPbZZwwbNoyjR4/aVKbgweUIzsYk0bhLb7vWNwpyVxKZVjyn/ZfU+i6CUJy4SprJ/ROOclqb05W4XODk7LHWnIo75sRV8nv2Lf+cP1d9RUZaCr5lytJn4lwATEY9P707hrN7t+BfNoxBMxcRVrshYOkFGvDeAqo2b8uuJXO5feU8kkLJxYO7KB1emYHTPwegxTMv4xMYBEDFRs3xLlWG0Jr1AajTvgdXDh/AJCmo2aYT1R5vB0Cb/43hz1VLuXnyH+tQYMtnXsG3TFkAaj3RleiLZwA4/OsPNBvwP8LrNQGgyZPP8Ps3n3Lz9BEqN2lFpcaPc/q3jTTrP4xLf+7By78U5Wo3yPM9kZFRunnwww8/0L17d3x8fFi4cCFhYWE57pPTUiuDBw9m06ZNTJgwIdvCmHmVyNB7hdHgf2P58uxduw1XVfXTEJNudIm/v4Iq7ILSgiAUXEkqI1OUXOr2ztlT+nMq7vig+xOF4zJMDmmLKR/JyPHXI/hrzdeMWfEbM/64zouLfyIgtDwA5/ftoH7Xvkzbd4Vabbuy8aOJOR7n3L7t1Ovcm/f2XqZBtwH88NZzyLKMT2AZ6zZqNw+8S917rFCp0aamkBIfi3/Z8vd+rlDgF1yOpLgY6898SgfdO467B/p0y2yKhJhI/ljxJTOeqGL9l3Q7muT42wA0fvIZTmxdC8CJrWtp1HMQAHu/XsC0VhWY1qoC6z4Y99DryZwW37x5cypXrowsyzz11FO5vpe5Le67ePFiNmzYwI4dO6w/s7VEBko1SjcPu5bIqB/oXiyHiLOT+b5svJ7C7lvFc4qyIBQnrpZmUtgyMkXJpQInVxprfVDFihWZM2cO9evXx8vLiz/++IPmLVowuVVlPnu6HVePHLRue3TjKuY+2ZRprSsyt1cTjm/92frckfUrmd+/JTPaVuWb0YNIiI60PjepcRn+WvM1H/dpxid9m7P+w3fYumBalnZ8P3YYB1ZYkr2T42NZMe55vny+O8nxsexdNh+TwUBAaDjpSQkc/vV7TEYjv0x/g62fTqdRz6eIuXw2x9dermYD6nXqjVKtpvWzozDqMzAZ9Lm+X7LZDMj4lClLYuy91yLLMkm3o/ALCsl1fwD/4HK0f/FNpu2/Yv0388+bNOzWH4Da7boTc/kcsRHnuXBgJw27W8oMtH9pLDMO3mDGwRv0m/LxQ8fNnBa/ePFidDodoaGhzJ07N9e25La4b0BAAN9++y0vvfQSUXH/Or1EhodKQTU/TYkaKi7u9V0EobhwxTQTCUu7XJ3LDNUVh7HWVatWsWXLFhQKBfXr12fu/31DYpWWnPt7HyveeYG3fv0TjbsHm+ZNZswPv1GmYlWS42PRJicCcO73bez95lOe+3QlgeGV2bf8M1ZPHsGo5Vut5zj3+zZGf78DtZs7t84eZ83UUXR/czqSJKFNTuTy37/Td/I8zGYz370xlNrtuvPM7KX8/dM37Fg4i6Ob11CrTRf+jbxK+bpN0Hh40nfKPG5HXEDj7oFRl4HJaMx27TG/sqHW/ysUCnyDQrMEdtlRq9UoFErqd+7Dwm8/J+LQfio1bsHBVUtRatwIt2FR2Mf6D2PF289RpXlbytdtjCEjnatHDlKpcUvcvLxRu7lTr9OTrJk8krA6jfEPyXmo7X4SElHXLjN16lR+//13PD09adasGd27d6dhw4YPbW82mzl//jx16tTJ8ZgdO3bk2bem8G1EGm6e2OXvtaDDVbIsk3b2EPrAmqjdPQrfEBdRmJxDQRBs4yppJvczypZ2NQ+273JX9uYyPU6uONb6oNdff53y5cuzYsUKevToQauO3ZAUEtUeb0dYrQZc/GMXAJKk4PaV8xgytPiWKUtwlZoAHPp5Oe1efIOgytVRqlS0e3EsMZfOZAlO2r3wBp5+AajdPajYuAVIEteP/QVYahSF12uKb5my3Dp7nLTEO3QcPg6VWkProSPpOHwcddp1B0kiKTYabXICRr0ON09vwuvnPRssKTba+n+z2UxyXDQKpTLXfTJzqMtUrMrTs75g09xJvN+xBhf27+C5T1dYE8NzE1a7If2mzmfjnInMbFuVj/s04+imrMnfjXs9TWzEOeswnS10BgMTRrzIhAkTaNCgAdWqVePDDz9k2LBh6HQP1w25evUqpUuXxtc3+5kdsiyz+1YqpTsMQuXhZfe/1/wMV924cYPevXvzwfg3CFYaULrarWMhFdf6LoJQXBQ0zSQ/aSQF4aj0F3tyiR4nVx5rvT9xt3x5Sw7PjRs3WLt2LRs2bsLw39CiyWik8mOt0Xh4Mfijrzjwwxf8MuNNKjRsRo+xMwmqVI3EmFtsnjeFrfPvDb/JskxyfIw1J+n+Xh9JkmjQpR8nd6yjUpOWnNz+Cw17WIapEmMiSYmPZcYTVZDNZmTZDJJEhQbN8S0TTHiDx7gbeY2bp4+y6NnOdBz+DmWr1sz1dUddOMmZ3Zup1bYbf67+CqXajXHrD6FU3+t5e7AmVIv+/6N5/2EYzFCnQ0/qdOiZ7bEnbDmW5XGnkeOzPK7RqiM1WnXMsW3+ZcNQu3tQt+OTub6G+4/rplFz5J/DWZ4fNWoUo0aNynbf3PKb7i+R4ei7tNxKZBgMBj777DM++ugjxo4dyy+//IJJoWLJuQSXLU1QUJk5hyNrq8VsO0Gwk8jISMa89jp79h3ALJtp0LUfrYeO5Nf33yLm8lkkSaJai/b0mTgHDx8/wDKR6PFBz3Ni6y/E34hgxsEbRJ4+wrbPZhJ39SJuXt50HjWRJr0Hc+HATnZ+MZu7t67j7u1L0z5Drddlgy6DX2eO5eKfu5FNJgLDK/PcZyvxCQzi6MZV7P7qE9IS/uWzoDJ8MGsWQ4cOdeZblSOHB0516tRh8eLFtGvXLsdtXHms9f4uQ0mSeP7557lx4wbDhg3j7bmL2HozxZL8e5/qLTtQvWUHDBladn4xm3Xvj2XEN5vxCw6l3UtjadQjt6VAsr4TDbr145vRT9H2+deJPHOMZz/5DgC/4HIEhIYzbsNhYi6d5df3xxJ37RK3zh4jvP5j9H93Pod/+Z5/b16lToce/Dj+RV79cXeur7l2226c2rmetdNeJbB8JZ79+NssQVN2jLJMsLuSaK3j7hLMZjMHVnxJ/S59cff2sXm/IPfce8selFvg5AolMv7++29GjBhBcHAwf//9N1WrVrVu36uCNxuvp5S4tRKLW30XQXBlJpOJXr160aR1W6ZuO4YBBVHnTiDLMu1efINKjVuQkZbCynEvsGvJXJ585wPrvie3/8pzn/+Il38pkuNi+Pa1Z+g3dT71Oj5JRloKSbejANB4eFlWJqhSk9sR5/lm9CBCatSlTvseHNu0hozUZCZuPYFK40bMxTOo3TzQa9OsKS5hlavRwiMVH8PDucauwuGB09mzOScjZ3LkWGtC9E3m9mrCrMMx2eb15CS3sdZ69erx008/0ap7H+SKzTDo9USePkpg+UooVCoiTx+lavMnULl5oPHwQvqv6GHzgc/z25cfEVqjLsFVapKRkszlv/dSr3OfHNsRWrM+nv6l+PX9sVRr0d56B1C+bmPcvLzZt/xzWj7zCqOWbyPu2iUMugzK12nE8S1refzpF/EOKE3EoX0AlAoNZ/axeOuxH+wFUmncc6wynhOVQqJGgBtxGekO+R3qtWl80Kk2/iHleWHRGtv3y0hn75Z16EJ96Nu3L6VKlcpzn9OnT9O7d++Hfu7sEhmBCj1LZ01l/fr1fPLJJzzzzDMP1aGq5udGw0CDU9rpSMWtvosguLLDhw8THR3Nyumz2RmtBTNUbPQ4AKXDKwPgrXGj9bOj2L10XpZ9Wz7zCv5lywFwcvsvVG3e1jqBx8u/FF7+lmvs/StRhFSvQ/2u/bh29E/qtO+BUqUiPSmBO5HXCKlex1pWRq9Ns6a4BIWWwz+8LDUDXLcsidOG6oxGI6r/AhlXHdPMqV2+vr5s2LCBt995h2MnT6NQKAmr24i+k+Yhm838seJLfnpvDBISITXq0mey5Q+wToee6NLTWDVpOIkxkbh7+1K1edtcAyeABt0HsOvLjxgyZ5n1Zwqlkuc++5Et899j7pNNMOr1lKlQlS5jJgFw6c89bJn/HoaMdPxDyvPM7KUOSSAOcldSP9Cd/THpdj82WO5eZhzM3yKzAB4ennSoEcYvq3/kzTffpHXr1jz11FP06dOHgICAbPc5c+YMkydPzvIzVyiRsT4iAdRunD17Nse2A3Qo54XOJBdpz1hRKE71XQTBlUVGRlKhQgWkB3JXU+7EsXneFK4f/xtdeiqy2YyHr3+Wbfz+C5oAEm9HExhWMdtz3Dx9lB0L3+d2xAWMRj0mvZ66nSw3pI16PkXi7WhWTxqONiWJRj0G0WXM5IdSXLa0aMnSzxdQs2bu6SXO4vC16ipWrMiyZcv4448/OHPmDO7u7mzcuJH58+fTo0cPXh4+gt8P/IGHrz9tn3+dZv2HAZZ11uKuXUSlcc+2eOODIs8cY8Ps8fx78wpqNw8adB9Ar7ff56MeDUmKjULjYek5evGLn6nQ4DGOrF/J/u8Xk3InjvJ1GtFv6nxrnlHctctsmjuJqPMnKRccxAez3rfW/3n++ecJCwtj1qxZACw4dcdl1mkrjLzWtctO5lp1zYM9XWq9Pgmo4a+h73/DOykpKWzZsoWffvqJXbt20aZNG2sQ5e/vD4BOp8Pf35/ExETc3O7d6ay7mkyEk2d7SrKZ6gHuNg1XFdUaj0VNKcGrdUuJXCdBKIS//vqLPn36sOfsNXZGa61pJr/MeAN9hpY+E+fg6RfA2b1b2ThnIpO2nwKyFksG+P2bT4k8e5xh/6WO3G9e78do8dRLNB/0PGo3dzbNm0J64t2HvlsSom+y/LXBtB42isf6Pmv9uaTXcuH7T4g4dZQDBw446J0onCK9Cm3YsIGBAweSmJjI0KFDeeaZZyhVNpTpv51h6Lxv2LnoA64cvvdG5ad446Z5U2g5eDjTD1xj3MbD1P+vF2fEso0AvLfvCjMO3qBCg8esZQGe/Xg5U3dfoGLjx1k9eQRg6TL8ZvRAGnTrz8w9F5j/9Q+MHj2ac+fOZXve/ObRuKpOI8fne5hOxlKEEaBZkIfLzOxSStA86F7vmo+PD8888wy//vorUVFRDB06lHXr1lGhQgV69erF999/z5EjR6hUqVKWoMlVSmTIksI6XJUXSbLkRPWu6IObUnKZ30lhFZf6LoLgypo1a0ZISAifzpyKXpuOQZfB9ROH0KWn4ubphbu3L0lxMRz4flGux2nYfSARh/Zxaud6TEYjaYl3ib54GgBdWioefv6o3dyJPHOMk9t/te535Z8/iL18DrPJhJuXDwqVGklSkHInjnO/b0OvTUOlccfHx9tu63o6QpG2rEWLFvTt2xeFQsG///7LwYMHGfveB6jc3AitUY+m/YZybMu9PJYKDZtTs3VnFEplnsUblSoVdyKvkZZwJ8/p97mVBbiwfycBIeVp2mcICpWSanUbMGDAANauXZvtsar6aVCVkC+n/JCAan4aaw9AqJeaKr4ap39RKyWo4qfJMR/Gx8eHIUOGsH79eiIjIxk8eDC//PILnTt3JikpiRUrVpCcnAwUjxIZOanm58bI2gFU9bX8fRb3P9HMnENBEApOqVSyadMmYm9c5f1uDfmoewNO7VxPx+HvEHX+FDOeqMx3rw+mTodeuR7HPySM5z9fxYEVX/J++2osHNyemEuW7+c+k+aw68s5TGtdkd1LP6Ze53t5oyl34lg5/kWmt6nMggGtqNSkBY16PmVNcfmwaz2mPlGV43/9wZdf5u9GvigVaY5T5nR+gOjoaEqVKoW7tzckWLLnA0LKE3XupHWbzPXRgCzFG0/tXM/6D94GLIltLyxaw4Bpn/Lbl3OYP6AlAaHhdBz+DrWe6JJtO3IrC5AQc4vIM8eY8UQVAKYrJMwmI8OGDcv2WI7M73FlCuQsvToA3cK9nT4tXqWQ6F7etqKJvr6+DB06lKFDh/LWW29x8+ZNfvrpJ0aPHk3nHr147J0FoHCNHsWcSmTkxkOloF9lX2LSDByK03I5SY9E/iucO5Msy8iyjEKhcNlcSEEoTsLDw9m8ccNDaSavPTDrus2w0db/PziRCKBS4xaM+X7HQz+v16k39To9PMkGoGG3/taE8vv5linL8P9Gh9yUEmPrB9r2YpykSAOn+2cChYaGcvfuXTJS7005TIy5hW9Q2TyP06jHwIem9JcOr8Lg2Usxm82c3bOZH8e/yLt7L5LdvXZuZQESYm5RqUlLXvryZzQK6BHuk2t2f+ayF66S31MkTEbOHdzF4l8uMHnyZDw9LfljHiqF06fFh3upcCtAt9elS5d4+eWX6du3L0lJSaw8eIoEoxGlxjGB07evPk39rv1o8uQzNu+TXYkMW4R4qelbSZ3rQsQy9z4pD5bXyG4B6eNbf8IvKJQuYyzJ9FePHGTN1FHWnIio8yf5Zeab3Im8RvWWHZAkBaXDK9NlzGS0yYmsmTqaW2eOYTIZqdCgGf2mfIxfsKWG2dJX+lChQTOuHT1I1IXTvLFmH6XDK2M0y6QazHirXbcLXxCKiyB3JZFpji1mWRDFIf3FaVeg8uXL07JlSz6b9S5GnY6YS2c5suFHGvWwvTL0/Y5vWUtqwr8oFArrlH1JUuAVEIikUHA36t7MrOYDn2fft59x+8oFADJSkjn92wYAy3IlN65wbPNPmA1GJLORf/75h/Pnz+d4blfK7ykKbho17/Zvz5UrV6hduzYbNmywVrm2TIt3x1nfbddTDQVa5+z+Gk5+fn74Va2HUuO46bAvLFqTr6AJCj9c5aFS0DzYk6HV/RlbP5BRdUrRp5IPPcJ96Fbemx7hPjwe7Inmvr/l3BaQzrGdBj0r3n6eJk8+Y1kwumt/zu29t6yQ2WymaZ/BjN9yjIlbT6B2d2fjnKz5i8e3rqXf1PlMP3CNgBDL+VSSRJzW9S70glAcuWKaiUqytMvVObVy+KpVq3h5xAimd66Lh68/nUaOt2bt51du0+/bvzSW/3uhJyajgRcWrcm1LICblzcvfrGWLfPfZev89/hQIdOwQQPmz5+f47kz83ucPfuqKKgVlmKLlf0CWbVqFXv27GHMmDEsXbqUzz//nCpVqjh1WnxB1jlLTk4mPj6eSpUqWX9WmGGhnNYCtAd7Dld5qxV4P7AkzoUEnaXr6b+/Y0mhwKjXE3f1Il7+gQSEhud53MhTRzCbjLQcPBxJkqjbsRdhdRtZn/fyL5WlAnz7l8by1fB+WY7R5MlnrEsVZZKR0Zf0D5ggFBFXTDO5f8KRK3N44HT9+nUAOnXq9NBzYWFhbN+yJdsp/Q8uyRHwQPHGB+U2I6zzqIl0HpX1jrZxr6do3OupbLcvU7Eqz3++Ktux1uXLl2e7jyvk9ziaWgENA92zLEDboUMHTp48yaeffkrz5s159dVXmTBhAt3DvdGazFxOynsmmL1lFo4M91HbtFju2bNnqV27Nsr/apukGCzDWA/KafipavO2rJk6ipbPvMwfK5dQtXk7eo//MM/hqEY9BvJYv2Ec3biKf9avILxeU/5ZvxIPHz/6TJpDjVYPf2YKM1wlyzJ6vZ60tLQc//2r8UcfUgdUluT60uGV6TVuFrv+by63r1ykeov29Hz7/VzPk/zvbXyDQrIMzfsF36sBo9ems+WTd7n05x60KYmAZSaO2WSyro14//bW9gMmx1ZPEYRHhqulmTw44ciVucRadSVhrNUV8nscSa2A2v5udCjn9dBzGo2G8ePHM3jwYN566y3q1KnD/IWLuVm+mRNaapGfdc4eXGolXmtCJUlZvqQzh59aPzuSxwe9yPn9O1g9aThPPPcqAKl34khPSmTCluPIZjP6DC1N+wxmyJxlyGYzP894nY1zJjJs/vfZtiHyzDEa93qGd/dc5PCv3/PLjDeZtOP0QxXCzUYD36/bjCHmmjXYSU9PzzUYun87hUKBl5dXtv88PT0JadiScsE1UXBvVmLD7gNo2H0AGakprPvgbbZ9NhN3L2/0Gfdm+aXcibP+36d0EMlxMciybG1/0u0oa8G8Ayu+JP5GBKO/345P6WCiL55m4eAOWYZXpWyGECRAmd0TgiAUSNmMeM7q3R2almCrB8vIuDKXCJyq+mmISTe61Gyfgoy1ltRlLzJ7mjqU83roi/x+5cuXZ+3atezcuZNfryQRHqRHoXJetWdb1zk7ffo09erVsz7WmzLTpe/Ja/hJkhR0Gjke1X8XoAcXJM5uOOp+/mXDrMVfG/d6mg2zx5N6Jw6f0sFZX5PRyMWIq8ixV60BT+nSpa2BT05BUebz6jzWHryarGfDtRR0//W4xV+PIDkuhgoNm6Fyc0Pt5o7ZbCKkRj3+WPEF6S+/hcmg5+DK/7MeI7z+Y0hKJX+tWUbzgS9w8Y/fuHXmOJWbWJZi0KelonZzx93Hj/SkBHYv/TjXNlnfYyQ0j1IyoSA4SFpaGrNmzeKrr77inZU7UARXcGqaSV5lZFyNSwROJWmstajze9QKKOelJjrNgEnGrn/8Sskyvb9XBW+bhrwy1W3VnlNBSU4PhG1d5+zMmTP06tXrvv0ebnhew09eAYGo3e79vdgyHHU/n9L3ld74r8q9Lj2NB5c0dvfwYPjIkdQp5Zg8gDIeSoz397TpdWxf+D5x1y6hVKmtC0h7+PoTcWgfc3s1JiAknCa9B3NgxRcAqNQanv14Ob/OfJMdC2dRvVVHarbpYr2rbTV0BKsnj2BWhxr4lClLm2dHZ0kez4lRlgnycIlLliAUS7Is8/PPP/P222/Ttm1bTp8+jX+ZYKenmeSnjIwrcImrUEkaa5Ukie7h3rgpJYf3PN3fE5Rhktl+M9Va6bow76NlSMRyB9CtvHe+3wdXLByZ0zpnsiw/1OOU3XBQXsNPD44t2TIcVRCOHq7yUStRKSTrRTSkeh3G/LAz223vXzsRoPWzI63/D6vdkNdX/259vPh/Xan5X1013zJlGf7Vhiz7Nh/4nPX/Dz6XSaWQRCkCodhJMZiI15rQm2RMsoxSsvScBnmoivTv+fz587z22mvEx8ezcuVK2rRpY33OmWkmmROO3ItBblMmlwicwDKlPyJJ7/ReCij8WGvmshfhPmo230jFaJYd3hPkoZIKXexQJVkCrmp+GpoHeRSo21RrNHM5yTUCYMi7cGRcXBxms5myZe/VD8tuOCiv4acHFXQ4Ki9FMVxlj5zDq0cPUqZCVTz9Azmx7WdiL5+jessOhW6XILi63OqlZZKQMMoyKoVEkLuSqn4a6ge6OyQxOiUlhZkzZ7J8+XLee+89Ro0aheqBWb/OSjPJbsJRceAygZOrTOm351irZdkLdZH2BOWn2KG9Prx16tRh8eLFtGvXjlN3MlxueY/cCkeePn2aGjVqsH37dk6cOMHx48e5eOMWAz/7KcvQW17DTw8q6HBUXopiuMoeOYf/Xr/CqgmvoNemUapcRYbO/RrfMnkXt81JcanvIjy6otMMHM7hpvXh4X/LY5NJJjLNSEy6kf0x6VTz09AsyINQO3z/yLLMqlWrGD9+PJ07d+bMmTMEBwfnuL0z0kxymnDk6iS5sGMHdqQ1mllyLuGh0gRFyU0pMap2gN27DZ3dE5RqMBOnNTq8u3jlpcQceyseXGG7qFw9cpCf3x3Nv9GRREREWAOkEydO8Mcff2AwGGjdujWNGjWiYcOGNGrUiB2GIHR5XDwW/68rzQc8R9M+Q4rmhVA0yxFojWYWnbnrMsOtYLlheLVuqWIxVVl4tGiNZvvfHPtq6Bae/zSJTKdPn+bVV18lNTWVRYsW0aJFC5v2k2WZPVFpRZpmktuEI1flMj1O4Pwp/Y4ca3VGT9D9sit26AiOWk/s/jXLCsJkNuPn50fp0qWtAdLo0aPx9/fniSeeYNSoUVm2P55NAOiI4af8KorhqpKUcygIjnQ5SWfXdAyZ/1YISNaz5FxCvifmJCUlMW3aNH788UdmzpzJK6+8Yq1PZwtnpJkURy4VOEHJH2vNXPYic9ioqHqCHKlixYosW7aM3fv2s/XQSZQad87u3YJ/2TAGzVxEWO2GrJk6mqTYW3z35rMoFAo6vDKOts+/xs1TR9gy/z3irl7EP6Q8T77zAZWbWvKGsluzzGwysWnuJKLOn8QrIJDOoyZSv0tfAC788RvbFkwn8XYU7l4+tBo6kscHPc+3rz2DSa/D3cOTuPh4Xnv/Y0JCy6FRSkR9vpj69es/9JqyG66y9/BTfhXlcFVJyjkUBHtzdM+MSbYM4228nkLDQEOePTNms5kffviBSZMm0atXL86dO0fp0qULfH5npJkUJy41VJdJlmW23Uwt8rHWbuHexbLb0NkyA6dNu/fxxfx5DP34W6q36MDOLz7k6j8HGf39duDhobqkuBg+e7otT72/mOotO3Ll8H5WTRrOW7/+iXdAaZa+0oe7UTd4YeFqSleoikGbzqdPtaHTyAk06vkUtyPO8fXoQQxftpHgyjX4sEsdBn+0jEqNW6BNTuRu1A3K1WpgXYD2vZ2nsuRfSUikabV4ergT7KHK0rMnhqtg3dVkl8g5rOqnybMWlyAUFWd8P9Xyd6N7Dt9Px48f59VXX8VoNLJo0SIee+wxu57f2Wkmrsglw77MKf1FsVhsZk+TCJoKz2SWqdSoOTVbd0ahVNKo51PEXD6b4/Yntq6lRqtOlu0VCqo93o6wWg24+Mcu6zaZa5YpVSou/bmbgJDyNO0zBKVKRWjN+tTt0IvTv20EQKFSE3f1EhmpKXj4+lOuVoMs5zOYQX/fP51ZRuXmjt4MkWlGDsSks+jMXdZfSyZBZ6Kan8ZlEt2dMVzVLdwblcK570Bxq+8ilHx7otKKdB3OzPU390SlZfl5QkICY8aMoXv37rzwwgv89ddfdg+aIDPNxJdX65aiTYgn5b1UuCkllBK4KSQ0Csv3qEZheayULLmY5b1UtAnx5NW6pehbybfEBE3ggkN1mcRYa/FjBnwC7yvk6O6BUZeR46K3CTG3OLNrIxf277D+zGQ0Uvmx1tbH9xeZTIi5ReSZY8x4osq9c5qMNOppWXNw6Lxv2btsPtsXvk9Itdp0fe1dKjSw/UKSeSd1MVFPRJKeUC8VCsAxWVv544zhqpKccygIBXE5SeeUlSHuX3+zio+ab775hqlTpzJgwADOnTtHqVKlHN6GkphmUlAuGzhlEmOtxUde7+SDPXr+waE06jmI/u8uyGWfe//3K1uOSk1a8tKXP2e7bfk6jfjfgh8wGQz8teZrVk18mYnbTpLfbqPMBM2oNCMyltflzBV0nLkcQUnPORQEW2mNZjbfSHXacloGM2y4ksj6t4dg1mnZtm0bjRo1yntHBymqCUeuqFhEDR4qBf0q+zK0mh81/DWW3qJ8fhmqJMsXUA1/DUOr+dGvkq8ImuxMmcewjnepMty9dcP6uGGPQZzfv4NLf+7BbDJh0GVw9chBkm5HZ7t/rTZd+PfGFY5t/gmTwYDJYCDy7HHirl7CaNBzfOvPZKQko1SrcfP2RpIU/503iPSkBDJSkvP1ekyyJWBy9rKDzh6u6lDOi1r+bg4fNs9UnOu7CCXX9puWkQ9nyjAYGfjep/zxxx9ODZoedS7f43Q/Z0/pF3LnqZJy7Q1s9+IbbJw7iW2fzaD9y2/xxP/GMGz+D2z/bAarJ49AoVASVrcRfSfNy3Z/Ny9vXvxiLVvmv8vW+e9hls2EVKtDz7dnAnB8y09snDMR2WyidIWqPP3BlwAEVapGg679mNu7KbLJxNhfDhZgNlzmX1bRcoXhKmctIyRyDgVXEZ1msI54OJNK44bRLYTbWhMhXuK7zFlcclZdfj3KY62uZsGpO04tYOpI969TVxQyg4iOYa6THG3vujWZRM6h4MrWX0t2qbpmNfw19BUzTZ2mWPU45eRRHmt1NfZY58xVFXXQ5IrDVSLnUHjUFLf1NwXHE++6YFdV/TT5zj8TsnL1Ehki51AoaSpWrMiuXbv48MMPefnll7M856rrb7Z6oh3Lli1zdlMeSSWix0lwHfUD3dkfk+7sZjhU5te7JPFID1eJnEOhpJk8efJDP7NnBf3MYryTtp8q1HGMMmhNzp628ugSgZNgV662zpkjmLH0mIR6qrh6NxWVRgNSwQMA2WxGrVQU2+EqUd9FKMkctf5mYRmcPMPvUSauYoLdNQvyQOlqfdt2ZpIh5U4cv33wBjX93Qs8XKVA5uL+7fQL05SY4SpvtYLKvhpqBrhRp5Q7NQPcqOyrEUGT4PKmT5/Os88+C0D37t35+LPPs5Qg+OzpdpzZvRmAuGuX+XrUQGa2q8Yn/R7n1M711u0u/PEbCwa0YlrriszuWo/93y9Gr03j29eeISU+lmmtKjCtVQWS42Mx6nVsmjeFD7vU5cMuddk0bwpGvc56rHO/b+PzZ9oxvU0l5vV+jIsHdwMgy5DxX69TTEwM9evXZ9687GckC/YlepwEuwv1UlPFV+P0dc4cSQb+VXrzwjMD6VvZt1DDVcM+2MhmRQJvvPGGk1+VIAiZBg8ezGdfLOHZdkMxyTK3r14kMSaSmm06o9em8c3ogXQaOYHnF662rpsZXLUWwZVr8OvMNx9aN1Pj4cULC1c/NFT325cfEXn6KK+v3guSxA9j/8eeZfPpMnoSkWeO8dN7Yxg69xuqNHuClH9vo0tLBSzXlBS9mWvXrtG1a1fGjRvH8OHDnfRuPVpE4CQ4RLdwb5acS8BUzCKnXUvmcifymrUGVG7MJhM12vcCCjdcNX78eAYNGsTo0aNRq0vOek6CUJz169ePkaNGcSf6Jt5ly3Ni68/U6dATlcaNUzu2WtfNBLKsmxk84h3rupkh1eta1s309c/xPCe2/cKT4z/Eu1QZADoOH8e6D8bRZfQkjqxfSdPeQ6j2eDsA/IJCsux78fx52n/yEbNnz2bw4MEOeR+Eh4m+c8EhMtc5K8mjM2p3D66mZp//kJ/hqmbNmlG5cmV++uknRzdZEAQb+fj48ETnbpzYsQ6AkzvW0bD7QCDrupmZ/05s+5nUO3GAZd3Miwd3MadnI5a+3JsbJ//J8TzJ8bEEhJS3PvYPKU9KfCwAibejKBVWMdv9ZGDTz6spV64cAwcOtMMrFmxVgr/WBGezrHPm7rTgyWR0fD0peyWOjh8/nrlz51IC6tEKQonRc8DTHN/2KzdO/oNRl2FdgDxz3cxp+69Y/804eIO+ky05RpnrZk7ddZ7a7XqwauJ/JQ6yyYP0LVOWhJhI6+PE2Fv4/LeygX9wOe7eup5t2yTg1QlTKV26NEOGDMFkcs0k9pJIBE6CQzlqnbPE2ChWvP08szrUZGb76mz4aAJHN65iyQs92PzxVGa2r87u/5vLriVzWTNllHW/hOibTGpcxhpU3Y26wdKXezOtdUW+HjWQtMQ7Wc5z89QRvny+BzOeqMJnT7fj6pGDWZ43mmVS7bAGSbdu3TCbzezYsaPQxxIEwT46detOQswtdi2ZQ/0ufVEoLBcye66b2aBrP/YuW0Bqwr+kJdxhz1cf06iHpQepad+hHN24iohD+zGbzSTFxRB37bJ1X3eNmrVr15KWlsb//vc/zGZRoqAoiMBJcKjMdc7s2fNkNpn47o2h+IeEMX7LUSZtP0WDrv0AiDxzjFJhFZjy2znavzQ2z2OtnjyS0FoNeHfPRTq8/BbHNq+xPpcUF8PyN4bQ/uWxvPv7ZXqMnc6Kd14gNeFf6zYqSSJOW/ieLUmSrL1OgiC4hjB/T+p26EnEoX006D7A+vPMdTNP7VzH7K71+KBLHbZ/NhOjwTIb7viWn5jTqzHT21Ti0M/fZbtu5ownqpAcH0v7l9+iXO0GfP50Wz57+glCa9an/ctvAVC+bmMGTv+cLZ+8y4wnKrP05d4k/tc7JQM+GgUajYZff/2V27dv8+KLL4rgqQiUiLXqhOLBXuuc3Tj5Dz+MHcaknWdQqu7Nbzi6cRW/LZnDxK0nrD97MNk7Ifomc3s1YdbhGFLiY5nXuynT9l9B42FZ2mT15BFIkoKnP/iSfcs/JzbiAk/P+sJ6vG9GD6JB9wE0efIZADQK6BHuQ82AwhesNBgMVKlShV9++YXHHnus0McTBKHwXHX9TTelxNj6gc5uxiNJzKoTioy91jlLuh2Ff0hYlqApk39wqM3HSY6PxcPH3xo0AfiHhJEUGw1YEkDP7NrIhf33hs9MRqM1zwEs7TfZ6d5DrVbz1ltvMXfuXNauXWuXYwqCUDiuuv5mkLvS2U14ZInASShSmeucxaQZOBSn5XKSHgnytaSBX3A5EmOjMBmNDwdPD6ztpvHwxJChtT5O+TfO+n+f0sFoUxLRa9OswVNibBTSfxmc/sGhNOo5iP7vLsixLZZFau1X7fPll1/mgw8+ICIigqpVq9rtuIIgFExVPw0x6Ua7LbtiDyrJ0i7BOZyW45RiMHE1Wc+FBB1n72ZwIUHH1WS9XRJtBddnWefMl1frlqJNiCflvVS4KSWUErgpJDQKy2K3GgWoH4hLytdtjE/pYHYsfB+9Ng2DLoPrJw5lf54adbl2/C8SY26RkZLM799+Zn0uILQ85Wo1ZNeSuRgNeq4f/ztL71LDHoM4v38Hl/7cg9lkwqDL4OqRgyTdjrZuI2Gpz2Qv3t7ejBw5ko8//thuxxQEoeDqB7q73PJRMpZ2Cc5RZDlOuVVWtjZGLAT6yMuucKRJltl6MzVLXlRizC02zZvMteN/I0kSDbr1p1zN+vyzfgUjv9mS5ZgbZo/nxLZf8PQvRdvnX2fdrLeYdTgGpUrF3VvXWfveq0RfPE14/ccoXaEKGSnJ1pyom6ePsv2zGcRGnEehUBJWtxF9J83DPyQMsCzMO6pOKbsuJxIXF0eNGjW4cOECwcHBdjuuIAgFs/5assusvykBNfw19K3k6+ymPLIcHjhFpxk4XMAhGZVkiayr+WloFuRBqJeoqvyoetQSNEeNGkVgYCCzZs2y+7EFQcif6DQDP15OconhOpUEQ6v5EVKCvg9TDCbitaZiszC4wwInrdFc6CTgTJY8Eqjiq6FbePFbPV4ovJWXEl0yQbO8l4qh1f3tftyIiAgef/xxrl27ho+Pj92PLwhC/qy7muz09TeV/+U29SvmvU3FfQTKIYGTvaadP0gpgUoh0auCN9X8Cj/9Wyg+Dt1O50BMukvc8WVSSdAm5N76dPb21FNP0aJFC8aOzbselSAIjqU1mllyLsGpPd9uSolRtQNwd4HgoSBKygiUXQMnWZbZE5XGiTsZODLHW62AhoHudCjnhWTHGU2C69IazSw6c9epd3sPUkrwat1SDrsDOnLkCP379+fKlSti8V9BcAGXk3RsvJ7i0O+3nKgV0LuiT7HsNChpI1B2O6Msy2y7merwoAnAYIYTdzLYdjNVrO31iPBQKajmp8luqSen8dUocLfjjLoHNW3alGrVqrFq1SqHnUMQBNs5a/3NzM6C4hg0XU7SseRcAhHJeoyFDJrAsr9RhohkPUvOJXA5SWePZuaL3X79e6LSOJ+oK7JI3GCG84k69kSlFc0JBadrFuSBA+OUfEvRmx0evIvFfwXBtThq/c2cqBVQ29+NDuW88t7YhciyzO5bqWy8noLOZN+0HQCTDDqTzMbrKey+VbSdKHb51V9O0hVJT9ODMnuenBFxCkUv1EtNFV+NywRPRtnxwXuXLl1QqVRs27bNYecQBMF2jlh/MyeZPU3dwr2LVVpKSR+BKnSOk6skzI2sHeAS2faCY7nC39uDHJ178OOPP/J///d/7Nu376Hnits0XkEoScREqOztvlU0QdP9MoPMjmHeDj9XoQMnMUVTKGoX72r59UoCksp1lhxwZPBuMBioVq0aq1evpkHTZsV6Gq8glDQOSXz209CtfPEsvfMoJNAXKnASRcGEopaWlsazzz5LUJsnqdaht0v87YHjg/cF36wkxi2QMnWaFutpvIJQUhVm/c37P6PNgzyK7feYK4wIFMUIVKECJ1GGXihKMTExPPnkk9SpU4elS5eyO1bP2QSdy5QocETwfv/drN5oQqEs+IrorjCNVxBKutyKO8pYPocltVf4URmBKnDg9CjW1RGc59SpUzz55JO88sorTJkyBUmSkGWZpecSSNC7xsLQ9g7eRf6EIBR/2a2/WRLzEB+lEagC/9ZO3clweE2db199mqObVtu8vYSlXULJsm3bNjp16sRHH33E1KlTrbNLMkwyyc4YSM+BDFxO0qM1Fq5NJXkaryA8arzVCir7aqgZ4EadUu7UDHCjsq+mRAVNAIfjtC7TkWKS4VCc1mHHL/BvLiJJ7/DI8oVFa2jy5DM2b2+ULe0SSo4vvviCF198kfXr1zN48OAszxUkeF8wsDVXjxy0XwMfUNjgvaRP4xUEoeTRGs1cTnKNtB2w301sTlQF3TEuw2TPdtiNq7ZLyB+TycS4cePYtm0bf/zxB1WqVHlom4IE72N//sNOLcxeZvBe0PXrnFVI1k0pFck0XkEQSh57jECtnfYqfkGhVG3eljVTRzFp+6lCHS/zJtYRa4kWKHBKMVgS3vIjMTaKzfOmcP3435hlMw269iOsdkP+WfcDITXqcXzrWnxLB9N7whyqNn8CgKWv9KFRj4E81m+YzecxmmVSDeYS1w36KElNTWXo0KGkpKTw119/ERAQkO12+Q2STUYjSlWB7xVsVtDg3dmFZMN91CLnSRCEfCuKEaj8KuxNbG4KFF3Ea02o8lHF1Gwy8d0bQ/EPCWP8lqNM2n6KBl37ARB55hiBYZV4d/dFOo0Yz4p3nic9KaEgzQJAJUnEaY0F3l9wrqioKJ544gkCAwPZvn17jkGTrcH7nJ6N2bf8cz57qi3TWlVgdrf6RByyFJI0m0zs/XoB83o/xrTWFVk4pCOJsVEAxF27zNejBjKzXTU+6fc4p3aut/k1ZAbv+aE1mtl8I9UptU/AEjxtvpHqsK5tQRBKrqIa6TEZ8/fd7qh2FShw0pvkLAX38hJ55hgp8bF0f3M6Gg8v1G7uVGz0OABeAaVpNXQESrWa+l37UaZCVS4c+K0gzQJARkbvKhlqQr6cOHGCFi1aMGjQIL7++ms0mpwLXOYneD+5/Vee+/xHpu2LQKG81+P0x4ovObljHc9/vorpB64xcPpnqN090GvT+Gb0QBp068+UXecZPHspGz6awO2rF206X0GC9+03U/Pdi2tvRrPM9shUp7ZBEITipSAjUADRF06xcEgHprWuyI8TXsaoy37ptAdvfvMTPBXkJtYWBQqcTPlMJE26HYV/SFi2wyS+QSFZ1uDxDwkj5d/YgjQLsCSF5bd9gvNt2bKFzp078/HHHzNp0qQ812XKT/De8plX8C9bDrW7R5af/7N+BV1GT6JMxapIkkRI9bp4+Zfiwv6dBISUp2mfIShVKkJr1qduh16c/m2jTefLb/AenWawVh12JpMMV5L0xKQZnNsQQRCKjfyOQAEYDXp+eOs5GvV4ivf2XqZe596c2bM5x+3vv/nNT7qFo0agCpTwocznm+QXXI7E2Khsc0yS42KQZdn6RZkYG0WtJ7oVpFlAZpG/4rMYoqsrirXQFi5cyIcffsimTZt4/PHHbdonP8GxX9ly2f486XY0pcIqPvTzhJhbRJ45xoz/b+++o6OqugYO/+60ZEgnkJBKjUgLTUApSpMiSBEUFSwvNixYsRfEAgIqdnl9rZ8oIiJdEQEVRQUpilJDTSCBQEhv0+73xzgDgYT0mTvJftZirUxm5t6TSZi755x99r70dEK6w26j87BrKnS+ygbvWtzGO6q5b1YuFkJ4VmVXoABStm/GbrPSa/wdKIpCh4Ej+GXe3DIf7/rwW1m1tQJVpcDJpFdQUKhoV5649l0IahTJd28+z8BJj6Do9Bzd9RcA+Zkn+XX+e1x89UR2/vgNJw7upXXvgVUZFuCsyGrSS+BUVeereutSU1Vv7XY7DzzwAGvWrOHXX3+lefPmFX5uZYLjsmavQiKjOXXkEE1atSn5/SYxNO/ak1ve/arC5yhxvkqMr7a38W5ZNp8/lsxj0ocrK/T4M7fxSiFZIUR5qrLCk3PyeKmrTWUp68NveWprBapK74yNzXpslRiMTq/nptfmkZFykJeu6MxLQzu6k23j2nfhZPIBnh/Qmu/ens71sz4kILRhVYYFgE1ViTDX/s6puiY138qSgzm89c8pfk4rICXf5i6+WOxQsThw/yv+t5J1sV0lJd/Gz2kFvPXPKZYczCG1gss8ubm5jBw5kp07d1Y6aIIzg/eq6zZqAt+/8xInk/ejqippe3eQn3WKNn0GcfLwfrau+BK71YrdaiVlxzbSD+yt0HHLCt5zrXYO5FjYnVnMjlNF7M4s5oej+SU+f8wc1sWdvO4tUkhWCFFRVVnhCWoU4V5tcsk+dqTMx5eXulHm86idFagqRRhBRj0GnYK9ElNgoVGx3PDq/5X43pZl80FRGPnYTEY+NvOc59z+v6WVHptBp0gpgkqoic7erm2oe7Is7Mu2lNsL7ciRIwwfPpxu3brxzjvvYDRWflmossF7aXpPuBObtZgP77qG/KwMGjdL4IZXPiEgtCET31nIylef5ptXn8GhOohKaMewh56r0HFdwXtFZu+sjoq/5p4qp1Cb23iFEHWLSa9Q2bfi+MRu6AwG92rTrvXfkbJjGy0u6l2jY6utFagqvwtH+OtJydfetv8I/6o3Qa1varoXmsq/F90cC3N3ZpbaC23r1q2MHDmSyZMn8/DDD1f5k0RFg/dHV24t87ZOr6f/rQ/R/9aHznle42atuPmN+VUam06BNUfySu2Sfr5p4wVP3UX2sSN8cv8EdDod/W+bwqo3nuOqZ+aw9r2XCYuK444PlvPZIxM5tO13rMVFRCW0Y9QTs4lseSEA+VmnWPTsvRzYsoHGzRJIuKRfiXOkH0xi+azHObrrLwLCwrn8zsdIHDTqnLFIIVkhREUEGXVYK3n9MBhNTHj5Y75+/gFWvzOD1r0G0q7fsBofW22tQFX5iK1CTKQV2DRV9Mrwb1dkcX6qqrLuaH6tFVu0q2D/txdap3Ar/WMCUBSF5cuXM3HiRObOncuYMWOqfR6tBu9Wh3P2rbL/Nca98A6Htv3OmGfm0KrHZWSmJrPqjec4uOU3Hly0AUVxzuC17jmAsVPfQG808u3rz7HgyUnc+8WPACx76VEMfn48sfofTh1N5qO7ryEsJh7AXWZh4KRHufnNLzi+bycf3HU1ka3aENmidYmxSCFZIURF/JJWUKXnxbbtxL3zfyj1vjOrhp/94bcyamsFqspHTAz3r3ZCa9cR11U4abUiVJzjEmXzVi+0Oa+9xqRJk1i5cmWNBE3gDJINGt0HUJOfJwbe8bCz/tm/5RQuGjUev4BADCY/Bk56hLS9OyjKzcFht/PPuhUMnPQYJnMATVq1ocvwce7jVKbMghSSFaLuKC2/8kCOpdo1jlylVLSqtlagqjzjZDboSAgxVemTdW1QgIQQk+wEKoc3eqH9eTyX3flGfv31V5o2bVpjx04M92d9FT/t+JKQyNM7Shx2O6vffpG/1ywnP/OkexYqPysDa3EhDpuN0CbR7seHRsXBtt+AypVZkEKyQvguT+2O1lIplbPV5gpUtRb/ukeYNdOjRq9Ajwhz+Q+sx7zVC01nNJE4bByW0KAaPa7WgveaUGrO1xnf+/PbRez8cRW3vPsVYdHxFOXl8NxlrVBVlYCwRugMBrKOpRLRPAGArDN2qlSmzIIUkhXC96TmW9mUXljB/Ernbfu/u6PTCmysTysgIcRE9wgz0QHn37RT26VUqqs2V6CqNT0THWCkZbAJb5dN0ivQMsREVDm/6PrM273QbGrt9ELrHmH2+t9fTQps2JhTRw6XeX9xQR4Gk4kGIQ2xFhXw3Vsvuu/T6fW06zeMtf+dhaWwgOMH9rB1xQL3/ZUpsyCFZIXwHYU2B4sP5PB5UjZ7spw7pCs7oWFTnfmpe7IsfJ6UzeIDOed9v96eUVTNgjC1p7ZXoKp91CHxgRh03n35DDqFoXGBXh2D1tXVXmhaCd5rSt+J97Hug1eZdmlL/l6z/Jz7uwy/htCoOGYM6cCcMb2J79C1xP0jHnuJ4oJ8pg9qx1dTJ9N1xHXu+/wCApn4zkK2r17MjMEdeHFQO1a9/hw267k9oqSQrBC+ISm7mLk7M9mX41z9qe67/Nm7o5OyS+8hp5XVptLU9gqUoqrVn49Pyi5m2aFcr8xmGHUwolnQOdvexWmp+VY+T8rWxB+5QYHxCSE1OjtYaHMwd2cmxVpdbPdBegXubNdQdtUJoVG1vTvaxaiDTuH+7t3RLnO2Z2j2Pbd1qInRzYNr7fg18q6YEOJHp3B/PP0e6/qFStB0flpK4HP1QqtJZoOO4U0DPf73V5dJIVkhtMtbu6Nd8yy5Vnu5KxjrP3mLeVNuLvG9ZbMeZ/nsJyjKzWHRtPuYPqgdMwZ3YPXb03HYnbXjtiybz9yJw/hmzlSmXdaKWcO7smfDmkqNuU9U7RbvrbF3xv4xAbQJ9fPYxcuog7ahfvSPCfDMCX2U1hL4zuyFVpO8FbzXVVJIVgjt8sbu6F1Zxaw7mg/AiUI7hnJyIDtdMZa9v/5AYW424Ox8sP27JXQZNo6Fz05GpzcwZekmJs9fR9LvP/LH4nnu56b8s5VGTVvx9Lo9XHrTPSyadj8VXRwzKJBjqd0XpsYuM4qiMDQ+0CMXL9dM05D4wCpXnq4vKpLAd+LQPt64ti9Tezdjw/z3qnyuhVPvYfXb08t9XG31QvN08F5XSSFZIbTLW7ujXTNPSdnFWOxqidIGpQlu3ITmXS5214nb++s6AkIbEhwZxZ5f1jB8yguYzAEENmxMr/GT2L56sfu5oU1i6X7VDej0eroMH0fuyePkZaRXaJw6hVovpVKjtcgVRWFAbCDxQcYabeXholecSwiltfIQpatIAt/6T96kxUW93dWna1tt9UJzBe9+esUrbyx1hRSSFUKbvL072upw7o7uW8GlsC5XXsvGhR/R/aob+PObhXQedjVZaUdw2KxMH9Te/ThVdZSoVxfUKML9tcnsPFdxQT4VKWjjiVIqtdIxNCHEj0ltjdVuHuvi3BrtLDkwJK7s5rHiXBXpOZaZdoSOg0fV/mDOUFu90Go7eFdVtU7PckohWSG0Syu7o/8+VfpOu7O17TuUJdMf5ti+Xez+eTVD75uKzmBAb/LjqXV7aqVpuSdKqdTau6PZoGN0i2DGJ4TQOtS5Xbyy7TEMijNgah1qYnxCCKObB8sbeiVUJIHvf7eP5sDmX1g283Gm9mrK9EHt+WPxp+77XYl6LukHk/jgzrE81zeBV0ZfzPbVS6o0NlcvtNriDN7DaBXsbMtS3f9GiutfHQ6aQArJCqFVrvYm3t7oY1fheKGNikzqGP386TDwShY8MYnYdl0IjYoluHETEi7uyzdznqEoLxeHw0FGykEObNlQI+PzRCmVWo9CogKMjGoezD3tG9InqgFxAQb89Ap6Bfx0CiadM2fJpHPe1ivgp1eICzDQJ6oB97RvyKjmwVLcsgoqksB323uLadb5YkY8OoNpGw7TqGnLMh/rahLbcchVPLlmF9fNeI+lLz3K8QN7Kj02T/RCq+ngva7H7FJIVgjt0tLuaIcK1gqOpcvwcRzbt5POw652f++a597GbrUyZ2wvnuvbis8emUjuyYrlMJXHpqpEmGtlMc2tdo9+BrNBR4/IBu68ljyrg/RCGxa7il1V0SvOKDHCbJBt0DWkIgl8lXFmk1igRJPYyDsertSxPNkLzRm8G8/bv0nFNatUev8mm6qStKNizSx//Oh1/lg8j7xTJwiNjGHQ3U/Qrr9z1m7T15/yy7x3yU5PJTQyhmteeIeYNh1J3b2dRc/dz8nkA7TuNRBFUQiPa86gu5+ovRfmLFJIVghtqu7u6Ky0I8wZ24up6w+g01d/x2xlxhHaJBajv5n2A650f88/KJhRT8xm1BOzz3l81xHXlSjcCzBj64kKn88TpVQ8FjidLdCoI9AoO3dqU00nyFWmSWx5vNELrTrB+4EcCwZFqdCYw2ObcccHywkMj+Cf75ey4Km7mLJ0I4f/3Mja/85iwqv/R2zbTmSkHERvMGKzWvj0wZvodf0dXDLuFnb+9C1fPHEHl900uVZeh9IYdTC8aSD+dX1aTQgfVJX2JjOHdWHMM3No1eMyQqNimbah7FZOVaFQfgDlcDj4ed67JA4ahX9gzfYqLYsnSql4LXASta8qCXImcwMsRacLVOaesQW0Mk1iy6OFXmiVCd7zLA4sFUzK7HD5SPfXiYNH8+NHr3Nkxzb+WDyPS2+6h7h2nQFoFN8CgINbfsVus9Jr/B0oikKHgSP4Zd7cSv40VSeFZIXQNi22NylvOJbCfF4c2JbQqDj+89aCch5dMzxVSkUCpzrMpFdQKvS54LSoC9qzY91Kuo2aQM6JY2xe8hmB4Y0BZ5PY7954nq0rvqTj4NEApO79Bz9zABEtLqjU2HypF1pSdjHfH8mr8Ku4dcUCfpn3LpmpKYDzDSQ/K4Ps46k0jG1+zuNzTh4nOCKqROJ5aFRsTQy9XFJIVgjtq+wu5AVP3UX2sSN8cv8EdDod/W+bwqo3nuOFTWnoDQbeu20kzTpfzIE/fiYtaSfxid249sW5BISF19iYTeaAGp/lKo+nSqnIvHwd1tisx1bJ5bDe4yehN5p48fK2fDX1HjoNHeu+rzJNYsvjiQS+6lJVlbVH8px9GCv4MmampvD18w8y4tGXePqHvUxdv5/IlheCqhISGc2pIwfPeU5Qowhy0tNKVMbNPnakpn6MMkkhWSG0ryK7o8827oV3CGkSy02vzWPahsMkDhp5zmP+WvU1Y559k6fW7MJutfDzp29XemxaetfwZCkVbV+5RLUEGfUYdAr2cpKwb//fUvfXAWHh3PLOwhL3D5z0iPvrxs1acfMb80s9ztXT3qrw2LTeC83VC6qybQ0sRQUoikJAWCMANi/9nOP7dwPQbfQEVr76DM06XUx0m0R3jlN8Yjd0BgO/zn+Pi6+eyK7135GyYxstLupdGz+aFJIVwoe4dkfXdE5o1xHX0vjfXdQdLh/Jrp9WVfoYBh3YHaCFWsOeLKUigVMdF+GvJyW/drf9V4XWe6FVtRdUZIvW9J5wJ+/ePBRFp6PzsGto2rE74HxzKsjO5Isn7yAnPY2w6Hiuef5twqLjmPDyx3z9/AOsfmcGrXsNpF2/YeWcqfKkkKwQvqemd0e7BIWfUZ3b34ylML/Sx1Bwvpcfq6WCxhXl6VIqEjjVca1CTKQV2DSVWKj1XmjV7QU1+J4nGXzPk6Xe12PszfQYe/M5349t24l75//gvr1w6j1VO3kpDIpz7T8hxESPCLPUaRLCh1R1pskTy+8OFU4WezdoAs+XUpHAqY5LDPdnfVqBt4dRgpZ7oXm7F1RVKDjzlcqrRSUzTEL4nqruPg5s2JhTRw5Djxoe0Bm08IHcG6VUJHCq48wGHQkhJvZkVb14Wk3Sei80LfSCqgyDAm3D/GgRbJJCskLUQVXZHQ3Qd+J9LJv1ON++Po1+tz5YO4PzMm+VUlFU1cNVCIXHpeZb+TwpWxOfDgwKjE8I0eRykZZep4rSK3BP+4aaDUSFENWTa7Uzd0emZtqtaIWrlIo3dgXLu209EB1gpGWws1ebN2m9F5qWekFVhNZn74QQ1efaHS1O83YpFXnHrSeGxAd6/T+flnuhVbcXlDd4cvutEMJ7tL4L2ZNMOhjRLIgBsd6rPyeBUz1hNugY3jQQb6W9aL0XWnm9oOaM7c2BzRvOe4wDmzcwY0hizQ6sDFqfvRNC1JxWISYMMukEQHyg0ev157R5FRO1IiHEj07h/h4PnnyhF1p5vaAe+OoXWlzUy3MDKoeWZ++EEDUrMdzfp2bDa9OhXCtp+VavjkECp3qmf0wAbUL9PBY8+UovtMr2gvImrc/eCSFqlmt3tEw6gV2FjemF5T+wFsk7bz2jKApD4wM9MvPk7QS+iqpIL6iZw7qwb+NP2CzFLJ/9JNMHtWf6oPYsn/0kNkvJXn0/fDCH5/u3ZuawLmz75iv393f/8j1zxvRiau9mzBjcgfX/V/neUL4weyeEqHndI8xe3+CjBSqQlG2h0Oa9YnsSONVDiqIwIDaQEc2C8NMrNf6fUa+An17xegJfRbl6QVXEDx/MIeXvLdz7xQ/cu+BHjuzYxrr3X3Xfn5eRTn7WKR5ftZ2rn3uTxS88xIlD+wD4+rn7GfXky0z75RD3L/yZlt0q14vOV2bvhBA1Tyu7o8uzZdl85k6s+ZZRZ1Jw5qV6iwRO9VhCiB+T2obRKtiZeFjd/48Kp9upTGob5jOzIpXpBfXnt4vof/tDBDZsTGBYIwbcPoVtK0s2RR5012MYTH606NqLC/sMZPv3zibKOoOR9AN7KcrLxRwcSkybjhUeo6/M3gkhao8WdkdrgU115qV6iwRO9ZzZoGN0i2DGJ4TQOtT5aaayuzcMinOWqXWoifEJIYxuHuxTtYUq0wsq58QxwqLi3LdDo+LIPXHMfdscFIrJfHpGKLTJ6fvHz/6IPRvWMHNYZ967dQSH//qjQuc0KN7ffiuE8D5v747WEm/mpfpMy5Vcq50ThXYsdlVaS9SCqAAjo5obKbQ52J5RxL5sC+lFztwfg6LgmpOpi73QKtMLKrhxEzLTUohseSEAWceOENS4ifv+wtwsLIX57uAp69gRIlu1ASCuXWdunPMpdquV3xZ8wPzHbuWxb/867/kUYFBcoM/M3gkhapdzd7S1Wo3Ia8KPH73OH4vnkXfqBKGRMQy6+wna9S+5RJeZmsys4V15YVMaeoMz3HjvtpF0vmIs3UbfwJZl8/lj8afEtuvClmXzMYeEMe6Fdzh5eD/fv/sSNouFofdPpeuV155zfptDJc/q8Mr1X7OB0/ku4C517QKuBWaDjh6RDegR2QCAPKuD9EJbnQ5YK9MLquPg0fzw/hxi23VGQWHd/16m8xVjSzxmzdxZDLrnSVL+3sLun79n4KRHsVkt/P39Mtr0GYR/UDB+gYEoSvmvn0mn1JnXWQhRM/rHBFBsV9mVVey14Ck8thl3fLCcwPAI/vl+KQueuospSzdW+jgp/2zlolETePqHvayZO5P5j99Omz6DmLJ0Ewe2/MpnD/+H9gOG49egZPkVg6KQXmgj0GiqqR+pwjQXOKXmW9mUXkhStgWFkt2Xz11Scd6221VS8m2kFdhYn1ZAQoiJ7hFmoqU4YLUFGnVe+cP0pMZmPbYKLtf1u/VBivJzeWPcZQC0HziiRAPNwPAIzEEhzBjcAaO/mVFPzCaieQI2q4VtK79k2czHUB12GjVtxbgX3y33fDZVJcKsuf+mQggvcu2O9tMrXpt56nD5SPfXiYNH8+NHr3Nkx7ZKHycsOp6LRl7vPM6gUfzwwRz63z4Fg8mPCy7ph95oIiPlINGtO5R4noqKxUs9sjTzjlxoc7AqOY/9ORbsamX7QDu5gqw9WRb2ZVtoGWxiSHygzECJ83L1grKf5z+hqjrQG4wY/fwZ8cgMRjwy45zHtLioF4+v2g5wTjdyg9HExLe/rPTYDDLjJIQohWt3dHyQkRWH87A5VI/22ty6YgG/zHuXzNQUACyF+eRnZaDTVa49TGB4Y/fXBj9/AILCI9zfM/r5YynIP+d5KpXLT61JmnhHTsouZu7OTPblOKs3V/elUPk36z7HwtydmSRlF5f7HFG/na8XVF7mSfIzMwiLjvfgiJykR5UQ4nxqend0RWSmpvD18w8y4tGXePqHvUxdv9+Z93lWIGM0O1M+rEWnC1bmZaTXyBgUKpefWpO8GjipqsraI3ksO5RLsb3mo2W7CsV2lWWHcll7JA/VS9Gp0L6yekGl7NjGKyN70HPcrYRGxXp0TK7SDkIIcT5n746u7XDCUlSAoigEhDUCYPPSzzm+f/c5jwsMa0RwRBTbvlmIw25n85LPyDhyqEbGoODMt/UGry3VqarKt8l5Hkluszrgz4wiiu0qQ6UOjihFYrg/69MKzvl+XLvOTF2/3wsjcs6cJob7e+XcQgjfExVgpHsEJGVZqM3N+pEtWtN7wp28e/NQFJ2OzsOuoWnH7qU+9qqnX2XpjEdZ/daLXDRqPE0Tu9XIGLyZ/6moXpqGWXskz+NJba4iggNipTmqONeSgznsybJoopmmgrMu1qjmwd4eihDCh2jpfaw2+ekVHkgM98q5vbJUl5Rd7JWdAK6ZJ8l5EqXRUi8ovQI9IszeHoYQwocU2hwkZdf9oAm8m//p8cCp0OZgxeE8r9WesDpgxeE8rzYIFNqklV5QegVahpiIknIaQohK2J5RVOH8poVT72H129MrfY41c2ex4Mk7K/28muTt/E+PB06rkvPK7URf22wOlVUpeV4dg9AmLfSCMugUhsbJcrIQonL2ZVtK1D6sq7yd/+nRwCk13+qu0+RNdhX2Z1tIy7d6dyBCc7zdC8qog+FNA/GX2mNCiEryZv82T1GAhBCTV+szejQlfVN6odeDJhe7ChvTCxnVXJZDREne6gXl2rwgfemEEJWVa7WfdzUndfd2Fj13PyeTD9C610D37vIDmzew4Kk76Xntbfz86Tvo9DpGPj4bvdHIipefoiDrFH1uuIt+tzxwzjHtVitfPnM3dquFa2e8h8EDXSa0kP/psZBNa0lrKpCUbZFcJ1Gq/jEBtAn189jMk1EHbUP96B8T4JkTCiHqlBOFdgxllNqxWS18+uBNdL7iGp75IYkOl4/gn3Ur3PfnZaRjsxTz+KrtDJz0GIuff5A/v/mKyZ+t5Y4PlrPu/Vc5dfRwiWNaiwr59KEbMZhMXD/zA48FTVrI//RY4FSZpDVPUXCOS4izuXpBdQr3r/XgyTXTNERqjAkhqshiV1HLmJpI2b4Zu81Kr/F3oDca6TBwBLFtO7vv1xmM9LvlAfRGIx0HjyY/K4Oe192OX0AgkS0vJKL5BaTt3eF+fHF+Lh/dM46Gsc0Y++yb6PSe2eGmKNA80MjuzGIO5FjI89IuM48t1VUmaW3msC6MeWYOrXpcVqtjsqnOcfWIbFCr5xG+qbZ7QekVZyL48KaBsjwnhKiW8/Vtyzl5nOCIqBIfzM7shNAgJMwd/JzuF3e6h5zRv2S/uOS/t2C3Wbl2xnue/bCnwrpU5zgUFGyqikGnEOGvp1WIicRwf4/kPnlsxkmrSWtaHZfQjpruBaVwejvtpLZhEjQJIartfH3bghpFkJOeVqLtWPaxI1U+V8LFfen7n/t4/46ryK2h3nMVYVPB4nD+K/73g2yxXSUl38bPaQW89c8plhzMIbWWN355JHAqL2ntTAueuovsY0f45P4JTO3VlJ8+fpPk7Zt59+YrmHZpS14f15cDmze4H7956ee8elVPpvZuxqwrL2LjV59Uamw2h+q16T7hO87uBaVXKLW33fkYFOcsU+tQE+MTQhjdPNirO0OEEHWHSa+glPGxLj6xGzqDgV/nv4fdauWftStI2bGtWue77ObJdBw6hg8mjSE/M6Nax6oJNtW56WtPloXPk7JZfCCn1nKYPbJU50paO99Uosu4F97h0Lbf3Ut12elpvD7uMq55/m0u6DmA/ZvWM+/h//Dg178SGNaIwIaNuOn1z2gY24yDW3/l48nXEduuEzFtOlZobAZFIb3QRqAHEtuE74sKMDKquZFCm4PtGUXsy7aQXuT8YGBQFFxZBgrenUoWQtQvjc16bGVcYw1GExNe/pivn3+A1e/MoHWvgbTrN6za5xxw20PYLcV8cOcYbv3vYhqEhFX7mNWl8m8aTo6FuTszayUVwiO96nZnFvNNci6WCgZ/Z+Y4/fTxGxzbt5txL7zjvv/Du66m49AxdL3y2nOe++mDN9Liol70uv6OCp3LpIMr4oO4MEyWS0TV5VkdpBfasNhV7KqKXnF27o4wGwj0VlEoIUS9Mmd7BsVaqfmjEa7NN/1jAmosH8sjM04VmWkqS2baEf5Zs4zd6787fTybjRbdegOwZ8Ma1v73ZU4m70d1OLAWFRLZqk2Fj69Wc3xCAAQadTJrKYTwqgh/PSn5Nm8PQ1NcPWqL7SpDa2jnskcCp/MlrZWmROZ/ZDSdh13NVU/POedxNksxnz08kaufe4u2lw1FbzTy6YM3QiUCIaUK4xNCCCG0plWIibQCW71ou1IZVgfsyirGT+/cKV1dHllDOF/SWmkCGzbm1BFnsa1OV1zNrvXfsffXdTjsdqzFRRzYvIHs46nYrVZslmICwsLRGQzs2bCGpN9/rNTYFJxLKkIIIYQvSwz310yR6TOZFGdajFFX+U01NcU185SUXVztY3kkxynXamfujswK18DZ+eO3LJv1OMV5ufS79UGadb6YVa9P49i+Xeh0emLbd2bU47MJjYrltwUfsO5/r2CzFHPhpYNx2KyExzVn0N1PVOhcegXubNdQ8lCEEEL4vCUHc9iTpY0uHQrQMthEl8b+WOwqhTYH61LzPdrK6mx+eoVJbcOqtUnHI4ETaDdpzU+v8EBiuLeHIYQQQlRbar6Vz5OyNbFcZ1BgfEKIu0XK4gM57MuxeLVnrf7fGnqjmwdX+Rgem2aJ8PdMSfbK0uq4hBBCiMqKDjDSMthZa86bzu4rl5pvZb+XgyZw1nran20hrRpFMj0WOLUKMXltbbMsrurNQgghRF0xJD4Qg867F1yDTmFo3OlE7E3phV4PmlzsKmxML6zy8z0WOGkxaU3FOS4hhBCirjAbdAxvGljrDcrLYtTB8KaB+P+bR1Roc5CUrY28K3Be+5OyLVWuLO6xl9Vs0JEQYqp2n6+aogAJISap4iyEEKLOSQjxo1O4v8eDJ1fByTOrdW/PKNLMtd9FwTmuqvDoS9o9wuz1dVcXvQI9IszeHoYQQghRK/rHBNAm1M9jwZNRB21D/egfE1Di+/uyLZpIVj+TTXWOqyo8GjhpNWlNCCGEqGsURWFofKBHZp5cM01DSqnOnV5kr92TV1FVx+WRyuFnGhIfyNydmdi9mCV2dtKaEEIIURcpirNadnyQkRWH87A51BpN0tYrzmtqWc10c63OJuguWceOsmL2kxza9jsO1UHHwaO58pEZ/PjhHP74eh7W4iIu6NmfEY/MwD/IWTLg0Lbf+fb150g/sAe/gEAuv/Mxuo64jqLcHJbNepy9G9Zi9DfT7aoJ9J34ADqdjoyUg3z9/IOkJe1AURQSLunHyMdmYg4KcY/F5lDJszoqXcfRY3WczpSUXcyyQ7leKYJl1MGIZkE13i1ZCCGE0LJCm4NVyXnusgDVufg725U5V2+GxAWWmS98IMfC0oO5FDtUHHY7b14/gJbdejPo7sdRdHqO7vyTk4f388OHr3HLOwsJaNiIhU/fg9HcgHEvvENmagqvXdOH0U+9SocBV1KUn0v28aNEt+7Al0/fTVFeDuNeeJeC7FN8cNfVXHbzZLqNmsDJ5ANkpibTvMslFOXn8tmU/xB9YSJXPvyie2x+OoWRzYNoEVy53fVeyYzWUtKaEEIIUR+YDTpGtwhmfEIIrUOdaTOVLRNkUJwBU+tQE+MTQhjdPPi8m6wsdhX13xAt5Z+t5J44xtD7n8VkDsDo50+zzhfz57eL6D3hThrGNsOvQSCDJz/F9tWLsdts/LVqEa16XEanIVehNxoJCG1IdOsOOOx2tn+3mMGTn8IvIJCw6Hj6TLiLbSsXAtAovgUJF/fFYPIjMKwRvSfcycGtv5YYm4qKpQrTbx5fqnPpHxNAsV1lV1axR2aeykpaE0IIIeqTqAAjo5obKbQ52J5RxL5sC+lFziU1g6LgCnUUnP1cbaqKQacQ4a+nVYiJxHD/Cu9It5+xqJV9/CihUbHoDSVDj5wTxwiLinXfDo2KxWGzkXfqBFnHUwmPbXbOcfOzMrDbrOc8Lyc9DYDcjHT3kmBxQR6qw4E5OLTEMdSzxldRXgucXElrfnqFPzOKajV4cs009Y8JOCdpTQghhKiPzAYdPSIb0COyAQB5VgfphTYsdhW7qqJXFEx6hQizocr9XPVnXHNDImPIOnYUu81WIngKbtyEzLQj7ttZx46iMxgIbNiY0MhoUnZsO+e4AaHh6A1GMtOOENmiNQDZx44SHBEFwOq3XgRF4b4v19MgJIwdP3zDspmPlTiGctb4KsqrRYxcSWsjmgXhp1dqfLedXnH2ohvRLIgBsedm+gshhBDCKdCoo0WwiQvD/GjX0J8Lw/xoEWyqctAEYNIrKP9WcYpr34WgRpF89+bzWArzsRYXcejPjXQcMpoNn83l1NHDFBfksfqtF0i8fBR6g4FOQ8eyb+NPbF+9BLvNRn7WKVL3/I1Or6fD5SNZ/fZ0ivPzyExN4ZfP3qXzFWMBKC7Iw69BAP6BwWSnp/Hz/711ztgUnIFhZXklObw03khaE0IIIUTtybXambsj072TLyvtCMtnP8HBbb+jKAodh1zF8Ckv8sP7r/LH4k+xFReTcEk/Rjw6w720dnDrb3zz2rOcOLgX/8BgLr/rcbpeeS2FOVksm/k4Sb/9gMHPj26jb6DfrQ+i0+k4vn83Xz59NycP7yM8rjmdh13DL5/N5fFV291j0ytwZ7uGvrGr7nzS8q1sTC8kKduCApUqmmVQnAFXQoiJHhFmqdMkhBBCeNmc7RkUa6VR3Rn89AoPJIZX+nley3EqiyeT1oQQQghRuyL89aTk27w9jHNE+Our9DzNBU4unkhaE0IIIUTtahViIq3Apqm2KwbFOa4qPbeGx1JrAo06Ao1V+yGFEEII4R2J4f6sTyvw9jBKUHGOqypkqkYIIYQQtcZs0JEQYkIr+9oVnLnQVU3rkcBJCCGEELWqe4S5xksOVZVegR4R5io/XwInIYQQQtSq6AAjLYNNXg+eXKWKqrPrXgInIYQQQtS6IfGBGHTejZwMOoWhcYHVOoYETkIIIYSodWaDjuFNA/HWRnijDoY3DcS/miWLJHASQgghhEckhPjRKdzf48GTq2dtQohftY8lgZMQQgghPKZ/TABtQv08FjwZddA21I/+MQE1cjzNtVwRQgghRN2mqirrjubzZ0YRVkftncc109Q/JgBFqZn8KgmchBBCCOEVSdnFrDich82hUpPt7PSKMxF8eNPAGlmeO5METkIIIYTwmkKbg1XJeezPsWBXnVW9q0rhdMmBIXGBtdK7VgInIYQQQnhdWr6VjemFJGVbUKBSve0MijPgSggx0SPCXK06TeWRwEkIIYQQmlFoc7A9o4h92RbSi+zYHCoGRUFFRcU5q6SgYFNVDDqFCH89rUJMJIb718oM09kkcBJCCCGEZuVZHaQX2rDYVeyqil5RMOkVIswGAr1QFEoCJyGEEEKICjJ4ewC1Iddq50ShXTPRqRBCCCHqhjoROJ1vPdTFm+uhQgghhKgbfHqpLjXfyqYayMDvHmEmuhYz8IUQQghRN/hk4FQrNR+CTQyJr52aD0IIIYSoG3wucPLFKqNCCCFEXSA5xD4UOPlyXxshhBDCF0kO8bl8InBSVZVvk/PYlVVcq0GTi1EHbUL9GBofKMGTEEKIekdyiMvmE4HT2iN5tT7TdDbXzNOA2EDPnVQIIYTwIskhLp/mA6ek7GKWHcr1aNDkYtTBiGZBkvMkhBCizpMc4orRdOBUaHMwd2cmxTX5G6wkP73CpLZhdSZSFkIIIc4kOcSVo+loYFWyM/L1JptDZVVKnlfHIIQQQtQGVw6xJ9JhrA74M6OIb5Pz0PCcTbk0Gzil5lvda6zeZFdhf7aFtHyrdwcihBBC1LB1R/M9tvEKnMHTrqxi1h3N98wJa4FmA6dN6YVeD5pc7CpsTC/09jCEEEKIGpOUXezxjVdweuYpKbvYsyeuIZoMnAptDpKyLdXK5q9JKpCUbaHQ5oUMdSGEEKKGFdocrDic55WNV+AMnlYczvPJ66qmAqdmzZqxZs0atmcUUVNpY5mpyTzepTF2m61ax1GA7RlFNTMoIYQQwoskh7jqNBU4uezLtlSq2JYn2FTnuIQQQghfJjnE1aPJwCm9yO7tIZQqLc8312OFEEIIF8khrh7NBU4FNjufPXU3q9+e7v7egc0bmDEk0X175rAurP/kLV6/5jKe6dmURdPuIzcjnY/uGcfU3s14f9IYCnOyShx3y9LPmT6oPdMHtWP9/73t/r7D4eDHj15n9ohuPNfvAj5/9BYKsjOB08t8fyyZx0tXdOKdW0eR560FYSGEEKKaJIe4+jQXOGUXO9BVIMPpn7UrmPjuQh5a8ju71q/m48nXMvieJ3lq7W5Uh4MN8/9X4vH7N//ClKUbmfj2QtZ//Cb7Nv4EwG9f/I+dP3zL7f9byhPf/Y05KJSlLz1a4rkHt/zGg4s2cMe7C0kvrF6ulBBCCOEt58shnjmsi/vaWFO2LJvP3InDzvsYX8sh1lzgZHWoJboul+WSa28lKDyCkIgomnXuQVz7rkRfmIjRz592/a8gbc/fJR4/4PaHMZkDaJLQlq4jruOvVV8DsPGrTxh09xOEREZjMPkx4I6H+Wft8hLJ5APvcD7X6O+PRSvzm0IIIUQlSQ5x9Rm8PYCzVTTJPyi8sftro5+ZwIZn3vanuKBkca3QJtGnv46K5di+nQBkHTvCvCk3oSinY0idTk/eqRPu2yGRMYBzStHuw9VOhRBC1G9azSHW6rhKo7nASaeAydwAS9HpZLHcjPRqHzfrWCoRzRP+/foowY2bABASGc2Yqa/TrFOPc56TmZrs/OLfnjrOTs++219HCCFE/ZVrtVeoBIHD4WD9J2/yx+J5FOZm06p7H0Y98TINQsIA+OyRiRza9jvW4iKiEtox6onZRLa8EID8rFMsevZeDmzZQONmCSRc0q9CY7M5VPKsDgKNmlsIO4fmRmjUKcS07sDeDWsoyM4k9+RxNnz232ofd937r2ApLOD4/t1sWTafDoNGAdBjzM2sfns6makpAORlnmTnj9+WegwFBZNeAichhBC+50ShHUMFPvyXl/vbuucApizZxFNrdhF9YSILnpzkvm/ZS49i8PPjidX/MGbq62xZ+nmFxmZQFJ/JIdbcjFOIn45Ow65m9+8/MWt4F8Ki4uk64jp+nvdOtY7boktPXh7ZHVV10OeGu7jg3yi45/W3o6Ly4d1Xk3PiGIENG5N4+Uja9h16zjFsqkqEWXMvmRBCCFEui71iOcQbv/qEEY++REikM8VlwB0PM3NYZ+w2G3qDgYtGjXc/duCkR3juslYU5eZgahDAP+tWcN+C9c6c4lZt6DJ8HAe3/VbuOVVUn8khVlQNtiiesz2DYg2+gH56hQcSw709DCGEEKLSdpwq4ruUPCxl7PyfOawLY56Zw/89cAM6vb5E7q/NUsyUZX8QFB7B6rdf5O81y8nPPImi6CjKy2HK0k2YzA2YPqg90zYcwmQOAJxB2LZvvmTShyvPOzajDobEBdKuoX+N/by1RZPTJxH+elLytTdlF+Gv9/YQhBBCiCqpaI7u+XJ/t674kp0/ruKWd78iLDqeorwcnrusFaqqEhDWCJ3BcFZO8ZEKndOXcog1l+ME0CrEhEFjr59BcY5LCCGE8EUmvYJSgTqJ58v9LS7Iw2Ay0SCkIdaiAr5760X383R6Pe36DWPtf2c5c4oP7GHrigUVGpsv5RBrMnBKDPfXTFVTFxXnuIQQQghf1Nisx1aB7Jye199Om8uG8OHdVzO1dzPevWkoKX9vAaDL8GsIjYpjxpAOzBnTm/gOXUs8d8RjL1FckM/0Qe34aupkuo64rkJj86UcYk3mOAEsOZjDnixtlIVXgNahJkY1D/b2UIQQQogqkxzi6tPkjBNA9wgzWpm10yvQI8Ls7WEIIYQQ1aLVXF2tjqs0mg2cogOMtAw2eT140ivQMsREVIDRuwMRQgghqklyiKtPs4ETwJD4QAw67/6GDTqFoXGBXh2DEEIIURMkh7j6NB04mQ06hjcNxFsV2I06GN40EH+Dpl8mIYQQokLMBh0JIaYK7K3zDAVICDFh9qHrrOZHmhDiR6dwf48HT0YddAr3JyHEz7MnFkIIIWqR5BBXj+YDJ4D+MQG0CfXzWPBk1EHbUD/6xwR45oRCCCGEh0gOcfX4ROCkKApD4wM9MvPkmmkaEh+I4iNVTIUQQojKkBziqtNsHaeyJGUXs+JwHjaHSk2WotArzl/i8KaBsjwnhBCizkvKLmbZoVysZfSuq01GHYxoFuST11ufC5wACm0OViXnsT/Hgl2lWjsEnP1xnNOFQ+ICfSpBTQghhKiOtUfy+DOjyKPBk2tlZ0Cs7802gY8GTi5p+VY2pheSlG1BAWyV+EkMijPgSggx0SPC7HNrrEIIIUR1qarKt8l57Moq9kjw5Moh9uV0GJ8OnFwKbQ62ZxSxL9tCepEdm0PFoCioqKg4Z5UUFGyqikGnEOGvp1WIicRwf5lhEkIIUa+pqsq6o/m1PvPkmmnqHxPgs0ET1JHA6Wx5VgfphTYsdhW7qqJXnF2XI8wGAr1VFEoIIYTQMMkhrpg6GTgJIYQQovIkh7h8EjgJIYQQogTJIS6bBE5CCCGEKJXkEJ9LAichhBBCVIjkEEvgJIQQQghRYfUjPBRCCCGEqAESOAkhhBBCVJDB2wMQQgghRNXlWu2cKLTX67wjT5LASQghhPAh59vp5lLfdrp5kiSHCyGEED4gNd/KphqordQ9wkx0Haut5EkSOAkhhBAaVivVvINNDImvO9W8PUkCJyGEEEKjpH+c9kjgJIQQQmiMqqqsO5rPnxlFWB21dx6jDjqF+9M/JgBFUWrvRHWIBE5CCCGEhqiqyrfJeezKKq7VoMnFqIM2oX4MjQ+U4KkCZHFTCCGE0JB1R/M9FjQBWB2wK6uYdUfzPXNCHyeBkxBCCKERSdnFtb48VxqrA/7MKCIpu9izJ/ZBEjgJIYQQGlBoc7DicJ7HgyYXqwNWHM6j0OalAfgICZyEEEIIDViV7Nw95002h8qqlDyvjkHrJHASQgghvCw13+qu0+RNdhX2Z1tIy7d6dyAaJoGTEEII4WWb0gu9HjS52FXYmF7o7WFolgROQgghhBcV2hwkZVuqVBH8wOYNzBiSWOb9qqry1dTJTLusFW/fMKhCx1SBpGxLublOP/74I7GxsZUZbp0gTX6FEEIIL9qeUURtVU86tO13kjb+xOOr/sJkDqjw85R/x9UjskEtjcx3yYyTEEII4UX7si2VathbGVlpRwiLjqtU0ATOBsL7si21MygfJ4GTEEIIUQuaNWvG7NmzSUxMJCAggFtuuYXjx48zdOhQgoKCGDhwIJmZmaQX2Unevpl3b76CaZe25PVxfTmweYP7OJuXfs6rV/Vkau9mzLryIjZ+9UmFzv/Hknl8/fwDJG/fzNReTfn+3ZkA7Fq/mjeu7cu0S1vy7s1XkLZ3h/s5OSeOMW/KzbzQ/0Lu7deRN954w31fYWEhN998M2FhYbRt25Y//vijhl4p3yJLdUIIIUQtWbRoEd9//z02m43OnTuzbds2PvjgA9q0acMVV1zB7Dmvoes9lo/vu55rnn+bC3oOYP+m9cx7+D88+PWvBIY1IrBhI256/TMaxjbj4NZf+XjydcS260RMm47nPXe3URPQ6fT8sWQekz5cCUDq7u0smnYfN742j9i2ndj2zUL+74EbeGjxb+gMRj65bzxt+w7l2hnvkZeeypx7r6F169YMHjyYadOmsX//fvbv309+fj5Dhw71xEuoOTLjJIQQQtSSyZMnExkZSUxMDH369KFHjx507twZf39/Ro8ezR9bt/HnN1/RutdALux9OTqdjoSL+xLbpiN7flkDwIV9BhEe1xxFUWjRtRcJF/fl0LbfqzSeTV9/SvcxNxLfoSs6vZ6uV16LwWQi+e/NHNmxjfysDAbcPgWD0URkXHPG3jCRL774AoAvv/ySJ598koYNGxIXF8e9995bY6+TL5EZJyGEEKKWREZGur82m83n3M7Ly6MgNYV/1ixj9/rv3PfZbTZadOsNwJ4Na1j735c5mbwf1eHAWlRIZKs255xr2zdfseTFhwBo1vli/vPWgnMek5mWwtYVC/jti/fPOJeVnBPH0el05J44xrRLW7rv0+Hgsj59AEhNTSUuLs59X9OmTSv9etQFEjhVUq7VzolCOxa7il1V0SsKJr1ChNlAoFEm8IQQQlSCCqFNouk87GquenrOOXfbLMV89vBErn7uLdpeNhS90cinD94I6rnZ5J2vGEvnK8ae93ShkTH0m3g//W598Jz7Dv/1B2HR8UxZugkAow6GxAXSrqE/AFFRUaSkpNCuXTsAkpOTK/3j1gUSOJWj0OZge0YR+7ItpBfZsTlUDIqCekbFDQUFm6pi0ClE+OtpFWIiMdwfs0ECKSGEEOehQJdhV/Pa+MvZ++s6WvW4DLvNSsrfWwiPa45/YDA2SzEBYeHoDAb2bFhD0u8/EtnywiqdrttVNzDvoZto2eMy4tp3wVpUwIHNG2jepSdx7bvgFxDITx+/Qc9rb8PgZ2L/rp0UmOx069aNa665hhkzZtCjRw/y8/N58803a/jF8A0SOJUhNd/KpvRCkrItKFBiq6j9nEjfedtuV0nJt5FWYGN9WgEJISa6R5iJDjB6bNxCCCF8hw5o2CSWG179lFWvT+OLJ+5Ap9MT274zox6fjV9AIFc+PJ35j96GzVLMhZcOps2lg6t8vti2nRj91Kssm/kYGckHMPr707RTD5p36YlOr+em1z9n5avPMOvKrtgtFlq3bs3sGS8CMHXqVCZNmkTz5s2Jjo7mP//5D6+//noNvRK+Q1HVUub76rFCm4NVyXnunkHVeXEUQK9Ay2ATQ+IDZQZKCCFECblWO3N3ZGqm3cqZ9Arc2a6hpKGcRV6NMyRlFzN3Zyb7cpzFyKr7d6zybxGxHAtzd2aSlF1cE8MUQghRRwQZ9Rh0tVU3vHoMOkWCplLIK4Kzl8/aI3ksO5RLsV2t8cjfrkKxXWXZoVzWHslDJvmEEEK4RPjrvT2EUml1XN5W7wMnVVX5NjmPPzOKsJ6/n2G1WR3wZ0YR3yZL8CSEEMKpVYgJg8YmnQyKc1ziXPU+cFp3NJ9dWcW1HjS5WB2wK6uYdUfzPXNCIYQQmpYY7l/t1JCapuIclzhXvQ6ckrKLPTLTdDbXzJPkPAkhhDAbdCSEmNDKpJMCJISYZENTGertq1Joc7DicJ7HgyYXqwNWHM6j0OalAQghhNCM7hFm9BqJnPQK9Igwe3sYmlVvA6dVyXnYHN6dHLU5VFal5Hl1DEIIIbwvOsBIy2CT14MnvQItQ0xESf3BMtXLwCk13+qu0+RNdhX2Z1tIy7d6dyBCCCG8bkh8oNdLExh0CkPjAr06Bq2rl4HTpvRCrwdNLnYVNqYXensYQgghvMxs0DG8aSDeKp1k1MHwpoH4S27TedW7V6fQ5iAp21LqDoaZw7qwb+NPHh2PCiRlWyTXSQghBAkhfnQK9/d48GTUQadwfxJC/Dx7Yh9U7wKn7RlFHt25sGXZfOZOHHbexyg4xyWEEEL0jwmgTaifx4Inow7ahvrRPybAMyf0cfUucNqXbSnRsFcLbKpzXEIIIYSiKAyND/TIzJNecc40DYkPRFE0sq1P4wzeHoCnpRfZz3t/6p5/WPnKM2QeS+GCS/pz9XNvYfTzZ9f61Xz/znQyU1OIaNGaUU/MJuqCdgD8+NHr/LF4HnmnThAaGcOgu5+gXf9hpB/Yy5LpD2O3WZnaqyk6vYGp6/dXaVxCCCHqD0VRGBAbSHyQkRWHnbvAayM3V1Uhx+KgyK5i1lr5co2qVzNOuVZ7uSUI/v5+Kf95ewGPLN/CsaSdbF3+Bam7t7No2n2MevIVnv5hL93H3Mj/PXADNouzgGV4bDPu+GA5U9cfYMDtU1jw1F3knDhGRIsLGPXEbOITL2LahsNlBk3gLE2Q562iUkIIITQpIcSPSW3DaFVLpQocSCP6yqpXgdOJQjuGcqYie157G8GNm9AgJIw2lw4mdc8/bPr6U7qPuZH4Dl3R6fV0vfJaDCYTyX9vBqDD5SMJbtwEnU5H4uDRNIpvzpEd2yo1NoOikF5oq/LPJoQQom7y1ysEm2rvci2N6CunXi3VWewqajkdgYIaRbi/NvqbyTlxjIKcTLauWMBvX7zvvs9us5Jz4jgAW1cs4Jd575KZmuI8T2E++VkZlRqbioqlBudhc612ThTasdhV7KqKXlEw6RUizAYCvbXXVQghRKW4GtHvyiqu9TI6rnZgxXaVoZLzVKZ6FTjZqxhFh0bG0G/i/fS79cFz7stMTeHr5x/k1rmLiE/shk6v541r+zoXjgEq+IenVmN84CyzsD2jiH3ZFtKLnEuSBkUpESgqKNhUFYNOIcJfT6sQE4nh/tKPSAghNMpbjej99M4cK3GuehU46asYPXe76gbmPXQTLXtcRlz7LliLCjiweQPNu/TEUlSAoigEhDUCYPPSzzm+f7f7uYENG5N9PA2b1YLBaCrzHEoVx5eab2VTeiFJ2RYUKLFj8NxAzHnbbldJybeRVmBjfVoBCSEmukeYiZYS+0IIoRnebkQfH2SUuk6lqFeBk0mvoKBAOct1Z4tt24nRT73KspmPkZF8AKO/P0079aB5l55EtmhN7wl38u7NQ1F0OjoPu4amHbu7n9uyex8iW7Zm+uXtUHQ6nl63p9RzKDiX0iqq0OZgVXKeu3VMVeaqXEHWniwL+7IttAw2MSQ+UGaghBDCy7TSiH5SW6NcE86iqPUoCyzXamfujkzNtFs5k16BO9s1rFD+UVJ2ca1sT9Urzj5Fw5sGyqcMIYTwosUHctjn5Z6qegVahZgY3TzYe4PQoHoVRgYZ9V5voFgWg04pN2hSVZW1R/JYdiiXYnvN1/SQnRVCCOF90ohe2+pV4AQQ4a/39hBKVd64XDsrPLHe7Vrf/jZZgichhPA0aUSvbfUucGoVYkJrxVEN/06Hno+3dlasO5rvmRMKIYQ4byN6b5BG9Oeqd4FTYri/Zv4gXVSc4yqLt3dWSDVZIYTwDE83oq+Iqjai//jjj+ndu3fND8jL6l3gZDboSAgxaeYPUwESQkxl7lrQys4K+bRRO3Ktdg7kWNidWcyOU0XszizmQI5F2u8IUU9JI3rtq1flCFy6R5g188epV6BHhLnM+1cl55XbX6+22Rwqq1LyZGdFDZBCpUKI89Fqw3etjssb6uU7cXSAkZa11DCxMvQKtAwxEVVG4UnZWVF3pOZbWXIwh7f+OcXPaQWk5NvcOyOLHSoWB+5/xf+WmSj+t1Dpz2kFvPXPKZYczCFVfgdCaEKzZs2YPXs2iYmJBAQEcMstt3D8+HGGDh1KUFAQAwcOJDMzE4Bly5bRrl07QkND6du3L7t27SpxnJdffpnExERCQkL4+OFbsBafXhbbtX41b1zbl2mXtuTdm68gbe8OANZ/8hbzptxcYkzLZj3O8tlPlDre3b98z5wxvZjauxkzBndg/f+9DcCWZfOZO3FYicc+3qUxJ5MPALBw6j0sfnEK794+hqCgIC677DIOHz7sfqyiKLzxxhu0aNGCRo0a8fDDD+NwnDtjfvfdd/PQQw+V+N6IESOYM2fOeV9nLaqXgRPAkPhAr5cmMOgUhsaVXdJedlb4vkKbg8UHcvg8KZs9Wc4guLIznTbV+frvybLweVI2iw/kyNKpEBqwaNEivv/+e/bu3cvy5csZOnQo06dP58SJEzgcDt544w327t3Lddddx2uvvcaJEye44ooruPLKK7FYTi99ffnll6xatYof/trDsaSdbF3+BQCpu7ezaNp9jHryFZ7+YS/dx9zI/z1wAzZLMZ2uGMveX3+gMDcbALvNxvbvltBl2LhSx/r1c/cz6smXmfbLIe5f+DMtu1U89+jPb79i0O0PselAKp06dWL8+PEl7l+8eDGbN29m69atLF26lA8//PCcY9x0003Mnz/fHVSdPHmSNWvWcP3111d4HFpRbwMns0HH8KaBeKvfrVEHw5sG4n+e3CbZWeHbkrKLmbszk305zmXh6v4uVf7NNcixMHdnpiTtC+FlkydPJjIykpiYGPr06UOPHj3o3Lkz/v7+jB49mm3btrFgwQKGDRvG5ZdfjtFoZMqUKRQWFvLrr7+6j3PvvfcSHR1Ng5Aw2l46mNQ9/wCw6etP6T7mRuI7dEWn19P1ymsxmEwk/72Z4MZNaN7lYv7+fhkAe39dR0BoQ2Ladix1rDqDkfQDeynKy8UcHEpMm9IfV5oLe19Oi66XoBhMvPjii/z222+kpKS473/00Udp2LAh8fHx3H///cyfP/+cY3Tv3p2QkBDWrl0LwBdffEHfvn2JjIys8Di0ot4GTgAJIX50Cvf3ePBk1EGncP/zVueurZ0VZ07Bnq20KdszVXVnRX0jhUqFqB/OvOibzeZzbufl5ZGamkrTpk3d39fpdMTFxXH06FH395o0aQI4+4ua/M1YCpxlYDLTUvhl3rtMu7Sl+1/28VRyThwHoMuV1/LnNwsB+PObhXQedjUAP3wwh6m9mjK1V1MWvzgFgPGzP2LPhjXMHNaZ924dweG//qjwzxkSGeNuRB8YGEjDhg1JTU113x8XF+f+umnTpiXuO9NNN93EvHnzAJg3bx433HBDhcegJfUyOfxM/WMCKLarHquRZNRB21A/+scEnPdxWkleP5NrZ0WPyAbeHopmuQqVeuLvyVUuotiuMjQ+EKWKTayFELUnOjqav//+231bVVVSUlKIiYk557FnN3oPjYyh38T76Xfrg6Ueu23foSyZ/jDH9u1i98+rGXrfVAD63fIA/W55oMRj49p15sY5n2K3WvltwQfMf+xWHvv2L0zmBliLTqdh5J48fs55so8fdTeiz8vL49SpU0RHR7vvT0lJoV27dgAkJyeXuO9MEyZMoH379vz111/s2rWLUaNGlfo4ravXM07gTGwbGh/okZkn10zTkApc5LS6g0Gr49IKKVQqhDjTNddcw8qVK1m7di1Wq5VXXnkFPz8/evbsec5jz2703u2qG9i46BOS/96CqqpYCvPZ/fNqivPzADD6+dNh4JUseGISse26EBoVW+oYbFYL2775iqLcHPRGI36BgSiK84LX5IL2HN+/h9Q9f2MtLmLNf2ef8/w9G9ZwcNtGsFt5+umnufjii0vMMs2ePZvMzExSUlJ4/fXXGTeu9Dyr2NhYunXrxg033MCYMWMwm8veUa5l9X7GCZzB04DYQOKDjJponptrtZdbguDorr9Y9Nz9ZKQc5IKe/VEUHY3iWzDo7ifY9PWn/PTxGxTmZNGsUw9GPfkywY2bnHOM/KxTLHr2Xg5s2UDjZgkkXNKv3LHZHCp5VkeFmhHXN94uVBofZJTmzEJoTOvWrZk3bx6TJ0/m6NGjdOrUieXLl2MyndstorFZz5lvH7FtOzH6qVdZNvMxMpIPYPT3p2mnHjTvcjro6jJ8HH8snseYqa+fdxzbVn7JspmPoTrsNGrainEvvus8Z9OWDLjtIT64cyxGP38G3/MUmxZ9UuK5HYeM4bu5s/nonnF06dLFvdzmMnLkSLp27Up2djY333wzt9xyS5njuOmmm7jhhht4/fXzj1fLFFUSJEootDlYlZznLgNQnRfHObXpLDkwJC6wwnV4DuRYWHowl+Iygieb1cIrI3vQe8IkLr56IrvWf8cXj9/OpTfdQ8tuffj8sVuZ+PaXRLa8kG/mTCVt7w7u+GA54MxxemjJRhrFt2D+Y7ehqg7GPvsGp44m89Hd1xAWE8+kD1eWOTY/ncLI5kG0CD5/i5j6ptDmYO7OTIq9uA3ST68wqW2Y1HsSwofN2Z5RqfeRrLQjvDqmJ0+s3oF/YFCNj2fh1HsIiYjmynuf5IHE8HPuVxSFpKQkWrVqVaHjrV+/ngkTJnD48GGfTS+Qd9izmA06RrcIZnxCCK1DnbWeKtvbzqA4A6bWoSbGJ4QwunlwpS5mFrtaoiDi2VK2b8Zht9HzutvRG420HzCc2PadAee20YtGXE9Mm44YTH4MnvwUyX9vJjM1ucQxHHY7/6xbwcBJj2EyB9CkVRu6DC99evVMKioWrdRI0BAtFSoVQviuyjSidzgc/DzvXRIHjaqVoOlMlRlXWaxWK6+//jq33nqrzwZNIEt1ZYoKMDKqufG8lZ5VnLNKNV3p2V7OJGDOyeMER0SV+MMLiXQmGuacOEb0hYnu7/s1CKRBSBjZ6WmERce7v5+feRKHzUZok9NJfKFRcbDtt/Oe27WzQpymxUKlZRVVFUJoW6sQE2kFtnI3B1kK83lxYFtCo+L4z1sLanVMugo0oi/Prl27uOiii+jYsSMfffRRDY3MOyRwKofZoKNHZAP3TrI8q4P0QhsWu4pdVdErCia9QoTZUGN5P2fvrDhbUKMIctLTUFXVHTxlHz9KeGwzghs3ISvtiPuxlsJ8CrIzCYmIKnGMgLBG6AwGso6lEtE8AYCsY0coj2tnhThNi4VKRzWXwEkIX5QY7s/6tIJyH2cyBzBtw+FyH1ddV097C71SdiP6imb7tGnThvz8urGJRZbqKinQqKNFsIkLw/xo19CfC8P8aBFsqtFkaZNeQTlPFaf4xG4oej2/LXgfu83Gzh+/5cg/2wDoOOQqtiybT+qev7FZivnurReJa9+lxGwTgE6vp12/Yaz97ywshQUcP7CHrSvK/9SioJyz86M+k0KlQoia5GuN6OsjeSU0qLFZj+08UbzBaGLCyx+zeclnPHdZS7Z9s5AL+wxCb/KjVY/LuPyux/js4YlMH9SejJRDXDfjf6UeZ8RjL1FckM/0Qe34aupkuo64rtyx2VSVCLNMVLrUVqHS6pBCpUL4tu4RZq/3UnUprxF9fSS76jSqsjsr3r5xMD3G3MRFI2u374+fXil1Z0V99dneLFLybd4exjniAgyMvyDU28MQQlTR4gM57PNy7qT+39ym0c2DvTcIDZIZJ40qbwfDgS0byD15HLvNxpblX3AsaScX9Ozv9XHVNxUpCOqwe75oqBQqFcK3+UIj+vpK1lw0qrydFScP7Wf+o7dhKcynYUwzxs/6oNQilzXJUAM7K+qSzdv/4a2Jd5C65x+CI6IYPPkp2l42hIVT78HoZyYzLYWDW37jxjn/h81SzOp3ZnDqyCH8A4O5aOR4Bk56BIDM1GRmDe/K2Glv8v27L2EtKqT39Xe42yxYiwpZPH0Ku376jqDwCLqOuI5fv/gfj6/aDjh3Ui6b+RiHtv6OqUEAvcbfwaXX3y6FSoXwYa5G9MsO5Xq8qC6U34i+PpPASaPK21nRfcyNdB9zowdH5Ew8LmtnRX1jtVoZM2ok7Yddx3/eWcjhbRv5vwdv4J55awD4c9Uibn5jPje9/jl2q4WUv7dwzXNvE9HyQo7v28WHd11NVOv2tOt3hfuYh//cyENf/8bJ5P28fcNg2vUfTkSLC1j73myyUlN4ZPlmLIUFfDz5dC6aw+Hgk/vG07bvUK6d8R45x1N5/86xRDdPIL3FSAKNEugK4aucjeitHu9IUJFG9PWZhJIaJTsrtO3333+nID+ffhPvxWA00bJ7Hy7sM4i/Vn0NQNvLhtKsUw90Oh1GP39aXNSLJglt0el0RF3QjsTBozm45dcSxxxw+8MY/c1EXdCeqAvakZa0A4Dt3y+j78T7MQeHEhIZTc/rbnU/58iObeRnZTDg9ikYjCYaxjaj++gJbFv1tRQqFaIO6B8TQJtQv1rvpepS0Ub09ZnMOGlY9wgz+7It5RZC8wTZWVFSamoqkdEx6HQ6XM2lwqJiyTmRBkBIZMnu4Ml/b+G7N5/n+L7d2GwW7BYL7QeOKPGYwPAI99dGfzOWAmcV8NwTxwhpcrqTuqvYKUBWWgq5J44x7dKW7u85HHZadL5YCpUKUQe4GtH76ZVan3lyzTT1jwnw6cretU0CJw2LDjDSMtikiZ0VLUNMUo36DNHR0RxPPYrD4cA1cZt17CiN4luSmZZ8zpvOgicncck1t3Dzm19g9PNn+ewnKcg6VaFzBTWKJPt4KpEtWgPOYqcuIZExhEXHM2XpphLPMemkUKkQNSnXaudEob1Wix+XRWuN6Os7CZw0bkh8IHN3ZmL3YuQkOyvO1aNHD8xmMz9+/BaXjL+Tw39tYtf677j70+/56eNzu34X5+dhDgnF6OdPyj9b+WvV1yRc3LdC5+pw+Uh++uh14tp1xlJUyG8LPnDfF9e+C34Bgfz08Rv0vPY29EYT6Qf3oliKMDW/rKZ+XCHqnfO123Kp6XZb5UkI8WNSW6PXG9HXdxI4aZzsrNAmk8nEV0uWcu0tk1jz4WuENI5yJn//277mbCMfn8k3r05l2czHaN6lJx0uH0FRbk6FzjXg9odY/OLDzBrelaBGkXS6Ygxbln0BOCvA3/T656x89RlmXdkVm8VC46atGHL341KoVPgcb87quKTmW9mUXkhStgUFSqRKnLv87bxtt6uk5NtIK7CxPq2AhBAT3SPMRNfCLL2rEX1avpWNZYyzPAbFOfKEEBM9IsyymlBJUgDTR6w9kue1nRUDYmW2qSyVLVRaE35f+BHbv1vM7e8vK/MxUqhU+AItzeoU2hw1P5MTbGJIfO3O5HijEX19J4GTj1BVlW+T89iVVeyR4Mm1s2JIfKAkCZ6HJyqH55w4xqmjh4lP7EZG8gE+vvc6Lhl3C73HTyrzOVI5XGjZ+WZ1ynPmbElNzeokZRfXmdwhTzSir+9kLt9HyM4KbSqvUGlNsFutLHlxCqeOJmMOCiZx8GguvmZimY+XQqVCq2piVsf1f21PloV92ZZqzeqoqsq6o/m19p5qV53LeMsO5dIp3OqR99RAo07qt9UymXHyQXXp05GvK7Q5eOufU17d9Xg2vQL3tG8o0/BCU7T2vuWNWfw2oX4MlVl8nyeBk4+qlfV42VlRJUsO5rAny1Kt30FNUYDWoSZGSVNOoRG1PavjUtmZcskbFVUlS3U+SnZWaIcUKhWidJ6c1bE64M+MIortarmzOknZxR4PmuD0GOODjDKr78NkxqmOkJ0V3rX4QI4mCpW2CjExWmabhEZocVan0OZg7s5Mj++GPZOfXmFS2zB57/VREjjVUbKzwrO08mZ8Z9swqbklNCEpu9ir9edGNAsqdVZHPuSI6pJ32Doq0KijRbCJC8P8aNfQnwvD/GgRbJKgqZa4CpV66+WVQqVCSwptDlYczvNK0ATOJbEVh/MotJUcQGq+1Z0X6k12FfZnW0jLt3p3IKJK5F1WVEiu1c6BHAu7M4vZcaqI3ZnFHMixkOetd0YNSgjxo1O4v8eDJ9fShORMCK1YlezcPedNNofKqpS8Et/blF7o9aDJxa7CxvRCbw9DVIEkh4tSaamiry/pHxNAsV31eKHS/jEBtX8yISpAi7M6UQFGCm0OkrK1sfsVnBtzkrItFNoc9fo90xdJ4CRK0HqfJq2TQqWivtPirM6o5ka2ZxShtf8lCrA9o4gekQ3OvU9RSEpKolWrVp4fmDgvCZwEoL2Kvr5MURQGxAYSH2TUVME/IWqblmd1tFIy5Ew2FfZlW0oNnIR21a8rmihVUnYxc3dmsi/H+cZS3fcWlX/fEHIszN2ZSVJ2cU0M0+ckhPgxqW0YrYJNGBSq/WlX4XQ7lUltwyRoEppTkVmdHz6Yw6Ln7gcgMzWZx7s0xm6r2X6PZx7PNauTXmSv0XPUFK2OS5RNZpzqsbrYp0lrpFCpqE8qMqvT75YHauXcM4d14eKrb+bPbxZx4vA++t/2IFuWfUHeqRM0ioph4F1P0KbfMAC2LJvPH4s/Jap1B7Z9s5DgRpGMeHQmrXpcCkBRbg4rX32aPRvWoCg6uo64joGTHkWn13My+QBfP3c/qXv/QW8w0rJbH66f+T4A6QeTWD7rcY7u+ouAsHAuv/MxEgeNAsBmKWb129PZ/v1S7BYLbftdwfCHnkdvNpNndfDua6/w6quvoigKL7zwQq28RqJmSOBUT2m1om9dFRVgZFRzoxQqFXWat2dP/lr1NTe98Tn+gcEk/baOOz5YTmB4BLvWLuWLJ+/ioaUbCW7cBICUf7bSfsAInl67hx3rVjDv4Zt5ZPkWGoSEsfDZyQSGNWLK0k1YCgv45L7xhETG0GPsTXz/7kskXNyXW99bgt1q4ejOPwGwFObz4V1jGTjpUW5+8wuO79vJB3ddTWSrNkS2aM2qN57n1JFD3Dv/B/QGI188cQdr//cyI+97hoXLV/Lyyy+zdu1amjdvzm233ebFV1GUR96J66l1R/M9tvMLnMHTrqxi1h3N98wJNcps0NEjsgHjLwjlgcRw7mzXkJHNg7giPoghcYFcER/EyOZB3NmuIQ8khjP+glB6RDaQoEloXq7Vfk4Jgp8+foMZgzswtXczXhl9Mfs2rmfN3FksePLOc56//bvFvDV+YInv/TJvLv93/wTAOWPzzZypvHRFJ14c2JbFL07BWuTczn9g8wayj6cSHteCt2+4nKUvPUqHy0cS3LgJOp2ODpePplF8c47s2OY+dkBYI3qNvwO90Uji4NE0btqK3T9/T25GOnt+WcPwKS9gMgcQ2LAxvcZPYvvqxQDoDUYy046Qe+IYRj9/mnW+GIDd61cTFhXHRSOvR28wEH1hIu37D+fv75ehqiqbvv6UYQ89T4OQMPwCAuk78X62f7cEFZUVi77iP//5D+3btycgIIBnn322xn4voubJjFM9JH2atCPQqCPQaKry83Otdk4U2qVCvPC6E4V2DIri3n174tA+flvwAXfP+57gxk3ITE3GYbdzaNvvpT7/wksHs+j5BziZvJ9G8S0B+HPVIvrccBdAmTM2QyY/DYDqsKPodDy6chuqw8HWFQv4Zd67ZKamAM4ZofysDPf5giOiSsx+h0bFknvyGFlpR3DYrEwf1N59n6o6CImMAWDofc/w/bsv8fYNgzAHh9Jnwp1cNGo8mWlHSPlnK9Mubel+nsNuo/Owa8jPPIm1qKBEYKiiotrtqMDxY2n079ndfV/Tpk0r/wsQHiOBUz2jlYq+k9oaZRalCqS+ltAqi10t+Xeo02GzWEg/sIeA0HDCouPP+3yTuQFtLxvKX6sWM+D2KZxM3s+JQ0m0uXSwe8bmvgU/0iAkDIC+E+9nwZOT3IETQJfh4zCY/MhMTeHr5x/k1rmLiE/shsmg59VxfeGMkio56WmoquoOnrKOHaXNpUMIiYxGb/LjqXV70BvOvUQGNYrkqqfnAHBo2+98cOdYmnW5hJAmMTTv2pNb3v3qnOc4HA6M/mbu/+oXQiKiStynABGRTUhJSXF/Lzk5+byvlfAueSetZ7Ra0VecX2q+lSUHc3jrn1P8nFZASr6NYruzzEGxQ8XiwP2v+N/yB8X/1tf6Oa2At/45xZKDOaRKiwdRS86u89YovgXDp7zAmv/O4oWBbZj/2G3knDh23mN0HHoVf636GoA/v/2atn2vwGRuUGLGZtqlLZl2aUs+mjyO/MyT7ucqOh0Gk3P21lJUgKIoBIQ1AmDT0s85vn93iXPlZ57k1/nvYbda+fv7pZw4uJfWvQcS3LgJCRf35Zs5z1CUl4vD4SAj5SAHtmwA4O/vl5J9PBUAc3AoKAo6nY42fQZx8vB+tq74ErvVit1qJWXHNtIP7EWn09Ft9ARWvvIUeadOAJCdnsbeX9ehoDB8zFg+/vhjdu7cSUFBAdOmTavib0F4gsw41SNaregryib1tYSv0Jey6aPT0DF0GjqGorxcFr/4EN++/hzhsc3KPEZCj77kZ2WQuudvtn/3NcMeeh6ABqHhZc7YnHb6/JEtWtN7wp28e/NQFJ2Oi4ZdQ9OO3Us8Oq59F04mH+D5Aa0JbNiY62d9SEBoQwCuee5tVr35PHPG9qK4II+GMU257OZ7ATiy409WvPwURXk5BIZHcOWUF2n478808Z2FrHz1ab559RkcqoOohHYMe+g5AIbc+wzr3nuZd24aSkFWBsGNo+hx9c3YevXnmhHDSU+6n/79+6PT6XjhhRf47LPPKvKyCy9QVPWcctCijlpyMIc9WdooTqcArUNNjJLu4GVKyi6WAprCZxzIsbD0YC7FjtM5TjnpaTTt1B0UhSUvTsHhsNMwuikZKQcZ9+K7ZKYmM2t4V17YlOZeFlsy/WEyUg6StncHj3/3t/v7y2c/Qe7J44x49CUCGzYmOz2N4/t2cUHP/hzYvIEFT93J46u2lzo2P52CA9WdorBl2Xz+WDKPSR+urP0Xphx+eoUHEsO9PQxRCfKRs57QckVfUZKqqqw9kseyQ7nu5bia5FrGW3Yol7VH8pDPTqImNDbrsZ3xt2SzFLPqzed5vn9rpl/ejrxTJ0vkI5Wl45Cr2LfxJzoMvLJEjtGQe58hPLY579w0lGf7NOeDSWM4cXhfhcZmU1Ua+2tzgSXCX+/tIYhKkhmnemLj8QJ+TiuoVOHFmcO6MOaZObTqcVmZj8lKO8Kcsb2Yuv4AOn3l3gAMCvSJaiDtBs7gyfpa4Ox31ybUr97W1xI1a872DIq9nQtQCj+9Qs9Is/s9UCszTvIe6JtkxqmeqK0+TaFRsUzbcLjSQROc7tMkTpP6WsKXaXX2JMJfT2K4v3vGveuI67weNIFz5j0x3N/bwxCVJIFTPeHtir5l0eq4vMHb9bXqa09BUXNahTj7MmqJq7+j2aAjIcRU7Z6RNUXB2UZJNmn4HvmN1QOlVfStDIfDwY8fvc7sEd14rt8FfP7oLRRkZwLVb9Jpc6jkeShSyLXaOZBjYXdmMTtOFbE7s5gDORaPnf98tFJfS3LORHWcOaujFWfO6nSPMKPXSOSkV6BHhNnbwxBVoM1sOVGjzq7oW1m/ffE/dv7wLbf/bykBYeEsn/UES196lOtmvFftsRkUhfRCW7WqZ5fFl4pFaqm+1mjZ6ehRdan6u2tWR0u7d8+c1YkOMNIy2MQ+L5dl0SvQMsQk5Vh8lARO9cDZFX0ra+NXnzDi0ZcIiYwGYMAdDzNzWOcqzzKdSUXFUsPvYKn5VjalF5KUbUGBErld5waPztv2f4tFphXYWJ9WQEKIie4RZqI98MYm9bXqF18K6Kuie4S51nIqK6u0WZ0h8YHM3ZmJ3Yv/4Qw6haFxgV47v6geCZzqgarONLlkHTvCvCk3oSin37R1Or27Am51qFR/fC6+WixyU3qh14MmF7sKG9MLGdVcAqea5msBfVVpfVbHbNAxvGkgyw7lemVp3KiD4U0D8feBIFiUTgKneqC0ir6VERIZzZipr9OsU49z7stMrV5PJYXqjw9qvlikyr+7/nIszN2ZWWvFIrVcX8sXZjd8ga8G9NWh9VmdhBA/OoVbPb4Zw6iDTuH+UnjWx2nzf52oUSa9glKNvSQ9xtzM6renu7uM52WeZOeP39bI2BSc+RxV5evFIrdnFNXoLp+Zw7qwb+NP1TqGgnNcovqSsouZuzOTfTnOpavq/vWcHdBrdSeka1bHWylaFZnV6R8TQJtQP4+N0aiDtqF+9I8J8MwJRa2RGad64OyKvpXV8/rbUVH58O6ryTlxjMCGjUm8fCRt+w6t9thsqkqEuWp/hp4sFunasl9sV2u0WKRWckHO5KqvJUX5qk5VVdYdza+1GQ276lzGW3Yol07hVvrHBGiugKnWZ3UURWFofCB+eqXWx+gakxZ/T6LyJHCqB4KMegw6pdLT5o+u3Or+us+EO+kz4c5zHhMWHc+MrVXPdTLolCrvHPJWsUg/vcKA2JpJ7KxMHSu7zVaiBUVtkvpaVVcXAvqa0j8mgGK76tFK+JWZ1VEU5//l+CCj9IUUFSZLdfWEliv6VoUvFoucOXMmMTExBAUF0bp1a5Z/t5qioiKWz36S6YPaM31Qe5bPfhKbxXnsA5s3MGNIIj99/AYvXt6Wr569F2tRIV8+czfTLmvFq1f15KeP32TGkMQS50nd8w+vX3MZz17ags8fvRVrsXPZbcuy+cydOKzEYx/v0piTyQcAWDj1HpbMeISP7hnHYxfHc3HPXhw7doz777+fsLAwLrzwQrZt21aVl61ekervp7lmdTqF+9f6kphrVmdIFQLIhBA/JrUNo1Wws4BndcNPhdOFNye1DZOgqY6RwKme0HJF38ryxWKRe/bs4a233uKPP/4gNzeX7777jsDIOH74YA4pf2/h3i9+4N4FP3JkxzbWvf+q+3l5GekUZGfx6MptXPXUK6x9bzZZqSk8snwzt7z7FX9+89U55/r7+6X85+0FPLJ8C8eSdrJ1+RcVHuff3y9l0F1P8PyPe1EMJi655BK6dOnCyZMnGTt2LA8++GCFj1Uf+WJAX9tcszojmgXhp1dqvAClXnH2ohvRLIgBsVWfdTMbdIxuEcz4hBBah5qcs0WVPJRBcY6ndaiJ8QkhjG4erNkEflF18hutJ7Re0bcytFQssqL0ej3FxcXs3LkTq9VKs2bNiGragq3fLKL/7Q8R2LAxgWGNGHD7FLatXOh+nqLoGDjpEQwmP4z+ZrZ/v4y+E+/HHBxKSGQ0Pa+79Zxz9bz2NoIbN6FBSBhtLh1M6p5/KjzOdv2uIKZtRwx+fgwYNgJ/f39uvPFG9Ho948aNkxmn8/DFgN6TfGVWJyrAyKjmwdzTviF9ohoQF2BwB3x+OgWTzjm7ZdI5b7sCt7gAA32iGnBP+4aMah4stdDqMMlxqie0XtG3ony1WGSrVq147bXXePbZZ9mxYweDBw/mjqenk33iGGFRce7HhUbFkXvimPt2QFg4Rr/TwWXuiWOENIlx3w6JPP21S1CjCPfXRn8zOWccrzyBDRsDzqDW6O9PZGSk+z6z2UxeXsWDxfpGSwG9Vqu/u2Z10vKtbCyjplV5DIrz7zMhxESPCHOtBShmg44ekQ3cmyTyrA7SC211osK7qB4JnOoRrVf0rQhfLhZ5/fXXc/3115OTk8Mdd9zBnOeeIqRxEzLTUohseSHgLDYa1LjJ6SedtewQ1CiS7OOpRLZoDUD28aMVHq/J3ABrUaH7du7J42U+VkGmoyvDVwN6b3HO6hjPW0Vdxfl3qJUq6oFGXa20hhK+RwKnekTrFX3LU51ikTvWrWT57CcozMnijg+WY/RvwPzHbiXjyCEG3f0Eva67vdLHrEyxyD179nD06FF69eqFv78/ZrOZ4iIrnYdcxQ/vzyG2XWcUFNb972U6XzG2zON0uHwkP330OnHtOmMpKuS3BR9UeLxNLmjP8f17SN3zN42bJbDmv7PLfKyCgkGnsaQ4DfPlgN6bZFZH+CIJnOoZrVf0PZ/qFIv85rVnGfHoS+7aU4um3UeLi3pz7xc/VvGITq5ikeXVPCouLuaxxx5j165dGI1Gevbsyatvv8tXxxTy83J4Y9xlALQfOIJ+t5adgD3g9odY/OLDzBrelaBGkXS6YgxbllUs+btx05YMuO0hPrhzLEY/fwbf8xSbFn1S6mNtqkqQSS5UFSHV32uOzOoIX6CoNV0KWWheUnaxV/s0jWgWVKVEzs/2ZpGSX7XGwk92a8IDi36lUXwLAN6fNIaOg0fRbfQNVTremeICDIy/ILRKz52zPYPiagSxvy/8iO3fLeb295dV+Ril8dMrPJAYXqPHrKs2Hi/g57QCTSyBuxgU6BPVoFpFTHOtdk4U2mX2R4izyIxTPaT1ir5lcRVlzDp2lBWzn+TQtt9xqA46Dh7NlY/M4McP5/DH1/OwFhdxQc/+jHhkBgY/P57vdwEOu503ru1HUKMIQpvEcnDrrxz+cyMrXn6Kez5fR1hULKvfns7275dit1ho2+8Khj/0PEZ/Zx7WrvWr+f4dZ9uZiBatGfXEbKIuaFdiXFUR4a+vVDCYc+IYp44eJj6xGxnJB/j503e4ZNwtVT7/+cYlF86K0Ure4JmqUv39fPlGLlrJNxLCm2TGqZ7yZHVjOF3RtyrF6cD56XfujkysNjtvXj+Alt16M+jux1F0eo7u/JOTh/fzw4evccs7Cwlo2IiFT9+D0dyAcS+8AzgLPT60ZKN7xum920bS+Yqx7hmnFS8/xakjhxg77U30BiNfPHEHka0uZMjkp0ndvZ0P7x7Hja/NI7ZtJ7Z9s5A1c2fx0OLfMJj80CtwZ7uGVQomKjtbkZmawif3Xc+po8mYg4JJHDyawZOfwlCDyxsK4Epvkgtn+ao7a1hb/PQKk9uGYCin2nxqvpVNNbDDrXuEmWgNJ6QLUVNkxqme8rU+TScK7RgUhQP/bCX3xDGG3v+su/1Is84Xs2buLHpPuJOGsc0AGDz5KV67pg9jn32j3DYlqqqy6etPuW/BjzQICQOg78T7WfDkJIZMfppNX39K9zE3Et+hKwBdr7yWHz98jeS/N9Oiay8MikJ6oa1KuRmJ4f6sTyuo8OPDouO4f+HPlT5PZajgTnS2n/O5ynnbbldJybeRVmBjfVpBvb1w5lrtnEw9wtJZFZsB9Q8KJjM1mVnDuzL6yVdY899ZgErvCXdx6Y13A7Bm7iyO79+FotOzZ8MaGsW3YOyzbxB1QXvAOeu4bOZjHNr6O6YGAfQaf4d7c4PruQaTP7vWr8L4yivcc0fpGx8KbQ5WJee5dwNWJfRzBVl7sizsy7bQMtjEkPjAeh1Ii7pPAqd6zJf6NFnszg3K2cePEhoVe04wlHPiGGFRse7boVGxOGw28k6dICQi6rzHzs88ibWogLfGD3R/T0VFtTuX4DLTUti6YgG/ffG++367zUrOiePux1qq+MJprb5WZdX3C+exPAsf3TeeFhf15pEXtrhnQLcum8+WZV9w23uL3TOgS2c+5p4BBdi/+RemLN3IqSOHef+Oq4hu3Z5WPZybBHb+tIprp/+XcS+8y4b57/Hpgzfx0OLfUfR6PrlvPG37DuXaGe+RczyV9+8cS+OmrbigZ3/3c6+f+QETXnyH/tGlB/NJ2cU1+n9e5d/lwRwLc3dmSm82UadJ4CT+rehrrPanTxeF0yUHhsTVzEXUNfMREhlD1rGj5zS8DW7chMy0I+7bWceOojMY3AUdz6dBaDhGfzP3f/VLqUFWaGQM/SbeX+ZuN5XSZmYqTkv1taqqvl44N2/aRE4lZ0BdBtz+MCZzAE0S2tJ1xHX8teprd+AUc2FHOgwcAUDvCXfyy7x3SP57M3qjifysDAbcPgWAhrHN6D56Atu/W+wOnOI7XES7fleg6EBnKlmZX1VV1h3Nr7VZZrvqnI1cdiiXTuHWas0yC6FV9eNjoSiX1vs06f99841r34WgRpF89+bzWArzsRYXcejPjXQcMpoNn83l1NHDFBfksfqtF0i8fFS5y3QAOp2ObqMnsPKVp8g7dQKA7PQ09v66DoBuV93AxkWfkPz3FlRVxVKYz+6fV1Oc76yirZwxvqpw1deq6R5e3mBXofjfC+faI3nU9RTK1KMphFVyBtT9vSbRJe4/s8J7yBn36XQ6giOiyT1xjKy0FHJPHGPapS3d/3748DVyzziuq7L82QG9K6/RE5tCXL3zvk2u+38Dov6RGSdRglYr+pr0CgoKOr2em16bx/LZT/DSFZ1RFIWOQ65i+JQXyTlxnPduHYGtuJiES/ox4tEZFT7+kHufYd17L/POTUMpyMoguHEUPa6+mQt69ie2bSdGP/Uqy2Y+RkbyAYz+/jTt1IPmXXrCv6+DqZpRjxbqa9Uk14Wz2K4ytIobAmpCbe8MjI6JIyutcjOgOemp/34vlYjmCe77g8+oGJ99LNX9tcPhICc9laDGTdDpDYRFxzNl6aYyx6T8W+3s7IB+3dF8j20GAeffwK6sYvz0zpQAIeoKCZxEqbRW0bexWY/t30+uoVGx3PDq/53zmAG3T3EvYZxtxtYTJW7f/r+lJW4b/fwZPPkpBk9+qtTnt+41gNa9BpR6n01ViTBX77+S2aBjeNNAr9XXqg3euHB6ekv9Rd27E9TYOQM6cNIjzhynXX/Rcchofvr4TVr3GkBAWHipM6Dr3n+Fq556lczUZLYsm881Z+Q/Hd39F/+sXUGby4bw6xf/Q2/0I77DRSg6HX4Bgfz08Rv0vPY29EYT6Qf3Yi0uIq5d5xJjOzOgT8ou9nj5ETgdQMcHGevF0q2oHyRwEhXi7Yq+QUY9Bp2iyRkZg06pkeDRW/W1apOnLpzn21JfmzsDmwSauPm1eSydVfkZ0BZdevLyyO6oqoM+N9zFBZf0c9/X9rIhbF+9hIVT7yE8rjkTXv4IvdE5rpte/5yVrz7DrCu7YrNYaNy0FYPufvycsbkC+kKbgxWH87z2N2V1wIrDeUxqa6w3mwZE3SZ1nITPqE7l8NpUncrhZ/N0fS1P8dMrTGobVuMXzprYUu/i3tRQyZ2Bla3j5CpH8MKmtFJz8NbMnUVGykHGvfhuhY9ZGlf198UHcjTRn7JViInRzYO9NwghaoiE/8JntAoxVTphvbYZ/r0g1BRXfa1O4f7UpeLcNofKqpS8Gj1mUnYxc3dmsi/HuSOxunHB2TsDk7KLK/S8CH99Nc9cOyL89aTmW91BpTfZVdifbSEt3+rdgQhRA+rQW7Oo6xLD/TVX60jFOa6a5KqvNaJZEH56pc7stqupC6eqqqw9kseyQ7kU22u29hhUfmeglgP6TemFXg+aXOwqbEwv9PYwhKg2WaoTPmXJwRzNFItUcJZeGFWLyw81uRTlbTXxenmjVVCbUL/z7gwstDl4659TmglQwLk0dsuFoXywO0tz47qnfUPJdRI+Tf56hU/pHmHWzAyMXoEeEeZaPUdN1NfSChVIyrZQaKt6xOOtLfXrjuaX+RhX9Xet/FoUnL3jXInyWqIA2zOKvD0MIapFAifhU7RSLNJVGT3KQ73ZnPW1grmnfUP6RDUgLsDgXsbz0ymYdM7ZEZPOeVsrAdacsb05sHkD4Ex6nv/knVW+cHp7S/35cp60GNBXtRp9Zmoyj3dpjN12eiPGlmXzmTtxWLXHZlNhX7al2scRwpukHIHwOVooFmnQKQyN83xRv8rU11p6MMfruxAf+OqXErfVfy+crvFXlNa31LsCei3sXnMF9OlFdu8N5Dy0Oi4hKkoCJ+FzvF0s0qiD4U0D8ddAnsb56mtp9QJVlXGtSnY2pPUm187AsrbUaymgz7Xa3a9X1rGjrJj9JIe2/Y5DddBx8GiufGQGP344hz++noe1uIgLevZnxCMz8A8K5r+3OnvkPXdZSwAmvvMVS6Y/jN1mZWqvpuj0Bqau309Rbg7LZj3O3g1rMfqb6XbVBPpOfACdTseWZfP5Y8k84jtcxB9LPsMcFMLIx2fSutdAbA6VPKvDI4VzhagN8pcrfJKzWKTnt+wbddAp3F/zVZCfmz6Djx68ucT3ls9+gmWzHqcoN4dF0+5j+qB2zBjcgdVvT8dhdwYzDrudla8+w/P9WzNreFd+/eL9c5Ztzrbzp1XMGdubaZe25L3bRpJ+YK/7vpnDurBv408lHu+6cFaUr2ypdwX03ooHzgzoTxTaMSgKDrudT+4bT2hULI+s3MLjq7bTcfBoti6bz5ZlX3Dbe4t5ePkfWAryWTrzMQDueH8ZAM/8tJ9pGw7TtGM3Rj0xm/jEi5i24TBT1+8HcP4t5eXw8PLN3P7+Urau+JItyz53jyfln600atqKp9ft4dKb7mHRtPtRVWcl9/RC7dVjE6KiJHASPqt/TABtQv08dqEy6qBtqB/9YwI8c8Jq6DdiLLs3rHU3InbY7fz9/VI6DRnDwmcno9MbmLJ0E5PnryPp9x/5Y/E8AP5Y/Cl7N6zl3vk/MPnztez88dvznufE4f188fgdDJ/yAk+t3U3rXgP55P7x2Kxl57FU9sLpS1vqtRLQW+zOrpIp/2wl98Qxht7/LCZzAEY/f5p1vpg/v11E7wl30jC2GX4NAhk8+Sm2r1583gD5TA67ne3fLWbw5KfwCwgkLDqePhPuYtvKhe7HhDaJpftVN6DT6+kyfBy5J4+Tl5GOiopFK79QIapAAifhszxZLNJ1YRrixYa1ldE4Jp6YCzuw44eVAOz/42eM/g0Ii4lnzy9rGD7lBUzmAAIbNqbX+ElsX70YgO2rl9LzutsJiYzGHBxK3//ce97zbF+9hAv7DCTh4r7ojUb63Hg3tuIikv/6o8znVObCWWhzkJStjfITULGdgVoI6F1tZrKPHyU0KvacCuU5J44RFhXrvh0aFYvDZiPvVMmejmXJz8rAbrOec4yc9DT37aBGEe6vTWZnTltxQT4qpbXBEcJ3SI6T8GmuYpHxQUZWHHbmwdTkh1m94swbGd40UPPLc2eyqypdho7hr1Vf02X4OP76dhEdh1xFVtoRHDYr0we1dz9WVR2ERMYAkHvyGCFNot33ub4PcHDrb3w8+VoAQqPieOCrX8g9cYzQJnHux+h0OkIiY8g+4wJ6tspcOLdnFHlkS/22b75i64oF3PLOwnIf69pSX1aCuyug99Mrtb4L0BXQ948JKBHQ6//9OiQyhqxjR7HbbCWCp+DGTchMO+K+nXXsKDqDgcCGjUsEP2f8UCVuBoSGozcYyUw7QmSL1gBkHztKcERUuWNWzhifEL5IAidRJySE+DGprbHm+5aFmBgSV/G+ZVqhVxQ6Xj6CZa9OJft4Kjt++IY7P/4W/6Bg9CY/nlq3p9Q+aUGNIsk5fvrCmX38qPvr5l0uYdqGwyUf37gJx/ftdN9WVZXs40cJOc8FtDIXzqpuqa+szleMpfMVYyv0WFsFdgZ6O6A36RUUFOLadyGoUSTfvfk8Ayc9gqLTc3TXX3QcMpqfPn6T1r0GEBAWzuq3XiDx8lHoDQYCwsJRdDpOHT1M46bOBPHAho3JPp6GzWrBYDSh0+vpcPlIVr89nWuee5uC7Ex++exd+txwV7ljV3Du/BTCV/nW1UCI86iJYpEGxXlRah1qYnxCCKObB/tc0ATOC2dQw8a06NqTr569l7CYeCJaXEBw4yYkXNyXb+Y8Q1FeLg6Hg4yUgxzY4qy11OHykWyY/x7Z6WkU5mbz08dvnvc8iZePZPfPa9i3cT12q5WfP30HvcmP+I7dynxOZS6cvr4z0BnQh9Eq2NmWpbrhgsLpdiqT2oaVOQva2KzHpqro9Hpuem0eGSkHeemKzrw0tCPbVy+h68jxdB52De/dOoLZwy/CYPJnxKMzAOeyWr9bHuC//xnGtEtbkrx9My279yGyZWumX96O5/s7Z5hGPDoDk38DZl95Ef+9ZTgdh4yh68jx5f4MNlUlwiyf2YXvkpYros4qtDnYnlHEvmwL6UXO7dkGRcGZNuu8CCko2FQVg04hwl9PqxATieH+PhksnSnXamfujkz+WP4l7P0qagAABpRJREFUC5+5m6H3TeXSm+4BoCg3h1VvPs+u9d9RXJBHw5imXHbzvXQcPBq7zca3rz3L1pVf4h8QRM9rb+PbN6bxwsbUMnO7dqxbyeq3p5N9Io3oC9oz8vFZRLa8EHDuqhvzzBxa9biMNXNnkZFykOunv8ud7RqWux3d9TOUN1Ozeenn7Fi3kpte/wyAl0d2J6p1e8bP+hCAl4Z25MbX5vHmdf0Z/vCLbPj8PYrzc+l65XUMue+ZEtvnJ324skKvr16hQj/DmdLyrWxML3RX9K7MTJpBcc6gJoSY6BFhrlDh1TnbMyjWYBK2n17hgcRwbw9DiCqTsF/UWZUpFlnXasoEGfUYdApdhl9Dl+HXlLjPPyiYUU/MZtQTs895nt5gYPiUFxg+5QUA9mxYQ3CjJudNiG/Xfxjt+pdeVfrRlVvdXw+c9AjgXGKqyOvt2lJfXj5Ui649WfnK0zgcDvIy0rFbrSRv3wzAqSOHKC7Ip0lCOwB2/vAN98z7HktBPu/fOYbGzVrSbfQN5Y7lbK6dgWXV0CqNs/q70WMBfYS/3usFUEsT4a/39hCEqBYJnES9cb5ikXVRVS6c1qJC9m/+hYSL+5F36gRr//sybftdUePjqgjXlvryNIxthl9AIGl7/uZk8gESLulH2t5/SD+YRPL2P2je+WJ0OmfAcelNk2kQEkaDkDB6XX8Hf61aXKXAqTpb6j0V0LcKMZFWYPNIjlhFuZYZhfBlEjgJUUdV5cKpqqqzp9xjt2H0M3Nh74FcfudjNTamylw4K7NlvXmXnhzY8isZKQdp3rUn5qAQDm75leS//6B5157ux4U2Ob1LMCwqlpwTxyo++DPU5Jb62groE8P9WZ9WUOPHrQ4V57iE8GUSOAlRR1XlwmkyN+Ceed/X0ogqd+GszJb15l17snv9d5xKTabfxPsxBwXz57eLSN6+mUvG3ep+XNaxo+78q6xjRwlu3KRS43fxhS31ZoOOhBATe7K0UQdLwZmj5ev5g0LIX7AQdZTrwqmVy3tlL5yuLfUV0bxrT/Zv/gVrUSEhkdE063wJe39dR0H2KaJbd3A/7uf/e5vCnCyyjh3l1/nvkThoVBV+Et/ZUt89woxWhqlXoEeE2dvDEKLaZMZJiDqse4TZY7WQylPZC6drS32FHtu0JX4NAmje+WIA/AODaBjTlICwcHT60zlVbfoO4c3xAynKy6Hrlddy0ajyt8+Xxle21EcHGGkZbGKfl3v9uWqiVWQ3oBBaJ+UIhKjjFh/I0cSFs1WIidHNgyv1vJrcUv94l8Y8tGQjjeJbVPtYvrSlvtDmYO7OTK+WJvDTK9zZNgx/WaYTdYD8FQtRxw2JD8Sg8+56jUGnMDQusNLP0+rWda2OqzRmg47hTQM93njYxaiD4U0DJWgSdYb8JQtRx/nyhbNViKnS1d9rmy9uqU8I8fNIM+yzuXrp+VKfRyHKI4GTEPWAr144E8P9a2xH2IytJ2pkmc5Xt9T3jwmgTaifx/4GjDpoG+pH/5gAz5xQCA+RwEmIesIXL5y+vjNQSxRFYWh8oEcCaFfAPCQ+8LxV54XwRb73v18IUSW+euGULfU1R1EUBsQGMqJZEH56pcZfV73iTAQf0SyIAbESNIm6SXbVCVEPJWUXs+JwHjaHWqO77fSKMxF8eNPAGs1r8eWdgVpVaHOwKjmP/f++rtV5aZ0FQZ0lB4bEBfrkjJwQFSWBkxD1lC9dOGVLfe1Jy7eyMb2QpGwLClSq5pdBcf7dJISY6BFhljpNol6QwEmIes5XLpxJ2cUsO5SL1VFrpyiTUQcjmgXV6d1hhTYH2zOK2JdtIb3Ijs2hYlAUXK2WFZwV022qikGnEOGvp1WIicRwf5lhEvWKBE5CCMA3Lpxrj+TxZ0aRR4MnV77WgNjK16HyZXlWB+mFNix2FbuqolecbWYizAYCvVXbQggNkMBJCFEqLV44VVXl2+Q8dmUVeyR4cu0MlN1hQggXCZyEED5FVVXWHc2v9Zkn10xT/5gACZqEEG4SOAkhfJKv7QwUQtQNEjgJIXyWL+0MFELUDRI4CSF8nq/sDBRC+D4JnIQQdYYv7AwUQvg2CZyEEHWWFncGCiF8mwROQgghhBAVJB+5hBBCCCEqSAInIYQQQogKksBJCCGEEKKCJHASQgghhKggCZyEEEIIISpIAichhBBCiAqSwEkIIYQQooIkcBJCCCGEqCAJnIQQQgghKkgCJyGEEEKICpLASQghhBCigv4fIx61y2UB9RoAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzMAAAMzCAYAAACSq0y2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXhTVfrA8e9Nmibdd2hLoWWXTbay74sLgsii4rgriDrjMqMzKuO4zzijzjjuIu6OuCLjj82tKJuo0LKMgCJraWlLW+iSpkmb5f7+CImEFmjapEnK+3mePtqbm3vPDWly33PO+x5FVVUVIYQQQgghhAgxmkA3QAghhBBCCCGaQ4IZIYQQQgghREiSYEYIIYQQQggRkiSYEUIIIYQQQoQkCWaEEEIIIYQQIUmCGSGEEEIIIURIkmBGCCGEEEIIEZIkmBFCCCGEEEKEJAlmhBBCCCGEECFJghkhhBBCCCFESJJgRgghhBBCCBGSJJgRQgghhBBChCQJZoQQQgghhBAhSYIZIYQQQgghREiSYEYIIYQQQggRkiSYEUIIIYQQQoSksEA3QAghhO+pqopdBZuq4nCARgNhioJWAUVRAt08IYQQwickmBFCiBCnqirH6uyU1NooqbVRXGujxGzD5mi4b5gGUiPCSIsMI/X4T6JeKwGOEEKIkKSoqqoGuhFCCCG8V1FnZ2u5he1HLdTZnR/lGqCRGKaBE/fTaxX6JxkYmGwgQa/1U2uFEEII35NgRgghQohDVdlXXU9emYWDRisK4IsPcddxsmJ0DE4x0DU2HI2M1gghhAhyEswIIUSIKKixsjLfSGW9w2dBzMlcx40P1zA1M4aO0To/nEUIIYTwDQlmhBAiyFkdKmuLTOSWWfwWxJzMdZ7sFAPj0qPQaWSURgghRPCRYEYIIYJYQY2VFflGqusdrRLEnEwBYsM1TJNRGiGEEEFIghkhhAhSuWVmcgpNrTYacyqu80/OiCI7JSKALRFCCCE8STAjhBBBRlVVNh4xs764NtBNaWBMWiQj20dIKWchhBBBQRPoBgghhPAUrIEMwPriWjYeMQe6GUIIIQQgwYwQQgSV3NLgDWRc1hfXklsmAY0QQojAk2BGCBH0VFXF5lCx2B3UWh1Y7A5sDpW2Nku2oMZKzmFToJvRJDmFJgpqrIFuhhBCiLOc5MwIIYKKqqocq7NTUmujpNZGca2NErMNWyPL2odpIDUijLTIMFKP/yTqtSGZz2F1qLz2U0XAqpZ5y1XlbF6vBCnbLIQQImAkmBFCBIWKOjtbyy1sP2qhzu78WNIAjcQwDZy4n16r0D/JwMBkAwl6rZ9a63s5hTXklVlCIpBxUXCuQzMpIzrQTRFCCHGWkmBGCBEwDlVlX3U9eWUWDhqtPitB7DpOVoyOwSkGusaGowni0ZqCGiuL91QFuhnNdlX3OFmDRgghREBIMCOECIiCGisr841U1jv8to6K67jx4RqmBumijw5VZdGuCqpCZHrZyRQgLlzD/N4JQR0wCiGEaJukAIAQolVZHSo5hTUs3lNFVb1zcpi/buJdx62qd7B4TxU5hTVYHcEVMuyrrqcyRAMZcL7GlfUO9ldLMQAhhBCtLyzQDRBCnD0KaqysyDdS7ecg5mSu8+SVWdhTVc+0IBqlySuz+G1kqrUoQF6ZmW5x4YFuihBCiLOMjMwIIVpFbpmZxXuqAlqtSwWqj4/SBMM6KRV1dg4arSEdyIDzdT1gtFJRZw90U4QQQpxlJJgRQviVqqp8W1JLTqFz/ZRA37i7zp9TaOLbktqArlWztdw5KtMWKMC2ckugmyGEEOIsI8GMEMKvNh4J3hXt1xfXsvFIYEZoVFVl+9Ezl2LOWfgkCwalYKo42irtai4V2HbU0uYWMhVCCBHcJJgRQvhNbmnwBjIu64trAzLl7Fid3b2eTjD6ecNX5Cx80qvn1NlVKuqasjKQEEII4RsSzAgh/KKgxkrOYVOgm9EkOYUmCmpatxpXSa2tVc/nrd0bcli96Cmvnxfs1yWEEKJtkWBGCOFzVofKinxjyOSDKMCKfGOrlm0uqbW1uQ9gjQIlZglmhBBCtB4pzSyE8Lm1RaaAVi3zlqvK2boiE5MyolvlnMW1NryZkGU2VrHqmYfY9c1nqKj0nTCV6fc9QXhEpHufrSs/ZsPihZQe+AWd3kD34eOZ8vuHiU/t4N7nwJbv2PjBqxTs2ELN0TKiE5PpO+liLrjtfnSGCAA+fug2tiz/EIAFg1Lcz/37lrLTttGhQpFJ1psRQgjReiSYEUL4VEGNldyy0KtqpQKbyyz0iNf7fQ0aVVW9HsF4/755JKR34oLb/0LRz/9j83/fJSoxhSl3PgjAN689zVcv/4N+513CkJlXY6o4yncfvMaiedO5/f2viYiJA+DHnGVYLWaGX3o9kXGJFOzcwncfvkZVaRFXPfkGAENnXUd12RH2fr+Gyx97yat2lphtqKqKooTKuJwQQohQJsGMEMJnHKrKyuPTy0JlVOZECrAy38j83glo/HgzblfB5mWefHrPfsx+6Fn377WVFeT+32Km3PkgFUUF5LzyJOf9dgET5v7BvU+fiVN5/sqJfP/RG+7tU+540D0CAzB09rUkdezMly/8jcriQuLTMsjsP4TkTl3Y+/0aBk69zKt22hzOERqtxDJCCCFaQVubsi2ECKB91fVUhtD0spOpQGW9g/3V/p0qZWtG+eKhl17v8XvWwOHUVh7DUmNk59crUR0O+p13CaaKo+6fmKR2JHfswv7cb93POzGQqTebMFUcJfPcIaiqStHuH5t9TSdqzvUJIYQQzSEjM0IIn8krs4TsqIyLAuSVmekWF+63cziaUb34xLwXgIhY57Qxc3Ul5QX7UVWVf80Y1uhzNWG/TpurLC7kq4X/4Ke1X2CurvTYz1JT7X3DGmF3AFqfHEoIIYQ4LQlmhBA+UVFn56Ax9JO/VeCA0UpFnZ0EvX/uyDXNGBPXaE7VFhXV4UBRFK5//gM02ob7hUdEAeCw23n9t5dirqpk3PW3k5LVnfCISKpKi1ny0O2ozYmyGqGVMX8hhBCtRIIZIYRPbC0P/VEZFwXYVm5hQocovxw/zMf5OEkZWaiqSkKHTFIyu55yv5K9uyjP38dlj77AoGlz3Nv3fL+mwb4tSeD39fUJIYQQpyL9Z0KIFlNVle1HLW0ikAFnQLbtqAW1ibkfBw8eRFEU3nrrLfe2hx9++JQBgVaBMB9++vaZOBWNVsvqRU81aLOqqpgqjwG/ju6cuI+qqnz73qIGx3SVfDYbq7xqS5jGud6MEEII0RpkZEaIIKSqqrPilaricDinJYUpClqlZT3m/nKszk6dPfhDmW9e/zftuvSkz4SLzrhvnV2los5BosH3U80URSE1IoxCk28WmEzq2JnzfruAL57/K5VFh+g9/iL0UdEcO3yInd+sZOisaxl77e9IyepOYkYWn/37YapLi9FHxbDz6xUNcmcAOvTqD8DyJ/9M9xET0Gi19L9g5hnbkhoRFpTvUSGEEG2TBDNCBJiqqhyrs1NSa6Ok1kZxrY0Ss63R0r1hGufNYlpkGKnHfxL12oDfPJbUhsaq72veeIa+ky9uUjADzutqSjCTmZmJ2WxGp2v6+jRpkWEUmbxbOPN0xt9wJ8mduvLt4oWsXvQUAHHtO9B9+Hh6jbsQAK1Ox3XPLGb5U39mzZvPogs30HvCRYyYM5fnrhjvcbw+E6cx4op5/O+LT9m26mNUVT1jMKNRID3Kv2v0CCGEECdS1KbOoxBC+FRFnZ2t5Ra2H7W4RzU00KSb2xP302sV+icZGJhs8FvC+pmsLqwhr8zisxtzf3loVCZ9J1/MZY+8cMZ9NQpkp0QwsZl5Mw8//DCPPPLIKaeq7TxmYXl+TbOOHcymZ8bQO1Ef6GYIIYQ4S0jOjBCtyKGq7Kmq44O9Vbyyq4LNpWaP6VlNDQZO3K/OrrK51Mwruyr4YG8Ve6rqcHjZR3H48GHmzp1Leno6er2ezp07c+utt1JfXw/A/v37ueyyy0hMTCQyMpLhw4ezcuVK9/OLa50jDNY6CzkLn+SfM4bxwPAMHj+/D+/efT1HCw649603m1j59IP8Y0p//jKsA/+aOZx177zY4KZ/waAU/u8f97Lzm1U8c9kY/jKsA/++dDS7v13tsd/HD93GE1MHNbimnIVPsmBQisfx6s21bFn+IQsGpbBgUAofP3TbKV8ThwpFJusZrx0az5k5k9TItjkw3lavSwghRHCSbx0hWklBjZWV+UYq6x24JoX5aljUdZx8o5WDRivx4RqmZsbQMfrMU36KiooYOnQolZWVzJ8/n3POOYfDhw+zZMkSamtrqaioYOTIkdTW1nLHHXeQlJTE22+/zfTp01myZAkzZsygxGzDYbfz9p1XsW/TOs69YCajfjOfutoa9n6/liP7fiapY2dUVeWd31/D/twNZM+4irQefdnz3Td89owzh2PaH//q0bb8bT+w8+uVDL/8BvSR0Wz84DUW/+lG7l21laj4RK9eo8sfe4mlj/2BjD4DGTrrWgASM7JO+5w9hUX88cqJp7z2mTPPnENyKol6LXqtEhK5Rk2l1yok6KWPTAghROuRYEYIP7M6VNYWmcg9vqAk+K98seu4VfUOFu+pIjvFwLj0KHSnKS+1YMECSkpK+OGHH8jOznZvf/TRR1FVlbvuuosjR46wfv16Ro8eDcBNN93Eueeey1133cXUi6djc8CWFR+yb9M6pt71GKOvvsV9nPE33Okedflp7efs27ye83+7gAnz7gJgxJy5LL7nRja+v4gRc+aS1LGz+7mlB/bwhyUb3Nu6ZI/muSvGs/3zpYy8Yp5Xr83AqZfx6eN/JDEjk4FTL2vSc1a//txpr/2SSy5B05xFY3AWAeifZGBzqblNVIFTgAFJhoDnb4mGQq2giBBCeEOCGSH8qKDGyop8I9X1zolhrXXT6jpPXpmFPVX1TDvFKI3D4eDTTz/l4osv9ghkXBRFYdWqVQwdOtR9Mw8QHR3N/PnzWbBgAT/u3Amks2P1CqLikxjRSJDhumHavSEHjVbLyN/M93h8zNW/ZUfOcnZ/u9ojSOk2bKxHcJPWow/66BiOHc735uVott3f5jBkyKmvfdeuXfTt27fZxx+YbGBTqdkXTQ04FRiQbAh0M856baGgiBBCeEOCGSH8JLfMTE6hKaALSapA9fFRmskZUWSnRHg8XlZWRnV19WlvyPPz8xk2bFiD7b169XI+fjAfOqVzrPAgyVld0Yad+mOloriAmJRU9FHRHtvbde4BQGVxocf2+NSMBseIiInH0kgp4eayWesxV1V4bItKSEaj1VJZXEi30SMaPMd97fn5LQpmEvRasmJ05ButIT06owBZMbqAFaAQzSsoYnNAocnmUVUvGAqKCCGENySYEcLHVFVl4xEz64trnb8Huj3H/5tTaKLOrjKyfYRPe1792YmrnGIKl3rCq6rQeAMcDnuTznFo+2ZenT/DY9s9K/JISO/kPL6fO6kHpxg4aLT69yR+pgKDTwqUhf85VJV91fXklVk4aLQ26DhpSUGRTaVmsmJ0DE4x0DU2HI2M1gghgpQEM0L42ImBTLBxtWtUqnN195SUFGJjY9mxY8cpn5OZmcnu3bsbbP/5558B6JyVxW67M5m+cMcW7FYr2lOst5KQ1pF9m9ZRZ6rxGJ0pPbgHgPi0hiMxZ2KIjcfSyCr1J4/yAI1GJmk9+jD35SUe26KT2rnbs+eXXxo8x3XtmZmZXrf3ZF1jw4kP11BV7wh44NscChAXrqFLrKwv05qCtaCIEEK0Nik7I4QP5ZYGbyDjsr64ltwyZ56GRqNhxowZLF++nNzc3Ab7qqrKRRddxKZNm/juu+/c200mE4sWLSIrK4t+fXoTpoG+k6ZhqjzKdx++3uhxAHqOnozDbue7D1/zePzbxQtRFIWeoyZ5fT1JGVlYaqop/mWne1t1WQk7v1nZYN/wiEgsxmqPbRGx8XQbNs7jR6d35n70Gj2Zzae59t69e3vd3pNpFIWpmTEhGciA88Z3WmaM9Ny3EqtDJaewhsV7qqjycy7eyQVFcgprsDpC9Z0qhGirZGRGCB8pqLGSc9gU6GY0SU6hifYRYXSM1vH444/z5ZdfMm7cOObPn0+vXr0oLi7m448/ZsOGDdx33328//77TJkyhTvuuIPExETefvttDhw4wCeffIJWqyU1IoxB0+awdeVHrHz6AQp2biFr4HCs5lr2/rCW4ZffSO/xUzhn7AV0yR7Nly8+TkVRAak9+rD3+zXsWvMZo6682SPZv6nOvWAmnz/3KO/+8XpGXjEPq8XM90veIrlTV4p+/p/Hvh169WfvD2tZ/+7LxKakkpDeiU79Bp/y2HN+exe/5Hx6ymtvbiWzk3WM1pGdYiCvzBJSQY0CZKcYyJAe+1YR7AVFhBAiECSYEcIHrA6VFfnGgCb7e0MBVuQbmdcrgQ4dOvDDDz/wwAMPsHjxYqqrq+nQoQNTpkwhMjKS+Ph4Nm7cyL333svzzz+PxWLh3HPPZfny5UydOhWAtMgwikw2rn/ufb55/d9s+3wpO1evIDI+gcwBw0jt5kyY12g0XPvMf/jq5Sf48ctPyVv2PvHpHZny+4cZc81vm3UtUfGJXP2vt1n59IN89uyjJHboxAW3/YWjh/Y3CGam3vUY//3rXXz10t+xWswMunjOKYMZjQK9Mjuc8dp9ZVx6FHuq6qkOkelmChAbrmFselSgm3JWCIWCIkIIEQiKevKy20IIr+UU1oRsr/qkjOgz7nsmO49ZWJ5f0/JGBZnpmTH0TtS32vkKaqws3tMw/ydYXdU9Tnro/ezkgiLBZExapM8LigghhLckZ0aIFiqosZIbYoEMOHtZN5dZKKhpeSWt1Mi2Ocjb2tfVMVrH5IzQGOmYnBElgUwrCNZABpz5dxuPtI11koQQoUuCGSFawKGqrDw+vSwUKcDKfCOOFg7QJuq16LWh+io0Tq9VSNC3/kdkdkoEY9IiW/283hiTFilTjFpBqBUUEUKIQJBgRogW2FddT2WI5Dg0RgUq6x3sr27Z6IyiOBfaayvhjAIMSDIEbPrMyPbBG9CMPT61SPhXqBUU8cUIrxBCNIcEM0K0QF6ZJeRv4BUgzwc9qwOTDSEb1J1MBQYkGwJ2fkVRGJUa6Z5yFuj3mOv8kzOiGJkaKTkSfnZiQZFQ4Coo0hplm1VVxeZQsdgd1FodWOwObA4VSf8V4uzVNie6C9EKKursIb9yOzhv3A8YrVTU2UnQa5t9nAS9lqwYHflGa0gHNQqQFaNr0WvhK9kpEbSPCHOX4w3E6+qqWibleFvP2iJTyFS1g1+rnK0rMvmkoIj7uKrKsTo7JbU2SmptFNfaKDHbsDka7humgdSIMNIiw0g9/pOo10rgLcRZQIIZIZppa7klZEoxn4kCbCu3MKFDy5LPB6cYQj7AU4HBQZQP0jFax7xeCawtMpFb1nrvOdd5slMMjE2PQqeRm8LW4CooEmpcBUV6xOtbHPRW1NnZWm5h+1ELdXbnu10DNBLDuNkcUGiyUWSyuffTa53TXwcmG4Kic0II4R9SmlmIZlBVlWd+POb+om0L9FqF3/dLbFFPpkNVWbSrgqoQ6lU+kQLEhWuY3zshKFe0L6ixsjLfSGW9w29Bjeu48eEapspoTKs6m/9+HKrKvup68sosHDRaffb+dh0nK0bH4BQDXWPDg/JvWwjRfDIyI0QzHKuzt6lABqDOrlJR5yDR0PweTI2iMDUzJqTWSjmRCkzLjAnam52O0Trm905gf7WVvDIzB/x20xdBl1hd0L4ObZWroEioOrGgSLe48CY/7+Qg3XUsX7UJIN9o5aDRKkG6EG2QBDNCNENJrS3QTfCLklpbi4IZcN5wZ6cYQnYR0Ywgv8nRKArd4sLpFhdORZ2dbeUWtp04HUeBpuRhn7ifXqswIMnAAJmOE1B5rTiN0F9cBUWaEsxYHarH9Enw37W7jltV72DxniqyUwyMk+mTQrQJEswI0QwltbYzzuEONRoFSsw2etPyFe/HpUexp6o+ZJKYXUnuY9NDY8FKlwS9lgkdohifHklFncOZKG22UWSynjFROj1KR2qEM1E6Qa+RROkAO9sKihTUWN2FLVzPa632gTNw3FNVL4UthGgDJJgRohmKa21eBzL7Nm/gtZtncvU/36LPxKkej2377BM+vP8WbnlzFZn9h1B6YA9fvfQ4+zZvwGox077rOUyc/0d6j7vQ/Zy8Ze+z5OE7uPmNFexYvYJtKz+m3mKm+4jxzPzLv4hOSPaqfQ4Viky+uZnSaRSmhdB0M9f0slDtpVUUhUSDlkSD1h2MqqqKQwWbqmJ3gFYDYYqCRkEClyB0NhUUyS0zk1NoCuj1uiqwLd5TxeSMKFkEVogQJuvMCOElVVUpMXs/zaxL9ijiUjuw7bMlDR7b9tkSEjOyyOw/hCP7fubl6y6k9MAexl1/Bxf94RHCIyJ5965r2fn1ygbPXf7kAkp+2cnE+X9k+GXX8/O6L1j2j/uadW0lZpvP1mvoGK1zr5MS7CZnRLW53llFUdBqFPRaDZE6DXqtBq1GkUAmCKmqyvajoTUt83RUYNtRS4PPElVV+baklpxCk3u/QHKdP6fQxLcltbJWjRAhSkZmhPCSXaXR6TtnoigKA6dcyobFC7EYqzHExAJQU1HOnu/XMOHGPwCw/Kn7iU/N4HfvfklYuLOXffjlN/LKjVP57LlHG4zqRMYlcuNLH7tvUh0OB9998KrHOZrK5nCO0Gh9dL+bnRJBnV1lfXGtbw7oB2PSIqVXVgTU2VJQZOMRc9B+FrjaNSo1MsAtEUJ4S0ZmhPCSrQW9dwOnzcFWX8ePq5e5t/3vi09x2GwMuOhSaqsq2L95Pf3On06dqQZTxVFMFUeprTxG9xETOXpoP1WlxR7HHDrrGo/e9s4Dh+Ow26koLmhWG1tyfY0Z2T6CMWnBeYMwNi2Ske0lkBGB1ZYLirjklgZvIOOyvriW3DJzoJshhPCSjMwI4SVHC7L+23XuTkafgWxb9QlDZlwNOPNlOvbLJrlTFwp2bEFVVb566R989dI/Gj2G6VgZce3S3L/HpWZ4PB4RGw+A2VjZrDbaHYAPC1opisKo1Ej0WiXg8+Th1xLEMk9etDZVVZ0ju6qKwwGa43lMbb2gSEGNlZzDpkA3qUlyCk20jwhrc9NOhWjLJJgRwkuaFo5nDpx6OSv+eT9VR4qw1ddR8GMu0+91Bi7q8UhpzDW/o8fICY0+P6ljF8/2aE8ReTQzYtD6abw2OyWC9hFh7gpGgQhoXFXLpIKR8DdVVTlWZ3dWmKu1UXy80lxzpqg2pqKogLVvP8++TeuoLDmMzhBB1yGjuej3D5OQ3sljX7OxitWvPMXOb1ZhLD9CVEISXYeMYepdjxKVkARA1ZEilj1xH3u+X0t4RCQDpsymx8iJvHnbHG5a9Cldskd51T5XQRGrQ2VFvjHgnRhNpQAr8o3M65UQsgVBhDjbSDAjgsqpei61QVSBKayF7eh/wUxWPf0g2z9firXOgjZMx7nnzwAgMSMTAG1YGN2GjWtxW5ujpdd3Oh2jdczrleCxtkRr3OC4zpOdYmCsrC0h/Kiizs7WcgvbT1z7B9+PuhTu2sqh7Zs49/yZxLVPp6LoED8seYtFN83gD0s2EB7hnNpZV1vDK3MvpuzALwyefiUdep2LqfIoP639gqrSIqISkrBazLx2yywqSw4z8oqbiE1pz9aVH7Nv84YWtbHEbGNtkSlkSrTDr1XO1hWZmJQRHejmCCGaQIIZETDe9Fy61sZIi3Sui5EaGUaiXhuQAEerONvT3B7WqIQkeoyaxNZVS7DVW+gxcqK7dzQ6MYUu2aP4Yek7jLhiHrEpqR7Prako97rksjfCNM7pIf6k0yhMzoimZ7zeY9Vvf9zsuI4bJ6t+Cz9yqCr7quvJK7Nw0Ght8H72x/Sxc0afR7/J0z229Rp7AS9fP4Udq1cwaNrlAKx7+0WO7P2pQUn4ifPudlfv2rT0Hcrz93HlE6/R77xLABgy8xqeu2J8i9poc0BumaVFxwgEFdhcZqFHvF4+M4QIARLMiFbXnJ5LmwMKTTaKTL+u76LXKvRPMjCwlVctVxSF1IgwCk3NT9odNO1yFv/pRgDOu9WzjPL0+57glRun8eyccQyZeTWJHbKoOVbKof/lUnWkmDs/XNOS5p9WakRYqwWIHaN1zO+dwP5qK3llZg40chPYXK7jZMXoGJwSQZdYHZogGdkTbUtBjdUjKIfWGW3UGX7N97JbrVhMRpI6dsYQE0fRz/9zBzM7v15BWo8+Daogwq+j3bs35BCT3J6+JwRH4RGRDJ11LZ89+0iL2hkq08tOpgAr843M750gnx1CBDkJZkSr8FXP5Yn71dlVNpea2VRqPn7TaqBrbHirfPGkRYZ5BFbeOmfsBUTExqM6HPQ6YSFMgPZdenLbu1+Rs+gptiz/gNrKCqISk0nv2Y9J8+9ueeNPQaNAelTr9kJqFIVuceF0iwunos7OtnIL204MchXn3PszH+fX/fRahQFJBga0cpArzi5Wh+oxXRJa96bdajGz5s1nyVv2PtWlxR5rpFhqqt3/f7TwIH0nTjvtsSpLCknq2LlBR0ZyVrcWtzMUAxlwtruy3sH+aivd4sID3RwhxGlIMCP8zp89l67j5ButHDRaiW+l6USpkWEtmjqiKBo02jB6TTgfnd7Q4PHEjCwuf/TF0x5j8PTfMHj6bxps75I9ir9vKfO6TQ7VOTITKAl6LRM6RDE+PZKKOodz+qHZRpHJesbph+lROlIjnNMPE/SaoMmvEm1TQY3VXcgCAnPDvuzJBeQte59RV95Mp3OzMUTHoigK7y+Yj6q2pbpogaMAeWVmCWaECHISzAi/ac2eS9dxq+odLN5TRXaKgXF+TPROjWzZn86uNaswVZQz8PhUkGDR0uvyBUVRSDRoSTRo6Y1z0VBVVXEcLwxhdzgrroUpCpogKgwhzg65ZeagKDG+I2c5g6bNYepdj7q3WessWIxVHvslZWRxZN9Ppz1WfGoGR/b9jKqqHn9P5Qf3+rbRIUYFDhitVNTZZZRXiCAmi2YKv4nxGVQAACAASURBVCiosfLaTxXkHU/+bK0vfdd58sosvPZTBQU1Vr+cJ1GvRa/1/ib60I95bFr6H1Y+/SDp5/Sjy2Dvyp36k16rkKAPzo8ERVHQahT0Wg2ROg16rQatRpFARrQaVVX5tqSWnELneimBnj6laLVw0gK3333wGg673WNbn4nTKP5lJzu/XtngGK6paT1HT6a6rIQdOb8u5ltvrmXT0nf80PLQogDbykOviIEQZ5PAd8OKNicYei5d5TUX76nyy+KIiuIsPrC51OzVNf6w5E22rVpCWo++XPrI8z5tU0sowIAkgwQHQpzCxiPBtYL9OWPOY+uqj9FHx9K+S08O/W8zezetIzI+0WO/sdf9jh2rl/PevXOPl2buj7m6gl1rv2Dm/U+R1qMvQ2Zew3cfvs5HD97G4Z+2E5PsLM2sM0S22vUU7NzKiqfup/iXnVgttdz+/tek9+zn03MsuslZqW3+q//X5OeowLajFsanR8rnoxBBSoIZ4TOqqnp84Qe659J1/pxCE3V2lZHtI3z6ZTQw2cCmUrNXz7nskRe47JEXfNYGX1GBAckNc3eEEJBbGlyBDMDFf3ocjUbL9s8+wVpvIbP/UOa+/Alv/M5z6qo+MpqbX19OzsIn2PnNKras+JDoxGS6Dh1DbLt0wFm5bN7CpSx7cgEbP3idcEME/afMpueoSbx52xy/X4vdauW9e+ai0+uZdvdj6AwRJKR19Pt5m6rOrlJR5yDRIFPNhAhGEswInwm2nssTudo1KtV3PY0Jei1ZMTryjdaAB24toeAsYSxzwoVoqKDGSs5hU6Cb0UBETByXPvxcg+33rtzSYFtkXALT7/0H0+/9xymPF5+WwbX//o/Htv2537a8oU1wtPAglcUFzHrgaYbMvKZVzumtklqbBDNCBKngnCAvQk4w9lyebH1xLbll3o2knMngFENIBzLgHJUZ7ONpeEK0BVaHyop8IzK5yL9Mx5zVFw0xcQFuSeM0CpSYm7+umBDCv2RkRrRYsPZcNian0ET7iDCflW7uGhtOfLiGqnpHSAY1ChAXrqFLrKxyLcTJ1haZqA7Rv+1Q8fFDt7Fl+YcAvHfPXAA6Dx7pfvzk/JaPH7qN/bkbPUagHA4HG99fxOb/vsuxwoMYomPpPX4KF97xABGx8S1uo0OFIpN/iskIIVpORmZEi4Raz6UCrMg3Ym3KSoxNoFEUpmbGhOzNjgpMy4yRFa6FOElBjZXcMkvI/m2HiqGzrmP8jb8HYORvbuLyx15iwtw/eHWMT/92N589+wiZ/Ycy7Y9/Y/D0K9j22RLe+N3l2K2+CUJKzDaPhUmFEMFDRmZEi4Raz6Wrytm6IhOTMqJ9csyO0TqyUwzkhdiNjwJkpxjI8PMCo0KEGoeqsvJ4J00o/U37WnMX4PVGZv8h2K31rHnjGbIGDqff5OkAfPP6v5v0/INbv2fzf99lzt8WMmDKbPf2LtmjefO2OfyYs8xje3PZHM4RmmZU5BdC+JmMzIhmC9WeSxXYXGbx6Ro049KjiA3XhNQIVWy4hrHpUYFuihBBZ191PZUh1ElzNvsxZxmG6Fi6DR+HqeKo+6dDr/6ER0axP3eDz85lk5EZIYKSjMyIZgn1nksFWJlvZH7vBJ9MsdJpFKZlxrB4T9WZdw4CrullOk2ohF9CtJ68MkvIfradbcoP7cdSU83fJvVq9PGaY+U+O5fdAUhBMyGCjgQzollcPZehSgUq6x3sr7bSLS7cJ8fsGK1jckaUe4XwYDY5I8pnRRCCgaqq2FVnz6nDARoNhCkKWgVZ6E54paLOzkGjJHsHmqIojeaoOOye3zuqw0F0Ygpz/vZyo8eJSkjyWZu0MpdFiKAkwYxolrbQc6kAeWVmnwUzANkpEdTZ1aAuUz0mLZLsEC7FrKoqx+rslNTaKKm1UVxro8Rsw9ZIbB2mgdSIMNIiw0g9/pOo10qAI05pa3nof7a1BREx8Rw7fLDB9sriAo/fkzKy2LdpHZn9h6Iz+PdzLUw+N4QIStLPILzm6rkM9S97FThgtFJRZ/fpcUe2j2BMmu8W5/SlsWmRjGwfmoFMRZ2drw+beObHY7z6UyXL82vIK7NQaGo8kAFn0m6hyUZemYXl+TW8+lMlz/x4jK8Pm3z+7y5Cn6qqbD8aHHmACwalkLPwyUA3w2u+mrmamJFF2cG91FT8Ok2s+Jcd5G/f5LFfv/MvwWG38/Wr/2pwDLvNhtnom6m/YRrfXZsQwrdkZEZ4rS31XCrAtnILEzr4LhFeURRGpUai1yrkFJoC/lq5zj85IyrkRmQcqsq+6nryyiwcNFobvJZNneh44n51dpXNpWY2lZrJitExOMVA19hwKU8tOFZnp87e8K81f/sm9ny3hlFX3UxEkC7sGCx8VPWe7EuuZMPil3nzd5eTfclV1BwrZ9Mnb9O+yzlYTEb3fl0Gj2Lo7OtY8+azFP2yg+7Dx6MN01F+aD87cpYx7U9/c1dIa4nUiDAZ0RUiSMnIjGiSt956C0VROHDgQND0XPqCCmw7avHL+gHZKRFc1T0uoFXOXFXLruoeF3KBTEGNlUW7Kvhkv5H84zkMvvpXch0n32jlk/1GFu2q8Gl1O+F7qqpic6hY7A5qrQ4sdgc2h+rTv92S2sZXec/fvpnVi57C4qNefnFm7br04LJHX8RSY2Tl0w/y07rPueyxF0nv1a/BvjPv/ycz//I0pmPlfPni43zxwl/Zv3kDAy66jMz+Q1vcFo0C6VFtJ8dQiLZGRmaEVyrrG++5DGV1dpWKOgeJBt+XqekYrWNerwTWFpnIbcU8I9d5slMMjE2PCqmqZVaH6vF6gf9eM9dxq+odLN5TRXaKgXEh9nq1RYHKiyqptaGh6SN+J3M4HNit9ej0hmYe4ex0qvVsBl50KQMvutRjW48RExo9xtBZ1zB01jWnPc/8V/+vWe1zqM73mBAiOMlfp2iSa665hiuuuIK9JhUOBX+1Lm+V1Nr8EsyAs2zz5IxoesbrWZlvpLLe4begxnXcuHANUzNjQq5iWUGNlRX5RqqPV8prrbDZdZ68Mgt7quqZFoKvXVtQUWdna7mF7Uct7k6TMwUXrryoIpPNvZ9eq9A/ycDAZAMJ+qb/XRfX2hqcK2fhk6xe9BQAT04b7N5+z4o8npw2mOGX30inc4ew5o1nKD+0jyufeJ0+Ey5i3TsvsvPrlZTl78VqMdOucw/G33hngylPtvo6Pn/uMbatWoK13kLX7NFcsqDxXJmq0mK+eunv7N6Qg9lYRVLHzoy5+layZ1zV5GsUzZMaKbdLQgQr+esUTaLVatFqtRwpr2lRz2Uw0ihQYrbRG71fz9MxWsf83gnsr7aSV2bmQCM5IM3lOo4zBySCLrG6kMsByS0zBzzHSAWqj4/ShGKOUSgKlrwoVVUpMTecZtZn4lTKD+1j++dLmXr3Y0TFO0v9ukr+7t+8gR+/WsaIOXOJjE8kIb0jABvfX0SvsRcwYMps7FYr27/8L+/dM5frnl3MOWPOdx//k0f/wLZVH9N/ymwyzx3Cvs3reeuOKxu0w3i0lJevuxAUheFz5hKdkMTub1fzyaO/x2IyMvqqW5r4Sglv6bUKCXqZlS9EsJJgRjTJW2+9xQ033MDTq7fjSEjniamDaN/1HMbfcAcrn36Qkj27iElJZfLNf2LQtDkezzUbq1j9ylPs/GYVxvIjRCUk0XXIGKbe9aj7hqDmWBlfPP9Xfl7/FZaaapIzuzH66lsYfPEV7uNUFB3iyWmDmfL7h9HpDax/92VqjpaSOWAYsx98hrj26Xz92tNs+uRtaqsq6D58PJc+/ByRcQke7dn9bQ5rXn+Gwz//iKJR6DxoBI77HmVihxF+fx01ikK3uHC6xYVTUWdnW7mFbSf2QitNS6A9cT+9VmFAkoEBXvZCBwtVVdl4xOwuZx3oSYyu8+cUmqizq4xsHyGJv35SUGP1GK0E/+RFHTRaiT/DaKVdpdFpbGk9+pB+zrls/3wpfSZcREJ6J4/Hy/L3cudH62jfpafH9rv/+71HqeARc+by/FWT2PDuQncwU/zLDrat+pjhl93gHo0ZMWcuH9x/CyV7dnoc78sXH8dht3PnR+uIik8EYNil1/P+gvmsfuUphs2+zu+lic9GCjAgySCfAUIEMQlmhFfKLDZij///scIDLL7nRrIvuYpB0+aQ+3/vseSh2+nQqz/tu54DQF1tDa/MvZiyA78wePqVdOh1LqbKo/y09guqSouISkjCajHz6k0zOFpwgOFz5pLYoRM/frWMJQ/djsVYxagrb/Zow7bPlmC3Whk5Zx611RWse/sF3rt3Hl2HjOZA3reMu/52jhYc4LsPXmPVvx/i0oefcz93y4qPWPLQbXQfMYEL73gAq8XMD0ve4tHfTGHO9q107ty5tV5KEvRaJnSIYnx6JBV1Dmd+gNlGkcl6xvyA9CgdqRHO/IAEvSakv2hPDGSCjatdo1KDs9R2qArGvChbMwsJdB40skEgA3gEFubqShx2O1kDh7P986Xu7bs35AAw8jfzPZ476sqb2f7ZJ79eg6qyY/UKzj3vElBVTBVH3Y/1GDGB/33xXw7//D+yBgxr1jWIU1OBAcmSAyVEMJNgRnjlxNz/soN7mf/aMjoPco5o9Dv/Ep6YMoC8Ze9z0R8eAWDd2y9yZO9PXP3Pt+gzcar7uRPn3e2uQrRp6TuUHviFy//6sjvZc9js61l00yV8+dLfyb7kKvRR0e7nVpeW8MdPf8AQ4wyrVLudNW8+i63OzO/ezUEb5nxbmyqOsu2zT5jx56cIC9dTV1vD8qf+TPaMq5n1wNPu4w26eA5PzxzB448/zquvvuqHV+30FEUh0aAl0aB1T3VTVRXH8RXt7Q7nytNhioKmja1on1savIGMy/riWvRaRaac+Uiw5kU5mjl3NrFDp0a3/7TuS7557WmKf9mBrb7Ovf3Ev9+K4kIUjYbEjCyP56ZkdvP43VRRjsVYxaal77Bp6TuNns90rLzR7aL5FJxTd0NxxFuIs4kEM6LZ2nXp6Q5kAKITkknO7Maxwnz3tp1fryCtRx+PQMbF9aW+e0MOMcnt6H/hLPdjWp2Okb+5iQ8WzGd/3kZ6jf11jnm/yRe7AxmAjv2cSbkDLrrMHcgAdOw7iO2fL6W6tJjEjCz2fr8Wi7GK/hfO8ujZ1Gi0dOw7iG/WrGnBq+FbiqKgVUCLAm30e7SgxkrO4dAoJpFTaKJ9RJgUBWihYM6L0jQzJSKskcplB7Z8x3/+cDVZg0ZwyX1PEJPSHm2Yjtxl73uMuDS5zccjrQEXXcbgi+c0uk9q995eH1ecngoMlk4MIYKeBDOi2eJTOzTYFhEbh9lY6f79aOFB+k6cdtrjVJYUktSxC5qT7ibade7ufLy4wPO8aRkevxuinYFNfPv0Rrebq51rQ5Qf2g/AazfPbLQdsbGxjW4Xvmd1qKzINwZ8QdGmUoAV+Ubm9UqQss3NEAp5UWGnGfH0djR0x+oVhOkN3PjiR4SF/1pYJHfZ+x77JaRloDocHCs8SErWr6MxZfl7PfaLSkhGHxWN6rDTbdg4r9oimkfBWRWyS6x0YAgR7CSYEc2maBofMvDHApRNOa+iPUV7jt+6qKqzd/Pyx14iJrldg/0u757QYJvwj7VFJqrrHQG/qW0qV2/+uiITkzKiz7i/8BQKeVEj20cQpmm8CEB4hDNnymysoimfEhqtFlBw2O3ubRVFh9j1zWce+/UYNYkvXvgbG99f5FGO+dv3XmlwvL4Tp7Ht86WU7P2J1G69PB6vqSgnOiG5CS0TTaUC0zJjQq4qpBBnIwlmhF8lZWRxZN9Pp90nPjWDkr27cDgcHqMzZQf2OB9P6+iztgBEJSY32rs5qX+ST84jTq+gxkpumSXQzfCaCmwus9AjXi/TzbwQSnlRqRFhFJoalmdO79UfcFYUO/f8mWh1Oo+pryc7Z/R5bHj3Zd68bQ4Dpsym5lg533/0BkkdO3tUKUvv2Y/+F87i+4/fxFJjpFP/IezbtI6jBQcbHPOCOx5gX+63vHTthQyZeTXtu/SktrqCop//x8/rv8JqMXPPirwG1dZOZ9FNl1BbeYzff7y+yc85Gyg4FxzOkL9zIUKCFE4XXtF62UnVZ+I0in/Zyc6vVzZ4zDWC03P0ZIzlpfzvy0/dj9ltNjZ++BrhkVF0GTyyRW126T5iIvroGNa88Qx2q9XjsTANHC1vuAK18C2HqrLy+PSyUKQAK/ONOPw8+thWhFpeVLRO0+iXYsc+Aznvt/dR/MtOljx8Ox8smO+Rd3eyrkPHMPvBZzAeLWXFP//C9s+XcuEdD9BnwkUN9p390LOM/M1N/PLd13z+7CM4bDauf+69BvvFJLXjd//5gsHTr2DnNytZ9sR9bHx/EbVVlfQ775KWXLo4gQLEhmsYmx4V6KYIIZpIRmaEV1IMYdSdeTe3sdf9jh2rl/PevXOPl2buj7m6gl1rv2Dm/U+R1qMvQ2ddy6ZP3mHJQ7dT9NN24tM6smP1cvK3bWLaH//qUcmsJQzRMcxY8BQfPfBbnr9qEv3Pn0FUQjKVJYXs35jDwYljeeGFF3xyLtG4fdX1VNaH7pKrKlBZ72B/tZVuceGBbk5QC8W8qHyj9ZSLdE6cdzcT593tse3vW07dAZI94yqyZ1zVYPvkW+7x+F2nN3Dxnx7n4j89fsZjRyemcMl9T3DJfU94bHfY7e6qjaJlXNPLJDdOiNAhwYzwSrsILYe92F8fGc3Nry8nZ+ET7PxmFVtWfEh0YjJdh44htp0zYV9niOCmVz/l8+ceY8vyD7GYjKRkduPSh59j8PTf+LT9A6bMJjYllTVvPsu6d17EZq0nrl0q2SNGc8MNN/j0XKKhvOPrioTCze2pKEBemVmCmTMIxbwosz1UWutJo9Uez9MRLTU5I0qmkQoRYhTV39naok3ZeczC8vyaQDfD56ZnxtA7UXo1/amizs4ruyoC3Qyfubl3gqw/cQoFNVYW76kKdDPOGnnL3mfJw3d45Mx899EbfP/RGxwtOEBkXAJ9JlzE+bfdT0RMnPt5rpyZyx55gWVPLqBo94/EJLVj3PW3M+zS6z3OsfGDV/lhydtUFB1CqwsnKSOL0VffyoAps1vzUv1qTFqkLJArRAiSnBnhldTItjmY11avK5hsLbeEbK7MyRRgW3noFTFoDaGeF9UW5Cx8kmX/uJfYlFQu+sMj9J00jU1L3+GN317WIF/QXF3JW3f8hg69zmXKnQ8S1y6NTx//E7mfLnbvs2npf1j+5J9p16UH0+7+K5NvuYe0nn0p2JHndduCdfbW2LRIRraXNWWECEVyBye8kqjXotcq1IXodIzG6LUKCXqJ6/1JVVW2H7UEZMrRopucydHzX/2/0+63P/dbXp0/g5sWfUqX7FGn3VcFth21MD490us1SNq6UM+LCnU1FeWsefNZug8fz/UvfOiuEJmS1Z1lT9zH1lUfk33Jle79q8tKuOiuRxlz9a0ADJ19HS9dewFfvPA3Bk69HK1Ox+4NX9G+6zlc9eQbLW6fQ4WBkfVsMYWBQz1lSf3W4JryeuLiqUKI0CN3cMIriqLQP8nQZnpdFWBAkkFuSP3sWJ29TQXAAHV2lYo6uWk/mSsvSgTG3h/WYbfWM+qqmz1K3Q+ZdQ366Bh2b/jKY39NWBjDZl/r/j1MF86w2ddRc6yMwz9tB8AQE0vVkSIKdm71SRsfu/kqPv3zTcSEawP2XnFVLbuqe9xZGcioqorNoWKxO6i1OrDYHdgcqt/XiRPCH2RkRnhtYLKBTaXmQDfDJ1RgQLIh0M1o80pqG67d0RaU1NpINEjejEtFnZ2DRuuZdxR+U1lcAEBKZjeP7WG6cBI7ZFJRXOixPTY5lfAIzzLEyZ26AlBRXECnc7MZd90d7P1hHS9dcz5JHTvTffh4+k+ZTdaAYc1q445dP/HlimUM7JvE2iITua1YGMR1nuwUA2PTo86KqmWqqnKszk5JrY2SWhvFtTZKzLZGF4gN00BqRBhpkWGkHv9J1Gulw08ENQlmhNcS9FqyYnTkG60hU6moMQqQFaOTJO5WUFJrQwOnLHsbijQKlJht9EYKR7i48qJC+XNBNNSuSw/u/u93/LzuS37Z+DU7vl7B9x+/ycSb/sh5t97r9fH++ugjDB06FIDJGdH0jNezMt9IZb3Db+8f13HjwjVMzYw5KyqWVdTZ2VpuYftRi3tk/EyfwzYHFJpsFJls7v30WueMjIHJBvm+FEFJghnRLINTDCHfA6sCg8/C6QWBUFxr8yqQ2Z/7Lav+/RBH9v1MbLs0xl57G8byI6xe9JR7/Q27zcaaN59ly/IPqDpSRExyewZcOItJN//pjOttVB0pYtkT97Hn+7WER0QyYMpseoyc6NU1OVQoMoX234Av+TIvKmfhkx7/1qLp4tM6AlCWv5fEjCz3dpu1norDh+g2bKzH/tXlJdSbTR6jM+WH9gGQcPxYAOERUZx7wUzOvWAmNms97959PWve+Dfjb7wTnd670e1bbrrJ4/eO0Trm905gf7WVvDIzB4xWnwU1ruNkxegYnBJBl1gdmjY8yuBQVfZV15NXZuFgI69jUz+HT9yvzq6yudTMplLz8dfRQNfY8Db9OorQIsGMaJauseHEh2uoCqF1JE6k4Oyh6xLb9nvnAk1VVUrMTZ9mVvTz/3jztjnEJLdn8i334LDb+frVfxKVkOSx39LHfs+W5R/Sd/LFjL76Vgp25LHmzWcpPbiHa/719imPb7WYee2WWVSWHGbkFTcRm9KerSs/Zt/mDV5fW4nZhqqqMgWDtpkXFYq6DRuLVhfOxvdfpcfISe73Zu6ni7HUVNNz9Hke+ztsNn745B13AQCbtZ4fPnmbqIRkOvTqD4Cp8hhR8Ynu54TpwmnfpSe/bFyNw2bDm8HJMAW0jUzt0igK3eLC6RYXTkWdnW3lFradOKKgODsQzuTE/fRahQFJBgacJSMKBTVWjxEu8N0ol+s4+UYrB41W4s+iES4R/CSYEc2iURSmZsaE7FoSrlWepWfJ/+wqjc7NPpWchU+iaLTc8uZKYlNSAeh33iX8+9JfK4wV/7KDLcs/ZMjMq5n1wL8BGHH5jUQnpLD+Py+yb/MGug4Z3ejxNy19h/L8fVz5xGv0O89Z6WzIzGt47orxXl+bzeG8cdLK28ineVET5t3FuBvu8NnxWiJCq2CxqyHTaROdkMz4G+5k9aKnePN3l9Nr3IWU5e/lh4/fJKPPQAZedJnH/rEpqax763kqig6R3KkrP375KcW7dzDzL0+j1TlvVN/47WXEJLcjs/9QopNSKDuwh+8+fJ1zRp+HPirai9appEbqzhj8J+i1TOgQxfj0SCrqHM5cD7ONIpP1jLke6VE6UiOcuR4Jes1Z0dFgdageuUfgv6meruNW1TtYvKeK7BQD486S3CMRvCSYEc3WMVpHdoqBvLLAlNxtLgVn8meG9Ci1CpsX1XEcdjt7N62j94SL3IEMQHKnLvQcOYmf1n0BwO4NOQCMvupWj+ePueZW1v/nRXZv+OqUwczuDTnEJLen7+Tp7m3hEZEMnXUtnz37SJPb6mJTVQJXkyl4+CovyjXlSRsW+K8njeKcnvRTZX2gm+KVybfcQ1RCEt99+Dor//UAEXHxDJl1LRfcdr87QHGJiI13L5q5+b/vEp2YwvR7/8HQWde49xk2+zq2fbaEDYsXUl9rIrZdGiOvuIkJ8+7yql0aRSE9qumfu4qikGjQkmjQunPTVFXFoTr/7uwO0GogTFHQKJwVgcvJCmqsrMg3Un28HHprfRe7zpNXZmFPVT3TZJRGBFDgvy1ESBuXHsWeqnqqQ2S6masc59j0qNPup6qqc0RBVXE4QHP8C1N7ln5htoTDi7vbmmNlWC1mkjI6N3gsseOv2yqKC1E0GpI6eu4Xk9weQ0wcFccrOjWmsqSQpI6dG/w7Jmd1O8UzTs/uANr+DJYz8jYvCn7Njfn9kg1889rT7P52NQnpHek9bkqjOTNbV37Mxg9e5ci+n9Hqwknt1osJ8+6ix4gJ7n12f5vDmtef4fDPP6JoFDoPGsGUOx+ifddzvL4mhwpGq4PJGVHkFJq8fn5rcTjsAGi0v36lj5gzlxFz5p72eSeuvXTrW6tOud/Q2dcy9ITyzc3lUJ2jJy2hHP8c1qKc9X93uWVmcgpNAS26oQLVx0dpZL0eESgSzIgW0WkUpoXQdDPX9LITh8SlbKV/afy5mlUQvO5aWa3L67yok713z1ySO3XhgtvuR1VVTMfKG+yT88pTrH7lSTL7D2HyLfei1eko2LGF/ZvXu4OZLSs+YslDt9F9xAQuvOMBrBYzPyx5i4U3TuOO978mIb2T120rMdu4qnscdXaV9cW1zb5GfzKWH0FRFCJi4wPdlDNKjZTbjpZSVZWNR8zu92OgOxJd588pNFFnVxnZPkK+E0Wrkk8V0WIdo3VB33PpMjkjyj0ULmUrW0eYF19q0YkphOkNHC080OCxYwW/bktIy0B1ODh6aD/tuvRwbzceLcVirPKownSy+NQMjuz7uUHifvnBvU1u54m8ub62ytu8qJOl9ejDFY+/4v49Z+GTHo+XH9rP16/+kz4TpnLlU294LAbpWuSvrraG5U/9mewZVzPrgafdjw+6eA5PzxzBN68/47G9qVx5USPbO3ucgymgMR4tZUfOcn5Y8jadzs0mPCIy0E06Lb1WIUEv0X9LnRjIBBtXu0alBvd7UbQt8qkifCI7JYIxacH94TUmLZJByQb2VNXxwd4qXtlVweZSs0cFppaUrXxlVwUf7K1iT1UdDllF2U2rOEe0mkKj1dJt6Fh2ffMZ1WUl7u3lh/aze+Nq9+89R08G4Nv3XvF4/oZ3Fx5/3LNi04l6jp5MdVkJO3KWubfVm2vZtPSdpjXyBGEaZ17F2c6bvKjGDJt93Wkf37XmM1SHg4nz7/YI6CsutAAAIABJREFUZODXaZ97v1+LxVhF/wtnYao46v7RaLR07DuI/bneV6tzsR0PfEelRjI5wzlFNRj+2csO7OGzZx8hqWNnLn3k+UA357QUYECSQXrsWyi3NHgDGZf1xbXklrWNhbVFaJCRGeEzwdhz6TI2LZKMqDAW7aqQspWtTFEUUiPCKDQ1bRrS5JvvYc/3a1h4w1SGXXo9qsPOdx++Tvuu51C8ewcAaT36MujiOWxa+g5mYxWdB4+kcOcWtiz/kN4TLjpl8j84K5d99+HrfPTgbRz+aTsxyc7SzDqD98F4akSY3JzhXV5UYxI6ZJ728WOFB1E0Gtp16XnKfcoP7QfgtZtnNvq4Pjqm2e07MS8qOyWC9hFh7qTrQHZbdMkexaMbDwWwBU2nAgOSvVuPRngqqLGSczj4Z0CAc8pZ+4gw+Q4UrUKCGeEzrp5LvVYJeFIi/LpY2oT0SIxWB+/trZaylQGSFhnmMTXvdDr07s8Nz3/Aqmce4quX/0Fc+3Qm33ovZQf2UHbCVLBZDzxDYocs8pZ/wK5vVhGd3I7xN9zJpJv/dNrjh0dEMm/hUpY9uYCNH7xOuCGC/lNm03PUJN68bU6Tr0mj4FVlpraspXlR3i662BhVdb67Ln/sJWKS2zV4/MTkeG+dnBfVMVrHvF4JHuVwZSz21BScVeFkGm7zWR0qK/KNIfNeU4AV+Ubm9Uo467//hP9JMCN8Lhh6Ll1Vy4a2i2BTqVnKVgZYamSYV5Wuug4dw+3vfe2x7T93XUtcuzT379qwMCbN/yOT5v/xtMc6sWKTS3xaBtf++z8Ntnuz4rwvKjO1Ff7OG0rMyEJ1OCjdv5v0nv0a3Sfp+Gr3UYnJdBs2zqfnb+z6dBqFyRnR9IzXeyxUGAo3mq1NBQZLlasWWVtkCvhIoDdcVc7WFZmYlOHNWkRCeE9yZoRfuHouB6c4e1xbq1/GdZ7sFAODkg18VRjYL4ATy1aezXOIva1gZLV4vlblh/axe0MOXbJHneIZgSGVmZy8yYtqjt7jp6BoNHy96F84TprT5ioA0H3ERPTRMax54xnsVmuDY9RUNKyQ1hRnyovqGK1jfu8ELu0SS1aMs8PCV593ruOEhXDHtgLEh2voEnv2dua0VEGNldwQW88NnN9/m8ssFNQ0/HsUwpfkm1j4TWv2XLqOGxeuYWqnaA6ZbHxTJGUrg0WiXoteq3gUWzidp6ZnM+jiK0jskEVlcQHfL3kLrU7H2Otu83NLm04qM/3K27wobyV36sKEuX/g61f/xaK50+gzcRpaXTiFu7YSm5LKhbc/gCE6hhkLnuKjB37L81dNov/5M4hKSKaypJCfN3xFZv+hXHLfE16fuyl5URpFoVtcON3iwqmos7Ot3MK2E6skKmB3qE04jnPED5zvrwFJBgYkG6ixOkKm/P3JXOXwNWfZZ56vOFSVlSE0vexkCrAy38j83gnyHhB+I8HMWSKQi0C6ei73V1vJKzNzwGj12Qez6zhZMToGp0TQJVbHd1K2MugoirN89eZSc5P+3XuMmMj2z/9LzdFStOHhdOqXzQW33U9yp65+b2tTSGWmhrzJi2qO8269j4T0Tnz34Wt8+eLj6AwRpHbvzaCpl7v3GTBlNrEpqax581nWvfMiNms9sSmpdB44nOzpV3p9zubkRSXotUzoEMX49Egq6hzO9avMNr74fgtxHbug0ekbPMe1flV6lI7UCOf6VQl6jfv9laDXkp1iIC/EeucVnKPkGWfxFNuW2lddT2W9v/6q/E8FKusd7K+20i0uPNDNEW2UoqpSQ7atCfZFIE/Vc+lowjvxVD2XrsTS3FJzSFR7ORtXSq6os/PKropAN8Nnbu6dIAnNJ9h5zMLy/JpAN8PnpmfG0DuxYQDird69e3PBBRfwz389jU1VsTuchQXCFAVNEzqVrA6V136qCJm8CVfeoiSAt8wHe6vIN1pD4t/8VFwFIOZ0iwt0U0QbJSMzbUioLAJ5qp7LIpP1jEHXqXouQcpWBrsEvZasGF2b+WKWQMZTW80f8tV1FRcXk5qailajoEVxl3puKp1GYVpmTMhMN3NNL5NApvkq6uwcNIZ+vokKHDBaqfh/9s47vKmy/eOfk6R7t4S2UKSUAoJsyirKrCAyZAkoIEMEfEFBeQVRkfG6AAcoKqCA8gNRAZUlIkUQAdkgUyyU0UpLW2hL90jO74+Q0HTQtE3aJH0+1+UlOTnnOU9Gc8793Pf9/eZoxO+mwCLY59WnGqGVZS7fyeV4YjZXiynfqogJ5JGErLvlW87U93Q0e72rJEn4OivxdVbSBN3KpyzLaO+Ww5Vl5VLIVtoGbdTONn9xFspMxVPWvihbwFx9UdnZ2aSkpBAQEFChceq4OxAR5EZkrPUv2kQEuVWrxRpLcDLJfmS/JeBUUjbdartV9VQEdojoXrVhYtLzWHE+mU3RaVy7e4NoCRPITdFprDifXCmKJJIkoVRIOCkVuDoocFIqUCqkUkswbFm2sjpR39MRb0eFVbinlwehzFQy+r4oW/1sC2POvqibN28CEBgYWMqepROmduGRQOvuuXsk0LXaldGaG1mW+euW5XqkIpctZFZrteHxgj6t2TDHcgIrMnDqVjais0FgCUQwY4PkaWUiY9NZF5VKqoX9UwqbQEbGppNnSnNLJSJkK20HhSTRp66HzX1WeoQy0/1pVcPZZj/bwpjTsT4+Ph6gwpkZPeH+1hvQdA50JdxfBDIV5XaOxq6ynKCr+kjOsV0xA4H1IoIZGyMmPY8vLyRzPDEbqBoTyC8vVE6WxhQKylbaInrZSm01Wq2q4+5AmNr2VvAloK1QZrov+r4oW/tsCyMB9czYFxUXFweYL5iRJIlOAa5EBOlKdqr6/dafPyLIjfAAV6HyZwbiMy0jc17V2OvrElQtIpixIY4lZrEuKlWYQBZAL1tpq6FAQdnK6kSXWm542lC5mV6ZqXMtUe9dGm3Utp+dMXdfVHx8PEqlkho1aphtTNCVnI1o4FWlf0v6v40RDbxEaZkZic/Mt7obtNysipVFKySIzxLBjMD8WNvfiqAYZFnmQHymoemzqm8UCppAHojPrNIa2OOJ2TZzQ1wSEnDcCgLDykSvzFTV32VTEcpMpiP6oooSHx+Pv78/CoX5L7l13B0Y39iHIG0qsqyFSvo91n++YWpnxjf2Ec3+ZiYu03yeTVdPHmLpyEeZ3SGIRf3bcnjj16Uec3zLema1VhN9/AA/vTuDt3o05t3HWlRoHloZbmRUr4U7QeUg1MxsgIPCBLJYhGylbSOUmewTfV+UrUgIF8YSfVHx8fFmKzErDgeFhHzhT5Z/sJQZa7ZxJx+LqWDpx/VyVNCnrof4u7AAsiybLYMRH3WeVZOH4ubtR4+Jr6DV5BO5fAHuvjVNOn7zuzNx8/Gj+3PTycuu+H1IfFY+siyLUkSBWRHBjJVzLMF6Axk9f8Rl4qSUKr3EQMhW2j5hahdyNLJVf8eFMlPZ0fdFCcd6HXqPGUty8eJFcm9eZ1JTP6Lv5HE8MYsraXloNRoUyoovkmg1+SiUSoI9HGmjdiHE00EIYVgIjUyxfmvlYdeyBciyzMSVW/EODAKgafd+LBnW2aTjXT29Gb/sB7N8h0D3urQyKMVXR2BGRJmZFWNrJpCWFAWYO3cukiSRlJQEWF62siwUlrgsD9VZtlIoM9knoi/qHpbOzIAumGnUqBEKSSLUy5FhoV4MDYT96z5Hyr/322xqpWTB/bLSUvHPSmRiE1+GhXoR6mV+3zHBPfLNdB3QajRE/bmHJl17GwIZgJohDWnQsZtJY7QdNMpsgYwec70+gUCPCGaslIImkLaA3gSysmSbhWyl/SCUmewT0Rd1j/j4eLN4zNwPfTBTkD92bueXJfMZXUfBhMY+9K/rQZjahSA3FaoSrv4qBQS5qQhTu1A/4zofDuqIdtdXPPtIs2pVBluVaM10GchITiIvO4saD4QUea5G3VCTxvCp9YB5JlMATfW7zAksjCgzs1Js2QSyR5C7xc9nTfKO3ca/TJexL5plrPjMfHydq+cNQ5jaBX8XFduupVXZd1+/Ot9X9AKYBdEXdbf/wcKZGa1WS1RUFGPGjDHavnnzZtq3b09AgD8Avs5KmuBkmJdW1q2Sa7SgVIBKklBIugWGGzdu0Gpwb5o1bcrcuXMtNndBUSygE1FuHJzNn5lWWtHrE9gH4itlhQgTyNKxJtlKpUqFg1PFzfWEbOU9ZaY2at37WVk5EaHMZDmqu2N9cnIyubm5Fg1mYmJiyMrKMsrMZGdns3PnTp544olij5EkCaVCwkmpwNVBgZNSgVIhIUkS+fn5DB8+HJVKxfr161GaucxIcH9UZsoGu/nUwMHZhaTr0UWeS7p2ySznKA/men0CgR5ruR8U3EWYQN6flJQUxowZQ/8mtXmzcwgb57xAbta95nFNfj67v/iARf3b8kb72izo05qdn7xFfm6O0TizWquJXLawyPgL+rRmw5wp98bLyyNy+SLef6IdszsEMb9bQ5aN60PUob2GfYrrmZnVWs3m92Zybs/PLH7yEd5oX5uPhjzMxQO7i5wz+tgBlo6I4PX2QTzVsSnLly839AhVRxwUEhFB7oxo4IWXo+4nylLvhH5cr7s+GT2C3IX8sgWozn1R8fHxgPkMM4vj4sWLAEbBzO7du8nMzKR///5lHu/111/n4MGDfPfdd9SsaZrqlcB8KCVKLAMsCwqlkgYdu3F+7w5S4mIN2xOi/yHqzz0VP0E5UClM79sSCExFlJlZGXoTSFuloAlkqJej2ccfOnQo9erVo9cLbxB74TRHf1yLm6+a3lPfBOCH/03jxNbvaBrRj4dHPk/M2ePsXb2EhKtRjPqgdG39wkQuX8jvq5cQNmAkdZq2IjsjnX/Pn+LG36dp0KHrfY+9duow537bToehY3Fydefgt1+y7pVxzPz5JG7evgDc+Ps0q6cMw6OGPxGTZoBWw/z581GrKyYoYA/UcXdgQhMfI2Umc6nX6ccJ9nAQykyVgL4vykkpERmbUeUqhPrzRwS5WVypTh/MWLJn5uLFizg6OhIcHGzYtmXLFkJDQ2ncuHGZxtq8eTMLFy7k/fff5+GHHzbzTAWmIEkSAS4qYjMqnqmPmDiDfw7+xvJn+9Fh6Fi0+fkc/O5LaoY8SHzUOTPMtmwEuKiq7UKdwHKIYMbK0JtA2lqJWUH0JpCWCGZatWrF8i++5P2/btEOyExJ5tjmdfSe+iZx/5zlxNbvaDtwJINmfwRAx6HjcPdR88f/fcrlo/up37ZsF+eL+3fRsFMEg2Z/WOa5JlyJ4qWN+/GrUw+AkLCH+Xh4V/765QfCh48HdFkdSaFk0urteKp1K7eLXxhD04ealPl89ohemSnUy5HkHA2nkrI5dSvbIP6gkHQyn6WPc28/J6VESz9nWtZwFg3NlUx17IvSBzP+/v4WO8fFixcJDQ01lINptVq2bt3KU089VaYbx+joaEaPHs2AAQN4+eWXLTVdgQkEuqq4kVFx48zAhg8xbul3bP/wTXZ9vgAv/1pETJxJWtLNSg9mFBLUchMlvALzI4IZK0KYQJbOpEmTjGQdg1t14Nye7WSnp3FxfyQAD4943uiYR0Y9zx//9ykX9+8qczDj7OFFQvRFkq5fpsYD9ct0bGj7zoZABnQXFSd3D27/ew3QyWZeOrKPJt0eNwQyAMH169O7d2+2bt1apvPZOz5OSrrVdqNrLVeSc7TEZ+YTn5XPjYw84rPyi/VlUCl0K4G13BwIcFER4KrCx0khVgarEH1f1O83MjhWiYs3+vOEqZ3pXMut0soJ4+LicHd3x93dcsIohZXMjh07RlxcXIn9MsWRnZ3NkCFDqFGjBqtXrxZ/I1VMgKuqwoGMnnptwpmyLrLI9ohJMwz/nrn9hNFzbfo/RZv+T5lpBjq0su73WCAwN+JbZUUIE8jSeeCBB4xkK108vQDIupNCclwskkJhFEAAeNTwx9nDi+S4mDKf79FJM1nz8jN8MKAD/qGNadixO636PElgw4dKPdY7IKjINhcPb7LvpACQfjuRvOws/IKM56vRQmioabKZ1RFJkvB1VpZJmUlgXej7ohp5O7H9WhopuVqL/fbJWi2SQoG7EvqHeFW6uENlecyMGDHC8HjLli34+voSHh5u8hhTp07l/PnzHDp0CG9vb0tMU1AGAlzt8/bMXl+XoGoRAgBWwFdffYUkSew5/U+lBjLJN64zq7WafWs+NfvYljKBVCqVJchWFjhPBW5eZa3G6HG9NuG8suUog+cswb/+gxz9aS1LR/Tg6I//V+pYUgn6mnIpn7KQrSw791NmElgv+r6oISGeBHvoggxzfWL6cYJcFXw381liv/2wSlTqzOUxI8sy+VqZbI2WzDwt2Rot+VqZjIwMYmJijDIzmzdvpk+fPqhUpt04rlmzhhUrVvDpp5/SsmXLCs9VUHF8nZQ4Ke3r98tJKeHjJC5wAvMjQmQrIlcrY37v6apDbwJpbt+UkmQdfQKDkLVabl2PpmZIQ8P2tFsJZKel4hNYx7DNxdObrLRUo+Pz83JJS7pZZFxXLx/CnniasCeeJicznRXj+xO5fBFtB46q0Otw91WjcnLmVuwVo+0qSeLSpaqTzRQIKpPK6Iu6EPYQH3/8MS9Nm1bp6lzlyczIssztHI2ulDIzn7i7JZXFlVIq0DJh5VZUDzXi3O1s8m7Fc+7cOZO9Yc6cOcOkSZMYM2YM48aNK9M8BZZDkiRa+DlzNCHLbqo1Wvo5iwUmgUUQIbLAoljC3LIk2cpGD0cAcOCb5Ubb969ddvf5Rw3bfIOCuXryT6P9jmxag1ZjnJnJSLlt9NjJ1R2/OvXQ5OaWe/56FEoloe06c37PDu4k6pqEVQqIvnyJHTt2VHh8gcDW0PdFTWvmWy7H+v51PZjQ2IdpzXzpVtvN0LM3ffp0FAoFixYtqsRXoyMuLs7kYCY5R8Nv/2aw+MxtvriQwtZr6RxPzCY2o/hABkCLguCW7bmh8mHrtXR+SXdn9t4o3Fp3JzlHU/xBd0lLS2PIkCGEhoby6aefihtNK6NVDWe7CGRAVzvRskbF/dgEguIQmRkrwt4uI3oTyLoZ+bi5mS/nVJJsZWDDprTuN4wjP6whKy2Vem3CiT13ghNbv6NJt8eNmv/bDhjJT+/8l7X/HUODDl2J++cc//y5BzdvP6MxFw95mHptwqnduAWuXt7Env+Ls5Fb6TDsWbO8loiJM4g6tJdlY/vQfsgYPFQyH327kqZNm3Lq1CmznEMgsDXM3Rfl5+fHtGnTeP/995k+fbrFe1gKUlpmRivLXL6Ty/HEbK4WIz9uShO4JElG+7l4ePFXioZTKcl35cedqe/paCQ/Lssy48ePJy4ujmPHjuHqap0+QNUZHyclwR4OXEvLRbbhOwQJnQy+UI8UWAqRmbEi9BcwUw0dj29Zz6zWaq6ePMSWhbN4q/uDzOtcnx/fmk5+Xi5Zaal8P3sy87qEMq9LKDsWzyuxh2X/2mUseLwVszvWYcX4/sRfulBkn4QrUax7ZSzzuzZgdocglo6I4Pzvvxjto59T9PED/PDODAY0DyYoqGgjfEUJdFUV++UdNHsxEZNmEnv+FNvff4PLR/fTdexUnnp3hdF+bQeNosuYF7h64hDbP5zD7X+v8exnG3BwMb6ghw8fT3JcDHtXL2Hrote5cvwgj/5nFn1emm+W11G7SQvGfvItLp5e7Pr8PQ5sWsf8+fPp0aMHzs5iFUsg0FPRvqiXXnoJR0dHFixYYOGZ3iM3N5dbt26V2DMTk57HivPJbIpO49pdJUtzrcTrx7mWlsem6DRWnE8mJv2eWubSpUv5/vvvWbVqFQ0bNix+EEGVcvPmTU5uXmfTgQzovottLOznJKjeSLK5O7QFZWb16tWMGzeOGduO41PrAWa1VtNjwitGsomgC2ZCwsJ5ct5SQBc4bJz7IoGNmuLhV5MHO/ci5sxxTm7/ns6jX+D6X0fwCgwiuGV7Lu6P5O8/fuXJ+Utp3XcYoBMAWNi3DQGhTcjJTKf9kDHk5+ZwYP0KFAolU7//HQ8/XX35zct/s2xsHzxrBtK67zAcXVw5s2szV08eYsSi1TzUvY/RnGqGNMLNx48Wj/ajvRe8+uqrZn3Pzt3OZuu1dLOOaQ30r+tBE18nBgwYwLlz54iKiqrqKQkEdsP8+fN55513iI6OplatWhY/X2xsLHXq1OHnn3+md+/ehu15WrlKpaldYs/RrfMjTJ48mY8++qgSzi4oC0lJSSxatIilS5fi4OjIjK3HULp52WTJmQR4OSqY0MRHGBMLLIYoM7MCTGluvR/uvmrGfPItkiTRceg4bsVc4Y81S2k3eDQDXtPViLcb9AwL+7bm2OZvDMGMnluxV5j+02G8aupWDxuGd+ezZ3rx+1ef0Hf6/wDYuuh1vAOCmLz2V1SOurKPDkPHsXxcH3Z8PN8QzOhx9fRm/LIfUCiVvNLCuHTLHNiTvGNedhYOzrpVqwBXFVFRUfz888+MHj26imcmENgXU6dOZfHixbz77rt88sknFj+f3jCzYJlZTHqewTQUKk+KX3+eY4nZpCY70XPYqErNUpkbWZbR3C071GpBcbfsUGnDcuwpKSl88MEHLF68GFmWmTZtGtOnTyfD0YN1UamlD2CFyEDfuh4ikBFYFPu5I7RhKuqD3XbACKMf7zpNW3P99FHCBtzzHVAoldRu0pJ/L/xV5PgmXXsbAhn98XWatuGfA5Ew/X9kpiYTffQPIp6fSU5GOjkZ9zIiDTp2J3LZAlIT4ozGaDtoFIq7btT5sozSzGlyvWylXvHIllnUP4zW/YZTs04wH2xMYtmyZTg6OjJjxozSDxYIBCbj5eXFf//7X+bNm8fMmTMtUgJbkLi4OOBeMHMsMYvI2Iwq9xPzUAfy8MvvcTpVQ5i6CidiImVRd9Mb5Qa66kxyA1xV+DoprTrASUtLY8mSJXzwwQfk5OQwefJkZsyYgVqt+3B80WXUjidm21R2RkI376AqkEQXVC9EMGMFVDQz41XInNHZ3VO33b9Woe0eZN01bCyIX52QIttq1K3PmV2bAbgVcwVZltn12Xvs+uy9YueQcTvRKJjxqfWA4d8aLWDmvj97kq1s2LE7f/3yIxm3E3BxcqJjx4688847NGjQoKqnJhDYHS+88AIffvgh77zzDp999plFzxUfH49CoUCtVnMgPpM/4jKBqjdG1i80RcZmkKORCfd3scqb/eQcDSeTsvmroFQ39xdFyNdCbEY+NzLyDfs5KXXXi1Z3pbqthYyMDD799FMWLlxIWloaEydOZNasWcX2WHWp5UZUai53ciu6/Fk5SICno4LOtezJcEJgrYhgxgpQmHgNKWzoaDheWfyPs0JRzPZytEjJWt0l4ZFRk2kY3q3YfQoHRPqyKbCcCWSrGs4cSciyzOCVyJB5unKXiU18rOpCKxDYIx4eHrzyyivMnj2bmTNnUrduXYudKz4+HrVazeGkXEMgY23o59UpwDrUzMyh7lZ4vxyNzNGELI4kZJWo7laZZGdns2zZMt577z1u3brFs88+y+uvv06dOnVKPMZBIdG3ru2Um8lAzyB33ecny1YZLAvsBxHMWAGKQiVYZTF0NAe3YqKLbEu6dhmfWrofVt8g3cVeqVIR2r5LmccvyeSyotyTrcyziZWqkhCylQJB5TJ58mQ++OAD3n77bVasWFH6AeUkPj6eR0ZOstpARs8fcZk4KSXCqlhxKiY9j+3X0kjJ1RquipZQd7ualoe3o4I+dT2oU4klULm5uaxcuZK3336buLg4Ro8ezezZs6lXr55Jx9dxdyAiyI3I2AwLz9Q8bIi+A9hm6Z/AthDSzFZA4cyMqYaO5uL83h2kJsQZHsecPUHM2eM0DO8B6AQGQsI6cfiHNQZzx4KkJyeVOLZKYXrmqTy0Udu+qZiQrRQIKhd3d3dmzpzJ6tWriY4uuphjLtJUbrR+erLFxjcnkbEZRtLNlUmeViYyNp11UamkWlgYQT9uaq6WdVGpRMamk1fRWu9SyMvLY+XKlTRs2JDJkyfTpUsXLly4wKpVq0wOZPSEqV14JNA6smimoi/9O56oUyH94kIKi8/c5rd/M0o1drUmZFkmXyuTrdGSmaclW6MlXyuXaHkhqDxEZsYKKLw6Yaqho7nwC6rH8nF9ddLMebkc+GY5rt6+dB59z9Om/6sLWD6uL0uGdaHtwJH41g4m/XYC108fI/VmHFO/21vs2AEuKouuvtT3dMTbUUGqjdQRF0YvWxniKRokBYLK5Pnnn2fRokW89dZbrFq1yuzj52ll6vYdDbIWJOvPukrAtmtpjG/sg4MlV6AKUdXqbscTs4lKzaWvBbI0Go2Gb775hnnz5nH58mWGDBnC9u3beeihhyo0bri/bvHL2jN+hbHm0r/C2LvohL0hghkrQv+1bztoFMk3rnHsp2/45+Aeglu159nPNvDlpMEWOW+rvkORFAoOfLOcjNtJBD3Uiv4z38NTfU9O1D+kEVPW7iJyxSJObP2WzJRk3HxrUKtRM3pMmF7suAoJarlZ9iZdIUn0saE64sII2UqBoGpwdXVl1qxZTJ8+nddee43Q0FCzjv/7jQxcfNVICtsogJCBO7la9t3IoEeQe6Wc0xrU3fSve11UKhFBbmYptdNqtWzcuJG5c+dy4cIF+vfvz8aNG2nZsmXFJ4xuAbRTgCtOSqnK37+KYA2lf4Wxd9EJe0WYZloJ9m4CaWkiY9NtVraysm4cBAKBMVlZWYSGhhIREcHXX39ttnFj0vNsdoEFYEQDL4veUMqyzMGbWVaZWXgk0LXc6m6yLLN582bmzJnD6dOn6dWrF/Pnz6ddu3YWmKmOgpktW7r+FUdBY9cutdwqLUNYmuhEedGPY42ZJ3vDNpaMqgH2ZAJZkMp6XV1queHpWFhKwXoRspUCQdXj4uKtzgmqAAAgAElEQVTCrFmzWLt2LRcvXjTLmFpZZvu1NJv5LSqMBGy/lobWguuc1hrIgK506+DNsqlkyrLMjh07aNu2LQMHDsTPz4/9+/fzyy+/WDSQAZ0owPjGPrRROwPY7PcOjEv/vryQXCk9XDHpeaw4n8ym6DSupeUZzaOiFMw8bYpOY8X5ynlN1RERzFgJehNIe8JJKeHjVDlfMb1spa2sTOnLyyqzNl0gEBRl/Pjx1KpVi/nz55tlvMt3ckmx4VVyGUjJ1RJ9xzI3XccSrDeQ0fNHXCbHEksPaGRZZvfu3XTq1InHH38cJycndu/ezW+//UanTp0qYaY6HBQSEUHujGjghZej7ppry1eWgqV/pnwO5cHeRSeqGyKYsRL0JpC2/ANUEAlo6edcqQ1wetlKWyAiyK1K64IFAoEOZ2dnXn/9ddavX8/58+crPN7xxGyb/x2XgOMWuImMSc8j8l/bkBUuTd3tjz/+oFu3bkRERJCXl8eOHTvYv38/3bt3r8RZGlPH3YEJTXwYEuJJsIfu+mKr30X9rX5kbAYH4jPNqhgWk57HlxeSOZ6YbXQuS1MVmafqgghmrIhWNWxfZliPDLSs4Vzp57UF2cpHAl2r3M9BIBDcY9y4cdSpU4d58+ZVaJzkHA1Xbdz3CnS/31fS8swqm5unldlmQ+V3enW3wivohw8fpmfPnnTu3JmUlBQ2b97MkSNHeOyxx6xCvUohSYR6OTIs1IuJTXxoV9PFqOrDFosBylP6VxLHErNYF5VapT1GlZF5qm6IYMaK0JtA2uBvjRESUK8KTSDD/a03oOl8t7lUIBBYD46OjsyePZvvv/+eM2fOlHuck0m2n5XRIwGnkrLNNt7vNzJsqkm9oLobwMmTJ+nXrx8dOnQgNjaWDRs2cOLECfr3728VQUxx+Dgp6VbbjWnNfJnQ2If+dT0IU7sQ5KZCZWN3f6aW/pWELMsciM80GI5W9ffQkpmn6ohQMzMDsiyjkSFfltFqQaHQud4rpaIeMqURlZrDpug0C8208hgS4kmol2OVzsEaZD/hnqKJuWQ/BQKB+cnLy6NRo0a0atWKTZs2lfl4WZZZfOa2Qc7VWpjVWk2PCa8QMWlGmY91UkpMa+Zb4Zt121Z3k7nw9SLWLFlEaGgoc+fOZfjw4SiVti23K8syWhmupefy/WXbuecor9LegfhMq+7VeiTQlU4B1rkIawvYp4SWBbG0kZIwgTQfYWoX/F1UVSpbqVcts4Qhm0AgMB8ODg68+eabjB07llOnTpXZE+R2jsbqApmKkqORSc7R4utc/hv3guputvjuaDQaavV6mpUtGvPMqFGoVPZx2yRJElpZZmdM1S/4mUp5jV1tRXTCSSmJBc9yYh9/lZVAZRkpCRNI86KXrfz9RgbH7jbmVsaPdkG9/M6VqJcvEAjKz8iRI3n77beZO3cuP/30U5mOjc/Mt9Csqpb4zPwKBTN6dTdbRalU4RUQROfwJnYTyOix5dI/U/3ZbE10wt9FJRY+y4GNVU1WLlpZJio1h28vpbL8fDJHE7KMVt5M/XkuuF+ORuZoQhbLzyfz7aVUolJziuj513F3IExte8pmEtBW7UyQlf0hVqZspX5cL0cFIxp40SPIXQQyAoGNoFKpePPNN9m8eTPHjx8v07Hxmflmu6DmZlnHzZdCgvisigVpQt3NOolJz+OYjRlNgy6gOZqYbZISmL2ITghKRwQzJVDVRkrCBNL8WFK2Uj9OsIcDQ0I8mdDER6yuCAQ2yFNPPUWjRo2YM2dOmY6Ly8wvcYErNSGOTfOm8k7PprzRvjYL+7bhp3deIT8vl+Nb1jOrtZro4wf46d0ZvNWjMe8+1gKADXOmsKBP6yLjRS5byKzWaqNt+bk5bHv/Dd7q/iBzHg5mzbSRpN68UeJ8Ns59kbcjmvBG+9p8NORhjv20rsh+WhluZJRfPlaou1kn1cXY1ZYzT4KyYV85UzOQp5WNSpKg8oyUwtTOdLlbkqQ3gbSVcjNbMYHUy1aGejmSnKPhVFI2pwqWDkq6C3jp49zbz0kp0dLPmZYllA4KBALbQaVSMWfOHJ5++mkOHz5M+/btSz1Gq9USV0KZ2Z3EeD4b1ZOstDu0GzQKdXAD7iTGcTZyK3nZ91b7N787EzcfP7o/N5287LLX92+a/xKnft5Ai96Dqdu8LZeP/sFXLz5dZL+0Wwl8PvoxkCQ6DHsWdx8/Lh7Yzab508jOSOPhEZOM9o/PykeW5XKJAOjV3WzlZvJ+6NXdutW23gU7U7H10r+Cxq4lCQ3pM0+2hj7z1NDbSSyIlgERzBQgJj3P0CwOVWOkFJWaa2gW15tA6qUErRlbNIHUy1Z2reVKco5WJ+qQlc+NjLxSRR1quTkQ4KITdfBxUlitNKdAICg7Q4cO5a233mLOnDn88ssvRs8VKwKTmU9Jvf+/fPI/0m4l8J81Owlqck9U4NHnXzWSY3X19Gb8sh9QlEMlK+6fs5z6eQMdnhzLE7MWAtBx2LN8+/ok4qPOGe3766fvoNVomPr9Pty8fQFoP2QM62dNYPfyRbQfPBoH53tNyPla3cKN0oSfuK+++oqxY8dy5coV6taty1+3bK+MqSRk4NStbLrWcrX53/vjldg/ain0pX/FBTO2LjqhzzxNaOJjNf3H1o4IZu5iDTK+BY2U9DK+YWoXcjSyVStx2LoJpCRJ+Dor8XVW0gQn4J5sZb4so9GC8q7ctqIcctsCgcC2UCqVzJ07l6FDh3Lw4EHCw8PLJQKj1Wo5v3cHjTv3Mgpk9BT8LWk7aFS5AhmAi/sjAQh/aoLR9k5PT+SvHfdkpmVZ5uzubTR/9AmQZTKSbxmea9ixG6d3/si/f58muKVxNipfllGWsSipLOpuN6MvcubXzbTpPxyfWg+U6TyVSVp6Bq/OXkLviO507dq1qqdTLvSlf7ZOwdK/whUR1SHzJDCm2gczsixz8OY92b6qjuILGinlaGTC/V0MJovWGNB0DnSlox2aQEp3fYKUSCAqxwSCasfgwYNp3rwFn3y7mes1H+JqWl6Rxa7SbpcykpPISU/Dv/6DpZ6vIjfxyXGxSAoFvkHBRtvVdUOLzCc7LZUjP6zhyA9rip/z7aQi2zRaTPodHDVqFMOHD8fJyYnzyTmmTp+E6IvsXrGIkLBOVh3M5GVnsfDt/+GiUthsMFMdSv/sPfMkKEq1D2YKBjLWhn5enQJ0ZkpOSqnKs0cgTCAFAoH982+mhme+2EqegwtX7+SCJFn0d7dgaZceqYRsiFZbvkZ0WasLv1o+/iRt+g0rdp+ABk2KbFu96kv8/XxRq9Wo1Wpq1qyJr68vCoWxhpBSqTSYSerV3apyfTw3KwNHF/P1uFh5S2ipyLJcodK/yGUL2b1iEe+eSDTLfFY89wSZKbeZtuGPch1fXOlfdcg8CYpSrYMZWzNSEiaQAoFAYFmMRGAc7gYY5SwtdfOpgZO7Bzcv/12u4509vclOKyoCkxIXa/TYJzAIWavlduxV1MH3sjGJ1y4VnY+bO7JWQ2j7LibPY/q0aeRkG0sTKxQK/Pz8qFmzpi7ACQgk6dYtftv1K/PeegePbk/y7pDu+Nd/kK5jX2T7h28SH3UeD3UAERNfoXVfXTB1fMt6Ns59EYAvJgwwjP/cip8ICesEwMUDkexduZh//z6DpJCo17ojvafOMcp4bZgzhbORW3nx271sWTiLqycPEdquM6M+XINWq+Xg+hUc/XEtt2Ov4uzuSZOuvXnsxdm4eHobxog9f4pfl77Nv3+fJjcrEw+/moSEdWLI3I9JvnGdhX3bADBv3jzmzZsHwJw5c5g7d67J72VVUh2MXatD5klQlGobzNiqkZIwgRQIBALLYG4RGIVCQZOuvTn180Ziz58q0jcjlyIt6xcUTHb6HeL+OUdgw4cAnTrauT3bjfZr2KkHO5e+zcH1KwwCAAAHvlluPB+lkqbd+3Lqlx+Iv3SBgNDGRs+nJyfh7lPDaJtKAZkZ6aSmppKQkEBCYiI3ktNJyNGSJjmR7+aDytcfhYMTx7esh12/ktGyF44uuiDhduwV1s0YR9gTI2jddxjHNn/DxjkvULtxC/zrP0i91h0Jf+o5Dq7/gq7jplGzXkMA1PUaAHBi2/dsnDOFBh278diLs8nLzuLwxq9YNq4vL67/zagsTavRsGryUIJbtefxafMM2a6f3p7O8a3f0qbfU4QPf47kG9f487uV3Lh4hkmrtqN0cCD9diKr/vMkbj5+dBnzIi4eniTfiOHcb7r32s3HjwGvLeKnd15h4MCBDBo0CIDmzZvf9zO0Juzd2LWimSdrw55EJyxNtQxmChop2cKXXm+kNL6xj0G2OSLInUbeTmy/lkZKrtZir0U/rpejgj4iGyMQCOwUS4nA9JryBpcO7WXF+CdoN2gUNes15E7STc5GbmHiqm33PbZ5r4H88vF81v53DOHDx5OXncWhjV9R44H63Pj7tGG/Wo2a0eKxQRzasJrs9DQeaNGWy0f2cSvmatH5vDiby8cO8Nkzj9F24Ej8QxqReSeZG3+f5tLhfby5N8po/wAXla6czNWTf90d+SunBjluundIRelmdYlXLzHhyy3Ua90RgGY9n2BB75Yc37Kex1+ah29QMMGtOnBw/Rc06NDVkI0ByMlMZ+ui1wgbMJJBsz80bG/dbxgfDuzInpWLjbbn5+bQ7NH+PPbCbMO2qycPcfTHtQx7exktew82bA8Je5jVU4ZxJnILLXsP5tpfR8m6k8K4zzYYBZ09J78GgKOLG0179OOnd16habNmjBw5spRXbn1YQ+mfudEbuzbBqVpkngTFUy2DGVs2UuoR5G7YrjeBjL6Tx/HELK4U06BaXvTjBHs40EbtQoing5AIFAgEdoelRWC8agbyn6938uvn73JqxyZyMtLwrBlIw/DuxfbJFMTN25eRH3zN9g/fZMeS+fjWfoBeU97g1vVoo2AGYPCcJbj5+HFqxybO7/2Z+m0fYczH3/Be7xZG+3n41WTy/+1k94r3ObdnO4c3rMbV24eaIQ/y2ItvGu0rAS4qBd9eSi2XAAJAzZBGhkAGwN2nBjXqhnI79lqpx1469DvZaam0eGyQkfKaQqGkTtPWRB/bX+SYDkPGGj0+E7kFZ3dPQjt0MRqjduMWOLq6EX1sPy17D8bFwwuAv/f9SmCDh1A6lLxwZ6sG7fczdi3M1ZOH2PbBbG5euoBnzUA6PzOlyD6zWqvpMHQcIW3CiVy2kNs3rhPYsCmD3viAgAZNOLzxa/atWcqdhDjqNGvDk/M+KVXg4Z8/97B2+mgad3mMof/7DKXq/repBY1d7T3zJCiZahfM2JuRkjCBFAgEgvJTGSIw3oFBDJ3/abHPten/FG36P1XisQ06dGXa9/uKbI+YNMPosYOTM/1eeYd+r7xjtL24Zm13XzVPvLqAJ15dcN95y0BUam6FDKS9A2oX2ebi6UVWWkqpxyZdjwbgy4kDi33eyd3D6LFCpcLTv1aRMbLT7/B2D+OSOj3pd9Xb6rUJp2mPvuxesYj93ywjpE0nmnTtTcveg1E5OhkdU0p1oFUiyzLxWabd7MdHnWfV5KG4efvRY+IraDX5RC5fgLtvzSL7Xj15mAv7dtJx6DgA9q5awtdTR9B59BQObVhNh6HjyLqTwr6vl7Jx7lSeW/Fjiee9sO9XvpkxjmY9n2DInI9NlirXG7vae+ZJUDLVKpixdyMlYQIpEAgEpmMLIjDWQEWul5Ki+BvS0vqFdPvoLlpD//cZHjWK3kgrlMa3MCoHxyIKa7JWi7uvmmFvf17sOdx8/HTzlCRGLFrN9dPHuLBvJ1F/7mHTvKnsX/s5z3+9AyfXe1URtnh51MgUew9QHLuWLUCWZSau3Ip3YBAATbv3Y8mwzkX2Tbp2iZd/OGjIuLh4ePPj29PZs/JDpv94GCc33fsmazTsXb2E5BvXi83OnN29jW9nTaB1v+EMeP39Ip/j/dAbuxaXeUpNiCPy8/e4eGA3manJeKoDaBjenb6vvI3KwZHbsVfZ8fF8Lh/5g/zcHAJCm9D9uZd58JGeRuPk5WTz++qPOfXLJlLj/8XF04sHmrWl97Q5+NWpB+jU83Z9voAzuzaTfjsJn1p1aDtwFI+M+o/RPdWxzd9wcvsGbl7+m+z0O/gFBdNx+Hg6PGmcVQTjzJOgZKpVMFNdjJSECaRAIBDcH1sSgbF3SroG+d31zXHzrVEm9bXCY1w+so+6LdqVWtYH8EDzMB5oHkavKa9zascmvnt9Eqd3/kjbgaMMUYwt6t/km5hO0mo0RP25hyZdexsCGYCaIQ1p0LGbwaBVT/12jxgFJ3WatQbgoe59DYGMbrtOCe527LUiwcypX35gw5uTaT94NP1mvFuue5I8rbZI5ulOYjyfjepJVtod2g0ahTq4AXcS4zgbuZW87Cyy7qTw+djHycvOInz4c7h6+XJi27eseWkUIxau4qHufQzvyddTR3D5yD6a9xpIp6cmkJOZzqVDv3Pz8t/41amHLMusmTaK6GP7CRswgsCGTYn6cw87Fs/lTkIcff/7lmFehzd+hX9IIxp36YVCqeLvfTvZ/O4MZK2WjsOeLfLa9Jknca9WMtUqmKnORkrCBFIgEAh02JoIjL3j4OwKQFYhGeoGHbvj5O7B3lWLqR/2cJE+luLU1wrTrOcTHNqwmt+++IBeL7xh9JwmP5/crAxcPLzIupOCs4eX0Q1jYKOmAOTn5gLgeDcYSk0pvUTO2tCauI6bkZxEXnYWNR4IKfJcjbqhRYIZ74Ago8fO7p53t9cudnvh8sLb/17n+zeep1lEf/rPfM+0SRZDrqZo5umXT/5H2q0E/rNmp5Gow6PPv4osy2z/YDbptxKZuHIrwa06ANB20EiWDOvK9g/fpHHX3igUCk5s+47LR/bR5+X/8fDISYZxuo6dasgwXvj9Fy4f/YOe/5lFt/EvA9Bx2LOsmzGOg+tX0HHYs4YMzoQvNhsF1uHDx7Nq8lD2r1tWbDCjzzwpRSxTItUmmBFGSgKBQCAA2xOBsXdqNWqKQqnk968+ITv9DipHJ+q3fRh3XzUDZi3i+9n/4ZMRPWjRcwBuPjVIiY/l7/27qNuiXal9PyFtOtFu8Gj2rl7CjX/O0qBDV5QqB5KuR3M2cgt9X3mbZhH9Ob71Ww5tWM1D3frgFxRMTmY6R3/8P5zcPWj0cASgMzatHfog33//PY0aNcLX15emTZvStGnTynibKkQZqrbKhFTCwKaWF3rUqIlnDX8uHogsVr7c9IkYj6vVajm/dweNO/cqdkxJkrh4IJKgpq0NgQyAk6s77QaNYucnb5EQfZGA0Mac3b0NN28/Og4fX+w4ABf3R6JQKgl/aoLR84+M/A9nI7dy8cBuwu8eXzCQyU67gyY/j5A24UT9uYfstDs4e3gWOU++LOsWowXFUm2CGWGkJBAIBAJbFYGxZzxq+DPgtUXsXf0xP8yfhlaj4bkVP+Huq6Zl78F4qgPYu3oJ+9Z8Sn5eLp7qAOq16kBY/6dNGn/g6+9Tu3ELjmz6ml8/fQeFUolP4AO0fPxJ6rZoB0BIm3Biz53k9M4fSb+diLO7J0EPtWLYW8vwrV0X0JWXzfzgU76eP4OXXnqJ3Nxc5syZYxPBjMrEEiU3nxo4OLsYxBcKklTIhNUcODg5M3rJN3wxcSCrpwxjwhebjcxQTUUqdKOfkZxETnrafcdKiYulWdM2RbbrvY5S4mIICG3M7dir1Aiuf19lteS4GDzUAUaldcZj3TO6vXrqMJHLFnL99DHyso179rLTiw9mNFpEVc19qBbBTEWMlDbMmUL0sYPM3H7CsG1WazU9JrxSRE2mshBGSgKBQFB2bF0ExtoprMxW8LpZkAlfbC6yre3AUbq+lGIICetk5D9THE/OW8qT85aW+Hy7QaNoN6j48QFqPdic4e8sL/F50JX69Hi4Ey8cO3bf/awRpaQT/ClNBEChVNKgYzfO791BSlysoW8mIfofov7cY5G5OXt4Mu7T71kxvj8rnx/CxJVbDSVZpqBSgIOFMk/m5lbMFVZOGow6OJQ+L8/HK6AWKgdH/t4fyYF1ywyiF4VR2sjrqyqqxdtjz0ZKAoFAIDANvQiMfV0NBJVJgKttrgFLkkSAi2lzj5ioW6hd/mw/fv/qY/Z8+SFfTBxAzZCyZ0xMxc3Hj3Gfb0Tl6MTK54eQmhBn8rEBLipUhcrd3Hxq4OTuwc3Lf5d4nHdgEInFZJsSr0bdfb4OAL5BwSRdvYwmr+RWBZ/AOqQlxpOTkW60PcEwli4ovLBvJ/m5OTzz0VraDxnNgw8/Smj7Ljg4Od/3NZqaWauuVItgpiJGSoPe+IjpP/5pxtmYD3s1iBIIBAJLoBeBEQjKg5NSwsfJdm+bAl1VJt30BTZ8iHFLv8PNx49dny/g2Jb1REycyUPdHrfo/LxqBvLs5xvJz81h1fNDjExOS0IhQS03B0PmybBdoaBJ195c2LeT2POnihwnyzKNOkUQe/YE1/46atiem5XBkR/+D59aD1AzpBEATXv0JSPlFn9+t7LYcQAaPRyBVqPhz+++NHr+wLplSJJEo049dPO6651TsHcoO+0Ox7esL/E1qhS2qaBXmUiyKWLvNs7u2HSOJ2abzUipKsrMcrMycHS51yOjkCBM7UJ30TcjEAgEpZKco2H5+eSqnobARpGAdjVdbLpX9dztbLZeSy99Rxujf10Pmvg6sfafFGIz7i3ypibE8enICLLT02k3aBQ16zXkTtJNzkZuYeKqbeTn5vDx8K7k5+QQ/tRzuHh6c2Lbd8T/c44Ri1YbSTOvfH4w0ccO0LzXQIJbdSAvK5NLh3+nw9BxNOnaG61Wy8pJg7ly/ABtB44ioOFDXDq0l/N7d9Dp6YkGaebEq5dYMqwL6rqhtBv8jCF4cnJ1I+6fc8zYdryIdHWQm4qRDb0r7w21QWx3iaEMFGekpCcnI52ti15nQZ/WvNG+Nm/1aMzK54fw74W/AF3PzII+rUsc+0zkFma1VhN9/ECR5w5v/JpZrdXEX7pg2JZwJYp1r4xlftcGzO4QxNIREZz//Rej445vWW8Y86d3Z/BWj8a8+1gLo32EkZJAIBCYjl4ERiAoDzLQssb9S4GsHVstkSsN/esqnHnyqhnIf77eSdOIvpzasYmti17j5PbvqdcmHAdnFzz8avL86p8J7dCFg99+yc6lb6N0cOSZxWsNgQzosiljPl5Pt2dfIubsCba//wb7132Ok7sHAaGNdfsoFDyz+P8If3oif//xK9vff4Ob0RfpPW0ufab/zzCWOjiUEQtXgSTx8+K5HN74Ne0GPVNEBc1w7ruZJ8H9sc9vdgFkWS5ipFSQH9/5L2cjt9Jx2LPUDGlIZkoy104dJuFKFLUbtyjxOD0PPvwojq5unPl1MyFtjBsUT//6E/71HzR82W9e/ptlY/vgWTOQLmNexNHFlTO7NrP25WeMVgH0bH53Jm4+fnR/bnoRxQsQRkoCgUBgChURgTE3C/q0JiQs/L7N6gLrQgKCPRxs3g7B10mJk1Kyqx7igqV/Aa6qIgvX3oFBDJ3/aYnH+wYF64KLUnBwdqHn5NfoOfm1kufi6k7f6f+jb4HgpTgad+lF4y69imwPe6KoOp9WxuRep+qM3b9DGvn+6h0X/9hF24Ej6fPy/AJbXzB5fAdnFxp37sXZ3dvoN+NdQz1kWtJNrpw4SI+J90rRti56He+AICav/RWVoxMAHYaOY/m4Puz4eH6RYMbV05vxy34wjFkYYaQkEAgEpWOPIjCCykMG2qhdSt3P2pEkiRZ+zhxNyLKKwL6iSEBLP2fDgq69Z54EJWP3ZWb5pbQEOXt4EXP2BHcS48t9juY9B5B+O5HoY/dKzc5EbkXWamnecwAAmanJRB/9g2Y9+5OTkU5G8i0ykm+RmXKbBh27c+t6dBH1jraDRpUYyOgp7fUJBAJBdceaxFKm//gng974qKqnITARCfB2VBDiaR+lPq1qONtFIANFS//0mSd7wtZFJyoLuw/3tKV0/fee+iYb5rzAe71bULtxCxp1iqB136H4BgWbfI6G4d1xdvfk9K8/Edq+MwBnfv2JwEZNUdetD+i0xWVZZtdn77Hrs/eKHSfjdiJeNQMNjws3gRWHMFISCASC+xOfmY8CzCYCo0er1aLJyy1VVrUg+qy8wDaQgb51PVDYSTm3j5OSYA8HrqXl2XRQU1zpn71nngQlY/fBjKKUgLZ5zwEEt+rAuT0/c+nQXvat+ZTfv/6Eke+vplGnCJPOoXJ0okm33pzf8zNPzFpI+u1Erv11hJ5TXjfsI9+Nqh4ZNZmG4d2KHcevTojRYwfn0tPawkhJIBAI7s/9RGD0RB87wM8fzeHm5b/xrBlI52emkJZ0k90rFvHuiURAp2TZYeg4Hmjelr2rFpN0/TJPL1jJQ90eZ9+aTzn323YSr10iLzuLmvUa0nXcVJpF9Dc6T+GemeNb1rNx7otMXLWNs7u3cWr7BnKzs2jQsSsD3/gAd58alnhLBCYgAWFqZ4Lc7SMro6eN2pmrabYtIFRS6V+rGs4cSciq/AlZAHsQnags7D6YMcVoyFMdQMeh4+g4dBzptxP55Oke7Fn5kcnBDOiCohNbv+PykX0kXPkHWZYNJWYAvkF1AVCqVIS271L2F1ICwkhJIBAISqY0ERiAG3+fZvWUYXjU8Cdi0gy0Gg2/ffE+bj5+RfaNPrqfM7u20HHYs7h6++JTS2esd3D9Chp37kXL3oPR5OXx168/8s2MZxm9ZB0PPtKz1HluXTgLFw9vuk/4LylxMRz4Zjlb3nPg6QVflnqswPxIgKejgs61bFeKuSTqezri7agg1UYNZCXAq4TSP3vOPAlKxu6DGb2RUnEiAFqNhtzMDJw9PA3b3H3VeKoDyM/NLdN5Qtt1wcXLh9O//kTClSiCmrbGt3Zdo3FDwjpx+Ic1dJTBwzMAACAASURBVBw+Hk91gNHx6clJZV6BE0ZKAoFAcH9KE4EBiFy2EEmhZNLq7Ybf5maPPsFHQzoV2Tfx2iWmfr8P/7uGenqm/3jIKJvecdizfDKiB/vXLjMpmHH18mXcZxsMJSVarZY/v/2C7LQ7RtcoQeWgLy9zsMOLrEKS6FPXg3VRqVU9lXJRWumfPWeeBMVj98GMJEkEuKiMjJT05GSm895jzWka0Y/ABk1xdHXj0uHfiT13kseN1M1KR+ngQNPuffhr54/kZWXS+6V5Rfbp/+oClo/ry5JhXWg7cCS+tYNJv53A9dPHSL0Zx9Tv9pbpnAEuKlFLKRAIBPehNJEUrUbDpSP7aNLtcaNFphoPhNAovAcX9u002r9e6/AigQwYlwVn3UlBq9EQ3KoDf/3yg0nzbDdolNHveb1WHTiwbhnJcTEEejxk0hjFIYFNr1BXFRFBbtSxs/KygtRxdyBM7czxROuQLDcVU0r/7DnzJCgeuw9mQGekdCOjaM20g7MLHZ4cR9ShPZz7bTuyVotfnXo8MWshHZ4cW+bzNO85gKM/rkWSJJo/+kSR5/1DGjFl7S4iVyzixNZvyUxJxs23BrUaNaPHhOllOpcwUhIIBILSKU0EJv12InnZWfgF1SvynG+dYrbVLl6Y5cK+X9nz5YfE/XOW/Nwcw3ZTF5y8AoKMHrt46hy/s9JSTDq+MPogJtjDAZVC4nJqrtkFECqT3KwMHF0qp+TrkUBXwqrBqniXWm5EpeZyx0Zu+k0t/bP3zJOgKNUimCnOSAlA5eBI72lz6M2cEo8tzthM3wxamND2XUp8To9vUPB9DZwA2vR/ijb9n7rvPsJISSAQVDdkWdaVjckyWq1O4EUlSSilkoOG0kRgyoqqGOWyKyf+5P9eGklw64488eoCPNT+KFUOHNuynr92bDJp3BJl+E24y5RlGbRapLtjKLT51Nam0cxbRUiAmh9vFF3My8lI59fP3uX83h2kJd3E2d2TwIYP8diLs6nduEWJ5p4rntMt1E34YrNhW/KNGLYunMWlI3/g6OJKy96DaRjendVThvHcip8ICetkeJ8OfvsFMWdPkH4rEXffGjTt0Y9eU143ymxtmDOFs5FbefHbvWxZOIurJw8R2q4zoz5cU/qbUUE6B7rS0d/+AxkAB4VEXxu66S9L6Z89Z54ERakWd8P2ajhkr69LIBAIZFnmdo6G+Mx84jPzicvMJz4rv9j+F5VCt7gT6Koi4O5/vk5KJEkqVSTF3VeNysmZW7FXijx3O6botuI4u3sbKidnxn36vZH08rEt6006viJocnNIjblM3N+nufrXUf4+eoBb16N1Ac5d5h24hqOLq9FxP77zX85GbqXjsGepGdKQzJRkrp06TMKVKGo3bmHy+XOzMvhy0iDSkm4S/tRzePjV5NQvPxB9bH+Rfc9EbiEvO4sOQ8bg6uVLzLkT/Pndl6Qm3Cjiwq7VaFg1eSjBrdrz+LR5Jql7lhd9FisiyK1aZGQKUsfdgYggNyJjM6p6KqVS1tI/e808CYpSLe6G9UZK9uQALYyUBAKBPZKco+FkUjZ/3co2/GaX5hGTr4XYjHyjcmInpc5zoqWfU4kiMKDLiIS268z5PTu4kxhv6JtJuh7NxYO7TZqzLqsiodVo7r2OG9c5v2eHSceXF5UEM9oGomhfG9B5nOXn53Pr1i0SEhJISEjgZmIi1wsFMgAX/9hF24Ej6WPUH/pCmedweNMabsdeZdSHa2jStTcA7QaP5pOnuhfZt/eLbxoFJe0GP4NfnXr8uvRtUuJi8Q68V2qXn5tDs0f789gLs8s8p7Kgv4HsW9fDrntk7keY2oUcjcwfcZlVPZUSKU/pnz1nngTGVItgRhgpCQQCgfWilWUu38nleGI2V9PyijStm9rrUXC/HI3M0YQsjiRk4aSA+4kzR0ycQdShvSwb24f2Q8YgazX8+d1K/Os/SNzFs6We98GHH2X/2s9ZPWUYLXsPJv12Eoe+X4VfnXrER50zcfZlJ8BVhaJQHZ1KpcLf3x9/f38AsjVaFp++XeRYZw8vYs6eMArgysM/B3/Ds2Ygjbs8Ztjm4ORM20Gj+PnDN432LRjI5GZlkJedTd3mbZFlmRsXzxgFMwAdhpS9d9VU9N+xMLUznWu5VfsbyPC7pXXWGNBUpPTPnjNPgntUi2AGhJGSQCAQWCMx6Xlsv5ZGSq4W/e2kuRad9OPklBIN1W7SgrGffMvPi+ew6/P38PKvRcTzM0m8EkXi1Uulnqd+u0cY/OZi9n71MdvefwOfWg/w2IuzSb4RY7FgxlQRmJIEEHpPfZMNc17gvd4tqN24BY06RdC671B8g4LLNI+UuBj8goKLLK75FSOekBIXy65l73Hh951k3TEWNshOv2P0WKFS4elfq0xzMQV9EOPlqKBPNc7GFEaSJDoFuOKklIiMzahyFTxzlv7Za+ZJcI9qE8wIIyWBQCCwHvK0Mr/fyOBYYrbZg5jyUL/dI7zwzW9G2/7v5WfwqhloeHw/gZewASMIGzCiyPaISTOMHs/cfsLocUmCLyFhne57PlNFYEoSQGjecwDBrTpwbs/PXDq0l31rPuX3rz9h5PuradQposTMv6zRGIQGyoJWo2Hlf4aQlZpClzEvoA5ugKOLK6kJcWyc8wJyoahL5eBYJOtUEQqqu7VRuxDi6SDUooohTO2Cv4uKbdfSqqzXxBKlf/aaeRLoqDbBDAgjJYFAILAGYtLzDDdLYB0+KHnZWUZlUEnXL3NxfySt+w2rwlndH1NEYO4ngOCpDqDj0HF0HDqO9NuJfPJ0D/as/IhGnSJw8fQiO+1OkWOS42ONDKG9A+uQEH0RWZaNAqBbhcQT4i+dJ+naZZ6cv5TWfe+9p1GH9pb6GsqDQtIFfKDrn2rp50zLGs5iIdAE6rg7ML6xj9FiQ2X8jVqy9M+eM0+CahbMCCMlgUAgqFqOJWZZxc1EYRb1D6N1v+H41g4mJS6GQxu/QungQOfRU6p6asViqgiMUqKIAIJWoyE3MwNnD0/DNndfNZ7qAPJzcwGdjcDVk4fIz8tF5eAI6Lx0UuP/NQpmGnbsxqVDe7nw+y8GAYC8nGyO/vB/RvNQKHRBREGVNVmWOfDNijK+8vujV7ar5eZAgItO2c7HSSF6TMuIg0IiIsidRt5ORmWglvibrczSP3vNPFV3qlUwI4yUBAKBoGqQZZmDN7MMZR7WFMgANOzYnb9++ZH0WwkoHR15oFkYvaa8To0H6lf11IpQFhEYSZIIcFERm3FPAiEnM533HmtO04h+BDZoiqOrG5cO/07suZM8flfdrO2AkZyN3MrqycNo3vMJbsVc5dSODUV6atoNfoY/v1vJt69N1Ekz1/Dn1I5NqJyc7k0WUAc3wDcomB0fzeVOQhxObh6c+21bkd6ZshDkpuLJ+p5otKC86zmkuI/nkKDs1HF3YEITH6Lv5HE8MYsrxQh0lJeqKv2zx8xTdadaBTMgjJQEAoGgKigYyFgjQ+Z9UtVTMJmyisAEuqqMZKsdnF3o8OQ4og7t4dxv25G1Wvzq1OOJWQvp8KROQaxheHcef3k++9d+zrb336B2kxaMXvwN2z8yVihzcnVn/PIf2LJgFgfXf4Gjixut+w7lgeZtWffKWFSOunkqHRwYvXgdWxe9xt7VS3BwdKZJt8fpOOxZPh7etczvgV4AwUmpAFE5ZlEUkkSolyOhXo4k52g4lZTNqYLS6QVK+u4/jvWU/tlr5qm6IskFc77VhDytzJcXkm3OSGl8Yx8RyQsEApvjWEIWkf9avzSqLaAXgRkW6mXyMeduZ7P1WrrlJlUM+9ctY/sHs3n1l9NGIgrmpH9dD5r4OpW+o8DsyLJMco5WZ2qblc+NjLxSTW2ttfRPK8sWzTzVE6ITFqfaZWZAGCkJBAJBZRGTnicCGTNSHhEYU4QCKkJh8YS8nGyObFqD3wMhFgtkwPKvS1AykiTh66zE11lJE3QBpSzLaGXIl2WbKv2zx8xTdaPa/hIIIyWBQCCwLHlamW3X0qyu2d9WKa8IjK+TEielZLg5Mzdr/zsG74AgAhs1JTv9Dqd+3kji1SiGvb3MIucD0wUQBJWHJEkoJVAi2Wzpn4+Tkm613ehay9VuMk/VgWobzIAwUhIIBAJL8vuNDJsp57UFyisCI0kSLfycOZqQZZHPokHHbhz7aR2ndmxEq9VSs15Dnnp3Bc17DbTA2comgCAQlAd7yjxVB6plz0xBCivsWBN6IyXxRyIQCGyNmPQ8mynltQX0IjA9gtzLdXxyjobl55PNO6kqZGITH1G+IxAIAKj2OVq9kVJEkJvucVXP5+7/I4LcCA9wFYGMQCCwamRZJl8rk63RkpmnJVujJVejNZSXCSqOXgSmcy23co/h46Qk2MPB9j8TWUs9DwcRyAgEAgPVusysIMJISSAQCO6PLMvcztHo6sgz84m7W09eXB25wHyYSwSmjdqZq2l55plUVSEpyiyAIBAI7BsRzBRAGCkJBAJBUZJzNJxMyuavggo/gIhhKgdzicDU93TE21FBqo32MWk0+fg6O5RZAEEgENg31b5npiRi0vMqzUjJWxgpCQQCK0Mry1y+k8vxxGyumtF7QVA2Hgl0pVOAq9nGs+VeJlmWGdXQW5hHCwQCI0Qwcx+EkZJAIKiOVMZijqB0LCUCExmbzvHEbJv6XGWtlvgju1ny/FNVPRWBQGBlVHsBgPuhN1IaFurFxCY+tKvpgpNSKvC8qePc+7eTUqJdTRcmNvFhWKgXoV6OIpARCARWQZ5WJjI2nXVRqaTm6orIynvDG7lsIbNaq8lIvmW+CZbAgj6t2TBnisXPUxnIWt37bkkRmC613PB0VNiMGIAEpCXE4RJ7rqqnIhAIrBDRM2MiwkhJIBDYMzHpeQYBFBDZmKpAq9XgkJfN8Ka1LFp27KCQ6FvXw2bKzWTgm9cmMnfqpKqeikAgsEKqdTAjyzKauwZIWi0o7hogKe9jgCSMlAQCgb1xLDGLyNgMUVJWRUjc9Tz7ZgVvjx1UKf2TddwdiAhyIzI2w+LnqiiNpRSunTpMo0YfVfVUBAKBFVJtgpmySIrqMyqBrrpsSoCrCl8n5X0DHKUESiQQ0vf/z959xzV1vQ8c/9yEEfYSBQRBxEVdjFpH3aOuqrXOWm1t1S7tHj9r7R5W+62zrVVr1dZaW7V1L9wbUHHWCSKICMjehNzfHzGRCCogI4Hzfr36qiQ3555Qm9znnuc8jyAIJuLupsGmFMjIsow6LxdzlemW6dUFjw4WClIPrGfPz9/SYsaHVXb+YFcr8gplo2wardPJ3ZrYvTsBaNq0aTXPRhAEY1Tjg5nylBRVayA2S01cllp/nKVSorWLioA6KtGsSxCEGqFoIFNZslKTWTf9fS4e2oXCzJyAfkPp8/rHmFuqAAhf9wcnNv3NzSvnyc1Mx8XTh/Yjx9Nu2DiDcb7tH0i9Rs3oMHI823/4mptXzvPE5I94fHTJqUc5GWmELJjB2V0byUxOwqGeB22HjKHT2EkoFApkWWbGgCDcmzzC2Fm/Gby2IC+Xr3r507r3Uzw19TsszRTkFcoVXgTGp0gRmOGfbCQoKAilsmq/XzrU0waDxhjQ6AogfHHhAq6urjg7O1f3lARBMEI1Mph5UEnR0vZGKHpcXqFMWEIOoQk5t7+AVDSyF5v3BUEwTeEJlR/IAKz8YDxOHl48Mekjrp0+xqGVi8hJT2P4Fz8AcHT1Uur5NqV5lydQKM04v28b6755H1mjof2IFw3GSoq+zJ8fvkTbp8fy6FNjcPXxK/Gc+TnZLBw/iPTEG7QdMhZHN0+iT4Wybd6XpCfe5Mn3vkKSJAL6DWXfsvlkp6Vg7eCkf/35fdvIy8ygTb+hIEkUyjITmzty8lYeEUVvjEmgKUV0U/Q4S6VEGxcVbe66MRYeHs7QoUPL8qutEJIk0dHNGkulZBSphrrzd3G3JsBVRaEM58+fp1mzZtU4K0EQjFmNC2buLikKFffBrBsnOqOAqxkFoj+MIAgmKSazgJDrVbNXwql+A/3KR/sRL6KyseXI37/SacyruDd5hImL1hmkinUYOZ4lrw3nwIoFxYKZWzFRjJu/iiYdut/3nAdW/ERybBSTV+6iToNGADw29DnsXd3Yv/wHOo15FUe3+gQMGMHuX2Zxesc6Hhv6vP71JzavxsmjAT4B7QDtar2DReUVgUlMTCQ6OppHH3201L/XihbsakU9KzN9EYjqCmh05917I5u9t4Nt/9dn0PjWDXbGZpYq9VsQhNqlxgQzBRqZvXFZhCfmVngQczfduGn5GlZcSiPYVUUXDxvMS1urWRAEoZoUaGQ2RmdU2R34dsNfMPi5/cgJHPn7Vy4cDMG9ySMGgUxuRjqF6gJ8gzpw6fBucjPSUdnZ6593qu/9wEAG4PSODfgEtMPKztGgNLRf2y7s/XUuUccPE9BvKK7ejfBqEUTE5tX6YCY7LYWLB3fS+blJBhfLallGiVSqIjBtHw2iT+9ezPz221JdcIeFhQFUazAD2qIA45s7GXyXGsM+KjNLFWbuPhxLzBWp34IgFFMjgpnqKimqO8+xxFwupeUzQKzSCIJg5PbGZVXpnfc6DXwNfnbx9EFSKEiJiwHgasRRQhbM4NqpcApyDdPecjMNgxlnjwalOuetmEjiL53lyx4lpyZlJSfp/xwwYDgbvv0/UuJicPLw4vSO9RSqCwjoP9zgNYUa7lng5e4iMNYW5qSlpJR65SAsLAwXFxcaNmxYquMrk7lCoqenLU0dLY2rcaokidRvQRBKZPLBjDGUFJWB9NurND09bQh2Nd3qOoIg1FwxmQWEJ+ZW7ySKXGzeionil5efxtXHj/5vf46Dmwdm5hacPxDCwRULkGXD3C2z20UDHkTWaPBr15Uuz5XcSFOXegbQ+omn2PS/aURsWU23F98iYvPf1PdvU2w/jrIMLaYdHBxISyt9D5ewsDCCg4ONKm3Ky9acif5ORKYXcCwxh6gS9p9WN5H6LQgCmHAwY2wlRXXnD4nNIq9QpkM9K6P6YhIEoXbTyDKbqjC9TCfpWiTO9b31P9+KiULWaHDy8OK/fdtQ5+cxdtbvOLp76o+5Enbgoc7p7OlDfnYWfo91eeCx1g5ONHu8FxFb1tCm71CiT4bS/90vix1nVobP87IEM7IsExYWxsSJE0s9flVRSBJ+Dhb4OViQkldIRFJuuQogVDaR+i0ItVsZ7jUZl6ooKVpe+29kc+hmTnVPQxAEQe9Kej6p1bCx+8hfSwx+PvznIgCaduyB4nYZYlm+M6vcjHSOrV/5UOds2WsQ106FcfHQrmLP5WSkUahWGzwW0H8YCZEX2DLnUySlktZPPGXwvJlCe+FeWmUJZmJiYkhISKj2/TIP4mSpLYDwZktnJjZ3YqC3HcGuVnjamGFmJFcSRVO/F/+XQkxmQbXORxCEqmGSKzNVVVL0Yey/kY2lUhIpZ4IgGIVj1bShO+X6NZa/+SyNO3Tn2qlwIjb/Teu+T+PepAVmFiqU5hYsf/NZ2j49lvycLELX/oatcx0ykm6W+5ydx77Gf3u3suzN0QQ9OZL6zVuTn5NN/OVznAnZwPsbj2Pj5KI/vmmnXlg7OnN6x3qadOyBrbOrwXhuVmZlWmkvSzBjLJv/S+tBBRCOJeayr5q/n0XqtyDULkZyP6X0qrKk6MMKic0Sd4YEQah2KXmFXM0oqJZ03FHTF6G0sGDbvC+4cGAH7Ue8yNMfzwbA1ceP0TOWgCSxefanHF29jLZDxtJh1MOlXFlYWTNx8To6j3mNyPCDbJg5lb2/zuXWtUh6vvwBKlt7g+PNzC1o1WsQQLGN/woJPGzKtgejrMFM/fr1cXd3L9M5jIkkSSgkCDeCQEanaOr3wfhsg9U/QRBqFkk2of/DCzQyi/9LqdYa+GUhAfYWCsY3dxK5u4IgVJtd17MIS8gxic/N6rLxu48IX7eCD7efxcLK2uC5gd52+Dtblnqs2bNnM3XqVLKyHnzjrUePHtjb2/PPP/+Uec7G5GB8tlFnTHRyt6ajm/WDDxQEweSY1MpMVZcUfVi6pe59caaxkiQIQs0jyzInb+WW+3Pz2/6BLH39mQqdk7EpyMslYvNqWnQfUCyQAXCzLltGtoODA9nZ2RQU3H9lXqPREB4ebjIpZvdiKqnf4YliL6sg1EQmE8zoSoqaSiCjIwNhibki3UwQhGqRnFeorz5lanb/MouzuzdX2viZyYlEbFnDqg9fJjstmQ7PFE9vs1RKOFmW7avS0dER4IGpZpcuXSI9PZ3g4OAyjW9MROq3IAjVzSSCmaIlRU2RBGyKzkBjOhl9giDUEPHZ6gcfZKT2LJnNuT2VF8wkRF5k1dSXiT4ZyoD3vsajaUuD5yWgjYuqzGX2HRwcgAcHM7rN/6YazBRoZDaa0HezBGyMzqDAGOpJC4JQYUyimpmupKipkoHUfA2R6QX4OVhU93QEQahF4rPVKADT/QStPL7BHfnmeOI9n5eBNnVK16izqLIEM40aNcLZ2bnM5zAGppz63cPTtrqnI9RgsixTeLvCn0YDCoW2V5VSQvQgrAQmEcxUV0nRiiQBxxJzRDAjCEKVupGtRgPcuHiWuSO7MmbWb/h36QPA9XMnmf9sTzyatWTyH3d6svw6aQTZ6am8tnyb/rGrJ46w6fuPib90DjtXN3q+9B6BA0YYnCsnI42QBTM4u2sjmclJONTzoO2QMXQaOwmF4k4iwL7lP3B21yYSoy9TkJtD3YZN6PrCG7TsOVB/zJRAbXnk4xtWcXzDKgACnxzBsM/mV/jvqCQS4GNnjpOlssyvLW0wY8r7ZXSp36ZGl/rdxNESL9uyVakThJLIskxyXiHx2Wris9XcyFYTn6NGXcIdJDOFttS7u7UZbrf/cbZUigDnIRl9MKMrKWrqZCAqo4CUvMJyfTkKgiCUlSzLxOdo08zq+TVHZefA1eOH9cFM1InDSAoFNy6eJTczA5WtHRqNhuhTYbR9aqx+nOTYKFa8/wLBg0YTOGAE4ev+YPUnk6nfvDX1GjUDID8nm4XjB5GeeIO2Q8bi6OZJ9KlQts37kvTEmzz53lf68Q6tXEjzzk/Qpu/TFBYUcHL7P/zx/os8N2cFzTr1BmD4Fz+y9ou38HwkgLZDtHNx9vSpil8boP3MDipnf5LSBDNqtZoTJ07w9NNPl+sc1alo6rcp3mTUpX5P9HdCIS4ihXJKySvkRFIuJ2/l6vclPmgVXK2B2Cw1cVlq/XGWSonWLioC6qjE9WE5GX0wcyLJ9FdldCQgIimXbvVtqnsqgiDUAoUy+ruDCoUC79ZtiTpxRP/81RNH8O/al//2biX6ZChNO/Yg/uIZ8jIz8Alspz8u8eplJi5eT8PA9gC07D2Ib/u24dj6lfR76zMADqz4ieTYKCav3EWdBo0AeGzoc9i7urF/+Q90GvMqjm71AXjnnyOYq+4ECu1HvMi80T048PsCfTAT0H8Y/379Ls6e3gT0H1Z5v6QSSICDhQJf+/LduS9NMHP27FlycnJMcmVGpH4LtZVGlrmSns+xxFyuZhQUuz4t7f8VRY/LK5QJS8ghNCEHHztzglxVNLK3EIF2GRh1AYCHLSlqbGQg4lauaN4lCEKVUN/1WdMwsB1x50+Rn6OtPhUdEUrTx3vi3qQFV28HOVEnjiBJEj5tHtO/rq5vU30gA2DrVIc63n4kx0brHzu9YwM+Ae2wsnMkK+WW/h+/tl3QFBYSdfyw/tiigUxOeiq5men4BLTj+vlTFfsLKCcZGOBtV+6LCQsLC1Qq1X2DmbCwMBQKBYGBgeWcZfXRpX6bMl3qtyCUVkxmAQvPpbAmMoPo2xlDFXU1pxsnOqOANZEZLDyXIirvlYFRr8xUdEnR9MR4Qtcsx79b32JVayK2rCEzOZHHR79cYecrSV6hTEqeBmeVWEoUBKFyae66TegT0A6NWs21U+E41KtPZnIiPgHtuXnlgj6YuXriCHV9m2Lt4KR/nW5FpSgrewdyMlL1P9+KiST+0lm+7NGsxLlkJSfp//zfvu3sXvw9Ny6eQZ2fp3/cGPLGJSDYVYXnQ+6ncHBwIDU19Z7Ph4WF4e/vj42Naa3Ui9RvobYp0MjsjcsivEgQX1m3pHXjpuVrWHEpjWBXFV08bETj9Qcw6mCmokuKpifGs3PhTJw8vEoMZm5eOV/pwQxo35cIZgRBqGyKu9be6/u3wcxSRdTxwzi61cfW2RVX70Y0DGjH0b9/RZ2fx9UTR3ikW3+D10mKkj+viq4yyxoNfu260uW5SSUeq0s9izp+mN/eehafwPYM+r9vsXOth9LMnPD1Kzm5Zc1DvNuHJwH2Fgo6ezx8gOHo6PjAlRlTTDETqd9CbRKTWcDG6AzSb6dVVtXfe915jiXmciktnwHedqJgxX0YfTBT00qKKiSIz1Hjj2V1T0UQhBrO7K6VDjNzC7weCeDqiSM4uNXHJ0CbSuYT0A51fh4Rm1eTeSsRnyIpZaXl7OlDfnYWfo91ue9xZ3ZuxMxSxQs//IWZxZ3PwfD1K4sfXMUrNbr0soq4C+rg4HDPYCY3N5fTp08zYcKEhz5PVaro1O+FEwaRnZrMm3/vv+9xKXHXmDEgiKGfziVo4KgKOvud1O+uHtZGsSooGJfwxBxCYrOqNXjXlRNfcSmNnp42BJezKElNZ9TBjK6kKEBawg1CfprOhYM7yU5Lwd7VjSYdujPgva8wM7cgOfYqW+Z+zpXQ/ajz83Dz86f7hLf1m0kjww+yaOJgAFZ/+jqrP30dgKGfzuXYhj+JOnYIuFMO1NHdiw82HQe0XaK3zfuS8/t3kJuZTh1vPx5/9mWCnhypn6vuw7bvm5+isrFj77J5pN2Mw62xP4OmzMDrkQAANDLEZZn+Er0gCMZPKWlLgRYtEeoT0I4DKxZwK/YqnZ59BQAbJxfqNmzC3mXzAGgYhUckOQAAIABJREFU0K6k4e6rZa9B7Px5BhcP7aJJh+4Gz+VkpGFhZYPSzAyFUglIaAoL9c+nxF3j3O4txca0sLImNyO9zHMpr56eNhV29/N+wUxERARqtdrkVmYqOvXbGIjUb+Fusixz6GYO+29ka3+u7vnc/ndIbBZ5hTId6lmJ4PsuRhvMFC0pmp4Yz49jepOTkU7bIWNw9WlMeuINzoRsoCA3h5z0VH4a14+C3Bw6jJyAtYMzxzf+yfK3xjB6xhIe6d4f14aN6fnK/xHy03TaDhmLz+0va+/Wj2Jf153czHTSb96g/ztfAGBhrV12LsjNYdGEwdyKiaLdiBdxrt+A0zvWs/qTyeRmpNHxmZcM5n1y6xrysjJpO2QskiSxb9l8Vrz7PO+tD0dprv2SjM9RI8uy+MsoCEKlkiQJNyszYrPupOz6BLRj9y+zSIu/rv8cBPAJbE/ommU4eTTAoZ5Hmc/Veexr/Ld3K8veHE3QkyOp37w1+TnZxF8+x5mQDby/8Tg2Ti40e7wXB37/iV8njaBN36fJTE7iyF9LcPFqSPylswZj1m/emstH97L/95+wd3XDyaMBDVoGlf8Xch+d3K0r9K6ng4MD6ZlZ5BZqijXNCwsLw8LCglatWlXY+apCRad+l5ajuxefH45BaVY5aTYi9VsoqmggY2x08+roZl3NMzEuRhvMFC0punXeF2TcSuDV5dvw9G+jP6bXK/+HLMts+t80Mm8l8tIvG/Rfzo8OeZY5I7qy6fuPad61L3YudWnasQchP02nQatgg1Kfzp4+HPxjITnpacVKgIauXU5C1EWGf/kTAf2GAvDY08+zcMIgtv/4DcGDRmNpc6eTcGr8dd799yhW9o4A1PHx47e3xnDx8G6ad9auEqk12hUapYhlBEGoZO7WZgY9Dbxbt0WhVGKussK9SQv9cT4B7Qhds8wgwCkLCytrJi5ex55fZnM6ZD3HN/6FysaOOt6+9Hz5A1S29gA0atuJpz+ezZ6lc9n43Uc4eTSgz+vTSImLKRbM9H/7C/758m12/PgNBbk5BD45olKCmc7u1rSvV/5ApqSmeQHvzUFhbsHsU8kGx5opIL3hYzz7xTwuZWpws1abTNO86kr9liQJc0tVpYwtUr+FosITjDeQ0dl/IxtLpSRSzoow2mBGV1JUo9Fwbs8Wmnd+wiCQ0ZEkiQsHQ/BsEWjwJWxpbUvbIWPYNu9LEiIv4ObXvFzzuHAgBLs6dWndZ4j+MaW5OR1GTeDPKROJPHZIH6QAtOo1SB/IwJ10jeTrV4u9P6XJF7cUBMHYuVmbGVx8WtrY8lVYfLHjAvoN1d+wKUqXbnu3iYvWFXvM0tqWJyZ/xBOTP7rvnIIHjyZ48Ohij/d8+X2Dn119/Ji4eP19xyovXR78w+Sh369pnsK85P4lag1YeTTEz82bDdGZgOk0zSua+l0aeVmZbP/xG87t2UJG0k1Utva4N3mEPq9Po37z1vrjbkZeYP30D4g5cxwrOwc6jJpIl+cn658vac/M359M4kzIBt5YtZd/v36PqxGhqGzteGzo83Sf8E6pg0OR+i3oxGQWEHI9q7qnUSohsVnUszITRQFuM9pgRldSNCslibzMDH2X6ZKk3oilZYvid+vqNmxy+/mYcgczqfGxuHj5orirLFDdho31Yxfl6O5p8LMusMlJN8ydLtQAxvudJQhCDeFmbbQf89VGV7WsPBWCKqJpniRJoLzzBWAKTfOKpn6X1j9fv8uZkA20H/EidX2bkJ2aQnTEURKiLumDmZz0VH6dNIJHuvWnZa9BnAnZwNa5n+PWuDlNO/a87/gajYYlk0bQoGUwfd/4mIuHdhGy4Fs0hWp6vfJ/pZ6nSP0WCjQyG6MzTKZSnwRsjM5gfHMnUbYZIw5m7i4pairuVcKUu5rXKU30/QmCYFqcLZVYKqUat3G7PHQXKsGuKjqXo3dDTGYBm6IzSM3XVHi/iaJN865mFOBooaC/EZVjLZr6XVoX9u/g0aeepf/bnxd5dLLBMemJ8Qz7/AcCBwwHtKt2M/oHEP7vigcGM+q8XJp06M7A978BoN3wF1j2xmj2Lp1Hh5ETsHFyKdU8Req3sDcui/R8jUkEMnCnytm+uCx6eNo+8PiazmgvqXUlRW2c6mBpa8fNK+fveayjuyeJ0ZeLPZ549dLt570AkO6T1nWvOzKObp7ciolEc1f3ucQow7HL6u6SqYIgCJVBkrQpTLX5E6dQrV1RcLBQMLqxAz08bcsUyBRoZEJiM1lxKY20Su43cXfTvJDYTAo01X+JpZbLPgeVnQMxZ46Tnlg8rVHHwtrGYK+qmbkFno8Eknw9ulTnaD9ivP7PkiTRfsSLFBbkczl0X5nmWp73J9QMMZkFhCdWXMnxqiIDYYm5xGSKNEmjDWZ0JUUVCgX+Xfvy375txJ6LKHacLMs07diT2DPHiT4Zpn88PyeL0LW/4eTRgLq+TQEwt9JWf8jJKF4u08LKmtzM4iVAmz7ek4ykBE5t/1f/WKFazaFVi7GwtsE3qEOZ35uZQrvpUBAEoSoE1FGZ3Bd1RZDQfkdEHTtILxeZif5OZV7piMksYPF/KRxLzAWqp2ne4v9Sqv2CRVOOXf993/iYm1fOM71va34Y05uQBTNIjr1qcIxDXY9iNxOt7B2KpWaXRFIocK7vbfCYq7e2OWtK3LUyzbWwJjW0E0pNI8tsup1eZookYFN0BppaHowbbZpZ0ZKiT0z6iMtH9rBw/CDaDhlD3YZNSE+6yZmQ9by0ZCNdxr3OyW1rWTp5JB1GTcDK3pHjG1eRcj2a0TN/1e93cfH0QWXnQOiaZVja2GJhZYNXi0Cc63tTv3lrTm3/l43/m4bnIwFYWtnQvMsTtB0yltA1y1n9yWTi/juJo7sXZ3ZuIDoilAHvfmlQyay03KzMRG6uIAhVxslSiY+dOdEZBTU6qFFI2nQh0G6qb2YLL/fvxtB+vQlq8HSZxxNN8+4oT+p3q96D8Qlox9ndm7l8ZA/7lv/A3mXzePa7X/UpZAplyanZchVfnInU79rpSno+qfmmG8nKQGq+hsj0AvwcSi46UhsYbTADd0qKOtR159Vl29j+0zdEbFlDXlYG9nXdadKhO+YqK6zsHHjl181smfs5h/5crG2a2difsbN/1zfNBG0VsmGfz2fbvC/59+v30KjVDP10Ls71vWk3fBxxF89wbP1KDq5YgKO7F827PIG5yooJi/5l69wvOL5hFblZGbh6+5W7E7FCAg8b48iBFgSh9ghyVXE1o2amIyglcFUp8bI1x93aHDdrM5wsFXz55ZckXL3Mu+9uL9N4omleceVNjbZ3daP98BdoP/wFMpMTmfdMD3b/MuuB+2FKQ9ZoSL4erV+NAUiMvgKAk0eDMo0lUr9rp2OJuSaz6f9eJOBYYo4IZoxV0ZKiju6eDP/8h3se6+zpw+gZSx44pn+XPvh36VPscQsrG0Z+taDE19g6uzL007n3HdfJowHfHE8s8bmij2tk7cqMIAhCVWpkb4GjhYI0E9rkWhoS2s3p8TmFpORrkCQJdxszMjMzmTVrFhMmTMDd3b1MY4qmecXpUr9LWwRAU1hIfnYWKjt7/WO2zq7Yu7qhzs+vsHkdXrVYXwBAlmUOr/oFpZk5jdp2KvUYIvW7dkrJK6wRN3hkICqjgJS8QqMu7V6ZjPqquqaWFK2p70sQBOOlkCT6e9ux4tKD9yKYkqKBWdESxyTFUj+gA+++9/49X1sS0TSvZEVTv0sjLzuT6X1a0aLnk7g3boGFtQ2Xj+4l9uwJ+hlUNys/M0sVFw/t4q+PX8OrRRAXD+7kwoEddH3hTWyd6pR6HJH6XTudSDL9VRkdCYhIyqVbfZvqnkq1MOosUV1J0ZrEUinhZGnUv3ZBEGooL1tzgl1rdmUz3YWJxsmN0d8tZXO6dak3z5ta07yqLgrgbm1W6osGc5UV7Ya9wI0LZwj5+Vs2/e8jkqIvM2jKDDo9+0qFzEehUPDC/FVkJiWwZfZnxJ47QY+J79Hr1SmlH0OkftdKsixz8lbpKpgdW7+SKYGuZS4q8bBCFsxgSqBrqY6VgYhbuVW+18xYGPUSga6kaFhCTo2JnNu4qMQdIEEQqk0XDxsupeXrSwzXVAql9utNV+I42FVFl/v0lhFN8+4vPz+f5KsX0diUbi+KmbkFfd/8hL58cs9jJi5aV+Ljwz6bb/Dz/dK4nT19eOHHv0s1p5KI1O/aKTmvsMb13sorlEnJ0+Csqn2pZka/RFCTSorKQJs6quqehiAItZi5QqJt3eqpiFUdSlvi2JSb5lWWqKgofvrpJwYNGoSLiwuvPju80s5VnUTqd+0Tn126dElTU1Pf14MYfTCjKylq6msZEtDQzrzWbs4SBME4aGTtvpLapmiJ4/BEw/cvmuZp5eTksHXrVt58802aNm2Kr68vkydPJjU1lQ8//JBt//yNZQ3bKS9Sv2un+Gy18V8Al5FCgvic2hnMmMTtiJpQUlQGgqqpP4AgCIKOqfdVeBgllTiWQd80z9SCGbjTNG+ivxOKMqYwy7LMhQsX2Lp1K1u3bmXv3r3k5ubi5eVF3759mT59Ot27d8fBwUH/mtTrWSL1WzB5N7LVPMyn4IWDIez5ZTbXz59GUkg0DGxP3zc+oV6jZnfOcfEsB1b8RNTxI2QkxqOys6dpx570ffNTbBydDca7euIIG/83jZuX/8O+rjudx04q85w0MsRlmfa1cnmZRDBj6iVFJcDBQoGvvdhkKAhC9aoJfRUqgq5iWV0rpUkHd2Vtmpeens6uXbv0AUx0dDQWFhZ06dKFr776ij59+tC8efN7XuAH1FFpq8VVs2GfzS+2t6asROp37STL8kOtYBzf+BerP5lE4/bd6PP6NApyczi6eikLXhjA6yt36XscXT66l+TYaIIGjsLOpS43r5wn7J/fuBl5gVeXbdX/PxZ/6RxLXhuOjaMLPV56D02hmpCfv8XWuW6Z5xafo0aW5VoXoJtEMGPqJUVlYIC3XZnvmgmCIFSkmtJXoaLsv5GNs6XC5IO7+zXNk2WZU6dO6YOXAwcOoFarady4MQMHDqRPnz506dIFG5vSlXTVpX5HZxSY/O/MR6R+10qFcun7Jd0tLzuTDTM/JHjwswyZ9r3+8cAnR/D9U+3Z/cts/ePtho2j05hXDV7foFUwf06ZyNUTR2gY2B6AHQu+RZZlXvplA47ungC06P4kc0Z0LvP81BrtCk0NKwT8QCYRzMCdkqLHTCyvWQKCXVV42opVGUEQqldN6qtQUZLzTHdVRufupnnJycns2LFDH8DEx8djbW1Njx49mDNnDk888QSNGjUq9/lE6rdgytQPUb748pG95Gak0brPELJSbukfVyiUeLUIJDL8gP4xc9Wdv18FebnkZ2fRoGUQAHHnT9EwsD2awkIuHd6Nf9e++kAGoK5vExq378aFAyFlnqNallGa/E7zsjGZYAbulBQ1lYozEmBvoaCzR+1sYiQIgvEoS18FwQTJMj+s38mm7z8hNDQUjUZDy5YtGTNmDH369KFjx45YWlpWyKlE6rdgyjQPcf8i6VokAItfeqrE5y1t7fR/zk5LYefCmZza9i+ZyYalxXMzMwDISkmiIDeHOg18i41Vx9uvXMFMoQaoZQuOJhXMmCskBphQupkuvawqegAIgiDcT03sqyDcsW/5Dxz+awmpN2Lw8vLi0KFDeHp6PviF5SBSvwVTpniIMmayrI2Ehn/xI3Z1iu9p0fW3Avjjg/FcOxVGpzGv4dG0BRbWNsgaDb9OGoH8MBHVAyhrWpm2UjCpYAa06WY9PW0IiTX+Ls09PW3wEullgiAYgdraf6A2uHh4N1vmfEabfsOY8MXn+LjXrbRARkekfgumyuwhglgXTx8AbJzr4PdYl3sel5OeypXQffR8+QN6THxX/3jStSsGx9k41cFcZaVf8SkqKfpyueb4MO/PVJlk/BbsakUnd+vqnsZ9dXK3Jljk4wqCYCSMpa9CQV4umkq8K1kbRYbtR1IoePqT2XR9ahT9+vWrkvN28bDB3kJhMtn5IvVbAO3meLNyfhg2bt8dS1s79iyZTWFB8X1jmSlJAEgKbZ6XfNf+nIMrfjb4WaFU0rh9N87t2ULqjVj94wmRF7l0eHeZ52em0PabqW1MbmVGp0M9baCgK69pTDq7W9O+nghkBEEwHmXtq5CWcIOQn6Zz4eBOstNSsHd1o0mH7gx47yvMzC1Ijr3KlrmfcyV0P+r8PNz8/Ok+4W2adeqtHyMy/CCLJg5m5DcLuXn5P46tX0lG0k2m7bnExu+mciZkA2//c4T10z/g8tG9mFtaEfjkCPq8/jEKZS1L+n4ImclJmFuqsLCwID5HjT8VszfmQUTqt2CKJEnCzcqM2Kyyr1arbO0YPGUmf017lXmje9C692BsnOqQGh/L+QM78G7dlkH/9y0qWzsaBrZn37L5aNQF2Nd159KRPaRcjy42Zs+X3ufioV38/OKTtBs+Do1azaFVi6nr24z4S2fLND83K7NaV5YZTHRlBrR/GTu6WdPTU3uHpbr/0+nO39PThg5u1rXyL5MgCMaprH0V0hPj+XFMb05u+5dWvQfz5HtfE9B/GFHHDlGQm0PGrQR+GtePS4d3027YOHq/+iHq/FyWvzWGs7s2FRtv16L/cf7ADjqNeY3ek6aiNNOm+Gg0Gn59bTjWDk70e+szGga1Z/9vPxK6dnm53mfIghlMCXQlMfoKq6a+wqedffmyezO2//gNsiyTGn+d5W+N4dNODfmqlz/7f/vR4PWZyYms+ewNvurpz7R2nswZ0ZVjG/40OCYl7hpTAl3Zt/wHQtcsZ+bAR/nosfrMf7YXMWdPFJtTQtQlVrw3js+7NmZaO0/mj+7Jub1b9c8nx15lSqArB35fUOy10SdDmRLoSsTWtfd8z1MCXTm2fiX5Odl8EOBKD09bli5dyq+//ookSSxZssTg+K+//hpJkti8eXOpfqcPokv9NgUi9VvQcbc2K/cFcJu+TzN+wVrsXd3Yt/wHNnw3lZPb/sGjSQuCBz6jP27E1z/TpH03Dv+1hG3zvkRpZsbz8/4sNp57k0d4Yf4qbJxc2PHTt4SvX0nPlz7gkW5lW2FVSOBhUzv/fkvy3WtgJigms4CN0RnVVuVMt3Q9wNtOfFAKgmB01BqZ707eevCBt/318WtEbF7Nq8u34enfxuA5WZbZ9L9pHPzjZ176ZQM+Ae0Abf+FOSO6gizz7vowFAqFfmXG2dOHN//aZ1Cq9O9PJnF8wyp6vvJ/9Jjwjv7xec90R5IUTFpR9io+IQtmsHPhTNybtqBuwyb4BLTj/P4dXDiwg/5vf0Ho2mX4PtoJN7/mRGxZTXREKBMXraNhUAcKcnOYP7ont2KiaDfiRZzrN+D0jvVcPXGEAe9+ScdnXgK0wcyMAUF4NGtJXlYmjz41BkmS2LdsPmaWlry3PhylufZ74OaV8ywY1x/7uu4EDhiBhZU1p3es4+qJI4ye+SuPdO8PwIIX+qPOyyv2ntd98z4nNv/Nh9vPYmFVcmr1iU1/E7p2ObFnTzBk2iwUCvhyRG8aNWrEk08+yf79+zl9+jReXl6cPn2a4OBgxowZw+LFi8v8+72fg/HZRpkpodPJ3ZqObsadni5UnbPJuWyIzqzuaVS4gd52+DtXzcqsMTHZlZmivGzNGd/ciSBXbSffqloT0Z0n2FXF+OZOIpARBMEolaWvgkaj4dyeLTTv/ESxQAa0q+IXDobg2SJQH8gAWFrb0nbIGFLirpEQecHgNYEDRhgEMkU9NvQ5g599AtqRXEIqRll4PRLIyK9/pt2wcYyd9RsO9TzYPOtjggaOYvCUGbQbNo7n5vyBucqK8PV/ABC6djkJURd5+tO5DHjnCzqMnMD4BWtp0OpRtv/4DXlZhhc+qfHXee237XR5fjKdn5vEkE9mk3YzjotF8tw3zJyKo5snk//YSZfnJ9N+xItMWLSOBq2C2TL38zu/n/4juP7fSRKiLukfKywo4PSO9TzSvf89AxmAgP7DcPb0RqFUEtB/GK37DsOnobbM66JFi1Aqlbz44ovk5+fz3HPP4ebmxvfff3/P8cqrQz3j3cva2d1an5ouCABu1ia7y+K+aur7epAaEcyANne3p6ctoxs74GChfVuVFdToxnWwUDC6sQM9PG1FDq4gCEarLPvts1KSyMvMoF6jZvc8JvVGLK7efsUer9uwye3nYwwed/JoUOI4ZpYqbJ3qGDxmZedITnpq6SdcguCnntX/WaFUUt+/DbIsEzxodJHzOFDHuxHJsdrA6cKBEOzq1KV1nyH6Y5Tm5nQYNYH87Cwijx0yOEerXoOwsnfU/9zwdmCXfP0qoO0xERm2n5a9B5KXlUlWyi2yUm6RnZpM4/bduXUtkrSEGwC07D0IM0sVEVtW68e7eHg3Wam3COg3rMzvXxe8urm58cMPP7Bjxw46depEREQES5Yswd7evsxjPohI/RZMibOlEktlzfo7YamUcLKsMZf1ZVLjQjgvW3Mm+jsRmV7AscQcojIKKqzjtW4cHztzglyt8LU3F3XqBUEwepFXLgPO1XZ+c5WqxMcVD9PwoQS61ZO8zHSDx1W2dphZqrBxcrnrcXuy01IASI2PxcXLt9ic6jZsrH3+rgCtaLduQB/Y5KRrN8PfiolClmV2/DidHT9OL3G+WcmJONR1x8rOgeade3Ny61p6vzoFgIgtq7Gv647vo5207yk7k/zsOy0JJKWyWCCoU7Rp3siRI/n999/ZtGkTEydOpEePHiW+pqIEu1pRz8pMpH4LRk2SJFq7qAhLyDGp0uL3IgFtXFS1NmivccEMaBt6+TlY4OdgQUpeIRFJuUTcytU3jFNIoCnF396ix1kqJdq4qGhTR4WTpaiyIwiCacjOzmb0qJGMWrK9VMfbONXB0taOm1fO3/MYR3dPEkvogZB49dLt573KN9mHlJetDWYSIi8W6wFxz8CpnNtGdaVX7zWerilepzGv0aRDtxIPdfG60/U7oP8ITu9YT/TJUNz8/Plv7zbaDRunn/f+5T+yc+FM/fGO7l58sOl4ieMWbZp369YtwsPDATh37hwajabCg8i76VK/98ZlEZ6YW2E3FB9Ed55gVxWdPWxExoRwXwF1VIQm5FT3NCqEDLSpU/JNo9qgRgYzRTlZKulW34auHtak5GmIz1YTn6MmLquA+Bw16hLSL5QS1LNS4mFjjruVGe425jhZKmptxCsIgmmSZZlXX32VyxcvoESmsBTJPwqFAv+ufYnYvJrYcxElFgBo2rEnB//4meiTYXi3fhSA/JwsQtf+hpNHA+r6Nq2U91OZHN08ib9c/GI/Map8AZqzpzcASjOz+zbX02nSoTs2TnWI2Lwar5ZBFORmE9D/TopZ4IDh+AQ8pv/ZzPLeFy5Fm+a99tprZGRk8M033zBlyhRmz57N22+/Xab3Uh661O+mjpZsis4gNV9TaUGNblwHCwX9xWqMUEpOlkp87MyJzigw6dUZCW3GUG2+0V7jgxkdSZJwVilxVilpLluQnFdIfLaaG9lq4rLUJOSoUd/+21woQ1x2IXHZhZgptHW73a3NcLv9j7OlUgQ2giAYvSVLlrBs2TKWL1+OZGNe6r4KT0z6iMtH9rBw/CDaDhlD3YZNSE+6yZmQ9by0ZCNdxr3OyW1rWTp5JB1GTcDK3pHjG1eRcj2a0TN/LfOd/7jzp9g2/yuiT4ZSkJcLwLVT4TRoFQxo95/sWTKbi4d3k3I9GkmhwLt1W/q8Pg33Ji0AbU+bsH9+A2DDzA/ZMPNDAIZ+OrdUc2j6eE8uHdnDqe3/0ub2vpnC2/0eLKxt8A3qUKb3ZOvsim9wR46uXU77keOxd3UzeD4zJckgTUxpZkbrPk9xcstaEqIu4ebnj3uTR/TPO3v64Hy7+/j9FG2at3r1alatWsXcuXOZPHkyJ0+e5KOPPmLAgAE0adKkTO+nvETqt2DMglxVXM0o3vzSlMhAUC1v0l5rghmAlLxCTiTlcrJoyhnct5GcWgOxWdqAR3ecpVKbaxkgUs4EQTBSJ0+eZNKkSUyYMIExY8awMzbT4HPsfhzquvPqsm1s/+kbIrasIS8rA/u67jTp0B1zlRVWdg688utmtsz9nEN/LtY2zWzsz9jZvxs0zSyNm1fO8/OLT2JpY0fn5yYRGX6IK6H7WDRxsLbyV8sgkq9Hc3b3Zlr2GoizhzcZyYmErlnGwvGDeGvNQexd3XBt2Bjf4I5Ehh8koP9wGrfrCoB360eJPHbwgfNoO2QsoWuWs/qTycT9dxJHdy/O7NxAdEQoA979Eksb2zK9L4CB//ctP78wgDkjuvDoU8/iXN+HzOQErp0KJ+3mDd5Ytcfg+MD+Izi0chGR4Qfo8/rHZT4f3Gmal5CQwCuvvEK3bt2YNGkSAPPnz2f37t08//zzHDhwoNLTzXRE6rdgrBrZW+BooSCtmvZ3PSwJ7Yqkr33tXo2s8cGMRpa5kp7PscRcrpZwR6i0RX6KHpdXKBOWkENoQs7tO0IqGtlbiDtCgiAYhbS0NIYOHUrz5s2ZO1e7MuFmbVbqzzvQ7osZ/vkP93ze2dOH0TOW3PN5AN/gjnxzPLHE54Z9Np9hn83nt3eeo1Ct5uUlG3H29KH7+HdIT4zn+yHt2TrnMyYuXo+bX3Pe+feowcV3YP9hfD+kA2H/rqDHhHewc6mLi5cvkeEH8fRvY5CiVRrmKismLPqXrXO/4PiGVeRmZeDq7cfQT+cSNHBUmcbSqefblEm/7yBk4UyOb/iT7NQUbJzr4NG0JT0mvlPs+Pr+ranXqBkJURdp029omc9XtGneK6+8Ql5enr55JoCLiwsLFy5k0KBBfPfdd7z//vvlel8Pozyp37oMCQ8bc9ystBkSIvVbqAgKSaK/tx0rLqVV91TKRQYGeNvV+uvPGtE0815iMguqLFcUq8H3AAAgAElEQVTXUeTqCoJgBGRZZtiwYYSEhHDs2DEaNWoEwK1cNYv+e7iSxxVNU1jIp518adapF898a9jE8Z+v3iXsn9/4eM9lVLZ2Bq/JyUgDWWbxy0/j7OnNmP8tAyD2XAQ/PNvroQKQ6jZ3VDes7Z0Y//Pacr3elJvmybKMRtaWli7UaAsZmEkSCgkRuAiVKiQ2k2OJuSa1OiOhLXbRw7Psq8Y1TY1cmSnQyAZVVKDyKqnoxk3L17DiUhrBriq6iCoqgiBUkzlz5rBmzRrWrl2rD2TgTl8FXWqPMchKSaIgNxtXn5J61jRG1mhIu3kdC+smHPpjIUf+XkJK3DU0hYX646wdnKpyypUq9lwENy6cYehn88o9hik3zZMkCaUESiR9aWlBqApdPGy4lJZfbeXEy0pXfryzh011T8UomO6n3j3EZBbo69tD1ZSDLHqeY4m5XErLF/XtBUGococPH+a9997j7bff5qmnnjJ4zpT7KuxZMosdP04neNAz9Hp1Clb2jigUCjZ+9xGyXJbkOeMUf/k/rv93kgO//YRdnXq06j24XOPU5qZ5gvAwzBUSA0wo3UyXXiZunGvVqGAmPDGHkNisKqtpXxIZSL+9StPT04bgWl5hQhCEqpGUlMTw4cNp27Yt06eX3KTR2Poq2DjVwVxlTeLVknrWXEZSKHCoV58zIRvwDX6cpz+ZY3BMTkYa1o53moFK1d53vnzOhGxg16LvqOPtx8hvfsb8PmWX76W2N80ThIflZWtOT08bQmKzHnxwNevpaSNumBdRI4IZWZY5dDOH/TeytT9X93xu/zskNou8QpkO9azEF4wgCJVGo9Hw7LPPkpuby6pVqzA3L/lLztj6KiiUShq378p/e7eSEncNJ48GAGTcSiBi6xp82jyGytbudoNKwxmf3rGO9IQbuHg11D9mbmUNaIMcU9Lz5ffp+fLDbcav7U3zBKEiBLtakVco668njVEnd2txo/wuNSKYKRrIGBvdvDq6WVfzTARBqE6yLFN4e3OzRgOK25ublRWwufnrr79m+/btbN26FU9Pz/sea2x9FXq/OoXLR/aw4IUB2o73SjNC1y6nMD+fPm98AkCzTr3Zteg7Vn8ymQat2xJ/+RwRW9YU67vi4umDys6B0DXLsLSxxcLKBq8WgTjX966Gd1Z1RNM8Qag4HeppAwVjvK7s7G5N+3oikLmbyVczC0/IIeS6aSwJikhaEGoHWZb1jXl1zXkfVHa2vI15d+7cSe/evZk2bRqffvrpA4/XyDILz6UYVV+FuPOn2DrvS6JPhiJrZLxaBNL7tQ/xbv0oAOr8PLb/8DURW9aQm5mOR7OW9HvzM7bO+wKAiYvW6cc6t3cr2+Z9SdK1K2jUapOubFYWQ33t8XOwqO5pCEKNYQxbF+BO1VxxHXlvJh3MxGQWmMxmLYDRjR1EjqMg1GDlacyrU/S40jbmjYuLIyAggFatWrF161aUytLdmTe1z07h3nRN8yb6O9X6XhOCUNGKFpWqjotlXdUyUVTq/kw2mCnQyCz+L8XkyuiNb+4kqk8IQg3yoMa85aUb516NedVqNd27d+fKlSucOHGCunXrlnrsrKwsvvh7B/Yt2qMoZQAkGK9nGzvgKS50BKFS3N3uoyquOXXnedRVRWfR7uOBTHbPzN64LJMJZOBOlbN9cVmiwZEg1BB3N+aFivui040TnVHA1YyCYo15p06dyqFDh9izZ0+ZApmIiAhGjRpF3M0Epm4+jqy0MZnPUcGQrmmeCGQEofKYKyR6etrS1NGyyhqxO4hG7GVikiszpp4iIdLNBMG0VeedumBXFZkn9vDUwCeZOXMm7777bqleL8syc+bM4YMPPsDf35+VK1di49nIpD9LazOx2i8IVU8jy0SmF3AsMYeoSliJb2hnTpCrFb725iJttAxMLpgxxs2rZSHymwXBtFV3DjXIpMbFcn3bHyyfM6NUhQISEhIYN24cmzdv5s0332T69OlYWloCdza5CqZH3BgThOqTkldIRFIuEUX3SEqgKcUXQ9HjLJUSbVxUtHnAHknh3kwumLmUlseayIzqnsZDE5VnBMH0GEt1G01hIQqlslTVbbZv387YsWPRaDQsXbqUfv36FTvmYHy2UZYhrWoS4GSpIDmvNCUbqpeobCQIxkGWZVLyNNrqlTlq4rIKHli90sPGHDcrbfVKJ0uF6EX4kExuz8yxKkzrqCwScCwxRwQzgmAijK0xr27T/v0a8+bn5zN16lS+++47evXqxfLly3FzcytxPGPuq1CVZKB7fVtu5qiN+nchmuYJgvGQJAlnlRJnlRJ/tCvesiyjud1XrFADytt9xRQV0FdMKM6kgpmUvEKjavZWXjIQlVFASl6hWFIUBBNgao15L126xKhRozh16hQzZ87k7bffRqFQ3HMMSZLo6GaNpVIyipWn6qBLAfa1N6eRvTZ1yxj/m4umeYJg/KTbDZGVSCAu8yrdvb/djNCJpFxqSjwrARFJudU9DUEQHiA8wXgDGZ39N7IJT8xBlmWWLl1KQEAA6enpHD58mHffffe+gUxRwa5WjG7sgL2FosZ81paWDAzwtkMhSfrgrqenDUC1/y505+/paUMHN2txZ1cQBKEIkwlmZFnm5K1ck7xbGLJgBlMCXQ0em94/kA9eHY+JbVkShFolJrOAkOumsTk+JDaLCe99xLhx4xg2bBjHjx8nKCiozON42ZozvrkTQa4qoPov5KuChLafw90ljo0huNNVLRvd2EGklgmCIJTAZNLMkvMK9dUiaorC25vGnFViDVIQjE2BRmZjdIbJpFxpCgup030oKx5tzTMjhj/UWFXZV6G66YKFzh42JT6vC+6qsxS3aJonCIJwbyazMhOfra7uKZRbt/Fv8/nhmBKfM+X3JQg1mak15lUolTi6e1KvY/FqZeXlZWvORH8nhvra42OnXbWoaZfUuvSy+wULuuBudGMHbG/fApQ1lVPxTDcLh9urMT08bUUgIwiCcB8mFcyYzGTvojQzw9xSVexxCYjPEcGMIBibmMwCwhNNMa1VIiwxl5jMiiuUopAk/BwsGOHnwEv+TrSta4WlUiryfIWdqlr09LQpda8WL1tzsrYuZcU7z1HfSvvGK+rt68bxsTNnqK89E/2dRA8ZQRCEUjCZ+GDd2jV8EOhK5LGDxZ47unoZUwJdib/8HwAJUZdY8d44Pu/amGntPJk/uifn9m4t9robF8+ycPxAprX34ps+rdi1+H+Er/uDKYGupMRdK9W8Tu9Yx7xnejCtvRdfdG/KqqmvkJZww+CYkvbMgPaOYFyW6VdnE4SaRCPLbLqdXmaKJGBTdAaaStiP52SppFt9G95s6czE5k4M9LYj2NUKTxszzEzm2+SOspY4VqvVzJ83l2Dvuoz1d32o4K7ocZZKibZ1rXjJ34kRfg74OViIpsqCIAilZBJ7ZmRZxv2x7lhY23B6+zp8gzoaPH9q+7/Ua9QMN7/m3LxyngXj+mNf150uz7+OhZU1p3es4/e3xzJ65q880r0/AGkJN1j00lNIkkTXcW9gYWVN2D+/Y2ZR+t4vx9avZPWnr+P5SABPTJpKZnIih1YuIvpkKJNX7sLKzuGBY8TnqJFlWVSnEQQjcSU9n9R842+aeC8ykJqvITK9oNJ6WZW2r4ISOJKQw4H4nEqZx8MoT4njNWvWEBMTw5tvvgncCe66eliLpnmCIAjVxCSCmUIZJAsrmnd+gjM7N/Lk+9/om8ZlJN0k6vgherz0PgAbZk7F0c2T137fjpmF9ku23fAX+PmF/myZ+7k+mNm7dC656alM+mMnHk1bAhA0cBTfDX6sdHMqKGDr3C+o59eciYvX69PIfNo8xrI3RnPg9wX0euWDB46j1oBGBqX4HhMEoyAa85bznPfoq/C4uw0qM4VR9K/Rnb+np025KoPNmjWL7t2707p1a8NxRdM8QRCEamMSiQHq2+kSrXoPJjM5kcjwO6lmp0M2IGs0tOo9mOy0FCLD9tOy90DysjLJSrlFVsotslOTady+O7euRepTwC4e2kWDVsH6QAbA2sGJNn2fLtWcYs9FkJmcSLth4wz2wzTr1BtXn8ZcOLCjzO9PEITqpWvMa+r/RxZtzGsMakKJ48OHD3P06FHeeuut0p1PklAqJCyVCqzNFVgqFSgVkghkBEEQKphJrMzoisY06dAdla09p7b/i99jnQE4vf1f3Ju2wNW7ETFnjiPLMjt+nM6OH6eXOFZWciIOdd1JvRFLg1bBxZ538Wpo8HNuRjoFeXdSJJTmFlg7OJEaHwuAq7dfsTFcGzYm+sTRUr+/Qg2iQ6wgGAFdY15TD2bgTmPebvVLLjlc1Uy9xPGsWbNo0qQJ/fpVXLU4QRAE4eGZRDCja15tZmGJf7e+nNu9mUFTZpCZnEj0yVB6T5oK3CmV2WnMazTp0K3EsVy8fMt07g3ffcjxDav0PzcM6sDERevK8S7uTWkS62OCULM9qDFvZPhBFk0czISF/+IbrN239/cnk4gMP8QHm45X3URLSQaebtucgb26s3Tp0uqeDlC1/Wt04zpYKOjvbfdQlcGio6NZs2YN8+bNQ6EQH9iCIAjGxCSCGbMiy/Kteg/m+IZVXAndR0LURWRZplXvwQA4e3oD2lLIfo91ue+Yju6eJMdEFXv81l2PdX5uMgH9hul/trJz1L7ezROAxOjLNGrbyeA1SVcv4+juWdq3Z/D+BEGoHjWxMa8sY5TvSde/JjK9gGOJOURlFFRYUKMbx8fOnCBXK3ztzR+6Mti8efOwt7fnueeeq4AZCoIgCBXJJIIZpaStAKPWgF/bLlg5OHFq+78kRF3Cs0UgzvW1QYytsyu+wR05unY57UeOx97VzWCczJQkbJ3qANCkfTeO/LWEuAun9ftmstNSiNiyxuA19XybUs+3abE5efq3wdbZlaOrlxE86Bl9sYELB0NIiLpI9wnvluq9mSlMv0+DINQED2pg6xPYns8Px6A0r7pN9RUhp6SSWkZA17/Gz8GClLxCIpJyibiVqw++FJK2OMqDx7lznKVSoo2LijZ1VDhZVkzubkZGBosWLeLll1/GxsY4UvYEQRCEO0wimJEkCTcrM2Kz1CjNzWnRvT8nt/1DQU42fd/6zODYgf/3LT+/MIA5I7rw6FPP4lzfh8zkBK6dCift5g3eWLUH0K64nNi8miWvDKP9yPH60syObvXJSUvhQa3QlObm9Hl9Gqs/fZ2F4wfRus9TZN5K5ODKRTh5NODxZ18u1XtzszITG0IFwQjoGvPe69JfoVCgKKH5rTGTgBwjXJm5mzGXOF66dClZWVlMmjSpQscVBEEQKoZJBDMA7tZmxGWp0aBNNQv753ckSaJVr0EGx9Xzbcqk33cQsnAmxzf8SXZqCjbOdfBo2pIeE9/RH+foVp8JC/9hw4wP2bNkNjZOLrQb/gIWVtZsmPEhZpaWD5xT0MBRmKus2Lt0LlvnfoG5lTWPdOtHnzc+LlWPGQnwsBEdngXBGBwOP85vMz8j+mQoskaDV4sger/2ob5QSEl7Zkpycts/7Fs2n6RrV5AkCUd3Lx4dPJqOz7ykPyYnI42QBTM4u2sjmclJONTzoO2QMXQaO8lgT4ZGo+HQyoWE/fM7ybFXUdna49+1L31en4aVvaP+OFmW2f3L9xxdvYyc9FS8WgQy8IPpyEC2ka7MlMTYShwXFhYyZ84chg0bhpeXV6WeSxAEQSgfSZZNoy7w2eRcNkRnVvp5NsycSuja5Xx24Kq+l01lGuhth7/zgwMnQRAqz5kzZwhq+xiWNna0Gz4OpZk5R9csJyMxngmL1tGgZVCpCgBcOrKHJa8Oo1HbzvqeVolRF8lMTuSZb38BID8nm5+e70d64g3aDhmLo5sn0adCidj0N+1HTuDJ977Sz2vtF29xbMOfBD05ivrNW5MSF83hVb9Q17cpLy/ZhNJcezNk+4/fsHvx9zR9vCdNO/Yk7vwpLh7aRWFBAc069SRs3UqxAlwO69atY/DgwRw9epS2bdtW93QEQRCEEpjMyoybdcVPtSA3B3PVnX4DWanJnNj8Nz5tHquSQAYq530JglA2H300jUK1mpeXbMTZ0weAgP7D+X5Ie7bO+YyJi9eXapzz+3dgaWvHCz/8dc/PkAMrfiI5NorJK3dRp0EjAB4b+hz2rm7sX/4Dnca8iqNbfa6eOELYP78z4qsFBv2vfIMf59dJIzgdsp42fZ8mMyWJfcvm0/TxXjw3Z4U+aNk2/yv2LJmNjGjMW16zZs2iQ4cOIpARBEEwYiZTY9LZUollBX8b//R8XzbMnMrR1cvYufA75j/Tg7ysDLqPf7tCz3MvlkoJJ0uT+U8gCDVSYWEhO3Zsx79rX30gA2Dv6kbrPk9zNeIouZkZpRrLys6BgpxsLh3Zc89jTu/YgE9AO6zsHPWNfbNSbuHXtguawkKijh/WHheyHpWtPX7tuhgcV795ayysbYgMPwDA5aP7KCzIp8PI8QarLx1H30lrE415y+7EiRPs3bu31E0yBUEQhOphMssCkiTR2kVFWEJOhfUkaNqxJ6d3biDsn98AifrNWvL0J7NpGNShgs5wbxLQxkUlUj8EoZolJiaSnZ2Nq0/xBrh1GzZG1mhIu3m9VGO1Gz6O0zvWsXTySOzrutO4XVda9hpE04499Mfciokk/tJZvuzRrMQxspKTAEi6FkluZjpf9Whe4nGZt49LvREDQJ0Ghj20bJ3q6PfViMa8ZTdr1iy8vb0ZPHhwdU9FEARBuA+TCWYAAuqoCE3IqbDxnpj8EU9M/qjCxisLGWhTx7QqIwmCcH+2zq5M/nM3lw7t5sKhnVw8uJNj61cSMGA4wz//AdA29/Vr15Uuz5VcHUuXeiZrNNg6uzLiq59KPM7GyaXU8xKNecvmxo0b/Pnnn0yfPh0zM5P6mhQEQah1TOpT2slSiY+dOdEZBZXSMbqqSGgbulVUHwRBEMrP1dUVa2trEq9eLvZc4tXLSAoFDvXqk5Vyq1TjmZlb0LzLEzTv8gQajYZ137xP6JpldB//DnUa+OLs6UN+dtYDG/u6ePpwJXQf3q3bGuztu5uju7bKVtK1SIM0ucyUJHLSU7VzEivAZfL/7N15XJTV/sDxzzMDzLBvooAQCC6JmgqoqYm5paZpi0uLWd1Ky9S8/ayblUtWt2vWzTZTW2wzNW1TyatRaWrlmqZpuSOIyCKyMwwzz++PcVAEBXWGmcHv+/XyVfPMM+ecGXgxz/c53/M977zzDjqdjgcffNDRQxFCCFELl7tflxCid+lABiyzMgkhF744EULUH61Wy0033cS+9f8jL+NY5fHC3Cx2/u9Lojt0Qe/jW6e2ik+fqvJYo9EQ2iIOAJOxHIB2/YZy7I+t7P/lx2qvLy3Mx1Rh2byz3U1DMZtM/Pjea9XOM1VUUFqYD0DzLklo3dz5Zcn7nFucctOi+YDl5olszFt3paWlzJs3jwcffBB//9pL7AshhHAsl5qZAYj18yDAQ0N+udklgxoF8PfQEOMn+8sI4SxefPFFVq/9nnn/GMz1wx9Ao3Vjy1efYCovZ8Dj0+vczlcv/JPS/DxiOvXAv0kYp0+k88uS9wlr1ZaQZi0BSBr9GPvW/4+PJ91Dwi130rR1e8pLS8g8uJc9KSt5atUOvAODiUnoTuc77mPdwjfI2L+HFtffiNbNnZxjh9mTsoLBT75Eu75D8AlsRI97x7Fu4Rt8/PjdltLMf+9m/6Yf8A4IxtPN9htJNmSffvopp06dYsKECY4eihBCiDpwuWBGoygMivJl0YF8Rw/lsqjA4ChfNHJxIYTTaNOmDXO+XMPrM6eybuEbqGaVyLbxjHhhLte0S6hzOx1vHsaWLz9h87KFlBbm4xvcmOtuupW+Y5+s3AzTw9OLMe9/y7oP5rA7ZQU7Vn2B3tuXRlEx9H3kX+h9/Crbu+3ZV2nauj1bvvyYte/8G41WS2DYNXS4eThR7c+WC+732DO46fRsXv4Rh7dtIrJtPP+Yu4yPJ96Nl5vLTcA7jKqqzJkzh6FDhxIbG+vo4QghhKgDl9k083wp6UVszy5zqdkZBUgM0dMnwsfRQxFCnKe+Nuatb7Ixb92tWbOGAQMGsH79epKSkhw9HCGEEHXgsrfseoZ74+ehwVXmNxTAz0NDUri3o4cihKhBQ93AtqG+L3t4/fXXiY+Pp0ePHo4eihBCiDpy2WDGXaMwOMrXZWZmrOll7rISVwinZI+NeR1NNuatu71797JmzRr++c9/yhojIYRwIS79LRfp407fCNeY6egb4U2kjyz6F8JZWTfmbSiXsbIx76WZM2cOYWFhjBgxwtFDEUIIcQlcOpgBSAzxpEeYl6OHcVE9wrxIlFLMQji9jo1cv/S7lWzMW3c5OTl8+umnjB8/Hg8PD0cPRwghxCVw+WAGoFsT5w1oksK86NZEAhkhXIF1Y15Xn8tQgGayMW+dzZs3D0VRGDt2rKOHIoQQ4hI1iGBGURS6h3pVppw5+kLE2n/fCG+6hXpJmocQLkQ25r26GAwG3nnnHUaPHk1wcLCjhyOEEOISuVSZG1VVMalQoaqYzaDRgJuioFUsAU1iiCdNPN1YlVpIgYM21bRWLRsc5StrZIRwQbIx79Vl6dKlZGZmMmnSJEcPRQghxGVw2n1mVFXllMFEZkkFmSUVnCipILO0ggpz9XPdNBDq6UaYlxuhXm400mvZfcrAtuwyFKiXCxJrP51C9CSFe0vVMiFcWFqR0WU35gUY1cKfCLmZUitVVYmPjycsLIzvvvvO0cMRQghxGZxuZibPYOL3nDJ25ZZhMFnCEA1QQwxTqcIM6cUVZBRXVJ6n0yq0DvAgvbiCQqPZbkGNtV1/Dw2DZDZGiAYh0sedxBC9y27MK4FM3axfv56dO3cya9YsRw9FCNHA1JZNJGzHKWZmzKrKoYJytmeXcbTQaLPAw9pOY08tCnCy1GTztpv5upMQ4kmMnzsa+eUUosEwmlXe35fnsJTVS2VNcX2odaDMDNfR0KFDOXToELt375aLCyHEZbuSbKJQLzeCdFr5G3QFHD4zk1ZkJDm1kNPl5sqF87a6cLC2k11qQgV83RUifNw5XGA8O+ujgLkOHZ57nk6r0CFYT4dGeqkWJEQDZd2Y11XSzWRj3ktz8OBBVq5cyYIFC+QiQghxWWyZTdQ+WE9Hua68LA6bmTGaVdZnFDtkXUtCIx3XNfIkt9REZmkFGcXGWiPocG93Qj0tEXSgTiNffkJcJbZll5KSXuzoYdSqb4S37Gd1CSZOnMjixYs5duwYnp7yuQkh6sbe2UTRvu4khOiJ9fOQjJ86ckgwk1ZkdLqKY6qqYj6T22gyg/ZMbqNGchuFuOptyixhw4kSRw/jgnqEedE91Dn32nJGp0+fJiIigieeeIKZM2c6ejhCCBdxfjaRPddiB8ha7Dqr92DGepezvmZjLsTav9zNFELURlVVfjlZ6pQBTVKYF12beMpNl0vw6quv8uyzz5KamkpoaKijhyOEcHKOzCZKDNHTU6rkXlS9BTPOfDHQI8yLbnIxIISohdyMcX0VFRXExsbSq1cvPvroI0cPRwjh5Jwxm0hUVW/BjKRpCCEaAvlic21ffPEFI0eOZOfOnbRv397RwxFCODG5geUa6iWY2ZZVSspxWUArhGgYHJlyIBvzXpmuXbvi6enJjz/+6OihCCGclGQTuRa7l2ZOKzK6RCADkJJeTBNPN7nbKYS4KHeNQt8IH1oF6OptMahszHvlfvvtN3777TdWrFjh6KEIIZyYswYyQOW4JJvoLLvOzMimc0KIhs6sqhwuMLI9u5QjdijTKRvz2s7IkSPZsWMHf//9NxqNxtHDEUI4Ickmcj12nZlZn1HsMoEMWC4cCsrN/JxRTJ8IH0cPRwjhAjSKQnN/D5r7e5BnMLEzp4yd526gJhvzOoVjx47x5ZdfMmfOHAlkhBA1kmwi12S3mZm0IqPL7Jxdk3ta+MsviBDisqiqSp7BTGZJhWzM6ySefPJJ3n//fdLS0vDxkZtVQoiqJJvIddklmDGrKgv25pHvIr8Q51Ow5KePiQuUtA4hhE3IxryOU1RUREREBGPGjOGVV15x9HCEEE4oJb2I7dllLnXdqmDZh+Zqzyayy1z7oYJyTrtoIAOWdLPT5WYOFxgdPRQhRAOhKApajYJOq8HLXYNOq0GrUSSQqQcfffQRRUVFTJgwwdFDEUI4obQiI9tcLJABy/Xq1uwy0oqu7utVuwQz28+UK3VlCrA9u9TRwxBCCHEFzGYzb7zxBsOGDSMyMtLRwxFCOBmzqpKcWuiy160KkJxaiLl+to10SjYvAJBnMHG00PUjRBU4Umgkz2CSBbhCCOFgqqpiOpOmZzaD5kyanraWNL1Vq1Zx8OBBPvvss3ocrRDCVViziVzVudlEzf09HD0ch7D5mpkfjxezNavU5abqaqIAnRt70qupt6OHIoQQVw1VVTllMFkKKJRUcOJMIYWLFVAI87IUTwj1ciNIp60McHr16oXBYOCXX36p53chhHAFSw7mk1podOnrVgWI9nVnZHN/Rw/FIWw6M6OqKrtyXS/n8EJUYGduGTeGe9kkr33GjBk8//zz2HFrHyGEcFl5BhO/55Sx69zS1sDF7plWmCG9uIKM4orK83RahfbBevRZh1m3bh1ffPGFvYcuhHBBkk3UMNg0mDllMFV+ATUUBpOlxGqQ/ur75RBCCHszqyqHCsrZnl3G0Ro2Ha1r8se55xlM6pkMgTDGfbCC6/r0xayqUp1SCFHF7zllNtvo2NEUYGdO2VWZTWTTAgCZJRW2bM5pNNT3JYQQjpRWZGTB3jy+PFxI6pm7o7a6qLC2E9m+C1+nFrNgb95VX/FHCHFWfWYTpcx7hSnxIRTn5dqtD2s20dWY/WPzYKah7ausUSCzVIIZIYSwFaNZJSW9iEUH8sk/s/DWbl+/Gsu3UtuKu6IAACAASURBVH65mUUH8klJL8Jovvq+7IUQVTXkbKKrTZ1jj48//rjK46NHj6IoCq+++ioLFiwgNjaWATHBvDmqH2l//l7t9VlHDrDoyQeYeWMLpl4fwdv39GXv+v9VPn8q/ShT4kPY+Nm8aq9N3bWFKfEh7PzfVxcdY/renXw4bjgv9G7F1K6RvDI4geUzJlY+f3jbJqbEh3B426Yqr8vLOMaU+BC2r1hceWzZ9PFM7x5FTtpRJt05BG9vb8LDw5k5c2aVqPfcz+H1118nKioKT09PevbsyZ49ey463p49e9K+ffsan2vVqhX9+/e/6OuFEMLVpBUZeX9fHtuzy4D6S++w9rM9u4z398ksjRBXu4aaddNQ39fF1DmYuf/++3njjTeqHf/888+ZPXs2Y8aMof9jUzidkcaiyfdjMp79ojh56C/evW8AWUcO0PP+idz8z+fx8PTisydG8+ePyQAERUQT1aEzO1cvr9bHzu+Wo/P2Ia7ngAuOr+hUNh+OG07eiTR63j+RIU/9mw4D7yBt9/a6vsVqzGYzH44fiXtAI2bNmkVCQgLTp09n+vTp1c795JNPePPNN3nssceYMmUKe/bsoXfv3pw8efKC7d9777388ccf1YKerVu3sn//fkaNGnXZYxdCCGezLbuURQfyKXDgpsoqUHBmlmab7CUmxFXrSrKJykuLbToWW7las4nq/HPs2rUrzz33HIWFhVWOHzt2jC1btvB/Tz7FDaPHc/v0OeSfzGD/rz9VnrNy9rMEhEYw4fMf6Hn/BLqOfJCH3/uWa65LZPWbMyvPix80kuP7dpF15EDlMZPRyO7vV9Cm9yA8PL0uOL7UXVspLTjNyJfmkTT6MTrddi83PfYM//xy0wVfU5sKQxktu/Vm+Mx3eHTcY6xYsYJBgwYxa9YscnJyqpx78OBBNm7cyFNPPcW0adNYvXo12dnZzJo164LtDx8+HL1eX23/g88++wxvb29uv/32yx67EEI4C1VV2ZRZQkq65QLA0Ykd1v5T0ovZlFlyVeaYC9HQFRYWMmnSJKKjo9HpdDRu3Jh+/fqxY8cOAE6UVLDr+2956+4+TO0ayQu9W7H02UfJzzpRpR1rpk5u2hEWTriT6TdEs/TZRwEwlpWy4pUpvNC7FdNviOaTSaPIzzrBlPgQUua9Um1MpYX5LJs+nueTYpmRFMPy6RMoLy2pfL6mTCGr89u0rsPJTj3E0mcfZUZSDDN7XcubL81AVVXS0tIYOnQofn5+hIaG8tprr9nkc3VGdQ5mJk6cSFFREevXr69yfOTIkQQGBlJx5sugWcfrATh1/CgAJfl5HN66gXY3DcFQXERxXi7FebmUnD5Fi669yT12uPIXp91NQ3HT6avMzuz/9SeKT+fS8ebhFx2fp6+ltvZfP6+tMit0pbqOfAiwbNSmKArjx4+nvLyclJSUKufdeuutNG3atPJx586d6dKlC999990F2/b392fo0KEsXry48svUZDKxdOlSbr31Vry9r76KFEKIhueXk6VsOFFS+4kOsOFECb+clBkaIRqaRx55hHfffZc77riDuXPnMnnyZDw9Pdm3bx+qqrJyyad8/q+H0Gi19B//LJ1uG8WfPyUz/x+DKS3Mr9KW2WTiw8dG4BPUiJsnPU+b3oMBWDZ9Ar8ueZ9W3fsyYOI03HR6Pp541wXHtPjphzAUF9F/wnNc128o21cu4YcFr17R+1z89EOoqpkBE6YS0Taeb9+1LHvo168fTZs2ZdasWTRv3pzJkyfz888/X1FfzqrOpZlbt24NQGpqapXj11xzDQDmM+uNPP0CACgtsPwi5KYdQVVVvp/7H76f+58a2y4+lY1/4zA8ff1pnXQTu/73FTeNmwLAztXL8WscRkynHgAYSoooLzk7vadotfgENqJZQjfa9hnMDwtms/HzecQkdCfuxoF0GHgHbh66ur7NKhSNhqCmUQCYzIAWWrZsCVjWypyrRYsW1V7fsmXLWvc3GD16NEuXLmXDhg0kJSWRkpLCyZMnuffeey9rzEII4Uy2ZTlvIGO14UQJOq1CYoino4cihLCR5ORkHn744SozEk899RQApYZyvnvjBZo0b82Y91fgrtMDEN2hCx8/fg8bP5tHv0f/Vfm6inID7foNYcCEqZXHju/bxe7vv6X73WMZPPlFALqO+AfLp0/gxP4/axxTeKt23DH97JKNktN5bPt2EQMfn3bZ7zOyTTy3PWd5j51vH80rg+OZPHkyL7/8Mv/6l+U93HXXXYSHh/Phhx+SlJR02X05qyveZ0artey/ojl/jufMTIN6Jsrpce9jtOzWq8Y2giNjKv+/46CR7P5+Bam7thDaPI5969dw/fAH0JzpYMMnc/lhwezK8wPCIvlX8g4UReGe2Qs59sc29v28hgO//sSXzz/Oxs/e5dGPV6Pz8rEU4a6B2WSq/X3aqUxb//79adKkCZ999hlJSUl89tlnhIaG0rdvX/t0KIQQ9SStyEjKcefMLT9fSnoxTTzdiPRxd/RQhBA2EBAQwObNm8nIyCA8PLzKc5u3bqXoVDZ9xj5ZGcgAXNvjJkKiW/D3xu+rBDMA1w97oMrj/b/8aDk+ourxrnc+xPaVS2ocU+dh91d5HN3xev78KZmyokL0Pr6X9P6sEm87u75ao9XSNK4D+SczePDBByuPBwQE0KpVKw4fPnxZfTi7Ogczf/31FwBRUVE1N3SBzciCIizna93caN6lZ639tOzWG+/ARuz8bjmR7RIwlpXQcdDZFLP4wSOI7tjlbL/n/BICXHNdItdcl0j/8c+yc/WXLH32Ef5Y8zWdbrsXT98zs0bnTR+ePpFe41hUs5lTx1MJiYqtfH/79+8HIDo6usq5Bw4cOP/l7N+/v9p559Nqtdx999189NFHzJo1i2+++YaHH364MkgUQghXZDSrrEotdJkN6RRgVWohD7UOxF0jm2sK4epeeeUV7rvvPiIjI0lISODmm29m9OjRxMTEkHrUkmUUEtW82utCmrUg9ffNVY5p3Nzwa1I1IDp9Ih1FoyEwvOp18bk36M8XENq0ymNPP8sSidKC05cdzJzfpt7HF71eT6NGjaoc9/f3JzfXfvvcOFKd5xveeustfHx86Nmz5oBEq4BbDa35BIUQk9idzV99QkF2ZrXni/KqLqTXurnRfsBt7P5+BdtXLCG0eRxhLdtUPh8UEU3zLj0r/0V3sAQ2pQWnqy3iDGvVFoCK8nIAAsMi0Wi1HNnxa5Xzflv24QXf969L38dNY6kQoaoqb7/9Nu7u7vTp06fKed988w3Hjx+vfLxlyxY2b97MwIEDL9i21b333kteXh5jx46lqKhIqpgJIVze+oxih1Ytu1TWKmc/Z7jGTJIQ4uJGjBjB4cOHeeuttwgPD2f27Nm0adOG1atXo1xito2bu0dlhtCV0GgudKPa+pey5hspF8sgqqnNC90Qb6jFTuo8M7Np0ybmzJmDr2/NkaOiKIR6upFeXL0k3JCnZzH/H4N5Y2RPOt02iqCm0RSdyuLYH9vIP3mCx5euq3J+/KCR/LL4PQ5v28iAiXXLI9y+cgm/LVtIm16DCI6IxlBSxNavP0Xn40urGywpW3pfP9r2HcKvS99HURSCIqL5a8Naik/l1Nimm07P/l9+5NsZE/Dq14PVq1eTnJzMM888Q0hISJVzmzdvzg033MCjjz6KwWBgzpw5BAcHV+ZnXkzHjh1p27Yty5Yto3Xr1sTHx9fpPQshhDNKKzKy7cw+Mq5EBbZml9EyQCfpZkI0AGFhYYwbN45x48aRlZVFfHw8L730Ei/PslQFy049SGznHlVek3P0IAFhEbW2HRAWgWo2k5eRSqNrYiuP56ZdfipX5brzahlEaZfd5tWgzmHmwoULefzxxy96TpiXW40NNolpxfjPvqfVDX3ZsXIJK/7zLzYv/xhF0dBnzP9VO79pXHuaxF6LotHQ4eZhdRpfTEI3IuI68Mear1k5+xl+/vhtgiNjeHje15WL+AGGPPUycT0HsHn5x3w/92UCQiMYPvPtGtvUaDQ8+M5SyvKyefLJJ9m6dSvTp0/nhRdeqHbu6NGjmTBhAm+//TYvvfQSbdq04ccffyQsLKxO4x89ejSALPwXQrg0s6qSfCa9zBUpQHJqIeYGegdTiKuByWQiP79qQNC4cWPCw8MxGAx06ZSIT1AIm5d/TEW5ofKcvzelkHVkP61u6FdrHy279gbgty8WVjn+65L3L3vceh9fvAOCObrjtyrHf1u28AKvqM5V//ZeiTrPzNx///1VHkdHR1ebrgr1csMMvLwju9rrgyKiGTHznToPTOPmRkxCd/wb1y0YCL/2Ou789/xaz/MODOae2dV/KWoaM0Bg02g+/iqZuKDaK6I98cQTPPHEExd8fsaMGcyYMaPG5zw8PCxFDO65p9Z+hBDCWR0qKOd0udnRw7hsKnC63MzhAiPN/T0cPRwhxGUoLCwkIiKCYcOG0b59e3x8fEhJSWHr1q289tpreHh4cNeTM3hvymMseGgo7QfcRlFuNpsWv0dg+DXcMOqRWvtoGteetn0Gs+nz+ZTk5xHZLoEj238h59ghywkXWEtem8Tb7mH9wjf5cuYkIuI6cGTHr+SkHqrz6z1rWvPRwF1xNbNzhXrZprn0vTs58fcehj3/lk3au1K2el8XoqoqH3zwAT179qwsdS2EEK5oe3aZyyz6vxAF2J5dKsGMEC7Ky8uLcePGsXbtWr766ivMZjPNmzdn7ty5PPqoZcPLkaNGU6x4sO6jN/nfmy/g7ulFm143M+DxaZV7F9Zm+Mx38AluzK41X/PnT8k079KTu/7zPv+97XrcdZe3LUifhydTnJfLnpSV7P7+W1p268P9by/hpT6ta32tRgGvqzCYUVQbrgZSVZU5u09hMF1ek5kH93F83y42fvouxadzeXLltiol8+rTsunj2ZOykv/8doxJ7YJQLhBhHz16lGbNmjF79mwmT558SX0UFxezYsUKfvrpJ9577z2+/fZbhgwZYovhCyFEvcszmJi/N8/Rw7CZsXGBBOqksqQQDdGfp8pYmVpk83Yz/t7NW3f1ZsSL79KxjkslbGlIlG+dsokaEpuGb4qi0D5Yf9n5entSVvLljImYKozc+fJ8hwUy5+oQrL9gIHOlsrOzufvuu1m2bBnPPPOMBDJCCJf2e05Zg8nXVoCdOa5XxEAIUTe2yLoxlpVWO7bp8/koGg3N4rtecfuXw97ZRM7IpjMzIHfmhBDianSlM/POSKdVLjozL4RwXbb4m5UyfzYZ+3YRk3gDGjctf2/6gf2bfqDz7aO57bnXbDjaujn3b5aqqphUqFBVzGbL5vZuioJWocH9TbN5+Bao0xLt605qodHlc6ajfd0lkBFCiDo4ZTA1qEAGwGBSyTOYCdLL94AQDY01m2hrVullX69Gte/Ewc3r+PH91ygvKcY/tCl9xj5Frwf/adOx1oUCRHi78ePxYk6UVJBZWkFFDbVY3DQQ6ulGmJcboWf+Bem0Lh3g2HxmBuBAvoEvDxfautl6NyzGTxaACiFEHdgr/9zRrsb8cyGuFg0tmwgs60fqUk/y3PN0Wktg17GR3iVv4tul5EGsnwcBHhqXzZ1WgAAPDTF+smmaEEJcTHFxMQCZJRX2+UK5BOWlJTZtT6NAZmn1jaCFEA2DNZvIVa9Xa1LXwvjnnmcwqWzNKmX+3jyWHMznQL7Bpfbasst3j0ZRGBTl67JpZiowOMoXjQtPuQkhhK3NmDEDRVHYu3cvd999N4GBgdxwww0ALF+8iDfu7sPUrpHMvLEFi59+mNOZx6u8PufYIT6bfD8v9Ytj6vURvDzgOhY//TBlhQVVzvs9eRlv1dLWgoeHMmd4D47v3cX8B29hWrdrWPP2S3w08W5euSWxxvHPvW8gb9/Tt859mVXIKDZy4MAB7rjjDkJDQ9Hr9URERHDnnXdW25RPCOF6EkL0Lnu9akvWzyC10MiXhwtZsDePtCKjQ8dUV3ZJM7NKSS9ie3aZS/2SKEBiiJ4+ET6OHooQQjiVGTNm8PzzzxMXF0eLFi3o378/qqpy6tQppk2bRrt+Q2mW0I3ivFx+XfI+Hl7eTFj8I56+/lQYy/nv7d0wlRu4fvgD+DRqTEFWJn9tWMvdsz4gMDwSgJ/e/y/fv/ufi7YFlmAmJ/UgZpOZ6/rfSmhsa3yCQygrKmTZtMcY9+laItt0rBx7XkYarwyOZ+CkGSSNfqzufZnKWTDiBgwGA+PGjSM0NJTjx4+zatUqli1bRlRUVP3/IIQQNmNWVRbszSO/3OxS16v2Zt0vLDFET89wb9w1znuD367123qGe3Mgv5wCF/kFUQA/Dw1J4d6OHooQQjit9u3b8/nnnwOQmppKbGws/cZNqbLotU3vQbx1d29+++JDej34T7IO/03e8VTufuUD2vU9W4a+z5iz+3PlZaSRMv+VWtuyKszJ4tZnXqXLsPsqj5UVFeLmoWP32m+qBDO7v/8WRVG4rt/QS+or4+DfHDlyhGXLljFs2Nk9I6ZNm3ZFn6EQwjlYs4kWHZCZ1nNZr9u3Z5dxIL+cwVG+RPo45/ILu6Y4u2sUBrtQupk1vcyZo08hhHC0Rx55pPL/rbtrt+s3lOK83Mp/vsGNaRQZw+FtmwDQ+/gBcODXny64tuXPH5NR69CWlZuHjoShd1U5pvfxpWX3Pvzx/becm3jwx9pviGyXSEBYxCX1ZR33mjVrKCmx7ZocIYRziPRxJzHk8vdJbMhUoKDczKID+WzLrr6vjjOw+846kT7u9I3wJiW92N5dXbG+Ed5OG3UKIYSzaNasWeX/HzhwAFVVee3WLjWeq3Gz/E0NahrFDaMeZeNn77Jz9ZdEd+hC654D6HjzcPS+loAhJ+1wndqy8mschpt79YqT1910K3t/+o5jf2wlqn1nctOOcHzfLgZPfrHynLr2FdQ0igmT/slbc15n0aJF9OjRgyFDhjBq1Cj8/f0v9BEJIVyMq2UT1Sfr55GSXozBpNKtiadTlXKul21CE0M8MZhUNpxw3rtaPcK8SAzxdPQwhBDC6Xl6nv1baTabURSF+99agkZbvaSnh+fZtN1BT8wk4ZY72bt+NQd+XcfK2c+wbuEbjPv4f/g3CUe9hLYA3HX6GsfXOukm3PVe/LH2W6Lad7akmGk0tDuTYgZcUl+zX32Vh//xAN9++y1r165l4sSJvPzyy/z2229ERERc5JMSQrgKazaRpJtdnPVavnuol4NHcla9BDMA3ZpYvvycMaBJCvOiaxMJZIQQ4lLFxsaiqiqBTaMIiYqt9fzQFnGEtoij90P/R+quLcx7YBCbl3/ETY89Q3BE9CW1dSEent5c26Mfe1JWMOj/XuCPtd8Q3fF6/EJCK8+5lL7cFIV27drRrl07nnvuOX755Re6d+/OvHnzePHFFy/6WiGE63ClbCJH2nCiBJ1WcZpJgHrbFkBRFLqHetE3wnK3y9GTU9b++0Z40y3Uy6mmy4QQwlXcfvvtaLVaflowm/OLY6qqSvHpU4BlYb6pouqeLaHN41A0GirKywHL4nuNVssPtbRVF9fddCsF2Zls+/ozTuz/k+tuurXK83Xtq6KkELOp6rjbtWuHRqPBYDDUeTxCCNeQGOJJjzDnmXVwVinpxU5TurneZmasEkM8aeLpxqrUQoflJVqrljlzZQYhhHAFsbGxvPjii0yZMoVTGceIu/FmdN4+nDp+jD9/Sqbz7aNJGv0Yh7ZuYMWsp2nXdwiNomIxmyr4PXkZGo2Wtn0GAxAc2Yx+46aw5q0XOX2Rtuqi1Q190Xn78N2c6Wi0Z/uwqmtfObt+odnIfzF8+HBatmxJRUUFn376KVqtljvuuMPmn6cQwvGcOZvIWSjAqtRCHmod6PDCWfUezIBlGu+h1oGszyhmW3ZZZS1rezu3ZnaSk9fMFkIIV/H0009TFhzJx3Pf4ocFswHwb9KUFtffSOueAwAIa9mGll17se/nNRRkZ+Ku9ySsRRvuf2sJ11x3dpPLGx94nEbXxLJp0bwLtlUX7jo9rZMGsHP1cpp36YlPUEi1c2rrS6NAp44dKOzfn5UrV3L8+HG8vLxo3749q1ev5vrrr7/sz0wI4bys2UQ6rUJKenG9Xae6EmuVs58zih2+N6NdN82si7QiI8mphZwuN9vtl8XaboCHhkEyGyOEEDb356kyVqYWOXoYNjckype4IJ2jhyGEcJC0IqNDs4lcwT0t/B16be3wYAYsu68eLjCyPbuUI4VGmwU11naa+bqTEOJJjJ87GlkbI4QQNpdbVsF7+047ehg2N6Z1IEH66tXOhBBXD6NZrfdsIlehAP4eGsbEBTrsGtshaWbn0ygKzf09aO7vQZ7BxM6cMnbmlmEwqWeeB3MdfnPOPU+nVegQrKdDIz2BOvkiEkIIewrSadFplcq/2w2BTqsQqKu3OjlCCCflrlHoG+FDqwCd3bOJXI0KnC43c7jASHP/6vt+1QenmJmpiaqq5BnMZJZUkFlaQUaxkczSCirM1c9100Copxvh3u6EeroR6uVGoE4jFcqEEKIe/Xi8mK1ZpQ3iC14BOjf2pFdT71rPFUJcPeyVTeTKFCDa152RzR2zkbDTBjM1UVUVswoVqorJDFqNpf6/RkECFyGEcLA8g4n5e/McPQybGRsXKDP7QogLslU2UUPhqL+ZLhXMCCGEcG5LDuaTWmh06TuVjr7LKIRwLZebTZRbVsGhAufYq+VKOXI22ynWzAghhGgYEkL0HC107S9nFUhwkp2thRDOT1EUgvRagvRa4rBUP6wtm0hVVebsrvtGwBezfcVils+YyFOrthMYfk2dX3d42ybeG3MrDy/4hpjE7lc0BhXYmVvGjeH1vxG9rGwUQghhM7F+HgR4aHDVxF8FSxn/GD8p4S+EuHyKoqDVKOi0GrzcNei0GrQapfJC/5TB1KAKpgAYTJYZqvomaWZCCCFsKq3IyKID+Y4exmUb1cKfCNmPTAhhR7bcm8tsMmGqMOLmobukWRGz2YzJWI7W3QONxjbzG47Ym0tmZoQQQthUpI87iSF6l5udUYBOIXoJZIQQdpdZUmGzi3CNVou7Tn/J6V0ajQZ3nd5mgYxGgczSCpu0dUn91nuPQgghGrye4d74uVC6mQL4eWhICpdSzEII+ztRUoGtErK2r1jMlPgQ8jKOATBrUDwfTbyb/b/+xJt33sjU6yN4/Y7u7PlhVZXXHd62iSnxIRzetskm4zCrkFFc/2smJZgRQghhc+4ahcFRvi5T1UwFBkf54q5xlfBLCOGqVFW1+wxGbtphFj/9MC2796H/+OfQaN34/F8PcuC3dXbtN7O0gvpeweKS1cxUVcV0pkKE2QyaMxUitLLfjBBCOI1IH3f6RniTkl7s6KHUqm+EN5GSXiaEqAcmlRrLNttSTuoh7pm9kLZ9BgOQeOs9/Pf2rvzvzZm0uP5Gu/VbYbbM0Gjr8XLc6YMZVVU5ZTBZaneXVHDiTA3vi9XuDvNyI/TMvyCdVgIcIYRwkMQQTwwmlQ0nShw9lAvqEeZFopRiFkLUk4p6mLnwCwmlTe9BlY/1Pr7EDx7B+o/eojDnJL6Nmtit7wpVRVuPScZOG8zkGUz8nlPGrnN3VYWL5hdWmCG9uIKM4rN5iDqtQvtgPR0b6WUnZyGEcIBuTSyBgjMGNElhXnRtIoGMEKL+mOuhenFwZLNqN/MbXRMLQF5Gml2DGZMZqMdLbqcKZsyqyqGCcrZnl3G00IgCVfKt6/qzP/c8g0lla1YpW7JKifZ1JyFET6yfBxqZrRFCiHqhKArdQ73QaRVS0our/W2v9/Gc6b9vhLfMyAgh6p2Nioc5LW09vz+nCWbSiowkpxZyutxcOTFlqy87azuphUaOFhoJ8NAwKMpX8qOFEKIeJYZ40sTTjVWphRSUmx0S0Firlg2W7wAhhIO41cMN9dy0I6iqWmV2JufYIQACwyPt2nd9vL9zOTw2NJpVUtKLWHQgn/xyy5yKvb7grO3ml5tZdCCflPQijGZXqbUjhBCuL9LHnYdaB5IQogeot6xqaz+JIXoeah0ogYwQwmG0imWdtz0VZGfy54/JlY/LigrZseoLwlq1tWuKmZvGst9MfXLozExakbHyDh3UX9qBtZ/t2WUcyC+XO3RCCFGP3DUKfSN8aBWgqzIjb4/vAGu7/jIjL4RwEoqiEOrpRnqx/cozN4qK5cuZk0jf+zs+QSFs/3YxRaeyGTbjTbv1CZZCXPVdeMthwcy27FKH506rQMGZWRrJnRZCiPoV6ePOmLhADhcY2Z5dypEa1kpeLms7lrWSnsT4uctaSSGE0wjzcqtSsMrWgiNjuOWpl1k953lyUg8SGH4Nd/3nPVp2622nHi0zMuHe9X/DSFHreWcbVVX55WSpU1a16RHmRbcmnlLKWQghHCDPYGJnThk7z61iqVj2LKjNuefptAodgvV0kCqWQggn9eepMlamFtml7VmD4mkSey33v/m5Xdq/mCFRvsQF6eq1z3qfmXHWQAbOlg3tHurl4JEIIcTVJ1CnpVdTb24M9yLPYLbsL1ZaQUaxsdb9xcK93Qn1tOwvFqjTyE0pIYRTC/VymhpcNuWI91WvPW7Lct5AxmrDiRJ0WkVSzoQQwkEURSFIryVIryUOyx0+VVUxq5bN2ExmS+lPN0VBoyCBixDC5QTptOi0SuUsdEOg0yoE6uq/tli99ZhWZCTleHF9dXdFUtKLSSsyOnoYQgghzlAUBa1GQafV4OWuQafVoNUoEsgIIVySolg2dW8of8EUoEOw3iF/k+tlzYzRrPL+vjyH7Stwqaz7EDzUOhD3+q4vJ4QQQgghGrw8g4n5e/McPQybGRsX6JB1ivUyM7M+o9hlAhk4W+Xs5wzXmEkSQgghhBCuJVCnJdrX3eVnZxSgma+7wwqu2D2YSSsysi27zGUCGSsV2JpdJulmQgghR8c4HAAAIABJREFUhBDCLhJC9C53jXw+FUhw4FpzuwYzZlUlObXQZSNOBUhOLcRcv9WrhRBCCCHEVSDWz4MAD41LXysHeGiI8XPchsR2DWYOFZRz2oXSy86nAqfLzRwukNkZIYQQQghhWxpFYVCUr0tfKw+O8nXopsR2DWa2Z5e5bKRppQDbs0sdPQwhhBBCCNEARfq4kxjiepXNFKBTiJ4IH8fNyoAdg5k8g4mjhUaXjTStVOBIoZE8g8nRQxFCCCGEEA1Qz3Bv/Fwo3cxa+Tcp3NvRQ7FfMPN7juvPylgpwM6cMkcPQwghhBBCNEDuGoXBLpRuZk0vc4YtTOwSzKiqyq5c21cwK8zNYtGTDzCzV0umxIewcdE8AHKOHeKDccOZkRTDlPgQ/vzpO5v2qwI7c8uohy15hBBCCCHEVSjSx52+EY6f6aiLvhHeRDo4vczKzR6NnjKYMJhsf+Gf/NpU9v/6E33GPIlvcGOaxnUAYNm0CeRlpHLTuGfw9PUn4sxxWzKYVPIMZoL0jqmhLYQQQgghGrbEEE8MJpUNJ0ocPZQL6hHmRaIDSzGfzy7BTGZJhT2a5dDWDcT1HEjS6McqjxnLSjn2x1Z6PfhPut35kF36tcosqZBgRgghhBBC2E23JpZAwRkDmqQwL7o2cZ5ABuyUZpZZUmGXhotP5aD39at6LC8XAL2vvx16PEujQGapfYI0IYQQQgghABRFoXuoV2XKmaNXpVj77xvhTbdQLxQHlmGuiaLaYSHIZ/tPk1589sI/P+sEKe/+h783/UBJfh5+IaG07NabwU++hJu7B6fSj7L6zZkc2rKBinIDoc3j6P3wE1zb4yYAtq9YzPIZE6v102fMk/ywYHaVYwFhkfwreUdlv9/PfZm/N6ZQWphPcGQzeox6lMRb76nymopyAz99MIedq5eTfzIDn6BGtO9/O/3GPY2bh67yvAhvN0a1DLDZ5ySEEEIIIcSFpBUZWZVaSIGD9m20Vi0bHOXrNGtkzmfzNDNVVavMYBRkZzL33psoLSyg8+33EhLdgoLsE+xJWYmxrJTSgtO8+8DNGMtK6Xbnw3j5B7Fj1RI++ee93PPKh7TpPYhm8V0Z8cJcvpg6jubX30j8oBEAhLaIQ+/rR/JrU2k/4HZade+Lh5clii3MzeLd+waAonD9yAfxCQzm700/8OXMSZQVF3LDPY8AYDab+WTSKI7u3ELn2++lcbOWZB7cy8bP55Fz7BD3/veTyveSWVqBqqpOF5EKIYQQQoiGJ9LHnYdaB7I+o5htZ/ZvrI+gxtpPYoiepHBvp6hadiE2D2ZMKlSYzz7+31svUJibxbhP1lRZmN/v0adRVZXk16ZSlJvN2A9WEt3xegA63T6KN0beSPJ/p9H6xoEERUQTFBHNF1PH0eiaGDoOGl7Zjt7Hl+TXphJ+7XVVjq9959+YTSYe/+JnvAOCAOgy7H4WTxnDD/Nn0+WO+3DXe7Jr9Zcc3PIzY977trJ/gCaxrfnm35NJ3bWFqPadAcv7Mqugdd6fpxBCCCGEaEDcNQp9I3xoFaAjObWQ0+VmuwU11nb9PTQMcuLZmHPZfGlLxTlZa2azmb3rVtM6qX+NFcYUReHvTSlEtI2vEkjovHzofPu95GUcI+vw35c8BlVV2fPDKlon9QdVpTgvt/Jfy669KCsq4PhffwCwO2UFjZu1JCS6RZXzYjvfAMDhrRsv+P6EEEIIIYSoD5E+7oyJC2RYjB/RvpYgw1b3163tRPu6MyzGjzFxgS4RyIAdZmbM58zKFOflYCgqpEnstRc8//SJdNq1Tah2vHGzlmeeTyO0eetLGkNxXg5lhfls+eoTtnz1Sc3nnMoBIPfYYbKO7OfFPjWPsSgvp8pjkxmQgmZCCCGEEKKeaRSF5v4eNPf3IM9gYmdOGTtzyyq3RNEoliyi2ts5e55Oq9AhWE+HRnoCda53kWvzYEZjl/pol0Y9E1F1uHk4CbeMrPGc0BZxlnNVM6HN4xj0fzNrPM+/SdMqj7VO8P6EEEIIIcTVLVCnpVdTb24M9yLPYCazpILM0goyio1kllZUWfZh5aaBUE83wr3dCfV0I9TLjUCdxqXXg9s8mHE758PwDmyEzseXk4f+uuD5AWERZKcerHY8++iBM89HXvIYvAMbofP2QTWbaN6l50XPDYqI5sT+P4ntnFSnH6SbC/+whRBCCCFEw6IoCkF6LUF6LXFYqvCqqopZtSyPMJktN+PdFAWNgksHLjWx+TyDVrFEfQAajYa4Gwey7+c1pO/dWe1cVVVp1b0v6Xt2kLpra+Xx8tJitnz1KYHh19A4ptUlj0Gj1dK292D2/LCKzIP7qj1/bupYu35DKcg6wdavPq12nrGslPLS4srHbhrLtJwQQgghhBDOSlEUtBoFnVaDl7sGnVaDVqM0uEAG7DAzoygKoZ5ulfvM9B//HAd/W8eCh4ZWlj4uyDnJnpQVjP1wFT0fmMiuNV/x0YQ76XbXw3j6BbBj1VLyjqdyz+yFaC4zb63/xKkc2raJuaMH0Om2UTSJaUVJQR4Zf/3Bwc0/M22dZean46AR7P7+W77592QObdtIVPvOqGYT2UcP8sf33/KPd76oLF4Q6unWIH8JhBBCCCGEcEU2D2YAwrzcyCiuwAz4Nw5j3MdrWPvuy+xc/SWG4kL8GofRsltv3PWeePr68+jC71j95kx+WfK+ZdPMFnGMnvNZ5aaZl8M3uDGPfbqGHxa8yp8/JbN52UK8AgJpHHMtAyZOqzxPo9Fw72ufsHHRPH5P/oK9P32Hu96ToKZRdL9rDI2uibWcp0C4t2tUdRBCCCGEEKIuVFW1bK2iqpjNlvXvboqC1kVS0hRVtX2t4T9PlbEytcjWzTrckChf4oJ0jh6GEEIIIYQQl0xVVU4ZTJZiASUVnDhTNOBixQLCvCyFAkK93AjSaZ0uwLHLzEyol12adbiG+r6EEEIIIUTDlWcw8XtOGbvOLeMM1BDDVKowQ3pxRWW2FVjKOLcP1tPRico42+XqPEinRadVKj+shkCnVQjUSV1mIYQQQgjh/MyqyqGCcrZnl3G00IgCnHtlfrFApko75/y/waSyNauULVmlRPu6kxCiJ9bPA40DZ2vsEswoiiVq25pVSkMIZxSgQ7De6abVhBBCCCGEOF9akZHk1EJOl5uxXr3a6prc2k5qoZGjhUYCPDQMivIl0scxa8vtNtXQsZG+QQQyYPmhdWikd/QwhBBCCCGEuCCjWSUlvYhFB/LJL7fMqdjretzabn65mUUH8klJL8Jorv+rf7stAgnUaYn2dSe10OjSQY0CRPu6O01eoBBCCCGEEOdLKzKyKrWQAjsHMeez9rM9u4wD+eUMrudZGrsuAkkIcf3ZGRVICPF09DCEEEIIIYSo0bbsUhYdyKeg3Oywa28VKDgzS7Mtu7Te+rVrMBPr50GAhwZXXWmiAAEeGmL8ZH8ZIYQQQgjhXFRVZVNmCSnpxZbHjh7Pmf+mpBezKbMEO+wAU41dgxmNojAoytfhH+zlUoHBUb4OrdAghBBCCCFETX45WcqGEyWOHkaNNpwo4ZeT9p+hsXut4UgfdxJD9C43O6MAnUL0RDioMoMQQgghhBAXsi3LeQMZqw0nSuyeclYvG6f0DPfGz4XSzRTAz0NDUri3o4cihBBCCCFEFWlFRlKOFzt6GHWSkl5MWpHRbu3XSzDjrlEY7ELpZtb0MneNq4RfQgghhBDiamA0q6xKLXSpSYJVqYV2K9tcb1vaR/q40zfCNWY6+kZ4O2zjHyGEEEIIIS5kfUaxQ6uWXSprlbOfM+wzk1RvwQxAYognPcK86rPLS9YjzItEKcUshBBCCCGcTFqRkW3ZZS4TyFipwNbsMrukm9VrMAPQrYnzBjRJYV50ayKBjBBCCCGEcC5mVSXZhdLLzqcAyamFmG1crrnegxlFUege6lWZcuboH4i1/74R3nQL9UKRMsxCCCGEEMLJHCoo57QLpZedTwVOl5s5XGDb2Zl6D2asEkM8uaeFv0OrnFmrlt3Twl9Sy4QQQgghhNPanl3m8EmAK6UA221cqtlhwQxYigI81DqQhBA9UH+zNNZ+EkP0PNQ6UBb7CyGEEEIIp5VnMHG00OiyszJWKnCk0EiewWSzNh0azIClbHPfCB/uaeGPv4dlOPYKaqzt+p+ZjekT4SPll4UQQgghhFP7Pcf1Z2WsFGBnTpnt2lNVG6/CuQJmVeVwgZHt2aUcKTSigE0iUGs7zXzdSQjxJMbPHY2sjRFCCCGEEE5OVVXm7D6FwWSfS/ZZg+KJSezG8Offtkv7NdFpFSa1C7LJWnU3G4zHZjSKQnN/D5r7e5BnMLEzp4yduWWVPzyNAnXZb+fc83RahQ7Bejo00hOo017wNaqqYlKhQlUxm0GjATdFQasgRQGEEEIIIUSlzz//nKysLCZNmmTztjMyMliwYAG33norHTp04JTBZLdAxlEMJpU8g5kg/YWvzevKqWZmaqKqljebWVJBZmkFGcVGMksrqDBXP9dNA6GeboR7uxPq6UaolxuBOk21YERVVU4ZTJY2Syo4cabti7UZ5mVpL9TLjSCdVgIcIYQQQoir1ODBg9mzZw9Hjx61edvbtm2jU6dOLFy4kPvvv58/T5WxMrXI5v1YVZQbUBQNWvf6XUM+JMqXuCDdFbfjVDMzNVEUhSC9liC9ljgsb1hVVcxnZlFMZtCemUXR1DKLkmcw8XtOGbvOne0BaohhKlWYIb24goziisrzdFqF9sF6OtYy2yOEEEIIIa5uZWVleHh4oNFc3lL1zJKKWq9Xr4Sbx5UHFJdKo0BmaUXltf0VtWWD8dQ7RVHQahR0Wg1e7hp0Wg1ajVJjIGNWVQ7kG1hyMJ/5e/PYmlVaZaqurr8Y555nMKlszSpl/t48lhzM50C+weYbAAkhhBBCCMcoLCxk0qRJREdHo9PpaNy4Mf369WPHjh3ceOONJCcnk5qaiqJYrj+jo6MBWLduHYqisGTJEp577jmaNm2Kl5cXBQUFnDp1ismTJ9OuXTt8fHzw8/Nj4MCB7Nq1q7LfdevW0alTJwAeeOABFEWhb6QvW1csrjzn2O7tfPjYCGYkxTCt2zUseGgIR3durvYeDm/bxNv39GXq9RHMHtKJzcs/JmXeK0yJD6ly3qxB8SybPr7KsdLCfFa9+hyzBsXzXJemvDzgOr6Y+hjFebkX/dy2r1jMlPgQjv7+GytemcKLva/l+aRYvn7x/6gwllNamM8XUx9jelJzbolrylNPPcX5SWJms5k5c+bQpk2b2n9QuMDMzJVIKzKSnFrI6XJzZQUIW4Uc1nZSC40cLTQS4KFhUJSvlHkWQgghhHBxjzzyCMuXL2f8+PHExcWRm5vLxo0b2bdvH88++yz5+fmkp6fz+uuvA+Dj41Pl9S+88AIeHh5MnjwZg8GAh4cHe/fu5ZtvvmH48OE0a9aMkydPMn/+fHr27MnevXsJDw+ndevWzJw5k2nTpjFmzBhuuOEGvksrIrKdJcA5tGUDCyfcSdPW7ekz5kkURWH7iiW8P/Z2xn6wksi28QBk/PUHC8ePxLdRE/o+8hRmk4kf33sV78DgWt+7oaSI+Q/eQvaR/SQMuZumra+j+HQu+9avIT8ro05trHhlCr7BjenzyFOk7d7Olq8+Qe/rz7FdW/APi6D/+GfZvymF2bNn07ZtW0aPHl352rFjx/LRRx/xwAMP1Oln5fRrZi6H0ayyPqOYbWc2F6qPN2jtJzFET89wbyn5LIQQQgjhogICAhg1ahRvv11zha8LrZlZt24dvXr1IiYmhj179uDpeXZTdoPBgLu7e5V0s6NHj3Lttdfy7LPPMnXqVKDqmplRo+/j1V2W2RBVVXnttusJahrFA28vrcxIMpaV8vrwHgRHNuPBucsA+GTSKA5u2cDkbzfjFxIKQM6xw7w+rDvmigpe3pFdOYbzq5l9/+4sfnzvVUa9+hFteg+q8v5UVb3oko7tKxazfMZEWnTtVWWM795/M2m7t9H5jvu49ZnZAJhNJt69LZHY2FjWrVsHwMaNG+nRoweLFi3i7rvvvmA/53LJNLOLSSsy8v6+PLZnW+pX11ekZu1ne3YZ7+/LI63IWE89CyGEEEIIWwoICGDz5s1kZGRc1uvvu+++KoEMgE6nqwxkTCYTubm5+Pj40KpVK3bs2FFjOxXnzDmc+Hs3uccO02HgHZScPkVxXi7FebmUl5bQvHMPju74FbPZjNlk4uCWn4nrNbAykAFodE0Mrbr1qXXsf/64irCWbaoFMlD3Cr+dbr2nyrmRbeNRVZXEW++pPKbRaolPSODw4cOVx5YtW4a/vz/9+vUjJyenTn01qDSzbdmlpKQX19tsTE1UoKDczKID+fSN8CYxxLPW1wghhBBCCOfxyiuvcN999xEZGUlCQgI333wzo0ePJiYmpk6vb9asWbVjZrOZN954g7lz53LkyBFMJlPlc8HBNadumc9ZtJ1zzHLRv2za+BrPBTAUFWA0lGEsKyU4ovoYgiKrHztfbvpR2vYefNFzCnNOVnms9/HDXX/2mtc/NKLa8wD+TcKrHPf18ycvL6/y8YEDB8jPz6dx48YA1dbT1KRBBDOqqvLLyVI2nCixPHb0eM78NyW9GINJpVsTTynlLIQQQgjhIkaMGEGPHj34+uuvWbt2LbNnz2bWrFl89dVXDBw4sNbXnz8rA/Dvf/+bqVOn8o9//IMXXniBoKAgNBoNkyZNwmyuuSTVuQXQrBf2AyfNILxV2xrP9/D0xmgoq8M7vDL/vqlq/8NmvEnCkLsqH2u0NVf71WiqHleUqgGL2WymcePGLFq0qM5jaRDBzLmBjLOxjqt7qJeDRyKEEEIIIeoqLCyMcePGMW7cOLKysoiPj+ell15i4MCBl3WTevny5fTq1YsPPvigyvHTp0/TqFGjysfntu12zv8HRUQDoPf2pXmXnhfsxycoBDedntz0I9WeO5VW/dj5giOiOXlo30XPefDd5VUeN45pVWu7NdFQ9XOMjY0lJSWF7t271xgQ1tyGi9uW5byBjNWGEyVsyy519DCEEEIIIUQtTCYT+fn5VY41btyY8PBwDAYDAN7e3tXOqY1Wq62WNrVs2TKOHz9e5Zi3tzdgCXK0imUDd4CmrdsTFBHNz5++g6Gk+iaaRXmWNSYarZbmnZPY+9NqCrIzK5/POXaYv3/5odZxtuk9mBP7/+TPH5OrPWcdf/MuPav8O3dtTl25aSwzM+caMWIEJpOJF154oe7tXHLPTiStyEjK8WJHD6NOUtKLaeLpJqWbhRBCCCGcWGFhIREREQwbNoz27dvj4+NDSkoKW7du5bXXXgMgISGBpUuX8sQTT9CpUyd8fHy45ZZbLtru4MGDmTlzJg888ADdunVj9+7dLFq0qNo6nNjYWAICApg3bx6+vr4cKQDvFh0IahrFHdPmsHDCncwZ1oOEIXfh1ziMgqwTHN62EZ23L/e9YUnP6jv2KQ78to55Dwyiy7D7Uc0mfl36AU1ir+XE33suOs6k+x5jzw8r+fxfD54pzdye0oI89q5fw23PziasZc0pbpcq1NON80fSs2dPxo4dy8svv8zOnTv57rvvam3HZYMZo1llVWqhQxf7XwoFWJVayEOtA6VssxBCCCGEk/Ly8mLcuHGsXbuWr776CrPZTPPmzZk7dy6PPvooAOPGjWPnzp0sXLiQ119/naioqFqDmWeeeYbi4mI+//xzli5dSnx8PMnJyTz99NNVznN3d+fjjz9mypQpPPLII1RUVDB8xpsENY0iJrE7j370HT++9xq/fvEB5SXF+AQ3JrJtPF3uuK+yjaZx7XngrSV8N2c637/7H/ybhNP30X+RfeQA2UcPXnScOi8fxn6wkpR5s/jzp+/YsWopPkGNiO3cA7/G4Rd9bV1pFAj3rvkG/7x580hISGD+/Pl1astl95lJSS9ie3aZSwQyVgqWfWj6RPjUeq4QQgghhBB/nipjZWr1tLLL8ekTozl56C8mf7vFJu1diSFRvsQF6a64HZdcM5NWZGSbiwUyYJlB2ppdJnvQCCGEEEKIOgn1urxEKmNZ1fXaOccO8ffGFGISu9tiWFfsct/X+VwuzcysqiS7UHrZ+RQgObWQMXGBaKRcsxBCCCGEuIggnRadVsFgurQr39lDEom/5U6CmkZz+kQavy3/CK27O0n3XXifmvqi0yoE6mwzp+JywcyhgnJOl9dci9sVqMDpcjOHC4w09/dw9HCEEEIIIYQTUxSF9sF6tmaVXtKN/JZde7Prf19TlJuF1sODa9ol0n/8szS6JtZuY60LBegQrLfZHowut2ZmycF8UguNLjkrY6UA0b7ujGzu7+ihCCGEEEIIJ5dnMDF/b56jh2EzY+MCCdTVvLHmpXKpNTN5BhNHXTyQAcvszJFCI3kGk6OHIoQQQgghnFygTku0rzuuvkBBAZr5utsskAEXC2Z+zylz+R+ilQLszClz9DCEEEIIIYQLSAjRN4gb+gkhnjZt02WCGVVV2ZXrehXMLkQFduaWVdsJVgghhBBCiPPF+nkQ4KFx2Rv7Cvw/e3ceHlV1PnD8e2fJzGRfIQkJCbugyJKAGmQVVxCsOyK2KkLVurRu5dfaWmurQm2trYpoRVGUuoKAigQXBKpAlMUNWUMiiVnIOpmZzHJ/fwwzMiQhJJkwuZP38zw8OnfOnPvekJD73nPOe4iP0NE3NrgbyGsmmTnscLe5ikNX53CrVDm0W8xACCGEEEKcHDpFYUpWjGYf7KvA1KyYoFfz1UwyU9rgCnUInSJcr0sIIYQQQgRXZrSR3BSz5kZnFGBUipmM6OCOyoDGkhnNBHuCdAqU2iSZEUIIIYQQJ2Z8ehSxGppupgCxETrGpUd1Sv+ayQ9KGly0d0LWvq0b+ffMydx/ZgYLpo3i8zdeJH/hfOaNTPG3mTcyhRWP3MfXH73L41eM5fdn9OIfl5/Nro3rAvryfa5s/25eue9GHhjbhwcnDmTlgv/D6Wjbgn6PCoesznZelRBCCCGE6G6MOoWpGppu5pteZtR1TvqliU0zVVVt9wjGoe92sPhXVxGT3JPJv7wXj9vNh8/+jaiEpCZtC7d9ztcfrubMK6/HFBnNpmXPsfSeG7jv3S+Jik8MaPvqfbNJSM/k/F/9noM7C9j06rPYamu48s9Ptim+UpsLVVWDtnGQEEIIIYQIb5nRRiZnRJFfbA11KK2anBFFZidML/PRRDLjVsHVzmGZ/IXzUXR6frl4NbEpqQAMPXc6/7h8TJO2Zft38+s3NpCU2QeAvrln88TVE9j+/lvkXT07oG1Cr95c94+XADjrqhsxR0Xz2euLGTvrFtIGnnrC8bk83hEaveQyQgghhBDiBOWmWHC4VT4taQh1KC0amxZJbpBLMR9LE9PMXO0sX+xxu9mzeT1DJl7oT2QAknv3ZVDeOU3a9z9jnD+RAUgbeCqm6BgO/1DYpO2ZV94Q8Pqsq28CYNfG/DbH2d7rE0IIIYQQ3VdeTwtj0yJDHUazxqVFktezcxMZ0MjIjKedozL1h8tx2m0kZfRp8l5iZtNj8akZTY5ZYuKx11Y3OZ7cu2/A66SMbBSdjqpDRW2O0+0BgrcRqhBCCCGE0DhVVb2zk1QVjwd0OjAoCnoF//IERVEYkxqJSa+QX2xFgZCupfGdf3JGVKePyPhoIpnRnaTxI6WFE6kn8m3RgTUvek2MjwkhhBBCiM6gqiqHHW5KG1yUNrgoaXBRanM1u8zCoINUi4G0SAOpR/7kJJvpaTGwqrCO2kZPSBIaX9WyqVkxnbpG5liaSGYM7UwUohNTMJjMVBbvb/Le4aKmx9qi4uA+Entl+V9XFu1H9XhISM9sc1/tvT4hhBBCCKFdVQ43X1bY2V5p928Or4PjVvB1eaDY6uKQ9adKvya9wrAkM5f1jWVHpZ2t5faTNkrjO09uiplx6VGdVrWsJZpIZvSKNwttaxEAnV5P/9Hj+Oaj96gtL/Wvm6k4uI9dm9a18unj++y15xl41kT/6/8texaAQWOarsU5HoPOu9+MEEIIIYQIfx5VZW9tIwXldg7UOZskHSd6u3t0O4dbZUuZjc1lNrJjjIxPt7CtwkFNo6fTkhpfv3EROqac5NGYo2kimVEUhVSLgWJr28szT557L7s/+5iF10/hjMt/gepx87///oee/U6hZNdX7Y6p6oeDLLnzWgbkTeLgjq1se/d1hl14GWkDT2tTP6kWg5RlFkIIIYToBorqnawurKP6SJIBwUs0fP0U1jk5UOckzqgwPi2Sg/VO9jeTNLWXr5/sGCM5KRb6xhrRhfBeVhPJDEBapCFgOO1E9RoyjOv/tYx3H/8ja59+hLie6Uy++T7K9++m/MCedscz45FnWbvwEdb868/o9AbOuupGLrzzgTb1oVMgPSo0WawQQgghhDg5nB6VTw5Z/dO/oPOmgPn6rXWqfFLSQG6KmUm9ovjqsINtR09nU7zbg7Tm6HYmvcLwJDPDk80kmLpG9SrNJDOpkYY2JzI+/UaP5bZXPgw49tJvriOuR5r/9cNflDf72ftWf9Hs8aiEJGbOf76dEXl5VO/IjBBCCCGECE9F9U7/wnw4edXGfOcpKLezu6aRqVkxTEiPpMrh8RYasLk4ZHW2WmggPcpIqsVbaCDBpOtyM4o0cyedGtn+UJ12G0bzT+XhKg7uZdeGfEZefFUwQuuQjlyXEEIIIYTouraW20JeMlkFahs9LN1d4y+ZnGjWMwST931VxXOkBLTb462ya1AUdEeVgO7KNHMnnWjSY9Ir/qGxtlgwLZeRF19NYq9sqkuK+OyNF9AbjYz7+a86IdITZ9IrJJikLrMQQgghRDhRVZVNP9r4tKTB+zrU8Rz5b36xFYdbJa+nJWCvGr0CehRN7nuomWRGUbwl57aU2dr8DTHwrElsf/9t6ivL0EdE0HtoLuf/6nck9+7XKbHMHjPFAAAgAElEQVSeCAUYnmTWRMYrhBBCCCFO3NGJTFfji2tMamSIIwkORVXVUCeLJ6zK4eaZb6pCHUbQzB2S0GUWTwkhhBBCiI7bWmYj/wdrqMNolW/KmdZpao5TgklPdowRrY9lKECfGKMkMkIIIYQQYaSo3qmJRAa8U86K6p2hDqPDNJXMAOSkmEM+77CjVCAnDDJhIYQQQgjh5fSorCqs08xDdwVYVViH80TqM3dhmktm+sVGEB+h08w3yrEUID5CR99Y2V9GCCGEECJcfHLISm2jRzMP3X1VztYf0sZIUks0l8zoFIUpWTGa+UY5lgpMzYppcadUVVVxeVTsbg8NTg92tweXR0VDS5uEEEIIIbqVononW8vtmrs/VYEt5XZNTzfTTDWzo2VGG8lNMVOgsW8aBchNMZMR7R2VUVWVww63d+OiBhclRzYwOt7GRWmR3k2LUiMNJJr0Ug1NCCGEECKEPKrK6iPTy7R0X+qjAKsL65gzJKHFh+1dmSaTGYDx6VHsrmnUzHCeAsRG6BiXHkWVw82XFXa2V9r9++bogGZyGD+XB4qtLg5ZXf52Jr23XPWIZLMUExBCCCGECIG9tY1UNx7vLq5rU4HqRg/7ap30j4sIdThtpqnSzMcqqneydHdNqMM4YePTLRTWuThQ5wxa9u7rJzvGSE6KmX6xEZrMqoUQQgghtGjZnhoK65yaeLjeEgXvveRV/eNCHUqbaTqZAdhabiO/uOsvXLLoFWxutdOGIH39xkfomJIVQ2a0FBgQQgghhOhMsgdi6GmuAMCxclMsjE3r+juY2o9MJ+uszNHXb02jh6W7a8gvrtd8qT0hhBBCiK7sywq7ZivsHksBtlXYQx1Gm2k+mQHI69n1E5qTlVb4zlNQbue5b6s0XZ1CCCGEEKKrUlWV7ZVtK0aVv3A+80amYK2q7LS42ksFtlXaNVdBNyySGUVRGJMayeSMKO/rEMfTFfhqhy/dXcPWcluowxFCCCGECCuHHW5/Iadw4XCrVDm0VcwgLJIZn9wUCzMHxBGr4U01g8n345VfbGVjaYPmMm0hhBBCiK6qtMEV6hA6hdauK6ySGfDuQTN7cAI5KWbg5I3SdPXk6dOSBjb9KCM0QgghhBDBUNrgCrsbaZ0CpTZtJTOa3WfmeIw6hckZ0QyKN7G6sI7qRk+nVxEzH6lW1pV9WtKASa+Qm2IJdShCCCGEEJpW0uA67h6Bx2Orq+Hdx//INx+9h4rKaROnMO23jxJh8a4Bd7tcfLz4n3yxchk1Px4iJrknwy+4lHPm3oMhwuTvx+Px8OGiv7H5rSXY62vJPG0k0377KC/cNoO+uXlc8ad/tykujwqHrNpabx1uCWWAzGgjc4YkcHnfWLJjvKWKgzWC4usnO8bI+LTILp/I+OQXW6UogBBCCCFEB6iq2qERjFd/OxuHtZ7zb/s9p587nYKVy1i36G/+99/6853kP/0I6acMZcpdf6ZPzll8vPifvDpvTkA/a/71EOsWLSBjyHAuvOOPJGX2ZfGtV+K0NbQ7tlKbS1NLE8JyZOZoOkWhf1wE/eMiqHK42VZhZ1ul3b9gS6d4s9DW+/mpnUmvMDzJzPBkM9FGHc99W9VpIz/BpgCrCuuYPTgBo66rT44TQgghhOh63Cq4OrBOPn3QUC774z/9rxuqq9i6YikX3vEHSr7/ii9W/pdRP7uWS+//BwBnXXkD0QkpfPrSk+zdsoF+o86mrrKMDUufZsjEi5j12Iv+vvKfWcC6Z+a3OzaXx3vPq9fIbWJYj8wcK8GkZ2KvKO4cmsicwQlMy4ohN8VCRpQBQwtfCYMOMqIM5KZYmJYVw5zBCdw5NJGJvaJIMOn55JCV2kaPJhIZ+KnK2fpDXX+jUSGEEEKIrsjVwZGL0Zf/IuB19ogzaag+jL2+jl0b8gE4e+bNAW3GzvK+3rVhLQB7N3+Kx+XizCuuD2iXd/XsDsUGHb++kynsR2aaoygKiWY9iWY9Q/DOO1RVFY/q/ctze0CvA4OioFO87ZtTVO9ka7n2NhdSgS3ldgbGm8iMNoY6HCGEEEIITfF0sHpxfGqvgNeW2DgAbLXVVJUUo+h0JGX2CWgTk9wTc0wcVSVFAFQf+e+x7SLjErDExncoPrcH0Heoi5OmW43MHI+iKOh1Cia9jkijDpNeh16ntJjIeFSV1YV1Xb6KWUsUYHVhHR4NZd5CCCGEEF2BroN30DpdS5nCUfdlLdyDngx6DWUIGgq1a9lb20i1hqaXHUsFqhs97KuVYgBCCCGEEG1h6MREIyEtA9XjofLgvoDjdZVl2OtqSEjLBCD+yH8ri/YHtLNWH8ZWW92hGDrz+oJNkpl2Kii3a3ZUxkcBCspl7xkhhBBCiLbQK7S43rqjBp09GYCNrzwTcHzDywuPvH8uAP1Gj0VnMPD56y8EtPvff//TofMbdN7CV1rRLdfMdFSVw82BOu2PaKjA/jonVQ43CSaNTIwUQgghhAgxRVFItRgotgZ/g8m0gacx8uKr2PzWEmx1NfTJyaP46y/4YuV/GTLxIvqNOhuAmKQejJkxh09feoold17LgLxJlH7/Nbs2rSMqPgmlnY/dUy2GFpdZdEWSzLTDlxV2zZRibo0CbKuwM7FXVKhDEUIIIYTQjLRIA4es7d8483guvf9xEntlU7ByGd989C7RyT2YcP0dnDP3noB2F9z+B4xmC1vefok9m9fTe2guNzz5Os/cOBWDydzm8+oUSI/SVnEoRdXSrjhdgKqqPL7zsH+fmmBZdNN0AOY8u6LVthUH97Likd9S9FUBjvo6rn3sRU6deFG7z23SK9w5NPGEs3BFUfjjH//IAw880O5zCiGEEEJo2deH7awsrA91GE3Y6mp4cHx/zrtlHhNn/6bNn5+WFcOQRFMnRNY5ZGSmjQ473EFPZNrq9T/cRtWhQs675f+wxMSRMWR4h/pzuFWqHB4SzTLVTAghhBDiRKRGhv422mm3YTRbAo5tXOpda9Mnd0y7+uwK19UW2oq2CyhtCP7cyLZw2m0c3LGFiTf+OiibIvmUNrgkmRFCCCGEOEGJJj0mvRLSh9w7PlhOwcplDBozmYjIKAq3fc72999iwJkTyB5+Rpv7M+kVEkzaqg8myUwblTa40EGnzI88EdaqSgDMMXFB61OnQKnN5d9AVAghhBBCHJ+iKAxLMrOlzBayddSpA4ag0xtYv+TfOOrriE5KIW/GHM67dV6b+1KA4UlmTS3+h25cmvmBBx5AURS+//57rr32WuLi4khJSeH+++9HVVWKioqYPn06sbGxpKam8thjjwFQ0uBd6OVqdLD26UdZMG0Uvz+jF49cOIz3Hv8TrkZHwHm2rniFZ+f8jIfOGczvz+jFPy4bw2evL25XzPkL5/PolBEAvPf4A8wbmcKjU0b6368pK+GNB27nL5OHeM91+dlsXb60ST/Hxv7XC4bx2B/n4XAExu5wOPj1r39NSkoKMTExTJs2jeLi4nbFLoQQQggRbkYkm0NaEKrX4GHMXvgm93+4i4c2H+K3723n4nv+gikyus19qcDw5LYXDQi1bj8yc9VVVzF48GAeeeQRVq9ezUMPPURiYiLPPPMMkyZN4tFHH2Xp0qXcfffd5ObmUhp/Kh6PhyV3XsuBbZsZfeksevQZSOmeb9jwykIqDu5l1t+X+Pv//I0X6Nl3EIPHn49Ob+C79WtY8fC9qB4PZ111Y5tiPXXSFMwxsax+7H6GXXCpf0gRvBspPf3zC0BROPOqG4lOSGLXxnW8+eCd2K11nD3zlwAtxv7+i09zVcVBli9f7j/f7Nmzefnll7nmmmvIy8vjww8/ZMqUKUH4qgshhBBCaF+CSU92jJHCOqemq9wqQHaMUZNbdXT7ZGb06NE884x3odScOXPIzs7mrrvu4uGHH+a+++4DYMaMGaSnp/Of5xcz5M6/sf29N9mzeT1znl1B9ogz/X317DeY5X+9m8Ltm8kaNtrb57MrAhZm5V09m+dvvZINSxe2OZlJG3gq5ugYVj92P+mnnM6IKVf43/vgyb/icbu547X1RMUnAnDG5b/g1XlzWPfMAs647OcYzZZWY9+0aRN5eXls376dl19+mVtuuYUnn3wSgFtvvZWZM2eyY8eONsUthBBCCBGuclLMmt9/UAVyUiyttuuKuu00M5/Zs39aRK/X68nNzUVVVW688adEIz4+nkGDBrFv3z4Adua/Q48+A0nJHoC1qtL/p99o7yZG+7Zs8H/26ETGXleLtaqSvjl5HC4+gL2uNijXoKoqX61bxeBx54OqBsQ08KyJ2Otr+eG7HScU+0cffQTAu+++C8Dtt98ecK4777wzKDELIYQQQoSDfrERxEfo2rlFZegpQHyEjr6x2tpfxqfbj8z07t074HVcXBxms5nk5OQmx8srvIvvKw/uo2z/9zx0zinN9llfVeH//wPbPid/4XwO7tiK094Q0M5eX4s5JrbZPuoqfgx4bY6ObVJ6z8daVYG9robNby1h81tLmm9zuOKEYi8rKwOgsLAQnU5Hv379At4fNGhQs58TQgghhOiOdIrClKwYlu6uCXUo7aICU7Ni0Gls4b9Pt09m9PqmcwObO+blnQ2pqh5S+w9hyl0PNtsqrmcvACqL9vOfX15GSnZ/pvzmQeJS0zEYI/huQz4bly5EVVuuifbX804LeH35A0+QM21G81F5vP0Mv+gKci6+qtk2qQOGtBr7pX1i6Jed1WJMQgghhBCiqcxoI7kpZgrK7ZpaO6MAuSlmMqK1OSoDksy0iS9fTczIpuT7r+k3etxxy9d9u34NrkYH1/3jZeLTMvzH9x41Da0lNz79RsDrHn1bHhGJSkjGFBWN6nHT/4zxx+33eLGfPywJvc57LCsrC4/Hw969ewNGY3bt2tVq7EIIIYQQ3c349Ch21zRS2+jRREKjALEROsalR4U6lA7p9mtm2sqgg6HnTqe2rIQtb73U5H2n3UajzQqA7sgIj6r+9C1tr6ul4J1XWz1P/zPGB/yJTUltsa1Or+e0SVP5at0qSvd82+T9o6e9tRS7QQcOuw2r1Rv7hRdeCMATTzwR0O7xxx9vNXYhhBBCCK1SVRWXR8Xu9tDg9GB3e3B51ID7ueYYdQpTs2I0kcjAT9PLjDptTi/zkZGZNkq1GBgx5Up2rl3B8r/ezd6tG8gaNhrV46b8wB52rF3BDU++RsaQ4Qw4cyJ6YwRL7ryW0ZddR6PNyua3XiI6MbnJmpiOOv/2+9m7dSNPXXcBo352LT37DqKhtopD3+1gz+fr+cPHuwFajL2heC8Pf7CCNWvWkJuby/Dhw5kxYwZPPfUUNTU15OXlsW7dOvbs2RPUuIUQQgghQkVVVQ473JQ2uChtcFHS4KLU5sLVzEoAg857H5gWaSD1yJ9Ekz5gpktmtJHJGVHkF1tP4lW0z+SMKDI1PL3MR5KZNkqLNHDI6mLWY0vYsHQhX65+jW8+ehej2UJiryzGzJhDcm/vovmU7P7MnP88Hzz1MO8+/gAxST044/JfEJWQxJt/uiOoccUk9eDWl9awbtHf+Pqj1Xz++mIi4xPo0fcULrj9D/52Op2u2dgzs/twxx13MHDgQH/b559/npSUFJYuXcry5cuZNGkSq1evJjMzM6ixCyGEEEKcTFUON19W2Nleacfh9o6l6ICWVzODywPFVheHrC5/O5NeYViSmRHJZv8eLbkpFhxulU9LGlruLMTGpkWSq9FSzMdS1NbGzESArw/bWVlYH+owgm5aVgxDEk2hDkMIIYQQolN4VJW9tY0UlNs5UOdEgaBMCfP1kx1jJCfFTL/YCBRg04+2LpnQjEuL5KyeluOu+9YSGZlpo9TI8PyShet1CSGEEEIU1TtZXVhHdaPHX9ApWE/zff0U1jk5UOckPkLHlKwYxqRGYtIr5Bdbg5Y4tZfv/JMzosJmRMZH7mDbKNGkx6RX/EOS4cCkV0gwSS0IIYQQQoQXp0flk0NWtpbbg57EHMvXb02jh6W7a8hNMTM+PYqeFgOrCutCVuXMV7VsalZMWKyROZZMM2uHD3+wsqXMpplqFcejAKN7WJjYS9tl+YQQQgghjlZU7+wySURqpCEgqToZ8fjOMyrFzLj0KM1XLWuJJDPtUOVw88w3VaEOI2jmDknwL1oTQgghhNC6reW2Ljm969jpbp0Rm69f33S3cByNOZokM+20bE8NhXVOTY/OKHgXq13VPy7UoQghhBBCdJiqql124f3YtEjyelpQgX21TgrKbezvhEIEfWKM5KRY6BtrRBcmi/yPR9bMtFNOipkDdc5Qh9EhKpATZovAhBBCCNF9ddVEBvDHNSY1kv5xEfSPi6DK4WZbhZ1tR5eIVsBzAtnN0e1MeoXhSWaGH1UiuruQkZl28qgqi76poiZE8zA7SgHiInTMGZLQLbJ2IYQQQoS3rWU28n/QxmaVx1YUU1WVKofHu3mnzcUhq7PVzTvTo4ykWrybdyaYdGFTarmtJJnpgKJ6J0t314Q6jHa7dkAcGWE+j1IIIYQQ4U9r92QzB8S1upZFVVU8KrhUFbcH9DowKAo6hW6buDRH6vF2QGa0kdwUM1r7dlLwVraQREYIIYQQWuf0qKwqrNPM/ZgCrCqsw9nKXDJFUdDrFEx6HZFGHSa9Dr1OkUTmGJLMdND49ChiI3Sa+gGKjdAxLl1KMQshhBBC+z45ZA1Z+eX2UIHaRg/rD3X9KXFaIMlMBxl1ClOzYjT1AzQ1KyZsa40LIYQQovsoqneytdyumfswHxXYUm6nqF7bxaS6AklmgiAz2sjkDG2MdEzOiAr7euNCCCGECH8eVWW1hqaXHUsBVhfW4ZHl6x0iyUyQ5KZYGJsWGeowjmtsWmST6hlCCCGEEFq0t7aRag1NLzuWClQ3ethXK6MzHSHJTBDl9ey6Cc24Ixs1CSGEEEKEg4Jyu2ZHZXwUoKDcFuowNE2SmSBSFIUxqZH+KWeh/gHznX9yRhR5qZFS/UIIIYQQYaHK4eZAnVOzozI+KrC/zkmVwx3qUDRLkplOkJtiYeaAuJBWOfNVLZs5IE6mlgkhhBAirHxZof1RGR8F2FZhD3UYmiXJTCfJjDYye3ACOSlm4OSN0vjOk5tiZvbgBFnsL4QQQoiwoqoq2yu1V8GsJSqwrdKO7GPfPoZQBxDOjDqFyRnRDIo3sbqwjupGDwp0yg+fr9+4CB1TsmIkiRFCCCFEWDrscONwh9eNv8OtUuXwkGjWhzoUzZFk5iTIjDYyZ0gC+2qdFJTb2F/nDFpS4+snO8ZIToqFvrFGdLI2RgghhBBhqrTBFeoQOkVpg0uSmXaQZOYk0SkK/eMi6B8XQZXDzbYKO9sq7f4nCzoFPCeQ3RzdzqRXGJ5kZniymQSTfPMLIYQQIvyVNrjQAZ5QBxJEOgUOWRvpG6liNptDHY6mKKpM0AsZVfUOKZY2uCi1uThkdVJqc+Fq5qfToINUi4H0KCOpFgOpkQYSTDqpUCaEEEKIbuXl76v5en8R+U8/wq6N62ioqSI2JZWBeZOYes9fMBgjOFx8gPeeeJC9mz/F1eggtf8QJt30G04Ze56/n31bN/LsnEuY8fAiSr7/mq3vvILDaqX/6LFM++2jxKf28rdddNN0GqoPc8Wf/s078+dxaNdOYpJ6MP4Xt3HG5b8IiM/V6OCj/zzOtvfeoObHQ0QnJjPs/Es595bfYogw+dvNG5nCmVfeQO/TR/Hx849TeXAvb7z+Opdcckmnfw3DiYzMhJCiKCSa9SSa9QzB+82tqioeFVyqitsDeh0YFAWdgiQuQgghhOjWVFVlV2ExT806D1tdLaMvnUVK9gBqy0v4Kn8lTrsNW201T19/EU67jbyrbyIyLpEvVi1jya9nMXP+85w6aUpAnx/953FQFMb//Hbqq8rZ+Moi/nPzZdz+6kcYzT9VhLXVVvPC7TMYeu40hl3wM3Z+sILlf70HvcFI7iUzAfB4PCy581oObNvM6Etn0aPPQEr3fMOGVxZScXAvs/6+JODc+7ZsYOfadzjrqhuJSUgkKyur87+IYUaSmS5GURT0CuhRQGaOCSGEEEL4uVVY/cSfqass45Yla8gYMtz/3rk3/xZVVVn92P3UV5Yz9z8ryR5xJgCjLr2Wf141gdV//wODJ1yITvdTQd+G2ip+8+YmTFHRAPQ65XReuW82m99+iTEz5vjb1ZaXctFvHmTstTcDMPqyn/PUdeez5t9/YcSUK9EbjWx/7032bF7PnGdX+M8N0LPfYJb/9W4Kt28ma9ho//Hywj3c8dp6evYdBMDpw5I64asW3qQ0sxBCCCGE0IRGt5tvPn6PwePOD0hkfBRFYdfGfDJOGxmQTJgioxl96SyqDh2kbN+ugM+MnHKlP5EBOG3yNGKSe7JrQ35AO53BwBmXXed/bTBGcMZlP6f+cDk/fLsdgJ3579Cjz0BSsgdgrar0/+k3+mzAOxJztD4j8/yJDHhn5oi2kZEZIYQQQgihCT/+WI6jvo6e/U5psU11STFDT8tpcrxHn4FH3i8itf9g//Gk3n0D2imKQlJmH6pLigKOxyanEmGJCjiW3LsfAFUlRfQ+PZfKg/so2/89D53TfHz1VRUBrxN79Q547fYgM3PaSJIZ0SaqquI+sqbH4wHdkTU9elnTI4QQQohOpuvic4pU1UNq/yFMuevBZt+P69kr4LXBFFi5TN/Fr68rkmRGtEhVVQ473N5qaw0uSo5UXTtetbW0SG+ltdRIA4kmvSQ4QgghhAiatB49MEXH8OPe71psE5+WQXnhnibHyw/sPvJ+ZsDxyoP7Al6rqkpl0X5SBwwJOF5bUUqjzRowOlNxcC8ACUf6TMzIpuT7r+k3ely77oEMct/UZpL/iSaqHG4+/MHK4zsP8+y31awsrKeg3E6xtflEBsDlgWKri4JyOysL63n222oe33mYD3+wUuVwn9wLEEIIIURYMup1nDbhQr5dv4bib7Y1eV9VVQaNmUzxV19QuH2L/3ijzcrmt14iIb03PY5aowLwxerXcFjr/a+/yn+HuoofGTTmnIB2HpeLz9/8qRqZy9nI52++SFRCMr0GDwNg6LnTqS0rYctbLzWJzWm30WiztnhtBp13vxnRNjIyIwDwqCp7axspKLdzoM6JAhy9BO1EN6Y6up3DrbKlzMbmMhvZMUZyUsz0i41AJ08dhBBCCNEOiqJw3b1/5PvPPmbR7On+8se1FT/yVf47zH1+FeOvv53ta97ihduuJm/GTVhi4/li1X+p+qGQmQsWB1QyA4iMTWDhDVPJmXY19Ye9pZmTMvsw6mezAtrFpqSy/oV/UXXoIMm9+7Hzg+WU7PqKn/3+7+iNRgBGTLmSnWtXsPyvd7N36wayho1G9bgpP7CHHWtXcMOTrzVbuAC8M1xkRkvbSTIjKKp3srqwjupGD74foWDV0vD1U1jn5ECdk/gIHVOyYsiMNgbpDEIIIYToTk7t05tbX1zDmqcfZtt7b+Kw1hHbI42BeZMwmi1YYuK4efG7vPfEg2xa9px308wBQ7ju8ZcDNs30mXDjnZR+/zWfLH4CR0M9/UaN5ZJ584mwRAa0s8TG+zfN3PL2y0QnpjDtvkcYfelPSY9Op2PWY0vYsHQhX65+jW8+ehej2UJiryzGzJjjLxhwLJ0C6VFyb9QeiqpKDbjuyulR+eSQla3l9iYjMZ3Fd57cFDPj06MwyniqEEIIIdrg68PeKe0dtW/rRp6dcwnXzP8PQydPO27bRTdNp6H6MHe+/mmHz9uSaVkxDEk0dVr/4UpGZrqpononqwrrqG30Tgw7WRmt7zwF5XZ21zQyVUZphBBCCNEGqZHhefsartfV2aQAQDe0tdzG0t011DZ6TloScywVqG30sHR3DVvLbSGKQgghhBBak2jSY9KH18wOk14hwSS35e0hX7VuRFVVNpY2kF/sraQR6vmFvvPnF1vZWNqAzHgUQgghRGsURWFYkplwSWcUYHiSWRb/t5OsmelGNpY28GlJQ6jDaNHYtEjGpEa23lAIIYQQ3VqVw80z31SFOoygmTskgQSTPtRhaJKMzHQTW8tsXTqRAfi0pEGmnAkhhBCiVQkmPdkxRs2PzihAnxijJDIdIMlMN1BU7yT/h5Y3aepK8outFNU7Qx2GEEIIIbq4nBRzyKfMd5QK5KRYQh2GpkkyE+acHpVVhXWaeXKhAKsK63B6tP7PkxBCCCE6U7/YCOIjdJq5x2lOpEEhLkKRdcMdIGtmwlx+cT0F5XZNPblQ8O5Dc05GdKhDEUIIIUQXVlTvZOnumlCH0WEmvbeowYhks0w5ayNJZsKY1n/AZw6Ikz1ohBBCCHFcWnxw2xzfxuLZMUZyUsz0i41AJxXOWiXTzMKUR1VZraHpZcdSgNWFdXgk1xZCCCHEcYxPjyJW49PN4KctKwrrnLy5r45F31TJOuITIMlMmNpb20h1CDfF7CgVqG70sK9WfoiFEEII0TKjTmFqVoxm73mO5buOmiObi+cX18ta4uOQZCZMFZTbNf+EQgEKpFSzEEIIIVqRGW1kckZUqMMIKl/6UlBu57lvZZSmJZLMhKEqh5sDdU7NP6FQgf11Tqoc7lCHIoQQQoguLjfFwti08Nt8WwVqj4zSyH58TUkyE4a+rND+qIyPAmyrsIc6DCGEEEJoQF7P8E1owLsf38bSBinlfBRJZsKMqqpsr+y8ih6PThnJ63/8VSf13pQKbKu0yw+tEEIIIVqlKApjUiP9U87C5eHu0T4taWDTjzJC4yPJTJg57HDjcHf8xr9w+2byF87HVhf60s4Ot0qVwxPqMIQQQgihEbkpFmYOiAuLKmfN+bSkQaacHSHJTJgpbXAFpZ/C7VtYt2gB9mOSmbve/h+X/v4fQTlHWwTruoQQQgjRPWRGG5k9OIGcFDMQfqM0+cVWKQqAJDNhp7TB1al/qYYIE3rjyd3IUqdAqU2SGSGEEEK0jVGnMOprD/IAACAASURBVDkjmpkD4oiL8N4hhUtSowCrCuu6fdlmRZXFCGHl5e+rKbZ27MY/f+F81i1a0OT4vasKWHTTJfTNzeOKP/0bgIJ3XuWNB25n7vOr+GrdKratfp1Gu40BZ03gZ79/jOiE5A7F4pMRZeDagfFB6UsIIYQQ3Y9HVdlX66Sg3Mb+OicKaL7yqwLkppg5JyM61KGEjCHUAYjgUVU1KCMYp06aQsXBvWx//y2m3PVnouKTAIhKSGrxMyvnz8MSE8+kOXdTXVLExlee4Z1HjFzz6HMdjge8IzOqqqIo4fI8RQghhBAnk05R6B8XQf+4CKocbrZV2NlWaQ/KWuNQUYEt5XYGxpvIjD65M2e6CklmwohbBVcQ1smnDTyV9FNOZ/v7b3HqxItISO/d6mci4xK54anX/cmGx+Phf8uexV5XizkmtsMxuTzgUUEvuYwQQgghOijBpGdirygmpEdSaXfzyu4aGjSa1CjA6sI65gxJQNcNH/rKmpkw4grhjMHRl84KGDXpM+JMPG43VSVFQTtHKK9PCCGEEOFHURSqGt2aTWTAOzpT3ehhX233LAYgyUwY8YSwenFcakbAa0usd32Lra46aOdwS3VmIYQQQgRZQbn2NxtXgIJuWqpZkpkwogvh36ZOr2/+jSA+6NDLd6sQQgghgqjK4eZAnVPzhQBUYH+dkyqHO9ShnHRyexhGDEGcJ9kVF9oH8/qEEEIIIb6s0P6ojI8CbKuwhzqMk06SmTCiV8AQpL/RCEskALZjNs0MFYPOu9+MEEIIIcTxvPDCCyiKwoEDB47bTlVVtlfaNT8q46MC2yrtnMiuK4qi8MADD3R6TCeDJDNhRFEUUi3BKVCXPngYAB88+Ve+WPUa29e8TaPNGpS+2yPVYuiSo0VCCCGE0KbDDneXKcvcaGsgf+F89m3d2KF+HG6VKkf3WmQsyUyYSYs0BOUvNfPUEZx7y28p+f5r3njgNpbNm4O1qjIIPbedToH0qO5ZO10IIYQQbTNr1ixsNhtZWVnHbVfa0PG9+YLFabexbtGCDicz0LWu62SQfWbCTGqkgWDl45Nm38Wk2XcFHLtv9RcBr3OmzSBn2owmn+2bO4aHvygPShwelaCNOAkhhBAivOn1evQtFSbCO73MbrdT2uBGB0G7b+oKdIp3o/EhmEIdykkjIzNhJjUyPG/6w/W6hBBCCBFcx66Zyc7OZurUqaxZs4bc3FwsFgvPPPMMJQ0uKooPsPTeG3hwwgD+kNebp667gO8+/SCgv31bNzJvZAo7PljOR8/9nYcvOJ37z8zgubmXUnFw3wnFVPzNNp6/5Qr+PGkQ95+VyfypObzxwO0AVB06yEPnnALAukULmDcyhXkjU8hfON//+bL9u1l6z/U8OGEA95+Zwb9nTuabT95vch5rbQ3z/+9uMjMzMZlM9O/fn0cffRRPKPfv6GRyhxhmEk16THqly8wBDQaTXiHBJHm3EEIIIdpn165dzJgxg7lz53LTTTcxcOBAPi4+xNPXX4TTbiPv6puIjEvki1XLWPLrWcyc/zynTpoS0McnLzyBougYO+sW7PV1rH/x3/z39zdz65I1xz13/eFynr/lCqISkhj/i9uxxMRSdaiIrz9cDUBUQhKX/N8Clv/1Hk6dOMV/3tQBQwD4ce93LLx+CrE90hj/i9uJsESyc+0KXv7NdcxcsNjfvtHWwKLZ06ktL+GOm+eSlZXFpk2bmDdvHiUlJTz++OPB/rJ2CZLMhBlFURiWZGZLmS0sqnMowPAksyz+F0IIIUS77dmzh/fff5/zzz8fAJdH5f5ZN1NfWc7c/6wke8SZAIy69Fr+edUEVv/9DwyecCG6ozbxczkc3LbsIwzGCAAssXGsWvA7Svd8S2r/wS2eu3D7Fmy11dzw1OtkDBnuP37erf8HQIQlitPOuZjlf72H1AFDGDHlioDPr1zwO+JTM7j15Q8wRHinj5155Q08c8MU3nviQX8ys2Hp0xwu3s9tr37Iny8ejV6nMHfuXNLT01mwYAF33XUXmZmZHf1SdjnyuDsMjUg2h0UiA94yg8OTzaEOQwghhBAa1qdPH38iA+BSVXZtzCfjtJH+RAbAFBnN6EtnUXXoIGX7dgX0kTNthj+RAehz5HOHfyg87rktMXEAfLf+A9xOZ5vibqipYt+WTxl63jQc1nqsVZVYqyppqD7MgLMmUXlwHzVlJQDsXOtNyiwx8ZSWl1NRUUFFRQWTJ0/G7Xazfv36Np1bK2RkJgwlmPRkxxgp1PiOtgqQHWMkwdTyIj4hhBBCiNb06dMn4LXHA9UlxQw9LadJ2x59BgJQXVIUMOISn9oroJ0lNh4AW201AI6GehobftrGQtHriU5Ipk9OHqedM5V1ixaw4ZWF9M0Zw5AJFzL8wsv8Iy0tqSzaj6qqrH3qEdY+9UizbayHy4nrkUZl0T5Kd3/NQ+ecwkPNtCsrKzvuubRKkpkwlZNi5kBd27L/rkYFclIsoQ5DCCGEEBpnsQTeT+jaMTdJaalC2pFNKj9d8hTrFi3wH45Py+S+1V+gKAozFyzm4I6tfLt+Dbv/9xFv/ukONrz8NDe/+B6myOgWz6keWbg/dtatDMyb2GybpMy+/rb9z5zA+J//ikv7xBChD7zIgQMHnvC1aokkM2GqX2wE8RE6aho9mhydUYC4CB19Y2V/GSGEECKYVFXFrXqnWnk83ht7g6KgV+g2a1QNikJ8WgblhXuavFd+YDfgTUbaYuTUK8keccZP5zAFTpPvfXouvU/P5fxf/Y5t773Jf3/3S3aseZtRP5sFLXzdEzO8e+XoDQb6nzH+uOdPzMimscFK/zPGc/6wJPS6bvJ3GeoAROfQKQpTsmJYursm1KG0iwpMzYpB103+URVCCCE6g6qqHHa4KW1wUdrgoqTBRanNhauZSr0GnXdft7RIA6lH/iSa9GGZ4OgVGHz2ZD5d+gyF27eQNWwUAI02K5vfeomE9N706DuoTX0mZmSTmJHd5LitthpzTFzA1zFt0GkAuBobAYgwe0eObHWB923RiSn0zR3D528t4ayrZxObkhrwfn1VBdEJyQAMPXc6656Zz97PPkQ3PLCIQHV1NdHR0RgM4XfrH35XJPwyo43kppgpKLdranRGAXJTzGREy6iMEEII0R5VDjdfVtjZXmn3b9fQ2gaRLg8UW10csrr87Ux6b5XUEcnmsFrDqigKV93yG758/y1euO1q8mbchCU2ni9W/ZeqHwqZuWBxQCWzjihYuYzPXl/MqROnkJSRjaOhni1vv4QpOoZBZ08GwGi20KPvIHauXU5yVj8i4xLo2e8UUvsPZtpvH+WZG6byz6vGM+pn15LYK5v6w2Uc3LGVmh9LuOO/HwMw7rpb+faT91l8+0z4Yi05OTlYrVZ27tzJG2+8wYEDB0hOTg7KNXUlksyEufHpUeyuaaRWI9PNFCA2Qse49KhQhyKEEEJoikdV2VvbSEG5nQN1ThQI+N1/otsmHt3O4VbZUmZjc5mN7BgjOSlm+sVGhMXMiVN6p3PL4nd594kH2bTsOVyNDlIHDOG6x1/mlLHnBe08fXPyKP76S3aseZv6w+WYo2PJOHUEVz20kMReWf52l97/D1bOn8fqx+7H7WzknDn3kNp/MD37DuJXL68lf9ECvli5jIbqKqISk0kfNJRz5tzl/3yEJZJf/mcF3776JB+/v5wlS5YQGxvLwIED+dOf/kRcXFzQrqkrUVRV1cI9ruiAonqnpqabzRwQR6aMygghhBAnrKjeyerCOqobPU2SmGDx9RsfoWNKVozmf1d/fdjOysL6UIcRdNOyYhiSePwqaeFE9pnpBjKjjUzO0MZIx+SMKM3/4yiEEEKcLE6PSn5xPUt311DT6B1T6ayn1L5+axo9LN1dQ35xPU6Pdp+Jp0aG5wSlcL2ulnSvq+3GclMsONwqn5Y0hDqUFo1NiyRXSjEfl1SgEUII4VNU72RVYR21nZzEHMt3noJyO7trGpmq0VGaRJMek17xrykKBya9QoKpe41VyDSzbkRVVTb9aOuSCc24tEjO6mmRG/KjSAUaIYQQLdlabiO/2NppU8pOlO/8kzOiNPlA8sMfrGwps2liXXFrFGB0DwsTe2ljNk6wyMhMN6IoCmNSIzHpFfkHsAuTCjRCCCFacuyDyVDfhPvOn19sxeFWydPYg8kRyWY2l9lCHUZQqMDwZHOr7cKNjMx0U0cPTYfiG8BXtUyrQ9PB1loFmvby9RNuFWiEEKK72lja0CVnWPiMTYtkTGpkqMNok2V7aiisc4Y8MewIBe/v+qv6h2fFsuORZKYbc3pUPjlkZWu5/aSN0vjOMyrFzLj0KIzdZHfa45EKNEIIIU7E1jIb+T9YQx1Gq7Q242J3jYM399WFOowOu7xvLP3jIkIdxkknyYyQm+kQCWUymZtiZrwkk0IIoRmyzULn8agqi76pokYje/IdSwHiInTMGZLQLWdfSDIjAO8P8r5aJwXlNvZ3wjSnPjFGclIs9I01dssftGPJND8hhBAnyulRee7bKs1tgD17cIJmHpppLVk81rUD4sjopr/PJZkRTVQ53GyrsLPt6AXoCpxIKfmj25n0CsOTzAyXBegBpAKNEEKItsgvrqeg3K6JRMZHwTsL4JyM6FCHcsLk66xNksyIFqmqSpXD4y0NbHNxyOpstTRwepSRVIu3NHCCSaepiiadrSuXxh6bFqm5CjRCCNEdaH3EQEvTzWQETJskmRFtoqoqniObNro9oD+yaaNONm1slVSgEUII0RayluPk01ryqKVksbN0ry1CRYcpioJep2DS64g06jDpdeh1iiQyrdha1jVHZI72aUkDW8vDo9a+EEKEg721jVRrNJEB71Tm6kYP+2qdoQ7lhGVGG5mcoY1NJydnRHX7RAYkmRGi0xXVOzVRShO8m54V1Wvnl44QQoSzgiPVLrVMAQo09qAsN8XC2LSuPVNhbFqkrHc9QpIZITqR06OyqrBOM7+MFGBVYR3OE6n2IIQQotNUOdwc0PhGjuAdndlf56TK4Q51KG2S17PrJjTjjqxzFV6SzAjRiT45ZNXMQkLw/tKpbfSw/pA2RpKEECJcfVmh/VEZHwXYVmEPdRhtoigKY1Ij/VPOQv134Tv/5Iwo8lIjZXr/USSZEaKTFNU72aqxEo/gTWi2lNtlupkQQoSIqqpsr+zY7499Wzcyb2QK+7ZuDFpc7aUC2yrtaLHmVG6KhZkD4oiN0IUsofFVLZs5IE6mljVDkhkhOoFHVVmtoellx1KA1YV1eDT4i0cIIbTusMPt3+ctXDjc3u0etCgz2sjswQnkpJiBkzdK4ztPboqZ2YMTZLF/CySZEaITSAUaIYQQ7VXa4Ap1CJ1Cy9dl1ClMzohm5oA44iK8t8+dldT4+o07MhpzTkZ0t95HpjWGUAcgRDjyVaDRajIDP1Wg6R8XEepQhBCiWyltcKEDtDmO0TydAqU2F0MwhTqUDsmMNjJnSAL7ap0UlNvYX+cM2u97Xz/ZMUZyUiz0jTVqZn+eUJJkRogg81Wg0bqjK9AkmPShDkcIIbqNkgZXi4lM1aEiPnnxX+zdvJ7q0h8wmi30G3U2F935AAnpvY/b76NTRtI3N48r/vTvgOOLbpoOwJxnVwDe9TbPzrmEGY88S9n+3Wx5awl2ax0Dz5rIZX/4JwaTiff++SDb338Lp72BoZOnccnv/oYhouVExaPCIav2fzcC6BSF/nER9I+LoMrhZluFnW2Vdv/UQJ3ivd7W+/mpnUmvMDzJzPBks/zObSNJZoQ4Qaqq4lbBpap4PKDTgUFR0CsEVBXxVaDR8qiMj68CzcRe2thATAghtE5VVUptLU/HKv7mSw5u38zp5/2MuJ7pVB06yOdvvMCimy7h129sIMISvHLCHy/+J0aThfHX305l0X7+t+w5dAYjik6Hrbaac+beQ9HOAgpWLiOhVxbnzLn7uP2V2lyoqhpWlbgSTHom9opiQnokVQ4PpQ0uSm0uDlmdlNpcuJrJSg06SLUYSI8ykmoxkBppIMGkC6uvy8kkyYwQzVBVlcMOt/cfpQYXJUf+cfp8+au88cDt3LuqgIT03iy6aToK8KdXVpMW6f0H6csKW1gkMvBTBZoJ6ZFcf/31vPHGG9TX14c6LCGECFtulWZvgH1OOftchk6eFnBs8LjzefoXF/LVulWMnHpl0GLxuN3MeXYFeqN34bm1qpIda95mQN4krv/XMgDOuvIGKov2s3XFK60mMy6PdyRCH4b37IqikGjWk2jW+6fSqaqK58hDULcH9EceguqOeQgqOkaSGSGOUuVw82WFne1HDxdz/HnLKlBsdXHI2vK0gM70475d7PxgBTnTrm51ikF7aLkCjRBCaI2rlSqSRvNPpXndTid2ax1JmX0wx8Rx6LsdQU1mRk650p/IAGSeNpLt779F7vRrAtplnjaSTcuexe1yoTcc/9bSparoNVvrs22UI7M39CggM8c6jSQzotvzqCp7axspKLdzoJmFfMe7jb/hqddPqF1nKtu3i3WLFtA3d0ynJDOg7Qo0QgihJZ5Wfpk47TY+XvxPCt55ldqykoC9W+z1tUGNJT61V8Brc3QsAHE9mx5XPR7s9bVExScet0+3B7mxF0ElyYzo1orqnawurKO60eN/TtSWKWIGY/hX+vJVoBFCCNH5dK1smvHO/HkUvPMqY66ZS+/TczFHx6IoCq/Om4OqHj8Tamlqk+p2o+ibZhjNHQPQtXCcE9ibTC+bgoggk2RGdEtOj8onh6xsPVJCGdq3YP/oCjB1lWU8csHpTJx9F5Pn3hPQrvzAHv5+6VlcfO/D5F09GwBbXQ35C+fz9YerqD9cQVzPdEZfOoux1/0K3VG/zbaveZv1L/6bioN7URSF+LRMRl0ykzHXzKXgHe8aHoBn51zi/8xNi5bTN3cMAP977Xk+e+15Kov2ExmXwKkTL+K8X/0OS0xcQIwHdxawbtECDu7YitvpJCkjm9xLrmHMNXNbrECzbds2zj33XE499VRWrVpFdHR0O76KQgghfAytrKX4Kn8lI6dexZTfPOg/5nTYsdfVtNq3JTYOe13T0Zuq0mISe2W1Pdh2aO36hGgrSWbEcZ1oBS8tKap3sqqwjtpG7xOsYC3Wj0nqQZ+Reexcu6JJMrPjg+Xo9HqGnutdtNloa2DR7OnUlpcw+tLriE/NoHDHZtb86yFqy3/k4nv+AsDuzz5m2bw59Bs9jgtu/wMA5fu/p3D7ZsZcM5c+I88ib8ZNbHr1WSbccCc9+gwEIKXPAADyF85n3aIF9D9jPGdc/gsqCvfw+RsvUPzNNn75/Gr/XOjdn33Mi3fMJCa5J2NmzCEmuQdl+7/nu0/XMuaauc2OzGzZsoXzzz+f3NxcVqxYgcViadJGCCFE2+gVb7WrlooAKHp9kxGQ/y17Do/b3WrfiRnZHPjyM1zORv/Mgm/Xf0BN6Q8nJZkx6Lyj/UIEkyQzwq+lCl7HKyvoq+CVGmkg0aTv8gnO1nIb+cXWTiudfPp5l/D2X+6idM+3pPYf7D++44Pl9BmZR0xSDwA2LH2aw8X7ue3VD0nu3Q+AMy7/ObEpqXy65EnGzrqF+NRefPfpWkzRMdzw5GvNDusnZmSTPeJMNr36LAPOnOAfjQGor6rg48X/ZMCZE/jFv//rH+1JyR7AO4/+li/ffZ3c6dfgcbt5+y93E5Pck9uXfRQwYuObi+3yBP7u3LhxIxdddBFjx47lzTffxGTS9iZoQgjRVSiKQqrFQLG1+em9p4w9ly/ffR1TdCw9+w7i4I4t7Nm8nshW1qoAjLrkWr7KX8niW6/i9POmU1l0gG3vvU5iRnaQr6J5qRZD0O8TwvGhq2gbSWZEuyp4uTxNK3iZ9ArDksyM6IIbPqmqyqYfbXxa0uB93UnnOXXSFFY8eh87PljuT2ZK93xL2b5djJkxx99u59qVZI84E0tMPNaqSv/x/qPH88niJ9j/xf8YcdHlWGLicNoa2P3Zxwwac06bYtnz+XrczkbGzJwbMG1t1KWzWPPkX9i1YS2506/h0K6dVP1QyJS7/txk6tnRvwg8R75qH330ERdffDHnnXcey5YtIyIi/NcNCSHEyZQWaWixQubF9/wVnU7P9vfexNloJ2vYaG58+k2ev7X1KmYD8yZx0W8eZMPLT7Pqb7+n15Bh/PzxV1j9jz8E/yKOoVMgPcrYesPj6A4PXUXbSTLTTXWkgldAP0f9v8OtsqXMxuYyG9kxRnJSzPSLjUDXBf7hODqR6UxRCUn0GzWWnWtXcN4t84AjU8wMBk6dNMXfrrJoH6W7v+ahc05pth/r4QoAzrzyenauXcELt11NbI80Bpw5gaHnTj+hxKa6pAiAlKz+AccNxggSe2VRVVIMwOGi/QABI0nNUVWw2+1MmTKFnJwcXnvtNQytlOAUQgjRdqmRhhZ/D1ti4rj8gSeaHL9v9RcBr/vmjuHhL8qbtBt77c2MvfbmgGNznl1xQp/NmTaDnGkzmhyf/Mt7mfzLe1uI2MujepOL9ugOD11F+8mdSDfU0Qpex+Prp7DOyYE6J/EROqZkxZAZ3bGnMR2xtezkJDI+w87/GW88cDuHdu0kfdBQdq5dQb9RY4lKSPK3UT0e+p85gfE//1WzffimnkUnpnDbso/Yvekjdm1ax/cb11HwzquMmHolVz745Em5Hh9FAZPJxEUXXcSKFSt4//33mTp16kmNQQghuoPUyPC8PWvLdXW3h66i/cLzp0U0K1gVvE6Er9+aRg9Ld9eQm2JmfHoUxpO88q+o3kn+D9aTes4hEy9C/5e72fHBcgAqCvcy4fo7AtokZmTT2GCl/xnjW+3PYIxg8PjzGTz+fDweDysevpfNb77IpNl3kdy7b4tD5vFpmQCUF+4JmA/tcjZS9cNB+p8xzhtLZh/AOx3uePHoUFAUhaVLlzJ9+nSuuOIK3nvvPSZMmNDqNQghhDhxiSY9Jr3iH4UIBya9QoLpxOoyd7eHrqJjpNp3N1FU7+S5b6soKLcDnZfEHMt3noJyO899W0VRffMlfjuD06OyqrDupO8zbImJY+BZE9m59h12rHkbvTGCIRMvCmgz9NzpHNyxhe83fdjk87a6Gtwu78JPa/XhgPd0Oh2pA4YA4HY2AmA0R/o/d7T+Z4xDb4xg06vPBmyqtnX5Uuz1tQw6+1wA0k85nYReWWx8ZVGTPnyfM+i8IzMAERERvPXWW4waNYqLL76YzZs3n/gXRwghRKsUxTsdKlzGCxRgeJK51fUqTo9KfnE9S3fXUBPkiqPHOvaha35xPU5P+CSP3YmMzHQDnV3B60SoQO2RfzAmZ0SRm9L5ZXw/OWSlttETkmseet4lfPv7m/ns9cUMPGtik4X14667lW8/eZ8X75xJzsVX02vwMBptDZTu+Yav8ldy76oviEpI4q0//xpbTRV9R40lrmca1SXFbFr2HGmDTiPlSBnm9EGnodPr+eSFf2Gvr8UQYaLfqLOJTkxhwvV3sG7RAhbfeiWDx19AeeEePn99MRmnjmDERVcA3gTpknnzWXLntTxx9URyps0gNrknZQd2U7b3O2546nVSLQa+Oip+i8XCqlWrmDRpEhdeeCGffPIJp5122sn68gohRNgbkWxmc5kt1GEEhQoMTzYft01nbZvQmqMfuu6uaWSqjNJojiQzYexkVfA64XiO/De/2IrDrZLX09JpVUWK6p1sPTIKFQpDxl+A0WzBYa1n6HmXNHk/whLJnOdW8PF/Hmdn/jt8seo1zFExJGf1ZfIv78McHfv/7N13eJPl+sDx75s0bbrpooMCZUsFgVKQPYsgICIgOEBRERVxnOP+HQfoOSqgx4GDoSAKwhEBWTIsggyZZSlLoFBGKS3QkbZpmvH+/ggJjR10JM3o87kur8skb573SWiS937GfQPQYfAo9iz7lt1L56PV5BIYVp/b7hhO0hMvWTOUBYZHMvz/ZrBl/qcsf/t5TEYjj8/5iYDQCJKefBn/kDB2/u9r1n74Br7B9eg04iEGTv6XtcYMmDPcTJizgk1zPmD7wi+QTSZCY5vQ6Z6x5WagCQoKYsOGDfTq1YsBAwawbds2mjdvXuo4QRAEoepCfJTEBapI0+id/vtdExIQF6iqcMN9XR10FexDkmXZnT8jQgV2ZBTW6sb3quoZ7Uf3KD+7t2uSZeYczSbXSbMynmhY40DiQ0UtmcoQNQ8EQbCXk7k6lqVqnN2NGhvVNIjmwaXT+P990NWV9Iz2c+igq2A/YmbGQ9V2Bq/q2HapEB+lZPfRj9N5xeQUVzbPiVAZnppZp6ZEzQNBEBypWZA39bwVbjs4JwHB3gqaBpW9bMtVAxnA2i9HDLoK9iWuUDyQMzJ4VVfyhQIifb3suj415Xq2Nnf84ndFVclAU1eImgeCINQGhSQxpHEgi07m3vxgFyQDQxsHlpn6uC4Pugr2JYIZD1Myg5c7XMxLwJo0DRNah9glbXO2zshZTe1lTPN0lc1AUxeImgeCIDhDwwAViRFqUrKK3OJ33UICEiPUxJYxWFnXB10F+xLDrR7GmRm8qsOy4W5run2+1A5cKfKYVJauoDIZaOqC8/l65hzNZlmqhrTrwbIjah4sS9Uw52jtpjAXBMH19Y7xJ8hb4Ta/bxIQ5K2gV4x/qcecVTahuiyDriJts+sSwYwHsWTwcrePmwzszSqq8QWcLMscumqf15+yajGvJUSQnX6uSs9LnjWd1xIi7NAD55OAJjfJQOPpRM0DQRBcgUohMbRxoNv8vluWl5W14qKuD7oK9ieCGQ9hkmXWutFIx99JwNo0DaYaJNe7pjN6VLVkZ5OBjnV4nXBdLDQrCILrahigIim29EyHK0qK9S9zWVZdH3QVHEMEMx7CksHL3b4gLGQgp9hEal71vygyCg3261A19Z3wT97eed7Z3agxCahXQQYaT7cvS8uik7lOBJN5KwAAIABJREFUHT0sWfNgX5ZnFM4TBKFmEiN86Rnt2tm1ekb7lblhXgy6Co4ighkPYcng5c4kIKUGF20ZhQan/0ErvbxQ+bj/HpOKMtB4MlmW2ZFRSPIF83ICZ/9klSw0uyOjEFEWTBCEbpGuG9D0ul6bpSxi0FVwFGdf+wl2YMng5a5fEBYycEajJ1tnrNbzLxUaKp1RqjpO7Ehm9qNDebNbY97qEcc3z97P5dPHbY7xhD0zEtCpnAw0ns7Vax78flnM0AhCXSdJEt2j/KxLzpw95GQ5f1KsP92i/MrNfikGXQVHEcGMB/CkDF4ScPBKUZWfJ8syGVrHLTPbv+YHFjz7AN5+/gx69g36TXiBzNS/mPXo0ConCXBlFWWg8XTuUvNALDkTBAHMS84ebBHs1Cxnlt+MB1sEV1iLRQy6Co4kghk3Z88MXq5ABg5eLapwOc0333yDJEmcPXvWep9Rpsyq6/agK8xn9Yz/I3H4WB757H90u28Cvcc/w1ML1oEss/nrjx1zYieoKAONJ3O3mgdiE6ogCGBOCjChdQgdI8zLm2vrm9tynsQINRNah9y0BosYdBUcSQQzbs4TM3jpjDLZuqpFJgYH7iU4tes3ijS5tBs0goLsq9b/FAolDdskkLpvu8POXdvKy0DjyUTNA0EQ3JlKIZEUG8CDLYIJ9jZf1jnq+8zSbvD12Zj+sQE3Hfyqi4OuQu3ycnYHhJpxhQxejpBRaCBUXfn6JiYHbpa5ci4VgK+euKfMx30CAh138lpUXgYaT+fONQ/6xwY4uzuCILiIhgEqJsaHkJqnJyVLyxmNHgn7JDKxtBMXqKJjhC9Ng1SVThDjyYOuVblOERxHBDNuzpLBy5Eb32ubQoIMrYF4fCr/HAfOMcqy+d0d/c4XBIbXL31upft/jHpF+9G1nAw0nsxS88DdWGoetKznU+dm0gRBKJ9Ckmge7E3zYG+ydUYOXini4NUiazChkKAyk7olj/NRSrQPU9M+XF2tIspi0FVwNPe/CvNgGo2GN954g59++olLly4RHBxMu3btmDZtGgkJCQD8tOxHls/6iMwzf+Ht60fLrv0Y9NybBNePBmDfyu9ZNvU5nvl+EzG33GbT/uavP+KXL9/nlZ8PWo//u+z0c0wf2pE7n5+CykfNtoVfkn81k8btb2fkmx8THBnDr1/9lz3LFlCYm02LLn0YNeVT/IJDbNo5sSOZLV9/zMXjfyApJJokdOXO594istkt1mMu/XWE7Yu+5Mz+XeRnZRAaUo/BgwczY8YMwsLCKnyvvByYQjgsNg4A/9Bwmt/e22HnqW2WkbakWP86OSNTsuaBO44ZWmoeTIwPqXMptAVBuLkQHyV9G/jTJ8aPbJ2JjEIDGVoD6QV6MrSGMveZeikgyteLGH8VUb5eRPl5EeKjKDdDWWW4yqCr0WBAlk14qbxr3FZ1Bl0FxxHBjAt78skn+fHHH5k8eTLx8fFcvXqV7du3c+zYMRISEpg/fz6fPf8osbd2YODkf5F/LYvfF88l7dAenln8K76BwbRNGsaqaa9ycN2yUsHMwXXLaNqxe7mBjO2xP2LU6+k2ZgKFedlsXfAZ378ygWadenAmZQe9xz/D1fNn2LnkK37+6C1GTfnU+tz9a37gx7cm06JrXwY9+wb6Ii27f/yGWY8O5dnFvxIS0wiAU7t/49qFNDoOu5964fWJyT3L3LlzOXLkCLt27arwy1Qpmb+EHZEEoEXXfvgEBLJl3sc0S+yBUmU7Ep6ffYWAkHD7n9iBLBlohjYOrLMj+5aaB+6qZM2D5sE1/3EWBMEzSZJEqFpJqFppvfiWZRmTbN5vajSBUmEeFFRI1ChwKUtVyibkZl7ily/e48T2ZLSaXMIaNqHn2KdIHP4gAAZ9MZu/+i/Ht/3C1QtnMBmMNLilLUlPvUqzTj2s7ZQciFUolez839dkp59j8qJkjm5ex6Y5M3jhp91s/vq/HN28DhmZNn2HMOzVaXj73ryGj0mG9AKRiMVViGDGha1du5bHH3+cDz/80Hrfyy+/DIBer+fVV18lsnlrJn61ylqoMa797Sx47kG2L5zFgKdewcc/gPg+d3Jo/XIGPfcWiuvrsdKPHyYz9QS9Hnq6Un3Jy8zgxZ92ow4MAkA2Gtky/xMMOi1PL0xG6WX+UyrIvsrBdcsY/n8z8PL2sckENuKN/1rbS7hrDP+9pyubv/7Yen+Xex+h57hJ1mNeahdG165duf/++9m+fTs9e/Yst3+SJBHl68WFAvtPZ6sDAhn+2gx+eGMSMx/sT7s7huMfEk5OxgWOb/+Fxu06c/er0+x+XkewzEIkRqjpFeNf57KWlWSpeeCOszIWlpoHIpgRBKEqJElCKYESCRy4UqoqZRM0VzP58uFBIEl0GfMYASFhnNixiWVvP09RgYYeDz6JLl/D3hULaTdoBJ1HjENXkM++lYuY//RoJn23gZhWbW3aTFm1GEOxjs4jxqFUeeMXdGPVyOJXJxAS04iBz7xO+vHD7F2xEP/QCO587s1K9TdDa0CWZbsHf0LViWDGhdWrV4/du3eTnp5OTEyMzWP79u0jMzOTux970abi/C097yAirgUntv/CgKdeAaDDkNEcWr+c1L3baX57L8A8K6NS+9Km/12V6kvbpLusgQxAw7YdAWg/+F5rIAPQsE0Ch9YvJy/zEqGxcaUygVmUlQlMpb6x1EmvKyIjK4suXboAsH///gqDGYBoPy/SCxxTOLP9nSMJiohiy/xP2Prt5xj0xQRFRNGkQxcShz3ggDPal+WiPdhbwZA6PBtjYal54O5K1jyozlp2QRAER6pK2YSNn7+LyWjkuR+24l8vFIDbR41n8WsT2TR7BrePfBjfoHq8vHa/zVKxTiPG8d8RXdm55CtGvvWJTZu5mem8uHJPmasnYlq1tTm+MCebfSsXVTqYMZjMMzRKEcs4nQhmXNj06dN5+OGHadiwIR07dmTw4ME89NBDNG3alLS0NAAiGjcv9byIJi1IO7DbertFlz4EhkdycN2PNL+9FyaTiUPrl9O69yB8/M3ZkApzszHqi63PUfn42gQv9aJjbc6hDjA/Vi8ypsz7tXm5QNUygRXmZrNpzgwOb/iJ/GtZlPw6yc3NLfP5JUX5edktkOk47H46Drvf5r6mid1pmti9wuclPfkySU++bKde1FxNMtB4MkvNA3eelbGw1Dzo26DuFToVBMG1VbZsgizL/LlpDbcNuBtk2Wbws2XXvhzesIKLxw8T1/52FErzwI3JZKJIk4tsMtGgdXsuHj9cqt02/YaWuwy886jxNrfjOnThyOa1FOVrUFcyS6lBls2zW4JTiWDGhY0ePZqePXuyYsUKNm7cyIwZM5g2bRrLly+vUjsKpZL2d45kz4rvuPu16aQd3ENeVgYdBo+yHrPwxfGcSfndejvhrjHcO/Uz621JUfaor6Qs+375+mViVTKBff/KBM4d3kvPcU8T06oN990ahZcEgwYNwlSJ3MtRfuLPueQFek0z0HgqV6t5MOfxuwGYOHdltZ5vqXnQJ8ZPLHcQBMGlVLZsQkH2FYo0uexZ/i17ln9b9jHXrgCQsnoJ27/7kqyzJzEabsywhzRoXOo5Zd1nUS+qgc1t36BgALR5OZUOZowmHLpMT6gccfXn4qKjo5k0aRKTJk0iMzOThIQE/vOf/zBjxgwAstJO0ayz7fKrK2dPlZpJ6TBkNNu++4LjWzdwYscm/EPCadG1n/XxIf94G60mx3o7MCLKLv2vbCYwbV4Op/dsJenJV+g/8UUABrULI/X0qUqfK9RHiY9S8rh89lWhkMyzMJ0ifGkcqBIXt2UQNQ8EQRBqR2XLJsjXo572g++l411jyjwmqkU8B9Yu5ce3niG+72B6PvQ0AaHhKJRKtsz7hKsXzpZ6Tsll+KX7Vt73ZeV/H5Si9LxLEMGMizIajeTn5xMcHGy9r379+sTExKDT6UhMTKR+/frsWbaAxLsfwMvbnKHkxI5kMs/8Rb/HX7RpL7rlrUS1uJW9KxZy7s8UEoaOsdnr0iC+nUNeR2UzgVlmfiwVdb0U5gvzjz/+uNLnkiSJdmFq9mZqXWbUvbYZZUjN03M6T399aZmaZkHeYmlZCa5W8+DRL5bapR1R80AQBFdT2bIJ/iHh+PgHIJuMFQ58/rlpNaGxcYz94BubwbrkWc5JwuPIshBC5YlgxkVpNBpiY2MZNWoU7dq1IyAggOTkZPbu3cuHH36ISqVi2rRpPPLII8yZcDftBt1D/tUsdiyeS0hMI3qMfbJUmwlDR/PzR28B0GHwvbXyOiqbCUwdEEiThK5sXfAZJoOeRrENGDFlO2fOnKnS+TqEq9mTqXXQq3EPlkAuTaPnrEZPPbHp34ar1DywEDUPBEHwVJUtm6BQKmnTbygH1y8n49Qxopq3tnn8xsCneSqkZBaxc3+kcO7wPoKjYku160iWQVfB+UQw46L8/PyYNGkSGzduZPny5ZhMJpo3b84XX3zBU089BcD48eM5rVUw79MPWP/pO6h8/bi172AGPfcmvoHBpdpsf+dI1n/6NqGxcTRsk1Brr6WymcDGvDub1dNeY9cP89gjweCBd7Bu3bpSmdwqEuKjJC5QRZpGX2dnZywsrz+32MSik7kkRqjpXcfTMUPVah5UJDfzEslfvs+JHZsozM0mKCKKlt36MfSl/3Bo3TJ+nPIsE+eu5OC6ZfyxaTUmg574PoO566X/4BtUz9pOTffMgKh5IAiCa6pK2YSBz77B6X07+OKhQXS6ZyyRTVtRmJdN+vHDnNq9lTe3nOSWnndw5Ne1LHzhYW7pMYBr6Wns/nEB9Zu2QldYUAuv6IYoXy+xlNtFiGDGRXl7ezN9+nSmT59e4XH3jRmNf5fBlWpTofQCSaJ9FWZlQmIa8d7+rFL3N03sXub9ZWUBsxx/s0xgwfWjGfvhNwAMaxxIfOiN4l4ljR8/nvHjx5fbTscItUek3bUXy7uXklXEydziOl0osyo1DyqSl5XBF+PuQKvJo/OIcUTEtSAv6xJ/Jq9GX3RjZnDVtNdQBwaR9MRLZJ09xe4fvyHn0nken7vS7j+CouaBIAiuqLJlEwLD6vP0dxvYNOcDjmxey+6l8/GrF0L9prcw6FlzftOOw+4n/2omu5d9y8mdm6nftCVj/v0FfySvInXf7zc5g/0oJIjxr5u/o65IBDNurioZvFJWL0E2GkkYUjtLzGqiJpnJmgV5U89bQW6xqc7PzpQkA3nXZ2mSYv1JjPC96XM8TVVqHlRk/cx30FzNZNK3G4iNb2+9f8BTr9oE30qVigmzllv3ioVEN2TdJ1M5tnUD8b0H1bwjJYiaB4IguKKqlE0ICI3g7lenlVuIWpIk+jz6PH0efd7m/lt63mFzu7yBWCi/hEJ5g7FlMcnmmRnBNYg8DG7OksGrIqf3bOP3JV+x+euPiO8zmJCYRrXUu+rxUUqE+FT/T1MhSQxpHCgCmTJY3pPkCwXsyCgsNevl6Spb86AiJpOJo1vW0brXQJtAxqLkzEjnEQ/ZJL24/d7xKLy8OLE9ucb9KIs9Xp8gCII9eWrZBE99Xe5IBDNuzpLBq6JwZtPcD/j5v28S06oNd73yXq31rTokoH2YusZLZRoGqEiMqPh9qeu2XSrk98t1K1lCZWseVKQg+wq6fA2RzW656bFhjZra3PbxCyAwPJLs9HM170gZjK6S1UAQBOG6ygy6upuaDroK9iXCSg9wswxeNdlYXNtkoH14+Xnhq6J3jD8nc4vJE8vNyrXtUiE+SqnOLDmrbM0DdyVqHgiC4Go8rWyCvQZdBfsRP30ewJLBy90/VhLQJFBlt2r1KoXEULHc7KaSLxRwPr9uJEywR00A/5BwfAICuXz6+E2PvXou1ea2rjAfzZXLDlvqKWoeCILgijqEqz3mt9ieg66CfYhgxkN0jHD/LwoZ6GjnGYKGASqSYv3t2qankYA1aRr0Jnf/C7o5S82DmlAoFMT3uZNjWzdw4ejBUo+X3Ie0Z/m3GPU3AsXdS7/BZDDQqnv/mnWiDKLmgSAIrkoMugqOJJaZeQh3z+AlAcHeCpoG2T/VYWKELzqjzLZLhXZv2xNYspxtTS+gf2yAs7vjUFWpeVCRgZNf59SuLcyZcDedR4yjfpOW5F25zJ/Jq3hi3hrrcUa9nq+eHEHbAXdzJe0Uu5bOJ6797bS2cyYzEDUPBEFwbZ5QNsERg65CzYlgxkNYMngtOpnr7K5UiwwMbRyIwkEXY90izV8+IqApmwzszSqiZT0fj69BU9maBxUJrh/NpAUb2PjlexxctwxdgYag+tG07NYPlfrGD92wV8yPJ8+ahtGgp93AEdz18rt2DzpEzQNBECoiy7I5Nb0sYzKZ9w96SRJKiVobBBGDroKjSHJdy83q4ZIv5JOSVeRWXxQSkBihrpVZgX1ZWpIvFCCBW71HtcHyRT0xPsRhQaUrOHKtiNVp+Q49R8qqxfw45VmeXvhLmembHaFkoVlBEOouWZa5pjOSUWggo9DApUIDGVpDmTW2vBTmWd1oPy+irv8X6qN0WIBzPl/vtoOuAGNbBBPr4QN+7kjMzHgYd8vgJQFB3gp6xdTOvpbECF8ifb1Yk6Zxm/eotshATrGJ1Dw9zYO9nd0dh/HU2gCe+roEQaicbJ2RA1eKOHS1CJ3R/OumgApnoQ0muFBgsJmt9lGas491CFfbfW+IpWyCuw66ikDGNYkEAB7G3TJ4WZaXqWpx53LDABUTWofQMcKcjcRz5yCqTgJSsjy79oyoeSAIgqcwyTInc3UsOZXL7KPZ7M3UWgMZqDiQsWmnxP/rjDJ7M7XMPprNklO5nMzVYbLjIp7eMf4EeSvc5re3tgddhaoTv34eyJ0yeCXF+jtlj4ZKIZEUG8CDLYIJ9jZ/DNzli9WRZOCMRk+2zujsrjhMZQrNuhNR80AQ6qbz+XrmHM1mWaqGtOsb6+0VcljaSdPoWZaqYc7RbLul8BeDroK9iT0zHmxHRqFLb3jvGe1H9yg/Z3cDkyyTmqcnJUvLGY2+zu+nkYDO9X3p28A9AuLqyNYZmX0029ndsJsn4kNEqlBBqCP0Jpnf0gvYl1VUa79XlvMkRqjpHeNvlwt7yx5WV5cU619nCku7KxHMeDBZlvn9stYlA5pe0X50jfR1udHkbJ2Rg1eKOFhyzbEEdaAEiw0fpcTzbUNd7t/HnpacyiVNo3frwFUC4gJVjGke7OyuCILDuUJGLmc7n6936p5Py5KroY0D7bKqQgy6CvYggpk6wFUyeFnO7w6jHLIsk60zmbPBaA2kF+jLzwYjgcEDP0UTW4cQqvbc0f6TuTqWpWqc3Y0aG9U0yKMTNgh1kytn5HIWT/wtF4Ougj2I9Dd1gCtk8LL3aI6jSZJEqFpJqFpJPOZ0t7IsY7o+Kmg0gfL6qOCx7CLWnHP9qfKqyig0eHQwI2oeCILrcYeMXLXt7xf8zv6+spw/+UIBOqNMtxpc8EuSRPcoP3yUkscFakLtETMzdYgz19l2ilDTy07rbF3Npuu1fWpShPHv9LoilCpvFArn5OhQSOYguJ8H75sBUfNAEFyBSZY5nVdMSlYRZ+24b9HSTlygio4RapoFebtlDa26shTL05bQCbVHBDN10Pl8PWvTNOQUmxwW1FjareetYIgHfzFcvHiRB557lQO//UJhbjZBEVG07NaPoS/9h+LCArbM+5i/dm4m+2IakkJB43adGfTsG0S3bGNtI3XfDuZOHM59783h8qljpKxajObKZd7YchLfwGDO/ZHCpjkzOHd4H0a9nrDYOBKHP0D3B54A4NJfR9i+6EvO7N+FJisDdWAQrboncefzU/CvF2o9j64gn41fvMfRLevQXLmMOiCI6Ja3MujZN2jQuh0AV86dZv2n75B2aA86TR71I8Lp0aMHs2fPJjjYM/dliEKzguA84veoYvsytSRfdP2Zf3vNZIhBV6E6xDKzOqhhgIqJ8SEOyeBlOxLmS9MglVuOhFVGeno6nTt3JutaDp1HjCMirgV5WZf4M3k1+iIt1y6mcWTzz7QdMIzQmMZormWxZ9kC5ky4m38s20FQRJRNe7/O/RClSkXPcU9j0OtQeqk4uWsLC557kMDwSLrfP5HA8PpknvmL49t+sQYzp3b/xrULaXQcdj+BYfW5fPo4e1d8x+XUE0xasN46/b/i3Rf5M3k1Xcc8Rv2mLSnMySbt4G4yz5ykQet2GPTFzHt6DMZiHd3GTCA4oj63SrmsXbuWnJwcjw1mRKFZQah9f79oBcdduFrazS02sehkrl0zcjnS+Xy9WwQyYF5yFunrVeNA0VI2oVU9n1oLcoPdMMgVbImZGaFGGbxKHuejlGgfpqa9B6xRroyHH36YhQsX8tS3G4iNb2/zmCzLGPXFKLxUNkvFstPP8d8R3ejz2D/o//gLwI2ZmdDYOJ7/YSsqtXl0y2Q08sHw25FNJp5dshnfwGCb9i1Bir5Ia32OxaENK1jy2kQmfrWKJgldAZjaqxntB4/i7lenlfl60k/8wcz7+/HA9K9pmzQMgJfahaF08R98e3C35WYPtggWP7yC2xLLiW5Ob5L56li22w2yTGgdYrcg0VFlEyztNKkDg651hZiZEQjxUdK3gT99Yvwqn8HrevaYGH8VUb7m7DEhPoo6k/XDZDLx008/MXjo0FKBDJg3NXp5+9w43mhEq8nF29ef8MbNST9+uNRzEoaOsQlK0k/8QfbFNIa88I5NIGNp36Lkc/S6IooLC2jUtqO5jeOHrcGMOjCY83/uJy8ro9SsEIA6IAiAkzs306p7Et6+fhhkGaXHlJcsn6XQrLvUPHDVCzBBuBlXyMglA3nXZ2lcdaP3b+kFbhPIwI33dGt6gd2WvyokiebB3jQP9haDrkKFRDAjWFUlg5eiDuX1L0tWVhZ5eXnEx7cp9xiTycTv389h19J5ZKefw2Q0Wh/zCw4pdXxITCOb29fOnwEgqnnrCvtSmJvNpjkzOLzhJ/KvZdk8VpR/I/Xwnc+9ydK3nuH9O9vRoHU7WnVPImHoaEJj4wAIbdCYHmOfYvvCLzm4bhlx7W/H5/6RPPrwOI9dYlZSYoQvOqPs8httXfHCSxBuxpMzctnb+Xw9+7KKnN2NKpOBvVlFtKznY/cBFzHoKlREBDNChaTrBcmUSCAGMUqp6Dtxy7yP+OWL90m8+wEGTHoN36B6KBQK1nzwOrJc+ptXpVZXqw/fvzKBc4f30nPc08S0aoO3nz+yycT8yWOQTTfOc9sdw4nr0IUjm3/m1K4tbP32c35bMJOxH8ynVfckAIb882063nUfR39bx8mdW3jxH8/x4fT32bVrF7GxsdXqnzvpFmkOFFwxoLHUPBAEd+SqtUTgxufdFYojmmSZtWkap6cori4JWJumYWJ8iEOWbolBV6EsIpgRhGqIiIggKCiIY0eO0PXeso/5M3k1TRN7MPKtT2zu12py8SuRZaw8oQ2bAJBx6hjNb+9d5jHavBxO79lK0pOv0H/ii9b7r5w7XebxQRFRdB39KF1HP0r+tSxmPtCfzV9/ZA1mAKJaxBPVIp5+E16ge8EJevXswaxZs/j3v/990z67O1HzQBDsb1+m6wYyFtsuFeKjlJz+OTudV0xOsT0T/dcuGcgpNpGap6+1Yr5i0FVwThELQXBzCoWC4cOHs2bNai4dO1jqcVmWkRRK/n4p/McvK8nLvFSpc8TcchshDRqz4/s5aDW2m9MteTvM57hx22LHotk2t01GI0WaPJv7AkIjCIqIwlBcDJiXpBkNBuvjXgpod1tbFAoFOp2uUn32FIkRvjzYIpggb4XTdgxZNtQ+2CLY6RdYglBd7paR63y+3ql9SCmR3c1dSUBKltbZ3RDqEDEzIwjV9O6777Jx40ZmTbibTveMo36TluRducyfyat4Yt4abul5B7/O/YAf33qGRu06k3HqKAfXLbPuUbkZhULB8Nem8+3zY/n0vr50HHY/QeGRZJ49Sebp4zz6xVLUAYE0SejK1gWfYTLoCaofzcldW8i+mGbTlq4wn/cH3UabpLuIbmFeinZq929cOHKAwf98G4DTe7exatqrtE0aRnjjZgQpZZI2/IhSqWTkyJH2fvtcXsMAFRNahzit5kGiqHkguDm9SWaNGy2ZkoA1aRq7ZuSqimydkbMa5wZT9iADZzR6snVGscleqBUimBGEamrQoAG7d+9mwguv8vu6ZegKNATVj6Zlt36o1L70fex59EWFHFy3jMO/rCTmlraM/+R71s98p9LnaNmtHxPmrGDTnA/YvvALZJOJ0NgmdLpnrPWYMe/OZvW019j5wzyQZVp07cP4mUt4b2Bb6zEqtS9d7n2Uk7s2c+TXtcgmE2ENm3D3a9Ppcu8jAES3vJWWXftybOsG8rIy8PX1I7FDO9atW0eXLl3s98a5EVHzQBCqT2TkqpoDV2pv0MTRJODglSL6NhD1sATHE3VmBKGGjlwrYnVavrO7YXfDGgcSH+pz8wPrCNuaB8UYDUaUXjUfDxI1DwRP5G61m/6utms5ybLMx39cs6Yd9gQ+Sonn24ZWuAl/ypQpTJ06tdRSaUGoCrFnRhBqKMrPMyc4PfV1VZel5sGY5sF47VzBriVz8VaUfLyy7dz4fx+lROf6vjwRH8KY5sE0D/YWgYzg9kpm5HJHloxcplq8wL6mM3pUIAOgM8pk69w3mYHgPsTViiDUUKiPEh+l5FE/RD5KiRAfMdZRnhWLFhAeHs4/bgsTNQ8E4W9ERq6qyyg03PwgN5RRaCBULfbNCI4lghlBqCFJkmgXpmZvptZj1jq3D1OLi+xyZGRksHPnTubNmydqHghCGVJqMWGGo1gycjkimCkoKMDf33YvSUahAQXgviFgaQoJMrQG63ejIDiKGHoVBDvoEK526x/ukmSgfXj1CnjWBStXrkShUHDXXXeV+bgkSSgVEj5KBX4qBT5Q4GsHAAAgAElEQVRKBUqFJAIZoU6wZORy9+/Dkhm5amLKlClIksTRo0d54IEHCAkJoUePHhw+fJjx48fTtGlT1Go1Izs044cpz1KQc83m+cmzpvNaQgSZZ07y/SuPMaVnE97u25LVM/4Pva6o1PkOrF3KzAf680bXhrzdpwWLX32cnIyLNsdcOXeahS+O5z8D4nmjSyzvDbqNxa8+Xip9f2XaAjj3Rwrznh7NlF5NebNbI+ZMGMbZg7sxyZBecCM72/bt2+nUqRNqtZpmzZoxe/bsUm0JQnWImRlBsIMQHyVxgSrS3PxHXALiAlUinWYFli9fTu/evQkLC3N2VwTB5YiMXGW79957adGiBe+++y6yLPPLL7+QmprKI488QmRkJN/9lsLu5d9xOfUEkxasLzX4sfiVCYTENGTg5Nc590cKvy+eizYvl9HvfG49ZvNX/+WXL9+n7YC76XTPWAqyr7JzyVfMmTCMZxb/im9gMAZ9MfOeHoOxWEe3MRMICK9PXmYGx7dtRKvJRR0YVOm2AE7v2cb8Z+6jQet29J/4EpIkkbJqCV89MYInvl6N120JyLLMn3/+yR133EFERARTpkzBYDDw1ltvERkZWeP3VhBEMCMIdtIxQu32NQJkoKMo0FiunJwcfv31Vz766CNnd0UQXI4syxy6WlSlQCZ51nQ2zZnB65uO4x/iWgMEMnDwahF9YvxqPLParl07vv/+e+ttrVbLCy+8AIDBJHOt0whi2yay5LWJnD2wiyYJXW2eH9KgEQ999B0AXcc8hto/gF1L59Nz3CSiW95Kdvp5kmdPZ8Ck1+j72D+sz7u13xBmPtCPXT/Mo+9j/yAz9QTZF9N4YPrXtE0aZj2u/8QXrf9f2bZkWWbFuy/SNLE7j3z2P+t7dPvIh/no3p5s/OI9HvtiKSYZ3nzzTWRZZtu2bTRq1AiAkSNH0rbtjRICglBdYpmZINhJsyBv6jmxYnxNSUA9bwVNg0R9k/KsXbsWg8HA8OHDnd2VOkOWZQwmmSKjiUK9iSKjCYNJFqlcXZDIyFW+J5980ua2r++NQaN8rZaC7Ks0atsRgPTjh0s9v8voR21ud73vcQBO7EgGsNYPazvgbgqyr1r/CwyrT3jDpqTu2wGAOsA883Jy52aKtYVl9rWybV068QdXz6XS/s6RFOZcsx5XrC2keeeenN2/E5PJhM5gYMOGDQwfPtwayAC0bt2agQMHVv5NFIRyiJkZQbAThSQxpHGg29ZWkIGhjQNFauAKLF++nM6dOxMbG+vsrngkWZa5pjOas8MVGrh0PUtcRdnhov3MmeGi/LwI9VGKvUlOJDJyla9JkyY2t69du8bUqVNZsmQJmZmZNo8V5WtKPT+8UVOb22GxcUgKBdnp5wG4cj4VWZb5cPjtZZ5f4WUepApt0JgeY59i+8IvObhuGXHtb6d170F0GHyvdYlZZdu6ci4VgKVvTi73devy88i4bECr1dKiRYtSj7dq1Yqff/653OcLQmWIYEYQ7KhhgIrECDUpWVVbauFsEpAYoSZWVJ0vl1arZf369bzxxhvO7orHydYZOXCliENXi6wj+zfL7GQwwYUCA+kFButxPkpzZsEO4Wqx78sJREau8pWciQEYPXo0v//+Oy+99BLxt93GxkwZ2WRi/uQxyKZKvIN/C9plkwlJkhg/cwkKZem/fW/fG/t+hvzzbTredR9Hf1vHyZ1bWD3j/9gy/xMmLVhPcGRMpduyzI7e+fwUYlq1KbOb3r7+KBXu9GsouCMRzAiCnfWO8edkbjF5xSa3CGgkIMhbQa+Ymm9y9WQbN26ksLCQe+65x9ld8QgmWeZ0XjEpWUWc1ehLbRqv7AVxyeN0Rpm9mVr2ZGqJC1TRMUJNsyBRiLS2XCo0VDuQKci5xsr3X+av339F4aWiw+BRDHr2TVQ+5syKRoOBLfM/Yf/qJeReTicwPJL2g0bQ/4mX8PK+EWhMG5JAZLNb6Hb/46z/ZCpZZ08R2qAxAya9Rpv+Q6vcr79n5LKH7OxsNm3axNSpU3nzzTcxmGTOHLrKlXOny33OlXOphDZobL199fwZZJOJkJiGgHmmRpZlQho0JqJxs5v2IapFPFEt4uk34QXSDu1h1iND2P3jN9zx9P9Vuq3Q2DgA1P6BNL+9d7nHRdevh6+vLydPniz12IkTJ27aV0G4GbFnRhDsTKWQGNo40C0CGbixvExV2RL2ddTy5cuJj4+nVatWzu6K2zufr2fO0WyWpWpIu540w16fF0s7aRo9y1I1zDmazfl8907M4Q5kWSZDW/1lZotfmYBBp2Pg5Ndp1T2J3xfPZcW/X7A+vvyd50n+8n1ibmnLkBfeoUnHrmyZ/wmLX5tYqq2r51NZ/OrjtOzen4GTX0eh9OL7Vx7j5K4t1epbhtZg1z1ayuuzHZY2lZJ52eSOReWnKt71wzyb2zuXzAWgVff+gHlzvkKpZNOcGaX6KsuyNeVzUb4Go8H23ymqeTySQoGhuLhKbTVo3Y7Q2Di2fvc5usL8Un3Oz76ClwJUXkoGDhzITz/9xLlz56yPHzt2jA0bNpT7mgWhssTMjCA4QMMAFUmx/iRfKHB2V24qKdafhmJ5WYX0ej2rV69m0qRJzu6KW9ObZH5LL2Df9aKK4LgUvpZ2c4tNLDqZS2KEmt4x/iJodxCjTJl7myqromxdILN/9f/odM9YRrxhziTYdfSjBIREsO27zzm9dzvNOvWwtnUl7TQPzphvnYlJHP4g/x3RlfWfvk2LLn2q3DeDyTxDo7TTn05QUBC9evVi+vTp6PV6GjRowJLla0k/d7bc52RfPMe3z4+lRbd+nDu8j4M/L6XdnSOJbmle3hXWsAkDJr3Ghpn/Jif9HPF9BuPjH8C1i+c4snktnUc8RK+Hnub03m2smvYqbZOGEd64GSajgQNrl6JQKK3vV2XbUigUjHzzY+Y/cx8fj+pJx2H3E1Q/mrzMS6Tu246PfyD/+sqc5Wzq1KmsX7+enj17MmnSJAwGAzNnzuTWW2/l8OHSCQ8EoSpEMCMIDpIY4YvOKLPtUtkZY1xBz2g/EkUq5pvaunUr2dnZYolZDZzP17MmTUNesfmKt7ZmLi3nSckq4mRuMUMbB4rg3QEMNZy5KCtb166l883Zuq633ePBp2yO6TnuKbZ99zkntv9iE8wERURxa78h1tvqgEASho7mt29morlymcDwqtc2McgySjvmqvz+++955pln+Pzzz5FlmXY9+/HozCX8Z2DZqYrvf38uv8x6nw0z30Gh9KLrmMe48/kpNsf0eeQ5whs1Y8eiWWyaMwOA4MgGtOjSh9a9BwEQ3fJWWnbty7GtG8jLykCl9iW6xa2Mn7mERrclVqktgKaJ3Xnqm5/5de6H7Pzha4oLCwgIq0/DNgl0GfUwMf7mz9ptt93Ghg0b+Oc//8mbb75JbGwsU6dO5dKlSyKYEWpMBDOC4EDdIs2BgisGNL2i/egaKQKZyli+fDmNGjUiISHB2V1xS/uytCRfKHBqMUUZyLs+S5MU6y+CeDurzJ71itwsW5ekUBDW0DYjWGB4JOrAYLIvnbd9bsMmpbLahTcy7/3ITj9frWDGaAKqkVNiypQpTJkypdT9DRo0YPny5dbbR64VsTotn/f2Z5XZjn9IGA9On1fmYyW16T+0wr1BoQ0aM/KtT27e8Uq0ZRHTqi1jP/imzMeifG9cZvbq1Yt9+/aVOqas90cQqkLsmREEB5Ikie5RfiTFmjfXO3uBi+X8SbH+dIuqeSG4usBkMvHTTz9xzz33iPerimRZZkdGoXW5pbP3kVnOn3yhgB0ZhaJWjR0p7H01UdZnzYmfP6WDr5ai/DxzbNlTX5fgWkQwIwi1IDHClwdbBBPkxKKalqxlD7YIFqPSVbB3717S09PFErNq+P2y1iVnJcE8W/r7Za2zu+ExvGoYaFhqlliUzNYVEh2LbDJx9W/HaK5mUqTJJSS6Yenn/i1QtWQKs2T/qqqavr6bCfVR4mOvTTkuwkcpEeIjLjMFxxN/ZYJQSxoGqJjQOoSOEeZUo7X1s2U5T2KEmgmtQ8R+gSpavnw5ERER9OjR4+YHC1b7Ml03kLHYdqmQfVkioLEHS0au6qooW1erHkkA7PjeNtvX9oWzzMf0GGBzf15WBkd+XWu9XZSvYf+aH4hu1aZaS8y8FOZ6M44kSeYaSZ4SzkhA+zC1mM0WaoWY/xOEWqRSSCTFBtCqng9r0zTkFJscto/A0m6wt4IhYtNztciyzIoVKxg2bJg1napwc+fz9SRfdP1MfmBechbp6yU+HzUkSRJRvl5cKKheeuabZetKuGsMe5Z/i1aTS5OO3bhwZD/7V/+P+L6DbTb/A4Q3bsayt5/nwtEDBIRGkLJyMfnXshg15dNq9S3K16tWLso7hKvZk2kbXCc9+TJJT77s8HPbmwy0D1c7uxtCHSGCGUFwgoYBKibGh5CapyclS8uZMooGVpelHXPRQF+aBqlE0cBqOnr0KCdPnuSjjz5ydlfcht4ksyZN49TN/lUhAWvSNExoHSLSNtdQtJ8X6QXVK5x5s2xdI974mNAGcaSsXsLRzT8TEF6fPo88R/8nXirVVljDptz18nus+3gqV9JOERLTiPvfn0vLbv2q3C/F9ddVG0J8lMQFqkjT6N3is1MeCfPvT4iPGAASaockix2QguB02TojB68UcfBqETqj+SOpkMy1DW6m5HE+Son2YWrah6vFD4kdvPPOO8yYMYPMzEzUajHKWBnJF/JJySpyq4sxCfMyzP6xAc7uiluzZORypmlDEohsdgvjP/3ebm16SZAQ4UuHWvhePZmrY1mqxqHnqA2jmgbRPNjb2d0Q6ggxMyMILiDER0nfBv70ifEjW2cio9BAhtZAeoGeDK2hzGJ0Xgrz8ocYfxVRvl5E+XkR4qMQa5TtaMWKFQwePFgEMpV0Pl/PvqwiZ3ejymRgb1YRLev5iOVmNeCpmasMMuzN1LInU3t9xltNsyBvh8x4Nwvypp63gtxik1sNCFhImJc2Nw0SnyOh9njmN48guClJkghVKwlVK4nHBzDv2zDJ5qJtRpM5RaiXJKGQEIGLA509e5YDBw7wyiuvOLsrbsEky6x1o+VlfycBa9M0TIwPEcsyq8mSkcsyu+xJLK8oTaPnrEZPPQftRVRIEkMaB7LoZK5d260tMjC0caD4DAm1SmQzEwQXJ0kSSoWEj1KBn0qBj1KBUiGJQMbBVqxYgbe3N4MHD3Z2V9zC6bxictx0NBnMF2E5xSZS8/TO7orb8rSMXGWx/H3nXi/AmnwhH31l1gNXQcMAFYkR7vc+SkCnCDWxYnZTqGViz4wgCEIZevXqRVBQEGvWrHF2V9zCklO5HrNxeUzzYGd3xW1l64zMPprt7G7UGkv9rqF2nqXRm2S+OpZNnpsMEFjeB5FIQ3AGMTMjCC5ElmUMJpkio4lCvYkiowmDSRaVymvZ5cuX2b59uyiUWUnZOiNn3TyQAfOo+xmNnmyd0dldcVuWjFx15XJWBvKuz9LYs2aRSiExtHGg23ymLMvLRCAjOIPYMyMITiLLMtd0RvNm/0IDl65v+q9os3+0n3mjf5SfF6E+SrHUzEFWrVqFJEkMGzbM2V1xCweuFLntXpm/k4CDV4ro28Df2V1xWx0j1JzV1J3lepa/++QLBeiMMt0ife3y3dwwQEVSrD/JF1y/ZlNSrL9IniE4jQhmBKGWZeuMHLhSxKGSaZihwtoMBhNcKDDY1HDwUZrXp9dGutC6ZsWKFfTs2ZOIiAhnd8XlybLMoavulYq5IjJw8GoRfWL8xGBBNbl7Rq6a2HapEIDuUX52aS8xwhedUba264p6RvuRGOHr7G4IdZgIZgShFphkmdN5xaRkFXG2jAKZlS0yV/I4nVGutXShnkCWZYzXs8KZTKC4nhVO+bescLm5uWzatInp06c7sbfu45rO6HHZq3RGmWydiVC1GCSoDnfPyFVT2y4V4qOU7HaB3y3S19quq+kV7UfXSBHICM4lghlBcLDz+XrWpmnIKTZZ15Hb69KvttKFupuaLOFL2bwFvV4v9stUUkahwdldcIiMQoMIZmrAkpHL3Qqo2kvyhQIifb3s8l0sSRLdo/zwUUokXyhw+pJOy/mTYv3FjIzgEkQ2M0FwEL1J5rf0AvZl1d5+Ast5EiPU9I7xr3ObMauzhM+i5HHFhfn0iIsQS/gqYdOFfFKyiio9u+gOFJJ5eU8/sW+mRtwtI5c9OSq71/l8PWvSNE57Tx2VvU0QakIEM4LgAOIHp/bcbAlfdVnaEUv4KrbwrxwuFFRvdiZ13w5+/ugtLp8+TlD9aHo9NBnNlctsmjOD9/ZnAbBv5fccWLuUy6ePU5SfR1hsHF3vm0CXex+xaevC0YNs/Ow/XDx+mGJtIYFh9Wma2J1RUz6tVt9i/b0Y27JetZ4r3HA+X19nl5tJmAeW+scG2LVdZw6UdYpQ06sODpQJrk0sMxMEO9uXpXX6UoCS6UI9eSmAWMLnXLIsk6GtXiCTfvww8yePITA8kqQnX8ZkNPLr3A/wDwmzOW73j98Q2bQVrXsPRKH04vjWDax872Vkk4muYx4DIP9aFvMm3Yt/SBi9xz+Lb2AQ2ennOfLr2mq/tgytAVmWRRKAGnKnjFz2JgN7s4poWc/Hrt8bKoVEUmwArer52Hz/OeL3xtJusPj+E1yYmJkRBDuRZZnfL2tdcpNmz2g/u6ULdQViCZ9rMJhkPjh0tVrP/fb5sZzas40XV+4mKCIKgCvnUvloVHdMBoN1ZkZfpEWltg3G5z09mqvnz/DSqr0AHNn8MwtfeJinF/5CbHz7GrwiWy+1C0Mp/p3tYkdGoUt+NzqahDkQmBgf4pCZXZMsk5qnJyVLyxkHzEw3CVTRMcKXpkEqMTMtuCwxMyMIduKqgQzYP12oM5Vcwge1N/tlOU9KVhEnc4vrxBK+mzFUcyzMZDRyas9W4vsOtgYyAOGNmtKqW3+Obd1gva9kIFOkycNo0NO0YzdO7txMkSYPdWAQvoHBABzfupHoFreiVNnn38UgyyjrTPlHx3LljFyOJAM5xSZS8/Q0D/a2e/sKSaJ5sDfNg73J1hk5eKWIgyX3DEpgqsTHtORxPkqJ9mFq2os9g4KbEMGMINjBvkzXDWQs7J0u1BnEEj7XYqrmrv/8a1noi7SExTYp9VhoQ9v7zh7cTfKs6Zw7vA99ke1nrCjfHMw06diNNv2HsmnODLZ/P4umHbsT3+dO2t85Ei9vn+p1EjCaAHEtZxeulpGrNklASpbWIcFMSSE+Svo28KdPjB/ZOpM5m6PWQHqB/qbZHGP8VUT5mjM6hvgoPGYWX6gbRDAjCDV0Pl9P8kX3WA9uz3ShtenvS/icfRHkqIrf7kahcGz7V8+f4esnRxIR15wh/3yb4KgYvFTeHN+ezI5Fs5Bl89WZJEk8OGM+5w7v49jWDZzcuZllU59j+8IveWrBOnz8qrcB2yCbMJhK1yISqi8xwpdIXy+nJkipbTJwRqMnW2eslZkOSZIIVSsJVSuJxxzMy7KM6XqdLaMJlNfrbCnE37bgAUQwIwg1oDfJrEnTuM0oowSsSdPYPV2oo4klfK7Jq5oXQQGhEXj5qLl64Uypx66dv3Hfsa0bMBTreOijhdSLjrXef3rv9jLbbXRbIo1uS2Tg5H9xcN0y/vevJzm8YQWd7hlXrX5+cSQHKF2LKMrPi1AfpbgIrKaGASomtA6p9X1vziQBB68U0ddJ6b6l6wWClUhitlHwOCKYEYQa+C29wK1GFy1LpLamF9g9XaijiCV8rkspmS/0y1q+UhGFUknzzr04unkdeVkZNgkATvy+yeY4MI8qWxRp8khZtdimPW1eDurAYJvgIrpVGwAMxcVV61wZDCa4UGAgvcBgrafjo5RoF6YWtYiqqTYzcrkCGTh4tYg+MX4iCBYEOxPBjCBU0/l8PfuyipzdjSpzVLpQRxBL+FybJElE+XpVq85M0hMvc3LXFmY9MoTbR41HNhnZ+b+viWx2C5dO/AlAiy59Uaq8+fb5sXQe+RDF2gL2LP+OgNBwNFcuW9tKWb2EXUvnc2vfIYTFxqErzGfviu/wCQikVY8ku73ekjGbziizN1PLnkytqEVUAw0DVEyMD3FIRi5XozPKZOtMhKpF8CsI9qScMmXKFGd3QhDcjUmWWXIq15oxxt1IwLl8PQkRapcdJdSbzO9xsZu8xxKQlq+nfbgapYu+p46QpTWQUWio8sVnUEQUjdt15uyBnRzeuJKrF87Sb+ILqP0DST/xB/0m/BP/eqFEt2zD6X3bObRhBVlnT3H7yIdp1qknx35bT/cHnsA3MBgvb2+y08/z145N/LlpNRePHSKqeTz3TplJZLNWDnndJeUWmziaXcyRazoi/bwI9hYXq1Vh2ePRJlTNraE+KCWJy4UGqplfwqU18FcR4SvGkQXBnkSdGUGohpO5OpalapzdjRob1TTI4Rl2qiv5Qj4pWUVuNULrqIrfruzItSJWp+Xbrb3v/vkQl08f58WVe+zWZm0RtYjsJ/m8hpQruip//ou1BXj7Omdfys0oJHMChH5O2jcjCJ5KDA8IQjWkeMCm1dpKF1odYgmf+4jyq/7PyN8LYl45d5oT25NJuGuMPbpW60QtIvvJ0Bq5ePwwGz77D2mH9iCbTDRs05E7nv4/Gt2WCEDKqsX8OOVZHp/7E4c3ruTP5NUYDXre+u0U2enn+W3BTE7v2UpOxkVUal+aderB4OenEBLTyHoeSxtPzFvDn5vWcHDtUoqLtLTo2od7Xv+QgJBw67Emk4lf53zAnuXfUpSfR8M2CQx7dRrfPHM/TRO7ce/Uz6zHajW5JM+azpFf15B/7QrBkTF0HjGOqKeeB0QwIwj2JIIZQaiibJ2Rsxq9s7tRY7WdLrSyTLLMWjfKEPd3ErA2TeOwit+uJtRHiY9SqtaSyxnDEkm46z5CG8SRc+k8u378BqVKRa+HJzugp7VH1CKqGVmWOfjHn8x+7C58/APp9fBklF4qdi/7lrkTh/P43JU0atvRevzK917BPySMfo+/YK1FdOHoAc4d2sNtd9xDcGQM2enn2P3jN8x5fDj/+HE73r622QdXT38N38B69Jv4IjmXzrPj+9msel/FA9O+sh6zYea/2bpgJq17DaRF175c+usI858ejUGns2mrWFvInAl3k5d1ic4jHqJeVCxph/ewYea/yb9ymXELZ7ns8l5BcEcimBGEKjpwxf1nZSycnS60LKfziskpdt/V8o6u+O1qJMmc1WtvprbKn4mWXftxaP0K8q9movT2plFbc1rl8EbNHNLX2iRqEVWfUYZ1n7+H0WDgyXlrCI2NA6DDkNH8d0RX1n8ylYlfrbIe7xdUjwmzlluz3wHc0mMAbZOG2bTbutdAvhx/J39uWkPC0NE2j/kFh/LoF0ut/0Ymk4mdS+ZSpDEXZtVczWT7oi+J7zuYcR8usD4vefYMNs2ebtPW9kVfcu3CGZ5Z/Kv1b/n2UQ8TFBHFtm8/J+3dfxHXuBGCINiHg0ueCYJnkWWZQ1ftu49j6VuTmTYkwY4tVp4lXagrbZ2zLOFzZ5YlfHVFh3B1tT4To6bO5JW1+3ln1wWmbE3l0c9/oEHrdnbvn7Ntu1TI75frzt9DTekMBk7u3EJ8nzutgQyYk0a0GzSSswd3U5R/Y89ipxHjbAIZwGb5olGvpyDnGmENm6AODCb9+OFS5+w8YpxNsNmkQxdMRiPZl84DcHrPNkwGA13ufcTmed3um1CqrT9+WU1chy74BtajIPuq9b/mnXtjMhrZsvW3qr0hgiBUSMzMCEIVXNMZ3TaDWXlcKV2oWMLnnkJ8lMQFqkjT6D1ixtIR6motouq4fDkLfVEhEXHNSz1Wv0kLZJOJ3MsXrfeV3ANjoS/SsmX+J6SsWkxe5iXbWkX5eaWOD46KtbntG1QPAK3GXDg153pQE9awic1xfsEh1mMtrp5PJePkEf7d/5ZyX58gCPYjghlBqIKMwqrX07iZEa9/hCw7d1lVRqHBJYIZsYTPfXWMUHtEIOpIdbEWUXUoqrhmpOQsjMWq6a+Rsmox3R94gka3JaIOCEKSJBa/NrHM79u/z+xYVePLSDaZaN6lD73L2fs1YmDHMu8XBKF6RDAjCFWQUWhAAXatf6BUOffCRiFBhtZAPD5O7YcjlvDVVOq+HeYNx3N+omli9yo9t65V/G4W5E09bwW5xSaX+jd0JRKwJk3DhNYhIm1zBaLr10el9iPr7KlSj2WdPYWkUBAc2YALRw6U28afyatJGDqGIf9823qfXldEkSa3Wn2qF90QgKvnzxDaoLH1/oKca2jzcmyODY2No7iwgOa39y6zraaNw6rVB0EQyiaCGUGogktVLOSWnX6O6UPLH4V7b38WS9+aTOq+33ll7X6b59z5/BTU/oH8tmAmuZfTiWoRz92vTafhrR1s2sg8c5LkWe+TuncHOm0B9aIa0Kb/XQyc/K9K9dEkQ3qB80fUxRI+96aQJIY0DmTRyepdLNYFlixnW9ML6lQtoqry9lLSsmsfjv22nuz0c9ZlZJqrmRxcv4y49rejDgissA1JqYS/7QXcueQrTEZjtfrUrHNPFF5e7F76DS269LnR5v++LnVs2wF3s2n2dP76/Vdadutn85g+PxeTMRilQszOCYK9iGBGECpJlmUytFVbZuYfEsbod76wuc9o0LP2wzdQqirOdHVo/TJ0Bfl0HvEQkiSxdcFnLHpxPC+t2medzbn01xFmT7gLpZeKzveMIySmEVcvnOX41o2VDmbAPDMjy7JTZxAcsYSvpuISuvL2zvM3/beqiKss4asNDQNUJEao3a7YaW2qi7WIqkqSJMa+8Dpv7drCrEeH0uXeR1Aovdiz/FuMxcUMeu6tm7ZxS88BHPh5KT4BQUQ2bcW5w3s5tWcrfvVCq9WnwLD6dL9/ImzCbPoAACAASURBVNu++4Jvnx9Li279yPjrCCd+34R/vTCkEmlLej30NMd+W8+C5x+k41330aB1O4q1hWScOsqRTWt4Ku0s4eHhFZxNEISqEMGMIFSSUQZDFdeXefv602HIvTb3rXzvZYq1BTxaIr1nWXIyLvLiT7utm0vD45rz3T/G8dfOzbTudQdgro2ALPPMok3Ui76xgXXQs29UqZ8Gk3mGRunElS+OWMJXUwqFAoWPuvrPd5ElfLWpd4w/J3OLyRPLzcrlzFpEsiybv8tkGZPJvD/FS5JQSrjUcshO7dry5NerWTfz32yZ/wmySaZhmwRGv/OFTY2Z8tz10rsoFEoOrVuGvriIxu0689iXy5j39OibPrc8g559E5Xal70rvuPUnq00apvIo58vZfZjQ/Eq8T3h7evHxK9WsuXrj/kjeRX71/yA2j+Q8MZNGf/CvwgODq52HwRBKE0EM4JQSQY7pC/ev+Z/7Fo6n8H/fJtmnXpUeOxtA+62yZLTpEMXAK5dPAtAfvYVzuzfSbf7J9oEMlC9ixKDLKN0YlLkqi7hA/PM1Kf39WHcR98R33sQABePHuKzsUnE3NKWZ77/1Xrs/MljKMzL4elvNzBtSAKRzW6h2/2Ps/6TqWSdPUVog8YMmPQabfoPtT6nJntmwHWW8NUmlUJiqFhuVqHaqkUkyzLXdEYyCg1kFBq4VGggQ2soc1DGSwFRvl5E+3kRdf2/UB+l0wKcKD8vom+5jUc//6HcYzoOu5+Ow+4v8zHfwGBGTfm01P2W5bw3a6NpYnfe22+bdUyhVDLgqVcZ8NSr1vu0mlwKc64RXD/a5lgfvwAGPvM6A5953eb+YY0DUTl5n6QgeBpRZ0YQKslUwymD9BN/8NO7L9Fu0Ah6jn3qpsf/PUCxpgrNM18kXruQBkBU87LTf1aV0YlTItVZwgcQ2bw16sBgzu7fab3vzIGdSAoFl/46Yq1FYTKZSDu8lyYdulqPu3o+lcWvPk7L7v0ZOPl1FEovvn/lMU7u2lLj11OSZQlfXdIwQEVSbN3I4lZdjqxFlK0z8uvFAj7+4xpzj+WwOi2flKwiLhSUHciAeXb2QoGBlKwiVqflM/dYDh//cY1fLxaQravePpOaiPJzvbFWfVHpf68di2YD0KSSgx2u+LoEwd2JT5UgVFJV04WWpM3LYdFLjxLeqCkj3vioUs+RFOWlCnXMhbHSiUMb1VnCB+ZlYI3bdebMgV3W+84e2EV8nzs59tt60g7toVX3/mT89Se6fA1xCV2sx11JO82DM+ZbZ2IShz9ori7+6ds2G3xryhWW8DlDYoQvOqPMtkuFzu6KS7J3LSKTLHM6r5iUrCLOavSlUpxX9uNV8jidUWZvppY9mVriAlV0jFDTLMi7VpbGhfoo8VFKLpUU5PDGn0hZvYRW3ZPw9vMn7eBuDq1fTosufYhrf/tNn++jlAjxEWPIgmBv4lMlCJXkVc0fcJPJxJJ/PYlWk8vYDxfw/+3deXhTZdoG8PtkaZLuaRu601BakIJ0ZZdFKAoUwQVwFBRGEZVxGxccR+dTGQfZHBxxHAZUhBFxRkBhQBQQBCt7oegAIlAohVJpS+lGl7Q53x8xoaEtbZr1tPfvurgum5ycc3JMmzx53/d+vDTeDjmfoChTPGjBqZ8csr+2Pj9HsGcKX5eU/sj/6QfUVlUCAHKz96P7LekI79YLZ38tcs4c3gtBEKw+cPjrwtBzeIblZ7WvH1LGTkL+Tz+ivOiXNp9PUxwxRVGKBoZqMDjcMa/39sjci8heeRUGLD1WgrU55cj9tdePo15x5v3klhuwNqccS4+VIK/C+VMnBUFAYrDajRNfGwuLT4BMrsCule9i08JXcPbwXgy8bwYmL1ze4mMFAEnBao9al0TUXnBkhqiV5IJpXrmtIwjf/HMBTu7ZgWmLP7XqT2AvX20IuqQMQNaGTzB4yuNW09JsTSZTyEyL1d3Fnil8+uT+MNbV4dwPBxEQGomKy4XQJw/AL6dPWIqZs4f3olNsd3gHaC2PC47u0ugahXTuCgAoyc+DX0ho20/qOvVGAB0j0MyKIAgYFOYNlVzAtvOV7aYhqqPY24vIYBSxM78SBwurLR/6nXV9zfstrTVi1clSpOnUGBrh49R+Ockhauy/5JypeG0R2SMR05esbdNjRQBJIW0PEyGi5rGYIWolQRAQplHgfGXr13YUnDyGHe+/BX3KAFReLsLhTZ9Z3X990pmt7pg1B0seGovFk0eYopkjY1CSfw4nMrfiqU+/bfV+wjQKt35jaM8UvsiEJChUapw5tAeBYZHwDdJBF9MVXZL7Y99ny1FXW4Ozh/ei560ZLe/MSdw5hc8TpOk0CNUosDG33G0pZ7lH9uPknm8xaPKj0Ph5TppUW3sR5VUYLNcTcF2RaD5OVmE1TpbWYmyMn9MiprUqOfR+SuSWGyRdBAsA9H5Kh0wnJKLGWMwQ2SDcW4H8ytanbl0tLYEoijiTtRtnsnY3ut/eYia8Wy/MXPEVtr43F3vXfIS62hpow6Nw88jxrd6HTAAifNybrmPPFDeF0gvRPZNx9vBeBIRFQp9smkqmT+6PutoaZH+5BhXFhdCnDLB6XHHemUYjWEXnTgMAtBHRbT6fJs/RRYWiJ8fuRvsqMb2H1mokwZUfUHOPHMA3SxcgddxvPKqYAWzvRXSwsMrtI13mBqCrTpYiPcoHaTqNU46TqlPjbLm0EwFFAKlOuj5ExGKGyCZh3gqb4oObive83sTX37X6WRvRudnHNHV7aNebMOWtj2w4K2tG0TQy405tncJnpk/uj8xVS1B8/qwlKc5HG4xOXbph54rFAK5FW5uVFRbg6PZNlgCA6opyHNr4H4R37+XQKWbOmsInxdhdpUxAepQvugeqsCm3HFdqjR1+6pktvYhEUcTuX6osoQruvm7m4287X4maehEDQzUOf0119fdCoJcMpRLtWyQACPCSIdafccxEzsJihsgG7TVW093Pqy1T+BrSJ/fHjg8WobTgAvQNihZ9ygDsX7sC2ojOCAiNsHpMSExXrJ39DM4fOwzfIB2y1q9GxeXCJntT2MPRU/hKaupxuKgaR4qrLUlPLTUbNcfuNhxVVMlNC6yTQ9Qun/4S7avEjAQtcsoMyCqswpkm0rccaduS+fhm6QIAwPyx1xouztqYBW1EZxze9BkyVy3BpTM/Q6lSI77/MIx+5jUEhkVatj1zaA92f7oMef87hIriQvgGhaDXiDtw+xMvQ6lu+7futvQialjIeBrzeQ0Kc2zgg0wQkCHhvkUigLExfi5vjkrUkbTPT2ZETuKJcaH28pS4UFun8DUUk9gXMrkcSrUG4d16WW7XJ/fH/rUrrAocs+DoWNwx601sfvt1FOWegjaiM+6buwzdBg6341lYc9QUvvYWuwuYPqTGBXghLsALJTX1yC6qRnbDAk0wfdB3hJ7DM1B07jSOfLUOGc/9GT6BwQBMo3c73v8rtv5jLm4eOR597pqCypJi7Pn0fSydPg5Prt5umZL247YNMFRXof+EafAOCELe0UPY8+/3UXopH5Pnf2jX+Zl7Ed2o6D14yXMLGbPvLl6FSi44fMpZtK8SaTo1sgqrJTU6IwBI06kR5aQ1RURkIogdrZsbkZ22X6jEgUtVknpTbY4AoG8nDW6NdH+Dw6OXTc36XGFeRgpCu96Eae984vRjjYvxQ0JQy1OImpNXYXD6lCzzfgO9ZMhw4oLuloiiaTF8wa9T5vIrDc1OnbPVrpV/x+a3X7OMxgCm1LqF4/sg/bEXcevDv7dsW3DqOBbfPxzpj86y3G6ormo0AvPt8r9hy7t/wayNhxo1ubXVC4nBkDczHzGvwiCpkYnJ8QEOfw0ZjCLeP17itgAJWwkA/L1kmN5D69TENyJinxkimyWHqCXxZtoanhQX6u6pbs7S1udlMIrYdr4Cq06WotTJiVXXx+5uO18Bg6OGRWwgCAKC1HIkBKkwPNIHU7oF4rnewXghMRgzewY6/HhHt2+CaDTi5pHjUVlSbPnnF9wJIdGxyDn4vWXbhoVMbVUlKkuKEdO7D0RRRP6JH+0+l+Z6ERmMIjbmlntUv5UbEQBszC13+OtHKRMwNsZPMn97zdPLWMgQOV/7/PRA5ESMC3UOTuG7piPE7raW8Gsam0Jw/HdvRXk5EEURb93ZdPd2meLac79y8Ty2LpmL4zu/RlXZFavtqivK7D6X5noR7cyvlMxoBHAt5WxXfiVGRPk6dN/RvkqkR/lg2/lKh+7XGdKjfNz+u0PUUbCYIWoDxoU6nrnjd3uawteWjt8dKXbXFvb0ImqOaDRCEARMW/wpZPLGlYSXxjT90lhfjw9mTkBV6RUMnfYkdPp4eGm8UXrpIta8+iREe7q+/qqpXkR5FQYcLKy2e9+uJgI4UFiNboEqh3+gT9NpUFMvevT6ocHh3h7xO0PUUbCYIWoDxoU6h6s6fr+46ZDTj2HrFL6OGLtrC3t79TR17sFReoiiCG1kDHQxXZt9bMGpYyjKPY2Js99Fyth7Lbef3PutXefU0PXPzyiK2PTr9DJ3vxbaQgCwKbccMxK0Dg+VGBhqKhQ8saAZEu6NAaEsZIhciWtmiNrAHBcqxQ8ZgOfGhZqn8HnWWdlOANDFxil8nh67u/sX5xeZN2LuRdRWXhpTZHBV+bWF9D2HZ0Aml+ObpQtwfRaOKIqovHIZACCTyS23Nbz/+0+Wtv2EGmiqF9HpslpckeiXJYDpb8yVWiNyyhw/gi0IAgaFeSM9yjRy5u6/F+bjp0f5YGCYt9sb1BJ1NByZIWojxoU6R0ecwteRY3dby95eRBE9EgEAW/4+B71vuwtypRI9htyGkTNfwteL38CV/HNIGDYGKh9fXL5wDkd3bELfux/EkAd/B50+HkFRemxe9BrKLl2EyscPR7dvbLR2pq2a6kWUVVgt2VEZMwFAVmEV4gK8nLL/NJ0GoRqFZX2ZO66VObXME9aXEXVULGaI7DA0wgcnS2sls0DX/MY7JML9UczN6WhT+PIqDNh2wfMXNAOmKWehGoXbPrTZ04soumcyRs78A/atWYGfd2+HaDRi1sYsDPvt0wjp3BXfr1piaawZEBqJ+P7D0GPoKACAXKnE1LdX4b8L/ohvl/8NSi81Em4dgwH3Pox3fjPMrufUVC+ikpp6yRf0gKkQO1NuQElNvdOCRqJ9lZjeQ4ud+ZU46MIC0HycNJ0aQyJ8mFpG5EbsM0NkJ/aAcDypXdPrTYkPaNXIF3tn2MaVvYhc6fpeROxl1TYdqScTEV3DNTNEdjLHhUqBVOJCzVP4pPZdpwCgjw1T+KQcu+sOHaEXkSiKOFIsramrAPDZq09gXkaK1W0vpeiwdcl8ZBdXN1qT5AzRvkrMSNBiQqw/9H6m30FH/Q0x70fvp8SEWH/MSNBK4m8pUUfQPt8ZiFyMcaGO196n8DF213YdoRfR5Zr6dvX8AKCmXkRJjRFBauf3tJIJAuICvBAX4IWSmnpkF1Uju7jack1lAtCafp4Nt1PJBSQFq5EUovaYvlxEdA2LGSIHYVyoY5k7fktlupktHb8Zu9vG43aAXkQFV9sWcOBud7+yCKLY/Gqmgqt1LilmGtKq5Lg10gfDIrxRUmNEwdU6FFTVIb/SgIKqOtQ1cboKmSmQIcJHiTCNAmHeCmhVMiaUEXkwFjNEDmKOC1XJBbc3PQSuze32lKaHbdFeO36bY3elqmHsrrOSqprjql5ErtBUL6KCq3WQAW0KOXAnubL5175MAAqq6pAAVbPbOJMgCAhSyxGkllvOQRRFGEWgThRRbzQ1LVUIAmRC0z2JiMhzcc0MkYOl6TSYHB8Afy+Z29Z8mKc8TY4PkGwhY5am02BwuLe7T+OGbJ3CZ47dlTJz7K6rtfdeRBevmtLaaior8N8FL2NeRgpe6ReJN0b0wAePT8CF40cs2/64dT0W3z8CfxoQjT8P745/v/w4Si9dtNx/cP0neClFh/yffmh0/B0fLMIf00Kttm/Onv98iEUTbsEr/SIx57ZeWP/mLKt+PUDTa2bMjCKQX+lZ6WyCIEAuE6CSy+CtlEEll0EuE1jIEEkQixkiJzDHhabqTN+6uurt0XycNJ0a03u0nwWqA0M9t6AZEu5tmWLYGubYXalPk2oYu+tqqTp1u7h+1/ciEkURBVWmaWafz3ke+9Z8hF4jxmL8S/Mw+IGZUKrUuHTmJAAga8NqfPLidMjkctz+xMvoc9cUHN2xCf98aKyl0Lg5fRyUag2yN69tdPzszWsRmzoIAZ3Cb3ie25bMx4a5L8JfF4Yxv38dvUaMxf51K/HhzImoN7S+QCmoqnNJCAARdTycZkbkJEqZgPQoX3QPVLksLjSgncaFtqcpfIeLpN8M0UwAkF1U7ZLY3Ybaay+iehGWdRwnvtuKPndNQcazsxts8aRpO4MBX73zZ4TG9cCM9zdAqTJ9aaJP6ocVT09G5sdLMPLxF6Hy8UXCsNE48tU6jHr6Vchkpu8v83/6AZdyTmDIg7+74XlWlBTh2+V/Q3z/YZj27r8tj9fp47Fh3h9w+MvPkDb+/lY95zqjaYRGzoEPInIwjswQORnjQh1H6lP4nBW7u/SR8Xh74mAH77VlIuCy2N2GZIKAjBg/SRYywLWwiOvDE+oaXEe1XwDy/ncIZYUFjR5//lg2Ki4Xov/E31oKGQC4afBt0OnjcSJzq+W25IxJKCssQM6BTMtt2ZvXQqnWoNeIO254nqf27UK9oRaDJj9qKWQAoM/dD0Dl62d1nNao48gMETkBR2aIXIBxoY4j5Y7fjN11HHMvoqxCafVkEWB6DTXVi8jYYNX/6Kf/D5+9+iTmjk5EZI9EdB+UjpSxkxAUpceVgvMAAF1MXKN96LrEI/fwPsvP8f2HwS8kFNmb1yCu3xAYjUYc+WodegwdBZWPLwDgamkJ6g21lscoVRqo/fxx5WJek8dRKL0QFBmDkovnbXru9UYAHedPFRG5CIsZIhdjXKj9pDqFT6qxuy1xR+wu0P56ETUY/EDv2+6EPrk/ju74Eqf2fotdK/+OnSsWY8rC5TYdUyaXI2n0Pdj/+b8w/qX5yM3ej7LCAiSPmWDZ5uPnp+FM1m7Lzyl33IuJr79r03FaQ865IETkBCxmiNyEcaH2M0/hyykzIKuwCmfKDQ4rasz70fspkarTINZfaXdPFanG7t6IO2N321svIsV1ry9/XRgGTHoIAyY9hIrLhVh8/wjs+GARRj/9GgCgMPcUuva1nl5YdPYUAsOjrG5LzpiE7/71Hn7a9TVOfP8NfLQhiB8w3HJ/xu9no6r8iuVnP10YACAwPNpynKAoveX+OkMtSi6cQ1y/ITY9/+ufHxGRI/B7EiIPwrhQ25mn8N0bF4BHE7To20kDVYNVxq2dDdZwO5VcQN9OGjyaoMW9cQGIC/CyqZApLy/HM888A71eD5VKhU6dOmHkyJHYcyDLUsg4I1b3wrEj+Me0MfjTgGjMH5uKfWs+avTYutoabP3HPCwY1wev9IvE3NGJ2Pz266irrbHa7uD6T7Bsxl14Y0QPvNIvEovuGYS9nzUeFXhzTAqem3I3MjMz0bdvX6jVasTGxmLlypWtvl72MPcikoKWehHJBdMorLG+HtXlZVb3+Qbp4K8LQ11tLaISkuAbpMO+NSus/r+d+H4bLp35Gd1vGWn12PBuPREW3xMHPv8Y/9u+Eb1vvxNyxbXvMiMTEhHXb6jlX2hsdwBAXL8hkCu9sHv1Mqt1UQe/WIXqirJGx7kRhaz1v4tERLbgyAwRtRueMoXvsccew5o1a/DEE08gISEBxcXFyMzMxLHjx9Fb3xNZG1ZjzWtPIapnMm5/4mVUXC7E7tXLkHtkP55cvR0avwDcnD4OG+b9Admb1yLipt5W+28qVreq7Ao+euo+3DxyHBJH3YUft6zHF3NegFyhRNqdkwEARqMRK5+ZgrPZ+9H37gfQqUs3FJw6hsxPlqDo3Gk88NdrBci+NR8hNLY7egy9HTK5Aj/t+hrr35wF0WjEgHsftjqfC2dzMGHCBDz88MOYOnUqPvzwQ0ybNg2pqano2bNnm69ja6XpNKipF/HdxatOP1ZbtaYXkSAICNMocLK0FHNH9Uav9DsQHt8LXt4+OLVvJ84fPYwxz86GXKnEqKf+hDWvPYWl08cjcdRdqCguxPerl0Eb0Rm3THms0b5Txk7Cl4teBQAkj5nYqnP21YZg2G+fxjdLF2D57yahx9BRKMw9hX2fLUdUz+RW7wcw/Y7xSxkicgYWM0TU7rh7Ct+mTZvwyCOP4K233rLc9uzzL2DhkWKnxeqWFRZgzLOzMXjK4wCAvvdMxXsP3o6v3/0LkjMmQa5U4sjmtTi1fxdmLFsPfXJ/y2NDu/bAF3OeR+6R/YhJ7AsAmLFsPZTqax++B/5mOj783SRkrlrSqJgpPHsKO77diWFDTdOOJk2ahOjoaCxfvhwLFy501GW9IXOvH08saIaEe2NAK3sRhXsrcE6tQf+JD+Hk3h04un0TRKMRwdFdMP6l+eg/8bcAgNRx90Gp1mDnR+/gq3f+DKXGGz1vHYNRT/8fNH4BjfabNPoefPXObARF6RHdq+nmlk1Jf2wWfLTB2PPvD7DprT9BExCIPnc/iNufeBlyZevWj8kEIMKn/aYsEpF7sZghog5BEATIBUAOwemJSoGBgdi3bx/y8/MREREB4FosrTlWd8SjLzQbqzvy8RcBmNY6HPlqHXIOZFrWJzQXqytTKNDvngctPyuUXuh3z1R8MecFXDh+BJ17p+HHbRvQqUs36PTxqCwptmzbte8tAICcA5mWYqZhIVNdXob6OgNiUwfi5J4dqC4vg9rP33J/p9juGHDLLZafdTodunfvjpycHDuuom3aSy+iMG8FZEovjH7mVYzGqzfctvdtd6L3bXe2ar8yuQIQBCTZMJpiNuDehxsVsNdrKjDgzUOFAEwJjGEaftwgIufgXxciIgebP38+pk6diujoaKSmpmLMmDGYeN8UAIEOj9U18w8Jg5fGeu1ISOeuAICSi3no3DsNxedycOnMz3hjxE1NnndFSZHlv89m78O2JfNx7oeDMFRbj3ZUV1gXM4FhkY1id7VaLUpKSpq/SE6SptMgVKPAxtxyt6WcmVPLxrYh/S7M2zlvy1n//RRifT1SMmwvZhzBWc+LiIh/XYiIHGzSpEkYPHgwPv/8c2zZsgULFizAvHnz8JsFjo/VtYUoGhEWl4CM52Y3eX9AaCQAoDjvDD547B7o9HHIeHY2AsIioFB64afMbfh+1RKIovXiI0EmbzJ219XNNM2k3IsoSCWHSi44rB/R6f3f4ZecE9jxwSIkDBsDbURnh+zXFiq5AK2KeUNE5BwsZoiInCA8PBwzZ87EzJkzcenSJaSkpDglVtesrKgAtVWVVqMzRedOAwC0v0bsBkXpcfHno+jad8gN1wkd3/U16mpr8OCij63O53SDLvLX87TYXan2IhIEAYnBahy4VOWQc/1m2UKcO3IAMUl9cceLbzpgj7YRACQFq7n4n4ichl+VEBE5UH19PUpLrfuedOrUCREREah3QqyumbGuDvvWXksjqzPUYt/aFfDRhiCyRyIA4OaR41F26SIOrPtXo8cbqqtQW1UJwDQiBFiPrFSXlyFrw+omn7NM8NzYXXMvogmx/tD7mYoMR52qeT96PyUmxPpjRoLWrkLGLDlE7bCia8ay9Xhjfz4eWfqFVfqdq4gAkkLULW5HRNRWHJkhInKg8vJyREVFYcKECUhMTISvry+2bduGAwcO4P4/vOG0WF1/XRh2fbQYJfnnENK5K37c8gUunvgf7nrlr5bUqeSMSfhx63p8Med5nD5oWuwvGutRePYUfti6Hg/9/T+ISkhCfP9bIVd6YeUzU9D3ngdRW1WJ/ev+Bd+gEJQX/dLo2Cq5Z/dCMvciigvwQklNPbKLqpFdXG2ZyiUTTIvUW97Pte1UcgFJwWokhaihVTk2UUKrkkPvp0RuucGtIQb2EmAq9Bx9fYiIGmIxQ0TkQN7e3pg5cya2bNmCdevWwWg0Ii4uDu+99x663fEAsgqrnRKrq/EPxMTX38WG+S/hwOcfwzdIh3EvzkXfux+wbCOTyfDAWyuRuWoJDm/6D47t+BJKtQZBkTEYdN8MS2CATh+HyfM/xJb33sSXb78Gv+BO6DdhGny0wVj7+tNWxxUAqJpaMOOhPKUXUUtSdWqcLTc4bf+uIAJItSHJjYioLQTRXSs0iYg6mKOXq/Hf3AqbH1dZUow5t/fC8Eeex4hHnnPCmdlnXIwfEoJU7j4Nu7myF1FLjKKIpcdKUOqmRDZ7CTCtIZqRoIXMg0ftiEj6pPN1GhGRxLU1ntbdsbotaS+xu4IgQC4ToJLL4K2UQSWXQS5zzxQ6mSAgI8ZPkoUMYBqVGRvjx0KGiJyufbwDERFJgK2xu54Qq9sSxu46T7SvEmk6NbIKqyVV1AgwxVNHOSAMgYioJSxmiIhcxNbYXXfH6raEsbvONzTCBydLa93WANRW5oahQyJ8WtyWiMgRuGaGiMiFSmrq8c9jJe4+DYd5NEHLtCony6swYNXJ0pY39BCT4wMcElFNRNQanBtARORC5thdqY9lCAC6MHbXJaJ9lUiPksZIR3qUDwsZInIpFjNERC6WqnNcU0R3Yeyua6XpNBgc7u3u07ihweHeSONrgohcjMUMEZGLdfX3QqCXTLKjMwKAQC8ZYv35DbwrDQz13IJmSLg3BoaykCEi12MxQ0TkYozdpbYQBAGDwrwtU87cffXNx0+P8sHAMG8GQRCRW7CYISJyA3PsrtQ+/gkA+jB2163SdBpMjg+AvxtH98ypZZPjAzi1jIjcimlmRERuYjCKeP94ieRid6f30EIpk1oZ1v4YjCJ25lfiYGE1BMAlryHzcfro1BgS4cPXARG5HYsZIiI3Yuwu2SuvwoBNueW4gpaPEAAAAglJREFUUmt0WlFj3m+glwwZMX58DRCRx2AxQ0TkZgcLq7DtfKW7T6NF6VE+nFLkoYyiiJwyA7IKq3Cm3OCwosa8ny5+SqTqNIj1V3KtFBF5FBYzREQe4PuCq/ju4lV3n0azBod7Y1CYZyZpkbWSmnpkF1Uju7gaNfWmt3iZABhb8W7fcDuVXEBSsBpJIWr2EyIij8VihojIA4iiiN2/VHlkQTMk3BsDQjVMq5IYURRRUmNEwdU6FFTVIb/SgIKqOtQZG2+rkAFhGgUifJQI0ygQ5q2AViXj/3Mi8ngsZoiIPIh5ypmrFnQ3x3x8Ti1rX0RRhFEE6kQR9UZALgMUggCZABYuRCRJLGaIiDxMXoUBG3PL3ZZyZk4tG8uF3kRE5OFYzBAReSDG7hIREbWMxQwRkQdj7C4REVHzWMwQEXk4xu4SERE1jcUMEZGEMHaXiIjoGhYzREQSxNhdIiIiFjNERO0GY3eJiKijYTFDRERERESSJHP3CRAREREREbUFixkiIiIiIpIkFjNERERERCRJLGaIiIiIiEiSWMwQEREREZEksZghIiIiIiJJYjFDRERERESSxGKGiIiIiIgkicUMERERERFJEosZIiIiIiKSJBYzREREREQkSSxmiIiIiIhIkljMEBERERGRJLGYISIiIiIiSWIxQ0REREREksRihoiIiIiIJOn/AWJA7mdMr1CKAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -3723,7 +3871,7 @@ }, { "cell_type": "code", - "execution_count": 146, + "execution_count": 139, "metadata": {}, "outputs": [], "source": [ @@ -3735,14 +3883,14 @@ }, { "cell_type": "code", - "execution_count": 147, + "execution_count": 140, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAJOCAYAAABBWYj1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADsEklEQVR4nOzdd1hURxcH4N/dRpUiCoI0paoIViyxYkXsvcUSe4vRaIwt9m409haNsUaNXbH3igoiokgRKxYU6QLb7vcH3xJROrt778J5n8cnCrszRwPL2ZkzZxiWZVkQQgghhJB8CbgOgBBCCCFEV1DiRAghhBBSQJQ4EUIIIYQUECVOhBBCCCEFRIkTIYQQQkgBUeJECCGEEFJAlDgRQgghhBQQJU6EEEIIIQVEiRMhhBBCSAFR4kQIIYQQUkCUOBFCCCGEFBAlToQQQgghBSTiOgBCtC1ZpsCHNAWkChYKloWQYSARMrA0EMFYTO8lCCGE5I4SJ1LipcmVCIlLR1SiFLHpCsiVLEQMAxZs1mMYMJCzLEQCBpb6QjibSuBpoQ8DESVShBBC/sOwLMvm/zBCdM+bVBnuxKYhMlEKBoC8EF/pIgZgAbiYSuBtaQAbI7GmwiSEEKJDKHEiJU6aXInTL1PwNEkKBQsU5wucASBkACcTCdraG9MKFCGElHKUOJESJTIxAydepECuZKFQ41e2kAFEAgbtHYzhYqqnvoEJIYToFEqcSInAsiwuxqQiOC4dMqXm5hELgBoW+vCpaASGYTQ3ESGEEF6ixInoPJZlceplCsISMjSaNKmIBUAVMz342htT8kQIIaUMFWwQnXcxJlVrSRMAyJRAWEIGLsakamdCQgghvEGJE9FpkYkZGt+ey4lMCQTHpSMyMUO7ExNCCOEUJU5EZ6XJlTjxIkXrSZOKTAmceJGCNDlHARBCCNE6SpyIzjr9MvP0HJfkShanX6VwGgMhhBDtocSJ6KQ3qbKsPk1cUrDA00Qp3qbKuA2EEEKIVlDiRHTSndg0zpMmFQULBMSmcR0GIYQQLaDEieicNLkSkYnSYnUEVycWQGSilGqdCCGkFKDEieickLh0FLZ70vmNS7Fv+qhcP7+yeyNE37tR5JiY/8dFCCGkZBNxHQAhhRWVKC3Uhb0FMeHf68V6vpzNjKuelaGaIiKEEMJHtOJEdE5suoLrEHLE17gIIYSoD604EZ2SLFPk24LgyvbVuLl3C9JTk2FSvgI6/boUAKCQS7F/5hg8unQSZhVs0WPuWthWrQEAWOJXC91+Wwnnek1xfuNSvH8aBkYgRPiN8yhnXxndZ6+GtatHnvPKlSxSZEoYi+n9CCGElFT0Ck90yoc0BUR53A/34XkUbu3bijG7zmHO9ef4Yd1+mNvYAQDCrpyBZ5vOmHXlKao0bYNji3/NdZzHV06jequO+O1SJLzadsPOiQOhkOXdckDEMIhNkxftL0YIIUQnUOJEdIpUwYLN4zwdIxBALpUiNjocCpkM5jb2sLCrBABwqFEP7o1aQSAUoqZfT7yNfJTrOBXdvVC9ZUcIxWI06j8Kcmk6Xj68l2dsLFhI+dIjgRBCiEbQVh3RKQo278SknH1ltJ80H+c3LcX7p+FwbdAcfj/PAwCUsbDMepxE3wDyjHQo5HIIRd9+G5hWsMn6vUAggImlDZI/vMtzbrYA8RFCCNFttOJEdIowj206lRq+3TBy20lMOXkfYBicWjW30PMkvnuT9XulUomk2DcoU75Cns9hChgfIYQQ3UWJE9EpEiEDJo8uTh+eR+HpnWuQSzMg0tODWE8fjKDwyUzMkwcIvXACCrkcN/ZsglCsB/vqdfJ8DgMGEiElToQQUpLRVh3RKeUNhJDnsR0ml2bg9Jp5iH0WAaFIDHvPuug6cwXuHNxRqHmqNm2LkLNHcGDWWFjYVUL/5X9BKBbn+Rw5y8LSgL6lCCGkJGNYlooyiG5ZGRKHDA0WYZ/fuBRxr56h14INhXqenpDBBE8LDUVFCCGED2irjugcS30h1yHkiK9xEUIIUR9KnIjOcTaVQMSzUiIRkxkXIYSQko226ojOSZMrsTb0E/jUMknIAGM9ysJARO9FCCGkJKNXeaJzDEQCuJhK8jhbp10MABdTCSVNhBBSCtArPdFJ3pYG4MvJfyED1LM04DoMQgghWkCJE9FJNkZiOJlIOE+ehAzgZCqBtVHerQoIIYSUDJQ4EZ3V1t4YoiI0t1QnkYCBr50xpzEQQgjRHkqciM4yEAnQ3sEYYo6+isUCoL2DMfSptokQQkoNesUnOs3FVA81LPS1njyJBUANC324mOppd2JCCCGcosSJ6DyfikaoYqanteRJLACqmunBp6KRdiYkhBDCG9THiZQILMviYkwqguPSIVNqbh7VSpNPRSMwDE+O9RFCCNEaSpxIiRKZmIETL1IgV7JqbZApZDILwds7GNP2HCGElGKUOJESJ02uxOmXKXiaJIWCBYrzBc7gv5YDbe2MqcklIYSUcpQ4kRLrbaoMAbFpiEyUggEgL8RXuojJTLhcTCWoZ2lAfZoIIYQAoMSJlAJpciVC4tJxJigMEosKEEr0IGIYsGDBInNViQGDNKkUQrCwNTWEs6kEnhb6tMJECCEkG0qcSKnRtGlTzJw5E/Wb+iA2TQ6pgoWCZSFkGEiEDPz37UJwwE38+eefXIdKCCGEpyhxIqWCUqmEmZkZnj9/jrJly+b4mLt372LIkCEICQnRcnSEEEJ0Be1DkFIhKioKFhYWuSZNAODp6YmoqCikpqZqMTJCCCG6hBInUioEBgaidu3aeT5GT08PHh4eCAoK0lJUhBBCdA0lTqRUCAoKQq1atfJ9nLe3N+7evauFiAghhOgiSpxIqVCQFScAqFu3Lu7cuaOFiAghhOgiSpxIiceyLK04EUIIUQsR1wEQomnR0dEwMTFB+fLl832sm5sbPnz4gI8fP6JcuXJaiI7wQbJMgQ9pim9aVFgaiGCsrdujCSE6gRInUuIVdLUJAAQCAerUqYO7d+/C19dXw5ERrqiaokYlShGbroBcyWY1RVVhwEDOshAJGFjqC6kpKiEEACVOpBQoaH2Timq7jhKnkudNqgx3crmGR/FNS7vMPysULF6lyvH2sxxX336Gi6kE3pYGsKFreAgpleitEynxCrPiBFCBeEmUJlficHQS9kQmIjwh8/LnwtxdCGQ+XsEC4QlS7IlMxOHoJKTJlZoJmBDCW9Q5nJRoLMuiXLlyePToESpUqFCg57x69Qp16tTBu3fvwDCMhiMkmhaZmIETL1IgV7JQqPHVTsgAIgGD9g7GcDHVU9/AhBBeoxUnUqK9ePECenp6BU6aAMDW1hYMw+Dly5cajIxoGsuyuPA6BceeJyNDod6kCchcfcpQsDj2PBkXXqeA3oMSUjpQjZMW0ckd7QsKCipUfRMAMAyTVefk4OCgociIJrEsi1MvUxCWkAGZhnfTZEogOC4dGQoWvvbGtEpJSAlHiZMG0ckd7gUGBhaqvklFVefUvXt3DURFNO1iTKpWkiYVmRIIS8iAnpBBC1tj7UxKCOEEJU4aQCd3+CMoKAijRo0q9PO8vb2xePFiDURENC0yMQPBcelaS5pUVCtP9mXEVPNESAlGxeFqlCZX4vTLFDxNyjy1U5x/WAaZxadOJhK0tTemFagiYFkWVlZWCAoKgq2tbaGeGxcXh0qVKiE+Ph5CoVBDERJ1S5MrsfFxPDLUXdBUCHpCBiOrmtP3LCElFH1nq0lkYgY2Po5HVJIU8mImTUDm8+UsEJUkxcbH8YhMzFBHmKVKTEwMGIZBxYoVC/1cCwsLWFpa4smTJxqIjGjK6ZeZp+e4JFeyOP0qhdMYCCGaQ4lTMdHJHf5S1TcVtViX7q3TLW9SZVmrvVxSsMDTRCnepsq4DYQQohGUOBWD6uSONuopVPUTp15S8lRQRTlR9yVqhKlb7sSmcZ40qShYICA2jeswCCEaQIlTMXB1cudiTKp2JtRxhb1q5Wu04qQ70uRKRCZKi71Fri4sgMhEKXUWJ6QEosSpiLg+uUM1T/kr7FUrX6tZsyYePXqEjAz6t+a7kLh0FHZDdmX3Roi+d0Mj8QCZBzxC4tI1Nj4hhBuUOBVBmlyJEy9StJ40qciUwIkXKfRuNg9v376FVCqFvb19kccwNDSEq6srHjx4oMbIiCZEJUoLfffchH+vo3Kd7zQTEP5/uCNRqrHxCSHcoMSpCOjkDv+pVpuK28WZ6px0Q2y6olCPV8jlGooku8LGRQjhP2qAWUh8PLljTU0yv1Hc+iYVb29vXL9+XQ0REU1JlikK9EZmiV8t1O8xCMH+B/HhRRSMzC3QY84aONdrCqVCgSvbV+Pe0T1I+fQB5eyd8P2KHTCrUBGxzyJxfOlUxIQ9gJG5BVqN+hWerTsXKDa5kkWKTElXKhFSgtB3cyHRyR3dUNz6JhVaceK/D2kKiAq4svjg9CEMXL0Hs65EQSD8733j9V0b8ODMYQxavRezrz1D99mrINY3gDQtFdtGd4dX266Yfj4MfRZtxtHFU/A+OrxA84kYBrFp2lndIoRoByVOhUAnd3SHulacqlWrhlevXiExMVENURFNkCrYbPc/5qVh72Ewq1ARYn2DbB+/e2QXWo+eivKOzmAYBtauHjAyK4snV8/C3NoOdTr1hVAkgo27Jzx82uPhuWMFmo8FCylf3mkRQtSCtuoKoSgndzRNdXKnnpUh16HwRmxsLFJSUlCpUqVijyUWi1GjRg0EBgbCx8dHDdERdfv2/sfcmVbIuYt84vs3KGvr+M3H49++xqvQIMxp4pT1MaVCjpp+PQs0H1vI+Agh/EeJUyEU5eSOpqlO7lDi9B91FYarqLbrKHHiJ2Eh/j/n9jVhamWDT6+fo4Jzlewfr1ARlWo3xJAN/xYpNqaQ8RFC+I+26vIh/+L0jaZOyBT3hA+d3MlOXfVNKtQIk98kQgZMMdeC63buj3PrF+Pjy6dgWRZvIx4hNeETqjRujY8vniLoxH4oZDIoZDK8enQfsdERBRqXAQOJkBInQkoSSpxy4OjoiCVLlsDT0xNGRka4fv066jVogGnfVcaqXs2yNc0LPLYXSzvUwaxGjljavjbu+//3zvTekd1Y0bUh5jR1xrbRPRD/5lXW56bWKo9b+7ZieSdv/N65Ho4snAz/lbOyxbFjwve4tmsDACDpwzvsmjQI833csbR9bdzYuznrcdEhgahVuw5MTExgZWWFiRMnauqfRieoq75JhQrE+a28gRDyYm6HNeo/CtVbd8S20T0xu3ElHJz7E+QZ6dAzMsYP6w8g5OxhLGpTHQtaV8PpVXMhlxWsKaqcZWFpQAv7hJQkDEsXn33D0dERZmZmOH78OAQCATw9PbF00zYkODXE49tXsHfqcEw8dBMSfQMsbO2BMTvPobyjM5I+vENaUgKsnNzx+PIpnFzxGwb+sRsW9pVxZfsqhF+/gFHb/QFkJk7O9Zqiz+ItEOvp4/Wj+9g3YxSm+AeDYRikJSVgYZvqmHzsLowtLLGufytUbeaLpoN/RNL7N/hzVHd0nroUrg19sHGQL8aNGY2fhw9GSkoKQkNDUb9+fY7/Fbnj6OiIs2fPwtXVVS3jsSwLCwsLPHr0CNbW1moZk6jXypA4ZPCwCFtPyGCCpwXXYRBC1IhWnHLx448/ws7ODrt27UK7du3wXYu2YAQMXOo3g20VL4RfPw8AYBgB3j8Ngyw9DSblK8DKyR0AEPDvdjT7YTwsK7tCKBKh2Q8T8DYiNNuqU7PB42Foag6xvgEcazUAGAbPg24BAB6ePw776nVgUr4CXj+6j9SEOLQYPgkisQRlbR3h3aU/Qs4cBgAIRSJER0Xh48ePMDY2LtVJU1xcHD59+gRnZ2e1jckwDOrWrUvbdTxmqS/kOoQc8TUuQkjR0RpyLuzs7AAAL168wIEDB3D02HHI/t9kTyGXo3LdRpAYGKHP4i24tnM9Ds75CQ41vNFuwlxYVnJBwtvXOLFsOvxX/Lf9xrIskj68hblN5timFWyyPscwDLxad8GDM4dRqXZDPDh9EDXadQcAJLx9heQP77Kf7FEq4FgzM0HqMesPhPz9O9zd3VGpUiXMmjUL7du31+w/EE8FBQWhZs2aEAjU+55AVefUsWNHtY5L1MPZVIK3n+W8OrwhYjLjIoSULJQ45UJ1+sbOzg7ff/89fl66Fv4vkyH9qmWSa0MfuDb0gSw9DWfXL8LheRMwYtsJmFrZoNmQCaj5/+Qnl1my/cmrbRdsG90TTQf9iFehQej/+98AAFOrijC3scekoznX2Vg6OGHFnzvhairGoUOH0L17d8TFxcHIyKjIf39dFRQUpNb6JpW6deti3bp1ah+XqIenhT6uvv3MdRjZsMiMixBSstBWXT769++P48eP4/alc2AVSsgy0hF97wYS379BclwsHl8+BWlaKoQSPUgMjMD8f6WjXvdBuPLXKrx/+gQAkJ6chIfnjuY5l427JwzNyuLQvAlwadAcBmVMAQB2HrWgZ2SMK9tXQ5aeBqVCgXdRYXj16D4AIPDkASTHf4RAIICZmRkAqH3FRVcEBgaq9USdimqrjkoC+clAJICLqYQ3fdYYAC6mEhiISuf3ISElGa045cPOzg5Hjx7Fz5MnI+jBQwgEQth61ETnqcvAKpW4vmsD9v82BgwYWLt5oNO0ZQCAaj5+yPicir1ThyPh7SvoG5vAuV5TVG/VKc/5vHy74fyGxei75M+sjwmEQgxctQcnV/yGpR1qQy6VoryDM1qPmQoACLtxEe3+mIW0z5/h4OCAf/75BwYGBrlNUaIFBQVhzpw5ah/X2toaxsbGePr0qVrrp4j6eFsa8KbXmpAB6lmWzu9BQko6OlVXCHRyh98SEhJgZ2eHhIQECIXqL8rt1q0bunXrhr59+6p9bKIeh6OTEMXxJdzC/9c2dalkwl0QhBCNoXXkQuDrCRm+xqVt9+/fh5eXl0aSJoAaYeqCtvbGEAm43bATCRj42hlzGgMhRHMocSoEZ1MJRHwpovg/OrnzH03VN6lQI0z+MxAJ0N7BGGKOXtnEAqC9gzH0qbaJkBKLvrsLwdNCv4B3sGsPndz5j6ZO1KnUrl0bDx48gEwm09gcpPhcTPVQw0Jf68mTWADUsNCHi6medicmhGgVJU6FQCd3+E3dV618zdTUFHZ2dnj06JHG5iDq4VPRCFXM9LSWPIkFQFUzPfhULH0tQAgpbegnbiF5WxqAL3d20smd/yQlJSEmJgbu7u4anYfqnHQDwzDwtTfWysqTaqWprb1xVv83QkjJRYlTIdkYieFkIuE8eRIygJOpBNZGYm4D4Yng4GBUr14dIpFmO2xQnZPuYBgGLWyN0dGxDPSEjNq/Z4VM5onWjo5l0MKWkiZCSgtKnIqATu7wT1BQkEYLw1VoxUn3uJjqYWRVczibZB7uKO53LoP/DmWMrGpONU2ElDKUOBUB1yd3oJChvT2d3PmSpuubVLy8vBAREYHU1FSNz0XUx0AkQJfKJujnYgo3s8wV48KekBUxmatMbmYS9HMxRZdKJlRfSEgpRN/1RcTVyR0hWISdPYwVU3+CXC7X7uQ8pq0VJz09PVSrVg3379/X+FxE/ayNxOhcyQRjPcrCy0iBlw8Csrbx9AQMJILMmiWJIPPPqu04OyMRGlsbYqxHWXSuZEJb5ISUYtQ5vBhYlsWplykIS8iATJn/44tLdXKnoZkSvXr1gkAgwL59+1CmTBnNT85jqampsLS0REJCAsRizf9AGzNmDJydnTFhwgSNz0U058iRI9i8eTP8/f2RIlMiNk0OqYKFgmUhZBhIhAwsDUQw5mxpmRDCR/SKUAxcndwxNTXF8ePHYWdnh8aNG+P169eanZznHjx4gKpVq2olaQKoQLykuH37NurVqwcAMBYLUNlEAndzPVQrqw93cz1UNpFQ0kQI+Qa9KhQTVyd3xGIxNm7ciL59+6JBgwYIDg5W78Q6RFv1TSpUIF4yBAQEoH79+lyHQQjRMZQ4qQkXJ3cYhsEvv/yCFStWoHXr1vD39y/mrLpJW/VNKm5uboiNjUVcXJzW5iTqpVAoEBgYCG9vb65DIYToGEqc1Iirkzs9evTA0aNHMWTIEGzYsKEYfwPdpO0VJ6FQiNq1a+PevXtam5Oo16NHj2BjYwNzc3OuQyGE6BjNdgsspTJP7oiRJlciJC4dUYlSxKYrIFeyEDEMWLBgkbmqxICBnGUhEjCw1BfC2VQCTwv9Qh9zbtCgAa5fvw4/Pz88ffoUS5cuhUBQ8vPitLQ0REVFwcPDQ6vzquqc2rRpo9V5iXoEBARk1TcRQkhhUOKkQQYiAepZGaKelSEAaPzkjpOTE27evIkuXbqgR48e2LlzJwwNDYs9Lp+FhITA3d0denrabULo7e2NHTt2aHVOoj5fFoYTQkhhlPwlCR7RxsmdsmXL4uzZszA0NETz5s3x/v17tY3NR4GBgVqtb1JRrThRNw/dRIXhhJCiosSpBNLT08OOHTvg6+uLBg0aICwsjOuQNCYoKEir9U0q9vb2YFkWr1690vrcpHiSkpLw/PlzVK9enetQCCE6iBKnEophGMyePRuzZs1Cs2bNcOnSJa5D0giuVpwYhqG2BDrq7t27qFmzptb6fhFCShZKnEq4gQMH4p9//kHv3r3x999/cx2OWmVkZCA8PByenp6czE+NMHUTFYYTQoqDEqdSoHnz5rh8+TLmzJmDWbNmlZi6nIcPH8LZ2RkGBgaczE8rTrqJCsMJIcVBiVMpUaVKFdy6dQunT5/G999/j4yMDK5DKjau6ptU6tSpg3v37kGp1MJFhUQtWJalwnBCSLFQ4lSKWFlZ4dKlS0hPT0fr1q3x6dMnrkMqFq7qm1TKlSuH8uXLIzw8nLMYSOE8f/4cQqEQtra2XIdCCNFRlDiVMoaGhti/fz+8vb3RoEEDPH36lOuQiozrFSeA6px0jWq1SXXnIyGEFBYlTqWQQCDAsmXL8NNPP6FRo0a4desW1yEVmlQqxaNHj+Dl5cVpHFTnpFuoMJwQUlyUOJVio0aNwrZt29CpUyccOHCA63AK5fHjx6hUqRKMjIw4jYNWnHTL7du3qb6JEFIslDiVcr6+vjh37hwmTpyIJUuW6MyJO21f7JubWrVqITQ0tEQU25d0GRkZCAkJ4cXXDSFEd1HiRODl5YVbt25h7969GDFiBGQyGdch5SsoKIjTwnAVIyMjuLi4ICQkhOtQSD4ePHgAZ2dnGBsbcx1KiZMsUyA6SYon8Rl49CkdT+IzEJ0kRYqMTpySkocu+SUAAFtbW1y7dg29evVC+/btceDAAZiYmHAdVq4CAwPRu3dvrsMA8N92Xd26dbkOheSB2hCoT5pciZC4dEQlShGbroBcyULEMGDx34o1AwZyloVIwMBSXwhnUwk8LfRhIKL360S30VcwyVKmTBkcO3YMTk5OaNSoEW/vYZPL5Xj48CFq1KjBdSgAqEBcV1BhePG9SZXhyLMkrA39hGtvP+NVqhwZChYKFshQspAqkfUrQ/n/jytYvEqV49rbz1gb+glHniXhTSr/V7UJyQ0lTiQbkUiEdevWYdCgQWjQoAGCgoK4DukbYWFhsLOzQ5kyZbgOBQAViOsKKgwvujS5Eoejk7AnMhHhCVIoWEBeyHJIOQsoWCA8QYo9kYk4HJ2ENDlt5RHdQ4kT+QbDMJg4cSJWr16NNm3a4MSJE1yHlA1f6ptUPDw88OLFCyQlJXEdCsnFx48f8fHjR7i7u3Mdis6JTMzAxsfxiEqSQs4CxT0+wiIziYpKkmLj43hEJtLBCqJbKHEiueratStOnDiB4cOHY+3atVyHk4UvJ+pUxGIxvLy8EBgYyHUoJBcBAQGoU6cOBAJ6ySsolmVx4XUKjj1PztqOUyfVNt6x58m48DpFZ070EkKvIiRP9erVw40bN7Bu3TpMmDABCoWC65A4v2olJ1TnxG9UGF44LMvi1MsUBMelQ9MH42RKIDguHadeUvJEdAMlTiRflSpVws2bN/HgwQN069YNqampnMWiUCjw4MED1KxZk7MYckJ1Tvx2+/ZtKgwvhIsxqQhLyNB40qQiUwJhCRm4GMPdawshBUWJEykQc3NznD59GmZmZmjWrBnevXvHSRzh4eGoUKECzMzMOJk/N97e3pQ48ZRSqcTdu3cpcSqgyMQMraw0fU218kQ1T4TvKHEiBSaRSPDXX3+hY8eOqF+/Ph49eqT1GPhwsW9OnJ2dkZKSwllCSXIXEREBc3NzWFpach0K76XJlTjxIkXrSZOKTAmceJFCp+0Ir1HiRAqFYRjMnDkT8+fPR/PmzXH+/Hmtzs/H+iYg89+lTp06VOfEQ7RNV3CnX6ZAruS2zkiuZHH6VQqnMRCSF0qcSJH0798fBw4cQL9+/bBt2zatzcvXFSeACsT5igrDC+ZNqgxPk6RqPz1XWAoWeJooxVtqkkl4ihInUmRNmzbF1atXsWDBAsyYMUPjJ2KUSiXu37/Pu8JwFSoQ5ydacSqYO7FpnCdNKgoWCIhN4zoMQnJEiRMpFjc3N9y+fRsXL15Ev379kJ6errG5oqKiYGFhAQsLC43NURyqFSc6Us0fnz9/RkREBG+Tbb5IkysRmSgtdnNLdWEBRCZKqdaJ8BIlTqTYypcvjwsXLkAul6NVq1b4+PGjRubha32TirW1NQwMDBAdHc11KOT/AgMD4eHhAT09Pa5D4bWQuHQwXAfxFQaZcRHCN5Q4EbUwMDDAP//8g++++w4NGzZEZGSk2ufgc32TCtU58QvdT1cwUYnSQt89p2lyNjMuQviGEieiNgKBAIsXL8bkyZPRuHFjXL9+Xa3j833FCaA6J74JCAig+qYCiE3n/kYAFZZloVRmbtHxKS5CVERcB0BKnmHDhsHe3h5du3bF6tWr0bt372KPybKszqw4zZo1i+swyP/dvn0bS5Ys4ToMXkuWKb5pQXBl+2rc3LsF6anJMClfAZ1+XYr7/vthammD1mOmAQCi793AvhmjMPV0CAAgJuwBDs79CXGvnsG1oQ8YRoBy9pXResw0pCUlYN+M0XgdGgSFQg4HL290mb4cplY2AIDNwzrBwcsbzwJvIObJQ4zfdwXl7CtDrmSRIlPCWEzv8Ql/0Fcj0Yg2bdrg/PnzmDJlChYuXFjsguno6GiYmJigfPnyaopQM+rUqYPg4GDI5XKuQyn1YmJikJGRgcqVK3MdCq99SFNAxPxX4fTheRRu7duKMbvOYc715/hh3X6Y29jlOYZcJsWunwehdofe+O1SJLzadMXjS/5Zn1cqlajTqQ9+ORmEX/2DIdbXx7Elv2Yb477/AXSZsQKzrz2DuXXmfCKGQWwafS8RfqHEiWiMp6cnbt26hX///RfDhg2DTFb0vixBQUG836YDAFNTU9ja2nLSVZ1kp9qmYxi+lT3zi1TBgv3iPB0jEEAulSI2OhwKmQzmNvawsKuU5xivQu5BqZCjYZ/hEIrF8GjRHrYe/51kNDIrC48WHSAxMISekTGaD5mA6MCb2cao3aE3rJzcIRSJIBSLAQAsWEj50iOBkP+jxIlolI2NDa5evYr379+jXbt2SExMLNI4gYGBvN+mU6ECcX6gwvCCUXy1GlzOvjLaT5qP85uWYn7LKtj76zAkfcj7KqGkj+9hYmmdLUk1taqY9Xtp2mccnv8zlrSridmNK2Hz0I5IT06EUqHI8fEqbA7xEcI1SpyIxhkbG+PIkSNwd3fHd999hxcvXhR6DF1ZcQKoQJwvqDC8YIQ5rMjV8O2GkdtOYsrJ+wDD4NSquZDoG0Ka/l9TyuS42KzflylniaTYt9m25BPfx2T9/tquDfjwIgqjd5zG7GvPMPzPYwCQ7fE5LQwyucRHCJcocSJaIRQKsWbNGgwbNgwNGzbEvXv3CvxclmVpxYkUilwuR2BgIOrWrct1KLwnETJgkL3G6emda5BLMyDS04NYTx+MgIG1W3VE3DiPz4nxSP74Hjd2b8p6jr1nXTBCIW7t+xMKuRyPL5/C69D7WZ+XpqZArKcP/TKm+JwYjwublxcoNgYMJEJKnAi/UOJEtGr8+PFYt24dfH19cfTo0QI95+XLl9DT00OFChU0HJ16eHl5ITw8HJ8/f+Y6lFIrNDQU9vb2MDMz4zoU3itvIIT8i5UfuTQDp9fMwzwfNyxsVQ0pnz6i7biZqOnXAxVcqmFp+1rYNronPFt3znqOSCxB/+Xbce/Ibsxt6oT7/gfg3rg1hJLMxqPf9RsBWUY65vu4Yf3AtnBt4FOg2OQsC0sDOvxN+IVh6X4IwoG7d++ic+fO+OWXXzB+/Pg8H3vo0CH89ddfOH78uJaiK746depg9erVaNiwIdehlEobN25EQEAA/vrrL65D0QkrQ+KQoeYi7HUD2qBet4Go06lvkcfQEzKY4MnPK5ZI6UUrToQTdevWxY0bN7B582b8+OOPUChyb3SnS/VNKlTnxK2AgAAqDC8ES31hsceIDryB5I/voZDLEXj8H7yLfAzXhgVbWdJkXISoGyVOhDOOjo64ceMGwsLC0KVLF6SkpOT4OF2qb1Lx9vamxIlDVBheOM6mEoiKWUr08flTrO7dHHObOuH6zg3ot3QrTMoXfXtdxGTGRQjf0FYd4ZxMJsPIkSMRHByMEydOwNraOutzLMvCysoKQUFBsLW15TDKwnn06BE6d+6skTv7SN4SEhJgZ2eH+Ph4iERUH1MQaXIl1oZ+Ap9aJgkZYKxHWRiI6P094Rf6iiScE4vF+PPPP9GtWzfUr18fDx8+zPpcTEwMGIZBxYrf9njhM3d3d7x79w6fPn3iOpRS5+7du6hVqxYlTYVgIBLAxVQCvpxfYwC4mEooaSK8RF+VhBcYhsG0adOwePFitGjRAmfPngXw38W+utb9WSgUonbt2oVqu0DU4/bt27RNVwTelgbgy8l/IQPUszTgOgxCckSJE+GVPn364NChQxgwYAC2bNmiExf75oYKxLlBheFFY2MkhpOJhPPkScgATqYSWBuJuQ2EkFxQ4kR4p1GjRrh27RqWLl2K3bt3o0aNGlyHVCTUCFP7WJalwvBiaGtvDJGA28xJJGDga2fMaQyE5IUSJ8JLLi4uuHXrFl6+fInt27cjPT2d65AKTbXiROcvtCc6Ohr6+vo6VxPHFwYiAdo7GEPM0U8GsQBo72AMfaptIjxGX52Et2QyGcqUKQNjY2O0aNECHz584DqkQnFwcIBCoUBMTEz+DyZqQatNxediqocaFvpaT57EAqCGhT5cTPW0OzEhhUSJE+EtVX3Tnj170KxZMzRo0ADh4eFch1VgDMNQnZOWUWG4evhUNIKVMhXSNO1cGyQWAFXN9OBT0Ugr8xFSHJQ4Ed5SnagTCARYsGABpk6diiZNmuDq1atch1Zg1AhTu6gwXD1iYmIwrVNjlEv7oPGVJ9VKU1t7Y507PUtKJ0qcCG99faJuyJAh2L17N7p3747du3dzGFnBUYG49qSnpyM0NFRnT2HyRVJSEvz8/DB27FiMblEbHR3LQE/IqP20nZDJvIuuo2MZtLClpInoDuocTnjLzs4Oly9fhpOTU7aPh4aGon379hg6dCimT5/O6xfcjx8/wsnJCfHx8RAI6H2KJt2+fRujR49GUFAQ16HoLJlMhg4dOsDR0REbNmzI+t5Kkytx+mUKniZJoWCB4vzQYPBfy4G2dsbU5JLoHPqKJbwUGxuLlJQUVK5c+ZvPeXh44NatWzhy5Ah++OEHSKVSDiIsmHLlysHCwgIRERFch1LiUWF48bAsi9GjR0MoFGLt2rXZ3pAYiAToUtkE/VxM4WaW2eupsHfbiZjMhMnNTIJ+LqboUsmEkiaik+irlvBSUFBQnh3Dra2tceXKFcTHx8PX1xcJCQnaDbAQqEBcO27fvk31TcWwaNEiBAYGYt++fbleV2NtJEbnSiYY61EWja0NYWckytrG0xMwkAgya5Ykgsw/q7bj7IxEaGxtiLEeZdG5kgk1tyQ6jS5zIrykSpzyYmRkhIMHD2LSpElo2LAh/P394ejoqJ0AC0FV5zRgwACuQynRAgICMGvWLK7D0El79uzBpk2bcOvWLRgb59980kAkQD0rQ9SzMgQApMiUiE2TQ6pgoWBZCBkGEiEDSwMRjLlqCkWIhtBXNOGlwMDAAhX5CoVCrFy5EqNGjULDhg15ubJDK06aFxsbi/j4eLi6unIdis65evUqfvrpJ5w8eRI2NjZFGsNYLEBlEwnczfVQraw+3M31UNlEQkkTKZHoq5rwUkFWnL40btw4bNq0CX5+fjh8+LAGIyu8WrVqITQ0lNe1WLouICAA3t7eVIBfSE+ePEGPHj2wd+9eeHh4cB0OITqBXmUI78TFxeHTp09wdnYu1PM6dOiA06dPY9y4cVixYgVvrjoxNjZG5cqVERISwnUoJRYVhhfe+/fv0a5dOyxZsgQtWrTgOhxCdAYlToR37t+/jxo1ahRp9aB27dq4efMmtm/fjrFjx0Iul2sgwsKjRpiaRYXhhfP582d07NgR33//PQYNGsR1OIToFEqcCO8UtL4pN/b29rh+/TqioqLQqVMnpKSkqDG6oqFGmJqjUChw9+5deHt7cx2KTlAoFOjbty/c3d0xe/ZsrsMhROdQ4kR4R3XVSnGYmJjgxIkTqFixIho3bsz5RbtUIK45T548Qfny5VGuXDmuQ9EJEydORFJSErZs2cLr5rGE8BUlToR3vr5qpajEYjE2bdqE3r17o0GDBnjw4IEaoiua6tWr4/nz50hOTuYshpKK7qcruFWrVuH8+fM4dOgQJBIJ1+EQopMocSK8kpCQgPfv36vtWDnDMJgyZQqWL1+OVq1a4fTp02oZt7DEYjE8PT0RGBjIyfwl2e3bt6kwvAAOHz6MpUuXwt/fH2ZmZlyHQ4jOosSJ8Mr9+/fh5eUFoVCo1nF79uyJI0eOYPDgwdi0aZNaxy4oqnPSDFpxyl9AQACGDx+OY8eOwcHBgetwCNFplDgRXlFHfVNuGjZsiOvXr2PFihX45ZdfoFQqNTJPbqjOSf1SUlIQFRUFLy8vrkPhrejoaHTu3Bl//fWXWrbACSntKHEivKKu+qbcODk54ebNm7h9+zZ69uyJtLQ0jc31NVpxUr979+7B09OT6nVy8enTJ7Rr1w4zZ85E+/btuQ6HkBKBEifCK5pccVKxsLDAuXPnoKenBx8fH8TGxmp0PhVnZ+esGi6iHrRNl7v09HR07twZHTp0wOjRo7kOh5ASgxInwhtJSUl4/fo1qlSpovG59PT0sGvXLrRq1QoNGjTAkydPND6nQCBA3bp1adVJjagwPGdKpRKDBw+GlZUVlixZwnU4hJQolDgR3ggODkb16tUhEom0Mh/DMJg7dy5mzpyJpk2b4vLlyxqfk7br1IdlWVpxysWMGTPw4sUL7Nixg+7vI0TN6DuK8Iam65tyM2jQIOzduxe9evXCzp07NToXFYirz+vXr6FQKOiU2Fc2b96MAwcO4NixYzAwMOA6HEJKHEqcCG9oo74pNz4+Prh06RJ+++03zJ49W2MXBKtWnPhyAbEuU91PR92v/3Pq1CnMmjULp06dok7qhGgIJU6EN7hacVKpWrUqbt++DX9/fwwcOBBSqVTtc9jY2EBPTw/Pnj1T+9ilTUBAANU3fSE4OBgDBgzAwYMH4ezszHU4hJRYlDgRXkhNTcWzZ89QtWpVTuOwsrLC5cuXkZKSgjZt2iA+Pl7tc1Cdk3pQYfh/Xr16hQ4dOmD9+vVo2LAh1+EQUqJR4kR44cGDB6hWrRov+vEYGhriwIEDqF27Nho0aIDo6Gi1jk91TsUnk8kQHByMunXrch0K5xITE+Hn54fx48ejR48eXIdDSIlHiRPhhcDAQF51NRYKhVi+fDl+/PFHfPfdd7h9+7baxqYVp+J7+PAhHB0dYWJiwnUonJLJZOjRowcaN26Mn3/+metwCCkVKHEivBAUFMRZYXheRo8ejT///BMdO3bEv//+q5Yx69Spg6CgIMjlcrWMVxqpCsNLM5ZlMXLkSEgkEqxatYqK5AnREu00zCEkH4GBgRg7dizXYeTIz88PZ8+eRYcOHfDs2TNMmjSpWD+kzMzMULFiRYSFhcHRvSo+pCkgVbBQsCyEDAOJkIGlgQjGYnpfk5uAgAA0atSI6zA4tWDBAgQHB+PKlSta631GCAEYls5FE46lpaXBwsIC8fHx0NPT4zqcXL1+/Rp+fn5o0KAB1q5dW6QfVmlyJULi0nHiTgiMKzhAIBZDxDBg8d+3IQMGcpaFSMDAUl8IZ1MJPC30YSCiRErFzc0NBw4cgKenJ9ehcGLXrl2YMWMGbt26BWtra67DIaRUocSJcC4gIACjRo1CUFAQ16HkKzk5GT179gQA7Nu3r8A1Nm9SZbgTm4bIRCkYAPJCfNeJGIAF4GIqgbelAWyMxIUPvAT59OkTHB0dER8fD6FQyHU4Wnf58mX07NkTly5dQrVq1bgOh5BSh97CEs7xtb4pJ2XKlMHx48fh6OiIxo0b4/Xr13k+Pk2uxOHoJOyJTER4ghQKtnBJE5D5eAULhCdIsScyEYejk5AmVxbjb6Hb7ty5g9q1a5fKpCksLAy9evXCP//8Q0kTIRyhxIlwjm8n6vIjEomwfv16fP/992jQoAHu37+f4+MiEzOw8XE8opKkkLNAcZd2WWQmUVFJUmx8HI/IxIxijqibSuv9dO/evUO7du2wbNky+Pj4cB0OIaUWJU6Ec1xetVJUDMNg0qRJ+OOPP9CmTRv4+/tnfY5lWVx4nYJjz5ORoWChUPNmuIIFMhQsjj1PxoXXKaXu+pbS2DE8NTUVHTp0wODBgzFgwACuwyGkVKMaJ8KpjIwMmJubIy4uTmcvJL19+za6du2KGTNmYNSoUTj1MgVhCRmQaWE3TSwAqpjpwdfeuFQcR2dZFuXKlUNoaGipKYpWKBTo0qULLCwssG3btlLx/5kQPqMzrIRTDx8+hLOzs84mTQBQv359XL9+HX5+fnhn6gDTavUg09LbEZkSCEvIgJ6QQQtbY+1MyqGoqCgYGxuXmqSJZVn89NNP+Pz5M/79919KmgjhAdqqI5zi+mJfdalcuTL2nL8BiZOX1pImFZkSCI5LLxU1T6XtfrqVK1fi0qVLOHjwIC+uIyKEUOJEOKaL9U05SZMrcTmOhUhPn5P5ZUrgxIuUEn/arjQVhh88eBArVqyAv78/TE1NuQ6HEPJ/lDgRTpWUFafTL1MgV3JbLihXsjj9KoXTGDSttBSG37p1C6NGjcLx48dhb2/PdTiEkC9QcTjhjFQqhZmZGT58+AAjIyOuwymyN6ky7IlMLHR/Jk0QMUA/F1NYl8AmmWlpaShXrhw+fvyo0zVx+YmKikLjxo2xdetWtGvXjutwCCFfoeJwonHJMkWO97HFPn2CSpUq6XTSBAB3YtPU3nKgqBQsEBCbhs6VSl7idP/+fVSpUqVEJ01xcXFo164dZs+eTUkTITxFiRNRO9V9bFGJUsSmKyBXsjnex5ahtELfP09jd0SCzt7HliZXIjJRWuzmlurCAohMlCJNrtS5f8v8lPTC8PT0dHTq1AldunTBiBEjuA6HEJKLkvXKSjj1JlWGI8+SsDb0E669/YxXqfKsBpAZShZSJbJ+ZShZQCCEUN8Ar1LluPb2M9aGfsKRZ0l4kyrj+q9SYCFx6eDTAXFZehr+Gt8P5cuao0ePHlyHo1YluTBcqVRi4MCBsLW1xaJFi7gOhxCSB1pxIsWWJlfi9MsUPE3KvIutKKsvqvqg8AQpohKlcDKRoK29Me9XTaISpbyobVJ5eP44kuM+YP3tpxhQtRzX4ajV7du3MW/ePK7D0Ihp06YhJiYG58+fh0DA7695Qko7SpxIsUQmZuDEi8wTZeqo8/n6Prb2DsZwMdUr/sAaEpuu4DqEbBLevUI5eyfEyfm0DlZ87969Q0pKClxcXLgORe02bdqEQ4cO4datW9DX56adBSGk4OitDSmS0nIfm6OjI5YtWwZPT08YGRlhyJAheP/+PXx9fVGmTBmsH9YVaUkJAIDHV05jZfdGmNPECZuHdUJsdETWOEv8auHqjnVY1bMpZjepjD1ThkKWkZ71+bCrZ7G6dzPMaeKEDYPa4W3EIwDA1b/XYtekQdliOrZ0Ko4vm/ZNrOc2LMHFzb8j5NwR/FrfHus2b8GoUaPQrVu3rMdMmTIFLVq00Ln77QICAuDt7V3iOmf7+/tj9uzZOHXqFCwsLLgOhxBSAJQ4kUJjWRanXqYgOC5d4/exqbpin3rJXfJ08OBBnDt3DhERETh+/Dh8fX2xcOFC3HkaA7BK3Ni7BR9ePMU/U0eg/aT5mHHhCdy+a4m/f+oHuUyaNc7Dc0cxeN0+/HI8EO8iHyPo+D8AgDdPQnBwznh0nv47Zl6KgHe3Adgx4XvIpRmo0a47Im5eQlpyIgBAIZcj5MwR1PLr9U2crUZNQbMffoJnq85YfOslfHsPxO+//46HDx9i+/btuHbtGrZu3Yq///5b5xKQklgYHhQUhIEDB+LQoUNwcnLiOhxCSAFR4kQK7WJMqtYusQX+u4/tYkyqdib8yrhx42BlZYWKFSuicePGqFevHmrWrAlGrAcPn3Z4G/4QIWePwL1xS7jUbwahWIzGA8ZAnpGOlw/uZo3TsPcwmJSvAENTc1Rp0gZvwkMBAHcO7YR3twGwr14bAqEQtTv0hkgiwcuH92BSvgIq1aqPh+eOAQAibl6EkVlZVKzqlWfMLFhIFSwMDQ2xc+dOTJw4Ef3798eaNWtga2uruX8sDSlpheEvX75Ex44dsXHjRjRo0IDrcAghhUA1TqRQIhMztLLS9DXVypN9GbHWa56srKyyfm9gYJD1ZwXLQqynj4zPqUj+8A5mFeyyHicQCGBqVRGJsW+zPlamnGXW78X6Bkj68A4AEP/2FYJO7MOtf/7M+rxCLkPSh/cAgFodeiPgwF/w7vo9gv0PoKZf5mm5S1tX4vK2PwAANdr1QJfpy7Oez/4/PgCoV68eKleujNjYWPTs2VMd/yRapVAocO/ePXh7e3MdilokJibCz88PEydOzLaNSgjRDZQ4kQJLkytx4kWK1pMmFdV9bCOrinlx2k74xXZXmfIV8D7qcdafWZZF4vsYmFpa5zuOmVVFNP/hJzQfOjHHz1dt5osjCyfjXVQYnlw7C9/xswAAzYdMQPMhE3J8DvNFfOvWrUNGRgZsbGywdOlSTJ06taB/RV54/PgxrK2tUbZsWa5DKTapVIpu3bqhWbNmmDAh5/93hBB+4/6nD9EZdB9bdhIhA+b/XZw8W3XCk2vnERVwFQqZDNd2rodQogd7r7r5jlO36/cIOPg3Xj4MBMuykKal4sm1s8hIzfx7ivX0Ub1lB+ybNhK21WrBzDr/rTYGmd3ZIyIiMGPGDOzatQs7d+7E0qVLERwcXKy/t7aVlPvpWJbFiBEjYGhoiD/++EPn6swIIZloxYkUyJtUWVafJi4pWOBpohRvU2Wc38dW3kCYtR1W3tEZveavx/GlU5H44S1sXD0w8I9dEIkl+Y5jW7UGusxYgWNLfkXcy2iI9fXhUKMeKtVqmPWYWu174e7hXeg2a1WBYpOzLMqKgdb9+2PKlCnw8sqsiVq4cCG+//573Lt3D3p6/G3z8KXbt2+XiPqmefPmITQ0FJcvX4ZQKOQ6HEJIEdElv6RAjjxLQngCP64WYQC4mUnQuZIJ16FgZUgcMrSQTSa8fY0V3Rpi2tlH0Dcuk+/j9YQMJniWjOPt1atXx/bt21G7dm2uQymyHTt2YNasWbh16xYqVKjAdTiEkGKgrTqSLz7fx8Y1S33NrxwolUpc27UBnq07FyhpArQTlzYkJSUhOjoanp6eXIdSZBcvXsTkyZPh7+9PSRMhJQAlTiRH1apVw+XLlwHw7z42IHPVKSQuPd/HaZqzqQQiDf7jSNNSMadxJUQFXEHLkVMK9BwRkxlXSXDv3j3UrFkTYjG327JF9ejRI/Tu3Rv//PMPqlSpwnU4hBA1oMSJ5OjRo0do1qwZgLzvY1viVwtRAVe0F9j/Rdy9AV8v7q/f8LTQ1+hKnMTACHNuvMCEf6/DrELFAj2H/X9cJYEuN758+/Yt/Pz8sGLFCjRv3pzrcAghakKJE8mXpu5jY1kWSmXRt9uUPCjPMxAJ4GIq4c2KHAPAxVTCi3YN6qCrjS9TUlLQvn17DB06FP379+c6HEKIGlFxOMmRo6Mj/vzzT1y4chX+AQ8glOjj0aWTMKtgix5z18K2ag3smzEaD079C6FEDwKBAD7DJqHpoHF4GXIPJ1f8htjocJhZ26HD5AWoXOc7AMDmYZ3g4OWNZ4E3EPPkIcbvuwKlQoHjS6ciJuwBjMwt0GrUr/Bs3RkA8OT6OZxaORsJ72Ogb1QG3/Ubifo9BmGejzsU0gwYGhoCACIiImBjY8PJv9WbVBn2RCbmuiqnTYxSge/dy8KG4xOH6sCyLKytrXHnzh3Y29tzHU6ByeVydO7cGVZWVvjzzz+p7QAhJUzJeFtKNOaznMXjK2fg2aYzZl15iipN2+DY4l8BAL3mr4dpBVsM/GMX5tx4gaaDxiEx9i22j++L5kMnYOblSLSbMBu7Jg9GSvzHrDHv+x9AlxkrMPvaMxibl8O20d3h1bYrpp8PQ59Fm3F08RS8jw4HABya+xM6T1+OOdef46cD1+BUtxEkBkYYvOYfmJSvgJA3n5CSksJZ0gQANkZiOJlIIOT45yPDKvEi8Dq6t2qKmzdvchuMGrx48QIMw8DOzi7/B/MEy7IYP348pFIpNm7cSEkTISUQJU4kTwoli0o168G9USsIhELU9OuJt5GPcn18sP8BuH3XMvPxAgFc6jeDbRUvhF8/n/WY2h16w8rJHUKRCBE3L8Dc2g51OvWFUCSCjbsnPHzaZ93NJhCJERsdgfSUZBiYmKFilex3tEm5biz1f23tjSEScPtDUiISYtnAjhgxYgR69eqF7t27IyoqitOYikO1TadLycfvv/+Oa9eu4d9//9XZgnZCSN4ocSJ5UgIoY/HfHWsSfQPIM9KhkMtzfHz829cIPX8Mc5o4Zf16HnwHyR/fZz3G1Kpitse/Cg3K9vjgU/8iJS4WANBv2V8Iv3EeS/xqYvPQjnjxxaW5wH/3sXHNQCRAewdjiDn6jhILgPYOxjDSE2PgwIEIDw9HrVq1UL9+fYwfPx4fP37MfxCe0bXC8AMHDmDVqlU4efIkTEy47zFGCNEM6hxO8pRfHvD1aoCZlQ1q+vVA15kr83jOf783rVARlWo3xJAN/+b4WLtqNTFg5U4oZDLc2rcVe38dil9PPYCqGlvIo9UIF1M91LCQaf0SZLEAqGGhn+3yY0NDQ0ybNg1Dhw7F3Llz4e7ujl9++QU//vgj9PV148RdQEAAFi5cyHUYBXLz5k2MGTMGZ8+e1amtRUJI4dGKE8mTMJ/tJ+Oy5fHp9YusP9do1wNhV88g4uZFKBUKyDLSEX3vBhLfv8nx+VUat8bHF08RdGI/FDIZFDIZXj26j9joCMhlUtz3/xfpyUkQisXQMzYGwwj+P68lUhPjkZGSpL6/rBr4VDRCFTM9ra08iQVAVTM9+FQ0yvHzlpaWWLt2LW7cuIFbt27Bzc0Nu3btKtZpRm2QSqV48OAB6tSpw3Uo+YqMjES3bt2wY8cO1KhRg+twCCEaRokTyZOhiMmzT1GzH8bj4tYVmNPECVd3rINZhYr4fsVOXN72B+a3cMcS3xq4umMt2Fx+UOsZGeOH9QcQcvYwFrWpjgWtq+H0qrmQyzIAAPdP7seS9rUwu3ElBPz7N3ot2AAAsKzkghptu6B5DXeYmZnhzZucEzNtYxgGvvbGqGGhr/HkSbXS1NbeON86IDc3Nxw+fBi7du3C6tWrUbduXVy6dEmzARbDgwcP4OzsDGNjY65DydPHjx/Rrl07zJkzB23btuU6HEKIFlA7ApIvbd3HVlh8v48tMjEDJ16kQK5k1Xo5slyaAbFQgK4uZbNtzxWUUqnE/v37MW3aNFSrVg1LlixB1apV1RegGqxduxYhISHYvHkz16HkKi0tDS1atEDTpk2xaNEirsMhhGgJrTiRfPH13jO+xqXiYqqHkVXN4WySeS1LcauxGGRep2IjkmNdryYwSo0r0jgCgQC9e/dGWFgYmjdvjqZNm2LEiBF49+5dMSNUH74XhiuVSgwcOBAODg5YsGAB1+EQQrSIEieSL03fx1YUunIfm4FIgC6VTdDPxRRuZpm9nqRpnws1hogBhAzgZiZBPxdT/FDbAYP798WwYcNQnAVjPT09TJw4EeHh4TA2Nka1atUwd+5cpKamFnlMdeF7x/ApU6bg3bt32L59OwQCehklpDSh73iSL03fx1YUunYfm7WRGJ0rmcA26ipeXToCOyMR9IQMhAygJ2AgEWTWLEkEmX8WMplbkXZGIjS2NsRYj7LoXMkE1v/vCD59+nS8ffsWW7duLXZsZcuWxe+//467d+/i8ePHcHV1xdatW6FQaOaqnfzExcUhNjYW7u7unMyfn/Xr1+P48eM4cuQI9PQKv1VKCNFtVONECuTIsySEJ0h5kUAxYOFmpofOlXSvV86AAQPQoEEDjBo1CgCQIlMiNk0OqYKFgmUhZBhIhAwsDUQwzqe6/OHDh2jevDnu3bsHR0dHtcUYEBCASZMmISEhAcuWLUObNm202oTS398fK1aswPnz5/N/sJadOHECw4YNw40bN1C5cmWuwyGEcIBWnEiBeFsacH6liIo0PR2P/ffh8+fCbXlxTaFQ4NSpU2jfvn3Wx4zFAlQ2kcDdXA/VyurD3VwPlU0k+SZNAFC9enVMnjwZgwcPVmt7gXr16uHq1auYN28efvzxR7Ru3RrBwcFqGz8/AQEBvKxvCgwMxODBg3HkyBFKmggpxShxIgXCl/vYhAzgaCxE8JVzcHV1xbZt2zjbUiqs27dvo2LFimptkDhp0iRkZGRg7dq1ahsTyGyr0LlzZzx69AidO3dGmzZtMGjQILx+/Vqt8+SEj4XhL168QMeOHbF582bexUYI0S5KnEiB8eE+NpGAQY8qFbB//34cPHgQ27dvh5eXF06ePFmsQmltOHHiRLbVJnUQCoX4+++/MXfuXISHh6t1bAAQi8UYM2YMIiIiYGNjAy8vL0yfPh1JSZppPKpUKnHnzh1eJScJCQlo164dJk+ejC5dunAdDiGEY5Q4kQLjy31s+qLMAOrVq4crV65g4cKFmDx5Mnx8fHDv3j1ugisATSROAODi4oLZs2dj4MCBkOdyh2BxmZqaYuHChQgODsbr16/h6uqK9evXQyaTqXWeiIgImJmZwcrKSq3jFpVUKkXXrl3RsmVL/PTTT1yHQwjhAUqcSKFk3sem+a7YX8vpPjYgc0upY8eOCAkJQd++fdGxY0f06dMH0dHR2g0wH8+fP0dsbCy8vb01Mv7o0aNhZGSEZcuWaWR8FTs7O/z99984deoUDh06BA8PDxw9elRtq318akPAsiyGDh0KExMTrFixgutwCCE8QYkTKTS+3ccGACKRCMOGDUNkZCSqVq2KunXrYsKECYiLK1qTSHU7ceIE2rVrp7GePwKBAH/99RdWrFiBkJAQjczxpZo1a+LcuXP4448/MH36dDRt2hR37twp9rh8KgyfM2cOnjx5gj179kAo5HezVUKI9lDiRAqNr/exAYCRkRFmzpyJx48fQyqVws3NDYsXL0ZaWppmA82HprbpvmRvb4+lS5diwIABkEqlGp0L+P/Xga8vgoODMWDAAHTp0gV9+vTBs2fPijzm7du3ebHitH37duzYsQPHjx+HoaEh1+EQQniEEidSJAzDoIWtMTo6lslq5KhOqgaQHR3LoIVtwZKmL1lZWWHdunW4ceMG7t69C1dXV2zfvp2TE3gpKSm4efMmWrVqpfG5Bg0aBDs7O8ydO1fjc6mIRCIMHToUERERqFKlCurUqYNJkyYhPj6+UON8/vwZ4eHhqFGjhmYCLaDz589jypQp8Pf3502tFSGEPyhxIsWiqfvYnE0lGFnVvEiX2H7Jzc0NBw8exL59+7BlyxbUrFkTp0+f1uoJvHPnzqF+/fowMdF8w06GYbB582Zs2bIFAQEBGp/vS0ZGRvjtt98QGhqK5ORkuLm5YeXKlcjIyCjQ8wMDA1GtWjXo63PXET40NBR9+/bFgQMHeNu5nBDCLUqcSLHldB9bYe+2+/o+ti6VTGAgUt+XZ8OGDXH9+nXMnTsX48ePR6tWrRAUFKS28fOijW26L1lbW2PNmjUYOHAgJ1uU1tbW2LRpEy5duoQLFy6gSpUq2L9/f77JKteF4W/evIGfnx/++OMPNGnShLM4CCH8RleuELVLkysREpeOqEQpYtMVkCtZiBgGLFiwyFxVkkllUAAw0JPAUl8IZ1MJPC301Zos5UYmk2Hr1q2YM2cOWrRogfnz56v1ypIvKZVK2NjY4ObNm1rvNt27d29YW1tj5cqVWp33axcvXsSkSZMgkUiwfPlyNGrUKMfH9ejRA507d0a/fv20HGHmdmqTJk3QvXt3TJs2TevzE0J0ByVORONyuo8tIuwR/pj3Gy6eOsFZXMnJyfj999+xZs0aDBo0CNOnT0fZsmXVOsedO3cwePBgPHr0SK3jFkRcXByqV6+OPXv2oFmzZlqf/0tKpRK7d+/G9OnTUadOHSxevBiurq7ZHmNnZ4fLly/DyclJq7HJ5XJ06tQJNjY22Lx5s1bv5SOE6B7aqiMal9N9bHUrWeNR0F1O4ypTpgxmz56N0NBQpKamws3NDcuWLUN6erra5tD2Nt2XLCwssHnzZgwePBjJycmcxKAiEAjw/fffIzw8HPXq1UPDhg0xduxYfPjwAQAQExOD9PR0ra/KsSyLcePGQaFQYP369ZQ0EULyRYkT4USFChWQmpqqsas7CsPa2hobN27E1atXcePGDbi5uWHnzp1quTiXy8QJANq3bw8fHx9MmjSJsxi+ZGBggClTpiAsLAwCgQBVqlTBokWLcPXqVXh7e2s9cVm2bBlu3ryJ/fv3QywWa3VuQohuosSJcIJhGDg5OeHp06dch5KlSpUqOHLkCHbv3o3169ejdu3aOHfuXJHHi4mJwYsXL9CgQQM1Rll4K1euxJkzZ3Dq1ClO4/hS+fLlsXr1aty6dQv37t3DiBEjoK+vr5ZktaD27duHtWvX4uTJk1o58UgIKRkocSKccXJyQlRUFNdhfKNRo0a4efMmZsyYgdGjR6NNmzYIDg4u9DgnTpyAr68vRCKR+oMsBBMTE2zduhXDhg3Dp0+fOI3lay4uLjh48CCcnJzw+PFj1KlTBxcuXND4vNevX8e4ceNw4sQJ2Nraanw+QkjJQYkT4YyzszMvEycgc0WsW7duePz4MTp27Ii2bdtiwIABePHiRYHH4Hqb7kstWrRAly5d8OOPP3IdyjfkcjmioqJw8+ZNTJ06FcOHD0e7du0QGhqqkfkiIiLQvXt37Ny5E56enhqZgxBSclHiRDjj7OzMq626nIjFYowZMwYRERFwcHBArVq18Msvv+TbFfvz58+4cuUK2rRpo6VI87dkyRLcuXMHBw8e5DqUbB49egRbW1uYm5ujR48eePz4MVq3bg0fHx8MGzYMb9++VdtcHz58QLt27bBgwQJe/b8hhOgOSpwIZ/i84vQ1ExMTzJs3Dw8fPkR8fDzc3NywYsWKXLtiX7p0CbVq1YK5ubmWI82doaEhtm/fjjFjxuD9+/dch5Pl9u3b2S721dPTw08//YTw8HCYmZnBw8MDs2fPRkpKSrHmSUtLQ8eOHdG7d28MGTKkuGETQkopSpwIZ3QpcVKxsbHBli1bcPnyZVy+fBnu7u7Ys2fPN0XNx48fR4cOHTiKMncNGzbEoEGDMHLkSK1eO5OX3DqGm5ubY9myZQgMDERkZCRcXV2xZcsWyOXyQs+hVCrRv39/VK5cGfPmzVNH2ISQUooaYBLOKJVKGBkZIS4uTmdvoL9y5QomT54MhUKBpUuXokWLFmBZFnZ2drhw4QLc3Ny4DvEbGRkZqFOnDn755Rd8//33XIeDqlWrYvfu3ahZs2aej7t37x4mTZqEDx8+YNmyZfD19S1w+4Kff/4ZgYGBOHPmDPT0inf/ISGkdKPEiXCqSpUqOHDgADw8PLgOpchYlsWBAwcwdepUuLq6YvDgwZg+fToiIiJ421Dx/v37aNOmDYKCgjg9VZaYmIiKFSsiISGhQKcPWZbF8ePHMWXKFNjY2GD58uX5Jlxr167FunXrcPPmTV5tnRJCdBNt1RFO6UKBeH4YhkHPnj0RFhYGX19f/PDDD5BIJHj9+jXXoeWqZs2aGDduHIYMGcLplt3du3dRq1atArdsYBgGHTt2xMOHD9GjRw+0a9cOAwYMwMuXL3N8/LFjx7Bw4UL4+/tT0kQIUQtKnAindLHOKTcSiQQ//vgj3Nzc4OXlhRo1amDq1KlITEzkOrQc/frrr/j06RM2bdrEWQy3b9/Osb4pPyKRCCNHjsw67VizZs1v/q3v3buHoUOH4ujRo6hUqZI6wyaElGKUOBFOlaTECQDev3+P6OhobN++HQ8ePEBsbCxcXV2xatUqSKVSrsPLRiwW4++//8aMGTM4W/ULCAjIdqKusMqUKYN58+bhwYMHeP/+PVxdXbF27VpERkaiU6dO2LJlC+rWravGiAkhpR0lToRTJS1x8vf3R6tWrSCRSGBra4utW7fi/PnzOHv2LKpUqYJ9+/Zp9VqR/FStWhXTpk3D4MGDoVAotDo3y7LftCIoKltbW2zbtg1nz57FoUOH4OHhAV9fX3Ts2FENkRJCyH8ocSKc4uu1K0WVUxuC6tWr4+TJk9iyZQuWLVuG+vXr4/Lly9wEmIPx48cDAFatWqXVeZ89ewY9PT21Fqe7u7uDZVn4+fnhzp07aNy4MW7fvq228QkhhBInwikHBwe8efOGd9tYRZGRkYELFy7A19c3x8/7+Pjgzp07mDBhAgYPHoz27dvj0aNHWo7yW0KhEH/99RcWLlyIx48fa23e4m7TfY1lWQwdOhTm5uY4cOAA7t+/jyFDhqB79+7o1asXoqOj1TYXIaT0osSJcEosFsPOzg7Pnz/nOpRiu3LlCjw8PFCuXLlcHyMQCNCnTx88efIELVq0QPPmzTF06FDExMRoMdJvOTk5Yf78+Rg4cCBkMplW5ixqYXhufvvtN0RGRmLXrl0QCoUQCoUYPHgwwsPDUb16dXh7e2PixIm8u+iYEKJbKHEinCspdU6FudRXT08PEyZMQEREBMqVKwdPT0/MmDEDSUlJGo4ydyNGjEDZsmWxePFircynzhWnbdu2Yc+ePTh27Ng3zVSNjIwwY8YMPHr0CGlpaXBzc8Py5cuRnp6ulrkJIaULJU6EcyUhcVI1ZizsNStmZmZYvHgx7t+/j9evX2edCuNi65JhGGzduhVr1qzB/fv3NTpXRkYGHj58iNq1axd7rHPnzmHatGnw9/eHpaVlro+zsrLChg0bcPXqVVy9ehVVqlTB3r17eVWsTwjhP0qcCOdKQuL0+PFjsCyLatWqFen59vb22L59O86cOYMTJ06gWrVqOHDggNabU9ra2uL333/HgAEDcr3AWB2Cg4Ph6uoKIyOjYo0TEhKCfv364cCBAwW+3qZKlSo4duwYtm/fjhUrVqB+/fq4evVqseIghJQelDgRzpWEk3WqbbriXrHi5eWF06dPY/369Vi4cCEaNGiAa9euqSnKgunfvz+cnZ0xa9Ysjc2hjjYEMTExaN++PVavXo3GjRsX+vlNmzZFQEAAfvrpJwwYMACdOnXCkydPihUTIaTko8SJcK4kXLtSmPqmgmjVqhUCAwMxbtw4fP/99+jUqRPCwsLUNn5eGIbBpk2bsH37dty8eVMjcwQEBBSrMDw5ORl+fn4YPXo0evfuXeRxBAIB+vbtiydPnqBx48Zo3LgxxowZg9jY2CKPSQgp2ShxIpyrVKkSXrx4AblcznUoRRIXF4eQkBA0a9ZMreMKBAL069cPT548QZMmTdCkSROMGDECb9++Ves8ObG0tMT69esxaNAgpKamqn384hSGy2Qy9OzZE/Xq1cOUKVPUEo++vj4mTZqEJ0+eQCKRoGrVqliwYAE+f/6slvEJISUHJU6Ec/r6+rCyssKrV6+4DqVITp06BR8fH+jr62tkfH19ffz8888IDw+HiYkJPDw8MGvWLCQnJ2tkPpWuXbvC29sbv/76q1rH/fDhA+Li4gpck/QllmUxZswYAMC6deuKvTX6NQsLC6xcuRIBAQF48OAB3NzcsH37dq13VSeE8BclToQXdLlAXN3bdLkpW7Ysli1bhsDAQERHR8PV1RXr16/XaN+lNWvW4PDhw7hw4YLaxgwICIC3tzcEgsK//CxZsgR3797F/v37IRKJ1BbT15ycnLB//37s378fW7ZsQe3atXHu3DmNzUcI0R2UOBFe0NXESSaT4ezZs2jXrp3W5nR0dMTOnTvh7++fdS/boUOHNHICz9zcHH/++Sd++OEHJCYmqmXMohaG7927Fxs2bMDJkydRpkwZtcSSnwYNGuD69euYOXMmRo8ejbZt2+Lhw4damZsQwk+UOBFe0NWTddevX4ezszOsra21PnfNmjVx7tw5rF69GnPmzMF3332HGzduqH2etm3bom3btpg4caJaxitKYfjVq1cxfvx4nDhxAjY2NmqJo6AYhkG3bt3w6NEj+Pn5oWXLlhgyZAjn3d4JIdygxInwgq6erNPWNl1uGIZBmzZtEBQUhJEjR6JPnz7o2rUrwsPD1TrP8uXLcfHiRRw/frxAj0+WKRCdJMWT+Aw8+pSOJ/EZiE6SIilDjrt378Lb27vAc4eHh6NHjx7YvXs3qlevXtS/QrFJJBKMGzcO4eHhKF++PDw9PfHbb79pvNaMEMIvDKvtDnuE5CAkJAR9+/ZFaGgo16EUipubG/bu3YtatWpxHQoAIC0tDWvWrMHSpUvRs2dPzJo1C1ZWVmoZ+8qVK+jTpw8ePnwICwuL7PPKlQiJS0dUohSx6QrIlSxEDAMW/728MGAgUyqRlpoCZ0tzOJtK4GmhDwNR7u/fYmNj0aBBA8yYMQODBw9Wy99DXV68eIEZM2bg/PnzmD17NoYMGaLRuitCCD9Q4kR4ITU1FeXLl0dKSkqRioa5EBERgebNm+P169dqP91VXHFxcViwYAH+/vtv/Pjjj/j5559hbGxc7HEnTpyIN2/e4J9//gEAvEmV4U5sGiITpWAAyAvxaiJiABaAi6kE3pYGsDESZ/v858+f0bx5c7Rp0wZz584tduyaEhgYiMmTJ+Pdu3dYunQp/Pz8ePf1QAhRH0qcCG/Y2Njgzp07sLW15TqUAlmxYgXCw8OxadMmrkPJ1bNnzzB9+nRcvnwZs2bNKvaqSFpaGmrWrInf5i2AQe1WeJokhYIFivMiwgAQMoCTiQRt7Y1hIBJAoVCgR48eMDY2xt9//837RIRlWfj7++OXX36BpaUlli9frpZ7+AorWabAhzQFpAoWCpaFkGEgETKwNBDBWKwbb0gI4TtKnAhvNG7cGPPmzVN7I0lN8fHxwYQJEwp9sS8X7t27h19++QVv377F4sWL0bFjxyInIyfvhuJumgEMy5hACfUlNEIGEAkYtHcwxvrZvyI4OBhnzpyBRCJR2xyaJpfLsW3bNsyePRs+Pj5YsGABHBwcNDZfQbdI5SwLkYCBpb6wQFukhJDcUeJEeGPw4MFo1KgRhgwZwnUo+UpISIC9vT3evXsHQ0NDrsMpEJZlcfr0afzyyy8wMzPDsmXLCnW6jWVZXIxJRXBcOmRKDQaqkOPR6X+xanRflC1bVoMTaU5KSgqWLVuGtWvXYujQoZg6dSrMzMzUNr4mt0gJIXmjtxyEN3Spl9OZM2fQpEkTnUmagMwTeL6+vggODsYPP/yA7t27o0ePHoiMjMz3uSzL4tTLFM0nTQAgFMHTrxduJ4s10ptKG4yNjTFnzhw8fPgQnz59gpubG1atWgWpVFqscdPkShyOTsKeyESEJ2RukxYmaQIyH69ggfAEKfZEJuJwdBLS5Jr+n0pIyUGJE+ENXUqcuG5DUBxCoRCDBw9GREQEatWqhQYNGmDs2LF5Xmx7MSYVYQkZmk+a/k8BBmEJGbgYo/578rTJxsYGW7ZswYULF3DmzBlUrVoV//77b5ESwsjEDGx8HI+oJCnkxawrAzKfL2eBqCQpNj6OR2RiRjFHJKR0oMSJ8IauJE4KhQKnTp2Cn58f16EUi6GhIaZOnYqwsDAIhUJUqVIF8+fP/+ZS38jEDO2sNH1FpgSC49JLxA90Dw8P+Pv7Y+PGjZg/fz6+++473Lp1q0DPZVkWF16n4NjzZGQoWCjUvAinYIEMBYtjz5Nx4XWKzq7yEaItlDgR3lB1D+f7C/ft27dha2sLOzs7rkNRi/Lly2PVqlW4c+cOHj58CFdXV/z555+Qy+VIkytx4kWK1pMmFZkSOPEipcRsJbVs2RKBgYEYMWIEevbsiR49euT5ZkGbW6SqRPXUS0qeCMkLJU6EN8zMzKCnp5fnlhEfHD9+XCdO0hWWk5MT9u3bh8OHD2Pnzp3w8vLCtoBIyJXc/hCVK1mcfpXCaQzqJBQKMXDgwKyt0vr16+Onn35CXFzcN4/V9hapTIkSsUVKiCZR4kR4RReuXtHl+qaC8Pb2zuz7tGIt4oWGat8aKiwFCzxNlOJtqozbQNTMwMAAU6dOxePHjyGXy+Hu7o6lS5ciPT0dAG2REsJXlDgRXuF7ndOzZ8/w4cMH1K1bl+tQNIphGEhca0OsZ8B1KAAyk6eA2DSuw9AIS0tLrF27FtevX8etW7fg7u6OHXv30xYpITxFiRPhFb4nTidPnkS7du105lqYokqTKxGZKC32yS11YQFEJkpL9A9yNze3rG3Su6kSfE7ndsWnpG2REqIuJfvVn+gcvidOJbW+6Wshcelq7An+rb/G9kLg8X8K9RwGmXGVdE616sOhTiMIxdx2TC+pW6SEFBclToRXVCfr+Cg5ORk3b95Eq1atuA5F46ISpYVurFgYg9fuQ+0OvQv1HDmbGVdJdyc2jfO6MpWSvEVKSFFR4kR4hc/F4efPn0eDBg1QpkwZrkPRuNh0RZGfq5DL1RhJdsWJSxfQFikh/Ff0a9IJ0YBy5cpBLpfj06dPvLunrLRs0yXLFDm2IIgJe4CDc39C3KtncG3oA4YRoJx9ZTjXa4p9M0ahYe+huL57I5zrNUPHXxZi34zReB0aBIVCDgcvb3SZvhymVjYAgM3DOqFmu+6o2+V7BB7bi7tHdsG+eh3cPbIbBmVM0WnqErh91/KbGORKFikyJYzFJfM9n6a3SItCtUVaz0p3rhciRJNK5qsP0VkMw/By1UmpVOLkyZM63y28ID6kKSBisv/4lsuk2PXzINTu0Bu/XYqEV5uueHzJP+vzKXGx+JyYgCkn76PrjN+hVCpRp1Mf/HIyCL/6B0Osr49jS37Ndc5XoUEo5+CMmRfD0WTgWByc81OOTRhFDIPYNM2taHFN01ukRVkNLC1bpIQUFCVOhHf4WCB+7949lCtXDpUrV+Y6FI2TKliwX20WvQq5B6VCjoZ9hkMoFsOjRXvYetTM+jzDCNBy5C8QSfQg1jeAkVlZeLToAImBIfSMjNF8yAREB97MdU6zCrbw7vo9BEIharXvheSP75ES920jVBYspHwpANKA/LYiE97FYNfPgzDfxx1zm7vi6OIpUCqVuPjn71jSribmt6iC/TPHID05CQAQ/+YlptYqj7tHdmFxuxr4c0QXBB7bi40/+MF/5SzMaeqMpe1rI/zG+WLFRUhpQlt1hHf4mDiV9KaXX1LksNKT9PE9TCytwXyxEmVqVTHr90bmFhDr6Wf9WZr2GSd/n4mImxeRlpwAAMhITYFSoYBAKPxm/DLlLLN+LzHI3BLK+JyKr6vJ0tLTsWHTXmQ8fwSJRJLtl1gs/uZjuX28oI8Vi8XZ/s6alNsWqYpSocDf4/vBqW4j/DI/EIxAiJjHwQg6theBx/7BsM2HYVS2HA7MHIujS35Fr/nrs577LPAWJh68AYYRIOTsEbwKDUKt9r0x82I47hzagYNzfsLUMw9z/buW9C1SQgqDEifCO05OTrhy5QrXYWRz/PhxrFmzhuswtEKYww/PMuUskRT7FizLZv1wTXwfAwtbx8wHfPWca7s24MOLKIzecRplylnhTfhDrOnjU+w70ERCIdxcnMCYiiCTySCVSrN+paamIiEhIdvHVL++fmxBPy6TySAWiwuVlBX14yhnC2WlOoBQnOPf/VVoEJI/vIPvT7MhFGW+dDvWrI/zG5eiUf9RKPv//xdtxs3AHz0bo/vs1VnPbTliMiQGRll/Vq3wAUCt9r1wdNEvSImLRZlyVjn/u/9/i9SY4xYJhPABJU6Ed5ydnbFt2zauw8jy+vVrvHz5EvXr1+c6FK2QCBkwYIAvtuvsPeuCEQpxa9+fqNd9MMKvn8Pr0PuoXPu7HMeQpqZArKcP/TKm+JwYjwubl6snNrEEbVu1RGUT7fwAZ1k2W3JV1AQsp4+lpKRk+7iefQYs7WpCmEvilPg+BmbWtllJk0rSh3cwt7bN+rOZtS2UcjlSPn3I+tiXq4NAwVf4sv4dSvgWKSGFQYkT4R2+bdWdPHkSvr6+EIlKx7dLeQMh5F+tDInEEvRfvh2H5v6EM2vmw/W7FnBv3BpCiV6OY3zXbwT+mTYC833cUKZ8BTTuPzpbMXlRyVkWlgba+//AMEzWqpCmPfqUjjOvUiDN5eS/qVVFJLyLgUIuz5Y8mZSvgPi3r7P+nPAuBgKRCMZlyyMp9k3mB4u53cgi5y1cQkqj0vGTgOgUa2trJCcnIzk5mRc9k06cOIF+/fpxHYbWlBELIRIwUHy1wmBbtQZ+/Ody1p/XDWgD9yatUbnOd5h6OiTbY03KV8DwLUezfaxe94FZv//yc7U79kHtjn2yPXZR0AfkRCRgSmydTU5bpF+y86iFMuWscGbNPLQc+UtmjVPYA3i17YIr29fA7bsWMDK3wNm18+HZqvM3K1PFwRQgPkJKi5L5CkR0GsMwcHJy4kVLgs+fP+PKlSto27Yt16FolaX+twXc0YE3kPzxPRRyOQKP/4N3kY/h2tCH87hKiv+2SHMmEAox8I9diHv1DIvb1cRiXy+EnD2C2p36oaZfT2we2hHL2teBSKKPjlMWqTU2BgwkQkqcCAEAhi1utSYhGtClSxf069cP3bt35zSOEydO4Pfff8elS5c4jUPbAt5/xrW3n7P1FLpzcAfObVgMaVoqylZ0RJtx0+HeuLXWYhIxQGNrwxLbiDFZpsDGR/G8uW7lS0IGGFWtbIld7SOkMGirjvASX5pglqY2BF/ytNDH1befs33Mu9sAeHcbwFFEmXU2nhb6+T5OV+W2RcoHJXmLlJDCou8Ewkt8KBBnWbbUJk4GIgFcTCW8uf6DAeBiKoGBqGS/ZPF1K5KvcRHChZL9KkR0Fh8Sp+DgYBgaGsLNzY3TOLjibWkAvpS1yDLSIY55wnUYGudsKoGIJ//mKiImMy5CSCZKnAgv8SFxKq2rTSo2RmI4mUg4T56EDFAmIwFjv++FDh064NGjR9wGpEGeFvrg20ZdSd8iJaSwKHEivGRra4uPHz8iLS2NsxhKe+IEAG3tjSEScJs5iQQMRnxXFU+ePIGPjw+aN2+OIUOG4PXr1/k/WcfQFikh/EffDYSXhEIhHBwcEB0dzcn87969Q0REBBo3bszJ/HxhIBLA7NUDyNI/5/9gDRALgPYOxtAXCaCnp4cJEyYgIiIClpaW8PLywtSpU5GQkMBJbJrCpy1SIQPUszTgOgxCeIUSJ8JbXJ6s8/f3R+vWrTPvECullEolZsyYgTljfoCLvgLaPlQlFgA1LPThYpq9O7mZmRkWLVqEBw8eIDY2Fq6urli5ciUyMjK0G6CG8GmL1MlUAmuj0vs9QEhOKHEivMVlnVNp36ZLTk5G165dcfXqVdy5cwe9ajiiipme1pInsQCoaqYHn4pGuT7G1tYWW7duxaVLl3Dp0iW4u7tj9+7dUCpzubNEh/Bli9TXzpjTGAjhI0qcCG9xlThlZGTgwoUL8PX11frcfBAdHY0GDRrAysoK58+fh6WlJRiGga+9MWpY6Gs8eVKtNLW1NwZTgGs+qlWrhmPHjuHvv//GmjVrULt2bZw9e1azQWqYgUiA9g7GWl/lU/lyi5QQkh19VxDe4ipxunz5MqpXr45y5cppfW6uXbx4EQ0bNsTo0aOxcePGbJfbMgyDFrbG6OhYBnpCRu1bSUIG0BMy6OhYBi1sC5Y0falJkya4desWZsyYgbFjx6JVq1YICgpSb5Ba5GKqp5VE9Wu5bZESQjJR4kR4y8nJiZPEqTRu07Esi7Vr16Jv377Ys2cPRo8enWvi4mKqh5FVzeFsktlzSKlUFHNyJeQZ6XAyEWNkVfNi/cBmGAbdunXDo0eP0LVrV/j5+aFfv3549uxZ8WLkiE9FI95tkRJS2lHiRHjLwcEBb968gVQq1dqcpbFbuFQqxfDhw7Fp0ybcvHkTPj75X9xrIBKgS2UTtC0rR/jl0xAyKHTjRhGTucrkbq6Pq8unQH7vjNqOvYvFYowaNQqRkZFwdXVFnTp1MGHCBHz8+FEt42sLn7dICSmtKHEivCWRSFCxYkW8ePFCa3M+fvwYLMuiWrVqWpuTS7GxsWjRogU+fvyImzdvonLlyoV6/sG/NsEw6jbGepRFY2tD2BmJsrbx9AQMJILMH8gSQeafVdtxdkYiNLY2xFiPsuhcyQSTRwzCzJkzIZfL1fr3MzY2xqxZs/D48WNIpVK4u7tj0aJF+PyZm/YKRcH3LVJCShuGZVm+NaolJEubNm3w008/aa1Qe/HixYiJicGaNWu0Mh+X7t+/j86dO2PgwIGYPXs2BILCvY+SSqVwcHDAhQsXULVq1WyfS5EpEZsmh1TBQsGyEDIMJEIGlgaiHC+LZVkWLVq0QN++fTF06NBi/b3yEhkZiWnTpuHWrVuYPXs2Bg0aBJFId+46T5MrcfplCp4mSaFgUbwu4ywLkYCBk6kEbe2MqcklIQVE3ymE17RdIF5atukOHDiA1q1bY/ny5Zg7d26hkybVGB4eHt8kTQBgLBagsokE7uZ6qFZWH+7meqhsIskxaQIyV1UWLlyIOXPmID09vdCxFJSLiwsOHDiAgwcPYufOnfDy8sKxY8egK+8fVVuk/VxM4WYmKfIWKRRyJEUEo5+LKbpUMqGkiZBCoBUnwmsrV67E8+fPsWrVKo3P9fHjRzg5OeH9+/fQ1y+Zd3MplUrMmjULO3fuxOHDh1GzZs0ij1WvXj3MmDEDHTp0UFt8nTp1QtOmTTFx4kS1jZkblmXh7++PKVOmoGzZsli6dCnq16+v8XnVKU2uREhcOiISMhD1/hOMTUwhYhiwYMEi88oUBgzk/19dstQXwtlUAhs2FdXdXfDs2TOYm5tz/dcgRKfozho1KZWcnJxw/vx5rcx16tQptGjRosQmTcnJyfj+++8RFxeHO3fuwNLSsshjBQQE4OPHj2jXrp0aIwQWLFiAFi1aYOjQoTAxMVHr2F9jGAZ+fn5o27YtduzYgR49esDb2xsLFy6Em5ubRudWFwORAPWsDCF6HYalYwbhVtCDAm6RGqJdu3bYsWMHxo8fz1n8hOgiWp8lvKbNa1dK8jadqqmlpaUlLly4UKykCQBWrVqFsWPHQigUqinCTB4eHmjdujVWrFih1nHzIhQKMXjwYERERMDb2xuNGjXCqFGj8O7dO63FUFxBQUGoXbt2obZIR44ciU2bNunMNiUhfEGJE+G1ypUr4/nz51AoitkrKB8ymQxnz55V+woKH6iaWo4aNQqbNm3K1tSyKN68eYNTp05h8ODBaoowuzlz5mDNmjVabx1gYGCAKVOm4MmTJzA0NES1atUwa9YsJCcnazWOoggKCkKtWrUK9RzVBdbXrl3TREiElFiUOBFe09fXh6WlJV69eqXRea5fvw4XFxdUqFBBo/No09dNLceMGaOWo+YbN25E3759YWZmVvwgc1C5cmX07t0bixYt0sj4+bGwsMDvv/+OwMBAREdHw9XVFevWrYNMJuMknoIIDAxE7dq1C/UchmEwYsQIbNq0SUNREVIyUXE44T0fHx9MmzYNLVu21NgcEydOhLm5OWbOnKmxObRJKpVi7NixuHXrFo4ePVro/ky5ycjIgIODAy5duoQqVaqoZcycvH37Fh4eHggODoadnZ3G5imI4OBgTJkyBdHR0ViwYAF69OjBq15HMpkMpqamiI2NhbFx4S7ljY+PR6VKlRAVFVUqrxgipChoxYnwnjauXilJ9U2qppaxsbFFamqZl3379sHLy0ujSRMAWFtbY9iwYZg7d65G5ymIGjVq4MyZM9iwYQMWL16MevXq4fLly1yHlSUsLAwODg6FTpoAwNzcHJ07d8b27dvVHxghJRQlToT3NF0gHhERgdTUVNSoUUNjc2hLcHAwvL290axZMxw6dAhlypRR29gsy2L16tX48ccf1TZmXqZMmYIjR44gIiJCK/Plp2XLlrh37x4mTJiAH374AX5+fnj48CHXYRVpm+5Lqu06pVKpxqgIKbkocSK8p+kmmKrVJj5tvxTFgQMH0KpVKyxbtgzz5s0rUlPLvNy6dQuJiYla6+Jubm6OCRMm8Gr7VCAQoE+fPggLC0Pr1q3RsmVLDB48WOM1eHkpSmH4l+rXrw9DQ0NcunRJjVERUnJR4kR4T9OJ0/Hjx9XaxFHblEolZs6cicmTJ+Ps2bPo0aOHRuZZvXo1xo0bp/aELC/jx4/H1atXERQUpLU5C0JPTw/jx49HREQEbGxsUKNGDUyZMgXx8fFajyUwMLBYiZOqSHzjxo1qjIqQkouKwwnvpaSkwNLSEikpKWr/oZ2QkAB7e3u8e/cOhoaGah1bG1RNLT9+/IhDhw4Vuz9Tbl6/fg1PT088f/5c440pv7Z27Vr4+/vD399fq/MWRkxMDGbPno2jR49iypQpGDNmjFYaqSoUCpiamiImJgampqZFHicpKQkODg4ICwsrUSdLCdEEWnEivGdsbAxTU1O8fftW7WOfOXMGTZo00cmkKTo6Gg0bNkT58uVx8eJFjSVNQGYLgv79+2s9aQKA4cOHIywsjNf9hipWrIgtW7bg8uXLuHr1Ktzd3bFz506N1w2Fh4fD2tq6WEkTAJiYmKB79+7Ytm2bmiIjpOSixInoBE2drNPV03SXLl1Cw4YNMWLECGzevLnYTS3zkp6eji1btmDs2LEamyMvEokEc+bMwdSpU3nf5bpq1ao4evQodu3ahQ0bNqBWrVo4c+aMxuIu7jbdl0aOHIktW7ZovNksIbqOEieiEzRxsk4ul+PUqVM6lTixLIt169ahT58+2LNnD8aOHavxova9e/eidu3acHV11eg8eenXrx/i4+N5vV33pUaNGuHGjRuYNWsWfvzxR7Rs2RKBgYFqn0d11Yo61K5dGxYWFjh79qxaxiOkpKLEiegETRSI3759G3Z2drC1tVXruJoilUoxYsQIbNiwATdv3oSPj4/G59R2C4LcCIVCzJ8/H9OnT9eZY/MMw6BLly4IDQ1Fjx490KFDB/Tp0wfR0dFqm6O4J+q+prq/jhCSO0qciE7QROKkS9t0Xza1vHXrllqbWubl+vXr+Pz5M1q3bq2V+fLSuXNn6OnpYd++fVyHUihisRgjR45EREQEqlatCm9vb4wfPx4fPnwo1rhKpRL3799Xa+LUu3dvXL16Fa9fv1bbmISUNJQ4EZ2gicRJV9oQaLKpZX64aEGQG4ZhsHDhQsycOZPX98blxtjYGDNnzsTjx4+hVCpRpUoVLFiwAKmpqUUaLyoqChYWFihbtqxaY+zTpw+2bt2qtjEJKWm4fzUkpABUxeHqKrKNjo7Gx48fUadOHbWMpymqppZLly7VSFPLvLx8+RIXL17EwIEDtTZnflq0aAFHR0f89ddfXIdSZJaWllizZg1u376NkJAQuLq6YsuWLZDL5YUaR93bdCojRowoUjyElBaUOBGdYG5uDrFYXOztDZWTJ0/Cz8+PFyspOVEqlfjtt98wadIknD17Fj179tR6DBs2bMCAAQO0usJVEAsXLsTcuXORlpbGdSjF4uzsjH379uHIkSPYs2cPqlevjiNHjhT4zUFxr1rJjaenJ+zt7XWmEJ8QbePnTw1CcqDOk3V8rm9KTk5Gt27dcPHiRdy5cwc1a9bUegxpaWn4888/MWbMGK3PnR9vb294e3tj3bp1XIeiFnXr1sXFixfx+++/Y+bMmWjcuDFu3ryZ7/M0teIEgDqJE5IHSpyIzlBXnVNycjJu3bqFVq1aqSEq9VI1tSxXrhwuXrwIKysrTuLYs2cP6tevD2dnZ07mz8+8efOwdOlSJCYmch2KWjAMg3bt2iE4OBjDhg1D79690bVrVzx58iTHx7Msq9HEqWfPnrhz5w6eP3+ukfEJ0WWcJU7JMgWik6R4Ep+BR5/S8SQ+A9FJUqTIdOOoMdE+dSVO586dQ4MGDXi3BaXNppZ54UsLgrxUq1YNvr6++P3337kORa2EQiEGDhyI8PBwNGjQAI0bN8aIESO+6Zr/7NkzGBsba6xbvIGBAfr3748tW7ZoZHxCdJlIWxOlyZUIiUtHVKIUsekKyJUsRAwDFv/t5zNgIGdZiAQMLPWFcDaVwNNCHwYiWhgjmYnT6dOniz0O37bpWJbFhg0bMGfOHOzdu1cr/ZnycvXqVchkMrRs2ZLTOPIzZ84c1K5dG2PHjtXodTNcMDAwwOTJkzFkyBAsWrQIHh4eGD16NCZPngwTExONrjapjBgxAj4+Ppg9ezbEYrFG5yJEl2g8I3mTKsORZ0lYG/oJ195+xqtUOTIULBQskKFkIVUi61eG8v8fV7B4lSrHtbefsTb0E448S8KbVN07fkzUSx3XriiVSpw8eZI3iZNUKsXIkSOxfv16rTW1zM+qVaswbtw4jXckLy5HR0f07dsXCxcu5DoUjSlbtiyWLVuGoKAgvHz5Eq6urlizZg3u3Lmj8cSpSpUqcHV1xdGjRzU6DyG6hmE1dIlSmlyJ0y9T8DRJCgULFGcSBoCQAZxMJGhrb0wrUKVUbGwsqlatio8fPxZ5jICAAAwZMgShoaFqjKxoYmNj0b17d5ibm2PXrl282Dp8/vw5ateujRcvXsDY2JjrcPL1/v17VK1aFffv34e9vT3X4WjcgwcP8Ouvv+LKlSsYN24cFi1apNGToXv37sW2bdtw7tw5jc1BiK7RyHdcZGIGNj6OR1SSFPJiJk1A5vPlLBCVJMXGx/GITMxQR5hEx5QvXx5SqRTx8fFFHoMv23SqppZNmzbF4cOHeZE0AcD69esxaNAgnUiaAMDKygojR47EnDlzuA5FK7y8vODv7w+xWIzTp0+jXr16uHTpksbm69q1Kx48eKCRC7YJ0VVqTZxYlsWF1yk49jw5aztOnVTbeMeeJ+PC6xTe35RO1IthmGK3JOBD4sRlU8u8pKamYtu2bbxsQZCXyZMn49ixY7meQCtpXr16BUNDQ9y/fx8///wzhg4dCl9fX4SEhKh9Lj09PQwaNAibN29W+9iE6Cq1vWKzLItTL1MQHJcOTR+MkymB4Lh0nHpJyVNpU5yTda9fv8arV69Qv359NUdVMEqlErNmzeK0qWVedu/eje+++05r9+Cpi5mZGX7++WfMnDmT61C0QlUYLhAI0Lt3b4SFhaFdu3Zo3bo1Bg4ciJcvX6p1vuHDh2P79u3IyKCVfkIANSZOF2NSEZaQofGkSUWmBMISMnAxpmj3PBHdVJwC8RMnTsDX1xcikdYOk2ZJSUlB9+7dceHCBc6aWuZFF1oQ5OXHH3/EjRs3EBgYyHUoGvf1iTqJRIJx48YhIiIC9vb2qFmzJiZPnlysLe0vOTs7w8vLC4cOHVLLeIToOrUkTpGJGVpZafqaauWJap5Kj+KsOHG1Tffs2TM0bNgQZcuWxYULFzhrapkXVZ0MH071FYWhoSFmzJiBadOmcR2KxuV21YqJiQnmzZuHhw8fIikpCa6urli2bBnS09OLPSd1EifkP8VOnNLkSpx4kaL1pElFpgROvEhBmpwaZ5YGRa1x+vz5M65evYo2bdpoIKrcXbp0CQ0aNMCwYcOwZcsW6OnpaXX+glKtNvG9BUFehg4disjISFy+fJnrUDQqvx5ONjY22LRpE65du4abN2/Czc0Nf//9NxQKRZHn7NSpEyIiIhAWFlbkMQgpKYqdOJ1+mQK5kts6I7mSxelXKZzGQLSjqCtOFy5cQJ06dWBmZqb+oHLAsizWr1+PPn36YPfu3bzui/Ts2TNcv34d/fr14zqUYpFIJJg7dy6mTZtWYmsf37x5A5lMBjs7u3wf6+7ujsOHD2PPnj3YvHkzatasiVOnThXp30YsFuOHH37Apk2bihI2ALotgpQcxerj9CZVhj2RiZDz4DVKxAD9XExhbUQdbksypVIJY2NjxMbGFurI/IgRI+Dm5oaJEydqMLpMUqkU48aNw40bN3D06FE4OTlpfM7imDRpEgQCAZYuXcp1KMWmUChQo0YNLFy4EB06dOA6HLU7ceIE1qxZgzNnzhTqeSzL4ujRo/j1119hY2ODpUuXok6dOoUa4/nz56hTpw5evXoFAwODfB9Pt0WQkqpYX513YtPU3nKgqBQsEBCbxnUYRMMEAgGcnJwKtV3HsqzW6ps+fPiAli1b4t27d7h16xbvk6aUlBRs374do0eP5joUtRAKhViwYAGmT58OpbLkrWQU9aoVhmHQuXNnhIaGonfv3ujUqRN69epVqO8jR0dHeHt7Y//+/Xk+jm6LICVdkROnNLkSkYnSYje3VBcWQGSilGqdSoHCnqwLDg6GkZERXF1dNRhVZldnb29vNGnShFdNLfOyc+dONGnSBI6OjlyHojYdOnSAkZER9u7dy3UoahcYGFisq1ZEIhGGDx+OiIgIVK9eHfXq1cO4ceMQGxtboOePHDky1+26NLkSh6OTsCcyEeEJmTdGFHY3Qs5mvgkOT5BiT2QiDkcn0Ws64Z0iJ04hcenIr2Ljw/MorO7dDLMaOeLG3qI3UDswayzOrsv/Pirm/3GRkq2wBeLHjx/X+LbNv//+i5YtW2Lx4sWYP38+b5pa5kXXWxDkhmEYLFy4EL/99hukUinX4ahVUFBQjifqCsvIyAgzZsxAWFgYBAIBqlatinnz5iE1Ne/2Lu3atcOrV6++abZJt0WQ0qTIr+5RidJ8301c/XsNKtdphDnXn+O7PsOLOlWBydnMuEjJVtgCcU1u06maWv788884c+YMevXqpZF5NOH8+fMQi8Vo2rQp16GoXfPmzeHk5IStW7dyHYraxMbGIjk5GZUqVVLbmOXLl8eqVasQEBCAx48fw8XFBZs2bYJcLs/x8SKRCEOHDs1adaLbIkhpVOTEKTY9/6Ot8W9fw8rJrahTFElB4iK6rTCJ07t37xAZGYlGjRqpPY6vm1pq+rZ6dSsJLQjysnDhQsyfPx+fP3/mOhS1UNU3aeL/l5OTE/bu3Ytjx45h//798PDwwOHDh3NMVIYMGYK9e/ciOTmZbosgpVKREqdkmSLfFgRbhndB9L3rOLZkKmZ954CFrT1w9/DOrM8HHtuLjT/4Zf059lkkto7qjrnNXPB7l/oIOXukKKFBrmTpeGsJV5jEyd/fH61bt4ZYrN7TlrrQ1DIvUVFRuH37Nvr27ct1KBpTp04dNGjQAGvXruU6FLVQ1zZdXurUqYPz58/jjz/+wOzZs9GoUSPcuHEj22NsbW3RpEkTbL3+iG6LIKVSkRKnD2kKiPJ51zNs82E41qyPjlMWYc6NFyjnkPvpImlaKraN7g6vtl0x/XwY+izajKOLp+B9dHihYxMxDGLTcl5mJiWDnZ0dYmNjkZaW/ylKTdQ3Xb58WSeaWuZl3bp1GDp0KAwNDbkORaPmzZuH5cuXIyEhgetQiq2oJ+oKi2EYtG3bFkFBQRgxYgT69u2Lzp07Z2t+2fvHKUgxt6XbIkipVKTESapgs/XiKK4nV8/C3NoOdTr1hVAkgo27Jzx82uPhuWOFHosFCylfeiQQjRAKhXBwcMCzZ8/yfFx6ejouXryItm3bqm3uDRs2oFevXrxvapmX5ORk7NixA6NGjeI6FI2rUqUK2rdvj+XLl3MdSrHldtWKpgiFQgwYMADh4eFo1KgRmjRpguHDh+PZ6zd4W84VIj19rcXyJbotgnCtSImTQs17zPFvX+NVaBDmNHHK+hV86l+kxBXsiOyXWA3ER/inICfrrly5gurVq6NcuXLFnk8qlWLkyJFYu3Ytbt68iRYtWhR7TK7s2LEDPj4+sLe35zoUrZg1axY2bNiA9+/fcx1KkX369AlxcXFwdnbW+tz6+vqYNGkSIiIiYGZmhrkHLyJdym2PJbotgnCpSNfEC4vwLltiYAhp+n9bK8lfJEWmFSqiUu2GGLLh36KEkw1TxPiIbilIndPx48fVcpruw4cP6NatG8zMzHDr1i2YmJgUe0yuKJVKrFmzBlu2bOE6FK1xcHBA//79sWDBAqxevZrrcIrk/v37qFGjBqdtLszNzfHTrAXYHZEARb7NaDRLwQJPE6V4myqj2yKI1hXpu1AiZMAU8hvH2tUDjy6ehDTtMz6+jMa9I7uzPlelcWt8fPEUQSf2QyGTQSGT4dWj+4iNjih0bAqFAp+TEujkRQnn7OyM6Dfvc737StUtvLj1TV82tTxy5IhOJ00AcO7cORgYGGjklCGfTZ8+Hbt378bz58+5DqVItL1Nl5s7sWlQcpw0qdBtEYQrRVpxKm8ghLyQiUmjfiPx+nEwFrSqCmuXqqjh2x1Rd64AAPSMjPHD+gM4uWIm/Ff8BiWrhLVLNfj9PLfQsUnlCnRp1QKJsW/h6uoKV1dXuLm5Zf3XxcUFRkZGhR6XcO/Lu6/SGvZAhXpKHH2WnOPdVwyrRMf5m5FczhFpcmWR7r46ePBg1vacLvVnysuqVatKdAuC3FhaWmL06NGYPXs2tm/fznU4hRYUFAQ/P7/8H6hBfL4tgu62I9pU5Et+V4bEIYOHRdh6QgYTPC0QFxeHiIgIhIeHIyIiIuv3UVFRKFeuXI5JlYODA0SiIuWSRIPepMpwJzYNkYlSMCjcNQ4iJvMF1sVUAm9LA9gUYFlfqVRi7ty5+Ouvv3D48GGd68+Um4iICDRq1AgvX76Evj43hb1cSkxMhIuLCy5fvoyqVatyHU6huLi44MiRI6hWrRpnMQS8/4xrbz9jQbta6PbbSjjXK37j1M3DOqFmu+6o2+X7Ij1fxACNrQ1Rz6pknw4l/FLkLMFSX4hXqfw79m+pLwQAWFhYoEGDBmjQoEG2zyuVSrx8+TJbUnXq1CmEh4fj3bt3qFSpUrZkSvXf8uXLl7p36VxLkytx+mUKniZl3ntVlDRdlWSFJ0gRlSiFk4kEbe2Nc32HmpKSggEDBuD9+/e4c+eOzvVnysvatWsxbNiwUpk0AYCpqSkmT56MmTNn4uDBg1yHU2CJiYl4+/Yt3N3dOY2jILdFaJvqtghKnIg2FTlxcjaV4O1nOa++kURMZlx5EQgEcHR0hKOjI1q3bp3tc2lpaYiKispaobp27Rq2bt2K8PBwKBSKb5IpV1dX2vrTkMjEDJx4kQK5Uj3XOHx991V7B2O4mGbvv/Ts2TN06tQJ3t7e2Lt3r072Z8pNUlISdu3a9c0dY6XN2LFj8ccff+Du3buoW7cu1+EUSHBwMDw9PSEUCjmNQ523MrAsq7Y6VLotgmhbkRMnTwt9XH3Lr6sMWGTGVVQGBgaoXr06qlev/s3nvt7627dvHyIiIrJt/X2dVNHWX+GxLIuLMakau8ZBwQKK/999VcNCBp+KRmAYBpcvX0bv3r0xffp0jB07tsStLm7fvh2tWrWCra0t16FwysDAADNnzsS0adNw7tw5rsMpkMDAQM63i7++LeL1o/s4vnQakj6+R7Vmvug0bRnkGenYN2M0XocGQaGQw8HLG12mL4eplQ2AzG05By9vPAu8gZgnDzF+35Vv5rl3ZDeu7liH5LhY2FWriS4zVsDcxg5HF/0CkZ4+/Cb+V/e646f+qFynEZp+PxIpMiWMxVTnRLSjyDVOAHDkWRLCE/hRLMgAcDOToHMl7Z56UigUePXqVbakSvXf9+/fo1KlStmSKdr6yx3Lsjj1MkVr1ziIBUAVMz0899+FObNnY8+ePTrdnyk3SqUSbm5u2L59O7777juuw+GcTCZDlSpVsHnzZvj4+HAdTr769++PFi1aYPDgwZzFEJ0kxdFnychQsljiVwt6hkYYtOYfSAwMseOnfqhcpxG+6zcSzwJvwLVhC7BKJf6d8yOUcjm+X7EDQGbi9CnmBQav+QflHJwBlsXW0d2zapweXz6Fkyt+w8A/dsPCvjKubF+F8OsXMGq7P16FBmHnxAH49XQIBAIBUuPjsMSvJiYfv4dy5a3QqVIZVDbJe7eBEHUp1nKIt6UBb/a9hQxQz9JA+/MKhQXa+gsPD/9m6+/rZKq0b/1djEnV+t1Xwe+T8SROiZs3b8LJKfdrgXTZ6dOnYWpqioYNG3IdCi+IxWLMnTsXU6dOxe3bt3n/BiYoKAiTJ0/mNIavb4to0GsIzCpUBAA0GzIBx5dOQ+sx0+DR4r/2H82HTMCW4V2yjVO7Q29YOeVcqxXw73Y0+2E8LCu7Zo77wwRc3rYK8W9ewc6jFvSNTfD0zlW41G+GB2cOo1LthihjYUm3RRCtK1biZGMkhpOJBFH/L97lipABnEwlvGuElt/W35cn/kr71l9kYoZWbln/mkAsgWf7XlCWK6PdibVo9erVpbIFQV569+6NJUuW4OjRo+jcuTPX4eQqJSUFL1684PwU4Ne3Mai23wDA3NoOSR/eQZr2GSd/n4mImxeRlpwAAMhITYFSoYDg//VZplYVc50j4e1rnFg2Hf4rZmV9jGVZJH14C3MbO9Tq0Av3/Q/ApX4zBPv/i4Z9h2c+Jof4CNGkYv8UbmtvjI2P46HgMHMSCRj42hlzNn9RWFhYoGHDht+sAqi2/r5Mqvz9/XPd+lP9V5e3/tLkSpx4kaL1pElFzmbefTWyqrjE9YN58uQJgoODcfToUa5D4RWBQIAFCxbg119/RYcOHTgvvM7NgwcPUK1aNYjF3L4p/Po2hsT3b7J+n/DuNUzKV8C1XRvw4UUURu84jTLlrPAm/CHW9PHJVgSe10uUqZUNmg2ZgJrtuuf4+ZrteuCPHo3xNiIUsc8jUK2Zb+aYOcRHiCYVO3EyEAnQ3sEYx54nc/KDTywA2jsYQ7+E/MD7cuuvTZs22T6X09bfn3/+ifDwcLAs+822n65s/Z1+mZKt8JQLqruvumi5Rk7T1q5di+HDh5eoE4Lq4ufnh0WLFmHPnj34/vui9RHStKCgIM4Lw4Evb4vI/D69tX8b3Bu3hljfAJe2roRnq06QpqZArKcP/TKm+JwYjwubC3excr3ug3Buw2LYuHnAyskd6clJiLx9CdVbdQKQmVjZVquJ/TPGwMOnPcT6maUZDBhIhJQ4Ee1Ry76Pi6kealjItL7VIhYANSz0vzlWXlLltfX38ePHbI0+9+3bh/DwcDx9+hTlypX7ZoXK1dUVjo6OnL/TfpMqy+rTxKWSePdVYmIi9uzZg9DQUK5D4SWGYbBo0SIMGjQIvXr1gkTCv+LiwMBAXhT0f31bRI22XbFtdA8kfXiHKs3aovnQiUhPScI/00Zgvo8bypSvgMb9R+PxJf8Cz1HNxw8Zn1Oxd+pwJLx9BX1jEzjXa5qVOAFArfa9sH/maLSfvCDrY3KWhaVBySxhIPxUrFN1X+LiRFRVMz20tTfW2S0qbfh66+/LLUDV1l9ORera2vqjk5mas3LlSty9exd79uzhOhRea9u2LTp06IAxY8ZwHco3PD098ddff/Hinjo+3BbxLPAm9s0cjSkn72e9PqluiyBEW9SWOAGa78GjolppUvXgIUWj2vr7OqnKbevPzc0Nzs7Oatv6S5MrsTb0E+erTV8SMsBYj7I6X+ukati6e/du1K9fn+tweC0oKAjt27dHZGQkr7a109LSYGFhgfj4eF5ste6OSOD0tgiFTIa9U4fB2tUDLYZPyvq4nZEI/VzNOIuLlD5qXd9kGAYtbI1hX0as1q7PKkImsxA8p67PpPAKsvX3ZcPPvLb+VHf9FWbrLyQuXeP3rJ/fuBRxr56h14INBXo8g8y4dP0KB39/f1hYWKBevXpch8J7tWrVQqNGjbB69WpMnTqV63CyhISEwN3dnRdJE8DtbRGx0RFY278VrF2rofvsEVkfL8htEYSom0Y2hl1M9TCyqrjY94ypZJ6ayGw50NYu93vGiPqUK1cO5cqVy/HUn+quP1VidfLkSYSHh+P9+/eoXLlyjvVUOW398aUH2JdKyt1X1IKgcObNm4dGjRph5MiRMDc35zocAPwpDFfh8rYIy8qumHvzxTcfL+5tEYQUhcYq6gxEAnSpbIK3qTIEqOFm+3qWBiWmaFeXCYVCVKpUCZUqVcr11J9qlerKlSvYsmVLtq2/L5Oqt85NARQ8CVbI5RBqoY+Vrt999fjxY4SGhqJHjx5ch6Iz3Nzc0KlTJyxbtgwLFy7kOhwA/Lhq5UsGIgFcTCW8qkl0MZXQG2midWqtccpLmlyJkLh0RCVKEZueee+RiGGg6kfLIPNYqZxlIRIwsNQXwtlUAk8LffrG0HEsy35z1190zDtUHzMfIknmNkTCuxicWDYdz+/fhpJVwqtNF9hWrYG7h3fCtlotBJ3cj/rdB0EgFGXbeot/8xJL29fG/DtvIRSJ8CnmBf6dNQ4xT0JgX70Oyjk4IT05KevxL0Pu4eSK3xAbHQ4zazt0mLwAletkP7UkZIBR1crq7N1Xo0aNQoUKFTBr1qz8H0yyvHr1CjVq1MCjR49QoUIFrsNBrVq1sGHDBl5tt75JlWFPZCIvVopFDNDPxZTeUBOt09oZTgORAPWsDLO2QFJkSsSmySFVsFCwLIRMZi8OSwORzv7AIjljGOabrb8v775SKhT4e3w/ONVthF/mB4IRCBHzOBhxr57hVWgQPNt0wfRzj6GUy3Bl+5o85/pn2kjYe9bBD+sP4NXDQGwf3xdVm2Y2ykuMfYvt4/ui57x1cG3YAk/vXMWuyYMx8dBNGJuXyxpDxDCITZPDWKx7tRPx8fH4559/EBYWxnUoOsfOzg4DBw7E/PnzsXbtWk5jycjIwJMnT+Dp6clpHF+j2yIIKcw+iZoZiwWobCKBu7keqpXVh7u5HiqbSChpKiW+vPvqVWgQkj+8g+9PsyExMIJYTx+ONTNPgpUpXwENew+DUCTKaniXm4S3rxHz+D5aj/4VIokeKtVuiCpN/ttODPY/ALfvWsK9USsIBAK41G8G2ypeCL9+Pts4unz31bZt29C+fXterJjooqlTp2Lv3r149uwZp3GEhobC2dkZBgbav38zP23tjSEScFs7p4u3RZCSg7qGEU58ebdU4vsYmFnb5li/ZPbFnVj5SfrwDgZlzCAx+O9IuZm1LRLfZV4PEf/2NULPH8OTq2f+i0MuR+W6jbKNo6t3XykUCqxduxb79+/nOhSdVb58eYwdOxazZs3Cjh07OIuDb4XhX6LbIkhpR4kT4cSXd0uZWlVEwruYnIu/vzoVJjEwhCw9LevPyR9js35fppwV0pITIE1LzUqeEt7F/P+qiMwkrKZfD3SduTLP2HT17qsTJ06gQoUKqFu3Lteh6LSff/4ZLi4uCA0NhYeHBycx8DlxAui2CFK6UcpOOPHf3VeAnUctlClnhTNr5kGalgpZRjqeBwfk+DxrNw88u38LCW9fIz05CZf/WpX1OXMbO1SsUgPnNy6FXCbF8/u3s60u1WjXA2FXzyDi5kUoFQrIMtIRfe9GtgtLAd29+2rVqlX48ccfuQ5D55mYmOCXX37BjBkzOIshMDCQF93C8+JT0QhVzPSgreoK1W0RPhX506SUlE6UOBFOfHn3lUAoxMA/diHu1TMsblcTi329EHL2SI7Pc6nfDJ6tOmFVr6ZY068F3Bu3zvb53gs34tXDQMxr5oILm5ejpl/PrM+ZVaiI71fsxOVtf2B+C3cs8a2BqzvWglVmf8usi3dfPXz4EE+ePEG3bt24DqVEGD16NAIDAxEQkHMCr0kymQyhoaHw8vLS+tyFwTAMfO2NUcNCX+PJk2qlia7YInygtXYEhHyND3df5UQX774aPnw47OzsMHPmTK5DKTG2bNmCf/75BxcuXNDqvA8ePMD/2rvPgCiuLYDj/4GlCYIVexc1VsBYYsUuFhRbLDE2Yk9Ro1ETe9TE2I1GjV1jixUNWMCuUVCx915QsSDS2TLvAw8SY6Ps7uwu9/flPd3duYcI7Nl7z5zTuXNns7oz8vCVuwRHaMiW3RmdHucBiGkRgikSO06CYlzt0z6exZhMNa53ef78OX/++Sd9+/ZVOhSL0rNnT+7fv09QUNCHn6xHp0+fNvljun+TZZlxA3vhFBaAm4sdKolMp04S/4xT6V8+p0iaBJNiXucRgkVRcvbVu5jj7KulS5fi4+NDvnz5lA7FotjY2DBx4kRGjx5No0aNjHZEZOqF4f+1dOlSoqOj+WbQAFQqlZgWIVg8cVQnKCZeo+PXCy8UbaT3X9YSDK6Yy2y61Ws0GkqVKsWWLVvMapfCXOh0OqpWrcqYMWNo166dUdasVasWU6ZMwcvLyyjrZUZ4eDju7u4EBQW90azzv9Mi4hISsbGSUNnYiGkRglkTiZOgqG23X5nU7KuyOWxpW8JZ6VDSbMuWLcycOZMjR44oHYrFCggI4Ntvv+X8+fNYWxv2GFer1eLi4sLDhw9xcXEx6FqZJcsy7dq1o2LFikyaNOmDz1+9cTM7Dhxl4uSpYlqEYNbEd6ugqOquDpjKnf/WEtRwNb1Oze8zd+5c0YLAwLy9vcmdOzerV682+FpXr16lQIECJp80AWzevJkrV66kuW1DpzatOLBpDdbP7olpEYJZE9+xgqJSZl8pnTyZ4+yrs2fPcuPGDXx9fZUOxaJJksTUqVMZP348iYmJBl3LHPo3Abx48YKvvvqKpUuXYmeXtsJtOzs7evbsyeLFiw0cnSAYlkicBMWJ2VcZM2/ePAYOHIiNjfkke+aqTp06VKhQweBv+uZSGD5s2DDat2+fOrQ7rfr27cvKlStJSEgwUGSCYHgicRIUlzL7Sqkde3OcffXs2TM2b97MF198oXQoWcbkyZOZMmUKMTExBlvDHBKnvXv3sn//fqZMmZLu15YuXZoqVaqwZcsWA0QmCMZhPu8UgkVLnn1lj8rIG0/mOvvq999/x9fXl7x58yodSpbh7u5O/fr1mTNnzoefnAE6nY6wsDCTTpxiYmLo27cvCxcuJHv27Bm6Rv/+/Vm4cKGeIxME4xF31QkmIyEhgW+Xb6dg1bpY2Ri+l5I6IQ6Hl48Y1ry6WY1xUKvVlCxZEn9/fzw8PJQOJ0u5fv06n3zyCdeuXSNXrlx6vfa1a9do1qwZt2/f1ut19WnIkCE8f/6cVatWZfgaarWaokWLEhwcTPny5fUYnSAYh9hxEkyCTqejR48ePA7+k+oFshtl9lVFFxXz+ndi6dKlhl1Mz7Zt20aJEiVE0qQANzc32rVrx88//6z3a586dcqkd5uOHz/O+vXrmTVrVqauY2NjQ58+fVi0aJGeIhME4xKJk6A4WZYZNmwYjx8/Zs2aNTQukh2f4tmxs5b0fredtZQ8i86neHZ8yxckKCiI8ePHs2bNGv0uZECiBYGyxo4dy++//054eLher2vKo1aSkpLw8/Nj9uzZ5M6d+TmOX3zxBWvWrCEuLk4P0QmCcYnESVDcjBkz2Lt3L9u2bcPe3h5IrnnqXz4npZ1tDTr7ys3NjT179jB8+HA2bdqUyVUM7/Tp09y9e5e2bdsqHUqWVbhwYXr37s2PP/6o1+uacmH41KlTKVmyJJ06ddLL9YoVK0bNmjXZuHGjXq4nCMYkapwERf3xxx+MGjWKY8eOUbhw4bc+xxizr86cOUOzZs1YunQprVq1Sv8XYiS9evWiXLlyfPfdd0qHkqU9e/aMcuXKceLECUqVKpXp68myTK5cubh69Squrq56iFB/Ll68iJeXF2FhYe/8Gc0If39/pk6dyt9//623awqCMYjESVBMUFAQ3bp1Y9++fVSoUOGDz0+ZffXngRPkK10erK1RSRIysl5mX4WGhtKyZUv++OMPmjRpkvkvUM8iIiIoW7YsN27c0MtxiZA5EydO5Nq1a3o55r116xb169fn/v37eohMf7RaLbVr16ZXr17069dPr9fWaDSUKFGCnTt3UqVKFb1eWxAMSSROgiLCwsJo1qwZmzdvpm7duml+nVqtJkeOHDx+/BjJ3pGIeA1JWllvs6+OHDmCr68vmzZton79+hm6hqFMnjyZO3fu8PvvvysdigBER0dTunRpgoKCqFSpUqautWnTJlavXs327dv1FJ1+zJ49m61bt7J//36srPRf2TFhwgSePHnCggUL9H5tQTAUkTgJRnf79m3q1KnDvHnz0j1xPiwsjM8++4yLFy8aKDoIDg6mS5cubN++nU8++cRg66SHWq2mRIkSBAQEvDGFXlDOrFmz2L9/P/7+/pm6zqhRo7C3t2fcuHF6iizzbt++TbVq1Th27BhlypQxyBoPHz6kUqVK3Lt3Dycn8+rcL2RdojhcMKqnT5/SvHlzRo8ene6kCSAkJITq1asbILJ/NGrUiJUrV9K2bVtOnz5t0LXSasuWLbi5uYmkycQMGDCAM2fOcOzYsUxdx9TuqJNlmb59+zJ8+HCDJU0AhQoVol69eqxbt85gawiCvonESTCa2NhYWrVqRYcOHRg0aFCGrmGMxAnA29ubhQsX0qJFCy5cuGDw9T5kzpw5ogWBCUrZJRo9ejQZ3byXZdnk7qhbuXIlL168YNiwYQZfS3QSF8yNSJwEo9BoNHz66aeUL18+U7dxh4SEUK1aNT1G9m6+vr7Mnj2bpk2bcvXqVaOs+TahoaGEh4fTunVrxWIQ3q1Hjx48fvyYvXv3Zuj19+/fR6VSUbBgQT1HljGPHz9mxIgRLF26FJVKZfD1mjZtyosXLzh58qTB1xIEfRCJk2BwsizTr18/dDodixcvzvB4k5iYGG7dumXU46rOnTszZcoUGjduzK1bt4y27r/NmzePQYMGGeVNTEg/lUrFpEmTMrzrZGq7TV9++SV9+vTB3d3dKOtZWVmlzr8TBHMgEifB4MaNG8e5c+fYuHEjNjZv76OUFqdPn6ZSpUrY2hp+jt2/9ezZk9GjR9OoUSPu3btn1LUfP37Mjh076NOnj1HXFdKnffv2yLLM5s2b3/mcaLWWW6+SuBKZyMUXCVyJTOTWqyROX7xiMonT1q1bOXfuHGPHjjXqur169WLz5s1ERUUZdV1ByAjxEVYwqEWLFrFu3TqOHj2a6btmjFXf9DYDBgwgISGBRo0acfDgQaMdqyxevJhOnTrpfaCsoF9WVlZMnjyZb775hrZt26JSqVL7jt2ISiIiQYtGJ6f2HUshIWHX5HNsrK3449rLdPUd07eXL18yePBg1q1bh4ODg1HXzp8/P02aNGHNmjUZrn8UBGMR7QgEg9m2bRsDBw7k8OHDeumu/Omnn9KqVSu6d++uh+gyZsqUKaxZs4YDBw4YvMNzUlISxYsXZ8+ePVSsWNGgawmZJ8syXl5edB3wNflqNM50p/vqrg4UfEene0P44osvsLGxUaynUnBwMEOGDOHs2bMZPs4XBGMQO06CQRw9epS+ffsSEBCgl6QJknecJk6cqJdrZdTo0aOJj4+nadOm7Nu3z6A7QZs2baJ8+fIiaTITCVqZz6av4LFGxcuXSWTkE2lKknX1ZRI3opIo5WxL86JOBt+B2rdvH7t371b0DtIGDRqQkJDA33//Ta1atRSLQxA+RNQ4CXp36dIl2rVrx+rVq/n444/1cs2IiAgiIyNxc3PTy/UyY+LEiTRu3JjmzZsbtCZj7ty5ogWBmbgelcjCS5G8tMmOjb1DhpKmf5NJTqJuvEpi4aVIrkcl6iPMt4qLi6Nv37789ttvODs7G2ydD0kpEl+0aJFiMQhCWojESdCrhw8f0qJFC6ZPn06zZs30dt3Q0FA+/vhjg4x9SC9Jkvjll1+oVq0aLVu2JCYmRu9rnDhxgoiICFq2bKn3awv6I8sywQ9i8L8TTaJWRqvnwgetDIlaGf870QQ/iMlwr6j3GTduHNWrVzeJ77WePXuyfft2Xrx4oXQogvBOyr8LCRbj5cuXeHt7M2DAAL3XIYWGhipWGP42kiQxb948ypYti4+PD/Hx8Xq9/rx58xg8eDDW1tZ6va6gP7IsE3gvhjPPE1DrDLuWWgdnnicQeE+/yVNoaCirVq1izpw5ertmZuTJk4eWLVuyatUqpUMRhHcSiZOgF4mJifj6+uLl5cWIESP0fn0l76h7FysrKxYvXkyBAgVo164diYn6OU559OgRAQEB9O7dWy/XEwxj38NYLr9MNHjSlEKtg8svE9n3MFYv10tKSqJPnz7MnDmTvHnz6uWa+pDSSVzctySYKpE4CZmm0+n4/PPPyZMnD7NmzdL7HTGyLJtk4gRgbW3NypUryZYtG507d0atVmf6mgsXLqRz587kyJEj8wEKBnE9KtEoO03/lbLzpI+ap2nTplG4cGG6du2qh8j0p06dOlhZWXHo0CGlQxGEtxKJk5ApsiwzdOhQnjx5wurVqw1ytHT79m3s7OxMZiTFf6lUKtatW4darebzzz9Hq9Vm+FqJiYksWrSIwYMH6zFCQZ/iNTp23o0xetKUQq2DnXdjiNdkPIDLly8zZ84cFi5caHK3/kuSJObXCSZNJE5CpkyfPp3g4GC2bduGvb29QdYwtfqmt7G1tWXTpk08e/aMPn36oNNl7E1t48aNVK5cmfLly+s5QkFfdt2LQaNT9hhJo5PZdT9jNyXodDr8/PwYP348RYsW1XNk+tG9e3cCAwOJiIhQOhRBeINInIQMW7NmDb/++iuBgYEGPVYy1WO6/7K3t2fbtm3cunWLQYMGpbtGQ5Zl5syZI1oQmLDwWDU3XyXp/e659NLKcDMqiUex6T8aXrBgAZIkMWDAAANEph85c+bE19eXFStWKB2KILxBJE5ChuzZs4dhw4YRGBhI4cKFDbqWuSROAI6OjuzcuZOwsDCGDh2aruTp+PHjvHz5khYtWhgwQiEzQiLiFU+aUmhlOBGRvrs57969y/jx41myZIlJtPZ4n379+rF48eIM794KgqGY9k+OYJJOnz7NZ599xubNmw1+pKTRaAgLC6Nq1aoGXUefnJ2dCQwM5MCBA/zwww9pft3cuXP58ssvTf4NLauK1+i4HpWxjuCGIAPXo5LSXOskyzL9+/dnyJAhlCtXzrDB6UGNGjVwcnIiODhY6VAE4TXiN7SQLrdu3aJ169YsWrSIOnXqGHy9S5cuUbhwYbO7wyxnzpzs3buX7du38+OPP37w+Q8fPmT37t307NnT8MEJGXLueQKmVUYNEslxpcUff/xBeHi4QdqFGIIkSfTr1090EhdMjkichDR7+vQpzZs354cffsDX19coa5rTMd1/5cmTh6CgIFatWsWMGTPe+9yFCxfSrVs3XFxcjBSdkF43opLSNbA3vSLD7zHKMy9ajSbNr9HIyXF9SEREBMOGDWPp0qXY2BhvcHBmdevWjeDgYB49eqR0KIKQSiROQprExsbSsmVLOnXqZNSi0pCQEKpVq2a09fQtf/78BAcHM3/+fObPn//W5yQkJLB48WLRgsDERSRkvM2EIaUlrq+//poePXrobXaksTg7O9OxY0eWLVumdCiCkEokTsIHqdVqOnXqRMWKFZk0aZJR1zaHVgQfUqRIEYKDg/n5559ZunTpG49v2LABT09PypYtq0B0QlpEq7XpakEQcesai79ow4R6pZjVoQ6XDu4C4MrhPczt0oDxdUvwk3cVghZOS33NIj8fACbWL8W42sW4ezY0TWtpdDIx72kqtWPHDkJDQxk/fnya4zclKUXimemPJgj6pFI6AMG0ybJMv379kGWZRYsWGbVZXlxcHFevXqVKlSpGW9NQSpQoQVBQEA0aNMDe3p5u3boB/7QgmDx5ssIRCu/zNF6LSpLQpuEuSa1azcpvuvFxm670XvAnd8NOsGpodwavCcLWwZFOE+fjWqocT25cZtnAjhQoW5EKDVrQb4k/01pVZezBm1ir0v6rWSVJRMRrcLKxfeOxqKgoBg4cyKpVq8iWLVu6vmZTUbVqVVxdXdm9e7e441QwCWLHSXivMWPGcOHCBf7880+j10aEhYVRoUIFgzXWNLYyZcqwZ88evv32WzZv3gzA0aNHiYmJoVmzZgpHJ7xPklZGTuP9dPfOnyQpPpb6vb5GZWNLqep1KVe3KWd3baHkx7XJ71YeKysrCpSpQOVmvtw+dSxTscnIJL2jR8LIkSPx9vamQYMGmVpDaaKTuGBKxI6T8E6//fYbGzdu5OjRozg6Ohp9fXOvb3qbChUqEBgYSLNmzbC3t2flypWiBYEZSMtOU4rop49xyVfotX/TnAUK8+rpI+6dP8XueZN4cuMKGk0S2qQkKjb2yVRs8jviO3jwIDt27ODChQuZur4p6Ny5M8OHD+f+/fsUKVJE6XCELE78thbeauvWrfz444/s2rVLscnpllDf9Dbu7u7s2LGDzz//nF27dtGjRw+lQxI+wDodR9TZ8+Yn6snD1xo3vnz8EOe8BdjwfX8+qtec7wLPMP7QLaq37wGpSU/GjsGlt8QXHx/PF198wfz5882ulcfbODo60rVrV5YsWaJ0KIIgEifhTUeOHKFfv37s2LGDkiVLKhaHObci+JDq1avTokUL1Go1Z86cUToc4QNsrSWkNCY2RSpVxcY+G4dWzkOrVnPr5FEuH9pN5Wa+JMbG4OCSAxs7e+5fOM3ZXVtSX+eYMzeSlRUvHt5NV2wSErbWr8c2YcIE3N3dadOmTbquZcr69evH0qVL0aSjXYMgGIJInITXXLp0ifbt2/PHH3/g6empWBzPnz8nIiLCYu80i4+PZ/fu3SxcuJAOHTpw/PhxpUMS3iOvgzWaNB7XqWxs6TF7DdeOBjOpUVm2Tx2RXBBewo02o34m6LefGVenOMGLp1OpyT/HdLYO2WjQZwiLerVkQr1S3Dt3Mk3raWQZV4d/qi5Onz7N8uXLmTdvXvq+SBNXqVIlihUrxs6dO5UORcjiJDm9k0gFi/XgwQNq167N5MmT+eyzzxSNZdeuXfz888/s379f0TgMZdmyZWzZsoWdO3cSEBBAr169CAwMVDRZFd5v1rnnJJrKoLp/sbOWGFI5N5DcOqR69ep88803FnkEvGrVKtatW0dgYKDSoQhZmNhxEgB4+fIl3t7eDBo0SPGkCSy3vgmSWxDMnTuXr776CoAWLVqwcOFCWrZsaRGFvJbK1d5a6RDe6t9xzZgxA1dXVz7//HMFIzKcjh07Ehoayu3bt5UORcjCROIkkJCQQNu2bWnYsCHDhw9XOhzAsuubDh8+TGJiIk2aNEn9O19fX2bOnEmzZs24du2agtEJ71LaxRaViQ2rU0nJcQFcu3aN6dOnG73fmjE5ODjQvXt3fv/9d6VDEbIwcVSXxWm1Wjp37oyVlRXr1q0zidviZVkmf/78nDx50iJvPe7QoQMNGzZk4MCBbzy2fPlyxo0bx4EDBxQtzBfeFK/R8euFF5jSaZ21BIMr5sLOCry8vGjfvj1ff/210mEZ1JUrV/Dy8uLevXvY2r7Z9FMQDE35d0lBMbIsM2TIEJ49e8aqVatMImkCuHfvHpIkUbhwYaVD0bt79+6xf//+dx6l9OrVi5EjR9KoUSPu379v5OiE93FQWeHmYpvBpgH6JwFuLrY4qKxYvHgxarU6S8w7LFeuHOXKlWP79u1KhyJkUabxTikoYtq0aRw4cIBt27ZhZ2endDipUuqbLPG4Yf78+fTo0QMnJ6d3PmfgwIF8+eWXNGrUSEyFNzHVXR2wNpFvS2sJarg68ODBA8aMGcOSJUuwtjbNOix9E53EBSWJxCmLWr16Nb/99huBgYG4uLgoHc5rLLW+KS4ujqVLlzJo0KAPPnfo0KH06NGDxo0b8/TpUyNEJ6RFQUcbSjnbKp48WUtQysWW/NlUDBgwgC+//JIKFSooG5QR+fr6cuHCBVEPKChCJE5Z0O7du/n2228JDAykUKFCSofzBksctQLwxx9/UKtWLUqVKpWm53///ff4+vrStGlTIiMjDRydkFbNizqhslI2c1JZSXgXcWLDhg3cuXOHkSNHKhqPsdnZ2dGzZ08WL16sdChCFiSKw7OYU6dO4e3tzdatW6ldu7bS4bxBq9WSM2dO7ty5Q65cuZQOR29kWaZy5crMmjWLxo0bp+t1w4YN4+jRo+zduxdnZ2cDRimk1fWoRPzvRKPWffi5+mZjBT7Fs5NTHU3FihXZvn07NWrUMH4gCrtx4waffPIJ9+/ft5hB4IJ5EDtOWcjNmzdp3bo1ixcvNsmkCZLvmMmXL59FJU0ABw4cQKfT0ahRo3S9TpIkZsyYQdWqVWnZsiWxsbEGilBIDzcXO9xz22Nj5N+gNlbgntseNxc7hgwZQteuXbNk0gRQunRpPDw82Lx5s9KhCFmMSJyyiIiICJo3b87YsWNp27at0uG8k6XWN6U0vMxIwbskSfz666+4ubnh4+NDfHy8ASIU0qthIUc+ymFntOTJxgrK57CjYSFHAgMDOXr0KJMmTTLO4iaqX79+LFq0SOkwhCxGJE5ZQExMDC1btqRLly70799f6XDeyxLrm27fvs3hw4cz1ZHdysqK33//nXz58tG+fXsSExP1GKGQEZIk4V3UySg7Tyk7Tc2LOhETE0P//v1ZvHgxjo6Ohl3YxPn4+HDjxg0uXryodChCFiISJwunVqvp2LEjVapUYcKECUqH80GWOGplwYIF9OrVK9NvctbW1qxcuRJ7e3u6dOmCWq3WU4RCRkmSRKPCTvgUz46dtaT3u+2speRZdD7Fs9OosBOSJDFq1CgaNWqUrlo5S2VjY0Pv3r1FkbhgVKI43ILJskyvXr149uwZ27ZtQ6VSffhFCkpISCBXrlw8f/4cBwcHpcPRi9jYWIoVK8bJkycpXry4Xq6ZlJSEr68vzs7OrFmzJsv07jF18Rodu+7FcPNVEloZMvOLVeKflgPNizjhoEr+jHv06FE6derEhQsXyJkzp17iNnd3797F09OT+/fvky1bNqXDEbIAseNkwX744QcuX77Mhg0bTD5pAjhz5gzlypWzmKQJYM2aNdStW1dvSROAra0tmzZtIiIiAj8/P3Q6BW7tEt7goLLCt6Qz3dxcKJsjuddTemfbqaTkhKlsDlu6ubngW8I5NWlKSEjAz8+PuXPniqTpX4oVK0bNmjXZuHGj0qEIWYRInCzUggUL+PPPP9m5c6fZ1EFYWn2TLMupReH65uDggL+/Pzdu3GDw4MGIjWPTUcDRhrYlnBlcMRd1C2SjiKMq9RjPzkrC1iq5ZsnWKvnPKcdxRRxV1C2QjcEVc9G2hDMFHG1eu+6PP/7IRx99RPv27RX6ykyX6CQuGJM4qrNAW7Zs4csvv+TIkSOUKFFC6XDSrHv37nh5edGnTx+lQ9GLoKAghgwZwrlz5ww2PubVq1c0adKE2rVrM2PGDIscU2MpYtQ6IuI1JGlltLKMtSRhay3h6qDC6QPV5WfPnqVJkyacPXuWAgUKGCli86HRaChRogQ7duzA3d1d6XAECyd2nCzM4cOH6d+/Pzt37jSrpAksrxVBZloQpJWzszO7du1i//79jBkzxmDrCJnnZGNFSWdbyuW0o0Iue8rltKOks+0HkyaNRkOfPn2YOnWqSJreQaVS8cUXX4jWBIJRiB0nC3Lx4kUaNmzImjVraNKkidLhpMvLly8pXLgwL1++NIt6rA+5efMmNWvW5O7du0YpWH369CleXl507dqV77//3uDrCcYzffp0AgMDCQoKEjuK7/Hw4UMqVarE3bt3yZ49u9LhCBbM/N+hBADu37+Pt7c3s2bNMrukCeDkyZN4enqafNIUrdbyNF77weOW+fPn07t3b6Pd5ZM3b16CgoKoX78+Dg4ODB061CjrCoZ148YNfvrpJ0JCQkTS9AGFChWifv36rFu3jr59+yodjmDBTPtdSkiTyMhIvL29+eqrr+jatavS4WSIqR7TxWt0nHuewI2oJCIStGh0MipJQv7XzeYSEhpZRmUl4WpvTRF7mQ1bt3PswD6jxlqgQAGCg4OpV68e9vb2DBw40KjrC/olyzJ9+/Zl9OjRlCxZUulwzEK/fv0YPXo0X3zxhUg0BYMRR3VmLiEhgWbNmuHp6cnMmTPN9pdF27Zt6dq1K506dVI6FADCY9WERMRzPSoJCdCk56dEq0Gn01E+rxPVXR0o+J+7owzt9u3b1K9fnwkTJtCrVy+jri3oz5IlS1i8eDF///236NWVRjqdjlKlSrFx40aLukNXMC0icTJjWq2WTz/9FJVKxdq1a7GyMt9a/4IFC3L06FHFC9oN0sTQ2ZbmRf9pYmgM165do0GDBkyfPp0uXboYbV1BP8LDw6lSpQrBwcFUrlxZ6XDMytSpU7l58yZLlixROhTBQonEyUzJssxXX33FxYsXCQwMxM7OTumQMuzhw4e4u7sTERGh6I7Z9ahEdt6NQaOT0erxp8JaApWVRKtiTri5GO/f6cKFCzRu3JgFCxbQrl07o60rZI4sy/j6+lK5cmUmTpyodDhm58mTJ5QrV47bt2+TI0cOpcMRLJD5blFkcT///DOHDh1i69atZp00wT/1TUolTbIsE/wgBv870SRq9Zs0AWhlSNTK+N+JJvhBjNGaVVasWJGAgAAGDBhAQECAUdYUMm/Tpk1cu3ZN3B2ZQfny5aNJkyasWbNG6VAECyUSJzO0cuVKFi5cSGBgIC4uLkqHk2lKFobLskzgvRjOPE9AbeDJJWodnHmeQOA94yVPnp6ebN++nZ49exIUFGSUNYWMe/HiBV9//TVLliwx+w9ESurfvz+LFi0SHfUFgxCJk5nZtWsX3333HYGBgRQsWFDpcPRCyVEr+x7GcvllosGTphRqHVx+mci+h7HGWRCoWbMmmzZtokuXLhw+fNho6wrpN3ToUDp06ECtWrWUDsWsNWjQgMTERI4dO6Z0KIIFEomTGQkNDaV79+5s2bKFjz76SOlw9EKn03Hq1ClFEqfrUYlG2Wn6r5Sdp+tRiUZbs169eqxbt4727dtz4sQJo60rpN2ePXs4cOAAU6ZMUToUsydJEv369ROdxAWDEImTmbhx4wZt2rRh6dKlFvVp9Nq1a+TKlYu8efMadd14jY6dd2OMnjSlUOtg590Y4jXGC6Bx48YsX74cHx8fwsLCjLau8GExMTGpb/ROTk5Kh2MRevTogb+/P8+fP1c6FMHCiMTJDERERNC8eXPGjx+Pj4+P0uHolVL1TbvuJd89pySNTmbX/RijrtmyZUsWLFhAixYtuHjxolHXFt7thx9+oG7dujRr1kzpUCxGnjx5aNWqFatWrVI6FMHCiMTJxMXExNCyZUu6detmkWMElKhvCo9Vp/ZpUpJWhptRSTyKVRt13fbt2zNjxgyaNm3KtWvXjLq28Kbjx4+zYcMGZs2apXQoFidlF08UiQv6JBInE6ZWq+nQoQPu7u6MHz9e6XAMIjQ01Og7TiER8YonTSm0MpyIiDf6ul27dmXSpEk0btyY27dvG319IVliYiJ9+vRh9uzZ5M6dW+lwLE6dOnWwtrbm4MGDbzwWrdZy61USVyITufgigSuRidx6lUSMUuf3gtkQs+pMlCzL+Pn5YWNjw2+//Wa2o1TeJzExkfPnz+Pp6Wm0NeM1Oq5HJWWqI/j7nPJfR+i2NfRf9leani8D16OSiNfojNpZHKB3797Ex8fTqFEjDh06ROHChY26vpDc5bp06dImM2rI0qQUiS9cuJAadeqle+5kaRdbKue2N/rPpmDaROJkokaPHs21a9cIDg5GpbLMf6Zz585RunRpHB0djbfm8wT+nYL+3NKT9mNnUbpGfaPF8F8SyXHVyJfN6GsPGjSIhIQEGjVqxMGDB8mfP7/RY8iqLly4wPz58zlz5oxFfjAyFc06fcYpjQu/nn+OJEmvzZ3UvnGEl/xnrVbmfqyGR3EaDj2Kw83FVpG5k4Jpssx3ZDP366+/smXLFo4ePUq2bMZ/MzUWJY7pbkQlpXlgr1ajwdoISatGTo5LicQJYNiwYcTHx9O4cWMOHDhAnjx5FIkjK9Fqtfj5+TF58mQKFSqkdDgW6Z+5kzrK1fdGi5Tu4ZMpvyuuvkziRlSSInMnBdMjEicTs2nTJn766SeOHDli8W9gISEhRm+tEJGgTf3/G34YSNTjB6z85jOsrKxo+MW37Jo7kXZjZxG8eDo5CxSh39Id/DGiN3fCjqNOTKCAWwXajv6FfKXKARD78gWbx3/FrVNHyVvcDbdPGry+3u3r7Jg2ioeXz+KYMzdNBoykctO2741LCd9//z1xcXE0adKEffv2kTNnTkXjsXTz5s3D3t4ePz8/pUOxSP+dOyllcgC6zP8/4LxKYuGlSKPPnRRMi0ibTcihQ4cYOHAgO3fupHjx4kqHY3DGbkUQrda+1oLg0x8X4JK/MD1mr2HC0btUbtoGgNun/mbo5qP0nr8RgLK1GvHtthB+CLpMwXKV2fB9/9Rr+P/0HSo7O0bvuUD7cXM4tX1t6mNJ8bEsG9iBKs3b8X3QZbpMXcz2n77jya2rb8Sm0cmKFqVKksTkyZPx8vKiefPmvHr1SrFYLN3t27f58ccf+f3337HK5Bu68DpLnTspmBbxU2siLly4QMeOHVm3bh3u7u5Kh2Nwr1694u7du1SoUMFoaz6N16JKQy1J437DsXVwxMbeAYCP23bDztEJla0djfuP4NG1iyREv0Kn1XJh304a9x+JrYMj+Ut/hGerT1Ovc+XQHnIWKMLHbbpirVJRsFxlKjZsxfm9/m+sqZIkIuI1+vtiM0CSJGbOnImnpyetWrUiNtZ4Y2GyClmW6du3LyNGjMDNzU3pcCyKpc+dFEyHOKozAffv36dFixbMnj2bRo0aKR2OUZw6dQp3d3dsbIxXbJmklV+7g+ZdXPL9U3Oi02rZM38y54N2EBv5DElK/qwR+/I56sR4dBoNOfL/MzMwR4EiEPY3AJGPHnD/wmkm1Cv1r+tp8Gj55h1UMjJJJtAjQZIk5s+fT58+fWjbti07duzA3t5e6bAsxooVK3jx4gVDhw5VOhSLo9TcSTtriUaFRbf3rEQkTgqLjIykefPmfP3113Tp0kXpcIxGiY7hb95Bw9vvZvrX350J3MylA7vo89smchYsSkLMKybWL40syzjmzIOVSsXLx+G4lkjePXj5+EHqa13yF6JE1Vr0+W3TB2OT3xGfEqysrFiyZAndunWjQ4cObNmyBVtbW6XDMnuPHz/mu+++Y8+ePRZ7p6xSlJ47WTS7jah5ykLEUZ2C4uPjadOmDc2aNWPYsGFKh2NUSiRO1m9Jkpxy5eXFg7vvfE1iXAwqW1uyueRCnRDH7l8npz5mZW1NhQYtCV40jaT4OJ7cusrpnRtSH/+oblOe3b3J6Z0b0arVaNVq7l8MI+LWm926pXfEpxRra2tWr16NjY0NXbp0QaNR9hjREgwePBg/P78scRRvTFlx7qSgLJE4KUSr1dKtWzcKFSrE9OnTlQ7H6Iw9aiU+Pp5b16+SlJT02t979f6afUtnMqFeKc4H7XjjdZ6tOpGjQBGmNq/ErPZ1KFqp6muP+4z8icS4WKY0rcCmcV9S1eefXUM7Ryd6L/iTc3u2MrVZJSY3rcCuORPRqBPfWEdCwtbadBInABsbG9avX09cXByff/45Wq2yd/6Zs61bt3L+/HnGjh2rdCgWJ6vOnRSUI8miss3oZFlm8ODBXLlyhYCAAOzsstYW76NHj6hQoQLPnz83SOO/ly9fcubMGcLCwjh9+jRhYWHcunUL95q1aPXzaqxUptfEzlqCARVy4WRjep9l4uPjadWqFcWKFWPJkiXiTrB0ioyMpGLFiqxfv566desqHY5FCY9Vs/Z6VJp7sxmSSoJubi4UEE0yLZ74DaiAqVOncvToUbZu3Zrlkib4p/GlPpKmJ0+esGvXLqZMmULHjh0pVaoUhQsXZvTo0dy8eRMvLy9Wr17Ny5cvObYvCAc706zVUVlJJpk0ATg4OODv78+1a9f48ssvxV1E6TR8+HDatGkjkiYDEHMnBSWICsU0iFZreRqvJUkro5VlrKXkYxVXB1W63+xWrFjB77//zrFjx3B2djZQxKYtI8d0sixz79691B2klP+Ni4vD09MTDw8PfH19mThxImXKlMHa2vqt13G1t+Z+rOnV67javz1eU+Ho6EhAQACNGzdm+PDh/PLLL2JMSBoEBwezZ88eLly4oHQoFsfQcyfTS8m5k4JxicTpLeI1OoMMgwwMDGTkyJEcPHiQAgUKGONLMUkhISF8+eWX73xcq9Vy/fr11xKk06dPY29vj4eHB56envTu3RtPT0+KFSuWrjfw0i62PIrTmMTWfgqVlByXqXN2dmbXrl00bNiQsWPHMmnSJKVDMmlxcXH07duX3377Lct+SDKk/86dBNg6+VucXQvQ6Ith3Dp5lA0/DGDUrnNGi2nvwmkEP7vHrk3rjbamYHwicfqX8Fg1IRHxXI9KQgK9DoMMDQ2lR48ebN++nbJlyxr2CzFhsixz8uTJ1B2npKQkLl269FqCdO7cOVxdXVOTpGHDhuHh4aGXAbSVc9tz6FFcpq+jTzLJcZmDXLlysXfvXurXr4+DgwOjR49WOiSTNXbsWGrWrEnLli2VDsUivW3upO/3yt5oo5MhNkncXWfpROLEv4dBJqGV0z0HEnj/MMgbN27g4+PDkiVL+OSTT/QauzmJjY3lr7/+AuCHH34gLCyMy5cvU6JEidTjtvbt2+Pu7k6OHDkMEoODygo3F1uuvjSNLX4JcHOxNaut/bx58xIcHEy9evVwcHBgyJAhSodkckJDQ1mzZg3nz59XOhSLpfR8x3dJMJWiK8Fgsnzi9N9hkJn132GQdVw0dG7WjIkTJ+Lj45P5BcxEZGQkYWFhrx233blzh3z58uHi4kLVqlXx8/OjcuXKZMuWzaixVXd1eOunVSVYS1DD1UHpMNKtQIECBAcHU79+fezt7RkwYIDSIZmMpKQk+vTpw8yZM8mbN6/S4Vikk+cu8GvvfoRfvYCzawGaffkD5es3589xg3FxLUjTQW/uhB5cMZdj634nITYa57z5aTNyGqVr1EOn03Fo5TxCt64hPjqK0tXr0nb0dLK5JA+6vnfuJH/NHEvEravkKFCE1sMnU/Lj2gC8eHiXTeO+5OGVcxSt9DF5ipVCBmLUOpO92UPIvCybOMmyzL6HsQbrNquVk4/xdj9S0+unhfh1aKz/RUzEo0eP3qhHevbsGVWqVMHT05PGjRszYsQIPvroI0aMGEHBggUVfaMt6GhDKWdbbvx/h1Ep1hKUcrE129uXixYtSnBwMF5eXjg4ONCzZ0+lQzIJ06ZNo0iRIllqEoAxqdVq2rdtQ8WWXei14E/uhp1g1dDuDF4T9M7XPL1zg783LGXQmr04581PZPg9dP/vS/b3+t+5tD+Qvr9vxzFnbnZMG832n76jy9TFREU8YsXXXek0aT5lajXiZsgh1gzvxdAtx3DKmYf1o/tTtPLH9F7wJ/fPn2LF112p6OVNRLwGJxvTr1sUMiZLJk4pwyCNMddIZWePTRkPAu/F4F3UyazvRJJlmTt37rxxZ1tSUlLqUVvHjh2ZMmUKpUuXfuudbSEhIUyZMkWB6F/XvKgTCy9FolUwc1JZSXgXMe8ZVyVLlmTv3r00aNAAe3t7OnfurHRIirp8+TKzZ8/m9OnTZv2zbsqOHz9OXGwsDXp/hQYrSlWvS7m6TTm7a8s7XyNZWaFJSiLi1lUcc+QmZ8GiqY+d2LQSn+9+wiVf8szJRv2G83NLD7QaDWcC/qRs7caUq9MEALeaXhT+qApXjwRR6uM6PLwUht/CTahs7ShRtRYf1WsGYBJzJwXDyZKJkxgG+WFarZarV6++liCFhYXh6OiYWrTdt29fPD09KVKkSJreJNRqNWfPnqVq1aoffK6hOaisaFXMCf870YqMarCxglbFnLA3o9qmdylbtiy7d++mSZMm2NnZ4evrq3RIitBqtfTp04eJEydStGjRD79AyJDw8HDyFSyU3Ij1/z+7OQsU5tXTR+98TZ6iJWn17Y8ELZrGk5tXKfNJA1oOm4Rz3vy8fPyANd/2SB3gDWBlZU3Mi6dEPnrAhSB/rhzanfqYVqOhZLU6vHr6GIfsObB1cEx9LEeBwkQ/CTeZuZOCYWS5xEkMg3xTYmIiFy9efG0n6fz58+TPnz91J+m7777Dw8MDV1fXDK9z/vx5ihcvTvbs2fUYfca5udjhnltt9O8HGytwz21vct8HmVGpUiUCAgLw9vbGzs6OFi1aKB2S0S1YsABra2v69++vdCgWrWDBgjwJf4hOpyOlh/PLxw/JU7QUkY/uvfN17t7tcfduT0JMNFsnDyNwzkQ+/XEBLvkK0n7cHIq713jjNTnyFcSjZUfajZn1xmOR4feJj35JUnxsavL08vFDrCXJpOZOCvpn/h9300EMg4SYmBiOHj3Kr7/+Su/evfHw8CBHjhz06NGDQ4cO4ebmxk8//cTDhw+5ceMGGzduZNSoUTRr1ixTSRP80zHclDQs5MhHOewwVh2njRWUz2FHw0KOH36ymfH09GT79u307NmT4OBgpcMxqrt37zJhwgQxksYIatSogYODAwdW/IpWrebWyaNcPrSbys3evdP59M4NboYcRpOUiMrODhs7eySr5OSmRvue7Jk/hcjw+wDERD7j0oFAANxbdOTyod1cO7YPnVaLOjGBWyePEvUknJwFi1DoI3eCFk5Do07iTtjx1J0pU5s7KehXltpxMqVhkL4lDN8Q78WLF28Ubd+7d48KFSrg6elJ9erV6d+/P5UqVcLBwfB3doWEhJhc4iRJEt5FnbCzlgh5FI1kwDl2KTtNDQs5Wmz9S82aNdm0aRMdOnRgy5Yt1KlTR+mQDE6WZfr168fQoUOzdI82Y7G1tWXTtu107tOfoGWzcclbgE4T5+Nawu2dr9EkJbJr3iQibl/DWmVD0crVaDdmJgC1uvZFRmbZoI68evoYp1x5qdykDeW9vMmRvxDdZ65m15wJrB/dDysrawpX9KDtqF8A6DxlIX+OHcwkLzeKVq6GR8tOJMa8wtUhS721ZjlZZsivJQ+DlGWZ8PDwN5KkyMhI3N3dU2uSPDw8+Oijj7CxUeYurkqVKrFixQqTqHH6r1OnTjFowjQ6TfwVLZJe77azlpILwVsVc7Ko47n32bt3L926dWPnzp0mlyzr2+rVq5kxYwahoaGK/WxlRTPOPEUtm94HEDtriSGVcysdhmBAWSZx2nb7lUk1PSybw5a2Gdh1kmWZW7duvXFnm06nS02OUhKlUqVKmcyxQUxMDPny5SMyMhJbW9O6TTcxMZGqVasyatQo2n3aJdPNUFNI/NNyoHkRJ7NqcqkPO3bswM/Pj927d+Pu7q50OAYRERGRWt9lih8ILIksy5w+fRp/f3/8/f2p9c0UilRO38xLYyjiqKJbmRxKhyEYUJbYTzTXYZAajYYrV668cWebi4tLanI0cOBAPD09KVSokEkf/5w+fZpKlSqZXNIEMGHCBNzc3OjatSuSJOFb0plHsWpOvGP8zoeopOR/YzcXW2q4Ophtn6bMat26NfPnz8fb25ugoCAqVKigdEh699VXX9GjRw+RNBlIQkIC+/fvx9/fnx07duDo6EibNm2YN28e1qXcOfokwSROEVKYy9xJIXOyROL0tmGQ/zarQx3ajPw5tRvs2+h7YKT0/7hq5Evump2QkMCFCxde20m6cOEChQoVSt1J+v777/Hw8CBPnjx6icGYTLG+CZLjWrp0KefOnXst8SzgaEPbEjbvHfgsk/zvmJGBz1lFhw4dSExMpGnTphw4cAA3t3fXoZgbf39/Tp06xbJly5QOxaI8ffqUgIAA/P39CQoKokqVKvj4+BAcHPxaDVm8RseRJwkKRvomc5o7KWRclkicPjReY8imI8YL5v80Mhy8dJvfvvuFsLAwrl27RpkyZVJ3krp27UqVKlUsZqp6SEgIrVu3VjqM1yQkJNCjRw/mzJlDvnz53vocB5UVNfJlS01wY9Q6IuI1JGlltLKMtSRhay3h6qASIxbeoVu3biQkJNCoUSMOHTpE8eLFlQ4p06Kiohg0aBCrV682+sggS3T16tXUI7hz587RpEkT2rRpw6JFi975QVHMnRSUkiUSJ1MdBql2cKZWrVoMHjyYihUrYm9vuZ9UQkNDmTRpktJhvGbcuHFUqFCBTz/9NM2vcbKxEqMUMqBPnz6pydPBgwcpXLiw0iFlynfffUeLFi3w8vJSOhSzpNFoOHbsWGqyFBcXh4+PD99//z1eXl5p/l0o5k4KSrD4xClarf1gC4KfW3rSfuwsinvUJHDORM7v3Q5ApSZt8P56LCrbf+6E2r90Fkf+WIitgyNNB43Go0UHAK4c2UvgrPG8fPIQe8fs1O7Wn3qfD3rvurb2DnTt5WfxOxURERFERkaa1DHN33//zcqVK984ohMMZ9CgQcTHx6cmT/nz51c6pAw5ePAgO3fu5OLFi0qHYlaio6PZvXs3/v7+BAQEULRoUXx8fFi/fj0eHh4Z+jkUcycFJVh84vQ0XotKktLUAn//0lncP3+Kr9bvB0li9ZDP2bdkJk0HjgIg5nkEsS9fMGrXOe6dP8mKL7tSuLw7eYuXZsvEb+jy0xJKeH5C/KuXvHh494PrqSQpSwyDDA0NpVq1aiZzh198fDw9e/Zk3rx5mW7qKaTPt99+S1xcHI0bN+bAgQNmV68XHx+Pn58fCxYswMXFRelwTN79+/fZsWMH/v7+HDt2jFq1auHj48PkyZMpUqSIXtYQcycFYzONdzIDStKmlPF+2JnAzTTsOwynXHlxypmHRn2/JeyvP197TtOBI1HZ2lGyam3K1W3Muf/vTlmpbIi4dY2EmGgcnHNQ6KMqH1xPRs4SwyBDQkKoVs10bhv+4YcfUgcSC8Y3ZswYWrduTdOmTYmMjFQ6nHSZMGECnp6e+Pj4KB2KSUppGTB+/PjUm1qOHz+On58fDx48YNeuXQwcOFBvSRP8M3dSqY17dUI8peMfWsTcSSFtLP5fOj3DFl89fUzOAv/8QOcoUITop49T//zGQMf8/zze7ZflXD0axM8tPVjs58Pds6EfXE9OZ3zmypRGrRw5coS1a9fy66+/Kh1KliVJElOmTKFevXp4e3sTHR2tdEhpcvr0aZYvX87cuXOVDsWkJCYmpiZERYsWpXPnzsTExDB79mweP37MqlWr6NChg0FvdEmeO2lv9OTJxgryqyPp07oxixcvNu7igmIsPnFKz7BF57z5iXx0P/XPLx8/IHvef+owUgY6vu3xIhU8+HzWan4Iukx5rxasG+n3wfWkdMZnjmRZNplWBLGxsfTq1YsFCxaY3RGRpZEkiVmzZuHu7k6rVq2Ii4tTOqT3UqvV9OnTh19++eWdd2BmJc+ePUtNiPLly8fkyZMpUaIEQUFBXLt2jenTp1OvXj1UKuNVgyg1d9KvbiWOHDnC7Nmz6du3L4mJicYJQFCMxSdOttYS0nu7OP2jSjNf9i+ZRUzkM2Ijn7Pv9+mpxd8pUgY63j79N1cO76VSYx806iTCAjaREP0Kaxsb7JyckKQP/6eVkCx+GOTt27ext7enYMGCSofC6NGjqV69Or6+7x4GKhiPJEksWLCA4sWL06ZNGxISTKsnz79Nnz4dV1dXunfvrnQoivl3QlSqVCm2b99O69atuX79OocPH2b48OGKzupLmTtpjJ2nlLmTzYs6IUkSZcqU4cSJEzx79gwvLy/Cw8MNG4CgKIsvDs/rYI0mjcdhDfyGkhAbzdxP6wNQsbEPDfyGpj7ulNsVh+wuTG1WCRt7B9qO/gXXEm7JidNfG/H/eSSyTkueYqX5dPJvH1xPI8sWPwzSVOqbDh48yKZNmzh3Tj8NTAX9sLKyYunSpXTr1i11MLCpdZe/evUqM2bM4OTJk1nqDkytVsuxY8dSi7ujo6Px8fFh1KhRNGjQwCTbp0iSRKPCThTNbsPOu8lD3Y01dzJ79uxs2rSJqVOnUq1aNf78809q1aqlv8UFk5ElZtXNOvecxPf89PzUwp1PJy2gRFXjfpNnhWGQw4YNI0+ePIwaNUqxGGJiYqhSpQqzZs0SRb0mSq1W07FjR1QqFevXrzfqEc/76HQ6vLy86NChA1999ZXS4RhcTEwMe/bsYfv27QQEBFC4cGF8fHzw8fHB09PTrBLHeI1OsbmTf/31F7169WLSpEn07dvXrP67CR9m8Ud1AK721u98LOVYLmfBokaMKNn74rIUplDfNHLkSOrUqSOSJhNmY2PDhg0biI2NpUePHmi1ptG0dtGiRWg0GgYNen9PNnP24MEDfvvtN7y9vSlYsCCLFi2ievXqnDp1irCwMCZMmEDVqlXN7s3fQWWFb0lnurm5UDaHbfJuUTq/BJWUnDCVzWFLNzcXfEs4p6kzeMuWLTl69Chz584VdU8WKEvsOJ14EsfhR3FvdJe9fzGMZQM6UL3d53h/M86oMakkqFvgn1Eelkij0ZAjRw4ePnyoWM+bffv28fnnn3P+/Hly5sypSAxC2sXHx9OyZUtKlizJ4sWLFe39df/+fTw9PTl48CDly5dXLA59k2WZM2fOpHbtvnPnDi1atMDHx4dmzZpZzJin/1Ji7mR0dDQ9e/bk4cOHbN68mUKFCun1axKUkSUSp3iNjl8vvFC0s+x/WUswuGIui55rdPbsWT799FOuXLmiyPrR0dFUrlyZ+fPn06JFC0ViENIvJiaGZs2a4eHhwbx58xTZ6ZBlmdatW1O9enXGjh1r9PX1LTExkQMHDqQmS3Z2drRp0wYfHx9q165tMkejxmSsuZOyLDN16lTmz5/Pxo0bqV373cPkBfOQJX5axDBIZSjdv2n48OE0aNBAJE1mxsnJiYCAABo3bsyIESOYNm1ahpOnaLWWp/HadL85rl+/nrt377Jly5aMfhmKe/78OQEBAfj7+7N3714qVKiAj48Pe/bsoVy5cmZ39KZvxpo7KUkSo0ePxsPDA19fXyZMmED//v2z/H9/c5YlEicQwyCVoGR90969ewkICBB30ZkpFxcXdu/eTYMGDXBwcGDixIlpet37jmNSfOg45tmzZwwZMgR/f3+Tu8PvQ65fv566q3TmzBkaNmyIj48P8+fPF+OFFObt7c2xY8do27Ytp06d4tdffzXJOxOFD8sSR3Uptt56ZRLDIEu72OJbwjLrCP7N3d2dRYsWUaNGDaOu++rVKypVqsTixYtp1qyZUdcW9CsiIgIvLy+6d+/+3jszw2PVhETEcz0qCQnS9QFJJSXfceXmYkt1VwdG9OtFvnz5mDFjRqbjNzStVsvx48dTk6WoqKjUu+BSkk7BtERHR9OrVy/u37/Pli1bRN2TGcpSiVO8RsfCS5HvbU1gaHbWEgPK57T4uUZxcXHkyZOHFy9eGP1T1RdffIEkSWIEgoUIDw+nfv36DBo0iG+++ea1x/R9yzk6LTdPHGTqZy3I7WyaQ1tTWgbs2LGDv/76i4IFC77WMsBUhmkL7ybLMj/99BPz5s1jw4YN1K1bV+mQhHTIUokTwPWoRPzvRKPWGX9tGyvwKZ79jcZplujo0aN88803hIZ+eGafPu3atYv+/ftz7tw5i707KCu6d+8e9evXZ+TIkfTr1w9I/lk2RJNDSdZhq7J+a5NDpTx8+DC1EeWRI0eoWbMmPj4+tG7dmmLFiikdnpBBu3btokePHowbN44BAwaIuiczkWVqnFIkD4NUc+Z5glGTp5QW/abyi9jQlKhvevnyJV988QXLly8XSZOFKVq0KEFBQXh5eWFnb0+RRu0N9jMsS1YkamX870TjnltNw0KORn9Dk2WZs2fPph7B3b59G29vb3r27Mm6desUa+8h6Ffz5s05evQovr6+nDx5kgULFoi6JzOQ5XacIPmXUuC9GC6/TDRK8pQyDDJlrlFW0KVLF5o1a0bPnj2NtmavXr1wcHBgwYIFRltTMK7Ll68wedtBKjVtg2xl+M99NlbwUQ47vI3ws5uYmMjBgwdTkyUbG5vXWgbY2NgYdH1BOTExMfTu3Zs7d+6wZcsWChcurHRIwntkycQJkpOnfQ9jDb7zpE6Ip3JOG3zK5ssySRNA6dKl8ff3N1rjwL/++ovBgwdz/vx5nJxMszZFyLzgBzGcfhqH1ohDD1J2ixsV1v/31YsXL1JbBuzZs4fy5cun1it99NFHWep3RlYnyzLTpk1jzpw5rF+/nnr16ikdkvAOWTZxSmGoOomUYZCJobvZungOhw4dws4uaxzTPX/+nBIlShAZGYm1teHHykRGRlKpUiVWr15NgwYNDL6eoAxLqU+8ceNG6q7S6dOnU1sGtGzZknz58ukhWsGc7d69m88//5wxY8YwaNAgkTyboCyfOIFhh0HaW0t07NiRnDlz8vvvv+srZJO2a9cupk2bxr59+4yy3ueff46Liwvz5s0zynqC8ZnKHbH9y+dMd+NarVbLiRMnUpOlyMhIWrdujY+PD40aNRItA4Q33Lx5E19fX6pWrcpvv/0m6p5MjLhvFcMOg5QkieXLl3Ps2LEskziFhIRQrVo1o6y1fft2jh07xk8//WSU9QRl7LqXvCusJI1OZtf9mDQ9NzY2lm3bttG7d28KFCjAgAEDsLGxYeXKlTx8+JDFixfTqlUrkTQJb1WqVCn+/vtv4uLiqFu3Lvfv31c6JOFfxI7TWxhiGOS1a9eoU6cOO3bsMHpDSGNr3bo1PXv2pH379gZd5/nz51SqVEn0QbFw4bFq1l6PMomu/yoJurm5UMDxzULt8PBwduzYwY4dOzh06BA1atRIbRlQvHhx4wcrmD1Zlvnll1+YNWsW69evp379+kqHJCASpzTR1zBIf39/Bg0axMmTJy22lkGWZfLnz8/JkycpUqSIQdfq2rUr+fLlY9asWQZdR1DWttuvTGrOZNkctrQt4Ywsy5w7dy71CO7mzZt4e3vj4+ND8+bNRcsAQW/27NlD9+7d+eGHHxg8eLCoe1KYSJyMbNy4cezfv5/g4GCLvL347t271KhRg0ePHhn0h3vLli2MHDmSM2fOkC1bNoOtIygrXqPj1wsvFB2T9F+SrCN87XS2/bkBa2vr1JYBderUscifacE03Lp1C19fX9zd3Vm4cKE45lWQqHEysnHjxuHs7My3336rdCgGkdL40pBJ09OnTxk0aBDLly8XSZOFO/c8gbR+J43yzMuze7cMGg+AOimJ/J71CAgI4ObNm8yaNYsGDRqIpEkwqJIlS3Ls2DESExOpW7cu9+7dUzqkLEskTkZmZWXFmjVrCAgIYM2aNUqHo3ehoaEG7xg+ePBgunXrRu3atQ26jqC8G1FJitc2BS2cxobvB6T+WWVnT9GP61ChQgVxZCIYlaOjI+vWraNz587UqFGDAwcOKB1SliQSJwXkyJGDrVu3MmTIEMLCwpQOR68MPWpl48aNnD17lkmTJhlsDcF0RCRolQ7hrUw1LsHySZLEt99+y6pVq/j000+ZM2cOouLGuETipJCKFSsyf/582rVrx/Pnz5UORy+0Wi2nTp3i448/Nsj1nzx5wldffcWKFSvE+X4WEK1OvqP15Pa1rPy6W+rfT29TnT9G9E7980/eVQi/eh6AmyGHmN6mOhPqlWL71BGvvaGc3PYHM9vVYkL90iwb2JHI8H9u8d7xy2h+8q7C+LolmNe1EbdP/w3A1aPBHFg2m3N7tzGudjHmfOoFJLcmiFGiE6cg/F+TJk04fvw4y5cvp0ePHsTHxysdUpYhEicFderUiQ4dOtClSxe0WvP/BHvlyhXy589Prly59H5tWZYZMGAAPXv2pGbNmnq/vmB6nsZrUUkSJavW4k7YcXQ6Ha+ePkarVnPv3EkAXjy4Q2JcLPndKgBw+dAeBq3Zy9cbDnJ+rz/XjiU3Yb10IJD9y2bz2fQV/BB8heKeNVk/ul/qWoXLe/Dluv2M2X8dd+/2rP2uD+rEBMrWboRX72+o3KQtE47e5esNBwBQSRIR8Rrj/gcRhP8oUaIEx44dQ6PRUKdOHe7evat0SFmCSJwUNnXqVHQ6Hd9//73SoWSaIY/p1q9fz9WrVxk/frxBri+YniRtcue0XIWLY+foxKOr57l9+m/cPmmAc978RNy+zq1TxyjhURMrq+RfZV69vsIhuws5ChSmZLXaPLp2AYATm1bg1ftrXEuWwVqlwqv3EB5du5C66+TRsiOOOXJhrVJRt/tANElJPLt7452xycgkmdKtfkKWlS1bNv744w+6detGzZo12b9/v9IhWTzDjxcX3kulUrF+/Xo+/vhjqlWrZvCmkYZkqMTp8ePHfPPNN+zcuVOMHshCtP86ZivhWYtbp47x/P5tSlSthUN2F26fOsa986GUqFor9XlOuV1T/7+NvQNJcbEAvHz0gJ2/fE/AzHGpj8uyzKunj8hZsAiHVs3n5LY/ePXsMRISibHRxEa+eGds8n/iEwQlSZLE0KFDqVKlCl26dGHkyJF8/fXX4uYFAxGJkwnIkycPmzdvxtvbm48++ojy5csrHVKGhISE0L17d71eU5Zl+vfvj5+fn9HGuAimwfpfv/RLVK3FlUO7eRF+jwa9v8EhuzNnAjdz79xJPvnU74PXcslXEK8+Q/Bo0eGNx26f/ptDK3/Fb+FmXEuVw8rKign1S5M6tfItbz7Sf+ITBFPQqFEjjh8/jq+vL6dOnWLRokWiZYsBiKM6E1G1alV++eUXfH19iYqKUjqcdEtISODy5ct4eHjo9bp//PEHN2/eZOzYsXq9rmD6bK0lpP93cSpRtRY3Tx5BnRCPS76CFPf4hGvH9hEX9YKCZSt98Fo1OvTk4PI5PLl5BYCE6Fec37sdgMS4GKysrXHMmRudVkPw4ukkxkanvjZ77rxEPrqHTvdPMbhE8vQAQTA1xYsX5+jRo+h0OlH3ZCAicTIhPXr0oEmTJnTv3v21X9Lm4MyZM5QrV06vd7uFh4czdOhQVq5ciZ2dnd6uK5iHvA7WaP5/HJa3WCnssjlSwiP5xgB7p+zkKlSMYlWqY2Vt/cFrVWjYkno9vmTdqL6Mr1uC2Z3qcvVoMABlPmlImVoNmeFbk2ktPVDZ2uGSr1Dqays29gFgUoMyzOvaEACNLOPqIDbsBdOULVs21qxZw2effUaNGjXYt2+f0iFZFDFyxcQkJSXRsGFDmjZtala7LHPnzuXSpUssXLhQL9eTZZnWrVtTtWpVJkyYoJdrCuZn1rnnJJpgEbadtcSQyrmVDkMQPmjfvn107dqVESNGMGTIEFH3pAdix8nE2NrasmnTJhYvXsxff/2ldDhpFhISotcapJUrV/LgwQOLuNtQyDhX+w/vJinBVOMShP9q2LAhJ06cSN2BiouLUzoksycSJxOUP39+/vzzT3r16sX169eVDidN9Dlq5cGDBwwfPpyVK1dia2url2sK5qm0iy0qE/uArJKS4xIEc1GsWDGOHDmCJEnUrl2bO3fuKB2SWROJk4n65JNPmDBhAr6+vsTExCgdzntFRkYSHh6ul7sBZVnGz8+PL7/8kipVqughOsGcVc5tj6kd1MkkxyUI5iRbtmysXr2aHj16ULNmTYKCgpQOyWyJxMmE9e/fn+rVq9OnTx+TnkV08uRJPDw8sE5Dke6HLFu2jIiICEaNGqWHyARz56Cyws3FFlPZdJIANxdbHFTiV6dgfiRJ4ptvvmHdunV0796dGTNmmPR7i6kSP/0mTJIkFixYwK1bt5g+fbrS4byTvhpf3rt3j5EjR7Jy5UpsbGz0EJlgCaq7OmAqd/5bS1DDVcxJFMxbgwYNOH78OGvXrqVbt26i7imdROJk4uzt7dm8eTMzZ8402a1VfdQ3ybJMnz59GDJkCJUqfbgvj5B1FHS0oZSzreLJk7UEpVxsKeAoknrB/KXUPalUKmrVqsXt27eVDslsiMTJDBQtWpS1a9fy2WefmVwzM1mWOXHiRKYTp8WLF/Py5UtGjBihp8gES9K8qBMqK2UzJ5WVhHcRJ0VjEAR9cnBwYOXKlfTu3ZtPPvnEZD+cmxrRx8mMzJw5kz/++IMjR47otdFkZjx48AAPDw8iIiIy3B/k9u3bVKtWjUOHDpntuBnB8K5HJeJ/Jxq1Ar1hbazAp3h23FxEI1bBMh04cIAuXbowbNgwhg0bJvo9vYfYcTIjQ4YMoUyZMgwYMMBkCvpSjuky+kOm0+no06cPw4cPF0mT8F5uLna457bHxsi/tWyswD23vUiaBIvm5eXFiRMnWL9+PV27diU2NlbpkEyWSJzMiCRJLFmyhLCwMBYsWKB0OEDmC8MXLlxIXFwcw4YN02NUgqVqWMiRj3LYGS15srGC8jnsaFjI0TgLCoKCihYtyuHDh7G1taVWrVrcunVL6ZBMkkiczIyjoyNbtmxh4sSJHDlyROlwMpU43bp1i7Fjx7JixQpUKjH3S/gwSZLwLupklJ2nlJ2m5kWdxLGFkGU4ODiwYsUK/Pz8+OSTT9i7d6/SIZkcUeNkpgIDA/Hz8yM0NJSCBQsqEoNOpyNnzpzcvHmTPHnypPu1DRo0wMfHR+w2CRlyPSqRnXdj0Ohk9DnOzlpKLgRvVcxJHM8JWdrBgwfp3LkzQ4YMYfjw4eIDxP+JxMmM/fjjjwQEBHDgwAFFRpNcuXKFFi1aZGg7d+7cuWzYsIFDhw7ppXGmkDXFa3TsuhfDzVdJaGUy1WVc4p+WA82LOIkml4IA3L9/n3bt2lGyZEmWLVuGo6M4tha/GczY6NGjcXV15euvv1Zk/Ywe012/fp2JEyeyfPlykTQJmeKgssK3pDPd3FwomyO511N6Z9uppOSEqWwOW7q5ueBbwlkkTYLwf0WKFOHw4cNky5aNTz75hJs3byodkuLEbwczZmVlxapVq9i/fz/Lli0z+vohISFUq1YtXa/RarX06tWLMWPGUKZMGQNFJmQ1BRxtaFvCmcEVc1G3QDaKOKqws5awlsDOSsLWKrlmydYq+c/WEthZSxRxVFG3QDYGV8xF2xLOormlILyFvb09y5Yto1+/ftSqVYvdu3crHZKixFGdBbh8+TL16tUjICAg3YlMZlSvXp0ZM2ZQt27dNL9m5syZbNu2jQMHDmBlJfJ2wbBi1Doi4jUkaWW0soy1JGFrLeHqoMLJ2H0NBMECHDp0iM6dO/P1118zYsSILFn3JBInC7F161a++eYbQkNDcXV1Nfh6iYmJ5MyZk6dPn6b5zPvq1avUrl2b48ePU7p0aQNHKAiCIBjCgwcPaNeuHcWLF2fZsmU4OWWtjvriI5eF8PX15bPPPuPTTz9Fo9EYfL1z587h5uaW5qRJq9XSs2dPxo8fL5ImQRAEM1a4cGEOHTqEk5NTlqx7EomTBZk4cSJ2dnZ89913Bl8rvfVNM2fOxN7enoEDBxowKkEQBMEY7O3tWbp0KQMGDKBWrVrs2rVL6ZCMRiROFsTa2pq1a9eybds21q1bZ9C1UkatpMWlS5f4+eefWbZsmahrEgRBsBCSJDFw4EA2bdpE7969mTp1qsmMAzMkUeNkgc6ePUvjxo0JDg6mcuXKBlmjfPnyrF27Fnd39/c+T6PRUKtWLXr37k3//v0NEosgCIKgrAcPHtC+fXuKFi3K8uXL9Vr3FK3W8jReazI3eYjEyUKtXbuWMWPGEBoaSq5cufR67aioKAoVKkRkZCQ2Nu+/fXvq1KkEBwezd+/eLHn3hSAIQlaRkJDAoEGDOHHiBNu2bctwPWu8Rse55wnciEoiIkGLRiejkiTkf7W4lZDQyDIqKwlXe2tKu9hSObe9UXqwicTJgg0ZMoQrV66wc+dOvTaa3LdvH2PGjOHo0aPvfd6FCxdo0KABJ0+epFixYnpbXxAEQTBNsiyzcOFCxo0bx8qVK/H29k7za8Nj1YRExHM9KgkJ0KQjO1FJyZMD3Fxsqe7qQEED9mQTBScWbNq0acTHxzNu3Di9Xjct9U1qtZqePXsyZcoUkTQJgiBkEZIkMWDAALZs2YKfnx9Tpkz5YN1TvEbH1luvWHs9iqsvk8cnpSdpguTna2W4+jKJtdej2HrrFfEaXSa+kncTiZMFs7GxYePGjaxatYpt27bp7bppGbXy888/kzt3bvz8/PS2riAIgmAe6tSpQ0hICP7+/nTo0IHo6Oi3Pu96VCILL0Vy41USmkzOm4Tk12tkuPEqiYWXIrkelZjJK75JHNVlASEhIbRs2ZLDhw9Trly5NL/uXQV53nVqELB1E6VKlXrr61KK00+fPk2RIkX09WUIgiAIZiYxMZHBgwdz7Ngxtm3bhpubG5B8pLfvYSxnniegNszGEJA8ask9tz0NCznqrc5WJE5ZxNKlS/nll18ICQnB2dn5rc9JS0GeLMvEJyTi6OCAq8ObBXlJSUnUqFGDr776il69ehnlaxMEQRBM26JFixgzZgwrVqzA29ubwHsxXH6ZaNCkKYWNFXyUww7vok56SZ5E4pSF9O/fnydPnrB58+bX+inpsyBv8S+TCQ0NZefOneIuOkEQBCHVsWPH6NSpEwPnrMSuVBXURsw+UnaeGhXOfJsEkThlIYmJiXh5edG6dWtGjx5NvEbHrnsx3HyVXIyXmW8ECZDQceXwXn7w9aJkkUJ6iloQBEGwFCduPWJvhBaVnb3R17axAp/i2XFzscvUdUTilMU8fPiQatWqMeuPzYTnLoNGJ6PV53eAToudjYpWxZwy/c0pCIIgWI54jY6FlyJJ1OubTvrYWUv0L58zU/2eROKUxciyzOqQa9zVOWBjn81g6xiiIE8QBEEwX1tvveLG/084lGItQWkXW3xLvL3WNy1EO4IsRJZlAu/F8NQ+t0GTJgC1Ds48TyDwXkyWmF0kCIIgvFt4rDq1LERJWhluRiXxKFad4WuIxCkL2fcw1mh3MUBy8nT5ZSL7HsYaZ0FBEATBJIVExCueNKXQynAiIj7DrxeJUxZxPSrR4P0y3iZl58kQTcgEQRAE0xev0XE9KinTzS31RQauRyVluLO4SJyygHiNjp13Y4yeNKVQ62Dn3RiDtb8XBEEQTNe55wlkpNI1MvweozzzotVo9B6TRHJcGSESpyxg170YNDplc32NTmbX/RhFYxAEQRCM70ZUUrpnzxmaRk6OKyNE4mThLKkgTxAEQTA/EQlapUN4q4zGJRInC2dJBXmCIAiCafv5558pVKgQ2bNnp2zZsuzYvYeEhAR2/PI9U5pWZErTiuz45Xs0Scl1r7M71uXywd2pr9eq1UxqWJbwK+dS/+7U9rX/f20FDq2an/r3Op2OA8vn8ItPNSY2KMPa7/oQFxWZ+vgfI3ozuUl5xtcryaI+rXly80rqY3+OG8yfk4fTrEULsmfPTo0aNbh582aavkaROFkwSyvIEwRBEEzX1atX+fXXXwkNDSU6Oprdu3fjlK8I+5fO4v75U3y1fj9fbTjAg4th7FsyEwCPlp0IC/jzn2scDSJ7nnwULFc59e9unjzCt9tP0Hv+nxxaMY8bJw4C8Pf637m0P5C+v29n9O7zOGTPwfafvkt9Xdlajfh2Wwg/BF2mYLnKbPi+/2vxnt29jf7DvycyMpLSpUvz/fffp+nrFImTBctoQZ4hZaYgTxAEQTBd1tbWJCYmcunSJdRqNcWLF6dAsZKcDthMw77DcMqVF6eceWjU91vC/kpOljxaduTq0SASYqIBCPtrIx4tOr523UZ9h2Pr4Eh+t/JU9enC2V1bADixaSVNB43GJV9BVLZ2NOo3nAvBO1KLyT9u2w07RydUtnY07j+CR9cukhD9KvW6FRu24CP3j1GpVHTr1o0zZ86k6etUZfY/lGC6TLkgr0Y+wzbgFARBEIyrdOnSzJ49m/Hjx3Px4kWaNWtGvzFTiHr6mJwFiqQ+L0eBIkQ/fQyAc978FKtSnQvBO6jQsCVXj+6j1fApr103R/6C/3ptYR7fuATAy8cPWPNtDyTpnz0gKytrYl48JXtuV/bMn8z5oB3ERj5LfU7sy+fYZ0/uGp49tyva/zdozpYtGzExabuBSSROFszSCvIEQRAE09a1a1e6du3Kq1ev6NevH7Mm/oBL3vxEPrpPvlLlgOSEJ3ve/Kmv8WzdmZNb16DTaila+WNcXAu8ds2Xj8NxLeH2////EOf/v9YlX0Haj5tDcfcab8RxeudGLh3YRZ/fNpGzYFESYl4xsX7p1yZZSIB1BkaCiaM6CxWt1qa5BUFKcd24OsWZ1b42F/f9lfpYyJbVzGxXK/Wxh5fPAhB+5RzzujZkXJ3irP3Oj3Ujv2DP/CnvWuI1Gp1MjFJNpQRBEASDuHr1Kvv27SMxMRF7e3scHBxQWVvj0bwd+5fMIibyGbGRz9n3+3Q8WnRIfV0FL28eXjnHsXWL8WzV6Y3r7lsyg6T4OJ7cvMIp/3VUatoWgBrte7Jn/hQiw+8DEBP5jEsHAgFIjItBZWtLNpdcqBPi2P3r5LdELGFrnf7ESew4Wain8VpUkpS6Dfk+uQsXp9/SHTjlduXC3u1s+GEg324/wd0zJwheNI3PZq6icHl3nt+/jbXKBo06idVDe1C7az8++bQPlw4Gsn50P+r3+DJNsakkiYh4DU42tpn9MgVBEAQTkZiYyMiRI7l8+TI2NjbUqlWLmfN/Y9NjidiYV8z9tD4AFRv70MBvaOrrbOwdqNioFWd3baVCw5ZvXLekZy2mt6mOLOuo230gZT5pAECtrn2RkVk2qCOvnj7GKVdeKjdpQ3kvbzxbdeL63/uZ2rwS2Zxz0mTgSE78ufy16+qQcXVIfxokyWICq0W6EplIwL1okjKwsTO3sxeN+3/H8Y3LKFunMbW79nvt8dunjrFuVF9G7T6P9P9tzt96tqBUtTo0HTT6g9e3tYIWRbNTLqdd+oMTBEEQzMqsc89J/EBfnODF03l29yafTv7NSFGBnbXEkMq50/06seNkodKy05Ti9M4NHFnzW+p2Z1J8LLEvnxP1JJxchUu88fxXz57g7FogNWmC5IK9tJLTGZ8gCIJgvlztrbkf++6xKXFRkZzc9gedJs1/53MMwdXeOkOvEzVOFiqtBW+R4ffZMmkoPt/9xJj91xh36GZyAZ8s45KvIC8e3H7jNdnzuPIq4tFrRXZRjx+kObaMFuQJgiAI5qe0iy2qd/zKD9mymp+83SlTuxElqtYyWkwqKTmujBCJk4WytZaQ0tDFKSkhDkmScMyZB4CT29emdlet5vsZh1cv4OGls8iyzLN7t4gMv0/RytWwUqk4tm4xWrWaC8E7uX8xLM2xSRksyBMEQRDMT+Xc9u9sxFy9XXcmHruL7/fTjRqTTHJcGSGO6ixUXgdrNGk4DstXsix1PhvAbz29kays8GjZiWJVqgNQqUkb4qIiWf99P15FPCJnwaJ0mjSfnAWL8Nn0FWyZNIQ9C6ZStnZjKjR4s6DvXTRyxgryBEEQBPPjoLLCzcWWqy9NY5KFBLi52OKgytjekSgOt2BpKcjTlz/HDcbFtWCaisMzWpAnCIIgmKfwWDVrr0eZRFNmlQTd3Fwo4GiTodeLozoLltHCN0Mz1bgEQRAEwyjoaEMpZ1uUrtKwlqCUi22GkyYQiZNFe19BnlIyU5AnCIIgmK/mRZ1QWSn7pqSykvAu4pSpa4ijOgsWr9Hx64UXGOm0Lk2sJRhcMVeGz5YFQRAE83U9KhH/O9EoMTzCxgp8imfHzSVzPQTFu5cFSynIM5VNp8wW5AmCIAjmzc3FDvfc9tgY+W3Axgrcc9tnOmkCkThZvOquDoqfKaewlqCGq4PSYQiCIAgKaljIkY9y2BktebKxgvI57GhYyFEv1xOJk4WzpII8QRAEwfxJkoR3USej7Dyl7DQ1L+r02rSLzBCJUxZgKQV5giAIgmWQJIlGhZ3wKZ4dO2tJ7x/uraXk1jc+xbPTqLD+kiYQxeFZhiUU5AmCIAiWJ16jY9e9GG6+SkIrk6kmmckjvZJPOJoXcTJITa1InLKQ4AcxnHmeYNTkKWWbtFFhsdskCIIgvNujWDUnIuK5HpWEBOlqlqmSkhMuNxdbarg6GLQsRCROWYgsywTei+Hyy0SjJE8pBXn6PFsWBEEQLFu8Rse55wnciEoiIkGLRiejkiRkZGSSd5UkJDSyjMpKwtXemtIutlTObW+Uu7ZF4pTFyLLMvoexBt95StlpaljIUSRNgiAIQobFqHVExGtI0spoZRlrKXlQvKuDCidj9zVAJE5Z1vWoRHbejUGjk/XaINNaSi4Eb1XMSdQ0CYIgCBZHJE5ZmLkV5AmCIAiC0kTiJJhNQZ4gCIIgKE0kTkIqUy/IEwRBEASlicRJeCdTK8gTBEEQBKWJxEkQBEEQBCGNxLaBIAiCIAhCGonESRAEQRAEIY1E4iQIgiAIgpBGInESBEEQBEFII5E4CYIgCIIgpJFInARBEARBENJIJE6CIAiCIAhpJBInQRAEQRCENBKJkyAIgiAIQhqJxEkQBEEQBCGNROIkCIIgCIKQRv8D0Sk5TfwJy/wAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzMAAAMzCAYAAACSq0y2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVyU5d4G8OuZGZhhXwQFBcGVAffEPXPNJU3NXDLXOpp5zN4We9t3bTlZx06dcssMxWwxLTWXyDV3zC0VRVQEAQVlGWCGWZ7n/YOGVwSVZYZnZri+n48fYnjmvn+PCcw19yZIkiSBiIiIiIjIySjkLoCIiIiIiKgmGGaIiIiIiMgpMcwQEREREZFTYpghIiIiIiKnxDBDREREREROiWGGiIiIiIicEsMMERERERE5JYYZIiIiIiJySgwzRERERETklBhmiIiIiIjIKTHMEBERERGRU2KYISIiIiIip8QwQ0RERERETolhhoiIiIiInBLDDBEREREROSWGGSIiIiIickoquQsgIiKqDyRJgkUCzJIEUQQUCkAlCFAKgCAIcpdHROSUGGaIiIhsTJIk3CixIKvYjKxiMzKLzcjSm2EWK16rUgAhHiqEeqoQ8vefQLWSAYeIqAoESZIkuYsgIiJyBbklFhzNMeD4dQNKLKW/XhUAKskwFdx8nVopoEMDDToFaRCgVtqpWiIi58cwQ0REVAuiJCGlwIgj2QZc0pkgALDFL1ZrO5E+bugcrEELX3coOFpDRFQOwwwREVENpRWasClVhzyjaLMQcytru/7uCgyL8EG4t5sdeiEick4MM0RERNVkEiXsyihCYrbBbiHmVtZ+YoM16NPYC24KjtIQETHMEBERVUNaoQkbU3UoMIp1EmJuJQDwdVdgOEdpiIgYZoiIiKoqMVuPhPSiOhuNuR1r/wPDvBAb7CFjJURE8mKYISIiugtJkrDvqh57MovlLqWC3qGe6NnIg1s5E1G9pJC7ACIiIkfnqEEGAPZkFmPfVb3cZRARyYJhhoiI6A4SrzlukLHak1mMxGwGGiKqfxhmiIiIbiOt0ISEK0Vyl1ElCelFSCs0yV0GEVGdYpghIiKqhEmUsDFVB2dZiSIA2Jiqg0nkUlgiqj8YZoiIiCqxK6NItu2Xa0ICUGAUsTvDOUaSiIhsgWGGiIjoFmmFJiRmG5wmyFhJAA5nGzjdjIjqDYYZIiKim4iShE1ONL3sVgKATak6iDx5gYjqAYYZIqpAkiSYRQkGi4hikwiDRYRZlMBjqag+SCkwIs+JppfdSgKQZxRxoYCjM0Tk+lRyF0BE8pIkCTdKLMgqNiOr2IzMYjOy9GaYxYrXqhRAiIcKoZ4qhPz9J1Ct5GF95FKOZBsgAE4bZoDS0Zkj2Xq09HOXuxQiIrtimCGqp3JLLDiaY8Dx6waUWEpftikAVJJhyphFIL3IjIwic9l1aqWADg006BSkQYBaae+yiewqt8SCSzrnH9GQAFzUmZBbYuH3JRG5NEHivBGiekOUJKQUGHEk24BLOpPN3n22thPp44bOwRq08HWHgqM15IS2XynC4Wt6px6VsRIAdG3ogX5NvOQuhYjIbrhmhqieSCs0YcnpXKy9oEPq3+882+oFm7WdVJ0Jay/osOR0LndTIqcjSRKOX7/9DmYXEvfi5XuCcSFxb9ljP7z5FD4cdk/dFFhNEoCHu0Zj2rRpcpdCRGQ3nGZG5OJMooRdGUVI/HsdAGC/tQDWdvONIuKT8xEbrEGfxl5wU3CUhhzfjRJL2ZRLVyFJcLl7IiK6GcMMkQtLKzRhY6oOBcbSFS519ZLG2s+RbAOS840YHuGDcG+3OuqdqGayis13/HrkPT3wzv40KN2ca1G9vrLdPIiIXASnmRG5qMRsPeKT82U9wdx6Inl8cj4Ss/UyVUFUNVnF5jv+UlQoFHBTa6BQOM+vTgGAniMzROTCODJD5GIkScK+q3rsySwu/Vzuev7+mJBehBKLhJ6NPLiVMzmk/Yl/YuVHbyP1+CFIoojwtp0xaPYraNo+FkDpmpmlT4zCjCXr0Ty2123bOb51HXZ/8zlyLqdAEAT4h4ajy6iJ6PXozLJr9Lp8JCz6F05t34jCGznwa9QYXUdPRu8pT5ULS6IoYt+3S3B43SrcSL8EjbcvYvoOxZCnX4eHr3/ZdZIkYcdXn+Dgj99AX5CH8Lb3YMSLH0ACUMyRGSJyYQwzRC7m5iDjaKx19QrxlLkSovL++usvvPvoUKi9fHDf1KegVLnh4Nq40vCy9Gc0bde5Su0kH9iJNS8/gRZd78OQp98AAGRfPIfU44fKwoxRX4wl00eiIDsTXUdPgX9IGFJPHMLWz+ahIPsqHnxhfll76+c/jyMb1qDzgxPQ85EZyM1Ixf7vvkLG2ZN4cvkmKN1Kp2/+9uUH2LHsE0TdOxBRvQYiI+kElv9zLCwmE/RmEZIk8U0EInJJDDNELiTxmuMGGas9mcVQKwXEBnvIXQpRmddeex0WsxlPLt+IwLBIAECnYePwyege2PLp23hi2S9Vaidpz29Qe/vg8f9+D4Wy8vNd/oj/EjfSL2LOt9sR1LQFAKDbmKnwDQ7Bnrj/ovfkf8I/pAkuHT2Aw+tWYfz8Reg49OGy5zePvRdfPzUeJxN+QcehD6MwNwe7v/kcUffej6mfxpeFlq2fz8fO5QshARAlQMksQ0QuyHkm/hLRHaUVmpBwpUjuMqokIb2IWzeTw7BYLPjtt22I6Tu0LMgAgG9wCDoMeRiXjh2EoVBXpbY8fPxg0hcj+cDO215z8rcNiOzUHR4+/ijKvV72p2XXPhAtFlz8c3/pdQm/QOPti5bd+5S7rkl0B7h7euFC4h8AgPMHd8NiMqLnI9PLjb70mvj/09rMPFKOiFwUR2aIXIBJlLAxVWezQzDtTQCwMVWH6dEB3LaZZJednY3i4mIER7as8LWGzVpBEkXkX71Spba6j3sMJ3/7GSvmPALfhqFo1b0v2t0/ElG9BpRdcz3tArKST2HeAG2lbRTdyAEA5Fy+AENhAeYPiK70usK/r8vLTAMABDVtXu7r3gFBZetqLCKAygeKiIicGsMMkQvYlVEk665l1WXd5Wx3RhEGhHnLXQ6RzXgHBmPOmh1I3rcDZ/f9jnN7f8eRX75Fp+HjMO6d/wIAJFFEy+590WfqU5W2YZ16JokivAODMX7+l5Ve5xXQoMp1KTkPg4hcFMMMkZNLKzQhMdsgdxnVJgE4nG1Aa381z6AhWQUHB8PT0xPZl85X+Fr2pfMQFAr4NWqCotzrVWpP5eaO6D6DEd1nMERRxM/v/y8Orf0G/ac/j6CmzREYFgljcRFadutzx3YahEUi5dBuRHToCjfN7deY+YeGAygdybl5mlxhbg70BXmlNXHxPxG5KL5XQ+TEREnCpr+nlzkjAcCmVB1EzucnGSmVSgwaNAhndm1Bbsblssd116/h2Ja1iOzYDRpvnyq1VZR3o9znCoUCIa1iAAAWkxEA0O7+kbh84jDO7dte4fl6XT4s5tLDO9sNGgnRYsH2pR9XuM5iNkOvywcAtOx2H5QqN+xbswzSTd9Le+MXAyj9PuNsTiJyVRyZIXJiKQVG5Bmd9wwJCUCeUcSFAhNa+jnXqerkWubNm4fN237DoseHo/vYx6BQqnDopzhYjEYM+Z83q9zOT+8+C31+Lpp36Q2/RqHIy0zHvjXLEBrVFsHNWgMA7psyG2d2bcE3z0xE5wcfQZPoDjDqi5F1/jT+StiA/934J7wCGqB5517o+vBU7Pz6U2Sc+wutuveFUuWGnMsX8FfCLxj+wny0GzgC3gFB6D35n9j59af45n8eLd2a+exJnNv7O7z8G8BDpeC2zETkshhmiJzYkWyD0yz6vx0BwJFsPcMMyapNmzZYuHYr/v3O69j59aeQRAnhbe/BuHe/qPIZMwDQ6YExOLQ2Dgd/+Bp6XT58GjRE+0GjMHDmC2WHYbp7eOKJZT9j51cLcTLhF/y58XtovHwQFNEcA598ERpv37L2Hnp1AZpEd8Chtd9g23/fg0KpREBoU3R8YCwiOnQtu+7+2a9Apdbg4I8rcCFxL8Lb3oPHv/gB3zz9KDxVnIRBRK5LkCTO7yByRrklFiw+nSt3GTYzMyYAAWput0TyOXXDgA2phXKXYXMjInwQE6iWuwwiIrvg2zVETupojsFp18rcSgBwLMf5NjEg1xLi6ZqTFVz1voiIAIYZIqckSRKOXzc49fSym0kAjl03gAPFJKdAtRJqpau8RVBKrRQQoOaveiJyXfwJR+SEbpRYUGJxrRf+JRYJuSXOu5kBOT9BENChgcalRjw7NtBw8T8RuTSGGSInlFVslrsEu3DV+yLn0SlI41Ijnh2DNHKXQURkVwwzRE4oq9js9N+8Rn1Ruc8VApClZ5gheQWolYj0cXP60RkBQDMfN26qQUQuj6sCiZxQZrEZt07IKikqxLYv3sfpnZuhy7kKjbcvQlu3wZCnX0eT6A74cNg9aB7bE2Pf/rzc85bMGAkAeGLpz2WP5WakYcO/Xsb5Q3vg7uGJjkMfRuue/fH1U+MxY8l6NI/tBQC4+Od+7FuzFGl//YnC69nwDgxC2wEPYvBTr5Y7sfyHN5/CXwkb8PSanfjlXy/j0tEDaNn1Pkz+JK7sGlECMopMNv6bIqq+zsEaXNI5979FCUDnYI+7XkdE5OwYZoicjCRJlY5grHtvLv5K2IAe4/+Bhs1bozgvF6nHDuLaxWQ0ie5Q5faN+iIse3I0dDlX0XPCDPg0aIhjW37ChcQ/Klx7MuEXmAx6dB8zDZ5+gUg79Sf2f7cM+dcyMPFfy8tdK1osWD57HCI7dcMDz7xdLuxYZenNkCSJc/xJVi183eHvrkC+UXTKKWcCAD93BZr7usldChGR3THMEDkZiwSYK1knf3bPb+jy0CQMe+6dmx6dU+32D66Nw430S5j8SRxi+g4FAHR9eCo+m9C/wrVDn36jXCjp+vAUNAhvhm2fz0deZjr8Q8PKvmY2lqDd/SMwZM7rt+3bLJaO0LjYhlLkZBSCgGERPohPzpe7lBqRAAyP8IGCbwoQUT3g7NPuieod8222L9b4+CHtrz9RkJ1Vq/bP7dsO34ahiO4zpOwxN7UGXUZPrnDtzUHGqC9CUe51RLTvAkmSkHH2ZIXru4957K793+7+iOpSuLcbYoOdb2czAUCXYA3CvDkqQ0T1A0dmiJyMeJvdi4f+zxv44c05+GBoBzSJ7oCoXgNxz/BxCAyLrFb7eZlpaBAWWWGqV4PwZpVcm47fFn2AM7u2Ql+QV+5rhsKCcp8rVCr4Nmp81/4tIgCuWSYH0KexF5LzjShwkulmAgBfdwXua+wldylERHWGYYbIyShuM57aftAoRHbqjlM7fsX5AzuxO+6/2PXNZ5i04GtE9Rp423UoksUCQVn99CBaLPjqn2Ogz89Dn2lzEBzZCu4ensi/lokf35wD6ZbUpXJzh+J2xd9EyfFichBuCgHDnWi6mXV6mZvC2caTiIhqji8biJyM6g7z4H2DQ9Bj3OOY/Ekc/ndjIjz9ArDjq38DADx8/WDQFVR4Tm5WernP/UPDcT39EqRbpntdT7tY7vOs86eRk5qCB557G32mPY2YvkPRslsf+AaH1PTWANz5/ojqWri3GwaGOcdIx8AwL4RzehkR1TMMM0RORikAqlu+c0WLpUJQ8Q4Mhm9wCMxGIwAgMCwSl08mwmwyll1zZvc25GddKfe81j36oeBaJs7s2lL2mKnEgMM/rSx3nUJROppzc+iRJAl7Vy+p8b2pFKXnzRA5kthgD/QO9ZS7jDvqHeqJWG7FTET1EKeZETkZQRAQ4qFCetH/b89cUlyID4a0R9uBDyK0VVu4e3rh/MFdSD91FA/8vbtZl1GT8FfCBnw9ezzaDxqJ62mXcGzzDxXW1HR9eAr2f/cV1rwys3Rr5qBGOLZ5LVRq9d8FlH4IjmyFwLBIbP73Wyi4lgm1lw9Obd9YYe1MdYR4qLgtMzmkno1Kg8KezGKZK6novlBP9GjEIENE9RNHZoicUKinqtw3r5vGA93HPo7Ms38hYfGH2PTxa8hJPY+RL/8LvSfNAgC07tkfDzz3DnIup2Djgtdw+eRhTF24Gn63LMpXe3pj+uKf0Dz2Xuz7dil2LPs3mnXqjv7TnwcAqNw1AAClmxumLoxHaFRb7Pz6U2xfsgANwptj7Dv/rdE9KQSgsRenyJBjEgQB0e4G7PtqQelZSHLX8/fHgWFe6BniyTcBiKjeEqRbJ8YTkcM7dcOADamFddrnH/GLsOnj1/HSlhPwaxhqlz5GRPggJlBtl7aJasNsNmPo0KE4evQoft3/J44YvWXb5cy6a9nwCB+ukSGieo/TzIicUIinfb91TQZ9uTNkTCUGHFobhwZNm9styAD2vy+imnrxxRexY8cObNu2DV1bNUUnUcKujCIkZhsgAHUSaqz9xAZrcF9jL+5aRkQEhhkipxSoVkKtFFBisc9LqFVzp8E/JAyhUW1hKCzAsV9/RPalZIyfv8gu/QGAWikgQM2Zr+R4Vq5ciU8++QSffvop+vfvD6B02+aBYd6I8ldjU6oOeUbRbqHG2q6fuwLDOBpDRFQOp5kROantV4pw+JreLi+e/ohfhMT18cjNuAxRFNGwWWv0mfoU2g9+yA69lb5Y69rQA/2aOMcWuFR/HD58GL1798aECROwfPnyStemiJKECwUmHMnW40KBEZBECIran/xqDTHNfNzQOdgDzX3doODaGCKichhmiJxUbokFi0/nyl2GzcyMCUCAuvYvAIlsJSsrC7GxsWjSpAl27doFjUZzx+v/+OMPjJwwGf/+YTOuewaXjZwqBECswm/am69TKwV0bKBBxyANvy+IiO6A08yInFSAWolIHzek6kyyLEK2FQFApI8bX7CRQzEajRgzZgwsFgvWrVt31yADAHFxcfBRSpjUtTUEQUBuiYisYjOy9GZkFJmQpTfDLFZ8nkpRui15Yy83hHioEOKpQoBawR3KiIiqgGGGyIl1Dtbgks4kdxm1IgHozMP+yMHMmTMHhw8fxs6dO9G4ceO7Xm8wGPD9999jzpw5UChK134FapQI1CgRg9Id+iRJgigBZkmCRQSUCkAlCFAIYHAhIqohhhkiJ9bC1x3+7grky7RFbG0JKF3U3NyXC5rJcSxatAhLlizBsmXL0KNHjyo9Z8OGDcjPz8fkyZNve40gCFAKgBICwIFIIiKb4JoZIieXVmhCfHK+3GXU2KRWfgjj7kzkIPbs2YP+/ftj5syZ+Pzzz6v8vAcffBDZ2dk4cOCAHasjIqJbcR9UIicX7u2G2GCN7CeSV5cAoEuwhkGGHEZaWhrGjBmDXr164d///neVn3ft2jVs2bLljqMyRERkHwwzRC6gT2Mv+LornCbQWE8wv68xt2Imx6DX6zFq1ChoNBr88MMPcHOreshes2YNBEHA+PHj7VghERFVhmGGyAW4KQQMj/BxmnUzEoDhET48wZwcgiRJmDFjBs6cOYOff/4ZwcHB1Xp+XFwchg0bhqCgIDtVSEREt8MwQ+Qiwr3dMDDMOUY6BoZ58RRzchgff/wx4uPj8fXXX6Njx47Veu7p06dx5MgRTjEjIpIJwwyRC4kN9kDvUE+5y7ij3qGeiOVWzOQgtm7dihdffBEvvvhijaaJrVy5EgEBARg2bJgdqiMiorvhbmZELkaSJOy7qseezGK5S6ngvlBP9GjkwTM1yCGcP38eXbp0QY8ePbBhwwYoldXbL1kURURERODBBx/EF198YacqiYjoThhmiFxUYrYeCelFEABZ19JY+x8Y5sURGXIYOp0O3bt3h8lkwqFDh+Dv71/tNrZv344BAwZg3759VT6PhoiIbIuHZhK5qNhgDzTyUGFjqg4FMh2qad21bHiED9fIkMMQRRFTpkxBWloaDh48WKMgA5Qu/G/ZsiW6d+9u4wqJiKiquGaGyIWFe7thenQAOgdrAKDOtm629hMbrMH06AAGGXIo7777LtavX49Vq1YhOjq6Rm0UFRVh7dq1mDx5MqdNEhHJiCMzRC7OTSFgYJg3ovzV2JSqQ55RtNvUM2u7fu4KDONoDDmg9evX46233sI777yDESNG1KqdwsJCTJo0yYbVERFRdXHNDFE9IkoSLhSYcCRbj4s6k81CjbWdZj5u6Bzsgea+blDw3WpyMKdOnUL37t0xePBgfP/991Aoaj45YfDgwdDr9di9e7cNKyQioupimCGqp3JLLDiWY8Cx6waUWEp/DCgEQLzbTwRJgkIhlF2nVgro2ECDjkEaBKirtxsUUV25ceMGunbtCk9PT+zbtw/e3t41bisjIwPh4eFYtGgRZsyYYcMqiYioujjNjKieClAr0a+JF/o29kRuiYisYjOy9GZkFJmQpTfDLFZ8jsmgh6LwBrrGtESIhwohnioEqBVcM0AOzWw2Y8KECcjNzcW2bdtqFWQAYPXq1XBzc8PYsWNtVCEREdUUwwxRPScIAgI1SgRqlIiBGkDpWTWiBJglCRYRUCoAlSCgf7++CA0Nxatr1shcNVHVvfzyy0hISMDWrVvRvHnzWrcXFxeHkSNH1ngXNCIish3uZkZEFQiCAKVCgFqpgKebAmqlAkqFAK1Wi6SkJLnLI6qy+Ph4LFiwAAsWLMDAgQNr3d7x48dx8uRJTJ482QbVERFRbTHMEFGVabVanDt3DqJYyRw0Igdz5MgRTJ8+HZMnT8Yzzzxjkzbj4uIQHByMwYMH26Q9IiKqHYYZcnmSJMEsSjBYRBSbRBgsIsyiBO59UX1arRZ6vR5paWlyl0J0R9euXcNDDz2Etm3bYvHixTZZ12U2mxEfH49HH30Ubm7cdpyIyBFwzQy5FEmScKPEUrqYvdiMzL8XtVe2mF2lAEI8VAj1LF3IHuKpQqBaycXsdxAVFQUASEpKQkREhMzVEFXOaDRizJgxMBqNWLduHTw8PGzSbkJCAq5evcopZkREDoRhhlxCbokFR3MMOH7zNsMA7jQZyiwC6UVmZBSZy65TKwV0aKBBJ24zXKmIiAio1WokJSVxmg05rGeeeQYHDhzAjh07EBYWZrN24+LiEBMTg3vuucdmbRIRUe0wzJDTEiUJKQVGHMk24FIlB0BWdVXHzdeVWCQcvqbHoWt6RPq4oXOwBi183XkA5N+USiVat27NTQDIYS1duhRffvkllixZgl69etms3YKCAqxfvx5vvPEGR2+JiBwIwww5pbRCEzal6pBnFGF9WWGrFTDWdlJ1JlzSmeDvrsCwCB+Ee3OOPFC6bubs2bNyl0FUwd69ezF79mzMmjXL5odZrl27FgaDARMnTrRpu0REVDuCxFXQ5ERMooRdGUVIzDZUGImxF2s/scEa9GnsBTdF/X5X9o033sCyZcuQkZEhdylEZdLT0xEbG4vWrVsjISEB7u7uNm2/X79+UCqVSEhIsGm7RERUOxyZIaeRVmjCxlQdCoylE8PqKoVb+zmSbUByvhHD6/koTVRUFDIzM5Gfnw8/Pz+5yyGCXq/HQw89BHd3d/z44482DzKpqanYuXMnVqxYYdN2iYio9rg1MzmFxGw94pPzUWAU6yzE3EoCUGAUEZ+cj8RsvUxVyE+r1QIAp5qRQ5AkCTNnzsRff/2FdevWoWHDhjbvIz4+Hp6enhg9erTN2yYiotphmCGHJkkS9mYVIyG9qPRzuev5+2NCehH2ZhXXy7NqrNszM8yQI1i4cCFWrlyJr776Cp07d7Z5+5IkIS4uDqNHj4aPj4/N2yciotphmCGHtu+qHnsyi+Uuo1J7Moux72r9G6Hx9vZGWFgYdzQj2SUkJGDu3LmYO3cuHn30Ubv0kZiYiLNnz/JsGSIiB8UwQw4r8ZrjBhmrPZnF9XLKWVRUFMMMyerChQsYP348Bg4ciA8++MBu/cTFxSE0NBQDBgywWx9ERFRzDDPkkNIKTUi4UiR3GVWSkF6EtEKT3GXUKa1WyzBDsiksLMTIkSMRGBiINWvWQKm0zwG3RqMR3377LSZNmmS3PoiIqHYYZsjhmEQJG1N1cJYNkAUAG1N1MIn1Z/2MVqtFcnIyzGaz3KVQPSNJEqZNm4ZLly5h/fr1CAgIsFtfW7ZswfXr1znFjIjIgTHMkMPZlVEk665l1WXd5Wx3hnOMJNmCVquFyWTCpUuX5C6F6pn58+dj7dq1WLVqFdq0aWPXvuLi4tCxY0e0a9fOrv0QEVHNMcyQQ0krNCEx2+A0QcZKAnA421BvpptZt2fmVDOqS7/88gtef/11vPXWWxg5cqRd+8rNzcWGDRs4KkNE5OAYZshhiJKETU40vexWAoBNqTqI9WC75iZNmsDLy4thhurMmTNnMGnSJIwaNQqvv/663fv7/vvvYTab7bZLGhER2QbDDDmMlAIj8pxoetmtJAB5RhEXClx/dEYQBO5oRnUmLy8PI0eORNOmTREXFweFwv6/uuLi4jB48GCEhITYvS8iIqo5ldwFEFkdyTZAgPwHY9aGAOBIth4t/dzlLsXutFotD84ku7NYLJgwYQKys7Nx+PDhOjm4MiUlBfv27cPq1avt3hcREdUOR2bIIeSWWHBJZ3LqIAOUBrGLOhNySyxyl2J33J6Z6sKrr76Kbdu24bvvvkPLli3rpM+VK1fCx8fH7utyiIio9hhmyCEczTE47VqZWwkAjuUY5C7D7rRaLXJycpCTkyN3KeSi1qxZgw8//BAffvghBg0aVCd9SpKElStXYuzYsfD09KyTPomIqOYYZkh2kiTh+HXn28HsdiQAx64bILn4RgBRUVEAwKlmZBdHjx7F448/jokTJ+L555+vs3737duHCxcucBczIiInwTBDsrtRYkGJRf4X/gXZWUhY9C9knD1Z67ZKLBJyS0QbVOW4WrVqBUEQONWMbC47OxujRo1CTEwMli5dCkGou3HbuLg4NG3aFPfdd1+d9UlERDXHMEOyyyp2jFPkC7Kz8PuSj5B59i+btOco92UvHh4eiIyM5MgM2ZTJZMLYsWNhMBiwbt06eHh41FnfBoMB33//PSZNmlQnO6YREVHtcTczkl1WsRkKAK40jqEQgCy9GTFQy12KXXETALK15557Dnv37sX27Qtqu1cAACAASURBVNsRHh5ep31v3LgReXl5nGJGROREBMnVJ/aTw1t1Lg/pRTUfxchIOoGtn89H6vFDkEQR4W07Y9DsV9C0fSwAoDg/FzuXL8S5/TuQeyUVgkKBiA5dMeTp1xHaui0A4ELiXix9YlSFtse89R90HjGhRnWFeakwqbV/je/LGTz77LPYtGkTzp07J3cp5AK++uorTJ8+HV9++SWefPLJOu9/xIgRuHr1Kg4ePFjnfRMRUc1wHJ1kJUkSsvQ1DzJXU5Kw+B8PIvPcKdw39Sn0n/E8bmRcxtInRuHyySMAgBtXUnFqx6/Q9r4fw557F72nPIWs82ewZPpIFGRnAQCCm7XCwFkvAQC6jp6Cce9+gXHvfoFm9/SocW1ZerPLbwKg1Wpx4cIFlJSUyF0KObn9+/dj1qxZeOKJJ2QJMtnZ2di8eTNHZYiInAynmZGsLBJgrsX8sm1fvA+L2Ywnl29EYFgkAKDTsHH4ZHQPbPn0bTyx7BeEtIzG8+sPlpsDf8+wsfhkdE8cXh+PATOeh0+DhojqNQAJX36Apu1j0WnY2FreWel9iRKgdJU9pyuh1WphsViQkpKCmJgYucshJ3XlyhWMHj0aXbt2xWeffSZLDWvWrAEAPPLII7L0T0RENcORGZKVuRYjF6LFguT9OxHTd2hZkAEA3+AQdBjyMC4dOwhDoQ4qd3VZkBEtFhTl3YC7hxeCIloiI+lEbW/hjmpzf85Aq9UC4PbMVHMGgwGjR4+GUqnEjz/+CHd3d1nqiIuLw7BhwxAUFCRL/0REVDMcmSFZibUYlSnKzYHJUIzgyIqngjds1gqSKCL/6hW4e7bGvtVLcOCH5cjNuAzRYim7ztMvoOYFVIFFBKC0axeyatiwIfz9/bkJANWIJEmYNWsWTpw4gT179iAkJESWOs6cOYPExES89NJLsvRPREQ1xzBDsqqL3U93Lv83fvviA8SOfBT3//NlePj6Q6FQYOOC1yBJ9t1DTeniY5+CICAqKophhmrks88+w4oVK7By5UrExsbKVsfKlSvh7++P4cOHy1YDERHVDMMMyUpVi8PwvAKC4KbxRPal8xW+ln3pPASFAn6NmuCvhA1oHnsvHn7z03LX6HX58PQPLPtcgO0Xt9Tm/pyFVqvFmTNn5C6DnMz27dvx3HPP4bnnnsOkSZNkq0MURaxatQqPPPII1GrX3kqdiMgVufj7xuTolAKgquG/QoVSiVY9+uLMri3Izbhc9rju+jUc27IWkR27QePtA0GhBFB+7crJ335GwbXMco+5eXgCKA05tiCZTViz5lscP34cBoPBJm06Iq1Wi7Nnz7r8zm1kOxcvXsS4cePQv39/fPjhh7LWsmvXLqSlpXEXMyIiJ8WRGZKVIAgI8VDV+JyZQf98GecP7MSix4ej+9jHoFCqcOinOFiMRgz5nzcBANreg7B96QL8+OYcNO3QFVnnT+PY5rXlNg0AgAZhkdD4+OHQ2m+g9vKGu4cXwtveg8AmEdWuS5IkZCSdwCtTJgIAFAoFWrRogZiYGLRp06bsY1RUVJ2ecG4PWq0W+fn5uHr1qmxrHsh5FBUVYdSoUfDz88OaNWugUsn7ayguLg4tWrRAjx4134adiIjkw0MzSXa/pxfiSLYBNV29kpF0Als+m/f3oZkSwtveg0GzX0FEhy4AALOxBNv++x6ObV4LQ2EBGmvb4YFn3saWz94FADyx9Oeytk7v2oKtn81DzuUUiGZzjQ/NVAhAbLAH7vEy4cyZMzh16hROnz5d9jE9Pb30OoUCzZs3Lws31qCj1WqdJuQkJSUhOjoaO3bsQN++feUuh2pJkqTSLdMlCaJYuq5NJQhQCqVvPtS27fHjx+PXX3/FgQMH0LZtWxtVXTPFxcVo1KgR5s6dizfffFPWWoiIqGYYZkh2p24YsCG1UO4ybG5EhA9iAiufg5+fn19pyElLSwNQ+qKxefPm5UZxrCHH09OzLm/jroxGIzw9PfH555/Lctgh1ZwkSbhRYkFWsRlZxWZkFpuRpTdXevaTSgGEeKgQ6qlCyN9/AtXKagWc9957D6+++irWrl2L0aNH2/BOamb16tWYOHEiUlJS0Lx5c7nLISKiGmCYIdldN5ix9Eye3GXY3BPRAQjUVG9f5oKCgkpDzuXLpWuCBEFAs2bNKoSc6OhoWUNOVFQUhg4dioULF8pWA1VdbokFR3MMOH7dgBJL6a8ABVCl0dGbr1MrBXRooEGnIA0C1Hf+t75p0yY8+OCDeO211/DOO+/UpnybGTJkCIqKirBnzx65SyEiohpimCHZSZKEhSdvlL2ocgVqpYBn2gXWelqOlU6nqzTkpKamAigNOZGRkZWGHC8vL5vUcCcjR46E0WjE5s2b7d4X1YwoSUgpMOJItgGXdCYIuHVbjJqxthPp44bOwRq08HWH4pZ/90lJSejWrRv69u2LdevWlR1iK6fMzEyEhYXhyy+/xBNPPCF3OUREVEMMM+QQtl8pwuFrepu8uJKbAKBrQw/0a2L/EKHT6ZCUlFQh5Fy6dKnsmtuFHG9vb5vV8eKLL+L777/HxYsXbdYm2U5aoQmbUnXIM4o2CzG3srbr767AsAgfhHu7ASidUtmtWzcoFAocOHAAvr6+dui9+j7++GO8+uqryMzMRECAfQ/PJSIi+2GYIYeQW2LB4tO5cpdhMzNjAu467caeCgsLKw05N4eNiIiICiEnJiamRiFn+fLlmD59OgoLCx1uTU99ZhIl7MooQmK2wW4h5lbWfmKDNbi3kQZjHhqFvXv34tChQ2jVqlUdVFA1HTp0QFRUFL7//nu5SyEiolrg1szkEALUSkT6uCFVZ3Lq0RkBpdNt5AwyAODt7Y3Y2NgKp6oXFRVVCDlr167FggULyq5p2rRppSHHx8fntv1ptVpIkoTk5GR06NDBbvdFVZdWaMLGVB0KjKUrXOrq+8raz5FsAw5dvIrTGdfx7bffOlSQOX78OE6cOIF58+bJXQoREdUSR2bIYSTnl2DtBZ3cZdTamOa+aOnnLncZ1WINOTeP4pw6dQoXL14sOwwzPDy83PbRbdq0QXR0NHx9fXH9+nUEBQXhu+++w7hx42S+G0rM1iMhvajORmNuR7SYoVAoMTDcG7HBjrPV+Ny5c/HNN98gIyMDbm5ucpdDRES1wDBDDkOUJCw5nYt8o+iUozMCAD93BZ6ICaiwANpZFRcXVxpyLly4UC7kxMTEYPfu3bj//vvx8ssvIzo6Gn5+fjJXX/9IkoR9V/XYk1ksdykV9A71RM9GHjbbFKOmzGYzwsPDMW7cOHz66aey1kJERLXHMEMOJa3QhPjkfLnLqLFJrfwQ5u367/Tq9foKIWfr1q0wGAxl14SFhZWbqmb9yJBjP3uzih0yyFj1DvVErxB511Rt3boVQ4YMweHDhytMwyQiIufDMEMOJyG9EEeyDU41OiOgdMHzgDDb7RDmbGbMmIHDhw9jxYoVFUZyUlJSIIqlazeaNGlSacjx9/eX+Q6cW+I1PRKuFMldxl0NDPOSdcrZxIkTcfToUZw6dUr2USIiIqo9bgBADqdPYy8k5xtR4CTTzQQAvu4K3NfY/lsxOzKtVovVq1ejffv26NixY7mvGQwGnD17tlzI+fXXX/Gf//ynLOQ0bty40pDDbXPvLq3Q5BRBBgAS0ovQyENVtnVzXdLpdFi3bh1ef/11BhkiIhfBkRlySM423WxiKz9ZXpw5kk2bNmH48OG4fPkywsPDq/Qcg8GAc+fOVRjJOX/+PCwWCwAgNDS00pATGBhoz9txGiZRwrIzuU4X/qdHB8BNUbeBYsWKFXj88cdx6dIlNG3atE77JiIi+2CYIYdl3ZHJ0ck9bcZRpKSkoGXLlti2bRvuv//+WrVVUlJSLuRYg05ycnJZyAkJCak05DRo0MAWt+M0OC2z6vr37w9BEPD777/Xab9ERGQ/DDPk0Lig2XlYLBZ4enpiwYIFmDNnjl36KCkpQXJycoXDQJOTk2E2mwEAjRo1qhBw2rRp45Ihx9lGMG9VlyOaly9fRmRkJJYvX45p06bVSZ9ERGR/XDNDDq1no9IRD0cMNPeFeqJHI47IWCmVSrRq1QpJSUl260OtVqNt27Zo27ZtuceNRmOFkLN9+3YsWrSoLOQ0bNiw0pATFBRkt3rtSZQkbErVyX6WTE0JADal6upsK/P4+HhoNBo8/PDDdu+LiIjqDkdmyCk4yiGA1v45taxyY8aMQW5ursNM4zEajTh//nyFkZxz587BZDIBAIKDgysNOcHBwTJXf2c8ZLbqJElCTEwMOnfujFWrVtm1LyIiqlscmSGnEBvsgUYeKmxM1cm20Nm6cHl4hE+9X+x/O1qtFitWrJC7jDLu7u6IiYlBTExMucdNJlOFkLN7924sXbq0LOQEBQXdNuQ4wk5YR7INsof72hIAHMnW2z3MHDlyBElJSVi4cKFd+yEiorrHkRlyKiZRwq6MIiTW5Qs5SYIECR7XLmD2oG51vgOTM1m1ahUmT56MgoIC+Pj4yF1OtZlMJqSkpFQYyTl79iyMRiMAoEGDBpWGnIYNG9ZZyMktsWDx6dw66asuzIwJQIBaabf2n376afz444+4fPkyVCq+h0dE5EoYZsgppRWasClVhzyjaLdQY23X312BE6s/x7df/BtJSUlo1KiRHXpzDYmJiejSpYvLna5uNpsrDTlJSUllIScwMLDSkNOoUSObh5ztV4pw+JreqUdlrAQAXRt6oF8T+5zTZDKZ0LhxY0ydOhULFiywSx9ERCQfhhlyWqIk4UKBCUey9bioM9ks1Fjbaebjhs7BHmju64bcGzeg1WoxePBgzrm/g4KCAvj5+WHlypWYNGmS3OXYndlsxoULF8ptH33q1KkKIaeyLaRDQkJqFHIkScLCkzdQYnGdH91qpYBn2gXaZWRrw4YNGDFiBI4fP4727dvbvH0iIpIXwwy5hNwSC47lGHDsuqHsRZ5CAMQq/Ou++Tq1UkDHBhp0DNJUmPYSFxeHqVOn2uQcFVfWpEkTPP7443j33XflLkU21pBz62GgSUlJKCkpAQAEBARUGnJCQ0Pv+KL+usGMpWfy6upW6swT0QEI1Nh+qtnYsWORnJyMY8eO2bxtIiKSH8MMuRRJkpBbIiKr2IwsvRkZRSZk6c0wixWvVSmAEA8VGnu5IcRDhRBPFQLUitu+kJQkCQMGDMDly5dx8uRJeHhwN7PKDBgwAIGBgfjhhx/kLsXhWCyW24Ycg8EAAPD396805DRu3BiCIODUDQM2pBbKfCe2NyLCBzGBapu2mZubi9DQUMyfPx/PP/+8TdsmIiLHwDBDLk+SJIgSYJYkWERAqQBUggCFgGpPazl79izat2+PF154AfPmzbNTxc5t9uzZ2L17N06ePCl3KU7DYrHg4sWLFULOmTNnykKOn58fYmJicN+MF+DfvhegUMhWr6nEAKWbOxQ2qkEhlO5Y2N/G62aWLFmCWbNmIT09HaGhoTZtm4iIHAPDDFE1vf3225g/fz6OHj2KNm3ayF2Ow/nPf/6DF154AcXFxVAq7bdDVX1gsVhw6dKlciEneNjjCGrVpkpBPP9aJhK+/ABn9/6O4vxc+AaHoHXP/hj+wnyo3NxxI/0SNv/nHaQc2gOzsQQhLWPQf8Zz0PYeVNbGhcS9WPrEKDzy/hJcPX8GR375Frqcq3h9ZzI2LngVfyVswHPrDuCXD17E+YO74Kb2wD0PjseQp9+Aohr//8O8VJjU2r9Gf0+3c++998LHxwebN2+2abtEROQ4uEclUTW99NJLWL16NZ588kns2rXLZu9OuwqtVguj0YhLly6hRYsWcpfj1JRKJVq0aIEWLVrgwQcfhCRJ+PjE9UqnTd6qIDsLX0weBL2uAF1HT0ZwZCsUZGfir4QNMBn00Bfk4cvHHoDJoEfPR2bA0y8Qf25cg7hnJ2Piv5ajTf9h5drbvvRjKN3c0HvybJhNJVCqSs9aEkURX88eh/C29+CBZ9/G+YO7sGflFwgMi0T3sY9V+V6z9GZIkmSzTQBSUlKwd+9exMfH26Q9IiJyTAwzRNWkVquxePFi9OvXD8uXL8f06dPlLsmhaLVaAKVT8hhmbMsioUpBBgC2fPYudNev4Z9xWxEW07Hs8ftnvQRJkrDp49dReD0bM7/agMhO3QEAXUZPwqfj+2LTJ28guu/QckHdbCzBU6t+g5um/Foxc4kB7QaNwoAZpWtSuo2Zhs8e7Y/E9fHVCjNmsXQjDqWNNjRbtWoVvL29MWrUKNs0SEREDolvKRPVQN++fTFt2jS88MILuHr1qtzlOJSwsDB4enoiKSlJ7lJcjrmKs4JFUcTpnZsRfd/gckHGShAEnN2bgLC295QFGQBQe3qj6+jJyM24jGsXzpZ7zj3Dx1cIMlbdxkwt93lkp+64cSW1SrXerKr3dzeSJGHlypUYO3YsPD09bdImERE5JoYZohr66KOPoFQquUvSLRQKBaKiohhm7ECs4qhMUW4OSgp1aNRCe9tr8jLTERzRssLjDZu1/vvraeUeD2jctNJ2VGoNvAOCyj3m4eMPfUH1t4+2VPH+7mb//v1ISUnB5MmTbdMgERE5LIYZohoKCgrCxx9/jPj4ePz2229yl+NQGGbsQ87lWW4aTaWP23LNmNJGTcXFxSE8PBx9+vSxTYNEROSwGGaIamHKlCno27cvZs2aBb1eL3c5DkOr1eLs2bN3v5CqRVXFxfFeAUFQe/vgasrtA6V/aBiyU89XeDz7UvLfXw+vWZG1UNX7u5OSkhJ89913mDRpEjfnIHJBkiTBLEowWEQUm0QYLCLMogRuzlt/cQMAoloQBAGLFi1C+/bt8d5779XrU+9vptVqce3aNdy4cQOBgYFyl+MylELpYa932wRAoVAgpu9QHPv1R6SfPlZh3YwkSYjqNRB7Vy9G6vHDiOjQBQBg1Bfh0E8rEdC4KRo2j7LXbVRKpSg9b6a2Nm7ciLy8PE4xI3IBkiThRoml9CDsYjMy/z4Q+04HYYd6lh6CHeKpQqBaabMdEslxMcwQ1VJUVBReeeUVzJ8/HxMmTEBMTIzcJcnu5h3NevToIXM1rkMQBIR4qJBeZL7rtYOfeg3nD+zEkukj0XX0ZDRs1hoFOVfxV8IvmLl8I/o89jSOb/0JK+Y8gp4TZsDD1x9/bvwOuVdSMfGjr+t8VCPEQ2WTFx1xcXHo0qULoqOjbVAVEckht8SCozkGHL9uQImldMRFAeBO7+OYRSC9yIyMInPZdWqlgA4NNOgUpEGAmueeuSqGGSIbsJ49M3PmTJ49A6BVq1YQBAFJSUkMMzYW6qkq98v6dvwahuKf32zFti/fx7HNa1FSpINvw1C07tkfbhoPePj4YdbXv2Lzf97BvjXLSg/NbBWDKQtXlTs0sy4oBKCxl1ut28nJycGvv/6KTz75xAZVEVFdEiUJKQVGHMk24JLOBAHAzRPHqro/yM3XlVgkHL6mx6FrekT6uKFzsAYtfN2h4GiNSxEkTjIksomdO3eiX79+WLZsGf7xj3/IXY7sIiMjMX78eHz44Ydyl+JSTt0wYENqodxl2NyICB/EBKpr1cbnn3+OZ599FhkZGQgODrZRZURkb2mFJmxK1SHPKFYIMbZibdffXYFhET4I9679GyjkGOr328dENnTz2TPXrl2TuxzZcRMA+wjxdM0BdVvcV1xcHB544AEGGSInYRIlJKQXIj45H/nG0jEVe73Dbm033ygiPjkfCemFMIl8P98VMMwQ2dBHH30EhULBs2dQGma4PbPtBaqVUCtda4qEWikgQF27X0dJSUk4fPgwF/4TOYm0QhOWncnFkWwDAPuFmFtZ+zmSbcCyM7lIKzTVUc9kLwwzRDZkPXtm1apVSEhIkLscWWm1WqSkpMBk4i8KWxKE0gWtrhJnBAAdG2hqvfh/5cqV8Pf3x/Dhw21TGBHZTWK2HvHJ+SgwinUWYm4lASj4e5QmMZtHKzgzhhkiG+PZM6WioqJgNpuRkpIidykup1OQRrYXALYmAegYVPmBnFUliiJWrVqFcePGQXObwz2JSH6SJGFvVjES0otKP5e7nr8/JqQXYW9WMc+qcVIMM0Q2JggCvvzyS1y+fBnvvfee3OXIxro9M6ea2V6AWolIHzenH50RADTzcav1lqm7d+/G5cuXMWXKFNsURkR2se+qHnsyi+Uuo1J7Moux72r9fQPSmTHMENmBVqvFyy+/jA8//BCnT5+WuxxZhISEwNfXl5sA2EnnYOcfnZEAdA72qHU7cXFxaN68OXr27Fn7oojILhKvOW6QsdqTWcwpZ06IYYbITl566SU0a9YMM2fOhChWdYd81yEIAjcBsKMWvu7wd1c47eiMgNItUpv71m571OLiYvz444+YPHkyT/omclBphSYkXCmSu4wqSUgv4qYAToZhhshONBoNFi1ahD/++ANff/213OXIgmHGfhSCgGERPk47OiMBGB7hU+vD637++WfodDruYkbkoEyihI2pOqd540UAsDFVx22bnQjDDJEd9evXD1OnTq23Z89ERUUhKSmJiyrtJNzbDbHBzrezmQCgS7AGYTY4tC4uLg69evVCixYtal8YEdncrowiWXctqy7rLme7M5xjJIkYZojsbsGCBfX27BmtVou8vDxkZ2fLXYrL6tPYC75ONN1MAODrrsB9jb1q3VZWVha2bdvGURkiB5VWaEJitsFpgoyVBOBwtoHTzZwEwwyRnQUFBWHBggX18uwZ7mhmf24KAcOdaLqZdXqZm6L28Wv16tVQqVQYN25c7QsjIpsSJQmbnGh62a0EAJtSdRA5s8DhMcwQ1YGpU6eiT58+mDVrFgwGg9zl1JkWLVpAqVQyzNhZuLcbBobVfqSjLgwM80K4DaaXAaVTzEaMGIGAgACbtEdEtpNSYESeE00vu5UEIM8o4kIBR2ccHcMMUR0QBAGLFi2qd2fPqNVqNG/enGGmDsQGe6B3qKfcZdxR71BPxNpgK2YAOHHiBI4fP84pZkQO6ki2wWlHZawEAEe4VbPDY5ghqiPWs2c++OADnDlzRu5y6ox1EwCyv56NHDfQ3BfqiZ6NbBNkAGDlypUICgrCkCFDbNYmEdlGbokFl3Qmpx2VsZIAXNSZkFtikbsUugOGGaI6VB/PntFqtTw4s44IgoBeIZ5lU87kflfU2v/AMC/0DPG02TkwFosF8fHxeOSRR+Du7m6TNonIdo7mOP+ojJUA4FhO/Zke7owYZojqkPXsmT179mDFihVyl1MntFotLl68WK/WCsktNtgDE1v5wdddAci0eNW6a9nEVn42m1pm9fvvvyMzMxNTpkyxabtEVHuSJOH4defbwex2JADHrht4xIADY5ghqmPWs2fmzp1bL86e0Wq1kCQJycnJcpdSr4R7u+GhYBGJa1dAkqQ6e5dUEkVIkohW7iWYHh1gs8X+N4uLi4NWq0VsbKzN2yai2rlRYkGJxbVe+JdYJOSW1I/ZFM6IYYZIBtazZ+bOnSt3KXYXFRUFgNszy+H1V1/G71+8h+ENAT/30h/39go11nb91Eqsf2UGFj/3OFR26Eyn02HdunWYPHmyzaatEZHtZBWb5S7BLlz1vlwBwwyRDKxnz6xcuRK///673OXYVVBQEBo0aMB1M3Xs4MGDWLZsGebPn492YcF4IiYAY5r7ItKndKTEVjHA2k6kjxvGNPfFk20C8ebTM7Ft2zasXr3aRr38v59++gnFxcWYNGmSzdsmoporKioCUPqiX+4Xl0Z9sU3bUwhAlp5hxlEJEicBEslCkiT069cPV65cwcmTJ6HRaOQuyW7uvfdeREZGYtWqVXKXUi9YLBZ069YNoiji8OHDUCqV5b6eW2LBsRwDjl03lE0HUQiAWIXfBjdfp1YK6NhAg45BGgSoy/cxYcIEJCQk4MyZMwgKCrLJfQHAgAEDIEkStm/fbrM2iah63nrrLbz99ts4deoU5s2bh82bNyMyMhJHjx7FrI8W45flX+DaxXNwU2vQqntfDH3mLfiHNCl7fs7lFGz5z7tIPX4IBl0BPP0DEdmxGx569WNofHzLrju66Qf8Eb/ojm0tmTESxXk3MPbtz7Hx49dw5cxxdHloMq6nXcS1i+fwvxsSK9T/xdShEM0mPBWfUOW+wrxU6CZk46WXXsLevXuRl5eHoKAg3HvvvVi8eDH8/Pzs8VdNVaCSuwCi+sp69kz79u3x3nvv4Z133pG7JLvRarU4duyY3GXUG0uXLsWRI0ewb9++CkEGAALUSvRr4oW+jT2RWyIiq9iMLL0ZGUUmZOnNMFcyNVylAEI8VGjs5YYQDxVCPFUIUCtuO9Vr4cKFiI6Oxty5c2222UVaWhp27NiBr776yibtEVHtjB07Fq1atcJ7770HSZIwb948LH7jDbS7fyS6PDQJRbnXsX/NMiyZPgJzvt0ODx8/mE1GLJ89HhZjCXqOnw7voIYouJaFpD3boNfll4WZHcs+wW9ffnDHtqyK82/g6zmPoP3gUej0wFh4NwhGk+gO+OGN2Ug7dRThbTqVXZubkYa0k4kY+sxbZY9Vpa/0gmK8MW4wSkpKMGfOHISEhODKlSvYuHEj8vLyGGZkxDBDJCPr2TPvv/8+JkyYgOjoaLlLsgutVos1a9aULkTnOge7ysnJwSuvvILHHnsMPXr0uOO1giAgUKNEoEaJGKgBlI4YihJgliRYRECpAFSCAIWAav2/a9SoERYsWIB//OMfmDRpEgYOHFir+wKA+Ph4aDQaPPzww7Vui4hqr0OHDmXTSVNTU9GiRQvc/8+X0e8fz5Zd06b/MHz2aH8c+H45+v3jWVy7cBa5V1Lx6L++QruBI8quG/DE/68hzc1IQ8Lif921LStdzjWMemUBuo2ZWvaYoVAHlbsaJ7etLxdmTv72MwRBQPv7R1arr4zzZ3Hx4kX88MMPGDNmTNl1b7zxRq3+Dqn23+fA1wAAIABJREFU5J7WSFTvvfzyy4iMjHTps2eioqJQVFSEK1euyF2Ky3vllVcgSRI++OCDGj1fEAQoFQLUSgU83RRQKxVQKoQahdDHHnsMffv2xcyZM1FcXLs57JIkIS4uDg899BB8fX3v/gQisrsnn3yy7L9/+ukniKKIdvePRFHu9bI/Pg0aIii8OS4k7gUAaLxLv3+T9++47dqWU9s3QapCW1YqdzU6j5xQ7jGNtw9a9xqAE7/9XG5b5RPb1iO8XSz8Q8Oq1Ze17q1bt9b65xnZFkdmiGRmPXtmwIABWLFiBR5//HG5S7I5rVYLADh79izCwsJkrsZ1HTp0CMuWLcNnn32Ghg0byl0OBEHA4sWL0b59e7zzzjs1DlgA8Oeff+LMmTP45JNPbFghEdVGs2bNyv47OTkZkiTh41HdKr1WoSrdfCSwSQTunTQLf6z6Esc2r0Vkx26I7jMEnR4YWzbFLCftQpXasvJtGAqVW8UDdNsPGoXTO37F5ROHEdGhK66nXcSVM8cxfO68smuq2ldgkwjMeeZZfLbw34iPj0fv3r0xYsQITJo0iVPMZMYwQ+QA+vfvjylTpmDu3LkYPny4Q7wQtaVmzZrBzc0NSUlJGDBggNzluCSLxYLZs2ejY8eO5d4tlVvr1q3x+uuv480338SECRPQoUOHGrUTFxeHkJAQm0xXIyLb8PD4/wNxRVGEIAiY9tkaKCpZq+fu4VX238OeewedH3wEp3dtRvL+ndjw0SvY+fWn+Oc3W+DXqDGkarQFAG7qyjfQib5vENw0njix7WdEdOhaOsVMoUC7v6eYAahWXx8tWIAZjz+Gn3/+Gdu2bcPTTz+N999/HwcOHOAbdTJimCFyEAsWLMDGjRsxd+5cxMXFyV2OTalUKrRq1YpnzdjRsmXLkJiYeNtF/3J64YUXsGbNGsyYMQP79++vdn0mkwnffvstJk+eDJWKv7aIHFGLFi0gSRICmkQgOKLFXa8PaRWDkFYx6D/9eaQeP4RFjw3DwR9XYNDsV9AgLLJabd2Ou4cXtL3vx18Jv2DY8+/ixLb1iOzUHb7BIWXXVKcvlSCgXbt2aNeuHV577TXs27cPvXr1wqJFizBv3rw7Ppfsh2tmiBxEcHCwS589o9VqGWbsxLrof9q0aXdd9C8Hd3d3LF26FImJifj888+r/fytW7ciOzsbU6ZMsUN1RGQLo0ePhlKpxI4lH+HWUz8kSUJR3g0ApQvzLebyZ7aEtIyBoFDAbDQCKF18r1Aq8ftd2qqK9oNGoSA7C4nrViHz3Cm0HzSq3Ner2pe5WAfRUr7udu3aQaFQoKSkpMr1kO3xLS4iBzJt2rT/Y+++w5q63gCOfxP2ElBRZIh1Edy496izatXWVm0dHVbAWffErXXviaMqjmq19WfVatVq3Vr3xD2poih7B3J/f9BQVETAhJvA+TwPT4Hce+4bG+C+Oed9D2vXrqV3795cvnw5T+094+npyfr16+UOI08aPXo0KSkpzJgxQ+5Q3qp27dr07duXMWPG0KFDBzw8PLJ8bmBgIJUqVcrxEjVBEPSvVKlSTJkyhVGjRhH25BHlGrfGwsaWsH8ece3Qbmp+2oOGPfpy98xRfpsxkorN2lHYoxSalGQu7N6KUmlChaZtASjk/gHN+4zij0VTiMhkrKzwrN8MCxtbfp8/HqXJf9fQyuq1Xlw6wQedR/D5559TtmxZkpOTWb9+PSYmJqLDosxEMiMIBiR9wfS0adOYOHGi3CHpjEqlIjg4mJiYGGxtbeUOJ884c+YMq1atYuHChQZfazV16lS2b99O37592blzZ5Y6pEVERPDbb7+JJRyCYARGjhxJQiF31i1dxJ8rZgFgX9SVMrUb49WoFQDFypanbJ0mBB35g6jQEMwsrShWpjxfL9pM8UrV08Zq/M33FC5eiuMbl791rKwws7DEq2ErLu7ZRulajbAt6PTGMe+6llIBNbyrEN2yJTt37uSff/7B2tqaypUrs2fPHmrXrp3jfzPh/Smk1+fUBEGQ3fjx45k2bRqXL19O6wRm7P7++29q1arFuXPnqFq1qtzh5AkpKSnUrl2b5ORkzpw5YxT1JL/99hvt27dn8+bNdO7c+Z3Hr1y5Ej8/Px4/foyLi0suRCgIwvu4FpbAzocxcoehc+087ChX0ELuMIQMiJoZQTBA6feeySvvN3h6egKIuhkdWr16NWfPnmXJkiVGkcgAtGvXjo4dOzJgwADCw8PfeXxgYCDNmzcXiYwgGAlna+P4XZRdefV55QUimREEA6Tde+bIkSOsXbtW7nB0wt7enmLFiolkRkdevnzJqFGj+Prrr6lbt67c4WTLokWLSExMZNiwYZked+/ePY4dO0b37t1zKTJBEN5XQQsTLEyyv8muIbMwUeBoIW6ZDZX4PyMIBir93jOhoaFyh6MTnp6e3Lx5U+4w8gRjKPp/m2LFijFjxgxWr17NX3/99dbjNmzYgK2tLR06dHjrMYIgGBaFQkHlQpbklXRGAVQpZJmlGj9BHiKZEQQDNnv2bACGDh0qcyS6Idoz68aZM2dYuXIlkydPNvii/7fp1asX9evXx9fXl4SEhDcelySJ9evX07FjR2xsbDIYQRAEQ+Vd2JK8sUAaJKBK4bzTWTQvEsmMIBgwJycnZs2aRWBgIAcPHpQ7nPemUqm4desWKSkpcoditDQaDX379qVSpUr07t1b7nByTKlUsmLFCh48eMDUqVPfePzUqVPcuXNH7C0jCEbI0cKEEnZmRj87owA+sDPD0cKwNiIWXiWSGUEwcN988w0NGzbEz88vw3ewjYlKpSIhIYFHjx7JHYrRWr16NWfOnDGqov+38fLyYvTo0UyfPp2rV6++8lhgYCDu7u40btxYnuAEQXgv1ZyMf3ZGAqo5WckdhvAOIpkRBAOnUChYvnw5Dx48YNq0aXKH815ER7P3oy36/+qrr6hXr57c4ejEyJEjKVOmDL169UKj0QCQmJjIli1b6Nq1K0ql+DMlCMaoVAFzHMyVRjs7owAczJWULGAmdyjCO4i/EoJgBLy8vBg5ciTTpk0z6kSgePHiWFpaiiYAOTRmzBiSk5ONsuj/bSwsLFixYgWnTp1i2bJlAOzevZvw8HDRxUwQjJgCMAk6jkbSyB1KjkhAWw87lKLw3+CJZEYQjMTo0aPx8PAw6r1nlEolnp6eRp2QyeXs2bOsWLGCyZMnU7RoUbnD0SltI4BRo0YRHBxMYGAg1atXp1y5cnKHJghCDty6dYtmzZrh83k7Xpw7DEa24EwB1HCyxM1WzMoYA5HMCIKRyCt7z4iOZtmnLfqvWLGiURf9Z2b69OnY2trSq1cvfv/9dzErIwhGKDExkUmTJlGxYkXu37/P3r17md7zM+zNTYxmuZkCKGCupKGL6KJoLEQyIwhGpGnTpnTv3t2o954RyUz2/fjjj/z99995ouj/bRwcHFi0aBF79+5Fo9HQpUsXuUMSBCEbjhw5QpUqVZg8eTJDhgzh6tWrtGzZEjOlgrYedkYzN6NdXmamNJb0SxDJjCAYmTlz5gDGu/eMp6cnz549IyIiQu5QjEJYWBgjR46kR48e1K9fX+5w9OrTTz/FwcEBU1NTzM3N5Q5HEIQsePnyJT179qRRo0YULFiQCxcu8MMPP2BtbZ12jLutGc3cjGOmo5mbDe5ieZlREcmMIBiZ9HvPHDp0SO5wsk2lUgGIJgBZNGbMGNRqNTNnzpQ7FL27desWERERKBQKRo0aJXc4giBkQruxrUql4pdffiEgIICjR49SoUKFDI+v7mRFg2LWGT5mKBoUs6a6aMVsdEQyIwhGyJj3nilbtiwg2jNnxblz5wgICMiTRf8ZWb9+Pfb29kybNo3ly5dz7NgxuUMSBCED2gL/Hj160Lx5c27cuIGPj887W6nXLWq4CU3DYtbULSoSGWMkkhlBMELavWfu37/P9OnT5Q4nW2xsbChevLhIZt4hfdF/nz595A5H7zQaDRs2bKBTp07079+f2rVr4+PjQ2JiotyhCYLwr8TERCZPnkylSpXSCvw3bdqEs7Nzls5XKBTUc7ZOW3Imd1WK9vrN3Gyo62yNQrRhNkoimREEI2XMe8+IJgDvtmbNGk6fPs3ixYvzbNF/ekePHuXhw4f06NEDExMTVq5cye3bt40uWReEvEpb4D9p0iQGDx6cVuCfE9WdrOhaxp4CMm6qqe1a1rWMvVhaZuQUkrFuWCEIAgkJCVSsWBFXV1cOHTpkNO8qDRgwgAMHDnD9+nW5QzFIYWFhlC1bltatWxMYGCh3OLmiZ8+eHDp0iLt376a9jv39/Zk1axYXL17Ey8tL5ggFIX96+fIlw4cP58cff6Ru3boEBAS8tS4mu9QaicNPYjkbmoCC3NmNRnudGk6WNHSxEV3L8gAxMyMIRky798zhw4dZt26d3OFkmUql4s6dO6jVarlDMUj+/v75pugfID4+nq1bt9K9e/dXEnJ/f388PDzw8fFBozHOXcQFwVi9XuC/fPnyTAv8c8JMqaCZmy1dy9hjb556S6qv1EI7rv2/szFN3WxFIpNHiGRGEIxc+r1nXrx4IXc4WaJSqVCr1dy/f1/uUAzOuXPnWL58OZMmTcryOnRjt2PHDqKjo9/YKNPS0pIVK1Zw7NgxVq1aJVN0gpD/3L59m+bNm9OjRw+aNWvGjRs38PX1fWeBf06525rhU86Rz0oWoIRdaltkXaUZ2nFK2JnxWckC+JRzFK2X8xixzEwQ8oDnz5+jUqlo164da9eulTucd3ry5Amurq7s2LGDdu3ayR2OwdBoNNStW5e4uDjOnz+fL2plAFq3bk1kZCTHjx/P8PHvvvuObdu2ERQURLFixXI5OkHIPxITE5k5cyZTp07FxcWFpUuX0qpVq1yPIzwxhYsvErj4MoHElNTbVKUCNFm4Y01/nIWJgiqFLKlS2BJHCxM9RizISSQzgpBHrF69mu+++46DBw/SpEkTucPJlCRJFChQgLFjxzJ8+HC5wzEYP/74Iz179uTIkSM0aNBA7nByRUhICG5ubixevBg/P78MjwkLC8PLy4uGDRuydevWXI5QEPKHI0eO4Ofnx+3btxk6dChjx459ZeNLOUiSRHiihpC4ZELik3kSqyYkPpnkDFadmirB2coUFxsznK1McbY2xdFCaTS1pELOiWRGEPIIjUZD48aNefbsGZcuXcLS0lLukDJVo0YNKlWqxOrVq+UOxSCEhYXh6elJq1atWL9+vdzh5Jp58+YxcuRInj59SsGCBd963JYtW+jSpYuYzRMEHQsLC2P48OGsXr2aOnXqEBAQQMWKFeUO660kSUIjQbIkkaIBEyWYKhQoFYjEJZ8SNTOCkEcolUqj2ntGtGd+1dixY0lKSmLWrFlyh5KrAgMD+fjjjzNNZAA6depE69at6dOnD1FRUbkUnSDkXZIksWHDBlQqFdu2bWPZsmUcO3bMoBMZSE1YTJQKLEyUWJspsTBRYqJUiEQmHxPJjCDkIeXKlWPEiBFGsfeMSqUiKCgIMTkM58+fZ9myZUycODHfFP0DXLlyhYsXL75R+J8RhULB0qVLiYiIYMyYMbkQnSDkXdoC/+7du/Phhx8SFBSEn5+f3gr8BUGfxKtWyJckSSJZI5GQoiFOrSEhRUOyRsoTN9ajR4+mePHi+Pn5GfTzUalUhIeHG00HNn3RaDT07duX8uXL069fP7nDyVXr16+nUKFCfPTRR1k63sPDgylTprBkyRJOnTql5+gEIe9JSkpiypQpVKxYkbt37/L777+zefNm0VhDMGqiZkbI8yRJIiwxJbWAMC6Zp/8WEmZWQFjMOrV40NnalIIWJkY3fX3gwAGaN2/OmjVr+Prrr+UOJ0NXr16lYsWKHD16lPr168sdjmy0Rf+HDx+mYcOGcoeTa1JSUihevDiffPIJixcvztZ5tWvXJiEhgXPnzmFubq7HKAUh7zh69Ci+vr7cvn2bIUOGMG7cONkL/AVBF0QyI+RZ4YkpXHiRwKX0rR2BrGy9l/44CxMFlQtZ4m1krR27d+/Onj17uHHjBoULF5Y7nDckJCRgY2NDQEAA3333ndzhyCI8PJyyZcvSsmVLNmzYIHc4uWr//v20aNGC06dPU7NmzWyde+nSJapVq8akSZMYPXq0niIUhLwhfYF/7dq1WbFihcHXxQhCdohkRshTNJLE3agkzoUm8CBajQLQxQtcO04JOzOqOVlSqoA5SgOfrdHuPdO+fXvWrFkjdzgZKl26NB06dGD27NlyhyKLfv36ERgYyM2bN/PdMo/u3btz5swZgoKCcjTzOXLkSObPn8/ly5cpW7asHiIUBOMmSRKbNm1i0KBBJCUlMX36dHx8fERdjJDniFe0kGc8jlGz4no4v9yL5mG0GtBNIpN+nIfRan65F82K6+E8jlHraHT9KFKkCLNmzWLt2rX89ddfcoeTofzc0ezChQtpRf/5LZGJiYnh119/pXv37jlewjlu3DhcXV3x9fU16NowQZDDnTt3aNGiBd26dRMF/kKeJ17VgtFTayQOBMew8XYkkUmpi8P0dWujHTcyScPG25EcCI5BnZUtiWXyzTff0KBBA3x9fUlMTJQ7nDfk12RGW/Rfrly5fFf0D/Drr78SFxdHt27dcjyGtbU1AQEB/PXXXwY78ygIuS0pKYmpU6dSoUIF7ty5Iwr8hXxBJDOCUXsco2ZVUDjnQhMA/SUxr9Ne51xoAquCDHeWxtD3nvH09OT+/fsGmWjp07p16zh58iRLlizBzMxM7nByXWBgII0bN8bDw+O9xmnWrBk9evRg6NChPHv2TEfRCYJxOnr0KFWqVGH8+PEMHDiQa9euZblToCAYM5HMCEbrbGg8G29HEpWkybUk5nUSEPXvLM3Z0HiZosicdu+ZH374gZs3b8odzitUKhUajYY7d+7IHUquCQ8PZ8SIEXTt2jVfdS/TCg4O5uDBg1naWyYr5syZg4mJCQMHDtTJeIJgbMLCwujVqxcNGzbE3t6e8+fPM336dNGpTMg3RDIjGB1JkjgeEseB4NjUr+WO59//HgiO5XhInEGu3zfUvWdUKhVAvlpqNnbsWBISEpg1a5bcochi48aNWFhY8Nlnn+lkvMKFCzNv3jw2b97M77//rpMxBcEYSJLExo0bUalUbN26lWXLlnH8+HEqVaokd2iCkKtEMiMYnRPP4jn6NE7uMDJ09GkcJ54Z3gyNlZUVy5Yt46+//iIwMFDucNIULlyYggUL5ptk5uLFiyxbtowJEybkyzXskiQRGBhIhw4dKFCggM7G7dq1Ky1atKB3797ExMTobFxBMFTpC/ybNGkiCvyFfE286gWjcva54SYyWkefxhnkkrNmzZrRtWtXhgwZwosXL+QOBwCFQoFKpTK45W/6oC369/Lyon///nKHI4sLFy5w/fp1evToodNxFQoFy5YtIzQ0lHHjxul0bEEwJOkL/G/fvs3u3bvZsmVLvnxzRBC0RDIjGI3HMWoO/BMrdxhZciA41iCbAsydOxeNRsOwYcPkDiWNp6dnvpiZCQwM5MSJE/m26B9S/w2KFi1K8+bNdT52yZIlmTRpEgsWLODMmTM6H18Q5Hbs2DG8vb0ZP34833//PdeuXaN169ZyhyUIshPJjGAU1BqJXQ+jMextKv+jAHY9jDa4ts1FihRh5syZBrX3jLY9syHV8uhaREQEw4cP58svv6RRo0ZyhyMLtVrNTz/9xJdffompqalerjFw4EAqVapEr169UKsN780EQcgJbYF/gwYNsLOz4/z588yYMQMbGxu5QxMEgyCSGcEoHH4SK2vXsuzSdjk78sTwZpK+/fZb6tevbzB7z6hUKqKjo3n69KncoejN2LFjiY+Pz1NF/5IkkayRSEjREKfWkJCiIVkjvTUp3bdvH8+fP9f5ErP0TE1NWbVqFVeuXGHevHl6u44g5AZJkti0aRNeXl78/PPPLF26VBT4C0IGFFJefjtUyBMex6jZeDtS7jByrGsZe9xtDWtZ0fXr16lSpQpjxoxh/PjxssZy69YtPD09+fPPP/nwww9ljUUfLl68SLVq1Zg1axaDBw+WO5wckSSJsMQUQuKSCYlL5mlcMiHxySRr3jzWVAnOVqYUszbF+d+PghYmdOnShaCgIC5duoRCod851iFDhrBs2TKuXLlCqVKl9HotQdCHu3fv0rt3b/bv30+nTp2YP3++qIsRhLcQyYxg0DSSxIrr4UQa0axMegrA3lyJTzlHlHq+gcsuf39/Zs2axeXLl/H09JQtDrVajbW1NQsXLqR3796yxaEPGo2GBg0aEBkZyYULF4yuViY8MYULLxK49DKBxJTUn0AlkEEO84b0x5kr4dD65TQoUZjh/fz0FO1/YmJiqFChAmXKlGHfvn16T54EQVeSkpKYPXs2kydPpmjRoixdulTUxQjCO4hkRjBotyMT+eVetNxhvLfPShagtL253GG8Ij4+nooVK+Lu7s7BgwdlveHz8vKiRYsWLFiwQLYY9GHdunV8/fXXHDp0iMaNG8sdTpZoJIm7UUmcC03gQbQaBbrZy0mTnIzS1JQSdmZUc7KkVAFzvSb4e/bsoXXr1gQGBupsg05B0Kdjx47h6+vLzZs3GTx4MOPHjxd1MYKQBSKZEQza5juRPIxWG+WsjJYCKGFnRufS9nKH8ob9+/fTokUL1q5dy1dffSVbHJ988glxcXH88ccfssWgaxEREXh6etK0aVM2bdokdzhZ8jhGze6H0UQkaXSWxLxOO66DuZI2HnZ6XYL55Zdfsm/fPoKCgnByctLbdQThfYSHhzNixAhWrlxJrVq1CAgIoHLlynKHJQhGQzQAEAxWeGIKD4w8kYHUG7f70WrCE1PkDuUNzZs3N4i9Z7QdzfKScePGERcXx+zZs+UO5Z3UGokDwTFsvB1JZFLq4jB9/dxpx41M0rDxdiQHgmP01vVv/vz5aDQahgwZopfxBeF9aAv8VSoVW7ZsYcmSJRw/flwkMoKQTSKZEQzWhRcJRtOK+V0UwMUXCXKHkSHt3jPDhw+XLQaVSsWjR4+IjTW87m85cenSJZYsWcKECRNwcXGRO5xMPY5RsyoonHOhqa/P3HrzQHudc6EJrAoK18u+TEWKFGHOnDmsX7+effv26Xx8Qcipu3fv0rJlS7p27UqjRo0ICgqiT58+mJiYyB2aIBgdkcwIBkmSJC69TGD/8pmMqupEbPhLvV9zRpuqbB3fTy9jS8DFlwkGuZeKdu+ZNWvWyLb3jLYBwe3bt2W5vi5JkkTfvn1RqVQMGDBA7nAydTY0no23I2Vte65tY77xdiRnQ+N1Pv7XX39NkyZN8PPzIy4uTufjC0J2JCUlMW3aNCpUqMCtW7fYtWsXP//8s8G/6SEIhkwkM4JBCktMSeuelFckpkiEJ2alD1Tu0+494+fnJ8veM9pkJi8sNVu/fj3Hjx9n8eLFBtu9TJIkjofEcSA4dSZM7p807fUPBMdyPCROp0m/QqEgICCAJ0+eMGHCBJ2NKwjZdfz4capWrcrYsWPp378/165do02bNnKHJQhGTyQzgkEKiUuWOwS9MNTnpVQqCQgI4N69e8yYMSPXr+/o6EjRokWNPpmJiIhg2LBhdOnShSZNmsgdzludeBbP0aeGOUtx9GkcJ57pdoamTJkyjB8/nrlz53LhwgWdji0I7xIeHo6vry/169fHxsaGc+fOMXPmTNGpTBB0RCQzgkEKiUvOlRenJEmoE3S/tCUjSgWExBtmMgNQrlw5hg8fztSpU7l161auXz8vNAEYP368wRf9n31uuImM1tGncTpfcjZ06FDKlStHr169SEkxvGYcQt4jSRI//fQTKpWKzZs3s2TJEk6cOCEK/AVBx0QyIxikp3HJr2zMFxsRxqYRPZnQ4AMmNSnLzlmjUSf+V1B/dscmVvp8wpSmXvjXcmVex3qc2rrmjXFntKnK2gFfcuvEQRZ3bca4Ou6c/mXdW+OIj45k56wxTP+oMv61XJnVrgaH1y5Eo/m345MkMaNNVQIHvbmPhToxgQkNS7J9SmonJY0ET2J1X+SsS2PGjMHd3R0/P79cr+9RqVTcvHkzV6+pS5cuXWLx4sWMHz8eV1dXucPJ0OMYNQf+MY4mCweCY3XaFMDMzIyVK1dy/vx5Fi5cqLNxBSEjd+/epVWrVnz55ZeiwF8Q9EwkM4LBkSTpjRmMn0Z8R3JiIi37+eNZrxknflqZliQAnN62FsdibjT+9ntaD5qIfVEXdkwbzsktq98Y/8XDO2we7Uvp2o1oO3QqLp4VM4wjKT6OFd+15+KebXi36cTHw37Ao0pN/lg0hd1zxgKp6/G9W3/GreN/EhcZ/sr5N478QWJMNFVaf5b2vZD4ZINsAqBlZWXFsmXLOHToEOvXr8/Va3t6enLz5s20RNGYSJJEv3798PT05Pvvv5c7nAypNRK7HkYbTYdABbDrYbRO2zbXqlWLfv364e/vz4MHD3Q2riBopS/wv3nzpijwF4RcYCp3AILwuhQJkl+7n3V0LU6Peak313U698TSxpZTW9fQoHsfipUtj8/KHZhZWqUdX7fLd/zYtxPHNi6nTueer4z18vF9vlm8hbJ1P8w0jmMblxEWfJ/+Px2kcPFSANT67CsKODlzNHAJDbr3wcHZFe+2nTm0eh5X9u+g1mdfp51/4fdtOLoUp4R37bTvJWtSZ2hMDPiOsnnz5nz55ZcMHjyY1q1bU7hw4Vy5rkqlIj4+nsePH+Ph4ZEr19SVDRs2cOzYMf7880+DLfo//CRW1q5l2aXtcnbkSSxN3Wx1Nu7UqVPZvn07ffr0Yffu3SgUBvzDKBiV48eP4+vry40bNxg0aBATJkwQdTGCkAvEzIxgcJIzmLmo3enbV76u06UXADePHwB4JZFJiI4iNvwlJavVJSz4AQnRUa+c6+jq8c5EBuDK/p2U8K6NlZ0DseHJ2CksAAAgAElEQVQv0z5K12yEJiWF++dPAuDkUQr3CtW4+Pu2tHPjIsO5dfxPqnzU8Y2bpYyen6GZO3cuKSkpubr3jEqlAoyvo1lkZCTDhg2jc+fOfPjhu19Xcngco+ZsaILRJDJaEnAmNEGny83s7OxYunQpe/bsYcuWLTobV8i/Xi/wP3v2LLNmzRKJjCDkEjEzIxicjFYZFS5e8pWvC7mVQKFUEv7kMQAPLp7mwPKZPLp8FnXCq8XNCTFRWNoVSPu6oEvxLMXx8vE9Qm5fY0pTVYaPx4a9SPvcu20nds4YSfiTxzi6uHNl/2+kJKvxbtPpjfNu3LqNc0EHHB0dMTc3z1Isua1o0aLMnDkTHx8fevToQePGjfV+zeLFi2NpacmNGzdo2bKl3q+nK+PHjycmJoY5c+bIHUqGNJLE7n+XlxlbMgOpy812P4zGp5wjSh3Nonz88cd8/vnnfP/997Ro0YKCBQvqZFwhf5Ekic2bNzNo0CDi4uJYvHgxfn5+oi5GEHKZSGYEg6PMynxhupual4/vs9qvI04lStNm8CTsnV0wNTPnxrEDHN+4HEl6NTsytbDMUhySRkPp2o1p9FXGG2lql54BVG75CbvnjOXinm006TmIi79vxbVcFZxKlH7jvFo1qpMYGwOk1qg4Ojri6OiIg4NDhp+/7TEbGxu9LpHp2bMn69atw8/Pj0uXLmFhYaG3awGYmJhQpkwZo2oCcPnyZRYtWsT06dMNtuj/blQSEUnGV4ekJQERSRruRakpba+75H/BggV4eXkxbNgwVq9+s7ZOEDJz7949+vTpwx9//MFnn33GggULRF2MIMhEJDOCwTHN4Ab9xaN7FHT9r47i5eP7SBoNji7uBB35g+SkRHrM24BDMbe0Y+6eOfZecRR0K0FSXCylazV657HW9o6o6jfn4p5fqPLRZzy89Ddthk7J8Nh9e/cQGR5O+L8fERERr3z+4MGDV74fG5tx9ylTU9NsJ0Daz+3t7d/57qF275kqVaowY8YMxo0b9+5/tPdkTO2ZJUmib9++lC1b1mCL/gHOhSYY7ayMlgI4Fxqv02SmWLFizJo1Cx8fH7p162bQ+wIJhkOtVjNnzhwmTpxIkSJF2LlzJ23btpU7LEHI10QyIxgcEwWYKl9tAnDq5x8pW+e/m42Tm1cC4FmvaVrtSvouYQnRUZz77af3iqNi8/b8GTCTWycOvlFjEx8dibmVDSam//0Iebf5nA1Dv2bPggkoTEyo3PKTN8Y0VUKDevWyNaOSlJRERETEG0lPeAYJUWhoKLdv3077fmRkZIbd0xQKBQUKFHhn0uPo6EjHjh2ZMmUKNWrUoGrVqnpdHqdSqVi1apVexta1jRs3cuzYMQ4cOGCwywXDE1N4EG3Y7cCzQgLuR6sJT0zB0UJ3S3h69uzJ+vXr8fHx4fLly1hZWb37JCHfOnHiBL6+vgQFBYkCf0EwIEaVzEiSlNrpSpLQaFKXI5kqFJgoEB1p8hCFQoGzlSnBsf+1Zw7/5xGBA7tRpu6HPLp8lou/b6XyRx0pVrYCpuaWmJiZEziwGzU79iApPpa/f12PbcHCRL94luM4GvboS9Dhvawb2JVqH3fB1asySfFxhNy5ztUDOxm+6zw2joXSjvds0Bxrh4Jc2f8bZes1xbag0xtjOluZZvu1am5uTpEiRShSpEi2n4NGoyEqKuqts0Cvf/7PP/+88rVa/d+NcOvWrdM+19fyOJVKxdOnT4mKiqJAgQIZHmMIIiMjGTp0KJ06daJp06Zyh/NWF14Y/6yMlgK4+CKBJq66u3lUKpWsWLGCypUrM2XKFKZOnaqzsYW8Izw8nFGjRhEQEECNGjU4e/YsVapUkTssQRD+ZbDJjCRJhCWmEBKXTEhcMk/jkgmJT36jZS+kvtvtbGVKMWtTnP/9KGhhIhIcI1bM2pQn6ZKZL6avZP/y6fyxaDJKE1PqdO7JRwMnAOBUojRdZ/7IvqXT+H3+BOwKFaHWZ19j41iIXybmfPmPuZU1Pqt28Nfq+Vw58Bvnd/2MpY0dhT1K0sxvBJa2r95sm5qZU6l5e05tXZNh4b9SAS42udu2V6lU4uDggIODAx988EG2zpUkibi4OCIiIti9eze+vr4MHDgQb2/vDBMi7fI47fezujwufaKTmJgIwIwZM/D29n7juAIFChhEce2ECRMMuugfUv//XXqZ8w5mM9pUpWgpFV8v3KTTuHJKAi6+TKCxi7VOf7erVCrGjBnD5MmT6dKlCxUrZrzvlJD/SJLEli1bGDhwIHFxcSxatIjevXsbxO8gQRD+o5AMbAe/8MQULrxI4NLLBBJTUkNTAlkpX01/nIWJgsqFLPEubKnTZQlC7rgWlsDOhzFyh5Ftu2b7c3bHRkbvu4a5lfUbj7fzsKNcQf0W0utL165d2bdvHzdu3KBQoULvPF67PC6zGaGMvn7w4AEKheK9l8dl9LUuloNduXIFb29vfvjhh1xtXZ1dLxOSWRkUkePz5UxmDq2eR5GSnpRv0vqNx3y8HCloqdvf6UlJSXh7e2NnZ8fx48fFzarwSoF/x44dWbBggcE2+RCE/M4gZmY0ksTdqCTOhSbwIFr9xrKIrPbhSX9cYorEmefx/P08nhJ2ZlRzsqRUAXOdtfYU9MvZ2iBemtmiTkzg4u/bqPBh2wwTGTDO56U1d+5cVCoVw4cPz1L3p5wuj3N3d6d79+4MHz78rUnP659rl8dpP5KTkzMc+23L47KSHGnXxvft25cyZcowcODAbD2v3BYSl/G/gTH468f5VGj2cYbJTEhcss6TGXNzc1asWEH9+vVZtmwZ/fpl3MFQyPteL/D/7bff+Pjjj+UOSxCETMh+Z/U4Rs3uh9FEJGnQphm6mirSjvMwWs2DaDUO5kraeNjhbmuYO3QL/yloYYKFiSJtds6QxYSFcuf0Ea4e2ElcZBh1v/TJ8DgLEwWOFsa7T+3re880avTuLm85oVKpuHnz5nsvj8vqjND9+/e5cOFC2vfj4uIyHNfU1BQrKyuio6NRqVS0a9cuy7NDciyPC4lLzvKstrFQKiAkPply6H52s169evTu3ZtRo0bRvn173N3ddX4NwbClL/AfOHAgEyZMwNbWVu6wBEF4B9mWmak1EoefxHI2F9uGaq9T3cmSRi42mCnFLI0hO/hPLGeexxt88fK9s8dZ6dMB24JONPluMHW7fPfGMQqgZhErnRYvy0Gj0dCwYUNevnzJxYsX9bL3TP/+/Tl48CDXrl3T+dhZkX55XPqk58mTJ0yYMAEXFxcaNGiQYXL0Pt3jMnssJ8vjNtyKIDg2mae3rrGwS2O6z1tPuUatAPjn+iUWd2uGi6oi/TcdTDtnTb/OxEVF0Dfwj7RlZo2/GcDuueMIuX0dOydnmvkOo2rbzq9cKz46kgPLZ3Lt4C5iwl5gX9SFmp92p0GPfijTbRx1JHAJ1w7uJvThHdQJ8RT5oCyNv/2eis3apR0zquqbjTOqftyZzycuBsDNxpRuZR2y/e+RFZGRkZQrV45q1aqxY8cOUXeZT0RERDBq1CiWL19OjRo1CAgIwNvbW+6wBEHIIllmZh7HqNn1MJqofzdyy62bVe11zoUmcDsyibZilsageRe25O/n8XKH8U4lq9dj2vnQTI+RgCqFs7ZZpyFLv/fMzJkzGTt2rM6voVKpWLFiBcnJyZia5v6vqLctjxs8eDCSJPHnn3/i5uaW4bkpKSlERUVluUYoJ8vjsrIkzsHBkacpzoCCoqW9sLSz58H5k2nJzP0LJ1EolTy9dY2EmGgsbe3QaDQ8vHyGmp/0SLtuWPB9Ng7/lurtu1K1bWfO7tjEtvH9cfWqTNFSKgCS4uNY8V17okKfUvPTHjg4u/Hw8t/8sWgKUaHP+HjYfx3CTvy0Aq+GLanyUUdS1Gou7dvOpuE9+WrBRlQNWgDQafJSfp08CLfy3tT8NDWWgm4l0sYIiU9GkiS9JBr29vYsXryYTz/9lF9++YXPPvtM59cQDIckSfz88898//33osBfEIxYrt8pnA2N50BwrKztQiUgKknDxtuRNHOzobqT2FvAEDlamFDCzoyH0WqDn53JjAIoYWeWZxpRlC9fnuHDhzN16lQ6d+5M2bJldTq+p6cnSUlJPHjwgNKlS+t07Jy6cuUKCxcuZOrUqW9NZABMTEzSEov3WR6XlSVy9+/f5/z582mPpV8eZ2JmzpTT/wCpCahH5Zrcv3Aq7fEHF05RrvFHBB3ey8NLf+NZrykht66SGBNNiaq1044LfXAHn1W/8UHVOgBUbNGeGR9V4dxvP9F60EQAjm1cRljwffr/dJDCxUsBUOuzryjg5MzRwCU06N4HB+fUwukh209hZvnf79s6nXuyqGtTjm1YnpbMeLf5nP/9MJSCbh54t/n8jX+nZA1opNT9qPThk08+oUOHDvTv359mzZrh4KCfWSBBXvfv36dPnz7s3btXFPgLgpHLtWRGkiROPIvn6NPUP7hy35xqr38gOJbEFIm6Ra3EkgIDVM3J0ug3/ZOAanksYfb392fz5s307t2bAwcO6LxVLsCNGzcMIpmRJIl+/fpRunRpBg0apLfrKBQKbGxssLGxyTRhepv0y+NCwyM5lu6xD6rWZt/SaSTFx2JuZcPDi3/Tot9oIp4G8+DCqdTNZy+cQqFQUKJKrbTzipT0TEtkAGwdC1PYozRhwQ/Tvndl/05KeNfGys6B2PCXad8vXbMRh9cs5P75k3i3Tp3hSJ/IxEdFoElJoYR3bS7t/TVbzzVZkjBBf7+vFy9ejJeXFyNGjCAgIEBv1xFyn1qtZu7cuUycOBEnJydR4C8IeUCuJTPpExlDo42rnnPGHagE+ZQqYI6DuZLIJI3sCXBOaFJSCH/yiMETpjBzxoy0G3VjZ2VlxbJly2jZsiUbNmyge/fuOhvb1dUVGxsbbty4Qdu2bXU2bk5t2rSJI0eOsH//fp20dtaX9Mvj3NUajl0NS3ushHdtNMnJPLp8FvuirsSEhVLCuw7P7t7kwb8zNg8unKJISU+s7R3TztPOqKRnVcCe+Oj/Wj6/fHyPkNvXmNI049d2bNiLtM+Djuzj0Kq5PL11leSkxLTvZzcZTtEAepzodHV1Zfr06fTt25du3brRoEED/V1MyDUnT57Ex8eH69evM2jQIFHgLwh5RK4kM2efG24io3X0aRwWJgqx5MzAKBUK2njYsfF2pNyh5IjSxIQK0ku2Xb5MhQoV8PPzY/z48Tg5vVnkbGxatGjBF198weDBg2ndunWW9p7JCoVCgUql4saNGzoZ731ERUUxdOhQPv/8c5o1ayZ3OFmmfK1pnmu5KphaWHL//EkcnF2xLeiEk0cpPvCuzemta0hOSuTBhVOUb9LmlfMUyowzhvRNDiSNhtK1G9Poq4zbGWuXnt0/f5L1g7pRomod2o+cgZ1TUUxMzTj7209c2vNLtp6fSS40BfTz82Pjxo34+PjordmFkDu0Bf4BAQFUr16ds2fPigJ/QchD9P4n4XGMmgP/ZLwTuKE5EBzL4xjjXtKUF7nbmlHdyVKPi0r0QwHUcLLkq/atCAoKYtq0aWzYsIHSpUszc+ZMEhIS5A7xvc2dO5fk5GSdbx7p6enJzZs3dTpmTkyYMIGoqCjmzJkjdyjZYvraTIepmTnu5b15cOEU9y+cooR36lKyEt61SU5K5OLv24h5GUqJdEvKsqqgWwmS4mIpXatRhh8OxVKXzF39cxemFpZ8u+Rnqnfoime9ZpSu9Zb23u+YqXn9+emDUqlkxYoV3L17l2nTpun9eoLuSZLEli1b8PLyYuPGjSxYsICTJ0+KREYQ8hi9JjNqjcSuh9FGcxOqAHY9jEatMcYFTXlbIxcbCpgrjeq1VMBcSUOX1FbMlpaWDBs2jDt37tCjRw/GjBmDl5cXmzdvzrCVr7FwdnZmxowZ/Pjjjxw+fFhn4xrCzMzVq1dZuHAhY8eONbo9R0wUYPrab/cS3rV5fPU8984ep4R3apG/jWMhinxQlsPrFgHwgXft14d6p4rN2/Po8hlunTj4xmPx0ZGk/NuhTWliAijQpKSkPR7+5BHXD+154zxzK2sSoqMyvJ6pMnW/mdxQvnx5Ro4cyQ8//MD169dz56KCTty/f5/WrVvTpUsX6taty/Xr1+nfv7/oVCYIeZBek5nDT2KJMqJaB22XsyNPjGMmKT8xUypo62FnVK+lth52b+xlVLhwYRYtWsTVq1epVKkSX3zxBXXq1OHEiRPyBKoD3333HXXr1sXPz4/ExMR3n5AFKpWKFy9e8OLFi3cfrAfpi/4HDx4sSwzvQ6FQ4Gz16iriEt61USfEExnyT1oyA1Ciah1ePLyLo0tx7Iu6ZPtaDXv0xUVViXUDu/Lr5EGc3raWo+uXsnV8P6a3qkRCdOoSUVX95qgT4ljTrzOnt63lzxWzWdqjFYXc3+z65upVmTunD3N0wzIu/bGdR1fOpT3mbGWaq81aRo8eTcmSJfHx8UGjyUtbkOZNarWaGTNmUL58ea5du8aOHTv45ZdfctRUQxAE46C3ZOZxjJqzoQlGc/OpJQFnQhPEcjMD5G5rRjM349h0spmbTaZ7GHl6erJjxw4OHTqEWq2mXr16fP7559y9ezcXo9QN7d4zd+7cYebMmToZU9soQa6lZj/99BOHDx9m0aJFBl30n5li1qav/IL3qFwTpYkJFja2FCtbIe372sSmRA5mZSB1FsVn1Q4adu/LvbPH2TlrDIfXLOTlo3s08xuBpW0BAErVbEDHcfOJfvmcXbP9ubT3V1oNGEv5Jq3fGLPN4Mm4elVm/9JpbB7lw+lta4DUGRkXm9zdG8zS0pKAgACOHz/OihUrcvXaQvacPHmSatWqMXr0aHr37s3169dp167du08UBMGoKSQ9rHHRSBIrrocbbQcqBWBvrsSnnCNK0a7Z4BwPiTPohhINillnqzOeRqNhw4YNjB49mufPn9O/f3/8/f1xdHR898kGZPTo0cydO5fLly+/994zCQkJWFtbs2rVKr799lsdRZg1UVFRqFQq6tWrx9atW3P12rp0LSyBnQ9j5A5D59p52FGuYO4X4/fq1Yuff/6ZoKAgXFyyP4Ml6E9ERASjR49m+fLlVKtWjYCAAKpWrSp3WIIg5BK9zMzcjUoiwkgTGUidnYlI0nAvSszOGKK6Ra1oUMww22g3LGZN3aLZ64inVCrp0aMHt27dYty4cQQEBFC6dGkWLFhAUlKSniLVPX9/f1xdXendu/d71wFZWlpSokQJWepmJk6cSGRkJHPnzs31a+uSs3Wu74mcK+R6XjNnzsTKyor+/fvLcn3hTZIk8fPPP+Pl5cX69etZsGABp06dEomMIOQzeklmzoUmGE2h9tsogHOh8XKHIWRAoVBQz9k6bcmZ3K817fWbudlQ19k6x+v5ra2t8ff3586dO3Ts2JHBgwdToUIFtm/fbhRNAqytrVm6dCkHDx5k48aN7z2eHE0Arl69yoIFC4yy6P91BS1MsDCR+6dDtyxMFDha5EJf5gw4OjqycOFCfv31V/73v//JEoPwn/v379OmTRs6d+5MnTp1CAoKEgX+gpBP6fyvQnhiCg+i1UY7K6MlAfej1YQnprzzWEEe1Z2s6FrGXtYuZ9quZV3L2OtsjyJnZ2dWrFjBpUuXKFmyJJ9++imNGzfm7NmzOhlfn1q2bMkXX3zBoEGDePny5btPyERuJzPaov9SpUoZZdH/6xQKBZULGV9L87dRAFUKWeZq8f/rPv/8c9q2bUu/fv2Iisq425qgX2q1mpkzZ1K+fHmuXr3Kjh07+PXXX0WBvyDkYzpPZi68MP5ZGS0FcPGF8e8Fkpe525rxnZcj1ZwsgdybpdFep7qTJd95OWZa7J9TFSpUYO/evezdu5ewsDBq1KhBt27dePTokc6vpUvavWdGjBjxXuOoVCru3buXa0vtNm/ebPRF/6/zLmxp9G8saUlAlcKWssagUChYsmQJkZGRjB49WtZY8qNTp05RrVo1Ro0ahZ+fnyjwFwQB0HEyI0kSl17qpoPZgeUzGVVV3l3SJeDiywSjWOKTn5kpFTRzs6VrGXvszVNf0vpKarTj2v87G9PUzfaN9su61rJlSy5cuMCKFSs4cOAAnp6ejBkzhujoaL1eN6e0e8+sXr2aI0eO5HgclUpFSkpKrnR4i46OZsiQIXTs2JEWLVro/Xq5xdHChBJ2Zkb/BpMC+MDODEcL+ZcQFS9enKlTp7J06VJOnjwpdzj5QkREBH369KFu3bqYm5tz5swZ5s6di62trdyhCYJgAHSazIQlppCYkrdu/BNTJMITxd4CxsDd1gyfco58VrIAJexSZ0p0dROnHaeEnRmflSyATzn9zMa8jampKb169eL27dsMHTqUefPmUbp0aZYvX07yv5sSGhLt3jO+vr453nvG09MTIFeWmuWVov+MVHMy/tkZCaimo2WcutC3b19q1KhBr169jKpJh7F5vcB//vz5nD59WhT4C4LwCp0mMyFxurupavLdYCadfKyz8d6HLp+XoF9KhYLS9uZ0Lm2PbzlHahaxeqUIOquTKOmPszBRULOIFb7lHOlc2p7S9uaytey2s7Nj8uTJ3Lp1i1atWtG7d28qV67M77//blAziOn3npk1a1aOxihSpAgODg56T2auXbvGggUL8Pf3p3jx4nq9lhxKFTDHQca6svelABzMlZQskLv7y2TGxMSElStXcvPmTZ3trSS86sGDB7Rt2/aVAv8BAwaIAn9BEN6g031m/gyO4VxoAu87j5EUH4u5lWFsjqhUpBaaf+hqGPEI2SdJqbNrIXHJhMQn8yRWTUh8MskZvFBNlak7jLvYmOFsZYqztSmOFkpZi44zc/78eYYMGcJff/1Fs2bNmDNnDpUqVZI7rDTavWeuXLlCmTJlsn1+nTp1KFu2LOvWrdNDdKmvjQ8//JB//vmHK1euYGGR+/uX5IbHMWo23o6UO4wc61bGHrdcnAnNqlGjRqXtraSdSRTej1qtZv78+YwfP55ChQqxePFi2rdvL3dYgiAYMJ0mMxtuRRAcm71ZjAPLZ/LnilkM3HaMQ6vmcvP4nzi6uFOu0Uf8uWIW086HvnL8hd1bObF5Jc/u3sDEzBzn0l40+W4wZes0STvm5vED/LV6Pv/cuIJCqeCDqnX46PvxFC2lytHzcrMxpVtZhxydKxgmSZLQSJAsSaRowEQJpgoFSgUGm7i8jSRJ7Ny5k2HDhnH79m2+/fZbJk+eTLFixeQOjbi4OCpUqEDJkiXZv39/tv9tv/nmG4KCgjh16pRe4tu8eTNffPEFe/fupWXLlnq5hqE48O+bTYYzf/duClKbbDR1M8zaiPj4eCpWrIibmxsHDx5EqZSnbXRecerUKXx9fbl69Srff/89EydOxM7OTu6wBEEwcDr7zStJEiHxOV+OtWl4T9QJ8bTsN4Yan3TP8JgDAbP4eWwfTExNaeY3gmZ+w7F3duXemaNpx5zf9TPrBnyJubUNrQaM5cPvhvD83i2Wf9uW8Cc56wIVEp9sUEt4hPenUCgwUSqwMFFibabEwkSJiVJhdIkMpD6Xdu3acfXqVRYuXMj//vc/ypQpw6RJk4iNjZU1Nu3eM3/++WeO9p7RtmfWx8+ftuj/008/zfOJDEAjFxtZ25hnl7bteUMXw50Vt7KyIiAggMOHD7NmzRq5wzFakZGR9O3bl7p162JmZpZW4C8SGUEQskJnyUyKRIbLdrKqWNnydJ8bSO3Pv6FOp2/fePzFo3scXDmb8k3a4LN6Fw179KXeFz50mbqclv3HApAYF8POWaOp3qEb3yzeQt0u39Ho6/70XrcHJIlDq+fnKLZkDWhELiMYODMzM/r168edO3fo06cPU6dOpWzZsqxZs4aUFPn2S2rVqhVdunTJ0d4znp6eREZG8uzZM53HNWnSJMLDw5k3b57OxzZEZkoFbT3sjGZmRgLaetjpvVvg+2ratClff/01Q4cOJSQkRO5wjIokSWzduhWVSkVgYKAo8BcEIUd0lswkv+c7p7U6fpXp49f/2oOk0fChz5A3pvK176bfOXWYhOhIKrf6lNjwl2kfSqUJ7hWqcu/ssRzH977PTxByi4ODAzNnzuTGjRs0aNCAb7/9lurVq3Pw4EHZYpo3bx5qtTrbe8+oVKlLQ3XdBOD69evMnz8/zxb9v427rRnN3Ax3piO9Zm42udox8H3Mnj0bMzMzBg4cKHcoRkNb4N+pUydq167N9evXRYG/IAg5orNkRvOeVf+Orh6ZPh4W/ACFUkmRkm8vsnzx6B4Aq3w/YUpT1Ssft0/9RUz4ixzHlyK6MwtG5oMPPmDz5s2cPHkSKysrmjZtyscff5wrrY5fl9O9Z0qVKoWpqalOY5YkiX79+vHBBx8wZMgQnY1rLKo7WdGgmLXcYWSqQTFrqhtQK+Z3KVSoEPPnz2fLli3s3r1b7nAMmlqtZtasWZQvX57Lly+zfft2tm/fjru7u9yhCYJgpEx1NdD71j2aWbz/zs6SlJpxdJq8FLvCRd54XGmS86erVIiZGcE41a5dm+PHj7Nt2zZGjBhBhQoV8PX1ZcKECTg55d7GtL169WLdunX4+vpy8eLFLHUOMzMzo1SpUty8eRNJklKXs0oSGk3q7xxThQKTbDZt+Pnnnzl06BB79uzJs93L3qVu0dRE4ejTOJkjeVPDYtbUKWo8iYzWF198QWBgIL179+b69etiQ8cMnD59Gh8fH65evcqAAQOYNGmSqIsRBOG96SyZMdVz4XRBtxJIGg3P793ExbNihscUcisBgE3BwpSu1Uin1y/q5ISbSzHc3d1xd3enePHir3zu5uaGlZXx/QEW8geFQsHnn39Ou3btWLx4MZMnT2bDhg2MHj2a77//HkvL938z4V20e89UrVqVWbNm4e/v/9ZjJUkiLDGFkLhkWvQfi6VLCeZcfplpO2HOgEgAACAASURBVO1i1qmttJ2tTSloYZJhghMdHc3gwYP55JNPaNWqlS6fnlFRKBTUc7bGwkTBgeBYFCBrLY32+s3cbIxqRiY9hULBsmXLqFChAv7+/syfn7MazbwoMjKS0aNHs2zZMry9vfn777+pVq2a3GEJgpBH6Kw1syRJb73ZyIy2NbP/nzewcSz0xve1rZlfPLrH3E/rUK7RR3w568dX6mYkSUKhUJAQE8301pVx8axIz6XbMDF7db11TPgLbB0LZ/u5KTQpKA+tJ/jxYx4/fsyjR494/Pgxz58/f+W4woULZ5joaD93cXHB1FRn+aMg5NjLly+ZNGkSS5cuxdXVlWnTptGlS5dc6eY2atQo5s2bl+HeM+GJKVx4kcCllwkkpqT+apI0KaB4914/Skjb48rCREHlQpZ4F7bE0eK/NfjDhw9n8eLFBAUF4eGR+dLW/OJxjJpdD6OJStLIktBou5a19bAzmhqZzMyZM4dhw4Zx6tQpatasKXc4spIkiV9++YUBAwYQHR3NlClT6Nu3r/g7KAiCThnMPjPvSmYA9i+bzsGVc/CoXIPyH7bFxMyc4OsXKODkTKt/O5pd3PMLP4/tQ5GSnlRu0QEbx8JEhARz49h+PCrXpP3IGdl+Xm/bZyYhIYHg4GAev5bkpP88Kioq7XilUomLi8tbZ3fc3d1xcnIyyvbAgnG6desWI0aM4H//+x81a9Zk7ty51KtXT6/X1O49U6pUKfbt24cE3I1K4lxoAg+i1TqbJdCOU8LOjGpOliQF36VKlcpMmDCBMWPG6OAKeYdaI3H4SSxnQxNybZZGe50aTpY0dLEx+K5lWZWcnEytWrVITk7m7NmzmJkZf4KWEw8ePKBfv37s3r2bDh06sHDhQlEXIwiCXuj07ZFi1qY8iU1GX7XyzXuPxNGlOCe3rGLfkh8ws7TCuUw5qrbplHZMlY86UsDJmb/WLOBI4BKS1UkUcHLmA+/aVG/3ZbavqVSAi03Gf4wsLS0pXbo0pUuXfuv5UVFRb010zp8/z+PHj0lMTEw73sLCIi3BeT3h0X5doECBbD8PQchI2bJl2b59O4cPH2bw4MHUr1+fjh07MmPGDEqVKqWXa2r3nvnoo49Ys/13kjzrEJGkSdv/RFc30tpxHkareRCtJu6Fhlot2zF06FAdXSHvMFMqaOZmi6eDBbsfRqf9/9BHUqMd195cSZs8MhuTnqmpKStXrkx7cyC7HfyMnVqtZsGCBYwfP56CBQuyfft2OnToIHdYgiDkYTqdmbkWlsDOhzG6Gs5gtPOwo1xB/RQKS5JEaGhoprM7T548QZOuXVyBAgUyXc7m5uaWKzUQQt6i0WjYtGkTo0aN4tmzZ/Tr1w9/f38KFiyo82upNRIjV2+jcLVGKBXKXJkJSElJxkRpQvUiVjTKQzMBuqaRJO5FqTkXGs/96CRSklMw0cGyIG0S84GdGdWcrChZwAxlHp6FHjZsGIsXL+bKlSuZvuH1NrpqeJGbTp8+ja+vL1euXKF///5MnjxZFPgLgqB3Ok1mXiYkszIoQlfDGQwfL0cKWsrX+z45OZknT55kmPBov37x4tW200WKFMl0OVuxYsVEP38hQ/Hx8cybN49p06ZhZmbGuHHj6NOnD+bm5joZX1ujEZmUAjLsR5/XajT0acHKNewLekTTHn1J+vcvhVKRtU2E0x9nYaKgSiFLqrxWw5SXxcbGpi2n3L9/f6YJSPqGFyFxyTyNSyYkPvm9G17klsjISMaMGcPSpUvx9vYmICCA6tWryxaPIAj5i06TGUmSmH8lLK1wNy+wMFEwsGJBg30nTCs+Pp7g4OAMZ3a0n8fE/DdrZmJigqur61uXtBUvXpxChQoZ/PMW9OfZs2eMGzeOVatWUbJkSWbMmMEnn3zyXq+Js6HxonuWEalfvz4ODg7s3LmT8ERN6s12fDJPYtXvvNl2sTHD2Sr1ZtvR4t0NHPKiP/74g1atWrF27Vq++urNjaEzaniRvpFFZrLS8ELf0hf4R0VFMWXKFPr16ycK/AVByFU6TWYADv4Ty5nn8bLeqOiKAqhZxIomrsaxY3ZmJEkiMjIy0+VswcHBJCUlpZ1jaWn51rod7ediCUHed/XqVYYNG8bevXtp0KABc+bMoUaNGtkaQ5IkTjyLN8h9TRoUs6ZuUat8ebOdmUePHuHh4UFgYCDdu3d/43FJktD8uwwqRQMm/y6DUhrwMig5dOvWjT179nDjxg2cnJzQSFKuNLwoVcBcr8v40hf4t2/fnkWLFokCf0EQZKHzZCY8MYWA6+G6HFJWvuUc882yCI1Gw/PnzzNNeJ4+fUr6l4yDg0OmzQpcXV3z7caEec2+ffsYOnQoV65c4csvv+SHH37Icnvj4yFxBpnIaDUoZk09Z2u5wzAos2fPxt/fn+fPn4umI+8hNDQUlUrFRx99xLTla3KtwYKDnhosJCcnM3/+fMaPH4+joyOLFy8WBf6CIMhK58kMwOY7kTyMVhv17IyC1He4Ope2lzsUg6JWq3ny5Emmy9nCwsJeOado0aJvbVZQvHhxihYtKup3jERKSgpr167F39+f8PBwBg0axKhRozK92T37PJ4D/8TmYpQ5I5acvapGjRoUL16cX375Re5QjN7awPVsu/yQ+l/6olAocrX1dXUnS501vPj777/x8fERBf6CIBgUvSQztyMT+eVetK6HzXWflSxAaXvdFD3nJ7GxsWn777wt6YmN/e/m1tTUNK1+521JT8GChl+3lJ/ExMQwc+ZMZs+eja2tLRMnTqRXr15vrJV/HKNm4+1ImaLMvq5l7EVTAODOnTuUKVOGLVu20KlTp3efILyVtuFFREIyinSbPecWXTS8iIyMxN/fnyVLlogCf0EQDI5ekhmNJLHiejiRMu0o/b4UpO6B4FPOMU+3DpWLJEmEh4dn2p0tODiY5OT/NmC1trbOtFmBu7s7NjbGX9tkbIKDg/H39ycwMBCVSsWsWbNo3bo1CoUCtUZiVVC4bDvLZ5f2pu87L8d837b5hx9+4IcffuDZs2fi5+o9GHvDC0mS+PXXXxkwYACRkZGiwF8QBIOkl2QGjO8d2dd1K2OPm3iHVjYajYZnz55lupwtJCTklXMcHR0zbVbg6uqqs/bCwqsuXLjAkCFDOHToEE2bNmXOnDmEFirFudAEo0hktBSkLstp6mYrdyiyqlSpEuXLl+enn36SOxSjlBcaXjx8+JB+/fqxa9cu2rVrx6JFiyhevHguRSkIgpB1ektmAA4Ex4ibGUFvkpKS+OeffzJdzhYe/l8zCoVCgbOzc6Yd2ooWLYpShqUgeYEkSezatYthw4aRZO1Ir1W/Ge3SwPy83Oz69euUL1+e//3vf7Rv317ucIySMTe8SE5OZsGCBYwbN04U+AuCYBT0msyIZSaC3GJiYjJdzvb48WPi4+PTjjczM8PNzS3TDm0ODg5Ge5OeGxKTkph/7gkpZlYojbCxQ35fZjp+/HgWLFjAs2fPRCfCHDDmhhd///03vr6+XLp0Ka3AX3SyEwTB0Ol14auZUkFbDzujWW4mAW097EQik4fY2tri5eWFl5dXho9LkkRYWFiGMzsPHz7k2LFjBAcHk5KSknaOjY1Nps0K3N3dsbbOv21+H8VLSJa2GOv8lgREJGm4F6XOdw1AJEli8+bNdOjQQSQyOfA4Rm0UiQzAgeBYilqZ4m5rRlRUFGPGjGHJkiVUqVKF06dPZ3svKUEQBLnodWZGS1sEaehEa1YhIykpKYSEhGS6nO3Zs2evnFOoUKFMmxW4uLhgZpY3lzGJ1uzG68KFC1StWpU9/2fv3uNyvv8/jj+uzqGIIpJDDhvmUA5dKOecQk4pZ2OzGcbMaRvGZgwzZzPmOKYctyimMCSxnM35rCVySqXzdf3+6Fs/JhRXfbour/vtttvo+lyf9/MKV5/X9X5/Xu8dO2jbtq3ScfSKvq5EsL2wj5HDhxEbG8u3337L8OHD5QZ/IYReyZd3rHp2liSnawv8GmIpZER2jI2NcXBwwMHBAbVane0xycnJWe2o/1vo7Nu3j1u3bhEb+/8zlEZGRpQuXfqlHdrs7Oz07v6dh8npXI9LVTrGG9MC1+JSeZic/tZsmgvg7+9PiRIlaNmypdJR9M6+qAS9KWTgfzOQSWkEHjxD3bp1WbhwodzgL4TQS/kyMwMFu7tLk9KFaJiD7i5CvInHjx9ne8/O079OTk7OOt7MzIyyZcu+tENb0aJFC9Tf2z3/JvD33US9uaB7GRXQoKQlzR3ejtbEWq0WJycnWrduzc8//6x0HL2i1907tdqMhhdWb9eSSiGE4ci3YiaTvvfdFyKvaLVa7t2799LlbP/++y8ajSbrOVZWVi9dzla2bFksLfPn77dWq2Xu6QckpytfyszwdMGpXiO8pyx8o/OYG6sYWfPt2LD18OHDqNVq9uzZQ/PmzZWOozdkXzUhhFBWvi+MrWdnSSlLE7bfiFNsSl4XOyILoWsqlQo7Ozvs7OxwcXHJ9pi0tDRu376dbXe2o0eP8vvvvxMTE/PMc2xtbV/YrKBcuXKULl1aJ2vkHySnF4hCRpeS07U8TNZQ3MLwl5r5+flhb29PkyZNlI6iV648TuFRiubVBxZQb3PDCyGEYcj3mZlMqRot+6ISiIhJyrdZmsxx6ttZ0KRMYelaJgxSYmLiC+/fyfx9XFxc1vFGRkaUKVPmpR3a7OzsXjk78c+DJLbdiM/rl5cjaSnJqFRGGOugyUKn8lZUL27Ynb00Gg2Ojo5069aN+fPnKx1Hr0jDCyGEUJZiLUtMjVS0KluEd4qZE3gjjkcpmjwrajLPW9TMCE+ZjREGztLSkipVqlClSpUXHhMbG/vC5WwRERHcunWLlJSUrOMtLCyy9t950T080U+MMAJ0/Rm1RqMhPTUFU3OLHD/HxEw3xYeRCqIT06iOYRczoaGhREVF4ePjo3QUvSINL4QQQnmKzcw8TaPVcvVxKkdjErkWl6qzoibzPBWtTKlrZ4mTtamsCRYiBzQaDTExMS9tVnD79u1n7t/5ZFUQZWvWe+kMztWIgwTN+Zo7V85jXbI0TfoNI+7eHXYvncX0YxnL475wsUPdYyDlatXnrxVzuXfzCr1mLKdG8/bsX7OIf/YEEnPjMqlJiZSsWJVmA0dQs1WnZ8b57z0zRwPWs2nyp3y0Yjtndm/nROBGUpISqdKwGV0mzKaIje0LM5ctbEKfqsXe5NtZ4H3yySds376d69ev610HPSVJwwshhFBegWgmb6RSUbmoGZWLmvEwOZ0T95I4cT8pa/29kQo0Ofhp8fRx5sYq6pSwoI6thXzSJEQuGRkZUapUKUqVKkW9evWyPSY1NZWoqKiMAufWLW5WqQMvKWSizp9i5TAfrGxL0erjsWjS09mz7AcK25R47tirf4dyOjiAhj6DKFSsODZlHAEIW7+Uak3aUKddN9JTUzm5ayu/jR1E/3nreNe99Stf17aZX2BpVYwWg0fz6PYtDv72MwHfm9Jrxi8vfE50YhpardZgmwCkpaWxadMm+vfvL4VMLmi1Wk7eTzKIQgZg3+qFzNy0ike3b1GzZk1OnDihdCQhhMiRAlHMPM3G3JjmDoVpVqYQD5M1RD9JIzoxjaiEVKIT00jLZg2LiRHYW5pQprAp9pYm2BcywcbcyGAvPoQoCExNTSlfvjzly5cnTaPlh5P3X3p8yJKZqIyM+XhlINZ29gDU9PBiTvfGzx0bc+MyIzbsp5TTO898/fOt4Zha/H93toY+g1jQuyWha5fkqJgpVLQ4AxdvzHpv0Gg0HPJbRlLcYyysrLN9Tpom40MSYwN9O9m7dy8xMTGyxCyXDKnhxcVDe9kxbwp12nvz7ZTJVChdUulIQgiRYwWumMmkUqkobmFMcQvjrPXqWq0WjRbStFrSNWBsBCYqFUYqpHARQkFpr1itqklP5/KR/VRv3j6rkAGwLefEO41acm7/n88cX9Gl0XOFDPBMIZP4+BGa9HQqOKs5uXNLjnI26Nr3mfeKis5qDq5bwsPbtyhtVeOFz7v38CFWlhaYm5tjbGxYM71+fn5UqlSJunXrKh1Fr0Q/SVM6gs5c/fsAKiMjun09l2aVSxh8wwshhGEpsMVMdlQqFcYqMEYFhnU9IYRe07zirv/4BzGkJiVSomzF5x4r7pjN1xyy34n83P5d7P3lR25fPENayv9vMJrTDzOK2pd95veW1hn3wiTGPXrp8ypVrkrCo4yZJxMTEywsMgqbzP8//ev8eszU1PSNP8RJSUlhy5YtDB06VD4QyqXoJ2l50vBCCfEP7mFqboGZmdlb0fBCCGFY9KqYEUIUTLq+1cIkm85l144d4tfP+lDBpSFe42dgZVcKYxNTIgLWc3LH5pzlfNGsyitWC634ZRmpSU9ISkoiOTk56/9P/zq7x+Lj41/42NNfex0qleqNC6QbN27w6NEjUlJSWLx48WsXVoZyr83kyZOZMmUKFy5c4JtvvmHbtm2YmZnx8ccf88033xAZGcmwYcPYu3cvRuaWNO47FPe+n2Q9P/5BDH8umMr5A8EkxT/Gtnxl3Pp8TN2OvlnHPIy6ycwOdWk3cjIWha3Yt3oBsXeisK9SHa8vZuJYw/mZTHevXSJ48TSu/B1KalIipSq9S4vBo6netC0ADyKvM6tTfTxHfYtbn4+fee6Nk0dY8r4nPtN+pk7brtm+5i9c7LJ+Pc4549crV65Eq9UycOBAli9fzsCBA7OOmTZtGl999RWBgYG0b9/+Nb/TQgihO1LMCCHemMkrPtUvUtwOE3ML7kdee+6xB7ee/1p2zuzejom5BQMXbXim9XJEwPrchX0N3bp0xjiP9qXSarWkpqbmuEB6ncfi4+O5d+/ec49FR0djbGzM4sWLSU5OJi3t9ZZOmZqa5uus1IseMzEx0ckMk4+PD9WqVeP7778nMDCQqVOnUrx4cX7++WdatGjB999/z6xlqwma8zVlq9ehYt1GpCYlsuzDzty/dQ21zyCKO5TjdHAAm74eTlJcLI17ffTMGCd3biY5IZ4GXfuhUqnYv3oh60YPYExARNb+SHeunGfJ+55YlyxN0wGfYmZZiNPBf7B2VD96z1pJjRaeFC9bgfJ1GnBix6bnipkTQZswL1wkq/DJTo9vF3Nkyxoi/zlO14lzMDICd3d3KlWqxJYtWxg1ahQeHh44Ojpy+vRppkyZwqBBg6SQEUIUGFLMCCHemLEqoxFHdg06IGNGpHKDJpzdu4PHMdFZ983cu3mVC2G7czRGxqyKCk16etbXHkbd5OzeHW8a/6VMjDI6JeYVlUqFmZkZZmb5u/t6YmIiJUuWZNKkSUyaNAmA9PR0nRRPryqscvK816FSqd6oQDpy5AgAZmZmNGjQAIDOnTtz6NAhPv/8c/r370/Xrl0xs7Ck37zfmN6mJhEBv1GxbiOObFnD3WsX6TH1J5zbdwfAtdsAln7oxa7F06nn1RvzwkWysj6K/pfRvx/OWupoW6Eyv37Wl4uH9lKtSUYzi22zvqKYfVmGrt2VVcCrewzk54Ge7Jj/DTVaeALg4unD1u8+5+61S5SsmLG/VHpqKqeDA6jRwhMzy0Iv/J45e3pz+cg+os6fwtnTG4AKFTM6DC5btowaNWowaNAgtm/fTv/+/bG3t+fHH398rT8fIYTIC1LMCCHemEqlwt7ShMiEF3+y3+qjsVwK/4sl73vi2n0AWk06h/yXU6rSu9y+cOaVY7zr5kHo2p9YOcyHOu26Ef/gHuEbVlDCsSLRl/7R5ct5hr2lbj7tL2iCgoKIj49/pouZsbExhQoVolChF1/85getVktKSkqeFlZxcXHcu3fvuZkqgPPnzzNhwgSSkpJIf6p4XrVqFatWrcK8iBWT91/FtnwlHkTeAOBCaAhWtiWp/dRyLmNTUxr1/BC/LwZz9WhYVpECUMvDK6uQgYxmFAAP/r0OwJPYh1z9+wCthowjOSGe5IT4rGOrNGxByJIZxN69TdGSpanZ2ottP3zFiR2baP3JF0BGh7KER/dxbu+d6+9/mlaLMSrs7e1ZtGgRPXv2xN3dnRMnThAcHIy1dfad/4QQQglSzAghdKJ0IROiEtJeeEO0Q/XavL/Aj6C5XxP80/cULVWGVkPGEXPtEjHXL7/y/JUauNNt0lz+WjWf7T9MwKZMOdp+OpGHUbfyrJgxUkGZwqZ5cm6l+fv74+zszDvvPN81TmmZ9wOZm5vn64Vz5j0zFy9epFSpUkDGPjwDBgxg8+bNXLlyheTkZB4npbAjCSyKWPMk9iEAj6IjKeHo9Nz9Q5kzJY9u33rm68VKv6AZxeNYAO7fuoZWqyV48fcEL/4+27wJD2IoWrI0llZFqdakNSd3bskqZk7s2IR1ydI41XcHIPlJPClPErKeqzI2fuFmsekasprs+Pr6snbtWgIDAxk8eDAtW7Z88TdQCCEUIMWMEEIn7AuZvLKzU6UG7gz/bc8zX/t1VD+Kliyd9fvpx2Je+Px6nXtTr3Pv577e6uOxz/x+XOCxZ35ft1NP6nbq+dzznOo1ful4Gm3GzIyhiYuLY/v27Xz99ddKRymQnm6/bWJigomJCcbGxpQpUwaApHQNO049yDjgFW3JX0Rl9KJmFBnn0/6vRaB736FUbdQ820NLODpl/drZ04fTwQHcOHkE+8rVObfvT9Te72cVVwfWLGb30llZxxcr7fjcv5NMxk/VY/fv3yciIgKAs2fPotFoDKbhgxDCMBjeT2khhCLsC7367SQ1KfGZvWLu3bzChdAQXDoW3A0bc/K69M22bdtITEyUjTJfU3YNL4rZlyX68vMX+zHXLmU8XtoxV2MUL1seAGMTEyq7Nn3l8VUbtaCwjS0ngjbhWLMuqUlPsu6BAXDp0IMKzq7//xqy6RiY9dhTr2/o0KHExcUxffp0vvjiC+bOncuoUaNy9VqEECIvGd5PaSGEIoqbG2NurHrpruizOtXDpaMvxR0q8Oj2LcI3rcLY1JQm/YflY9KcMzdWYWNueJ9C+/v74+rqSoUKFZSOopcyG1487R23VlwK/4tTu37PaoOcnpZGmP8vmBUqjFPdRrkao0hxO5zqNebwljU09P3gmc1mAeIf3ntmmZixiQm123bh5I4t3L12CfvK1Sld9f83gi1etgLFy1Z45bhPN7zYtGkT/v7+zJ8/n+HDh3Py5EkmTJhAhw4dqFq1aq5ejxBC5BUpZoQQOqFSqahdwoK/7ya+cNuWqg1bcHLnVuLv38XYzIxyNevRZthX2JarlK9Zc0IF1ClhYXA3/z969IgdO3Ywc+ZMpaPorcyGF09r0LUfRzavYdPXw4k6d5JipR05s3sbN04cocPoqc90MsupTuNn8PPADszzaUr9Ln0o7lCB+Ad3uXkqgtg7txnh/9czx7t4+hC2fhlXI0Jp++mk13ptmQ0v7t69y5AhQ2jevDnDhmV82LBw4UL27t3LgAEDCA0NleVmQogCQYoZIYTOONtacORu4gsf7z5lQT6meTNaoI7ti5fi6Kvff/+dtLQ0vL1z3+VK/L/ShUx4usw1tbDkw2W/s3P+txzb5k9SQhx25SvTffL8bO/XyolSTu8wbG0wIUtncWybH08ePaRwcVvKvFOTloM/f+54h+q1KVXpXe5eu0id/7WHzo2nG14MGTKE5ORkVq5cmVXQlyhRgqVLl+Ll5cUPP/zA2LFjX3Y6IYTIFyqt9jXvXhRCiGz4XY7lRlzqC2dn9IEKqGBlik/lokpH0bm2bduSmJjIvn37lI6i1/55kMS2G/GvPjCfze/ZnELWNnzw85bXen6n8lZUL27+6gOFEKKAkDliIYRO1bWz0OtCBjJmZeraWb7yOH0TExNDSEgIvr6+SkfRewWxMUTk2RPcvnAG5w49XvscBfF1CSHEy8i7lhBCpypZm1HMzIjYFI1eFjUqoKiZEU7Whre/zJYtW9BqtXTr1k3pKHovJw0v8kv05XP8e+4kob/+hJVtKWq17vxa5zHUhhdCCMMm71pCCJ0yUqnwLG+ll4UMZMzKdChvhZGB3fgP4OfnR8uWLSlZsqTSUfReZsOLgvC35EzINjZP/pT0tFR8p/+M6UvaLr+IoTa8EEIYPrlnRgihc/Hx8XyzYRfFajXGyPgFmwMWQCqgnp0FLcvmvvNUQXf79m0cHBz45ZdfGDhwoNJxDMLD5HR+PvtQ6Rg6odVqaaqKppFzTaWjCCFErsjMjBBCp44dO4aLiwtLxwzGND25QHxynRMqwNrMiCZlCisdJU9s3LgRExMTunTponQUg2FjbkwFK1O9+Tv+IlqNhlvHD9HYpRbu7u5s2LCB1NRUpWMJIUSOSDEjhNAJjUbDnDlzUKvVFClShCOHwvCtUVpvlptptFo8HQtjaqTvl6bZ8/Pzo02bNtjY2CgdxaAYQsMLlZERI7p4sGnTJoyNjfHx8aFixYpMnTqVu3fvKh1PCCFeSooZIcQbu3v3Lh06dGDUqFEMHz6cQ4cOUbVqVRyLmNKqrH7MdGyf9SWjP+hLUlKS0lF07saNGxw6dEi6mOWBzIYX+loCq4BiZkZUsbGgW7du/PXXX5w8eZL27dszbdo0HB0d6du3L0eOHFE6qhBCZEuKGSHEGwkODqZWrVpEREQQFBTE7NmzMTf//30q6tlZ4l66kIIJX829dCFG92jP9u3badmyJffu3VM6kk5t2LABCwsLOnXqpHQUg2OIDS9q1arF0qVLiYyM5LvvviM0NBRXV1dcXV1Zu3YtycnJygUWQoj/kGJGCPFaUlNTGTduHK1bt6ZWrVqcOnWKdu3aZXtso1IFt6BpUroQjUpZ0qVLF/bu3culS5do2LAhly9fVjqazvj5+eHp6YmVlZXSUQySYxFT6tkVjM5muaEC6ttZULZI9m3IixcvzujRo7l8+TJ//PEH1tbW9O3bl3LlyjFp0iSioqLyN7AQQmRDihkhRK5dkZBVbQAAIABJREFUuXIFNzc3fvzxR2bOnMnOnTuxt7d/4fEqlYrG9oWylpwpfdGXOX6rsoVpZF8oqx2tq6sr4eHhGBsbo1arCQsLUy6kjly6dIljx47h4+OjdBSD1rRMYaz1aLlZbhpeGBsb06lTJ4KDgzl79ize3t7MmTOH8uXL4+vrS2hoKNIYVQihFClmhBC58ttvv+Hs7My9e/c4ePAgY8aMwcgoZ28l9ews6V2lqKIXfZkXcb2rFKWeneVzjzs5OREWFkaNGjVo0aIFGzduzP+QOuTv70/hwoXx9PRUOopBMzVS0UGPlptlLi/LbcOLatWqsXDhQiIjI5k9ezbHjh3D3d0dFxcXVqxYQWJiYt4EFkKIF5BiRgiRI/Hx8QwYMIDevXvTsWNHjh8/ToMGDXJ9HscipnxQzYa6dhkb++VXUZM5Tj07Cz6oZoPjC5bWQMbyml27dtGtWzd69OjBrFmz9PaTZ39/f7y8vChUqGAu8zMkdibpXN+xXukYOdKqbOGX/ht4laJFi/Lpp59y/vx5duzYQZkyZfjggw9wdHRk/Pjx3Lx5U4dphRDixWTTTCHEKx09epSePXsSFRXF4sWL6du3r052Cr8Vn0rgjTgepWhQQZ58qp153mJmRniWt8rVBZxWq2XSpElMnTqVjz/+mAULFmBiYpIHKfPGmTNnqFmzJn/88Yfc/J/H4uLi6Ny5M2FhYSzaGcZda0elI72Qe+lCNLbXfXF7+fJlFi9ezIoVK4iLi8PLy4vhw4fTrFkznbxfCCFEdqSYEUK8kEajYe7cuYwfP56aNWuyfv16qlatqtsxtFquPk7laEwi1+JSdVbUZJ6nopUpde0scbI2faZjU24sX76cjz76iDZt2uDv70+RIkV0kDDvTZw4kQULFnDnzp1nOswJ3bp//z7t27fn/PnzbNu2DXd3d8LuJHLg9hOloz2nSelCNCxlmafFRXx8PGvXrmXBggWcPXuW9957j2HDhtGnTx8KF9aPVu1CCP0hxYwQIlt37txhwIAB7Ny5k88//5xp06ZhZmaWp2M+TE7nxL0kTtxPIjk9463JSAWaHLxLadLSMPrfrIm5sYo6JSyoY2uBjbmxTrLt2rWL7t27U7lyZbZv306ZMmV0ct68otVqeeedd2jcuDErV65UOo7BioqKonXr1ty9e5edO3fi4uKS9VhETCIhkQl5NuuYU5njtypbONv7xPKKVqtl7969LFiwgICAAKysrBg4cCBDhw6lUqVK+ZZDCGHYpJgRQjwnODiYvn37otVqWb16NW3bts3X8bVaLQ+TNUQ/SSM6MY2ohFSiE9NI0zx/rIkR2Fua8M/BvZwO+4s1C37ExtwoTz55Pn36NO3btwcgKCiImjVr6nwMXTl27Bh169Zl586dtGnTRuk4BunKlSu0atWK9PR0goODeeedd5475lZ8KttvxPE4RaNIQZPZ8KJDLpdY6tr169f56aef+OWXX3j48CHt27dn+PDheHh45LiBiBBCZEeKGSFElpSUFCZOnMjMmTPx8PBgzZo1L225nJ+0Wi0aLaRptaRrwNgITFQqjFQZrZ9XrlzJoEGDePToEdbW1nmWIyoqCk9PT65cucLmzZvx8PDIs7HexLhx41ixYgVRUVGYmip3EWuoTp06RZs2bbC2tiY4OJhy5cq98NhUjZZ9UQlExCTl2yxN5jj17SxoUqZwrruW5ZXExER+++03FixYwMmTJ6latSrDhg2jf//+efrvVghhuOTjECEEkPu9Y/KbSqXC2EiFubERhUyNMDc2wthI9cweMVqtloiIiDzNUaZMGfbv34+bmxvt27dnxYoVeTre69Bqtfj5+dGtWzcpZPLAoUOHaNq0KaVLl+bAgQMvLWQgo21zq7JF6F2lKEXNMn7s5lVpkXneov9rP96ybJECU8gAWFpaMmjQII4fP86BAweoU6cOn332GQ4ODgwbNozz588rHVEIoWekmBFCsG7dOpydnXnw4AFhYWG52jumoHj33XextrYmPDw8z8eysrIiICCAQYMGMWjQICZOnFigWjeHh4dz8+ZNfH19lY5icHbt2kWrVq2oWbMme/fupWTJkjl+rmMRUwZXt6G7kzUVrDKKTF2VGZnnqWBlSncnawZXf3n7caWpVCrc3Nzw9/fnxo0bjBw5ko0bN1KtWjVat27Ntm3bSE9PVzqmEEIPyDIzId5icXFxDBs2jDVr1tC7d28WL16s10s9WrdujYWFBQEBAfkynlarZdasWYwbN47evXuzfPnyAtE1bOTIkWzYsIFbt25hbKybBggCNm3aRK9evfDw8GDjxo1vvHfPmzS8ePq4vGh4oYTk5GQ2bNjAggUL+Pvvv3FycuKTTz5h4MCB2NjYKB1PCFFASTEjxFvq6NGj+Pr6Eh0dnbV3jL6bOHEiS5cuJTo6Ol/3tdiwYQP9+vVDrVazdetWRS+80tPTcXR0xNvbm3nz5imWw9AsX76cwYMH4+Pjw+rVq3W6fO91Gl6UKWyKvaUJ9oVM8qzhhZKOHDnCggUL8Pf3x9TUlD59+jBs2LAC3XRDCKEMKWaEeMtoNBrmzJnDF198Qa1atVi/fj1VqlRROpZOBAYG0qFDB65evUrFihXzdeyDBw/i5eWFnZ0dQUFB+T5+pn379tGsWTPCwsJo2LChIhkMzezZsxk9ejRDhgxh4cKF+bIE81UNL94Wd+7cYenSpSxZsoSoqCiaNWvGsGHD8PLy0qsNbIUQeUe/FsULId7InTt38PT0ZPTo0YwYMYKwsDCDKWQAGjRoAMDhw4fzfezGjRtz6NAhUlNTUavVHDlyJN8zAPj5+VGuXDnUarUi4xsSrVbLV199xejRo/nqq69YtGhRvt1L9qqGF2+LUqVKMXHiRK5fv46fnx+pqal0794dJycnpk+fzr1795SOKIRQmBQzQrwldu3aRe3atTl27Bg7d+5k1qxZeb4JZn6zs7OjUqVK+dIEIDtVqlTh0KFDVKpUiWbNmvH777/n6/hpaWls2rQJHx+ft+6iV9c0Gg1Dhw5l2rRp/PDDD0ydOlW+pwoyNTXFx8eH0NBQjh07RqtWrZgyZQply5bl/fff59ixY0pHFEIoRIoZIQxcSkoKY8eOpU2bNtSuXZuTJ08a9CaKarVakZmZTHZ2duzevZsOHTrQtWvXfL1vZc+ePdy7d0+6mL2h1NRU+vTpw88//8zy5cv5/PPPlY4knuLs7MyKFSuIjIxkypQp7Nmzh7p169K4cWPWr19PSkqK0hGFEPlIihkhDNjly5dp3Lgxc+bMYdasWezYsaNA7R2TF1xdXTl27BjJycmKZbC0tMTPz4/Ro0czcuRIRowYkS9tZv38/KhcuTLOzs55PpahevLkCZ07d2bTpk34+/szcOBApSOJF7C1tWXcuHFcuXKFLVu2YG5uTq9evahQoQJTpkwhOjpa6YhCiHwgxYwQBmrt2rU4Ozvz8OFDwsLCGD16tN7tHfM61Go1KSkpnDhxQtEcRkZGzJw5k8WLF7Nw4UK6detGQkJCno2XnJzMli1b8PX1leVQryk2Npa2bdvy119/ERgYSPfu3ZWOJHLAxMSELl26sGfPHk6fPk2nTp2YOXMm5cqVo3fv3oSHhxeofaCEELpl+Fc2Qrxl4uLi6NevH3379qVLly4cP36c+vXrKx0r39SuXRtzc3NFl5o9bciQIWzbto2QkBCaN2/OnTt38mScXbt2ERsbi4+PT56c39DdvXuX5s2bc/r0aUJCQvDw8FA6kngN7733HkuWLCEyMpIZM2YQHh5Ow4YNadCgAWvWrFF0xlYIkTekmBHCgERERODi4sLWrVtZs2YNa9aswcrKSulY+crMzAwXFxfFmgBkp3379hw4cIDIyEjUajXnzp3T+Rh+fn7UqFGD9957T+fnNnQ3b97E3d2d27dvs3//fmlpbQBsbGz47LPPuHTpEtu3b6dEiRL0798fR0dHJkyYQGRkpNIRhRA6IsWMEAZAo9Ewe/ZsGjVqRLFixTh+/LhBbIL5upRuApAdZ2dnwsPDKVKkCI0aNWLv3r06O/eTJ08ICAiQG/9fw4ULF3BzcyM1NZXQ0FDZlNHAGBkZ4enpyc6dOzl//jy+vr7Mnz+fChUq4O3tzf79+2UJmhB6TooZIfTcnTt3aN++fdbeMQcPHqRy5cpKx1KUq6srV69e5e7du0pHeUa5cuUIDQ2lXr16tGnThl9//VUn5w0KCiI+Pl6WmOXSsWPHcHNzw9ramtDQUCpVqqR0JJGH3nnnHebPn8+///7L3LlzOX36NE2bNsXZ2ZlffvmFJ0+eKB1RCPEapJgRQo/9+eef1KpVi+PHjxvs3jGvI3PDyII2OwNQtGhRgoKC6NOnD/369ePbb79940+G/fz8cHFxMagNUPPa/v37adasGU5OTuzbt48yZcooHUnkEysrK4YNG8a5c+fYtWsX5cqVY/DgwZQtW5axY8dy/fp1pSMKIXJBihkh9FBKSgpjxoyhbdu2ODs7c+rUKYPeOya3ypUrR6lSpQpkMQMZGwAuX76cb7/9lkmTJjFo0CBSU1Nf61xxcXEEBgbKrEwuBAYG0qZNG+rXr09ISAglSpRQOpJQgEqlwsPDg4CAAC5fvszAgQNZtmwZTk5OeHl5ERISIkvQhNADUswIoWcuXbpEo0aNmDdvHj/88ANBQUGUKlVK6VgFikqlQq1WF6gmAP+lUqmYMGECv/76K2vXrqV9+/bExsbm+jwBAQEkJSXRo0ePPEhpeH777Tc6d+5M27ZtCQwMfOsaZIjsOTk58cMPPxAZGcmSJUu4evUqHh4e1KhRg8WLFxMfH690RCHEC0gxI4Qe+fXXX3FxcSE2NpawsDA+//zzt2LvmNfh6urKkSNH8mWzyjfRp08fgoODiYiIoHHjxty8eTNXz/f396dhw4ZUqFAhbwIakMWLF9OnTx/69OnDxo0bsbCwUDqSKGAKFy7M4MGDOXXqFHv37qVatWoMHz4cBwcHRo4cyaVLl5SOKIT4D7kKEkIPxMXF0bdvX/r160fXrl05duwY9erVUzpWgaZWq4mLi+P8+fNKR3mlpk2bEhYWRkJCAq6urhw7dixHz3v48CE7d+6UJWavoNVq+e677xg6dCgjRoxg+fLlmJiYKB1LFGAqlYpmzZqxefNmrl27xtChQ1m7di1Vq1alffv27NixA41Go3RMIQRSzAhR4EVERODs7Mzvv//Or7/+yurVq2VpTA7Uq1cPIyOjAr3U7GnVqlUjPDwcR0dHmjRpwvbt21/5nK1bt5KWloa3t3c+JNRPWq2WMWPGMGHCBL799lt+/PFHmc0UuVKuXDmmTZtGZGQkK1euzOog+e677zJv3rzXWh4qhNAdeUcXooDSaDT88MMPNGzYEBsbG44fP06fPn2UjqU3rKysqFGjRoFtApCdUqVK8ddff9GqVSu8vLxYvHjxS4/39/enadOm0onrBdLS0vjggw+YPXs2CxYsYMKECahUKqVjCT1lYWHBgAEDiIiI4ODBg9StW5fRo0fj4ODAJ598wtmzZ5WOKMRbSYoZIQqg6Oho2rVrx5gxY/jss89k75jXVNCbAGSnUKFCbN68meHDhzN06FDGjBmT7XKWmJgYdu/eLUvMXiA5ORkfHx9Wr17Nr7/+yrBhw5SOJAyESqWiUaNGrF+/nps3bzJ69Gi2bNlCjRo1aNWqFX/88UeBv1dPCEMixYwQBczOnTupXbs2J0+e5M8//2TmzJmyd8xrcnV15Z9//iEuLk7pKLlibGzM3LlzmTt3LrNnz8bHx4fExMRnjtm8eTMA3bp1UyJigRYfH0+HDh0IDAxk69atMqMp8kzp0qWZPHkyN2/eZN26dSQkJNC5c2cqV67MrFmzePDggdIRhTB4UswIUUCkpKQwevRo2rVrh4uLCydPnqR169ZKx9JrarUajUZDRESE0lFey4gRI9i6dSuBgYG0bNmSmJiYrMf8/Pxo2bIldnZ2CiYseB48eECrVq04fPgwO3fupGPHjkpHEm8BMzMzevXqxaFDh/j7779p0qQJEyZMwMHBgQ8++ICTJ08qHVEIgyXFjBAFQObeMfPnz2f27NkEBgbK3jE6UK1aNaytrfXqvpn/8vLyYt++fVy5coWGDRty8eJFoqKi2L9/P76+vkrHK1Bu375N06ZNuXz5Mnv27KFZs2ZKRxJvoXr16rF69Wpu3brFhAkT2LlzJ3Xq1KFJkyZs3LjxtTfIFUJkT4oZIRS2Zs0anJ2diY2N5dChQ4waNUq6LemIkZER9evX17v7Zv4r8zWYmZnRsGFDZsyYgYmJCV26dFE6WoFx9epV3NzcePToEQcOHJDW5UJxJUuW5KuvvuLatWts2LABlUpFjx49qFixIt999x13795VOqIQBkGumIRQyOPHj+nbty/9+/ene/fuHDt2jLp16yody+BkNgHQarVKR3kjFStW5ODBg9SsWZMFCxZQq1YtihUrpnSsAuHMmTO4ublhbGxMaGgo1apVUzqSEFlMTU3x9vZm3759nDhxgnbt2vHdd9/h6OhI//799XYZrBAFhRQzQijg77//xsXFhd9//521a9eyatUq2Tsmj7i6unLnzh1u3rypdJQ3ZmNjw88//4xWq+Xo0aPMmDFD74u0N3X48GGaNGlCqVKlOHDgAOXLl1c6khAvVLt2bZYtW0ZkZCRTp05l//791K9fH7Vazbp160hJSVE6ohB6R4oZIfKRRqNh1qxZNGrUiOLFi3PixAl69+6tdCyD5urqCqD3S80y/fHHH1hYWDB27FjGjx/Pxx9/TFpamtKxFBESEkLLli2pXr06e/fulfvMhN4oXrw4Y8aM4fLly/z+++9YWVnRp08fypUrx9dff01UVJTSEYXQG1LMCJFPoqOjadu2LWPHjmXUqFGEhoZSqVIlpWMZvJIlS1KxYkW9bgLwND8/Pzp06MCMGTNYsWIFK1asoGPHjnrXfvpNbdmyBU9PT9zd3dm1a5csuRN6ydjYGC8vL4KDgzl79izdunVj9uzZlC9fnp49exIWFvZWzb5qtVrSNFqS0jU8SdWQlK4hTaN9q74HIvdUWvkbIkSe27FjB/3798fIyIg1a9ZIy+V81qtXL65fv05YWJjSUd7IxYsXeeedd9i0aVPW/jIhISF069aNihUrEhgYiIODg8Ip897KlSv54IMP8Pb2Zs2aNbIPkzAosbGxrFq1ioULF3L58mVcXFwYNmwYPXv2xMLCQul4OqPVanmQnE70kzSin6Rx+0ka0YlppD2/RzAmRmBvaULpQibY/++/4ubGqFSq/A8uChwpZoTIQ8nJyXz55Zf8+OOPtG3bltWrV1OyZEmlY7115s+fz9ixY3n8+LFeX/h+++23zJw5k7t372JpaZn19TNnztC+fXs0Gg1BQUHUqlVLwZR5a86cOYwaNYqPPvqIRYsWYWxsrHQkIfKERqPhzz//ZMGCBezYsYMSJUrw4YcfMmTIEMqVK6d0vNf2MDmd4/eSOHk/ieT0jEtQIyCbGuY5Tx9nbqyidgkLnG0tsDGX94G3mRQzQuSRixcv0rNnT06fPs2MGTMYMWKEtFxWyOHDh1Gr1Rw5coT69esrHee11ahRA2dnZ9auXfvcY1FRUXTs2JFLly6xceNG2rRpo0DCvKPVapk0aRJTp05l/PjxTJs2TT6VFW+NS5cusWjRIlauXEl8fDydO3dm+PDhNG3aVC/+HWi0Wq48TuFoTBLX41JRAbq4+Mw8TwUrU+raWVDJ2gwjPfh+CN2SKyshdEyr1bJmzRpcXFyIi4sjPDyczz77TAoZBdWpUwczMzO9bgJw5swZzp49i4+PT7aPlylThn379uHu7o6npye//PJLPifMOxqNhk8//ZSpU6cyY8YMpk+frhcXcELoSpUqVZg7dy7//vsvCxcu5Ny5czRv3pzatWuzdOlSEhISlI74QrfiU1l69iGbr8ZxIy5jw1BdfYqeeZ4bcalsvhrH0rMPuRUvm5K+beTqSggdym7vGBcXF6VjvfXMzc1xdnbW6yYAfn5+FCtW7KX3WxUpUoQ//viDDz/8kA8//JCvvvoKjSYnizcKrtTUVPr168eiRYtYunQpY8eOVTqSEIopUqQIQ4YM4Z9//iEkJAQnJyeGDBlC2bJlGT16NFevXlU6YpZUjZaQyHjWXYolNiXjfSivlgJlnjc2RcO6S7GERMaTqpGFR28LWWYmhI4cOXKEnj17EhMTw08//SQtlwuYkSNHsn37di5fvqx0lFzTarVUrVqVJk2asHz58hwdP3v2bMaMGUPPnj1ZuXIl5ubm+ZBUtxITE+nRowd//vkn69atw9vbW+lIQhQ4169fZ/Hixfzyyy88evQIT09Phg8fjoeHh2IzmLfiU9l+I47HKZo8K2BeRgVYmxnRobwVjkVMFUgg8pPMzAjxhjQaDTNnzqRx48aUKFGC48ePSyFTAKnVaq5cucK9e/eUjpJrx44d4/Llyy9cYvZfKpWK0aNHs2HDBrZs2YKHhwcPHjzI45S69fjxY9q1a8fu3bsJCAiQQkaIF6hQoQIzZ84kMjKSZcuWcevWLdq0aUO1atVYuHBhvrdtj4hJZN2lWMUKGciYqXn8v1maiJhEhVKI/CLFjBBv4Pbt27Rp04Zx48bx+eefy94xBVjm5pn6uNTMz88PW1tbWrRokavneXt7s2fPHs6dO0ejRo0K1BKUl4mJiaF58+acOHGC4OBg2rZtq3QkIQq8QoUKMWjQII4fP87+/fupVasWI0eOxMHBgU8//ZQLFy7k6fharZaD0U8Iicy4f0fpZT+Z44dEJnAw+onsVWPApJgR4jXt2LGD2rVrc+bMGXbt2sX333+v121/DV2FChUoWbKk3jUB0Gg0bNiwAW9vb0xMTHL9/EaNGnHo0CE0Gg1qtbrAv/5bt27h7u7Ov//+y759+2jcuLHSkYTQKyqVCnd3dzZs2MD169f59NNP8fPz491336VNmzZs3749T+6lC7uTyIHbT3R+Xl04cPsJYXdkhsZQSTEjRC4lJyczatQo2rdvT7169Th58iQeHh5KxxKvoFKpcHV11buZmfDwcG7evJnjJWbZqVy5MmFhYVStWpXmzZuzZcsWHSbUnYsXL+Lm5kZSUhIHDhygdu3aSkcSQq+VLVuWqVOncvPmTVavXs2DBw/o2LEjVapU4ccff+TRo0c6GSfibsEtZDIduP1ElpwZKClmhMiFixcv0qhRIxYuXMicOXPYvn27bIKpR9RqNYcPH9arDl9+fn6UKVMGNze3NzqPra0tISEhdOrUie7duzNnzpwCtezixIkTuLu7U7hwYQ4ePEiVKlWUjiSEwbCwsKBfv34cOXKEQ4cOoVarGT9+PA4ODnz88cecOXPmtc99Kz6VkH8Lbmvop4VEJkjrZgMkxYwQOaDValm9evUze8eMHDlS9o7RM2q1msePH+f52nFdSU9PZ+PGjXh7e+tkp3sLCwvWr1/P2LFjGTVqFJ9++inp6ek6SPpmQkNDadq0KeXLl2f//v04ODgoHUkIg6RSqVCr1axbt46bN28ybtw4AgICqFmzJi1atGDr1q2kpaXl+HypGi3bb8ShL7s+qYDtN+KkbbOBkSsxIV7h8ePH9OnThwEDBuDt7S17x+ixevXqoVKpCvx9I5n2799PdHQ0vr6+OjunkZER33//PUuWLOGnn36iS5cuim64FxQUROvWralbty67d+/G1tZWsSxCvE3s7e2ZNGkS169fZ/369SQnJ9O1a1cqVarE999/n6POj/uiEhTtWpZbmV3O9kfpx0ySyBkpZoR4icOHD+Ps7My2bdtYt24dK1eupEiRIkrHEq/J2tqaGjVq6E0x4+/vT/ny5bM6senSRx99xLZt29i7dy9Nmzbl9u3bOh/jVfz8/PDy8sLDw4OgoCCsrKzyPYMQbzszMzN8fX05ePAgR48epUWLFkyePBlHR0cGDhzI8ePHs33erfhUImKS9KaQyaQF/o5JkuVmBkSKGSGyodFomDFjBm5ubtja2nLixAl69eqldCyhA/rSBCA1NZVNmzbh4+OTZxvftWvXjgMHDnD79m3UajX//PNPnoyTnSVLltCrVy969uzJ5s2bsbCwyLexhRDZc3FxYeXKlURGRvL1118TEhKCi4sLbm5u+Pv7k5qaUQBotFoC9Wh52X+pgMAbcWgK0H2D4vVJMSPEf2TuHfPFF18wevRoQkNDcXJyUjqW0BG1Ws3p06eJj49XOspL7d69m/v37+t0iVl26tSpw+HDhylWrBiNGzdmz549eTqeVqtl+vTpDBkyhGHDhrFq1arXajkthMg7tra2jB8/nqtXr7J582ZMTU3x9fWlfPnyfPPNNxy9eZdHerS87L+0wKMUDVcfy+yMIZBiRoinBAUFUatWray9Y6ZPn46pqanSsYQOubq6otFoOHr0qNJRXsrf358qVapQp06dPB+rbNmyHDhwgAYNGtC2bVvWrFmTJ+NotVrGjRvHl19+yeTJk5k3b5400RCiADMxMaFr167s3buXU6dO0bFjR2bMmMHPQQfQapRvHvImVMBRadVsEOSniBD8/94xnp6eNGjQgFOnTtGqVSulY4k8UL16dYoUKVKg75tJTk5m69at+Pr65tkSs/+ytrYmMDCQfv360b9/f6ZMmaLT1s3p6ekMHjyYWbNmMXfuXL7++ut8e21CiDdXs2ZNfv75Z/65dovK6maojN68w6KStMC1uFQeJut3USZA5vbFW+/ixYv4+vpy5swZ5syZw4gRI+Qiy4AZGxvToEGDAl3M/Pnnn8TGxub5ErP/MjU1ZdmyZTg5OfHVV19x9epVli1bhpmZ2RudNzk5mb59+7JlyxZWr15Nv379dJRYCJHfrqaaoyJRb5eYPU0FnLiXRHOHwkpHEW9AZmbEW0ur1bJq1SpcXFxISEjI2jtGChn3miHaAAAgAElEQVTD5+rqSnh4eIHaNPJpfn5+vPfee1SvXj3fx1apVHz55ZesW7cOPz8/2rZt+0a7hCckJNCpUyf++OMPNm/eLIWMEHpMq9Vy8r5uOpgt/dCLud7urzzuYdRNvnCx42jAeh2M+iwtcOJ+UoH9WSByRooZ8VaKjY2ld+/evP/++/To0YOjR4/K3jFvEbVaTXR0NLdu3VI6ynOePHlCQEBAvs/K/FevXr0IDg7mxIkTNG7cmOvXr+f6HA8fPsTDw4OwsDB27NiBl5eX7oMKIfLNg+R0ktMN68I/OV3Lw2SN0jHEG5BiRrx1MveOCQwM5LfffmPFihWyd8xbJnPfloLYojkwMJCEhAR8fHyUjkKTJk04dOgQiYmJqNVqIiIicvzc6OhomjZtyoULF9i9ezctWrTIw6RCiPwQ/SQt38csVtqRbw7dwtmzR56NocTrErojxYx4a2g0Gr7//nvc3NwoWbIkx48fp2fPnkrHEgooVaoUFSpUKJD3zfj5+VG3bl0qV66sdBQA3nnnHcLDw6lQoQJNmzZl27Ztr3zOtWvXcHNz4/79+1ld0oQQ+i/6SVq+XziqVCpMzS0wMs6bhgNGKohOlGJGn0kxI94Kt2/fpnXr1nz55ZeMGTOGAwcOyN4xbzm1Wl3gZmYeP35MUFCQ4kvM/qtkyZLs2bOHNm3a0LlzZxYtWvTCY//55x/c3NwAOHjwoCL3/Qgh8sbtJ2nkdEFWckI822Z9xQxPFya4OjC1ZTWWD+nOv+dOPnPcnasXWDa4M5MalWN6m5rsW7Xgmcezu2dm49fD+LpxeR5EXmfFJ95MalSeaa3fY/fSH3J9/4tGC1EJst+MPpNiRhi8zL1jzp49S3BwMNOmTZO9YwSurq4cPXqUlJQUpaNkCQgIICkpiR498m45xesqVKgQGzduZMSIEQwbNozPP/8cjebZy5q///6bJk2aYGtrS2hoKBUqVFAmrBBC57Raba5mMLZOG83hTat4r2UHvL6YgXvfTzA1t+DutUtZxyQ+fsTKYT7YV6lB+8+mYFehCjvnf8OFgyGvPL9Go2HFMB+KlChJuxGTcKhWm5AlMwhZMiPXry06MU2aAOgxac0sDFZycjLjx49n7ty5tG/fnlWrVmFnZ6d0LFFAqNVqkpKSOHXqFPXq1VM6DpCxxKxRo0aUK1dO6SjZMjY25scff6RixYqMHDmS69ev8+uvv1KoUCH27t1Lp06dqFWrFtu3b8fGxkbpuEIIHUrXQlou7pO/cCCY+l364Dnqm6e+OvyZYx7HROP9zSJcOmR8gFOvc29mejoT8fs63mn88r3e0pKTqNqoBZ3GTgdA3WMgq0f0Zt+qBTTy/ZDCNiVynDVNkzFDYyzNTPWSzMwIg3ThwgXUajWLFy9m7ty5bN++XQoZ8Yw6depgampaYJaaPXjwgF27dhW4JWbZGT58OFu3bmXnzp20aNGC1atX065dOxo1asSuXbukkBHCAKXlcubCwqoot84c43FM9AuPMStUGGdP76zfm5iaUbaGCw/+vZGjMRr6fJD1a5VKRUOfQaSnpnD5yP5cZYXcvz5RcEgxIwyKVqtl5cqVuLi48OTJE8LDw2UTTJEtCwsLnJ2dC0wTgK1bt5KWlkb37t2VjpIjnTp1Yt++fZw7d44BAwbQvHlzAgICKFxYNp8TwhBpctm9uN2ISdy5cp7v29VmUd/WhCyZyYPI688cU7Rkmed+PltaFyXxcewrz68yMqK4Q/lnvmZXvhKQcZ9NbqVLd2a9JcWMMBixsbH06tWLgQMH4uvry9GjR3F2dlY6lijAXF1dC8zMjJ+fH82aNaN06dJKR8mxgwcP8vjxY4oVK0Z4eHiB+V4KIXTPKJdXjLVad2ZMwN90HDsdazt79q9ZxBxv92fuh3lRhzIl7l8xlitivSV/dMIghIeHU6dOHYKCgli/fj3Lly+XvWPEK6nVai5dusT9+/cVzXH37l327NlTIPaWyQmtVsvkyZMZOXIkY8aM4erVqzg7O+Ph4cH69brfpVsIoTyT11jhYG1nT8MeA+n74xrGbo+gUFEb9i6fo5M8Wo3mueVoMTeuAGBTJvf3Hb7O6xMFgxQzQq9pNBqmT5+Om5sb9vb2nDhxQi/uORAFg1qtBpTfPHPTpk2oVCq6deumaI6c0Gg0jBgxgilTpjB9+nRmzpyJjY0NO3fuxMfHh169ejF9+nTpDCSEgTFWgUkOrxo16ekkxT1+5mtFitthbWdPmg47SB7y/yXr11qtlkP+yzE2MaVSA/dcncfEKGO/GaGfpJuZ0FtRUVH069ePPXv28MUXXzB58mRpuSxypWLFitja2nL48GHat2+vWA5/f388PDywtbVVLENOpKWlMXDgQNauXcuSJUv46KOPsh4zMzNj9erVODk58eWXX3L16lUWL14s/yaFMBAqlQp7SxMiE17dnjn5STzft63Fe606UrrKe5gVKszlw/uI/Oc47Z/pbvb6TMwtuBi2hw2ThuL4Xl0uHtzNhdBgmg0cSRGb3L2X2luayL21ekyKGaGXAgMDGTBgAKampgQHB9OyZUulIwk9pFKpUKvVijYBiIyM5MCBA6xYsUKxDDmRlJSEj49P1lLO7JbEqVQqJk+eTMWKFfnggw+4efMmGzduxNraWoHEQghdK13IhKiEV2+caWphidp7IJfC9/LPnkC0Gg0lHCvi9cVM1N7v6ySLkZERAxf68/u0MeyYOwXzwoVpOXgMLQaPzt15VFCmsHzoos9UWlkLIPRIcnIy48aNY968eXh6erJy5UppuSzeyNSpU5k9ezb379/HKLd3uOrAnDlzGD9+PHfu3KFYsWL5Pn5OxMXF4eXlRXh4OJs3b6Zdu3avfM7u3bvp1q0b5cqVIygoiLJly+ZDUiFEXvrnQRLbbsQrHYONXw/jTMg2phzMWQvnV+lU3orqxc11ci6R/+SeGaE3zp8/j1qt5qeffmLevHls27ZNChnxxtRqNY8ePeLixYuKjO/v70/btm0LbCFz7949WrRowdGjR/nzzz9zVMgAtGzZkoMHDxIbG4urqysnTpzI46RCiLxmX8gwF/QY6ut6W0gxIwo8rVbLihUrqFu3LomJiRw+fJhPP/1U1rcKnahfvz4qlUqRJgDXrl3j8OHDBbZpRWRkJE2aNOHGjRv89ddfuLvn7qbaGjVqEB4ejr29Pe7u7uzYsSOPkgoh8kNxc2PMjQ3rZ6+5sQobc7kc1mfypyeAjIIhTaMlKV3Dk1QNSeka0jRaxTsSxcbG0rNnTwYNGkTPnj05evQoderUUTSTMCxFixalWrVqitw3s2HDBiwtLenYsWO+j/0qly5dws3NjYSEBEJDQ197z6bSpUuzb98+mjVrRseOHVm6dKmOkwoh8lOx+DtoNelKx9AJFVCnhIV8OKrn5J6Zt5BWq+VBcjrRT9KIfpLG7SdpRCemkZbNHX0mRhldPkoXMsH+f/8VNzfOl3/44eHh9OzZkwcPHrB06VK92YND6J9BgwZx7Ngxjh8/nq/jOjs7U6VKFTZs2JCv477KyZMnadOmDTY2NuzatQtHR8c3Pmd6ejojRoxg0aJFjB8/nu+++06Re5SEELkXGxvL6tWrWbx4MTEJyYwJ+FvpSDrzUXUbbMyz37xT6AdZJPgWeZiczvF7SZy8n0RyekYNawQv7UqSpoHIhLRnupeYG6uoXcICZ1uLPHkDSE9PZ+bMmUycOJH69euzZ88eKlasqPNxhMjk6urK6tWrSUhIoHDhwvky5oULFzhx4gQTJ07Ml/Fy6uDBg3h6elK5cmV27Nihs/vSjI2NWbBgAU5OTowePZpr166xatUqLCwsdHJ+IYTunTp1ikWLFrF27VpSUlLo2rUrQ4cOJcrKlBtxqejzp+EqoIKVqRQyBkCKGQOn0Wq58jiFozFJXI9LRQXPvPm8qr1idsclp2v5+24iR+4mUsHKlLp2FlSyNsNIB7M1UVFR9O3bl71798reMSLfqNVq0tPTOXr0KE2aNMmXMf39/bGyssrxDfX54c8//6RLly40aNCAgIAAnbdUVqlUjBo1ivLly9OnTx9atWrFH3/8QYkSJXQ6jhDi9aWkpLBlyxYWLVpEaGgoZcqUYdy4cXz44YeULl0agEuxyVyPS1U46ZvRAnXtLJWOIXRAihkDdis+lcAbcTxK0ZBZZujqU5TM89yIS+V6XCrFzIzwLG+FY5HXLzy2b9/OgAEDMDMzIyQkhBYtWugmrBCvUKNGDQoXLszhw4fzpZjRarX4+fnh5eWFpWXB+GG6YcMG+vTpQ5s2bbLu5ckr3bp1w8HBgY4dO9KwYUOCgoKoXLlyno0nhHi1W7dusXTpUpYtW8adO3do3rw5GzduxMvL67kPFStZm1HMzIjYFI1ezs6ogKJmRjhZy4elhkAWLBugVI2WkMh41l2KJTYlY04lr95sMs8bm6Jh3aVYQiLjSdXkbrSkpCRGjBiRdWFz6tQpKWREvjI2NqZ+/fr51gTgzJkznDt3rsB0MVu2bBm+vr706NGDLVu25EuBlblZqUqlomHDhhw6dCjPxxRCPEur1bJ79266du1KxYoVmTdvHt27d+eff/5hz549dO/ePdvVEUYqFZ7lrfSykIGMa5cO5a10sqJEKE+KGQNzKz6VX8495GhMEpB3Rcx/ZY5zNCaJX8495FZ8zqafM/eOWbJkCfPnzycgIABbW9u8CyrEC2ReXOcHPz8/bGxs8PDwyJfxXmbmzJkMHjyYTz75hDVr1uTrss5KlSoRFhbGu+++S/Pmzdm0aVO+jS3E2yw2Npb58+dTrVo1WrVqxcWLF1mwYAH//vsvCxcupHr16q88h2MRU+rZWaBv5YAKqG9nQdk3WEkiChYpZgxIREwi6y7F8ljBaV8t8Ph/szQRMYkvPk6rZfny5dStW5fk5GSOHDnC8OHDpT2iUIyrqytRUVFERkbm6TiZS8y6du2KmZlZno71qhzjx49n3LhxTJw4kQULFijSXaxEiRIEBwfTpUsXvL29+eGHHxRvCS+EoTp9+jQff/wxDg4OfP7559SqVYu//vqL06dPM2TIEKysrHJ1vqZlCmNtZqQ3BY0KsDYzokmZ/Gn0IvKHFDMGQKvVcjD6CSGRCRm/VzrP//4fEpnAwegnz12YPHr0iJ49e/LBBx/Qq1cvIiIiqF27dv4HFeIprq6uAHk+O3P06FGuXr2q6BKz9PR0Pv74Y2bMmMGPP/7IN9/8H3t3HhdV+T1w/DMz7JuCIrgBriiuCe77lrnlruWaWZi7ZFa2qO2/ytxBU9NcSlwxRTPTNDWX0rQY3DcQUdxQkB3m/v4w+EqQog7cmeG8Xy9eNcOd5x5kmXvu85zzfKjqjQQ7Ozu+++47pkyZwuTJkxkzZgyZmZmqxSOEJUlPTyc0NJSWLVtSt25dtmzZwuTJk4mKimLt2rW0bt36iX//rbUaupnRcrPs5WXWWnNJv0RBSAMAC3AgLoV9V5PVDiNf2XE193QA4ODBgwwcOJD4+HjWrFlD//791QxPiBxly5bFy8uLw4cP07dv30I7T2hoKO7u7rRp06bQzvEw6enpDB06lHXr1rF06VKGDx+uShz/ptVq+fTTT6lUqRKjRo0iOjqa0NBQnJyc1A5NCLMUExPD119/nVPQ36ZNm/8s6H8aFZ2s6VDBMeeGqinrUMHxqRoVCdMkyYyZO3LddBOZbPuuJmOjUfj5mzlMnTqVhg0bsnv3bnx8fNQOTYhcCrtuxmAwsGbNGvr164eVVdH/+U1OTqZv377s2rWL9evX06tXryKP4VFeffVVvLy86Nu3L61atSI8PJxy5cqpHZYQZkFRFH755RdCQkL44YcfsLe3Z9iwYYwaNYpatWoV2nkD3O1Jy1JM+nqkZVkHAqQVs0WSZWZm7PK9DHZeMf07IQA7rySzeP0W3n77bfbu3SuJjDBJTZo04ciRI2RkFM7+CQcPHiQmJoYBAwYUyvgPc+fOHZ599ln27t3L1q1bTTKRydapUyf279/P9evXadKkCXq9Xu2QhDBpd+/eZd68efj5+dGhQwdOnTrF3LlziY2NZf78+YWayGRr5mFPy7IOhX6eJ9GqrAPNPCSRsVQaRSotzVKGQWHJyXhVi/0fhyErEzsMjGtQVtaqCpN14MABmjdvztGjR2nQoIHRxx83bhwbN27k8uXLRVpsHxcXR6dOnYiOjubHH3/MqQ8ydTExMXTt2pVLly6xYcMGOnTooHZIQpiUiIgIgoODWbVqFWlpafTq1YsxY8bQqlUr1ergjtxIYWdMUp5Nuota9vk7VHCUGRkLJzMzZurX2CSzSWQAtDorMnQ27I01j5kkUTw988wzWFtbF8pSs6ysLNatW8eAAQOKNJGJioqiRYsWXL9+nb1795pNIgNQoUIF9u3bR9OmTencuTPLli1TOyQhVJdd0N+qVSvq1q3L5s2bjVbQbwwB7vYMqlZC1S5n2V3LBlUrIYlMMSDJjBm6fC+DIzdSzSaRyaYAf9xILfAeNEIUNXt7e+rVq8fhw4eNPvavv/5KXFxckS4xO3nyJM2bN8dgMLB//35q165dZOc2FhcXF7Zs2cLw4cN5+eWXmTp1qrRuFsVSTEwMU6dOxdvbmxdffBGdTsfatWuJiopi2rRpJlVbVtHJmldquuLvbgdQZElN9nkC3O14paarFPsXE9IAwMwYFIWtUYmqT98+KQ2wNSqRQD9X2XlXmKQmTZqwY8cOo48bGhqKj48PjRo1MvrY+Tly5AjPPfccZcuWZceOHZQtW7ZIzlsYrK2t+frrr6lcuTJTpkzh4sWLfPPNN6ru0yNEUVAUhd27dxMcHJxT0D906FBGjx5dJHUwT8Naq6FDBSd8S9qyNSqRO+mGQrt2yR63hI2Wrt7OksQUMzIzY2bOJ6Rzx4yWl/2bAtxJN3AhQWZnhGlq0qQJZ86c4fbt20YbMyMjgw0bNjBgwIAiWf6xZ88e2rZtS7Vq1fj111/NOpHJptFoePvtt1m9ejVr166lU6dOxMfHqx2WEIXiwYL+9u3b5yroDw4ONvlE5kEVnawJ9HOlb2UXfJzvJxnG+iuYPY6PszV9K7sQ6CezMcWRzMyYmaM3Us12ViabBjh6I4WqJeSuqjA92TUlv//+O88995xRxty5cye3b98uko0yt2zZQr9+/WjZsiVhYWEWt0/LCy+8QPny5enZsyfNmzdn27Zt0h1RWIyIiAhCQkJYuXIlqamp9O7dmwULFqheB/O0tBoNVUvYULWEDfFpWRy/mcrxW6mkZSn/fB4MBbiwefA4W52G+qXsqF/aDldbXSFGL0yddDMzI/FpWXx9wnLuRI70c5U/QMLkKIqCu7s7Y8eOZfr06UYZ86WXXuLQoUOcPHmyUC9IVq1axUsvvUSPHj34/vvvsbW1LbRzqe306dN06dKFe/fuER4eTsOGDdUOSYgnkp6eTlhYGMHBwezbt4+yZcsSGBhIYGCgSdXBGJuiKMSnGbiWnMm1lExikzK4lpJJpiHvsVZa8LS3opyjNZ72Vng6WOFqqzXrBE8Yj8zMmJFjN81/ViabBjh+M5W25R3VDkWIXDQaDY0bNzZaE4DU1FTCwsKYOHFiob7xzp8/n3HjxjF8+HAWLVqkyqacRcnX15dDhw7x/PPP07p1a1avXk2PHj3UDkuIArty5Qpff/01ixcv5tq1a7Ru3Zq1a9fSs2dPrK0tf6mURqPBzU6Hm50OP+7feFEUBYMCmYpClgF0WrDSaNBqkMRF/CepmTETiqLw1y3T6WA2pYE7Oxd+8cSvV4Djt1KlK5EwSU2aNOHw4cNG+fncvn07CQkJhdbFTFEUPvroI8aNG8frr7/ON998Y/GJTDZ3d3d++eUXunTpQq9evZg7d67aIQnxUNkF/X379sXb25tZs2bRu3dv9Ho9e/bsoV+/fsUikfkvGo0GnVaDrU6Lg7UWW50WnVYjiYx4KElmzMTttKyctaX/FvXX7+xc+AUpiXeLOKqnk5Z1f4pZCFPTuHFj4uPjOXv27FOPtWbNGurWrYufn58RIsvNYDDw+uuvM3XqVD7++GNmzJhR7N707e3tWbt2La+//joTJkxg4sSJZGVlqR2WELkkJCQwf/58atWqRbt27Th58iRz5szhypUrZlfQL4SpkWTGTFxLzvzPz0X99Qe7Fn1JqpklM/Dwr0sItWS3T37azTOTkpLYvHlzoczKZGZmMmLECObMmUNwcDDvvvtusUtksmm1WmbMmMH8+fOZN28effv2JTk5We2whECv1zNq1CjKlSvHxIkTqVWrFrt370av1zNmzBhcXFzUDlEIsyfJjJm4lpz51N8sg8FARlqqUeIxBq0GrqVIMiNMT8mSJalZs+ZTJzNbt24lOTnZ6MlMamoq/fr1Y9WqVaxatYrRo0cbdXxzNWbMGH744Qd27NhBmzZtiIuLUzskUQylp6ezZs0aWrduTZ06dfjhhx944403iIqKYt26dbRp06bY3ngQojAUj4XVFuBqcib5LcjaufALdi36EoAvuvnnPP9m+FG+6OZPk/4v41W3IXuWzuZm9HkGfv4Ntdp2Ye+KYCJ/2cqNqHNkpKZQplJ12rw8gTodns81fmZ6GtvnfsTxbevJSE+lSkALekzJv1bm7vWr/BzyGaf37yQl8S6lKlai5eBRBPQclO/xBgVik2S/GWGajNEEIDQ0lICAAKpUqWKkqCAxMZGePXty4MABNm3aRNeuXY02tiXo1q0be/fupVu3bjRt2pRt27ZRo0YNtcMSxcCVK1dYtGgRixYtKpYF/UKoRZIZM6Aoyn/OYNRq15Wb0ef5a/tGuk76CMeSpQBwdL3/3wt/7Cfi5800HTACh5JuuJarCMCB1Yuo2aoT9Tv3ISsjg792hPH9myMYNuc7arR8Nmf8DR8GcXzbOup17oN33Yac/2Mf344fmCeOxFvXWTDsOdBoaDJgBE6upTj92y42fDiR1KREWgx6Ld/4r6VkoiiK3KUSJqdJkyasXLmS5ORkHBwcHvv1CQkJbNu2jU8++cRoMd26dYsuXbpw8uRJtm/fTuvWrY02tiXx9/fn0KFDdO3alaZNm7Jp0yb5txKFQlEU9uzZQ3BwMJs2bcLe3p4hQ4YwevRoateurXZ4QhQLksyYgSyFfPuuA5StXotyNery1/aN1GrbBddyXrk+fyPqHBPW7sWjsm+u5yeFHcLazj7ncdMBI5g3qD37Vy3MSWauntFzfNs6mvQbnjMb03TACELffY1rZyNzjbcj+FMMWVlMWLsXx5JuADTu+xKrpwSy6+svadxnWK7zZcs03J+h0UkuI0xM48aNycrK4s8//6RFixaP/foffviBtLQ0+vfvb5R4YmNjefbZZ4mLi2PPnj00aNDAKONaKm9vb/bv30+fPn3o2LEjy5YtY9Cg/GeJhXhcCQkJrFixgpCQEE6ePEnNmjWZM2cOQ4YMkToYIYqY1MyYgcynaA9bqUGzPIkMkCuxSEm4Q+q9BHyeacKVU3/nPH96/04Amr0YmOu1zQeOzPVYURT0u8Kp2aoTKApJ8bdyPqo3bUvqvYRc4/7b03x9QhSW2rVr4+DgkKtuRlEUMg0KqVkGkjMMpGYZyDQo+bZwDg0NpXnz5lSsWPGpYzl//jzNmzcnISGBffv2SSJTQCVLluTHH39k0KBBDB48mI8//ljawYun8l8F/ZGRkVLQL4RKZGbGDBieonuxW3mvfJ8/uXcHu5fM5OoZPZnpaTnPP7jcK/5qDBqtFrcKPrle6+5dNdfjpPibpCbe5feNK/h944p8z5d0++Z/xphlAHSP+EKEKGI6nY42XXpwJtHArph7XP1nl+qH7U5d1uH+ztR26ff4+eefmTlz5lPH8ffff9OpUydcXFz4+eef8fLK/3da5M/GxoalS5dSqVIl3n//fS5evMjChQulhkEUWEZGBmFhYQQHB7N37148PT2ZNGkSgYGBlC9fXu3whCj2JJkxA9qnmD+zsrXL89zFPw+yMmgwPg2a0uPtz3F290BnZc2Rzav568cNj30O5Z9sq36Xfvh3z79rk2e1/95jQyfzg8KExKdlcexmKn/dSqXlO/c3YTx6IzXfBhzZMg0Qk5RJbNL/GnVM2XkSb09n4tOycLV9smz94MGDdOnShUqVKrF9+3bKlCnzROMUdxqNhqlTp+Lj48Mrr7xCdHQ069evp0SJEmqHJkzYvwv6W7VqxZo1a+jVq5ckw0KYEElmzIDVI4rjH7d4Xr8rHCtbO14OXouVjW3O80c2r851nGvZCigGA7djLuHu87/ZmBtR53Id5+haGltHJxRDFlUbP36R7aO+PiEKm0FROJ+QztEbqVxKzEADPLgYqaCTow8eZ+9cghNJEHkiHh9na/zd7ajiYoO2gD/vO3bsoFevXvj7+7Nlyxa58DaCoUOHUqFCBXr37k2LFi3Ytm2bUZYBCsuRXdAfEhJCWFiYFPQLYQbknrgZ0GnuL2P5Lzb29zstpRRw00ytTgdoMDywS3Z8bDQndv+Y67jqzdsD9zufPei377/OM17tdt3Q7wrn2rmTec53L/6/l5hZae/vNyOEWi7fy2DRiXg2XEgkKvF+q3BjVVVkjxOVmMGGC4ksOhHP5XuPbke+fv16unXrRps2bdi+fbskMkbUrl07Dhw4QGJiIo0bN+bYsWNqhyRMQEJCAsHBwdSuXZt27doRGRnJnDlzuHLlCiEhIZLICGHCZGbGDGg0GjztrYhJyr89c7ma9YD7HcXqPtsLnbU1NVs9m++xADVadGT/qgUsGzuA+p37cO/2TQ6tXUqpipVydSkr51uHes/15tC6ZaTeS8SrXkPO/76XW5cv5Rmz0/j3OX/kN0KGPkfDXoPxqOxLckI8saf+5tzhvUzdczbfWDztraQts1BFhkHh19gkjtxIJfsnsLBKw7PHvZtu4Luzdwlwt6N1OXfbevMAACAASURBVEes88nkly5dyquvvkr//v1Zvnw5NjY2hRRV8eXn58ehQ4fo3r07LVu2ZO3atXTp0kXtsIQK9Ho9ISEhrFy5kpSUFHr27Mn8+fNlY0shzIjMzJiJsg5W//nNqljrGTqOfpurZyJZP30coVMCSYq/9Z9jVWnUkj5TZ5N46zrhM97jr+0beW78+9Rqm/fNvM+0OTR78VXOHPyF7XM+wJCZyUtzv89znHOpMoxZ+RP+z79A5O6tbP78bQ6sXkTy3Ts8N35qvnFoNVDOUdYdi6J3+V4GS07Gc/RGKlB4Scy/ZZ/n6I1UlpzMO0vz1VdfMWLECAIDA1m1apUkMoXI09OTPXv20L59e7p3787ChQvVDkkUkYyMDNauXUvr1q2pU6cOYWFhvP7660RFRbF+/Xratm0riYwQZkSjSJ9KsxB5O5UtUffUDsPonvd2xs/N9tEHCmEkR26ksDMmKU9dTFHLPn+HCo74l7bjvffe49NPP+Wdd97h448/loupIpKVlUVQUBDz5s1j8uTJ/N///R/ap+m6IkzWlStXWLx4MYsWLeLq1au0atWKMWPG0LNnT7lxIIQZk2VmZsLTwTK/VZb6dQnToygKB+JS2Hc1+f5jteP55787Y5JYv2kzn3/6KV9++SVvvPGGqnEVNzqdjrlz51K5cmVef/11Ll26xPLly7G3z7vJrzA/iqLw66+/EhwcTFhYGHZ2dgwdOpRRo0ZRp04dtcMTQhiBzMyYCUVRmB1xm7Qsy/l22eo0TKzjJnegRZH47VpyTiJjihxiTzK+a0u1wyjWNm7cyKBBg2jQoAE//PADpUuXVjsk8YQSEhJYuXIlISEhnDhxgpo1azJ69GiGDh0qG1sKYWFkLt1MaDQa6pWyw1Iu+zVA/VJ2ksiIInHkeopJJzIAyeVqcuRGitphFGu9e/dmz549nD17lqZNm3L2bP6NS4TpioyMZMyYMZQvX54JEyZQs2ZNfvnlFyIjIxk7dqwkMkJYIElmzMgzpe1UXxpjLApQv3TeDT2FMLbL9zLYeSVJ7TAKZGdMUoFaN4vC07hxYw4dOoROp6Np06b89ttvaockHiG7oL9NmzbUrl2bDRs2EBQUxKVLl6SgX4hiQJIZM+Jqq8PH2drsZ2c0QCVn6yfeFV2IgsowKIRHJZrN74wGCI9KJMNgKbctzFPlypU5cOAAtWrVon379qxdu1btkEQ+YmNjmT59Ot7e3gwYMABFUQgNDSU6OpoPP/yQChUqqB2iEKIISDJjZvzdzX92RgH83aW4VhS+X2OTSEg3mM3vjAIkpBvYG2seM0mWzM3NjR07dtCnTx8GDBjAF198gZSYqk9RFPbs2UO/fv3w8vJixowZ9OjRg7///ptff/2VAQMGSGcyIYoZaSVlZqq42FDSRstdM7pAe5AGKGGjpbKL7C8jCtflexkc+WcfGXOiAH/cSKV6SVsqOsnviZpsbW1ZtWoVlStX5q233uLixYvMmzcPK6uie+tUFIUsBTIVBYMBtFqw0mjQaShWS6cSExNzCvojIyOpUaMGs2fPZsiQIZQoUULt8IQQKpJuZmbo8r0Mvjt7V+0wntjgaiWoIBdpohAZFIVFJ+LNPukP9HNFW4wuWE3ZN998w8iRI3n22WdZs2YNzs7ORj+HoijcTsviWnIm15IzuZqcybWUTDINeY+10oKnvRVlHazw/OfDzVZncQlOZGQkISEhrFixgpSUFHr27Mno0aOlDkYIkUOSGTO1M+YeR2+kmtWFmgYIcLejfQUntUMRFu7s3TQ2XEhUO4yn1reyC1VLyJIZU7Fjxw769u1LlSpVCA8Pp3z58kYZNz4ti2M3U/nrVmpO+30tkE8Ok8eDx9nq7ne9fKa0nVnXJGZkZLBp0yZCQkLYs2cPHh4eBAYGEhgYKHUwQog8JJkxUxkGhSUn482mHkADuNhoeaWmK9ZauZsmClfoubtEJWaYxe/Gf9EAPs7WDKgqS2hMyd9//03Xrl0B2Lp1K3Xr1n2icQyKwvmEdI7eSOVSYgYajLORa/Y4Ps7W+LvbUcXFxmxm92JjY1m0aBGLFi3i6tWrtGzZkjFjxtCrVy+pgxFC/CdJZsyYuS03G1SthNQAiEIXn5bF1yfi1Q7DaEb6uZr1XXZLdOXKFbp168b58+dZv349zz777GO9/vK9DLZGJXIn3WC0JObfssctaaOlq7ezyf7tVRSFvXv3EhwcTFhYGLa2tgwZMoTRo0dTp04dtcMTQpgB6WZmxio6WdOhgqPaYRRIhwqOJvtmKizLsZupZtOK+VE0wPGb5tfEwNKVL1+evXv30qJFC7p27crSpUsL9LoMg8LOmHt8d/Yud9PvLw4rrLuJ2ePeTTfw3dm77Iy5Z1ItvxMTEwkJCaFOnTq0adOGiIgIZs6cyZUrV1iwYIEkMkKIApNkxswFuNvTsqyD2mE8VMuyDgRIK2ZRBBRF4a9bplVLNqWBOzsXfvFEr1WA47dSpSWwCXJ2dmbz5s2MGDGCESNG8N577z30+3T5XgZLTsZz9J8Oe0X1Hc0+z9EbqSw5Ga/6pqwnTpxg7NixlC9fnvHjx+Pr68uuXbs4ceIE48aNk85kQojHJq2ZLUAzj/uJwr6rySpHklersg409ZBERhSN22lZOQXUliItSyE+zYCbnSw1MzVWVlYsWLAgV+vmpUuXYmtrm+u4IzdS2BmTVGhLygoiew+j787epUMFxyK9wZSRkcEPP/xAcHBwTkH/xIkTpaBfCGEUksxYAI1GQ3NPB2x1GtXfMOF/a7WL+g1TiGvJmWqHUCiuJWdKMmOiNBoNb775Jj4+PgwdOpSYmBjCwsJwc3NDURQOxKXk3GhSO83OPv/OmCTSshSaedgXanvjq1ev5hT0x8bG0qJFC1avXk3v3r2loF8IYTSSzFiQAHd7POytCI9KVK3LWXbXsm4mXHAqLNe15MwCt7R9mPSUJGzsTaMeTauBaymZ+GH76IOFavr370+5cuXo0aMHzZo1Y9u2bVx18DTJGXP430x+c0/jLlPOr6B/8ODBjB49+ok7vwkhxMNIzYyFqehkzSs1XfF3twMoskLo7PMEuNvxSk1XSWSEKq4mZ+abyNy9fpUNH0zg02dr817j8nzRzZ9Nn04mMyOdo5tXM6WBOxeO/samz97k4/Y1+ey5egCsmzaWz7s2yDPezoVfMKWBe67nMtPTCJ/xHh+3q8G0Fj6smDiYu3Gx+cZ59/pV1k8fzycd/HivcXlm9W3BkU3f5XusQYHYJHXrHETBtGjRgkOHDpGZmcmoz+abbCKTbd/VZI7cSDHKWA8r6F+4cKEkMkKIQiMzMxbIWquhQwUnfEvaFnr7T0NWJlqdFSVMvP2nsHyKonAtJe8ys4Qb1wgZ8iwpiQk06j0Ed59qJNy4in7nFjJS/3ch98Nnb+HoWop2r04iI/XxL0I3fBjE8W3rqNe5D951G3L+j318O35gnuMSb11nwbDnQKOhyYAROLmW4vRvu9jw4URSkxJpMei1PK+5lpKJoiiy47kZqFatGmF7DhJ+Xe1ICmZnTBIe9lZP/Lf7xIkThISEsGLFCpKTk+nRowdz5syhXbt28vMqhCgSksxYsIpO1gT6uXIhIYOjN1K4aOyN2RSFc4f30raKB4M6tTKbjdmEZcpSIDOfaZnt8z4i8dZ1Rq/4iQp+9XOe7zjq7VzdpxxcSvLKwo1odY9fm3L1jJ7j29bRpN9weky537ms6YARhL77GtfORuY6dkfwpxiyspiwdi+OJd0AaNz3JVZPCWTX11/SuM8wrO1y15plGu7P0OjkV8zkZRgU9t/VodWYz4bG4VGJj7WhcX4F/RMmTGDkyJFS0C+EKHKyzMzCaTUaqpawYUDVEoz0c6VRGXtsH7giyspIhwK0fX3wPc5Wp6FRGXtG1nLjbOg8Fn/6viQyQnWZ+fwcGwwGTuz5kZqtOuVKZLI9eOe4Ye8hT5TIAJzevxOAZi8G5nq++cCRuR4rioJ+Vzg1W3UCRSEp/lbOR/WmbUm9l8CVU3/ne478vj5hen6NTVKtZvFJZHc52xub9Mhjr169yocffoiPjw/9+vUjMzOT1atXEx0dzUcffSSJjBBCFTIzU4y42upoW96RNuUciE8zsHrbz2zb/zv9A8dyI82Q711tKy142ltRztEaT3srPB2scLXV5lwEBgUF0adPH44ePYq/v38Rf0VC/I8hn5/fpPibpN1LxKNKjUe+3rWc1xOfO/5qDBqtFrcKPrmed/eumiee1MS7/L5xBb9vXJHvWEm3b+b7fJYBkIZmJu3yvQyO3DC/TU4V4I8bqVQvaZtnuVl2QX9ISAgbN27MKegfNWoU9erVUydgIYR4gCQzxZBGo8HNTse5fT9xdutWhs2ciqIoGJT7d3+zDKDTgpVGg1bDQ9c99+jRg0qVKjFr1ixWrVpVhF+FELlpn3Ke+d9LuwA0/9FCw2DIeqJzKP9kXPW79MO/+4B8j/Gs5pfv83//dYwKnh6UKVNG2tqaIIOisDUqUfXW+E9KA2yNSiTQzxWtRkNiYiKrVq0iJCQEvV6Pr68vX331FcOGDZONLYUQJkWSmWIsIiKC2rVrA/cTFp0GdGge6+6vTqdj/PjxTJ48mc8//5zy5csXUrRCPJxVPkm3o2tpbJ2ciTt/6onGtHMpSWri3TzP37kak+uxa9kKKAYDt2Mu4e7zv9mYG1Hn8sbj6IRiyKJq49aPFUuLpk3Jyrzf1axUqVJ4eHjg6emZ8/Hg4+z/L126NLonXDonHs/5hHTupD9tU3D1KMCddAN79OfZ+PVsVqxYQVJSEj169GD27NlS0C+EMFmSzBRjer2ekSNHPvrAR3j55ZeZOnUqwcHBfPrpp0aITIjHp9PcXxb54HJJrVaLX5vOHN+2npgTx/PUzSiPqEMpVcGH1HsJXD0TSdnqtYD73dEid2/NdVz15u35af4nHFi9KKcBAMBv33+d6zitTkftdt04vn0j186dxLNqzVyfvxd/EyfX0nm/NhQOHz7E9bg4rl27lvMRFxfHlStXOHr0KNeuXePu3dyJl1arpUyZMvkmOv9+7OrqKherT+HojVSznZXJZsjKYtWBP9m2fj0TJkwgMDCQihUrqh2WEEI8lCQzxdSNGzeIi4vLmZl5Gi4uLrzyyit8/fXXvPfeezg4GHcTNiEKQqPR4GlvRUxS7vbMnca+x7lDe1j0Sg8a9R5CmUrVSbgZh37nZkYuDX/omHU79WL73A9Z9cZLNHvhFTJSUzi0/ltKe1Uh9oFC/XK+daj3XG8OrVtG6r1EvOo15Pzve7l1+VKeMTuNf5/zR34jZOhzNOw1GI/KviQnxBN76m/OHd7L1D1n87ymrKM1/tXz7nfzb6mpqcT9k/DE5ZP4nD17ln379nHt2jWSk3O3n7a2tn7obM+Dj52cnCTxeUB8WhaXEs1/LyCtTkf1pm35v3OXKONkp3Y4QghRIJLMFFN6vR7AKMkMwLhx45gzZw4rVqzgtdfy7pMhRFEo62BFbFLujTNLlCnL6OU/sWPBZxz/cQNpSYm4lClL9Wbt8q2TeZBjSTcGf7WcrTOn8uOcD3Er70Wnse9xK/pCrmQGoM+0OTi6luL4jxs4sWcbVRq25KW53/N/nXMXSTuXKsOYlT+xa9EMIndv5fC6ZTiUdKVM5Ro8N35qnhi0GijnWLA9QOzs7PD29sbb2/uRx967dy9XovPv///rr79yHqenp+d6rYODQ4Fmezw8PLC3f/i/sSU4dtP8Z2WyaTQaIu9mUcZJ7UiEEKJgNMqj1lkIizRv3jzeeOMNkpKSsLIyTk7bp08fIiMjOXHiBNqnrcYW4glE3k5lS9Q9tcMwuue9nfFzs1Xl3IqicOfOnf+c7Xnw8fXr1zH8q62ci4tLgWZ7ypQpg7W16W+6++233zJ8+HAuXryIj48PiqIwO+I2aVmW81Zqq9MwsY6bzL4JIcyCzMwUUxEREdSsWdNoiQzcb9PcsmVLtm/fTpcuXYw2rhAF5elgmX/S1Py6NBoNrq6uuLq6UrNmzYcem5WVxa1btx6a+ERGRhIXF8fNm3lbUJcqVeqRTQ08PT0pVaqUyTQ2uJ2WVaBEJu7CaSJ2/ID/8y88VRvwwpaekszO5fOp0qcTzz/bXu1whBDikSzznV88kl6vN9oSs2zNmzcnICCAWbNmSTIjVOFmq8NWp7G4u+SutuYx06nT6ShTpgxlypR55LEZGRlcv379P5e5Xb58mT/++IO4uLg8jQ10Oh3u7u6PnO3x9PSkZMmSRp1hGDJkCC+88AK2tvdnyq4lZz7iFfddv3CaXYu+pHJAc5NOZjJSU9i16Et8S9pIMiOEMAuSzBRDiqKg1+vp0aOHUcfVaDQEBQUxaNCgQkmWhHgUjUZDvVJ2/HE9xTLqF4D6pewscrmPtbU15cuXL1A795SUFOLi4v5ztufMmTPs27ePq1evkpKSkuu1NjY2BarvyW5s8Cg6nS7XrNC15Ey0gFpNmdNTkrCxdzT6uPcyzLfNtBCieJGamWIoKioKHx8fwsPD6dq1q1HHzsjIoFKlSjz33HMsWbLEqGML8Sjx8fEsWL4KbesX1Q7FaEb6ueJqaxpLqkydoig5jQ3ym+359+OMjNwdyBwcHB65zG3fvn1Mnjw5p2bGvYIXpSrVoM3w8WydOZVrZ0/g7O5Jh5GTadDt/saoRzevZv308XnifXXRJioHNAfg9G872fPNbK6cikCj1VCpQVM6T5iGR5UaOcevmzYW/c4tjA/dw+YvpnDp2CGqNmrFkJkrMBgMHFi9iD/CVnE75hJ2Ti74tenMc+Pfx96lZM4YMSeOs2P+J1w59TfpKck4lypD5YDm9J0+l/jYaL7o5p8nzmnTpjF9+nRjfIuEEMLoJJkphrZu3Uq3bt24dOlSgboePa7/+7//Y/r06URHRxdouYkQT+vSpUvMmjWLb775hszMTN5cuxvHilVRMN8ZDQ3g42zNgKqy23phUBSF+Pj4AiU++TU2cHZ2ply5csTdTcLazo6UxLsE9BiEi7snR374nqunI5iwdi8eVWpwO+YSv61exIHVi2nz8kTKVKoOQNUmrXEuVYY/w9eyftpYqjVti2+LjmSkpnB4/bekJN5l/OpfcpalrZs2lr9/2oRLmbL4PNMYrzoNsbazp0G3/mz8KIijW0Lx7/4i5WvWIz42ioNrvqFMZV9eW7oVnbU1927fYGbvZji6lqJhryHYO7sQH3uZyF+2ErThN9JTkji2dR2bPp1M7XZdefOlAWg0GurWrUvdunWL/HskhBAFIcvMiiG9Xo+zszNeXoWzbjswMJCPPvqIhQsXMnVq3lazQhjL0aNH+fLLL1m3bh0lS5bk9ddfZ+zYsdy1LcGGC4lqh/dUFMDf3fLbGqtFo9Hg5uaGm5sbfn5+Dz02KyuLmzdvEhcXx4oVK/jqq68YPXo0GVkGln4Xyo1L5whcsplKDZoCUOfZHnzeuT5HN6+mS9AHuFXwweeZJhxYvZhqTdrkzMYApCXfY8uX7xDQczC935+Z83yD7gOY2aspu7+Znev5zPQ06nR8nufGvZ/z3KVjh/gjbBUDPllI/c59cp6vHNCCZWMHELFzM/U79yHqrz9ISbjDyyHrcm0g++yYdwCwsXekdvvubPp0Mh5V/Rg4aDA6rfneEBBCFA/mUVUqjCoiIoLatWsX2jp8Nzc3hg0bRkhICGlpaYVyDlF8GQwGtm3bRtu2bQkICOCPP/5g7ty5REdH8+GHH1KmTBmquNhQ0kZrtvMyGqCkjZbKLqbfqrg40Ol0eHh4ULdu3ZxawNdee41P/u//AChT2TcnkQFwci1Nae+q3I6JeuTY5w79SmriXeo915uk+Fs5H1qtjoq1G3DhyP48r2nSd3iuxxE7N2Pn5ELVJq1zjVG+Zj1sHBxzxrB3vj/Ld2rvDrIyHr3JZ6Ys3BBCmAGZmSmG9Ho9jRs3LtRzTJgwgQULFrB69WpeeumlQj2XKB7S0tL4/vvvmTFjBidOnKBRo0asW7eOXr165WnTq9Vo6OrtzHdn7/7HaKZNAbp5O6O1wMJ/S5K98qykZ94mBvYuJUhJvPPIMW5GXwBgyche+X7e1sk512OtlRUuHuXyjJF6L4FP2uffOvve7fttsCv5N6N2+27sWvQl+79fSGX/5vi16Uz9zn2wssm7j1GWAZByLSGEiZNkppjJzMzk5MmTjBgxolDP4+vrS9euXZk1axbDhg2zyG5MomjcuXOHhQsXMnfuXK5evUr37t1ZuHAhLVq0eOjPVUUnawLc7Th6I9WsOptpgAB3Oyo4yayMqcveG1ijzf+KvyAlqYpyPyPq/1EIzqXz1hhqdbnfpq2sbfJsSqwYDDi5uTPgkwX5nsPRtdT9ODUaBn25jOi/j3By70+cPbibDR9MYP+qBYxa/iO2Drm7uelk7YYQwgxIMlPMnD17lvT09CJpmzxx4kQ6duzI7t27adeuXaGfT1iWqKgoZs+ezZIlS0hPT2fo0KFMmjSJGjVqPPrF/2hdzpGzd9NJSDeYRUKjAVxstLQqZ/xWu8L4rB7jJs1/Jd6lKvgA4OhWmqqNWz9RHKUq+HD+971412uEtd2j66y86gbgVTeATmPf5fiPG1jz7mv8/VMYDXsNgQfifJyvTwgh1CL3XYoZvV4PUCTJTPv27alTpw6zZs0q9HMJy3Hs2DEGDhxIlSpVWL58ORMmTCAqKorFixc/ViIDYK3V0M3b2SwSGfjf8jJrKbo2CzoNBa7LsrZzACAlMffSx2pN22Hr5MyepbPzrWO5F3/zkWPXebYHhqwsfln8VZ7PZWVm5pwzJeFOntmisr733wsy09MBsPknGUq7dxf5MRRCmAOZmSlm9Ho9Hh4euLu7F/q5NBoNEydOZMSIEZw5c4bq1asX+jmFeVIUhZ9++okZM2awa9cufHx8mDVrFsOHDy/QRoYPU9HJmg4VHNkZk2SkaAtPhwqOVJTlZWZDo9EUeClWOd/aaHU6fv12Hqn3ErCysaVKwxY4ubnTc8qXrH1/NPMGtafesz1xdC3NnWsxnNr/M971GtHj7c8fOnZl/+Y06jOMPcvmEHtGT7UmbdBZWXMz+gL6nZvpNvkT6nR4nqNbQjm0bhm12nalVAUf0pLv8UfYSmydnPFt0QEAazt7ylT2JeLnH1iwoB5ubm7Url1bNkEWQpgsSWaKmexOZkVl4MCBTJkyhTlz5hAcHFxk5xXmIT09ndWrVzNjxgz0ej0BAQGsWbOG3r17Y2VlvD9PAe72pGUp7LuabLQxja1lWQcCpBWz2dFpNAWanXEu7UHPd75kz7K5bPxwIoasLF5dtAknN3fqd+6Di7sne5bNYe+KYDIz0nFx96TSM00IeH5ggeLo9e4Mytesx+8blrMj+FO0Oh2uZb2o36Uf3vUaAVDZvxkxkcf4+6cw7t2+gZ2TCxVqPcOAjxfiVv5/e471nTqLnTPfJSgoiPT0dKZNmybJjBDCZMmmmcVM9erVcwrzi8r06dP58ssviYmJwdXVtcjOK0zX3bt3+frrr5kzZw6xsbF07dqVyZMn06pVq0JrFqEoCgfiUkwyoWlV1oGmHvbSKMMMRd5OZUvUPbXDMLrnvZ3xc8vb4UwIIUyN1MwUI8nJyZw7d67I77CNGjWKzMxMFi9eXKTnFabn8uXLTJo0iYoVK/L+++/z3HPPERkZSXh4OK1bty7Ui3mNRkPcge1s/nwKKIrqe9Bkn79DBUeaeTpIImOmPB0sc4GDpX5dQgjLI8lMMXLy5EkURSnyZMbDw4NBgwYxb948MgqwUZuwPMePH2fIkCFUrlyZpUuXMnbsWC5dusQ333zzyN3XjeXUqVMMGzaM8ll3GFStBC4qbqqZ3bVsULUSsrTMzLnZ6rDVWVYiaqvT4GorlwdCCPMgf62KkexOZrVq1SrycwcFBRETE8OGDRuK/NxCHYqisGPHDjp27MgzzzzDvn37mDFjBpcvX+bTTz+lbNmyRRZLQkICvXr1wsvLi6VLl1LR2YZXarri724HFLwj1dPKPk+Aux2v1HSVYn8LoNFoqFfKTvWZPmPRAPVL2clMoRDCbEgyU4xERERQqVKlp+4O9STq1KlD+/btmTVrVoE2khPmKyMjg5UrV1K/fn06derE7du3Wb16NefOnWPChAlF/vOnKAovvfQSsbGxbNy4EWfn+zuqW2s1dKjgxKBqJShhc/9PYWFdvmWPW+Kf2Zj2FZyk/bIFeaa0ndm0/34UBahf2k7tMIQQosAkmSlG9Ho9derUUe38QUFB/P777xw8eFC1GEThSUhIYMaMGVSuXJmhQ4dSvnx5fvnlF44cOcILL7xg1O5kj+Pzzz8nLCyMFStW4Ovrm+fzFZ2sCfRzpW9lF3yc78+UGCvNyB7Hx9mavpVdCPST2RhL5Gqrw8fZ2uxnZzRAJWdrXG11aocihBAFJhV+xYher2fYsGGqnb9z5874+voya9YsmjVrplocwrhiYmKYM2cOixYtIiUlhUGDBjFp0iSTaOW6Y8cO3n33Xd577z169Ojxn8dpNRqqlrChagkb4tOyOH4zleO3UknLUv75PBgecetdURQUQxZa3f0/q7Y6DfVL2VG/tJ1cHBYD/u52XEo075pABfCXGi4hhJmRZKaYiI+P58qVK6peYGq1WiZMmJBT/O3j46NaLOLp/f3338yYMYPVq1fj6OjIqFGjGD9+POXKlVM7NAAuXbrEiy++yLPPPsv06dML/DpXWx1tyzvSppwD8WkGriVnci0lk9ikDK6lZJJpyPsaKy2kxl3h7327mB40Fk8HK1xttVJ3UIxUcbGhpI2Wu+kGs1xypuH+MsjKLjJzKIQwL7LPTDGxb98+WrVqVeSbZv5bUlISFStWZPjw4Xz11VeqxSGejKIo7Nq1ixkzZvDTTz9RsWJFgoKCeOWVV3JqUUxBSkoKjW54ZAAAIABJREFUzZs3586dOxw5cgQ3NzejjKsoCgYFMhWFLAPotGCl0aDVwMaNG+nbty+xsbFF2txAmI7L9zL47uxdtcN4YoOrlaCCLIMUQpgZqZkpJvR6PVZWVlSvXl3VOBwdHQkMDGTJkiUkJiaqGosouIyMDL777jsaNGhAx44diYuL47vvvuP8+fMEBQWZVCKjKAqvvfYap06dIiwszGiJDNzvXKXTarDVaXGw1mKr06LTatBoNPj7+wPw559/Gu18wrxUdLImwN38OptpgIbudpLICCHMkiQzxURERAS+vr7Y2NioHQpjx44lOTmZpUuXqh2KeITExERmzpxJlSpVGDx4MB4eHuzcuZM///yTgQMHYm1tehc/CxYsYMWKFSxatIh69eoV2Xm9vb1xc3Pj6NGjRXZOYXpal3NUdQ+jx5W951Grco5qhyKEEE9EkpliQu1OZg+qUKEC/fr1Y+7cuWRlZakdjshHbGwsb731FhUrVuStt96ibdu2/PXXX2zfvp327dubbC3IgQMHmDBhAuPHj2fw4MFFem6NRkODBg0kmSnmrLUaunk7m03djAJ083aWVuFCCLMlyUwxoCiK6rUy/xYUFMSFCxfYsmWL2qGIB+j1eoYPH46Pjw8LFy4kMDCQixcvsnz5curWrat2eA919epV+vbtS9OmTZkxY4YqMfj7+0syI6joZE2HCuYx09GhgqO0CxdCmDVJZoqB2NhY7ty5YzIzMwANGzakefPmzJo1S+1Qij1FUfjll1/o3LkzderUYefOnXz22WdcvnyZL774ggoVKqgd4iOlp6fTr18/ANauXava8jd/f3+uXLlCXFycKucXpiPA3Z6WZR3UDuOhWpZ1IEBaMQshzJwkM8WAXq8HMKmZGbg/O7N3714pmFZJZmYmq1evJiAggPbt2xMbG8vKlSu5cOECkyZNwsXFRe0QC+yNN97g999/Z8OGDXh6eqoWR3YTAJmdEQDNPEw3oWlV1oFmHpLICCHMnyQzxUBERASOjo4mt69Lz5498fHxkdmZIpaYmMjs2bOpWrUqAwcOpFSpUuzYsYPjx48zePBgkyzqf5iVK1cyb9485syZQ9OmTVWNpVKlSri6ukoyI4D7dVTNPR1ylpypXZWi4Z/26vM/pnRCjMnWvgkhxOOQZKYY0Ov11KpVC63WtL7dOp2O8ePHExoaSmxsrNrhWLyrV68yZcoUvLy8mDx5Mi1btuT48ePs2LGDjh07muWFzbFjxwgMDOSll17itddeUzscaQIg8hXgbs+gaiVU7XKW3bWsh6eWmAM/0blzZ65fv65SNEIIYTymdXUrCoVerze5JWbZRowYgb29PcHBwWqHYrFOnDjByy+/jI+PD8HBwYwYMYILFy6wcuXKIm1dbGy3b9+md+/e+Pn5ERISYjLJmDQBEPmp6GTNKzVd8Xe3A4pulib7PAHudrxS0xW/cqXYtm0bSUlJPP/88yQnJxdRJEIIUTgkmbFwWVlZREZGmmwy4+LiwogRI1i4cKG8qRqRoijs2bOHbt26UatWLXbs2MHHH3/M5cuXmTFjBhUrVlQ7xKeSlZXFwIEDSUxMZOPGjdjbm87af39/f2JiYuSut8jDWquhQwUnBlUrQQmb+2+/hZXUZI9bwkbLoGolaF/BKaf9cqVKlQgPDyciIoJBgwZJi3whhFmTZMbCXbhwgdTUVJPqZPZv48aNIz4+npUrV6oditnLzMxkzZo1NGrUiLZt2xIdHc3y5cu5cOECkydPpkSJEmqHaBTTpk3j559/JjQ0FG9vb7XDyUWaAIhHqehkTaCfK30ru+DjfL9GzVhJTfY4Ps7W9K3sQqCfa76tlwMCAlizZg2bN28mKCgIRTGXnXGEECI3SWYsnKl2MntQ5cqV6dmzJ7Nnz8ZgMKgdjlm6d+8ec+fOpVq1arzwwguUKFGC7du389dffzF06FBsbGzUDtFoNm3axCeffMJnn31Ghw4d1A4nj8qVK1OyZElJZsRDaTUaqpawYUDVEoz0c6VRGXtsdZoHPl/Qcf73/7Y6DY3K2DPSz5UBVUtQtYQN2ocsv+zWrRvBwcHMmzeP2bNnP+mXIoQQqrJSOwBRuCIiIihVqhQeHh5qh/JQQUFBtGrVip9+ul+YKgrm2rVrzJ8/n5CQEBISEhgwYAAbN27kmWeeUTu0QnH69GmGDh1Knz59mDx5strh5EuaAIjH5Wqro215R9qUcyA+zcC15EyupWQSm5TBtZRMMvO5x2OlBU97K8o5WuNpb4WngxWuttrHrh177bXXuHTpEpMmTaJixYr07dvXSF+VEEIUDY0ic8sWrX///ty4cYPdu3erHcpDKYpCw4YNKVWqFD/99JPa4Zi8kydPMnPmTFasWIGNjQ2vvvoqEydOxMvLS+3QCk1iYiKNGzcG4PDhwzg7O6sc0X978803CQ0NJTo6Wu1QhJlTFAWDApmKQpYBdFqw0mjQajBa0wuDwcCgQYMICwtj165dNG/e3CjjCiFEUZBlZhbOlDuZPUij0RAUFMSOHTuIjIxUOxyTpCgKe/fu5fnnn8fPz4+tW7fy4YcfcvnyZWbOnGnRiYyiKAwfPpyYmBjCwsJMOpGB+3Uzly9f5saNG2qHIsycRqNBp9Vgq9PiYK3FVqdFp9UYtXufVqvl22+/pUmTJjz//POcOXPGaGMLIURhk2TGgqWlpXHmzBmTLv5/UL9+/ShXrpys3f6XrKws1q1bR5MmTWjdujUXLlxg2bJlXLx4kbfeeouSJUuqHWKh++KLL9iwYQMrVqzA19dX7XAeSZoACHNja2tLWFgYHh4esgeNEMKsSDJjwU6dOkVWVpZZzMwA2NjYMHbsWFauXCl3tIGkpCTmz59P9erV6d+/P46Ojmzbto2IiAheeuklbG1t1Q6xSPz888+88847vPvuu/Ts2VPtcAqkSpUqlChRQpIZYVZcXV1z9qDp3r27tMsXQpgFSWYsWEREBAC1atVSOZKCGzlyJFqtloULF6odimri4uJ4//338fLyYuLEiTRq1IgjR47wyy+/0LlzZ5PZHLIoXLp0iRdffJGOHTvywQcfqB1OgUkTAGGufHx82Lp1K3q9noEDB8oeNEIIkyfJjAXT6/V4eXmZ1d4ibm5uDBs2jODgYNLS0tQOp0idPn2akSNH4u3tzaxZsxgyZAjnzp1j9erVOcuWipOUlBT69OmDi4sL33//PTqdTu2QHou/v78kM8Is+fv7s3btWrZs2cLEiRNlDxohhEmTZMaCmUvx/79NnDiRuLg4QkND1Q6l0CmKwv79++nZsyc1a9Zk8+bNTJs2jcuXLzN79mx8fHzUDlEViqIwatQoTpw4wcaNG3Fzc1M7pMfm7+9PdHQ0N2/eVDsUIR5b165dCQkJYf78+cyaNUvtcIQQ4j9JMmPBIiIizDKZ8fX1pUuXLsyaNcti7whmZWWxYcMGmjVrRsuWLTlz5gxLlizh0qVLTJkyBVdXV7VDVNXChQtZvnw5ixcvpn79+mqH80SkCYAwdyNHjuTtt99m0qRJrFu3Tu1whBAiX5LMWKiEhASio6PNppPZvwUFBfHXX3+xZ88etUMxquTkZEJCQvD19aVv377Y2toSHh6OXq/n5ZdfLjZF/Q9z4MABJkyYwLhx4xg8eLDa4TyxKlWq4OLiIsmMMGuffPIJL774IkOGDOG3335TOxwhhMhDNs20UAcPHqRZs2YcO3bMLO9sK4pC3bp1qVSpEps3b1Y7nKd248YNgoODCQ4O5vbt2/Tt25c33niDhg0bqh2aSbl27RoNGjSgSpUq7Nq1CxsbG7VDeipt27bFzc2NDRs2qB2KEE8sLS2NTp06ERERwcGDB6levbraIQkhRA6ZmbFQERER6HQ6atSooXYoT0Sj0TBx4kTCw8M5e/as2uE8sbNnzzJq1Ci8vLz48ssvefHFFzl37hxr1qyRROZfMjIy6NevHwBr1641+0QGpAmAsAyyB40QwpRJMmOh9Ho91apVw87OTu1QntigQYMoXbo0c+bMUTuUx3bgwAF69+6Nr68vGzdu5L333iM6Opq5c+dSqVIltcMzSW+88QaHDx9m/fr1lC1bVu1wjMLf35+oqChu3bqldihCPJXsPWiSk5Pp3r07SUlJaockhBCAJDMWy1w7mT3Izs6OUaNGsWzZMuLj49UO55GysrIICwujefPmNG/enBMnTrBo0SKioqJ49913KVWqlNohmqxVq1Yxd+5cZs+eTbNmzdQOx2ikCYCwJD4+PoSHhxMZGSl70AghTIYkMxZIURQiIiLMtvj/QaNHjyYzM5MlS5aoHcp/SklJ4euvv6ZmzZr07t0bnU7H5s2bOXHiBK+88opZz44VhePHjxMYGMiwYcMYNWqU2uEYVdWqVXF2dpZkRliM7D1owsPDmTBhgsV2nBRCmA9JZizQ9evXuXnzptnPzAB4eHgwcOBA5s2bR2Zmptrh5HLz5k0++OADvLy8GD16NPXq1ePQoUPs3buX7t27o9XKr9ej3L59m969e1OjRg0WLFiARqNROySj0mq1NGjQQJIZYVG6dOnCggULCA4OZubMmWqHI4Qo5uRqywLp9XoAi0hm4P4mmpcvXzaZjlDnzp1jzJgxeHl58fnnnzNgwADOnDnDunXraNy4sdrhmY2srCwGDhzI3bt32bhxI/b29mqHVCikCYCwRIGBgUyZMoU33nhD9qARQqhKkhkLFBERgZ2dHVWqVFE7FKOoV68e7dq1U30X6sOHD9O3b1+qV6/OunXrmDJlCpcvX2b+/PkW829dlKZPn87PP/9MaGgoPj4+aodTaPz9/bl06ZI0ARAW5+OPP2bgwIEMGTKE/fv3qx2OEKKYkmTGAun1evz8/NDpdGqHYjRBQUEcPnyYgwcPFul5DQYDmzdvpmXLljRp0oSIiAgWLlxIVFQU77//vhT1P6EffviBjz/+mE8++YSOHTuqHU6hym4C8Oeff6ociRDGpdVqWbp0KU2aNKFHjx6cPn1a7ZCEEMWQJDMWKCIiwmKWmGXr0qUL1atXL7LZmdTUVBYvXoyfnx89evRAURQ2bdrEyZMnCQwMtNglUUXh9OnTDBkyhF69evHWW2+pHU6hq1atmjQBEBbr33vQxMXFqR2SEKKYkWTGwhgMBiIjIy2ik9mDtFotEyZMYMOGDURFRRXaeW7dusXHH3+Mt7c3I0eOpFatWhw4cID9+/fTo0cPKep/SomJifTu3Zvy5cvz7bffWlzBf360Wi3PPPOMJDPCYrm6uvLjjz+SkpIie9AIIYqcXJlZmKioKJKSkixuZgZg6NChuLi4MG/ePKOPfeHCBcaNG4eXlxeffPIJffr04fTp02zYsIGmTZsa/XzFkaIovPzyy1y+fJmwsDBcXFzUDqnISBMAYem8vb0JDw/nxIkTsgeNEKJISTJjYSIiIgDL6WT2ICcnJwIDA1m8eDGJiYlGGfP333+nf//+VKtWjdDQUN58802io6MJCQmhWrVqRjmHuG/GjBmsX7+e5cuXU6NGDbXDKVL+/v5cvHiR27dvqx2KEIVG9qARQqhBkhkLo9frKVmyJOXLl1c7lEIxduxYkpKSWLZs2ROPYTAYCA8Pp3Xr1jRu3Jhjx44RHBxMVFQU06ZNw93d3YgRC4Bdu3bx9ttvM2XKFHr16qV2OEVOmgCI4uLBPWi++uortcMRQhQDksxYGL1eT+3atS22FqFixYr069ePuXPnPvYyhtTUVL755htq165N9+7dycjIYOPGjZw6dYrXXnsNBweHQoq6eIuKimLAgAG0b9+ejz76SO1wVFG9enWcnJxkqZkoFgIDA3nnnXeYPHkya9euVTscIYSFk2TGwkRERFhc8f+/BQUFcf78ecLDwwt0/O3bt/n000/x8fHh1VdfxdfXl99++40DBw7Qq1cvi2phbWpSU1Pp06cPTk5OrF69utj+W2c3AZCZGVFcPLgHzb59+9QORwhhwSSZsSDp6emcOnXKIutlHtSoUSOaNWv2yDbNFy9eZMKECXh5efHhhx/Ss2dPTp06RVhYGM2aNSuiaIsvRVEYPXo0kZGRbNy4sdjvySNNAERxotFoWLp0Kc2aNZM9aIQQhUqSGQty9uxZMjMzLT6ZgfuzM7/++ivHjh3L87mjR4/ywgsvULVqVb777jsmTZpEdHQ0CxcupHr16ipEWzwtWrSIZcuWsXDhQho0aKB2OKrz9/fn/Pnz3LlzR+1QhCgStra2bNy4kbJly8oeNEKIQiPJjAWx5E5m/9azZ0+8vb1zZmcMBgPbtm2jbdu2BAQEcOTIEebNm0d0dDQffPABZcqUUTni4uXQoUOMGzeOMWPGMGzYMLXDMQnZCZ0sNRPFiaurK9u2bZM9aIQQhUaSGQui1+spV64cbm5uaodS6KysrBg/fjyhoaHMmjWLOnXq0LVrV1JSUli/fj2nT59m9OjRUtSvgri4OPr06UPDhg2ZOXOm2uGYDF9fXxwdHWWpmSh2vL292bp1KydOnODFF1+UPWiEEEYlyYwFiYiIKBazMgDx8fEkJCSQmZnJ66+/TtWqVdm3bx8HDx6kT58+xbbQXG0ZGRn0798fg8HAunXrsLGxUTskk6HT6ahfv74kM6JYatCgAevWrWPbtm2MHz9e9qARQhiNldoBCOPR6/UWv4dHVFQUs2fPZsmSJWRkZFCrVi1iYmIIDQ3F3t5e7fCKvTfffJMDBw6we/duypUrp3Y4Jsff359t27apHYYQqujcuTMh/8/efYc3WfVvAL+fjO5BgUqBlo3IbEuK8gJlg1AKWGQpo0yRoYK+DBVU8OdGQFGZ4oSCDBHZllEURIYUBFQ2lFFoobTpSPokeX5/lPKy6UhyMu7PdXldUtLkjmCTO+c83/PFFxgxYgSqV6+O//73v6IjEZEL4MqMi8jJycGpU6dcdmXmzz//xLPPPouaNWvi22+/xdixY3H27Fn89NNPyMzMxHfffSc6ottbsmQJZs2ahZkzZ6JFixai4zgknU6HEydOIDMzU3QUIiF4Bg0RWRvLjJNRFAUmiwKD2YJc2QKD2QKTRcHhI0cAuNbF/4qiYOPGjWjXrh10Oh12796NWbNm4dy5c3j77bdRoUIF1KhRA927d8esWbO4bUGggwcPYtiwYRg4cCBGjx4tOo7D0ul0ADgEgNwbz6AhImuSFL4DdFiKouCa0YzUXBNSc024lGtCap4JJss9bmw24cyhfYhr2wKhAV4I8dGgrKcakiTZPXdp5efnIyEhAdOnT8fhw4fRpEkTjB8/HnFxcdBo7t4ZuWPHDrRq1QobNmxAp06dBCR2b9euXUNUVBQCAwOxa9cubvd7ALPZjICAAEydOpVbbMitGY1GdOrUCQcPHsSuXbvw2GOPiY5ERE6KZcYBZRjNOJBuwMGrBhjNBX88KgD36jC3UhQFakm6eTtPtYTwcl6ILO+FIE/HvyD++vXrmD9/Pj755BNcvHgRsbGxGD9+PKKjox9YyhRFQVRUFIKDg7Fx40Y7Jiaz2YzY2Fjs2bMH+/btQ/Xq1UVHcnjNmzdHlSpVkJCQIDoKkVDXr19H8+bNkZubi927d6NChQqiIxGRE+I2MwdhURQczzRi6YlMzDuagb1X8m4WGeDhRQYoOHH51tsZzQr2XsnDvKMZWHoiE8czjbA4YHdNSUnBK6+8gipVqmDKlCno3Lkzjh49ip9//hktW7Z86OqSJEkYN24cNm3ahKNHj9opNQHA1KlTsWnTJiQkJLDIFJFOp+NEMyIAZcqUwYYNG2A0GhEbG8szaIioRLgy4wBSsmWsO6vH9XwLJAC2+AMpvN8yHip0qeqPMD+tDR6leJKTkzF9+nQsW7YMfn5+GDVqFMaMGYOKFSsW+77y8/NRrVo1xMbGYv78+TZIS3das2YNunfvjnfffRevvvqq6DhO45tvvsGgQYNw/fp1BAYGio5DJNyBAwcQHR2NNm3a4Mcff7zndmIiovvhyoxAskVB4vlsLD6eicz8gjUVWzXLwvvNzLdg8fFMJJ7Phmyxf49VFAWbN29Ghw4dEBkZiZ07d+Ljjz9GSkoK3nnnnRIVGQDw8PDAmDFj8N133yE9Pd3KqelOx44dw4ABAxAXF4dJkyaJjuNUCocAHDhwQHASIscQGRmJ5cuXY8OGDTyDhoiKjWVGkJRsGQv/zsD+NAMA25WYOxU+zv40Axb+nYGUbNkuj5ufn4/vvvsOERERePLJJ5GRkYGlS5fi+PHjePHFF+Hn51fqxxgxYgQkScLcuXOtkJjuJzs7G3FxcahYsSK+/vprpxwyIdJjjz0Gb29vbjUjukXnzp0xZ84czJkzB9OnTxcdh4icCMuMAPvS8rD4eCay8i12KzF3UgBk3Vil2ZeWZ7PHycrKwvTp01GjRg0MHDgQoaGh2LZtG/bu3Ys+ffpYdTtBuXLlMHDgQHz++ecwGo1Wu1/6H0VRMGTIEJw7dw4//vgjAgICREdyOhqNBhERESwzRHcYPnw4Xn/9dUyYMAHLli0THYeInATLjB0pioKdqblIPF9wkaPohfTCx088n4OdqblWXdo/f/48xo8fj7CwMLz22mvo2LEjDh8+jHXr1qF169Y2+zR/7NixSE1N5QuhjXz88cdYvnw5vvnmG9StW1d0HKfFIQBE9/b222+jf//+GDhwIM+gIaIi4QAAO9qZmotfL+WKjnFf0RV90DzEp1T3cejQIUyfPh0JCQnw9fXFyJEj8cILL6BSpUpWSvlwMTExuHTpEv78809ugbKirVu3okOHDpgwYQLee+890XGc2tdff43BgwcjMzOTq1tEd8jPz0enTp2QnJzMM2iI6KFYZuxk35U8JF5w/LGT7UN9ERVcvEMPFUXBli1b8NFHH2Hz5s2oUqUKxo0bh6FDh8Lf399GSe/vl19+QceOHbFt2za0bt3a7o/vis6dOwedToeIiAhs3LgRarXjn1vkyP766y80atQI27dvR6tWrUTHIXI4t55B8/vvvyMkJER0JCJyUNxmZgcp2bJTFBmgYMtZUYcCyLKMxYsXo3HjxujQoQPS0tKwZMkSnDhxAmPHjhVSZACgffv2qF+/PmbOnCnk8V2NwWDA008/DV9fXyQkJLDIWEHdunU5BIDoAXgGDREVFcuMjckWBWvP6uEsm50kAGvP6h84tjkrKwszZsxAzZo10b9/f4SEhGDLli3Yv38/nnnmGWi1Ys+wkSQJY8eOxc8//4wTJ04IzeLsFEXB6NGjcfjwYaxatQrly5cXHcklaDQahIeHs8wQPUCVKlWwbt06/PPPP+jbty9MJpPoSETkgFhmbCzpYo7QqWXFVTjlbMfFuz8Fu3DhAiZOnIgqVapg0qRJaNu2LQ4dOoQNGzagbdu2DnV9Sr9+/VCuXDl8+umnoqM4tQULFmDRokWYO3cuGjduLDqOS+EQAKKHi4yMxIoVK3gGDRHdF8uMDaVky9iXZnCaIlNIAbA3zXBzu9nhw4cxaNAgVK9eHXPnzsWIESNw+vRpfP3112jYsKHYsPfh7e2NkSNHYtGiRbh+/broOE5p9+7dGDNmDEaNGoX4+HjRcVyOTqfDsWPHoNfrRUchcmidOnXC3LlzMWfOHHz00Uei4xCRg2GZsRGLomCdE20vu5MEYMU/V9A5JgYNGzbE1q1b8f777yMlJQUffPABKleuLDriQ40aNQqyLGPhwoWiozidy5cvo2fPnoiKiuK1Rzai0+mgKAoOHDggOgqRwxs2bBgmT56MiRMnYunSpaLjEJEDYZmxkZNZ+bjuRNvL7qQAMKo9IQWH4fvvv8fJkyfx8ssvO9UY2ZCQEDzzzDOYPXs291oXgyzL6NOnD0wmE1asWAEPDw/RkVxSvXr14OXlxa1mREU0bdo0DBgwAPHx8dixY4foOETkIFhmbGR/msFpV2VuUhTET/kQ/fr1E35Rf0mNGzcO586dw6pVq0RHcRoTJ07Ezp07sXz5crueD+RuOASAqHgkScLChQvRvHlzdO/eHX///bfoSETkAFhmbCDDaMYZvey0qzI3SRJO62VkGM2ik5RYeHg42rRpw61SRZSQkICZM2dixowZiI6OFh3H5XEIAFHxeHh4YNWqVahcuTJiYmKQmpoqOhIRCcYyYwMH0l1gVeYGCUByukF0jFIZN24cdu/ejd27d4uO4tAOHTqEoUOHon///hgzZozoOG5Bp9Ph33//5RAAomIoU6YM1q9fzzNoiAgAy4zVKYqCg1edb4LZ/SgAkq8anHocZpcuXVC7dm2uzjxARkYGevTogUcffRTz5s1zqDHbrqxwCEBycrLoKEROpfAMmn///Zdn0BC5OZYZK7tmNMNodt43/vdiNCvIMFpExygxlUqFl156CStXrsS5c+dEx3E4FosF/fv3x7Vr17Bq1Sr4+PiIjuQ26tWrB09PT241IyqByMhILF++HBs2bMALL7zg1B+6EVHJscxYWWqua3465OzPKz4+Hv7+/pg9e7boKA5n2rRp2LBhA5YsWYIaNWqIjuNWtFothwAQlULhGTRz587Fhx9+KDoOEQnAMmNlqbkml/uPqpKA1DznLjN+fn4YPnw4FixYgOzsbNFxHMbatWsxdepUvP322+jUqZPoOG6JQwCISqfwDJpJkyYhISFBdBwisjNJ4bqsVX1/7DrO5xTvjX/GxRQkfTMbJ/fswPXUC9B6eaNmkxaIGfsWgipVue22efpMbJn3EY5sWw99+mX4BpVDzSbR6PLyNPgGlQMAZF6+iDUfTMLx3Unw8PZBROen8WiztvhqTB8Mn78aNaKaF/t5hfpq0P/RMsX+PkeSkpKC6tWrY+bMmXjhhRdExxHu+PHjaNKkCVq3bo1Vq1ZBpXK1Gu4cvvzySwwfPhxZWVnw8/MTHYfIKSmKgvj4eCxbtgybN29Gq1atREciIjvRiA7gShRFKdEKxvmjB3Du4B406hiHwAp99BCkAAAgAElEQVSVkHHxHP5Y8TXmD38K41b8Bg/vgmsYjLnZmDe0K9JOH4Ou27OoXLcRcq5fxd9Jm5B55SJ8g8pBNuRh4fM9cD31Apr1HY6A4Ao4sG45Tu79rVTPLTXPBEVRnPrC8LCwMPTs2ROffPIJRo8e7dZv3rOzs9GjRw9UqFAB33zzjVv/txDt1iEALVq0EB2HyCkVnkFz4cIFPPXUU9i1axfq1q0rOhYR2QHLjBWZFcBUguvkH2vRAQ3bd7vta3VbPok5gzrj8Ja1aBzbGwCw45vPcfnE3+g//WvUb9vl5m3bDnvl5oWPe1Z9i/SzJ/HsBwvRsEN3AECTuAH4tG/rkj2pG0wWwKIAauftMgAKxjQ3bdoUa9euRbdu3R7+DS5IURQMGzYMp0+fxp49exAYGCg6klurX7/+zSEALDNEJVd4Bk2LFi3QuXNn7N69GyEhIaJjEZGN8eNYKzKVcMee1sv75r+bZRk516+hXFh1ePkH4uI/h27+3pGta1Hx0fq3FZlChSsm//6WCP/yFdDglnLk4e2Dx3sMLFG2W5X0+TmSJ554Av/5z3/cekzzzJkzsWzZMnz99deoV6+e6DhuT6vVolGjRrxuhsgKAgMDsX79esiyjC5duvAaSSI3wJUZK7KUcHqxbMjD9q8+wf41Cci6cum28ZKG7Kyb/371/Bk0aBv7wPu6nnoe5cKq37UdrHy1WiULdwuzBYC61Hcj3Lhx49C7d28kJycjIiJCdBy72rZtGyZMmIAJEyagZ8+eouPQDTqdDjt27BAdg8glhIWFYd26dYiOjkbfvn2xevVqaDR8u0PkqrgyY0UlvexgzYevYtuXM9GwQ3c888FCDPliOYbOWQGfMmWhKI5zvovaRf62xMXFoWrVqm63OpOSkoI+ffqgdevWeOedd0THoVvodDr8888/PMmcyEoiIiKwYsUKbNy4kWfQELk4F3l76hg0Jbw4/nDiz2gc2wddXp6Ghu27oXbT1qga8QQM+szbblcutBoun/z7gfdVJiQU186fuesHd/qZEyXKdquSPj9Ho9Fo8MILLyAhIQGXLl0SHccuDAYDnn76aXh7eyMhIYGfUjoYnU4Hi8WC5ORk0VGIXMaTTz6JefPm8QwaIhfHMmNFagnQlOC/qKRWA3eUj9+XLoTFbL7ta/XbxuLSsSM4snXdXfdRWF7qtGiPrLRUHE5cc/P38vNysWfVt8UPdguNquC8GVcxbNgweHp64osvvhAdxS5eeOEFHDp0CCtXrkRwcLDoOHSH+vXrw8PDA3/++afoKEQuZejQoZgyZQomTZqEJUuWiI5DRDbAj2etSJIkhHhrin3OzGPRHXBg/XJ4+gWgQo06OHdoL07s2QGfMmVvu13L+NE4vOVnLJk49MZo5nDkZWXgaNImxL3+ESo+2gBN4gbg92Vf4oc3xuDC3wfhX75gNLPWy6dUzy3EW+PUY5nvFBgYiCFDhmDu3Ll47bXX4O3t/fBvclILFizAwoULsWjRIkRFRYmOQ/fg4eHBIQBENjJ16lScOXMGgwcPRuXKlXkGDZGL4cqMlVX00RT7P2rX8e8isktvHNywEutmvoGs9MsYOmclPLx9b7udp48fRnz5M57oOQj/7kzEzx+9ht3Lv0JwtZoIeKQSgILJZcPmrkLtpq2xa+mX2LZwJqpGPIHOL71R4uekkoBKvtoSf7+jevHFF3H16lV8//33oqPYzB9//IExY8bg+eefx+DBg0XHoQfQ6XQsM0Q2UHgGTYsWLfDUU0/h6NGjoiMRkRVJCq+Ks6oj1wz4+azjjYI8tW8nFjz3FIbPX40aUc2L/f3dqvqjXllPGyQTKy4uDseOHcPhw4ddauUJAC5fvgydToewsDBs374dnp6u9+fnSubPn4+RI0dCr9fDx6d0K6lEdLfMzEy0aNECer0ev//+OypWrCg6EhFZAVdmrCzExzV37rnq8xo7diyOHj2KzZs3i45iVSaTCX369IHJZMKKFStYZJxA4RCAgwcPio5C5JJuPYMmNjaWZ9AQuQiWGSsr66mGp9q1PuH3VEsI8nTNvyotW7ZEZGQkZs2aJTqKVU2cOBE7d+7E8uXLUblyZdFxqAgaNGgArVbLrWZENhQWFob169fj+PHjNz/wISLn5prvUAWSJAnh5bzgKnVGAhBRzsvltmAVkiQJ48aNw8aNG/H33w8ee+0sli5dihkzZuDjjz9GdHS06DhURJ6enmjYsCHLDJGNhYeHY8WKFdi0aRNGjx7NM2iInByvmbGBDKMZ845miI5hNSPqBSHIUy06hs3k5+ejWrVq6Nq1K+bNmyc6Tqn89ddfaNq0KeLi4vDdd9+5bAl1Vc899xx2796NQ4cOiY5C5PIWLVqEoUOH4r333sOkSZNExyGiEuLKjA0EeapRzV/r/KszFguq+qpdusgABWNxR48ejW+//Rbp6emi45TY9evXERcXh9q1a2P+/PksMk5Ip9Ph6NGjyMvLEx2FyOUNGTIEb7zxBl599VWeQUPkxFhmbEQX7AWnX/JSqfD5xNGYN28e8vPzRaexqREjRgCA067MWCwW9O/fH1evXsWqVas4DctJ6XQ6mM1mDgEgspO33noLAwcOxODBg5GUlCQ6DhGVAMuMjdQM8EAZD5XTrs5IAHwkM6r4SBg5ciTq1KmDRYsWQZZl0dFsonz58hg4cCA+//xzpyxub7/9NtavX48lS5agRo0aouNQCTVs2JBDAIjsSJIkLFiwANHR0TyDhshJsczYiEqS0KWqv9OuzigAetQqiyWLF+Ovv/5CVFQUhg4dirp16+Lbb7+F2WwWHdHqxo4di0uXLmHZsmWioxTL2rVr8dZbb2HatGno3Lmz6DhUCp6enmjQoAHLDJEdeXh4YOXKlQgNDUXnzp1x6dIl0ZGIqBhYZmwozE+LqGDnm2wmAWgS7IVQPy0AoH79+li+fDmSk5PRoEEDxMfHo379+khISHCpUlO3bl106tQJM2fOdJrpNidOnED//v3RrVs3vPbaa6LjkBXodDqWGSI7KzyDxmQyoUuXLjyDhsiJsMzYWKtKvghwou1mEoAADxVaVvK96/fCw8OxevVq7Nu3D7Vq1cKzzz57c8SlxWKxf1gbGDduHA4cOIAdO3aIjvJQOTk5iIuLwyOPPIJvv/0WKhX/d3YFOp0OR44c4RAAIjsrPIPmxIkT6N27N8+gIXISfPdjY1qVhFgn2m6mAIit6g+t6v71S6fTYe3atfj9999RuXJl9OrVC40bN8ZPP/3kNCsa99OhQwfUq1cPM2fOFB3lgRRFwbBhw3D69Gn8+OOPCAwMFB2JrKRwCADHMxPZX+EHdJs3b8aoUaOc/jWNyB2wzNhBmJ8W7UPvXulwRO1DfRF2Y3vZwzRt2hSbNm3Cr7/+irJly+Kpp55CkyZNsH79eqd9AZAkCWPHjsWaNWtw4sQJ0XHua9asWVi6dCm++uor1K9fX3QcsqKGDRtCo9FwqxmRIB07dsSCBQuwYMECvP/++6LjENFDsMzYSVSwN6IrOva43OiKPogK9i7297Vo0QJbt27F1q1b4e3tjS5duqBZs2b45ZdfnLLU9O/fH+XKlcPs2bNFR7mn7du3Y/z48Rg/fjx69eolOg5ZmZeXF4cAEAk2ePBgvPnmm3jttdewePFi0XGI6AFYZuyoWQXHLTQtK/qgWYXiF5lbtWnTBjt27MDmzZuhKAo6duyIli1bYtu2bVZKaR/e3t54/vnnsWjRImRmZoqOc5vz58+jd+/eaNWqFd59913RcchGOASASLw333wT8fHxGDx4sNO9jhG5E5YZO5IkCc1DfG5uORM9FKDw8duH+qJZiI9VToyXJAkdOnTA77//jnXr1iEvLw9t27ZF27Zt8dtvv5X6/u1l1KhRMBqNWLhwoegoNxmNRjz99NPw8vLC0qVLodFoREciGykcAmAwGERHIXJbkiRh/vz5aNWqFeLi4nDkyBHRkYjoHlhmBIgK9ka/2oFCp5wVTi3rVzuwRFvLHnr/koSYmBjs3bsXq1evxtWrVxEdHY0nn3wSf/zxh9Ufz9oqVqyIZ555Bp9++qnDTLR58cUXcfDgQaxatQrBwcGi45AN6XQ6mEwmDgEgEszDwwMrVqxAlSpVEBMTwzNoiBwQy4wgYX5aDKsbBF2wFwD7rdIUPk5UsBeG1Q0q8sX+JX48SUL37t1x4MABLF++HOfPn0fTpk0RGxvr8Ntoxo0bh3PnzuHHH38UHQULFy7E/Pnz8cUXXyAqKkp0HLKxRo0acQgAkYMoPIPGbDbzDBoiByQpzniFtotJyZax7qwe1/MtkACbjHEuvN8yHip0qepv8xJzP2azGT/88APeeustHDt2DN27d8fUqVMRHh4uJM/DtGnTBkajEbt27Xrg7RRFgVkBTIoCiwVQqQCNJEEtodTb9/bs2YPo6GgMHjwYc+fOLdV9kfOIiIhAVFSUQ211JHJnBw8eRHR0NFq0aIE1a9Zwqy+Rg2CZcRAWRcGpLBn70/JwWi9brdQU3k91fy10wd6oEaCFygrXxpSWyWRCQkICpk6dipMnT6Jnz5546623HG7M8Jo1a9C9e3fs3r0bTzzxBICC4nLNaEZqrgmpuSZcyjUhNc8E0z3ODdWogBBvDSr6aBBy45+ynuoiF5wrV65Ap9OhcuXKSEpKgqenpzWfHjmwoUOH4s8//8SBAwdERyGiGzZv3owuXbpg0KBBmD9/vlWuNSWi0mGZcUAZRjOS0w1IvmqA0Vzwx6OSAEsR/qRuvZ2nWkJEOS9ElPdCkKfaholLTpZlfPfdd5g2bRrOnTuHvn374s0330SdOnVERwMAWCwW1KlTBzqdDnO+WYwD6QYcvPXPBcA9Osxdbr2dp1pCeDkvRD7kz8VkMqFjx444cuQI9u/fj9DQ0NI+HXIiX3zxBV566SXo9Xp4eXmJjkNEN3z11VcYMmQI3nnnHbz22mui4xC5PfVbb731lugQdDtvjQrVAzzQ9BFv1A/yQmVfLQI81JAA5Jot9yw1GhVQyUeDOmU8oSvvjVaVfNGmkg+qB3jAW+O4l0ap1WpERkZi1KhRqFy5Mr7//nu8//77OHXqFBo2bIiyZcsKzacAUMqFIqNiXZz2DMHFHBNMyu2/X9T7KWRWgIs5JuxLM+B8jgxPtYSge6zWTJw4EcuWLcPatWvRqFGj0j4VcjIWiwXz589H9+7dUblyZdFxiOiGyMhIAMAbb7yBWrVq8eczkWBcmXEyiqLAcuPaDLMFUN+4NkNlhWszHIHRaMSCBQvw7rvv4sqVKxg0aBAmT56MatWq2T3LrdcyWUwmqGywP/p+1zL98MMP6NOnD2bOnImxY8da/XHJ8eXl5cHf3x+fffYZnn/+edFxiOgWiqJg8ODBWLJkCTZt2oQ2bdqIjkTktlhmyCHl5eVh7ty5eP/993Ht2jUMHToUr7/+OsLCwmz+2LJFQdLFHOxLM9hsIMOdCh8nKtgLwRln0Pw/TdGtWzcsXrzYJUoqlUx4eDgef/xxLFiwQHQUIrpDfn4+unTpgr1792Lnzp0Od80nkbtgmSGHlpOTg88//xwffvgh9Ho9nnvuObz66quoVKmSTR4vJVvG2rN6ZOVb7FJi7iQByLx8AX8s+ABrvl0AX19fASnIUQwZMgTJycn4888/RUchonvIyspCdHQ0MjIysHv3bpu9NhHR/bHMkFPQ6/WYPXs2pk+fjry8PIwcORITJ05EhQoVrPYY+9LykHg+x26rMfdjMZuhUqvQPtTPJgeakvP4/PPPMW7cOOj1ek6yI3JQheenPfLII0hKSoK/v7/oSERuxXGvDCe6hb+/P1577TWcPn0akyZNwpdffokaNWpg4sSJSE9PL9V9K4qCnam5SDyfU/BrawQuBZVaDUBC4vkc7EzNBT9vcF86nQ6yLOOvv/4SHYWI7iM0NBTr16/HiRMn0Lt3b5hMJtGRiNwKyww5lcDAQLz55ps4ffo0xo0bhy+++ALVq1fH5MmTce3atRLd567Lefj1Uq6Vk1rHr5dysetynugYJEh4eDjUajX2798vOgoRPUCjRo2wcuVKJCYmYuTIkfwQisiOOJqZnJK3tzfatm2L5557DrIs49NPP8Xs2bORn5+PyMjIIp/Lse9KHrZfdMwiU+hctgwvjYRKvlrRUcjOtFotVqxYAbVaja5du4qOQ0QPULNmTVSpUgVvvvkmPDw8EB0dLToSkVtgmSGn5uPjgw4dOmDYsGHIzc3FrFmz8Nlnn8FsNiMyMvKB1xmkZMv46YzejmlL7lSWjKr+WgR6OObhp2Q7e/bsQXJyMkaMGCE6ChE9REREBCRJ4hk0RHbEbWbkEipUqIAZM2bg5MmT6N+/P6ZNm4bq1avjww8/RE5Ozl23ly0K1p7Vw1mGHksA1p7VQ77Xiank0nQ6Hf766y8YjUbRUYioCN544w0MGjQIQ4YMwdatW0XHIXJ5LDPkUipVqoTZs2fjxIkT6NWrFyZPnowaNWpg5syZyMv737UnSRdzhI1fLgkFQFa+BTsu3l3MyLUVDgE4fPiw6ChEVASSJGH+/Plo3bo1evTowf93iWyMZYZcUlhYGObMmYNjx46ha9euGD9+PGrWrInPPvsMJ68VHIjpLEWmkAJgb5oBKdmy6ChkR+Hh4VCpVBwCQORECq93q1q1KmJiYnDx4kXRkYhcFssMubRq1aph4cKF+Pfff9GhQweMHTcOC3cfAxSL6GglIgFYd1YPCyfluA0fHx/Uq1ePZYbIyQQEBGDdunWwWCzo0qUL9HrnuEaTyNmwzJBbqFmzJr755hskJv+LwIphgOScf/UVANfzLTiVxdUZd6LT6VhmiJxQ4Rk0p06dQq9evSDL/NlNZG3O+Y6OqIRSPcs5zUX/9yMB2J/Gs2fcSeEQgPz8fNFRiKiYCs+g2bJlC0aNGsUzaIisjGWG3EaG0YwzetnprpW5kwLgtF5GhtEsOgrZiU6nQ35+Po4cOSI6ChGVQPv27bFw4UIsXLgQ7777rug4RC6FZYbcxoF0g9OvyhSSACSnG0THIDvhEAAi5xcfH4+pU6di8uTJ+P7770XHIXIZLDPkFhRFwcGrRZ9gtn9NAl5tHIyMi+eK9Tjzh3fHrF62P/VZAZB81cDtCm7C19cXjz32GMsMkZObMmUKBg8ezDNoiKyIZYbcwjWjGUaza73xN5oVZBidcyobFR+HABA5P0mSMG/ePJ5BQ2RFLDPkFlJzTcW6fWSX3pj2ewrKVAyzUSLrKO7zIuel0+lw6NAhTkMicnI8g4bIulhmyC2k5pqK9ZddpVZD6+kFSXLcq2xUEpCaxzLjLnQ6HYxGI4cAELmAgIAArF+/HoqiICYmhmfQEJUCywy5hUu5JhRnQ9a9rpn5/YdFmNmzBSY/URnvdmyAn96bgDx95j2//8LRg5gzKAZT/hOGD2N1+GPF13fdZtfSBZjZswXeaFYFU1vVwmf92iN5w8oiZ7QowMUcfkrvLiIiIiBJEreaEbmIypUrY/369Th9+jTPoCEqBZYZcnmKopR6BSNx7odY8/5EBASHIGbcVDRoF4s9q77FolG9YL7jBSgv6zq+fvEZVK7bCJ1fegOBj1TE6nfHY9/qxTdvs2fVd/j5w9fwSI1HEfvK/6H98xNQsU4DpBwu3hvV1DwThwC4CT8/Pw4BIHIxDRs2vHkGzciRI63+81xRFJgsCgxmC3JlCwxmC0wWha8b5FI0ogMQ2ZpZAUyluE4+OyMd27/6BLWbtsagz5ZBpSr4DCC4Wm2s+WASDqxfjqjuz968fVZaKmJenobo/iMBAI8/HY8vBj6JTZ+9g8guvaHWavHvb7+gQs3H0O/DRaV6biZLwQqN2nF3w5EVcQgAkespPINm0KBBqFatGiZPnlyi+1EUBdeMZqTmmpCaa8KlXBNS80z3fP3TqIAQbw0q+mgQcuOfsp5qh95aTXQ/LDPk8kyl/ATqxB87YJbz0bzfiJtFBgCa9BiATZ+/g39/++W2MqPSaPDE0wNv/lqj9cATT8dj9bvjceHvg6jSKApe/gHIvHwRKUcOIKx+ZKnymRQFapc5QYceRKfTYfny5ZBlGVqtVnQcIrKS+Ph4nD17FlOmTEGVKlUwcODAh3/TDRlGMw6kG3DwquHm1E4V8MCt1SYLcD7HhIs5/9uC7amWEF7OC5HlvRDkqS7xcyGyN5YZcnmWUk4vvn4pBQAQXLXWbV/XaD1QtnJVZFw6f9vXA8qHwMPb97avla9SEwCQcSkFVRpFoVX8izjxxw58MaAjyoVVR+2mrRHe+WlUi3ii2PnMFgB83XELhUMAjh49ivDwcNFxiMiKpkyZgrNnz2Lo0KGoXLky2rVrd9/bWhQFJ7PysT/NgDN6GRJw2zlqRX3Zu/V2RrOCvVfysOdKHqr5a6EL9kLNAA+ouFpDDo7XzJDLUzng3/JHajyKV378Hc+8Nx/VIp7A4a1rMW9ILH6Z80Gx70vtgM+PbCMyMpJDAIhclCRJmDt3Ltq2bfvAM2hSsmXMP5qBlaf0OKsvuGbTWlfAFN7PWb2Mlaf0mH80AynZHExAjo1vg8jlaUr5qVLhWTNpZ0/c9nWTnI+MC+cQVDH0tq9npaciPy/ntq+lnzsJAAi65dwaD29fNHoyDj2nzsbE9cmo06IDti+aCdloKFa+0j4/ch5+fn6oU6cOywyRi9JqtVi+fDmqV6+Ozp0748KFCzd/T7YoSDyfjcXHM5GZX7CmYqvL+AvvNzPfgsXHM5F4PhuyhUMDyDGxzJDLU0sFFzuWVK0nWkKt9cCuhAW3TYDZt3oxDNlZqNOiw223t5hM+GPltzd/bZLz8cfKb+AbVB6V6xZsDcq5fu2279FoPVChRh0oigKLqeiT1zSqgvNmyH1wCACRawsICMC6desAAF26dIFer0dKtoyFf2dgf1rBh132qhWFj7M/zYCFf3OVhhwTr5khlydJEkK8NTifU7LxzH5B5dF68EvYMv8jfDW6N+q26oS0syfwx/KvEFo/EpExvW67fUBwCHZ8PRsZF8+hfJWa+Gvzalz69zDiJs+A+sZF24tG9YJ/+UdQNfxx+JULRtrp4/h92Zd4rEUHePr6FTlbiLeG02fcjE6nw8qVK2EymaDR8Ec4kSsqPIOmRYsWeGnGfDzaLf6u62LsSQGQdWOVpn2oL6KCvQUlIbobXwnJLVT00dw2taW42j8/Ab5B5fD7si+x7uMp8A4sgyY9BuLJMa/fLCiFvAPKoNfUz7Dmw1ex98fv4Vc2GN0mvo/Hewy4eZsnno5H8oYV+G3xXOTn5iDgkYpo1nc42gx7uciZVBJQyZcTrdyNTqeDwWDA0aNH0ahRI9FxiMhGGjRogM/W/4YLPhUBiCsyhQofP/F8DoxmBc0qePPDNHIIksKTk8gNHLlmwM9ns4t8+72rv8eqaeMwacNBBFaoZMNkpdOtqj/qlfUUHYPsSK/XIzAwEF9++SUGDx4sOg4R2cjO1Fz8eilXdIz7iq7og+YhPqJjEPGaGXIPIT7FW4TUp1+GJEnwDihjo0TWUdznRc7P398fjz76KK+bIXJh+67kOXSRAYBfL+ViX1qe6BhE3GZG7qGspxqeaunmgWL3o796BYcTf8YfK75BlUZR8PB23E+dPNUSgjz5eYQ74hAAIteVki0j8ULOw2/oABLP56CCtwZhftzyTOLwnRC5BUkqONn4Ybt7004fx4ZPpqJcWHX0nDrbLtlKQgIQUc6L+5XdlE6nw8GDB2EqxuQ7InJ8skXB2rP6h75WOQoJwNqzeo5tJqG4MkNuI7K8F/ZcefCSeI2o5pi265ydEpWcAiCivJfoGCSITqdDXl4e/v77bzRs2FB0HCKykqSLOcjKtwi/2L+oCqec7biYg3ahRZ/ESWRNXJkhtxHkqUY1f63TfOJ1PxKA6v5aBHmqRUchQSIjIwGAW82IXEhKtox9aQanKTKFFAB70ww8g4aEYZkht6IL9nK6F4o7KQB0nPHv1gICAjgEgMiFWBQF65xoe9mdJADrzuph4YBcEoBlhtxKzQAPlPFQOfULRhkPFWoE8GJLd8chAESu42RWPq470fayOykArudbcCqLqzNkfywz5FZUkoQuVf2d+gUjtqo/VLzw3+3pdDokJydzCACRC9ifZnDaD9kKSQD2c1QzCcAyQ24nzE+LqOCHTzZzNBKAJsFeCOUITML/hgD8888/oqMQUSlkGM04o5ed9kO2QgqA03oZGUaz6CjkZlhmyC21quSLACfabiYBCPBQoWUlX9FRyEFwCACRaziQ7vyrMoUkAMnpBtExyM2wzJBb0qokxDrRdrPC7WValau85FFpBQYGonbt2iwzRE5MURQcvGqbCWaJcz/Eq42Db/76gy6NsfzNMTZ4pP9RACRfNUDhIACyI5YZclthflq0D3WOlY72ob48YZnuwiEARM7tmtEMo9m13vgbzQoyjBbRMciNsMyQW4sK9kZ0RR/RMR4ouqIPojiKme6hcAiA2cw96kTOKDXXNQd4uOrzIsfEMkNur1kFxy00LSv6oFkFFhm6N51Oh9zcXA4BIHJSqbkmh3ojlp+XU+r7UElAah7LDNmPI/0/RCSEJEloHuJzc8uZ6KtSCh+/fagvmoX4QOIYZrqPxo0bA+AQACJndSnXBGtsyDpzYDc+698BU5qG4qNuTfDHim8e+j371yTg1cbBOLV/J1a/NwH/164u3usUXuosFgW4mMPzZsh+NKIDEDmKqGBvVPDWYO1ZPbIEHV5WOLUstqo/r5GhhwoMDEStWrWwf/9+DBw4UHQcIioGRVGssoKRevwoFo3uDd8y5dBuxHhYzCYkzvsAfmUfKdL3//TeRPgGlUPb4a9ANuSWOg9QsDKjKAo/jCO7YJkhukWYnxbD6gYh6WIO9t04xMwepabwcaKCvdCyki+nllGR3TkEQFEUmBXApCiwWDhiV5MAACAASURBVACVCtBIEtQS+MaCyIGYFcBkhWWZX+Z+AEVRMOLLn1GmYigAoEHbrvikT8sifb9PQBkMm7sKKrW69GFuMFkKVmjU/JFDdsAyQ3QHrUpC+1A/1CnjiXVn9bieb7FZqSm830APFbpwNYaKSVEUNI5ug9O/JCExRY/UPDNS80z3fIOkUQEh3hpU9NEg5MY/ZT3VLDhEgpisML7YYjbj+O/bUK9155tFBgAeqfEoav+nDf79LfGh99GkxwCrFplCJkWBWvjGbXIHLDNE9xHmp8Vz9YJwKkvG/rQ8nNbLVis1hfdTzV8LXbA3agRooeKbSiqiDKMZB9INOHjVAEuzpxHX7GnsTzdAecAbB5MFOJ9jwsWc/+3R91RLCC/nhcjyXgjytP6bGSK6P4sVVmVyMtIhG/JQvkqNu36vfNVaRSozQZWqlD7IPZgtAPhjheyAZYboAVSShFqBHqgV6IEMoxnJ6QYkXzXcPBdAJRUspT/8fv53O0+1hIhyXojgG0gqBoui4GRWPvanGXDmHsX6QUXmtvu55d+NZgV7r+Rhz5W8G8XaCzUDPFisiexA5SAjmLRetpmYqXaQ50euj2WGqIiCPNVoU9kXrSv5IMNoQWquCal5JlzMkR+6taeSrxYh3gVbe4I8VdzaQ8WSki3ftuURsN62x8L7OauXcUYvowy3PBLZhcYKrwO+QeWh9fJG+rlTd/1e+tkTpb7/0rDG8yMqCpYZomKSJAllvdQo66VGPXgCKLh2wXLjomuzpeATKY0kQcWLrqkUZIty2zAKwHYDKQrvNzPfgsXHMxEV7IVWHEZBZDNqqeADr9IMAVCp1aj9nzY4un0Drl86f/O6mSunjuH479uslLT4NKqCHQlE9sAyQ2QF0o1pUWpI3CNMVpGSLd8cEw7YZ6rerY+zP82A45n5HBNOZCOSJCHEW4PzOaUbz9x+xAQc27UV84Z2RdPeg2ExmbBr2UI8UuMxpB4/YqW0xRPireEHeWQ33NFIRORg9qXlYfHxTGHnHQEFpSbrxirNvrQ8QSmIXFtFH02p34hVfLQ+hny2DL5B5fDLnA+wb00C2o+YiPptYqySsbhUElDJlx+AkP1IimKF2YBERFRqiqJg1+U8/HrJOgfXWVN0RR80q+DNT1uJrOjINQN+PpstOobVdavqj3plPUXHIDfBlRkiIgfhqEUGAH69lItdl7lCQ2RNIT6uudvfVZ8XOSaWGSIiB7DviuMWmUK/XsrlljMiKyrrqYan2rVWOz3VEoI8+faS7Id/24iIBEvJlpF4IUd0jCJJPJ+DlGxZdAwilyBJBQfXukqdkQBElPPidlSyK5YZIiKBZIuCtWf1TvNmRgKw9qweclFOiyWih4os7yVs0Ie1KQAiynuJjkFuhmWGiEigpIs5QqeWFVfhlLMdF51jJYnI0QV5qlHNX+s0H2jcjwSgur8WQZ48n4Dsi2WGiEiQlGwZ+9IMTlNkCikA9qYZuN2MyEp0wc6/OqMA0AV7i45BbohlhohIAIuiYJ0TbS+7kwRg3Vk9LJzuT1RqNQM8UMZD5dQ/D8p4qFAjgOfLkP2xzBARCXAyKx/XnWh72Z0UANfzLTiVxdUZotJSSRK6VPV36p8HsVX9oeKF/yQAywwRkQD70wxO+ylsIQnAfo5qJrKKMD8tooKdb7KZBKBJsBdC/bgqQ2KwzBAR2VmG0YwzetlpP4UtpAA4rZeRYTSLjkLkElpV8kWAE203kwAEeKjQspKv6CjkxlhmiIjs7EC686/KFJIAJKcbRMcgcglalYRYJ9puVri9TKtylZ9o5IxYZoiI7EhRFBy8WrwJZilHDmDOoBi80awqXm0cjIv//mX1XPOHd8f84d2L/X0KgOSrBigcBEBkFWF+WrQPdY6Vjvahvgjj9jISTCM6ABGRO7lmNMNoLvobf7MsY8mEodB6eiL2lbeh9fJGUMUwGyYsPqNZQYbRgrJePF+CyBqigr1hNCv49VKu6Cj3FRUoIYqjmMkBsMwQEdlRaq6pWLe/ev4Mrl9KQY8pM9AkboCNUpVeaq6JZYbIippVKCgKjlhofv1qJlbs2oTExESUKVNGdBxyc9xmRkRkR6m5pmL94M25lgYA8PIPtE0gK1BJQGpe8UoaET2YJEloHuJzc8uZ6KtSCh+/fagv3hnSC6dOnUKnTp2QlZUlNBcRV2aIiOzoUq4JliLedvmbY/Dnz8sAAEsmDAUAVNc1u/n7zy346a7bn9q3CxPX/XnzaxaLBbsS5mPvj9/j2vkz8PILQL3WndHpxSnwDrDOJ6oWBbiYw/NmiGwhKtgbFbw1WHtWjyxBZ1MVTi2LrepfcI1McAR++eUXtGvXDp07d8bGjRvh7+8vIBkRV2aIiOxGUZRirWA83iMerYeMBQA0e2Y4er/9BdoMHVesx1z9zivY8MlUVA1/HLH/fQe6bn2RvGEFFo3uDbNsvQKSmmfiEAAiGwnz02JY3SDogr0A2G+VpvBxooK9MKxu0G0X++t0OmzevBmHDx9Gly5dkJOTY6dURLdjmSEishOzApiKuiwDoGp4E9Ru2hoAUC2yKSK79Lr566I4c2A39v74PXpN/Qw9pszAEz3j0enFN9Dvo69w/sgB/JW4pnhP4AFMloIVGiKyDa1KQvtQP/SrHYhAj4K3b7YqNYX3G+ihQr/agWgX6nfP8cuPP/44Nm7ciAMHDqBr167IzXW863vI9bHMEBHZicnOKxd/Ja6Bl18AajVthZyMqzf/qVw3HB4+vji17zerPp69nx+ROwrz0+K5ekHoWSMA1fwLVkqsVWoK76eavxY9awTguXpBDx29/J///Afr16/HH3/8gaeeegoGA8+dIvviNTNERHZiKcaqjDWknzsFQ3YW3mlX956/n30t3aqPZ7YA4EAzIptTSRJqBXqgVqAHMoxmJKcbkHzVcHPsu0oq2krprbfzVEuIKOeFiPJeCPIs3v/I0dHRWLduHWJiYhAXF4fVq1fD09OzuE+LqERYZoiI7ERlpbVwSZLueX2KxXx7W1IsFviVDUafd+bc8358g8pZJ9ANaq71E9ldkKcabSr7onUlH2QYLUjNNSE1z4SLOTJS80z33NqqUQEh3hpU8tUixFuDEB8NgjxVkKSSr/G0bt0aa9asQWxsLHr16oUVK1bAw8OjFM+MqGhYZoiI7ERTijcKt/L2L4NrF87c9fXrl1Ju+3W50Go4uWcHqoY/Dq2X7Q+3s9bzI6LikyQJZb3UKOulRj0UrIooigKLUrAF1Gwp+MBBI0lQSShVcbmf9u3bY/Xq1ejevTv69u2LZcuWQat98DY1otLi52hERHailgo+ES2tsqHVkHbmBLIz/rdN7NKxwzh7cM9tt2vYsTssZjO2Lvj4rvswm0zI02eWPswNGlXBlhUichySJEGtkuCpVsFHq4KnWgW1SrJJkSnUqVMnrFy5EmvXrkW/fv1gMvEMKrItrswQEdmJJEkI8dbgfE7pXtyjuj+L3xbPwVejeyOqez9kX0vHnpXfoEKNx2DI0d+8XQ1dczz+dDy2f/UJLh47jNpNW0Ot0SL93CkcTlyD2PHvoGH7bqV9WgAKtqzY8g0SETmP2NhY/PDDD+jVqxfi4+Px7bffQq3mBXVkG1yZISKyo4o+mlL/4H2kxqPoNe1zGLL1WDfjDfy9YyN6vf05KtVteNdt416fjrjJM5BzLR2bP38Xmz77P5za+xsiYnqhavjjpUxSQCUBlXy5lYSI/uepp55CQkICli1bhiFDhsBsNouORC5KUnjKGRGR3Ry5ZsDPZ7NFx7C6blX9Ua8spxcR0e2WLl2Kfv36YdCgQViwYAFU1pqEQnQDt5kREdlRiI9r/th11edFRKXTt29fmEwmDBw4EFqtFnPmzOGWVLIqvvoQEdlRWU81PNXSzfMgXIGnWkKQJz9tJaJ769+/P2RZxpAhQ6DRaDB79mwWGrIalhkiIjuSJAnh5byw90oeXKHOSAAiynnxjQkRPdDgwYNhMpnw3HPPQavVYsaMGfy5QVbBMkNEZGeR5b2w50qe6BhWoQCIKO8lOgYROYHhw4dDlmWMHj0aWq0WH3zwAQsNlRrLDBGRnQV5qlHNX4uzetmpV2ckANX8tQjy5MhVIiqaUaNGwWQy4aWXXoJWq8X//d//sdBQqbDMEBEJoAv2whm9LDpGqSgAdMHeomMQkZN58cUXIcsy/vvf/0Kr1eKtt94SHYmcGMsMEZEANQM8UMZDhcx8i1OuzkgAAj1UqBHA82WIqPheeeUVyLKMV199FVqtFq+//rroSOSkWGaIiARQSRK6VPXH4uOZoqOUiAIgtqo/VNweQkQlNGnSJMiyjMmTJ0Or1WLChAmiI5ETYpkhIhIkzE+LqGAv7E8zONXqjAQgKtgLoX5clSGi0pkyZQry8/MxceJEaLVajBs3TnQkcjIsM0REArWq5IvjmfnIcpLtZhKAAA8VWlbyFR2FiFzEtGnTIMsyXn75ZWi1WowZM0Z0JHIiLDNERAJpVRJinWi7WeH2Mq2K28uIyDokScJ7770HWZbxwgsvQKvVYsSIEaJjkZNgmSEiEizMT4v2ob5IPJ8jOspDtQ/1RRi3lxGRlUmShOnTp8NkMuH555+HRqPB0KFDRcciJ8AyQ0TkAKKCvWE0K/j1Uq7oKPcVXdEHURzFTEQ2IkkSZs2aBVmWMXz4cGg0GsTHx4uORQ6OZYaIyEE0q1BQFByx0LSs6IP/VGCRISLbkiQJn332GWRZxuDBg6HVavHss8+KjkUOjGWGiMhBSJKE5iE+8FRLSDyfAwkQOhSg8PHbh/pyRYaI7EalUmHevHkwmUwYMGAANBoNevfuLToWOSiWGSIiBxMV7I0K3hqsPasXNuWscGpZbFV/XiNDRHanUqmwcOFCmEwmPPvss9BoNOjRo4foWOSAJEVRnGEaKBGR25EtCpIu5mBfmsFuqzSFj9Mk2AstK/lyahkRCVW4OrNixQqsXLkS3bp1Ex2JHAzLDBGRg0vJlrHurB7X8y02KzWF91vGQ4UuXI0hIgdiMpnQt29frFmzBqtXr0ZMTIzoSORAWGaIiJyARVFwKkvG/rQ8nNbLVis1hfdT3V8LXbA3agRooZK4GkNEjkWWZfTq1QsbN27EmjVr0LFjR9GRyEGwzBAROZkMoxnJ6QYkXzXAaC74Ea6SAEsRfprfejtPtYSIcl6IKO+FIE+1DRMTEZWe0WjE008/jS1btmDt2rVo166d6EjkAFhmiIiclKIoyDBakJprQmqeCRdzZKTmmWCy3H1bjQoI8dagkq8WId4ahPhoEOSpgsRVGCJyIgaDAU899RR27NiBDRs2oFWrVqIjkWAsM0RELkRRFFgUwKQoMFsAtQrQSBJUElhciMgl5OXloWvXrti9ezc2bdqE5s2bi45EArHMEBEREZFTyc3NRUxMDP78809s3rwZTZs2FR2JBGGZISIiIiKnk52djc6dO+PQoUPYsmULoqKiREciAVhmiIiIiMgp6fV6dOzYEf/88w+2bt2KyMhI0ZHIzlhmiIiIiMhpZWZmokOHDjh58iS2bduGRo0aiY5EdsQyQ0REREROLSMjA+3bt8e5c+ewfft21K9fX3QkshOWGSIiIiJyelevXkW7du2QmpqK7du347HHHhMdieyAZYaIiIiIXEJaWhratGmDa9euISkpCbVr1xYdiWyMZYaIiIiIXMbly5fRunVr6PV6JCUloWbNmqIjkQ2xzBARERGRS7l06RJat24Ng8GApKQkVKtWTXQkshGWGSIiIiJyORcuXECrVq1gNpuRlJSEKlWqiI5ENqASHYCIiIiIyNoqV66MrVu3AgDatm2LCxcuCE5EtsAyQ0REREQuqUqVKti2bRtkWUabNm1w6dIl0ZHIylhmiIiIiMhlVatWDVu3bkVubi7atm2Ly5cvi45EVsQyQ0REREQurWbNmti6dSsyMzPRrl07pKWliY5EVsIyQ0REREQu79FHH8XWrVuRlpaGDh064Nq1a6IjkRWwzBARERGRW3jsscewdetWXLhwAR06dEBGRoboSFRKLDNERERE5Dbq16+PxMREnDlzBk8++SQyMzNFR6JSYJkhIiIiIrcSHh6OX375BcePH0fnzp2h1+tFR6ISYpkhIiIiIrfTuHFjbN68GUeOHEFMTAyys7NFR6ISYJkhIiIiIrfUpEkTbNq0CQcPHkTXrl2Rm5srOhIVE8sMEREREbmtpk2bYsOGDdi7dy+6deuGvLw80ZGoGFhmiIiIiMitNW/eHOvWrcOuXbsQFxcHg8EgOhIVEcsMEREREbm9Vq1aYe3atUhKSkLPnj1hNBpFR6IiYJkhIiIiIgLQtm1b/PTTT0hMTESfPn0gy7LoSPQQLDNERERERDd07NgRq1atwoYNG/DMM8+w0Dg4lhkiIiIiolvExMRgxYoV+OmnnzBgwACYTCbRkeg+WGaIiIiIiO7QtWtXLFu2DCtWrMCgQYNgNptFR6J7YJkhIiIiIrqHHj16YPHixUhISMCwYcNgsVhER6I7aEQHICIiIiJyVH369IHJZMKAAQOg1Woxd+5cqFRcD3AULDNERERERA/Qr18/mEwmDB48GBqNBp9//jkkSRIdi8AyQ0RERET0UPHx8TCZTBg2bBi0Wi1mzZrFQuMAWGaIiIiIiIpg6NChkGUZI0eOhFarxUcffcRCIxjLDBERERFRET3//PMwmUx44YUXoNVq8e6777LQCMQyQ0RERERUDGPGjIEsy3j55Zeh1Woxbdo00ZHcFssMEREREVExjRs3DrIsY+LEidBqtZgyZYroSG6JZYaIiIiIqAQmTJgAWZYxefJkaLVaTJo0SXQkt8MyQ0RERERUQq+//jpkWcarr74KrVaLV155RXQkt8IyQ0RERERUCm+++SZkWcZ///tfaDQavPTSS6IjuQ2WGSIiIiKiUpAkCf/3f/8HWZYxduxYaLVajBo1SnQst8AyQ0RERERUSpIk4YMPPoAsyxg9ejQ0Gg2ee+450bFcHssMEREREZEVSJKEGTNmQJZljBgxAlqtFoMHDxYdy6WxzBARERERWYkkSfj0008hyzKGDh0KrVaL/v37i47lslhmiIiIiIisSKVSYc6cOTCZTIiPj4dGo0Hfvn1Fx3JJLDNERERERFamUqkwf/58yLKM/v37Q6PRoGfPnqJjuRyWGSIiIiIiG1Cr1fjqq69gMpnwzDPPQKvVonv37qJjuRRJURRFdAgiIiIiIldlMpnw7LPPYvXq1Vi1ahViY2NFR3IZLDNERERERDYmyzL69OmDdevW4aeffkKnTp1ER3IJLDNERERERHaQn5+Pnj17YvPmzVi7di3at28vOpLTY5khIiIiIrITo9GIuLg4bN++HevXr0fr1q1FR3JqLDNERERERHZkMBjQrVs37Ny5Exs3bkR0dLToSE6LZYaIiIiIyM5yc3MRGxuLvXv3YtOmTWjWrJnoSE6JZYaIiIiISICcnBzExMTgwIEDSExMxOOPPy46ktNhmSEiIiIiEkSv16NTp044cuQItmzZAp1OJzqSU2GZISIiIiISKCsrCx07dsSxY8ewdetWREREiI7kNFhmiIiIiIgEu379Otq3b48zZ85g+/btaNCggehIToFlhoiIiIjIAVy7dg3t2rXDxYsXsX37dtStW1d0JIfHMkNERERE5CDS09PRtm1bpKWlYfv27ahTp47oSA6NZYaIiIiIyIFcuXIFbdq0wfXr15GUlIRatWqJjuSwWGaIiIiIiBxMamoqWrdujdzcXCQlJaF69eo2eRxFUWBWAJOiwGIBVCpAI0lQS4AkSTZ5TGtimSEiIiIickAXL15Eq1atIMsykpKSULVq1VLdn6IouGY0IzXXhNT/b+/eYuMozzCOPzO769312saOvWbt2BhCQRWBEnJABJSsoWklSghUpFCpFUhBIYpAQioqKC20vakEpaUNooXSBpobaGkEoiTqAQfHQS1EdZSgpqYhicnGwXGxE7s+rr2H6YXZiHgTsnFmvDPm/5N84dmZ9/vmbh6933wzmtax0bR6xtJKZ/PP9ZtSLOxXXalfsU/+5gR9rgs4hBkAAADApbq6uhSPx2UYhtra2tTQ0HDONfrHM9rTl9R7x5Maz0w++puSTpNh8nz6vKDP0NXVIV1TE1JV0HfO83ACYQYAAABwsUQioXg8rkAgoLa2NtXX15/1mqxl6dDghHb3JnV4KCVDkh0P/bk6F5cHtCga0qUVJTKL2K0hzAAAAAAu19nZqXg8rkgkoh07digWi53x3K7hlLYlhjQwkbUtxEyVq1tZYuqWpnI1lgUcGKWAeRBmAAAAAPc7ePCg4vG4Kisr1draqtra2lN+T2UttXWPqL036ViImSo3zuJoSPH6iALmzHZpCDMAAACAR+zfv1/Nzc2KRqN66623VFNTI2myG7M1MaTBieyMhJipDEkVJaZWznCXhjADAAAAeEhHR4eam5s1d+5cbd++XZ2ZsFqOjsxYN+ZMcuOvaIhocTQ8M2MSZgAAAABv2bdvn5qbm3Xz/d/T/NvvLvZ08iyrK9X1F4Yd38qZMAMAAAB40JY9h3RQFxR7Gme0rK5UN8RKHR3DdLQ6AAAAANu1fzzm6iAjSW8fG1V775ijYxBmAAAAAA/pGk6p5aORYk+jIC1HR9Q1nHKsPmEGAAAA8IhU1tLWxJCK95nKc2NI2poYUirrzJsthBkAAADAI9q6R4q2/fJ0WJIGJ7La2e1MJ4kwAwAAAHhA13BK7b1JzwSZHEvSP3uTjiw3I8wAAAAALpe1LG3z0PKyqQxJ2xJDytq8kTJhBgAAAHC5Q4MTGvDQ8rKpLEkDE1l1DtrbnSHMAAAAAC63uzfp2a5MjiFpt81bNRNmAAAAABfrH8/o8FDKs12ZHEvSh0Mp9Y9nbKtJmAEAAABcbE+f97syOYakvX1J2+oRZgAAAACXsixL7x2f/g5mLc/9RBsWRm2bz/Nrb9MvvrFs2tdbkvYeT8qyaSMAwgwAAADgUifGMxrPeH2B2anGM5b6x7O21CLMAAAAAC7VM5ou9hQcYdd9EWYAAAAAl+oZTc+6B3bTkHrGCDMAAADArHZsNK1CF2Qd3vOunvn2V/TYdQ16ctUS7dqyOe+cDQujev3xR/SvN1/Xz++4QY8tbdSv7rlZPQc6JEm7tmzWk6uW6LHrGvT82tvU333krON+8E6rfnD9RXp5w33KpM8eUrKW1D1iz/dm/LZUAQAAAGAry7IK7mD0HOjQC/ffqUhltb687rvKZtJq+fUTKptTm3fu4T279P7Ov2rpnWskSTte2KjND35Ly+95QO/+8UVdd+cajQ0OaOfmZ7TlRw9q7fOvnXHc93f+TS89vEZXffU2rf7h0zJ9vsLmO5aWZVkyjPPbp40wAwAAALhQxpLSBbZl3nzuCVmWpXWb3lBlXYMk6cqbbtXGu5bnnduXOKjvvPoPVdVfJEkKl1fqtR8/pNZNT+mh13YpGCmTJFmZjHa8uFH93UdOnvtp+7Zv1e833KeFt35Tt3//pzLNwhd9pbOTHRrfee45zTIzAAAAwIXSBW5fnM1kdOCdVl3RfPPJICNJtfMu12VLb8w7/9Jrl50SThqvWihJmn/TypNBZvL4IknSiaOJvBp7//KqXt6wVtfecbe+/ujPzinI5BR6f5+FMAMAAAC4ULbArsxIf59SyTHVXDQv77eapi/kHauMNZzyf6is4pPjc097fGxo4JTjJz46olceXa8rb1qpVY88Pu2lYhkbdmcmzAAAAAAuNI1mR0GMMxQ2zNO/7zL1A5flNbVq+tIS7f97i4527J32PHw23B9hBgAAAHAhf4Edj0hVjQKhsPqOdOb91pc4aPe0FAiGdM/Gl1TdOE8vPnCX/nvoP9OqU+j9fRbCDAAAAOBCPkPyF/C0bvp8umzpjerY8WcNHDt68vjHnR/owDutjswtVF6hNb98RWVVNdq0frWOd314Ttf7zcnvzZwvwgwAAADgQoZhKBYubPPhFeseliT9+t5b1fa7p9X626f0m3W3q3beFx2bX6SqWmue3SJ/SVCb1q/W/z4+VvC1sbD/vLdllggzAAAAgGvVlfoLemCvu3y+1jzzB0WqqvXms0+o/U8va8W6RzT/xq85Or8Laut077NblJ4Y1wvrV2uk//hZrzENqT4SsGV8w5r6Rg8AAAAAV/j3iaTeSAwXexq2W9VUrivmBM+7Dp0ZAAAAwKVipbPzG/d23RdhBgAAAHCpOUGfgj4b3pR3kaDPUFXQnhhCmAEAAABcyjAMXV0d0myJM4akBdUhW17+lwgzAAAAgKtdUxPSbHnJ3ZK0oCZkWz3CDAAAAOBiVUGfLi4PeL47Y0i6pDygqqDPtpqEGQAAAMDlFkW9352xJC2Khm2tSZgBAAAAXO7SihJVlpie7c4YkipLTM2rsOf7MjmEGQAAAMDlTMPQLU3lnu3OWJJWNpXLtOnF/xzCDAAAAOABjWUBLY56b2czQ9KSaEgNZfZ2ZSTCDAAAAOAZ8fqIKjy03MyQVFFianl9xJH6hBkAAADAIwKmoZUeWm6WW14WMJ2JX4QZAAAAwEMaywJa0eBMp8NuKxoianRgeVkOYQYAAADwmMXRsJbVlRZ7Gp9pWV2pFtu8FfNUfkerAwAAAHDE9RdOBoW3j40WeSb5lteVaumFzgYZSTIsy/LKkjsAAAAAU7T3jqnl6IgMqajv0uTGX9EQcbwjc3JMwgwAAADgbV3DKW1NDGlwIluUQJPbtWxlU7mj78jkjUuYAQAAALwvlbXU1j2i9t7kjHVpcuMsiYa0vD7i2K5lZxyfMAMAAADMHl3DKW1LDGlgIutYqMnVrSwxdcsMd2NOmQdhBgAAAJhdspalzsGUdveO6cOhlG2hJlfnkvKAFkXDmlcRkGkU7xOehBkAAABgFusfz2hvX1J7jyc1zX+CQQAAAPhJREFUnpl89DcNKVtACvj0eUGfoQXVIS2oCakq6HNwxoUjzAAAAACfA5ZlqX88q57RtHrG0uoeSalnLK10Nv9cvynFwn7VRwKKhf2KlfpVFTRlFLELczqEGQAAAOBzyrIsZS0pbVnKZCWfKfkNQ6Yh1wWX0yHMAAAAAPAks9gTAAAAAIDpIMwAAAAA8CTCDAAAAABPIswAAAAA8CTCDAAAAABPIswAAAAA8CTCDAAAAABPIswAAAAA8CTCDAAAAABPIswAAAAA8CTCDAAAAABPIswAAAAA8CTCDAAAAABPIswAAAAA8CTCDAAAAABPIswAAAAA8KT/A2+O9H+YAr7fAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -3778,15 +3926,15 @@ }, { "cell_type": "code", - "execution_count": 148, + "execution_count": 141, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Computing transition probabilities: 100%|██████████| 1050/1050 [00:54<00:00, 19.18it/s]\n", - "Generating walks (CPU: 1): 100%|██████████| 10/10 [00:47<00:00, 4.70s/it]\n" + "Computing transition probabilities: 100%|████████████████████████████| 1053/1053 [00:17<00:00, 61.76it/s]\n", + "Generating walks (CPU: 1): 100%|█████████████████████████████████████████| 10/10 [00:18<00:00, 1.87s/it]\n" ] } ], @@ -3800,7 +3948,7 @@ }, { "cell_type": "code", - "execution_count": 149, + "execution_count": 142, "metadata": {}, "outputs": [], "source": [ @@ -3811,7 +3959,7 @@ }, { "cell_type": "code", - "execution_count": 150, + "execution_count": 143, "metadata": {}, "outputs": [], "source": [ @@ -3820,29 +3968,27 @@ }, { "cell_type": "code", - "execution_count": 151, + "execution_count": 144, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 151, + "execution_count": 144, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD7CAYAAACPDORaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA9MUlEQVR4nO2dbZBcV3nn/0+3rkyPIO4RCLDaliUUrxwrgzWgGDn6sGvDSgZhucHYAuQsSShcqSK1WHZNImHFkrwiFqXCdqhkU2VvUkXKAkZ+oZEjEwmwUlvreAQyPdLUgBX8KrvtgIhmDGjaVs/M2Q/dp3Xn9jnnnvvWr8+vSqWZ7p57T/e9/Zxznpf/Q0IIMAzDMN1JqtUDYBiGYZKDjTzDMEwXw0aeYRimi2EjzzAM08WwkWcYhuli2MgzDMN0MbEZeSJKE1GRiP659vsyIjpKRM8R0TARzY/rXAzDMIwdca7kvwTgZ67fvwrgPiHE7wKYAPD5GM/FMAzDWEBxFEMR0cUAvgHgKwBuB3A9gNMA3iuEmCaiqwHsFEKsNx3nXe96l1i6dGnk8TAMw/QSzzzzzK+EEItUz82L6Rz3A/gLAO+o/f5OAJNCiOna768CyPkdZOnSpTh27FhMQ2IYhukNiOhl3XOR3TVE9HEAvxRCPBPy728lomNEdOz06dNRh8MwDMO4iMMnvxbARiJ6CcC3AVwL4G8AZIlI7hQuBlBS/bEQ4gEhxGohxOpFi5S7DYZhGCYkkY28EGKbEOJiIcRSAJ8G8KQQYjOAIwA+VXvZ5wB8N+q5GIZhmGAkmSf/lwBuJ6LnUPXR/0OC52IYhmEUxBV4BQAIIf4VwL/Wfn4BwFVxHp9hGIYJRqxGnulMCsUS9h46idcmy1iczWBo/QrkB32ToRiG6QDYyPc4hWIJ2x4bQ7kyAwAoTZaxZXgUx14+g935gRaPjukWeCHROli7psfZe+hk3cBLBIB9I6dQKCoTohgmEIViCUOPHEdpsgyB6kLituFRbH7w6VYPrSdgI9/jlCbLyscFgJ0Hxps7GKYr2fX4OCozjZX1Tz1/Br/3V9/jxUTCsJHvYbYXxozPT5YrGLz7MH8JmUhMTFW0z5Urs9j22BjfYwnCRr5HKRRL2Ddyyvd1E1MV/hIyiVKuzGDvoZOtHkbXwka+R9l76CRspen4S8hEIZtxfF/zmsZtyESHs2s6BJmdUJosI02EGSGQi5ClEPRLpfPdM4wfOzeuxJbhUeOiYnE207Tx9Bps5NucQrGEXY+Pz/FrztTkoUuTZWx7rOpXD2roF2czgQ13oVjitLcuollpjfKYd35nDGfPzTQ8n3HSGFq/IvbzMlVi0ZOPi9WrVwuWGj7P9sIY9o2c8nWrpInwtZuvDPQFLRRLvqsrL7lsBk9tvTbAXzDtirc+AgAIwOY1SxKvj+Cc+fghomeEEKtVz/FKvk2RgVEbIzwjBIYePg7AfkWfH8zh2MtnrM8BsMumW9heGMNDiqC7rI9YfenCRI1ufjDHRr2JcOC1TQkSGAWAyqwInNe+Oz+AP1y+MNDfrN3zJGfadDA6Ay8RAAfZuwxeybcpYVbNk2V9PrKOkRcmAr1eVis+fOwU9n3h6sDnY+LF5PpQPfeto6/4HpMzXboLNvJtisygSZqw53jq+TPYXhhjfZsWotIdkoF4ALh9eBSztZ9Lk+U5v5vgTJfugo18mxLG+KZI/5wuBTNFwGzIueRbR19hI98CTAF5WdNw5uxbDQbdxsBzpkv3wUa+TcmFSHHUGWspECX1Q9wpmFGYEaJqcI6egpyT+pwU/vqT7+fAWkL4+dSBaNf1nk8OID+Yw+YHn8ZTz5+pP752+UJ2z3UoHHhtU4bWr0DGSQf6m5xmm60TiIoKAXho5LyBB4Cpyixu3z/KwdmIFIolrN3zJJZtPTgn2G3jU4+CysADVfccq0Z2Jmzk25T8YA43ftB+NeykSLvNNglEqchmHPT3OSBUJ47L3r1A+TrdtDErOEMjCtLX7pbmlfpBzYjTeA283+NMe8PumjbmyLOnrV6XzTjYuXGl0kUSZkU9umNdw2PbC2P41tFXMCME0kT4zIcuMboNOEMjHIViCXfsP95gzKWvPcmAPCHc/cK0N2zk2xiTobTVrYlrRb07P9AQZDUZec7QCI5cweuM+GuTZWxes0T7uRMBUew/58h3J+yuaWN0hlLKC9gEN4OuqG0UA23gDI3g7Dww3tCly42037esWQJVIlXUBX4umzHeL2sDFs4x7QEb+TZGFXwNmuIWdEW9c+NK69fqAr39fU7DBKQLJDJVCsWSVTGbXMW/uGeD9vMPg7yvdPfLBfNSnF3TobCRb2Pygznc88kB5LKZehBUprjZMrR+hXLV54VQXSEGPbZqEtpx/dyJolAsYejhuT0+hx4+zobeRRA3icywiRL36HNSyGachvtKd02/euP7Q5+LaS3sk29zooo52QiR9fc52HG9OnDrd2wARkVBndql1NrhfPoqQQy29NmHkYsGqte7eFdjcB2wu6atgtUrw8FGvgfYnR/A6ksXxtp0RGKahGQgUTe5hNHa6VaCGOw0VfdmQ+tX4Lbh0cDnmvRJqW1HlUhvlW+UXgq9Bhv5HqEVX9y9h04aA4nMeYbWr5hTlWziMx+6BED1moYx8p2W+aST3ZZppWzkzbCR72FUue9xatFwrrw90lC5u4BlMw5WLn4HRl6Y0F6j/j5HW+yWzTh4a3p2zkTbido0Jtltvsf8YSPfo3g1UGaEqP8el6H3c0H098WTrtkthNlt7bh+JW7fP9qgW+SkqZ4p1el+bJMht9mVFIol7DwwPsc9GDYO1Ymwke9RdBoocSpLDq1f0dBiTuKkqSELhwmONFJuI+Y1YJ1uyEyLhYmzb2HZ1oPaCaxQLCknwYmpCoYeCdZNrVPhHq89ytKtB7XPvbRnQ2zn0Ukcd+KKkmkNtv2InRRh701zex0P3n3YqN3krhI2yYO0O6Yer2zke5Tl255Qls+nifD8PR9rwYgYRo9pUeJGGmrpogpr3dzxj6RjV3HAjbyZBnQCYzJzg2HaCdv+CpPlitZFGAQZozr6wn/i57882/A4EF/sKmm44rVH2Z0fwC1rltRzrtNEuGXNko65cduBQrGEwbsPY+nWg1i69SBW7TrMVbwJEaS/Qpxpu24D7yZpXf84YXcNE5perkD0dtuSOCnCpqsuwZFnT/fk5xI37nss2+fgzcoMyhWbRobJE2fsKirsk2caiNrezdtEWuKkgL03rep6o7Z2z5Na9wFhbkOVjJMOrDnUKxSKpYbaABn81N1jOpw0YXpG+PrhsxkHH7/yIgz/+JXQHdNUsatWLnpMRp7dNT1IHO3ddNWslVng9uHmt/9rtsqlKXdbVZl52/Aoq296kLshd/bLZLlSF68LUjGdzTjY+6krjQZ+fprq59h39BSuWtofulbDG7tSdfPaMjyK7YWxUMePE17J9yBxpE8u23rQ+IWSmvfNoFAs4fbhUag28Umla5pW8iZ4VX8e02cote2DWKdcNoOzb00H0kRKAcr7xoSMXXn1dFQQgPs2Jb+z5ewaxhrbvHa/atZmlptve+yE9osqZY2BeItegmjNuOlmvZWg7grTPSKPEWQiDTPpBjXwaaK6gTd1RpPIblutvN6R3TVEdAkRHSGinxLROBF9qfb4QiL6PhH9vPZ/f/ThMkkjt5zAeUnb0mS5wQXjp38SRQQrqOvFLxBXmRXY9tiJ0ONRkR/MYe+nrgy13e9GvRWVu2Lo4eMYvPuw9jqa7hE5Sdhm1DQL+Z0Ikl3T6usdh09+GsAdQogrAKwB8EUiugLAVgA/FEJcBuCHtd+ZNkDXxu2CeSmtD3QWmGMo84M57XFSCN/+T2UsbhsexeDd0dITy5XZ2P3h+cEcdly/MrAh6jQVSBtU/vPKrMDEVGXOdXT7qIfWr4CTbmxp46SovguQTXPaBZlyHKSZugDqabZB4l5xEdnICyFeF0L8pPbzbwD8DEAOwA0AvlF72TcA5KOei4mHfV+4usFAr12+EOemzSti74p53xeuxi1rliDl+p5mnBTujeCD1AXbJqYquG14tP5lWbr1IFbe9S9YZlkJKY8dN2HklDtNBdIG29XqQyOn6pOtajeUzThzpAnygzk8tfVa3L9pVeDJNIldwJr3VR0S0tgHJWiCQxzEGngloqUA/i+A3wdwSgiRrT1OACbk7zo48NpabIOJSWp8+AV0o0Co9kaNk6DjTWIMrcBd6p8iNAiA+REmIF4olqz189NE+NrNV9bjS0F4zzvm4xe/Oad8TgbOj718xsonryPuHPumpFAS0dsBPArgNiHEr93PiepMorwNiOhWIjpGRMdOnz4d13CYENj2g3WnucVNkq6MCzPxSxsHHe/mNUtiH0OzkUFH6bIIauCB852dgtxD+cGctevmMx+6ZM4uIAi/+q0+O0cGzmXFeLj1fHOJxcgTkYOqgd8nhHis9vAviOii2vMXAfil6m+FEA8IIVYLIVYvWrQojuEwIckP5qyNUGVWJOL+iBJsk02pdbxRrsQ+MQUZ74L56a6Qjfjm0fArWDfSYAZhaP2KOe5BLyp5jvxgDtkAE7yfv126pnbnB/Ding14qfavXQ1+5BTKmivmHwD8TAhxr+upAwA+B2BP7f/vRj0XkzyyH+yd3xnD2XNmX3MSWQMqfXRbZEaGTpZW1I4bp5tJHuuO/ceNxiHjpPGVTyRn4G3TF+NQVLRdudu4ccLcQ2kizHo+az/dpZ0bVzZUz3ork23R7d5sj6VLWEiKOFbyawH8EYBriWi09u9jqBr3/05EPwfwkdrvTAeQH8xh/O7r8NKeDcaVcVKulfxgDqM71gVKT5Rt7fKDOeOXLYnm4fnBXD0gpyJNFFsBlCq9dHthDFuGR+dkJKlcIV43i1RUTKoq8+r3LfS9hkHvob2HTqKimDmOPGt29bozdeSOL4yBN7VPtAnGXjAvhX97/kxTq58jr+SFEP8P0O5UPhz1+Exz8a4Ir7l8kVLjQ6a5JcmO61di6OHjyi81UHV/TJ2baVi52srSxsnICxPa56R/OArbC2P45tFTc1bGpcmytiBLVXTVjG5gbkZemKjru6h0aIL2m9384NPa62qzI/C2V7RNNLBtdqOT775lzRKsvnThnPcvJ2I5riThilemjreKrzRZxvCPX8GmP7gEB0+8rhSRShqVC8TUn7NQLGHq3LT2eEn1lTW5avxWmX6YqitNFbdew6cbY5Cc7yC4jyuvVVgBL5XekhvdjsDknjK1pwSq9/nojnVW4wPO68urzrdq1+GG80hNo9v3j+KzH0pO5puNPAOgahxVhqQyI/DNo6dw783NV5bceWBc6dOdmKooV0F+qoWt6itbmiyjUCyF/vzCapd7DZ9ckXrxczN4DeWC+WnfeI3quGEalUtMBl63IzA1q1996cJ6jYPKN++kzjdCV6GLgezODzQY60KxZHQTzgok2oiEjXyP49aq0TErEGlrGTbYZ/piuN0RhWLJN1Db6r6yUT6/sCvtpe+ca+SDdgMrFEsNAfgZIXD23AzSKcKMT1S1WV3GdPGOfZosoH0jp/DoM6X6YkCgatTf/rZ5mJyq+O4yvIsJr+vFOwGYdpZuknKbsZHvYYLodcut5d5DJwMZS9NqKuoNXZosY9Wuw77BVAISV8TUrZIlUYTJTMc2GVtvnMDkTvDid2/Mzoq6UuTibAZL35nByAsTLemDqvtMdZdDoLF7VGVWoG/+PBTv8nfPqKqc3emg3gnAlqTcZmzke5gwJflBA0ZRgn39fc4crXEvBLtsmWZoxdh8QcOmnK55X7/WXfGOC+ZpPwPVmFTuBBV+94ZA8hOnG50ksC49MEzmit/18TY48VKaLGPngfFI7QdX7Toce7yLm4b0MGGNTpAilijBvh3Xr1QKWAH2Oc5BMzjCYlOJGXayeek/9dfpjXJF61MPq68C+N8bUY4dBp2qku7xMIV6puujanCiImqKrmxEHmd6JRv5HibKCtd2gohigKSAlTSg8m9sc5zjzE/3w28iiTLZmD7rtzkpvM1Rf42j+MT97o1m+dvDYvrMblmzpKFK2e/67D10MnSrwKCEqQQ2wUa+h1GV5GecNO7ftCq2IhadMXjX2+1SGaX+yEt7NuD5ez6Gl/ZswFNbr/VdOTvpqkBVswKt+cEc+jTGlkgfHLTBpLlTrsw2ZLoQ/CtA/TDpGM1PEw6eeL2uBrpqVzQZaBt0sgS6x3X3ZzbjYHd+oKEwyu/6NFsTPs7zsZHvYVRVgPJmN+mkB1mV7s4P4D3vmN/w+C9+cy6S5KpJM6a/r9rv0/ul3V4Yw/JtT2Dp1oNYvu2J2Cs9//qT74fjEVZxUoT7IqafVmaC9S9anM1EDnqadIxmBLR9WZNi58aVys9Wl+aoW8DI18vFw4u1RYPf9Qmy610wPx1ZxybOOBIHXrsYbwocoaqC6BVvUt3g7uIVv1aAfuhkW025z34ELa5JMssn7JhsKBRLVjnpbpJedaqyeaRgXVI7p6CfbdzXwrbdo1ujSJ67r1aZ7f3LPicFImq4vnHHkbiRd5dSKJZw+/5RZTFR1K18UOJoHB6V5due0BYCydL7dmTw7sO+wT4vYZqoezNHshkncBCxW7Tydag+o49feRGOPHs60kQStDeuCm7k3YPselxdLQokV3SRJFG/CM0u6Y+D7YWxwAYeCN55SmaOuFepYbJEurGtoZsoFbutOK6EffJdisk4NNuw6aRVbSVXVX1ft9RaAdqq+SWRZpgkOpkJP/r7nMAGI47MkWYI1jHh4JV8l+BXqOEmCcNmki7Y94WrGwSmLnv3Aoy/9pu6K8ckOqYqzJEmybY4K2hJf6vZeWDc9zXeWoGMk7bW5nHvjMKY9z4nhalaz99mCtYxwWEj36bY6r0EMe6SuA2bTVBz3xeurj9fKJYaJIQnpioYeuQ4gEZj7VcaXq7M+DYDCVLS3w6Y3CVSHTGsCyuInIWO/gUX4KdNrHhNgjh84Z0AB17bEJ20rDdgGubLunb5wjkGNw50QU0AuH9TY/qgScfbGzQM0rxZda4oxNFFKSh+krpA+PdpI0ZnS6cHWbcXxrBv5FTDLiaJ70czaEojbyY+THovboJoz/T3Obh/06pEbmCTj19Vom1K8fM+Z+O2kMRZJdjsLkqAnYHvc1KhDbyMa9iQzTjVRtUaz17cQdZCsYRVuw7XC6wG706uwKpQLCkNPFBN603yGrcCdte0IbaZIEHyod+sBCuoscXvi6hSX1xs6NzkNh5+OtxeXqvptsst+IUZB0Swko/10uwuSoBd3cBUZRZr9zwZ2LVgsyBQpV56OxoB8edxB3XfRWXvoZPGOEQnZp+ZYCPfhtg2dzAZSy9RpG51yNWhH97J6JrLF2kzR0qT5boRC7KKB6rl/26D5J4ggqpnRk25TNLfG6Z1nN+CIOOkcc3li7B2z5PKMSfpu9b1ba3MxFtgZbNTAto7rTYMbOTbENtMEL/2ZV7i7ntq6y4SqBb1bHh/tXDEbxylybKxt6uKjJMGUaNOuBubAK0kbBcloNGYJNHP02bSdk80KYMmfa7Wy9fdSMM75iQDkkHcd2GxNfBA+6bVhoV98m3I7vwAblmzpH6zpYmUVape7Rmbe3NZgNxyP4J8ASemKnho5JT1RGNj4Pv7nDmaOzYZRpPlitV712Ug+WUmbS+MKY2JjbKgbd2AxPT5e2sLVAZeitE9tfVaHHn2tLERRpKY/Pspolju1SASGu2aVhsWXsm3KabmDjpXgEk+QCKLiaKuLAvFknF1mDSqSe+O/cetxmOzmg+bcmnqx+o3KarqCUykiLBs60GlC0W3y0oTYVaIhr/RjS0pHRx35pJpbTIjxByXYNIpj2uXL+wqfzzARr7jUPWXvG14FNseOxHoOGF89HGm4EUhRWpRMdsJxzaYa9tFyXYMfk0ppAHr73PwxlRF2xDDey5Vj1HdNZoRQqkXpIvvJCFV4E0R9rtq5coM7vzO2ByRrzhdYAR0dZ48G/kOQ7dCK4fIngmySoujgCYuZgWUGSa5AIFoFUkXx+gyUryfrc7tJFfhqh2Ut8eoDt2qWRXfSaqrlmm3o0OlxGmzUJE7Bh2dmhcfBDbyHUac22ebVVqY1Xs24+DsW9OBAqdBUa3kggai3ah2SHEHS3XHsQ1gzwqBF/dswDKNW+61ybJVb1bT2GwnOa9bSWcsC8USdh4Yr++e+vucWF183rRZ97h1RYV+Y+422Mh3GEHSJk3YrNLCrt7fKFdw36ZVDV9umV0jv4zXXL6o/nsY/365MoPbhkex99DJhnQ/02ek6nqlMo5hXFq63YSmaRQA+4lbTsom10qURYBtFo0qbvDU82ew+cGnreQr4iTb52gnZ90Kvt3lpeOGjXyHMbR+hXWZvw5d71Pvimjq3HSoVXGqluYzumOd9d8EkS/wIuMSux4fx47rV9YLelQSuk6alCJeukkh6ISquz6VWTQYQYntxL30nZn6OXSuFb8JLhVDdqAuMOx9XJf/HgQ/XXshGtNm5eTcifLSScAplB2ENMJR0PU+Vcn5hl11yYyIIKlv+cGcb19ZPyamqm3oBu8+jGVbD2LvoZPY9AeXzGlvqGoLGCemY+uMo6mVoZuRFybq59C1bfQ71mc/pG7pZ0uQaxplV7FgfjW9c3THOmP2zRuaCcA00XVbHrwfvJLvEGJRDtTI+RaKJev0Q0k24+Dc9ExdbtZLGFfHjutXWrVYM1GZFfXJqTRZxqPPlCI10ZYkGZSVx9n22AljAN19fWzbNkrCCqyFUTmVhHEt9vc5KN61rn7utXueNGbfhHHzvW9RX6DXdzps5DuEIGJkKrKZ818eN3LysP2iZJx03Wiu2nVYa+SB4Cs5aaC8LdZ+/WZF2+XKjzjkHHRpqzsPjMemoy6NtilYaLsCjatCVeXuMuEt5hpavyJw5bK87raLmjCul+d+eRaFYqkr0yVVsJHvEKJm1chKT++N7Td5EKqaMG+U54p82YiHhcmxVhkomyIvEzaf3WXvXoCf//Ks8nHdZzRZrigzcNYuX6h0zdhUtMqVdjs0OAnSMUqVqSI/E3cAPsi5dcVcOrmJWSGsGqCI2vF7xcizT75DMBnMbMaBk/Zf5an8+X4GUAA4+9Y0sn1OPUXPJjYQZ451LmJBjt9kUyiW8OrEm8rnXp140+hyUJX+7/vC1Q0GPUi6nq2sRdLYLiwIwE2r1b7+/GAOozvW4aU9G6yuYzbjGM+tW7nL9FLb3U5SlbztCK/kOwRdRoV0ndj41VU3to3f1Ovn9tuCm1r5hcG07e9zUihPz8K0az/71rRxe27azZQrMyCC8fjyc/X67b3NPXR+fffj2T4HQqBh5xSEuOIHtj51AdTdV2+UK9r3MLR+BbYMj2pX206KsHPjykDndo9he2FMK+6nem+9AneG6iD8vrx+fkyVXnjclazuwFmcqIpq5ERi8x5kP9Sc4nNbtvVgqD6n7mNvXrNkjooj0DgJqybpDyy5EP/2/Bnt+d3HsEF3nhs/mMPBE6/PiXX4xROipLW6cb8HXUcm78KgUCwZJwQdt6yp7iikLo7feLoFU2coNvJdhtcYSkw3tu5vgmIypEljK6sLVH2UF/Y5mJyqVOMNb1aMK/UoyInV1PLQ9hgqolw7J0XYe5M5pTRqPETifg+2O40w55aFTrqJX+7KpG+/FfdqErCR70Fsv0jeTkqmtMgwhP0SRXE5xGWY4oAA3LdpVaQVsa6fqqqiNCimCQQw9+MNQpCesG6FyjC8tGdDoHF3w8reZOTZJ9+l2KTReVc7k+UKCMDvXJDGr9+Kx30TRgNGlbK4ZXgUtw2PWk0ackfRDshuVVHw+o+j5K578dOkn5w6F/kcQGNbR90E7qc3Y0PQST6JrmntROLZNUR0HRGdJKLniGhr0udj7FEFHAVgNPB9Tsoqk8dN0OYTunEBtcDvI8eNlZetMvDeT8WmW5Uf3iwlmbselwaMLgApz6NSfwxaL+p+D6rKand1dBiFyjjo5mybRI08EaUB/B2AjwK4AsBniOiKJM/J2BPmxu5fcAH2furKOSX1Mu0trnP5vbYyI3D7/tFYOgbFybxUY7eqyRDG2EmhQa5AEiR33f88pE1zNZ1HQG3o56cJhOpnkM04yvdgEoIDWqcr083ZNkm7a64C8JwQ4gUAIKJvA7gBwE8TPi9jQZiy89cmyw2uIJssjCBfIptxzQpgy/Aojr18piF/vL/PiV3t0IbKLPDbN6exec0SHHn2NLYMj4bsnkW4b5M6IBrXitMvu8amfsLLuRnhm8/v14FKV+yUJEnp5rcLSbtrcgDc+69Xa48xbcDQ+hWBt94qY50fzBmrOYN+iWwFuwSqlaHeFf2O61dqXUq5bAZrly8M/L5tqcwK7Kv1stX1VrU5hs69FXXFSagGJkd3rDP6oMOex8/dcqFm1yfPl2RVbzbj1AuyZNGUarfUbbQ88EpEtwK4FQCWLImmkMcEIz+Yw7GXzyjzllWYjPVNq5dg9JU3Gny4YbJrbHXhJVv2V4OychXo/V81hiiph36B3TjWoboV79D6FUo9GSdFVlk2tsZbdx4/TJNaoVjCb96aVj53zeWLAKh76655Xz9+cuqNSLENAmLTGeo0kjbyJQDuqfni2mN1hBAPAHgAqKZQJjwexsPu/ABWX7pwTrZD3/xUg46LyVirMiJSAO71VHwGQf6dTeqhtCvSwLj/lxOTdxxuQbCg6Xpx3KRpIsyfR1rVSZ0x1om47dy40ndSDLKjkuf58mMnAqXUmmQF9h46iRnNRPSto69g9aULkR/MKXvrqnodBHHJbV6zpCcNPJBwnjwRzQPw7wA+jKpx/zGAzwohxlWv5zz5zsPkj884Kfzsf3008PHiKMxyo6v0jfs8QXHShJlZ0aCwaVOkpEJVABRHgZo3ZTObcbBy8TuUImy3rFmCF0//Vtka0K+yOEXAvTevaph8VTLJQatxVc3Lu4mW5ckLIaaJ6M8BHAKQBvCPOgPPdCam1MggzcWTNLpe10e7NCWvzIh6o5QgcgM6gvZpDXJc3Q7Oa4i9Bh443xrQL6A+K6o7h2Mvn5mzM5wRAg+NnMJDI6fmTFbe1+mwyf7qZrjilYmE3+pMt4KKs6DHD+9KPq4qzjgyQYJUgoZF5ZJKqpzfVIh0v2Xlr9/n6tUEsondtELFs5mYVvIsNcxEwhTI0/UTjVrQs2B+GoSqDokfKj90XGmIcaT6JZ2fLeMl3rF6i5CaQX4wZ7Wq9vtc3Xn1+cEcntp6Le7ftMqYkbVPkYXVK7CRZyIxtH6F9ibS9RPd9fh4qIKeXE2+d/zu6/CHyxdqRcXk5OJNj9teGMPybU8Ydx4Zp9pbNKqGvS0yq6RQLGHw7sNYuvUglm49iFW7DsdilEwpjUErkeNg58aVvumxNprw3ola9r3VIRuF9CItT6HsdtzbyW5TvgPU/UlTVDXwqu1xoVgKvIJ30jSnAffmB59WBv0umJfCV298v3UGkBe33K2tvzcqR549rWyzN1muNiUH1Jo/Xg36tyrnheXcfn2/VXEcbis3fl2xbPrZvm9Rn7JLlxtdvYbJddPN0gUm2CefIDrtbEk24+DjV16Efz7+ulInvRsJ6g9XfR4mv68uBrB82xNag6eadHXj9GsgEhSCucI3bA8AmaFj06A97kWHdxLWdcXSXUcZxDVNst6GLBKTDr2f4mYnwyqULaBQLPkWGU2WKw038sRUBUOP6FdwnY7NaipNhK/dfH7lXiiWsGrX4UiZNyZDp/ri68YZ1sDrCqgWZzPGz0T1nE1Td1k1a9MpKYxSqAnbNoc6ZoTA7vwAjjx7Wjn59fc52nHqCvy6XbrABPvkE2LvoZOhi2YqM/qy9k7HL9DopM8beGncbxsejZxaqfPz6h6POyC6ec2SBl+0NDymc6mes3U7vDZZrveL9aMV/nm/a6KSt8g4aey4fqXxuLvzA7ivFlfRCb31EryST4iovs5u9R+qetVKgrb082LSz9GtaHVaKbpxpgkIIwLpPbfXRaKTKlCtPm2F5eQEsTs/YBVfeG2yrCx8SkoOwO+a+OX9mwqmbPop9Aps5BMiag51t0qf2hbs2Lgk3Oj8vhKdJsrBE6/XDY3boOUHc3j42KmGIGJMKr+45vJF9fdskipQGSrTRCnxThA5i4nhwowTOAAcBdU18Va2mgqxVAVT7uMyVXoi8OpXIp0EUVrQebNJehGb5tpRAmmqjBZgrqSAKVgbFdmLNCym7BpA3RjbNDFknDTe5qS0mU9pIswKEVsVbVR01ybq59qp9FTgVZWy6KZZM77NyknS56TqX9Buz66xxc8l4aT1DS9s0DXFkAFLm/RDwF790UvUyUOl6e+etLwBfO8OKtvnQAjgjXKlbri3GKpR5XjjDtKGRff5tarpSDvTNUZepX1iuuDfOvpKokZefmn8brl2LbdWfZ7NnIBsffcqvGNXvd4mo8XG5Ra2ibap4CfMzlNVYFaZEdj1+Pgct5Dp2tlKO7dDT1TdtbEppOo1usLIhwnSJT3j+2m1E6oZF+1o4HWFQxNTFdym6cYUN2HEtnQiZ6q0VNNOwd3AIqmCKF3AV+drfvSZV3HPJ9WFXgC0bhb3436TRxANeRmkjVsMzZaggfRepiuM/K7HxwMrCjZjxndrtXdKxavM7zexb+RUXfs7SYJkSOh87JLKjMAd+49jy/AoFmczuObyRRj+8SvGjBZvYNCEXyMRN6bdm06GoFyZjeQmsQlUqgLAuveV7XPmLKya7caxCdoyVTo+8BpUV1rSrm6SVmNbkdou1YO2KoReMk4aN34wh4MnXrfKaLH5XKRBNLl5/HZwfgF73eeuKxbLZhyM7lhnDCKbDKRql5xx0rhgXkp5Pvf4WrnS7zW6OvC66/Hg8vRs4PUEKbRpNVF04cuVGRx59jSKd62zev3Q+hW+iwl3cw7duATMOyG/OIDuc9+5cSWGHj4+J0bgpAg7N1YLh0zHNCUjeFsxElU/O91nLsfnvTbtErDtRTq64jWM2FU247CBN2Cbn98OefxBc+m9BJmo8oM5OBbfltcmy5EUEf18yqa2gHtvunJOlae7u5SNe1LnKsoP5jC0fgWcNPnKOsjxqa5NK6pqmQ5fyYe5YeTKhlFjkxVEtde1mqi7iSAT1fbCGKYtPJvymGEVEeUC5JtHTzW0BfTTXzHFMGyCyDNCaJu52MQcnDTh7FvTxhqHUi1gy6v55tHRK/mgX/JberiZry35wRw2+2idtEtT5Ci7iSCCVTJoaRO+kvrwQHUi1K2fBaoFPdsLYw3P7c4P4IV7NtR17ePQX5EaNqYVPRG0zVysIneiWiHr99rb94/2bAOPVtDRgdcgQUIO+gRDtaJrt0KtsD75oPdDkMrX/j5njp/fT24aqDY8N6VHxo0uRdZdlBeUoDIefU4KPw3Y5J3R07WBV1WAK47u9J1MXBkNzRJ4ijJeb1DQBulqCvLeghivianKHHeEN41WRdT0yKDo0g/9UmdNBK07CTuZMMHp6JU8wGlabnSrxgXz0zh7bqZlefqqIpzVly5UFi6F1e0JsqoPmv4ZVMNGd3y/9Ei337sVu6a4GpzbomvwwgTHtJLveCPPVLFpb+fG3fE+btwT79uclLLNWwqAbi3ndXmEOW/Kx33gNjB+C4Wgny0BeFFhwIKK1rknvGYsZvwKyvx0eoIUhAHnXTxcyBSdrnXXMFVsqlS9JKU/4t1N6Pp4mjbrQdNiJW4Xk6lILk00p4jKbZxU+dwq98b8eaR9b3Gll7qbxzQj51xV8SqRhWKmdoJBl4vyOCwTnCy8ku8Cwm6zdSvOsJj6awYljq28aeXstyr1c+nYSBV7CXudTEFNk+stCYntoLuaIPSqTHAcmFbyHZ1CyVQJmy8eZ0FToVjC7fvjMfDZjBPDUaoGUAXBXz3S7zPND+aw91NXor/v/FizGUdr4AF1OzsASBnqlAjmoKZc1XtTEqUx9q6Wf++vvodlWw9i7Z4nQ6Ux2qRihoVlgpOB3TVdgG07ODdxNjaWq9qQqrsNxFGwViiWcPat6YbHM07aKjhrMwGaMpBMPnTv4wAaJAkkNh+pyvVmEjoDqpPD0CPHsfPA+BxNeRv3z+78AHbnByI1xlHBMsHJwEa+C7DVrk8qu0bXgCMMcRSs6TJtZMaKnwaNrrdq2PN7fei69+fVwA8SmyhNlrG9MFZ3x9isiiszon6+0mQZdzx8vOE+ytUUO488e7phwora4tILywQnA/vkuwSTrzRFwL03r0osHc+mVZ8fcerr6xQZgarRmpw6h7PnzKv5KCJ2Jt/7gvlpfOUTdllNYXz4stdtkq0LZWbWsZfPhPLPr12+EMsWvZ1lgmOEs2t6AFl004puTmHcRV4uzDhYfenCyGMpFEtaAw9UV6yOyQleI4pmvsmff/bcjHXjlWsuX+RbLevlqefPoFAsJdrwRLqHZGBad55cNoOl78zMaYbubrjORr05sJHvIppVpeolSEchHZPlSixpgTaidZVZgYyTwpuVWa0BlUqRx14+E3jFaTPp+U0ihWIJjz5TUo7Pz5XjNsBy7KlanmhcdaZyIpOLC5XmfC8XJrYT7K5hYiFs8xYvUZuR2AYDCcB9m1YZ8751+LlybKtvTe9V56qRf2N6n7rUWHcwONvn4LdvTofuUdvf56Bv/ry6n17nt5dsfvDpOSt6JwVMz6Lnq9Tjgt01TOL4SevaElU+2DYYuDibqRuWoLn9fk3g5XH9Jj2bZuK6x6VUhYpsnzoF1bvTcxv9PsPxvDhpwhvlSn03UZosY/jHr2jlKLwGHgBkHRk3E0kezpNnYkOXBx6EqLn7NgberYcvpZW9XnrT+7A5R34wh1t8JJtN71X3nHz8K58Y0ObX//bNaasc+PxgDk9tvRYv7tmA8buvs8p/7+9z4KSoIV22MiO0Xdq8Bt4LNxNJFjbyTGzIjkhSA72/z9HqqQNoCIDGkbuvK4By49XD350fwH0K7XadwfMzhIViCWv3PIl9I6ewYL56siBUV7G6oiTVhOn+fPKDOXz2Q+pJpDIrQhnN3fkBPH/Px/DSng14aU+jnv39m1aheNc6rYJkWDkKoD3aSXYr7K5hYkXlElDJQW9es6QuwRun6Japv6opTVMVtNalCJryub3vV7pA+mq9A6WBNGnlyJ+9Qd8bPzh3jEeePa0dh7vXahQp52a5UNqhnWS3wkaeSRRdlad8PG4j4tWYj1IAptNdN/njdX1nTfrpqorVQrGE4R+9MkeWYPhHr8zJyDGtfhdnM4k1085mHGWaqk6OYu3yhUaXTZzV10wjnF3DMDEStjDMmxGjK+jKZhyM7qjKMOsycGTmkC4QLjN0bFf5XqGzNe/rx49enJiTmWMSZgM4uyZpEsuuIaK9AK4HcA7A8wD+RAgxWXtuG4DPA5gB8D+FEIeinIs5DzdKaV/CFoa53RWmgq7JcgVLtx6syw08+kxJ6QrLD+awRZPd81qtmbbNKt9bST0jBJ56/gzWLl+Il/6zbH0PygIopvlEWskT0ToATwohponoqwAghPhLIroCwLcAXAVgMYAfAPgvQghjjhav5P0x+bi5gtCOJCR4JWH6zsqVt2wOYvv3GSeNGz+Y0+anm3LtARhX+RKdPALLArcXia3khRCHXb+OAPhU7ecbAHxbCPEWgBeJ6DlUDf7TUc7HqH2+AtXS8rBl+L2EamX60MgpPDRyKhYBN9sceTcCc2MJthNEuTKDh0ZOaYuzVEFo6f82rfLd6NJFWRa4c4gzhfJPAXyv9nMOgFvr9NXaY0xETK4AXZ4yc55vHtXruUjDVZosY8vwKJaG1F3PD+asUjkl7teGSSV8aOQUVt71Lw3j9Ka0ytTQ/GDONw9foksWZVngzsF3JU9EPwDwXsVTdwohvlt7zZ0ApgHsCzoAIroVwK0AsGSJuXiEqSpK6irRJ6YqWLvnSbw2Wca81PmqQmCuMFQ7kaTrRIVtFb87xfG24VHcNjwaSOzNlMrpxp1ZUiiWfHvT6jh7bkabiqkar2mVL9n84NPaIDLLAncOvkZeCPER0/NE9McAPg7gw+K8g78EwH0XXFx7THX8BwA8AFR98v5D7l0KxZKvkZIrfW/G3lPPn8HmB59uK0Pvzbho916fE1MVDD1yHIB/CqKpQYgqaC598VHcIOXKDL782Im6Ho9p0vRLbd1eGNOmPc5PU1teH0ZN1MDrdQDuBfBfhRCnXY+vBPBNnA+8/hDAZRx4jUbYHqFu4uidGgV3A20dSQb1fu+vvqdtwG1LVBE1FXFcWx1htPH99Ojv35RcfwImOEkKlP0tgAsAfJ+qProRIcSfCSHGiWg/gJ+i6sb5op+BZxrxpkomZQSaQaFYatC615FkUO+eT74ftw+PRpLcTaIEP8myfj9BNRV+12DngXE28h1C1Oya3zU89xUAX4ly/F5FZRA73cAHSStMMqgnDdOux8e1Wis16XUt3px2b9u+ME1abCfxMC33wkyafueZLFdQKJbY0HcALGvQRmwvjAXuBBSEtcujd14KQ5C0QCD5oJ4MRuqKygrFEu78zphWeveayxcBqDUw9zTgnpiq4Pb9o3X5Yttgsk2g1q8JORGgssthJk2bzlIsEdwZsJFvE0w9Wm1JAbiwz8HkVKWtsmuC7ELWLl/YtKCeSYDLFOB+9JlSXVxN1XTD/ZA7Dx/Qr/RVgVBVIw6TVME1ly8KLKimY3d+AN/5ScmoMa/S3GHaDzbybYIpf9uN15Ugf49SwJM0uhWmm2b0orXFb+chjVsYP7opQ8dW9dGv1V5cKalf+cRAw07FC0sEtz9s5NsEm/xtvzL2dmR7YczXwAPAmxEzXkyo3DKAPn3QxnDJFnphNNQrMyL0Ctgv9XF3fiC2nZA8pilgzhLB7Q8b+Q6hnVa6thSKJWsXVFJbf5UQl1dywCvOZRMEXZzN4Oxb06HHFWUF3Eydd3f8wq94imlPuDNUm5Bx9JfiljVLULxrXUcZeACBuxMlsfW3Dfq6W9D5tTGUxu0Ni3RQHUFXwNsLY1i+7Qks3XoQy7c9ge2FsdDnDoNJIoFpb3gl3ybo8rfDFLK0C0GNdhJb/yBjkK/1ukSyfQ6EAN4oV+a4R3RB0IyTwrlpoU1BdNIUaAVsElXLZTNY+s4MRl6YSFwaopk7CCY+2Mi3CX6+1k4kSAFXUlv/IGNwTzI2Bk2XzXLjBy+uG9k48ui/dfQV7XOlyfKc99fu0hBM82Ej30Z020ppaP0KY3ZGHNK+NmOwkf2l2muDoOux6n48jmsappgpTJUr052wkWcSQ5Wd0ewAcn4why8/dsLYYxU4303JjZ9Cps4VFHdsoVlVrkx3wkaeSZR22J38tYVezcETr9fdHCpZA5UbROcKiju2YFN96oX13hkJZ9cwXU9+MId7N63SNsAAMCff3bQGdvvHVVk4ScQWducHsGC+PttHBeu9MxJeyTM9gdxNSE2ZsLjdIGGD5TaNUryvsXW/NKPxCtNZRNKTjxvWk2eSZunWg5GPESVQrNMocqfKhtExyjhpzlvvYUx68uyuYXqKIL1XdcgK2aC9XwF9OqR8PEiVsHQ/cWESY4LdNUxPYdt71Y+wMgw6t8uMEBi8+zB++6ZZKiGXzXRNHQXTHNjIMz2FNIqyD2oUwqRKmvzrfmJnaaLY2w4y3Q8becYad3/WZhQyJUV+MIctFgVSfoRJlQyTDun+W4YJCvvkGSu2F8awZXi0nhcuV6NS1XHVrsOhfNStImouuylVslAsYe2eJ7Fs60Gs3fPknM9l9aULMT8dPIe9kzWMmNbCK3nGF5tg4GS50lHt4FS++YyTxtuclNJtks04WHDBPF9/uLclYGmyjKGHq01Cjr18JtQq/v5NqzriM2XaEzbyjC+7Hh+3el0SmvC6PqxR0eW4A+rOSzs32kkx7Dww3qDVU5kV+PJjJ1AO0Rilv89hA89Ego0840uQ7kdB+rn6sfnBp/HU82fmHDvO3YJJciHsxKLroOSnnaMi46Sx4/qVgf+OYdywkWdiJRWTZMr2wtgcAy8pV2aw6/HxRFe3rdTb4RRJJm7YyDO+qAS7dNj0qrXBpKE+MVVBoVhqSwPYH7Lvq4RTJJm44ewaxpdWCF/45bAHbS3YLKK4V7IZJ8aRMEwVNvKML0GkAOIwVDapmEn0g42D/GAO/X3BPwMnRdi5kf3vTPywkWd8GVq/Ao5FbndchsommyeJfrBxseP6lcZG4F6yGQd7b7qyLd1PTOfDPnnGF2l8dj0+rvU3x9nxycannUQ/2Lhwp2d6q4OvuXwRjjx7moOrTNNgI89Y4c44SSp3Peh42pl26IjFMAAbeSYESRuwbMbR5psD3NqOYYLAPnmm7di5cSUcQ8I9C3UxjD28kmfaDq9PW8Kt7RgmOGzkm0A7+LA7DfZpM0w8cI/XmHEb9GyfgzcrM0phqmzGsRa9YhiGMWHq8cor+RgpFEtzFAxNqYCdJs3LMExnwoHXGNl5YDxQ79ByZQZ37D/eUc02GIbpLNjIx0ShWDKm/emYEQJbhkexvTCWwKgYhul12MjHhG1jDRUCwL6RU7yiZxgmdmIx8kR0BxEJInpX7Xcioq8T0XNEdIKIPhDHedqVQrEUSV4WqBr6dlVWZBimc4ls5InoEgDrALibV34UwGW1f7cC+Puo52lnoqzi3cTZVYlhGAaIZyV/H4C/wFzZ8RsA/JOoMgIgS0QXxXCutiTqKl7C5foMw8RNJCNPRDcAKAkhjnueygFwt/Z5tfYYY8CvUQbDMExQfPPkiegHAN6reOpOAF9G1VUTGiK6FVWXDpYsWRLlUC3DT1DLliDNORiGYWzwNfJCiI+oHieiAQDLABynqpvhYgA/IaKrAJQAuFWkLq49pjr+AwAeAKoVr0EG3y7s3LgSQw8fRyVCg9OMk26qRrqszC1Nluf0cI1TF55hmNYTm6wBEb0EYLUQ4ldEtAHAnwP4GIAPAfi6EOIqv2N0sqxBoVjCHfuPh3K5pInwtZub0xmoWpV7Qim14IaNPcN0Dq2QNXgCVQP/HIApAH+S0HnaBmkM3bIGNmScNO755EDTDLztjmNiimUXGKYbiM3ICyGWun4WAL4Y17E7BWkMdx4Yt/LRN3u1vPfQyUAupXJlBnsPnWQjzzAdDAuUxYyUyPXKC7dDb8/XQuThh/kbhmHaBzbyCdGOeuiLs5nABVeLOeOHYToa1q7pIYbWrzC21fNCtb9hGKZzYSPfQ+QHc9h705XIOP6XnQBsXrOk7XYjDMMEg901PYY3ZlCaLCNNhBkh6v/nuEUhw3QNbOR7lHaMGTAMEz9s5JmehJurM70CN/Jmega3i0oFV/kynQo38mZ6nu2FMewbOQXTkmZiqoItw6M49vIZ7M4PNG1sDJMknF3DdD2FYsnXwEu4FSPTbbCRZ7qevYdOWhl4CbdiZLoJNvJM1xOmrSK3YmS6BTbyTNcTpq0it2JkugU28kzXE0bjn1sxMt0CG3mm6wnTVpFbMTLdAht5pusZWr8CQZwvLMzGdBNs5JmuJz+Yw+Y1S6wMPQuzMd0GF0MxPcHu/ABWX7qQK16ZnoONPNMzuEXZWLuG6RXYyDM9CatwMr0C++QZhmG6GDbyDMMwXQwbeYZhmC6GjTzDMEwXw0aeYRimi2mrzlBEdBrAy60eR0DeBeBXrR5Ei+D33pvwe28/LhVCLFI90VZGvhMhomO6tlvdDr93fu+9Rie+d3bXMAzDdDFs5BmGYboYNvLReaDVA2gh/N57E37vHQT75BmGYboYXskzDMN0MWzkI0JEdxCRIKJ31X4nIvo6ET1HRCeI6AOtHmPcENFeInq29v6+Q0RZ13Pbau/9JBGtb+EwE4OIrqu9v+eIaGurx5MkRHQJER0hop8S0TgRfan2+EIi+j4R/bz2f3+rx5oERJQmoiIR/XPt92VEdLR27YeJaH6rx+gHG/kIENElANYBOOV6+KMALqv9uxXA37dgaEnzfQC/L4R4P4B/B7ANAIjoCgCfBrASwHUA/jcRpVs2ygSovZ+/Q/U6XwHgM7X33a1MA7hDCHEFgDUAvlh7v1sB/FAIcRmAH9Z+70a+BOBnrt+/CuA+IcTvApgA8PmWjCoAbOSjcR+AvwDgDmzcAOCfRJURAFkiuqglo0sIIcRhIcR07dcRABfXfr4BwLeFEG8JIV4E8ByAq1oxxgS5CsBzQogXhBDnAHwb1ffdlQghXhdC/KT2829QNXg5VN/zN2ov+waAfEsGmCBEdDGADQD+T+13AnAtgEdqL+mI981GPiREdAOAkhDiuOepHIBXXL+/WnusW/lTAN+r/dwL770X3qMSIloKYBDAUQDvEUK8XnvqPwC8p1XjSpD7UV3EzdZ+fyeASdcCpyOuPTcNMUBEPwDwXsVTdwL4Mqqumq7E9N6FEN+tveZOVLfz+5o5Nqb5ENHbATwK4DYhxK+ri9oqQghBRF2VpkdEHwfwSyHEM0T031o8nEiwkTcghPiI6nEiGgCwDMDx2s1+MYCfENFVAEoALnG9/OLaYx2F7r1LiOiPAXwcwIfF+TzcrnjvPvTCe5wDETmoGvh9QojHag//goguEkK8XnNH/rJ1I0yEtQA2EtHHALwNwO8A+BtU3a/zaqv5jrj27K4JgRBiTAjxbiHEUiHEUlS3bR8QQvwHgAMA/kcty2YNgDdc29qugIiuQ3Ubu1EIMeV66gCATxPRBUS0DNXg849aMcYE+TGAy2pZFvNRDTQfaPGYEqPmh/4HAD8TQtzreuoAgM/Vfv4cgO82e2xJIoTYJoS4uPb9/jSAJ4UQmwEcAfCp2ss64n3zSj5+ngDwMVSDjlMA/qS1w0mEvwVwAYDv13YyI0KIPxNCjBPRfgA/RdWN80UhxEwLxxk7QohpIvpzAIcApAH8oxBivMXDSpK1AP4IwBgRjdYe+zKAPQD2E9HnUVWOvbk1w2s6fwng20S0G0AR1QmwreGKV4ZhmC6G3TUMwzBdDBt5hmGYLoaNPMMwTBfDRp5hGKaLYSPPMAzTxbCRZxiG6WLYyDMMw3QxbOQZhmG6mP8PNDa3JOmr7J8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGdCAYAAAAMm0nCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOyde3xU1bn3fzOTTC5D7hEmIJBwM8RwCwoJAdrGoAgqVc5pBaGnluIVX0Xft4qK4kEbbE+LnqJiU8QqIq0VBSWkh4uVAIlwCLcYEAgJKCRAEkggIZlkZt4/hj3MZV/W2rNnMpM838+Hz4fM7Nl7zd579nrWc/k9OrvdbgdBEARBEEQIoe/qARAEQRAEQfBCBgxBEARBECEHGTAEQRAEQYQcZMAQBEEQBBFykAFDEARBEETIQQYMQRAEQRAhBxkwBEEQBEGEHGTAEARBEAQRcoR19QB8xWaz4ezZs4iJiYFOp+vq4RAEQRAEwYDdbsfly5fRt29f6PX8/pSQN2DOnj2L/v37d/UwCIIgCIJQwffff48bb7yR+3Mhb8DExMQAcJyA2NjYLh4NQRAEQRAsNDc3o3///s55nJeQN2CEsFFsbCwZMARBEAQRYqhN/6AkXoIgCIIgQg4yYAiCIAiCCDnIgCEIgiAIIuQgA4YgCIIgiJCDDBiCIAiCIEIOMmAIgiAIggg5yIAhCIIgCCLkIAOGIAiCIIiQI+SF7AgiVLDa7NhT3Yjzl9vQOyYS49ISYdBT/y6CIAg1kAFDEAGguKIWr3xRidqmNudrKXGRePnuDEzNTOnCkREEQYQmAQshLVu2DDqdDk899ZTztba2Njz++ONISkpCr169MHPmTJw7dy5QQyKIgFBcUYtH15S7GS8AUNfUhkfXlKO4oraLRkYQBBG6BMSA2bt3L959912MHDnS7fWFCxfiiy++wCeffIKvv/4aZ8+exX333ReIIRFEQLDa7Hjli0rYRd6zX/v3yheVsNrEtiAIgiCk8LsBc+XKFTzwwAMoLCxEQkKC8/WmpiasWrUKf/zjH5GXl4exY8di9erV2L17N8rKyvw9LIIICHuqG708L57UNrVhT3VjgEZEEATRPfC7AfP4449j+vTpyM/Pd3t937596OjocHs9PT0dAwYMQGlpqeT+2tvb0dzc7PaPIIKV85fljReBLZV1fh4JQRBE98KvBsy6detQXl6OgoICr/fq6upgNBoRHx/v9nqfPn1QVyf9MC8oKEBcXJzzX//+/TUfN0FoRe+YSKbtNhw4S2EkgiAIDvxmwHz//fd48skn8dFHHyEyku0hzsKiRYvQ1NTk/Pf9999rtm+CkMPSacOqkpN4aUMFVpWchKXTpviZcWmJSDSFK27X0GKhMBJBEAQHfiuj3rdvH86fP4+srCzna1arFTt27MCKFSvwz3/+ExaLBZcuXXLzwpw7dw5ms1lyvxEREYiIiPDXsAlClIKiShSWVMPVSfJa0RHMn5SGRdMyJD9n0Otw7+h+WLWrRvEYrOEmgiAIwo8emNtuuw2HDx/GgQMHnP9uueUWPPDAA87/h4eHY9u2bc7PfPfddzh9+jRycnL8NSyC4KagqBLv7nA3XgDAZgfe3VGNgqJK2c/nZ0gb5K6whpsIgiAIP3pgYmJikJmZ6faayWRCUlKS8/V58+bh6aefRmJiImJjY/HEE08gJycH2dnZ/hoWQXBh6bShsKRadpvCkmo8c3s6jGGO9YCn4u7YgQlIiYtEXVObaDk1ACSawlHX3IbSqgZS6CUIgmCgS5V4ly9fDr1ej5kzZ6K9vR133HEH3n777a4cEkG48WFpjZfnxROb3bHdvEmDJBV3M/vFypZTN7Z0YOHfDgAAYiINGDsgAZOG3oC5OalOw4ggCIK4js5ut4d06UNzczPi4uLQ1NSE2NjYrh4O0c14aUMFPig9pbjdL3IGYsLgJDy6plzSy6IGvQ6KeTYEQRChiK/zNy3tCEKGgYnRTNv1T4iSVNz1BdY8G4IgiJ4GGTAEIUPvWOXEWp0OSDfLh4h8pbCkmqlsmyAIoqdABgxBiGDptKFwRxWe/fSQ4raRYXrUt1j8Oh4hz4YgCIJw0KVJvAQRjIhpvshxtcOGxivt/h0UgFONrX4/BkEQRKhAHhiCcEFK80WJRJMRKXGR8GfxM2s+DkEQRE+ADBiCuAaL5osU5rgovHy3o1LIH0aMXgfMzUn1w54JgiBCEwohEUGJpxhcIMTdWDRfxDDHRjjH986cLC8dGC2YPylNUiiPhO8IguiJkAFDBB1SYnAv352BqZkpzgm8rukqGlssSOwVAXOs90Ru6bThw9IanGpsxcDEaEVROLU5Jkvuudl53KmZKZiSYXaOb+mmI2j0McF33sTrOjBK54YgCKKnQEJ2RFBRXFErKgYnmCUPTU7DxoO1oh4Oc2wEltxzM6ZmpqCgqBJ/3lHtth/dtc9LicKtKjmJpZuOMI81Pjocy+4bIWo4CMbTjuP1+PrYBeZ9ejJv4kAsvsvRekPq3AisuH807hrdT/WxCIIgAomv8zcZMETQYLXZMfH17T6HX6Zk9MaWyvOS7z8sYcRYOm1IX7xZNoykA/DI5EGYOPQGZA9OEg3d8FYxieGpwMt6buZPSsML00m1lyCI4MfX+ZtCSETQsKe6UZPcETnjBQD+vMO9+aKAMUyP+ZPS8O4O6UTehyan4dlpwyXfF6qYeEiJi8QLd6bj3OV2yXAX67kpLKmGXgdqPUAQRLeHDBgiaDh/2X9Ktq7YAfx1dzXmTx7s9Z4w8Xt6UFh6EvFWMc3LTUV+hpkpCZfn3Hh2xyYIguiOkAFDBA29Y5Rl+7Vib81FzJ8s/t6iaRl45vZ0rwRgg16H0qoGyeofniomHYCiijo8Pz3DbR9SFUY858ZmB579x0H87NYBVKFEEES3hQwYImgYl5aIlLhI1DW1ad4U0ROT0SD7vjFMj3mTBjn/ZqmM+qa6kfn4dgC1TW3YU92InMFJiseYkmFGSlwkc4jtswNn8dmBs26fL6tqQOnJegA65AxOQvYg8RwegiCIUICSeImgQqi0AeBXI+axHw3GpGE3MHkofKmMUmL5z0bBHBeFrZV1WLWrxut94RjvzMkCADxy7dywooPjPEYbDWi1WN3ek6uiIgiC8DdUhUQGTLdDyhNx10gzCktqND2WkoaKVpVRUiSajIo6MToA5rhI7Hw2D5sPncWCdQc0HcPKOVlkxBAEEXCoConodriKwXnmguh1OsUqn4cny1cSuVLb1IZH15TjHYlJXKvKKClYRO5cw013je6Hg2eaVLc8EOOVLyoxJcNM4SSCIEIKKlMgghKD3pGnMWN0P+S46K0smpaBt2dnoVeEt+0dHx2OlXOysGhaBlbOyYI5li3x1Q7HJG4VycANVGUUC8JYXpiegYcnp2nWc0kwjgiCIEIJ8sAQIce0kSm4I9OMspMNKK1qAGBHzqBkN2E5Vy/OrhMXsOKrKtl9eibUCmhRGRUZrkdbh835d6IpHI0tHdz7EcZitdkRbQzTNEcomAw1giAIFsiAIUISg16H3CHJyB2SLLtNzuAknL3I1uPIsZ27AaNFZdSqX9wKvV7nDIfVNbdh4d/Y81iEHJhxaYkorqjFyxu+xbnL7SpHI04gS9hDEWqgSRDBBxkwRLfnwA+XmLebeUt/t9cMeh1evjuDu/oHuG54eLYccHiN2PcBAC/fnYEtlXWqxqFEyjXjiBCHGmgSRHBCOTBED4B1pSy+nc1mhynCWzcmPjrcmYvi+UlXw8NzpS54dVhGZY6LxDtzsjAlw4zn1h9m+IT3GJW4Z1QKeRMkEEroPRO5a5va8Miacjy6Zh/+659Hset4vWgOFUEQ/oMMGKLbk5oUrXq7gqJKPLZ2P1rarV7vNbV2YMyABLw1ewwSTO6GgmB4iK3QBa8OC3eNTMHUzBSUVTXgUitf3szi6cOx5/l8RSPmk30/wNJpk92mJ2K12fHKF5WyocPNFXVY8VUVHlj1Dca+ugXFFbUBGx9B9HTIgCG6PXNzUqHkYNDrHNu5UnSoVrYc2w7g6b8fxIsbvnVLyk00GbF4unx4YWpmCv50/2jFsa/aWQ1Lp+2agi4bOjhCHL/MTcO+UxcVDZ/Glg5kF2yjyRcOo6W0qgEbDpzB+7uquUroL7V24JE15XQeCSJAUA4M0e1h6TL9YO5At95Hs8cPxIsbKhT33WqxeincXmyx4PG15XhHLy8Qx5KIa7M7eiyxh8EcCKEr1uqixhaLrB5OT0As10UN/++Tg/jRsN6IUmhXQRCEb5ABQ/QI5LpMZ/aNxXu7TsFVk/rVoiNQq1Fth8PcUBKIO9XIVh11qrEVd9xsxoqvTihumxAdjgKX9gA81UWCHk5PFLWTahehhsvtVmS8VIyHJst3LycIwjfIgCF6DGJdpndXNWDb0fNe2/raYEOsWaMnAxPZcnMGJkYje1AS4qPDZcNBkWF6fPN8Poxh1yPD49ISERNpwOU27xweMZTG3B1hyXXhxQ44PX5kxBCEf6AcGCKksHTasKrkJF7aUIFVJSe5k0+FLtP/OSMTfWIiRI0XLZEL4fDk5hj0Oiy7b4Tstm2dNmw/es7tNYNeh7EDEpjHC/Q8UTt/tosoLKmmBGmC8BPkgSFChoKiSq8Q0GtFRzB/Epur3mqzO9V7bXYbVot0f9YauRAOS27O/ElpTo+KjaFMVywElNwrgmPEPU/Uzp8Gm5DDNG/SIL8dgyB6KmTAECFBQVGl6ERvs7O56osravHc+sPcpchqEUTsbDY7Nhw4I6neKpeb42qYWW12pqRizxCQ1WbHzhPswnk9UdTO3wYba64TQRB8kAFDBD2WTpti9+XCkmo8c3u6W/6HQHFFrU8Ktr0iDLgiogMjhQ6OHIirHVY8sOob5+tS6q1iuTlzc1Ldvsue6kbm/kmuHoU91Y2oa2bzMOggLrzX3dGiXYQcrLlOBEHwQTkwRNDzYWkNlKIn18uN3bHa7FiysVL1sfU64K1ZWVyfEYTjPL09dU1teFRCJ8Q1N2fepEFehhhPmMPVo7Clso5tzFHhPbaE2lVYUEpRWS1i+kIEQWgDGTBE0MNTbuwJjwdCjHkT07Dj+AWmbX88LBkf/Xo8IkS8QACcq/tXvqh0k523dNpQuKMKD33wv1i4bj9Kjl3wkqVnDXMkmYzOEJDVZsfnB84yfe6tB3qm8SIwNTMF78zJgjnO/Tyb4yKxck4W3p6dhUST0e29lLhITMnoLbtf1xwmgiC0hUJIRNDDU27siS8JmlMyeuO5O4fj1te2MG3/8I+GAADqmqUF6jzLqwuKKvHnHdVuoYvPDpyFyWjAH342ymlUCGEOpWqZpTMynSEgR9jJojjuRFM4sgf1nLJpKaZmpmBKhlmy6/QdmeLviSWXe+YwEQShPWTAEEHP3JxULN10RHYbKVe9mgTNmEgDCn46AneN7ofSqgam3BPB8/HlITaPx/nLbZKJyQDQYrHikTXlWHktrCOEOeTE1h6enIZpI697UViNt3tH9+txeS9SGPQ6SQ0cqfdYcpgIgtAeMmCIoOcP/3NUcRspV/24tESYYyMVw0gJ0eF46e6bYY51X3WzGgEzRveFQa9jNpgSo4z4s0z5tIBrWbQQ5vCUu080hePVGZmYNrKv22dZx5KfYWbajpBGyGEiCCJwkAFDBDWWThv+rFCBBADP3J4u+rpBr8OSezIUq5Bc5fddYTUCplwzAsYOTIBeB9mkY70OOFLXzFTx4lkWrRTmcEWpukYo9R47MAGlVQ2K+yMIgggmyMdJBDV/3V3DJOv/1901ku9NzUzByjlZzuogV+Kjw51hGjEEI0BuOnfVTtl36iJTxdTeGnZtFk8vkBDKuOuax+XLQ2dRWtXglfjLUl1zz6gU/Oj3X2FWYRmeXHcAswrLMPH17dRRmRPXLtZi14IgCO0hDwwR1OytaWTebv5kaRe+4LkQlHgBO3IGJSN7cJKst8E190TQdxEQPuWqncIacvrXsXqm7QBxL1DRobN4cUOFW36OmM6MVNjJHBeJe0aleCUQA9fLvXtqWTUvYl2sxa6F1WZn8pwRBMEGGTBEUBNtNGi2nUGvQ+6QZOQOSeYag5wR4DlJsYacOqxsK3QxZVyp5N9aCcNDLOw0dmACfvT7r0RDS6zdtAnpLtaCEfjfs8bgfHMbdhyvR/npi7jc1uncRkrYkCAINsiAIYIKz1XqvaP7MWmZzBxzo1/HxZp7MnYgX+NEJTyVcYsO1cr2TrJD3PDwrKAprWqQLclm6abd05HrYi289sTH+yU/T54ugvANMmCIoEHMFW+OjYAxTC/b0TfaaMCEoXxeFTXIldgKfFPFntsihynCgD/8+yivEISafkhisIa6elpnah587WItGDkvfFaBvPQ+VHZNEJyQAUMEBVKu+HPN7YrVOn/82aigCXN8uv8Hnz4/cXASHv7RYEwYkuz1nViF6QBlw4On3Lun4ekFHDswAftOXfTyvLG2aVCiocWC7IKt+O294pVwBEGIQwYM0eUoueJ1AOKiw2HU63D+yvUJvE+MEa/MyAyqh36rhb3poxjDzDGYNOwG0ffU9kMSg7WB4X+8v6dHKcqKeQE9y+JTriVAv7erRrPjNrZ0UDiJIDghA4bocpRc8XY4GiN+NG889HpdUFdxxET69pN6b1cNxqUl+qRJk2gK90r89USuusoVmx3OnJvuZsR4eloutrTj8bX7vc6FZ0V0bVObbB6SL1DiNEGwQwYM0eWwehbqW9oxY3Q/P49GPcUVtVhffsbn/Ty3/rDoJHaRMXz0qks/JDmE6qqXN1Tg3GX5fReWVOOZ29O7TZ6GlKelK9VbKHGaIPjoHk8jIqRh9Syo6WsUKOTCYLxcau3Aiu0nvPb//OeHFT87f1KqV0sBOaZmpuDXkwYrbmezA0u//DakBNqkxOWEfCtPr1+wfDVKnCYINsgDQ3Q5rJL3SmGRroS1IiU5xoh6BW8HAKzeXY0FeUOcnpQV20/gUqtyU8m8dP6+Rt9fbGXa7sOy09h65HxIaJeIV7RF4v5b++P93TVd6mlRIpgNdYIIJsgDQ3Q5LJL3nnoowQbrqvn+W/ozbXeptQN7qh0qxFabHat3seVcqFm9D0yMZt5WEMtT02ogUHL7Uh6WuuY2vLHtOC5dVTYEuwIdxIULCYIQhwwYIigQ8jHMce6rT3NcZEhUZrCumnMGJSM+yrsnkxiCMbKnupF50lWzep+bkwoe21AQy+MxQIorapG7bLtbz6XcZdr3XNIylMeCViZ1qBjqBBFMUAiJCBp4Oi0HG6xhsOzBSXgwNxXLtx5X3KdgjLB6VeKjlKuPxDCG6TF/UhpXZQ1PsmlxRa1oN/C65jY8sqZctpkmL76Ky7Eg3I0PTU7DxoO1mhxPrC0FQRDykAFDBBUsarfBCE/Tx0d/PARvbDsu22Vbr7veloDVq/JgbqpqY2/RtAycOH8F245eYP4Mi2Fltdnx3Hr55ONFElVXatAiAdZT98Xzb1dj4zdTh2NPdSMKS6rw1dEL3J6fX+WmYkqGOWQMdYIIJsiAIQiNYG36uO/URVnjBXBMmPtOXUTO4CQm0bmE6HAsyBvq0/h/NXEQlwHDYliVnWxQTD6+2NqBspMN3E021Y5JCsF8WDErCwkmo6ISL+AwXP/13Tls5zhvrhQdrsVtw/vgy0NnQ8rjSBDBABkwBKEhLGEw3j5ESqJzOgAF943wfeLjcB+wJpuWMvaGKq3SxoAZOzDBy2PCilwYR/AKeorfje4fj8IS9aJ2dc3teOAv3zj/1rJDtetYk3tFAHbg/JV2NF5pR6LJCHNcFBlMREhDBgxBaIxSGEyN7o2Ud0fLCa++pZ15W/ZkU1ZLwve0W6vNjg9La7iNl2ijHoVzb0X24CTZ7yRWmh0TGaapfoxYh2pPo0nJ6LDa7Fix/QRW76pWTP7W8v4hiEBDBgxBBBi1ujf+TnJmNawW5g91TniWThs+LK3BqcZWDEyMxtycVDe13pxByVjxVZXiPnMG+eZ9ETMuWNFBh8vtHZLn0dJpw/PrD+EfIirLl9s6uY8nh3A/PPfpYcREhqOptQNLN7EbrcUVtXhu/WEmzSDgell8KFT6EYQnOrtdKRof3DQ3NyMuLg5NTU2IjY3t6uEQBBOCVgkgnvDbFROK1WbHxNe3y+bapMRFYuezeTDodSgoqkRhSbVXwqtr80erzY6xr26RnVDjo8Ox78Upqg0xqU7mPOggfs7FvmNXI3WPSFV7seB6XQkiUPg6f5MODEF0AcGoe6MkKKjD9dBRQVEl3t3hPbELzR8Liiqd+1x23wjZ4y7zIX9HK90XO4DnPzsMS6fN+ZrUd+xqhOG4avEI50EtQlk8QYQSZMAQRBcxNTMFO5/Nw8fzs/Hm/aPx8fxs7Hw2r0td+SyGlaXTppi4WlhS7TQGpmamYOWcLJhjI9z3GRvhswaMlrovjS0dyC7YhuKKWqbvyMqUjN5IidO2PYBr40dAm/NAPZiIUINyYAiiCwlG3RulXBuWRFmb3bHdvEmDmPapFq0n3cYWCx5ZU46ZY/pye148K8Rcw2luFUGmCDzzyUGca5YO1bEifH8tzgP1YCJCDTJgCCIACBPY2YutOPDDJQA6pCZ5J70GYhxlJxuulTfbkTMo2a36xrPi5a6Rfb2MjFONbM0fPbfzh7Hmr0l3/f6zzNsKSdfbn/kx1n5zSjSh2fO7L7lHuiyeB+H7+3oeqAcTEYqQAUMQfkauQua1oiNuSa+e8JbQKo3Ds0JlxVdViI8Od+apsJRpszZ/5GkSqRYWkT818O7r5bszEGU0OD1OSkiVxbPiWanmy3lwzW0iiFCCqpAIwo+wVsg8PNndiJHS8lCr26G2QkWs4sXSaUP64s2yIRa9Dji69M6AeJekKroEFuYPQ2pyNE5euII3t53Q9Nh9Yox4ZUam6jweq82OsqoG/OK9b2BlfBLLVSHJnQcxSAeG6EqoCokgghSeChkh6dVqs+PNrccxYsk/sXzrMS8hMkHojKeLs9Vmx5KN6ipUxCpehOaPcsyflBaw0JjgzYiL9u7yHR8djpvMvTBjdD9k+6g148n0EWb88edj0N5pQ2lVA1d3bgGDXoemqx3MxgsgXakmlYDt6VeJjQzDgxMGBkXSOEH4AoWQCMJP8FSG2OzA8+sPYevR87KaKXY4JqRXvqhkboC4p7oRdc3qkzxdK16EPA7BW6SkAxNIxM7bpdYOZ8frdpcSaR7EknNvG94b5acvYdPhOufr8VHheDA3DQvyhjCHY6w2O17cUME8lrnZA7DknkzJ/YslS8v1ciKIUIYMGMJvaJm/EYr8z7d1yhu5IKb0KoaYQSGHVpU6nvtZNC0Dz9yeLqvEGwhYO16vmJWlav8f/Gocjp277PyOvWMj8X8+3u/lWbt0tQPLtx7D6t3VWHbfCCbPxp7qRjS2WJjGoQOw+K6bFX9DYsnSwVbpRhBaQAYM4RfEElf9GW+32uzYfaIen5b/gFZLJ25NTcJ/TLg+mQbamCo6dBbv767x2/4BdsNEq0odsf0Yw/TMiav+grXjtc1u50p0FRJlJwxJxqRhNwC4rlYs93lXr4/Svc5jXN410hxw45AgghkyYAjNkUpcrW1qwyNryjEuNQFP/GQoJgxN1sSIKK6oxdN/P4hWi9X52v9UnsdvNx/BQ5PSMGZAgs/GlFLPH8/xPLZ2v0/fiQVWw2RcWiLMsZGqw0hSvZmCBdaO199UN8p29XZFuCs9q3N4woIsYT7WaxgZrscb96vzIBFEd4XMeUJTWBJX99RcxNzVezBiyT9Fk1EtnTasKjmJlzZUYFXJSTd5d0+E6hpX40XAfk3W/pE15V6TDk8ybEFRJdIXb8bSTUfwQekpLN10BOmLNzvl8l3xVdKdFR7dDoNehyX3sOWkiLUQAIK9zJa947VUoqvnV5NKlOXxmLDI8wvlz0rcf2t/7KluVJUoTBDdFb96YAoKCrB+/XocPXoUUVFRmDBhAl5//XXcdNNNzm3a2trwzDPPYN26dWhvb8cdd9yBt99+G3369PHn0Ag/wbNCbbVYvVztYs3zpLRSrDY7Xt7wrapxsibDCv1wPBF6/gBwG5eW0vZSqNHtEOT8xToVy+nAmEOgzJa347Uvia684Tglg0foP6VUav/+7lN4f/cpKnsmCBf8asB8/fXXePzxx3Hrrbeis7MTzz//PG6//XZUVlbCZDIBABYuXIhNmzbhk08+QVxcHBYsWID77rsPu3bt8ufQCD+hJmH05Q0VmJJhxu+Kj3AbC+cut6seq1IyLGvPn2duT3eGk9QmzMZHhaPpaoeiLyEhOhwFjAminggTt5wSrz/k/v1N9uAkxEeHK3a8zna5xmoTXQWPCauRymLw8IjaCZ7Drmr4SRDBhF8NmOLiYre/33//ffTu3Rv79u3D5MmT0dTUhFWrVmHt2rXIy8sDAKxevRrDhw9HWVkZsrOz/Tk8wg+oSRg9d9mC3cfrA2YseCK1HzU9f9QmzD6Ym4Y3th6TzM0wGQ14aPIgLMgbym1QiOXv5A4R10QJxt5MSggdr+WE+nzpeO15LBaPCW/ekKtXqK65DUu//BaNLd4GmZoyeoLorgQ0B6apqQkAkJjo+FHv27cPHR0dyM/Pd26Tnp6OAQMGoLS0VHQf7e3taG5udvtHBA/CCpX3sfrp/h+YjQXAET4674O2iStSRoeanj+8318HRz7LgrwhorkZ8VHhWJg/FIeW3IEn84dxT1g8+TuhjD87Xosd6505WYgXEc4TsAO4Z1QK1/USjEdzbKSo8eK6b5b8GsLxnCitasCGA2dUiw0SwUvAqpBsNhueeuop5ObmIjMzEwBQV1cHo9GI+Ph4t2379OmDujpxDY2CggK88sorfh8voQ7XFSoPYkm4YpxqbEVxRS2e/fQQmq52qhmiE6VVspqeP67fn7fSReuOzbz5O6GOvzpeizXAnJJhxpQMM55aV44vDok/q/68oxpjBiRwG0+snkWtO3F3FwTJhC2Vdfj8wFk3nR01YoNE8BIwA+bxxx9HRUUFdu7c6dN+Fi1ahKefftr5d3NzM/r37+/r8AiViOmrCCvUJRsrmUp3+yJZ/s8AACAASURBVMQYcWtqIv6n8pzitq3tnap6+njCUl0zNycVrxUdUez5Mzcn1e01qZwGvQ5u+xJLkNUqhKMmf6c7oHUITKoBZlxUGH45IRUlx+VLuNWEeljDkP7qxB3KyDVOBdSJDRLBS0AMmAULFuDLL7/Ejh07cOONNzpfN5vNsFgsuHTpkpsX5ty5czCbzaL7ioiIQEREhOh7ROBwNBs8jtW7aiSbDSqtUAVemZGJvPQ+KNgsbyzoAGxhMHJYYKmuEXr+iHkxBKR6/nS1pLua/B3CHbkGmE1XOxUbQ/IqJgsodZYOdl2erqLo0Flm/SVBbPDt2WMwbWRfP4+M8Bd+XXrZ7XYsWLAAn332GbZv3460NPcGcGPHjkV4eDi2bdvmfO27777D6dOnkZOT48+hET5QXFGLsa9uwfKtx2WbDRr0Ovxp9lg8PDkNOpF5OtpocOYnsDQInD6iD5rafAsbxUWF4YVpw/GbqemIizIqxsQXTcvAw5PTvHRC9DrvDtKeCN6AGaP7IWdwEoxhere//enCVpO/Q1zHlwaYnvCGeoQwJBCqujyBp+hQLRZ8zC8eueDj/Sg6xN4YlQgu/OqBefzxx7F27Vps2LABMTExzryWuLg4REVFIS4uDvPmzcPTTz+NxMRExMbG4oknnkBOTg5VIAUpUiq7AsLrSzZ+iykZDi/a5KG9YdDpcfCHS2jrsOLGhCj8W1Z/jB+chH2nLmLDgTPoHROJ30wdDkC6QWC4QQ/ANw9M09VOvFZ0xPk3i65GsPT84UFN/o4aeBSKQwlfG2C6UlPPbyRKhSFDQZcn0DiUr9WFlW124LG15Vipp7L0UERnt9v9lpatE1t2w1Eq/ctf/hLAdSG7jz/+2E3ITiqE5ElzczPi4uLQ1NSE2NhYrYZOiCD0gWHVwLhrZAp2nqj30ucwRRgwe9wAfHmoVlTePy+9j+ik+F///A4rvpJ32/Mi3KHdTVfD0mlD+uLNivk7R5feqdrgKCiqxJ93VLsZszoADyl4pkKBDQfO4Ml1BzTZV3x0OPa9OEWVx6SnN0RVgveZJEVKXCR2PptH5zbA+Dp/+9WACQRkwASO0qoGzCos89v+lYyJXSfq8cBfvvHLcc3d8AEmVYUk8OvcNLx4tzpD47VN36KwpEbyfaXwWrCj9b2+MH8Ynswfqtn+CAdaXqeP52eHnAZSqOPr/B36vl4iYPi7bFOwpF/5olI0NyV7UJKs9oYvxxXT1Qg2DQne8Ujl7wi8t7talR7MFwfPyhovgKOEWK6HVbAjNMDUitW7q7v8/umOaPlMorL00IO6URPMBKJsU65yw6DX4ee33CjrVfAF1weYWDlmV/ahUTueRdMy0GmzY9XOGq/31OjBFFfU4gmGZEk7gL/ursb8yYOZ9htsCA0wtSjZBxxVL7zVSIQyySbtKlKpLD30IA8MwYxalV01iK2GrDY7Nh70X8WA8AATEpV96WCtJb6Mx9Jpw+pdNbL7Lyxh85bwdtreW3ORedtgRFD31crrRyt8P6DRwyg+OpzK0kMQMmAIZlzLO/2N2GrIX52eBTn/cWmJsHTa8Pxnh0WrrJRCXP5AMBrUjodHD0YJ3vNvMhqYtw1WpmamYN+LU/DRr8djwU+GYMFPBuOp24aqCi/RCl976q+ob+bqyoMT0rpV/ltPgUJIBBe8Kru8yIl0+WsFa4dDV2PzobP4f58ewtUOaW+EWnEytSgZDUrj0VIPhvf835d1o/JGEmhVnq1FFY9Br0PukGS3BphP3DbUud+TF1rw39uOS0oLkPCc/9DCKIyPDseCvCEajIYINGTAENwIKrMrth/H8q3HNduvkkiXv1awC/OH4tPyH7Cl8jzzZwIVDvC1L46WejA8598UYcAEiY7XShQUVXppAb1WdATzJ6XhN1OHOzVaGq+0I9FkhDkuStQwEcsbSjSF497R/ZCfYfapJNmzZcFNfWJEtUhIeM6/CGFtXzyzWnUqJwIPGTCEKgx6HZ7MH4abzDFevWLUoiTSpSSxrpYDP1zCV0cvcH2GZTLXYvWfGGX0aTu1/ZzE4Dn/f/j3UaomBaUGlB+WnUKrxdtD5pnQLCW42NjSgVW7arBqV42mSdnTRqZgpT5wwnOkD+NACGurSbbW64AVs8Z0K/2nngbpwBA+Y+m0YcSSYrR3+nYrvT07C9NGyj9MhIkJkO/0zINS12hPWESvtKpievfrKhRsPqq43aI70/Hwj8QrfpT0YHg0W5SUmKONBvzxZ6NUTQqWThtuWrwZap9IOjg0hKZkmJnEzfwhYhgIw0Lcs2TET0f3xRQfPUuhStGhs1jw8X7FfC9XWJ43hH8hHRiiy9lb3eiz8aIDsHSTcnKskINjjnP3gEiIPisSE2ngNoSUwgFCE0Atqpj+t6ZReSOF7Xzp5+TJ1MwUPDRZumfVVYuVeV+ePL/+kGrjBXAYoa98UYmyqgamkII/krI9+1/5w3gRq0hrbLHgvV01mFVYhomvbw94pVxXM21kX6yYlcW0bUpcJFbOIeOlO0AhJMJnSk/W+7wPIRl1+ZZjyB2SLLuKFOv0fLHFoqofyo3x0ThSd5l5+3m5qbKrdavNjufWHxZ9zw6HofbKF5WYkmFmmtxYDQKl7Xzp5+SaUNs/IQobDshPjjzfT8Bqs6PosHzXchZqm9q47sdAJ2X7glxFmiu1TW14ZE05fjTsBkwemtxt+lMpIRXGS4mLxP23DkBqcnSPDrd1R8iAITRAu4fBiq9OYMVXJxTDLZ5JlACwUu9dHRUfHQ5Lpw2tHhO8TgfY7eAyXgAgP0O+R9eK7Sdk84F4J8yRN8ZjZ1UD03ZKGMP0mDdpkOJ2rogl1Mqh1iDYU92I1g713ht3+O/HUNBo4S1j//rYBXx97IIzATqUWzuwIra4IYOl+0IGDOEzOYOTNG+yKIRbePITpB5eAFBW1YDSk/WoutCCzRV1qkIVKQqlsFabHat3sakEs06YuUOT8fbXVUzbaY1S7owcvAaBlgZEmF7HnewdChotas+RGsXlUEZscUN0T7q/X5HwO/7oUaQ2P0EsB8Gg1yF3aDIWTrkJB76/pGo8OijnvuypbsSlq2zVWKwTJsu5TYgOR/YgbR/Ylk4bCkvUt2zgNQi0NCDW7T2NxdOHM23rKmIY7Ph6jlgVlwkiVCADhlCN0Fzwy0Nn8eCEVM33L9VkUW4sco0O1Sr5psRFMnmCtlay5XDER7HLlhv0Oiy7b4TsNgV+0LFgUfAVQ61BoGWbirrmdiSYIvDOnCykxElP+lpptFg6bVhVchIvbajAqpKTfjMSfD1HrIrLBBEqUAiJUIVYKWd8dDhgh5sXwhwbgbZOG5paO1SXPSu5zllLlpnDNkOSMCjZhDH9E5ASLy6S5onVZsdnB84w7f/B3FSuCVPoyeOZ3+PP5pKsCr6u+GIQCHoej64p5y5rF+P85TbMGN3PGVLcUlmHzw+cRWOLxbmNFhotcqJ7WodrtDhHaq4rQQQrZMAQ3EhpgTRdS15dmD/MLeN/S2WdTw9dOde51FjEcmhYXfAJ0UYs/am818OTPdWNaGxRDh/1igjDgryhXPsGAp+cyKrg64qvBoFQIu9pjKpBuNZCSDFncBJemJ6h6flTEt0DtM05sdrsiIsy4sHcVC9jjBU115UgghUyYAgulJoL6uDIQXAVehMmJjWKvUkmI8YOTFA9FteS3nFpiegTY8S5y/IP/qLDtbB02hRLT13Li5sZc19+dsuNmsnX+xMWBV8dgA9+NQ6NrRbNDCpPQy25VwRsNjse+WgfWtrZqpSkQlhanj+WHKE/l1Rj4uAbMGFosvO8qO3xJOZl5IVVcZkgQgUyYAgu1DYXnJJhxpKNlQD4DJiGFgt+9PuvRFf2vGMx6HWYNPQG/KNcPtQj5ArIlRzzlhcLTFEoww4WjGF6zJ+UJluF9NDkNEwadoPmx/Y0NEqrGpiNF5ZkazV4KuxWnLmkeO3tdmDu6j3OUN/+0xdVhZuU1I9ZmTexZ+jBED0HMmAILtQ2FxQa8KlBqqRazVgijQamz1Q3tEi+p7a8OFSqXQSESdVz0tXr4HddEVeD4fg5Nq0ek9GAP6hsYyBHcUUtlmz8FnXN7c7XosLZDYG6a8JyYiiFm1jF61jISw8N45kgWCEDhuCCNY/EcztfdD6kFGzVjIV1XS61nZry4lDuSOyLgq/avkBqwyV/nnuL5no4QlsIT652sFcasRgfhSXVeOb2dK/zqrZyToxQEOsjCB7IgCG4YOlIrNMBFz0SDH3VsBALTSmNRQdHYqmr12NM/wR8WHZa8Xhj+ovn3agpL/ZXR2JP1OZXKKGk4CtmqGyprPPyWphjI7Dknptlz4PacElKXCSyNc4PkmsLoTVSYUstjY5QEOsjCB7IgCG4YGlfb7cDj60tx0r99ZAPi+HDgusDXa6sVMrrkRIfxXQcqe1Yy1Bvz+iN6SP7BkzKPJDlvK5IldOLJWvXNbfjkTXlWCmhqaMmXOJ6nQFHvoxWVUZlVQ3cSee+IHZvaWF0iBnyBNEdoIwugpspGWZEM+QAuKroCsYG4FvnpJp694e8VHdqs4T4nGBIKeHpQRJgLUMdn+a/jsSeCDk5np4hIb+ioKjSL8eV6oysNOk/t/6wZkKDwnUGgImvb8eswjI8ue6AJl2ZtWhSyoPYveWreF0ohy8JQgkyYLopnsq0lk6bolItK2UnG9DKkAPgqaIrZWzwsG7vaa+xT81Mwc5n8/Dx/Gy8ef9ofDw/GzufzRNd5Rv0OiaZ+aWbxFsYzM1JhdI8EMhyVZacHH9IyPuSXHqptQNlIg0qWcMlC34yxO06AxA1pITkbzVGjKXThv2n2dpOPPajwXhh2nBEh7MliIshdc/4avhLGfIE0R2gEFI3RMytr9fBbYXui4prKUN3ZIG/7T2NsQMTnLkYgs7H8i3HVDWAlOp0zKPxkWCKUH0clvLi+ZPSAlauypKTw1IW7opnTsvYgQnYd+qiW2jG1+TS0pP1Xgm3rOGS3CHJzuvCqwXEAm+JfO7QZOQOSUb/xCg8ei20ymvYyd0zagX+5owfgFdmZJLnhei2kAETwkglT4olQXo+jNV0e74O++P58wNnsfHgWbdcDINeh9whyao7WG++tqJWm+OgthRcoCvLiz1hzclh2c5qs2PF9hNYvavarR2EmPE7PCWGe6zueF83NUnZanWJpOAtkXdtpCllaHieP09MEQb8Zqq8V9BV4K/o8FmmRPSxqf7PvSKIroQMmBBFzMsi9B1iMS/Urk4BIGdQMlZ8VcW8vavWxW+mDndowjRdRaLJqEoO/YPSU/ig9BTio8LxYG4qFuQN5Rq/2lJwV3wpL9YS1pwcpe2KK2ollZLFjF9fS3vFjAnepGxLpw1/26s8kQNsRquaEnnPRpqeSsL1l9uxdNMR2X20tFuZDCxXLyOLAWOOpaojontDBkwIItn/x6VklQXe1alA9uAkyUoTOf5cUo3P959RlPJn5dLVDizfehyrd9dg2X0jmD1Jalb6YiiVFwcCFsl/pZwcKa0TKXwVVYuPCnN6LTyR8mJ4lqLzhnlYjFaeEnm5EKxgaFhtdizf8h3T/njKpYX7V86IDDXRRIJQAxkwIYaWypwCvFoTBr0Oy+4bwTXpAY7yaq2MF1cutXZwhcN4VvpqxdgCha85OcL9FEgezE2TPYdKjSt5wjw8JcTsJfJ98M6csbLfgVeMj6dc2vX+BdjkAwiiO0IGTIihpTKngBqtiamZKVg5J8tLrEwtiaZwvDAtA5daLfjh0lVs4Oy2awdfOIxlpS82CfmS/OwvfMnJ8cf9pERqsklxG6mkbJ4wD+9kzl4iL2/E8orxxUeFcXtLWD1VBNGdIQMmxNBSmdNXgSvXlfLf9p7G5wfOqh5LY0sH+sZHYebYGwEAL07PwJ7qRmyuqMUHpaeY9sEbDpNb6UuG6XxKftYOT9XdZ25PV5WT0xXy8r6Is/GEeXgncy3CcWo8pJeudmJLZR33/aTkqSKI7g4ZMCGG1nLgvrqahZXy2IEJ2HjwLLfMviueKruCIcJqwHjugwWxlb4/SnO1REvV3UDLy/uam6FlmMcTteE41zBj/eV2VR4ttfcTj3wAQXQ3yIAJMcalJapKoPXEFGHAH/5du869LA9/JcQmU5aERaV98KJ1aa6WSOV/KHU1lkKrFg8s6OC7wdwvnu36jh0Yr+o4vOE4tY0nPemq+4kgQhkyYHooc8cP1DwEIvXwZ0FqZc7SewnQtt+Lrzox/oJVdVesq7EUcgnNWqJV7pCOUY+WdTsxWEvk1TaelEKL+ynYk84JQkvIgAkyrDY7yk42XFO7tSNnUDKyXfrp7Klu1KTB3ModJ2G12/DC9JuZx8XyYPR8+PeLj8Trxd8pGjTTM6Xd50LCsJROidaVF1roxPgDVtXdv+6uxvzJg5n3K5UQKujsZA1IwNz39nCNNT4qHPnDeyN3SDLMcVGaTaQ/XLqq6XZSsHTg1roaULif1BohoZJ03t0go7HrIAMmiBATE1vxVRXio8OdOidarvoLS2pQ09CKwl/cqjgungejMUyPX+amOZN7Wbwxf9/3AxZNlzZAhIRFMaVYrSsvtNKJ0RrW/I/lW4+jf2I01/mQSwi12uxM5+O//m0U6lvauR7ivA9/rYT7fEXr6q1EUzjGpSWqNkKCPem8O+JQrj6O1btq3J5HZDQGDp3dbvd36NuvNDc3Iy4uDk1NTYiNje3q4TBjtdmx+0Q9Pi3/Aa2WTsREhuPT8jOyn1k5JwtxUUbMKizTdCx/mjUGd4/qK/qe1INRmGJcH4zCZLSlsg6fc5ZBA8DH87OZcgACseIRvjcgrrPRFRPCqpKTiqquAjpoO0Z/nA81k7Wl04b0xZsVK4WOLr1TMYzmy330WfkPWPj3g0zbsvD27DHQ63XMvzVXrDY7Jr6+XdKgEgzMnc/mkWdAAwTD5d0dJ9FqsUpu9/bsMZg2Uvy5Sjjwdf4mD0wXUFxRi6f/flD25hdjycZvseM3eZonXb7w2WFMG5Hi9XDjqcbZUlnnczIjq3cpEJUXwaizwVLmK2AH8Pxnh5GX3keT9gZy52Px9OGIizJiw4EzzIaAWo+BVs00fQ23qGmBIcX8Sam4IzMFE1/frqryLZiTzrsDroZuTX0L3ttVjaarnYqfW/DxfqyADtNGkifGX5ABE2B4ZdtdqWtux75TFzVPumxu63R7uAk/2F0nLjA9GFdsP4E3th7zeSyBzilRIth0NngrvRpbOpBdsA2/vTdTE4NL7Hw0XG7HC59X4KJL2NMcG4El99wseUy1ZerCfZnRNw53jzTjy0N1bvtgEe4TVs/Ltx73eo8n3JLYS7mjOQvzJ6XhhekZKK1qUG2EBGvSeXfAlyozmx14bG05VuopfOcvyIAJIFabHS9v+NanfZy/3IYZo/uJroZ93S+g7ge7ele1z8ZLsPZuCTadjUXTMmCzg1mNtrHFomkOhOv5kCrprmtuxyNryrFS4phqPAbizUsjMXFIEqIjwpiE+4orarFkYyXqmsWPzaPx42ujxF4RYfjdzJHO1bkvRkiwJp2HOlpVmS1af7jLNKO6O4FtndvD2VPdiHOXfZPdFx5CUzNTsPPZPHz06/GIjwr3eWy9YyKdP1heo8g1gU0NWuiD9CTy0vtwf+aVLyph9UVl0IOiQ7WKnqDn1h8WPWZhCVsnc1ejWuy+PNfchk/Lz2DC4CTMmzRI0Xh5dE25pPEi4Go8ySEkevNiijBgYf4wHHz5drfQAqtxUX+5HRsOnEFpVYPz3Apjkfr16BC8C4RgRcsqs4utHVix3dvjR/gOGTABxFcXrmfPFINeh9whyVg2cwR0gGrliySTEWMHJnD/YHWAz8ZTSlwkVUhwwnsfCZPy8i3H3CY+tVhtdry4oUJxu0utHSiranB7zdJpw1ffXWA6Tu+YSMVwE6BsnKmZjJTOsaCfw8urPx2BJ/OHehnrSkYI4AiRLd10BE+uO4BZhWWY+Pp2FFfUuo3F8/PU3FEdWleZrd5Vo+kCgnBABkwA8dWFK/RM8URIsDR7rAjjo9mMixmj+2LfqYtcP1jhUfhgbirXZ8yxEfjo1+Px5v2j8fH8bOx8No+MF07U3kcrvjrhNvGpZU91I3MSa+nJere/PyytAUvdY0ykAePSErnCTXLj5Z2MWM7x1MwUzOO4/wHp0JOcESLgOf8JOTvFFbWSzwAzLRBUoXW+0KWrHYpePYIfyoEJIOPSEtEnJsKnMJJUfF4swdJms+OBVd8o7rNffJSia90ToRpnSoYZ6/Z+r1gVJYx2yT03I3dIMtexCHd8lf/3VRuE7+Hufp+yatmMHZAAg14narDzjol3MoqPCmcOt+RnmLFqVw3TtkphHKlKL6lkfc+cnWBLOg9l/JEvREnU2kMGTAAx6HV4ZcbNqquQAPlySM+EUyUBMoGlm44g0cTmrVnwkyHIHZLs9mBkqYrqyvLj7oJrB+rcwUn4R/kZVZVovjak5Hm4e96nrAJzk4beAKvNztzhvP5yO6w2u/O7eDZY5OHB3FTmc8JjTL5wZzre31Ut257A0wgpOXYB/5DRh/JMeHZ9Blg6bYrHI8TxR48wSqLWHhKyCzBiaru8/Co3FS/dzdYCQEqAjBclMSyxKpFEUzjuHd0P+RnmHrcS1FpsT6wDtU4HRIUbuPWEXGEVD3TFarMjd9l2Ra9dfFQY9i2+3e178wjR7Tt1kUu0UdBxAeDtxdCBKXSVEB2O/31xCte1UvqNxUeH49bUBGw7cp6pQaTrflkXO3dm9sHUzBTnvfa74iPMDSkJcQL17OzJkJBdCKFVWd6GA2fxgozsvitSbmk5pFb1comA5L6+jtY9aaTKle12oNVixV0jUzAlow9q6lvx8Z7TXOFANW5tg16HJfcoN9hcNnOk1/XnEaLjHVtdU5vkmFiXaT+75Ubue1ayl1R0OB6ckIYr7R2iZe9yHcSFxGNWNlecw+aKcwCAyDA92jptXMcjvFHz7JSCkqj9A3lgAoSS3DcvvCtnq82O93dVM0nR94oIw5V2d6XJ+KgwLJs5kkJACvC0XmCBVzrfarPjT9uO441tbGWbH80bj9yh6nKSpLyJrr27pBDzKHl6CEqrGjRvm8GClH6NEmJeN6vNrqr1gT+/O2urBcKBWiVegPoiKUEemBBB67I83tWpQa9Dcgybeqin8QI4KqDkxMm6I1abHWVVDdcqaRy5BdmDkiRXUlabHUs28ivMysHagfrD0hrMmzQI/6yoxX/zaE74sCgUvG5y3dOl8OxaLpajMS4tEYkmo6ay/Sws2fitqtwgMdHD93dVc10/AX8mfIodj5DG87ouyBsq2sRRIMlkxIzRfTGlB4bOAw0ZMAFC6weSmoQwLZLInushqpLincFPwBRhwO9njsS0kX29VtzfnGyQDd+o6UnDWrVzqrEVxRW1eGztfqbtBeqv+CasKGgRqaksM4bpZSdRg16HV2dk4rG16pPe1VDX3K5Z3yDW6/evYxeQ0TfOOeH5O+GTdVyENwa9Dk/mD8OCvKHYU92IuuY2NF5pR6LJCHNcFBktAYQMmACh5QNJ0MjgRYvMekGcTG3YIRSQS55sabfisbX7MeXAGVScaVblVeMxZlmrdvonRHPlTAh0dWXEVYsVvy2qRE1DK1KTovH8tAxEGQ3O96eNTMHDP7D3f9IKrRYcrNev5Hg9So7XO0MOUzLMmlfBqBkXIU2wtRnpiVAQNECwKG2yUvDTEaosfBbFThY8xcm6E44wkHK/qi2V51WHBHmMhrk5qVC61HodkG6O4R5PV8vLz/9gL4a/VIwPy06j5Hg9Piw7jeEvFWP+B3vdtls0LQMr7h+NmEiDxJ60R0yyXw0s188VQaNnS2WdorCdWvQ6x7gIItQhAyZAsChtsjAlozfuGt1P9eflFDvvzDQz7qX7ukcdLmHfwipy8BoNQtWOHPMnpaGxlS9PpKv7T83/YC+2VJ4XfW9L5Xk3I6a4ohavbT6Ky23qy8V50EFcsh9wGLilVQ3Mxg3L9XPFfu2fkCsl9lv1FaHKiyBCHQoh+RHPHAnhgeRZlqfXucuERxsNuNphdSv91OuAeRPT8MJ07/JHXs0RqZLnspMN2FyhrHzand2m/lbLvP/W/tyfEapy5Kp2Sj16Dsmh0wFvzWJLxtZazwZwhI2kjBeBLZXncdVixdfHzmsiPcCD57EEr8hDk9Ow8WAtd3m81PWTQ8iV8vyt1tS3YOW/qnBVpExaCdKBIQT88bvuCqiM2k/IaYF4Gg9jByZg36mLXuWXUhUaVpsdZScbsOtEPfbVNKLibBNaLDav4/BWC1ltdox9dYusyJ4aoa9QIhClu2qvj6sSr9g9wVOmz1I+rbWejcDizw/jw7LTits9ML4/th+94HP1ninCgJb2696b+OhwdHTa0OIhAKhG1ZinPF64fv86dgElx5XDsFKClYU7TuK1ImU5BIFoowEL84fiPyaQ54UQ/12bYyMxa9wApCZHB9Sg8XX+JgPGDygJ1j152xCMS0tC/ZV27puFRclXreaIsH85gbLuXkbtUJnd5tcwki/XRw4e5db4qHAsmymt1aJGz4Z1VTd31TdME/iIfrE4fKaZ5evI8tGvx0Ov07mNC4Bb+XdcVDheKzqqav+8Sqtvbj2O5VuPKW6XZDJizwv5Xvtk0QZyHVuoN3MUFmy8pfqEO1abHSu2n2C69wKlX0MGTBcbMJ6r4tnjByLvD//iWjWaYyOx5B7lm4VngvJFvrq4ohZLNla6lQT3JEEmnvPsC4mmcJQtytd0Vfzm1mNYvpVdB0bMIGXx5niOncdb88Jnh/DRN98rji3d3AtH664wfxcxUhh/AxsOnMGT6w74dCwWcUleNW6pfUqpM7vSHX6zRYfO4v99esjNgwY4xDZ/dsuNpLWigLCo2FJZh8/2n8FFzhY283JT/doKWwY0RgAAIABJREFUhgyYLjRgRPvTQH3fDDnvBmv/GU/U9LoRjtcdYqRqKa6oxdN/P+hTnyEWEk1G/PbeTM0mGd77JD46HPs8QoKsYTRh7ACYvTUO4/hbv3q4XGH1GGoROnzz/tGYIZNgr0aNW2qfVpsdT60rx5eH6tzOu14H/PimGzB/0uCQ/82yGGkA+wKwpyG2qFCLv4xhX+dvCoiqRPhxebpxfbEGn/n7QcmqBkEwiRe1SamCxsGM0f2cXW57ElMzU3B4yR146rah6BXhXr6bEheJhyenIT6arYO3HI0tFjy6ptxZ5SIHSwWM0KeI9Wpdau3Aiu0n3F5jvWcaWyx4ZE05nlt/WFJ9GHBU1Fhtdqf3gcd4UXvb6XTAivvHIC7KyFQxpIXMgVJ5vBo1bs9ybqvNjje3HsPYpVvwhYvxEm004N+y+uHo0jvx3i/HhfxvtuhQLbP2T12zowcWy2+opyD81rRSfxcS2YPtHFMVkgosnTbR5my+0mKx4k/bjuOpKcO83jt7UZ1yZlcLlXUFQlivqv4KLjS3o09sJNKSTV5S9UoY9Do8NWUYnrhtqKg36jdTh8tKivOg1GKAJ0QjlMo/9+lhpnG9u6MKC/KGOI/Ne8/I5WMJ6sNlJxvwyhfibRbkEGwOXs/mryem4bXNR5gTkAWZg0dVhA6FcK1SeTzvYkIo5xaIjw6HpdOKVot3BdJVixWflp9BfkafkPdEWG12/ObTQ9yfW9RDVMKVELSstAytuC5GgukckweGE6vNjqVffstcDsnLX3ZWe60UC4oq8X9V/KC7WqisKygoqkT64s1YuukI1n7zPbYcOY8135zG0k1HkL54MwqK+NVqpbxRgqT4vsVT8NG88YiPUueRcW0xIIbUakpuVTQ1MwVvPZDFdPxWixW7j9c7vTs2ux3m2AhN1X52n6hXvRoc0z8efWLd+3glmsIxpn88TB7esUSTEXnpN6CwpNrreLXXulUXHTorehzB8IuJ5FvX2cGmqcNrGHo+Yi61dogaL67bCt6uUKasqkG0H5sSF1s7UHaSXU6gu7Ji+wm/hWhrm9qwgqfXmp8hA4aD4opaTHx9O1MJqFqutHc6JzKrzY4Fa8vx7o5qqMlU6mkt3KXCegI2O/DujmpVRowcBr0OuUOTsWzmCJ8mfbEVuqXThuc/YwvReJI9KAkmI5t67SMf7cOswjI8ue4AHvjLN2jrtGm6gnt/d43qz+7//hLsdmBh/jD8KjcVvSLC0NjSgf3fX3ImdxoNOpgiDGhssWD70Quy+1vw8X4UHRJ3hU/NTMGe5/Oh47yQ+06JG5+uXGyxqA6JsaBkCIcKvih98+ghdUeKK2qZqox8YfnW40ETSiIDhhGtY4pynL/chuKKWkwo2IovJR60csRHh3f7cmdPeMJ6hSXVsKgQAlNiamYK3po9RvUk1Tsm0i3P5c2tx5FdsA2NLcohGrFJy6DXYfKwG5iO7amJ0nQtLOSZ/6MWz/3zcu5yO5ZvPYb3dtWIrs4tVrtXpYoUNjvw2FrpeH6U0YCHONRzAeAvJTWy91RxRS0eX1vuN8+tK/4WY/Q/vlh5oe198gWrza6qH5oagsXTRwYMA8KNEajLVVPfikfXlOPcZT55eJPRgIX5w7DvxSk9yngBgA9La5gnB5vdsb0/SDBFqJ6kth+tw8TXtzs9Icu3HkNjC9s9IDVpzckeqGosdjimkTCD+kdEsPv+5B7Ci6Zl4OHJaczfwQ7peyrQz49Qz3vzRek7Z1D3bTKrhJokcbUEi6ePDBgGAnljmGMj8PGe09wPu5lZ/XBoyR14Mn9ojwobCZxq5Ety5t2eFV9Wv4UlNZo3iMwelKS6WsoO+QRdJRJNRtWfDQRKD+FF0zLwwYPjmPcndU8F8vnRHfLe1N6zvSLCkN2N25woEWjPWzB4+siAYYDnQul1wN0jWZsiuqMDMGvcAFXl0p+Wn8GWSuU+Rt2VgYnRft2elUCvfnWQn7QMeh2W3TcioGMCgDsz++DF6cMDflxelH7bE4YmMyf1St1TgXzQd4e8N7X37O9mjgz57+4LgX72JJsilDfyM2TAMMB6Y8zNHoCjS+/EH37GnwdhijDgnTlZSE02qRihg0XrDwdFXLIrmJuTynzO9TrH9izwdh/WQk+EF6VJa2pmClbOyYI5NnAPuD3VF0MilKE0RoNeh9/eqzyZyt1TgTgPOh3w9uwx3SZ0LNyzrJ6YhyenYdrI7vHd1TJ2YIJfk8S9CAJbkXRgGBAmpbqmNtHQjqADseSeTBj0OpRWNXDnQbS0W7H/9EX8+KY+qscplBHmDukZcWBPteB5E1NRWFKj+Ln5k9ia2olpr/SJMWLS0BsQHRHm1VARcNcT8UWVmYVEUzh+e690PyNXXLsa1zW3YemX38omB/tKQ4sF0EH2d9OVsGq3AMDdo/pi48Ezsh205e4ppeeHFrw1K6vbTeDCPSuntZRoCserMzIxbWTfLhhhcLHv1MWAJIkL1F8JjJq2HGTAiCAmoy81KQlGqOsqWK3LuLCkGk/l3+TTw+6T//0e2YNCW4VTCUdTMu+HWkpcJKZk9Ma2I+dFf8h6nWOiWTQtQ/EYUj1rzl224B/lZ5x/v7rpCB6a7L5PQU/E0/jR0qBJMhlRuug2bmG+nMFJKK1q8KvxIlB/pT1gxhwPYr9ZJQp/cSte2/Qt/lJS4yXdr3RPqTVqdQCevG0o0m4woXdMJC62tOM/vzzSo3qUCVpLC/KGOo3vxivtSDQZYY6LCvl2CVoS6JyUYPCwBkUvpLfeegu///3vUVdXh1GjRuFPf/oTxo1jS57TuheSnOIpACY1VF/6qiyePhz9EqKciqBqLo7nmLpTXyO5btzCN/rvWWNwvrlNtRKvmp41D0/2nsSE8761sg7rVTRSE0OLTtZaNC5k4a6RKVgxO0uTniwJ0eEouJYXIXb9TUYDwsP0bq+nxEXinlEp2HiwllmRVwnP5q086s685+Ht2WO8PAvd6bdMaIsW/bxYYW2SqkTIN3P829/+hl/84hdYuXIlxo8fjzfeeAOffPIJvvvuO/Tu3Vvx81oaMEqdYsenJuCxHw9BmEGP+pZ2yQeImglQYNLQZDz24yG42GLB0k3qHvqukxzAZnQFM64dVd/bVSO7rS9duAXUPAh0AL579U6vyYy3+7ASWly7QD7o3p7tCG0I1/Dtf51AyXF2obL4qHA8mJuKBXnXq+usNjvKTjZcEy2zI2dQsrP6RGxyD6ZJ33MsF1vasXQTe8sDgpDCl3mHl4X5w/Bk/lCf9xPyBsz48eNx6623YsWKFQAAm82G/v3744knnsBzzz2n+HmtDBieix9tNOCPPxsl+4CZ/8Fe2Zi5EokmI/7z7puR0MuIxz8q5+61owMQFx2OptYOpi7BwYhUqIgFtV24AfUeihempWP+5MHOv7V4oJhjIzBr3ACkJpu4J1+piVsYl5ow5YKfDEbukBvwzckGvLFNWVI8yWTEnhfyATiMi7/tPY3PD4hL+bvy09F98fNbB0guEHw1SILZqCGvCqGW4opaPKKinxcvSp3XWfF1/u7SHBiLxYJ9+/Zh0aJFztf0ej3y8/NRWloq+pn29na0t19PHmpubtZkLDxaDa0WKx5ZUy6pdltQVOmT8QI4Ov0uWLcfD09Ow7KZI7hX8XIaHoJIWbA15nJFLlTEgi/xYLWx3b01FzF/8vW/1ep/LMwfqspgEXAYfiewele1V46QsLJXm5sytE8McgYnMZ/fhhYL/rTtOD4oO8UsygcAM7NuFDVAeZpaSiG2D4enJ82tqWWgEHKTCMJXpmamYGH+ML+3EwiG/Begi8uo6+vrYbVa0aePe+VNnz59UFcnrmlSUFCAuLg457/+/ftrMhY1E97LGyq8ymq17lT97o5q2Gx2vDMnCylx2t00wdw3RQi7+CKiVlPfovqzakuhPfsO8d5Tep0j5PJk/jCvxpGsFFfUYuyrW7B86zEvr5Vr80ch0djMeU8JD67kXuwaEG9sO85lvABAY6v39rxNLT1L4C2dNry59RgeEdnHpasdWL71GMa+uiVo+rwQhBoW5A2BOdY/Gi1KulOBJuSqkBYtWoSnn37a+Xdzc7MmRowai/LcZQv2VDe6rZ54JO1ZeXFDBfa+MMWtDLb8VKMmTSW7Sk3R0mnDX3fXYG9NA6KNYZiZdSMmXCv/1kJ2ffWuare8CR7UVo3cl3Wj29+899SKWWN8KoVVch97et7cSqubrmLppiO42GKRlQoYl5aI4opaLNn4repxsuB57qw2O5ZsFL8vhNf+7yeHYDKGYcKQZGyprFNVBXaptUPWu0oQwY5Br8OSe27WNPfOlWASS+xSAyY5ORkGgwHnzp1ze/3cuXMwm8XVbCMiIhARob11qVarwdMAYJWoDzfoMD4tETtPKHdPbWzpwPu7qvHL3DSnsXTPqL7YeuS8zwlbrhNFoGLxBUWV+HOJe4ftzw+cRbTRgIcnD9IkCe3S1U6fNHEED8WSjd8ytaY3RRicBpgA6z3FEwIRrlFd01U0tlgQH23EpVYLYqPC8Z9fKjdyc/W8CR4e4Z6KMhoUpQK2VNb57cEooNc5RLlcWbH9uKJC9ZX2Tsx9bw9MRoNo80ieMQdzeJUglOB9frEQjMnlXWrAGI1GjB07Ftu2bcNPf/pTAI4k3m3btmHBggUBHYvrqpsHz5Uiq0R9h9WOn9zUm8mAAYClm47grX9VXRNtSoFBr8M9o1Lw7g7pcJXJaECrxSr54I6PDse4tESmnAmtKCiqlBxzq8WK5VuVE0NZKa3SQtSPbQL7w7+P8prsWDw5C/OHMnuKtChHFhDzvEnp15iv3QdTMsyY+Pp2v+u52OwOUS7BsCquqOW6L3ztfA24G3kEEYpcFwI84XNODM9zKpB0eQjp6aefxn/8x3/glltuwbhx4/DGG2+gpaUFDz74YMDHIjzAX95QwdQJuk+M0SsWODcnFa9uOsL0kE/sFYFEk5E5P6CxxYLH1pbj4R/S8Jupw7HxoHysPjxMD7vMw/xSawd+V3wEf9v7g2iVj5BboKZaSUwvA4Cm+UHKqJ9qWcuflYw8KaNATeKplp4PqfDW1MwU5KX3EdU6Ka1qCFhTQsHAcoSO/BuuUhoDQYQqDiHAobjJ3EvV4icYvS6udLkB8/Of/xwXLlzASy+9hLq6OowePRrFxcVeib2BQrBan1y3H18ekjcQXpmR6WWRGsP0mD4yRfGzAGCOjcSrMzLx2Fo+r8+7O6oRFW5QvBlZkmDlPDhqq5UKiipRWFLtlgv0WtERjE9NDKjUdc4gdd4Xq82umIcTHxWOtx7IYlI9ds01UROeYxkPD2JJeK6ie58dOOOm1PuXndV4+e4MtHfaNBqBMoKB5cj56hrJ8mCptCAIX/F8BtXUt+LjPae9VJ0XT89AgskYMiX9XW7AAMCCBQsCHjKSw6DXYcXsLPSL987VAJR1YN68fwy2Hz2PVgnvh2tCpEGvw8M/pMkaEmK883UV1/Zq8cyZUEIqRGSzA6WcFU9SYZf46HBYOm2S51fYJlul+5+l/PnS1Q7odTrmH7cvpbJqy7HF0ME7CU8pNCV44v7Pbb4LV7GMz7VHUVd5QZJM3t5VgghlPJ9BC/KGhLz+UFAYMMHKomkZeOb29GvVMo2INhowc8yNmDA0WfZCG/Q6/PFno0QrQsT6sCyaloERfeOxYN1+5rG1dwZWf5BlItGyhHxh/jCs23vaXasjOhwPTnBodWyprJOtuFl23wjVP0bWSTNQk6tWxxHk+F0Nb5bQlOCJ+7CshvlYOjiuF0/7BLHfRld5QWaM7htyD3OC4KE76A+RAaOAMUyP+ZMHYf7kQVyfE9rBSyVEenpvkmL8U7evFSy6H1qVkJtjI7Agb4jsCkE4v55Z9ubYCCy552afYrask2ZNPVvFma/4Oon3ijBg/qRBXkl4PKEpO8DVANIOSIacdDrgtvQb8O3Zy4q/jXFpiTDHRgQ8jDQlQ7wKkiCI4IEMGD/Ck/sQ7AmDj320D6/PHClrGLCWkCux5J6bnedIboXga26JFEL5s1LYZvnWY7jJ3MvvCW7j0hKRaApX1UE60RSOskX5og0HtQxNuSKE/qRCfHY7sO3IBbw1O0sx3i5oWgRCHl0gmIS6CIKQpkuVeHsCgptOSVk12BMGm6524hERtVNXWEvIcwYlQCdyGkxGA7eAGOv55cGg12Hx9OFM277yRaWXGrMYlk4bVpWcxEsbKrCq5CQsHAmxBr0O96roO6ID8Nt7R0h2S1ZjNCeajIqF5axOuKWbKjEuLVHx2gnetvjocK/3xD6REB2OlXOy8PbsLCSajG7vJZmMuC39BtHj6CCeI0QQRHBCHpgggXXVL6CkKqrXwS8VP0s2fitZkTQ3JxWvFR2RPa5eB/z1V9kAIKrEGywTR4KJLaQnluDsKQi4/eg5rNrpXZU1f1IaFk3LYDpOfoYZqxQ6cbvCUv7IYzQLybWLp2fg8bX8PZQ84U0OF7xtZVUNKD1ZD8BhuN6amoi91Y1ur7lWht2RKe6hE0tclgrvEgQRnJABEyS4ip6x5iRIoQMwb2KaXzRX6prbJScdY5ge8yfJV1TNn5Tm9AioyS0KFDzeCddtWcXmbPbrJewsRgxrLkhcVBjefmAsU3k3r/r0y3dnIC+9D2Zm9UNRRZ1biEhtiIvnPBv0OuQOTUbuUPfyeLHXXD8jdq/6K/xIEETgoBBSECGInom5ylnR64C3Zo9BXjqbjs5dI1O4G3/JTTqLpmXg4clp8JwH9Drg4cnsHoeuhsc7IWwr1WxQjsKSaqZwkpALosTrM0cil9GTJRjNgLzecEpcJN6Zk4X9py8iffFm/KP8jNN40QG4e6QZi+9SHpsYXRk69Uf4MdTwbHjJEg4liGCBPDBBxnX55+NYvavGTSGXZZVrszvCH6wr2ykZffDm/WPw/q5qLN10hOkzSpOOUH4upuYaKrB6PISET7Vicza7o3pr3iRlT5SQC/Lc+sNeIoViJdIsTM1MwVuzs/Dihgo3RegkkxEzRvfFlAwzxqUl4nfFR0Q9a3YAXxwS7xwvh6feS3dFTJHa378D1p5mYt7C+KhwPJjrkCroiQYdEVro7HZPmbbQorm5GXFxcWhqakJsbGxXD0dTPB9EtZeu4ulPDip+bvnPR8McG4lZhWWK2348Pxs5g5NgtdmRu2y7YsM8c2wEdj13W494uCl1dwbgTDourWpgOt9izMkegOkj+jKHMqw2u1cuCEvIyHMfUsq7iabwaz23+gJwTMLpizfL5jbpAPSJjcS5ZrZwlA5QbFFhtdlRdrIBpVUNAOzIGZSMbBlPCY+xoGXjUqlx/q74iJcitU4H/HpiGl6Y7h9PpJhRIpYPpaT/Ex8VjmUz+Q1iguDB1/mbDJgQYlXJSSYvyeLpw/HL3DRMfH27ZH6DsALe+Wye88HNM2H3FIorapk8HhsOnMGT6w6oOkZMZBgut3U6//Z3/5GiQ7VeHhdXhGlcMDBY77t/y+qHT8vPAJDP0WL5flLnPT46HMtEPE1i7Sv0OogmSrNO8ixIjTMiTC/bemFKRm8U/uJWrmOxjEXMKPG8nlabHRNf384U6uxpv3cisPg6f1MIKYTwLAmV206uE7KY4ikgH6JwnTi0XL0GO1LVL54eD19yOVyNF8C3JppKyHUDF/DsgcWq7xMdESbauLJXhAF33GzGxKE3wByrfL/IGdKXWjvwyJpyjEtNwC2picgdkox/fXcOhSU1XtuKJUpLTfJqzrncOJX6Rm2pPI8vD5zFXaP7Mh1LCbkQpuf15NH/WbT+MFcfNIIIJGTAhBDmuCiu7aQ6IcuVizonbAnXvdjq1TPk0N2Qqn4Broci6pquItFkxMUWi89NF9U20VSi6NBZ5p5brmXOrPo+AxOjMTUzBTab/ZqHx2EEX2m3YndVA6Zk9FEsmXZ0n65UPNaemovYU3MRb/9LuSdYYUk1nrk9HQDw/GeHmSZ5pXPOOk45nv/8MO4cmaLJ9VUySlyvJ0/l18XWDpSdbEDuEHWNUQnCn5ABE0KwaMV4qoiqKRc16HXIHZLs9dCSWr02tnTgsbX78fAPl0KmyogXMa/Tlso6VS3qWeDVSVHCes2o4OX85TZmfZ+5OakorqjF42v3q/ZwOLpPa3s+bXbg+fWHsP27C7JJ8DznXItxNrd1anZ9efp38XoLS6vIgCGCEzJgQgglrRgpFVEtmnaxVNm8u6Mao25MwLSR3StmLuZ1Mhn1aLGwq+mqRasWE3uqG1XptPSOiWTW9zHodcxhDCkD2l8tNf5xLTeHBZYxaDVO3v1IhW8ToxnDy9FGbtFM3yQLCcJ/kAETYkiFhfyd+MkaN1+8oQJ3ZHafmLmU1ykQxgugnU4K70TpWeYseNbkEmVLqxqYwxhSBnUwtNRgGYNW4+TZj3j41oifju6L9k7xvlOeVNY2Y9KwG/Dy3RnM/aVyBpH3hQhOyIAJQbpCRZR1AmxosWjmFu9q1Gq7aIHWOilqJlxPb56Svg/rPVLXdFXyPYf+TqTmYSQWeM65FuPkaRopHb614D2OFhNvbD2OgUmOXKW3Z2fh8bXyyt/RRgOyu8FvmeiekAETomgRFuKBZwIM9s7arPirW7MSUlVivsATNpDz5hnD9JKie6z3yOIN3yLKaBDdv0NxmN07oDWs59zXcfI0jdTSkL7aYcUja8qxck4WALviPiNCSHyS6HnQ3UkwMS4tEYkmthYHwRAGkIJHOt3fhpjuWvglJc79fJmvSfdrGQ4U8qfkpsvb0m/Ax/OzsfPZPFXHFowkpSn5Srt8Z3O57tP+5KHJaVzfW26c8dc6Yq+4fwxiIt3XiSmc19cfhvQznxzEY2v3K253sbUDe6obNT02QWgFCdkRzBQdOqv40EvxEMcLJqRKwO8d3Q/51yTzXcfti7ouC2/PzsK0kYHV1fF3GbySwuv/b+/ew6Oo7/2Bv3dDNjcgF4LshmuAKMQQQ0AkIrRiuDS0UPXYUyj2QTkRlbReOL9KVBSLCl5aakEEqVIrAh4vFdCAkmKFYihKjBACckuoQBaFkARDbmTn90eYZXczuzszO7O3vF/Pw/OYzezuZBIzn3y/n4sjbz8rYofbtbtPYEu593EFy6YPx3f1TThRcxGCIODN3f9RdO5qf3a9dQz29fvrS5NELbz0yyxMy+odsPen8MVOvAxg/MpTIzQ57eEDRc6N1XXrpM0m4Ppntqmq3vFE74Rrb+TcUJW28Xf0UvERLC0+LOtcxFEW3rjreAtIz4FSe9OXez7+pHcg7U0wXhMKD+zES35VmJeO6/okdmhFH+ibsidycwhce5VEGA14elqGrKV2b36aacGE9F5B0bnYW/6UVLCw/NNjiIuKwC9H9kVuuhkj+idi74nzkkHQgGR5je8AoLjCKuvm6Nhg8fOjZ3GqthEpCTEYMzhZcg6U2m3MYMzfUl72rJ3E2MiwH7gpJRBDOEk5BjCkWF6mBZMy/FsF5Qu5OQRSvUryMlMw52St7A62CbGRTjd+PbsU67H15Kk9fkNzG17bVYXXdlXBaIBTObVjAKskePh72Sk8OkV+4qxUg0Up4k3f3Swwd4Ixf0vMXwpEYnOwLs/rue0qNVfrmaKDknO1KLAYwJAq/q6C8oWSv6rFXiW7j52zjw5wt+rkSLyB+6u8XSqXxdw9CtNH9cOA5DhV762kPb5r7rPj6tWEdDPM3aNgrW/2+jo1Da26lN07Nn2UQ+uyda2JZc8F60s9dkTWWu1Ffb4/vtByGKejNpuABzZ8hQ/3dUwul5qrRYHHHBgKey8VH8bS4iOKnpMQE4kltzvnVTj+1ZccFwUYgLM/NPt9BUpuoqzSX+q+5lo4TjjfVmGVvWKw9L+zcOtwfZJEpW52rlynNQczOYn0WgumJF65E7fVvO6TG8tx5oL0HyiO7/PN0z/hdpJGmAND5EGbTcD6PcqqUQCgtrG1w+yeYFh1UtITpFrhhGVf8z8cO+1OzrDgv7J7y2rhv+vI97oFMI5NH6trG/FB2Sl8UVmDRodp0Z6GmwabvMwUrLw8ssFfOTHBsq2mZOK2pz8mXLefzje0eG3o5/g+f91ViXt+NEjdF0GaYgBDYa196J73rQx3tJ4I7SulPUEEyP8atB5bMGZwsqwAZlvFGbTZBMXbXXK36hwDz9tG9PFr2boeHIOyTw5U493Sk7jQdGWUgCU+GgumDMWijw4qzgFypaRbsN7kTtz+665KzBqTan+OtwGsRoOyXJ9PKqwMYIIEAxgKa76sKmg9EVoLar4ed1+D6418RP/EDknIaoiBkDk+RtbxdQqnMm8tr8bCTRVObfzN3aOxcKq8VZRgWEnzlfg15Azqgcd/eq1kQGY0GnDf2lIYoD4ZV8tu0L6S+7O/6KODWPbpUUAQUNt4yf54QkwXp49FynOKguN6EAMYCnNarCoEU2mtVuXBUrkhCTGRqG30LXjpEWey/8U+KjVJ9mvKvcbuqqSs9U32FvmhsBWkJXcBmbvBr64VZFISYiOxxKW3TqAp+dmXCsKlghc1JqRfpcnrkO8YwFBYU1tO6yhYcgCA9q8nLioCDc3ypg+LHL8Gd4mQvgYvADAtK8X+F3uE0YC7xqTKamon5xq32QTMf3+/x2Pm/d/XQbXlF2hSg1/FHj7FFVb8veyUU6PGhNhI3HVjKgrGDw66a6jF/8tauGuM9Cww8j8GMBTWHMtplS6lB2Np7bYKq+LgxWgARvRPBKD/hO0J6WanjwvGD8aazyvdbkspuca7j5/zur3V0NKGl4oP4+GJ18g+53AntUIjbj89OiU9ZPKBfPl/WStzxqWyAimI8DtBYU9cSjfHy19J0WMitK/E4EMpmwDsPXEegL4TtqUSPiOMBiy5bZjk8d6usevgzc+PnZV1Hsu2H0WRRC8P6kgMbqZl9UaOzFERgaTm/2WtzBnHRna9f1uBAAAgAElEQVTBhisw1Cm4LqVXnb2It3ZX4bsfpPs+BGNprS/Bh5hjokc+j7dARJza3KHxnodrvPnr03j07/txoelK3kKcKULW+QgA7l9XihVoH5ZJ4UX8f3ne/5Xhg7LTmr2ua25Qt+gIjOiXiLFpPTlKIEgxgKFOw3UpvWD84KBoTCeXL8GHmGPiSz5PQkwkZt04ABu++I9TabqcYE8qF8PdNc7/2xfYVvFdh8cbWpRtnRWsL8VyDNdljAMFhmPl3LUp3TUJYMSfwOXThyMxLiokttOoHQMY6rRCrZxWbfDhuLUzKjUJSXGRqiZs5w69Cqk94/CHO7JUBXtyrvczHx2QDF7UsAnA/eu+wkqjIahW0kgdOV2V1QjG1VaShwEMUYhQUpbsyHFrJ8JowK1ZvfHarirF7/9u6Sl7YzpxTIGWAWDLJRv+slP5eXnz2N/LMX5IL24BhKjGljbMefNL7DgiLwdKiQVThmLWmFSutIQo/h9NFCLay5IHyD7eaABWzOjYFyXXpVJIDXF449Zy7ZJl3yyp0qWy5FxDC254thgvFR+xJwS3+XMiIqmW/7cvMPSJrboELwCQ3C2KwUsIYwBDFEIKxqchITZS1rHLpw+XTGJt30Yy+XQe4u3/qc0VmgUDJ2ouyj72t+MHw6DgvnP+YiuWFh/GAxvKMH31btz03HZNgy/SnrtcKHdiIpXfzoKpxxMpxwCGKISIZcme7t2JsZFYOTPbbfJqhNGAp6dl+HwujqMWtNA/KVbWcd2ju+CB3Kvx8vRs1e+lxwqSN65l4VwFcq+xpU1xLtSztw7DQ7lpSIjxHuAbEFxznkgd5sAQhRh3LeITYiJx15gBKBif5nVZPC/TgjknU7FqR6XP56NVafadOQPw9EcHvW4jPXPrMEQYDcjLtGAFslGwvlTxPBsl04u1ULTvNB7fWO7c9VbB96uzebZIeb8jc3wMbs3ug4LxadhTWYPiCqtkrlcw9ngidRjAEAUhbxOTlZQlu3v9H1/TC4fPXMCn3/iWX6DVMvwfPjnkNXiZkH4VfnbdlZWlvEwLfnMmDS/944ji9/PXsM5nPqrA6p0dA8XaxlYsLT6CNZ9XBd3coUCrOid/O9G1m7PjoMvrU5MU9R+i0MIAhijISJWLWiR+6aotA9eqHFXLUQstl2ySN3lXL88Y0eGxgT3jfHpvPYd1ugteHNVebMV9a0vxSiccROnOgB6x2KkgJvXURNGXQJ+CG3NgiIJI0b72acuuwYVWORviIEctghdAu2X4N0uqZG0DvVlS1eExX1eAzl5o1iUfpWjfaVlBGdC+GqRlQnSoe1Rmy/6rukZ6DfxCbVwCyccAhihIFO07jYL1pZKf06Lqp80mYOEmdYMck+KcEyPN8dGarhjIrUCSOk6cUqz2trToo4O4/pliTecntdkEPL6xXNFztEyIDnUxpghMSL/K4zEj+ieg5NEJXLXqxLiFRBQEtpZX4/51X3k8xtecjeXbj8Bar27lZfr1/S6XLbf/NTt6oLZ/yV5svuT9IEhXKjlOKVarpqEF968rRf63qXhsiu8D+/ZU1qjqdqz2+xOOVv/6erel1BPSr8LqX18fgLOiYMIAhijAlE6ZVpOzsbW8GkuLlSe6il7+5zH7f79XelLTJMg2m4CdR773epzR0F6p1HLJhjdLqnCi5iL6J8XizpwBmJxhwYO5V2Np8WGfzqV9y0fAY1Ou9el11ObV1PzQ7P2gTmT1r69HY0sbni2qQNW5ixjQIxaP5qUjRuZgTwpvDGCIAkzplGmlOR9KAyRvxHwcrbaQ9lTW4MwF6angjvKGWfCHTw5h9c5Kp3yZZ4oOIn9sKtJT4n0+FwBYvbMKcaZI/OYW9eXNavNyfG0wGI5iTBFY9PNhgT4NCkLMgSEKMCV/rfeIMyGrb4KihmhKAyRvtO7CK/frv9hyCat2VHZI9rUJwKodldhWccbncxH96R9HMGbJP1QnTYtzq5Qyx8eoej+izogrMEQBpuSv9XMNLbj2ya1ON/GkuEg8PS3DbeddPfIqtOyhIvfr//Qbz9tMRfur0aubCd9daNFkppK1vln1SpM4t0rJtl1SXCQ7wxIpwBUYogARW8tb6xrRNUr+3xKuKxA1Da24f91XKFhX2mFVZmt5NRZ9eED2ayfFRWLpf2eh4OZBso7XooeKtyoiA4Bu0REQvEQlNgEYm9bT5/Nx5Et5s5K5VQDw9LQMlvgSKcAVGKIA0KqZnKMP91Xjw8ulwJb4aEy9zoJXd1TKXo0woH2ezOQMC0qOncPyT495fY4WXXgdq4gMgNP5irfzEf0S8c/D3jsGx0Z1wcsz1I0XcEftSpM4t+q+taVevwdzxqW6XUFTw1snZ6JwwACGyM/EZnJ6tiyrrmtSNOcoMTYSix3a2YurIta6Jsnz1LILL+B+vpPY9v3U+UZZAUz/pFgkxpk0C15Earfh3H1doh5xJiyaliE5NVwtqeC4fe5SKgrGD7YHMgxyKNQxgCHyI7EiKFj6rXaNikD+2IEdBgrKWRXRehiep7bvLZdseKbooMfARCyz3qLDhGlfypsdvy5rXSNqGlqQ1DUK5u7tX1+bTcBrO487lYWbuqjb3XcXHLfPXTqMNbsqcdeYVNQ3tuDvZaecetVIjasg3zkGisldowABONvQzKBRAwxgiPxI64ogXy2aloFbs/tIfs7bqogeNzp3851MXYzIH+t5enb+2FSYuhg1Gy7pyNfyZndf1+KiCrdl4YUy2+mL5ATHYiAjxVrXhHvXluLuMQMwId3Mm6sGvG0VJ8VF4tas3sjl9VaFAQyRH+k5OFANb2W7vgzD03qLQryhu97wjQY43fC9bX+poUd58+KiCsmATCwLB6AoiPE1OBav1eu7qvD6riquyPigzSZg+fajXhsr1jS04rVdVXiN11sVgyB4y+0PbvX19YiPj0ddXR26d+8e6NMh8qjk2DlMX7070Kdhz2H51yPjdfmrT+5EbTWkOvG6brlomWdk0eE6tVyyYciCLV63xA4t+ons7aSNZafwwIYyjc6wnQHglGyFtpZXY+GmA7DWK9t2FH+6OtP19vX+zTJqIj/ydfCgFvTKYRG5m3hdfXmL4qXiIz41wDN1MWL22IH4/bQMzB47UPIGPznDgpdnZMPXL88Afa6TnOnbNkF6+rY7emydCQAK39/PKdkyiT/7SoMXoP1aCwAWbjrA6y0TAxgiPxKTYwH4LYhxvfdqPUnakZw8jKXFh33qciuXr9VIFh2vky/Tt90Rg2Otnb/YiuXb1c/R6iy0StC31jdj+fajmpxTuGMAQ+RnYnKs2eVmY4mPxpxxqZrfhGwCsGDKULz0yyyszx+Nfz0yXrclarl5GNb6Zk1WYzxRm29UcPNg3a+T1FRtX44DrgTHegTGr+44zlUBL7RM0F9afFj3AD8cMImXSCeecjU8Jcf+bvJQ++NVZy9i/Z7/+DwOILlbFKZl9dbgq/JMadCwtPgw1u85gYVTr9U8WFC7pdLYcsnn8Qje3JkzQHZZuBJicDz//f2ovdjq/QkyNbS0Yfn2I3gg92rNXjPcbKuwavp6T22uwIR0MyuTPGAAQ6QDOeWx7kprXR8vGD/Y3kPk7A8tqL3YAgECztQ3473SU7LOR4/8CK3ex5eZQ56orUb6e9kpPDpFn/wgkZKycKXE4Hj59iNY9dlxXGxt8+VU7dbsqurQL4jatdkEfFB2WtPX1GrWWDjjFhKRxsTyWHdTkxcXVSh6PTGgiTFF4PVdlXj5n8ew4p/HZQUvBrRvTflrSOCo1CRVPVP0SBZVm29U09CKPZU1mp2HO4V56ZgzLrVDjpLR0D5aQGkfGEcRRgMeyL0aq3890sezvKK20T/XJRTtqaxBTUOL5q8bbG0Xgg0DGCINtVyyYfVOzy38V++sRMslm6LXdVfZ440A/aqNpEQYDfh5lrqZPnoki7rLN/LGXzeOwrx0HFr0EyyYMhS/zumPBVOG4tCin/gUvDgaPaiHpjlVvKFK0+u6+GvlNFQxgCHSkB7lsb5UN9wypKffe0pMSDerfq4eyaKTMyz41yPjsT5/NApuHizrOf68ccgpC1fLcRVKC7yhStPjuiTERPpt5TRUMYAh0pAe5bG+VDf849D3fq9mULuNBFxJFtWauA330ISrPa5I+HvLzR8mZ1iwQoOeOOF2XbSkRwn7XWMGMN/ICwYwRBrSozzW1+XppzZX+LUE1pdtJKA9WVSv83UsNXa9Nejd4C+Q8jItWD59uOrn69XQL1xovdKVGBuJgvFpmr1euGIAQ6ShO3MGeP1LV2l5bNXZBp/OSaxm8CdftpH0ThZ1lxejZ4O/YJCXmYKVM7MVrxTo2dAvnEzOsOAhjcrMF982jMGiDCyjJtKQ1uWxbTYB6/f8x+fz8nfyZfs2UiRqGtT1ItH7fH0ZUhnKXL/uqrMNl/sMXWl9nxATidyhvTBmcA+Y42M6xXXRSsH4wVi/54SqUQJA+x83y6czWJSLAQyRxuROTZZjT2WN6l+GjvydfBlhNODpaRm4f91Xqp7vj/N114cn3HXsM5TW6QI5vUQYDVg49VrVg0SXTx+OvEwGL3IxgCHSQWFeOuZNHOK2E6+cicqA7ysR4tTpQCRf5mWmYM7JWo+rUa4Ceb6dVWcN5PSiphuyuPLC4EUZXXJgqqqqMHv2bKSmpiImJgaDBg3Ck08+iZYW50Y/+/btw9ixYxEdHY2+ffvi+eef1+N0iALCXXns4qIKDFmwBYs+Ooi/lZzAoo8OYsiCLZIN7pSsRARjUmphXjpWzMhG1yjvfysFw/lS8GuzCSg5dg4by06h5Ni5oJzRNDnDgr2PT8BDuWlIiIn0ejxXXtTRZQXm0KFDsNlsWLVqFQYPHozy8nLk5+ejoaEBL774IgCgvr4eEydORG5uLlauXIn9+/fj7rvvRkJCAu655x49Toso4MQuva7ELr02AXhsypUtJjnt8JPiIvHU1Aw8W3TQqdzaHB+NJ3+WHvD99LxMCyZltLe2X7OrCrWN0n+VBsv5UnBqswmSP0MJMZG4a0wqCsYPDqrAV+yGLG7Rbauw4oOy004dey38mfeJQRAEv4SvL7zwAl555RUcP34cAPDKK6/gscceg9VqhcnU3jNi/vz5+OCDD3Do0CHZr1tfX4/4+HjU1dWhe/fuupw7kRZaLtlwzYIt8PZ/3PJfZuGnDoMXxS68ANwGMZb4aCyYMhSJcVFOuQwAgiq/oc0m2M8nuWsUIABnG5qD4twoOImBy6odx3Gxxf1cp4TYSCy5bVhQBwOOP//8mff9/u23HJi6ujokJV3Z1y4pKcG4cePswQsATJo0Cc899xzOnz+PxMREf50akV+88XmV1+AFAAo2lKFLF6P9F7G4p/7U5gq3De2sdU2Yu+4rvDIz2z51umhfNR7fWB5Uf/Ex34KU2FpeLTuXpPZiK+5dW4qVQVzyzZ9/bfmlD8zRo0exbNkyzJkzx/6Y1WpFr169nI4TP7Za3Y8lb25uRn19vdM/olDwRdU52ce6Np+bnGHBZ//vZrcdbgWX5y0uqsD960o7DJirrmvCfWtL/d6dl0gpceVRbiKsaL7GQ0EpeCkKYObPnw+DweDxn+v2z6lTpzB58mTccccdyM/P9/mEFy9ejPj4ePu/vn37+vyaRP4Qa5K/4CnVfG7vifMeJ94Kl5/3538c8Vj5I8D/3XmJlPBl/lftxVY8sEFd+T6FFkVbSPPmzcOsWbM8HjNw4ED7f58+fRo333wzbrzxRrz66qtOx5nNZpw5c8bpMfFjs9l9F8/CwkI8/PDD9o/r6+sZxFBIuD27Dz4oOy37eNcSarkl1X/ZedzrMWKAxOVsCka+zP8CgA/3VSMv4zTyMtWPtKDgpyiA6dmzJ3r27Cnr2FOnTuHmm2/GiBEjsGbNGhiNzos9OTk5eOyxx9Da2orIyPYys23btuGaa67xmP8SFRWFqKgoJadNFBRuHJyMWFOEx0RER64l1HJLqhtkvr6/u/MSyaXFz+bjG8sxKcPSqZNkw50uOTCnTp3Cj3/8Y/Tr1w8vvvgivv/+e1itVqfclhkzZsBkMmH27Nk4cOAA3n77bbz00ktOqytE4STCaMAff3Gd1+PcTUQelZqEOFOEx+dGdZH/y1oqIAqFHhuuWi7Z8NrO43hiYzle23kcLZdsgT4l8pEWnZhrGvSdqUWBp0sV0rZt23D06FEcPXoUffr0cfqcWLUdHx+PTz75BHPnzsWIESOQnJyMJ554gj1gKOD0LHWcnGHBypnZeOS9fahrvNTh856aubXZBK+rN82X5AUcPeJMHQKkreXVHSqdAl215M3ioooOIxueLjqI/7kp1amfDoUWsf+RL9tIAFcZw53f+sDohX1gSEtby6uxcFMFrPUODeG6R2PhVG1v4u6acnkKGF7beRyLPjqoyfuvmNHetlwM1rZVWPH6rqoOx4khVDBOI3bXFFA0If0qrP719X48I9LS1vJq3Hu5/5Fa6/NHM88riPl6/2YAQ3SZt1+YevSXULLa88TGcvyt5ITP7/nTTAuWz8iWXHGRIs4n+tcj44Mmn6Dlkg1DFmyBtx0u16aAFFqK9lVj7vpSWf2TXFmC7GeWOvL1/u2XPjBEwa7NJmD++/s9HlOoQ38JsbHVtKzeyBnUw+Mv2/5JsZq854T0XvYeG3KW6MXybCX5BHrn0rxZUuU1eAGAwg/YEySU5WVasOy/h6t6LmdqhT9OoyYCsPv4Oa8Ns85fbMXu4+cwZnCyn87K2Z05A/BM0UFZN25PkuOi2v+qVfg8ufkE/sil2Xnke1nHXWhqY7l4iPtpVgr2n5Y/1bx9svPwoNvyJO1xBYYIwOfHzmp6nB5MXYzIH5vq8Zg4U0SHqdQisbpp3Z4TirubAvIqQ9yt7Fg17ADcZhOw9z/nZR/PRM7Q1z7VfDiS4uRMds5m/5dOggEMEYBT5xs1PU4vhXnpmDMuFa4r40YDMGdcKv5wuUzbNYgRP/5pphkf7Xc/qkOKu7JuV566p7qOOvDFnsoaXGiS1+sG0KYklwIvLzMFXzw2AevzR2P2mAEdghlLfDRWzmxPTqfOgVtIRGj/5aflcXoqzEvHvIlD8GZJFU7UXET/pFjcmTMApi7tf49IDX40X55W/fjGclXvKSefwFv3VMdcGl+2dJSsqMgJvCh0iDljOYN64NEp6Zzs3MkxgCEC3A5JVHuc3kxdjJg9dqDk5yZnWDAh3dzhl/ueyhrUNCjbOuoRZ8Izt2bIyifYViFvZcfXLZ3K73+QfWwoJXKKFWnWukac/aEFtY0tMADIGZiM0V4SvDsjTnYmBjBEAJJlbjPIPS7QpH65Kw0ckuIiUVJ4i31lx5M2myB7zpMvWzpF+6rxp38clXXsg7ekhUwiZ3v/oQOw1jd3+NzyT48hITYSS24bFjJfD5E/MAeGCO3N6rQ8LhgpCRwMAJ69dZis4AXA5dUd95OyRV2jIlRv6RTtO42C9fIbm6X2jFP1Pv4m9h+SCl5EtRdbca9GSdBE4YIBDBGutC73JNTzKeR8jQCQGBupuPOuY+diT35obpO91eRoa3k17l/3laIS8uSu/h/6qnQuk5z+Q44WbjrAvjZElzGAIUL7lsuTP0uHAdIVPAaEVj6FFMev0Z2fZZrx5eMTFG9V1PzgfvXAldKbsNKbvJ2f7/OLiyowZMEWLProIP5WcgKLPjqIIQu2YHFRhdvn7D7mvf+QI2t9MwcUEl3GAIbosskZFrwyMxtml1UKc3x0UM4CUkP8Gl1XYpLiIrFixnAsmzFCVZCmJLnZWt+M5dvl5bEAym/yorMN8oMqX4lzmVzjMpsArNpR6TaIKTmuvK8Q+9oQtWMSL5ED1wqe5LgowACc/aEZJcfOhUWpprsqJV++LnN8jKLjlxYfxjXmrrKCQjU3ecB//V9aLtnw6k7PXWJf3VmJeROHSOQUKb/m7GtD1I4BDJELsYJna3k1/vfdr3Vtia9Wm03A7uPnUHLsHABBcamt1iWoYn6NnNlKoqc2V2BCulnGOSu/yfszX+mNz6u8DhsUhPbj8sc5l77nDOqB5Z/KX40yd48K6TwsIi0xgCGSILbEd70viS3xtdpSUhKIiH1Ciius2PDlt2hovtKNNtCltmJ+jadp3q7kNrVTepMH/Juv9EXVOdnHuQYwowf2QFxUhNP30pNpWSkhvwJIpBXmwBC58FdL/K3l1che9Al+9Zd/Y/mnR7H802P41Wv/xnVPfYKifdUdjr3pue2Yvno3XttVJXnDC3Sp7eQMC1bOzEZCrPd5NSI5+RyjB/aQ/ZpGA7Bihn/zlWJN8v4OlDouwmjAC7dnyn6vTV9XswqJ6DIGMEQulLTEV0vs/VHXeKnD535ovoT715XaEz/dDUh0J5CltpMzLNj7+AT8V3YfWcfLyeeIMBqw5LZhsl5v+fThfp+Fc7vMr9XdcXmZKZgzzvOQTpGvP3dE4YQBDJELuVUeaqtB2mwC5r/nvSx41Y5KfFh2yu1qkDuBKrVtswkoOXYOH+47jWnXpXQYOCnl3IUm+/M2lp1CybFzksGXuLrjrpHglUF+/p9CfOPgZMSaIjweE2eKwI2Dk91+fni/RMRGyvt1zCokonbMgSFyIbfKQ201yO5j51DbKK8suPCD/YomL4v8fZPbWl7dYYCkHAUbypCw6YBTmXS36C7I7peIcWnJTkMqHaunrPVNqPmhGUlxJpjjY3SrDhPzjjxVa0UYDfjjL67zmP/zh19cZ3+e62ueb2jG3HVfyQ5SWYVE1I4BDJELuRU1xQetqip5lJQFqwleAP/e5NwlPMvl2uPlQtMlfHb4e3x2+Hs8U3QQ+WNTUZiXDsD36ik5AYmofT5RhVOXYXP3aCyc2rEKTVwhenLjAZy50OxwfBQWTr3WfrxUoGc0yOu5Z0B7TyJWIRG1YwBD5CLCaMCjeUPxm/VfeTzutX9VYXifBPw0q7fCd9C3isSfpbaeEp61IDaCA4DfTR7qU+8aqeDBXVm8mKPkylrfhHvXlmKlRBWat/467gI9JelKod4NmkhLDGCIJHwnc7ZPwYYydOliVFT1orQsOCnOhPMNLbKDhIVTr/XbTc5bwrNWXt1RiY1l1U6rId568jiutlSdvYg/FR+WVRYvZ3RB4fv7JXvYuFsh8jXQ4zRqoo6YxEsk4f2vTso+VmlJtZKyYEt8NJ6elgHA+7pNQmyk5MqAnvyVayOg48BIMfiQKht3LDt/YEMZlkoEL+LrAs7fw93HvY8uOH+xFbuPy+v/Avge6L08PTxGWRBpiSswRC5aLtlw4PQF2cfLbcgmEsuC5TR9u9DUXmb9yszsDtsfSXEm3JCahEE94xR34tVKIBNKBbQHda4dfZXm5DiWxecM6nG5qaB3O498j0PV9ThRcxH9k2KdEo5dqQ30xLyX0Rp2TSYKFwxgiFy8WVKl+DlKb1Bi0qdrkqgrsSfMnHGp+Ncj4zWdX6QFMeHZWtckGTAYAHSP6SLZ70YLrsGHL1s1V76H8p696rPjTke6Jhw7UhPoid9Z5r0QSeMWEpGLEzUXFT9HzQ1qcoYFu+aPx4O3DPZ67Kodlfi4vBo5g3pgWlZv5ARgtUWKOEIA6LjFJX783O2ZWCkxATtRQcdeb8TgY/exc6q3asTvYc5A9/1aHEkl47qbPC0GekqE0xR0Ij1wBYbIRf+kWNnHalHa+rfdJ2Qd9/jGckzKsARF4OJocoZFcovL7JJk61ihU3W2Aev+Le/rluOqbtHYWl4tq0GglITYSPv3cPSg9hwlb3kw7qyWmDytdFbUnaP7YeHUjIB/r30dGkqkJwYwRC7uzBmAZ4oOei1v1WKJf09lDWoa5N0oaxpaFeXa+JO3EmLAecr3n4qPKNrmMUB6Y0cMIJU2g3N1142p9nNVkqMkxSa0b0POHus8uHFCuhnx0RGo89Lbx2gAFvzUf5Vk7mwtr8b89/c7BXKBHhpK5IhbSEQuTF2MyB/rfTaNFkv8SnNngrmNvBigeNriUpOjMn5ITwDut6gWTEnHoo8Oqg5eukZ1QcF45228K6MLolS9ptQ25J7KGq/BCwDkDbO4TQb2F7EPjtQqVKCHhhKJuAJDJKEwLx02AfjLvyohONwZDWi/of7P2EGaJNEqzZ0J9TbyasqJ88cOwi9G9nW7RRUfY/KpRPn52zMlv4/iqtJfd1Vi0UcHFb2m1Dak3OBzQnovRe+ltTabgIWbOubxuFq46QDGD+mFvSfOB1ViOXUeDGCIJGwtr8Y7e086BS8A0C06AneM7KvZNs6o1CQkxUXK2kZKiosM+TbySleQLPFXborutqg2lp1SfT5zxqV6nF4dYTQguZuyVRijoX0b0pXeM7a0Is6a8sZa34zhv/8EDS1XVpWS4kz4eVYKJqSbGcyQ7riFROTC0/J5fVObpsvnEUaDvVGdN09PC3xSp6+U3px/eX0/+3+726JSc8OPM0VgxYzhkiXPrpS+fv7YVMktILESyd130IArAVsgKQkyHYMXAKhpaMHru6owffVu3PTcdm4zka4YwBA5ULJ8rqT7rid5mSmYM85zzk37SkGKJu8XSN5u4q6WFh/GmCX/8HgjVPqaAPBgbprs6yn39Y2G9u+Tu6BITsl5MPR80WoFqLqufW5U0T4GMaQPBjBEDpQsn++prNHsfQvz0rFiRjaS4kxOj/eIM2HFjGxZKwWhwNNN3B1rfbPHVS/H15Qruav8bSHx9T2Fq/+V3RuHFv3E6/dJLDk3u/SECaaeL6NSk2Durt02VsH6UhTtO63Z6xGJmAND5EDJ8rnWFUF5mRZMyvBcihwO3PWNcVcqLZrvZoCi42s++vdy1DS0eD0Hc3yMijN3Lze9l+zKITkl54EUYTRg4VT5PWu8sQnA/eu+wkqjISgCNAofDGCIHChZPtcj2dLdNONw43oT/66+Cc8UHfL4nNqLrdh97MuSLt0AABWfSURBVBzGpEl3yp2cYcH4Ib0wenGxx6RopXkm3qZTS81j8ibYv89iGblrHxhfKL1GRN5wC4nIgdzlc3P3qIAnW4Y6x6TcukZ5N8mS42c9ft7UxYhnbx3mMVHWXZ5Jm01AybFz2Fh2CiXHztlznJZvP+LxJu44jymcTM6wYO/jE/Dm3aMQFxXh8+uF4zWiwOIKDJEDucvnC6cGvlNqeJF7Lb0fNyHdjAdzr8aaXZWodQiMLC6jDRxtLa+WmPYdid//7Fqs2VUl68yCucmgWhFGA7pEGNHQ7L0BnxzWukZNXocIYABD1IGn5XO2UddHzqAeWP7pUVnHeSIViCTEROKuMQNQMD5NMujcWl6N+9aWdsi/qWloRcGGMlnnDwS+f4tetAzM5OQnEcnFAIZIgpijwUF2/jF6oPcBiomxkRg90H0A4y4QqW1sxdLiI0i7qluHpnVqRhtIMQA439Ds46sEJy0DsyQF1V9E3jAHhsiNCKMBYwYn438nXYP/nTQEY9KSGbzoRByg6Mni24a5vf5yAhGpcl41ow2kCADmrvsqLBu3iX1wtKBleTYRAxginTgmhe46cha7jp7tkCBKV1wZoOh8k7PER2Ollx4pcgIRsZzXMcjQOm/lqc0VYfe9VdNnR0owdBmm8MItJCIdbC2vxsJNB2Ctl95W8JRQ2pmp7ZGiJBBx7CdTdbbB11O2c6xGCuYSaTUmZ1iwYsZwzF33lerttmDoMkzhhSswRBoTZym5C14AwFrXhPs0nKkUTtzNPPJESZ6G2E+mzSZg/Z7/+HKqksKxGgloH3nxwC1pqp77UG4ag3XSHAMYIg15a3omEv+KDccth0BQmkD7zt5vsfvYOY9BplrhWo0EAL+5JQ0JsZGKnmOJj0bBeHWBD5EnDGCINLT72DnZnUvDtQGav7XZBCz66KCi53xQdhr3v7VX0/MIlmnSepKTbC0ywHPjQCJfMYAh0pC3TrFSwnXLwV/UVhLVNV3S7ByCaZq03sRka9fKJNcvO5gGVFJ4YhIvkaaU37zCecvBH4IhADR3sqRsqWTrEf0TsffE+aAcUEnhiQEMkYbkdpQVhfuWgz8EOgBcMGUoZo1J7XQ3a6mBlOFWfUXBjVtIRBoaPbCHosF3nWHLQW9aNlpTQsx56YzBC1EwYABDpKEIowEv3J4p69j8samdZstBTxFGAxZM8b3RmhKdKeeFKFgxgCHS2KQMC+JM3ldhVu+sZB8YjSTGmfz6fr26RzFBlSjAGMAQaWxPZQ0aWtpkHTv//f3sA6MBvRN5Oy6ycNWFKNAYwBBpTMnNVOwKS77RI5G3R5wJ44f0BNA+R8nRmXp2UiYKNFYhEcnQZhNkz+dRejMtOX4WY9KStTjNTktM5LXWName1QO0VxQld4uylwX/6IVPJY8T0L4G89TmCvtcJSLyLwYwRG6IQcu2Cis+KDuNmoYW++eS4kz4eVYKJqSbOwQzo1KTkBQXiZoGeR15uR3hO3Fi8n1rS2EAnIIY14/dca0oKjl2zmODvHAe3kgUCriFRCRha3k1bnpuO6av3o3Xd1U5BS8AUNPQgtd3VWH66t0YsWgbXio+Ys9liTAacGtWb9nvxZufNiZnWPDKzGyYXUqqzfHRWDkzG3PGpbp9rlTLe7lbgcHQSI+oM+IKDJGLreXVuG9tqeytiNrGViwtPow1n1diyW3DMDnDgtx0M17bVeX1uV2jIjB6IAMYrUh1iBVXyCZnWHBdn0Q8vrHcKSC1uOmiK3crMNCN9Ig6KwYwRA7abAKe2lyhKo+i9mIr7l1bipUzszEh3QxLfLTXGT3/c5P7VQFSR6pDrCgv04JJGdIBjitveTUGtK/usJMyUWBwC4nIgdrBgI6e2lwBoH1Lwlt2y5/+cRQ3PbfdqZqlzSZg19GzePHjb/Dix4ew68hZ1aXWLZdseG3ncTyxsRyv7TyOlks2Va8TTsQAZ1pWb+QM6uE2AVfMqwE6ZimxkR1R4BkEQQjpJhT19fWIj49HXV0dunfvHujToRD3+80H8LqMrR9v1uePRs6gHthaXo357+9H7UX3Cb3i7e+VmdkAIHl8QmykfXtKrsVFFVi9s9KpBNhoaO8AXJjn3861oWxreTWe2lzhFNi623YiIvl8vX9zC4nosjabgA/KTmvyWo6JnXUeghfgSoXM/76zDz80X5I8xnF7Suqm6VrmXXzwDF77V2WH42wCsGpH++MMYuTxlFdDRIHDAIbosj2VNR2qjdRK7hqlOJ/GXfDiaOGmAx36jkitEHjz6s5KzJs4BKYu3EWWw1NeDREFBn97EV2maTmsoE0+jStrfTP2VNbYPxYrppS+jyAAb3xepem5ERH5EwMYosu0LIc929CsW38Q8XV9qZgCgC+qarwfREQUpLiFRHRZewddkybbSHr2BhFf29cVnlgZE7OJiIIVV2CILoswGvDzrBSfX8dyuTeI2EdES+buUfa+I76u8Nw+vI8Wp0REFBAMYIgcTEg3+/waYm+QCKMBU6/Ttsx24dRr7Qm8vqzyxJoicCMHSBJRCGMAQ+TAl1UTowFYMWO4vcy5zSZg09fVXp4lT0JsZIcSavFc1RTz/vEX17EMmIhCGgMYIgdi91UDlM+IXj49G3mZV7agtKhCysvohbdm34C9j0/o0P/FU6dYd+KjI9z2kiEiCiW6BzDNzc3IysqCwWBAWVmZ0+f27duHsWPHIjo6Gn379sXzzz+v9+kQeeVuqrE74upIXqZzUGCta1R9DpbLE5RXzByJMWnJbldL3J2r6+EJMZF4KDcNpU9MYvBCRGFB9yqk3/3ud0hJScHXX3/t9Hh9fT0mTpyI3NxcrFy5Evv378fdd9+NhIQE3HPPPXqfFpFHrt1Xq85exPo9/4G1/sqKSkJsJO66MRUF4wdLBhhqq5nuHN0PC6dmyN7ikeoUO6J/IvaeOM/OsUQUtnQNYLZs2YJPPvkE7733HrZs2eL0ubfeegstLS14/fXXYTKZcO2116KsrAx//OMfGcBQUHDtvlowfrCidvJJXaNUvW92f+XBhlSnWHaOJaJwplsAc+bMGeTn5+ODDz5AbGxsh8+XlJRg3LhxMJlM9scmTZqE5557DufPn0diYqLk6zY3N6O5udn+cX19vfYnT2HDdUaQGHS4Pi5nxUJpO3lzd3XJwGqfR0TUmegSwAiCgFmzZuHee+/FyJEjUVVV1eEYq9WK1NRUp8d69epl/5y7AGbx4sV46qmnND9nCj/upghPvc6CTV9XOz1uNMBparMW04bVNMbrEWey93khIiL3FCXxzp8/HwaDweO/Q4cOYdmyZbhw4QIKCws1P+HCwkLU1dXZ/3377beavweFPnczgqrrmrBqR2WHx20u/fir65pw79pSvFR8GG2un5QpwmjA09MyFD3ntuzezFUhIpJB0QrMvHnzMGvWLI/HDBw4ENu3b0dJSQmiopxzAEaOHIlf/epXeOONN2A2m3HmzBmnz4sfm83um4lFRUV1eF0iR77OCHK0tPgI1u/5FgunqluNycu0YM7JVKzaUSnr+A/3VWP+T4YyiCEi8kJRANOzZ0/07NnT63F//vOf8fTTT9s/Pn36NCZNmoS3334bN9xwAwAgJycHjz32GFpbWxEZGQkA2LZtG6655hq320dEcmg9Bdpa34T71pbiFZX9Uwrz0nFdnwQ88v5+XGi65PHY6rom7KmsYQIuEZEXuvSB6devHzIyMuz/rr76agDAoEGD0KdP+/yVGTNmwGQyYfbs2Thw4ADefvttvPTSS3j44Yf1OCXqRPSaAv3U5grV20l5mSn4/dRrZR2r1/kTEYWTgHXijY+PxyeffILKykqMGDEC8+bNwxNPPMESavKZHpOgBVxZHVHLHB8j6zg9J1kTEYUL3RvZAcCAAQMgCB3/cs3MzMTOnTv9cQrUiYgzgqx1TZrkwTgqrrCq3t7xdl4GAObLk6yJiMgzzkKisOM4I0hrfy875VNVkrvZReLH4iRrIiLyjAEMhSVxRlBSXKSmr1vT0OrTNpK72UXm+GjVScJERJ2RX7aQiAJhcoYFja02PPR2mfeDFfA1yVZqdhFnFRERKcMAhsKaHm35k1XOOHKkdCwBERE54xYShTUxcVZTWmcGExGRYgxgKKzpkdB7tqHZ+0FERKQrBjAU9iZnWPBQ7tWavR77tBARBR4DGOoUCsYPRny07ylfFvZpISIKCgxgqFOIMBpw902pPr8O+7QQEQUHBjDUaRSMT0NCrLq+MEYDsGLGcPZpISIKEgxgqNOIMBqw5LZhHbrgyrF8ejbyMlM0PyciIlKHAQx1KmInXLml1Zb4aKycmY28TK68EBEFEzayo07HtRNuctcoQGgvj06OiwIMwNkfmtkhl4goiDGAoU6JnXCJiEIbt5CIiIgo5DCAISIiopDDAIaIiIhCDgMYIiIiCjkMYIiIiCjkMIAhIiKikMMAhoiIiEIOAxgiIiIKOQxgiIiIKOSEfCdeQRAAAPX19QE+EyIiIpJLvG+L93GlQj6AuXDhAgCgb9++AT4TIiIiUurChQuIj49X/DyDoDb0CRI2mw2nT59Gt27dYDCE9tC9+vp69O3bF99++y26d+8e6NMJO7y++uL11R+vsb54ffXneI27deuGCxcuICUlBUaj8oyWkF+BMRqN6NOnT6BPQ1Pdu3fn/zw64vXVF6+v/niN9cXrqz/xGqtZeRExiZeIiIhCDgMYIiIiCjkRCxcuXBjok6ArIiIi8OMf/xhduoT87l5Q4vXVF6+v/niN9cXrqz+trnHIJ/ESERFR58MtJCIiIgo5DGCIiIgo5DCAISIiopDDAIaIiIhCDgOYINLc3IysrCwYDAaUlZU5fW7fvn0YO3YsoqOj0bdvXzz//PMBOsvQU1VVhdmzZyM1NRUxMTEYNGgQnnzySbS0tDgdx2vsm5dffhkDBgxAdHQ0brjhBuzZsyfQpxSSFi9ejOuvvx7dunXDVVddhZ///Of45ptvnI5pamrC3Llz0aNHD3Tt2hW33347zpw5E6AzDm1LliyBwWDAgw8+aH+M19d3p06dwsyZM9GjRw/ExMRg2LBh+PLLL+2fFwQBTzzxBCwWC2JiYpCbm4sjR44oeg8GMEHkd7/7HVJSUjo8Xl9fj4kTJ6J///7Yu3cvXnjhBSxcuBCvvvpqAM4y9Bw6dAg2mw2rVq3CgQMHsHTpUqxcuRKPPvqo/RheY9+8/fbbePjhh/Hkk0+itLQU1113HSZNmoTvvvsu0KcWcj777DPMnTsXu3fvxrZt29Da2oqJEyeioaHBfsxDDz2EzZs345133sFnn32G06dP47bbbgvgWYemL774AqtWrUJmZqbT47y+vjl//jzGjBmDyMhIbNmyBRUVFfjDH/6AxMRE+zHPP/88/vznP2PlypX497//jbi4OEyaNAlNTU3y30igoFBUVCQMGTJEOHDggABA+Oqrr+yfW7FihZCYmCg0NzfbH3vkkUeEa665JhCnGhaef/55ITU11f4xr7FvRo0aJcydO9f+cVtbm5CSkiIsXrw4gGcVHr777jsBgPDZZ58JgiAItbW1QmRkpPDOO+/Yjzl48KAAQCgpKQnUaYacCxcuCGlpacK2bduEH/3oR8IDDzwgCAKvrxYeeeQR4aabbnL7eZvNJpjNZuGFF16wP1ZbWytERUUJ69evl/0+XIEJAmfOnEF+fj7efPNNxMbGdvh8SUkJxo0bB5PJZH9s0qRJ+Oabb3D+/Hl/nmrYqKurQ1JSkv1jXmP1WlpasHfvXuTm5tofMxqNyM3NRUlJSQDPLDzU1dUBgP3nde/evWhtbXW63kOGDEG/fv14vRWYO3cupkyZ4nQdAV5fLWzatAkjR47EHXfcgauuugrDhw/H6tWr7Z+vrKyE1Wp1usbx8fG44YYbFF1jBjABJggCZs2ahXvvvRcjR46UPMZqtaJXr15Oj4kfW61W3c8x3Bw9ehTLli3DnDlz7I/xGqt39uxZtLW1SV4/Xjvf2Gw2PPjggxgzZgwyMjIAtP88mkwmJCQkOB3L6y3fhg0bUFpaisWLF3f4HK+v744fP45XXnkFaWlp+Pjjj3Hffffht7/9Ld544w0AV36n+vo7gwGMTubPnw+DweDx36FDh7Bs2TJcuHABhYWFgT7lkCP3Gjs6deoUJk+ejDvuuAP5+fkBOnMieebOnYvy8nJs2LAh0KcSNr799ls88MADeOuttxAdHR3o0wlLNpsN2dnZePbZZzF8+HDcc889yM/Px8qVKzV9Hw570Mm8efMwa9Ysj8cMHDgQ27dvR0lJCaKiopw+N3LkSPzqV7/CG2+8AbPZ3CEDXvzYbDZret6hRO41Fp0+fRo333wzbrzxxg7JubzG6iUnJyMiIkLy+vHaqVdQUIAPP/wQO3bsQJ8+feyPm81mtLS0oLa21mmVgNdbnr179+K7775Ddna2/bG2tjbs2LEDy5cvx8cff8zr6yOLxYL09HSnx4YOHYr33nsPwJXfqWfOnIHFYrEfc+bMGWRlZcl/I18Sdch3J06cEPbv32//9/HHHwsAhHfffVf49ttvBUG4kmDa0tJif15hYSETTBU4efKkkJaWJvzyl78ULl261OHzvMa+GTVqlFBQUGD/uK2tTejduzeTeFWw2WzC3LlzhZSUFOHw4cMdPi8mmb777rv2xw4dOsQkU5nq6+udfufu379fGDlypDBz5kxh//79vL4amD59eock3gcffFDIyckRBOFKEu+LL75o/3xdXZ3iJF4GMEGmsrKyQxVSbW2t0KtXL+HOO+8UysvLhQ0bNgixsbHCqlWrAnimoePkyZPC4MGDhVtuuUU4efKkUF1dbf8n4jX2zYYNG4SoqCjhr3/9q1BRUSHcc889QkJCgmC1WgN9aiHnvvvuE+Lj44V//vOfTj+rFy9etB9z7733Cv369RO2b98ufPnll0JOTo795kDKOVYhCQKvr6/27NkjdOnSRXjmmWeEI0eOCG+99ZYQGxsrrF271n7MkiVLhISEBGHjxo3Cvn37hGnTpgmpqalCY2Oj7PdhABNkpAIYQRCEr7/+WrjpppuEqKgooXfv3sKSJUsCdIahZ82aNQIAyX+OeI19s2zZMqFfv36CyWQSRo0aJezevTvQpxSS3P2srlmzxn5MY2OjcP/99wuJiYlCbGyscOuttzoF5KSMawDD6+u7zZs3CxkZGUJUVJQwZMgQ4dVXX3X6vM1mExYsWCD06tVLiIqKEm655Rbhm2++UfQeBkEQBMUbXEREREQBxCokIiIiCjkMYIiIiCjkMIAhIiKikMMAhoiIiEIOAxgiIiIKOQxgiIiIKOQwgCEiIqKQwwCGiIiIQg4DGCIiIgo5DGCIiIgo5DCAISIiopDDAIaIiIhCzv8Hj3u6XzLnyX0AAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -3852,7 +3998,7 @@ }, { "cell_type": "code", - "execution_count": 152, + "execution_count": 145, "metadata": {}, "outputs": [ { @@ -3901,118 +4047,118 @@ " \n", " \n", " 0\n", - " -0.960548\n", - " 0.535780\n", - " 0.385748\n", - " 1.101508\n", - " 3.875988\n", - " 1.070799\n", - " -4.849534\n", - " -1.820060\n", - " -2.966034\n", - " 1.655846\n", - " 1.737207\n", - " -3.332000\n", - " -5.323652\n", - " -4.393471\n", - " -1.154701\n", - " 0.506530\n", - " -1.585463\n", - " -4.248538\n", - " 2.294325\n", - " 3.957590\n", + " 0.691481\n", + " 2.209414\n", + " -0.028238\n", + " -3.102651\n", + " -6.051851\n", + " -4.399188\n", + " 1.494551\n", + " 3.911412\n", + " 1.233372\n", + " -1.093439\n", + " -2.843520\n", + " 4.784419\n", + " 3.531888\n", + " 1.781903\n", + " -1.022948\n", + " 2.940790\n", + " 0.113284\n", + " -2.272277\n", + " 2.151206\n", + " -1.033226\n", " \n", " \n", " 1\n", - " -1.162390\n", - " 0.251178\n", - " 0.186549\n", - " 0.988687\n", - " 3.733672\n", - " 0.626086\n", - " -4.566340\n", - " -2.196690\n", - " -2.987178\n", - " 1.805605\n", - " 2.033937\n", - " -3.546881\n", - " -4.945525\n", - " -4.785186\n", - " -0.997341\n", - " 0.217447\n", - " -1.068717\n", - " -4.298778\n", - " 2.283113\n", - " 3.929447\n", + " 1.133341\n", + " 2.010200\n", + " 0.034295\n", + " -3.511348\n", + " -6.168634\n", + " -4.438835\n", + " 1.501480\n", + " 3.788925\n", + " 1.539473\n", + " -1.206030\n", + " -2.927973\n", + " 5.059699\n", + " 3.198847\n", + " 2.033874\n", + " -0.791365\n", + " 2.995087\n", + " 0.466563\n", + " -2.738615\n", + " 1.885887\n", + " -1.118297\n", " \n", " \n", " 2\n", - " -0.560644\n", - " 0.339182\n", - " 0.291281\n", - " 1.226845\n", - " 4.163576\n", - " 0.812360\n", - " -4.543347\n", - " -2.294925\n", - " -2.825094\n", - " 1.498989\n", - " 1.761113\n", - " -3.436803\n", - " -4.634498\n", - " -4.171238\n", - " -1.194322\n", - " 0.629293\n", - " -1.354635\n", - " -4.453906\n", - " 1.763564\n", - " 3.575306\n", + " 0.889183\n", + " 1.994394\n", + " 0.298426\n", + " -3.311967\n", + " -6.078265\n", + " -4.414866\n", + " 1.892591\n", + " 3.692539\n", + " 1.490572\n", + " -0.934464\n", + " -2.777043\n", + " 4.707861\n", + " 3.570221\n", + " 1.604899\n", + " -0.718914\n", + " 2.540431\n", + " 0.189408\n", + " -2.243979\n", + " 1.923425\n", + " -1.102676\n", " \n", " \n", " 3\n", - " -2.838000\n", - " -0.670331\n", - " 1.331425\n", - " -2.872283\n", - " 0.375439\n", - " 4.298521\n", - " -0.158841\n", - " -0.170265\n", - " -2.612220\n", - " 0.694892\n", - " 3.447092\n", - " -2.284607\n", - " -2.858946\n", - " -4.312414\n", - " -5.989464\n", - " -0.026698\n", - " -1.416963\n", - " -5.212801\n", - " -4.163705\n", - " -0.600494\n", + " -0.646802\n", + " 0.181007\n", + " 3.715522\n", + " -2.697770\n", + " -3.893324\n", + " -2.743762\n", + " 3.565471\n", + " 0.644597\n", + " 1.519284\n", + " -2.263462\n", + " -6.164203\n", + " -0.487320\n", + " -0.520860\n", + " 1.543796\n", + " -2.588697\n", + " 5.150163\n", + " -2.530453\n", + " -4.829188\n", + " -2.231499\n", + " -0.524451\n", " \n", " \n", " 4\n", - " -2.556705\n", - " 0.965237\n", - " -0.061232\n", - " 1.352170\n", - " 4.276524\n", - " 1.577441\n", - " -2.324412\n", - " -0.380508\n", - " -2.863870\n", - " 1.455134\n", - " 3.609730\n", - " -4.132732\n", - " -2.480354\n", - " -0.950713\n", - " -2.587649\n", - " 0.175977\n", - " -1.113148\n", - " -5.748485\n", - " -2.448518\n", - " 1.200612\n", + " -1.035309\n", + " 2.155994\n", + " 2.598428\n", + " -2.220484\n", + " -3.731646\n", + " -5.091130\n", + " 0.684202\n", + " 3.040052\n", + " -0.834740\n", + " -0.962661\n", + " -2.506616\n", + " 0.919390\n", + " 1.237634\n", + " 2.343424\n", + " -2.708177\n", + " 2.688421\n", + " -3.461588\n", + " -3.509613\n", + " 1.979434\n", + " -0.196468\n", " \n", " \n", " ...\n", @@ -4038,169 +4184,169 @@ " ...\n", " \n", " \n", - " 1045\n", - " 0.331984\n", - " 0.523769\n", - " 0.103705\n", - " 0.561897\n", - " 0.521912\n", - " -0.852221\n", - " -1.032729\n", - " 0.337699\n", - " 0.679176\n", - " 0.848446\n", - " -0.056654\n", - " -0.641469\n", - " -0.082838\n", - " 0.306723\n", - " -0.225306\n", - " -0.910874\n", - " -0.478912\n", - " -0.061075\n", - " -0.083310\n", - " -0.278903\n", + " 1048\n", + " 0.982386\n", + " 0.199625\n", + " 0.242164\n", + " 0.701167\n", + " 0.086144\n", + " 0.239413\n", + " -0.610572\n", + " 0.003339\n", + " -0.191435\n", + " 0.340636\n", + " 1.121649\n", + " -0.151060\n", + " 0.603027\n", + " 0.298779\n", + " 0.463613\n", + " 0.059714\n", + " -0.116532\n", + " -0.401311\n", + " 0.606212\n", + " -0.117687\n", " \n", " \n", - " 1046\n", - " 0.166020\n", - " -0.576071\n", - " 0.473827\n", - " -0.074774\n", - " 0.542515\n", - " -0.566927\n", - " 0.635151\n", - " 0.547837\n", - " 0.188676\n", - " -0.798186\n", - " -0.598822\n", - " 0.590872\n", - " -0.403117\n", - " 0.617905\n", - " 1.012607\n", - " 0.195247\n", - " 0.337702\n", - " 0.182143\n", - " 0.600068\n", - " -0.636223\n", + " 1049\n", + " -0.476996\n", + " 0.232066\n", + " 0.222565\n", + " 0.665518\n", + " 0.754919\n", + " 0.228781\n", + " -0.198005\n", + " 0.019199\n", + " 0.066273\n", + " 0.677850\n", + " 0.649621\n", + " -0.102975\n", + " -0.216284\n", + " -0.052017\n", + " -0.199819\n", + " -0.479769\n", + " 0.478262\n", + " 0.752321\n", + " -0.099475\n", + " 0.694736\n", " \n", " \n", - " 1047\n", - " 0.471930\n", - " -0.705889\n", - " 0.055459\n", - " -0.975193\n", - " 0.099381\n", - " -0.253793\n", - " 0.181459\n", - " -0.095714\n", - " 0.663958\n", - " -1.006062\n", - " -0.361706\n", - " 0.433246\n", - " 1.090418\n", - " 0.211187\n", - " -0.207774\n", - " -0.705345\n", - " 0.371806\n", - " 0.108446\n", - " 0.908669\n", - " -1.126879\n", + " 1050\n", + " 0.593625\n", + " 0.780458\n", + " -0.585766\n", + " 0.862500\n", + " 0.254637\n", + " 0.434878\n", + " 0.584161\n", + " 0.377837\n", + " 0.176423\n", + " 0.112464\n", + " 0.538818\n", + " -0.277135\n", + " -0.932592\n", + " 0.744540\n", + " 0.473525\n", + " -0.962508\n", + " 0.862409\n", + " -0.226568\n", + " 0.046969\n", + " 0.055784\n", " \n", " \n", - " 1048\n", - " -0.236891\n", - " 0.118807\n", - " -0.029381\n", - " -0.073577\n", - " -0.089825\n", - " 0.016194\n", - " 0.573447\n", - " -0.264896\n", - " 0.540209\n", - " -0.282678\n", - " -0.073139\n", - " 0.051319\n", - " 0.419923\n", - " 0.305243\n", - " -0.105601\n", - " -0.014267\n", - " -0.833588\n", - " 0.948402\n", - " 0.214101\n", - " 0.181394\n", + " 1051\n", + " -0.290302\n", + " 0.441311\n", + " -0.392705\n", + " 0.700237\n", + " 0.249166\n", + " 0.561223\n", + " 0.262957\n", + " 0.390204\n", + " 0.032661\n", + " 0.709470\n", + " 1.001394\n", + " 0.263612\n", + " -0.283346\n", + " -0.086741\n", + " 0.408808\n", + " -0.817566\n", + " 0.490443\n", + " -0.158993\n", + " 0.112197\n", + " -0.007195\n", " \n", " \n", - " 1049\n", - " 0.303921\n", - " -0.329447\n", - " -0.198187\n", - " -0.968494\n", - " 0.568693\n", - " -0.778354\n", - " 0.738360\n", - " -0.507104\n", - " 0.589299\n", - " -1.071499\n", - " 0.007456\n", - " 0.132762\n", - " 0.568386\n", - " 0.526633\n", - " -0.031978\n", - " 0.094264\n", - " 0.673068\n", - " 0.048564\n", - " 0.759775\n", - " -1.122763\n", + " 1052\n", + " -0.044227\n", + " -0.720416\n", + " 0.137092\n", + " 0.647637\n", + " 0.314959\n", + " 0.352890\n", + " -0.740561\n", + " 0.243173\n", + " 0.200584\n", + " -0.077415\n", + " 0.502856\n", + " -1.054903\n", + " -0.640993\n", + " 0.487138\n", + " 0.657265\n", + " -0.037375\n", + " -0.695303\n", + " 0.191161\n", + " -1.090055\n", + " -0.068124\n", " \n", " \n", "\n", - "

1050 rows × 20 columns

\n", + "

1053 rows × 20 columns

\n", "" ], "text/plain": [ " 0 1 2 3 4 5 6 \\\n", - "0 -0.960548 0.535780 0.385748 1.101508 3.875988 1.070799 -4.849534 \n", - "1 -1.162390 0.251178 0.186549 0.988687 3.733672 0.626086 -4.566340 \n", - "2 -0.560644 0.339182 0.291281 1.226845 4.163576 0.812360 -4.543347 \n", - "3 -2.838000 -0.670331 1.331425 -2.872283 0.375439 4.298521 -0.158841 \n", - "4 -2.556705 0.965237 -0.061232 1.352170 4.276524 1.577441 -2.324412 \n", + "0 0.691481 2.209414 -0.028238 -3.102651 -6.051851 -4.399188 1.494551 \n", + "1 1.133341 2.010200 0.034295 -3.511348 -6.168634 -4.438835 1.501480 \n", + "2 0.889183 1.994394 0.298426 -3.311967 -6.078265 -4.414866 1.892591 \n", + "3 -0.646802 0.181007 3.715522 -2.697770 -3.893324 -2.743762 3.565471 \n", + "4 -1.035309 2.155994 2.598428 -2.220484 -3.731646 -5.091130 0.684202 \n", "... ... ... ... ... ... ... ... \n", - "1045 0.331984 0.523769 0.103705 0.561897 0.521912 -0.852221 -1.032729 \n", - "1046 0.166020 -0.576071 0.473827 -0.074774 0.542515 -0.566927 0.635151 \n", - "1047 0.471930 -0.705889 0.055459 -0.975193 0.099381 -0.253793 0.181459 \n", - "1048 -0.236891 0.118807 -0.029381 -0.073577 -0.089825 0.016194 0.573447 \n", - "1049 0.303921 -0.329447 -0.198187 -0.968494 0.568693 -0.778354 0.738360 \n", + "1048 0.982386 0.199625 0.242164 0.701167 0.086144 0.239413 -0.610572 \n", + "1049 -0.476996 0.232066 0.222565 0.665518 0.754919 0.228781 -0.198005 \n", + "1050 0.593625 0.780458 -0.585766 0.862500 0.254637 0.434878 0.584161 \n", + "1051 -0.290302 0.441311 -0.392705 0.700237 0.249166 0.561223 0.262957 \n", + "1052 -0.044227 -0.720416 0.137092 0.647637 0.314959 0.352890 -0.740561 \n", "\n", " 7 8 9 10 11 12 13 \\\n", - "0 -1.820060 -2.966034 1.655846 1.737207 -3.332000 -5.323652 -4.393471 \n", - "1 -2.196690 -2.987178 1.805605 2.033937 -3.546881 -4.945525 -4.785186 \n", - "2 -2.294925 -2.825094 1.498989 1.761113 -3.436803 -4.634498 -4.171238 \n", - "3 -0.170265 -2.612220 0.694892 3.447092 -2.284607 -2.858946 -4.312414 \n", - "4 -0.380508 -2.863870 1.455134 3.609730 -4.132732 -2.480354 -0.950713 \n", + "0 3.911412 1.233372 -1.093439 -2.843520 4.784419 3.531888 1.781903 \n", + "1 3.788925 1.539473 -1.206030 -2.927973 5.059699 3.198847 2.033874 \n", + "2 3.692539 1.490572 -0.934464 -2.777043 4.707861 3.570221 1.604899 \n", + "3 0.644597 1.519284 -2.263462 -6.164203 -0.487320 -0.520860 1.543796 \n", + "4 3.040052 -0.834740 -0.962661 -2.506616 0.919390 1.237634 2.343424 \n", "... ... ... ... ... ... ... ... \n", - "1045 0.337699 0.679176 0.848446 -0.056654 -0.641469 -0.082838 0.306723 \n", - "1046 0.547837 0.188676 -0.798186 -0.598822 0.590872 -0.403117 0.617905 \n", - "1047 -0.095714 0.663958 -1.006062 -0.361706 0.433246 1.090418 0.211187 \n", - "1048 -0.264896 0.540209 -0.282678 -0.073139 0.051319 0.419923 0.305243 \n", - "1049 -0.507104 0.589299 -1.071499 0.007456 0.132762 0.568386 0.526633 \n", + "1048 0.003339 -0.191435 0.340636 1.121649 -0.151060 0.603027 0.298779 \n", + "1049 0.019199 0.066273 0.677850 0.649621 -0.102975 -0.216284 -0.052017 \n", + "1050 0.377837 0.176423 0.112464 0.538818 -0.277135 -0.932592 0.744540 \n", + "1051 0.390204 0.032661 0.709470 1.001394 0.263612 -0.283346 -0.086741 \n", + "1052 0.243173 0.200584 -0.077415 0.502856 -1.054903 -0.640993 0.487138 \n", "\n", " 14 15 16 17 18 19 \n", - "0 -1.154701 0.506530 -1.585463 -4.248538 2.294325 3.957590 \n", - "1 -0.997341 0.217447 -1.068717 -4.298778 2.283113 3.929447 \n", - "2 -1.194322 0.629293 -1.354635 -4.453906 1.763564 3.575306 \n", - "3 -5.989464 -0.026698 -1.416963 -5.212801 -4.163705 -0.600494 \n", - "4 -2.587649 0.175977 -1.113148 -5.748485 -2.448518 1.200612 \n", + "0 -1.022948 2.940790 0.113284 -2.272277 2.151206 -1.033226 \n", + "1 -0.791365 2.995087 0.466563 -2.738615 1.885887 -1.118297 \n", + "2 -0.718914 2.540431 0.189408 -2.243979 1.923425 -1.102676 \n", + "3 -2.588697 5.150163 -2.530453 -4.829188 -2.231499 -0.524451 \n", + "4 -2.708177 2.688421 -3.461588 -3.509613 1.979434 -0.196468 \n", "... ... ... ... ... ... ... \n", - "1045 -0.225306 -0.910874 -0.478912 -0.061075 -0.083310 -0.278903 \n", - "1046 1.012607 0.195247 0.337702 0.182143 0.600068 -0.636223 \n", - "1047 -0.207774 -0.705345 0.371806 0.108446 0.908669 -1.126879 \n", - "1048 -0.105601 -0.014267 -0.833588 0.948402 0.214101 0.181394 \n", - "1049 -0.031978 0.094264 0.673068 0.048564 0.759775 -1.122763 \n", + "1048 0.463613 0.059714 -0.116532 -0.401311 0.606212 -0.117687 \n", + "1049 -0.199819 -0.479769 0.478262 0.752321 -0.099475 0.694736 \n", + "1050 0.473525 -0.962508 0.862409 -0.226568 0.046969 0.055784 \n", + "1051 0.408808 -0.817566 0.490443 -0.158993 0.112197 -0.007195 \n", + "1052 0.657265 -0.037375 -0.695303 0.191161 -1.090055 -0.068124 \n", "\n", - "[1050 rows x 20 columns]" + "[1053 rows x 20 columns]" ] }, - "execution_count": 152, + "execution_count": 145, "metadata": {}, "output_type": "execute_result" } @@ -4211,7 +4357,7 @@ }, { "cell_type": "code", - "execution_count": 153, + "execution_count": 146, "metadata": {}, "outputs": [ { @@ -4259,119 +4405,119 @@ " \n", " \n", " \n", - " test/20368\n", - " -0.960548\n", - " 0.535780\n", - " 0.385748\n", - " 1.101508\n", - " 3.875988\n", - " 1.070799\n", - " -4.849534\n", - " -1.820060\n", - " -2.966034\n", - " 1.655846\n", - " 1.737207\n", - " -3.332000\n", - " -5.323652\n", - " -4.393471\n", - " -1.154701\n", - " 0.506530\n", - " -1.585463\n", - " -4.248538\n", - " 2.294325\n", - " 3.957590\n", - " \n", - " \n", " test/20442\n", - " -1.162390\n", - " 0.251178\n", - " 0.186549\n", - " 0.988687\n", - " 3.733672\n", - " 0.626086\n", - " -4.566340\n", - " -2.196690\n", - " -2.987178\n", - " 1.805605\n", - " 2.033937\n", - " -3.546881\n", - " -4.945525\n", - " -4.785186\n", - " -0.997341\n", - " 0.217447\n", - " -1.068717\n", - " -4.298778\n", - " 2.283113\n", - " 3.929447\n", + " 0.691481\n", + " 2.209414\n", + " -0.028238\n", + " -3.102651\n", + " -6.051851\n", + " -4.399188\n", + " 1.494551\n", + " 3.911412\n", + " 1.233372\n", + " -1.093439\n", + " -2.843520\n", + " 4.784419\n", + " 3.531888\n", + " 1.781903\n", + " -1.022948\n", + " 2.940790\n", + " 0.113284\n", + " -2.272277\n", + " 2.151206\n", + " -1.033226\n", " \n", " \n", " test/20221\n", - " -0.560644\n", - " 0.339182\n", - " 0.291281\n", - " 1.226845\n", - " 4.163576\n", - " 0.812360\n", - " -4.543347\n", - " -2.294925\n", - " -2.825094\n", - " 1.498989\n", - " 1.761113\n", - " -3.436803\n", - " -4.634498\n", - " -4.171238\n", - " -1.194322\n", - " 0.629293\n", - " -1.354635\n", - " -4.453906\n", - " 1.763564\n", - " 3.575306\n", + " 1.133341\n", + " 2.010200\n", + " 0.034295\n", + " -3.511348\n", + " -6.168634\n", + " -4.438835\n", + " 1.501480\n", + " 3.788925\n", + " 1.539473\n", + " -1.206030\n", + " -2.927973\n", + " 5.059699\n", + " 3.198847\n", + " 2.033874\n", + " -0.791365\n", + " 2.995087\n", + " 0.466563\n", + " -2.738615\n", + " 1.885887\n", + " -1.118297\n", + " \n", + " \n", + " test/20368\n", + " 0.889183\n", + " 1.994394\n", + " 0.298426\n", + " -3.311967\n", + " -6.078265\n", + " -4.414866\n", + " 1.892591\n", + " 3.692539\n", + " 1.490572\n", + " -0.934464\n", + " -2.777043\n", + " 4.707861\n", + " 3.570221\n", + " 1.604899\n", + " -0.718914\n", + " 2.540431\n", + " 0.189408\n", + " -2.243979\n", + " 1.923425\n", + " -1.102676\n", " \n", " \n", " test/16715\n", - " -2.838000\n", - " -0.670331\n", - " 1.331425\n", - " -2.872283\n", - " 0.375439\n", - " 4.298521\n", - " -0.158841\n", - " -0.170265\n", - " -2.612220\n", - " 0.694892\n", - " 3.447092\n", - " -2.284607\n", - " -2.858946\n", - " -4.312414\n", - " -5.989464\n", - " -0.026698\n", - " -1.416963\n", - " -5.212801\n", - " -4.163705\n", - " -0.600494\n", + " -0.646802\n", + " 0.181007\n", + " 3.715522\n", + " -2.697770\n", + " -3.893324\n", + " -2.743762\n", + " 3.565471\n", + " 0.644597\n", + " 1.519284\n", + " -2.263462\n", + " -6.164203\n", + " -0.487320\n", + " -0.520860\n", + " 1.543796\n", + " -2.588697\n", + " 5.150163\n", + " -2.530453\n", + " -4.829188\n", + " -2.231499\n", + " -0.524451\n", " \n", " \n", - " test/20800\n", - " -2.556705\n", - " 0.965237\n", - " -0.061232\n", - " 1.352170\n", - " 4.276524\n", - " 1.577441\n", - " -2.324412\n", - " -0.380508\n", - " -2.863870\n", - " 1.455134\n", - " 3.609730\n", - " -4.132732\n", - " -2.480354\n", - " -0.950713\n", - " -2.587649\n", - " 0.175977\n", - " -1.113148\n", - " -5.748485\n", - " -2.448518\n", - " 1.200612\n", + " test/21227\n", + " -1.035309\n", + " 2.155994\n", + " 2.598428\n", + " -2.220484\n", + " -3.731646\n", + " -5.091130\n", + " 0.684202\n", + " 3.040052\n", + " -0.834740\n", + " -0.962661\n", + " -2.506616\n", + " 0.919390\n", + " 1.237634\n", + " 2.343424\n", + " -2.708177\n", + " 2.688421\n", + " -3.461588\n", + " -3.509613\n", + " 1.979434\n", + " -0.196468\n", " \n", " \n", " ...\n", @@ -4397,182 +4543,182 @@ " ...\n", " \n", " \n", - " test/20255\n", - " 0.331984\n", - " 0.523769\n", - " 0.103705\n", - " 0.561897\n", - " 0.521912\n", - " -0.852221\n", - " -1.032729\n", - " 0.337699\n", - " 0.679176\n", - " 0.848446\n", - " -0.056654\n", - " -0.641469\n", - " -0.082838\n", - " 0.306723\n", - " -0.225306\n", - " -0.910874\n", - " -0.478912\n", - " -0.061075\n", - " -0.083310\n", - " -0.278903\n", + " training/1467\n", + " 0.982386\n", + " 0.199625\n", + " 0.242164\n", + " 0.701167\n", + " 0.086144\n", + " 0.239413\n", + " -0.610572\n", + " 0.003339\n", + " -0.191435\n", + " 0.340636\n", + " 1.121649\n", + " -0.151060\n", + " 0.603027\n", + " 0.298779\n", + " 0.463613\n", + " 0.059714\n", + " -0.116532\n", + " -0.401311\n", + " 0.606212\n", + " -0.117687\n", " \n", " \n", - " test/20266\n", - " 0.166020\n", - " -0.576071\n", - " 0.473827\n", - " -0.074774\n", - " 0.542515\n", - " -0.566927\n", - " 0.635151\n", - " 0.547837\n", - " 0.188676\n", - " -0.798186\n", - " -0.598822\n", - " 0.590872\n", - " -0.403117\n", - " 0.617905\n", - " 1.012607\n", - " 0.195247\n", - " 0.337702\n", - " 0.182143\n", - " 0.600068\n", - " -0.636223\n", + " test/16584\n", + " -0.476996\n", + " 0.232066\n", + " 0.222565\n", + " 0.665518\n", + " 0.754919\n", + " 0.228781\n", + " -0.198005\n", + " 0.019199\n", + " 0.066273\n", + " 0.677850\n", + " 0.649621\n", + " -0.102975\n", + " -0.216284\n", + " -0.052017\n", + " -0.199819\n", + " -0.479769\n", + " 0.478262\n", + " 0.752321\n", + " -0.099475\n", + " 0.694736\n", " \n", " \n", - " training/10885\n", - " 0.471930\n", - " -0.705889\n", - " 0.055459\n", - " -0.975193\n", - " 0.099381\n", - " -0.253793\n", - " 0.181459\n", - " -0.095714\n", - " 0.663958\n", - " -1.006062\n", - " -0.361706\n", - " 0.433246\n", - " 1.090418\n", - " 0.211187\n", - " -0.207774\n", - " -0.705345\n", - " 0.371806\n", - " 0.108446\n", - " 0.908669\n", - " -1.126879\n", + " training/9306\n", + " 0.593625\n", + " 0.780458\n", + " -0.585766\n", + " 0.862500\n", + " 0.254637\n", + " 0.434878\n", + " 0.584161\n", + " 0.377837\n", + " 0.176423\n", + " 0.112464\n", + " 0.538818\n", + " -0.277135\n", + " -0.932592\n", + " 0.744540\n", + " 0.473525\n", + " -0.962508\n", + " 0.862409\n", + " -0.226568\n", + " 0.046969\n", + " 0.055784\n", " \n", " \n", - " training/11154\n", - " -0.236891\n", - " 0.118807\n", - " -0.029381\n", - " -0.073577\n", - " -0.089825\n", - " 0.016194\n", - " 0.573447\n", - " -0.264896\n", - " 0.540209\n", - " -0.282678\n", - " -0.073139\n", - " 0.051319\n", - " 0.419923\n", - " 0.305243\n", - " -0.105601\n", - " -0.014267\n", - " -0.833588\n", - " 0.948402\n", - " 0.214101\n", - " 0.181394\n", + " training/9588\n", + " -0.290302\n", + " 0.441311\n", + " -0.392705\n", + " 0.700237\n", + " 0.249166\n", + " 0.561223\n", + " 0.262957\n", + " 0.390204\n", + " 0.032661\n", + " 0.709470\n", + " 1.001394\n", + " 0.263612\n", + " -0.283346\n", + " -0.086741\n", + " 0.408808\n", + " -0.817566\n", + " 0.490443\n", + " -0.158993\n", + " 0.112197\n", + " -0.007195\n", " \n", " \n", " training/1532\n", - " 0.303921\n", - " -0.329447\n", - " -0.198187\n", - " -0.968494\n", - " 0.568693\n", - " -0.778354\n", - " 0.738360\n", - " -0.507104\n", - " 0.589299\n", - " -1.071499\n", - " 0.007456\n", - " 0.132762\n", - " 0.568386\n", - " 0.526633\n", - " -0.031978\n", - " 0.094264\n", - " 0.673068\n", - " 0.048564\n", - " 0.759775\n", - " -1.122763\n", + " -0.044227\n", + " -0.720416\n", + " 0.137092\n", + " 0.647637\n", + " 0.314959\n", + " 0.352890\n", + " -0.740561\n", + " 0.243173\n", + " 0.200584\n", + " -0.077415\n", + " 0.502856\n", + " -1.054903\n", + " -0.640993\n", + " 0.487138\n", + " 0.657265\n", + " -0.037375\n", + " -0.695303\n", + " 0.191161\n", + " -1.090055\n", + " -0.068124\n", " \n", " \n", "\n", - "

1050 rows × 20 columns

\n", + "

1053 rows × 20 columns

\n", "" ], "text/plain": [ - " 0 1 2 3 4 5 \\\n", - "test/20368 -0.960548 0.535780 0.385748 1.101508 3.875988 1.070799 \n", - "test/20442 -1.162390 0.251178 0.186549 0.988687 3.733672 0.626086 \n", - "test/20221 -0.560644 0.339182 0.291281 1.226845 4.163576 0.812360 \n", - "test/16715 -2.838000 -0.670331 1.331425 -2.872283 0.375439 4.298521 \n", - "test/20800 -2.556705 0.965237 -0.061232 1.352170 4.276524 1.577441 \n", - "... ... ... ... ... ... ... \n", - "test/20255 0.331984 0.523769 0.103705 0.561897 0.521912 -0.852221 \n", - "test/20266 0.166020 -0.576071 0.473827 -0.074774 0.542515 -0.566927 \n", - "training/10885 0.471930 -0.705889 0.055459 -0.975193 0.099381 -0.253793 \n", - "training/11154 -0.236891 0.118807 -0.029381 -0.073577 -0.089825 0.016194 \n", - "training/1532 0.303921 -0.329447 -0.198187 -0.968494 0.568693 -0.778354 \n", + " 0 1 2 3 4 5 \\\n", + "test/20442 0.691481 2.209414 -0.028238 -3.102651 -6.051851 -4.399188 \n", + "test/20221 1.133341 2.010200 0.034295 -3.511348 -6.168634 -4.438835 \n", + "test/20368 0.889183 1.994394 0.298426 -3.311967 -6.078265 -4.414866 \n", + "test/16715 -0.646802 0.181007 3.715522 -2.697770 -3.893324 -2.743762 \n", + "test/21227 -1.035309 2.155994 2.598428 -2.220484 -3.731646 -5.091130 \n", + "... ... ... ... ... ... ... \n", + "training/1467 0.982386 0.199625 0.242164 0.701167 0.086144 0.239413 \n", + "test/16584 -0.476996 0.232066 0.222565 0.665518 0.754919 0.228781 \n", + "training/9306 0.593625 0.780458 -0.585766 0.862500 0.254637 0.434878 \n", + "training/9588 -0.290302 0.441311 -0.392705 0.700237 0.249166 0.561223 \n", + "training/1532 -0.044227 -0.720416 0.137092 0.647637 0.314959 0.352890 \n", "\n", - " 6 7 8 9 10 11 \\\n", - "test/20368 -4.849534 -1.820060 -2.966034 1.655846 1.737207 -3.332000 \n", - "test/20442 -4.566340 -2.196690 -2.987178 1.805605 2.033937 -3.546881 \n", - "test/20221 -4.543347 -2.294925 -2.825094 1.498989 1.761113 -3.436803 \n", - "test/16715 -0.158841 -0.170265 -2.612220 0.694892 3.447092 -2.284607 \n", - "test/20800 -2.324412 -0.380508 -2.863870 1.455134 3.609730 -4.132732 \n", - "... ... ... ... ... ... ... \n", - "test/20255 -1.032729 0.337699 0.679176 0.848446 -0.056654 -0.641469 \n", - "test/20266 0.635151 0.547837 0.188676 -0.798186 -0.598822 0.590872 \n", - "training/10885 0.181459 -0.095714 0.663958 -1.006062 -0.361706 0.433246 \n", - "training/11154 0.573447 -0.264896 0.540209 -0.282678 -0.073139 0.051319 \n", - "training/1532 0.738360 -0.507104 0.589299 -1.071499 0.007456 0.132762 \n", + " 6 7 8 9 10 11 \\\n", + "test/20442 1.494551 3.911412 1.233372 -1.093439 -2.843520 4.784419 \n", + "test/20221 1.501480 3.788925 1.539473 -1.206030 -2.927973 5.059699 \n", + "test/20368 1.892591 3.692539 1.490572 -0.934464 -2.777043 4.707861 \n", + "test/16715 3.565471 0.644597 1.519284 -2.263462 -6.164203 -0.487320 \n", + "test/21227 0.684202 3.040052 -0.834740 -0.962661 -2.506616 0.919390 \n", + "... ... ... ... ... ... ... \n", + "training/1467 -0.610572 0.003339 -0.191435 0.340636 1.121649 -0.151060 \n", + "test/16584 -0.198005 0.019199 0.066273 0.677850 0.649621 -0.102975 \n", + "training/9306 0.584161 0.377837 0.176423 0.112464 0.538818 -0.277135 \n", + "training/9588 0.262957 0.390204 0.032661 0.709470 1.001394 0.263612 \n", + "training/1532 -0.740561 0.243173 0.200584 -0.077415 0.502856 -1.054903 \n", "\n", - " 12 13 14 15 16 17 \\\n", - "test/20368 -5.323652 -4.393471 -1.154701 0.506530 -1.585463 -4.248538 \n", - "test/20442 -4.945525 -4.785186 -0.997341 0.217447 -1.068717 -4.298778 \n", - "test/20221 -4.634498 -4.171238 -1.194322 0.629293 -1.354635 -4.453906 \n", - "test/16715 -2.858946 -4.312414 -5.989464 -0.026698 -1.416963 -5.212801 \n", - "test/20800 -2.480354 -0.950713 -2.587649 0.175977 -1.113148 -5.748485 \n", - "... ... ... ... ... ... ... \n", - "test/20255 -0.082838 0.306723 -0.225306 -0.910874 -0.478912 -0.061075 \n", - "test/20266 -0.403117 0.617905 1.012607 0.195247 0.337702 0.182143 \n", - "training/10885 1.090418 0.211187 -0.207774 -0.705345 0.371806 0.108446 \n", - "training/11154 0.419923 0.305243 -0.105601 -0.014267 -0.833588 0.948402 \n", - "training/1532 0.568386 0.526633 -0.031978 0.094264 0.673068 0.048564 \n", + " 12 13 14 15 16 17 \\\n", + "test/20442 3.531888 1.781903 -1.022948 2.940790 0.113284 -2.272277 \n", + "test/20221 3.198847 2.033874 -0.791365 2.995087 0.466563 -2.738615 \n", + "test/20368 3.570221 1.604899 -0.718914 2.540431 0.189408 -2.243979 \n", + "test/16715 -0.520860 1.543796 -2.588697 5.150163 -2.530453 -4.829188 \n", + "test/21227 1.237634 2.343424 -2.708177 2.688421 -3.461588 -3.509613 \n", + "... ... ... ... ... ... ... \n", + "training/1467 0.603027 0.298779 0.463613 0.059714 -0.116532 -0.401311 \n", + "test/16584 -0.216284 -0.052017 -0.199819 -0.479769 0.478262 0.752321 \n", + "training/9306 -0.932592 0.744540 0.473525 -0.962508 0.862409 -0.226568 \n", + "training/9588 -0.283346 -0.086741 0.408808 -0.817566 0.490443 -0.158993 \n", + "training/1532 -0.640993 0.487138 0.657265 -0.037375 -0.695303 0.191161 \n", "\n", - " 18 19 \n", - "test/20368 2.294325 3.957590 \n", - "test/20442 2.283113 3.929447 \n", - "test/20221 1.763564 3.575306 \n", - "test/16715 -4.163705 -0.600494 \n", - "test/20800 -2.448518 1.200612 \n", - "... ... ... \n", - "test/20255 -0.083310 -0.278903 \n", - "test/20266 0.600068 -0.636223 \n", - "training/10885 0.908669 -1.126879 \n", - "training/11154 0.214101 0.181394 \n", - "training/1532 0.759775 -1.122763 \n", + " 18 19 \n", + "test/20442 2.151206 -1.033226 \n", + "test/20221 1.885887 -1.118297 \n", + "test/20368 1.923425 -1.102676 \n", + "test/16715 -2.231499 -0.524451 \n", + "test/21227 1.979434 -0.196468 \n", + "... ... ... \n", + "training/1467 0.606212 -0.117687 \n", + "test/16584 -0.099475 0.694736 \n", + "training/9306 0.046969 0.055784 \n", + "training/9588 0.112197 -0.007195 \n", + "training/1532 -1.090055 -0.068124 \n", "\n", - "[1050 rows x 20 columns]" + "[1053 rows x 20 columns]" ] }, - "execution_count": 153, + "execution_count": 146, "metadata": {}, "output_type": "execute_result" } @@ -4583,7 +4729,7 @@ }, { "cell_type": "code", - "execution_count": 154, + "execution_count": 147, "metadata": {}, "outputs": [ { @@ -4592,9 +4738,9 @@ "text": [ "Name: \n", "Type: Graph\n", - "Number of nodes: 25752\n", - "Number of edges: 100311\n", - "Average degree: 7.7905\n" + "Number of nodes: 25931\n", + "Number of edges: 100712\n", + "Average degree: 7.7677\n" ] } ], @@ -4611,7 +4757,7 @@ }, { "cell_type": "code", - "execution_count": 159, + "execution_count": 148, "metadata": {}, "outputs": [], "source": [ @@ -4621,15 +4767,15 @@ }, { "cell_type": "code", - "execution_count": 155, + "execution_count": 149, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Computing transition probabilities: 100%|██████████| 25752/25752 [03:59<00:00, 107.40it/s] \n", - "Generating walks (CPU: 1): 100%|██████████| 10/10 [34:19<00:00, 205.97s/it]\n" + "Computing transition probabilities: 100%|█████████████████████████| 25931/25931 [01:42<00:00, 254.10it/s]\n", + "Generating walks (CPU: 1): 100%|████████████████████████████████████████| 10/10 [16:49<00:00, 100.92s/it]\n" ] } ], @@ -4646,13 +4792,20 @@ "pd.DataFrame(embeddings.vectors, index=embeddings.index2word)\\\n", " .to_pickle(f\"./embeddings/bipartiteGraphEmbeddings_{dimensions}_{window}.p\")" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "ml-book-7", + "display_name": "chap8", "language": "python", - "name": "ml-book-7" + "name": "chap8" }, "language_info": { "codemirror_mode": { @@ -4664,7 +4817,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.6" + "version": "3.8.14" } }, "nbformat": 4, diff --git a/Chapter08/02_supervised_classification-embeddings.ipynb b/Chapter08/02_supervised_classification-embeddings.ipynb index 254c806..596f3f9 100644 --- a/Chapter08/02_supervised_classification-embeddings.ipynb +++ b/Chapter08/02_supervised_classification-embeddings.ipynb @@ -125,7 +125,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -135,7 +135,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -151,7 +151,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -163,7 +163,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -173,7 +173,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -183,7 +183,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -197,7 +197,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -213,7 +213,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -224,7 +224,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -233,7 +233,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -245,7 +245,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -254,7 +254,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -263,21 +263,16 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['./bipartiteGraphEmbeddings_20_10.p',\n", - " './bipartiteGraphEmbeddings_10.p',\n", - " './bipartiteGraphEmbeddings_20_30.p',\n", - " './bipartiteGraphEmbeddings_20.p',\n", - " './bipartiteGraphEmbeddings_20_20.p',\n", - " './bipartiteGraphEmbeddings_30.p']" + "['./embeddings/bipartiteGraphEmbeddings_10_20.p']" ] }, - "execution_count": 27, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -288,7 +283,7 @@ }, { "cell_type": "code", - "execution_count": 237, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -302,7 +297,7 @@ }, { "cell_type": "code", - "execution_count": 255, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -311,7 +306,7 @@ }, { "cell_type": "code", - "execution_count": 256, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -320,7 +315,7 @@ }, { "cell_type": "code", - "execution_count": 257, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -330,16 +325,17 @@ }, { "cell_type": "code", - "execution_count": 258, + "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/Users/deusebio/.pyenv/versions/3.7.6/envs/ml-book-7/lib/python3.7/site-packages/sklearn/model_selection/_search.py:921: UserWarning: One or more of the test scores are non-finite: [nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n", - " nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan]\n", - " category=UserWarning\n" + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/sklearn/model_selection/_search.py:918: UserWarning: One or more of the test scores are non-finite: [nan nan nan nan nan nan]\n", + " warnings.warn(\n", + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/sklearn/model_selection/_search.py:931: RuntimeWarning: invalid value encountered in cast\n", + " results[\"rank_%s\" % key_name] = np.asarray(\n" ] } ], @@ -349,7 +345,7 @@ }, { "cell_type": "code", - "execution_count": 259, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -357,22 +353,17 @@ "text/plain": [ "GridSearchCV(cv=5,\n", " estimator=Pipeline(steps=[('embeddings',\n", - " EmbeddingsTransformer(embeddings_file='bipartiteGraphEmbeddings_20.p')),\n", + " EmbeddingsTransformer(embeddings_file='./embeddings/bipartiteGraphEmbeddings_10_20.p')),\n", " ('model',\n", - " MultiOutputClassifier(estimator=RandomForestClassifier(class_weight='balanced')))]),\n", + " MultiOutputClassifier(estimator=RandomForestClassifier()))]),\n", " n_jobs=-1,\n", - " param_grid={'embeddings__embeddings_file': ['./bipartiteGraphEmbeddings_20_10.p',\n", - " './bipartiteGraphEmbeddings_10.p',\n", - " './bipartiteGraphEmbeddings_20_30.p',\n", - " './bipartiteGraphEmbeddings_20.p',\n", - " './bipartiteGraphEmbeddings_20_20.p',\n", - " './bipartiteGraphEmbeddings_30.p'],\n", + " param_grid={'embeddings__embeddings_file': ['./embeddings/bipartiteGraphEmbeddings_10_20.p'],\n", " 'model__estimator__max_features': [0.2, 0.3, 'auto'],\n", " 'model__estimator__n_estimators': [50, 100]},\n", - " scoring= at 0x14af7ee60>)" + " scoring= at 0x7f5fd7adf3a0>)" ] }, - "execution_count": 259, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -383,18 +374,18 @@ }, { "cell_type": "code", - "execution_count": 260, + "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'embeddings__embeddings_file': './bipartiteGraphEmbeddings_20_10.p',\n", + "{'embeddings__embeddings_file': './embeddings/bipartiteGraphEmbeddings_10_20.p',\n", " 'model__estimator__max_features': 0.2,\n", " 'model__estimator__n_estimators': 50}" ] }, - "execution_count": 260, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -412,7 +403,7 @@ }, { "cell_type": "code", - "execution_count": 261, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -426,7 +417,7 @@ }, { "cell_type": "code", - "execution_count": 262, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ @@ -436,7 +427,7 @@ }, { "cell_type": "code", - "execution_count": 263, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -445,16 +436,16 @@ }, { "cell_type": "code", - "execution_count": 264, + "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.6702547542160029" + "0.7072120559741657" ] }, - "execution_count": 264, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -465,7 +456,7 @@ }, { "cell_type": "code", - "execution_count": 265, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ @@ -474,7 +465,7 @@ }, { "cell_type": "code", - "execution_count": 266, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -483,21 +474,21 @@ "text": [ " precision recall f1-score support\n", "\n", - " 0 0.97 0.94 0.95 1087\n", - " 1 0.93 0.74 0.83 719\n", - " 2 0.79 0.45 0.57 179\n", - " 3 0.96 0.64 0.77 149\n", - " 4 0.95 0.59 0.73 189\n", - " 5 0.95 0.45 0.61 117\n", - " 6 0.87 0.41 0.56 131\n", - " 7 0.83 0.21 0.34 89\n", - " 8 0.69 0.34 0.45 71\n", - " 9 0.61 0.25 0.35 56\n", + " 0 0.96 0.94 0.95 1087\n", + " 1 0.94 0.83 0.88 719\n", + " 2 0.77 0.67 0.72 179\n", + " 3 0.93 0.71 0.81 149\n", + " 4 0.89 0.67 0.76 189\n", + " 5 0.83 0.43 0.56 117\n", + " 6 0.79 0.44 0.56 131\n", + " 7 0.88 0.33 0.48 89\n", + " 8 0.76 0.44 0.55 71\n", + " 9 0.61 0.20 0.30 56\n", "\n", - " micro avg 0.94 0.72 0.81 2787\n", - " macro avg 0.85 0.50 0.62 2787\n", - "weighted avg 0.92 0.72 0.79 2787\n", - " samples avg 0.76 0.75 0.75 2787\n", + " micro avg 0.92 0.77 0.84 2787\n", + " macro avg 0.84 0.56 0.66 2787\n", + "weighted avg 0.91 0.77 0.83 2787\n", + " samples avg 0.81 0.80 0.80 2787\n", "\n" ] }, @@ -505,7 +496,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/Users/deusebio/.pyenv/versions/3.7.6/envs/ml-book-7/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1245: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in samples with no predicted labels. Use `zero_division` parameter to control this behavior.\n", + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/sklearn/metrics/_classification.py:1245: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in samples with no predicted labels. Use `zero_division` parameter to control this behavior.\n", " _warn_prf(average, modifier, msg_start, len(result))\n" ] } @@ -513,13 +504,20 @@ "source": [ "print(classification_report(labels, preds))" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "ml-book-7", + "display_name": "chap8", "language": "python", - "name": "ml-book-7" + "name": "chap8" }, "language_info": { "codemirror_mode": { @@ -531,7 +529,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.6" + "version": "3.8.14" } }, "nbformat": 4, diff --git a/Chapter08/03_supervised_classification_graphSAGE-TFIDF.ipynb b/Chapter08/03_supervised_classification_graphSAGE-TFIDF.ipynb new file mode 100644 index 0000000..94ee104 --- /dev/null +++ b/Chapter08/03_supervised_classification_graphSAGE-TFIDF.ipynb @@ -0,0 +1,1712 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Graph Neural Network Topic Classifier" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the following we will focus on building a model for topic classification based on a Graph Neural Network approach.\n", + "\n", + "In particular in the following we will show you how to:\n", + "\n", + "* Create a TF-IDF representation of the corpus, that will be used as node features in the Graph Neural Network model \n", + "* Build, train a Graph Neural Network model and identify the best threshold for classifying documents \n", + "* Test the performance of the model in a out-of-sample tests, following a truly inductive approach \n", + "\n", + "**NOTE: This Notebook can only be run after the 01_nlp_graph_creation notebook, as some of the results computed in the first notebook will be here reused.**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import nltk " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import networkx as nx" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "corpus = pd.read_pickle(\"corpus.p\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
clean_textlabellanguageparsed
id
test/14826ASIAN EXPORTERS FEAR DAMAGE FROM U.S.-JAPAN RI...[trade]en(ASIAN, EXPORTERS, FEAR, DAMAGE, FROM, U.S.-JA...
test/14828CHINA DAILY SAYS VERMIN EAT 7-12 PCT GRAIN STO...[grain]en(CHINA, DAILY, SAYS, VERMIN, EAT, 7, -, 12, PC...
test/14829JAPAN TO REVISE LONG-TERM ENERGY DEMAND DOWNWA...[crude, nat-gas]en(JAPAN, TO, REVISE, LONG, -, TERM, ENERGY, DEM...
test/14832THAI TRADE DEFICIT WIDENS IN FIRST QUARTER Th...[corn, grain, rice, rubber, sugar, tin, trade]en(THAI, TRADE, DEFICIT, WIDENS, IN, FIRST, QUAR...
test/14833INDONESIA SEES CPO PRICE RISING SHARPLY Indon...[palm-oil, veg-oil]en(INDONESIA, SEES, CPO, PRICE, RISING, SHARPLY,...
\n", + "
" + ], + "text/plain": [ + " clean_text \\\n", + "id \n", + "test/14826 ASIAN EXPORTERS FEAR DAMAGE FROM U.S.-JAPAN RI... \n", + "test/14828 CHINA DAILY SAYS VERMIN EAT 7-12 PCT GRAIN STO... \n", + "test/14829 JAPAN TO REVISE LONG-TERM ENERGY DEMAND DOWNWA... \n", + "test/14832 THAI TRADE DEFICIT WIDENS IN FIRST QUARTER Th... \n", + "test/14833 INDONESIA SEES CPO PRICE RISING SHARPLY Indon... \n", + "\n", + " label language \\\n", + "id \n", + "test/14826 [trade] en \n", + "test/14828 [grain] en \n", + "test/14829 [crude, nat-gas] en \n", + "test/14832 [corn, grain, rice, rubber, sugar, tin, trade] en \n", + "test/14833 [palm-oil, veg-oil] en \n", + "\n", + " parsed \n", + "id \n", + "test/14826 (ASIAN, EXPORTERS, FEAR, DAMAGE, FROM, U.S.-JA... \n", + "test/14828 (CHINA, DAILY, SAYS, VERMIN, EAT, 7, -, 12, PC... \n", + "test/14829 (JAPAN, TO, REVISE, LONG, -, TERM, ENERGY, DEM... \n", + "test/14832 (THAI, TRADE, DEFICIT, WIDENS, IN, FIRST, QUAR... \n", + "test/14833 (INDONESIA, SEES, CPO, PRICE, RISING, SHARPLY,... " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "corpus.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from collections import Counter\n", + "topics = Counter([label for document_labels in corpus[\"label\"] for label in document_labels]).most_common(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[('earn', 3964),\n", + " ('acq', 2369),\n", + " ('money-fx', 717),\n", + " ('grain', 582),\n", + " ('crude', 578),\n", + " ('trade', 485),\n", + " ('interest', 478),\n", + " ('ship', 286),\n", + " ('wheat', 283),\n", + " ('corn', 237)]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "topics" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "topicsList = [topic[0] for topic in topics]\n", + "topicsSet = set(topicsList)\n", + "dataset = corpus[corpus[\"label\"].apply(lambda x: len(topicsSet.intersection(x))>0)]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def get_labels(corpus, topicsList=topicsList):\n", + " return corpus[\"label\"].apply(\n", + " lambda labels: pd.Series({label: 1 for label in labels}).reindex(topicsList).fillna(0)\n", + " )[topicsList]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "labels = get_labels(dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
earnacqmoney-fxgraincrudetradeinterestshipwheatcorn
id
test/148260.00.00.00.00.01.00.00.00.00.0
test/148280.00.00.01.00.00.00.00.00.00.0
test/148290.00.00.00.01.00.00.00.00.00.0
test/148320.00.00.01.00.01.00.00.00.01.0
test/148390.00.00.00.00.00.00.01.00.00.0
\n", + "
" + ], + "text/plain": [ + " earn acq money-fx grain crude trade interest ship wheat \\\n", + "id \n", + "test/14826 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 \n", + "test/14828 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 \n", + "test/14829 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 \n", + "test/14832 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 \n", + "test/14839 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 \n", + "\n", + " corn \n", + "id \n", + "test/14826 0.0 \n", + "test/14828 0.0 \n", + "test/14829 0.0 \n", + "test/14832 1.0 \n", + "test/14839 0.0 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "labels.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "def get_features(corpus):\n", + " return corpus[\"parsed\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "def get_features_and_labels(corpus):\n", + " return get_features(corpus), get_labels(corpus)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "def train_test_split(corpus):\n", + " train_idx = [idx for idx in corpus.index if \"training/\" in idx]\n", + " test_idx = [idx for idx in corpus.index if \"test/\" in idx]\n", + " return corpus.loc[train_idx], corpus.loc[test_idx]" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "train, test = train_test_split(dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "def my_spacy_tokenizer(pos_filter=[\"NOUN\", \"VERB\", \"PROPN\"]):\n", + " def tokenizer(doc):\n", + " return [token.lemma_ for token in doc if (pos_filter is None) or (token.pos_ in pos_filter)] \n", + " return tokenizer" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.feature_extraction.text import TfidfVectorizer" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "cntVectorizer = TfidfVectorizer(\n", + " analyzer=my_spacy_tokenizer(),\n", + " max_df = 0.25, min_df = 2, max_features = 10000\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "trainFeatures, _ = get_features_and_labels(train)\n", + "testFeatures, _ = get_features_and_labels(test)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "trainedTransformed = cntVectorizer.fit_transform(trainFeatures)\n", + "testTransformed = cntVectorizer.transform(testFeatures)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "features = pd.concat([\n", + " pd.DataFrame.sparse.from_spmatrix(trainedTransformed, index=trainFeatures.index), \n", + " pd.DataFrame.sparse.from_spmatrix(testTransformed, index=testFeatures.index)\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(9034, 10000)" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "features.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Creating the Graph" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-11-16 22:50:43.187158: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n", + "2024-11-16 22:50:43.187173: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n", + "2024-11-16 22:50:46.819716: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory\n", + "2024-11-16 22:50:46.819732: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)\n", + "2024-11-16 22:50:46.819742: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (pelican): /proc/driver/nvidia/version does not exist\n", + "2024-11-16 22:50:46.820221: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA\n", + "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" + ] + } + ], + "source": [ + "import stellargraph as sg\n", + "from stellargraph import StellarGraph, IndexedArray\n", + "from stellargraph.mapper import GraphSAGENodeGenerator\n", + "from stellargraph.layer import GraphSAGE\n", + "\n", + "from tensorflow.keras import layers, optimizers, losses, metrics, Model" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "edges = pd.read_pickle(\"bipartiteEdges.p\")" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "entityTypes = {entity: ith for ith, entity in enumerate(edges[\"type\"].unique())}" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'keywords': 0, 'GPE': 1, 'ORG': 2, 'PERSON': 3}" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "entityTypes" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "documentFeatures = features.loc[list(set(corpus.index).intersection(features.index))] #.assign(document=1, entity=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456789...9990999199929993999499959996999799989999
id
training/98500.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
training/62080.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
test/183250.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
training/8590.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
training/1280.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
\n", + "

5 rows × 10000 columns

\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 9 \\\n", + "id \n", + "training/9850 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "training/6208 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "test/18325 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "training/859 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "training/128 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " ... 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 \n", + "id ... \n", + "training/9850 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "training/6208 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "test/18325 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "training/859 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "training/128 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + "[5 rows x 10000 columns]" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "documentFeatures.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "entities = edges.groupby([\"target\", \"type\"])[\"source\"].count().groupby(level=0).apply(\n", + " lambda s: s.droplevel(0).reindex(entityTypes.keys()).fillna(0)\n", + ").unstack(level=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "entityFeatures = (entities.T / entities.sum(axis=1)).T.assign(document=0, entity=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "nodes = {\"entity\": entityFeatures, \n", + " \"document\": documentFeatures}" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "stellarGraph = StellarGraph(nodes, \n", + " edges[edges[\"source\"].isin(documentFeatures.index)], \n", + " edge_type_column=\"type\")" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "StellarGraph: Undirected multigraph\n", + " Nodes: 24177, Edges: 87658\n", + "\n", + " Node types:\n", + " entity: [15143]\n", + " Features: float32 vector, length 6\n", + " Edge types: entity-GPE->document, entity-ORG->document, entity-PERSON->document, entity-keywords->document\n", + " document: [9034]\n", + " Features: float32 vector, length 10000\n", + " Edge types: document-GPE->entity, document-ORG->entity, document-PERSON->entity, document-keywords->entity\n", + "\n", + " Edge types:\n", + " document-keywords->entity: [78828]\n", + " Weights: range=[0.0827011, 1], mean=0.258479, std=0.0898449\n", + " Features: none\n", + " document-ORG->entity: [4275]\n", + " Weights: range=[2, 24], mean=3.33427, std=2.38695\n", + " Features: none\n", + " document-GPE->entity: [3141]\n", + " Weights: range=[2, 26], mean=3.1958, std=2.03227\n", + " Features: none\n", + " document-PERSON->entity: [1414]\n", + " Weights: range=[2, 18], mean=3.17327, std=1.97911\n", + " Features: none\n" + ] + } + ], + "source": [ + "print(stellarGraph.info())" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "from stellargraph.data import EdgeSplitter" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "splitter = EdgeSplitter(stellarGraph)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "** Sampled 17531 positive and 17531 negative edges. **\n" + ] + } + ], + "source": [ + "graphTest, samplesTest, labelsTest = splitter.train_test_split(p=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "StellarGraph: Undirected multigraph\n", + " Nodes: 24177, Edges: 87658\n", + "\n", + " Node types:\n", + " entity: [15143]\n", + " Features: float32 vector, length 6\n", + " Edge types: entity-GPE->document, entity-ORG->document, entity-PERSON->document, entity-keywords->document\n", + " document: [9034]\n", + " Features: float32 vector, length 10000\n", + " Edge types: document-GPE->entity, document-ORG->entity, document-PERSON->entity, document-keywords->entity\n", + "\n", + " Edge types:\n", + " document-keywords->entity: [78828]\n", + " Weights: range=[0.0827011, 1], mean=0.258479, std=0.0898449\n", + " Features: none\n", + " document-ORG->entity: [4275]\n", + " Weights: range=[2, 24], mean=3.33427, std=2.38695\n", + " Features: none\n", + " document-GPE->entity: [3141]\n", + " Weights: range=[2, 26], mean=3.1958, std=2.03227\n", + " Features: none\n", + " document-PERSON->entity: [1414]\n", + " Weights: range=[2, 18], mean=3.17327, std=1.97911\n", + " Features: none\n" + ] + } + ], + "source": [ + "print(stellarGraph.info())" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "StellarGraph: Undirected multigraph\n", + " Nodes: 24177, Edges: 70127\n", + "\n", + " Node types:\n", + " entity: [15143]\n", + " Features: float32 vector, length 6\n", + " Edge types: entity-GPE->document, entity-ORG->document, entity-PERSON->document, entity-keywords->document\n", + " document: [9034]\n", + " Features: float32 vector, length 10000\n", + " Edge types: document-GPE->entity, document-ORG->entity, document-PERSON->entity, document-keywords->entity\n", + "\n", + " Edge types:\n", + " document-keywords->entity: [63078]\n", + " Weights: range=[0.0827011, 1], mean=0.258399, std=0.0897861\n", + " Features: none\n", + " document-ORG->entity: [3404]\n", + " Weights: range=[2, 22], mean=3.31463, std=2.35368\n", + " Features: none\n", + " document-GPE->entity: [2529]\n", + " Weights: range=[2, 26], mean=3.21669, std=2.04549\n", + " Features: none\n", + " document-PERSON->entity: [1116]\n", + " Weights: range=[2, 18], mean=3.18907, std=2.03272\n", + " Features: none\n" + ] + } + ], + "source": [ + "print(graphTest.info())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Creating a Topic Classification Model " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We start by splitting the data into train, validation and test" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "targets = labels.reindex(documentFeatures.index).fillna(0)\n", + "#documentFeatures.drop([\"entity\", \"document\"], axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
earnacqmoney-fxgraincrudetradeinterestshipwheatcorn
id
training/98500.01.00.00.00.00.00.00.00.00.0
training/62080.00.00.00.01.00.00.00.00.00.0
test/183250.01.00.00.01.00.00.00.00.00.0
training/8591.00.00.00.00.00.00.00.00.00.0
training/1280.01.00.00.00.00.00.00.00.00.0
\n", + "
" + ], + "text/plain": [ + " earn acq money-fx grain crude trade interest ship \\\n", + "id \n", + "training/9850 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "training/6208 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 \n", + "test/18325 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 \n", + "training/859 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "training/128 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " wheat corn \n", + "id \n", + "training/9850 0.0 0.0 \n", + "training/6208 0.0 0.0 \n", + "test/18325 0.0 0.0 \n", + "training/859 0.0 0.0 \n", + "training/128 0.0 0.0 " + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "targets.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "def train_test_split(corpus):\n", + " graphIndex = [index for index in corpus.index]\n", + " \n", + " train_idx = [idx for idx in graphIndex if \"training/\" in idx]\n", + " test_idx = [idx for idx in graphIndex if \"test/\" in idx]\n", + " return corpus.loc[train_idx], corpus.loc[test_idx]" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "sampled, hold_out = train_test_split(targets)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "allNeighbors = np.unique([n for node in sampled.index for n in stellarGraph.neighbors(node)])" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "subgraph = stellarGraph.subgraph(set(sampled.index).union(allNeighbors))" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "StellarGraph: Undirected multigraph\n", + " Nodes: 17075, Edges: 63031\n", + "\n", + " Node types:\n", + " entity: [10586]\n", + " Features: float32 vector, length 6\n", + " Edge types: entity-GPE->document, entity-ORG->document, entity-PERSON->document, entity-keywords->document\n", + " document: [6489]\n", + " Features: float32 vector, length 10000\n", + " Edge types: document-GPE->entity, document-ORG->entity, document-PERSON->entity, document-keywords->entity\n", + "\n", + " Edge types:\n", + " document-keywords->entity: [56639]\n", + " Weights: range=[0.0918226, 1], mean=0.257404, std=0.0887759\n", + " Features: none\n", + " document-ORG->entity: [3126]\n", + " Weights: range=[2, 22], mean=3.30742, std=2.29417\n", + " Features: none\n", + " document-GPE->entity: [2230]\n", + " Weights: range=[2, 26], mean=3.23767, std=2.07487\n", + " Features: none\n", + " document-PERSON->entity: [1036]\n", + " Weights: range=[2, 18], mean=3.17664, std=2.04459\n", + " Features: none\n" + ] + } + ], + "source": [ + "print(subgraph.info())" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "train, leftOut = train_test_split(\n", + " sampled,\n", + " train_size=0.1,\n", + " test_size=None,\n", + " random_state=42,\n", + ")\n", + "\n", + "validation, test = train_test_split(\n", + " leftOut, train_size=0.2, test_size=None, random_state=100,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "validation = validation[validation.sum(axis=1) > 0]\n", + "test = test[test.sum(axis=1) > 0]" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Validation: (1168, 10)\n", + "Test: (4673, 10)\n" + ] + } + ], + "source": [ + "print(f\"Validation: {validation.shape}\")\n", + "print(f\"Test: {test.shape}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Training the Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We start by creating the model " + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [], + "source": [ + "batch_size = 50\n", + "num_samples = [10, 5]" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "from stellargraph.mapper import HinSAGENodeGenerator\n", + "\n", + "generator = HinSAGENodeGenerator(subgraph, batch_size, num_samples, head_node_type=\"document\")" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [], + "source": [ + "from stellargraph.layer import HinSAGE\n", + "\n", + "graphsage_model = HinSAGE(\n", + " layer_sizes=[32, 32], generator=generator, bias=True, dropout=0.5,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "x_inp, x_out = graphsage_model.in_out_tensors()\n", + "prediction = layers.Dense(units=train.shape[1], activation=\"sigmoid\")(x_out)" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "TensorShape([None, 10])" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "prediction.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model(inputs=x_inp, outputs=prediction)\n", + "model.compile(\n", + " optimizer=optimizers.Adam(learning_rate=0.005),\n", + " loss=losses.binary_crossentropy,\n", + " metrics=[\"acc\"],\n", + ")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now train the model " + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "train_gen = generator.flow(train.index, train, shuffle=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [], + "source": [ + "val_gen = generator.flow(validation.index, validation)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/50\n", + "13/13 [==============================] - 66s 5s/step - loss: 0.6189 - acc: 0.2809 - val_loss: 0.5097 - val_acc: 0.4486\n", + "Epoch 2/50\n", + "13/13 [==============================] - 67s 5s/step - loss: 0.4761 - acc: 0.4630 - val_loss: 0.4201 - val_acc: 0.4486\n", + "Epoch 3/50\n", + "13/13 [==============================] - 62s 5s/step - loss: 0.3971 - acc: 0.4599 - val_loss: 0.3610 - val_acc: 0.4486\n", + "Epoch 4/50\n", + "13/13 [==============================] - 61s 5s/step - loss: 0.3475 - acc: 0.4599 - val_loss: 0.3228 - val_acc: 0.4486\n", + "Epoch 5/50\n", + "13/13 [==============================] - 72s 6s/step - loss: 0.3132 - acc: 0.4676 - val_loss: 0.2949 - val_acc: 0.4486\n", + "Epoch 6/50\n", + "13/13 [==============================] - 73s 6s/step - loss: 0.2871 - acc: 0.5293 - val_loss: 0.2715 - val_acc: 0.4983\n", + "Epoch 7/50\n", + "13/13 [==============================] - 62s 5s/step - loss: 0.2663 - acc: 0.6173 - val_loss: 0.2513 - val_acc: 0.6310\n", + "Epoch 8/50\n", + "13/13 [==============================] - 69s 5s/step - loss: 0.2468 - acc: 0.6836 - val_loss: 0.2348 - val_acc: 0.6524\n", + "Epoch 9/50\n", + "13/13 [==============================] - 73s 6s/step - loss: 0.2309 - acc: 0.7130 - val_loss: 0.2211 - val_acc: 0.6892\n", + "Epoch 10/50\n", + "13/13 [==============================] - 71s 6s/step - loss: 0.2156 - acc: 0.7392 - val_loss: 0.2096 - val_acc: 0.7397\n", + "Epoch 11/50\n" + ] + } + ], + "source": [ + "history = model.fit(\n", + " train_gen, epochs=50, validation_data=val_gen, verbose=1, shuffle=False\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sg.utils.plot_history(history)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "history = model.fit(\n", + " train_gen, epochs=50, validation_data=val_gen, verbose=1, shuffle=False\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sg.utils.plot_history(history)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Threshold identification" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "test_gen = generator.flow(test.index, test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "test_metrics = model.evaluate(test_gen)\n", + "print(\"\\nTest Set Metrics:\")\n", + "for name, val in zip(model.metrics_names, test_metrics):\n", + " print(\"\\t{}: {:0.4f}\".format(name, val))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "test_predictions = pd.DataFrame(model.predict(test_gen), index=test.index, columns=test.columns)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "test_results = pd.concat({\n", + " \"target\": test, \n", + " \"preds\": test_predictions\n", + "}, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import f1_score, classification_report" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "f1s = {}\n", + "\n", + "for th in [0.01,0.05,0.1,0.2,0.3,0.4,0.5]:\n", + " f1s[th] = f1_score(test_results[\"target\"], 1.0*(test_results[\"preds\"]>th), average=\"macro\")\n", + " \n", + "pd.Series(f1s).plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As it can be seen, with a threshold of about 0.2 we obtain the best performances. We thus use this value for producing the classification report" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(classification_report(test_results[\"target\"], 1.0*(test_results[\"preds\"]>0.2)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Inductive Prediction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now provide a prediction truly inductive, thus we will be using the full graph and we will also use the threshold of 0.2 we have identified above as the one providing the top f1-score. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "generator = HinSAGENodeGenerator(stellarGraph, batch_size, num_samples, head_node_type=\"document\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "hold_out = hold_out[hold_out.sum(axis=1) > 0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "hold_out_gen = generator.flow(hold_out.index, hold_out)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "hold_out_predictions = model.predict(hold_out_gen)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "preds = pd.DataFrame(1.0*(hold_out_predictions > 0.2), index=hold_out.index, columns=hold_out.columns)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "results = pd.concat({\n", + " \"target\": hold_out, \n", + " \"preds\": preds\n", + "}, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(classification_report(results[\"target\"], results[\"preds\"]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "chap8", + "language": "python", + "name": "chap8" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.14" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Chapter08/03_supervised_classsification_graphSAGE-TFIDF.ipynb b/Chapter08/03_supervised_classsification_graphSAGE-TFIDF.ipynb deleted file mode 100644 index 0058503..0000000 --- a/Chapter08/03_supervised_classsification_graphSAGE-TFIDF.ipynb +++ /dev/null @@ -1,1884 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Graph Neural Network Topic Classifier" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the following we will focus on building a model for topic classification based on a Graph Neural Network approach.\n", - "\n", - "In particular in the following we will show you how to:\n", - "\n", - "* Create a TF-IDF representation of the corpus, that will be used as node features in the Graph Neural Network model \n", - "* Build, train a Graph Neural Network model and identify the best threshold for classifying documents \n", - "* Test the performance of the model in a out-of-sample tests, following a truly inductive approach \n", - "\n", - "**NOTE: This Notebook can only be run after the 01_nlp_graph_creation notebook, as some of the results computed in the first notebook will be here reused.**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Load Dataset" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import nltk " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd\n", - "import networkx as nx" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "corpus = pd.read_pickle(\"corpus.p\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
labelclean_textparsedlanguage
id
test/14826[trade]ASIAN EXPORTERS FEAR DAMAGE FROM U.S.-JAPAN RI...(ASIAN, EXPORTERS, FEAR, DAMAGE, FROM, U.S.-JA...en
test/14828[grain]CHINA DAILY SAYS VERMIN EAT 7-12 PCT GRAIN STO...(CHINA, DAILY, SAYS, VERMIN, EAT, 7, -, 12, PC...en
test/14829[crude, nat-gas]JAPAN TO REVISE LONG-TERM ENERGY DEMAND DOWNWA...(JAPAN, TO, REVISE, LONG, -, TERM, ENERGY, DEM...en
test/14832[corn, grain, rice, rubber, sugar, tin, trade]THAI TRADE DEFICIT WIDENS IN FIRST QUARTER Th...(THAI, TRADE, DEFICIT, WIDENS, IN, FIRST, QUAR...en
test/14833[palm-oil, veg-oil]INDONESIA SEES CPO PRICE RISING SHARPLY Indon...(INDONESIA, SEES, CPO, PRICE, RISING, SHARPLY,...en
\n", - "
" - ], - "text/plain": [ - " label \\\n", - "id \n", - "test/14826 [trade] \n", - "test/14828 [grain] \n", - "test/14829 [crude, nat-gas] \n", - "test/14832 [corn, grain, rice, rubber, sugar, tin, trade] \n", - "test/14833 [palm-oil, veg-oil] \n", - "\n", - " clean_text \\\n", - "id \n", - "test/14826 ASIAN EXPORTERS FEAR DAMAGE FROM U.S.-JAPAN RI... \n", - "test/14828 CHINA DAILY SAYS VERMIN EAT 7-12 PCT GRAIN STO... \n", - "test/14829 JAPAN TO REVISE LONG-TERM ENERGY DEMAND DOWNWA... \n", - "test/14832 THAI TRADE DEFICIT WIDENS IN FIRST QUARTER Th... \n", - "test/14833 INDONESIA SEES CPO PRICE RISING SHARPLY Indon... \n", - "\n", - " parsed language \n", - "id \n", - "test/14826 (ASIAN, EXPORTERS, FEAR, DAMAGE, FROM, U.S.-JA... en \n", - "test/14828 (CHINA, DAILY, SAYS, VERMIN, EAT, 7, -, 12, PC... en \n", - "test/14829 (JAPAN, TO, REVISE, LONG, -, TERM, ENERGY, DEM... en \n", - "test/14832 (THAI, TRADE, DEFICIT, WIDENS, IN, FIRST, QUAR... en \n", - "test/14833 (INDONESIA, SEES, CPO, PRICE, RISING, SHARPLY,... en " - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "corpus.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from collections import Counter\n", - "topics = Counter([label for document_labels in corpus[\"label\"] for label in document_labels]).most_common(10)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[('earn', 3964),\n", - " ('acq', 2369),\n", - " ('money-fx', 717),\n", - " ('grain', 582),\n", - " ('crude', 578),\n", - " ('trade', 485),\n", - " ('interest', 478),\n", - " ('ship', 286),\n", - " ('wheat', 283),\n", - " ('corn', 237)]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "topics" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "topicsList = [topic[0] for topic in topics]\n", - "topicsSet = set(topicsList)\n", - "dataset = corpus[corpus[\"label\"].apply(lambda x: len(topicsSet.intersection(x))>0)]" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "def get_labels(corpus, topicsList=topicsList):\n", - " return corpus[\"label\"].apply(\n", - " lambda labels: pd.Series({label: 1 for label in labels}).reindex(topicsList).fillna(0)\n", - " )[topicsList]" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "labels = get_labels(dataset)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
earnacqmoney-fxgraincrudetradeinterestshipwheatcorn
id
test/148260.00.00.00.00.01.00.00.00.00.0
test/148280.00.00.01.00.00.00.00.00.00.0
test/148290.00.00.00.01.00.00.00.00.00.0
test/148320.00.00.01.00.01.00.00.00.01.0
test/148390.00.00.00.00.00.00.01.00.00.0
\n", - "
" - ], - "text/plain": [ - " earn acq money-fx grain crude trade interest ship wheat \\\n", - "id \n", - "test/14826 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 \n", - "test/14828 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 \n", - "test/14829 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 \n", - "test/14832 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 \n", - "test/14839 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 \n", - "\n", - " corn \n", - "id \n", - "test/14826 0.0 \n", - "test/14828 0.0 \n", - "test/14829 0.0 \n", - "test/14832 1.0 \n", - "test/14839 0.0 " - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "labels.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "def get_features(corpus):\n", - " return corpus[\"parsed\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "def get_features_and_labels(corpus):\n", - " return get_features(corpus), get_labels(corpus)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "def train_test_split(corpus):\n", - " train_idx = [idx for idx in corpus.index if \"training/\" in idx]\n", - " test_idx = [idx for idx in corpus.index if \"test/\" in idx]\n", - " return corpus.loc[train_idx], corpus.loc[test_idx]" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "train, test = train_test_split(dataset)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "def my_spacy_tokenizer(pos_filter=[\"NOUN\", \"VERB\", \"PROPN\"]):\n", - " def tokenizer(doc):\n", - " return [token.lemma_ for token in doc if (pos_filter is None) or (token.pos_ in pos_filter)] \n", - " return tokenizer" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.feature_extraction.text import TfidfVectorizer" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "cntVectorizer = TfidfVectorizer(\n", - " analyzer=my_spacy_tokenizer(),\n", - " max_df = 0.25, min_df = 2, max_features = 10000\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "trainFeatures, _ = get_features_and_labels(train)\n", - "testFeatures, _ = get_features_and_labels(test)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "trainedTransformed = cntVectorizer.fit_transform(trainFeatures)\n", - "testTransformed = cntVectorizer.transform(testFeatures)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "features = pd.concat([\n", - " pd.DataFrame.sparse.from_spmatrix(trainedTransformed, index=trainFeatures.index), \n", - " pd.DataFrame.sparse.from_spmatrix(testTransformed, index=testFeatures.index)\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(9034, 10000)" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "features.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Creating the Graph" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "import stellargraph as sg\n", - "from stellargraph import StellarGraph, IndexedArray\n", - "from stellargraph.mapper import GraphSAGENodeGenerator\n", - "from stellargraph.layer import GraphSAGE\n", - "\n", - "from tensorflow.keras import layers, optimizers, losses, metrics, Model" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "edges = pd.read_pickle(\"bipartiteEdges.p\")" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "entityTypes = {entity: ith for ith, entity in enumerate(edges[\"type\"].unique())}" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'keywords': 0, 'GPE': 1, 'ORG': 2, 'PERSON': 3}" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "entityTypes" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "documentFeatures = features.loc[set(corpus.index).intersection(features.index)] #.assign(document=1, entity=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0123456789...9990999199929993999499959996999799989999
id
training/92380.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
test/152960.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
test/152870.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
training/59380.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
test/214650.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
\n", - "

5 rows × 10000 columns

\n", - "
" - ], - "text/plain": [ - " 0 1 2 3 4 5 6 7 8 9 \\\n", - "id \n", - "training/9238 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "test/15296 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "test/15287 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "training/5938 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "test/21465 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "\n", - " ... 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 \n", - "id ... \n", - "training/9238 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "test/15296 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "test/15287 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "training/5938 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "test/21465 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "\n", - "[5 rows x 10000 columns]" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "documentFeatures.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "entities = edges.groupby([\"target\", \"type\"])[\"source\"].count().groupby(level=0).apply(\n", - " lambda s: s.droplevel(0).reindex(entityTypes.keys()).fillna(0)\n", - ").unstack(level=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "entityFeatures = (entities.T / entities.sum(axis=1)).T.assign(document=0, entity=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "nodes = {\"entity\": entityFeatures, \n", - " \"document\": documentFeatures}" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "stellarGraph = StellarGraph(nodes, \n", - " edges[edges[\"source\"].isin(documentFeatures.index)], \n", - " edge_type_column=\"type\")" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "StellarGraph: Undirected multigraph\n", - " Nodes: 23998, Edges: 86849\n", - "\n", - " Node types:\n", - " entity: [14964]\n", - " Features: float32 vector, length 6\n", - " Edge types: entity-GPE->document, entity-ORG->document, entity-PERSON->document, entity-keywords->document\n", - " document: [9034]\n", - " Features: float32 vector, length 10000\n", - " Edge types: document-GPE->entity, document-ORG->entity, document-PERSON->entity, document-keywords->entity\n", - "\n", - " Edge types:\n", - " document-keywords->entity: [78838]\n", - " Weights: range=[0.0827011, 1], mean=0.258464, std=0.0898612\n", - " Features: none\n", - " document-ORG->entity: [4129]\n", - " Weights: range=[2, 22], mean=3.24122, std=2.30508\n", - " Features: none\n", - " document-GPE->entity: [2943]\n", - " Weights: range=[2, 25], mean=3.25926, std=2.07008\n", - " Features: none\n", - " document-PERSON->entity: [939]\n", - " Weights: range=[2, 14], mean=2.97444, std=1.65956\n", - " Features: none\n" - ] - } - ], - "source": [ - "print(stellarGraph.info())" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "from stellargraph.data import EdgeSplitter" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "splitter = EdgeSplitter(stellarGraph)" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "** Sampled 17369 positive and 17369 negative edges. **\n" - ] - } - ], - "source": [ - "graphTest, samplesTest, labelsTest = splitter.train_test_split(p=0.2)" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "StellarGraph: Undirected multigraph\n", - " Nodes: 23998, Edges: 86849\n", - "\n", - " Node types:\n", - " entity: [14964]\n", - " Features: float32 vector, length 6\n", - " Edge types: entity-GPE->document, entity-ORG->document, entity-PERSON->document, entity-keywords->document\n", - " document: [9034]\n", - " Features: float32 vector, length 10000\n", - " Edge types: document-GPE->entity, document-ORG->entity, document-PERSON->entity, document-keywords->entity\n", - "\n", - " Edge types:\n", - " document-keywords->entity: [78838]\n", - " Weights: range=[0.0827011, 1], mean=0.258464, std=0.0898612\n", - " Features: none\n", - " document-ORG->entity: [4129]\n", - " Weights: range=[2, 22], mean=3.24122, std=2.30508\n", - " Features: none\n", - " document-GPE->entity: [2943]\n", - " Weights: range=[2, 25], mean=3.25926, std=2.07008\n", - " Features: none\n", - " document-PERSON->entity: [939]\n", - " Weights: range=[2, 14], mean=2.97444, std=1.65956\n", - " Features: none\n" - ] - } - ], - "source": [ - "print(stellarGraph.info())" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "StellarGraph: Undirected multigraph\n", - " Nodes: 23998, Edges: 69480\n", - "\n", - " Node types:\n", - " entity: [14964]\n", - " Features: float32 vector, length 6\n", - " Edge types: entity-GPE->document, entity-ORG->document, entity-PERSON->document, entity-keywords->document\n", - " document: [9034]\n", - " Features: float32 vector, length 10000\n", - " Edge types: document-GPE->entity, document-ORG->entity, document-PERSON->entity, document-keywords->entity\n", - "\n", - " Edge types:\n", - " document-keywords->entity: [63057]\n", - " Weights: range=[0.0827011, 1], mean=0.258427, std=0.0899773\n", - " Features: none\n", - " document-ORG->entity: [3296]\n", - " Weights: range=[2, 22], mean=3.21572, std=2.2592\n", - " Features: none\n", - " document-GPE->entity: [2360]\n", - " Weights: range=[2, 19], mean=3.24237, std=2.01535\n", - " Features: none\n", - " document-PERSON->entity: [767]\n", - " Weights: range=[2, 14], mean=3, std=1.69163\n", - " Features: none\n" - ] - } - ], - "source": [ - "print(graphTest.info())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Creating a Topic Classification Model " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We start by splitting the data into train, validation and test" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [], - "source": [ - "targets = labels.reindex(documentFeatures.index).fillna(0)\n", - "#documentFeatures.drop([\"entity\", \"document\"], axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
earnacqmoney-fxgraincrudetradeinterestshipwheatcorn
id
test/166781.00.00.00.00.00.00.00.00.00.0
test/159131.00.00.00.00.00.00.00.00.00.0
training/120320.01.00.00.00.00.00.00.00.00.0
training/83661.00.00.00.00.00.00.00.00.00.0
training/104540.01.00.00.00.00.00.00.00.00.0
\n", - "
" - ], - "text/plain": [ - " earn acq money-fx grain crude trade interest ship \\\n", - "id \n", - "test/16678 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "test/15913 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "training/12032 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "training/8366 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "training/10454 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "\n", - " wheat corn \n", - "id \n", - "test/16678 0.0 0.0 \n", - "test/15913 0.0 0.0 \n", - "training/12032 0.0 0.0 \n", - "training/8366 0.0 0.0 \n", - "training/10454 0.0 0.0 " - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "targets.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [], - "source": [ - "def train_test_split(corpus):\n", - " graphIndex = [index for index in corpus.index]\n", - " \n", - " train_idx = [idx for idx in graphIndex if \"training/\" in idx]\n", - " test_idx = [idx for idx in graphIndex if \"test/\" in idx]\n", - " return corpus.loc[train_idx], corpus.loc[test_idx]" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [], - "source": [ - "sampled, hold_out = train_test_split(targets)" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [], - "source": [ - "allNeighbors = np.unique([n for node in sampled.index for n in stellarGraph.neighbors(node)])" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [], - "source": [ - "subgraph = stellarGraph.subgraph(set(sampled.index).union(allNeighbors))" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "StellarGraph: Undirected multigraph\n", - " Nodes: 16927, Edges: 62454\n", - "\n", - " Node types:\n", - " entity: [10438]\n", - " Features: float32 vector, length 6\n", - " Edge types: entity-GPE->document, entity-ORG->document, entity-PERSON->document, entity-keywords->document\n", - " document: [6489]\n", - " Features: float32 vector, length 10000\n", - " Edge types: document-GPE->entity, document-ORG->entity, document-PERSON->entity, document-keywords->entity\n", - "\n", - " Edge types:\n", - " document-keywords->entity: [56647]\n", - " Weights: range=[0.0918226, 1], mean=0.25739, std=0.0888008\n", - " Features: none\n", - " document-ORG->entity: [3032]\n", - " Weights: range=[2, 22], mean=3.20877, std=2.21143\n", - " Features: none\n", - " document-GPE->entity: [2104]\n", - " Weights: range=[2, 25], mean=3.25808, std=2.08119\n", - " Features: none\n", - " document-PERSON->entity: [671]\n", - " Weights: range=[2, 14], mean=2.97615, std=1.66958\n", - " Features: none\n" - ] - } - ], - "source": [ - "print(subgraph.info())" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.model_selection import train_test_split\n", - "\n", - "train, leftOut = train_test_split(\n", - " sampled,\n", - " train_size=0.1,\n", - " test_size=None,\n", - " random_state=42,\n", - ")\n", - "\n", - "validation, test = train_test_split(\n", - " leftOut, train_size=0.2, test_size=None, random_state=100,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [], - "source": [ - "validation = validation[validation.sum(axis=1) > 0]\n", - "test = test[test.sum(axis=1) > 0]" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Validation: (1168, 10)\n", - "Test: (4673, 10)\n" - ] - } - ], - "source": [ - "print(f\"Validation: {validation.shape}\")\n", - "print(f\"Test: {test.shape}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Training the Model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We start by creating the model " - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [], - "source": [ - "batch_size = 50\n", - "num_samples = [10, 5]" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [], - "source": [ - "from stellargraph.mapper import HinSAGENodeGenerator\n", - "\n", - "generator = HinSAGENodeGenerator(subgraph, batch_size, num_samples, head_node_type=\"document\")" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [], - "source": [ - "from stellargraph.layer import HinSAGE\n", - "\n", - "graphsage_model = HinSAGE(\n", - " layer_sizes=[32, 32], generator=generator, bias=True, dropout=0.5,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [], - "source": [ - "x_inp, x_out = graphsage_model.in_out_tensors()\n", - "prediction = layers.Dense(units=train.shape[1], activation=\"sigmoid\")(x_out)" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "TensorShape([None, 10])" - ] - }, - "execution_count": 62, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "prediction.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [], - "source": [ - "model = Model(inputs=x_inp, outputs=prediction)\n", - "model.compile(\n", - " optimizer=optimizers.Adam(lr=0.005),\n", - " loss=losses.binary_crossentropy,\n", - " metrics=[\"acc\"],\n", - ")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now train the model " - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [], - "source": [ - "train_gen = generator.flow(train.index, train, shuffle=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [], - "source": [ - "val_gen = generator.flow(validation.index, validation)" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/50\n", - "13/13 [==============================] - 215s 17s/step - loss: 0.6139 - acc: 0.1365 - val_loss: 0.4780 - val_acc: 0.4401\n", - "Epoch 2/50\n", - "13/13 [==============================] - 169s 13s/step - loss: 0.4675 - acc: 0.4323 - val_loss: 0.4001 - val_acc: 0.4401\n", - "Epoch 3/50\n", - "13/13 [==============================] - 162s 13s/step - loss: 0.3973 - acc: 0.4319 - val_loss: 0.3486 - val_acc: 0.4401\n", - "Epoch 4/50\n", - "13/13 [==============================] - 153s 12s/step - loss: 0.3447 - acc: 0.4604 - val_loss: 0.3124 - val_acc: 0.4401\n", - "Epoch 5/50\n", - "13/13 [==============================] - 144s 11s/step - loss: 0.3090 - acc: 0.4997 - val_loss: 0.2853 - val_acc: 0.4932\n", - "Epoch 6/50\n", - "13/13 [==============================] - 159s 13s/step - loss: 0.2886 - acc: 0.5484 - val_loss: 0.2639 - val_acc: 0.6045\n", - "Epoch 7/50\n", - "13/13 [==============================] - 187s 15s/step - loss: 0.2612 - acc: 0.6354 - val_loss: 0.2453 - val_acc: 0.6387\n", - "Epoch 8/50\n", - "13/13 [==============================] - 203s 16s/step - loss: 0.2509 - acc: 0.6294 - val_loss: 0.2307 - val_acc: 0.6404\n", - "Epoch 9/50\n", - "13/13 [==============================] - 178s 14s/step - loss: 0.2370 - acc: 0.6489 - val_loss: 0.2160 - val_acc: 0.6789\n", - "Epoch 10/50\n", - "13/13 [==============================] - 190s 15s/step - loss: 0.2155 - acc: 0.6836 - val_loss: 0.2046 - val_acc: 0.7029\n", - "Epoch 11/50\n", - "13/13 [==============================] - 172s 14s/step - loss: 0.2047 - acc: 0.7310 - val_loss: 0.1938 - val_acc: 0.7260\n", - "Epoch 12/50\n", - "13/13 [==============================] - 145s 12s/step - loss: 0.2009 - acc: 0.7208 - val_loss: 0.1846 - val_acc: 0.7509\n", - "Epoch 13/50\n", - "13/13 [==============================] - 167s 13s/step - loss: 0.1834 - acc: 0.7843 - val_loss: 0.1755 - val_acc: 0.7860\n", - "Epoch 14/50\n", - "13/13 [==============================] - 208s 17s/step - loss: 0.1787 - acc: 0.7943 - val_loss: 0.1679 - val_acc: 0.8005\n", - "Epoch 15/50\n", - "13/13 [==============================] - 216s 17s/step - loss: 0.1718 - acc: 0.8123 - val_loss: 0.1598 - val_acc: 0.8365\n", - "Epoch 16/50\n", - "13/13 [==============================] - 201s 16s/step - loss: 0.1619 - acc: 0.8612 - val_loss: 0.1531 - val_acc: 0.8416\n", - "Epoch 17/50\n", - "13/13 [==============================] - 173s 14s/step - loss: 0.1609 - acc: 0.8378 - val_loss: 0.1470 - val_acc: 0.8502\n", - "Epoch 18/50\n", - "13/13 [==============================] - 157s 12s/step - loss: 0.1496 - acc: 0.8471 - val_loss: 0.1412 - val_acc: 0.8690\n", - "Epoch 19/50\n", - "13/13 [==============================] - 155s 12s/step - loss: 0.1471 - acc: 0.8600 - val_loss: 0.1379 - val_acc: 0.8604\n", - "Epoch 20/50\n", - "13/13 [==============================] - 154s 12s/step - loss: 0.1366 - acc: 0.8801 - val_loss: 0.1318 - val_acc: 0.8767\n", - "Epoch 21/50\n", - "13/13 [==============================] - 155s 12s/step - loss: 0.1362 - acc: 0.8708 - val_loss: 0.1285 - val_acc: 0.8664\n", - "Epoch 22/50\n", - "13/13 [==============================] - 156s 12s/step - loss: 0.1361 - acc: 0.8546 - val_loss: 0.1259 - val_acc: 0.8682\n", - "Epoch 23/50\n", - "13/13 [==============================] - 154s 12s/step - loss: 0.1197 - acc: 0.9104 - val_loss: 0.1231 - val_acc: 0.8733\n", - "Epoch 24/50\n", - "13/13 [==============================] - 146s 11s/step - loss: 0.1240 - acc: 0.8834 - val_loss: 0.1175 - val_acc: 0.8844\n", - "Epoch 25/50\n", - "13/13 [==============================] - 131s 10s/step - loss: 0.1145 - acc: 0.9165 - val_loss: 0.1165 - val_acc: 0.8853\n", - "Epoch 26/50\n", - "13/13 [==============================] - 131s 10s/step - loss: 0.1216 - acc: 0.8844 - val_loss: 0.1155 - val_acc: 0.8784\n", - "Epoch 27/50\n", - "13/13 [==============================] - 132s 11s/step - loss: 0.1084 - acc: 0.9093 - val_loss: 0.1111 - val_acc: 0.8878\n", - "Epoch 28/50\n", - "13/13 [==============================] - 127s 10s/step - loss: 0.1039 - acc: 0.9156 - val_loss: 0.1095 - val_acc: 0.8853\n", - "Epoch 29/50\n", - "13/13 [==============================] - 128s 10s/step - loss: 0.1066 - acc: 0.9175 - val_loss: 0.1095 - val_acc: 0.8818\n", - "Epoch 30/50\n", - "13/13 [==============================] - 194s 16s/step - loss: 0.0987 - acc: 0.9199 - val_loss: 0.1089 - val_acc: 0.8784\n", - "Epoch 31/50\n", - "13/13 [==============================] - 194s 16s/step - loss: 0.0995 - acc: 0.9164 - val_loss: 0.1047 - val_acc: 0.8827\n", - "Epoch 32/50\n", - "13/13 [==============================] - 206s 16s/step - loss: 0.0938 - acc: 0.9322 - val_loss: 0.1030 - val_acc: 0.8818\n", - "Epoch 33/50\n", - "13/13 [==============================] - 199s 16s/step - loss: 0.0907 - acc: 0.9205 - val_loss: 0.1014 - val_acc: 0.8853\n", - "Epoch 34/50\n", - "13/13 [==============================] - 213s 17s/step - loss: 0.0918 - acc: 0.9208 - val_loss: 0.0990 - val_acc: 0.8887\n", - "Epoch 35/50\n", - "13/13 [==============================] - 264s 21s/step - loss: 0.0887 - acc: 0.9342 - val_loss: 0.0978 - val_acc: 0.8878\n", - "Epoch 36/50\n", - "13/13 [==============================] - 378s 30s/step - loss: 0.0875 - acc: 0.9170 - val_loss: 0.0956 - val_acc: 0.8955\n", - "Epoch 37/50\n", - "13/13 [==============================] - 247s 19s/step - loss: 0.0856 - acc: 0.9363 - val_loss: 0.0969 - val_acc: 0.8896\n", - "Epoch 38/50\n", - "13/13 [==============================] - 224s 17s/step - loss: 0.0777 - acc: 0.9312 - val_loss: 0.0938 - val_acc: 0.8921\n", - "Epoch 39/50\n", - "13/13 [==============================] - 201s 16s/step - loss: 0.0837 - acc: 0.9205 - val_loss: 0.0930 - val_acc: 0.8938\n", - "Epoch 40/50\n", - "13/13 [==============================] - 201s 16s/step - loss: 0.0844 - acc: 0.9180 - val_loss: 0.0917 - val_acc: 0.8938\n", - "Epoch 41/50\n", - "13/13 [==============================] - 197s 16s/step - loss: 0.0731 - acc: 0.9353 - val_loss: 0.0917 - val_acc: 0.8938\n", - "Epoch 42/50\n", - "13/13 [==============================] - 210s 17s/step - loss: 0.0732 - acc: 0.9220 - val_loss: 0.0908 - val_acc: 0.8861\n", - "Epoch 43/50\n", - "13/13 [==============================] - 236s 19s/step - loss: 0.0718 - acc: 0.9440 - val_loss: 0.0923 - val_acc: 0.8896\n", - "Epoch 44/50\n", - "13/13 [==============================] - 186s 15s/step - loss: 0.0711 - acc: 0.9581 - val_loss: 0.0912 - val_acc: 0.8861\n", - "Epoch 45/50\n", - "13/13 [==============================] - 169s 13s/step - loss: 0.0704 - acc: 0.9449 - val_loss: 0.0893 - val_acc: 0.8887\n", - "Epoch 46/50\n", - "13/13 [==============================] - 183s 15s/step - loss: 0.0768 - acc: 0.9366 - val_loss: 0.0897 - val_acc: 0.8887\n", - "Epoch 47/50\n", - "13/13 [==============================] - 196s 16s/step - loss: 0.0723 - acc: 0.9305 - val_loss: 0.0861 - val_acc: 0.8990\n", - "Epoch 48/50\n", - "13/13 [==============================] - 154s 12s/step - loss: 0.0733 - acc: 0.9289 - val_loss: 0.0873 - val_acc: 0.8964\n", - "Epoch 49/50\n", - "13/13 [==============================] - 228s 18s/step - loss: 0.0691 - acc: 0.9568 - val_loss: 0.0878 - val_acc: 0.8998\n", - "Epoch 50/50\n", - "13/13 [==============================] - 211s 17s/step - loss: 0.0625 - acc: 0.9409 - val_loss: 0.0864 - val_acc: 0.8896\n" - ] - } - ], - "source": [ - "history = model.fit(\n", - " train_gen, epochs=50, validation_data=val_gen, verbose=1, shuffle=False\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAI4CAYAAACV/7uiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABuwklEQVR4nO3dd3hUVf7H8feZSe8JSYCQhCSAdKSDXdeu2F3Fspa17drXLeoW13XXXXf9ra59197Frth7V5AgSEdaIAkthSSkZzLn98edhCSEEglTks/reeaZmXtvZr4ZJZ855557jrHWIiIiIqHFFegCREREpOsU4CIiIiFIAS4iIhKCFOAiIiIhSAEuIiISgsICXcCeSk1NtTk5OYEuQ0REZK+YO3duqbU2reP2kA/wnJwc8vPzA12GiIjIXmGMWdvZdnWhi4iIhCAFuIiISAhSgIuIiIQgBbiIiEgIUoCLiIiEIAW4iIhICAr5y8h2xuv1UlpaSkVFBc3NzYEuR/YCt9tNUlISqampuFz6PioivUePDvCioiKMMeTk5BAeHo4xJtAlSTey1tLU1MSmTZsoKioiOzs70CWJiPhNj26y1NTUMGDAACIiIhTePZAxhoiICAYMGEBNTU2gyxER8aseHeCAulV7Af03FpG9rdlr+d9nqzjpvq94e+EGrLWBLqlnd6GLiIjsqXVltfz6xfnMKdhCalwElz/zHRMHJvPHaSMYm5UUsLrUdBEREemEtZYZ367j2Ls+Z9mGrdxxxr7M/v0R3HbqaArKajn5vq+4dsY81lfUBaQ+BXgv8fjjjxMWpg4XEZHdsbmqnoueyOeGVxayb1YS7/7qYE4dn4nbZZg+OZtPf3soVxw2iLcXbeSw//uUf7+/nJoGj19rVIAHsSOOOIILLrigW17rzDPPpLi4uFteS0SkJ3trwQaO+s/nfLWylD+fMIKnL5rCgKTodsfERYbx26OH8fGvD+GYUf245+OVHPp/n/L8nHU0e/1zflxNshDX2NhIRETELo+Ljo4mOjp6l8eJiPhTZV0Tc9aUM2t1GQVlNYzJTGJqXh/2zUokMszdbe/T7LWsKa1mS23TDo+xFp6dvZbX5q9nTGYid5wxlsHpcTt93czkGO6aPo4L9s/hb28t5fqXFxIbGca0MRndVvuOKMCD1AUXXMBHH30EwBNPPAHAY489xoUXXsjTTz/NM888w2effcaVV17JbbfdxqWXXsrHH3/M+vXr6d+/P9OnT+fPf/4zkZGRgNOFfvHFF+PxeNo9/+yzz7jqqqtYtmwZw4cP57///S+TJk0KzC8tIj1eZV0T+QVOYM9aXc7i9ZV4LUSEuchMjuajZZuxFiLDXEwYmMzUvD5dDvSaBg/LNm5lyYYqlqyvYsmGKpZvrKK+ybvLn3W7DL86Yh8uP2wQ4e7d76Qel53MS7/Yj4+XbebQoem7/XN7otcF+F/eWMyS9VV+f98RGQn8+YSRu338XXfdxerVq+nfvz933XUXAFVVTt3XX389//znP7nvvvsAZ6BFeno6zz77LH379mXBggVcdtllhIeH85e//GWH7+H1ernxxhu56667SEtL41e/+hVnnHEGK1as0PlyEek2FbWNPPdtIW8v3NAusMdnJ3H14UOYmteHsVlJRIW7qaxt4tvWgC/jzg9/aA30fbOSSIja8d+mZq9lbVkta8pqaLnKKzE6nJEZCZw7ZSAjMhJIi4/EsON5QTKTo8lJjf1Rv6cxhsOH9/1RP/tj6K90kEpMTCQiIoLo6Gj69esHQH19PQCXXXYZ55xzTrvjb7311tbHOTk5rFq1ivvvv3+nAW6t5T//+Q/jx48H4Oabb2bq1KmsWrWKoUOHdvevJCK9zMrN1Tz21Rpe/q6I+iYvEwcmbxfYHSXGhHPkiL4cOcIJworaRr5dU86s1eXMK9zChsr6nb7nkL5xnDR2ACMzEhiRkUD/xKgeO5FXrwvwrrSCg9XkyZO32/bQQw/x8MMPU1BQQE1NDR6PB693591Fxhj23Xff1ucZGc45m02bNinARaSdrfXOueP4qPCdHmet5fMVpTz65Ro++6GEiDAXp4wdwIUH5jCsX0KX3zcpJoKjRvbjqJH9flTdPVmvC/CeIDa2fffOiy++yBVXXMFtt93GIYccQkJCAi+++CJ/+MMfdvo6LpcLt3vbN+CWb6m7Cn4RCR7NXkt1vQevtSTFdP+aDxsr6/nvZ6t49tt1NHq8JEaHk5kc7bvFtN4PSIpmfmEFj361hpWbq0mLj+S6I/fhnCnZ9ImL7NaaxKEAD2IRERG7tYra559/zrhx47juuutatxUUFOzFykR6rqZmLxsq6inaUkvRljqKttRSUddEXGQYCdHhJESFkxAd5rsPJyEqjJiIMGoaPVTVNVFV33LfRFWdh6r6JmoaPGQmRzOifyIjMhJIid31lSPWWgrL61iyoZIl66soqqhrfb2quia2+t5na5trj6PD3Z2Ga2ZyNNkpMSTvxvu22FRVzwOfOsHt9VpOHT+AvLS41s9lVUkNn/1Qst3AsJEZCdxxxr4cP6Z/t44il+0pwINYbm4un3zyCatWrSIxMZGmps4vfxg6dCiPPPIIr7/+OqNGjeLNN9/klVde8XO1IsGlvqmZ+YUVzF5dzpbaxp0eW1XfRFG5E9Ybq+ppexmvyzjdxjUNHjw/4vreMJchOsLN1vptQds/MYoR/Z1ztCP6JzC8fwLVDZ7WEdNL1lexdENVazi7XYZ+CVGtXxiyUmK2+yIBsL6irjVgv1tXQWVd+78Zg9JiW0d1T8lLIT0+art6Owb3aeMzueKwwWT3idnuWGstZTWNrV90+iVEMWFgco895xxsFOBB7Ne//jULFy5k3333paamhscee6zT4y677DIWLlzIhRdeiMfjYdq0adx8881cddVVfq5YJHBaArtl9PJ36ypo9HgxBhJ2cd42NsJNZkoMUwf1adNyjSYrOYZ+iVGEu11Ya6lram7XCm5pZdc0epwW+nat83Ciwl0YYyivaWRpm8ualqyv4tMfSrab9CMmws3w/gmcMn5Aa8jv0ze+0wFfu1JV30TxljqKttSxcnM1364p4/X563lm9joABqfHMTUvhal5fRiSHs9z367breBuYYwhNS6S1LjIgM4J3luZYFhRZU9MnDjR5ufnd7pv6dKlDB8+3M8VSSDov3Xv4Wn2sqGyvrXVt7aslvy15e0Ce2RGAlNznZbmpNwUEqN3HuCBUt/UzIpN1SzdUEVsZBgjMhIYmBKDy7X3WrCeZi+L1le1ftGZs6acmkbnVF2Yy+xWcIt/GWPmWmsndtyuFriI7BXWWr5cWcqCokoSonZ0/jicyDAX1S3nj9u1bp1tFbWNFLc5J72xqr5dq9VlnHkWzps6MOgDu6OocDejMxMZnZnot/cMc7sYm5XE2KwkfnHIoNZAX1RcycFD0hTcIUQBLtJDVdQ28unyEqaN6U9YF2aU2lPWWr5YUcp/PvyB79ZV7PHrGQP9E6LITI5hSm7KdgO0+iVGERGmZR1+rLaBLqHFrwFujDkGuAtwAw9ba2/rsH8g8CiQBpQD51pri/xZo0hP4PVarnpuHl+sKOX1+cXce/Z4YiP37j/3jsGdkRjF304exUljM6hv8m7Xsm45f1zf1Ex8Jy30RN/zuKgw3HuxS1kkVPktwI0xbuA+4EigCJhjjJlprV3S5rD/A5601j5hjPkJ8A/gZ/6qUaSneOiL1XyxopTjx/Tn3UUbOfPBb3j0gkmdjjreUzsK7p9OzGy9jCg+CtLidS2wSHfyZwt8MrDSWrsawBgzAzgJaBvgI4CWi5k/AV7zY30iPcL3hRXc/t5yjh3Vj3vPGseny0u44tnvOOW+r3ni55MYnB6/R6/v9VpKqhso2lJLQWktz8xeu8PgFgkq9VXQWA2x6eDuQvzVV0L5GihfDU11MOw4iE7ee3XuJn8G+ACgsM3zImBKh2O+B07F6WY/BYg3xvSx1pa1PcgYcylwKUB2dvZeK1gk1Gytb+LqGfNIj4/ktlPHYIzhsGHpPH/pflz4+BxOvf9rHjpvIlPy+uzyteqbmvnshxJWbq5uM6lJHcVb6mhs3jZ5h4Jbgl7xdzDnEVj0EnjqwbicEE/oD/G+W8tjV9i2sN7iu68ta/96b0XDmJ/CpIuh/76dv6cfBNsgtt8A9xpjLgA+B4qB7aYis9Y+CDwIzmVk/ixQJJjd9PpiCstref6y/UiM2TYSe3RmIq9evj8XPPYtP3vkW27/6RhOGjtgu5+31rKgqJIX5xYyc/56qnyTj/SJjfDNJJbAUSP6tg4gy0qJZmCf2C4tuyg+DdWw6iNY9hb88B5ExMLA/X23AyF1iDOCryushaZaqNuy/a1hK+zpZcN9R0LOQRC2+zO6BUxTPSx+FeY8BMVzITwW9j0L+o2GrRth63rnfstaWDcL6sq3/axxQUImpOTC8BMgJQ+Sc5375kaY+xgseBG+exIyJ8PkS2DESRDm39NE/gzwYiCrzfNM37ZW1tr1OC1wjDFxwGnW2gp/FSgSyl75rohX5xXzqyP2YVJOynb7s1JieOWXB3DJU/lcM2M+6yvq+cUheRhj2FxVz6vzinlpbhErNlcTGebimFH9OG18JhNzkomJCLbv+iGqugR+eMcJ7VWfQHMDRKfA0GOdluGaz2Hhi86xMam+MD8Acg6AuH6wdYNzq1rfPoSqNkDNZieom3c+69wei0yAIUfBsONh8BEQtZsLlFgL1guuvdxLs6UA8h+F755yQjl1Hzj2X7DvdIjayeV6TfXOZ+tthqSsnYfxgPFw5F9h/rMw52F45RJ490YYfx5M/Lnz837gt4lcjDFhwA/A4TjBPQc421q7uM0xqUC5tdZrjLkVaLbW3rSz19VELgL6b72mtIZpd3/ByAGJPHfJ1J2O2m7wNPObFxfwxvfrOWlsBlV1TXz2QwleCxMGJnP6hEyOH9N/l7OX7ZK3GVZ/CmWrIL4vxGdAfD/n5g6N67Q7VbdlWxdr+Rqnm7Wq2Ol6DYuC8Ojt78EJ53WzAAtJ2TBsmhOCWVO3nY+11nndtV9BwVew9muoXLeDQgzEpfs+0wzncUyKc242Ksm5b3uLjHdalj+W1+PUv+xNWP4O1JaCOwJyD3F+j6HHQWya86WiYxd0+WooLwBPHSRmOS3ZlNz2LdvkHAiPAk8jVPu+lHT8wlK9yfkSsCNNdU5r27ic89STLoHcg7vek9Glz8ULaz51uuiXv+1sO/Np5zPpJjuayMWvM7EZY44D/oNzGdmj1tpbjTG3APnW2pnGmNNxRp5bnC70K6y1DTt7TQX4jj3++ONcfPHFeDxON+inn37KYYcdRmFhIZmZmTv8OWMMTz31FOeee+4evf8FF1xAUVERH3744R69zu4Itf/WpdUN3PLGEob1j+fiA/P26DrmRo+X0x74mnXltbxzzUFkJEXv8me8Xsu/31nIkq9mkhPTwNTsGCZkxJAa5XVaIp465765AdKGw+DDoc/g3ftDWL4a5j0D3z/nBNt2jPOHPr4fJGRAwgDnj3fLH/XkHKc7OVCsherNHQKoTSDVbWl/fHx/53ewzb7Pzndrqtv2GJyu25bQ7jtq90OlYh2s/QbqK3zv5fsiFNc3cF+EvM1QONvpSVj2ptPqxTiB3tzmT7YrHJIHbgvpiFjn2JbPtKGyzYsap4VcX7H9+7kjnN99l7+zgYH7wYQLIXH7U0R7XUUhfPcE7HclRCd128sGxUxs1tq3gbc7bLupzeOXgJf8WVNvsv/++7NhwwbS09O79XWffvppfvazn9Hxy+Bdd92lpUk7sXh9JZc+OZeNVfXM/H49r89bz99PHcWEgdt3e++O/3t/OQuLK/nvuRN2K7ypLceV/yi/XfogRGwCD7Dad2vhjnRaQ64wmPu4sy0x2wnywYc7rZq23ZGNNbDkdSe4137ptIAGHQ5H3wrZ+zmB2NLl265lVewEQcdQjOvXoYWWu+35rkb/ehqg9AfYvBQ2LYaSZc554bBo53dqex8W6bSQG2t8AV3gBEtTzbbXM65trcaRp2zfaozYxcxl1kJz048/b5yU7dyCicu97Xz9UX+DzUtg2dtO+KbkbfsylpC549He1vp6M9p8QarZ7Awua/ly1zLALCZl77aiu0tSFvzkj357O53Y6kUiIiLo16+f394vMdF/00OGijcXrOc3L35PckwEr11+AJuq6rnp9UWc9sA3nD0lm+uPHtZu8NmufPZDCQ9+vppzp2ZzzKhd/LctXwOz7od5TzuBNugncOK90GdQ+y7fsChwtekR2FIAKz9ybgtfcgbwGDdkTXZeo7IQFr0KjVudP9yH3+QMFkrI2PYa8f2g/5gd19bSLd3a4i1w7ld+5HSnthWdvC1AU3KdcNu60QmRTUugbKXTGganBZg6xDlvW1+5rXfB07DtcXOj08Jr6QXIOah9CCVm7dmgLWNCY9DXj2WMM7it78iu/1xMinPL3K5xKbvDWhvStwkTJtgdWbJkyQ73BbsHH3zQJiQk2Lq6unbbb7vtNpuVlWU9Ho+9+OKLbV5eno2KirK5ubn2xhtvtPX19a3HPvbYY9btdrc+/+STTyxgCwsLW7d9/PHHdvTo0TYyMtKOHj3afvzxxxawTz31VOsxv//97+2wYcNsdHS0zczMtJdddpmtqKho95ptb+eff7611trzzz/fHn744a2v4/V67e23325zc3NteHi4zcvLs3feeWe732/gwIH2T3/6k7366qttcnKyTU9Pt9dee61tamra6ecV7P+tm5u99l/vLrUDr3/Tnnb/V7a0aIW1r15u7fs32ZqNq+xf31hsc29400746wf29fnF1uv17vI115XV2Al/fd8eecentq7Rs5MDv7X2+Z9Ze3OStX/pY+0rv7B2w8If94t4Gq1d86W1H/7F2v8ebO2fE6z9W3/ndyn4ytrdqLvLGqqt3bjI2iVvWPvlXda+ca21T5xo7Z2jnd/pzwnO7T9jrH12urUf3mLtghet3bTE2qaGXb9+s8fa5ubur1ukm+CcZt4u/9QCD1JnnHEGV199Na+//jpnnnlm6/Ynn3ySc889F2MM6enpPPvss/Tt25cFCxZw2WWXER4ezl/+8pfdeo/169czbdo0zjjjDGbMmEFxcTHXXHPNdsdFR0fz4IMPkpWVxapVq7jiiiu4+uqreeKJJ9h///259957ufLKK9mwYUPr8Z25//77+dOf/sRdd93FYYcdxkcffcS1115LfHw8F110Uetx99xzD9dffz2zZ89m3rx5nHPOOYwaNardMaGkqr6JX82Yz0fLNnPWxAHckjWH8Cd+6pxHbG4g5qu7+OM+R3PuSWdzzZx4rn5uHi/PLeJvJ48iKyUGr9dSUFbTugRly/3mrQ1Ehrl45uKp7ZearK+E9fOca19/eNfpoo5KhAOugcmXOde7/ljucGdEdM4BTku7ttzpht6b56wjYnfcwvM0Ot3wsWkQGffjXn9vj4oW2Ut6X4C/cwNsXOj/9+03Go69bdfH+SQmJnLSSSfx5JNPtgZ4fn4+S5Ys4ZVXXsHlcnHrrbe2Hp+Tk8OqVau4//77dzvA77//flJTU3nooYcICwtjxIgR/P3vf+eEE05od9wf/7jtnE5OTg7/+Mc/mD59Oo899hgRERGtXeW76p6/7bbbuOqqq7j00ksBGDJkCMuXL+fWW29tF84HHXQQN9xwQ+sxjz32GB9++GFwBbjX65zPTRiw03Nza0pruPiJOawtq+XOIxM5ufAPmHe+hLzD4MS7nfOrcx+HuU+Q88O7vJacS/7oU7hm+UiOvLOMYf0S+GHTVmrbLPc4pG88Bw1JY0RGAofkxjG4aRnMmgvrv3NCu2zFtgJaLqEZe86PD7idiflx5+27TViE080t0gv1vgAPIeeffz4nnngimzdvJj09nSeffJLJkyczdOhQAB566CEefvhhCgoKqKmpwePxdGnQ2JIlS5g8eTJhYdv+NzjwwAO3O+6VV17hP//5DytXrqSqqgqv10tjYyMbN24kIyNju+M7U1VVRVFREQcffHC77Ycccgh33XUXtbW1xMQ4g4HGjh3b7piMjAzWrFmz27/XXldbDq9cCis/gKSBMOo0GH36di3Ez34o4apnvyPMWD7Yfwm5s/7tDAo78R4Y97Ntwf+TP8LBv4OlMzFzHmbSijv4KjyKb+MOY37jEK7IbCIzupG+4bUkUo27vgLKKqBoC3y80bm8B5wRugMmwL5nQsZ4yBgX+IAVkb2m9wV4F1rBgXbUUUeRmprKs88+yxVXXMGMGTO4+eabAXjxxRe54ooruO222zjkkENISEjgxRdf5A9/+EO31jB79mx++tOfcuONN3L77beTnJzMrFmzOP/882ls3DsTRkREtB/wY4wJntHsRfnw4gXO9agHXOv05nx1F3x5h3O51ajTKM09gX/ObuCl74r4SWoV98c9QmT+HGfyi2n/6fzylrAI50vA6NNh40LMnIeZsuAFpjS9A5U4g6xarueNSoLETKdXJ6G/E9QZ451BY6EwUldEukXvC/AQ4na7Oeecc3jqqafIy8ujsrKS6dOnA/D5558zbtw4rrvuutbjCwoKuvT6I0aM4KmnnqK5uRm32zkP+NVXX7U75ssvvyQ1NZW//e1vrdteeqn9lX4tgdv2dTpKSEggMzOTzz//nGnTprVu/+yzz8jNzW1tfQcta+Hbh+C93zuh+fP3nNmYAGpKYclrNC94CfcnfyP1k7/xM+8gzswax4TyNzFNUXDK/2DMmbsXsP1Gwwl3wVG3OpflRCdDeIzCWUTa0QTGQe68887ju+++489//jPTpk0jJcXpEh06dCgLFy7k9ddfZ9WqVdx111288sorXXrtX/7yl5SUlHDppZeydOlSPvroo+1a8EOHDqWkpIRHHnmE1atX8+STT3L//fe3OyY31zkHOXPmTEpKSqiuru70/W688UbuueceHnroIVasWMH//vc/HnjgAX7/+993qW6/a9gKL10I7/zWmTryss+3hTfgje7Dy65jOGDTb9mv/h5eSf0Fw/rGMHHzS5jBR8AVs51pHLsawJFxTks7IlbhLSLbUQs8yI0ZM4axY8cyf/781u5zgMsuu4yFCxdy4YUX4vF4mDZtGjfffDNXXXXVbr/2gAEDeOONN7j22msZO3YsQ4YM4e677+bwww9vPWbatGn84Q9/4Pe//z3V1dUccsgh3H777Zx99tmtx0yaNIlrrrmGyy67jJKSEs4//3wef/zx7d7vl7/8JTU1Nfz973/n8ssvJysri9tuuy24Bqd1tGkxvHCec43yEX+B/a9ud430rNVl/O2tJSwqrmLfzET+dPY0Juac5+xs2AoRcQpfEdkr/DqV6t6gqVQFuv7fetbqMgpKa/jJ8HTS46M6P2j+s/Dmdc5iDac/5lw6BTQ1e5m9upynZhXw3uJN9E+M4vpjhnHivhm4djIHuYjIjxEUU6mKBINFxZWc/+i3NHi8GAPjspI4amQ/jh7Zj9zoeljymjPj2LqvnVm5TnuEmog+fLZwA+8v3shHyzaztd5DbISb3xy1DxcdmEd0hK4lFhH/UoBLr1Je08hlT80lJTaC/5w5ltlryvli8WqWv/cQQz/8miz3IsJopj5xEE0H/5m3Y07mvZfX8eXK72j0eEmOCedoX9gfODhVwS0iAaMAl17D0+zlyme/o6S6gZcvHsvo2i+ZUvoSV1e9DxH1VEf1562w03hoyzgWbcqG9w2wlMzkaM6dMpCjRvZl4sBkwtwa+ykigacAl56vuQk2L+W9d99i2trZ3J+ynqQnfAtexKbB+PNg1OnEZU7iJJeLg2sa+WjZZjZvrefQfdIZ3j8eo4FoIhJkenyAW2v1x7eH63Qg5povnLWK138HG74HTz3HA7WR8cSkTYJ9T4CcA51z3B2WO0yOjeD0CTteL11EJBj06AAPDw+nrq4u+CcJkT1SV1dHeHibJTiL5sKTJzmzl2WMpXT4ufzj+2ga+47jjstOhjCdtxaR0NejAzw9PZ3i4mIGDBhAdHS0WuI9jLWWuro6iouL6du3r7OxqQ5evQzi+8Mvv6LcG8NJ93yJN9oy87wDCVd4i0gP0aMDPCEhAXCWzWxqagpwNbI3hIeH07dv39b/1nz4F2c1rvNexxORwFWPfUtJdQMvXrYfafGRgS1WRKQb9egAByfEW/+4S8+2+jOY/YCz5nXeofzzrSV8tbKM208fw75ZSYGuTkSkW+l6GOkZ6ivhtcuhz2A44mZen1/MQ1+s4fz9BvLTiVmBrk5EpNv1+Ba49BLv3ghb11Pzs3e4/d01PPlNAZNzUvjjtBGBrkxEZK9QgEvoW/YWzH+GVcN+wTkzati0tYzzpg7kN0cPJVyTrohID6UAl9BWXULz61dRHDGYY+bvz+D+Efz3ZxMYq3PeItLDKcAlZHk8zRQ9cSkZtZVc6b2B3x03mgsPyNFUpyLSK/j1L50x5hhjzHJjzEpjzA2d7M82xnxijJlnjFlgjDnOn/VJ6FhYVMnd//krOSUf82ryhdz3q3O55OA8hbeI9Bp+a4EbY9zAfcCRQBEwxxgz01q7pM1hfwResNY+YIwZAbwN5PirRgkNC4squfz+mbwT8T/K+0zgjMtvw7jVmSQivYs/myuTgZXW2tXW2kZgBnBSh2Ms0HLRdiKw3o/1SQhoavZy00vfckfk/4gNh5RzHlZ4i0iv5M+/fAOAwjbPi4ApHY65GXjfGHMVEAsc0dkLGWMuBS4FyM7O7vZCJUhZyyevPMQ9W/5FpimFY++BlLxAVyUiEhDBdsLwLOBxa20mcBzwlDFmuxqttQ9aaydaayempaX5vUgJgM3LqHtkGkct/h02MgEueNtZBlREpJfyZ4AXA22nxMr0bWvrIuAFAGvtN0AUkOqX6iQ41VfCuzdiH9if5uL53Gp/TsTlX0DOAYGuTEQkoPwZ4HOAIcaYXGNMBDAdmNnhmHXA4QDGmOE4AV7ixxolWHi9MO9puGcCzHqA1VmnclDd/5F73K/omxQX6OpERALOb+fArbUeY8yVwHuAG3jUWrvYGHMLkG+tnQn8GnjIGPMrnAFtF1hrrb9qlCBRtQFe+BkUzYHMSZSf8gynPlPJ0Jx4pk/SvOYiIuDniVystW/jXBrWdttNbR4vAdQ32pt5vfDqpbBpMZz8AIyZzp9mzKeusZl/nDYal0truouIQPANYpPebtb9sOZzOOY2GHs2Hy4r4a0FG7j68MEMSlPXuYhICwW4BI+Ni+Cjv8DQ42H8eWytb+JPry9iaN94Lj14UKCrExEJKpoBQ4JDUz28cilEJcGJd4Mx3P7ecjZW1XP/OeOJCNN3TRGRthTgEhw+/itsXgznvASxqeQXlPPUrLVcsH8O47KTA12diEjQUYBL4K3+FL65FzvpEsr6H0xRYQU3vLKQjMRofnPU0EBXJyISlBTg4nf1Tc18tHQzhVtqKSvZyC+XXsRWVyYnzTqQii8+BMBl4JELJhEbqf9FRUQ6o7+O4ne/fvF73lqwAbA8GHUvCWzhgcz7OL3fPmQmR5OZHMOQvnEM7BMb6FJFRIKWAlz86rMfnMvCLj90EFelziX6zW/g8D/zh4POCnRpIiIhRUN7xW/qm5q56fVF5KXGcs3ESKI/uAGy94cDrgl0aSIiIUctcPGb+z9dxdqyWp75+UQiZ17gbDzlv+ByB7QuEZFQpAAXv1hdUs1/P13FSfv254CCe2Dd13DKg5A8MNCliYiEJHWhy15nreVPry8iMtzw98RX4et7YOJFMOaMQJcmIhKy1AKXvW7m9+v5amUpb4z4hNhvH4YJF8Bx/wdGC5OIiPxYCnDZqyrrmvjrG0v4Z/IbjF49A8afD8ffCS51/oiI7AkFuOxV/35/OT9reJYzm1+B8efBtP8ovEVEuoH+kspes6CoguQ5d3BN2Csw7lyYdpfCW0Skm+ivqewVzV7Lwmd+z6/CXqZx9Nlwwj0KbxGRbqS/qLJXLHj2D5xT9wzrsk8h4pT7FN4iIt1Mf1Wle1lL9ft/Z9zK+/gi5giyzn9Y4S0ishfoL6t0H2ux7/+JuK//yaveg8m64DGMW+MkRUT2BgW4dA9vM7xxNeabe3jccxQbDvs3OekJga5KRKTHUvNI9pynEV69FBa/yv84lQ8yLub5Q4YEuioRkR5NAS57prEWXjgPVn7A0wkXc3fFkbxz5jjcLs2yJiKyNynA5cerr4Rnp8O6b/hi2J/44/zh/Ou0kWT3iQl0ZSIiPZ5fz4EbY44xxiw3xqw0xtzQyf47jTHzfbcfjDEV/qxPuqCmFJ44AYq+Zf0R93HRopEcOaIvP52YGejKRER6Bb+1wI0xbuA+4EigCJhjjJlprV3Scoy19ldtjr8KGOev+qQLKovhqZOhYh1NZzzDRe/FkhBVzz9OHY3RAiUiIn7hzxb4ZGCltXa1tbYRmAGctJPjzwKe80tlsvu2FMBjx0DVBjj3Fe4oyGHphipuO3UMqXGRga5ORKTX8GeADwAK2zwv8m3bjjFmIJALfOyHumR3la2Cx46D+io4fyZzGM5/P1vF9ElZHDGib6CrExHpVYL1OvDpwEvW2ubOdhpjLjXG5Btj8ktKSvxcWi+1eRk8dix4GuCCN9naZzS/en4+Wckx/HHaiEBXJyLS6/gzwIuBrDbPM33bOjOdnXSfW2sftNZOtNZOTEtL68YSpVMbF8HjxzuPL3gL+o3mr28uYX1FHXecsS9xkbqYQUTE3/wZ4HOAIcaYXGNMBE5Iz+x4kDFmGJAMfOPH2mRH1s+HJ6aBOwIueBvSh/He4o28kF/ELw8dxMSclEBXKCLSK/ktwK21HuBK4D1gKfCCtXaxMeYWY8yJbQ6dDsyw1lp/1SY7UJQPT5wIEfFw4duQOpgPl2zi1y98z8iMBK45fJ9AVygi0mv5te/TWvs28HaHbTd1eH6zP2uSHVj7DTzzU4hNhfNnYhOzuO/jFfz7gx8YPSCRB382kYiwYB1CISLS8+nkpWxv9Wfw3HRIGADnz6Q2Kp3fPjuPtxZu4OSxGdx22hiiwt2BrlJEpFdTgEt7Zavg2TMheSCcN5PCpnguuf9rfti0ld8fN4xLDsrTZC0iIkFAAS7beL0w82pnwNrPXmNWSRiXP/MVTc1eHr1gEocOTQ90hSIi4qMAl23mPQVrv8SecDdPL27gL2/MY2CfGB46byJ5aXGBrk5ERNpQgItj60Z4/094Bx7IHwrG8dycxfxkWDr/mT6WhKjwQFcnIiIdKMDF8fZvsZ56/uS9hOfmFHL5oYP49VFDta63iEiQUoALLH0Dls5kRsLPeWZFOLecNJLz9ssJdFUiIrITCvDerq4C75u/Zq07j5tLD+OOM/bl1PFa01tEJNgpwHu5unf+RERNCb/2XM3d50zm6JH9Al2SiIjsBgV4L7Z50UekL3iSx+w0rjt/OgcOSQ10SSIispsU4L3UqvWlhL18FcWkMfZn/2LcYIW3iEgo0WTWvdCi4ko+fuh3DLTFNB93J+MGDwh0SSIi0kVqgfcyi4oruenBF3jBvMbWoT8le/IJgS5JRER+BAV4b+BphPoKSjZv5K5nP+evrscxUUnEn/SvQFcmIiI/kgK8pyn8Fj65FWrKoG6Lc2uqASANeKjluOMegZiUQFUpIiJ7aLcD3BhzAVBrrX2hw/YzgChr7ZPdXJt0VU0pPP8z5/GA8dBvNEQn441K4vnF1XyzvpkLDh/H+NGjIW1oYGsVEZE90pUW+PXAVZ1sLwXuBRTggWQtvH4l1JXDJR874e1zx3vLubdwJX84bjjjD84LYJEiItJduhLgOcDKTrav9u2TQJrzMPzwDhxzW7vwfuW7Iu79ZCXTJ2Vx8UG5ASxQRES6U1cuI6sEOkuAQUB195QjP8qmJfDeH2DwkTDlF62b8wvKueHlhUzNS+GWk0ZhjBYmERHpKboS4O8Atxtj+rdsMMZkAP8E3u7uwmQ3NdXBSz+HqEQ4+QHwhXRheS2XPTWXjKQo/nvuBCLCdMm/iEhP0pW/6r8DYoFVxph8Y0w+Tpd6rG+fBML7f4KSpXDKAxCXBsDW+iYuemIOTc1eHrlgEkkxEQEuUkREuttunwO31pYYY8YB5wDjfZvvB56z1tbtjeJkF5a/A3Megv2uhMFHAOBp9nLVc/NYVVLDkz+fzKC0uAAXKSIie0OXrgO31tYDj/huEkhVG+C1y50Ba4ff1Lr5iW/W8unyEm49ZRQHaH5zEZEea7e70I0xNxhjLupk+0XGGHWh+5PXC69eBp56OO1RCIsEwFrLM7PXMj47iXOmDAxwkSIisjd15Rz4pcDyTrYvBS7rnnJkt3xzD6z5zLlkLG2f1s35a7ewuqSG6ZOzA1iciIj4Q1cCPAMo6mT7emC3lrMyxhxjjFlujFlpjLlhB8ecYYxZYoxZbIx5tgv19Q7F38FHt8DwE2H8ee12zfi2kLjIMI4f3X8HPywiIj1FV86BbwZGAwUdto8Bynb1w8YYN3AfcCTOF4E5xpiZ1tolbY4ZAtwIHGCt3WKMSe9Cfb3DF/+G6BQ44a7WS8YAquqbeGvhek4Zl0lspKa4FxHp6brSAn8FuNM3Eh0AY8x44N/AS7vx85OBldba1dbaRmAGcFKHYy4B7rPWbgGw1m7uQn09n7VQONsZcd5hIZKZ89dT3+Rl+qSsABUnIiL+1JUA/wNOy3muMabUGFMK5ON0of9+N35+AFDY5nkR23e97wPsY4z5yhgzyxhzTGcvZIy5tOVa9JKSki78CiFuSwHUlEDWpO12PT+nkGH94hmTmej/ukRExO+6ch14DXCoMeYnwATf5rnW2o+7uZ4hwKFAJvC5MWa0tbaiQy0PAg8CTJw40Xbj+we3ojnOfWb7AF+8vpKFxZX8+YQRmi5VRKSX6NLJUmNMMtAXcAMRwIHGmAMBrLW37OLHi4G2/buZvm1tFQGzrbVNwBpjzA84gT6nK3X2WIXfQkQcpI9ot/mFOYVEhLk4ZdxujSUUEZEeoCvrgU8C3gUMkACUAOlALbAB2FWAzwGGGGNycYJ7OnB2h2NeA84CHjPGpOJ0qa/e3Rp7vKI5zjrfLnfrpvqmZl6dV8wxI/tpylQRkV6kK+fAbwdeBlKBOuAAYCAwD2et8J2y1nqAK4H3cK4df8Fau9gYc4sx5kTfYe8BZcaYJcAnwG+ttbsc4d4rNNbCpkXbdZ+/u2gjVfUeDV4TEellutKFPhb4pbXWa4zxAhHW2tXGmOuBR4FXd/UC1tq36bBymbX2pjaPLXCd7yZtrZ8HXg9kTm63ecacdWSnxDA1r0+AChMRkUDoSgu8GWjyPd7MtvPZpTgtcdmbir517tu0wAtKa5i1upwzJ2XhcmnwmohIb9KVFvgCnFb4SmAW8HtjjAvn2u3OpliV7lQ4B1IGQey2lvYL+YW4DJw2PjOAhYmISCB0pQV+K+DxPf4TzgC2d4CDgKu7uS5py1pnAFub1ren2cuLc4s4bGg6/RKjAliciIgEQleuA/+wzeMCYKQxJgXY4jt3LXtLxVqo2dxuApdPlpdQsrWBMzV4TUSkV9qjSbOtteXdVYjsRGHLBC7bBrA9P2cdafGRHDZM08WLiPRGXelCl0Ap+hbCY1sncNlUVc/HyzZz+oRMwt36Tygi0hvpr38oaJnAxe10mLw0twivhTMmqvtcRKS3UoAHu6Y62LiwdQCb12t5Ib+QKbkp5KbGBrg4EREJFAV4sGuZwCXLOf89a00Za8tqmT5ZrW8Rkd5MAR7sCn0TuAyYCMCTX68lPiqMY0f1D2BRIiISaArwYFc0B5JzIS6NBUUVvLt4Ixfun0NUuHvXPysiIj2WAjyYtUzg4us+/9e7y0mOCeeSg/MCXJiIiASaAjyYVayD6k2QOYkvV5Ty5cpSrjhsMPFR4YGuTEREAkwBHsyKnAlcbOZE/vXeMgYkRXPuVK0bIyIiCvDgVjQHwmN4tySVBUWVXHvEEJ37FhERQAEe3Aq/xWaM4/YPVjEkPY5TteqYiIj4KMCDVVMdbFzAUvdQVpfW8Nujh+LWmt8iIuKjAA9W6+eD18Nj69IYn53EkSP6BroiEREJIgrwYOUbwPZxdQ7XHzMMY9T6FhGRbfZoOVHZe5rWzmYjfRk9dDBT8voEuhwREQkyaoEHI2tpWDOLuc2D+N3RwwJdjYiIBCEFeBAqKV5JXFMpnoyJjMhICHQ5IiIShBTgQeij998C4IBDjwtwJSIiEqwU4EFmTWkNdWu+odFE0n+fiYEuR0REgpRfA9wYc4wxZrkxZqUx5oZO9l9gjCkxxsz33S72Z33B4I4PfmCCayVkjAO35jwXEZHO+S3AjTFu4D7gWGAEcJYxZkQnhz5vrR3ruz3sr/qCwfqKOj5YUMBIVwEROVMCXY6IiAQxf7bAJwMrrbWrrbWNwAzgJD++f9CbMaeQkaYAt/VA5uRAlyMiIkHMnwE+AChs87zIt62j04wxC4wxLxljsjp7IWPMpcaYfGNMfklJyd6o1e+amr3M+HYdP+273tmQOSmwBYmISFALtkFsbwA51toxwAfAE50dZK190Fo70Vo7MS0tza8F7i0fLtnE5q0NHBa7FpKyIV5Tp4qIyI75M8CLgbYt6kzftlbW2jJrbYPv6cPABD/VFnBPz17LkERIL/kGBh4Q6HJERCTI+TPA5wBDjDG5xpgIYDows+0Bxpj+bZ6eCCz1Y30Bs7qkmq9WlvHnAd9iGqpg8iWBLklERIKc3+ZCt9Z6jDFXAu8BbuBRa+1iY8wtQL61diZwtTHmRMADlAMX+Ku+QHpm9jqiXc3st/l5yDkIBvSajgcREfmR/LqYibX2beDtDttuavP4RuBGf9YUaPVNzbw0t4jfZy7EvXkDnHxvoEsSEZEQEGyD2HqdN75fT1VdA6fVvwz9RsOgwwNdkoiIhAAtJxpgT89ex7lJS4ipWgVHPgJa91tERHaDWuABtKi4ku8Lt3Bl5JuQNBBGnBzokkREJEQowAPomdlrOSD8B/pWLoD9rwK3OkRERGT3KDECpKq+idfmreeVpPehuQ+MPSfQJYmISAhRCzxAXv2umCxPAcO3fgNTfgERMYEuSUREQoha4AFgreXpWWu5MeE98MbCpF63aqqIiOwhtcAD4Ns15dRsLuDQxs9hwvkQkxLokkREJMQowAPg6dnr+GXUu84VY1MvD3Q5IiISghTgflaytYFvFq3gTNcnmFGnQ1KnK6aKiIjslALcz17IL+Qs3iPCWwcHXBPockREJERpEFsXNHstSzdU0dTs3eExXgvVDR6q6pqoqm+iqs7ju2+iqt5D/g9FvBf5AQw6GvqO8GP1IiLSkyjAu+DluUX87uUFXf65cLchMTqchKhwLoj9ioTqSjjw2u4vUEREeg0FeFtf3gk/vLfD3VPLa3kpsoHB6XE7fRm3yxDmMq33xhhaZzjfvBQyJ0P2ft1Xt4iI9DoK8LZcYeAO3+HuGo8Ld3gESXF7MOlKxlg49EYtWiIiIntEAd7W/lc5tx246o7PGDQglv/9bKIfixIREdmeRqHvJq/Xsq68lpw+sYEuRURERAG+uzZW1dPo8ZLdR3OWi4hI4CnAd1NBWQ2AWuAiIhIUFOC7aV1ZLQDZKWqBi4hI4CnAd1NBWS3hbkNGUnSgSxEREVGA76515TVkpcTgdunyLxERCTwF+G4qKK1loLrPRUQkSCjAd4O1lrVlNQzUADYREQkSfg1wY8wxxpjlxpiVxpgbdnLcacYYa4wJihlTymoaqWlsZqAuIRMRkSDhtwA3xriB+4BjgRHAWcaY7ZbjMsbEA9cAs/1V266s1SVkIiISZPzZAp8MrLTWrrbWNgIzgJM6Oe6vwD+Bej/WtlNrWy4hUwtcRESChD8DfABQ2OZ5kW9bK2PMeCDLWvvWzl7IGHOpMSbfGJNfUlLS/ZV2UFBWi8tAZrIuIRMRkeAQNIPYjDEu4A7g17s61lr7oLV2orV2Ylpa2l6vbW1ZDRlJ0USGuff6e4mIiOwOfwZ4MZDV5nmmb1uLeGAU8KkxpgCYCswMhoFsa8tqNYBNRESCij8DfA4wxBiTa4yJAKYDM1t2WmsrrbWp1toca20OMAs40Vqb78caO6VLyEREJNj4LcCttR7gSuA9YCnwgrV2sTHmFmPMif6qo6sq65rYUtukSVxERCSohPnzzay1bwNvd9h20w6OPdQfNe1KyyImaoGLiEgwCZpBbMGqZRlRnQMXEZFgogDfhXXlLS1wBbiIiAQPBfguFJTWkB4fSUyEX882iIiI7JQCfBfWlusSMhERCT4K8F3QJWQiIhKMFOA7UdfYzKaqBl1CJiIiQUcBvhOtA9hS1QIXEZHgogDfidZLyNQCFxGRIKMA34mWSVy0DriIiAQbBfhOFJTVkBQTTmJMeKBLERERaUcBvhPrymvVfS4iIkFJAb4TBbqETEREgpQCfAcaPV6Kt9RpEhcREQlKCvAdKK6ow2u1CpmIiAQnBfgOaBUyEREJZgrwHdi2DrgCXEREgo8CfAcKymqIiXCTFhcZ6FJERES2owDfgbVltWSnxGCMCXQpIiIi21GA78DashrNwCYiIkFLAd6JZq+lsFyXkImISPBSgHdiY1U9jc1eXUImIiJBSwHeibWluoRMRESCmwK8EwW6hExERIKcArwTa8triHC76J8YHehSREREOuXXADfGHGOMWW6MWWmMuaGT/b8wxiw0xsw3xnxpjBnhz/parC2tJTMlGrdLl5CJiEhw8luAG2PcwH3AscAI4KxOAvpZa+1oa+1Y4F/AHf6qr6215bW6hExERIKaP1vgk4GV1trV1tpGYAZwUtsDrLVVbZ7GAtaP9bXUwNqyGrK1DriIiASxMD++1wCgsM3zImBKx4OMMVcA1wERwE/8U9o2pdWN1DY2k6MBbCIiEsSCbhCbtfY+a+0g4Hrgj50dY4y51BiTb4zJLykp6db3X9uyClmqutBFRCR4+TPAi4GsNs8zfdt2ZAZwcmc7rLUPWmsnWmsnpqWldV+FtLmETF3oIiISxPwZ4HOAIcaYXGNMBDAdmNn2AGPMkDZPjwdW+LE+ANaV1eAykJmsABcRkeDlt3Pg1lqPMeZK4D3ADTxqrV1sjLkFyLfWzgSuNMYcATQBW4Dz/VVfi4KyWjKSookIC7qzCyIiIq38OYgNa+3bwNsdtt3U5vE1/qynM7qETEREQoGamR2sLashWyPQRUQkyCnA26isbaKitkmXkImISNBTgLextrxlFTJ1oYuISHBTgLehVchERCRUKMDbWOebxEXTqIqISLBTgLdRUFZLenwkMRF+HZwvIiLSZUqqNq47ch/OmZId6DJERER2SQHeRkZSNBlJ0YEuQ0REZJfUhS4iIhKCFOAiIiIhSAEuIiISghTgIiIiIUgBLiIiEoIU4CIiIiFIAS4iIhKCFOAiIiIhSAEuIiISgoy1NtA17BFjTAmwthtfMhUo7cbX6630OXYPfY7dQ59j99Dn2D26+jkOtNamddwY8gHe3Ywx+dbaiYGuI9Tpc+we+hy7hz7H7qHPsXt01+eoLnQREZEQpAAXEREJQQrw7T0Y6AJ6CH2O3UOfY/fQ59g99Dl2j275HHUOXEREJASpBS4iIhKCFOAiIiIhSAEuIiISghTgIiIiIUgBLiIiEoIU4CIiIiFIAS4iIhKCFOAiIiIhKCzQBeyp1NRUm5OTE+gyRERE9oq5c+eWdrYaWcgHeE5ODvn5+YEuQ0REZK8wxnS6ZLa60EVEREKQAlxERCQEKcBFRERCkAJcREQkBCnARUREQpACXEREJAQpwEVEREKQAlxERCQEKcDbsNaytb4p0GWIiIjskgK8jd+9tIDj7v4i0GWIiIjskgK8jYykaIq21NHgaQ50KSIiIjulAG8jLy0Wa2FdWW2gSxEREdkpBXgbealxAKwqqQlwJSIiIjunAG8jJzUGgDWlCnAREQluCvA24qPCSYuPZE1pdaBLERER2SkFeAd5qbGsVhe6iIgEOQV4B3lpsepCFxGRoKcA7yA3NZaymkYqazWhi4iIBC8FeActI9FX6zy4iIgEMQV4B7lpsYBGoouISHBTgHeQlRyD22UU4CIiEtQU4B1EhLnITonRSHQREQlqCvBO5KbGslotcBERCWIK8E7kpsZSUFqD12sDXYqIiEinFOCdyEuLpa6pmY1V9YEuRUREpFMK8E7kpmokuoiIBDcFeCe2XQuuABcRkeCkAO9E34RIYiLcrC7RZC4iIhKcFOCdMMaQm6o50UVEJHgpwHdAAS4iIsFMAb4DeWlxFJbX0uBpDnQpIiIi21GA70BeaixeC4XltYEuRUREZDsK8B1ouZRMU6qKiEgwUoDvQMuqZLqUTEREgpECfAcSosJJjYtkjVrgIiIShBTgO5GnkegiIhKkFOA74axKpslcREQk+CjAdyIvLZbS6kYq65oCXYqIiEg7fg1wY8wxxpjlxpiVxpgbOtl/gTGmxBgz33e72J/1ddQyEr1A3egiIhJk/Bbgxhg3cB9wLDACOMsYM6KTQ5+31o713R72V32dyWsdia5udBERCS7+bIFPBlZaa1dbaxuBGcBJfnz/LstOicVl0Eh0EREJOv4M8AFAYZvnRb5tHZ1mjFlgjHnJGJPV2QsZYy41xuQbY/JLSkr2Rq0ARIS5yEqJ0bXgIiISdIJtENsbQI61dgzwAfBEZwdZax+01k601k5MS0vbqwXlpsZqNjYREQk6/gzwYqBtizrTt62VtbbMWtvge/owMMFPte1QXmoca0prsNYGuhQREZFW/gzwOcAQY0yuMSYCmA7MbHuAMaZ/m6cnAkv9WF+nctNiqWtqZlNVw64PFhER8ZMwf72RtdZjjLkSeA9wA49aaxcbY24B8q21M4GrjTEnAh6gHLjAX/XtSF7roibV9EuMCnA1IiIiDr8FOIC19m3g7Q7bbmrz+EbgRn/WtCt5bRY12X9waoCrERERcQTbILag0zc+iuhwt+ZEFxGRoKIA3wWXy5CTGsvqEk3mIiIiwUMBvhvy0rQqmYiIBBcFeFtlq2Dlh9ttzkuNpXBLHY0ebwCKEhER2Z4CvK0v/g2vXAodrvnOTY2l2WtZV14boMJERETaU4C3lTUFasugbGW7zXlpcQDqRhcRkaChAG8re6pzv25Wu825fZxLydZoVTIREQkSCvC2+gyB6GQobB/giTHh9ImN0JzoIiISNBTgbblcTjf6utnb7cpLi9WqZCIiEjQU4B1lTYGyFVBT1m5zbqouJRMRkeChAO+o5Tx4YftWeG5qHCVbG9ha3xSAokRERNpTgHeUMQ5c4dudB2+ZE12tcBERCQYK8I7CoyFj7HbnwVtWJVOAi4hIMFCAdyZrCqyfB55ta4Bn94nBZWCVRqKLiEgQUIB3JnsqNDfA+vmtmyLD3GQmx6gFLiIiQUEB3pmsKc59h/Pgzkh0TeYiIiKBpwDvTFw6pORtdx48NzWWNSU12A5zpYuIiPibAnxHsqY6l5K1CevB6XHUNDZTWF4XwMJEREQU4DuWPQVqS50lRn2m5qUA8PWq0kBVJSIiAijAdyyrZUKXbefBB6XF0Tchki9WKsBFRCSwFOA7kroPRCW1W5nMGMMBg1P5emUpXq/Og4uISOAowHekZWGTDlOqHjg4lS21TSzZUBWgwkRERBTgO5c9BUp/gNry1k0HDk4F4Ct1o4uISAApwHcma/uFTdITotinbxxfKsBFRCSAFOA7M2C8s7DJuvYTuhwwOJVv15RT39QcoMJERKS3U4DvTHg09N+30/PgDR4v363dEqDCRESkt1OA70r2VCj+rt3CJlPy+uB2GXWji4hIwCjAdyVrirOwyYbvWzfFRYYxLitJA9lERCRgFOC7ku0byNbhPPiBQ1JZUFxJZW1TAIoSEZHeTgG+K3HpkJzb6XlwazWtqoiIBIYCfHdkT3Va4G0WNtk3K4nYCLfOg4uISEAowHdHlm9hk/LVrZvC3S6m5vXReXAREQkIBfjuyJri3HdyPXhBWS2F5bUBKEpERHozBfjuSBsGUYntViYDOGiIM62qzoOLiIi/KcB3h8sFmZNhXfuBbIPT40iPj+TLlWUBKkxERHorBfjuyp4CpcvbLWxijOHAwal8peVFRUTEzxTgu6t1YZNv220+YHAq5TWNLN2o5UVFRMR//BrgxphjjDHLjTErjTE37OS404wx1hgz0Z/17dSACeAK2+48+AFaXlRERALAbwFujHED9wHHAiOAs4wxIzo5Lh64BpjdcV9ARcRAvzHbnQfvlxjFkPQ4nQcXERG/8mcLfDKw0lq72lrbCMwATurkuL8C/wTq/Vjb7smeCuvbL2wCLcuLltHg0fKiIiLiH/4M8AFAYZvnRb5trYwx44Esa+1bO3shY8ylxph8Y0x+SUlJ91e6I3mHgaceVn3SbvOBg1Opb/IyV8uLioiInwTNIDZjjAu4A/j1ro611j5orZ1orZ2Ylpa294trkXcoRCfDopfabZ6Sl4LbZXQeXERE/MafAV4MZLV5nunb1iIeGAV8aowpAKYCM4NqIFtYBIw4CZa9BY01rZvjo8IZm5Wk8+AiIuI3/gzwOcAQY0yuMSYCmA7MbNlpra201qZaa3OstTnALOBEa22+H2vctVGnQ1MtLH+n3eYDBqeysKhCy4uKiIhf+C3ArbUe4ErgPWAp8IK1drEx5hZjzIn+qmOPDdwf4vvDopfbbT5oSCpeC9+sVitcRET2vjB/vpm19m3g7Q7bbtrBsYf6o6Yuc7lh1Gkw+39Qt8U5Jw6MbV1etIRjRvULcJEiItLTBc0gtpAy6jTwNsHSN1o3hbtdTMnrw1c6Dy4iIn6gAP8xMsZBSh4sbD8a/YDBqawpraFoi5YXFRGRvUsB/mMY4wxmW/M5bN3Yuvmwoc4lbW8u2BCoykREpJdQgP9Yo08HLCx+tXVTXlocU3JTeHb2Oq1OJiIie5UC/MdKGwr9Rm/XjX7O1IGsK6/lC03qIiIie5ECfE+MOh2K86F8Teumo0f2pU9sBE/PWhvAwkREpKdTgO+JUac5922uCY8Mc3PGpCw+WrqJDZV1ASpMRER6OgX4nkjKgqyp203qcvbkbCww49vCzn9ORERkDynA99To02HzEti0uHVTVkoMh+yTxow562hq9gawOBER6akU4Htq5Clg3NsPZpsykE1VDXy0dHOAChMRkZ5MAb6nYlOdZUYXvQx226VjPxmWTkZiFM/M1mA2ERHpfgrw7jD6dKhYC0XbFk5zuwzTJ2fzxYpSCkprdvLDIiIiXacA7w7DpoE7Eha170Y/c1IWbpfh2W/XBagwERHpqRTg3SEqAfY52pmVzdvcurlvQhRHjejLi/mF1Dc17+QFREREukYB3l1Gnw7Vm6Dgi3abz5kykC21TbyzSPOji4hI91GAd5chR0FEPCx8sd3m/Qf1ITc1lmdmqRtdRES6jwK8u4RHw/BpsOQN8DS0bna5DGdPziZ/7RaWbawKYIEiItKTKMC70+jToaESlsxst/n0CZlEhLnUChcRkW6jAO9OeT+BtOHw+e3tBrMlx0YwbXR/Xp1XTE2DJ4AFiohIT6EA704uFxzyWyhdDktea7frnKnZVDd4eH3++sDUJiIiPYoCvLuNOBlSh8Jnt4N32zzo47OTGdYvnmdmr8W2mbFNRETkx9ijADfGxBljjjfGDOmugkKeyw2H/A5KlsLS11s3G2M4Z+pAFq+vYn5hReDqExGRHqFLAW6MedYYc7XvcTgwG3gDWGyMmbYX6gtNI0+B1H3gs3+1a4WfMm4A8VFh3PnhCrXCRURkj3S1BX4o8JXv8QlAPNAfuBn4U7dVFepcbjj4t84yo8veaN0cFxnGtUfsw+c/lGiVMhER2SNdDfAUYJPv8ZHAK9baTcCzwPDuLCzkjToN+gzerhV+3n4DGZQWy1/fWkKDR9OriojIj9PVAC8Bcn2PjwQ+8T2OAbyd/kRv1dIK37QIlr/dujnc7eKmE0aytqyWx74qCFx9IiIS0roa4C8CzxhjPgQSgA9828cCK7qxrp5h1OmQkgef/bPdWuGH7JPGEcPTueejFWyuqg9ggSIiEqq6GuC/A/4DLAKOtNbW+rZnAA91Y109gzvMaYVvXADL32m364/Hj6Cp2fLPd5cHqDgREQllXQpwa63HWnuHtfZaa+33bbb/n7X2we4vrwcYfQYk58Jnt7VrheekxvLzA3N5+bsi5q3bEsACRUQkFHX1MrJ9jTEj2zw/zhjzojHmZmNMWPeX1wO4w+Dg38CG7+GH99rtuvIng0mPj+TmN5bg9eqyMhER2X1d7UL/HzAawBiTCbwExAGXAH/r3tJ6kDFnQtLA7VrhcZFhXH/MML4vrOCVecUBLFBEREJNVwN8KDDP9/hUYI619ljgPODM7iysR3GHO63w9fNgxQftdp0ybgD7ZiXxz3eXUa2FTkREZDd1NcAjgJZh04cCLSOzfgD6dVNNPdO+Z0Fi9natcJfLcPMJIyjZ2sC9H68MYIEiIhJKuhrgy4HTjTHZONeBf+jb3h/QSKydcYfDQddB8VxY8X67XeOykzltfCaPfrmGgtKaABUoIiKhpKsB/hfg78Aa4Etrbb5v+1Fs61qXHRl7DqQMgrd/Aw3V7XZdf8xQwt2Gv721JEDFiYhIKOnqZWSvA9nABOD4Nrs+An7bjXX1TGERcNK9UFEIH/2l3a70hCiuOnwIHy7dzGc/lASoQBERCRVdXk7UWrvJWjsfiDDGRPm2fWOtVdNxdwzcH6ZcBt8+CAVfttt14QE55KXGcuPLC9hS0xigAkVEJBR0OcCNMRcaY1YC1UC1MWaFMeaC3fzZY4wxy40xK40xN3Sy/xfGmIXGmPnGmC+NMSO6Wl9IOPwmSM6B16+ExtrWzZFhbu6aPo7S6kaue2G+rg0XEZEd6upELtcA9wMzgdN8tzeB+40xV+3iZ93AfcCxwAjgrE4C+llr7Whr7VjgX8AdXakvZETEwon3wpY18PFf2+0anZnIn04YwSfLS/jv56sCVKCIiAS7rrbArwKusdZeZ6193Xf7FfAr4Jpd/OxkYKW1drW1thGYAZzU9gBrbVWbp7FAz22C5h4Eky6GWQ/Aulntdp07JZtpY/rzf+8tZ9bqsgAVKCIiwayrAZ6FM2Cto498+3ZmAFDY5nmRb1s7xpgrjDGrcFrgV3f2QsaYS40x+caY/JKSEB7wdcRfICkLXr8CmupaNxtjuO20MeT0ieXq5+ZRsrUhgEWKiEgw6mqAF+FM4NLRob59e8xae5+1dhBwPfDHHRzzoLV2orV2YlpaWne8bWBExsGJ90DZSvjk1na74iLDuO+c8VTWNXHt8/No1vlwERFpo6sB/gBwtzHmH76FTI4zxtwG3IVzbnxnimnfSs/0bduRGcDJXawv9OQdChMuhG/ug8I57XYN75/AX08axVcry7j7Iy23LiIi23T1OvD/w1kT/BycwWtvAmcDv7HW/nsXPz4HGGKMyTXGRADTcQbDtTLGDGnz9Higd6TWkbdAfAa8fjk01bfb9dOJmZw2PpO7P17BFytC+HSBiIh0qx9zHfh91tpsIBFItNZmW2sf2I2f8wBXAu8BS4EXrLWLjTG3GGNO9B12pTFmsTFmPnAdcH5X6wtJUQlw4t1Q+oMzV3obxhj+evJIhqTHce2M+WysrN/Bi4iISG9irN35uVVjzPs7PaANa+1Re1xRF02cONHm5+fv+sBQ8PqVMP8ZuPhDGDCh3a6Vm7dy4r1fMTIjgecumUqYu8vfvUREJAQZY+Zaayd23L47KVDchZvsiaNvhfj+8OKFUNP+8rHB6fH849TRzCnYwu3vLQ9QgSIiEizCdnWAtfZCfxQiQFQinPEUPH4cPH8unPcahEW27j5p7ADmFJTzv89XMyA5mvP2ywlYqSIiEljqhw02mRPgpPtg3dfw5q/arR0OcPMJIzlieF/+PHMxb3y/PkBFiohIoCnAg9Ho0+GQG5zz4V/f3W5XmNvFvWePY+LAZK57Yb5GpouI9FIK8GB1yPUw8hT44M+w7O12u6LC3Tx8/iQGpcVx2VNz+b6wIjA1iohIwCjAg5XLBSc/ABnj4OWLYcOCdrsTo8N58ueTSYmN4MLH57CqpDpAhYqISCAowINZeDSc9ZwzuO25s2Drpna70xOieOqiKbgMnPfIt7pGXESkF1GAB7v4fnD2DKgrhxlnt1v0BCA3NZbHL5xMZV0T5z06m4raxgAVKiIi/qQADwX994VT/gfF+c5kLx1Gpo8akMiD502goLSWnz8+h7rG5gAVKiIi/qIADxUjToTDb4JFL8Fn/9xu9/6DUrn7rLHML6zgl8/MpdHjDUCRIiLiLwrwUHLgdbDvWfDpP2DW9tPPHzOqP7eeMppPl5fwy6fn0uBRS1xEpKdSgIcSY5z1w4dNg3dvgDmPbHfIWZOz+dvJo/ho2WZ+8dRc6psU4iIiPZECPNS4w+H0x2DI0fDWdTDv6e0OOXfqQP5+ymg+WV7CZQpxEZEeSQEeisIi4IwnIe9QZ1Dbghe3O+TsKdn887TRfL6ihEuezFeIi4j0MArwUBUeBdOfg4EHwKuXwZLXtzvkzEnZ/PO0MXy5spRLnszX6HQRkR5EAR7KImLg7OchcyK89HNY/s52h5wxMYvbT9+XL1eWcvGTusRMRKSnUICHusg4OOdF6DcaXjgPVn603SGnT8jk3z/dl29WlfHzx+dQ2+gJQKEiItKdFOA9QVQinPsKpA51Zmtb88V2h5w6PpM7zhjL7DVlXPjYHKobFOIiIqFMAd5TxKTAea9Bcg4881NY/Op2h5w8bgB3njmW/LVbOPN/37C5SnOni4iEKgV4TxKbCue/4XSnv3gBfHwreNvPyHbS2AE8fP5E1pTWcMr9X7Nys1YxExEJRQrwniYuHS54E8adC5//C174GTRsbXfIYUPTef7S/WjweDntga+ZU1AeoGJFROTHUoD3RGGRcOK9cMw/nZHpDx8J5WvaHTI6M5FXL9+fPrERnPPwbN5ZuCFAxYqIyI+hAO+pjIGpv4BzX4atG+Chw2D1Z+0OyUqJ4eVf7s/oAYlc/ux3PPbVmh28mIiIBBsFeE836DC49BOI6wtPnQKz/9duOdLk2AieuXgKR43oy1/eWMKtby3B67U7eUEREQkGCvDeICUPLvoA9jka3vkdzLwKPA2tu6PC3dx/zgTO328gD32xhqtnzNPUqyIiQU4B3ltEJcCZz8DBv4V5T8ETJ0J1Setut8tw84kjufHYYby5YAOnPfA1a0prAliwiIjsjAK8N3G54Cd/hNMfhQ3fw4OHOvc+xhguO2QQD583keKKOqbd/QWvzisKXL0iIrJDCvDeaNRp8PN3AQuPHL3dpC9HjOjLO9ccxMiMRH71/Pdc98J8ajRzm4hIUFGA91YZY+HST6H/mE4nfemfGM2zl0zhmsOH8Nq8Yk6450sWr68MVLUiItKBArw3i0t3Zm4b23bSl20zs4W5XfzqyH145uKp1DR6OOW+r3ni6wKs1Sh1EZFAU4D3dmGRcNK9cMxtsPxteOQo2FLQ7pD9BvXhnWsO5qAhqfx55mIufWouW2oaA1OviIgACnAB36Qvv4RzXoKqInjwsO3WFk+JjeDh8ydy07QRfLp8M4ff8Rkv5hfqmnERkQBRgMs2gw+HSz6B+P7w3HRnffGtG1t3G2P4+YG5zLzyQHJTY/ntSws488FvWLaxKoBFi4j0Tgpwaa/PIGdw2+E3wfJ34d7JMOeRdgPchvdP4MXL9uNfp41h5eZqjr/7S/725hKtMS4i4kcm1AckTZw40ebn5we6jJ6pbBW8eS2s+RyypsAJd0H68HaHbKlp5F/vLWfGnHWkx0dy07SRHDe6H8aYwNQsItLDGGPmWmsndtyuFrjsWJ9BcN5MOPm/ULoC/nsQfPw3aKpvPSQ5NoJ/nDqal3+5P6lxkVzx7Hec9+i3msVNRGQv82uAG2OOMcYsN8asNMbc0Mn+64wxS4wxC4wxHxljBvqzPumEMTD2LLgyH0afDp/fDg/sv93KZuOzk3n9igO4+YQRzF9XwdF3fs6/319OXaPmVBcR2Rv8FuDGGDdwH3AsMAI4yxgzosNh84CJ1toxwEvAv/xVn+xCbB845b/ws9fAeuHJE+Gln0PVtnXEw9wuLjggl49+cwjHj+nPPR+v5Mg7P+ODJZsCV7eISA/lzxb4ZGCltXa1tbYRmAGc1PYAa+0n1tpa39NZQKYf65PdMegwuPwbOPRGWPom3DsRvr4XmptaD0mPj+LOM8cy49KpxES4ueTJfC56fA7rymp38sIiItIV/gzwAUBhm+dFvm07chHwTmc7jDGXGmPyjTH5JSUlnR0ie1N4NBx6A1wxCwbuD+//Af53MBR81e6wqXl9eOvqg/jDccOZtbqMI+/8jLs+XKGlSkVEukFQDmIzxpwLTARu72y/tfZBa+1Ea+3EtLQ0/xYn26TkwdkvwPRnnSlYHz8OXrkMqje3HhLudnHJwXl89OtDOWJEX+788AeO/s/nfLR0k6ZkFRHZA/4M8GIgq83zTN+2dowxRwB/AE601jb4qTb5sYyBYcfDFbPhoF/DopfhngnwzX3tRqv3S4zivrPH8/RFU3C7DBc9kc+J937F2ws30KzZ3EREusxv14EbY8KAH4DDcYJ7DnC2tXZxm2PG4QxeO8Zau2J3XlfXgQeZ0pXwzm9h1cfOjG4H/RrGn+fMue7T6PHyyndF/PezVRSU1ZKXGstlh+RxyrhMIsKCslNIRCRgdnQduF8ncjHGHAf8B3ADj1prbzXG3ALkW2tnGmM+BEYDLUOb11lrT9zZayrAg9Saz50lSgtnQWIWHPxbGHs2uMNbD2n2Wt5ZtIEHPl3F4vVV9EuI4uKDcjlrcjaxkWEBLF5EJHgERYDvDQrwIGat0xL/5FYongvJOXDI9TD6DHCHtTnM8vmKUh74dCWzVpeTFBPO+fvlcPFBucRHhe/49UVEegEFuASOtfDDe06Qb1wAfQbDITfAqFPB5W536HfrtvDAp6v4YMkm+sRGcM0RQzhrcjbhbnWti0jvpACXwLMWlr0Jn/wDNi+GtGHO5WjDTwJX+4BeUFTB399eyqzV5eSlxnL9scM4akRfzbEuIr2OAlyCh9cLS16DT2+D0uWQPhIOuxGGTXNGtftYa/lo6Wb+8c5SVpXUMDknhRuPG8a47OTA1S4i4mcKcAk+3mZY9Ap8dhuUrYR+Y+Cw38M+x7QLck+zl+fzC7nzgx8orW5k2pj+XH/MMLJSYgJYvIiIfyjAJXg1e2Dhi06QbymAjHFw2B9g8BHtgry6wcODn63iwS9W4/XCtDH9OXtKNhMGJqtrXUR6LAW4BL/mJvh+Bnz2L6hcB6lDYfIlsO9ZEBnXetjGynru/3Qlr3xXTHWDh336xnH25GxOGZdJYoxGrYtIz6IAl9DhaYRFL8Hs/8GG+RCZAGPPccK8z6DWw2oaPLy5YD3Pzl7H90WVRIW7OH50BmdPyWZ8dpJa5SLSIyjAJfRYC0VznCBf8hp4PTD4SJhyGQw6vN3I9UXFlTz77Tpen1dMTWMzw/rFc+EBOZrdTURCngJcQtvWjZD/GMx9DKo3QcogmPILGHcORMS2HlbT4GHm9+t5etZaFq+vIiMxil8cOogzJmYRFe7eyRuIiAQnBbj0DJ5GWDoTZj0AxfkQlQSTLoLJl0J8v9bDWmZ3u+ejFeSv3UJafCSXHZzH2VOyiYnQNK0iEjoU4NKzWAuFs+Hre2DZW84c66PPgP2ugL4j2hxmmbW6nHs/WcFXK8tIiY3gogNzOW+/gZqmVURCggJceq6yVU6LfN7T4Klzzo/vfyXkHdbuMrS5a7dw3ycr+XjZZhKiwjhzUhZHj+zHuOxk3C4NeBOR4KQAl56vthzyH4HZD0LNZmfO9X2nw5jpkLRtKfpFxZXc98lKPly6iaZmS2pcBIcP68tRI/tywOBUnSsXkaCiAJfew9MAi152WuRrvwIM5B4E+54NI05sHfRWVd/EZ8tLeH/JJj5dtpmtDR6iw90csk8aR47oy+HD00mKiQjs7yIivZ4CXHqn8jWw4Hn4/jlnlrfwWBhxEow9CwYe2HopWqPHy6zVZby/ZCMfLNnEpqoGwlyGQ/ZJ48SxGRw5oq8Gv4lIQCjApXezFtbNgu+fhcWvQUMVJGTCyJNh1GnO9K2+8+Ver2VBcSXvLNzAzO/Xs6GynpgIN0eN6MtJYwdw4JBULW8qIn6jABdp0VTnjFxf+BKs/BC8TZCc6wT5qNPajWL3ei3fFpTz+vz1vL1wA5V1TaTERnD86P6csG8G47OTCFOYi8hepAAX6UzdFlj6pnPOfM1nYL2QNhxGnQojT4XUwa2HNnia+fyHUl6fX8yHSzdR3+QlPiqM/fL6cNCQVA4ckkZOnxhN4Soi3UoBLrIr1SXOlK2LX/UNfgPSR8DwE2H4CdB3ZGs3e3WDh0+Xb+bLFaV8saKU4oo6AAYkRXPg4FQOHJLKAYNTSYnVIDgR2TMKcJGuqCyGpW84s76t/RqwkJLnC/MTYcD41jC31rK2rJYvVpby1YpSvl5VSlW9B2PgwMGpTJ+UzZEj+mpOdhH5URTgIj9W9WbnnPnSmbDmc2dRlYRMGHqsE+R9R0HaMAhzWtueZi8Liyv5eNlmXp5bxPrKelJiIzh13ADOnJTFkL7xAf6FRCSUKMBFukPdFlj+rtM6X/WxM/MbgCvMWb+83ygn0PuNgn5jaI7uwxcrSnh+TiEfLNmEx2uZMDCZMydlMW1Mf12aJiK7pAAX6W7eZmca100LYeMi2LTIud+6ftsxGeOdAXEjTqY0LJ1XvitixpxCVpfUEBcZxgGD+zBhYDITBiYzMiNRs8CJyHYU4CL+UlPmhHrxXFgyEzbMd7ZnToZRp2KHn0j+lmheyi9i1poy1pbVAhDhdjFqQEJroI8fmEx6fFTgfg8RCQoKcJFAKVvljG5f9KoT7BjI3g9GngK5B1MSmcV3RVv5bu0W5q7dwoLiSho9XgCyU2KYODCZiTkpTMpJZlBaHC4tvCLSqyjARYJB6QrnMrXFr8LmJc62sChnEFy/UdB3NI1pI1jqzebbDV7mrt1C/tpySqsbAUiKCWfiwGQmDHQCfXRmIpFh6nYX6ckU4CLBpnSF082+ceG28+e1pdv2J2ZB2jBsSh5lUVksbkjj6y2JfLQ+gpWl9QAkRIVx7tSBXLB/DukJ6m4X6YkU4CLBzlqo3uQbEOcbGFe6HMpWQ1PNtuPcEXgSB1Iemcn3dal8WJJEgRnA0JETOOewcQztp8vURHoSBbhIqGoJ9rKVzvn08lW++9XOfXND66FlNp6SqBwSs0bQL280Jn0EDDwAwtU6FwlVOwpwXYQqEuyMgfh+zi3nwPb7vM1QsQ5KV1C3YSkbl82jccMy0la8jVn5PAAedwxl/Q6iPOsItmb9BBObQrjbRbjbEBXuJjslRquriYQgtcBFepgGTzOvz1/PC5/NJ65sAUe45nKkey59TQUe6+Jb7zDe907kg+YJFJNGVLiLkRmJ7JuZxL5ZiYzNSiI7RYuyiAQLdaGL9DLWWtaV11Lf5KXJ4yFs03zi17xHUuGHxFauAKAyfgibXWlsaoigqDaMCm80W200nog4+iSn0jc9jQH9+jEwoy+pfVIxUYkQGQ9hkQH+7UR6D3Whi/QyxhgG9ondtiHzMJhwmPO4bBUse4vE1Z+SWFvGEPdGrHsrtr4KV3MDWKDcd1u2/Ws3uyIgMh5XVAKmzyCna3/ggZAxFtzhe/+XExG1wEWkA08DNGyFhirqqrewbv0m1m/axKbNJZRvKaNu6xZibC3x1JLirmNMeBGZnnUA2PBYTPZUyDkAcg6CjHEKdJE9pBa4iOyesEjnFptKdAoMzYahbXY3eJpZsamaxesr+bq4kvsLK9i0vpCJZhn7NS/h4DXLyVn1EQDe8BhMv9GY2DSITYO4dOc+NtV3nw7RSUDL+XZfg6JjwyIs0pnwJiyydRlXkd5OLXAR2WM1DR6+L6wg3zcd7Jp1axnRuIipriUMdxeT5qoihSoSbBUu9uRvjtkW5OHRzuPwaEgf7kxPmzUF+o4El2ank55Dg9hExG+8XssPm7eSX7CFVSXVlNc0Ul7TSEV1Hc01ZbhqS0nwVpBKFQmmBhfQLzGKgX1iyOkTx8DUGOIifV3v1gvNTc7SrU314PHdmuqc7v7Galg/f9sqcJEJkDnJCfTsKTBgAkTE7qhUkaAXFF3oxphjgLsAN/Cwtfa2DvsPBv4DjAGmW2tf8md9ItI9XC7DsH4JDOuX0Ol+ay01jc1sqWlkbVktcwrK+bKgnLsLtlC/wlnIJS81lsm5KUwYmMyAPtGkxUWSFh9JYnT49pe4WQuVhbBuFqz7BtbNhk9uBayzVntSNsT1c7rw4333cX23bYvr63Trq+UuIcRvLXBjjBv4ATgSKALmAGdZa5e0OSYHSAB+A8zcnQBXC1yk52j0eFm0vpI5a8r5dk05cwrKqar3tDsm3G1IjYsk1RfoaXGR5KXFMrRfPMP7J5AeH+kEfN0WKJwDhbNgSwFs3eTMaFe9CRqqOnl34zs3nw5xvvPzLefs4/tD8kBIznHCXufhxY+CoQU+GVhprV3tK2gGcBLQGuDW2gLfPq8f6xKRIBER5mJ8djLjs5O57JBBeL2WNWU1bKqqp7S6kZKtDZRWN7Teb6qqZ0FRJc/nb5tONjkm3Gn9949neL/hDBs6mX36xhMV3qZ13VgLNZvbh3pNCVRvdm41m6F8trOtqbZ9kWFRkOQL8+QcJ9iTsiE6BaKTnUF5UUnOuXkFvexF/gzwAUBhm+dFwJQf80LGmEuBSwGys7P3vDIRCUoul2FQWhyD0uJ2elxFbSPLNm5l2YYqlm/aytINW5nxbSF1Tc0ARLhd7JuVyKScFCblpDB+YDKJLQG8Kw3VsHUDbFkLW9ZAxVqnRb+lwOmu77Q1D7gjnCCPTnKCPSHDWWEuKdu5JWZBUpYzMU5HzU1OD0LLrbbcmc8+fYR6AKRVSF5GZq19EHgQnC70AJcjIgGWFBPB1Lw+TM3r07rN63Vmolu6oYp5hRV8u6acBz9fzf2frsIYGNYvgck5yUzMSWFsVhIZSdG4XZ0EY2QcRA6B1CHb77PWCdiKdc59fQXUVbR/XF/hBPCG72HZW9Dc2P41opOdMDcGan2B3bh1x79sdIoT5H1HOKPv00dC+jCISuz6BychzZ8BXgxktXme6dsmItLtXC5DTmosOamxHDu6PwC1jR7mF1YwZ80W5hSU8+LcIp74Zi3gdN/n9IkhNzWW3NQ48lJjyU2LJTc1lj6xERhjsNbS7LV4fLfmZkuTNxYShpPUN5ywXS0K4/U63fMV67bdKguhotAJ8LThvm74ZIhJ2fY4OtkZbb95KWxaDJuXwPxnnW0tYtOc0fbhsRARA+ExvucxzvOI+G1d/DEpzheBtvfhMXunZd/cBLVlUFPqXD0Qlbjtpil594g/A3wOMMQYk4sT3NOBs/34/iLSy8VEhLH/oFT2H5QKgKfZy5INVSxZX8Wa0hpWl9awcnM1Hy/bTFPzts69CLeLZl9474gxkBIT4Qys8w2uS4t3BtulJ0QyKC2OwelxRLWsLJc1ueu/QO7B2x5b63wB2LwUNi92uvibap3z+001zn1t2bZtjdXtA78jd4QzYn9nwiIhIs65RcY5XxDaPm8b1rWlzn19xU5eL8o5zdAS6NHJEN8X4jOczyjBdx+fATF9wLWDL0jNHqdnw9vkXEbYS04x+PU6cGPMcTiXibmBR621txpjbgHyrbUzjTGTgFeBZKAe2GitHbmz19QodBHpbp5mL8UVdawurWFNSQ2bttYT5jK4XS7CXIYwt3HuXS7C3E5YlFU3UuIbYNd6q26g0bNtTK7bZchNjWWYb8T88P7xDOuXQP/EKP+s/uZp9J1XL3e69VvvfV33tnnHP2ut77r7GqeLv6Ha99j3xaCh2rkMLzbNCduW2fZiUiG2j3MfHg31VU6o11e2uffdasth60Zn8GDHCX9c4c7rATQ3OF8Wmhudm20z7jkqEfqPdabxzRjnzM+fNLDroe5tdn7f5gbn3tPgey+7rVfE7Z82sCZyERHxM2stWxs8bKqsZ8XmapZuqGLphq0s21hF0Za61uMSosJIjY8k3OUiPMz5YhDh3vY43O0iPiqMvglR9EuIpF9iFH0TnFt6fOSuu+5DTXOTc2XA1o1Qtd6537rBuULAGKe3wB0BYRHbHrvDwbihfBWsnwebljgtcnDCtiXUo5Pbf3loGafQ8rix2gnrnX2ZaRGZ6Jx+aD0V0cd5PP58Z1xCN1GAi4gEkar6Jn7YuJWlvtHzlXVNNDV7aWq2vnvnsafZS4PHy9Z6D5u31rfr2gcnz1LjIukTG0G424XbZQh3G9xtegjCXIbIMDfpCZFkJEbTPymKjKRoMhKjSYuP7HzwXqjzNDjjBdbPc24b5junG7weMC5ft32Sr+s+advzluVy3ZG+LwiR29YHcPvm4m+5MqC2bFsvRtvH05+BvEO77VdRgIuIhDiv11Je28jGyno2b61nY2UDG6vq2VxVT3lNY+vgOk+zt/W+2WtparbUNzWzsaqe2sb2Lcswl6FvQhQZSVGMzEhkXHYS47OTyUyO9k+3vj811Tvd4JHxe/c8ubXd+vrBMJGLiIjsAZdr2yx00PXLxqy1VNV5WF9Zx4bKOtZX1LOhso4NFfUUbqnl+TmFPP51AeC06sdnJzEuO5nx2UmMyUwiOsK93et5LTR7LV5riXC7cAVzaz48yrntbX764qMAFxHpJYwxJMaEkxgTzvD+289T72n2smzjVuYVVjBv7Ra+W7eF95dsApwBeNHhbpq9zmj8zkblx0a4GZmRyKgBiYzJdO7zUmODO9RDmLrQRURkh8prGpm3bgvzCyuoaWgmzG1wGYPbBW6XC7fvsctl2FRZz8LiShavr6LBN/q+JdRHZyaSmxrrOz/vcn7GtJyrd14zPMxFUnQ4KbERJMVEkBAV1vO68X8EdaGLiEiXpcRGcPjwvhw+vO9u/4yn2cvKkmoWFlWyqLiSBcWVPD1rbWuo7y63y5AUHU5ybATJMeEkx0TQPzGKAcnRziC8pGgyk6JJjYvsla18BbiIiHSrMLerdTnZn050JuD0NHsprW50ut6bt3XBe63F0+zcN3i8VNY1Ul7TREVtI1tq2z9eU1rD16vKqG7YfoW6/onRZCRFERvhtNpdxvkC4DIGY5zWvstAQnQ4GUnRDPB9ARiQFLoj8RXgIiKy14W5XfRL7J4BZFX1TRRvqWN9hXMrqnAG5K2vqGPT1nq8XvBa67s5j61vsF1FbeN2S9SGuQz9EqMYkBRN/8SobbPpxUeSHh/VOrNeUkwna9EHkAJcRERCSkJUOAn9Ox+Itzu21je1Bn5xxbYvAusr6slfu4WSrQ2ddveHuw0psRHER4UTHxVGXGQYCW0ex0eFExcVxlEj+pKVErOnv+YuKcBFRKRXiY8KZ2i/cIb262QpV5zL46obPO2mxN1c5dyXVTewtd5DdYOHqnoPxRV1VNd72FrvaV2+dp++cQpwERERfzPG+FrZ4eTtYi36tjzNXqobPNtdL7+3KMBFRES6QZjbRVJMhN/er4fNgC8iItI7KMBFRERCkAJcREQkBCnARUREQpACXEREJAQpwEVEREKQAlxERCQEKcBFRERCkAJcREQkBBlrbaBr2CPGmBJgbTe+ZCpQ2o2v11vpc+we+hy7hz7H7qHPsXt09XMcaK1N67gx5AO8uxlj8q21EwNdR6jT59g99Dl2D32O3UOfY/fors9RXegiIiIhSAEuIiISghTg23sw0AX0EPocu4c+x+6hz7F76HPsHt3yOeocuIiISAhSC1xERCQEKcBFRERCkAK8DWPMMcaY5caYlcaYGwJdT6gwxjxqjNlsjFnUZluKMeYDY8wK331yIGsMdsaYLGPMJ8aYJcaYxcaYa3zb9Tl2gTEmyhjzrTHme9/n+Bff9lxjzGzfv+3njTERga41FBhj3MaYecaYN33P9Tl2kTGmwBiz0Bgz3xiT79vWLf+uFeA+xhg3cB9wLDACOMsYMyKwVYWMx4FjOmy7AfjIWjsE+Mj3XHbMA/zaWjsCmApc4fv/T59j1zQAP7HW7guMBY4xxkwF/gncaa0dDGwBLgpciSHlGmBpm+f6HH+cw6y1Y9tc+90t/64V4NtMBlZaa1dbaxuBGcBJAa4pJFhrPwfKO2w+CXjC9/gJ4GR/1hRqrLUbrLXf+R5vxfmjOQB9jl1iHdW+p+G+mwV+Arzk267PcTcYYzKB44GHfc8N+hy7S7f8u1aAbzMAKGzzvMi3TX6cvtbaDb7HG4G+gSwmlBhjcoBxwGz0OXaZr9t3PrAZ+ABYBVRYaz2+Q/Rve/f8B/gd4PU974M+xx/DAu8bY+YaYy71beuWf9dh3VGdyM5Ya60xRtcr7gZjTBzwMnCttbbKafQ49DnuHmttMzDWGJMEvAoMC2xFoccYMw3YbK2da4w5NMDlhLoDrbXFxph04ANjzLK2O/fk37Va4NsUA1ltnmf6tsmPs8kY0x/Ad785wPUEPWNMOE54P2OtfcW3WZ/jj2StrQA+AfYDkowxLQ0W/dvetQOAE40xBTinE38C3IU+xy6z1hb77jfjfKGcTDf9u1aAbzMHGOIbZRkBTAdmBrimUDYTON/3+Hzg9QDWEvR85xcfAZZaa+9os0ufYxcYY9J8LW+MMdHAkTjjCT4BTvcdps9xF6y1N1prM621OTh/Cz+21p6DPscuMcbEGmPiWx4DRwGL6KZ/15qJrQ1jzHE4533cwKPW2lsDW1FoMMY8BxyKs0TeJuDPwGvAC0A2znKvZ1hrOw50Ex9jzIHAF8BCtp1z/D3OeXB9jrvJGDMGZ1CQG6eB8oK19hZjTB5OSzIFmAeca61tCFylocPXhf4ba+00fY5d4/u8XvU9DQOetdbeaozpQzf8u1aAi4iIhCB1oYuIiIQgBbiIiEgIUoCLiIiEIAW4iIhICFKAi4iIhCAFuIjsdcaYQ40x1je/toh0AwW4iIhICFKAi4iIhCAFuEgvYIy5yhizzBhTb4xZYYz5Q8uc1saYAmPMrcaYh40xVcaYUmPM340xrjY/H2+M+Z8xpsQY02CMyTfGHNXhPdKNMY8ZYzb53me5MebnHUoZboz53BhTa4xZYow51g+/vkiPpNXIRHo4Y8zNwIXAtcB8YDjwXyAK+JPvsKtwphGehLPYwn9xpsW9y7f/Ud++c4F1wC+AN40xY6y1y3zzjn8G1AHnAKuBwThTbrb1f8D1OEt8/h543hgz0Fq7pRt/ZZFeQVOpivRgxpgYoBQ41Vr7bpvt5wF3W2uTfCtOFVprD2qz/+/Az6y1WcaYwcAK4Hhr7dttjvkOmG+t/bkx5iLgPmCwtbaokzoOxVkI47SWldaMMX1x1kI+xlr7Xjf/6iI9nlrgIj3bSCAaeLnDmsNuIMoYk+Z7/k2Hn/sKuNEYkwCM8G37vMMxn+Ms1QkwAVjSWXh3ML/lgbV2kzGmGei7O7+IiLSnABfp2VrOY/8U+KGT/f5e2ayxk20aiyPyI+gfjkjPthioB/KstSs7uTX7jpva4ef2B4qttVW+1wA4uMMxB+OsbQwwFxih67xF/EcBLtKDWWurgb8DfzfGXGGMGWqMGWmMmW6M+WebQ8caY242xuxjjDkbuAb4t+81VgEvAvcbY442xgwzxtwFjAJu9/38czjrGs80xhxhjMk1xhxujDnTX7+rSG+jLnSRHs5a+1djzAbgSpxQrsPpTn+8zWH3AAOBfKAJuJdtI9ABLsYJ66eBBGAhMM1au8z3HrXGmEOAfwEzgDigALhtb/1eIr2dRqGL9HK+UegPW2v/FuhaRGT3qQtdREQkBCnARUREQpC60EVEREKQWuAiIiIhSAEuIiISghTgIiIiIUgBLiIiEoIU4CIiIiHo/wHgtZYnZGVPvwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sg.utils.plot_history(history)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "history = model.fit(\n", - " train_gen, epochs=50, validation_data=val_gen, verbose=1, shuffle=False\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sg.utils.plot_history(history)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Threshold identification" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [], - "source": [ - "test_gen = generator.flow(test.index, test)" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "94/94 [==============================] - 391s 4s/step - loss: 0.0933 - acc: 0.8795\n", - "\n", - "Test Set Metrics:\n", - "\tloss: 0.0933\n", - "\tacc: 0.8795\n" - ] - } - ], - "source": [ - "test_metrics = model.evaluate(test_gen)\n", - "print(\"\\nTest Set Metrics:\")\n", - "for name, val in zip(model.metrics_names, test_metrics):\n", - " print(\"\\t{}: {:0.4f}\".format(name, val))" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [], - "source": [ - "test_predictions = pd.DataFrame(model.predict(test_gen), index=test.index, columns=test.columns)" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [], - "source": [ - "test_results = pd.concat({\n", - " \"target\": test, \n", - " \"preds\": test_predictions\n", - "}, axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.metrics import f1_score, classification_report" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAduElEQVR4nO3de3hVd53v8fc393so7CRQSAmXAIVebVqpJYzTqqXqtH1sVTqjp94Gq9KLOmo9M9PnmTrn8XZG22qPtVo9jjda69GDlbbjsSrQFgq1FwWyIQFaoOyQBEh2Qu75nT/2TtikgezC3lnZa31ez5PH7L1/sL7L0A+L7++31s+cc4iISObL8roAERFJDQW6iIhPKNBFRHxCgS4i4hMKdBERn8jx6sChUMjV1NR4dXgRkYz0/PPPtzrnKsb6zLNAr6mpYevWrV4dXkQkI5nZKyf7TC0XERGfUKCLiPiEAl1ExCcU6CIiPpFUoJvZCjMLm1mjmd05xuffNLMX4187zexoyisVEZFTGneVi5llA/cDbwf2A1vMbK1zbvvwGOfcpxPG3wpcnIZaRUTkFJK5Qr8MaHTO7XbO9QFrgOtOMf4m4OepKE5ERJKXzDr0mcC+hNf7gTePNdDMZgNzgKdO8vkqYBXAOeec84YKFX86eqyPxkOdNB7qpLWzl4rSfKaXFzK9rIDp5QWUFeRgZl6XKZIRUn1j0UrgUefc4FgfOuceBB4EqKur04PYA8I5R6SjZyS4h7+aWjpp7ew75a8tysseCffp5QVMLytgRnkBVWUFzCgvZHp5AdOK88jKUuiLJBPoB4DqhNez4u+NZSXwqTMtSjLTwOAQrxw+RtOhThpb4qF9qJOmli46ewdGxpUV5DC/soQrF1Uyv7Ik9lVRSmVZPi3RXiIdPUTaY18H23to7ujhYHs3m3cfprmjh4GhE68FcrONytJ40JcXMCPhL4AZ5QVMLy+ksjSf3Gwt6hJ/SybQtwC1ZjaHWJCvBP5+9CAzWwScBTyb0gpl0unuG6SpJXaFnXjFvbeti/7B42E7vayA+ZUl3HjJLOZVFDMvHt4VJfknbaNUTy2iemrRSY89OORo64yF/sF46Cf+BbD9tQ5+v6OZnv6hE36dGYRK8keu9o9f5R+/8p9eXkBRnmdPwxA5Y+P+6XXODZjZauBJIBv4gXNum5ndDWx1zq2ND10JrHHa0843EvvbjQlX3QeOdjP8U84ymD2tmHkVJVx1btXIFfe8imJKC3JTXlN2llFZVkBlWQEXzBp7jHOOju4BDnZ0x67w208M/1fbjvHcnsO0d/e/7teWF+Yeb/Ekhn/8f2eUFVJWqL6+TE7mVf7W1dU5PZzLe845Drb3nBDaTWP0t/NzsphbMdweKRkJ7ppQEfk52R6ewek71jdwwhX+8fbO8fBv7exl9H8iBblZsf79qNbOyBV/WQGhknz19SUtzOx551zdWJ/p35cBMdzfHpmQTAjvrr7jc9jlhbnMryzhqkVVzKssHulvzzyrkGyfBVRRXg5zK0qYW1Fy0jH9g0McivYSae8+HvTtPRzsiF35P7fnMIeiPSe0mgBysoyqsgKqyvJHJm9Ht3uqygrIy1FfX1JHge4zb7S//d666lhvO37VHSrJUzshQW52FjOnFDJzSuFJxwwNOdq6+hKu9uPhH7/y33Gwg6caDtHd//rFX6GSPGaeVcTSOVOpr62gruYsCnIz81884j21XDLUka6+kZ524teBo90jYxL72yOrSdLY35aTc87R0TOQ0NLpJtLeS6Sjm6aWLl549Qj9g478nCwumzOV+toQy+ZXcO6MUv0FKyc4VctFgT6JjdXfHm6XtHWd2N9ODO3h7zO5vx00x/oG2LznMBt2trKxsYWdzZ1A7Ap+2fwQy2orqK8NUVVW4HGl4jUFegbZcbCD763ffcr+9vxRV9wzpxRqAs5nIu09bGxsZeOuFjY2to5MUC+oKmHZ/ArqF4R485ypWmYZQAr0DNHZO8DV31xPR08/F86aErvaVn878IaGHA2RKBsbW9iwq5Xn9hymd2CIvOws3jR7CvXxq/clZ5f7buJaXk+BniH+5dd/4aebX+UXH7+cupqpXpcjk1RP/yBb9x5hw65YwG8/2AHAlKJcrpgfon5+iGW1IWaddfIbtCRzadliBnimsZWfbHqVjy2bozCXUyrIzWZZbSy0vwi0dvbydGMrG3a1smFXC799+SAAc0PFsXHzQ1w+b5omwgNAV+iTwHCrJS8ni3W31VOYp4lMOT3OORoPdY6E+6bdh+nuHyQ7y7i4egrLakPU11Zw4axycvRsm4yklsskp1aLpEvfwBB/fjXWntm4q5WXD7TjHJQW5PCWedNiq2fmh5g9rUjzMxlCLZdJTK0WSae8nCyWzp3G0rnT+NzVsfsXnmlqY2NjC+t3tvLktmYAqqcWxlbP1IZ4y7xpTCnK87hyOR26QveQWi3iJecce9uOsXFXC+t3tbKpqY1o7wBZBufPmkL9/BD1tSEuPucsPaJgEtEV+iT1lcd38Fp7N7/4+OUKc5lwZsacUDFzQsV88PIa+geHeGnfUTbsamVjYyvf+VMT3/5DI0V52SydO4362ljAz6soUXtmklKge0StFplscrOzqKuZSl3NVD799gV09PTzbFMbG+MTrE81HAJgRnlB/O7V2AqaaSX5Hlcuw9Ry8YBaLZKJ9h0+xsbGWLg/3dg28jz5JWeXsaw2xPLaCi6ZrYeLpZtWuUwyWtUimW5wyPHXA+0jNzf9edTDxZbXVrCsNsSi6Xq4WKqphz6JDLdaPqpWi2Sw7CzjwuopXFg9hdVX1tLVO8DmPW3x9e+t/I91O4DYtn/18dZMfW2ISj1cLK0U6BOos3eAzz36MnNCxfzTOxZ6XY5IyhTn53DloiquXFQFwMH27tjk6q5W1u9s4VcvxPaVX1hVOnKXqx4ulnr6f3MCaVWLBMWM8kLeV1fN++qqGRpybD/YEX96ZCs/3vQKD23cQ35OFne8bQGrls/VQ8VSRIE+QdRqkaDKyjLOm1nOeTPLueVv5tHTP8hzew7z082v8NUnGvhj+BDffP9FnH2KXaEkObpbYAJ09Q7w+V+q1SICsYeLLV9QwQMfuISv33gBfz3Qzop71vObl17zurSMp0CfAF9+fAcHjnbz9RsvUKtFJM7MeG9dNetur2deZQm3/vwFPvPwi0R7+r0uLWMp0NNsuNXykSvUahEZy+xpxfzi45dz+1W1/PrFA1xz7wa27j3sdVkZSYGeRmq1iCQnJzuLT799Ab+45S1kmfG+7z7Lf/xXmP7BIa9LyygK9DT6yuMNarWIvAGXzD6LdbfX8543zeJbTzVy4wPPsqe1y+uyMoYCPU2eaYwtz1KrReSNKcnP4X++90L+1z+8ib2tXbzrvg08vOVVvLqrPZMo0NNArRaRM/fO82fwxB31XFQ9hS/88i/c8pPnOdLV53VZk5oCPQ3UahFJjRnlhfzko2/mv79zEU81HOLqe9azYVeL12VNWgr0FFOrRSS1srKMVcvn8etPXUFZYS4ffOg57v7Ndnr6B70ubdJRoKeQWi0i6bPk7HIeu3UZN18+mx88vYfr73+ahkiH12VNKgr0FFKrRSS9CnKz+bfrzuOHH76U1s4+rv320zy0cQ9DQ5owBQV6yqjVIjJx/nZhJU/cUc/y2hBfemw7N//wOZo7erwuy3MK9BRQq0Vk4oVK8vnef6vj368/jy17D7PinvU8uS3idVmeUqCngFotIt4wMz6wdDaP3VrPzLMK+fiPn+fOX75MV++A16V5QoF+htRqEfHe/MoS/s8nruATb53Hw1v38a77NvDivqNelzXhFOhnQK0WkckjLyeLL6xYxM//cSl9A0Pc8J1n+NbvdzEYoAlTBfoZGG61fE2tFpFJY+ncaTx+x3Ledf4M/uN3O3n/d59l3+FjXpc1IRTop2m41fLht8zhUrVaRCaV8sJc7rvpYu55/0WEI1GuuXcDv3phv++fB5NUoJvZCjMLm1mjmd15kjHvM7PtZrbNzH6W2jInl8RWy+euVqtFZLK6/uKZrLu9nnNnlPLph1/itjUv0t7t3w00xg10M8sG7geuARYDN5nZ4lFjaoEvAlc455YAd6S+1MlDrRaRzFE9tYg1qy7nn96xgMf/cpBr7lnPpt1tXpeVFslcoV8GNDrndjvn+oA1wHWjxvwjcL9z7giAc+5QasucPJ5pUqtFJNNkZxmrr6zll594C/m52dz0vU185fEG+gb8tYFGMoE+E9iX8Hp//L1EC4AFZva0mW0ysxWpKnAy6eod4POPqtUikqkurJ7CY7cuY+Wl1Tzwpybe852naTzU6XVZKZOqSdEcoBZ4K3AT8D0zmzJ6kJmtMrOtZra1pSXzHoGpVotI5ivOz+HL77mA737wEg4c6ebd39rAjze94osJ02QC/QBQnfB6Vvy9RPuBtc65fufcHmAnsYA/gXPuQedcnXOurqKi4nRr9oRaLSL+cvWS6Txxx3IurZnKv/76r3zsR1tp7ez1uqwzkkygbwFqzWyOmeUBK4G1o8b8mtjVOWYWItaC2Z26Mr013GqpmVakVouIj1SVFfCjD1/GXe9ezIbGVlbcs54/NGTuFOC4ge6cGwBWA08CO4BHnHPbzOxuM7s2PuxJoM3MtgN/AD7nnPPNNPJXn4g/q+W9F6rVIuIzWVnGR5bNYe3qKwiV5PPh/72Fu/7vXzNyAw3zqm9UV1fntm7d6smx34hnmlr5++9t5iNXzOGuv1s8/i8QkYzV0z/I158M89DGPcyvLOHelRex5Oxyr8s6gZk975yrG+sz3Sl6Cmq1iARLQW42//ruxfz4o5fR0d3P9fc/zXf/1JQxG2go0E9BrRaRYKqvreCJO5Zz5aJKvvx4A//w/c28drTb67LGpUA/iWeaWvnPZ7WqRSSophbn8cAHLuGrN5zPS/uPsuKe9Tz28mtel3VKCvQxqNUiIhDbQOP9l57Db2+rZ05FCat/9gKffeQloj2T83kwCvQxPPCnJrVaRGTEnFAxj95yObddOZ9fvbCfd963gedfOex1Wa+jQB/Dc3sOc1H1FLVaRGREbnYWn3nHQh75+OU4B+994Fm+8budDAxOnufBKNBHcc4Rbo6yaHqZ16WIyCRUVzOVx2+v5/qLZ3Lf73dx4wPPsre1y+uyAAX66xyK9nL0WD+Lppd6XYqITFKlBbl8430X8a2bLmZ3SyfvvG8Dj2zZ5/nzYBToo+w42AHAQgW6iIzj7y48myfuWM4Fs8r5/C9f5hM/+TNHuvo8q0eBPko4EgXQFbqIJOXsKYX89GNLufOaRfy+oZkV965n465WT2pRoI8SjkSpKstnSlGe16WISIbIzjJu+Zt5/OqTV1CSn8MHHtrMvz+2nd6BiX0ejAJ9lIZIlIWaEBWR03DezHIeu7WeDy6dzfc37uG6bz/NzubohB1fgZ5gYHCIxpZOtVtE5LQV5mXzpevP46Gb62iJ9vLub23kh0/vmZAJUwV6gr1tXfQNDLGwSoEuImfmqnOreOKO5Vwxbxr/9pvt3PzDLRzq6EnrMRXoCRriE6Ja4SIiqVBRms8PPnQpX7puCZt3t7Hi3g3817ZI2o6nQE8QjkTJzjLmV5Z4XYqI+ISZ8cHLa/jtbcuYUV7Aqh8/z4+e2ZuWY+Wk5XfNUA2RKDXTiijI1fNbRCS15leW8qtPXsG3n9rF1Uump+UYCvQE4UiU82dNrt1JRMQ/8nJiz4NJF7Vc4rp6B3j18DEWaUJURDKUAj1ueK2oJkRFJFMp0OOO3/Kvm4pEJDMp0OMaIlGK8rKZdVah16WIiJwWBXpcOBJlQVUpWVnmdSkiIqdFgU5sU4uGSIdu+ReRjKZAB1qivRw51q8JURHJaAp0dMu/iPiDAh2tcBERf1CgE7tCryjNZ2qxNrUQkcylQAfCzZoQFZHMF/hAHxxy7Gru1DPQRSTjBT7Q97Z10TswpAlREcl4gQ90TYiKiF8EPtAbIlGyDGqrtKmFiGS2wAd6ONJBTahYm1qISMZToEeiWuEiIr4Q6EA/1jfAK4ePsbBK/XMRyXyBDvRdzZ04p1v+RcQfAh3oDZEOALVcRMQXAh7oUQpzszlnapHXpYiInLGkAt3MVphZ2MwazezOMT7/kJm1mNmL8a+Ppb7U1IttalGiTS1ExBdyxhtgZtnA/cDbgf3AFjNb65zbPmrow8651WmoMW3CkShXnVvpdRkiIimRzBX6ZUCjc263c64PWANcl96y0q8l2ktbVx8LdYeoiPhEMoE+E9iX8Hp//L3RbjCzl83sUTOrHus3MrNVZrbVzLa2tLScRrmpc/yWf02Iiog/pGpS9DdAjXPuAuB3wI/GGuSce9A5V+ecq6uoqEjRoU/P8AoXLVkUEb9IJtAPAIlX3LPi741wzrU553rjL78PXJKa8tInHIkSKskjVJLvdSkiIimRTKBvAWrNbI6Z5QErgbWJA8xsRsLLa4EdqSsxPcLNUV2di4ivjBvozrkBYDXwJLGgfsQ5t83M7jaza+PDbjOzbWb2EnAb8KF0FZwKg0OOnc1R3fIvIr4y7rJFAOfcOmDdqPfuSvj+i8AXU1ta+rx6+Bg9/UMsmqErdBHxj0DeKRrWLf8i4kOBDPSGSBQzqK1UoIuIfwQy0MORKDXTiinM06YWIuIfgQ30hVW6OhcRfwlcoHf3DbKnrUtLFkXEdwIX6LsORXFOE6Ii4j+BC/SG+DNcdIUuIn4TuEAPR6IU5GYxe1qx16WIiKRUIAO9trKUbG1qISI+E7hAb4joGS4i4k+BCvS2zl5aO3s1ISoivhSoQA9rQlREfCxQga4VLiLiZ4EK9HAkytTiPCq0qYWI+FCgAr2hOcqi6aWYaYWLiPhPYAJ9aMixS7sUiYiPBSbQ9x05xrG+Qa1wERHfCkygH58Q1bZzIuJPgQn0cHxTiwVVJV6XIiKSFoEJ9IZIB+dMLaIoL6ltVEVEMk6AAl2bWoiIvwUi0Hv6B9nb2qUJURHxtUAEeuOhToacJkRFxN8CEei65V9EgiAQgR6OdJCXk0XNtCKvSxERSZtABHpDJEptZQk52YE4XREJqEAkXFibWohIAPg+0I909XEoqk0tRMT/fB/ouuVfRILC94EejnQAcK6u0EXE5/wf6M1RzirKpaJUm1qIiL/5PtAb4hOi2tRCRPzO14E+NOTYGYmySP1zEQkAXwf6/iPddPUNasmiiASCrwO9IT4hqkAXkSDwdaCH40sWF+ixuSISAL4O9IbmKNVTCynJ16YWIuJ/vg70cCTKwipNiIpIMPg20HsHBtmjTS1EJECSCnQzW2FmYTNrNLM7TzHuBjNzZlaXuhJPT+OhTgaHnCZERSQwxg10M8sG7geuARYDN5nZ4jHGlQK3A5tTXeTpGJ4Q1RW6iARFMlfolwGNzrndzrk+YA1w3RjjvgR8FehJYX2nLRyJkpedRU2o2OtSREQmRDKBPhPYl/B6f/y9EWb2JqDaOffbU/1GZrbKzLaa2daWlpY3XOwb0RCJMq+yhFxtaiEiAXHGaWdmWcA3gM+ON9Y596Bzrs45V1dRUXGmhz6lcCSqJyyKSKAkE+gHgOqE17Pi7w0rBc4D/mhme4GlwFovJ0bbj/UT6ejRhKiIBEoygb4FqDWzOWaWB6wE1g5/6Jxrd86FnHM1zrkaYBNwrXNua1oqToJu+ReRIBo30J1zA8Bq4ElgB/CIc26bmd1tZtemu8DTEW4eXuGim4pEJDiSuifeObcOWDfqvbtOMvatZ17WmWmIRCkvzKWqTJtaiEhw+HIJSMPBDm1qISKB47tAd86xs7lTNxSJSOD4LtD3H+mms3dAE6IiEji+C3Td8i8iQeW/QG/WphYiEky+C/SGSJSZUwopLcj1uhQRkQnlu0APRzrUbhGRQPJVoPcNDLG7pUsToiISSL4K9KaWTga0qYWIBJSvAv34Chfd8i8iweOrQG+IRMnNNuZWaFMLEQkeXwV6ONLBvAptaiEiweSr5AtHolrhIiKB5ZtAb+/u57X2Hhaqfy4iAeWbQN/ZrFv+RSTYfBPoDQe1S5GIBJt/Aj0SpbQghxnlBV6XIiLiCd8E+vCEqDa1EJGg8kWgO+cIN0fVbhGRQPNFoL/W3kO0Z0ArXEQk0HwR6OFIbEJUK1xEJMh8EegNEW1qISLii0APR6KcXV5AeaE2tRCR4PJNoGtCVESCLuMDvX9wiKaWTk2IikjgZXyg727pon/Qce4MXaGLSLBlfKA3RHTLv4gI+CDQw5EoOVnG3FCJ16WIiHjKF4E+r6KEvJyMPxURkTOS8SnYoBUuIiJAhgd6R08/B452K9BFRMjwQN8Z0aYWIiLDMjrQh2/51xW6iEiGB3o4EqU0P4eZUwq9LkVExHMZH+gLtKmFiAiQwYHunKMh0qF2i4hIXMYGeqSjh46eAU2IiojEZWygj0yI6hnoIiJABgd6eGTJop6yKCICSQa6ma0ws7CZNZrZnWN8fouZ/cXMXjSzjWa2OPWlnigciTK9rIDyIm1qISICSQS6mWUD9wPXAIuBm8YI7J855853zl0EfA34RqoLHa0hEmWRHpkrIjIimSv0y4BG59xu51wfsAa4LnGAc64j4WUx4FJX4uv1Dw7RdKhTK1xERBLkJDFmJrAv4fV+4M2jB5nZp4DPAHnAlWP9Rma2ClgFcM4557zRWkfsbe2ib3BIK1xERBKkbFLUOXe/c24e8AXgX04y5kHnXJ1zrq6iouK0j3V8hYsmREVEhiUT6AeA6oTXs+Lvncwa4PozqGlcDZEOsrOMeZXF6TyMiEhGSSbQtwC1ZjbHzPKAlcDaxAFmVpvw8l3ArtSV+HrhSJS5oWLyc7LTeRgRkYwybg/dOTdgZquBJ4Fs4AfOuW1mdjew1Tm3FlhtZm8D+oEjwM3pLLohEuWi6inpPISISMZJZlIU59w6YN2o9+5K+P72FNd1Up29A+w/0s3KS6vHHywiEiAZd6doeOQZ6JoQFRFJlLGBriWLIiInyrhAD5Xk8fbFVdrUQkRklKR66JPJO5ZM5x1LpntdhojIpJNxV+giIjI2BbqIiE8o0EVEfEKBLiLiEwp0ERGfUKCLiPiEAl1ExCcU6CIiPmHOpXW3uJMf2KwFeGWcYSGgdQLKmWx03sES1POG4J77mZz3bOfcmDsEeRboyTCzrc65Oq/rmGg672AJ6nlDcM89XeetlouIiE8o0EVEfGKyB/qDXhfgEZ13sAT1vCG4556W857UPXQREUneZL9CFxGRJCnQRUR8YlIEupmtMLOwmTWa2Z1jfJ5vZg/HP99sZjUelJlySZz3cjP7s5kNmNmNXtSYDkmc92fMbLuZvWxmvzez2V7UmWpJnPctZvYXM3vRzDaa2WIv6ky18c47YdwNZubMzBfLGJP4eX/IzFriP+8XzexjZ3xQ55ynX0A20ATMBfKAl4DFo8Z8Engg/v1K4GGv656g864BLgD+E7jR65on8Lz/FiiKf/+JAP28yxK+vxZ4wuu6J+K84+NKgfXAJqDO67on6Of9IeDbqTzuZLhCvwxodM7tds71AWuA60aNuQ74Ufz7R4GrzMwmsMZ0GPe8nXN7nXMvA0NeFJgmyZz3H5xzx+IvNwGzJrjGdEjmvDsSXhYDflixkMx/3wBfAr4K9ExkcWmU7Hmn1GQI9JnAvoTX++PvjTnGOTcAtAPTJqS69EnmvP3ojZ73R4HH01rRxEjqvM3sU2bWBHwNuG2Cakuncc/bzN4EVDvnfjuRhaVZsn/Ob4i3Fh81s+ozPehkCHSRMZnZB4A64Ote1zJRnHP3O+fmAV8A/sXretLNzLKAbwCf9boWD/wGqHHOXQD8juNdiNM2GQL9AJD4N9Os+HtjjjGzHKAcaJuQ6tInmfP2o6TO28zeBvwzcK1zrneCakunN/rzXgNcn86CJsh4510KnAf80cz2AkuBtT6YGB335+2ca0v4s/194JIzPehkCPQtQK2ZzTGzPGKTnmtHjVkL3Bz//kbgKRefVchgyZy3H4173mZ2MfBdYmF+yIMa0yGZ865NePkuYNcE1pcupzxv51y7cy7knKtxztUQmzO51jm31ZtyUyaZn/eMhJfXAjvO+KhezwbHc/mdwE5is8L/HH/vbmI/WIAC4BdAI/AcMNfrmifovC8l1nvrIvYvkm1e1zxB5/3/gGbgxfjXWq9rnqDzvhfYFj/nPwBLvK55Is571Ng/4oNVLkn+vL8c/3m/FP95LzrTY+rWfxERn5gMLRcREUkBBbqIiE8o0EVEfEKBLiLiEwp0ERGfUKCLiPiEAl1ExCf+P989qUjjhBynAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "f1s = {}\n", - "\n", - "for th in [0.01,0.05,0.1,0.2,0.3,0.4,0.5]:\n", - " f1s[th] = f1_score(test_results[\"target\"], 1.0*(test_results[\"preds\"]>th), average=\"macro\")\n", - " \n", - "pd.Series(f1s).plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As it can be seen, with a threshold of about 0.2 we obtain the best performances. We thus use this value for producing the classification report" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " precision recall f1-score support\n", - "\n", - " 0 0.92 0.97 0.94 2075\n", - " 1 0.85 0.96 0.90 1200\n", - " 2 0.65 0.90 0.75 364\n", - " 3 0.83 0.95 0.89 305\n", - " 4 0.86 0.68 0.76 296\n", - " 5 0.74 0.56 0.63 269\n", - " 6 0.60 0.80 0.69 245\n", - " 7 0.62 0.10 0.17 150\n", - " 8 0.49 0.95 0.65 149\n", - " 9 0.44 0.88 0.58 129\n", - "\n", - " micro avg 0.80 0.89 0.84 5182\n", - " macro avg 0.70 0.78 0.70 5182\n", - "weighted avg 0.82 0.89 0.84 5182\n", - " samples avg 0.83 0.90 0.85 5182\n", - "\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/deusebio/.pyenv/versions/3.7.6/envs/ml-book-7/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1245: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in samples with no predicted labels. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, msg_start, len(result))\n" - ] - } - ], - "source": [ - "print(classification_report(test_results[\"target\"], 1.0*(test_results[\"preds\"]>0.2)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Inductive Prediction" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now provide a prediction truly inductive, thus we will be using the full graph and we will also use the threshold of 0.2 we have identified above as the one providing the top f1-score. " - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [], - "source": [ - "generator = HinSAGENodeGenerator(stellarGraph, batch_size, num_samples, head_node_type=\"document\")" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": {}, - "outputs": [], - "source": [ - "hold_out = hold_out[hold_out.sum(axis=1) > 0]" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [], - "source": [ - "hold_out_gen = generator.flow(hold_out.index, hold_out)" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [], - "source": [ - "hold_out_predictions = model.predict(hold_out_gen)" - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "metadata": {}, - "outputs": [], - "source": [ - "preds = pd.DataFrame(1.0*(hold_out_predictions > 0.2), index=hold_out.index, columns=hold_out.columns)" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "metadata": {}, - "outputs": [], - "source": [ - "results = pd.concat({\n", - " \"target\": hold_out, \n", - " \"preds\": preds\n", - "}, axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " precision recall f1-score support\n", - "\n", - " 0 0.93 0.99 0.96 1087\n", - " 1 0.90 0.97 0.93 719\n", - " 2 0.64 0.92 0.76 179\n", - " 3 0.82 0.95 0.88 149\n", - " 4 0.85 0.62 0.72 189\n", - " 5 0.74 0.50 0.59 117\n", - " 6 0.60 0.79 0.68 131\n", - " 7 0.43 0.03 0.06 89\n", - " 8 0.50 0.96 0.66 71\n", - " 9 0.39 0.86 0.54 56\n", - "\n", - " micro avg 0.82 0.89 0.85 2787\n", - " macro avg 0.68 0.76 0.68 2787\n", - "weighted avg 0.83 0.89 0.84 2787\n", - " samples avg 0.84 0.90 0.86 2787\n", - "\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/deusebio/.pyenv/versions/3.7.6/envs/ml-book-7/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1245: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in samples with no predicted labels. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, msg_start, len(result))\n" - ] - } - ], - "source": [ - "print(classification_report(results[\"target\"], results[\"preds\"]))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "ml-book-7", - "language": "python", - "name": "ml-book-7" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/Chapter08/04_supervised_classification_pyg.ipynb b/Chapter08/04_supervised_classification_pyg.ipynb new file mode 100644 index 0000000..ea1ae43 --- /dev/null +++ b/Chapter08/04_supervised_classification_pyg.ipynb @@ -0,0 +1,911 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Graph Neural Network Topic Classifier" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the following we will focus on building a model for topic classification based on a Graph Neural Network approach.\n", + "\n", + "In particular in the following we will show you how to:\n", + "\n", + "* Create a TF-IDF representation of the corpus, that will be used as node features in the Graph Neural Network model \n", + "* Build, train a Graph Neural Network model and identify the best threshold for classifying documents \n", + "\n", + "**NOTE: This Notebook can only be run after the 01_nlp_graph_creation notebook, as some of the results computed in the first notebook will be here reused.**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "corpus = pd.read_pickle(\"corpus.p\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "corpus.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from collections import Counter\n", + "topics = Counter([label for document_labels in corpus[\"label\"] for label in document_labels]).most_common(10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "topics" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "topicsList = [topic[0] for topic in topics]\n", + "topicsSet = set(topicsList)\n", + "dataset = corpus[corpus[\"label\"].apply(lambda x: len(topicsSet.intersection(x))>0)]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_labels(corpus, topicsList=topicsList):\n", + " return corpus[\"label\"].apply(\n", + " lambda labels: pd.Series({label: 1 for label in labels}).reindex(topicsList).fillna(0)\n", + " )[topicsList]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "labels = get_labels(dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "labels.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_features(corpus):\n", + " return corpus[\"parsed\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_features_and_labels(corpus):\n", + " return get_features(corpus), get_labels(corpus)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def train_test_split(corpus):\n", + " train_idx = [idx for idx in corpus.index if \"training/\" in idx]\n", + " test_idx = [idx for idx in corpus.index if \"test/\" in idx]\n", + " return corpus.loc[train_idx], corpus.loc[test_idx]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train, test = train_test_split(dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def my_spacy_tokenizer(pos_filter=[\"NOUN\", \"VERB\", \"PROPN\"]):\n", + " def tokenizer(doc):\n", + " return [token.lemma_ for token in doc if (pos_filter is None) or (token.pos_ in pos_filter)] \n", + " return tokenizer" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.feature_extraction.text import TfidfVectorizer" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "cntVectorizer = TfidfVectorizer(\n", + " analyzer=my_spacy_tokenizer(),\n", + " max_df = 0.25, min_df = 2, max_features = 10000\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "trainFeatures, _ = get_features_and_labels(train)\n", + "testFeatures, _ = get_features_and_labels(test)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "trainedTransformed = cntVectorizer.fit_transform(trainFeatures)\n", + "testTransformed = cntVectorizer.transform(testFeatures)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features = pd.concat([\n", + " pd.DataFrame.sparse.from_spmatrix(trainedTransformed, index=trainFeatures.index), \n", + " pd.DataFrame.sparse.from_spmatrix(testTransformed, index=testFeatures.index)\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Creating the Graph" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from torch_geometric.data import HeteroData" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "edges = pd.read_pickle(\"bipartiteEdges.p\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "entityTypes = {entity: ith for ith, entity in enumerate(edges[\"type\"].unique())}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "entityTypes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "documentFeatures = features.loc[list(set(corpus.index).intersection(features.index))] #.assign(document=1, entity=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "documentFeatures.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "entities = edges.groupby([\"target\", \"type\"])[\"source\"].count().groupby(level=0).apply(\n", + " lambda s: s.droplevel(0).reindex(entityTypes.keys()).fillna(0)\n", + ").unstack(level=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "entityFeatures = (entities.T / entities.sum(axis=1)).T.assign(document=0, entity=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "nodes = {\"entity\": entityFeatures, \n", + " \"document\": documentFeatures}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "targets = labels.reindex(documentFeatures.index).fillna(0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def train_test_split(corpus):\n", + " graphIndex = [index for index in corpus.index]\n", + " \n", + " train_idx = [idx for idx in graphIndex if \"training/\" in idx]\n", + " test_idx = [idx for idx in graphIndex if \"test/\" in idx]\n", + " return corpus.loc[train_idx], corpus.loc[test_idx]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sampled, hold_out = train_test_split(targets)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "train, leftOut = train_test_split(\n", + " sampled,\n", + " train_size=0.1,\n", + " random_state=42,\n", + ")\n", + "\n", + "validation, test = train_test_split(\n", + " leftOut, train_size=0.2, test_size=None, random_state=100,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train = train[train.sum(axis=1) > 0]\n", + "validation = validation[validation.sum(axis=1) > 0]\n", + "test = test[test.sum(axis=1) > 0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(f\"Train: {train.shape}\")\n", + "print(f\"Validation: {validation.shape}\")\n", + "print(f\"Test: {test.shape}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "docs_maps = {k: ith for ith, k in enumerate(documentFeatures.index)}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ents_maps = {k: ith for ith, k in enumerate(entityFeatures.index)}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "labs_maps = {k: ith for ith, k in enumerate(labels.columns)}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "edges[\"source_id\"] = edges[\"source\"].apply(lambda x: docs_maps.get(x, -1))\n", + "edges[\"target_id\"] = edges[\"target\"].apply(lambda x: ents_maps.get(x, -1))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "import torch_sparse\n", + "\n", + "def df_to_torch(df: pd.DataFrame):\n", + " try:\n", + " # @amarzullo: needs to be torch_sparse coo\n", + " coo = df.sparse_to_coo()\n", + " return torch_sparse.coalesce(coo.coords, coo.data, coo.shape)\n", + " #coo = df.sparse.to_coo()\n", + " #return torch.sparse_coo_tensor(coo.coords, coo.data, coo.shape) #.to_sparse_csr()\n", + " except AttributeError:\n", + " return torch.from_numpy(df.values)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = HeteroData()\n", + "\n", + "data[\"document\"].x = df_to_torch(documentFeatures)#.to_dense() #@amarzullo to_dense\n", + "data[\"entity\"].x = df_to_torch(entityFeatures)#.to_dense() #@amarzullo to_dense" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for _type, group in edges[(edges[\"source_id\"]!=-1) * (edges[\"target_id\"]!=-1)].groupby(\"type\"):\n", + " data[(\"document\", _type, \"entity\")].edge_index = df_to_torch(group[[\"source_id\", \"target_id\"]].T)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data[\"document\"].y = df_to_torch(targets).to(torch.float)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data[\"document\"][\"train_mask\"] = df_to_torch(train.sum(axis=1).reindex(documentFeatures.index).fillna(0)).to(torch.bool)\n", + "data[\"document\"][\"val_mask\"] = df_to_torch(validation.sum(axis=1).reindex(documentFeatures.index).fillna(0)).to(torch.bool)\n", + "data[\"document\"][\"test_mask\"] = df_to_torch(test.sum(axis=1).reindex(documentFeatures.index).fillna(0)).to(torch.bool)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import torch_geometric.transforms as T" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = T.ToUndirected()(data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from torch_geometric.nn import SAGEConv, to_hetero\n", + "import torch.nn.functional as F\n", + "\n", + "class GNN(torch.nn.Module):\n", + " def __init__(self, hidden_channels, out_channels):\n", + " super().__init__()\n", + " self.conv1 = SAGEConv((-1, -1), hidden_channels)\n", + " self.conv2 = SAGEConv((-1, -1), out_channels)\n", + "\n", + " def forward(self, x, edge_index):\n", + " x = x.float() #@amarzullo\n", + " x = self.conv1(x, edge_index).relu()\n", + " x = self.conv2(x, edge_index)\n", + " return F.sigmoid(x)\n", + "\n", + "\n", + "model = GNN(hidden_channels=64, out_channels=len(labs_maps))\n", + "model = to_hetero(model, data.metadata(), aggr='sum')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "with torch.no_grad(): # Initialize lazy modules.\n", + " out = model(data.x_dict, data.edge_index_dict)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "device = torch.device(\"cpu\")\n", + "\n", + "model = model.to(device)\n", + "optimizer = torch.optim.Adam(model.parameters(), lr=0.01)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from dataclasses import dataclass\n", + "\n", + "@dataclass\n", + "class Accuracy:\n", + " correct: int\n", + " total: int\n", + "\n", + " @property\n", + " def score(self):\n", + " return float(self.correct) * 1.0 / self.total\n", + "\n", + " def __add__(self, other: 'Accuracy'):\n", + " if not isinstance(other, Accuracy):\n", + " raise ValueError(\"Cannot add objects other than Accuracy\")\n", + "\n", + " return Accuracy(self.correct+other.correct, self.total+other.total)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def score(correct):\n", + " return Accuracy(int(correct.sum()), int(np.prod(correct.shape)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def training(data, train_mask):\n", + " model.train()\n", + "\n", + " # zero the parameter gradients\n", + " optimizer.zero_grad()\n", + "\n", + " out = model(data.x_dict, data.edge_index_dict)\n", + " \n", + " loss = F.binary_cross_entropy(out['document'][train_mask], data['document'].y[train_mask])\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " return float(loss)\n", + "\n", + "@torch.no_grad()\n", + "def eval(data, mask):\n", + " # Test/Evaluate\n", + " model.eval()\n", + "\n", + " out = model(data.x_dict, data.edge_index_dict)[\"document\"][mask]\n", + "\n", + " pred = (1.0*(out>0.5) == data[\"document\"].y[mask])\n", + " \n", + " return score(pred)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_mask = data['document'].train_mask\n", + "val_mask = data['document'].val_mask\n", + "\n", + "for epoch in range(10): # loop over the dataset multiple times\n", + "\n", + " loss = training(data, train_mask)\n", + " \n", + " # Test/Evaluate\n", + " train_score, val_score = eval(data, train_mask), eval(data, val_mask)\n", + "\n", + " print(f\"Epoch {epoch} => Training: {train_score.score} Validation: {val_score.score}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### With batches" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from torch_geometric.loader import NeighborLoader" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_input_nodes = ('document', data['document'].train_mask)\n", + "val_input_nodes = ('document', data['document'].val_mask)\n", + "kwargs = {'batch_size': 128}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_loader = NeighborLoader(data, num_neighbors=[10] * 2, shuffle=True,\n", + " input_nodes=train_input_nodes, **kwargs)\n", + "val_loader = NeighborLoader(data, num_neighbors=[10] * 2,\n", + " input_nodes=val_input_nodes, **kwargs)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_score = Accuracy(0, 0)\n", + "for nth, batch in enumerate(train_loader):\n", + " batch_size = batch['document'].batch_size\n", + " train_mask = range(batch_size)\n", + " train_score += eval(batch, train_mask)\n", + "\n", + "val_score = Accuracy(0, 0)\n", + "for nth, batch in enumerate(val_loader):\n", + " batch_size = batch['document'].batch_size\n", + " train_mask = range(batch_size)\n", + " val_score += eval(batch, train_mask)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for epoch in range(1):\n", + " loss = 0\n", + " for nth, batch in enumerate(train_loader):\n", + " batch_size = batch['document'].batch_size\n", + " train_mask = range(batch_size)\n", + " loss += training(batch, train_mask)*batch_size\n", + "\n", + " # Training error\n", + " train_score = Accuracy(0, 0)\n", + " for nth, batch in enumerate(train_loader):\n", + " batch_size = batch['document'].batch_size\n", + " train_mask = range(batch_size)\n", + " train_score += eval(batch, train_mask)\n", + "\n", + " val_score = Accuracy(0, 0)\n", + " for nth, batch in enumerate(val_loader):\n", + " batch_size = batch['document'].batch_size\n", + " train_mask = range(batch_size)\n", + " val_score += eval(batch, train_mask)\n", + " \n", + " print(f\"Epoch {epoch} => Loss: {loss} Train: {train_score.score} Val: {val_score.score}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Threshold identification" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "test_input_nodes = ('document', data['document'].test_mask)\n", + "kwargs = {'batch_size': 128}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "test_loader = NeighborLoader(data, num_neighbors=[10] * 2, input_nodes=test_input_nodes, **kwargs)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@torch.no_grad()\n", + "def get_output(data, mask):\n", + " # Test/Evaluate\n", + " model.eval()\n", + "\n", + " out = model(data.x_dict, data.edge_index_dict)[\"document\"][mask]\n", + "\n", + " return pd.DataFrame(out)\n", + "\n", + "def reindex(df, indices):\n", + " df.index = indices\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def remap_index(df, docs_maps, labs_maps):\n", + " inv_docs_maps = {v:k for k, v in docs_maps.items()}\n", + " inv_labs_maps = {v:k for k, v in labs_maps.items()}\n", + " \n", + " df.index = [inv_docs_maps[x] for x in df.index]\n", + " df.columns = [inv_labs_maps[x] for x in df.columns]\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "preds = []\n", + "for nth, batch in enumerate(test_loader):\n", + " batch_size = batch['document'].batch_size\n", + " train_mask = range(batch_size)\n", + " preds.append(\n", + " remap_index(\n", + " reindex(\n", + " get_output(batch, train_mask), \n", + " batch[\"document\"].input_id.tolist()\n", + " ),\n", + " docs_maps,\n", + " labs_maps\n", + " )\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "test_predictions = pd.concat(preds)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "test_results = pd.concat({\n", + " \"target\": test, \n", + " \"preds\": test_predictions\n", + "}, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import f1_score, classification_report" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "f1s = {}\n", + "\n", + "for th in [0.01,0.05,0.1,0.2,0.3,0.4,0.5]:\n", + " f1s[th] = f1_score(test_results[\"target\"], 1.0*(test_results[\"preds\"]>th), average=\"macro\")\n", + " \n", + "pd.Series(f1s).plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(classification_report(test_results[\"target\"], 1.0*(test_results[\"preds\"]>0.2)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "chap8", + "language": "python", + "name": "chap8" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.14" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Chapter08/poetry.lock b/Chapter08/poetry.lock new file mode 100644 index 0000000..1ebf1b7 --- /dev/null +++ b/Chapter08/poetry.lock @@ -0,0 +1,4680 @@ +# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. + +[[package]] +name = "absl-py" +version = "2.1.0" +description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py." +optional = false +python-versions = ">=3.7" +files = [ + {file = "absl-py-2.1.0.tar.gz", hash = "sha256:7820790efbb316739cde8b4e19357243fc3608a152024288513dd968d7d959ff"}, + {file = "absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308"}, +] + +[[package]] +name = "aiohappyeyeballs" +version = "2.4.3" +description = "Happy Eyeballs for asyncio" +optional = false +python-versions = ">=3.8" +files = [ + {file = "aiohappyeyeballs-2.4.3-py3-none-any.whl", hash = "sha256:8a7a83727b2756f394ab2895ea0765a0a8c475e3c71e98d43d76f22b4b435572"}, + {file = "aiohappyeyeballs-2.4.3.tar.gz", hash = "sha256:75cf88a15106a5002a8eb1dab212525c00d1f4c0fa96e551c9fbe6f09a621586"}, +] + +[[package]] +name = "aiohttp" +version = "3.10.11" +description = "Async http client/server framework (asyncio)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "aiohttp-3.10.11-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:5077b1a5f40ffa3ba1f40d537d3bec4383988ee51fbba6b74aa8fb1bc466599e"}, + {file = "aiohttp-3.10.11-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8d6a14a4d93b5b3c2891fca94fa9d41b2322a68194422bef0dd5ec1e57d7d298"}, + {file = "aiohttp-3.10.11-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ffbfde2443696345e23a3c597049b1dd43049bb65337837574205e7368472177"}, + {file = "aiohttp-3.10.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20b3d9e416774d41813bc02fdc0663379c01817b0874b932b81c7f777f67b217"}, + {file = "aiohttp-3.10.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2b943011b45ee6bf74b22245c6faab736363678e910504dd7531a58c76c9015a"}, + {file = "aiohttp-3.10.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:48bc1d924490f0d0b3658fe5c4b081a4d56ebb58af80a6729d4bd13ea569797a"}, + {file = "aiohttp-3.10.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e12eb3f4b1f72aaaf6acd27d045753b18101524f72ae071ae1c91c1cd44ef115"}, + {file = "aiohttp-3.10.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f14ebc419a568c2eff3c1ed35f634435c24ead2fe19c07426af41e7adb68713a"}, + {file = "aiohttp-3.10.11-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:72b191cdf35a518bfc7ca87d770d30941decc5aaf897ec8b484eb5cc8c7706f3"}, + {file = "aiohttp-3.10.11-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:5ab2328a61fdc86424ee540d0aeb8b73bbcad7351fb7cf7a6546fc0bcffa0038"}, + {file = "aiohttp-3.10.11-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:aa93063d4af05c49276cf14e419550a3f45258b6b9d1f16403e777f1addf4519"}, + {file = "aiohttp-3.10.11-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:30283f9d0ce420363c24c5c2421e71a738a2155f10adbb1a11a4d4d6d2715cfc"}, + {file = "aiohttp-3.10.11-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:e5358addc8044ee49143c546d2182c15b4ac3a60be01c3209374ace05af5733d"}, + {file = "aiohttp-3.10.11-cp310-cp310-win32.whl", hash = "sha256:e1ffa713d3ea7cdcd4aea9cddccab41edf6882fa9552940344c44e59652e1120"}, + {file = "aiohttp-3.10.11-cp310-cp310-win_amd64.whl", hash = "sha256:778cbd01f18ff78b5dd23c77eb82987ee4ba23408cbed233009fd570dda7e674"}, + {file = "aiohttp-3.10.11-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:80ff08556c7f59a7972b1e8919f62e9c069c33566a6d28586771711e0eea4f07"}, + {file = "aiohttp-3.10.11-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2c8f96e9ee19f04c4914e4e7a42a60861066d3e1abf05c726f38d9d0a466e695"}, + {file = "aiohttp-3.10.11-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fb8601394d537da9221947b5d6e62b064c9a43e88a1ecd7414d21a1a6fba9c24"}, + {file = "aiohttp-3.10.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ea224cf7bc2d8856d6971cea73b1d50c9c51d36971faf1abc169a0d5f85a382"}, + {file = "aiohttp-3.10.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:db9503f79e12d5d80b3efd4d01312853565c05367493379df76d2674af881caa"}, + {file = "aiohttp-3.10.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0f449a50cc33f0384f633894d8d3cd020e3ccef81879c6e6245c3c375c448625"}, + {file = "aiohttp-3.10.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:82052be3e6d9e0c123499127782a01a2b224b8af8c62ab46b3f6197035ad94e9"}, + {file = "aiohttp-3.10.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:20063c7acf1eec550c8eb098deb5ed9e1bb0521613b03bb93644b810986027ac"}, + {file = "aiohttp-3.10.11-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:489cced07a4c11488f47aab1f00d0c572506883f877af100a38f1fedaa884c3a"}, + {file = "aiohttp-3.10.11-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:ea9b3bab329aeaa603ed3bf605f1e2a6f36496ad7e0e1aa42025f368ee2dc07b"}, + {file = "aiohttp-3.10.11-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:ca117819d8ad113413016cb29774b3f6d99ad23c220069789fc050267b786c16"}, + {file = "aiohttp-3.10.11-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:2dfb612dcbe70fb7cdcf3499e8d483079b89749c857a8f6e80263b021745c730"}, + {file = "aiohttp-3.10.11-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f9b615d3da0d60e7d53c62e22b4fd1c70f4ae5993a44687b011ea3a2e49051b8"}, + {file = "aiohttp-3.10.11-cp311-cp311-win32.whl", hash = "sha256:29103f9099b6068bbdf44d6a3d090e0a0b2be6d3c9f16a070dd9d0d910ec08f9"}, + {file = "aiohttp-3.10.11-cp311-cp311-win_amd64.whl", hash = "sha256:236b28ceb79532da85d59aa9b9bf873b364e27a0acb2ceaba475dc61cffb6f3f"}, + {file = "aiohttp-3.10.11-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:7480519f70e32bfb101d71fb9a1f330fbd291655a4c1c922232a48c458c52710"}, + {file = "aiohttp-3.10.11-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f65267266c9aeb2287a6622ee2bb39490292552f9fbf851baabc04c9f84e048d"}, + {file = "aiohttp-3.10.11-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7400a93d629a0608dc1d6c55f1e3d6e07f7375745aaa8bd7f085571e4d1cee97"}, + {file = "aiohttp-3.10.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f34b97e4b11b8d4eb2c3a4f975be626cc8af99ff479da7de49ac2c6d02d35725"}, + {file = "aiohttp-3.10.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e7b825da878464a252ccff2958838f9caa82f32a8dbc334eb9b34a026e2c636"}, + {file = "aiohttp-3.10.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9f92a344c50b9667827da308473005f34767b6a2a60d9acff56ae94f895f385"}, + {file = "aiohttp-3.10.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc6f1ab987a27b83c5268a17218463c2ec08dbb754195113867a27b166cd6087"}, + {file = "aiohttp-3.10.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1dc0f4ca54842173d03322793ebcf2c8cc2d34ae91cc762478e295d8e361e03f"}, + {file = "aiohttp-3.10.11-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:7ce6a51469bfaacff146e59e7fb61c9c23006495d11cc24c514a455032bcfa03"}, + {file = "aiohttp-3.10.11-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:aad3cd91d484d065ede16f3cf15408254e2469e3f613b241a1db552c5eb7ab7d"}, + {file = "aiohttp-3.10.11-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:f4df4b8ca97f658c880fb4b90b1d1ec528315d4030af1ec763247ebfd33d8b9a"}, + {file = "aiohttp-3.10.11-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:2e4e18a0a2d03531edbc06c366954e40a3f8d2a88d2b936bbe78a0c75a3aab3e"}, + {file = "aiohttp-3.10.11-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:6ce66780fa1a20e45bc753cda2a149daa6dbf1561fc1289fa0c308391c7bc0a4"}, + {file = "aiohttp-3.10.11-cp312-cp312-win32.whl", hash = "sha256:a919c8957695ea4c0e7a3e8d16494e3477b86f33067478f43106921c2fef15bb"}, + {file = "aiohttp-3.10.11-cp312-cp312-win_amd64.whl", hash = "sha256:b5e29706e6389a2283a91611c91bf24f218962717c8f3b4e528ef529d112ee27"}, + {file = "aiohttp-3.10.11-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:703938e22434d7d14ec22f9f310559331f455018389222eed132808cd8f44127"}, + {file = "aiohttp-3.10.11-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9bc50b63648840854e00084c2b43035a62e033cb9b06d8c22b409d56eb098413"}, + {file = "aiohttp-3.10.11-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:5f0463bf8b0754bc744e1feb61590706823795041e63edf30118a6f0bf577461"}, + {file = "aiohttp-3.10.11-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6c6dec398ac5a87cb3a407b068e1106b20ef001c344e34154616183fe684288"}, + {file = "aiohttp-3.10.11-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bcaf2d79104d53d4dcf934f7ce76d3d155302d07dae24dff6c9fffd217568067"}, + {file = "aiohttp-3.10.11-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:25fd5470922091b5a9aeeb7e75be609e16b4fba81cdeaf12981393fb240dd10e"}, + {file = "aiohttp-3.10.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbde2ca67230923a42161b1f408c3992ae6e0be782dca0c44cb3206bf330dee1"}, + {file = "aiohttp-3.10.11-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:249c8ff8d26a8b41a0f12f9df804e7c685ca35a207e2410adbd3e924217b9006"}, + {file = "aiohttp-3.10.11-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:878ca6a931ee8c486a8f7b432b65431d095c522cbeb34892bee5be97b3481d0f"}, + {file = "aiohttp-3.10.11-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:8663f7777ce775f0413324be0d96d9730959b2ca73d9b7e2c2c90539139cbdd6"}, + {file = "aiohttp-3.10.11-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:6cd3f10b01f0c31481fba8d302b61603a2acb37b9d30e1d14e0f5a58b7b18a31"}, + {file = "aiohttp-3.10.11-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:4e8d8aad9402d3aa02fdc5ca2fe68bcb9fdfe1f77b40b10410a94c7f408b664d"}, + {file = "aiohttp-3.10.11-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:38e3c4f80196b4f6c3a85d134a534a56f52da9cb8d8e7af1b79a32eefee73a00"}, + {file = "aiohttp-3.10.11-cp313-cp313-win32.whl", hash = "sha256:fc31820cfc3b2863c6e95e14fcf815dc7afe52480b4dc03393c4873bb5599f71"}, + {file = "aiohttp-3.10.11-cp313-cp313-win_amd64.whl", hash = "sha256:4996ff1345704ffdd6d75fb06ed175938c133425af616142e7187f28dc75f14e"}, + {file = "aiohttp-3.10.11-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:74baf1a7d948b3d640badeac333af581a367ab916b37e44cf90a0334157cdfd2"}, + {file = "aiohttp-3.10.11-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:473aebc3b871646e1940c05268d451f2543a1d209f47035b594b9d4e91ce8339"}, + {file = "aiohttp-3.10.11-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c2f746a6968c54ab2186574e15c3f14f3e7f67aef12b761e043b33b89c5b5f95"}, + {file = "aiohttp-3.10.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d110cabad8360ffa0dec8f6ec60e43286e9d251e77db4763a87dcfe55b4adb92"}, + {file = "aiohttp-3.10.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e0099c7d5d7afff4202a0c670e5b723f7718810000b4abcbc96b064129e64bc7"}, + {file = "aiohttp-3.10.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0316e624b754dbbf8c872b62fe6dcb395ef20c70e59890dfa0de9eafccd2849d"}, + {file = "aiohttp-3.10.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a5f7ab8baf13314e6b2485965cbacb94afff1e93466ac4d06a47a81c50f9cca"}, + {file = "aiohttp-3.10.11-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c891011e76041e6508cbfc469dd1a8ea09bc24e87e4c204e05f150c4c455a5fa"}, + {file = "aiohttp-3.10.11-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:9208299251370ee815473270c52cd3f7069ee9ed348d941d574d1457d2c73e8b"}, + {file = "aiohttp-3.10.11-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:459f0f32c8356e8125f45eeff0ecf2b1cb6db1551304972702f34cd9e6c44658"}, + {file = "aiohttp-3.10.11-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:14cdc8c1810bbd4b4b9f142eeee23cda528ae4e57ea0923551a9af4820980e39"}, + {file = "aiohttp-3.10.11-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:971aa438a29701d4b34e4943e91b5e984c3ae6ccbf80dd9efaffb01bd0b243a9"}, + {file = "aiohttp-3.10.11-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:9a309c5de392dfe0f32ee57fa43ed8fc6ddf9985425e84bd51ed66bb16bce3a7"}, + {file = "aiohttp-3.10.11-cp38-cp38-win32.whl", hash = "sha256:9ec1628180241d906a0840b38f162a3215114b14541f1a8711c368a8739a9be4"}, + {file = "aiohttp-3.10.11-cp38-cp38-win_amd64.whl", hash = "sha256:9c6e0ffd52c929f985c7258f83185d17c76d4275ad22e90aa29f38e211aacbec"}, + {file = "aiohttp-3.10.11-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:cdc493a2e5d8dc79b2df5bec9558425bcd39aff59fc949810cbd0832e294b106"}, + {file = "aiohttp-3.10.11-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b3e70f24e7d0405be2348da9d5a7836936bf3a9b4fd210f8c37e8d48bc32eca6"}, + {file = "aiohttp-3.10.11-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:968b8fb2a5eee2770eda9c7b5581587ef9b96fbdf8dcabc6b446d35ccc69df01"}, + {file = "aiohttp-3.10.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:deef4362af9493d1382ef86732ee2e4cbc0d7c005947bd54ad1a9a16dd59298e"}, + {file = "aiohttp-3.10.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:686b03196976e327412a1b094f4120778c7c4b9cff9bce8d2fdfeca386b89829"}, + {file = "aiohttp-3.10.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3bf6d027d9d1d34e1c2e1645f18a6498c98d634f8e373395221121f1c258ace8"}, + {file = "aiohttp-3.10.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:099fd126bf960f96d34a760e747a629c27fb3634da5d05c7ef4d35ef4ea519fc"}, + {file = "aiohttp-3.10.11-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c73c4d3dae0b4644bc21e3de546530531d6cdc88659cdeb6579cd627d3c206aa"}, + {file = "aiohttp-3.10.11-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0c5580f3c51eea91559db3facd45d72e7ec970b04528b4709b1f9c2555bd6d0b"}, + {file = "aiohttp-3.10.11-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:fdf6429f0caabfd8a30c4e2eaecb547b3c340e4730ebfe25139779b9815ba138"}, + {file = "aiohttp-3.10.11-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:d97187de3c276263db3564bb9d9fad9e15b51ea10a371ffa5947a5ba93ad6777"}, + {file = "aiohttp-3.10.11-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:0acafb350cfb2eba70eb5d271f55e08bd4502ec35e964e18ad3e7d34d71f7261"}, + {file = "aiohttp-3.10.11-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:c13ed0c779911c7998a58e7848954bd4d63df3e3575f591e321b19a2aec8df9f"}, + {file = "aiohttp-3.10.11-cp39-cp39-win32.whl", hash = "sha256:22b7c540c55909140f63ab4f54ec2c20d2635c0289cdd8006da46f3327f971b9"}, + {file = "aiohttp-3.10.11-cp39-cp39-win_amd64.whl", hash = "sha256:7b26b1551e481012575dab8e3727b16fe7dd27eb2711d2e63ced7368756268fb"}, + {file = "aiohttp-3.10.11.tar.gz", hash = "sha256:9dc2b8f3dcab2e39e0fa309c8da50c3b55e6f34ab25f1a71d3288f24924d33a7"}, +] + +[package.dependencies] +aiohappyeyeballs = ">=2.3.0" +aiosignal = ">=1.1.2" +async-timeout = {version = ">=4.0,<6.0", markers = "python_version < \"3.11\""} +attrs = ">=17.3.0" +frozenlist = ">=1.1.1" +multidict = ">=4.5,<7.0" +yarl = ">=1.12.0,<2.0" + +[package.extras] +speedups = ["Brotli", "aiodns (>=3.2.0)", "brotlicffi"] + +[[package]] +name = "aiosignal" +version = "1.3.1" +description = "aiosignal: a list of registered asynchronous callbacks" +optional = false +python-versions = ">=3.7" +files = [ + {file = "aiosignal-1.3.1-py3-none-any.whl", hash = "sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17"}, + {file = "aiosignal-1.3.1.tar.gz", hash = "sha256:54cd96e15e1649b75d6c87526a6ff0b6c1b0dd3459f43d9ca11d48c339b68cfc"}, +] + +[package.dependencies] +frozenlist = ">=1.1.0" + +[[package]] +name = "annotated-types" +version = "0.7.0" +description = "Reusable constraint types to use with typing.Annotated" +optional = false +python-versions = ">=3.8" +files = [ + {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, + {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} + +[[package]] +name = "appnope" +version = "0.1.4" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = ">=3.6" +files = [ + {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, + {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, +] + +[[package]] +name = "asttokens" +version = "2.4.1" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = "*" +files = [ + {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, + {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, +] + +[package.dependencies] +six = ">=1.12.0" + +[package.extras] +astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] +test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] + +[[package]] +name = "astunparse" +version = "1.6.3" +description = "An AST unparser for Python" +optional = false +python-versions = "*" +files = [ + {file = "astunparse-1.6.3-py2.py3-none-any.whl", hash = "sha256:c2652417f2c8b5bb325c885ae329bdf3f86424075c4fd1a128674bc6fba4b8e8"}, + {file = "astunparse-1.6.3.tar.gz", hash = "sha256:5ad93a8456f0d084c3456d059fd9a92cce667963232cbf763eac3bc5b7940872"}, +] + +[package.dependencies] +six = ">=1.6.1,<2.0" +wheel = ">=0.23.0,<1.0" + +[[package]] +name = "async-timeout" +version = "5.0.1" +description = "Timeout context manager for asyncio programs" +optional = false +python-versions = ">=3.8" +files = [ + {file = "async_timeout-5.0.1-py3-none-any.whl", hash = "sha256:39e3809566ff85354557ec2398b55e096c8364bacac9405a7a1fa429e77fe76c"}, + {file = "async_timeout-5.0.1.tar.gz", hash = "sha256:d9321a7a3d5a6a5e187e824d2fa0793ce379a202935782d555d6e9d2735677d3"}, +] + +[[package]] +name = "attrs" +version = "24.2.0" +description = "Classes Without Boilerplate" +optional = false +python-versions = ">=3.7" +files = [ + {file = "attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2"}, + {file = "attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346"}, +] + +[package.extras] +benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] + +[[package]] +name = "backcall" +version = "0.2.0" +description = "Specifications for callback functions passed in to an API" +optional = false +python-versions = "*" +files = [ + {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, + {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, +] + +[[package]] +name = "blis" +version = "0.7.11" +description = "The Blis BLAS-like linear algebra library, as a self-contained C-extension." +optional = false +python-versions = "*" +files = [ + {file = "blis-0.7.11-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:cd5fba34c5775e4c440d80e4dea8acb40e2d3855b546e07c4e21fad8f972404c"}, + {file = "blis-0.7.11-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:31273d9086cab9c56986d478e3ed6da6752fa4cdd0f7b5e8e5db30827912d90d"}, + {file = "blis-0.7.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d06883f83d4c8de8264154f7c4a420b4af323050ed07398c1ff201c34c25c0d2"}, + {file = "blis-0.7.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ee493683e3043650d4413d531e79e580d28a3c7bdd184f1b9cfa565497bda1e7"}, + {file = "blis-0.7.11-cp310-cp310-win_amd64.whl", hash = "sha256:a73945a9d635eea528bccfdfcaa59dd35bd5f82a4a40d5ca31f08f507f3a6f81"}, + {file = "blis-0.7.11-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1b68df4d01d62f9adaef3dad6f96418787265a6878891fc4e0fabafd6d02afba"}, + {file = "blis-0.7.11-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:162e60d941a8151418d558a94ee5547cb1bbeed9f26b3b6f89ec9243f111a201"}, + {file = "blis-0.7.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:686a7d0111d5ba727cd62f374748952fd6eb74701b18177f525b16209a253c01"}, + {file = "blis-0.7.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0421d6e44cda202b113a34761f9a062b53f8c2ae8e4ec8325a76e709fca93b6e"}, + {file = "blis-0.7.11-cp311-cp311-win_amd64.whl", hash = "sha256:0dc9dcb3843045b6b8b00432409fd5ee96b8344a324e031bfec7303838c41a1a"}, + {file = "blis-0.7.11-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:dadf8713ea51d91444d14ad4104a5493fa7ecc401bbb5f4a203ff6448fadb113"}, + {file = "blis-0.7.11-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5bcdaf370f03adaf4171d6405a89fa66cb3c09399d75fc02e1230a78cd2759e4"}, + {file = "blis-0.7.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7de19264b1d49a178bf8035406d0ae77831f3bfaa3ce02942964a81a202abb03"}, + {file = "blis-0.7.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea55c6a4a60fcbf6a0fdce40df6e254451ce636988323a34b9c94b583fc11e5"}, + {file = "blis-0.7.11-cp312-cp312-win_amd64.whl", hash = "sha256:5a305dbfc96d202a20d0edd6edf74a406b7e1404f4fa4397d24c68454e60b1b4"}, + {file = "blis-0.7.11-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:68544a1cbc3564db7ba54d2bf8988356b8c7acd025966e8e9313561b19f0fe2e"}, + {file = "blis-0.7.11-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:075431b13b9dd7b411894d4afbd4212acf4d0f56c5a20628f4b34902e90225f1"}, + {file = "blis-0.7.11-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:324fdf62af9075831aa62b51481960e8465674b7723f977684e32af708bb7448"}, + {file = "blis-0.7.11-cp36-cp36m-win_amd64.whl", hash = "sha256:afebdb02d2dcf9059f23ce1244585d3ce7e95c02a77fd45a500e4a55b7b23583"}, + {file = "blis-0.7.11-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:2e62cd14b20e960f21547fee01f3a0b2ac201034d819842865a667c969c355d1"}, + {file = "blis-0.7.11-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89b01c05a5754edc0b9a3b69be52cbee03f645b2ec69651d12216ea83b8122f0"}, + {file = "blis-0.7.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cfee5ec52ba1e9002311d9191f7129d7b0ecdff211e88536fb24c865d102b50d"}, + {file = "blis-0.7.11-cp37-cp37m-win_amd64.whl", hash = "sha256:844b6377e3e7f3a2e92e7333cc644095386548ad5a027fdc150122703c009956"}, + {file = "blis-0.7.11-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6df00c24128e323174cde5d80ebe3657df39615322098ce06613845433057614"}, + {file = "blis-0.7.11-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:809d1da1331108935bf06e22f3cf07ef73a41a572ecd81575bdedb67defe3465"}, + {file = "blis-0.7.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bfabd5272bbbe504702b8dfe30093653d278057656126716ff500d9c184b35a6"}, + {file = "blis-0.7.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca684f5c2f05269f17aefe7812360286e9a1cee3afb96d416485efd825dbcf19"}, + {file = "blis-0.7.11-cp38-cp38-win_amd64.whl", hash = "sha256:688a8b21d2521c2124ee8dfcbaf2c385981ccc27e313e052113d5db113e27d3b"}, + {file = "blis-0.7.11-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2ff7abd784033836b284ff9f4d0d7cb0737b7684daebb01a4c9fe145ffa5a31e"}, + {file = "blis-0.7.11-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f9caffcd14795bfe52add95a0dd8426d44e737b55fcb69e2b797816f4da0b1d2"}, + {file = "blis-0.7.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2fb36989ed61233cfd48915896802ee6d3d87882190000f8cfe0cf4a3819f9a8"}, + {file = "blis-0.7.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ea09f961871f880d5dc622dce6c370e4859559f0ead897ae9b20ddafd6b07a2"}, + {file = "blis-0.7.11-cp39-cp39-win_amd64.whl", hash = "sha256:5bb38adabbb22f69f22c74bad025a010ae3b14de711bf5c715353980869d491d"}, + {file = "blis-0.7.11.tar.gz", hash = "sha256:cec6d48f75f7ac328ae1b6fbb372dde8c8a57c89559172277f66e01ff08d4d42"}, +] + +[package.dependencies] +numpy = {version = ">=1.15.0", markers = "python_version < \"3.9\""} + +[[package]] +name = "cachetools" +version = "5.5.0" +description = "Extensible memoizing collections and decorators" +optional = false +python-versions = ">=3.7" +files = [ + {file = "cachetools-5.5.0-py3-none-any.whl", hash = "sha256:02134e8439cdc2ffb62023ce1debca2944c3f289d66bb17ead3ab3dede74b292"}, + {file = "cachetools-5.5.0.tar.gz", hash = "sha256:2cc24fb4cbe39633fb7badd9db9ca6295d766d9c2995f245725a46715d050f2a"}, +] + +[[package]] +name = "catalogue" +version = "2.0.10" +description = "Super lightweight function registries for your library" +optional = false +python-versions = ">=3.6" +files = [ + {file = "catalogue-2.0.10-py3-none-any.whl", hash = "sha256:58c2de0020aa90f4a2da7dfad161bf7b3b054c86a5f09fcedc0b2b740c109a9f"}, + {file = "catalogue-2.0.10.tar.gz", hash = "sha256:4f56daa940913d3f09d589c191c74e5a6d51762b3a9e37dd53b7437afd6cda15"}, +] + +[[package]] +name = "certifi" +version = "2024.8.30" +description = "Python package for providing Mozilla's CA Bundle." +optional = false +python-versions = ">=3.6" +files = [ + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, +] + +[[package]] +name = "cffi" +version = "1.17.1" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, +] + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "chardet" +version = "5.2.0" +description = "Universal encoding detector for Python 3" +optional = false +python-versions = ">=3.7" +files = [ + {file = "chardet-5.2.0-py3-none-any.whl", hash = "sha256:e1cf59446890a00105fe7b7912492ea04b6e6f06d4b742b2c788469e34c82970"}, + {file = "chardet-5.2.0.tar.gz", hash = "sha256:1b3b6ff479a8c414bc3fa2c0852995695c4a026dcd6d0633b2dd092ca39c1cf7"}, +] + +[[package]] +name = "charset-normalizer" +version = "3.4.0" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:4f9fc98dad6c2eaa32fc3af1417d95b5e3d08aff968df0cd320066def971f9a6"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0de7b687289d3c1b3e8660d0741874abe7888100efe14bd0f9fd7141bcbda92b"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5ed2e36c3e9b4f21dd9422f6893dec0abf2cca553af509b10cd630f878d3eb99"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40d3ff7fc90b98c637bda91c89d51264a3dcf210cade3a2c6f838c7268d7a4ca"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1110e22af8ca26b90bd6364fe4c763329b0ebf1ee213ba32b68c73de5752323d"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:86f4e8cca779080f66ff4f191a685ced73d2f72d50216f7112185dc02b90b9b7"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f683ddc7eedd742e2889d2bfb96d69573fde1d92fcb811979cdb7165bb9c7d3"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:27623ba66c183eca01bf9ff833875b459cad267aeeb044477fedac35e19ba907"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f606a1881d2663630ea5b8ce2efe2111740df4b687bd78b34a8131baa007f79b"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0b309d1747110feb25d7ed6b01afdec269c647d382c857ef4663bbe6ad95a912"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:136815f06a3ae311fae551c3df1f998a1ebd01ddd424aa5603a4336997629e95"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:14215b71a762336254351b00ec720a8e85cada43b987da5a042e4ce3e82bd68e"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:79983512b108e4a164b9c8d34de3992f76d48cadc9554c9e60b43f308988aabe"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-win32.whl", hash = "sha256:c94057af19bc953643a33581844649a7fdab902624d2eb739738a30e2b3e60fc"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:55f56e2ebd4e3bc50442fbc0888c9d8c94e4e06a933804e2af3e89e2f9c1c749"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0d99dd8ff461990f12d6e42c7347fd9ab2532fb70e9621ba520f9e8637161d7c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c57516e58fd17d03ebe67e181a4e4e2ccab1168f8c2976c6a334d4f819fe5944"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6dba5d19c4dfab08e58d5b36304b3f92f3bd5d42c1a3fa37b5ba5cdf6dfcbcee"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf4475b82be41b07cc5e5ff94810e6a01f276e37c2d55571e3fe175e467a1a1c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ce031db0408e487fd2775d745ce30a7cd2923667cf3b69d48d219f1d8f5ddeb6"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ff4e7cdfdb1ab5698e675ca622e72d58a6fa2a8aa58195de0c0061288e6e3ea"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3710a9751938947e6327ea9f3ea6332a09bf0ba0c09cae9cb1f250bd1f1549bc"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82357d85de703176b5587dbe6ade8ff67f9f69a41c0733cf2425378b49954de5"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:47334db71978b23ebcf3c0f9f5ee98b8d65992b65c9c4f2d34c2eaf5bcaf0594"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8ce7fd6767a1cc5a92a639b391891bf1c268b03ec7e021c7d6d902285259685c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f1a2f519ae173b5b6a2c9d5fa3116ce16e48b3462c8b96dfdded11055e3d6365"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:63bc5c4ae26e4bc6be6469943b8253c0fd4e4186c43ad46e713ea61a0ba49129"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:bcb4f8ea87d03bc51ad04add8ceaf9b0f085ac045ab4d74e73bbc2dc033f0236"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-win32.whl", hash = "sha256:9ae4ef0b3f6b41bad6366fb0ea4fc1d7ed051528e113a60fa2a65a9abb5b1d99"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cee4373f4d3ad28f1ab6290684d8e2ebdb9e7a1b74fdc39e4c211995f77bec27"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0713f3adb9d03d49d365b70b84775d0a0d18e4ab08d12bc46baa6132ba78aaf6"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:de7376c29d95d6719048c194a9cf1a1b0393fbe8488a22008610b0361d834ecf"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a51b48f42d9358460b78725283f04bddaf44a9358197b889657deba38f329db"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b295729485b06c1a0683af02a9e42d2caa9db04a373dc38a6a58cdd1e8abddf1"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee803480535c44e7f5ad00788526da7d85525cfefaf8acf8ab9a310000be4b03"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d59d125ffbd6d552765510e3f31ed75ebac2c7470c7274195b9161a32350284"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8cda06946eac330cbe6598f77bb54e690b4ca93f593dee1568ad22b04f347c15"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07afec21bbbbf8a5cc3651aa96b980afe2526e7f048fdfb7f1014d84acc8b6d8"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6b40e8d38afe634559e398cc32b1472f376a4099c75fe6299ae607e404c033b2"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b8dcd239c743aa2f9c22ce674a145e0a25cb1566c495928440a181ca1ccf6719"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:84450ba661fb96e9fd67629b93d2941c871ca86fc38d835d19d4225ff946a631"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:44aeb140295a2f0659e113b31cfe92c9061622cadbc9e2a2f7b8ef6b1e29ef4b"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1db4e7fefefd0f548d73e2e2e041f9df5c59e178b4c72fbac4cc6f535cfb1565"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-win32.whl", hash = "sha256:5726cf76c982532c1863fb64d8c6dd0e4c90b6ece9feb06c9f202417a31f7dd7"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:b197e7094f232959f8f20541ead1d9862ac5ebea1d58e9849c1bf979255dfac9"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:dd4eda173a9fcccb5f2e2bd2a9f423d180194b1bf17cf59e3269899235b2a114"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e9e3c4c9e1ed40ea53acf11e2a386383c3304212c965773704e4603d589343ed"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92a7e36b000bf022ef3dbb9c46bfe2d52c047d5e3f3343f43204263c5addc250"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54b6a92d009cbe2fb11054ba694bc9e284dad30a26757b1e372a1fdddaf21920"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ffd9493de4c922f2a38c2bf62b831dcec90ac673ed1ca182fe11b4d8e9f2a64"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:35c404d74c2926d0287fbd63ed5d27eb911eb9e4a3bb2c6d294f3cfd4a9e0c23"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e7fdd52961feb4c96507aa649550ec2a0d527c086d284749b2f582f2d40a2e0d"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:92db3c28b5b2a273346bebb24857fda45601aef6ae1c011c0a997106581e8a88"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ab973df98fc99ab39080bfb0eb3a925181454d7c3ac8a1e695fddfae696d9e90"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:4b67fdab07fdd3c10bb21edab3cbfe8cf5696f453afce75d815d9d7223fbe88b"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:aa41e526a5d4a9dfcfbab0716c7e8a1b215abd3f3df5a45cf18a12721d31cb5d"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ffc519621dce0c767e96b9c53f09c5d215578e10b02c285809f76509a3931482"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-win32.whl", hash = "sha256:f19c1585933c82098c2a520f8ec1227f20e339e33aca8fa6f956f6691b784e67"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:707b82d19e65c9bd28b81dde95249b07bf9f5b90ebe1ef17d9b57473f8a64b7b"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:dbe03226baf438ac4fda9e2d0715022fd579cb641c4cf639fa40d53b2fe6f3e2"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd9a8bd8900e65504a305bf8ae6fa9fbc66de94178c420791d0293702fce2df7"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8831399554b92b72af5932cdbbd4ddc55c55f631bb13ff8fe4e6536a06c5c51"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a14969b8691f7998e74663b77b4c36c0337cb1df552da83d5c9004a93afdb574"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dcaf7c1524c0542ee2fc82cc8ec337f7a9f7edee2532421ab200d2b920fc97cf"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425c5f215d0eecee9a56cdb703203dda90423247421bf0d67125add85d0c4455"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:d5b054862739d276e09928de37c79ddeec42a6e1bfc55863be96a36ba22926f6"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:f3e73a4255342d4eb26ef6df01e3962e73aa29baa3124a8e824c5d3364a65748"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:2f6c34da58ea9c1a9515621f4d9ac379871a8f21168ba1b5e09d74250de5ad62"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:f09cb5a7bbe1ecae6e87901a2eb23e0256bb524a79ccc53eb0b7629fbe7677c4"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:0099d79bdfcf5c1f0c2c72f91516702ebf8b0b8ddd8905f97a8aecf49712c621"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-win32.whl", hash = "sha256:9c98230f5042f4945f957d006edccc2af1e03ed5e37ce7c373f00a5a4daa6149"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-win_amd64.whl", hash = "sha256:62f60aebecfc7f4b82e3f639a7d1433a20ec32824db2199a11ad4f5e146ef5ee"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:af73657b7a68211996527dbfeffbb0864e043d270580c5aef06dc4b659a4b578"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cab5d0b79d987c67f3b9e9c53f54a61360422a5a0bc075f43cab5621d530c3b6"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9289fd5dddcf57bab41d044f1756550f9e7cf0c8e373b8cdf0ce8773dc4bd417"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b493a043635eb376e50eedf7818f2f322eabbaa974e948bd8bdd29eb7ef2a51"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9fa2566ca27d67c86569e8c85297aaf413ffab85a8960500f12ea34ff98e4c41"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8e538f46104c815be19c975572d74afb53f29650ea2025bbfaef359d2de2f7f"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fd30dc99682dc2c603c2b315bded2799019cea829f8bf57dc6b61efde6611c8"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2006769bd1640bdf4d5641c69a3d63b71b81445473cac5ded39740a226fa88ab"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:dc15e99b2d8a656f8e666854404f1ba54765871104e50c8e9813af8a7db07f12"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:ab2e5bef076f5a235c3774b4f4028a680432cded7cad37bba0fd90d64b187d19"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:4ec9dd88a5b71abfc74e9df5ebe7921c35cbb3b641181a531ca65cdb5e8e4dea"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:43193c5cda5d612f247172016c4bb71251c784d7a4d9314677186a838ad34858"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:aa693779a8b50cd97570e5a0f343538a8dbd3e496fa5dcb87e29406ad0299654"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-win32.whl", hash = "sha256:7706f5850360ac01d80c89bcef1640683cc12ed87f42579dab6c5d3ed6888613"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:c3e446d253bd88f6377260d07c895816ebf33ffffd56c1c792b13bff9c3e1ade"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:980b4f289d1d90ca5efcf07958d3eb38ed9c0b7676bf2831a54d4f66f9c27dfa"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f28f891ccd15c514a0981f3b9db9aa23d62fe1a99997512b0491d2ed323d229a"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8aacce6e2e1edcb6ac625fb0f8c3a9570ccc7bfba1f63419b3769ccf6a00ed0"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd7af3717683bea4c87acd8c0d3d5b44d56120b26fd3f8a692bdd2d5260c620a"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5ff2ed8194587faf56555927b3aa10e6fb69d931e33953943bc4f837dfee2242"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e91f541a85298cf35433bf66f3fab2a4a2cff05c127eeca4af174f6d497f0d4b"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:309a7de0a0ff3040acaebb35ec45d18db4b28232f21998851cfa709eeff49d62"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:285e96d9d53422efc0d7a17c60e59f37fbf3dfa942073f666db4ac71e8d726d0"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5d447056e2ca60382d460a604b6302d8db69476fd2015c81e7c35417cfabe4cd"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:20587d20f557fe189b7947d8e7ec5afa110ccf72a3128d61a2a387c3313f46be"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:130272c698667a982a5d0e626851ceff662565379baf0ff2cc58067b81d4f11d"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:ab22fbd9765e6954bc0bcff24c25ff71dcbfdb185fcdaca49e81bac68fe724d3"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7782afc9b6b42200f7362858f9e73b1f8316afb276d316336c0ec3bd73312742"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-win32.whl", hash = "sha256:2de62e8801ddfff069cd5c504ce3bc9672b23266597d4e4f50eda28846c322f2"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:95c3c157765b031331dd4db3c775e58deaee050a3042fcad72cbc4189d7c8dca"}, + {file = "charset_normalizer-3.4.0-py3-none-any.whl", hash = "sha256:fe9f97feb71aa9896b81973a7bbada8c49501dc73e58a10fcef6663af95e5079"}, + {file = "charset_normalizer-3.4.0.tar.gz", hash = "sha256:223217c3d4f82c3ac5e29032b3f1c2eb0fb591b72161f86d93f5719079dae93e"}, +] + +[[package]] +name = "click" +version = "8.1.7" +description = "Composable command line interface toolkit" +optional = false +python-versions = ">=3.7" +files = [ + {file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"}, + {file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[[package]] +name = "cloudpathlib" +version = "0.20.0" +description = "pathlib-style classes for cloud storage services." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cloudpathlib-0.20.0-py3-none-any.whl", hash = "sha256:7af3bcefbf73392ae7f31c08b3660ec31607f8c01b7f6262d4d73469a845f641"}, + {file = "cloudpathlib-0.20.0.tar.gz", hash = "sha256:f6ef7ca409a510f7ba4639ba50ab3fc5b6dee82d6dff0d7f5715fd0c9ab35891"}, +] + +[package.dependencies] +typing_extensions = {version = ">4", markers = "python_version < \"3.11\""} + +[package.extras] +all = ["cloudpathlib[azure]", "cloudpathlib[gs]", "cloudpathlib[s3]"] +azure = ["azure-storage-blob (>=12)", "azure-storage-file-datalake (>=12)"] +gs = ["google-cloud-storage"] +s3 = ["boto3 (>=1.34.0)"] + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "comm" +version = "0.2.2" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +files = [ + {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, + {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "confection" +version = "0.1.5" +description = "The sweetest config system for Python" +optional = false +python-versions = ">=3.6" +files = [ + {file = "confection-0.1.5-py3-none-any.whl", hash = "sha256:e29d3c3f8eac06b3f77eb9dfb4bf2fc6bcc9622a98ca00a698e3d019c6430b14"}, + {file = "confection-0.1.5.tar.gz", hash = "sha256:8e72dd3ca6bd4f48913cd220f10b8275978e740411654b6e8ca6d7008c590f0e"}, +] + +[package.dependencies] +pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<3.0.0" +srsly = ">=2.4.0,<3.0.0" + +[[package]] +name = "cycler" +version = "0.12.1" +description = "Composable style cycles" +optional = false +python-versions = ">=3.8" +files = [ + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, +] + +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "cymem" +version = "2.0.8" +description = "Manage calls to calloc/free through Cython" +optional = false +python-versions = "*" +files = [ + {file = "cymem-2.0.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:77b5d3a73c41a394efd5913ab7e48512054cd2dabb9582d489535456641c7666"}, + {file = "cymem-2.0.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:bd33da892fb560ba85ea14b1528c381ff474048e861accc3366c8b491035a378"}, + {file = "cymem-2.0.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29a551eda23eebd6d076b855f77a5ed14a1d1cae5946f7b3cb5de502e21b39b0"}, + {file = "cymem-2.0.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8260445652ae5ab19fff6851f32969a7b774f309162e83367dd0f69aac5dbf7"}, + {file = "cymem-2.0.8-cp310-cp310-win_amd64.whl", hash = "sha256:a63a2bef4c7e0aec7c9908bca0a503bf91ac7ec18d41dd50dc7dff5d994e4387"}, + {file = "cymem-2.0.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6b84b780d52cb2db53d4494fe0083c4c5ee1f7b5380ceaea5b824569009ee5bd"}, + {file = "cymem-2.0.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0d5f83dc3cb5a39f0e32653cceb7c8ce0183d82f1162ca418356f4a8ed9e203e"}, + {file = "cymem-2.0.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ac218cf8a43a761dc6b2f14ae8d183aca2bbb85b60fe316fd6613693b2a7914"}, + {file = "cymem-2.0.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42c993589d1811ec665d37437d5677b8757f53afadd927bf8516ac8ce2d3a50c"}, + {file = "cymem-2.0.8-cp311-cp311-win_amd64.whl", hash = "sha256:ab3cf20e0eabee9b6025ceb0245dadd534a96710d43fb7a91a35e0b9e672ee44"}, + {file = "cymem-2.0.8-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cb51fddf1b920abb1f2742d1d385469bc7b4b8083e1cfa60255e19bc0900ccb5"}, + {file = "cymem-2.0.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9235957f8c6bc2574a6a506a1687164ad629d0b4451ded89d49ebfc61b52660c"}, + {file = "cymem-2.0.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a2cc38930ff5409f8d61f69a01e39ecb185c175785a1c9bec13bcd3ac8a614ba"}, + {file = "cymem-2.0.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7bf49e3ea2c441f7b7848d5c61b50803e8cbd49541a70bb41ad22fce76d87603"}, + {file = "cymem-2.0.8-cp312-cp312-win_amd64.whl", hash = "sha256:ecd12e3bacf3eed5486e4cd8ede3c12da66ee0e0a9d0ae046962bc2bb503acef"}, + {file = "cymem-2.0.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:167d8019db3b40308aabf8183fd3fbbc256323b645e0cbf2035301058c439cd0"}, + {file = "cymem-2.0.8-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17cd2c2791c8f6b52f269a756ba7463f75bf7265785388a2592623b84bb02bf8"}, + {file = "cymem-2.0.8-cp36-cp36m-win_amd64.whl", hash = "sha256:6204f0a3307bf45d109bf698ba37997ce765f21e359284328e4306c7500fcde8"}, + {file = "cymem-2.0.8-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b9c05db55ea338648f8e5f51dd596568c7f62c5ae32bf3fa5b1460117910ebae"}, + {file = "cymem-2.0.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ce641f7ba0489bd1b42a4335a36f38c8507daffc29a512681afaba94a0257d2"}, + {file = "cymem-2.0.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e6b83a5972a64f62796118da79dfeed71f4e1e770b2b7455e889c909504c2358"}, + {file = "cymem-2.0.8-cp37-cp37m-win_amd64.whl", hash = "sha256:ada6eb022e4a0f4f11e6356a5d804ceaa917174e6cf33c0b3e371dbea4dd2601"}, + {file = "cymem-2.0.8-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1e593cd57e2e19eb50c7ddaf7e230b73c890227834425b9dadcd4a86834ef2ab"}, + {file = "cymem-2.0.8-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:d513f0d5c6d76facdc605e42aa42c8d50bb7dedca3144ec2b47526381764deb0"}, + {file = "cymem-2.0.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e370dd54359101b125bfb191aca0542718077b4edb90ccccba1a28116640fed"}, + {file = "cymem-2.0.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84f8c58cde71b8fc7024883031a4eec66c0a9a4d36b7850c3065493652695156"}, + {file = "cymem-2.0.8-cp38-cp38-win_amd64.whl", hash = "sha256:6a6edddb30dd000a27987fcbc6f3c23b7fe1d74f539656952cb086288c0e4e29"}, + {file = "cymem-2.0.8-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b896c83c08dadafe8102a521f83b7369a9c5cc3e7768eca35875764f56703f4c"}, + {file = "cymem-2.0.8-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a4f8f2bfee34f6f38b206997727d29976666c89843c071a968add7d61a1e8024"}, + {file = "cymem-2.0.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7372e2820fa66fd47d3b135f3eb574ab015f90780c3a21cfd4809b54f23a4723"}, + {file = "cymem-2.0.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4e57bee56d35b90fc2cba93e75b2ce76feaca05251936e28a96cf812a1f5dda"}, + {file = "cymem-2.0.8-cp39-cp39-win_amd64.whl", hash = "sha256:ceeab3ce2a92c7f3b2d90854efb32cb203e78cb24c836a5a9a2cac221930303b"}, + {file = "cymem-2.0.8.tar.gz", hash = "sha256:8fb09d222e21dcf1c7e907dc85cf74501d4cea6c4ed4ac6c9e016f98fb59cbbf"}, +] + +[[package]] +name = "cython" +version = "0.29.14" +description = "The Cython compiler for writing C extensions for the Python language." +optional = false +python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "Cython-0.29.14-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:47e5e1502d52ef03387cf9d3b3241007961a84a466e58a3b74028e1dd4957f8c"}, + {file = "Cython-0.29.14-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:1dcdaa319558eb924294a554dcf6c12383ec947acc7e779e8d3622409a7f7d28"}, + {file = "Cython-0.29.14-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:7bc18fc5a170f2c1cef5387a3d997c28942918bbee0f700e73fd2178ee8d474d"}, + {file = "Cython-0.29.14-cp27-cp27m-win32.whl", hash = "sha256:89458b49976b1dee5d89ab4ac943da3717b4292bf624367e862e4ee172fcce99"}, + {file = "Cython-0.29.14-cp27-cp27m-win_amd64.whl", hash = "sha256:c0b24bfe3431b3cb7ced323bca813dbd13aca973a1475b512d3331fd0de8ec60"}, + {file = "Cython-0.29.14-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7f89eff20e4a7a64b55210dac17aea711ed8a3f2e78f2ff784c0e984302583dd"}, + {file = "Cython-0.29.14-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:6c53338c1811f8c6d7f8cb7abd874810b15045e719e8207f957035c9177b4213"}, + {file = "Cython-0.29.14-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:521340844cf388d109ceb61397f3fd5250ccb622a1a8e93559e8de76c80940a9"}, + {file = "Cython-0.29.14-cp34-cp34m-manylinux1_i686.whl", hash = "sha256:75c2dda47dcc3c77449712b1417bb6b89ec3b7b02e18c64262494dceffdf455e"}, + {file = "Cython-0.29.14-cp34-cp34m-manylinux1_x86_64.whl", hash = "sha256:05eb79efc8029d487251c8a2702a909a8ba33c332e06d2f3980866541bd81253"}, + {file = "Cython-0.29.14-cp34-cp34m-win32.whl", hash = "sha256:1fc5bdda28f25fec44e4721677458aa509d743cd350862270309d61aa148d6ff"}, + {file = "Cython-0.29.14-cp34-cp34m-win_amd64.whl", hash = "sha256:0c70e842e52e2f50cc43bad43b5e5bc515f30821a374e544abb0e0746f2350ff"}, + {file = "Cython-0.29.14-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:094d28a34c3fa992ae02aea1edbe6ff89b3cc5870b6ee38b5baeb805dc57b013"}, + {file = "Cython-0.29.14-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:280573a01d9348d44a42d6a9c651d9f7eb1fe9217df72555b2a118f902996a10"}, + {file = "Cython-0.29.14-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:773c5a98e463b52f7e8197254b39b703a5ea1972aef3a94b3b921515d77dd041"}, + {file = "Cython-0.29.14-cp35-cp35m-win32.whl", hash = "sha256:986f871c0fa649b293061236b93782d25c293a8dd8117c7ba05f8a61bdc261ae"}, + {file = "Cython-0.29.14-cp35-cp35m-win_amd64.whl", hash = "sha256:78c3068dcba300d473fef57cdf523e34b37de522f5a494ef9ee1ac9b4b8bbe3f"}, + {file = "Cython-0.29.14-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:f3818e578e687cdb21dc4aa4a3bc6278c656c9c393e9eda14dd04943f478863d"}, + {file = "Cython-0.29.14-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:bb487881608ebd293592553c618f0c83316f4f13a64cb18605b1d2fb9fd3da3e"}, + {file = "Cython-0.29.14-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:03f6bbb380ad0acb744fb06e42996ea217e9d00016ca0ff6f2e7d60f580d0360"}, + {file = "Cython-0.29.14-cp36-cp36m-win32.whl", hash = "sha256:b8ab3ab38afc47d8f4fe629b836243544351cef681b6bdb1dc869028d6fdcbfb"}, + {file = "Cython-0.29.14-cp36-cp36m-win_amd64.whl", hash = "sha256:298ceca7b0f0da4205fcb0b7c9ac9e120e2dafffd5019ba1618e84ef89434b5a"}, + {file = "Cython-0.29.14-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:fe666645493d72712c46e4fbe8bec094b06aec3c337400479e9704439c9d9586"}, + {file = "Cython-0.29.14-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:4074a8bff0040035673cc6dd365a762476d6bff4d03d8ce6904e3e53f9a25dc8"}, + {file = "Cython-0.29.14-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:a14aa436586c41633339415de82a41164691d02d3e661038da533be5d40794a5"}, + {file = "Cython-0.29.14-cp37-cp37m-win32.whl", hash = "sha256:41e7068e95fbf9ec94b41437f989caf9674135e770a39cdb9c00de459bafd1bc"}, + {file = "Cython-0.29.14-cp37-cp37m-win_amd64.whl", hash = "sha256:05e8cfd3a3a6087aec49a1ae08a89171db991956209406d1e5576f9db70ece52"}, + {file = "Cython-0.29.14-cp38-cp38-manylinux1_i686.whl", hash = "sha256:e8fab9911fd2fa8e5af407057cb8bdf87762f983cba483fa3234be20a9a0af77"}, + {file = "Cython-0.29.14-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:d4039bb7f234ad32267c55e72fd49fb56078ea102f9d9d8559f6ec34d4887630"}, + {file = "Cython-0.29.14-cp38-cp38-win32.whl", hash = "sha256:c7894c06205166d360ab2915ae306d1f7403e9ce3d3aaeff4095eaf98e42ce66"}, + {file = "Cython-0.29.14-cp38-cp38-win_amd64.whl", hash = "sha256:a0f495a4fe5278aab278feee35e6102efecde5176a8a74dd28c28e3fc5c8d7c7"}, + {file = "Cython-0.29.14.tar.gz", hash = "sha256:e4d6bb8703d0319eb04b7319b12ea41580df44fd84d83ccda13ea463c6801414"}, +] + +[[package]] +name = "debugpy" +version = "1.8.8" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "debugpy-1.8.8-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:e59b1607c51b71545cb3496876544f7186a7a27c00b436a62f285603cc68d1c6"}, + {file = "debugpy-1.8.8-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a6531d952b565b7cb2fbd1ef5df3d333cf160b44f37547a4e7cf73666aca5d8d"}, + {file = "debugpy-1.8.8-cp310-cp310-win32.whl", hash = "sha256:b01f4a5e5c5fb1d34f4ccba99a20ed01eabc45a4684f4948b5db17a319dfb23f"}, + {file = "debugpy-1.8.8-cp310-cp310-win_amd64.whl", hash = "sha256:535f4fb1c024ddca5913bb0eb17880c8f24ba28aa2c225059db145ee557035e9"}, + {file = "debugpy-1.8.8-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:c399023146e40ae373753a58d1be0a98bf6397fadc737b97ad612886b53df318"}, + {file = "debugpy-1.8.8-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:09cc7b162586ea2171eea055985da2702b0723f6f907a423c9b2da5996ad67ba"}, + {file = "debugpy-1.8.8-cp311-cp311-win32.whl", hash = "sha256:eea8821d998ebeb02f0625dd0d76839ddde8cbf8152ebbe289dd7acf2cdc6b98"}, + {file = "debugpy-1.8.8-cp311-cp311-win_amd64.whl", hash = "sha256:d4483836da2a533f4b1454dffc9f668096ac0433de855f0c22cdce8c9f7e10c4"}, + {file = "debugpy-1.8.8-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:0cc94186340be87b9ac5a707184ec8f36547fb66636d1029ff4f1cc020e53996"}, + {file = "debugpy-1.8.8-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:64674e95916e53c2e9540a056e5f489e0ad4872645399d778f7c598eacb7b7f9"}, + {file = "debugpy-1.8.8-cp312-cp312-win32.whl", hash = "sha256:5c6e885dbf12015aed73770f29dec7023cb310d0dc2ba8bfbeb5c8e43f80edc9"}, + {file = "debugpy-1.8.8-cp312-cp312-win_amd64.whl", hash = "sha256:19ffbd84e757a6ca0113574d1bf5a2298b3947320a3e9d7d8dc3377f02d9f864"}, + {file = "debugpy-1.8.8-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:705cd123a773d184860ed8dae99becd879dfec361098edbefb5fc0d3683eb804"}, + {file = "debugpy-1.8.8-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:890fd16803f50aa9cb1a9b9b25b5ec321656dd6b78157c74283de241993d086f"}, + {file = "debugpy-1.8.8-cp313-cp313-win32.whl", hash = "sha256:90244598214bbe704aa47556ec591d2f9869ff9e042e301a2859c57106649add"}, + {file = "debugpy-1.8.8-cp313-cp313-win_amd64.whl", hash = "sha256:4b93e4832fd4a759a0c465c967214ed0c8a6e8914bced63a28ddb0dd8c5f078b"}, + {file = "debugpy-1.8.8-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:143ef07940aeb8e7316de48f5ed9447644da5203726fca378f3a6952a50a9eae"}, + {file = "debugpy-1.8.8-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f95651bdcbfd3b27a408869a53fbefcc2bcae13b694daee5f1365b1b83a00113"}, + {file = "debugpy-1.8.8-cp38-cp38-win32.whl", hash = "sha256:26b461123a030e82602a750fb24d7801776aa81cd78404e54ab60e8b5fecdad5"}, + {file = "debugpy-1.8.8-cp38-cp38-win_amd64.whl", hash = "sha256:f3cbf1833e644a3100eadb6120f25be8a532035e8245584c4f7532937edc652a"}, + {file = "debugpy-1.8.8-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:53709d4ec586b525724819dc6af1a7703502f7e06f34ded7157f7b1f963bb854"}, + {file = "debugpy-1.8.8-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a9c013077a3a0000e83d97cf9cc9328d2b0bbb31f56b0e99ea3662d29d7a6a2"}, + {file = "debugpy-1.8.8-cp39-cp39-win32.whl", hash = "sha256:ffe94dd5e9a6739a75f0b85316dc185560db3e97afa6b215628d1b6a17561cb2"}, + {file = "debugpy-1.8.8-cp39-cp39-win_amd64.whl", hash = "sha256:5c0e5a38c7f9b481bf31277d2f74d2109292179081f11108e668195ef926c0f9"}, + {file = "debugpy-1.8.8-py2.py3-none-any.whl", hash = "sha256:ec684553aba5b4066d4de510859922419febc710df7bba04fe9e7ef3de15d34f"}, + {file = "debugpy-1.8.8.zip", hash = "sha256:e6355385db85cbd666be703a96ab7351bc9e6c61d694893206f8001e22aee091"}, +] + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +optional = false +python-versions = ">=3.5" +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] + +[[package]] +name = "en-core-web-md" +version = "3.7.1" +description = "English pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler, lemmatizer." +optional = false +python-versions = "*" +files = [] + +[package.source] +type = "url" +url = "https://github.com/explosion/spacy-models/releases/download/en_core_web_md-3.7.1/en_core_web_md-3.7.1-py3-none-any.whl" + +[[package]] +name = "executing" +version = "2.1.0" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.8" +files = [ + {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, + {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + +[[package]] +name = "fasttext-wheel" +version = "0.9.2" +description = "fasttext Python bindings" +optional = false +python-versions = "*" +files = [ + {file = "fasttext-wheel-0.9.2.tar.gz", hash = "sha256:056e088318ef0e0cc690c4cb18637320eaa3cdb986b62d67bb50d6a7a82e4051"}, + {file = "fasttext_wheel-0.9.2-cp27-cp27m-macosx_10_15_x86_64.whl", hash = "sha256:efa1fae3b10b64978ba78a2cd1490627c8d861c23f39abd95393d5836e4f0c8f"}, + {file = "fasttext_wheel-0.9.2-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:04d5e693c25880574faf9e5a24bc19514e560dd41add7ecd88cb253f50874669"}, + {file = "fasttext_wheel-0.9.2-cp27-cp27m-macosx_11_1_arm64.whl", hash = "sha256:2e3b0a205baee622877aa5a83b369947e68271c99b9a6eccc8fbe48948d6e6b5"}, + {file = "fasttext_wheel-0.9.2-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:aced443e9f380b6fd3163e3bfdec43567f7024295a6c9228f91f9566671b7023"}, + {file = "fasttext_wheel-0.9.2-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:c5afabc433c923526e0572e1ed1bf7b21ee5aa77869cb7896f3eab1402067973"}, + {file = "fasttext_wheel-0.9.2-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:838ff1e03ce613964e9a30c3fa96bf1ef3d63b891990eb5c56b054a3b03b2999"}, + {file = "fasttext_wheel-0.9.2-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:e6d8bbc2a0f64bfd66875d0d615dec2e6c3a1e2913cef8aa87a78c2eebe45093"}, + {file = "fasttext_wheel-0.9.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:af606b17d47695a17ee87dc5a5c76e29cc957f08bd090cb2441e3815c030a99d"}, + {file = "fasttext_wheel-0.9.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:c4e9e59778eb3f3a3c99bf3c1257791564fbafab9b80e89345ee0940c20e1648"}, + {file = "fasttext_wheel-0.9.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:0e8a73ee48502dfc6243faf6799dec3067795a6dc02c1d47fedc620e80e9ee94"}, + {file = "fasttext_wheel-0.9.2-cp310-cp310-manylinux2014_armv7l.whl", hash = "sha256:f1dba6805073d46495dc700a8e29a5524c87f141a29820664c47207260723e78"}, + {file = "fasttext_wheel-0.9.2-cp310-cp310-manylinux2014_ppc64.whl", hash = "sha256:3b7f0d76e2c2b20a582725dc9c7e3419bb55745ac2842271c2e785047b143ac7"}, + {file = "fasttext_wheel-0.9.2-cp310-cp310-manylinux2014_ppc64le.whl", hash = "sha256:dbad8ab4820b08273450a395f76a536044a749227ecac060ba48a1d70426768b"}, + {file = "fasttext_wheel-0.9.2-cp310-cp310-manylinux2014_s390x.whl", hash = "sha256:8280415f59178879963791da9b51eee23a0faf1230fbc770fe917801b5d8f3f6"}, + {file = "fasttext_wheel-0.9.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:2cce299a49f50b5867fff464d1051beebe1d612b23213bb29b09f96935ca4ca0"}, + {file = "fasttext_wheel-0.9.2-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:09a25790ad17ee21f31efe39d51e4106c718a1ed9c7ac0bdc1ad7512f2d64d22"}, + {file = "fasttext_wheel-0.9.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6d5d47dacf4930254de1806b19cc603a0daac034477a27329dc7b3a4f4240d4a"}, + {file = "fasttext_wheel-0.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0aa4755a3ab0717e32627ede55e9c12cd7bbba464c73af7f08a3142bd6c62df7"}, + {file = "fasttext_wheel-0.9.2-cp310-cp310-win32.whl", hash = "sha256:5c4938600006dd13bb215f105adb971e8f129491e03cc5de5ac53f292cdbc9a6"}, + {file = "fasttext_wheel-0.9.2-cp310-cp310-win_amd64.whl", hash = "sha256:acb1e336c63fcf46ef8965904c03589d230ebc6a3c4a7f05b0a32a7de85de11a"}, + {file = "fasttext_wheel-0.9.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a32cc0bee31985c5a15ae2ec4f7d777c84e84294d70969d7382961305b0851cf"}, + {file = "fasttext_wheel-0.9.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:aefd4dbecf4c243628a513c3f9f9008a4c94d63f4194cfde6d11975710f04b7c"}, + {file = "fasttext_wheel-0.9.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:ef5be5e24ad4aab61eb42c30e1a7909464b20958907c23dfe4037ef247755254"}, + {file = "fasttext_wheel-0.9.2-cp311-cp311-manylinux2014_armv7l.whl", hash = "sha256:2dcbe5cb3ebad68667772ff2457d1d5ced69e9caa19fe35e53fe1b0c68db69f6"}, + {file = "fasttext_wheel-0.9.2-cp311-cp311-manylinux2014_ppc64.whl", hash = "sha256:b1e6c4aee8dfc5629aba54c0c044eb0c699b3f82ee5f0f1a8edf69c84ffaa1bd"}, + {file = "fasttext_wheel-0.9.2-cp311-cp311-manylinux2014_ppc64le.whl", hash = "sha256:ad1a3e10354cb71cb2e182ce4cb7fa61fd2396fe4e28d52002b8f6a749138e4d"}, + {file = "fasttext_wheel-0.9.2-cp311-cp311-manylinux2014_s390x.whl", hash = "sha256:c7b94290bc5bf1a8f2cf6ca2e84364bca3588525625907323d3a77bc96365915"}, + {file = "fasttext_wheel-0.9.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9e09cff3f2002cdef5f046a0969a0bf886d5386c2eb1c15874d90f9a95edb8d0"}, + {file = "fasttext_wheel-0.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ec13d485e0202e729b3bcb7283dda9c499581f691fa8e835e237ee5cf69a2b5"}, + {file = "fasttext_wheel-0.9.2-cp311-cp311-win32.whl", hash = "sha256:39d3201a8e6dabf59c0d8f9a7064d12bb996bca38f5f15e5a678e12fcbd39a35"}, + {file = "fasttext_wheel-0.9.2-cp311-cp311-win_amd64.whl", hash = "sha256:1afb40118fb1b39e159bbdded14834a6a95415c0be957553647b9d70c7cc45ff"}, + {file = "fasttext_wheel-0.9.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cc650bd6984ea15207ab09e56f20c2fd09fe90822f4663896185cedb79825d6d"}, + {file = "fasttext_wheel-0.9.2-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:1d673dc21be911134142642e5cf3a92537f565156ede0871f3a769108f446163"}, + {file = "fasttext_wheel-0.9.2-cp312-cp312-manylinux2014_armv7l.whl", hash = "sha256:a0bbeaf364fdae4269648391ce44f3c4d5774ec7bea614b65b7c51254f1697fd"}, + {file = "fasttext_wheel-0.9.2-cp312-cp312-manylinux2014_ppc64.whl", hash = "sha256:6ab035ecdf8debd35bf513613abaca714876b799fede8ab32c3841417178c543"}, + {file = "fasttext_wheel-0.9.2-cp312-cp312-manylinux2014_ppc64le.whl", hash = "sha256:0a30b779f3f77eca0d31bb11c074fadbc5ab9e6e4c7cdb3135780a61d63eb3fb"}, + {file = "fasttext_wheel-0.9.2-cp312-cp312-manylinux2014_s390x.whl", hash = "sha256:ca27b054837168dd34b202ef59c903fd713d2307c9d27814ff67bc2d6beeadd2"}, + {file = "fasttext_wheel-0.9.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e73457b66edd1fb893092c1717102e7e7d184a9413735801a4c39d0299846940"}, + {file = "fasttext_wheel-0.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5758d911a4e4539c75e93d58d9feee2c6de96a5addc4f4d7d76ed4e8953a4f35"}, + {file = "fasttext_wheel-0.9.2-cp312-cp312-win32.whl", hash = "sha256:79bfa9b168c115e3b4eab1f7694a80ca6a9ea96ee5e2e4d737e07f5b61812ae8"}, + {file = "fasttext_wheel-0.9.2-cp312-cp312-win_amd64.whl", hash = "sha256:8a0cc9e92377d27835a71862c68782e70c9bbd2a666a1a51b2c8261fc9892470"}, + {file = "fasttext_wheel-0.9.2-cp35-cp35m-macosx_10_15_x86_64.whl", hash = "sha256:17beeccd3935a5c531deb45217dde8d9758ffe764b1a89d82d5dddc8f36aa4e5"}, + {file = "fasttext_wheel-0.9.2-cp35-cp35m-macosx_10_9_x86_64.whl", hash = "sha256:8def868707775661afc18299b67cbb6548fd98dd6c5b3e1826bf3f95db8ce7a0"}, + {file = "fasttext_wheel-0.9.2-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:a3bb1d14478c7dac126675f057750e854af646be9c028f6e9653cbaf4172a0ec"}, + {file = "fasttext_wheel-0.9.2-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:477ef49476f6f9558ae53d4bd9cad625ffd5737073152d1375863b350c2e880f"}, + {file = "fasttext_wheel-0.9.2-cp35-cp35m-win32.whl", hash = "sha256:84f7bb711137729bace4553cea481fc60b1b8004acd67091ac556e4415fa29f9"}, + {file = "fasttext_wheel-0.9.2-cp35-cp35m-win_amd64.whl", hash = "sha256:2da8e97ac82fe99960e1363c87022abe403a677d5229c7e44787d0c764159b99"}, + {file = "fasttext_wheel-0.9.2-cp36-cp36m-macosx_10_15_x86_64.whl", hash = "sha256:ed960c08196ecd30a349c019a6e79214e0f27da7f21141872b2c02c7286e435a"}, + {file = "fasttext_wheel-0.9.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:26b0ca89c6d5e5fc5c864eb18e327674a45b2c98f38845d58d3e5beae6982ead"}, + {file = "fasttext_wheel-0.9.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:e8fe842818380ec56ef303461577ac5df7d4308115555879580e11e8ec055dc8"}, + {file = "fasttext_wheel-0.9.2-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:18fc4ef2f9fd5060cc7174b121bcdc79edf4d66918ecfda60c030ed94309eb17"}, + {file = "fasttext_wheel-0.9.2-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:b59f84675ce247735e00acab7afbe4c74753f4fe2c9b0bf21fc60417d339a781"}, + {file = "fasttext_wheel-0.9.2-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:bb71f70083ae127b1d0cbfb54857f873091da0ad3a5f63c530654c5104196d9b"}, + {file = "fasttext_wheel-0.9.2-cp36-cp36m-manylinux2014_armv7l.whl", hash = "sha256:d1d070b71c765f9e96be36ac6867a4f6d73072ba432b685f424b8d47a2e6c957"}, + {file = "fasttext_wheel-0.9.2-cp36-cp36m-manylinux2014_ppc64.whl", hash = "sha256:365d998c0d8b910282b9b03c9706d0e87cd569b3a8b37aefd901b237ec10a4ed"}, + {file = "fasttext_wheel-0.9.2-cp36-cp36m-manylinux2014_ppc64le.whl", hash = "sha256:14fb62960fcfe8408fdc8e2854c2c583a04e422f424ccea34c07070f15e1b0a2"}, + {file = "fasttext_wheel-0.9.2-cp36-cp36m-manylinux2014_s390x.whl", hash = "sha256:7f6727e40836c55bf2b9d7761ee25a6274abc17ae4f1ca0ea6eca3973661077b"}, + {file = "fasttext_wheel-0.9.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:704c285c364e44384c88968cdcb8688907d23184aff373a22924135ed4f29e3a"}, + {file = "fasttext_wheel-0.9.2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:fefb1e8aa652aab231b5a37e3e5a59a13a95d36143616f9ef8902403a3e5556a"}, + {file = "fasttext_wheel-0.9.2-cp36-cp36m-win32.whl", hash = "sha256:a6231f28c5048c59e1c3231b38887111f6a0b2f51a040323841bd8920dd98683"}, + {file = "fasttext_wheel-0.9.2-cp36-cp36m-win_amd64.whl", hash = "sha256:4990269d29fb1b31ca5595f48be2116c85c8c22e591a16743fea993e97d02418"}, + {file = "fasttext_wheel-0.9.2-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:aabcb1efa04a411ee22d364b6dc7e5ffb6b5c72c7522b6d065f03685d54e0c64"}, + {file = "fasttext_wheel-0.9.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:964ed076a2190841e3bb7f774c36088810b0e63b30e18c26867f6e7a7b1e7068"}, + {file = "fasttext_wheel-0.9.2-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:ae70c70135c909c2951cae5496bf4ad19d268c03c0c2bd3bf71ce586126d7a5d"}, + {file = "fasttext_wheel-0.9.2-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:2ed30ae57f7cab129b2b474929c83e1065be3f11998730a0a178d3a7335fdc6a"}, + {file = "fasttext_wheel-0.9.2-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:708ccdb59873ab14972944a5ef24bb46ffff9ee851b47b905050716b4d8a1a1e"}, + {file = "fasttext_wheel-0.9.2-cp37-cp37m-manylinux2014_armv7l.whl", hash = "sha256:94afa157f43dc619c070838c6073d4b22e04007229113761e6c67b960c0c7a30"}, + {file = "fasttext_wheel-0.9.2-cp37-cp37m-manylinux2014_ppc64.whl", hash = "sha256:3e9e9812f9acc9054ec6cb9d60df918b94348ca8d0f1c49408de253f622038c4"}, + {file = "fasttext_wheel-0.9.2-cp37-cp37m-manylinux2014_ppc64le.whl", hash = "sha256:0cc583882ad40425d4bcaa09593adb0ce8140b27bbc0d3ea0129421cf785928b"}, + {file = "fasttext_wheel-0.9.2-cp37-cp37m-manylinux2014_s390x.whl", hash = "sha256:4bbe7046d079ba5724328eb8556212f60315edd26a2625c5bddad307bcee1267"}, + {file = "fasttext_wheel-0.9.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d5e389c0912606e45be7bcc860d60f8d9e0bc094e84b8c7d2445670ff7275c32"}, + {file = "fasttext_wheel-0.9.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:1a0bf5f547430b838abcb0957fc7978feb4a02762b445a6c071394fab7207efd"}, + {file = "fasttext_wheel-0.9.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d22d15523bcf1715af25f9ee33064658c9a51d4447ea32d5b57f003670fd02bc"}, + {file = "fasttext_wheel-0.9.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e76af4ce3974f28e80da9edfe650703454acaa4597f143ec6ba31892ddefb17"}, + {file = "fasttext_wheel-0.9.2-cp37-cp37m-win32.whl", hash = "sha256:91e744f4100cea6ec7da41a85e9b7b905d679959357cec654febbc42f472c330"}, + {file = "fasttext_wheel-0.9.2-cp37-cp37m-win_amd64.whl", hash = "sha256:17b02b00ca26f84c5a645141e1a88b80a835d74077d5a55738884f2f3e43da2c"}, + {file = "fasttext_wheel-0.9.2-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:0ca1cf85b5159db69223cfa8a1cc5a00b521bb4bb5336fdf344ba743ca8f1dae"}, + {file = "fasttext_wheel-0.9.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ab7e2431999d352f0d417c7edc7bb76ee4377fd35d59dd4e77cefd33ee7341c8"}, + {file = "fasttext_wheel-0.9.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9d08cf0ea4081b755e029160a96f9be5cfc5468ad54f476fe0ef7a6dec5dc52c"}, + {file = "fasttext_wheel-0.9.2-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:e64226520d7433ee0997db4b29abeb21a465b48d68389fee50137eb08f7dd756"}, + {file = "fasttext_wheel-0.9.2-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:a5f4985db787b187933c12dfd89c972854b80ae97f07d004d73cdc9d251e8eb8"}, + {file = "fasttext_wheel-0.9.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:3c0fdfb0fbfe62c95e6f6ffc0119afb3f5d32914b1be8f7052a828d95b1ca23c"}, + {file = "fasttext_wheel-0.9.2-cp38-cp38-manylinux2014_armv7l.whl", hash = "sha256:11efd5f0aebcc6737636b6890ac0b85f3b87aa359645969b4a1962459e588c69"}, + {file = "fasttext_wheel-0.9.2-cp38-cp38-manylinux2014_ppc64.whl", hash = "sha256:d29ac75e948ed3ef44df54b6fe203c8b9b3c08fb486a8634b6144425e72531ed"}, + {file = "fasttext_wheel-0.9.2-cp38-cp38-manylinux2014_ppc64le.whl", hash = "sha256:3328e851e5896b373395ea108437045fa830c68ef86b0ab4db49bb7d64da77b7"}, + {file = "fasttext_wheel-0.9.2-cp38-cp38-manylinux2014_s390x.whl", hash = "sha256:b10eb3702de7b56b4de83b83d39248e75198434fa7f6139805aa7b0a1b31245b"}, + {file = "fasttext_wheel-0.9.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:1d64763e6f5d5f84ec4f226d78a56e9182fcd15e48219f10eecd09dc2cccefc9"}, + {file = "fasttext_wheel-0.9.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:41b7f1237df82d29b6a64ca93894d8558c8b1791fd4f782b28a846c6ebccd182"}, + {file = "fasttext_wheel-0.9.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9a5dcb79b828132cc16beb3d790b90c00b31b34a4cfb320a9ac2bfbcb507b12e"}, + {file = "fasttext_wheel-0.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31811c96ffe97d05272d77b7c0d4fe35b5d00dd63a189653eb9df3c60e11710c"}, + {file = "fasttext_wheel-0.9.2-cp38-cp38-win32.whl", hash = "sha256:44b69266aa8604040be502985d6a56951ae9cd89dc9ec7c4505e864b5c584e0e"}, + {file = "fasttext_wheel-0.9.2-cp38-cp38-win_amd64.whl", hash = "sha256:084fa472a49dc0c40e8153cae2b62b42433255c441934b0e9fd9526cab822991"}, + {file = "fasttext_wheel-0.9.2-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:5d3636932dba77811225dee9af540af4b4eb80a2ddd214ae476dc4a945d932d7"}, + {file = "fasttext_wheel-0.9.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6f4ef14f4f866fa0d5c17facf490c6821a109ea78788c61cc168807cfe038110"}, + {file = "fasttext_wheel-0.9.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c12e4eb12eb9181e4c31d7ba671a2a96f86b5e2e987e691554d40a3846908658"}, + {file = "fasttext_wheel-0.9.2-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:3e66247d3035954c00ee987c5927f9ca7226597a5b3a1d43784b5935b35addbf"}, + {file = "fasttext_wheel-0.9.2-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:07387bd66a619e23e9b1520e5472a97ae2f63d6790511c242b6bbb8b008386ff"}, + {file = "fasttext_wheel-0.9.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:1d96be81f8365783c4420b02024b1794ac13fa232be04813a2dae9cdc389e82d"}, + {file = "fasttext_wheel-0.9.2-cp39-cp39-manylinux2014_armv7l.whl", hash = "sha256:1a6575feedff466d3af5a77f073294338da5dc361d538b6d1da74247336eba5b"}, + {file = "fasttext_wheel-0.9.2-cp39-cp39-manylinux2014_ppc64.whl", hash = "sha256:7547a347a3b173a67571b629e5fa15f5d5154a9bf5809c94958bf6ec0e142512"}, + {file = "fasttext_wheel-0.9.2-cp39-cp39-manylinux2014_ppc64le.whl", hash = "sha256:290e0030f237713afa30fc9b044aeac975f4d77c7281e1a533c08976d2ced05f"}, + {file = "fasttext_wheel-0.9.2-cp39-cp39-manylinux2014_s390x.whl", hash = "sha256:f5895b20801b412a018ac4d56ef0d37d753e03f04fdbc23221f612f64dd83489"}, + {file = "fasttext_wheel-0.9.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:7114a7950ca2a380647cc4268379f01b9d2dea5c7f9ec1a8bf063700a665b802"}, + {file = "fasttext_wheel-0.9.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:20e0f4271fbbe606d6218bfbbe4a6496d8ae33ff5b1f94aacec003e3ca593fce"}, + {file = "fasttext_wheel-0.9.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:35edd9a4c1a8b058b7aef686b5a6d941109db1f0d563ae19f48623b611283782"}, + {file = "fasttext_wheel-0.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd59ea516b352911bce63c348c5c6f0981c54a88649db3ce5e437c386a994fe4"}, + {file = "fasttext_wheel-0.9.2-cp39-cp39-win32.whl", hash = "sha256:5f3d27433b2280304f2aaba6b63bc79893a5113eed8e1c349d709d26ad072357"}, + {file = "fasttext_wheel-0.9.2-cp39-cp39-win_amd64.whl", hash = "sha256:4cb4f08083429cb367d29722528e1e0371c512e77f1956c341151159d7a56197"}, +] + +[package.dependencies] +numpy = "*" +pybind11 = ">=2.2" +setuptools = ">=0.7.0" + +[[package]] +name = "filelock" +version = "3.16.1" +description = "A platform independent file lock." +optional = false +python-versions = ">=3.8" +files = [ + {file = "filelock-3.16.1-py3-none-any.whl", hash = "sha256:2082e5703d51fbf98ea75855d9d5527e33d8ff23099bec374a134febee6946b0"}, + {file = "filelock-3.16.1.tar.gz", hash = "sha256:c249fbfcd5db47e5e2d6d62198e565475ee65e4831e2561c8e313fa7eb961435"}, +] + +[package.extras] +docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4.1)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.2)", "pytest (>=8.3.3)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.4)"] +typing = ["typing-extensions (>=4.12.2)"] + +[[package]] +name = "flatbuffers" +version = "2.0.7" +description = "The FlatBuffers serialization format for Python" +optional = false +python-versions = "*" +files = [ + {file = "flatbuffers-2.0.7-py2.py3-none-any.whl", hash = "sha256:71e135d533be527192819aaab757c5e3d109cb10fbb01e687f6bdb7a61ad39d1"}, + {file = "flatbuffers-2.0.7.tar.gz", hash = "sha256:0ae7d69c5b82bf41962ca5fde9cc43033bc9501311d975fd5a25e8a7d29c1245"}, +] + +[[package]] +name = "frozenlist" +version = "1.5.0" +description = "A list-like structure which implements collections.abc.MutableSequence" +optional = false +python-versions = ">=3.8" +files = [ + {file = "frozenlist-1.5.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:5b6a66c18b5b9dd261ca98dffcb826a525334b2f29e7caa54e182255c5f6a65a"}, + {file = "frozenlist-1.5.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d1b3eb7b05ea246510b43a7e53ed1653e55c2121019a97e60cad7efb881a97bb"}, + {file = "frozenlist-1.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:15538c0cbf0e4fa11d1e3a71f823524b0c46299aed6e10ebb4c2089abd8c3bec"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e79225373c317ff1e35f210dd5f1344ff31066ba8067c307ab60254cd3a78ad5"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9272fa73ca71266702c4c3e2d4a28553ea03418e591e377a03b8e3659d94fa76"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:498524025a5b8ba81695761d78c8dd7382ac0b052f34e66939c42df860b8ff17"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:92b5278ed9d50fe610185ecd23c55d8b307d75ca18e94c0e7de328089ac5dcba"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f3c8c1dacd037df16e85227bac13cca58c30da836c6f936ba1df0c05d046d8d"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f2ac49a9bedb996086057b75bf93538240538c6d9b38e57c82d51f75a73409d2"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:e66cc454f97053b79c2ab09c17fbe3c825ea6b4de20baf1be28919460dd7877f"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:5a3ba5f9a0dfed20337d3e966dc359784c9f96503674c2faf015f7fe8e96798c"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:6321899477db90bdeb9299ac3627a6a53c7399c8cd58d25da094007402b039ab"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:76e4753701248476e6286f2ef492af900ea67d9706a0155335a40ea21bf3b2f5"}, + {file = "frozenlist-1.5.0-cp310-cp310-win32.whl", hash = "sha256:977701c081c0241d0955c9586ffdd9ce44f7a7795df39b9151cd9a6fd0ce4cfb"}, + {file = "frozenlist-1.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:189f03b53e64144f90990d29a27ec4f7997d91ed3d01b51fa39d2dbe77540fd4"}, + {file = "frozenlist-1.5.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:fd74520371c3c4175142d02a976aee0b4cb4a7cc912a60586ffd8d5929979b30"}, + {file = "frozenlist-1.5.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2f3f7a0fbc219fb4455264cae4d9f01ad41ae6ee8524500f381de64ffaa077d5"}, + {file = "frozenlist-1.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f47c9c9028f55a04ac254346e92977bf0f166c483c74b4232bee19a6697e4778"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0996c66760924da6e88922756d99b47512a71cfd45215f3570bf1e0b694c206a"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a2fe128eb4edeabe11896cb6af88fca5346059f6c8d807e3b910069f39157869"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1a8ea951bbb6cacd492e3948b8da8c502a3f814f5d20935aae74b5df2b19cf3d"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:de537c11e4aa01d37db0d403b57bd6f0546e71a82347a97c6a9f0dcc532b3a45"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c2623347b933fcb9095841f1cc5d4ff0b278addd743e0e966cb3d460278840d"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:cee6798eaf8b1416ef6909b06f7dc04b60755206bddc599f52232606e18179d3"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:f5f9da7f5dbc00a604fe74aa02ae7c98bcede8a3b8b9666f9f86fc13993bc71a"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:90646abbc7a5d5c7c19461d2e3eeb76eb0b204919e6ece342feb6032c9325ae9"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:bdac3c7d9b705d253b2ce370fde941836a5f8b3c5c2b8fd70940a3ea3af7f4f2"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:03d33c2ddbc1816237a67f66336616416e2bbb6beb306e5f890f2eb22b959cdf"}, + {file = "frozenlist-1.5.0-cp311-cp311-win32.whl", hash = "sha256:237f6b23ee0f44066219dae14c70ae38a63f0440ce6750f868ee08775073f942"}, + {file = "frozenlist-1.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:0cc974cc93d32c42e7b0f6cf242a6bd941c57c61b618e78b6c0a96cb72788c1d"}, + {file = "frozenlist-1.5.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:31115ba75889723431aa9a4e77d5f398f5cf976eea3bdf61749731f62d4a4a21"}, + {file = "frozenlist-1.5.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7437601c4d89d070eac8323f121fcf25f88674627505334654fd027b091db09d"}, + {file = "frozenlist-1.5.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7948140d9f8ece1745be806f2bfdf390127cf1a763b925c4a805c603df5e697e"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:feeb64bc9bcc6b45c6311c9e9b99406660a9c05ca8a5b30d14a78555088b0b3a"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:683173d371daad49cffb8309779e886e59c2f369430ad28fe715f66d08d4ab1a"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7d57d8f702221405a9d9b40f9da8ac2e4a1a8b5285aac6100f3393675f0a85ee"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:30c72000fbcc35b129cb09956836c7d7abf78ab5416595e4857d1cae8d6251a6"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:000a77d6034fbad9b6bb880f7ec073027908f1b40254b5d6f26210d2dab1240e"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:5d7f5a50342475962eb18b740f3beecc685a15b52c91f7d975257e13e029eca9"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:87f724d055eb4785d9be84e9ebf0f24e392ddfad00b3fe036e43f489fafc9039"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:6e9080bb2fb195a046e5177f10d9d82b8a204c0736a97a153c2466127de87784"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:9b93d7aaa36c966fa42efcaf716e6b3900438632a626fb09c049f6a2f09fc631"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:52ef692a4bc60a6dd57f507429636c2af8b6046db8b31b18dac02cbc8f507f7f"}, + {file = "frozenlist-1.5.0-cp312-cp312-win32.whl", hash = "sha256:29d94c256679247b33a3dc96cce0f93cbc69c23bf75ff715919332fdbb6a32b8"}, + {file = "frozenlist-1.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:8969190d709e7c48ea386db202d708eb94bdb29207a1f269bab1196ce0dcca1f"}, + {file = "frozenlist-1.5.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:7a1a048f9215c90973402e26c01d1cff8a209e1f1b53f72b95c13db61b00f953"}, + {file = "frozenlist-1.5.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:dd47a5181ce5fcb463b5d9e17ecfdb02b678cca31280639255ce9d0e5aa67af0"}, + {file = "frozenlist-1.5.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1431d60b36d15cda188ea222033eec8e0eab488f39a272461f2e6d9e1a8e63c2"}, + {file = "frozenlist-1.5.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6482a5851f5d72767fbd0e507e80737f9c8646ae7fd303def99bfe813f76cf7f"}, + {file = "frozenlist-1.5.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:44c49271a937625619e862baacbd037a7ef86dd1ee215afc298a417ff3270608"}, + {file = "frozenlist-1.5.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:12f78f98c2f1c2429d42e6a485f433722b0061d5c0b0139efa64f396efb5886b"}, + {file = "frozenlist-1.5.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ce3aa154c452d2467487765e3adc730a8c153af77ad84096bc19ce19a2400840"}, + {file = "frozenlist-1.5.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9b7dc0c4338e6b8b091e8faf0db3168a37101943e687f373dce00959583f7439"}, + {file = "frozenlist-1.5.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:45e0896250900b5aa25180f9aec243e84e92ac84bd4a74d9ad4138ef3f5c97de"}, + {file = "frozenlist-1.5.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:561eb1c9579d495fddb6da8959fd2a1fca2c6d060d4113f5844b433fc02f2641"}, + {file = "frozenlist-1.5.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:df6e2f325bfee1f49f81aaac97d2aa757c7646534a06f8f577ce184afe2f0a9e"}, + {file = "frozenlist-1.5.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:140228863501b44b809fb39ec56b5d4071f4d0aa6d216c19cbb08b8c5a7eadb9"}, + {file = "frozenlist-1.5.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:7707a25d6a77f5d27ea7dc7d1fc608aa0a478193823f88511ef5e6b8a48f9d03"}, + {file = "frozenlist-1.5.0-cp313-cp313-win32.whl", hash = "sha256:31a9ac2b38ab9b5a8933b693db4939764ad3f299fcaa931a3e605bc3460e693c"}, + {file = "frozenlist-1.5.0-cp313-cp313-win_amd64.whl", hash = "sha256:11aabdd62b8b9c4b84081a3c246506d1cddd2dd93ff0ad53ede5defec7886b28"}, + {file = "frozenlist-1.5.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:dd94994fc91a6177bfaafd7d9fd951bc8689b0a98168aa26b5f543868548d3ca"}, + {file = "frozenlist-1.5.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2d0da8bbec082bf6bf18345b180958775363588678f64998c2b7609e34719b10"}, + {file = "frozenlist-1.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:73f2e31ea8dd7df61a359b731716018c2be196e5bb3b74ddba107f694fbd7604"}, + {file = "frozenlist-1.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:828afae9f17e6de596825cf4228ff28fbdf6065974e5ac1410cecc22f699d2b3"}, + {file = "frozenlist-1.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1577515d35ed5649d52ab4319db757bb881ce3b2b796d7283e6634d99ace307"}, + {file = "frozenlist-1.5.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2150cc6305a2c2ab33299453e2968611dacb970d2283a14955923062c8d00b10"}, + {file = "frozenlist-1.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a72b7a6e3cd2725eff67cd64c8f13335ee18fc3c7befc05aed043d24c7b9ccb9"}, + {file = "frozenlist-1.5.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c16d2fa63e0800723139137d667e1056bee1a1cf7965153d2d104b62855e9b99"}, + {file = "frozenlist-1.5.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:17dcc32fc7bda7ce5875435003220a457bcfa34ab7924a49a1c19f55b6ee185c"}, + {file = "frozenlist-1.5.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:97160e245ea33d8609cd2b8fd997c850b56db147a304a262abc2b3be021a9171"}, + {file = "frozenlist-1.5.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:f1e6540b7fa044eee0bb5111ada694cf3dc15f2b0347ca125ee9ca984d5e9e6e"}, + {file = "frozenlist-1.5.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:91d6c171862df0a6c61479d9724f22efb6109111017c87567cfeb7b5d1449fdf"}, + {file = "frozenlist-1.5.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c1fac3e2ace2eb1052e9f7c7db480818371134410e1f5c55d65e8f3ac6d1407e"}, + {file = "frozenlist-1.5.0-cp38-cp38-win32.whl", hash = "sha256:b97f7b575ab4a8af9b7bc1d2ef7f29d3afee2226bd03ca3875c16451ad5a7723"}, + {file = "frozenlist-1.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:374ca2dabdccad8e2a76d40b1d037f5bd16824933bf7bcea3e59c891fd4a0923"}, + {file = "frozenlist-1.5.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9bbcdfaf4af7ce002694a4e10a0159d5a8d20056a12b05b45cea944a4953f972"}, + {file = "frozenlist-1.5.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1893f948bf6681733aaccf36c5232c231e3b5166d607c5fa77773611df6dc336"}, + {file = "frozenlist-1.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2b5e23253bb709ef57a8e95e6ae48daa9ac5f265637529e4ce6b003a37b2621f"}, + {file = "frozenlist-1.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f253985bb515ecd89629db13cb58d702035ecd8cfbca7d7a7e29a0e6d39af5f"}, + {file = "frozenlist-1.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:04a5c6babd5e8fb7d3c871dc8b321166b80e41b637c31a995ed844a6139942b6"}, + {file = "frozenlist-1.5.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a9fe0f1c29ba24ba6ff6abf688cb0b7cf1efab6b6aa6adc55441773c252f7411"}, + {file = "frozenlist-1.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:226d72559fa19babe2ccd920273e767c96a49b9d3d38badd7c91a0fdeda8ea08"}, + {file = "frozenlist-1.5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15b731db116ab3aedec558573c1a5eec78822b32292fe4f2f0345b7f697745c2"}, + {file = "frozenlist-1.5.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:366d8f93e3edfe5a918c874702f78faac300209a4d5bf38352b2c1bdc07a766d"}, + {file = "frozenlist-1.5.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:1b96af8c582b94d381a1c1f51ffaedeb77c821c690ea5f01da3d70a487dd0a9b"}, + {file = "frozenlist-1.5.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:c03eff4a41bd4e38415cbed054bbaff4a075b093e2394b6915dca34a40d1e38b"}, + {file = "frozenlist-1.5.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:50cf5e7ee9b98f22bdecbabf3800ae78ddcc26e4a435515fc72d97903e8488e0"}, + {file = "frozenlist-1.5.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:1e76bfbc72353269c44e0bc2cfe171900fbf7f722ad74c9a7b638052afe6a00c"}, + {file = "frozenlist-1.5.0-cp39-cp39-win32.whl", hash = "sha256:666534d15ba8f0fda3f53969117383d5dc021266b3c1a42c9ec4855e4b58b9d3"}, + {file = "frozenlist-1.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:5c28f4b5dbef8a0d8aad0d4de24d1e9e981728628afaf4ea0792f5d0939372f0"}, + {file = "frozenlist-1.5.0-py3-none-any.whl", hash = "sha256:d994863bba198a4a518b467bb971c56e1db3f180a25c6cf7bb1949c267f748c3"}, + {file = "frozenlist-1.5.0.tar.gz", hash = "sha256:81d5af29e61b9c8348e876d442253723928dce6433e0e76cd925cd83f1b4b817"}, +] + +[[package]] +name = "fsspec" +version = "2024.10.0" +description = "File-system specification" +optional = false +python-versions = ">=3.8" +files = [ + {file = "fsspec-2024.10.0-py3-none-any.whl", hash = "sha256:03b9a6785766a4de40368b88906366755e2819e758b83705c88cd7cb5fe81871"}, + {file = "fsspec-2024.10.0.tar.gz", hash = "sha256:eda2d8a4116d4f2429db8550f2457da57279247dd930bb12f821b58391359493"}, +] + +[package.extras] +abfs = ["adlfs"] +adl = ["adlfs"] +arrow = ["pyarrow (>=1)"] +dask = ["dask", "distributed"] +dev = ["pre-commit", "ruff"] +doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] +dropbox = ["dropbox", "dropboxdrivefs", "requests"] +full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] +fuse = ["fusepy"] +gcs = ["gcsfs"] +git = ["pygit2"] +github = ["requests"] +gs = ["gcsfs"] +gui = ["panel"] +hdfs = ["pyarrow (>=1)"] +http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)"] +libarchive = ["libarchive-c"] +oci = ["ocifs"] +s3 = ["s3fs"] +sftp = ["paramiko"] +smb = ["smbprotocol"] +ssh = ["paramiko"] +test = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "numpy", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "requests"] +test-downstream = ["aiobotocore (>=2.5.4,<3.0.0)", "dask-expr", "dask[dataframe,test]", "moto[server] (>4,<5)", "pytest-timeout", "xarray"] +test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"] +tqdm = ["tqdm"] + +[[package]] +name = "gast" +version = "0.4.0" +description = "Python AST that abstracts the underlying Python version" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "gast-0.4.0-py3-none-any.whl", hash = "sha256:b7adcdd5adbebf1adf17378da5ba3f543684dbec47b1cda1f3997e573cd542c4"}, + {file = "gast-0.4.0.tar.gz", hash = "sha256:40feb7b8b8434785585ab224d1568b857edb18297e5a3047f1ba012bc83b42c1"}, +] + +[[package]] +name = "gensim" +version = "3.8.3" +description = "Python framework for fast Vector Space Modelling" +optional = false +python-versions = "*" +files = [ + {file = "gensim-3.8.3-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:61eed1d6b5fbe6dda0586ea447ebc2dc7890a7f70c2ed953d5abc3fe3cfb94bb"}, + {file = "gensim-3.8.3-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:3af62709369331c85552fd26caa21504baa64accc426dc094172f5c688750013"}, + {file = "gensim-3.8.3-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:8ff471921b3b10ffb3ae6cbb598dd9c07d9dc030dee5aa167e7682b549c42f87"}, + {file = "gensim-3.8.3-cp27-cp27m-win32.whl", hash = "sha256:440700e29b494bc2e1d52e14b69a821f46ab09ecf85cf36c8988f18e1d6c7a8b"}, + {file = "gensim-3.8.3-cp27-cp27m-win_amd64.whl", hash = "sha256:f8ea67bf8c47ee55cb1b32c97fa1474b7d6d22959dd8097c019a5d9c9df34f5f"}, + {file = "gensim-3.8.3-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7a90549dfc8ee3822fcad6da957de07d927e4e90ef42b3699543dee35ab2da13"}, + {file = "gensim-3.8.3-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:7629b33cf35f672efdd5269381f7e301958ee2638f27dfc63b80c5bfeaa827d3"}, + {file = "gensim-3.8.3-cp35-cp35m-macosx_10_9_intel.whl", hash = "sha256:6711b6d3a0007530ee7de7adc30a4c48a1d26ec6312ac50e1d1e0a1d54f9de5b"}, + {file = "gensim-3.8.3-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:ef2ddeceff482aee17c1e185f63bf027c8de8f595fdd9fd2d2503de96008f3b7"}, + {file = "gensim-3.8.3-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:41dcf6ecdc9acc657157967c791b8cbaba90ee6391f64efd28339b72f5e0c327"}, + {file = "gensim-3.8.3-cp35-cp35m-win32.whl", hash = "sha256:685a7657278161628821c8f873c5d7d2ffc0c28866648e39f76b450e4c7d5390"}, + {file = "gensim-3.8.3-cp35-cp35m-win_amd64.whl", hash = "sha256:b61a7c841a752c84b685674aa0d610289faad38795b325176481abe19b487e98"}, + {file = "gensim-3.8.3-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a61179df454a0d4b06a111c4ede0536f61c8121b4c0d0d02d23560a2fd4b3aff"}, + {file = "gensim-3.8.3-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:cc387d0d8bddbf3609ab95b3453296e4c9ff92c35e9799a17d86b1571d77a5fc"}, + {file = "gensim-3.8.3-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:b36e6330471061cfd78aad751e24c6b4f56d575697af0fbab42655128927d296"}, + {file = "gensim-3.8.3-cp36-cp36m-win32.whl", hash = "sha256:1e3d66c2eec494376fc599701d9c2868549aed6e93e47177e39217f0188e2d88"}, + {file = "gensim-3.8.3-cp36-cp36m-win_amd64.whl", hash = "sha256:91fa62d61b21f1878f140b10520f9de4a26a52672fbe407edfc7e09ca2eff235"}, + {file = "gensim-3.8.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:637fc5969f3cef4b7c8fd3e78e31ef09565c5566d5ceabf076b4170eb6444a80"}, + {file = "gensim-3.8.3-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:22f45fd239cacd0e3715ac447a2c8a5eea02e730ec1f701c55b359e9298e63a8"}, + {file = "gensim-3.8.3-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:d79370f78e9013b9d1e867c85ecc678d46a7ae0f01a8ca29e8f4291e5373b170"}, + {file = "gensim-3.8.3-cp37-cp37m-win32.whl", hash = "sha256:9c214b341f5304b906c79844e2787c13b46505df9dc70afca79a9a7dc0894478"}, + {file = "gensim-3.8.3-cp37-cp37m-win_amd64.whl", hash = "sha256:fe98277a7b3b4987b40c928056bbaae1d0715022cf27bba89d05cd0d4fe51a84"}, + {file = "gensim-3.8.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a47903d104469a7a8b6f22ad5ef74681b19c4f4b71ff2c2893271b53161a43e4"}, + {file = "gensim-3.8.3-cp38-cp38-manylinux1_i686.whl", hash = "sha256:05bfc02e102a34c9c795095b688b1b4aaa2529c624821368c9c3ea6a16536f77"}, + {file = "gensim-3.8.3-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:a8807ebf324dd11e1298a91a92d6e57c7bdabb91d0d5240bf1efa0c0eacd86f0"}, + {file = "gensim-3.8.3-cp38-cp38-win32.whl", hash = "sha256:90115d12ee545c21cc75521ef1bb3dd66aae8a378e9c2eb029c9f22df173c125"}, + {file = "gensim-3.8.3-cp38-cp38-win_amd64.whl", hash = "sha256:4e34cf2e50f3eab3e303da46089ea4972567bf216e28f7535ada155770784ac8"}, + {file = "gensim-3.8.3.tar.gz", hash = "sha256:786adb0571f75114e9c5f7a31dd2e6eb39a9791f22c8757621545e2ded3ea367"}, +] + +[package.dependencies] +Cython = "0.29.14" +numpy = ">=1.11.3" +scipy = ">=0.18.1" +six = ">=1.5.0" +smart-open = ">=1.8.1" + +[package.extras] +distributed = ["Pyro4 (>=4.27)"] +docs = ["Morfessor (==2.0.2a4)", "Pyro4", "Pyro4 (>=4.27)", "annoy", "cython", "matplotlib", "memory-profiler", "mock", "nltk", "nmslib", "pandas", "plotly", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "sphinx (<=2.4.4)", "sphinx-gallery", "sphinxcontrib-napoleon", "sphinxcontrib.programoutput", "statsmodels", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test-win = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] + +[[package]] +name = "google-auth" +version = "2.36.0" +description = "Google Authentication Library" +optional = false +python-versions = ">=3.7" +files = [ + {file = "google_auth-2.36.0-py2.py3-none-any.whl", hash = "sha256:51a15d47028b66fd36e5c64a82d2d57480075bccc7da37cde257fc94177a61fb"}, + {file = "google_auth-2.36.0.tar.gz", hash = "sha256:545e9618f2df0bcbb7dcbc45a546485b1212624716975a1ea5ae8149ce769ab1"}, +] + +[package.dependencies] +cachetools = ">=2.0.0,<6.0" +pyasn1-modules = ">=0.2.1" +rsa = ">=3.1.4,<5" + +[package.extras] +aiohttp = ["aiohttp (>=3.6.2,<4.0.0.dev0)", "requests (>=2.20.0,<3.0.0.dev0)"] +enterprise-cert = ["cryptography", "pyopenssl"] +pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] +reauth = ["pyu2f (>=0.1.5)"] +requests = ["requests (>=2.20.0,<3.0.0.dev0)"] + +[[package]] +name = "google-auth-oauthlib" +version = "1.0.0" +description = "Google Authentication Library" +optional = false +python-versions = ">=3.6" +files = [ + {file = "google-auth-oauthlib-1.0.0.tar.gz", hash = "sha256:e375064964820b47221a7e1b7ee1fd77051b6323c3f9e3e19785f78ab67ecfc5"}, + {file = "google_auth_oauthlib-1.0.0-py2.py3-none-any.whl", hash = "sha256:95880ca704928c300f48194d1770cf5b1462835b6e49db61445a520f793fd5fb"}, +] + +[package.dependencies] +google-auth = ">=2.15.0" +requests-oauthlib = ">=0.7.0" + +[package.extras] +tool = ["click (>=6.0.0)"] + +[[package]] +name = "google-pasta" +version = "0.2.0" +description = "pasta is an AST-based Python refactoring library" +optional = false +python-versions = "*" +files = [ + {file = "google-pasta-0.2.0.tar.gz", hash = "sha256:c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e"}, + {file = "google_pasta-0.2.0-py2-none-any.whl", hash = "sha256:4612951da876b1a10fe3960d7226f0c7682cf901e16ac06e473b267a5afa8954"}, + {file = "google_pasta-0.2.0-py3-none-any.whl", hash = "sha256:b32482794a366b5366a32c92a9a9201b107821889935a02b3e51f6b432ea84ed"}, +] + +[package.dependencies] +six = "*" + +[[package]] +name = "grpcio" +version = "1.68.0" +description = "HTTP/2-based RPC framework" +optional = false +python-versions = ">=3.8" +files = [ + {file = "grpcio-1.68.0-cp310-cp310-linux_armv7l.whl", hash = "sha256:619b5d0f29f4f5351440e9343224c3e19912c21aeda44e0c49d0d147a8d01544"}, + {file = "grpcio-1.68.0-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:a59f5822f9459bed098ffbceb2713abbf7c6fd13f2b9243461da5c338d0cd6c3"}, + {file = "grpcio-1.68.0-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:c03d89df516128febc5a7e760d675b478ba25802447624edf7aa13b1e7b11e2a"}, + {file = "grpcio-1.68.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:44bcbebb24363d587472089b89e2ea0ab2e2b4df0e4856ba4c0b087c82412121"}, + {file = "grpcio-1.68.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:79f81b7fbfb136247b70465bd836fa1733043fdee539cd6031cb499e9608a110"}, + {file = "grpcio-1.68.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:88fb2925789cfe6daa20900260ef0a1d0a61283dfb2d2fffe6194396a354c618"}, + {file = "grpcio-1.68.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:99f06232b5c9138593ae6f2e355054318717d32a9c09cdc5a2885540835067a1"}, + {file = "grpcio-1.68.0-cp310-cp310-win32.whl", hash = "sha256:a6213d2f7a22c3c30a479fb5e249b6b7e648e17f364598ff64d08a5136fe488b"}, + {file = "grpcio-1.68.0-cp310-cp310-win_amd64.whl", hash = "sha256:15327ab81131ef9b94cb9f45b5bd98803a179c7c61205c8c0ac9aff9d6c4e82a"}, + {file = "grpcio-1.68.0-cp311-cp311-linux_armv7l.whl", hash = "sha256:3b2b559beb2d433129441783e5f42e3be40a9e1a89ec906efabf26591c5cd415"}, + {file = "grpcio-1.68.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e46541de8425a4d6829ac6c5d9b16c03c292105fe9ebf78cb1c31e8d242f9155"}, + {file = "grpcio-1.68.0-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:c1245651f3c9ea92a2db4f95d37b7597db6b246d5892bca6ee8c0e90d76fb73c"}, + {file = "grpcio-1.68.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f1931c7aa85be0fa6cea6af388e576f3bf6baee9e5d481c586980c774debcb4"}, + {file = "grpcio-1.68.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b0ff09c81e3aded7a183bc6473639b46b6caa9c1901d6f5e2cba24b95e59e30"}, + {file = "grpcio-1.68.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:8c73f9fbbaee1a132487e31585aa83987ddf626426d703ebcb9a528cf231c9b1"}, + {file = "grpcio-1.68.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:6b2f98165ea2790ea159393a2246b56f580d24d7da0d0342c18a085299c40a75"}, + {file = "grpcio-1.68.0-cp311-cp311-win32.whl", hash = "sha256:e1e7ed311afb351ff0d0e583a66fcb39675be112d61e7cfd6c8269884a98afbc"}, + {file = "grpcio-1.68.0-cp311-cp311-win_amd64.whl", hash = "sha256:e0d2f68eaa0a755edd9a47d40e50dba6df2bceda66960dee1218da81a2834d27"}, + {file = "grpcio-1.68.0-cp312-cp312-linux_armv7l.whl", hash = "sha256:8af6137cc4ae8e421690d276e7627cfc726d4293f6607acf9ea7260bd8fc3d7d"}, + {file = "grpcio-1.68.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:4028b8e9a3bff6f377698587d642e24bd221810c06579a18420a17688e421af7"}, + {file = "grpcio-1.68.0-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:f60fa2adf281fd73ae3a50677572521edca34ba373a45b457b5ebe87c2d01e1d"}, + {file = "grpcio-1.68.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e18589e747c1e70b60fab6767ff99b2d0c359ea1db8a2cb524477f93cdbedf5b"}, + {file = "grpcio-1.68.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e0d30f3fee9372796f54d3100b31ee70972eaadcc87314be369360248a3dcffe"}, + {file = "grpcio-1.68.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:7e0a3e72c0e9a1acab77bef14a73a416630b7fd2cbd893c0a873edc47c42c8cd"}, + {file = "grpcio-1.68.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a831dcc343440969aaa812004685ed322cdb526cd197112d0db303b0da1e8659"}, + {file = "grpcio-1.68.0-cp312-cp312-win32.whl", hash = "sha256:5a180328e92b9a0050958ced34dddcb86fec5a8b332f5a229e353dafc16cd332"}, + {file = "grpcio-1.68.0-cp312-cp312-win_amd64.whl", hash = "sha256:2bddd04a790b69f7a7385f6a112f46ea0b34c4746f361ebafe9ca0be567c78e9"}, + {file = "grpcio-1.68.0-cp313-cp313-linux_armv7l.whl", hash = "sha256:fc05759ffbd7875e0ff2bd877be1438dfe97c9312bbc558c8284a9afa1d0f40e"}, + {file = "grpcio-1.68.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:15fa1fe25d365a13bc6d52fcac0e3ee1f9baebdde2c9b3b2425f8a4979fccea1"}, + {file = "grpcio-1.68.0-cp313-cp313-manylinux_2_17_aarch64.whl", hash = "sha256:32a9cb4686eb2e89d97022ecb9e1606d132f85c444354c17a7dbde4a455e4a3b"}, + {file = "grpcio-1.68.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dba037ff8d284c8e7ea9a510c8ae0f5b016004f13c3648f72411c464b67ff2fb"}, + {file = "grpcio-1.68.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0efbbd849867e0e569af09e165363ade75cf84f5229b2698d53cf22c7a4f9e21"}, + {file = "grpcio-1.68.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:4e300e6978df0b65cc2d100c54e097c10dfc7018b9bd890bbbf08022d47f766d"}, + {file = "grpcio-1.68.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:6f9c7ad1a23e1047f827385f4713b5b8c6c7d325705be1dd3e31fb00dcb2f665"}, + {file = "grpcio-1.68.0-cp313-cp313-win32.whl", hash = "sha256:3ac7f10850fd0487fcce169c3c55509101c3bde2a3b454869639df2176b60a03"}, + {file = "grpcio-1.68.0-cp313-cp313-win_amd64.whl", hash = "sha256:afbf45a62ba85a720491bfe9b2642f8761ff348006f5ef67e4622621f116b04a"}, + {file = "grpcio-1.68.0-cp38-cp38-linux_armv7l.whl", hash = "sha256:f8f695d9576ce836eab27ba7401c60acaf9ef6cf2f70dfe5462055ba3df02cc3"}, + {file = "grpcio-1.68.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:9fe1b141cda52f2ca73e17d2d3c6a9f3f3a0c255c216b50ce616e9dca7e3441d"}, + {file = "grpcio-1.68.0-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:4df81d78fd1646bf94ced4fb4cd0a7fe2e91608089c522ef17bc7db26e64effd"}, + {file = "grpcio-1.68.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:46a2d74d4dd8993151c6cd585594c082abe74112c8e4175ddda4106f2ceb022f"}, + {file = "grpcio-1.68.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a17278d977746472698460c63abf333e1d806bd41f2224f90dbe9460101c9796"}, + {file = "grpcio-1.68.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:15377bce516b1c861c35e18eaa1c280692bf563264836cece693c0f169b48829"}, + {file = "grpcio-1.68.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:cc5f0a4f5904b8c25729a0498886b797feb817d1fd3812554ffa39551112c161"}, + {file = "grpcio-1.68.0-cp38-cp38-win32.whl", hash = "sha256:def1a60a111d24376e4b753db39705adbe9483ef4ca4761f825639d884d5da78"}, + {file = "grpcio-1.68.0-cp38-cp38-win_amd64.whl", hash = "sha256:55d3b52fd41ec5772a953612db4e70ae741a6d6ed640c4c89a64f017a1ac02b5"}, + {file = "grpcio-1.68.0-cp39-cp39-linux_armv7l.whl", hash = "sha256:0d230852ba97654453d290e98d6aa61cb48fa5fafb474fb4c4298d8721809354"}, + {file = "grpcio-1.68.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:50992f214264e207e07222703c17d9cfdcc2c46ed5a1ea86843d440148ebbe10"}, + {file = "grpcio-1.68.0-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:14331e5c27ed3545360464a139ed279aa09db088f6e9502e95ad4bfa852bb116"}, + {file = "grpcio-1.68.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f84890b205692ea813653ece4ac9afa2139eae136e419231b0eec7c39fdbe4c2"}, + {file = "grpcio-1.68.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b0cf343c6f4f6aa44863e13ec9ddfe299e0be68f87d68e777328bff785897b05"}, + {file = "grpcio-1.68.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:fd2c2d47969daa0e27eadaf15c13b5e92605c5e5953d23c06d0b5239a2f176d3"}, + {file = "grpcio-1.68.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:18668e36e7f4045820f069997834e94e8275910b1f03e078a6020bd464cb2363"}, + {file = "grpcio-1.68.0-cp39-cp39-win32.whl", hash = "sha256:2af76ab7c427aaa26aa9187c3e3c42f38d3771f91a20f99657d992afada2294a"}, + {file = "grpcio-1.68.0-cp39-cp39-win_amd64.whl", hash = "sha256:e694b5928b7b33ca2d3b4d5f9bf8b5888906f181daff6b406f4938f3a997a490"}, + {file = "grpcio-1.68.0.tar.gz", hash = "sha256:7e7483d39b4a4fddb9906671e9ea21aaad4f031cdfc349fec76bdfa1e404543a"}, +] + +[package.extras] +protobuf = ["grpcio-tools (>=1.68.0)"] + +[[package]] +name = "h5py" +version = "3.11.0" +description = "Read and write HDF5 files from Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "h5py-3.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1625fd24ad6cfc9c1ccd44a66dac2396e7ee74940776792772819fc69f3a3731"}, + {file = "h5py-3.11.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c072655ad1d5fe9ef462445d3e77a8166cbfa5e599045f8aa3c19b75315f10e5"}, + {file = "h5py-3.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77b19a40788e3e362b54af4dcf9e6fde59ca016db2c61360aa30b47c7b7cef00"}, + {file = "h5py-3.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:ef4e2f338fc763f50a8113890f455e1a70acd42a4d083370ceb80c463d803972"}, + {file = "h5py-3.11.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bbd732a08187a9e2a6ecf9e8af713f1d68256ee0f7c8b652a32795670fb481ba"}, + {file = "h5py-3.11.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75bd7b3d93fbeee40860fd70cdc88df4464e06b70a5ad9ce1446f5f32eb84007"}, + {file = "h5py-3.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52c416f8eb0daae39dabe71415cb531f95dce2d81e1f61a74537a50c63b28ab3"}, + {file = "h5py-3.11.0-cp311-cp311-win_amd64.whl", hash = "sha256:083e0329ae534a264940d6513f47f5ada617da536d8dccbafc3026aefc33c90e"}, + {file = "h5py-3.11.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a76cae64080210389a571c7d13c94a1a6cf8cb75153044fd1f822a962c97aeab"}, + {file = "h5py-3.11.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f3736fe21da2b7d8a13fe8fe415f1272d2a1ccdeff4849c1421d2fb30fd533bc"}, + {file = "h5py-3.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa6ae84a14103e8dc19266ef4c3e5d7c00b68f21d07f2966f0ca7bdb6c2761fb"}, + {file = "h5py-3.11.0-cp312-cp312-win_amd64.whl", hash = "sha256:21dbdc5343f53b2e25404673c4f00a3335aef25521bd5fa8c707ec3833934892"}, + {file = "h5py-3.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:754c0c2e373d13d6309f408325343b642eb0f40f1a6ad21779cfa9502209e150"}, + {file = "h5py-3.11.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:731839240c59ba219d4cb3bc5880d438248533366f102402cfa0621b71796b62"}, + {file = "h5py-3.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ec9df3dd2018904c4cc06331951e274f3f3fd091e6d6cc350aaa90fa9b42a76"}, + {file = "h5py-3.11.0-cp38-cp38-win_amd64.whl", hash = "sha256:55106b04e2c83dfb73dc8732e9abad69d83a436b5b82b773481d95d17b9685e1"}, + {file = "h5py-3.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f4e025e852754ca833401777c25888acb96889ee2c27e7e629a19aee288833f0"}, + {file = "h5py-3.11.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6c4b760082626120031d7902cd983d8c1f424cdba2809f1067511ef283629d4b"}, + {file = "h5py-3.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67462d0669f8f5459529de179f7771bd697389fcb3faab54d63bf788599a48ea"}, + {file = "h5py-3.11.0-cp39-cp39-win_amd64.whl", hash = "sha256:d9c944d364688f827dc889cf83f1fca311caf4fa50b19f009d1f2b525edd33a3"}, + {file = "h5py-3.11.0.tar.gz", hash = "sha256:7b7e8f78072a2edec87c9836f25f34203fd492a4475709a18b417a33cfb21fa9"}, +] + +[package.dependencies] +numpy = ">=1.17.3" + +[[package]] +name = "idna" +version = "3.10" +description = "Internationalized Domain Names in Applications (IDNA)" +optional = false +python-versions = ">=3.6" +files = [ + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, +] + +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + +[[package]] +name = "importlib-metadata" +version = "8.5.0" +description = "Read metadata from Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "importlib_metadata-8.5.0-py3-none-any.whl", hash = "sha256:45e54197d28b7a7f1559e60b95e7c567032b602131fbd588f1497f47880aa68b"}, + {file = "importlib_metadata-8.5.0.tar.gz", hash = "sha256:71522656f0abace1d072b9e5481a48f07c138e00f079c38c8f883823f9c26bd7"}, +] + +[package.dependencies] +zipp = ">=3.20" + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +enabler = ["pytest-enabler (>=2.2)"] +perf = ["ipython"] +test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-perf (>=0.9.2)"] +type = ["pytest-mypy"] + +[[package]] +name = "ipykernel" +version = "6.29.5" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, + {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=24" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.12.3" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, + {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "sys_platform == \"darwin\""} +backcall = "*" +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} +pickleshare = "*" +prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" +pygments = ">=2.4.0" +stack-data = "*" +traitlets = ">=5" +typing-extensions = {version = "*", markers = "python_version < \"3.10\""} + +[package.extras] +all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +black = ["black"] +doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +kernel = ["ipykernel"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] + +[[package]] +name = "jedi" +version = "0.19.2" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +files = [ + {file = "jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9"}, + {file = "jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0"}, +] + +[package.dependencies] +parso = ">=0.8.4,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<9.0.0)"] + +[[package]] +name = "jinja2" +version = "3.1.4" +description = "A very fast and expressive template engine." +optional = false +python-versions = ">=3.7" +files = [ + {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, + {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, +] + +[package.dependencies] +MarkupSafe = ">=2.0" + +[package.extras] +i18n = ["Babel (>=2.7)"] + +[[package]] +name = "joblib" +version = "1.4.2" +description = "Lightweight pipelining with Python functions" +optional = false +python-versions = ">=3.8" +files = [ + {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, + {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, +] + +[[package]] +name = "jupyter-client" +version = "8.6.3" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-core" +version = "5.7.2" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, + {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "keras" +version = "2.7.0" +description = "Deep learning for humans." +optional = false +python-versions = "*" +files = [ + {file = "keras-2.7.0-py2.py3-none-any.whl", hash = "sha256:0c33ae1f728064ca0d35dfba999e9c316f03623bf5688c82fb83cc74a80ea248"}, +] + +[[package]] +name = "keras-preprocessing" +version = "1.1.2" +description = "Easy data preprocessing and data augmentation for deep learning models" +optional = false +python-versions = "*" +files = [ + {file = "Keras_Preprocessing-1.1.2-py2.py3-none-any.whl", hash = "sha256:7b82029b130ff61cc99b55f3bd27427df4838576838c5b2f65940e4fcec99a7b"}, + {file = "Keras_Preprocessing-1.1.2.tar.gz", hash = "sha256:add82567c50c8bc648c14195bf544a5ce7c1f76761536956c3d2978970179ef3"}, +] + +[package.dependencies] +numpy = ">=1.9.1" +six = ">=1.9.0" + +[package.extras] +image = ["Pillow (>=5.2.0)", "scipy (>=0.14)"] +pep8 = ["flake8"] +tests = ["Pillow", "keras", "pandas", "pytest", "pytest-cov", "pytest-xdist", "tensorflow"] + +[[package]] +name = "kiwisolver" +version = "1.4.7" +description = "A fast implementation of the Cassowary constraint solver" +optional = false +python-versions = ">=3.8" +files = [ + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8a9c83f75223d5e48b0bc9cb1bf2776cf01563e00ade8775ffe13b0b6e1af3a6"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:58370b1ffbd35407444d57057b57da5d6549d2d854fa30249771775c63b5fe17"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa0abdf853e09aff551db11fce173e2177d00786c688203f52c87ad7fcd91ef9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8d53103597a252fb3ab8b5845af04c7a26d5e7ea8122303dd7a021176a87e8b9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:88f17c5ffa8e9462fb79f62746428dd57b46eb931698e42e990ad63103f35e6c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88a9ca9c710d598fd75ee5de59d5bda2684d9db36a9f50b6125eaea3969c2599"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4d742cb7af1c28303a51b7a27aaee540e71bb8e24f68c736f6f2ffc82f2bf05"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28c7fea2196bf4c2f8d46a0415c77a1c480cc0724722f23d7410ffe9842c407"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e968b84db54f9d42046cf154e02911e39c0435c9801681e3fc9ce8a3c4130278"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0c18ec74c0472de033e1bebb2911c3c310eef5649133dd0bedf2a169a1b269e5"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8f0ea6da6d393d8b2e187e6a5e3fb81f5862010a40c3945e2c6d12ae45cfb2ad"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:f106407dda69ae456dd1227966bf445b157ccc80ba0dff3802bb63f30b74e895"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84ec80df401cfee1457063732d90022f93951944b5b58975d34ab56bb150dfb3"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win32.whl", hash = "sha256:71bb308552200fb2c195e35ef05de12f0c878c07fc91c270eb3d6e41698c3bcc"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_amd64.whl", hash = "sha256:44756f9fd339de0fb6ee4f8c1696cfd19b2422e0d70b4cefc1cc7f1f64045a8c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_arm64.whl", hash = "sha256:78a42513018c41c2ffd262eb676442315cbfe3c44eed82385c2ed043bc63210a"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d2b0e12a42fb4e72d509fc994713d099cbb15ebf1103545e8a45f14da2dfca54"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a8781ac3edc42ea4b90bc23e7d37b665d89423818e26eb6df90698aa2287c95"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46707a10836894b559e04b0fd143e343945c97fd170d69a2d26d640b4e297935"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef97b8df011141c9b0f6caf23b29379f87dd13183c978a30a3c546d2c47314cb"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab58c12a2cd0fc769089e6d38466c46d7f76aced0a1f54c77652446733d2d02"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:803b8e1459341c1bb56d1c5c010406d5edec8a0713a0945851290a7930679b51"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9a9e8a507420fe35992ee9ecb302dab68550dedc0da9e2880dd88071c5fb052"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18077b53dc3bb490e330669a99920c5e6a496889ae8c63b58fbc57c3d7f33a18"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6af936f79086a89b3680a280c47ea90b4df7047b5bdf3aa5c524bbedddb9e545"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3abc5b19d24af4b77d1598a585b8a719beb8569a71568b66f4ebe1fb0449460b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:933d4de052939d90afbe6e9d5273ae05fb836cc86c15b686edd4b3560cc0ee36"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:65e720d2ab2b53f1f72fb5da5fb477455905ce2c88aaa671ff0a447c2c80e8e3"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3bf1ed55088f214ba6427484c59553123fdd9b218a42bbc8c6496d6754b1e523"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win32.whl", hash = "sha256:4c00336b9dd5ad96d0a558fd18a8b6f711b7449acce4c157e7343ba92dd0cf3d"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_amd64.whl", hash = "sha256:929e294c1ac1e9f615c62a4e4313ca1823ba37326c164ec720a803287c4c499b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_arm64.whl", hash = "sha256:e33e8fbd440c917106b237ef1a2f1449dfbb9b6f6e1ce17c94cd6a1e0d438376"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:5360cc32706dab3931f738d3079652d20982511f7c0ac5711483e6eab08efff2"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:942216596dc64ddb25adb215c3c783215b23626f8d84e8eff8d6d45c3f29f75a"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:48b571ecd8bae15702e4f22d3ff6a0f13e54d3d00cd25216d5e7f658242065ee"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad42ba922c67c5f219097b28fae965e10045ddf145d2928bfac2eb2e17673640"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:612a10bdae23404a72941a0fc8fa2660c6ea1217c4ce0dbcab8a8f6543ea9e7f"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9e838bba3a3bac0fe06d849d29772eb1afb9745a59710762e4ba3f4cb8424483"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:22f499f6157236c19f4bbbd472fa55b063db77a16cd74d49afe28992dff8c258"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693902d433cf585133699972b6d7c42a8b9f8f826ebcaf0132ff55200afc599e"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4e77f2126c3e0b0d055f44513ed349038ac180371ed9b52fe96a32aa071a5107"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:657a05857bda581c3656bfc3b20e353c232e9193eb167766ad2dc58b56504948"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4bfa75a048c056a411f9705856abfc872558e33c055d80af6a380e3658766038"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:34ea1de54beef1c104422d210c47c7d2a4999bdecf42c7b5718fbe59a4cac383"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:90da3b5f694b85231cf93586dad5e90e2d71b9428f9aad96952c99055582f520"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win32.whl", hash = "sha256:18e0cca3e008e17fe9b164b55735a325140a5a35faad8de92dd80265cd5eb80b"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_amd64.whl", hash = "sha256:58cb20602b18f86f83a5c87d3ee1c766a79c0d452f8def86d925e6c60fbf7bfb"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_arm64.whl", hash = "sha256:f5a8b53bdc0b3961f8b6125e198617c40aeed638b387913bf1ce78afb1b0be2a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:2e6039dcbe79a8e0f044f1c39db1986a1b8071051efba3ee4d74f5b365f5226e"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a1ecf0ac1c518487d9d23b1cd7139a6a65bc460cd101ab01f1be82ecf09794b6"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7ab9ccab2b5bd5702ab0803676a580fffa2aa178c2badc5557a84cc943fcf750"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f816dd2277f8d63d79f9c8473a79fe54047bc0467754962840782c575522224d"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf8bcc23ceb5a1b624572a1623b9f79d2c3b337c8c455405ef231933a10da379"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dea0bf229319828467d7fca8c7c189780aa9ff679c94539eed7532ebe33ed37c"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c06a4c7cf15ec739ce0e5971b26c93638730090add60e183530d70848ebdd34"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5337ec7809bcd0f424c6b705ecf97941c46279cf5ed92311782c7c9c2026f07f"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4c26ed10c4f6fa6ddb329a5120ba3b6db349ca192ae211e882970bfc9d91420b"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c619b101e6de2222c1fcb0531e1b17bbffbe54294bfba43ea0d411d428618c27"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:073a36c8273647592ea332e816e75ef8da5c303236ec0167196793eb1e34657a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3ce6b2b0231bda412463e152fc18335ba32faf4e8c23a754ad50ffa70e4091ee"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win32.whl", hash = "sha256:f4c9aee212bc89d4e13f58be11a56cc8036cabad119259d12ace14b34476fd07"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_amd64.whl", hash = "sha256:8a3ec5aa8e38fc4c8af308917ce12c536f1c88452ce554027e55b22cbbfbff76"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_arm64.whl", hash = "sha256:76c8094ac20ec259471ac53e774623eb62e6e1f56cd8690c67ce6ce4fcb05650"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5d5abf8f8ec1f4e22882273c423e16cae834c36856cac348cfbfa68e01c40f3a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:aeb3531b196ef6f11776c21674dba836aeea9d5bd1cf630f869e3d90b16cfade"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b7d755065e4e866a8086c9bdada157133ff466476a2ad7861828e17b6026e22c"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08471d4d86cbaec61f86b217dd938a83d85e03785f51121e791a6e6689a3be95"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7bbfcb7165ce3d54a3dfbe731e470f65739c4c1f85bb1018ee912bae139e263b"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d34eb8494bea691a1a450141ebb5385e4b69d38bb8403b5146ad279f4b30fa3"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9242795d174daa40105c1d86aba618e8eab7bf96ba8c3ee614da8302a9f95503"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a0f64a48bb81af7450e641e3fe0b0394d7381e342805479178b3d335d60ca7cf"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8e045731a5416357638d1700927529e2b8ab304811671f665b225f8bf8d8f933"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4322872d5772cae7369f8351da1edf255a604ea7087fe295411397d0cfd9655e"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e1631290ee9271dffe3062d2634c3ecac02c83890ada077d225e081aca8aab89"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:edcfc407e4eb17e037bca59be0e85a2031a2ac87e4fed26d3e9df88b4165f92d"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:4d05d81ecb47d11e7f8932bd8b61b720bf0b41199358f3f5e36d38e28f0532c5"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win32.whl", hash = "sha256:b38ac83d5f04b15e515fd86f312479d950d05ce2368d5413d46c088dda7de90a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win_amd64.whl", hash = "sha256:d83db7cde68459fc803052a55ace60bea2bae361fc3b7a6d5da07e11954e4b09"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3f9362ecfca44c863569d3d3c033dbe8ba452ff8eed6f6b5806382741a1334bd"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e8df2eb9b2bac43ef8b082e06f750350fbbaf2887534a5be97f6cf07b19d9583"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f32d6edbc638cde7652bd690c3e728b25332acbadd7cad670cc4a02558d9c417"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e2e6c39bd7b9372b0be21456caab138e8e69cc0fc1190a9dfa92bd45a1e6e904"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dda56c24d869b1193fcc763f1284b9126550eaf84b88bbc7256e15028f19188a"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79849239c39b5e1fd906556c474d9b0439ea6792b637511f3fe3a41158d89ca8"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5e3bc157fed2a4c02ec468de4ecd12a6e22818d4f09cde2c31ee3226ffbefab2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3da53da805b71e41053dc670f9a820d1157aae77b6b944e08024d17bcd51ef88"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:8705f17dfeb43139a692298cb6637ee2e59c0194538153e83e9ee0c75c2eddde"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:82a5c2f4b87c26bb1a0ef3d16b5c4753434633b83d365cc0ddf2770c93829e3c"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce8be0466f4c0d585cdb6c1e2ed07232221df101a4c6f28821d2aa754ca2d9e2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:409afdfe1e2e90e6ee7fc896f3df9a7fec8e793e58bfa0d052c8a82f99c37abb"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5b9c3f4ee0b9a439d2415012bd1b1cc2df59e4d6a9939f4d669241d30b414327"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win32.whl", hash = "sha256:a79ae34384df2b615eefca647a2873842ac3b596418032bef9a7283675962644"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_amd64.whl", hash = "sha256:cf0438b42121a66a3a667de17e779330fc0f20b0d97d59d2f2121e182b0505e4"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_arm64.whl", hash = "sha256:764202cc7e70f767dab49e8df52c7455e8de0df5d858fa801a11aa0d882ccf3f"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:94252291e3fe68001b1dd747b4c0b3be12582839b95ad4d1b641924d68fd4643"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:5b7dfa3b546da08a9f622bb6becdb14b3e24aaa30adba66749d38f3cc7ea9706"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3de6481f4ed8b734da5df134cd5a6a64fe32124fe83dde1e5b5f29fe30b1e6"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a91b5f9f1205845d488c928e8570dcb62b893372f63b8b6e98b863ebd2368ff2"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40fa14dbd66b8b8f470d5fc79c089a66185619d31645f9b0773b88b19f7223c4"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:eb542fe7933aa09d8d8f9d9097ef37532a7df6497819d16efe4359890a2f417a"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bfa1acfa0c54932d5607e19a2c24646fb4c1ae2694437789129cf099789a3b00"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:eee3ea935c3d227d49b4eb85660ff631556841f6e567f0f7bda972df6c2c9935"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f3160309af4396e0ed04db259c3ccbfdc3621b5559b5453075e5de555e1f3a1b"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a17f6a29cf8935e587cc8a4dbfc8368c55edc645283db0ce9801016f83526c2d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10849fb2c1ecbfae45a693c070e0320a91b35dd4bcf58172c023b994283a124d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:ac542bf38a8a4be2dc6b15248d36315ccc65f0743f7b1a76688ffb6b5129a5c2"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8b01aac285f91ca889c800042c35ad3b239e704b150cfd3382adfc9dcc780e39"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:48be928f59a1f5c8207154f935334d374e79f2b5d212826307d072595ad76a2e"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f37cfe618a117e50d8c240555331160d73d0411422b59b5ee217843d7b693608"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:599b5c873c63a1f6ed7eead644a8a380cfbdf5db91dcb6f85707aaab213b1674"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:801fa7802e5cfabe3ab0c81a34c323a319b097dfb5004be950482d882f3d7225"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0c6c43471bc764fad4bc99c5c2d6d16a676b1abf844ca7c8702bdae92df01ee0"}, + {file = "kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60"}, +] + +[[package]] +name = "langcodes" +version = "3.4.1" +description = "Tools for labeling human languages with IETF language tags" +optional = false +python-versions = ">=3.8" +files = [ + {file = "langcodes-3.4.1-py3-none-any.whl", hash = "sha256:68f686fc3d358f222674ecf697ddcee3ace3c2fe325083ecad2543fd28a20e77"}, + {file = "langcodes-3.4.1.tar.gz", hash = "sha256:a24879fed238013ac3af2424b9d1124e38b4a38b2044fd297c8ff38e5912e718"}, +] + +[package.dependencies] +language-data = ">=1.2" + +[package.extras] +build = ["build", "twine"] +test = ["pytest", "pytest-cov"] + +[[package]] +name = "langdetect" +version = "1.0.9" +description = "Language detection library ported from Google's language-detection." +optional = false +python-versions = "*" +files = [ + {file = "langdetect-1.0.9-py2-none-any.whl", hash = "sha256:7cbc0746252f19e76f77c0b1690aadf01963be835ef0cd4b56dddf2a8f1dfc2a"}, + {file = "langdetect-1.0.9.tar.gz", hash = "sha256:cbc1fef89f8d062739774bd51eda3da3274006b3661d199c2655f6b3f6d605a0"}, +] + +[package.dependencies] +six = "*" + +[[package]] +name = "language-data" +version = "1.2.0" +description = "Supplementary data about languages used by the langcodes module" +optional = false +python-versions = "*" +files = [ + {file = "language_data-1.2.0-py3-none-any.whl", hash = "sha256:77d5cab917f91ee0b2f1aa7018443e911cf8985ef734ca2ba3940770f6a3816b"}, + {file = "language_data-1.2.0.tar.gz", hash = "sha256:82a86050bbd677bfde87d97885b17566cfe75dad3ac4f5ce44b52c28f752e773"}, +] + +[package.dependencies] +marisa-trie = ">=0.7.7" + +[package.extras] +build = ["build", "twine"] +test = ["pytest", "pytest-cov"] + +[[package]] +name = "libclang" +version = "18.1.1" +description = "Clang Python Bindings, mirrored from the official LLVM repo: https://github.com/llvm/llvm-project/tree/main/clang/bindings/python, to make the installation process easier." +optional = false +python-versions = "*" +files = [ + {file = "libclang-18.1.1-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:6f14c3f194704e5d09769108f03185fce7acaf1d1ae4bbb2f30a72c2400cb7c5"}, + {file = "libclang-18.1.1-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:83ce5045d101b669ac38e6da8e58765f12da2d3aafb3b9b98d88b286a60964d8"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2010_x86_64.whl", hash = "sha256:c533091d8a3bbf7460a00cb6c1a71da93bffe148f172c7d03b1c31fbf8aa2a0b"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2014_aarch64.whl", hash = "sha256:54dda940a4a0491a9d1532bf071ea3ef26e6dbaf03b5000ed94dd7174e8f9592"}, + {file = "libclang-18.1.1-py2.py3-none-manylinux2014_armv7l.whl", hash = "sha256:cf4a99b05376513717ab5d82a0db832c56ccea4fd61a69dbb7bccf2dfb207dbe"}, + {file = "libclang-18.1.1-py2.py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:69f8eb8f65c279e765ffd28aaa7e9e364c776c17618af8bff22a8df58677ff4f"}, + {file = "libclang-18.1.1-py2.py3-none-win_amd64.whl", hash = "sha256:4dd2d3b82fab35e2bf9ca717d7b63ac990a3519c7e312f19fa8e86dcc712f7fb"}, + {file = "libclang-18.1.1-py2.py3-none-win_arm64.whl", hash = "sha256:3f0e1f49f04d3cd198985fea0511576b0aee16f9ff0e0f0cad7f9c57ec3c20e8"}, + {file = "libclang-18.1.1.tar.gz", hash = "sha256:a1214966d08d73d971287fc3ead8dfaf82eb07fb197680d8b3859dbbbbf78250"}, +] + +[[package]] +name = "lightning-utilities" +version = "0.11.8" +description = "Lightning toolbox for across the our ecosystem." +optional = false +python-versions = ">=3.8" +files = [ + {file = "lightning_utilities-0.11.8-py3-none-any.whl", hash = "sha256:a57edb34a44258f0c61eed8b8b88926766e9052f5e60bbe69e4871a2b2bfd970"}, + {file = "lightning_utilities-0.11.8.tar.gz", hash = "sha256:8dfbdc6c52f9847efc948dc462ab8bebb4f4e9a43bd69c82c1b1da484dac20e6"}, +] + +[package.dependencies] +packaging = ">=17.1" +setuptools = "*" +typing-extensions = "*" + +[package.extras] +cli = ["fire"] +docs = ["requests (>=2.0.0)"] +typing = ["mypy (>=1.0.0)", "types-setuptools"] + +[[package]] +name = "marisa-trie" +version = "1.2.1" +description = "Static memory-efficient and fast Trie-like structures for Python." +optional = false +python-versions = ">=3.7" +files = [ + {file = "marisa_trie-1.2.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a2eb41d2f9114d8b7bd66772c237111e00d2bae2260824560eaa0a1e291ce9e8"}, + {file = "marisa_trie-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9e956e6a46f604b17d570901e66f5214fb6f658c21e5e7665deace236793cef6"}, + {file = "marisa_trie-1.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:bd45142501300e7538b2e544905580918b67b1c82abed1275fe4c682c95635fa"}, + {file = "marisa_trie-1.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a8443d116c612cfd1961fbf76769faf0561a46d8e317315dd13f9d9639ad500c"}, + {file = "marisa_trie-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:875a6248e60fbb48d947b574ffa4170f34981f9e579bde960d0f9a49ea393ecc"}, + {file = "marisa_trie-1.2.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:746a7c60a17fccd3cfcfd4326926f02ea4fcdfc25d513411a0c4fc8e4a1ca51f"}, + {file = "marisa_trie-1.2.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e70869737cc0e5bd903f620667da6c330d6737048d1f44db792a6af68a1d35be"}, + {file = "marisa_trie-1.2.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06b099dd743676dbcd8abd8465ceac8f6d97d8bfaabe2c83b965495523b4cef2"}, + {file = "marisa_trie-1.2.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d2a82eb21afdaf22b50d9b996472305c05ca67fc4ff5a026a220320c9c961db6"}, + {file = "marisa_trie-1.2.1-cp310-cp310-win32.whl", hash = "sha256:8951e7ce5d3167fbd085703b4cbb3f47948ed66826bef9a2173c379508776cf5"}, + {file = "marisa_trie-1.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:5685a14b3099b1422c4f59fa38b0bf4b5342ee6cc38ae57df9666a0b28eeaad3"}, + {file = "marisa_trie-1.2.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ed3fb4ed7f2084597e862bcd56c56c5529e773729a426c083238682dba540e98"}, + {file = "marisa_trie-1.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0fe69fb9ffb2767746181f7b3b29bbd3454d1d24717b5958e030494f3d3cddf3"}, + {file = "marisa_trie-1.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4728ed3ae372d1ea2cdbd5eaa27b8f20a10e415d1f9d153314831e67d963f281"}, + {file = "marisa_trie-1.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8cf4f25cf895692b232f49aa5397af6aba78bb679fb917a05fce8d3cb1ee446d"}, + {file = "marisa_trie-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7cca7f96236ffdbf49be4b2e42c132e3df05968ac424544034767650913524de"}, + {file = "marisa_trie-1.2.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d7eb20bf0e8b55a58d2a9b518aabc4c18278787bdba476c551dd1c1ed109e509"}, + {file = "marisa_trie-1.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:b1ec93f0d1ee6d7ab680a6d8ea1a08bf264636358e92692072170032dda652ba"}, + {file = "marisa_trie-1.2.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e2699255d7ac610dee26d4ae7bda5951d05c7d9123a22e1f7c6a6f1964e0a4e4"}, + {file = "marisa_trie-1.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c484410911182457a8a1a0249d0c09c01e2071b78a0a8538cd5f7fa45589b13a"}, + {file = "marisa_trie-1.2.1-cp311-cp311-win32.whl", hash = "sha256:ad548117744b2bcf0e3d97374608be0a92d18c2af13d98b728d37cd06248e571"}, + {file = "marisa_trie-1.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:436f62d27714970b9cdd3b3c41bdad046f260e62ebb0daa38125ef70536fc73b"}, + {file = "marisa_trie-1.2.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:638506eacf20ca503fff72221a7e66a6eadbf28d6a4a6f949fcf5b1701bb05ec"}, + {file = "marisa_trie-1.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:de1665eaafefa48a308e4753786519888021740501a15461c77bdfd57638e6b4"}, + {file = "marisa_trie-1.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f713af9b8aa66a34cd3a78c7d150a560a75734713abe818a69021fd269e927fa"}, + {file = "marisa_trie-1.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b2a7d00f53f4945320b551bccb826b3fb26948bde1a10d50bb9802fabb611b10"}, + {file = "marisa_trie-1.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98042040d1d6085792e8d0f74004fc0f5f9ca6091c298f593dd81a22a4643854"}, + {file = "marisa_trie-1.2.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6532615111eec2c79e711965ece0bc95adac1ff547a7fff5ffca525463116deb"}, + {file = "marisa_trie-1.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:20948e40ab2038e62b7000ca6b4a913bc16c91a2c2e6da501bd1f917eeb28d51"}, + {file = "marisa_trie-1.2.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:66b23e5b35dd547f85bf98db7c749bc0ffc57916ade2534a6bbc32db9a4abc44"}, + {file = "marisa_trie-1.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:6704adf0247d2dda42e876b793be40775dff46624309ad99bc7537098bee106d"}, + {file = "marisa_trie-1.2.1-cp312-cp312-win32.whl", hash = "sha256:3ad356442c2fea4c2a6f514738ddf213d23930f942299a2b2c05df464a00848a"}, + {file = "marisa_trie-1.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:f2806f75817392cedcacb24ac5d80b0350dde8d3861d67d045c1d9b109764114"}, + {file = "marisa_trie-1.2.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:b5ea16e69bfda0ac028c921b58de1a4aaf83d43934892977368579cd3c0a2554"}, + {file = "marisa_trie-1.2.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9f627f4e41be710b6cb6ed54b0128b229ac9d50e2054d9cde3af0fef277c23cf"}, + {file = "marisa_trie-1.2.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:5e649f3dc8ab5476732094f2828cc90cac3be7c79bc0c8318b6fda0c1d248db4"}, + {file = "marisa_trie-1.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:46e528ee71808c961baf8c3ce1c46a8337ec7a96cc55389d11baafe5b632f8e9"}, + {file = "marisa_trie-1.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:36aa4401a1180615f74d575571a6550081d84fc6461e9aefc0bb7b2427af098e"}, + {file = "marisa_trie-1.2.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ce59bcd2cda9bb52b0e90cc7f36413cd86c3d0ce7224143447424aafb9f4aa48"}, + {file = "marisa_trie-1.2.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f4cd800704a5fc57e53c39c3a6b0c9b1519ebdbcb644ede3ee67a06eb542697d"}, + {file = "marisa_trie-1.2.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:2428b495003c189695fb91ceeb499f9fcced3a2dce853e17fa475519433c67ff"}, + {file = "marisa_trie-1.2.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:735c363d9aaac82eaf516a28f7c6b95084c2e176d8231c87328dc80e112a9afa"}, + {file = "marisa_trie-1.2.1-cp313-cp313-win32.whl", hash = "sha256:eba6ca45500ca1a042466a0684aacc9838e7f20fe2605521ee19f2853062798f"}, + {file = "marisa_trie-1.2.1-cp313-cp313-win_amd64.whl", hash = "sha256:aa7cd17e1c690ce96c538b2f4aae003d9a498e65067dd433c52dd069009951d4"}, + {file = "marisa_trie-1.2.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5e43891a37b0d7f618819fea14bd951289a0a8e3dd0da50c596139ca83ebb9b1"}, + {file = "marisa_trie-1.2.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6946100a43f933fad6bc458c502a59926d80b321d5ac1ed2ff9c56605360496f"}, + {file = "marisa_trie-1.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4177dc0bd1374e82be9b2ba4d0c2733b0a85b9d154ceeea83a5bee8c1e62fbf"}, + {file = "marisa_trie-1.2.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f35c2603a6be168088ed1db6ad1704b078aa8f39974c60888fbbced95dcadad4"}, + {file = "marisa_trie-1.2.1-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:d659fda873d8dcb2c14c2c331de1dee21f5a902d7f2de7978b62c6431a8850ef"}, + {file = "marisa_trie-1.2.1-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:b0ef26733d3c836be79e812071e1a431ce1f807955a27a981ebb7993d95f842b"}, + {file = "marisa_trie-1.2.1-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:536ea19ce6a2ce61c57fed4123ecd10d18d77a0db45cd2741afff2b8b68f15b3"}, + {file = "marisa_trie-1.2.1-cp37-cp37m-win32.whl", hash = "sha256:0ee6cf6a16d9c3d1c94e21c8e63c93d8b34bede170ca4e937e16e1c0700d399f"}, + {file = "marisa_trie-1.2.1-cp37-cp37m-win_amd64.whl", hash = "sha256:7e7b1786e852e014d03e5f32dbd991f9a9eb223dd3fa9a2564108b807e4b7e1c"}, + {file = "marisa_trie-1.2.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:952af3a5859c3b20b15a00748c36e9eb8316eb2c70bd353ae1646da216322908"}, + {file = "marisa_trie-1.2.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24a81aa7566e4ec96fc4d934581fe26d62eac47fc02b35fa443a0bb718b471e8"}, + {file = "marisa_trie-1.2.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9c9b32b14651a6dcf9e8857d2df5d29d322a1ea8c0be5c8ffb88f9841c4ec62b"}, + {file = "marisa_trie-1.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ac170d20b97beb75059ba65d1ccad6b434d777c8992ab41ffabdade3b06dd74"}, + {file = "marisa_trie-1.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da4e4facb79614cc4653cfd859f398e4db4ca9ab26270ff12610e50ed7f1f6c6"}, + {file = "marisa_trie-1.2.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:25688f34cac3bec01b4f655ffdd6c599a01f0bd596b4a79cf56c6f01a7df3560"}, + {file = "marisa_trie-1.2.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:1db3213b451bf058d558f6e619bceff09d1d130214448a207c55e1526e2773a1"}, + {file = "marisa_trie-1.2.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:d5648c6dcc5dc9200297fb779b1663b8a4467bda034a3c69bd9c32d8afb33b1d"}, + {file = "marisa_trie-1.2.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:5bd39a4e1cc839a88acca2889d17ebc3f202a5039cd6059a13148ce75c8a6244"}, + {file = "marisa_trie-1.2.1-cp38-cp38-win32.whl", hash = "sha256:594f98491a96c7f1ffe13ce292cef1b4e63c028f0707effdea0f113364c1ae6c"}, + {file = "marisa_trie-1.2.1-cp38-cp38-win_amd64.whl", hash = "sha256:5fe5a286f997848a410eebe1c28657506adaeb405220ee1e16cfcfd10deb37f2"}, + {file = "marisa_trie-1.2.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c0fe2ace0cb1806badbd1c551a8ec2f8d4cf97bf044313c082ef1acfe631ddca"}, + {file = "marisa_trie-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:67f0c2ec82c20a02c16fc9ba81dee2586ef20270127c470cb1054767aa8ba310"}, + {file = "marisa_trie-1.2.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a3c98613180cf1730e221933ff74b454008161b1a82597e41054127719964188"}, + {file = "marisa_trie-1.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:429858a0452a7bedcf67bc7bb34383d00f666c980cb75a31bcd31285fbdd4403"}, + {file = "marisa_trie-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2eacb84446543082ec50f2fb563f1a94c96804d4057b7da8ed815958d0cdfbe"}, + {file = "marisa_trie-1.2.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:852d7bcf14b0c63404de26e7c4c8d5d65ecaeca935e93794331bc4e2f213660b"}, + {file = "marisa_trie-1.2.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:e58788004adda24c401d1751331618ed20c507ffc23bfd28d7c0661a1cf0ad16"}, + {file = "marisa_trie-1.2.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:aefe0973cc4698e0907289dc0517ab0c7cdb13d588201932ff567d08a50b0e2e"}, + {file = "marisa_trie-1.2.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:6c50c861faad0a5c091bd763e0729f958c316e678dfa065d3984fbb9e4eacbcd"}, + {file = "marisa_trie-1.2.1-cp39-cp39-win32.whl", hash = "sha256:b1ce340da608530500ab4f963f12d6bfc8d8680900919a60dbdc9b78c02060a4"}, + {file = "marisa_trie-1.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:ce37d8ca462bb64cc13f529b9ed92f7b21fe8d1f1679b62e29f9cb7d0e888b49"}, + {file = "marisa_trie-1.2.1.tar.gz", hash = "sha256:3a27c408e2aefc03e0f1d25b2ff2afb85aac3568f6fa2ae2a53b57a2e87ce29d"}, +] + +[package.dependencies] +setuptools = "*" + +[package.extras] +test = ["hypothesis", "pytest", "readme-renderer"] + +[[package]] +name = "markdown" +version = "3.7" +description = "Python implementation of John Gruber's Markdown." +optional = false +python-versions = ">=3.8" +files = [ + {file = "Markdown-3.7-py3-none-any.whl", hash = "sha256:7eb6df5690b81a1d7942992c97fad2938e956e79df20cbc6186e9c3a77b1c803"}, + {file = "markdown-3.7.tar.gz", hash = "sha256:2ae2471477cfd02dbbf038d5d9bc226d40def84b4fe2986e49b59b6b472bbed2"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.4", markers = "python_version < \"3.10\""} + +[package.extras] +docs = ["mdx-gh-links (>=0.2)", "mkdocs (>=1.5)", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-nature (>=0.6)", "mkdocs-section-index", "mkdocstrings[python]"] +testing = ["coverage", "pyyaml"] + +[[package]] +name = "markdown-it-py" +version = "3.0.0" +description = "Python port of markdown-it. Markdown parsing, done right!" +optional = false +python-versions = ">=3.8" +files = [ + {file = "markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb"}, + {file = "markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1"}, +] + +[package.dependencies] +mdurl = ">=0.1,<1.0" + +[package.extras] +benchmarking = ["psutil", "pytest", "pytest-benchmark"] +code-style = ["pre-commit (>=3.0,<4.0)"] +compare = ["commonmark (>=0.9,<1.0)", "markdown (>=3.4,<4.0)", "mistletoe (>=1.0,<2.0)", "mistune (>=2.0,<3.0)", "panflute (>=2.3,<3.0)"] +linkify = ["linkify-it-py (>=1,<3)"] +plugins = ["mdit-py-plugins"] +profiling = ["gprof2dot"] +rtd = ["jupyter_sphinx", "mdit-py-plugins", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx_book_theme"] +testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] + +[[package]] +name = "markupsafe" +version = "2.1.5" +description = "Safely add untrusted strings to HTML/XML markup." +optional = false +python-versions = ">=3.7" +files = [ + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl", hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl", hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl", hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5"}, + {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, +] + +[[package]] +name = "matplotlib" +version = "3.2.2" +description = "Python plotting package" +optional = false +python-versions = ">=3.6" +files = [ + {file = "matplotlib-3.2.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a47abc48c7b81fe6e636dde8a58e49b13d87d140e0f448213a4879f4a3f73345"}, + {file = "matplotlib-3.2.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:20bcd11efe194cd302bd0653cb025b8d16bcd80442359bfca8d49dc805f35ec8"}, + {file = "matplotlib-3.2.2-cp36-cp36m-win32.whl", hash = "sha256:2a6d64336b547e25730b6221e7aadfb01a391a065d43b5f51f0b9d7f673d2dd2"}, + {file = "matplotlib-3.2.2-cp36-cp36m-win_amd64.whl", hash = "sha256:4416825ebc9c1f135027a30e8d8aea0edcf45078ce767c7f7386737413cfb98f"}, + {file = "matplotlib-3.2.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:465c752278d27895e23f1379d6fcfa3a2990643b803c25e3bc16a10641d2346a"}, + {file = "matplotlib-3.2.2-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:81de040403a33bf3c68e9d4a40e26c8d24da00f7e3fadd845003b7e106785da7"}, + {file = "matplotlib-3.2.2-cp37-cp37m-win32.whl", hash = "sha256:006413f08ba5db1f5b1e0d6fbdc2ac9058b062ccf552f57182563a78579c34b4"}, + {file = "matplotlib-3.2.2-cp37-cp37m-win_amd64.whl", hash = "sha256:da06fa530591a141ffbe1712bbeec784734c3436b40c942d21652f305199b5d9"}, + {file = "matplotlib-3.2.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:894dd47c0a6ce38dc19bc87d1f7e2b0608310b2a18d1572291157450b05ce874"}, + {file = "matplotlib-3.2.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:1ab264770e7cf2cf4feb99f22c737066aef21ddf1ec402dc255450ac15eacb7b"}, + {file = "matplotlib-3.2.2-cp38-cp38-win32.whl", hash = "sha256:91c153f4318e3c67c035fd1185f5ea2613f15008b73b66985033033f6fe54bbd"}, + {file = "matplotlib-3.2.2-cp38-cp38-win_amd64.whl", hash = "sha256:a68e42e22f7fd190a532e4215e142276970c2d54040a0c46842fcb3db8b6ec5b"}, + {file = "matplotlib-3.2.2-cp39-cp39-win32.whl", hash = "sha256:647cf232ccf6265d2ba1ac4103e8c8b6ac7b03a40da3421234ffb03dda217f59"}, + {file = "matplotlib-3.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:31d32c83bb2b617377c6156f75e88b9ec2ded289e47ad4ff0f263dc1019d88b1"}, + {file = "matplotlib-3.2.2-pp36-pypy36_pp73-win32.whl", hash = "sha256:67065d938df34478451af62fbd0670d2b51c4d859fb66673064eb5de8660dd7c"}, + {file = "matplotlib-3.2.2.tar.gz", hash = "sha256:3d77a6630d093d74cbbfebaa0571d00790966be1ed204e4a8239f5cbd6835c5d"}, +] + +[package.dependencies] +cycler = ">=0.10" +kiwisolver = ">=1.0.1" +numpy = ">=1.11" +pyparsing = ">=2.0.1,<2.0.4 || >2.0.4,<2.1.2 || >2.1.2,<2.1.6 || >2.1.6" +python-dateutil = ">=2.1" + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "mdurl" +version = "0.1.2" +description = "Markdown URL utilities" +optional = false +python-versions = ">=3.7" +files = [ + {file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"}, + {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"}, +] + +[[package]] +name = "mpmath" +version = "1.3.0" +description = "Python library for arbitrary-precision floating-point arithmetic" +optional = false +python-versions = "*" +files = [ + {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, + {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, +] + +[package.extras] +develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"] +docs = ["sphinx"] +gmpy = ["gmpy2 (>=2.1.0a4)"] +tests = ["pytest (>=4.6)"] + +[[package]] +name = "multidict" +version = "6.1.0" +description = "multidict implementation" +optional = false +python-versions = ">=3.8" +files = [ + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + +[[package]] +name = "murmurhash" +version = "1.0.10" +description = "Cython bindings for MurmurHash" +optional = false +python-versions = ">=3.6" +files = [ + {file = "murmurhash-1.0.10-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3e90eef568adca5e17a91f96975e9a782ace3a617bbb3f8c8c2d917096e9bfeb"}, + {file = "murmurhash-1.0.10-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f8ecb00cc1ab57e4b065f9fb3ea923b55160c402d959c69a0b6dbbe8bc73efc3"}, + {file = "murmurhash-1.0.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3310101004d9e2e0530c2fed30174448d998ffd1b50dcbfb7677e95db101aa4b"}, + {file = "murmurhash-1.0.10-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c65401a6f1778676253cbf89c1f45a8a7feb7d73038e483925df7d5943c08ed9"}, + {file = "murmurhash-1.0.10-cp310-cp310-win_amd64.whl", hash = "sha256:f23f2dfc7174de2cdc5007c0771ab8376a2a3f48247f32cac4a5563e40c6adcc"}, + {file = "murmurhash-1.0.10-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:90ed37ee2cace9381b83d56068334f77e3e30bc521169a1f886a2a2800e965d6"}, + {file = "murmurhash-1.0.10-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:22e9926fdbec9d24ced9b0a42f0fee68c730438be3cfb00c2499fd495caec226"}, + {file = "murmurhash-1.0.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54bfbfd68baa99717239b8844600db627f336a08b1caf4df89762999f681cdd1"}, + {file = "murmurhash-1.0.10-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18b9d200a09d48ef67f6840b77c14f151f2b6c48fd69661eb75c7276ebdb146c"}, + {file = "murmurhash-1.0.10-cp311-cp311-win_amd64.whl", hash = "sha256:e5d7cfe392c0a28129226271008e61e77bf307afc24abf34f386771daa7b28b0"}, + {file = "murmurhash-1.0.10-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:96f0a070344d4802ea76a160e0d4c88b7dc10454d2426f48814482ba60b38b9e"}, + {file = "murmurhash-1.0.10-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9f61862060d677c84556610ac0300a0776cb13cb3155f5075ed97e80f86e55d9"}, + {file = "murmurhash-1.0.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b3b6d2d877d8881a08be66d906856d05944be0faf22b9a0390338bcf45299989"}, + {file = "murmurhash-1.0.10-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8f54b0031d8696fed17ed6e9628f339cdea0ba2367ca051e18ff59193f52687"}, + {file = "murmurhash-1.0.10-cp312-cp312-win_amd64.whl", hash = "sha256:97e09d675de2359e586f09de1d0de1ab39f9911edffc65c9255fb5e04f7c1f85"}, + {file = "murmurhash-1.0.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b64e5332932993fef598e78d633b1ba664789ab73032ed511f3dc615a631a1a"}, + {file = "murmurhash-1.0.10-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e2a38437a8497e082408aa015c6d90554b9e00c2c221fdfa79728a2d99a739e"}, + {file = "murmurhash-1.0.10-cp36-cp36m-win_amd64.whl", hash = "sha256:55f4e4f9291a53c36070330950b472d72ba7d331e4ce3ce1ab349a4f458f7bc4"}, + {file = "murmurhash-1.0.10-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:16ef9f0855952493fe08929d23865425906a8c0c40607ac8a949a378652ba6a9"}, + {file = "murmurhash-1.0.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2cc3351ae92b89c2fcdc6e41ac6f17176dbd9b3554c96109fd0713695d8663e7"}, + {file = "murmurhash-1.0.10-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6559fef7c2e7349a42a63549067709b656d6d1580752bd76be1541d8b2d65718"}, + {file = "murmurhash-1.0.10-cp37-cp37m-win_amd64.whl", hash = "sha256:8bf49e3bb33febb7057ae3a5d284ef81243a1e55eaa62bdcd79007cddbdc0461"}, + {file = "murmurhash-1.0.10-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f1605fde07030516eb63d77a598dd164fb9bf217fd937dbac588fe7e47a28c40"}, + {file = "murmurhash-1.0.10-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4904f7e68674a64eb2b08823c72015a5e14653e0b4b109ea00c652a005a59bad"}, + {file = "murmurhash-1.0.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0438f0cb44cf1cd26251f72c1428213c4197d40a4e3f48b1efc3aea12ce18517"}, + {file = "murmurhash-1.0.10-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db1171a3f9a10571931764cdbfaa5371f4cf5c23c680639762125cb075b833a5"}, + {file = "murmurhash-1.0.10-cp38-cp38-win_amd64.whl", hash = "sha256:1c9fbcd7646ad8ba67b895f71d361d232c6765754370ecea473dd97d77afe99f"}, + {file = "murmurhash-1.0.10-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7024ab3498434f22f8e642ae31448322ad8228c65c8d9e5dc2d563d57c14c9b8"}, + {file = "murmurhash-1.0.10-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a99dedfb7f0cc5a4cd76eb409ee98d3d50eba024f934e705914f6f4d765aef2c"}, + {file = "murmurhash-1.0.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b580b8503647de5dd7972746b7613ea586270f17ac92a44872a9b1b52c36d68"}, + {file = "murmurhash-1.0.10-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d75840212bf75eb1352c946c3cf1622dacddd6d6bdda34368237d1eb3568f23a"}, + {file = "murmurhash-1.0.10-cp39-cp39-win_amd64.whl", hash = "sha256:a4209962b9f85de397c3203ea4b3a554da01ae9fd220fdab38757d4e9eba8d1a"}, + {file = "murmurhash-1.0.10.tar.gz", hash = "sha256:5282aab1317804c6ebd6dd7f69f15ba9075aee671c44a34be2bde0f1b11ef88a"}, +] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +files = [ + {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, + {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, +] + +[[package]] +name = "networkx" +version = "2.5" +description = "Python package for creating and manipulating graphs and networks" +optional = false +python-versions = ">=3.6" +files = [ + {file = "networkx-2.5-py3-none-any.whl", hash = "sha256:8c5812e9f798d37c50570d15c4a69d5710a18d77bafc903ee9c5fba7454c616c"}, + {file = "networkx-2.5.tar.gz", hash = "sha256:7978955423fbc9639c10498878be59caf99b44dc304c2286162fd24b458c1602"}, +] + +[package.dependencies] +decorator = ">=4.3.0" + +[package.extras] +all = ["lxml", "matplotlib", "numpy", "pandas", "pydot", "pygraphviz", "pytest", "pyyaml", "scipy"] +gdal = ["gdal"] +lxml = ["lxml"] +matplotlib = ["matplotlib"] +numpy = ["numpy"] +pandas = ["pandas"] +pydot = ["pydot"] +pygraphviz = ["pygraphviz"] +pytest = ["pytest"] +pyyaml = ["pyyaml"] +scipy = ["scipy"] + +[[package]] +name = "nltk" +version = "3.5" +description = "Natural Language Toolkit" +optional = false +python-versions = "*" +files = [ + {file = "nltk-3.5.zip", hash = "sha256:845365449cd8c5f9731f7cb9f8bd6fd0767553b9d53af9eb1b3abf7700936b35"}, +] + +[package.dependencies] +click = "*" +joblib = "*" +regex = "*" +tqdm = "*" + +[package.extras] +all = ["gensim", "matplotlib", "numpy", "pyparsing", "python-crfsuite", "requests", "scikit-learn", "scipy", "twython"] +corenlp = ["requests"] +machine-learning = ["gensim", "numpy", "python-crfsuite", "scikit-learn", "scipy"] +plot = ["matplotlib"] +tgrep = ["pyparsing"] +twitter = ["twython"] + +[[package]] +name = "node2vec" +version = "0.3.3" +description = "Implementation of the node2vec algorithm." +optional = false +python-versions = "*" +files = [ + {file = "node2vec-0.3.3.tar.gz", hash = "sha256:a122796952137bc91df5e9a51525180d510e1f4e4208eb4a21329137c38354d8"}, +] + +[package.dependencies] +gensim = "*" +joblib = ">=0.13.2" +networkx = "*" +numpy = "*" +tqdm = "*" + +[[package]] +name = "numpy" +version = "1.24.4" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, + {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, + {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, + {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, + {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, + {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, + {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, + {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, + {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, + {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, + {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, + {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, + {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, + {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, + {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, + {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, + {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, + {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, + {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, + {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, + {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, + {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, + {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, + {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, + {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, +] + +[[package]] +name = "nvidia-cublas-cu12" +version = "12.1.3.1" +description = "CUBLAS native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728"}, + {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-win_amd64.whl", hash = "sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906"}, +] + +[[package]] +name = "nvidia-cuda-cupti-cu12" +version = "12.1.105" +description = "CUDA profiling tools runtime libs." +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e"}, + {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4"}, +] + +[[package]] +name = "nvidia-cuda-nvrtc-cu12" +version = "12.1.105" +description = "NVRTC native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2"}, + {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed"}, +] + +[[package]] +name = "nvidia-cuda-runtime-cu12" +version = "12.1.105" +description = "CUDA Runtime native Libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40"}, + {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344"}, +] + +[[package]] +name = "nvidia-cudnn-cu12" +version = "8.9.2.26" +description = "cuDNN runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl", hash = "sha256:5ccb288774fdfb07a7e7025ffec286971c06d8d7b4fb162525334616d7629ff9"}, +] + +[package.dependencies] +nvidia-cublas-cu12 = "*" + +[[package]] +name = "nvidia-cufft-cu12" +version = "11.0.2.54" +description = "CUFFT native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl", hash = "sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56"}, + {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-win_amd64.whl", hash = "sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253"}, +] + +[[package]] +name = "nvidia-curand-cu12" +version = "10.3.2.106" +description = "CURAND native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0"}, + {file = "nvidia_curand_cu12-10.3.2.106-py3-none-win_amd64.whl", hash = "sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a"}, +] + +[[package]] +name = "nvidia-cusolver-cu12" +version = "11.4.5.107" +description = "CUDA solver native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd"}, + {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-win_amd64.whl", hash = "sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5"}, +] + +[package.dependencies] +nvidia-cublas-cu12 = "*" +nvidia-cusparse-cu12 = "*" +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-cusparse-cu12" +version = "12.1.0.106" +description = "CUSPARSE native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c"}, + {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-win_amd64.whl", hash = "sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a"}, +] + +[package.dependencies] +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-nccl-cu12" +version = "2.18.1" +description = "NVIDIA Collective Communication Library (NCCL) Runtime" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nccl_cu12-2.18.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:1a6c4acefcbebfa6de320f412bf7866de856e786e0462326ba1bac40de0b5e71"}, +] + +[[package]] +name = "nvidia-nvjitlink-cu12" +version = "12.6.77" +description = "Nvidia JIT LTO Library" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-manylinux2014_aarch64.whl", hash = "sha256:3bf10d85bb1801e9c894c6e197e44dd137d2a0a9e43f8450e9ad13f2df0dd52d"}, + {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-manylinux2014_x86_64.whl", hash = "sha256:9ae346d16203ae4ea513be416495167a0101d33d2d14935aa9c1829a3fb45142"}, + {file = "nvidia_nvjitlink_cu12-12.6.77-py3-none-win_amd64.whl", hash = "sha256:410718cd44962bed862a31dd0318620f6f9a8b28a6291967bcfcb446a6516771"}, +] + +[[package]] +name = "nvidia-nvtx-cu12" +version = "12.1.105" +description = "NVIDIA Tools Extension" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5"}, + {file = "nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82"}, +] + +[[package]] +name = "oauthlib" +version = "3.2.2" +description = "A generic, spec-compliant, thorough implementation of the OAuth request-signing logic" +optional = false +python-versions = ">=3.6" +files = [ + {file = "oauthlib-3.2.2-py3-none-any.whl", hash = "sha256:8139f29aac13e25d502680e9e19963e83f16838d48a0d71c287fe40e7067fbca"}, + {file = "oauthlib-3.2.2.tar.gz", hash = "sha256:9859c40929662bec5d64f34d01c99e093149682a3f38915dc0655d5a633dd918"}, +] + +[package.extras] +rsa = ["cryptography (>=3.0.0)"] +signals = ["blinker (>=1.4.0)"] +signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] + +[[package]] +name = "opt-einsum" +version = "3.4.0" +description = "Path optimization of einsum functions." +optional = false +python-versions = ">=3.8" +files = [ + {file = "opt_einsum-3.4.0-py3-none-any.whl", hash = "sha256:69bb92469f86a1565195ece4ac0323943e83477171b91d24c35afe028a90d7cd"}, + {file = "opt_einsum-3.4.0.tar.gz", hash = "sha256:96ca72f1b886d148241348783498194c577fa30a8faac108586b14f1ba4473ac"}, +] + +[[package]] +name = "packaging" +version = "24.2" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "packaging-24.2-py3-none-any.whl", hash = "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759"}, + {file = "packaging-24.2.tar.gz", hash = "sha256:c228a6dc5e932d346bc5739379109d49e8853dd8223571c7c5b55260edc0b97f"}, +] + +[[package]] +name = "pandas" +version = "2.0.3" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pandas-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8"}, + {file = "pandas-2.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f"}, + {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183"}, + {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0"}, + {file = "pandas-2.0.3-cp310-cp310-win32.whl", hash = "sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210"}, + {file = "pandas-2.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e"}, + {file = "pandas-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8"}, + {file = "pandas-2.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26"}, + {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d"}, + {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df"}, + {file = "pandas-2.0.3-cp311-cp311-win32.whl", hash = "sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd"}, + {file = "pandas-2.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b"}, + {file = "pandas-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061"}, + {file = "pandas-2.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5"}, + {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089"}, + {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0"}, + {file = "pandas-2.0.3-cp38-cp38-win32.whl", hash = "sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02"}, + {file = "pandas-2.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78"}, + {file = "pandas-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b"}, + {file = "pandas-2.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e"}, + {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b"}, + {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641"}, + {file = "pandas-2.0.3-cp39-cp39-win32.whl", hash = "sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682"}, + {file = "pandas-2.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc"}, + {file = "pandas-2.0.3.tar.gz", hash = "sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c"}, +] + +[package.dependencies] +numpy = {version = ">=1.20.3", markers = "python_version < \"3.10\""} +python-dateutil = ">=2.8.2" +pytz = ">=2020.1" +tzdata = ">=2022.1" + +[package.extras] +all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] +aws = ["s3fs (>=2021.08.0)"] +clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] +compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] +computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] +feather = ["pyarrow (>=7.0.0)"] +fss = ["fsspec (>=2021.07.0)"] +gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] +hdf5 = ["tables (>=3.6.1)"] +html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] +mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] +parquet = ["pyarrow (>=7.0.0)"] +performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] +plot = ["matplotlib (>=3.6.1)"] +postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] +spss = ["pyreadstat (>=1.1.2)"] +sql-other = ["SQLAlchemy (>=1.4.16)"] +test = ["hypothesis (>=6.34.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.6.3)"] + +[[package]] +name = "parso" +version = "0.8.4" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +files = [ + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, +] + +[package.extras] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["docopt", "pytest"] + +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pickleshare" +version = "0.7.5" +description = "Tiny 'shelve'-like database with concurrency support" +optional = false +python-versions = "*" +files = [ + {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, + {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, +] + +[[package]] +name = "pillow" +version = "10.4.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"}, + {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"}, + {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"}, + {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"}, + {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"}, + {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"}, + {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"}, + {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"}, + {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"}, + {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"}, + {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"}, + {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"}, + {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"}, + {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"}, + {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"}, + {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"}, + {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"}, + {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"}, + {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"}, + {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] +fpx = ["olefile"] +mic = ["olefile"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] +typing = ["typing-extensions"] +xmp = ["defusedxml"] + +[[package]] +name = "platformdirs" +version = "4.3.6" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." +optional = false +python-versions = ">=3.8" +files = [ + {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, + {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, +] + +[package.extras] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] + +[[package]] +name = "preshed" +version = "3.0.9" +description = "Cython hash table that trusts the keys are pre-hashed" +optional = false +python-versions = ">=3.6" +files = [ + {file = "preshed-3.0.9-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4f96ef4caf9847b2bb9868574dcbe2496f974e41c2b83d6621c24fb4c3fc57e3"}, + {file = "preshed-3.0.9-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a61302cf8bd30568631adcdaf9e6b21d40491bd89ba8ebf67324f98b6c2a2c05"}, + {file = "preshed-3.0.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:99499e8a58f58949d3f591295a97bca4e197066049c96f5d34944dd21a497193"}, + {file = "preshed-3.0.9-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea6b6566997dc3acd8c6ee11a89539ac85c77275b4dcefb2dc746d11053a5af8"}, + {file = "preshed-3.0.9-cp310-cp310-win_amd64.whl", hash = "sha256:bfd523085a84b1338ff18f61538e1cfcdedc4b9e76002589a301c364d19a2e36"}, + {file = "preshed-3.0.9-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e7c2364da27f2875524ce1ca754dc071515a9ad26eb5def4c7e69129a13c9a59"}, + {file = "preshed-3.0.9-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:182138033c0730c683a6d97e567ceb8a3e83f3bff5704f300d582238dbd384b3"}, + {file = "preshed-3.0.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:345a10be3b86bcc6c0591d343a6dc2bfd86aa6838c30ced4256dfcfa836c3a64"}, + {file = "preshed-3.0.9-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:51d0192274aa061699b284f9fd08416065348edbafd64840c3889617ee1609de"}, + {file = "preshed-3.0.9-cp311-cp311-win_amd64.whl", hash = "sha256:96b857d7a62cbccc3845ac8c41fd23addf052821be4eb987f2eb0da3d8745aa1"}, + {file = "preshed-3.0.9-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b4fe6720012c62e6d550d6a5c1c7ad88cacef8388d186dad4bafea4140d9d198"}, + {file = "preshed-3.0.9-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e04f05758875be9751e483bd3c519c22b00d3b07f5a64441ec328bb9e3c03700"}, + {file = "preshed-3.0.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a55091d0e395f1fdb62ab43401bb9f8b46c7d7794d5b071813c29dc1ab22fd0"}, + {file = "preshed-3.0.9-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7de8f5138bcac7870424e09684dc3dd33c8e30e81b269f6c9ede3d8c7bb8e257"}, + {file = "preshed-3.0.9-cp312-cp312-win_amd64.whl", hash = "sha256:24229c77364628743bc29c5620c5d6607ed104f0e02ae31f8a030f99a78a5ceb"}, + {file = "preshed-3.0.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b73b0f7ecc58095ebbc6ca26ec806008ef780190fe685ce471b550e7eef58dc2"}, + {file = "preshed-3.0.9-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5cb90ecd5bec71c21d95962db1a7922364d6db2abe284a8c4b196df8bbcc871e"}, + {file = "preshed-3.0.9-cp36-cp36m-win_amd64.whl", hash = "sha256:e304a0a8c9d625b70ba850c59d4e67082a6be9c16c4517b97850a17a282ebee6"}, + {file = "preshed-3.0.9-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1fa6d3d5529b08296ff9b7b4da1485c080311fd8744bbf3a86019ff88007b382"}, + {file = "preshed-3.0.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef1e5173809d85edd420fc79563b286b88b4049746b797845ba672cf9435c0e7"}, + {file = "preshed-3.0.9-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7fe81eb21c7d99e8b9a802cc313b998c5f791bda592903c732b607f78a6b7dc4"}, + {file = "preshed-3.0.9-cp37-cp37m-win_amd64.whl", hash = "sha256:78590a4a952747c3766e605ce8b747741005bdb1a5aa691a18aae67b09ece0e6"}, + {file = "preshed-3.0.9-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3452b64d97ce630e200c415073040aa494ceec6b7038f7a2a3400cbd7858e952"}, + {file = "preshed-3.0.9-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ac970d97b905e9e817ec13d31befd5b07c9cfec046de73b551d11a6375834b79"}, + {file = "preshed-3.0.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eebaa96ece6641cd981491cba995b68c249e0b6877c84af74971eacf8990aa19"}, + {file = "preshed-3.0.9-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d473c5f6856e07a88d41fe00bb6c206ecf7b34c381d30de0b818ba2ebaf9406"}, + {file = "preshed-3.0.9-cp38-cp38-win_amd64.whl", hash = "sha256:0de63a560f10107a3f0a9e252cc3183b8fdedcb5f81a86938fd9f1dcf8a64adf"}, + {file = "preshed-3.0.9-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3a9ad9f738084e048a7c94c90f40f727217387115b2c9a95c77f0ce943879fcd"}, + {file = "preshed-3.0.9-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a671dfa30b67baa09391faf90408b69c8a9a7f81cb9d83d16c39a182355fbfce"}, + {file = "preshed-3.0.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23906d114fc97c17c5f8433342495d7562e96ecfd871289c2bb2ed9a9df57c3f"}, + {file = "preshed-3.0.9-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:778cf71f82cedd2719b256f3980d556d6fb56ec552334ba79b49d16e26e854a0"}, + {file = "preshed-3.0.9-cp39-cp39-win_amd64.whl", hash = "sha256:a6e579439b329eb93f32219ff27cb358b55fbb52a4862c31a915a098c8a22ac2"}, + {file = "preshed-3.0.9.tar.gz", hash = "sha256:721863c5244ffcd2651ad0928951a2c7c77b102f4e11a251ad85d37ee7621660"}, +] + +[package.dependencies] +cymem = ">=2.0.2,<2.1.0" +murmurhash = ">=0.28.0,<1.1.0" + +[[package]] +name = "prompt-toolkit" +version = "3.0.48" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, + {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "propcache" +version = "0.2.0" +description = "Accelerated property cache" +optional = false +python-versions = ">=3.8" +files = [ + {file = "propcache-0.2.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:c5869b8fd70b81835a6f187c5fdbe67917a04d7e52b6e7cc4e5fe39d55c39d58"}, + {file = "propcache-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:952e0d9d07609d9c5be361f33b0d6d650cd2bae393aabb11d9b719364521984b"}, + {file = "propcache-0.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:33ac8f098df0585c0b53009f039dfd913b38c1d2edafed0cedcc0c32a05aa110"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:97e48e8875e6c13909c800fa344cd54cc4b2b0db1d5f911f840458a500fde2c2"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:388f3217649d6d59292b722d940d4d2e1e6a7003259eb835724092a1cca0203a"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f571aea50ba5623c308aa146eb650eebf7dbe0fd8c5d946e28343cb3b5aad577"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3dfafb44f7bb35c0c06eda6b2ab4bfd58f02729e7c4045e179f9a861b07c9850"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a3ebe9a75be7ab0b7da2464a77bb27febcb4fab46a34f9288f39d74833db7f61"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d2f0d0f976985f85dfb5f3d685697ef769faa6b71993b46b295cdbbd6be8cc37"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:a3dc1a4b165283bd865e8f8cb5f0c64c05001e0718ed06250d8cac9bec115b48"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:9e0f07b42d2a50c7dd2d8675d50f7343d998c64008f1da5fef888396b7f84630"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:e63e3e1e0271f374ed489ff5ee73d4b6e7c60710e1f76af5f0e1a6117cd26394"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:56bb5c98f058a41bb58eead194b4db8c05b088c93d94d5161728515bd52b052b"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7665f04d0c7f26ff8bb534e1c65068409bf4687aa2534faf7104d7182debb336"}, + {file = "propcache-0.2.0-cp310-cp310-win32.whl", hash = "sha256:7cf18abf9764746b9c8704774d8b06714bcb0a63641518a3a89c7f85cc02c2ad"}, + {file = "propcache-0.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:cfac69017ef97db2438efb854edf24f5a29fd09a536ff3a992b75990720cdc99"}, + {file = "propcache-0.2.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:63f13bf09cc3336eb04a837490b8f332e0db41da66995c9fd1ba04552e516354"}, + {file = "propcache-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:608cce1da6f2672a56b24a015b42db4ac612ee709f3d29f27a00c943d9e851de"}, + {file = "propcache-0.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:466c219deee4536fbc83c08d09115249db301550625c7fef1c5563a584c9bc87"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc2db02409338bf36590aa985a461b2c96fce91f8e7e0f14c50c5fcc4f229016"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a6ed8db0a556343d566a5c124ee483ae113acc9a557a807d439bcecc44e7dfbb"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:91997d9cb4a325b60d4e3f20967f8eb08dfcb32b22554d5ef78e6fd1dda743a2"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c7dde9e533c0a49d802b4f3f218fa9ad0a1ce21f2c2eb80d5216565202acab4"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffcad6c564fe6b9b8916c1aefbb37a362deebf9394bd2974e9d84232e3e08504"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:97a58a28bcf63284e8b4d7b460cbee1edaab24634e82059c7b8c09e65284f178"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:945db8ee295d3af9dbdbb698cce9bbc5c59b5c3fe328bbc4387f59a8a35f998d"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:39e104da444a34830751715f45ef9fc537475ba21b7f1f5b0f4d71a3b60d7fe2"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:c5ecca8f9bab618340c8e848d340baf68bcd8ad90a8ecd7a4524a81c1764b3db"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:c436130cc779806bdf5d5fae0d848713105472b8566b75ff70048c47d3961c5b"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:191db28dc6dcd29d1a3e063c3be0b40688ed76434622c53a284e5427565bbd9b"}, + {file = "propcache-0.2.0-cp311-cp311-win32.whl", hash = "sha256:5f2564ec89058ee7c7989a7b719115bdfe2a2fb8e7a4543b8d1c0cc4cf6478c1"}, + {file = "propcache-0.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:6e2e54267980349b723cff366d1e29b138b9a60fa376664a157a342689553f71"}, + {file = "propcache-0.2.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:2ee7606193fb267be4b2e3b32714f2d58cad27217638db98a60f9efb5efeccc2"}, + {file = "propcache-0.2.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:91ee8fc02ca52e24bcb77b234f22afc03288e1dafbb1f88fe24db308910c4ac7"}, + {file = "propcache-0.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2e900bad2a8456d00a113cad8c13343f3b1f327534e3589acc2219729237a2e8"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f52a68c21363c45297aca15561812d542f8fc683c85201df0bebe209e349f793"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e41d67757ff4fbc8ef2af99b338bfb955010444b92929e9e55a6d4dcc3c4f09"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a64e32f8bd94c105cc27f42d3b658902b5bcc947ece3c8fe7bc1b05982f60e89"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:55346705687dbd7ef0d77883ab4f6fabc48232f587925bdaf95219bae072491e"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:00181262b17e517df2cd85656fcd6b4e70946fe62cd625b9d74ac9977b64d8d9"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6994984550eaf25dd7fc7bd1b700ff45c894149341725bb4edc67f0ffa94efa4"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:56295eb1e5f3aecd516d91b00cfd8bf3a13991de5a479df9e27dd569ea23959c"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:439e76255daa0f8151d3cb325f6dd4a3e93043e6403e6491813bcaaaa8733887"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:f6475a1b2ecb310c98c28d271a30df74f9dd436ee46d09236a6b750a7599ce57"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:3444cdba6628accf384e349014084b1cacd866fbb88433cd9d279d90a54e0b23"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4a9d9b4d0a9b38d1c391bb4ad24aa65f306c6f01b512e10a8a34a2dc5675d348"}, + {file = "propcache-0.2.0-cp312-cp312-win32.whl", hash = "sha256:69d3a98eebae99a420d4b28756c8ce6ea5a29291baf2dc9ff9414b42676f61d5"}, + {file = "propcache-0.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:ad9c9b99b05f163109466638bd30ada1722abb01bbb85c739c50b6dc11f92dc3"}, + {file = "propcache-0.2.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ecddc221a077a8132cf7c747d5352a15ed763b674c0448d811f408bf803d9ad7"}, + {file = "propcache-0.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0e53cb83fdd61cbd67202735e6a6687a7b491c8742dfc39c9e01e80354956763"}, + {file = "propcache-0.2.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92fe151145a990c22cbccf9ae15cae8ae9eddabfc949a219c9f667877e40853d"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6a21ef516d36909931a2967621eecb256018aeb11fc48656e3257e73e2e247a"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3f88a4095e913f98988f5b338c1d4d5d07dbb0b6bad19892fd447484e483ba6b"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a5b3bb545ead161be780ee85a2b54fdf7092815995661947812dde94a40f6fb"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67aeb72e0f482709991aa91345a831d0b707d16b0257e8ef88a2ad246a7280bf"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3c997f8c44ec9b9b0bcbf2d422cc00a1d9b9c681f56efa6ca149a941e5560da2"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:2a66df3d4992bc1d725b9aa803e8c5a66c010c65c741ad901e260ece77f58d2f"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:3ebbcf2a07621f29638799828b8d8668c421bfb94c6cb04269130d8de4fb7136"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:1235c01ddaa80da8235741e80815ce381c5267f96cc49b1477fdcf8c047ef325"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:3947483a381259c06921612550867b37d22e1df6d6d7e8361264b6d037595f44"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d5bed7f9805cc29c780f3aee05de3262ee7ce1f47083cfe9f77471e9d6777e83"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e4a91d44379f45f5e540971d41e4626dacd7f01004826a18cb048e7da7e96544"}, + {file = "propcache-0.2.0-cp313-cp313-win32.whl", hash = "sha256:f902804113e032e2cdf8c71015651c97af6418363bea8d78dc0911d56c335032"}, + {file = "propcache-0.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:8f188cfcc64fb1266f4684206c9de0e80f54622c3f22a910cbd200478aeae61e"}, + {file = "propcache-0.2.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:53d1bd3f979ed529f0805dd35ddaca330f80a9a6d90bc0121d2ff398f8ed8861"}, + {file = "propcache-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:83928404adf8fb3d26793665633ea79b7361efa0287dfbd372a7e74311d51ee6"}, + {file = "propcache-0.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:77a86c261679ea5f3896ec060be9dc8e365788248cc1e049632a1be682442063"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:218db2a3c297a3768c11a34812e63b3ac1c3234c3a086def9c0fee50d35add1f"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7735e82e3498c27bcb2d17cb65d62c14f1100b71723b68362872bca7d0913d90"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:20a617c776f520c3875cf4511e0d1db847a076d720714ae35ffe0df3e440be68"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67b69535c870670c9f9b14a75d28baa32221d06f6b6fa6f77a0a13c5a7b0a5b9"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4569158070180c3855e9c0791c56be3ceeb192defa2cdf6a3f39e54319e56b89"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:db47514ffdbd91ccdc7e6f8407aac4ee94cc871b15b577c1c324236b013ddd04"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_armv7l.whl", hash = "sha256:2a60ad3e2553a74168d275a0ef35e8c0a965448ffbc3b300ab3a5bb9956c2162"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:662dd62358bdeaca0aee5761de8727cfd6861432e3bb828dc2a693aa0471a563"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:25a1f88b471b3bc911d18b935ecb7115dff3a192b6fef46f0bfaf71ff4f12418"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:f60f0ac7005b9f5a6091009b09a419ace1610e163fa5deaba5ce3484341840e7"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:74acd6e291f885678631b7ebc85d2d4aec458dd849b8c841b57ef04047833bed"}, + {file = "propcache-0.2.0-cp38-cp38-win32.whl", hash = "sha256:d9b6ddac6408194e934002a69bcaadbc88c10b5f38fb9307779d1c629181815d"}, + {file = "propcache-0.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:676135dcf3262c9c5081cc8f19ad55c8a64e3f7282a21266d05544450bffc3a5"}, + {file = "propcache-0.2.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:25c8d773a62ce0451b020c7b29a35cfbc05de8b291163a7a0f3b7904f27253e6"}, + {file = "propcache-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:375a12d7556d462dc64d70475a9ee5982465fbb3d2b364f16b86ba9135793638"}, + {file = "propcache-0.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1ec43d76b9677637a89d6ab86e1fef70d739217fefa208c65352ecf0282be957"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f45eec587dafd4b2d41ac189c2156461ebd0c1082d2fe7013571598abb8505d1"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc092ba439d91df90aea38168e11f75c655880c12782facf5cf9c00f3d42b562"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fa1076244f54bb76e65e22cb6910365779d5c3d71d1f18b275f1dfc7b0d71b4d"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:682a7c79a2fbf40f5dbb1eb6bfe2cd865376deeac65acf9beb607505dced9e12"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e40876731f99b6f3c897b66b803c9e1c07a989b366c6b5b475fafd1f7ba3fb8"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:363ea8cd3c5cb6679f1c2f5f1f9669587361c062e4899fce56758efa928728f8"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:140fbf08ab3588b3468932974a9331aff43c0ab8a2ec2c608b6d7d1756dbb6cb"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e70fac33e8b4ac63dfc4c956fd7d85a0b1139adcfc0d964ce288b7c527537fea"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:b33d7a286c0dc1a15f5fc864cc48ae92a846df287ceac2dd499926c3801054a6"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:f6d5749fdd33d90e34c2efb174c7e236829147a2713334d708746e94c4bde40d"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:22aa8f2272d81d9317ff5756bb108021a056805ce63dd3630e27d042c8092798"}, + {file = "propcache-0.2.0-cp39-cp39-win32.whl", hash = "sha256:73e4b40ea0eda421b115248d7e79b59214411109a5bc47d0d48e4c73e3b8fcf9"}, + {file = "propcache-0.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:9517d5e9e0731957468c29dbfd0f976736a0e55afaea843726e887f36fe017df"}, + {file = "propcache-0.2.0-py3-none-any.whl", hash = "sha256:2ccc28197af5313706511fab3a8b66dcd6da067a1331372c82ea1cb74285e036"}, + {file = "propcache-0.2.0.tar.gz", hash = "sha256:df81779732feb9d01e5d513fad0122efb3d53bbc75f61b2a4f29a020bc985e70"}, +] + +[[package]] +name = "protobuf" +version = "3.20.3" +description = "Protocol Buffers" +optional = false +python-versions = ">=3.7" +files = [ + {file = "protobuf-3.20.3-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:f4bd856d702e5b0d96a00ec6b307b0f51c1982c2bf9c0052cf9019e9a544ba99"}, + {file = "protobuf-3.20.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9aae4406ea63d825636cc11ffb34ad3379335803216ee3a856787bcf5ccc751e"}, + {file = "protobuf-3.20.3-cp310-cp310-win32.whl", hash = "sha256:28545383d61f55b57cf4df63eebd9827754fd2dc25f80c5253f9184235db242c"}, + {file = "protobuf-3.20.3-cp310-cp310-win_amd64.whl", hash = "sha256:67a3598f0a2dcbc58d02dd1928544e7d88f764b47d4a286202913f0b2801c2e7"}, + {file = "protobuf-3.20.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:899dc660cd599d7352d6f10d83c95df430a38b410c1b66b407a6b29265d66469"}, + {file = "protobuf-3.20.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e64857f395505ebf3d2569935506ae0dfc4a15cb80dc25261176c784662cdcc4"}, + {file = "protobuf-3.20.3-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:d9e4432ff660d67d775c66ac42a67cf2453c27cb4d738fc22cb53b5d84c135d4"}, + {file = "protobuf-3.20.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:74480f79a023f90dc6e18febbf7b8bac7508420f2006fabd512013c0c238f454"}, + {file = "protobuf-3.20.3-cp37-cp37m-win32.whl", hash = "sha256:b6cc7ba72a8850621bfec987cb72623e703b7fe2b9127a161ce61e61558ad905"}, + {file = "protobuf-3.20.3-cp37-cp37m-win_amd64.whl", hash = "sha256:8c0c984a1b8fef4086329ff8dd19ac77576b384079247c770f29cc8ce3afa06c"}, + {file = "protobuf-3.20.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:de78575669dddf6099a8a0f46a27e82a1783c557ccc38ee620ed8cc96d3be7d7"}, + {file = "protobuf-3.20.3-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:f4c42102bc82a51108e449cbb32b19b180022941c727bac0cfd50170341f16ee"}, + {file = "protobuf-3.20.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:44246bab5dd4b7fbd3c0c80b6f16686808fab0e4aca819ade6e8d294a29c7050"}, + {file = "protobuf-3.20.3-cp38-cp38-win32.whl", hash = "sha256:c02ce36ec760252242a33967d51c289fd0e1c0e6e5cc9397e2279177716add86"}, + {file = "protobuf-3.20.3-cp38-cp38-win_amd64.whl", hash = "sha256:447d43819997825d4e71bf5769d869b968ce96848b6479397e29fc24c4a5dfe9"}, + {file = "protobuf-3.20.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:398a9e0c3eaceb34ec1aee71894ca3299605fa8e761544934378bbc6c97de23b"}, + {file = "protobuf-3.20.3-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:bf01b5720be110540be4286e791db73f84a2b721072a3711efff6c324cdf074b"}, + {file = "protobuf-3.20.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:daa564862dd0d39c00f8086f88700fdbe8bc717e993a21e90711acfed02f2402"}, + {file = "protobuf-3.20.3-cp39-cp39-win32.whl", hash = "sha256:819559cafa1a373b7096a482b504ae8a857c89593cf3a25af743ac9ecbd23480"}, + {file = "protobuf-3.20.3-cp39-cp39-win_amd64.whl", hash = "sha256:03038ac1cfbc41aa21f6afcbcd357281d7521b4157926f30ebecc8d4ea59dcb7"}, + {file = "protobuf-3.20.3-py2.py3-none-any.whl", hash = "sha256:a7ca6d488aa8ff7f329d4c545b2dbad8ac31464f1d8b1c87ad1346717731e4db"}, + {file = "protobuf-3.20.3.tar.gz", hash = "sha256:2e3427429c9cffebf259491be0af70189607f365c2f41c7c3764af6f337105f2"}, +] + +[[package]] +name = "psutil" +version = "6.1.0" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "psutil-6.1.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:ff34df86226c0227c52f38b919213157588a678d049688eded74c76c8ba4a5d0"}, + {file = "psutil-6.1.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:c0e0c00aa18ca2d3b2b991643b799a15fc8f0563d2ebb6040f64ce8dc027b942"}, + {file = "psutil-6.1.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:000d1d1ebd634b4efb383f4034437384e44a6d455260aaee2eca1e9c1b55f047"}, + {file = "psutil-6.1.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:5cd2bcdc75b452ba2e10f0e8ecc0b57b827dd5d7aaffbc6821b2a9a242823a76"}, + {file = "psutil-6.1.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:045f00a43c737f960d273a83973b2511430d61f283a44c96bf13a6e829ba8fdc"}, + {file = "psutil-6.1.0-cp27-none-win32.whl", hash = "sha256:9118f27452b70bb1d9ab3198c1f626c2499384935aaf55388211ad982611407e"}, + {file = "psutil-6.1.0-cp27-none-win_amd64.whl", hash = "sha256:a8506f6119cff7015678e2bce904a4da21025cc70ad283a53b099e7620061d85"}, + {file = "psutil-6.1.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6e2dcd475ce8b80522e51d923d10c7871e45f20918e027ab682f94f1c6351688"}, + {file = "psutil-6.1.0-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:0895b8414afafc526712c498bd9de2b063deaac4021a3b3c34566283464aff8e"}, + {file = "psutil-6.1.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9dcbfce5d89f1d1f2546a2090f4fcf87c7f669d1d90aacb7d7582addece9fb38"}, + {file = "psutil-6.1.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:498c6979f9c6637ebc3a73b3f87f9eb1ec24e1ce53a7c5173b8508981614a90b"}, + {file = "psutil-6.1.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d905186d647b16755a800e7263d43df08b790d709d575105d419f8b6ef65423a"}, + {file = "psutil-6.1.0-cp36-cp36m-win32.whl", hash = "sha256:6d3fbbc8d23fcdcb500d2c9f94e07b1342df8ed71b948a2649b5cb060a7c94ca"}, + {file = "psutil-6.1.0-cp36-cp36m-win_amd64.whl", hash = "sha256:1209036fbd0421afde505a4879dee3b2fd7b1e14fee81c0069807adcbbcca747"}, + {file = "psutil-6.1.0-cp37-abi3-win32.whl", hash = "sha256:1ad45a1f5d0b608253b11508f80940985d1d0c8f6111b5cb637533a0e6ddc13e"}, + {file = "psutil-6.1.0-cp37-abi3-win_amd64.whl", hash = "sha256:a8fb3752b491d246034fa4d279ff076501588ce8cbcdbb62c32fd7a377d996be"}, + {file = "psutil-6.1.0.tar.gz", hash = "sha256:353815f59a7f64cdaca1c0307ee13558a0512f6db064e92fe833784f08539c7a"}, +] + +[package.extras] +dev = ["black", "check-manifest", "coverage", "packaging", "pylint", "pyperf", "pypinfo", "pytest-cov", "requests", "rstcheck", "ruff", "sphinx", "sphinx_rtd_theme", "toml-sort", "twine", "virtualenv", "wheel"] +test = ["pytest", "pytest-xdist", "setuptools"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +files = [ + {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, + {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "pyasn1" +version = "0.6.1" +description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyasn1-0.6.1-py3-none-any.whl", hash = "sha256:0d632f46f2ba09143da3a8afe9e33fb6f92fa2320ab7e886e2d0f7672af84629"}, + {file = "pyasn1-0.6.1.tar.gz", hash = "sha256:6f580d2bdd84365380830acf45550f2511469f673cb4a5ae3857a3170128b034"}, +] + +[[package]] +name = "pyasn1-modules" +version = "0.4.1" +description = "A collection of ASN.1-based protocols modules" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyasn1_modules-0.4.1-py3-none-any.whl", hash = "sha256:49bfa96b45a292b711e986f222502c1c9a5e1f4e568fc30e2574a6c7d07838fd"}, + {file = "pyasn1_modules-0.4.1.tar.gz", hash = "sha256:c28e2dbf9c06ad61c71a075c7e0f9fd0f1b0bb2d2ad4377f240d33ac2ab60a7c"}, +] + +[package.dependencies] +pyasn1 = ">=0.4.6,<0.7.0" + +[[package]] +name = "pybind11" +version = "2.13.6" +description = "Seamless operability between C++11 and Python" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pybind11-2.13.6-py3-none-any.whl", hash = "sha256:237c41e29157b962835d356b370ededd57594a26d5894a795960f0047cb5caf5"}, + {file = "pybind11-2.13.6.tar.gz", hash = "sha256:ba6af10348c12b24e92fa086b39cfba0eff619b61ac77c406167d813b096d39a"}, +] + +[package.extras] +global = ["pybind11-global (==2.13.6)"] + +[[package]] +name = "pycparser" +version = "2.22" +description = "C parser in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, +] + +[[package]] +name = "pydantic" +version = "2.9.2" +description = "Data validation using Python type hints" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"}, + {file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"}, +] + +[package.dependencies] +annotated-types = ">=0.6.0" +pydantic-core = "2.23.4" +typing-extensions = {version = ">=4.6.1", markers = "python_version < \"3.13\""} + +[package.extras] +email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] + +[[package]] +name = "pydantic-core" +version = "2.23.4" +description = "Core functionality for Pydantic validation and serialization" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"}, + {file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"}, + {file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"}, + {file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"}, + {file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"}, + {file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"}, + {file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"}, + {file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"}, + {file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"}, + {file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"}, + {file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"}, + {file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"}, + {file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"}, + {file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"}, +] + +[package.dependencies] +typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" + +[[package]] +name = "pyg-lib" +version = "0.4.0+pt21cpu" +description = "Low-Level Graph Neural Network Operators for PyG" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyg_lib-0.4.0+pt21cpu-cp38-cp38-linux_x86_64.whl", hash = "sha256:fcf82fb62f40a9c0b82c47bbbd641ed22bc39c10ecd310dbdfcf79b329b3127f"}, +] + +[package.extras] +dev = ["pre-commit"] +test = ["pytest", "pytest-cov"] +triton = ["triton"] + +[package.source] +type = "url" +url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/pyg_lib-0.4.0%2Bpt21cpu-cp38-cp38-linux_x86_64.whl" + +[[package]] +name = "pygments" +version = "2.18.0" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, + {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, +] + +[package.extras] +windows-terminal = ["colorama (>=0.4.6)"] + +[[package]] +name = "pyparsing" +version = "3.1.4" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.6.8" +files = [ + {file = "pyparsing-3.1.4-py3-none-any.whl", hash = "sha256:a6a7ee4235a3f944aa1fa2249307708f893fe5717dc603503c6c7969c070fb7c"}, + {file = "pyparsing-3.1.4.tar.gz", hash = "sha256:f86ec8d1a83f11977c9a6ea7598e8c27fc5cddfa5b07ea2241edbbde1d7bc032"}, +] + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, + {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "python-louvain" +version = "0.16" +description = "Louvain algorithm for community detection" +optional = false +python-versions = "*" +files = [ + {file = "python-louvain-0.16.tar.gz", hash = "sha256:b7ba2df5002fd28d3ee789a49532baad11fe648e4f2117cf0798e7520a1da56b"}, +] + +[package.dependencies] +networkx = "*" +numpy = "*" + +[[package]] +name = "pytz" +version = "2024.2" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ + {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, + {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, +] + +[[package]] +name = "pywin32" +version = "308" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ + {file = "pywin32-308-cp310-cp310-win32.whl", hash = "sha256:796ff4426437896550d2981b9c2ac0ffd75238ad9ea2d3bfa67a1abd546d262e"}, + {file = "pywin32-308-cp310-cp310-win_amd64.whl", hash = "sha256:4fc888c59b3c0bef905ce7eb7e2106a07712015ea1c8234b703a088d46110e8e"}, + {file = "pywin32-308-cp310-cp310-win_arm64.whl", hash = "sha256:a5ab5381813b40f264fa3495b98af850098f814a25a63589a8e9eb12560f450c"}, + {file = "pywin32-308-cp311-cp311-win32.whl", hash = "sha256:5d8c8015b24a7d6855b1550d8e660d8daa09983c80e5daf89a273e5c6fb5095a"}, + {file = "pywin32-308-cp311-cp311-win_amd64.whl", hash = "sha256:575621b90f0dc2695fec346b2d6302faebd4f0f45c05ea29404cefe35d89442b"}, + {file = "pywin32-308-cp311-cp311-win_arm64.whl", hash = "sha256:100a5442b7332070983c4cd03f2e906a5648a5104b8a7f50175f7906efd16bb6"}, + {file = "pywin32-308-cp312-cp312-win32.whl", hash = "sha256:587f3e19696f4bf96fde9d8a57cec74a57021ad5f204c9e627e15c33ff568897"}, + {file = "pywin32-308-cp312-cp312-win_amd64.whl", hash = "sha256:00b3e11ef09ede56c6a43c71f2d31857cf7c54b0ab6e78ac659497abd2834f47"}, + {file = "pywin32-308-cp312-cp312-win_arm64.whl", hash = "sha256:9b4de86c8d909aed15b7011182c8cab38c8850de36e6afb1f0db22b8959e3091"}, + {file = "pywin32-308-cp313-cp313-win32.whl", hash = "sha256:1c44539a37a5b7b21d02ab34e6a4d314e0788f1690d65b48e9b0b89f31abbbed"}, + {file = "pywin32-308-cp313-cp313-win_amd64.whl", hash = "sha256:fd380990e792eaf6827fcb7e187b2b4b1cede0585e3d0c9e84201ec27b9905e4"}, + {file = "pywin32-308-cp313-cp313-win_arm64.whl", hash = "sha256:ef313c46d4c18dfb82a2431e3051ac8f112ccee1a34f29c263c583c568db63cd"}, + {file = "pywin32-308-cp37-cp37m-win32.whl", hash = "sha256:1f696ab352a2ddd63bd07430080dd598e6369152ea13a25ebcdd2f503a38f1ff"}, + {file = "pywin32-308-cp37-cp37m-win_amd64.whl", hash = "sha256:13dcb914ed4347019fbec6697a01a0aec61019c1046c2b905410d197856326a6"}, + {file = "pywin32-308-cp38-cp38-win32.whl", hash = "sha256:5794e764ebcabf4ff08c555b31bd348c9025929371763b2183172ff4708152f0"}, + {file = "pywin32-308-cp38-cp38-win_amd64.whl", hash = "sha256:3b92622e29d651c6b783e368ba7d6722b1634b8e70bd376fd7610fe1992e19de"}, + {file = "pywin32-308-cp39-cp39-win32.whl", hash = "sha256:7873ca4dc60ab3287919881a7d4f88baee4a6e639aa6962de25a98ba6b193341"}, + {file = "pywin32-308-cp39-cp39-win_amd64.whl", hash = "sha256:71b3322d949b4cc20776436a9c9ba0eeedcbc9c650daa536df63f0ff111bb920"}, +] + +[[package]] +name = "pyzmq" +version = "26.2.0" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea"}, + {file = "pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6"}, + {file = "pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b"}, + {file = "pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e"}, + {file = "pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0"}, + {file = "pyzmq-26.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3b55a4229ce5da9497dd0452b914556ae58e96a4381bb6f59f1305dfd7e53fc8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cb3a6460cdea8fe8194a76de8895707e61ded10ad0be97188cc8463ffa7e3a8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ab5cad923cc95c87bffee098a27856c859bd5d0af31bd346035aa816b081fe1"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ed69074a610fad1c2fda66180e7b2edd4d31c53f2d1872bc2d1211563904cd9"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cccba051221b916a4f5e538997c45d7d136a5646442b1231b916d0164067ea27"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0eaa83fc4c1e271c24eaf8fb083cbccef8fde77ec8cd45f3c35a9a123e6da097"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9edda2df81daa129b25a39b86cb57dfdfe16f7ec15b42b19bfac503360d27a93"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win32.whl", hash = "sha256:ea0eb6af8a17fa272f7b98d7bebfab7836a0d62738e16ba380f440fceca2d951"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:4ff9dc6bc1664bb9eec25cd17506ef6672d506115095411e237d571e92a58231"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2eb7735ee73ca1b0d71e0e67c3739c689067f055c764f73aac4cc8ecf958ee3f"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a534f43bc738181aa7cbbaf48e3eca62c76453a40a746ab95d4b27b1111a7d2"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:aedd5dd8692635813368e558a05266b995d3d020b23e49581ddd5bbe197a8ab6"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8be4700cd8bb02cc454f630dcdf7cfa99de96788b80c51b60fe2fe1dac480289"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fcc03fa4997c447dce58264e93b5aa2d57714fbe0f06c07b7785ae131512732"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:402b190912935d3db15b03e8f7485812db350d271b284ded2b80d2e5704be780"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8685fa9c25ff00f550c1fec650430c4b71e4e48e8d852f7ddcf2e48308038640"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:76589c020680778f06b7e0b193f4b6dd66d470234a16e1df90329f5e14a171cd"}, + {file = "pyzmq-26.2.0-cp38-cp38-win32.whl", hash = "sha256:8423c1877d72c041f2c263b1ec6e34360448decfb323fa8b94e85883043ef988"}, + {file = "pyzmq-26.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:76589f2cd6b77b5bdea4fca5992dc1c23389d68b18ccc26a53680ba2dc80ff2f"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b1d464cb8d72bfc1a3adc53305a63a8e0cac6bc8c5a07e8ca190ab8d3faa43c2"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4da04c48873a6abdd71811c5e163bd656ee1b957971db7f35140a2d573f6949c"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d049df610ac811dcffdc147153b414147428567fbbc8be43bb8885f04db39d98"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c811cfcd6a9bf680236c40c6f617187515269ab2912f3d7e8c0174898e2519db"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6835dd60355593de10350394242b5757fbbd88b25287314316f266e24c61d073"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc6bee759a6bddea5db78d7dcd609397449cb2d2d6587f48f3ca613b19410cfc"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c530e1eecd036ecc83c3407f77bb86feb79916d4a33d11394b8234f3bd35b940"}, + {file = "pyzmq-26.2.0-cp39-cp39-win32.whl", hash = "sha256:367b4f689786fca726ef7a6c5ba606958b145b9340a5e4808132cc65759abd44"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e6fa2e3e683f34aea77de8112f6483803c96a44fd726d7358b9888ae5bb394ec"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:7445be39143a8aa4faec43b076e06944b8f9d0701b669df4af200531b21e40bb"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2ea4ad4e6a12e454de05f2949d4beddb52460f3de7c8b9d5c46fbb7d7222e02c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fc4f7a173a5609631bb0c42c23d12c49df3966f89f496a51d3eb0ec81f4519d6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:878206a45202247781472a2d99df12a176fef806ca175799e1c6ad263510d57c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17c412bad2eb9468e876f556eb4ee910e62d721d2c7a53c7fa31e643d35352e6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0d987a3ae5a71c6226b203cfd298720e0086c7fe7c74f35fa8edddfbd6597eed"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:39887ac397ff35b7b775db7201095fc6310a35fdbae85bac4523f7eb3b840e20"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fdb5b3e311d4d4b0eb8b3e8b4d1b0a512713ad7e6a68791d0923d1aec433d919"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:226af7dcb51fdb0109f0016449b357e182ea0ceb6b47dfb5999d569e5db161d5"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bed0e799e6120b9c32756203fb9dfe8ca2fb8467fed830c34c877e25638c3fc"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:29c7947c594e105cb9e6c466bace8532dc1ca02d498684128b339799f5248277"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cdeabcff45d1c219636ee2e54d852262e5c2e085d6cb476d938aee8d921356b3"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35cffef589bcdc587d06f9149f8d5e9e8859920a071df5a2671de2213bef592a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18c8dc3b7468d8b4bdf60ce9d7141897da103c7a4690157b32b60acb45e333e6"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7133d0a1677aec369d67dd78520d3fa96dd7f3dcec99d66c1762870e5ea1a50a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a96179a24b14fa6428cbfc08641c779a53f8fcec43644030328f44034c7f1f4"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4f78c88905461a9203eac9faac157a2a0dbba84a0fd09fd29315db27be40af9f"}, + {file = "pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "regex" +version = "2024.11.6" +description = "Alternative regular expression module, to replace re." +optional = false +python-versions = ">=3.8" +files = [ + {file = "regex-2024.11.6-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ff590880083d60acc0433f9c3f713c51f7ac6ebb9adf889c79a261ecf541aa91"}, + {file = "regex-2024.11.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:658f90550f38270639e83ce492f27d2c8d2cd63805c65a13a14d36ca126753f0"}, + {file = "regex-2024.11.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:164d8b7b3b4bcb2068b97428060b2a53be050085ef94eca7f240e7947f1b080e"}, + {file = "regex-2024.11.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d3660c82f209655a06b587d55e723f0b813d3a7db2e32e5e7dc64ac2a9e86fde"}, + {file = "regex-2024.11.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d22326fcdef5e08c154280b71163ced384b428343ae16a5ab2b3354aed12436e"}, + {file = "regex-2024.11.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f1ac758ef6aebfc8943560194e9fd0fa18bcb34d89fd8bd2af18183afd8da3a2"}, + {file = "regex-2024.11.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:997d6a487ff00807ba810e0f8332c18b4eb8d29463cfb7c820dc4b6e7562d0cf"}, + {file = "regex-2024.11.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:02a02d2bb04fec86ad61f3ea7f49c015a0681bf76abb9857f945d26159d2968c"}, + {file = "regex-2024.11.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f02f93b92358ee3f78660e43b4b0091229260c5d5c408d17d60bf26b6c900e86"}, + {file = "regex-2024.11.6-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:06eb1be98df10e81ebaded73fcd51989dcf534e3c753466e4b60c4697a003b67"}, + {file = "regex-2024.11.6-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:040df6fe1a5504eb0f04f048e6d09cd7c7110fef851d7c567a6b6e09942feb7d"}, + {file = "regex-2024.11.6-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:fdabbfc59f2c6edba2a6622c647b716e34e8e3867e0ab975412c5c2f79b82da2"}, + {file = "regex-2024.11.6-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:8447d2d39b5abe381419319f942de20b7ecd60ce86f16a23b0698f22e1b70008"}, + {file = "regex-2024.11.6-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:da8f5fc57d1933de22a9e23eec290a0d8a5927a5370d24bda9a6abe50683fe62"}, + {file = "regex-2024.11.6-cp310-cp310-win32.whl", hash = "sha256:b489578720afb782f6ccf2840920f3a32e31ba28a4b162e13900c3e6bd3f930e"}, + {file = "regex-2024.11.6-cp310-cp310-win_amd64.whl", hash = "sha256:5071b2093e793357c9d8b2929dfc13ac5f0a6c650559503bb81189d0a3814519"}, + {file = "regex-2024.11.6-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:5478c6962ad548b54a591778e93cd7c456a7a29f8eca9c49e4f9a806dcc5d638"}, + {file = "regex-2024.11.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2c89a8cc122b25ce6945f0423dc1352cb9593c68abd19223eebbd4e56612c5b7"}, + {file = "regex-2024.11.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:94d87b689cdd831934fa3ce16cc15cd65748e6d689f5d2b8f4f4df2065c9fa20"}, + {file = "regex-2024.11.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1062b39a0a2b75a9c694f7a08e7183a80c63c0d62b301418ffd9c35f55aaa114"}, + {file = "regex-2024.11.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:167ed4852351d8a750da48712c3930b031f6efdaa0f22fa1933716bfcd6bf4a3"}, + {file = "regex-2024.11.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2d548dafee61f06ebdb584080621f3e0c23fff312f0de1afc776e2a2ba99a74f"}, + {file = "regex-2024.11.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2a19f302cd1ce5dd01a9099aaa19cae6173306d1302a43b627f62e21cf18ac0"}, + {file = "regex-2024.11.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bec9931dfb61ddd8ef2ebc05646293812cb6b16b60cf7c9511a832b6f1854b55"}, + {file = "regex-2024.11.6-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:9714398225f299aa85267fd222f7142fcb5c769e73d7733344efc46f2ef5cf89"}, + {file = "regex-2024.11.6-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:202eb32e89f60fc147a41e55cb086db2a3f8cb82f9a9a88440dcfc5d37faae8d"}, + {file = "regex-2024.11.6-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:4181b814e56078e9b00427ca358ec44333765f5ca1b45597ec7446d3a1ef6e34"}, + {file = "regex-2024.11.6-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:068376da5a7e4da51968ce4c122a7cd31afaaec4fccc7856c92f63876e57b51d"}, + {file = "regex-2024.11.6-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f2c4184420d881a3475fb2c6f4d95d53a8d50209a2500723d831036f7c45"}, + {file = "regex-2024.11.6-cp311-cp311-win32.whl", hash = "sha256:c36f9b6f5f8649bb251a5f3f66564438977b7ef8386a52460ae77e6070d309d9"}, + {file = "regex-2024.11.6-cp311-cp311-win_amd64.whl", hash = "sha256:02e28184be537f0e75c1f9b2f8847dc51e08e6e171c6bde130b2687e0c33cf60"}, + {file = "regex-2024.11.6-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:52fb28f528778f184f870b7cf8f225f5eef0a8f6e3778529bdd40c7b3920796a"}, + {file = "regex-2024.11.6-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:fdd6028445d2460f33136c55eeb1f601ab06d74cb3347132e1c24250187500d9"}, + {file = "regex-2024.11.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:805e6b60c54bf766b251e94526ebad60b7de0c70f70a4e6210ee2891acb70bf2"}, + {file = "regex-2024.11.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b85c2530be953a890eaffde05485238f07029600e8f098cdf1848d414a8b45e4"}, + {file = "regex-2024.11.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb26437975da7dc36b7efad18aa9dd4ea569d2357ae6b783bf1118dabd9ea577"}, + {file = "regex-2024.11.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:abfa5080c374a76a251ba60683242bc17eeb2c9818d0d30117b4486be10c59d3"}, + {file = "regex-2024.11.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b7fa6606c2881c1db9479b0eaa11ed5dfa11c8d60a474ff0e095099f39d98e"}, + {file = "regex-2024.11.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0c32f75920cf99fe6b6c539c399a4a128452eaf1af27f39bce8909c9a3fd8cbe"}, + {file = "regex-2024.11.6-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:982e6d21414e78e1f51cf595d7f321dcd14de1f2881c5dc6a6e23bbbbd68435e"}, + {file = "regex-2024.11.6-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:a7c2155f790e2fb448faed6dd241386719802296ec588a8b9051c1f5c481bc29"}, + {file = "regex-2024.11.6-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:149f5008d286636e48cd0b1dd65018548944e495b0265b45e1bffecce1ef7f39"}, + {file = "regex-2024.11.6-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:e5364a4502efca094731680e80009632ad6624084aff9a23ce8c8c6820de3e51"}, + {file = "regex-2024.11.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0a86e7eeca091c09e021db8eb72d54751e527fa47b8d5787caf96d9831bd02ad"}, + {file = "regex-2024.11.6-cp312-cp312-win32.whl", hash = "sha256:32f9a4c643baad4efa81d549c2aadefaeba12249b2adc5af541759237eee1c54"}, + {file = "regex-2024.11.6-cp312-cp312-win_amd64.whl", hash = "sha256:a93c194e2df18f7d264092dc8539b8ffb86b45b899ab976aa15d48214138e81b"}, + {file = "regex-2024.11.6-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a6ba92c0bcdf96cbf43a12c717eae4bc98325ca3730f6b130ffa2e3c3c723d84"}, + {file = "regex-2024.11.6-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:525eab0b789891ac3be914d36893bdf972d483fe66551f79d3e27146191a37d4"}, + {file = "regex-2024.11.6-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:086a27a0b4ca227941700e0b31425e7a28ef1ae8e5e05a33826e17e47fbfdba0"}, + {file = "regex-2024.11.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bde01f35767c4a7899b7eb6e823b125a64de314a8ee9791367c9a34d56af18d0"}, + {file = "regex-2024.11.6-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b583904576650166b3d920d2bcce13971f6f9e9a396c673187f49811b2769dc7"}, + {file = "regex-2024.11.6-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c4de13f06a0d54fa0d5ab1b7138bfa0d883220965a29616e3ea61b35d5f5fc7"}, + {file = "regex-2024.11.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3cde6e9f2580eb1665965ce9bf17ff4952f34f5b126beb509fee8f4e994f143c"}, + {file = "regex-2024.11.6-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0d7f453dca13f40a02b79636a339c5b62b670141e63efd511d3f8f73fba162b3"}, + {file = "regex-2024.11.6-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:59dfe1ed21aea057a65c6b586afd2a945de04fc7db3de0a6e3ed5397ad491b07"}, + {file = "regex-2024.11.6-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:b97c1e0bd37c5cd7902e65f410779d39eeda155800b65fc4d04cc432efa9bc6e"}, + {file = "regex-2024.11.6-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:f9d1e379028e0fc2ae3654bac3cbbef81bf3fd571272a42d56c24007979bafb6"}, + {file = "regex-2024.11.6-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:13291b39131e2d002a7940fb176e120bec5145f3aeb7621be6534e46251912c4"}, + {file = "regex-2024.11.6-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4f51f88c126370dcec4908576c5a627220da6c09d0bff31cfa89f2523843316d"}, + {file = "regex-2024.11.6-cp313-cp313-win32.whl", hash = "sha256:63b13cfd72e9601125027202cad74995ab26921d8cd935c25f09c630436348ff"}, + {file = "regex-2024.11.6-cp313-cp313-win_amd64.whl", hash = "sha256:2b3361af3198667e99927da8b84c1b010752fa4b1115ee30beaa332cabc3ef1a"}, + {file = "regex-2024.11.6-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:3a51ccc315653ba012774efca4f23d1d2a8a8f278a6072e29c7147eee7da446b"}, + {file = "regex-2024.11.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ad182d02e40de7459b73155deb8996bbd8e96852267879396fb274e8700190e3"}, + {file = "regex-2024.11.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ba9b72e5643641b7d41fa1f6d5abda2c9a263ae835b917348fc3c928182ad467"}, + {file = "regex-2024.11.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40291b1b89ca6ad8d3f2b82782cc33807f1406cf68c8d440861da6304d8ffbbd"}, + {file = "regex-2024.11.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cdf58d0e516ee426a48f7b2c03a332a4114420716d55769ff7108c37a09951bf"}, + {file = "regex-2024.11.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a36fdf2af13c2b14738f6e973aba563623cb77d753bbbd8d414d18bfaa3105dd"}, + {file = "regex-2024.11.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1cee317bfc014c2419a76bcc87f071405e3966da434e03e13beb45f8aced1a6"}, + {file = "regex-2024.11.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:50153825ee016b91549962f970d6a4442fa106832e14c918acd1c8e479916c4f"}, + {file = "regex-2024.11.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ea1bfda2f7162605f6e8178223576856b3d791109f15ea99a9f95c16a7636fb5"}, + {file = "regex-2024.11.6-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:df951c5f4a1b1910f1a99ff42c473ff60f8225baa1cdd3539fe2819d9543e9df"}, + {file = "regex-2024.11.6-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:072623554418a9911446278f16ecb398fb3b540147a7828c06e2011fa531e773"}, + {file = "regex-2024.11.6-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:f654882311409afb1d780b940234208a252322c24a93b442ca714d119e68086c"}, + {file = "regex-2024.11.6-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:89d75e7293d2b3e674db7d4d9b1bee7f8f3d1609428e293771d1a962617150cc"}, + {file = "regex-2024.11.6-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:f65557897fc977a44ab205ea871b690adaef6b9da6afda4790a2484b04293a5f"}, + {file = "regex-2024.11.6-cp38-cp38-win32.whl", hash = "sha256:6f44ec28b1f858c98d3036ad5d7d0bfc568bdd7a74f9c24e25f41ef1ebfd81a4"}, + {file = "regex-2024.11.6-cp38-cp38-win_amd64.whl", hash = "sha256:bb8f74f2f10dbf13a0be8de623ba4f9491faf58c24064f32b65679b021ed0001"}, + {file = "regex-2024.11.6-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5704e174f8ccab2026bd2f1ab6c510345ae8eac818b613d7d73e785f1310f839"}, + {file = "regex-2024.11.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:220902c3c5cc6af55d4fe19ead504de80eb91f786dc102fbd74894b1551f095e"}, + {file = "regex-2024.11.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5e7e351589da0850c125f1600a4c4ba3c722efefe16b297de54300f08d734fbf"}, + {file = "regex-2024.11.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5056b185ca113c88e18223183aa1a50e66507769c9640a6ff75859619d73957b"}, + {file = "regex-2024.11.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2e34b51b650b23ed3354b5a07aab37034d9f923db2a40519139af34f485f77d0"}, + {file = "regex-2024.11.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5670bce7b200273eee1840ef307bfa07cda90b38ae56e9a6ebcc9f50da9c469b"}, + {file = "regex-2024.11.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:08986dce1339bc932923e7d1232ce9881499a0e02925f7402fb7c982515419ef"}, + {file = "regex-2024.11.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:93c0b12d3d3bc25af4ebbf38f9ee780a487e8bf6954c115b9f015822d3bb8e48"}, + {file = "regex-2024.11.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:764e71f22ab3b305e7f4c21f1a97e1526a25ebdd22513e251cf376760213da13"}, + {file = "regex-2024.11.6-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:f056bf21105c2515c32372bbc057f43eb02aae2fda61052e2f7622c801f0b4e2"}, + {file = "regex-2024.11.6-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:69ab78f848845569401469da20df3e081e6b5a11cb086de3eed1d48f5ed57c95"}, + {file = "regex-2024.11.6-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:86fddba590aad9208e2fa8b43b4c098bb0ec74f15718bb6a704e3c63e2cef3e9"}, + {file = "regex-2024.11.6-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:684d7a212682996d21ca12ef3c17353c021fe9de6049e19ac8481ec35574a70f"}, + {file = "regex-2024.11.6-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:a03e02f48cd1abbd9f3b7e3586d97c8f7a9721c436f51a5245b3b9483044480b"}, + {file = "regex-2024.11.6-cp39-cp39-win32.whl", hash = "sha256:41758407fc32d5c3c5de163888068cfee69cb4c2be844e7ac517a52770f9af57"}, + {file = "regex-2024.11.6-cp39-cp39-win_amd64.whl", hash = "sha256:b2837718570f95dd41675328e111345f9b7095d821bac435aac173ac80b19983"}, + {file = "regex-2024.11.6.tar.gz", hash = "sha256:7ab159b063c52a0333c884e4679f8d7a85112ee3078fe3d9004b2dd875585519"}, +] + +[[package]] +name = "requests" +version = "2.32.3" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.8" +files = [ + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + +[[package]] +name = "requests-oauthlib" +version = "2.0.0" +description = "OAuthlib authentication support for Requests." +optional = false +python-versions = ">=3.4" +files = [ + {file = "requests-oauthlib-2.0.0.tar.gz", hash = "sha256:b3dffaebd884d8cd778494369603a9e7b58d29111bf6b41bdc2dcd87203af4e9"}, + {file = "requests_oauthlib-2.0.0-py2.py3-none-any.whl", hash = "sha256:7dd8a5c40426b779b0868c404bdef9768deccf22749cde15852df527e6269b36"}, +] + +[package.dependencies] +oauthlib = ">=3.0.0" +requests = ">=2.0.0" + +[package.extras] +rsa = ["oauthlib[signedtoken] (>=3.0.0)"] + +[[package]] +name = "rich" +version = "13.9.4" +description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal" +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "rich-13.9.4-py3-none-any.whl", hash = "sha256:6049d5e6ec054bf2779ab3358186963bac2ea89175919d699e378b99738c2a90"}, + {file = "rich-13.9.4.tar.gz", hash = "sha256:439594978a49a09530cff7ebc4b5c7103ef57baf48d5ea3184f21d9a2befa098"}, +] + +[package.dependencies] +markdown-it-py = ">=2.2.0" +pygments = ">=2.13.0,<3.0.0" +typing-extensions = {version = ">=4.0.0,<5.0", markers = "python_version < \"3.11\""} + +[package.extras] +jupyter = ["ipywidgets (>=7.5.1,<9)"] + +[[package]] +name = "rsa" +version = "4.9" +description = "Pure-Python RSA implementation" +optional = false +python-versions = ">=3.6,<4" +files = [ + {file = "rsa-4.9-py3-none-any.whl", hash = "sha256:90260d9058e514786967344d0ef75fa8727eed8a7d2e43ce9f4bcf1b536174f7"}, + {file = "rsa-4.9.tar.gz", hash = "sha256:e38464a49c6c85d7f1351b0126661487a7e0a14a50f1675ec50eb34d4f20ef21"}, +] + +[package.dependencies] +pyasn1 = ">=0.1.3" + +[[package]] +name = "scikit-learn" +version = "0.24.0" +description = "A set of python modules for machine learning and data mining" +optional = false +python-versions = ">=3.6" +files = [ + {file = "scikit-learn-0.24.0.tar.gz", hash = "sha256:076369634ee72b5a5941440661e2f306ff4ac30903802dc52031c7e9199ac640"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:890d7d588f65acb0c4f6c083347c9076916bda5e6bd8400f06244b1afc1009af"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:e534f5f3796db6781c87e9835dcd51b7854c8c5a379c9210b93605965c1941fd"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:d7fe05fcb44eadd6d6c874c768f085f5de1239db3a3b7be4d3d23d12e4120589"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:7f654befc5ad413690cc58f3f34a3e906caf825195ce0fda00a8e9565e1403e6"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-win32.whl", hash = "sha256:afeb06dc69847927634e58579b9cdc72e1390b79497336b2324b1b173f33bd47"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-win_amd64.whl", hash = "sha256:26f66b3726b54dfb76ea51c5d9c2431ed17ebc066cb4527662b9e851a3e7ba61"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c08b27cb78ee8d2dc781a7affed09859441f5b624f9f92da59ac0791c8774dfc"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:905d8934d1e27a686698864a5863ff2c0e13a2ae1adb78a8a848aacc8a49927d"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:d819d625832fb2969911a243e009cfa135cb8ef1e150866e417d6e9d75290087"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:18f7131e62265bf2691ed1d0303c640313894ccfe4278427478c6b2f45094b53"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-win32.whl", hash = "sha256:b0d13fd56d26cf3de0314a4fd48037108c638fe126d813f5c1222bb0f08b6a76"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-win_amd64.whl", hash = "sha256:c912247e42114f389858ae05d63f4359d4e667ea72aaabee191aee9ad3f9774a"}, + {file = "scikit_learn-0.24.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:758619e49cd7c17282e6cc60d5cc73c02c072b47c9a10010bb3bb47e0d976e50"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:66f27bf21202a850bcd7b6303916e4907f6e22ec59a14974ede4955aed5c7ed0"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:5e6e3c042cea83f2e20a45e563b8eabc1f8f72446251fe23ebefdf111a173a33"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:2a5348585aa793bc8cc5a72f8e9067c9380834b0aadbd55f924843b071f13282"}, + {file = "scikit_learn-0.24.0-cp38-cp38-win32.whl", hash = "sha256:743b6edd98c98991be46c08e6b21df3861d5ae915f91d59f988384d93f7263e7"}, + {file = "scikit_learn-0.24.0-cp38-cp38-win_amd64.whl", hash = "sha256:2951f87d35e72f007701c6e028aa230f6df6212a3194677c0c950486066a454d"}, + {file = "scikit_learn-0.24.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:44e452ea8491225c5783d49577aad0f36202dfd52aec7f82c0fdfe5fbd5f7400"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:800aaf63f8838c00e85db2267dd226f89858594843fd03932a9eda95746d2c40"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:3eeff086f7329521d27249a082ea3c48c085cedb110db5f65968ab55c3ba2e09"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:4395e91b3548005f4a645018435b5a94f8cce232b5b70753020e606c6a750656"}, + {file = "scikit_learn-0.24.0-cp39-cp39-win32.whl", hash = "sha256:80ca024154b84b6ac4cfc86930ba13fdc348a209753bf2c16129db6f9eb8a80b"}, + {file = "scikit_learn-0.24.0-cp39-cp39-win_amd64.whl", hash = "sha256:490436b44b3a1957cb625e871764b0aa330b34cc416aea4abc6c38ca63d0d682"}, +] + +[package.dependencies] +joblib = ">=0.11" +numpy = ">=1.13.3" +scipy = ">=0.19.1" +threadpoolctl = ">=2.0.0" + +[package.extras] +benchmark = ["matplotlib (>=2.1.1)", "memory-profiler (>=0.57.0)", "pandas (>=0.25.0)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=2.1.1)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.0.0)", "pandas (>=0.25.0)", "scikit-image (>=0.13)", "seaborn (>=0.9.0)", "sphinx (>=3.2.0)", "sphinx-gallery (>=0.7.0)", "sphinx-prompt (>=1.3.0)"] +examples = ["matplotlib (>=2.1.1)", "pandas (>=0.25.0)", "scikit-image (>=0.13)", "seaborn (>=0.9.0)"] +tests = ["flake8 (>=3.8.2)", "matplotlib (>=2.1.1)", "mypy (>=0.770)", "pandas (>=0.25.0)", "pyamg (>=4.0.0)", "pytest (>=5.0.1)", "pytest-cov (>=2.9.0)", "scikit-image (>=0.13)"] + +[[package]] +name = "scipy" +version = "1.10.1" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = "<3.12,>=3.8" +files = [ + {file = "scipy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e7354fd7527a4b0377ce55f286805b34e8c54b91be865bac273f527e1b839019"}, + {file = "scipy-1.10.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4b3f429188c66603a1a5c549fb414e4d3bdc2a24792e061ffbd607d3d75fd84e"}, + {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1553b5dcddd64ba9a0d95355e63fe6c3fc303a8fd77c7bc91e77d61363f7433f"}, + {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c0ff64b06b10e35215abce517252b375e580a6125fd5fdf6421b98efbefb2d2"}, + {file = "scipy-1.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:fae8a7b898c42dffe3f7361c40d5952b6bf32d10c4569098d276b4c547905ee1"}, + {file = "scipy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f1564ea217e82c1bbe75ddf7285ba0709ecd503f048cb1236ae9995f64217bd"}, + {file = "scipy-1.10.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d925fa1c81b772882aa55bcc10bf88324dadb66ff85d548c71515f6689c6dac5"}, + {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaea0a6be54462ec027de54fca511540980d1e9eea68b2d5c1dbfe084797be35"}, + {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15a35c4242ec5f292c3dd364a7c71a61be87a3d4ddcc693372813c0b73c9af1d"}, + {file = "scipy-1.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:43b8e0bcb877faf0abfb613d51026cd5cc78918e9530e375727bf0625c82788f"}, + {file = "scipy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5678f88c68ea866ed9ebe3a989091088553ba12c6090244fdae3e467b1139c35"}, + {file = "scipy-1.10.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:39becb03541f9e58243f4197584286e339029e8908c46f7221abeea4b749fa88"}, + {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bce5869c8d68cf383ce240e44c1d9ae7c06078a9396df68ce88a1230f93a30c1"}, + {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07c3457ce0b3ad5124f98a86533106b643dd811dd61b548e78cf4c8786652f6f"}, + {file = "scipy-1.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:049a8bbf0ad95277ffba9b3b7d23e5369cc39e66406d60422c8cfef40ccc8415"}, + {file = "scipy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cd9f1027ff30d90618914a64ca9b1a77a431159df0e2a195d8a9e8a04c78abf9"}, + {file = "scipy-1.10.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:79c8e5a6c6ffaf3a2262ef1be1e108a035cf4f05c14df56057b64acc5bebffb6"}, + {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51af417a000d2dbe1ec6c372dfe688e041a7084da4fdd350aeb139bd3fb55353"}, + {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b4735d6c28aad3cdcf52117e0e91d6b39acd4272f3f5cd9907c24ee931ad601"}, + {file = "scipy-1.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ff7f37b1bf4417baca958d254e8e2875d0cc23aaadbe65b3d5b3077b0eb23ea"}, + {file = "scipy-1.10.1.tar.gz", hash = "sha256:2cf9dfb80a7b4589ba4c40ce7588986d6d5cebc5457cad2c2880f6bc2d42f3a5"}, +] + +[package.dependencies] +numpy = ">=1.19.5,<1.27.0" + +[package.extras] +dev = ["click", "doit (>=0.36.0)", "flake8", "mypy", "pycodestyle", "pydevtool", "rich-click", "typing_extensions"] +doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] +test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "setuptools" +version = "75.3.0" +description = "Easily download, build, install, upgrade, and uninstall Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "setuptools-75.3.0-py3-none-any.whl", hash = "sha256:f2504966861356aa38616760c0f66568e535562374995367b4e69c7143cf6bcd"}, + {file = "setuptools-75.3.0.tar.gz", hash = "sha256:fba5dd4d766e97be1b1681d98712680ae8f2f26d7881245f2ce9e40714f1a686"}, +] + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.collections", "jaraco.functools", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24)", "platformdirs (>=4.2.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test (>=5.5)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.12.*)", "pytest-mypy"] + +[[package]] +name = "shellingham" +version = "1.5.4" +description = "Tool to Detect Surrounding Shell" +optional = false +python-versions = ">=3.7" +files = [ + {file = "shellingham-1.5.4-py2.py3-none-any.whl", hash = "sha256:7ecfff8f2fd72616f7481040475a65b2bf8af90a56c89140852d1120324e8686"}, + {file = "shellingham-1.5.4.tar.gz", hash = "sha256:8dbca0739d487e5bd35ab3ca4b36e11c4078f3a234bfce294b0a0291363404de"}, +] + +[[package]] +name = "six" +version = "1.16.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, + {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, +] + +[[package]] +name = "smart-open" +version = "7.0.5" +description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)" +optional = false +python-versions = "<4.0,>=3.7" +files = [ + {file = "smart_open-7.0.5-py3-none-any.whl", hash = "sha256:8523ed805c12dff3eaa50e9c903a6cb0ae78800626631c5fe7ea073439847b89"}, + {file = "smart_open-7.0.5.tar.gz", hash = "sha256:d3672003b1dbc85e2013e4983b88eb9a5ccfd389b0d4e5015f39a9ee5620ec18"}, +] + +[package.dependencies] +wrapt = "*" + +[package.extras] +all = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "paramiko", "requests", "zstandard"] +azure = ["azure-common", "azure-core", "azure-storage-blob"] +gcs = ["google-cloud-storage (>=2.6.0)"] +http = ["requests"] +s3 = ["boto3"] +ssh = ["paramiko"] +test = ["awscli", "azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "numpy", "paramiko", "pyopenssl", "pytest", "pytest-benchmark", "pytest-rerunfailures", "requests", "responses", "zstandard"] +webhdfs = ["requests"] +zst = ["zstandard"] + +[[package]] +name = "spacy" +version = "3.7.5" +description = "Industrial-strength Natural Language Processing (NLP) in Python" +optional = false +python-versions = ">=3.7" +files = [ + {file = "spacy-3.7.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8002897701429ee2ab5ff6921ae43560f4cd17184cb1e10dad761901c12dcb85"}, + {file = "spacy-3.7.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:43acd19efc845e9126b61a05ed7508a0aff509e96e15563f30f810c19e636b7c"}, + {file = "spacy-3.7.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f044522b1271ea54718dc43b6f593b5dad349cd31b3827764c501529b599e09a"}, + {file = "spacy-3.7.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a7dbfbca42c1c128fefa6832631fe49e11c850e963af99229f14e2d0ae94f34"}, + {file = "spacy-3.7.5-cp310-cp310-win_amd64.whl", hash = "sha256:2a21b2a1e1e5d10d15c6f75990b7341d0fc9b454083dfd4222fdd75b9164831c"}, + {file = "spacy-3.7.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cd93c34bf2a02bbed7df73d42aed8df5e3eb9688c4ea84ec576f740ba939cce5"}, + {file = "spacy-3.7.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:190ba0032a5efdb138487c587c0ebb7a98f86adb917f464b252ee8766b8eec4a"}, + {file = "spacy-3.7.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:38de1c9bbb73b8cdfea2dd6e57450f093c1a1af47515870c1c8640b85b35ab16"}, + {file = "spacy-3.7.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3dad4853950a2fe6c7a0bdfd791a762d1f8cedd2915c4ae41b2e0ca3a850eefc"}, + {file = "spacy-3.7.5-cp311-cp311-win_amd64.whl", hash = "sha256:4e00d076871af784c2e43185a71ee676b58893853a05c5b81717b8af2b666c07"}, + {file = "spacy-3.7.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:bf54c3c2425428b328b53a65913d47eb4cb27a1429aa4e8ed979ffc97d4663e0"}, + {file = "spacy-3.7.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4145cea7f9814fa7d86b2028c2dd83e02f13f80d5ac604a400b2f7d7b26a0e8c"}, + {file = "spacy-3.7.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:262f8ebb71f7ed5ffe8e4f384b2594b7a296be50241ce9fbd9277b5da2f46f38"}, + {file = "spacy-3.7.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:faa1e2b6234ae33c0b1f8dfa5a8dcb66fb891f19231725dfcff4b2666125c250"}, + {file = "spacy-3.7.5-cp312-cp312-win_amd64.whl", hash = "sha256:07677e270a6d729453cc04b5e2247a96a86320b8845e6428d9f90f217eff0f56"}, + {file = "spacy-3.7.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3e207dda0639818e2ef8f12e3df82a526de118cc09082b0eee3053ebcd9f8332"}, + {file = "spacy-3.7.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5694dd3b2f6414c18e2a3f31111cd41ffd597e1d614b51c5779f85ff07f08f6c"}, + {file = "spacy-3.7.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d211920ff73d68b8febb1d293f10accbd54f2b2228ecd3530548227b750252b1"}, + {file = "spacy-3.7.5-cp37-cp37m-win_amd64.whl", hash = "sha256:1171bf4d8541c18a83441be01feb6c735ffc02e9308810cd691c8900a6678cd5"}, + {file = "spacy-3.7.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d9108f67675fb2078ed77cda61fd4cfc197f9256c28d35cfd946dcb080190ddc"}, + {file = "spacy-3.7.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:12fdc01a4391299a47f16915505cc515fd059e71c7239904e216523354eeb9d9"}, + {file = "spacy-3.7.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7f8fbe9f6b9de1bf05d163a9dd88108b8f20b138986e6ed36f960832e3fcab33"}, + {file = "spacy-3.7.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d244d524ab5a33530ac5c50fc92c9a41da6c3980f452048b9fc29e1ff1bdd03e"}, + {file = "spacy-3.7.5-cp38-cp38-win_amd64.whl", hash = "sha256:8b493a8b79a7f3754102fa5ef7e2615568a390fec7ea20db49af55e5f0841fcf"}, + {file = "spacy-3.7.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fdbb667792d6ca93899645774d1db3fccc327088a92072029be1e4bc25d7cf15"}, + {file = "spacy-3.7.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4cfb85309e11a39681c9d4941aebb95c1f5e2e3b77a61a5451e2c3849da4b92e"}, + {file = "spacy-3.7.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b0bf1788ca397eef8e67e9c07cfd9287adac438512dd191e6e6ca0f36357201"}, + {file = "spacy-3.7.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:591d90d8504e9bd5be5b482be7c6d6a974afbaeb62c3181e966f4e407e0ab300"}, + {file = "spacy-3.7.5-cp39-cp39-win_amd64.whl", hash = "sha256:713b56fe008c79df01617f3602a0b7e523292211337eb999bdffb910ea1f4825"}, + {file = "spacy-3.7.5.tar.gz", hash = "sha256:a648c6cbf2acc7a55a69ee9e7fa4f22bdf69aa828a587a1bc5cfff08cf3c2dd3"}, +] + +[package.dependencies] +catalogue = ">=2.0.6,<2.1.0" +cymem = ">=2.0.2,<2.1.0" +jinja2 = "*" +langcodes = ">=3.2.0,<4.0.0" +murmurhash = ">=0.28.0,<1.1.0" +numpy = {version = ">=1.15.0", markers = "python_version < \"3.9\""} +packaging = ">=20.0" +preshed = ">=3.0.2,<3.1.0" +pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<3.0.0" +requests = ">=2.13.0,<3.0.0" +setuptools = "*" +spacy-legacy = ">=3.0.11,<3.1.0" +spacy-loggers = ">=1.0.0,<2.0.0" +srsly = ">=2.4.3,<3.0.0" +thinc = ">=8.2.2,<8.3.0" +tqdm = ">=4.38.0,<5.0.0" +typer = ">=0.3.0,<1.0.0" +wasabi = ">=0.9.1,<1.2.0" +weasel = ">=0.1.0,<0.5.0" + +[package.extras] +apple = ["thinc-apple-ops (>=0.1.0.dev0,<1.0.0)"] +cuda = ["cupy (>=5.0.0b4,<13.0.0)"] +cuda-autodetect = ["cupy-wheel (>=11.0.0,<13.0.0)"] +cuda100 = ["cupy-cuda100 (>=5.0.0b4,<13.0.0)"] +cuda101 = ["cupy-cuda101 (>=5.0.0b4,<13.0.0)"] +cuda102 = ["cupy-cuda102 (>=5.0.0b4,<13.0.0)"] +cuda110 = ["cupy-cuda110 (>=5.0.0b4,<13.0.0)"] +cuda111 = ["cupy-cuda111 (>=5.0.0b4,<13.0.0)"] +cuda112 = ["cupy-cuda112 (>=5.0.0b4,<13.0.0)"] +cuda113 = ["cupy-cuda113 (>=5.0.0b4,<13.0.0)"] +cuda114 = ["cupy-cuda114 (>=5.0.0b4,<13.0.0)"] +cuda115 = ["cupy-cuda115 (>=5.0.0b4,<13.0.0)"] +cuda116 = ["cupy-cuda116 (>=5.0.0b4,<13.0.0)"] +cuda117 = ["cupy-cuda117 (>=5.0.0b4,<13.0.0)"] +cuda11x = ["cupy-cuda11x (>=11.0.0,<13.0.0)"] +cuda12x = ["cupy-cuda12x (>=11.5.0,<13.0.0)"] +cuda80 = ["cupy-cuda80 (>=5.0.0b4,<13.0.0)"] +cuda90 = ["cupy-cuda90 (>=5.0.0b4,<13.0.0)"] +cuda91 = ["cupy-cuda91 (>=5.0.0b4,<13.0.0)"] +cuda92 = ["cupy-cuda92 (>=5.0.0b4,<13.0.0)"] +ja = ["sudachidict-core (>=20211220)", "sudachipy (>=0.5.2,!=0.6.1)"] +ko = ["natto-py (>=0.9.0)"] +lookups = ["spacy-lookups-data (>=1.0.3,<1.1.0)"] +th = ["pythainlp (>=2.0)"] +transformers = ["spacy-transformers (>=1.1.2,<1.4.0)"] + +[[package]] +name = "spacy-legacy" +version = "3.0.12" +description = "Legacy registered functions for spaCy backwards compatibility" +optional = false +python-versions = ">=3.6" +files = [ + {file = "spacy-legacy-3.0.12.tar.gz", hash = "sha256:b37d6e0c9b6e1d7ca1cf5bc7152ab64a4c4671f59c85adaf7a3fcb870357a774"}, + {file = "spacy_legacy-3.0.12-py2.py3-none-any.whl", hash = "sha256:476e3bd0d05f8c339ed60f40986c07387c0a71479245d6d0f4298dbd52cda55f"}, +] + +[[package]] +name = "spacy-loggers" +version = "1.0.5" +description = "Logging utilities for SpaCy" +optional = false +python-versions = ">=3.6" +files = [ + {file = "spacy-loggers-1.0.5.tar.gz", hash = "sha256:d60b0bdbf915a60e516cc2e653baeff946f0cfc461b452d11a4d5458c6fe5f24"}, + {file = "spacy_loggers-1.0.5-py3-none-any.whl", hash = "sha256:196284c9c446cc0cdb944005384270d775fdeaf4f494d8e269466cfa497ef645"}, +] + +[[package]] +name = "srsly" +version = "2.4.8" +description = "Modern high-performance serialization utilities for Python" +optional = false +python-versions = ">=3.6" +files = [ + {file = "srsly-2.4.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:17f3bcb418bb4cf443ed3d4dcb210e491bd9c1b7b0185e6ab10b6af3271e63b2"}, + {file = "srsly-2.4.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0b070a58e21ab0e878fd949f932385abb4c53dd0acb6d3a7ee75d95d447bc609"}, + {file = "srsly-2.4.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98286d20014ed2067ad02b0be1e17c7e522255b188346e79ff266af51a54eb33"}, + {file = "srsly-2.4.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18685084e2e0cc47c25158cbbf3e44690e494ef77d6418c2aae0598c893f35b0"}, + {file = "srsly-2.4.8-cp310-cp310-win_amd64.whl", hash = "sha256:980a179cbf4eb5bc56f7507e53f76720d031bcf0cef52cd53c815720eb2fc30c"}, + {file = "srsly-2.4.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5472ed9f581e10c32e79424c996cf54c46c42237759f4224806a0cd4bb770993"}, + {file = "srsly-2.4.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:50f10afe9230072c5aad9f6636115ea99b32c102f4c61e8236d8642c73ec7a13"}, + {file = "srsly-2.4.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c994a89ba247a4d4f63ef9fdefb93aa3e1f98740e4800d5351ebd56992ac75e3"}, + {file = "srsly-2.4.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ace7ed4a0c20fa54d90032be32f9c656b6d75445168da78d14fe9080a0c208ad"}, + {file = "srsly-2.4.8-cp311-cp311-win_amd64.whl", hash = "sha256:7a919236a090fb93081fbd1cec030f675910f3863825b34a9afbcae71f643127"}, + {file = "srsly-2.4.8-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:7583c03d114b4478b7a357a1915305163e9eac2dfe080da900555c975cca2a11"}, + {file = "srsly-2.4.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:94ccdd2f6db824c31266aaf93e0f31c1c43b8bc531cd2b3a1d924e3c26a4f294"}, + {file = "srsly-2.4.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db72d2974f91aee652d606c7def98744ca6b899bd7dd3009fd75ebe0b5a51034"}, + {file = "srsly-2.4.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a60c905fd2c15e848ce1fc315fd34d8a9cc72c1dee022a0d8f4c62991131307"}, + {file = "srsly-2.4.8-cp312-cp312-win_amd64.whl", hash = "sha256:e0b8d5722057000694edf105b8f492e7eb2f3aa6247a5f0c9170d1e0d074151c"}, + {file = "srsly-2.4.8-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:196b4261f9d6372d1d3d16d1216b90c7e370b4141471322777b7b3c39afd1210"}, + {file = "srsly-2.4.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4750017e6d78590b02b12653e97edd25aefa4734281386cc27501d59b7481e4e"}, + {file = "srsly-2.4.8-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa034cd582ba9e4a120c8f19efa263fcad0f10fc481e73fb8c0d603085f941c4"}, + {file = "srsly-2.4.8-cp36-cp36m-win_amd64.whl", hash = "sha256:5a78ab9e9d177ee8731e950feb48c57380036d462b49e3fb61a67ce529ff5f60"}, + {file = "srsly-2.4.8-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:087e36439af517e259843df93eb34bb9e2d2881c34fa0f541589bcfbc757be97"}, + {file = "srsly-2.4.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ad141d8a130cb085a0ed3a6638b643e2b591cb98a4591996780597a632acfe20"}, + {file = "srsly-2.4.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24d05367b2571c0d08d00459636b951e3ca2a1e9216318c157331f09c33489d3"}, + {file = "srsly-2.4.8-cp37-cp37m-win_amd64.whl", hash = "sha256:3fd661a1c4848deea2849b78f432a70c75d10968e902ca83c07c89c9b7050ab8"}, + {file = "srsly-2.4.8-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ec37233fe39af97b00bf20dc2ceda04d39b9ea19ce0ee605e16ece9785e11f65"}, + {file = "srsly-2.4.8-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:d2fd4bc081f1d6a6063396b6d97b00d98e86d9d3a3ac2949dba574a84e148080"}, + {file = "srsly-2.4.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7347cff1eb4ef3fc335d9d4acc89588051b2df43799e5d944696ef43da79c873"}, + {file = "srsly-2.4.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a9dc1da5cc94d77056b91ba38365c72ae08556b6345bef06257c7e9eccabafe"}, + {file = "srsly-2.4.8-cp38-cp38-win_amd64.whl", hash = "sha256:dc0bf7b6f23c9ecb49ec0924dc645620276b41e160e9b283ed44ca004c060d79"}, + {file = "srsly-2.4.8-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ff8df21d00d73c371bead542cefef365ee87ca3a5660de292444021ff84e3b8c"}, + {file = "srsly-2.4.8-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0ac3e340e65a9fe265105705586aa56054dc3902789fcb9a8f860a218d6c0a00"}, + {file = "srsly-2.4.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:06d1733f4275eff4448e96521cc7dcd8fdabd68ba9b54ca012dcfa2690db2644"}, + {file = "srsly-2.4.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be5b751ad88fdb58fb73871d456248c88204f213aaa3c9aab49b6a1802b3fa8d"}, + {file = "srsly-2.4.8-cp39-cp39-win_amd64.whl", hash = "sha256:822a38b8cf112348f3accbc73274a94b7bf82515cb14a85ba586d126a5a72851"}, + {file = "srsly-2.4.8.tar.gz", hash = "sha256:b24d95a65009c2447e0b49cda043ac53fecf4f09e358d87a57446458f91b8a91"}, +] + +[package.dependencies] +catalogue = ">=2.0.3,<2.1.0" + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "stellargraph" +version = "1.2.1" +description = "Python library for machine learning on graphs" +optional = false +python-versions = ">=3.6.0, <3.9.0" +files = [ + {file = "stellargraph-1.2.1-py3-none-any.whl", hash = "sha256:984a839de4645c9703b8f34a065307498feef38e5160a8f9d7764318a3d4621d"}, + {file = "stellargraph-1.2.1.tar.gz", hash = "sha256:804200a7992465bb5f10da95a3b7748014b0a159f1e79a95517c12a9ff2faed2"}, +] + +[package.dependencies] +gensim = ">=3.4.0" +matplotlib = ">=2.2" +networkx = ">=2.2" +numpy = ">=1.14" +pandas = ">=0.24" +scikit-learn = ">=0.20" +scipy = ">=1.1.0" +tensorflow = ">=2.1.0" + +[package.extras] +demos = ["jupyter", "mplleaflet (==0.0.5)", "numba", "rdflib", "seaborn"] +igraph = ["python-igraph"] +neo4j = ["py2neo"] +test = ["black (>=19.3b0)", "commonmark (==0.9.1)", "coverage (>=4.4,<5.0)", "nbconvert (>=5.5.0)", "papermill (>=2.0.0)", "pytest (==5.3.1)", "pytest-benchmark (>=3.1)", "pytest-cov (>=2.6.0)", "rdflib", "treon (>=0.1.2)"] + +[[package]] +name = "sympy" +version = "1.13.3" +description = "Computer algebra system (CAS) in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "sympy-1.13.3-py3-none-any.whl", hash = "sha256:54612cf55a62755ee71824ce692986f23c88ffa77207b30c1368eda4a7060f73"}, + {file = "sympy-1.13.3.tar.gz", hash = "sha256:b27fd2c6530e0ab39e275fc9b683895367e51d5da91baa8d3d64db2565fec4d9"}, +] + +[package.dependencies] +mpmath = ">=1.1.0,<1.4" + +[package.extras] +dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] + +[[package]] +name = "tensorboard" +version = "2.14.0" +description = "TensorBoard lets you watch Tensors Flow" +optional = false +python-versions = ">=3.8" +files = [ + {file = "tensorboard-2.14.0-py3-none-any.whl", hash = "sha256:3667f9745d99280836ad673022362c840f60ed8fefd5a3e30bf071f5a8fd0017"}, +] + +[package.dependencies] +absl-py = ">=0.4" +google-auth = ">=1.6.3,<3" +google-auth-oauthlib = ">=0.5,<1.1" +grpcio = ">=1.48.2" +markdown = ">=2.6.8" +numpy = ">=1.12.0" +protobuf = ">=3.19.6" +requests = ">=2.21.0,<3" +setuptools = ">=41.0.0" +tensorboard-data-server = ">=0.7.0,<0.8.0" +werkzeug = ">=1.0.1" +wheel = ">=0.26" + +[[package]] +name = "tensorboard-data-server" +version = "0.7.2" +description = "Fast data loading for TensorBoard" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tensorboard_data_server-0.7.2-py3-none-any.whl", hash = "sha256:7e0610d205889588983836ec05dc098e80f97b7e7bbff7e994ebb78f578d0ddb"}, + {file = "tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:9fe5d24221b29625dbc7328b0436ca7fc1c23de4acf4d272f1180856e32f9f60"}, + {file = "tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl", hash = "sha256:ef687163c24185ae9754ed5650eb5bc4d84ff257aabdc33f0cc6f74d8ba54530"}, +] + +[[package]] +name = "tensorflow" +version = "2.7.2" +description = "TensorFlow is an open source machine learning framework for everyone." +optional = false +python-versions = "*" +files = [ + {file = "tensorflow-2.7.2-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:050c2ef8d432eb60f2cb6fc75d751fcb3008af6a86ad1147faea30cb59c275b1"}, + {file = "tensorflow-2.7.2-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:3c72b8653a539789ef36f8c1ad8266b9e676dff2293f0f7a68d9b26fc77a37f3"}, + {file = "tensorflow-2.7.2-cp37-cp37m-win_amd64.whl", hash = "sha256:1db663f9f59ba54a294b1f6530f131e90c7a0e6ea49fda5b2c6900e57b0c306a"}, + {file = "tensorflow-2.7.2-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:cb66d4a998af1ca979d6da33e925281596f52e5a9ba67b2295c53677f8379eee"}, + {file = "tensorflow-2.7.2-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:d4dbfab1568564b30bab876424fafd74c8a8715238b76284b5dd1cfe86c7881b"}, + {file = "tensorflow-2.7.2-cp38-cp38-win_amd64.whl", hash = "sha256:b9a7f344b93b953cab4c3f6ec3b6c1799eb538b6a1978d3a4b579d7a81ee7439"}, + {file = "tensorflow-2.7.2-cp39-cp39-macosx_10_11_x86_64.whl", hash = "sha256:99a85258505130b1f3ce203f11b3bb3c95442edefec96c0b221ce0d6541a92c8"}, + {file = "tensorflow-2.7.2-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:bb2115796e2e7738de1844aead493bc1f1122ff1fae65fc691bb1ce5a0fdd2aa"}, + {file = "tensorflow-2.7.2-cp39-cp39-win_amd64.whl", hash = "sha256:3e35d046d0be677239b5e832854bcb291ca79388fa406d9d7547bc3377a7efbb"}, +] + +[package.dependencies] +absl-py = ">=0.4.0" +astunparse = ">=1.6.0" +flatbuffers = ">=1.12,<3.0" +gast = ">=0.2.1,<0.5.0" +google-pasta = ">=0.1.1" +grpcio = ">=1.24.3,<2.0" +h5py = ">=2.9.0" +keras = ">=2.7.0rc0,<2.8" +keras-preprocessing = ">=1.1.1" +libclang = ">=9.0.1" +numpy = ">=1.14.5" +opt-einsum = ">=2.3.2" +protobuf = ">=3.9.2" +six = ">=1.12.0" +tensorboard = ">=2.6,<3.0" +tensorflow-estimator = ">=2.7.0rc0,<2.8" +tensorflow-io-gcs-filesystem = ">=0.21.0" +termcolor = ">=1.1.0" +typing-extensions = ">=3.6.6" +wheel = ">=0.32.0,<1.0" +wrapt = ">=1.11.0" + +[[package]] +name = "tensorflow-estimator" +version = "2.7.0" +description = "TensorFlow Estimator." +optional = false +python-versions = "*" +files = [ + {file = "tensorflow_estimator-2.7.0-py2.py3-none-any.whl", hash = "sha256:325b5a224864379242b7b76c6987ca544239be82579d33e68ec7c2bda57abc9d"}, +] + +[[package]] +name = "tensorflow-io-gcs-filesystem" +version = "0.21.0" +description = "TensorFlow IO" +optional = false +python-versions = ">=3.6, <3.10" +files = [ + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:db8659cce2b45a6689cf041c7745b60338d8158fc394627f916029980aa04e0d"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d5ce0de3c91fb3a47bd91e25081bcd3b3491d515ee45e6d2c63e899ab5e7739e"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-win_amd64.whl", hash = "sha256:8fc48d4a6f06a97b8a866d849844189ecd1d830de9b152276ea579d9772c0533"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:c28ca0dd37d1bb2110a62e9e7f7b0bbdf295add83b38fbe507082fd89f0ebc61"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7c54f1f334076a5514b9f7f537afe4c36fce4233f792ce6ada76651bfad9f2eb"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-win_amd64.whl", hash = "sha256:e22fcc4e6e924842fefc570f7fd0f6fd33e458154be8891b5a7bfd8380c6aa8c"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:95555c647c8330daf712a38d2b158f7a21d5ad77e8fd438360060b37cb8ca1fb"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b12f9d66c8433bb4a67d9cc6cdb14cf11c42d9fe65bdbe09128b6579a80f80e8"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-win_amd64.whl", hash = "sha256:e447d9c03dd7396292ba10dd39a3c6a2cfcb9332b67457592119c5e5d3e38cfe"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:020581f962e7156054c790d649ecc80518d7874e0def5b2f58f965a1998d45e3"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:603f73d61670954833b6ed87199a4a919e2a5dc015f34b20fdd235a611f37e81"}, + {file = "tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-win_amd64.whl", hash = "sha256:8c95c0ef2de4611a528ef210c233481dd7628c57ff3ef7f08c0f9708125d3ff8"}, +] + +[[package]] +name = "termcolor" +version = "2.4.0" +description = "ANSI color formatting for output in terminal" +optional = false +python-versions = ">=3.8" +files = [ + {file = "termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63"}, + {file = "termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a"}, +] + +[package.extras] +tests = ["pytest", "pytest-cov"] + +[[package]] +name = "thinc" +version = "8.2.5" +description = "A refreshing functional take on deep learning, compatible with your favorite libraries" +optional = false +python-versions = ">=3.6" +files = [ + {file = "thinc-8.2.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dc267f6aad80a681a85f50383afe91da9e2bec56fefdda86bfa2e4f529bef191"}, + {file = "thinc-8.2.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d80f1e497971c9fa0938f5cc8fe607bbe87356b405fb7bbc3ff9f32fb4eed3bb"}, + {file = "thinc-8.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0933adbd3e65e30d3bef903e77a368bc8a41bed34b0d18df6d4fc0536908e21f"}, + {file = "thinc-8.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:54bac2ba23b208fdaf267cd6113d26a5ecbb3b0e0c6015dff784ae6a9c5e78ca"}, + {file = "thinc-8.2.5-cp310-cp310-win_amd64.whl", hash = "sha256:399260197ef3f8d9600315fc5b5a1d5940400fceb0361de642e9fe3506d82385"}, + {file = "thinc-8.2.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a75c0de3340afed594beda293661de145f3842873df56d9989bc338148f13fab"}, + {file = "thinc-8.2.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6b166d1a22003ee03bc236370fff2884744c1fb758a6209a2512d305773d07d7"}, + {file = "thinc-8.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:34db8a023b9f70645fdf06c510584ba6d8b97ec53c1e094f42d95652bf8c875f"}, + {file = "thinc-8.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8901b30db1071ea8d5e4437429c8632535bf5ed87938ce3bb5057bed9f15aed8"}, + {file = "thinc-8.2.5-cp311-cp311-win_amd64.whl", hash = "sha256:8ef5d46d62e31f2450224ab22391a606cf427b13e20cfc570f70422e2f333872"}, + {file = "thinc-8.2.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9fc26697e2358c71a5fe243d52e98ae67ee1a3b314eead5031845b6d1c0d121c"}, + {file = "thinc-8.2.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8e299d4dc41107385d6d14d8604a060825798a031cabe2b894b22f9d75d9eaad"}, + {file = "thinc-8.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8a8f2f249f2be9a5ce2a81a6efe7503b68be7b57e47ad54ab28204e1f0c723b"}, + {file = "thinc-8.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87e729f33c76ec6df9b375989743252ab880d79f3a2b4175169b21dece90f102"}, + {file = "thinc-8.2.5-cp312-cp312-win_amd64.whl", hash = "sha256:c5f750ea2dd32ca6d46947025dacfc0f6037340c4e5f7adb9af84c75f65aa7d8"}, + {file = "thinc-8.2.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bb97e2f699a3df16112ef5460cbfb0c9189a5fbc0e76bcf170ed7d995bdce367"}, + {file = "thinc-8.2.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5c78fb218273894168d1ca2dd3a20f28dba5a7fa698c4f2a2fc425eda2086cfc"}, + {file = "thinc-8.2.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cdc27da534807a2addd1c3d2a3d19f99e3eb67fdbce81c21f4e4c8bfa94ac15b"}, + {file = "thinc-8.2.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b884e56eaeb9e5c7bfeb1c8810a3cbad19a599b33b9f3152b90b67f468471ac"}, + {file = "thinc-8.2.5-cp39-cp39-win_amd64.whl", hash = "sha256:df2138cf379061017ecb8bf609a8857e7904709ef0a9a2252783c16f67a2b749"}, + {file = "thinc-8.2.5.tar.gz", hash = "sha256:c2963791c934cc7fbd8f9b942d571cac79892ad11630bfca690a868c32752b75"}, +] + +[package.dependencies] +blis = ">=0.7.8,<0.8.0" +catalogue = ">=2.0.4,<2.1.0" +confection = ">=0.0.1,<1.0.0" +cymem = ">=2.0.2,<2.1.0" +murmurhash = ">=1.0.2,<1.1.0" +numpy = {version = ">=1.15.0,<2.0.0", markers = "python_version < \"3.9\""} +packaging = ">=20.0" +preshed = ">=3.0.2,<3.1.0" +pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<3.0.0" +setuptools = "*" +srsly = ">=2.4.0,<3.0.0" +wasabi = ">=0.8.1,<1.2.0" + +[package.extras] +cuda = ["cupy (>=5.0.0b4)"] +cuda-autodetect = ["cupy-wheel (>=11.0.0)"] +cuda100 = ["cupy-cuda100 (>=5.0.0b4)"] +cuda101 = ["cupy-cuda101 (>=5.0.0b4)"] +cuda102 = ["cupy-cuda102 (>=5.0.0b4)"] +cuda110 = ["cupy-cuda110 (>=5.0.0b4)"] +cuda111 = ["cupy-cuda111 (>=5.0.0b4)"] +cuda112 = ["cupy-cuda112 (>=5.0.0b4)"] +cuda113 = ["cupy-cuda113 (>=5.0.0b4)"] +cuda114 = ["cupy-cuda114 (>=5.0.0b4)"] +cuda115 = ["cupy-cuda115 (>=5.0.0b4)"] +cuda116 = ["cupy-cuda116 (>=5.0.0b4)"] +cuda117 = ["cupy-cuda117 (>=5.0.0b4)"] +cuda11x = ["cupy-cuda11x (>=11.0.0)"] +cuda12x = ["cupy-cuda12x (>=11.5.0)"] +cuda80 = ["cupy-cuda80 (>=5.0.0b4)"] +cuda90 = ["cupy-cuda90 (>=5.0.0b4)"] +cuda91 = ["cupy-cuda91 (>=5.0.0b4)"] +cuda92 = ["cupy-cuda92 (>=5.0.0b4)"] +datasets = ["ml-datasets (>=0.2.0,<0.3.0)"] +mxnet = ["mxnet (>=1.5.1,<1.6.0)"] +tensorflow = ["tensorflow (>=2.0.0,<2.6.0)"] +torch = ["torch (>=1.6.0)"] + +[[package]] +name = "threadpoolctl" +version = "3.5.0" +description = "threadpoolctl" +optional = false +python-versions = ">=3.8" +files = [ + {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, + {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, +] + +[[package]] +name = "torch" +version = "2.1.2" +description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "torch-2.1.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:3a871edd6c02dae77ad810335c0833391c1a4ce49af21ea8cf0f6a5d2096eea8"}, + {file = "torch-2.1.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:bef6996c27d8f6e92ea4e13a772d89611da0e103b48790de78131e308cf73076"}, + {file = "torch-2.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:0e13034fd5fb323cbbc29e56d0637a3791e50dd589616f40c79adfa36a5a35a1"}, + {file = "torch-2.1.2-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:d9b535cad0df3d13997dbe8bd68ac33e0e3ae5377639c9881948e40794a61403"}, + {file = "torch-2.1.2-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:f9a55d55af02826ebfbadf4e9b682f0f27766bc33df8236b48d28d705587868f"}, + {file = "torch-2.1.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:a6ebbe517097ef289cc7952783588c72de071d4b15ce0f8b285093f0916b1162"}, + {file = "torch-2.1.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:8f32ce591616a30304f37a7d5ea80b69ca9e1b94bba7f308184bf616fdaea155"}, + {file = "torch-2.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:e0ee6cf90c8970e05760f898d58f9ac65821c37ffe8b04269ec787aa70962b69"}, + {file = "torch-2.1.2-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:76d37967c31c99548ad2c4d3f2cf191db48476f2e69b35a0937137116da356a1"}, + {file = "torch-2.1.2-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:e2d83f07b4aac983453ea5bf8f9aa9dacf2278a8d31247f5d9037f37befc60e4"}, + {file = "torch-2.1.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:f41fe0c7ecbf903a568c73486139a75cfab287a0f6c17ed0698fdea7a1e8641d"}, + {file = "torch-2.1.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:e3225f47d50bb66f756fe9196a768055d1c26b02154eb1f770ce47a2578d3aa7"}, + {file = "torch-2.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:33d59cd03cb60106857f6c26b36457793637512998666ee3ce17311f217afe2b"}, + {file = "torch-2.1.2-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:8e221deccd0def6c2badff6be403e0c53491805ed9915e2c029adbcdb87ab6b5"}, + {file = "torch-2.1.2-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:05b18594f60a911a0c4f023f38a8bda77131fba5fd741bda626e97dcf5a3dd0a"}, + {file = "torch-2.1.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:9ca96253b761e9aaf8e06fb30a66ee301aecbf15bb5a303097de1969077620b6"}, + {file = "torch-2.1.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:d93ba70f67b08c2ae5598ee711cbc546a1bc8102cef938904b8c85c2089a51a0"}, + {file = "torch-2.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:255b50bc0608db177e6a3cc118961d77de7e5105f07816585fa6f191f33a9ff3"}, + {file = "torch-2.1.2-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6984cd5057c0c977b3c9757254e989d3f1124f4ce9d07caa6cb637783c71d42a"}, + {file = "torch-2.1.2-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:bc195d7927feabc0eb7c110e457c955ed2ab616f3c7c28439dd4188cf589699f"}, +] + +[package.dependencies] +filelock = "*" +fsspec = "*" +jinja2 = "*" +networkx = "*" +nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cudnn-cu12 = {version = "8.9.2.26", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nccl-cu12 = {version = "2.18.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +sympy = "*" +triton = {version = "2.1.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +typing-extensions = "*" + +[package.extras] +dynamo = ["jinja2"] +opt-einsum = ["opt-einsum (>=3.3)"] + +[[package]] +name = "torch-geometric" +version = "2.6.1" +description = "Graph Neural Network Library for PyTorch" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torch_geometric-2.6.1-py3-none-any.whl", hash = "sha256:8faeb353f9655f7dbec44c5e0b44c721773bdfb279994da96b9b8b12fd30f427"}, + {file = "torch_geometric-2.6.1.tar.gz", hash = "sha256:1f18f9d0fc4d2239d526221e4f22606a4a3895b5d965a9856d27610a3df662c6"}, +] + +[package.dependencies] +aiohttp = "*" +fsspec = "*" +jinja2 = "*" +numpy = "*" +psutil = ">=5.8.0" +pyparsing = "*" +requests = "*" +tqdm = "*" + +[package.extras] +benchmark = ["matplotlib", "networkx", "pandas", "protobuf (<4.21)", "wandb"] +dev = ["ipython", "matplotlib-inline", "pre-commit", "torch_geometric[test]"] +full = ["ase", "captum (<0.7.0)", "graphviz", "h5py", "matplotlib", "networkx", "numba (<0.60.0)", "opt_einsum", "pandas", "pgmpy", "pynndescent", "pytorch-memlab", "rdflib", "rdkit", "scikit-image", "scikit-learn", "scipy", "statsmodels", "sympy", "tabulate", "torch_geometric[graphgym,modelhub]", "torchmetrics", "trimesh"] +graphgym = ["protobuf (<4.21)", "pytorch-lightning (<2.3.0)", "yacs"] +modelhub = ["huggingface_hub"] +test = ["onnx", "onnxruntime", "pytest", "pytest-cov"] + +[[package]] +name = "torch-scatter" +version = "2.1.2+pt21cpu" +description = "PyTorch Extension Library of Optimized Scatter Operations" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torch_scatter-2.1.2+pt21cpu-cp38-cp38-linux_x86_64.whl", hash = "sha256:2876a541e5428a21fffa8fee97dc3fa833266640e7fb1ec3aab6e8bafa0a2df8"}, +] + +[package.extras] +test = ["pytest", "pytest-cov"] + +[package.source] +type = "url" +url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_scatter-2.1.2%2Bpt21cpu-cp38-cp38-linux_x86_64.whl" + +[[package]] +name = "torch-sparse" +version = "0.6.18+pt21cpu" +description = "PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torch_sparse-0.6.18+pt21cpu-cp38-cp38-linux_x86_64.whl", hash = "sha256:fe2ea180baa399ebb1d695cad1b36e1ffb543e04af30f7880edfa626fbf69e9e"}, +] + +[package.dependencies] +scipy = "*" + +[package.extras] +test = ["pytest", "pytest-cov"] + +[package.source] +type = "url" +url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl" + +[[package]] +name = "torchmetrics" +version = "1.5.2" +description = "PyTorch native Metrics" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torchmetrics-1.5.2-py3-none-any.whl", hash = "sha256:22dfddc93a66c0e46b46da2f8f7c57be4ba256070ed1e627e5e8de27bbe5b376"}, + {file = "torchmetrics-1.5.2.tar.gz", hash = "sha256:2d0e4957af0ea76438d2779fe1a626d8cba6cda8607eadb54267598153e7ea63"}, +] + +[package.dependencies] +lightning-utilities = ">=0.8.0" +numpy = ">1.20.0" +packaging = ">17.1" +torch = ">=1.10.0" +typing-extensions = {version = "*", markers = "python_version < \"3.9\""} + +[package.extras] +all = ["SciencePlots (>=2.0.0)", "gammatone (>=1.0.0)", "ipadic (>=1.0.0)", "librosa (>=0.9.0)", "matplotlib (>=3.6.0)", "mecab-python3 (>=1.0.6)", "mypy (==1.13.0)", "nltk (>3.8.1)", "numpy (<2.0)", "onnxruntime (>=1.12.0)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.4.0)", "regex (>=2021.9.24)", "requests (>=2.19.0)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "torch (==2.5.1)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (<4.67.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +audio = ["gammatone (>=1.0.0)", "librosa (>=0.9.0)", "numpy (<2.0)", "onnxruntime (>=1.12.0)", "pesq (>=0.0.4)", "pystoi (>=0.4.0)", "requests (>=2.19.0)", "torchaudio (>=0.10.0)"] +detection = ["pycocotools (>2.0.0)", "torchvision (>=0.8)"] +dev = ["SciencePlots (>=2.0.0)", "bert-score (==0.3.13)", "dython (==0.7.6)", "dython (>=0.7.8,<0.8.0)", "fairlearn", "fast-bss-eval (>=0.1.0)", "faster-coco-eval (>=1.6.3)", "gammatone (>=1.0.0)", "huggingface-hub (<0.27)", "ipadic (>=1.0.0)", "jiwer (>=2.3.0)", "kornia (>=0.6.7)", "librosa (>=0.9.0)", "lpips (<=0.1.4)", "matplotlib (>=3.6.0)", "mecab-ko (>=1.0.0,<1.1.0)", "mecab-ko-dic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "mir-eval (>=0.6)", "monai (==1.3.2)", "mypy (==1.13.0)", "netcal (>1.0.0)", "nltk (>3.8.1)", "numpy (<2.0)", "numpy (<2.2.0)", "onnxruntime (>=1.12.0)", "pandas (>1.4.0)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.4.0)", "pytorch-msssim (==1.0.0)", "regex (>=2021.9.24)", "requests (>=2.19.0)", "rouge-score (>0.1.0)", "sacrebleu (>=2.3.0)", "scikit-image (>=0.19.0)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "sewar (>=0.4.4)", "statsmodels (>0.13.5)", "torch (==2.5.1)", "torch-complex (<0.5.0)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (<4.67.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +image = ["scipy (>1.0.0)", "torch-fidelity (<=0.4.0)", "torchvision (>=0.8)"] +multimodal = ["piq (<=0.8.0)", "transformers (>=4.42.3)"] +text = ["ipadic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "nltk (>3.8.1)", "regex (>=2021.9.24)", "sentencepiece (>=0.2.0)", "tqdm (<4.67.0)", "transformers (>4.4.0)"] +typing = ["mypy (==1.13.0)", "torch (==2.5.1)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +visual = ["SciencePlots (>=2.0.0)", "matplotlib (>=3.6.0)"] + +[[package]] +name = "torchvision" +version = "0.16.2" +description = "image and video datasets and models for torch deep learning" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torchvision-0.16.2-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:bc86f2800cb2c0c1a09c581409cdd6bff66e62f103dc83fc63f73346264c3756"}, + {file = "torchvision-0.16.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b024bd412df6d3a007dcebf311a894eb3c5c21e1af80d12be382bbcb097a7c3a"}, + {file = "torchvision-0.16.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:e89f10f3c8351972b6e3fda95bc3e479ea8dbfc9dfcfd2c32902dbad4ba5cfc5"}, + {file = "torchvision-0.16.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:96c7583700112a410bdc4e1e4f118c429dab49c29c9a31a2cc3579bc9b08b19d"}, + {file = "torchvision-0.16.2-cp310-cp310-win_amd64.whl", hash = "sha256:9f4032ebb3277fb07ff6a9b818d50a547fb8fcd89d958cfd9e773322454bb688"}, + {file = "torchvision-0.16.2-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:67b1aaf8b8cb02ce75dd445f291a27c8036a502f8c0aa76e28c37a0faac2e153"}, + {file = "torchvision-0.16.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bef30d03e1d1c629761f4dca51d3b7d8a0dc0acce6f4068ab2a1634e8e7b64e0"}, + {file = "torchvision-0.16.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:e59cc7b2bd1ab5c0ce4ae382e4e37be8f1c174e8b5de2f6a23c170de9ae28495"}, + {file = "torchvision-0.16.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:e130b08cc9b3cc73a6c59d6edf032394a322f9579bfd21d14bc2e1d0999aa758"}, + {file = "torchvision-0.16.2-cp311-cp311-win_amd64.whl", hash = "sha256:8692ab1e48807e9604046a6f4beeb67b523294cee1b00828654bb0df2cfce2b2"}, + {file = "torchvision-0.16.2-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:b82732dcf876a37c852772342aa6ee3480c03bb3e2a802ae109fc5f7e28d26e9"}, + {file = "torchvision-0.16.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4b065143d1a720fe8a9077fd4be35d491f98819ec80b3dbbc3ec64d0b707a906"}, + {file = "torchvision-0.16.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:bc5f274e4ecd1b86062063cdf4fd385a1d39d147a3a2685fbbde9ff08bb720b8"}, + {file = "torchvision-0.16.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:335959c43b371c0474af34c1ef2a52efdc7603c45700d29e4475eeb02984170c"}, + {file = "torchvision-0.16.2-cp38-cp38-win_amd64.whl", hash = "sha256:7fd22d86e08eba321af70cad291020c2cdeac069b00ce88b923ca52e06174769"}, + {file = "torchvision-0.16.2-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:56115268b37f0b75364e3654e47ad9abc66ac34c1f9e5e3dfa89a22d6a40017a"}, + {file = "torchvision-0.16.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:82805f8445b094f9d1e770390ee6cc86855e89955e08ce34af2e2274fc0e5c45"}, + {file = "torchvision-0.16.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:3f4bd5fcbc361476e2e78016636ac7d5509e59d9962521f06eb98e6803898182"}, + {file = "torchvision-0.16.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:8199acdf8ab066a28b84a5b6f4d97b58976d9e164b1acc3a9d14fccfaf74bb3a"}, + {file = "torchvision-0.16.2-cp39-cp39-win_amd64.whl", hash = "sha256:41dd4fa9f176d563fe9f1b9adef3b7e582cdfb60ce8c9bc51b094a025be687c9"}, +] + +[package.dependencies] +numpy = "*" +pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" +requests = "*" +torch = "2.1.2" + +[package.extras] +scipy = ["scipy"] + +[[package]] +name = "tornado" +version = "6.4.1" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">=3.8" +files = [ + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8"}, + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698"}, + {file = "tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d"}, + {file = "tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7"}, + {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"}, +] + +[[package]] +name = "tqdm" +version = "4.67.0" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tqdm-4.67.0-py3-none-any.whl", hash = "sha256:0cd8af9d56911acab92182e88d763100d4788bdf421d251616040cc4d44863be"}, + {file = "tqdm-4.67.0.tar.gz", hash = "sha256:fe5a6f95e6fe0b9755e9469b77b9c3cf850048224ecaa8293d7d2d31f97d869a"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] +discord = ["requests"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + +[[package]] +name = "traitlets" +version = "5.14.3" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +files = [ + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "triton" +version = "2.1.0" +description = "A language and compiler for custom Deep Learning operations" +optional = false +python-versions = "*" +files = [ + {file = "triton-2.1.0-0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:66439923a30d5d48399b08a9eae10370f6c261a5ec864a64983bae63152d39d7"}, + {file = "triton-2.1.0-0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:919b06453f0033ea52c13eaf7833de0e57db3178d23d4e04f9fc71c4f2c32bf8"}, + {file = "triton-2.1.0-0-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ae4bb8a91de790e1866405211c4d618379781188f40d5c4c399766914e84cd94"}, + {file = "triton-2.1.0-0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:39f6fb6bdccb3e98f3152e3fbea724f1aeae7d749412bbb1fa9c441d474eba26"}, + {file = "triton-2.1.0-0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:21544e522c02005a626c8ad63d39bdff2f31d41069592919ef281e964ed26446"}, + {file = "triton-2.1.0-0-pp37-pypy37_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:143582ca31dd89cd982bd3bf53666bab1c7527d41e185f9e3d8a3051ce1b663b"}, + {file = "triton-2.1.0-0-pp38-pypy38_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:82fc5aeeedf6e36be4e4530cbdcba81a09d65c18e02f52dc298696d45721f3bd"}, + {file = "triton-2.1.0-0-pp39-pypy39_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:81a96d110a738ff63339fc892ded095b31bd0d205e3aace262af8400d40b6fa8"}, +] + +[package.dependencies] +filelock = "*" + +[package.extras] +build = ["cmake (>=3.18)", "lit"] +tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)"] +tutorials = ["matplotlib", "pandas", "tabulate"] + +[[package]] +name = "typer" +version = "0.13.0" +description = "Typer, build great CLIs. Easy to code. Based on Python type hints." +optional = false +python-versions = ">=3.7" +files = [ + {file = "typer-0.13.0-py3-none-any.whl", hash = "sha256:d85fe0b777b2517cc99c8055ed735452f2659cd45e451507c76f48ce5c1d00e2"}, + {file = "typer-0.13.0.tar.gz", hash = "sha256:f1c7198347939361eec90139ffa0fd8b3df3a2259d5852a0f7400e476d95985c"}, +] + +[package.dependencies] +click = ">=8.0.0" +rich = ">=10.11.0" +shellingham = ">=1.3.0" +typing-extensions = ">=3.7.4.3" + +[[package]] +name = "typing-extensions" +version = "4.12.2" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, +] + +[[package]] +name = "tzdata" +version = "2024.2" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"}, + {file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"}, +] + +[[package]] +name = "urllib3" +version = "2.2.3" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=3.8" +files = [ + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, +] + +[package.extras] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +h2 = ["h2 (>=4,<5)"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "wasabi" +version = "1.1.3" +description = "A lightweight console printing and formatting toolkit" +optional = false +python-versions = ">=3.6" +files = [ + {file = "wasabi-1.1.3-py3-none-any.whl", hash = "sha256:f76e16e8f7e79f8c4c8be49b4024ac725713ab10cd7f19350ad18a8e3f71728c"}, + {file = "wasabi-1.1.3.tar.gz", hash = "sha256:4bb3008f003809db0c3e28b4daf20906ea871a2bb43f9914197d540f4f2e0878"}, +] + +[package.dependencies] +colorama = {version = ">=0.4.6", markers = "sys_platform == \"win32\" and python_version >= \"3.7\""} + +[[package]] +name = "wcwidth" +version = "0.2.13" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +files = [ + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, +] + +[[package]] +name = "weasel" +version = "0.4.1" +description = "Weasel: A small and easy workflow system" +optional = false +python-versions = ">=3.7" +files = [ + {file = "weasel-0.4.1-py3-none-any.whl", hash = "sha256:24140a090ea1ac512a2b2f479cc64192fd1d527a7f3627671268d08ed5ac418c"}, + {file = "weasel-0.4.1.tar.gz", hash = "sha256:aabc210f072e13f6744e5c3a28037f93702433405cd35673f7c6279147085aa9"}, +] + +[package.dependencies] +cloudpathlib = ">=0.7.0,<1.0.0" +confection = ">=0.0.4,<0.2.0" +packaging = ">=20.0" +pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<3.0.0" +requests = ">=2.13.0,<3.0.0" +smart-open = ">=5.2.1,<8.0.0" +srsly = ">=2.4.3,<3.0.0" +typer = ">=0.3.0,<1.0.0" +wasabi = ">=0.9.1,<1.2.0" + +[[package]] +name = "werkzeug" +version = "3.0.6" +description = "The comprehensive WSGI web application library." +optional = false +python-versions = ">=3.8" +files = [ + {file = "werkzeug-3.0.6-py3-none-any.whl", hash = "sha256:1bc0c2310d2fbb07b1dd1105eba2f7af72f322e1e455f2f93c993bee8c8a5f17"}, + {file = "werkzeug-3.0.6.tar.gz", hash = "sha256:a8dd59d4de28ca70471a34cba79bed5f7ef2e036a76b3ab0835474246eb41f8d"}, +] + +[package.dependencies] +MarkupSafe = ">=2.1.1" + +[package.extras] +watchdog = ["watchdog (>=2.3)"] + +[[package]] +name = "wheel" +version = "0.45.0" +description = "A built-package format for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "wheel-0.45.0-py3-none-any.whl", hash = "sha256:52f0baa5e6522155090a09c6bd95718cc46956d1b51d537ea5454249edb671c7"}, + {file = "wheel-0.45.0.tar.gz", hash = "sha256:a57353941a3183b3d5365346b567a260a0602a0f8a635926a7dede41b94c674a"}, +] + +[package.extras] +test = ["pytest (>=6.0.0)", "setuptools (>=65)"] + +[[package]] +name = "wrapt" +version = "1.16.0" +description = "Module for decorators, wrappers and monkey patching." +optional = false +python-versions = ">=3.6" +files = [ + {file = "wrapt-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ffa565331890b90056c01db69c0fe634a776f8019c143a5ae265f9c6bc4bd6d4"}, + {file = "wrapt-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e4fdb9275308292e880dcbeb12546df7f3e0f96c6b41197e0cf37d2826359020"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb2dee3874a500de01c93d5c71415fcaef1d858370d405824783e7a8ef5db440"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a88e6010048489cda82b1326889ec075a8c856c2e6a256072b28eaee3ccf487"}, + {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac83a914ebaf589b69f7d0a1277602ff494e21f4c2f743313414378f8f50a4cf"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:73aa7d98215d39b8455f103de64391cb79dfcad601701a3aa0dddacf74911d72"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:807cc8543a477ab7422f1120a217054f958a66ef7314f76dd9e77d3f02cdccd0"}, + {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bf5703fdeb350e36885f2875d853ce13172ae281c56e509f4e6eca049bdfb136"}, + {file = "wrapt-1.16.0-cp310-cp310-win32.whl", hash = "sha256:f6b2d0c6703c988d334f297aa5df18c45e97b0af3679bb75059e0e0bd8b1069d"}, + {file = "wrapt-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:decbfa2f618fa8ed81c95ee18a387ff973143c656ef800c9f24fb7e9c16054e2"}, + {file = "wrapt-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1a5db485fe2de4403f13fafdc231b0dbae5eca4359232d2efc79025527375b09"}, + {file = "wrapt-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75ea7d0ee2a15733684badb16de6794894ed9c55aa5e9903260922f0482e687d"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a452f9ca3e3267cd4d0fcf2edd0d035b1934ac2bd7e0e57ac91ad6b95c0c6389"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:43aa59eadec7890d9958748db829df269f0368521ba6dc68cc172d5d03ed8060"}, + {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72554a23c78a8e7aa02abbd699d129eead8b147a23c56e08d08dfc29cfdddca1"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d2efee35b4b0a347e0d99d28e884dfd82797852d62fcd7ebdeee26f3ceb72cf3"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6dcfcffe73710be01d90cae08c3e548d90932d37b39ef83969ae135d36ef3956"}, + {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:eb6e651000a19c96f452c85132811d25e9264d836951022d6e81df2fff38337d"}, + {file = "wrapt-1.16.0-cp311-cp311-win32.whl", hash = "sha256:66027d667efe95cc4fa945af59f92c5a02c6f5bb6012bff9e60542c74c75c362"}, + {file = "wrapt-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:aefbc4cb0a54f91af643660a0a150ce2c090d3652cf4052a5397fb2de549cd89"}, + {file = "wrapt-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5eb404d89131ec9b4f748fa5cfb5346802e5ee8836f57d516576e61f304f3b7b"}, + {file = "wrapt-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9090c9e676d5236a6948330e83cb89969f433b1943a558968f659ead07cb3b36"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94265b00870aa407bd0cbcfd536f17ecde43b94fb8d228560a1e9d3041462d73"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2058f813d4f2b5e3a9eb2eb3faf8f1d99b81c3e51aeda4b168406443e8ba809"}, + {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98b5e1f498a8ca1858a1cdbffb023bfd954da4e3fa2c0cb5853d40014557248b"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:14d7dc606219cdd7405133c713f2c218d4252f2a469003f8c46bb92d5d095d81"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:49aac49dc4782cb04f58986e81ea0b4768e4ff197b57324dcbd7699c5dfb40b9"}, + {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:418abb18146475c310d7a6dc71143d6f7adec5b004ac9ce08dc7a34e2babdc5c"}, + {file = "wrapt-1.16.0-cp312-cp312-win32.whl", hash = "sha256:685f568fa5e627e93f3b52fda002c7ed2fa1800b50ce51f6ed1d572d8ab3e7fc"}, + {file = "wrapt-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:dcdba5c86e368442528f7060039eda390cc4091bfd1dca41e8046af7c910dda8"}, + {file = "wrapt-1.16.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:d462f28826f4657968ae51d2181a074dfe03c200d6131690b7d65d55b0f360f8"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a33a747400b94b6d6b8a165e4480264a64a78c8a4c734b62136062e9a248dd39"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b3646eefa23daeba62643a58aac816945cadc0afaf21800a1421eeba5f6cfb9c"}, + {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ebf019be5c09d400cf7b024aa52b1f3aeebeff51550d007e92c3c1c4afc2a40"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:0d2691979e93d06a95a26257adb7bfd0c93818e89b1406f5a28f36e0d8c1e1fc"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:1acd723ee2a8826f3d53910255643e33673e1d11db84ce5880675954183ec47e"}, + {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:bc57efac2da352a51cc4658878a68d2b1b67dbe9d33c36cb826ca449d80a8465"}, + {file = "wrapt-1.16.0-cp36-cp36m-win32.whl", hash = "sha256:da4813f751142436b075ed7aa012a8778aa43a99f7b36afe9b742d3ed8bdc95e"}, + {file = "wrapt-1.16.0-cp36-cp36m-win_amd64.whl", hash = "sha256:6f6eac2360f2d543cc875a0e5efd413b6cbd483cb3ad7ebf888884a6e0d2e966"}, + {file = "wrapt-1.16.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a0ea261ce52b5952bf669684a251a66df239ec6d441ccb59ec7afa882265d593"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bd2d7ff69a2cac767fbf7a2b206add2e9a210e57947dd7ce03e25d03d2de292"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9159485323798c8dc530a224bd3ffcf76659319ccc7bbd52e01e73bd0241a0c5"}, + {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a86373cf37cd7764f2201b76496aba58a52e76dedfaa698ef9e9688bfd9e41cf"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:73870c364c11f03ed072dda68ff7aea6d2a3a5c3fe250d917a429c7432e15228"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b935ae30c6e7400022b50f8d359c03ed233d45b725cfdd299462f41ee5ffba6f"}, + {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:db98ad84a55eb09b3c32a96c576476777e87c520a34e2519d3e59c44710c002c"}, + {file = "wrapt-1.16.0-cp37-cp37m-win32.whl", hash = "sha256:9153ed35fc5e4fa3b2fe97bddaa7cbec0ed22412b85bcdaf54aeba92ea37428c"}, + {file = "wrapt-1.16.0-cp37-cp37m-win_amd64.whl", hash = "sha256:66dfbaa7cfa3eb707bbfcd46dab2bc6207b005cbc9caa2199bcbc81d95071a00"}, + {file = "wrapt-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1dd50a2696ff89f57bd8847647a1c363b687d3d796dc30d4dd4a9d1689a706f0"}, + {file = "wrapt-1.16.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:44a2754372e32ab315734c6c73b24351d06e77ffff6ae27d2ecf14cf3d229202"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e9723528b9f787dc59168369e42ae1c3b0d3fadb2f1a71de14531d321ee05b0"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbed418ba5c3dce92619656802cc5355cb679e58d0d89b50f116e4a9d5a9603e"}, + {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:941988b89b4fd6b41c3f0bfb20e92bd23746579736b7343283297c4c8cbae68f"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6a42cd0cfa8ffc1915aef79cb4284f6383d8a3e9dcca70c445dcfdd639d51267"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1ca9b6085e4f866bd584fb135a041bfc32cab916e69f714a7d1d397f8c4891ca"}, + {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d5e49454f19ef621089e204f862388d29e6e8d8b162efce05208913dde5b9ad6"}, + {file = "wrapt-1.16.0-cp38-cp38-win32.whl", hash = "sha256:c31f72b1b6624c9d863fc095da460802f43a7c6868c5dda140f51da24fd47d7b"}, + {file = "wrapt-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:490b0ee15c1a55be9c1bd8609b8cecd60e325f0575fc98f50058eae366e01f41"}, + {file = "wrapt-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9b201ae332c3637a42f02d1045e1d0cccfdc41f1f2f801dafbaa7e9b4797bfc2"}, + {file = "wrapt-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2076fad65c6736184e77d7d4729b63a6d1ae0b70da4868adeec40989858eb3fb"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5cd603b575ebceca7da5a3a251e69561bec509e0b46e4993e1cac402b7247b8"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b47cfad9e9bbbed2339081f4e346c93ecd7ab504299403320bf85f7f85c7d46c"}, + {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8212564d49c50eb4565e502814f694e240c55551a5f1bc841d4fcaabb0a9b8a"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5f15814a33e42b04e3de432e573aa557f9f0f56458745c2074952f564c50e664"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db2e408d983b0e61e238cf579c09ef7020560441906ca990fe8412153e3b291f"}, + {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:edfad1d29c73f9b863ebe7082ae9321374ccb10879eeabc84ba3b69f2579d537"}, + {file = "wrapt-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed867c42c268f876097248e05b6117a65bcd1e63b779e916fe2e33cd6fd0d3c3"}, + {file = "wrapt-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:eb1b046be06b0fce7249f1d025cd359b4b80fc1c3e24ad9eca33e0dcdb2e4a35"}, + {file = "wrapt-1.16.0-py3-none-any.whl", hash = "sha256:6906c4100a8fcbf2fa735f6059214bb13b97f75b1a61777fcf6432121ef12ef1"}, + {file = "wrapt-1.16.0.tar.gz", hash = "sha256:5f370f952971e7d17c7d1ead40e49f32345a7f7a5373571ef44d800d06b1899d"}, +] + +[[package]] +name = "yarl" +version = "1.15.2" +description = "Yet another URL library" +optional = false +python-versions = ">=3.8" +files = [ + {file = "yarl-1.15.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e4ee8b8639070ff246ad3649294336b06db37a94bdea0d09ea491603e0be73b8"}, + {file = "yarl-1.15.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a7cf963a357c5f00cb55b1955df8bbe68d2f2f65de065160a1c26b85a1e44172"}, + {file = "yarl-1.15.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:43ebdcc120e2ca679dba01a779333a8ea76b50547b55e812b8b92818d604662c"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3433da95b51a75692dcf6cc8117a31410447c75a9a8187888f02ad45c0a86c50"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:38d0124fa992dbacd0c48b1b755d3ee0a9f924f427f95b0ef376556a24debf01"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ded1b1803151dd0f20a8945508786d57c2f97a50289b16f2629f85433e546d47"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ace4cad790f3bf872c082366c9edd7f8f8f77afe3992b134cfc810332206884f"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c77494a2f2282d9bbbbcab7c227a4d1b4bb829875c96251f66fb5f3bae4fb053"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b7f227ca6db5a9fda0a2b935a2ea34a7267589ffc63c8045f0e4edb8d8dcf956"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:31561a5b4d8dbef1559b3600b045607cf804bae040f64b5f5bca77da38084a8a"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3e52474256a7db9dcf3c5f4ca0b300fdea6c21cca0148c8891d03a025649d935"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:0e1af74a9529a1137c67c887ed9cde62cff53aa4d84a3adbec329f9ec47a3936"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:15c87339490100c63472a76d87fe7097a0835c705eb5ae79fd96e343473629ed"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:74abb8709ea54cc483c4fb57fb17bb66f8e0f04438cff6ded322074dbd17c7ec"}, + {file = "yarl-1.15.2-cp310-cp310-win32.whl", hash = "sha256:ffd591e22b22f9cb48e472529db6a47203c41c2c5911ff0a52e85723196c0d75"}, + {file = "yarl-1.15.2-cp310-cp310-win_amd64.whl", hash = "sha256:1695497bb2a02a6de60064c9f077a4ae9c25c73624e0d43e3aa9d16d983073c2"}, + {file = "yarl-1.15.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9fcda20b2de7042cc35cf911702fa3d8311bd40055a14446c1e62403684afdc5"}, + {file = "yarl-1.15.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0545de8c688fbbf3088f9e8b801157923be4bf8e7b03e97c2ecd4dfa39e48e0e"}, + {file = "yarl-1.15.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fbda058a9a68bec347962595f50546a8a4a34fd7b0654a7b9697917dc2bf810d"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1ac2bc069f4a458634c26b101c2341b18da85cb96afe0015990507efec2e417"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cd126498171f752dd85737ab1544329a4520c53eed3997f9b08aefbafb1cc53b"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3db817b4e95eb05c362e3b45dafe7144b18603e1211f4a5b36eb9522ecc62bcf"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:076b1ed2ac819933895b1a000904f62d615fe4533a5cf3e052ff9a1da560575c"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f8cfd847e6b9ecf9f2f2531c8427035f291ec286c0a4944b0a9fce58c6446046"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:32b66be100ac5739065496c74c4b7f3015cef792c3174982809274d7e51b3e04"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:34a2d76a1984cac04ff8b1bfc939ec9dc0914821264d4a9c8fd0ed6aa8d4cfd2"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:0afad2cd484908f472c8fe2e8ef499facee54a0a6978be0e0cff67b1254fd747"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:c68e820879ff39992c7f148113b46efcd6ec765a4865581f2902b3c43a5f4bbb"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:98f68df80ec6ca3015186b2677c208c096d646ef37bbf8b49764ab4a38183931"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3c56ec1eacd0a5d35b8a29f468659c47f4fe61b2cab948ca756c39b7617f0aa5"}, + {file = "yarl-1.15.2-cp311-cp311-win32.whl", hash = "sha256:eedc3f247ee7b3808ea07205f3e7d7879bc19ad3e6222195cd5fbf9988853e4d"}, + {file = "yarl-1.15.2-cp311-cp311-win_amd64.whl", hash = "sha256:0ccaa1bc98751fbfcf53dc8dfdb90d96e98838010fc254180dd6707a6e8bb179"}, + {file = "yarl-1.15.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:82d5161e8cb8f36ec778fd7ac4d740415d84030f5b9ef8fe4da54784a1f46c94"}, + {file = "yarl-1.15.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:fa2bea05ff0a8fb4d8124498e00e02398f06d23cdadd0fe027d84a3f7afde31e"}, + {file = "yarl-1.15.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:99e12d2bf587b44deb74e0d6170fec37adb489964dbca656ec41a7cd8f2ff178"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:243fbbbf003754fe41b5bdf10ce1e7f80bcc70732b5b54222c124d6b4c2ab31c"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:856b7f1a7b98a8c31823285786bd566cf06226ac4f38b3ef462f593c608a9bd6"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:553dad9af802a9ad1a6525e7528152a015b85fb8dbf764ebfc755c695f488367"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:30c3ff305f6e06650a761c4393666f77384f1cc6c5c0251965d6bfa5fbc88f7f"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:353665775be69bbfc6d54c8d134bfc533e332149faeddd631b0bc79df0897f46"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f4fe99ce44128c71233d0d72152db31ca119711dfc5f2c82385ad611d8d7f897"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:9c1e3ff4b89cdd2e1a24c214f141e848b9e0451f08d7d4963cb4108d4d798f1f"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:711bdfae4e699a6d4f371137cbe9e740dc958530cb920eb6f43ff9551e17cfbc"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4388c72174868884f76affcdd3656544c426407e0043c89b684d22fb265e04a5"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:f0e1844ad47c7bd5d6fa784f1d4accc5f4168b48999303a868fe0f8597bde715"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:a5cafb02cf097a82d74403f7e0b6b9df3ffbfe8edf9415ea816314711764a27b"}, + {file = "yarl-1.15.2-cp312-cp312-win32.whl", hash = "sha256:156ececdf636143f508770bf8a3a0498de64da5abd890c7dbb42ca9e3b6c05b8"}, + {file = "yarl-1.15.2-cp312-cp312-win_amd64.whl", hash = "sha256:435aca062444a7f0c884861d2e3ea79883bd1cd19d0a381928b69ae1b85bc51d"}, + {file = "yarl-1.15.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:416f2e3beaeae81e2f7a45dc711258be5bdc79c940a9a270b266c0bec038fb84"}, + {file = "yarl-1.15.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:173563f3696124372831007e3d4b9821746964a95968628f7075d9231ac6bb33"}, + {file = "yarl-1.15.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:9ce2e0f6123a60bd1a7f5ae3b2c49b240c12c132847f17aa990b841a417598a2"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eaea112aed589131f73d50d570a6864728bd7c0c66ef6c9154ed7b59f24da611"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4ca3b9f370f218cc2a0309542cab8d0acdfd66667e7c37d04d617012485f904"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23ec1d3c31882b2a8a69c801ef58ebf7bae2553211ebbddf04235be275a38548"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75119badf45f7183e10e348edff5a76a94dc19ba9287d94001ff05e81475967b"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:78e6fdc976ec966b99e4daa3812fac0274cc28cd2b24b0d92462e2e5ef90d368"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:8657d3f37f781d987037f9cc20bbc8b40425fa14380c87da0cb8dfce7c92d0fb"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:93bed8a8084544c6efe8856c362af08a23e959340c87a95687fdbe9c9f280c8b"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:69d5856d526802cbda768d3e6246cd0d77450fa2a4bc2ea0ea14f0d972c2894b"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:ccad2800dfdff34392448c4bf834be124f10a5bc102f254521d931c1c53c455a"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:a880372e2e5dbb9258a4e8ff43f13888039abb9dd6d515f28611c54361bc5644"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:c998d0558805860503bc3a595994895ca0f7835e00668dadc673bbf7f5fbfcbe"}, + {file = "yarl-1.15.2-cp313-cp313-win32.whl", hash = "sha256:533a28754e7f7439f217550a497bb026c54072dbe16402b183fdbca2431935a9"}, + {file = "yarl-1.15.2-cp313-cp313-win_amd64.whl", hash = "sha256:5838f2b79dc8f96fdc44077c9e4e2e33d7089b10788464609df788eb97d03aad"}, + {file = "yarl-1.15.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fbbb63bed5fcd70cd3dd23a087cd78e4675fb5a2963b8af53f945cbbca79ae16"}, + {file = "yarl-1.15.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e2e93b88ecc8f74074012e18d679fb2e9c746f2a56f79cd5e2b1afcf2a8a786b"}, + {file = "yarl-1.15.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:af8ff8d7dc07ce873f643de6dfbcd45dc3db2c87462e5c387267197f59e6d776"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:66f629632220a4e7858b58e4857927dd01a850a4cef2fb4044c8662787165cf7"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:833547179c31f9bec39b49601d282d6f0ea1633620701288934c5f66d88c3e50"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2aa738e0282be54eede1e3f36b81f1e46aee7ec7602aa563e81e0e8d7b67963f"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a13a07532e8e1c4a5a3afff0ca4553da23409fad65def1b71186fb867eeae8d"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c45817e3e6972109d1a2c65091504a537e257bc3c885b4e78a95baa96df6a3f8"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:670eb11325ed3a6209339974b276811867defe52f4188fe18dc49855774fa9cf"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_armv7l.whl", hash = "sha256:d417a4f6943112fae3924bae2af7112562285848d9bcee737fc4ff7cbd450e6c"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:bc8936d06cd53fddd4892677d65e98af514c8d78c79864f418bbf78a4a2edde4"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:954dde77c404084c2544e572f342aef384240b3e434e06cecc71597e95fd1ce7"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:5bc0df728e4def5e15a754521e8882ba5a5121bd6b5a3a0ff7efda5d6558ab3d"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:b71862a652f50babab4a43a487f157d26b464b1dedbcc0afda02fd64f3809d04"}, + {file = "yarl-1.15.2-cp38-cp38-win32.whl", hash = "sha256:63eab904f8630aed5a68f2d0aeab565dcfc595dc1bf0b91b71d9ddd43dea3aea"}, + {file = "yarl-1.15.2-cp38-cp38-win_amd64.whl", hash = "sha256:2cf441c4b6e538ba0d2591574f95d3fdd33f1efafa864faa077d9636ecc0c4e9"}, + {file = "yarl-1.15.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a32d58f4b521bb98b2c0aa9da407f8bd57ca81f34362bcb090e4a79e9924fefc"}, + {file = "yarl-1.15.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:766dcc00b943c089349d4060b935c76281f6be225e39994c2ccec3a2a36ad627"}, + {file = "yarl-1.15.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:bed1b5dbf90bad3bfc19439258c97873eab453c71d8b6869c136346acfe497e7"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed20a4bdc635f36cb19e630bfc644181dd075839b6fc84cac51c0f381ac472e2"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d538df442c0d9665664ab6dd5fccd0110fa3b364914f9c85b3ef9b7b2e157980"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c6cf1d92edf936ceedc7afa61b07e9d78a27b15244aa46bbcd534c7458ee1b"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce44217ad99ffad8027d2fde0269ae368c86db66ea0571c62a000798d69401fb"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b47a6000a7e833ebfe5886b56a31cb2ff12120b1efd4578a6fcc38df16cc77bd"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:e52f77a0cd246086afde8815039f3e16f8d2be51786c0a39b57104c563c5cbb0"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:f9ca0e6ce7774dc7830dc0cc4bb6b3eec769db667f230e7c770a628c1aa5681b"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:136f9db0f53c0206db38b8cd0c985c78ded5fd596c9a86ce5c0b92afb91c3a19"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:173866d9f7409c0fb514cf6e78952e65816600cb888c68b37b41147349fe0057"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:6e840553c9c494a35e449a987ca2c4f8372668ee954a03a9a9685075228e5036"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:458c0c65802d816a6b955cf3603186de79e8fdb46d4f19abaec4ef0a906f50a7"}, + {file = "yarl-1.15.2-cp39-cp39-win32.whl", hash = "sha256:5b48388ded01f6f2429a8c55012bdbd1c2a0c3735b3e73e221649e524c34a58d"}, + {file = "yarl-1.15.2-cp39-cp39-win_amd64.whl", hash = "sha256:81dadafb3aa124f86dc267a2168f71bbd2bfb163663661ab0038f6e4b8edb810"}, + {file = "yarl-1.15.2-py3-none-any.whl", hash = "sha256:0d3105efab7c5c091609abacad33afff33bdff0035bece164c98bcf5a85ef90a"}, + {file = "yarl-1.15.2.tar.gz", hash = "sha256:a39c36f4218a5bb668b4f06874d676d35a035ee668e6e7e3538835c703634b84"}, +] + +[package.dependencies] +idna = ">=2.0" +multidict = ">=4.0" +propcache = ">=0.2.0" + +[[package]] +name = "zipp" +version = "3.20.2" +description = "Backport of pathlib-compatible object wrapper for zip files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, + {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, +] + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-ignore-flaky"] +type = ["pytest-mypy"] + +[metadata] +lock-version = "2.0" +python-versions = "~3.8" +content-hash = "40b4aee571e46a7a8d292b7e7c7239854913f85c949cce1d00a65428d7654c85" diff --git a/Chapter08/pyproject.toml b/Chapter08/pyproject.toml new file mode 100644 index 0000000..f5e68f4 --- /dev/null +++ b/Chapter08/pyproject.toml @@ -0,0 +1,46 @@ +[tool.poetry] +name = "Graph Machine Learning - Chapter 8" +version = "1.0.0" +description = "" +authors = ["Enrico Deusebio "] +packages = [] +package-mode = false + +[tool.setuptools] +py-modules = [] + +[tool.poetry.dependencies] +python = "~3.8" +ipykernel = ">=6.0.0" +matplotlib = "==3.2.2" +networkx = "==2.5" +scikit-learn = "==0.24.0" +gensim = "==3.8.3" +node2vec = "==0.3.3" +chardet = "==5.2.0" +tensorflow = "^2.6.0" +tensorflow-io-gcs-filesystem = "==0.21.0" # This needs pinning - see https://stackoverflow.com/a/76477590 +protobuf= "^3.20" +python-louvain = "==0.16" +# communities = "==2.2.0" +# This is what is holding us back to python 3.8 +stellargraph = "^1.2.1" +nltk = "==3.5" +fasttext-wheel = "==0.9.2" +langdetect = "~1.0" +spacy = "^3.7.0" +en-core-web-md = "==3.7.1" +# Torch +torch = "^2.1.0" +torch_geometric = "^2.5.2" +torchvision = "^0.16.0" +torchmetrics="^1.3.0" +# torch-sparse = {version = "^0.6.18", source = "torch-wheels"} +torch-sparse = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl"} +torch-scatter = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_scatter-2.1.2%2Bpt21cpu-cp38-cp38-linux_x86_64.whl"} +pyg-lib = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/pyg_lib-0.4.0%2Bpt21cpu-cp38-cp38-linux_x86_64.whl"} + + +[build-system] +requires = ["poetry-core"] +build-backend = "poetry.core.masonry.api" diff --git a/Chapter08/requirements.txt b/Chapter08/requirements.txt index 14814ef..9f3f251 100644 --- a/Chapter08/requirements.txt +++ b/Chapter08/requirements.txt @@ -1,18 +1,164 @@ -networkx==2.4  -scikit-learn==0.24.0 -stellargraph==1.2.1 -spacy==3.0.3 -pandas==1.1.3 -numpy==1.19.2 -node2vec==0.3.3 -Keras==2.0.2 -tensorflow==2.4.1 -communities==2.2.0 -gensim==3.8.3 -matplotlib==3.3.4 -nltk==3.5 -langdetect==1.0.9 -fasttext==0.9.2 -python-louvain==0.15 -click==7.1.2 -smart-open==3.0.0 +absl-py==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +aiohappyeyeballs==2.4.3 ; python_version >= "3.8" and python_version < "3.9" +aiohttp==3.10.11 ; python_version >= "3.8" and python_version < "3.9" +aiosignal==1.3.1 ; python_version >= "3.8" and python_version < "3.9" +annotated-types==0.7.0 ; python_version >= "3.8" and python_version < "3.9" +appnope==0.1.4 ; python_version >= "3.8" and python_version < "3.9" and (platform_system == "Darwin" or sys_platform == "darwin") +asttokens==2.4.1 ; python_version >= "3.8" and python_version < "3.9" +astunparse==1.6.3 ; python_version >= "3.8" and python_version < "3.9" +async-timeout==5.0.1 ; python_version >= "3.8" and python_version < "3.9" +attrs==24.2.0 ; python_version >= "3.8" and python_version < "3.9" +backcall==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +blis==0.7.11 ; python_version >= "3.8" and python_version < "3.9" +cachetools==5.5.0 ; python_version >= "3.8" and python_version < "3.9" +catalogue==2.0.10 ; python_version >= "3.8" and python_version < "3.9" +certifi==2024.8.30 ; python_version >= "3.8" and python_version < "3.9" +cffi==1.17.1 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +chardet==5.2.0 ; python_version >= "3.8" and python_version < "3.9" +charset-normalizer==3.4.0 ; python_version >= "3.8" and python_version < "3.9" +click==8.1.7 ; python_version >= "3.8" and python_version < "3.9" +cloudpathlib==0.20.0 ; python_version >= "3.8" and python_version < "3.9" +colorama==0.4.6 ; python_version >= "3.8" and python_version < "3.9" and (sys_platform == "win32" or platform_system == "Windows") +comm==0.2.2 ; python_version >= "3.8" and python_version < "3.9" +confection==0.1.5 ; python_version >= "3.8" and python_version < "3.9" +cycler==0.12.1 ; python_version >= "3.8" and python_version < "3.9" +cymem==2.0.8 ; python_version >= "3.8" and python_version < "3.9" +cython==0.29.14 ; python_version >= "3.8" and python_version < "3.9" +debugpy==1.8.8 ; python_version >= "3.8" and python_version < "3.9" +decorator==5.1.1 ; python_version >= "3.8" and python_version < "3.9" +en-core-web-md @ https://github.com/explosion/spacy-models/releases/download/en_core_web_md-3.7.1/en_core_web_md-3.7.1-py3-none-any.whl ; python_version >= "3.8" and python_version < "3.9" +executing==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +fasttext-wheel==0.9.2 ; python_version >= "3.8" and python_version < "3.9" +filelock==3.16.1 ; python_version >= "3.8" and python_version < "3.9" +flatbuffers==2.0.7 ; python_version >= "3.8" and python_version < "3.9" +frozenlist==1.5.0 ; python_version >= "3.8" and python_version < "3.9" +fsspec==2024.10.0 ; python_version >= "3.8" and python_version < "3.9" +gast==0.4.0 ; python_version >= "3.8" and python_version < "3.9" +gensim==3.8.3 ; python_version >= "3.8" and python_version < "3.9" +google-auth-oauthlib==1.0.0 ; python_version >= "3.8" and python_version < "3.9" +google-auth==2.36.0 ; python_version >= "3.8" and python_version < "3.9" +google-pasta==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +grpcio==1.68.0 ; python_version >= "3.8" and python_version < "3.9" +h5py==3.11.0 ; python_version >= "3.8" and python_version < "3.9" +idna==3.10 ; python_version >= "3.8" and python_version < "3.9" +importlib-metadata==8.5.0 ; python_version >= "3.8" and python_version < "3.9" +ipykernel==6.29.5 ; python_version >= "3.8" and python_version < "3.9" +ipython==8.12.3 ; python_version >= "3.8" and python_version < "3.9" +jedi==0.19.2 ; python_version >= "3.8" and python_version < "3.9" +jinja2==3.1.4 ; python_version >= "3.8" and python_version < "3.9" +joblib==1.4.2 ; python_version >= "3.8" and python_version < "3.9" +jupyter-client==8.6.3 ; python_version >= "3.8" and python_version < "3.9" +jupyter-core==5.7.2 ; python_version >= "3.8" and python_version < "3.9" +keras-preprocessing==1.1.2 ; python_version >= "3.8" and python_version < "3.9" +keras==2.7.0 ; python_version >= "3.8" and python_version < "3.9" +kiwisolver==1.4.7 ; python_version >= "3.8" and python_version < "3.9" +langcodes==3.4.1 ; python_version >= "3.8" and python_version < "3.9" +langdetect==1.0.9 ; python_version >= "3.8" and python_version < "3.9" +language-data==1.2.0 ; python_version >= "3.8" and python_version < "3.9" +libclang==18.1.1 ; python_version >= "3.8" and python_version < "3.9" +lightning-utilities==0.11.8 ; python_version >= "3.8" and python_version < "3.9" +marisa-trie==1.2.1 ; python_version >= "3.8" and python_version < "3.9" +markdown-it-py==3.0.0 ; python_version >= "3.8" and python_version < "3.9" +markdown==3.7 ; python_version >= "3.8" and python_version < "3.9" +markupsafe==2.1.5 ; python_version >= "3.8" and python_version < "3.9" +matplotlib-inline==0.1.7 ; python_version >= "3.8" and python_version < "3.9" +matplotlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" +mdurl==0.1.2 ; python_version >= "3.8" and python_version < "3.9" +mpmath==1.3.0 ; python_version >= "3.8" and python_version < "3.9" +multidict==6.1.0 ; python_version >= "3.8" and python_version < "3.9" +murmurhash==1.0.10 ; python_version >= "3.8" and python_version < "3.9" +nest-asyncio==1.6.0 ; python_version >= "3.8" and python_version < "3.9" +networkx==2.5 ; python_version >= "3.8" and python_version < "3.9" +nltk==3.5 ; python_version >= "3.8" and python_version < "3.9" +node2vec==0.3.3 ; python_version >= "3.8" and python_version < "3.9" +numpy==1.24.4 ; python_version >= "3.8" and python_version < "3.9" +nvidia-cublas-cu12==12.1.3.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-cupti-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-nvrtc-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cuda-runtime-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cudnn-cu12==8.9.2.26 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cufft-cu12==11.0.2.54 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-curand-cu12==10.3.2.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cusolver-cu12==11.4.5.107 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-cusparse-cu12==12.1.0.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nccl-cu12==2.18.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nvjitlink-cu12==12.6.77 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +nvidia-nvtx-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +oauthlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" +opt-einsum==3.4.0 ; python_version >= "3.8" and python_version < "3.9" +packaging==24.2 ; python_version >= "3.8" and python_version < "3.9" +pandas==2.0.3 ; python_version >= "3.8" and python_version < "3.9" +parso==0.8.4 ; python_version >= "3.8" and python_version < "3.9" +pexpect==4.9.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" +pickleshare==0.7.5 ; python_version >= "3.8" and python_version < "3.9" +pillow==10.4.0 ; python_version >= "3.8" and python_version < "3.9" +platformdirs==4.3.6 ; python_version >= "3.8" and python_version < "3.9" +preshed==3.0.9 ; python_version >= "3.8" and python_version < "3.9" +prompt-toolkit==3.0.48 ; python_version >= "3.8" and python_version < "3.9" +propcache==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +protobuf==3.20.3 ; python_version >= "3.8" and python_version < "3.9" +psutil==6.1.0 ; python_version >= "3.8" and python_version < "3.9" +ptyprocess==0.7.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" +pure-eval==0.2.3 ; python_version >= "3.8" and python_version < "3.9" +pyasn1-modules==0.4.1 ; python_version >= "3.8" and python_version < "3.9" +pyasn1==0.6.1 ; python_version >= "3.8" and python_version < "3.9" +pybind11==2.13.6 ; python_version >= "3.8" and python_version < "3.9" +pycparser==2.22 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +pydantic-core==2.23.4 ; python_version >= "3.8" and python_version < "3.9" +pydantic==2.9.2 ; python_version >= "3.8" and python_version < "3.9" +pyg-lib @ https://data.pyg.org/whl/torch-2.1.0%2Bcpu/pyg_lib-0.4.0%2Bpt21cpu-cp38-cp38-linux_x86_64.whl ; python_version >= "3.8" and python_version < "3.9" +pygments==2.18.0 ; python_version >= "3.8" and python_version < "3.9" +pyparsing==3.1.4 ; python_version >= "3.8" and python_version < "3.9" +python-dateutil==2.9.0.post0 ; python_version >= "3.8" and python_version < "3.9" +python-louvain==0.16 ; python_version >= "3.8" and python_version < "3.9" +pytz==2024.2 ; python_version >= "3.8" and python_version < "3.9" +pywin32==308 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" +pyzmq==26.2.0 ; python_version >= "3.8" and python_version < "3.9" +regex==2024.11.6 ; python_version >= "3.8" and python_version < "3.9" +requests-oauthlib==2.0.0 ; python_version >= "3.8" and python_version < "3.9" +requests==2.32.3 ; python_version >= "3.8" and python_version < "3.9" +rich==13.9.4 ; python_version >= "3.8" and python_version < "3.9" +rsa==4.9 ; python_version >= "3.8" and python_version < "3.9" +scikit-learn==0.24.0 ; python_version >= "3.8" and python_version < "3.9" +scipy==1.10.1 ; python_version >= "3.8" and python_version < "3.9" +setuptools==75.3.0 ; python_version >= "3.8" and python_version < "3.9" +shellingham==1.5.4 ; python_version >= "3.8" and python_version < "3.9" +six==1.16.0 ; python_version >= "3.8" and python_version < "3.9" +smart-open==7.0.5 ; python_version >= "3.8" and python_version < "3.9" +spacy-legacy==3.0.12 ; python_version >= "3.8" and python_version < "3.9" +spacy-loggers==1.0.5 ; python_version >= "3.8" and python_version < "3.9" +spacy==3.7.5 ; python_version >= "3.8" and python_version < "3.9" +srsly==2.4.8 ; python_version >= "3.8" and python_version < "3.9" +stack-data==0.6.3 ; python_version >= "3.8" and python_version < "3.9" +stellargraph==1.2.1 ; python_version >= "3.8" and python_version < "3.9" +sympy==1.13.3 ; python_version >= "3.8" and python_version < "3.9" +tensorboard-data-server==0.7.2 ; python_version >= "3.8" and python_version < "3.9" +tensorboard==2.14.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow-estimator==2.7.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow-io-gcs-filesystem==0.21.0 ; python_version >= "3.8" and python_version < "3.9" +tensorflow==2.7.2 ; python_version >= "3.8" and python_version < "3.9" +termcolor==2.4.0 ; python_version >= "3.8" and python_version < "3.9" +thinc==8.2.5 ; python_version >= "3.8" and python_version < "3.9" +threadpoolctl==3.5.0 ; python_version >= "3.8" and python_version < "3.9" +torch-geometric==2.6.1 ; python_version >= "3.8" and python_version < "3.9" +torch-scatter @ https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_scatter-2.1.2%2Bpt21cpu-cp38-cp38-linux_x86_64.whl ; python_version >= "3.8" and python_version < "3.9" +torch-sparse @ https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl ; python_version >= "3.8" and python_version < "3.9" +torch==2.1.2 ; python_version >= "3.8" and python_version < "3.9" +torchmetrics==1.5.2 ; python_version >= "3.8" and python_version < "3.9" +torchvision==0.16.2 ; python_version >= "3.8" and python_version < "3.9" +tornado==6.4.1 ; python_version >= "3.8" and python_version < "3.9" +tqdm==4.67.0 ; python_version >= "3.8" and python_version < "3.9" +traitlets==5.14.3 ; python_version >= "3.8" and python_version < "3.9" +triton==2.1.0 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version >= "3.8" and python_version < "3.9" +typer==0.13.0 ; python_version >= "3.8" and python_version < "3.9" +typing-extensions==4.12.2 ; python_version >= "3.8" and python_version < "3.9" +tzdata==2024.2 ; python_version >= "3.8" and python_version < "3.9" +urllib3==2.2.3 ; python_version >= "3.8" and python_version < "3.9" +wasabi==1.1.3 ; python_version >= "3.8" and python_version < "3.9" +wcwidth==0.2.13 ; python_version >= "3.8" and python_version < "3.9" +weasel==0.4.1 ; python_version >= "3.8" and python_version < "3.9" +werkzeug==3.0.6 ; python_version >= "3.8" and python_version < "3.9" +wheel==0.45.0 ; python_version >= "3.8" and python_version < "3.9" +wrapt==1.16.0 ; python_version >= "3.8" and python_version < "3.9" +yarl==1.15.2 ; python_version >= "3.8" and python_version < "3.9" +zipp==3.20.2 ; python_version >= "3.8" and python_version < "3.9" diff --git a/Chapter08/subject_object_extraction.py b/Chapter08/subject_object_extraction.py index 4ad5c53..0154406 100644 --- a/Chapter08/subject_object_extraction.py +++ b/Chapter08/subject_object_extraction.py @@ -143,11 +143,11 @@ def findSVOs(tokens, output="str"): for obj in objs: objNegated = isNegated(obj) - if output is "str": + if output == "str": element = ( sub.lower_, "!" + v.lower_ if verbNegated or objNegated else v.lower_, obj.lower_ ) - elif output is "obj": + elif output == "obj": element = (sub, (v, verbNegated or objNegated), obj) svos.append(element) diff --git a/docker/Dockerfile b/docker/Dockerfile index f9eb2e3..bb0ba20 100644 --- a/docker/Dockerfile +++ b/docker/Dockerfile @@ -66,3 +66,9 @@ RUN ls -d -1 */ | grep -v -e Chapter07 | xargs rm -rf RUN conda create -n chap7 python=3.8 RUN conda run -n chap7 pip install -r Chapter07/requirements.txt RUN conda run -n chap7 python -m ipykernel install --name chap7 --user + +FROM base as chap8 +RUN ls -d -1 */ | grep -v -e Chapter08 | xargs rm -rf +RUN conda create -n chap8 python=3.8 +RUN conda run -n chap8 pip install -r Chapter08/requirements.txt +RUN conda run -n chap8 python -m ipykernel install --name chap8 --user From a9923b9c8ef6c76d562b5f99307b31cd0c1c0f51 Mon Sep 17 00:00:00 2001 From: deusebio Date: Mon, 25 Nov 2024 20:03:24 +0100 Subject: [PATCH 19/31] [2nd Edition][Chapter 9] Introduce Poetry (#22) --- .github/workflows/ci.yaml | 7 + .../01_Credit_card_edges_classification.ipynb | 758 +++++++- Chapter09/poetry.lock | 1726 +++++++++++++++++ Chapter09/pyproject.toml | 26 + Chapter09/requirements.txt | 67 + docker/Dockerfile | 6 + 6 files changed, 2506 insertions(+), 84 deletions(-) create mode 100644 Chapter09/poetry.lock create mode 100644 Chapter09/pyproject.toml create mode 100644 Chapter09/requirements.txt diff --git a/.github/workflows/ci.yaml b/.github/workflows/ci.yaml index 3f9b6a8..3af677e 100644 --- a/.github/workflows/ci.yaml +++ b/.github/workflows/ci.yaml @@ -31,6 +31,8 @@ jobs: folder: Chapter07 - name: chap8 folder: Chapter08 + - name: chap9 + folder: Chapter09 runs-on: ubuntu-latest name: Image ${{ matrix.chapter.name }} steps: @@ -52,6 +54,9 @@ jobs: - name: Test Image id: tests + env: + KAGGLE_USERNAME: ${{ secrets.KAGGLE_USERNAME }} + KAGGLE_TOKEN: ${{ secrets.KAGGLE_TOKEN }} run: | mkdir -p data @@ -59,6 +64,8 @@ jobs: docker run \ --rm --detach -v "$(pwd)/data:/data" \ --name graph-machine-learning-box \ + --env KAGGLE_USERNAME=${KAGGLE_USERNAME} \ + --env KAGGLE_KEY=${KAGGLE_TOKEN} \ graph-machine-learning:latest # Run tests diff --git a/Chapter09/01_Credit_card_edges_classification.ipynb b/Chapter09/01_Credit_card_edges_classification.ipynb index d71f496..e819b54 100644 --- a/Chapter09/01_Credit_card_edges_classification.ipynb +++ b/Chapter09/01_Credit_card_edges_classification.ipynb @@ -11,7 +11,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "id": "Plnw0bRc_Mks" }, @@ -30,6 +30,20 @@ "enhanced_edge_color = '#cc2f04'" ] }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import sys\n", + "\n", + "sys.path.append(f\"{os.getcwd()}/..\")\n", + "\n", + "from utils import DATA_DIR" + ] + }, { "cell_type": "markdown", "metadata": { @@ -39,30 +53,349 @@ "## Load Dataset and build graph" ] }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "os.environ[\"KAGGLE_USERNAME\"]=...\n", + "os.environ[\"KAGGLE_KEY\"]=..." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import kaggle" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from kaggle.api.kaggle_api_extended import KaggleApi\n", + "from kaggle.api_client import ApiClient\n", + "\n", + "api = KaggleApi(ApiClient())\n", + "api.authenticate()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dataset URL: https://www.kaggle.com/datasets/kartik2112/fraud-detection\n", + "License(s): CC0-1.0\n", + "fraud-detection.zip: Skipping, found more recently modified local copy (use --force to force download)\n" + ] + } + ], + "source": [ + "api.dataset_download_cli(\"kartik2112/fraud-detection\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from zipfile import ZipFile" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "myzip = ZipFile(\"fraud-detection.zip\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "tmp_file = myzip.extract(\"fraudTrain.csv\", path=DATA_DIR)" + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], + "source": [ + "myzip.close()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0trans_date_trans_timecc_nummerchantcategoryamtfirstlastgenderstreet...latlongcity_popjobdobtrans_numunix_timemerch_latmerch_longis_fraud
8117788117782019-12-07 10:55:06676173792455fraud_Zieme, Bode and Dooleygas_transport86.19BrittanyCoxF07177 William Dale Apt. 547...34.0287-118.492492043Civil engineer, contracting1961-04-25f32d1f4b2a918f4c2f6acdc83033ee35135487770633.287851-118.7409700
110171811017182020-04-03 13:10:0630518206766474fraud_Lind-Buckridgeentertainment85.81TamaraMartinezF471 Marquez Prairie Suite 680...36.7154-89.62871019Aeronautical engineer1979-01-26f5dad8e2d7c39d81502d846a20286659136499460636.539950-89.8574160
8000138000132019-12-04 07:07:044658490815480264fraud_Hackett-Lueilwitzgrocery_pos99.30TaraRichardsF4879 Cristina Station...39.9636-79.7853184Systems developer1945-11-041d023bc78ab93ab65a35bbb53bcc67bd135460482439.582872-78.8385500
3989453989452019-06-30 18:43:084716561796955522fraud_Lynch-Wisozkhome42.09LaurenAndersonF11014 Chad Lake Apt. 573...48.2777-112.8456743Water engineer1972-05-04dbf6c06d3277438afdf7af883fb4285f134108178848.310513-112.8375350
2074552074552019-04-15 19:57:493528407217576457fraud_Fisher-Schowaltershopping_net4.24PatriciaLeachF71309 Martinez Stravenue...36.4715-82.483487124Warden/ranger1987-02-1488814660aba0101b174e1e8137f4a7af133451986937.329094-82.0707460
\n", + "

5 rows × 23 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 trans_date_trans_time cc_num \\\n", + "811778 811778 2019-12-07 10:55:06 676173792455 \n", + "1101718 1101718 2020-04-03 13:10:06 30518206766474 \n", + "800013 800013 2019-12-04 07:07:04 4658490815480264 \n", + "398945 398945 2019-06-30 18:43:08 4716561796955522 \n", + "207455 207455 2019-04-15 19:57:49 3528407217576457 \n", + "\n", + " merchant category amt first \\\n", + "811778 fraud_Zieme, Bode and Dooley gas_transport 86.19 Brittany \n", + "1101718 fraud_Lind-Buckridge entertainment 85.81 Tamara \n", + "800013 fraud_Hackett-Lueilwitz grocery_pos 99.30 Tara \n", + "398945 fraud_Lynch-Wisozk home 42.09 Lauren \n", + "207455 fraud_Fisher-Schowalter shopping_net 4.24 Patricia \n", + "\n", + " last gender street ... lat \\\n", + "811778 Cox F 07177 William Dale Apt. 547 ... 34.0287 \n", + "1101718 Martinez F 471 Marquez Prairie Suite 680 ... 36.7154 \n", + "800013 Richards F 4879 Cristina Station ... 39.9636 \n", + "398945 Anderson F 11014 Chad Lake Apt. 573 ... 48.2777 \n", + "207455 Leach F 71309 Martinez Stravenue ... 36.4715 \n", + "\n", + " long city_pop job dob \\\n", + "811778 -118.4924 92043 Civil engineer, contracting 1961-04-25 \n", + "1101718 -89.6287 1019 Aeronautical engineer 1979-01-26 \n", + "800013 -79.7853 184 Systems developer 1945-11-04 \n", + "398945 -112.8456 743 Water engineer 1972-05-04 \n", + "207455 -82.4834 87124 Warden/ranger 1987-02-14 \n", + "\n", + " trans_num unix_time merch_lat merch_long \\\n", + "811778 f32d1f4b2a918f4c2f6acdc83033ee35 1354877706 33.287851 -118.740970 \n", + "1101718 f5dad8e2d7c39d81502d846a20286659 1364994606 36.539950 -89.857416 \n", + "800013 1d023bc78ab93ab65a35bbb53bcc67bd 1354604824 39.582872 -78.838550 \n", + "398945 dbf6c06d3277438afdf7af883fb4285f 1341081788 48.310513 -112.837535 \n", + "207455 88814660aba0101b174e1e8137f4a7af 1334519869 37.329094 -82.070746 \n", + "\n", + " is_fraud \n", + "811778 0 \n", + "1101718 0 \n", + "800013 0 \n", + "398945 0 \n", + "207455 0 \n", + "\n", + "[5 rows x 23 columns]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import pandas as pd\n", - "df = pd.read_csv(\"/Users/claudiostamile/Downloads/fraudTrain.csv\")\n", + "df = pd.read_csv(os.path.join(DATA_DIR, \"fraudTrain.csv\"))\n", "df = df[df[\"is_fraud\"]==0].sample(frac=0.20, random_state=42).append(df[df[\"is_fraud\"] == 1])\n", - "df" + "df.head()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0 257834\n", + "1 7506\n", + "Name: is_fraud, dtype: int64" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "df[\"is_fraud\"].value_counts()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -91,7 +424,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -121,7 +454,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -130,40 +463,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from networkx.algorithms import bipartite\n", "bipartite.is_bipartite(G)" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "plt.figure(figsize=(10,10))\n", - "top = nx.bipartite.sets(G)[0]\n", - "pos = nx.bipartite_layout(G, top)\n", - "nx.draw(G, pos=pos, with_labels=False, node_color=default_node_color, edge_color=default_edge_color)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "plt.axis(\"off\")\n", - "plt.figure(figsize=(10,10))\n", - "\n", - "nx.draw_networkx(G, pos=spring_pos, node_color=default_node_color, \n", - " edges_color=default_edge_color, with_labels=False, node_size=15)" - ] - }, { "cell_type": "markdown", "metadata": { @@ -175,18 +493,41 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Name: \n", + "Type: Graph\n", + "Number of nodes: 1676\n", + "Number of edges: 201725\n", + "Average degree: 240.7220\n" + ] + } + ], "source": [ "print(nx.info(G))" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1EAAAMtCAYAAAB+ZfsQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdf5BV9X34/9fCCv5iQSWCCIqNaGY1QsWFodGpP6iojFFsZ6zRitQxTbuZkqw2g9OpJhOnEDMyansr6SSKTmeioVXbarUqGq3G6ILir60/o4LyS2NkYVNBd8/nD8f9freo5XVZOHf3Ph4zd8Z7zsnd183bnfE558c2FEVRBAAAADtkSNkDAAAADCQiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAEBCY9kDlK2npyfWrl0bI0aMiIaGhrLHAQAASlIURWzevDnGjRsXQ4Z89vmmuo+otWvXxoQJE8oeAwAAqBFr1qyJ8ePHf+b+uo+oESNGRMTH/0c1NTWVPA0AAFCWzs7OmDBhQm8jfJa6j6hPLuFramoSUQAAwP95m48HSwAAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIqNuIqlQq0dzcHC0tLWWPAgAADCANRVEUZQ9Rps7Ozhg5cmRs2rQpmpqayh4HAAAoyY62Qd2eiQIAAKiGiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASGsseAABqwcQFd5c9Qs16Y9HsskcAqCnORAEAACQ4EwVQZ5xxAYCd40wUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEvyxXQDgc/kDzZ/ujUWzyx4BKIkzUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQULcRValUorm5OVpaWsoeBQAAGEDqNqJaW1ujo6Mj2tvbyx4FAAAYQOo2ogAAAKohogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASGgsewDYERMX3F32CDXrjUWzyx4BAKCuOBMFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQ0Fj2AGWpVCpRqVSiu7u77FGAXWDigrvLHgEAGKTq9kxUa2trdHR0RHt7e9mjAAAAA0jdRhQAAEA1RBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAEBCY9kDADtn4oK7yx4BAKCuOBMFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQMOAjas2aNXHiiSdGc3NzHHPMMbFs2bKyRwIAAAaxxrIH2FmNjY1x7bXXxpQpU2L9+vUxderUOOOMM2KfffYpezQAAGAQGvARddBBB8VBBx0UERFjx46N0aNHx3vvvSeiAACAXaL0y/keeeSROPPMM2PcuHHR0NAQd95553bHVCqVmDhxYuy5554xffr0ePLJJz/1s1auXBnd3d0xYcKEXT02AABQp0qPqK6urpg8eXJUKpVP3X/bbbdFW1tbXHnllfHUU0/F5MmTY9asWbFx48Y+x7333ntx4YUXxj/+4z9+7s/bunVrdHZ29nkBAADsqNIj6vTTT4+rrroq5syZ86n7Fy9eHJdccknMmzcvmpubY8mSJbH33nvHjTfe2HvM1q1b4+yzz44FCxbE7/3e733uz1u4cGGMHDmy9+WsFQAAkFF6RH2ebdu2xcqVK2PmzJm924YMGRIzZ86Mxx9/PCIiiqKIiy66KE4++eT4kz/5k//zMy+//PLYtGlT72vNmjW7bH4AAGDwqemIevfdd6O7uzvGjBnTZ/uYMWNi/fr1ERHx2GOPxW233RZ33nlnTJkyJaZMmRLPPffcZ37m8OHDo6mpqc8LAABgRw34p/Mdf/zx0dPTU/YYAABAnajpM1GjR4+OoUOHxoYNG/ps37BhQ4wdO7akqQAAgHpW0xE1bNiwmDp1aixfvrx3W09PTyxfvjxmzJhR4mQAAEC9Kv1yvi1btsSrr77a+/7111+PVatWxf777x+HHHJItLW1xdy5c+O4446LadOmxbXXXhtdXV0xb968EqcGAADqVekRtWLFijjppJN637e1tUVExNy5c2Pp0qVx7rnnxjvvvBNXXHFFrF+/PqZMmRL33nvvdg+bAAAA2B0aiqIoyh6iTJ2dnTFy5MjYtGmTJ/XVsIkL7i57BADo441Fs8seAehnO9oGNX1PFAAAQK0RUQAAAAkiCgAAIEFEAQAAJNRtRFUqlWhubo6WlpayRwEAAAaQuo2o1tbW6OjoiPb29rJHAQAABpC6jSgAAIBqiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABLqNqIqlUo0NzdHS0tL2aMAAAADSN1GVGtra3R0dER7e3vZowAAAANI3UYUAABANUQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACQ0lj0AfU1ccHfZIwAAAJ/DmSgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgoW4jqlKpRHNzc7S0tJQ9CgAAMIDUbUS1trZGR0dHtLe3lz0KAAAwgNRtRAEAAFRDRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACChbiOqUqlEc3NztLS0lD0KAAAwgNRtRLW2tkZHR0e0t7eXPQoAADCA1G1EAQAAVENEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACAhLqNqEqlEs3NzdHS0lL2KAAAwABStxHV2toaHR0d0d7eXvYoAADAAFK3EQUAAFANEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAICEuo2oSqUSzc3N0dLSUvYoAADAAFK3EdXa2hodHR3R3t5e9igAAMAAUrcRBQAAUA0RBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgIS6jahKpRLNzc3R0tJS9igAAMAAUrcR1draGh0dHdHe3l72KAAAwABStxEFAABQDREFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIKGqiPrVr37V33MAAAAMCFVF1OGHHx4nnXRS/NM//VN88MEH/T0TAABAzaoqop566qk45phjoq2tLcaOHRt/9md/Fk8++WR/zwYAAFBzqoqoKVOmxHXXXRdr166NG2+8MdatWxfHH398HH300bF48eJ45513+ntOAACAmrBTD5ZobGyMc845J5YtWxY/+MEP4tVXX43LLrssJkyYEBdeeGGsW7euv+YEAACoCTsVUStWrIi/+Iu/iIMOOigWL14cl112Wbz22mtx//33x9q1a+Oss87qrzkBAABqQmM1/6PFixfHTTfdFC+99FKcccYZccstt8QZZ5wRQ4Z83GSHHXZYLF26NCZOnNifswIAAJSuqoi64YYb4k//9E/joosuioMOOuhTjznwwAPjJz/5yU4NBwAAUGuqiqhXXnnl/zxm2LBhMXfu3Go+HgAAoGZVdU/UTTfdFMuWLdtu+7Jly+Lmm2/e6aEAAABqVVURtXDhwhg9evR22w888MD427/9250eCgAAoFZVFVGrV6+Oww47bLvthx56aKxevXqnhwIAAKhVVd0TdeCBB8azzz673dP3nnnmmTjggAP6Yy4AgJo2ccHdZY9Qk95YNLvsEWCXq+pM1HnnnRd/+Zd/GQ899FB0d3dHd3d3PPjggzF//vz44z/+4/6eEQAAoGZUdSbq+9//frzxxhtxyimnRGPjxx/R09MTF154oXuiAACAQa2qiBo2bFjcdttt8f3vfz+eeeaZ2GuvveLLX/5yHHroof09HwAAQE2pKqI+ccQRR8QRRxzRX7MAAADUvKoiqru7O5YuXRrLly+PjRs3Rk9PT5/9Dz74YL8MBwAAUGuqiqj58+fH0qVLY/bs2XH00UdHQ0NDf88FAABQk6qKqFtvvTV+9rOfxRlnnNHf8wAAANS0qh5xPmzYsDj88MP7exYAAICaV1VEXXrppXHddddFURT9PQ8AAEBNq+pyvkcffTQeeuihuOeee+Koo46KPfbYo8/+22+/vV+GAwAAqDVVRdSoUaNizpw5/T3LblWpVKJSqUR3d3fZowAAAANIQ1Hn1+R1dnbGyJEjY9OmTdHU1FT2ODFxwd1ljwAAULU3Fs0uewSo2o62QVX3REVEfPTRR/HAAw/Ej370o9i8eXNERKxduza2bNlS7UcCAADUvKou53vzzTfjtNNOi9WrV8fWrVvjD/7gD2LEiBHxgx/8ILZu3RpLlizp7zkBAABqQlVnoubPnx/HHXdc/OY3v4m99tqrd/ucOXNi+fLl/TYcAABAranqTNR//dd/xS9+8YsYNmxYn+0TJ06Mt99+u18GAwAAqEVVnYnq6en51KfavfXWWzFixIidHgoAAKBWVRVRp556alx77bW97xsaGmLLli1x5ZVXxhlnnNFvwwEAANSaqi7nu+aaa2LWrFnR3NwcH3zwQXzta1+LV155JUaPHh0//elP+3tGAACAmlFVRI0fPz6eeeaZuPXWW+PZZ5+NLVu2xMUXXxznn39+nwdNAAAADDZVRVRERGNjY1xwwQX9OQsAAEDNqyqibrnlls/df+GFF1Y1DAAAQK2rKqLmz5/f5/2HH34Yv/3tb2PYsGGx9957iygAAGDQqurpfL/5zW/6vLZs2RIvvfRSHH/88R4sAQAADGpVRdSnmTRpUixatGi7s1QAAACDSb9FVMTHD5tYu3Ztf34kAABATanqnqh/+7d/6/O+KIpYt25d/P3f/3185Stf6ZfBAAAAalFVEXX22Wf3ed/Q0BBf+MIX4uSTT45rrrmmXwYDAACoRVVFVE9PT3/PAQAAMCD06z1RAAAAg11VZ6La2tp2+NjFixdX8yMAAABqUlUR9fTTT8fTTz8dH374YRx55JEREfHyyy/H0KFD49hjj+09rqGhoX+mBAAAqBFVRdSZZ54ZI0aMiJtvvjn222+/iPj4D/DOmzcvTjjhhLj00kv7dUgAAIBaUdU9Uddcc00sXLiwN6AiIvbbb7+46qqrPJ0PAAAY1KqKqM7OznjnnXe22/7OO+/E5s2bd3ooAACAWlVVRM2ZMyfmzZsXt99+e7z11lvx1ltvxb/8y7/ExRdfHOecc05/zwgAAFAzqronasmSJXHZZZfF1772tfjwww8//qDGxrj44ovjhz/8Yb8OCAAAUEuqiqi99947/uEf/iF++MMfxmuvvRYREV/84hdjn3326dfhAAAAas1O/bHddevWxbp162LSpEmxzz77RFEU/TUXAABATaoqon7961/HKaecEkcccUScccYZsW7duoiIuPjiiz3eHAAAGNSqiqhvf/vbsccee8Tq1atj77337t1+7rnnxr333ttvwwEAANSaqu6Juu++++I///M/Y/z48X22T5o0Kd58881+GQwAAKAWVXUmqqurq88ZqE+89957MXz48J0eCgAAoFZVFVEnnHBC3HLLLb3vGxoaoqenJ66++uo46aST+m04AACAWlPV5XxXX311nHLKKbFixYrYtm1bfOc734kXXngh3nvvvXjsscf6e0YAAICaUdWZqKOPPjpefvnlOP744+Oss86Krq6uOOecc+Lpp5+OL37xi/09IwAAQM1In4n68MMP47TTToslS5bEX//1X++KmQAAAGpW+kzUHnvsEc8+++yumAUAAKDmVXU53wUXXBA/+clP+nsWAACAmlfVgyU++uijuPHGG+OBBx6IqVOnxj777NNn/+LFi/tlOAAAgFqTiqhf/epXMXHixHj++efj2GOPjYiIl19+uc8xDQ0N/TcdAABAjUlF1KRJk2LdunXx0EMPRUTEueeeG9dff32MGTNmlwwHAABQa1L3RBVF0ef9PffcE11dXf06EAAAQC2r6sESn/jfUQUAADDYpSKqoaFhu3ue3AMFAADUk9Q9UUVRxEUXXRTDhw+PiIgPPvggvvGNb2z3dL7bb7+9/yYEAACoIamImjt3bp/3F1xwQb8OAwAAUOtSEXXTTTftqjkAAAAGhJ16sAQAAEC9EVEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkDAoImrOnDmx3377xR/90R+VPQoAADDIDYqImj9/ftxyyy1ljwEAANSBQRFRJ554YowYMaLsMQAAgDpQekQ98sgjceaZZ8a4ceOioaEh7rzzzu2OqVQqMXHixNhzzz1j+vTp8eSTT5YwKQAAQA1EVFdXV0yePDkqlcqn7r/tttuira0trrzyynjqqadi8uTJMWvWrNi4cWNVP2/r1q3R2dnZ5wUAALCjSo+o008/Pa666qqYM2fOp+5fvHhxXHLJJTFv3rxobm6OJUuWxN577x033nhjVT9v4cKFMXLkyN7XhAkTdmZ8AACgzpQeUZ9n27ZtsXLlypg5c2bvtiFDhsTMmTPj8ccfr+ozL7/88ti0aVPva82aNf01LgAAUAcayx7g87z77rvR3d0dY8aM6bN9zJgx8eKLL/a+nzlzZjzzzDPR1dUV48ePj2XLlsWMGTM+9TOHDx8ew4cP36VzAwAAg1dNR9SOeuCBB8oeAQAAqBM1fTnf6NGjY+jQobFhw4Y+2zds2BBjx44taSoAAKCe1XREDRs2LKZOnRrLly/v3dbT0xPLly//zMv1AAAAdqXSL+fbsmVLvPrqq73vX3/99Vi1alXsv//+ccghh0RbW1vMnTs3jjvuuJg2bVpce+210dXVFfPmzStxagAAoF6VHlErVqyIk046qfd9W1tbRETMnTs3li5dGueee2688847ccUVV8T69etjypQpce+99273sAkAAIDdoaEoiqLsIcrU2dkZI0eOjE2bNkVTU1PZ48TEBXeXPQIAQNXeWDS77BGgajvaBjV9TxQAAECtEVEAAAAJIgoAACBBRAEAACTUbURVKpVobm6OlpaWskcBAAAGkLqNqNbW1ujo6Ij29vayRwEAAAaQuo0oAACAaogoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAAS6jaiKpVKNDc3R0tLS9mjAAAAA0jdRlRra2t0dHREe3t72aMAAAADSN1GFAAAQDVEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAk1G1EVSqVaG5ujpaWlrJHAQAABpC6jajW1tbo6OiI9vb2skcBAAAGkLqNKAAAgGqIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACTUbURVKpVobm6OlpaWskcBAAAGkLqNqNbW1ujo6Ij29vayRwEAAAaQuo0oAACAaogoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQ0Fj2AGWpVCpRqVSiu7u77FEAAAaNiQvuLnuEmvXGotllj0A/qdszUa2trdHR0RHt7e1ljwIAAAwgdRtRAAAA1RBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASKjbiKpUKtHc3BwtLS1ljwIAAAwgdRtRra2t0dHREe3t7WWPAgAADCB1G1EAAADVEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIqNuIqlQq0dzcHC0tLWWPAgAADCB1G1Gtra3R0dER7e3tZY8CAAAMIHUbUQAAANUQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQULcRValUorm5OVpaWsoeBQAAGEDqNqJaW1ujo6Mj2tvbyx4FAAAYQOo2ogAAAKohogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBgUEXXXXXfFkUceGZMmTYof//jHZY8DAAAMYo1lD7CzPvroo2hra4uHHnooRo4cGVOnTo05c+bEAQccUPZoAADAIDTgz0Q9+eSTcdRRR8XBBx8c++67b5x++ulx3333lT0WAAAwSJUeUY888kiceeaZMW7cuGhoaIg777xzu2MqlUpMnDgx9txzz5g+fXo8+eSTvfvWrl0bB8KetFYAAAzESURBVB98cO/7gw8+ON5+++3dMjsAAFB/So+orq6umDx5clQqlU/df9ttt0VbW1tceeWV8dRTT8XkyZNj1qxZsXHjxqp+3tatW6Ozs7PPCwAAYEeVfk/U6aefHqeffvpn7l+8eHFccsklMW/evIiIWLJkSdx9991x4403xoIFC2LcuHF9zjy9/fbbMW3atM/8vIULF8b3vve9/vsCAACwAyYuuLvsEWrSG4tmlz1CWulnoj7Ptm3bYuXKlTFz5szebUOGDImZM2fG448/HhER06ZNi+effz7efvvt2LJlS9xzzz0xa9asz/zMyy+/PDZt2tT7WrNmzS7/HgAAwOBR+pmoz/Puu+9Gd3d3jBkzps/2MWPGxIsvvhgREY2NjXHNNdfESSedFD09PfGd73znc5/MN3z48Bg+fPgunRsAABi8ajqidtRXv/rV+OpXv1r2GAAAQB2o6cv5Ro8eHUOHDo0NGzb02b5hw4YYO3ZsSVMBAAD1rKYjatiwYTF16tRYvnx577aenp5Yvnx5zJgxo8TJAACAelX65XxbtmyJV199tff966+/HqtWrYr9998/DjnkkGhra4u5c+fGcccdF9OmTYtrr702urq6ep/WBwAAsDuVHlErVqyIk046qfd9W1tbRETMnTs3li5dGueee2688847ccUVV8T69etjypQpce+99273sAkAAIDdoaEoiqLsIcrU2dkZI0eOjE2bNkVTU1PZ4/j7AQAA1JVa+jtRO9oGNX1PFAAAQK0RUQAAAAkiCgAAIEFEAQAAJNRtRFUqlWhubo6WlpayRwEAAAaQuo2o1tbW6OjoiPb29rJHAQAABpC6jSgAAIBqiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABLqNqIqlUo0NzdHS0tL2aMAAAADSN1GVGtra3R0dER7e3vZowAAAANI3UYUAABANUQUAABAgogCAABIEFEAAAAJIgoAACChsewBylYURUREdHZ2ljzJx3q2/rbsEQAAYLeplf8Oj/j/ZvmkET5L3UfU5s2bIyJiwoQJJU8CAAD1Z+S1ZU+wvc2bN8fIkSM/c39D8X9l1iDX09MTa9eujREjRkRDQ8Mu/VmdnZ0xYcKEWLNmTTQ1Ne3Sn0Vtsfb1y9rXJ+tev6x9/bL2g0NRFLF58+YYN25cDBny2Xc+1f2ZqCFDhsT48eN3689samryy1WnrH39svb1ybrXL2tfv6z9wPd5Z6A+4cESAAAACSIKAAAgYeh3v/vd75Y9RD0ZOnRonHjiidHYWPdXUtYda1+/rH19su71y9rXL2tfP+r+wRIAAAAZLucDAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRtRtVKpWYOHFi7LnnnjF9+vR48sknyx6JnfDII4/EmWeeGePGjYuGhoa48847++wviiKuuOKKOOigg2KvvfaKmTNnxiuvvNLnmPfeey/OP//8aGpqilGjRsXFF18cW7Zs2Z1fgyosXLgwWlpaYsSIEXHggQfG2WefHS+99FKfYz744INobW2NAw44IPbdd9/4wz/8w9iwYUOfY1avXh2zZ8+OvffeOw488MD4q7/6q/joo49251ch4YYbbohjjjkmmpqaoqmpKWbMmBH33HNP735rXj8WLVoUDQ0N8a1vfat3m/UfnL773e9GQ0NDn9eXvvSl3v3WvX6JqN3ktttui7a2trjyyivjqaeeismTJ8esWbNi48aNZY9Glbq6umLy5MlRqVQ+df/VV18d119/fSxZsiSeeOKJ2GeffWLWrFnxwQcf9B5z/vnnxwsvvBD3339/3HXXXfHII4/E17/+9d31FajSww8/HK2trfHLX/4y7r///vjwww/j1FNPja6urt5jvv3tb8e///u/x7Jly+Lhhx+OtWvXxjnnnNO7v7u7O2bPnh3btm2LX/ziF3HzzTfH0qVL44orrijjK7EDxo8fH4sWLYqVK1fGihUr4uSTT46zzjorXnjhhYiw5vWivb09fvSjH8UxxxzTZ7v1H7yOOuqoWLduXe/r0Ucf7d1n3etYwW4xbdq0orW1tfd9d3d3MW7cuGLhwoUlTkV/iYjijjvu6H3f09NTjB07tvjhD3/Yu+39998vhg8fXvz0pz8tiqIoOjo6iogo2tvbe4+55557ioaGhuLtt9/efcOz0zZu3FhERPHwww8XRfHxWu+xxx7FsmXLeo/57//+7yIiiscff7woiqL4j//4j2LIkCHF+vXre4+54YYbiqampmLr1q279wtQtf3226/48Y9/bM3rxObNm4tJkyYV999/f/H7v//7xfz584ui8Ds/mF155ZXF5MmTP3Wfda9vzkTtBtu2bYuVK1fGzJkze7cNGTIkZs6cGY8//niJk7GrvP7667F+/fo+az5y5MiYPn1675o//vjjMWrUqDjuuON6j5k5c2YMGTIknnjiid0+M9XbtGlTRETsv//+ERGxcuXK+PDDD/us/5e+9KU45JBD+qz/l7/85RgzZkzvMbNmzYrOzs7eMxvUru7u7rj11lujq6srZsyYYc3rRGtra8yePbvPOkf4nR/sXnnllRg3blz8zu/8Tpx//vmxevXqiLDu9a6x7AHqwbvvvhvd3d19foEiIsaMGRMvvvhiSVOxK61fvz4i4lPX/JN969evjwMPPLDP/sbGxth///17j6H29fT0xLe+9a34yle+EkcffXREfLy2w4YNi1GjRvU59n+v/6f9+/HJPmrTc889FzNmzIgPPvgg9t1337jjjjuiubk5Vq1aZc0HuVtvvTWeeuqpaG9v326f3/nBa/r06bF06dI48sgjY926dfG9730vTjjhhHj++eete50TUQA7obW1NZ5//vk+18gzeB155JGxatWq2LRpU/zzP/9zzJ07Nx5++OGyx2IXW7NmTcyfPz/uv//+2HPPPcseh93o9NNP7/3nY445JqZPnx6HHnpo/OxnP4u99tqrxMkom8v5doPRo0fH0KFDt3tay4YNG2Ls2LElTcWu9Mm6ft6ajx07drsHi3z00Ufx3nvv+fdigPjmN78Zd911Vzz00EMxfvz43u1jx46Nbdu2xfvvv9/n+P+9/p/278cn+6hNw4YNi8MPPzymTp0aCxcujMmTJ8d1111nzQe5lStXxsaNG+PYY4+NxsbGaGxsjIcffjiuv/76aGxsjDFjxlj/OjFq1Kg44ogj4tVXX/V7X+dE1G4wbNiwmDp1aixfvrx3W09PTyxfvjxmzJhR4mTsKocddliMHTu2z5p3dnbGE0880bvmM2bMiPfffz9WrlzZe8yDDz4YPT09MX369N0+MzuuKIr45je/GXfccUc8+OCDcdhhh/XZP3Xq1Nhjjz36rP9LL70Uq1ev7rP+zz33XJ+Qvv/++6OpqSmam5t3zxdhp/X09MTWrVut+SB3yimnxHPPPRerVq3qfR133HFx/vnn9/6z9a8PW7Zsiddeey0OOuggv/f1ruwnW9SLW2+9tRg+fHixdOnSoqOjo/j6179ejBo1qs/TWhhYNm/eXDz99NPF008/XUREsXjx4uLpp58u3nzzzaIoimLRokXFqFGjin/9138tnn322eKss84qDjvssOJ//ud/ej/jtNNOK373d3+3eOKJJ4pHH320mDRpUnHeeeeV9ZXYQX/+539ejBw5svj5z39erFu3rvf129/+tveYb3zjG8UhhxxSPPjgg8WKFSuKGTNmFDNmzOjd/9FHHxVHH310ceqppxarVq0q7r333uILX/hCcfnll5fxldgBCxYsKB5++OHi9ddfL5599tliwYIFRUNDQ3HfffcVRWHN683//+l8RWH9B6tLL720+PnPf168/vrrxWOPPVbMnDmzGD16dLFx48aiKKx7PRNRu9Hf/d3fFYccckgxbNiwYtq0acUvf/nLskdiJzz00ENFRGz3mjt3blEUHz/m/G/+5m+KMWPGFMOHDy9OOeWU4qWXXurzGb/+9a+L8847r9h3332Lpv/Xvh3iKAyEYRhmTRMQJE1aQSo4DApZVU0llgNxMQSuB6hAIL51JEtW7JgluzyPnckkk1+9mcx6ncPhkHmeX3AbSnw398VikfP5/Nhzu91yPB5T13VWq1X6vs80TV/OuV6v2e/3WS6XaZomp9Mp9/v9l2/DT43jmO12m6qq0rZtdrvdI6ASM383zxFl/v/TMAzZbDapqipd12UYhlwul8e6ub+vjyR5zRsYAADA3+NPFAAAQAERBQAAUEBEAQAAFBBRAAAABUQUAABAAREFAABQQEQBAAAUEFEAAAAFRBQAAEABEQUAAFBARAEAABT4BCYR6XN1qB3dAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plt.figure(figsize=(10,10))\n", "degrees = pd.Series({k: v for k, v in nx.degree(G)})\n", @@ -196,9 +537,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([5.030000e+00, 5.825000e+01, 9.844000e+01, 2.156560e+02,\n", + " 1.530595e+04])" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "allEdgesWeights = pd.Series({(d[0], d[1]): d[2][\"weight\"] for d in G.edges(data=True)})\n", "np.quantile(allEdgesWeights.values,[0.10,0.50,0.70,0.9,1.0])" @@ -206,9 +559,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 5.03 , 58.25 , 98.44 , 215.656])" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "quant_dist = np.quantile(allEdgesWeights.values,[0.10,0.50,0.70,0.9])\n", "quant_dist" @@ -216,7 +580,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -226,9 +590,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1EAAAMtCAYAAAB+ZfsQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df5BV9X34/9fCAoKyoCK/Krpq1MwGxUaROtFprVRExvFH/yCJjkgZo80msUHaIZNRnEkaMFbGxOxIpqOi01YNjaZtqLaKRpIGFfFX4zYKxhUNv/wRWBYr4O75/pFxv58t/uB1uXDu7j4eMzvjPedweF3nuJtn3vecrSuKoggAAAD2yoCyBwAAAOhNRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACAhPqyByhbV1dXbNiwIYYPHx51dXVljwMAAJSkKIrYvn17jB8/PgYM+Oj1pn4fURs2bIgJEyaUPQYAAFAjXn/99TjyyCM/cn+/j6jhw4dHxO//RTU0NJQ8DQAAUJb29vaYMGFCdyN8lH4fUR98hK+hoUFEAQAAn3ibjwdLAAAAJIgoAACABBEFAACQIKIAAAASRBQAAEBCv42olpaWaGpqismTJ5c9CgAA0IvUFUVRlD1Emdrb22PEiBGxbds2jzgHAIB+bG/boN+uRAEAAFRCRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACChvuwB6Klx/vJ9PkfbohlVmAQAAPgwVqIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJPTbiGppaYmmpqaYPHly2aMAAAC9SF1RFEXZQ5Spvb09RowYEdu2bYuGhoayx4nG+cvLHqFb26IZZY8AAAAHzN62Qb9diQIAAKiEiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAl9JqLefffdOProo2PevHlljwIAAPRhfSai/vZv/zb+6I/+qOwxAACAPq5PRNTatWvj17/+dUyfPr3sUQAAgD6u9IhauXJlXHDBBTF+/Pioq6uLn/zkJ3sc09LSEo2NjXHQQQfFlClT4qmnnuqxf968ebFw4cIDNTIAANCPlR5RO3bsiEmTJkVLS8uH7r/vvvti7ty5sWDBgnjmmWdi0qRJMW3atNiyZUtERPzLv/xLnHDCCXHCCSccyLEBAIB+qr7sAaZPn/6xH8NbvHhxXHnllTF79uyIiFiyZEksX7487rjjjpg/f3488cQTce+998ayZcuio6Mjdu/eHQ0NDXH99dd/6Pl27twZO3fu7H7d3t5e3TcEAAD0aaWvRH2cXbt2xZo1a2Lq1Knd2wYMGBBTp06NVatWRUTEwoUL4/XXX4+2trb4u7/7u7jyyis/MqA+OH7EiBHdXxMmTNjv7wMAAOg7ajqi3nrrrejs7IwxY8b02D5mzJjYtGlTRef8xje+Edu2bev+ev3116sxKgAA0E+U/nG+arriiis+8ZghQ4bEkCFD9v8wAABAn1TTK1GjRo2KgQMHxubNm3ts37x5c4wdO7akqQAAgP6spiNq8ODBceqpp8aKFSu6t3V1dcWKFSvijDPOKHEyAACgvyr943wdHR2xbt267tevvvpqPPfcc3HYYYfFUUcdFXPnzo1Zs2bFaaedFqeffnrccsstsWPHju6n9QEAABxIpUfU008/HWeffXb367lz50ZExKxZs2Lp0qUxc+bMePPNN+P666+PTZs2xSmnnBIPPfTQHg+bAAAAOBDqiqIoyh6iTO3t7TFixIjYtm1bNDQ0lD1ONM5fXvYI3doWzSh7BAAAOGD2tg1q+p4oAACAWiOiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJ/TaiWlpaoqmpKSZPnlz2KAAAQC/SbyOqubk5WltbY/Xq1WWPAgAA9CL9NqIAAAAqIaIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAEBCfdkDULsa5y+vynnaFs2oynkAAKAWWIkCAABI6LcR1dLSEk1NTTF58uSyRwEAAHqRfhtRzc3N0draGqtXry57FAAAoBfptxEFAABQCREFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACAhH4bUS0tLdHU1BSTJ08uexQAAKAX6bcR1dzcHK2trbF69eqyRwEAAHqR+rIHAKhljfOX7/M52hbNqMIkAECt6LcrUQAAAJUQUQAAAAkiCgAAIEFEAQAAJIgoAACABE/nA6ryBLoIT6EDAPoHK1EAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgt8TxX5Xjd9B5PcPAQBQK6xEAQAAJIgoAACABBEFAACQ4J4ooGqqcf9bhHvgAIDaJqKgl6tWuAAAsHd8nA8AACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEjydD+iTPLUQANhfRBRQcwQQAFDLfJwPAAAgQUQBAAAk9NuIamlpiaamppg8eXLZowAAAL1Iv42o5ubmaG1tjdWrV5c9CgAA0Iv024gCAACohIgCAABIEFEAAAAJIgoAACBBRAEAACTUlz0A7I3G+curcp62RTOqch7IcP0CQN9iJQoAACDBShRUoBorC1YVAAB6JxFFv1Ktj1UBANB/+TgfAABAgogCAABI8HE+KImPFgIA9E5WogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJBQUUT95je/qfYcAAAAvUJFEfWpT30qzj777PiHf/iHeO+996o9EwAAQM2qKKKeeeaZOPnkk2Pu3LkxduzYuOqqq+Kpp56q9mwAAAA1p6KIOuWUU+J73/tebNiwIe64447YuHFjnHnmmTFx4sRYvHhxvPnmm9WeEwAAoCbs04Ml6uvr45JLLolly5bFjTfeGOvWrYt58+bFhAkT4vLLL4+NGzdWa04AAICasE8R9fTTT8eXv/zlGDduXCxevDjmzZsXr7zySjz88MOxYcOGuPDCC6s1JwAAQE2or+QPLV68OO6888546aWX4vzzz4+77747zj///Bgw4PdNdswxx8TSpUujsbGxmrMCAACUrqKIuu222+Iv/uIv4oorrohx48Z96DGjR4+O22+/fZ+GAwAAqDUVRdTatWs/8ZjBgwfHrFmzKjk9AABAzaronqg777wzli1btsf2ZcuWxV133bXPQwEAANSqiiJq4cKFMWrUqD22jx49Or7zne/s81AAAAC1qqKIWr9+fRxzzDF7bD/66KNj/fr1+zwUAABAraoookaPHh0vvPDCHtuff/75OPzww/d5KAAAgFpVUUR94QtfiK997Wvx2GOPRWdnZ3R2dsajjz4a11xzTXz+85+v9owAAAA1o6Kn833rW9+Ktra2OOecc6K+/ven6Orqissvv9w9UQAAQJ9WUUQNHjw47rvvvvjWt74Vzz//fAwdOjROOumkOProo6s9337T0tISLS0t0dnZWfYoAABAL1JXFEVR9hBlam9vjxEjRsS2bduioaGh7HGicf7yskcAalTbohlljwAAfdretkFFK1GdnZ2xdOnSWLFiRWzZsiW6urp67H/00UcrOS0AAEDNqyiirrnmmli6dGnMmDEjJk6cGHV1ddWeCwAAoCZVFFH33ntv/OhHP4rzzz+/2vMAAADUtIoecT548OD41Kc+Ve1ZAAAAal5FEXXttdfG9773vejnz6QAAAD6oYo+zveLX/wiHnvssXjwwQfjM5/5TAwaNKjH/vvvv78qwwEAANSaiiJq5MiRcfHFF1d7FgAAgJpXUUTdeeed1Z4DAACgV6jonqiIiPfffz8eeeSR+OEPfxjbt2+PiIgNGzZER0dH1YYDAACoNRWtRL322mtx3nnnxfr162Pnzp3xZ3/2ZzF8+PC48cYbY+fOnbFkyZJqzwkAAFATKlqJuuaaa+K0006L3/3udzF06NDu7RdffHGsWLGiasMBAADUmopWon7+85/HL3/5yxg8eHCP7Y2NjfHb3/62KoMB0FPj/OVVOU/bohlVOQ8A9FcVrUR1dXVFZ2fnHtvfeOONGD58+D4PBQAAUKsqiqhzzz03brnllu7XdXV10dHREQsWLIjzzz+/asMBAADUmoo+znfzzTfHtGnToqmpKd5777344he/GGvXro1Ro0bFPffcU+0ZAQAAakZFEXXkkUfG888/H/fee2+88MIL0dHREXPmzIlLL720x4MmAAAA+pqKIioior6+Pi677LJqzgIAAFDzKoqou++++2P3X3755RUNAwAAUOsqiqhrrrmmx+vdu3fHu+++G4MHD45hw4aJKAAAoM+q6Ol8v/vd73p8dXR0xEsvvRRnnnmmB0sAAAB9WkUR9WGOP/74WLRo0R6rVAAAAH1J1SIq4vcPm9iwYUM1TwkAAFBTKron6l//9V97vC6KIjZu3Bg/+MEP4nOf+1xVBgMAAKhFFUXURRdd1ON1XV1dHHHEEfGnf/qncfPNN1dlMAAAgFpUUUR1dXVVew4AAIBeoar3RAEAAPR1Fa1EzZ07d6+PXbx4cSV/BQAAQE2qKKKeffbZePbZZ2P37t1x4oknRkTEyy+/HAMHDozPfvaz3cfV1dVVZ0oAAIAaUVFEXXDBBTF8+PC466674tBDD42I3/8C3tmzZ8dZZ50V1157bVWHBAAAqBUV3RN18803x8KFC7sDKiLi0EMPjW9/+9uezgcAAPRpFUVUe3t7vPnmm3tsf/PNN2P79u37PBQAAECtqiiiLr744pg9e3bcf//98cYbb8Qbb7wRP/7xj2POnDlxySWXVHtGAACAmlHRPVFLliyJefPmxRe/+MXYvXv3709UXx9z5syJm266qaoDAgAA1JK6oiiKSv/wjh074pVXXomIiOOOOy4OPvjgqg12oLS3t8eIESNi27Zt0dDQUPY40Th/edkjAHyitkUzyh4BAKpub9tgn37Z7saNG2Pjxo1x/PHHx8EHHxz70GMAAAC9QkUR9fbbb8c555wTJ5xwQpx//vmxcePGiIiYM2eOx5sDAAB9WkUR9fWvfz0GDRoU69evj2HDhnVvnzlzZjz00ENVGw4AAKDWVPRgif/8z/+M//iP/4gjjzyyx/bjjz8+XnvttaoMBgAAUIsqWonasWNHjxWoD7zzzjsxZMiQfR4KAACgVlUUUWeddVbcfffd3a/r6uqiq6srvvvd78bZZ59dteEAAABqTUUf5/vud78b55xzTjz99NOxa9eu+Ju/+Zt48cUX45133on/+q//qvaMAAAANaOilaiJEyfGyy+/HGeeeWZceOGFsWPHjrjkkkvi2WefjeOOO67aMwIAANSM9ErU7t2747zzzoslS5bEN7/5zf0x0wHR0tISLS0t0dnZWfYoAABAL5JeiRo0aFC88MIL+2OWA6q5uTlaW1tj9erVZY8CAAD0IhV9nO+yyy6L22+/vdqzAAAA1LyKHizx/vvvxx133BGPPPJInHrqqXHwwQf32L948eKqDAcAAFBrUhH1m9/8JhobG+NXv/pVfPazn42IiJdffrnHMXV1ddWbDgAAoMakIur444+PjRs3xmOPPRYRETNnzozvf//7MWbMmP0yHAC1qXH+8qqcp23RjKqcBwAOpNQ9UUVR9Hj94IMPxo4dO6o6EAAAQC2r6MESH/i/UQUAANDXpSKqrq5uj3ue3AMFAAD0J6l7ooqiiCuuuCKGDBkSERHvvfdeXH311Xs8ne/++++v3oQAAAA1JBVRs2bN6vH6sssuq+owAAAAtS4VUXfeeef+mgMAAKBX2KcHSwAAAPQ3IgoAACBBRAEAACSIKAAAgAQRBQAAkJB6Oh8AVFPj/OVVOU/bohlVOQ8A7A0rUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACAhPqyBwCAfdU4f/k+n6Nt0YwqTAJAf2AlCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACAhPqyBwCAWtA4f3lVztO2aEZVzgNA7bISBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACT024hqaWmJpqammDx5ctmjAAAAvUi/jajm5uZobW2N1atXlz0KAADQi/TbiAIAAKiEiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIKG+7AEAoC9pnL98n8/RtmhGFSYBYH+xEgUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEv2wXAGpMNX5hb4Rf2guwv1iJAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJDgEecA0Ed5VDrA/mElCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAEBCfdkDAAC1rXH+8n0+R9uiGVWYBKA2WIkCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJ9WUPAAD0fY3zl1flPG2LZlTlPAD7wkoUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACChvuwBAAAOpMb5y6tynrZFM6pyHqD3sRIFAACQIKIAAAASRBQAAEBCv42olpaWaGpqismTJ5c9CgAA0IvUFUVRlD1Emdrb22PEiBGxbdu2aGhoKHucqt3sCgDsXx4sAX3P3rZBv12JAgAAqISIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQEJ92QMAAPRGjfOXV+U8bYtmVOU8wIFjJQoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAQn3ZAwAA9GeN85fv8znaFs2owiTA3rISBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACChvuwBAADYN43zl1flPG2LZlTlPNDXWYkCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEurLHgAAgNrQOH/5Pp+jbdGMKkwCtc1KFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABLqyx4AAAD+r8b5y6tynrZFM6pyHvh/WYkCAABIEFEAAAAJIgoAACDBPVEAAPRZ1bi3yn1V/F9WogAAABJEFAAAQIKIAgAASHBPFAAAVVOt3+8EtcxKFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAk1Jc9AAAA1LLG+curcp62RTOqch7KZyUKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJ6fURt3bo1TjvttDjllFNi4sSJ8fd///dljwQAAPRhvf4R58OHD4+VK1fGsGHDYseOHTFx4sS45JJL4vDDDy97NAAAoA/q9StRAwcOjGHDhkVExM6dO6MoiiiKouSpAACAvqr0laiVK1fGTTfdFGvWrImNGzfGAw88EBdddFGPY1paWuKmm26KTZs2xaRJk+LWW2+N008/vXv/1q1b44//+I9j7dq1cdNNN8WoUaMO9NsAAICP5Zf29h2lr0Tt2LEjJk2aFC0tLR+6/7777ou5c+fGggUL4plnnolJkybFtGnTYsuWLd3HjBw5Mp5//vl49dVX45/+6Z9i8+bNH/n37dy5M9rb23t8AQAA7K3SI2r69Onx7W9/Oy6++OIP3b948eK48sorY/bs2dHU1BRLliyJYcOGxR133LHHsWPGjIlJkybFz3/+84/8+xYuXBgjRozo/powYULV3gsAAND3lR5RH2fXrl2xZs2amDp1ave2AQMGxNSpU2PVqlUREbF58+bYvn17RERs27YtVq5cGSeeeOJHnvMb3/hGbNu2rfvr9ddf379vAgAA6FNKvyfq47z11lvR2dkZY8aM6bF9zJgx8etf/zoiIl577bX40pe+1P1Aia9+9atx0kknfeQ5hwwZEkOGDNmvcwMAAH1XTUfU3jj99NPjueeeK3sMAACgn6jpj/ONGjUqBg4cuMeDIjZv3hxjx44taSoAAKA/q+mIGjx4cJx66qmxYsWK7m1dXV2xYsWKOOOMM0qcDAAA6K9K/zhfR0dHrFu3rvv1q6++Gs8991wcdthhcdRRR8XcuXNj1qxZcdppp8Xpp58et9xyS+zYsSNmz55d4tQAAEB/VXpEPf3003H22Wd3v547d25ERMyaNSuWLl0aM2fOjDfffDOuv/762LRpU5xyyinx0EMP7fGwCQAAgAOhriiKouwhytTe3h4jRoyIbdu2RUNDQ9njVO03WQMA0De1LZpR9gh91t62QekrUQAAwN6rxv/pLsT2TU0/WAIAAKDWiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJDQbyOqpaUlmpqaYvLkyWWPAgAA9CL9NqKam5ujtbU1Vq9eXfYoAABAL9JvIwoAAKASIgoAACBBRAEAACSIKAAAgAQRBQAAkP33XL0AAArCSURBVCCiAAAAEkQUAABAgogCAABIEFEAAAAJ9WUPAAAAHFiN85dX5Txti2ZU5Ty9jZUoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAEBCfdkDlKWlpSVaWlqis7Oz7FEAAKBXapy/fJ/P0bZoRhUmObD67UpUc3NztLa2xurVq8seBQAA6EX6bUQBAABUQkQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgod9GVEtLSzQ1NcXkyZPLHgUAAOhF+m1ENTc3R2tra6xevbrsUQAAgF6k30YUAABAJUQUAABAgogCAABIEFEAAAAJIgoAACChvuwBylYURUREtLe3lzzJ73XtfLfsEQAA4ICplf8dHvH/z/JBI3yUfh9R27dvj4iICRMmlDwJAAD0PyNuKXuCPW3fvj1GjBjxkfvrik/KrD6uq6srNmzYEMOHD4+6uroD/ve3t7fHhAkT4vXXX4+GhoYD/vfD/8v1SC1xPVJLXI/UEtfj/lMURWzfvj3Gjx8fAwZ89J1P/X4lasCAAXHkkUeWPUY0NDT4j4Ca4XqklrgeqSWuR2qJ63H/+LgVqA94sAQAAECCiAIAAEgYeMMNN9xQ9hD93cCBA+NP/uRPor6+33+6khrgeqSWuB6pJa5HaonrsVz9/sESAAAAGT7OBwAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIqpELS0t0djYGAcddFBMmTIlnnrqqbJHoh+44YYboq6ursfXpz/96e797733XjQ3N8fhhx8ehxxySPz5n/95bN68ucSJ6UtWrlwZF1xwQYwfPz7q6uriJz/5SY/9RVHE9ddfH+PGjYuhQ4fG1KlTY+3atT2Oeeedd+LSSy+NhoaGGDlyZMyZMyc6OjoO5Nugj/ik6/GKK67Y4/vleeed1+MY1yPVsnDhwpg8eXIMHz48Ro8eHRdddFG89NJLPY7Zm5/R69evjxkzZsSwYcNi9OjR8dd//dfx/vvvH8i30i+IqJLcd999MXfu3FiwYEE888wzMWnSpJg2bVps2bKl7NHoBz7zmc/Exo0bu79+8YtfdO/7+te/Hv/2b/8Wy5Yti8cffzw2bNgQl1xySYnT0pfs2LEjJk2aFC0tLR+6/7vf/W58//vfjyVLlsSTTz4ZBx98cEybNi3ee++97mMuvfTSePHFF+Phhx+On/70p7Fy5cr40pe+dKDeAn3IJ12PERHnnXdej++X99xzT4/9rkeq5fHHH4/m5uZ44okn4uGHH47du3fHueeeGzt27Og+5pN+Rnd2dsaMGTNi165d8ctf/jLuuuuuWLp0aVx//fVlvKW+raAUp59+etHc3Nz9urOzsxg/fnyxcOHCEqeiP1iwYEExadKkD923devWYtCgQcWyZcu6t/3P//xPERHFqlWrDtSI9BMRUTzwwAPdr7u6uoqxY8cWN910U/e2rVu3FkOGDCnuueeeoiiKorW1tYiIYvXq1d3HPPjgg0VdXV3x29/+9sANT5/zf6/HoiiKWbNmFRdeeOFH/hnXI/vTli1biogoHn/88aIo9u5n9L//+78XAwYMKDZt2tR9zG233VY0NDQUO3fuPLBvoI+zElWCXbt2xZo1a2Lq1Knd2wYMGBBTp06NVatWlTgZ/cXatWtj/Pjxceyxx8all14a69evj4iINWvWxO7du3tcm5/+9KfjqKOOcm2y37366quxadOmHtffiBEjYsqUKd3X36pVq2LkyJFx2mmndR8zderUGDBgQDz55JMHfGb6vp/97GcxevToOPHEE+Mv//Iv4+233+7e53pkf9q2bVtERBx22GERsXc/o1etWhUnnXRSjBkzpvuYadOmRXt7e7z44osHcPq+T0SV4K233orOzs4eF3hExJgxY2LTpk0lTUV/MWXKlFi6dGk89NBDcdttt8Wrr74aZ511Vmzfvj02bdoUgwcPjpEjR/b4M65NDoQPrrGP+964adOmGD16dI/99fX1cdhhh7lGqbrzzjsv7r777lixYkXceOON8fjjj8f06dOjs7MzIlyP7D9dXV3xV3/1V/G5z30uJk6cGBGxVz+jN23a9KHfQz/YR/XUlz0AcGBNnz69+59PPvnkmDJlShx99NHxox/9KIYOHVriZAC15fOf/3z3P5900klx8sknx3HHHRc/+9nP4pxzzilxMvq65ubm+NWvftXjnmVqi5WoEowaNSoGDhy4x9NUNm/eHGPHji1pKvqrkSNHxgknnBDr1q2LsWPHxq5du2Lr1q09jnFtciB8cI193PfGsWPH7vEAnvfffz/eeecd1yj73bHHHhujRo2KdevWRYTrkf3jK1/5Svz0pz+Nxx57LI488sju7XvzM3rs2LEf+j30g31Uj4gqweDBg+PUU0+NFStWdG/r6uqKFStWxBlnnFHiZPRHHR0d8corr8S4cePi1FNPjUGDBvW4Nl966aVYv369a5P97phjjomxY8f2uP7a29vjySef7L7+zjjjjNi6dWusWbOm+5hHH300urq6YsqUKQd8ZvqXN954I95+++0YN25cRLgeqa6iKOIrX/lKPPDAA/Hoo4/GMccc02P/3vyMPuOMM+K///u/e8T9ww8/HA0NDdHU1HRg3kg/MfCGG264oewh+qOGhoa47rrrYsKECTFkyJC47rrr4rnnnovbb789DjnkkLLHow+bN29eDBkyJCIiWltb4+qrr44tW7bEkiVL4rDDDosNGzbED37wgzjllFPinXfeiauuuiomTJgQCxYsKHly+oKOjo5obW2NTZs2xQ9/+MOYMmVKDB06NHbt2hUjR46Mzs7O+M53vhNNTU2xa9eu+NrXvhbvvvtu3HrrrVFfXx9HHHFEPPnkk3HPPffEH/7hH0ZbW1tcddVVce6558YVV1xR9tujl/m463HgwIHxzW9+MxoaGuL999+PNWvWxJw5c+KQQw6Jm2++2fVI1TU3N8c//uM/xj//8z/H+PHjo6OjIzo6OmLgwIExaNCgOOiggz7xZ/Sxxx4bP/7xj+ORRx6Jk08+OZ5//vn46le/GldffXVMmzat5HfYx5T9eMD+7NZbby2OOuqoYvDgwcXpp59ePPHEE2WPRD8wc+bMYty4ccXgwYOLP/iDPyhmzpxZrFu3rnv///7v/xZf/vKXi0MPPbQYNmxYcfHFFxcbN24scWL6kscee6yIiD2+Zs2aVRTF7x9zft111xVjxowphgwZUpxzzjnFSy+91OMcb7/9dvGFL3yhOOSQQ4qGhoZi9uzZxfbt20t4N/R2H3c9vvvuu8W5555bHHHEEcWgQYOKo48+urjyyit7PDq6KFyPVM+HXYsRUdx5553dx+zNz+i2trZi+vTpxdChQ4tRo0YV1157bbF79+4D/G76vrqiKIoDn24AAAC9k3uiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABI+P8ACOqVlhUuyIcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plt.figure(figsize=(10,10))\n", "allEdgesWeightsFiltered.plot.hist(bins=40)\n", @@ -237,9 +612,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1EAAAMtCAYAAAB+ZfsQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdf5DcdX348dclRxKCyQGm+QXBMPxyVjSp4ZIJhQ6RWAgZ0Ngf1F8EmmF03BmZHqhh2kKttiAMGSxdRacmSNsRzNSiYwCFwAyWRjl+KzvySyIhv4AGc0laErj7fP9wuHLfBMxrc5fP3u3jMXMD+9nP7ee171nXPPnsftJWFEURAAAA7JdRZQ8AAAAwnIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAntZQ9Qtr6+vti0aVNMmDAh2trayh4HAAAoSVEUsWPHjpg+fXqMGvXW55taPqI2bdoUM2bMKHsMAACgSWzYsCGOPvrot7y/5SNqwoQJEfHbhZo4cWLJ0wAAAGXp6emJGTNm9DfCW2n5iHrjI3wTJ04UUQAAwO/8mk/LXliiVqtFpVKJzs7OskcBAACGkbaiKIqyhyhTT09PdHR0xPbt252JAgCAFra/bdCyZ6IAAAAaIaIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAktG1G1Wi0qlUp0dnaWPQoAADCMtBVFUZQ9RJl6enqio6Mjtm/fHhMnTix7HAAAoCT72wYteyYKAACgESIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQEJ72QOUpVarRa1Wi97e3rJHGWDm8jVlj9CU1l+9uOwRAAAgIlr4TFS1Wo16vR7d3d1ljwIAAAwjLRtRAAAAjRBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACS0bUbVaLSqVSnR2dpY9CgAAMIy0bERVq9Wo1+vR3d1d9igAAMAw0rIRBQAA0AgRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAQnvZA8D+mLl8TdkjNK31Vy8uewQAgJbiTBQAAEBCy0ZUrVaLSqUSnZ2dZY8CAAAMIy0bUdVqNer1enR3d5c9CgAAMIy0bEQBAAA0QkQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAktJc9AHBgZi5fU/YITWn91YvLHgEAGKGciQIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAktG1G1Wi0qlUp0dnaWPQoAADCMtGxEVavVqNfr0d3dXfYoAADAMNKyEQUAANAIEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAICE9rIHABgKM5evKXuEprX+6sVljwAAw5ozUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAktG1G1Wi0qlUp0dnaWPQoAADCMtGxEVavVqNfr0d3dXfYoAADAMNKyEQUAANAIEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQMKwj6gNGzbEGWecEZVKJd73vvfF6tWryx4JAAAYwdrLHuBAtbe3x/XXXx+zZ8+OLVu2xJw5c+Kcc86Jww47rOzRAACAEWjYR9S0adNi2rRpERExderUmDRpUmzbtk1EAQAAQ6L0j/Pdd999ce6558b06dOjra0tbrvttr32qdVqMXPmzBg3blzMmzcvHnjggX0+1kMPPRS9vb0xY8aMoR4bAABoUaVH1K5du2LWrFlRq9X2ef+tt94aXV1dceWVV8bDDz8cs2bNirPOOitefPHFAftt27YtLrjggvjmN795MMYGAABaVOkf51u0aFEsWrToLe9fsWJFXHzxxXHRRRdFRMSNN94Ya9asiZUrV8by5csjImL37t3x4Q9/OJYvXx6nnnrq2x5v9+7dsXv37v7bPT09g/AsAACAVlH6mai3s2fPnnjooYdi4cKF/dtGjRoVCxcujHXr1kVERFEUceGFF8YHPvCB+OQnP/k7H/Oqq66Kjo6O/h8f/QMAADKaOqJefvnl6O3tjSlTpgzYPmXKlNiyZUtERNx///1x6623xm233RazZ8+O2bNnx89//vO3fMzLL788tm/f3v+zYcOGIX0OAADAyFL6x/kO1GmnnRZ9fX37vf/YsWNj7NixQzgRAAAwkjX1mahJkybF6NGjY+vWrQO2b926NaZOnVrSVAAAQCtr6ogaM2ZMzJkzJ9auXdu/ra+vL9auXRvz588vcTIAAKBVlf5xvp07d8YzzzzTf/u5556LRx99NI488sg45phjoqurK5YuXRqnnHJKzJ07N66//vrYtWtX/9X6AAAADqbSI+rBBx+MBQsW9N/u6uqKiIilS5fGTTfdFOeff3689NJLccUVV8SWLVti9uzZceedd+51sQkAAICDoa0oiqLsIcrU09MTHR0dsX379pg4cWLZ48TM5WvKHgEY4dZfvbjsEQCgKe1vGzT1d6IAAACajYgCAABIEFEAAAAJLRtRtVotKpVKdHZ2lj0KAAAwjLRsRFWr1ajX69Hd3V32KAAAwDDSshEFAADQCBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASWjaiarVaVCqV6OzsLHsUAABgGGnZiKpWq1Gv16O7u7vsUQAAgGGkZSMKAACgESIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJDQshFVq9WiUqlEZ2dn2aMAAADDSMtGVLVajXq9Ht3d3WWPAgAADCMtG1EAAACNEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAElo2omq1WlQqlejs7Cx7FAAAYBhp2YiqVqtRr9eju7u77FEAAIBhpGUjCgAAoBEiCgAAIEFEAQAAJLSXPQAAB9fM5WvKHqEprb96cdkjADBMOBMFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIKFlI6pWq0WlUonOzs6yRwEAAIaRlo2oarUa9Xo9uru7yx4FAAAYRlo2ogAAABohogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgoWUjqlarRaVSic7OzrJHAQAAhpGWjahqtRr1ej26u7vLHgUAABhGWjaiAAAAGiGiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIaCiifvWrXw32HAAAAMNCQxF1/PHHx4IFC+Jf//Vf49VXXx3smQAAAJpWQxH18MMPx/ve977o6uqKqVOnxqc+9al44IEHBns2AACAptNQRM2ePTu++tWvxqZNm2LlypWxefPmOO200+Lkk0+OFStWxEsvvTTYcwIAADSFA7qwRHt7e3zkIx+J1atXx1e+8pV45pln4rLLLosZM2bEBRdcEJs3bx6sOQEAAJrCAUXUgw8+GJ/5zGdi2rRpsWLFirjsssvi2Wefjbvuuis2bdoUH/rQhwZrTgAAgKbQ3sgvrVixIlatWhVPPvlknHPOOXHzzTfHOeecE6NG/bbJjj322Ljpppti5syZgzkrAABA6RqKqK9//evxF3/xF3HhhRfGtGnT9rnP5MmT41vf+tYBDQcAANBsGoqop59++nfuM2bMmFi6dGkjDw8AANC0GvpO1KpVq2L16tV7bV+9enV8+9vfPuChAAAAmlVDEXXVVVfFpEmT9to+efLk+Id/+IcDHupgqNVqUalUorOzs+xRAACAYaShiHr++efj2GOP3Wv7u971rnj++ecPeKiDoVqtRr1ej+7u7rJHAQAAhpGGImry5Mnx+OOP77X9sccei3e+850HPBQAAECzaiiiPvrRj8ZnP/vZuPfee6O3tzd6e3vjnnvuiUsuuST+/M//fLBnBAAAaBoNXZ3vS1/6Uqxfvz7OPPPMaG//7UP09fXFBRdcMGy+EwUAANCIhiJqzJgxceutt8aXvvSleOyxx+LQQw+N9773vfGud71rsOcDAABoKg1F1BtOPPHEOPHEEwdrFgAAgKbXUET19vbGTTfdFGvXro0XX3wx+vr6Btx/zz33DMpwAAAAzaahiLrkkkvipptuisWLF8fJJ58cbW1tgz0XAABAU2ooom655Zb47ne/G+ecc85gzwMAANDUGrrE+ZgxY+L4448f7FkAAACaXkMRdemll8ZXv/rVKIpisOcBAABoag19nO8///M/495774077rgj3vOe98Qhhxwy4P7vfe97gzIcAABAs2koog4//PBYsmTJYM8CAADQ9BqKqFWrVg32HAAAAMNCQ9+Jioh4/fXX4+67745vfOMbsWPHjoiI2LRpU+zcuXPQhgMAAGg2DZ2J+vWvfx1nn312PP/887F79+744Ac/GBMmTIivfOUrsXv37rjxxhsHe04AAICm0NCZqEsuuSROOeWUeOWVV+LQQw/t375kyZJYu3btoA0HAADQbBo6E/WTn/wk/uu//ivGjBkzYPvMmTNj48aNgzIYAABAM2roTFRfX1/09vbutf2FF16ICRMmHPBQAAAAzaqhiPqjP/qjuP766/tvt7W1xc6dO+PKK6+Mc845Z9CGAwAAaDYNfZzvuuuui7POOisqlUq8+uqr8bGPfSyefvrpmDRpUnznO98Z7BkBAACaRkMRdfTRR8djjz0Wt9xySzz++OOxc+fOWLZsWXz84x8fcKEJAACAkaahiIqIaG9vj0984hODOQsAAEDTayiibr755re9/4ILLmhoGAAAgGbXUERdcsklA26/9tpr8T//8z8xZsyYGD9+vIgCAABGrIauzvfKK68M+Nm5c2c8+eSTcdppp7mwBAAAMKI1FFH7csIJJ8TVV1+911kqAACAkWTQIiritxeb2LRp02A+JAAAQFNp6DtRP/jBDwbcLooiNm/eHP/0T/8Uf/AHfzAogwEAADSjhiLqwx/+8IDbbW1t8Xu/93vxgQ98IK677rpBGQwAAKAZNRRRfX19gz0HAADAsDCo34kCAAAY6Ro6E9XV1bXf+65YsaKRQwAAADSlhiLqkUceiUceeSRee+21OOmkkyIi4qmnnorRo0fH+9///v792traBmdKAACAJtFQRJ177rkxYcKE+Pa3vx1HHHFERPz2L+C96KKL4vTTT49LL710UIcEAABoFg19J+q6666Lq666qj+gIiKOOOKI+PKXv+zqfAAAwIjWUET19PTESy+9tNf2l156KXbs2HHAQwEAADSrhiJqyZIlcdFFF8X3vve9eOGFF+KFF16If//3f49ly5bFRz7ykcGeEQAAoGk09J2oG2+8MS677LL42Mc+Fq+99tpvH6i9PZYtWxbXXnvtoA4IAAfDzOVryh6haa2/enHZIwA0lYYiavz48fG1r30trr322nj22WcjIuK4446Lww47bFCHAwAAaDYH9Jftbt68OTZv3hwnnHBCHHbYYVEUxWDNBQAA0JQaiqj//u//jjPPPDNOPPHEOOecc2Lz5s0REbFs2TKXNwcAAEa0hiLqL//yL+OQQw6J559/PsaPH9+//fzzz48777xz0IYDAABoNg19J+rHP/5x/OhHP4qjjz56wPYTTjghfv3rXw/KYEOtVqtFrVaL3t7eskcBAACGkYbORO3atWvAGag3bNu2LcaOHXvAQx0M1Wo16vV6dHd3lz0KAAAwjDQUUaeffnrcfPPN/bfb2tqir68vrrnmmliwYMGgDQcAANBsGvo43zXXXBNnnnlmPPjgg7Fnz574/Oc/H0888URs27Yt7r///sGeEQAAoGk0dCbq5JNPjqeeeipOO+20+NCHPhS7du2Kj3zkI/HII4/EcccdN9gzAgAANI30majXXnstzj777Ljxxhvjr/7qr4ZiJgAAgKaVPhN1yCGHxOOPPz4UswAAADS9hj7O94lPfCK+9a1vDfYsAAAATa+hC0u8/vrrsXLlyrj77rtjzpw5cdhhhw24f8WKFYMyHAAAQLNJRdSvfvWrmDlzZvziF7+I97///RER8dRTTw3Yp62tbfCmAwAAaDKpiDrhhBNi8+bNce+990ZExPnnnx//+I//GFOmTBmS4QAAAJpN6jtRRVEMuH3HHXfErl27BnUgAACAZtbQhSXe8P9HFQAAwEiXiqi2tra9vvPkO1AAAEArSX0nqiiKuPDCC2Ps2LEREfHqq6/Gpz/96b2uzve9731v8CYEAABoIqmIWrp06YDbn/jEJwZ1GAAAgGaXiqhVq1YN1RwAAADDwgFdWAIAAKDViCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBgREbVkyZI44ogj4k/+5E/KHgUAABjhRkREXXLJJXHzzTeXPQYAANACRkREnXHGGTFhwoSyxwAAAFpA6RF13333xbnnnhvTp0+Ptra2uO222/bap1arxcyZM2PcuHExb968eOCBB0qYFAAAoAkiateuXTFr1qyo1Wr7vP/WW2+Nrq6uuPLKK+Phhx+OWbNmxVlnnRUvvvhiQ8fbvXt39PT0DPgBAADYX6VH1KJFi+LLX/5yLFmyZJ/3r1ixIi6++OK46KKLolKpxI033hjjx4+PlStXNnS8q666Kjo6Ovp/ZsyYcSDjAwAALab0iHo7e/bsiYceeigWLlzYv23UqFGxcOHCWLduXUOPefnll8f27dv7fzZs2DBY4wIAAC2gvewB3s7LL78cvb29MWXKlAHbp0yZEr/85S/7by9cuDAee+yx2LVrVxx99NGxevXqmD9//j4fc+zYsTF27NghnRsAABi5mjqi9tfdd99d9ggAAECLaOqP802aNClGjx4dW7duHbB969atMXXq1JKmAgAAWllTR9SYMWNizpw5sXbt2v5tfX19sXbt2rf8uB4AAMBQKv3jfDt37oxnnnmm//Zzzz0Xjz76aBx55JFxzDHHRFdXVyxdujROOeWUmDt3blx//fWxa9euuOiii0qcGgAAaFWlR9SDDz4YCxYs6L/d1dUVERFLly6Nm266Kc4///x46aWX4oorrogtW7bE7Nmz484779zrYhMAAAAHQ1tRFEXZQ5Spp6cnOjo6Yvv27TFx4sSyx4mZy9eUPQIADLD+6sVljwBwUOxvGzT1d6IAAACajYgCAABIEFEAAAAJLRtRtVotKpVKdHZ2lj0KAAAwjLRsRFWr1ajX69Hd3V32KAAAwDDSshEFAADQCBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQ0LIRVavVolKpRGdnZ9mjAAAAw0jLRlS1Wo16vR7d3d1ljwIAAAwjLRtRAAAAjRBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAICElo2oWq0WlUolOjs7yx4FAAAYRlo2oqrVatTr9eju7i57FAAAYBhp2YgCAABohIgCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkNCyEVWr1aJSqURnZ2fZowAAAMNIy0ZUtVqNer0e3d3dZY8CAAAMIy0bUQAAAI0QUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAntZQ9QllqtFrVaLXp7e8seBQCa2szla8oeoSmtv3px2SMAJWnZM1HVajXq9Xp0d3eXPQoAADCMtGxEAQAANEJEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAEBCy0ZUrVaLSqUSnZ2dZY8CAAAMIy0bUdVqNer1enR3d5c9CgAAMIy0bEQBAAA0QkQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQELLRlStVotKpRKdnZ1ljwIAAAwjLRtR1Wo16vV6dHd3lz0KAAAwjLRsRAEAADRCRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACS0lz1AWWq1WtRqtejt7S17FAAAWsDM5WvKHqEprb96cdkjpLXsmahqtRr1ej26u7vLHgUAABhGWjaiAAAAGiGiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIyKifvjDH8ZJJ50UJ/+4vYAAAA/pSURBVJxwQvzzP/9z2eMAAAAjWHvZAxyo119/Pbq6uuLee++Njo6OmDNnTixZsiTe+c53lj0aAAAwAg37M1EPPPBAvOc974mjjjoq3vGOd8SiRYvixz/+cdljAQAAI1TpEXXffffFueeeG9OnT4+2tra47bbb9tqnVqvFzJkzY9y4cTFv3rx44IEH+u/btGlTHHXUUf23jzrqqNi4ceNBmR0AAGg9pUfUrl27YtasWVGr1fZ5/6233hpdXV1x5ZVXxsMPPxyzZs2Ks846K1588cWGjrd79+7o6ekZ8AMAALC/Sv9O1KJFi2LRokVvef+KFSvi4osvjosuuigiIm688cZYs2ZNrFy5MpYvXx7Tp08fcOZp48aNMXfu3Ld8vKuuuiq++MUvDt4TAABa0szla8oeAShJ6Wei3s6ePXvioYceioULF/ZvGzVqVCxcuDDWrVsXERFz586NX/ziF7Fx48bYuXNn3HHHHXHWWWe95WNefvnlsX379v6fDRs2DPnzAAAARo7Sz0S9nZdffjl6e3tjypQpA7ZPmTIlfvnLX0ZERHt7e1x33XWxYMGC6Ovri89//vNve2W+sWPHxtixY4d0bgAAYORq6ojaX+edd16cd955ZY8BAAC0gKb+ON+kSZNi9OjRsXXr1gHbt27dGlOnTi1pKgAAoJU1dUSNGTMm5syZE2vXru3f1tfXF2vXro358+eXOBkAANCqSv84386dO+OZZ57pv/3cc8/Fo48+GkceeWQcc8wx0dXVFUuXLo1TTjkl5s6dG9dff33s2rWr/2p9AAAAB1PpEfXggw/GggUL+m93dXVFRMTSpUvjpptuivPPPz9eeumluOKKK2LLli0xe/bsuPPOO/e62AQAAMDB0FYURVH2EGXq6emJjo6O2L59e0ycOLHscfydEwAAtJT1Vy8ue4R++9sGTf2dKAAAgGYjogAAABJEFAAAQELLRlStVotKpRKdnZ1ljwIAAAwjLRtR1Wo16vV6dHd3lz0KAAAwjLRsRAEAADRCRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgISWjaharRaVSiU6OzvLHgUAABhGWjaiqtVq1Ov16O7uLnsUAABgGGnZiAIAAGiEiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQ0F72AGUriiIiInp6ekqe5Lf6dv9P2SMAAMBB0yx/Do/4v1neaIS30vIRtWPHjoiImDFjRsmTAABA6+m4vuwJ9rZjx47o6Oh4y/vbit+VWSNcX19fbNq0KSZMmBBtbW2lztLT0xMzZsyIDRs2xMSJE0udZSSyvkPH2g4t6zu0rO/Qsr5Dy/oOLes7tJpxfYuiiB07dsT06dNj1Ki3/uZTy5+JGjVqVBx99NFljzHAxIkTm+aFNBJZ36FjbYeW9R1a1ndoWd+hZX2HlvUdWs22vm93BuoNLiwBAACQIKIAAAASRv/t3/7t35Y9BP9n9OjRccYZZ0R7e8t/0nJIWN+hY22HlvUdWtZ3aFnfoWV9h5b1HVrDdX1b/sISAAAAGT7OBwAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIuoA1Gq1mDlzZowbNy7mzZsXDzzwwNvuv3r16nj3u98d48aNi/e+971x++23D7i/KIq44oorYtq0aXHooYfGwoUL4+mnnx6wz7Zt2+LjH/94TJw4MQ4//PBYtmxZ7Ny5c8A+jz/+eJx++ukxbty4mDFjRlxzzTWD84QPomZc2/Xr10dbW9tePz/96U8H74kfJGWs79///d/HqaeeGuPHj4/DDz98n8d5/vnnY/HixTF+/PiYPHlyfO5zn4vXX3/9wJ5sCZp1fff1+r3lllsO7MmW4GCv7/r162PZsmVx7LHHxqGHHhrHHXdcXHnllbFnz54BjzMS3nsjmnN9vf8e2PvDeeedF8ccc0yMGzcupk2bFp/85Cdj06ZNA/bx+h269R0pr98y1vYNu3fvjtmzZ0dbW1s8+uijA+4r7bVb0JBbbrmlGDNmTLFy5criiSeeKC6++OLi8MMPL7Zu3brP/e+///5i9OjRxTXXXFPU6/Xir//6r4tDDjmk+PnPf96/z9VXX110dHQUt912W/HYY48V5513XnHssccW//u//9u/z9lnn13MmjWr+OlPf1r85Cc/KY4//vjiox/9aP/927dvL6ZMmVJ8/OMfL37xi18U3/nOd4pDDz20+MY3vjF0izHImnVtn3vuuSIiirvvvrvYvHlz/8+ePXuGbjGGQFnre8UVVxQrVqwourq6io6Ojr2O8/rrrxcnn3xysXDhwuKRRx4pbr/99mLSpEnF5ZdfPviLMISadX2Loigioli1atWA1++bH2M4KGN977jjjuLCCy8sfvSjHxXPPvts8f3vf7+YPHlycemll/Y/xkh47y2K5l1f778H9v6wYsWKYt26dcX69euL+++/v5g/f34xf/78/vu9fod2fUfC67estX3DZz/72WLRokVFRBSPPPJI//YyX7siqkFz584tqtVq/+3e3t5i+vTpxVVXXbXP/f/sz/6sWLx48YBt8+bNKz71qU8VRVEUfX19xdSpU4trr722//7f/OY3xdixY4vvfOc7RVEURb1eLyKi6O7u7t/njjvuKNra2oqNGzcWRVEUX/va14ojjjii2L17d/8+X/jCF4qTTjrpAJ/xwdOsa/vGm+Cb/8c7HJWxvm+2atWqff4h//bbby9GjRpVbNmypX/b17/+9WLixIkDXs/NrlnXtyh+G1H/8R//kX5OzaTs9X3DNddcUxx77LH9t0fCe29RNO/6ev/9P4Oxvt///veLtra2/j/Ee/3+n6FY35Hw+i1zbW+//fbi3e9+d/HEE0/stY5lvnZ9nK8Be/bsiYceeigWLlzYv23UqFGxcOHCWLdu3T5/Z926dQP2j4g466yz+vd/7rnnYsuWLQP26ejoiHnz5vXvs27dujj88MPjlFNO6d9n4cKFMWrUqPjZz37Wv88f/uEfxpgxYwYc58knn4xXXnnlAJ/50GvmtX3DeeedF5MnT47TTjstfvCDHxzYEz7Iylrf/bFu3bp473vfG1OmTBlwnJ6ennjiiSf2+3HK1Mzr+4ZqtRqTJk2KuXPnxsqVK6MYRn/fejOt7/bt2+PII48ccJzh/N4b0dzr+wbvvwe+vtu2bYt/+7d/i1NPPTUOOeSQ/uN4/f7WUKzvG4br67fMtd26dWtcfPHF8S//8i8xfvz4fR6nrNeuiGrAyy+/HL29vQP+sBcRMWXKlNiyZcs+f2fLli1vu/8b//xd+0yePHnA/e3t7XHkkUcO2Gdfj/HmYzSzZl7bd7zjHXHdddfF6tWrY82aNXHaaafFhz/84WH1RljW+u6P4f7ajWju9Y2I+Lu/+7v47ne/G3fddVf88R//cXzmM5+JG264IfUYZWqW9X3mmWfihhtuiE996lO/8zhvPkaza+b19f677/0z6/uFL3whDjvssHjnO98Zzz//fHz/+9//ncd58zGaXTOv73B//Za1tkVRxIUXXhif/vSnB/xH7v05zpuPMVTah/TRYQSZNGlSdHV19d/u7OyMTZs2xbXXXhvnnXdeiZPB/vmbv/mb/n///d///di1a1dce+218dnPfrbEqYaXjRs3xtlnnx1/+qd/GhdffHHZ44w4b7W+3n8P3Oc+97lYtmxZ/PrXv44vfvGLccEFF8QPf/jDaGtrK3u0EeHt1tfrtzE33HBD7NixIy6//PKyR9knZ6IaMGnSpBg9enRs3bp1wPatW7fG1KlT9/k7U6dOfdv93/jn79rnxRdfHHD/66+/Htu2bRuwz74e483HaGbNvLb7Mm/evHjmmWf245k1h7LWd38M99duRHOv777MmzcvXnjhhdi9e/cBPc7BUvb6btq0KRYsWBCnnnpqfPOb39yv47z5GM2umdd3X7z/5tZ30qRJceKJJ8YHP/jBuOWWW+L222/vvzqc1+++9x+s9d2X4fT6LWtt77nnnli3bl2MHTs22tvb4/jjj4+IiFNOOSWWLl36tsd58zGGiohqwJgxY2LOnDmxdu3a/m19fX2xdu3amD9//j5/Z/78+QP2j4i46667+vc/9thjY+rUqQP26enpiZ/97Gf9+8yfPz9+85vfxEMPPdS/zz333BN9fX0xb968/n3uu+++eO211wYc56STToojjjjiAJ/50Gvmtd2XRx99NKZNm5Z/oiUpa333x/z58+PnP//5gJi96667YuLEiVGpVPb7ccrUzOu7L48++mgcccQRMXbs2AN6nIOlzPXduHFjnHHGGTFnzpxYtWpVjBo18P8+h/t7b0Rzr+++eP/9f+3cP0hybRjH8fNEeMhEJAqHIIL+QDRUi0MEEULQ1Nwg0hLtLS0VDUJDU0IEQZ0prKaCqCVaCmw6apFEi8FZg6AliPw9Uz6P7+s7nF71mHw/4HRujtw/Lu7jdcDr++dDsVg0DMMovUChfv+oRb6V/KT69Srbra0tI5vNGplMxshkMqUR6YeHh0YikSh9j2e1W/PRFU0qlUrJNE1ZlqWHhwctLCwoFAqVJovFYjEtLy+X1t/c3Ki1tVWbm5vK5/NaW1urOOoxFArp5OREuVxOs7OzFcdwj42N6fb2VtfX1xoYGCgbw/36+qpwOKxYLKb7+3ulUin5/f4fNaa0UbO1LEsHBwfK5/PK5/NKJBJqaWnR3t5eHVKpHq/yfX5+lm3bWl9fVyAQkG3bsm1bb29vkv6MOJ+enlYmk9HFxYW6urp+5IjzRsz39PRUu7u7uru709PTk7a3t+X3+7W6ulqnZKrDi3wdx1F/f7+i0agcxykbUfylGc5eqXHz5fz9fr7pdFrJZFK2batQKOjy8lLj4+Pq6+vT+/u7JOq31vk2Q/169Wz7W6Uph17WLk3U/5BMJtXT0yOfz6dIJKJ0Ol26Njk5qXg8Xrb+6OhIg4OD8vl8Gh4e1tnZWdn1YrGolZUVhcNhmaapaDSqx8fHsjUvLy+am5tTIBBQMBjU/Px86UfSl2w2q4mJCZmmqe7ubm1sbFR343XQiNlalqWhoSH5/X4Fg0FFIhEdHx9Xf/N14EW+8XhchmH863N1dVVaUygUNDMzo7a2NnV2dmppaUkfHx9V33+tNWK+5+fnGh0dVSAQUHt7u0ZGRrSzs6PPz8+aZFBL9c53f3+/Yrb/fA/ZDGev1Jj5cv5+P99cLqepqSl1dHTINE319vZqcXFRjuOU3Yf6rV2+zVK/Xjzb/vZfo+K9qt1f0g+abwsAAAAAHuM/UQAAAADgAk0UAAAAALhAEwUAAAAALtBEAQAAAIALNFEAAAAA4AJNFAAAAAC4QBMFAAAAAC7QRAEAAACACzRRAAAAAOACTRQAAAAAuEATBQAAAAAu/AYM+Dpzp+RKtAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plt.figure(figsize=(10,10))\n", "bC = nx.betweenness_centrality(G)\n", @@ -250,7 +636,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -259,14 +645,25 @@ "outputId": "871111c8-12b4-4820-8675-f74fccdd39e6", "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0.000720547185799644" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "np.mean(list(bC.values()))" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -274,7 +671,28 @@ "id": "94viGU4vserg", "outputId": "ea65df57-df57-4e51-f396-9c808f274766" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA10AAAMtCAYAAABkWRueAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdf5CWdb3/8dfyYzdBdgl1WRgQzd8E9IMa3MkcC+JnHk2ayfwBdhg9eqBjkqac47GyJgzLtI7KOTMlOkeyPEfriKEhKtaRLDkaRkVKGnpgwdHcFRpWfuz3j77ep02sXPfjvWyPx8w1w31dn73v9+VMzTznuq/rruno6OgIAAAARfSp9gAAAAC9megCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBB/ao9QE+wZ8+ebNq0KYMGDUpNTU21xwEAAKqko6MjL774YoYPH54+fbrnGpXoSrJp06aMHDmy2mMAAAA9xNNPP50RI0Z0y3uJriSDBg1K8vv/sPX19VWeBgAAqJa2traMHDmy0gjdQXQlla8U1tfXiy4AAKBbbzvyIA0AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgqoaXddff33GjRuX+vr61NfXp7m5OcuXL68cP+GEE1JTU9NpO/fcczu9x8aNGzNjxowMGDAgjY2Nueiii7Jr1643+lQAAAD2ql81P3zEiBG54oorcsQRR6SjoyM33nhjTjrppDzyyCN561vfmiQ5++yzc/nll1f+ZsCAAZV/7969OzNmzEhTU1MefPDBbN68ObNmzUr//v3zhS984Q0/HwAAgD9W09HR0VHtIf7QkCFDcuWVV2bOnDk54YQT8va3vz1XX331XtcuX748H/zgB7Np06YMHTo0SbJ48eJcfPHFefbZZ1NbW/sXfWZbW1saGhrS2tqa+vr6bjsXAABg31KiDXrMPV27d+/OLbfcku3bt6e5ubmy/+abb86BBx6YMWPGZMGCBfnd735XObZ69eqMHTu2ElxJMmXKlLS1tWXdunWv+lnt7e1pa2vrtAEAAJRQ1a8XJsljjz2W5ubm7NixI/vvv39uv/32jB49Okly2mmnZdSoURk+fHjWrl2biy++OOvXr89tt92WJGlpaekUXEkqr1taWl71MxcuXJjPfvazhc4IAADg/1Q9uo466qg8+uijaW1tzX/8x39k9uzZWbVqVUaPHp1zzjmnsm7s2LEZNmxYJk6cmA0bNuSwww7r8mcuWLAg8+fPr7xua2vLyJEjX9d5AAAA7E3Vv15YW1ubww8/POPHj8/ChQvztre9Lddcc81e106YMCFJ8sQTTyRJmpqasmXLlk5rXn7d1NT0qp9ZV1dXeWLiyxsAAEAJVY+uP7Znz560t7fv9dijjz6aJBk2bFiSpLm5OY899li2bt1aWbNixYrU19dXvqIIAABQTVX9euGCBQsybdq0HHzwwXnxxRezdOnS3H///bn77ruzYcOGLF26NNOnT88BBxyQtWvX5oILLsjxxx+fcePGJUkmT56c0aNH58wzz8yiRYvS0tKSSy+9NHPnzk1dXV01Tw0AACBJlaNr69atmTVrVjZv3pyGhoaMGzcud999dz7wgQ/k6aefzj333JOrr74627dvz8iRIzNz5sxceumllb/v27dvli1blvPOOy/Nzc0ZOHBgZs+e3el3vQAAAKqpx/1OVzX4nS4AACDp5b/TBQAA0BuJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKKiqv9MFAD3JIZfcWe0ReqynrphR7REA9lmudAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAACupX7QEAeOMdcsmd1R4BAP5quNIFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAK6lftAQCAnu+QS+6s9gg90lNXzKj2CMA+wJUuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgqoaXddff33GjRuX+vr61NfXp7m5OcuXL68c37FjR+bOnZsDDjgg+++/f2bOnJktW7Z0eo+NGzdmxowZGTBgQBobG3PRRRdl165db/SpAAAA7FVVo2vEiBG54oorsmbNmjz88MN5//vfn5NOOinr1q1LklxwwQW54447cuutt2bVqlXZtGlTTjnllMrf7969OzNmzMhLL72UBx98MDfeeGOWLFmSyy67rFqnBAAA0ElNR0dHR7WH+ENDhgzJlVdemQ9/+MM56KCDsnTp0nz4wx9Okvzyl7/MMccck9WrV+fYY4/N8uXL88EPfjCbNm3K0KFDkySLFy/OxRdfnGeffTa1tbV/0We2tbWloaEhra2tqa+vL3ZuAD3FIZfcWe0RoFd46ooZ1R4B6GYl2qDH3NO1e/fu3HLLLdm+fXuam5uzZs2a7Ny5M5MmTaqsOfroo3PwwQdn9erVSZLVq1dn7NixleBKkilTpqStra1ytWxv2tvb09bW1mkDAAAooerR9dhjj2X//fdPXV1dzj333Nx+++0ZPXp0WlpaUltbm8GDB3daP3To0LS0tCRJWlpaOgXXy8dfPvZqFi5cmIaGhso2cuTIbj4rAACA36t6dB111FF59NFH89BDD+W8887L7Nmz8/Of/7zoZy5YsCCtra2V7emnny76eQAAwF+vftUeoLa2NocffniSZPz48fnJT36Sa665Jh/5yEfy0ksv5YUXXuh0tWvLli1pampKkjQ1NeXHP/5xp/d7+emGL6/Zm7q6utTV1XX3qQAAALxC1a90/bE9e/akvb0948ePT//+/bNy5crKsfXr12fjxo1pbm5OkjQ3N+exxx7L1q1bK2tWrFiR+vr6jB49+g2fHQAA4I9V9UrXggULMm3atBx88MF58cUXs3Tp0tx///25++6709DQkDlz5mT+/PkZMmRI6uvr8/GPfzzNzc059thjkySTJ0/O6NGjc+aZZ2bRokVpaWnJpZdemrlz57qSBQAA9AhVja6tW7dm1qxZ2bx5cxoaGjJu3Ljcfffd+cAHPpAk+cpXvpI+ffpk5syZaW9vz5QpU3LddddV/r5v375ZtmxZzjvvvDQ3N2fgwIGZPXt2Lr/88mqdEgAAQCc97ne6qsHvdAF/bfxOF3QPv9MFvU+v/p0uAACA3kh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUFBVo2vhwoV597vfnUGDBqWxsTEnn3xy1q9f32nNCSeckJqamk7bueee22nNxo0bM2PGjAwYMCCNjY256KKLsmvXrjfyVAAAAPaqXzU/fNWqVZk7d27e/e53Z9euXfnHf/zHTJ48OT//+c8zcODAyrqzzz47l19+eeX1gAEDKv/evXt3ZsyYkaampjz44IPZvHlzZs2alf79++cLX/jCG3o+AAAAf6yq0XXXXXd1er1kyZI0NjZmzZo1Of744yv7BwwYkKampr2+x/e///38/Oc/zz333JOhQ4fm7W9/ez73uc/l4osvzmc+85nU1ta+4m/a29vT3t5eed3W1tZNZwQAANBZj7qnq7W1NUkyZMiQTvtvvvnmHHjggRkzZkwWLFiQ3/3ud5Vjq1evztixYzN06NDKvilTpqStrS3r1q3b6+csXLgwDQ0NlW3kyJEFzgYAAKDKV7r+0J49e/KJT3wi73nPezJmzJjK/tNOOy2jRo3K8OHDs3bt2lx88cVZv359brvttiRJS0tLp+BKUnnd0tKy189asGBB5s+fX3nd1tYmvAAAgCJ6THTNnTs3P/vZz/LDH/6w0/5zzjmn8u+xY8dm2LBhmThxYjZs2JDDDjusS59VV1eXurq61zUvAADAX6JHfL1w3rx5WbZsWe67776MGDHiT66dMGFCkuSJJ55IkjQ1NWXLli2d1rz8+tXuAwMAAHijVDW6Ojo6Mm/evNx+++259957c+ihh/7Zv3n00UeTJMOGDUuSNDc357HHHsvWrVsra1asWJH6+vqMHj26zOAAAAB/oap+vXDu3LlZunRpvvvd72bQoEGVe7AaGhqy3377ZcOGDVm6dGmmT5+eAw44IGvXrs0FF1yQ448/PuPGjUuSTJ48OaNHj86ZZ56ZRYsWpaWlJZdeemnmzp3rK4QAAEDVVfVK1/XXX5/W1taccMIJGTZsWGX71re+lSSpra3NPffck8mTJ+foo4/OJz/5ycycOTN33HFH5T369u2bZcuWpW/fvmlubs4ZZ5yRWbNmdfpdLwAAgGqp6pWujo6OP3l85MiRWbVq1Z99n1GjRuV73/ted40FAADQbXrEgzQAAAB6K9EFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIL6VXsA+Esdcsmd1R6hx3rqihnVHgEAgFfhShcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAVVNboWLlyYd7/73Rk0aFAaGxtz8sknZ/369Z3W7NixI3Pnzs0BBxyQ/fffPzNnzsyWLVs6rdm4cWNmzJiRAQMGpLGxMRdddFF27dr1Rp4KAADAXlU1ulatWpW5c+fmRz/6UVasWJGdO3dm8uTJ2b59e2XNBRdckDvuuCO33nprVq1alU2bNuWUU06pHN+9e3dmzJiRl156KQ8++GBuvPHGLFmyJJdddlk1TgkAAKCTmo6Ojo5qD/GyZ599No2NjVm1alWOP/74tLa25qCDDsrSpUvz4Q9/OEnyy1/+Msccc0xWr16dY489NsuXL88HP/jBbNq0KUOHDk2SLF68OBdffHGeffbZ1NbW/tnPbWtrS0NDQ1pbW1NfX1/0HOm6Qy65s9oj9FhPXTGj2iOwj/G/J+ge/v8Xep8SbdCj7ulqbW1NkgwZMiRJsmbNmuzcuTOTJk2qrDn66KNz8MEHZ/Xq1UmS1atXZ+zYsZXgSpIpU6akra0t69at2+vntLe3p62trdMGAABQQr9qD/CyPXv25BOf+ETe8573ZMyYMUmSlpaW1NbWZvDgwZ3WDh06NC0tLZU1fxhcLx9/+djeLFy4MJ/97Ge7+xSAHsbVHACgJ+gxV7rmzp2bn/3sZ7nllluKf9aCBQvS2tpa2Z5++uninwkAAPx16hFXuubNm5dly5blgQceyIgRIyr7m5qa8tJLL+WFF17odLVry5YtaWpqqqz58Y9/3On9Xn664ctr/lhdXV3q6uq6+zQAAABeoapXujo6OjJv3rzcfvvtuffee3PooYd2Oj5+/Pj0798/K1eurOxbv359Nm7cmObm5iRJc3NzHnvssWzdurWyZsWKFamvr8/o0aPfmBMBAAB4FVW90jV37twsXbo03/3udzNo0KDKPVgNDQ3Zb7/90tDQkDlz5mT+/PkZMmRI6uvr8/GPfzzNzc059thjkySTJ0/O6NGjc+aZZ2bRokVpaWnJpZdemrlz57qaBQAAVF1Vo+v6669Pkpxwwgmd9t9www0566yzkiRf+cpX0qdPn8ycOTPt7e2ZMmVKrrvuusravn37ZtmyZTnvvPPS3NycgQMHZvbs2bn88svfqNMAAAB4VVWNrr/kJ8Le9KY35dprr8211177qmtGjRqV733ve905GgAAQLfoMU8vBAAA6I1EFwAAQEFdiq5f//rX3T0HAABAr9Sl6Dr88MPzvve9L//+7/+eHTt2dPdMAAAAvUaXout//ud/Mm7cuMyfPz9NTU35u7/7u1f8QDEAAABdjK63v/3tueaaa7Jp06Z84xvfyObNm3PcccdlzJgxueqqq/Lss89295wAAAD7pNf1II1+/frllFNOya233povfvGLeeKJJ3LhhRdm5MiRmTVrVjZv3txdcwIAAOyTXld0Pfzww/n7v//7DBs2LFdddVUuvPDCbNiwIStWrMimTZty0kknddecAAAA+6Qu/TjyVVddlRtuuCHr16/P9OnTc9NNN2X69Onp0+f3DXfooYdmyZIlOeSQQ7pzVgAAgH1Ol6Lr+uuvz9/+7d/mrLPOyrBhw/a6prGxMV//+tdf13AAAAD7ui5F1+OPP/5n19TW1mb27NldeXsAAIBeo0v3dN1www259dZbX7H/1ltvzY033vi6hwIAAOgtuhRdCxcuzIEHHviK/Y2NjfnCF77wuocCAADoLboUXRs3bsyhhx76iv2jRo3Kxo0bX/dQAAAAvUWXoquxsTFr1659xf6f/vSnOeCAA173UAAAAL1Fl6Lrox/9aP7hH/4h9913X3bv3p3du3fn3nvvzfnnn59TTz21u2cEAADYZ3Xp6YWf+9zn8tRTT2XixInp1+/3b7Fnz57MmjXLPV0AAAB/oEvRVVtbm29961v53Oc+l5/+9KfZb7/9Mnbs2IwaNaq75wMAANindSm6XnbkkUfmyCOP7K5ZAAAAep0uRdfu3buzZMmSrFy5Mlu3bs2ePXs6Hb/33nu7ZTgAAIB9XZei6/zzz8+SJUsyY8aMjBkzJjU1Nd09FwAAQK/Qpei65ZZb8u1vfzvTp0/v7nkAAAB6lS49Mr62tjaHH354d88CAADQ63Qpuj75yU/mmmuuSUdHR3fPAwAA0Kt06euFP/zhD3Pfffdl+fLleetb35r+/ft3On7bbbd1y3AAAAD7ui5F1+DBg/OhD32ou2cBAADodboUXTfccEN3zwEAANArdemeriTZtWtX7rnnnvzrv/5rXnzxxSTJpk2bsm3btm4bDgAAYF/XpStdv/nNbzJ16tRs3Lgx7e3t+cAHPpBBgwbli1/8Ytrb27N48eLunhMAAGCf1KUrXeeff37e9a535be//W3222+/yv4PfehDWblyZbcNBwAAsK/r0pWuH/zgB3nwwQdTW1vbaf8hhxyS//3f/+2WwQAAAHqDLl3p2rNnT3bv3v2K/c8880wGDRr0uocCAADoLboUXZMnT87VV19deV1TU5Nt27bl05/+dKZPn95twwEAAOzruvT1wi9/+cuZMmVKRo8enR07duS0007L448/ngMPPDDf/OY3u3tGAACAfVaXomvEiBH56U9/mltuuSVr167Ntm3bMmfOnJx++umdHqwBAADw165L0ZUk/fr1yxlnnNGdswAAAPQ6XYqum2666U8enzVrVpeGAQAA6G26FF3nn39+p9c7d+7M7373u9TW1mbAgAGiCwAA4P/r0tMLf/vb33batm3blvXr1+e4447zIA0AAIA/0KXo2psjjjgiV1xxxSuuggEAAPw167boSn7/cI1NmzZ151sCAADs07p0T9d//dd/dXrd0dGRzZs351/+5V/ynve8p1sGAwAA6A26FF0nn3xyp9c1NTU56KCD8v73vz9f/vKXu2UwAACA3qBL0bVnz57ungMAAKBX6tZ7ugAAAOisS1e65s+f/xevveqqq7ryEQAAAL1Cl6LrkUceySOPPJKdO3fmqKOOSpL86le/St++ffPOd76zsq6mpqZ7pgQAANhHdSm6TjzxxAwaNCg33nhj3vzmNyf5/Q8mf+xjH8t73/vefPKTn+zWIQEAAPZVXbqn68tf/nIWLlxYCa4kefOb35zPf/7znl4IAADwB7oUXW1tbXn22Wdfsf/ZZ5/Niy+++LqHAgAA6C26FF0f+tCH8rGPfSy33XZbnnnmmTzzzDP5z//8z8yZMyennHJKd88IAACwz+rSPV2LFy/OhRdemNNOOy07d+78/Rv165c5c+bkyiuv7NYBAQAA9mVdiq4BAwbkuuuuy5VXXpkNGzYkSQ477LAMHDiwW4cDAADY172uH0fevHlzNm/enCOOOCIDBw5MR0dHd80FAADQK3Qpup577rlMnDgxRx55ZKZPn57NmzcnSebMmeNx8QAAAH+gS9F1wQUXpH///tm4cWMGDBhQ2f+Rj3wkd911V7cNBwAAsK/r0j1d3//+93P33XdnxIgRnfYfccQR+c1vftMtgwEAAPQGXbrStX379k5XuF72/PPPp66u7nUPBQAA0Ft0Kbre+9735qabbqq8rqmpyZ49e7Jo0aK8733v67bhAAAA9nVd+nrhokWLMnHixDz88MN56aWX8qlPfSrr1q3L888/n//+7//u7hkBAAD2WV260jVmzJj86le/ynHHHZeTTjop27dvzymnnJJHHnkkhx12WHfPCAAAsM96zVe6du7cmalTp2bx4sX5p3/6pxIzAQAA9Bqv+UpX//79s3bt2hKzAAAA9Dpd+nrhGWecka9//evdPQsAAECv06UHaezatSvf+MY3cs8992T8+PEZOHBgp+NXXXVVtwwHAACwr3tN0fXrX/86hxxySH72s5/lne98Z5LkV7/6Vac1NTU13TcdAADAPu41RdcRRxyRzZs357777kuSfOQjH8lXv/rVDB06tMhwAAAA+7rXdE9XR0dHp9fLly/P9u3bu3UgAACA3qRLD9J42R9HGAAAAJ29puiqqal5xT1b7uECAAB4da/pnq6Ojo6cddZZqaurS5Ls2LEj55577iueXnjbbbd134QAAAD7sNcUXbNnz+70+owzzujWYQAAAHqb1xRdN9xwQ6k5AAAAeqXX9SANAAAA/jTRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgl7T73QBPdMhl9xZ7REAAHgVrnQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUFBVo+uBBx7IiSeemOHDh6empibf+c53Oh0/66yzUlNT02mbOnVqpzXPP/98Tj/99NTX12fw4MGZM2dOtm3b9kaeBgAAwKuqanRt3749b3vb23Lttde+6pqpU6dm8+bNle2b3/xmp+Onn3561q1blxUrVmTZsmV54IEHcs4555QeHQAA4C/Sr5ofPm3atEybNu1Prqmrq0tTU9Nej/3iF7/IXXfdlZ/85Cd517velST52te+lunTp+dLX/pShg8f3u0zAwAAvBY9/p6u+++/P42NjTnqqKNy3nnn5bnnnqscW716dQYPHlwJriSZNGlS+vTpk4ceeuhV37O9vT1tbW2dNgAAgBJ6dHRNnTo1N910U1auXJkvfvGLWbVqVaZNm5bdu3cnSVpaWtLY2Njpb/r165chQ3L4814AABgRSURBVIakpaXlVd934cKFaWhoqGwjR44seh4AAMBfr6p+vfDPOfXUUyv/Hjt2bMaNG5fDDjss999/fyZOnNjl912wYEHmz59fed3W1ia8AACAInr0la4/9pa3vCUHHnhgnnjiiSRJU1NTtm7d2mnNrl278vzzz7/qfWDJ7+8Tq6+v77QBAACUsE9F1zPPPJPnnnsuw4YNS5I0NzfnhRdeyJo1aypr7r333uzZsycTJkyo1pgAAAAVVf164bZt2ypXrZLkySefzKOPPpohQ4ZkyJAh+exnP5uZM2emqakpGzZsyKc+9akcfvjhmTJlSpLkmGOOydSpU3P22Wdn8eLF2blzZ+bNm5dTTz3VkwsBAIAeoapXuh5++OG84x3vyDve8Y4kyfz58/OOd7wjl112Wfr27Zu1a9fmb/7mb3LkkUdmzpw5GT9+fH7wgx+krq6u8h4333xzjj766EycODHTp0/Pcccdl3/7t3+r1ikBAAB0UtUrXSeccEI6Ojpe9fjdd9/9Z99jyJAhWbp0aXeOBQAA0G32qXu6AAAA9jWiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAVVNboeeOCBnHjiiRk+fHhqamryne98p9Pxjo6OXHbZZRk2bFj222+/TJo0KY8//ninNc8//3xOP/301NfXZ/DgwZkzZ062bdv2Rp4GAADAq6pqdG3fvj1ve9vbcu211+71+KJFi/LVr341ixcvzkMPPZSBAwdmypQp2bFjR2XN6aefnnXr1mXFihVZtmxZHnjggZxzzjlv1CkAAAD8Sf2q+eHTpk3LtGnT9nqso6MjV199dS699NKcdNJJSZKbbropQ4cOzXe+852ceuqp+cUvfpG77rorP/nJT/Kud70rSfK1r30t06dPz5e+9KUMHz78DTsXAACAvemx93Q9+eSTaWlpyaRJkyr7GhoaMmHChKxevTpJsnr16gwePLgSXEkyadKk9OnTJw899NCrvnd7e3va2to6bQAAACX02OhqaWlJkgwdOrTT/qFDh1aOtbS0pLGxsdPxfv36ZciQIZU1e7Nw4cI0NDRUtpEjR3bz9AAAAL/XY6OrpAULFqS1tbWyPf3009UeCQAA6KV6bHQ1NTUlSbZs2dJp/5YtWyrHmpqasnXr1k7Hd+3aleeff76yZm/q6upSX1/faQMAACihx0bXoYcemqampqxcubKyr62tLQ899FCam5uTJM3NzXnhhReyZs2aypp77703e/bsyYQJE97wmQEAAP5YVZ9euG3btjzxxBOV108++WQeffTRDBkyJAcffHA+8YlP5POf/3yOOOKIHHroofnnf/7nDB8+PCeffHKS5JhjjsnUqVNz9tlnZ/Hixdm5c2fmzZuXU0891ZMLAQCAHqGq0fXwww/nfe97X+X1/PnzkySzZ8/OkiVL8qlPfSrbt2/POeeckxdeeCHHHXdc7rrrrrzpTW+q/M3NN9+cefPmZeLEienTp09mzpyZr371q2/4uQAAAOxNTUdHR0e1h6i2tra2NDQ0pLW11f1dPdghl9xZ7REAoJOnrphR7RGAblaiDXrsPV0AAAC9gegCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgvpVewBe6ZBL7qz2CAAAQDdxpQsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKCgHh1dn/nMZ1JTU9NpO/rooyvHd+zYkblz5+aAAw7I/vvvn5kzZ2bLli1VnBgAAKCzHh1dSfLWt741mzdvrmw//OEPK8cuuOCC3HHHHbn11luzatWqbNq0KaecckoVpwUAAOisX7UH+HP69euXpqamV+xvbW3N17/+9SxdujTvf//7kyQ33HBDjjnmmPzoRz/Kscce+0aPCgAA8Ao9/krX448/nuHDh+ctb3lLTj/99GzcuDFJsmbNmuzcuTOTJk2qrD366KNz8MEHZ/Xq1X/yPdvb29PW1tZpAwAAKKFHR9eECROyZMmS3HXXXbn++uvz5JNP5r3vfW9efPHFtLS0pLa2NoMHD+70N0OHDk1LS8uffN+FCxemoaGhso0cObLkaQAAAH/FevTXC6dNm1b597hx4zJhwoSMGjUq3/72t7Pffvt1+X0XLFiQ+fPnV163tbUJLwAAoIgefaXrjw0ePDhHHnlknnjiiTQ1NeWll17KCy+80GnNli1b9noP2B+qq6tLfX19pw0AAKCEfSq6tm3blg0bNmTYsGEZP358+vfvn5UrV1aOr1+/Phs3bkxzc3MVpwQAAPg/PfrrhRdeeGFOPPHEjBo1Kps2bcqnP/3p9O3bNx/96EfT0NCQOXPmZP78+RkyZEjq6+vz8Y9/PM3NzZ5cCAAA9Bg9OrqeeeaZfPSjH81zzz2Xgw46KMcdd1x+9KMf5aCDDkqSfOUrX0mfPn0yc+bMtLe3Z8qUKbnuuuuqPDUAAMD/qeno6Oio9hDV1tbWloaGhrS2tvaI+7sOueTOao8AAPwFnrpiRrVHALpZiTbYp+7pAgAA2NeILgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoKB+1R4AAGBfdcgld1Z7hB7rqStmVHsE6DFc6QIAAChIdAEAABQkugAAAAoSXQDA/2vvjmLarPo4jv+hrK1xo0VxLRiE4ZxLliG6ZQ0Xc0tWHQuJu9A4ozGbMWiMd4xEFodgTAQ3osRJXLK4TL0YTrO4CwyZNuIFQUkWpmZMAkvf6BJb3RZHF7RT+n8vzPralw7X9jl0D/1+EgI8PX04D7+dnf5SKAAAgyhdAAAAAGAQpQsAAAAADKJ0AQAAAIBBlC4AAAAAMIjSBQAAAAAGUboAAAAAwCBKFwAAAAAYROkCAAAAAIMoXQAAAABgEKULAAAAAAyidAEAAACAQZQuAAAAADCI0gUAAAAABlG6AAAAAMAgShcAAAAAGETpAgAAAACDKF0AAAAAYBClCwAAAAAMonQBAAAAgEGULgAAAAAwiNIFAAAAAAZRugAAAADAIEoXAAAAABhE6QIAAAAAgyhdAAAAAGAQpQsAAAAADKJ0AQAAAIBBlC4AAAAAMIjSBQAAAAAGUboAAAAAwCBKFwAAAAAYROkCAAAAAINK8j0BAAAALD41bQP5nsJN6T/dTfmeAvKAZ7oAAAAAwCBKFwAAAAAYROkCAAAAAIMoXQAAAABgEKULAAAAAAyidAEAAACAQYumdPX19UlNTY243W4JBAIyOjqa7ykBAAAAwOL4O10fffSRtLS0yMGDByUQCEhvb69s3bpVJiYmZPny5fmeHgAAACAi/P2y61nsf79sUZSuN998U5qbm+WZZ54REZGDBw/KwMCAHD58WNra2uaMj8fjEo/Hk59fvnxZRESmp6cXZsL/IhGfyfcUAAAAgAVzszwOF/nfXFTVsnPavnRdvXpVTp06JXv27EkeKy4ulmAwKCMjI2nv09XVJa+++uqc41VVVcbmCQAAACA9T2++ZzBXLBYTj8djyblsX7ouXLggs7Oz4vP5Uo77fD754Ycf0t5nz5490tLSkvw8kUjIpUuX5Pbbb5eioiKj852enpaqqir56aefpLS01OjXQvbIyT7Iyh7IyR7IyR7IyR7IyR7S5aSqEovFpLKy0rKvY/vSlQ2XyyUulyvlmNfrXdA5lJaWsgBtgJzsg6zsgZzsgZzsgZzsgZzs4f9zsuoZrmts/+qF5eXl4nA4JBqNphyPRqPi9/vzNCsAAAAA+JvtS5fT6ZR169ZJKBRKHkskEhIKhaShoSGPMwMAAAAAEUdnZ2dnvieRq9LSUmlvb5eqqipxuVzS3t4up0+flvfee0+WLl2a7+nN4XA4ZPPmzVJSUpA/3Wkb5GQfZGUP5GQP5GQP5GQP5GQPC5FTkVr5Woh59M4778j+/fslEolIfX29vP322xIIBPI9LQAAAAAFbtGULgAAAAC4Gdn+d7oAAAAA4GZG6QIAAAAAgyhdAAAAAGAQpQsAAAAADKJ0WaCvr09qamrE7XZLIBCQ0dHRecd//PHHsnr1anG73bJ27Vr57LPPUm5XVXnllVekoqJCbrnlFgkGgzI5OWnyEgqC1Tnt2rVLioqKUt4aGxtNXkJByCSnM2fOyKOPPio1NTVSVFQkvb29OZ8TN8bqnDo7O+esp9WrV5u8hIKQSU6HDh2SjRs3SllZmZSVlUkwGJwznv3JDKtzYn8yJ5Osjh8/LuvXrxev1yu33nqr1NfXy4cffpgyhjVlhtU5WbKmFDnp7+9Xp9Ophw8f1jNnzmhzc7N6vV6NRqNpxw8PD6vD4dB9+/bp+Pi47t27V5csWaLff/99ckx3d7d6PB799NNP9dtvv9VHHnlEV6xYob///vtCXdaiYyKnnTt3amNjo/7888/Jt0uXLi3UJS1KmeY0Ojqqra2tevToUfX7/frWW2/lfE78OxM5dXR06Jo1a1LW06+//mr6Uha1THN68sknta+vT8fGxvTs2bO6a9cu9Xg8ev78+eQY9ifrmciJ/cmMTLP68ssv9fjx4zo+Pq5TU1Pa29urDodDBwcHk2NYU9YzkZMVa4rSlaMNGzboiy++mPx8dnZWKysrtaurK+34xx9/XJuamlKOBQIBff7551VVNZFIqN/v1/379ydv/+2339TlcunRo0cNXEFhsDon1b8X4Pbt281MuEBlmtM/VVdXp30wn8s5kZ6JnDo6OvS+++6zdJ6FLtd/+3/99ZcuW7ZM33//fVVlfzLF6pxU2Z9MsWI/uf/++3Xv3r2qypoyxeqcVK1ZU/x4YQ6uXr0qp06dkmAwmDxWXFwswWBQRkZG0t5nZGQkZbyIyNatW5Pjw+GwRCKRlDEej0cCgcB1z4n5mcjpmqGhIVm+fLnce++98sILL8jFixetv4ACkU1O+ThnoTP5PZ2cnJTKykqpra2Vp556Sn788cdcp1uwrMhpZmZG/vzzT7nttttEhP3JBBM5XcP+ZK1cs1JVCYVCMjExIQ8++KCIsKZMMJHTNbmuKUpXDi5cuCCzs7Pi8/lSjvt8PolEImnvE4lE5h1/7X0m58T8TOQkItLY2CgffPCBhEIheeONN+Srr76Sbdu2yezsrPUXUQCyySkf5yx0pr6ngUBAjhw5IoODg/Luu+9KOByWjRs3SiwWy3XKBcmKnF566SWprKxMPnhhf7KeiZxE2J9MyDary5cvy9KlS8XpdEpTU5McOHBAHnroIRFhTZlgIicRa9ZUSeaXA0BE5Iknnkh+vHbtWqmrq5O7775bhoaGZMuWLXmcGWA/27ZtS35cV1cngUBAqqur5dixY/Lss8/mcWaFqbu7W/r7+2VoaEjcbne+p4PruF5O7E83j2XLlsnp06flypUrEgqFpKWlRWpra2Xz5s35nhr+4d9ysmJN8UxXDsrLy8XhcEg0Gk05Ho1Gxe/3p72P3++fd/y195mcE/MzkVM6tbW1Ul5eLlNTU7lPugBlk1M+zlnoFup76vV6ZdWqVaynLOWSU09Pj3R3d8vJkyelrq4ueZz9yXomckqH/Sl32WZVXFwsK1eulPr6etm9e7c89thj0tXVJSKsKRNM5JRONmuK0pUDp9Mp69atk1AolDyWSCQkFApJQ0ND2vs0NDSkjBcR+fzzz5PjV6xYIX6/P2XM9PS0fPPNN9c9J+ZnIqd0zp8/LxcvXpSKigprJl5gsskpH+csdAv1Pb1y5YqcO3eO9ZSlbHPat2+fvPbaazI4OCjr169PuY39yXomckqH/Sl3Vv3fl0gkJB6PiwhrygQTOaWT1ZrK6WU4oP39/epyufTIkSM6Pj6uzz33nHq9Xo1EIqqq+vTTT2tbW1ty/PDwsJaUlGhPT4+ePXtWOzo60r5kvNfr1RMnTuh3332n27dv5+VDc2R1TrFYTFtbW3VkZETD4bB+8cUX+sADD+g999yjf/zxR16ucTHINKd4PK5jY2M6NjamFRUV2traqmNjYzo5OXnD50TmTOS0e/duHRoa0nA4rMPDwxoMBrW8vFx/+eWXBb++xSLTnLq7u9XpdOonn3yS8rLIsVgsZQz7k7Wszon9yZxMs3r99df15MmTeu7cOR0fH9eenh4tKSnRQ4cOJcewpqxndU5WrSlKlwUOHDigd911lzqdTt2wYYN+/fXXyds2bdqkO3fuTBl/7NgxXbVqlTqdTl2zZo0ODAyk3J5IJLS9vV19Pp+6XC7dsmWLTkxMLMSlLGpW5jQzM6MPP/yw3nHHHbpkyRKtrq7W5uZmHshbIJOcwuGwisict02bNt3wOZEdq3PasWOHVlRUqNPp1DvvvFN37NihU1NTC3hFi1MmOVVXV6fNqaOjIzmG/ckMK3NifzIrk6xefvllXblypbrdbi0rK9OGhgbt7+9POR9rygwrc7JqTRWpqt7482IAAAAAgEzwO10AAAAAYBClCwAAAAAMonQBAAAAgEGULgAAAAAwiNIFAAAAAAZRugAAAADAIEoXAAAAABhE6QIAAAAAgyhdAAAAAGAQpQsAAAAADKJ0AQAAAIBB/wWv+v0aSjy5VgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# degree centrality\n", "plt.figure(figsize=(10,10))\n", @@ -285,7 +703,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -293,7 +711,28 @@ "id": "vLp2CBJHtC1d", "outputId": "c1ad4b5d-4d77-4ac1-84ce-6210fd7dc11f" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAMtCAYAAACVUkATAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde5TXdZ3H8ddwmUmQGUIdBg4o5p2ALtTBOZnHgrjmatKezAvYcnR1oTVJU3ZdS23DqCxrE3bPKdGzUq27WiuuGqJirmjJahgWKWnowoBHkxFaRi6zf3T8nSZvfKbB3wCPxznfc/he5vt7f/nveb6/7/dX097e3h4AAAB2WY9qDwAAALCnEVIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQKFe1R6gO9i5c2fWrVuXfv36paamptrjAAAAVdLe3p6XXnopgwcPTo8er3/fSUglWbduXYYOHVrtMQAAgG7imWeeyZAhQ153v5BK0q9fvyR/+M+qr6+v8jQAAEC1tLa2ZujQoZVGeD1CKql8na++vl5IAQAAb/rIj5dNAAAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIV6VXsAAOguhl1yW7VH6LaevmpKtUcA6FbckQIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoVNWQmj9/fkaNGpX6+vrU19enubk5t99+e2X/CSeckJqamg7Lueee2+Eca9euzZQpU9KnT580Njbmoosuyvbt29/qSwEAAPYhvar54UOGDMlVV12VI444Iu3t7bn++utz0kkn5ZFHHsk73/nOJMnZZ5+dK664ovI3ffr0qfx7x44dmTJlSpqamvLAAw9k/fr1mTZtWnr37p0vfelLb/n1AAAA+4aqhtSJJ57YYf0f//EfM3/+/Dz44IOVkOrTp0+amppe8+9//OMf5/HHH89dd92VgQMH5t3vfneuvPLKXHzxxfnCF76Q2tra3X4NAADAvqfbPCO1Y8eOfP/738+WLVvS3Nxc2X7jjTfmwAMPzIgRIzJnzpz8/ve/r+xbvnx5Ro4cmYEDB1a2TZgwIa2trVm1atXrflZbW1taW1s7LAAAALuqqnekkuSxxx5Lc3Nztm7dmv333z+33HJLhg8fniQ57bTTcsghh2Tw4MFZuXJlLr744qxevTo333xzkqSlpaVDRCWprLe0tLzuZ86dOzeXX375broiAABgb1f1kDrqqKPy6KOPZtOmTfn3f//3TJ8+PcuWLcvw4cNzzjnnVI4bOXJkBg0alLFjx2bNmjU57LDDOv2Zc+bMyezZsyvrra2tGTp06J91HQAAwL6j6l/tq62tzeGHH57Ro0dn7ty5ede73pVrrrnmNY8dM2ZMkuTJJ59MkjQ1NWXDhg0djnll/fWeq0qSurq6ypsCX1kAAAB2VdVD6k/t3LkzbW1tr7nv0UcfTZIMGjQoSdLc3JzHHnssGzdurByzZMmS1NfXV74eCAAA0NWq+tW+OXPmZNKkSTn44IPz0ksvZdGiRbn33ntz5513Zs2aNVm0aFEmT56cAw44ICtXrswFF1yQ448/PqNGjUqSjB8/PsOHD8+ZZ56ZefPmpaWlJZdeemlmzpyZurq6al4aAACwF6tqSG3cuDHTpk3L+vXr09DQkFGjRuXOO+/MRz7ykTzzzDO566678o1vfCNbtmzJ0KFDM3Xq1Fx66aWVv+/Zs2cWL16c8847L83Nzenbt2+mT5/e4XenAAAAulpNe3t7e7WHqLbW1tY0NDRk06ZNnpcC2IcNu+S2ao/QbT191ZRqjwDwltjVNuh2z0gBAAB0d0IKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKBQVUNq/vz5GTVqVOrr61NfX5/m5ubcfvvtlf1bt27NzJkzc8ABB2T//ffP1KlTs2HDhg7nWLt2baZMmZI+ffqksbExF110UbZv3/5WXwoAALAPqWpIDRkyJFdddVVWrFiRhx9+OB/+8Idz0kknZdWqVUmSCy64ILfeemtuuummLFu2LOvWrcspp5xS+fsdO3ZkypQpefnll/PAAw/k+uuvz8KFC3PZZZdV65IAAIB9QE17e3t7tYf4YwMGDMhXvvKVfPzjH89BBx2URYsW5eMf/3iS5Fe/+lWOOeaYLF++PMcee2xuv/32fPSjH826desycODAJMmCBQty8cUX57nnnkttbe0ufWZra2saGhqyadOm1NfX77ZrA6B7G3bJbdUeodt6+qop1R4B4C2xq23QbZ6R2rFjR77//e9ny5YtaW5uzooVK7Jt27aMGzeucszRRx+dgw8+OMuXL0+SLF++PCNHjqxEVJJMmDAhra2tlbtar6WtrS2tra0dFgAAgF1V9ZB67LHHsv/++6euri7nnntubrnllgwfPjwtLS2pra1N//79Oxw/cODAtLS0JElaWlo6RNQr+1/Z93rmzp2bhoaGyjJ06NAuvioAAGBvVvWQOuqoo/Loo4/moYceynnnnZfp06fn8ccf362fOWfOnGzatKmyPPPMM7v18wAAgL1Lr2oPUFtbm8MPPzxJMnr06PzsZz/LNddck0984hN5+eWX8+KLL3a4K7Vhw4Y0NTUlSZqamvLTn/60w/leeavfK8e8lrq6utTV1XX1pQAAAPuIqt+R+lM7d+5MW1tbRo8end69e2fp0qWVfatXr87atWvT3NycJGlubs5jjz2WjRs3Vo5ZsmRJ6uvrM3z48Ld8dgAAYN9Q1TtSc+bMyaRJk3LwwQfnpZdeyqJFi3LvvffmzjvvTENDQ2bMmJHZs2dnwIABqa+vz6c//ek0Nzfn2GOPTZKMHz8+w4cPz5lnnpl58+alpaUll156aWbOnOmOE8Ab8HY6APjzVDWkNm7cmGnTpmX9+vVpaGjIqFGjcuedd+YjH/lIkuTrX/96evTokalTp6atrS0TJkzItddeW/n7nj17ZvHixTnvvPPS3Nycvn37Zvr06bniiiuqdUkAAMA+oNv9jlQ1+B0pYF/jjhSl/I4UsK/Y435HCgAAYE8hpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKNSr2gMAAN3fsEtuq/YI3dLTV02p9ghAlbgjBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAU6lXtAQB2l2GX3FbtEQCAvZQ7UgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhaoaUnPnzs373//+9OvXL42NjTn55JOzevXqDseccMIJqamp6bCce+65HY5Zu3ZtpkyZkj59+qSxsTEXXXRRtm/f/lZeCgAAsA/pVc0PX7ZsWWbOnJn3v//92b59e/7u7/4u48ePz+OPP56+fftWjjv77LNzxRVXVNb79OlT+feOHTsyZcqUNDU15YEHHsj69eszbdq09O7dO1/60pfe0usBAAD2DVUNqTvuuKPD+sKFC9PY2JgVK1bk+OOPr2zv06dPmpqaXvMcP/7xj/P444/nrrvuysCBA/Pud787V155ZS6++OJ84QtfSG1t7W69BgAAYN/TrZ6R2rRpU5JkwIABHbbfeOONOfDAAzNixIjMmTMnv//97yv7li9fnpEjR2bgwIGVbRMmTEhra2tWrVr1mp/T1taW1tbWDgsAAMCuquodqT+2c+fOfOYzn8kHPvCBjBgxorL9tNNOyyGHHJLBgwdn5cqVufjii7N69ercfPPNSZKWlpYOEZWkst7S0vKanzV37txcfvnlu+lKAACAvV23CamZM2fmF7/4Re6///4O288555zKv0eOHJlBgwZl7NixWbNmTQ477LBOfdacOXMye/bsynpra2uGDh3aucEBAIB9Trf4at+sWbOyePHi3HPPPRkyZMgbHjtmzJgkyZNPPpkkaWpqyoYNGzoc88r66z1XVVdXl/r6+g4LAADArqpqSLW3t2fWrFm55ZZbcvfdd+fQQw9907959NFHkySDBg1KkjQ3N+exxx7Lxo0bK8csWbIk9fX1GT58+O4ZHAAA2KdV9at9M2fOzKJFi/KjH/0o/fr1qzzT1NDQkP322y9r1qzJokWLMnny5BxwwAFZuXJlLrjgghx//PEZNWpUkmT8+PEZPnx4zjzzzMybNy8tLS259NJLM3PmzNTV1VXz8gAAgL1UVe9IzZ8/P5s2bcoJJ5yQQYMGVZYf/OAHSZLa2trcddddGT9+fI4++uh89rOfzdSpU3PrrbdWztGzZ88sXrw4PXv2THNzc84444xMmzatw+9OAQAAdKWq3pFqb29/w/1Dhw7NsmXL3vQ8hxxySP7rv/6rq8YCAAB4Q93iZRMAAAB7EiEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQKFOhdRvfvObrp4DAABgj9GpkDr88MPzoQ99KP/6r/+arVu3dvVMAAAA3VqnQup//ud/MmrUqMyePTtNTU3567/+6/z0pz/t6tkAAAC6pU6F1Lvf/e5cc801WbduXb773e9m/fr1Oe644zJixIhcffXVee6557p6TgAAgG7jz3rZRK9evXLKKafkpptuype//OU8+eSTufDCCzN06NBMmzYt69ev76o5AQAAuo0/K6Qefvjh/M3f/E0GDRqUq6++OhdeeGHWrFmTJUuWZN26dTnppJO6ak4AAIBuo1dn/ujqq6/Oddddl9WrV2fy5Mm54YYbMnny5PTo8YcuO/TQQ7Nw4cIMGzasK2cFAADoFjoVUvPnz89f/dVf5ayzzsqgQYNe85jGxsZ85zvf+bOGAwAA6I46FVJPPPHEmx5TW1ub6dOnd+b0AAAA3VqnnpG67rrrctNNN71q+0033ZTrr79+l88zd+7cvP/970+/fv3S2NiYk08+OatXr+5wzNatWzNz5swccMAB2X///TN16tRs2LChwzFr167NlClT0qdPnzQ2Nuaiiy7K9u3bO3NpAAAAb6pTITV37twceOCBr9re2NiYL33pS7t8nmXLlmXmzJl58MEHs2TJkmzbti3jx4/Pli1bKsdccMEFufXWW3PTTTdl2bJlWbduXU455ZTK/h07dmTKlCl5+eWX88ADD+T666/PwoULc9lll3Xm0gAAAN5UTXt7e3vpH73tbW/Lr371q1e9TOLpp5/OMccck//7v//r1DDPPfdcGhsbs2zZshx//PHZtGlTDjrooCxatCgf//jHkyS/+tWvcswxx2T58uU59thjc/vtt+ejH/1o1q1bl4EDByZJFixYkIsvvjjPPfdcamtr3/RzW1tb09DQkE2bNqW+vr5TswPdz7BLbqv2CMBe7umrplR7BKCL7WobdOqOVGNjY1auXPmq7T//+c9zwAEHdOaUSZJNmzYlSQYMGJAkWbFiRbZt25Zx48ZVjjn66KNz8MEHZ/ny5UmS5cuXZ+TIkZWISpIJEyaktbU1q1ates3PaWtrS2tra4cFAABgV3UqpD75yU/mb//2b3PPPfdkx44d2bFjR+6+++6cf/75OfXUUzs1yM6dO/OZz3wmH/jABzJixIgkSUtLS2pra9O/f/8Oxw4cODAtLS2VY/44ol7Z/8q+1zJ37tw0NDRUlqFDh3ZqZgAAYN/Uqbf2XXnllXn66aczduzY9Or1h1Ps3Lkz06ZNK3pG6o/NnDkzv/jFL3L//fd36u9LzJkzJ7Nnz66st7a2iikAAGCXdSqkamtr84Mf/CBXXnllfv7zn2e//fbLyJEjc8ghh3RqiFmzZmXx4sW57777MmTIkMr2pqamvPzyy3nxxRc73JXasGFDmpqaKsf89Kc/7XC+V97q98oxf6quri51dXWdmhUAAKBTX+17xZFHHpm//Mu/zEc/+tFORVR7e3tmzZqVW265JXfffXcOPfTQDvtHjx6d3r17Z+nSpZVtq1evztq1a9Pc3JwkaW5uzmOPPZaNGzdWjlmyZEnq6+szfPjwTl4ZAADA6+vUHakdO3Zk4cKFWbp0aTZu3JidO3d22H/33Xfv0nlmzpyZRYsW5Uc/+lH69etXeaapoaEh++23XxoaGjJjxozMnj07AwYMSH19fT796U+nubk5xx57bJJk/PjxGT58eM4888zMmzcvLS0tufTSSzNz5kx3nQAAgN2iUyF1/vnnZ+HChZkyZUpGjBiRmpqaTn34/PnzkyQnnHBCh+3XXXddzjrrrCTJ17/+9fTo0SNTp05NW1tbJkyYkGuvvbZybM+ePbN48eKcd955aW5uTt++fTN9+vRcccUVnZoJAADgzXTqd6QOPPDA3HDDDZk8efLumOkt53ekYO/kd6SA3c3vSMHeZ7f+jlRtbW0OP/zwTg8HAACwJ+tUSH32s5/NNddck07czAIAANjjdeoZqfvvvz/33HNPbr/99rzzne9M7969O+y/+eabu2Q4AACA7qhTIdW/f/987GMf6+pZAAAA9gidCqnrrruuq+cAAADYY3T6B3m3b9+eu+66K//8z/+cl156KUmybt26bN68ucuGAwAA6I46dUfqt7/9bSZOnJi1a9emra0tH/nIR9KvX798+ctfTltbWxYsWNDVcwIAAHQbnbojdf755+d973tffve732W//farbP/Yxz6WpUuXdtlwAAAA3VGn7kj95Cc/yQMPPJDa2toO24cNG5b//d//7ZLBAAAAuqtO3ZHauXNnduzY8artzz77bPr16/dnDwUAANCddSqkxo8fn2984xuV9ZqammzevDmf//znM3ny5C4bDgAAoDvq1Ff7vva1r2XChAkZPnx4tm7dmtNOOy1PPPFEDjzwwHzve9/r6hkBAAC6lU6F1JAhQ/Lzn/883//+97Ny5cps3rw5M2bMyOmnn97h5RMAAAB7o06FVJL06tUrZ5xxRlfOAgAAsEfoVEjdcMMNb7h/2rRpnRoGAABgT9CpkDr//PM7rG/bti2///3vU1tbmz59+ggpAABgr9apt/b97ne/67Bs3rw5q1evznHHHedlEwAAwF6vUyH1Wo444ohcddVVr7pbBQAAsLfpspBK/vACinXr1nXlKQEAALqdTj0j9Z//+Z8d1tvb27N+/fr80z/9Uz7wgQ90yWAAAADdVadC6uSTT+6wXlNTk4MOOigf/vCH87Wvfa1LBgMAAOiuOhVSO3fu7Oo5AAAA9hhd+owUAADAvqBTd6Rmz569y8deffXVnfkIAACAbqtTIfXII4/kkUceybZt23LUUUclSX7961+nZ8+eee9731s5rqampmumBAAA6EY6FVInnnhi+vXrl+uvvz5vf/vbk/zhR3o/9alP5YMf/GA++9nPdumQAAAA3UmnnpH62te+lrlz51YiKkne/va354tf/KK39gEAAHu9ToVUa2trnnvuuVdtf+655/LSSy/92UMBAAB0Z50KqY997GP51Kc+lZtvvjnPPvtsnn322fzHf/xHZsyYkVNOOaWrZwQAAOhWOvWM1IIFC3LhhRfmtNNOy7Zt2/5wol69MmPGjHzlK1/p0gEBAAC6m06FVJ8+fXLttdfmK1/5StasWZMkOeyww9K3b98uHQ4AAKA7+rN+kHf9+vVZv359jjjiiPTt2zft7e1dNRcAAEC31amQev755zN27NgceeSRmTx5ctavX58kmTFjhlefAwAAe71OhdQFF1yQ3r17Z+3atenTp09l+yc+8YnccccdXTYcAABAd9SpZ6R+/OMf584778yQIUM6bD/iiCPy29/+tksGAwAA6K46dUdqy5YtHe5EveKFF15IXV3dnz0UAABAd9apkPrgBz+YG264obJeU1OTnTt3Zt68efnQhz7UZcMBAAB0R536at+8efMyduzYPPzww3n55Zfzuc99LqtWrcoLL7yQ//7v/+7qGQEAALqVTt2RGjFiRH7961/nuOOOy0knnZQtW7bklFNOySOPPJLDDjusq2cEAADoVorvSG3bti0TJ07MggUL8vd///e7YyYAAIBurfiOVO/evbNy5crdMQsAAMAeoVNf7TvjjDPyne98p6tnAQAA2CN06mUT27dvz3e/+93cddddGT16dPr27dth/9VXX90lwwEAAHRHRSH1m9/8JsOGDcsvfvGLvPe9702S/PrXv+5wTE1NTddNBwAA0A0VhdQRRxyR9evX55577kmSfOITn8g3v/nNDBw4cLcMBwAA0B0VPSPV3t7eYf3222/Pli1bunQgAACA7q5TL5t4xZ+GFQAAwL6gKKRqampe9QyUZ6IAAIB9TdEzUu3t7TnrrLNSV1eXJNm6dWvOPffcV7217+abb+66CQEAALqZopCaPn16h/UzzjijS4cBAADYExSF1HXXXbe75gAAANhj/FkvmwAAANgXCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKBQVUPqvvvuy4knnpjBgwenpqYmP/zhDzvsP+uss1JTU9NhmThxYodjXnjhhZx++umpr69P//79M2PGjGzevPmtvAwAAGAfU9WQ2rJlS971rnfl29/+9useM3HixKxfv76yfO973+uw//TTT8+qVauyZMmSLF68OPfdd1/OOeec3T06AACwD+tVzQ+fNGlSJk2a9IbH1NXVpamp6TX3/fKXv8wdd9yRn/3sZ3nf+96XJPnWt76VyZMn56tf/WoGDx7c5TMDAAB0+2ek7r333jQ2Nuaoo47Keeedl+eff76yb/ny5enfv38lopJk3Lhx6dGjRx566KHXPWdbW1taW1s7LAAAALuqW4fUxIkTc8MNN2Tp0qX58pe/nGXLlmXSpEnZsWNHkqSlpSWNjY0d/qZXr4NNGMwAABlTSURBVF4ZMGBAWlpaXve8c+fOTUNDQ2UZOnTobr0OAABg71LVr/a9mVNPPbXy75EjR2bUqFE57LDDcu+992bs2LGdPu+cOXMye/bsynpra6uYAgAAdlm3viP1p97xjnfkwAMPzJNPPpkkaWpqysaNGzscs3379rzwwguv+1xV8ofnrurr6zssAAAAu2qPCqlnn302zz//fAYNGpQkaW5uzosvvpgVK1ZUjrn77ruzc+fOjBkzplpjAgAAe7mqfrVv8+bNlbtLSfLUU0/l0UcfzYABAzJgwIBcfvnlmTp1apqamrJmzZp87nOfy+GHH54JEyYkSY455phMnDgxZ599dhYsWJBt27Zl1qxZOfXUU72xDwDY7YZdclu1R+i2nr5qSrVHgN2qqnekHn744bznPe/Je97zniTJ7Nmz8573vCeXXXZZevbsmZUrV+Yv/uIvcuSRR2bGjBkZPXp0fvKTn6Surq5yjhtvvDFHH310xo4dm8mTJ+e4447Lv/zLv1TrkgAAgH1AVe9InXDCCWlvb3/d/XfeeeebnmPAgAFZtGhRV44FAADwhvaoZ6QAAAC6AyEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFCoqiF133335cQTT8zgwYNTU1OTH/7whx32t7e357LLLsugQYOy3377Zdy4cXniiSc6HPPCCy/k9NNPT319ffr3758ZM2Zk8+bNb+VlAAAA+5iqhtSWLVvyrne9K9/+9rdfc/+8efPyzW9+MwsWLMhDDz2Uvn37ZsKECdm6dWvlmNNPPz2rVq3KkiVLsnjx4tx3330555xz3qpLAAAA9kG9qvnhkyZNyqRJk15zX3t7e77xjW/k0ksvzUknnZQkueGGGzJw4MD88Ic/zKmnnppf/vKXueOOO/Kzn/0s73vf+5Ik3/rWtzJ58uR89atfzeDBg9+yawEAAPYd3fYZqaeeeiotLS0ZN25cZVtDQ0PGjBmT5cuXJ0mWL1+e/v37VyIqScaNG5cePXrkoYceet1zt7W1pbW1tcMCAACwq6p6R+qNtLS0JEkGDhzYYfvAgQMr+1paWtLY2Nhhf69evTJgwIDKMa9l7ty5ufzyy7t4YqieYZfcVu0RAAD2Kd32jtTuNGfOnGzatKmyPPPMM9UeCQAA2IN025BqampKkmzYsKHD9g0bNlT2NTU1ZePGjR32b9++PS+88ELlmNdSV1eX+vr6DgsAAMCu6rYhdeihh6apqSlLly6tbGttbc1DDz2U5ubmJElzc3NefPHFrFixonLM3XffnZ07d2bMmDFv+cwAAMC+oarPSG3evDlPPvlkZf2pp57Ko48+mgEDBuTggw/OZz7zmXzxi1/MEUcckUMPPTT/8A//kMGDB+fkk09OkhxzzDGZOHFizj777CxYsCDbtm3LrFmzcuqpp3pjHwAAsNtUNaQefvjhfOhDH6qsz549O0kyffr0LFy4MJ/73OeyZcuWnHPOOXnxxRdz3HHH5Y477sjb3va2yt/ceOONmTVrVsaOHZsePXpk6tSp+eY3v/mWXwsAALDvqGlvb2+v9hDV1tramoaGhmzatMnzUuyRvLUPgO7m6aumVHsE6JRdbYNu+4wUAABAdyWkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAK9ar2AAAA7H2GXXJbtUfolp6+akq1R6CLuCMFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFelV7AAAA2FcMu+S2ao/QLT191ZRqj1DMHSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKNStQ+oLX/hCampqOixHH310Zf/WrVszc+bMHHDAAdl///0zderUbNiwoYoTAwAA+4JuHVJJ8s53vjPr16+vLPfff39l3wUXXJBbb701N910U5YtW5Z169bllFNOqeK0AADAvqBXtQd4M7169UpTU9Ortm/atCnf+c53smjRonz4wx9Oklx33XU55phj8uCDD+bYY499q0cFAAD2Ed3+jtQTTzyRwYMH5x3veEdOP/30rF27NkmyYsWKbNu2LePGjasce/TRR+fggw/O8uXL3/CcbW1taW1t7bAAAADsqm4dUmPGjMnChQtzxx13ZP78+XnqqafywQ9+MC+99FJaWlpSW1ub/v37d/ibgQMHpqWl5Q3PO3fu3DQ0NFSWoUOH7s7LAAAA9jLd+qt9kyZNqvx71KhRGTNmTA455JD827/9W/bbb79On3fOnDmZPXt2Zb21tVVMAQAAu6xb35H6U/3798+RRx6ZJ598Mk1NTXn55Zfz4osvdjhmw4YNr/lM1R+rq6tLfX19hwUAAGBX7VEhtXnz5qxZsyaDBg3K6NGj07t37yxdurSyf/Xq1Vm7dm2am5urOCUAALC369Zf7bvwwgtz4okn5pBDDsm6devy+c9/Pj179swnP/nJNDQ0ZMaMGZk9e3YGDBiQ+vr6fPrTn05zc7M39gEAALtVtw6pZ599Np/85Cfz/PPP56CDDspxxx2XBx98MAcddFCS5Otf/3p69OiRqVOnpq2tLRMmTMi1115b5akBAIC9XU17e3t7tYeottbW1jQ0NGTTpk2el2KPNOyS26o9AgBApz191ZRqj1Cxq22wRz0jBQAA0B1066/2wR9z1wUAgO7CHSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAK9ar2ALzasEtuq/YIAADAG3BHCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACA/2/v/mOqqv84jr8uFwGHASUTvEJotlRciZEymSVtlG4uyP7IWlFrDeeyuWUjpdLSVtB0RRGFmeCWW/hHJGxu6CJWOik3GGn+xvyRFpAzFPwaEPfz/aN56wqm53oP3Ht9Pjb+uOeec31/9vLeDy+8XC2iSAEAAACARRQpAAAAALCIIgUAAAAAFlGkAAAAAMAiihQAAAAAWESRAgAAAACLKFIAAAAAYBFFCgAAAAAsokgBAAAAgEUUKQAAAACwiCIFAAAAABZRpAAAAADAIooUAAAAAFhEkQIAAAAAiyhSAAAAAGARRQoAAAAALKJIAQAAAIBFFCkAAAAAsIgiBQAAAAAWUaQAAAAAwCKKFAAAAABYRJECAAAAAIsoUgAAAABgEUUKAAAAACyiSAEAAACARRQpAAAAALCIIgUAAAAAFlGkAAAAAMAiihQAAAAAWESRAgAAAACLKFIAAAAAYBFFCgAAAAAsokgBAAAAgEUUKQAAAACwiCIFAAAAABZRpAAAAADAopApUmVlZRo/fryioqKUkZGhPXv2DPdIAAAAAEJUSBSpLVu2aNmyZXrjjTfU3NysadOmae7cuero6Bju0QAAAACEoPDhHsAf3nvvPeXn5+u5556TJJWXl2vbtm2qqKjQihUrBpzf09Ojnp4ez+3z589Lki5cuDA0A1+Du+d/wz0CAAAAMGQC5ftw6Z9ZjDH/eV7QF6ne3l41NTWpsLDQcywsLEzZ2dlqbGwc9JqioiKtXr16wPHk5GTb5gQAAAAwuNiS4Z5goK6uLsXGxl71/qAvUmfPnlV/f78SEhK8jickJOjQoUODXlNYWKhly5Z5brvdbp07d06jR4+Ww+Gwdd4rXbhwQcnJyfrll18UExMzpH82BiKPwEIegYMsAgt5BBbyCCzkEViCMQ9jjLq6uuRyuf7zvKAvUr6IjIxUZGSk17G4uLhhmuZvMTExQfOX62ZAHoGFPAIHWQQW8ggs5BFYyCOwBFse//UvUZcF/YdNxMfHy+l0qr293et4e3u7EhMTh2kqAAAAAKEs6ItURESE0tPTVV9f7znmdrtVX1+vWbNmDeNkAAAAAEKV880333xzuIe4UTExMVq5cqWSk5MVGRmplStXqqWlRRs3btSoUaOGe7xrcjqdysrKUnj4TflOy4BDHoGFPAIHWQQW8ggs5BFYyCOwhGoeDnOtz/ULEh999JHWrl2rtrY2paWl6cMPP1RGRsZwjwUAAAAgBIVMkQIAAACAoRL0vyMFAAAAAEONIgUAAAAAFlGkAAAAAMAiihQAAAAAWESRskFZWZnGjx+vqKgoZWRkaM+ePVc9t7q6Wvfdd5/i4uIUHR2ttLQ0ff75517ndHd368UXX1RSUpJGjhyp1NRUlZeX272MkGAli3+rqqqSw+HQo48+6nXcGKNVq1Zp7NixGjlypLKzs3X06FE7Rg9J/syjr69Py5cv1913363o6Gi5XC4988wz+vXXX+0aP+T4+/nxb4sXL5bD4VBJSYm/xg15duRx8OBB5eTkKDY2VtHR0ZoxY4ZOnTrl79FDkr/zYC/3nZUsNm3aJIfD4fUVFRXldQ57+Y3xZx5Bv5cb+FVVVZWJiIgwFRUVZv/+/SY/P9/ExcWZ9vb2Qc9vaGgw1dXV5sCBA6a1tdWUlJQYp9Np6urqPOfk5+ebiRMnmoaGBnP8+HGzfv1643Q6TU1NzVAtKyhZzeKy48ePm3Hjxpn777/f5Obmet1XXFxsYmNjzdatW82PP/5ocnJyzIQJE8ylS5fsXEpI8HcenZ2dJjs722zZssUcOnTINDY2mpkzZ5r09HS7lxIS7Hh+XFZdXW2mTZtmXC6Xef/99+0YP+TYkUdra6u57bbbTEFBgWlubjatra2mpqbmmo8Je/JgL/eN1SwqKytNTEyM+e233zxfbW1tXuewl/vO33kE+15OkfKzmTNnmiVLlnhu9/f3G5fLZYqKiq77MaZPn25ef/11z+2pU6eaNWvWeJ1z7733mtdee+3GBw5hvmTx119/mczMTPPZZ5+ZZ5991msjdLvdJjEx0axdu9ZzrLOz00RGRpovvvjCnkWEEH/nMZg9e/YYSebkyZN+mztU2ZXH6dOnzbhx48xPP/1kUlJSKFLXyY48Fi5caJ5++mnbZg5lduTBXu4bq1lUVlaa2NjYqz4ee/mN8XcegwmmvZy39vlRb2+vmpqalJ2d7TkWFham7OxsNTY2XvN6Y4zq6+t1+PBhPfDAA57jmZmZqq2t1ZkzZ2SMUUNDg44cOaKHH37YlnWEAl+zWLNmjcaMGaPnn39+wH3Hjx9XW1ub12PGxsYqIyPjuvK9mdmRx2DOnz8vh8OhuLi4G545lNmVh9vtVl5engoKCjR16lS/zx2q7MjD7XZr27ZtuuuuuzR37lyNGTNGGRkZ2rp1qy1rCCV2PT/Yy63zNYvu7m6lpKQoOTlZubm52r9/v+c+9nLf2ZHHYIJpL6dI+dHZs2fV39+vhIQEr+MJCQlqa2u76nXnz5/XqFGjFBERofnz56u0tFQPPfSQ5/7S0lKlpqYqKSlJERERmjdvnsrKyrzKFrz5ksWuXbu0ceNGbdiwYdD7L19nNV/Yk8eV/vzzTy1fvlxPPvmkYmJibnjmUGZXHu+++67Cw8O1dOlSv84b6uzIo6OjQ93d3SouLta8efO0Y8cOLViwQI899pi+/fZbv68hlNj1/GAvt86XLCZNmqSKigrV1NRo8+bNcrvdyszM1OnTpyWxl98IO/K4UrDt5eHDPQCkW265RS0tLeru7lZ9fb2WLVumO+64Q1lZWZL+fvH9/vvvVVtbq5SUFH333XdasmSJXC6X108F4Luuri7l5eVpw4YNio+PH+5xbnpW8+jr69Pjjz8uY4w++eSTIZjw5nI9eTQ1NemDDz5Qc3OzHA7HEE94c7mePNxutyQpNzdXL730kiQpLS1Nu3fvVnl5uebMmTNk84a66329Yi8fGrNmzdKsWbM8tzMzMzVlyhStX79eb7311jBOdnOykkcw7uUUKT+Kj4+X0+lUe3u71/H29nYlJiZe9bqwsDDdeeedkv7e6A4ePKiioiJlZWXp0qVLevXVV/XVV19p/vz5kqR77rlHLS0tWrduHS++V2E1i2PHjunEiRN65JFHPMcufyMSHh6uw4cPe65rb2/X2LFjvR4zLS3NjmWEDDvymDhxoqR/XnhPnjypb775Jih+gjXc7Mhj586d6ujo0O233+45p7+/Xy+//LJKSkp04sQJexYTAuzIIzk5WeHh4UpNTfW6dsqUKdq1a5cNqwgdduThcrnYy33g6/dV/zZixAhNnz5dra2tksRefgPsyOOyYN3LeWufH0VERCg9PV319fWeY263W/X19V5t/Frcbrd6enok/f0Xq6+vT2Fh3lE5nU7PCzUGsprF5MmTtW/fPrW0tHi+cnJy9OCDD6qlpUXJycmaMGGCEhMTvR7zwoUL+uGHHyzlezOyIw/pnxfeo0eP6uuvv9bo0aOHbE3BzI488vLytHfvXq9zXC6XCgoKtH379qFcXtCxI4+IiAjNmDFDhw8f9rr2yJEjSklJsX1NwcyOPNjLfeOP76v6+/u1b98+T2liL/edHXlIQb6XD+tHXYSgqqoqExkZaTZt2mQOHDhgFi1aZOLi4jwf9ZiXl2dWrFjhOf+dd94xO3bsMMeOHTMHDhww69atM+Hh4WbDhg2ec+bMmWOmTp1qGhoazM8//2wqKytNVFSU+fjjj4d8fcHEahZXGuxTl4qLi01cXJypqakxe/fuNbm5uXxk6nXydx69vb0mJyfHJCUlmZaWFq+PVu3p6bF9PcHOjufHlfjUvutnRx7V1dVmxIgR5tNPPzVHjx41paWlxul0mp07d9q6llBgRx7s5b6xmsXq1avN9u3bzbFjx0xTU5N54oknTFRUlNm/f7/nHPZy3/k7j2Dfy3lrn58tXLhQv//+u1atWqW2tjalpaWprq7O84t5p06d8vqJ1MWLF/XCCy/o9OnTGjlypCZPnqzNmzdr4cKFnnOqqqpUWFiop556SufOnVNKSorefvttLV68eMjXF0ysZnE9XnnlFV28eFGLFi1SZ2enZs+erbq6ugH/2R8G8nceZ86cUW1trSQNeDtGQ0OD53cMMTg7nh/wnR15LFiwQOXl5SoqKtLSpUs1adIkffnll5o9e7YdSwgpduTBXu4bq1n88ccfys/PV1tbm2699Valp6dr9+7dXm9zZS/3nb/zCPa93GGMMcM9BAAAAAAEE37cCAAAAAAWUaQAAAAAwCKKFAAAAABYRJECAAAAAIsoUgAAAABgEUUKAAAAACyiSAEAAACARRQpAAAAALCIIgUAAAAAFlGkAAAAAMAiihQAAAAAWPR/hz359mMFZowAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# closeness centrality\n", "plt.figure(figsize=(10,10))\n", @@ -304,16 +743,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0.45484068767616925" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "np.mean(list(clos_C.values()))" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -321,7 +771,18 @@ "id": "MQOah_yDtbaW", "outputId": "558fc1ea-f457-4386-b5ce-8dc61f8f0115" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "-0.13774320410491864" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# assortativity\n", "nx.degree_pearson_correlation_coefficient(G)" @@ -338,7 +799,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 34, "metadata": {}, "outputs": [], "source": [ @@ -349,9 +810,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 35, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "2 525\n", + "0 329\n", + "5 220\n", + "1 138\n", + "3 131\n", + "4 119\n", + "8 84\n", + "7 74\n", + "6 56\n", + "dtype: int64" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "communities = pd.Series(parts)\n", "communities.value_counts().sort_values(ascending=False)" @@ -359,9 +840,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "7 29.538462\n", + "6 27.272727\n", + "1 21.203438\n", + "3 20.712695\n", + "4 20.472441\n", + "8 17.484009\n", + "0 4.667955\n", + "5 1.989235\n", + "2 1.485530\n", + "dtype: float64" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "graphs = []\n", "d = {}\n", @@ -377,11 +878,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAMWCAYAAAB2gvApAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzddViV5xvA8e85NAoq2KjY7ezWqTOwZmAnxibqdMas6ZxYs+awu7tjdnd3YQcGiooIKojAeX5/vD9QJihxCPX+XNcur53zxv1S573f57nvR6eUUgghhBBCCCGEEekTOwAhhBBCCCHE10cSDSGEEEIIIYTRSaIhhBBCCCGEMDpJNIQQQgghhBBGJ4mGEEIIIYQQwugk0RBCCCGEEEIYnSQaQgghhBBCCKOTREMIIYQQQghhdJJoCCGEEEIIIYxOEg0hhBBCCCGE0UmiIYQQQgghhDA6STSEEEIIIYQQRieJhhBCCCGEEMLoJNEQQgghhBBCGJ0kGkIIIYQQQgijk0RDCCGEEEIIYXSSaAghhBBCCCGMThINIYQQQgghhNFJoiGEEEIIIYQwOkk0hBBCCCGEEEYniYYQQgghhBDC6CTREEIIIYQQQhidJBpCCCGEEEIIo5NEQwghhBBCCGF0kmgIIYQQQgghjE4SDSGEEEIIIYTRSaIhhBBCCCGEMDpJNIQQQgghhBBGJ4mGEEIIIYQQwugk0RBCCCGEEEIYnSQaQgghhBBCCKOTREMIIYQQQghhdJJoCCGEEEIIIYxOEg0hhBBCCCGE0UmiIYQQQgghhDA6STSEEEIIIYQQRieJhhBCCCGEEMLoJNEQQgghhBBCGJ0kGkIIIYQQQgijk0RDCCGEEEIIYXSSaAghhBBCCCGMzjSxAxBCCCHiwyXPVyzZ78Ud7wCyp7OmdeWMFHK0SeywhBDim6FTSqnEDkIIIYQwpkuer+g17ypKgUGBXgc6Hbh3yCfJhhBCJBCZOiWEEOKrs2S/V3iSAdq/SmmvCyGESBiSaAghhPjq3PEOCE8ywhiU9roQQoiEIYmGEEKIr45lspcoFRrhNb0OsqezTqSIhBDi2yPF4EIIkYikYNm4lFKMPTKWf58to7iajk6FYtCboAgFTGhTJWNihyiEEN8MGdEQQohEElawfPq2H89fBXP6th+95l3lkuerxA7tixRqCKXb1m4M2DOADObPGLXyFwoFPySIp7zgJBZZ5lMwiyRxQgiRUCTREEKIRCIFy8YTEBxAo1WNmHlmJs55nam3/wkl71+mX4esHDP9kbvWf7D78VzevHuT2KEKIcQ3QxKNOLrk+Yr+C6/TZOw5+i+8Lk8ihRDRJgXLxvHszTN+WPgDu+7sYlLNSezy2MQfZ6zRt3XBIkt2AMplKkewIZhll5YlcrRCCPHtkEQjDmTagxAiLrKns0IvBctxcvvFbcrNK8fdl3fZ02YPc87Nodet1Nj4BkDfvliZWQFQLnM5AP459k9ihiuEEN8USTTiQKY9CCHionWKp+gMCj3aHxG9IRQdSMFyNJ18dJKyc8ui1+k51vEY229v5/LjC/x+1BSdszPkyYOlqSUA6ZOnx97Knms+1zj3+FwiRy6EEN8GSTTiIKppD9cf+yVOQEKIL0qhyUNxP+FOiZwpSJ3MhBKep5nAUSlYjoZN1zdReUFlctnn4miHo/gG+jLi4AiWKmcs7z2A/v0B0Ov0WJpaEhQaRPOCzTHRmTDj9IxEjl4IIb4NkmjEQfZ01uh1EV9TKpQ7b45Ra2kt9t3dh1Iq8p2FSEKk1igRHD4Me/dSqFtLxrjkZfWA4oxJe5eCE4eAr29iR5ekzTg9gwYrG1AzZ012t9lNMvNkuGxw4bu0hWi86RZUrQolS4Zvb2VqRWBwII3zNyZUhbL44mJeBcnPuBBCxDdJNOKgdeWM6HTA/6c9KELRoWjntR8vv4f8sOgHSs4uyaorqwgxhCRmqEJESWqNEsnw4VCoENSv//61fv3g3TuYODHx4krClFIM3DOQLlu68EvJX1jdZDVWZlYM2TeEmy9usjZVZ3TnzsPvv0fYz8rMisCQQCpkqYCdlR2BIYEsv7w8ka5CCCG+HZJoxEEhRxvcO+TDId0bgniKQ7pAzpp2JuOFbZxfZsuOBmtJaZmSZmuakWdKHqadmkZAsHSTEUmL1BolghMnYOdO+OMP0H/wZzh9eujcGSZMgJcvEy++JOhd6DvabmjLqMOj+Lv630ysORETvQlHHxzl72N/M7TyULLNXAklSsAPP0TY18rUioDgAEz1pjjndcbazFqmTwkhRAKQRCOOCjna0NLpLcdMf2Rs2zzULlSALg3N8fK8Qg2XYex2WsqZTmco5VCK7tu64zjBkaH7h/I84Hlihy4EIC1WE8Xw4ZAvHzRq9PF7/fpBUJCManzA760ftZfWZtWVVSxvtJzfyv2GTqcjIDiAdhvaUcqhFH1MKsK+fTBgAP8fag5nbWZNYHAgAM75nAkIDuDck3Oc9jqdGJcjhBDfDEk0jMDeyh4An0AfptaeSjIrW9oPzI/hqTdUrEixd/Ysb7ScW91v0bxAc8YcGUMW9yx029qNO753Ejl68a2LrNZIbwgle6C3NrQhjOvMGdiyRRvNMDH5+P0MGcDVVUY1/u+h/0Mqzq/Imcdn2Nl6J80LNg9/7/fdv/PA/wEL6i/AdOzfkDs3NGjw0THCpk4B/JDtB2wtbLG1sGXm6ZkJdh1CCPEtkkTDCOys7ADwCfDBzsqO+fXns+vpMabO6QQhIVChAly7RrZU2ZhcezL3e92nf/n+rLyyklyTc9F8TXPOeJ1J5KsQ36qwWqPwFqs60Ol0tJnTD37+WasZEMYzfLh2Q9ysWdTb9O8Pb9/CpEkJF1cSdPnpZcrOLcvLty853P4wlbJWCn9v3919TDo5idFVR5PnmQE2bNBGgyJJ3qxM3ycaFqYW/Jj7R6xMrVh+eTn+Qf4Jdj1CCPGtkUTDCOyt349oAFTPUZ3upbrT79xYrm6aDylSQMWKcPYsAKmtUzOk8hA8e3oyudZkTnmdosTsElRdVJUdt3ZIpyqRoMJqjUrwjNRvfCiRIwUTOhWg4Mg+sGgRODnBixeJHebX4cIF2LgRBg6MfDQjTIYM0KkTuLuD37fZLnvf3X1UmFcBeyt7jv90nAJpC4S/9yroFe03tqeSYyW6l+4OY8eCgwO0bh3psazNrCPUxznnc8b7jTeBwYEsvbg03q9FCCG+VZJoGEFKy5TodXp8AnzCXxtdbTRZU2alzZHfCN67G7Jnh8qV4eDB8G2szazpWrIrN7rdYFXjVfi99aPm0poUmVmEJReXEBwanAhXI75FhRxtGOO3k9U7+zLGJY+2jkPbtrBnD1y6BGXKwI0biR3ml2/ECO1vQcuWn9+2f38IDPwmRzWWXVqG0xInSjqU5GD7g2S0ibiA4W87f+N5wHPm15+P/uEjWLIEevcGC4tIj2dlZhVeowHglMMJK1Mr8qbOy8wzM+XhjhBCxBNJNIxAr9OTyjJV+IgGaEnE4oaLueB9geFXpsHu3VpfdycnbX72B0z0JjQp0IRTP59ib9u9ZLTJSJv1bcgxKQcTjk/g9bvXCX1J4lvk6wupUkV8rWJFrUOSiYmWbOzdmzixfQ2uXIE1a7TRDDOzz2+fMeM3N6qhlGLskbG0WteKFoVasKXlFmwtbCNss/3Wdmafnc34GuPJliob/PMP2Nho0/yi8OHUKYBk5smolasWoSqUC94XOPnoZLxdkxBCfMsk0TASe2v7CCMaACUylmBIpSGMPDSS435XtASjZk2tWHH5xz3cdTodVbJVYVurbVzofIHKWSvTd1dfsrhnYdCeQXi/9k6oyxHfosgSDYAcOeDYMa1tqJMTzJmT8LF9DUaOhCxZoE2b6O/Tvz8EBMDkyfEXVxIRagil+7bu9N/dnz8q/sGC+gswNzGPsI1voC8d/+1IjRw16FS8Ezx/DrNmQbduWrIRhbAF+z7knNeZ6z7XcbBxYOYZKQoXQoj4IImGkdhb2UcY0QgzoMIASjmUos36NrzWh8Dq1dq0iVatYEbUfdy/S/cdixou4vavt2lXpB2TTk7CcYIjrptcueEjU1hEPHj5MvJEAyBlSti6VXtq/PPP0KcPhIYmbHxfsmvXYMUKbSE5c/PPbx/GwUH7ev/zD/h/vUXLAcEBNFrViOmnpzOz7kyG/zAc3X9a1AL8uv1X3rx7w9x6c7X3p0zROqN17/7J4/+3RgOgTu46mOnNKJK+CCsur+DlW+nwJYQQxiaJhpHYW9vzIvDjgllTvSmLGizC65UXfXb2AVNTmD9f+2Ds0gVGjfpkC9EsKbLwj9M/3O95nyGVhrDx+kbyTslLo1WNOP7weHxekvjWRDWiEcbUFKZO1WoG3N3B2Rley7S+aPnrL20qVPv2Md93wAB48+arHdV4HvCcqouqsuvOLjY236iNVERi/dX1LLm4hEm1JpHJNpP2szd5Mvz0E6RJ88lzfNjeNkxKy5RUy14N30Bfgg3BLLm4xGjXJIQQQiOJhpFENaIBkMs+F//U+IeZZ2ay9eZWbSXgCRNgyBBtvnb//p9dryCVVSp+r/g793reY9aPs8LbPn4//3s2Xd+EQRni47LEt+RziQZoC6F17w6bNmmLo1WoAA8eJEx8X6pbt2DZMu33PIpi5U/6ikc1br+4Tbm55bj94jb7XfZTN3fdSLd79uYZrptdqZ+nPm2++//UszlztK/Hb7999jyRTZ0CrfvU8UfHccrhJEXhQggRDyTRMBI7K7uPajQ+1Kl4J2rnqk2HjR20VcF1OnBz0xKOceO0BbqiMRXF0tSSn4r9xNVfrrK+2XpCDCHUW1GPgtMKMv/cfIJCgox4VeKbEp1EI0zt2nDkiDbdqlQpOCnFtFEaNUp74v7TT7E/xoAB2hP8KVOMF1ciO/XoFGXnlgXgWMdjlHQoGel2Sim6bOmCQRmYWXemNmXq3TsYP16bhuro+NlzRTaiAVA/T30Actnl4vLTyxx7eCwOVySEEOK/JNEwkk+NaIBW6D233lxCDCF02tTp/ZOzHj1gwQKYO1f70Izm4mh6nZ4GeRtwtONRDrc/TC77XHT4twPZJ2Vn3JFx+L39NrrUCCN5+1b7L2XK6O9TqJDWkSprVqhUSas/EhHdvautRdKvH1hZxf44mTJpicr48fDqlfHiSySbb2ym8sLK5LDLwdGOR8lhlyPKbVdcXsHaq2uZXmc66ZKn015ctgwePtS+rtEQWY0GQJpkafje8Xuu+Vwje6rsUhQuhBBGJomGkYTVaHxqClP65OmZ9eMs1l9bz6ILi96/4eKitb3csAHq19e6zMRA+Szl2dh8Ix5dPaiZoyaD9g4is3tm+u3qxyP/R7G9JPEt8fXV/o3uiEaYdOm0KVQNG0LTpto6ETL95L3Ro7Wvqatr3I81YICWZHzhoxozT8+k/or61MhRgz1t95DaOnWU2z5+9Zhftv5CswLNaFKgifaiwQBjxkC9elCgQJT7fsjK1Ip3oe8INXw8auyc15k9d/bQ5rs2rLqyCt9A31hdlxBCiI9JomEk9lb2GJThsyMJzvmccSnsQvdt3bn38t77Nxo21NrfHjoENWpoU1JiKF+afMytP5d7Pe/RtWRXZp6ZSbaJ2eiwsQMezzxifDzxDYltogFgaQlLl8LQoTB4sLbQX5BM4ePBA63xQ58+YG0d9+Nlzvx+VOMLLMJXSvHH3j/ovKUzXUt0ZU2TNVibRf11UUrx86afMTcxZ2rtqe/f2LhR6+I1YEC0z21lpo0mvQ15+9F7DfM1JNgQTNpkaQkxhER8CCSEECJOJNEwEntre4BPTp8KM7HmROys7HDZ4BLxCVu1atpKzB4eUKUKeMdu3YyMNhkZXW00D3o94K+qf7Hz9k4KTCvAj8t/5JDnISl4FB8LS2xjk2iAVnP055/a+jCrV0PVqvDsmfHi+xKNGQO2ttC1q/GOOWCAVgA9dernt01C3oW+o93Gdow8NJJx1ccxqdYkTPQmn9xnwfkFbLm5hdk/zg7/+4pS2ihRpUpQtmy0zx+W0EQ2fSqTbSZKO5Rmz909NMzbUIrChRDCiCTRMBJ7q/8nGp8oCA+TwjIFCxss5JDnIdyPu0d8s3RpOHhQSzIqVoT792Mdk62FLX3K9eFOjzssqL+Au753+X7B95SbV451V9dFOo1AfKPiMqLxoebNYf9+uHlT+1n2+LJG0i55vqL/wus0GXuO/guvc8kzlvUQXl5aV6RevSB5cuMFmCULdOyoNZD4QkY1/IP8qbOsDisur2B5o+X0Kdcn0jUyPnTf7z49tvegXZF2/Jjnx/dv7N+vNR6IwWgGaFOngEgLwkEbad52cxsuhV24+vwqh+8fjtHxhRBCRE4SDSMJe+IW2VoakamUtRK/lf2NQXsHcdH7YsQ3CxbUplCFhED58to0gTgwNzHHpYgLF7tcZHOLzViYWNBoVSPyTc3HrDOzIp1OIL4xxko0AMqU0W4GkyfXnjrv2BH3YyaAS56v6DXvKqdv+/H8VTCnb/vRa97V2CUb48Zpxd/duhk/0N9/10Y1pk0z/rGN7JH/IyrOr8ipR6fY0XoHzQs2/+w+BmWg478dSWGZgglOEyK+OXo0FC6srVAfA2FTpyJrcQtaohEYEkhgSCA57XJKUbgQQhiJJBpGYmdlB0Rv6lSYET+MII99Hlqva/1xW9ocOeDwYW3qRcWKcPZsnGPU6/TUyV2H/e32c7zjcb5L9x2dN3fGcYIjIw+OjHaSJL5Cvr7aGg9x6Yz0IUdHrf1txYpaK9wvYKrPkv1eKAWG/8+aMShtps6S/V4xO9CTJzBjBvTsCSlSGD/QLFmgQ4ckP6px5ekVys4ti2+gL0c6HKFy1srR2m/G6RnsvrObufXmksLyg6/fmTOwc6c2mvGZEZH/+tyIRk67nHyX7js2XNtAp2KdWOOxJlqj00IIIT5NEg0jsTazxtLUMkYfThamFixxXsJ1n+sM3jf44w0yZtSmUWXPrtVsHDxotHhLZyrNmqZruN7tOs55nRl+cDhZ3LPQa3sv7vvFfrqW+EL5+sastW102Nhohbs9emhP9rt310bpkqg73gHhSUYYg9Jej5Hx48HcHH791XjB/dfvv4OfH0yfHn/niIP99/ZTfl55Ulml4ljHYxRIG73uULde3KLvrr50KdGFGjlqRHxzzBjtb2HjxjGO51M1GmGc8zqz6cYmWhZqiUKx8MLCGJ9HCCFERJJoGNHn1tKIzHfpvmNElRH8ffRvDnpGkkjY28Pu3VCihDZdYOtWI0WryWWfi+l1p+PZ05NeZXqx8MJCsk/MTut1rbnw5IJRzyWSsJgs1hcTJibaitbTp2v/1a2r3SAnQdnTWX/0oFwRio3Nm+gf5NkzbUpT9+7x8/UM4+gI7dtroxpvYhBfAlhxeQVOS5wo6VCSQ+0P4WDrEK39Qg2htN/YnvTJ0zO2+tiIb968qbUA79sXTE1jHNPnpk4BNMrfCP8gfy56X8Q5nzOzzsySonAhhIgjSTSMyN7aPlbD7b3L9qaiY0Xarm+Lf5D/xxvY2Gitb52ctHU2li83QrQRpUuejuE/DOd+r/v84/QPh+4fosjMIjgtcWLPnT3ygfu1i69EI0znzrB9Oxw/DuXKaQvZJTGtK2dEYUChNUnQG0LRAWu9u9J/V3+CQ4M/fxB3d21aT69e8RssaKMavr5JZlRDKcXfR/+mxdoWNCvQjC0tt2BrYRvt/Sccn8CR+0eYX38+yc3/U0A/bhykTQvt2sUqts9NnQIokKYAuexyse7qOlyLu3Ld5zoHPA/E6nxCCCE0kmgYUWxGNABM9CYsbLCQF4Ev6LG9R+QbWVpqT/RatoRWrbQ54PEguXlyfi39K7e632Kp81KevnlKtcXVKDG7BCsvryTEkHSnvog4ePkyfhMN0No3Hz+urbFRujQcPRq/54uhglmS451iGDrr2xhCn1LizklcbHczuEZb/jn+D98v+D7i2jf/9eIFTJ6sTROzt4//gLNm1UY1xo5N9FGNUEMoPbb3oO+uvgyqOIiFDRZibmIe7f2vPrvKoL2D6FmmJ987fh/xTS8vWLhQS94sLWMVX3RGNHQ6Hc75nNlwfQMVMlcgj30eKQoXQog4kkTDiOytY5doAGRNmZVJtSax4PwC1l9dH/lGpqbaAmDdukGXLloHlnhiZmJGy0ItOdvpLDtb78TOyo7ma5uTe3Juppycwpt3SWu6hoij+B7RCJM3r5Zs5M2r1R0tXRr/54ym80/Oc/X1NhpWecFBix9pc2ow+eeM4beyv3G4/WGevH5C0ZlFo/79nDABQkOhd++EC3rgQO17F08PHqIjMDiQJqubMPXUVGbUmcGIH0Z8tn3th0IMIbhscCFryqyM/GHkxxtMmKAlGJ07xzrG6NRoADTK14jnAc85/OAwnYp3Yq3HWp69+cbXgxFCiDiQRMOI7K1iN3UqjEthFxrmbUinzZ148vpJ5Bvp9TBxIgwZok2d6N9fa40TT3Q6HdVzVGdXm12c6XSG0plK02N7DxwnOOK2300+hL8WCZVoAKRODbt2QYsW0Lq1ttCfwZAw5/6ENR5rsLOyC1+34VabupS68YajW2ZQOlNpzrmeo2q2qjivcqb71u4R20K/fAmTJmkPANKmTbigs2bVphONHQsBMSxaN4LnAc+puqgqO27vYGPzjbiWcI3xMcYcHsOZx2dY2GBh+MhDuLCpYV27xqmDl5neDL1O/8mpUwAlMpYgk20m1l1dh0thF/Q6PQvOL4j1eYUQ4lsniYYR2VvZx6lFrE6nY2bdmZjoTPjp35+irovQ6cDNTXvSN3YsuLpqT1LjWbEMxVjeaDm3ut+iZaGWjDs6DscJjvyy5Rduv7gd7+cX8SghEw3QWunOn6+Nyg0friUdgZ++CYxPSilWe6ymQZ4GZE6RGR06ntWsyJNUZviPGwFASsuUrG6ymqm1pzL77GzKzi3LDZ8b2gEmT9amhPXpk/DBDxyoTdtK4FGNO753KD+vPLde3GKfyz7q5q4b42NceHKBoQeGMqD8AEpnKv3xBtOmQXCw1rksDnQ6HVamVp+cOhW2nXNeZ9ZdXUcqq1Q0zt+YWWdnYVCJnwgLIcSXSBINI7Kzsov11KkwaZKlYW69uWy5uYXZZ2d/euMePbSbtblztdqNd+/idO7oypYqG5NqTeJ+z/v8XuF3VnmsIveU3DRb04zTXqcTJAZhZPHR3vZzdDptRG7tWti0CSpX1tagSAQXvS9y88VNGudvjKnelHTJ0+EV+JQnLo2pcsSLy5f3/j9kHV1LduX4T8cJCA6g+KziLD0xRysC//lnyJAh4YPPlg1cXLT2rwk0qnHq0SnKzi2LQRk41vEYpRxKxfgY70Lf0XZDW/Kmzsuflf78eIOAAG30tkMHSJ8+zjFbmVl9dkQDtO5Tj1494tSjU7gWd9USqbv74nz+b80lz1f0X3idJmPP0X/h9dgtfCmE+OJJomFE9tb2vH73mnehcbvhr5O7Dp2KdaLXjl7cenHr0xu3a6cViW/YoHWkSsDpE/bW9gyuNBjPnp5MqTWF016nKTm7JD8s/IHtt7ZLp6ovRXCwVkyckCMaH3J2hkOH4OFDKFUKLiR8W+XVHqtJaZmSqtmrApDRJiOPXj2i4KAJKL2OayMjdpEqkr4IZzqdoWHehrTe/jMdKvvxplc8rAIeXQMHgo8PzIz/4uUtN7ZQeWFlsqfKztEOR8lhlyNWxxl2YBgezzxY1HARFqYWH28wf752TUYaJbI2s/5sjQZA+czlSWOdhnVX11EhSwXypc4nReExdMnzFb3mXeX0bT+evwrm9G0/es27KsmGEN8gSTSMyN5K6zRjjBVlxzuNJ0PyDLRZ3+bznZ4aNtTa3x46BDVqaPPFE5C1mTVdSnbhRrcbrG6ymtfvXlNraS0KzyjM4guLo9cWVCQeX1/t38RKNACKF4eTJyFNGihfXhvhSCDh06byNgjvlORg44DXKy9MU6flVp2ylN98kQdPIyb9yc2Ts6j6NBbsTs7K7/SU3NqAy08vJ1jcEWTPniCjGrPOzKLeinpUz16dPW33kCZZmlgd5+Sjk4w+PJo/v/+TIumLfLxBcLDW0rZZM+3ajCA6U6dA6wLYIG8D1l1bB4BrcVfWX1uP92tvo8TxLViy3wulCF8A06C0UsIl+70SNzAhRIKTRMOIXvvbUyhkAl2mPozzUHFy8+QsbriYk49OMubwmM/vUK2atrCfh4fWzcc74T8UTfQmNM7fmBM/nWCfyz4yp8hM2w1tyTEpB+7H3HkVJE+zkqSwxDQxEw0ABwc4eFBLluvX1xb6S4BRsctPL3PD5waN871fcTqjTUa8Xmk3RdmHTCDDazj0dyQrfc+Ygcvxt5xuuB1TvSklZ5dk9pnZiTOaN2gQPH8Os2YZ/dBKKQbvHYzrZlc6F+/M2qZrwzs5xVRgcCAuG1womqEoAyoMiHyjlSvB01ObWmck0Z06BVr3qVsvbnHp6SXaFm6Lqd6U+efnGy2Wr9nTN0+5+OBpeJIRxqDgjnfCNywQQiQuSTSM5JLnK+ZsMsWOUvi9UUYZKi6buSwDKwzE7YAbZ7zOfH6HMmXgwAFtnnvFinD/fqzPHRc6nY7KWSuzpeUWLna+SJVsVei3ux9ZJmRh4J6BUXfUEokjKYxohEmWTJsK2K8f/Pab1tI0OH5HxFZ7rCaFRQqq56ge/pqDjQOPXj3SQipSkhslspF/6Q78Aj8YLQwIgL//hnbtyFe4Kid+OkG7wu3otLkTLda2wO9tAq+Anj07tGmjjWoYsbD+Xeg72m1sx4hDIxhTbQxTak/BRG8S6+MN3jeYu753WdhgIWYmZh9vYDBoTQJq1YLCheMQeUTWZtbRTjSqZKtCCosU4UXhTQs0ZfbZ2VIUHoXg0GA2XNtAgxUNyDg+I17vzoYvfBlGr4Ps6WKXnAohvlySaBhJ2JCwDu0D2FhDxX9W+pPC6QrTen3raA37U6gQHD4MISHaFJRr1+J0/rgqlK4QCxss5M6vd+hYtCOTT07GcYIjnTZ14vrz64kam/i/pJRogNbCefRomDdPm6dfs+b7GJuXBbAAACAASURBVOPBGo811M9bP8ICcxltMvL0zdPwaX+pfx9BES8DW+YPfL/j7NnaCMLvvwPaE/PpdaezqvEqtt3aRrFZxRK+OcKgQfDsmdFGNfyD/Km7rC7LLy1nqfNS+pXvF6M1Mv7rkOch/jn2DyN+GEH+NPkj32jrVrhyBQZEMdoRS1amVtGq0QAwNzHnxzw/su7q++lTd3zvsPvObqPG9KW76H2R3jt64/CPAw1XNuSGzw3srOx4ZLoYhfog2TCg00GbKhkTNV4hRMKTRMNI7ngHxMtQsZmJGYsbLubey3sM2B3ND94cObRkw9ZWG9k4ezZOMRhD5hSZ+bvG3zzo9YChlYey6cYm8k3NR8OVDTn24Fhih/dtS2qJRpj27bX1Ns6f10brbt40+imuPL3C1edXaZK/SYTXM9poN0SPXz8GwK5Bc7wypSDFzPlas4e3b7WRg9atP6ohaFKgCedcz2FnZUe5ueVwP+aecFOpcubUYjLCqIbXKy++n/89Jx6dYEfrHbQs1DJOx3v97jXtNrajXOZy9CrTK+oNR4+GcuW0v11GZGUWvRqNMI3yNeLS00vc9LlJ2UxlKZi2oBSFo9UgTj4xmeKzilN4RmGWXlpK60KtGVRxEHd875DaOjW+6hznTbqQJX0Qwbrn+OpOMa5dLgpmsUns8IUQCUwSDSPJns4a/X8e9OlVKNntI5kaEEP50uRjTLUxTDo5iV23d0Vvp4wZtfnu2bJpNRsHD8Y5DmNIaZmSARUGcK/HPWb/OJurz65Sbl45Ks6vyKbrm2RqQmLw9QUTE23aUlJTqRKcOKG1wg2bGmhEqz1WY2thS/Xs1SO87mDrABBep4FeD7/+Ss1Lb9m8Y4rWUtrbW+v2FInsqbJzpMMRupfqTu+dvam/or5RmkREyx9/wNOn2ohLLF15eoUyc8rgE+jD4faHqZKtSpzD6r+rP09eP2FBgwVRT706fBiOHNFGM+IwchIZK9Po12gA1MhRA2sza9ZdXYdOp8O1uCsbr23k8avHRo3rSxBiCGHLjS00XtWYDOMz0HtnbxxTOLKx+UY8unrw6PUjRh4aSfsi7THTm2HAQDKbZyzsWom8JdZxweRXbgZE87NLCPFVkUTDSFpXzohOR/hQsSIUlMJ5cmc4Fvcn9t1KdaNa9mq039ge38BoTiOxt4c9e7SOPk5O2pSEJMLC1IKOxTri8YsHG5ptwKAM1FtRjwLTCjDv3DyCQoISO8RvR9hifUa+sTOanDm136GiRaF6dW06lZGs9lhNvTz1PmqvGjaiEZ5oABm79ifA2ow34/9CjR6tLTKYO3eUxzY3MWe803g2tdjEkQdHKDKzCIfvHzZa7FHKmRNatdJGBt6+/fz2/3Hg3gEqzK9ASsuUHOt4jELpCsU5pN13djPt9DTGVhtLTrucUW84ejQUKAB16sT5nP8V3fa2H25fK2et8O5Trb9rjbmJOfPOzTN6bEmVxzMP+u3qR2b3zNRdXpebL24ytvpYvHp7sa7ZOjLZZqL0nNJsv7WdVY1XkTZZWi4+vQiAu5M7Op2OdkXaATDh+IREvBIhRGKRRMNICjna4N4hH6GW1wjiKW9Mz3PHqh8BL48QWqE8hlGjtCLHWNLr9MyvP583wW/4Zesv0d/RxkZLMJyctE4+K1bEOob4oNfpqZ+3Pkc6HOFw+8Pksc9Dx387km1iNsYeGZvwBbXfooReFTw2UqWCbdu06VQdOmjdiOLw+wTaTZTHM4+Ppk2B1qra3MScR/6P3r+YLBkvWjWi0UEfbc2PQYOidZ66uetyofMFsqXMRuUFlRl5cCShhtDP7xgXf/yhjbjEcFRj5eWV1FhSg2IZinGo/SEy2WaKcyh+b/3osLEDP2T7gS4lu0S94cWLWpvu/v21ESQji2572w81yteIk49O8sDvASktU9K8YHNmn50d/9+/ROQb6MuM0zMoPad0+IOfpvmbcrbTWS50vkDPMj1JbZ2aKSenUHZuWVJYpuBsp7M42Dow/OBwADImz0iTAtrvVZlMZbA2s+bYw2M89H+YmJcmhEgEkmgYUSFHG2yyruZOip8IST+LR+okI4ZUZmw5BYMGYnCqEae2s5lsMzGt9jSWX17O8kvLo7+jpaXWyadFC20F8QRY1Cs2ymcpz4bmG7j6y1Xq5KrD4H2Dyeyemb47+8oHVHx6+TLpJxoAZmYwY4bW9nbcOGjUSFtoMJbWeKzBxtyGGjlqfPSeTqeL0OI2TJa+w7EKgVuONpAvX7TPlck2E3td9jKw4kAG7xtMzaU147f7Wq5cMRrVUEox/uh4mq9tTpP8TdjWahspLFMYJZReO3rx8u1L5tWbh173iY+cMWPA0RGaNzfKef8rJu1tw9TJXQdzE3PWX1sPaEXhnn6e7Ly9Mz5CTDShhlB23NpBi7UtyDA+A922diNtsrSsbbqWR70fMbHWRIpmKArAy7cvabK6Cd23dce1uCtHOxwlTbI0tFrbKrzl8ehqo8O/16Z6U2rnqo0OHQvPL0y0axRCJA5JNIzM3toeWwtbLjy5QP/y/dl3/wBBw4dQt60pL08dwlD4O229i1hqUagFzQs2p+vWrjG7+TY1hQULoFs3rWXo6NGxjiG+5U2dl9n1ZnOvxz1+KfkLs8/OJvvE7LTb0C7xFkT7mn0JIxphdDro1Qv+/Vf7PapYURtdiIXVHqv5Mc+PWJpaRvp+2OrgEU5/6BA6wPzlKy54nYvR+Uz1pgyrMoxdbXZx+ellCs8oHP2aq9j44w+t1fWcOZ/cLNQQSs/tPemzqw+/V/idxQ0XR+jAFRebb2xm/vn5uDu545jSMeoN79zRRlv79NESyngQmxENWwtbqmWvxtqrawEo5VCKwukKfzVF4Td8bjBwz0AcJzhSc2lNLnpfZMQPI3jY+yGbWmzCOZ9zhGmFpx6dotjMYuy+s5u1TdcyqdYkLEwt6L6tO95vvHkT/IZ0ydLRolCLCOdpkKcBCsWss7OkDk+Ib4wkGkZmb2WPTqdDr9OTwSYDFbJUYMH5BXQbuJEy3Sw5YReAqlFDKyKN5foAU2tPJZlZMtpvbB+zP9p6PUycCH/+qbXk7N8/QRZEi60MNhkYVW0U93vdZ1TVUey5u4dC0wtRd1ldDnoeTJxF0b5GX1KiEaZuXa1o+PlzKFUKTsesjey159e4/PRypNOmwoStDh4uJARGjsTw/fc4+sGeqb/FKvSq2aty3vU8RdIXwWmJE4P2DCLEEBKrY31S7tzaCOYnRjUCgwNpuqYpU05NYVrtafxV9a84ta/9kE+ADz9v+pnauWrToWiHT288fjzY2WnT4uJJTGs0wjTK14hDnofwfu0dXhS++cbmiNPqviD+Qf7MOTuHCvMqkGdKHqafnk69PPU4+dNJLne5TJ9yfUifPH2EfZRSTDw+kfLzypPaOjXnXM/hnM8ZgFVXVrHowiKSmycHwK2SG6Z60wj718xZE71Oz32/+xy4Z9yGDkKIpE0SDSOzt7Ln5duXVMpaiQ3XNrCo4SJeBL5g9dXVrP/1KM06pmBMbVvU2LFQubK2+m0M2VnZMb/+fHbf2c3Uk1NjtrNOB0OHgrs7jB2rjW6EJu35xrYWtvxW7jdu/3qbhQ0W4unnSaUFlSgztwxrPdZ+1fOlE8SXmGgAfPcdnDwJmTPD99/D2rXR3nWNxxqSmyfHKYdTlNt8NHVq+XK4fRu9uztP8mfhuxX7eeD3IFahp0uejm2ttvFX1b8Yc2QMlRdUjvWxPumPP+DxY61L1n/4BPhQbXE1tt3cxvpm6z9dPxEL3bd1JygkiNk/zv508uLtra2Z0qMHWMffgm6xmToFUC9PPXQ6Hf9e/xeAVt+1wtLUkrnnPv6aJlUGZWDv3b20Wd+G9H+nx3WzKzYWNqxotILHvz1mWp1plHQoGen3yTfQF+dVzvTc0ZNfSv7C4Q6HyZYqGwAP/B7gutmVYhmK8SzgGamtUtOuaLuPjuH1zJwKJvMoF7KZMWuex2khWyHEl0USDSOzt7bnReALnPM6s+/ePmwtbJlUaxILzi/gus91jv18gmV1suDUyYq3nnegSBFYvz7G56meozq/lvqVfrv7cfXZ1ZgH2rOn9uE+Z442l/vdu5gfI4GZm5jTtnBbLna+yNaWW7E2s6bx6sbknZqXmadnxnhahPg/X19ImTKxo4id9Olh/36oVw8aN4ZRo6I1SrfaYzV1c9fFyswqym0+XB2c0FAYORJ+/BGKFSNF/yFUu6NYuXJwrEPX6/QMqDCAg+0P8sD/AUVmFgm/mTWaPHm02qxRoyDofSe3u753KTevHDd8brDPZR/18tQz6mnXeKxh+eXlTKk9JbyDV5QmTtSmdv4SgyYXsRCbqVMAqa1TU8mxUvj0KVsLW1oUbMGcs3OS/EOOO753GLJvCNknZqfqoqqcfHSSPyv9yf2e99nWahvNCjaLcuogwImHJyg6syj77+1nQ7MNuNd0D59WF2oIpe2GtlibWXPX9y46dAyoMOCj413yfEWveVfRv82DOWl465+JnnOvSrIhxDdCEg0js7eyJ8QQQrXs1QgxhLDp+iZcCrvQMG9DOm3qhInehEPtDxFaphSOLj48LJEbnJ212okYtqIcXW00WVNmpfX61toiYjHVvj2sXq0lOg0aQEDcFhdMKDqdjlq5arHPZR8nfjpBkfRF6Lq1K44THBlxcAQvAl8kdohfli91RCOMlRUsW6ZNCRw4UPu5Doq6PfINnxtc9L74yWlToI1o+Af58/rda+335Pp1GKwlFlYt2uBnn5zUs5fFuTNauczlOOd6jopZKlJ/RX16bu9p3PbO/xnVOO11mjJzyxBqCOVYx2OUzlTaeOcCvF9702VLFxrla0SLgi0+vbGfH0ydCq6u8f4zaGVmRagKDV/tPSYa5WvEnrt7ePn2JQCuJVx54P+Abbe2GTvMOHv97jULzi+g8oLK5JiUA/fj7tTIUYOjHY5y7ZdrDKgwIHydmKgopfjn2D9UmF+BDDYZOO96nvp560fYZvyx8Ry4d4AqWavgH+RPCssUuJZw/ehYS/Z7/T/31243dJiglGLJfq+PthVCfH0k0TAyOys7QHv6Xi5zOdZd0xZ7mll3JqZ6Uzr+2xFbC1u2tdpGteJNyFL+JHv7NNJGFsqU0W5mosnKzIrFDRdz0fsiww8Mj13Azs5aS8mDB6FGDa0D0ReklEMpVjdZzfVu12mcvzEjD40ki3sWemzrwb2X9xI7vKQvNBT8/b/sRAO0+qOhQ2HJEm2KU/XqWv1GJNZ4rCGZWTJq5az1yUOGL9rn9xCGD4eaNaFkSe1NMzN0v/xC8/PBLN0T9/UB7KzsWN9sPZNqTmL66emUn1ee2y9ux/m4AOTNq3VyGjWKrR4bqbygMllTZuVYx2OfXtMiFpRSdN7SGR06pteZ/vl6j5kztQcsvXsbNY7IhHVEik2dRoO8DQgxhLD5xmYASmQsQbEMxZJMUbhSioOeB2m/sT3p/05Ph40dMNWbsqThEp70ecKsH2dRNnPZaNXfvAh8Qf0V9flt52/0LN2Tg+0OflTIf/bxWf7Y+weuxV3DR3p6lekVXqfxoTveARj+M8io0HHH+8t4sCWEiBtJNIzM3toeAJ9AH5zzOrPj1g5eBb0iTbI0zK03l603tzLrzCzMTcxZ3HAxfcv3o2rytfzt3hT19q22uN7C6LcALJGxBEMqDeGvw39x/OHx2AVdrZrWwefKFW0V8adPY3ecRJTTLifT6kzDs6cnvcv2ZsmlJeSclJNW61px/sn5xA4v6fL7/9P4Lz3RCNOqFezbB9euQenScPXjaYXRmTYFHyzat3UleHhoIyYfsO3eB73ehNdT/4nVU/L/0ul0dC/dnWMdj+EX5EfRmUVZcdlI694MHsyctA+pt9qZH7L9wD6XfaRJlsY4x/7AkotL2HBtAzPqzvj88d++1WrF2raFjJ+ZXmUEVqba9zs2dRoOtg6UyVQm/KYatFa3W29ujZ/ammi673ef4QeGk3NyTiotqMRBz4P0L9+fuz3usrvtblp9977lbHQcfXCUIjOKcOTBETa12MS4GuMwM4nYBSwgOIBW61pRMG1BXge/Rq/TY2lqSbdS3SI9Zva0luj/M8VMEUrqVEl72pkQwjgk0TAye6v/JxoBPjjncyYoNCh8eL1O7jq4Fnel987e3PS5iV6nZ0z1MUyqOYl+T5fQ7o+ChDZyhnbttA/f16+jdc4BFQZQyqEUbda30aZ5xEaZMtqoxpMnWsvQ+/djd5xEljZZWoZVGcb9nvdxd3LnyP0jFJ1ZFKclTuy+s1s6Vf2X7/9Xmf9aEg2AcuW0InErKyhbFna9byF768Utzj85T+P8jT97mLBE49HquVoyXrZsxA1Sp+Z10wa0PuTP6vNLjRZ+sQzFONPpDHVz16XF2hZ02tQpVk/hwyilGPJ4OT/Xg05XrVjXYHmMbj6j66H/Q7pv606rQq3COxJ90qJFWiF4375GjyUyYYllbGu5GuVrxPZb23nzTlu7pUXBFlibWTPn7KfbBxtbQHAASy8updqiamSdkJUxR8ZQybESB9od4Fb3WwyuNPjTrYQjYVAGxh4Zy/fzvydzisycdz1P3dx1I922z84+3Ht5jz++/4OlF5diUAa6luwaPpr/X61PLUOnFHq0DokKLcEItk16086EEPFACaN6FfRK4YZaenGpUkqpojOKqmarm0V4P+eknKr07NIqODQ4/PU1V9Yoi+EWqtL8Sur1vBlKJU+uVK5cSp09G63z3vS5qaxHWivXTa5xu4Bbt5TKlk2pzJmVunYtbsdKAoJDg9XyS8tV0RlFFW6oojOKquWXlkf42n/TTp1SCqL9c/ZF8fNTqmZNpUxMlJo+XSml1KhDo5T1SGv15t2baB3Cdpi1GlsOpQ4ciHyDy5eVAvV7+yzKYDAYK3KllFIGg0HNOTNHWY2wUgWmFlBXnl6J8THehbxT7Ta0U7ihRq3tpQw6lJoxw6hxhsXqtNhJZRyfUb0IePH5HUJClMqRQ6nGjY0eS1SO3D+icCNWX0ellLrlc0vhhlpzZU34a66bXFXG8Rnj/e+JwWBQR+4fUT//+7OyHWWrcENVml9JzT83X70KehWnYz9780zVWlJL4Ybqv6u/ehfyLsptN13fpHBDTTkxRVVbVE2lHptamQ8zV17+XpHvcOWKUjqduljwe9Vv/lXVaMwZVXjwRFV5uouyG2On3ga/jVPsQoikTxINIzMYDMp8uLmadHySUkqp4QeGq+R/JVeBwYHh2xx7cEzph+rVsP3DIux7yPOQSjU6lSowtYDyOr1fqaJFlTI3V2rSJKWicRMz49QMhRtq8/XNcbuIhw+Vyp9fqTRplDpzJm7HSiIMBoPadXuXqr6ousINlXVCVjXp+CT1Ouh1YoeWuHbu1BKNu3cTO5L4ERys1K+/atfYo4cqNqOYarKqSfT2NRhU3t8sVM+ODp/c7HmF4upkRtSuWzuNEPDHLntfVvmn5ldWI6zU3LNzo53Q+L/1VzUW11Bmw8zU4guLtRebN1cqSxalgoKMGuOs07MUbqitN7ZGb4cVK7TvyalTRo3jU856nVW4oU49iv05C08vrFqsafHRMTdc3WCMED/y0O+h+uvgXyr35NwKN5Sju6P6c++f6pbPLaMc/5DnIeUw3kGlHpv6s9+7J6+eqDRj06g6S+uorTe2KtxQNn/ZqC6bu0S+Q2ioUvnyad/n9evDX66xuIYqN7ecwg218vJKo1yHECLpkkQjHmT4O4Masm+IUkopj6ceCjfUv9f+jbDN4L2DlclQE3Xy4ckIr3s89VCO7o7KYbyDuuR5+v1NUoMGSvn4fPK8BoNB1V5aW6Ubl049ff00bhfx/LlSJUsqZWur1MGDcTtWEnPW66xqubalMhlqouzG2Kk/9/4Z96/Xl2rlSu3ny9c3sSOJX1Onqtv2eu3m5uT86O2zZYuq2hbVZEqlT25m2LxZKVA9B5eKc5hRefPujfpp408KN1TLtS2V/1v/T27v5e+liswoomxH2ardt3e/f+P/T5jVzJlGi+2u712V/K/k6qeNP0VvB4NBqSJFlKpWzWgxRMfVZ1cVbqiD92L/92zY/mHK5i+bCE/iS84qqWotqWWMEJVSSgUGB6oVl1Yop8VOSj9Ur6xGWKnW61qrPXf2qFBDqFHOEWoIVX8d/EuZDDVRFedVVA/9Hn5y+7DPlrTj0qpHfo9UwWkFVY6JOZTeTa/uvLgT+U5Tpmh/W4oVi/CgbOLxicp8uLkqPbu0clrsZJTrEUIkXZJoxIOC0wqq7lu7h/9/3il5lct6lwjbvAt5p4rPLK7yTM7z0TSOD28S9t7Zq9TGjUqlSqVNZzp8+JPnfvzqsbIfY68armgY96kc/v5KVamilKWlUlu2xO1YSdBd37vq162/KuuR1spyhKXqsrmL0Z4UfjFmzNBuPEONcwOTlI2e20FZDUK9LpxfqXv3Pr2xwaBU6dKqTac0qvzc8p/eNjRU+TlmUCvzoy48uWC8gCOx7OIylfyv5CrnpJzqjFfko40eTz1UFvcsymG8Q+TxNGtmtFGNUEOoqrygssrinkX5vfWL3k7bt2s3oHv2xPn8MXHP957CDbXj1o5YH+Oy92WFG2rLjfd/D+ecmaN0bjp11/durI9rMBjUyYcnVZfNXVTK0SkVbqhyc8up2Wdmq5eBL2N93Mh4v/ZWToudlM5NpwbtGRStaV9TTkwJv+45Z+Yo3FBpx6VVbda1iXyHhw+1z41IpmWGTUH7ZfMvSuemU54vPY1xWUKIJEqKweOBvZU9PoE+4f/fKF8j/r3+b4TONGYmZixuuBhPP0/67+ofYf8MNhk40O4ApR1KU3NpTVZkD4ALF8DRESpV0hYOi2I17/TJ0zPrx1msv7aeRRcWxe1CbGxg61ZwcoL69WHlyrgdL4nJmjIrE2tN5H7P+wyqOIg1HmvIPSU3TVc35dSjU4kdXsIIW6xP//X/KVgTepHaWauTzD8QSpWC45/o0rZrF5w4QcYSVd4v2hcVvZ5kvw2g0VVYsHGocYP+jxaFWnDO9Ry2FraUnVuWyScmR2hwcMjzEOXmlcPWwpbjPx3nu3TffXyQwYPhwYMYdbeLypSTU9h/bz/z68/H1sI2ejuNHq21Ca5SJc7nj4mwAvi4LOyZP01+ctvnZq3H++5TzQs2x8bCJlZF4U9eP+Hvo39TaHohSs0pxb/X/6VLiS5c73adIx2O8FOxn0hhmSLW8f7XgXsHKDKjCGcfn2V76+2M+GEEpnrTT+7j8cyDPrv60LVEVyo5VmLwvsGUdijN0zdPGVBhQOQ7de6sLQLbtCkULRrhrRx2Ochjn4fXwa+xNrNmwfkFRro6IUSSlNiZzteo4YqGEYaEz3idUbihdt3e9dG2k45PivIpW1BIkGq7vq3CDTXuyDhlePdOqT/+0J5AV62q1OPHUcbQbkM7ZfOXTZyesoULDlaqTRvtvPFQSJpUBLwLUNNPTVc5J+VUuKEqL6istt7YavQi3ySlf3+lsmdP7Cji3Z0XdxRuqBWXVij19KlS5csrZWGh1LJlH29sMGjvlyqlJv1/msdnfwZevVKByS3VuPI69cDvQfxcxAfeBr9Vv279VeGGarCigXoR8EKturxKmQ83V1UWVFG+gZ+ZCte0qVKOjnEa1bj+/LqyGmGlum3pFv2djh3TnnKvXRvr88ZWWKOOZRcj+Z7HwO+7f1f2Y+wjjAR03dxVpf87/ScLqcMEhQSpNVfWqLrL6iqToSbKYriFar6mudp+c7sKCQ2JU2xRCQkNUcP2D1P6oXpVeUFl9cj/UbT2exv8VhWZUUTlnZJXvXn3Rg3dP1SZDzdXWd2zqoYrGka+09q12vfYzCzKkcPe23urjOMzqvbr26usE7IabUqYECLpkUQjHvy08SdVYlaJ8P83GAwq64SsqvOmzh9tG2oIVdUXVVcZx2dUPgEf12AYDAY1cPdAhRvq162/ah9Ee/YolT69UmnTatMQIuH31k85ujuqivMqGufDKzRUqW7dtA+QUaPifrwkLCQ0RK25skaVnFVS4YYqOK2gWnh+oQoKMW4BbZLQqZNSxYsndhTxbuzhscpyhOX7Dj1v32rJMyjl5hax2cLevdrrmzerNVfWKNxQz988/+w5gnr9qnwtUQM39oinq/jYhqsbVKrRqVSq0anC6zei1cnn0iXtGmfPjtV5Q0JDVNk5ZVXOSTlj1lChQQOl8uRJlKl6IaEhCjfU3LNz43ScU49OKdzQprX+34UnFxRuqLUeUSdQZ73Oqu5buyv7MfYKN1Sp2aXU9FPTo9elKw6evHqiqi6sqnRuOvXn3j9j9HnQd2dfZTbMTJ31Oqu8/L1UspHJ1I/Lfoy6qN7XV/tcMjFRqm/fKI+7584ehRtq3tl5Cjci1hEJIb4qkmjEg/67+qtsE7JFeK339t4q3bh0kf6Rf+j3UKUanUo1Xd00yien005OU/qhetVoZSOtg5W3t1JOTtrNQr9+Sr37+Ena/rv7lc5Np8YeHmucCzMYlPrzT+2c/ftHqxPWl8xgMKj9d/erOkvrKNxQmf7JpMYfHf/ZQtwvSpMmCV6UmxhKzir58RNYg0GpkSO1n+cWLZQK/H9nuMqVwwtYjz04pnCLZu3FvXsqVK9TvepbRr9eIY5CQkNU+w3tFW4onZtOjTo0KvpPh5s0USpr1kj/dnzOmMNjlM5Npw57frpmLIIrV7Sv9dy43ejHhdkwMzXlxJQ4HcNgMKgs7lnUL1t+ifB6mTllVI3FNSK89vT1U+V+zF0Vnl5Y4YZK/3d61XdnX3XZ+3KcYoiuPXf2qHTj0ql049LF+GZ+z509ET4/fv73Z2U3xk4VmFrgo+sM5+qqjWSkTPnJBhNBIUHK5i8bNWz/MJVncp4InbxEzFy856/6LbimGo85q/otuKYu3vuKPp/E+2/lVAAAIABJREFUV0ESjXgw9vBYZTvKNsJrhz0PK9xQhzwPRbrPiksrIqy/EZkNVzcoyxGWquK8itroR2ioUmPHKmVqqlSZMpG2KO27s68yH25u3CJVd3fthsHVVeuH/w245H1Juax3UabDTFWKUSnUgF0Dou4d/yWpVk274fyKhRUBRzllZvVqpaystN+hDRsitOP0fOmpcENtu7ktWucKqF9HXU2NGn94nLHCj/pc7wJUo5WNlH6oXk06Pkn9vvt3pXPTKafFTsr7tffnD3Dxonatc+bE6LyXvC8p8+Hmqu/OqJ9YR8rFRSkHB6O31o2JFKNSGOXBS89tPVXG8RkjJHXzz81XuKGuPbumNl7bqBqsaKBMh5kqs2FmqtHKRmrz9c0Jtn5PSGiIGrJviNK56VTVhVXV41dRT7ONjE+Aj3IY76CqLKiiQg2h6rL3ZaUfqlc///uzwg21/+7+j3c6cED7edLptM+Iz3Be6azKzCmjxhweoyyGW8T7yM7X6OI9f1X1zxPqh8EnVOU/tH+r/nlCkg2RpHz9FaCJwN7aHv8g/wjF32UzlyV98vSsu7ou0n2aFWxGy0It6bqlKw/8HkS6Tf289dnbdi8ezzyoMK8Cnv4PtFV1Dx/WVvQuUgTWro2wz/Aqw8ljn4fW61oTFBJknAvs2RPmzYPZs6FVK63o7ytXMG1BFjRYwN0ed/m52M9MPTWVrBOz8vO/P3P9+fXEDi/2worBv2JrPNZgYWIR5UrHNG4MBw7AvXvQvDnkzg316gGQIXkGAB75f6Yg/P+s+v5O3udwfuGYCL//xuYT4EP1xdXZenMr65quo3vp7vxV9S+2t97OuSfnKDyjMHvv7v30QQoV0q59xAgIjl6swaHBuGxwIaddToZVGRb9gO/fh6VL4bffwNw8+vsZmZWZFYEhsS8GD+OczxmvV16cfHQy/LUCaQpgYWJBsVnFqL+iPvf97vNPjX94/Ntj1jRdQ53cdT5beG0Mj189pvri6gw/OJyhlYeyo/UO0idPH+39lVJ03tyZgOAAFjZYiF6np9/ufmRLmY2L3hcpl7kc3zt+H3Gnt2+hUydIlQqyZYOuXT97njq56nDi4Qlq56pNiCGEZZeWxfRSv3lL9nuhFBj+3w/CoEAp7XUhkgpJNOKBvZU9AC8CX4S/ptfpaZi3IeuurovQJeZDU2pNwcbChnYb22FQhki3KZu5LEc7HuVtyFvKzi3LhScXoHRpOHcOqlfXbhy6dIFA7cPUwtSCJc5LuO5zncH7BhvvItu3h9WrYf16aNAAAgKMd+wkLJNtJsbVGMf9XvcZVnkYW25uId/UfDRY0YCjD44mdngx5+ur3Rx8xVZ7rKZmzprYWNhEvVHJkjB9unbDdP8+bN8OaN3h0iZLi9eraH5wlytHwHf5abX3OauurDJC9B+763uX8vPKc93nOntd/sfeecc1dXZx/GSxQURBBQfOuveoe2vdq9b61j2rHbZq1dZ1CXuKuEAUFbe4996KCxC3IrhBQZQ9k/t7/7hNME0CSUjU2nz/8eN91rkkufc5z1mnaVDdQfK2XjV7UeyPsdTAvgH1CO9Bi84sIgkrUT/ZokWcgrVxo0Zre1zwoNjXsRQ+OJzMhGaaCx0QwGWxmzxZ8zEGwFxoXqqsUzLaVWlHDpYOtPnWZlpxbQW1XN2SWq9pTTwejwhENybfoKgpUfRLm1+onEU5PUiuGSfiT1DTkKZ0/+19OjXmFC3svJAEfIFWc4THhlPEvQgK6R9CVcpUoVMJp+hw3GEa3Xg0XX11lf7q8Bd3nx/i4UH0+DH3PPH01EiZ7Fu7L4FAN1/fpP51+tPamLVayWmEKP5NjlzJkMGCKOHNf+N9bOTfgVHRMACyF8uHigYRdwr2LP0ZRSdFqxxX1rwsrR+0nk4/OU1BV4PUzl+nXB2KnBhJjtaO1HFdRzqZcJI7ld6xgyg4mGj9eqKvvya6f5+IiBpXaExuXd3I77IfnXt6Tj83SUQ0dCjRwYNE589zKXDT0/U392eOrZktze0wl57MeEJrBq6hh6kPqX1Ye+oQ1oH2P9yvVlH87PjCFY3n6c/p6qurNLz+8JI7r15NVLcup7APGEC0dCkRQI7WjporGjweWfzxJ/WOJ9q9y1XtoYKuRCVGUdu1bUnCSujyhMv0deWvlfpUtKpIx0YdI9euruR+wZ26h3dXb5Fp1Iho2DCNrBrRSdHkdsGN5necTy0cW2gu9Nu3nPXzl1+IrKw0H2cA9GHRkLASOhZ/jKxMrGj59eU04+gMqmxTmfaM2EOREyMpR5JDCe8T9CSx5jItOL2Aem/qTU0qNKHYH2Opi3MXreeJfxdPPx/5mcY2GUvDGwwnFiz9ceIPalu5LV16cYkaV2hMfWv3VRx05w6naDg4cGmjh2vwWyPue9qiUgs6FHeIJjSbQDGvYygmKUZrmf+r3H5zm57kXCaQYqp7Po+oRgWLTySVESPKGBUNAyCzaHxYS4OIqHO1zmRnbqfWfYqIqHuN7vRbm99o3sl5dDf5rtp+Fawq0NlxZ6l91fbUZ3Mf2nRrExGPRzR1KtG1a9ymoWVLonXriACa2XYmdazWkcbuHUsZ+Rn6uVEiblN28iT3sunalSg5WX9z/wswFZrShGYT6O70u7Tv+33E4/Fo0LZB1GBlA1obvVZ/7mqGgGU55fALVjR23dtFJgITGvDVgOI73rhBdOQId8K/Zw/RzJmci+D06eRk5VhyLY0P+e47yre3o16HHpbsvqQFR+KOUOf1namabTW6PPEy1S5XW21fAV9A8zvNp7Njz1L8u3hqEtyEDj06pLrzokVET54Qbdqkdr58ST6N2TOGGjo0pPmd5msn+LJlnD/HL79oN84AWIgsKKdQt9PeB28f0NwTc6nqkqrUb0s/YlnuMOHE6BO09/u9NLjuYGpasSm1r9KeQqJC9Cl2sbzKeEXdw7uT50VPcuvmRkdHHSUHSwet55GwEhq9ZzTZW9hTUB/uoGvzrc0U8zqGJjafSCcSTihbM6RSzkpVoQJRUhKRnx/3HtKQfrX70dHHR6lXzV5U0aoihcWEaS33fw0A5HPJh5qGNKXHtJpAkCsbfB735x/d1fETS2nEyAd82hCRL5PXma9BDGHv/b1KbeP2jsNXy74qNi9/TkEO6q+oj6bBTUtMqVogKZBnnfG84Fk0b1YWMHEiF5z3v/8BGRl48v4JrD2sMW7vuFLdn0pu3eJS7tapAzz7b1d6vfT8EgZvGwwew0NFv4rwvOBZcl2DT0FaGvf92L79U0tiMNquaYsBWwaU3HHgQO67+2FygzVrAKEQk390QouVTbValxWLkSviYfiqblpKrJo1UWsgcBFgwJYB2qWTBZCSnYL+W/qDGMKsY7NUP1OGDuXqqajJQDX3xFyIxCLcen1LO8EzM4GyZYFff9VunIHoGNYRo3aP0rj/+9z3CL4ejK/XfA1iCHbedvj50M+ISoxCXmEebL1ssfD0QoUx4TfDQQwhLjVO3+IrcSTuCMr7lIejvyPOPT1XqrmYMwwELgJcfn4ZAPceqhxQGcO2D8PQ7UNRK6iWctbEZcu4Z0ilSsCgQVqvefXlVRBDOP/0POaemIuyXmW5rIpGVPIu5x06hXUCMQSBiwDEEGwWN8Zg//3yrFO3nxkDwY18XhgVDQNQIClQm6/9wMMDIIZwN/lusXNEJ0ZDJBbhz5N/lrgey7JYdHoRiCFMPzhd8WWwZQtgbQ3UqgXcuIH1MetLzPeuM3FxXLrMKlWABw/0P/+/jPsp9zFp3ySYuJrAysMKs47N+ijF3DTmyRNuk3D8+KeWxCA8T3sOYgjhN8OL7xgTw/0dNmxQbjt9Gsw3Zqg4VwA8fqz54snJkJiIMLc7ab85/4APf9s/HvhR56xFLMsi4HIARGIRWoe2RsK7BMUON29yf4N165TGXn5+GXwXPjzOe2i/cEAAlxXvMzl86LWxF4ZtH1ZsH4lUguOPj2PkzpEwczMD34WPfpv7IeJuhFKNkjF7xqDBigYK13IKclDWq6z2Wbm0oFBaiHkn5oEYwjebvkFyVnKp5rv8/DIELgIsPrNYfs3jvAeEYiEOxx0GMYQ1Uf/ITvb8OWBlBbRty9XNuH9f63WlrBQOvg6Ye2IuHqQ8ADGErbe3lupevlTOJJxBGc8yIIbg4OsAYkie1lqTOj9GjHwqjIqGgbDxtFGZRjG3MBdWHlYQnxWXOIfHeQ/wXfhqU+L+k9U3VoPvwsfgbYORU5BT1BAXxxVlE4nALlmCIduGoJx3Oa1THmrEy5dA/fqAvT0QHa3/+f+FJGYk4s+Tf6KMZxkIxUKM2TMGt9/c/tRicZ8PEXBdReGtL4DAyECIxCKk5aYV33HYMO40v1D1Jn71IVfwFhMKy9sB589rvL50wngklhFgQsRobcSWo9ZaWQquvbyG6oHVUcazDCLuRig2DhkC1Kyp8HfILshG7aDaaBPaRnslJz+fS2c7dmyp5dYXg7cNRt/NfVW2PXr7CPNPzUflgMoghlB3eV14X/QuNo313vt75SltP+S3I7+hvE95zYonasnztOdov7Y9BC4CeF3wKnVV7Yy8DNRYWgNfr/la/hknZyXD2sMaM47MwJg9Y1A5oLKiJYxlgf79OSt2mTLAj8rFaDVl7J6xaLiyIQCgQ1gH9Aj/8uv6aEOBpACzjs2SKxY9NvQAMQQnfycQQ+i9sfenFtGIkWIxKhoGonpgdcw9MVdl24iIEWgaXLIrhkQqQbu17VA9sLrGReIOPDwAC3cLtF3TVvGUIy8P+P13gAjJQ3qhgo8D+m7uq5fNixJv3wKtWgE2NlptzL50MvIyEHA5QL6R6bu5L848OWOYz0ATTp3iFI04w7t4fArar22Pfpv7Fd9JViG7mFoSBx8eBDGEF73bcsXI1q/XTIC/61T8MFyAl+kvtZCc+6703tgbIrEIG2M3ajW2JNJy0/BdxHdyK4n8UEJm2fng/mYcmQEzNzOljbRGhIVx890t3nr7MRm5cyS6rO8i/39GXgbWRK1Bh7AOIIZQxrMMfjzwI668uKLR7zKnIAeW7pZK1p57yfcMcjp/6NEhlPMuh8oBlbUrllgM4/aOg5WHFR6nFlnsfjr0E8p4lkF0YjQELgIERgYqDtq+nftsBw0CLC2B1691Xn/HnR0ghvAs7RnWxawDj+HhyfsnOs/3JfHo7SM0WtkIxBBMXE3ges4VJq4mGLR1kFzxOPjw4KcW04iRYjEqGgai5eqWmLRvkso22YM1/l18ifPEv4uHlYcVJu6bqPHaV19ehb2PPb5a9pWyi8SBA0C5cjj4dTkQQwi+HqzxvFqRkQF07coVQjt0yDBr/EspkBQg/GY4Gq5sCGIIrVa3QsTdCJVV4w3Kzp3cZuHtl2d2f5n+EsQQ1seUoBSMGAFUq1ZsEbmYpBgQQ7j65GJR3NOff3IFM0ugsEsnXKsiUHvooIrEjEQ0C24GG08bras5awrLsgi+HgwzNzM0XtUY91P+dnsZPJhzsywsxJknZ0AMYUlkycXXlJBKga++0slv35BM2DsBrVe3xumE0xi9ezQs3C3AY3jotbEXtt7eqmgJ1pDhO4aj5eqWStc7reukoNSUhgJJAf44/geIIfTb3E9vrjIRdyNADGFdzDr5tQcpDyAUC+Fz0QfTD05HeZ/yinFBqamAgwPQuzdgYgK4uJRKhrTcNAjFQqy8thKZ+Zmw8rBScOH6L8KyLNZGr5W77lVdUhXHHx+HvY89OoZ1RNPgpiCGYO9j/9GKQBoxoitGRcNA9N7YG0O2DVHZlpmfCTM3M/he0qx6cGhUqNrgcnXEpcah5tKaqOBbAVGJUYqNL14AnTphan+CBSNCXLKB4ilyc7kgW6EQ2LbNMGv8i2FZFkfijqDr+q4ghlBzaU2svLZSp82OToSGcpvmL7C6e9CVIIjEouKD8O/f56oYBxevbL/JegNiCHvu7+FcRvz8uHFDh3JJF4pj/36ACN2nWWpklbyXfA/VllSDk78TYl/Hlti/tNx6fQt1l9eFhbsFp5T97U6XsyYYzoHO6LSuk26uObt2cd+tyEj9C60jCe8S0Gp1K4jEIhBDqB1UG+7n3UsdN7X19lb5ifyHbL61WaVblbY8S3uGtmvaQigWwveSb6ldpWS8SH+Bsl5l8e2ObxWsN4O3DUa1JdWQ8C4Bpq6mcD/vrjhwwgTOXWrIEC4IvKTfgAZ0Wd9Fbn2ctG8Sqi6p+vEPXj4TUnNSMWz7MLnFos+mPnie9hwNVjRAjaU1cDL+JIghCMVCg8YBGTGiL4yKhoH4367/ofO6zmrbB20dhLZr2mo0F8uyGLBlAOx97PE6U3MT9ZusN2i1uhWsPKxwNO6oYqNEgszFf6LWL4SvZ9qg8IWBgjULCoBRo7iNWUiIYdb4Arj+6jq+i/gOfBc+7H3sIT4rNnyAn68v5972BdIxrKNaX3w5o0YBlStzboXFIGWlEIlFWH51edHFffs4l5EWLYBXr4oZLEVh9WrY1pCHgMsBxa5z/ul5lPUqiwYrGuB52vPiZdcjWflZGLd3HIghjNkzBpmD++K1YxnYiC00sroqwbKc62QX/Zzml4as/CxsuLkBXdZ3ATEEkVgEG08bXHx2UW8ui+l56TBxNVGy/OQV5qGcdznMPDpT57n3PdiHsl5lUXVJVUS+0J/SJmWl6LahG5z8nZCakyq/fv7peRBD2HxrM/44/gdsPG0UlXWZu+Wff3L/hobqRR6fiz4wdzNHTkEOIl9EghjC8cdfZpKK4jjz5Ayc/J3kyjBzhkGBpAB9N/eFjacN7ibflbtSaZJUxoiRzwGjomEgfj70szzATRUbbm4AMaSx7/brzNew97HHgC0DtHpBZuVnod/mfhCKhQrmcRmR+1aAv4jg+o0FcPiwxvNqhVQK/Pwz92Ly8jLMGl8Ij1MfY/rB6TBzM4OFuwV+Pfyr4fyV//qLcxv6wkjMSASP4SEsOkx9p0ePAD6fS8+pAVWXVMVfJ/9SvBgTwykqTk5AVJTqgQAQFAQJn4c2ixxRIFGdPnbHnR0wdTVFl/VdPlkq5I2xG2Hpbomqng64WYFwykXHNNiyzejRoyX3NQAsy+L80/OYsHcCrDysQAyh24ZuCL8Zjnkn5sHJ30nva/bf0h8dwzoqXZ91bBbsvO20TtmaL8nH70d/BzGEgVsHKigD+sD3ki+IIQXXPJZl0Tq0NVqEtEBKdgqsPKwUsx7m5HDJAjp04JTI+vXVJlDQlrvJd0EM4fCjw2BZFvWW18OIiBF6mfvfQL4kH/NOzAOP4cHC3QJWHlbY/2A/AC6xAN+Fj6NxRxH5nFPCyvuUR+vQ1p9YaiNGNMOoaBiIxWcWo5JfJbXt73LeQSgWKp6SloAsw4lSmsESKJQWYvL+ySCG4HrOVUlRWXBgJoSLeLhRiYDZs4v1V9cZlgUWLuQ2IHPncv83opbkrGQsPrMYdt52ELgIMHLnSEQn6jmL17RpQFPt6kP8G1h2dRmEYmHxm7Nx4zi3j1zNNoBt17TF2D1jlRsSE4GWLQELC2DPHtWDMzIgsbaCRwfClltblJoDLgeAx/AwcudIg2Qp0oZrL69BJBbBZCFhRV8HsGrqahRLz57c9+oj/8afpT2D6zlX1FxaE8QQqgdWh8tZFwVF3fOCJ+y87fS+dlh0GHgMT8ni/PDtQxBD2BS7SeO5Et4loHVoa4jEIiyJXKL3ZBExSTEQiUWYfWy2wvVtt7eBGMKZJ2fgctYFZm5meJP1pqjDvHlcTEZwMPccP6i/IGSWZeEc6IyfDv0EAPC75AcTV5P/RNrWh28fouXqlhC4CGDiaoK6y+rK3e1CboSAGMKyq9yBSL3l9eQ1NFZeW/kpxTZiRGOMioaBCLoSBBNXk2JfEr029kK3DdoV9Jq4byIs3S0VMoRoAsuyEJ8VgxjClP1TFALICiQFaBHSAnXFDsgxFwKtWwPxOrhMaEJAAPeSmjr1i4wN0DdZ+VlYdnUZnAOdudSG4T1w/PFx/Ww+vv+eC9j/wui8rjO+2fSN+g4JCVze/yWaBzkP2z4MPcN7qm7Mzga+/ZZzD/T2Vr3BnjkTGZZCtA1qIv/spKwUvx35DcQQ5p6Yqzff+9Iwevdo2HjYYPzqfiCGMMy3lXYWlhs3uN/3R4rJyinIweZbm9EjvIf8NHjsnrE4++Ssyr9nYGQgzN3M9S7H2+y3ELgIVCbX6Lq+q0prhyp239uNMp5l4BzojGsvr+lbTGQXZKPe8npoGtxUQanNK8yDc6AzBmwZgMz8TNh52+GXw78UDbx5k/vNMAxnyejaVe+K5E+HfoJzoDNYlsWbrDcQioUIuhKk1zU+J1iWxZqoNbBwt4Cdtx2IIQzdPlQey3Uq4RSEYiGmH5wOoMitre6yujB1NcW7nHefUnwjRjTGqGgYCFkgYGZ+pto+wdeDIXARICU7ReN5M/IyUD2wOtqtbadTsFxYdJjKCsP3ku/BzM0Mv64fwdUUsLExXMXotWs5t5URIwxjPfkCKZQWYtvtbWge0hzEEJoGN8WWW1tKl3Gkd28uoPMLIikzCTyGV7zVb/JkLmtOdrbG8/5y+BelwmwKSKXA/PncJnv8eOXvdUICWD4fU/oTTiWcQm5hLr7d8S14DE8rq6Yh2XN/j0Kmrl2jWqDMX3w4L3HG1ZdXNZvk22+VanHoG5ZlEfkiElP2T4GNpw2IIXQM64iw6LASA+5X31gNYsggKaW7b+iOXht7KV2XWQqK86fPK8zDr4d/lW82DeU+99Ohn2DmZqYki98lPwhcBLiXfA/+l/0hFAuLgtslEs5q17AhsHIl9x2/cUPvsh1+dFjh7zRk2xA0WdXEIJ/Vp+bDgO8qAVVADMH9vLv8Xh++fYiyXmXRI7yH3N2ydlBt8Bge6i6r+59yKzPy78eoaBiIo3FHQQzh6funavu8znwNHsNTWUG8OC4+u6h7pV5wD3RLd0u0CW2jUFE26EoQF4QXu4dTAoiAKVO02pBpzK5dnBm+Tx/DzP+FwrIsTsafRK+NvUAModqSalh6Zali+klNad2ayyDzBbHi2goIXATqXS6ePeNqYfgoF9MsDq8LXrD1si25Y3g4973u3FkpbTA7ZAjiK5qix7pu6BDWAWZuZlwmq8+AlOwUOPg6YODWgUUbu+vX8cSW0MazJoRiIfwu+RVvdXn4UKMsXrryKuMVvC54oe7yuvIN2oJTCxCXqnkdmI2xG0EMGSSz24prKyAUC5VOmvMl+bD3sceMIzNUjot/F48WIS1g4mqCZVeXGWxjfejRIQU3HBmpOamw9bLFtIPTkFeYh0p+lTB+7/iiDgEB3Od6+jRXoO9//zOIfDkFOTB3M5cXupXVr7nxSv9KzafkdMJpOPk7wcbTBhX9KsLWyxaHHxXFR77LeYc6y+rgq2VfyRXOE/EnQAyhc1hnEEM4EnfkU4lvxIjWGBUNA3H91XUQQ8qpZf+BRtlxVPDnyT8hFAt19tu//uo6HHwdUCuoltwNS8pK0SO8Bxz9HZGa/ZbLKGJuDjRoANy5o9M6xXL8OOfb3rEjkFZC9WYjSsQkxeCHXT9A4CKAnbcdFp5eqOhTXRK1awOzZhlOwE9A1/VdVZ4qy5k+HShXDshUb2lURfjNcBBDyC7QQCm+cAEoX56rR/Hgg9Sm584BROg1imDrZYvLzy9rJYOhYFkW3+74FnbedkjKTFJs7NcPBXXrYM6x2fIik2otsJMmcRtRDeNeNCG3MBfb72xHn019wHfhw8zNDP/b9T+ciD+hk6vZzrs7QQzpPbga4BQhYggbbm5QaptzfA5svWyVFJyIuxGw8bRBjaU1DLqhfpP1Bg6+qou0/n70d1h5WOF15muE3AgBj+EVpeR98oR7Rv/yC1cvw8SEu2Yg+m/pL8/WWCgtRCW/SnLXoX87+ZJ8zD0xFzyGh4YrGsLczRyNVjZScIMukBSg24ZusPO2U1CgayytAb4LHxP2TYCjv+N/NvWvkX8nRkXDQCS8S9AoRV9gZCBMXE2QlqvdRjtfko+mwU1Rf0V9nU/n4t/Fo3ZQbdj72Mv9gV+kv4Ctly2+3/k91+nOHU7RMDfnFA99n7ZdvgzY2gLNmgFvtNgkG5Hz9P1TzDgyA5buljBzM8OPB37U7JTX3h5wczO8gB+JN1lvwHfhIzRKTcrNly+5jZK7u+r2YjiVcArEkOan5/HxQL163Hf7JJfZJ+rVDdxyEuJILVJbY+dTIKsDsf2OClfJa9c4y+bmzTj86DDK+5SHo78jzj45q9jv5UvOUuTtXWp5WJbF9VfXMf3gdJT1KgtiCG3XtEXIjRCtn5P/RHaqr22ldk1pt7YdBm1VLlIYlxqnoITkFuZi+sHpIIYwfMfwUt9XcbAsi36b+6lMjx7/Lh4isQhu59xQKC1EjaU1MHzHcNlAzr2yShUgLo5L52zgg4lV11dB4CKQn+T/efJPlPEs8/FqCxmIBykP0CKkBYRiobxu0oiIEQqWaJZlMfXAVAjFQpx5ckZ+XWbZGbptKGy9bDHvxLxPcAdGjOiOUdEwEOl56SCGsO128UGRz9KegRjV2WhK4s6bOzB1NcVvR37TVUykZKfg6zVfw8LdAocecRW8ZRsPuUzZ2ZwLFREXQJyervN6KomNBSpUAOrU4VxbjOhEak4q3M65wcHXATyGh293fKvet55luUKKK1Z8XCENiGyTovbE/ddfuY2/Dt/f+yn3QQzh3NNzmg9KSwN69QKEQhwJ+hWW7pZYPL46QISGvwjxKqOY+hsficSMRNh52+G7iO/Ud+rbF6hbF5BI8CrjFbqs7wK+Cx8uZ12KTlZnz+aKuJXi2fA68zX8Lvmh4cqGIIbg6O+IeSfmFVUt1wOyaufauFtpg98lP5i5mamMzesR3gPt1rbDo7eP0Cy4GUxdTbHy2kqDxyCsvLYSxBAOPDyg1PZdxHdw8nfuhkw7AAAgAElEQVRCdkG2PK5QbiXftIl75h84APz4I1C2LPDOsAHIsvehTOmVKWibb2026LqGgmVZhEaFwsLdAjWX1sTXa74G34UP30u+Sp97YGSgyqySVZdUhcBFgHUx6/RSANKIkY+NUdEwECzLQigWYsW1kjdyLVe3xLDtw3RaZ0nkEqV86NqSXZCNQVsHQeAikD/kRu4cCVsvW8Wqudu2cUHiNWoA16/rvJ5K4uIAZ2fu9OzhQ/3O/R8jpyAHwdeDUTuoNufXu64zDj06pPhiy8zkNhFbtFdwP1e6beiGHuE9VDcmJQFmZpz7hw7IDg623t6q3cDCQqyd2RWCRYT+82sg630ypBUcENpG9MlPJlmWRf8t/VHBt0LxCSmuXlX4rkikEjBnGPBd+Oi6viuSnt0DrKy4Im5aki/Jx+57uzFgywB5es/vIr7DkbgjBnEPufLiCoghg1Vdl1myd9zZodQWcTcCxBAs3S1RO6g2YpJiDCLDh9xPuQ9zN3P8eOBHpTZZYbx1MesgZaVouLIh+mzqwzWmpHDufyNGAPfvcxmn/P0NLi8ANFrZCGP2jJH/v9O6TlpnZ/wceJv9FkO3D5VbI6otqQY7bzuciD+h1Pfwo8Pgu/Ax65iixWj3vd0ghvDDrh/QZ1MfjYv8GjHyOWFUNAyIg68DxGfFJfbzvOAJC3cLzfy//4GswmvlgMqlSncnkUow7eA0EENYfGYxUrNT4eTvhO4buiv6QsfHc1V/RSLuxaPP07iXLzl3E3t7IFrPNSP+g0ikEuy6twutQ1uDGEKDFQ2wPmY98iX5wPPn3ObxyJcRVJiclQy+Cx8hN9RUn581i1OS3+uezcfKwwp+l/w07s+yLJgzDJdS2rMdCgU8oH9/4K+/kG8qhPMimxKzJBkS2Qnpvgf7Su7cpw/32/wgJfWZJ2dQya8SPHpbQGJqArx+XcwEisQkxWDGkRko71MexBBarm6JFddWGCR24kNiX8eCGMKVF1cMtkaz4GZFrqd/k1OQI69lVDuo9kf53PMl+WgW3AxfLftK6d3Csizar22PxqsaQyKVyGs0XXx2keswejRnwXj9Ghg4kDsEyvs4NV7mnpgLex97+XtHVtxWpyr1n4hTCafg5O8EO287/H70d1i4W6BpcFOVxVdvv7kNaw9r9N/SX0m5dvJ3glAsxMOUh8U/34wY+YwxKhoGpN7yemozjXyIrKjT7nu7dVrnedpzlPEsg//tKl02EJZl4XHeA8QQJu6bKE83uPTKUsWO+fmcqwQR0K8fd/qlL1JSuFSKNjbA+fP6m/c/DMuyOPf0HPpv6Q9iCE7+TvDbORPppgRERn5q8fRCyI0Q8F34qoPh37zhAloXLCjVGnWW1cHMozM16lsgKcCEvRMU01YePgxYWwP16oEViTC3Jx9LIjWv5aFPnqc9h42njeoihKq4ckVlfYzk5KdIsxZheSvCnONz1FY+Bzg3zaVXlqJpcFMQQ3DwdcCsY7Nw+83tUtyJdshccT70gdc3rudcYeVhJa8G/iDlARqvagwzNzP02dQHNh42Oh0qacuc43MgEotUJiTZdW+XPIZQVhG807pOXOOxY9xnHRYmT2DwMS2fsnoRMmUwuyAb1h7WWHh64UeTQVfyJfn44/gf4DE8dF3fFVP2T5FbJFR95m+y3sA50BmNVjZSUj5laZHH7x0PrwteMHMzM2gsjxEjhsKoaBiQDmEdMGr3KI36NlzZUOO+qpD512rt2qGCDTc3QCgWos+mPph2cBrM3MxwL/mecsdDhzjzuqMjcPascruupKcDXbpwAeiHD5fc34jG3HlzB+P2joPIRYgy8whzt09GYkbipxar1PQI76HevWLuXM61523pqgx3Xd9Vo/z1mfmZ+GbTNxCKhcoZiG7f5k6HzcyQVsYMNfyqlK4Wig6wLIse4T1QOaCydvUavvmGK9Ym/cDCuWwZWIEAITvmQSgW4us1Xyuc2hZICrD/wX4M3T4UIrEIIrEIQ7cPxf4H+4tVSgzFy/SXIIbk8WiG4G7yXXlMxKbYTbB0t0SdZXUQ+zoWCe8SwGN4CIsOM9j6AGdt4jE8eF3wUmrLl+SjVlAteVHLk/EnQQzhaNxRICsLqF4d6NaN+5xbt+YOfqQfr5hkobQQZb3KYtHpRfJrU/ZPQeWAyp91tqUHKQ/QPKQ5RGIRFp9ZjK7ru0LgIkBgZKDKOJy8wjy0X9seDr4OKtPgV/CtAJFYhOz8bHy17KtSHyQaMfKpMCoaBmTQ1kFFPq8lsOj0IpTxLMO5tegAy7IYETECtl62esmocuzxMVh5WKF5SHPUDqqN5iHNVcv28iWnFPD5wOLF+qv2nZvLmeyFwo9WZfi/xMsda/BHT4K1uxVMXE0wcd9EvQbdfkxSslMgcBFg1fVVyo1v33JKxty5pV7nh10/lFjhOSkzCc1DmsPaw1p9xrk3b4DGjQEiBLTRz+GANsiCg489PqbdwMhI7nRbVsizoACoVk1eVyHyRSSqLakGWy9bBEYGYtaxWajgW0FeYHLplaVaFSc1BKk5qSCGsPPuToOu89Wyr1AnqA6IIYzaPUohOLz3xt5oE9rGYGu/y3mHygGV0WV9F5Ub86ArQeC78HHr9S0AXGxT85Dm3GZ41iwulikujnvuEgFnzhhMVnV8v/N7tAhpIf//1ZdXP9v6ESzLYvWN1bBwt0CdZXWwKXYTqi2pBnsfe7WWM5ZlMWbPGJi6mqpMc70+Zj2IIUw9MFUeS6MqtsOIkX8DRkXDgEzYOwGtQ1tr1Pdm0s1SP0hTc1Lh6O+InuE9dcox/09ikmJQ0a+i3E90wSk1ricSCSAWc8pGp06c8qEPCgqAUaO4YlEhRt9UvbJuHUCEtIwUeF/0RiW/SiCGMHDrwCI/7X8JoVGh4LvwlVJ3AuDcpSws9JI6ec7xOaixtIba9vsp9+Ec6AxHf0fcTLpZ/GS5uVx1ciKsGFgJ7Ec6MX6c+hiW7pYqg4M1ondvLt21VAps3MhtRGO5wOrUnFT4XvKFrZctiCGYuZnhp0M/fZSgZ03JKcgBMYSNsRsNtsa95Huw97EHMYTVN1YrnWbLAnxL/I7oAMuy+C7iO9h62eJ52nOl9rTcNJTzLoeJ+yYCKAoI33l3J1ftm88HvLy4eIzq1bmYok+ArLCizNrKsiwarmxYlHr3M+Ft9lsM2TYExBAm75+M0BuhMHMzQ8vVLVX+/WV4XvAEMYRNsZtUtpf3KQ8TVxPkFeZh6oGpqBJQ5bO25hgxUhx8MmIwylmUo3e57zTq27hCY6pZtibtvr9b5/XszO0obGAYnUg4QSuurdB5HhlNKzalyImRZG1qTSYCE/K46EGRLyKVOwoERAsXEp05QxQfT9SkCdGhQ6Ven0Qiog0biKZPJ5o6lcjbu/RzGuF4/57I0pLKWJenOe3n0JMZTyhsYBjFpcZRh3UdqH1Ye9r7YC+xYD+1pCUScS+COlXrRBWsKig2pKURBQURTZtG5OBQ6nUcrR0pMTORACi1XXx+kdqtbUcWIguKnBhJTSo2KX4yMzOikBAiIpq+P4neDO1NlJdXahmLQ8pKafy+8eRg6UC+vXx1m2TxYqK7d4kiIoi8vAh9+tBRi0QasXMEVfKvRPNOzqMOVTrQ5OaTiQVLl15cIguRhX5vpBSYCc2IiCi3MNcg84fHhlOX4HFUPdeN2koO0NXrDejO8yyFPv3r9KdKVpUoJCpE7+tvvLWRdtzdQcH9gqlKmSpK7Z4XPSlXkkvirmL5/+uWr0tDavUnmjSJqFEjopkziVatInr27JM9c7+p9Q3xiEdHHh8hIiIej0cTmk6gvQ/20tuct59Epn9yKuEUNQ5uTOeenaMd3+4gc6E5TT44mUY2HEkXxl9Q+fcnItpzfw/9eepPWtBxAf3Q+Ael9tVRq+ltzlv6scWPxIKlbXe20ZgmY0jAFxj6lowYMQyfWtP5kvG64IWyXmU17v/H8T9g72Nf6pOLnw/9rD6uQgdSc1LRbk078BgeKvpVVJkjXk5KCncKRgT8/jsXOF5aWBZYuJCbc948/RcN/C+ycCFQubLSZSkrxYGHB9AxrCOIIXy17CuERoXKA1s/N95mv4XARaA6jbSLC+cGkpSk3KYDO+7sADGklN1t592dMHU1Red1nbXL/CaRgK1RA1E1LJAn4gPt2hm0aKX/ZX/wGJ5ysT1t6dULL+pUAogw+Kdy8oxmfpf8FKxKMUkxqLOsDqw8rNSe3H4KzN3MERgZqNc5s/KzMG7vONgsbowuCyLRbeFVdFlwFV0WRKL7oqu49VQx0HfBqQWw9rAu/lmqJQnvEmDtYY3Ru0erbH+W9gymrqby2Idbr2+BGML6mPVcoUU+n0tb/v49YGcHTJ6sN9l0oe2athi6faj8/8lZyRCJRZ8sgYKMDwO+u2/ojpjEGHRa1wlCsbDEuijRidGwcLfAtzu+Vet1YOdtB1NXUxRICrDl1haD1n0xYuRjYLRoGBA7cztKy0sjKSvVqP+wesMoJSeFLj6/WKp1vXt6U7Uy1Wj0ntFUKC0s1VxE3H2cHHOSetbsSa+zXlPfzX3Vdy5fnmj/fqLAQKLly4nateOsHKWBxyMSi4kCAoi8vDgLh1Szv6kRNbx/T1S2rNJlPo9P/ev0p/Pjz9PlCZepvn19mnJgClVfWp08L3jS+9z3n0BY9ex7uI9YsDS03lDFhowMoiVLiKZMIapYUS9rOdk4ERHRq8xX8mtLryyl4RHDaUi9IXRs1DEqa678N1WLQEC8X3+lps/zadi3LBXGPSRq04azGOiZ+yn36a9Tf9GMNjOos3NnneZIz0un1VGrqd03r+h5ThJdqconxz4j6Prk63R72m2a1W6WglWpacWmFDUliobUHUKj9oyiCfsmUHZBtr5uSWfMReaUK9GfReNu8l1qvaY17bi7g/qV8ycQiJUbvfgEEG06m6gwZlLzSZRVkEXb7mzTiwwSVkKj9oyi8hblaXnf5Sr7zD89n2zNbOmP9n8QEZHXJS+qWqYq/c+iNWep+u03opYtiTw9ifLziVxc9CKbrvSr3Y9OxJ+gAmkBERHZW9rTwK8GUlhMmEqr4sfgwdsH9PWarynwSiB59/Amt25u1H9rf3qU+ojOjD1D01pNIx6Pp3JsYmYiDdg6gOrb16cNgzcQn6e8/Vp2bRm9y31Hv7T5hUQCEa27uY46VO1AtexqGfrWjBgxGEZFw4CUsyhHIND7PM02Z62cWpGTtRPtur+rVOtaiCxo09BNFPsmllzPu5ZqLhnmInM6/L/D1NW5K114foFG7Byh/mHP4xHNmEEUGcm5rzRrRrRNDy/U338nWruWaPVqolGjiAoKSj/nf5X374lsbYvt0rZKW9o9Yjc9+PkBDawzkFzOuVDVwKo069gsepH+4iMJWjwR9yKoY7WOVNHqH8rE8uVEOTlEc+bobS1Ha0ci4jYMLFiadWwW/XbsN5rdbjZtHrqZTIWm2k86fjzxzC2oV7IV/eXRncjGhqhtW6KjR/Umt4SV0Ni9Y8nZ1pk8untoNZYFSycTTtIPu3+giv4VadqhadT+nRW1e0nUnO9EK/oso5aOLdVurqxMrCh8SDitH7Sett/dTq1CW9Gd5Dv6uC2dMRea68V1CgCti1lHrUJbEY94NKPNDHqanEc8UnRxYUGU8CZH4Vo122rUp3YfvblPeV7wpCsvr9DGIRvJxtRGqT06KZo23dpE4q5isjKxovh38bTtzjaa0+4PEk3/hVPGxWLOXWrpUqLZs4kqVdKLbLrSr04/yizIpAvPLsivTWw2kW4n36YbiTc+qiwAaHXUamoe0pxyCnPoyqQrZGduR53Xd6YqZapQ1JQo6lC1g9rxOYU5NGjbICIi2vf9PpXuhABo4emFZC40J6/uXvQi/QWdTDhJ45uON9h9GTHyMTAqGgaknHk5IiJKzUnVqD+fx6chdYfQ7vu7S+0b39KxJS3qtIjcL7jTlZdXSjWXDAFfQCdHn6S65evSjrs7aOSukcVbTFq0IIqOJhowgGjkSM4HOLuUJ5oTJhDt2EG0axfR4MHcZtKI9qixaKiiTrk6FDIghJ7+9pR+bf0rhd0MoxpBNWjMnjF0+81tAwuqnne57+hkwkkaXn+4YkNWFmf9mjSJyMlJb+tVsuI2Xk/TntLIXSNpyZUlFPRNEPn09FF5OqkRNjbEmzCBJt1gKfT5Hnp9ZCdR585E/fpxypIe8LnkQ1FJUbRh8AYyF5lrNCb+XTwtPL2QnAOdqefGnhSVGEVMZ4ae//acfKPLEdWoQSZPXxDt2aPRfGObjqUbk2+QkC+kVqGtKDQq9JOdSluILEpt0cgqyKKxe8fShP0TqF/tfpRTmEOeFz0pi+IJ9E9rK0s1KihvLKe2mEo3Em9QdFJ0qWS58vIKuZxzofkd51P7qu2V2gHQrOOzqF75ejSh2QQi4r4T5S3K04Q7JkSnThEFBxNZWhItWMAdQMyeXSqZ9EGTCk3IydqJDsUVxfv1qtmLnKydKCwm7KPJ8TbnLQ3dMZSmHpxKY5qMociJkRQaFUqTDkyi8U3H09mxZ+WHEKpgwdK4vePoXso92j9yv9q+/pf9KT0/nWa2nUkCvoA23tpI5iJz5eebESP/Nj6h29YXz+03t0EM4dLzSxqPOfPkDIghXH15tdTrF0oL0Sa0DWoF1dKrL3BSZhKsPKzAY3joGd6z5Cq3LAusXcvVxahXj6slUFqOH+eyCXXsCKQZixhpTdu2wNixOg3NyMvAksglqBJQBcQQ+mzqg9MJp4v1TTYEYdFh4DE85TogPj5c5fpnz/S+Zjnvcqi2pBrM3Mx0LrCpxOPHYHk8/DzEFH+e/JPL4vb771xM0k8/AYW619m4mXQTIrGIm7cEMvIyEBYdJo/PsfG0wZT9UxD5IrLos42N5eTauBHo0QNo1EirGgs5BTn48cCPIIYwImIE0vPSdb01nWm8qjF+OvSTzuNvvb6FusvrwtLdEr3De4PH8EAMwdrDGjW8u6HzgkvoPP8yuiy4is4LLqPzgsu49VT5PgulhXDyd8KU/VN0liUjLwM1l9ZE69DWauuSHHh4AMQQDj48CICrJWLiagKvI/O56t+j/q7fFB3NfbbBwTrLo28m75+MOsvqKFybf2o+bDw/TtHDE/EnUMmvEsp5l8Oe+3uQmJGIdmvbwcTVBKFRoRrNsfD0QhBD2HVvl9o+UqkU1h7WsHC3gEQqAcuyqBVUS228jREj/yaMioYBScxIBDGE/Q/2azymUFqI8j7lMef4HL3I8OjtI1i4W2Dqgal6mU+GrLKsmZsZmgU3Q1KmBgG39+5xGxMzMy5dbWk3ppcvA7a2QLNmQHJy6eb6r1GvHvDbb6WaokBSgI2xG9FoZSMQQ2i5uiV23Nnx0dIw9t3cV7muRXY2YG9vkEDWJ++fwNTVFKauplodHmjEoEFIqloOtp5lig4FgoMBgYBLKauDMp0vyUeTVU3QaGUj5BXmqewjZaU48+QMxu4ZC0t3S/AYHnqE98DmW5uRU5CjPGDkSK52RkEBcOECtzHdpX4DpY4dd3bAxtMGNZbWwPVX17UeXxrahLbBhL0TtB4nq5dg5mbG1Qvx5NL4ytJCr4laA2IIZRY2RreZgej41wE0XrgUNosbIToxWuWci88shpWHVcmHNWqYsHcCLN0t1QYLF0oLUW95PXTb0E2uLP5+9HfYetki/X/DgHLluGcnywLduwN165ZKsdU3e+7vUQqGjn8XD2II4TfDDbZuXmEeZh+bDWII3Td0x6uMV7j0/BIq+VWCo7+jvGp5ScgK6bqfdy+2n9s5NxBDEJ8VAwAuPrsIYginE06X+l6MGPnUGBUNA5IvyQcxhHUx67QaN2nfJNQKqqW3E+Lg68EKJ1r6YtzecbB0t4SDrwOcA53xIOVByYNycoAff+Q2KMOHcxlOSkNsLFChAvDVVwY5wf5iqViRy8qkB1iWxdG4o+i2oRuIIdRYWgMrrq0w6Inj+9z3EIlFWHplqWJDQAC3OU9I0Ot60YnRqOhXEeZu5ui+obte5wbAFUUjQu8xfMV7OnGCU6br1wfi47WacsGpBRCKhSo3uU/ePwFzhkH1wOoghlBzaU24nnPFs7RifkPx8VxmouXLi651784VH9ShDkj8u3i0XN1SnknoY1nEuqzvgpE7R2o1JiMvAyN3jgQxBEd/R7mCYeJqgu13tiMzPxMOvg4ghmDlYYUJAwnNpxDMXc1g5mamtgbRi/QX4LvwEXxdeyvCzrs7QQxhbfRatX1kz/6oxCgAXHFLC3cLLFz9PfcMDv97s374MPf/ffu0lsOQZOZnwsTVRClLWNf1XdFlfReDrHk/5T6aBTeDSCyC3yU/SKQSBF8PhkgsQoewDpodqoGrUWLqaorRu0cX+92WSqWwdLeElYcVpH//jibumwjnQGe91MMyYuRTY1Q0DIyVhxX8L/trNebwo8MghhD7OlYvMrAsi76b+6KCbwUkZ+nv5D89Lx3VllRD69DWqLe8Huy87TQv9rZjB1CmDODsDFwtpZtYXBx3ylqlCvDwYenm+q9gagoEBel92huvbmBExAjwXfgo71MeLmdd8Db7rd7XkVXOfZn+QXHInBxOgRo3Tq9rHY07CisPK7QIaYH/7fwfWq1updf5AXAnyk2aILqFI5wDnVEo/eBU+f59oGZNoHx54KJmv69rL69B4CKQn5ACXArW8Jvh6Lq+a9GGeO8EnH96XrNN/rRpnLUo+wMF8vx5boO6Wzc3snxJPmYenSm3Chjiu/JP+m7ui8HbBmvc/2bSTdRaWgsmribgMTy5q1SDFQ3kbnvzT82HwEUAHsPDyJ0jMb8HD1V/I0xb1R9mbmaot7ye2vkHbBmAZsHNtFK0Xqa/RFmvshi6fajacRl5GajgW0HB/Wbh6YWwcLNASi1HoFcv7nsnkQANG3LFVj/D1OE9w3ui18ZeCtdkBf0epz7W2zosyyL4ejDM3cxRd3ldRCdGI7cwFxP3TQQxhJ8P/Yx8iWbp2p+lPUMF3wpot7adWmuiDJlrlfcFbwDc79TawxqLzywu7S0ZMfJZYFQ0DEy1JdXw18m/tBqTL8mHjaeNXh80SZlJKOddDoO3DdbryeG5p+fAY3hgzjDotK6Tdr7rCQlAmzaAUAj4+up0Kirn5UvOHcjenvM1NqKenJwiP3sDEf8uHj8d+gnmbuawcLfAz4d+RsI7/VkZ+m/pj/Zr2yteXLaMO3F/9Ehv64RFh0HgIkDfzX2RmZ+JRacXwdHfUW/zK/B3tfbaPxO23d6m2Pb2LbcRNDEp8XPLLcxFveX10CKkBfIL83Hx2UVM3DcR1h7WIIbQZX0XbLi5Qbu4rdevOeXUzU25rVs3oGnTUm1SDzw8ADtvO1QOqIwLzy7oPI8mDNs+TGnjqgqWZbHy2kqIxCKIxCK5FYPH8DD3xFy5i+DT909h6moKczdzEEPYfmc7lrUTwmQB4a7fXPm4+yn3Va5z8OFBEEO49vKaRvJLWSm6b+gOR3/HYhWzhacXwtTVVG6lSs9Lh62XLX6f15SLb5NZ/dau5Z4HpT3wMRCBkYEwcTVR+L7mFOSgjGcZrd+t6kjJTsGgrYNADGHqganILsjGi/QXaB3aGqauplytEQ3JyMtA41WN4RzojDdZxdfFkUglMHczh42njfy9LFOi4t9pZ8E0YuRzxahoGJhmwc10io/4YdcPaLSykV5lkcVVaOvKVRJ/HP8DIrEIV19exXcR34HH8LD86vKSBwKcr/ecOdyL7ptvSlewLCUFaNkSsLHh/MeNqObVK+7vfeCAwZdKyU4Bc4ZBOe9y4Lvw8f3O7+VuHLqSlpsGE1cTxcJdeXmAk1NRYGspYVkWLmddQAxh8v7JcgtD8PVg8F34holDyc0F7O2xp3tltAhpoXwgkJ8PjB/PfXbz56tVzGcfmw0TsQl+PfwragfVBjGEakuqYfGZxbore3/+CVhZAe9UFCQ8d46Tac8e3eb+mxfpL9AxrCMELgK4n3c3mNvIqN2jlGN7/kF6Xjr6bOojVxJELpyiYedthwtPFZ8tIyJGwNaLi9cQioV4n/seEc1MueKO08aj+4bu4Lvw4XZOhZIGbrNZdUlVTNw3USP5/S/7gxjCifgTavu8TH8JczdzzDsxT37N+6I3RC5CvLQhwM+Pu5iVBTg6AiNGaLT2pyAuNQ7EEPbe36twfdrBaXD0dyz1b/H44+PygG/ZGueenoODrwOqBFTRKoZIIpVgwJYBsPawxu03JSc9mXN8DoghBdewbhu6ofO6zlrfhxEjnytGRcPA9AjvgW93fKv1OJlS8Oit/k5nAS6uwtrDWq+ny3mFeWi0shEarWyEnIIc/H70dxBDmHtiruabhSNHOGtEpUrAqVO6C5OeDnTpwmW4OnxY93m+ZO7c4TaGGrrh6IPsgmwsv7pcHhPQfUN3HHt8TCfrWvjNcBBDeJH+ouhicDDA43FuRqWkQFIgd5dwPeeqIKMsg49Spit9sWgRCs1NYTuXVFfwZlmuijOPx8U4feDGlFOQg8VnFstP3c3dzDF692icTjhduk17WhqnvM+erb5P166ltmoAXPDyglML5EHpmvrDa8OU/VPQcnVLte0Xnl2QKw5mrmZyZaPXxl5IzUlV6CsL2q27rC7KepWVxw1cqGcJYgj3+rTEoUeHQAzhq2VfqV1TfFYMC3cLpOUWH/R/M+kmTFxNMPPozGL7Tdg7AeV9ysvnyynIQQXfCpg8tizQokVRwLebG5ehTcv4n49NnWV1MHm/YoKH66+ugxjCoUeHdJozrzBP7rbXM7wnXmW8AsuyCLoSBKFYiC7ru2jtajz72GzwXfgayVQoKYSpqynKepWVP2Oevn9aVK3diJEvBKOiYWBGRIxA1/VdtR6XXZANczdzeF3w0qs8sriKjmEd9XoqG/s6FiauJvjj+B8AgN0JuegAACAASURBVIDLASCG8MOuHzT2a0ViIueGweMBCxfqnv0kJwcYMIBzydq2reT+/zVk2YLu3v3oSxdKC7Ht9ja0CGkBYghNVjXB5lub1abmVMWALQPQdk3bogv5+UDVqno5lc3Mz0SfTX0gFAtVvuyjEqNADBkuU1JSEliRCL5DKqLf5n7q++3eDVhYgG3VElduHsTUA1NRxrOMPM3q6hur9Zc61suLc9l69Up9n7Nnue/U3r3q+2jByfiTqOBbAQ6+Djj++Lhe5pQx48gMNFjRQOm6VCrF+L3j5YqatYc1eAwPAhcBll1dpqQUS1kpWq5uifor6nNWD7EIvpd8AQBxNThF5XRTW0hZKSr5VQIxhCfvn6iU6VXGKwhcBFhxbYVauXMKclB/RX00XtW4WL//2Nex4DE8LLu6TH5txbUV4DM8xJXnAzEx3MU3bwBray6V8mfO70d/h5O/k8JnwLIsGq9qjKHbh2o9373ke2ga3BQisQj+l/0hZaXIKcjBmD1jQAxh5tGZinFSGiDLOqZgaS2GGUdmgBjCqmur5NdczrrA0t1Sr+nojRj51BgVDQMz/eB0NF7VWKexQ7cPNUjgqSyuwvuit17n9b3kCx7Dk5/Ebr+zHSauJui+obvmmx6JhDtl4/O5GhnPn+smTEEB50bD4wGrV+s2x5fKgQPcpjDRQKfyGsCyLE4lnELvjb1BDKHqkqoIjAws8QWbnpcOE1cTBFwOKLq4Zg13P6Wsz5KUmYTmIc1h7WGtdnOblJkEYgj7HhgwO8+YMcisWA6ChYS7yaqVwcSMRHhv/xX1ZghBDKGyVwW0CGkBU1dT/VpBc3O5rG6apAvu0oVLNa2nGLDXma/RM7wneAwPf538S+uNnzrmnZiH6oHVFa5deXEF9j72XHravxU2vgsf1QOrIyYpRuU8G25uADGE4duHw8bTRiEOI8OpPIghbGlIQGoqfC/5ghjCojOL1Mo1eNtgNF7VWK2V75fDv8DU1RR33twp9v56b+yN2kG15cp7gaQA1XydMHI4n3NTlTF9OpeQ463hA/BLy8n4kyCGlD6LpVeWQigWamx5YFkWq66vkgd8y+Z7+v4pmoc0h7mbOTbf2qy1fGefnIVQLMSU/VM0stLmS/Jh4mqC8j7l5dekrBTVA6tj/N7xWq9vxMjnjFHRMDALTy+Ek7+TTmNlObiLTTmpI3OOz4FILMLNpJt6m1MilaDTuk6ouqSq3GR/9slZlPEsg8arGuNVRjEnov/kwgWgcmXAzk73lItSKVfwjIhzNzHCER7O/U1ycz+1JAA4d5BRu0dB4CJAWa+ymH9qPl5nvlbZd1PsJsXfRGEhUKMGMFT7U80PeZDyAM6BzqjkV0ntxhLgNgMCFwFWXltZqvWKJSoKIMKksWUV/PbzCvMQcTcCfTf3Bd+FDzM3M4zcOAjHetdCnqUpBnxPCqfYekHmkqZJgP3fKXr1mSJVykrhecETAhcB2q9tj+dpOh48fIDLWRdU9KsIgAvc/WHXD3Irhr2PvTyr1Jg9Y9Qqvpn5mXD0d8TQbUNh62WLpquaosbSGvJNJutYCRaLhQj4mnNRzMjLgFAsROWAymrlOhJ3BMQQIl9EKrXJMhEGXSk+U9yxx8dADCkk5NgQvY7LYtiicpGr3YMHXBpoH59i5/tcyJfkw9rDWinO5W32W5i4mmiU2TE5KxkDtw4EMYRpB6fJ02+fSjiFct7l4BzoXOxvXx2PUx/DztsOXdd31dgyO/3gdBBDCIsOk1879/QciCGce3pOaxmMGPmcMSoaBiYwMhBmbmY6jU3LTVNdK0AP5BXmofGqxmi4siFyC/W34Xzy/gmsPawxds9Y+bU7b+6gckBlVF1SVe0JrUpSU4FBg7jNy4wZXMCvtrAssGABN8e8eZ9l+saPztKlXNHEz4yn75/ityO/wdLdEqaupph6YKrS6fygrYPQJrRN0YUNG7jPNkb7DYKMi88uws7bDvVX1NdIqa8cUFltXQS90akTnjd2hkgswtHHR/HzoZ9h520HYghtQtsg+How3udyNWjS3r7C4cbmkPIIUl9f/X3HZUrc8OGaj+ncGWjeXO+/s4vPLqJKQBXYeduV2prke8kXZTzLYHPsZrklwsbDBgJGABNXE5i7mWNjbPGZvRacWgBTV1P4XPQBMYRKfpXw6+FfizpUqYIai20xtycBoVwF6Z7hPYvNJiRlpXAOdMa4vYrpmd9kvUEF3wr4ZtM3xZ6WS6QSNF7VGB3COsj7SVkp6rpVxICRBJw8WdR5yBDO3fAzOWzQhKHbhyq6TP7NdxHfof6K+sX+bY4/Po6KfhVRzruc/PvDsiz8L/uD78JHz/CeOqVWfp/7HnWX10XtoNpK8TvqyCnIgUgsgoOvg8L1cXvHKSirRox8KRgVDQMjS1WnssquBvTZ1Aed1nXSs1QcsriKWcdm6XVeWY2DXfeKKga/SH+BRisbwdbLFuefntd8Mpbl6j2YmHAbGF1Tl/r7cxvSH3/k3LP+yzAMF3T/mfIu5x3cz7vDwdcBPIaHoduH4sqLK8jIy4Cpqyn8Lv2dMUciAWrXBgYO1HmtnXd3wtTVFJ3WdcK7HBUZlVTQJrSNwd0b3m9ZBxCh1RTudL2iX0XMOT4H95LvKfWdsHcCbNys8P63adx3fNIkLm6ltGzbxs1344bmY06f5sbs31/69f9Bak6qPAXpjCMzSqxPoI75p+bLA7yJIZT34dycBC4CNF3VFA/fFl+L5+n7pzBzM8NfJ/9Cq9Wt0H5texBDOPb4WFGn6tXRblFljB1tDczinq+y+J4fdv2gdm738+4wdzOXK5Esy2LAlgEo71O+xMD4sOgwEEMKVat3XgzlrCRT+xZ1lMVoGTC9tSFYG70WPIaHlOwUhetH444q3beMfwZ8y5I4ZOVn4fud38uTlugSr1goLUSvjb1g62Vb4nfmQybu5RJNfOiilZmfCUt3S4W6N0aMfCkYFQ0DIzN5K2TI0YI1UWvAY3hqXUlKiyyu4syTM3qbk2VZDN0+FOW8yym8HNNy09B1fVeYupoi4m6EdpNGRXGbSisrYNMm3QRbu5aL/fj+ey6G47/KjBlczZHPnNzCXKy+sVqeorXu8roghooypm3ezG2YrusWmL30ylLwGB5GRIzQatM6ZNsQ9N7YW6c1i6NAUoA99/dg0NZBMGEEeGJL2NvSGlbuVvKN5z+R1WAIjeJOzbFuHZdFqGtXziKoK38XEETPntqP69SJy2xkgJNZWVYgE1cTtAhpoVXBtvS8dPmmU1bVWygWwtLdUivl5fud36OiX0Wce8K5uozaNQqW7paKY2vVwtAFddD7d3ugb9Emv7xPeVi6W6o9tU7KTIJQLJS7SMkqe5dkxckuyIajvyNGRBQlRGBZFs3n2qLbJFFRHAbLAl9/zR3alKZu0ScgMSMRxJCStUkilaBKQBWlrFR3k++iyaom8pguWea1+HfxaLyqMSzdLbH9znad5fnp0E8QuAhwMv5kyZ3/Jis/C0KxUKkWz7qYdeAxPDx9/1RneYwY+VwxKhoG5sqLKyCGdI6FSM5KBt+Fj5AbIXqWjEMilaDzus4KcRX6ICU7BRV8K6Dv5r4KL9W8wjyM3DkSPIankDtcIzIyuABvIq76c1aW9oLt3MltxPr2Vaxw/F9izBigXbtPLYXGSKQS7L63G2W9yoIYQv0V9bEuei3yG9QF+vTRej4pK8WsY7NADGH2sdlap3796dBPeq1xE/s6Fr8d+U0ejNwipAWWXV2GLE8xWJEIlWfxVfrmp+akoqJfRfTZ1Edx43ruHBfbVKeO7hbAI0e439np09qPPXXK4HVaohKjUCuoFqw9rLH19tZi+7Isi42xG1HBtwJEYpE8BkNWHV0bd6xLzy/Jfesn7ZuEygGV0XZNW+VK43XrYvpfTdBkoT1QvSjw/NfDv6qsCfEhw7YPQ4MVDXAv+R7M3cw1qsPkes4VIrFIwS3raDiX6vjkmvlFHSMiuM+mNCnEPyHNQ5rj/+yddVwV+ff/n5cGRUrFLoS1sRvXRsVYO9bOdV1dddeuayMWdifGqpiI3YGiomCgYmGgKEp33PP7YxRlQQXks+t+fzwfj/tAZ+Ydc2fuzPv1Pue8TxfXLqm2Tz41WYxnGUtkXGRyosUPGdk/jbs4+vComDmaidUiq3TlufgcSz2XCmpk5dWVGSrXY08PQY243nFNsf3HDT9Ko02NPlvupn+4jN54TzrMuS6jN96Tm/7hmep3Ntn8G2QLjf8xH5INnXyc+Qd7g40N/iczqB/wD/EX41nG0nNvzyyt98Ns698fxkmaJBl1bJSgRv44+kfG1/jfuFHJbFuqlIiPT8Y7dvSoUt7OTskR8P8brVqJOHxh6dTvkIi4CNGfri+DDw6WVttaCWqk4Ehk7rbfMrSMa0xCTHJSyczGPs06N0vM55hnquwH3ka9lcWXF0ullZUENZLHKY+MPDJSbgbe/HhQaKhIzpyyp31ZKe5cPNWqS912dxNTR9O0F1l48EDkhx9EzMyUIO2M8uOPItWrZ84qodEov62qVf+nMVFhsWHS1bVrclLFD8G9n+IT6CN26+2S4yg+uEh9WFXKbr1duq3NSZokqba6mlRaWUmCo4PFaKaRjD0+VrSmaslar7UpDy5XTqaNqSmW03IpwfTRiutsQFiAoEYqraz02XaOPTwmqBGbJTZis8RGIuO+PKESGBEoOWflTJlbIyxM6g3Sk+p/mojmg+UiLk7EyipT4vx7YdKpSWLmaJbqt/A4+HFysPyH58OnAd8ajUZmn58tKrVKmm9pnm43ybQ4+vCoaE/Vlt8P/56hcmExYaI9VTvVggCPgh+laan5wE3/cGk02VMaTvKU+hOVv40me2aLjWz+M2iRzf8UC0MLAN5Fv8t0He1Kt+Pkk5OExIRkVbdSUNS0KEtbLGWzz2ZcfV2zrF4HGwcGVRnEyGMjefDuQfJ2LZUWTk2cWNRsEQsuLeDnPT8TlxiX/op79QIvL9DTg+rVYcUKEEl/+aZN4fhxuHULGjSAoKAMnNX/AUJDwczs3+5FhnD3cycuKY5RtUdxoPM+7hyzpmlMAcY/XEXhhYUZc3wMLyNefrGOkJgQ7LfYc+D+AVw7uTKsxrBM9aWAcQGCY4KJTYzNULlETSLufu502NmB/PPzM/LYSIqaFmVf530EjAxgvv18yluW/1jAxAT69KHl6QBeBj1hz909ybt2++5m261tLG2+lALGBVI3VrIkXLoElStDkyawbl36O3rpEpw9C2PHgkqVoXMElDJTpsC1a3DoUMbLp5Nc+rnY2m4ra1utZcvNLVRfUx3fIF8AQmND+f3w71ReVZmnYU+xMLTgbfTb5HIAQ6sP5VSvUxTKVShd7W29uZWrL6/i3MyZrbe2EpcYR8FcBdGIhhbWLVIerK1NvkQDgjSRJCFw/z4ABXIVwMrMihuBN3gc8jjNdhqVaISpgSkP3j1gW7tt5NDL8cV+qc+o0dHSYUK9CcnbLkzuzbn88YxvPQ+V1vvX/KpV8OQJt0bNZsym+3R0usGYTfe59TQiXef/PeBg7UBIbAiXX1xOsb24WXEqWlbkj2N/cOnFJQ50OcByh+UY6RoRGR9JJ9dOjDs5jgl2E3Dr6oaZYeaef3eD7tJxV0eaWjVlftP5GSo78OBAkiSJZS2WERITwuOQx3i99GLKmSkY6hgSEhOC4wVHxhwfw0C3gXTc1ZHGmxsz2GUXSUlJaN6/4jSivO62nPny8y6bbL4XVCIZGaFlk1E0okF3ui7LWizjl6q/ZKqOgPAACi0sxOafNtPDtkcW91BBROi4qyOn/U9ze/Bt8hvnz5J6I+MjqbSqEhaGFlzoewEdLZ0U+3f77ubnPT9Tq3At9nbei6mBaforj42FP/+EZcugfXtYuxZMM1D+5k1FdJiaKsKjcOH0l/0vU768IrAWL/63e5JuOuzsgH+oP9cGXoN9+6BtWzh3jgDbEiz2XMxKr5XEJMTQo0IP/qz9J6XzlE5R/mnoU5pvbc7rqNcc6HKAOkXqZLovJx6foIlLEx4Ne0QJsxJfPd43yJeN3htxuelCYGQgFSwr0KdiH7qV70beHHm/XPjBA/jhB+b2/YFdNYzx7O9JUHQQZZeXpV7Rerh2dEX1JTGQkABDhyqDzFGjYPZs0Nb+cps//QT37oGvL2hlci5KBOzsID4ePD0zJ1gywJ03d+jk2oknIU/oWq4rbn5uRMVHUb9YfY48OoIKVfKAXU9bj7fRb7k75C6lcpdKV/1R8VHYLLWhduHa7Oywk3IrylE6d2l0tXV58O6Bcl9+StWquNXNQ2uzI7yaB/lWb4OuXQFwvODIuJPjGFJtCEtbLE3V1ln/s9TfVB8dLR1e//kac0Pzz/brbtBdyq8oj1MTJ0bWGqlsvHgRh+V1eVoqHzcnBqCl0oKwMLCy4lbHQYzI2wYRZcCqpVIuzcK+pSlf1Dhd38XfufU0gi1nXvL4dTQlLI3oXr9Apuv6GhrRkG9ePvpV6sfsxrMBiEuMY+yJsTh7OgNwvs956hapC8CDdw9ou6Mtz8KesbntZn4q9VOm234b/ZYaa2tgqGPIxb4XAQiJDSEkJoSQ2BCCY4KT/5389/32N5FvuPnmJiqU34GQetilpdLC1MAUMwMzzA3NsdA3pfGtaM5rxhNmlDvV8bmNddk1ulKmzyebbP4psi0a/2O0VFqYG5p/k0WjYK6C1CxUkz339nz94EyiUqlY2XIletp69D3Ql6zSnzn1cuLS1oWrL6/ieMEx1f72ZdpzoucJfAJ9sNtgx4vwF+mv3MAAli6F3bvh5EmoWBEuX/56uQ9UqAAXLiiCpW5d8PNLf9n/MiEh/ymLRlR8FIceHKJjmY7KAHbaNKhfH+zsKJirIHOazOHZ8GfMbDiTI4+OUGZ5GVpvb82FZxcQEbwDvam1rhYxiTF49PX4JpEBJFsQvmRBCYkJYcXVFdRYW4Oyy8uy7sY6OpbpyPWB1/Ee5M3wmsO/LjIArK2hZUsGXYjlasBVzj09xy8HlQmLFQ4rviwyAHR1FYufszPMn68I8sjIzx/v6wv798OYMZkXGaCMXtVquHoVDh/OfD3ppGzesqxttRZjfWPWe69HX1sf23y2HHp4CI1oKGFWgvC4cOoWqcu2dtsAiEmISXf9ThedeBv9FqfGTpx/dh7fIF8GVh7IkYdHcLB2SF1AW5t88foABBa1UITbe7qU6wLA+hvriYxPeS1CY0PpsbcHNQvVRIWKzT6bv9ivMSfGUMSkCEOqDVE2xMXhPaoHh2xgXCsnRWQAODpCdDQuFTsliwz49tnxW08jGLH+LtcehfE2IoFrj8IYsf7u/8xKoqXSorl1c9wfuAOKiK++tjrLry3HqbETJvomuPsp+9z93Km2phqJmkQ8+3umEhkiQkRcBM/CnuET6MPpJ6fZc3cP666vY57HPCacnMCv7r/SxbULTVyaUGJRCfxD/QkID8DcyRzTOaYUX1Scyqsr02hzIzru6sigg4OYfWE2O313cu3lNYJjgjEzMCM8LhyAPhX7sKrlKnZ13MWJHidY6bASgCM/HyFhUgLvRr/jYV9vrsT24KD6AX/Mu0jBtw/Q0iT97XuAEpZG/5PvOJtsshqdrx+SzbdiYWjBu5jMCw2AdqXaMfnMZCLjI8mplzOLepaS3Ea5Wd96PS22tWDltZUMrjY4S+qtWagmE+wmMPXsVJqVbEbVAlVT7K9bpC4X+16k2dZm1FpXi8M/H6Zc3nLpb6BdO8VFpFs3RTDMnKnM3qZnoFSyJFy8qLiX2NnB0aOKYPm/zH9MaLg/cCcmMYaOZTuCuzvcuAGnTqU4xsTAhFF1RvF7zd/Zdmsbcz3mYrfBjtK5S/Mk9AllcpfB/Wd38uXM9839+ZzQSNIkceLxCTZ4b2DfvX0kahJpVrIZrh1daWnTEn0d/cw1OHw4uRo1ok9IUUYcHcGNwBvs7rQ7fUIFlEH/778r93qXLsp97uYGhdJwGZozR9n+88+Z6+unNGoEtWvD1KnQvPn/zKoREhPCpNOTWHFtBaVyl6KZVTM239zMi4gXGOgYUMC4AP6h/ixouoDhNYdz9+1dAGIS0yc0noU9w8nDiZE1R1LcrDgTTk3A2twaPR09QmNDaWnTMnUhHR0sE/QACPyhANy9m7yrmGkxyuUtx503d9jkvYkh1RWRICIMdh9MeFw4FzpcYNTxUazyWsXvNX5PU1Ce8T+Dm58bf7X/6+O95ejI7EL+FDcqSMfynbn/9j53bxzDYcFcttsX5GJAAHqScnZcI/D4dXS6vosUxMez5fAjRCNo3s/Ua0SZvdxy5iVzev2Q8TrTgYO1A5t9NjPj3Axmnp9JMdNiuHV1I1/OfHg892CV1yp8g3w54HcAGwsb7IrYMf3c9FTWh9DYUBI1iWm2YaJvgpmhGWYGZpgamPI45DFRCVF0KduF8pblMTMwS95vbmie/G8TA5OP4u49QVFB5Jufj5JmJVnXJqUL4yafTVibW9PUqimqgABYuhRZtQqJCGd/eT28m+kz6MxGRvaoAWgArWQrVI8GabhMZpPNd0i20PgHsDCyIDgm+JvqaFe6HaNPjObIwyN0KNMhi3qWmubWzRlcdTB/HPuDRiUaYWNhkyX1Tqo3iUMPDtFjbw+8BnphpJtyNqZ0ntJc6neJFltbUHd9XfZ23kuD4g3S30CxYopf+ZQpMG6cMhDdvBksLb9etmBBOHcOmjWDH39UBrN162bsBP8rxMdDdHTGXMz+ZVx9XamcvzIlTIvD9K5Qp45i0UgDPW09elfsTU/bnvxx9I9kd4rw+HDc7rvRw7YHBjoG39QfE30TjHSNCAgPAMDvnR8bvTey2WczAREBlM5dmukNptO9QvfPuiBmyN2kQQMoV44J14WS5jdwsHagXel2Ge+4g4Miqlu1UmKbDhyAqp+I/qdPYds2mDtXiX/6Vj5YNZo2VQR8s2bfXucnaETDRu+NjD0xltjEWOY0nkNYbBgzz88EwEDbgNjEWMLjwrnY9yLVClYDwFDHEIDohPQNrseeGIuJvgnj7cbzJuoNrr6uODZ25PCDw1jmsKRKgSqpC2lrYxmnC0Bg0dxw/G6K3V3KdmFK0BScPZ0ZXG0wWiottt7ayl+3/2Jbu20UMSnCoCqDaLS5Eeefnade0Xqpzv3PY39So2ANOpXtRJImCX+PQ8Qvn8auwYKVviEWThZExkeyYS+E6WlxrH1FjPxfkxRvhmh9dJ9Lc3Y8IgICAuDFi49/nz5VLDNPnypxbTExPB7mhiZX3r/1LePCJSYhRnE9+tTtKC2XpNgQXoYrAn/S6UloocW9t/ew32Kfor4DfgfQ19YnNjGWqy+vJguBgnkLphAJZobvhcIn20wMTFK4+M7zmMeo46PY9NMmetr2zNB5AfTd3xeNaFjTek2K7eFx4bj6urLEsg+qHj1gxw40Robsr2fJMOtQftWuyFTna6g6lGJhv9JM2HOa0HBDqpcoRo8GBShX5H/jnpZNNllNttD4BzA3NP9mi4aVuRW2lrbsvrv7fyo0AOY2mcuJxyfovqc7F/teRFdb95vr1NXWxaWtC5VXV2bsibEsbp46PqCAcQHO9TlH+53taba1GZt+2pTsZpC+RnRh1ixlYNa9u2KZcHGBxo2/XjZ3bkWctG6tDIz27MnygdF3Qcj7BQX+IxaN6IRo3B+4M9FuIhw7BleuKIPWL8yOiwizzs/C2dOZ/pX606tiLxZeXsigg4OYdHoSw2oMY3DVwZkOCFWpVOTLmY8jD4/getcVj+cemBqY0rVcV3pX7E21AtW+6NL0wd3kgwtLcGQYXo/DPu8nr1Ihv/9O8YEDsKmswszgG65dhQrKd9imDdSrp4jxDu+fJwsWQK5c0L9/5uv/O40bQ61aiuCwt88yq8b1V9cZcmgIl19c5ufyPzOmzhj6HejH1ZdX0dXSpXrB6lx8fhEbcxv8gv2YfWE261qvw8zQDENdRWikx3XK47kH229vZ13rdRjrG7Ps6jK0tbTpXbE3dhvsaG7dPNUMNgA6OugnCmYGZrw2zAl+FyExEXSUV277Mu2ZeHoiD4MfcvThUUrnKc2QQ0PoXqE7XcsrsRwNijXA2tyaVV6rUgiNJE0S8y/Nx+uVFx3KdKDexnp4B1znyOpoFv4I2lraVLCsQL+C/fgx1JSaU39FtXQJI2qVJWbaMNSdVyC8t0JIEoiKHh4bYOt1RVC8eKEIjU/R1oakT9x3cueGsmUpoYogWGOB5hPholKBmUkcB/0OEhITklpApBHPEJeU9mIgOXRzpBAFCUkJ3H93Hy20yG+cn3F1xyVbFMJiwxh3chxPw55SrUA1LvfPgBvtZzhw/wCjj49mbJ2xmRIZryJe4f7AnR8sfqB+sfofd2g0XF4xAfe1MTTwX44UK4bHsLZ0ynUETc5IXHOMp86wuUq8lIsL5XV0MCmxm9DQp8zpde6bzyubbP5JsoXGP4CFoQV+777d/7996fY4eTgRmxj7zbOyXyKHXg5c2rpQZ30dZp2fxZT6U7Kk3tJ5SuPU2IlhR4bRyqYVTayapDoml34u3Lu50/9Af7ru7kpAeAAja438ui/6pzRpAj4+0LOnIhrGjVPcN3S+crvnyqX4k3furAiOLVugU6cMnuV3zn9MaBx6cIjohGg6lukArXpBjRrK9f0MiZpEfnX/lTXX1zCt/jQm1puISqWibpG6+L3zY8GlBUw7O41Z52cxsMpAhtccThGTIunqi0Y0nH5ymo0+G/EP8edxyGPsrez5q/1ftCnVJt2/yS1nXqbyk/+au8nGMvG0NISlj36gZZ6dzG06N/NuYJaWcPo09O0LHTsq4rx/f1izBkaPhpxZ6Jr5waphb68IRXv7rxb5EsExwUw4OYFVXqsol7ccZ3ufJSYhhlrrahGVEIWNuQ0aNFx/dZ11lKu8ZgAAIABJREFUrdfRp2If9t/fT9/9fam4qiJ/tf+LsnnLAl93ndKIhhFHR1ApXyV62fZCIxpWea2ic9nOhMWG4Rvky7T609IurKMDSUnky5mPQF1dxZL45IkScwOUyl2K0rlL8ybqDYs8FxEZH4mZgRlLm38MDlepVPSv3J+JpyZSq2At/IL9uP7qOjde3SA6UbEY3Hh1gyoFqjApNDeFw/exv6w2jiUH84dWPbj6AhY5Qs6cJG1xofTwyxgmwEKXwWyp25fHea0o/uYRLa+to2R8MOgZIrExSFJicvBmopEhwdaFCLTOx9NipjwslIO7+bQJ1IRj+OwlQzY4ca39MkSSUKm0EZLQiLDj1S+s2X4LUCxIf3czsja3/qxF4dO/etqKZS02MZZxJ8bh7OmMvZU91QtWZ57HPPpW6ouhriH77u1jgNsACpsUZoLdBGZfmM3ryNdY5kyHRfsz+AT60G13N34q9RMzG83MVB299/VGENa3Xq9siI5WxP3ChTT188O3pAkB66bSQ3Zz+sUu+lfqzwJVM4w7/gwtWigWxvfvrXfR77Awssj0+WSTzb9FttD4B8iKGA1Q3Kcmn5nMyccncbBJIwAxC6lRqAYT601k+rnpNLduTvWC1bOk3iHVh+Dm50bv/b25NfhWmiuq6GnrsemnTRTKVYg/j//J8/DnLLBfkPbM4efIlw+OHAEnJ5g4Ec6cge3bochXBpWGhkpweZ8+ij97WBgMGJCxk/yeCQ1V/v5HhIarrysV81WkpPczZdnVgwc/OyseGR9JZ9fOHHt0jA1tNtC7Yu8U+20sbFjZciVT609lyZUlLLu6jCVXltClXBdG1R5FBcsKadb7OOQxG703sslnE8/CnmFjYUM5y3IY6RpxpPuR9J2IRqOscnbqFI8Dy6PRN0m5+wvuJv6h/gw7O4bcLSvS8tBDLCrrsOzKMqY3nJ6+ttPC0FAZxPzwA4wfD3/9pXyvv/2W+To/R5MmULPmRzeqTFg1NKJh3fV1jDs5jgRNAgvtF/JL1V8Yengoa66vQQstWlm34viT41ibW+M10Ct55bGfSv1E5fyV6bq7K3Yb7JjWQBEHX7NobLu1jSsBVzjT6wzaWtocfnAY/1B/trffjvsDd3S1dNOcLAEUC0BioiI0tN5bAu7eTRYaoDzPnS87c/TRUVSoONXrFM/CnuF1zwuvl154vfLixqsbJGgS+OPgUOpLUZppF8dGSuKidYsbQe0pdz0entyF27cZ1gxyRScxqM9SiF+KRk8XrfgEwq2L4BV0DXNTiNYHnR/i+dlvLmbnwsj/OgqdJEXxPjZT4W0p+JQEH0vwyQf+pjGgeoC+9jNFFOiaYxZlRsloA+YuuEe4xPE06TeMdHthqVuBRN0AfBMXsbPrXGzz2WJmYJb52KT33Hlzh257unHv7T2c7Z0ZWmMo997eY/q56Zx6corLLy4z4/wM2pduz4Y2G0jQJOB00QmXmy78WfvPTLUZGBlIq+2tsLGwwaWtS8bePe95FvqM44+PUy5POWrrFlfeQytWQGgoEa3saWrnRxF7e/bfH0OhXIU42fMkDZ+guDg2bgw7dihW+vcExwRnLHYxm2y+F/69FB7//zDz3EyxmGPxzfVoNBqxWWIjffb1yYJefZ34xHiptrqaWC+2/mrSqIzwIuyFmDmapZnh9e8su7JMtKZqSYedHSQmISZzDV68KFKkiJK8bO/e9JVJShIZMkTJojtnTuba/R45dEg5p+fpS1L2bxIdHy05ZuaQGWdnKAnkKlf+bAK4wIhAqbq6quSclVOOPDiSrvoj4iLE+ZKzFFlYRFAjzbY0k1OPT4lGo5GIuAjZcGOD1NtQT1AjxrOMpf/+/nLx2UXRaDTy59E/xXqx9ecr12hE7twRWbpUpF07JVM3iGhpyeguztJwvIfUn+iZ/Gk43kNG918jsn27SGJicjVJmiRpsLGBFFlYRMIf3xPR1ZW9A+uJ+RzzrPtNrl2r9K1AAZGgoKyp8+8cOaK0cfRohoteeXFFqq2uJqiRnnt7yquIV/I05KkUXVg0ORFf081Nk5O0RcdHp1lPfGK8jDsxLjkr+Jzzn/9dR8ZFSsH5BaX9jvbJ21ptayUVV1YUjUYjzbY0+2ImZ2nZUqRNG+nq2lXqb6gvYmyc4jkSnxgvf936S+nLZKTQeANp111PBrZEptVDdtXIJTfK55XAormlU2dtsfkN0YAEGSG5xiKD2mjLs2Jmcq2ipbiV15c5dVWiMxkp9buO2A5CavVBnpggz42RwyWQlzmR9wtMSZSeSm6VyCmHGhaWDQOqyazZDlJwirEUmF9AVl5dKfvv7Zdz/ufk9uvbEhAekPr7fPNGpFQpicqfWwoPR/Sm6wlq5MLTCxIWGybFnYtLnXV1UiXVyygajUaWeC4RgxkGUmZZGfEJ9Emxr/CCwlJ0YVFRqVUy+/xs0XzybOji2kVKLS2VYlt6iY6Plhprakj+efnTncwxLRpubCjlf0HedGopoqcnkjOnyPDhIo8fS999fUVrqpZoqbVk9LHRynd89qySSNbeXiQm9buu5OKSMurYqEz3J5ts/i2yhcY/wMqrK0VrqlbGM2CnwbgT48R8jvk3P8TTy72ge2I4w1B+Pfhrlta7/dZ2QY1su7ntq8fuu7tPDGYYiN16u8xndA0OFmnbVnnZ/vZbmg/yVGg0IhMmKGXGjv2fZjn+x9i6VTmfyKwTjv8rdvvuFtTI/UMuSp/37UvzuPtv70tx5+KSb14+uf7yeobbiU+Mly0+W8R2ha2gRizmWIj+dH1BjTTa1EhcfFxSZZ1e4LFAjGYafRzIaDQiDx+KrF4t0rWriKWl0mddXZGyZRWhCyKlSsnNlTtTZvod7yGNxl+UW826KceULp0sOBZfXiyokROPTijtdO8u8UUKie4ULVniuSTD55om8+eLaGuLWFiIlCgh4uubNfV+ikYjUqOGSK1a6f4dBUUFyYADA0SlVontClu58PSCiIisvrZadKbpCGqk5daWUnRhUTGZbSKud1zTVe/Rh0dFpVaJ8SxjOfn4ZJrHTDk9RfSm68mj4EciIvI09KloTdWSVddWSWRcpOhP15cFHgs+30ibNqJp3lx+3d5DrBwLyLmqeWXvj5ays3lR2V8ph5wrijw0RYr+jlQZgOQYj4QYIIkq5EUulVwuiLiWRhZVR7q0U4RRhV8Q07GISq2SEotKSI01NaTDtHIytR7y068WYjRJS3wrFJAEPZ1kURFpmkPeGiAx2kh81coi9++nELIfuBl4U3LOyilttrf58nsqJESkUiXRWOaVeuPzS401NZKFm3+Iv4iIXHh6QbSmaikTBJnkdeRrcdjqIKiR39x/SyV2br2+JSazTURrqpYc9jucqvzxR8cFNeLxzCND7Wo0Gunq2lUMZhjIlRdXMtd5jUZe7dwgx0q8F3eFC4vMnSsSGiqRcZEy4siI5OeM10svpczFiyI5cog0apScRf7vmDmaieN5x8z1KZts/kWyhcY/wK47uwQ18i763TfXdTXgasqBxz/AUs+lgho55HcoS+vt6tpVTB1N0zVr5PHMQyzmWEjppaXlaejTzDWo0YgsWyairy9SsaLy0k0P8+YpL4xfflEsHf9lli5VBr//AdHUxbWLVFhRQXn5VqiQZp8vPruYfF98GOhkFP8Qf5l2ZpoUdy4uqBHDGYaCGimysIgs9VyaSmSISPJsdOiGFSK9en0UElpaItWri4werYjTsmWV7TVriuzfn3z/3PQPl9Eb70mHP4/K6JE7FJFhYSGyc6dIixYiIHHWJaRnR1357cDgjw1fuyYCMm9UXSnuXFwSk1IPGjNEbKxiyejdW+TJE5Fy5URMTESOHfu2etPi8GHlu/hK3YlJibLi6goxn2MuJrNNZInnEklISpDYhFhpsLGBoEZyzMwh/ff3F+2p2lJzbU15EvIkQ12xmGMhJZxLiEqtkkmnJqWYuHkW+kwMZxjKmONjJEmTJCExITLEfYgYzTASt/tuMvr4aEGNTN/QV1Y7dZF1I+rL1q7lZG+jQnLK1kRuFNaVGG3FAjGnDmI6RhlwRusgfubI6aLIdlttmW+nIxUHIUaTtUWlRhosqiITj46VuRfnylqvtbLHd4+cfnJabry8IVaLrKTpijqio9aW2ZMaiLRqJVKokAiKQMk1FhnVPa9Inz4iTk4iefJIZPPG4lIBidNCEg30v2rFPHj/oGhNVWbY0yQyUqROHREzM1myeoDoT9eX3nt7i6mjqaBG4hLjkg+dcHKC6EzTkasBVzN0XUREDj84LJZzLSWPUx45eP9gqv07b++UHDNzSDHnYoIa8X2TWhgnaZKk6MKi0m9/vwy1PfXMVEGN7Li9I8P9lpgYkTVrRMqUEQG5UgDxX+EoEh8vIor4Ke5cXHSn6Qpq5PzT80o5T0/F4vXjjyJRqZ81IspvQqVWyRqvNRnvVzbZ/MtkC41/gFOPTwlqxO+t3zfXpdFopMjCIlluYfham/Yu9pJvXj55G/U2y+oNjg6WgvMLSqNNjdJl7bkXdE+KOxeX/PPyi/cr78w3fOOGyA8/KDNImzenr8y6dcogsmvX5BfHf5Lp00Xy5Pm3e/FVouOjJeesnDLdZYAyON21K9Uxe3z3JFu6Mirio+KjxMXHRRptaiQqtUpyzMwhvff1lrP+ZyVJkyReL72ki2sX0ZqqJRZzLER9Wi1BT+4oloaBA+V8rYKCGrmTB0W0jhgh4uYm8uqVImaLFVP63by54hLxOWE3ZIhyL757pwxQihYVCQiQxEsecrG8qQhI0g82Itu2fZyJrlNHwmtWFtTIrjupv5cMsW6d0s8PVoywMKXP2toiy5d/W91/R6NRRFjt2p/9Pi4/vyxVVlUR1EiffX3kdeRrERE5639WjGcZC2qk5tqa0nBjQ1GpVTL2+FiJT/zy71Gj0UhYbJj4h/jLjVc35NTjU5LbKbc039Jc7Dfbi0qtkvzz8kvLbS2lyabGUnKyqVQarCWdeueUQa1UMrUesrYScsQKuZUH6dUGsR760RVJQEIMVXI7n7YcLomsrqwcdz+vjjQfrdwn68a3kNtFjSQ0OkSSNEmyx3ePoEbGHB8jqJGmLk2lmHMxRTiGhysz3MuXiwwaJFKzpiyopyeqKUjBkUh0QUvFvaZCBRFDQ5m5oa/oT9eXl+EvlROePVs0urqibqqv3D8qlMmSdLDAY4GgRtZfX59yR2ysSJMmIjlyyLOju0Rvup5MOjVJrBdbS5VVVcRyrmWKw+MT46Xq6qpis8Qm3S5+MQkxMuzQsGQ3xlcRr1LsT0xKTP6+urh2kaDIIDGcYShzL85Nsz71abXknJVTIuIi0tX+jts7BDUy9czUdB2fzOvXIlOmKM9VlUoiWjSWun2QqquqiIjIu+h30ntfb0GNNNjYQFpta/XRrevaNUXY16kjEvH5fr6NeiuokT2+ezLWt2yy+Q7IFhr/AD6BPoIaufz8cpbUN/zwcMk/L3+WuGKll4DwADFzNJMOOztkyu/1c3wwcS+6vChdx7+KeCWVV1UW41nG32bViYhQZqJBpGfPLz7kk9m1S7EGtGjx2Zmn756RI0VsbP7tXnyVvXf3Cmrk7k91lQH43yxJSzyXiEqtko47O6Y7dkej0cjFZxel//7+yYPWehvqyYYbG9IejLx7J4//WiG/jSkvhhNVYjgBGdICeVTVSh4N7S6okeM3divHhoSIzJypDDY+CNIbN77eqU2blHswJETk2TNllrpCBXE+MlVUapV471+dbOGQUqUUwfHXXyIgA9VVpfqa6pn/PSYmKiLnp59Sbk9IEPn9d6XNYcOU/2cVH2KEjh9PsflN5Bvpu6+voEYqrayU7PKSpEmSX9x+EdSI9lRt6b23t1jMsRAzRzOZfGqyrLu+TuZdnCcTTk6QwQcHSxfXLmLvYi/V11QX68XWktspt2hP1VbKT0IKjUBq9EPad0SGNUMW2enJzMYGkne0SszGIHtLqVIIiCQtlYRa5JDLBZG7dmXkctvqYj5RV6qPNJZGfbSl5FAkxwSVlFteTnrt7SWLLy+Wi88uSkKXTiL168uRB0cUt6Kdq5U6AwIkIDxAzOeYy0/b20jio4eSb4aZdFOXF9TI3vr5PravoyNSvrxI9+5yaHY/QY10dmmjfGFnzijxFsucJbdTbhl88L3V680bkVy55EgNC4nWRoJyaoumXLl0T45oNBoZeGCg6E7TlTNPzigbExIUt1N9fdGcPCkttraQoguLis8r5b1m72IvVd4Pqj/lg9ttct++wK3Xt6T88vKiP11fFl1elOrd9jbqrTR1aSpaU7Vkvsf85HveYauD1N9YP806/UP8RaVWpRZNaXDlxRUxmGEgXV27pv/3dOeOSP/+ioXcyEiZNHjwQGquqSmokduvb8uO2zsk79y8YjLbRNZ6rZXg6GAxmGGguEDduKHEDdasqQj8L3D/7X1Bzcdrkk02/yGyhcY/wPOw54Iacfdzz5L6zvmfE9TIxWcXs6S+9LLz9k5Bjbj4uGRpvcMODRODGQZy582ddB0fHhsu9i72ojtNV7b4bPm2xjdvViwbNjbpGxgeOaK8VOzsREJDv63tf4M+fRRf+e+cbru7Sbl5VsqAa9vHOJ4kTZL8efRPQY2MPDIyXWL7edhzmXVultgssUl2iZp0apI8fPcw5YFhYSIHD4r88YdIpUoiqveDTisrCRrUQ6Yu6SC5Hc2TFydAjWw8vVBk1CjF9UFfX2TwYCVWI73cvau0ceK9aL59WxJNcsmZYioZ6zb843GeniIODh8Fh4WFPG/TUFAj5/zPpb+9T9m9W6nv0qW09y9frlg2mjf/6kAoPWg0GomKi5QXdW3lpn1FOfvkjOzx3SPdd3cXgxkGYjDdQH7c8KN0de0qzbc0l4orKorOVJ3kGIDPfYxnGcsPjoWk9dRSMmJMRVk0pKq49qgq51tXknt2ZeR1maISncdMNFpaKUREvK62iJWVSL16EtS9nbScWEJQI1X+yCVee1fIJreZMmBPH8k5K6eo1CpBjWiptZIH10s9l4rHM480XeukZ08ROzvxfuWtTDKdVuKMkkaMkL2NC8ul4nqSZJJLBGSwA1J0pJbUGpFL6k8sJLJxo/Isio1N/t5qrq0pZo5mUsK5hCRFRynPqzp1ZNElZ9Geqi2Pgx8r7Q4dKjFGeuJnpgSCC4icP5+h6xSfGC8NNzUU8znm8iDovkiPHorocXOT/ff2J8+sL7y0UPSn64u9i7202d4mzbqWX1kuqEnTBerDuS3xXCL60/Wl7LKycjPwZqpjvF95S3Hn4mIxxyLV5NLyK8tFZ5qOhMak/SxusrmJ1FlX54vn+zzsueSfp8SbfG4hgU86rIjkZs0+LqAwe7ZikRRFMKFGKq+sLK22tRLUSPsd7ZOtTauurRKtqVoScOWk4ipZtaoyyfAVPJ55CGrk1utbXz02m2y+N1QiIv/2ylf/14lJiMFolhGbf9pMD9se31xfkiaJggsK0r1Cd+Y1nZcFPUw/Pfb24MD9A9wafCvd+Qe+RkxCDJVXV8ZI14hL/S4lr53+JRKSEhh4cCAbvTfi2MiR0XVGZyzXxqf4+Sm5M+7ehfnz4ddfv7wEp4eHsgRhiRLKErp58mSu3X+Ddu0gJkbJF/KdEpsYS965efnTvwCTzwj4+oK2NnGJcfTa14udd3aywH4Bw2sO/2Id++/tZ4P3Bo4/Po6+tj7ty7Snt21vGhRvoCxXGR2tXMtTp5TPtWtKUrJChaBhQ+XToEGKJZGjE6LZ6L2R+ecceRz5nBIhsPyUEU0dhqL6fbiyrHJG0GiUpYbHjoVx40hISuCXceVZ5uyHbqs2aO90VZZK/cDVq0pOGHd3BJjRKR/X21Rjb7cDGWtXRMkOnjOnklPjcxw7puTaKFIE3NygWDFiEmLSlcE5rWRt8UnxaTajo6WDZQ5LLIwsMDMwIyg6CN8gXwAqmZQiIjacx3GvGKZVixHBpTAJCsfw9Tt0A9+gehHwcdnmD5iaKtexYME0/7Y4M4C8hUuxouVKfF774PXSix23d3D++fnkKrRV2libW3Pv3T162fZicNXBHHpwiIWXF/J29Nu0n1Mi8PKlsjz2/fu8rluJfDb72f+Xitb3BI0K7luAWY0fyVfHHmxtOZk7gsaHuzC70WzGnRyHzy8+KZZa3nVnF51cO+Fs78zwo8M5ntiNxk6uxHt5YnW8FQ2KNWBz283w8CGa0qXwzp2EzTswMMiBTvuOsGFD+u+L94TEhFBzbQ0m7wqi24UwVNu2EdO+DWWXl8XGwobDPx+miUsTdLV1eRnxErsidixtsTRVPSJCy+0tufbyGrcG3yJvjo9ZxN9EvaHP/j4cenCI36r9hlMTp+Rkih/Ydmsb/Q/0p1TuUuztvJeipkVT7H8W9oyizkXZ2WEnHct2TNX+jts76LK7C3eH3KVU7lKp9kfFR2G3wY630W+5MuDK53PTxMUpy6MvWAC3binJYEeOVN4beh/vg6qrq+L1ygsjHSNMDExY1mIZbUu3Td5fe11tTBN1ODT5PhQoACdPgnnqJd7/jrufOy23t+TlyJfkN87/1eOzyeZ7IjuPxj+Aoa4hhjqGWZJLA5TMrz+V+ondd3czt8nczA+wM8GS5ks463+WXvt6cbLnyUytL/53DHUN2dJ2CzXX1WTa2WnMaDjjq2V0tXVZ33o9hXMVZuzJsTwPf86iZovQ/iRDbbqxsYHLl2HUKCWPwIkTsG7d518AtWvD2bNKTgA7Ozh+HAoXzni7/wYhIZD/+35RHXt0jIj4CDrsvQ/zN4O2NiExIbTd0ZbLLy6zs+NOOpTpkKqciHD15VU2em9k++3thMaGUrtwbVa1XEXHMh0xURmApye4TFeExeXLSiK1vHkVQdG3ryIurKw+KzSNbt7l17lnGLT7OcVHaBFhZkiz9lFUsDzMqDfl6JynM7raummWTRMtLahaVcnWDcy+MJtNOR8ydvVcrPuNhmHDYOnSj/2pVk3JJXLyJCp7eybtDOTeSTdeRsyjQP8RKUXJF4g/fgS9a9d4tmMNL557fDmD80wrQh7dJmS5FSHGOsRq0hYLRrpGqRKu2VjYpErIhoDBL78SFxHOxm6lmFt2BLaJFhAQQOS9eyx/vINZZYPJl6RisJcWC6vdwyQOLrhCrYBLkO/JR9FQv2xKEfHhkyNHqv5FJ0TjE+iD16tzeCc8J/r+fbbc2kqSJKGjpYMKFcVMi9G5bGdcbroQFR+FlZkVb2PesqrlKvR19Bl+dDhNrZoqIiMuTpmc8PFJ+Xn3Lvna5n5eBC1rFYG/dOfBupNUa/WKPna/s7DZwuR+1UtKwPyMOaGxoRTKVYjFnotZ23qtcp2S4hl7ciwO1g4MqzGM1R5LWOW5ncbjp7Al4Tovwl8wtu5YAGL+HE6MbhKVA+FRhcJYPY9U8ghlAjNDMy49boj5+VUs6FuaoR3b43R+Fi/CX3Ck+xEi4yM59/QcC+wXMOXMFArlKpRmPSqVivWt11N+RXkGuA1gX+d9qFQqDj84TO/9vQFw7+ZOC+sWKcolahIZc3wMCy4voKdtT1Y6rEwlQgCKmBShXN5yuD9wT1No/FTqJ8wNzdlwYwNzmsxJsU8jGrrv7Y7fOz88+nmkLTLevYOVK5XfYGAgtGwJixZB/fqpnhF77u7B65UXAD9X+BmnJk6YGpgm77/39h6XXlxix3ETsCyivGfSITKA5LFDWnmnssnmeydbaPxDWBhZ8C46a4QGKFnCV3mtwjvQm0r5K2VZvV/D1MCUTT9touHmhjhfdmZkrZFZUm+VAlVQ/6hm8pnJOFg7UKtwra+WUalUTGswjUK5CjHYfTAvI16ytd3WNF9IX0VfHxYvhkaNlNnISpWUGazatdM+vkIFOH9eSUZWt64iNmxsMt7uP01ICJQp82/34rPcehrB8gNx2CUcZFOrALrXaYVJ2DOab23Oq4hXnOh5grpF6qYoExgZiIuPCxt9NuIb5EtB44IMrjqYXuV+5gf/SDh6CsZ2hAsXFGuOmZkyUJg/XxEYZcp82YIlosz6Ozoq17lECbSXr6SM4W4M9XIwrMYwnDyc6LG3B+NPjmdkrZH0r9yfnHrpzLBdvTq4uHD91XWmn5vOeLvxWDf4AxJNlGSR+fMryb4+pVEjkgYNhG3beJ47mia/jCJyziJ8BrTCu34pguPDPgqFNKwP+9ZFY5EPqvgOgLsfq9XX1k/O3vxBHFgVKo9ZwWqY7T2CmUcA8R0nc0evMcGhehTKrUMnu9zULJkvZWK26GgICFA+L15AQACa53d5fPsCoY/uUCJYg3k0dJtwDxgEQJy+DqOaJLKyKtQLM6OEUQGm1LtD+1w1WFt1OqYjSykWI92vC7mo+Ci8A73xeqUkvrv+6jq+Qb5oRIOuli5GukaY6Jswp/EcqhSowv57+3HycOJEjxNYmVsxru44+h3ox+67u6loWRF585ogb088X3iy/nVNmFFBERmJiUqDVlZga6sIQ1tb2LUL7t5F+9x58s7Pz4sKxWjnEEmReCNmN56doq+62rq0/qE1++/v59eqvzLt3DQcGzuS2yg3y68uxz/UH7eubqg0GgZdTuCP0kLArz1w/KsZbUu1pUyeMsSfP4vhfne0teBUBWMa3nyuDJAza211dMTceRUPxw9mjMEavPb1Zs+9PfxZ+09sLGzYc3cPCZoEGhZryNCYoRQ0LvjZqixzWrK29Vra/NWGFVdXcO/dPZZcWULzks3Z0GZDquzdQVFBdHbtzLmn51jcbDG/Vf/ti5NpDtYObPDegEY0qSa+9HX0+bn8z2zy2cSMhjNSTAJMODmB/ff2s7/L/tTJOv38wNkZNm5Ufv+9esHw4VAqtVUkPikep4tOTDo9CYDt7bbTpXyXVMdtOuOMWayK1mH54eQJsEh/lu930e/IoZvjm5N6P82vAAAgAElEQVQfZpPNv8K/67n1/w+2K2zTFRSXXuIT48XU0VQmnJyQZXVmhJFHRoredL0s9RlNSEqQWmtridUiq3SvFPIBt/tuYjjDUGqvq/3tK2M9faqsAqKtLTJr1peXtH3+XPGZz5s3fTEe/zZFiii5Qb5DbvqHS8PJnvLjRCWZXcOJl6XhJE8p4dhAii4sKneD7iYfG5cYJ653XKXltpaiPVVb9KfrS+edneTIkaWSOG+uEs9gbKz4UefMqQRUz5sncv16mnkE0iQpSYljqFZNqadiRSUQ+31wdJ99faTGmo/xLj6BPtJjTw/RmaYjZo5mMv7EeAmMCPxiEwlJCRK2bYMISM1pRaTEohKy2XuzLLuyTGacnSGHetQWAVk6sKL8uOFHqbCighReUFhyzMwhNr8pPvi92ii5GA7YKP+/lxsZ3DWXlFn8g9RaW0sctjpI9z3dZeihoTL51GTZun6ECMjVhaPl/NPzn0/M9ndiY+Vm/9HSaNxFaTjhUvI1ajTxktwcPEHxWy9fXglw/SQWQkASjHPKg/z6csQKudDkB4ka84eywlbZshJ86ZR0XtlEmKLkiBh8cLCUW1ZO9Kfry4qrK74anBsRFyHnn54X50vO0mNPDymzrIxoTVViKfSm60nV1VVlkNsgWX1ttXi99JLYhFjpvKtzcsK952HPxXCGobKsa0KCyO3bIlu3ik/vZjK0GWIwUclhMbuOEhMSWK+yshrU8uXK6lDh4ak79dtvyqpQIlJxZUUl0HmKttwsmzvNc3C775ac98FghoHMPDdTgqODxczRTAYeGKgctGiRBBsiBtP0pItrF0GNkutBo5G7Jc0kRhvxyYsklCmlrO6V3vv87yxbply3KVNERGSN1xpBjZg6miavINVnXx8ps6yM+L31E9TIqcenvlpt+x3tRaVWid50PVl8eXGa1/VawDUpvKCw5J2bN92Bzx9iFj1feKa5/0OczL67H/PwbLyxUVCTcsUqjUbk9Gll6WBQcuFMn/7FJJaeLzyl/PLyyTE89TekHZie+PCBFBilLb92M1VWpssgE05OkCILi2S4XDbZfA9kWzT+ISyMLLLMdQo+zoLtubsnXa5GWc3MRjM5+ugo3fd0x7O/Z5bMtOho6bC57WYqrqzIH0f/YFWrVeku29KmJWd6n8FhmwN11tfh8M+HKW5WPHMdKVIEzpwBtRomTFDcbFxc0va/L1RIsWw0a6bMkru7Q506mWv3nyAkRPFf/w7ZcuYlGo0GFYr7jwYVIknkT+yB65DmWOaw5MarG2zw3sC2W9t4F/OO6ublWWLUni6eUZgtPAHBO8HAQLEyjRunWCyqVEnXLHgy8fGwZYvidnL/vnJdjxxRXOU+mVktaFyQ44+Pk6RJIiwuDCNdI4ZWH0pTq6b8dfsv5l+aj5OHE2Vyl8HGwgYNmlTxDBHxERQMgxdAXt9nXC4FPff1REdLR7EoVDMl+oUlv6zxJta8Hk/s7JItDeaG5gTeXMqi+8Hkr/qKk4sG0cS0AzYz57B8+0G4nh8mDYHOXVK6VHXsCFZWVB06K92uVgB+kU+Zbl2bpHAVvJ851qBCS6Nhi8aKOfq3oV69FK5Mb0z1GH9/Gev8/qJ6weosa7GMqgWqKhXW+RFat6bl9tZcMo/C3MicgZUHsvjKYoqaFOXqgKuUtyyfog8RcRHcCLyB18uPlop7b+8hCPra+lSwrEC9IvUYUXMEVfJXoWzesmnGUhjqGqITFgFnznB685+suy102n0UfBcpLlFAHnM9uhXNwwDa0qmIOxPzB1LcpAiWZ72+/mXp6CjxPoCOSgfvN9445+lB+TsuEBYGJiYpDm9cojE59XJy8slJupfvzvKry3kX/Y74pHimNpgKz57B+PGY9fmVzuWj2H57O42LN6ZawWrsn9WLNg9DiNYBk/bd0Fm5XYnlycC1TcbFBYYMUWbvp0wBoIBxAQDCYsM49/Qc9iXtOfTgED1texIQEQDwWdcpUFwal15ZykG/g+hq62JjYcMvVX9JZaXY5L2JQQcHYZvPlt2ddn+xzk+pVbgWpgamuPu5U71g9VT7bfPZUiV/FdZ7r6dNqTZceHaBAW4D6FuxL3/U+gMSEmDnTiX+4vp1KFcO1q+Hrl2VZ0kaRMVHMen0JBZ5LqJivooUNyvOk5AnuLR1SX3ws2cc71WHl02S6DN6W8bjuIDgmGAsDNNvAckmm++J7GDwf4hOuzoREhvC8R7Hs6zOA/cP0OavNvj+6kvpPKWzrN704h3oTfU11RlZaySOjR2zrN7VXqsZdHAQbl3daGnTMkNlHwY/pNmWZkTGR3Lo50NUzl/52zpz8iR0764E7bq4KIPNtAgPh9atFV/7PXsU4fG9kZioDLjXroV+/f7t3qTCYZYH0TGp5z5yakXTqMk1Ntx24ebrm1hq5aJHUAF6Hw+i7L13yjnVqqWIioYNoUYNxRUuA2hEQ9jbF4RsWkXIljWERAQRYleNYIcGhOQ3SzPI+WnYU4Jjgj9bpxZaGOgYEJcUR5IkkTdHXipYVsDa3BozA7NkF6U3ka/p1WI8N1tUoczqvZgZmpFDN8fHgVhSkhJ06u6u+HV/KmSPH4emTVni2A616gzPRzzHSNdICWyfOlWJ57CxgcmToUsXePgQSpdW3GoGDvzq9/Is7Bk7bu9g183t1DxwA7/ybsTp5011XG5jXXaN/ujCmZCUwNIrS5lyZgr6Ovo4NnKkT6U+ya4tYbFhDDs8FNnsgktFqF+0PhZGFuy+u5t+lfqxqNkikiSJG69uJLs/eb30wu+dH4JgoGOAraUygKxSoApV8lehTJ4yacfHaDTKeX8SRxHseQbzoEgAYrUhwqYoeWo1UtyebG3xyStU3NmAfZ330aZUG0JjQsk7Ly8JmgR62vZkWYtlX3aN+/NPOHiQIK/zFHUuip62HsFNT6JVpSpcugQ1a6Yq0sW1C37v/Nj00yYqrKyAjpYOk+pNYnK9SUpsgI8P+Poy7/ZqRh0fhVNjJ2rnq0ZJ2wZYRsH+35rQZuMlxc1naerA7K+yd68iQnv3hjVrQKUiLjGOcivKUcSkCIY6hpx7eo7VrVbTdXdXzvQ6w/Pw5/TY24Oo8VHKffc3Xke+ps/+Phx+eJhh1YfRrnQ7Gm1uxMR6E1HXVwPKvTLy6EiWXl1K34p9WeawDAOdtAf4n6OLaxceBj/k2sBrae5ffnU5ww4P40KfC7T6qxVl8pTheMud6K3bCEuWKC5+9vbwxx/QuPEXXSmPPTrGoIODeB35mmkNplGtQDXqb6qPvZU9R7ofSXlwQAD8+CNd6gZyu1JBbg27l6mYys6unXkX/Y4TPU9kuGw22fzbZFs0/iEsDC14GPwwS+tsUqIJOXRzsOfuHibkmZCldaeHivkqMr3BdMadHIeDtQN2Re2ypN4BlQdw4P4B+h3ox+3Bt8mTI/1+xiXNS+LRz4OW21ry48Yfce3oin1J+8x3plEj8PZWXt729jBmDEyfnnqGPFcuZSWnTp0UwbFli/Lv74kPK/OYmf27/fgbGtEwct9iQmNKo4spKj6+iIUknmp8GHF8FI2faePmAc0eR6JTxQTatlXERZ06YGSEiBAeF05IzCtCgtNYCenvQc4f/h8dTGhsKPKh2eRFYq6i8r2G6WPTFHELFkYWlDQviZWZFa53XZnfdD5FTYomWxk+WByM9YxRqVTEJsay5eYW5nrM5cTjE8QlxjGq9igcbByITYyl0qpK1LYypck7U7RM0lhUQFtbuZ+aNYNWrRQLWtmyyr7GjaFMGfqdi2B4jVA23NjAkOpDlABzNzdFcEybpojladOUeI98+ZT7+TO8jnyNq68r229v5+LzizR8oceO4wZsKQpn9B9hjkWy1enDNSqQ+6OwO+t/lt8O/4ZvkC+/VPmF6Q2npwhiPfn4JD329uB11GtUFbUYdlmDm949rkg43cp1IyohisqrK+P3zg8AQx1DbPPZ0rhEY8bUGUOVAlUonbt02qIiIgJu3kwZnH3rlhIzAsr529ri3aA07oYvCCiRmwcWKq4Mvg6fLCSxzG0ghXIVwsHGAYAbgTdI0CQwtf5UnC464fnCkx0ddmCbzzbtL1FHB0lKYoDbAATBxMAErVLvJ4Pu3UtTaLQv3Z5Orp3IqZeTvDnyEhITosy479gBhw7B/v2IsTG7fXdjpGvEKf9TyIQJ1I6C45VNaf3GFIyMYEYmLNzHjilCtH17WLUqeaA9z2Me/qH+HOhygEK5ClF3Q10Guw/GWM+Y2oX/H3tnHVZV9v3/1w0akRDFFruwE7sDe+zuHnWMccZExhg7RsHCjjFGBbGxxsAObEExUAQlpOve9fvjKA4Doo44n+88P97Pw3O5J9beZ597z91rr7Xeb0cW+izE2sQ6XSfjoN9B+nn0U/7vfpAWxVoAMK3eNFxOu9CsSDMKWxWm065OXAi8gJuTG0MqD/lHE3GnYk703tebV9Gv0i3q7u7QnbFHxtJ2R1vKRplwMKA4hiOLKNGMXr2UCE7Zshm2ERobytijY9l0cxMN7Rum1POUWF4CFSrWt/0bu1dQEDRsSLgqgX1FkphZddA/Jm4JjQ3FxjQropGF/yayHI1/CdYm1pmaOgVK+N+puBN77u9hct1/39EAGO84Hi8/L3rv683NoTexMLL4apsqlYq1bdbi4ObAYK/B7Om854se0DnNcnKyz0k67+5Mq+2tWNt6LX0qfHxi9UnkyqX80C9YoKRSnT6tFIoXKpT6OBMTJZrRt6/yo/32rVLM+38F/wcdjdikWHpsm0yYfycMUKFChSDvXnUIwlONO1o9eBfS8cwcNmpyoSlhRrj5VcKfeBN+/4MToRd9uu1YGlumYUQqrLXF6vEDrC4+wyrBEKvajbHq0APrgiVTjrEwsvgos9qVl1fYfW839QvVzzByZqw1ZmClgfSv2B/PB57MOzePNr+3oVSOUuSzyMfTiKeUajkUtdtGZfVdnU57xsawb5+SmtS8uULLmz+/MiEcMwbTIUMY2aIliy4sYmiVoR/Y16pUAU9PuHpVodD19oYcOZRi5a5dlRQfICI+gj339rD99nZOBJxArVLTOUc9Nl6tTeH9Z/mplzXzikRiIeuw0lUFdKjQpNyjbYED6Ph0MW5X3Nh+ezs189XkyqArqYgqYhJj+Mn7J5ZfXo5GpcHc0JxcpjlxrepPkZeviM0B+x7so4JdBZoVacak2pOonKcyJXOURKv+20+VCAQEpGV8evxY2a/VKkX+5csrq/TvIhXvi6NPnpjKxituhMbd4kTLE6nY6t7Gv2Xrra1MrDUxpd0DfgfIbZ6bKXWn0KVMF7rs7kL1tdVZ3GxxumlAaDREx4bj8cCD/hX7s/3WdsTEBFXBgkoReTpoUawFRhojll5YSkhMCAB3/c9TddQo6NgR2rThzyenufDiAoMqDmLN9TWsugbhJlD1p2WoOvdWoq5fmhp57hy0a6c4rZs3p6RcPY14yqwzsxhTfUxKxHx/t/0UWVaE7EbZ0YmOwMjANIXgcUlxTPSeyG+XfqNlsZasa7MuVcH3pDqTOOR/iM67OqMT5fNzqu8pHPN/hHjjM9C8aHNUKGxW/Sr2S7Pf3MCMZq/M6XsihHb3Vahs9inRi+HDled7BhARdtzZwahDo0jSJ7GuzTr6VuiLSqXixOMTPAx9SOvirVPTzgYHK4tUMTH8vmYIyZdn0LNcz398faFxoRS3+Q+QjWQhC+kgy9H4l5DZrFPv0aFkB7r+0ZWA8IB/XpPwFdCoNWxqt4lyK8sx5vAY1rVdlyl27cztWN1qNR12dmDjzY30rdD3i843MzTDo6sHw7yG0dejL4GRgUyqM+mfUwGr1fDjj8pEr1s3hZVq7VplBfCvMDD48GM/eLAyuZ8w4Z+1mdkID1de/484GkFRQbT9vS2Jgb3exTGUCc57ZyOJSG5rJhCpusX7BfSH1vBQHYT1kyAcYkwpX7ASVmVaYZUtZ4oT8XfWpOxG2VPTHt++rdRfbNum5MqPmqLQGn8BCwx8yF1/GfXys1L01Co17Uq2o13Jdpx7do6J3hM59vgYFkYWrC8WzZC4CLL7+3+cvczSUqkVcXRUomtnzyr0mD17ws8/M+mmBcvyPWbf/X18V/pvn8vKlZWJ9oULivPRqxd6Fxcu9mvCvALPOBhwlCRdEvUL1Wdls+V0PxOB2U+/ojfQMmJ+fdxiTmFlbEV4vC83NMMoqOtPYbOavNX7cz1xPpFyi7ob6pLdKDvr266nd/neqFVqwuLCuBZ0jT339rDp5iZikmIA0ImOqIQoIhMiaaKyx8stgBe711OgTa+0FNWxsXD7WmqHwtdXSVcExXEqX16ZLL93KEqVSqVv8Hdo1VrC48NpX7I9DewbpNq3xXcLCckJDKw0MGWb10MvWhZriVqlpkSOElwYeIFxR8Yx/OBwjgccZ22btamoTEMT3xIbE8agSoNoaN+QddfXEZUYhUWpUh91NMwNzWlWpBnrb66nrG1ZohOjWbp+KFsSExVGPGD22dmUy1WOsNhQTJJgY0VwGjiXSpNcoF496NHjo9ecLq5dg5YtFeaz3btTjdm4o+OwMrFiWr1pKdsMNYYk65OJTIhk0P5BRMZHpqqluBV8i+57uuMX6sdvLX5jRNURaZ65WrWW1sVbM/nEZHKa5uT60Osp36V/ClszW6rnq84BvwOpHY3kZPjjD15MH43Hg1Du5QD/OeMpNmqGsjD0CTx/+5zhB4fj9dCLTqU7sazFslQRk8Feg1Gr1Kl/9968UZy2iAg4fZr1p3rQoliLj2t0fAayajSy8F/G14sgZOGzYGNiQ0xSDAnJCZlqt2WxlhhpjNh7f2+m2v0S2FvZs6z5MtbfWM/ee5nXj/al2tO3Ql9GHRpFQHjAF5+vVWtZ3Xo1M+rPYMrJKQw7MIxkffLXdapGDbh+XVmt6thRWRGLj099jFqt5EhPnqw4J5MmKSuw/2v8H3I0/nz6J6VdS+MbfBNTvX2qVBx472wkYWedgInWBBUqKtpVBLVCwRqvhdO2sTy+c5aWE9fw077XDLVuSpeyXWhSpAlV8lShiHURrE2sP0xcz59X0tocHBS62oULlSLb6dO/2MkAyGWWC7VKzYvIF198brlc5XgZ9ZIqearQsXRHpgZuJv9Y+PHQDxnby5MHjhyBkBAljSo2VpkwDRlCrh1etMhZi/nn55Om9C4sDFatInnkcDwWD+XnX5twSPOYmpNcWTrOG8+kTgSOesKJIi4MGrwSsx8nk9ytC/2WN2FlzGka2TciMiESjUpDpMqXW9oxLBmak0ld7BRH8B0iEyI5GXCSLru7UHhpYWzm2dBkcxPcrrgRlxyHWqWmsX1jbE1tsTG1waubF0edH2HoUAH7pRvRvAxSalFmz1bqUkqWhGzZlLqboUMVYoZ8+ZRC/4MHlRz4kBAlUrNwIfTurTgaGTgZAD6BPuhFz/wm81NtFxHcrrjRtmTblMnvo7BHPAh9kKpezFhrzAqnFezutBvvx95UXFWRSy8ULZQkXRK7H+7FUNQsbrY4ZYL5KvqV4gB9xNEAsLe0JzIhkp/r/Mwoq+bsNHlM0NwpkDs3V15e4eijo1TJXQV79z10uwVuNbWUD4iDJ0/A1TVjmua/4949xWEtUUKJev1l4n3s0TH+uPcHC5osIJtRtpTth/wOoULF8pbL2eK7hStBV8hnkQ8RYdnFZVRdUxUVKq4MvpIuLW1CcgJDvYYy+cRk6hWsR0hsSMq4fS2cijlx9NFRRRTy7VuluLtIEejaFb/EYPYvGkqrSYWYU/LNJ50MvehZcWkFpV1Lcy3oGvu67GNnp52pnIVDfod4FP6IdiXbkcM0h7IxLExxMkJC4MQJ7mRP5PLLy/SrkDbK8iUIjQ3N0tDIwn8WWY7Gv4T3+ZWZnT6VzSgbTYs0Zc+9PZlq90vRt0Jf2pVsx2CvwcoPaiZhafOlWJtY02dfH3R63Refr1KpmFZvGu5t3Fl7bS0ddnQgNin26zplaamknqxcqajuVq+u5F2nbljJlV6wAObMUZhc9Omn9fxr+B87Gom6RDzue1DLvRb1NtQjIj6Cyi8ETcIjhNT3VtARzSPidHEYaYzIZ5GPG69uMLjSYLRqLcbZrTHSGHG+gJoGHWOoE/0bh5sVQVo5KRPx92MtokxI69ZVajn8/RVu/EePYPTodIXdPhcatQY7czteRr384nMnHJtASEwIOzruwL2NOwFjAhjub8WqMG/sl9rT36N/ijJ2GpQooUzGb9xQ0p+SkxWHNy6O+YGlufjiIueen0s5PFmfjN/MsSQmxlFS40a7He04mD0Y39W/8OKEBwWqN6WZy1byFCyrCFAaGpJ44RxdG4axze8PptSdwvGA4wiCTj7cp25/dKPplqZYGHxIlxSETb6buPnqJo75HclnkS+lKD6/RX76VejH8YDjlMlRihu1tuB0/rWisJycrDC95c+vFD7Pm6cIpDVtCqtXKyxK0dGKSvz27UoaWIsWiuP1hVHKwMhATgScQIWKwlaFU+07++wsd17fYViVYSnbDvgdwFBjSOPCjdPY+q70d1wfcp1cZrmota4WC88vZPrJ6TyPeYW1gQVmhmYpk9Pg6GDF0Xj8OO3iBIqD4uXnhQoV4W+D6TfnEIaiZmVxJXIz5+wc8lnk4+qRdcw5Dv1uQpBJMkd2zFTSgL5EHycgQNEAsrNTasssPtzDRF0i3x/6nnoF69G1bGo9CC8/L2rkq8HgyoNxrufMy6iXBEcH03JbS0YfHs3QKkO5NOgSZXOmrXd4GfWSBhsbsP7Geta2XsvJPidpV7IdAz0HEhQV9Pl9/wicijkRlRjF2Z+6K5+jn34iqHIJKg1Ts2/5CFr/4EbfSv3ZeWcnUQlRH7Vz7/U96qyvw8hDI+np0JO7w+/StmTbNMcNOzAMtUrN2taKuCIREcrn9cULxSEuWZKNNzdiY2LzxaQmf0VCcgIxSTFZNRpZ+M8iy9H4l/A+7PlN0qdKdeD88/OZ8rD+p1CpVKxutRq1Ss1Az4FpV1T/ISyMLNjUfhNnn51lkc+if2ynf8X+7O+2nxMBJ2i4sSGvY15/XcdUKhgyRGGZSkxUUlPeizv9FePGKSlWq1YpKS5JSV/X7tcgPFyJtph/ppBcJkAves48PcOQ/UOwW2BHux3tOB94nnLRZjxcBtPiq+Nrug5RprEAqWoznkc+J0GXwPPI51TNWxX36+7MbjSb4jbFSdIn4ZC/srKCmldFi55QrehJPEY3R1+yhLK67eAATk7KPdq3T0mb6tPnkyven4u82fJ+saNxxP8Iq66uYkHTBSkT3TzZ8vCrQQueHy/HnEZzOProKGVcy9B6e2vOPD2T9vtUvbqS6nLwoLLSnycPdOpE6d+PU8a6JPPPzefss7OMODCCInNyY7lqIzuqm9O90RjuDL/DzaE3+bnOz+St01KJzpmZpUx+9RHhLF0/hIP3PNnSYQubbm7CytgKjUqTqlD/QuAFTLQmVMpTiep5q6fqnl+YH1tvbSUuKQ49euqblSVvpLD+2jpm3LHFe8g58tZqrohjenkpzpOdnXK/njxRPqunTyspQwMGKOlen5Hq8jn4+fjPGGuNlfQ8ferv48qrKylmXYyG9g1Ttnk99KJ+ofofZZmyt7LnTL8z/FDjB8YfG8+cc3OoXbgeBu/YBdJENN6zYP0Na66t4XH4Y6rnq87eo0uxfPKKvqW6sfKdMOuee3uIiQxl7zbQCJQdPI0KMRasqq6FqVM/fwBevlRW3Y2NlSLwv0XzFvssxj/Mn+Utl6eKSCTqEjn26BhOxZQC+feK5J4PPbn04hIHux9kSfMl6TJGnXt2jsqrK/Ps7TPO9DvDgEoDUKlUrGm9BgONAf09+3/db8bFi1QYM4c8kXDgoRd8/z3+17wpXf0yto6NWdJ8CaAsiMUmxbLjzo40JhJ1ibicdqHCqgq8iX3D6b6ncWvlRnbj7GmO9bjvwdO3T+lcujNWJlZKGl+zZooD5+0NZcqQrE9ms+9mujt0T5di+XPxntkuK3UqC/9VZDka/xK+VUQDoE2JNqhVavbd35fptr8Etma2rG29lgN+B1hzbU2m2a1bsC4THCcw+cRkbr66+Y/ttCjWglN9TxEQEYDjOkcehT36+s45OCjMPl27KpOmXr0U5pu/YsAAhTlm926FKSku7uvb/Sd4r6GRXrFxJuN2yG1+9v4Z+6X21N1Ql0P+h8hrpky4pv6p4rpnHvJv82JExSBy50jghmYYiYZ3SCCEMC5xQzM0JSUnLlkZr0svLtGgUAPGHhnL6GqjmVF/BtdfXadMzjLUta8PwANbNe26QcUmj9l5bTO6B/egbVtwd1deM/na82TLk6Il8DmIiI9ggOcAmhRuwpDKQ1LvrFYNiyu3GFflex6PfsyGthsICA+g7oa61HSvyZ57e1JH9Vq0UK7L3R2mTUNGj0b1+DEdH5vg+dCTOuvr4PnQk6Uvy5EjQUPPDddwaeBCadt3K99nzyoO8pgxihMcFMTz4/s4bRrChJW3uO+mwdu5D4FhTwmPDydJn4TwYTJ4acAloidFc7LvSXwG+FDCuoSyQ4B3AaXwmFAGXoGLQVd49vY5Jy+XZqpNBzTLliupbFFR4OenfDdcXRWGqGfPvjhK8bm4GHiRLb5b6Fa2G6AULr/H65jX7L67myGVh6QQAEQlRHH66emUyfXHYKAxYFKdSdia2qJVa7n06irJSUqabHaj7BhpjD44GpAmfSoyIRLnU870qdCHvtYNOaV6SujU8XzfdCohMSEMPzAcA7UBS/6II18kxOfJiWWxsgw5GYlXwUQCdeGfNwBv3iiRjMREZUKcO3eq3YGRgfzy5y98X+37NFGJM0/PEJUYhVNxJ+KS4hi8X6FHNjMwQ6vSptE8ASUVzfWyK/U31qe4TXGuDr6aSusih2kO1rVZx9sWEZkAACAASURBVGH/w7hedv28a3gPnQ7++EOJVNaogeradVrmdORA4wKETRlHy5MDsTO3Y0fHHSlF/fmz56dZ0Wasu566lvBC4AUqrarEL3/+wgTHCdwcepO6Bet+tOmRB0eiUWlY3Xq18hlu0UJREz92TEndQ1lQeBX96uvTpt7NGbJSp7LwX0WWo/Ev4f1qREa8+/8U1ibWNLBvwB/3/sh021+K1iVaM6jSIMYeGZupdL4uDVwoZVuKXnt7EZ+cNu3gc1ElTxV8BvigQoXjOkcuv7j89Z0zM1Mme1u3gocHVKqkFFn+FR07KnSjJ08qrEHvC1n/TYSHf9O0qcDIQOafm0+FlRVwcHNg1dVVtCjaAs8uHuRPMMYv+B5b9xvi0mQ2at9bzDW6wrO3z4hJiiFS5Uu1qrfx0bbmlnZMqrz/v8I7wJsyOcvQc29PSuUohc8AH5J0SZx9dhaXxFoEzE3g5HowUhvQpROUnWzN5rBTJJcrq6zc79unpOlkEvJky/NFEY0xh8cQlRiFexv3tMQE1aopYnG3b2OoMaRPhT74DvPFq5sXxlpjvtv5HaVWlGL11dUfvgN9+hAyZSzMnMmMha05nw8ae97GRGtCmxJteDrCn3Ze/qi6dkVV+F2aUHCwEtWpU4cIiWON2yDa1g8izwYHCpxpR8MOUdQeYcJjOyPW7E7A382Avr5qNDql7im7UXbUKjVV/aJRL12mONiVK+M93R+NDlC9+xPQq2BtFahVrAE3ZgRT98BtcHNTojA1a6aOrrVtq0zSZsz4mlvyUYgIY46MoVyucrQs1hIgVRrluuvrUKFKRTzh/dibRF3iJx0NgBEHR5CgS+Bsv7NYZ8tJfEIMLqdd0IseO3M7xdGwsVGK1//maMw9O5foxGh+qTOdtvP3o1eBZ7NClMhRgvoF6+MT6EPlJ0n0vgUGAibzFsG4cXTP3RQTAxPcr7l/egAiI5Vnz+vXipPxd9Y8YPzR8ZgbmqdoXPwVXg+9yJstLypUVF1Tld/v/K5s7+aFsYExbba3ISYxJuX4+OR4BngOYMTBEQyvMhzvXt6p2Kfeo0WxFoyoOoLxx8Zz7/XH61dSEBWlRLqKFVOeq1qt8tx98ACnthN4EOaH01YnwuLC8OrmlapIH6B/hf74BPpw7/U9ohOjGXN4DI7ujpgYmHBl0BVmNpyZoY7Hrju7CIwKpLtDd7Ilq5WI6e3bSnSo0gdSiPU31lMuVzkq2FX49DVlgPdZEFmpU1n4ryLL0fiXYGms8Op8i9QpUDjYTz059c3sfwkWNVtELvNc9N7b++uLr9/BSGvElvZbeBD6gKknviBNIB0UtirM+QHnsbe0p/7G+hz0O5gpfaR7d6VQ3MJCmUQtW5Y6lapZM2XF6+ZNRf/h9Vemb30pIiIy3dGIiI/A/Zo7DTY2oMDiAkw9OZXiNsXZ12UfQeOCGGnZlFEbOvMo1I9TzxrSfa8//PQT/jHPmXN2Dl3KdCEwMpBcZrmoU+DjOixGmg86Db7BvhhrjemyuwvPntzk2vOW9L+czDTDc/QYYUfgspmEFlMmRLGWpvRu9JYSv+Rkrc1TEju2VwpE585VVne/Enmz5f3siIbHfQ823tzI0uZLyZ+eXkaFCsqk6dKH4li1So1TcSdO9T3FhQEXKJerHEO9hpJvUT6abW5GGdcy5NIsws3RkGm7X5OnSXtqP05iWZ4BHPE/QvSmtfDsGSEj++F1Zx8HR7Ugxj4fYbs3M6g1WLf3Y2LELsLjwknWJ5PNMBseXT04uOAVffpmx2lMTm7YJLF+j54HK8DHLZlsr9+iTdIr4og//0zCzascNA9iVk0dRbXvxPxUyio/KqWwP1ydiFrzCZJDtVoRFjx+XIm2ZDJ+v/07FwIvsKTZkpQ0qPfRMr3oWXV1FV3Kdkk1oTvgd4CSOUpSxLpIhra3+m5l261tuDm5UT1fdYbX+B5j0TDj9AyabG6CjYnNh9q1vxWEP3/7nEUXFjG25ljyrf8Duwu3qWVdnj1+HsCHFe0ppyHcXIPUrKGwbr1+jcUSN7o7dGft9bUZP2tjYxXyAH9/ZUJcokSaQ04GnGTHnR3MbzI/3XQhr4deFMhegOprq6NWqZnVcBYAFXNXZH+3/fiF+dFzb0/0ouf52+fUXV+X7be3s6ndJpa2WJq+7sk7zGsyj0KWhei5t6dSzJ0eAgMVco38+ZW6npo1ldqd06cVkge1mkb2jVCr1Fx6eYk9Xfake9/alGiDjYkNU05OoYxrGVZfXc2CpgvwGeDzcV2Uv2DU4VFo1VrcGixUxvT6dYUNrmrVlGNCY0PxfOBJvwr9/jnT4Xtb7+5/VupUFv6ryHI0/iVo1BosjS2/SeoUQNsSbdGLnv0P938T+18Cc0NzNrffzMUXF5l7dm6m2XXI5cCshrNY6LOQ009Of5WtHKY5ONHnBI0LN6bN9jaftyL4OShaVEkJGT5cKTZu1w5C/3LPHR2VH8bAQKVA+fnzzGn3c5BJEY2E5AT23tvLdzu/w26BHYP2D0Kj0uDexp3g8cHs7LSTtrnrc/znLjge/A6LeLhUfys1Nh6H/PkREUYeHImduR0xSTFoVBp6letFMZtiH22zXK5yFLIslPI+JikGnejoeHQgW866sbzUOA612MrNHMmMvr+IWQ1nsajZIqISojDWGmNiacvgMo8pOisXy9vlJu6XaQp7Uf/+aaNPX4A82fLwJvbNJ9nk3sS+YbDXYFoXb02f8h/RdDExUVLxLqcfZSuQvQB1CtShXK5yhMaFcvTxUR6GPqRV8VY02ueLuktXCm49gC6HDQ08fNHrknk1bSzHShnRYXVj8jdqT/PlhzlV044Vm0fR/NfdPP4hgBtDbhAcE4xWpeFCJVfaHA/kXMuy7FjwjAJ+IfRvB07d4K2xmipBcGoD9LljgNy8ydpTi8nRKYDBbdUcb16MJ+q3KboKSfokquetrqQSvbhE7fW1CYwMzHhA27WDcuUyPaoRmxTLRO+JtCvZjgb2DVIE5t6nTh19dJSAiACGVh6aco5e9BzwO0CrYhkX8j6JeMLwg8Pp7tCd7g7dAVAbGKIVFcd7H+f+m/vcfn2bWyHvonR/czSmnpyKhZEFE/N2VmotRo3iu2p9OfroKDvv7ORW8C2sYsG1OlhF61CNGKkwKk2eDIULM6TyEAIjAznkdyj9DiYmKjTcV64oNT0V0q6wJ+mSGHloJLXy10pX7+Hcs3P4h/vjE+jDsCrDuDToEmqVGnNDcyyMLCiXqxzbv9uOx30Peu7pSeXVlQmOCeZc/3P0Kt8rw/EDMDUwZWuHrfgG++J8yjn1zqtXFdpee3uFGGDwYKUWYutWpXbnL3C/7o5e9JTKUeqjqU9RiVHYmtqy594eilkX4/bw24ytOTatVks62HxzM6+iX9G3bC/MOveAixeVMa1ZM9Vx229vR5CUz8PXICwuDBWqNJGZLGThPwPJwr+GosuKyvgj47+Z/VrutaTVtlbfzP6XYvLxyaJ10cqVF1cyzWayLlnqra8nBRYXkIi4iK+2l6RLkqH7hwrOiPNJZ9Hr9ZnQy3fw9BSxthbJl0/kzz9T73v4UKRgQZECBZT//w00aiTSufM/OlWn18nJgJMy0GOgWP5qKTgjFVdWlAXnFkjg28APB+r1ot+4URY3MRf1NKS1SymJjHyTstv3SaT0XnFKak7ZL91/Oy6W0ysIzsilwEvyKuqV4EzKn8pZler9Ef8jUv+3yqKaTqrtOCPddneT2MRYeR3zWjrs6CA4I7339pYn4U9k3JFxYviLodjOs5Uaa2uIeoZa7ObllAUzW0p04XwiIOLoKLJtm0hCwheNyxH/I4IzEhAekOFxnXd1Fuu51hIUFZSxwcGDRcqWTXn7JuaNrLqyShpsaCAqZ5UYuBhIm+1tZJvvNvEP9ZdRB0eJ+WxzUTmrJO/83OJeRSuXC5ST8d2WSKOJ++XHrkvEq3EzEZD4SuVFf+mSiF4v8vixyN694uf8vRScZCoFx2vF3woRkESNSq7nQtbWMRcjZ40MWekkOCM9/ughDUZbikdJlQhIYC5T6d0OabSuvmSbnU2KLC0irbe1FpwRAxeDlHszzGuYGP1iJMYzjSXvwrxyO/h2xmOwe7dyT86e/cy78Gm4nHIRAxcD8Qv1ExGR60HXBWfk8ovLIiLSZnsbKe9WPtX3/8qLK4IzcjLg5EftJuuSpc66OlJgcQEJjwv/sGPNGuUa9HoJiQ6R/IvyC87IxGMTJXHRAhFjY5HkZLkedF1UzipxvbRCpEkT5XkQFSVPwp+kjKPJZOSX2ohmGvK0S3ORevVEihUTiY9Paa7yqsritNUpbQeTkkQ6dhQxNBQ5duyj17Hw/EJRz1DLjaAbafbtf7BfzGeZC87I3rt7U7b/cPgHKbm8ZMp7vV4vbbe3FZyRUstLSUh0yEfb+xhm/zlbVM4q+fPxKREPD+VaQcTeXmTpUpHIyI+ee+DhAVHPUEuDDQ3E8BdDiUqISrVfr9fLVt+tkmNeDrGYbSE4I3/c/eOz+6bX68V2nq0YuBhIrFNTERMTkZMn0z220qpK0nZ728+2nRF+PfOrWP1qlSm2spCF/wWyIhr/ImxMbL5ZRAOU9Kmjj45mSN33b2JavWmUy1WOnnt7piq6/Bpo1Bo2tttIeFw4ow+P/mp7WrUWVydXZjWchfNpZwbvH5xp6V60bq2kSdnbQ/36Ct2t7l0xb7FiSnqIqSnUrq0c963xDyIavsG+TDw2kUJLCtFgYwO8A7wZUXUEd4ff5dqQa4xzHEdei3fKwL6+JNWrzZDdffihVjTjyg9l7+RbZMumhPxvPY1izLp7PA0yxIicvAw2pbxuBUVNGlElT5U0xY5/LTxW6WHYylbs+vEqgx9m4+/Yfns7hZYW4tyzc+zquIsNbTew995e6m2oR9sSbbk/4j6NCjfiQuAFiloVpULuSvykP0rBIXHMXtmDSHMDJfWtYEFwdlaYeT4DfxXt+xh23N7Bzjs7cW3p+mnRrmrVkLt3+f3CWpy2OWG30I5hB4ahUWmY22Qu7m3cccjpwCbfTdR0r8myS8uITozGzNCMsIQIfnAqzYRebly1r4bOICdXCldjUbVp3Bo4AaMatVCNHasQAhQuzJ3B7akTswLjZDil782tYR2oMsIAi0kqek934PakgRgbmaPNXwhbU1tC40IxqFyNtl2FSkPgcq5kTJLh+LNT1NIUQoWK4wHH2dB2A4d7Hk65pJVXVuLSwAWAtwlvqb2+Nmeenvn4GLRvr0R2Mimq8SLyBb+e+5XR1UdT1LooACZahcEqNimWZ2+f4fXQi2FVhqVKc/F66EV2o+zUyl/ro7bnnpvL2Wdn2dx+c+oV53fq2uj12JrZ0q9CPyyMLFjos5B6eneeGsUjT58y/uh4SuQowcB7JkpapZsbmJuTO1tuTLQmJCcnMeYC1DUqhnkirHCIVyKiK1aA0Yd0wiGVh3DI/xDP3j770Ae9HgYNgr17YedOhWkqHQRFBeF8ypnhVYanSh2KS4pj5MGRtN7eGmOtMQ0KNaBdqXYp+wMjA1PE+mKTYum9rzceDzxwyOmAf5g/9958Rr3F3/BjhRHM9y9M3uqNlZqdpCSFKMDPD0aNUjRV0sHtkNt03d2VVsVb4drSlURdIicCTqTsfxrxFKdtTvTY04NG9o14+P1DquapmqYoPCO4X3PndexrBgXnxcT7tKI9Ur9+muN8g325FnTtq4vA3yM0LjSrPiML/2moRP4vKIn9/wGnbU5o1Vo8unp8E/tPIp5gv9Se7d9tT8N//r/C3dd3qby6MoMrDWZpi6WZZnfjjY309ejL7k6706og/0NsurmJAZ4DaFqkKTs77sTM8J9rLKRCcjL88ovy16ABbNnyge3l9WuFscTfX9FGqPXxSc1Xo3Bh6NwZfv01w8OevX3G9lvb2XJrC7dDbmNtYk2XMl3o4dADx/yOaXOOIyJg+nTC3JfTsbcxZ+0SWdl6Ff0r9k912MSND7jkH85fMzZVeh0lwm/jFqxMTPfc3wt6UUiHBFQColJe1QI5DbJT3b4Ot9/cJSDsMWqVCr1ICumqShT2szK2ZVADN4NvEh4bTmGrwhSzKUZUfCT339wnPD4ca2MrjDRGvI4JRq3SUNA0NwXDdBi8eKXU1uTMqeSDZ3+Xr/7XR+W7/98XopexLUPO96Jdf9mfmJzAlaCrWBpbUtqm5Eft6PQ6IuLDiQx/hf3TSG7bgs7MGEONESJ64pLiUhxgQ7UWUwMzzA1MMTUww8zAFAO1ATqV0M9xCM+zOaBSfRBAVOt1VA64xLybq1OUs68WNaWZ33TyWRZgguMEpp+aztO3TymdozQBEQGc6H2CuhsUtrd1N9bRunhrdt3dhaWxJf5h/pgZmFHIshD+oX60D7VlT7YXlIo0ZIfDDEr0HQ9aLSMPjGTFlRWAkk7p2tKVoV5DMdQaEpcUx7bvttGhVIf0P4S7d0OnTnDunJJu+BXos68Ph/wO4fe9X0rtwfO3zymwpACHexzm3PNzLL6wmJdjX6YSp6u2phr2Vvbs6JiWChXg8ovLOK5z5EfHH5nVaFbqnZs3K/TKCQlgaIjbZTe+P/Q9f/b7k+47u/D2dSAjC3dlZtDveLTYRJuWPygaDNu2ATDUayhbz68i2hBW/pmdwddgwsACrDO4TeCTDphu352quejEaPIszMOYGmMUp05EYRP77TfYtElhFfsIeu7pydFHR3n4/cMUZ+nmq5t039Odx+GPmdlwJj8d+4nFzRczstrIlPMc3R0pblMc5/rOdNjRgftv7rOu7Tq+K/UdzbY0wzfYl4sDL36yvgVQHPsVK2DlSiQigr2l1dzu2YRpEz9dPxcSE0K1NdXIbpydc/3PYW5oTvHfitOgUANcnVxxvezKz8d/xtLYEjcnN1qXaA3AqiurGH5wOM9/eP5JZXIRwXZ+DqJiIoicp8Zo736lsD4djD0yli2+W3gx9kWGdSmfiwEeA7jz+g4XBl74altZyML/AlkRjX8RNiY237RYu5BlISrnrvw/F+/7K0rblmZu47ksu7SMY4+OZZrd3uV706FUB4Z4Dck0/ZDe5XtzoPsB/nz6J/U31ickJiRT7KLVKquzx48rudnlyyvFgwC2toq4U/nyCu3k4cMZ2/oaZBDRCI8LZ83VNdTbUI+CSwrifNqZMrZl8OzqSdC4IFydXKlVoFZqJ0NEmcSUKMHDPWuo8aM1voVM8O5zPI2TAfAg6C1/f+SIWkOIeUGIiYHYWLIlqzFNBuMkMEoGkyQw1IGpTo1a4E3iW/xCH+KQozT5LfKhF8FAo0WvUhiOdGoISQjlxPPTBMS+oEpBR4rmLs396ABOvbqA2syM6sUbUN6+BuGaJPwTX5EtRz4sbfPjm/yC/dlD8HUsQnz5MkqfrlxRcsQjIxXGoJw5lT87O7CzQ5uvAMEWasKsjJWaj3z5FOekQAGkYEHOql8QaKWlcMWGiqNXpIhSx1O0KPqiRQi0M+W4YSBbE6/gwUPO2sSSpIYYA7hsFc91m0SeF7SEcg7YOTalbJMeVGzejxKNu5C3XmusajXCsFpNVFWqoC1dliiD/KmcDAC9WsPdMlXhzh3Yto2z3WrR0G8K+S0LYmduR8+9PbG3sse1pSu+Ib4sbLqQnXd3olVrqZGvBoGRgWQzysab2De8jFQiN3HJccQnx+NYoBa/W71gcLEuXHjejBKDflbUvDdsYH7DORTKXgiAmMQYXP50YVenXSTpkrAwsqDjzo6suLQi/c9qhw5QtuxXRzUuvbjEppubmNlwZqoCZxMDJaIRlRjF2mtr6VWuVyon41X0Ky6/vPxRtqnoxGh67OlBBbsK6TI0pUQ03jGc2ZnboRMdxayLcX3oDeo/UzMz6HfyZMtDk98OKN+lJYrWg/s1d7aeW4VKABVkK1sRlV7PiMiSvDUUtgyslqY5c0Nzejj0wP26u+KQTp+ukFG4umboZPz59E+23trKr41/xdLYEr3oWeyzmGprq6FVa7ky6AqFshciWZLTjEVgZCBJuiSqrK5CRHwEPgN86Fq2KwYaA3Z33o21iTWttrciIj7io+1z86bCgFaokOIU9emD6tEjYrasY3r8IXbe2fnxc1GYrdrvaE98cjz7u+1PKfJ3KuaExwMPaq2rxajDo+hTvg93R9xNcTIAupbtipHGiI03NmbYBoDbxeWExoUx/LJgtGvvR52MJF0SW3y30LNcz0xxMgDC4sOyIhpZ+G/jf5y69f8Vxhwakyqn9Vtg1p+zxGyWmcQmxn7Tdr4EOr1OGm9qLHkW5pHQ2NBMs/s65rXkmp9LWmxpkam1FddeXhO7BXZSeGlhefgmk+snQkJEWrRQ8o4nTPhQExAbK9KqlYiBgcjOnZnbpoiITieiUomsWpWyKS4pTnbd2SXtfm8nhr8YinqGWppsaiIbrm+Qt/FvM7Z344ZIrVoiIN7964vl7OxSankp8Q/1T795vU7qztog9aacl/pTLqb81ZtyXiZsuKccFBUluWdYiHqakttvPE0l/KUeQ+OsEdNZpoIzsv/BfknWJUu11dVEM0MjFnMsUvLIcUZMZpqI0S9GkmdhHtnmu02uvrgqpVeUFqNfjGSxz2LR6XWSmJwov138TXLMyyEmM01k7OGxMvbwWDGfbS4mM01kzKHREui5RbkvKpVSb/PjjyIBAamurfDSwvLj0R/TXPOG6xsEZ8TjvoeIKDneD14/kGknpkl5t/Kp6hhwRnLOzymtt7WWJ+UKyIvmteRl5MvPu7dJSRKzdIFsqqyV0T2WSMNJqce4waTzUt/ZXUREjvofFdNZplJocSExdDGU/Ivyy647uyQsNkzyLswrTTc3leCoYDGdZSqTj0+WwfsHp4w5zkiddXUEZ8TqVyvJtyifWP1qJXvvfcjbl2vXRNq1Uz7fRYpIwKLpop367v7N0EiTTU3kVMApMZ9lLnkX5hWckUnek9L//u7cqdg5f/7zxuFv0Ov1UnNtTSnnVk6Sdcmp9kUnRAvOyKhDowRnxPeVb6r9666tE5Wz6qN1BoM8B4npLFN58OZB+o3v2KH0/V1Nwfln5wVn5FbwLRERWd1OqdnQOmuk4hDk4eo5IiJy4fkF0c7QSM92iHYqkm+mtfTuoBIZPlxEpZJ2Mx2kzIoy6Y7X+7qTvXP6KG3PnZvh+CTpksTB1UGqr6kuOr1OXka+lGabmwnOyA+Hf5C4pDgREem3r5+UXlE69bnJSaKeoRaVs0qabm6a7nP9wZsHYvWrlTTZ1ESSdEkfduh0IgcOKDVjIJI/v8iCBSIRH2ru9Hq9dNrZSax+tZLnb5+n23+9Xi899/QUo1+MxOe5T8r2+KR46bWnl+CMFFxcUM48PfPRMei1p5cUXVY0w98PfVKSWE41EOPJSMLuHR89TkTE476H4IzcfHUzw+O+BHXW1ZGee3pmmr0sZOHfRlZE41+EjanNN9HR+Cs6lOpATFIMRx8d/abtfAnUKjXr264nNimWEQdHZJrdHKY5WNd2HYf8D7H66upMs1sxd0V8BvhgoDbAcZ0jFwMvZpptbG0VJeQFC2DxYqhTR2FQMTGBPXuUdJGuXRU18cxEZCSIoLPMzomAEwzwGIDdAjs67epEYGQgcxvPJfCHQI72OkqfCn2wMLJI305EhJIrXakShIezassPNCt4hmr5q+MzwOejaRIbb2zkRuIiQECUOhW1XodaL5TKeVdZgS1QAKuQSPTvgiZNSrbiL0LU2GWzIzYplhI2JeixpwePwh+xp8seLIws0Kq1JOoTKfkuPSkuOY4EXQJmBmZ039OdH47+wIa2GxhWZRg/HPmBppubEhwTzMhqI/H/3p/R1Uez4vIKtt7aikt9FyY4TmDDzY0UvtmfYUPy8fT6KUUvYvVqJSrRrp2iRSCSLsXts4hnjDw0kjoF6nDm6RmqrqmKySwTSqwogcufLtwOuU1By4IMrzIcr25eBI0LInh8MJ7dPCnYpBN57r8gd7bUYmrp4tw5jjUpzKGV4+l1NZkGrw+hU31QWVfrdagQRu5ZwkyPcbTc1hIRITAykHGO47g34h4dS3dk7NGxyup+67UsvrAYFSoq5KrA2msKbWq9gvXQqDRcfKF8F8LjwymYvSA3ht6gXckPeftUrKjUBFy/DuXKUWjsDILdrelzHUjW4f3Ymz339nCs9zGiEqMomL0gs8/OZoDnAJJ0qVW6+e47KFPmH0c1dtzZgU+gD4ubLUajTh3leR/ROPboGLXy10ojNufl50X1fNWxNbNNY3ff/X2subaGxc0WU9ymePqNpxPRACVSEp0YzbSyr+n+0obLHjmJyW5KpTezWHF5BW1/b0u/KzqOF4Hqkod+QXZ4loCkiz7g4MDorou58/oOxwOOp2mygl0FqhkUYtXtjQoj1Y8/Zjg+rpdduR1ymxUtV3Dg4QHKrSzHzeCbHO5xmEXNFmGsNUYveg76HUwVzYhJjOG7Xd+hFz0dS3fkYPeD6YrJFbcpzu7Ouzn55CSjDo1CYmNhzRolUuXkpDyTfv8dHj+GceM+pCgCKpWKla1WYmJgQt99fdGLPo39OWfnsMV3C+vbrqdGvhoA+Dz3odLqSmy7tQ1DjSH9K/andoHaHx2DARUH4B/mz5lnH6kZ0utZMtaRCE0So+3aYvhd5wzHdP2N9VS0q0i5XOUyPO5LEBoXmkVtm4X/Nv7Xns7/T3C95CpaF23mMhulg9IrSkvvvb2/aRv/BNtvbReckW2+2zLV7tD9Q8V0lmmmRx/exLwRR3dHMZlpIp73PTPVtoiIXLyosKlYWHyIYuh0yuoliMyfnynN6PV6uX7FS8Y3QfLOziE4I4WXFpapJ6bK/df3P8+ITieyfr1Izpwi5uaSNH+ujPIaKTgjIw+MTL1i+Te8iXkjNnNtpObammIxvZx0HL9Gak7ZL61GLpFb+RwkXoMk54FTWgAAIABJREFUmRiJjBkjdd2qpayeTzsxLQ271PuV8UKLC0mp5aUkMj5SPO97Cs5I9TXVBWektnvt1JGCeTnFfom9qGeo5fuD38ueu3sk78K8YvmrpWy/tT2ln08jnqashJZaXkp23t4ps/+cLTnm5RCti1b67esnD5/fEFm9WsTBQblHJUtK59mVpMbKKrLNd5uMOzJO6q+vL1oXbar+4oyYzzaXNtvaiNdDr4yfAb//rtgODv74Ma9eycv+ncSlDvLUAok21kjQirnSaENDyfNLTXGYskRqTtkvg/oukauFyssbY+RiHsTiJ6TJpiapVuL3P9gvOCPrrq2TNzFvxHy2uVRaWSml/6MOjhLNDCWaZL/EXnBGHFwdMrznKbh+XXTvIhx+1kiftohmKrL6ymq5GHhRss/JLkWXFRWti1ZabGkh0QnRqc9/Hxnw8Unf/kcQmxgr+Rflz5D5x/AXQ8EZ2Xxzc6rtCckJkm12Npl5emaac15GvhSbuTbSdnvbjO/hvn1Kv0OUiEhMYkxKW84nncXIWSsBOQ1FTEwk8t4N6b67u+CM2ExUycIaiGo64nt0i1y3e8e4VgSRc+dEr9dLObdy6bMLbtsm7hWVcwPCHmc4Pq+iXonFHAsZ4DFAhnkNE5yRVttapYngXH5xWXBGTgWcEhER/1B/cXB1EJOZJoIzcj3oeobtiIhsPrJAnOshsZZmSmSwfXuRM2cU9rNP4NijY4Izsthncartu+/sTnlGiIhExkfKyAMjReWskmprqonvK19p/3t7cXR3zNC+Xq+XIkuLpP97qdOJbtBAsfgJMZlhKInJiRnaCokOEa2LVpZdWPbJ6/oS5JqfS1xOuWSqzSxk4d9EVkTjX4S1iTXJ+mQiE76tKnSHkh3wfOD5ceGj/xG6lu1Kt7LdlAK8t5mnH7Gg6QLyZMtDr729Mo8xCiUC5d3Lm+ZFm9NuRztWXVmVabYBRQn6+nUl37dzZ0UtOSEBli+HSZNgwgTl9R/yNTyJeMLsM7Mp61aWil6t2FAB2uVuwPn+5/H/3h+XBi6UyJFWuCsNrl9XmLH69YNGjXh76zKtc59kxVU3VrRcwW8tf8uQg/7n4z+TrE9GL3rKFbSg4O0hmD1tTXL4GMq8fohWVLToksy+IfWwsymUcp5WrcVQY5jy3lhrjI2xDQYaA0wMTHj+9jl99vXBqbgTo6qN4lrQNX6o8QPnnp+jdv7aKSJ/IbEhPIl4Qv2C9Vl/Yz2DvQYzwXECTYs0pdsf3eixpwfhceEUyF6ATe03cWXQFezM7ei8uzPeAd7s67KPeY3ncdj/MCXXVaK1mSfzXHuwYn5nTpm/Ic/pa4TeucLrgd05e2oz90Pvp3wOLY0t6V+xP8d7HydiYgQe3TxwKuaUsYhXtXc5+OnpaSQno1+2lDUdCrLPdxdTz4BhydKY3n+Ed+08HH9yAiPj59xRj8FH2xrD4DFUenIT94pQLAy8txuwuZFrykp8WFwYg/cPpmWxlvSt0JdxR8cRkxjD3dd3qZG3BmYGZiy7tAy1So2I8Cb2DWrU1C5Q+7N0B6hQAfXevTw9uY/buVRs8IAHy+HizKEkxEXj3dubN7FvKGJVhDPPztBgYwNex/xFyLJjRyhd+oujGgt9FvIq+hXzm8z/6DEqVJhqTelYumOq7WeeniEqMQqn4qlrEvSip69HXww0Bqxtszbje6h9NzbvWOZMDUyxMLLgYehD5p2fxyhtLQqFJML48WQrWZ7sxtkxSYIYrTCxCdTKVxOHX1ZR3qok9m9V7GlfEhwVIoZR1UZx4OEB/MP8P7Tn6Qm9etGlfHeyGVuw5lrGEdGJ3hOVa312hvU31uPa0hXPrp5pIjheDxVlbcf8jhz2P0yVNVWIT45nTqM5ACmaKenizh0YOJCebSbz00UD1paI4fSxtUrktnZt+Awhu8aFG/NDjR/4yfsnbgUrOiTXgq7Ra28vOpXuxPT60znod5AyrmVYd2Mdi5ot4nz/8zjkcsCpmBMXAi9kWBepUqnoX7E/u+7sSv27LAIjRzL33loijWF8nYmfrLnYemsrKlR0c+j2yev6XIgIYXFZNRpZ+I/jf+3p/P+E96szj8IefdN23ufqHvE/8k3b+Sd4nwveaGMj0el1mWbX57mPqGeov8nKT7IuWUYeUFbvpxyfkvkRKb1eWSU3NlY0FO7cUbbPn6+sig4bpkQUPgNvYt6I22U3qb2udkqtQrfd3eTAzlmSqEbk0Rd89sLCREaMEFGrRcqUETl5Uh6FPZLSK0pL9jnZ5aj/0U+a8HnukzJuOCOLOuQRAZnniBhNU0l8UKDoqlSWYFtTyfmTRlptbZWykt59d3dps71Nuroamhka6ba7m+CMzDw9U+KS4qS8W3kp8VsJ2XF7h5jNMpMyK8pIjrk5Uuk6FFhcIMVm1dVVxeWUi2Sfk13yLconxx8f/8st0YvHPQ8pvKSw4IyUXF5SqqyuIka/GKX0wXSWqTTa2EiaragphtPVUmWYEsUwnoxUnZZb9t/bJwnJX6bL8a5xkRw5RKZPT7397Fm5Uae49GuD3LdBEgw0ErNgjohOJ29i3kiOeTmky64uYjBDK/ajlD6a/4Qkq5AwU5U0GmomEUbI5SIm8uqV8jnouaenWP5qKY9CH8noQ6MFZyT3gtzicc9DNDM0onXRSv0N9QVnpNKqSjLCa4QYuBjIuCPjvviyVlxaIeWGIrtLKXodj63VEvLbXLn69IJY/WolpZaXkpzzc0rRZUVTPyPfR3guXPisdl5EvhDTWaYZ9jE2MVZUzqp0V7zHHBojeRfmTfM9X+KzRHBGDvsd/nQnDh1S+vz8Q31B8d+Ki4Org1jPtZbwskWV/d7esu7aOmE6sr0M4lJHuW+GzlpZXQnRN24k41sbS665til1JrGJsWIz10ZGHxqtGPb2FjEyEvnuO5GkJBlxYITYLbD76Ar8madnlPoQF62Udysvd0LufPQyqqyuIp13dpZZf84SlbNKnLY6SXhcuCy7sEwMfzFM+yzU60WOHhVppmi3SJ48Ir/+KslvXkurba0k2+xsn9ZR+RvikuKkrGtZcXB1kEdhjyTPwjxSZXUVeRL+RLr/oUSCmm5umkbL5mXkS8EZ2XJzS4b2A98GinqGWlZdWfXhGkaPFp0KMZthJGazzNLU+KSH8m7l5bsd333RtX0KkfGRgjOpIq9ZyMJ/DVkRjX8R7/MsvyXzFED5XOWxt7Tnj7t/fNN2/gmsTKzY0G4DxwOO89vF3zLNbo18NZhcZzIzTs/gyssrmWYXFO2OZS2WMbfxXGaemUl/z/5p88m/BiqVwnd/+bLCfV+lCri7K3nLa9fCqlXQq5fCKZ8O4pLi2HlnJ21/b0vuhbkZcXBEijp7yIQQtn23jZaq4hjoUTQUPgW9HtavhxIlFFap+fPh+nXO2GuovrY6CckJXBh4gSZFmmRoJlmfzLADw6hkWpToreuxiYWm54Nx7edA00eQoBbOxT1AvfsPbPUmHDtoy6EHXinn33tzj06lO6W8F4Ti1sUxUBtQPld5dt3dxeBKg5l6cionAk7we8ffeR75nKOPjnJ+wHmiEqPQqDXYW9qTpE8im0G2FM2EfuX7kahLZNqpaTQv2pyC2QvSaFMjmm9pzsiDI6m7oa5C7xnxGICHoQ+5FnSNmvlrsqvTLmY1nIWpgSnHA45z5LUPiSo9drWa0jk0Dye2GXDJJYhWLX/AcPEyCPvCuiyVCqpWhUuXlPfBwcT068FP02uzn4es9oI8+Uph6Hsb03E/gVrNRO+JJOmS6FO+D0mSTL2nyqnRxrC/OFjFCt9bNqV1by0lA+MJqOvAZp9VbPHdwtgaY2m7oy3LLy1Ho9IwwXECnXd3Ric6CmYvmKJ54dHVg3hdvBIJeKes/SUYVmUYdo5N6dbNgPJD4VZuNbbfT6RC/a7cMBpNWGQwtqa2iAg13Wty9eVV5cSOHRU17c+Makw6PglTA1Om1J3y0WN23tmJIJS1LZtm3wG/A2miTreCbzHReyKjqo2iWdFmn+7E3yIaANkMs3E75DbTEh2xvPsY1Gou3T3GEK8hDLuqovNdWNnAjKaFm9DP35zBbaCb5XGaNRlKcNxrzj8/Dyj1JUMqD2Hd9XVEnvFW9Cbq11eUsrVahlQewqvoV3g+8EzTrcC3gbTc2hKAEVVHcHHgRUrblk73El5Fv+LKyys8Dn/M5BOTmVp3Kp7dPLE0tkzR0EgZo4QE5ZlRrpxC0xsSotB4BwTAxIlobHKwrcM2ClkWotX2VqmjVp+AsdaYrR22cv/NfRzdHVGhok/5PlReXZnD/ofZ1G4Th3scppBloVTn5c6Wm0q5K3HA70CG9vNa5KV50ea4X3dXIhk//ghLl+Iyz4kYSeDn2j+nqfH5O268usHN4Jv0rdD3s6/rc/BedyurRiML/2VkORr/It6HP7+laB8o4eAOpTqw78E+dHrdp0/4l9G4cGNGVRvFRO+J3H19N9PsTq07lQp2Fei1txexSbGZZheUMf2x1o9s7bCVrb5bab29deYLI5YtqzgbPXrAwIHKa6dOsGMH7NqlCJnFKcKHuv/H3nlHRXF/7/+1u/SOCChi74JoLNh774rGFnvvRmONDTX23mLvDQ32ilhRUBQVwYYdpQgqKL3t3t8fE9cQS0xiPN/P7/icw/Gc2dn3nRl3Zt7P+977PDqlsbbH/h44znekg3cHnic9Z37D+USNjOLYD8fo4tZFL/dIfLzy7x8aLj+Ia9cUL49evZQJQ1gYjBzJplvbqbelHq4OrgT2CaREzhKfHicri19X9eZGdDBLlz5ga64YGuSoQOl+Wi61KItTEjhijs8DH8ifH5WXF6VvxrLhal79EPfj7tO0SFPUf3hMFclRhExdJrdib1HKvhQXIy7SuEhjOu/pjIHagGVNlrH++nruvLjD5T6XKWhbkKjEKIrZFSMpMwkjtREmBiZsvLGR6MRoKuWphPdtb/yf+QPg89CHtdfWYmZoxuRakznZ9SRxY+J4PfY1IyuPxP+pP533dGbSmUnEp8bj5uimb4S9+eI2u+2iyDjtC4GBSnnIhAmK5G3fvn/PlNHdXfktLF3K4caFaK3bSYdbMD5ADZOnYBkUosjIokiUrr++nuFlFjJjVzRVsg7xtPBirMSN3Ba5mVfPBICGG85xPZ8h66a1we1xCrm6DqCkRUGm+U1DhQpTA1OK2RVj5ImR2JraokKFTnR0cetCbovcOFs5E5cahyD/iGioVCo2tt6ImaEZd5wMafV9FpWHmHDJPp18IzwJX2VKvbPhWKpNcLZypvbm2oqohUYDkyfDsWPvyNdHcCXyCptvbGZ6nenZDfT+hJVBK7EwssDEwCTb9nuv7nE/7j7NizXXb0vLSuOHvT9Q1K4ocxrM+byT/VMzOEBkYiQmGmMGzvKFESOIKV2QNi+WUzZaWHhcGNXGnCh1MpPi3Vi1/Q27zjlwrLiGfroD2JvZZ5MtH1RxECmZKWya3FJpwN+7V2/gV9qxNFWcq7D6avZSz4NhByn5a0kSMxJZ0ngJixsvxtjAmI/hrZnd3Vd32d9hP1PrTEWtUuvPxdnKGV6+VIxI8+dXnhkFC8KZM4ok9A8/gNG70kdLY0sOdTpESmYKbXa1IT0r/fOuJeDq4ErJnCWJSY7B2tiaoceG0rBwQ+4MvkPXMl0/WsbWtEhTjj84/pcltb2/683lyMvcnNgP5s9Hu3QJ89LPYGlkyfga4//y+DZe34ijuSONi3xY9vaf4u2i5LfSqW/4X8Y3ovEV8bUyGqC4hMcmx+pXwf6vYXb92RS0LUiXvV2+WC+JocaQbR7bePL6CeNOjvsiY/4ZnUt35tgPx7gYcZHam2vzPOn5lw1gZqYos+zcqahTlSunaMwfOoScPsW1dtUYeWgIeRflpcHWBvg/82dklZHcG3KPwD6BDKs0DEcLx/fHjY9XSIbmIytz8fEweLCSTUlKgrNnYds2dLkcGes7lp4HetK9THd8uvh8+qWXmgorVxJVphATI7YwICYvzxZM4pVRFg9yQLX81fEL9yPJ2YGGiY6cePS7Olr9+qhmzqTbkWe0vKtsSspIIjkzmfqF3jkaB0QEUKdAHdJ16bQu3pq7L+9Syr4UjhaOtPZqzfelvqeDSwf6He5HSmYKvl19qV+oPvde3cPSyJIMXYaehMamxBIYGUgxu2K453FHhYpCtoXIa5WXs0/OokKFex53fB/50m1/N5ZeXkqWLgs7Uzt0oqOATQGm1Z5GQC/lHnvy5gkAk85MwtfuDbJ5Mzx7BhMnKv4oZctCzZqKS/NHslN6mJvDy5cMPj6cMw4pHNmhwsW6KJrAyxhM8dSvmKdnpdP/cH9cLZtxLqAkBuklMcYBrZk7ZbUrKWfrQVBuHTccwTQ2jqWJNZih8mPsjy5UD4d5qx8zvMwAauSrQXJmMuFvwqmVvxbPk55TImcJrve/TnRSNBWcKgDKIolOdP+IaIDipL66+WoydZmoUHHdQUf1ps9ZuroXxhUqseS3JPZPuUNTv+dUc3Sn2Y5mbAvZphDuEiU+mdUQEX70+ZHSDqXpU67PR/e7Hn2dwMhAclnkIjUrNdtnR+4dwVhjTN2CdfXbxp8cT9irMLZ7bH+PmHwUf8ponHx0kudJz8mZLBg5OpExeQLfN3iNYWIy23dlccsBTtYtSM081ag+YyuUK0f7cy+53ngfdmaK/9LmG5vR6RT1pTzPk2l3z4BlFXToDh1Unht/QP/y/fF95MvDuIekZKYw8PBAWnm1Ii0rjc6unRlWadgnD//wvcNMOTsFUwNTrvS9QqsSrbJ9rg67x+SdUYpnzMyZyiLI3bvv3LI/MvHPb5OfAx0PEBQVRN9DfZHP7D+bdHoSIbEhqFAR9ioMr7Ze7Gi7Awdzh09+r1mxZsSnxXMp4tNmd82LNcdezNhwdR0sXMikks9JyUphcq3JenL1MWRoM9geup2ubl0/r2/pb+CtSuWHVL2+4Rv+V/CNaHxFmBmaYawx/s8zGgCVnCvhZOnEnjv/98qnQEn/b2uzjdDYUKae/XemXH9EiZwlmFt/LssuL/vPJH7rFarH+Z7neZ70nCrrqxD2MuzLB+nYUWnCtrXlUdMq/HJ9CaWmOlLe/TrbLq6mXcFmBPYJ5N6Qe3jW9qSoXdFPj/f69YfN+nQ6pUyrWDHFzXjhQiWrUasWSRlJeOzyYF7APBY2XMiaFmuyNWe/N/6sWQopGjKEnxqpMLG0ZcbCG6xJvUC53OUIigqiSdEmhL8Jx7R4aRqGGxD8PJiYpBhljDFjeN20Llv3QrGXyqaFFxfSpmSbd2HSXjOo4iAAtoRsYUqtKSy6tIiptacS/iYcj90eVMtbDRHBbZUb9vPs9aUTCRkJmGhM0Kg0GGmMcLZyxtzQnDsv75CYnsjBTgexN7PnYfxD7M3sGXNyDDZzbOjg3YHIhEhm15vNsxHPiB4VTXD/YArZFqL1rtb03N8TAEdzR377/jfSstJouK0hVdZX4fDry8j48UoJibc3qNXQoYNynaZPh5iY7NcxJgZtj26s26lIkw4PUjPfV4XhsB8xCg6B8uWz7T7OZxRvHt/F+nkDVAIqFCKpQoMKFRJXlwxtBrN/V/js4HWTuKSXLDe/RbeeNtR9DLp1a/k16FesjK1wsnDiYsRFAHa3242VsRVBUUHviEbKK7Si/cdEA6CDawc6uXbCSGNEhi4DezN7hkdvYPsUD7hxA9uq9Zi+PYq1Y86zPLocPb27Mu/SQmTSJDh69MNN8ijlUAHPAljUaNEnJ3yrglaRxzIPuS1yv5f5PHz/MHUL1sXcyByAEw9PsDhwMbPrzf57kqV/yGjoRMdo39Hk0+QgWZcOq1fz04XJXDR7xYX14JAMB+f2IfTlTX5+lh/evIHbt2HIEApVb4F/L3/alGxDfFo8dbbU4VVYMNSvz/DwXDywSOdY7PuLSe1d2mNjYsMv53+hwpoKbL6xmap5q2JuaM7ixos/etg60TH17FRa7GyBiPBTlZ/eZS9FlGxFixZs+fkK7leiFRL99CmsXKmUWn4GKjtXZmOrjWwN2cqsC7P+cv/ZF2Yz88JMALq5dcPSyJJ9d/d9Fkmp6FSRnGY5OXr/0w7jRrPn0fViClurmJM0qC+LAhdhbWzNT1V++ssYh+8d5lXqqy9eNgXfSqe+4f8PfCMaXxEqleqreGmA4l3RpkQb9t7Z+9mrRl8b5Z3K41nLk9n+s79o5mWw+2AaFGpAzwM9/7Nr7eboxsXeFzEzNKPqhqpfPHP0MuUlv8b5UK2/IYUHZzE78Rjln2VxrPQcojbYsnTCBdzF6dPKN3/Eh1zBr16FqlWVMq3GjZUyqR9/BENDnr15RvUN1Tn1+BSHOh1iRJURH44VHQ1jx0K+fODpCW3acPLsBrysnzK/6WJeprzkzJMzWBlZ4WTpRFxKHPZm9ji4VabBNcUx2PfR747xKhWJq5YSaQV7d4FVhprFgYtJykjKFvLG8xvUzFeTJ6+fkJyZjJ2pHT0P9CQ1M5WTj04y7PgwcpjmIDkjmWp5q3GuxznejHvDb9//BoC5oTlqlRojjRFa0eLm4Madl3dotbOVfhIdmRiJChVGGiMsjCwY6j6UHyv/SB4rRWWnTK4ynOh6guM/HNf3cVgaW1LBqQKBfQLx6eKDocaQFjtb8N3q7/C+tx+dRxslUxQSAs2bw+zZyopwly5w4QIsXcr16kWobLqdS86K03mRZBNUU6agKlhQISa9ekGTJmjLluGNrRnzWywnagHkTi8Mf3IEV6EhM9UOA7UBN6sX46UpmD2Nos0dRdFrybxbdJ7rzqLy6dR/CJnpqRgbGFO/UH1c7F1wdXTlyesnxKXGUT63QnDeTnxMDUw/73f3ESxvupwcpjmwNrYmNiWWYjmK0ftgbwJzpGJ16ASPz+7nhpOa/isvE73Wijtzx/CTZQC6EsU/mNVIzUxlzMkxtCzeknqF6n00bkJ6AttDt9O3XF/MDM2yZTQS0hPwC/fTe0a8THlJj/09qF+oPsMrD/97J/g2o5GVxbaQbQQ/D+aHi8nEmcE6u3CWX1nOjJPgnAg7+1fjQtYjyuUsTcP5+xQSam0N06YBYKQxwqudF5ZGllyOuEzZ9RW54JRF5Z0XqOhUkSWBS94Lb2xgTGmH0mwK3oSB2oCNrTYS8CyAmfVmftAbBOBN2htae7Vm6rmp9CjTA61oaVuqLWRkKIsQ5cpB3bpIeDh92xiw5cA0pTQwZ86/d22ATqU7MaXWFCacnvDRXsL0rHR6HejF+FPjsTa25kLPC2xqs4mVzVey69YudoTu+Ms4GrWGJkWafLpPY+5cmDiRXtWH8JJkOu/tTFpWGtPrTP+s5+um4E1UdKqIi4PLX+77d/Eq5RWGasN3JbDf8A3/g/hGNL4y7EztvkrpFCjmfc8Snn3x5ugvibHVx1IpTyW67uv63oTyn+KtQWBqZuoXNQj8M/JZ5+NCzwu42LtQb0s99t/d/6/GS8lMweumFy12tiD3gtwMOzYMGzNbtntsJ6aSN9t2pNF46BIMFiyClBSll+L+/c8b/I9EIy4OBg5UGo5TUsDPT5lI5FYM4i5HXsZ9nTuv014T0CvgPZlPAB48gP79lUnRypUwaBA8eUL68iUMvjGTmvlr0tWtK+uurcPa2JpLEZfoX74/e+/upU2JNqiLFMXxUSxlHdyyZZ5yOBbAowPkewM7j5pS1LYIo31Hk9vinXnd3IC5+lX3WRdmYWVsRYY2Qx9ThYrVzVczs95MTj8+TaY2EytjK9qVaseFXhcwMzJDRIhKiKKiU0VCYkMwVBuiQ0dQVBDmhubsb7+f4ZWGk5GVgQoV3fZ3o4N3h/fu3dyWuYlLjcPCyIKoxCiKLy/OGN8xVHSqyPme5znb/Sz25vZ8/9v3uP7qyvaAVWSJVikFWrAAGjWC/ftJqleDkUeH06xlEvOP6Vh3CNQC6pQUhcD99BNs347cuUNExiu2mT1gwXdpjGxtym+zu/HE4qHepO8tBC0vMm/gYO5AIuksd4csFXieA21WFhXXV8Q39RYVo1Uc3Q5b9gnebbzwC/ejg0sHAK5GKw3Z5Z3K66U2gX+V0QClFGRT6028SX+DqYEp9+Lukd8mP613tSYiIYKCtVpR9PQN6v9kz9VcwoaDMKTbCtaUziD92BEIyv5MW3hxIdGJ0cxvMP+TcbeFbCMtK40+5fooRCPzHdE48fAEWbosmhVrhojQ71A/0rXpbG69+S/LZ97D70QjNSOZCacn0C7BmeoxSj/E4CODcY8x5Mffq3lKNP6B009O83OYIyoDQ4XwL1yYrZ/KQG3A90Va4vRGR4EEFbWbxjLr8RaGVhqK7yPfbL1uUYlRNN7WWG9CN7rqaOZfnE/ZXGXpX77/Bw/3zos7uK9zxy/cj8OdFUlbF01uymw8pvRddOsGuXKBry+vLp5iXZkscucs8PeuyZ8wpdYUOrh0oOu+ru+9o/yf+uPyqwsbgzeSzyofT398SrV81QBFJv2H0j8w6Oggwl+H/2WcZkWbERIT8mFJ9UWLlIWSyZNxmbSMCrkrcOTeEWxNbBniPuQvx45JiuHo/aP/STYD0EvbfvaC0jd8w/9BfCMaXxk5THN8ldIpgJr5a2JnapetifD/GgzUBmxps4WYpBhG+oz8YuPmscrDymYr8brpxc7QnV9s3D/D1tSWE11P0KJYC9rubsuvV379W9/P0mVx4uEJuu3rhuN8Rzrt6cTLlJcsarSIqJ+iONL5CJ1Ld8a8ZVulmbhoUeWl366d4iZevfrnNRnHxyuKU+vWKWVSO3YoL9lr1xR38t/hddOLWptqUdCmIJf7Xn7PMZlr15TSn+LF4cABZXX56VNldT53buYFzONR/CN+bformbpMNt3YRGmH0mhFS2Xnyjx+/VjxLSisOIg3tCnPiYcn9Fk3jUrhR8L8AAAgAElEQVTDfQcNPVtB0+BkPI49QaPSEJ0UrT+EDG0GU2tPpbidUqpxuvtpZtebzdknZ+lTrg9Nijah456OtC3ZlroF69J1X1e9yk253OXY3Hoz1ibWpGnTOP/0PJZGlqhUKnKZ56KSUyVepLygnXc78lnnI3hAsL5saP/d/ZT6tZSeGGVoM+i+vzsutsWoZFeGhrYV2axpR9qvS1ndMg+hbapRY/gCfJcnEHDIgUIX79LFdyAl133HhjENyBw0EHx8OOicTKkhKp6bw4OlUPMpSjN4587K/3FsLKSlcfvKUeoPNCNvzSss61GS6bUE/0alaJ+2hXuGGxDeOYILWgThkXodUQlRhL8OZ3Z1OFoUSr6AlveUSYyB2oAruYU9k7+nVWgmN1tWIiUtiQ6uCtEIigrC2cqZXBa5SM5M1vdT/VuiAdCwcEMGVxxMli4LFSqexD9BhYrWXq0VB/icxVk53p/eXa1oOS4/lC/PgN8eE2euIqVvD32fS1RiFLMuzGKo+9BPlhCKCCuDVtKyeEvyWOXB1NA0W0bjyP0juNi7UMCmAOuvr2ff3X2sa7EOJ0unv39yv5dOLb6/jZjE58zaFIF574EAWGWp2bEri9u/txcsurmWEpYFabPiFBgaQt26SunkH5GYiMfmKzyyyGB5Ny/GVx/PxNMT2RS8CQdzB72C38Gwg7itdONm7E1OdDlB9XzVmXF+BkFRQaxouuKD6kl77+zFfZ07hmpDgvoF0VRVjPIzN3L1lxeopk6Fpk3h5k2lGb9+fSITowCUZvB/AZVKxcZWGyntWJpWXq2ITIgkIT2BwUcGU31jdaISo8hjmYegfkFYmVhl++7ypsuxMbGh+/7ufyl40qhIIzQqzfvlU8uXw8iRMG6cQuYBC2MLdOgYU23MZ03ut4VsQ6PW0NG141/u+0/wKvXVt/6Mb/ifxzei8ZVhZ2b31YiGgdqAVsVbsefOnv+z5VOgKAktarSItdfWcijs0Bcbt4NrBzqX7vzFDQL/DBMDE7zaeTHMfRiDjw5m/Mnxn7zeIsKVyCv8ePxHnBc602hbIwIjAxlddTT3h97nYu+LDHEf8n6jY548cOoUTJkCixeDnR04OkKtWuDv/+mDjIiA8+cV9aNmzZRV0+HD9SuvIoLnWU867elE25JtOd399Lv4b2uzGzVSegSCgmDFCqXvYNw4vWTuo/hHzDg/g5GVR+Li4MLBsIPEJsfy+PVj2ru05+yTs+QwzUHtArX1RKNUvCExyTG03d2WcqvLYTXbCq1o2eMCi2oa8otPFttz9KV50ebZTidDm8GW1lsA6HuoLyOrjKRK3ir0PtibNc3XkNMsJ213t2VV81Vk6jJp91s7ppyZQskVJWm0rRFanVYvh5mWlcZ2j+0UsC3A1edX6eLWBUO1ISNPjKSrV3u25BrELqfh5NSZ8iIplkbbGjFwYF4iSjpzYmQw14fewvmYPzFXz9Hx5x0sPZTFgGsqMgMDOPfgFI/zWlC5UR8OV1nGtSLzKFusJtdywf2c0Kq9ju6tYfOlXOzYC2b1GqHq209prN25E1JTSd2zm1EnRlFmVRmevnnKrna7uPfqHsYaY+6+Ujrn+1ZtQLBmIHFcRq19SbzqMsGaAWRkhZI7AVCBCmjVGfKNgNwpatIy00jKSKKDSwc6TtlN7KqFtLmawvrDGmyMlIldUFSQvmzqj2WIX4JoAMxtMJeCtgXJZZGLDF0GGpWGOy/v0OtAL0SEonZFOdfjHMEOOhq1esPJ/QsJzKfGLPgWWfnzwvr1TD4xHhMDEybVmvTJWP7P/LkZe5OBFZQJv6mBqb5HQyc6jt4/SrOizbj/6j7Djw+n93e9s/UH/S0YGBBrDrMebmJQqAmFKjZirMEZAPr4p5EzWbi9chqhpR05mHKdcTesUFvbKP0ZK1Zkb6ZOTYVWragfEI2lgTkHM28xve50fLv6civ2FskZyWwM3kiv/b1o5dWKavmqETIwhAaFG9DZtTNhr8JoU6INVfNWzXaIWp2WCacm0HZ3WxoXbsTlEgso0ns0UqwYja6+4UmfdhAerohTuLwrC4pIiAD+PdEApVfvQMcDaFQaam6qSckVJdkUvAkXexcM1Ab4dPH5YKmXjYkNW1pvwS/cjwUXF3wyho2JDdXyVctePrV6NQwdqmQKZ84ElYrUzFT8nyrP0SztXxu/igibbmyidYnW/xkZeJX66lt/xjf8z+Mb0fjK+JqlU6CUT92Pu8+tF7e+Wsx/gj7l+tC8WHP6HOpDbHLsFxt3eZPlmBua0/NAT3Si+2Lj/hlqlZpFjRexoOECZvvPptv+bu+paT2Me8i0c9MosaIE7uvc8brpRSfXTlzpe4W7g+8yudZkiuQo8ulAb6U+T5+GJ08gKkqRT23QAHx83t//1SvFcfz2bYUwnD8PmzcrZRC/IzUzlY57OjL13FRm1J3B1jZbFXUdnQ727YPKlZVV1pgYZfIbFqaMafquTl9EGHpsKPZm9voJ39praymRswSRiZH0/a4vW0O2UsKuBAOPDOS7A01INoSrB9cAcDHiImVzlWVRo0V6t+FzfRtyrgB4eO7iYI1fsTS01MfbErIFd2d3CtoUxPehL+FvwtnYaiORCZHM8Z/Dvg77eBD3gLa722JlZIVfuB9zA+ZSOU8ljjXbSXSD4zws/itjrZqSqcuk8+4O/HLeiJ8e5WJbyDaqPkinWjjceH2XQv7fE7t2CfcWpjMu1BqNDlY5RlDO4wV7uleE9evJ06QDkcVyQXQ0qowMbF4lYxx8k/kTalOo9GmqFTrDxZbl+K5AFbzWvaZIPFQYoCJdpeXWShVVQuJJ37ReWTVevRoiI5H58xHAdOAQenZbxME3TbnU4SSTz0wmMSORAjYFSM5MZnqd6cQkx5CgCiHU4EccUvqhzbWWBFUoaYZg6KxIBmdowC0aWtyD7S7KvaAVLTXz1yRDm4FV9770aWtIt+tazjYtRUzic65GX83WCP4WX4pomBmasbXNVmKSYnC2dCYiMYIKThXYdWsXM87PAKBwjsKc63GOTG0m/cOXY7H/KA16aPCxfgF9+jChzxa83zTGRmP+yVgrg1ZSJEcRfQ/HH0ungqKCiE2OpXGRxvyw9wecLJ0+2TT9l9BomFYL1BmZTDqtZVrHXFyJCgKBInGwbnAVOrWayOyaKvKlGtN52w1ITFQ8HEr8QTo6MxPat4dLlzA+eJTmJVrqBT7qFarHjQE3KG5XXCnxurGZFU1WsL/DfnKaKX0T16KvoUJFLotc2Q4vPjWe5jubM99vFgfoxO554ZjVU/q0To79nqKjjHBeuE5ZyPgTIhIi0Kg0OJp/QN3uH0CtUlPKvhSP4h+h1WnpXLozd17eYVe7XZ/se6hVoBajq45m4umJXI++/skYzYo249TjU6RlpcGGDcrza9gwxSPod1I3/PhwMnWZVHOuxsYbG//yfXE1+io3Y2/So0yPv33On4tXKa++Sdt+w/88vhGNrww706+X0QDFs8LSyPL/dPkUKGn0dS3WoRMd/Q71+2IZmP/KIPBjGFllJF5tvdh9azfNdjTjUfwjll9eTpX1VSiyrAjzAuZR2bkyPl18iBgZwaLGi6jgVOHv1+DWqqWUTFWuDLduKcSheXPFbwMUWc01a5QyKS8vRS51+HCl1OoPiE6MptamWhwKO4T39978XONnVJmZivmWiwt4eCiE4tgxRQWrY8d3ja5/wIGwAxy9f5QljZegUWnYe2cvJx6e4HnSc0wNTKm3tR4RCREERgZyNfoq5XKXJy2fExMc29KwcENcHVzZ0GoDg90Hk9damRhnqaFjO0g3VKFq146epTrr4z2Kf8TLlJdMrDkRQRh1aCjFkowZX6ALyy4vo+OahqRmpRISE4JF1AvWnLMmdEEaG9vvoHHFThiWq4i6SVNmjzzKel8zstDRqIAfNY2KcjytHSEFzXhYyIaxeTuhMTRiaDOoPc+VYZvvcmPwTUwNTXljCoMcgxjhFEquMtWITn+FztFBXzbj4uDCkc5HONn1JCZxCdxtWZWr31fHvfZ9JtaF41ddOL4N4grmpni/DPLGjmO2/xwS0hO4mfKEOjkOctMBgsrloqB7QxovOoxB/oL03x5GA3M3wl6FMabqGCbUmMCRe+9Wa6/Lc6ITo7EwssBAbcDTRCWbp1PBnZzQLwhuLoeJfqDSweCjg8m7KC+dvDuxyTWTu7NH0f5CPCeal+B16uv3GsHhyxENAPc87kysOZGoxCjMDc3xC/fDo4QHk85M0j+3CtoW5GyPs8rz4cgApledyLg6OsoNUHOngDm1Z25Xfuvr1n1QOvhF8gu8b3vTv3x/fb+FqcG70qnD9w5ja2LLyUcnuRZ9je0e2/9VA25YylNWVYAJpzJ52LMVU8M3U+G5GvsUOOpqTJ8Zx3gU/wivnDGM8dNiaGkNTk5Kc/VbaLVKmaSPj0L4q1fHo6QHN2Ju8DDuITrRsTVkKyExIZgamKJDx46bO/QZh6tRV1l/fT218tfit9u/6X0rQmNCqbO0HBV3nOP12py09NyJysZGUfS6eZM5JV9Rpdg75a0/IyIhgtyWuf/SxO6vICJsubGFkitKEhQVxMjKI4lJjmHd9XUsbLiQJkWb/OUY0+pMw8XBhR/2/pCt3+bPaFa0GSmZKZxdP0kRvxg4UMkK//7cTcpIYmOw4oUxs95MHsU/wi/c75OxNwVvwsnSiYaFG/69E/8biEuN+5bR+Ib/eXwjGl8ZbzXRvxaMDYxpXqz5/1mZ2z/C0cKRtS3WciDsABuDN36xcesXqs/wSsMZd2rcFzUI/BiaF2vO6KqjOfvkLIWXFmaEzwhymuVkZ9udxIyKYXPrzTQs3PDfa67nzAmHDim9FhERYGWl9E9MmKAQkP79oUULpQwnLU0ptfoDrkdfx32dO5GJkVzodYG2+RopYxUqpKgbFS8OAQGKUlLjxh/Uxk/JTOHUo1P0OtALZytnJp+ZjOUsS9rubgsocrTuedxpWLghFkYWxI2N43r/66xvtR4714o4xiTRpEgTzoef15exvG38TkxPxNqpIGsHV4Hr15m0+Fq22L4Ni9Cjy3weLoamS45Sf3IBPO+tRSXwKC2atX42jHjowE3TRPKVrMzpqrnwbJuD1N074NIlpSwkLY1eF5I52f0Uao0hzZ3O8qpzG26MuIdLvvLMfebFQPfBVHWuytXoq+RblI8RPiPI0mWxuNFirE2sWRy4mClnp5Cpy3z/3s7Kot7RO+yf+4xr+Qyo2A9MElO5v8GCGmcewooVuF6P4Nykh7Qt2ZYpZ6fgMM8Bt5VuRCZEYluzEeUlFwtGVaPQcFjjrsYyU8XJpBAGxeRjdkZNsrIyiE+Lh9+5eaqlCbcH36ZugbrZjcpUIMYG/FpRUTuafgZahEGz1w60K9oKn4dKRmyQwxVWzG5Lu4A3LPCBfFYK8fsvSqfeYmLNiZRzKoetiSJYcDDsII0LN6brvq4EPw8GoIBNAc71OIdKpaJj8iZWXbQjXa2jTdtMzhxYoogb9O37jnBkvMsobgzeiAoVPcv21G8zNTTVT06P3D9CeafyzPafjWdtT9zzuP+r8xl7bS7OCdDnRV5qW+0lr1ix8zcd1mlg0LQ51ibWzPWfS06dMb2uZCklU8uXv/PDEFFW3XfvVrKIjRQ38sZFGmNiYMLmG5tptK0Ro31H82PlHznd7TQAd1/epezqshy4e4DBRwfj6uDKsqbLeJnykr139nLEZznnPMrhP+UpU32zMG3YFIKDwdcXmjQhITMpm/LWhxCRGPGvy6Yexz+m0bZGdN/fnSZFmnBn8B1aFG+hJ4HWxn9hLPo7jA2M2e6xncevH3/SO6mUfSnyG+TkyMH50Lu3cq3/8DwbcnQIWbosFjVaRI38NSiao6jiFP4RpGelsyN0B13duv5rwvUpfOvR+Ib/H/CNaHxl2JnakZiR+MVM6j4HbUu2JSQmhAdxD75azH+K1iVa06tsL4YfH86j+EdfbNxZ9WZR0KYgXfd1/U+ufZYui2P3j9Flbxcc5zsy4/wMXB1csTGxwdHckTn159DRteMXn6ChUimStAEBCtFQqZSa46gopW9j0yYlm6HVZpO33X93P9U3VsfR3JErbX0ot+qAIlE7ZgzUr69kSfbvhypV9N9JzkjG/6k/SwOX0n1/d1x/dcVyliX1t9YnPi0eG2MbquStwtLGS8lplhMXexdymuXk2A/K6m27Uu2wMrZSjiU6GiwsIDSUhsGJpGvT8RvTAdq2xcE3AAReXzmP26XHSm11ZiY5z12hfxDKhFpgSYk31GwcTfHhKvq2gAf5LVldfgpB3/uiNjMnaEQH5m2KokGRRnTOf4XCy7axwC2ZQUYnoFIl5Xx/d1OuW7AuwQOCMTU05Ye9P7Dz5k58uvjwS91fWBq4FLVazez6sxEE30e+5LLIRQfXDkT/FE3f7/oqE32g/6H+elM1/P2hQgX2rxhKqYFatpUz5MLDWpzfpOKZYQrlB2mYXzaFNG06+a3zUy1fNayMlB4VjVpDTHIM5x1S0d4IZvbJKeR3q8G4usKAlmq6WlRlWaAdqubNuVxOKYtR/040TGzteZbwjLNPzr73cxlUYRDb3SDeFJ5bwJxzhviax+Ltvw6dLovOpTqiUqkYkrYH+581PLEF7wE1iE2K4VXKq3fZAMN/J2/7ZxhqDNnaZisvU19SPnd5siSLWy9uUcyuGC13ttR7reSzzsfZ7mcxUBvQpFk8v+2Glg41qR88gjVj6yvSwW8JR/HisG4duvQ0Vl9dTXuX9tnKUN72aEQlRnEt+hrXo69TxbkK46v/tRP0p+AX7seByFPMOglz3RIwNTZnoXcSdkk6jPMVRKdREZkQyaYbmxh5WYNpFlCnjrIoAArJGDVKIUsbNkDbtvqxLYwsKONYhlnnZ3Er9ha+XX2Z13AelfNWpnq+6hS3K071fNVpvas1gZGBLGy0EFcHV2ralmXh+t40bjKU7iFqjEaMQhUerjwfypTRj+/70JdMXeaniUbCPycaWp2WRRcX4brSlbBXYRztfJRtHtt4k/6GtrvbUqdAHXqV7UW/w/04H37+s8YsZV+KufXnsvTyUnwefKB8FFB5e9Ps4iuOfGeBrFql+Nn8joT0BLaFbMPJ0olOpTuhUqno9V0vvG978zrt9QfHOxh2kPi0+P9MbeotXqV869H4hv99fCMaXxlvX3TxqfFfLebbVbB9d/Z9tZj/BosbL8bezJ5u+7r9paLI58LU0JRtHtsIiQlh2rlpX2RMESEwIpBhx4bhtMCJpjuacjX6KuOrj+fRsEdc73+d0IGh2JraUm1Dtc9+cf5taLWKJ8abN+9eoFFRClEQURSnAGxtERHmXJiDxy4Pmuapjd8td5xKusP8+UqZxsOHsGkTSUXyceHpBZZcWkK3fd1w+dUFq9lWVN9YndG+o7n94jbV81Vncs3JaFQaPGt5EtrzMmtcxpEnMoGXKS8pd+4evwUXI637DyxcEsbi8X6KhK6RkVImsn07REVRcuBknBPVnHhxCZKSsLN0QAUk5ralTI123ChujYSFkdWtC0uOqygXDaggMC/4W73GPV8VUEG4JpHCpWtRzqU+8xvOZ/XV1Zx6fIodbXdgY2LDTz4/sbDhQjYFb/qgBn8p+1I8GPoAWxNbfjrxE6NPjGZ89fGc63GO8NfhzLkwhxymOTA3NOdZwjPyL87PthvbWN1iNae6nQJgX9g+SnraEd2uMU+bVadVlXDadIQ25uWJ+S0/VXcFoP5lBgVCn1GlTjfGnRxH4aWFKbmiJF33daVuobo8Hv6YZz8+o0a+GszL8sNABwMMKuP/1B+VSkXrEq1ZP/IcqQF+zJ/nwYpir5Xa/9+TKZGpMVRdX5UsUbIZhmpD/QrxiisrEBNj1pUDiwwo8TyTdvfUOGlN0YpwMdCbQVnlCBt0FzubPGwqr8Gz7GsqTXXmYNhBzA2VcpovTphRzDbn1J/D1eirFLMrRkRCBLkscpGpy8Rjt4e+9CevdV7almpLkoGORj01/HJKGFRhEP0P92fKS29k165shCO9cH7qnnzEILfsbuFvfTSO3j+KChXp2nS2eWz7VyvUOtEx6uAQKkSp6HAL7ltk0NEvnna3dKwcWIHvClXjedJzFlxcgJlWw8CzycoX27d/N8j06Yq87bJl0L27fnNyRjL9D/UnMDKQLMnCp4sP9QvV138+vNJwAiICGFlpJOaG5hjqVPjO6U9SBTcGrA0myDaVLaMaYBH9CsNZc/Ry1n/EkftHKGVfioK2BT96jpEJkThb/n2iERITQpX1VfjpxE/0+a4PNwfepEnRJkq/yI7m5DTLyW/f/8bK5iuplq8abXa14WHcw88ae7D7YBoWbkiPAz14mfIy+4f790PnzjR1qsljwyTuxt3L9vHAwwPRipZljd+V1nYv051MbSZeN70+GG/TjU1Udq78zszwP4BWp+V12utvPRrf8D+Pb0TjK+NtGvRr9mmYG5nTuEjj/4nyKVCMz7a02ULAswDmBcz7YuOWy10Oz1qezLow618Z7N17dY8pZ6ZQbHkxKq+vjPdtb7q6deVqv6vcHnSbCTUn6F/UzlbOnO95nrK5ytJga4OPmlP9YwQGKqvzAwZA69ZKCdX69YpM5rx5hPb8ibEHY/h+2CFG37Wm0/ZxjDs1jonxpdnVxwezbbtIHzmcgAs7WdQhP12CfqbkipJYzbKixsYajPUdQ3T4TTqIK4fsh/M4xzSSDT25cqcGK7e/5vSBRRR+o2acxwKl7KNwYdZ4j6dCJKzdk0l1v3CSgy+jMzLAokY9pTZ65Uo4eBCWLgVAFRZGwxo9OFHVEXx8sGvfA1Qqkk0NKFW7PS8z39AxZBJORQ4Q4iDs2QV2v8/PyjiWIeBZAHks8mBlbMW4U+MQEfqX70/9QvXpfbA3GpWGfR32cT/uPufCz9HJtRMDDg/4YMYst2VuHg57iJOFE4sCF+Gx24OKeSoSPCAYWxNbYpNj8SjpwcKGCxER+h7uS42NNShuVxwVKoYmu+I//zXrXvhQdLiaoELGhCZ0YenkSxipDODyZRg/HgdrJ2bUm0FH145EJUYR9iqM4nbFGVxxMGaGZgw9PpSjD45Sok47Mg01RNy6RJZk4WTpxOz6swmMCKTM6rJMTj/Gnu+MQKWUQwEka1Mp8caAlMwU1Co1V/tdRRBUqHBzdCNdm846dwNMMyE6hzF9L+sIsU6jjHVRSmbZ0j5iIV1mlif3w1hG15/CBmlJiegsfB4c13vd3Iy9+Z8o2Q1xH0K9gvVISEvA3Mic4w+O08WtC1ejrjLwyEBEhOjEaFZcXkGf8n0xt7anrvMphljWY1a9WUzzm0a/Q/3IcimplB2FhnLN2YC1h6BSvW6KgtLvJVWmhqakZaWxOmg1grCy2Uq9Etk/xe5QL67EhTLxsglqgfzP01joAxtrWNBvpg+5LHIRmRDJ6qDVDL2oxSpDBSYmimgDKH0DU6bAjBkw5J2Pw/Xo65RfU56tIVtZ2HAhBmqD93oIWpdoTT7rfAw+2I/BAVm83uDAnDWPCHoZivd3JlgbWxNazxWVxYd7T/6ovPUp/N2MRlpWGhNPT6T8mvIkZybj38ufJU2WYGlsSaY2k/be7YlNjuVwp8PYmtpipDFiT/s95DDNQYudLXiT9uYvY7z1TsrQZtD/cP93v83DhxUS5+FBnSUHMTEwyaY+FZ8aj9ctL/Ja5cWjlId+e27L3DQp2uSD5VNRiVEcf3D8P20CB6XsVJBvGY1v+N+HfMNXxe3Y24In4vfE76vG3Xpjq+CJPHvz7KvG/TcY5ztODKcZyrWoa19szExtplRZV0UKLSkkiemJn/2954nPZfHFxVJxTUXBE7GcaSk99vcQ34e+kqXN+svvp2WmSUfvjqLyVMmSS0v+zSkoePFCpE8fERApW1YkICD757duSch39aTeeH+p+3OA1J4YKLUmBkitif6yoJabJNhbiXd7V+k8PK+06IT0bY5MrWsge2o5SHDlghLrWlDS8+QWnZGREuOPf1ZWIsWLy+YOJQRPxHeUh8jcuSJbt0r44e2i9lRLwRkO0tbLQ0REXFa4SNe9Xd8/h/v3lfF8fcUr1Ev/+9xwbYPgiRhOMxTb2baCJ+K8wFmmnJkiNy4fllgz5EQhRD0ZMZhqINPPTRc80f953/IWEZHw1+FiNctKeu7vKSKijzHTb6YUWlJI3Ne6S0ZWxgcv7+vU11JoSSHBEym/urzsub1H8ETa7WonRtON5LtV38m5x+fEbaWb4InU6msoDmPV0qcF4jbeRvBECg1DLuRTiU6lEu3oUSJpaSIiotVpZdP1TeIwz0EsZlrIPP954vvQVyqsqSB4Iia/mIj1LGvZdXOXiIj41nQW0wmI4zxHyTE7h6inqgVP5LtV34nfEz/9eVuPf3cNDCYhbb9HzCaoRGbMkE1+SwVPpMjSIvp9jroYSay9uQhIzR6IxUwLCYoMkjN7F0qF4aaCJ1J3qLUEn9slseOHS7g1Ur3XuxhlVpaRZYHLJC4l7t//nv+Ap6+fivUsa6m9qbbgiWimamTa2WmCJ7IgYIH03N9T7ObYSVxKnETHP5OSPxpK7gkmcufFHdkcvFkMphlI8x3NJTkjWZ6+firqqWrx2jlRpH17EZVKJH9+kTVrZEfQJv25uK10E51O96+OOy0zTQpMt5OWHZEWHZV7JcZCLZedkIv3z4qIyHz/+WI03UjMphjICwu1SJEiIpUri/zwg8i6dcr9MHasyO/HotVpZZ7/PDGcZijfrfpO7ry4IyIijbY2kjqb6mQ/gPBwmfRTOTGaiERZquRR06pSecC7e8jtVzfJMSeHpGamfvD4L0dcFjyRc0/OffQc36S9ETwRr1Cvz7omfk/8pPiy4mI4zVA8z3hKelZ6ts8HHR4kBtMM5PSj0+99N+xlmDsQQXEAACAASURBVNjMtpGGWxtKpjbzs+K9vU83XNsgcvy4iJGRiIeHSIZynzfd3jTbdWu7q63giRwKO/TeWPvu7BM8kRvPb2TbPufCHDH5xUTiU+M/65j+KcJehgmeyNnHZ//TON/wDf81vhGNr4yYpBjBE9l3Z99XjRufGi+G0wxl6aWlXzXuv0F6VrqUWVlGSq0o9dGX4z/B/Vf3xXyGufQ72O+T+yWmJ8qW4C3SaGsj0UzViOE0Q2m5s6XsvrlbUjJS/nZcrU4ro0+MFjyRUT6jRKvT/v2Dz8oS+fVXEVtbERsbkRUrlG0iotPp5E3aG7n74q6cfXxWui09pScZb//q/hwgIzovFu2fyINOrRZdrlwKaWnSRKRXL5GffxZZtkzE21vkwgWRhw9FkpNFRCQuJU7s59pLR++O2Q5vypkpYvKLif4F+ZZYH7h74P1zycgQ0WhEVq2SF0kvROWpkoZbGordHDv9BHCUzygx+cVE5l6Yq/9a2342kqVCZlRX9lkWuEzmXpirTLZnWUuxZcX0E5P119Znm0iMPjFaNFM1suLyCjGYZiBjfcd+9FK/Tn0tJZeXFJWnSjRTNeK+xl20Oq1ci7omRZcWFYuZFrL79HIJbVpB3hgjNmMRpiClV7jKo5ljJd3USB7YItV6IiWWlZCLzy7KtahrUnV9VcET6eTdSSLeRIiISGpmqow4PkLwRIynG4tmqkYGHxksB+8eFPOfkXID1eL3xE9KLC8hmqkasZhpIZqpGnFd4aq/Vo6j3pEAPJHR6zoInojWxFh0RoZSYIK54Ik03dZUjKcbS4NuKhGQuDw5xLcgYjTNSDRTNTL7/GzZdn2rVO6FFBtpKKopyA8/FZC1TRxFQH5shOwI2SFtvNqIZqpGTH4xka57u8q5J+f+9WT9Ld4ujDTf3lxUnirJPT+3DD82XE+yVlxeod/3+brF4jIIcZxlJ7dib8mx+8fEfIa5VF5XWUb5jBKLmRaSkJag7BwaqiccSblzSt/miOFE5MLTC//6mOcfmySaycjMmmopNs1BBCTJAFm1a4x+n7VX1wqeyJCmv997p06J9O4tUrCgQoIGDtSTjIg3EVJvcz3l//LEaEnLTNOPszpotainquVF8guRK1dEOnUSnUYjT2zVYjQJqb34O8ET6b6vuySnJ8vaq2vFeLqx4InMPj/7g8c/5cwUsZlt88lJ/a3YW4Incj78/CevxevU1zLg0ADBE6myrorcir313j7LApcJnsjqoNUfHefkw5NiMM1ABh8Z/Ml4f0TP/T3FYrqpPHQ0EmnRQiT9Hbl5e9+/Tn0tL5JfiHqqWgouLvjBcTKyMsRhnoMMPzZcv02n00nJ5SWlk3enzz6ef4qApwGCJxIaE/qfx/qGb/gv8Y1ofGVkajMFT2Td1XVfPXbjbY2l9qbaXz3uv0FoTKgYTzeWEcdHfNFx1wSt+eBKVkZWhhwOOyydvDuJ6S/Kqm71DdVl1ZVV8jL55ReJveTSElF5qqSjd8dsk4ePIT0rXZ69eSZXjm+QQ00Ky5pyyLQfy8kg757isctDqqyrIgUXF9Qf79u/KhMPZSMZb/+ajzwkO12Rae1zyciZteUXr8Gy8fJa8X/q/9nnOPDwQLGcaSmRCZH6bVnaLHFe6Cz5F+WX0r+WFp1OJ9POThOLmRYfJYrp+ZzFr30V/Uq78XRjabernf4cREQqr6ucLSPy/e7vZUx9ZaLWugPiusJVdDqd1NhQQ/+9VVdWiYgyMWi6vankmp9LXqW8kkxtptTfUl9yzs0p43zHCZ7IiQcnPnqe8anx+hVhs1/M9PsmJMXJ5j4VJc4Y2VrOQBynWgqeiNNI5HhRZQIv/fvLvSfXpOTyktn+X4ovKy5nHp/RxwiNCZXSv5YWo+lGsiBggSRnJMvcC3PFYoaF4InYjkXiTBD7cRopu6qshDwPkZSMFJl9fva7cadkJxlNtjWRHSE7BE8kKTpcZO5c6dLFTPBEagyzkLVj6ouRp0Zu50SC8huKgFTphXh4eYjKUyXOC50l78K8kpGaLKsXdJbco9WimowsrKYRAZnRPrfEJsVKdGK0zDo/SwovKaw/t3n+8yQ2Kfazfkcfg06nk3a724nNLBtxXeEqKk+VNN7aWGxn24p6qlpCnoe82zkzU2JLFZDSY63EYZ6DhMaEypXIK2I/1140UzXS2bvz+wFCQyWwWgHRgjy1UYtu1apsE9K/i5fJL8VmooH0aI2Ump5LRjRUfp97GufPtqDQ92BfwRPxz4dCeEQUogFKVkOr7Lvvzj7JMSeHOC1wkpMPT74X7/nrSFF5qmR9+6LKdwsVksCxXcR8PJJjTg7BE1l8cXE24hcaEypmM8xE7amW9dfWv0cKK6ypIB1+6/DJ8/R54CN4Io/jH390nwN3D0ieBXnEYqaFLA9c/sEFleP3j4t6qlp+PPbjJ+OJKKTq7YLC5yDB94gUGq6Sqj/ZSGZKUrbPnsQ/ETyR3279Ji13tPzL+3+UzyjJMSeH/jl96dklwRPxeeDzWcfyb3Ao7JDgiUQlRP3nsb7hG/5LfOvR+MowUBtgbWz9VXs03sKjhAd+4X68SH7x1WP/U7g6uDKz3kwWXVrEqUenvti4bw0Cex/sTWxSLBefXWTI0SE4LXSi+c7m3Ii5waSak3g8/DHne56nf4X+X6wpb1ilYexut5u9t/dSY2MNDoYdZEfoDhZeXMjoE6Ppuq8rDbY2oPTK0uScmxPjX4zJuygvFS/1okWlh/RvqWJFnkj8X1wjOSOZYnbF6ODSgVn1ZuFVYTZnY5oQttqIyk8egfypmV60PDV7SK9W8CDjObW3+1N40UYOz+tL0xXVyDkvJznn5qTahmr0OtCLORfmsP/ufu68uKNX67oSeYVVQauYXmc6TpZO+qGPPzhOREIE4W/CGeI+BJVKhfcdb1oUa6EYAP6OR/GPmHl+Jm4r3ThnEEH8rSvUzFeTzq6dsTCy4Je6v+j3TUxPxM3BjRsxN/Tbvi/1PXOrgXdJ2LwPMu7cJDAykCWNl+j3GXliJEkZSahUKta2WEtaVhrDjg3DQG2AV1svLIwsOPHoBHUL1KXrvq4fNYkMeBZAfFo8ea3ykqnLpPG2xuxdPwrL6nWp6X0Fj8E56Noyi2RDYdaLMtxcqaL0c6HJD1Cvyn2s7Jz4sfKPmBooKk1qlZqIhAiCnweTnpXOkktLqLCmAjrRcbnPZUZWGYmZoRkdXDvolZ1sUsA2DQap3LnY+yKlHUsT/DyYFVdWfPQ31tG1o94HIsnCmKyfRuBXTvn9ns+RhJHPSW4u0bK+ooYyTzN56WzHwsu2xCTHcLr7aWKTY3me9Jz9D4/Qb+R27o+Pxk5txqi6WhZUgZ93R7Oid2k0Kg3jqo/j3tB7nOp2inK5yzHh9ATyLMxD+9/ac+LhiX9klKlSqVjVbBUmhibYmdlhZmjG8YfHiU+LJ591PtrsavNOStjAAPtRkzm9LIHcBrbU2VwHI40Rk2tNRitaTjw6oZfIfYugHGlUafCU0oMgopQzqoEDoWhRxXsm4++r0k3b0A2tNotUS1NMnj1n1klle/12Y/RKXamZqewN3aV8YGik9GOcOwdbt/4+yDSSs1Lpf6g/bXa1oWb+moQMCNEbDAKQnAwrVuBYoRY1ngh77F/Cnj28CblCkxxH0Zm/UwOzN7fP5s/j6uDKqmar0KGj98HedN3XlcR0pbEnOjGaoKigz+rPALLd928RkxRDB+8OtPJqRZlcZbg16BaD3Qfrz/8tbr+4TXvv9jQu0pj5Def/5bXtV74fIyqPYPjx4R9VldLjwgUsW7dn67MKXLJKYPaVRdk+zm+THxd7F7xve3Po3iGK5ihKg8INPjpc73K9iUuN40DYAUDxznC2cv5/7J13WBTX/sY/W+hV6R0ERARULKjYK4gtduwF7DW2GKMxNybRxNgb9oK9YO+KXawoqCgqVXrvbdmd3x8TNzFqklu99/f48uyz7MyZOWdmZ2bPt70vHZw6fHCbfxXe0El/orf9hP91SATh31DR9wl/COdVzvR178uPnX78j/abVZqF1VIrNnTbQHDD4D/f4L8EKkFFx50deZn3ksfjH2Osbfwv2e/1pOv47/IHiagHYWNgw0DPgQyuN5j6FvX/fhE9xMLHzJJMMkoyyCjJIL0kXf3/7z//nmZXX1MfS31LLPUtsdK3wlLPAsunSVgevYhVmQzLkZOxHDYBM0PLtzU4FAoICxNZam7eBFtbVOPH01n2gOriGSCRIEGGgBIQcEiexkGnh0iUSsrkAnWKNAmOqGLoEykSF1eeNLTlkpsG5w2zeZ73guIqcTIilUhxNHIkpzwHLZkW37T5hrrmdXEzccNS35Je+3sRkRJBZXUlqdNTSS1OxW2NG2H9w2hq25T9T/az7+k+7qbeRVdDl55uPfnhYB72z9KRRkVxPek6rbe35uLQi3QMFdl0YifFciHuAp+f+5ySuSVoyjTJKs3C4mcL9Cvh7iYQpBLWrBzMusBQGm9sTElVCbG5sfhY+xARHIFUImVX9C6GHhlKWP8wern34lHGI3y3+BLgGsDVxKs0tmnMqUGn3poU5ZXn4bnOk/qW9dndazf91rZh+N5nDIxSsqCbHiubKKmpZ8oCz0nYfbkIvweFHKonx+vANbqdH8arvFdIkCAgMKTeEAI9Apl8ZjKvi15TrapGV65LWXUZU5tOZXHHxWpjLKMkg1bbWhGfH49KUOFs5MTDr16zuFk1p/s1wMfGh62PtmKqY0pGaQYA9VOhQyIsayGO3d3UnbGNxjLt3DTipsRxI/kGw48Op4Z2DWwMbEguSOSby5AkL+HbcLjmJKFbrIBPMCyffwP/3f44GTvxOOsxIxqMYJX/KpxWOuGob0tSxnMWnK1k0j2Y/pkOMzc/w9rEQX3ecstyCY0OZVPkJmKyY3A0diTIO4iRDUZiY2jzd91PZ16eIWBPAMHewWx+uBmAfX32MfH0ROpb1ufs4LNoyDTEe6BOHXIb16VT+1SSC5NxqemCUlAiCAIvcl9wNPAo7Z3aU1pVSsONDamqriKxMJFV/quYrN9eZHs6cADs7GDuXBg5UmRI+xPEJT3CfYs3gY8h3FOXiPUKMjQVNElHFL4cMQKAdXfXMun0JAQJHNYdSe8246BDB5Fe9uZNIg+vZlDaGl4XvWaF3wqCGwb/+gxKSxO1H0JCRHa5vn1Z2duG2S/XkjUzSzTq4s/TwLIBJweeZMSxERRVFnEn+M5bY61SVmG33A5vS29uvr6Jlb4V+/vu52HGQ4KPB5M1K0utKv4+LLy6kLX31pIxM0O9TBAEtj/azozzM5BJZazyX0WgZ+B7n585ZTk03dwUXQ1dbo66KdJd/wUoVUp67uvJ9eTrRARFUNes7ruNbt+GTp1EtrGTJ5l/exGLbiwiIiiCJjZN1M2+uPAFK+6soEpZxZXhV2jj2OYP+26xtQUGmgYcGXAEq6VWTGwyke87fP+Xxv3PYHnEcuZfnk/J3JJ/e1+f8An/TnwyND4CfDb5UM+iHpt7bP6P9912e1t0NXQ5Pfj0f7zvfwbJhcl4rfeih1sPQnuF/mn7x0nF7LqSRnxmGbUsdBnS1hovBwPSi9PZ92Qfux/v5kH6A7U68CzfWSzqsOi91JYqQUVeeZ5oKBR/2HDIKMlQ6ym8gUwiw1zPHCsDK9GI0PvFkPjlc0V1BbMvzEYikXBuyDk8zT3FDSMiYOJEUY07OFjUxjAze3tgGRmiBzYkRNSlaNdOZKrp0YORJ0ezPWo7hkI9GhePolzXmRLiyK3egrTqMecvWLJhrh9rX+5GKpGiUimRCPBZgSWjL+bR4Wk5UjNzBD8/Cto0JcbblqdCJvuf7Cc8MRxbQ1vSi9NR/hIx0dPQo1RRikwio6lNU6Y0ncL5uPOERofS3LY515OvoyHToItLFwZ6DqRb7W6i8vCSJfDtt1BUhEJVTc2fajKnxRzmX56PgMDlYZeRSWW03i56d70svACwXmpNekk6DQt0ubKujAuuUjrcy2Xf0/1MOD2B5rbNufn6JkO8hrCj1w4kSOh9oDc3k2/ydMJTzPTM2PN4D4PDBjOu0ThCHoSwtPNSpjefrj69Q8KGcOrlKZ6MicJmzwlU877ikmkxA/sI5GoL2Bvbc9/mW8ymzEGorOS7AVZ8bRlDV9eumOiYsDN6p3pfnWp1Yk+fPejIdei9vzfn48+rjZD+Hv35udPP2BnZkVuWi+9WX+Ly4lAKSobWG8qGbhvQCejBC41imraOpaCyAF0NXbXAIcD0W+CRDUE9RbEzLbmWOkqzPmA9y24vU0/O8srziM+PR1OmSUp+EqvOSOjzREmhJhgrJIQGuvOVRQzHRp0nvSSdiacnYqZrRlJhEs1smqFCxd4mP/JsWAB+UaUE9YSWXccxKmgtkt/oEwiCwO2U22yK3MT+p/upqK4gwDWA0Q1HE+Aa8JcFK8edHMfWh1tRqBRIkGCia8Km7pvod7AfYxuNZU3AGrHh1q0QFET+veu0vjueJ9lP+Lbtt3ze/HP6HuhLeEI4O3vt5EriFXZG7WSA5wC2P9rO5eGXaevYVtzH06d/t8HRZboF0ZIsrHQt+OZYAS1fVBK6bRqTB60QtTCCglAoFbj+aEPzyGwO14UVDeYwIXgD1KmD6sxpfu5pxrx2Al5W9dnTew9upm7izh89Eqlu9+0T2alGj4bJk8HRkeTCZBxWONDMphm3U2/TxLoJ10deR0uuxYnYE/TY14PbQbdpatv0rfHOuTiHDQ82cH3kdYYfHc6TrCe4m7qjI9chIjjiD7+LsSfG8iD9AffH3AfE6OSYE2O4lHCJofWGssxv2QcNlcrqSjqFduJ5znPujr77dzN8FVcW02JrC0qqSrgTfAczvd88D+/f/9VoO3MG9PRQKBX4bvWlqLKIyDGRaqXzQ08P0e9QPxyNHEmYlvCn/W6J3MLoE6NZ1WUVk89M5sWkF7iauP5dY/9HMC98HqHRoSRNS/q39/UJn/DvxCdD4yOgy+4u6Mh1CBsQ9h/ve9WdVcw8P5OsWVn/ssjAfwpvvNL7++6nv0f/D7Z7nFTM51ufIQigEkAqAQEBqe0mLmdsQy6V09W1K33r9sXb0ptZF2YRnhDOnJZzUCgVotFQmqE2LDJLM99WWEaczL2JPqgjEL/9/IshYaJj8qe8/GnFaQTsDiCxIJGjfttou/qE6Alt1AjWrhXpa99AEETP3Zo1cPCgSGM7bJholHiKRsryiOVMPz8dDUGKSlAx/SYsaSVuLkNKjVIVdfKlXD5hQvrRXSzMPsSWyC0YaBmgq6FLekk6jtqWBBW7MvJiLjZ3YkAiIaNFfep0eEZ/Wz82jgyjCiVxeXHE5say/t56LiZcRCWo3pkEa8u0qVWzFr62vtSzqIebqRtuJm7YGdkhPXJUFCTLzARzc3ru60lhRSH30+5TqihlR88d9KjTgxo/1mBXr10MrjcYgKFHhrIreheGWoZ0fFjE4QNwa0ovPH/ajtVSKyY1mcSqu6uoqK5gRIMRbO6+mZyyHDzWedDOqR0H+h5AIpEw49wMVt5ZSR/3Phx5foSIoAgaWTci7FkYfQ704YzTfPyXn6Dg+SPmTnInRP852nJtDBVSFp2uYuQ9BaUd26C3Yw+nSx/RdY+YeiJBwrRm0xjsNZg+B/qQVJiEroYuPtY+XEm6QjPbZrzKe0VldSVSiRSFSsH0ZtPZGbWT5KJkAAZ6DmRPH1Hv48a8YQRW7qbERB+VIFCqKFWnJEmQcHwvRNnImddagbupO+2c2uFm4sbUs1PV38MK/xWUK8r5/vr37O+7Xz3WkTq+bP3iFqE+Wgy9W0m2NsgAnXGT0Jn8OXHGAoGHA7mfdh87QztcaroQPjwcVCoSuzTH7sJdBveGF/a6LG31He16ff7ONV5YUcjeJ3vZHLmZB+kPsDawZmSDkQR5B/2hZgPAq9xX1F5TG3M9c8z0zHiW/YyW9i1FmuJT41gXsI7xTcaLUQ03N2jUiIkjzNnwYAMGWgZcGHqB+hb1CT4RzM4o0fgL6RrC1kdbuZt6l/Bh4bRzavd2p3/R4Ni3ey4DXy2iV4oB9ullrDil5OvJXixY8RCZhiasWwdjx7IzchvDT4wiaj10nWzCyNsVfJviSuqJ3QwLn8zl+HBmldRn4Y93RRrkM2dg6VK4fFkUlpw6VXQ4GP4aAcgoycB1lSslihIs9CxI/jwZTZk4PpWgovbq2vjY+KivoTeIy4vDZbUL23tuJ9AzkBnnZ7D23lrqmtblxqgb1NCpwYfQdU9X5FI5h/sfZuXtlcy/PB9zPXM2dNuAn4vfB7cTBIFRx0ex5/EewoeF08K+xR9+5x9CUkESPpt9qG1Sm4tDL6Il1xKdMe3bg7s7nDsHBgbq9i9yX+C9wZth9Yaxvtt6ANrvaM/lxMuMajCKLT0/rP79BsWVxVgttcJK3woLfQtujLrxD43978X4k+O5k3qHyLGR/5H+PuET/l34VKPxEVBTp+ZHqdEA6FWnFwqVglMvTv154/8yDPYaTL+6/Rh3chypRakfbLfrSprayADxXSWoKEhriHMNZ+wM7biUcInBYYOpu64up16eory6nAVXFrDt0TYeZT5CggRvS29GeY9ipf9KwvqHcWvULeKnxFM6t5SCOQU8n/ScKyOusK/vPpb7L+eLll8wvMFw/Fz8qGdRD3M9878k/mVtYM21oeE0UVniF9ab/U8PiFGKNxoZABUVoopvkybg6yuu++knSE0VdSl+MTLOvjorGhlSDRQSFQOeSrjT4NccXyUqnAQjblupmN6yDLsuA9hoNorYybF0rd2V9JJ0rA2ssTN3ZZHuA+wDntN9a0eOr5nMjMZ5aJRXsWjKcTAzQ3PwMNxP3aGTnhcPMx4ik8iQSqSUKcpoYNEAgBENRjCt2TTcTNy4lXKLmRdm4rfLD8eVjuj9oEffB18AsGH/bEKjQnEzcePm65vq+oLkomSMtY1xMHIgOjNafRxtHdoCoqpvWF1Y01aXpquPYHDzPgM9B7L/6X5m+85GQ6rBjkc7GHFsBKa6pqzruo5DMYc48PQAAD92+pE2jm24nHiZOqZ1CDwcSHxePPP2jeHSZXv8hi/kgF0R7gtMCK35mpX+K0ltsp97axX0i1LwZb+a2HeMZn3qMWZfmC2OzbEtjawasfruai4lXOL5pOcEegRSpijjStIVPM09ORF4gqcTntLOqR2FlYXYGtjy3fXvSC5KxkjLCHsjezb32IxKULHo+iLaauxGVq2iqLKYBpYNeDjmofpcCAh4ZAqY1W0MgJmuGdml2fRw66H+bKxtzLSz09j6cCslVSVY6VvR3FZUfU+y0CbcVU7LfAPiTWXccoAQXw10duwGFxech09jl9k4AF4XveZRxiMS8hNAKsXxTATF/Xqy6wjUSS6jffR0unxuRtT1g29d40baRoxrPI77Y+4TOSaSnm49WX13NbVW1aJTaCcOPD2gFuT7PRbdWIS+pj7ZZdl0cuqEllyLq0lXSS1KZbLPZCafmczlhMui0f3VV3DoEFEXdzGh8QTqmNah486OPMx4yOIOi9W1MtGZ0dxPFb3y5dXl73bq4SFGEZ48Ee+38ePBxQU2bFDXcGTlvmbJ9UXUzpXwWijmp3MqNrbUYfz358T7Xi4HpVL8Dk/OoXss1Gvgh2V6MRnGco6sn0q9Pa14nvOci6/b8WOEHpqbt0HdutCtm1iPsX+/KKI5ffpbRsbtlNs02thI7QDZ1H2T2sgAMc1xss9kDsYcfOdZ6VzTmU61OrHhwQa05Fp8VuczAFKKU/De4E3E6w9HNVKKUtCWadN8S3NmXZjF2EZjeTLhyR8aGQBLbi1h+6PtbOmx5R82MkCssTg64Cj3Uu8x5uQYhKgo6NgRatcWjbPfGBkAtU1qs7TzUkIehHDyxUkS8hO4nHgZIy0jorOiP9DL2zDQMqCbazde5b9iWP1h//DY/17kVeR9qs/4hP8X+GRofASY6Jj8Wsj4H4adkR0+Nj7/M+J9v4VEImF91/Voy7UZdXzUBwXD4jPL1EaGeltk6KiccDB2oFvtbsxvPZ/QXqFcGHqBx+Mfc2LgCSRImNJ0CvdG3+P4wONs7L6Rb9t9y4QmE+jl3ovmds1xquH0r1dFvnkTwxbtOfV1LP2rXAgMKGVZvVKQySA5Gb78EmxtRY+quTmcOgUvXsC0aWD8a1QqOjOanvt6AqCnoYtMBX2zTHCo7fNWd5k2RnR/KWG1Vym7WhhAx464RCayu/duosdF42Pjw/Xk69gZ2jG64WjSFfn0zF7FHuNkmnp1ofDEQaomjedUSSRDj4/ENMSF7LJsjIoVTDIJIHlSHIGegejIdVjTZQ2LOi4ibEAYTyc8pWxuGa8mv+LUoFP80P4HbOu3BuDJ7WMMOzqMJbeWUK2qVhMW7I7ezdJbS7HQtyAiJUI9sfrtZMVQ05DZbRVcdoTq/n2ZaNmDpMIkGlg2wFjbmDYObdj7eC9Djwylt3tv+nv0Z8LpCWSUZKiLw3U0dBAQyChIZduYxtxakodDYj5df/BgQKN4fGu14VnQQyYffk0N/55YujZgwDw3NjWWIJPKmXB6AvnlYtrcZJ/J3Aq6xSzfWcy5OAfPdZ4ceHoADzMPLPQseJL1BMeVjlxLvMaR/kcYWX8kL35RK66hXYPCykIs9Sx5nPmYgN0BYnG1nhXJRvC1eT/Ch4dzNemq+vhlSnAqgJPl4sTJRNeErNIstbGWXZbNmUFnCB8WjpW+qAbddU9XMkoy0JBqcCXxCi8G+eH0MgftwSPpGQv7aitIeHJdFLh7/ZrCSWJNVwMsUVZVUj+kPruid4FUivGew5R+FsCOIxD00oCXskK8L/Vn6MxaJD551/vrbeXNuq7rSJuexrae2yhXlDPg0ABsl9sy8/xMnuc8V7eNTI9k26NtLOqwiC9afMHqWSaSsAAAIABJREFUe6uZ12oeAAuvL6SLSxfaObWj78G+oor0sGEUW5sy5XwRk5tO5tyQc3iYe9AptBO9D/TGUMuQRe0Xsf7+elSIEaHfRt/eQd26sHevaHC0aKE2OJTr1vLdtEZEWoGmIOHIMU0emQvU2ngIK4NfFLdlMqiu5uijvTwXspgbIYdXrzCtlHKuvh69z42kjUMbHn92gfZxKjFdcvx40ci5cUOMXPbvLxosv8HGBxtpva01doZ26u9Y+XvSB2Ck90i05dqsv7/+nXVjG40lIiWCx5mPOfXiFLaGtkSPi8bG0IZW21rx082f3iniL1eU8yL3BQdjDlJRXUFEUATL/Zerx/AhHH1+lDkX5zC35VyG1Bvyh23/CprbNWdrz63sjNrJj7N9wdERzp4FI6P3th/baCxdXbsSdDyIQWGDAJjefDr30+6TUZLx3m1+D2Md8TlrqWf5T4//ryK3LPeTKvgn/L/AJ0PjI8BEx+SjRTRAZJ86++ospVWlH20M/yhMdE3Y1nMb5+POs+7euve2qWWhi/R3dYgCSgqFF1yMv8iqO6tYe28tF+MukluWi6GWIV1duzLLdxbzwucRlRH13v3+y5GZKRaKtmwJGhpo3rrDzsUvmOP7BSdDZhDdwgXByUlMvxg6VDQuTp+GgACQvn3rphWn0WFnB6qUVXR16UpBZSGDomFT7RLq1/JFtwqspMZIkJBcmIzNwLH4v4TR3q+JbO8OXbvCkSN4WXhxZMAR7gTfwd7Ing0PNqASVFjoWWChZ0F40mWcb/RDT+MnujV5yf02rtTSs8G2TM6z9VJWTjqJnVMDfKYsZlmyO3qZeW+NUyaV4VzTmQDXAD5v/jkr+m8Bc3NW155G0Zwi7gXfw0zXTM24lFacxtdXvuZu6l2uJ19H53sd6qypw+wLs9XF05pyTcpRMHmICUWSKhpM/p6GNTzY/Xg381vP51ryNX7u9DMHYw4yOGwwK/xWIJfK1QrCZnpmHBlwBNNHL7izUcW8I/l8OdAMr9HVPNUp5njgcQ7Xno9th16wciUsXoz06nXadQimoKKAnLIcGlo2JK0kDZlExuvC12jINBjlPQo3Ezfi8uPQ1dRlmd8yEqclMqHxBEoVpfQ71A/rpdZsi9qGVCLFtaYr+RX52BjYkFCQQLMtzbiSeAV9TX2qpQKXT5nyTXIt0Th6sk99Tu2KxHctJ2cAriReIaEgQe299zL3opldM9o5tePqyKvUNqmNSlCRUJCAroYuKlScdFYRbwxlLx6TUEPCvGvQ9kAApUMD4eFDctcsEb+/tAx6R1dx+Lo1328cyuCwwRQoijHaf4zyrp1Zt6+YzmVW/GzQm4vSJNz2t2La3IZkv/7VeHgDPU09RjQYwY1RN3g64SlD6w1l+6PtuK91p9W2Vux4tIMpZ6bgbubO2MZj+abtN3iae7Lr8S5GNRiFVCJlUNgglvstx0THhO57u1OkKmd1R0P6PgPX9EoMtQw5O/gsprqm3E65LRp/rebQyr4VEsSHRF5Z3jtjewe/Mziqp0ziTI1smqRJWHpVG/3iKq79OIGO7gG/biOXIygUfH9wKu0SoFmlGQ90CrjlJCelLIND7t9w+KwRNd29RaNCEETl+MOHRaPmd8XUldWVjDkxhrEnxzK64Wh87XwpVZTiZuL2XseRoZYhIxuMZMODDVRUV7y1rodbDyz1LdnwYAOnXp4iwCUAB2MHrgy/wuwWs/ni4hcE7A5Q1/lcTbyK13ovKqor6O3emwdjHrxT+/E+PMp4xJCwIfRy78XC9gv//Dz/RQzSaMjX9/X40reMsPVToMaH070kEglbemxBUa3gdsptGlg0YHzj8UiQcOblmT/tSxAEwhPCMdQ0ZH/M/n/ZMfwZcstzP6mCf8L/C3wyND4CTHTFiMbHKo/p7d6b8upyzsX9CVXgfyn8XPyY2GQisy7Mesv7+QZD2lojkYBUJXr53rAtJcm2IJPIMNY2JqkgiR3ROwg8HIjDCgdq/lSTx1mPMdU1pfeB3mpqwX8LqqtFhig3NzhxQkzHuH0b6tZFEhLComknCN8J0pdxbB7VgIqkOFi+XKTffA9KqkroHNqZvPI82ji04XbqbWSChB+fWHLWpoJGzi0xrAQbmRG6GrroaeiRUPIafZ+WuOVAr7rRZPfyg759xfQswMfGh/NDzxM+LJy04jQySzPJK8+jvLocU11TLPVFz15GeTbPFGmk6irZc34p3LtH/pTRaOQUMGbzQzG/3MMDZs6Eixeh8j3pMc7OEBeHgZYBjW0a09u9t3qVm6kbxV8WszZApHL9vv33+Dn7UaWsUk8Uc8pyAIiV5RHQu4zqyPt8f6yYI8+PUMe0DvZG9lxOuszBfgc58uwIk89MZl3AOo7HHic0OhSysmj41Roub6wiwrQSk7lSQuyzGOQ1iKdjouh+KFpMWZPJ4P59bg9qjc82MXWkv0d/3EzdSCtJ46uWX6EUlKy+u5o1d9bQIKQBVaoqTgSeoJltM/x3+fPdte9Y2WUl37cXWWsyyzIBmNNCnPxqSjVJL0knuywbPQ09KpWVKFQKvm37LW1sW4oTUeBhxkP18Xv8wsw7qIuYhqanqUdyYTK+W3wB8Hfxf+t0d6rVCaWgREumRSsHsXjnVPwZ1napif2Fu6xqItD3GRi8TKbnvp5UKCvJrSV+39WeddH1aECnyAKerYXRs/cza2JtriffwPDwSSo6tWfZpmRiEyO5PfUxCzQ6so2HOK9357uFnSjNfz+NcF2zuizzW0bq9FT29dmHlkyLEcdGcPP1TZxrOPMk6wmaMk1Ce4XyKu8Vepp6uJm4UVJVQtCxIMIGhJFWnEa3Pd1YYB9PubW5WGOBSCSRUpiCtYE131z9hquJV4nJiWGg50AAvrv+HenF6e8d17sDrcuuL7rwdVuIrwGbjwp0flzGlWYWTOvz09tt5XLO590jUiuXubdk/ORRQPO+BbgWaWBTrkGfAd8guXBBHOelX6i7Kyre6RIgtSiVNtvbsDNqJ1t7bGWSzyRW313NV62+YoDHAE7EnniHxQ7E6FpuWS57H+99a7mGTINRDUaxI2oHL/Ne0q12N/XyHzr8wLkh53iY8ZD6IfXpvqc7bXe0xUhLjBhMbDLxrTStDyGjJIMee3vgZurGzs92vkNz+w/j5Uto354FCQ70d+7JkAvjeZD24A83sdC3wFzfHIDubt0x0zPDx8aH06/+nBQlIiWCl3kvCfQM5HDMYXXk8t+NvPK8T4bGJ/y/wCdD4yPARMcEhUpBSdXHoa1zNXHFy9zrfzJ96g1+6vQTdkZ2DD0yFIVS8dY6LwcDlo9yp3FaFMaqEvK4y0PZOPw86qCnqUd+RT66GrqMrD+SoAZB2BraUlBRwJlXZ8goySA+Px7Tn0xptKERk05PYnf0buLy4v41huGNG2KR99SpEBgoRinatYMZM8DGRmSNcnOD8HBeXQ1jimMMfkf7fPDHrVpVTb8D/XiW8wxLPUv8nf3JLc9l8BMZaR2aIpFJaWzTBAOFBBNBh1JFKWWKMk69PMXUzxZhjA7lqioGuD6iOmgkjByJsGIF0ZnRfHnxS4YdHUZmaSbacm01eUAjq0YcHXCUmAkxeFl4Ifzyt+fpPrbLn7Dez4ROY7UpTU0Ui2mbNRO9wZ06Qc2a0L27WOQeFycexC+Gxhv4OftRqhCjbZmlmUglUto7tQegiXUTVnZZydkhZ/mm7TfIJGINjIZUAwkS7loLzO9TA//wZIY/UNF5V2cSCxI5HnucxTcW4+/iz9HnR1l+ezm9XXsS/fVYVLVrk3cmjJYzahD8GZTKVZjpmpEffQfddn7w9dcwezZZl08yKn45zbeItQ0RQRHs6bOHqyOuYqJjwtZHW3EydiI+P57JZycT4BLAo7GP6ObWjXNDzvF9++9ZfGMx1kut+Sr8K+wM7dTGwg83fmDro604GDsgCAIyiYxSRSmdnTvT0akjwSeC2SKPRnnvLk8zHlNeXS4SHCClaQpU2Vii0tYCYEbzGUiQ8CznGSB6o9OK09Tnt7ltc3LKcvB38efEwBNqpq2VrnmUSQUMqqDK2oK51+Ba0jUGHBpAdmk22nJtKiRKdHzbQFIS7N5N85r12LQ1G7tG7Tg70R+djVtRtGvDipBEvlvSnTEz9xI37hnBgjcLqy7issiKkOWDUVS+py4C0JJrMcBzACcHncTGwAbnGs7cS7uH9wZvmmxqwq3Xt/i69desvrua2b6zkUvl3Eu7x9aHW9nfdz83km+gpaOH9vy/wcGDVEU9ZFDYIFxNXIkaG0UT6yb47/InpyyHiT4T0ZZrU1RZhO9WX17kvvjT2zcyPZKb34xiSyNwyQX3HHhpJqXntSzkteuI9VKVlTxOKuaL7t+xSBhKq5IVrPL1IFa3nOTtNRhxOZ9MjSqE0FBISIDZs6FxYzFK+ezZO33eSL5Bo42NSC1O5frI64xoMILJZybjaOzITN+Z9HbvTWFloVin8ju4mrgS4BrAyjsr33l+jW40mtKqUuQSufr+eoPOzp1Z1GEReeV5nHx5kgCXABZ3XAyAraHtn56nckU5Pff1pFpVzfHA42rGp38a8fFi4beREdJL4WwfsBcvCy967Ovxh3V7MdkxxObGYqZrxtKIpbzIfUFX166cjzv/zu/H77H90XbsjexZ0HYB1apq9jze84ft/yoeJxXzxY5Y+v30kC92xPI4qfit9blluZ9qND7h/wU+GRofAW/yLj9m+lQf9z6cfHHygwWY/+3Q1dBlV69dPEx/yHfXvntnvZeDAT8+DOFIwWG8GtylUi7mFq/psobv23+PgMC2qG0cfn6Yua3mkjg1kc3dN9O3bl+0ZdoICERlRrHj0Q6GHBmCy2oXzJaY0X1vd364/gPhCeFqsau/hMxMGD4cWrUCLS0xgtGjBwwZIhYy7toFEyaIE4+wMGjXjs/ce3Fp2CWeZD2h5baWJBcmv7VLQRCYemYq5+LOIZPIONj/IItvLkaKhJ/OVXOwiQ4eZh7oa+pjWC3DUPlrrreehh5hz8IIHr+RNolwXfKa0R5xLJzbAo9Xn1M/pD4bIzcik8gw1TElfXo6GTMzOND3AEmFSTTe1Jivwr8isSARLZkWnZ07i6kax0by9eWvsdS35KWQA/36wZYtkJICUVGwYAGUlIj1JS4u4rG/eAExMVAm5sq3c2r3TrTCpaYL2nLtt4T7Wtq3VOem2xnZoUKFt6U359rZIQQFEXJGSpcCM0K6hmCua86L3BfqCJjy1k2+mnGMH49XML5tCVbjS7lpkE97h/Y0MvdmxI0SQr99Qm7qS5TXrrK2pzVuG704+vwo67uu527wXZrZNgPAXM+c8OHhaMg0SChIQCqRYqFnwZWkK+oCdqlESmPrxtTUqUl2WTZyqZzXRa/Z2nMrZwafQfrLo/hl3ks0pBo4GDvQr24/zsedp0pVRehnoVy3qERWXMK0LX3V58DOyA6vLJB5eCIgqMcjIKBQKdDV0OVx1mNcV7uy4PICSqpKsNC3AMDDzAOAWb6zRKpdmZQhfWHMA/imcQmBT6FpiTFnXp5hy8Mt1NCuQZmiTKxR0tKCQYPQuhuJ8s5tipp503ZbOEpnJ1QmNVE2bMDKdfHMmt8UTE1ZtiiS2P7X6KR0YELhHjzmGnFw6wwE1fvF/FbcXkFmaSYnB50keVoyRwccxULPgvGnxrPoxiIs9SyZc2kOSzstRUBg+e3lZJdloyHVoFRRyq5GGmBvz9OpA3me85zdvXdjqmfKyUEn1dG4ckU5ehp6jG00Fh25Dr5bfLmTcue943lzLU4I6Y5OhZJiTdh7UouHlvAy/DCSp0/Fe3viRB77duXzzTHcs/VGIjNDpuVDqc16pkXWw9KrOZYzv6FKJlDQp6tYwA7i+axV6y1DQxAE1t5dS7sd7ahjWocHYx7QxKYJh2IOcSnhEqv8V6El16KeRT2cazh/0HE0telUojKjuJZ07a3ljsaO1NSpiZ6m3luGQEZJBv0O9iPoeBCdanViZvOZnI07y+QzkwH+VAvlDcPU48zHHB94/O/WTvkgkpJEp4yODoSHg4UFOho6HB1wFKlESo99PT6YDjz86HAATg86jY2+NUMPDcbPqSNFlUXcSLgqMpZVVYkR14oK8VVeTllhDscj9zK69kCsMaCvnR/7IzaJWiYFBZCfD3l54is3F3JyIDsbsrLEZ35mpkhDnp4uaqGkpkJKCo/vx/H5lmfcjyskp1jB/bhCPt/6TG1sVFZXUqoo/VSj8Qn/L/CJ3vYj4EHaAxpvasyDMQ9oaNXwo4zhceZj6oXU49SgUwS4Bvz5Bv+l+Pbqt3x79VtujLqhnvip0aEDmJmRvWU1ddbUwUjbiOTCZMIGhBHgGsC88Hksv72cKmUVprqmLOu8jCH1hlCtqqbZlmbE58XjYe7BndQ7VKuqMdYyRk9TT51CJJVI8TT3pJlNM5rZNqO5XXNqm9R+O0WgulqssZg/X5xUfP31r8vi4qBhQ5EXPzBQ5Ml/D2JzYvHf7U+VsorTg05T37I+AMsiljHj/AxApOssqixi9sXZDE0zY2dCA+r3zsTH2odNPTbRbpwOlua1OKmTjJmuGVKJlJyyHCKCIuh/sD/pSU/I1QVtqSb98CAw9CHlPbvSV/8UB/sdpG/dXye31apqdkfv5ouLX5BZKqb+nBt8js4unbmRfINW21pRQ7sG+RX5NLRqSLB3MIO8BmGk/ZtizeJicbJw5gwcOiT+SGtqQtu24O+Pk3IpiaWih7Jsbhk6Gjo03tiYehb12NpzKyD+GBstNkKhUmCqa0pWaRZ1zeoSkx3D/aE3cO0dTH7ic15fOkKpkQ7+u/0522knnTZdQrp9B8fcYHRfDbI1RI+mlkwLs7xKth6DTvGw1gdmdwSZvgHFVcX4O/uzsP1CvC2932ITK1eUM+fiHFbdXYVcKkcQBG4G3WTW+VncSb3D2i5ricyIZP399XSs1RGXGi6EPAgBxDSUJ1lPuJp0FS2ZFpVK0fDv7tqdHb12cDf1LiOPjaRSWcmGFj/St+VoPMfDUwuQIsXbypsD86KoNXgSB4KbM+DQAM4NPoffbj8aWzemoKKArq5d0ZZrs+L2Coy1jfGx8eHki5PM8p2lFg3tsLMDCfkJJOQncHsz3B/Qkp6bb3DJCbZObc315OsYa4s1PrNazGJOyznvXKeR0ee4NG8wgdfysCsUKKmpj6SkhPGTa7Hs2ztqfYXoK/v58ugkTtfIoUmBHj+2+Y52n01T7yejJAPX1a4EeQexwn/FW32kFKWw9eFWNj7YSGpxKsbaxrjWdOVB2gPkMjkKpYIBngMIexbGdj5jwPwD7Ng1k5GDl6j3UW99PXLKciioKEBfU59xjccxrdk0euztQWR6JAf6HVCnEr2BQqmg086O9Nl0k5kdlPglazDuloJ9MzoT0HIkxZXFFFUWUZwaT+T9+hRreIHk12tEqlLSuDCOH1MOcUM3h1ZuN4l52hb3cn2xNkMQRC0IlQoaN0apUvIs6ylpRWk4GNnhWsMVqURCtbKaOym3MdTUx8vMU9wOmO0cz3arTNKvNkEmoF6OICAIKjxaRlOnVJuw+y7q5UpVNSu1o5jhBw/Da1O/UIe8slwyitOQIMFG3wpDTUMkQGlVKSmFrxFUKmwNbNB/Q4jxZuy/eeVXFFBYXoCZril6cp1f132g/QeX/3adSiU6KEA0NCSSt9qpBBWK6iqkEilyiQzJb9YJv7x+71UVAJsZMOgx/Hz+ncv534YMfZg+aAVpZj5IfnuNSKCxsxE/DncjrTgNm2U2nBx4kq61/1it/RM+4b8dnwyNj4DEgkScVjpxfsh5Ojl3+ihjEASB2mtq08ahzUcRDvxXoVpVTYutLcgrz+PR2Edvh+j79xc9ThcuEBoVyrCjw/C19eVB+gPODD5DO6d2lCvKmXFuBpsebqJaVY2VvhVrA9bibelNvZB69HLvxZoua7iadJXzcec5H3ee2NxYtUq2kbYRBRUFJBSIwk/G2sY0tWlKc9vm+Kfr02jRNuRPYkTPvq6umEqkUIifJ00S04r+ggJ5RkkGAbsDeJX3iiMDjlBYWUifA32QS+UM8hrEmi5rsF5qTZmilOSlAibrtqEXH6RWge85xhCVmSkltR3IKskiNjdWHQ3QkmkhUwp4pVXzyFxFxIgbuJ27T92X06ijZc2ZhYlI3nhef4MBBwcQ9jxMLTwX7B2MuZ45i28uJn1GOjeTb7IpchOnXp5CS6ZFf4/+6iLWt1SDb90Si19nzoToaLh6lb49KjksOtyJcw+hVpdBjAqfKtKS/iIWBtBya0ueZD2hsLJQvcxK34putbuxof488j1qkVrLFM+7SawK9mLE4Ti0dQ1Z+mUb/lZ+hiplFXKpHKWymiSzH7D9ajEKHS22TWnN+KowdZRAQ6qBQvWrQeJS0wU3UzeMtYw5F3eO7LJs/tb2b5RWlfLDjR+w0rfi/NDzzLowi9MvTyOXylnut5xyRTmzL87mh/Y/IAgC8y7PQ0AQC9sFkSFne9R2CisLMdIyIrRXKL52vow7NY5DMYd4vUGP5oGlpPxisxlL9chZUIpsw0b2Nzck8HAgq/xXMeXsFH7u9DOh0aG0sGvB2q5rSSpI4qvwr9j9eDdyqRwPMw8ejn2IRCJhc+RmRp8YjQQJtoUCF687YtZvJAZfLqDuJAlxJhJUggqZRMbSzkuZ2uxXfY7foqSqhOmnppC9fxsLo01xepWDSgLjhtVk5dyrmDp5qtteCVvGF9e+5m6NUvwLzFjcey31W/Uj+HgwR54f4eXklx9MHVGqlMy+OJtlEcuQSWSoBBUCArpyXVKnp9JlTxfupNzh+k4NnJt3oXjlEoqrionLj6P/wf6MazSOa8nXiMmOwd3UHT9nP/Iq8rgYf5G04jScazijq6ErGg9VxRRUFLzDwvRbSJCgKYjCl42FE2hh/k6bGpX5HHy6ggSdSly9LhP+wpd2Jabi/S+RiNodqamUdWxDRMptCisLaWTTGAdjR3WbqMwonufG0rV2N/S1DNTLb2tl09z2LFfT/WhdafXrPgEkEkL0nzPR+BZxWYE4qkSa3PiCBE7Fn2eRnw7+FbZ0f1ROSlEKdczq0NK+NTqaOm/t51zceWLzXlCpUtDYpjGtHdqIBvebNhIJMTnPCHt+lLaObWjp0Oqtdb8dz19eLpFAUZHomFGpRL0gE5P3bhOd9ZgNDzbS2bkzPd0/Uy9feP07kotS+K7dQiwMLEEi4fiLkxx7cYziJvV4LGTxzHbRe8f0w41FVAtKvm67ACQSlIKK8afG09S2OUGNgqhUKsguzyarLJvsUvE9syxLfC/NIrcin2oJ5OpBji7k6Eso0RBoXv3+a8TUQIODs715kvUEr/VeRARFvOtA+4RP+B/DJ0PjI6CosgijxUbs7bOXQM/AjzaOORfnsOXhFtJnpP9lld7/RrxPlAkQU5Fu34bISARBwH+3PzFZMbiauHIv7R6Xhl3Cx0akfi2sKGTS6UnsebIHlaDCwciBvu59WXp7KYf6HaJP3T7q3SYXJnMh7gLn489zMf4ieeV5GGga4GXuRU3dmkhzchm07T4DHip4UROq9LTxfF1BqakRJSMHYzptLjLrvz+doLiymH4H+3Ex/iISJGhraONk7MTt4Nv8dPMn/nb1bwxWerBrdSrXbu+nzT4/tZr2gLE1eWSmpMq0JomFiYAoOqinoUfMxBiuJl1l1uqe6Csl5NbUoVerMay/u5Ynq5W4tOop1lhoaanHklOWg/VSaxQqBfv77Ce5KJlFNxZRUFGAo7Ejt4Nuq5V7U4tSRQ79h1tIKEjA3dSd4IbBDKs/TPRyZ2WBhYWYMtarF5SVsXbfDCa9Fr3+N7ZAiwwNVgyw50uXJIp73kFe3xskEuZcnMO6e+sorirG3sielKIU2ju1J+J1BOkz0jmzcRZ9pm5AYmaGNCub2R1hT2dLMsqzmdF8BkWVRRy6FsKGUxJ6xwgoBw9i83AvZj9YhFKlpFRRioGmAc1smxHSLYSXuS+JzY3lefZzLiRc4FXeq7e+IwNNMfphoGFAlaqKSmUl1gbWpBenU8+iHlGZUXzV6ivaOLRhyJEh5JblohSUSJCIFK4tvyC/PJ/g48GEPRcFPfvX7U9ItxCOPT9GybiRTP5NALJuvpynK6tZ8mNPjDoEMPbkWBpYNOBR5iP29tnLmrtrcKnpwvbPtgO/RjIt9CzILM2knWM7lnZeiqOxI+ZLzKkWqpELEibcEVj+t9tUde3Cbrt85g+2IqMkAwEBRyNHbgXd+pXG9T04HHOY0SdG0zxdxu69VUgKixjbDdbo9MZ0/Axo3hwkEgSVirBts5gbs5qXBgr6FFpzU5rGxJ7f0bduX4qrin+NFvzu/6LKIo7FHiO9OB1jbWOyy0RKZAkSJBLJHxoGIKazvWljb2SPlb4VBloGxOXFkVCQQFObprR3ak98fjzHH+5n6n0pi31VTI2AmpVS5E2bE5UfwxWDfLIMQEcBGipwkK2gpvA7b7VKiaryLg9M5vOZ22eEPg5lV+9dDPYa/OuAtm3j8sJR9B9nip6mHkcGHMHbylu9+kXuCzzXefJVq69Y0HbBW8eiElTYL7enj3sfVnZZ+c6xllaVYrvclmDvYJZ0FqM7o46N4k7KHawMrLiUcEnUbum++YPOr177e1GhqKCTcyfmXJyDt5U3+/rsUwsu3k29S5vtbejj3ofQXqFvOxP+UWRmQps2Ylrl1avg9Mfijj/f+plZF2ax47MdDKs/jHup9/DZ7EMbhzZcGXFF3a5aVU3rba2Jz48nszSTuClx1KpR6619JRUk4bTSiYXtFuJt5U1iQSKJBYmceHGCl7kv1WmQbyCTyLA1tMXByAF9TX3KFGWklaQRnx//juCrV/UKauKDhPdHNK4mXqXtjrbEToqltkntf+IEfsJxS/ShAAAgAElEQVQnfHx8MjQ+AgRBQPM7TVb4rWCiz8SPNo67qXdpurnp+5Vx/8cQcj+E8afGv50KNn8+7NghalEACfkJeK73ZHi94TzKfERsbizXRlzDw9xDvZ+skixGnxzNidgTCAjoa+ojQULspNj3TqyUKiWR6ZG/RDvOcSv5JtWocCqQ0ClZA79nVThqmnOgiS4rrZKpkKnQ19THx8aH5rbNaWbbjKY2TdWT8j9DbE4s9UPqU6msREumRfS4aMz0zLBeZk1ldSXxe8xw7NiXnwY58O3Vb9nYbSMHYg5w4vkxVICHuQdPs59Sx7QOVvpWXE68zIWhF+hYqyOjjo2i8PAeLltVUqAL81t/zd9KGovRl9atRUNAX+TMXxaxjFkXZolUrFMTkEllPM9+jvs6d7Tl2silcj5v9jkzms9Qp0ypBBXhCeFsitzEkWdHkEgk9KrTi2DvIDo06I1kwQIxqgE8TH9Iw41iWuGBlqvo91zK5RuhtK9zh2droI6mNfj7c6KFKT1ei2w/9ob2ZJRm4GDowKv8V2z3/Yl+oZHohO4lTwe+mNuEzcp7aMo0uTHyBsbaxsyd5smm4xKqqysZ1xVuNRUn1GMbjeW79t/xzZVvCHkQQrWqmiWdljDTdyYpRSkMPzqc8IRwZjSfwdyWc0kqTCI2N5azr86yI2rHWxEQQB310ZBq4GHmQVRmFDoaOpQpyvCr5YeJngl7Hu9heP3hrAlYg76mPmHPwhhxdAQlVSUYaxvTu05vkg9t4cIv2S8yiYz+z6Ts2afAcb4B2dpKtSaEhlSDpZ2XcvLlSQy1DDnYTxTQmxc+j7X31nKgzwE67+6Mo7EjSQVJDK0/lPup94nJiWG89xjWP9zI3iQf+nv2RzlrJk1mGlLXpyt7n4jsRXKpnPGNxzPLdxY2hjaUVJW8YxDEF8SzPGI5KSnPuLVPF6vMMnoHSrAsFlCYGFHkaE1xTT2KFaUUVRSSW5JNhaCAP5ifyqVyDDQNMNQyxEDLAG25NtGZ0aLRoFJRpfqVeUnyy1/tPCmrSlpSc6E4CS2vLufi0IvoaujSbEsz0ovTySzN5MiAIwS4BiAIAj9c/4F5l+fRx70PZ5+d5PRRHab5FJBiJBaB37EFlRQ8KgzpoFWH9Mw4DpvnYloGcnk9XOTrkakkCFIZAkokgsCqHeMo9tUnqGkGz4sTqKFdg8k+kxlafyjONZxZsX8as56toq25D/tGnlKnmoH4m9Fldxde5L7g6YSnavrn32Ly6ckcjT1K8rTk907yZ1+YzabITaR8noKOhg5mS8yQS+VqzZpVXVYxyWfSB899k01N8Lb0ZmP3jdxNvUvgoUDyyvPY3GMzTW2a0mRTE2rVqEX48HA19fQ/hexsMZWyoEA0Mlxc/nQTQRAIPh5MaHQo4cPDGXdyHDHZMcRPicexhuNbbePy4qgfUp8yRRmjG47G09yTxIJEkgqTSCxIJCY75i0xR7lUjr2RPWa6ZtxJvUNf9750d+uOvaE9AgJPsp8QnhDO5YTLFFYWoquhiwSJmtjitzAU6tFAuf6X2iwpAkrkUhkrgtzxtDcg7FkYfQ70IWdWzqc6jU/4n8cnQ+MjwfJnSyY0mcDXbb7+aGMQBAH7FfZ85vYZqwNWf7Rx/CsgCAJd93QlMj2SJxOeiD/SK1aISsGlvz7ol0UsY+b5mZwdcpZZF2aRU5bDjZE31F65N0gqSCLoeBCXEkTaSX1NfS4MuUAzuw+Esa9dg1GjKH4dx5VaEi64SDlfX59YjUKkEik+Nj60dWiLjaENRRVF3E27S0RKhJqn3qWmC81sm9HMRqz18DL3QkP2drpSfnk+vlt9yS7NVhMJTGoyCS25FssiljGgZiu2f36Nc8eWMvHFctKK01AJKpraNEUv5hVxWqVcn/MC+xX2DPQcyMkXJ7E3sse5pjPHAo9RVFmE5zpPZGkZJOopmGLfl5WjDsKVKyJTlKcnnD6NYGxM7TW1ic+PZ3GHxcxqMQuA1XdWM+P8DJ5Pek7I/RDW3F2Dtlyb2S1mM9ln8ltpbTllOeyM2smmyE08z3nO002aVDRugGXoEawNrNU5ygAr/VcypekUcspyMFtixn63efS/VwZnz5KbEIPpF6CtlKCQgRIBqQp+jnMm6EgiBloGBA814rBeMggCMxtOZEHMepY1/4ZaC9fQ/UYWpX7tGNVVyYE8sVh2b++9BHqJkUaFUkGHnR2ITI+korqChe0WsuTWEnQ1dNnx2Q461OqgPiaFUsH0c9NZc2+NWIfRLYTRJ0aTW55LcaUYcUkuTFanY72BkZYRtU1qoyHT4H7afUx1TVnht4JutbtRUlXCiKMj1DSc5qUSqiUC5XqaVAgKzIsFTp0wwC7yFX339/0/9s47Kqoz//+vKTD0DkoREAWsWLFXbGDFFjtqLNFYY080uhp7iRoralTEhoq9i4JiQUSxUMSCgAjSe5mBmfv748bJsprdfHf3+3P3e3yf4zke5pZn7ty583yez7sQ/jYcAx0DjHSNmNh0InHZcZRWlHJpxCUtXbKDYwc29tiI+RpzlnVehlKtZGvkVvLL8xEQWNJhCYHnl1MhqBndbByzJh/gmFsFK0bU4G3hW63+5s9CJpFhVKrmxgGoUQA9x+pgpmuCxdscjCUKTNwbYtysDW+EPIIeBtJFcCJMkgwCjFG0YPKoLVSzccZYVyws/nYSffDpQUadGsXAOgMprSzl0itRXD+v3TyOPDtCckEypuUwtckk1r/Yx7LOy5jXVkxx73KgC5b6lqL+6eVFgr8Kpo9bb4iLY+2ZeSxQXsS+CIp0oUBf7Fo0KTdjTPvp9GjQj8it3zNTepUMI+j0BhzzYG8z8HrnQR2daWQ4NyOl7D4Jwna84p9x/JQMWZ16OA7PwNy0Gkn5SRSpirAysCK7NJvpEbBh5AHkI0ZVeY+n4k8x4NgAzgw9o018/1uEvgnF64AXkeMj8bT3/Oj15PxkXH5x4efuP/Mo/REHnh7AxdyFowOPsvTmUt4Xv69CS/xb2G6wZVKzSdpuSkF5ARPOTeB43HEs9S0x0DHgwYQHWrOBfwk5OaK7VGam+Pxxd//Tu6rUKroHdif6fTSFykJa2rdkQbsFYhGRn0xSQZL2/399H+vKdHEydcLJzAknEydOJZyinnU9VnVZhbOZM7ZGtlptVqs9rSitKMXTzpOQNyGkFKQgl8ppZd+KSk0l0e+jtXqrD4sMBjoGlFWUab//mzue4c5TBW+zKinmFasGd6GXh0gt3P1wN9+c/4aKHyuq6MG+4Av+G/Gl0PhMqL+9Pl1rdv1km/v/J2ZcmsGJ+BO8/e7tv8/n/DMhvSidhjsa0sGpA8FfBSM5eBD8/KCsTCu0rtRU0mpPK5RqJReGX6DLgS5oBA23x97+ZMciLiuO/kH9tdaXnnae7Oq9i8a2jcUNkpJgxAhRZwBgZyc6Kn39NVhakpyfzLXEa1x9LdKs8srzMFGY4FXTi24u3ahvXZ+0ojQiUiOIeBdBdHo0FZoK9OX6NLdrru16NKnehLFnx/Iw7SGlFaXMbj0bF3MXJl+YrP3hGpRvT4jBe/J11cilctrUaMO+fvtwMXdh5ZSGbDJLIGO5Eruf7ejj2ofd0buZ3mI6WyK38Gr6K1zMXVh0fRErbq9gZKIxB12KOOS1jeHtvxWFqt7eYGdHeMAyOpztj45Uh/TZ6doVtw77OmCsMObC8Avaz2NF+Ap2PdyFhb4FC9svZGKziSjkv1OwBEHg7tu7KIYMJz8rFW8/Cb3cejHaYzQDj4t0tZktZ7LReyMA9j/bM7bxWJZ7/eY0lpJCvcBWlJTkk6Ioo8trUdjZOAMONITt4xtyP+8ZcjU8P+1ArUpjtgx2ou8vV7AoFTg72YvJNpEodPQY02gMG+5twFhhTMrMFG0nJqM4gyb+TcgqzaJSU4lvHV9+7ftrFf1AXFYcfqf8iE6PRoNGS934oA1SyBQY6BhUsbXWleqyo9cOMktFzUxCdgJxWXFV9CaOJo64WboR+S6SQlUhCGBWDhV6curaNSbpVRT5+jCg4VdklWQRmhSKmcKMfKUodDbWNaa0opRaFrXILskmpTCliuj8j2BTIqFULuBarMuoVAumnHlP07nGxOoX4VPbh5yyHCLfRdLQpiFJ+UkUq4rxqunF142/pr5NfW3HwVjXGIVcQXR6NJMDh+C/8RW2RTBxjhu/Dg7E8tcjsHcvQlERV+vrcbN3A1auiCD7bQIrdwxnmzwaC6WUJbZDGfftHnQUH6/kr7uzjgXXF6Av18fZzJmEnARx9dnEkQcTHjD/yhx2Pt6NjiChQiLQwbED37X+jl6uvegf1B+5VM7xlusZcuwrzpY9ZvArBUl65UTai10LNCAToH4WdMCJdT8/I3X7aqbGrOWKcyXVMGLQ/WK6J0K/YYAAL34B5wWr0Jm3QMu3B3DPhLDLNgzsnEXtmk2ZP34/PY/0JrUwFY2gQVEp0E9aj9Ej19OtVjfkUjmlFaXU21aP+jb1OT/s/B9Skio1ldhusGVck3FaK9q/RYd9HYhIjUCtUaMr1yV3Xi76OvqcSzhH36N9iZoQRTO7Zh/tp1Kr0Fuux+4+uxnXdJz272qNmma7mvEk4wlulm6cGXqGOlZ1/u699Q+RlycaeaSmikVGvXqf3EwQBHLKcsTi4Tda04duxOu818RlxVXZXk+uh7OZM06mTjibOeNs5oyjiSOLwxbzOu81L6a+wNVSzCoKTw6nw/4OhI0Oo6NzR0orSrmdcptrr68R8iaEx+8fA+Bu6Y5PbR+czJwIeBzAk4wn2ufxh+9ZHas6vMx5KV6v32iS01tOZ5P3JlbcWsHm+5vJK89js/dmvvX8FoA1t9ew5s4acuf/L+Y5fcEX/H/Cf/fM8r8Ynzsd/AMG1htIWlEake8iP/dQ/mXYGtvi39ufU89PceDJAbD6jXqQ8/t1lkvl7Om7h/iseA48OUDIqBCUlUq6H+z+yZC+etb1SJiaQH/3/kiQiJ7+u5rQcWdLYvu1ES0p794VfwxPnRJpWnPnioJFwMnMifFNx3Ns8DGy5mZxf/x95raZS05pDjMuz6BTQCcW3liIUq1kftv5pHyXwp2v77DcaznVjapzOOYwA44NoOYvNQlLCkOpVuJs5kxvt964WbpRw7SGdqyPNe+YatyF66OuU6mpZGbLmVresbHckEJZJRKJhBb2LUjMT8TVwpUCZQFmemZsi9xGQXkBe6L34Grhyq3q5Yx8rmD8tWlEpz4Qff5v3YKcHHZuGoVMImOUxyhtkZFelM7tlNsMqvu7O5WtsS1be27lxbQX+Lj6MPPKTNy2urE3eq+WsyyRSGjr2Jbm7YfQWePIFp8tvC14qy0yACJSI7T/96jmobWMBcDRkbYNe2GmMOXX0xASCCq5BNfpEib2g8zEZ1yMdGNDpBkhnRzh1SumLbtMkqlAi6kK/CzC8Gs8mhdTX7Cu+zq29dxGobKQxjsbU1AuTvhf5oqThEpNJTKJDEMdQ22Rodao2XB3A039m1JSUULE+AhMFCZkFGdwM+kmE85NoIZJDZRqJfnl+RSriung2AEAlUZFUGwQ5ZXlWOpb0sCmAT6uPnSp2QUrffHeTS9OJzQpVCwyACSQrw8lkkqi0qPINoRKKRyLPUZokpijYGVohZ5cjxJVCe+L36NSq2hm24xqRtUw0DFgZZeV/Nr3V7q7dMfe2J47X9/h0cRHKGQK3C1FgXumocCQWIi2VOG0cD2FCvg2VCyQvm/3PRHjIpjeYjoxmTFs9N7Ixh4bic+OZ+Spkay+s5piVTFWBlbaorKJbRNufPeYgxtGk2EosP3nBEYdH07O8oXw7h1XZvfDLqOUlasioX59rM7f4OeFt0gYfLOqJe6+OVUscTWCBv+H/gyqNwgdqQ6xWbHs7LUTtUbNm/w3fHPhG7b12ckwRXM0GgFTuRFllWX0D+qP4yobdMLC8dh7gbFzXAnPiUYtEThau5xMRwt0NBK2Pa3BnLuglsI7E/iq1TjWjKpJg/yVxDkocDC0Y8TdYr6/DaOGiiF29oXgmgc6ncRsigY2DZjfVgxTTLABp2GZyExMyXj+kJy2TXAoEIj+JprUWaksS6lFjCqVnod7UmNjDeZcncOsK7NIL05ns/fmv6t7kEvl9HPvR3B88EeZGfnl+Uw4O4HwlHAqNBXUMK1BP/d+WgqWj6sPDiYO+D/0/+Sx04vSERA+ytBYeGMhTzOestl7s2jhvKu5+Oz9Z1FQAD16QEoKQkgImU5WRL6L5FjsMdbdWceUC1PodbgXDbY3wHiVMdbrrGm+uzmDjg9iSdgSrr+5jlpQ42ouFgxSiZRWDq1I/S6V0h9KiZ8Sz+WRl9nZeycL2i1guMdwDg04BMCQE0O01+3X6F+xM7Ljzts7dDnQBfM15vQ42IPDMYfxqObB7j670ZfrY2dsx/4n+/nuync8zniMVCLF3ljsxLpZutHSvuXvobKCSGls6dCSdd1EnUyxqhgjXSNa2rfUfn/ht1TwL5SpL/g/gi8djc+E/kH9Ka8s59KIS591HGqNGtsNtoxpPIa13db+4x3+CzD69GhOxZ/iaesDOHfuD48fQ6NGVbZZELKAjREbeTLpCYIg0GF/B2qZ1yLELwQjXaOPjlmiKqGxf2NkZSpUuRm80VeCAN0zjPhl0B7cuwz5H4+zSFlEWFKYqO9IvMqLnBdIJVJa2reke63udK/VnRb2LZh3bR4bIzZirmdOkbIIjaBBQ1Wha99XMo4dUfP+eRQPK5IZeGwg72a9w87YDoCAOV0ZY3wd5SIl6+6sY93ddUxsNpF9j/cxptEYdj/azdAGQzn07BDR30TT50gfWiZVElP4iuzqJkTNf42VgRW5z6OpfqQpFVKI7hZM4zZiivf2B9uZcXkGGXMy/tAp6Hn2cxaHLuZ43HHcLN1Y1mkZg+sPFjtp/v6io0xZGejo8DDtIS32tNCKdbu5dGNC0wncf3efc0+e4WvzC4kZpbjY6NPkxV56bFyHAIzvL+OUmxok0NDEFc+7yeyU9EF94Tx6pUoERAlAUF34rifsn3yF7rW6a8coCAJfnfiKE3EncLVwpaVDSw49PYS7lTuNqjUiKDYIgH7u/bDUt+TCywtklGRoqRUlFSXEZ8UjkUg+mdT8KejJ9XA0ccREz6SK/iCrJIvQN6GoNCqa2zbnfcl7UgtTtftJ1fBiC2z00mObx++J0ia6Jujr6CMIAnKZnLSiNGqa1aREVcKAugO0hgkfKEfZc7NJK0rDY6cHKzqvYGHoQk4MPkGA/2Q02VmE1pYxIULNmuvgMgPOzhZXvTWChonnxHvo2CDREnbf432svr2a5IJkfOv4sqj9oo9WyK/cOYBz/7EYKDWMmlGD7dMu02pPK8Y2GsNmw4GwZQucPg2GhjBmDEyZwtO06E9a4l59fZUeB3uwo9cOvr0grgav6rIKPbkeM6+Ilrnbem5jjENvzHc4oaOBo5FOnNNN5nRdyDQUbwgjqR5dnL34ts0MloQuIeJdBH11Pdi37Cl1pkGDDHhmJyNPV1yRHuXclzOZ4Qy7lcvmS+C1yIEI3UxUahXT78H6Wwp0Coq0ORkqtYo6W+to3ekADJWQuEsPq0pdpNt3wPDhMHUqQlgo0dcCCXgcQODTQPLK86hmWI3v233PsIbDsDH82K3oAy6+vEivw714NvkZDWxEGs7J+JNMuTiFElUJa7quYduDbcRmxRLYP5CRHiO1+y4NW8q6u+tIm52GicKkynHvvr1L271tiZkco9W07X+8n7FnxrK+23pmt5lNiaqEqZemsv/xfvwa+bGt57ZPPks/QCNoyCjO0HYi0t49x3fGDqxT8/CbZs8Vo4wqGgljXWNtJ+JvOxNOZk5Y6ltqCzHXLa68zn3N0YFHGX5yOJObT/679GD7n+1JK0pjSP0hKNVKTj8/DYiU2U7Onejm0o2uLl2pa1WXuKw4Zl6eScibEO3+FnoW1Lepz52UO9QwrcFIj5Hse7yPQmUhJaoSFDIFUqkUAx0DHn/zWJstMv3SdMKSwvCt48v2B9vJnJuJVCJl3JlxxGbFEjE+4pPj/YIv+G/Cl0LjM2H82fE8y3zG/fF/HBD1/wsTz03k+pvrvJr26t/jFPKZUVBegMdOD5wV1bgx5QGykOsi3/evUFZRRsMdDbEztiNsTBjR6dF0DugsZgwMP19VzFhaCocPcz9gBW29klgcBvWwZrq3hnSV2C3p596PDd03UMui1j897qT8pCpuVvnl+ejL9SmrLKvCi7cysKKjU0diM2N5nvMcfZk+EVvKeGEJQ4ZKcTBxoKC8gHPDztHcrjn6Ovqc+qE/AxSnyZ6bzaP0R3Q/2J2ggUEMCR7C0YFHGRY8DID13dczq/UsHrx7QOtfW7Mvqy2z9G/hYdOAK7Oi2f5gOzMvz8QzR4/7hw3g8mVo3pzOAZ1RyBRcHnn5H77P6PRofgz9kQsvL9CoWiN+6vwTvVP0kHTvDq9eiUnhgPEqY1RqFWqNmhb2LbiXeo/qspa4KX9GJpEjCKKbj0QQaPZ4Mls94yiVip0SU4Up7pbuPEyNZG6RB2ZRMSQZa0iwApsScYW6SAFZJnJUVuYU6kspkqgoUhV95BDzR5AgQVemSwObBjiaOmKsMMZE14Tg+GAyijNAItKjytXlNLNtxrQW05h+aTqFqkJOfXWKvnX6cjL+JH6n/Ghg04AzQ89Uoe9VqCto6t+U13mvUalVojmBjhG6lRrKyovxLDQhdGshnUZDfAMbBEHQuuAY6xqjVCvRaDRUCr+/H325Pu2d2tOkehPM9cxZcH0BhwcepryinHFnx5E5JxPXra5M9ZzKiAbDSWpTj6++gjI5ZK6HAA/odDqaxtVF6qBao2bUqVGciDvB6aGn6enakwp1BYeeHWJl+Epe5r7Ep7YPizosok2NNtpxZL56grJdKzTl5XQfr+C9pYI3M9/8XqS+fQs7d8KuXWIIWo8eMHUqYWXxzL/zFyLNS/HOt8aimjOPjUsorSzFztiO1g6t+eX+LzwYfYfFZ7/jSnYEakHNxIcStnsKSAQQJGAuNaC7c1fSKvNIykvC2dyZ8JRwTBWmFKuKsdA3J7c4m14v4Uot8HoNl9zFgqRCIqAW1IyOqmTPWVg6vxVL9e8jICa6nzmsoaeDF5KQ3yeiIHbmPqTKf8Dk2sPYegGkR46IWTpNmsCiReIzRy6n56GeRKVF0bpGay69vISAgE9tH/wa+dHHrU8VGiKI2TI2622Y1WoWE5pNYNqlaZyMP0lf975s77kdexN7vj7zNfse7yNiXAQtHVpq900tTMVpkxPbem5jUvNJVY57LPYYQ04MIX9+PqZ6poQnh9PlQBf8Gvmxu8/uKr8bgU8CmXxhMg4mDmzx2YK+jv4n6U3JBcnaYtxQCdeOyGiQIfCXHzugbtLoo4LCTM/sT/0+XX55GZ/DPvR178uZoWe0RiFbfbZWMV/JKc3hxpsbhCSGcDTmqLZr+EFLdWzQMXzr+KIj06FSU4l/lD8rwleQXpxe5Xw9a/fkVsot5FI5P7T7gUJlIStvr6SGSQ2SC5Ix0zNDEAQKlYVcHXWVri5dtfuOOzOOuOw4VnqtxOuAF08mPcGjmge+R32p0FRoaahf8AX/zfhSaHwmzL82n+D4YF5Nf/WPN/5fxpVXV/A+5M3jbx5rw+D+23Ez6SadAzqz9qrAnJnHROekv8GNNzfocqALO3vt5Jvm33Ar+RY9DvbAu7Y3xwcfR578VvRv//VX0flEKmVxNzkrW1Vwb9xdmto1Z//j/cwLmUduWS4SJAypP4TVXVfjZOb0L43/de5rZl+dzZmEM1X+Xt2oOn3d+lLfpj4zLotZBtHtD9G4ywiub5nFSOVh3he/R4oUDRrkUjmNqjXC90ExPzokEOoXikc1DyzXWbK/335+uPEDA+sO5ODTg5RWlFK4oBBduUgBWRK6hBW3lnMyoTEDXB8xo84Yzmbf5lXuK4K8f+WrGbsgLo7cYwFYRw7SZnb8Wdx9e5eFNxYSlhRGf0VjTn7/GK5cge5ih8F6nTUlqhLKKst4MfUFKrWKOQFxlBU6VLGFFFCTSyTP5DM/eR6ZBnQ1EspkAkjA1tCWBm/LMMoqJF9HQ/0iBaYFSozRxdilLmnVDfFXR5KtqERHqkNti9ocH3wcJzMxg6TprqYUKAuw0LcgYUoCVoa/uwPFZMTQ2L8xakGNqcKUImURK7usZG7buSTmJVJ/W330dfSxNLDk5pibOJg48DDtIX2P9kUqkXJ26FmtpemKWytYEraE8LHhbIvcxqEYMf/CXmGNQ0I6wzOq8e2FDGy+l5GlUKMn16O8spzDAw7z9ZmvUaqVjG86nqCYILxqenHl9RUkSChXl2Osa1xFC6KQKZBKpAxpMIRnGc9ILUzlut91zi0cRM17zxk6GAbHywgIVjN8XSv2TbqEmZ4ZIBZEg48P5srrK1wcflHrYKfWqDkWe4wV4SuIzYrFq6YXi9ovopNzJ9F+9m0K2Z4NKFYW4TVORuC0UNo7ta/64ZWXi9kzW7aIOiEXF4RvvuGkQRI/JO7mpUklndJ1eWci5YbPUawiY2ieu4pSVQl9nsP2FlDx260iQYJfgh5HXJUMbjSMwP6BzLoyi6uJV4n9NpaItxH0ONSDElUJakGNRSnk6oNUAzYyI9b32Up01jM2RGxAqoHDwWDbpR+dLc5homdCfnk+aKBovRyjBYtF17u/wqvcV7Tc3ZLc8lytta4ECYPrD+aQqg/yKdPEDkhWFiQkcJ4X9DnSh+CvghlQdwA5pTkExQYR8EQMcjTXM2dog6H4NfKjpX1L7SR8RPAIbiXfokhVhEKuYKvPVgbVG6R93feoLxdeXmBy88n84vNLlTH2O9qPlIIUHk18VGVS//O9n1kStoTCBYW8yX9Di90tqG9Tnz199pBenP57EfGb2HOXLb4AACAASURBVPpFzosq3TcQ6cJ/Wzw4mTlRU7cadcfMQR79BK5dg5Yt+VdQc3NNUgpSeD/7vdbNb+blmWy5v4WVXVaSX57PtcRrPEp/hIBAHas6uFm4cfbFWZxMnMgpz6G5bXNCx4SSmJfIvGvzOJNwRrsAoZApGN9kPM5mziy4vgABge9afceYxmOYenEq4SnhNKrWiOj30dga2VJWUUaBsoClnZbyY8eq98SQE0PIKc3h/PDzmK02Y3XX1cxsNZMO+zrgZOZEYP/Af+lafMEX/CfgS6HxmbDm9hpW31lN3vw/797yvwWVWoXNOhumt5zOss7LPvdw/m2Ye3UOv4Rv4IHNQjymLf/kNuPOjONE/Anip8RjZ2zHhYTz+Ab5Mjzbln1bU5EaGYuJ1bm5MHUqFUt+pHWwD8WqYh598wgDHQNUahVbI7eyJGwJxapipBIpfh5+LPdarm2R/xmkF6VzPO44R2KOaHUJlvqWlFSU0LVmV8Y3Ha8Vln/QDZjrmTMjuzbdrr+hRcRbSjUqLNZaICDwl05/wdrAmojUCAyPn2a7mzixtDawprSilIbVGmJjaEN4cri2WxIyKkTrpFShrqDVr62QFBUz8mY+3zUTHbIs9C14P/s9OmVK8PWl8vYtBgxSs3dXRhVLzj8DQRC4/uY6P179nltTotg20o1WKwJo5dAKx42OZJdmU1ZZxibvTcxoOQPf1Q8oKPn4kaUkk0eKQSjVSvSleox8ouGHEBXFhnLG9qxE1UxMg04rSuPu13dpre+K0Kwpj8lg3YqeHK67iJIzJ0g+tgv3F7nIBJgzxIItdfLpmGlATh0nxrX+loU3FqKQKSirLKNIWcT0FtPZ5COmV99JuYPXAS/tKq2jiSNHBx2ldY3WCIJA94PdeZX7iovDL+JzyAe5VM7NMTexNxFpG32P9CU+O55DAw7hYu5C813NmdtmLiu6rMDvlB+BT8VJhwQJU6Ok9H0u0DZTj64bGxOdHq2lmXzd+GtcLFxYdGMRIPLUrQ2sGVJ/CMu9lrP81nI2RmzE3sRepLYIkK/MR0eqg5WBFbFZsVqbXL0KSNkIPUZCjL2cp79Uct4Nlvc15S8d/8K3Lb5FV6aLslJJ36N9uZNyh2ujrtG6xu8r9xpBw+nnp1l+aznR76NpW6MtizosortLd4b93Ib1K6Mok6rpPBqm9FvBgvYLPm1MERkpFhxBQSCTEd3CmQCD5wTVhxx96JgMBhoZoTWhSK5GX6qgnXMHQhJDEBCoZliNNL2FHNs1g2EDBdZ0XUN+eT5HYo7wctpLvA968yTjCd8kWqEb+5yfOkHlb0VKmxpt0JXpcjPpJv3jBBRqONIAzPXNsTSw5FXuKyz1LbF7k8PTnUBoqGjN+hsuvbzE8JPDsdS3pFhVTE5ZDpWaShRSBWrU+NT24VirDeiNGgt37lDZpxcNO8biWM2NyyMuf7SS/0FjFvg0kHdF73C3dMevkR/tarTj24vfEpsVy6C6g/Dv41+FyqisVGK1zormds2JSosi9btUrekB/E69uj/+Pk2qN+Ft4VuS85NZfXs1D9Mf0r1Wd84knEGlVqHRVKVw2hjaVCki7I3tuZZ4jQsvL+Bbx5d9/fZpi1Mtysqgb1+4d09cZGjb9uPP/X+AMwln8D3qy8C6Azk2+BhP3j8hJDGEq4lXufHmBhpBg6W+JT1q96CbSze61OxCDdMaKCuVWK61ZEDdAQQ+DaRRtUYUq4p5nfdae2xHE0dWeK3AUNeQhTcWEp8dT9PqTYnJiuGA7wGmXpqKjlSHGqY1iE6PxtnMmcySTCQSCS3tW3JxxMWP7uveh3sjl8o5PfQ0XQ50wVDHkLPDzlJ/e326uXRjk/emf+l6fMEX/CfgS6HxmfAhibfix4r/iLA8v1N+WmvY/ytQVirxnGUIllY8WJj8Ec0AILcsl7rb6tLVsgWHSnrA1q0c0UlgxECYmmTD5oBMJG3bwtat0FikizzPfk4T/yaMbzK+Cu+3RFXC2jtrWXNnDUq1EplExoSmE1jSaQnVjap/coy5ZbkExwVzNPYoYUlhyCQyOjt35lH6I6wMrZAipVKo5MGEB1re9IcQKoDOjh2JfnGLfD0BU4UpzeyacePNDTo7dyY0KZQVXiv4vt33JGxbSt2cpazrupZCVRF7Hu0hoyRDq4Ew1jVGLpXjbObM4YGHcbN0QyqREpcVR1P/piyx+Ypf4w7y2kxgUrNv2NFHDNOjvJzbbR1p9SQbeeAhGDbsn/qsBEGgxNmeE64qxrbPoY9bH55lPiO9KB2lWklXl66MbTyW9SdyMdE0+6ijUSR9yCPpNBzzYd9p8EqCTS1hcVcZMiNjaprXJCYzBnN9c3zdffHv4w9RUajbtmZPw0pKt/7MmttrUAtqDnTcjE+yDuWXz9PM6DD65ZWEBMBtR3jfvjGDZ/1KnImS9vvaoxbUXBx+kYySDMadHYcgCAgISJCQMy8Hc31zAA49PcTIUyPFIsPVhzd5b+gU0AmFTEHo6FDsTewprShl9OnRnIg7ga2RLRb6Fjyc+BCFXIHdBjuyS7O12Rzf34JJURDj6USv9skEDQwiKDZIm9RuqjAlX5mPr7svpxNEvvm+fvsY03gMIOaxTL88nauvryKTyJAgYX339cxoNYMKdQW2G2zxqulFZ+fOFM2ZxuCnalxnSqmZoyF6J9ScCdmG4uqup70nXWt2paZZTTbd30RiXiKho0OrhM19+IwvvrzIT7d+4v67+9Qyr8XrvNdcb7eHdqMWkliZScfRAvUbdObQgEMfu8ClpsL163D+PKprl4kwK+ZSbTjnDrE2gABSATrKXKjdsCO7n+7j1phbhLwJYdlNcQFldcefmD9iB4sGW7LSPIYRDUdwLfEaozxGsTFiI5sf2vBQks6+JuLxOtZoT1Z5DnHZooORaTmsuCFhqPsA2ng+40XuC3RluqjUKhQyBVMfSFh3SY2koAD09dEIGlaFr+LH0B/p7dabwP6BRKRG4H3IGxAXCmRSGUXKIto7tef0oGAMzW2oVFfw3EKDUdBpnDv1+8PvjVqjJjQplH3R+zged5wKTQUKmQK1oGZxx8X82KHqCnpIYgjdArtxdeRVeh7uyby28+js3FnbjUjMTyQ4Lhi5VE5ZZVmV0EMdqQ4GOgaUVpQyptEYmto1/d29ydQRAx2DT44xOC6YcWfHYa5vTtCgIG1IKuXlYkDnzZsiBbNDhz98n38WthtsySjOwLeOL+Ep4WSXZmOgY0BHp460c2zHvsf7UGvURE6I/GhRxPugN+Ep4doiG8Si3ru2Nz91/gm1oGbutbncSr6FV00v1nZdSzWjajhuFHM0urp0Jaski8S8RNws3YjPiqeWRS3yyvOI/ib6k4swnfaLlueHBhxi+a3lrLu7jpx5OTj87MAUzykfdUC+4Av+G/Gl0PhM+OCLnjkn80+Htf1v4vTz0/QP6s/zKc9xt/rznuX/6Xja2gXPHinMaDvr02L35895+dNMqp+4gqFaitS3P9jY4P/kVyZ1V7HYrB9Lp5+Cv1lR3Bq5lWmXpnFlZFUxMYjFw7KwZWyL2oZaI1rNTvGcwg/tf8Da0JoiZRFnE85yJOYIV15fQSNo8KrpxdD6Q/Gu7U3/oP68LXhL6xqtufL6CvfH39cKOwG6B3bnVvItOjh14KrO16iHDyPq9jGuVjznwNMD2rTqD7qOHrV6sL6sAw3TFnJh8Gl61uvH1sitzL46m24u3bjw8gINrBuQU5aj5R+b65nT0qElrexb8a7oHbsf7UZHkGJVpEHH1IyHc15iZWBFVkkWDmur8/RhC9wv3hepZpOq8rv/NLy9EfT1OLpsCIvDFvMq95XWg14mkaEW1HSx/ZrKt+MQpwAyENSAwCP5JEwKnxG+T6S6jPGFmy4ifezDvr1ce+Fq4cqe6D2kz07HSNeI8p3b0Js8lXF9If0rH/b221ulKFx3Zy3zrs2nU6qcZaHQKqkSHQ1Quzb+/RyYZByGAjlKKpEgQS6RM7bJWHY92qUN28oty6XO1jp41fTi6KCj2mMn5iXSaX8n9HX0CR0dip2xHRpBQ+f9nbmVcoterr0I/ipYdHBaZ0V1o+pIkJBenI7/czfGHHtBy291KHWvSfyUeHZG7WTG5RnUs66ndeZqYdeCyLRI5BJxMWO513LmtJmDTCpDEARWhK/gx1BxMjOi4Qh29t6Jka4R0y5O4+Tzk7z97i1+mzoRMDuctQva84MinF8uSdA3tSRu1iiOxx4ntSgVuVReRdsilUjxtPOkmW0z3K3ccbd0x93KHUdTRyRIuPTqEgOPDaS8shyPah6schpHt7HLeUkOXcZIUFmYcrDDZnxS9cTi4sYNUt+/4HJtuNTclKvVSyiWVqJfKWFAlhU972bRTGWFf2s52xzeY66UYGRihcbIkB/aL2TC+Qnoy/VRVioJNZlGuzm/MHBXFy6lhwOgVCsZHAvXXESzgGrFkFHdiJMjzzH42GDyy/Op1FTikQEx1UAuF4uLD8XSh+/agxAXmmuqw507FCoLGX16NKefn+YvHf/Cjx1/1K5oDwwaqE1+tzawxkjXiMySTJrYNmHboXzGusZx/qoltqkFsHw5zJoFsk/nKTxKf8S4s+N48v4JPWr1oLSilFspt5BKpPRx60Nrh9aYKEx4W/iWk/EneZP/Bkt9yypaAwkS7E3scTJ1okhVRHxWPOu6raOedT2czJzwO+VHgbKAlzkvuTzychWdwZ/Bm7w3DAsexsP0h6zusprvmk1BOnCQ+NleuPCRhu7PIr88n9A3oYQkhnDq+SnSi9ORIMHT3lMr4G7t0Fq7yJSUn0SL3S2oY1WHa6OuoSPT4WT8SZbdXMazzGfa40qRYqhrqKWQLbyxkKDYIBrYNGBt17V41/bmTf4bhp4YSlRaFNYG1hjqGlJeWU59m/qEJ4fT2603ZxLOED42nFYOn85f8tztSdPqTfHv468V3N8fd592+9qxyXuT1u72C77gvxlfCo3PhFvJt+i4vyPxU+L/dd/xfwNKK0qxXmfNovaL+L799597OP8+tG/PuialzLeMJnR0KB2dO4JaLf64bd0K164h2NhwrI0pN4yy2B5VDdmLlzB1Kqt7m/H93WVs7LGRma2q8v81ggafQz7EZMbwbPKzTzotpRWlsej6IvY/2Q+ATCqjlnktkvOTKVeX06ZGG4Y1GMageoOoblQdtUbNoOODuPb6GtNbTmfV7VUc7H+QER4jtMcMSwqjc4DIgb815hbtJ/wk0g/CxQnT+LPjuZ96n+Vey7n6+qooTC7J0IpgB9Xqy6yOIq+47V6RptDaoTX55fk8mPAAh40OdHPpRkObhkS8iyAiNaKK7e/3Dw3YXacUt+r1uDH9EYFPA/nm/Dekf/cOm4UrRWrLqlWwYMH//LOaMkV8H0+fUqGuwGOHB89znmtfdrN040XOC9wNeqBb6IOFrC4FQgL1kg8w/E4UoweAAKjkIBga4mLuoqWYlVeWVzlVd5fu9K/bn833NzNn/wtGRGt4dGwzbQZMB8QJzPRL0wl8GoibhRuJ+YmcGHyCuScn0TVJyjq1F1kRN2jeK42c3xZya0osONN9LyUONrTe20Yr7JxwVgw1i58S/9EqfWJeIh33d8RAx4Cw0WFklGTguduT3m69ufTyEs3tmuPr7svckLnYGdthZ2RHfHY8p6Qj6Pb9LqrPhiILAw4NOMS7wnfMujqLkh9KWBCygA33NmjP41Pbh4Y2DVl3dx3tHNtxoP8BnM2cKVGVYLLaBI2gQU+uh6W+Jeu7r6eGSQ3a7WtH2OgwguOD6TRrC82LTag5vhg9jYR7O9VUXr9K0wbduPb6GnOvzeVJxhO8nL3o4NSB7Q+2U6gqxMHEgZSCFC2dTE+uh6uFaD0akxnDhKYTeJLxhPvv7uNT4czxLe8pVSvJMIbaWQL3asBFTzMuu0mJ0cnVurIl5CSQW5bLdb/reNX0gidPYNs2OHiQJMMKFnsrCKxVggSwkZtibVGDnLIcyirL0JMpeLwTDNt2plat82RqijEvhzx9GPkUeifA0MEwsanoqGWmZ0b92Czc86T4N9Xwned0tjzcjkKmqJr6LIBypxW6Y8eTMHsMvkG+pBWlEdg/8KOQvbTCNOw32mOiMNEWwq4WrmJxXVqKgQoSFqZj9NMaWL9eXO0PCACn37VfWSVZzA+ZT8CTAOyM7PCq6UW5upzk/GRiM2Mpriiuck4ThQnlleU4mzkzpP4QNIKGFeEr2NlrJ2ObjEVXJmqz0orScNzoyGbvzVrxtMUaC/LK89jeczuTPSf/w6/yp1ChrmDhjYWsu7uOXgXV2L83F6tj57WarD8DlVrFvbf3CEkM4VriNR6kPUAjaKhtUZu0wjTKK8tJnJH4dzVyd9/epfP+zriYu5BamPrRdepfpz+ru66m+a7m2JvY8zr3NTaGNvzU+Sf8Gvkhk8oIigli4vmJWBtY08etD5vub8LZzJkWdi0Ijg9mduvZrL27Vhs2+keot60e3rW9+bnHz1SoKzBfY878tvNZHLaYIwOPMLTB0D99bb7gC/5T8SVH4zPBUl/0yM4p/fxZGgAGOgb0dO2pXWX7PwMrK2a9rkZ7p/b4nRxJwdplULs29OsHhYUQGIjk7l36SNzxP5hPorQAHj2CzZtZ0G0p89rM47sr37Evel+Vw0olUvb23UtZRZkYmveJet3awJrB9QfTr04/pBIplZpKEnISUAtqpreYzsXhF5naYqp2BX3utbmcTTjLss7L2HBvA1M8p1QpMgRB4IfrP2CgY0AHxw60xxFCQsRwwN9w/9192tRoQ786/djWaxvv57zn176/0jBHXA09n3SFNnvb4HPQBxDvQz8PP+Kz40ktTGV8E1EHMqv1LC4Mv0D23GyeT3muLaT8W8pYeAvuF8RRbakR80PmU8OkBpHpUWSv+hEWL4bvvxcLjf/pGkatWpCYCIKAjkwHQx3DKi+/yHmBV00vJrf34Zl8JvWan8Y5YTqbjkfRNgUe+INNKRTrQElFCc8yn2FvbI+yUknbGm1pbtecY4OOYW9kT8ibECZfmExCdgJHJrThuYMC5/Gz0WRlcvX1VRpsb8CZhDME+AbwdPJT6lnXY3HYYk5PuM65ulJc613HY2QReYZSkIBOJVzZlk/DNr7YeYvGA2lXTnA39gp7ovewuuvqTwZCupi7EDY6jBJVCZ0COjE8eDj1rOsRNCiIsDFhvMp9xaJQUWuRVpSGRCKhiW0TEnXFyZFvloVYNAX1Jyg2CKlEilwq12qtTHRFut2lV5fIL8/n4oiLJBck47HDgwNPDmCgY4CFngVmCjPip8TTwr4Fw4KHsfDGQmyNbDkScwRlpZL97Y1wTC2kR5o+NqZ2fNsbXv1FnEB1q9WNhxMfsr/ffhJyElgRvgLfOr44mDigUqt4PuU5r6e/5uLwi6zqsoomtk2Iy4rDVKJP7Kld9Dh0n51nQZaYRIuR5SAICBoBx+/AawxsbFBEzfptOTrwKFlzs5jXRjRf6OnaUywyQLSv3rUL3r3DecFqDtyx4clOqJctIUNdwLt38cytNoBCZSFFqmKGD9FBFXSU8tJikECBvoR1oTrsOwWzeoCNgQ27Hu3CxtCGugm5XDumYEd5FyY1Hs/GB79gbWCNdy1vJEi0FtIAo9tls87mFc13NUeChMjxkZ9M8rYzscNQx5BCZSFSiRRnM2eeZjzF1cKVfFkF8opKMlR5PJs9insBKyhMeEpZPTd+mdYCz13NMV1tis16G/Y93odG0JBenE54SjhZJVnUta7LlBZTkElkTPWcyonBJ5jQdAKCIGgLPlsjW2a1nkVL+5YcjzuuLTIA7Izt6OveF/+H/giCwJVXV8grz6OTU6d/usgA0JHpsLbzSi4mt+O+PIPG80y45a73d/cRBIFnGc/YeG8jPQ/1xHyNOZ0COrEjagfOZs749/bnzYw3LOm4hNLKUkY1GvWHRYYgCFx+eZmZl2ei0qh4nvOc4opipEgZUGcAPV17opAp0JGKXY4KTQXPs58zsO5AXkx7wdgmY1GqlUw8N5GhwUPp6dqTlV1WsuvRLnSk4vPqWNwxVnddzY6oHQyuN5hpLab93fdXrCrWPud0ZDq0d2pPSKLoVvZhjvAFX/Dfji+FxmfChzCe/4TQvg8YUGcAUWlRJOcnf+6h/PtgaYks5S0B96qTl53KjPtLxdXByEgxgC4tDRo1wuDuA64t8cNt8Htumf3uxrO662omNp3I+HPjCY4LrnJoexN7dvTawbHYYxyJOQKInY6bSTeZdH4Sthts6Xm4J/FZ8fzY4UdODzlN15pdqdBUsCVyCw4/O7D81nKKlEVsjdzKxoiNrPRayeb7m2lSvQkbum+ocr4LLy9wL/UepRWlInc3IAAMDLSOWkXKImIzY6tYVgJ83eRrgrx2YKwER5U+Jwaf0G6TU5bD5IuTkSBhzOkxuFq6UlBewKFnYoiVRCKhSFVEblku1gbW5FYW4bJ6J6vvGFAgryS/JJecshz6HOmD9XobXK0Oc3BsM1izhqzRg6lQVe0k/F3UqgUlJRSnJjL69Ggevn+ofclEYUJ1w+o8Sn/EvJB5ALT3v8SpIFE70WS2AYv7GfNwJ/R+8fshX+e9RkCgr3tfotKiMFGYYKZvhkbQ0M+9H8u9lqNR6OA7sAK5spLQ1rb4HOiBtaE1DyY8wK+RHwq5ggDfAOKy4gh8EkiXml1IL06nSFWEBg1z28xF18CQut9qeLZ/HbZdRE79u00/4enhTdQREyZeL4CnTz9ZfNWyqEXYmDDSi9KJz47n5+4/oyvTpZVDK+6Pv18ljyOjOINmts14lvGUDEOYInhycshJtvXcxt23d1FWKnmR8wIDHQMMdQyrBDruid7DuLPj2Oqzlf51+zP69GgGHxfvHQ0anM2cOTnkJFdGXuF98XveF78n4HEAaUVppDdzJ8Yavr1bwf4BgdytAS8yn5OUJCYky6QyRjcezYtpL1jScQmHYw6TWZJJsaqYboHd0Jfr41OrBzMVHel9NoFLhyXkrpVw/QC0ydHnYdNqPK1lRJwNdPEDuyI4fxhMysU05XMvzrHs5jKWhi1lxKkRSCVSNntv/rjANzeH2bPh5Us89pxjR0ZzAArlama93oZLsS4lqhJuyFNxnA1lv82vNYLAS+MKfuoAaSaQVZqFs5kztV7mcD1IgbxlaySnTiPTUSCTyEgvTif4ufg8GFpfXHUeVlaLaFuYV3gCtaDmq/pffZRH8dewN7HHztgOlVpFTGYMNUxqEJUehUGllAqJQJ3Nrnjs9KBN4g+4fF3ElXoKpm99wNKdCcjyCqljVYdD/Q+RMjMF5SIliTMSuTH6Bvv67WN119V0q9WNmKwYBtYbyK4+u1jUfhFyqRwXMxemXZqG7QZbBEQzhuj06Cpj+6bZNzzLfEZQbBBDTogZQTNazvjD9/KnoFaDnx8+gRE8brGX2nYN6BzQmWU3l6HWqLWbvSt8R8DjAEaeHIntBls8dnrww40fqNRUsqTjEh5NfETm3EyODjrK+KbjcTJ1YvbV2cilcrb6bP3otDmlOSwIWYDlWkt8DvvwIO0BIOqLAHb32c1+3/2EJYXhbObMifgTLLqxiPFNxtPPvR+XX18mtyyX2MxYWuxuwcGnB9nTZw9ezl4MCx5Gj1o98LTzJDYrltVdVhP4NJDqRtXZ03fPP7TjLakoqZI10tm5M5FpYnjul8C+L/i/gi/Uqc8ElVqFYrmiikDzc6NQWYj1OmvWdF3zEVXovw4VFXDyJMyZI4pIHRwI+KYlY9TBnBh8goFppjBtGrwUaVIsXYrGxJh2e9uRW5bL40mPtVkaao2aESdHcOr5Kc4PO0+3Wt2qnGpE8AjOvTjHkPpDuPjqokg9MHVkaP2hDGs4jEbVGlX5wbmdcptZV2bxIO0BEiTo6+iLnZHmk3md95qotCiiv4muMknUCBqa+DchKT+JulZ1uTf2DhJXV+jcWbTfBULfhOJ1wKtKqJYWjx7hcKgZRnomZJvqUFJRgpulG6WqUtZ1X8fsq7N5V/gOpVopjkmuz7y28+hRuwcb7m7gRPwJ9vbdS3B8MFFpUcR77GKafz+O1YcLo69S26I2Eaki1epe6j08Lj7E/4yGkw1k7JjWCk/ntrRyaEXrGq3/UBhPTAxPuzbkq9mOJJanU6mpREDA0dQRJ1Mnbqfc5uW0lyzd9hWBmke83QBLusmJ92nO/bRIhtYfStmxwxw7AT9667LaUwUSMJAbMLrxaA4/O0xZZRnVDKtRrCpmRMMRWjH/1VdX+Xllby7sr+CXjnrM6lSOQqagg1MHfGr74F3bG/+H/my+v1lrTQpgrW/Ng4kPSMpPonNAZ4x1jUn5LgW3rW546tXC5fJ9lqvaYXInSsxGsLMDb2/xX9eu4sQYxIDC3S0w1BWLgxt+N6hmVI0n75/Q2L8xhjqGWprOAd8DrA2YwOZTSjq5dUd65QoAc6/OZcO9DRjoGLCj1w4Why0mrTANlUbF9p7b2XBvA4l5iQgITGo2ibaObZlxeYaWGpczL0fbuVKpVcy/Np9N9zchk8hoZtuM9pdiWXO6BFlSMtMil7L7yV42pjVk8q9P+VtkFGewNOwvXL7uT7Yh2Kr0uH1YD+t3ecRZwclONkR6WHJDkkSJugw7Yzu8a3nj4+pDV5eu5Ny+hk2/4Ty1rKTnKAmGFtVJL07X0ow+wEzPTKv/cLd0x83SDXdLd1wtXdGT6/F9yPfsfrATysuolabkvSGkmAESMBE86JjzNdlmtXDIec0Vm70USp6iI9UR9Qpv8gjZr0FevyFcucLZdzfod7QfW7y3sCJ8Be9L3tPSviWpham8K3rH5eu2WL9Mx2uGKeWV5QgIqDVqmtk1o6FNQ/Tl+qQUpmiF139tL/xBi/QBS0JhR1cT5PpGBA8JxtPOk1PPT3F11XjWn9fCRAAAIABJREFUBBegY2yGwcEgpN3+mHa0++FuJl2YpLV57XKgC7oyXS6NuMT74vcceXaE/Y/38zTzKXpyPSY1m4RfIz8aV2+MgIDLZhdyy3KxMrDiTf4bHk189JHA/09DrRY7r4cOia5hAwei1qj56dZPLL25lIY2DfG08+Re6j3is+ORIKGpbVO6unSlm0s32jq2rZpt9FfY+2gv486NY0LTCezqswsQuxc3k2+yJHQJ4SnhVa5tQ+uGzG83n4H1BuJ3yk90xXL35XDMYe02RwceZUiDIeSW5dJwe0OMFcakFKTgYu7C0YFHORF/gqU3l/Jt829xs3TThkN2dOpI5LtI7o+/T8NqDf/hZVEsV7Ch+wamtpgKQFRaFJ67PQFImpH0L9ukf8EX/CfgS6HxGWGyyoQlHZcwu83szz0ULXof7k2BsoDwseGfeyj/HN6/FykUO3dCejq4uIh/KyhAkMkYFNCLm6+v82yTCtsm7UWdhoeHdvfYzFia+Ddhftv5/OT1k/bvKrUK36O+3Ey+ScioEFrXaE1MZgxHnh3h0LNDJBckoyvVZWKziQxvOJxWDq3+7mqWIAhcenWJqRem8qZATAv+EM53fth5ern1qrL9kWdHGH5yOID4+jsDUUAZHg7t2gGw+vZqVoavJG9+HjLp3whHExKou6UOXh79OJJ3i/zyfKY0n8LWqK3kzc/jwosLjDw1kttjb3Mi/gSbIjZVmdxKJVJ+8f4FT3tPeh7qSSfnTnQ69//YO++oKs623f92oXcQVIqAgIqioqLYURS7URSxRcHeSzSWJMaSGEvQxN57RUXFhooK9oIdUBGVqghIkb5hlzl/jO7Ii3nzfuec7yTfWV6uvfZazp6ZZ4Ypz33f131dcewwSiS/lg33pj+tlIErU5aRuvN33CbN53FDawYOlPJSkQGAo5mjGHTYt6KlfUs8a3iiK9Nl6+31TImYAnI5Ggl0cOrAxeSLeNt5Y6RrxK3nUYQ9dCWu8CU/+0BdqvFYLx+NoMHL1ouXeS95r3jPgKewP0xglTfM7gqfPuB0pDokT0tmXcw6Nt3fRNLUJJZcW8LKWyvxrOFJ56MP+fUCvN65mrB6Gs69PMfllMvaAOzjhEUqkbKt9zYWX1ssKv8ERbMvdh/zL8/H286boooiEnISmNV6Fss6LxMVdq5fF9V1zp6Fp09BKoVWrVB16czQkr28dDJlT/99+O31w9LAkqigKJZdX8bvt3/H1cIVpUZJakEqnZw7cSn5Ejf3GdAqz0A0tJNItF4HAfUD2PVoF6Z6phSWF2qvGV9nX+ZFzeP3278jkUiwNbZlmvc0Zl2cBUAvt14cGnBIqx4kCAJua91IL0inQlNBDcGYZ8uKkU6ahM6yENznW2L+XsH5HxOpbiv2XZCRAVFRYpPvpUuQns7D6tB+JEikUiRSKYUyFXKpnDYObeju2p3ubmL/SJX75e5dlL4duF2tjG5DBARDA62E73dtvqOZbTOe5z4XPzni93vFe0CcuDuaO5JTkoO9YEyr2Hx21i9HJoCpQoJatyGewkYkH0QFJBo1aqnAI9kEZPrpNMnX5fz2CuTOLnDxIq8lRTTe1Jh2tdoxsMFAhhwbUul6kElkPF+t5q6nDQv9LXiR96KSYhMgqrqZOdHSviUNqzfkxPMTKFQKBtQfwHeXvkOCBH25PkMaDGLnw51sMh7Ir/r3Ka4opr51faKSo+hbry8bPedRY/JckTY5bZrYE2VgUOUZk12STc2VNdncazOBDQKx+tWKVV1XVTKtA5gcMZlN9zZhYWBBTmkODW0aMrThUDbc20BaQRor/Fbw7YVv//eFSzQaGDMGdu2CAwdQBvQj5k0MF5IucDHpIrde30IjaJBKpHR16coIzxF0dO74H0llC4KAdYg1heWF5M/J10qNr41ZqzWvlHz4F9AggG9aflOpMftm+k267+9OYXkhpnqmRAyJoO+hvoxpOoYlnZZQoCigb2hfLqdepqV9S85/fZ4Z52ew/eF2lnZaSk3jmgSfCGZmq5mcfH6SF3kv2NVnF0GeQX85dpVGhc7POpWSjWqNGpOlJpSpyiicW4iJnsl//Xx/wRf8w/Al0Pgb4bTKiSENh7Ck05K/eyha7Hi4g9EnR5MxM+PPM8//NAgC3LkjNiIfOSKaXg0bJjYX370Lo0ZBSQmsXUtOyCI8RpXTtFpDzsx8gERalT24IHoBS64v4cHYB5WyUqXKUnx2+RCfHY+diZ1Wbaa/e3/qWNVh9sXZrOq6imkt/zOKQVpBGi22tsBY15iC8gJySnMAqG5Unfk+8xnVZBR6cj2UaiX1N9QnvywfR3NH7o25h2T4cPGYnz/XKmL5H/KnsLyQS8MvVd3Z69d4L3LAon4zzhfep1nNZjx8+xANGi4Mu4CXrRfWIdb83vV3JjWfRMONDXGxdMHFwoXfb/9ODaMavCt9h1pQU8O4xgdTQAkn79UluP5zGju35NzYq1WlmiMjRQnLZs14s38Tt4qeaisf9zLuUa4uR0eqg7GusdbLw1tty47JF7j79i7B4cH4OPpgEfuC5XsycCiAgBn23LYsxcLAgl/9fqX/4f5ag0ITXROqGVbD+1oy+47B1iYwrY8OFYJSW4nY1WcXbWu1xXWtK3YmdrwrfcfijouZ0WoGY06Opu/8A/RO1kVy9y4KVyemn5vO5vubq2TTfRx9aO3Qmn2x+xAEgeigaMacGsPl1MsYyMWJX87snM/Lfqalib4BZ8+iOH8G/dIKVFYWyLv35LlvIzrkrKCasQ3FFcWkFaQhCAL+7v6cSTxDubocu0K4dbMBDrefaN3UV95cyU9Xf6JgbgH7Yvcx/Phw8fZA0GZoQayoDT02lNeFr7WT4Y9+MK6Wruzz30cz22YA/HTlJxZeXsiQhkM48+IM88PfExwvR5WSxKOX1+geMZSxr6uzwXCAGFg8ewbAy1Z1Odu+JueqFxNd+kQbIAC4WrpyKOAQTWs2/eub5NYt1H6duV6jnB4D1ZTq/pH9H+oxlE29N2mpJ4IgkFOaw/Pc5zx794zrMUfZk30eE4XoAs/HOEYAr4pVGMlaVJFJzpfE8FQ6g7gDZrjo2/Jo/0pekMu8qHlkl2TjZevFjfQbVdzjaxZCxm+wdFpTMrq0pqZJTY49O8ajzEf81uU3Wjm0YtuDbRyIP0BJRQldXLqgI9XhRd4Lnk56ik2IDfll+dgY21DXqi5WNx5w1q6MEc3Hsum+KCX9a+df/0hKaTTi827OHJFyuH+/Vn77U3TY1QFDHUNGNRlFwJEAkqcl42TuVOk370re4fC7Awt8FtCoeiN2PdrFsYRjWkPB5rbNeZT1CMUPiv/ImbsSBAFhwngSjm3hwvyvuWhVwOWUyxRVFGGhb4Gvsy9+tf1oUrMJCy4v4NzLc2KSp+PP6Mh0/nLzG+9uZGLERPq796e4opiLSRcrV7z0zJniPYXxXuMr9dKkvk9lXvQ89sXuo5ZpLdIK03A2dyZ+YjzjTo8jNiuWbb23MejoIHJKc2hXqx2RryJpZd+Km69vsv2r7ZjqmRJwOEA06ms+mRbbWqDUKEmamoSzhfNfjr1AUYD5cnMOBxxmQIM/DGUbbWxEfHY86vnq//r5/oIv+AfiS6DxN6LZlmZ41fQSNf3/IcgpzaHGihqs77GecV7j/u7h/HsoFGIZfu1auH9ffOFOmgTBwVpKCidOQN++4rKUFJg6lYig1vQMH8DGnhsZ71VVirVcVY7nZk/M9My4MfIGmcWZHHpyiND4UO5m3EWKFF25Lqu7rSbYM1jbSDn93HQ23dvEg3EPqG9d/98OvUBRQJsdbShRlnBkwBG67O2Cnakd2SXZvCt5h4CAnYkdC3wWoNKomBghyhweCzyGv60v1KgBCxZo1Z0EQcDuNzuCPYM/H7jm5eH7jRUxLnq0cm4nNqJHTGbLgy34OvlycfhFuu/vToW6gqigKDbf28zEiInUNK7Jm6I3pE1Pw1TPlOiUaCJfRbLj4Y4PXiFS6ufLiTetYEj9QHYPOFC1mnLzJvTsKVaXzp0DazErWqGu4GDcQSafnUxxRTESJMy9KuD+DuYG2+Jo5si9lFv8fFOXmdEVxDvoMnmgCVZN2pD8Ppm47DjyZufhtNqJEZ4jiHwVybOcZ9rdDn0Me47DgZZGzOlvwtuSLAQErPStmNB8Ar9c+wUjHSNuj76tpZqlF6TTZIUrz/aaUmBtyoARxsTlPEEtqLE1tuVt8Vt6uPUg4kUErR1a8yjzESXKEmQSGXoyPRZ1WMSiK4soVhZjb2JP+oz0f3sdxLyJod2WlmyrNophGdXE8/PoEQnVoMNoOflyFTX0q5GmyqG7a3eySrJ48PYB609DuaUp30QWwoEDMHgwITdCWHJdrGgpVApMlpggkUhQapQM9RjK3n57tROXkooSZl+czYa7GwBRDcrFwgV9uT6Psx6zwGcBc9vOJTk/mTrr6hDsGUyZsoyXt85w77dizteV4ym1ZV2NNJa2g6iz1Sn29uScm4Szmue8LEhGRyo2t3Z37Y6vky+9D/QmszQTHakOKo2KCV4TmO8z/y+z5MLVqyj8OnLVQUOfQeDp5M39t/dRaVToy/Xp6tIVI10jskuyxU/hW96V5qCWVH61fQxGJUhoqTqFHlX3q9Jk87a4NxoJFOhC3id6BC4WLujIdHie8xyZREYn506cTxJpa4HxcCgMsXpavfqHbamYeGYiWx9sZYnvEua2nUuJsoRD8YfY+mArd97c0TqDH35yGJlExsAGAwl9Esr0t45EydJ4ZK2mt1tvUgtSSS9M5/zX52lu1/yPQT15Al9/LX7//LNIFf1EBnfNnTV8G/ktgQ0CeZj5kCcTn3z2HI88MZKLSRdJmpbEmjtrmBk5k+GNhnP6xWnyyvKQIGF009EENQ6itUPrv5wAZxZncvHVBS6GLuFiRQJvTEFXpksbhzZa2dmmNZtWelZoBA0rb67k+6jvaW7bnIP9D/5b6tB7xXtqrqxZSVHuYzKgcfXGzGg1g8AGgZUoV/ll+Sy9vpQ1d9Zgrm/Oog6LSCtIY03MGjQaDd3duuNfz5+vj3+NTCKjac2mhAaEoiPVoe66upSryzkx6AQGcgN6HOhBn7p92NRzE97bvTHUMSQpL4lvWn3zHxnfvil8g/3v9pwZcoYebj20/999X3fOvTpH2Q9lf0oX+4Iv+J+EL4HG34gue7tgqmdKWGDY3z2USui0pxMyiYzIYZF/91A+j7Q0kRq1datIG+nWTey36NZNpKN8+rvhw0VDKC8v2LkTPEQ/ivGnx7M3di8Pxz2kjlWdKrs4lXiKrw5+hYuFC0n5SejKdOnh1oNBHoPwtvOm676uKFQKro+8jr2pPSDShZptaYa+XJ/bo29XUnL5FEq1kh4HenAv4x6Xgy4z+tRockpzuD/2PgZyA9bFrGPx1cWUKEtQC2pkEhnGusbYm9oTOyEW6ZatMHEipKeLnH/ECXKtVbUIHxhOn3qfMfgqL6feTH0SrSUkTE6gjlUdLTXmVf4rRjcZTZOaTZh6diqZ32ZiIDegxsoaFFcU09K+JbdG3aq0uW77uhGVHIWrpSv19Ow4m3oRhfwP9TK/2n50cenyR/Y0NlaUsbSwgMhIBHt75kXPY+m1pQgI+NfzZ3OvzRiPnUzZk8cs/bU3MZE7+X1/Lg2z4ScfONLbheeFr7A1scXD2oPIpEhujbrF8hvLySnNIXxgODYhNpXcioc/gp0nILZvK7w976Gva6ClE/k5+3Eh+UIVielZkbMIu7SGHHkFKrmUcqlAu1rtuJp2lU09NzG66Wja7mxLbmkud0bf4WHmQ8KehmmDr09xOegy7RzbfdbpWqFS0GRzE4x1jbk16tYf1aC3b+H8eSJPr6Grx0OMKsBQLcFYboCOoQn5KHgzv4ApY+2ZczgD6Vd9cNx5jOXXl7P8xnLy5uRpfXrsTOzILM5ELajxr+fP9q+2a00EAeqsrcPrwtfanoLxTcdjom/Cylsr8bbzZmuPjXhs8WT8G1sy9MpR5+dxer+ASiZhlZfA3TqGJBqWkm4GuYYiLe5jT4uvs6+W+hFyI4TvLn3Hzj47GXd6HI7mjrwueA0SGOE5gs61O1OgKOBd6bs/AoYPn1f5r2j0NI+I/RDlDP0GihLGn8JUz5T2tq1xevkOy5sPibXX5YRzOVKJlEEeg7AzsWNf7D6ySrJQC2q8yj9T0RDUNEyL4avr0+k2HARJZarcx2eBIAhYGlqSW5qLgICfsx+Lj+Vjdv0eR479zLz28z7ZpiBWha4sZFLzSazutlo7uf7l6i/Mi56nrbQ5mTmRWpBKc9vm3H0Tw7ZTEhYNc0BHqsPZoWcJCg8iPjueiKERtK3VttK9zYIF8OuvIo1yzx5wEu+7j88FUz1Txjcbz3K/5VWuQ0DbCzSnzRx+vfErs1rPYrnfcq3Bn42hDfo6+qQVpOFi4cLwxsMZ3ni49v4urijmaupVrexsfLZo/No4E/xcutC57wzaObb7U1O/T3H79W0GhQ2ioLyAnX120rde30rL72fc55drv3Di+QltRU4qkSIIAoENApnqPZVW9q0qBUPlqnLW313P4quLqVBXMKv1LGa2nomhjiFOq5zo7tqdHm496HuoL05mTqQUpOBX24/TQ06TXpBOt/3dyC/Lp6C8gAD3AE4lnhINFgeGM/SYaPp4f+x9Qm6EEPEygpRpKVUTLv+CxNxE6q6ry5XgK7R3/MOs8OtjX7M/bj9Rw6Po6NzxL8/XF3zBPx1fVKf+RlgZWv2jVKc+or97f6JToiv5J/ztEASIjob+/cHZWdTMHzoUEhNFznuPHn8EGeXlIm/Z3V3M9AH89ps2yABY0WUFtia2DDs+TEuDKFAUsPvRbrrv745/qD8SJKS8T2FFlxVkfZvFsYHHCGwQiKO5IxeGXRAnGXv9eFcicoENdAzY128fcdlxWifiqochMP70eK6kXOFY4DE23dtEbFYsYQPCsDSwxEDHgFltZpH6TSpz285FLpGjFtQUlBeQW5pLaHwo6p07oHt3bZABoqwtUEVx6iMSi1J4YQV2UnNtYCWRSAhsEIiZnhk7H+3k2DORLnHq+SmMdI2obiRmZue1m1dpWwWKAqJTohnZZCTPcp7h17gfhR4H6PISKpQKXuS+YOKZiTivdqbO2jpMjpjMSb0UCqPOQmkpbzu3xP13F5ZcW4KZvhnnhp7j2MBjWBtZo1+3AUZpbzHfsJ3zq3PRU0Pw7Los9oH6to2QICGjKIPIJDEIHndqHBpBw830m+LE40OQoSfTQ0+mxx5PGNMbPI/fYsUZJSXlYuUEIColCiMdI7be36o9tjJlGTmlOaQYVlCmI8GySMNoWXOupl1lhd8KxnmNQyaVsavPLtIL0/npyk/4OvuyoecGUqenalWGbAxtAOiwuwPVV1Rn6LGh7H28l6ziLO2+5kfPJyk/id19d1emnNWsCcHBrO/vABJQ6EkpN9AlWbeURGUWi48XoKOBX/Ej1cmc11HH2XB3AwKCNqAJfRKKrbEt7xXvsTCw4OuGX3M55TKemz25mX5TvE1U5aS8T+GnDj/R1aUrAJsfbOLxhX2EqvzJevmY5utEOk7HGxkU6ggU1HNi7FBT5GqBMA844lJG7+dQpAsD3Ppyd8xdpnhPwVzfnHMvz7E+Zj0zz8/kh6gfcDR3ZMuDLVgaWJKQI0qLFlcUszZmLX1C+zA8fDgLLy8k7GkYCTkJyKVyHM0dKVAUUN6uFQFDdfBLkXLsmA5NrDyIGR3D0cCj1LGsQ6GikDNJ53iSep8NXhDu9KEZW1CzP24/a2PWklGcQQPrBpgoIFF3B6KHu0izEb8FvJ5tZ+FwBzQSkXKmL9engXUDVvqtRCaVoRE0aNCQU5qjDUJuv7mN5f2nPK1nxY/RPzI4bDDP3j2jQl2BRCJhQYcFbOm1hY33NjIwbKA2A/+xMiEIAks7LcXSwBIBgZiMGCzR59vOAoe7badEWSKKUQw8TjPbZnTd11UrgSpe7HqwbBlcviwmVxo1EoMNQcDBzIEG1g0oLC+s0vf1KRrXaIxXTS9CbobwVd2vWNp5KQC+zr7oy/Ux1DEkeVoyUcOjaOfYjuXXl+O82hnnVc7UXVcXy+WW9DzQk7CnYbSwbc6Bit5khcCjhusJ+fY8XV27/kdBBkBL+5Y8HPcQX2df/A/5MyViCrmluWy4uwHn1c54bfXieMJxbZBhoW/B3DZzSfsmjdCA0EoVF42g4UDcAeqtr8fsC7MJbBDIiykvWNBhAca6xkQlR5FemE6wZzBm+maY6pmSUpCCnYkdBjoGPM58TKvtrZBKpNwdc5fp3tMJfRKKs4UzRwOPsvHeRo4+O8quPrtwtXRlVNNRvC58Xfnv8ycorhAlqv9VxhvEfp6o5Kj/6Hx9wRf80/El0PgbYWVg9Y/x0fgUfev1RaVRcer5qb97KFBcLFYvGjYUm58TEsQG7jdvYNUqcHOr/Pvz58Xf/vij6FB9R5yAk1v5PBvrGrPXfy9339xl6NGh9DvUj+orqhN8IphSZSlru6/lxZQXVDeuzqXkS1VkKh3MHLg47CJ5ZXnaZkKApjWbsqjDIpZeX6qd0H2KpdeXsuPRDrZ9tY30wnQ23d/Euu7rtJz4jzDXN2d2m9mY6JlgoitmhfMV+Qw9NpSGXjEc6Ve3UrPpndd3qGVW67N9NYIgMOnsZIyVYCboVVrWwq4FBeUF7O67mztv7mCka0Tok1BKKkpIeZ8CwJuiN5XWOZ14mgp1Bd+3+54JXhP49sK3pHT24rj1ZBq+1VBQkE3i5ESOBR6jk3MnIl5E0Ce0D1ZHW+AyFewHZ/C8MJlA2y5kzsykq6s4yX2Z95ItLw6il1/IdyfzyRjuT7OxkOQiZuB/aPcDHZ3EDN83Lb+hmmE18hX5RCVHoRE0jDo5SjtGQx1DytXluFm6saMpjO0FU2Jg3UVdZnh/g6GOIRKJhBJlCWti1pBdnM3znOd4b/Nmb+xeANQSgdG63mxVx7Cg1vBKog11q9XVShFfTb0KiBnKwvJCbE1sK1U2XMxdSMhJYHj4cGqsrIHXFi+Cw4NZeWslC30W/inN7mrqVbHXQyKhQkecONkYWuNkaI9aCqZhp2j3MI/mr2HaqUmEX92CVBAoqSjhdOJp2tQSqXkGcgNqmdXi0fhHOJg60H5ne5ZeW8rjrMcoNUo6U5uwkp7IBAg5D+dD3tJ7yVEOXzDDW0ekrgwcAJfN8riuTuZgPRUvLWB+nCXta7XnTEtLFkXDkcRwbFbY0GBDAzrs7kBgWCAzImew+f5mbcbe2dyZQR6DCGochFQipZNzJ44EHKGbazcA3Kzc2Np7K9FB0fzS6Rcevn2IjZENJromnHVWMXuCK52fK/l+QzytNrdg2W/92bcskQNhoiN8dG3IMdBoM+1nBp9hd9/dlKnKmN9+Ppkp8RTpQyGxPJJOII8YyskmjxheqcYzocdTbkrS6eTcCQO5AQqVAqVGSQ3jGjzPeY6AQHWj6lwcJk4kdWW6zHUfi+vrUh7WMUFXpkvok1Dqb6iPwWID3Na60etALxJyEhjfbDynEk/RcXdH8krztAFvv3r9yCnN4VHWI5zMxHEr5BLyDcEvrA+jmoziSfYTRp8azclBJ/Fx9KHXgV6cTjxd+YJp3140LuzbF4KCIDAQcnO1zwTPGlV7OD4iuySb1IJUNIKGma1magNWqUSKoY4h6YXp3H1zl2c5z3iveK/tn0gvTCcxV9ST7l2nN1t7b2XLvZoMXnIKm19WiZXX/w1YGFgQNiCM79t+z4a7G7AOsWZSxCRS3qdoZWkBerr15M2MN/zS6RdtZfkjopOjabG1BUOPDaVx9cbETYhjU69Nlfxsdj3aRR3LOpx7eY5OezrRtEZTBjYYSGZxJmdfnMVnlw8uli7cGHkDtaBmX9w+jHWNyS3N5WrqVWZdmMWMljPwd/cHoLltczxsPNj+cPtfHmNJhSi08am8LUBeWR42RjZEpXwJNL7g/w98CTT+RlgZ/DMrGrYmtrSyb/X3mve9fAnffAP29mLfRZ06YrNpfDxMmADGlR/OpKWJ1Y5u3cDOTnzhrlwJtWqJyz8JNCrUFZxOPM3amLXIpXIOPz1MQk4CSzotIf2bdK4EX2FC8wm4WLqwoccGIl5EcOjJoSpDdLNyI/LrSF7mvaT3wd6UKcWG19ltZtPSviXDjg/TZq1AVI76IeoHFvosxLOGJ+NPjyfYM5jRTUd/9hT8fut3SpQlFFUUEdI5RGzmFSDFHALTf6PJpiaEJ4QjCAJ33tyhhV2Lz27n8JPDXEy6SLd0PYqFyr4WH9cx0DHgSvAVJEi48OoCP0b/iFpQU69aPdbFrKvkVxD2LAxvO29qmdUixC+EmsY1CQoPQm9pCMeTmlOUn8m4YyPoXbc3G3ttJGlaEjdH3KSGUQ2SitPQSAAJXEi6wNdbu7M+Zj1TzkwmZFQ9hh96DoBky1YkK1ZSroO2kTijKAMvW9EXoYtLFzrX7oyTuRN7/fdqx9besT36cn1tY3lSfhIAW71gYk8Yf11B49/3U1pRyuKOi6lhXAOVRoXjKkcab2pMYm4iEomEEL8QzPTM+MngDjNf12LB7DPiNfYJprWcRttabQkODyavLI9xp8dps7Efq0EW+hbcybjD0k5LyZyZyZ6+e3CxdGFv7F40goZl15cx4MgAtj/YzuvC19ptv8x7yfvy99SxqoNaUNPFRZQx1ZHrkiEt4o1zNcjKQrZ1G7oaOHjbnrvlyRQU53HI341SZSk9lU6A2H9RoiyhllktIodFMtd1BHGrv+dVf1+SVoFn2/4YTJxK3XwZx7yMaDlZH+Pvwav3Wy5LPnjqfELJ19XRZ2MLCZ3v51FHZUqrdoNxUBrQ4g1IBLAzsWN77+28n/OeO6PuUKYqY2WXlVwKusQe/z2s6LKCTb02scJvBVEsKs2CAAAgAElEQVTJUay9u5Ym1ZvQuXZn0ZRxjy/6v+jjscGDV/mveFv8lqiUKCwMLHjn48XhBQH4J0o5dFSCBrjcxpYJg40xM7bEq6Z4faQXir0x62LWMe70OALcA1h96ReyDTTUzhOPp1AaS7xsOuqCAbSJm8Eb/TjKpGocTB24nHKZMlUZHtYeJOYmMvjYYAQE5BI5D8c95Gb6TSRICKwfyPcyHwB+mh+N4gcF37f9XnuN9nLrhYDAiecn2HR/ExXqCm6/vo31CmsCjgQAopnimjtrmNJiCo8nPOablt+gQsO0W1CkLuWXa78gIHAm8QzDjw/n6ICj9HDrgf8hf448OVL5ZjczE6sZhw+Lz8uGDan+6CXAn2bZFSoFfUP7IkGCvYk92x5uA8Qm8YNxB8kvy0ctqGm5vaVWDnlmq5ncGnULxTwFadPTWNRhEYm5iXTb3w3H0iXM/aUjT4f4fXZ/f4UyZRk7H+7Efb07S64vQYNGWz2SIKFXnV4YyA3Ql+lzfOBxDHQqK27FZ8fT80BPfPf4IpfKuRp8lfBB4bhbu1f6XYGigKNPj6LUKFl8bTELfRZycfhF9vjvwd7UHqVGST2relwafgmFSkHnPZ0x1TPl2ohrlChL6HeoHy1sW4iqch8gkUgY6TmS8IRwrbjHn+Gjop+RbuWKRm5ZLk5mTsS8ian0/viCL/ifii+Bxt8IK0OrfxY96RP0d+/P+Zfn/98+6DSaP2hQbm6wd68YVCQliZ4Yvr5ahSUtysthyRKoVw9u3YKDB0V5zQYffCTkcjA3R53zjktJlxhzcgw1VtSg98HePM58zLz282hg3QCNoGG81/gqWbE+9frQ370/U89O/Wz1qXGNxpwZcoZ7GfcYcGQASrUSuVTOnr57yCrOYsb5GQBcS71G8IlghjcezjTvafQ/LCpVre+x/rONlTmlOay8tRIncyeczJ2Y1nIau3tuIz7Ugq6CCyCa0fkf8sdrqxcxb2JoYVs10CgsL+Sb89/gX8+fpoVGFP1LoGFrYoudiR0xb2JoWrMpp4ecRkBg1W3RPyHEL4S47DiupF4BRFPAsy/OMqC+qJJipGukrYaE3F2F4+4THL5gTnT6Vb6/MBeNoOG3W7/Rfnd7Xhe9pptrN4q/K+ZG4HmmvHXg9cPLLD48ma7frGdzuJrY1q4AKIz1tS/gEmUJUomUt8VvcbMSK1iZxZnUs6rHnTd38D8kZhOrGVbjSvAVFvsuBsTm308VaDY2hyndYVhkFksuwc9XfmKZ7zL0ZHoo1ArK1eUYyg25OfImtcxqaatUw6buQGJoBAEBogDBB0glUnb22UlWSRbd93XnRd4LtvQS3aRPDRGrgeWqcuRSOX1Cxb6ZYY2HYW9ij45Uh0MBh5jZWvQvGXt6LA6/O9BwY0NmX5jNsuvi5MXexJ5qhtV49PYROlIdypRlLGtYQEYdW5BK0QwMRJDJaN1tNF2cfFHKYWLzLGxKpZwKDwEgI/sV5yM3sLGNHq/sjVg8dBsHjkKjpBJO1oGuI+Q4LDLnRTUpN61KuFNNgYGBMTKJTJt1b2TzhwR0QP0ATMZOQSmFta8bsa7HOqwWhbDnGOgjF6tLp0bR/3B/Bh8dTDXDarwues2gsEG02t6KmitrYvCLATMiZyAgcDX1KuvurkOhVNC3bl/61eunrSB61vDkaOBRVBoVB/odYH/XLQxTuiOTyvB/KjAtBua6Z9Cnfj8SJydyd+xd9vYVgzhdmS6RSZEoVAqOPw2jQEdN7+fw7sO8VK4CQQIjYmUEjlmLIBElpj8GKTpSHWRSmVZBDEQ61bLrovOzgMCIJiNE408HB3B0RCKR8EunX1jht4Jzr86hJ9fj9ODTvJz6ktLvS3ky8Qlruq3BQP5Hr5BCLVZNVt9ZjdkyM448PYJUIiWskYyeKlG9qJtrN8z1zQl/Hk7ttbXp4NQB/3r+DDo6iN2Pdle57xkwAOLiKHevw/7fU6lTbsyx+CNVfiYIAqNPjubB2wccHnCYbm7d2B+7H48NHtissGHIsSEICNga22Jvak/e7DyuBF/hR58faWnfErlUjoOZA9+1+45nRUHc2Qp9zL3ZIntEgw0NaL61OWvvrP3LSTfAs3fPGHNyDFa/WjHy5Eie5z7X0oos9C1oYN0AAYHk/GTKVGXMaTunkjLVm8I3jDoxisabGvM85zmHAw5za9Qt2jm2++z+5kXNQ6FWUKYqIzoomh99fkQqkbL8+nJSC1JF6mxBCplFmXTZ2wUBgYvDLtLQpiFOZk6UqcoY6DGwijrWsMbDANgfu//fHu+fUafyyvJwt3ZHpVFxPe36X563L/iCfzq+BBp/IywNLFGoFJQqS//uoVRBP/d+lKvLiXgR8d+/s/fvRRpU3bpikJGVJTZup6eLvRaOf6I8cu6cSJNasECsejx/DoMGaYMRQRC4lX6Lqd0E7MoW03lvZ6JSopjgNYG4CXHET4xnvs98wgLDSC1IZc6FOZ/dzdrua6lQV/DthW8/u7xNrTYcCzxG5KtIgsKDUGvUuFi68HvX39n6YCub7m2i76G+tHFow5ZeWxhxcgTvSt4RFhj2p7zlZdeXoRbUJOYm8l3b78SX2ZkzNHiez/FBx7k16pa2GpGQk0C5upzdj3dz4dWFStWHBdELKCgvYFW3VZhKDCikooqbsre9NzFvRDfa9o7tqW1eW+SvC+KnvnV91txZA4ju5OXqcvrX71/p+Ge1nsX86Pk8lmTju+oEIRclhNxeidMqJ2ZGzkQmkbG/337ODj2Lka4R1WyceNDejXWnBN6sBN9MA9b/2JXBfZUU6MGiHUH4h4oBRE5pDtaG1rwteqvtZYh8FcmWB1uoUFdgIDeglX0rckpzeJn7UktJ0KDBQt8C92piJnOBzwI2tJTybTcp312HEddLCT4ZXInmlF+ez+Cjgxl6bCiDGw7GzdKNOY9DxEA3NhamTq107lwsXZjVehYxGTH0d++vlUN2tXRFR6pDNaNq6Ep1UagUtNnRhsspl/n99u/84vsLgQ0Cme8zn5ujbpL9bTah/UNpVrMZux/v1lIvLqdeRi6Rk1aYho2RDY2qN+SdIQR4PMEmxAad38yJrabmzP6FnEuLQgDK0WBapqFZkVj1c3mnwTNNyZD7Fejr6HO9VyN+Wz2IdtNNmdFTSqSjimyhSHue7o25R9F3RWTMzKBx9cYAxGXHAeBs7sy+uH3sTAtnfyMoW7eKjTfXcEGSxP1achZcUvG2+C0Al5IvkZCbQHZJNoefHCarJIt61eoxrtk4dvbZSXRQNElTk1jVdRVFFUV0qt2Jvf32svWrrZjomuBq6UpyfjIDwwZiqWdBmxtpULcu+auXMWlOQ4YEwJA42HVGhydZcVq6T6MajRAQ0JHqoBbUSAX4GG7GOEgoMgCjcrBSgEUZrOhlSZNOQ7DQt0ClUSFBglpQM6v1LGKzYilTlSGVSJFJZMxuM5ttD7fxtvgtBnIDsYJy9Sq0a1cpCTKz9Ux+6/Iby28sZ/aF2QiCgJ5cD/dq7lgZWmmrnwBBjYLImZXDjZE32PHVDoY2HEqTmk14Y6TmrFT02DmecJzSilLM9czJLM5k+rnphCeEY2tiS/CJYDbEbKj6ELGzY/+vXzO1Owy6W8apR4epuHdHu1itUTPpzCT2x+3H1dKVrvu6su3BNjSCRpssufD1BQB+aP8Drwtf8+Dtg6r7AVi5Esn339NizELW/3ibtzPfcjTwKLYmtsyInIHtSlv8D/kTnhBeyem+XFXO/tj9NN7UmPob6rPt4TbKVeVaumhti9ps7b2V1zNeEzchjm29t/Eg8wESJNom8cLyQuZFzcNtrRsnE0+yqusqnk56yoAGAz6bxKlQVzDj/AzW3V2HtaE18RPiae/YHpVGxfjT45l/eT6LOy5mYIOBvFe8x3OzJ7lluVwYdgEHMwcWX11MXHYcnZw78WP0j6S+T620/WqG1ehTrw/bH26v6lz/CT4+p6pUNEpzcbV0paZxTaKTo/90/S/4gv8pkP/1T77gvwtWBqLBWW5pLoZm/1mj3P8rOFs406RGE449Exug/1sQHy82de/dK1YmBgwQy/4tW1atXHyKlBSRVhUeLjpjh4dDfZHnLggCj7MeExofSmh8KKkFqdg66TCkqA6DZuyguW3zKi+fetXqEeIXwpSzU+hVp5e2Z+AjaprUJMQvhLGnxzK04VA61+5cZUhdXbtyoP8BBoYNxEzPjA09NzC66WjCnoYxOWKytnlwzZ01hCeEEz4wHFdL188e3uvC16yLWUddq7rkKfIIavzB/GnnTlE9q2FDWgKXhl/iYtJFRp0cRamylPTCdLrs60K7Wu34uePPmOmbsSZmDcs6LaOWWS1MZAaoJBoUKkUlukEL2xb8cu0X1Bp1JaWUDk4d6HuoL4M8Bonn8n0qYU/D8LL1qqLFv6jDIiJeRDA8fDiXgy6T2bMDVESTXpiOq4UrUUFROJg5UFJRwuKri9ketYKtkXo0ywTs7TF884ZJzgOZNGIE5TsbMMzYkgQj8f54r3iPTCJjT+wePGw8kElkHIw/SEObhmQUZaAr02Wf/z7qrq9LwJEAHmc9Ri6VY6RjRL4in5GeYtN6YXkhC30WMl+YT5GzA3ss05FpQP0h3fJRGvNV/ivt38HH0YdtD7cR2XIGXTZsED1ZvL3F7w/X2/W06+jL9bmZflNr/CWVSKlpUpOA+gFcS73Gw7cPeZX/iu77u+Ni6YJG0DDnwhyyS7OrqCx9KtdZoizRUixKC60pzw+knfJbUo2SKBJO8n2XXpjFnubr+89J1NizXX2XfB01UbtBqinm+5YgdbDnrUd1Nvq5czbtEjflsajyY6mTA/5FFlDHjV3Ke0g/iClkl2RToCjgbdFbPGw8eJrzFBAnaMnvk9GV6ZJWkMbaFjD2fglXfp/OvXa1edLLnjOLUzjY3pIUE7XYkC/XI6skCwkSpraYSt96favcf9NaTkOhUjD30lwMdQy5m3GXUmUpt0ffpkxZRodl9XhnkE+d2LH07OfISTtTyjQv+HnmKuhtztfBI1DveoqfpDMXhl/kdOJpdKW6lChLkAiiYeOGU/DYUc7mRioMKmBoHOxoArNr9GfV+7N8d/E7BnkMYsfDHVqazpLrS7AxtCG7NBuNoEFHqsOznGf0dBObnhUqBU1+cyPxfg4EB/GvGkPftPoGuVTO1HNTUWlUzGg1g0kRkziVKFa7jgceZ1j4MHbH7qZX3V70c+9Ha4fW2vVH/ODBcZ6xP+gkw8OHY6lvSQenDpx+cZrM4kyUGqWWbjfp7CR+vPwjPVx74FnDU+uUfvLFabL7t2Jz/dn8FOnPxa9bY9XpK35rLyMiSaxY68p0cbZwZkzTMfi5+GmfUYENArV0q6/qfMXqO6vZfH8zPk4+lQ90zRpRVveHH2D+fAD05Hr0c+9HP/d+IgUr/iC7H+/G/5A/VgZWdHcVpbTPvDjzB4VIxwi1Rk2FpoLOtTsz1XsqPo4+la6X5Pdi4GVjZEOr7a3oW68vF15doERZwoyWM5jdZjZm+mb8GV7lvWLQ0UE8znwsDr3bGqwMrShVljIobBARLyK0BnrHnh0j9EkoRRVF9HTrSR2rOkS+imTRlUUs7LCQad7TaLSpEcPDhxM1PKrSs3Ok50itsmAlOeJPUFxRjI5Up5I6oVqj5r3iPdUMq+Hr7PulT+ML/r/Al0Djb8RHJ+XcslwczBz+5tFURT/3fiy/sRyFSvF/T89bpYKTJ0Xvi8uXRT+IWbNg7FhRbeffQaGAFStEqpSFBYSGig2PEgmJuYkcjDtI6JNQEnISsDKwIqB+AIM9BtN20nJkOrrwJz0MABObT+RU4ilGnBhB3IS4Si7XAKOajmJ/3H7GnR5H3IS4z1YiAuoHsKXXFkafGo2FgQU/tv+R3LJcNIKG2ua1eZz5mO8ufcfcNnM/L0H7AYuvLsZQx5D47HhWdVuFnlxP1Oc/c0Z8qX+ARCLBz8WPzs6diU6NRleqS2F5IXHZcXTY3QEzPTNqmdViesvpAJjKxcxZUUVR5UDDrgVFFUU8z32ulXYEcaLkbu3O+rvr0ZPpser2KiJeRLCww8IqY9aT67HXfy/NtjTDcZUjxUqRFmBTAirDMgzkBhx5coQZkTNo/DiLl2cMMFFKYd8+GDgQJk+GkSPh/Xv06tSnQX4+4YPC0f1ZF6VGiZO5EzmlOZx8flK7T1NdkV7TxaULj7MeI0HCs5xnHA08yvq76ylUFHLv7T3elYmqYEefHSV+Qjw/X/2ZLdXTkQjQIBv22oxjkkMcN1+Lzfu6Ml0q1BVcTb2qbfTutr8bbWu1JaRHY7wmTiDF3ghFk4YciDvApeRLfO3xNYefHcZ7qzfu1u7aoGHtnbUoNUrtmBUqBS/zXrL42mJsjGy0n6Y1mmJtZI2NkQ1ZRVksubGE1vatufla7AUwERrSWL0RBIECIxlmghVmRV7sDZvOmPOxGBSXY3ojk7LWAm1kTuhH7uDrhCWQcpHHqjcIua+5p5OAr4cvq126Yp1VxI313zEtvxoOBx8w2kZDYOAjMIFxW3qRr6Oh+EPPrQQJTuZO2kmeUq3ExtAGo6bOXHa8w7cP9THdFIG9qT3hpy3Yd6CcFqPV4rU4IQ5dmS7Tzk2j3+F++NX2Y033NZXkhAHmtJ1DcUUxcy6KVcXDAYexL5LwZNQg3pzXENGpFsG+BWxTpmImmLGl1xYGNRwELQG1huCRI6mQPcWPzhSUF1KhqQABZBo4dQCsymByLxV6KtgVDmO+gmqlcFaWxKgmo1gbs5agRkGUq8sr9c7lluVS27w26YXpyCQyTiScEKVUETg56CRPD65Bpr5I9/TljHxiTUD9gEoT4yneU5BKpEw+O5n1d9djrmeOgdyAkU1G0te9L63vtebJuycEHA5gXY91TGz+R/P0SscxRLyYzo77WzkaeJROezox1HQoadPT6BPah+tp11nfcz1Ps5+y7eE2ckpz2Be3j4PxBytRBk11TelVOA0ZUha013BnYzizzxvwoHcFtTx9OTv0LLryPya707ynsfn+Zo48PUJJhegRU9OkJmObjuX7qO/JKc35w7V740bRnXzWLNHH4zMJImsja6Z6T2WC1wTWxqwl5GYI++L2aZcb6RhRqixFR6bDxOYTmdh8YpVEBoiB7spbKzHRNSGkSwiTIyYTGh+Ks7kz10Zcq9KD8a8IjQ9l7Kmx2BjZMLTRUMITwunr3pec0hx6HehFfHY8p4ecpptrN5RqpVaNzsfRh9AnoXjYeLDqziq6uHRhXntRlniv/1467OrAipsrmNP2j4p4F5cu2Jvas+Phjj8NNEqUJVUawfMV+aLXj4EVHZ06cjD+IO8V7zHXN/+3x/YFX/BPxhfq1N+ITysa/0R8dFu98OrC//nG3r0TaVC1a4tN20ql2E+RmipSn/4qyDh7VpSnXbRInJQmJJDWrRUhN1fQdHNT6q6ry8pbK2lh14KIIRG8nfmWTb024ePkg8yqWhXVqX+FVCJlx1c7UKgUTDgzoUrJWyqRsqX3Ft4UvmHh5YV/up1RTUexsstKll5fivc2b56+e8ryzsuJTIqkT2gf2ju252ffn/90/Zd5L9n+cDtulm5YG1n/0Si+d6/YbzJ4cJV1YjJi6OrSlSeTnrD9q+0Y6xgjQUJBeQEp71P4KvQr7r65i6mO+FL7yA3/iGa2zZAgIeZNDEtvLEUjaLA2tObk85Os7b6WZZ2WUa4uZ93ddZSpyujv3r/KGN4WvWXp9aWoBTVFFUWY6Jlwvv9x7kTVpij/Le5r6xB8IJDNEXJO71Zi2qQlkvh4UaJYLhcnLHPnwowZkJEBr8SqwscA18bIhqKKIvTl+rhaiJWgG69vAHDk6RH6He6Hub45comcHq49aOvQlpSCFIx0jDj1/BT2pvakFaThudlTK2csSKDnc/BctJnvX4pSweb65iCAXCLX9ifoyfQQELiXcY8OzWK5Z61EJ3AwHVZ4sOS6aI546OkhDHUMSchNEL0GLF1wMHXAydyJXX12sajDokrX0pWgK7yY8oIbI29wfOBxNvfezGLfxUz1nsrbEpF6VNuiNroyXQzkBrgIY8QJrETMmkokMqQaCYL+UPz7itSvpw1sUMg0ZJhIqHnej8iUi9pJsVwqp7VDa5LfJzP30ncEPviO1a2gdo8XVJ8rZ1dvB5Y9s8emVEK6sYbhsRIyL3jyNY3wtvDg5ZQX4tiRIpfKeV/+npg3MWxro4/XqzKGLWjE7ke7yZgygvqpJbR5pUJA4Om7p7hZuXFmyBlODjrJq/xX2j6UovKiStdQUOMgdKQi370k7ABCnTqYxDyk+7c16eOTgYVpdVZ3W42HjQeDjw2m+/7uxGXFwYgRsHkzY28qCNoXx8s8sfnZqAJubQWPfDl+w8Sg48gRuOwEJbqQYypHJpWxNmYtJrom7IndgwQJuWW52JnYIZWIPT5J75NY0WWFNpOvFtRYG1rTq04v5gitUVlaIG3QgMCwQLy3eVeiuyTkJBD6JBQApUaJqb4phjqG/NxRfAbYmtpqkwGTIibxw6UftM8eywZerD0LxxJPkFeWx0Kfhfx05Seupl7l8IDDuFm5MefCHCY0n8C7We+0TegfqTiyD9dKYUUhuWW5yKRy7tlBu2CwzC3j/kY1PpeTGXtqDEuvLeXYs2M8yX5CbYvadHHpwuo7q0kvSKemSU1kUhlBnmJlddejXeLBbdsmqkpNnw7Ll/9pFTo5P5lZF2ZRLaQaMyNnklmciaHcEDNdsfLwkTrctGZTGldvjI2RzWe38/2l71GoFFgYWDD8+HDaOLQhpHMIuWW59D7Ym3sZ9z67XqmylDEnxzD46GB61enF3TF3ufDqAoM9BpNRlEHr7eJ9cTn4Mt1cu6HWqBkePpxLyZdobtscqUTKJK9JzIsWZb739dunpem1d2zP7Daz+TH6x0q0MplURnDjYA7EH/hTanRJRUkV2tTHnk1LA0t8nX3RCBptsuMLvuB/Kr4EGn8jPq1o/BPhbu1OvWr1/s/Up+7dE526HRzgp5/Az0908b5+Xeyn0P28qZ0WKSmiXGOPHuDkRFZMFOsCatHmSDccVzky//J8XCxdOBp4lKxvs9jddzfd3bpXbtCzsvrLQAPAztSOTb02ceTpEQ7EHaiyvI5VHeb7zOe3W7/9OVcZmNFqBq3sWxGXHUdQ4yCmt5yunSgv67yssmfCv2DB5QVYGVjx4O0Dvm39rVh5EATYsQP69fvD8fwDCssLefruKd523silckY2Gcmt0bcw0DFAV6qLXCIXG8W3tWC+XaJ2nU9hqmeKu7U7d17fYfO9zRjIDQhqHER4QrhI8Wk7h9+6/IZKo0JPpkd14+radTWCho13N1J3XV1OJZ5CggRTXVMs9C1o6ORN2IQO7Dyqoe6LfF7uMKLHjSyRLnf+vKgo9hESiRiILl0qOomnpoLij0rarde30JfrU9u8Nl1cu2Cia4KuVBd9uT4SJDSt0ZSSihJKVaXYrLAhKjmKnNIc6lvXF7OEHyZvyfnJ2gmYoY4hy9vDpO4QrA6jRpFI06rQVKAW1FoKzac9HHN9F3B/9VwsJYaEnzBARy1BR6KDUqPUcugTchLwcfShba226Mp06V+/P7se7aK1Q2vqWoqyxB12d/jTBMO5l+eQSqS8yHuBUq1EX66PvsYJQag8kROkMvQlLkQ7Q6kcajzPEI/xfbI2o60RRCdslUbF7de3aVKjCfN95tPRqSN1reqS9W0WOQtL2bwhjaER6UzrvRh9qR7bmkvp2iaJjNR4LO/EoXAS/1aDSpxoauhKa4fWCAgcclGQbgqLnlgzMWIiJ+QvOeoOm8NV9HLtyYQzE8gszkQikdC7bm+eTHzCAp8FIjVwXV32x+5HEARUGhXDjg/DXmrOiERDRmnCGTfeDqepAlFmuSzwWUDs+Fimek/l2ohrHA08ysu8l3hu9mT0ydFkDO7F+xWLmXJdydKLIFPBxV3gWiCh69diYHH0hB6182FTc5Eu51Fd9OKIGBKBWqP+4KshYCg3ZHW31ZXko5vVbMbJwSexNLAExGf2vYx7cPUq8vY+nBkaQXRQNBKJBN89vnTd15VJEZNovKkxWcVZRAdFM7v1bF7lv8LDxkNL76lhVIPM4kx+6/obK/xWsOT6EkadHIVSrQR3dwY8ga+MmzEpYhITvCbQqXYnhh4bSnFFMWeGnEFXpkvH3R1ZdHkR997eQ0eqQ2F5IboyXe0kViqR4uvsy5JOYlD8umEtOn5jQaKPB/N3JRO0+BRbI5fS/3B/PDZ6YLjEkNisWO5l3GN//H50pDpEJUdRrionwD2ALfe3IOzaJVahJ00SPYr+JchQaVSEJ4Tjs9OH2mtqs/LmSq30s7GuMWWqMnycfUSJ8Nl5bOm9BaVayf9i77yjojrXtv/bMwy9IyBIFVARBUXsFbtib9iwayyxxiS2JHrUaGIs0ahYsDdUFOxdrNgBFURFRekgvQ9Tvj922B6i55y831tyzlpea7mysmf3vWd47ue+ysjjI7H9xZZxEeO4lnRNegaxGbGsvbMWECfoLgVd4syIM8xtPZfoL6KxMLCgVUgr1t1ZV22S6GnWU5pua8r+J/sJ6RPC/gH7uZd6j9SiVFo4tKBViPgeR42Pws/eT7QCPzONw3GHOTDwAKN9RnPj3Q3UWjUCAmWVZVJuUhX+5v83vGy8GHlsZDXtzdjGYymsKOTYs0///SxWFn8kBK/6TbAytMLVwhVnM+fPeRqf8R+Pz4XGXwgzPTPkgvzftqMBosd7REKE+Ifvz0KphP37oWVLaNpUpEj97W+QkgIhIeDr+6/3UV4utuI9Pcl7fI+QLZPpMkrA/mQHZp+fjYW+BXv77yVrbhZHBh9hgOeAj2wOJdSoISaI/wkM8RrCiIYjmHZmGu8K3n30+detvqa+dX0mnJggzTXqIOUAACAASURBVIz/EVsfbiUqJYo2jm3Y8nAL/UP7k1Mq+tl/deEr1Br1J7d7nPmYg08OUq9GPcz0zZjsN1n84M4dMT9k3LiPtnmQ9gAt2mpBfYsjF6Mr1yV+WjyL2i1CqVKiL9fnsX4BALPPzZaSe6vQrFYzLr+5THZpNoPrDxa51aXZUhbIF35fIEOGUq2k3c52ZBRn8DjzMa13tGbqmamY6JlQVlnGD+1/4M74O2QUZ+C+wZ2lKQfwsPHk+g5I0inh9JEfxVnQf6TBmTdPpGJotUSN6STN8FVxupMLk4lOi6ZIWYRSo8TodzpYLdNaNLRtiEyQUVpZys1k0a3lftp94EMWiBYtPjV9MNMzw9rQGlNdUzY1A1MdQ+I2wcwoeDTpEZXfVZI2J40JjSdInY0yVRnHE44zPOBbXm/+kRYvy7j7tgvFC4u5O+Euq7quor1Le0orSxl/Yjw7Y3YSnx2PT7APKYUpzGg2g5vjbmJtaE1BRQHtd7X/6F1ILUwlvTgdRxNH7qbeRYuW3PJcinklhctVQYuaYl6hkkO0HTT7Pe7EwdSB2ua1pbwBmSDDUMcQQ4UhZxPP0tKhJTllObRzboeNkU01qk9Lh5aUayo4MDiUCid7Il0gv0l9SgNFYf7gk6+59fUzTm0qYIMQgFyhS7AftLuZwmiH3kRnRLO0HdTOgy0lHZHL5Ew8OVEa/Onr6LOo3SISvkygtVNrRh4fSbtd7fhydyD3k++wPzibBcoW2BnZss30JfoKA+Kniu+xno54PYIgMMBzAHFT41jXbR3hCeG4/eqGdeliZneFebdg+RX4sjcMGWVIgrmKPeEC3eMq6DVOD7lcLPRjMmKYf3k+wQ+DKVWVUsNApAOVqkoZeXwkxooPtJb+of2JyYiRJoU0Wg3dQvzR3okS8ysQNU13xt9hRacVRCZFsun+JjwsPTgx9ARtnNpw7tU5apvX5vrb61LQZE1jsdDQarV81eor9vXfx97He+l7qC8lxnoINjZsKhbfqfmX57Ov/z40Wg3+u/2ZeW4mRcoiXue95m/X/wZaWNl5Jd+3+x6lWjR9GO0zmo09N5JalCqZWSQXJrNx6F78zj+Bo0fxTxJ4td2IXO8DXBtzjeCAYIY3GI6RwojkgmTe5L+h055OOKx14HjCcV7mvqTT1bEsme3LoUmtiM6IkYTNyQXJfHflO2r+UpP+of25/u46+nJ9alvURibIKFGWMMl3EokzEokYGkGn2p0wNzBngu8Ero+9TuL0RL5q+RWRSZF02N0Bl3Uu+G31o9GWRmi0GkZ7j+bBpAd0qt1Jeja1LWpza9wtvmz2JbPPz6ZfaD/el7xn28NtNN0mdiQeTHrAuMbjEASBXbG7cDJzYtqZaTibO3N73G1qW9QGxK7Jlodb2NZ7G4PqDyKgTgAqjYrgh8Gs6LQCF3MXeh3sVc1FS1euy/4B+3mT/0ai/lWdl7+L/z/M1PgUdarq/apiO3R07cjVpM+C8M/4z8bnQuMvhCAIWBpY/tt2NAAG1h9IXnmeZG/6T5GWJooBnZxg5EgwMhKF2q9ewTffiJ2FP4PTpyluVJ+DYUvo87UDtmPfMzF9Cxo0BAcEk/FVBqeGn2Kk90hM9Ez+9f6srCA3V+wM/An81vM3TPRMGBM+ptqsJoBCrmB7n+3EZMSw7s66j7Y9l3iOqaenMq3pNCLHRNLGqQ2nX55mfOPxhA4K5da7W6yOWv3J4y66sghnM2eikqOY03LOhz9CO3eK97Rjx4+2uZtyF1M9U4nzfuvdLUKiQ1jRaQVulm780OEH3sx6w9SmUykTxMLoUcYjvDd7MyxsGAnvEwBREP4yV6THrOq6iuYOzbEztuN4wnHpuqr87JPyk6j7W118t/iSVpSGhb4FGq2Gy6MuM6j+IKadnUaFugK35FLeHLCh3t1EhNat2NQMhjyaT2xGLFqtlsKKQhJzE7mdfJvwhHC2PtzKsuvL+M5HLC6W6NxG+/tA/GziWVQaFUXKIqJSo6TrrzqnnNIc6tWoRx3LOtib2LO7327sTeyrhXtVwVBhSBunNiQXJIuzvgLkmijQmTyVdechfeVC5DKRl76tzzZezXhF81piIRebGYvzWmf6ZK5l0yAnGu+5gG7EKZrVasaM5jMIHxrOrn67ADHATItWyvIYGjYUuzV22BnbIUNGXHYcvlt8WXptKRNOTKDj7o7UWS+mtr8trO5k81b+cZK1Fi1pCjFD5I1HDanQSClM4XX+a5RqJaa6ojC9XF1OZkkm70vf03ZnW55kPqGGYY2P3u+mtcSBWW5ZLg8mPsBE14TbRfF84ScmmutsDWFWPz3e6ZXz5S/XebJOSbgnyLVgHXqSivISXtTSY2Nrb1beVtC04jhv4zvz0+XqOTROZk4cGXyESwGhpLyKYcvbYzTK0+fkD8No2Og2Grn4p6lSUylpQ/4IXbku05tPJ3RQKEqNEpVaxfoWEF4Xvr0NvV7AJdsStp2AIU+1dAmCJIMKaYJglPcofrr1Eyeen8DL2ouUOSkMayBSE8tV5RRXiinyMmRkl2YTeCQQHUGHJnZNWNx+MfXeliCUV1DcrDEgUmG+uiCmoHtZe7Gw7UJyynLw2eJDlz1deJz5mNDBoezsu5OQ6BAmnJiAjZENZaoyipQijWyE9wjODD/DjXc38N/tT3bD2hg9f8OwBsPYHr0dv61+ZJdmk/A+gVvvbom6hx4bUMgUWBhYMKvFLJb4L+HnLj9LRcj4xuN5OOkh4xp/mKjofbA3Xfd25Ug9DcqYhwg+PlgMGE67VYeZ6DmC1d1Ws6KTSIUc22gsCdMSiBgawWKL/piXwRNnPTbWfMew4yPw3eqL8Qpj9Jfp47TOiWU3lpFTloOVvhV2xnaUq8tRyBX81uM3UuaksLrbamlg/0e4WbqxuMNiYibHMK7RONKL0nmY/lB89wQdWjq2/KgjW/UurOm2hhNDT3D97XWc1jkx6dQkRvuM5t6Ee1IoZl5ZHkfjjpJSmEIHlw5cGXUFayNrQHT6W3lrJWu6rpHuVaW6Epkgw8XchW9af8PJYScpqihiQOgAKlQfOp31reuzqssqNtzbwLnEc9LycY3HEZkUyavcVx+dc0nlP6dOAfi7+PM48/FHXZTP+Iz/JHwuNP5i/DtnaQA0rtkYF3MXwuLDPr2CVivSoAIDRRvaNWtEDUZ8PFy6BH37gvyPfiyfRkViAuFBTRm6qxe2Q94yvL+abOca/NL1F1LnpHJ51GUmNpn4kVD7X8LKCtRqKCj4U6ub65uzu99uriZd5dc7v370ebNazZjZfCbfX/1eGkSC2N4ffGQwPTx6sK77OhJzE4lOj8bexJ49j/cAYpjfoiuLJNeTKkQlR3HyxUk8rT0x1DVkWtNp4gclJaLofcwYkH38db2belfiEas0KqacnkJT+6ZM9J0orVPDsAaru63mSaW4rFhZjLm+OecTz+O1yYtRx0dJuQXulu7YGNkgE2T0q9ePY8+OodVqORp/lIY2DXEwdaBcVU5hRSECAskFyTSt1ZSbY28SnhCOT7APr9+/5FJaFx5sF0gvSOGnNQMZO8eNrFrmaCvKabK1CQbLDTBbaYbHBg9a72hN/9D+TDk9hbV31rIm5TBKGbQvtsL29xiXbs4fZjB1BB2ujLqCocKQOS3nICAwwXcCu/rt4pvW35BcmExuWS4ZxRlUqCvQEXSwMbKR3F0qNZVcfXMVDRoyijNwNHUkX1lAl3r3OdevAT3Xn0WzcaN0PFcLV+5MuMNv3X8DRM7724K3nOpVF82ggWIKc0KCtP6wBsPo5NpJojzUMq7F0AZD8bPzw0zPjCdZT9AgDvAfZz3m+8jv2R0tvm+l6k/zufWM0jEsXyglWZtZZBMjn0yl4iW2Rracs8zFLQ8sS8HD0oO2Tm2RCTIKlYVUairRaDXo6+jjZe2Fsa4xWrSsuLkC21W2BB0PYv/j/WSXZGOsa4y3rTdRKVEY6Rqhp6PHQM+BnHslDp6yjCE/aDADArVo37/H4/g1dpmOItQLpt4HbXkFepV1OdphM3G1/Cgp18GK5py75sSluJcfLqi8HH78kaZdx0JpCTYyEx5ZVbAi9SDtndsz2mc0hjqG+Lv4S8LnT+HAkwN03dcVjVaDUz5oZFCrCC7XFlgcCbdCYEwsjB4At90UOJo6Sh2qp9liV08hU/A67zV7Yvewtuta6XMQdQNVzyqpIAm1Vk2QdxA/dPiBZYpuFOmC561hRCRE0GBzA4IfBPNT55+4N/Eeyzou+zBD/zYShUzBucRzDKo/iD3997A7dje7YncBYi5MFdq7tGdN1zXEZ8fj2OY+VnWOs+XhFvR19ClUFnJgwAG+bf0taUVpdHTtyJfNvuTAwAMcjjssWXTrCDroyHS4k3KHQUcGsSN6BzuidzDJdxJatCxsu5CSyhKGHB1CrUNNmTvbi+frFokd5yZN4OFDxjQaA8Db/LfUrVGXPnEqvpkRyg8lfhQoxImF+W3mY6Ev0jkr1BUICOjJxOI+pzyH9OJ0MY9EkHP5zWVW3FjBntg93Em5Q15Z3kfPU6VRsfXhVur+Vpd9T/Yxq8UsRjQcAYjU1alnplLzl5oMPTqUsy/PftRVtjW2xUTXBKVaiQwZTmZOUidMq9UyJmIMKq2KYQ2GcTzwuDTQD34QzPzL8/m+3ffMbjkbEIMDBx0ZhJmeGaWVpWjR4mrhyvHA49xNvcvk05Or0bSmNZ1Gd/fujI0YK3U8BnoOxEzPjJ0xOz+61mJl8ccdjdIcjBRG0jn7u/oD/LmJvs/4jH9TfC40/mL8u3c0BEFgQL0BHE84Xp3mUVr6gQbVti1ER4tJ3KmpIgff8587gFRBpVFxIf4kY5c0xjbEk/7uD0jwc+a7Lst4PeM1UeOjmNF8BnYm/0Is/s9Q1Un5EzqNKnR07cjsFrOZf3n+RzQjgKUdl2JjZMMXp75Aq9WSWphKwIEAPCw9ODjwIBWqCgYeHkgt01rEfBFDS4eW9DrYi351++Fp7cnI4yMlG1OtVsuCKwvwrOFJZFIkM5rN+GDRGBYGRUViofEHVCWCV822b7i7gbjsODYHbK5mtVgFD0NH5BoxT6Jz7c7kledhbWjNqRenCDouhkxVJSuDaGn5tuAtB54c4NizY+SV5ZFSmEKZqkzMHNCKgt+7yXfx2ODB+nvrcc5Rs+/XFPy3XmRtcy2+EzUsLzpNYv5rjJq0pF+SProqDa7mLhwYcIAro67wdMpTMr/KZE3XNZRWluJi5YbG1Zn5tUfh49wMHTU8eBkpndeufrvwd/Wng0sHIpMicbd053HmYwBaOrYEYPb52dJs/dhGY1Fr1BL9z97YHjdLNxQyBTZGNtLs4b30+wzye83aFiD78kvKN2+odv+mNZ9GoFeg9P8X3lzEut4J3plBWufmdN/cGud1zhgsN+Dym8uSbWexspgXOS+obVmb8Y3Hs7HnRsKGhOHv7C/tS8WnaXggztamTUnE8u11nujMIkqnN40aP2RQ46aSFiPaUaQDNU0VNRqVmkrezHzDiIYjpIFzuaqclMKUaiGcSo2Sa0nXJG58s23NkAtyrry5QqW6ktyyXDq6duTAAFGz9MWpLzBSGJHwPoHHuc+gXTua/ribq728cM2HwYkKXDTj0AoCGukdlAECyyPuoNGo4ehR8ffhhx+YMMWeFHM5Wdoimjs0p0/dPpx/dZ7VUavp6taViKERNKvVjIADAdXEvhqthgWXFzDi2Ag0Wg0uudAjWYFtMbxxMmHwBFOiakHLVDjiJbC/oVhg2hrbYmVohVyQE58dj4muCY8nP2aUzygmnZpEl30f0qwt9S25N/EeYUPCpHuoRUtMRgyllaV0TJaT1sCZlLIM+oX2w8HUgSdTnjC31VxJh2Wka0R6cTrm+uaMbzyepdeX4r7BnWJlMbv67pKMNm68vcHaqLX03N8Ti58smHRqErpyXRSCDkZKODHkODFfxFChqiA6I5rlHZfj7+rP8LDhZBRnMMBzAL92/5Vfon5h/d31nHp5ii61uxA+NJxzieeYcGICIxqOYGPPjVgbWqNUK7k17hZPpzwlyDuIXbG7qZe/jHa/eLG3ThllbZqjWPkzgkY0myiLOAqBgWgGD8Lxi29Qa9X4BPuw8uZK8srzsDWyxcfWB5kgQ1dHlxnNZnBl1BXOjjjLqi6raOfcjrzyPHbH7mZ0+GhahrTE8mdLbFbZ0HZnW8afGM+Y8DG4rHPhi1Nf4O/iz/Mvn/N9++8JjQulhmENnk59SvLsZJb6L+Vp1lN6HuiJ41pH5l6YS2xGLKtvr6b1jtbYmdjxbNozFrRdwKIri+i2rxuphalMOzONE89PUMeyDnv775We0cEnB5l6eirTm02v5qj35ZkveZHzgl+6/kJWSZaky2vt1JqQPiHsitnFqturpPUFQWBHnx1UqisluqCBwoDhDYezK2bXRzTJEmXJxxqNspxqE2kOpg7UsarzWafxGf/R+Fxo/MWwMrD6t9ZogGhzm1mSyZ2UO/DmjUiDcnSEiRNFQe+5c+KM7owZYPaPPcyroNFquPH2BtNOT8N+RQ26HenDrZwYZuq0Jm7MfWK+TWJe2/m4Wrj+z1xAjd+tGP+kTqMKP3b6ETdLN0YeG1mtTQ5grGvM5oDNXHp9iS0PthBwIACZIOPU8FMYKYyYdGoSSflJHAs8hrWRNRFDI6hrVZfeh3qztMNSXuS8YNEV0cXk0utLRCZF4mXthVwmZ2aLmR8OtGOHSJly/fheJBcmk1GcQXOH5qQWpvJ95PdM9ZtKE/smn74gQ0OMlaILy6wWs/ilyy9YGVpJlooAh+IOYfmTJVY/WdHzQE8ARh4fSYW6gpSiFGS//2QUVBTQwLoBenI9CpQF2BnX5FLJIJ5v16eprBbvz4UxK7KckMF7KVIWMavFLI6NPsOBLy5w8oDAi/cviMmIwd/VH0sDS0aFj2LW+VlM9J3Ig4kP0K9TH03iS5JkhajkiB2p31GV69LNrRs33t2gvnV9Hmc9JjYjlp77e0rrLWy7EBD1GzllOVKREPE8grSiNH7s9COZJZkcGXyE1o6tcTB1oERVytzuAhuagf7UGSwYURP/Xf702NeDVttbcfzZ8Wq3NFenkg4DizF+X8j8HS8Z0WA4mwI2sbzjcmmdMY3HcGfCHUIHhTK84XAepT9i6NGhXH1bnXttbWj9ycemVCuxWVeLcI8PNKeqAZCJngnuFu7EmyrJNQD/bCMMdAy4m3KXLnu70KV2F+nZbu65mTZObSRNhqW+JUUVRVIStqOZI0XKIuKy4nhb8JYaP9dApVGJzk6/Y6jXULY83IJCpmBH9A5peUVjb+7Wgp/TvKip1xjhD6kSAnIqyixYNN4VBg9GVb8eY7f34ohuIgYKA/b028PtcbeJGBrBjx1/pFJTSfjzcKadmcb23tupb12fbvu68STziURdWXFzBQA1SuDiaUuu2VXSJEvOuxXzmHumgJapcMldTuBTLdPuit/Z6PRo3pe+x1BhSLmqnJ19d1LPuh7BvYLZ228vT7OeSp2v/Ip8XuS8YIDnABrbNZauZVfsLlxWO1ISeZGj1lmSU9brvNcfFfhRyVHsitnFyk4r2dxrM8+/fE6X2l2YcnoKX1/8WnJQm3ByAguuLEClUfFD+x94NOkR7795z2u/PXhmw/BjI3lX8I7v23/P6qjVxGbGsn+AmDw98thI1Bo105tPZ27Lucw6N4vIpEgCPAKob10fAx0DBEEgKT+JUlUp/er1I+xZGFqtFi8bL9Z0W0PqnFQODjyIwsSMUb5vsftWh6/uLWPlRShRFrN51VB+Gl8Pp6Y3GRQ2BI1WpCz62PrgYelBZkkmZaoy1nVfR+qcVH7t8Sv+rv50d+/OzBYz2RSwicujLpMyJ4Wi+UU8mvSIgwMPMq3pNAwVhhyOO8zu2N2SlupI/BG67etG/U31UWlU9PLoxY13N5ALcua2msuTKU94MPEBQ+oPYWfMThptacTci3Np69SWsCFheFh5sLTjUi4EXeBxxmPc1rux5eEWAJZ3Wi59B069OMWo8FEE+QSxrvs6afnO6J3siNnB5oDNBHkHYaZnxukXp6XnOtJ7JAvbLmTepXmEJ4RLy+1M7NjaeyvhCeFSF2Nc43GkFqVy/tX5au9GsbL4k2F9VfqMKvi7+H8uND7jPxqC9p9FV37G/zrGRowl4X0CUeOj/vXKfxE0GjXDpljz3WMLGtx9IxYT48fDlCng5van9qHVanmY/pBDTw8RGhdKSmEKjhX6BD4oZ5hxCxr/uBOhXr1/vaP/H6SmigXR6dOie9V/AdHp0TTf3pyvWn7Fis4rPvp8WNgwwuLD0NPR4/a42zS0bcim+5uYdmYaBwYcYFjDD3a0OaU5tN/VnoKKAkZ5j2LFzRVcHnWZeaeD0S3ojqbcBmsLNUsH+tPQ2UTUtri7i1kTI0Z8dOwjcUcYcnQIDyc+5NtL3/Iw/SHLOi6jRFki5jj8MQyuMAPlH2bOZYIMA7kBJSpx9l1AQCFXoNao8bXzJT47npLKEkx0TRjecDhbHm7B2cxZDAxTV+Ju6U5bndoMXHOOHomgnTQJYfVqMBYpAVqtlsFHBhOZFMnTqU+paVwT1q5l9ZE5zO0Gc1vOZWfMThRyBTv77qS7e3fxXo0fQd65Y9SZVIFCrsBUbkRORR5GKoGi8a/A1ZWE9wl4bvRkRIMRhD8XE4fVWjUGOgYYKgzJnJuJ8zpn+nv2J/hBMPNazxNFs8CmHpuwN7VnaNhQfGv6is4zKVEYKYzEToQWNp6GyQ9gXD/Y3Qh0ZDqoNCpczV1JLkjm1x6/suz6MrJLs/FLUhG1A7YMqY3bj1sYd2IcdazqcO3tNRQyBd+2/pYd0Tt4V1jdYMDR1JG8sjwpd+Tv8WPHH9nycAt+9n40uPGcv1k95e+NpzxreGJvbM/lpMvIBTnn9kGFoMHmyl0WXlnIxdcXMVYYS/tOm5OGnYkd9TfWp6ZxTYx0jTiXeA6VRoVckFPHqg7vS9+TXSrywWsY1qgmegWY3GQyDqYOLL2+FJVGReToSOrWqIvbejcGPSxnR1gl09fd4Gm2XLLiBVFTksc9HstnMdq6M/eFNOKz43GzcOPehHtYGlpK63bd25XCikLGNBrDwisLUWlUzGs9j9C4UFKLUrHQt+B13mvxWSsh8pQVytwc2k6A5c0XUrFqBUuuaFgUYED+lLG4LN/E3Cj4ohds/b1hpyvTZWzjsQT3CpaOO/PsTHbE7EBAkDQTjWo24uzwszitc5LyUOSCHN9MGfc2VdJxnBzfIbOIyYzhypsrWBpYcnnUZXxq+qDWqGm2vRkCAheDLnLz3U0uvr7IpdeXePb+WbX7KiDQ37M/hwYequ6Yl5xMiZsTQ37y40JxDNt6b2PdHXFAfG/CPa6/vU6XvV1Y0mEJ37X/Do1WQ9udbbmdfJvdfXezKmoVJcoSNvbcyLCwYdStUZe5Lecy5OgQYifH4m3r/dF7l5ibyI7oHWyN+o0cdRFm5VApQKkuIIgFqqOZI7GZIv2zh3sPZjSfQVe3rpLt65/Bq9xXLLiygMNxh2lo05CfOv9EQ5uGvMh9wfP3z4nNiGXro63IBJlU2IBoolIVSKiQKTiWcIxKdSUNbRryMP0hGq2GHh49GO0zmlYOregX2o+XqZU4qsdgjDst3VwY4+9ErvYR3fd3p7t7d44MPiJ1OGIzYmkR0oIRDUewvc92AAKPBvIm7w33Jt6Tzl+j1RB4NJAzL89wc+zNasXo+IjxHI4/TMwXMdS2qE2jLY3wsPTg6JCj0jo+wT60c2rHhp4fOqeBRwPJKc3h0qhL0rLDcYcJPBpI6pxU7E3s//T9/YzP+HfB50LjL8bcC3M58fwEL6a/+KtP5WMUFcHu3SIVKiGBZ3YK6i3+DWHECFHo/ScQnx0vBekl5iZibWjNkBIXhu6LoZXSFtm6X6F//3+eBP7fRXk5GBiIqeNBQf/lzVfcWMHCKwu5PvY6bZzaSMu1Wi1jI8ayO3Y3HVw6cHX0Ve6m3KXtzrZM9pvM+h7rP9pXWlEabXa0QUemg7WRNSmZclxKV/7eKZAh+/02zBygh/GxVWSdO0bWmqVkKfM+SpBOLkxGqVZ+dAwzPbNqYXDSv2fv+Pnlbpo27cPSLiuwMbLBQt8Cn2Af4rPjmdp0Khvvi9oES31LcstzERDQosXa0Jq88jwGeQ7iwqsL5JbnMshzEAdVfdH5cgbFcjWDuxViPTCI7X22V0u7zS7JpsHmBjSr1YwTQ08gAMohAxklhHO4vpb2Lh04PPgw1kbWqDVq1kStIXP5fJZe0hC0tz+nXp6mQl2BiY4RBkXlZO6xgYsX0davj+NaR9RatcRxH+g5kH51+xEUHsSmnpsIiQ4hrSgNpVpJQUXBR5xuAQG5TE6LWi24n3YfXztf5IKcm8k3GVR3AIcumyML2UnsT3NordyMvkKfvDKxA2SmZ0agVyAP0x/yKP0RHd5oObsXeo6EyNoyZjSfwaYHmz56RgqZgqENhvJr91+xMLDg5POT9DnUp9o6unJdkmYmYb/Gnv29d1EvcBpNRpZgqGNIqaoUKwMrBtcfzJ3UO8RkxACw7IrAhIda6iw04Zeuq0krSmPxtcXSPuOnxuNs7ozJChOCA4KZ2GQi+eX57I3dy/eR35Nfng+Aj60Pz94/w1LfkowS8b4a6BhQpiqTCjE9uZ7Eyfe28eZN/hvGe41k/vDNbGnry1Xf9YBInxIF7Fqi5ZMpFMTuiAwZFvoWvJjxQqKugTjI9djgwe5+uxnlM4qc0hwWXVnElodbcDB1ILUoVaTEaUHQwoHL5tR5lc9ZD1jSWYcF0cYsDs9nQUdwXhnMnAtzKK0sZeslfSbeKmdcH9jpKxZRidMTJYpiwvsEGmxq8DuNaBfDvIZxMO4gAG0c23A75TZy5BjoGlBYUciXd2HNRRnzZxRakQAAIABJREFUw6aw8UkIOoIO+gp9CsoL0NPR43jgcc69PMfqO6vxtvUmLisOtVaNi7kLXWqLnSZ/V3+eZj2l275uKNVKBAQ6uXbizIgzH4oNrRZMTFD98B1f1HnBjpgdzGg2gw33NvBjpx+Z12YeiyMXs/T6Ui4FXcLf1Z9Rx0cRFh9GpaYSXbku9yaKYuhH6Y/ourcrdiZ2vCt4x+wWsz8ZvplblsvumN38eHkxxeWF1CqEV1agqwZbA2vSKnPRk+uhr9DHz96P8yPPf7SPf4b3pe9Zem0pmx9sxsbIhmUdlxHkHfRRN2jksZHsf7KfgwMO0s+zH69yX/E85znP3z/n2ftnXHlzReqAgPhddjB1wEjXiLyyPCmR3krwpaFq4+9Wz+L7KBNkPNOdhZeTEaeGn5JstAsrCvHb6oehwpCo8VGSk+Ge2D2MDh9NxlcZ1ey9SytLab+rPelF6dybeE8qBIoqimi0pRG2RrZcH3udTfc3MffCXFLnpEric/f17gyqP4iVnVdK++u8pzNWhlaEDvpgnpBVkoXtL7bs67+PEd4fTzh9xmf8u+Mzdeovxt+n0P7b4PlzmD4datUSw5gaNODBwdXUn1TJo15N/mWR8TrvNSturMB7szdem7zYcG8DbZ3acMFtCWnBRvy2IpY2gV8je5YgZkP8bxYZAPr6YGj4X9Jo/D2+af0NLR1bMur4qGohY6ujVrM7djfjGonOIgefHGTwkcE0sW/CL11/+eS+7E3suTTqEsXKYvLK8jArHfg7/1v8Kmq0oNaoWRQWSSf5foYFlPFN5EL2Pt5LdEY0lZpK6taoy0DPgdib2ONn7yf9992sd5QvLCd/Xj4vpr/g5ribHAs8RnCvYP7m/ze+rNUfhyIwlRtS37o+NQxrkF6cTlx2HK0cWzGzuUjZMtE1Ia9cFGpW8YWzS7Ox0LfgUNwhurh1ob91O8b/fAmdEUHQrRvGz98wet5BQuNCCTgQUM0ZxtrImm29t3HqxSl2RO/gbuo9mjWL5dubWrzydHibn4RcJicxN5H2u9rz7aVvqd+iDwaVWmoVy6hQV+Bg6oBCoYeOlTXqGpao2rYmZN8cskuzpSLD2tCaq2+uEhQuFpNTz0wlOiOa9OJ0SitLUWlUDPYcDIhpxEkzk7g06hIqjYoVnVcwtelUXua+5NzIcziYOBD2/DiPF09FGDsW73lrCHyq5emUp7z/5j3jGo2joKKAky9O8jD9IYIgcNUVPGaCTANarYZ1d9dVKzKMdY3Z1HMTxQuK2dN/DxYGFsRkxDDr/KyP3LHqWtWVtEF+SUqiLEoQQBKJFpQXsDFgI8cDRSqXgY4B8a7G2JaAVXYJk05NYvG1xdgafRgU9djfg4NPDqLRavCzF6f2zfXNmd58OulfpTO4vnhvylRlVKorpSIjqGGQVGBX6U5M9UylIjQ2K5YyVRlpFTls8dUy6/JD1u2Zgl9qDPrlWThl3CNJO10qMkB0C6tQV3Dp9YeZW4AtD7ZgoW8hnYuVoRWbe21mUbtFpBSmSEUGAkx7qo9JVj51cuB0fy/cS/VZHJ7Pxm6WRA5vSW55LqWqUhDgh77mhDTXZftJGBkrDnb9tvpx4vkJtFotcy/MxcnMieiMaNo5t2P/wP1423ijkCm4mXwTuSDHRN9EMkFo9xbu2Gvo6NmTpJlJTPGbQlFFkZSn0mVvF1bfWY2uXBcPSw9+6/kbidMTeT3jNVt7b2Ww12BqGNagg0sHGtdsTEeXjtiZ2HHpzSXc1rvxIuf3iSdBgHr10El4wfY+21nUdhHr762ncc3G/HD1B17mvOS7dt/R3rk9w48NJ70onfOvzlPHqg6VmkqMdY2lQs7XzpdrY65JXapDTw9J912r1XLr3S1GHBtBzV9qMvf8V9ikFyLXQJ3GnTGv1MEpD7Tvs1Fr1bhauOLv7M/l15erCdn/Gcoqy1h5cyVu693YGbOTJR2W8GL6C8Y0GvNRkZFbmsvBpwexN7EnsEGgaGRg48UAzwEE+QTxtuAt6cXpLOmwhPQ56dwYe4PtfbYzrMEw6lrVlQoELVrsKoOkIgNEGp9Gq8FFO47woeFSkaHVahl/YjyZJZkcHXK0ml16D/ceCAicTTxb7TwNFYZEDI0AoO+hvlI4n4meCfv67+Nu6l1W3FghaqUEgb2P90rbflIMXvYxdcrGyIYGNg0+29x+xn8sPhcafzGsDK3IK8v7h9kK/2dQq+HkSejaFerVg9BQUXORlARHjuAzeDqWhpb/MHworSiNdXfW0WJ7C9zWu7HsxjK8bLyIGBpB5oDb7NiaRZegH9DxqAtPnsDy5X+6K/I/gv9ClsYfIZfJ2dt/L9ml2cw+LzqSHI0/ytcXv2ZBmwVs77Odzq6dGXdiHKWVpRwZfKTajP4fUduiNheCLvCu4B3GuH3MZxfkuBe7Ufgj3EvuzsuA87ydmcT9ifc5Pfw0O/vuZFnHZWQWZ2JlYEV2STZ7+u3B0cxRGoh+EkZGmFZAUVm+tOibi98AMLvFbMkD3tbYltjJsXRw7lCNOlPFba+bJ2fTisc0i8snYf0PYsK7pSVDGwzl/Mjz3E+9T7ud7UgrSpO27VO3D2MajWHqmam0CmmFnkUNLMLOcCJMl4Jcscvjvdmb9OJ0Tg07Rcv24szd87siLzq/PJ/88nzSSzOx6hnHN34FTHm5DqVKHMgLCLiYuzCn5Rz29d+Hn72flGsAH0L3FrRbgL2xPSWVJRRVFNHBpQPOZs7sid3DRN+JvC99LxZEfUU72a4HuhM2uzt7GmrZfqQCu3M3sTSwZHOvzbiai4FaE3wnSIODZFOIdIWeL0Dxd80TG0MbBAT61usrvRs7o3fSMqQlJromUoZDFZ5mPWVHzA5MdE1wPx3FLS8TQJD0ACqtivSidA7HHUZfR5913dZxuYZYBD9sHIyHpQdmemb4u3wQnL8teMuEk2LS/K6YXYQnhEuDRH0dfUIHhbLMfxkvcl7gWcNTOtahuENcfC2Klpd0WMKmnpvoW7dvtUGSWqsmND6UYD8wrASXzMc4qNcxtuNzrpjP4a3iEfXMqtMsVRoVgUcDCToeREF5gaiZiNnJ2EZjpUGeSqNizvk5LL2+VCzGqmQqWthVt5wGmRCxPIgHBc+YdK2Y0308mdkyn009N0ndHGczZ7b02crEbkp2NIJd4TA2wYCskiz6HuqLd7A3p1+epr9nf2IzY1nqvxRBEBjXeBwajXjASk0lxRXFHA88zs+df6LtW4hy1WHIkSEiTfLpASrUFSLNhw9ampnNZnJ0yFEm+03GzdKtWmZJFWoa10RfoU/SzCSm+k0luTCZer/VY/qZ6eL3z9MTnj1DEASWdlzKpp6biM6IRiFXMP7EeARB4MDAA2i0Gvod6kdWSRYxmTEsbr8YuUxOwIEAyQDAy8aL62Ouo5ApeJ7znBPPT7Dh7gY8N3rSZmcbQp+GYpdTSdR2LXI9PSoMdDj77hL29nV4VUPg8uu2nN0H9ZLLiHgRgVqrpvu+7lxLusY/IkeoNWp2xeyizm91+O7qd4zxGcOrGa+Y33Y+hgrDT24z+dRkNFoNG3psqHbPTr04RaPgRrzOe03k6Ei+b/89NU1q0sapDeMaj+OnLj8xqckkKX1chuzTv7HIEZR2fHflO2kyYP3d9RyNP8rOvjtxt3Svtr61kTXNajXj9MvT/BH2JvacHHaS+Ox4RoePlkwoWjq2ZGHbhSy5toRXea/oV68fIdEh0n0qqfyEGPwTGg34rNP4jP9sfC40/mJYGVihRUtBxZ+zXv0fR24u/PILeHhAnz6iBeyePZCcDMuWSenNCrmCPnX7SCJCEH8Utz7civ9ufxzWOPDtpW+paVyTgwMPkjU3i4M9Quiz/wF63r7w9CkcOwZnz0KdOv/31/kn08H/EWpb1GZdt3WERIfw862fCToexNAGQ1naURyUeFp7Uq4qp51zOxxMHf7l/upY1cFSx4Qy7Su02j8UmVo19rmvUGigScg5HH07kGql4FZHd24tmUDa49s8zXpKmaqMq0lXmdtqLp7Wf8Lly9AQ0wooLBPfNZVGRVh8GEYKI8ZEjCEqJQofWx8cTBwYGzFWCr2rgr5cD+8SY35+ewDPMcX4LrBknnVMtXU6uHTgxtgbvC99T8uQljzLFrnor/NeE5cVh1KtxN7UnrXd1vLQrJS747sTul9JQvYztGjJLskm4GAAvhcHAWCXVYaAIInxdeW6uNduwtrWoJLDiKeC9HzqWNVhYbuFjPAeQaBXIHeS77D14VYABtYbiL6OPlffXGV6s+kAjD8xHpkgY6T3SA7HHcbVwpW2Tm3Z+mgrnWt3xt3SnVJlKSPCg9g8pQnC0KFohw3jwqrJDD06lPTidO6k3mFn9E6yS7PFzpQABio46wE9Ej/cl5yyHIqURTQObkxcVhwTT0xk3IlxDKo/CKVaSVZpFoCUWq6vo8+hp4dwMKmFLOIEN53F7oHs7yyO3xa8JTQulF51ejGxyUR0aznyzgwMY55ya9wtnM2dufTmEmZ6Ij1IIVNInZON9zfSP7Q/dqvtcFnnwrCwYay/u57OtTtzcOBBEnMTqdRUoiPTIWtuFkHeQcgEGctvLGfqmanEZcdJrlkBHgG0rdkctGICt0aACgXMdHtB4L25ZBpDxAE4EO2Go6mjVMCUq8sREDgadxTvYG+WXl9KTlkOX/h9AYjFZa8DvVh/dz36OvooK8txKAb3PAHvTCjWBffZAo+LX1EpaLCwq83gpm+Y2mwak09PRqlWopApiJ0cy9mXZ0EmMKWPjPhuvoQcUdIvTo2HhYfUPdj2cBttndrSzlkM4HOzdEP9dyGJgiAwOnw0r++dp2YJXHFQUVJZwtnEswz2Gsy5Eecoml/EvNbzAFH/tCpqFY2CG5GY83cvwx9QFdqnkCvYGLCRsMFhyGVygh8G47rOlWV1Mih5GS/lAE1pOoWwIWEo1UpuvLvBhrsbqGlcU0y9ThM1BF80+YLv23/PmeFneJnzksFHBkuua+6W7mzsKVIk+x7qy8xzM3mR8wJdmS4TdFvSJl1Om/EC8eYqHEwdiJ8az/2J97EwsCD4iyZ0n72Ro7+mk3LUiSam9YjLjqPD7g7U/a0uP9/6mcxiMXNFq9VyLvEcjbc0ZmzEWFo6tOTZtGf82uNXiT70KWSXZBOWEIaTmRMDPAcAUKGqYPa52fQ+2JtWjq2I+SKGts5tpW2KKopYc3sNjmsdCTgQQLmqnFJVKSZ6Jv8w7NLGQsOmB5tovaM1R+KOMPfiXOa0mCMd84/o6dGTC68ufDK8trFdY/YP2E9YfBg/XP1BWv5du+/wtfNl5LGRjGgwgvjseO6l3kOr1YquU5/I0fh7KmEVOrp25E3+G5Lyk/7hffuMz/h3xedC4y9GFTXl/9x5Kjb2g2vUwoXQpg3cvSv+CwoCvY9nxgfUG8DznOf8dOsnAg4EUHN1TaacnoJCpiCkTwiZczMJHxrOUK9AjM5egvr14aefYO5cePbsf1+L8c/w3yw0QHQP6eTaiXmX5uFt683OvjuRCTLOvDzDhnsb6OHeg/CEcO6m3P2X+9p2fwur9mQw/eoeED4EsQkCaAUYHxnCgo7QfnUDDi0fxssO3lgmptJycQj2Pq2x8vJj53GY8ETBJKtuf+4CjIwwqUCiNS26sgilRklJZQmjvEfxbNoz3C3dufb2Gk+znkp6hmNDjtEqVcakRwIxQhb6CgO8XJuToi0g4nkECy4vkJKBtVotNkY2bO61Ga1Wi+8WX5psaUKdDXWIyYhBIVOQUphC6x2tGXRkEMNkx3hqK/DTRdF+tU/dPoQOCiV48C5STKErtdGR6aDRatBoRbpNdHo0BjoGhPbdxz5tfzGorqhIsrgF6FK7C+XqcrZHi45FpapSWjm24mrSVaY1EzNK7qXd41H6I4K8g0Qa1POTTGoyiStvrpCYm8hUv6mUqkpFx63idHyaR3PIU43/vC2Ynr36URdSixYBgZ6NA5lt2JGTdcGlWBSYNrRpiKHCkKzSLBpsbkBIdAidXTsTmRRJQfmHSYb+nv2rdoZckFP8KoHM8hyShY9Dyu6k3OFR+iMCvQIRBIG2Tm25XwuSLh7F2siaK6Ou4GTmJAmbF7VbhFKtpKZxTckGuKNLRwI8AnhX8I5vL31Li5AWjAkfI83oqjVqolKi8LL2wkzPjKy5WeztvxcrQytOvjwJwPMnkSS8FDtH0++JzKYapdDx94gZPYUBT2xhU94FkguSaWTbiIY2DaXrKFeXk1+Wz483fsTJzAlnM2de5rykxfYW3E6+jVyQo64op2WajCI9aJOuIHoLTI0zRKGVsbP0NjbFsLuXI2YG5lx/e527qeJ3cGPARox1jdkVuws9HT1UgobCTWsRhgxhV2gFPvfeolQr6eHegyJlEXdS7jD7/GymnJpC74O9AbFbZqJrQoW6gsKKQioiL6MWINpVpNwoVUrUGjXd3Luhr6PP5TeXsTGyAcQgzNjMWOr8VocRx0ZIhfffo6rQqMKA+gM4NewUOjIdahjV4G+aq7iPLiD46s/SILe/Z3+ujL6CrlyXORfm8CDtAc5mzpIN7+D6gxEEAZ+aPhwLPMal15cYHzGe4AfB+AT7MDRsqLSugECARwDeJm5sqbhJlIsOK/2X41nDk57uPcVsH4UhE30nEhKzg+IJoyA6GltdS3779SUqjYqf/H+kaa2mfH/1exzWOtB5T2d8t/jSY38PzPXNuTP+DocHH/6oU/ApTDw5EY1Ww289xNyaxNxEWu9ozcb7G1nXbR0RQyOwMrQioziDxZGL8VjvgelKU766+BUphSlY6Fvwc6efae8sGm8UGYVXC7sUBLFgu1m8hMlNJvO+5D2BRwOpbVG7ml7ijwjwECmh/yjTpV+9fqzsvJJlN5ax7/E+QJyg2zdgH6lFqZx6eQpHU0dCokMoU5WhRVutK1ihqqCksuSTOVHtndsjIHD1zWf61Gf85+FzofEXo2r24v9Ep1FZCYcPQ7t20KiR2F1YuFDsXuzZA82afXKzssoywuLD2BEj2lnOvzyfwopC1nVbR9qcNC4EXWBs47GY65tDYiIEBEC/fmLL/+lTsTNi+OkW+f8Z/gcKjbzyPJLyk5AJopBVT65HUn4SI4+NpFedXoQPDcfXzpcJJyd8UqRdhRJlCfJv5jH4mcC4r79jSJd8KYhNx+g1683j8U6NY783PK54x7DKgyzvb0XpnZvkJb8gasO3nG9oQKMM2Hi4BJfGHUiuoeBW57pELZ9CZvz9Tx/4d+pUvrKQ2edms/nmWRqq1tFbNwqD7GlMPfqz2LFCi4OpAz3de+Jl4ka/Hbe5sV3DhKe6vBxyg97eg7iTcgdjXWMEBFbeXInlz5bY/mKL4XJDaq6uSZ+DfUguTKZcXc6jjEeY65szrvE4VnRaQRfXLtIgJ8g7iNHnMpgrb8OwRAOOPztGbYva4syorTFNy6yo1FRKeREAntaexE2NY0ijERAaSjcjHzJKs4jPeird94jnIm+6o0tHAr0CuZV8i/bO7bn29hoGCgOczJwQEFhweQF1a9SlWa1m7H28l4GeAzHVNWXamWlSKjpAWnEamRU5/DDOleP1YOu+fAa/Fuk9VefmYu5CyuwUDg0+xC/fXuZCbgAlggqFGmIyY6htXhsdQUfa56U3l0gpTKGwQgzVM9U1pVhZjJ2xHSqNCrVWjbPGhIi64voyZBItw1TPlLMvz2KkMKKnh+ikZqxrzIva5tg/TyPy1WWsDK24POqyRM8oqywDRP67kcKIjT028jD9IWHPwpjVfBb53+Zzd8Jdfu7yM941vZEhQ4uWngd6sjhyMeWqcrY92oaLuQttHNrQLVHLb1cMUJeWkGmkRdDCmFiBUC94bAOzHsj5tvW3jPYZzaZ2+mxvAp1ew8u8l9KAu8pJqFApFlIpBSnU31Qfv61+lFWWUVZZhqyykgmPFUTZa2iZZcDmCBUR9WV83XMZV0PUZBtBtrHA1eRr5Jbmkpwv2vVaGlgyrtE4vrrwFWWqMjq7dkYhU9DEsRns2UNl7wD2H1LSJ1GHK2+u0KV2F7q7d2fdnXUEPwyWuktatNStUZc6VnWwMbJhtrIJMXYCBlai/kVfoc+Gexs4EneEkEch3E+7z5FBR+jh3oPnOc9Z3lG0Uz327Bhem7wYcmRItcDOmsY1ySzOrJbS3s29GyeHnSSjOIOW1o3xfwNTb8zHa5MXR+KOoNVqaePUhsjRkQC03dmWjns6okVLHcs6BB0PIqtE7JJZGVjR1qkte5/sZcrpKcRnxyMTZPjY+gBip+bUy1MICS+IeFiHl/PTmdNhPunF6dW6s9OaTqNEWcLumN1Qty7cvk3zoHl4Z0DUoVXs9/kbdyfcpVHNRlx+c5mYzBhsDG3o5NqJWqa1Pv2b9AekFaZx4vkJXM1d6V23NwefHMR3iy8FFQVEjY+ih0cP5l6Yi+NaR+xW27Hk2hJe572WrKEXtFlAyuwUQmJCuPb2Gp1cO2Funs8rg2/IFx6gluXR1M2ctePqMrZFR9bfW09+RT4KuYIXOS/48syX0vfkj2hs15iaxjU58/LMPzz/r1t9zdhGYxl/Yjy33t0CxO71mq5r2PZoG60dW3Po6SHp2fw9dapqDPAp6pSFgQWN7RpzJekzfeoz/vPwudD4i1H1o/K/2tHIzISlS8HFRUzwlsngyBExE2PhQrCx+WiTSnUlZ16eYdTxUdj+YsugI4N4V/AOH1sf6lvX58bYG0xrNu2DA0dpKXz3HXh5iangx4/DmTMiJevfAf8NjQaIs039Q/uTX57Pxp4bOf/qPMEPghl0eBDm+ubs6bcHXbku23pv41n2M1bdWvUP93V3TiCTb5SS+/MS6NePqe16Mq2vPlE6vblYPgy98F+Q9+7DwamXMdYzxkTXhITsBPy2+TElaiF6A4cwtXMF/ee7kP32Gbd+nUtiK0+sEt7SclEwtl7NeGety62untxd8SXZz6PFAxsZkWYCiWWp7Lt/k0bqzVjRnKJSGQ9eFZD6vBdWiBkcwxoMIy/qKifWpKNat4Y1fazxGVZA7YiO7H28F7VWTUFFwe8zhVpMdE3ILslGV0eXib4TWd99PXbGdljoW9DasTW5ZbnUt66Pq4UrjzIeIRNkuFm4EdInBAtTG4TQw2yPNMXj/7F33lFRnWvb/02DoUqTXgQVUREVbFhQsPeCDXsvscYSSxJNMYnG3rvGBLEgVmwoIgQLooiCCCoWqtI7A0z5/thxDEdzkvOd874n71pea7GUmd33Zua5n/sqhWK6/9yNp/lPcfHqhig3973rFzg48F3GilRKj3lbKNcBFRqSVy9i460NrLy+khbWLcirzKOjY0eKFEW4mLpQUlXC/ez7DHQdiAYNl1Mvc/nZZVrZtCL0SSjNdzWnpLqEK8+vkJCTgFQsFZJ6xbrklOdQqCxl5igjQhvCgV9KGPbKEEOZUHBFjo/E1vid/WS3tSFERzfEM1uYNU7MTUSDBmNdY6RiKXV06iATy7QC65LqEi49u0SNqga5TJgtjzYr5WcfIbXdTN9Mq0mxMrDiXvY9BroN1PLc1Ro16a7WGFXDmv0TqaipwERuQldnIVV9/a31aNCwrc82Il9FEvo0lLjpcXRw7MDwE8MZETICWyNb5radyxH/I9Q3q49cKsfb3huFSkGNuoYVESvodLATn19dSp4enPXQ4YUZIBKoYi4FGnZ5S9jWBnonqzgauobcilwURvo0ew3HLujRy7ErxnLjD/5tqFHzvPA5pdWlpJWkIatRsemanJ0ta/AqMSD4pJj7lmpMJs/BYdpirjsJ+35bsNSoayiqEjRIBwYc4HbGbbbEbEEikiCXyvGy9RLEv1IpX05x4bKrhOBjanxSBGH6uSfnECHCQt8ClUalzY0Z3Ww0V8depUpZhWVcMvX6j8FEboJYJKasugwHYwcmnZ3EZ1c+Y1zzcfjU8yHIPwg7Yzt+iv+JY/7HECOmnkk97mTeocXuFgw8OpDYzFisDa1RaVTvfQd0c+nG+VHniS18RK6hiJsmi2hg1oDhJ4bTdl9bIl5E4O3gzZZeW7RhjAAhI0JQqpX4HfLDa7cXnns8a83Cd3TsyJDGQ3iU+wgAL5PGeORJSLEA89WbkZiYUllTSX5lfq0CwaGOA0MaD2HLnS1CUSSTIfp2FdO7LORc3UKet3Nj5wwv0ovS2NV3F9GTounfqD9rb67FaZMT/YL6cSb5zAepR28x9dxUNGjY1GsTk89MZtTJUbR3aE8Hhw70OtyLRtsaseH2BqEAs/dm/4D99G/Un/zKfHb3282ctnOot7keKfkpTGoxidVdVxP/Jp4CTRw+3k+Jlw9j9ThXWjqbsbbHWiY0n0CRogipSMrklpP55eEvtNnXhqTcpPeOTSwS06dBnw/qNN5CJBKxq98u2tm3Y/CxwVqq0zSvafRz7UdYahil1aWceCTY3P6+o/H2/n+oowHCpEnEi4g/1MJ8xEf8XfGx0PgvQ0ud+k93NDQagQY1ZowQrvfDD9Cvn0CZun4dhg4FmazWKiq1iogXEUw/Nx3r9db0DepLbFYsi9ovImV2Cvem3ePzTp+TlJvE88Ln7/Zz6pRAk/rxR1iyRCg0Bg3679GkPoR/o6Oh0WiYdHYSMRkxnA04y/RW05nScgpzL80l4U0CIcNDMNUzBYRZr0XtF/FN1Dek5KW8t63yn/fjt/08l4d7YrHwS+3r01tN1w4Yu7VORjlxPH7Ofjyc8RA/Zz8ySjPwrefLzfSbeO3xQqlWMrbZWOo6utFh7lp8zz7ELUPBm5ePiN64gGftGmHx6Dltl2+nrpsnt51ldP6+IcfdQa6EppI5tdyuREgQIcJONQ6JCtTfrSJyZyXlagVjlrsRMaw1arEQlnd25FkezHhA0ZIizo48CwjPr5uFG57WnuyL28fcS0K6+b1p94iaGMVHVrj1AAAgAElEQVSs1rOYd2ke/sf96ejYkQujL/Cy6CXf/fpbsJ2NDfpBwZz8qZLq0mKcTZxJblKX9t1eaa/RW4/+tzkPb9HWQRBUA2y+s5UFYQtZ0v4zFnkv4uGbhzjVcUIiklBaVYqBzICIlxH4N/EHBN1Cn6A+7Li7Aw0aLPQt+MFPyEspUhShVAs8fCcTYRt5FXkUKEtZPtWZN51acuRwFd6Py9CgIfxFeO2brauLYssmTh6BkQ/fZQC87WB81vEz4mfE18oHAPCy9dK+hgZumJQgFUvJq8jTinoNdQwpVBTWSipXa9Qk1zNAIxJhn5zNV9e/AoTAQrFIjLGuMLh3NnHmXMA5Il5GMOfiHIKGBHFy+EliM2Npsr0JO2J3oNao0ZPpoVAqOBdwjla2rVCqlfiXOXJjH6yMFGHdyIswi3e0rzl3xTyrZ0zXkct50LUpJbow656I4KRgChQFqO1sKVNWEqQcSM6iHGKnxrKg3YIPZi+8PX/XPA3zO1dST6FH+DkzcijnwdjudF6+iwsNNQSPaaldXyKS0NyyuVaMveHWBoYFD8NI14ge9XtwJ+sObWzbEJYaxtSzU1kbu4mh/irC6qk5cxS6PNdgbWBN2vw04qfHIxaJtULkFREryCzN5KDnN1jmlPO4cV1ipsQwv+18QAjPVKlVlFSX8FVn4bob6xpzduRZYRAct1vrNqcr0WV9j/Wk5KXQZl8bVkcLdJ0PuTf5OftxcfRFbjrC57lHCB4WTMT4CEQiEX4/+9ErsBfXX14H0HYJl1xdIgQv5j4i/o2goero2JEF7RZgZWBF5KtIol5F8X3X7+lu5Y08MYXo201oWa8dPU77E/48XGsb+496s7lt5/Ik/wmXnwmWtlXKKgqsTVCLYWF3NbvOqMiIasV0x8F0cOjAvgH7yFqYxc6+O3lT/oZBxwbhuMmR5eHLSS1IrbXttOI0Lj67iIOxA3MuzOHQg0PIJXIup17m0INDFCuK6ezUmWNDj1G6rJTQUaEcjD9IWGoYp0ecxtvem/pb6pNbkct3vt+xu/9uAkKEHKOzAWfp7tKd0upS7bldSb3CoQeHWNZxGYMaC0JtHycfalQ1tN7bmgP3D7w3qO/r2pfHeY95UfjivXv1FjoSHUKGh2Cka0S/oH6CU5lIxP4B+5FKpFjoW2gdv36v0SioLAD4oEYDwNfZl8zSTJ4WPP3DfX/ER/wd8bHQ+C9DLpWjL9P/z3U0FIp3NKh27eDWLVi9Wgit270bPGoHNGk0GmIyYph/aT4OGx3w+9mPsOdhTPOcRvz0eJI+SWJF5xW4mgsC7t4NeyOXygX3qadPoXdvwaK2aVN49Ai++ea/T5P6EP6NQmPl9ZUEJQTx8+Cfae/QHhCsIpVqJQ51HGhm1az28p1X4mDswLTQabXoEEREoDtlOoEtJHjsPffefro4dQEgow4MLBVEzOb65pwacYrtfbZzK+MWcqlcO6BYc3MNS68upbCyULsNK6cmdJy/Hr9zCTTKrCIj9T5zfuiE71gVyXrlnDgGpavUUGr2QScWC00j7gfq800E7OlaB/cXFRz7+hHnR5/H296bsuoy+jfqj4eVB3XkdejfqD99GvahgVkD5FI5119dR4OGhmYNSclLwe9nPxaFLSLkcYjWRlJPqkdnp8584fMFq6JWcTfrLgDlbT054mPG6aPwpOAJHVR7ydHXIP6NNfW2+5ddll3ruGUSGV1duiIVSTngCbPuwA/H8+lezw+AG+k38LDy4MTjE5jrm/N15Nd0OSRc67faj009N9HJsRPPCp6x6tdVgBDQ19JaCOF6WvAUlUaFhb4FEpGEHYP3oX8qlPD6Is4dE/ONqjMrrq+oRbu4nXGbPlHTGD0Ufjkt4lBBFwoVhUhEQlH3ZcSXfBf1nfaavOWvJ+cl42buhpPKiN9utVYvo9QI/2aXZiNGTM/67/Q5GjQo9HUQubkxU+PF+lvric2M1eoFrA2tMdY11mZ2nB15lvDn4fgf96dPwz4kzUpiVLNRzLowi04HO6FQKgCITbtFszwJDQvFBEtTGD4cChfM4obyuXbf9fOhx1M1p7vZszFmE3eKH3GgJUyOA3mNUNA9UmVR71Noc2cqm25vpK5+Xdb3XM8AV+F4xIjfUUk0ws8DS1DIYNSdSqqy0lnXx4Qpm6KIdpaybKoLj/IfC8FpTUdwZuQZ4nOEgfXqrqu5l32P7LJsSqpKqFZVk1acxs67O+kZ2JNfHv6CXCrH3MSGocPhUWMLrgTr4vm0DP9gf/bc24NULEWlUTG++XhKq0vx3u9NWqiQxj0xbz/5lfms77meI0OEvI1KZSVo4Nuob99dF7P6nBh2QrC/TjzCjUk3qFHXsP7Weo76H+Wo/1GtlfTok6MJfx7+3uC2c73OXHrZkRhxNv2O9KOVbStuT77NiWEniMuO48TjEzgaO2qLswtPL6BQKtAR6wiBmU2GkZKfwobbG3CzcKOVbSvKqsrwE9dnxLFH/GpbQ0XIUS6MD6OTYyf6BvUlOCkYeL/Q6ODQAU8bTzbHbCYoIQi37W58FfkVjczduNPKGtWpEKS370CzZkJAKkLBNc1rGrFTY7k//T7+jf3ZEbuDBlsb0O3nbhxNPCqYQBzuiwYN6SXppJWkodKoUGvUdHPpRsjwEEqWlXB9wnWGNx1OTnkOHQ905HHuYyLGR6Aj0cFzjycKpYLAwYEs7bSUiacn8qzwGQNcB9DNpZvWMONx7mMySjIYdXIU3et3Z5XfKg4POUzQkCBuZ9ympKqEzk6dmXx2MmNPja1lad7dpTsyseyfdjVAyGkJDQgloySDkSdGolQrsTSwZP+A/eRV5HHv9T3gr1OnADo5dkIiknzUaXzE/zl8LDT+BviPZGmkpws0KAcHGD9eGFiHhsKTJ7BgAZiaahfVaDQ8fPOQ5eHLqb+lPu32t+PYo2MMbzqcW5Nv8Xzuc37o9gPNrZu/Z8doqGNIz3rdOHl5E7i7C5kbZ84I+2rw50K//xrMzYUirKLiX1rt4P2DfBv1Lau7rmZ40+GAkBy7IGwBfRv05UXRC3688WOtdfRkeuzpv4eoV1HsixOSZUlIQD1oINedIOmHT7Exfj/hdXDDfgA4qI248Owi31wXUqxFIhGftP6EmCkxZJdlo0GDrkSXRe0WsfXOVly2uLA6erXWw/0tYjNjGXBlEturopnqPZun3xaDWIzPeCiQvu/EIlKr8ExNRr+ogo6T4HhAczIUOdr3hzQewuXUy1rh91vMbj2bZwXPtN2DRuaNeFrwlPYO7alR1bDx9kaKq4pZ020NR4ce5VTyKXof7s3s1rNpYd2CsafGUllTybLwZaxqWcr3g4QvWg3wdQQ0F0xsMJWbYiI3Ibu0dqEBgn2sUqPE2tCaLcMOwIEDFH0yCTsjO5ZeXcrDNw+59uKadtAZPCyYfg37odKoaGDagKVXl/Jr2q/kVuRqMyKUaiUJOe+yHy6OvkjWgix8nX3xP+7PuPNTGD/GAHy78Pm6GFwTstgeux2NRsO2O9vwOeiDk4kTD5uYcWJcK8Ztuc6c/AZ42XoJs/AaCEoMAgSajIupC82tmuNp48nd7LuU1pTTuMZEu3/HOo7a/78uf40aNV57vFhweQGXnl2iWlUtbLdNG1qm19DCugWTz07GVM8UtUZNVmkWAe4BdKnXhX5B/VCqlZwZeYarz68yLHgY+jJ9dvXbReSESPIr8nmS/wQpEn5dMYGKuBgc9axpZ+pBlrGIjfe3vcta0TNn5l2oMTZk0Za7FC4p5OGMh5zoXBeTCg1TkvW1qdoAb2RVLL2yhHqb69FkexPOppxFhAi5VE55TTmmal2Mq94+lEJQ3Pc+MMofVgcXEWVVRc8h5SSXvEChUmAmN+PQoEPaZGeAfXH7KK8p1772ttv0hc8X7O+/nypVFSq1ijflb+jg6kermDQk3h04G6jC5F4Sa26swcbQhkbmjdjaeyt6Uj2GNRmG6d1EkupCtp6SsafGotFoGO4+nHp16gEC9etg/EF2xu7UHouvsy9be29l652tRLyM4Obkm1gaWNLlUBdsjGy4N00YdJZWldLtl260P9CeC08v1Co4Ojl24vJ5U+5m3aXP4T6UVZeRX5FPbkUuUrG0VuL82+7e28mh4KRgfJ18eTDjAdcnXOf6+Ou412lIn1NDaVFtjkgs5mzuDW0mRO+GvfnymtBttTOqra0QiUR0d+nO5dTLjD45muZWzUn8JJGfB/9MVmkWF5voCLq81q2FDvqMGVD+7vOihXULtvXZRtbCLDb32syr4lcEhARguc6SxFwhN0YsEgroUyNOUbysmCtjrzCk8RDtRMWD1w/w3u+NQqng5uSbxL+Op/fh3ohFYiLGRzCq2SjmX5rP4QShKPzGV/gcdTZxRleiS2JOIiNOCNkcgYMDtR2xgGYBJMxMwM3CjYvPLtK7QW/OpJzBa48X97MF+qmRrhE+Tj5/WmiAoCULHhZMWGoYi8IWAdDPtR9TWk7RLvOP1CkRIkHr+AEY6RrR2q71R53GR/yfw8dC428Ac33z/7+Ohkbzjgbl7Axbt8KoUcLg/9IlQZQteTdr/TT/Kd9Gfov7Tnea72rOrru76ObSjWvjrpHxaQabem2inX27D3q9a/d38iRD9t/kljiTrKWzBJrUgAF/L5rUh2DxW07Bv6DTCH8ezrTQaUz1nMpnHYS8iSJFEf7H/XGzcCN4eDBLOyxl5fWVxGXH1VrXz9mPiS0m8tmVzwRxdq9eZNaVM2GMAYs6L/vg/nyfCrPVFqYOmOuZszJyJcGPgrXvx2XHUVFTgZWBFVWqKh7lPSJ2Sixjmo1hRcQKGmxpwO67u8mvyGfuxbm03dcWDRpuT7nNlt5bMNIx4tcGMqKd4ZXkAKDRWuuK1SrEGg3jf91P/UI4eBoCtkexeIojAza2Ye+9vfjV80OhVHDp2SXtMWWWZLL+1npAsJhNnp1M0qwkVvisICYzhszSTJrUbUI7u3bMuzSPr69/zbKOy4jLjsPvZz9+7P4jLwpfMPbUWLbe2YpEIiXSuAALhZh+GXqsiIIGBQItxEDHABtDm/c6GmGpYRyMPwhAiaKEuZb3aLDKkkYNL/G6JJO8ijwC3AUKReDgQJRqJSVVJdpu07PCZyhUClrZCCF22WXZ2q5RE4sm/DrhV22goEwi48SwE4IY+9lFVnT/Dt0z5xF37MSFIDHXDn3NsOBhzLk4h1mtZ3F9/HXq6NZhVL27RLa1ZtPBbKK99zK/3fxaeQvZpdlEvoqkd4Pe7O2/FwC7IjWPZe8yT9KK3w0m38LDyoPgpGAhjC/xCIk5iYSZF6N5+JB93beRlJukFaUWKgppZ9+OUyNO0bNBTwYdG0SVqorTI08TlhrG8ODhVKuq8XHyId7vOHK1GKVGxeZGhWT4tCDLvg6RpQ/fO4b93bYy9YGE852sQE8PiViCq7krmZZyLjSEH1McKfysgMtjLtPWtg35elC3RDj3x3mPUaNGg4YKZQUyjZioQBmDHiN0c0RQLQXTCth3FhKsof8oocvx1nq2QFFAg60N6BvUV3tMzwqfoS/Vp6FZQ+qb1qehqaAVC0kKYdZFwXWspbVAu9rXfx/o6cHZs0hateZcoAqPV1WkFafh39hfoMC49uNpwVPGFDmhaNcKlUbFtRfXGHp8KPvj9vOy+CVt7doCwrM668IsghKCtMczo9UMZrWexawLs0jJSyFyQiRetl70+KUHYalhGOsa80nrT7gw6oLgAhXUl1Z7W3Hq8SnhOW3cmA5xeYQOOEZsZiy2622Zfn46YsSo1CpEiJCKpIgQaV3GEnMT8bDywFzPnLzKPNwt3QEwyMrl3JZcDFUSRg8X096hPSGPQwAhEPL40OPaZd++DpDwJoE+h/uw5sYapGIpg9wGcXrkaW2XpKV1S3bf2w1WVkIm065d8Msv0LIl3BFsd5PzklkTvYb2+9sz79I8nhW8b/vbxq4NI91H0qN+D21x8RbXXlyj08FOWBtac2vyLfbH7WfG+RkY6hiSODMRHycfVl5fydY7W2lu1ZwW1i1obi2I3t8+l4ceHOJO5h2ODz3+ns2uQx0Hro67yvoe6wl/EY6NoQ0SsYR2+9ux7c42NBoNfRv2JeJFxHsTLh9C9/rd2dp7K5tjNrPr7i4ANvXahL5U6Pr/njaYX5mPidzkvfDC3+OjTuMj/i/iY6HxN4C5njkFioK/vkJ5+TsalK+vMNjfskWgR23eXCunIr04nfU319NqTytct7ny480f8bTxJDQglNeLXrOn/x58nX3/6YcbIHRGevUCf3/6G7VCKpJyqm994Qv6/wLMf2tH/0X61KOcRww5PoSuzl3Z3mc7IpEIjUbDhNMTyK/MJ2R4CHoyPVZ2WUkzy2aMOTnmPbeSdT3WYVkto7pnV5RSMR38i5jp+9kfcnBdAs9jqBSTWPqUsDFhiEViAkICiHgRQX5FPouvLGZ0s9Fo0DC8yXCi06LpHtidIY2HkDw7Gd96vsw4PwOrdVbsubeHdT3WETs1ljZ2bSirLmPsqbFsbilMFVeIksitswp52R0syvLwynqAQeECuo1IYMRQiHCGzq/g6Ak4uyCWDr2mETPIizHJOhy49IPWicxjlweP8x4zq/Usnhc+J6Mkg8Vhi/k26lva2LVhle8qihRFRKVFMcRtCNaG1trE6uyybMadGsd0r+naAU15TTnd63cnZUQ0R0+KKZZD/UJhJlUulWNj9K7Q0Gg0BD4MpF9QP+rIBX1DhbKCsyln6ekxhLONv+FsiC416hrGugwC4NTjU4hFYiafncyDNw8QiwS6jggRd7Pvau/FwvYLmdhiIm/K39DWvi0DGg1gz709aDQaqlRVlFaVIpfK2X9/P+ViFZw5Q4WXB8cPlpEbdppjQ4+xsddGTief5mXRS6wMrWl3KRGRoyOyoSP4ynOBduYZICEngZzyHOoa1OVetjDDHXK5Dr5OXbTZF7+nWbydqTeRm5A2P42kT5LwtPFEIpbwbeVFxDVKlm3oIxTEvytWvWy80JXqEjwsmP6u/fE/7k95dTmnRpzi4rOLjAgaQvWnc5G18KRKpMbXwJ1KKdwoiOdx3mMMZAboS/Uxk5tpizG94FMYVapZ2vCVlsb3ZcSXZJdmc6CDHnqJyZjEJdGjfg+iJ99gaLYJ4t/GSXrSd58fEhXUiNQ0G1fGzy2hV5EF6y6DU6FQbHScDD1GQ4UO2BnWnmnPKMmo5UymK9alQllBakEq45uPx1hujIuJCw9zHqJQKvC29+ZJwROmtJzyzljAwABCQ3llb0RYoIgWWRrOPz1PsaKYAPcA0lPjET9+jOeI+byc95ImFk04mXyS6aHT6eDQgagJUZjITRCJROhKdBl9cjQrI1ZqbZA39tyIj5MP/sf9ya/I58KoCwxyG8TQ40ORS+W8KX9D74a9uTHpBtfGXaOObh2GHB+Cx04PNurGsag7+J8ZhUKloKxG0Oo41XHiW99vBRc8qa6WPiVGjLGOMQk5CUJAaGoYa6LXQFoa+Ppiqdbj0qRr5FcXk1mSSfiLcIoUQlErk8jo4NABU7kp40+PZ030GiafmUyL3S14kv+E4GHBLOu4jCupV7TriEQipntN58LTC6QXpwsTT9Ono467R5m+FJV3Ozb2NsV9S2OWhS/jwZsH6Ep0aWbZTDvYbmjWkGNDj2GkY8TEMxOxWW/DJ+c/0XYTjiQcoVdgL8GmelwEsy7M4sebP2JrZMuLeS9oaN6QDbc28G3Ut3zR6QsScxOZ2GJirefESNeIB28esLb7Wq3F8z9CLBKzwHsBsVNjkUvlpBak0tq2NXMuztFqzKpUVX85QG9m65nMaTOH2Rdmc/X5VQx0DBjffDwACy8v1C5XUFnwh0Lwt/Bz9iO3Ilcr5P+Ij/i/AJHmY2n8X8eIEyPIr8jn6rir/3zBZ89gxw44cABKS4VOwuzZ4OdXq6OQW55LcFIwRxKPEJ0Wja5El76ufQlwD6BPwz5/mMb6FgmvSgm8nsXzNxW4WOgw5tlFmq1bLmRubN4M/fvTM7AnSrWS8HHh/3Rbfxu8eAEuLnDlCnTr9k8XfV32mrb72lJHtw7Rk6K1Itofb/zIkqtLODvyLP0b9dcun5SbhOduT2a0msGmXpvebUihIKdDS8SPk1m0sh0XJc9JnZtaq12uRXo6ODnR9TtXrlWnED4uXEvR0pPq0bN+T669vMbVsVdps68N5wLO0dK6JeNOjyPiRQQzW83kZfFLLjy9gKWBJTnlOXjaePJD1x+wMrBiWPAwcvMN8CqZQIVBfWyNlHQ+t5I50Q9h9GjYupXb5Sm0399eCIYTCVaqtqUiOr3U0OUl+L0E19/qtEd14Xo9SPWwZ96SU5g5NsJmvQ1yqZyy6jK+8/uO+e3mIxFLqKypZNudbfwQ/QMKpYIhjYeQUZJB5KtI5FK5VgsAsKbrGhZ3WCx01YKDKRs9nCB3mD4QOjp0xNbIloScBDo7deZMyhlt98HP2Y+CygLuv77PlTFX6FZfuMeKG5GYXeyCe6ked80UaNBgZWCltbiNehX1wWcgYnwE5nrmeOzyIGR4CPoyfXof7s2tSbdYd2sdka8iOTb0GAOPDsS3ni+jm41mTshkTv5cjUdmDYrzZ7hgXsDks5NxMXXBRG5C7NRYodvYujVPPJ1w90umRqOstd+35xKbEkFh1licm0fQ0Kzhe0JzVzNXnhQIQXPf+n7LFz5fMPrkaDJLMrk87CwyMwvOT+3CV83yiXv9rts2v918etbviY+TDzoSHcaeGkvwo2ACBx7COOImgwt20DdVwvYmi7FVrqZfw36C9SlCYKBEJEFfpk9pdSlixExqOZFPpu9HY2eHXz8L+pqvp7TMgJcVMfRtq0u1JIVPxm2hXld/JEePU6WsovOBTsRkx9K8sg4P9AQxuZfMiSub8ukxsIy79mBdKaVIqsSxGK4fhKPusLCXkDHzezibOPOp96csu7qM8ppydMQ6VKtrW0vrS/WpUAq0QgOZAa7mriTlJlGlquKHrj+wuP1i7URLeXU5Db+z4sLPKurl1tB/sj41zZpwZuQZPp3pTFBgJbx6BY6OghXxehutQL+tXVsmtZjEjPMzqGtQl6LKIqrV1XRy7ETgkEAc6zhSUFlAm71tkEvl3Jx8E0MdQxZcXsDmmM24W7rzcMZDbUe5RlXDmhtr2HR7E/mV+YjVYF0OWUaC5kUilmCkYyRke6iq6ObcjbU91nL52WWWhS+jd4PeXHh2QUvHKa4q5volazq91oXISHBwICYjhi4/dUGhUnBo4CHGtRgHwOBjgylVlFJcVczd7LsYyAxY3W0107ymoSPR4XXZaxw3OrK622oWeC8ABOqX7QZb5raZSyenTpxOPk3I4xCKSvNYESViWZSG+3YiAj/rhWenEQQlBhGWGoatoS1ZZVnETImhjZ1gsf6i8AX77+/nYPxBskqzsDOyI7M0kwD3APb234vvIV9is2LxsPIgZnIMcpmc/XH7mXJuCks7LMXGyIZFYYvIWpiFhb7QzX5W8Az3HUKnpvLzyj/u3P8OCqWCL659wfpb62latynpJemYyk1RaVT0bdiXXf12/ek2QNBY9T/Sn1vpt7g95Ta/vvqVaaHTALgx6QbtHdoz+cxkHuU+4vaU23+4ncqaSkzWmLC2+1rmtp37l/b9ER/x38bHjsbfAGZysz/WaKjVQt5F375Cp+LQIYH3mpoquD117QoiEUWKIn6K/4megT2xWW/D3ItzMdIx4tCgQ+QsziFkeAhDmwz9S0XGpwcecze1mLzSGu6mlvCpqD0Jy9cKYu/+wgB7iNsQIl9Gklfx/28Z+7+Kv0idKq8u1/LXz486ry0yrr+8zrLwZSzvuLxWkQHQpG4T1nRbw+aYzVx9/luxqFbD2LHUTXrJyoUtOaS4zYJ2Cz5cZIAg4NfTo2ebUQBcfHaRee3m4efsR426htMpp5nderbW7autXVvsjO04H3CeXg16sePuDq6kXmFH3x28XviayAmR6Ih16BnYk5a7W5JfYISHajtK/TboYklhsRWnfXaybeUCCAwEU1Pa2bdjZquZwuFr1BjrGFNkqsd5L0Nm9ocmcyXYLYAAf7jhAN1TYcP+DJxcW5PuaMLq0+X4xhUQ2fcEC9sv1A7e9GR6LO6wmOfznrPAewGnkk/x4M0D+jXsVytvRCqWkpyX/G4AMGwYOs4ulOsIv97JusOJxyd4nPeY0KehFFQW4GbuxutFr7k67ipfdPpCe69KqkrYdXcX7RM/pVIGD40raVokw07fCqVaycuil8RlvRuAD3AdgBgxuhJd6pnU45cHv9DMqhne9t7subeH7i7dcazjyPJrywl5HML2Ptvxc/bjiP8RQp+EMjJkJH5N++HyayKPbKXo9x/Cju0TmdJyCgHuAWSVZgk7atSIqgN7cY1MZONDGwAGug6s9SzFJIfjmanmUbfmpBWnoSfVw8XEBU9rT+1yTwqeIBVLaW/fni8jvuSr61+h0QgFoq6BMeIWLelfYs296fcIGiJQeMSICX4k0KxM15jSK7AXza2a08ukFaNOjSHvpx2E5HUl1E3MEKvrAIQ+DQUEobmJrglqjZrS6lKBHtR6FnvNJ9LyNSxvWZcWqh1k5uhTWiHGnDbExnrSzX4aW1qpEYWcJPfZQ3wP+RKf85D+qTKsM4pBA1IkvC5II8S+jBfOddDRiGn+RsP8OB0a54H7bFjQ+/0iA+Bl0UtCkkIorynHUt+SanU1KzuvZGvvrTgYOwBoiwwQOmZv8zEamDVgWfgyWu9tzc30mwCcSDpBtricbiNrqLa34VqgBFFSEgOPDmR0sSMZZlI0DsJ2UwtSKa8uR4SIiS0mUqOuYfr56biYupBTnqM1jkh4k4DHTg+OJR7DTM+McwHnSC9JZ8zJMWg0Gjb23IiHlQeJOYlMOzeNZwXP+Dz8cxw3OlTGYhMAACAASURBVPJlxJdUqYQupO8LocgAQdivUCrIq8hDLpWjI9bhTMAZWli3YIH3AppbNyejNIPYqbF423tTqChEo1YzqPNrci8EC1o+oK19W44NOwbA11Ffo9FoqFZVE5cVR3R6NAk5CXjbe1NeU06Rokib6m5taM0I9xFsvbMVlVpFsaKY0CehWBpY8kP0D/Q+3JuD8QfJq8hDpqtH0uwR3AhajZeuMxuWRJD43TzuZ8Wxq98ussqyaGndUltkADibOrPKbxUv5r2gv2t/MkszESHiTMoZrNZZEZsVS6/6vbg//T5ymZwTSSeYFjqNGV4z+L7r9xyMP0g/137aIqOyppKhx4diqmdKlapK24n5M8ilctb1WEf4uHDBzlujQUeiQ2ZJJkcTj74X2vlHkIqlHPU/ip2xHf2C+vGm/A06Eh1EiAg4EUBpVSn5lfl/2tHQk+nhbe9NxMuPgvCP+L+Dj4XG3wAf1GgUF8OmTUIwUp8+kJ0N+/dDRobgIlWvHuXV5RxLPMago4OwWmfFpDOTqFJWsb3Pdl4ves2F0RcY13ycdrD8VxB4PQuNBtS/9bnUYgkaiZRA5161aFKD3Aah1qg5m3L2P3EJ/udhaCjY+f4T6pRKrWLUyVEk5yUTGhCKQx3hyzirNIsRJ0bgW89XKyz8R8xpO4euzl2ZcHoChRUF8OmncPIkoqNHedXYFhGi9+wctdBo4OBBGDaMjq7CTPzZlLOIRWIODDiAWq1GLBLz04OfCEsNw9nEmboGdYnJiKHd/nZcTr3MiKYjsDO2Y8mVJQQlBNHCugVOJk7aXdgpxyFChOi3QZZaLEElEnFOvw1LrixhVdQqtsRsITk/GR2JDmLElFSX0L9Rf1xMXRAhQl+mT5YxHG0GMwaIWPfTVNYcmc3k4brcsFfTMxWCj2lo69mfZ3Z63BrShoSdX1OZLQSomchNWOW3imdznuFq5kro01DBRlWqh6ncFKVaycEHB1lxbQWnHp9i2rlpNBiZy4LewjlUq6ppZdMKHYkONaoaGtdtrBXWgkArANgbtxeb9TbMujALhzoOjHIfRY1UzFPDajLL31BZJcxAO5s6c8z/mJC4+zJCmxngaOxIcFIwFTUVTPOaRlhqGGnFaYxoOoKIlxEMdhvM8KbDySrNYnX0am1h1MqmFba2rmz8vBvxFiquB8nYZTMVOyM7Xpe91g5Kdthl8UMnEZ2jhOsyvdV0DHUMESPmZdFLKnVE2JSCz3NBkFutrsbVwpVVfqu091MqkqJSq7iZcZMWVi34OvJrHrx+8I7z3bq1lhc/wl2wwFWjJnJCJEmfJPFjtx/RrVLybdgXnC+MQVctYvxgONbNhs5OnbmdKcyqbu21FVO5YCRRVFWEnZGddqC+P34/t5aMptDeHHX9zxD6MW8pmBLUag0Xb1XyalAXFGINgbM68aLoBedHneemmz7RTrAoTs7dn3SwKNUwdSCUVZViVgGX66lY07qaNDMJVb+d0mj30XRzrt2N1KAh8lUkADkVOdgb22Oia0K1spqs0izEiLExtKm1zt3su1SpqnhW8AwzPTPSS9LpcKADo0JGsevuLhqZN6JQT4MmLAyZgxNRgTqoHyfh+OAVEfZK7r++j0ajYfbF2bhZuPFZh8/45eEv7Oq7i18G/0KVUigMrr+6Tq/6vSivKaeVbStGhoxk/Onx2BnbcdT/KOefnueLa18gEonwcfLBXM+cfff30XBrQ9bdWqcV27ezb8ehgYfQMX03CH07s/5pu08prylHLnvXGZRJZOwfsJ9HOY8ISw3jRr+TBN6yQaaCArka1zPdtHQkgAGNBjDYbTDPC58z+uRomu5oSlpJGk3qNuHZ3GfcnHyTVb6r+DLiS5aHL9fqAwKaBvCy6CWt9rbC4kcLRp0cRUZJBhqEwbh/Y39ODj9J/mf5HBl6hA7DF/L9lmEcaKxg7Yli0iJacPr6bkDIPPlHKJQKxpwcw/mn59nZdyfRk6JRq9Xa3Jn0knS2xGwh+FEwo0JGMaLpCLb33c6DNw+Ifx1fizY15+IcUvJT2NJrCyBog/4VvLUaf6vVsTe2p7iqGJ+DPtrwvT9DHXkdQgNCKa4qZl/cPuro1kEmkfG6/DXzLs2joLLgD2m1v4dvPV+uv7z+l4ucj/iI/zY+Uqf+Bth4ayNfRHxB+fJyoWuwbZsgoquqEoTec+aAtzeIRFQpq7icepmjiUc5m3KW8ppyQTzXdCTDmw7/ywmsf4RhP94nr/T9QCUzQwkhS7xqveZz0AdjXWNCR4X+W/v8X4ONDcycCStWfPDteRfnsS12G+cCzmnTlmtUNfge8hVmwKfHaQe1H0J6cTrNdjZje5Izo3+Jh127iBvQGq89XoxyH0VQYhBRE6Lo5NSp9opRUdC5M0RGomjfBsPvDVFpVLxe+Jpjj44x79I8QAhpK1IU4efsh7OJMzvv7qSlTUv29NuDl60XJVUlzLowi8CHgRjpGKFUK1Gqlag1atopzyHTvD9bphYXkmUxm5KqEkoUJShUiveW+TPIxDI6OHbAUGZIyv2rtElV0OUl+L4U9BUAT+zkZHq5UuHbka91bxGbc18ofH6j5NgY2iAWickozdBu18HYgSHqRhidv8qqzmBcI0GhKxEG3uau/DrxVywNLClWFBOUEMSeuD3Ev45HhIivOn9Fc+vmBCYEEpIkpJ3riGVUq2tonyUhwVHOwg6LWdllJZZrLcmtyOXMiDNEp0ez7c42KpWVHPE/woBGA7Bdb8us1rOIex3HpWeXWNd9HV62Xow4MQKZWMbxYccJfRLKD9E/4N/Yn5DHIdhpjAgPktEoT0PUgZV0fjCfrAVZmMhNcNniQk+nbhj8dJh9LTXEDb2C++nu2BnZYaxjzOP8x8jUIkwMLcityMVUbspI95GMbjaajgc7AtDOrh23M29jqW+JWCwmpzwHtUaNlYEVJ4adoE7wGZotXsex6N1kictZECbQWxzrODLUtjvdgm7TPTSJbDMdvgiw5JJdFbmVue/yO/4CrEshbSMs7g53Wp9Dl/f/NqrI4baoP9suwpBkmDm/EVdlryjTKBjyCBoWwOUGEP+2FtCAc5EIi3INyXXBoAoKTXUZ5DaII/5HWH9rPYuvLEZPqifYyf4DbA1ttc5sIHQtlColWaVZVKur+d7ve76O/Bo3CzdyynPeMxYAgV7lYeXBjUk3EOXng68vNW+yEeXlM7u/GN0Zs2lt15qxp8YSPi6cjo4dabevHQqlQusg9U3kN6y+IeRj2BrZIhaJWdZxGUuuLsHSwJLAwYHcyrjFwrCFDHYbTPjzcEqqS9CX6VNRU4EYMdNbTadPwz6cSznHTw9+olpZjUeRDgc+u4mBjgE/RP/A4YeHUWlU6Eh0cDN349r4a9pZ8SVXlrA5ZjMPzjvS6FUZby6F0PKKv/acx3iM4Vvfb6lnUo9jiccYGTISgOZWzXn45iF7++9lsudk7XXZeGsjC8IW4G3vjVKtJDYrFhDyS1QaFfoyfQY2GsidzDvUN6vP5TGXtetmlGQwKmQUN9Jv8E2Xb1ha0BT1lEkUVhayZmJD1m97UuseFFYWMujYIO5k3uGo/1EsDSzxPeRLlaqK1V1X42njyd64vZxKPoVSrcTW0JaDAw/SrX43FlxewJHEI2R8moFMIuOn+J+YeGYiBwYcYKT7SAy+N3jv3P4VHEk4wozQGZRUlyCXyjGVm3J4yGF8nX3/0vo30m7g85MPBjID+jbsS+SrSG0Ku39j/9r02w/g11e/4vOTD/em3cPTxvOfLvsRH/F3wMdC42+AX+4d5OTaSZx40xnJ9Uiwtobp04UfGxuUaqXgw55whJPJJylSFNHMshkj3UcyoukI6pvV/48dy5JDKdxNLdZ2NAA0qKiUJbB3ejs8rN7lcGy6vYklV5eQuzj3X+qa/Nfg7i5QzTZvfu+tLTFbmHdpHjv67GBm65na1xdcXsDWO1uJmhD1h+LB3+PG6ll0WLaDR9MG03T3SXof7s2Lwhc8mPGALoe6UKQoEtr9v3dTmTABoqOFXBKRiFZ7WnEv+x5be21l+bXljG42mpLqEs6lnBO48SIxelI9vvP7jlltZmmFwW9tVReELUClVqFBg1QspUndJjRUrCYv36RWdoYGFWWS+0zuK2KK5xRiMmPodLATF0ZdEJLQjw/GSMeI0upSjHSM6O/an/NPz1NeU67NdXhbLKhRY65njkgkIq8iTzv4cCgSROW+L0CvBmb2h2JdsC2BNpnwwF5CurEG5W8OTG8Lj7f/esjs6RaZwSZvsCyFPCMRSpGGXX124WDiwLFHxziRdIIqZRX9XPuRUZLBvex7eNl4cS/7HqZyUypqKqhSVdHEogkZxeksTjDinjSHwlbunJwWjv0GeyqVlZwZeYaOjh1x2eyCvkyfFtYtuDD6ArMvzOZwwmGKFEV4WnvypvwN2WXZdKnXhSP+R7A0sESlVtF0R1NS8lP4pNUntLVvy5yj48m82AT5q0y8RhazZuFFbqXf4rtfv2N5p+WsjvgW72wpQ7NNmNc6n2me09gdJ8zwtlZZEyt5jUwso0Zdg45YBzM9M16Xvx/q9iG45cLj7dB1HES4iGoVEJsviZkaB8f7OXNhUBMqpXAv+x5ZpVmY6JpQVFX0lyy3v4+WMy+qCttPNTjKNmFGm/eerwLukCCdT5M38GgnjBoCRzxApBGoUOYVwnORaQSHzkmwLVJhVwI1YvCcCRKZLraGtsTPjKdYUUzj7Y3xb+zPzw9/ZmP3jXx65dMPHlu9OvXIKs1iQKMBhDwOqXX+EpGEFZ1X4Ofsh7meOVGvojiVfIrw5+HanBIQCo4+Dfsw3qoXvUevQJyRSe/xUsLrizDTM6NzPSE8DgTzCK89XnzS+hM29NwAwI/RP7IkfIn2uW5m1YzjQ48z/vR4YjNjaWjekCf5T9Cg0d5nLxsvetbvKVCSNCoqaiqw0LegWFFMT6kbZ758hLiiEnQEPuH2O9uZfXG20OHSqLA0sCR6UjQNzBpQmZNJs7Uu2JZouD4/HnHjJpRVl+Gx04MXRS8wkBlQrarGoY4DzwufoyfVw1jXmEJFIdWqai6NvkT3+t2JyYjhdPJpTqec5km+UBC8PV5diS5Vqio29NjAjFYz0JPpsS9uH9POTeP5vOfUM6nHuZRzTDgzAX2ZPkf8j9DRUSiWu651Z/6+R/R/AkydChs2gKEh6cXp9D7cm+yybIFmVpzOqJMCpfSo/1GGNR0GQPzreHwO+lBXvy5SsZQnBU9wMXXhddlrxnmMY2e/nTx885B2+9oR4B7A/oH7Aai/pT6D3Qazrse6f/p8/zOkFafhtduLvMo8HIwdyCjJ4EufL1nRecWfG6sA3X/uztUXV5nacip77++ls1Nnol5FsbD9QtZ2X/tP161SVmG6xpRvfL9hUftF/9/n8BEf8b+Fj4XGfxN5ebBvHxVbN6CflUtV21bozlsA/v6oZVJupd/iaOJRjicdJ6c8h/qm9QlwD2Ck+0iaWjb9HzmktxqNt/Qp8W+86BKLH0kqu8hPA3/SftCnFafhtMmJoCFBBDQL+B85nv8ounQBOzs4fLjWy2eSzzD42GAWei9kbY93H/LBj4IZfmI4W3ptYU7bOX++/fBwNL17E9nBjsE9C9k3YD9Dg4dyfOhxhjUdxqOcR7Tc3ZKlHZe+o2CVlAidluXLhRwUYHHYYjbHbMbO2I7y6nJSZqfwqugVbfe3pVpVjUwsw93SnaiJUVrNR2FlIZPPTuZU8ilaWLfQzuxr0PBFpy84evcWtqXf/FYWSNAgFCIJklkUiuJpYNaARuaNuP/6PumfplNQWYDTJicqaipwNHYkrSSNXX13UVJVwtKrS1GjxtHYkZY2LTmTcgbHOo4UK4opry7HQMcAHycfgocFk1acxtHEo2yP3c6bciEQQ68GFBLQiKFxLvR6Bo0LxLywMySwSQ3pOsJMtRgxpioPbDUTMKQ+ZaRSVHOAdL3aFqsiRAL1SCSmtKoUNWptoSMVSWlu3ZwqZRU5FTnCoEQNI6IK+KpRNkuUbVlvmECFsoKuzl0JHBzIulvr2Hh7IyAMbJJyk/gq8itcTFxQaVS8Kn6Fh6UHnZw6UVlTSWl1KTGZMaQVp6Er0RXCufQtyanIwahCxZWfwakYfMfDI6vaj4xtCfi9gEgnKLQ0xDyvgldGapoYOJNU8UJ7D+USubbbZCA1AJHgjlNeU46uRJdNvTZxKP4QSblJFFUVoYOU4h/F1CxeyK7upiy5ugRdlZBQfspDRtLom5i4NOG7qO9Ye3MtjnUc2dZnG57Wnsw8P5OTySe1+/5HGOoY4mXhwZFFtznbQM3sPqAv9qCFeud7z1e8ZAalokREiAg7pEauhK7jYd4tcCiBCil82xl2XZIwMl5Feh0hN6PzBHhm8W6fZho9VGKoEqnwtGxBzJt7BLgHEJgQ+N7x/f64G1s05nHeY+yN7VnecTmzLsz6rbsliMalYiktrFvQxrYNRx8dxVzPnOeFz9GR6NTqmGy8CHPuQJ65nDZjFKSbiEj8JJEmdZtol9lwawMLwxZybdw17ey2z0Effk37FXtjezJKMjDSMUJfpq/9W3iLt8fzRacvCEwI5GXRS3QlusilcnQlujjUcSCq4ffo+/UUciqaCp//E89MJDYzloujL7L06lKCEoMQi8TMbT6dz9fcJKHiBX6DS9jZdyczWs0ABL2C40ZH8irztNdLV6qLt703sVmxNDBrQPzreLq7dOfhm4e8KX+DvkwfuUROgaIAXYku1apqOjh24PTw0zTf3ZxeDXqxb4CQGVRWXYbtels+af0JVcoqNsVsYkCjARwYcEDbbXlL++xg355o1XiBampry7PNK+mSvBSpWMrlMZc5lXyKZeHL0JXoEjE+QjvZ8yT/CR0PdMTJxInwceEY6RgRnRbNiogVXH91HYlIQu8GvYnLjsNc35yYKTHoyQTqb7+gfmjQcH7Un2dh/DPsvrebmaEzkYgkmOmbkVeRRyfHThwecvhPmQWTzkwiLDWMzNJM6urXpbtLd4ISg3CzcOPRJ49q2d5+CD1+6YFULOXC6Av/1jl8xEf8b+BjofHfwL17Aj3qiJAomzOwG71MznPw63jUGjVHEo9w7NEx0orTsDOyY0TTEQQ0C8DLxusvOWX8u6jlOmWlz1hfW1xsJEw+O5mjiUf5vNPnfOP7DWKRmNZ7W+NUx4kTw0/8jx/Xvw1/f8Ea+NK7HIi7WXfp/FNnejfozfFhx7Uf8Ml5ybTe25p+rv0IGhL059f9wQPo1Anat6fg+CGa7fOkoqaCenXqcW/6Pe12V0SsYHX0auKmxwle9fv2wbRpgu2kvZDCe+rxKYYcHwLAvv77yKvI4+vIr5GIJJTVlDGv7TwO3D9AG7s2hI4K5cHrB4wMGUmRoohG5o2IzRJsGd3M3fBx8mFTjNCKN9Z44Cb6BInSjjJSydc5gszoNRklGUhEAiXJysCKRd6LWH97PUWKIq34satzV06nnAaETICHbx5yK/0WruauLPReyLbYbTx88xAvGy+ScpOoVFYyvMlwWli3YP2t9drZcYlIgkgkhOEZ6xozyrA93qlV2N57gmtCFg5FGsLqw4JekGHhQUvlTvhNW/Ju8DqTEtFDWlq3xNvem+i0aJLyklCpVcjEMq3rkKncVPt7RXVFLTciWQ3UyODiL7DPE0L+xbpdV6KLub45elI98ivztV3G+qb/j73zjorq3N7/Zwoz9N5FpNkRwd4Ve+8au1gwloiJMcaoMTFqookau7H3hi12o2ILICo2wIKAgCJI7zADM3N+f5wwSogmt+Teu35fn7VmueSUeU+Zc/be736ex5MrSVeQSqR08ehC8KNg5tSZxNCPN+NWbEDbMRq+mnKImRdmklKQQsjoEMbvH0r/sGxWDdxM/3ufc8m2AGc7D+Jy4vTu6YZyQ8q15WKLityYAXUHEPwwmHJdOZ5WnijlSn0i1MGtA59f+pyQXRKKjWTM72NMvKwAtRwyO/9CvVtjcbVwJb0ondTCVDp7dMZcaU5kaiQJuSKPSC6R66v73rbexGSJZmq9vHoRlxuHz/WnHD4MPpMhxl6cnTDHhxra8fqkMFm2jQJJtD7w7/8Yjh+CFHMok4rJRKYJfH0V5oTBSysZBmotc2c2pH211oxJ3wCCaKfR+bkBF2uU4/MK4q2hVC4mqm+i4nukSPUeJW8qTtka21JcVkxT56bcTr3Nmh5rKNOWEZESQUhiiJ6wr5Qp6erZFQOpARefXaSkvISrOwQK5Dpq/zbJ0z4AiuwtWNZ5GUPqD8HayBqdoKPT7k4k5CQQPSUaC0MLMoszqf5jddRadZXErcJksrS8FI1OQ7muHBkyhvsMZ3qz6dga2eK90RuVRsXRoUcZYNsG7O3hyBGxGCXocFrhREDDAJZ1WQbA9eTr9Nzbg5LyEozKYWq9MaQaajj19BSPpj3C0tCSFeErWBq6VJ+4BvoFIpfK2Xx3M1pBqz9/EiRYGVqRo8rBxMCEPrX7MKTeEFHNKu4sw4+KKoaNnRrzbei3vPjkhZ58PfLYSIIfBiNBwvKuy5nebHqlZ2iDjQ2IyYghdlostWxrQVwcBUP7YRz1mG09HOiz6yYLwhax7d42LA0tiQyM1M/cP89/TpvtbTBVmHJ93HX9dwL0O9iP5LxkJjaayPzL88lX5+Nk6sSkxpMY7zceVwtXPrvwGUcfH+XZjNfO9v8MXha8xOVHF5Z2Wsre6L08yXqCiYEJBjIDdvXfpW+//SMMPTyUnNIcLA0tORl7ErlUrk9s/0pha2noUpb8uoSc2TkYyAz+peN4j/f4u/E+0fhPoaxMfEGsWwc3boCrK0ydChMmcD4vkh77elDdvDovCsSH9ZB6QxjmPYw2rm3+tLrxn4IgCPwQ/gNzLs2hV61e7B2wl42RG1l0fRGZn2X+qaLVfx2TJsG9e3Bb7C1Ozkum+dbmuFu5c3nMZX3Fq6isSDS7EwRuBd56u1JUBZKTRQ6Ns7NooGhqypLrS5h/ZT6Tm0xmY6/XLsFqjRrfTb5YKC0IGx+GrE1bsLAQlcUqdpeXjNtqN0DUlk/ITeDj5h+TVpRGSGII+ap8NvfZLJKlrb2IzY7Fx8EHrU5LbHYsMomMenb1uDD6ApaGljTd3FTvEWEqN6VIUwQCnC3pT2/Tk0xuPJnEvETOxZ/TBxl2xnZMaTKFb65/g42RDbmqXAzlhpSWlxI8JBhzpTnd9najlnUtkvKTWNJxCYZyQ+Zfnk9JeUklJ2gAC6UFCzsspEBdwIKrCxjnO47M4kzCXoSRq8rFXGmOp6UHFho5qoxU8gozMDZejpn0j9txEnQfU6J4+yWRIKGGZQ1MDEwwUZigkCoIfRFKbZvaxGbH0serD6fjTzMwVkrwIR3N59gQqciiT60+2JvYE5MRw82XN/UzCRVBYnWz6uSqc/WSpu+CBAkyiQypVIpVsY5fdmhwKpHyzVf+rC8KQSFTMK3JNH68+SOrn9dn2p5YXII0+Nr7cEEVg1QiZYn/Er4I+YJOHp24+Oyift+mClP61+7P3ui9zGo5i5/u/ISZwkz0yBlxmh3X1+A+egYNM8D6c5BKJOgQWN1tNd+Ffser4lf6YzKQGtDIqREtXFrQwqUFLV1aMjB4oN6E8k3J2Iptru0Qnds/GATpb+ma/H1gbac14t6qUszUMH5RE4qdbTE7e4lDBzRkGYNUgK7j5FRr3YOQpBD83fyZ2WIm3faJUto+Nt782vwnbM91oLHgRIQgkunbpyno8qiMFHM4XB+yjfUD0EOKePwVY1LIFOgEHfPbzmd0w9HMuTSH2y9vk5SfxJC6Q8hR5XDr5S0KywpRaCD/O1jQXcF5b0NObiqgTAodAiDtt2N3tXClp1dPunp2JeBEAN29utPYqTGb72zWJ28VMJAaYKG0IKc0B0czx9eKZIg+J7cDxefTsKPDOBV7inp29XiY+ZADA/fTv81Esfo/fz63X96m2dZmXAu4Rrsa7cQdFBYSO7A97f3uo7E0Ry3RotFpkEqkuJqL8rr56nyCmgfhYeXBlDNTKl2r318zS6Ula3uuZWDdgVWe72fjzjLw0EBaVW/FjZQbfNnuS+a2ncv+6P1MPDmRUk0pP3T5oUp7T2hyKG13tqV9jfZcDbgKwKGYQ4w7OpqfHlRn9MlkYl1N6NurgDLPGtyZdEc/E5JRnEHbHW0p05YROi600sxBelE61VZWY3X31WgFLTPOz2BZ52XE58RzIOYAxWXFdPPqhoelBxsiN1Ayt0T/zP9n4bfJj/p29dnadyvzQuaxMmKlvu1wVstZLOm0BIWs6oOq1/5eKGQK9g3cR4utLYjOiAagX+1+/JLwC3cm3ak0W/Z7VMwIhY8P/0stve/xHv9NvE80/m6kpormeps2QXq6yBH46COS2/pw8PFhDj48yP1X9wHoUKMDc9rMoaN7x//pKsW5uHMMPzocJzMnVnVbRfd93Tk29BgD6g74bw/t3fjiCzh0CJ49I0+VR+vtrSktLyViYoSe5C0IAiOPjeRk7EluB96mrl3dd+8zJwfatAGVSkwgHRzQCToab25MRlEGOaoc7k66W2k/oc9DabujLXvqzGPUsCUQHAxDhuiXzw+Zz5LQJYBIiD4x7AR+Tn7UWVeHDm4d+PX5r8gkMpRyJZGpkXhZeVGmLaNEU4Jao6auXV1+GfULloaWJOUl4b7a/Q+HHh5sRtiGL/js6lzaVm9LeEo4AgI6QVepog1iINLFowslmhLCX4QT0DCAfdH78Lb3JqM4gxcFL97aavMuyKVyjA2M0ejEyu6b27fUvJ1gfENeWWK4Isju6N6RLXe2kFKYQvz0eFEx67dKasttLXEydeLU01P08OrB6aenaejgw72oVpwM2Ui/ERDQMIAd/XdQpi3DeYWzfiZmjM8Yjj0+xictP2Gc7zg81njg6zDBlgAAIABJREFUbe9NXHYcm3pvolm1ZhSoCygsK6RAXcD9V/dZGroUF3MXEvMSMZQbYpqv4tZ+E0wK1bhO1yA3NkEmlVGgLsBAAycOQM/RYKaCwsqGyPpWsIprIZfIKRfK9eews3tnziecx8HEgaXKXpgdOIZHUj5+aQLOM+GV+etrU1GpVmvVHB16lPZu7StxhlILUnH50QWpRIqnlafer6MCfply7q7X6PkWv4epgSmlmtJKBnpSHRiWi+1HX1+Fap+Kju+/7paRL9ei1MCy8bVg8GBW31xNcbkoG9uyeksK1YX6QKyze2cuJb72GxruPZz9g/ZDSQk8ewbx8fhGTSVKl1blTjTQQtdnEOuk4LlJOWXSymsYSA3QCToG1xuMh5UH1c2ri+Z7N24zLmg7LaYYcNOhHPccuLYT1IYGtB+rI8tcVkmm+c2g3crIipzSHD2XoaVLS2IyYijXlaPSqJBJZMilcnp49dDPGI73G0918+osvLaQI0OO0LtWb0YfH83Rx0fZ+NCdSfLmsG8fX135ijW31pD5WabI0youFhUK798n7sR2/O/OwEhuhLe9NydiTyAgYGtsS7/a/XiQ/oDI1Mgqv1m5RI4O8fdfpitDJpHh6+hL+ITwPwyYLydepu+BvpgpzZAgoZtnN3Y+2MnIBiOJzY7F2si6EikcoO76usRmxRIfJP4+K0jmo3xG8WO3H/noq6Z8sz0J10IJ0h9XoZg6XS/h7r/Ln1dFrwgdF1qFm7jyxkq+CPmCk8NO0vtAb6Y3m67nyxSVFXEo5hBb7m7h5subAAT4BjC3zVxq2tSsehP/Rcy/PJ+fIn8ifVY6MqmMy4mXGXN8DNkl2SLnxrkxBwcdfG0K+Rs67OyAi7kLewfuJbUwFbdVbpTrygkZE8JHZz9CKVdyc+LNPzznIPpyWC+zZk6bOcxtO/efHv97vMd/Au8Tjb8DggDh4bB2LRw9CkoljB3LqwlDCS5/wMGYg9xIuYGR3Ig+tfswtN5QBh8ezKbem5jUeNJ/e/R/CU+zn9L/YH+RQGpoSdsabdkzYM9/e1jvxooVsHAhZblZ9NjXg3tp9wifEE4d2zr6VdbdWsf0c9M5OOigXhb0rSgthS5dRBO28HCoKb6wgh8G88GRD7g4+iLTz03H2MCYGxNuVHppTDk9hVo/bCMo2gRZ2itQKhEEgbW31jLj/AykEikKmYLW1Vtzacwlcktzsf7emt39d6PRaRh/crz+/gl+GIyF0gKdoKOubV2ChwQDUKAu4Ltfv+PAQ7FFz0huhICgl8Gskwn1azThgiZWTzK3M7ajqKxILyH5LrwZpFS09kiQYGRgRGFZoX69urZ18bLy4mz8WbSClr41+9LZszMvCl5w48UNItMiUWlUGBsY42ruSlpRGvnqfBpoqhKMJTotTZ7dom3kx8zsDvE2gAS9RG5JeQl56tca+RZKCzytPfG08iS1MJW7aXdxMnUiMS+Rzu6duZJ8hdzZOUgWLsTCYAUWEkOyFhSTlJ9M/Q31KdWU0tipMZGTIpl6ZionYk8QMyUGzzWe5KvzuTj6ol5W9/eo4P54WHmQkJuAg4kDr0Y/IKqVF76ji9jecilh6nhupNzg/uT7nBhYj8F+cdwP86Fbx5eo0aLSqnC3dCc5P1kcd24iEokEnaDD3sRe3+tfIfkrCIK+kl8tH1J+hH7D4GSdymOTSWToBB1Whlb4OflhpjTDXGmOmcKM4IfBZJZkYm1oTY4qp8pxbTwF/WKh9gwphQY6zORmqHVq/axH2PgwQp6FsODqb+puAvox2RRDykpY3hLGRIG5GuQ6eGQLXg07sGxmM1ZGrOT40OOkF6dzIOZAFbPCChjKDCmdX1l5qrS8FJvvbQj0C2Tt7bV6QYQK8QJfqTNHMv3xjM0kMe0R7TunkGoGWok4RoUWnDVGqA2kZEhL0aJjzq/wxa9gPQeUCmO0ghaXDDXXd0KukYQOYwWyTKj0PW/CXGlOE6cmhD4PpUxXRoWj+iifUazqvorF1xez7tY6NDqNOGv4WwvNwg4LWdBePIdanZaPz3/Mutvr+PqJIwv2p9J0S1Nq2tTkwKADYqLVp48oaXzhArRsyZFHRxh5bCRl2jIcTR3JKsnSj89SaYmRgRFpRWlIJVIMpAZIJVKqmVcjPiceP0c/VnRdwZQzU4jNjsXZzJkzw8/g6+Rb5fjCX4TTeXdnSjWlKGQKNvXexNiGY9l5fyfjT44nISgBDysPQExMOu3uRBePLpwfdZ7PLnzGyoiVzGk9h6lNptJ0a1PSi9MZ4tqTgxEuSDdvhl69KNm4hq4Xx/Ao8xHXAq7RwKFBpTEIgoDPTz54WHpw99VdXC1cuTr26h8W7MJehNFmexu9wlcHtw4ENgpkYN2BlUU6/gJuvLhBq+2t9KZ7IPLlpp6dysGYg5gYiMWE7X23M6jeIP12TTY3obFTYzb1EcUfxp8Yz477O2jv2p4V3VbQcltLZracydLOS9/63b3390alUf250e97vMd/Gf8bPTn/v6C0VHTtbtRIrHLfvUvOD9+w9Zfv6NT8CdVOd2TWhVnYGNuwb+A+Mj7L4NDgQwyqNwhrI+uqXhr/w6hlU4uIiRG0q9GO5PxkvfLP/zRsbBAKC/nwRCC/Jv/K8Q+OV0oyIlIimPnLTGY0n/HnSYZWC6NGwd27cPq0PsnQ6DR8eeVLetbsSWePzuwZsIeo9CgWXVtUafOl7Rcx8p6WM00t0RkY8CjjEf67/JlxfgZKmZLRPqNRaVRcS7rGqohVzLogth+suLGCCScn6OU9gx8GI5fKyVfnU1hWyK3UW7itdsNttRs+P/nokwyAUk0pZdrXgc4TWzhXcFefFBjKDRlSbwi1bGoBYtuWUqb8w8OvULoCCB0XSum8UvYM2IMO0dDNwcSB9jXa42npSZG6iFNxp9AKWiyUFpyMO0nQ+SDW3VqHmdKMbzt+S8iYEKY2mUpSfhJSiRQLpQUZiv0ICAi/VcYFtGilArdNt2Gkhbh18GADNE8RNfdTi1LJU+dhKBODBU8rT8b6jsXP0Y+skizic+Ip1ZTyLO8ZAgJXk6+i0WnouLsTX7Qtw0lqQY5ExYI5zfDe4E2pphRjuTHRGdFotBomNZ5EamEqzbc2R61V6+Vk34Z+dfqxqvsqfeuMTtChtbOl+wgtggS6BK3mWvwl2tdojzw7lye58VgIShpcjmHmqWwWdliISqOiXFtOSXkJfWuLleMmzk1wMHEgvTgdmUSGURmUa8rwzBawKQVD5MxuNZtvx+wkw1xGs5evxzSn9RxmtpiJp5UnAgI5qhzSCtNQlatIyEng6KOjZJZkAvxhkmFRCqOj4KcmUGigQ4qUQk1hJf7LiKMjWHB1AVKkOBRC6DboGi8uyzaBAw3EfcTYiYF9r5GwtC1Y/HKVo6e+57tO39G7dm/G+41Ho9PgYeVBd8/uVcZiZWjFmog1ehNLgJDEEEo1pSQVJGGmEN3tKoJrUwNT7utSqWd/mE1LBuL24Dn3FqRiYKDE4Lf7uZXWmQx5GWnSYrxf6fgsFKbfhKc24suyzysLWqlsSbGR0XEM2BQLXNoN1iX8YZIhRUqBuoDLSZf150hAoIlzE/ZE7SH8RTgru63k8bTHmCvNKxHQD8UcIi47DgCZVMaaHmtYoujB13VeMfb4GO6k3aFXzV7ibOqAARARAWfP8tDTnLbb2zLk8BA0WnFMGcUZeFl76X/7+ep80orSaFW9FT8P+xlThSlNnZtSrBYLDHmqPPzd/Xk87TEzms8gtTAVv81+jD4+mqS8JP0YBUEgKj0KnSByYmQSGb1q9kIikfCB9wdYKC3YcmeLfv0PT3+IBAnre6xnxNER/BjxI2t7rGVo/aHU3VCX9OJ0gpoFcSjgNNJNm+DUKYTbtymrX4dqlyM5N/JclSQD4N6re8RkxJBSmIJKo+LQ4ENv7QpoXb01jqaOBDULYu+AvfpZbOcVzsw4N4OYjJg/3O6P0KxaM2yNbTnz9DWx3MrIigODDrBv4D5kEhnl2nIGHx7M1DNT9UWe4vLiSi25/m6ieMC159c4EXuCRf6L+D7se64lXXvrd3d070jYi7D//ffue/yfx/sZjX8HkpJgwwbRUC83l6LeXTnxQUMOSh7yS8IFtIIWfzd/hnkPY2DdgX9oylNrbS361u77L0nu/TegE3RMPj2ZLXe30M61HedGnfvf5WqcOsXi5X35siPsGbCHUT6j9IsyizNptLkRrhauXBl75a1T1oA4YxUUhG7DeoqPHqCgYxvRh0JdQPDDYFZGrOTr9l9jZWRFgbqAX+J/IfRFKF08uqCQKcR1M1MoSE3kuQUIMqn+Rf1HkElkKKQKSrViEOJi5oJSriQhNwG5VK4308tX5zOs/jAG1xuMudKcq0lX+Tb0W/1+FFIFAgL17evr2/UAnA3tKRHK0Ak61Fo1CqmCT1p+gk7Qsf3edlKLUiuPBzHoCX4YzLXn15jSZApSiZT1t9eL7S4uLYlIicDQwJCS8pJK2yplSgbWGYijqSM7H+ykqKyIZs7NeJj1kDJtGcO8h3H44WG9tKeNpDHu5WNRCO6UCgkkGIgEYzlyJmt86Hz4Lv1i4bENzBpmya/VtBSXF1c6nzZGNrR3a08713Z8fulzvdPywg4LWRa2DCdTJxQyBXE5ca+DRQGMDYxwMnMmITeBLh5dGFxvMEHngtDqtISOD6XPgT6MbDCSH7v/+NZrp9FpsP3elnx1PgCXRl+i857OeJi6ErpLhvOgRA61X8vQeEMGXgokv3Nblse64bd8D7m7N2OXOAWtoMXGyAZ3S3fup9/Xj9FcUFKIGjM1DH8oYVMjAQcTB0wUJpRqSikpL2HPrgKsBSN2LBvOtvvbaOvalstjLyOXygl/Hk6v/b3IU+fhbOaMqYFplTYpAC8rL+Jz45EgYfoNgeUXwfUTeGVWeVbrTRK2VCKljsaSoxtyMCkH/wBIsBbPa7MUuLlNJIT3GgmXfuuAsS8Ctzx44mGOp7UnGp2G6IxolDIlWkFLXZu6RGdGVxpbxfd7WHnQzbMbSXlJRGdEk1KQQnfP7txOvU12aTaGctHQrkK+F6CTeyfmtZtHx10dMTYwRq1RkxCUgJ2JHefiznH4YTBnn5wiZXEp37WFyBauLIurwY2Sp6z2SCfOGhq8gpDd8NxClBIWlAoaSp15KM0mR1fIX0EDuwZM8JtA8KNgbqfeRilTUlReJKpByZSs67mO8X7jxRbAc+fYMbcnE/uL5/r51DiqB8xAuHKFUysn82n5KeJzxKzO2shalHQuSCEpPwkJErztvYnOiObo0KNkFGewNHQpyfnJtHBpQURKBHPbzOW70O8QECr1/y8NXcoXIV9grjRHpVExtclUPmr2EXNC5nDk0RGmNJmCp5Unsy7Ows3CjbAJYTibOTP97HSCHwXz4pMXXE68TI99Pejs3hmNoOHGixvsH7QfpUxJ/0P90eg0rOy6kk9avpYs1uq0TNren/4rztDniQATJsCPP4KZWaVzOP3sdHY+2ElxWTHnR52nq2fXd57zjrs6YmNsw+EhhwFxhn7b3W3sfLCTjOIMWri0ILBRIB/U/wAThck79zX6+Gii06O5P/l+lWXP858z5vgYriVf03PngocE02VPF8b5jtOrD66/tZ6g80EYyY0oLi9md//dbL23laS8JKImR2FhaFFl3/fS7tFocyOujr1Ke7f27xzje7zHfxPvE41/FoIAISFie9SpU6iszTk3oR0H6mg4nXqVUk0praq3Ylj9YQypPwRHU8d37q7ltpbUsa3Djn47/jPj/zdCEAScVziTVZKFt4M3P3/wcyVX6v8V7Dv6FaNivuGrulOZ0WexPjnIVeUy4/wMEnISmN9uPjKJTL+sQF1AQVlB5f9nvaSgNJ9Cw3dzEip06c2V5qQWpqIVtHRy74S1kTXmIaHkl+Zx2F30ePB38+dB+gNqWtdkfc/1mCpMabSpEXKpnC6eXTj9VHTRPv7BcQ49PMSeqD0M9x7OgZgDOJg4EDc9jiW/LmFZ2DK2991OgG8ADTY24GHmQ0wVppSWl9LWtS1Xk6/iaelJQp5YZf8oyoj1DUqRSl9zABQyBWXaMqwMrWhg34Drz69zNeAqUa+i+PLKl/qguZ5dPZJyk/SqPnKpHLlEjkqrwkBqoFdSqWhruhJwhaWhS9lxfwfedt509+rOtnvbyFXlIkFCHZs6PMl+goCAs6mzPsExMTChuLyY0fdgj1/lc1xLY0nPOwU0SdExLAaSLGDBGBcOWKUgSKC7Z3fq2dXjVuotIl5EoBE0+uB0vO940ovTySzO5MzIM/Q/0J+wlDAUWglrzggkNvUk0d+Pw0+OAlS61hZKC4zkRuSocvi4+cfUtq2Np5UnntaeeoM2gN0PdjP257F4WXsRnxNPQ/uGRGVEMb35dFoa12b4lWmkHaqOo70Hri0j6N9uEi/ynjN66Vm6x+poPFHLEzvxO22NbVFpVLhbuFEtX8fZdXkMbZvGyToSjJSmlGpUlOnK9NfPw8qDKeezmfqriiuRh+l9sC8APb160r1md64kXuHSs0uV2txArPwXlRfp5VXVGjUqrYr+CXKWn9ZwqxqMHCwGwSqtCjtjO1TlKrF96rf75nPPsfSdsgobrYJWo8rYP/smrba25KcTOpyLREnjKAdoMkXG3LZz2XpvK26P0ihWQNTvHpXGBsY4mDiQUpBSRWTgbagg4gPIZXJaV29NdHo0GSUZlTguMokMhUwhtpL9JoJwZMgRPKw9RNPLyFsYtWhDp4kKrlfX6XlL5gpzCsoKkCDhw2w3vt2ayFNr6DYKCpVip9igR5BnCL+6SZib4sZTezkPTIqIFqryR96EnZEd9qb2PMp8pL/n2tVox74B+3DJ1YC7O6Pm1uGAIpZGeUac3lrC6IESLnoIel6NRCLhafZTjA2M6V2rNx1qdOD78O/FZ7WZaGoYMyVGJCRH7+PbX78lLieuUuKolCk5MlTkiAiCQNC5IDZEbmCE9wiOPT5GqaYUpVzJ1j5bGekzEq1Oi9tqN5HkbupIyJgQisqKaLBR9A+ZfWk2SXlJ1LGpQ3pxOieHnyTqVRQfnfsIqURK8JBgBtYdqD8PgiAQeCqQnfd3cmTIYfqHZcPHH4ODA+zdKwpwIAps2P1gR2FZIV+3/5qvOnz1p/fHtDPTuP78OtFTKieuZdoyTsWeYsvdLVxIuICpwpTh3sMJbBz4VtXHA9EHGHFsBC8+eYGLuUuV5TpBx483fmROyBxRHEIiRSqRsqD9Ama3ng2IBo9rb60lqyQLfzd/wl6EcWDQAcadGEff2n3/sC1ZJ+iw/d6W6c2ms9B/4Z8e83u8x38L7xONfxSFhbB7N6xbR/nTJ4T41+BgV2eOax9SUFaAr6Mvw72HM7T+UNws3f7ybnvv741UIuXk8JN/39j/Rsy+OJutd7diobSgqLyII0OO/FurLIIgoNaqKwf8f+FTQc5NL0rnRcEL5FrQvMNPSYJE369e5aMwxzzxJeYnfsG8XRfM+w6ptO7J2JOsCF/BjYk38HP0qzR1H58TT8OfGjKqwSi+aziTOdPrsqWRQCPHRjzNfoq7lTtxOXE8nPpQ38/cZXcXbqXeEsnCUgMm+E3gSfYTwl+EM6/tPJaHL8fR1JG4nDiRAFmrN1POTGHL3S180+Eb5l+ZD4hBcb46nxYuLbiTegeJRIJWp0UpV2KtlpEifR1oVhj0fd3+a+a1m0eeKg+7H+z0XilPs54y8vhIIlMjq5y7VtVb0bdWX1q7tqaJcxMEQcB7gzfP8p7R2Kkx50edx9bYlg23NzD74myKy4uxM7ajVfVWnI07qw8irQytyFXlYmJgwpoea5BJZAScCODAYRgxpDKp2dHUkaYJKpYczmX0YJh8GwLuwytTCOgPNzwVyGRypjebTnJ+MsceHRMN8H4Lxiv2ZSQ3QioRZ5ZKNaUcdZjBwJmboUULhk+04mDcMayUVqzrtY7xJ8bTunprrIysOPr4KNZG1uSUvm4zMpQb4m7pjoeVB2HPw6huUZ2BdQey8NrrYODsiLOcjD3J+SeniFpZitGrHNw+hpe/FS6tNAbc3i6nXF1Ks0BQGRvg4+BDcUEWdRIKKC/I5XTZYL4f48nimA10cOvAqaen9OdFKpGiFbR0iYcLe2HdoVlMf7xc33InQULr6q2pb1+fk7En/9Ahu2Jfzex8uZl5j8O/WDD4Rj5txkFYDTEQtVBa6IP3inM5tfogpn1+lGqCKUa/RlD3Yl9ySnOYeSaPL38V+RBrmsEnN6HuNPSJ1BTXwayYdIRz49owuFqYKFX72zX5vfKVl7UXZ0eeJSEngY9/+Zj4nHi6e3Xn9NPTAJUMB00NTKlmXg1TA1MySkThgr+KGRESll4UsPgCtAbig+NNkjuAj4MPNeKz2bX+JY/soPsoMLWw41jdr7BMyaFH+nKqlRpw/UI1ZPEJ3LYopvlEUZ63Y4qCK9V+a6n6C8rlTtLmjHgynCgXT8wLE7hpvp08WRRFite/m4rkYki9IfSs2VM/w/wi/wX+u/wp1ZSSVZLFtKbT9GRprU7L/uj9TDo9SU9SdzB1IL0onU29NzGh0QS0Oi2DggdxNu6sniOUVZKFjbENX7X/igl+E1h7ay1zLs3BycwJQRAIGRNCwIkAisqKiEqPwlBuiL2JPedGnGPbvW2sjFiJodyQy2MuV1JPEgSBWRdmsTJiJbv672JMwzHigvh4GD1a5KLMnQsLFrApajuTT0+mdfXWXAu49pcM89bdWsenFz6leG5xpTbQN5GUl8SOezvYfn87KQUp+Dr6EtgokBENRmBpaKlfL6c0B7sf7NjYa+M7OZZR6VEMOzKM2OxYdIKOZs7NCBkbgqnClBnnZnAp8RJGciOcTJ3IV+fzJOsJc9vO5ZNfPuHAoAMM8x5WZZ8DDw0kqySL6+Ou/+kxv8d7/LfwPtH4q4iNhfXr0e3cQahtCQd6u3HEMZus8nxq2dTSG+m92fP/j2Dsz2OJz4knbHzYv3ng/xlEpETQcltLTgw7wZqba7iWfI1V3VYxuclkSspLqgT+/8znXdVMuVSOhdLiD5MEnU7HidgTOJs4Mu1wMtbjp2Heyh9zpTnR6dF8evFT5rQW1TtMFCZvlxO+eFFUdRkzRvS/eKO6VaguxHONJ31r99UbV/0emyI3MfnMZCwwRFCp+K7b93zYbiaLry/m62tf6xWPANIK02i9vTWJeYn67V3MXSgpL2GR/yI+v/Q5jZ0ac2r4KUYeG8nNlzeJnhKNjZENI4+N5PCjwwiCgEwqQ6PT6BMIK0MrHE0deZz1+PXAdLDUchAFPrVZGroUayNrisqLCB0XiqHckA67OohVa41KP57fq1KB2Jp1duRZOnl0AsTkymejD2VascpuYmCCu5U7t1NvU9+2Pjp0lcZREQRXBJeD6w5mVfdVvCx4SfNtzbm6Q5QUrSAWy6VypBIp7hbu7H3emLqr9+P4GZirYOYNmBwJOYbwyTALTlcvRa0ro32N9lxLvoa/mz85pTk0tG/I7ujdGMoMUWvV+mC5oUNDFsm74rF4PZ2Gl5FuqMHGyIbUT1MJOhfEmbgzJM5IpPPuzkglUs6OPEtibiIJuQkk5CSQkJvA9eTrPEh/oHdRfhMVFXGAnk9h3nVQaiB8wxxmxixnVbdVWD7PoPeob7hV15yoxdOZdXsJNbPBT2VJTgNPLgZFcijmEMOODsPGyIac0hz9+Gta1yQuJw6rEsj5HgYMhZ/rgbedN/3r9Gdp6FKczZ15nv8cFzMXUgpTADEprZjBAPA0d2PGlRKCGmdw/2Q1hJcv8ZsMbWq0IfT5a7lgEBMAmyKBq7ughs4c0/DbaLw8aLalGb5n7rH9lBhMTx1uwTaPfF6ulnGzuQt92iQD0NWjKwPWXMA1D3qNgqBmQTzNfsr5hPOVVLcqUNe2LvPazqOta1tW3VylN1ns6tGVRR0X0Xxrc+yM7Wjv1p6LCRfJV+fjaOpIi2otCH0RSlaJaFhX0fJlZWhFUPMgVtxYgVQiRVWuYv+BMmxLodO435zuzatTzawaEiQ8znpcSXigyUu4tBvuO0LPkVSRXzaQGmBjbIO5zITC0jzSyrKRChKsNQZkGZThXAgZxuCbBk9toUBJJYlec8EHX+1GpIIEJDKkOi06icBduegrA6JviIe1Bx5WHtSwqCF+LF//W6Ypo+PujmQUZ1CgLiBiYgTNqjXTf8fJJyfpd6ifntjuYOxAekk6Czss5MPGHzL6+GguPruIkdyIu5PuYmhgyIIrC9gbtRcvay/mtZ3HtLPTCGwUyPmE8+SW5jK92XR90aOeXT3OjjjLx+c/5ufYn7E2tObmxJt42XhVOleLry/myytf/rGnhEYD330HCxei8/OlRfs47luU8nLmS+xM7PgruPTsEl32dOHpR0//VHVKq9NyPv48W+5u4fTT0yhkCobUH0Jgo0BaV2+NRCKh7Y622BjZ8POwn9+5L5VGxZyLc1h9azUSJHhYeXDsg2P8EP4DyXnJDPMeRtC5IO5Pvk+/g/0wkhtRx7YOIYkhRE2OorpF9Ur7W3drHTN/mUnenLz/3Zbl9/g/j/eJxrug1cLZswjr1hIZc5GDzYw41FDOS0khrhauDKs/jGHew/B19P2XjfRm/jKTc/HneDzt8Z+v/B+ARqehUP3Xk4J8dT6nn57GytAKayNrnhc8/0teA2+2F/0rH6VM+YfXILM4kxbbWmAoNyRs7HUszexEqeHAQBJzE2m0uRHtarTj+AfH3+1Xcu8etGsnmvKdOAEGlYmGi68vZtH1RcRNj8PVwrXK5vE58Uw5PYVLiZdQaiVEJnbBe88vCIKA/y5/br28hZOpE9FTowl7Hsao46PQaDWVCLnulu4s7riYSacm0axaM04NP4WJwoT0onS8N3rTunprjn9wnKS8JDzWiLOZ9/PuAAAgAElEQVQitsa2+oAKxGDQycypknb/gCx7jt2sgSr8Orvu72LOpTnkqfMqyXQaGxgzsdFE6tjUYVn4MpLykpBJZFQzq0aZtoxXxa/0+xvbcCzLOi9jUPAg0orSaOHSgqOPjuq5EZaGluSp8vCy9sJIbqSXLlXKlHza8lP2Re/D2MCYV0WvKC4vZnj94eyK2sX5PfD9KHcuS8Rkp6Ktx1xpjpHckEe/NiT7bhh+HwpoJDpM8lUE3RQlVUvkMHGAhCs15ZQLWlzMXHhe8BwQPSnG+43nwasH3Ht1jwJ1AUZyI7GyqxWomQOGOimPbHTM6/wNPWv2pMmWJpwafop8VT6jjo+qErCUlpdSb309TBQmeNt7E/o8lJeFr1nZFclHhexpBWxUUgoMdHSq1Z2skiy0dyNZfQ7cC2U0CtRSYCxnQL1BpBansaHnBkYfH829V/do4dKC1IJUCssKyVXlAq9VkJ6ugZyu7WhR5zp9avWhebXmLLq+CLVWjau5Ky8KXlRqC3MydSKtKI0mDo1IT4ohRVlGjXxIWA0f9oEXQ7vh4+DDulvrKpGXEWDoQ9h62QSz8DtkuljT50AfzK7d5PxekAG7ZrTnQ9sIatvUZuChKD69Ab2WNSSsIAatIMrcemWD0sWVW3OeIZPKGH1sdCUH8E29NnHw4UGuJF3R/83X0ZfHmY9Ra9XYm9iLv4Unx/XqceXacsJfhHMm7gxn4s7wKPNRpd+nscyYEu1rPpE4KyQhbqWO402MKZj/GYGNAlFpVKy/vZ5t97ZRVFaEpaEltW1qM6vlLIIfBZNx6QQndqi472pAtw/KKTUQ255kEhnXk68T2CgQE4UJuaW5HH18lAJ1QRXndzkyNFROqhDAV7MKC5ohkbxZsddiZ/Ccu0azeFWey2if0QAk5yeLn7zkSgpyRnIjfeuUqlyFlZEVK7quwNPakxoWNbj98jaDDr9WR/K28yYmM0b/+zRXmrOu5zrmX56v53HYmdjx4NUDvgj5gnPx57A3sadcW86DyQ/oc6APT7KeoNaqMZYbE/tRLAOCBxCZGom7pXslafEKVCj/LfJfxPx283krbt/m1YAumKfn88uHnRiw9mKl4s+7UGG2d2LYCfrW7vuXtgFILUxl1/1dbL23lWe5z6hrW5eJjSaSU5rDqohVZM/ORin/YwGNCuSp8rBaZoW50pyisiJkEhm1bGpR07omO/rvwGmFEws7LKR3rd603NaS5tWa8zjrMTWta3JpzKVK76lHmY+ov6E+F0ZdoItnl798HO/xHv9JvE80/gg5ObB9OzH7V3HQ6iUHGytJMFFjb2zP0PpDGd5gOC1cWvxbjfSWXF/C6puryfgs45/exz/aXvSu2YXfk3jfxNvaixJyEkgrSiOwUSAWSgueZj/lyKMjuFu5s6DdAtys3Cqtb6Yw+1v9QkrLS+m4uyOJuYlETIwQW9lsbOCzz1DN+phW21qRr87nzqQ7labCqyApSewHdnGBK1fAtLKBX3ZJNh5rPBjvO74KMVitUfND+A8svr4YJzMnFtcYx8fhX9HGpRXHpoeyN2ovY34ew7a+25hyegqNnRsTkRJBF88ubOi5gZpra+pbSI4NPcbIYyNp7tKcU8NPVapg/fzkZwYcGsDyrsu5kniFM3FnKo2jhkUNskuyCWwcyOqI1XrSLoCPoRsmcUncqWFAma4cU4UpRnIjMksysTK0YlqTaSyPWC5yP04EUKYto3/t/nzZ/kva7miLj4MPkamRYutCsqiSUhHkDq03lGOPj6ERNHo5SRDlNYvLiynXlVPXti6ruq9iy90tHHkkOszvH7ifXrV6sfbmWpaHLydPnceu4xDdzI1f/MyIzhAdp/2c/LibJspZluVlE7fXmjBXCT3avw6erdQyJt7WMvOG2LYT2F/CeU8BQSJ61ziZORH6PJQXBS84Pfw0Aw4NoFxXjpnCDAdTB4Yrm2KxJ5jZHbVUywehhgul5aVUt6jOwUEHabmtJcO8h+Hv5k9ESgQRLyO4lXILjaBBLpXT1Lkpzas1Z/XN1QgIGMuNKdWIniHJgY8xqe/LoJnOaOQy/K+/4KGFmkz/Ztx8dYfyNwJOuSBFI9FhamCKVtCi0qhQyBT6REUqkeJo6siHjT/k+7DvKS4vxt7EnpV7M3HLFmgzUQwWdYKOqU2nEpcVx9mEswAYyYyQSqWVgtInkS2oERrDoG8b0m5fGJPuQIO5lni4NOBB+gO0Oq1+fQMNfB4KizvAqOq9mNHtawYGD8Q6LoWIzQKGWpjaEzY2g829NzOk3hDqz7ciaRX8MNCBed7pmCvNKVAXgADz7pmy+Hg+oSnhtNvRTn8tK4KzsT5jeZz9mJSCFBa0W8CJ2BP6e74iQZZJZEQGRtLQsWGVIsStlFu03N4SUwNT/czS7yHRQedEODrsODfrmLLm5hqxmGJkRWCjQKY2ncrxx8f57OJnpM9Kx8rIitLyUiIP/UjTiQv4tbpAnw90qA1AKVViYWSBvYk9kYGRKOVKdt7fybgT45AgYZj3MM7FnyNPlYcMGcoyLWY6OflyDa2SIc8IDO1OoZBU9ZWxLchgy+Y+9Bsh4VY1OJTTSQyeGzZEaNCAHKVOn3RU/Psk+wmXEy9X8v+ouId0go5qptV4WfQSH3sfjAyM9N4TpgambOy9kebVmtNmRxs8rDwIGROifxZdSbxC0PkgYjJiaGDfgA5uHVh7a624rcIUK0MrXhS8oKlzUy6PvVzFDLWC0zSzxUyWd13+zgLe8cfHGbV3IMsvSphyW4Du3UXVRyent25TAUEQsFhqwby28/i8zed/uv7voRN0XEm8wpa7Wzj+5Dg6QYdGp+G7Tt8xu/Xsd8YGFUnOocGHOPzwMEcei888VwtXHkx+wEdnP+J26m2eTHvChYQL9Nrfi/61+3P0yVGWd1nOp60+rXQcTiucGOc7ju86f/cPH8d7vMd/Au8TjTcRFUXChiUcjDvGwToaYuzBUm7GoAZDGeY9jA5uHd7az/mvQCfoWB2xmlkXZhEzNeZvbS9666yA4q/PHrytvehq0lX8d/lzc+JN/XT8rZe3GHBINPI7/sHxStP0fyd0go6hh4dyNu4s1wKu0bRaU3FB7drQpw+B7fLZG72XGxNu4OtYVRtej+xsaN1anK4PDwf7qi/6zy9+zvrb63k241ml6tz15OtMPj2ZuJw4Pm35KQvaL8A46FOORx9mYJds1nZfy6JfF+Hv5s/yrstps70NyfnJfNT0I1Z1X8Wam2uYeWEmMokMiUSCgdSA1q6tOTHshP7FXqYtI/R5KOfizrH13lbyVHlVxieXynEyddInlx6WHsTnxuuXK2VK+j+V0sbGj9az19HAoQFyqZx5IfP4NvRbjOXGlQjfW3pvIcAvAHgdGADs7r8bM4WZKKv5RluVTCJDEATMDc3xd/PnVOwp/fIuHl04P/I8UqkUlUZF9R+ro9FpyFPlEeAbwLcdv8VEYYL1Mmu+uKrFuBwefTKqUoW7V81enIs/h5+jH+qY+9zdZsDCcR4ssXuEodyQMk0Z/u7+PHp+h/438pgdBnIBAvvABS8wUohk81ENRrFn4B6abG7CnbQ7oib/h3exMLQg72kUjnsbMjsUEtr7cMn4FRklYlHgTX6Ci7mLPuFys3DjasBVlHLRI0X+jWiGNr/tfBb/uhiAebYDWfzRMVy/d2K472iKHt5j4VdXsS2X4z6plGJTA670O8791V9wRh3DMW8p6t9Xu38bg0KmwMrQir61+2KqMGVlhNh/30Bry/G1WXjNAKlUyoaeG1h9c7W+5UkniMlLiaYEnaDTtxJlrlJwb/u3DLg7m+QVOs62smOSf6FeohPEtiM7jYI8VLR8AY9tId1MDFhrqk24uaIQCzUcG9OUwR6ROJo68nLmS7659g1fX/uaA4eh0StIDD+Lt6MPNVbVQKvTggQ6mHrzWMgUZ3YELVKJlLzP89j1YBffXPtGFCUQYGj9oSTkJnAj5QbnRp7jyKMjbLu3TT9GBxMHunt1p4tHFzp7dMbC0IJxP4/j0MNDYhKPSM79fStgr1gI8QCFoTEF2hIa2DcgqHkQIxqM0P/+0grTqLayGlv6bGFCowmvN75yBaFnT575ueHTJY5SqU5/j3jbezO96XRmXpip5wRVupY66BkHE+5Ci5fgVASRTjA5YBWmst/5yqCjaQ0Tlnlmobofyci09fxsnMyms2JyDUCNGuDrCw0bvv64u5Nekon3Rm+ySrJY12Md7lburI5Yzc2XN+nm1Y1jj45VOScVUMqUeFl7EZsdSz27eizqsEicFbGsgYmBCY02NSI6I1rf7lYh6ACi+/XhIYerFJlOPDnBoOBBBPgGsKXPlncmGQk5CTTa3AhBEOhZsycHjcfA+PHic3rLFlHu90/QfGtz6trWZWf/nX+67ruQVZLF7ge7+fzS52h0Gtwt3ZngN4FxfuNwNnOusn5sVix11tfhesB12ri2YX/0fkYfH42AgKOpI1+2+5JpZ6cROi6U1q6t2XB7A9POTqOze2euP7/O7cDb+Di8dsocfnQ4z3KfcXPizX/pON7jPf4u/J9MNKKTC9l7NZVn6SV42BvSXXOH+1e+4qDxM265gDEG9PPqzfAm4+jq2fWtU6H/aHtRFfWiipkFdeFfVi/6O9qL/l3Q6DQ4rXBivO94lnVZpv97WmEag4IHcTftrmjm5Dv2bxtDBWZfnM3y8OUc/+A4/er0e72gVSu2N5YywTaM7X23M85v3Nt3UloKnTtDXJyYZHh5VVkltTAVrzVefNryUxZ1FL0yskuymX1xNtvvb6elS0s29d4kar+XlIjVtqAgxjVJYV/UPpQyJRt6beCTXz7BUG4oEmwNLWjh0oKNkRtp6NCQB+kPAFGz/erYq2QUZ3Au/hzn488TkigquziaOtLRvSPHHx/XBy717erzMPNhFVfpCgM5mUSm1+7PKZ+J0Yo1opP9G9KRH5/7mNW3VgPifRg1JQov68rnYcKJCey4v4MObh0IaBjA+JPjq/TTV5B5bQxt8LTx5NbLWzSv1pybL28ytP5Qfur1E7se7GLWhVlET4nmWvI15l+ej1qrZn7b+fwQ/gPt7mYz5Y6UDyZa6NuDpEixNLSkZfWWXEm6QmePziiOnST4MBh9LUeNBgOpAVmzs1h4dSErI1ZijAGD7pfzRSgYl8OUXnC+JpgoTBjlM5otd7egFbS0cW3D9YDrPMt9RkRKBIsvzkeXnMSNLdB1NNypBnbGdtgZ2/Eo63UrToXHxVftvmJSk0k4mzkTnR6Nz08+GEgNKJpbhPl35ihkCgrLClkR7cynDVI52HEjMy58wucXVQTdkfHQWsukjz3R2lpVIt/LkaFDICEoASTQdkdbkSuRFYtUKsXayJr4nPhKrYsSQfTNq+j5r+Ds1LKpRVphGoVlhfr7RCKIXIpV1SYyM3U7o+/q2HkChKdPWZl5klkXRU8XmUSGQq3l0h7IMJMxcIi2EqF53xEYEQPftYEtg93RCWJlPahZEGturREJ6ckCv+6A2bMaktDUk7DnYfSv1Y+D4ZvJNxTHWzE71qdWH71YRoG6gOXhy1kWtkxfla9lU4sn057g+5MvURlRLGi7gHW3xfYuJzMnvd9GxXG+2a7k5+iHtZE1IYkh+kRr9zGR4/NxT5H7ENQ8iL61+9KsWrNKhOOOuzoik8q4OPpi5YfDxYsIffqQ2LwWPh1jEeRy/UxWBZRlYtJbJgOpAOrfYu+tJ2DwIzjoDTt84aYLmCNyNCSCBMlvHA0QmNBPx4hmbQCRTzD93HQ2Rm5kUb2PmKdqhiQqCh48gPv3ITPztxvADHx8SPb1oJbdfgSJhDtjw1l2ZzXP858zq9Ushh8ZTommBF8HX4KHBPM8/zlXkq6wInwFGkGDRqfRz4C8CStDK8q15XqJ3t+/204NO0Xv2r0r/S3kWQg99/ekX+1+HBh04J2E7tLyUlptb0VWSRYpBSmcH3mebl7dxGObNAl+/hnGjYPVq6vI4L6JgJ8DeJz1+N8WoE8+NZlTcafo6tGVQw8PUaYto1etXgQ2CqS7V3d9kfJu2l0ab27MnUl3aOTUCADLpZaYK815UfBC7yPUr3Y/PWdv+tnpbLi9QUzkFCbcDrytNxfcfGczU85MIWd2zh/K4L7He/y38X8u0YhOLuST7Y/RCQKCIEEQtAgSgWjJFDxMCmlYqz01rN1RaVRiEvGW5OCfbS/6/exBxTrP856zJHQJBwcdpK5d3f9Ye9G/G4EnA7mafJWnHz2tlNSoNWo+OvsRW+9tZUbzGSzvuvxvmR0C+CnyJ6acmcKqbquY0WJGpWX3hrajVd0wRjUez5a+W96yB0R+zuDBosvulSvQ7I9nYqaeER1gE2ckYq40Z0/UHj698Cnl2nKWdV5GYOPA17M/+/aJJn/x8VyRPafjro56RaheNXuxs/9OotOj6bi7I1KJlJ96/UToi1B2P9iNBAnNXZqTr8rncdZjZBIZraq3oodXD7p7dcfexJ4PT39YpWXqTTibOXMt4BoqjYoGG0XTKxdzF1IKUjjXbTfdWwfA+vUweTIAex7sYfzJ8ZWMyDq5d2L3gN3/j72zjo7i3vv/a9bj7o4kEBII7hYcQnELbqUUWmgpULiUlhYoULy0QCnuWtwluENwCSEKcc8m2d3szu+PIQspcG+vPM9zfufyOScnm53J7szszOz3/f28pdxMXZGhCK8FXuWEsR7WHuSW5GI0GcuFuSllSoyikdUfrWZI2BB2PtjJxwc/xkppRZGhiO5Vu5vF9DnFOcw4O4Nl15YhE2QEvzBwYiPI0zMJ+62m2T1IjpzwgHDy9fnE58bTN6QvvjOWcDAIovwkd5+6nnW5nXqbn9r8xIiaIwhdEUpSTgJdHolMPQ/2JfB5Bzhc+RV95BW17E1HKU8bT14WvGTdXujzWMHYha05XvKAuHFxNFnbBAuFBaPrjGb0odGUlJaYZ3ADnQJx0Dhw9cVVnCyciPksBqd5ToiIRDyTc7iiEZMAq46qGNleT02FD8bUFI6vLSXVVsbYCVW4WhSD0gjrdhtx96hE88YxjKw1kpWdV9JuUzuslFbmULYVESsYfXA06+6sk8CAScAzp5RYB0DgnYO/sudUohyfbCOxTrw6tjKurjSRa6dGfvgorTe2NmdavMiMpcSox0YPYS6hnNJKWhtXSxeWrMug70P4uama2R85UFRaRNTgKFpvbE12cTa2KlvODzvP91EzmDHhIHFWejpHwqZum4gMjaTZF/ZccMgvlyp+Y8QNanvVLrfdL/JeUPHniuiMOmxVtgytOZQlVyVgnP5VOnqjnogtEUSnSRkHFgoLBEEod++u7VGbyJBIHCwcWH5jOddfXgdg9zZIddEwppUERsoAirOlM+0rtSeicgTtKrVj54OdfHLoE472P8rLgpfcTbvL3fS73E27S63odPZugwNB0K8HqA0SmCiVgcz0CmQoAFEKL9TLIThdcuJSGwWKleU/J1uxOv7GYTiWVqR2xkuGHFvGuvrxjF/z0GytKoois87P4psz3/BpnU8l5zaZXLJkT02VQEfZT3Q0+8RHdO0L1jqoXKhCa63iqbqQCLt6nCiIRmfSs6DtAr5s+CUgZU6029QOrV5LmHsYJ55LAKuxT2P6hfRj0ZVFxOXEIZPJ3hliWHYt1XCrgZ+dH4IgsOb2GsLcw9jaYyt+9n5/l3o0cv9INt3bROfAzlxKukTC+ITXwEQUYe1aGDcOXFxg40apI/2OmnthLrPOzyLv67z/yATcwacHJU3KmMe4W7uz5d4WVt1axe3U23jZeDE0bCjDaw0nMS+R5uua83jMY4KcgzCajCh/ULIiYgXZxdn87dTfMGFCJsiI/SwWfwd/Sk2lRGyJ4FLSJUpKSxhbb6zZMexZ9jMq/1yZA/0OEBEY8Q+28kN9qP/9+q8DGpPXP+FGbB6mN/ZaxEg217inGG9+TibIUAgKFHIFKrkKjUKDpcISG7UNdmo77DR22KptsVPbYa+xx9HCEUcLR5wsnXC1dMXJ0glrlTVWKisslZb/cFAdnRpNzZU1y9GO/n+sIzFH6LilI3c/uftWgqsoiiy/sZxxR8fRzK8ZO3ruwMnS6T/6/odjDtN5a2fG1h3Lkg5Lyi3LLcml9kwf7ItFLs7NNM8IvVWiCGPHSqLxffugU6d3rvY85zlBy4KYFT6LrlW6MvrQaE7HnaZfSD8Wtlv4dnZKq1ZgNGI8fYqwFWHEZMegM+roVLkT+/vtJ7UwlYgtETxIf4AoivQL7ceGuxvM/66SqxhYfSDtK7WnilMV7qXf40LiBU7GneRp1ttBayBRHELdQtHINTzNfoqPrQ/ruqwjdEUoSpkEYF2tXOkV3ItFy59DQgL6G1eJ3NOf3Y92o5KrWN9lPeOOjiOrOAsnCydMmFjbZS0RgRGciTvDyAMjzenXAA28GpCnkwCRQqbAz86PoWFDmR413Tz72aFSBxa2W0gV5yrSF+/a5sTnxfNZvc9Y2G5huevlYcZDmqxpgiIrh/Sf4NqlXcxL2sqL/BdceXHFvF5zv+bE58ZjqbRkSLX+3Fo2jRMVIdtScsk6Oeik2XJ59vnZfH/2e3RGHTJRoE2syJTz4F4IX7SDI6903d623vzY6kc6VO6ArdoWr4VeBNoE8O2CG9gZZNQfWsqhyEOkFqYyYv8IVkSsYNTBUZwbco4g5yCi4qOIio9iXfQ6c6fJy8aLFwUv8Jc5YcrKIttKoFApmgfU4QHhPMt6hk1MImc3yEiwNbF/2eccyrzE6IeWDFtyjvHdLVlSvYij/Y+y59Eerr+UZjg1Cg3xufEk5CWgkCm4N+oe9VbX4+SSPJqOgJJXh/VN1ysBgRpuNaTB+BsDe+lagAo5UGyhINXCaKYaWaLg+Go9tqUKGg4upUDzev0x12DZEYhqVYmWTZ6BICWSb7y7kZTCFEyiyRyYeTruNJvHt2LVAaj0GQzpNoMewT2oubImrjkGMqylwXcZNeybZt8wsfFEc6BmmTYJXneSFDIFThZODK4xmLXRa8koynjL7lYhV+Br60tRaREquYpHGY/K2ekGWHiSqH1JtRwFyV625OnyMIpGHDWOdKvSjVPxp4jPlULwNApNOfpTgH0AnjI7HJOzqPQwhSFXSwnNgGwL8PoSdAqQi+ChU/FSrce9ECyMArEO7wZ/8IqiZuVCTkkO0y7Kmd6gmBmufZj4+XZK5QKR31dn55dXyt3Tfr/1O6MOjqJblW5s6r7p/fe74mIGb+7JxheHEUUpAX3xGQ1jz5XQu5eUA5JlAReK+lA/pD2EhZHq40DHnV2JzYllSfslLLy8kHvp95AJMnP+RtdtXTGYDAgI/P7R77hbu5ufA/Cx9UGj0PAs+1k54KuUKfGx88HPzg9/e/9yzlk3Um4w6cQkVkasZPLJyYyuM5rZrWa/vU/Pn0s2uFeuwNdfw7ffgqq8Ddj+J/vpsq0LyV8k42Xr9e5j809UkaEIp3lOzAqfZQZlADdf3mTVrVVsubeFQn0hNd1rciv1Fs8/f06AQwCZRZm4/OTCnt576Fa1G3dS79BpcydeFL7AQmHB4f6HaeHfgrySPBqtaUS6Np3MokxODDxB6wqtEUUR38W+9A7uzYJ2C/7t/fhQH+o/Xf91QKPXvNtkFrytY9CRzhXFR3+XwvTvlEJQYKWykn6UEviwVFqagYgoihx4eoDOgZ0Jdgl+5zqWSkvz839+zkJp8R8Vp/+rpSvV4TrflS8afMF3Lb575zpn48/Sc2dPbFQ27O27txzf9N+p6NRomq5tSnhAOHt67ynXfjeJJrpu68r5J8e5td+TgFvP3/9CP/4oebSvWgUjRrx3tUF/DOJE7AmG1xrOT5d+wtvWm187/iq18f9ccXFQoQKsX88oh4v8dus33K3daR3Qmu0PtrO2y1rGHxtPSWmJ5NqVJzkiqeQqDEYDoa6h3Eu/R4/gHlxNvmqezXe2dCarKAsfOx8qOVbifML5cjqdJW2XMOHkBBa3W0wT3yY0X9ecai7VuJR8yUzL6hrUlSdZT3gYMJ+YAZ1oPsmZFF0mgY6BRA2JwsPGgwWXFvDVia+o61kXVytXDsUcMot3BQTCA8I5HXfafP10DuzMpMaTsFJa0XJ9S0RRpFQslWgu4ussgsE1BjO58WQarmlIkFMQN17eoJ5XPTZ330yAQ4B5P4bsHcKWW+vR/wDd+wjENg9Fb9LT2Kcxq2+vNh8nhaBALpMoYYX5GRQpRPNM8YSGE2gV0IoryVc4FnvMLHB9s9qmWPL9ZQusU7L4qq1EqRJEqO5eg4mNJnIx6SJ7Hu1B0Ok5cNiOkdXj8atQi83jzuE+3x1rtTVVnKtwZvBrR6RCfSH2c+wxikbkghw7tR05xdlmmpG6FAwKGXKZHHdrd472P0rI8hBERAYLtfh9cSyKSoE07ldEraCWDP7tKqEHrzPxm/rssUlmWM1hLL26FJNookBfQMfKHdEb9ZJmy2jgTuodlh8wMbu5BFqg/CBWISiQi9DtbilnQ61JEQrN9KFRd9UIxlJWhBnLA5BXpRGUlIgGMwf/06sw4B6c8xeY1cGKAsNr+laZFW4VpyrYqG3MlBXfWc7cmZ1NdIeatKp+G29bbxSCgvi8eFwKIeOVXtjJwoncklyqulTl986/E+YeRrVfq1FcWoxckJuvibJtlwtyAuwDeFn4El2pjia+TXic+Zg0bRot/FoQlRBl7qR1rNyRai7VmH9pPs6WzrS6nE5AHsxu9tohTI4c4xv6GBuVDW5WbpSaDKRkJ2KpF/nppIw2z0z45oFJgEeeSk76lFIiE5lwBbaEwCedwTMfYp3gsyf2bPTLJfc9GABeUdReUQ+NopH0TR70apzC+QoyTlyuTJMzsZz2M7F97kDWdFlbbnZ+/5P99NnVh3pe9djXd997TS9W3VzFqIOjJAcsheA33rwAACAASURBVIZLQy9SU+/I1qifiUxYSM0iO7JNWm79UopjMaBUkh8aSI/WWZyzzOBH/5FMS15vzmgpy3EBiAyJZHOPzQBMODaBNdFrcNA4EJcbh4CAn70fUYOjyNflm8XqZWC57O80bVq57S3LDOlUuZOUY/InG19LpaWk15g7F777DqpXl0L+qlY1v0ZMVgyBywLNA/b/RHXc3BGdUcepQafeWqbVa9nxYAdzLs7hadZTnC2dGVJjCK0qtKLD5g7lEr5LSkuovLSy2XZ6QsMJzG09l4S8BOqtqodRNGKltOLu6Ls4WjgyeO9g7qbd5fao2/+R/fhQH+o/Wf91QON9HY1c4Tp35ONwtHCkQ6UONPBqgEwm43n2c2JyYojNjiUpP0lyRXlVCkGBjdoGtUItJcuKJvRGPcWlxe+lVSllSjQKDSq5SkqklUlJoaIokpSfhIPGAbVcjd6kR1eqo9hQXM4h6O+VRqH5hwDlrcev1vkr/6dRaP5Si3nAngESfWD03feuk5CbQLft3XiS9YT1XdfTM7jnX9rH91VyfjL1f6+Ph7UHZ4ecxUplVW75nAtzmHJqCgcVg+i06BBkZr77hTZsgMGDpS+nb9+fMHs//T6hy0Nxs3IjqziLSY0mMa3ZNCyUFu/+h+++Q7dkAZ+t7smqe+vws/Njd+/dnEs4x99O/808I+ph7UGIawinnp/ChMk8gC4bFAY5BRERGEGgUyBro9dyNfkqkxtP5tO6n+K32A8REYVMgUauodBQSIdKHTjy7Ajx4+Lxs/fjYuJFWm9sTUlpCSNrjeT3W7/zSZ1PWH5jOT+2nMW0U3/DKMCYumNY2nGpGbyW7a9MkGGpsKTw1QDSWmlNl6Au7Hq0C51RZ05dvvbxNcLcw0jXptN0bVOeZj2ltkdtanvUZu/jvZIu4+YKjCajNDCRyXjw6QOyirKI3BNJdnE2yzstJzI0EoBvz3zL9+e+J/UnuNm5Dt2q3cVgNLC0/VImn5xMUWkRtipbXK1dScpLKmcZ2+s+7K8izSSDBM5cLF14lPnIzNMfGjaUtdFraeLThItJF2md58SIY5lUyoapreFYJUmkK5dL+SHtK7XnVMxxfsyowWTn2yQ4fs9Ip8sciT1iHrjojXquJF/h1+u/sv3BdvP2qEwy/HJM/HhKYHFbGy7aF2CtsjYndJeBADuVHbHjYnF6kgitWnHbrpjdC0diZ+9GiyHfUdPoQuDgfIocrEnTpqGRa6TgvsgDuMxzIV+XT1WXqqzvup6UJTOZlreXOx7gb+dPfF48ILmRKbQlxJamoRAFAl2qopKriE6Lxq0QEhbB1FawsBHU8ajD0+c3GHtHxewGeix1UPRKvhbsEkxi8kMK3yFne5PH36tqL7pU6cKAPwawv+9+Ap0CCf41mDnHTUy4b0ftb92Izn+Kv70/JfoiUrXpyICe1Xqz4+EObFQ2+Nv7cz/9Pk18m3Ap6RKWCktC3UK5nHzZfJ2UURJBsmhdEbGCRj6NmHhiIgsuv571HVV7FF81+gqZIKPPrj7EZMXQwr8FvZeepvqzAkLHlN+XNwFaS3klFl2wxvPaQ4576xnQAw5ugSdOEmXvvB+oHF0YJoZRI66IfZkX2bwbMjzt8B+eR4kMEMDL2gs3Gzdupdx6973jT+99a58HRy1T2No/lOTseK4tLKBSNgzqCvWm/MzYemPL/d+lpEtEbInA29abI/2PlJu91+q1fHbkM9ZGr6WRdyMuJV/CzcoNvVHPiYEnqOxUGZefXJjceDLLri2jqWdD9gZMkXQf0dHo796mU5VbnPQ34VEIFQqVXHF/5ZUmgFJQIJcriPksBm9bb7MQekn7JUw9NdVML6znVY85rebQMqDlO/c9XZtO/VX1kQkyvmz4JYuuLDKf3/G58bzIf1FOF+Zs6WwGHY3T1AyZfwq7tFxSpn+B1fhJ2Fs4SIP12VbMbzP/7ayOf7F+ufYL44+NJ2tSFrZq23euU+Y29nm9z9l0b5OZmjk7fDbjG4w3f4fseriLXjt7mc04qrlU48TAE8TmxBK+PhxBEOgS1IXtPbez4c4Ghu4bSsbEjP84S+BDfah/t/7rgEaZRkMUwSSCzGSkVCYSLf+EfOEe1VyqkVGUQbo2nRpuNRhWcxiRoZE4WzoDkggxPjeeuJw46XduHHG5cebnygYLIDlteNt642LlgqPGUQIlcjUKuQKTaKJQX0hWURbZxdlkFWcRnxv/3u22Udlgp7HDTm2Htcoaa5W1efCvlqtRypUoZUpkgswMBowmIyXGEooMRWj1WooMRdJjwxuPXz3/Vzo5ZXkK/6jLklqQyvHnx/m07qf42Pq8F8TIkDHz/EwOxRxiQsMJzAyf+f72/t+pfF0+Tdc2Jbckl6sjrr5FWTodd5o2G9swtclUfnjmA6NHg8EAsj91gI4fl2hSQ4bAb7+915M9syiTWitrkZSfRCPvRvzW+TequVZ7/waaTMRW96ZXFz3RqmzkghxvW2/i8+LLCbWDnIIwiSZismOA1yLYYOdgYnNi8bD2oFNgJxr5NOLTQ59ip7FjQ9cNBDkH0XJ9Sx5nPgZgYsOJ/HT5J3xtfUnMT5TE35+/pjYN+mMQG+9uJMw9DK1eSzPfZqyOllx6LFCydxu0vZwO9tLsZ6G+kN9u/MaEE69tFYNdggmwD+BwzGHzuTMwdCAb722kgkMFZIKMvX320n1Hd/J1+cxuNZsxh8ZQx7MO5xPPs7HbRpr7NefLY1+a7R2tVdb80PIH+of2Z/yx8ZIbS/WBLOu4jE13NzHm8BgObIK6XnXYNmcA449JVEcfGx+SCpLeGeoGUCdNzg03I+5aGbl2Knb12kWPHT2wVlmTVZyFjcqG3Mm5VP21Kq0CWjGq9ihzJkBgJiy/74/ls3imtYRTFUFuAqNMuh787fxIzUliSpSR3c2duSPLZHit4aQUpnA2/ixag1aaODDqqSV4clN8gcwEK7QtGbngDGeOrST88ig6VurI4WeS1eybA3MBgRruNRigr8rwydvIDfDg4JKxLD05k9u/ybhuX0TrASaMcukzqeZSjZisGKLTos2DELVCTfzZ/Qxe14Vz/u85R0VQypW4WLmQWZSJ3qhn2jkZU8+Z8PoSrN19yE9L4uxWNfk2Kpr1ku5zHSp14F76PRbddqPHxpvcd4Gbh1cx8shoMz9feNUKefMeIyCglCuxVlpjMBlwzyjm8eJSPo6AQ83cSdWm4mvnS2JuIs0TBaIW5TD//iomnZyEXJDTN6Qvm+5tMh+rP4ci1vOsx4RGE8w6n3RtOg4WDmQWZaKWq5EJMopLi9/SbFirrKnrWZet30STU78G2iXzcVA70H9rd65k3UFtEtDJXu+H3AjhSXJMJiOnAsDR0pHI0EjqKv3x3HeGgL1RGEqkJHCfIgX9nlsx5WAeK+vAmE4gyCSqkSiKdK/anS33t5Q/Rq/2y0pphUKuIL8kHxMmXLRQvVorYnNisXiRxuVNapSFxQR+YmDzmNPmmfGyepTxiHab2iEIAscGHKOKcxXupt2lz64+JOYl8mvHXwlzDyNsZRi2alsqO1bmWfYzTgw8wYyzM8jX5TOx0UQ+2vYRi9otYnwD6drb82gPkbsjcVU7kFSUir2oJhcdCND5EbgUw5qaoDYJjCsKZYJfP7obt3BL+wwnCyc6B3Vm+Y3lZjph+0rtmdNqDjXca7w+NUWRPrv6cPTZUW5+fBNLpSW+i31Z0WkFI2uPBCQjkhf5L96y8S3riqSnx/PDUT1jr8OxivBZLyvUvgEk5Cbga+fLoBqDynVF3Kzd/iWGQFxOHBWWVpDuMcE93rnOL9d+4cvjX6KbpqOktIRvTn/D/MvzASljaEDoAEbWHkmQUxBeC73oF9KP+xn3iYqPQi1Xs7n7ZrQGbTm3v+b+zfFbLE1eda/a/Z/e7g/1of4n678OaMAbrlOJOVR4eJVMj+PscD6H1qBFLpNjo7JhcI3BJOQlcPDpQQA+CvqIYTWH0bZi2/fqLURRJLs4+zUAeQOMlP1+0xrS0cKRAPsAAhwC8LfzZ9WtVbSv1J6xdcdirbJGa9CaQUh2cXY5UJJdnF3u8fvC8ezUdmbtiKOFI04Wf/pt6YSDxgFrtZSdoJFrkMvk6Iy6vwRQ3nreoKVQX8id1DvYqm1RyBRoDdpy+/33Si7I/7kui1zD9ofbScxLZFrTaVR2qlxueaG+kN67ehPiEsK+vvuwOXgCee/ekm2to+PrN751C5o3l3727gXF25+xKIqsv7Oe8UfHk6fLY1iYJCh/3xeSKIo8zXrKjzs/Z3PKcUpfMbnsNfZUd6tu/iJ8swQEqrtVZ02XNTzJfELknkga+TTiUtIlPgr8iDPxZyjQFxAZGskvHX/h5POTfHLwE3JKcpAJMpQyJV2CurDtwTaWtpfscS2VliSOTzQ7klRfXp3HmY8pNZXiZeNFqjaVUlMpdmo74vpcxiGwOixcSOKgLiy9upTlN5abB2LOFs5YKC1Iyk/C0cJRsuK9uph8XT4fBX5EdFo0jX0as//JfkRE3KzcODHwBBUdK3Ly+UkitkRgq7bF396fayOvMfH4RJbfWE597/qcjjsNSFz7Re0WYTAZGHN4DK5WroyoOYKpp6cy5SxMu2vLqoPfM/7YeJr6NuXai2vlOhgAPav2xEZtw9rotciRITOamHoO5jYTMCoVWCgtynUn48fF8+OFHzmbcNYcmtlodSOuvriKSTTRw6ou069bknPtHDOai5wJACtUaJGoYAoT5s9XJsgIDwiX7FQDWvHT9+3Y5pHF6v0Cwz+SbrdPMvoSeOgK2/f/SN89/czbMa7+OJZcXYJGoaFftX40829GVHwUZ+LP4PowkZMb4KGHgjb9SqmbInByA+xo50Vk/WQcNY7k6nLxsPbgRcELYj+PpYJDBXSlOuqvqI3PxQccrPL6GDV1qMn57NsggI3KmrVd1vH5kc95WfgSS1Q8XqjnWEUY2UUSLl9aDTpbK3oP1JCmz6KSYyWCXYKpfTiabzYmkmkJ/uNAbyEB5DC3ML5o8AVD9g1BRDQHAfYK7oW3rbc5ydvfzp+k/CR2bzHinwthn1COptXxKfQK7knVwV9xK+UWYw6PMYOWN8GlQlBQ0bEiT7KesLzjcqo4V2HJ1SUciz32loUsSN3DsnuZlcqKGm41ODP4DLKMDHB3h6FDMWm1lJ4+gSIrh9lN4bsWYKuDHA1vUclslNZYiHK2Pgml8Y7LqE0ysrq3p1boZdJM+ehemSIMuQ1r98HqJlaMaKUFAVoHtOZk3El8bH3MFLCy+4G3rTdJ+UkE2AfQ3K853WfuYnpDHY/cZJLGCIEKWSK7DltRYGdB9z5wY9TNt4JDk/OTab+pPS8LXjKi1giWXl1KkHMQ23tup4pzFQ49PUTE1gjs1Ha0r9SexLxEHmQ84LN6nzH7/GxSJqQw7+I8fr72MxeGXeDai2t8fuRzelfrzZQmU2i8pnG5HJZghyAuVplH5LXJXNfHUWzSY0SiMuZr4NBJNzo4N2BmWD7TOUM3n7bc18bxLPsZ/av354eWP+Bv78/PV3/m86Ofmwfvcy7M4fuz35MyIeUvuyyZRBPp2nRy/9iG35czQK9n85imTHe6S74uH7lMXu5+oJar8bXzfU3H+hM1y9vW+73jgOBfgmng3YA1Xda8c/ncC3OZe3Eu2ZOlTsb66PUM2TeEB6MfsPHuRtZGryVNm0Y9r3rYqGy4k3aHF1+8YNXtVYw7Mg6jaKRfSD98bH2Yd2keFgoLHo55SOsNrWlfqT3LOi77S8fkQ32o/636rwQa5hJFqFsXnY0lVbpKN/cCXYGZ+tTCvwWzw2dz9cVV1kav5W7aXTysPRhcYzBDaw4l0Cnwn3w7kTRtmrn78SYAicuJKyeoBWnAFeAQQIB9AP72/q9Bib0/vna+ZkEkSNqInJKcd4ORPz33JnB51xewgIC9xv4tcPJngPLnv23VtuZBd48dPUjOTzbzsE2iiWJD8XvByoXECyy+shhbtS2DawzG6lW2wd8DOVq9lpeFLykyFJln//9RNYuHs+ug7gRbUjxtsFRaUjlfwYZ5z0h3tuC7b5oit7F9q1NToC/gj0d/EJMdg73aHmuVNRu6bcBGbVNuXVEUuZx8mWOxxzgcc9gMJKwNAjq11MkyikYzDaKJTxPG1BuDVq9l5IGRaBQaEscn4mzlzPdnvzcHr8kFOWq5mqLSIha1W8SgGoP47MhnbLm3xWwTC9C3Wl92P9qNwWRgR88d9N7VGyulFT2Ce7C+63ozdcHD2gM7tR2Ps6QuSGPvxtzPuE/mpEyuD2nDYuUtdvlJ9pRG0UhN95q8LHhJmjaNyo6VzZ9nRGAE6++s56e2P/Fd1HfoSnVmbUy+Lp9Z4bOY2nSq+fgfenqILtu6YBSN7Ouzjz67+zCp0SRmtJzB1eSrfHbkM7PrT5BTEFObTGXx1cVEp0YjItIqFk5uBM8vIcUWKRTMrwVHYo/wLFvKBlHKlDT0acjpQaepsqyK1A2ydKPCo1SmnoOOAwABvm32LTPOzQAktyOFTEHf3X15+eVLPGw8+PX6r4w9PBa1XE2QcxB30u7Q17klg6NyEW/fZnYzuOAHqlLJOUhtgANb4ZkDpM2ZxqeWzbCePJ3V+itMaC+Q0u0izvsaYae2I2uxivVDajLW5rz5GlTJVCxuv5ixR8ZiEk1EBEZwoN8B873DarYVLVI1bPsth1se0Kk/jLopsPCYSK9esKuaRBPqXrU7P1/7maxJWQiCQN9dfdn+YDudngocCpRu9z4WHghpqSTaiFgoNIS4hXIr5ZZ50N7tIezZAeNmNeVn/XlkJvjmgoyZLQTqeNXlSvIVQl1DaXDtJSvWZVGsEqjwmUj6G26i54ac407aHT478hk2Khv0Rr0ZEEaGRLLz4U40Cg2ZEzOp/3t9nC9Fc2IjNB8m8LiKizmnxEoP2vI63nJVBjbUcrWZMvhmZ8tSaUktj1roSnXmfRQQWNZxGQOqDyB8fUtuptwiQhnC5ruVsDlyGiE/H6MAN73lnPY1crGikgs+JnKVks5GLpOjEBQUlRZhKbegyFiMwvgabFqiIsytBjcz75r3Ocw9jBWdVnAu8RxJP33D0r06FjSEr9pK52NVp6o8znr8VlI4vO5ybei6gYENPmZuF2eeRbanS5UuLL6ymFPPT0mvkQFWCgu0lf25MfIGlirLNw8V8Tnx1FlVh6ziLDpV7sSu3rvMXeSVN1Yy5vAYVkasZMSBEezuvZuFlxcSnRotJaJ3/IWhNYfSbG0zHmU+Il+Xz5cNvqRzUGc6bu5IcWmxuTPhae2J1qClpkdNvm78Ne03t2dr9618ffJrEvKle2Ko0Zn9NwPxv/aUhZUzmdAOxt5WUk3jw4ygVLJlerq5t2BP+lnG1B3DovaLEEWRqr9UpY5nHTZ138S/VJmZMGoU7NnD7XY16NXkJc+mpZNbkitpQ97REUnITSCjKKPc5+Ft610egLx6vP3+dg7FHOLlhJfvnISafmY666LXkfiFpMNbdHkR35z5hsKp0mShwWjg4NOD/H77d47EHEFEpHVAa2a1moWzhTNtNrbhee5zPKw9qOJUhaiEKMLcw6jlUYvLyZd58OmDf+24fKgP9T9U/91AA2D7dujbl+cnd1Lr+giqu1VHZ5S+kBw0DuTp8pjSZAqTG0/mUeYj1txew5Z7W8gpyaGRTyOGhQ2jd7Xe2Kjf79f9V6vFuhbYqe2Y0GjCO8FIcn6ymVIhE2R42XhJAOQdYMTLxuvvepGXVbGh+J0A5X3gpGzZn2eQy7bJQeOAk6UTJpOJZznP6F61O762vuXAyZ8Bio3KBkEQeJr1lC7bupBSkMLWHlvpULnD3932eRfnMfnkZHMehsFoMINErV7Lt1Hfsv3Bdha1W4S/vT9avRbVo6d06z2dTSs+5VmQC2RmMnr8ZjAZmfZDS1IsjG91ZzK0GeVm6v6VkpnAJANPa08K9AVo9VrCA8IJdQslKT+JPx79QaBTIHG5cdTxqMOERhP48fyPiIgk5yeTUpiCvdqeAn0BH9f6mL1P9lJcWsyyDsv47eZv3E69TYG+gFktZzHtzDSzlmPTvU3MaT2HIXuHsLPXTp5kPmHWuVnIZXIKDYVmaka/kH5svb+VYOdgHmY+xFIPRSrJQQcgLjeOyo6VicmOIfmLZGSCjOorqpNZlMmcVnOY3GQyyfnJtFzfkmfZEi3io8CP2Hx/M5eGXaK252tb0h0PdtBnVx9sVDYoZArixsWZZya1ei0rbqxgzoU5ZBa/raNxLYC0BXBr5Qxqp3zLik4rWBO9hujUaFRyVbnO3qDqg6jsWJnvzn6HQqbAZDKSPLeUhQ1hbhPwsvXCRmVDSmEKkaGRfNv8W9wXuLO5+2YiQyPNNAiQBsY3Um6Y3b0cSgS+vK0mJEnP3IYmrviArVHBBGVzpn53imueUD8ZElyVNBxkoFKVRlwcfhHF9woqaDxweZLMJV/J1aqCfQWS85NJyEuggXcDAC4mXQRgY7eNtKvYjulnprPi5gpcrVyZJg9nyNfbEOrV59OPveg07w86PRGpNxIeuUpCWTu1HSs7r+TU81PMuzQPX1tfWibK2GAXL4nQX5lcdQxoy/2cJzhqHHmQ8cBsRbx3m4BrkUC7SBM+hTKeOJowymBkrZG08G9B/z39aZdswaHVxRgFqPkJPHyVVelu7Y6jxpEN3TbQaE0jPqn9CeMajCN8fTglpSWUmkrJKs4yg+3uVbuz9/Feghwqs+f7J+QH+lG/bQLWKmsK9YVYmOQUy4z4CvYYra14UfDiL11zVkorxtcfT33v+gQ4BNBpcydaV2zN8WfHcSoRaHohiTp5VnwSrqVNLET5g71exvrdJqpkQsh4FdkKPXJBThPfJnSs3JGOlTviYe3BsN0D2f/8CK46BemqUux0UKCWBOB+dn6UGEpIK3otYHa1ciXcP5z4vHiuJF8hIjCCX+Oq4fO3ucxpAlNaUa5DUgaeKthX4Hnuc/Ox6lipIwcHHGbx8GAutq3Krt4S7XDhpk+ZELucxjk23LcsJE8tYqu25fN6n9MnpA/VXKpx9cVV+u7qS54uj0CnQMkNqfMqc5bQ9DPTWRu9lsTxibTd1JaYrBiujLhCn119uJh4kVoetbgw7AJ9d/Xlj8d/EOIawteNv2bQ3kGYRBOja49m472N6Ep1aBQaPG08eZ7znB5Ve/Ag4wFp2jQKdAXs7buXWedmcT7xPDJBxqAaA5kSOJxTV7cxOuEXRuRUYMFJOXPcY5jTRDJjmP7Ama9ULbgb4kwjwwpOdNxK6zp93ktv/YclirB+PYaxn5KsLMZ55yFsWnf8u/9SZCgiMS/RDEDMgvVXf78seFkuU8RB40Alx0pvOWftfLiTq8lXefKZFJg57fQ0Nt7dSML4hLfeMykviQarG5BdnC3ZkruGMrzmcO6l32P17dXIBBlOFk5kFGXwUdBH7H+yn5QJKW87Hn6oD/V/WB+ARmkpVK4MDRtyetYI2m1qx8DQgagUKlbeXEmYWxgPMh4Q4BDAik4raBnQkpLSEvY93sfa6LUcjz2OhdKCnsE9GRY2jGZ+zf5lT+6eO3qSr8vn+MDj71xuMBpIyk96ZzckPjeelMIU87oKmQJfO993dkMC7AP+ZQ4qSLOrxaXF7wUn2cXZpBSmsOXeFgIcAtAoNOZl70ouV8gUZgBir7EnLieONG0aTXyb0K5iO5wtnd8CJ1HxUQzeO5hpTaeZg/LerO33t9N3d1+WdVjGmHpvKDpTUsDTEw4cgPBwyXI2NhYuX4aKFcu9xqnnpxh9aDTxufFMbjyZrxt/TfiGcHRGHWPrjuXE8xOciT9DRlEGMkGGSqYqNwupkqvoVOjFoL1x9Oonx8/Bn9TCVAwmA8EuwShkClIKUnhR8KIcb/yvVplGp0xMqFFokAtyig3FVHaqTEphCl42XmZBeEJuAhqFxmzVaau2ZW74XEYfGf36NV8JD52KBUSVkmy53uwg5WPrg/8Sf/b13Ud4QDhBy4JIKUhhRK0R/Nb5N47EHKHHjh7ojDpMoon6XvXNgO3Wx7fK0Ry6bevG3id7CXYOZnLjyVx9cZUrL65wJ/UORtGIpcISf3t/EvISyoM8ETJ+gtShvQlz3Y1GocHZ0pnhNYczPWq6eea3TAwcYB9AXG6cecBWLwmuroaPxjpxwDnLfP5VdqzMwzEPqfZLNaq6VKW5X3NOPD/BoZhDmERJlN85sDMt/VuSW5LL/MvzyS3JZXjlvtht3kVYcilL68MNL3ArgDknoUueO7WG6IgnB7kgp13FdpIOQ4SquQp+/fwYA/cNJjIkktW3V5Nfko9BNPBFgy9YdGUR3ap0Y/+T/WgUGhQyBXm6PFZFrMJabc0vC/txfLOM894mTs0cxicTt6EvKaLRKAVFFgpkMpmZ7qaUKRlTdwznDi/njoMOjQFKlCDKBOLHJ5BZlEmdVXVeT2KYwCcfQlJh7H0LuncpplgBCOBr60szv2YURB1j40pphrdrpAyhZUuz65gMGXPbzGXlzZXYqe24OOwiaoWahNwEwjeEU6QvIlWbWu5cHlt3LM9ynlFx81EWHwO/8fDS9rUAetERaJoAdUZJ2+Fk4YSrlSuPMh+9dV2UaWLKjBHe7HTalyrJVRjo8BQavZSxpZpIoq1IjRS45QklKrixEh67KzgxvT+dKneiTcU2kluTyQSnT8PatYh7drM0TM/EtmCh0JBvKn5nPsmMFjOo51mPpdeWcjz2uLnTUtW5Ki8KXjD2goFZh4qZ2ULGNy1MWCgsKC4tNjtnlZW1yppifTFGjISkQYRFDS6F2nF2yFnpshBFPh7txQbXVI7ttSYuxIthQY/RKDSUlJbgYulCVnEWIa4h7O2zF187X6l7cXMls8JnMaXJFIbvH87DjIdcGXGF5znPCfk1hI9rf8ys8FnUdmkd8AAAIABJREFUXFmTmOwYarjV4FHmIz6r91k5Uf28NvMoMZQwPWo6U5tMpXe13nTY3AGTaCJNm2amzZVNCpVlP/QL6UdUfBRp2jT6hvSlmks1vjnzDX2q9SGrMJ2bL27QVRHCxqLLOOrlVMowkmBjIn4xyJxdyqed16ghuUop/3ru1MNrh8juGUHjZAFh8mSYMeMtG9y/WgajgeT8ZGJzYvlo60c08G5gvocl5CaQmJdY7vvPTm2Hn70feSV5FBmKmNR4UjlQ4mLpgiAIrLyxktGHRrOh2wb+ePwH+5/sRyFT0NS3KRcSL0jniyDD2hSCn3EYPhZ1CfFyYkALT0L9/v0J0A/1of7d+gA0AJYuhS+/hNhY1uWcYei+ocxpNQdXK1dGHxpNJcdKWCotuf7yOoNrDGZ+2/lmcXhSXhIb7mxgbfRaYnMkTvTQsKEMrjEYHzuff2ozRh0YxY2UG9z8+Oa/tBvFhmIS8xLf0oeUgZLMotczxBqFBj87P7M+pFxXxCEAJwunfzvEqOPmjmgN2nJfhoX6wn9I7cosyuRO2h2S85NRy9WUmkrfKfKVCTJcrVzf0p6IiGy6u4kw9zAmNZ5Unu4lt8bS2gFWr5YyMk6dgqgoqFPH/LoZ2gwmHJ/AxrsbaerblBWdVmAUjfx08Sc23ttoHsy+yQ+v4lyFRt6NeJb9jHOJ5xhYfSC/dvoV68Yt6dokmUueRowmIy5WLhzuf5gKDhXY/XA3fXf3pUfVHmzqvunVrLuJnjt7cuTZEUpKS3C3dmd+m/ksubqE6y+vm/NdFrVbhM6oY8v9LdxJvYPBZKCOZx1zgnSISwj3M+5Twb4CSrmSfF1+OSD6j0pmgv734FQ1S0R7O7Pm5XHmY3NYX3J+MmHuYdxMuUmoaygPMh5Q1VkKm3yU+UhKwdYXYhJNNPRpyOzw2TzLfsaDjAdsuLOh3PYEOQXR0KchDbwa0MC7AdVcq6GQKTAYDfx28zemnJpiNlo4sVFAqxDp2k/quBwfeJxGqxsRHhCOn50f8y7NA8DV0pUCvUSFVMvU6Ew6rJRWpGQOwfrnFTSeWYHLJTHltiEpP4kig5St0NinMXqjnlspt7BUWJI2Mc3cJUwrTMN7kTdyQdIzqUphcDQ0SoLFDeGOO/jnQONE2FwDOlXqxNHYoxJtxwSDdVWIGDSTnjt7srT9Uj4/+jl1Pety/eV1JjeazIIrC/Cz9SM2NxaVXMXBfgdpu6ktm7tvJio+ilW3VtEr3YWta/KRt2jJtA4aJk7ay5kKMrr1NtElqAv7nu5Do9DQrkI7TsSeQF1QRL4GfPIg3kECWP1D+1PPsx5jjkhg3F5tz5eHc9lXVdoHdSlolSAIkhFEkaGI2i8Fzq8xcc0TpoTDgh8uM+rAKO6mSy5zlkpL2ldqz4nYE9wedZuKjq8BfEJuAkHLJNOD4TWHs+LminLnnU0JvFgIixrAt+Gvn2/zDA5tgaAfXPH2CGJOqzl02daFzOLMctejKIq8HJ/EnP0TWfx8C4IIK09asKNCMffdwM1owSMbHTZGOVkKw1s6C0tBTad7Op44AzWq832L76llcMJr5zFk6zdAYiJUqSIlTw8cyE3xJRFbI0gtLA+cyurjWh+TmJfI0dij9Avpx5QmU1hzew3Lrks8+lJTKRMvwLyT8GM7S6Y2lMDh1CZTaV2hNeEbwlHJVeb0c0tBhc6oxyiAvYU9zz9/joOFAwD6s6dpvb4VT3wsuL6kmDNfdGMoe6nkWImY7BjUcjU6o44gpyB6BfeiV3Av9jzaw4xzMxhbdyyPMx9jp7Ezd0kWXFrAxBMTuTT8EibRROM1UvDd/DbzeZT5iNW3JQOJmS1n8lWjr3CcJ2nesidlSwYEufG039Se2JxYSk2lqOVqPqnzCYvbLwag9YbWFJcWc2rQKdbcXsOcC3NIyk+inlc9bry4gQmTOYQuPjeeqaemsvX+VhxVdqx0H0mPBEuEO5L7FfHx0gFXqSA4+G0A4vRuJ6ZiQzE2My25kt2dOiv2Q2ioZIMbHPzO9f9q9d7Zm4S8hHKp4ybRRGphKkP3DSUpL8msA/3j8R8U6KR725uTKhYKC3ztfPG08eRcwjnCA8IZVGMQNiobriRfYdejXTzLfoaFwgKlobKUGo+AgByZIDV7Fg2r+gFsfKj/8/oANAAKC8HXV7I1XbSIb05/w8zzM9neczsVHSrSY0cPCvWFDKkxhDXRaxAEgflt5jMkbIh5MC6KIhcSL7Ameg07H+ykyFBEm4ptGBo2lK5Vuv4lN6Wpp6ay5d4W4sfH/4/sZoGugPjc+PKdkLzXFK03xXDWKuvXnZA3AEjZ478iwlt9azUjD4wkZUIKbtZu//T27n64m8F7B1PJsRIbu23EWmVNdGo0Q/YNwcPag9F1RpOnyysHUjK0GUSnRmMSTYiI5VrZZaUxgKNRiVOeAUf/bijF3og6N6ysC8DhFCdf/o4gCLTwa0FuSS530u+Uo+TIBTlh7mG0qdCGxr6NaeTTiJSCFHrv6k1cThzf1l9D1osw4pLzsY67zB7vNRTJH9LYpzF7+uzB0cKRnQ920m93P3pX682GbhvMwsLUwlQG7BnAqTjJh/3Jp09YcWuFWThbFjx2cdhFqjpXxXuRN6IoBY1FhkSy7cE2ZIKMqU2m8u3Zb8malAUitN7YmsvJlwHMs/tKmZIG3g24mHSx3HGq5V6LYb5d+KTLD5z7pD3ne9Q109H2PdlHob6QnJIcgpyCcLRw5G7aXbQGrRRsKdegNWjfCQz/XtmobPCw8Xi3AYDCEpVcxe+3f0dv1DP7JAy4C75fgkauoaZHTe6l3WNX7104aBxotbEVhfpC3KzcSNdKPP+ymWYBgXC/Fozbm8oxZQK/heoxiK/dkQQETJg4P+Q8TfyacCL2BG03tQXg7JCzNPNrZt7myN2R7H24B9sSkUyFNPhzltsQ4z2P9b+PYVWYiQeuki2uKECgcyBx2c9xyStF4+rB8xIJaDX3a87ZhLPU9qjN3bS7KOVKigxFtK7Qmu9bfM+og6PIKc4huSCZ6q7VzQP6mLExVIpOgIgInob5MtU3hl07RL5uBXObSufptRHXcLV2xW+xHyaTCUGEoGyBZy5ySsXymiZrlTVCfiEvFsLpKhq6dSsxZ30MrjGYK8lXUD58wuXfwdoAlcbJeOmiZkn7JXx88GNztkFD74ZcTr7M9p7b6V2tt3T8X9l3zzo/i99u/mbunL2rlh6G3g/A7wv4qsXfGFVnFGMPjSFw7QEWNIaqrsE8zHgISJMNd0beJvnyMbrdnoReDnv3WtD5TjHnKipo29+IThARBLAWNBSIrzuOAgKOFo6Mqz8Od2t3Tsad5Nb1/XinlXA94JXQ/1WpSyFAtKeiZzAVA2pTwaEiqdpU1t1eV64786ZjWNnAXi7I+bXjr4ysPZIFlxcw6cQkulXtxg8tf6DJmibklOQw+4oVU45qmdQafmoiBSq2r9Se3Y92l7uWOjs24mb8JXIsoFgpdU0jQyKZ3Wo2HjYeZHRoTr3Qy9gJFsyMktEzogi9ycC6LuvoG9qXk89PsuPBDvY92UduSS5BTkFUdKjIkWdHsFJaMThssFlMXGoqpeHqhuQW52IwGXhZ8BIrlRX5unxMogm1XE2AQwAlpSX0rNqT+Zfn813z7/i2xWtb8PFHx7Pk6hLzcbFQWJD6VSq2alt2PthJ7129uTf6HiGuIeiNejbe2cg3Z74xT0LU96rPyYEn0Sg1bLm3hcF7B9PEtwkXEi9Qx7MOP7T4gWb+zRDzchHv3UO8f0/6fe8u4qNHiDqJ4mvy8sBYrRqmkGBMwVWlHz9fjAI0XduU9hXbM90mArfRX6FMTCZ12hdkDeuLSZAAQpm2DhFMmDCZTJgwIYoiRpPR/NgkSr+PxR5j0ZVFbOi6AVuNrXmZSTQx5+IcjCYjkxtPxiSamHV+FlYqKz6t8yn5unwyizLJKMogqyiLzKJMsoqzeJr1lJLSkrc6ZlZKK0REKhbPxpF6CLymS8sEqFPRjrmDg955nX2oD/W/VR+ARllNmwaLF0NSEqK9PQP+GMDuh7s5Pfg0gU6BRO6O5FTcKaY2mUp8bjyb7m2iuV9zVkSsoIpzlXIvVaArYOfDnayNXsuFxAvYa+yJDIlkaM2h1Pao/d5OwYJLC/ju7HcUTCl45/L/yRJFkdyS3Pd2Q+Jy4srRehw0Du/Vh/jZ+WGlsiJDm4H7AneWd1rOx7U//pe2617aPbps60KBvoDVnVfz1YmvEASBy8Mv42jhWG5dURTpt7sfh2IOcX3kdQKdAskryXub2vX5SLKEYpLaD+V5Ydl2yRCRko+j5aPJF96dAeKgccDH1gcnSyfJsUvtwMvClxyPPS65I1WdyfnLVQEBkwiiaEQURFwr/8GmyJmoFWp2PNhB5O5I+ob0ZV3XdWaQsf/JfobvH24OGrvy4gpuVm7kluQyu9VsFl5eyIsCKS12YqOJ2KptmXxiMkaMDKw+kD8e/4Gt2pYmvk1IK0zDRm3D35r+jbYb21KgLzDTMQQEAhwCSMhJMAeQyZAxoeEEfrr8E0qZklODTtF0ynLEmzekL2ykwfr0M9P58cKPtPBrweH+h1l4eSHTzkzDzcqNktISIkMieZD5gHMJ58zHrCyxGSStw/Oc5zzOeszwsOEsuLKAas7VeJD5gLqedQl2DkZbqqXYIGltikuLzY/jcuKkDIunUvJ0vRGQbfXnT+j99eYgEMBZCxUKFVxzkwbcCkFBgEMAMdkxyJBR27M2jbwb8euNX5EJMhp6N2RA9QGoFWostHqO7JnLauunjHpqS0DzLnydshGQBuzVXUKxP32ZaA+Ju1+gBu98gUIrBXJdKasH7eKXWyuIio96PYh5o7xsvPixlaTRydBmMO30NEqMJVgqLWlboS17n+xlZvhMHNQOeF65T8evVnKkgolt1WW0emZiYUPwb9iBMPcwFl9dRLGhBM8CiY4UmAnN2owgtyTXbC1cVmOuIFGXvgAbF29idC8x8WpQKdrR+1Q6MhHO+kNUBSmYTUTEWmVt1kiVOSV52XiRXZJNTnEOOSU55ShMb9rR/plyFJQBj3+B4b3VJEU0o9RUyvOc5yTkJoAAdgprbOSWJOvScderqJJqRDQaueItaSQMcnCSWSEqlWTrc986D8q6tZlFmVR1ropGoUEURURMjNmZSNerubQYJIU8JtlL+StWSiuUciUGo4GS0pK3Pi8ZMmSC7C3w9maV7bO1yhorpRUZRRlmWp6DxoGxhzKYFmXii3ZSV6ysyo5PWd6SpU5Eqy6/rOz8VolyBL2BYhXwKuXbJEjrleUzSPsqDXyNJuNb+6KUKctZpJct//PnJBNk5oF3uedeVdn7/P9UGsP/Y++so6M49Pb/mVnLZuNKEhKS4AGCB3eXFoKU4sWKFajQAlUKt6VGC/RixSnQ4sULBCvuwSEQd3dbm98fQwZCAre39973vu/58ZzDAXZmZ2dmZ2e+9jwPfH0Upl+CI4EweUAwBpux2FGdAiKJVa197rPhv4lW5n3o8Kjwupu9hu0fNP4v7NFLvMQTvEw0ypCaKnc15s6FOXMoNZfS9eeu3M+4z4VxF/B38ueTE5+w4MwCBtYdyKiGo3jvyHvE5sQyp+0c5rSbU2nXIiIzgvXh69lwYwNJ+Uk08GjAmEZjGBE8AneDe7l1y4x8Sj8uLaco9b8BkiSRVphWXq73Ka5IbG6s0t4HmfwY4BRAdHY0Bq2B2W1nK8mIn6MfOnUlzl7PQWZRJoO2DeJk7EnsNHZcn3idGq41Kqy35OISZvw+g22DtjG43uDKN7Z+vTz20KwZs97aVKl5YxaXuKN+F7VKjVpUIyJSaCpEEAS0Ku2TB7VVDhCffpg2MC+qUFlStql5V3kwCwioRbXsMSDI1UOrZEVERKsqz/Uo428YLcZyD3152xVlPsv+XdnM+Ev8D0OSA/t+D2BnEES5yCNVCfZgrlwd8y+hx0PY8yscqAlDBj9RP6oMVXMhwYGKTt8S3F0Ktz3gtdcqLgOwMUOJuvx7HaRgqln+vcHYkY1gXwqtJvxLm3khBAQEQe5iIVnBKnFyHaTYwbDXRKwCWF5glioiKqN0kiS9MMl4Gk9zSEREHG0cMVqMFBoLWXhSy7unjEztDctCngTuTyfIohVUogoTFpxtnFGJKrKLs5/I/FrA/DjedywBB3tXEsxZGDQGeexRKH/skiRRYCogIS9B+QyNqMFWY0teaZ48wmg1KYUKtSDLQxcYC6jtWpvUwlSyS7JxtnGmnns9BEEguSCZR1mPqOZYjUBnWVDhfsZ9pVPR2qc1DjYORGRGEJcXR9eAroiiyIWECxSZiuhUrRNatZaIzIhyPJxaLrVoXKWxct7j8+IJTwkn35hPoFMgTb2aYq+zV/ykyo5T5PH/BQGxpBQhIwMxPRMhPZ0/pBge6Ut486p8WQuOjtQssaV+hBcfDv4RSRCRBBGwIggQ1PA0NvaplJpLMVlMlFpKFUW1UnOp8vfV5KuoRTWedp4Um+SCSbG5+F8SFhERsdPaYcUqf/7jZL2y587LjsZL/G/By0TjaUyYAPv3y/OeOh2ZRZm0WtMKURA5N+4cLnoXdt/bzejfRuPj4MOvA39l572dfHXmK/yd/FnRdwWdAzpXummL1cKRyCOsC1/Hngd7sEpWXqn1CmMajaFXzV6oRTV7H+yVVZf+D6pGWCUrSflJFRKQ03GneZT1qFzQKyDgbe/9XOneZzXKrZKV4TuHs/3udiyShXGNx7G099Jyycr5+PO0X9+eaSHT+L7H95Xv5O+/Q9++4OUFISEMbvExGfkVyemlpHHLdqhihlhgLCC3NBc3WzfUghoJCaPFSF5pHhbJgp3GDq1Ki1WyElS0Ga3kVuk2z6tf+RfP8v883B9PjGXYPT9pefohbraaUQkqBATMkhm9Wq889K2SVSEoq0U1Bo0Bi2ShwFiAo9YRo9VIsbkYe609Bo1BqarmluaWlzCWYO+vAjsbqNhQ36yMqCj780znogxeBi/yjHno1XoQZONF71xolgR768rrlJFxNaKGLgFdiM6JJiIzQjn2AVE6fFNLiajtxiGXDFxsXMg35tPcuznZJdlKUPT0PqkFNU6Cnmpx+XSOhq0NIN4RamZCrAOU/pM1Ba2oxWg14ufgh73OHqtkJSIzgh4PLOz+FX6vCQ3TRNJsrHQYC8VqGGPfjlOaRKKyozAYwbNIIMpJQoUKO60ducZcejyC3zdBxzfgbIBaDuYkKLWW8sVRmdexqhlorCImUT6/DlJwudlwCTnBHdwti/a1/WQZ4wd7WH1tNfF58TjpnDBZn3QFyuRQn5ZzDXQKoN6FaPb+Ch3HivxR1YokQI9okeaJEsOuSQRNh0YewXQK7MKu+7vK+dF4GjxRi2oS8xNx17uTXpxONcdqxOXG0admHw5HHsZitbDGayKjd0chHDkKOh307w87dsB338H06YAsBztk5xAuJV5Stt81oCvbX9suE8SRk4w+W/rw+6PfARjXeBxrrq9BQqK2a22is6MxWo2VGkqWqTPF5cQR4BzAyAYj8Jr3PeNP5DJqSENu1R6H3hqIxiaDcNP3+Nnmc7soGkGQf48CAh2qdaC1b2suJ13maNRRBGD6eThfy4ZLriUsPQB/D/XhnjGRPjX7MKTekHLjQFbJSkJeAvP/mM/QoKHsfbi3XNfGXmuv8KPKvEperf0qu+7tIiYnBiWEEGBg3YFkF2cTFh1GkHsQId4h8qjR4+7JubhzxObFIgoi3QK7YbKYOB5znAYeDcgrzSMuN47GVRpjr7NX9i23JJe76XeV36Bercfd1h1bjS1W5O3mluYqyZZBY8CgNSjjSmVdGYsk8+SePm4FErgXgksx2BlBZwG1yyIEXQiCULFodEv9doXfpSjIRSKVoEIQBCUReF7Bx05rh5POiaT8JKq7VKeFTwu87b3xtvfGw+CBu8EdN72bLKaRfI1FFxcRlR1V7vPcbN1IK0zDQQqmsWU5PPU7VAkqFo+vS32/lxyNl/jv4mWi8TTu35dVK9asgbFjAXiU9YiWq2Vy6pERR9CpdTzIeEDo1lDi8+LZ0H8Ddd3qMnH/RE7HnWZk8EgWdl9YoVvxNDKLMtlyawvrwtdxPeU6ngZPRjUcRUPPhozYPYLbk2+/2Gn6/xAS8xKp+kNV1r66lo7+HSvthkTnRJOUn6S8RyWo8HX0VfghZQTr+Z3mY6+1Z1bYLJp4NWHnazvxsvcirTCNJiub4O/kz4nRJ9CoKlEduXpVNuPr3BkMBkhOZtaYlVyOzEGSnpRnJSzY2MdxT/sBcblxSmepnns91vVbRwOPBqy6tooZv8+gjlsdtg3eVs5PZdaGBxW6JKLVQqA6iTXiYEY3Gs3qV1YD8NWZr5h7ai7BnsEs7LaQXfd3sezyMlxtXUkrTGNCkwnkluSy/e52RZDgRuoN7DR2FJgqN2h8GlqVFn8Hf5ILk5VAwU3vRodqHbiWco3onGhmtJhBTZeazDwyk141e+Fl58WyK8to79eeS0mX0BSVcHU5tB4HmXYyIbgsCOlevTvBHsHKA9wiWbibfpcTMScI8Q7havJVGlVpRG232lisFtKL0hVTPpWgQhREgtyDeJD5QHEjjsqOIrkgmWqO1bDV2BKdE02puRRPO3k0K7ckFwmJsC1qTnmbmd+RSgO4Pw0JPj0JS0Mg8zljWNUzIdIV7Eqh33245Qk3/0IdQLDCkgOwrAW0j4X9teXqeVAaRDsDdnbo1Lpy0q9qQY0gCErlUi2olcq5i40LFkkOssqqza/ch53b4FgAdIiBLcEw/lUqdC8G3IFdj28xajNYVLBzK9TNgLpTHydrWKmSBykOsH43dI2E+lMg5ylrhsoqqWBFbRdDgt3nPMp6hMVqQRTk0aKy4/B18KWeRz3Oxp3FTm0gtyiTIkyKF4VogYQfQKOxoeN4FRGGYkxY0aCifpKF697lj0cjapAkieY+zeVRKCQeZj5UpHA99B6kFafhbTWQJBbSJBmueUH7eBVNTG6cC3aiVkIJPy+K5dVZftzxUpNVnEVuaW65AknZv7WiFluNLRbJQqGpUAlaVY+D0r98PYJ8TZ4P5mzT5VhEAQTVk7FOcTJd791kV1DF7/TZbVTPgkQHebUxd4I5Xb/yrtPT3CSNqCk3yqcRNJikJ8WYsnNQxVAFvVpPfH48ZqsZB60DJqsJk9WE2WrGVe9KoHOg3BEW5M6PKIgICJyLP0eppRS1qKaTfyfCU8IVdbqGng2p615XKVZISJgtZvZG7KXUXIpWrUUn6sg15mKnscPHwQcHnYMy0pZWlEZ2cbb8HT2+d5uspkoLD5WhbB+tkpWW5r2VjiM9r2hUpoTmbnDHw+ABEuy4t4PpIdNp7dtaeb3vlr4MqTeEr7t9TYm5BP0Xejb038CohqMASCtM41jUMY5EHuHgo4MKz6wMdd3qMrnZZL45943ShZrZaia7w69jm/8KfvrmpBjDqVc7hQ1D5/2p436Jl/hP4mWi8Sz69YOHD+H2bRDl/vPZuLN02diFwfUGs7H/RgRBIL80n7F7x7Lj7g5mtZnFvE7z2HRzE+8ffR+Ab7t9y5hGY/6hclN4Sjjrrq9j863NZBbLcpvvtXqPT9p/8qddT/+3o9WaVlSxq8LuIbufu06JuURWzHomAbmceJnonOhy65Y9DNWiml41enEr7RYZRRlsHrCZEJ8Q3Gzdyp/3qCho1QoCAmR5ytmz4cQJbu0/x7TVtwGUKpCExD1hCsfeXIfGRs+so7PYF7EPG7UNxeZiRS6yS0AX1vZbW8F991ZsPjPW3MUqWWX1D6v8wF68cSIFgUWE7LlMrJTDyN0jOZ9wnjlt5zCs/jDG7xvPhYQLvN/6fTztPJlzbA55s/PQqXXMPTmXv/3xN06POU2PTT0Y32S8Qg7Xq/UEuQVxPeV6uVlpXwdfSswl5UymnjVNexbPdp2cbZwpNBZgKDDipXcjWlNELdda3Ei9QTXHaoRPCsdB51DhGn/n93f4++W/E+ITAsDZsbInRI9NPYjPjad3zd4surCIFlVbcC7+HG1823Ap8RJx78ThafBkyoEprLi6AluNLT72Pux8bSdB7kHMPDqTJReXYJWsaKxgejweMrDuQPrV7keAUwADtg0gsziz0sDCzdYNO40dMbkxHB91nJquNXl9x+vcSr1JiwdFhPlbUIkqnPUuynl7N7ce3y65R/23RApc7cnTyCMLJZYSWvi0oEdgDxacXYDJapKlUAO78c7hd5SRDZ1KR32P+iQXJJObkUCeVj6/Y67C8QDokmHggHchmXpolAI53s48ErKVef6+NfsS4BzA/Yz7HI06Wq66bNDIppZVDFWo6lhVURzrfw+2b4dL3tA6AWaE6lnVVJbfLEtSPjwFX3YAtVXALErMC4MPz8LU3rCyuXy+PArgt1+g9QTYvAMWtIPbz2g6PG82/EUdPJUFWiWArQmOVoeeEXDoca4uWkESZfL8zDMw/wT4vgsZzySBghVU1j85fiYTjHAshVwbOQB/5QFsbgDpTxV7h92EAXdh8GvyPvw38aIRzKer6WXiECCLOOg1eu6m3yW7JFvx7vGQmlDX/COioEJCQHrMy7qumoRZ80iR791wYwMjgkew6eYm5naYy9rra4nLk03lxjceT1J+EocfHVZ4XYHOgURnRytJ5LSQaXx/4Xu87Ly4Pfk2xeZi8krzKvw5Fn2Mzbc2AyhmmDdTb+Koc8TP0a/cui9K2MruVypBha3GFp1aVigsNhVXuMeJiBi0BnQqHWqVPA5rkSyUmEvIN+ZXer9oWboYnap5hSTa0z2fgV1ylMTB3dYdF71LBd8qq2TFe6E3I4NH8m33b5XXPb/zZFrIND5u/zFJ+Un4fO/D3A5zZWn7qCPcTpOfSWUFFBe9C6F1QhlSbwgLzy/kRsoNUgvOWGL7AAAgAElEQVRTkZBwsXHh9JjTpBel03FDRzmZ/9jEV2e/4vNTnxMzIwYve6/nnsOXeIn/CbxMNJ7FmTPQrp3ss9C3r/Lyr7d/ZejOoXzW4TPmdpwLyC3zhecXMitsFp38O/HLwF8AmHl0JhtvbKR9tfas6LOCuu51/+HHlppL2XRrE+P3jkdAwEZtw8CggYxpNIaO/h3/sufF/wZ8e/ZbPj35Kenvp2OntfvT7zsaeZTeW3ozvvF4vun2TTnp3ttpt9lxb4fiIfE0DBqDQlSvjycfzNqDWtQQvX8TfjWa4PT1Yli5ksuX99B11XjaGD4hN19PFWcIy51DHrfQSAK7h+xm1P6xvBb0GqMajmLQ9kFkFGXgZeeljGo08WpC98Du9KjRg9a+rSk2FdN4cX9qMBFHoTYeybcZvvdbHvV0ZOSmmxTYaQl9tYjIOh5s6L+Bm6k3+eDoB3jbe7Oh/wba+LVhxK4RPMp6xIXxFwA5QGyztg05JTn4OvgSlRNFQm4CZsn8pPL9eKzo6UAUoFXVVnTw68APF38gekY0DzIecDruNDvv7eRG6g1lPb1aj0Wy0M6vHTdT5UpnbbfapBSkEJn5COk5+bJKUFVwineyceJEzAnSCtMwWoys6LOCQlMh7x15j2W9l/F6/dfps6UPcblxTA2ZytwTczFZTUxpPoVFPRfx8fGP+frs1wCMaTSGAmMBx6KPlfuuGyfBz7uh3Rg4MuMyNmobum7sirPeme+7f0/fX/pWIKPq1XpMFhOCIDC/03xmtZ1FTkkObda2IT0vhfTSLIIz1dx0MaOXRGplwA0PK2PEpjg1ac3625sUo8576ffIL83HLMnnvMRcQvr76TjaODJs5zB+uf2Lsv+bb25Gkqx8+buZ3xqoOestB/saM7S0q0NiTixt0/QcdMsiTwshiVClYRtibY0UGAu4Ofkmx6KO0XNzT2JnxHIl6QoDtw9UjsvH3oe0wjSlW7C/2ofcWv0lM89Blo8zjknZtB8Ll6o++d5W7oFJr8pqSqv2govembY3c/B6R6JIB86FcHSnngypmJ6joUY6PHqmSas1Q20qCYglC0bTJa7YvINJlMd7gnRViSpJplqhhtCbpdxws3KoppxQaBAxYaWuax0eZUdispqwUdtgm1dCwvcwrwN81U4uMIiCKFfDn3LhLhtT06q08sjec+Sw/1WoRbXiCl5qLi3Hl/I0eKJTy1yqsk6IKIjYaewqqLDZqm0pNhdXOk6jElRYrBZaWSpP4KxCJmfoTZeAzhyNk7uDTxPry6BX63EsslIoGPEXfqg0aaldVSSg3gkOPDzAmbgzyrJuAd2QBImwqDDl+EY3Gk1Nl5osOL2AEksJngZP8krzlHtN2X3oz/DC9Go9pZZSdCpdOYGRGi416BLQBQlZycloMVJsKuZcwjkyijKoYqhCelF6Ba+hpz9bJarKiQ48DScbJ6raV8XTzhN3gzuueleyirO4lnyNB5kP0Kl0jG44minNp6BCoOPSUTSQliOKKqwSimTsonF/fhxp7J6xXEi4wN2pd5XXDF8YmNB0Aq56V/Y82MPV5KvKeSnrCAU6BTIoaBChdUMJ8QlBFESuJ1+ny8YuZJfIHZvhDYazrt86NCoNfbf05cDDAzTybMT1SdfJKcnB7wc/JjebzNfdvv5T+/oSL/GfwstE41lIklz91ung1Klyi748/SUfHf+oXJsT4Hj0cYbsGIJerWfXkF00827G8ejjTNo/iZicGGa3nc2H7T78hxK3ZqsZzXwN33T9BotkYV34OiIyI/B38ueNhm8wutFo/J38/xNH/R9FZFYkNX6swfbB2xkUNOhPved22m3arG1DG9827B26txxnowy77u5SAq5JTScxtvFYEvISlGQkOfURn35+iioZxbQcB9GPRapmXrXhy4OlVP+2KrmlufSo3oMdd3dwecJlhu8aTkTmA6THzsmiqOKzDp/xt9N/o4FHA1ny2KU6KQUpHI08ypGoIxyJPEJaYRoGjQF3gztJ+UmEjQzjYeZDPtoyjuilagqnTeKzalEM/+ogIUkCGe9PYWSdexyNPc6UZlP4pts3GLRy2bbmjzXpXaM3i3stVo71QcYDGq9sjK+DLxFZEZWes6cf8i18WjC3w1zSitL44OgHMgnRKAc8dlo7arjUIDwlnGH1h7Hl9hbebfku31/4nrzZeay5vobZYbPJmpVFfmk+tRYFkm8uQhRENg74GbPFzOg9o/mi8xc42zhX6iCfXphOZHbkc0cWNKIGs9WMQWugpktNbqXdkv//uEpf5tkA4O/kT79a/ahiX4U5x+YA0E+oy2+f3aPrSOg9eSFfnP4CP0c/9g/dT6/NvRAFkbCRYfTY1INrKdeUz/W28yapIImmXk258qbcAYjNiSVkdQhphWnYl8D6I3oGvlKMjRle8evGb6knaVSlEZeTLitBXZkKURvfNhyPOk6xpZgu/l1Y1ncZ4cnhDNk5BICvOn/F7OOzAVi9R6DKum2MPjxJHrkpysUkyBeaTqXD3iTinydwx7YIs0omjWfooW6d1vja+7L17lYmNZ3E0aijRGZHolfrMVvNFYjI7oWQbguexSL+mVaKNXL354GbXOEGcC6Sq/u2JijRCghWCdMLCOTPQ2UcDVm5bRJ5wi2Ex08XUZLVj2ytKopVVqyPr1Nve29S8lNAABe9C1lFWeU6c6v3yNyM2SsHYxZlV3kJiRYJUK1Yx+/1dOQZZVnu0DqhdLCpjfbCFTQXLrKsVj5Zjhq6OTdlrfGi8pmiINKnZh8+avcRhaZCll9Zzp7bO7m8QmJFcwjv35ItA7fgauuKRtSgUWmUufuwqDAm7JtASn4KalGNRbIoSlvNvJsRnxdPakEqPvY+pBelV6isC8iCEu382nE+4TyFpsLyicLj7ksDa+UdjVyukJk/nXjnJ9uc13EeN1JvsD9iPxMaTyCpIInIrEhyM+KxTcnC0eX5XacH9qMBKi3YPAudSoed1o7M4kyFB6URNTTzbsalxEtKMqVVaTFZTMxsNZNXa7+Ko40j9lp7zJKZnJIcEvISWHZpGSdiT6BX6ck3/TWVRVEQqe5cHX8nf1SiioeZD4nMjsRF78LAugN5vd7rVHWsSmpBKgvOLODQo0OE+IQwq80s7mfcZ8WVFcTnxdOqaitySnIIcg9ix2s7ZFnfb2pRkBDNz12OsT3Ph6jUIgI9bRnZyfuf4jzsvLuTQdsHcXTkUe5n3OdI5BH2RewDZH6OjdqGnBJZGa2pV1P61+lPaJ1QgtyDlE5xibmEaQensfr6amW7oXVC2TVkFwD30u8RtEz2/fiu23e81/o9AGaHzWbZ5WXEvROn8Ile4iX+G3iZaFSGnTth0CC4eBFCQpSXJUliwr4JbLyxkSMjj9DRv6OyLD43nkHbB3Ej5QZLey9lXJNxlJhLWHB6AQvOLKCaUzWW91lO18CuL/xo56+dmd1mNrPazkKSJM7Fn2Nd+Dq23tlKgbGALgFdGNNoDAPqDlDkCv8voNGKRgS5B7Fl4JZ/uG5SfhItV7fERS+3he11FW/sUdlRNFnZhE7+nega2JW3D79N+2rt2TZoG662rrLje2gonDiBdPIkGXWrKQmIfsceQhb+gvdMATdbN7KKsyqvgJb9MgToX7s/8zvPp4ZLjQoJo1WyciPlBuvC1/HjpR/LcQaC3IJ4LdWNlYV/UOLmyIpey6i1bCsNVu/lSoAW4/q1tGs3XNlWZlEmbt+6sXnAZoY1GAbICejOuzuZfWw2WdkOL1T4UQkq3PXuGCVjueChvV97RgSPoGXVlgS5B3El6Qot17QkfGI4H4R9wLWka2QUZ3BmzBlc9C4ELQvi4LCDLLqwiGPRx7AvkSjVCLSv2ZVtg7fh9o0bP/T4obzr+jO4nnydpj81xdHGkZySHH7o/gNBHkFkFmWSWZTJ2fiz/HrnV9xt3ckvzS+ntPWPYNDY4pdcTLZOItVewEHnQBvfNsTkxHAv4x6hdUKpYlcFjUrDb/d/K0cWLkNo7VBEUeYNZGTGcy79OghytyTOx0CmJKvDVEYuL6tu/zPz3/8MVAhYHt+atRZAFDCKkjK6B3InIyk/SZE+fXY/VIIK/0wrnaMkRAmS7GDf4+Zqv/tQNw12B6uxKzQzJhxOjWrP6aL7eEal8fYFcDDCqsbwe62nNipB3UyRBDsr+TYyl8JOfKI65Z4dyaxDa2gWe4vNDUXGvmqlXTSc8ZfVkFQqFf2qdmN3ynF61+jNzdSbROU8IbgKCNhp7SgwFiAh0SgZrq+EfQvGsDdIxS+3f0FA4G1VG+bPPoxp+1bqxX7Aw3xZ+rZTNHxxxYHqXV/Dx2U9P/T8gW13tslcEclCgFMAFxNlE7X2fu05G38Wi2ShQ7qBk0sLWb5kJDNyfqWGSw2W9V6Gr6Mvsbmx3EuXDequp1zHUedIkamoQhehDH4OfvSs0ROD1qCMOMLjMUf3ILQqLRcSLsidSNSYMSvnFkHuFNmogmlsWfH4nKgQrBasgsQt1RSyhBsv5mc8DQkaWhbhJP1jUrNOpcOgMZBVkoVKUNEtsJt87E+pPrXxbYNFsnAhQe62ftH5C5ZeXoperWd6yHR+uPADMbkxyvplylzPO1fPwlHnSG232njbe+Pn4EdyfjLb721nZZ+VNPBsgLvBHXdbd0rMJXTf1J3EvESOjjxKYy9ZwvV22m2+PP0lW+9sxdPgyfut3+fNpm9iq7Fl2eVlfHbyMyVReqXWK3za4VOaeDVhyoEpnI47za3Jt1hw/HM+PjWXc5EdabHpxJ880eWRnJ/MsehjHHx4UOluqgU1VR2rEpMjnx9REKnrVpc76XcInxhOwyoNK2znaORRhuwYonQx2vu1p557Pbbf207iu4loVVrG7x3Pzzd/lpXL5hRiq5VJVCkFKfgv8ueT9p/wUfuP/tJxvMRL/DvwMtGoDBaL7P7auDFs21ZukclioveW3lxJusK5sefKjUWVmkuZfmg6P137iTebvMmSXkvQqXXcz7jPxP0T+SP2D0YEj2Bh94UyWawS1FhSg4F1B1ZodxYaC9lxdwdrw9fyR+wfOOoceb3+64xtPJbm3s3/ZRfv/zTmnZrHd+e+I/399BdK2xYYC+iwvgOpBalcHH8RHwefCusUm4ppvbY1BcYCrky4gqONI6diTjFo+yDstfb8NmQ3wZ8uhXXr5BG4nj3Lb+DoUeZ90Z2vu+lJfC+JUzGn6L+1P3uG7CHPmMeKKys4Gy/zCsoe/k/D2967nFqWv5M/1ZyqMfPITCyShbGNxvLukXep716fxPxEskuyESQINjpT4u3Bg8wHzFf34MMVtxELCmHlSkVP9NDDQ/Te0ptH0x7hauvKqqur+PHSj8TnxdPR4w2kpAlQoXpc3vcjyC2Itn5tqeNeh/vp91lzfQ2/DPxFrjRaTZgsJlmW+fgcZraaiYPOgS9Pf0mJpYQ+NfvQxKsJiy4swkHnICsCqW14VVWXnLvXCash4m3vTUFpAQatgXoe9TBZTMp2n/07pSCFQlOhPEaitcNoMWK0GP8jwflfQRVbD5zzzdikZxHrJJBlI+FuVNMxXsX26rLZmre9N/F58eXe91G7j/A0eKJRadCIGi4lXuKnaz/Rxb8Lx2KOKet52HrgrLbjQV4U6zwm0mzgW0zeP5kz8WcUt/IORZ60uZLKknYaCgQTraq24vCIw5iLC5i3dAirik4jSND7IUQ5waPqTuSUlveH0Is6iq2Vc29GhsP63+Suhs2noLbC346BvdqW2T1URGxyQXRyZu6MYPZf2Ej/e/DtEdhRD7Z/+Cp7Huwttz23Qlkxq2U8hD6AMf0g0gUapMlE+XqpMDR4GN/lHsRsNVNgLEC0QvsYqJ0hE9TzdSi/KwGBSU0m0b9uf3ps7sHmAZsZvXu0Ih19Yb2GIkx0HSNS1aEqIT4hfNr2Y7JbNqJuqT1vdikkW2Olc4KaXzt7cM+URJB7EA8zH3J5wmUarWwEwLp+6+jk34lO6zsRnSvzvvQqPSMajiD4djrxf+wndkwo97IecC/9XoXgWECgmmM1jBYjaYVpjG08ljpudYjLjWP55eWYJbNyXdtqbHGycVLI6P5O/qgEFZHZkX/62nSSGuFreQN7aqAyRvLhvtVM63qLRy5Pzp1aUCvqS8PrD2f9jfV0CeiCt503a8PXMvW8lQl3gpkxajmCSi17+zxWJLLxX8/B+OWKitnTsNfa09q3NQ2rNESySlxOvsy1pGtK9+jPQkT2WZGQsNXYUse1Du2rtcff0Z93j76LjdqG+Lfjefvw2/x882cEBHa8toMBdQcA0HlDZyQkToyuGPBnFWfRc1NPIjIjODT8EK18n5iPRGRGsODMAn6+8TO2GlvlXhbgFEBbv7acjT9LdHY0w4OHM7/TfPY92MfMozO5OP4iLVY24+1zEl8vfQA1KsqoV4b80nxOxZ4iLCqMsKgw7qTfAWQ53pSCFExW2WOmbMxvWsg0Pu3wKbvv7Wbi/omYPjGV43hkF2czZs8Y9jzYA8hFgx96/MBbIW9xN/0u9ZfXZ8fgHbTxayObcUpWfOx9Kpj9Tt4/mZ33dhLzdgy2Glte4iX+G3iZaDwPy5fDW2/JxPDAwHKLcktyab1Wnse/MP5ChaRhzbU1TD04lYZVGrJj8A58HX2RJIkNNzbw3pH3kCRJJos3HlOBe9FidQsaeDRg9aureR4isyJZH76e9TfWk5CXQJB7EGMajWFk8Mi/5MD9P4E7aXeov7w++4fup0+tPpWuY7Fa6L+1PydjTnJmzJlKKzwA4/aMY8vtLVwYd6HcOrE5sfTf2p/Q7Xf49JhJ9swYPbrC+41XLlLt15aE1h/Esje2cyL6BJ03dubhtIcEOgcyJ2wO35z7BpWgwipZ4LGzc3vfNgxvOIqE/IRy7uplVWV4Mr7kYeuByWoirzSP3jV6o38YxW/mO5jU8nJnG2e6Vm1Pj1OJdN96Bd9BY2HxYuZe+Y4lF5cwtMFQNoRvwGQ1MazBMN5u8TZLfisgMlH8hwTRfwaiICoGXSXmEjSiBg+DB1nFWRSbixEFkTpudbAVdWiv3iC3qht3kMfEBAR61OihBNtlYyZP/30l6QrHY+RZ8jIJU42ooZZrLeq41uFB5gNup99Gp9LxZtM3+fHSj/yt09/Yfnc7N1JvMK7ROMY1Gcf036crZGcBAX8nfybujKHvA4nvVr7B8j7LabaqGRpRw6Hhh8gz5pUzaVxzfQ2nYk9Vfg6sT0aKnodnZ88bVWnEyOCRCi9Fo9Lw6i+vKhyCp9+jRsRQYmVAk+Es7PsjDZY3IDE/ETe9GxnFGRwYdoDee++R8elMXh8IJ2rIMpledl5kFGVQVJxP7UyIcpa7G6H3IMZJNs2rrLKtQlZtK6ssV3OsRqeTsazbA7qPwd4ok56757pyumstFn92nkGD4b0bevr2L+atywKdoyS6jwTjUxOLzkWQZyN7XHSOkcezUprW5vX6D3jgDpZKzqFalANhQRLINeYqr7sXQMdo2N4A3i4M5ocRP/Nt/mE+O/kZVyZcIXhFMIIg0MCjATXDrrN1B9SfDHc8YaO1HyPXX+dz/zg+/QOqfKJnePAIfksMw0Ztw7st32XKwSmYrCYCnQOJyo6iiqEKWpVWITdXuAYkcDSrsXP1Qq/RoxE1ZBRlKEaTGlEjywCX5r4wSS7rLD17vZSZVqpQKWRqAI0F9CYYnODA5sBCSsTynVUBgS4BXYjNjSXo7EO27IQ3Q0U213uyD2teWcO7R96lW/VuuOvdWX51OQDzLtjyye9FfN8K7Jw7cvXVr0jIMJNsvE6+YQ/RJSdkk0Gr+R/yKl4EAYHqztVp49uGQUGDaOfXjhmHZ7DxxkYkJBb3XEwdtzpsv7Od3fd3k1mciUbUYNAaZNPIwTvoV6cfIatCuJ5yHYClvZfSu2ZvAhYHVBhVfhp5pXn03dKXa8nX2D9svzJlEJUdxfLLy1l1bRW5pbkICBi0Bt5r9R4zWszATmvH2utrmXtqLlnFWfSt2Zdd93dR37k2locRXNNNx+a7Rc89ZpPFxMXEi0picTHxImarGV8HX4I9g5Ekidvpt4nLjcNGbSO7nof+TAOPBgSvCCZsZBhdArvw1Zmv+Pbct2R+IBP6JUli883NTNw/kSKzPDpa3bk6u4fspoFnA+Xzyzr+jas0ZtHFRRSZipgWMo0lvZaU28+o7Chq/liTxT0X81bIW3/5O36Jl/hX8DLReB6KiqBaNRgyBP7+9wqLY3NiabG6BQHOARwfdbzCGNOVpCsM2DqAEnMJWwdtpVNAJwDSC9N5/+j7bLixgXZ+7VjRdwVB7kHK+3pt7oWN2uaFCk1lsFgtHIs+xtrra/nt/m+YrWb61OrDmEZj6FOzT+Uyr/8lSJJEnaV1aOPbhrX91la6fPqh6Sy/spx9Q/fRq2avSrez5toaxu8bz/p+6xndqGISUbpqObo3p/BRZxA/+pjPO31eIZnbcmIJw/+YwZ3glQSFvsnlxMuErA7hxOgTfHfuOw48PIBWpcVoMVLfoz5RGQ8pMZUiiNCyaiv2Dt9fzpU8PjeeBssb4G3vzb2Me/g6+JKYn4hOpUOn1ikzuD0ewvDbMGeUj+zPYSogvTAdCYm6GQKdUm055wfh9oW427ozpfkUJjWbpHiqdPo8DMwOFY/5GYUfURBxtnHG0+DJ3Yy7DK4ry+rWcq2Fm60bGpWGYlMxHt958OvAXxlSX+YTVF9SnZicGLYN2sZrO17DKlk5NfoU7f3byxueMAEOH2bjnnmM3jsGgOwPsnHSP5n/zSnJ4WTMSY5GHiUsOoyITJlPohbVaEQNa/utJbROKJHZkQzcNpDEvEQWdl/IR8c/olGVRjzMekg7v3as67eOBWcWMPfkXEJ8Qmju05wfL/6oHJ9FsrA4vRnTl15h6KqeBAQ05rtz33H1zavlHshlKCgtwOErBzQqDdXUbjwsTUJjAUGQR5JAJs5fSryEWlRjtJRiVypX3gUE3A3uFWQmFV+PSiAg4G7rTlrR4/dI8meV+XRISNio5ACkY0BHIrMi6XQiltX7YGlzmN1X7lCUC1itUCNHIM5BwmCC129BipMaR5WeZK2Rw75yguNu605GUQYSEjVdavIw6yEAv++0ZWjvIhxKISAbFh6Ghz42dIvToGnQEJuzF9HNMjHwLhysDUVP3T7OrwKfPOg2SvYA8cmDde+d5mLyJd4/+r5iNvk0v+JpGDQG2vi2ITonmrTCNHJLc1E9XjV2sYBPrkSHafY4+ASi8/XnfMpl8kvzGRk8krUXVhC5yMqRmgJj+kmMu6mmm097whoYSD+2jz11ZcnPEnMJMTkximfLPwOdGRxVBhxcvXDQOVBsKlb8fxx0DmQUZ1DVvioJ+Qm8Xu91Xqv3GhvCN7AnYg9vNHyDL7t8iYveBZ1ax5DtQ9h2t3wnXBRE7LX25JbmytcC0C0SPjsFr422JVFdpKzrZeelGNuVXUt6jZ6N/Tcy4K2/w4mTfL7wFT7Pl2f9VYKKjtU6PumkSfD5Cfj0D5jbAT7vyJ8etfKw9aCKXRVc9a6IokhGUQaR2ZEUGCuX0zZoDMxuM5vjMcc5HXcas9VMPfd69K7RmzsZdzj48CBqUc3F8Rdp4tUEo9lI903dORd/DoPGQE5pDjZqG2a0mEGP6j3osamHLGlrNdPOrx3Xkq+ROjNV4a9VhkJjIaFbQzkdd5oP237IxcSLHHx4ECcbJ8Y2HsvkZpPRqXV8d+47Vl5diUbU8FbIW7zT8h1sNbYsurCIr85+RYGxAEGCE7sc6PBHLDg9ua9JksSd9DtKYnEq9hQFxgKcbZzpUK0DPg4+pBemczL2JGmFaVSxq0L/2v0JrRuKl50XwSuC2Td0H9UcqxG8IpgL4y7QomoLPjj6Abvv7+bhtIfE5cYxbOewJ9104M0mb7Ko56IK8cWqq6uYdGAS9lp7PO08iciMIGZGDNWcqlU4P8N3DedM3BkeTXv0vyomeIn/f/Ay0XgR5s6Fb76B+Hhwda2w+HLiZTqs70Dvmr3ZNnhbhYA2vTCdoTuHciLmBF93/Zr3Wr2njDidiD7BpAOTiM6O5oM2H/BRu4/Qa/SM2DWCuNw4/hjzxz+1q9nF2fxy+xfWXl/L1eSreBg8GNFgBGMaj6G+R/2/fAr+nfjw2IesvLqS1JmpFcjdiy4s4p3D77CizwomNptY6fuvJV+j9ZrWjG44mpWvrKy4wsGD8OqrSOPH881wf+Yc/5C+tfqyacAmHHRPAvQWK5vjePYKR3puhmHDFDKdh60HRquRvJI8vuv+HeGp4ey5vwcPgwcFBVmkFmeiFgT8XWvw+8jDBDgHADBmzxi23dlGkakIP0c/4nLjmNFiBh2qdWDqwakUm4uZ03YOXS5l0vTdb1j23RCO+ZqIzo4mMiuSPGMeDiVyZTPVXpbtdLJ1obZbHVpUbUEzr2aERYdx5UrDF7qO/5ngyqAx4OvgS5BHELvu7WJi04lMbjaZGi41WHp5KbPCZinrioLIij4rmND0sT3zlSvQvDns28dH+vN8eeZLRgWPYlyTcUpicSnxElbJSg2XGvg7+hMWHcbYRmPZcmsLXvZyEPdOy3eYenAqAc4B7HxtJ7VcaxEWFUb3n7vTLbAbJ2NPEvd2HJ52npyPP89rO14jIS+BXjV6ERYVhslqQi2qKQ69irpBQ0ZN92WzayLzO83nw3YfPvfYayz0J7JA5mrUybfhvr3MdfC298agMSgBOZQ5r8sh/jKvCUxJXoWjzpGqDlWxUdsoSjFlvhaNPBvR0b8jiy4uQi2qqedej541erLw/ELMVjNa65OE5kXQWMA3FzSSQIKHDYUWWWGnjPdjo7JBANwyS0ixl52f3wiXnca315P9MJ7+rstciEdfhxX7wWsmeBZA1dJgmhSMJcqzOp7ZkfS+upZ9/jcVaduW8TDutsFEQcAAACAASURBVIavm5l45A51UuG+BzjaOMpJgqAib04e7dbKKmUvcsXuUb0Hs9vM5lTsKeaemsv0kOnE5MSwN0IeydIKalxyzaTYg1c+JDuAi1VLkWChBAsIstfJB2fB513IrYSaJgoiNmobtCotOSU5cgVbYyjnNyMg0KtmLyY0nkCAcwD2Wnve3P8mp6KOE79Q4sdpLRn//hamHpzKoUeHGFp/KIt7LsbN1o15p+Yx99RctCot33b9lj0P9vBH3B9MD5lOHbc6RGZHcjvtNqfjTpNX+vzxIocS+OV3A8aSQgYNERhebyjf91lC3aV1SS9KR6vSMrf9XD479VmF0S0blQ2SqZQVeyRevw2NJsGDZ+2aJHnsbeZ5+KArfNtWfvnz0xqaJ1qZNtGPyNxoPAweZBZlluOmtfBpwblx5yo8xyRJIiIzgiORR5h3ah4ZxRnllmtFLf3r9KdXjV5IgsQfsX9w8KHs/1BGdLfX2hM+KZwDEQeY/vt0tg/eTr/a/Zh3ah5/O/03HHXydeWgcyCvNA9nnTPZpdnUdKnJnSl3XhggZxdn89PVn5j3xzyKTEX4O/nzcbuPGdpgaIVxodSCVL4//z1LLy9FQmJi04m83/p9IjIj6Li+I6IEHioHPuv9NT2q91DGoY5FHyOlIAWdSkdbv7a09WuLVqUlPCWcQ48OUWAsoIZLDULrhBJaJ5QWVVso51GSJGr+WJNugd0Y3Wg0rda04tbkW9T3qM+4PeO4nX6bwXUH8+HxDzFZTagEFQatgQ39N9C/Tv9KjzmvNA/3b90xWUwK0TtrVuWE/pupN2m4ouELO0Mv8RL/SbxMNF6E9HTw84MPP4RPPql0lT339xC6NZSZrWfyTbdvKiw3W82KXOfgoMGseXWNQm4uMZfw1ZmvWHBmAb4Ovizvs5z9EfsJiw7jzpQ7f3m3b6XeYl34On6++TMZRRk0927OmEZjGNpg6H9VfeJK0hWar2rOsVHHyjmo/3b/NwZsHcD7rd9/rhRfdnE2TX9qiovehTNjz1RU8Lp8GTp2hG7dZDK/SsWhh4cYunMoXvZe7Hl9D7Vca3Ex4SIt17Rk33Y1fSd+j/WtqcqoVD33elR3qc615Gs8nPaQQmMhdZfWpZl3My4mXsRXdOZ2XiQ2koidgxsHhh+kyFRE+/Vyxd9GbYOTjRPLei/j4MODrL6+mp41erL6ldUy18RqhRYtQKUiLWwPy6+sYNmVZaQVptHOrx1NXOqjWrocvzzY3kjDeS+zopQDL1b4cXMuVEi1XQO6EuQexPrw9cpMtUbUKKNLzyNmPq305Ovgi63GFj9HP/YN3afwaqRmTbkTYMeRd/sx88hMpdruqnelS2AXugV2o2tgV6o6VKXesnrUdKnJ9z2+p/bfa/Ndt++YfWw2ZquZYfWH8dMrP5WrVH524jPm/zEfnVrHh20/5JMOnyBJEp03duZy4mUlaC7D/Ul3CPBvxEcdLJwc2ITz485Xqk5GXh588QWT7n3L+oYSBq0BG1tHkgqSlADHzdaNXtV7senWJuWYPA2epBakMjlczYrGZiRktZfTcafJKCofbHX278zUZlMZuENWQavnXq/c6E1ZR+PZERVXvSv1PerjbutOfF48V5KuMM29L3lH9vLQWSKqbhVsdAaisqMqHW/xzJc9JtwLYcJVmfC9qSGUlsVlktx9+OIY3B7SkW22UehS3fFWLUElCVhFFUgy0TjCMpkU3U2ap6jJ1VqJcLLCUzGno9aRQrOsklSmtPSvjNyA7G1SUFrwRAjgcbX/WTllz3yI+wE+6AY7u8udhanNpnI14RKZty9zruh13Nb8wvGo43T7uVt55apXVjOk3hD+fvnvfH32a0rN8oz8B20+wCpZqb8wkJD7BRwLkBW4qthVYWXflfSo0YPYnFjOxp1l2u/TsNfKLuzKd/oYZXLkZbKrIiKOOkd61ujJbw9+U14felfF2p0W4hzh7SEOnPcTK3BtnsWzJH+1BYbcgonXoFYmNJ4oJ2YANoKWpb+LjD1fwnt9tSxubqFzQGf2Dd2HePcukz5twtrG8GXnL4nLiWPFNZls3qN6Dw5HHgZgboe5fNbxs0r3JSE3Ad9FvgD82OtHVlxZoXARnkZ1Z9k5vLZbbeKy41h+dblCZga5c7iszzIaejbEIlkIXBxIp4BOjAweybrr69hy+4lgiIBAK99WHB5+GDtdeWn08JRwll5ayuZbmzFbzQwMGih3FWJOsjF0oyKmURkyizJZfHExSy4uodhUjKONA9rUTKbc0LLx1Wo8eKzsJyDQxKsJXQO70tSrKWmFaRx4eIBj0ccwWow08WqiJBdPK0U9ixmHZrD7/m7WvLqG7pu6EzU9igDnADpt6KTc28p+T+2rtWfzgM1Udaha6bZAjiucvpKf5YWmwnIqVJWh75a+ROdEc2vyrf/TUvkv8X8TLxONf4QpU2DHDoiNBX3lKk9/phq/8+5O3tjzBr4OvuwespvabrWVZQ8yHjDpwCROxpwk2COY5IJk0t5Pq3Q7/wyMFiMHIg6wNnwthx4eQqPSEFonlDGNxtAlsMv/+A1HkiT8F/vTt2ZflvZZCsClxEt0XN+RvrX68uugXyvdJ6tkpd+v/Tgbd5ZrE69VlPh99Ahat5aJe2FhYPukihWRGUG/X/uRnJ/MLwN/YdOtTVxMuEjE10VkTBjOyBo3ORp5FAmJBV0WMOfYHFa9sorxTcYD8MutXxi2axjzO83n81Of08O5OYfTzmNvVWG01aERtUqwEFonlNENR/P24bdJL0zn+x7fM6HJhHIPn1v71/DD6vFsbqJGrdbyRsM3mNFyBrVca7Hp5iZG7h5JXrNdaMaOJ6ckh9BBVmLqViGlMAWQk41AaTx6awCFRBKjWkOecEvZ/rN69j2r96SDfwfic+O5mXaTiwkXMVlN2GntKDYV42brhk6lIyE/4bkdEVEQcdG7oBE15BZkyA7Oghq9Ro9aVJNdkl2hWrb2+lrG7R3HtTev0dirMbV+rEVOSY6i8PVN1294v8375T7HYrXQfVN3zsefx0HnQPw78Wy/u53hu4YzuuFoNtzYoBjhWSUrXnZeHF5RwE19PsFHb1YcmbJYZJ7ORx9BXh4rPujMVOEQVqyIgoir3pX0onR87eVRNytWfB18ic+LfzIWJYFaAo8SFc0b9ORg9BElUXOzdcPT4FlpsFUGrVkmYUui7LlyLflaueV6lZ7pLafzXqv3mHdqHseij9HcpzmP9m3k2DYbhDp1mfZBfVbd/bmcK7ggwYD7Iq8N+pQpUT9izcwkRw/e+TD1IqTaweomUKgFlVSeP1GpGZxkIVu4xM2/wPWRuUzWch4GAgKd/DtxPOY4VeyqkFWchdFixM3WjfzS/HKyr3q1HpXFitFcilEF466CXlKRq7Zwy0ugSCVhMMsGfp3TbPGeVESHgI6cjD0pqxM9SufEGgtdv6jN2UJZIclWbUuRuYg6rnW499YT1aSckhwWnlvIDxd+QCWqmBYyjWprdvJmrfvljqeKXRWSC5LL/Sbc9G5kl2SjFtRIgqR4slglqzJqWRk88iHNDpxKYEKEHbtbOBJdmoJVsmKrtqXQXFjp+wACHANQqVREZUUhiqJyfj2LRM79ZKVQC/vXf8g3N5aSV5zLD4dlQv4vLQws672M0XtG82XnLzkdd5qjD39n5Rkn9o9rz+6IPcr31K92P3578Buftv+UeX/M47chv9GvTr9y+2GVrPgv8ic+L545befwZZcvORp5lO6buisFjC4BXbibfrfc2JdG1NDUqykphSnE5MSgETXK2KiPvQ+9a/am1FzKr3d+Jf6deMU5+0TMCYpMRcrvUKvSMqHJBIY3GE5UdhTLrizjXPw5qjpUZVLTSYxvMh5PO08sVgvj941nQ/gGfnrlJ+U+XhlKzaUcjTrKtIPTZD7TY+EPP0c/QrxDeJT9iPCUcHwdfHGyceJ22m0EQaCdXztC64TSv07/SkeVKsORyCP02NSDRT0W8fbht4mZEcOSi0v4/sL3wGNvEXMp8zvPZ1abWRXM/57FtjvbGLJjiPL/E6NO0DGg43PXPxt3lrbr2lb63b7ES/yn8TLR+Ed49Ahq1ZLJ4RMrTyIkSWLaoWmsuLKC/cP207NGz0rXu5d+jwHbBpCYl8jG0I3l2qKSJLHxxkamHpxKoamQn/r+xLgm4/5tyUByfjKbbm5ibfha7mfcx8/Rj9ENR/NGozcIdA78xxv4N+Gd399h652tJLybQGxOLC3XtKS6c3WOjTr2XLneL09/ycfHP+bAsAMVuRtpaXKSoVbD2bOVjrjlleYxYtcI9kXsQxREFnZfSMOPljCsTSpWBzvW91tP7y29aejZkCJTUblWvSRJ9NnSh5upN3mv9Xu8e/hdpvgOYFX0LhAFTKKEiMjfe/+d+xn3WXJpCe2rtWddv3XKef1/7L13VFRn2/b92zPDDEOXKkUQFUHF3rBr7CX2XmOLmmiMJbbERGMSNCaxxBJN7LEbe1esCAI2ELCBFEF6kT51v39sGYKamPt57qzve9/lsZZLndl99uy5zus8ilE0cvpJhVWsh8acGbGWTNoZg71NhXh/xukZHH98nNoOtbl7/yJHLtjT7l4uG1sIzO4qUs9TmlFTyVXE5cW98Vq1cGtB+PNwk0Xoq3CxdDHxrx9mP8QoGk2DqfLZ/Wo21cgqljIA/jxjLUMm/fDrtZXE0+Xr9fPtR49aPahuV52JxyfSyqMVh4YeIuhpEH339aVUV8r18dc59eQUK26s4MyoM3Sr2a3S8WUUZVBvQz1ySnPY1GcTX1z6AicLJ2KzY1nSYQnxefHsub8Hg2jAwsyC5cdK6BoPVRLTKxshXL8OM2fC3bswciQsX04Iz2iztQ3N3JqRkJdAfmk+CGAQDQgIeNt5k5CfgCBItscfNfuIJVeXgAg18mD+DZjSh7/ku/959lklV2FRZiDPTE9nhS8hJFPDrgZpxWkm2+Eq5lWY3GQy6yLWIYoitua2lGhLKNGXMLnJZLyKzfjl5jqSrY1UtXIhvTQLo2jE2qCgUKZ/43FYl0GRSqJfzQ6BLEvY0FzKzDAK0rG/Lc17YaiCH5rr0f1N6rZPFR+KdEWkFaVhLjfHKBpfcy6qdG2QoVJIAW3lOpVLAb9Q/1QEdnv+wGViPhqljPZmtSizs+Jy3h28bL1IepGEfQk4aGQ4FBkJ3QK/drLhww4FBFRtzs30CGyNStK/1fJ1B1jbWQrr1Og1xOXFIRfkHB9+HGcrZ+Jy43iS84TY7FhiMmN4nPMYjV5D8ioYMAxuu1eE/0GFecFfobyYL7ccLs+GERFxsXTB08qdUWdSmXoqg1YTIcqlgtpmqbBEqVBWmumvYVeDhPwEmrs15276XXRGHU1cm7Bv0D4EQWDwAck+/eXOqZ8l4/pvRuTtOyBaW/Nl8UlWVxgvsbXvViKeR7Dx1kbUCjU7m33HDwdnEVFNSp7b0GsDWSVZfHn5SyyVlhQsKJAyH+IvEDYpzOSoKIoiE49PZNu9bdir7cn+LBtBENAZdDj/4MwAvwFsv7cdgJ0DdtKxekfOx5/nYMxBridff60TWatKLUb4jyC7NJughCCTjquWfS1mtJiBgMAnZz+hW41uXHh6gfeqv8eNlBto9BXPI09bTz5u/jGzAma9RqsyikY+OfMJ6yPWs7r7amYGzDS9HpURZdJZXEu6Zuo2+b4wo0axkjNuUmfB39kfrUHLo5xHps/Z39mftT3WmvSW/wk0eg3239vTx6cPB2IP4GrlSnpROuXJ5tVsqrF38F4CPALeui1RFGnxWwusldYEJwdjEA0Yvnx7QGW7be3QGXSETgz9/71L5Tv8v4V3hcY/weDBEBUFDx6A/M0zDXqjnv77+nMt6RrBE4Jp4NLgjcsVaAoYf2w8hx8cZmHbhSzrtKzS7MXm25uZclIqaNpUa8OmPpuo51zvv3YqoigSlhrG1rtb2Re9j0JtIR2rd2RCowkMqjvoX7fAu550nfbb23Nm1Blmn5uNxqDh5sSbOFm+SjaWcPGpFLr2RTtJ2F0JxcXQqRMkJ0NoKHh7/+V+jaKRjts7cj35OnUc6/Ao6wEdSpzZvfgertauKJdJ1q97B+1luP/wSusm5SdRb0M9xjUcJ+kWbv+Ch9KRxLJ0BFGieTioHSjUFLK8y3JmBsxEJsgo1hazI3IHa8LW8DjnMS3cWzArYBaD9D6YNWkOGzbA1KkAJOYn0nRzU3JLc/F18GVFlxV08urIt6M9WXK8gChPJW3HGVnZbSWB1wPJLMk0iW9fpbDYq+3JK82jhXsLJjWZRGBwIE/znuLr4EtT16bIZXIS8xO5+ewmOvHt/va+Dr4MqTuEF5oXRGdGE/U0hBxZxYy0o9qRYl2xyaWqfLBtrjDHTmVHenG6SeC6qvsqhtYdysTjEwlLDSNicgQ17WtW2t+VxCt02tEJSzNLdEYdWoOWlV1XMrf1XL67/h3fXv/WRPEadxe2HoOrkcfo1KAvJCbCvHlw8KCkJ1mzRgrgBMLiMpi8Yx+uqsakae6SLN/GCyESK6UVdio7UgpTaOHWgojnEa9RgmRGGBYDcgP83qhCMzG5yWR6+fTicc5jFlxcUGk9C5SUGbV0cG/N5bQQoPJA9p9QjwQEXIsFSmVG8s3BQVSTLaucjPznvBeMYPbyT4kSauTCvGDIU8O6VjJSLY000q/GVniz1ue+4tM3Wjq/DX8Wxvet3Zfjj4+jVqjZP2g/fff3BeDx9MdsuPYDq6M2Y6eVEbXOSDWLqoSM70wb1W6UciWPpz+Wghcfn2Tk4ZEUaYvwsPIgpSgFjHB/k4CX1oIx3Ys55lex/zH3YHaEnMaTDVS1qkp6Ufo/ur5eeZC4BnqMgnM+0sxyE9cmhKaEmu5jLxsvkgqSTN00TxtP7C3s0eg1xOfGv1aM2Kps6VLsQuDudGomFbKhgwVLOyvI0RfwQaMPTEYgAgI3nt2oRGVs5NKIY8OP4bXGCycLJ2zNbUkrTMPf2d+U/4EISoXUQenzCI7vBQSB9Z91YIbFFUDqJAgIuFi5kF6UjrXSGiulFWkvniEziuwfcpB+9QdLTkmrqpFTkkP2vGyJqrSlFVqDlvDJ4diZ2/HV5a/4+trXABwbfoy+vn1Nxzvu6DgiUiMYWGcggcGBGEWj6bsKFSYf6yPWU922uslWuBzedt4m0ffj3MeIomi6HrXta1PXuS5HHx4FKsIO23u2517GPbJKsqhuV53BdQYztN5Qmrk1Mw2gRVFk/sX5rAxZyUC/gSgVSoKeBpFVkoVaoaadVzs6eXViR+QO5Ll5rN2ewca5HTmUdcW0LxGRVh6t+KHrDzwves6ioEXE5caZLHH/0/Dcnrt7EpwUbNINVTGvQl5ZHvWd63N9/HVszW3/0XauJl6l446OHB9xnL57+yIgkDc/763rn35ymt57enN53OVKGWDv8A7/Nt6R9f4J5s6VbG5PnPjLRRQyBfsGS0FPvff05nnh8zcuZ6Oy4dCQQyzvvJwVN1bQc3dPckpyTO9720mD5b2D9pJdkk2jTY34POhzSnWlb9zefwpBEAjwCGDz+5tJn5vOzv47ERAYe3QsVX+oyocnPiT0WSj/Vv3ZulprnC2c+fDEh2QUZ3Bm1Jm/LDJSClIY8ccIutTowpcdvqz8pl4vZU88eCCJwP+myADJjjA2KxZ7tT0Psh8w+pGK47dq42rtiihKPu+uVq4MrTf0tXW97Lz4rvN3bLi1gdYerVHIFCSWpSNDkJKPRcgpzaF37d5MbzGd1IJU5l+Yj8cqD2acmUFDl4aETAghbFIYw/2HY9aoKYwZA0uWkJuVzNzzc/Fd50tuaS7D6w0n+qNo+tTuQ489Pfm+QQHNPoSL9S2R6/Q0PnGbzOJM3KzdsDW3RUDA16GChlduTSsiFZTb721nbIOxrOiyAhuVDXui9xCVEUVf376mDpJSrgSkH1d7c3tkggwXSxdkLx8Pj3Ie8c31b1gXvo6ojChqVKnF8EgYatNauj62XtSyr1WpyCgPtEsvTsfRwtH0+qxzs3Bf5c6NZzco0ZXQdHNTFl5cyO9RvxOeGk5eaR4dq3ekc/XOFOuK0Rq0bOi1wTRwcbF0MX0XZMh44mWFDFizbgwl82ZJ+TfBwbBjB9y8aSoy7icV8vmuJOxpgVZjjj0taGjYgI3YgCJtESmFKQCEPw9/4+DUzEzF3vpStgQiJhHtr3d+ZcD+Acy/OP+19cpEqfNz/8VjLBQWWCgsKrlUNa7amF0DdrG6+2rszSUXs6ZVm6KSS3oYR7UjW/ttpYdnZ9omSQJt7+elVDGqpE/m5b1XCTLQyaWsjKkOPUi3kzO1L2xtAt+eN0phhMLWl8kG0jmUa32S5Fv+ssiwU9kx0G8gZjJp9rj8eK3MJN58+XnJBBlHhx+loUtDjKKRjbc3Ihfk1MyBkr49uHx+M4hgIShpPM+GM5d/ZU8biWs+O2C2lBRelE56cTpF2iJ6+/Q2Dcxkchk/BIhY5hUT/cojY1dDWNrWgMIgBZWBVNR523mjVqixUloxO2A263quY3CdwcgFOd523myxk+h+7w2dT3Xb6pTqSwlLDTN9BgBJBUkvr5OIk4UTjpaOVLOpho3KplKRoZAp8LL15IC2H4dWJOCj9mDLuol82rGM/SMOI5fJaeLahEtjL3E77TZXkq6gM+oQkHQh7tbu3Mu4R5PNTQDQGDQM9htMia6EsNQwzGRmbIv1IzqxJ/7O/pjrYFoE6GUgiCKRD69S26E2FgoLqUA3ak3FfV5ZHs8KnmFhZsnlHQL9rmeajrm+c32MopGZZ2dirbLm6PCjZJVkMerwKH4M+dFUZHjbefN+7Qp3O4BBdQbxIPsBQ+oOobZDbdys3fjswmfMOTcHo2jkUsIlNtzawOL2i3n66VOip0abdFR2KjsS8hPYGbWT6KxotAYtHjYeOFs4S0Vn7mNTkQEwwn8EdZ3qEpoays4BOwkaG0T3mt3ZEbmDFr+1oMbaGkw/NZ3lwcuZdmoaRx5Kzo2HHx7mWuI1JjWZxKWxl8idn8vx4ceJzormUc4j0koz6TwOrhZLFMjAzoG8WPCCzX02k16UTpttbdgVtYvt/bezsfdGLj69iO86X2adnfWaVutNEEWRXZG7uJJwxXQvO6gd0Bq0yAQZU5pO+cdFBsDKkJX4O/uTnC9ZNQuCYAoF/Dv0rNWTBi4NCAwO/Mf7eod3+G/gXUfjn6JdO0nMe+PG3y72vPA5LX9riZOFE9fGX8NKafWXy158epHhh4ZjpbTi8LDDJg53081NuTX5Fv7O/qy4sYJvr3+Lh40HG3tvfI1q8t9CQl6CKZsj+UUyfo5+pmwOV2vX/9p+RFHEb50fj3MfV7ZOfQVag5YO2zuQWpDKnSl3cLRw/PNGJKvVHTvg1Cno9vZrMu/CPFaGrMTJwonlnZdjPuNT6iWVkB8cRJm+jB67ezC07lD2D9n/xvX1Bj2+6315mleRYqyQKTAYDciNIv4F5tyvopNsUIsysVZZM7nJZKa3mP5GHm9Z/CN+Hl+P7zqboVcqGO4/nN/u/EbE5AiauTXjo1MfsfHWRmxUNjhbOKMQ5DRKE9kb+Jgb9e1YPKMeEdmRFGuLsVfbk1NaUayW06dA0gXE58bzQvMCC4UF1iprckpzTANDpUxJe6/2BCUEcfUDybKx155exH8Sj5etFz4/+5CQn0D/2v15kPOA+Lx49EY9MhHkokQdK4dSppTa+KIBhaDAiBFblZQKXj4IlyGjmXszrJXWFGmLiHgegVKmrDRgs1fbk1+Wb7JMXd97PQEeAdSyr8XlhMv03SfNqDZ1bcqxgQexd63Bgi4SNejr+jOpsvgbSlQSNSwmM4Y7aXeIuFUfRVmdt6YjA5W0EOXH7GTpRD3HOlxKukKvJwKnfSpyU/r79ufII2lQIxfkeFfxJi43DnMd9DKvT5hFrokm8WfO/9B6Q5nYeCKDDwymmm01YrNimdBoAtvubcNaZW1yL3IuAhudDLtiIwMfwuamkFjFdBIVf8swFQotzWtitLcn4nlExftCxd82YoPKCfOyLRTIKrQ+SrmSGnY1eJjz0HSeMkG6DulF6XzQ8AO2R27nvervmXJSyq9VwqcJ7Ivex8Yjn5NorcdaK3B6l8i5mvBNR6hpU5336/Tnjwd/8KzgmWn2uJyC93cw18Gzn6TCYnaPivNx1CrINtPjWAJl5gqK5Hp29tuBhdKSexn3+DHkR5OOolRfaupIbT4OLVOg6XQFVa2qklea9xrVB6SuXuiEUOzUdpyPP8+c83OIyYoxdai29dtGuxJHpuwZQZBTEWMM/nwwciXdD77PoraLWNppKX329CGvLI9FbRfRZ28f03nbm9sT83EMLpYuDDs0jIOxByvtW0Cgc43O3Ei+gXce7C/qge+KLaR0aorL/QT6D4cBD2HSHfhqUSs2WMZSoCmoVPiWd5ymN5/Oz3vy4MoViRZsbk7zX5tjobDgWvI1Dg45yOC6gzkXd46eu3siIlLdtjqJLxI5M+rMa7TgUl0pTiudWNRuER28OtBuWzsG1hnI4QeH6efXj5BnITRwacDZUWdNnfv90fsZ/ofUNV7acSl+Dn7si9nH8UfHK7lgAbhZudG6WmsuJV4yUQ5tVbYUagv5qv1XzG0zl+DkYLbf287FpxfJKskynW89p3qMrD+SUl0pS64uYWrTqXSo3oGjD49y8vFJinXFVDGqmHTbyIBvj9DUvyvWgdb82O1HU+aEzqBjb/Revrv+HY9yHtGtZjfmtppLeGo4K25IxiXz28zn04BP32jBG58bz+QTk7mcWDlwsJlbMza/v5kmm5q8sYv+V4jNiqXehnps77edDREbiHgeQS+fXmQUZxAxOeKt65drDm9NvkVTt6b/aJ/v8A7/W7wrNP4pjh+Hfv2kQqN1679dNDI9krbb2tKxekeOhNPHkgAAIABJREFUDjv6t8KupPwkBh0YRHRmNL/0+YWO1Tvivcabc6PPmYqKR9mPmHZqGpcTLzOy/kh+6vbTvxbMVz4Lte3eNg4/OIzOoKNHrR5MaDyBPrX7mGa//6f4+urXfHVFcjUpFwq/CZ+c+YRfbv1C8IRgWri3qPzmkiWwdCns3Cl1Bv4GeqOeLy9/SWBwIA5qB2I/jsXZ0pmSebMp3LoB90/0uFm7kV2SzaTGk1jba+1r28gpyeHDkx9y+IHk6lE+SJEJMgLcA2inrs33j7cjCiBDwM3GncvjLlPL/vVUWYPRwO77u/ni0hekvUhlyj05i1ffYX/GJeZdmEfBwgK239vOlJNTsFZam4KYVoetZteAXexbMYaDZ6yZ3k3HgRplFL2ceFXKlTRyaWTidle3rU5KYQoGo4Ga9jWJy5U0HeX8+D+fB0AbjzacHHWSUl0pbj+58cfQPxhYZyDBycG029ZOEvaOu4RGryHieQRXj6ziyu3DXKoldTEszCyoZlONxzmPTQOccu56OcqtLm1VtqYBXzlcLF1o7tYca5U1p56cokBT8MaBp4PawVRUeZlXZcUNC5JynpJhK+enFgbkMknI++cQRZUeAgwnEOR/rUuwUlhRaih9baDzKlQyJRqDVrKrlVc8OtUKNXqjnlr2tVjWaRljD46kBC3z603hi/d/YMnVJfwY+mOlbXnbeZP8IplO3p3wqeJjClqz1MCodEeql5qTUJxCrBOEekihgmYGqWPxWufhz/SpVyBDRvUcI8m2Es2vXCcwJxhapUBgO0mfUA5XS1duTrrJjLMzOP7oONZKawxGgylssZz6JRfkNHdrzs3Um5WOw7kYVEaBHJVIiYrXYCaYYau2RSmTrGhL9CVvpDm5WLpgq7LlSe4T03tyQc63FwxMiQCvOTJcXX1IfpFc6V4y10LZnx5TKpkKM4UZRdoilHIlo+uPprFrYzxsPOjeeybPmvuyeHAVjj08htagrbh/ZeaUGcsqWa/6VPHhdvptFDIFjmpH0ovTWdF+GfOu6uHbbxH9fNmxbDCzH62lQFOAh40Hj6Y/QqVQsTtqN6OPjMZKaUWZvsxU7CsEBY1dG7Nv8D4yijJou7VtJdes/r79WdNzDUXaIoYFNiXORsfaB9WZdDqdniNEgqppQafnzO/QOB1aToJ4B2jn0Y7rKdcBKen7wyYf8tPNnzjXcQtd35sk0QqnT8ftRzc+bPIhMdkxBD0N4v60+4SmhDL04FDTtfCx9+HxjMevf5jA0INDic+L5/aHt5l+ejrb7m0j8L1APj33KUq5kgcfPzBZgZfjo1Mfsfn2ZgyigVH1R5FWlMalBKlglSOnQdUGRKZHVroOKrkKvVGPr4MvD3MeVirabVW2dKvZje41u2NpZsnVpKscfniYzOJM7NX2CAim50ZDl4ZkFGVgLaiI+vwZ5ku+hQULAPDf4E8Hrw4ms5JyGIwGDsUe4pvr3xCdGU0Hrw580uITriVfY0PEBhwsHPiqw1dMbDwRM7kZOoOOVTdXsfjyYtNxVrerTlxuHGYyM4oWFfG88Dnea7w5P/o8XWt2feO1fRWTjk/iTNwZnn7yFJvlNnjZevF91+8ZsH8AkVMj/5KyXQ69UY/vOolCe2DIgb9d9h3e4b+Fd9Spf4o+fcDXF1aufOuiDas25OCQg5x5coZPz376tzQkLzsvgicEM7rBaMYfG883174BqESn8nX0JWhsEDv67+Bc3Dn81vux+fbm/ziU6p9AJsjoUqMLuwfuJm1OGut6rSOrJItBBwbh/pM7s87OIioj6n+07V2Ru/jqylcs7bgUO3M708D9Vey9v5efw39mTY81rxcZv/0mFRmBgW8tMlIKUui0oxPf35Bsh3f032FKcbdwrYZzmYIeNXvwrOAZSrnSZAX7Z1yIv0D9jfU58+QMUDFr37d2X8Y1HEdISggrnmynvl1tzAzQOkuNaNDTZWcXHmRVuN2Iosi5uHM03dyUcUfH0cK9BTFjQll3xQKXHzcRlhpGY9fGhD4LZdqpaQgIDPAbgNpMTXZpNtXtqvMo+xHX/K0R793DRVEFpQG8ysxRCQrae7bHKBpNHbTEF4kmYWpCXgKBnQN5MuMJzd2bo1aoWdR2EbUdapuO70bKDZy+d2LU4VFUMa9ickdq69kWN2s3Lide5sQjyea2rWdbPv/wdy6csGOptg1qhZrPWn/2WkK6gMCslrPY3m87+wbtY1mnZagVauzV9njZeVWip2QUZ3A67jR7o/eaZvLLaSUAzao2Y3KTyagVFYYBSaXpDG/6lPnd4KeWBlOQX2phKiIiai2sulmFou+geWI8gvHV1GWRYiEegCJ9kanIKKcHAVz/4Dqruq8y/b+qlSueKmf0gojsT1+/Un0pOqOOB9kPGHxwMCVIwugVMZuwXWHLzsidlc4XICE/AQszC8JjL7IzZCMYwT9bjn0pbPbKZpFfCjsawmOHivpBVz5nIYCNsQENDKtppT9Bu5LV2IgN+HNenkKQKCrmWiOF5uBZQCXK1Y9tpTC3by7DmV3QPlF63d/Znyknp3D80XHTthwtHFHIFJXcogyiwVRkyERQvGwCNUqDdmlK6ZhfPvrU8orPTSfqyC7JpkBTYOocWZhZYKW04rNWn+Fp44mD2oHc0lyJt/9ScG2hsMAgGtjQTEo3Hx5l5FHOI9RmatN9YaaHMjPwk7tw61FH/jggwzVXg6GslGn23dHqtbhYudCtZjdioy+jfprMYsMFYjJj+Lzd55U6p3PazOHqB1fxspU6kgWaAm6n38bSzBJ3a3cyijNY4TCczz49CN9+CwsXIty+wwf9lzCmwRiMopGkF0n039+fpPwkutToIt1r2iL0Rj1VzKswqv4oQieFklmcie86X1pvbY0Ro+mz6+/bn5CUEGr/XJvt97YTesKZsQ+UfFg3nhE/tCLEW7ohxjaZwJChkG0BJ/eAbSmmIgOgUFvInfQ7dPLuxKjw+aSOGwiBgeiKCkgvSsfD1oNfev+C2kzN+3vfZ8ShEQyrNwxHtXQ95repyNd5FYPqDOJO2h0S8xMJ7ByIvdqeVWGrkAky5DI5Qw4OIaOosiXw/DbzcbJ0QkBg9/3dxOXGsaP/DhSCgupVqnNnyh2OjZCcsfrW7ouLpQsagwaDaCA2OxajaDR9T63MpMT2Iw+PsPv+bqIyo7A1t8XH3kfSL5TmVco2SSlIIaski70RnphXrQafVnQ06zjV4UH2A16FXCZnmP8wIqdGcnTYUYq0RQw6OIiw1DA29t5IF+8ufHTqI+ptqMfy4OU03dyU+RfnozVo8bbzNnVwfex9JIc2QW76jXeweN3A5E1IK0xjV9QuqcBJuobWoGVQ3UH09umNi6ULW+++HoT7KhQyBfNaz+NQ7CGTCP8d3uHfxrtC459CJoM5c+DYMXj89i9oj1o9WN9rPesi1rE27PVZ8j/DXGHOb31/Y3OfzeyK2oWAYJqBLocgCIxtOJaH0x8ywG8AU05Ood22dkRnRv+vTuvvYGdux9RmUwmbFEb0tGjGNRzHnug9NPylIU03N2V9+HpTO/ttuJJ4hYnHJzKh0QQWt19MX9++/PHgj9eWi8mMYdKJSYyqP4qpzaZWfvPkSUk8/dFHMP+vf/gATj0+RaNfGpGYn0gHrw742PtUdqxycMBQWkx8Xhz+zv4UaAo4+fgkaYWSNWOZvoxZZ2fR7fduqM2kLoBCUKA1alHKlJx8cpLfo36nhZtUCM3sMJ+THTdzq0oJtZ8WYClT0WZrG4KTg7mbdpduv3ejx+4eWKusCZkQwqGhh6hdswUsXAi//EL63WB8HXzps7cPRtHIt+99y9n4s4zwH8GRB0cY13Ac2+5tY1T9UVh41uBmZ19yLaB6WhlGvZ7gpGvcSrtlEklbK61xUDuwoM0CDKKBZdeW0Wt3LyLTI7k49iLfdv7W9AN3cPBBlnRcgqetJ5cTL5NXlkdgcCAD9w9k7/299K3dF3O5OROPT6xIx1arYdw4Wp+KolRfajIW6OzdmZAJIcxtNRejaGR12Go+OPYBk05M4krSFfyd/dEZdUROiaT081LS5qQRPF4yTygvyOXIsVHaUKIrMRUut9Jv8eudX01aCgAEaOfRljZZaladBrnh5ShblEIPS5UwKyAP9efwu/dWjDIq6RIQwN7trmlzzpbOpq5LOXr+3pOI1AiUciVjG4xFY9DwTJuFrUbqMHSzbGAqhsphLjenZq70avnAwtfBl6qWVU3LyA3ScRaVFVKggmIVIINoRwPP/hR1o5dBqbkco6zyPux1DWhs2Ii9sQUqnJEpW9DIuBEboWJG00JpwcgosNZAlgWkW0lWu7x0nwLJCrXnaFjQBb68Cte3gtm5C5yNO4tCpkAhKLAzt2NE/REs67QMGTK6eVemKqq10DT1ZadEgPO1YI+vRjonQeq2lRoqa8wmNZ5EU7emaA1aVHIVMkFGkbaIlaErSS5IJqc0B51R9zKgUGCE/wjmt50vpZ47WXCpviUzwuGrdl+iN+hNHQ2dQtrnQ30GLf2uM2ioEQ87T6KOu7P8s3OsumHN9tOB+K7z5dHR3wBYuOAUEZMi+O3Ob2SVZDGs7jDmtZ7HihsrmHdhHlGZUdSsUtNUhBTrinmen8yh+3X47NODkgA5PBy+/hqUSsJTw1kXsY5lnZZxYsQJojOjqbOuDvU2VJh6tPFoQ15ZHhMaT+DIgyOkFqRW0u9cHHsRgJNPTvLr+7+yoO0CDl5ej+ppMuuO69nVeBnHsoMp1BZS17EuMpmMfDWMGm+DczEcOPjyHgMWtl0IwOXEy6QUpCATZAxrloAuK520X39CRMTDxgMHCwc+a/UZd9PvUtuhNovaLiK7NBuVXEVgcCB5pRUOWX9GL59eKOVKjjw4grXKmnENx5GYn8jQekMJmRBCamEqbba2IS4njtBnoYw6PAqfn33IK81DIVNQy74WyS+SuZRwCb2oJyEvgY0RGzn68KjkGvb4ONkl2QS4B9C3dl+UciVyQW76nhbpipALcuxUdoSmhBIYHMiKGyu4m36X97zfY++gveTNz+PyuMu0dG9JTqkUVDjA9TpzZvtzM/ue6dlTx/HNhUY5ZIKMfn79iJgcwZlRZ5AJMiadmERMVgzfvvctWoOWhUELic6UtChtq7XlSe4TWldrTdTUKHwcfDCIBsJTw00dFgf1Pys01oWvQylXMqXZFH4O/xmAWS0l162xDceyK2oXGr3mLVuBcY3G4WLlYpqAe4d3+Lfxjjr1n6CsDKpXh/794Zdf/tEq8y7M44eQHzgy7Mg/8q8OTw2n1ZZWqBVqTo48+ZfuEFcTrzL11FTicuP4rPVnfNH+i3/dMQokzurpJ6fZdm8bp56cQibI6O/XnwmNJtClRpc30sQeZD2g9dbWNHNrxumRpzGTm3H80XH67etH7EexJhvFQk0hzX9tjkKmIGxSWGXOa1iY5DDVvbuUa/IX7l86g45FQYv4IfQH+tTuw3fvfUfjTY1Z1X0VM1rOqFjw1Cm2f9GH8f3h1uRbzD4/m7CUMBwsHPi+y/cEBgcSlxtHS4+WXEuSUtrLqUC2SlteaF/w7XvfsrDtQqaenMq2e9u4NO4SpU8f0TdoEm2zLCho6MutrEiMohE/Rz9WdFnB+7Xfr2wtWFqKwacWOxyfs3C0M9kl2fT26c3QukMZc3QMyzou48srX/Jb39+YeHyi1JnIfcL2u9slWsFLCs2ghzL+8DPStGpTcstySchPoKpVVZwtnZGJMiIzI01ZIQvaLuD289u0+K0FKrmKks9LTIeTXpRO913duZ95/zUqi7nCnKauTQkaGyQF+D14wIHBdRk2VJqRNopGEmcmmmh9D7Ie0H57e1wsXRhSdwihKaFcTbpKmb4Mc7k5jV0bU822GgICZ+LOvJao7GHjQVXLqtxKu4WnRk2mUIrCKNm3vkoRUupBKcpwltsw4G4Z7z0ow7YMHjlKg+jmjXoRHp+Bq25MhS7hZQbJnwuFxe0X81PoT5USpV/NSFDKlWj1WgTAXdOAKgpJ61AiS6ClfxE7Yr9EgzRoNJOZoRbMKNC/vMavUptEqRtgJTPHyc6dj1p8RKGmkMBr3+GfbqBHkQs7G8l49ucCi7/IwnhFczLurpShsb0R2JVA7l/LxUz3UaM0WHNWSrAObAfH/BV4VPGin28/IjMiCX0UxLCHcgZGGRgwAvRyqYugk7/h3F6i3B3ttddfmgc0d2uOSq4i5FmIaTknCyeODT9molmeH3MewEQ/6vQULu0ELl/mO1kIn1/+HDlyRIwYRRHXIkizlmhaelGPp001MgrT0Br1dI0XGR0J7xe7YVsGBXGxNNjUkKQXScxoMYPR9Uez+MpizsefRyVXsbP/Ttp4tqH9tvZkl2RTVFaAUQZ+WXDQaRr+C1eDUuJqlepKabK5CVZKK1OAZEhyCF12damkDWnp3pL0IknwXm7e0MW7C3lledxJuyM54+U8ws/Rj4T8BM51/52AkfORPXnCmgCBwAGOZJdko5Qr0Rg0yAQZa7qv4ff7v6MODuP8LknLM723dK0D3AO4mXrTlDpdpC1idn5dBlx6TpsBudyfdh+9UU/H7R2xUlqRXZJNHcc63Mu4x4FBB5h6eirN3ZpzauSpNz7j39/7PnmleewcsJMmm5pgrbKmWFvMw+kPySnJodOOTiZtWM0qNfmo+UeMbzSe8/HnGf7HcFp5tCI0JbQSnbOuU11sVbbcfn6bJ588wdPWE5CSrttsaUMth1o4qB24nnT9NWtle7U9zhaSMUZmSSYWZha85/0e99LuAZD+IgU3jZIyBzsySzKpZlONwXUHSy5bV74ib37ePwq3FUWRK4lXmHl2JvczKzRO5RRVAYHPWn/G8i7LEQSBIQeGcOzRMea1mSdpSA6PpGBBgSnE969QpC3Cc5UnHzT6gJ+6/4TdcjtUChUZc6VO0cPsh9RZX4cDgw8wpN6Qtx739ze+54tLX5AwM0EKk32Hd/gXIV+yZMmS/68P4v8aKBSg0cDatfDhh2D5uvjrVXSu0ZnozGhW3FhB95rdcbN2+9vl3W3c2Xt/L3JBzoaIDVgprQjwCHjN97q6XXUmN5mMQqbg+xvf8/v93/Fz8HujLuC/CblMjp+jH8P9hzOl6RScLJw4F3+OVTdXsfXeVnJLc/G09cReLbnSZBRl0GlnJxzUDpwbfQ4LpVQMedp6svrmahwtHGnv1R5RFBlzZAx30+9ycezFygL0J0+gc2fw95c6Sso360QS8xPpvac3Rx4eYWXXlaztsZafw3/mTtoddg3YZUq3BtBkpzOoZDtda3RlZsf5XEq4hFKmpFRfyrZ721DJVfg7+3M9+ToyQYaIiN6o55OWn3BuzDmyS7LZcGsDYxqMYUi9IVxJvMLP4T+zoHcgrZU1WJlzgpTidFQyJQbRyIK2CxjfaPzr/uVmZtzTJPOTPIxYq1I87Ty5MOYCM87MoLZDbUJTQrFUWnL04VE0Bg1BCUEUaArILXvZSRLA3rwK3eS+PNWkU+d+GuO7zqNYYSSzKJP04nQySzLRi3p87H04EHsAc4U5S68sRalQUqgp5Iv2X5iOy0pphYOFAwdjD/J9l+95nPPYpJMQEEh8kcjKkJWEp4azI/U0y93isdTL0AgG5raeW6mYdrJ0oq1nW34O/5nnhc9p69kWa6U1cblx6EU9KQUpxGTFEJMVg8agMdGtGrk04t7UeyzusJgPDY24GnaANKGYYiVYqCwopaLjMLbBWKrIrfj40DMslRZoSwo5XUPP9saS09JxXyhRwZPcJ5SQRqbsLKmyfWTIzqIVsvB38sfBQgrukwkyriRdeW3Q4mTpZMokkQty5MgxYMDG2IA6so1Y4IECa8xFV7IzvMgWwtEIGSgMoBeMaI26yoNwAbwtqpGvK8BGZcOkppO5/jwEo2hkdIPR/Bq2Hov0LE7drMmXPdXEvXjKq6hp/BgFlQcnAjLMMKfU8jx9Hws8s9BxtA4gQtViKUvjL21rX76ebgXbG0O4Byy7DHOCjaQY8thRFkrV6GSWXBLp/FRkRi/ItAYMYFS8ebs2KhuMotE0cBQQaFutLYWaQsoMZaZC9nnhc5ILkk3rLe2wlFtptzgQe4CYzBhmBsw0USjrOdXjQOwBbimzGfvYnCpp+QwRDqIxaDg89DB7Y/ZSJwsS7UAtV6ERpc+yRFeCVtTRzL05c3p8TX7SI5qEJFJaVohf2UpSjHmM9BlEljaXzy58hlKu5LPWnxGUEISLlQtLry2lrOQFiy6UcXiXjluecsLcRTZyi4d5T2hUtRH2ansWBi3kfPx5zo4+i7OlMxtvbWT4H8PRGrTUdaxLZonUEUwtTOWF5gUagwZ3G3d2DdjFN+99w8qQlfT06UlmSSYZxRk0d2uOs8KGH2/+RPckBe45OlRTPmK97gYG0WByzBMRuZZ0jdSCVJ7aGalTvxMTjiSSrYYID8gszpQKZKPWJAy/ocrAPr+MkGowofEEeu7uibedN9fGX+PQg0PEZsdSz6ke63uvp6lrU5ZeXUqZvsxEAfsztAYt68LXEfQ0CKVcSdDYIH698ysHYw6yNnwt2aXZ2ChtEASBbf224evoy/6Y/RyIPUDyi2SeFTwDJGcvbztvBAQez3hMX9++/HTzJ6rbVqdR1UZciL/AzsidPMx5SGJ+IulF6YxrNI4R/iMITQmlinkVPG09pdDbkkyKdcXIBTkOagficuLIKs2iY2QBa8/C5mYCNR1q8dv7vyETZByIOcDJJycB6bfE3doddxv3v82cyCjO4Jvr33A58TIqucpEZ9Yb9diZ2+Fk4cTZuLPE58XTxLUJRx8epVhXTGphKnUc63Dh6QWWdVr21lyLX279wvFHx9k7WHKjXBmykv5+/RlYZyAgURsvPL1ATFYMoxuM/tttAdR3qc+68HVo9Bq61+r+1uXf4R3+N3hHnfpPMW2aVHCsW/ePFpcJMnYN2EV95/r02dOHpPykt67jYuVCW6+2zG41mznn5zDijxFvDF9TKVQs7rCYqGlRVLerTo/dPRjxxwiTveO/DRcrF+a0nkP0tGjCJoXRx6cP68LX4fOzDx22d2DTrU302dOHMn0Zp0edrmThpzZT08unF4cfSjqNtWFrORh70PQjZEJGBvToAY6OkiD/L9LZjz48SuNNjUkvSid4fDCzW0kZHZtub2JC4wmvzRhtzrtIig187TZSekGE2OxYkl4kUbNKTVIKU7ieLHGcO3p1xF5tzwC/AazpsQZzhTkruqzAWmnNR6c/wkxmxqGhh7BWWtNqSyvGRyzGTGGOmRHapArM9p/M3PNzmX1u9ht1NdPsQ7hUAxQGI8s7L2dR0CLCUsO4nnydB9kPTBzjDxp+QOrsVCY2noiFwsJk0dm7dh9O1tRT396PJ/YwcfxadrpMpcxQhs6gQ2PQ0NS1KfG58UxsPJGFQQt5mPOQqU2nojPqKvHuQbJdBUlrFPdJHHsH7cVaaY3OqMPO3A6DaOBywmXOxZ8DQCsYTQF6W+5s4fOgz+m/rz8+P/vQbls7inXFxGTF8HP4z2gMGmo71KaaTTWODjtKDbsaOKgdqO9cH7lMjkqh4l7GPaqt8qD9Ahd6r2lJrEUxmVZgkAvkiaXYqeywNJOK/J61erDweU2mR8Ce3RpuXqtNQSBcLBsqjX0FXuv0lQ9wRUSis6JNVInyz0aGDDerigmBP3+fDKIBjVG6Xl7ihJelkTTDKyBHQMDLMAEAp1IBlUHAvgSsS6lEWUookQZWBdoCPmz6ITJBhruNO0MPDSUqJ5ZPYm1pPDCL6NzXaRwCAkXEI74iXBcxUOVFHB7J+ezzLuaaFzRLhRtb4Znt6064b8TL47vrCq0nwfDBMO0WPPgZGjw3MLkvtJkID8p19fKKY1LIFCZLZJA0DTYqG0AqYF2sXAh+FvxGLZTUjRCxM7fDxtyGc6PP4aB2wCAaSH6RbPps5DI5nwZ8CgL83MyI8egRzJ5n0NqjNSP+GAFAjqcjogxK/1S8/vr+rxwZdgRzhTn9giaxrqEGpRFm9YA0tQGvfNjz5A8eRF3id9+F3J8Sybw285jfdj5rw9di9SSZC6tzmXa1BN2ieZzcVEjXGpKA92DsQfzW+dFvbz9+DP2RZZ2W4WrlyuCDg/n49Meo5CoauDQgMT+RajbVKp33mAZjeDxdGlCnFKQQnxfPwDoDCZ8UjoPageDo02xbEkmdfCXdh2iIcNAyWTyGo9pRmrR6+XnJkEl20EYtX3X4ihFrLqGd8TFrzwl0iwOtUYv8peNasa7YRNdZFQBKHQzcNwAHtYOpQCrXE5WLi7vU6MLKritZcWMF+6Nfd+Yrt719mP2QmS1nMuPMDPLK8niY85AOXh24MOYCizssxkZlQ++9vQnYEsCKG9Iz9Puu3+NiKXVB57aaS0J+Anlleey5vwcrpRVNXJvwxeUvcFrpRK89vbiUcIlJjSexuN1iSvWluFq5Mqf1HG5OuolSrqRYV8ztD29zedxlJjaeiJu1G2lFaab77nINWNTbHJlcwd30u/Tf35+skix+7PYjB4dIjl9n487SemtrvFZ7MevsLEKfhVZ6douiyJY7W/Bb58eJRycQEGjg0sAk6q5uV538snxkgowR/iO4GC9Z4kZlREk2xun3SMhPwMHC4a1Fht6oZ9XNVQzzH4anrafJVGJWwKxKy01oNIHz8edJfpH8ps1Ugo3Kho+bf8ym25sq6UHf4R3+DbwrNP5T2NvDxImwfj2UlLx9eaRB9fERx7Ews6D3nt68KPt7C0cHtQP5Zfl83/V7Dgw+wMnHJwn4LYAnOU/euHxth9pcHHORnf13cvHpRfzW+bHp1qZ/RSz+JgiCQAv3Fmzss5G0OWnsHrgbM5kZU09N5VbaLVq4tSD5RfJrovhyEeGh2EPMvTCXOa3mMKjuoIoFioqgd28oLYWzZ98RCIK7AAAgAElEQVSY+q3Ra5h5ZiYD9g+gU/VO3J1yl5YeLQFJVJ5TkmOyKixHsbaYb2J+YWwk1Cm14mDMQQ7FHqJEW0JDl4bE58Wblg1wD6C2Q23K9GWs7rHa9LqtuS0bem/g5OOT7Ivex6nHpyjVlZJelI69hT0JsxI4230XIU4a7p/fxU8tvmT1zdUMPzS8khPTsqvLCE+/hShI9J/hfwxn0+1NqBVq2lRrg63KlpktZ2JhZsGanmtws3bj1JNTdK7RGaNopKpVVd6v/T7RmdE8s5MR6wwZ/t649xrOgNsl6Iw6BvoN5HbabapaVyU4OVhy+BFFTj05BfAaZammfU2slFbcS7+HQiZZ7y7tuBQzmRnu1u7ojXqKdEU0c21GQ+cGEu9fhMWXFzPpxCR+CP2B6Mxomrk1Y2PvjYRMCGHf4H3ojZLD19KOS3lW8IyPT3+MQTSwvtd67mfeZ22PtUSPv0UAHuiMeq6rMzldGzLV0oDa2dKZ7rW6k6/JRxRFGmYraDX2c7ot2UmyLRhkQE4OiQc2M8DmDD19erGt77bXMmi8bSUHnPLBzaswYuR5UeUcnHJ6lUquwtLMErkgx4qalahL0nLS64iQY2OG3FxNjiUUq//6Ubv0ylKMopGB3hLPxVILM1rlkqt5MydeRCRft/XlvypnYVyz30IpepQG6JgAIb/Bzy0krQdCxXn8FeTI6K+Vjr/TU7jrBs0/hI/HOvBBJCSvEVh4TRIb9/ftj5nMjHbV2lWYALwcNFWzroaZzMzEQy/SFpkKtledvexUdlS1lvQrlmaWzDk/h8abGpPyIgW1Qs3KkJW8t+M9nuY+RRRFqphL3r6/+mspVBiZeguuJV+j5CU9rV7V+ox7oGLrcdnLayTywbEPOBN3hqCxQYRNCuO95ypkIlyuLl0Xg5sr28yHE3vMg1EjApHXqUvR8q+5dv8UXi8Ecg1F5KiMpF89hfXXK1Co1Jwfc555redhFI0IgsCJx9KA89bzWzTY2ICgp0HUd66P2kxNRlEGJfqSSqLoOo512BG5g5lnZ5Jfls+VxCsAtPdqj9pMTXPbOnR4bobWoMHoLOV3tJ8A93WplBnKsDSzZFCdQaZ7AiT3pa+vfc03175B/uNPyHr05PgRc+pkSgVGeSGYVZJFVcuqGAQRrQKMhQVcGHMBRwtH7jy/Q0xWDO7W7uyN3svFp5JeZFbALEbVH8X4Y+MrEspfYn/MfkREBEFK9U4pSGFy48m4Wrly4vEJuu7qyvyL8/Gx96GRSyNAoikeH3GcOa3m4G7tjlyQk1qYypIOSwCYdnIajisdCU8Np0BTwLB6w4iaGsWTGU9Y2W0lX7/3Nd+99x1Lry5ly50t1HWqS8jEEGxUNnTa0QmlXMlvfX/jyYwn1HWqi5etFz2MNZGLEOFQZrLU1hv1HH5wmNFHRjP04FCpMHRuwNa+W+nr25d9MfsqFR17o/fSaUcnJp2YhFE0IiIyrdk00grTCE8N59CQQyTMTCByaiQBHgHsjd6LIAh0rdGVtKI0bj+/bbpPyjv/f4c/Yv8gMT+Rua2kLKGTj09iYWbxmj3t0HpDsTCzYMe9HW/dJsDMgJnS8zdi/dsXfod3+F/gnUbjf4KEBKhVS6JQffzxP17tTVqFN2Hy8clEZkQSPlnKQojNimXA/gGkF6Wza8CuSsmsryKnJIf5F+ez5e4WWnm0YlOfTdR3qf+fnd9/AXPPz2XVzVUMrzec0JRQEvIT8LH3YXyj8YxtOBZ3G3cKNYU4fu+IuZk5DV0aEjQ2qOKa6HSSnXBwMFy7Bo0avbaP+Nx4hh0axv3M+/zY7Uc+bv5xpWTYJpub4G7tzsmRJyut993171hyZQl31ulYOaslOzVhWJhZmITUAAvaLKBHrR7039+f/LJ8Pm35Kat6rKq0HVEUabetHWGpYeiNegbXHUzXGl2ZenIq89vMJ7BLIFdu7qP3yZG0yVIxccQPjAueg3cVbwLcAzgXf460Ikl8bmlmyZzHDjRNExjc9jlLOy5l1c1VjKg/gmMPj9HZuzNb+m0htzQXp5VOTGs2jfUR62nv2Z4TI0/g+L2jiUoxu+WnqH/6ma8uGZg6zoG93sUMrDuIPdF7MIpGvGy9+Kn7T4z8YyQag+aNnuqtt7TGRmXDuIbjiMmK4WbKTYISgl77DOSCHIxGDILIt+2WolZbcz35uoniZa+2p2uNrnSr2Y0yfRnTT09naL2h7I/Zj5OFE6ETQ+mxuwcavYaqWjMiyp6i1IODzJI8MwPda3bn/NPzklYm8RqWSkuMhYV8dRU+vQnPnVTcG9yWg6lBzAyHqE1fMyf6R8zkZnhYexCTFVNJ3P1n+Nj7YK4w537m/X+U4fAq/olO4m34c55FMfFk67fy3PzNrm7lFrB9M+woLsonwrsBftoJyBUVmpNRYfc5VheeW0PcatCaQd2PwaEEct7A9CzXT3hrrUhQSl3TodEQ5QIFDpbkKHQYRCNu1m4kFyTTNF1g81GR2i/kbGwhY2VzHU0adie9MJ3IzEjTMW7pu4WBfgOp8r1UFJTTzcphaWZpyquwVlpTqC2UrofKBgGBQk3hm3UdyFAppOwKo2hk9RkYeR985qp4IdMwqM4gSYR85xgjF+zh5rT3mW04jVIh0SJdLF2o51SPrr9eYmwkeMyRLH9B6i7MCZhNw/giSn/dwGc5+5hxU0Qng8ZTYUDdgRwY/rqBxe6o3Yw5MgYRkRp2NXia/xSZIKOhS0MiMyJNJhICAg4WDmSXZGNvbs+ExhOoaV+TeRfmYaW0oo5jHbJLs4mcGgn37jF+eQCPnOXs/fgyQ65N59bzW6aCopFLI0bUH8H8i5IphquVK9OaTWPT7U0m97e2nm050H0Lrt0HkZ3zDL/RL954DyCCpR5CJobSwDuAJpuacDf9LhGTI1hwcQEPsh9wf9p97NX2lOpKabutLbmludyafIukF0l8c/UbU44MSAGeSS+kzr2fgx9xeXF0r9GdfUP2YaW0QhRFFgUtYvmN5cxtNZdJTSbht96Ptp5tTRMh0mGJNHRpyB9D/6Db791oU60NOwfsrHzoosjHpz9m8+3NnBhxgp4+Pckvy6ffvn6Ep4azf/B+U+bFrfdP0LDVAJg9m+R5U9gXvY9DsYe4m37XJMQvz4spL4Y9bT3pUbMHNarUID43nr0xeynSFpnuc39nf9p5tmPT7U20qdaG3wf+btKSlONh9kMCgwPZHbUbwGS/LQgCNarUIPaj2L8cC4iiSPNfm2NnbsfFsRcp0hZhHWhtsht/FROPTeRS4iXiP4lHJrx9HnnG6Rnsjd5L0qdJb8wBeYd3+G/gXaHxP8Xw4fwf9t4zLIqzff//zBaWBaSDoICCYhd7x4a9966xd2NMTIxJjCUxpqiJGhv23nsBFXsXK01RelGK9LrLlvm9GFklYpLn+T7//yvP4+DwcHdmdua+Z3eu676u8zy5f19SoPoAMbk8XIm7Qrc93fikwSds7rO53LLp10Ffc+TZEWJmv11Zz9XkMu7kOE5EnmBB2wUs7rD4b/05ridcZ+qZqURnRfNlqy/5vv33/7+QxQHW31/PzICZrOm+hk9bfIpRNHIt/hrbn2znyNMjaA1aulXrxic+nzArcBZ52jwS5iS85WWIolQ12r0bAgOh8/s9wYciDjHp1CScLZ05OPjge4HyjYQbtNvRrowfCUB2cTaeqz3pWLUjN56cJEstPbrfdbX+o+sfzGk1RyKqbm7G09dPERDYNWAXg+sMBuBRyiPmBc3jUtwl5IKc7tW7mxKaFbdX8FXQV+wesJshdYaw/sJS5t1dioVBIN9MeoCWSjOWcj9OjzhN7yxHls1rxY+dlWzsu5lxJ8exoecGpgdM587EO7R0a8mB8AOMODqCkfVGEhAVQEWrikTOiqTe+npEvI7Aw8aDpNwkenr35EjVeRgmjKNxt3isKnqQoRZJzEtEKVMSOSvSpARWuUJl5rWZR3phOk9fPyXidQRRmW+9C1ytXDGKRtIK03C3dmfPgD0cizzGuuB1GEQDAgJG0Ug3i/rsmXUZRwtHdAYdwS+DOR9znvMx57n/8j4iIo4WEolVLkh+FyIir/JfoTIK9IoUGaJuQq95m6FadeptqEdibiIrOq+gk1cnWmxpzjRjY6xuPyLFXMfVqpJxnVjOIn2pepS9uT3uNu6EpL1dgf2rZ4NCpsBoNJYJbGXI6FuzLyeen+BDqKbuhFv+D2+OKJeqC6LIY8U08oSwD+5XCmvRh4aGDab2q9KqxBP5dPKE8pONChoYHCHxKERBcgAX5XIaJxm47w5VsiHRFuqnwhN/8JkOT52hU7IZGYoSvrgLYwaAk8qe19oslip7skAXQP+ncKIOyEQBhUxOiag38VFs1bbYmduZpGYRYaShNgt2xFIlVcuu5mYsa1FC0pvOSG97bzpU7UBGUYbJnRmkZEOlVJkS+tJ5sDKzorCkkM9bfc7V+Ks8SnlkEl6Y0XQGIK3ilvI43p0/7wx4sRZmDavAutr5HySe/3W/m1sh2UbgwtLxaAwa9oXtM31mG+cmDD2bwMQLGSRVNGdoHw1tE2B9cwiSj6fzxJ/A9S2H7ErcFfx2+ZmO7+Psg1qh5t6re2+vXZCzuMNiDkUcoqptVdys3Tjz4gzxc+JJyU9hZsBMTj4/iZedF3fqr8Z54Bi+6WXOwSYqYj+P50LMBbrt6fZmHGVYmlmRV5Jnus9vTbhFa/fWFOuKWXNvDT9e/5EiXREWSgv2tvmdvkMW8Mi2iGGT7ckyFJBdTrVMhYIlnZYy/9J8mldqzr3J90jOS8Zngw+dvDpxaPAhBEEgKjOKxv6NMWIsszhTCl8PX6Y3nY6fpx8uVi6subeGz859xs3xN2nj0QaQAuj5l+bz263fTOOukquoaFWRV/mvuDD6AiOPjiS1MJXPWnxGRcuKLLm2hFdzX71XBTAYDQw8NJBLsZLpaJNKTdDoNYw5PoajT48iCAKL2i9i4eYXcPGixPmr8LaV1igaOfb0GONOjqPEUFJmYUIpUyIX5GgMGtP8lvp5mCvMTclyS7eW/NrpV3yr+H4wwI/NjsVngw/FumKU8rd+NN723izrtIxBtQe9Fw9cjb9Kx50dTWaJv936ja8vfs2BQQcYVm/Ye59xK/EWvtt9ufTJJfw8/co9j3cRnxNP9TXVWdF1hdSS+BEf8f8BPiYa/y0ePoSmTeHQIRjyzyoP72Lnk52MOzmOZX7L+KbtN++9/9ut31h2Yxk583PKvG4Ujfx681e+u/wdXat1Zd+gfX9betXqtSy/vZyl15dSqUIl1vda/56z6/8aZ1+cpe+BvsxuPvu9CgBICdOhiENsf7KdO8l3TK+XSQgWLoQff5QSjdFliW3FumK+OP8FGx9uZFjdYWzqs8nUB/4uhhweQnh6OE9nPC3z4z3jzAz8H/qbFJvcjFYkywuwN7cnS5NlSo4Atj7ayqTTkzg/+jzbHm/jYMRBZjabSVZxFvvD91PbsTa/dP6F1IJUpp6ZStCYIPw8/QhJDWHKmSk8fPXQpApja2ZNviYP71wFP/b5gxG3P8dgNKCSq9AYNGR/nY2VmRWe31vTLU5GSo+2vNZk4mHjwfPM54ROC0UQBMYcH0NYWhhphWnUdqzN7aTbFH1XRIONDUxSxyq5itz5uRL5PT+fh1+MoKXrWZonQ0R1a/J0+TioHbBSWRGfE28aGycLJxq4NKCuU12yirPYHbqbK2OvMDNgJgk5CbRwa8Gr/Fc8m/kMrV6L60pX8kvyeTjlId1WN+O1sgQzMzWTG09mbuu5ZVb2soqzWHJtiSk5MUGU1HuWRFfGeuIMEqs5kpCTQHRWNMcjj5u8NN5NDCroZBTLjBgEMDOAh7kzUfp0VAbQ/kX9SCGT5FkzijJwsXIhtSCVXt69uJ10G0EQyNPk8W3bb/npxk+mpEk6LRGZIMPKzIo8bV4Z88Ht/bZjJjfjTtIddgVf/1uH7b+u5MPbpPY/roiIUmKh/8v6giCCaz68spa28U01o2lcCXoZrG0JHat25ErcFXxyVEy9pWVmb+gfKXCilsjLFWVX9QGTpKwBAyWGEhpUbEB0VvTboKpyS5LykkjJf0X9VJHDAVYUaQtoNA0cCiHXWokgCCalrtJg2MfZh9D0UA4MOsCY42NMPi8ALpYuxM2Jw1xhTkxWDONPjudO8h30Rj1qhZrKFSqTlJf0Hp8I4M5hWywLtCxb2Y99A/eRp80jsziTtbs/pduaACLmjMRffMCLLEmW3FwHuT9L/IytrVSYyc0oKCl4T2WtdMzt1HZUltuRnJeM1ljCkKfg6uqNQ5N2WNRpwHdXv6dQV0gFswoYjUZyS6TK2LsKSg7mDoxuMJrV91ZzfvR5zBXmtN/R3hR8x2fH47nGk+6pVhzcXkBRTS8OrJrEt7d/JGJ6BPU21qNIV0SXaLhaXY7uzT1Vz7ke4enhBE8KplnlZqbTzirOYsHlBWx8sBERkYEVmrPvu0fsr2Pk/uKpHIk8aiKmv3utpd+dkKkh+LhI/IzDEYcZemQoX7X+iiepT7iWcM00twICckHOt+2+ldqqTozHwcKBUyPeerAYjAZ8t/uSXZzN+l7rCYgK4HjkcWKzY03qTA5qB8Kmh2FrbkvLrS3R6DVMbzqdL85/gYjI+Ibj2R26m+VdlpcbEBfpivDb6Ud8Tjx3Jt7B086TopIi3Fe5k1WcxXfVxvPjmO0ImzfDpEnvzzMQlx2H3y4/cjW5ZGuy6VezHzcTb5ra//4KmSBDrVDTtFJTXmS+IKUghcoVKjO4zmCG1BlCK/dW7yUddr/aMb3pdOJz4tkfvh8ZMjztPInJjqF55eb82vnXMkqTvff1JiE3wfT732BjAyLSI9Au0Ja70CiKIrXX1aZJpSbsHbi33PP+Kz45/glX4q8QMzvm/2zI+xEfUR4+cjT+WzRpIsmtLl8urcD/BxjbcCwL2y3k28vflkusc1A7kKvNLaOrDtIP2zdtv+Hc6HPcf3Wfppua8jjl8Xv7l0KlULGg3QLCpofhZedFj709GH5kuMkr4n+NRymPGHZkGH1q9GFF1xXlbmNjbsPkJpNNBlBt3KQVrm57utHIvxGX5w+Tkoxff30vyXie8ZyWW1uy/cl2/Hv7s3/Q/nKTjMTcRI4/O86nzT81JRnBL4PpsqsLGx5uwIiRuk51qaRVkiNo6OTZyaTiNLHxRAAyijKYd3EenzT4hK7VurK2x1p83X1Zd38dx54dY3X31YROD6Vvzb50rdaVGg416H+gPxVXVKTxpsZEpEdgY26DUq7k3KhzZM7P5nKfIyRZGZh8aTYKUVKy0hl1uFVww9bclpORJ0k2K2bo/SLOxZ5nSB1JCnFK4ykIgoDBaOBc9DkauUik9y5eXdAatERlRvE0/SkAjV0aozVo+f3O73x/+XsGBY5jhM8L9DK4XQVydRIfI6M4w0RMXdB2AQ0qNkCj1zC/zXxWdV9lepj33NsTURS5P/k+M5rOIDIjksTcRGKzY8nR5IAoJc5DXTtRJQfmeY9jT9geqq2pxtjjYznx7ATzguZRb3091txbg1E0Ut22Gg68ra5FOsOw1i/p8ew7pp6ZyprgNZyNOitxOixdEEURyxIpyAbIVxrRy6XgWKsAhZ1EqBwdAmPCJfLl3FZz6VG9B1ZKSaoTpIDXXGHO2aizOKgd8LLzorZTbX64/oMpIFTIFMhlchq7NMYoGhnXYJz0uqAwjdfjlMeMrD+SJpWakCeEEqaYQ7gwkDDFHFOSUd2+uilY/ytKK2d/y/F4B6VmdwLQ+M1Xt0G6jFrFVvQsrMzqQKjxJhZyMVqQJS9hW2MpyQDJPwEBoqy0/NFKeu2xq/S92NoIHLRyXJRvFyw0Bg2NKjUidrakdhWSFlJm5Xpu67lEz45meL0RhLhAnUkaOk82o1IeJP0Buw/qqJ0sBaJNXZuS+mUqHtYehKaH0silEZ29OkttfojUdJCEH1ILU3Fd4cq3l75FKVfyMv8ljVwaUc2uGsX6YuJz48tNMgCW+uRQP6GYmtE5JOYmYmNug5edFyMGLWZ9M/gmfR9RWVFYmVkhF+S0SAYzI/gMnknTSk3JL8mng1Nz9j/0InINbD4JPVT1SicErUGLhY0jLWv4oTOTc7ahJYcsE1gatZVZ52ebfquzNdmmJAPeclF8nH2oYF6B1fdWS8T0R5t5kfkCe7U9v9/5nciMSM5EncEvFs7uMpBSw5XqvWLxj9hFsb6YpluaUqQr4jOvkRQry3gymngvr4telxkTe7U963utJ2Z2DI1cGnEsPxivOQIdY4xY/LmBbE32e2TiMmN6YylRmVHsfLKTTY82IRfkLL+9nKDYIJwtnJnTYg5+Vf0QEZnWbBpLOiyhhkMNBtUZxIWYC+RrpVY4rV7LhZgLuFu78zzzOZ12dWJP6B46e3YmcFSgyZ26WFdM3wN9yS/J59DgQ7zKf8Wd5DvYmNvQ1asr259sx8PGA/+H/uUa4FooLTg94jQVVBXovrc7mUWZ/HTjJ/K1+cxu/ik/xWxnylh79GM/bPLqaefJjfE3TKanNR1qolKoMJebY6m0RCbIyph5GkUjxbpiriVcI1+bj19VP+o41eFA+AF8t/vi8YcHnwV+xs3Em6bvfGFJIW7WbuwduBe5IMfJ0omUghTM5eYk5iTScWdHk9/R09dPORt1li9bfYkgSFXjiPQIajvV/mA3gyAITGw0kaNPj37Q9+Sv+LrN1yTnJZtauz7iI/7X+Jho/F/w5ZdS+9SNG/+87V+wuMNiRvuMZuyJsdxKvFXmvVIjtQ+Z4XWt1pWHUx5ip7aj9bbW7ArZVe52pfB28CZoTBB7Buzhctxlaq+rzcYHG/+nZPGk3CR67+tNHac60o/o37R1RWdFM/bEWAbWHsiNCTfo5NmJhhUbMjTGnPa/HWJtCxlDqgYTEBVgSrb2hO6hyaYmaPVagicHM6XJlA+qdWy4vwErMytG1h/J4YjDtNnahhZbWnAx7iICAr29exPxOgJvnTVHrlbkUtwlpjWRzAFL1b3mX5yPUTSypP0Sfr35K9X/rE5IWghjfMZgJjPjt1u/MfbEWGqurYnnak+iMqMo0hVR3a46lz+5TPbX2Tyf9dwkeVmsK6Ztk4F0rNaZHDMRjbGEL2tNwMrMipf5L9n+eDt/Bv+Jr4cv9/s1RaUTMWRnoZApTHKF91/dNwXNtipbvO29AeiyuwtGjMgEGY9TpcTz28vfsuXxFnI1uZjJzVDKldSzqYGLRknAXlAaBYKTpNaO2k61uTlBWlntsbcHO5/sZMeTHYCkZR88OZjaTrXp5NUJuSDnfPR5Fl1dhLuNOz/6/cjvd38n29WeWHswPLhPO4922Khs2BW6i7EHF3HuemWq5myivn4VdmIDclPiEArf+kpUMKtgUsQpnYNCXSEKZCjSXlM9CwrNYHzD8dSVuVK9dIHxjYrTs4xniIh0TbNke5wP+wbtY0XXFQSMCiDz60waVmxIw4oNJcWoN4ZW0dnRPHj1gLD0MBNBVoYMnVHHjCYzeJrxlFqOtbgcJ/VBu9m4mRzkd4TsMCV9pUmAGXJkRpAZJb8RpUwpKS39hXD+rjt4ATEmMncpRAxoZQll1JtKze5+vCgZ7JkbZLSLM+KYXsDeNS+poJdxw0va/tdTRTzZCKPedF7JDFK1o0EKfHEbHN/w4rOdpGBqYSfIMDeQqst69yR4kvqEeUHz3gxz2YpSUEwQSpmS2k61cTB3wK+qHxmKEl5aQ5Op4J4jtW2d2QvKew9ou72ticD99PVTNj3chFE0MqHhBJ5nPqeKTRXkgqQ6teruKqqsqkJsdiyPUh7RxLUJI+uNRBRFvO29TQaZpRAQCPCGaDuosf8CVVdXpcWWFnTa1Ym229tyoYacJVdgYmFN/uzxJwbRQMdEGdlqgU8TN/Jl6y+56/0bOxc/oV9gLP5NYXofgXPaCL5s9SUvZr1gXINxhKWHcTXhKm08fMkUC5k/9E/cHCRRgRqZoNaCmUFA/mbeSs39BAScLZ1xs3YDpET2yNMjTD49maziLI5FHqP2utoErv6Us3vhklsJ/ceYUblSDWKzpEQvqziLpq5N2ZcUwL3KYMDAgFoDGFl3pOn3IDS1/FY7TztPHk19xM5+O8myklNrFrRKgiHRKmY2K4df+GaaDz89TI21NRh3chwXYy9io7KhglkFmlVqRtycOIbXG86NxBvUdqzNlkdbeJTyCIABtQagNWhZeGUhI46OwHmFMz339eRRyiNaubVCLsgJHBWIfx9/ulfvzr6wfdRyrMWN8TdIyk2izbY2KOVKNvXexKGIQzSv3JzgV8Gs77me2OxYIjMiuZZwrdxrdbJ0InBUIFnFWXTc2ZFfbv3CwvYLWZ3vy87jsMMrlwFHBpfb7lUKN2s3dg/YDcBvtyVDO41BQyPXRhwbegwvOy/UCjXdqnWjlkMt0zOoQFfA1firBMUGkVaYRg37GrjbuLM/fD9tt7fF/Q93Zp2dhc6oQ61UIwgCcpkcvVFPwpwE5raeS6GuEKVMyZ2kOzTyb0Tf/X1xtnRmRH1JTe3Ys2MYRAMj6o744PkDjGkgVQv3h+//2+1KUde5Ln1r9uXXW79iML6/MPIRH/F/xcfWqf8LRBHq1wdPTzh9+j/eXavX0nVPVyLSI7g76a7JA6OUX/CumV15KNYVMyNgBjue7GBG0xn80f2Pfyx9ZhVn8XXQ12x5vIWWbi3Z1HvT/5ksnqfNw3ebL3naPO5NumcybCsPRboiWm1tRbGumPuT72NjbsOG+xvYs2kWN/eqKOnix8Z5fmwN3UFYephkOmfhTGh6KGN8xrC+13rTilN5KNYVU/n3ytR3rk9CbgIJuQk4qh3JKJYeyA5qBwpKCljWaRktFm1G/jSS0JP+VLevTqddnYiZHUNqQSpttrVhjM8YrsRfISU/hb41++Jp66it/ocAACAASURBVMnt5NsEvwzGKBqRIaN79e5MaDSBjp4d2fhgIwuvLCR4cjCNXRsDEJIaQpttbehevTut3Vsz98Jc1HJzSnQa2qQquVXJQEv3VtxKkpLNfQP3seDiN/jeTqZ1TgWuTevBt22/JSI9gnX313E3+S4yQUaJoaRM8Ffq+/E88zn1nesjE2TcnHCTc9Hn6LG3B/69/enl3QufjT60L3Jm8LFIRg0C22L4ZfBGpjadis6gY/Tx0RyKOIRMkOFi6ULX6l35xvcbEnKksVxybQl6o57UglQcLRzJLs5+rxWqVN3IQWhCXd1q3uUwiIiECdPJlYejVqolJRxBxvSm0+ni1QUblQ2fbhlIv3AdscoCgmopyVDqUMgUiAYD/Z+KHH1rsGyCUqZkfVwdJu19Bvn5YGZGUm4SAVEBzAiYgYXSwkTibOzamLC0MJPkp0E0IBNkWCgsKNAVULlCZTR6Dc0rNycwOlCSbRVkjKw3kr1he9EZdfzU8SdW3FlBtubNqqGRMss2DmoHboy/QUBUAF8GfVnuvfphjsY0k5GglZkVaIrJl+nxzoAoB5gaZU21uDzGhsAtdxg0HJw1ctLUBlYFQO9oqDtDckevngmhrlAvBV5VtmRggxFsebyFShUq8Sr/FX90/YPHqY84HXGcYl0hZiUieW8MEX3saxNajrwuSAGzmdyMYl3xey1HMmRUf21k0xlonwAhtez4qmk2QdWkNiStXks1+2r0r9WfpdeX4m3nTVxunKk33s7czjSuZnIz9EY9X7f+msUdF9N8c3NC0kJwt3bHUmlJelE6WcVZ1MiQZHxH/dCAoILQt+ckQugGSGzizVDfl/Ty7sWmP+O5/foxY8ZVIL84l6P7jdRTVqZbx5dkukktlDJBxqnhp+hVQ1ICyyzKxP+hP2vurSGt8K1ylJncDJ1Bh4usAilGqVq4+rYNm1uryFXLSCpOldyka/bjQswFkr9IJj4nnm8vfUtgdCAA64r8mLTyMsENnAhe8TmvDXm8zH/JoYhDH6zilAcXSxc8bD1wUDtgr7Z/+6+FA3bmdhyMOMjp56dBgKn34Zm3Hddts2nq2pQHKQ8+OM+/d/2dWc1ncTvpNu12tGN+m/nsCdtDpQqVOD/6PJ13deZl3ku+bPMll2IvERAVgIhIQ5eGDKg1gAG1BlDPuR4lhhIab2qMpdKSOxPvkF+Sj+tKV5Z0WMK8NvOIzY6l255u5GvzCRwVyIYHG9gVsgudUcfaHmsxV5gz4dQEvOy8iPo06oNciOvx1+mwswM2KhtSZsZh7tMI6tXj3B8zGXxoMPUr1uf0iNOmZLAURtHIxgcbmX9xPvkl+aYWx89afIa7tTvfXv6Wuk512T9ov0mCXW/Ucy3+Glsfb+Vq/FWTuMe7sFJa4WHjwauCV+RocrAzt2Nk/ZEmtafns55Tw6EGOZoc/rz3J3/c/YNcbS5G0YhckPNp80/5rt13jDgygotxF8n5OqeMVHx56H+gP0l5STyc8vAf7xuAu8l3abW1FUeHHjV5c3zER/yv8DHR+L9ixw4YPx4iIqBOnf9496ziLFptbYUoityZeAcHCweevn5K3fV1uTH+Br4evn+7vyiK+D/0Z3bgbJpWasqRoUf+0RQQpGRm6pmpvMh8wdxWc1nYfuF/pTqhM+jovb8395LvcXvibeo4fXgMRFFk/MnxHIo4xL1J90wJTvqjm8h822Ko5U3FWyGgViOKIocjDjPt7DRT0NHarTUTGk1gaN2h5TqpRmdFM/X0VC7HX0YhKGhftT1PUp8gCAKWSksSchNo7NKYXQN2se7+Oqou28DUJGdsEtMIfhlMiy0tuD/pPkMODyGlIAWtQYuLlQt52jyKdEU4qB3o5NWJzp6daeHWggWXF3DmxRl+7vQz89rMQ2/U02RTExQyBcGTg1HIFIDk8THg4ABAIlYr5UrWt17G0NNjKFKIXGu3gy+i/uRhykOTUk1znTO5uelEO8kwvKk8vcs3GN9wPMl5yQTFBiEg8GvnX2nj0YY229rwecvPWRu8lpjZMbTc2pL6zvUJHBWIIAgcf3acgYcGsqnWV8Tv/pNlzTT013oxfuwfXIy9yJZHW9AZdOhFfbnEWjOZmSlAt1BaUKgrLFsZE8FZXoHqleojT52MTFPzPQ5CvvwRz5RfcXnsZVptbUXDig15kfWCi8MDePX95/Q89BilswuK1X9iHDiAx48DOLV8MiurpVFYTh5dx7EOzzKe0eO1LWfXZfPLmqFsF57wIvOFaTV+QsMJRGZGkqvJJTE3EbVCbepRV8qULO6wmIevHpp8XUrhaetJYm4iBtHAmRFnmHJmCq/yX5lMz8qDg9oBAYE/e/zJrMBZ7/V4W5tZU1BSgBFjGdWpd93KPwQ7mQW+z4ponQgWJfBFD6mlLGItVJ8De45K7VBXvMDyTYxaqHpblQiZGkJD/4amQHxDrw1o9VrmXpiLu407XeW12JRxDgEYHQq7G0jHKOWa+FX1497Leya+RineFVN4916oICpplAL1XuqQCQJ3Kok8dAVLlSU6vQ5zM/MyHBgZMnwq+pCjySE+Nx47czvytHlYKC0YXm84Wx5tkRSAsmM4M+IMNuY2tN3eFkSolg0dYmFPCxWOFo68zH+JWwU3Wt9O5lYV0NvZ4N9vC31bjuXlkO74uB5HRCRfJWAURea2+RL/h/64WbvxIvMFBlGqHCzrtIxajrXQ6DV8fu5zNj7caLpEhaDAIBpwt3HnZd5LZlcdhir0KSstnvBgs4CDT0taNnxAsoXEUXky7YlpFfx24m02z+3A5qM6DteFmD8W8l2nxcTnxNNuRzuS85JNnyEiYhANdIqBdd/cQGtvTVZxFplFmUw4OcHkEVHbsTbeDt5kF2dL7xdnklmUWYbgLDOA+CZG/6uQgkIH+jfdQaXKYAICc1vNZVbzWawNXsvKOyuxVlkTMDKAey/vcSDiAMEvJYXEth5tsTKz4mr8VbK+zsJcYV7m+HeS7tBmWxtWdl2JhdKCGQEzSPo8yfTMSi9Mp/e+3kRmRHJg0AHmX5pPXE4clSpUInJmJCOPjuRAxAGG1R32wcr5Nxe/YcWdFRiMBmbJW7F6yT2E8AioWZMHrx7Qc29P7NX2nBt9jqq2VQEITw9nyukp3Em+Q12nukS8jsBB7UBl68pEpEdgEA180fILlnVaVsb49a8oKCngYPhB9oXv4/7L+yY1tXdhp7JDL+pN7/l6+LLMbxltPNogE2Tka/Ppd6AfV+KvmPxpzORmlBhKcLRw5NXcV+8d8684/fw0fQ/05fHUxzR0eV+xsTx03NmRgpICgicF/6O3x0d8xH+Cj4nG/xUlJVJFo3t32Lr1vzpETJYUENZ2rE3QmCByNDm4rHTh5PCTfytl+y7uJt9l8KHB6I16Dg05RLsq7f751A0lLL+1nB+v/4hrBVfW91xPD+8e//q8RVFkyukp7AjZwfnR5/9R5WLzw81MOTOFXf13MabBm17Z1FRo3Zo4TSrfLmnL/snnEUWRHU92MDNgJl52XuwesJsXmS/Y9mQbQTFBqJVqhtQZwoRGE/B19+V64nX+uPsHp56fkkzs7Dxp69GW7U+208a9DSn5KcTmxNLLuxfHhh3js8DP8H/oz72sgTTbfRmyskzKMe/K3JrJzWhXpR2dPTvTpVoXGro0LLOKZhSNLLqyiKU3ljK83nC29t1KeHo4rba24pdOv/BVm68A6SHWZFMTSgySxOW+QfuQCTJWXv+V4LRHqA1QrCg7VhXNHelzO5PGVVpSb+6v2KvtqbehHmMbjGVP6B66VOvCpdhLOFo4klKQQszsGKrYVMFlpQsDag1g86PNdKjSgYcpD9k9YDfF+mISchJIzE3k9IvTJOUlYaFQU6R/x2NClAzRKphVQGPQlPH7AIncaqm0LKN2Y6m0pJVbK1ytXNkdtptG+VY8OlGRjd3s2WW/EBXO/BVa0rmj6IOnradEinauT25aPGGvI7i4XcSsWw/qrz0EVlYQFAQjRmCsYMXPX/uyIG3ve608pZKUgs7Aje1wvK0DOSMH0aVaF0JSQ1h9bzVh08NovKkxWcVZTGg4gd+6/EallZUwiAYMosGk4jLtzDQ2P9pskiR9l9DrVsGN9lXbszdsLwpBgV58K4npWCzwWi0JDHSr1o3zsefL/Q6UG5CX837p58qNb/xB3sC2GCx0kGEBJW/uGYciaJAKl72gfSzc8gCjQkoS3yW3A6aARa1QozVomdBoAt2rdWfw4cHUd66PzqjjdeFrMoszTeNsXwjrAmDMQFAolGjEt0Fr6TZVbKqQUZiBpZlUZfC09SQhN0G6VhFsZGrQask1K3vtMmSYK83R6rVUUFUgV5OLiIhckIz55rWeh0avYdOjTay4vQKtQYu92h5RFHk28xm99vXiUcojREQ8ciHNEizU1mS/4SLZmduhM5RgllvIwmBzjlfRcPWNzcDtzrXo2i6eQqMGmSDD2swabwdvLo+9TGxWLC23tsQoGtEZdfSr2Y/w9HBismPKzF/p9csEGVVsqvBnjz/pe6AvS9t8zzexlWHTJvYXP2DkG72Q7hV9OTlZcs9m61aMkyexp6GM8X2MGGVIxprZMeRp86hiU4W4nDjUCjUCAmOsWrE7/RIODm5s6L3RVG1ptbUV1mbWXI6/jMFooLFrYw4OPkg1+2ok5iYy/+J89ofvN/22mcnNqKKuRGZ6PEVK0Augf3MvqeXmmBVoyC3fF/U9lLaGOVs6E5YeRiu3VnSr1o3F1xaztONSetfojYOFAw5qB9RK6aCzA2ez9fFWajrUxLWCK2dHni1zzIKSAgYfGszluMv80vkXvrv0HRqDhnOjztHYtTGVfq+EwWhgtM9otvfbXibZuJd8j9bbWvNDhx9wNKiYdv0rVhS2Ye5vN03bRGdF031Pdwp1hZwYdoIzL87w661fcbFyQW/Uk6PJobFrY5Jzkyk2FJOjkXx7To84/R+7aCfmJrLl0RZOPj9pSlj+On6l/AtXK1cG1R5E75q9GXZ4GJ/4fEJ1h+r8fONnUgslLo653JxV3VcxodGED0riglRpcf/DnSF1hrCmx5p/da7no8/TfW93gsYElev+/hEf8d/iY6Lxv8Bvv8H330N8fBnZw/8Et5Nu47fTj0F1BrG973ZUP6nY1ncb4xuN/9fHSCtIY9iRYdxMvMnKriuZ3WL2v1qZiM6KZsbZGQTFBjG07lBWdVv1Vmr2b/DLzV/45tI37Oi3g7ENx/7ttg9fPaT1ttZMaDiBDb03SC/m50OHDpCaypa1E5kZ8Svxn8Uz7+I89oTuYWKjiazpsaaMLG9SbhK7Qnax7fE2YnNiTYFTDYca9K3RlxV3VuBh7UF6UTpdvLoQGBWIhZkFlkpLYmbHMOfcHDY/2szanmvxuPuMoMC1BHavTlR2tOkzvOy82NhrI74evqaH49/hyNMjjDsxjhoONTg+7Dir761m/f31HB92nFf5r5h7YS4lhhKK3w3qkdqdFIKc4pIijAJsbvA908N+RiaToTPoOJjXjSGrLkBoKNtLgpl4aiK+Hr6EpYeh1Ws5MPgA085IFZ/1PdeTkJvAntA9pBSklNvSopQpUclViIjvrUgjgnOxQFXXOnhUri2RNzOeExAdgJu1G+082nEt4Rov818CUkC0vMty2lZpi+J1JuLJk9SN/YJI80IWXIUfO0Jv/XaKhDoYxXc/xkChIoSV4+qw/v56DkUcwloj8tld2OcDL+2VPJkZTg0Hb/jtN8RvvyW1VX269cjgmSGNTl6duBBzocy1vZsAAdgbVHRtMICuXl3ZHbqbjKIMEnMTKdIV0cmzE4GjpZYV15WuvC58zYBaAzgeeZwjQ4+gkqvoua8nIHkVPEl7YlIks1RaYqG0eI94qxDk6I0GBMBKC1olVLRzJzkv2XSepQnq3yUZpVWDOo51yC/JJykvCUEEpV7yw7AogSIzSWVKFKQ5a5UENTMgrqKSa5XL9wspvQ47lR05WknJzlxh/t79WOol0sWrC0GxQabXB1OXybsiSLKBSf1gwjM1DgNHsfzZFgQE1vRYw+Kri03JiUKm4NTwU/TY1wMHtQOZxZmmlX+XXJGvb0GDdHhcEY76yLnnasQolxrI/hqIlZ6rk4UTSXmSm/pfE826TnVpX7U9106vp20SbGwGPar3YEG7BUw6NYnIjEgpYSqC/jEKhj3Wc62eFT83LECUSfdPqfHa/oH7GV5/OCDJ1nbd3RV3G3ficuLezLUCI0aMopGqNlXJLM6kqm1VorOi0Rl0GEQDFS0rcn38dbwdJA5V2z8bIUtJY+TFND7tbqRxjpqLBYOw2r6HrHHDcPQ4SBW7qoxvOJ4l15eUSTQFBNRKNdfHXadJUDjxc8YxbU1XzsdeYES9EazqvopJpyZJpOwm0+i7vy9mCqndzNHC0UQWr2hZkXENx9HZszMyQcbmx5t5fuEAtTJhf33pXlLIpOR5ZnpVaoSl8Fknrem+VCqUpoUHmSBDFEXcrN1o7d6a/JJ8MosyicuOI70o/b35eXceHdQO2Jrb8iLzBTqjDj9PP5pValamzctebY+1ypql15dy9NlRRtUbxd7wvdR3rk/o9FBGHB3BtfhrpBWkMbz+cHb234lCpkCj19DIvxGWSkvuTrqLYuanfJe4nWXNtewftJ/h9YabziW9MJ2229sSlRmFXJDTyLUR91/dp12VdmzouYGZgTO5Gn+VbtW64d/bn1mBs7gQc4GDgw/Sv1b/D3yD/x4PXj6g2ZZm9KvRjzvJd95T/Sr97pRWn8Y2GMuERhNo6tqUTrs6cfflXdO2HtYerOy2slxJ3FLMvzifTQ838Wruq/cqS+VBFEWabGqCvdqei59c/K+u8SM+ojx8TDT+F8jJAXd3+PRTWLbsvz7MoYhDDDsyjO/bfc+qu6tY2H4hX7Yuv7/7Q9AZdMy/OJ/f7/7OyPoj2dR7079qiRJFkf3h+/n8/Odo9Bp+6fQLU5tO/WAfbKmfw8J2C1nSccnfHjurOIsmm5rgaOHIzfE3pdKzTge9e8Pdu3DjBvEe1niu9sTVypU8bR7+vf0Z5TPqvWO9LnzNxgcbWf9gPakFqVSuUJmMogy0Bq2p1F/TviYqpYrw9HBG1x/NrtBdbOqzidORpzkddZoa9jWIzYlFb9RTQQMF5gLWKmtytbnYqGyInxOPrbntvx7vqKwoAqMCWXp9KUX6IlysXEjMTTRtU7pqVc2uGiWGEgpKCrg67ip99/elb82+HA47yOuCNNzzIMFOxuTGk9n4cCNuFSqz7qQembsH3/vqeJX/yvRwKs9gzkxuBiKUGEvKvC4gUNGqIh42HrhZu+Fu7S4FiMFrkGwRRGQGkVoFKu7467FcuJQbQ1qwN3w/mx9vBqQgxK+qHxdiL9DarTX64gLuFY+GEyfgzh0QBPYM8mZM3ecAfJvfkOGzrvH59khEgxGjIAPRgFEQiZDPQqVO5lhqB+wOn+anZhr2NRDQCyK25rZYKiy5e98Ht4OB/NnPlc8apOBu54HOoHuvB7qWQy3cbNyY1GgSw48O56dbauKtdDzu0ZCHrx6aAp7ajrXJ1eQypM4QVvVYRa4mF6flTtir7Un+IpmRR0dyIvIEh4YcYujhoXjZeaE1aFHIFMRmx5oShKQ5SXTZ3YXIzMiyN8Ibbop7DryyETAIbxKMv/F1KIWNyoZifTEqmYp8XT4/dPiBNfdW89NFmNMsk2KlxHufGqKkZbwO/0Zwp8qbuX2TdHhnSvyN0s8rTcA/BGsza0qMJdRxrMOIeiP46uJXqOSqv+UE1M+QY6uyIVrI5souGfWmGtDL4fiw4wS/DGb5reXoRT0CAkPqDuFQxCHTvnJBjk9FH5NYgUeRks13nOh08xW5Nip+aaZlQ1MoNpcCbJVcxb6B+zBiJDkvmRW3V5BemI5RNJabjJSiTjpYmFnyxF6LmcyMIn0RP7T8loq7jxOd9oyjdQVi7USTSaC7tXuZBEYmyNjZfyejfEaRp82j6aamRGVFAVKwXsrP6O3dm9+7/U4j/0YU6Yq4Nu4aO57sYFfoLqyUksfFwNoD6ePdh7Enx3J4yGEGenTj56Xd0QTf5scrkGlnjsO0zzFTL8fhjb+Ms4UzKQUpZRLULl5dODf6HGzYALNnI5aUsDdsL3POSV4/btZuZBRl4G7jbvKrKa04AgyrO4wtfbawP3w/6+6vIyQthOr21bFR2dDwRhS+4XlM7SNQxak6CkHBs4xnLLsEe9vZEmGW894Yy5Axsv5I9oTtKVN1L61w7wrZxaA6gwiICuDsyLMmueHSVq+s4ixOPj9JUl6SJAQgk5NZlPm3hpmliZePsw92ajuuJVzD192X28m3aVqpKd+0+YbDTw9z+OlhLn5ykda51igaNUFcvpyxnk84GHGQ86PP06FqB7KKs5gXNI+tj7eanhkquYrlXZbT2aszo46NIiw9DL1Rb+JP6Aw6Rh0bxbFnx9g9YLeJoP2f4HrCddrvaM/zWc95kfmCPvv7sKT9EhZdW2SS+f3rOBsx4qB2MFXZ1/Zcy5KrS0yeMnUc67Cu17oykrileJH5gppra76XZP0dSqWM/yqX/BEf8X/Bx0Tjf4W5c2HbNkhMLGMG9J+itErgaOHIpEaT+Lnzz//VcQ6GH2TCqQlUs6vGsWHHTETzf0JWcRbzL85n86PNtKjcAv/e/jRwaVBmm5uJN+m8qzND6w5lZ/+df1s1MYpG+uzvw93kuzya8ogqtlUkEv24cbB/P5w7h9ixI5sebmL62elYq6wJnhxMDYcaZY4Tnh7Oqrur2BO6B5kgY2yDsXzW8jNqOdbiafpT+uzvQ2xOrGl7azNr5rWRKiPJ+clo9Vp0Rh0WSgu6eHVBQOBi9AUoKmJ+08+oVastgw8PZkrjKfj38X/vOkoTiqevnxKRHkHEa+nvReYLU6++o4UjeqOeXE0uvu6+3Ei6gRw5bjZuWJlZcW/SPfK0eTTb3AwnCyeepD1hVP1R7A3byxDvfhx+cRKFEQSFAsObVdN/i4YuDalqWxVnS2c2P9xscre9Of4mzSo3e08kYFfILiaemojeqKepqyTxGZX5gqZ5Vtxclc/1KjB/jCsv1IX4uvsSmRFJUm4i3gZb5j5QMqlZCq/XmOPQrhv074/Yqxcz7y1iw0OpWrU+SMX0wNeEZcGeAw95kVpAXIU4WueeY/G2c2itzKmUVsShDo5830EkRsykd43eXI29TIGuCJUBFAaJXwCS+lVnr86EpoZyK/EWFmYW5Gpz8bLzQi7I2dJ3C+13tCdEOwHv5dvo69+Bu2kPKCgpoLFLY9IK03iZ/1JKmDz9kCEjKDYIhaCg8DuJZzLo0CCCYoOo7VgbG5UNd5LvMLTuUHaH7jZVG6xV1uRp88qMpWCEJlo7Hqizcc+BpH+XowJSAjes7jD2hr2VlnSxdGHQzSz6hpfQbQzUTQXfJDhaBzIspeSicoGMVAsj9QyORIsZFHygbdxCYUGRvuhfOZ8rZAqszazR6DUU6ctX5lEr1OgMJThpFeSLWjrGwZXqMpbQkS8VlxDB5JcBUoD4fbvvWXp9KeMajmPL4y2m121UNpjnFPDNpRKmPhIoUslY1czAmhaQYylxNR5OfsiOkB1MPDXRFHhVtKzI/cn3+ezcZzxKeYStua3JkLFKNtTIgrBadqTq3pf3dCxE8o9RFJTh2XjZeZGYk2hqh/Owlsi7eqPeNHalyVu/mv24HHeZEkOJKTGb3Xw2a4LXsLr7aiY1nsSukF38cfcPXmS+wExuxq7+uxhcexDypT/B4sX87AtL28O6iyrG95CO0cjck8eaOMkoUZBT2boyKQUpaPQaxjUcx6Koynj8sJqQ59e5GHuRgOgAbiTcMCVevWv0pn/N/mRrsvkq6CtT25ytuS16o56CkgJ61+jNzGYz6VKtC347/Qh+GczcS8X0i4QBM+x5ZZTahEREPHLgtZ0ZxeLbhNVcLq2MawwaHC0cEUWR8BnhuFi5AJLASYedHYjJiuF10ety23AMRgMeqzywUlrxuug1z2Y+o6JVRUki+B1uSWlicjzyOCefnwSkqmxr99bcTb6LXCZVov7a4lkK6xIZDs4e2JrbkZCbQJ4mj2aVmxGaForeqMfT1pPIzEhTxbJ/zf5ciL2Am7Ubq7qtoue+npwafoo+NfsAUjvSpFPS3G7us9kkhf5vERAVQK99vUj+PJmLsRcZd3Icmu+kKkwrt1b80vkXZgfO5kDEgQ9ywKzNrBlSdwiVrCqxO3Q38bnxADSv3Bz/Xv40dC3Lx2i7vS1qhZoLYy78q3M0GA3UXlebes71ODbs2D/v8BEf8S/wMdH4XyEpCby8JF+NOf+9w2bpqtDWx1vp6d3T5Db93yA8PZyBBweSXpjOnoF76F2j97/e92biTaaemcrzjOd80eoLFrVfhKWZJVGZUSaC8fnR5/+WGAew9PpSFl5ZSMCogLdmgQsWwE8/wb595A3sxeTTk01ShuFp4WTMy0CtVGMUjZyLPsequ6sIig2icoXKzGo+iylNppiMCg+ES+1DeqOeYl0xRozYq+3J0eSYAvVSoumi9ovwsPFg0dVFpBakMt1rGN9P2UuFwEvUD5lKTFYMf3T9g67Vu0qJRHoETzOkxKK01A9SQlHXqa705yz9W8epDk6WTuiNer668BWr7q0CpFUphVzB1CZTydXkEp0dTXRmdLll8/LaDRTCmweO8CY4M7dhTfc1uNu4s/z2ciLSI4jLiSNyZiQ1HWuaKk11HOsQmRnJxl4bmdxksul4Gr2GOefm4P/Qn7E+Yznx/AT5JfkmYzoAP3l1AtfmoNSLDP7UmeySPCbeLGK0XzZqHWzNasvIijc40Gcnwxp/glE0MitgFhsebMDO3A4PC1depD3lictiasxahBgdTbcfvMl2c+R2fCeU+yXvmNBvJjDW4xFP0p4A2sW58wAAIABJREFU0EZVgwcFL9AqMVUIGrs05ie/n+ju3Z2FVxby4/UfOTDoAKdenGJfmMR1kQtywqaHUWtdLa54/UCHTxZSfzoU1KjKy/yX5MzPQa1QY7HMgm7VulFQUsCluEumMRlYeyBD6gyhrUdbJpyawJW4K8hlcua2mstvt36jXZV23E2++367WSmMoJIp0KJHbgB7rQCOju+1WIGkQFOgKzD9v4pNFTpW7cjOkJ2mVds+kSKbTkHD6VJr1LZzZmgMJbScCK9sQCEKFCuke2VYGKw4D8O+q8Ft7Yv37iOVXGVSKFPJVSxuvxj/h/6mAAXAyszKJOtcHkrPq5tXN3xcfLgQfYGQ9BAwQs8oCHGBXHNMyY5XBQ+qOdU0CRVYmVnR2r0152POm85vSO0hnHpxCq1BKymBqb3YFl6N6vsvIMoENjQR+b0VFDnZkKfNM12TgMCmPpsYXm84FVdUpLp9dULTQlnUbhG25rZ8Ffg5casgwBv+7G5HjahsjtWFbpXaUSVDj0fgbQK8Ib5OJYr1xW9Vw/4BpSvfjVwaETAygOisaPx2+Unqc4Iki9ysUjPuTrprqgJnFmVS6fdKVLKqRHxOPBtu2jDtUi7aHxZyfaQvvfb1KkPSRgSlEYwyge6V23Nw7BnmnJvD2aizFJQUUFBSgEovolFIvhGl/LFbibc4/vw4aoWaHzr+QIvKLfDb5WcKVOWCHEEQ+KHDD8z3nW9aGHJe7szrotc4WTiRk/8anRwclDZk6nJRCAo6xOgZnlmJSc0k8rGtypZcrcShsTW3JUeTg4BA00pNuTfpnum4r/Jf0cS/CdmabD5p8Amb+mwqM5aBUYH03NeToDFBjDg6Aj9PPw4Oft9P6l3sD9vPqGOjEBEZVHsQrdxa8c2lb0j+QhLEGH1sNNZm1hwZcoSi4BtkrviRrGljyfRyJas4i9jsWK7EX8EgGlDKlGXMIv8KGzMbnKyciM2Oxdvem6aVmppau+zUdpx+fpqLcReZ22ouM5rNwF5tj43K5h/blEurBTlf57D18VYWXllIwbcFfHnhS/aG7SX582RabGmBrbktFz+5SEhqCBsebGBv2N5yv58qmYrGLo2Jy4sztcj5VfVjS98teNpJ0ss7nuxgwskJxH0WJy3y/QtsebSFyacn/6Pq5Ud8xL/Fx0Tjf4kxY+D6dYiOBuWHiVr/BJ1Bh+tKV3K1uYROC/0/fdlzNbl8cuITTj0/xcJ2C1nUYdEH26H+ihJDCStvr+SH6z9Q0bIiP3f+mYVXFiIX5NyZeAc7td3f7h8UE0S3Pd1Y1H4Rizoskl7csAFmzIDly3k4siPDjgzjddFrNvfZjE9FH2qvq82BQQfIKs5i9b3VPM98TrNKzfi85ecMrjPYRIDL1eQy9cxUDkYcxNnSmfTCt4G7T0UfOnl24nDEYdIK09AZdciQYaWSgukhdYawpMMSyMzg6cB2rJtYn6sF4QhC2T7x0oSijlOdMkmFk6UTBSUFJsnXhJwEk8Z7XE4cCTkJZYJJ+HAiAZK7LyLE58TjaV2F8IwIGqQLnBt8iqRaLrTc3AKDaKRBlpIefefyc+efKdYV47zCmalNprLyzkoCRgbQ0KUhddfXxdPW02SOVsW2CoeHHAak4w8+NJjQtFBaVG7B04ynJq8Wb3tvWlRuwbEn+yiSG9mQ3JBpO8JZ2lrPytZQS3RAVtEFWycPLsQF4WLlQhevLmzqs4mJpyayO2Q3W/puITA6kJT8FNKjnmBXJHLr9xwOhx7g5oJPWHVZidLSmqyF8zgRF0BQ0jWO15cCdIBmyVDnNYiDBzGm1TT6HJBWEjV6jUkJ5me/n5nfdj7zgubx+53fTXMVMSOCuuvr4iJa8vKHQn6ZUIOFHjHUc67Hk2lPMBgNKH5UsLXvVtIK0lh0dRFreqxh+tnppvaZUunbl/kvSS1I5fcuv7P+4Xrkgpznmc/fm7cPtRr1i4STNSnjUP6h7Z0snBAEgdeFr5EbRa5vhZYvof9wuFcZHh9zwj5bQ8OR+STaglyEuFWwbG4LdpTcI8dcCk61b8i8tRxqkZCb8F4bBrxNKNQKNXJBTrFe4vHUdapLWHpZpStzuTkaQ/krxe8S2t+VjkaEwF1Q7zXUnA0qQUG2UqqYhaSFmII7lUyF1qhlZP2RfN7icxZcWcD5mPMoZUrs9EqmXy3i82ABc53I9obwWxvIqSRJ3qrkKtK/Smd36G5mBcxCJVexe8BuhtSV2NY+G3zod/j/sXfeYVGc6/v/zDZ6713ALiD23rD33jUae68xMaaZxGhMYu+x94a9gSX2FhRRFCwg0pHeYZfdnd8fI6sETc4533P++nlzeXnB7sy8O/PuzPs8z/3cdyRfXofq0+G1lYz6rtLxPbRmnFybjYmgYM2uaaz4cxUHBxykV41ePM14yuzzsyVzw3dQTqd6H11LKVMS4BTA86znFGgKEBAY7j+cMfXG4Gvry8HHB/nqj69InBmPMHs2jtsOMqeLwLY2lowJHMO91HtcT7j+zrGk+Hp4tJIej8u43NKVQ2655OqLkQky3PTmZOjy0RupmNZoGgtaLcDO1I6dETsZfWI04+uPZ3P4ZsP+yiWMv271NZnFmWy8v5Hu1brTwqMFITEhXEu4BkATtybUtqlO96930zXLmjNHljD6+lyKy4rpESPndFWd4f5lY2SDSqHiddHrCnSfZm7NCB0ZalADvJ14m5bbWmKkMKLgy4IKDduDgwcTlRHFo0mP2P9YCiD+FeGTA5EHGHpUoiwtDlrM91e/54d2P5BRlMHKuysREOhWtSuHfnqOyt4JLl9GK+pYc3cNX1/+GguVJDZQqiullWcrNnbfyIvsF0w5M4U8dR6N3Rpz5dUV6jrVJcg7iF2PdmGqNKWKdRUD5SurJOu9lES5IMfGxKZSr8m7UsOPXj9i4/2N3B13l90Pd3Pi2QniZ8Vz5dUVgnYFsbHHRiadnkTI8JAKTec119YkNjuWwwMPs/7eem4n3a4UeAgIKGVKNHpJcKRH9R5s6bUFU6UpLstc+KzZZ2+fwf8AtVaNz2ofOvl2Ynvv7f/SNh/xEX+Hj4HGfxMPH0JgIOzbB0P/fQ7nuxh4aCBnY87iaObInbF3/tab4p+gF/Usub6Eby5/Q9dqXdnTd88/BgnvIjY7lklnJnHx5UWM5EZcHnWZZh7N/nabhLwE6m+qTyO3RpwZdkYKbo4fh/79EadPY+1QXz67MA9/R3+DQkpyfjJ1N9alQFOAVq+lX61+zGoyi+YezQ3O2PdS7rElfAu7H+2utGhb0n4JnwZ+ipO5EyeenqDPQalpr4p1FV7lvjLwlhUyBXqxIjXJw9KDnNIcWnq0ZF7zeTiZOxmUmmJzYonKiCI2O5bE/ETSi9Lfu5B7F+WLsfIHdNeqXRlcZzAeVh54WHow6fQkwtPCyS3NZXff3cw4N4ORdUey+f5mPq0zgn33tuOWpyPJyZRStHjmC7wwK2VIrUHsHbifU89O0edgH55MfkLgpkCWd15OaGwoYclhhAwPod7v9RhQawAX4y6SNFviuC++sZgyXRkikvnZwNoDicuN43rcFZKKUtn4sjaj90YxrxOsbwTnGI5ap6Gn8jDnd4Htum3U7TSSSacnsfXBVixUFnT06cjJ5yfZ3Xc3Q/yG8OvNX1l4dSHnfb+nTdQ8PrfsyuAV56mbrONmbQvmfuLE3dIYBAR89FYk63JZEyrj+1Z6PNVG3HcWsTaxYXH7xVS3q06n3Z1ws3Aj5k2zfiPXRsxvOZ+Y7BgWXFpgyCZ7WXkRnxePn4MfD1aWou/YHjPnrVgbWxM/Kx6NToPNUht29dnF7NDZDKoziPXd1+OyzIVx9cYxudFkzseeJzQ2lPOx5w0B2LsqZO/Fm8rLu5hxG1b/5etRPh/e5c6/q2gliNKumiVCvVTYEQiX9slpkmfBsKnOHFA+xUIjcHuzSLi7nEk9RMI26Il1kNNrkA5BeBvIftH8C5beWoqp3JRiXbFBirh8MfxudeCvwa+DqQMZxRmGDH45LI0sJYpJSbah6f59+zAWVPjorXipzWDlWZjUG7qlmHHOqQjxL0qkKzuvpJVXK+o41OGby9/w661fDfs0KhOZdhfm3QLbUjjXwIovG+YR42rEmHpj2PZgG3pRz62xEkcfoOB1An5ra1NaWkTyMij5bBY7B/iy9s+1PMt6hms+5JjAujNwvCZ0nL2GSQ0nsSV8C19e/JI8dZ7kDC/IKdWVVvps7pbupOSnGHpuAhwDUMlV3Eu990FqmrHCmDrF5ri/zMS9fhvMApsQnhrOH3F/oEdvoOS9e/4zizMREalZZIJzegnXvCCjeCq2GYXkRtxh2fKBrLy7EpkgY07TORgrjJl/aX4F6WlRFPms+WcoZAoW31hMt6rdiM6MNjS1+1j78DL3JQ1dGhI2IQyAqdsHMH/OUZw865B0dj9N97QloyQLX9GadSMO0HVfV8P58HPw43HG4wpzwMnUiX0D9hnUB+dfnM/Sm0v5vPnnLO24FJCouS7LXFgctJi5zeciiiI99vfgYdpDnkx58o/+EF32dDGIQQRVCeJZ1jNSClJY0n4J/k7+9NvXm47PtATPvk2UuxHjT40nPDWc3jV6E54aTkZxBiIizd2b08qrFYuuLaKJexP29duHl7UXwVHBDD86nNZerbEzsSM+L57bY28bji+KIsVlxWQWZ7LkxhI23d9Ev5r96ODTgZzSHCkgKc2uEJiUU8A+FKzaGNuQWZKJSq5CJVPRr3Y/7E3ssTWxxdrYmqlnp1LNthqHBh4yBDBavZaNYRvZ/nA7L7JevHffAgIDaw9EKK1CXJwPnsaN8XEyZURbV/y9/p7evezWMuZfmk/sjFg8rTz/9r0f8RH/hI+Bxn8bnTpBZibcvw//By3q6Wenc+HlBfLUeXhaeXJ51OUK6kv/CUJiQhh2ZBg2JjYcHXS0Uu/Fh6AX9QwNHsqxp8cwV5mjE3UsDlrMpIaT3qtjrtaqab2jNWmFaYRPCJeczm/dgvbtyendmbF9BI49O87MJjNZ2mEpj14/YsWdFRyOOmxwiI6cHElV26rEZMdw8eVFLry8wOVXl8ktlZoTzVXmaPVaTBWmmCpNaeDagJ87/Cxlyl4/4qfrP1XiuNqZ2OFl7YVaqyY2J5ZSbSnVMyDRTk7LqkFci79mMMP7u4ZTY4Ux9qb2uFu4423jTQ27GnhZe2GqNGXGuRk4mEmLhaq2VdnTZw91N9UlT53Hhm4bmNRoEnpRj83PNpRqS/Gx9SEuJw61Ts03rb5hyc0lJM5O5EjEfqZdnINZ2RtXbOt2BO6/zKyuUqOtXJATmR5J5ORIqq2phq+NL6GxoQZOsf96fxRyBRFpEQa+r5nSjMkNJzOy7kj884wRTpzg28jV7LBPoksM7A2UESwOYlLBASxr+JGYl8iRgUfosKcDGy4aMylMlJSgpk1j+LER7H+8HwGBI4OO0LeW5BNy9dVV2u5sy4HWa7i0aibb6urZfgzWNoF0Kzkd24yho09HXCxcmLO0PcF7NHjkw/iJLoRUl0wGv7z0JQceH6C+S33aVWnHstvLcDJzYnPPzSy/s5wrr67gYu5CamFqhYy6tZE1n9b7lOU70yh9+QKTrvdQyVSMCBjBwrYL8Vzpydh6Y9n1cBcxM2LwtPKk857OGCuMOTFE4oDr9DqORh9l/Knx/9jTAFQKNAQRuj+D0zUkqeB351G5mlNAnglPLEqYf1vBkqZa9DJYcFvBskZadDLQyiWH8cB0gVJ7a6IVuYiIhOyG9jJfqo8r5ZOzyXx1HepPhCQva4Ms7Pt6SA4PPEzfmn25Fn+NNX+u4fjT4x+srlmqLOldszfbem+j/c72hqz3XxHgGEByQTJZJVk4mzuTVpj2wSDGpgScCyHaASwEYwrEipUSGTLsTO0MVDNrI2ty1RItR6EVGXcfvr4txzVXx5VAG+Y1yuGeG7TwaMGBAQdwt3RHd/I4fY8N4YqLGrmRCauPltAz0xbrhHQi0iNpua0FESuKGTQAHrhA9RwZn43cyMo7K4nKjJLUnRQmFGuLGRM4hjnN5jDw8EBeZL1AK2pxs3BDRCSlQKIRGcmNUMlVBtrhF82/ID4vnh0RO2jq0ZQbCTcQ9DAx0ZGyrHSSW/iTbCElYP5uXgkItPNuR2ffzvg7+vMs6iqzI5byerMVjsl5kuTzpk0kdmjMhPPTCY0NNZxnC5UFDmYOXP7kMotvLGZL+BYEQTDcBxu7NmZkwEi2R2wnPE1y8j499LRBJjenJIdB39Tk5NosVJ270aDzKx6nP0YniHTyaEt9z6YsvbnUUBFXyVQIMqFSID654WR+6fgLpkpTLJZYUFpWyvUx12nu0Zz1YeuZcW4GSXOSDH0dCXkJ1FlfhxH+I94qEn4Ad5Pu0nRrU4OKmYhITbuaRE6JRJFfSGh7L3r1LMDd1pv43Hhq2NWghn0Njj09Rrsq7djaaythKWEMCZaao79u/TXftvnW4HkE0j2s94HeBpPPvPl5H6RF/XrzVz6/+Dmzm85mWadlH3yfKIr8cPUHVt5dyYWRF5gTOofskmwmN5xMVkkWWx9sJSEvgbpOdTFWGBuClJySnA8qeL1bMVHJVLzMfUlSflKFBNxfTUFlgrQsWTGm1t8GGwXqArxWevFJ3U9Y2WXl316Tj/iIf8LHQOO/jQsXpGDj4kVo3/4/3s3CKwvZHL6Zk0NO0npHa7pW7cqhgYf+ZdrThxCXE0e/Q/14lvmM33v+zoiAEf+4zYJLC/j5xs8cHniYIO8gSTYv/HepAa3HpkqGQNPOTmNz+GZDIzLPnkHz5txp7smQoGzyNPls6bkFEZEVd1ZwK/EWPjY+zGwyE29rb3od6EUX3y5EZ0YTnxePQqagrlNdUgpSeF34mqo2VXme85zaDrWxMbbhZuLNCpnicsiQ4e/kj6OZI/nqfF4XviarJOu9JkrlKNeFd7FwwcvKixp2NahuV91QiXC3dH+vWWBJWQltd7YlKT8Jb2tvYrJjCJ8YjquFK88yn+G3wQ+tXsusJrMYW38s/hsk9+7oKdE03NwQjU6Dj40PNe1rMtx/OEOPDKWxS0MeJNylWKanqokbO0KMSS/NZFh3qbF9brO5LO24lNbbW3M78TZD/IfQp0YfgqODORJ1pML5mNl4BsvthiE7cVKqLEVFgYkJv47w4Sf3lySPj6bBkc6YqcyobV+bU89P4WLuQmZxJpklmYzzH83ma1awahXazp3o362Akzm3ERDoVaMXC9ss5EbiDUKfn8Pp0Fl+viitwf2mQomNOTfdvsVv9OdoUpNY8WI3T1Z9xaYTegq8XbAfMoYbu36i7adwZ8wtmng042bCTaacncKj148wVZhSqitlQv0JrO++nrvJd5lxbgZhKWGGz+dg6kBWSZak0PO6I9qvF2D0uYZV3dcw/dx0fmr3E19d/gprY2sG1h5o4I3POz+P4OhgHk56yLYH21h9dzVxuXEGWdbyqsBf/SgMc0wPJipTirTFhsW1QxEUqqBU+Xax7WTigFVaDjuDdTRNFOk2DMJ8jMiRa9AJIrUKjZlypZQ5XWDjKShVwo/tZLw2kxpzEaF+KmQ5mqMvLCRsM2yuDwvby6X+HZkcjU7DsUHHmH5uOvmafEPA8WXLL2ni1oTfw3/n7Iuzb5Wp3mTA/zr/JzeczMA6A/nlxi+ciz1neK2abTWDAhNI/UMOZg6kFqZKzdMFKYaF7c0xN5HL5PTa34ucPEmpSSOnQlBWXuX5J28RAQGZTmT0YznzrumokQUXfGB1kBmhHmpG5HlBTCw768Gpzju5VfKcywd+5uZmHTE7VtA8fTHNNE6c+PoxPYcLPHCTk2zytn+hvKJQz7ke67uvp6l7UwDSC9OpuqYqBZoCjORG/BT0E/MuzKO6XXUDlU5AUpNLzE9ErVNjojDBztQOTxNnPl/3kG5RZcwd7YLv+C9IK0pj5e2VqHXqSvPIQmlBQVlBhc/8114bjwIBl+wyslU6XtpAiRJqWfggNzY1VBcauTYiMT+RtMI07EzsUMlVpBamUt2uOi+yXrC3317y1flMOjMJgCDvIA70P4CDmQMgeSms/bYLJw7AspZy6qzYw6CjQylTynCwdMHN0o1nmc9Q69Q4mjqSnJ+MUq400OzKJVrdLN3Y1msbB54cYGfETqyNrQmfGE6fA31wNnfm5NCTFT7/2j/XMv3cdK6OvvqPHlBNtzRFq9dyP1VyvW7o2pCw8WHw+eecP7OaUaOsSCtJx9XCFbkgJ7skm187/srEhhM5/vQ4406OQybIyCrJYkHLBfzU/qdKx4h8HUm7ne3IKsn6R+PcdX+uY9q5aUxsMJH13dd/8Bn9zR/fsPPhThJmJ9B+V3vsTe0NvSmtt7XmeuJ1kmYn4WbpZtimxdYW3Eq6ReSkSIrKiipVSSr8/sacMaMow0Dd9deuxJbGvGuaKhOgoa8VS0fV+Nvz/N3l7/jt9m/Ez4qv5KL+ER/x7+D/tmr9iMro0EGiT/366/9pN7YmtmQVZ1HfpT77+u3jaPRRvrjwxf95eN423twcc5OBdQYy8thIZpyb8bcymJvvb2bJjSX82vFX+tfuj42JDZt6buLGpzco0hTR8PeGzDs/jyKNRLPY+2gv68LWsbrLainISE1F36Uzv7VR0qrxYxzNnZjScApzz89l4OGByJCxsM1C+tbsy46IHfQ6IPF07yTdoY1XGxa0XEBHn45EpEWQWZyJHj3Pc54DUs/BvZR7KGQK7E3tK2mF69Hz8PVDLry8wN3kuyQVJKGSq6hlX4ugKkGYKc3wyzfhWEobZjaeibHcGBERU6UpfWv2ZVWXVSztuJSx9cfSybcTtRxqvTfIEEWRMSfHEPk6ks4+nbmddJsDAw4Y3G5r2Nfglw6/ICCw5s81DDo0CJAkMlUKKSuqlCuJzozGzcKNQcGD6F+7P398eoX6nk1RiAIxpcmk9OlA3/AStue0RifqCI4O5nH6Y4MR1NHooww4PIDojGh6VJMa/xXIqa21YeX4I8iaNIVNm6BxYynYyMzEcsJ0ClBj6uzJvv77iHwdibWxNSq5iio2VcgpzUEhU5BWmgkrV1J4/BD5ty7z+1d3CJC5YGNsw8lnJ6n3ez22b5/Jzwuvs+UURDZwp98Cb5wLQVumZqPyIQIw5dsGmMz7kt1H9KR0boZTRAzyHxbR8tst2BfBsd/GQVkZgc6BKGVKrI2tMVeZI0PGxvsbmXdhHjklObzKfSV9vjeZyIziDFQyFZfjLpPh54OiVEM30ZdpjacxOnA0P1z7AZDMwBa0WmC4dq4WUqOu+3J35l2YR1P3pvSo3sPg5l2sK0YpUyK++SmHDBmIoBeg6I1CU/nrGWbQKPnt712LXFl0OJvnVlruuors+7Yvl6rKyFSo6RUtvSfavJTDdeDwYRj6BIJrQ5qZHoVMTkC+KaZl4F4gEK8oJNEaXD6Db4MAAXSizjD3X+a+NKisleOXm7/Q52AfQmJCAHCzdEMuyPk0sLJHj4jI+nvrabezXYUgQyVTkVmcSc/qPTky6Agg0alySqRm6oR8SbGpTF+Gk7kTg4MHM/7UeNKL0hGVSjQKaO/eigzlV4SescW+CESdFFy8G2SYKc2QC3JkyFDKlMiRIyKik8PWujoCpiv4ZJgxrmoVp7YUEbdcT0l8LNvrQR0nP+w8ajCxwUTuuIuEucGrnz7DydyJn5Rd0AsQX8edNGMtX16VjlceZDiYOjDcfzg17N4uvkJjQynQFOBt7Y1Wr+WzC59Rz6Uej6c8Znrj6YDkHF+gKUCtU2NnYoeNsQ1JeUnYX7lHvryMzgt92eyTw6zQWfx842cQpD6acggI3Bpzi7wv8/iixdv7ezm9Z2svyQS2g08HGqXJkZfpeOokQ6lQodBBdMFLQ5ABEJYSRkZRBjXsajDUbyizms5ifP3xJOUloZQrGX50OPMuzDMshiNfRxK4KZArr64A0LlqZ4o7B/F5B5h3XUe3x2p2y/qjEfSYCCrupdxDRMTH2of0onSaeTSjV81eFcZdpi9DrVUTtCuItII01Do1elFP171dCUsJY3Tg6ErzbkqjKTT3aM74U+M/qCJVjplNZhqCDIB7KfdYfmoBI18uo/MgNdUda9LGqw0pBSkUaYoIGx/GqMBRTD49mf6H+hPkHcSL6S/4teOvLL6xmI33NlY6hr+TP8EDgwHovq87d5PufnA8UxtPZVuvbWwO38zo46PfqxYFUFRWhLnKHJAoZHYmdgCkFqQaPDLeFakQRZH7qffxtvbGz8mPJu5N6FqtKyMCRjCm3hh61uhJI7dGeFp5YqQwIrc0l/i8t/2BSkGJOb4VggwAvQgvX/8NHfQNpjeR5vjqu/+a4d9HfMSH8LGi8b/A3r0wYoTUsxEQ8J/t4tFeRhwbQeGXhZipzFh1ZxWzQmexofsGJjWc9H8eoiiKbLi3gZkhM2ni1oTDAw9XMuk7H3uebnu7MbHBRNZ2W1upLKzRaVh+eznfX/0eRzNHPm/+OT+E7qK+8WeYi1XxsVfR8+DX/Ox+jjOeahq4NCA6IxqNToO/kz9KuZKI1Ag0eo2kVmTliZHciKeZTyvwwP8T9KjWg2YezfBz9MPb2hsPK48KyiDzzs9jXdg6osIaU0WwgWPH6L2/NxnFGdSyr8WhqEMUaYoI8g5iTL0x9K3Z94PmfT9c/YHvrnzH/Bbz+fnmz/zc/me+aFkxKNTpdTTb2oyMogyS8pPQilq29drGq9xXLL+znNaerTkbcxaAifUnsq77OjQ6DXa/2NHYpQFXE25Q/7XAxazuaELP0XSeDemyYgNtQSbIWNRuEf09O/NHyAZmpGwFUaRZouQUnVkwCeveQ6BFC1C8pQnsj9zPsKPDDPOsnAqwoOUCFt9YbNi3scKYHb13MO3cNOTpmWw9pueZPczrBMPdu9Ns+wXG3dEa6URzAAAgAElEQVSgq1GdFZ9UZZXqAelF6YQ/b8cfuQ+Y3SiLI/uhcbYxTlml7B5djzFbKtILx64K4nrsZaISetJvoJ7LCVe5/ul1qtpK7rhLby41UJFaebbiesJ1VDIVjd0acyPxhiEz7mbuypWfUrg2uh1jlv9BcVkxtdbVIiEvgX41+3Fk8BHuJN1hxZ0VBD8JRo+eEf4jWNBqATNCZnAl7gpN3JpwM+mmwZzsrxnoLu5BhCT98cH555kDCTaS9O3ih3botVq+b1iAhakNDRWeXMt+gEYOn7h2ZXvaOXpGw4hI6PMUeg2F0GqACE3zzOnwpIStATo8SpQ0StAy94bIF3MDOKx7VOm4VayrkJyfTJm+zND8Xd4HUN5v4mLuQlphGtMaTWNN2JpK/Rjl1/zdAKCcfre7z26GBQzD6TcnMoslylo53/+vUMgUDPcbzs5HkhX32WFnUevUfHf5Wx6lRyLXQ/uXsOWeC55DUrEztiWrNNvQZPx3AgptE+SE7tDx2hw88iHSWcaKtkbsrF5CXdd6iKJIQGgEO4/D5XMbSfh6GnWTtbScZkY1+2pEpEpKZ55mriQUp1DDrgax2bGoFCpG+I9gQO0BDDw8kB7VJb8Mn1U+FJUVYSw3Zl//fYw9ORYPKw8evX7E5p6bcbNwY23YWi7HXf6gH0K51PC7GFV3FDv67AAklSrnZc6MqzeObQ+2Vao2XT1sgamLJ38unsK5mHNciL2AWqdGJgJ6aJ+ooIpzdUJtckgoSUUlVyETZO9duCtlSuSCnAF1BnAz4SZxuXEM9x9O31p9GXl0JHJBxr5zZvS4m4Nw/Dgzfu/LxkAtYxqO5/f7UjWwe7XuXIq7REvPlixsu5CvLn3FlfgrhmO4mLuQXZxNmVhGJ59Okpy0TEHe/Lz3qhVGZURRb1M9Pmv22XurDOXILc3F/hd77EztaOPZhsPRh0EEU63AlGYzOPj8KDmlOZIf0b2N+Dn6UaAuID4v3iA/LAgCoigyM2Qm68LWcXzwcYOMbTm0ei0mi0zwtPYktSCVQwMP/a1y48HHBxlxbAR9avZhb7+9lSTFJ5yawIO0B4SND8NzhSej6o7ix6AfWXBpAWv/XEs1u2pUta1qqHJcj79O6x2tGVxnMB18OhCdEU1UZhRRGVEVfJo8rTyp7VDbYCB5M+EmKYUpIIK/7j+vaADMCpnFroe7iJ8V/94k20d8xL+Cj4HG/wJlZeDrC+3awc6d/9EuQmJC6Lq3K/Gz4g3NWDPOzWBd2DpODz1N12pd/ytDvZV4iwGHBiAiEjwwmBaeLQB49PoRLbe1pJVXK04MOVGBw/pXvMx5yYRTEwh7mUE93QbkggK9CIKoQ4/IE8U0MoUHUmZYL6JFMvWSy+QfzP68DzbGNvjY+OBp5Ul12+pcirvE/VTJlM3N3I20wjSsTazp5NuJff33fXA/j9MfE7gxkB/b/ciXv0dBfDxcu8bwo8NJzk/myugrFGoKCY4KZnvEdq7FX8PKyIqhfkP5tN6nNHJtZAhYyk0WZzedzfaI7bTxasOxwcfey9V9mPaQhpsbSio2eh0qmQozlRndqnVj/+P9BqrT0g5L+bzF5wYZyCZuTRD1eqKSwpGX6ShRgEYhmTVFZ0YjIKBHT+KDdixQXGW3v57psfbk+7pxwyyL2KIkjg46auijeBenn5+m5/6epMxJwcXCBb2op+PujkRnRBuaUp3MnAyO4DJBRteqXRlYsz+1Qu7TpGwdZ/fL6Jyg4pdOZqxtJqenXz823tvIxPoTqRGRyKxvz1LtMxXFooZr2wVmD7Fi+68vKpXjzzw/Q4/9PRj2WMbBOiKn+h+hq7805osvL/LJsU9IK0yTNP6tPA0P25lNZrLp/iacTJ1ILkxGq9ciiNCzwJWfvgjFz9GP/gf7c/TpUeo718dIYcTtpNtUta3KtEbT+OzCZ3zf9nsOPjlIXE4cNsY2JOYnVljk2pvak1uSa/BZMENFERUXgkpklIl6EKBPFByvLf39r5r4Mh0IMuhXrTfXkm/xuiSDuTdhySUYMAhO1pQy3fYlAo/X6Ok/UsVTSw1GWohaBy86N6R07UpabpfoHDZGNlSzq8afKX++d77bGttycOBBgryDCIkJYXbobJ5nVZbCtTW2xc3Sjcfpj1HIJA78+yhN9qb25JTkYKwwpqisiNVdVvPb7d9IyEtAJVehF/VUt61OVGZUhe3K+2rae7fnh3Y/MPbkWJ5mPmV0gS+7zGJJXWvEzlGBfG71Nnv8rlKXkdwIXZka7Tt1eAEBT7UxfWKVdHyQj7kadtWFPXWlfpmEFZLzdbcXEFnfnfEdi8kuycbexI69G7Oo1bYfJya1Y07oHPwc/Wjr1ZaDUQdJKUhBJVOxscdG7qXcY3P4ZmrY1SAqIwoEyWRxb7+9fHv5W+6l3jNcY7dSFdWTNdz2VaAR3gpOvI+mBvBLh1+Y12Ke4fce+3qQXJBMXae67Hq4q8L1aZCu4IGDFlEQaO7RnJzSHGKzY7n4yUWGHxzMyDwvFm2OhfR07nUJ4Ou2ekJLHxPgGMCURlPwtPKkz4E+hnGo5Cpq29cmuSC5khSzqdKUYk0xLTNM8M3S4+xVh31l4WhdnJjfagFfXf6KQk0hI/xHcCT6CK28WnF88HGORB3hk+OfGMatkqtwlDXGpmQA5lSlkBgGtrDhmy6fvHeu/nD1B3689iP3xt/7YA/hnNA5rPlzDQICjV0bczPpZoVeqfbe7dnSawteVl7MCp3F6rurMVOacXX0VRq4NqiwL51ex8DDAwmJCeHK6Cs0dmtc4fU66+vQyrMVr4tec+rZKTb12PS3/hknn51k4OGBdPDpQPDA4ArJqeFHh5NSkMLlUZcxW2zGonaLGFd/HB4rPBjqN5RSbSkHnxxkdN3RPMt+xq3EW4YgUUDA19aXWva1qO1Q2/Cvpn1NojOiWX9vPQceH0Cr12IsN6JQU4RcBGd1AFWVG5GLAnpBZujRWDm2Fn6e/xw4JOYl4rPah5/b/8zc5nP/8f0f8RHvw0fq1P8CSqXkpbFvHyQl/Ue7KC+rZhVnGf62ovMKulfrzqDgQTxMe/hfGWpzj+aETwynmm012u5sy5q7a0jOT6b7vu6G7MrfBRkg0Qesja3xEccBAvo3z0ZRkIMg4KIbBUCZvgztGylTEdGw+FLKlNiZ2FHboTbtvdtT20FaoZkqpOb31p6teTnjJdlfZHNvwj0WtFrAraRb3Eu9h7ulO2282pBRksGowFHkluZK0rUfgCiKTD4zmWp21aQbp50dZEnn2EJlYZANNFeZMzpwNFdHX+XF9BdMazyNU89P0WRLE/w2+LHs1jJCYkIYdXwUg+sM5nLcZexM7NjRZ8cHGwLrOtdlbOBYNDoNHX060si9EZklmZyPPU+ZvowFLRewoOUC5l+cz+nnpzkSfQRbE1vuJt/lflo4hXIdhUag0kHY72D7Oh+vYiWNE6TFTIPa1znir2Bfq1Ws3pVB70HfEVuUhJeVF6Gxoe8dk6WRJQAFmgIS8xLZEbEDc5U5qYWp0vXSaytQ65Z1XMbpYacZZdyERhce45kLodXlyEQY23k+brZVDBnPXY928aP8BiXWZlz9vYwSpYD/ZJFPp259L+e3vU97yRHaT8/aiyq6TvqNwvQkppyZQsfdHalpX5PYGbH0rdm3QkZPIVNQpisjPj8erV7LyICRiAJcN3mN/wZ/Ou/pzOkXkh9NeFq45Ew85ATPpj1jZlOpL2jx9cUk5CVQXFZscN01U5oBMDJgJPGz4isovxWhkRY3b+a6oIcy9IbFTrPEt5/LTGmGsdzI8F69HKrZ18TPrT6vizJQ6qSs/PB+cLaWpHqk1Ilc3arnhzZQqBLJfKOWhIU5DXZdIDoj2nD97MzsGOpXWeXOy0rSzc8uzabj7o4Ebgxke8R2ifZFxX4TAYHWXq1RyVUcHngYvajHRPF2kSRDhoXKwkCh0ok6QxVkVsgskvKk+5xe1BM+IZwnU5/wc/ufK4yn3FX7aeZTtj3YRkuPlggI7LZ8RX2nQBxmfcWF/Ad4Z8OP0c7I9BiCDFNRwc4DampkQoc0c5Y0+tJAacs0l7G5rpYew6HtGDhSB+q+hupZsKxtAPG+K5k/8hQb/T5DW+yOl5UXnwSMIrqqJXb7jjPJdzA3x9wkpzSH7Q+307tGbwCq21VnzMkxrL+3ns4+nVnWaRl2pnboRT05pTl029eN59nPcTR1xEIrJ/xSNWLWyihVwbFhpwx9PTXtalbqHyvH5xc/p/X21txNusuhJ4eIyY4hIi2Ck89O0tqrtYFqAyDo9IyIgJr2NdGLel5kveD4kOO09GyJg5ULGU38JT+n4GAa6p0Jmf+Yq4fMsEzOYNKZSUw5OwWNXsMI/xEGfxWtqOXyqMuULCihuXtz6VwrTBlcZzD1XeoTZlfKUzuRvTwixQJSi18zM3Sm4T65J3IPJgoTLr68SK11tUgtTGVq46mGOWWsrYlPyVJsaYwRDtjSmIs3q7Ln7o33no/5LedT074m406Ne28S6nr8dVbeWUkbrzaU6cuIyoxiQIo1CBjOt4elB0ZyI3ru78nqu6sZUGsAALNDZ1eShZXL5Oztt5d6LvXosa8HMdkxFV6vZV+LF9kvCB4YzIQGExh3ahyLri3iQ/nZXjV6cWroKS7HXabH/h4VjlekKUIuyDnz/AzFZcWcfHaSwE2B5Knz2Hh/Izse7qBEW8KZmDPYGEuqkGZKMyImRlC0oIgX019wcuhJfu7wMwNqSzLlbXe0pfGWxlyMvUhth9qSn5S6CI8CAfc8SDZ5xIiuRTQsjMNek09DX6t/OcgA8LDyYETACJbfWV6BjvkRH/Hv4GOg8b/C+PFgZgarVv1Hm9uZvgk0St4GGnKZnH3991HNthrd93UnOT/5vzJUZ3NnLn1yiamNpjIjZAb+G/zRi3pODztd4UH3Iay8s5Ij0UdwM2pYiQ8qIMcc30rbyAU5Zkoz3CzcqGFXg1r2tbAzsSMsOYxnGc9QCAqKtcVMaTCFlV1WIggCD1IfMDh4MI02NyImOwaZIKOGXQ1uJ91mT989nHh2gjH1xlDNrtoHx7rz4U5uJNxgXbd1Umnbzk5SCePDxmVVbauyKGgR8bPiCRkegr+jP19e+pKue7tiojAhoyiDp1lPOTLoCNbGf28LXa6alVyQjL2J1FeSVpSGhcqCL1p+wcymM6nrVJc+B/qw9cFWg8zqN62+IrHtSXrqqlKilHwWbsiS2JncmAmBUoYt3UjLmEYTGNJO4tZ29O2ISq7Cw9JDUqf5y8MxX51PeKqkPtNpdyc8V3oy7uQ4kvKSDGX/zr6dySjOQECgjkMdFp2bT8rkEVC3LkJyCp2rdyW0ow+MHo3DlHms2p2JXCsFPh7mrqQ874lpbhHWagG9SkGpEkpyK5oVliMkJgS1To2TmROTll+j7Ekk8fV9OXNrB2u7ruXiJxfxtvEmeFAwI/zfihisursKnagznHuVTEWDDCVFgo4mrk24EHvBECw1c2/Gq9xXVLGugkyQce7FOWKzYykqKyK3NBedqMPb2huZIDNQ+eo61SW1INVQ1anE5hFBfBNglKumhVQD4zfxWZ46D61azRdPrDGVSb0UxWXFfHf1OwRByrwvagV/NLLDTGWGTq/jyAE4VxXWNxGIsipj6GPo/RwsNm6n0FTB3AtSdtHXxpdXua+YfX52hSE1dW9K1NQoqlhVka6vTycS8hIIjgrmadZTQPLKKE8iyAQZx58dJyItAq1ey7be2yrQqfTocTB1QERkddeKnG39mx+Q6CY7I3ZyIfYCux/tNrzH2siaoi+LuDDyAoPqDOJm4k22PJAEIXSijuf5L/ktyJgLHhpG2LYh6GYaKcvA5M36XKvTcqY6PHGES86FnEy9gpnSjK29tlLHsQ7FZcU0cGmAi7kLJjoZMj3IlAHcrbeBh1Uak23hiMa8MfV0GzDV1WZ35G5+qJePTq/n26EuTDk7hdaerXE2d2bDvQ3UdqjNb51+QylTYqmy5HTMaTrvlb4LCplCkuCVG3Fq6Cliht7m5jYBr/BYPpnqhnW7rmx5sMVQzXiV98rQrwVvA1iZIEMhKLiecJ2mW5syOHiwgY6WU5pDeGo43at1NySd4qxFejg0o6isiNtJtzFTmfEg9QHZJdk4mEmyxKhU0L8/hIZCbCyt+8zk2lY9p/ZCQs4rAJLzEnEyc8LOxI6ojCgCNwbS71A/biXdYmuvrXTw7cD2iO0092yOj1NNXB18SNhkhnq/L+tDpPk9tdFUlnZYKikklWZjLDcmIS+B+Zfms/bPtW++FiJeujEGxSOQngcCAsvOPuB51nP+CpVcxZaeW7ifcp9Vdyo+O4vLihl2dBgmShP+iPuDWna1UKuLCXbNxUiQgs6JDSay69EuvFd5czfpLqeHnubwoMOcH3meiLQIuuzpQoG6ohiIidKEk0NOYmNiQ9e9XckoelvdqWVfi+iMaOQyOeu6rWNRu0V8c/kbppyZgk7/fmXCDj4d2N57O7cTb+O33o8RR0fQdEtTTj8/zaW4S/TY38MwL9IK0whwDCB4YDCPJz/GycyJwXUGs7zTckq1pXSr2o26znUNlZHnWc+ZEzoHt+VujDs5DkczR6Y2mkqhppAnqRKVsmeaFXqFghQ7JSMDRjKueQeWJh3h8MPfWDqqxr8cZJTjixZfkFqQWuH7/BEf8e/gI3Xqf4n582H9einLZPX3+uB/RV5pHtZLrTnQ/wCD/QZXeC2lIIWmW5piZ2rHtdHX/mvcSa1eS6PNjYhIi6CGXQ3ODj+Lj43P325zPf467Xa2Y06zOQjPBxGWWiZVMt5AFHXk8icP5bP+a2FtOW9eEAT0op6qNlXRi3ricuMYHTgaHxsfbIxtsDK2wsrICmtja6yMrRBFkaBdQXT27fyWWrVhA8yYARoNC69+z+bwzSTP+fsArkhTRPOtzUnMT8RMaUZSQRIWKgsmNJjAp4GfUsexznu3Ky4rxv4XezRajaEJ9V1/BZVcRam2FL2ox1hhTIm2hF66agy/ms2gGCPK0lJwnicQpPUg2DwBh2IYbNGMtfrbKGVKWnm14o+4PxhXbxwbemxAIVPQdW9XUvJTeJT+iOip0WSXZHMh9oKhQb48a9itWjdG1x1NkHcQW8K38M3lb2jv056QmBCM5BKfuo9pfVYtuo9lgQb1/M+w/noRR2JPM+DwAEKGh3B99Vxmb3lCkZFA50lmPDUu5Merchb0XkafP2fzZzVTWkUVcSHAjEfToyros/+Z/Cdtd7QlwCmAu8l3GV13NPfO7+DKXiUWTp6oLl8Ft7dqLGW6Mhx/cyS3NJcmrk24m3LXYDLnaelJ02dFxOuyCHcVUKpMsDWxNZg3GiuMsTSypJFrI868OGPYp42xDbbGtiTkJ/BVq6/4stWX9D7QG51eRx/vrqzfN4cnjlTyzSiHs7kzrT1bczX+KqS/xisb/vQAozJQK6GadVVe5MZga2KLl7Ez2xdFEe4Gk7tLr5ejTjo0T5BUpcxkKqxzNYRvEXDo0BuOHKHngV4Vxv0uLFQW1LKvRWR6JO6W7uSU5JBZkolCpmCI3xCG1BnCuFPjSCtMo4ZtDZ5lvzUiLFfaAqlJ/nXha0Ojeam2FEdTR9KL06lpV5OnWU/f29vxLhSCAlOlqaHf6tWsV4YqC0gKeC22tSC1MNXwt3Jvkf61+rPNeBCed4aQZyTilgfJUvENpVxSmDs/4jwdfTsiiiIHHh9g9PHRBh8JTytPHNJmYiprDO9IcIvoyOZPIhWzpOPpoVo2aHyqUKgtJr24chDsZOYkKRslh5FVIvkhWKgspEbxEmMeH3PBKLeQNsM13LTKo7ZDbeJy4hhbbyxrw9aiEBRoRYkuOrfZXBa1W4TTMidEUXxvL5pMkGFlZEX01GhDY/2T9CeYRDzhvqsU1P7Q9gcS8xPZ9XAXcpkcD0sPLFQWBk+MCigr45dtY/kidTfdXkCcnYxoOz01zasgGJsQlxtHqbYUG2MbTg09RXOP5qz5cw3zLszD18aX51nP2Wo8mFELDoJczoQ51dhj/pKw8WFo9Voab2mMUqZEL+pRa9WYq8xR69SodWqaaU9hhGOlIalJJ9xoAKeHnaaDT4dKr88KmcXv938ncnIkvra+FKgLaL2jNRFpEdR2qM2kBpP46doiXhenMyHLG7/hs5kRMsMwf2SCjEDnQM6POG9I2t1JukPnPZ2p41CHkBEhhmruu/Ox6dameFt788eoPzBVmrIvch/Djw4n94tcg8fHtgfbmHBqAj2q9+D7tt8TlxtHVEaU4d/TzKcV+nRMlab0qN6DO4l3qG5XndlNZ9N9f3d+aPsD3175lgcTHxiUG8ecGMPd5Lt09OnIqruruP7pdZq6N+XUs1Osv7eeiy8vYmdix9h6Y2np2ZJF1xfxZ/KfOGiNyBXU/FTQmOX2MWiUUqU3akqU9PmHDJEq9xcuVJ4f/wL6H+pP5OtIoqdGv1fS/iM+4u/wsaLxv8SMGVBaCps3//N7/wJLI0sUMoUho/0uXC1cOTPsDLHZsQw5MuTf6nP4EERRZOa5mUS+jmRD9w1o9Voa/N6Asy/OfnCbtMI0BgcPpoVnCxZn16P1tinopRyltE90IIh0jNhK1i+Q9Bv8GGbOGOfu1HOuZ8js/auQIUMlU0mGVIiGjGFMTgwvc18iIrI9YjvfXP6GaeemMfLYSHod6EXrHa2pu7EugZsCyS7JZv/j/Zj8ZILDrw5UzVlIw0+1dN7RgRNPT5BRlMH8i/NZcn0J68PWs/fRXk4/P831+Os8ev2IuJw4hhwZQkx2DBt7bCSzJJN+Nfsxtt5Ydj7cid8GP5psacLGexsN1Yty7I/cT4m2hADnACxUUnBY/n+5JrxSrmSP6zRmp3mDCNlJL2gTo4VBg7gc/CvZJiLRPha4W7qTawxrdbf50X4QdRzrUNWmKjt672DHwx30PtCbAnUBjd0aG1Rp6m2qR4ttLVhxZwWOZo6s7rKaO+MktZMJ9ScwsM5AFDIFS28upVeNXtxJvIOR3IjWahc6RqmJjL2NdbO2dPrSjdauoRSgIdA5EAGBrnu7ssY1kSbTjXH2rM3jnwvp8Ry+aaOjvfVxTlUX2XTVgs2XzbHQKRh9fLTh+sXlxNFzf08CnQP5utXXCAjsidzD2E9WYBMWiUpdBq1awcu3DcdKuZLWnpIM5qN0KZNXLtGZkJ/APUctRw6CicKYYm0xQVWC8LLyYnOPzVgZWZFelF5psZ5TmoOdmR3hE8P5ru13qOQqOhnV5lrsH5zeNIcnTvDJE3kFylSl74PfYKrbVSfLVKDjS4lSpVG+oWDkSrSMnlV78CAniucOEO4iBRk2xjbIBTkBaaDQweaGgAyKRA31XsPlKpD289f0PdSv0rjfbTot0BTgZO6EUq7kRfYLckpzMFGY4GDqwI7eOzj9/LSBjplenI5SpkQpUxLoFFhBVjSlIMXQeF++CG3h2YIApwBDRUSj01DXqS6eVp6MCRxT6XxoRS35mnwDVavjro6UlL1dgHnbeONt4w1IlSaQqFdOpo4oDx3h3ILB5BmJWOqVJFtKlR+FXqJgKnTw+71NaLQadj3cxZgTY9DoNTR1a4pKriIuNw65wrdCkAFSRt1CqIaR3Ag5cpyN7FDoIKMg9b1BhoBAdkk2Z16cIb04HQuVBfWd62Nvao9HLoRuLiUrLY4/dnyH3F/qKXiR9YLBdQazNmwtnpaeaEUtCkFBuyrtcLN0w3u1N3nqPIPMtqOZI3Uc6hh8ksqpWc7LnOmypwuF6kJERHolmRkqZ7E5sWzssZGE2QnMaz6P+Lx47qXeo9/BftxMuFmheqkW9PyQdRSVQsWB7x9z03oOANlpr4jOiEatVaMQ5HhYedBye0umnp3K6MDR3B5722Bw+mnJfuK/nwMaDStWRuNq4kjH3R355dYvWBpZUlRWRIm2BD168jX5BspbIbGG50E5RHSoTLJR69R03N2RWSGzKnlxLApahKOZIxNOT+DUs1P4rvYlIi2Crr5daeTaiBkhMwgotqBxMjypaUsLzxYICOhEHU5mTvzxyR8k5iXSYlsL4nPjAanKd3HkRaIzo+m0uxN5pRX9TLxtvDkz7AyP0x8zJFh6rtayrwVIvWyHnhxi4ZWFhMSE4G7pzolnJwjcFEjfg3359davxOXG0cClAT8F/cS54eeInxVP+IRwzJRmRGVEYaoypZZDLUxV0nU+8OQAHXw6VJCH71atG1EZUQRHBWMkN+KPuD+osrIK/Q71o0hTxO6+u3ky5Qkl2hL6HOzD69wkLMtkmBZpOO/6BVt988BYRXZJNuu6rTMEWcjloP3P1wnzW8znRfYLjkQf+Y/38RH//+JjReN/jU8/lbIIL19KZe1/A06/OTG98XS+bv31e18PjQml+77uTGo4iTVd13ywN+BfwfLby5l7fi6/9/id8Q3Gk1uay4ijIzj74iwL2y7k69ZfV9AH1+q1dNjVgWeZz3iQ0RfTVRtoMscSpV0rHMuGUVxkSSGxxMu38mnTIHZcX8vIBzpm3wafXLhb3ZTHI7swWwhFL0jZfksjS8xV5m8pKm/wIeWfv8JSZYmdqR0OJg5Ym1hjojShTFdGUVkRSflJxObEYiw3fq+OPbzVri9vaNXpdf94TIWgoIZ9DayNrbEwkno8EvMSDf4fgc6BdPDuQFP3pswKmUVinkTef9cNuI9zEL/ru2F0NoQRlpc4XU3Ep0iFhbElD+WZ9KrRm2NDjjHx9ESORB0hpzQHWxNbBE0ZusJ8PPLAw7ceGid79vXfx4rbK/j11q8IgmCgDJkoTPCy8mJ7n+00dG1ooMyotWqMfzJmV59djKw7koVXFrLkxhJUchUNrGuzM7omzut3sbqFgs/baQkbH4aJ0oTm25rjbulOcn4yhZpCvKy9eJn9kpu5/Wi++nX1Bx4AACAASURBVBgRAQ7UiUxnaw9XJtdLwd3IgaffZWBWK4A/6tvQvspVVnRewai6o2ixrQWl2lK6Vu3KhnsbsDK2oqpN1bfZ2YQESTa6sFDyp6kt9fBMPzedtX+uxcbYhpzSnErXJnmDKfUniGTI1bhaupJbmkuhprCS50r5dR/qN5TdfXcjz86RlOO2b+d08UN6DgelDuyKIM2SSiZ9MmSYKCWlpNzPc5i4Ioj9mvuc2A9TukGyFZgrzTE3MietMI0F16QA464b5Ji+VSVq+lrJ9oNlzP+uGSU2Fpx/eR7XPDDWwUvb98/VNl5tuBp/tYKikauFK58EfEKQdxBDjww1VCm+bf0tP1z7gckNJ7Ph3gZD9lcpUzLEbwjru6/HYokFq7qsIiE3gWV3llU6p+9zwPa18SU2J9YwrlaerbiWcA1zpblBarMcKrmKIX5DGFR7EEHeQXit9DI0IsuQUVVjTsSj5picDqHbVGtCHfIrSguLUDMDGqTBPn+w1cgpEnSoVQJzm89l+4Pths9bT78GS32DCnTOv1Y0yvfpVAyZZnK6Ve+GtbE1ux/tprl7cyLTIyv47lioLDBWGKMqKGb2hSJqZMHUbpLCGFBhbvnY+JCYl4iJwkQKuP6i5PVFiy8Y6jeUAKcABEFArVVz8eVF9jzaw4EnByqde4Dx6jqEOhSQkJ9AI9dGUmOxyowfr/7I0ptL8bDy4GnmUxq7NWZus7n0q9WPJdeX8O2Vb5nbbC6/dfqN6Ixoaq+vzQXfhcyOXMYT4wJEAcxFJRN9B7Ep+QRWRlas67aONl5tGH50OGdjzqKSqQgosSBSnoX6A2175gpzCrVvr7mLohnVSn9741YuICLdUyPkkxCNXknS3jIlVayrsL33doMYCbxVxAPp/uVm4UaJtoR8dT7Lm3zL2J7fcnR6BwaYnMJUaYpckKOSqyjSFDHMfxjzW86n857OqHVqifLq5A/A/f/H3nuHVXG1a9y/2ZXeQYoUQZqCKNg79t57wd4Se0wxMa898U1iNGqMPXZNYiOW2FCwRGxYEEGliFKk97Jh7z3fHyPbEDXJ+c753u+6zvG+Lv5hz6y9Zs3aM+tZz3Pfd8Ztuu7pSn2b+pwde9ZQclleXU5CbgL7Y/fz7bVv8bDyQC7ISSx4xdtwMHWQiNh2DTBWGrMtZhsOpg6cG3sOd6tX2bo/IiE3gc67O5Ndls20kGl0qteJwT8PBuD06NN0r9/dcGxhRSF2X9uhE3WSiaTSmNGBo5nRdAaNHRtz8MFB5p+dT3FlMS2N63Oh5D6900zYNulXhicsIzYrFpkgo717ew4PO/xqTRAWBk+fwqU3G3D+E3TZ3YW8ijxipsb8t9Ya7/B/D+8Cjf+vERcHAQGS+lTYm5U23gb/7/3p4dWDNT3WvPWYLbe3MO3ENL7t9i3zWs1763F/hSPxRxjy8xA+bvMxX3b50vB/vahnxaUVLIlcQm+f3uwZuMfwUP743Mesvraai3eDaPPrXQYtbcBF+TNuTL7BlONTuPzssqEdZzNnoidH0/9gf+6n32FgAiz4HVqkQ5w9rG4FjlPn869uK4lIieDDcx8SnxtPPat6pBSm4GHlQWphKiKiYYFlY2yDpdqSwsrCNy4y3wSFoCDYKRhvW8lJu65FXcwzclF99CllXyzmjJjIvth9TAmWXKHzyvPIKc8htzyXgoqC12QrQVpYqRWSS7BckBuComp9NZXayreSQAHDgtW2HJxKwNLIAgtbF56aVhFflISJ0gSdXodGp2F04GiOxh81LCZb1m3Jrv47KRk7nC6N76ORi+iUcqpeBjCe1p5klWZhpjLDUm2JsdKYpIIk8j/KRylX1uqGarmKNd3XMCJgBK5rXKnWV/NRQQOWHy1GlpHB7yPb0aluBBolBDgE8EWnL5hxcgbpJekEOgTSzasba6+t4eRJS7rfLICPPyb5g4kM/8yXw+FqbtlqCBuhIiBHxvEoZ+zLYP7G/my8uZGgOkEk5CVgZ2JHWnEay0OXY21kzbQT03ix4AUOpi/LLrKyoGtXyMiAs2dJrmfFmCNjuJYmmQbKBJl0D2RySqtKmRYyDf22bWxtojMoF9Xs/FfpqlDJVOjRo9VrsTOxI7c8F7WgYHa2J3P3J+NcKvDr6BDG1LtHOa+c4gXemMwwzMvvnwVyMy+WnU3g0XewtJuC/f7STmIjh0ZM2h/P7CvVTO4D25tK55opTSmtKuPKNpg0AALbD+FQ/CGs9GpubNCQbQptJ/CP8s+D/Abx89CfDeUNO+7sYNKvEodHIVPQ37c/Hd07Muv0LIKdgonJjEEmyJjdfDZreqzBabUT00KmEZMZw/HHx6lrXpfLEy7TYWcHA0n+TXC1cOV58XOCHYMNrtM1Skub+2xmRdQK0kvS0fPKoK9GxrYGcdaLcPpkJSgVaDdvpm7idKp11azruY6f4n7iyrNXBOJGmTDyAVx2h1M+YK5TUCJ/JS6xo/8OAi36Mm97PIJeRC+TGxa5DxQzKZM/pEpXhYnShLLqMlTa2kpui9ovYlnoMslI8ztP0kvS8bPzo5tnN1LSYolNuMRTizfX6L9pXoC0YTK3xVwSCxLJLMnkxpQ3q4QBjD0yloiUCBxMHbiXJQl/WJdLBPdkX3tUchXpJek4mjlyY/INziadZfLxyWgWScHK6muruZByAVcLV16UvpAM6j7Kw1Rlyrmkc3Tb240PWn3At9e+5WjnrdyK2M1K/SVEAdrkmZDmYESqPv81xTRBD9Nuw4B4mNkLEu2kksHJTSaz5/4eMkoyqNZX17ru+sadsa8agZMymDTNLVKErWhVSRRpigyBl7+dPwm5CcxrOY9locvYH7ufD899iEanoVonPUN1oo7uXt3Z0ncLbvOWUHw6nGmrQzn4+DBe1l5s6bOFzns6M7flXNZGr2X3gN109epKz309SSlI4deREsG+qLKIYwnHeP/U+5ipzAisE0hifqLhHQMYNi9au7bmUe4junl1Y33P9a8yBC/xOO8x3fd2p0pXVSuY+TOSC5LxXu+NhcqCBa0XsOjiIgLsA7g/4z6CIFBUWcTue7v54dYPxOdKQg+jA0ezodcGrIyseJT7iPdPvU9ESgS96/ci/8l9bohprMzwZ8G/LxMWOZvDDw8T6hFKdHo0D997WFuufuJEyTj36tW/nbNvQ0RyBF32dHktOHqHd/g7vAs0/hPo3Vviady7V8s34O/QdkdbPK092T1w918e9/G5j/n69685POzwGyVM/wrX067TcVdH+vv2Z//g/W90NT315BSjj4zG1tiWI8OPkJSfxKCfB7H6uhXzbylZ+lUvlqbu5teRv9LHpw8Nvpde1jUGeBqdhi86fcEnbT9h1m+z+P7m9yBCm2dSwNHvEeSYCextb8UXAQUE+nfg665f06hOI+y/tmdB6wVMD5lOnwN9DAZ93rbeJOQmGF5UgQ6B+Nr6YmtiS5WuiqzSLJ7kP+FF6Yu/dAKvgQolZkbm5FfmM6TBEJo7N8fH1gd3K3c8rDx4mPOQjjs7MtBvII5mjqy7sY5P2nyCh5WHwZE1r0L6yyjO4HnxcwoqC95e1iaCdSWUqUArF/CwcEepVCMiUlxZzIuyF/+l+1iz+q2nsMPTLYg6ZnUMZOeiyiJkMhlVuipWdV5FW7e2Bv6KpZEl9dbW48M2H3I9/Tp3rh1j/2V7WsfkSA7369ej965P512da2nkd6rXiZYuLfniyhd0tWrKucJbRO1T0f6LfTBkCKIoYrHKAkpKefioC1nR5+kdpsCiTMvpveCckI7TjgaG3fEQpxB2DdhFQ4eG5JTl4Ljakc19NjM5ePKrS8zL4+qY9qyxfcwxbz3GSmPKqsuY2Hgi2WXZnE85T5WuCkEUsDO1I7ssC0EPoqy2jKtMkCEX5KgVapoVmzP8Rjm7vcvJU1aTaSmjUikQYNeQmNz79PXpy7mkcwbnY5BKm7QvN8mNFEZotFKGzLZCQATa1WlOePF1Dv8EZQoIGyxxD6Ze17HxFGxoBvN6ydAK0txV6EErg654c55EakwjNxyqYNR9kcbTIMFB2vGvyWLczrz9xnk9xH8IU0Om0s69HUYKI25n3Kbp1qaGYOubbt/w450ficuJo1XdViQXJJNVlsXiDotZ0nEJ7X5sh6uFK0fij6DRaWjp0hJrY2t+S/ytltRsDWp4MTUwV5kjE2QUaYowkhuhR0/Zp2WsvLSSNdfW0NSlKZFPIzFXmVOoeVVaqNTBkDjoYhrIR46xtG7Sl1NPTqETdUSERdB1T1es1FaIiLU2FswqJYdsUQC9DIy0MMWpL3p3V86nRNDguhpv7USueHlRJkshRbaVNt51WdVlFScen2DlpZXoRB0eLzQ8sZMMGEFyQV8eupzHeY9ZErWE9T3Xs+LSCvTVVez/SUun6roUnzrK2pQDLItaZghE/w41fKcmjk34oPUHNHZsjKe152vP3Rp583U91jH39Fz06OkfLwVV1fJXXBaQAsg5Leaw+tpqXnzwwqCOdifzDmFHw3iQ8wCVXMXs5rOZ3WI255PPM/FXiaQ9tOFQfG19uZlxk+jn0a/uiQjGWqhUSGMrIGCsMKZcW45lBdzcCjaimjlfdSI85zIjA0ayLUYi9zubORMRFkHjzY3R6DTYm9hTrClmashUOtfrzICfBmCuMsfX1pessiyeFz9HQGByk8nsvLcThUxBhbaCiY0nYmNswzfXvkEmyNjSZwsTm0xEuHOH6P4hjJpqS56ymt7evTkcf5jUOan02NcDdyt3rIysOPTwEJt6byKvIo/V11aTXpyOtbF1rXJkmSDDTGVGWKMwQpxD8Lfzx9/eHwu1BYsvLmbZpWU0qtMId0v319zMa/Ci9AW99vUiqSCJ8BHhdPTo+MbjTFaaYKYyo7y6nLLqMnYN2EWjOo344eYP7IvdR6W2koH+A4lMiSS3IpeCjwpQKVR8cfkLvrr6Fa6Wrkz1G8OaqFXINFUctJpE+0+38HnkYlZcXsHCtgv58sqX7Oi3gwlN/mTGOWUK3L8P199uPPh3EEWRFttaYKI0IXJ85P/rdt7h/x7eBRr/CURGSp4ap09D93++E9D/YH+0ei0nR72Z+FkDvahnxKERnHh8gqjxUZIj9z9AckEyLbe1xMfWh/Nh519z1v4jaoKLx3mPEbQ6eiXo+CUpmF+/nc6AiMksD11uKPFy+NqBnPIc2ri24erzq8gFOXKZnImNJ7L59mbMVGa1FkmNCtTMuKJh3D3pRX+nZ2PqL/sex6DWjDo8igfZD3A0c+Ry6mVkMhnzWs5jRacV3M+6T/DmYPr69sXayJqYzBjicuLQ6rXIBTkNHRriZ+dHeEI47d3aM6vFLJ7kP+Hui7vE58bztPAp+RX5b/QKeBNUchWeVp4k5CUQ6hHKe83ew93SHXcrd4orizkcf5hD8Ye4lXELtVxNT6/uDNL5Idy+yVjLi6i10o645uXLG1HaDcwpz8HB1AEHUwfyKvLILMn824WLgIC52hwbIxtsMwspqSrhsZUOIw0Emnkg2tlRoa2gRFNCekn637anEBSYVGhxKwIrUYVl/QAsPfwMLuGXn102uPEqZUoODD6Ar50vK/ZN4+fC3zHRwvyg6Swb9gMAz4qe4bXOizqmdUibnwYHD5L84WR6DCyjSA0dXdrwc5G0u9berT3nw87XyrR03NkRE6UJp0afolpXzaGHh1gTvYabGTfxKzNh7uVqrGd9yPAnXzCkwRDcLd3ZeXdnLZU2C7ERQ59N5LGTF4WyJFLlOygW7qPQwjeZAcy4r0J1M4Z8Y4GJYRY8rG/JuSmX6LG3Bwm5Eg+hhvRbA8dSKSjWvQxcvKy8SCqUyobQg1KuwExtTkFlAfPvmfJeZBn+85TYFFXzYjVsawJT+oJKoaJaX40oivR5DCd8JXfqmjKi4GwFN37Q8k0r+KRb7Xtlb2JPA7sGRD2LonXd1vye9rth4VlD6DZWGNPBowNtXNvw+cXP33jP7YztaO7SnFOJp1jZaSWftvuUCeETiEiO4Hnxc8O8qGNWh8/afca/Lv6L3Ipcw/lOZk7oRB3ZZdmGjMabMDZwLD28ezD6yGjuTL3DuPBxpBSkUKIpQYaAXCdSrQA50rjW7KLbmdihqdbgauXKw5yHWKotqdBWGDKGf4ZKC1VyQJDUqprhwrfJ3rifvY7TnGqmBE9hX+w+dHodFdoKxjQaQ0+vnow5OkYivVeBwtgYEyNzsste8TU6e3TmxOgTFF2PYsyOPkS4alnS4mPU5tZ8EvEJdUzrGKR7/zi2fxyrP3uW/DFTYKwwJqhOECHOITRxbEJjx8b42PrgusaVsuoy2ri2ISo1iptb4P7YbkwzvWBo788bGQvbLmRuy7k4mDpQVlWG3deSjPTExhPZdW8X5dXlmCpNa5W02ZvY42bphiAIPCt8Vour8jIWRpRJ3jEWpjYUV5Xg+KKMO5uhMsAP135P0KDDWGHMtJBprL2+lpZ1WxKXHcfowNFsur0JlVxFla6KU6NO8c21b3iS94Ss0iwG+g/ExtiGH25Jzw2ZIDnCa3Qa/Oz8SMh9JTpwdPhR+nr34d8TffiXRwrNXFuwb9B+NDoNwZuDCa0XSmlVKZefXa5VTilDRn3b+pRXl5NWnMb4oPHMbjEbXzvJpLHz7s44mztzPux8LdltURSZ9KvEvXM0c/xLkZBiTTGDfx7MpdRL7B24l6ENh9b6XC/qkS+T803Xb/jswmdodBoaOTTifvZ9nM2dmRYyjcnBk3E0c0S9XI1W1LK4/WJ23d9FRkkGn7T5BFlWFsviN9MxXcH+AXup02e4IWO5rOMytt3Zho+tD2fHnH29tGn6dLh1S/r7b+BI/BEG/zyY3yf+TivXVv+ttt7h/w7eBRr/CYgiNGsGVlZSjfk/xMTwiTzMeWgg7P4VKqor6LS7EykFKURPjsbDyuMvjy+oKKD1jtZo9VquTbr2Rl+DPyO3MAPvNfUolFUxo8SP6bN303ZfZ7p6deWXob8YyoZUy6WylO97fs+MUzNqlVOo5WrsTexZ3X01a66tITpdujZThSkt1Z60PRHL+zfBpgJut3Qjflxvxr/4ASOFEVOCp7Dx5kZS56biYuHC6COjiXwaSeKsRIP8X6W2ktisWGIyY7ideZvD8YcNO1gyQYafnR/BTsGEOIUQ7BRMozqNKHV3IvHDSZxpbM6qq6to5tyMrLIsMksy/7r06Q2wVlsRIHMk9Jkc35vJlGormN1L2oVsYdGASlM1d17cYbDfYH5L/A07EztDScrU4Kks7rCY4C3B2Bjb8Cj3EVZGVuRXvtqBM1IY0dWzK+ZqcworC6VMStELsnNTKX5LnPhHdSCVXEXnep0xUZqgVqhRypRcunaQkGQNptVQ3cAXXWBDyqmmsLKQ5IJkMksz/1EwJhNkuFq4YmlkybOiZ5RoSpDL5ExqMklS/irXI1u/gS1+ZaRYganajD5+/Tjw4ABnxpyhi2cXwwvyu+jv+Oj8R3zW7jO2xmwlrTiNLp5dmNdyHj1cOiAbNpzouDO0Gq/Fw9KD4qpiw30WEDAXAyXzSL1Qq2wmXpyB54v7XNwNQsdOGE2ZzlFvHYPCJR8KL2sv8iryWNt9LXPPzK1F6DdCiUNhNfl2JpRpK1DI5Oi0Woy0UK4EG2ObWveqeaac65t1tJ8A1+rCv8/BB93BwsiCYo2kNtQ0HeLryChTvBpfmR6ub5fhnSfSdJaSRNNXPiYdPTryRacvaP9je7Silg5uHYh6FmX4/OqEq5irzTmbdJYzSWeIfBopKW3JjTBTm5FXnldrwbu0w1IWRy02uNl/fuFzVlxeYfjc39afRo6N+CnuJ8P/aha5dc3rkjg7USLJRi0huSAZAQFTlekbZaJBIn3nlOeQlJeIKIBcB3FpfZncKJVUsYBKbeVr5nE1GOI/hFktZjHk5yGvHSMgMMh/EIH2ASTfieDCi2ukm+i4swkKjAX6TzJGL5fxWdvP+PTCpyxqv4htMdvILM3EQm2Br7U3tzJvIwpS+Vkvn17M+W2O4XfjUqli9xGRptYBvD/Xm72Pfn5jH00VppRppXOauzRHq9OSXJCMp7UnMS9iDAFhO7d2PCt6RmpRqqH/SrnSwKmqGWMBgY/bfMyqq6s4vh/6rDpCeufmrLy8ki23t2CmMsPexL4WjwAgqE4QVboq4nPjpXn58rdRoyAGUnmQhdrC0Acvay+8bLx4UfqC+1mSwIKtkS0FlQWYamWoqrSUqACZjBaWDZHfi8UnD7Y0k/o7rvE4fuz/I/0O9OP44+N81u4zVnRawc47O5n460RERCxUFoSPCKfzns6EBYWx6+4uRgWOIuppFGklkheLrbEtGq3GEAwdHHSQPbF7uPb8Gk6iGQ8rn9HItB5G1g4k5CbU4gz52fqRWJBIW9e29PHpw6KLixgVMIrt/bejF/V8cOYD1l5fy6J2UmmcIAjEZcfRaXcn6pjW4XzY+Vflmkjqdk02NyEuJ44bk2/85SZela6KCeETOBB7gO96fMesFrMMn5VWlWL+pTldPbtyLllSflLIFCwPXc4HrT4wbLLUGKjWcH26eXVjecflLNk3mdMVsSx64sTi5ZeRe3pxLukcvfb3YlKTSchlcnbe3cmDGQ8MAgu1MHOmVDZ1585b+/9PoBf1NNzYEB9bH8JHhP+32nqH/zt4F2j8p/DTT5LE3O3bEBz8j0758OyHHHt0jCeznvyj47PLsmm5rSXGSmOuTrz6Vk8HjVZDj309iM2K5dqka3/pO1EDMT2dccuacMguh7nWPfi64jwKmQI3SzduTbllkNjNK8/D7mvJHyJ5djLO3zrXaqdzvc60dm3N2mjJGyOsURi/Jf5GSmEKelFPR/eOmOvkOB+NYH60VJN82Q0ihzRlj0cRwU7BHBxykPtZ92m8qTE/9P6BaU2nvbHPNTWl2/puM9Sj3868TUxmDPey7hleuD6FCoItfHBp05PV11ZzZvQZutXvhlanpee+nvye9jsL2y5k061N5JTnYKo0pbCy8K+J4n8iDNdAJVdhbWRNsaaYjh4dWdB6AamFqcw7M+81km3NouTP7sitXVtzZsyZWhmAyumTMXHczsJm89l6fSOmRZUscw9D1ymUvPI8dt/bzcPch5J7sbkLNsY25JVmk1uaTZXs9euo8YOoUXFp4tiE/Ip8bmTcQIaMXo/0tHoOEfXApf9Ywh+HU1xVzLTgaTzKe0RkaiS+tr48ynuEv50/FdoK8ivyKa4sfqs8rEyQYaG2wFRpSnl1uWFH0tPak2bOzfCy9jKUfBWXF3DixGoumUq7xm1d23LluVTDLyAQoF2DDc1rEYEFvY76+ffYWed9zPQKqoyULGy7kPmt5tN1T1euPr+Ki7kLB4ccpN+Bfm/k/gQVqrlnpUGBDGONnhL1q77rRT296/fmZKKUgbSohKJVkGgF3nMlR3D9y+7IRBh9D1oWmfN++5JaYzL/hpyvf9PRdgLEOgqUqkQDn0EpU+Jg6oCzuTMxmTG4mLvwrPgZoR6hXHx6kehJ0bSo2wKQfotBm4LILc/Fz86PJ/lPXlP3WR66nM8vfs6Xnb9kQesFBP0QVMvRW0DAydyJJo5NOPnkpCHrUrNjXxOgHH54mCG/DDHMHblMXsvo0c3CjUKNRMY3BK0i2CnMWdNvI8+KnvGvi/8i44MM3jv5HscfH691fk1f3vSbq1mUhY8Ip59vP0BaIG46+wUjhyzh+6awsTlkm0KjPDmP6ygIcAikg3sHVkevllywq8vxLjNixqVKVg925EVFDqIoEj4inAsXdrAv+SjZf2EpJCAw0G8gW/puwXeDr5RVkhvz68hfmXx8MhZqCzb02kDYkTBSi1ORIWNMozFMCp6EWq4mNjuW2KxY7mbd5U7mnVpZNAEBURQZFge5jhYoWrSkpUtLnMydOJt0lqMJR99IvK+Bu6U7bdzaYG9iz9H4o4aNjZpxs1Bb4GbhRkphCmXVZQTVCaJl3Zbsub+HNq5tWN9zPV9d/Yof7/6IGUpKxCoDWUmhh+9Og9o/kMmesewasIuF5xdSWl2KjbENMVNjpNK7J7/R90BfdKIOJzMnunp2JfxRON423tzKvEU9q3qENQpj6aXaZqs19+aPRHq1TiCgbjD+9v40sJMcslVyFb3292LPwD1EPY3idNJpUuaksPvebib9Ook9A/cwptEYRFHk69+/5uPzH9eSAY/PiafT7k7YGNtwIexCLXPOs0ln6b63Ow6mDtyacgtXS9e3zgO9qOfjcx/zzbVv+LjNx6wIXcGZpDOsjV7L+RTpnanT62ju0hyFTMG9rHucHHWS9u7tqdZVE/hDII/yHmGiNMFEaUL4wF8Ysbsv5ZpS9pZ1p8c3x8DIiNisWNr+2JbWrq35uM3HhO4K5bse3zG7xew3d2zOHLhwAWJj3z6J/yF23t3JhPAJxM6IJcAh4L/d3jv878e7QOM/Ba0WvL2hVSvJMfwfYNWVVXx19SvyP35d4vZtSMhNoPX21gQ7BfPb6N9eI/6Kosi4Y+P4Ke4nIsIiaOvW9u8bvXKFzf/qzfQOxewNXMLIgZ/TdkdbotOicTB14MjwI7R2lVxl7724R+PNjbFQW9DatTWnE08DGBZKckEybHq/+fssar8IOxM7KrWVfBrxKWuj16KUKZHL5EwLmcb+u3todTePD65BqQp6jYFt2t6M++QAg4+PIS47jvj341+7RpCCqaBNQTiYOhA1Puq1VLJWryU+J14KPr5dQIyrghiTIgM51dPaE4Wg4Em+5Ap+9dlVQ1bGXGVOX6cOdM8wod6VB6SlPSTJRiC+gT0PnZU8lZVQWP26Pv4/wZ8XUzULuzomdVjVdRVTj09Fq9cSFhTGzgE7X52YmUnd1S6MN25F2JwdhK4PwTKvjAveK3Cc8xnhCeEM+GmA4TuGKYLYsiqOcrGaT3qr2N9Qz8XxkTzKe8T6ScHqAAAAIABJREFU6+u5m3UXDysPWtdtjUwmI688j5TCFBJyE5CJr2rZ39R/kAwnAx0Cufj0It08u6HVa4l8GokePYHZMpZFydjWQs5JNw19TYM5WxmHt603oigSlxOHkcIIAQELtQU+tj4UaYooqiwitzz3L70bavA2/X6VqgJL3+/5Jf4XAuwDeJjzECOlkWEBbq40p0pfhUanMSwKRETMleZQWoK/0pkbsgwDJ8ZcaUY1Wgb6DeTAgwO1VIfsSyHrG8lkrsVkKetRs0CzqoQ9h2HUWCNKxErD2LkWisR9D4cbq7AtquKDqe48KX2GiEh3r+6cSTqDTJBxb/o9mm1pRpW+Cr2oZ2vfrUw5PsWw6yqKIoN+HsSl1EsE1QmiWlfNledXkCGjjWsbLj+/XGtcPK08qdBW1PK0ABjRcAQ7+u+gzjd1pPp7c2ce5z1md//dTDs5jUptJcdGHKNKW8XQQ0NxMnPi+uTrdNjZgbTiNLR6rWE+q3RQt0QgeouI1wcKSuWvq7o1c27Gncw7aMX/mhRny7oteV70nLj34gx+B6Slgasr86a5s8HpOXpRj30pHD+kYEeAlj2NQG5hQammFG9bbzKLM9BUlNBRW5czRmlSGQ9y9NpqquVgb2RLTmVere81KIa5tCRqfBTjw8cT/iicAb4D2P9gPyZKE/YM3MPE8Ik0d2lObHYszZybcfzxcUOZWwuXFsxsPpOhDYaSWZpJm+1tMFebs6LTCib9OglnM2ee5D8BrQ7dP7QwqPHueBOMFcY0dmyMq4Urxx8fNzzzjBXGTGg8gc87fI6jmSORTyPpua8nXT27cnjYYW5n3mb4L8NfiQKIMDQOZtyC9qkQFmbGL16S6MLZsWfps78Pbd3acmzEMWSCjIjkCLrv7Y5O1BmyrHJBTl2LuqQWpdbindRAJagwMzIjvyIfBTK06LnQbhuhnSa9dl3d93YnvyKfjb020nxbc34dIXEGxx0bx5H4I9yaegs/Oz8AgyRyb5/eHBh8ABOlCY9yHxG6KxQrIysujLuAo5kj8GrzzN7EHgdTB65MvPK3xqwrLknGfjXX2cCuAQ9zH2KqNMXKyIrQeqFs6r2J/gf78/vz31keupwdd3dIMrgKac4M/mUwcj00zxD4KWQVrtM/Al75aNkY23B2zFna7WyHrbEtlydcfrvHxfz5Uun2w4dv/vy/gCpdFV7rvOjo0ZE9A9+Z+L3D3+Odj8Z/CgqF9GP/+WdITf1Hp9ga20puxW9xIH0T/Oz8ODr8KJdSLzH9xPTX3KCXRi1lz/097Bqw6++DDFGE77/n1qiOzG5XwnsNxjN60GIWX1xMdFo0ewftpb5NfTru7MjGmxsRRdEgTVuiKSHyaaShKSu19GDWiTpmNJvB2h5rDeVaRgojvu3+LRfGXcDBzAGtXsva62vJ0eTTZPoSFixqzsjB4JkP41aepKiOJU02/cqygFlvDDIAVl9bTVJBEht7b3yjFJ9CpiCwTiDjGo9jXUYQVxLb83TOUwBmN5+NvYk9j/Ml59r1N9YT8yIGlaCghd6Z+TFqRn9xgm5rfqWdkS8jF+xi0eEc9m3M4s6iNNb0+g4BgW5e3fCy9qK+TX1aurR86zALf9jO/vPCq6ZEJKs8i/dPvY+7lTtyQc6ue7voursrJx+fJC47jlJbczzNXEl5FI1PpSmRs2IosjUj9MkiMlcvpYtnF9RyNSEV1myOMCa84i4hE6r59/YJ7GpQhauVG788/IVpJ6ZRpCni8LDDJM9OZt/gfewZuIdTo09x1XoBAMse1jH0uLd3b65MuEL4iHCDc7RcJqe3d2+sja0NWvAXnl4wuEfHOugZOFTLSTcpS3O8LAZttYYH2Q94kv+EJo5NGBEwgqbOTcmvyGeg30CCHYPR6DSUVZcR7BjMlt5bSJqdhEJQIBcFzF/ykU0Ukka9VpuEKL6u35+re8C5lHMICDzIeYAefa1d/pLqEkP26I/yxvUV9pSoobowr+amgQAl2lLJ0M9XCuJqggy3AjCphjJTFc8soFz1koSuA9sKKDSGocMxBBkglbj9cAIKjWBx22rGDoSZbT4wfG6lsjLM3SWRSwyGlQDBjlKWtGaub7q1iWMJx9jRbwe+dr7cyrxFU+em9PPtx/MSiUvRyKERZkppmz65MLlWkKEQJP3Sbl7d2Hp7KyVVJQzyG2Rwc86rzGNey3nIZXKG/DyEXfd2AdDAvgHWxtakl6SzstNKtvTdgp2x9DuvkkGypcjq5T0pkWuZEDSB0YGjMVYYMyV4Cmq5mpsZN9+4QK5rVtdw7X/8vdTg3ot75JTnMP/M/Ff/fFkmUhUUSFv39gwLGEGWOXQKE3EphuitYFxcgbFexqO8R2h0VdQrFDijlkp49KIe0zIpyFAJSnIq85ALcnxsfAxfoUePgEB0ejQBPwRw4MEBfuz/I3sH7WVBqwWUV5cz9uhYvu76NRdSLvCi9AUzms5gUpNJaHQatvTZgoXagrFHx+LyrQvBm4NRyBVcCLtAE8cmtHVtS2pRKmqZ0nDVAgJ2Jna4mLu8ZjpXg5oxNFeaE2gfWMscs0JbwbW0a1xIucCU4Ck8nvmY5NnJTA2Zyu77u3Ff687E8InYmdhxdPhRTieepv3O9vTc25OMkgwEBMl4UYBfAmDUIEhyUPDDgVJ8Mqsx18poqq7HnoF7OP74OPPPzGd/7H4in0YS7CTN05rNAp2oI6MkwzDeU4OnYm8i+eG0cmlFlVhFfkU+nVzaEfQCEGHQzQUUVLyebZzdfDa3Mm5Rra8m2CmYzbc3IwgCG3tvxNXSlWG/DDP4uIQFhXF85HHOJ5+n656u5Ffk42vnS+T4SIo0RXTc2dHQL1sTW+xN7BnWYBgZJRkM/GkgGq3mte8XRZHfn//OmCNjWH5pOQpBIrW3cGnB1r6Sl1althJjpTG2xraYqkzZ0X8HNsY2LDi3gIoqqW/9/fqzJ+JbaQyyVURNvmoIMkqrSumzvw96Uc/JUSdZE72Gp4VP2d5v+18b6cnloPvn64i/gkquYkGrBRyIPcDTwqf/I22+w/9uvMto/CdRVgaurjBuHKx5u2RtDWqIV7kf5r4mq/d32HNvD2HHwgwkT4Bdd3cxPnw8X3T6goXtFv51AxUVMGMGeT/vImSBOXVc/bg04TInHktO0DUlE1W6KhacXcD6G+sZGTCSpwVPuZZ+DQAzlRlWaivSStKwN7EnLCiM1ddWo5QpiXsv7o0lW+nF6QRvCSa7LNtQQjOs4TB+ivsJN0s3FCnPmBcNE+5I5Sf3ezSh3tJ1OAS/CppSClJosLEBs5rP4quuX/39YA0fjpiXS/SPK2i9o7WBSKiSq+hpFszpwhs0yZLTNqmaO25KYpwFCuRSWYezuXMtzkdMZgxLo5YyqckkguoEMfv07Fo+AxZqqT5/fNB4etTvQXpJOkn5STzOf8z1tOuvKQm9rVzkTVDKlCg11XSvdsc9dCCmShM2Xf4W88JKfrOcwQeVv1Kelc6/L8gY019PupOJpPBSJRltGSuNWdRuEXNazqktDKDVSi73q1fj8ZkprQN6cuDRIcPHEWERdKrXiS67uxCREgHA0o5LMVYY80nEJwYSfV5FHhfHXcTkQQLJEwexd3B9jtrlYZ1RQIo1GOlBr1TSxr0dxVXFPC96/hrJ9o8wU5kZuAD2ogk5QjlyPehkMPV+I574b0IvSCZtkmmYyB35dGytS5nUZBLLLy1Ho9PwVZeviMmMqeVd8MfdVROlCR1fGHPaOg+VXlLi+TvI9FLWx6FM+nvw0lFcpoe+j+CkN2hftmOiNEEtV1NUWUjkdpEv28K60zBqlhM3Za8W/wICDqYOuFm6cTPjpqGcREDg1tRbhGwJ4fbU2yhlSpptbcbk4Mls6LWBvvv7cuLJCW5MvkFacRqDfh4EQNd6Xbnz4k4t0rKnlSfJha+MEWv8VvR6PT52PlTpqkguSGaw/2C+6fYNnt950tChIQ+yJVPIQf6DCGsUxoCfBhD/fjz7T3xJ2+W7EQXoN1KSkK3B8AbDyS7PJvJpZK05LiAgF+RvDDiczZyxMbLhUf4jBvgN4Hzy+ddK3Fq4tGBayDSGH3mMycYtDP0hlOKqEk6NOoXnd56Ua8vJLctFJkpZlmm3IDLQjHtmpYZ7558DT60kdbEqOQajPDtjO/Ir8gmoE2DgMdSU99TMm3U91zGj6QwEQeDT85/y5dUvMVGa0MmjEyeenGBph6XMbTWXRj80wt3KnYvjLnLq8SlGHRll+P3XkKdrYKUwxzWthHXDdhDcWvJgiHoaRURKBGeTzhokUWtUrf6sDvbHsf3z88TZzJnxjcczvel0zNXmbL29lXU31pFWnEY7t3ZkFGeQVJiEgICLhQv7B+2nnXs7lkUtY3HkYgDMNHB1B1hooPlkiZNmIzclWfUq+2iptqS0qhSFoECj1xiyQQICX3f9mgMPDpBckCxxQl4++92t3Mkrz6OkqoSGuQJt2o1hS/webI1tOTX6FM1dmhva14t6/Db40cSpCZ3rdWbGyRmkzEnBzdKN2KxYmm9rzthGY9nSd4vhnBvpN+i9vzf2JvacGXMGV0tXEvMTCd0VirHCmIvjLuJi4UKHnR1wMnNiZvOZdNndhYH+A9k3aB8yQUZpVSn7Y/ez8eZG7mXdw9PakxlNZzCh8QTuZd1jwMEBOJk78TjvMX18+nAz/SYzms6gjlkdFkYsRECQODyZMYiiiAeWFGiK8Km2wMinAZemSu9TrV7LgIMDiEqN4sqEK+hEHc23Nmdpx6V81v6zN95vAxYulDY5k5L++rh/iLKqMtzXujMiYAQbem34H2nzHf734l2g8Z/GokWwdq0kd2tt/ZeHRj6NJHRXKI9mPsLH1ucvj30TlkQuYWnUUvYP2k8dszp039ud8UHj2dJ3y18b7qSmwqBB6OMf0nuJDzdJJ2ZaDMWaYlpua0lvn94cHHywVhtLI5eyNGqp4SVWs1Dzt/MnPjceM6UZ2R9mG+qX27i24cyYM7XaKNGU0HNfT2KzY1nYdiHf/P4NGp2G8upy9KIefzt/5raYy7ST07Aph7l31Uz5XYNDGdxr5obVohV49B5Nv5/6c+/FPR6+/xAz1dsLq0VR5GbGTQ59N41DPCTlJelWgYyASgvO7Kim05AydColN4WpmA0YBq1bI8rlPC18WovzcTvzNrnl0oLtjwaDAgJ9ffpy9dlV8irzCGsUxoknJ0ifn25YzOdX5DPmyBhOJ542jJ+diR1FlUXUt6lPckEy7pbupBSm/CNyukIHCqWaKrEaUafHpBqcSmFkLKzoICWqmro0xdrY2kBMNFGYkDg7sbb2OkBODgwfLhk9ffMN/epc4ELKBRraN8RMbcaVZ1dwNpOc6kO2hFCpq2RU4Cj2x0rlge3d2nPl+RWM5EZcnngZc5U530Wv5cffN6KTwZiQCcxtPZ+MRzcZeHYSVYJII4ULNh5+nE+JQC7ICXAIkIz0ZHLyyvNIKkhie8x2qRTo5WLb386f+Jx4A9dBLgqYEoi7biJmeBnMI0uEB8hlcrR6LTJkyGVyg5zmn2GltqJQU8icIn/Wromn3xQzLnpIu7F9ffty/8V90kvSqdZXv1Jdevk0bVCg4KGNlrqF0PcJbG0iLVodyqBELUmy/h0kkzPRkAkCKWMQnxOPv51/LS7Fyk4r+ezCZ2zps4V/X/03SpmSyxMuU6GtwHu9NxqdhvyP8jFRmmD+pblhHtUsPGvmbEePjkSnRRvGo3O9zkS8vA86UVIWqtRWopKriH8/nuknp5OQm8CzIqmcpoN7B7xtvIlKjWTWbSXjD8SDlRXZW75lTulhA3+lBjX3Ty7I8bX1rXVNbhZupBWnGa7fycwJjVZjINy7W7rT3r09CbkJ3My4+dr4HT0I7nIbJs1yx8bYhvNh55nz2xzW3VhXS+FLQKBZnhGd4yr4sj1sDYdJd2BLM4FZvWVUv/SmqRmDGuK2jbENoR6hLAtdRtAPQWj1Wqr00jPEQm3BonaLmNBkAuuvr2fZpWXIBTk2RjbkVOSwsO1Cskqz2HF3h2HzAaQstrO5M5mlmeSW5+Jr60t+RT6mOjnmqS8Y0G0WEQW3uZ52HZ2ow83Sja6eXelcrzMbb23EUm3Jb4m/GebOH4M1ayNrSqpK3i65Ddgb2zO20VjmtJjDoshF7L2/t1ZgMjpwNNNDphOfG09cThwHHxwkuywLEXArhBtbIdEWOoWBmVbGR5f07GyhJMlSRzV6podM56M2HzHsl2HcyrxlKDW0NbZlXc91jD0yFkGQHL4VMgX9fPtxoMFiRi8L4lBDKfBtU7cNUc+ikAkyPmr9EUs6LkGtkAKs9dfXM+/MPB6894BmW5sZfDkAtsdsZ/LxyewbtI9RgaMM11TjhVGtq+bMmDM0dGhIckEyobtCUcqUXBx3kZWXV3It7Rr3pt/j8MPDDP1lKBOaTMBEYcLu+7ulTINPH95r+h5dvbrWkiu+9+IebXa0oay6jM29N/PeqfcM5WKTmkxiVZdVWKotsVhhSqVYjVsRXDCZQcSARrz320xyPszBysiKmadmsvn2Zk6MOkHnep1pvq05elHPrSm33prZN2DRIti7VzLt+x/CsqhlfHnlS57OeVqL0/IO7/BnvAs0/tPIygJ3d1i8WNpl+AvEZsXSaFOj/9dScjV8jIMPDqJWSCTiEyNP/PVD6fx5ibRubs6yVT1YkrCZ02NO08y5Gc22NsNEacK1SdcwVZkC0i7Ll5e/ZEnUEmTIDC82uSBna9+thAWFEbQpiLicOK5Nusaj3EeMDx8PwMHBBxkeMByQ5AF77uvJg+wHnB1zlhZ1W/Ci9AXjjo7jbPJZg16/hdoCL2svdg3YxYrLK/j17s9MSTDhvcuV+GXr+b6DKTNDyzg8+BcGBQx57fL0op7otGgOPTzE4fjDPCt6hr3emEFxOnooGzDY5y42FfAoKoBZvQTC5YncmHqTBg4NX2srrTiNc0nnOJt0lmMJx6jUVSITZAZH2Sf5tUn8arkamSAj1COU73p+h5e1FzGZMQz+eTAlVSU0qtOItOI0EvMlBZnFHRazLWYbg/0H813P79DpdaQVp/Ek7wnnU85z4vEJ4nLi3nDjwVQvx1JmTItHZdTPFdnYDMqUGIol37SzqZQpqWdVDw9rDzwsPXAvleO+5Sc88vW4f7UFp66D6La3GxdSLnB32l3sTOxouLEhxZpiXMxdkMlkZJZkIooiRkojqnRVtHNtR8TTCGY2m8mz4mccf3QcOxM73r8lY8bJLBwO/Ap9+1JUWcTyi0tYc30tekFS+VnV/WvuV6ex484OXix4gSiKbLy5kcWRi5HL5KwIXcHe2L38/vx3bHQqNLoqVDqJz7O6qDnjvjzNztg9zDk957UhqmtRl9Kq0lqqUm+D8JJTobCwIqdaOj7YKZjYrFh0og4rtaQMVq8QUqx45egngGklbDsBI4eAewFY2jiRrCjBSGlkCExXd11N4qHN7DN6TLFKOm98ohnKYSPZGrO1Vl+czaRFaI3R3N/2/WXkJSLiZ+eHXJAb5oyAILm7l6SjF/V4W3vzpOBJLUlfGyMbiiqLcDBzwNfWlwptBTGZMYZApSbA8rP1IyEvAbkgx1JhRoe4Uobf0xHe1ZVrbgJPi5/VyhLVBHE1qMkiWoiN8BKnYKT3oEr+jCdsRqtKZGrIVNZGrwVgXY91uFm6EZUaReTTSO6+uGuYy2YqM8qqyjBSGPHw6woOB8pY0EUKVFzMXWopqNUYgjZ3ac6N9BsIIoy8D3uPSvHq9rBA3qv/CC8bL5LykwxBxB8xttFY7r24R2l1KTcm3yA6LZoJ4RNquZ138OhAaVXpa8GQucocKyMrnhc/RyVXcXjYYXp795YW2nodO+7sYN31dTzIeWA4x0plQZf63ehcrzNdPLvgZe1FhbaCU09OMf/MfNKK0yRFMIu6vNf0PYoqi/j37/82nN+4TmPuZt1lXY91pBalEp0WTXxufC1viT9DJshQy9RU6F4F4wIC9W3qU9+mPhdSLqDRaehd5kJlaSEntpRxKEBg7AARtUwpBTaiSNALWKRrzQzPeDRykYb2Dbn6/CpmSjN0os4Q3AoIBDgE8Fm7zxhxeASPz/njnV7BuVPrGXxMyvoYKYywUFlQUFmAt603O/vvpJlLM0o0Jbh868LM5jPJr8jn+OPjpM5NRSFTIIoiY4+OJfxROLem3MLXztdwPZklmfTc15PUolSOjzxOW7e2PC18SsedHZHL5IwNHMuqq6so/LiQ44+P8+mFT0nMT8RMZcbs5rOZGjL1rc7goijivtad58XPUcvUaPQaXC1cOTD4AG3c2lBWVcakPUP4Ke00fjmQYA8bem6gn28/3Na6cWDwATJKMvjg7Ads7rOZqSFT+eLyF/zr4r+4Pvk6Ic4hb713BixeDDt2SBuc/0PIr8jHfa07s5vPZmXnlf9j7b7D/z6842j8p1GnjuQQvm4daN6c3q5BTbnUH70B/isQBIHlocuRCTIqqitY1XnV24MMUYSvvpJ8PkJCOHP4K5YkbGZpx6V0rteZkYdHUlBZwLERxwxBRnJBMu1+bMfiyMXoRT16UY8MmUSiFXWkl6QjCAID/AYgIBCeEM6YRmNoYN8AexN75p2ZR7GmmKLKIrrv7U5cdhznx543qOY4mjnSo34PZILMkPko1hQTnxvP2aSz7Bu0j5uzY8ka0YeG0/UMnWjO8mZl9HoMzUNHE/PpBLTFEsflcupl5vw2B7c1brTZ0YYDd/fSp9SZizf8yVxewYajVfzgkAoygWEhYzm4YQb7iWXbgB2GIKNEU8LxR8eZ/dts/L/3x3WNKxN/ncjZ5LNU6iqZ22IuZZ+WkTQ7ifGNx2OkMOLBjAcsaif5i1gbW0uLgsRTeK/3xvQLU5ptbUaltpLP233Oncw7mCnNkCFDLVdz6skp0kvSGdLgpZqPTI67lTtdvLqwqssqHrz3gLvT7r7mfzKwzJU5V3W0jSvlWR0jNncwoUzNq1+7+IoLopS9mg/V+moSCxK59vwaB+/sYVncD4zpmE/bQYW4Rg/DaIURF1IuALDy8kq2xWwjLCgMEZG0kjRUMskbwsnciadznuJs7kzEU6mUasPNDSTlJ7G171aezXvG4jrDcNCqebRrNbNOzaLumrp8d2sDfXz7YSozIkNdhemHnzHlmT15FXmsu76OJpubMO/MPEYGjOTxzMfMaDbDoI41+mYVZSowsrDBSW3Li4c3sRg/jRmNJhlqvv+ITh6dMJLXHrcaXsKwBsM4YjFNChhEqWzGqlpOG8+OhmOLK4up1lejF/WGHfaUGn7oS/4GQJkRjBwMxlWQYwL3xUyMFEbkledha2yLWqbm8O5PsLv7mNKXQYZDKTyoq+LKsyt420jlhWMCxwCQUZqBi7mLQTHNWCHJOh8ZesTQtw9bf8iJkSf4sPWHiIj085GUmNKL02sFpsZK41o+Mk8KpMD4j+V7+ZX56NCRWZpJckEyj/MeY6I0wUwpyarWLA4T8hIkFaIqHfnVRRz10TFiKNz0VNPTuzfhw8Pp7tXdMMaFmkKmBU/j4XsPqWdVzxBkNNb9gIU+BDUOmOma0ET3A78NeoivjbQoNFGaMMh/EP39+vNt92+JmRZD3kd5bOu7DZBq2EVE1MUV3HaGbS3VhmupCaikWyTQ27s3ZiozbqbfRI4c1yLYHwStPrFl4DCY7BnL0LtVLN/0mCE59lirrbBUWxoELQD23N/D/ez72JnYceihVE64uMNiQpykxZ8ePRefXqwVZCgFJQ3sGqCUKfGx8UFAoJ5VPXxsfNh+ZzsjDo3AcbUjU09MJbEg0cBrQITCqmJKNCXYmdgRkxHD8EPDsf/anqG/DKW8utwgIZsyJ4V+vv1Yf3M9IwJG0NBeeobFZkuqQ78l/saYwDEcGHyA/YP28+8u/6afTz8s1Zb8GXpRbwgy/hi4ulq4MrvZbANPpH9EOmfn3OLoh30Yc0/k4yugEavRCSLd63UhxhkGuf5OswcFxO21JDK7F35W3pRWl9bKKPrbSy7hJ5+cZLvJKLyvxnN33ki6+vch58McetXvRaW2kuzybEI9QjFSGNFqeys+i/gMlVzFxCYT2XJ7C+OCxpFRksGJxyekvgsCm/pswsXchWGHXvE1AJzMnYgaH0Vjx8Z03dOVYwnH8LDyIGp8lLTBcWsjGp0G9+/cGXZoGE5mTvTy7kVZVRlNnZu+NcgAuJhy0eAxo9FL7/ypwVNp49aG+Jx4Wnzrx/Hk03x5Dtb2XMf8lvOZ+dtMDjw4YDD0W3B2AZ+0+YSpIVNJyE1gadRSFrRe8M+CDJA4otr/msDC38HG2IZpIdP4/ub3hozcO7zDm/Auo/H/Bx49Aj8/2L4dJk5862EarQajlUbs7L+TcY3H/Ze/pry6nI47O/Ks6BmmSlPkMjnXJl17ne9RUiL149AhWLiQ1A8mE7y9GS1cWnBi1Ak+jfiUr3//2uB1IIoiu+/t5r1T76HRatCJOmSCjJnNZnI2+Sx6vR6NTkNqUSr9fPsxNXgqfQ70wcvai8TZiRxLOMbAnwZipDBiXNA47r64y6O8R5wbe46mzk0N3dLpdfhs8KFl3ZYsbr8Y/43+6EU9IU4hxGTGEOQYxOY+m2nu0pwH2Q8Y+stQSXWryIKFl0R6xJRQYgTbW6hYHVKFzM6eIWVuDInKofWVZ8iNjKFHD7C3Z9bzLWxqpcDZzJk2bm049PAQU0OmMjpwNOeSz3Eu+RzRadFo9VrcLd3p6tmVDh4dOBB7gLPJZ9k9YDcjAyUvBq1e+/+w995RUZ172/9nCsPQe0c6ggWxYMfee1dixx6NPTEaNcUUY9TErrH33ruCXREUbNiwICJFehvKDFPeP7ZsJZhzzvO871nneX4/r7VcLmZml/vee/bc33JdF97Lvenk24mNPTfSfXd3Tj0/RUvKQScxAAAgAElEQVQPwftgV99djDsxjojECHxsfNDpdaKWPQg/5u192hORGIG5kTnZs7LF1oCPIeJlBF12dcHCyJx8TQE7D8OgeEi3kbNl3xwiki8RnRKNkcyIcnUp2ncBh9JIibnCXMysV8BML8dSpaXczJgCuZ5yQ9V2LQuFBTqDropcakVvtYeVRyWPgMZujbkw/AKmClP0Bj3n1n3Jiht/cNZfUPOZ0GgiE0Im4GrhSlJ+EoGrAinXqjm8FzKtZExtr6O+ryC1Wc+lHiDILH69O5xMM6iWDzpHezLK82jg0oBaZRZs/vIatGtHnyFyjr44AYCHlQdvCt6IgZZUIkVikCCVSsUsfbsiB0ZEZDFcoDIQ/tSEm/5KnsryxPEMDx7O3od7BWOxQmOeWqpp/Qoue1FF2limp4pa0McUdkR8RBq5Z/WeRCRGUKotFc3e5BI5wU7BxL2NE7PyHX06cnboWcq0ZdRaUwsPKw9czFzY+1jgnzR0bSgueqtZVsPFwoVbqbdwtXDlq6ZfMeP8DJzNnSsRw42kRjSr1owm7k3Yfn87CpkCI5kRibmJ4jz+Mx7Rh/KkFZAgwVhuLDqrB2mXVZUklhjwcFazI7sN4XXDOfviLP52/kQOi6xCfv3pyk/MvyyYE1Yoo1liTCH/OKED0PE5bDkODyeHMdzmEhnFGXjlQfdnMP2uEp+3ZTxzN8Xlm1+IbxdE8z3txG3/ei0lSHAydyLIMYhHmY9IV6WL8/Nhq5qRxAi1Xk2ISwix6bHiPDV0bShWLJpWa4pSrsTjJzve6HIZW3c0B58eFnkpbhZujKo3iuHBw+m3rx8PMh+wtttahtYZSsMNDZFL5dwIv0G6Kp1Rx0YRlRIlXtMP2zAVMgVSpKh1akyNTFHr1ExsOBGlTMmO+ztIL66sRvZXGEsVoNHwY7I/VzsF0PDPk3x7FfoMgqM13s+LhSGIfmaLKMpV4JP8iJovNxPe+Z7Igdnbfy8zzs2gSF1EkaaI+U8cCbtTTvNRem6Pi8XP1g+Ao0+PMuDAALR6LfWd69PVvyuLbiwSTETb/ESffYLU8Pq49diZ2nFmyBnxXB9kPKDxxsaMCB7Buu7rKo1DrVUz7MgwDj05xOquq/Gz9WNJ1BLOvTwHCK2BK7usJMgpCL1Bz2eHPuN4wnEuDL8gKi9+iKfZTwndHComCw8NOCSoSUlkjKk7ip13tuKZVc7kR2Z83aKM3B/USCVSvrv8HT9e/ZE6TnV4kPGAATUHsLf/XgwGAy23tiSrOIv7E+6L/lH/FL/8IrRsZ2b+88/+F5BamIr3cm9+bPMjX4d+/f9035/w/x18CjT+U+jVC54/h4cPQfr3hSXzX8xZ0GYBM5rO+NvPfAw6vY7+B/oT8TKCq+FXsTK2osmmJgTaBxIxLOJ9FvzZM+jTB5KTYds21D270WJLCzKLM7kz/g4RLyMIOxTGkg5LmNlsJrmluYw5PoYjT4+Ix+rm340VXVbgY+OD9a/WVLOqhpuFUL4eengoDmYOJOUloTVoeTH5BT42PjTd1JSUwhRSi1KxUFhweeR7RZIKVJgXRY+OJiEngRFHRyBBglwqx8vaC7lUztPsp0xsOJFhdYYRuiWUbn7diM+KJzEvEY98mBEjYVScAYUO4h3BS2+Jfdd+0Ls3tG8Ppqas2TqJSa/XsLbpL6x4voOXeS8xMzJDp9dRqCnE0tiStt5t6eDTgQ4+HfCz9UOlUdF7X2+i3kRxcMBBulXvJp53hafA3fF3CXYKxvJXSxQyBbmlufza7lf2PNzDs5xn/Nn9T4YFDwNg5rmZrLm9hjJdGdVtq6NHL7ZQmchNCHYOFgnnDVwaUNOhZqXq1KrDs5kcvwi5DsIeQkOfUEasuo7fVMgWhJho5dmKwbUHM/6U4DsyRduA5Qtus/X+NsKPhbOlxVJ2HvmBC/aFOEstkZqZi8orFbBR2lBQVoC5sTkSJFW8PyoInvDx9iwLhQUanSAf66SCjq9k9KnZB/8vvsPTylP0Yznz/Axdd3cFA6w6De1fS/E/G4u0Xj0MBgM/Xv2R6PXf0SZZyqx3rTGzm8/m1xu/0tG3IxIknHX+kh1zujG2iwa1VDBQi0uPq7LAdzJzIrc0Fz8TNxJUSRgMYCwzosxQTh/LJhzPjyay/jI26+PY8WCHODaJRIJvtp6LW6HWJKFlSy9951AtBSRCvHB+K+SZwsCBiAHEhAYTWNJxCbETe2F+6gKdh0K2OcxRN2YVMRQZv3d/L1QX4m7pTnZJtljJ+Dv42/pTzaoaqYWpPMt5hgQJegQORKhHKP62/my/vx0DBnR6HXKZHBO5CTqDjq7+XUkuSEalVontOgqZAitjK55Pfs5b1VtCN4dirbQmozhDrHw0k3kRpUviq2uwoYmMun4teJbzTOAWKMzERZYECUZSIzR6DQqpolIrkgQJTbTHPypJrCYTvedPXB5xmejUaNpua8uPbX5kbsu5JBckc/TpUY48PcK119fEa9s5Rclvx8qIPLyYU4lnuZF8g3J9+UeDO5n+XfFKCnam9gI3wjaA8hcJJNoKnwnTBND1jZK7mfeJribltose7QdxzoeVwRr2NUgpTCG3LBcrYysczBx4kftCIGobQKPXVHEJr+UgEOojh0fS2qu1+F6xppjTz08z6/DnJOmFeaznXI+m1ZqSWpjKmRdnkEqk9Answ96HezFgYE+/Pfxy7ReeZD/Bz9aPpPwk8b75UECgkVsjnuc8FytyruauZJVkEWAfwK6+u6jjVEc8j6ziLJZFL2PHgx1VHODFINIAltQReVEyTSIFZZuItxVI8xUVK4lA90eCAT06HjGRbPl9MICXxJqrn0UwIfY7Tj8/DcDKgGmszD6NkdSIm6Nvis+IrOIsPP7woExXhlKuZEGbBeyO3018Rjw+Nj4Yy42Z2ngq406MI3FqYiUT2w1xGxh3chy7++4WE0QVyC7Ops++PqIvT23H2oTVCmP+pflYGVsROy4WX1tfQFCR6rijI4+yHhE1KkpsxyopL+Hnqz/zW9RvaPVaWnu2Ji49joMDD9JpZyf8LL14UZhE3bdwufov2BbOJcipDvcm3BPPY1bELBZHLQbg8ojLtPJqxcqYlUw5O4UrI6/Q0rNllXv5b7FokdCxkPPf6474Rxh7fCwnnp0gaVpSler6J3wCfGqd+s/hq6/gyRM4ffoffszO1I6ckv/6w+GriK84nnCcff33Ud+lPr62vhwPO87t1NuMOjZKkL09flxwLNfp4NYt6NuX6eemcz/jPocGHuJNwRtGHR/F4KDBzGg6g8jESPxW+IlBhre1NzdH3+Tk4JP42Pig0qgoUBcgl8pRypV0r96d2HGxKOVKUV3keMJxJBIJc0LnkFqUilQixdPKk2Cn4CpjWBGzgkZujajnUo/vLn9HZ9/OGDDwfavvUcgUvMx7SVf/rmyM20izTc3Q6XUce3YMvaqIkfneVC+QMb2jgcbjpWxvZY2rCuwzComPjyRZnwcmJhx8fJDJr9dRKxN+ubucJ9lP0Og0+Nn6MbPZTKJGRZEzK4cjg44wseFE/O38yS3Npf2O9sSmxXJ+6PlKQQYIcrihHqHUda7LjTc3UGlUOJk6YSo3ZeH1hZSUlxAzJkYMMgDOJ55Ha9Aik8i4N+Eeu/ruAoRWkUD7QHxtfLnw6gJjjo+h7p91sVhoQcMNDZlweBTrZ7WjyZRFjH1hjVYG99rXZqrFdRqPk6CRQjVTF4Icg7jy+gqzL8wWiYrby+N4M/tznM0EIl/7Mb8QedSSLUHzyaaEus51eTvzLdfCr2FlbEUdpzoMrDUQK6UVpeWllYKMipaKiiBDivSjRPwiTRFSiRQHE3vKpbC7lo6+soMErQ3C8ldL7H6zw3eFr2j+hgS+6Aa/N9JjaNwI7e9LGX1sFOmLv+PkXgnuvnUBIas8PHg4IARmaUVpTC0/wfDuGsKeyGiZBHfT74oLzQ8lUvPL8jktG87VH5Ix00lRyBVULEcf5T0lIE/GkBe/VZEhdirQc2EbFBqD1kgqKFzpBWUlpVa0zOCH9hIGPIGgdwJaUomUdXHr8F/qQfzDixwIlpH9bqq87yfRJN9CPEZFS9Sefns4NPCQePwKdaG/wsncidTCVBJyEjAgEMkVMgU6g44rr6+w8e5GNHqN0PaFXgj6tGpUGhVHnhyhWFNMQk6CuD+NTkORuojqK6sTuDqQ7NJs9OiZ2HAiEiBQpeTG/CT8cmBpc8g30jGy7khODj6JQq4gpzQHG6WNUNVybywGFxq9psp8qvi4JLFa9pqY1Bh8V/py/fV1htcZzvxL8wlcFYjnMk++PP8lSrmSNd3WEDUqCqlEytCYMvQWZsy+NJfrydcp05WhM+joUb0H8Z/HM6XRFDDAzFtyJseASblwrSqqewm5CWRYgNO7LrK9igSG+97nYDsXiozBSA8NUyDvSS+eN93DZ7U/Q2fQCe2SWQ+xNLbk57Y/0zewLyUaoeqn1qnF1pkPodVreZDxAAtjC0YeHUlWcRYHHh1g4IGBOC5xZODBgcjfxSWTG04manQU4xuMJ6x2GJMbTcbPxo89D/eIwctnhz4jPjMeXxtfWnq0ZGG7hZwbeo4309/Qs3pP6jrVRSaVEZMaQ7m+XPAukshIU6VRw6EGRwcdrRRkADiYOfBzu59Jnp5M2ow0xjcY//47/47Mb4kQSNgaGmGMIzJFQ2ws12JpEPblqRslBhnCtZUgQYoL4QSb+6MwSEky5DN0YUMO7NWz+KoSiQEmJywjvG44yQXJjDg6QqyMOZg5cGLwCXEOZ0XMws7Ejtmhs3mZ95KHmQ8pKS8RlbQ+xJj6YxgcNJhxJ8eJks1xaXGMPjYaj2UexKTGUMdROO+mbk2ZHTpbqGKgp9XWVjzPEdoMlXIlR8OO4mTmRJddXchQZXDy2UlqranF0ptLqe1YG1dzV1p5tcJMYcbjLEHs4HVuEt2TjLnnDAPsL6HHUImgnluay7GEY6I09IxzM0jMS2TOhTlMDJn4Xwsy4N/SOlWBWc1nkVmcydZ7W/8t+/+E//34VNH4T8FggGbNQKGAK1f+9mP1/6xPY7fGrO2+9l/e9apbq5h8ZjKru65mYsOJld478OgAg/YP5MKrFrTZcU3I7G/bBpaWoiTu+u7r6VujLyEbQrBWWnNh+AVmnpvJ1vtbAVBIFfze6XdhsfGBalRCdgKBqwNp4NIAX1tf9vXfBwhZudDNodzLuIebhRtx4+Loursr8RnxOJg6kKZKY223tUwImSDu63HWY2qtqcXOPjspUBfwxekviP88nlHHR+Fq4cqI4BHMuzivChk6NFnC9sMGvL3rQe/ePGpbmx/f7mf/o/14mboyJdGR9kcfUPutjruuUhY30XOgFvjlgqV3ILdUTwlxDeH22KoqNiCYJXXc0ZGM4gzODT1XpQrzIOMBweuC2dd/HwNrDSTsYBj7Hu0TM7h9AvuwpdeW96ZiCOVn9z/ckUqkdPLtxOkhp/nq/Fdsf7CdRe0WEX48nFODT9HVvysqjYr7b+8TlxbLnahDxCXd5LGNFr0UkfBYsZiW6eDaZvCe/j3OM7/jSdYTvrv8HQceHwCEhbBtMaxIrM6QoGc8utWQmltOgqMj51+ep9/+fgTaBxJgF8CJZyd4OukpOoOOFltakJSfhAQJVsZW5KvzcTF3wVhmTFJB0j+8N53NnLE1taVQXUhmXgqaD7LCZkZmaPVa1Do1JnITTOWm5HxgkNYoBa5vhquesKUuWAXU4VUtV868PIudiR2xY2PxXuFNV/+uRLyMwICB5Z2Xk3bnGiuT9lL4l2RbhamZkV7C5S0Gmg2dw/y28NONhQC4mrkQ8CKPSy5lVVp/pHp4vkKQ0m0ZDm6eQcTlxoMekaMx7C7sqAcKg4zSH/WM72bgWAtB7aiRcwi212I57wtIJSjlJpRoS/DMhRxrGSqpcA339ttL2KEwbo+9TW3H2lgstECr14rmfY6mjmSWZH7UoK27f3e29N6Cvak9o4+NJjpFqAwG2gXypvANhZpCpBIpvja+onCBq4VrlSrWX2EsM8ZYB0UGNVIDOJTJsHT3FX1nuvh24cKrCyjlSgwYKNIUVSFiV1SEPpzTQLNOuOR/J0yhpEKSGBYO9ySx9BKLoxbzIOOBqOZmLDdmZZeVDKg5oNL3ad7FeQwe9DOXvIUgtQITGkwQn6MlahW7W1jT+5GOVdOa8ZNxTNVqxwekflulLWXaMtQ6oVXUzcyFB8bTsF29WWiFrV+fJxP6M1N5hTOJ5yrdLxVmpU3dm3In/Y4oPfvXa2YsM64kS1vLoRatvVrjZe1FSsQhlhONscxY5AaBwGPztfHlxpsblSRxTeWmzGo+i3ENxlVSkmu0oRH+tv7kleVx5oXQTiSXynEwdaCbfzcOPz1MSXkJE0MmMjt0Ng5mVflNABNPTWTL3S1423jzJPsJEiTU0/yBpaQRSD5sadMT9OY2bWKmsLbnCcoVVStWyArY91UwddbWIa80D62+nM6vjTi8XUNsHXs69MqnFC3hdcPZcm8LP7b5kXkt54mbhx8L59CjQ1S3r05cehxmRmb80uYXvr74NWXaMkJcQkgpSiF5WnKlKnCRukhQytOW4WTuRGxaLNUsqzEhZAKj643GydyJrfe2Mub4GHoE9MBEbkJCTgIl5SUUlBVwacQlsYLxOv81jTY2Qq1VU6AuoJNvJ+a3nE+bbW34ue3PZJdks+PBDvJU2ZQZyom7FUz9TWfYkHaScSfHAZDxZQaOZo6otWo67OjA46zHRI+JZujhocSkxuBi7iKIOUx69Lf+KX+LZcsE5SnVx93j/28x8MBAYtNieTb5mSiJ/QmfUIFPFY3/FCQSoapx9apQTfgb2Jna/ZfI4CcSTjD17FRmNJlRJcgAGODanucRgbTacY24SX3h0CGwtCQ+I57xJ8czIngEI+uOZNDBQag0KuY0n4PvCl8xyOjq15W8r/OY1GhSFYnclELB6EqCpFIJ1UxhxqaemwCBkOm7wpek/CS29t5KmiqNFh4tmHNhDpnF7/tHV8asxNncma7+Xfnx6o98FvQZiXmJlOvKRY5HeXYGA9NskeoFSddJKW688rCk9pcmLF75GeVz51CjeW/mhM5hRtMZlEp1THe+S9B4Hd1GGJFpomf3YUheZcTSc0I/bR3HOn8riZuYl0jo5lAK1AVcC79WJcgAWH1rNa4WrvQJ7EOhulCs/mj0GqY3mc6hgYcqLYpAcJEFITM4sNZADAYDB58cpG9gX0bUHUEHnw58fupzVBoV5gpzmqtsmDLnKFtnXiM+vTdF4c+4MeoGA2sOrNSSoZNB6Gho8+p7Om5py/mX53mY+RAfax/g/TpqloewQDw/eyA6e4G/09G3I9fCr/Eq7xW74ncxrfE0IhIjqLm6JulF6e+2N9DYvTERwyJ4NfUVPjY+lbLUIPgyDAkaglwix1Zpy9vitzzPeU5KoRBkSA3gpDbCvtyI4vJikWRqaWxZKcgAuOUO1rNhUz3wKpTwVJPK2Xe90zmlOXiv8AaEtqtyfTkdfTpy8PFBfn67V1DcQqg4gLD4s5dZ4J8vQ2Iw0GWcGY+mDaFbYE/xeL4Ga9wyypAjq8wvMIB3ASikRrQdAW8tQHEnXnwPCdTMhCtewksaiY4VDQ20ylCSVZKFTCIjPKcaJ3dDrQxo7hEq9su/tgGV5P2Ct0J1ykRuglKuRCFVAEJlyNLYUlQ3+iu+Cf2GE4NPiKaYfrZ+JBcmozPo8Lb1FmVa9QY9FgoLcbu/Bhmbe27m0vBLeFp5YmZkhnMhzHhkSYlOjVOxEGhZVfOrND9nXp5Bo9dQqCkU26sqiNgKmQJXC1eh2vIXzkZyyWXi5BPIldxCWZZJIbe5KxtP18O1GHpkKKlFqQwOGszI4JE4mzlTpi1jzoU5RCZGUq4rJyYlhmFHhrHy0iICcuCu8/t9mxmZ8VPbn7icdJnF1xYx7Jsa/NxMh8Ms+EERJZ6LTCLD30Yg4HtaeyJ99yXJLculRFsiBiMZpVl875fC06uH2bZjJsOavaVdwjecSTyH3CDF1vi9uWKpthQJEvoE9kGtU4uZ8gD7AGyVtuI5/tX74lHWI1bfXs1XEV9xyPBQaLvSafi94+9cD79Ozqwc0mem42gmLN7nNBdUDH1tfBlaZyiLoxbjscyDsINhXE++jl6v51nOM448PUJ0SjSN3QTRDa1ei4XCgl/b/0rilERmN5/Nhjsb8F7uzbyL80RltvyyfGJSYpgdOZu1sWsx0oNd3BMWXISoDQa8Vb5/CTIApKRbedPrKQSmvYSPVKxqVxMct7f13iY43WMgwk1D35nuhNTvTsJaOdalsOXeFoJNvJl/ab5I8AZY2nEpJgoTPK09Wd9jPRqdhqnnp4pCCnfS7/BW9Zbl0cvFbV7kvuCHKz/wVvWWN4VvyFBlcCzsGK+mvuKbFt+Icq0j647kWNgxzr04R9SbKF7kvuDS8EvYmNjQeltrnmQJFfC9D/dSqC6kUF1IPed6nPjsBCefnUQpVxJeN5zzz8+SrkrHO6scJ4Mp9Y/dBhcXxtQfg0KqQIKEAQcGkFOSQ/ixcG6l3uL4Z8fxs/VjSuMpAKSr0vGy8frvtSf9PzTs+xjmhM7hVf4rDjw68G87xif878WnisZ/EjqdQAqvV08w0/kIBh0cRHZJNheGX/inu4tLi6Pl1pZ09uvMgQEHKml5AxAfD336YMjNZcWUxnwpi+TskLM0dGtIyPoQTIxMuDn6Jt9e+pZl0cto4NKAW2lCEGRlbMWxsGO08mr1t8fffn87I46OELkEHxoj6Q16bBfZUqAuQIIEBzMHjoUdY0nUElG3v3v17mzrvY280jzc/3BnRpMZJOUnsfvhbkzkJhSXF+Ont+GFNI/fz8K0+0q+GO3CDod0uvh0Yv/LY4IjtdKGXfG7sFJaIUFCXlkeSrmSlp4tCXIM4kHGAyISI5BKpMw270Kzg9F0jMmhxAhOtnZlR2sbzs5+WGlsDzMf0nFHR8wV5kQMi/ioykjFec9uPpv5reYzO3I2i24I0pLVbauTMDmhyjYZqgw8lnlgJBUW2hlfZvCm4A0hG0KIHBZJO592vMp7Re21tRkbNJJl183h99/BywtWrYJOnbiSdIVp56Zx7+09UfnJRG5Cfdf69HVoxZP1P3PSHzKspJUyygYM9Hwm5YqPlAK5kFmtqBaNrDsSL2svaq2pRUphClq9Fq1eK6o86Qw6vgn9hp/b/YzBYGDAgQEceXIEpVxJiVZoFfk85HNWd12NRCKh1dZWokrRtdfXOBp2FMnpM+w6v4R99Y0p0atxNHVApS8VTfhA4E/oDDqxpUWiB2OpHKXWQL68MgHXxsSG3NJckSfy1wyxCINQdOjzGLytPdjuW0yepgAbYxv29N9D+x3tK39W8gHX5F0gYa4Bu2Kwr9mAt29foCkqIMtckMINzILndlTq4bcrgbsn3PAYlIqt1JxWT4pp8crAyjBvckpzOND/AL22d6ZMahB5HJYKS0rKS0RuE4DfSj9xnx+Oz1JhSaHmvfJLe5/2nB96XkwG7I7fzZDDQ3AwdcBaaV1Jerkis+5q7kr36t1Zf2e9eH8YvhPGnavKYsuwICadyOCL3gq21dLQyKOZwLEytiA5P7nS8b2tvVHr1KQVpVWSL3U1dyVN9T6Y+dB08R/BVG6Kl7UX1e2q427pjo2JDdeTr3Mp6ZIwhncEeXcLdxaa9WLohNU0GAd3XN/vo2JMZno59d5oSbOVk2ihxd7UHiOpEdkl2cikgqLU/gH76V69O+dj9lA+dDArB3lyQZH6URNBAC9rL/o7taXD7RxCt1zAtKiMu0PaMb9hEaeyo8TPBdgF0MStCWdfnCWj5O/NKEGookilUrJLsvHVWZGpL6LISM+mnpsYVU8QEXmd/xrv5d44mTlR26k2kYmR/NntT8aFjKOgrIBt97ex6tYqnuc+F+c60C6Q4vJi8svyWdZ5GQceHeDsy7PYKG24MvIK5gpzbqXeYn3ceq68FqrtJkYmqNQq/HOgQyJ0fAltXoGlBorlcM4PNnVYRonlXyoaBh0lult4vJrOtzeCmDp8LXqp0D5lQIcBAxbeu/iz/ze4Wbox5fQUVt1aiXOJlFxLI9r5tONw561k795IUPo88o30mJdL0BvJiet/noDarQHY/2g/gw4O4tDAQ7T0bEnHHR25+/YuEiS0825HVEoUJeUlDKo1iNzSXCISI7A1sWVU3VFYKa2Yf2l+Jbn1vyI6JZoOOzqg0qiIGxeHu6U77ba3I7UwFRsTG17nv2Zq46m08GzBgAMDGBo0lCNPjzCo1iAevYkjKjMOzwIJPbw6ctEohYcThd+XmJQYmmxqQp/APlx5fQWZREZWSRb7++9nQK0BADzJekLNNTWpbludpIIkOvp25MCAA/+1gGPtWpgyBcr/uQ/Tfxedd3YmXZXOvfH3/rFP1yf8/w6fKhr/SchkMGOGUFVITPzoR+xM/jWORnJBMt33dBfNzaoEGXv3QpMmYG6OJDaWifOP09a7LX339aXf/n5kFGdwaOAhDj4+yNKbSzFgEIOM8LrhpM1M+4dBBggVDTsTOzQ6TZWH4Ic67S09Wwr9w1taUsuhFmlFaXTw6cD2+9s5++Is085Oo0xbxtKopeyM34m11ohZURIerYbna2QEaWyI/awlcQ8jWGufxNy23zO04Wi6+nXl7Iuz7IwXTKY0Og15ZXn0qN6DV1NfcW7oORZ3WCwQySVy2ni1YWHRafp2LSL4c4gMsaX75TROzH3EvY7B5EYLi5iYlBhabmmJo5kj18Kv/a2U4ZZ7WyjXlTO2/liWRy9n0Y1F4sL8y2ZfVvm8wWBg3MlxlOvKcbVwpal7UxzNHDnw+AB2JnbifHtbe7HAbgAr4tYQc2AZfPstxMeT2Miffvv70Xpba3R6Hfam9tib2mPAwMaeG5YYi5EAACAASURBVIl6E8Vb43L+9J1G4joFNio9Nkob1nlMwrNAaP85FYAYZEj1YJRXyB/RfxCwKgCf5T68yH2BRqsRTb46+3ZGJpEhl8ixM7UjMjGSGqtrcOjJIUyNTJnceDJLOywVbrmH700dG7k24nbabfb224uXtRfDjwxnju4sm+pDJ7tGJG6xJD1vFIWzC3k78y3Xw6+ztddW2vu0R5efh5kGQWpWCmVoyZfrkCPFpFx4XamTkluai7HMWFQj+jt3ZKlekKy9GWjGNv8Ssspy0Oq1ZJVmVQkyhP8MeFh4AGChAfcCgfj92gYaWAQQ8LKALEHxGblOCCoqggyFTIFSriRfCSurpWJRLsX/tYpILwO3JnTn3vh71LCvwdg9Ybjlvze7BCjUFIoLWxMjE76K+KrSOD4cn9JI+L6ZyE1wt3QnMjGSHnt6kFKQwvb729lxXyCxZ5Vk8Tz3uSiqAIL6FEBj98YcSzhWdcIeP8a2XXemHctgcmfYVFuDkcKE57nPeV3wmoeZDyvJk46uN5piTTHpRel4WXnxcOJDsfr3YZAxOGgw4xuMf9eKJcH4gzV8l2fwrdtgxtQbg7nCnDJtGY+zH3M04Sgb725k6c2l4iIYEO/PlKIUbpxYTbn0nRv7B3A2dWR6hjdLT2t5awavLQ2YGpmSU5KDhcICRzNHyrRlzG0xl+7VuwPQon5vbtYyx/xFcqUg46+Vu6T8JH5P2Mp0n+d8s2UoG37ux9XsWNzPRuFaiHgvJeQksO3BNnJKc/C38cdWaYuxzJgBNQcIjIV3alQSJOSW5YoBtmt2GSq5kCSYEzmHiJcR6A16Jp6eiAEDrb1bcyHxQsXJAWCltGJiw4niHJfrhEXm05ynaPValnRYgrHMmAauDQiwCyCvLI866+rgs8KHsENhRKVE0cjEj/FJdvx+UEXSMni2CpafgVZJ8MYS+g8Aqzmwp66U2ml73g1UOE8DOgwSA73a2LNjRwn0q83y7Z9jpLqFmkzUikf0apNOXN5haq6pybrYdSy07INXHqSb6QmvG87FVxfpe3Yk9hNmcHXqfUzlJujkMkoop/XWNhT06gTHjzOgeh96BvRk0ulJyCQy7oy/w7JOgu9K5KtIsdVo36N93Ei+wYLWC0iZnsLijouZ22Iun9X+jLEnxorci7+iiXsTsRW4y84uPM1+Sg37GuSV5ZFckMy+/vtY2mkpvQN7s7HHRrbe30qhupBD93fzOvEOrTNMqF69KbnV7LE1eV/FWh4jVFkWdVjE9MbTySrJwsrYipoONcXPzLs0D7lUjp+tH8fDjovf7WLNP/fREfFvrmgAzA6dzYOMByKJ/xM+oQKfKhr/aZSWgoeH4L68alWVt+dfnM/W+1t5M/3vjXYKygpE59Ho0dGVXTq1Wpg9G5YuhcGDYcMGMBVkiArVhQSsCuCt6i1bem4hvyyf6eeni5vamthyYMAB2nq3/ZeGMunUJG68uUGptpSe1XuyuKOgmJFVnEW77e1Iyk8S23/SZqYxO3I2q2+vxsfGh0xVJkYyI/LL8jFgwEZnRHCqnmgXHYlHquHSeYDAJ2nWjG+v/sCSqCVYK60pVBdSphWInp5WnjSv1pynOU+5k36H8Lrh1LCvwYKrCzBXmLOs0zJSi1KZeX4mW3ptEVrEDgzi4JODGPR6quktCHKpS62TMUyKKscj38Cd2vZ8H1JEbmgDTg45hbXS+qNjr5DiDXEJAYmQYQMhWyyRSMiZlSOqpVRg54OdDDsiEMKVciXftfqOr5t/jf9Kf9p4tWFDzw3w4gVMnoz2/FmazLRC7ebE5bFRLIlawu/Rv+Ng6sCEkAksj1mOq4Urf3T8g3Y72nFz9E2i3kQx8/xMtrVfTViXr1gXWEKupZxvL2pZMzSAKb7PsDWxJWJYBPXX18cEI/TacqRSGaXSyj9KbhZu2ChteJj1EAdTB0yNTMkvyxcJ4b2q92J3/92YGgn3lvdyb5Lyk1jTdQ2fN/xcILceHMjjiY/55dov7IzfiYnchEM7y+kyfrHgWLt7N6SkCLwlYNu9bWxbMZpj+yVk1/Cieo8kzI3N2dZrG+HHw8ktzcUOEwp0pRjroFhR+ZpUSHhWZLIlgJGW97yQfyXp9q6CoSgHjRHItYJ5X7Y5GEnllOu0leVoP7LPBi4NMM7K45Y6kb45jqSVZnLdE44POk6PwB7kl+UzeaI3+9zyMTJWUqITFIKCHINE34MKh3WJQYKOqguGuaFz+fn6z3zV7CsauzVm0ulJZBS/z5gH2gfyNPspzas158abG/jZ+PEi70WlfYwIHsG2+9sA8LHxITEvkSuyMdw6v4UrAUrOu5aikVZud6qopLT1asvFpItidSTYKZj4zHiGBg3lwOMDaHQajGRGlGnLkElkeFh5UKAuEBMQtTXWDL6az08toMQY8heC1aoNMGYM6UXphGwIwdXclRYeLdj9cHelsVWgQqVr6cEiGqYYqPv5B8pnBnApEhzZ8/9GEVSCBIVMgQEDnlaeFGmKyCrOEtqlDGCkg8beoXzV/CtqOtQk5k0MB58cJOJlBMXajy/6pID+3f3hrALMzXmLUMGp71KfP7v9yerY1Wy9t1WcQwkSLI0tKVAX0MKjBVFvojDVGLAo1ZP2QWu+nYnQVmtrYkt+WT7fhH7Durh1TGs8jbkt53I3/S4jj40kPiOeENcQnuU8o0BdUEXa1lZpSx2nOsgkMq6+vEDjFPi6uB4N7mXg9DwNqQFK5KDQgdwAsc4wqxNc8oZmakeWDNtB48D27I3fy8zjK3BQf4a1NBBHGz1Xi76lmb8bBwce5MLLSDL6d+GiD+yqI0EnBWulNSPrjiSzOJNd8bsIzbNgxlNb+jVNxlhuzM4+Oxl6ZCjtvNtxaOAhridfp9POTribu/K66A3upUY8+qMcS3tXUkf1p6bJFgbWHsT6Huu5lnyNn678RMSrCHGszas1F72Y5rWYxzctvsFIZiTyNcwUZtwcffOj1YJyXTnKn5SiEpylsSUL2ixgy70tpBSmEDkskmDnYNRaNVa/WqHWqamdAZcyOjO8pw6lUgiYjeXGHBkktNQ6LHagXFfO/gH76bqrK4NrD+Z+5n2SC5I58dkJMlQZ9D/Qn7DaYZxIOEHOrByiU6Lpvqc7wU7BnBp8qkor7kexaROMGSMEG/9A5fL/BgaDgWabmyGXyrkWfu3fcoxP+N+JTxWN/zRMTOCLLwTXzo9Iz/0z1alyXTn9D/QntSiV04NPVw4ysrKgY0eBCLZsGezcKQYZAPfe3iOrOAulXMmk05MqBRmDaw8mcUrivxxkgJBNdLMUzMQqHtSZxZm03d6WzOJMDgw4IJJDI19G0qxaM+q71CcxLxFVuQpJYZFAkgd23/LgtoeMqbVG4RyfxPNvJrBGGU+fg/1ZFr2MUm0p6ap0Grg2YEWXFTz74hmvpr5iV79dxI6NZUOPDex/tJ+1sWvZ2msrzao1I+xQGDPPz2Rcg3GMrDuSHfd3sP/xftZ1W8fDmPo0K7HldOZ1Fjcq59DxRSyf1hRDTjbHt6rZ8UM8WWuWgKaqOzAIBliJeYnEpMZw5vkZelTvgY3SBq1BSwefDlWCjNTCVL44/QWB9oHYmdhRpi2jR/Ue3M+4z8u8lwzy7Sm4udauDU+eID9yjPXTL/K44AWeyzxZHrOcOaFz2N57O0uiluBj48OlEZcIcRN8SF7lvWJ6k+mMqjuKsZemM7uTjC9uw/cXtKzoaMV3NTMwYCCnNAeJRIKJ3ITJzaZjpjCj7IOFbLBTMF7WXqQVpYmSp1klWbwueE1JeQlSiZQBNQdwJOyIGGQAbOm5BYDJZyaTU5Ij+qM02tiI48+OM7XRVAwY2N3CCsOdOBg/XrhfjxzBYDCw4MoCIhaM5PwOA2aNW+IdcZtxDcaRX5ZPalEqNe1rCsZ3lKKXQsO3Ugp/gX4fdLxVKOq893oQFKGQIFY95DowlworT1mV/nLEwEH37kmplSMqRFGuFSoqkg/+/QUyiYy49DjkDs745MEdWSbRbsJ7y24JGdcnWU/I0eSDBEp1akbVFdpiHmY+pL6TUAm4/uY6eoMeuUxeSUrVSiEsMpbFCPv6/ebv9D/QH6VcKfIzbJQ29A7oDcDL3JdYKCxws3AT96GQCRHah21IRcWCT0Mr3Ua+ayvhqheUvyMsmMhNxHPo5t8NHxsfriULCwu5TI4ECY8zHyOVSDny9Aij641Gb9BTpi0TzTxf5b+ioEwIUk/1P8KNdVpsS4UgQyqRojKG7Kd3SC5I5vzL87iYuxCbHssfMX+IQYa7pTvBTsF4Wnq+u74GrIytaJSp4K6zIKVcEWTUzIJbf4LVu69viItwP9Z3ri/OQYB9gFgJrajk2Zvai/dFuVy4Dr329sJ/pT9Djw7laMJRirXFKGSKjyqB6Xl/X6hM5dR7WcykW+CjMedO+h0abmxIXmkeKzqv4GbKTTytPDFgoEBdgJmRGS9yX3B3/F1GF/iQaS4RKynWxtYidy+3NBeFTCG4gusNbL2/FeclztRfX18kz99Ouy06yU9pPIUN3Tcwt8VcghxqY5eSS5tTj1j2x2OKfpVwbQt0PnAX52dCkJFhClEeEi57w/A+0HAC3HEGVxNHwvv9zKPSZGqursmQI0Oo7m6Mxmktj82G8MNgD7aG/cDJZyeZeGoiC2/8yq8j/dhWFxZGGPjVfyLhdcPZeGcj+x/tZ2pJEBn6IsKapdHSoyVl2jL2PNzDsbBjRCZG0m9/P0I9QtnUcxOvi97QvFpzUkzK8fnOivv9muO2fAs/nChi492N+Cx0ptXWVrwufE2wU7BYRbjx5gZ1nerydbOv+fHqjzTe2FhU/No/YD9Psp4w49zHpeTvZ9xHIVdQoC7AydyJMm0ZXtZeXBh+AQ8rD9pub8uFxAs0WlMPTbmaBmnw1ElK3K9TUOnLMFeYk1MqGHUCpBWmkV2STT3nevTf35+Ovh3Z3HszV0depZ5zPdpvb8/o46PpHdib2c1nU1xezNXXV2nl1YrIYZE8ynpE+x3t/zVVSvk7gva/sapRoSZ5Pfk615Ov/9uO8wn/+/CpovE/AdnZQlVjzhyYP7/SWxVKUCXflFQx5zEYDIw5PoYdD3Zwftj5Svrr3L4N/foJ7uP790Orym1P6UXpBK8TJGU/JJSaG5mzq+8uen5Aiv1X0WB9A0JcQjiWcIwvGn3B2Ppjabu9LbmluVwacQknMyf8VvhRoC7AYBCkNxvnm9H0STEb6wsZaVuJGXmUEFb7M448PUK/Gv24lnyN1wWvkUvlNHFvQhO3Jiy9uRR/W/+P8h4q8DL3JSOOjiDqTRQj645kT/weod/eYGB8yHjWx61nUO1BbO65GUnfvlBWxrdfNeSnawI524CBuk7BfGtohc3qTbR+VEyWtREZowZRY+4yZLbvjQ+D1wbzMOshNR1qsqffHtpsa0M1y2rcfXuXi8Mv0sa7TaXr1nV3Vx5kPMBUbopcJketVfNyykvmXZzH850r2HfVEcmbN4JgwNy5XMuKY9q5adxJv4NUIiVyWKTAsdjTkwauDTjx2QmxPcD+N3umN5nO3JZzUWvV1PsjgMzs18T9CZ51WpB99jCDDg7i4quLSCVSpjWextrYtYKajV6PRK9HJ4W1aQ0Yvzqay2+useDKAi6/vvw+Q/wXOJs7V/L5CHYKJmhtEKpyFQF2AZjITbiXcY86TnU4P/Q8TuZOYl/1j/EOzDuYCa1aoZdIGDPNG/flW1lwGQwjRyL5809QKCgoK8BmkQ0KmQK1Tl3JswNgwHMFw+Il9Oyrpkky3PcxAYOeUq0au1KoYxXAVe0L0WASEPX/PxYkuGtM6NRgIElXjnHBViDE/t34390wQhDzgYGbg6mD+P3acBTGCut9kVMQVjuM0wmnKCsrop7eiRijDNzM3cgqyUJr0CJBUkkN6cN9f8z075e2vzCw1kB8bHwoUBfQYH0DMoszUWlU4rn72fgRYB/AqeenAEFC+UPjRaVein2RnhQrmObaj135V5FJZWJ2f0jQEBa1X8TlpMui3GjFnATYBpCQK3wnw2qFUaot5cSzEyI3qFdAL+o512Ph9YWodWq8rb1Zl9ucjgt20mGuB5FGyRjLjGmYVE68o56CD9buNkob8srymNRwEgvaLKjcghK9nGnnptHEsQGXJscxqwOsaiIhxDKAZ5lPKXznum6QvB+vp5VnJaPMIMcgqttV51bqLXJLc/G08uRpzlPx3K1KBS6Gt1ddHM0dsVHaYCQ14mnOU+6m3yUpPwmdQYdCpqBcV/7390kF9IImiEEi3FfVbauTXZpNobpQrDjIJDK6Ve/Grl2lzPBKYLdLjljB/WcI9QiltLyUuPQ4Pg/5HE8rTxZcXYBqfDL6yAhytq3F9Fo05ipNpa9AkhVc9IErnlCkgGmJjpyzzGRpM7AwMuenzouo41KPCacm8CBD8MgIcQ1hRecVNK3WlNzSXNpsa0NWcRZXw69yI/kGI4+NBIQqeYh9HXbPvUOqoZCyy5EEeIWwNXodffvOJdpZx6zxXiTnJyOTyijXlxMzOoZ8dT499/SkvU97Dg08xK/Xf+X7K9/T2bczZ1+eFX4bXBpyNzWOYoMGs3LYF2lN1/afc6NHXVqcG8RPrX9i3mVBrcrRzJHfO/7OwusLeZbzjPkt5zM7dDab7m7i81Ofi6qBIJDg516Yy9rYtVgaW+Jv68+1UdcYcngIR58e5c/uf9KvRj+abWpGQk4CVqUGth2X0XXZSXpnr+LK6yu4W7rT2rM1EYkR9K3Rl986/MbXEV/zW9Rv2Jva427pztWRV8WElFqrJnB1IEn5Sfzc9mfmhM7BY5kH/Wr0Y1lnIalw7+09OuzogLO5M5HDIisnGf+KnTth2DChg0L57/O60Bv0BK0Nwsvai1ODT/3bjvMJ/7vwqaLxPwH29hAeDitXCg+CD1Dh4v0x5amF1xey+d5mNvXcVDnI2LwZWrQAV1eIi6sSZKQWphKyPoSskqwqfZ7Dg4f/t4KMiv26W7pTpi2jXFdOm21tyCnJYXKjycw8NwOnxY7kluViq9JhWaonaa0x0cmd+GPIdqLCr4NEQg7FGIDdD3dTqi0lNj2WngE9OR52nNxZuVwLv0ZGcQZKuZLs0myxN/tj8LX15crIK3zT4hu23NsCEjg5+CRj6o9hecxyDBgYVmeYwCOwt4ecHPzt/AUSLAZ8bXy5n/GAqWVHeLzlNyKOLSMmyA7/5TspdXXgweB2FCY8YPiR4TzIfEBjt8aCuWB2Atkl2eJ5Vro2wMY7Gzn74iw/tv6RF3kvyCrOomdAT3j9mtYzlrN/qwqJjw/Ex5P01VgGnhpJy60tkUlkXBx+ER8bHyafmUyXnV0I9QjlzJAzleQOvW28ScwTOD/SI0c5tfA1JjoJvaY7o4q5hv3jJM4OOUugXSB6g57fo39HrVMjQYKZwgwTpTnmEmO+sYkj4Fsb2m5vS3RqNC7mLmR9lcXLyS8xlb+vXpjKTXGzcCOvNI91sevova833iu8Ra+EhJwEUgpTCHENwcnMSfxBHFhrIAssejE/KIv9cdspGTUc6ZUr9JqzjQWXgZ9+QrJ5s9hKZaW0orVXa5Gb0NS9KbIPXKSNevdnZg9hZfrzRfj+TClatRopkGMK+XamjK0/lloOtdAb9JUqMJ1fQC+VOwAmemGfKUalbLu/TQwyADFDHpry/tFpVbFGlwjZ+A8XgRU99jWNXHFVQc+nwusmciFpcODhAYo0RWhkEGMkZOpTVamC+o5BX2VB+eHfH1tsDg8ejq+tLxKJBGulNSc+E3wG5BI5BgzIJDIySzK58eaGuM2HQYZ9MeT/rKe9eRASJKxIP4JWr+Wt6i06g45gp2B29t3JW9VbVt5aWeUcKiRuJUjY+2gvxxKOiVn4u+PucjTsKN+1/o613QSZ2fSidH57tRO3WTIijZIBgXtSYiyhx1NhoT298XTeznxL7te5TGk0hT/j/uRhZmWxhimNp9DNrxuq+DiUOhg2YinbQ39n78q3eOa/M+WTVB7v64LXmBmZ4fTORyY+M55DTw5RXF5McXkxZdoy9AY9/WsIni5nd8ORvXp29N1BW6+2PM99ztKbSzn4+CA2Jjb80u4XXk55yYvJL3C3dMfNwk0ce4VamJHUCLlEyC4rZUaY6KUC9wgDCbkJ5JTmVGpr0hl0HE84jkVIBBvskykuL64y59ZKa7r5dcPb2rvS69eTr3Pv7T1G1hrKF0U1aTRvLQm/lYK9PbKwz3A8cxUTlYZndhIOtnFizw8D+G7v5wR9bc7GejDooUD87tM2k0Wh0NKvPbFTHpJVlkvPvT15lPmIrn5dCa0WSmxaLJ+f+pwTCSewUdoQMSwCS2NL2m1vRxvvNtRyqCXO/cZ+27E8exnfAhkFA3qg15YzNdqAe5EE00VLsTe1F32XANpsb0MTtyYc/+y4WNn4uvnXDKszjIjECCwUguTz9dSbeNj7cnLwSbRKBVdb+yBZvYbmTQdRX2XB9diDNHdviqeVJ1nFWQw7MoxWnq34sumX/HDlB5psakIz92YMqjWIMcfH8DznOTsf7CRgVQDbH2wXJd3TVGko5Ur299/P+AbjGXtiLGEHw3iWk4C52oBWCumLv0XesTP7+u8j0D6Q5znP0Rl0lSoaBx4fEGSaZcac/Oxkpar35aTLJOUn0cGnA3MvzmXexXl08esiJgcA6jrX5erIq+SU5NBya0tR9fGjkL17Tv6beRpSiZTZzWdz+vlpMQj9hE/4FGj8T8H06UJlY/v2Si9XPJQ+JFMD7Infw9yLc/m+1ffvjd/UapgwAUaPhuHDBX8Od3dxm2JNMT9d/Qnv5d6kqdKwMrYSFYJGBo9kRecVrIldw9rb/7pnRwU0Og0ZxRli69Qf0X/wKvclOcXZzLswF9XVSJae0vJioxnD7gt90tGnN7BkZlM6SXbSeH+HD1pchP+XdFjCk0lPWNFlBT0CemBhbMGVpCvseLCDGU1nkFuay7XX/7gXVKvXcjnpMrZKWzytPOmyqwuXX1/GzMiM6nbVabe9HRNOTiDPzgxDTrb4IP+i4Rc8n/ycRxMfEeoRyhenv2D0y6Wk/P4dd28e4Vy3ANyPXMS0ZjBdvt1BaIaSC8MvCFK+dzdR37k+aUVp1HOuV0mBIyk/iRnnZzCm3hiKy4uRS+UUFuXwxYUiDDVrUPNVMXeXzUZ18jDzUncQuCqQ68nX2dZ7G9Fjomnj3YYhQUN4lPWIGg41OBZ2rNKCGYT++ld5iTB7NkYDw7jlCqsG7+KlQsXw4RakTBxK/T/r8TTnqbiN3qDH0cyRdt7t0Og0SI2MyTOBN1IVfQvc0Gg14rEGHx6MucIcKVLB70JhypuCN0SlROFs7sy8FvMYVGsQOr1OvJbZpdnEpsUSmRhJ++3tmRUxi30P9zEoZCRD7sOIU2MJTfsJjRR6PpMIfI25c4WU7zukFKbwJPuJ+Pez3Gfo0OFuKdzjux/t5rmRoHy0uBlMvwk3N0N9lSWhHqGiUZ5Ko0ImkaHSqLBQWNDSowVTXthzeGkKo+7AjpxWmGqEDO+YWJhl1rnS/FYvNOKOo14k+BZ8MP1KmZAtrAjEKsZvmpRGpJ+EP08KylQVsq86dBgA/zwpIc4N/uG9XAEpUsyMzP4Pe+8dFtW5rnH/1szADL1LERABsUJQrIixgb0FC/YStz0qSWwxMSZqjDGWaIy9t6jB3rArFqxgp4hgQUB6h6nr+2OFUaLZ+5xz7X2+fOfLfV1elwzDet/1rrVm3ud57ue+qwVZVbiXdc/opfCy6CV3s+4S6BxobGTWi3qK1cXVNr4yHcZzmX8eZFevcdWp0ihBa6O0oaV7S2SCjE7enRh/bDzNNjSjVFPKiIAR1RqjRUTJzwXJ6yLYPVjyXvFsQ8yLGIYdHEa9VfX4+IhED9NqK9HJIchW2ohWndPg+7Dihh1KhZLnxc+NNLAlnZbQxrMN/fb140XRC+O4giDwuvw1jSXlZcocrGg3eh7l5cU8cJYob++DWq+mhkUNAmoE4G7lzutpr8mbkceHnh+SWpjKtOBp5JTnEOwezJYRgUyr+wKnHxwYuH8gL4pe8G27b0mdksqtMbeY0XoGlqaWhO0IQybI2NpnKyIis0JmUdNaCjrqONQxelMYZAIaE5nUAyTKkOvfXIc/QmGAkAqpu71nnZ7G1+1UdpSoSziecpy0wrSqiwCAVwFsjtKzcshOGgyaTOD156TYiixtBf2HmNJzQQPmn/qCu5f2YL9xF7rePUm4eZxft5Qy+wpM6S4wsTvkm0nUQZWpGf5r/FkQs4ABDQaQMiWF40OOc/njy1wedRlblS299vSi1aZW3H99n7PDziIX5LTZ0sbod1Spq+TGqxuYfNCY0m0b6fCogosRLRAXfocwcSLde37GzX/cJGZkDF18peeuXFuO049O5JblcmTQEc48PYP/Wn+iU6KNamYuli44WziTUZLBpBOTGNX4Y5Za3CMu/jjC1q1MTXMmuvQuPffd53nRc06020hN65qsvr2aHQ92sKffHslzY0NT6tjXwU5lR5P1TRh2cBjtvNqROCmRyJaRRvGSosoi5DI5C9ovoL6dH6dTTzPjssiGW66I5mbMfLCMG+k3sDC14NggSYr3wOMDFFYW4mDuQIm6hLTCNARB4MSQE9S0fkNlLFGXMPbYWDrW7sipoadYEraEhVcWklqQSkp+SrWG9fpO9bk86jJqnZo2W9oYE0zv3kC/PwD/IdO+tzGw0UBq2dRi0ZVF//Gx/sb/N/A3deqvhH794P59yTH89wxESn4KdX6uU41+c/n5ZUJ3hDKw0UC29t4qbWRfvZL+Pi5OaiofM8Z4WJ1Bx5b4Lcy9OJfssmwjdcQgSlmjgY0Gsit8F4IgMPXkVFbdWsXRQUfpVqfbf3nqtzNu02xDMxrY1eVxQRKCCO1eyuj3JYA8TgAAIABJREFUwMBHZVIz96uurYkyf07kmTcc2CrZ2WD3YL6/8j2CIFCpkwzSZIKM2NGxRn6/Rq+h8brG2KpsuTTyErVX1KZP3T783O3n985JFEVGHh7J3od7uTjyIoEugXTZ2YVLzy/RwKkBhyMOc+rpKb449wUqjYGgtEqia0sZn9QpqdS2e5MhTMhJYH7MfPY83IO7tTvh9cOJurWNiJvlTLyqwacAkv3dKJ42hRbPZtO9TneOJh/lp84/MbXlVEDazHfc3pHUglQeTHhARFQEjtfuMee319TJF4gNb8aAho/5tucy5lyYQ0FlAdNaTWNmyEyjt8f2e9sZdXgUtW1rk1Oew+OJj6t9SQHMOjqFPdc2kLZYw/zuljwZ2ZOlnZcx9eRU9jzcw1cxIGveArPuffjywpfG+0BAwIABM4UZE5pOoF+Dfgze0Ydnmmwm5HuzasljBhwawsmUk1waeYnhB4cT6BJIbHosGr2GL0K+YO/DvVx5KfFzq6gp01tN58fYH3Eyc5KUnbxDSc5LNm4UrdWglksb8IUX5XRJV+L36DVyizd+JjHPY+j/W3+KKotQ69VYmVpRoikh2D0Ybztvdj7Y+daFBwQIzTRj/wlrZK9fM6kbXG3nTV5lPsWVxbT2bM3lF5eZEDSBNXfW4KRy4OcTEBGTh9rdhatmeSTa6ZjUrfrHo1IHVmokF3ARCpWgf2sTW0VP+iOtyVINruY1CL6TzWk/OZnmb2UWRbAwyCiTV2+0fh9ae7QmyDWIpNwkTqWe+tP3vU0rM1eYGxMKb5siAlgKStolqjlWV8r6N7DzA6XS2ITua+fLzvCdtNzU0vj3VSZ/j3IeGbPvKoWKSp3UxG4imGDAgIWJRTXJW1O5KYEugTRza8bBxINklGSwfx/UzYFGE0Emk2FlakWodyi1dh5l0UkdJ+/v56Pf+jK1xVSWdV4GSFWipuub4mDuwKGIQ6QVpDE/Zj5n087yU7RAr0QRjRwyLSFseHWZ4bfhaOZIubbcuDYgVdmG+Q9jyIEhFGuK6eXXiyPJR4wN1AFZ0LmyJhOWXa72+QCSKEf7be3JKMngysdXOJp0lJlnZ7KtzzZS8lM49uQY8Znx1SoWxuslyIw0OXMtVCjeVGCqYGsIwMPwMdZCHYrFJ2SZ7iLEz52DiQf5SO9H3fh0dvmWk2cOy0/B6DuQag+H6sK+hnDHTVJtq4KJzAS9qH/Hz6QKSrkShUxh7O2ouv6DGg2itWdrHM0dcTBzwMHcAQczB2xVtlx4doEvz3/JzVc3aVurLZOaTWLEoRFU6CpoV6sdLpYuHEg8wKmhp2jn1Y4HX4zGf9FmztU1oeO1LLC3rzaH5NxkAtYGGO9XcxNzKrQViIh42Xqxvc92Jp2YRH5FPqWaUgJdAqnUVXIn8w5O5pI/x60xtzCIBjyXuNGnyI3feMToOyKL9e2J7KXi58JoAD5v9TmiKLL0+lLj+D39enJk0BHjz3GZcQStD+L66OvIBBkD9oRTlJ/J1oMiR+oY2NQEVnVdxa8Pf+X+6/ucGnqKVh6tsFlkg1anpUJfwa99f2XNrTXEvIhhcvPJrOy6sto5Tz4xmc13N/NgwgO87STPo133dzHi0AhERL7v8D0zQmZU+5sXRS8I3R5Kubacs8PPUs+xXvWLeeCARKXOy3tnjf8TWHVzFVOjp5L8STI+9j7/8fH+xl8bfwcafyXcuCFJ0B48KCksIVUyHBY78Fv/3+jXoB/Jecm02tSKD5w/IHpotNTIefky9O8vZS3274cWkhGTKIocTT7KrLOzSMhNIMw7jHNp5zCIBuTIsVJZUdehLpdGXkKpkCgneoOe8H3hnE87z+VRlwl0CfzT6WaWZHIg4QBRd3dxKTMWEWj6Em57wPK7LoxuPJpLLV04o0/mTOpZo4OsUqFEKVdSw6IG9yfcR6VQsfjqYr6+8DW+9r48ynnEuu7rGH98PAqZgl3hu+jfsD8/XPmBL89/Sdy4OAKcA5h6cir7E/bz4tMX78r5AouuLOKLc1+wK3wXg/0Hc/n5Zdpva0//Bv2JTY8lryKPFV1W0LF2R9quCuK5Pg8v61o8K37OgwkPaFSj0TvHfJT9iCEHhnDv9T1UchVdfLtwNOEQmww9abj9JNFeOha2gRHJ5mzxK+fm5HsEOEsGXT/f+Jkp0VM4N/wcrWS1ONrTjwEPDCTUd6L+3nPUPt+LEnUJeRV5DGg4gMWhi6tJ6a65tYaJJyYypskYFnZYSKM1jQj2COZAxIE3E4yLY/2sMCa0ymenwxiGFW4mvH44R5KOIJfJCajhz/VXN1gZY8GUkDJszW2NhlzGcX53adfqtTRe15iU3CQci3R00Xqy2eElhwYeolfdXgw5MIS0gjQORBwgbHuYUTYz2D2YEM8QTj09xb3X9zBTmFHTqqZR5WjHRzsYGjCU3PJcNsVtInvBLJIcJC1+3e+X0UJQEujelMaujSmoKGDPwz0EOAcQnxWPTJChEBRoDJp3/CNMdKCVg1wmQxTBTG3g52gYFQ97/AWuzRpKZNdvcLd2x2WJC8XqYgRBoG/9vhx4vJ/l0SKTYvXoZfDp2Fq4DRnPF+ckIzQM8PN5JVM6qlHqwCcPHrlUWzrae7XnwrML1HOoR++6vfnp2lKcC3WISlNeqjQ0zYSkGnJKFO9SGKqCf287bzKKM6j8XX3qv4K3e0eq/l/DvAYuVi48znn8DsVQKTNFbdBgroZyE96pbdub2Rulqt2t3bn56qbRn6VKytbZwpkA5wDOpJ4h2D2Ya+nX+CPsVfaU68q5MOICTVybYCo35UDCAfru64tvgUDSCpHpfa1Y5l9CU9emJOQmMK/9PBrGPqXz56s5d3Unj+X5TImewqRmk6jnWI/HOY+5/PyyUZzgbdzepKDeaz0nfURGDjbDxsxOorrIVTRybsTtjNuYK8z5wOUDYtNjWd99PT4OPnx3+TvOp51/79oqBAXzO8wnomEEF6f3Y9iWOISUp8hreyOKIrnludx7fY8JxyfwsuglLdxbkFGSwdP8p8ZrYqO0oZ5jPXzsfMiryJMM9EQDU1pMoZNPJ04+Ocm+R/t4UfwCM4UZol5Hpag1Bs3WYgCB+jW/pwPkiKIemSgy5egEQhPus6w1zGsLjTPhmwuQ7AC7mshxbNWR2W2+xN/ZH9+VvihkCrLLs7FT2eFo7kjN+KfMiDFgpYHZneRc9tDjaulKa8/W3Mm4Q1phGnJBTg2LGmSWZv7Le9DezB4HcwdkyHhV8spYuQPJo2deu3msvr2apNwkDkQc4MNiO+J6NadpBjz7bT1+4WOqHTO3PJevzn/Fujvrqr1ey6YWr4pf0cW3C8u7LKft1rbG5vkZwTNAwOhh9GWbL1nQYQFzL8xlaexShjcczG/395B+NgBlzFXu1bWhc4SW17JyI63N1syW/Ip8DKKhmr9GmaYMy+8tGeo/lH0P9xKYKbIvxpla2w8T+mgm59LOEeIZwu5wybcmPiue6CHRtNvWjmEBw9hyd4tR0Q14p/fyyosrfLjlQ5Z1XkZky8hq53zm6Rm67uoqneeUlHdc27NKswjdHkp2WTZnh581fu8AcPiwtKfIzgan97u9/ztRri3H6ycv+tbvy5oe/32GxN/4v4W/A42/Gj78UOJRXpU41AbRgMl8E1Z3W014/XBabWqFqdyUqx9fxU5lK/V1fP45tG4Ne/eCs8Q3vpF+g+lnpnP5xWU61O5AWO0wZp+fjYhIXfu6WKmsSC9O5/aY2+9kxMs0ZbTd2pas0iyu/+O6kZoCEn3lQMIBou5s50pOHHIDdEwVqVUI65vCgFQL9nmXUc+hHikFKegMOjxtPAnzDiPMO4yO3h35LuY7tt/fTn5FPi8/fYmLpQs+K334wPkDjiZLHN8wnzD87P347vJ3iIiMbTKWHfd3MKHpBJZ2ljJOl55dot22dsSOjqWle8tq53Aw4SDh+8KZ8+Ec5rWfR1ZpFo3XNaauQ13ODj9LubacyOhIttzdgoulCzml2Xx61cDuMGcyyl8zLmgcK7uuNCrygGTIN+LQCI4mH2VC0wnSBvjRHswUZizttJSIBgNosNyHgKelRG/Vk2MBeaMHU2/OT6QIBQSuDWRMwChWpPiinfMl+VQwPQyCZi7n9NMznEg5gY+dD1v7bCXEM6Ta+fx49UdmnJ1BZItIlnVehiAIRsnY/QP2E14/HLZtg/HjOdPOk04tk98YsVm5Mbn5ZMYGjeVOxh1GbOpBjkKDUm5CGVJ2teq9H9X7iIOJB4lsEYmV0oqFlxdyYsgJhu+J4LWukC8zfFmw8iEolfx49Ue+vfQtkS0j+fHqjwiCgM6gY3PvzQz/YDgAww8OZ3/CfkxlphSqpYCmuVtzzgw/w8GEgxxZ/DH79orIlCoS4k/T8kA36ucK9M2y43af5px6eopitRRIVG2g397svg2lBvQmMgS53Jg1rsrmz82qx9e7XyGzs0fcsYOVJnFEnopELsiZHjydpbFL0em03NlnS+PEQqJ9oNdQGTNCZvHd1YXSAAbwzYcXtpJ61R/nISDgZetFQWUBhZWFzA+Zy5wr39I2w5TyoAC61OlK7O4fuOmoofitfkzLSqhQydDzrysagNQrU5ZTzdehKkh5G28HH05mToT6hPLrw18BaPfanIvO5Qh6EN+T8ZcLchQyxXu9SFwtXXGzcuNJ/hPjtaka31xhTqMajbiZcRMBAVcrV0I8Q9jbby8JOQksubaEzXc3A7DvsivtYjP5fud4Vj7YYKwAzQyeSYNXGoaPWk7wWDmPa1saZZQFBEzkJkZ6GLxprL/ZdhfNOgzlYW0LPhhehkyQGxvq7VR2GDAwsOFA1t5ZyxB/qZFXrVcTNzaORzmP+C7mu2rBy9tVqQDnAJq7NcdEL2K/chMJQe5kNfAkMTexGq3VzcqNQJdA/Oz92BC3gb71+7I4bDFO5k7oRB0avQa1Tk12WTYrb6xky90tKOVKRgSOoHfd3iTnJXMu7RyXnl0ityIXBdIcGul/wp7mCG/R5WQGPfXSb3LVLJL7LuBcAmWOUqVvadhS4rLi2PNwDzYqGyY3n8yCmAWs6LKCZm5N+fnATPbnXKJSBh4lAq+sAVn1/iKZIMPV0pXHEx9jrbLmWcEzgjcHk1maaQzwbZQ2dK/TnTaebZDJZOSV55FXIf3LLc/lQtqFahWR98FcJ2ClhhqlIg7+zanh6IXOoONJ/hMe5zwGpEAtvzKfEQEjSMhNMHo8ATR2acyqrqvovKszHtYeJOQmsK/fPqyUVoTvDadCV8H2PtsJ8wnDc7knn7b8lMXXFrM7fDeDFIE827iEKbk7OOotBXYyQWBO6y+oEHUsvrYYuSDn2OBjdPHtQom6BJclLpTrypl8A5YYQjHdtYcMUzVeP3kxNmgsux/sxt3anaj+UYw9NpZbr25RrivnqzZfGYVGQHJwT5nyRmK6UldJ4NpAyYxy1BWjMt7bmHFmBj9e+xEfOx9ODzttrHhUIbc8l847O5NWIPlGNavZTPrF8ePQowdkZICr6z+9Hv8uLLy8kHmX5vEs8hkuli7/+g/+xv9Z/B1o/NVw5Aj07i0FGsHBgKQiNLn5ZE49PcXTgqfc+McNvExrSJKgO3dCZCQsXgwmJjzJe8Ls87OJehyFfw1/5refz857O4lKjAKk3gO9qGdj3EYujrxIsEfwe6eRWZJJi40tsDezZ3f4bk6lRPPbrS3EFj7ERA9hT6FfigmNfEO42NSer4uPUMkbSkDzms0ZHjCcMJ8w6tjXqdancDz5OD1+7YFckLOq2ypqWNSg776+BLsHk1uRy2etPmP8sfHEjo5lxKER6Aw6UgtSMZWbkjAxAW976cNVb9DjutSVkYEjWRy22Hj8+Mx4QraE0K1ON/b224tBNBC6XaLrxI2LM37olWpKab2pNfez72OjsGDbjjIabDyM37neyAQZ9Rzrsa7HOkI8Q7ibdZe++/pSUFHAzvCddKvTjbOpZwnbEUZo7VDOpZ3DwdyB3PJcPvT8kPz714mMFRl8RwuCwG8trLjlo2LFHSdkjx5zsVtDPm72ijQKUMlVKOTSZil/Rn61DJcoinxz8RvmxczjqzZfMa/9PONaiqJIn719uJl+k4TnPbBdtZGkXq35qG0mCSVSxuynzj8xodkE1Do1ww8O51DSIQBkIpjpBA4NOUa3qD5oDVoczRzJnp7N6luriYyORC/q+bzV57TzakfPX3tiJ7dAWVjKhbQP8dsZzTfXFzEvZh4mMhOmB09nevB0pp2Zxqb4TUallHNp5wjbEcatf9wi6nEUP1yTsowK5EyK1bPsNIiNGyOPvwulpZzOvEK3nV0ZHmfgXof6JJQ+Y0H7Bay8ubKaQlA1/EE1ykHlQF6lJJ5Q5Z6946MdDLVpg2HwYLgey7w2IrmfjWP9vc180/Ybvrk4l+XHdEy8BUKjRsSM7EDb0pXUy4bEGrzhzgvQPRmO+1WfQjO3ZiTkJlCqKaVfvX5EJUbRPFNBXA0dJiZKKgxqZIIMz2IZ4Q90LGv1+5xFGJTlRFTNQmSCzLixD3IJ4k7Wnfef7z+Bg5kDW3pvQa1Tk1aYxsLLC40B3tuBh7UYQC39x1jiQylPeS7fTLEgNW+28WzDlRdX/qlqklyQY29mT155XjXlLxOZCTWtalKsLia/UtqAT242mUe5jzifdt64ee/nFsbuyMssaa5lQZgSE5kJ5dpyY4DoqlaS8b2aAf0Fjn0g0bKq+j7C64czxH8I7bza0WJjC57kP2GCfWdWfXsLWV4+XYZAaos6RvdzGTKUCiWbe2/G3dqdAfsGkFmWSWjtUM6mnTXO3UZpQ5G6CA8rDzxsJMW49wW0iFLPhLmZFVZKa4rVxZRqSqllW8t4v5Vpysgpz8HcxBydQVctMPqfoJXuKEpqvPO6mmxum4YTXj+cug51OZZ8jLisOACsldYEuQah0Wu4nXEbtU7Nt6XNGHM8A6fkV0zrLLC+pQmVoqSQZSozRWPQ4GjmaJS+BsnlvatvV7rV6UZTt6b02tOLm69u4mTuRA+/HuxP2E+pppRedXvxSbNP6FC7A4Ig8DT/KXV+roO3nTdftfmKL859QVZZFg5mDsxvP595p79ELCjgkzqDee1oRv7uTRSZy7ha14xCfRlyQY5MkP0p1UwUReM9KkNmFMGwM5P6VhaFLsLZwpmPj3xspHY+L3rOtZfX8LD2QECga52uzLs0D3uVHSusBuB27CI96t8l3xzq6e35NvhLht6ahbm+ASFWcykuNqNEn8SoS5uZ0q4XfPMNyOXMOjuL1bdW8/LTl2SUZNB5Z2cEQeBgxEGmnpzKlZdXCPMO40zqGWrb1iatMI32Xu05P+JNFW32udksjV1K/Lj4aoZ9byO1IBWflT64WrpiEA2cGHLCaIZZhcLKQrrt6sbD7IccH3ycNrXaQHQ0dO0KL19W69v8T6KwshDP5Z5MaDqBH8J++F8Z82/8NfF3oPFXg8EADRtCvXoShQqou6ouiPCy+CUXR16kucYJwsMhKQk2boTBg8kuy2bepXmsu7MOF0sXFrRfQF2HuvTc09OofLM4dDF2ZnaMOTqGdT3WMTZo7J9OI60gjZ9jf2LFrZ8xIGKqhy5PoEuWBSr/QK75WXBGm8jzYolnLxfkWCut2dRrE+H7wokeEk1n387vPXaJugT7xfZ423njbedNhbaCgooC7mffZ2+/vYTXD6fh6oZ423kzrdU0o1uzjdIGK6UV+wfsp3nN5gCMPTqWc2nnSJmcgiAIZJZk0nxjc1wsXbg08hLmJubMPDOTpbFLuTDigvShi0RJ67arG49zHrOtzza2XPmZoxkXGOLUkV0551jWaRl7H+3lxqsbfOj5ITczbtLQqSFRA6LwsvUCoM+ePqQWpHJv/D2S8pLosrOLcTNc1ecw0LkjD6aNYNDFXMz0UGGlQrN4ET7F8ymsLMQgGpgVMovDSYdp7NKYneFveg1EUWTa6Wksu76MRR0XMTNk5jtrmZ58mwY7WjDgvgFrhSU/+ZfSuU4XolOiae/VnhNDTvDtxW9Zdn0ZGr2GGhY1+KrNV3SV+9F+dxdc7NxJNS0nvzIfJ3Mnsqdno9FrqLeqHi+KXlDDogaFlYV08unE6m6rCVvbipzcF/jobbhuLWWZl3debizzi6LI/Jj5zL04l3FB41jSaQk1fqzBt+2+ZXrr6TT8pSGPcx/TLhUubIdFrWFDTzdGnMxgxNf7qdUhnMgTk1lxaxU2BlPaN+jG0aSj6EU9CkHBt+2/xUxhxmenP6veOPsn5ntulm5klGYwrdU0vvzwSyL29KXV9ot8HQOyFi2JHObEUfV9In9LZ/JVLeUmAmYrVzPJ4z5rbv9e8helfowqzryRuiW+2Tw+mfyEuRfmsvvhbixNLSnVSKZs5qICU5WlcbPfNRlO7IZ2vzTjUs6tagGMgICHjQe55bnV5WYVKvrX78+OBzuMr1koLGjl0cq4Uf6j7K6JzAQXSxdeFr9EQGBUzR5cTThFkrXmXRoOUtP+XfkEY7DxNhQyBTUta5JenM4PYT9gYWLBy6KXbLu/jVclr94r+asQFBhEgzEIUclVGEQDGoO0ZiHPoX0aLA+WXNbdLN0wVZjyrPCZ8RhdnkBSDRlpNgZcLF1wMHMgtSAVjV6Di6ULpZpSitRFCL9v/HslQtRv4DwNsi35t+CPlSIbpQ0myDDkF1Bg/uaeqGlVE39nf7xtvbFR2RCfGc+Z1DMs6LAAS1NLo8+GqdwUpUJp/NlEZkLeyySeXTxE5fUrNHpaSsBrMNdBqVLgha8TD2pbEOUxFZmqekVDRE8+N3mgkJ49U7kp7tbupBakMjN4JpZKS2Kex3Dt+RXCHlYw5xI0zpKeue/byylVGGhbqy255bk8zHmIo7kjpZpSNHpJ8WxowFD61+/P6dTTnHhygrTCNJRyJW292lJYUcjNjJuoFCoORhzkeeFzVt1axcPsh9R3rM+kZpNYe3stD3Mecm/cPQJcAqTN/tkvWH59OYIociHKgv69NTi71yPEM4QrZzdzaa2ax7UtKd6/m051uyGXyanUVZJXnsd3l79jze011DCvwVcffkVeRR7Hko9xJ/O/HpBXXU9bpa3xmfzA+QM6+3TGzcoNB3MHbHNK+fniIk7LnyM3wIjsdqQ4fWd8XgSDHlGAlWMa4V/LihJ1CR7LPRjTZIzRpDa9OJ0uO7uQWZrJmu5riIiKMM6hSpJXQGBvv730b9if+Mx4mm1oxty2c5nTds57516F+r/UJ8g1yFjxOTDgAGE+YdXeU6oppdevvbiefp3DAw8TlorkqfXsGdSq9d7j/icw88xM1txew4tPX/yp2e3f+L+PvwONvyI2boSxYyExEfz8qLmsJhklGRyMOEifF+YwcCDY2cHBg5TV82FZ7DJjiXd2m9lMajaJORfm8NP1nxARkQkyxjcdz7CAYbTd2pZRgaNY22PtO8Om5KcQFbeTqNvbuaNOQ6WVOL/X3cFfdMTE1oG4kmREROo51qNlzZacTDmJSqGiUY1GVOoqWdN9DX6r/Lg44iJtvdq+5+QkhGwOoURTYuSP13Osh5nCjNtjbyMTZEZaUPSQaPru64tGr+HO2DuMOTqG+Kx4VnVdxZigMZxKOUWXXV24O+4ufg5+tN3allclr7g15hZuVm4cSjzER3s/YknYEj4P/hyQqjWddnYisySTU0NPEeQWhJidzeYuzkR+pKLUUMnskNl8EfIFnXd25lr6NVQKFau7rWZk4EgEQeBZ4TN8VvqwpvsaxgaNpaCiANelrrSs2ZKYFzGIiDgp7dmY1YI2605iKjflYbNa2N1/gl8+XPGApcHQ8ONZDG0ygvq/1OdQxCF61+sNSJS5iccnsu7OOlZ1XcWk5pPeWcOnR7bhMHICaxpWMDsUPqr7EYs7LWbr3a18d/k7mrg0ISE3gQpdBXYqO5Z0WsLIwJHGfpb4SX0JsTuAWgZ6uSTBqZ6jZs75OSy6uohNPTcx+qhktra9z3Z6+PVgxpkZrI9bj9wAv6TWY0HjEoYEDGVRaHWFkS3xWxhzdAxd63RFo9OgF/UciDhA5/VtuJ4vbWZP2U3BvE9/Nt/ewL472ykzlegETwueYirK0QgSjaPKP2Fr763kV+RLQQa88a1AbnTLHhYwDKVcycb4jcC7vhNymZwxTcYQITYgMPIHzF7ncaRmGeGJ8ElXqFUE2eOHsf7pPbwMH2MhShn/F7LNfPD8PpmNfXhS+PSda1HNbVmEFumQ4ihQ060u9wskdS8rUyvamNVjztJbtPoHKJGj/oPLd5W7dQu3FkZHY7kgZ0WXFVx9edVIfTKRmTC5+WSWXZcapBs4NuBx7mPsVfa4WrniX8Of40+OS5xyLZTJDUbTQX/duzScP25a/zinf+kJ8d+BKLmrCwIUqN4do6qxPOyFCTYutYh1qCCvIo+IhhGYyk3Z92gfAMXqYiy0Al9dU7CzvpaBD0RG35Ph9plEryvXlWNpYkmpthQLEwvKteXvDYj0ohRoOZk7MS14GjPPzmRaq2ksiV3ClVFX+PXhr+y6v4tZIbPYGL+RlPwUfAvleBQauOAlEuYdxsvilyTmJiITZDSv2ZzCikJUJipujbmFQvZGLUCn15Jw9TBZ0VEorl3H62E6tfOke+CFkympDVw57VrOfscc0pwUaH+nx1mLATTWrwFRQBDeDg7HUy5LwNfel1JtKRnFGcbgTiHKGPfCiRnn1Xg+L2RtE5jdSaBAVX0NalrVZEbrGYwPGk9BZQEBawMo1ZRSri3H3dqd0Y1H83Hgx1ToKjjx5IQkBvH8UrUqzSfNP+GHjj9wK+MWq26t4sDjAxgw4G7lzpnhZ6o1Jx9NOkrfX/sQlG7gnovk1m4iMyGyRSQ2V28zc8EFikYOwmHT7mrzrNBW4LPSh9dlErV1dffVgCREEhEVIVUzVHaUa8pRGySfnYYpeZLMAAAgAElEQVQ1GrK6+2rmXZzHpReXMJWbGpMAAgLOls44WzhLdK/yvPdWsP7seQnysWbpyIb8dP0npp+ZTuqUVDxsPIzvKagokKo/6TfRGDTGzyILEwuUciVd6nRh/+P9nBxyks9Of4ZBNHBrzK1qdN33Ydrpaex+sJvkT5KJ2B/B6aen2dJ7C0MDhr6zXv1+68fZ1LNE1fuanv2/gpQU8Pnfa87OLMmk9orafN32a2a3mf2/Nu7f+Gvh70Djr4jKSvDygj59WD+mCeOOjaOBYwMeFQ+VJD87d0a3Yxubnx9i7sW55Ffk80mzT5jdZjYlmhI6butIamEq9mb2mMpNqWVTi7399tJqUyu87bw5P+K88cMsKTeJqBub+e3ubu7p0jHTQsgLcDa1I9PDjmvyDCp+b0pt7NKYyc0nE+odil7U035be2SCjAsjLjBo/yB87X2ZHjwd/zX+7+2beBtzL8zlp+s/UawpNioInRh8gq51ugLSRrvZhma8Ln1Ndmk2ShMlgxsNZmXXlURGR7L2zlpGNx7Nss7L8FzuyZTmU0jOT+ZI0hEuj7pMkFsQKfkpBK0PItQ7lKj+UQiCQFpBGqE7QlHr1JwZdob6TvWlCel0YGrK018W4Jv9JQICThZOFFUWsSh0EdfTr7P30V5CvUNZ3W01G+I2sCFuA+mfpmNhasEvN39havRUvGy9cLVypTL2CrvP2VIntZDNTQRyv57GXV06e+7/Sv80FZMuVfLhC3jlbE5MeBBTneN4PjsHMxMzdAYdHx/+mF0PdrGp1yZGBo40rptBNHDqSTQp333G+J1J3PEy5eby6ezOPkt+RT4/hP1A/339q22uZ7SewYIOC95pmC9IfcyJPg0Z2vfNa9dHX6f15tbMbD2To8lHKVIXGXtnLEwsEEWRT1t9yqE7u8jNfkYDrS0mjYM4NeIsf8SplFP0+60fdio7skqzCFH48P2aJFqPFFHpwdTajuTJyTiYOXCkmy9jmmaQo6jeAK1Axode7XhW9Izudbrz882f36FKWZpaUqYpQ0Tk5JCT+Nj54LdK4jbNDpnNwisLjV/yTuZOFKuLjb4hfiWmNHmmpkYp3PRV8cRCjdZM2tRJw0ibOkSR8MS5/NImjeT3BBq2Slt87HyIz4qnTo6BX05A6Aip8lCmKzNeCx87HxzuJfPMFjKtMJ6LTJCkgv8Vn/2/C4VO6vPWyt9k3/8ZDSdW0bPaaxYmFgTUkFR/8irycLNy43r6dZQKJRqdphpt6m1Urbe9mb2xh8HG1IYiTRFTnruyYksmgePgnuubcd4+dwGB4ztFZGZmrJ3dmein0TSq0Yj57edTpimj/2/9MdOIJGwwYXSEGRecyjiyQ8o0DxhZ3YCwCj52PgR7BNO8ZnN87X2JiIqgVF1KTeuavCx+iQwZF0Ze4OsLX/Mg+4FkuDkunszSTHxW+jCr9SzmtJ3DyScn+UfUcLK0+VgKSqa3nc24oHGo9WpOPz1NdEo0BxIOICLiaGJDeEVtmqVpqPM4iwbJ+TiVgV6Apx6W5Daph751MCn1a3C09A6nn56mTFuGrcqWEnWJ8Tn+4BWkuUl0Nwe9LwG+7nRvruLj0x15VfIKU7kpGr1GMogsy2FUoRcz9mVQL1PDzkbwWRfIsZQoRgqZJKTgbOFMUWWRUXRAKVfiYuFCekk6Oz7agbedN5vjN7P74W7KteV09e3KuKBxdK3TlUpdJefTzrPu9jpOpJwwXvNOPp1oW6st82LmUa4tx15lT35lPqHeoXzS7BOauDZhc+xqVlxcRIGZpCKl1WnRiloaODXg5OCTbJvQijl7MlCvWIZyyqfVruHeh3sZuH8gAMcGHaO7X3cAtHot446NY8vdLZgpzPCw9jB6urhZujG/w3wioyON94Ve1NPAsQGZpZlkfJ6BTJDxMPshsS9jiU2PJT4rnqTcJPQGPa30739eDLICVk10o8evPWhbqy3bP9r+znsKKgqovaI2Reoimrg04VHOI9R6NW1rteXU0FN03dWV6+nXqdRVcnPMTaPC4j/DhbQLdNjegTtj7xDgHMC4o+PYfHczi0MXMy14WjWaskavYfD+wRxOPMTOfXoiDiSBn98/Ofq/H+OPjedAwgGeRT57R4r9b/z/A38HGn9VLFyI/ttvcJ+qx6GmLzavcrn6Yz7il19yZFATZl38ksTcRIb4D2FBhwV42XqxPHY5089MRy/qGdhwILkVudzNukvsx7EMPzSc50XPuTP2DvkV+fx2aTVRj6N4KL7GXAP+2WBqaUOSrZ5sSlEpVLTxbCM1cfuEsefBHhZfW8z+AfsJdAmk/bb2KGQKLoy4gIeNB14/eTHEfwgf1f+IZhuaET8u/p8qVl1+fpkPt36IgIBKoSLILYiYkTHVPiQ3xm2UzJAaDqS1Z2smn5xsDGC2xG9hwvEJ+Dv742HtwZUXV8gpzyGqfxR9G/SlXFtOq02tqNBWcHvsbayV1jzKfkTYjjAsTC04M+yMkQJlhL09zJyJufZbtKIWnUFHHfs6RA2IIsA5gJNPTjLxxEQySzIRBIGxTcayousKAJqsa4K5iTmPk66yN96XjmdTyPZ2pl/bbF4H+pCSn4JMkDGwkaS/n1aQhv+zciZf1tD5XhmFZgJ5oyLwnP0DQ658ypGkI+wK32V0p63QVrDj/g5Wxyzl023JjLgHSUO64L1xPwaFnJ+u/8QX576olrE1NzEnbmwcdR3rvvcajD06Ft/l26iQGfimjZQ59bLxws5MUqS5+eom63uuZ1nsMm68ugFgdOZV69R0XNOS1IJUlIKC3Jn5CFZW74wRlxlHx+0dKaws5IczAp+mOtFqhgOvdAW8LntNHfs6VOgqJIqPCJ19u5CYm0h6STqWGihUSPOyNHlDR3o7yPCz92NNjzV039XdKKm6sMNCJpyYgEquws3KjdTCVNyt3fG28ybmeQx17OpQ16EurlfvonyWzhkfeGkN5b8nEv+7Gf+3YaaRqiKfXYOxvd+tBlTJzn5/FrY1kZNo/6ai0dilMSn5KdWUehQyBY2cGtGzbk9+vvGzke7xR7TzasfFZxf/dJ3exv/k/P54Hq4WrmSWZUrN2TITIyWqjr3UG9GhdgfOp503bjTfxtWNoDOVM+ZTH5LzpM3g+KDx5JbncjvzNht6bOB50XMcP/sK9+QsImb5UFhZWM20VG6AU9tgfC9IsZfONWMJbGoMczpK7/G286aXXy92PdhFfkU+Y5qMqaaAE/0kmq67uyITZHT17cqpp6ewUdowtflUvr70NXPbzuWbdt8A8Pmpz9kYv5G0qWn8+uBXPjn5Cb2TZFhhwoFGcqPL+wjvvuRdOM6jg+sJy1AS+EyNxe9ytdfdIc7HnMrmQdi070K2opLTT09z85XU2NzSvSUdanfgUfYjDiUdooFjAxJyE7AysaBYK13TGfa9+H7qEWQ5ueDgQMzzGNpubWtc9wYmNcnPf0WWFdiqBTSCSIXp7z1d76lK2avs8bL1Iqssi4ySDGlt38q8t/ZsTcuaLVHr1ZxJPUNcZhw1rWoyuvFoRjcZjaeNJ0k5SbTc3JLCykJslDYUq4sREbEwsWBU4CjMTcw5knyExFypsmcqyhj0SEb9UdP54tYiRgaOpKCigENJhzCVmzKmyRgaLFjHuBt65NGnIOwNLUgURUI2h3A/+z5mCjMeTnxIDYs3QcCmuE2MOToGERFnC2cKKgqM92YVloYuZW7MXGNyws3KjZyyHLQGLTJBRgOnBjiYOXDj5XXciyE05weSPFogviXNJqKnTHGPe7IpaA1a7oy5QxO36r0SBtHAkAND2P94/xtxit9d6U3lphyKOISDuQMtN7bESmlF4qREXK3+daO2Vq/FYbED04OnM6ftHERR5OsLX7Pg8gKjDPTbSSWdQceoDT3YnXGKTS2+Y2S3/93KwtP8p/it8mNll5Xvrcz/jf/7+DvQ+IviYUIMXoFtufRhLc46FnOyRhGH/RfyD/kxrry4QsfaHVkctpgmrk0orCwkbEcYtzNuY2lqSdSAKGJfxjLv0jxODzvN3kd72XZ3G8NcOhObHkuCLA8zLXgWC5RZKUk3fVOxqAosQjxDUCneSOMYRAOD9g/iSNIRbJQ2WCutOT/iPO7W7hhEA8oFSlZ0WcEHzh8QsiWExxMfv6kWvAcavQbLhZboDDpERC6MuFDNQVsURUK3h3It/Rq+dr7EjYuj5aaWxvKyQqbgTsYd+u7ry+uy11TqKolsEcnyLssRRZFRh0ex79E+bvzjBv7O/tx8dZOuu7ribu3OqaGn3quCoffzZW5/J74zvY6fgx8be21k0vFJJOYmMr/9fKYFT0OtV9N3X1+iU6LxtfNlU+9NWJla0WR9EyYW1WX++ieYGgS2hHszzecpKpUllfpKhvkPo0RbQtTjKGm95EomNJ3AuKBxdFtQn2/u2tI3thC5CDs+EPCat5Kwbp+QVZrFLzd/Yc3tNVhl5HHusA21siqRrd9AVp9Q1t1Zx9rba3ld9hoXSxeySrMQEOjk04nbGbfJnZH73vW/8uIKbba0YcOHSxk9YCGe4ytIV0jZvr71+3I46TCdvDtxMuUk/s7+/Nz1Z4rVxQzZPwQXSxc29tqISqGi9/auZGryWJngTcM5K6g0lVGpq6RCW0GlrpJ7r+9x8vRqUq31CEC4d3eu5sXzuvR1NYUbE+Q4lujJshKQy+S4KVrhUNEflVj7nWbl/wmqvnirGkgn3YBVJ2H+h/B1B6idBxNuwcqW4GH5/gymXsjnuqErSj3IzC2oQIPWoMXH1oenv1c5uibBybpgWw6F5m8UkRQyBeYKc4o1xfhprEhYpqZcr8HhKxOcLGvwquQVJjITApwDjJzzKj65q6UryzovY8iBIfTw7cGRJ0femdvbMNWBRg4e5Sa8NNcaKyaiKOJm4UZJqcOf9GiMp0z2+L2O43+6rsgQBIEGTg14kP2AdrXaEZcZh9agNdJQTGQmmJuYo5ApaJhWyqW1apbMbMNG92yeFjyVejne6oNQKVTYqez47HwFIy8W4jTj3XGXn4Qf2ghkWYggSIpLWUuh7wA48HsfrY3SBi9bL5LzknG2cOZZ0TOmBU8jomEEXrZebI7fzMyzUt/T+h7r+eLcF5Rry7FWWvO67DVjmoxhfc/1AGSXZeO9wpsOtTtwNPkokS0iCXpcyNDPt3JhVAcyXzzELyGbwExQiJBnBmkNa6Jr3RLnzn0xbdaS1fc2cjDxIMl5ycY1djJ3op1XO8YFjSO3PJep0VOp1FUyKnAUq26uooFTAx7lPEIv6nFR2JOly2fQA5g3fi++oQMkOeQlHnybURdN4kO+9M+hSAkqg0CxafWvdnOFOau7r6auY12OJh3lRMoJHmU/em+ztZWpFYEugagUKq6nX6dEU4K5iTn+NfwxiAYeZj+kUldJ1zpdGdtkLMEewXTc3tHovwKSB0XM8xijYpiZwgw3E3telrxCUCgYFDgUT2tP5sXM4/NWn2OnsuOrC18hF+RYCEr2bC+nQ5YZyltxUs/i77j16hbNNzbH0sSSdrXbcWTgkWoJqpNPTtLr115Gw0mj8pq5EznlOdXOs8psclTgKMYEjaGeYz2+vvA1P9/8mYgUFRtibHj2ywE+vaVANIgYEIzPi6XXTm7lR5FTnkMr91Zs6b2lWlLny3NfsvDKQmaFzGLRlUX42fuRnJ+MDBnd/bpz6ukpfOx8jCIINSxqEDMypppD+J+h375+pBenc/0f142vrbm1hkknJtG/YX+299lulKwHMMReY8LC1qxvCr90+4WJzSb+yzH+nRi8fzDXXl7jyeQnmMhN/lfH/hv/7+PvQOMviFfFr2ixsQW7t5bQ5kEx8/rYsahxKZWilgDnABaHLqaTTycEQWDfo32MODiCSn0lYd5hHIw4SMzzGLrv7s6ExmNJfXqb6GJp46LSgrVWINdMxCCAp7UHYT6dCPMOo0PtDu/ocv8Rj7If0WR9E/QGPVdGXaGlh0SNyirNwnWpK4cHHsbCxILQHaHvGN79EVq9FqvvrdAZdOhFPTEjY4yN2iA5nw8+MJhlnZfx2anP2PnRTvwc/GixsQXLOy83muCdeXqGLru6YBANdPbuzMmhJ9kYt5Gxx8Ya/RrOp52n957eBDgHcHzw8fc2peWU5TBoli8XHEpwsHBkqP9QlnVZhlqnZs6FOSy5toTWnq3Z1nsbfX/ri7XSGq1eS2x6LM1Ma/Oi+CXpi3UkdgykV5NE0i30aA1aetftzdJOS42mRSuuryDylJQ1djJ3opVHK848PUPa1DQi1ocRcuIhn1wXcSmDiwE2fBtUym1fFT+IYYxdegGDvR1X13zBLwWnOZIkGYl1q9MNrUHL4aTDAHhYe9C7bm9W3VrF0rCliIiUaksp05RRpimjRFPC4cTDyAQZQW5BVL5I5VleGq/+sCwCgpFiV3Wd/tv4LzRs/xH/1WblKrqNr70v6UXpqPVqAl0Cic+KN2Zlqzj6X4R8gaWpJSqFCtc9x+mz+jxzuptxprMv97MfGClMggEaGX7CXmyOILyb8X8oi8SpHDbccWNA+zzUhjfyr7YVoJVBmRLmtZvH5ReXOZN6BjO5GRX6CmPQcabxckJ7fwoqFWFrgsmuyOV+9n2jYlEVWtVsReyr2Or9H38Cc0FJuajGQg0VpkiEJuFNJaJlzZY0qtHI2LvytupUuZBKmmwjGsUTiVImCJJIQetZkpt72ru0OOnwgvGc3s6Wv1396ODVgc9bfU73XyWKy8sbrRHu3MFrggaV0pz6jvXJK88joyQDtV79RkVIkPHxQxM2/KbGYvabahMiDH4AR+pCmekbOljfZ+ZEbS2n3mem2NQP5H7WfSY2m0i5tpwtd7dgrbQmvyL/nXvY3syegooC5DI5fer2ISpBUudzMHOgQltB5rRMrJXWAITv+YgH1w4xpMiTkBdQ+2E6PrlSgPTKwZT0AC9e+HuyTH6TG1bFuFi70tK9JeXacmKex1Chq6C2bW161OlBY9fGFKoLOZd6jvNp541BmYe1B+H1w1l7ay0WSgsKKgqwMrGg471S9k44x1ZlAt9GfcJrazmjG4/i66x6mH4zH8fMIkq7hzGg5UtO6hON56eUKYloFMHZ1LMUqYso05bhaO7IR/U+YkDDAYR4hnAv6x6fnf6May+vvWM0CZKccbta7TA3NSe9OJ1rL69RoinBRGaCmYkZxepiHM0dGdxoMGtvrzVWEFQKFTqDjo61O1LLphaJuYlM/TEG73zoFulIqaimRFOCl60Xzwqf8VWbr9CLer6/8j0da3fkdsI5rm4CFxM7LOMeonR2M85pxKERHEo8RLG6mLXd1zKu6TjKteXcf32f269us/bOWqMbeRUUKAj1kZTGRIOIHj3u1u6kF6cDMLjRYJLzkrmXGc/ykyITTYMR9v0GLi48eF7CzoOPSE3Lxbqmgv3lMyn6/bNoUcdFbIzfSHpxOgvaLyCypSSbPuboGH4M+xFPG08ioiII9gjm2kvJa6Zv/b4k5yXzIPsB37X/jp51exKyJYSW7i05NujYv9yMb4nfwugjo3k97XW17+2DCQcZtH8QwR7BHIw4iI3KRvrF7duIzZrx2fYh/JS6ix/DfmRa8LR/Osa/E/ey7hG4LpDtfbYz7INh/2vj/o2/Bv4ONP5iKFGX0HZTCCMPPmPK2WJEoNNwOOsNW3pvYVjAMOQyORqdho/2fsSJlBMo5Uo299rMIP9BHI3fS8Sx4aDXUykzSLrgIhhkYCUzp4NvqBRcvEd29p8hJT+FdlvbGb88zE3MuTb6GrYqW+5k3KHphqbcGXuHrNIsuu/uzqvPXuFm5fanx6tq9gapfP9x44+Nih1FlUXU+0VSIvmt/2/03tObB68fkPhJIpHRkey8v5PETxLRG/Q039gcLxsv8ivzSc5Lpr1Xe668uMLoxqNZ02MNhxMPExEVQVuvthwYcAALU4t35nI9/Tr9f+uPJi+bPWlNmdFOQxOXJqzr+cYkKuZ5DMMPDie7LJsKXQV7++4l2KYRqdM+pk/tG/R9DE/toahlE+JeS/KSwwOG08S1CaWaUsq0ZZRqSjmZcpKXRS/RG/Q4WTiRWZpZbcNmp7JDXV5M/3s6pl2Dhjlwyw0WB8P+BtWdff/TqPJSUMgUmMhNMJWbYio3RSFTkFuWS6m2FA8rDzJKM5AjQ9BqCc2zwa1jHx7kJ0LsDay1EP//sPfW0VEdetf/54xl4u5OIAJECO4OgeLuTotbL7SFlpaWFmiBFooWh+DuwUlwC4RASEhCjIS422Ts98eQgSD33ud9et/b37u618qinZmjc86cr+29PeXkiHVdM1sjW3LLc/UB5dvqLyMew6tgb7Irp3x0tKfCdg0JBQmM8B/Bmfgz5FfmY29sj7HMmOSCZFJmpxCwPoCCygLMZGZYGVmRVpRG+px0bqTd4MLJVTyMj+CB0xtzQLTgWQDJVrp8o76mFdbqZYi1AhrRa44GWh6KJ1EsvKnY6vkVr8eh6mWB1tSEOOMKpjeZzuWkyzzOrtmFaefejssDTurGzAID+XX9aL648AUaNP9WIicg6PT3CxL0iZZUBd3i4UR1A/EtDsvHiNy2RraotWpujLvBy+KXdN7Vma5eXUkqTNKPMxmIDahSV723fLUM7NtwNHHkVekralnUQiaWEZv3Jtit3geJBr69Cnec4dTrwq+hxBAXMxcS8hOwkFvQ0bMjSzstxd3CHcm1G9CuHYWPbtPx9hRi0iKpkw/PbEAjFtCgRS6WU6mu5KsImHsTrL8AdwsPcspzEIvEzGg6gzV31jCo3iDmNJtD+x3tsTC0ILUoFVdzVzp5duJq8lWe5Dx5L6ETq6FlgQmdXsoITCihSZIShzJdEpfgYkReQ1/yy/P55EIyFZF3MQhqyIOMB7TZ1gYTmQm5FbpuokgQ0cipEQtaLaCnT0/9b65Gq2Hj/Y3MuzAPmVhGG482xOTE6M+/VCQlyCGIexn3iFwPDU7dg0aNqPB0YW07Y5Y4JFAh1jAh141TslSSrd981xJBQm3r2sTmxtLarTXJhckMqjuIof5DORhzkANPD5BUmISNkQ0tXVtyIu4E37f7nnmt5umSy8SLHHp2iCfZT977/r2tvAlwCMBAbEBWaRa3Xt76KLdoVcgqZjSdofufiAho25a7S2ew0beUM/FnyCzLrJHctHRtiYuZC4efHWZNtzWsOzCXi2tLSHCU8Wz3KkY2Go9UrJNxD9gQgJWhFVmlWXoTPLVWrb/eHEwcyCnLwc3cjaTCJEDndD+7+WymntGZPz7Pfa4fuSxTliHVCoQe1DKo62xYtgykbwX8ZWVgZgZ//MFY6+vsfLwTjVaDocSQrb23cuflHVbdWYWfrR+xObF81ugz1nZfy/ZH2xl3Ypz+HpnVdBbr76+nSl2Fu7k7L0tecmDAAczl5oSEhjA8YDhbe239p8/m6uLehwL366nX6bm3J27mbpwdflb3HH74EIKD0d67x8Li4yy+tpjv2n7HwrYL/+0Y4H+LT/Z8QkphCo8nP/6gwe7f+H8XfycafwFEp5QQejWDxKxyiqueMuTMCsbciWJRZyn+rzSUmsoZ27mU/Hn5WBpaci31Gj339NQRzByDWRrwOccjNrK/6Ca5MlWNQMNUYsys5rMJqdONJs5Naiig/LuIz4un3Y52unGpUZcpVhTTfEtzGjg24Ozws5yNP0uf/X3I/DyTG2k36H+gP3nz8rAytProOltubcm99HsoNUq61+5OQkECcdPiAJh5diZbHm4hdlosLmYuPMl+QsD6ANZ0X8PQ+kPxXetLU+emJBUkkV+Zz/4B+7mWco35l+frg/YFrReQkJ/Anid78Lb2ppNnJ6rUVZSryqlQVlCu1P2bXJRMSmEKcokc+3IRGrWKTBPdLWEo0RGzq6v5endlLQx5AivOwTkvGNdXR7pV/c9P7UchFUkxECS0iKvAqRjO1dGRhz1LJEjtnTAztyOnPIeUohTMDMwwlZmSV5HHmMAx3E2/y+Osx6i0Kj4L/ozmrs31buz5FflMPj2ZgXUHMqf5HAwkBvwU8RNxF/YS+TovFAtihvkPY0efHR99CGm0GhZeWciP137EztiOho4NeZWdyMuseCY+lRPmVEGUA8hEEvrVH8TAugMZcHAA37T5htV3VpNfmY+7uTvFimIKKgv06/VRmuNucJyqKsP3tilTZJNU0ZNEWxHjGoyjnm099kbv5XHW4xqEVmOpMRUq3ehWdRBTHSy5FYJDKWTXdae4qoT8ynwELVzYCX3HG1OlVeGWpyTLvD6ds8eRaeVFsZCIWc4Wbjjqkoy3g3fPQoFKCWQaa9EKsDjocxY9Xo0WrX5kykBsoFc8Cu0bipfYhtqNQ4iqb8PYoYakFaf902tBhIhRQaNYFbKKJdeWsPLWSqo0VVjIzCmseh3wv0OQr97HbrW7EZ4cTrmqvMbrLVxaIBKJuDb2mt43ZVyDcWx7tA1fa9/3EiQAO2M7ssuya7w2NmgsxYpiIlIi3htLeXdfBC2YVkGxQc33fa19ic2LRSyIWdppKf9o8Q+KFcVcvrSFPp/MofsoCQ/sVFSJoVAOBmKdq/mI+iO4lX6LosoiNuzIw6pcy8XN81FpVERnR3M+8fx7PgzViYlUJGVcg3H42fjhYeHBjLMzyM1NpUuOGf7xxbROE2iWpsW0CiolcNcJbrgLRLhpuekKxXLdfWJvbIdJ8isqTeTkm0oofc2laObcjM8a6u69QzGHWHd/HRklGXTw7MDMpjPxsvRi0ulJXE+9zsTgifzc+WdicmJov6M9Veoqmjg3wdXMlaOxR3VGiFXQxbEVM1McaLnmBJLKKoqH9WN6u0p2ZZzRH5+V3Io61nVQaVTc//Q+FxIvMOvcLGJyYmjm3IxjQ45hb2KPVqsl8lUke5/sZfWd1Sg1SqwNrenn14+BdQfS3lPHwb35jc8AACAASURBVFOoFIQlhLHi1gpupt3UJwRv3wPGEmMq1BXvGUZWo4FDA37tvIKmQz5HjgRu3waRbpQvKiuKs/FnOfTsEJGvIvXLGEuNUWqUbOqxie1rJxC2TcnOAJgzwAQzuTmvSl/ptycTyTAzMCPYMZhLSZfwtPTUSXF7ddY/m/zt/PUjiQ7GDriYu/Cq5BXpJek4GDuQWZZJg3QolUOatYRVPdYyMXji+79//v7QsiVf9Dfn55s/M7HBRHY83kGVuoputbvRx7cPk05NQhAElnVaxuxms1l3bx1zL8xFo9Wg1CipXFBJ622tuZ9xHz8bP7ysvDibcJZ9/fehUCsYfmQ4C9ssZFH7RR88n9VovKkxXpZe7Buw7733YnJiCAkNQRAEwoaH4fdKCYGBunPftClLri1h/uX5zG0xl2Wdlv1fSTaqx3WPDzlOL59e//Ht/Y2/Dv5ONP7LiE4pYfbWZ2i1oNHq3F5BizRnGvUHdOAb4+4cmzObFV3G4WXcAoU4lRtl31MqPKEetqQocyiWamoEGv3cuhJd+oJyZTmRn0XWIMv9TxGXG6erAsotuDz6Mg4mDrrxj8QL9Nrbiz6+ffC29ubnmz9zfMhxzieeZ9WdVfzS6RdUWpWuml9VRoXqTXCfWZrJ9bTrgC6IMjEwoVhRjLOpM1XqKnLKczCUGCIRSfQBvlKt/HMlNt+BCBESLYjVWqqkIkSCCEtDS6Qiqb6aL0IEsbFsCpPSKlHJkboC4wcZUIRu5KOaIAsQUjuEfr79sDS0xFBiiFwiJ6kwiYknJwI674mozCi2R23X74ObuRsvi1/iaOLIcOcQ0sMOctClGLFURkuTuvQ8GceU8ArKDcWEtjDlx8AiJnzyDf3r9qfBxgb81vU3pjedTomiBL+1fmSWZrKs0zK9rK9Wq6VraFfi8+N5MvkJEpGEGWEz+OPBHzXORTPnptxOv/NR7463cSjmEEMODUEkiOjh3YNjz46iFcA/E6bWHcXgiav0o2r11tbjef5zvCy9yCzNpEhR9F4VeUyyJZGu32KprdnREDRqGqbe55fQGdxxhnPNbVnvVUCmoS75q+4IfQxd8q3ZuCsfSeu2VGxaT99DA8gszSSvIg/HcjFZhmq0wvteFGq1EvMKsKoE40p46ixGo9XQwKEBkZmReObrEpd+MTA3RLdctcu6q5krfrZ+3Ht5jwJFQY392XgCmqZD0OQ3r70dvDmZOiETyUguSkaEiB4+PUjMT+R53vP3x6je8uKoRrUKEbzpuLwNd3N32ri3YWffnUw9PZXwlHAcTRw/OiYF0MWrC+lF6TzNfTOS8m7HRJ9UvP7XQm6Bj7UPkcl30IjhV2V7un6+geCNwTR0bEhJVQkPMx/WWN5YppOiRaXh2H545GfJt4EFaEVgINIlGXKJHI1Gg7uFO97W3vw+/SzXg6z48hMZt8ffxtXclfOJ5+m2u5ueYNzOvR3fR3xPdHY0Gq2G+oI9PrG5NE9W0yoVgl+BVAP5hnDDFe54SLjsoiLGTU5tx3pcGnWJsqoyfNb46IQkBHiW8wy1Vo1cCWJDI8pU5TWOxcHEAQ8LD1zNXalQVvAk+4m+um5jaMO2Ptvo4d2D0KhQRh8fDcCGTzYwseFE1t5dy/Sz0zlaaz7G3/5IUL4Uy2Ile/xhU2OB6Nrm+m5gdUJtZ2xHoH0g8XnxJM3SbSerNAuHFQ6YyEwQEPimzTfMaDoDA4kB8y/N55cbv7C7/24iX0VyMOYgLwpeYG1orR+vqk46ShQlrL23luU3l5NXkffRe04uluNj7UN2eTavSl/pX5eooYVVEB2C+ujMFl2a1uAB5pfnM/DgQC4nX35vnaMewY5j8HV3OT82qcTJxIlpTaax/v56ndBHzlPEgphv237L3JZza6y3OtnwsfbRc0jEghitVotELNHfJxuvWxLVNYh1ZVcA8Lfz59iQYzXdt8eOhehousy04sKLC8ROjcXe2J4uoV24l3EPAQEPCw+61e7GuvvraOnakmYuzdj+aDt5FXnYG9uzrNMyxhwfw9rua1lyfQkiRPjb+xOWEMae/ntIKkjiy0tfsqnnJiYET/jgvQjw3dXvWHVnFTlzcz5YQHxZ/JJuu7uRUZLByWaradF2RA0j4NV3VjMzbCZTGk3h9+6//1/pMrTe1hqVRsXNcTf/r3VS/sZ/H38nGv9lfLEjjvuJRWhqfAtqfO3UrB3qw9MiMbO2xaEW3khtvj2vLtMI1Je7YW3nyYWXVxkVMIq4vDgevHrAqIBRmMvNKVOWUaGs0P29rvRWqipRqBQo1Aqq1FVUqXXEVqVaiVKj1Af31bPD7zqx/lmoJuNp0SIVSfVVKlsjW2QS3aiOTCRDi5bY3Fg8LDzQarUkFyUjl8gZVHcQZgZmPMp8xPW069gZ2dHQqSFnE84CMLjeYGY0naHTLpcYIJfISS1K5dOTn/Ky+CWbe25miL9OLpEff4TffmPohk5klWbVcG2lrIxrE7rQ9OBNJO6eRH09kfZZyyhSFCETy7A2tGZgvYGsvrMaXxtfEvIT8LL0YkOPDXqS+/fh37P0+lIUKgXd6nTjdPxpAEYHjubbtt/iYubC2ntr+enit+SoixFroIdrR9YN3omTqRMKlYLPNw2k1q6TTHgAcjWk9GjF2taGHBHFEj89Xk8APPX8FD339qRzrc6cH3kegD3Rexh+ZDhnhp1BrVUz4+wMkgqTEAti3M3deVH4ApEGLKQmTG4xk5+u/cSxIcc+Wn3KLssm9HEoP9/4mayyLEQaGP4Y7rsKZBvBpVveBB6+jsbaih8jfmTh1YU6QrBtPaKyovTff13buhQrisktSKdCpMGMABqoN7x+/4287LLgcn4/+AmjH4toF1uJSBC4XteUNb7FnPQGxUfGmu3LBObcEvD3ao7tohUMODKYoqoi6ljV4V7GvZoffn152xq/IY7alUC2KRzbCx3H/cCKxiq+i9BVG31U5oStLeaWk5ZhA/iXPBSZSEarYgtmhSvo8aCEQ3e2Mej0aL13xIcgEkQ0cGhAmbKMxPxE1GoljV7CXdcPfrxGkmEoMaRCVYG5gTnGMmOdOWZlAUYSI+a2nMv8VvOpt64eGSUZ+q5HNaqT7A9JxZrJzHAzd+NJzhM6enZkRZcVBG0M0vNMFrVdxLfh3zIqYBRHY49SqihBK+gShS61u3Ly+UnuTbiHt403C68sZNWdVW++L2N7jKXG5JbnUlxV/OY8vCae2xjZkFWWBcCYoDEcub2doqVQ+MdqgspWYGZgxrWx1zCXm7P85nLmXpjLkLqD8SmWkXRqF31zbfCNzcX3tU5ChqWUxLoOHLHN4YJjJRpfH9LLX1GqKK2RoAkISMVS/bl1NXOljXsbAky8GDD4exSD+jK3bRV55Xks7rCYlKIUUgpT9F3T53nPawTe1ajuskgECbOazaK1e2vsje0ZurMXi+NdGXYsEQoLYdAgChbMocuJgdxXpdW41gLtAonKjqKhY0N9Z2B7n+0M9x/O05ynBG4IJGxEGKefn2bdvXV4WHgwqdEk5l2Yxw/tf2BBmwWArhjxMPMhB58e5EDMgRpJR2evzsTnxfPHgz9ILU7Vf9fmBuZUqCqQiWT6jo6B2OC9LjCCriAgFsQo1AoMxAb42vhiZ2yHWqMmtTiVhPwE/TFZG1pTUFmgfyYsuQDzbsKqL9uz26OYB68e6K9vZ1NnXpW+InxMOK3cWr13jquTDTczNxIKEvT7JFdBpRSalFkgru3NzU/vkJifyJTTUzj/4jwCAr19evNjxx91bt1r16KdPRvTr7SUiVR6id0SRQl119blZYmO79HPrx9TG01l4qmJpBamIhPLKFfpJIJvv7xN9zrdCe0XSlpRGl1Du5JVmkUT5yacf3GeXX12cSPtBhsfbOTE0BN0r9P9veOBN6T48DHhtHFv88HPFFYW0ntfb+6+vMP+UAW9NkVA6zdcyGqVrtFBo9ncczNikfiD6/mzcPr5aXrs7fGe+Mvf+H8bfyca/2UM/PkhuSXvEz0lVdm8LOuJkdlvmImawAeIqf9KavNfQfRark8k0lXwxegMzSQiCYIgUFhZiFgQ42HpganMFCOJEYZSQ4ykRhhJjTCRmfAk+wm3029jY2jD122+5l7GPfY+2cvJoScxkZlgbmCuJ+HKJXKKFcXU+b0OAC9mvuBcwjkmnZ5ESO0Q4nLjSCxI5NrYax98WEw7M41tj7ZRrixnbou5/Hb7N+a3nk9L15Z0De1Kjzo9OBl/EoAf2v2AgcSALy99SXuP9uztvxdbY1sOPj3IuBPjcDVz5fCgwzWVsTZuhClT+PTwWB7lPObuxLug1cKxY2hnzUSRkcbZgQ0427c+m2NCsTa0pkhRhFKj1JOOBQQ29dxEM5dmfHbqM26k3WBM0BiWdVpG662tSSpM0ssoarQalnVcxtgGY/njwR/68Yp2STBAFsitjj7sjTuEg4kDY4LGEJYQxqPMR8xrMY8uts1I+nk+XU7G4FICkUH2eP+0EZOQXjonNMB5pTM5ZTmkz0lHLBLrHWUFQeBM/BlczFxIL07HytCK2+NvU2dNHTwrDUmSV/B8cgxfXFnAhRcXuDnuJv72/oCOxH86/jTbH23ndPxpHaHcsSG3Xt7iyF7wy4Or679gc/pJkl8949htT5aP8+Z4UhiNnBpxP+M+AG5mbqQWp3J44GFGHx9NubIcjVoDIpAKEswJxFE5EhO8cLWRcil3Lka8IE2imwW3KdONr414rOsMFBrAwXqQ0acDnUctIrkoleFHhyNWg4Ea1CJQvFP0k4qkqFVKbMrAxs6DjIJkCl8XQjt6dORS8iX9Z31zwLVSxsntVTzt3Zym/ndQCRoMNWJESjVl1eNAHxlhcjF14WXJS0SImHlfQqWLPT/sSMPpc6h6a7+quw8SkQQBoUb3wsPAgTHXSxhxs4xfm8Hapv/8/q4OYA3EBogEnRrYkPpD9KZ/FnILCis/LJcLOv+BV6WvsDS0pLCiELFIrN+fI4OP0Ne3L/ue7OOzU59Rpa6iUlWJr7UvLwpfkP2PbOquq0uXWl3Y8XA7L/bYsiHEimU2cfpE6O3iRfX942HmQcS4CFzNXLi1cCyvDu4g3FOnBmYgNsBYZqz35ahGvyxrDq/PI/zkGlR1fem3vx+NHYL5zqofhRdPU375HK1SwakUNAIkORvzKrAW24zj0bZsyZbpF8guy8b1V1d9ELwmZA1Tw6bWcAY3khjhYeGBscxYLzjwNnnfuAoUMhFe1nUIqR2Cp4UnnpaeOJg4sPPRTtbdX0cDxwYsbq9zCz8bf5ZVd1fpEzm5WI5aq0ZaoWTqPfjHTbCshJPBxpx2KONOF19i8uN0fBc1fB00nVHtZnMx6SLnEs/px6zeTlq9rb0ZVG8QiyMWkzY7DRczF2JyYpgZNpOLLy5iKjMlfEw4DRwbvPf9V49X/Xb7N47FHdPLJtexqsP0JtP5tOGnfHPlG365+Yt+mQnBE+jj04eIlAiuJF/hfsZ9tGiRKV9f5/8kERcJIupY1aGdezsSChIITwlnY4+NLLi8AKVaSX5ZHocPQKcX0HIcRDu8ub8MJYbUsqxFmbKMqElRegL/2zgTf4bee3sjl8opVZQSnClwfLeW+tPA0Fo3PvV40mP9b9399Pv03t9bL/sb4hXC98Y9aNxvGu2mGnPPUcui9ouY1WwWvff15lrKNY4NPsasc7OIzo7GQm7Bgf4HmHdxHo+yHgG6LklmaSYxU2OwMbIBIL8in557e/Lw1UNaurbkcvJltvXexpFnR7jw4gLhY8I/6K+h0WpwWuHE6MDRLOu87KPntVJVychdfTmSHMZ6nzl8OmxFjff3RO9h1NFR9K/bn9C+of9RVSitVkvQxiAcTRwJGxH2H9vO3/hr4e9E47+MD3U0RBo1DZPu8vPeWfSfdYp8k/fVoD5krvXfhkSQoEWLWqvGVGaqT1r0hGKRlKLKIvIr87E2tKaOVR00aLibfhdXU1fSStLwsPCgk2cnDCWG+qTGUGqIsdSYuNw4fr/3u06astdWdkTtYE/0Hgwlhvjb+WNpaMmp+FP09e3Lzr47kYllXEu5xpDDQzCUGNLKrRV7n+xlcL3BbO61GROZSc0DOHQIBg5kwcHJHM26SkzISZg+Hc6eJa11AG0bPCbL3ghDiSHftfuOZTeW4WHhwfXU6zUUg+5PvE9Dp4ZotBrW31vP3AtzUagV+oBFLpFjbmBOXnkeQ+oP4WDMQQQERmRYM/1oBgGzlsC8eSAIPMt5xogjI4jMjEQiSJjZbCaLOyzWjwZ03twWjwt3mRahIDBTy0svW+RfLMBmzBQ+DZvKlodbGOY/DIlIwt7ovbqHk6kT4xuMZ+HVhUhFUq6Pu04T5yaYLjGli3UTjmRcZplpX6ZM30mrra0oUhSxrfc2TsSdIPRxKDnlOTR0bMiYoDE4mTpx/Ifh7PeqZHGCO/n9QlgSs5GR/iOJTLnJs8JEpBqQG5lRVFWMgEBf376s7rYal19d6FKrC+dfnNePfsiUUCXVBR32xvYfrABDzZGdGRYh2BwJY8Rj8CwEhasTkR38WF1yiel3oe1YXYCpFb1Zpjqw1atNaV//p/BmEkkqSFFqdYF11wJrzlnm4Z8F0faAVicjK9XqpGTVYgGnMjGZchUNDTy5o0r68E2iBa8C8K3VDNHdO4TXlrJt8F4GHRqkl+J82+SuGv1LXDmwMo1wd5g5wJhokzJczVz/Jb/jX6E6sREJIupY1iEuP44VXVbw+fnPefDpA5psaoK9sb1Ojhi1voLc2Kkxof1CqW1Vm557e3I2/izV3gkt3VpybsQ5ZpydwfZH2wl5puTArkpO7/yGAam/6INgD3MP5FI5yYXJ+tfkYjmGEjm70pvS3+IcO46CTTmMnubM4HqDWXl7JWODxjLCfwQ99vagQlXBvLsyvjtfhelXOod7UwUEZupGofxydONQGSbwwF3C7z9E4uqhCySPxx6nz/4+rO2+lvyKfBZHLGZg3YGERofWPEevk411n6xjciPdrFu1Z9G9ifcQBIHj1zZj9OtadgWCcSOdp8TbxwU6Y8m6tnXxtPAkvyKfK8lXEBAwkZnwZasv2f94D5HZUfjki5h8R4OjiT2ZE4axNfEQj5VpeoWtt2EkNcLd3B13C3fyyvKIzIyksVNjbqfffm+srVoRyVhmzIJLC1h2YxnOZs68LH7JpIaT+L7991gbWQM6UZLd0btZf389j7Me42XpRS+fXmi0Gk49P0ViQSIWcgsqVZUEOwQjE8u4na4znnM3d6eXTy9sjWyJTLrB7SfnyHxHsVVA0Kubga7z5m7ujkwsI6UohSJFkb7b3b1Od8JTwvGy9CIxLYqIrWBVAa0nydDY2ZJekl5jvc1cmnFt7LX3qvO55bmEhIbwIOMBM+/Al9dg/lg3ttmk6r/nEK8QTg8/rV9GoVIw5/wc1t1bp+vclBZRugQ2jqrLtuZyAu0CMZAYsClyE2eGn6GLVxcAlt9YzpeXvkStVVPbqnaNTs3owNFs7b21xqhShbKCIYeHcCruFC3dWnI99TobPtnA1kdbSSpM4tb4WzVHuF5j7PGx3Eu/x5MpT96/ON6C+kUis6bVZk1TWNhmId+1+67G6NLRZ0cZfGgwIbVDODDwQI3Rsz8b1YqSDz59QLBj8L9e4G/8/x5/Jxr/ZbzH0RB0wc5vQz2on/qIoRE5vBJq1ZhXR6umWHSfSPEM/Y/9ii4rWHB5AW5mbsxoOoMiRRH5FfkUVBSQX5lPfsWbv7zyvPdUY6ohRowaNWJBjLOpM0ZSI2RiGVKxFIlIgkgQ1fiB1Gq1RGZGotao0Wg1WMgtKKgswNXMVTd+9XoMS6VRoVKr9OMZIkRo+fNHsf4VxIIYuUSuP57qBEgmliGtrEKalEaFow2jruTzxXUoMJexfLArK20T0AhaAuwCaOXWivyKfPY93YetkS0qjYpSRSm1rWvzLPcZ7ubuTGk0hcfZjzkRd4KSqpIa6kp2RnaUKcsoU+qCxaku/Ziw8CjW2aWwb5/eoOp53nPGHBvD7Ze3GRM0hip1FXuf7MXBxIGvWn1FgF0AbXe0JbRvKB09O3Bm/ee4bzlIx+cq8qyNWDOtMYvFN/TjC9Uk+amNp+L9uzeFikK9wSGA0wonhvkPY8WtFQTnSDj/XSJrn27nh4gfUGlU2BjaMDJwJGOCxhBgH8DORzuInTuOny5qaPSFJf5NerCt3062P9rOxJMT35vf7ufZHbGhMcmFyWzquYlGmxqh1WjxsPQgseC12/ZbHQF9MvAaUhUoJTC72WyOPDtCkaKIYkUxvX16czLuJGq1irYvxQx9pGboEx3xuEgGS7rI2eJXiamzJ9fGXiMmJ4Zfb/+qG6/Tgm2VhBzZ6339SMVVAIwV4JMLcVZQaghnQsE7F3ym6wLcd7sZ70IiSNBq1Lz4VcuIlS259vIGx1Nb0u2PK5gsMUGj1dQ4Z9XH3zIFHjjB0Fgp2+spaejciPHB49kUuakGgfZ/ilqWtXhZ/JIqdRViQcyZYWfoursri9sv5usrX5MzN4fRx0ZzKfESCo0CI6kRDRwaoNFqyC7LJqMkgyZOTYhIjWD/gP16FbnaVrW5POoyUVlR9Nzbk2u7pEiqVDQfr8VSbklBZQEXR16kYy2ds16lqpIJJyawO3o3zqbObwJHLfx8AfrFiVi0aTi7Hu9iUbtFfN36a349/TXhe5bQ/qWE4ZEqbMohzRxuuwpcq29CpIuERwYFVLxVnBULYqwMrZjeZDrBjsHUs63HnHNzOPFc50ui1qprFEtGBozkYeZDMksyqVBVUKWuInxMOM1ddUagtX+vTQfPDuzquwuNVsPxYCMCUhS4vCqjRF3O7LDZhEaH0sipEUPrD6W0qpSnOU+5kHihhgCCeQXMvCsw6w48steyoJsBt2wViEViqr0gAIIdgjk59CQGIinJ/q6kTBpCSptAkguTSSlKIT4vnpjcmJrX3OvZ/bevq+pO1XD/4WzosYGNDzayKHwRYkHMZw0/o7CykN3RuylTltHTuydTGk+hU61ONbxoHmU+YviR4cTlxen3z0quE/+oNmgUEHBXGtMtVknLub/T0Ks1l5MuM+3MNLRoPyguUJ0cycVyXM1dySjJeE/RyrkIorfJybEzpuHgItQGUswMzMiryNMfp1gQ07lWZ4b6DyWkdgiJ+YkMOjSIytJCdu6uwKZUw/ChMuJNFNS1qUtMbgxmBmb635P1n6yvYZ53LPYYY4+PRa1Rs3p/CWoRTO9viIHYgEJF4Qf5FGlFaXTa1UmvIgbor+827m3Y2murXva8+juafGoymx9uprFTY+5n3OfXrr+y5t4aBARujr+p74JU41DMIQYeHEjyzGTcLdz5KNLS0Lq5sWzLWL5K28aEBhNY32N9DW5HWEIYfff3pbVba44OPvpBhcY/AyqNCp81PjR0bMiBgQf+I9v4G38t/J1o/AVQrTr1IqucWvZGjGzvRH03UxLyE2i5djh1q1Yh0mjRiMQIWjUiLfy8bwq/Bj4iNPB1NVYAI7Gc9Z+sZ0jAML3/wceg1qj1yUj136PMRyyOWIypgSm9fXpToaqo8X7138dIt9UPIrEgpoNnB6wMrWr8RWZEsit6F728e7G001KsDK2wkFvQd19fziaexd3cHT8bP9Z0X4NCrUChUlChqiCrNItZ52ZRqapkepPp/HTtJwLsA1Br1Nx/pRvFERBo6daSosoiorOjaenaEo1WQ255Li8KXgC60YtyVbmenF09Q6zWqFFr1ag1arrGa/n9DLgVwfIW8GObtzT8/1PQglgLEokMsViiJ1mWK8t1yjYm9pjJzJCJZWi0GrLKssgpz9H5XIhk9PbpjYmBCYZSHYFeEXmP1ofvIS9X0n8IeOTDSwtY3Hkpta1qsyh8EdHZ0QyrP4ypTaYiE8swEBvQe19v2nu052jMYQoVRYgFAa0gorlLc26n32aE/wi29t4KwE+XF2E3bxETI0H99QImNc7kXsZ9ro29Rv8D/bnw4oL+8ATASCkQccmNywtHMffuD+9VNN8+F9ULVY/WNHJqxOFBhwleXhuZQk2GsVqvrvPg1QNUGhXm2kDc1GOxEPlQz0zKlM3fYFb4iCemFXR5ncNc9TOk+VdrSWkdwOfhCziXeA6xRjdW9XaC8CEvASOpEeVV5TU+1zUegjLBUgHLWosoMNAgE8kYWuRG/5MJ9Bqm+1y1HGx1N8BSKaZAqmZIgQvbjqjp9oMPV5Ov6tdrY2hDbkUuJiqBUokWv2yIswGp1ICOtToSnRX9f9TJaOjQkDJlmV561tHEkeH+w1l+aznjG4zn584/Y/2zNTOazGD13dWUzS/j6LOjjDg6AtCRlKedncaqkFWMDhxNp52duJ1+Gx9rH86PPI/7b+764y1XlqPWqvHP0PBoI5z+YRQB0xcz4sgIIlIj+KPHH0xsOFG/b9POTGNz5CZ+f+DAzLqpVLy+56begeXnwG8afJJtTts0EfXji/DL1l03WRZSDCqVPLGFkl+X0q3PP0CsK8r8EP4DC68uBKBb7W7IJXKOxh79KIm5l3cvUot0PIEKVQWCILCv/z4GHBwAgJ+NH4WVhTz49AGOpo6su7eOaWem8WTKE+ra1mXYV97sXhrPujWj+K78DGqNmpVdVzI6cDSCIHDk2RE+PfkpEpEEa0NryrLSOJf3CbV2nUSoquJ2twA2djAjNP/Ke/smaMDdyoP6tvXxsvLCc9NBPJ3rU+vrFXhaeOqDwmabm2EkNeJK8hW+a/sd1kbWbLy/kbSiNMzkZrwsfvleccdIaoSJ1ITiqmIqVZWIBBFt3dvybdtvaebSTM/7yi7L5kHGAx68esDJuJPczbhbYz3VI1smMhNaubVCVFTCxVc3MJDK+azZNGY3n42TqRN30+/ScUdHSpWldPXqytigsVxJusKp+FP6JFNAXzAFUAAAIABJREFUwNTAtAZPUH8uEGj4UkvEdggPtmbJpLo8zo6msLIQZxNnBEEgvST9HZEC8C8x5vSmMpyGfMq56d3ofVTXRVRr1TrZdrVOXdBEZoJIELG8i+6+qK78J+QlUG99PVSqKhZF27C1tSlJRUlIBAmTGk1iVrNZNRKHapgvMddzjQb5DeKzRp8x/uR4ssuyWdpxKVObTK2RxH179Vt+iPgBfzt/nc9Ghx/57fZv1LaqzaVRlzCUvlHkK6oswuYXG1aFrPrnJnwZGeDsDKdOsdMlj/EnxtOtdjf2DdiHkdRI/7GryVfpsUfn83J62OkPjqD9GdhwfwNTTk8hblocdazr/Ee28Tf+Ovg70fiLQq1R03Z7W16VvmLvJ7c4/M1eYusEkaR5xJj2LgQ7GtHxQA/mqZuSkPuc4zZ5eOVBrB1Yq2QMNW7GqOaTaNRqEIL4XxO8ojKj6LizI27mblwcdfGj0rRarZYyZZk+6UgtSqX3vt5MDJ6IpdySlbdWokVLD+8eNRKZgoqCj2qtV1exbI1syavI07fdqxORPdF7SMxPZE33NQQ7BrPvyT5+ufkLaq0aTwtPUotSsZBb8GLmC0qrSnFe6cz23tvJKsviq0tf0c6jHXv778XO2I4tkVuYemYqgQ6BHBp4CFfz14za1FSYNAnOniXTy572IVnE2up0122NbUkpSuHIoCOoNCoySzMZcngIHua6SryfjZ/OGTZqGxqtBlOZKWYGZqSXpGMpt0QkiMiryAN0IwICAuWqcqRaEValGiSGRlSZGqHUqqhSV1GhrPhTOj02pZBrAluOwrQe0CYZMk0gyvFfLvrR70gqkiIA8nIlxlUgs7RGZm5FsaJYT9CtPs5KVWUNXX+VRqUP1N+uHL8NP8EeZW4WCdZvtmlvbE8zl2YcjzuOoNF5iYgFMV28utDWvS13ErPISxhAtcGfSKNzIZfariOsKBTHCgnfZdcj4EIUzV6+4XPsCoDrbv+eN4lEJMFKKSVPqMCmTGcW10RlzzXDLJSvl5cgQoUGiSBhWll9fjN8hI1gRC7lNcZY5EipREn/p3DoILjMk6KwNie3Ildf8QcQaXT+N+9Cz+N4rW7176KuTV1KlaWkFqXqXzOSGlGuLCd1VirOZs7IfpAxpP4QdkfvRr1QzfgT49n+aDsAX7f5msURi0memcyV5CuMPT6W4f7DuZJ8hfyK/BpjQtXjXzuOCXRIFuGUXU6OogDnlc742vhiLDPmzoQ7+s/329uHmPtnSTKqQiVA/RxolQqDn0CbN7vLU1u45gY33QXMO35CmyYDGdBsHNO6a9ncRMLjSY/17sxLry/lq0tfAdDarTVSsZSryVfRaDU4mDjQ2rU1FoYWHIo5VKPDIBJEWBlakVuei7OpMw0dG3Ly+UmCHYJ5VfYKDwsProy+glarxWeND02cm7C3/14sllpQP6mU2y46EYpVIauwN7GnRFHCrLBZbH20lZ7ePdHk5dL28H3m3JciVmth8mRSJwzix4StbH64uUby3c+3H5axyZwue0Smse63xVhmTEFxNgrRm8/ZGdvhaeFJlbqKqMwoNGj4stWXfBr8KZ+e+hQzAzMODzrM15e/Zsn1JVgZWpFXnoeJzITSqlL9tfkhhTIDsQFatHoSvFwsR6lR4mLmwpxmc5h7cS4LWi/gmzbfEJUVxYGnBzgYc5CE/AQsq0S4utQjoSARpVrJ6MDRzG05FyOpEa22tiKlKAU/Gz/Cx4Rja2xLdlk2u6J2sSNqB0+zn75HxjeUGOq74kOfithzUMMPnWQsbFVV4x4TELA0tKRUUUqVpopR0SLWnNQwoxucbGFNSO0QHEwcWHVnFWrNG/lrJ1MnHEwcCLIPYuujrbR1b8sfPf/A29pbL6YxVdqStcobiDUCapGWOc3msPPxTvLK8+jj24fPm39OC9cW+gRF+r20xn3qaOLIsSHH2P5oO+vvr6ete1u29t5aYzRq/b31TDkzhdqWtUkoSODLll+y+u5qunp15eDAgzXGwtrvaI+R1IjTw96MfL2H7Gywt4fjx6FXL8ISwhhwYAD+9v6cHHqyRqfk9svbhISG4G3tTdiIsH8qU/9/ikpVJR6/edDTuyebem3609f/N/5a+DvR+Ivi5xs/8+XFL4kYG6EjRhsZwdKl9LK9SFRWFAqVgnp29ehepzv/OP8P9vTYxtBCV56EH2Tny9OEWr3klSn45YsZpfBhuO8gXDv0hfr1QVQzenmU+YhOOzvhYeHB+ZHn/0c/LE+zn1J/fX1ujLtBC9cWDD00lP1P9zO4/mB299utr9Qciz1G3/19GVB3AIvaLdInIHui93Dg6QGq3Ytvp9+mgUMDxCIx+RX5pBen1yBcvgsBAWdTZzJKM/SSnWEJYZRVlVGqLKW3T28+Df4UW2NbfWclPj+eAQcGUKmqZH+fUNofjoQffkBrZoaQmcn4vhK2BqpY2WUlg+sNxnO1J4vbL2Zuy7mAbj77i4tfoNFoEES67acUpQAwr8U8FrVfxNn4s3wf/r2eBFiNm+NusvTwLMbvjWN5/SKuucHIgJH80vkXDj87zLwL87A1tmVb7220dW+LSqPSd3cUaoVOMUxZybAjw1CoFHzd5mu2R23nctJlzA3M9RKOKo2KZs7NCE8Nx1PuSJ0XRVx0KOfWFigxgPABjblVz4zUojQySjL0I0pSkRQTmQkFlQVIVSAXS1FKxfrxt/81PiDF+r+Fv+q3jxr8VQsmiAWdLG3tXC0jH6PncySbQ2gA7AqE5zYfNrh7mxDcPFPKQ2slHVIEQoZ9x4y732KghDVp/pTFRbOljQnRxqU1lpdpRVQJGoS3Dh+gVqFA4m9aPhkGZ70/sN13Eo139+1taWBfa1+e5z+vEaQaiA1Qa9T6IKeahF29np86/MT8y/MBXWC8rNMymm1pRgOHBlxNvsofPf9g5NE3ZmDNnJtRqixlacel9NrbizbubTA1MOVc4jl9ECoTybg5/iZell74f2tLwkoVCzpA4C87KawsZM75OWzpuYXRx0cTNSmKAPsAMl7GMuMLf7wzVbRKhRZpYKGAKhE8s4XALNg5MoBBP5/h98Q9zLs4j/5+/YnNjUX+6Cn3N8GA2S4cNn+JicyEuxPucur5KeZdnFeD79LKtRVD6g/hWuo1jsYeJWJMBMYyY/zX++sDujGBY2jh2oKHmQ/Z+nDre789fjZ+xOXF0dqtNcu7LOd+xn0mn57MqMBR7IzaiYXWgB37FLRaewqrjp9wK+0WI46OIKs0i1+bL8Lyt/WEhCViKJYjnjad2NE9WBz3B3uj94KA/vvzs/FjR58dNHZuDAsWoN2zmyuXt7L6zmpOxJ3AUitn2BNo/30o5apyXhS8IKkwibjcOG69vPXuLYKZgRk+1j7cz7hPoEMgAoJeVlgkiGju3BwzuRmPsx6TUZJR4zqTi+U4mTrpxDyqikkvTn/vWg2yD6KWVS3czd3xsPDALSYDxYpl3J3elxNV0STkJ2AkNUKr1VKhqqCvb19mNZ3FwqsLCU8Jx1JuSfiYcPzt/SmoKGD+pflseLABZ1NnxCJxjeT4bfx0Xc5XFysZOBDOBBpRqa5EQHhTwNBCz+cwIEbgt2bg3q43ruauXE+9XkNW+d177OFnD8krz+OzU5/xsvgl37T5hkMxh7AzsWOTyxRiJ/Sh9wgxlYKa5Z2XM6XxFEIfh7Ly9kpic2Np4tyEz5t/TpB9ED5rfRALYszl5owPGs/yW8sBmNNsDt3qdGP8ifHklueyrNMyJjeerH9mHnl2hKGHhmJnYqfn0fwR+QdTGk1hdbfV+kRm+c3lfHPlG/Lm5dXoTtRAXh7Y2MCRI9C3LwD3M+7TfXd3rAytCBsRppNsfo2Hrx7SJbQLTqZOXBh54X8lkf8xLLu+jG+ufEPSzCSczZz/9PX/jb8O/k40/oKIzoqm0aZGzGo6642ahKUlzJ9P5PCONNzUEHMDczb32syQQ0OY3Wy23lW7GuqyUi6GrWNn9C6OamKoFGnokASjE4zp69AekzadoF07Htqo6LS7C7Usa3F+xHksDS3/R/t6LuEcIbtD9DOiU09P5UzCGZILk1nQegGLOywGoNaqWqQWpVLwRQGmBjpmYFpRGn5r/RjfYDxXU64SZB/EjbQbdPTsyMaeG9kcuZmJJyfyW9ffGBk4kvyKfNKK0hh+ZDiZpZlo0TKk3hAcTByISI0g8lUkdazq6B1iPzQCA7qHiZmBGYYlFWRLqlhyCdyMnfhH8xKG3yghyduOg3bZhPYNJSIlgu1R23n02SO8rLyQiqT4rvUluzSbQkUhAgKD6g0iyCGIry59xdetv2bX412kFKXgbe1NfF48pjJTiquKkYlkPAjeiOXQsVgamCM/epLtxvF8fv5zSqtKUWl0Bnu/dPlFf44+hLCEMLrt7sbZ4WcJqa0zbzj49CCTT08mryIPQ4kh81vN50ryFa6mXOXLll8yseFEvFbVwrRSS9guaJYO0Xawsjnk9+3KyMYT2BW1C5VWJ9lossQEU6WIzB8VEBtLhq2cmUvakJ+eyD0Xgd1tVrG/9A4HYg7o+DnvVEGdTZ2pY1WHClUFT7Of1uBavJtsyMVy7E3syS3P1Xe9pFoRSqHmOkWIMEKCQlWF8i2lpuaqkxjw/oPwbcGEdyu1ggZapsLIxzA4RsC8Uss9Z4GdAVr21Yfcj4wn938Ch+tD4zS49468bM9YWHoB6k3nX/I1qs9D31golsGlWui7NdXLvS1T+zZczFxo7NSYE3En3ru+3+1yCAiIBJHeMdnb2pu4PJ0xpoOJA5mlmXRw78DT3KcUVhZiLjfH3dyd53nPKVeW11C9MhAb0MipkT6Q1Wg1tHBtwcC6A7E3tmfYkWFIRbp5+f51++Oy/A++uifHYaaSQrlODraeXT2WBX/JoiVd6JRhSMOEMgJSFUg1uvNw0xXueMq46qok09eVk/0OUrtOUwYNEijq0ZmI1AgmBk9kdbfVABSs/hnzOV8xfFtPDiWfrpEMiwUxfXz7cOTZERxMHJCKpdwefxsrQyva72hPSlEKHTw6cCT2CBXKCpo6NyU2L5ZHnz3C3cKdK0lX6LCzAwZiAyY1nMSqu6uwM7ZDQNB3795WzhIQ2NB9Hd6DJmPp5s2R74aw+Npimtg2YGdiAK5rdqLUqskeO4iCyWP44dkGTsSd0AtJVP9ezW81n+/affdG/Wf2bDh/Hp7q/EteFLxgzY6pbMkKo8xQTD+/fsxsOlNfRe+wowM3024yJmgM/fz60Xtfbxo4NOBh5kMUKsU/7ZaaGZjRwL4BnpaeaLQaIlIiSC5KBnQcjCCHIC4nX+aXTr9Q374+/Q/0p4FDA/xs/HRyvq8lfd9O0Exlptgb24MAOWU5eqK3Fi31bOvhbu7OmYQzSAQJU5tMZU/0HipVlSzusJgpjacgEUmIyYlh9Z3VbIrcpHfjrlBVgBb2HIY+cQKT59XlsnVxzbFCLcjUb5TdqiWSe/n04osWXxCTG8OWh1u4kXZDv4gIEe092+tJ0d+Hf88vN39Bo9WwpOMSdt3bQuS8RFIXz8WnUvfc/brN1yxsuxCRIOJs/FlW3l7J5aTLyEQyqjRVOJs6Yyg1JH56PE+yn9B1V1cySjNwM3fj+ODjbHywkQ0PNtDeoz1bem3B09ITgIiUCHru6YmBxICc8hwG1x3M/pj9/NzpZ33h61nOM+quq8vpYac/KoVLYaEuhjhwAAYO1L+ckJ9ASGgIZcoyzg4/S5BDkP69mJwYOu3shJmBGZdGXfrTk4FiRTFuv7oxIXgCy7ss/1PX/Tf+Wvg70fiLoUpdRZNNTVBr1dyfeF8/H4uDA0ybxueNC/j19q+YG5gjFokJdgzmzPAz/9Txu1hRzKFHe9h5awPhRVEYq0T0fwajIzUEZsITbwuaDJ+HYacQCAjQzzj/O6jW4a78uhKZWMb44+OJyY2hn28/5l2cx5ZeW/Cy9KLdjnb09e3LkcFH9MsOODCAG2k3iJ0ay/fh33Mg5gAD6w5k35N9hPYLpWtoVyYGT2Rt97UIgoBWq6X77u6cSzyHi6kLIpGIAPsATgw9gVKtpNbqWqQXp+Nr7cuzvGfs67+PT7w/qcEvKagooCLtBcHLd+N9OYrJA+Rsrqsb+TCRmmBZUE6ekYhy0Yer928nLyJBRFevrhhJjfTOyBKRhFaurXA2dWb3k90MqDuAmOwYkgpeIFGqMKhQMfs2TNkeg7mnL1sebmFW2Cy0aClXltPGvQ0bPtlQU3b3LWi1WhpvaoxcIufa2GtklWXx5cUv2RG1g2DHYOa1mMfZhLPsjNqpJ1y292jPrbRbpBa/rgpqoccrUyaFl/FJnIYCS0Mqp0zke98snijTuTb2Gh12dOBK8hVyd9gjDgpmltVdpp7N41JTG75rUITiHdM4e2N7ssuyEQtighyCeJLzhEpVpc50UaNmcL3BtHBtwcywmW8CnbeC8QD7ANq4taGNextaj/4G+4Zt8al/hfj8+Dfn/rVQwbv4dzoaAA0dG+Jk4sTJ+JMYK6DMAMb5DqetextOrPyMkY+h++vNfdMelrUGAyVIjUzQoEGlrOLSZhWtJ4BfrkCstRYzA3N+6fILiQWJvMh/QUlKHLfzHlMqA4cSHTcGQKaAqrccsS3lljiZOsGTpyRb6kax/hWqFYrKlGVIRdJ/2un7s/C28lY1xIIYT0tPXM1cMZebIxPLeJz1mNjcWNzM3JCKpaRnJ5L2K8R2Dua7hiU4RCXQMkVLq1Twf83/zTCBFzYi9vtpuOb2Ws1LpEsIPcw9ODToEM6mTtg71uHhpD40Mt2DgcSA+OnxOJs6E5cXR8XEcZjfi8L7U4WuuPD/sXfeUVGdXdv/TZ+hV+kgImIXxIq99xI1ltiNIZZYoqaYmBhTTLf33nvvir1jQUQRFRGkCALSBqaX748jo0RNnrzv863nedfKtRZrYIa5zzn3nDPn3ntf+7peOUde7cVo4teEh88fCtnsURdR69VEroi0qZqt7LGSfjX7Eb4sHD8nP86NOIdULKX/zv7sureLDiEdyCrJIjEvkUcTHvH9+e9Zf3s9IpFA5ykzllX4bijv/Wls9GbkyTxq5cGJQDOqydOIKbrJmbQztubj8kcJEobUG8K63usqfghjxsCNG8JPOa5fp7R5I9Zv/oQFOft5+PwhkT6RTGw8kVJ9KeOPjqd3WG8ifCKYeXbma5+ru8qd6h7V8XHwwUHugMak4XrWddKK0l4LRFyVrpitZkr0Lz1NRIjwdfQlW53N3oF76RbazUbnsfz+G7nffsaTg5t44i4RmtWLhCAktTCV1KLUN/ZdlG/Xy96LGS1nUN+nPkHOQfg4+tiy/CkFKUStjrL1kwAokLL/gD3hj9REjLaQ7SRIDX9+Hn5uK0Mrsbwx4QQCVapfzX44yZ34/sL3r+1T04CmdK3alR33dvDw+UN0Jh1KqZLnu6tiVzuC6o2u4apy5VrWNZoFNGNL3y34O/kDsPbWWkYdGAUIwYuXgxdXR18l0DkQq9XK+CPjWXZjGSKRiBktZtAiqAXvH3if55rn/NrhVz5s8CFikZg7z+7QaVMnNEYNxfpiOlTpQMzjGLb02cKgOoOwWq2ELAihS9UuLO62+I3HSWkpODrC1q0wcGCFl3LLcum2pRsP8h+wb+A+2ga3tb32qOAR7Ta0QyKScGrYKVsA9O/Cl6e+ZH7sfNI/Tv//QtH6B/8d+CfQ+C/DjNMz+PnSz1wbfa2itnlQELuGN+RdyW4+b/Y5P10SmqmTJyT/rQs0rSiNjbc3svLmCjLUmbgaJERn+zLyWA5h2UZwcYGWLaF1a2jVCurV+9PA49tz37L0xlKypwo37CF7hpBZksmZ4WcYe3gsq2+txsfBh8ySTHKm5dhKsEeTj9J1S1e29t3KwNoDOZJ8hG5burGh9waG7RuGk8KJhr4NOTr4qC2zN/XEVOZcmUOgcyCxo2M5nXqawXsGc2rYKXYk7mD5zeUALOi8gLXxa6nmXo1t/ba93FmTCRYtgq+/xqJQsHFwbd53OYeXow+FukIqu1Rm73YRzoHV8AndZzMdG99gPKfTTpOUn4RCosBoMWKxWgh1C+W59rmNmvEqxeaPkFgESUa1QoROasXHwQer1UpOWQ71veszqM4girRFrLst9JZER0bzRfMv8HbwrsDH3Zu0lz47+nByqECh++bsN8glcma3m837Ee/bKGehC0NxkDm8DC4Qbna1K9Xm/vP7JIxJwNfRlz17fkA+fxF9bpRhkojY0dSREWvjWVN4mtEHR9NcVBnnB2lcDoBCFWAVjlMsFiMTy9CatPg4+NgWbGLEdAzpiKPCkQMPDuBl70W/mv24m3uXk6knK86PFerny7BWC+X4+2c5nHyYE49OEBt/kExxGQbJW76a/lAtcLLWJcK8FLFFhFX8wuAPK2l203liOA9A/IfxKKQKwpeF41qsJ8cBfMukpP+ko+rCqkKvUVgvzt/cy4BEMIphT01ImQ+7a4lwGDWWgblLGHf9pX9Fw0y4LqwpkIllhLiGIBaJuZd/D5kJ7i6GsEnCgsXZIqfEqkcketF8DvirRazcZ6VhFnh8CvxJr4hEJEEmkaGSqmz9BOWS0Lb/ebHIVklfquGAQGfyc/QjvSQdpVRJmbEMO6lAM7FYLcjEMhQSBd2qdSPhWQJJ+Um2Mf/o9O0gcxCypiJsRp86o47LmZfRmXQ4yxyJKFDw/ol8Bt+Bp47gpxbGSvIQemIuBEKcNyR6gdgKbhqhl+htSFwEJ0Lg4y4vnyvfn8urINVdwpQhHjgrnMkuzUZtUCNGjFKqJNQ9lNvPbts8RUCozET4RJBSkEKeJg8fBx8+bvIxCqmCjJIMfr/8Oz3DejK4zmA0Rg3RB6MxWAxE149mRdwKgpyDkIgkpBalYiezI2ZoDM3WNCPIOYgP6n/ArHPf4FBqpF4OZLmISXa1VJCmLe9xKBfsUEqUtKzckuOPjpM6ORVvB++KEzBsGKSlwfnzL58rKQFnZ9i0CfOggWxK2MS82HnE58RXoNS9iiZ+TZjeYjr1ferj5+j3RmfmzJJMZp2bxdpba3G3c6dHtR42aui++/veqlYoFUsJcAqgnmsN2q0+RcN63Qj+cSmedp6vbcdqtVKoKyS1MJUTKSeYHzu/Qn/XHyETywh0DiTIJYgg5yCcFc5sSNiAXCzHZDGRrxWcF5tliOj+0Eqxk4qfGmppWmDPFbcXvjt2HjTya4Rar+bOszu2a+NV/JGa+E7YOyASqvYakwapSCook4mlrDiuoF+2K8NmN0BtUDOz1UwG7R6E1qhlXe91tK/SnvBl4Tx4/gCJSIKL0oVifTFWq5X+tfozpekUm69Q181dydPkEeoWyr4B+5gfO58VcStoG9yW1T1XU9mlMk+KntBpUyfSi9PRmrRE+kSS8CyB40OO0ya4DROOTODgw4OkTkp9s+O2VivQrzdtgsGDX3u51FBKvx39OJ16mg3vbGBg7ZfBSHpxOu02tENr1HJq2ClbD9S/A7lluQTNC2J68+l83errf9u4/+C/C/8EGv9FuJp5lWZrmvFt629tTq3leBBZmQY9ntK11juIRWJ2Je3CTmrHk4+f4KJ0+VvbuZ51nfYb2hPoHEhDv4bsvb+XIl0RjRxrMFxdhQGXS3A/fx10OuFm1rKlEHS0bg3h4RUCj+iD0cRlx3EjWsi29dvRj1JDKceGHMNkMdFsTTOuZV2jsV9jro6+Cgia4bWX1ibYJZiYoTGIRCJKDaW4/uzK922+54vTX+CidOHRhEc2Kteia4uYcHQCPg4+JI5LxFXlisVqodaSWoJEp8nAkm5LuJRxiX339xEdGc3i64vJ+yRP0AS/dAnGjcN65w63ezelV527lNiJmdlqJuMbjudRwSP67OhDVk4yS9JqM7Tqbfwd/cnX5qMz6WgR2IKxDcYy6sAodCad7abUxL8JHzX8iOiD0cxsNRO9Wc/XZ78mun40oyJGsef8chyXrcXeAM/6duRnzQkq2VUiVyOkdT3tPBGLxBRoC964OAAho+imcsNV5cr9vPu2wKtQV0izgGYMqjOIQKdA3FRuOCudmXxsMufSziGTyCpkDj3tPPm02acsub6EQOdATg8/jVgkxmg2sunUXM6v/gp7tYGbvnDDD0xigc7T4THUzoV1rZzpHNYNrUn7Gm0nKiCKMPcwtt7dShWXKsJi+8WCp7yZFCsYLAIVyLYYelvPxp9QjxQiGXqrkTp2VRjTeipfn/kaH2lTmiW0J8MjhAKnp9yzLKJMfM+2j/mf5NN9a3cynz0iW5cPIkElZ1a775kWM41anrXIL8vnmebZi90RoTLCZxesDEmAKkWQYw8b6sGaCIFa1TALpF26czXrKvnafNs5UU5futlsIz1jRuKkMZPkbsXOBGbrKw7mIojMhBurIGQipLmJCXQOJFeTi8aoeU3e948op2WA4NRdrmxT3usEFalUUpEUfyd/GxXGReGC2qAmeUIy35z9hg0JGyqMX/4ZvUq/Wt59OdGR0bb/ycp7zIXdc7m1exEtnkCzDMFkzgqU2knZ2cSRA56FXA4Et8AwTg07xegNfUlPiuWBB0gtFY0UpSIp9nJ79g7Yi9FiJK8sj9rDppGiz6H/IImNAiYVS+kS3JGdo49zcmQrTr8TzpWMK1zOvEyAUwBZ6iwkIgkqqYoSQwk1PGpgJ7MjozjDdu398VjFIjEGs+F/LMSgMoJWBqPi4OuzsCEcFjSXki9/Kbla7pXyKsorL65KV2p61sTL3gsvB8EdXS6RI9+9D4XOiPyDMcjEMtQGNVklWXw3ZDU7mjrzSQuNzUxPLpFjNBtt2whxDSGlMIWqblW5+v5VHOQOyCSyChLlb8LD5w/56sxX7EjcQZh7GF2qdmFe7Dy299uOzqRj4lFBQj0qIAp/B3/u5t3lSfETygxlFa5bhURBiFsRL5PkAAAgAElEQVQIIa4hVHGtQrBLMFVcq1DZpTKJeYl8GvMpeZo8vmj+BZVdKjPr3Cyb1HV5RaGeVz1UUhUZJRk2atabAhMHA5TKwV0DClcPSq0G1vVex+aEzey+v9smtCAVS6njWQeRSERyQTJqg/qt81Dfpz46o45HBY8wWAw275rht2DNfgj9zoMSBeROy6VAW8DI/SM5+PAgjXwbcePpDSxYkEvk+Dv608ivEVEBUcy9OpfUolRaBrVkatOpdKnahQ8OfsD62+uRiCTMbjebCO8I3j/wPoW6Qn7r8BvRkdEUaAvotqUbcdlxGC1GqrpVJa8sj4ujLpJZkkmXzV24O/YutSrVev1ADAZQKGDdOhg+/I3HajQbGX1wNBtub2BOxzl83PRj22vZ6mzab2xPviafmKEx1PWq+6fnz9/BR0c+YtvdbTyZ/OT/m6TuP/jP4p9A478EGqOGiOURuCpduTjqYgUqVJmhjMafu2N2sGNw+yl8deYrlndfzuRjk5nSdIqtD+JfQWxmLB03daR2pdocHXwUJ4UTOpOOgw8OsiFhA0eTjyIWieletSvDFY3ocleP/PwluHxZyIo4OUGLFkLQ0bo13e5/jUwqZ9/AfQB039IdqVhq+7vm4pok5SfhY+9D3Jg4vB28mXlmJj9e/JE7Y+9UyI40X9Oc5OfJFOmLCHYJ5v5HggznxoSNDNs7DBeFC6mTUnFRCYHVsUfHeHfnu5QaSlnYZSEfNfqIvLI8whaF0TKoJfsf7OdYx410Wnka1q6lsE4o73fSsd8xizGRY5jVZlYFtQ21Xs2Q6WEccH5pEtcsoBlzO83FQe7ABwc/sHF5a3nWYk2vNTTya0TCswTqLavH4DqD2XxnsxAstfgC0ZkzFPfuQrHEyK9Tm+LXugdfnPoCK1Z6V+/Ns9JnXM28ypSmU/iuzXeYrWYbvSs+J55fLv/Cvbx7hHuH08y/GTezb9oWkPYyexwVjqj16reqeb1K5QhyDsKKlYziDORiOXqLnsa+jbGX2/Ow4CGZJZkAiBERXupAj+tqVteHZw4w/aKIYyFWbvgLtBYRIpyVzhhMBjQmDRHeETgqHLmUfsm2vQjvCPrW6IvaoGb+1fkYLca30heAioGFFRQm8HSsRKYu19ZfYS+zp8xYhggRsxLc+UraFrZv54P9H7AqfhUjb0HkUzg0pBGf9fyZ6Sen2+brs6jP+OXyL3iUWsmzhzG3xGyPcqJIV4wV61v7ecK9wnmYeZvM5Q6UqEQ45ZXgqoOkSiLW1LNytaqSi146KtlXwlXpaut/EIvE9Azryb2cOzwsTEFpBN2r9KhXvnVvroDNnXxZUCW3ggJOuSxuOV7tM7GX2iMSi2wLzDfBXmaP2Wp+aZDnUpmc0pwK6lAedh409mvMiZQTFQJdESKODznOzxd/ruCQ3sGtIZMtjTGdP4N3/CPqPtGjNINaDlf8IaWmN88sJXxzRANnzmBt1YoZp2cw++JsxCIxW1st4otDk1GLDGCGXCfBcbtcSejX9r/yyclPmNJkClezrnI54zLLD0CDHBH7N31F7+q98XHwofvW7ojuJXF9vgZOn+Z4gIEum7vwRYsv+LLFl0Qsj0AmlpFZkkmRvqiCnO6HBz9kRdwKAEaGj+TYo2O2ilw192q0C25no0KeHX4WO5kdTVc3Jbs021a1dJQ5sqnvJh4VPOLX3VPRyIRegLknxFRu1pWfqudx6lksOpnQoyASiSjRl+Bh50GBpgCVTEUdrzqIEPEg/wGFukIUUkWFz0YukSMRSbDq9VhEVkxiUYU+ozNrhYrR4H5vPQXeinLvILlEjkKqsP1eLnVd/rverCelIIXn2ufIxDJaBrUk0CmQ3Um7kYglqA1qlBIlHUI60EgWjHn+HB60r8/dSlaSC5IpNZTaKH9ikZgyY1mFPhqZWEaoeyhh7mG2IMRqtfLl6S9tgTMI18I7Nd7h3Zrv0r5Ke8wWM0eSjzBo9yCMFqNAVRPB7IsK8qR6ljWggoeKTCz80TKoJWKRmHxNPimFKZToSxAjxknh9FqVw8lalyDzKBwIoZQU0iVrqewNjfwaEZBezFcf7aDVCDhfWdi/vjX60qVqF849Ocei64sqVJZ8HHzoX6s/8zrPw2wxs+/+PuZcncPljMuEuoXycZOPCXUP5d2d71KkK6K2Z232DdzHTxd/YtWtVbSv0p5VPVbhae9J/539OZJ8BCtWvB28kYqlnB1+lrrL6jKz1Uw+bfbp6x+4xSIkCFevhlGj3npeWK1Wvjj1BT9d+ompTafyS4dfbEFpviafjhs7klaUxomhJ97oVv4/QVpRGlUXVOX3jr8zqcmkf8uY/+C/C/8EGv8lmHh0IqviVnHrw1sVFt9Wq5Uhe4ew/9Y25pY2Z4zrRT5r9hmz283m85Ofs+jaIlImpuDl4PWX27iaeZVOmzpRp1Idjg4++saG49yyXLbc2cKG2xu4lXMLd5U7g2oPYnjNQURmmBGdPw9nzwoVAq2WeuPFNLf4szj4I2jdmg5J03Gzc2d7v+2cenyK9hvbU8OjBsX6Yvwc/VjVcxUNVzbkk6hPXguQGq1sxPWn1/mqxVd8d+E7Uielcj7tPCP2j0AukZM0Polg12DMFjPfnf+Ob899S5eqXXiufY7BbOBG9A3EIjErb64k+lA0I9JcWbirDKVUyeLefkwJTKJt1fbM7TSX2pVqV9j2taxrzLkyh2a/buexm4h5TYTM9Opeq9mUsImYxzGUO9VasfJowiObZvryG8sZe3gsVqzM7TSXyY0nwe+/Y/3sM05XgYF9rfRoOoKNCRsRi8Ts6LeDXtV7CTr7V+Yw48wMqrlXY+M7Gys041mtVtbfXs+0E9MoM5ahM+mQi+Ws672OgbUHojVp2ZO0h9W3VnM27SwqqQqJWIKLwoXuYd1ZdmOZLaMd5R9FvjafHHUOaoP6L7O2ciMElECKO1xcDZ4aWNFAxKIGVhT2ThUWAQDe9t7klOUAAu9ZrVf/aabwNViheQakOsPYjl/yRbcf0S5biP3T8bYbtoPMAa1JS7BrMI8LUlhwFG6M6cm6J/ttw7x/E1b2XEneoJ5sv7udiccm2l6TWUQYRVZbQFMeXLxKeWvo05AHzx9QYijBRelC3id5HHi3Ht333+PY9h/pf2s6PR6JGHbLSqdHgv/J2Roq6k79hY8VZziccZoaHjWIzYqtsCiMvgatnrxYFL6Qn5JYBKM/7xKYFm/H9NZG28LkVRpHh+AOJBckk1acZuPzl0MqEnxXRCIRWpMWMWIa+jYk9mmszdfgTXg1iGng24CqrlXZlrjNVg0ppxpVLpPR+LGR5unQIh3qPBMYXvlOUrLqVIaWLZgjvkZhWCAHHx+lsV9jZv4cSytlGHYJSSAS8cmJT1h+czmKAjUW8YuKhwXKAr1sFSQQgrrn2udklGQgl8jpGtoVg9lAg9XHmHHbGVn+S7f0UkMpSyY349OlCSw6+i1f3Z5DVEAUBwYeQCKWEJsZS9SaKEZHjGZFnCBPGhcdx7kn5+i1rRcqqQq1Qc22vtvoU6MPbde3JeFZAj3CenAp4xJpRWmAUE30d/LnTu4d27Y97Twp1BUy1bMX6uREljjdp+1jGCiLZLLXTeSOLpQYSgQZXTXkOAr9QeVu4dOipvF1q6+xk9mRW5ZLlflVmNBoAiMjRnI5/TIxj2O4kX2DtMI0W8WqHCqpiqpuVanlWYuy65eJFWeRqzQT4R3BoNqDaBfcDpFIxJLrS1h1a5Vwjoil1PCowZ3cO7gqXWlVuRVN/AR/DL1Jb6PA6c2v/G7SY7AIjxfTL5KnybPNWXkjdrCL0DCeV5aHxqRBYhUhNVsxy9/sU/LvglgkxlHuiM6oQ2/RozAJ52WcL1hFIlal1OK9rXdp+okb8YoC2xyYLYJfhkqqokhfVIHGKRVLsVgstmvWyVqXcPNSm2S2FSEBEC8Zi0ZyD6vRRPFPMK+LCzPqCwHKqwFz+fVTfh07K5yZ2nQqX7X6qsKxXM28yu9XfmdP0h5cla5E14/mTu4dDiUfQiqWMq+T4J8x+uBoinXF/NbxN0aGj2TMoTGsiRc8jZwVzgS5BOHr6IvGqOHciHNvnjiRCFasgA8+ePPrr2DRtUVMPDqRQXUGsbbXWhvNr0hXRNfNXbmbe5cjg48Iipj/BgzdO5SzaWdJmZjylx5g/+D/Hv4JNP4LUL4gn995PhMbT6zw2pLrSxh/ZDzzkoKYVS2bJmHtODjooI2LX2V+FYbVG2ZTYXkbLmdcpvOmzoR7h3P4vcN/qmpUjjvP7rDh9gY23dlETmkONTxqMKzeMIbUHYK/shLcuIF7THumpfkxfcdT0GhoMVpCFYU36wImUFuynHtlqRwYeAB/J3+ar2mOg8IBe5k9ieMSKxgPLb62mI+OfgTA6WGn6bSpE73CerEraRcAMUNiaB8ilG6H7BlCzOMYvmvzHZ83/5xL6Zdoua4l2/puY0DtAViuX6P5prYUm8qYEivii7bgFBDCnI5z6F6tu43DarKY2Hd/H3OvzuVyhiDJueVONTzOXidkSL5t32p41KB2pdrsvLcTP0c/wjwECggIfic1FtcguSBZyJqGDYL334cdO0j9cABVvbbbJEpFiPi94+8VStIACc8SGLp3KEl5ScxqPYtPm30quAJbrey7v49JxybZjLbqVqrLJ80+4VzaObYnbkdtUNMqqBUjw0fyuPAxP1z4gYVdFjLx2EQc5A4Uv8jYg+CZ0NivMc0Dm+Np58knMZ+gN+txkDvgonAhUy1UNSRmCFKLsPevyp3SZLw0EpYcMNP7PuTaw/ctYG0EaBT8bdjJ7Ah2CSbCO4Kjj47SNbQr17KuCZUAK/x0UcFn826gee9dfu/kyNcO123vVUqUTI2ayg8XfiDKuxGXcwTDMA+VB72r9yZnxxpOBFtQSORCxvyPsILUDMPjIbj7EGbkbKrwso+Dj039J0+Tx7iG41gcMAZL/Qi+bWbmuzYVlasG5HtTLTGHng/FNMiyUKyAXTXhfItAUur4cSnrpczogc2CL0TbYRDvC4jAsxTyHISAo26eCNfGbTiddhrgpaoO8EObH5h9cTbV3KtxK+cWHat05MTjExUWNuWwl9njZe+FWCRGZ9bRK6wXa26twWg2vtVzo5xu08SnEbnJt0hxMLDiqIz2D4wEv0jyPnR/2V9xIRA86zZmfpcFBLsE4/27N/M7z2fC0Qm0KPPg/K/5sH49DBuG2WImaF4QzZXVOPD0DDXyoVABOZVUrzUE28nsGFxnsKCqVrULIyNG0mxNM/bq3qHnj7tBowHVy+8M85QpFGxeQaVxZbir3EmekFxBNW/6yen8dvk3TFYTComCWpVqcS/vHs0Dm3Py8Uka+zUmPifexjtvuLIhrkpXLoy8QFZJFh8e+pCzT87axlNIFBjMBgI0Mt69ZeBQGDxxgeaZYh5V9SDNlIsIEfZye1ulKSwP/LxCOG1JoYFvA1b2WEmdSnV4+PwhcdlxzL06l/iceFRSlY0mV9mlMpE+kcKPbyQRIz5HUzOU2x8PZv+D/Zx4fMJWgQRh4V3NvRr1vOpR16su9bzqcSf3DtNPTUciklC7Um3ix8Rz59kdFsQuYNOdTVitVgbXGczExhOp513vjecFYPOO2PXuLvrU6MPBBwcZuFtIcvQK68UPbX+gVqVaXNo9j0knPuamLwysPZAf2/2It4O3LXA5lXqKz2M+J70knZqeNQU6UuEjQHCSr+dVjzqV6hDgFECuJpec0hyy1dlcf3qd1KLUt+6f2AKuWiiwA7H4JbVu7SEZPe4a8P0EDBIhXPijMt6f4U0CE2IR+HppcAzawem006z89QFZjjDo3dffX06xehWjwkcxr/O8N957UwtTmR87n9W3VmMwG2gd1JqLGRfRGDVE+kSy691dfH/he1bfWk2HKh1Y2WMlK+NW8sOFHwCBBhrkHMSjgkfkfZL3ZvVIqRQWLoSxY/+lOdh1bxeD9wymZVBLdvffbTPvKzWU0mNrD65lXWP/wP20r9L+Xxrvz1Auk7+211pGhI/4X4/3D/678E+g8R9Gsa6YOkvrEOoeSszQmArc2djMWFqsbcH7Ee9z8dxGdHIR12akV/gS+eH8D8w6N4uHEx5W0MF+FZfSL9F5c2cifSI59N4hHOR/0nn5BpgsJk49PsX62+vZe38vepOedlXaMbDWQIHT2XsDQ2sMgJs3aRTTn/BsK90v59Orjx5ftYiMxI6IW7fhO/e7fJ21iV5hvWzUKoATKSfourkr4xuOZ038Gr5o/gVr4tfwqEC4Ec1uO5vpLaZzPes6/Xb2Q2PUsLXv1gpfcF03d+VR/kMSH7RDumwlZyM9aNctD6sIoutHs7DrQlumpERfwuq41Sy4toC0ojRaBrVkSpMphLqFsnTNWFaWnUcvFQzOrFh5XPgYk8Uk9DNYjLYGdqPZyNC9Q9meuJ02ldtwOmq5oFH+5AmsW0c3/RqOJB9BjJjR9Uez6tYqcqbm4Gnv+doc6016Zp6dyS+XfiEqIIqZrWby6+VfiXkcQ8eQjsRnx2MvtyezJBOjxYiTwonxDcYzKmIUYrGYPUl7+Pzk5zgpnCqYj9X3rk/8s3imNZ3G922/p8xYxpnUM8Q8jmFv0l5bFQJeOsz3eKLiXu1KpKifVNhHuUno27B5O1hfvOdfMLxzVjhjspjeSvOCF1l8qxUXPejkYvQiCyLxy2qDUqJEKVWiNqgFmtMrdCtHuSNxc8qIGmHBopQzt98qinRFtoqGyIKtIXfcTQlLGgg0qR7VenDw4UEAvmzxpe3GDTCvw+/0GPkT+sJ8wj+02iQyy+VIvTUScuzM9E9RccfNyMB4Ex+nVMIxM5cMFxEba1vJsYO1kTA6DnbWlZBtZ8YCKI1Cr4YVoU/BLAZXhQsz285i1rlZFGoLbQHilj5beG/Pe7gqXSnSFSEVS1FKlQQ4BXAv/94b5/K3Dr8xLWYajf0aE5sV+9rr2/puY+j2gXQt8SI06RnN0wW532R3iBoNW3cKtJzYylLO+ZsodBakdl0ULvg5Cd4GCc8SiPKP4krmFZLGJ1F9cXWWH4TBaU7YP80DuZyzaWfpv7gNBXbQJg3uu4HG240CnZBpLq+6OMqFxZe7nTu1PGuRUZKBzqTDVenKpSo/IGnXHh48gGrVbMdgbdeOa+r7tOyZj8FssPkLlIsn6E16IpZHkJSfxOgI4fpzV7kzpM4Q1iesJ2VCCn139iXhWQJX3r+C1qil6eqmtK/SHp1JR8zjGMLcw3hc8Jhl3Zdx7/559sau57GrcN5JLCARSzC8aMB3UjjZeq3kEjmjwkex88IyyuTQJ3wQ7nYe3Mq5xa3sW7brQISI6h7VGV5vuBBUeEfgbude4bMqjqzNxrbuLA3O517ePcLcwxjXcBz9nrqQOWE4t9f+RIIxk9vPbpPwLOG1hm0/Rz9mtZ5FPe961PKshcaoYWXcShZfX0xmSSatgloxqfEkeob1rCA8kVOaQ60ltehQpQMb39mIzqTj2KNj9N/Vn9ERozn26BhZ6izaB7dj4M4kHGT2nBzRku33dqA1amkZ1JKaHjU5mXqSpPwkvB28aeDbAKVUidaopUhXxLPSZzzXPqdEX/JSsUskwYr1rcIa5fB/EQRnOvNaP5fYAqfXwd1KglnpvwKJSIJSqsRsNROh2/lGyWw7pZH90xsjFUvRTRiH+cA+fMaU4iB3IK8s77Vg3lXhSqH+5fexVCSlZeWWdK3alS6hXajhUaNC83aRroiVN1ey4NoCMksy8VB5kK/NRy6Rs7z7crzsvfjg4AeU6EuY02kOWqPW9h1XTq0svz+9BqUSfvsNPvroX5sQ4FyaUAEMdg3m6OCjNqECrVFL3x19OZ16ml39d9G92r84yX+CXtt68fD5QxLHJf5lD9E/+L+FfwKN/zBG7BvB3vt7uTP2DoHOgbbn88ryqL+iPv6O/vg6+XLi7n6uprSl1uYTFd5faiglZEEIXUO7srbX2tfGv/DkAl02d6GhX0MODTr0v262KtGXsDNxJxsSNnD+iaCC0rFKRz5v/jmtKrcifFk4rYJaEZNygocFD/ld0o2PL5oouXaBGiM1NMgRMTbWinOnnjQd8jn3KzvQZH0LogKiODjoID229iAxN9GmltQ5pDOH3zvMirgVTDo2ifo+9dnRb8dLR28Ai4X4Vd8TkT2TpcdlPPd1ZVatPKp71+Zu7l0G1xnMxj4bSStKY2HsQlbGrURr0jKg1gAmNZ5EviafBdcWcOzRMTwljhhL1WhVEr7v8BPjG44nZEEI2aXZgrqXFZ5OFQyt+u/sbzMrO+E8gQ4z14OPD0Vb1jI2dQHb7m5DjJjJTSZzJ/cOZqvZVgl5G44/Os6AXQMo1hfjrnJnZPhIDiUfEszJpEp6hfUSmu0fHUMpVaKQKmyqV1KxFDupHSqZCrPVTKRPJPsG7CNkYQiBToFYsXL96XUsVgtedl5oTBrUBrXQXGu0YnyF0/xnCloKI/R4AL+cgKAS2Fcd5rW352olA3KJ3KZqZLAYUEqVHH7vMC2DWgKCUlGhtpACbQE/nP+BzXc3227GbSsLkrpWrIgtoDSB5i+q6GIzWCRCNvzuHB0/NbGwNhIC3KtQ1bUqJ1JOvPTreOHIDUIjtUqmooZnDa5mXkUsEuOscKZQV4i/oz+Z6kyir8Gk6/DpxBocNr9UYiqfm5mtZnL4yHzEGi3XPPVUca1CasFjmqbDsATonyjQhB66wYEGjry//DozEhew5MYSpGaBU+5gEIIMvVR4XNptKTKxjNEHRwPCQvTy+5dpurqpjbOvN+uZ0GgC82Pn2/ZJJVFhsBhsi7VyykagcyA1PWpyJu0MniYFNVNKaJ4OrTMkNMgwozJBmQyuBoi4EGCloHkkC2U3AQh2Ca6QTX6VztUjtAeh7qEsvLYQs9XMp1GfsiLmJzLngPWL6djNmo3GoKHFr9WJM2XQ/65QCckWkqJCM3dIFw4mH7T1/MRFx/HenveIzYzFihWlVEn8h/GElcggJARiYqD9i+SC1YrW2Z7ZDbRELN7Nc81zxh4eS4+wHmzps8VWLT2bdpY269sgl8iF4ylMxYqVcQ3GMa/LPAq1hTRb0wy9Wc/FkRf5LOYzNt7ZiIvSha19t9K6cmuGflOPUUeyqZ6qZvAAKVe8Ta8F2H90upcixYQJMSIsL+asqlvVCpWKHYk72HZ3G6mTUt+Ygb6dc5ulN5ay6eoKdFLoXbMPYxuMpXlgc3QmHdrke+haRqFdtwptowi0Ri0ao4YrmVeYdXaWLYNfThsqVw9zUbrgqnTFQe6AzqzjWekzivXFyCVy3FXu2Mns0Jv05GpyMZqNf7saAK/71jjIHFBJVYjEQjLBYhUkZ8uNQP/K38M2nlXwvun6EL7oKifV3oCb0o1gl2CelT2zVWVBaM5PWAzvDIJ7nhXNL0FIGJgsJsxWM36OfrjbuXP32V0sWKhvWYSjpX6FigZYeE4sZZ4L+LLFlwy7K0E6bAT9lrXF4GTPc+1z0ovT6R7anWU3l731WFyVrqj1akxWE0HOQXQN7UqXql1oG9zWdn82mo3svLeT36/8Tlx2nO3ai/KPYvu72/n6zNesjV9LpxCh8j/h6ATbuVfLsxZ3x919fcP29jB7Nkz6e30Qd57docvmLsgkMo4POU41dyHY15v0vLfnPQ48OMCWPlt4t9YbSjt/A1cyrhC1Jord/XfTp0af/9VY/+C/C/8EGv9B7L+/n97be79WLjRbzHTZ3IX4nHhGRYzi50s/syelIe8UesHBg6+NszB2IZOPT+bO2DvU9Kxpe/78k/N03dyVxv6NOTjo4NtdQ/+H2HZnG4P2DLKViQOcAigzllGnUh3OPTmHncyOp1Oe4qx0ZsrRySy/uZwk6WRKd28jICENgwQaR4tQKOy44jQF+9YdaJY4hdjsGzYzscVdFnM16yobEzYyodEEfuv4W0UOZ0ICjBsHly7R9kMl57x0NK/ckoVdFxLsEozvHF/0Jj29wnqx5/4enBXOfBj5IcPrDSfmcQwLry0kuSCZCO8IJjWehFNSCn0efkdNkxvvtpuAl70X446Ms23O28Gbc8PPMe7IOC5lXGJWi5lov57OzHNAr14c+Wogo85MRmvU2voYYobG0HlTZxZ1XcSYBmPeOJcWq4VNCZv4NOZTCrWFOCudydPkAcJN1tfJlyquVbj59CZlxjLkEjkqqYpifTHV3atz//l9annWIqc0h3pe9biccZkmAU24lnUNjVGDXCynRVALivXF3M25i87yCnf/b7p1iy2AWExrr8a0uphJ/2MZVH8O61s6MaJNiZDtfeGEe3LoyQoyzUW6IpLykph3dR477u0ABPWjVxsxyysbDgbQKsRIxFIMFmFBYbFaKNIX0T20O4eSDzEgwxkHlQubvHIIydYTlQ5nQ0Q8crXaxnnbcb1qiFeeOXwVPmrIfsFysJPZoTFqcFO5odapkUvljAwfSRO9J0MSZuJmUVIg1qF4UanwUQtKXcEaBZPP6QkpFKRcj4fAxrqwvzroZPBrfCUOuOZy2f+F7K0IDg08RJ8dfWz8/Gujr9FoVSNcla4opAryy/IxWU02FZ03IcAxAOPTDFpniOn2zJmaDwqp90zoKcm1gytBYs4GWrhWWcbambcYengUN57eIMg5iNSiVAKcAoiLjsPzN0/clG5s6rOJb899y728e6/155RTipqkWxlzAzK/m8ZFdSI37hwnT2VhfCwcre9A7+bRzImdg1gk5mb0TYbvG47GqOFJ0ROMFiOfRX3GN62/oe/OvhxJPoKvoy+xo2MFmqZSCatW2RpZz55bT+vWI9j4fX+GfrkdgMMPD9N/V3/qedXj4KCDuNu5E58dT8QK4fw7NewUBx4cYH7sfLqFdmP/wP1IxILPQ+TySPRmvY2qcjP7JhcjFhG17iTWvXuZ2xS+7IsmBF8AACAASURBVCBGLFegeYXypRAr0Fve7GdiJ7UjwjuCoCOXqGp2xmfGT2iNWrQmLblluSy6tohI30hqe9ZGa9KiM+koM5aRXpROpjqTUkMpEpEEe50FsVyBQS5GZ9L9Zab/TXBTur30ubBaMJgNaIyal4GRWGpT3So3NC3WFxPuFY6byg2jxUihtpC7eXfxdfRFJpZRZiyjzFD2GgXuTVBIFAQ4B+Dj4IOTwglnpTNOcuHRWeH88jmFE84KZ6RiKUn5SVzNvMqR5CO2Zv2wfOiXCNcCJSTVFWS1XxVxKKcTli/MvdSwYS90GgbjI8cyttF4TqScYOqJqTQLaIazwpmLGRdfqwJ5ihtS0yAE8uU9GmKRmD7tcjmZvZr9D/bTVu/HqR+zWPx9L2bJL5OnyePM8DMEOgcSsiCEGu41eFjw0LZ/f/yeA4HqWK66KBPLaF25tS3wKF/Qn3tyjl8u/sLRlKO2z2pZt2X4OPrwwcEPKDWUEh0ZzcLYhTZvnXJxlApwcoKZM2Hq1L8+Yf6AjOIMOm3qRG5ZLoffO0xjf0Hj22QxMWLfCLbe3craXmsZVm/Y3x77VbRe1xqNUUPs6Ng3y/T+g/+T+CfQ+A8htyyX2ktqExUQxd4BeytcVF+f+ZofLvzAd22+Y8bpGcxoOYNvl94X3D1PnHhtLL1JT9iiMCJ9I9ndfzcgZPK6belGU/+mHBh04N8eZABsTtjMkL1DUH+uJiE3gfXx61kZt9KWOWsZ1JI9A/aQUZxB5IpIZrebzafNPsVsMdN3Sy/OJh1BIlNy43ZjfM/eYHDHUvZVh5q58NBLQpSuErecNRisRlb1WMWgOoNebrykBL75BuuCBTzzdWJo22Ie1PMjS53FT+1+4uOmH7M3aS9TTkwhsyQTd5U737b5lmYBzVhzaw1r49eiMWroW7MvExtNtLnqdl4SxfP4K/i7BuLerAPb7m6zacGnFqVSyb4ShdpCJGIJJ7vvxGvMNKrEPkD71XTG1c1gw91NdK/WnUa+jZh1TlC1+r7t90QfjCZ7avYbm/bjsuOIPhjNzeybOMgdKDWUYi+zRyqW2m6A9jJ72lVpR/OA5jQLbEakT6RQTr+5nHGHXwZCdjI7yoxlSEVS6nrVRSQSkZibaPMQeA3WFz9/Ual2lDvSrVo3dtzdQYOnVra4f0jI7KUAxD+NY+PsgfQ8lMy5IJjZFurnShn/3lyKxUbu59/n/vP7PMh/UEGW0kHugN6kt0motq3clnW91+GqcqXx0vokFj4EkSBnW9cnnNTCVIr1xSikCt6p/g4OcgfW3ljFzaVmRCdP0WV1G/LtYNNuWD29E4fSjtsqHuUQWaCycyCp6nSbrOirMrHlkJjhgzhYXw+0b6iqOMgE4zwPlQd52jwaZAn/JzfCbW8he1rfuz5xOXE0eSbnoaOB/okw9DZEZQou2LtqQsjEmURavJm2byzLXxFx8bJ72SjdqUonjj8+jlQkJcgliCfFT2xUPtui0wrV86FLjiN1H6lpkQ4hL2KQR65wIUjosbgYKPRblAdfXUK6MCJiBAN2DWBy48nMi50HQKvAVszvMp/w5eH0qd6H3QN28/vl35l5diZ9avThTOoZwem4IBl3lTtYLMjyC8kpp5+/uKvUewbFgZXoW38oc67OwYoVP0c/RtQbwc+Xf+b6B9fpvKkzeZo8LFYLTfybkF6UTk5ZDvZSe6QSKat7ruad9h/B6NEwaxaPCh4xc3I9Nm/UYE5/giRAMEDTmXRcTL/IwF0DcVI6MbvtbKadmMbT0qd42nmikqlswWdGSQYNfBvQpWoXTqae5ErGFUHFx96bEabatNp4ns73DNzxl9N/gIj7ji+DiT/6LfwdKCVK7OX26E16NCYNNTxq2KiseWV5ZKozMZgN+Dj4UM+rHjU9a2I/fwmqZq1RteuESqpCKVUil8ixWC1YPvsEc80aGN8biMFs4HDyYY49OsaQukPYmLDRtt0WgS0AoSJdrC8WHnXFf64E9wIqqQo3lRulhlIMZgMDag3AVeUqBAWnLuIUcx7nXxZQ5qRi9oXZPCx4iEQk4f2I95nTaQ7Xsq4x+fhkEp4lMLzecGa3my2YVb6AzqQjrSiNx4WPSS1MFR6LUkkpSOH+8/sYzAbcy+DjK3A+GE5VEaqBAKFuoXQN7UqYexjHU45z4MEBW5BUfn2Mk0XxPO4yR0JB5ORE7xq9UevV7Lu/D7lEjkgkwmwx46pyJdwrnKtZVynRlxCsaI1jWW/sX6hOPZGspkQkiAK4qdwQWaykfFPIby0kfN/cTOeQzizptoR5V+ex4NoCTg07RWpRKqMPCNXJAbUG8E2rb1h+czmLry/GivW1pnm5RI7JbMKChSDnILpX607X0K60rtyajOIMxh0Zx+lUoY/Lz9GPbX22sSp+Fetvr6dZQDNuPr1p+67fN2Afvar3ejm4mxt8/jl8+gZVqn8BBdoCem7tSVx2HDvf3Um3at0AITE69vBYVsatZEnXJYxt+K/1gLwJxx8dp/PmzpwcepJ2Vdr9j8f5B/9d+CfQ+A/AarXSd0dfLqRfIHFcos3EDoSsXPet3ZnSZAqrb62mRVAL9g/cj3jYcEhPh3NvVpRYH7+eEftHcG30NdQGNd23dKd5YHP2D9xfoen634lfLv3Cjxd/pPCzl1lVpx+dbGpDYsSIRWKclE7Yy+y5N/4eDnIHrFYrI/ePZMPtDbip3Lj8/mUmHPmIc2nnGC1uwGLTZcbcFLOllgXvUtiV1og6jXsIkroNGsC+fVinTMFU+JzZbSQsaCrhs7ZfManxJMYcGsOOeztwV7mTUZJBq8BWXMq4hFwiZPRPpJzATeXGh5EfMrbhWJuLK8CD/AdUX1yd9Xvhauuq7A0QskxP1U+p6lYVF6ULGqOGpPwkrBYLv9xwZfSZYj4fGcD+YD1lhjLmd57PsHrD6LypMxfSLzC07lDSS9LRGrWcHXG2wvxlFGfQf0d/rj69+trchrqF0tivMbuTduOmciNLncXwesOZ31nIsp1JO8PJxyfZlLDprSZab4JUJEUilrx0lX6lz8HmAyGW2hY08zrNY8zhMbbPtH1we3Y/rIfTnCWoE2/xQKFmzpU5bL27FYAGmRDvAxYR7NkGib4STnWtTqUqQqPnoYeHSH6eTNvgtpx7Inh9mCwmogKisJfZ822bb5l5diYHHhxAYRahl1jBAoEiJ9JFJRwbfIyn6qeMOjCKfQP2MT3mM+RJD4mt9CUFv39PnXGglYJFIcdkMmCSvDxuk9XEjLQg5oU+R2/Wv+ZbEuoWSkZxBjqzjqh0GFf5XYZadrGm5xrWxa/jXLpw7SmlStoHt+dQ8iHhb6NQraiaDwm+vBXl8xvyHIYkCBSQkEIo9HTEZKcgxvk5Q3pbsYpfl9Z8IlmDWnQHe7k9GoMGq9WC3CJi7E0RLR9baJ4uKIOZRZDoK+VmFRWR/SfTOe07+rWdwMLrC9+4T80DmpNalEqYexhxOXFUca1CXHYcLgoXvm39LROPT2Rdr3UMDx9uq8Cu77We4fuHU9m5Mukl6VisFgbfhk17ocknHiQpitBhIjwHbvmJQSKxzXV5fwtAA58GdK7amR8u/ECwSzA5pTkYzAZMVhOOckebLGyWOosba+Xk+DkzY6gfSflJzDhl5MMbUO1LR3Rm/VvVtd6GcsWx8s/EXeVOi2w5ow9n0y0ZUivJ+bCzgZhgXquI/VF2uBxOCiG4aerflCknpnDuyTkmNJpAsGMQ5xZN42KIlOdyEyqpyubN08S/CWdSz3Aj+wZKqZIGvg2oU6kOMonsZVBwZB/FVf0pcREqmMW64j+tIogQ4aZy47n2ue1YK7tUpmlA0z+tIjgpnHBSOPHhwQ+5kX3DFoTlluVWCK5cla5C07ldMHV/20TdzsOI79WEL09/id6s59OoT8lSZ7EybiWedp581fIr2ge3Z3nccpbfXI7epKdWpVqopCrSitJs1QoQZGgru1TGz9GP5IJknqqfMrG4OnPmJWHq2R35hs0Y7VU2M9jy47VipYZHDRr5NSJbnc3Jxydt1C2JSMJ61XuMLt5IF3MwF1zVtupl+XtHhY9ibue5OCmcMJgN7L+/nxVxKzj5+KRt30ZHjGZE+AhSi14GQ+M+202GWE3fAa9/Dm0rt0UsEnMyVRhDJVXhIHdgcdfFhHuHM3D3QO7m3iW6fjQysYyYxzHcf36/QvBRHixJxVJaBLbgnervUNOzJiP2j7AJAjTya0Sf6n2YHzsftV5tExWQiCRcHHmRJgFNhME8PWHKFJg+/a3nzl9Ba9Ty3p73OPjgICt6rGBUhFBhtFqtfHz8Y+bHzue3Dr8xNervV03Kx4lcEYmbyo2Tw07+9Rv+wf8J/BNo/Aew8fZGhu0b9hoXMbUwlcgVkTTxb0JaURoWq4XY0bE4K50FJaPERLj6+qIUhKxC3WV1UUqVJOUl0TKoJXsH7P3/FmSAIMl7Ju0Md8YKWR6tUYv9bHuUUiWtKrdiXa91TDo2ie2JArXBw86DQbUHIRFJmBc7j/md5/Pr5V8p0BYgFomZ03EOE45OQClVUqwvpqNbI6oducZMQxM8biZBcTGIxWCxkOIt57MWBjwHjOSbTj+iMWpYELuAlXErbfStpd2WcvvZbT4/+Tlqg5pKdpX4qf1PDKw98I3zMunoJLbe2UL6l/n0nliJ4065RNePZv3t9ejNevwc/TCYDVxxmMzygzP5tbEJJ6OYEpmFTiGdWNVzFf5O/pQaSnH72c3WOD5071DmdZrHiPARXMu6xo7EHWxP3F6B9lKevWoX3I5mgc2oZF+JWWdn8dOln0gcm8jKuJVCRthqfaME6t+FwgQ180S0adSfpk36cTn9MnNj59rGbRHUgm19t3Ep4xLv7X4Po8VIoFMgGSUZyMRSlFojJW9QnfKw80AlVfG8NBeRTs+VlRBWJOZJj5aMC3vEFQehGmS2mPkk6hNaV25N6/Wt6V6tOzEpMejNeqq6VWVmq5mkr/iVLz0SeLFTAORNy8Pdzp32G9vzuPAxW/psofXq5ky8reLXfWUM7AuHqwnGXYgEmpdVLLL1fVjFvHHGxIjJmprFtthVfHzxK1oVuXDepZhvWn/D162+xvd3X7JLsys4apcHafMPwbQuIEFELf/6FGmLSCkSTMewgoPUDjcHD/LK8jBajNhJ7SgxlGAvtaNhuokP79nTM7YQOyM8cYIf2tflYY2lIHoprQlWpDljaZmcQJEC5kZBzAaISodYf6H/4WIgNOozAXfvYKacmELCmASiD0bzuOgxzgpnQt1COfLoSIXjlogkiEVi7GR2OModmdh4Ip+d/AwrVptvycjwkZToS7iXd4+k/KQK551SosRZ4cThubkkVILx3YS+k1ln4JOOUPY/UCZ7tcLU1L8ppYZSZiy+g5dWwuDx3uSW5XLtoA8OyNgzN9oWFKtkKqEPQCTii1Nf8KjgERKRBIPFwLpe6/j18q8k5iVydPBR9ibttXlpfKCpyaSYYmrdyuKeB3zTGnbWennO+Tv5s7L7Sg48OMDSm0uRiqVMbDSR+VfnY8Zs+59sdbYgziASU6gtZM/9PZgtZsI8wsjPScVo1FOi+vNr1kHmIAQCtgDACef9J3Bq3ALnuo0qBAXOSmecN+7g/7F31tFRnf23/4xnJskkxN1IQogQCBrc3QsEd2+RtrTUaCltgZbitBQv3mLFrbh7IJBAAnF3l8nY/eOQgRRq9/f2vfe3Vjcra5EzOc/xM89X9t7qUxcwP3mOEQdGUKmtJHJKJEqZEvtv7MmrzGNo0FCupV0jcVbin5Jsa76barLhRqORG2k3GLF/BInFiSilSho6NcTazJr46Cs8lZeaRBbMZebUt6+PrdLW5FXxOPfxK6aT5jJzKrQVqGQqEym6rk1dodXV0oWrqVcZum8oBr2O3bfc6fDLfVi8GObMESRan+PA4wNE7ItAZ9DR2aczHmoPkyKXQqJAKVNSVCW0KknFUrpnW/JrnUKa58gxNG/GjbQbJvK2lcKKvvX6MiRoCF18uqCQCjfulZQrtNnSxrTNlm4tmdx4MoODBgu8sLG9sDx4HK+3X1Qwa8br5NOJexn3TAaZL8NSbkkz12bkV+RzP/s+LVxb8G3Xbwl2CCahMIEjcUc4/vQ4UdlRrw0q7ZX2+Nr6CjLaz6uaDRwaYGVmxeWUy6ZnVC6R82jaI/xs/cDJCd58E+bNe2W8vwO9Qc+MEzNYe2ctX3T4go/bfIxIJFQKazxzPm//OfPazvu/an/aE72HiH0R3Jp4i6auTf9H+/ov/v/Av4HGfxmpxamErA2hb72+bBvwwom3SldFq82tKKwsJNA+kEvJl7g16RYBdgHCH0yfLgQZ9+797tjzL8zn84uf09SlKZfGXRIcsf9BDPx5IBXaCk6OPAnAt9e+5b1f3wPg+PDjNHVtSr019ejt35t3w99l24NtbIrcRFFVEbZKW6Y2nsru6N1CgOXSmJzyHAoqCqjQVWA0Gsl7L48GPzRguE8/vrlhiXHpUkrMRDy20hJUIMGyUo9eISfG14p9Dnnc87cgrN804ivT2RO9BzOpGeXaclq5t+JyymUkIglR06Jq8VhqUKopxXWZKzOavcWoUd8SMkmHu40XMokMo9FIfGE8rkpH7id2w2btj2T27UjDZvfI0RVhY2bD9QnX8bcTemoPxx6m30/9kIvljGs0jnV31xHsEExMbkyt/moHcwc+bv0xkxpPqhX4aPVa9kTvYczBMZjLzP/U90KECJVURbnu9YpONS1C/QP6U/XkEfM3PCNA7IDV2StovD2YdXIW6+6uMzlRu1m60cytGReTLpqyoiBMxv1s/dDoNSQXJaOuMiLWQ6G5kHlr69mWw0MP88m5Tzj29BgAVZpyJl2pZNK5YlzK4Ig/xI7tzci31uNk6Ux0TjRh68NMXIklnZcwO3w2UrGUPl8EcrPkMXnmQsVAL4YG5nU5NfUKZdVlhKwNYXqT6bgWG5gfuYKSxTB4EOwL5vXO4kYwE8uQywS36MbOjbmfdR+9UY+3tTdPZzxl28y2jLe/hsgIrT3bcH7MeYqqirBbYlfLgMu2Aiw0grzp/DQ/ljsnUibSoa4SzoeHlQebkhuyI/cs2/wEl+9SbSkKiUIwo8x/go+1DwlFCWS+m4nTkzRo2pSq8GbM8xrOPe9mGF5SABIb9DRJuMXwc7MJnwS+BQLZNdIJtFL+Y6i5V14m877MZQFBBhggsyyTHr49CHycx7DNt2k3DpzK4KNLMKOXiArZi3tWJpaxoMMCnhU8Y3PkZtzUbtyceJPjT48z8chE+tfrz6HYQ88v04v1xCIx7b3a8/mxSpzP3sR3hoEJjSaw4c1TiEaOhEWLau2/Rqehz+4+XE+7zrFhx1hwaQFnE88yqsEodkbtrGWK1ybJyKcXoVMiPHIUsaqLmq2+5VQjTD7VCjUqqaqWMtvvoUYpSSFRUN++PlYKK6HXPP0mdczqMMS3P7qtW7gcZEGcWRlikZhOXp1o6NyQgsoCrqZc5Un+E0SIaOLShK51u9Ktbjda2DRApraGnTth+PBXN7xlC4wfz9fnFvDR5flcHX+VFm5CBttzhScpxSmcGHGCHjt7cGXcFVp5tPrdY8gozSDo+yB6+fVix8AX0s/pJel4rfBiQqMJFGmKOBp3lHJtOebVUP4nYg0KiQJHc0c0eg3Z5dnUrVOXJV2WUN+uPu/++i7Hnx6nnWc7VnRfQQPHBiy5uoSPz31M6zqh7F6ThXOhFn76CTp2fO34kZmRdNzWkaKqItp4tOHosKOkl6ZzKv4Up+NP82vCry8qBEaw1kCHJBEP7Y206jiGRk6NmH1qNhFBEURlR/E47zFqhZp+9foxOHAwXet2ZczBMRx8chCNXmNScasx6Ms/uJuDP1ZS/1MbhncUuHmLri5ChAgXSxdau7dmT8weHMwdODnyJImFiRyKPcTemL1odBrBwPG5UlkNHMwdajmoqxVqUotTicyMJCY3huLq11ewa4KLmvd4DZRSJQmzEnCq11jw0Jg//48v2l+A0Whk4eWFfHL+E6Y2nsqanmtMHKCFlxfy8bmPeb/l+yzuvPhvBxt6g56A7wJo4NjA1Ar+L/53499A478Ig9FAtx3deJL3hIfTHmJtZm36bPKRyWyP2s64huNYe2cth4cepk+9Pi9WfvttgZ8RHf3asU/Hn6bfT/1QSBT42fpxa+Ktf5xM1Xxjc0IcQtjYdyPFVcV4r/SmsKoQB5UDmXMymXJkCvse7+PJm09wtHDkYfZDWm5uSYhDCDZKG5O7aQ2ZGYSX7Joeaxiybwi/DDlA9s719Pr+VxzLYGFrI7t6uvFF9yUY9TqO7l+I3a1oemeY0ypJzxX7Kla3EHPYz4AICLP058CoIzjbeuOwxAGxSEyIYwjnx5x/5dx8f/t7Zp6YydMZTxn6cT3SrEU4eARyP/s+IkR4a815dDEYs+u32Tu+BREuVwl2FFSt6tapS25FLl91/AqFRMGSa0t4VvDMNGESi8QYjUbT7751fNk2YBthzmHE5ccRkxvD1ZSrnE44TWJh4it8gZchEUmQi+VU6n+/dcLGzIZw93CSipKIzo2mX71+HIo9RO8CO5ZtzyO6qQfpH0znbkksBx4feKUNRCwSIxfL0Rq0DKw/kLGhYxm6fyhyiZy89/MwGA2M/Xk4mv0/sy9Q4CME2wdzadwl6ijr8OP9Hxl3aBx3Jt0xKfrIdDA51pypF8oJzoX0ei7s6+nFe5bXkcmV2KhsSCtJY+/gvQwKHERmaSbe37oRnGmgzN8TN1tvzqZcwEIDVpZ2/DL6OOcSz/HRuY84MuwIH60eQFhKNT8FP3cEfk2g0SVdya+uwnkTI8ZN7YaZzIy4/DjEIjERdu1QnjzP5sbC33fw6sCRYUcYvn84h+MOCwuNYFMJHiVw3wm8tBYkycpM2xsWI6HxrK+Z2WwGMr96XO7XkLZ1DppadfrX68/B2INYK6zR6DVU6ipZ3m05KfkJfDlwDZ+2M3K92RHkolelNfWGHC7L+vxl0v5/C59cgGUtISgXpt+CKX0wSQG/DjXtIEqpEFxX6iprBXE2ZjYYMVJYVWj627duwpLToPoYbCshdwmMHqrgSEMlEpFEUEYyGiitLkVr0CITy17bA48ROiTCpxehfTLcd4Qv2sGBAEw8JYlIgkwso0pfVWu/6tvWRyVXmYJTqE0+7u3fmyNxRxgYMJBmrs0Qi8R8f+d7koqSTNUhhRZQyPm8wwLsze0Ri4T2UolIQmFlIdG50UTlRPEw++FzczwzGiRW0bhhd5q0GoKrpStSidS0nvhRNCkfTGfMYAlDg4fxdvjbps967+pNZmkmUdOi6LC1A119urKg44Ja26z5P8CgvYN4mP2QT9p8Qn5lPklFSSQVJ/Eg80GtJIYIESKDEYMIEIGDyoF+Af0Y1WAUQQ5BWCusSS1JJSo7yiS5+yD7AU/zn5regUqpknD3cNzV7pxNPEtaSZpJVOQj8x58/skZpKGNYN8+cH9JYfA1yCrLot2P7YjLj8ND7cHFcRexU9nx3a3v+PrK1xRpikzbFT2vau7cD+fnDGJ46+ksu7mMG2k3eDjtIfkV+eyN2cvemL3E5MagVqgJdwvnVPwpAPr692V59+VsvLeRZdeXodFraJEKdWxdsGjSivjCeCIzI4mcEsnS60vZEbWDGgfvhJkJpoRSUVURc3+dy/p762np1pLZzWfzxeUviM6NpoNXB9zUbibeSo2HUs296aZ2MyWg8iry/hIZ30HcjJFJ40hxqY+PrxMj27sQ4vnnXlp/hs2Rm5l8ZPIram8rbqzg7VNv81bTt1jZY+XflqvdcHcDU45OIebNmBfJ1n/xvxb/Bhr/RdSY0p0eeZoudbuYltdMzGY0m8HqW6tZ0H7BKw6ifPCB8NJ99uyVcU8+O0n/n/rT2acz05tOp9euXvwS8Qv9A/r/o8fjusyViY0m8nmHz/ns/GcsvrKYakM1I0NGMr3pdFpubmkih+WU59BsQzOszazZ2Hcj/X/qj0wiY3LYZJZcW2JqIwp1DGV5t+XM3zya706KCb6TwnFfeK+Pgjd6v49SrmTt7bWklqTS0bsj05tMJ6cihzU31xCTF0OI2JmZSY6kZjxhcZMq4tbJ8QwM55BTEWtcMzijzmVr/6211DGMRiNB3wcRaB9ImHMY885+zMrHXswLK6JEU0JYqoHLR+0Qa/WMGq7gqFMJCzsu5HradU7Fn6K5a3POJZ4zTUhqJpU17rCWcksqtZWYycxo59kOg9HA3Yy75FTk/Ok5tpBZoFao0eg0FGoK/1BxZmTISL7t+i1qhZqnBU95nPuYvTF7ORx7GK1ea3KiBiFzDZgmaC6WLiztupRxh8ZRri3HxdKFM6POUN++PiD4lJx4doKU2Sl8fO5jtkdtZ1gUfHkeIt52I9KYiZ3Kjrmt5hLuHk74pnBcLF3IKM0AYEjQEH4e9DNHnhzmwIopjDidRedEyLYzY9/sbszQHcbZwpkRDUYwo9kM2v7YlqSiJAY/gnsNHXg0N5k6i63R6jTUzYcEOwkdfDpyOeWyKUMdnA2lcqHKAM89GvS11bXkEqEtx6+OH3mVeTRzbUZaSRqftfiA4YdGYa4VUSw3srDTQj4691GtNh51FRw4ICNJpWViP8FHwUHtTGa50GMeUKrApdjA2e/KhOc0KAjt0cPUeTDM5JsgFUlRyVU4mTsRVxBX6/pd3AxZFvDtkLWodKG1pTWNemwKbnHAcTZzqhpTt3l3rhtS2fZwW60xaibGv61C/BleR4gHMJeaU64TSO9OFk48LXiKwWgw3ev2ZVCohG7P4I0YmNwX9JIXXJ+aib5SqqRaX43BaDCJRTiYOyCXyE3GZrZKWwoqC1BIFYgQ1ZpA9X0Ch34CxzkQmgWnd4DfDHhm+8ou1z6umvNghC7x8PllCeHJjqqpDQAAIABJREFUeu44w6puVuzyKsWAEbFIjN6oRy1X42blRmpxqkn62cvai9yKXJMJ38utY7ZKW1PVTyaWCfwnnQZLhSVVuqpa10CMCIPRiIgXni7/myB6HuHWtCHKJXJEz/k3OoMOESKUMiXmMnNkEtkrwYxIJKJaV02Ztuz3iehGsNSAk9QKtWtdLM3UyKXyF4HVb8YUi8Qmc9PLyZfJKMtALBIjFUnRGrTUt69PoF0gx54eM91PYqOIoBwj356EXiPBKBWeMxulDcODh2Nvbo9ULCWnPIeHOQ95kPWg1rt6UtgkREYR6yPX08W7C5w/xxlPPYhe8H3W9V6HWCRm833BS8lgNAiVraAh9PHvg0qmMnnRfHP1GzLLMhkbOhatQcu2B9to7tacRZ0W4WDugN6gJ6ssi/TSdNJL0kkrSSOtJI2UkhRSi1N/V3muBiaXc6MIkUiCWCR0oC0fX/8/EmzUqL01cmrE4WGHBRl4XgQLYxuOZUOfDbU8Wv4MGp0Gn1U+dKvbjc39Nv+P9/Ff/L/Fv4HGfwlP858S+kMo4xuNZ03PNablD7Ie0GJTC3r59eJ0/Gk6+XRi/5D9r2YAPvsMNm+G1Npuo8efHmfAzwPoVrcbewfvRSFV0GlbJ7LKsoiaGvW3Hu6/A51Bh+JLBT/0+oH+Af3xWeVDPdt63M28y6a+m1h1cxUyiYwbE26gNWjptK0T8QXxbOy7kbEHx+Js6cz+IfuZeHgil1Mu08ipEeYyc24nXOH9q/DRFcGFelZ3OBooIdSpIU/yBAWS4SHDGRI0hPOJ59kYuZESTQn96vVjZvOZtPNsJ8gFVpVQd4U3PY2+bLntSvW5M8iLSxk6WMQ5PylPJLOwad8DwsM5k3mVLtu7sKnPJqYem8qcRCe8841MDkujWZaEyxsNPAy0p2v3HFSObjhYOPAo5xHV+mqkYikdvDrQyKkRF5IucCvjlukc1ShI/R1YK6yp1Fa+IpkpFolxtXQl1CmUU89OvRLUWCmsCHUKJaU4heSiZNNEyFphRZ2sYjIsBNnVerb16ODVgY33NmJnbkdWWRbjGo7j07afMu34NE4+O4mdyo5KbSUxb8aYvF32x+xn0N5B1Lerz5O8J8Jk0QApuxxxtfch8eh2Fl5ZxNYHW5GKpKYJ/tiGY2ng0IB3Tr9DO0+BmG+rtGVy48mYP4rDc9M+Wibq8XwHZiTYkxDixiNpAaXVpRRVFfFRlDXrgyrZN/4UYw6OEQwL9VpTVr9mMutXIiNumZYOYwS+wsLbaua2KKG1R2seJN6gVKIzVR3MJGZo9Bq29hcEFFb3WM30fckcPrKUfkP0iEQinCycXpBUn6+3/ydong69R4q472jE2VwIMiQiCV5WXnzuP5mRt+byyH0RQXli+PxzDHm52K9yp6CqoFZ2/Ldo5NSIDRetCb3ylNVbV3HwnKOQOX7O0TBiJIqp+GY/5OxuGeoyLcbQUEb7PGBHA1CbqSmvLkdv1CNGjLvanYyyDNQKNZZyS5KKk0xu4w4qh9cGuZZySwxGw++aKtZM8mo8EGqOJyQL/PPhQP2/Zt74ezBVJjDgrnanRFOCRqdBIpbQIEPPlTUVNJ0EgzNtePNMMQ4fyah4LtNcM/m3lAsT/JrzXLOPneJhzAPBYPJUCzt2uuSBSERPv55cTb2KSqaiqXNTDsUJ7VuB9oHMazuPj89+TFl1GeXachOJ3VZpS/+A/qy7u46efj2xlFuaeGgRQREceHwArUGLvcqeiWETeZj9kHNJ59DoNFhoDNzfIMUzrQyjTCqcS4NeUJB6/qM3vvhd/zQWQ+vWlOzdwVVHDReTL3I5+TKJRYlIRBIcLRzJKMngM1F7uo77iuzybFJLUkkvSee7299Rqa2krk1dkwFiDZRSJY4WjjiaO2Ipt+RSyiX8bPwY32g8tkpbpGJh3w4+OcihWMH9+WziWSzllgy+X02QuTeGiRNM+5lXkce11GvczriNRqchwC6Api5NcVO7Cf4ivzlGnUFHbH4sl5IvodFrkIqkeJSKyJVpKf0Nr8dSbomVmZVJIMBCbiGoblF7vLSSNBO3EQTejEwsI6U4BaNRCCZfNtRbdxiMEjFTexpqVQnFIrEpaBQjxogRjU7zihlfDU5uhxQ1TO732o//n+P3XM6b1LXi6zH1/iPbuJV+i167emGvsufkyJOm740dUTsYe3Asg4MGs63/NmQS2Z+M9AJLry3lg7MfkDAzobZv1r/4X4d/A43/AnQGHW22tCGvIo/7U+6bTHmKqoposr4J5jJzqnRVSCVSbky4gaXiNVmGhQthxQrIeTFBOBZ3jIF7BtLDtwd7Bu8x+UvcTLtJi00tBMfu0FH/yDGllaThvtydY8OPcSbhDBvubkAqkVJUVcT4RuPZErmF25NuE+YcxuiDo9kbvZfl3ZYz98xcAu0DWdp1KaN+GUVSURIhDiHcm3IP0alTZI0djF1eBUtbwpdtXxi2iREzu/lswt3D2flop0nGcGKjibzZ7M3XuqK/7C/iY+VF+zl2zBS3ZJr6IsNiJPywXwNyOTHeFlzyFnOvnpr73koW361Db48rVEkh4hFc9BaRaSE8Jq6WrjR1bYqbpRs/3PkBf1t/8ivza8m2/lWIEAkSr3rNK9lnC7kFrT1a08GzA951vNEb9VxNucq6u+teO1mViWUYjAY6eXciIiiCAPsAohNv4TrxHbrFw8CvQki3kRFfGE9RVRFKqRKdXsfa3mtxVbsy5uAYQMjqNXFuwvmk84Q6hXJ02FFEIhGFlYXYfGNTa5uLOi3ig6om0KULZXt3stTuKYuvLjaZb8nEMj5s8yGZJZlsur9JkJpsOp0lXZaY5JYLKwvZeWwxi28uoV2CkS0H4UCYkqODQrggS0edV8pjueDNoZAokElkuFu6EZv3RGAQPJ8g1M+BmO+h5Xi46SFCojNioVQT0WA4P9z+4RX53g9bf4hULGX5jeVkdjyOeasOfNVZzrzw2m0IKuRUGKpBDMtPQPzMUexOO05hZSEGDKhkKjb13cSw/cM4MvQIk7a9Qa80FZ9GWpEhq6TLGxWvkGFfhquFK+ll6aS+nYrbyWskT44gdK6azi4TSU8JwFLvg6zwEVfqCNKacrEcY3U1K+lOvzul2Px6lUl9YV8QOCvssLP14GF+zO/LGb8GNXwM0fN/f8ecza1Y4M9k2EhfbVN6jppg2FJuSbW+Go1e80qw08GrA/42/mSUZXAk7gjhbuGkl6SbjDttKyDvG3hjCAyOBtdSaDu+9nZslbb42/qjVqhJKUrG/GEsXkVG9gUK6+e/pPD9MgelhWsLghyC2BG1A4lYQoW2grU91xLuHs7oX0YTlROFk4UTNmY2PM57TEv3lqhkKgoqC7ibeZcPW33I4quLASHbX8O9+fmNnxkSPIS4/DjqrREmdJYSFYkLKyj4ej5+Mz778xN8/z40agS3b2NoHEZmaSaJRYncTLvJ0bijXEi+gEwP2t/kkyQiYYHRaGRi2ES8rL1YeXMlzVybsbnfZmyVtiYCb69dvbifdZ/o6dG1jAMrtBW4LBVk1Mq15bwb/i7zbikx/+xLoYX3JZf2GpRXl7M9ajurbq7icd5jGjo1ZGazmQwLGVaLM1iqKWXikYnsid5DR3UosRlRZKuMTPB+gyHtpvPFxS+4kHyBQPtAGjo1JLU4tZbreY3yVbBDMEVVRZyKP0V+RT5jGo4h2D6Y939933R9BwYMZG3vtSilStyXu1OsKUaECAVSshdqyf9oNm/XSzRxhBo5NaJEU0J8YTwSkYQWbi3o5N2J1bdWU1hViFKqxGA04GntSVx+HN9ckDM+EuxmV4MIVnVfxaHYQ5xLPGcK2Dr7dGZDnw0kFyWz5tYa9j3eh1qhZnyj8UQERWAmNSM2L5b5F+cTnRtNH78+pJemE5kVycgGIxkTOsZUdasVlL4UwFXpqgT/l+QrPMp8QLlReAeE64681uXczlLG3vcbvbL8/xZx+XF029GNan01J0ecJMQxBBBI+0P3DaWnX09+HvSziWj/ZyjVlOK5wpPRoaNZ0X3Ff2w//8V/H/8GGv8FLLq8iE/Of8KVcVcIdw8HBL7GgJ8HcDHposkg6vak24I6xOvw7bfwxReC8hJwJPYIb+x5g97+vflp0E+1TeyAAT8P4EHWA5689eSVz/4TuJF2g/BN4ZwacYq+P/Wlh28PDsYeBISWlQmNJrCm5xoWXV7ER+c+4r2W77H61mpaubdiWPAwZp6cCQjZqkd9TmA19zNkh45w3gtm9pEQYye4x1orrFHJVWSUZpiylu5qdz5o9QFjGo75Q6fzGn+RMOcwDkQIL7vY/FjGNxzPrJOzuN5hB743nvLr9vnYa6Tct9NxxRMueUCBClMZ32hpQbBDMAYMxBfE1yJI/x3UlPx/GyjYq+zxt/UnwC6AO+l3iM2PpZ1XO54VPCOxKPGVdilLuSXvt3qf40+P8zjvMQ+nPcRKYcU7p95hY+RGevn1ooXYk15vf09AsQzZ/oO8qTvE1gdbTWPpDDocLRxp7tqcQ7GH6O7bnR/7/cjog6NRK9SMajCKfj/1Y9fAXfT2702f3X24mPxCWnl97/VMajwJnUHH5jEN+Mw1jgJzCVKJFFulLXXr1OVG+g2qdFWIENGtbjeKNEUkFCZwa+ItPK09ax3TgJ8HcOjxQfzyhHOfZw4KPfgYrHksK+L62CtcTb/B+2feR8zzzKRRIPJe8pEQlKEncj10HA0XfEBZDaFaG8z86nM+4+or16KPfx9uZ9zmDb9+rJh/g9jMRzSYpDd5bogQ4VQOcy8Ymd0L5EYxUrkZdko7UkpSqGdTj9iCWMY2HMvAgIFMPjKZCl0FzpllpFoYWH8IPuprRori1Qn/9v7bOZN4hq0PtpomvOt7r6eXPIihy1vxzMeaNW9sYuzBsXTy7kTozxf4vKGgnlPPth4pxSlU6iqRiCRYVOjp/kxQSapTBed+hCZThMx9tYTf5XP8trriaO5Idnk2gXaBxOTFmJbPbzsffzt/ttzfwq8Jv5qWi42w/jCMjYQWn7kQLSukUldJsF0wj/IeYau0ZUPfDRRXFTPn9BzM5eYMCBhAfmU+kZmRPMl78pc8HEBoN7NV2dIoKgeFtx/fbcjgZF0jEzuXm4w9FRIFeoOe+rb1CL6RwJwzlYRlwa5QMSMGGF4vDvAb1MjCGowGUzuKs4Uzvfx6sSlyExKxhPnt5jPv/DzEIjHjG47nfNJ5nhU+q1VZDHMOw1xmzt3Mu8S8GYO1mTU+K31ILk7GWmGNd1IRO09bUu9ZYS0VJYDiqmKTdGpCYQKJj6+TcP4AiWHeJFVkvJCl5kWr1v4Ljmgrytg8oxXxBfE8znuMwWgw8VsODT1ER++OfH3la1bfWk32nGzTZG9L5BbGHx7PkWFH6O3f2zR2RmkGfXb34V7mPZq7Nmdzv80E6m3Az0/wM1m+/A/PpdFo5EzCGVbeXMmxp8ewV9mbJMXzKvIYvHcwmaWZbNb1ZNBne6js0YXv3m7FonsrqdBWMKPpDBo4NWD+hfkkFSUxvel0Pmv3GWXVZURlR3Ev8x5H4o7wIPuBKcAVi8T42/pjp7TjTsYdU7Dd0asjh4cdxlxuTlR2FGHrwkwtfM10jtxYmIPo2HHuNrCn07ZOFGuKsVZYM7LBSDysPLiedp2ziWcp0bwwquzj34fve31PiaaEqHULGDrvZ1zfgQw1jAgZwZCgIdSzrceQvUOIyhGU85q5NmNy2GQigiPIq8hj0eVFbLm/BSszK94Nf5c3m76JSqbiu9vf8dHZj7A2s6ajd0d2PdxFuHs4uwbuqpXZL68u51T8KXY/3M211GtklmW+EFKoud+NEKL/5ysaNcgqy6Lnzp4kFCZwaOgh2nm1A+DE0xMM3DPQpIb5V329Pj3/KUuvLyV5djJ2Krv/6L7+i/8e/g00/mE8yHpA0w1NmdNyDgs7LTQt//rK13xw9gMigiLYE72HY8OP0cOvx+8PtHo1vPceVFVx6MkhBu8dTN96fdn9xu7XliOjc6IJWRvC6h6rebPZm//x46pppRnVYJTJxddWacuF5AtYm1mTOCuRc4nneGPPGwwIGMDh2MP09u+Nk7kT6+6tI9AukITsJ8RUT8Jt5RbyZVre6ybmcJiKkupSlFIlWr0WXxtfssuzKawqxMXCBaVMSXxhPHYqO4YHD2d06GjCnMN+l/he4y9yc+JNkoqSiNgXwZ1Jd4jYF2FyY00rFfTIxYiwqDKi0EGuxYsxxAawRE612EgVuldUccwkZib9/z+DWq7GxdIFRwtHVDIV+RX5PC14WqvP1k5lR3PX5ljKLXmY85Do3GhszGwoqCrATGpGwswELiVfYuj+oewZtIfBQYNN6/7y+BdG7R2GvELDyosqRq67ziV1Ib139TZl1vv492F06GjGHRpHWXUZoY6hHB1+FDe1G4P2DKK0upRTI08xZO8Qziedx13tTlR2lGliOCd8Dt90+YajcUeZe2Yuj/MeM/IBiCQSYrs2pqlrU9bfXY/WoGVG0xkUVxez6+EurM2sMRgMuKhdODrsKLczbnMm4QzHnh4zacIDNLRvgM2NKL46B6lWMGQIfJsezIcuMWhFQvD5ZccvORF3jNNPT6IVG2meCjc2QcOp8MReyNR6lEkwWlogLSgm1g4QgZO5E0qZksSiRAB+SmrK4B9vEz4Rbj23VLEph4UXxHzUwYBSpiRd9qLKIRVL8bTyJKkoySSdCi/a5KykllRoSol4CDsaCuvIxXIkYompRzzEIQSD0UB07m+EHZ6bmI+NhC1hLxYrdELgoBeBXiamhWsLIrMiTeNJRBLkEjmVukpWxflyXBzPSV8jq48KilQXWrtxy0FLVsWLqlsfvz5kl2ebWv3eDX+X725/94ofxamRp+hatysA19Ou02lrJ3SaSn75CVqnwLEACSMG6Al3Ded6+nUT6fn2pNs0cWnC9GPT2fpgK1FTo6hrU5fCykLTJHHlzZWvfUbqmNWhqEog8EpEElq6t8Tf1p+Cwz9TaWvJsSWZzBlizarA0t8NVtRaMUiklIiF61PPth6NnBrxJO8JD7IfYKmwpFRTatpGmFMYZdoyMssyTZKofwUKiQKMIBaLTcGf3qhnYMBAjj87TkevjoxtKBgiAoxvOJ4t9zczMNpI425jKfCwJ7Eo0WRU9/J7wEJugbfUHp97iXgPGIePZyO863jjbe3N4djDfHzuYy6Pu0yr3Vfgq6+EJJRIRFFVEafjT5u2CUJQEuoUyp2MOyztupTZLWabVKYGBAzgx/4/AkIC4rtb3zHv/DzKteU0c2nGtQnXhPfr5MkveII2taubf4Sn+U9ZfWs1W+5voVJbiREj3mpPTlzxxO/ARfj0U+FHLKa4qpil15ey7PoypGIpb7d4G4lYwjdXv0EmkfFpu09RSVUsvLKQ5KJkIoIjeC/8PXRGHddSr/HDnR+IzY+txQ8CIfk1PHg4Ld1bklSUxJeXvzQlruZm1GXxT7lw/Tr36lTRYmMLQh1DTQHbhEYTmNl8JpFZkbXOKQgtdkPULfls1Eb6DYVbTZywVdoSnRuNpdwSazNr0kvSGRo8lCJNESeensBCbsGIkBFMbjwZG6UNi68sZlPkJtQKNe+Ev8Nbzd6isLKQacemceLZCTp6dyQ2L5YKbQWTwiYRXxjP1dSrZJW9UENT6EUoq40Um4HSKMFcbk6urgQrhRUbOp/mu0PCcyLiBUdjxYT6BHv8zzkav0WJpoQ39rzBpeRL7Biww/T9dD7xPH129yHMOYyjw4+iVqj/dKy8ijw8lnvwXsv3+LzD5//xff0X/x38G2j8g9DoNDTd0BSRSMStibdMWaTziefpvL0zAwIGsP/xfhZ2XMiHbf7ERGf9epgyhV9i9jNkXwQDAgawc+DOP+x5HHNwDKeenSJ+ZvwfZv7/b7DyxkrmnpmLVq9lapOpfH/ne2Y2m8mqW6v4rN1n9K3XlzZb2hBgF8C9zHsMDhxMUlESD7IfMLbhWGL3rWf3uTrYpxeyuhl80VFCuVLC8ODhtPVsy8/RP5uUPmY1n8W11Gs4WjhyZNgRorKj2PZgGzuidpBdnk2QfRCjQ0czImQErmrXWvup0+sI/D4QmVhGoEMg+2L2/e4xifTgVA5FZlAle+63UBO/GEGpA5cS8C6XYl5lpECm557LH3sFWMotKa0uRSaWCWXu5+V8tUJNgF0A9WzrEWAXQIBdAFvub+Fuxl029NnAkmtLuJh8kWCHYDr7dGbljZUYMfJ9z+8ZUH8AQd8H0dmnMz8P+tm0rVJNKV/P68CEDXeZ8YaSY+6VNHVpyt2Mu6hkKsq0Zbzf8n2863jzzql38LDyYGzDsay4sYIKbQWLOi3idsZt4vLjuDbhGo9yHhH6Q6hJMUsmkqE1amnl3gqpWMrF5It09OqIr40vjeav56mTlHWtFIhFYgbWH8jWB1u5P+U+oU6hxOTE8O7pdzkZf7LW+fFQe5BZlomXtRdpJWmoFWqCHYI5m3iWmU1mcOvEem7Ya0hZBjkqaDIV9vfazsAmI0kvScd7hRdag46GmRC5XiAIa8Uw446YOV0MmGkFKdhHzw3Zr0+4TqhjKOrFanR6He9cA/cSeKeHCKPBCGKYd1mMpcKSuF4t2Jh76i89Dy/DP0+oJuhFkGotZMVLq0spqy5DIpIQ4hBCa4/WbIvaZuJV1LS6zEh2YkGiJ4m71hK6LpTWHq2JzommW7SGy45VlNpa4GvjS4BtALse7arVAgQC/0QmllFeXYpvoZiLmww4lcNnPZR81aTSJAZQw9eogZeVF/PazmPCkQm1juXRtEcEOQSRVJREt+3dyMx+xpkfDTytAyMeQaMp8MBZRL96/UwVzTYebbg07hIHHh/gjT1v0Ne/L3KpnLsZd00B3svVPWcLZzLLMvG38aetZ1t2P9pNubYcB5UDgfaBWCosOTzsMHTrBhoNXLzI2f3f0vXR+wzw64fd2et0v5KFTRXc9FOxsX4FcbZCwFJcVYwBA0H2QSQUJlCpq/xT/xmFRIGnlSe5Fbmmib+VwooSTckr63moPTCXm/Mk74lAQDZq/7q/jRFUchVqhRo7pR2OFo64qd3wqeODv40/XtZe2N54gM2YqVjHpyNxFtqYYvNiabiuIdOaTGNZt2Vw8CAMGAAZGeAsSA+nFqfisULokz8x4gTxBfGcTjjN0bijGIwGbJW2puD06rirBDoEciPtBtOOTeNB1gM6eXfiTOIZ0/NLVJTQwrV8Ocyc+efH9htUaCuYfGQyOx/uRC01p0RXTrMsCbNavsOg4V++UnXPKc9h4eWFrL2zFmsza2Y0ncHphNNcTrkMCPfY972+J9ghGBC4ipOOTKK8upxVPVYxMmQkqSWp3Ey7yftn3ie5ONnEt6gRI3j5Gs2Os+WdByrczt3hm7gtfHj2Qw4OPcj9rPusurmKoqoifG18icsXBBxkYhmb+23mXOI5Tj07yZ3PMtgYBiv7CIIYfjZ+3M+6z5JrSwS1MYmCQYGDaOfZjsSiRLY+2EpGaQZNXJowOWwyrT1as+bWGjZGbsRcZs474e8wJHAIK2+tZOO9ja+01pohJaDMDOvcMh7bQ7YFNFZ4Y+3oybmUi4Q4hjA8eDgfnP2AuLfiqCp1ZMyWbZgZvCgXxdO2oZbVA+f87ev4V1Gtr2bcoXHsfribld1XMqP5DACup16nx84e1LOrx4kRJ0zE8T/CrBOz2B61neTZya9vK/8X/9/j30DjH8SHZz5k6fWl3Jl8hwaODQBBkzxsfRje1t5E50bT3bc7ewbt+XMp2q1bOfD1WCKGSXmj/hvsGLjDpBz0e0gqSsJ/tT+ft//8zwOZv4n3f33f9CXQxKWJYMxUXUZ6aTonR5xkwmFhwpJems6AAKFFzFJhyZpGH1M+axoRD/RcdYfpvSDFy5ppjadhb27P1gdbeZD9gAC7AOrb1eeXJ4J6Viu3Vsy7MI+89/JMQZPOoOPX+F/ZFrWNg08OUq2vpr1Xe4LsgiisKiQyK9I0ufgtfKx9yCzLfPHZy60VRkFRSC8WlqlkKpRiMxzSCmiXBO2SoH2SEJToRHDbFS55wSUvMZfcDZQ9DzxEiPC09sTJwolH2Y8Qi8UsaL+AiOAIHM0da13zR9mPaPBDAzysPEguTqaJSxM+afMJ9uZCOV8ukRNgG8C1Cdd4Y88bXE+7TvT0aFM5OaM0g03TmvPh7jQK2zVHte8QXX4ZwPW064gQYS4zp0xbRmv31lxJvcKUxlNY1m0ZKpmKwspCPjz7IevursPR3BFzuTmXxl6iw9YOxBfEY8CAmdSM7f23M3T/UPRGPUH2QXzZ8Uu2P9jOgScHMBPLEVdVM1PRljlzDiAWibH5xoaBAQMpqCrgWuo1qvXV2KvskYqkZJZnCoROo4FW7q04OvyoYNKUfouy6jI0OqFFpMbhuGWuGVOuVTOrq4G3b4mZ6BfBx0E5/Jh/FkQgMcLh3TC1l1AF8SkWkaM0Ctfi+bWtUTrKKc/BaDRSpxIKVSDVge7lR8mIYCr4mmx5jV+ClcKqVvbZwdwBH2sfbqbfZNNJOeO7axgdCVc6+vBsxjMCvwvkSf4T2nq2xVxmzvERx+m6vatJ4CC7PBuFREFKxRQc1u0gPu4mvmuENsof+/2I6uQZhmh20MY8kOuVca/lQ7wso6xWqCnRlGAhUdHmSQV6McTYQpo17PsJusxYxuFgORMvvWtqx+nr35fo3GjiC+NNYxbOLSSxMJEeO7sjysvn8gY9a5qJGBYjplKkZ/qc+mSUZdSSSP4tv8JSbkmYcxhhzmE0dm5MTG4MC68s5PDQw/T9qS/96vXjs3af8d6v73E28aypmqkz6rBWWGPAQOH7hYinToWTJzFkZVJnLnxeGErEwac4p5dwpp6Mea213HCHYIdgtHotcflxpsmkXCJHIVFQWl1KoH1TFSmyAAAgAElEQVQgizstpplrM9JL0+mxowc5FTlIRVIGBQ7C18aXwqpCjsYdJbk4+cX5/U1Q93fgoHLAydKJh9kP8bfxJz8vhUJjJc3tGiK2tKCgsoDCykLyK/N/Vy3MSmFFHbM65FbkYjAa6OnXEwdzB+rlGJg1fh3HN8xF2zocG6UNKcUpjPxlJACXxl6ijadgOvfFxS/46vJXtPdqb0rkgBCUFVYV4mvjy6Y+m3jrxFu4ql05MeIEGI3QpYsgRPLoEcj+OqEXhN79QXsG8azgGWttRjHq3W0cb+vMygEunMm6irOFM9OaTGNKkyk4mNfmEiQUJDDu0DgupVwChMqUSqYiMiuSPv59mN9uPt/d/o7N9zfXMk19GXqDnhnHZ7D27lrEiJnffj51lHX45Nwnr0h719FKCfEJ51lRPJXaSvYP2U+IQwhfXfmKFTdq8wQ29t7IhMYTMBqNnA5SYKzWMmziC9lqZwtntAYteRV59K/Xn2eFz3iU8whLuSW9/HvhY+1DZFYkp+JPoZKp6OvfFycLJ355/AuJxYm1tlXTBmejlVEs0WJeDSUKsBSbMSJoGHWdA1l+YzlFVUUsaL+Amc1notFrsP3Glq87f83sFrNxX+5OL99eHIw9SHZ5Nj7WPpwdc/a1/Mb/BAxGA3N/ncu3179lbqu5LOq0CJFIxL3Me3Td3hU3tRunR51+5Zr/FinFKdRdVZevO3/NO+Hv/CP7+i/+WfwbaPxDuJZ6jTZb2vBVx6/4oPUHgGDE1n5re5KKklBIFFjILbg24RoWcos/GQ32bXiboWkrGFx/ENuH7P7TIKMGM47PYMfDHSTMTKhF9PufosfOHpx8dpJFnRbx8bmP6ekryJ/WTEKTi5Mpqy6jg1cHziedp6d3V9Ylh2L51RKqJfB+FzjT2oUZLWaRW5nLlsgt5Ffm08uvFzObz6SzT2cqtZVYLbZCb9Qzq/ksVt5caZLtrdBWEJsXy73Me5xNPMudjDskFyXXkuis6bl2MncisThRmJwZwUwfgKd+PBbUpYx40thM/fQoKtRmZLiqBZKqASHw+L34zwj18qBdMnRKltAxWYRdiQ6dCBJ86vCLUyHD3voBj57DQK0muyybiH0RXEm5wrddv2VW81mIRCL0Bj37H+9n8pHJFGuKaenekk/bfkrXul1JLEqkxcYWqGQqwbBpaiQPsx8y8peRHBhygAH1BwAQnfWQS8NbMe18KXnjIij75ksG7h/Co5xH6Aw6LBWWpv5ilVTFjoE7TOu+jGup1+j/U39yK3KxlFtSUV2BHj1SsVSQitVWCfKdeg0Hhhxg5omZpJWmIRPLmNFsBgN+TeX+rcOcmdiB8xnXKNGUIBPL6O7bnc4+nU368KXVpYw/NJ6ziWcBYSLqZ+PHs4JnlFQL+6mUKgUOgRF0Rh2uVXI0NmpKSvMIzIFzWwX+zM/B8E1LIaNXqARVNRSphHY3QND659XAYeQDWHQWvGYJkr/dngq+GLnmIJZI0Rl1Jt7C78HPxo8ghyAOPjnIsxnPcFW74vmNC53vFnLVAzyLYPT4lbQP6oXval/B28C/NxeTLlIwt4BZJ2Zx4MkBkwSwtcKaHvEidm0s5NzlbXQ6O5pwt3AWtF/AsTu7WBWzhT6xcKS+MOGViqQ0cGzAvax7OJg7UKopNQXOV8dfZdXNVSZzNQCxHgwSOLFXQfeYalAo+LVnAF0b3EdqECFXKKnQVpiOT4yYEyOE3mqnvCqurNezqKuSe/Y6Lq/XMmSEnL1+1aZ2qRrIxDJslDYUVRVxfMRx2nu1N6no1WTjJ4VNYk7LOXiu8BRa0WYnYTAYaPtjW66nXTdxiTzUHqSUpBDuFs6Bp41xWL6eNJUWZHI8cjUcDRCzorMFZ+1KaOfZjozSDBKLEvmw9YesurnKNJEUI8ZOZccXHb9gfKPxSMVSEgoTmHZsGqfjT5sqPHNbzWVUg1EM2juIJ3lPTPdila4KPxu/WlWOGsjFcjysPMgqy/pD4v9rYQRblS22KltslDbYmNmgNhOMAhVSBdLYp4h/PQNvzUAvMnIn4w430m/Q1qMtUomUgsoCykoLeDw3hek9YUOTVzchl8ixV9ljo7RBKVVyK+MWEpGEALsAvK28+TVRMLWrMTitaTua2ngq05pOI+R2CqI+feDQIejb928d3p7oPUw4PAFXCxf2xTcmeOVuGDUKfvgBVCpicmNYdXMV2x5sQ2/UMyx4GLOazyLUKZT9MfuZf3E+MbkxtPVoi0Qs4XzSeQLtAunp15NtD7aRU5GDTCzj267fMqPZjD9M2P1w+wemH58utEu1msvw4OE03dAUnUEnPE9IGH/PSKG/O3fdxCQ8r76JRWKkYinmMnM6eXficOxhqg3VKCQK9g7eS1OXpqzt68ys22J8P1GT/m4GV1KucDr+NKturTIFjo2dG9PYuTE6g46b6TeJzo3GTGqGWqGmsLKwFmdKLBJjrbCmuKoIpV7M+PtG0s30HKwvJMCkIglSiYwF7RdwIfkCx58ep2+9vqzusdqk+ATQbUc3IRAadRrXZa5MDpvMvLbzmHJ0ChsjNyIWifm8/ed80vaTv3Vd/w5qPDVGNRjFpr6bkElkROdE03l7Z6zNrDkz6swrnQi/xbhD4zgdf5qEmQl/mUz+L/7/wb+Bxj+A8upyQn8IxcHcgcvjLpskZt8++TZrbq2hiWsTYvNiuT3pNnVt6v7peHuj9zJs31Aiogxs/SELqb3jX96XrLIs6q6qy8xmM1nUedGfr/AXYfuNLdX6aqY2mcq6O+vQ6DQMqD+An6N/NvUp10ihrrYeTs/lR/BMLmFdE/iurzMjO8wkMjOS/Y/3o5KpGN9oPG82ffMVMnyrza1IL0knuTgZc5k5aoUavVFPTnlteU6ZWIaDuQPWCmuqDdVkl2WbJq0vw0PeBq+KxS+kQ416jCIjsbppZJtF/eExW8osMfBC/nNp16UMCRJMtG6n32Lk1y3omiojIs+JgEdZ2BdrQSKBsDBo3x5duzbMNZxm2b01RARF0NGrI8tuLCM2PxaAD1p9YLpGBZUFtNzUkipdFVllWcxqPotZLWYR/H0wPfx6sHPgTgAuPj5JQURf+j3SUvLVp9wd0oYh+yPQ6DSUa8uZ3Xw2comcb659AwgVgjOjztDI+fVqI++cfIflN18QPVVSFSKRiHJtOU1dmtK9bne+uPyF6XNva2/UCjUJhQmUVpciNoAtZljZupFTkYNWr8VGaUOxpvhvS/26WLoQ4hDCqfhTDHksIXTafI48PUZGaQZl+ZmMuKvl7RvgXQQPXaR81kbHoQCwr25Aq6LxZNnUpVQUT7JkMyWiF9fWrhwefwfX3SDJWpBQFomEoESEiDrKOnzY6kNup99mz+M9r+yXhcyCu1Pu4m/rT6W2Evfl7owOHc2ybstY+HFb5kkv46iRkanUck/9PocaKVl2fRlBDkHIxXIupVwiamoUF5MvMvvkbPRGPbZKW9p7tacw7Rln331A6Kf2RIlzUclUVGgrcLV0RZWWTUCmjuv1zamUCkZ3k8Imsf7uesQiMUqZ0nSOPaw8WNRxEaN+GWVqF6lp4+vu250T7TfCrl1U/riR8fXjuOgFH1wTs7qvI880maZjFSH4VlzYDN8Mc2ehdyq79kHTdGj0jhK1sg4ZZRmmv7dV2tLYuTGnE06jkCiY3Hgys5rPoq5NXXQGHa03t6agsoD7U+8TlR1F+CZBHOPxm4/55fEvfHTuI/YP3k9RVRGTj042kXZd5HYs2JvHhEhhO78EwNcdZNxxMjA0eChzW80lxDGEan01X1z8gi8vf1nrmsklcrb228rQkKFo9VoWXFzAkmtLsJBb0MO3B1W6KvY9frWtUowYdyt3SjWllGhK6OnXk8Nxh/Gy8qJSV8nqHqsZfmA405pM48uOX1J3VV3yKvIAIRB9WvCUYPtgHuU+EnhpRQkmHoyZXky1yIClwpLmHuGYScwwYqRYU0xBZQEFlQXkl+ag4fXcL2szayE4UdpgcyeaOnbuqJq1QiFV8CjnETdSb6Az6ujg1YEAuwA0Og1l1WUceHwAvVGPXCKvRS7/PUgMYKOT4eoehK+NLy6WLi+2+5ufOso6WJtZozfomXN6Dmtur2Fo3X6sX5+F5Y17sHIlTJ36Cgm+oLKATfc2seb2GlKKU0z3fRefLnzR4QuauzUHBBnVuWfmciHpAiC0JRZVFWEht+Crjl8xvtH4P5R0P594nl67elGpq6SXXy96+PbgrRNvAYLogDlyrq+uoP6cxWzp6sD4w+MJdQzlYfZDGjo3JL4g/pUqiFKqxDetks2HYeBguP1lFo4Wwne0x3IPUktSWdB+AdfSrnE5+fLvykeLEOFm6Ya5XkRceSpK3f9h773Dojj39//XbGdh6SBSREAQURR7DbaILWrUaOw9GmNiNMaoaaadaMqJxlhj7xqNvffeKxYsSBHpsHS27/z+GFklanKSk/P7fv7IfV1cewGzs8/sPDPzvMt93yIN0+Ger5wsrZQkqe9Xn3CvcH659YuU/LEacVY6s6z7MvrW6fvMPuecn8Pkg5PJ/yCf8J/CeavRWw6PrvOPztNlXRf0Bj21vGtxeMhhquqq/tF0+EvYeHMjQ7YNoU31NmzusxmdWsf9/Pu0X9UepVzJ4SG/X1lJyE2g9vza/NztZ0Y1GPU/GeM/+N/hn0Djf4Bxu8ex4voKro255lg4/3LrF17f/DodQjtwOPkwewfudZAsfw8bb25k4JaB9PeMZcX4o8gfpYO//58az4eHP2T2udk8GP/gb7mRnH54mlbLW9GlRhfOpZ/DVe2KKIo08m/Erwm/OioJbiUWZh9T0+1ULpeqwphXoGqbrmSWZnIl8wrhnuGMbzqeofWGYrFbuJ17m9u5t0nITeB23m1u5dwivST9uWNwV7vj4eSBgECRqYgCY2UzO51KR7B7MAG6AEn2L+MypZZSYuxzcLM3qqTAIWJDzwVuKCYAEvG2Tjbka+DNnl/QPKA5K6+vZM2NNcT4xdDEvwkbb21EP0XvyNROPzqdf538F13Cu3A4+TCfvPQxU/1eg2PHnvxkZCDKZCx+2ZPxTfNQWSE2OJYCpZX88nxuvnUThUyByWoibk0ct3JuEekdSXpJOjfevEH/Lf25lHGJm2Nv4qX1YtOx+QQOeZv62QK2VStZEJTFlENT0Cg0yJAx8+WZrLy+kssZl5nUfBI77+3kUckjjFYjPSN7ElstllJLKcWmYoqMRaQUprD/wf7/WA2oAhVGXZ4aT6qU2PFIysStTUdSLLncyLnBlBZTcHdyx03txrlH51hydYmjtUcpU6KSq1jRYwWzzs3izKMzgESYPjvyLAarAZ/vfNiyAXpuuc13+l18eORDrDZp8RWiDaDZ5Sy+PGCjWjHUnRiDr9M8ZKIAwhMPimuysRTL4lGbYelOePUOKEUBITCIidMaMC9T4hfIBBm+zr6ViJYVx1jFuQouKhceFDygfWh7Dgw6gCAITDs0jQWXFvDovUfs6B7JwObpyAU5nkbomabjUAN32oS2I9g9mB/O/kCpuZS5Xebirnan/5b+6FQ6vLXe5BvyifSKZNzcCwztJX3uxy99TO+o3tSrUo/+izuyL/kg/RLkLKkP/q7+lJql81dxzip61pMKkii3lFdSl/LSeJFvzKdvVF829pG4PYXGQpq+70GiF0w9Bd+1kAjkrkYo1kDbJNi1Dob1hM21BQKKRJJ/hPc6wjfby/noyEfMPjfb0aIU4RVBqbmUCM8IXgp+iQWXFpBfns+rka/io/VhydUlDvW9Cg6Hs9KZXrV6sSZ+DR/HfswXbb8A4KsTX/H5sc8ZdMXK9GNQ/fH6bmFDGNddxsj6I5naaiqhHqGO81RqKuW1Ta9VagsCSZY6vSQdnUpHqbm0Un++VqnFardWalkKcg1iz8A91PSqiVKupNxSTue1nTn/6DwKmYI7b9+h1bJW6NQ6htcbzqSDk1jWfRkhHiG0XdkWb603hcZC7KKdPlF9uJ17G4VMwblR5xi3Zxxr4tcwNKIvN/at4kwQjsqpTJAR7hlO3Sp1qVulLtFnHxAx/xecrt2i58aeZJdl8++4f1NuKXcEI3qDHv2hHegVFvQRQegNejJLMl/o2VIBtVxNlE8UoR6huKhccFI4kVeex+aEzfSI6EE1t2o8vHqc5LR4HgbpKLSWABKxWi5Ilc0/kjRuafRl+4ICkCtYOq0TRfVrPTdAcde4cz79PF8e/5Jr2ddw17hTaCwkyDWIcY3H8UbDN/B08uRYyjGGbx9OZkkmfi5+pBal8lK1l3BRubA3cS8xfjHM7jjboXb0PCTqE2m9vDUZpRkOjtyue7scwgA+NjUXZpUSsHIrncsWsS9xHxOaTmBWp1mIokhSQRL1F9WnxFyCn4sf2aXZiKLoUHkKcguiWWAzvJy8WHZ1GWa72WHe+jScFE6YbCbsop0AjQ/+ZXJyynNJ1dlQ2kCUCVgFaZ4G6gIJ9wyXWmEFAbVC7RAtUMgUhHuGs6nPJmr71q70GQ/0D6jxUw22vr6VMbvGML7JeD6K/cjxf5vdxuCtg1l/U+qS+LbDt0xsNvF3581fxZHkI7y64VUivCLYPWA3VVyqkFqYSvtV7THZTBwecpgIr2clkyvQa2MvbubcJGFcwv/MH+wf/G/wT6DxN+PAgwN0XNORuZ3nOtSeEnITaLKkCfWq1ON02mm+6/Ad77f4YyLWuhvrGLx1MIPqDmKZ8wDkcZ0gKQlCQv7UmAoMBYTOCWVg9MBKZoF/BaIo0npFa049PMWr1SeQmBiMC2F4uVs4UfIZxUI8clHg7WtqPt1vRAA+6qZlUW0DaoUGg1UiKDfybwQiJOQncDv3tqNCURGkyGVyioxFjoybm9qNUnPpM4tgmSDD08mTcM9wmgY0pXONzrQJafMMudBgMTDr3Cx2Haj7XE1xEzmcU0htAXKbyJuX4Hgw+LfsyKmHp1DKlcxoP4M3GrxBr196UW4p5+DgJ3KfMQtjuJ59nXGNxzHv4jzuv3OfGp41HP8vM5Xyy44Z3No0j5g7RVQ3qBnR2USOM0w/Cp0juxLZewxiq1YMPvoOm25tYlKLScw4NYOFXReSXpzOlye/5IOWHxDuGc6+M6vx330Cq0pOadcOHC276VBuerof/Y/gpnDBU+mKQpCTVJ6O7ake9FBlFbzlLlw2Jkt/f0oyEQH+repGP6LxtzmB1QoWCxgMknBBQAB7O9Wgi+ceHqT1othu4FvVRbZ552FUQOdCH0ZnVqVRoZbGDS9TIrdRqrDjYZJRoLIjAN5GGe/FOzOtaQkrt8KQe0581sLC5y9Ji5sG6RDvB8dWQNUSCC2EuAmzMTs3QRAqu2oXCQlYKaGKOYwGDx8w6NQyvIriebszbI1CapWr8NoQoUGugjKFnXvudkRBOuxTR6pT06ClSdtEkpzNfJYYxPS0UB46WwlpfJp/J9Zglk8iolJBvtLK+IxAfgx4RPOHMN29GyqZiuYev1LL5kk9qnBTlsdNIRcNcoxI87qtPJz7xcnIbDYeuorM9OjDB57dEZRKfijcy6SslWzeomRRtIXpr3xL3P1PHaZ1ABNDB9E1sA0vnxgl8UlEsTKvQIROwS/zc/dFXMmN53LmFWacmoHNbnMslmR2sMskUvvtuXAoLowRjdLJUBmZeRDGXIbAifBtz3mM2zOOf8f9m5mnZpJbnotGrpEy6m/dJNA1EIPFwOr41Xx98mtSi1Kp6lKVWR1n0TuqNwsvLeS9/e/RIbQD+x/sp3N4Z7b32y4F70Yj2YtnEZj3Id8dgCqlcCoI5u2FT3u48mX9Yqq7V2dk/ZH4aH1IKUxxtFA+j4itlqtxUjpRaCxEIUg8tyJzEYeTDiOXSSIUOrWOH8//iJPCCZkgI9I70rEgAklsIWhWEOWWci6+cRGVXEWLZS1oVLURwe7BrI5fzfFhx5l0YBJn0qSAOdIrkjv5d/gh7gfeP/g+M9rPYET9EYT8GMLYRmNpPWsLl8uTmN5W5Ot2X+Pr7Et8djzxOfHEZ8ejN+gd4zfZTHSP6E7HGh2lIMQ3GjeNm3SA770HO3fC/fsAvL75dbJLs8kqzaKxf2PGNBzDupvrWHBpgYMI3Tq4NVV1VSsFLGlFaS8MUDQKDU4KJ0REysxlWOwW5IKcANcAqrtVJ9QjlEJjIXsT96KSq3g3qzqTfr5BWpg3n79ZiyRlqeNzXnRvkiHdz6vqqqKUK8krzyO9OB1BkJ4LOWU5RHpH8mGrD6ntU5uLGReZdW4Wd/Pv0rZ6W/IN+cRnx/Na1Gt81+G7F2bJCwwFdFrbiQvpF3BXu6NRasguzcZJKfGDwsrVnF5k441xgexUpdA8sDlHhh5xLHBnnpzJtCPT0Cg0mKwmgt2CWfBzOoujLWyJeu5HoparifCSBA961+pNM4MX1k0bOHpiFfs06WyrLZDpLM1dAQHN4+elRqHBy8mLjJIM5DK5w4VdJVfRPLA5Zx6dcRgSzusyjxH1R1RqIYucG8lL1V5i+93tTGw28bl8zaPJR+m5sSdFpiLqVanHoSGH/idystezrtN5bWeclE7sH7SfGp41yCjJ4OVVL6M36Dk05JAjWfJbXEi/QNMlTZ9RWvwH//fxT6DxN6LAUED0gmiifKLYN2gfMkFGqbmUJoubYLQayS7LpkfNHqzttfYPyd9r49cyZNsQhtQbwpJuS5CfPgOxsZCQAJGRf3psM0/N5NOjn3L37buEePy5QOVp7E/cT6e1nXAV61LfthCgknvxNflYtq+Ip3UqTG8vZ3UHX1KMUitGxcMSpFanMM8wPDQeiIjkleWRVJAk9crKFI5M7NMZs4q/KWQKJjefTP/o/tTxrfPHRPqnEPfNBsylwb9b0VAIcqoW2sh0AetT61V3hQshaj9ul6cS4xTCYPdYQmRe6OwqYjOkdqKeqnokWXM55DSGYmsZ6RY9q+xX2CjepBQzTWx+NLf4obZBjqWQX7WpFKtFgorA3SBlkQs0UKZ6TEZ/AVxM4GoCrV1GurMdowJEAUL1oLDBPR9olA7DroFfKbiZYGNt2B4J1xfAbR8Y3U3iNoy5BHMbg1mBI7ManQV3fB4bgT32E6lw7I3JkvgMiw6qGX3HGRQKiSBa8VpaCllZPGgQQo3uydQo05DobMSrHPo+cuMDY0Oqi25YFTL+7fuAT7yuYxVEYs1VyZUbua0ooKrdmW5iOMtk8VgFO68mKpmf2YBaLa5SJDejMwuUqETmew9lrFcnOHwYli0j7uMDWOzPUSYRRUTsCIIcwW7DLohclY+VWqoEyRfCLoAbGqoJbqSKhRgwY0EEET4yN+MrQzOwWimylhLus55cmYlNma14rSiA1/xPcUyTRZnMxqyjat552cRHKdWYEfyQEVdhXmYDMuTl1Iy7i9omUKCyO4K22no5t7xsyOzQJk3GWX87w6/A6npQooG3z8PsfTCtHcxqAdNOwRdHpcMa2gNWPZbRdbKCUQ5xSXAgDHxLQWmTzrGlgtIlSsT5irnlWwoGJfiUQZLnk21q54CzBX7aAw0ypcBjbxh0SIb5jWByR2m7YJOG+Um16B8RT6nMhl0GH+RH8k1BI2k+KBSYFAJNvLdQLFioLrpxTJFGNdGVcMGLu+QjCAJpYhGXdJNoKAuEs2cR9++H4mJajBK4UsWOWQGTr2j5Zkc5b3WBhU0qn16FIMcq2pALMkK0QTwyZLE7bgXloplu+4c6iNyRnjVJKkzGbJeECaa2msqwmGFsvr2ZMbvG8HaTt1kbv5ZmgZKEsFapZe/AvUR4RWCymnCf6Y6XVmobPTbsGLlluXRY3YF+dfqRqE8kpTCFtb3W0m5VO8eCvllAMx6VPKJHRA+WXltK/JvxrI5fzfdnvmdXs5+I7TCKbp+EcVKdxblR5xwLLVEUyfj4XfZdWMebsUWEuoeiVqhJyEtw3BeD3YKloCPdQt1V+6m77yrhfrVps6INoR6hpBWn4aJ0wWK3sP/BfjQKDedHnWfCvgnIZfJKyZKbOTeJXhDNsu7L6F6zO/rpk9FvW49+zRL0TlQKSPIN+aQWpfKw6CF55XmVuD2/hUKmeLaCoXZHb9RzJfMKWaVZ+Ov8aRnUkkBdIBa7BaPVSJmljEJjIQ8KHpCoT3zGT+hpCAgIgoBdtKNT6RzVlgZ+DegQ1oGqLlUrtXd5OnmiU+mYfGAya2+udTjeywSZQ6o6JkfG+vUWjq2fwZizHzLz5Zl80PIDQBJaCZsT5hiTDBmbNthxM8HLQyuPTYaMyS0nk1SQxPX0y9wvSkZERGaHkCIBlbMraRoTpXYjUT5RNPBrQKGpkOMpxyl5LPUOOPhXKrnKIaxRZCxCJkj8owqZ9l61erG8x3KHfOyk/ZPYcGsDRouRD1p+wJRWU577HVpsFvps6sP2u9tRypTM6zKPNxq+8cLv/K8ipTCFTms6oTfo2TNwD438G5FblkvcmjgeFj3kwKADNPRv+Nz3tl/VngJDAZdHX/5Tz/1/8P8W/wQafyMGbx3Mzrs7Hdk8URQZuGUgO+7uwMPJA2+tN6dHnP5Ds5rV11czbPswhtUbxuLui6UM34UL0LSp5BRbr96fHlu5pZywOWF0CO3Aqp6r/tLxiaJIo8WNJJnW9OHPmAAh2sgXLtDn+AS+bUUl9aUuqjqEK7wx2SxkWgq4ZE/jERKHQi4K2BERn1J9chYVBFmdiTF5cEupx9Wq4NT9l+hT7TxbPbNoWuzG4St10JjtUibdYnmSVf+d110RkXzXYz6CKCA8bq1BFLkqf5Ni2Q1JE98ukWaxg28ZNMwEFzOUquChG9yqAk4WHIv7J8dPxQG/EEobuFnluFnkCIJAorOJQKOKR2oz3mYFvoVW4jI0BOaZ8C8S0ZmgVCsnwQd6axtTkHqHZjcKsVTx4tzANvR22YUJGzbsTFK34RfLdfLEMhZ6DGaAW6tKAeHH02QAACAASURBVMCqohMMTZlFWfNdaDU6ikUjcVcncb7o5jPjVMtUmOxmOgS1wVxeyqWcq0xoNZlF15c4etBbBrXk1IhTz7z32qNL/Dy1A2tCSihR2ByKNh+99BFftv0SQRC4nnWdETtGcC3rGu81e48GVRswYMsAxwNfRCT53WSptWdJUyxWM0o7mB8vkCuI1ZNbSBr6fks2UOOHFXT/aBnlxpDfzMvHJ+apB1NFcPnI5XMUMgW55blPzpFMiUahcWRdnZXO3Bx7k2D3YMfD7VHxI2rMqYHFbmHPgD1klmQyfMdw+qV7siFAT6ewTsRnx6NNy8Ii2GnsUYfNovQ9VywUetXqRaI+kSb+TVh3cx0uShdyynP4IeIdEtf8xKn24YxrOYGx+9/hlZBOnM+8SHZ5LnVyBTYd8yFwyyGidsSRVi61eYU4+WO0mck059HKLZpTRTeenYCPq1HzPYfQTVWHAFHHqwXzKbUaOWK/DyJ8fBzKlbC6kYI8lRWfUhh3Q82wcyYCSqDjIEku2K6U4yZqSNQ8RTaXgcYOB6/Vo1W+M1itfFQjle9q5HDxYAj18hVc05UxK7KQ1WFliAIoRNCa4ItjMOS6FNSurQtfxUKi15Ohr/4V+t+E7TVhcpwUGHmUSyIAIJHvD62AZmOk/Uw5BQN6wZHHQZfeSUoc+JZCTCYcCIdu92V0TlYwroOZt+M1/HjGlXU1LQxqV8DCc97MrlVMrsbGrnOhWBUyXmp5l0OX6zCxZjJ5SgvHE5pywbWEQaHXeD83gnXuabjbVdxWFyEToZ5exeB7TnzarJz+lkhiLjzERetOn7r9+f7ibOr6N8Tl4lUCc030fbsKZVi4WPVTPFRuoFBgX7OaNtWO8KiaO/HR83FR6zDLRO6YM4gvT+ZGeTLxpQ+Iz79Nhq3Qce2KiES4hZJr1JNjyMVN5UahuYh9/XbTMaIzP19ZzNjdY8l4L8NRsRmydQjHUo6ROD4RVVIq1K4N06fDR09abZ6HjJIM+vzSh7OPztLMsx65KbdIdJWqImEeYUR4RhDgGoCLyoUiUxH38u9xI+eGo3USeG4VRUBqEargIcT4xSAikqhPJKcsx2GOGO0bjVKuxGg1cjXzKpczL2O2mR0BgyBIjLwXtYQ+3dbkKtalhjgatT2YUh7gm7WM1eeLGf1+JHtTDtKpRiceFj3kZs7NZypnX551YvxxIy2+jWRl79VsSdjC16ck76whmmZ8cNxK7X2XKXJRsLB/BKtCirhteoRckCOXyR2texWu59G+0RisBnbd21VJlEIlU2G2mx0qcxXtu4IgSXTbsePr7Muu/rtoFNCII8lHaL+qPTqVjk9iP2Fyy8m/ez733N9D3019KbOU0TSgKfsH7X9SOfubkF+ezyvrX+FG9g02991MpxqdKDAU0HltZxLyEtgzYA8tq7V85n2Hkg7RYXWHSv4+/+D/Pv4JNP4mVBjYrXp1FYPrDQZg7oW5vLP3Her61iW9JJ1Loy/9oZTcymsrGb59OCPrj2RRt0WOmwjXr0NMjBRwNG78l8Y4/+J83t7zNvFj419Ynvw9VBzjjPYz2LG/zgtbkM4quuFmkBSAMl2hSonk9mxR8MxiXBDB3SQQVqqkid6JjjluxOW7o1GoHQvk2cGZTA15QMGVOPZ76ekZcgG1XcarZUGsK2iHTKHEpJRRpLRRrLRTpLBRrLBRJLdQJLdSLLNQJDNTLJgpEsycMILK0hvnx6pTafLlFAvx2P9A+172uFxttJlo6F0Xb603KoWai9lXyCrLpoqzL9llObiqXJ8hogsIBLkGUd29OqGeoVR3q86q+FWo5WoODDrAqvhVfHTkI3QqHXM6zWH49uGsjvmCateTSdq6nNdyvHDJlBzJLW4uXGtfh6+V5zgTokDtW5VXIl5h0aVFNA5ozLIeywh0DcRis2C2mbHYLVhsFs49OsegrYMY32Q89/X3OZJ85BkyaMVDN8onivYh7dlwcwNlljLJJde1GsWmYuZcmOMgtMaFxhHsHky5pZxEfSL39ffRG/SoBSX++RayPJUYsBDoGoiP1gezzUxmaSZ6gx6lTOnQRTfbzBgshj/ND6nAB6ekhWXIlLrE2BY8Iftje3zmno3+Kubq06iouj1PylQpU0peB7pAQjxCEBAkLwtBRg23UJLzEokwOVMW4EMT/yb8cvsXh3Tu9IQqhE77lsySTKYellTo1vRcw/a728ktz0UtV3M4+TACAuUT8xk0wo2c+hEcmXaHnXd30vuX3ljsFkkdyWIg9zuY9lEzVlgvPdcosmIxopApeLXmqxxJOUKBocCxOOpSowvb+29HIVMwbNsw1t1Yh8VmQW2TKlzbasJDDxgQPYBjycfILM7gwQIll3wtfNXblyRLDpd+hgjXEFZH25lZ/REJntK50yq02EU7uwfupsBQQN/NfekW0Y0on6hKrtd55XnIbfDeWXj/jORsvr6Bks9bWEjylMi5SpkCN7UreQY9SRv9CMooxdKhPQuH1OaDqzMxPlaZi9BWI92YgwiU241MDxzC9xm/YLSbsWHHS+bCWx5xhMq8mKb/BZPdwghNcxYZTlKKmY7yCPbIhyKz2RGtFnqJGzgtPOJUaV9GaPZzRZFLT0N1dmsekp/SlzyxjDaBhygTrJy415K1bg/5OOge01Or80W1FJxtMkoV0vx5/xT4KHRMaVbCvt2e1Lqrx0vlBlYrJlMZ14NUtL1n5lCYQN/XRJo9gp3rpMrTT01gfBfJ8b1tyu9fA3lauOEL8VVgQkcpgLM+lugGKTnS6iHUzZYy6e/GiXx3QsnE686kegiEDS7g3+fdePeuB+TmSp4lERGgUjmqU5WqlwoFhz0KGBByFQUCG6+F0+rAHdBqedSlFQf9yjmgecRBZRr5MiNaUYkWBXmCgSh8+VbdlS6qOqBQYFCI6GUm9IIRvWDkvDmZ2YX7yLUV85JLFDWcAiiwl6O3laK3lpBl1pNvKcL6gvuFWqbC/Dh40SqdKLOU46P1JrZaa4Ldg1HIFNLCXBSx2q3czbvLyftpz9w7RESqPhhLl5vxEm/qBUmkaN9oeqW58NmMs9R/T0vfLpNRJ9xnUv46dEbQWqXKYqjchwKFlQJTAc0CmzGm4Rj6RPVBq9TysOgh8dnxXM++ztXMqxxLPeZonZMJMsI8wvDWemOymZ5LSgcq+YMICHza+lOmtZqGz3fSvfdf7f7FpBaTfn8iAUaLkR4bejhEHZZ1X8aAugP+8H1/BuWWcvpt7sfexL0s6baEoTFDKTGV0G19Ny5mXGRHvx20D21f6T2iKNJkSRNcVC4cHXr0bx3PP/jf4Z9A429Admk2tefXpnX11mzusxlBEDibdpbWK1pTt0pdrmVd48DgA7QLafe7+1l+dTkjd4zkjQZvsOCVBU+CDIA7d6BWLTh5Elq1+kvjNNvMRM6NpG6Vumzrt+1PvddqtxK9IJpAZStcy3uSm69DJqoqlS8rssR3lJOxiC8mIsoEGW5qN4Ldg6nhUYMqzlVw17ijU+twVjmjlqtRypWYrCaKTcXc199n8ZXFdAjtgFquZvf93Xg4eaA36J9L5Pwt1HI1bho33NRuuKpdUSvUnE07+1zjpgrE5ut4oCgh3U1aOEX7RqNWqLmQfgGjzYiTwomG/g1p4NeAhZcWYrab8XbyJs+Qh0ahoU1wG1oEtaDcUk5OWQ555XnkledRYCygwFiA3qB/ZswyZJLkrWhDISio7lGdpIIkdEoX3PNKcDaKGHVOlGNGtNmwC5I5nVkBJvnvt1r9VVQQvVVyFUqZEqVcMh6slGGTqySJyMdGYMHuwfi7+GM9cpB7zibSvJUMqTeEfEM+x1OOU2QsokW1FsRWi0Wj0KCUS4Tw48nH2Xl/p6MFomdkTwZGD2Ti/olkFT3CIoiobAJWhfR/D40HI2JGMKTeEKrNnI9u3mJ+bKPl85ahDHD7kdwME8EZdzgf6oGC8Oe2y/mlTmD8OejTT0Cr0DL1pWnsSjng0O2vgE6lQybIKLeU/z7J9nHFoKIyA1CjXENAjoGWXceyJ/8cV7Ou4qxwpk1IGzydPNmbKLXmVPT133rrFu9+1hR3F282fZOMyWoiaFYQBcYCiUuByNzdkmP4Gz2kj5Ujx4ZUPfqp808M2joIZ6UzIiKh7qG4qF24m3e3kjRr04CmTG01lcFbB1NuLOXXjXAyGGY1A/HxXCqbVsbptNPM+SSOneshZIJAirtIhEcNhhfX4K17rtg3/YK7Ec4HwNq6Ar9EC2RrKwdpAgJBbkGEuIcQ6hGKvKSMbfG/0PuunHl7YHVDJZ81M5L6WIHb38WfQlMhhwYf4lDSIT4/Op3ib2Sk1AmkR7scErVSG0mfqD40CWjCN6e/kThcdlul81Pbpza3cm+RMC6BSG+p5TS/PJ+3977NhpsbEBDw0nqRV57HlJZT+LLtlyjlSsc9vW1IW1b2WMngbYPZkrCFaN9o4sdKCmbpxenErohFFEWODzvOF8e/YNm1ZY7zXnGPu5lzE5VcRV3fuuiNepoFNmPn3Z1cfOMizZc2p3et3oyauAoXhTNpu9bSeV0XpjWfzIioQUT/HMOwNG/mzbguVWZ/+/N0xfbll8kY0pOxtZLYUXCWOppgWjrVZFnBYVzlWkbpYrlryiTenEaS7UkFL0qogkW08ogiVtlfpUmqlaCV2xA6d4bw8Gc/y2rFbrXwL89bTPdLoH2RF2v3afG9kwbe3hAaKlURH2972rWISTHZnPcx4WwRMMpFbDIILZQRlyIjLkmg3QM7bmU2THL4ojXMbCW17K3cBlFPhvoMkt2lYGxFjOSJ0yAD2iRDlTJJUe5Ydbjr/Tg+ECUp6woO0m8RbZ39TJW+4j5hKpyAKMB9L0ntK8o7CovdwsWMi4Dkk1Jd4cXUnxNYWl+6jopVPOF9/QYKQeEwaHxa2tjTyZPssmx+TfgVvUHPwOiBxIXGkV2WTWJBIjeybxCfHe8IMpwUTijlSofL/fNQ07MmoU5tSX8Yib+qAXWDfBnUxp/o4D82v9t8azNDtg3BYDXQpnobdvXf9bea/1rtVt7a/RaLryzm63ZfM7XVVAxWA7029uJYyjF+7fsrXSO6VnpPhYjE2ZFnaRbY7G8byz/43+GfQOO/hCiKvLrxVc49OsfNsTfxcfYhtyyX+ovq46x05p7+HrM6zmJCswm/u5+lV5byxs43GNNwDPO6zqscZAAkJ0s38EOHoH375+/kP8Ca+DUM3jr4T1+kK66t4N1ts2hkX4xNtD2WhhUdRmhPOBpvUixILRtyQU6ALgBXjStquRqD1UCxsZgySxkGqwGzzfy7fbcg7VsuyLGKVlQyFS5qF8rMUquGq9qV3PJcqrlVw1fr+0zPpl20I4qilNF/nNWveNUb9P+RtONfhUyQORSVlHKlY5Fe8fqw6CFyQU6QWxCJ+kRkgowqzlXQl+spsz4rf6i0gbPciTKZ1bGQqq0MwDktm5p6gZhCJ1zyixHskBbuQ0KYK7dcTdwzZ2ITbfhofQjUBXI1++pzx/ty6MtMbTmVy5mXmXJI6uGNqRLDkaFHnvFfKTOXUWd+HVKKUhzHqpApmNJyCp+2/hSAkTtGkrhzFe+eh9f7wKj6o1h6dSlNApqwtPvSZ9RRALqv706xqZicshwS8hJoULUBl0dfxmemF3lGPQo72OUCQ2KGsvvebnrV6sWyq8twU7uxY6WZpndLCZukIEVrJn2OklvRfrzzikB2qSf1bPOB3/KJpLmqMUtO8G1T4PBWV64N60gDz02ApKI0ucVk3tz1Jq9EvMK63utQypScTD3Jupvr2Ht/ryTv+jttcz5WNbkKE92SVewMeXFA7DjXMiVVC6w0ewT7GkgqSb+9Tupkw4E1AtUnKxyZWze1G0arkfYh7dmTuAeAwXUHsyZ+Dd1qduNI0hGHtKaI6HDkVtkFDqwUqVOgpMNwOVc9npDLE95KYOe9nTQc9AF3vGHcK1I7TF55HiXmEuyiHbUFut2DQfHQReIiEx9TlcEv5ZDgbgNBIkWPqD+CIcHdUcydj2zOHMLGQ1y6htM+Rsz+kpGir9YXi91CgbEAP2c/pr00jY5hHen2eST35kKHwZI5ppPWjaXdl9I7qjd20c6mW5sYvWu0wy+mwtujsX9jLmZcJPnd5ErV5BOpJ+iwuoNk3KjxoFONTqy7uY76fvVZ33s9YZ5hbLq1ib6b+7K+93q6R3THdaYkrf10C2BqYSqxK6SA+eCgg8QsiqHIVET/2v1Zf2s9KrmKcI9wbufdpl1IO06knmB0w9FsvLWRVtVa0TywOdMOT2OtvC99P1rHo32bWOv8gKmHp1LbpzZl6cncuNIMl72Hf3fOWO1W5vYL5dNaWSiddegNei6Ousj3Z79n462N7Bu4j441Ojq2LzGV8P2Z7/nixBf0jerL5tubpeROhfiGRU7dsBaOFp66VepSx7cOOrWO3LJcBm8dzIEHB5je6H0+/uES8mPH4ZtvYNIkR4vipYxLTD82nT339xDlE8XnbT6nV61elJnLOJZyjAMPDrD/wX7u6+8jF+RE+USRWZJJgaGA0fWG07dGDwymUooNRZSYiikxFlNsKqbEXEKBsZB8UwF6cxGF5mKKLKXoLcWU2Y3/mSv7c9DcuvN3q/TheWCp6k2KJQ9/F38KjAXPNYP9I1RUV0VEZMhQypUoZApsou0Pn4kauUYykFU6Oby0zDYzpebSFxLsXcXKVV6ZIJ2iWSNq/UfBRpm5jM5rO3Py4Um0Ci3req+jR2SPP33cL4Ioinxx/As+O/4Z4xqP48dOP2K1W+n3az9239vNut7reC3qNcf2dtFO1LwoanrXZHu/7X/bOP7B/w7/BBr/JVZcW8Hw7cPZ9vo2ekT2wGa30XFNR65kXsFgNdAnqg8rX135u8SlxZcXM3rXaN5q9BZzu8x9/rYZGRAQALt3Q5cuf3m8NruNmEUx+Gh9ODzk8H9EqDJZTdScW5MI00xsZaHYn5oxEsXWTCFXSJUvdQQZ/w3kghy5IHEYKsZXcQN+UQVCo9CgU+nQKrU4K51xUbmgU+twVbs6qhkVlRK7aOdI8hHOp58HnriuKgQFy3ssZ9+DfayLX4vaCqJGzSexn9A6uDXxOfG8s+cdFHIFZpvZwT0AyWOjxCLd6Ks4V6FreFe6RnSlQ2gHR3tQBSoWMAcGHWDa4WlklmZyftR5TFYTdRbU4Z3G75BWnMaGmxuomQ/jLgrc7N+eZcXHsNltju/k6QeSVqnFxSanyFqGSWbH1STQPknk5SRoLgbwwM3GBs8sdtdWYuRJxreObx2WdpcCAJvdxuSDk5l1bhbuancKTYVMbDaRr9t/jUahIT47nkWXFrHmxhrHgk4hU5AxMYPPT3zO/IvzifGLcchQru65mpCPvqN5w6toUfJV3DeMbzr+udKEdtGOz3c+vNPkHUbWH0nw7GAA9g3YS8d1nRyVgnnG9ngMGMmALQMomFJAUZmeGZ+1J/xyCt3vwYftYXMUxNlCOCBPJjY4lrmd52IzBDH1lwMUl2gxyx+SxGIKhGuVxqCwwce3vFhSXc8jV2mOectcSH47kQOZpxmwZQCualcEQXD0iHtpvcgozsBqNlKlHNJ10lwcWm8oS68uxUfrg9FqRCwswCiXeD1PgnORhlUbcjnzMhqFBovN4mgdczbB+AuwrX0gD2w5aOQaR3ZcREQQYcJZmNv0MWH/N5AJMlRylWOfFR4av5XZ1FjgzBLwNkD3UVquuT5L6q2XCbvXQdi7YFJIGVJXjSt38u5IHivmMla9uoqBWwfSXBNOk9MptChx5/U2ucw8JBBgVJL0UjTyK1cZd86O2gbzGkuE8mC3YAqNhcgEGaEeoaQUplBgLGBGuxlcy77Gxpsbkcvk9Iy3sHEzeE+GBjkCK+akoVZoWH5tObPPzXbIYGsUGrpHdGfT7U34ufhRbimnyFTE8HrD+b7j93g6eXIx/SLtV7WncUBjlnRbwjt732H3/d10De/Krdxb5JXnMb/LfAbXG0y/zf04mHSQpd2W0vOXng7j0KH1hrK422KUciUP9A+IXRGLUqYktSiV6u7VsYtSn/yljEu80/gdFl9djNFqZETMCFZcX8FXbb/iwyMfsq7XOt478B4dqrdn+pvrKaoZQv2T92n4c0OuZl1l6YNoRpSEwdatz57kxzibdpaxu8cSn3WdsWl+tHj3ewZtHcT5UeeJXR6LyWaicErhM332JaYSfL/3pWVQS84+Okvqu6mUr19J/Hfvc+OTMcQ7FRGfHc/dvLuOeemv80dv0CMgMKlaPwbN3E1oro3cJT+S06Q2JaYSrmVfY+W1lVzOvIyP1ofY4FiCXIMci+GKYKHCm6TAUECRqegPAwSZIHNcN89bjAsIOCmc0Cg1jsV3hfRrTe+aFJuKuZZ5Db1RX2mfGoWGckv5Cysa3l6FbCnqiiiKbNwmZ/kbjblafA+zsQyz1YTMLok2bLC+SviZeyRl3qbP6zh8LhpWbchnbT7DYDFQbinHYJVeE3ITOJpylAcFD1DL1Q6hkyifKIfKYpm5zJGYM1qMmGymP5Qt/i2ed1wyARqFufHN0Jr/8X5WXlvJ6F2jMdvMdK7RmW39tj2j7vjfYPHlxby5+016RvZkTa81yAU5Q7cNZeOtjazoscLRkg5S98eIHSO4Ofbmc5NW/+D/Fv4JNP4LpBamEr0gmt5RvVneYzkAHx/5mK9PSjKFga6BnBx+Eiel0wv38fPlnyW1k8ZvM6fznBcv/PPywMcHtmyBns+6Ov8ZbL+znVc3vsqBQQfoENbhD7f/6fxPTNg/gW6qcxSVPTtdTORyU9sfo9X4wpugk8IJd43kfeGh8cDLSXLD9dZ64631xtfZF19nX/yc/fB2lv72NGl+2dVljNoxirzJeWSWZlJnQR0mt5hMTa+afHvmW1IKU3ip2kuUmkvJKMkgszSzkmKVgEAVlypoFBoySzIdEoG/7W9f3G0xQ+sNpf7nVZHl6ymqEcTD4oeMqj+KIfWGELsilpaBLTn96LTjQQLg6+zr8IPY/2A/u+7tIiEvAaVMSevqreka3pVXIl4hxD2EOgvqEOwWjEqu4mjKUU4OP0m9KvXotLYT9/Lvsav/LkZNj2HaESujewgYdE4U28sREIjyiaLEXEJmSSZ1fOuQWpSK3qBHIVPgo/VxOBxnl2bjX2SndQq0SZEczMP10GUgGBTw2m1QtG1Pl1Hf4B8Wg8FqYNCWQey4uwOZIGNWx1lY7BY+PPyhVNrXeHIz9yZ+Ln6MrD+SkfVHUn9RfYpMRfwQ9wMTm0/kZOpJXln/CsWmYuLC4vDV+nLxyBrSXeE9p3Z8/smLs7K3c29Te35tDg4+yMuhL9NwUUOuZF1BLgrYHmvJj9AHsyS+OtfXz6b+ovpSVe7fG+HHH8kPD6Q8M43giVLbj1ah5acuPzE8ZrjjmrLZbQzbLvER7KIdrUJLufU5ajkVMr6A0greRoF8ZwGzYEcuyNGpdcztPJcg1yBar2zNvDpTKJ79DdPaQ9uQthxNOYqr2pVONToxMHogPTb0oLrGjxRDFrOETqypmsvlzMsv/C5kggy5KDBzvw2nXq/zVtlGTgw7gV2002ZlG8d2Chu8fQEWNAKl1oVgd0mBaP3N9cgFOX2i+rDtzrZKgYVCUDjmvNYE1xZKvfzthkKKx29HIhFTv9tYwILGcNn/ybUUFxrH/iTJq6JjWEc61+jMhP0TqOFZgyjvKPYm7qWld3123m2I7edFuBrsWGUwtwl82xKynoq9O4V1YnmP5YzeNZqd93byzcvfMKbhGGacmsHsc7MRBIHpe40MvAGDRnpwdHYB7y7ry89p27CKUsteuGc4yQXJzHh5Bu+3eJ/47Hg+OPiBw09DI9egVWkZ02AMCy8vJNI7kgODD+CickEURZZfW86EfRNw17hT07smh5IOMTB6IF+2/ZJmS5vhofEgqzSL/A/y2XhrI8O2DaNtSFuH+VhCbgJ1F9ZFJVdxbuQ5Oq/tjJfWi0R9Ija7jZ86/cTo3aOpoq2Cv6s/VruVYPdgLmVcYkLTCXx45EPW5sTSZ/4xbpzdRqvDA1Er1HjlG7iY3gW3Nc+aCeaX5zP10FSWXF1Cw6oNWZjViEZzNjNvz+dM2DeBl4Jf4lbuLXLKchxy26IoYrJJLaklphJG7RzFidQTdA3vSv/wnpRMmUhxzWBK+rzqCAgKjYVklGRwX3+fvPI8SXrVImJQPp4P4m9EMZ6CWq52tEfKBTkCAnbs2OxS9v5FzwwBwSHlCuCiciHYLZhaPrVo4NcAf52/49lR8RxxU7shCAImq4lLGZfYcXcHm25vIvmxw3dFm5zNbnMkiCqSTJHekUxpsIA1+7SIIo+TaXbs2ImXv8WAJi2Zf3E+Mjv8shlGvyLxDjubg4kMb8Gs1PUoBAUTTln57Bj0X9aFt5q9Q+e1nXmr8VvM6zLvud/PlcwrDNk6hFu5txzS7uObjmdYzDCsdis5ZTmOn+zSbOm1TJItrvi73qD/3SDtRZUab52STR8837j1RSg0FhK3Oo6LGRfRqXRs7rv5byVl77i7g9c3v06TgCZs77cdnUrHmF1jWHZ1GQu6LmBMozGAlHgMmxNG2+pt/7K4zT/4/w//BBp/EXbRzsurXuZBwQPi34zHTePGrnu76La+G6EeoZSYSrg0+hLV3Kq9cB8LLi7grT1vMb7JeGZ3mv371YWSEnB1hfXroV+//2rsoijSYlkLrHYrF0Zd+N3PLTOXETonlC7hXdDkjCPhoeWZjI/odI+TluGPfxfpE9UHHycfFlxeQLRvNCMbjMRmt5FXnke+Ib/ya7n0+ryHjUahkR4kTl64qFw4nXaaTmGdaBzQmJXXV+Ln4scXbb5Ao9AwdvdYSswlnB95Hn9Xf+yinbzyPDJKMsgoyeBs2llWXl9JWnEaVV2q4qX14l7ePcz2+VxHWQAAIABJREFUZ1tZ/F386XvNyuwaUitHi2ot2H1vN3bRjk20EewWzCexnxAbHEvE3AgUMgV20S5l5bU+DIgewNB6Q3FTu7EncQ+77u3iaMpRzDYzfi5+ZJVm0Ta4LcdTj7NrwC46h3dm/Y31DNgygO39trPlm+HMW6MnN9SPiW/XYFu+pOz0NMlcQKChf0Pah7Tn5dCXaRnU0hHQ5pXn8dmxz1h4aSEeTh408GvA6Yencc8vQ2uBcpVELo14nNi75QOnQmQcDRYRY2PZWXSB2OBYnJXO7E3ci8FqQECgf53+LOm+xPE5b+x4gyVXl6BT6bj79l2GbBvCydSTxAbHcijpEABvNnqT+NNbCEotYP38HHB7vnrJokuLGLdnHIVTJZffn87/xPh94ysmGc4qZ/LEyWi+/YHynHRcZrqyVNuP4R+sh4AAUkvT0TtBozclErdckOPh5MHkFpN5q/FbuKhcACnYGL59OGvi10h8E5sNG39MQO+erOb7nSbk0XXp3CGbAqUNNyd33DXunEnvTOl3XxHxqSc6jSsWm4VHJY9oFtCMBn4NWHx1seQ5YJM8KPZ1DCWlIEVa5GBHo9Awsv5IXFQuzDg1w/GZC3dCoid831Kq8gGOzLJMkCHa7eR/I5nnbWriTKBrIMmFyUR6R5JamOqQHH362qrICMvsEjF4+R4l7QeLpOishHmE8aDggWPxBdBQV5Mmh++yqBH46vyQy+Skl6RX2uZ58CmFKecVvHlealNb0Aj+3RyyddA3HrZHSdURb7OSPJUFLycv8g35yJDRIayDZLBpLqVltZacSD3B0fUq8m1lTG8LVxdB8zFy4qtJsnZft/uaEnMJ/zr5L9LfS8fTydMxjq+Of8UnxyQn5ACXANJL09EoNKzttZZetXpVGnNqYSrDtw/naMpR4kLjOJN2Bl8XX95s+CYfHPqA+n71uTLmCiCZj/Xc2JMwjzB2D9jNtaxrdFnXBZ1KR5RPFD90/IFOazo5qlDtqrdDq9Sy6/4uBtYZyIZbG5jYbCI/X/mZ3rV6czDpIC296vPj2J10HetKbqA72/ttp+3cRrSy+rP+i9uUmcskc01TEZtubWLBpQXYRBvdI7oT4xdD9YMXeP2LLcR+G8U5430sdgth7mE8KHyAn4sfJquJEnPJC032QAoadCoXXJ3ccVY646R0Qi7ISSlMId+QT7BzAHO2W+h+KoefO3jzbSdn8s1FlJhLXijkICCgU+vw0fpQVVcVX2dfPJ08uZ9/n5MPT1LVpSqTW0ymWWAzR+BQETQUGgs5knzE0WaVUpiCUqakRVALOoZ1JC4sjgivCM6nn+dk6klOPDzBuUfnMFolHl1VXVVMVhMZJRmOxbiHxoNetXrRLqQd8y7O40zaGbRKLQaLgf5hU/Ex9yM9z0ZoFS3BmlP8dOoN7nqJvHYLNtUBlRWmXlTzRXMTQbog0krSHMd6o9ZP1Hn9Hd75ti2dekzilfWv8Fnrz/jwpQ/JK89zBAephamsjl/NyYcncde4E+kdSZm5jOTC5Oe2QAkIeGu98dH64KZxQy5IKlVFpiKySrMcnI3fVvxDPUIJLf8KW0l1RNl/V9F4GgsuLuDdfe9isVvoXas3G3pvQCFX/PEb/wOcSTtDt/Xd8Nf5s3fgXvx1/kzcN5E5F+Y4kloAs8/N5v0D75M4PvEPRXb+wf9b/BNo/EXMOT+Hd/e9y+Ehh2kX0o6kgiQa/twQTydPHhY95PCQw8QGx77w/fMuzOPtvW8zoekEfuj4wx+3MJnNoFbDihUwdOjvb/sf4GjyUdqtasevfX995oH7NGacnMH0Y9O5+/Zdhm34DCHjTaByr7ss4Gfeb9uH7hu6I5PJHC1O9fzqkahPRC1Xs6nPphe6tYqiSKm59LkByNOByc67O9EqtWgUGrLLsp/7wBQQ8HPxc2S7dCodiQWJ3M69TRXnKgyLGUbr4NZ4ab1YeGkhy69JlaiqzlXJKstCJVcR4h7C1AQvjqafZmX9Jy63T0MtV6NT68grz3MskgZGDyS/PJ/z6ecpMBYQ5RPFsHrDGFh3IK5qV/Yl7mPE9hEYrAasdisahYau4V1pW70tnx3/jNhqsTTcfJp3t2WzoqMvnzY3ordWVq9y17gzu+NsutXsVmlBBZIp4exzs5l5eiYAfaP6cjPnJufSzzm2UclUyGVy8ibnkXHvEolblpK5ez2tkqyE5z12oX1P4gC4mSTTwkJ3NS4qF/IN+fg5+zEsZhiN/BuRXJjM5IOTHdWiYlMxTfybcCz1GO1D2iMgcCj5ENVdgpCnPSJROxW+/vq5c2Dw1sHcybvDxTckcuXWG5vptaWPo7oQoAvgUe2l0KkT3L9PyC8t6HMsl7GXBcb30tL7YhnRJU6UHN5D25VtWd5jOecfnWfp1aW4adwqBRw2u41BWwex4eYGR+D3PPz2vH+j7cH7R0wUnNhHozECKa4i39WeQLM5W1jt9pCU1+M4lHyo0gLcVeVKqUXiWHRQRnIv9w4P+p+l3e0pnEk7g1qupkHVBlTVVWVB1wX4fOeDIArYsLH2YjWUyQ9JWjiTpdeWkqhPRCFTVAocdqyTZF3rjcVRhQnQBRDsFszlzMv4OvuSVvxkIQTgXwTfHILBvSUH8FInGR4aD/rX6c/h5MPcy7/nOG4vs4J8lRWNGa5OTCDcM5wGixoQnyMRoutWqcv+QfvZe38vI3aMoJbVgxGHCxh7SXI2ntsEfmwhR+bjS0ZpRoV1CPWzZFz1s5M3E6a3hXlNQW6TyLoVqFg0qWRK0mZamN8YfmoK+d9C776wJUpaNHYJ78Ke+3toFtiMr9p9hZvaDXeNO24aN/be30v3Dd2Z3no6X534Cptow9dZ4oO8EvEK/477dyU3YrtoZ+6FuUw5NAU/Fz+0Sq30fdhtqBVq7r9zn8D/j733DIvq/KK+f9NgBhiGXgUFBKSIigj2LpZo7L3ErrFEY4waY2Js0SR2/dtiSSwx9liwV+wdsdOUJr23GYaZeT+cMErE9Od5nw9ZXnPBJXPuuU+Zc+6999prWdYAIDojmi67uiARSbCUW6IyVbGy40ra72hPoEMgH4V+xIADA4zGa8PrDWffk32UaEto7tacaynXaFqjKVeSrxib1l3VJqTKy3G3qAESMTnZKZRI9b8rmS0WiVGaKAnLlnNqWQatJym5ZFeEh5UHoa6h7Hm8h151euFr6ysILaCnQleBWqdmy70tqCvU+Kq8qPEggTx3e3JsBIfw4vLiKp/jUAwnd0GdLFgwyJWzzV1IL04nuTAZS1NLOnp1pINnB3QGIamUVpRGQn4CT7OekliQCAhUS08rT7LLsskry6OPfx+WtFsiqLj9wTPQYBCkbX959gv7n+7nftr9Kt8FuVRODWUNoXemIJFyXTl2Zna09WhLO492tKnVhsT8RFbfWs2xmGPYKGwYEzwGXztfll1bxqOsR0JfnVjGF7J2TD2ciem1m2gVpvTuXcHR2jr8bevwJOcZFhrBT+haTTHjQsZxPfk6URlRtLYK5sLUe4zvbcqF1jWJyYnBTGb2Tp8RG4UNtW1q42ThhIOZUNVXSBXcTbvL2RdnUVeoCXMNo45tHZKLkrmXds8oL640UWIuMydX/VpYRISIAIcAxgSPYVi9YSTkJTBo5RhqSNZgkEjQIzL2aKwc5Ueg+x/3aLwLmcWZtN/RnoeZD7GSW3FkwBFa1Gzxt8d7E8+yn9FxZ0f0Bj0nB5/E396fz89/zuIri1nQZgGft/icUm0pNVfWZGDgQNZ0WfOvfO5/+D+D/wKNv4Fn2c9osLEBY4PHsqrzKsq0ZTTb2ozUwlQySzNZ03kNk0InvXP7ymzttMbTWBq+9M8ZzxgMIBYLrstj/h0TnfAd4aQUpvDww4fV8uYrHcWH1B1CM/dmDDwwkKHec4h6aoebohG5uic80a2mSCSoqihkCnxsfTg68KjwMHiyn/MvzhsXLd18urHuvXXGB/Vfxfhj47nw8gLPJz0nOj2aehvr8WP3Hwl0DCS7NJu7r+7y1cWv8LD2oE2tNtxJu0NUehR6gx5LU0vKdeXvvOGLEKGSqyjSCJm5UGktmlx5yaowoWw/odEEdkbvRCFT8CLvBU4WThgwkFachpXcilJtKQqpolrJQRAWRNZyaxLyEwBo6d4SH1sf7ry6Q1SG0CtgrRZhVWYgWfWrLCUC5UMilqCQKhgVPIo1t9ZQ26Y2B/sdxMvGCxCy9DujdzLnwhzSi9Pp7tudtOI0riVfw0ZhY5RItDOzY26ruUw+MZnM6ZlcSrzE0END8bbxJsQlhCs399EwppgbHjI6JMvYtEc4VrnuDjwNcOAn33K2Wr2o0uPxJiRIMJGa0D+gP739euNh7UF0RjQTjk8gvyyfry9J+HR7PFK3mm9t67HKgx6+PVjRaQXqCjU2C8wpEwsLdndLd5ILk4nqf4Egv9YwYQIdC9fx0gqSbKUglbD7gIj3rRtTfOIwqiUq9vTZQ7+AfiQVJLH48mJjwDG9yXTe836Psy/OsuDSgip87d8GFmZSM9a9t44t97dwOekyABYyCzrZNuZQ2jmkOgMaCULPhQF8bX2wlFtx69UtFFIFtVS1eJrzFJWpCrlUTphzI47EHePQq5ZsbGHGyfiTKCQKBgUN4kbKDbZ238rgg4NJLUylrKKMqbelfHylglofV9+XJELExNJA1nz7EKdPhGrBm6j0Eah8rwEDSjVkrjfnqXkZYSP1RiO/pjWaYmtmS2JBIikFKVQYKihUF4II6maJMa8fyvXR1wH45so3RoneLrW7EDE4gkvXdnN/2iDG3QWtVMSqUAMrG8OULvNo79metj+2pVxXjggRNa1qMrLBSL6+/DUbzPvzQf4PuBZBqiU0yDGhyFAu+Gf8elv0KDEh4btyPvhAxfZaBRR/Dd91VrG2qZR8Tf7vSiJXepZIRVIkYsHFOqkgCYPBgFQs9Fq1qdWGAXUH4GzujIlUUFdLLkhm8ZXFPMt5hpulG8mFyUhEEtxV7gwIGECxttgoXFApE+1o7ohMIiNfnf/WIr06VIooSEVCI7ABA1qdltrZBoLNPPHuOAjlqvVcDbLmiFTwW7mTdgd3S3c+bvwxAQ4BaHQaijRF5JTlUJCbxszOC3GfLiHNwkCQQxB56jzjIv+3qLzelSZKKtSldE4QY9dzMHYqF2wVtjzMfMiuh7vwsvHiB9VwGn20BJG1DanbVvFF3gG2P9iOs4Uzn7f4nJENRmIqNX3nvuar83mQ/oBVN1dx+PlhTCQmRhU3EBbcQY5BBDkEUddRaD4PsA/A3MScjOIMLiddJjIxksjESKIzojFgwE5hh7XCmnx1PjllOcYAX2miJNg5mP6B/RkWNKxalaT43HjW3lrL1qitlJSX0MurG96ZWn7MPEuqqQYRYK2T0dW6MdZegdzIuset1FtVvod2xUJgnPcbZnTsOikna1awZVR9otKjGBo0lNa1WmMwGPgh6geuJF+hi3cX1nVZR00r4V6o0+uIyYnhXto94ZV+j3uv7lWRSbdV2OJh5UGJtoTn2c/R87pnMdA+kFHBoxgQOAAnCycACtQFBG8KZvo5Nc2f1GDnrC0k5GjxdDRjaBuXfxRkvIml15Yy6+wsdAYdQ4OGsq37tmrXE38Vr4pe0XlXZ5IKkjg68CjN3ZuzKHIRcy7MYVazWXzd7msWRC5g8ZXFJE5NxMH8bXrYf/h/A/8FGn8RFfoKmm1tRr46n/vjBOfY0UdGsyN6BwCD6w5my/tb3hk8rLqxiqmnpjK9yXS+7fDtX3O3lMth6VKY9O4g5q/gzqs7NPq+Edu6b2N4/eFv/X32udmsurmK6PHRtPqhFSEuIThZOLHx7kYih0dSx64OLstdjJUFM5kZgQ6B3Bx90zhGTmkOh54dYsmVJcTnxQOCrOaAwAH09uuNm8rtT893/5P99N3Xl6SpSdSwrCFQump34X/vvea/Ho89Trfd3bBV2JJVmsWI+iNY3G6x0ZSqTFtmrJL02dvHOCeADh4dOPtCoPxgENy6k1Xv5h9XQiKS4GXjRQv3FqhMVYJGOyIq9BUUagp5lPmIZznPqkiLVsGvWXupDnSi19KilV4IYS5hrO+6nkCHQJ5lP6Pnnp7klOWwq9cupGIpM87M4EHGA9rWaotGp+Fq8lWCHIOQS+TcenULEBbrV0ddJbs0mwYbGzCy/ki2Rm01VmOcLJwYWX8ko4NHM/TQULxsvPgxbAlERsLFi8Lr2TOKTWBaXxXfexfQXOrJHW0iapHOeBzcVe6kFqVWke61kluRr84HAzjq5Yxs+TFtPdviYeWBu8qdjJIM3Fa4sb/vfnr79yZ8VQhn8u4aF5pftvySRZcX4ap04faSHG5alTKkl+CiPjBwILsf7SblSiiuMlt0x44iXSBly/tbGNlgJCA8xH959gsLLy8kKl0I6sQiMS3dWxKdEW0MNpQmSlSmKqPDbuU+tfVoS1JBEs9znlc5bYG2AVikZnJDnsX0q/DtdXOOjWzO+zanjFnMSopRQ+eGRKVHEVBhjTwtm7s1xOh+9emQiqXVVuc6xgoZZKdPoHVYf/Y82UOoSyi3Xt0ixCWEO6/usLrjKlr0mMJHXQRJzTDXMJaFLyO9OJ1n2c9Ydn2Z8bqTa2HwQxh1DzoPhoI3FkiNXRtTrC1GXaEmtTCV3n692f1gJwYEGd3+jYaztftWUgpTCFwfiNJESWpRKnVKzXlUPAzD5u8pElewojHsbedI19AhLLu+jIVtFjI/cj7lunI+bfopgwIHEb4zXMis6/XklOVgwECAypuZuX788uIkB2uX0/0ptMhSsLeODvu8co7tBvepkGwFcetN8Bo4AVasQG/QE/Z9GC/zX1KsLaa8opwGzg2o61AXiVhCVHoUd9PuIhVJqWlVE61ea6Qg/dWm2jevCaWpErlUjpnUjNSiVKO8cwv3FgQ5BlFSXsKO6B3UdayLt403e5/sxU5hR7m+nNY1W3Mk5ggj6o1g24NtTGo0iQ13NmAmM6OwvJCRsUrssoopm/wh2Xu28tjLkoeiLAwY3nmtSMVS7MzsmHQskzmt9bgqXenq0xVbhS0rbqygm083Pqj/gbHSay23pvHmxvjZ+zHesi2db0/hnu1sGkxaRHF5MeOPjWfXw11MCPmQZXdskc9bRGmHNnz2gSv/i/sJe3N7ZjefzZiGY5BL5X94zGJzYhl+eDjXk6/zceOPWdh2IaZSUxLzE4nOiOZhpiDbGp0RTWxurDFokIllxvNkp7DDTeWGRCQhIT9B8OuRmNLMvRlta7WloUtDcstyOZtwltPxp0ktSsVUYkpD54YEOQbhYe2BXCInqzRLoDAVpZGW/Iz4okRyJeXVSt6+CRuFDVqdtgq1ybkQMi1FTGs6XbgPFabw5FowBY/vsXndKCFJMfwyV5OvMu/SPGzNbFnecTm1rWtzP/2+MbB4kPHAGHR5WnsS7BxMoL3gdRWbG8vx2OPG73FlcOFr68sH9T5gQOAAPKw9qszVYDDQd19fzsedIWODElmHjrBlyx+ep7+L5IJk2u9oT0xODHZmdpwYfIIQl5B/PG6BuoCee3pyLfkaP/X+iV5+vVh5YyUfn/qYyaGT+bLVl9RaWYspYVNY1G7Rv7An/+H/BP4LNP4iFkYuZO7FuVwbeY2wGmFsvb+VUUdGYS23xtvWm0vDL73zxrvi+gqmnZ7GjKYzWNJ+yV8LMkDgt3/5pSAh+C+hz94+3H51m5hJMVUyUunF6Xit9mJK2BQAll9fzpOJT5gQMYFT8aeI/ygeT2tPBu4fyM+PfwYwurxeG3Wt2pvMvsf7GHF4BDqDzqh3H+YaRh//PvTx7/OHPMuc0hzsv7Nna/etDK8/nCknpnDw2UGSpiYhEolIK0pjxtkZ7IzeCcAnTT5hafjSaseKz42n9praANS2rk1cXtzr7KdYigkSBt/WUOLjQXwdB1KLUkkpTOGH7j9gbmLOuRfn2HBng3G8EOcQRCKRMYipVGX6I4gM4JMt8OVvuMJjp99/v43CBhelC6mFqcYHj6uFq+CTkPOcOrZ1mNNyDlvvb+X8y/MA+Nn5ETkiEjszOy69vFSlobijV0fGNhxLN59uyCTC+euyqwtyqZyD/Q9W/fD0dGPg8cuzw4xv+IpCE4FrH1JmzT3zQj5v8BFfdlvKq6JXvMh7wYv8F8TmxAqBgsiSDG2BMYsOwoLfRmFDdmk2/QL6YaIXsfPJHgD87f15kv2EEfVHsPPBDlRlBnQGHXkK8Lfy4VlBHMHOwYhFYm4cskNkYgKHDmG2yIy5reZSy6oWx2KPcTz2OLlludib2dOqViuKNEWcf3EeS1NLWrm34uDz1/vpaOZIRmkGv0WgQyCdvDqx4sYKdAad0dCveRK4FsKeQOhlqENWWjxxFlpyzURopAYsZBZIxBJjpUteDmoTsNaIKZKLqTBU0Ni1MTdSbxAxKAIRIrr8JKjKNSi3497X2Wya25XCDq2YdU7IGopFYqaGTeVozFFCXEKQ7dxNqQziGnuTqsvHWmHNicEnKCkvodH3jdDoNISmQIEcgtLhhDfYOdbiZf7Lt/azMsttb2ZPXlEWzsVCsA1CRbJQU0hsTiy1i2QMjkhm+D09JXIxSxvrWRsKeksLcmbkoNaqqbmyJvkaQVHqUL9DvF/nfQAuJ16m1Q+tfqVFmdCrTi8eZT3iUZbgnB5QpGDKTej5FFYHlSHRw+Sb4DsRspVwcgdo5DKGDJa/U9Lzt3C2cMbe3B6liaBEpzRVYjAYiEqPIjY31qjG5WTuxPu+71PbpjZ6gx6tXsu62+vIKc0xqgJp9VoczBywN7cnoyTDSGV5F96UMxUhMvrE/B5sS8DUXEmJuogCOUbVJplYxoI2C6ihqmEMGiopogl5CQSt9KHVCz3hE19Lqvuu9aWbT7cq98JDTw/Ra28vro+8RsMhn+Lc7AajWn/MBw1G0GdvH5IKkvi+7UoGLvwFw/HjHBvYkD4+UViZ2zCr2SzGh4z/XZGTSlRS0WadnYWL0oVt3bdVodcYDAZicmKqVCwqKzCO5o6YSEyMSlWVx0wsEhv9ejytPLE0tUQilhgrTJWN01mlWdVWAs3EpjiopXi+KsMtX4+D0gk7vxAyfFy4mH2He+n3qogmVJ7DEQ2EpFXA/wLILssW3qOvwKEEsi3EfNX6K768+CULHzrwyS+ZdN/YhtMpF3CzdCO1KJUA+wAkIglPsp8Yq3u+dr4EOwcT7BRMsHMwKlMVV5KvcDz2OBdeXKBcX47KVEWFvoISbQn2ZvbIxDJeFb+inmM9ZjabSd+Avkap20pUUruvOM+h2biFcOMGhIX94fn6p5h3cR7zI+djMBgYFzKOdV3W/fV1zm+gqdDwwS8fsPfxXtZ2WcuERhPYdHcT44+NZ2SDkShNlWy7v42kj5OwNLX8l/bkP/yb+C/Q+Au4l3aPsM1hzGo2iwVtF3A/7T5NtjTBWmGNwWDg7ti7uFq6VrvtsmvLmH5mOp81/4xFbRf9vS+fgwNMnQqzZ//DPXmNp1lPCVwfyIqOK/go7CPj/08+PpmdD3dyduhZmm5tysxmM5nfZj5119XlUdYjyj4v43bqbdr82AZXpStJhUmAoC4lFok50O9AFd32SiQXJNNvfz/upN5hYN2BFGmKOBF3Ao1OQ4hLCH38+tDbvze1bWpXO9/gjcEEOASwo+cOziWco/2O9twYdYPIxEjmR85HIVWwuN1iHmc9Fsr0Aw7T1afrW+PMOT+HZdeXoa5QV6GYLGqziHmR8+hYozVHE0/TJVPFoi8uErwxGFOJKSWflyAWifnw2IeCeo1tHeLy4jCTmbG281qGBA1BJBKRXZrN8ZjjnI4/zcXEi0b5zUo1MhEinqc/olSnETJpbygd/RamEiEArNS4r1zkvkvq901Yya3o7tudQk0h99LuGR/iPjY+nBh8Ak8bz7e26b+/PzmlOZwddrbaMc8lnOO9n95DWaDBSm5JnLQQsQEm34B1oXD/uBsB9cOhdWto1Qrc3Ki/oT6hTg1ZN+0cK9qb81WtlyikCvr49eHWq1vE5sbib+/PrZRbbx0HE72EcrEO9MIxCsgRMXnYOsYf/xCA88PO02bMIoqUpmye0Z6ZZ2eiM+jQG/QEOQbRzacbXX26EuoaiqZCQ3RGNGcSzvBj1I/E5cVVu49mMjNjv0klGrs25mn2Uwo0BXT17kpSfiIxrx6ilr29vdgAepFgDjazpD6Fdb1Z91JQDjJgoOsLGcouPTkSF0HrWq2JiI3gzNAztK7VGvOvzSnXlSNDSsZyMaqPPsXfcT/Pc54jQoSntSdhNcKwkdtw4OkBsvPTCE+ACvca/O/Ti3Ta1Yns0mzUFWrUFWo6Jys48GMZHlMhRwEVEhgWNIzIxEheFrw0St9C1Qxyx1i46g7FpkIAYjAYqJmr59s71nS/kUe+HJY2hXWNoEz+mobTwr0FFxMvGjO0HioPZFIZhepCwaiyGgGGN1G5yJOJpOj0FdzcIqb+Kz1iA5z1EpNioScoA7p8bI+FiQXZJdns6L0DG7kNlqaWyKVyTscL0tGVviFrOq9hVINR1S6Ob6bcZPqZ6VxJumKsvnX17sqM5jMwlZjSfGtz+gf0J7M0k9Pxp43fOzOpmeApJBIhRlytglllRevN4ypChInERHCgF4kxGAx/+D1WmghmppklmVjJrQhzDcNaYW3sR1GaKNkWtY28rGTmnFRTvGwhPev0RGWqos/ePnjbehvVeQwGA423NEYhVXBRORn69OHD9e+xr/AGZRVleFh5sD9oIbWHTkWTnc7AnjquBaqY0WwGExtN/NOGbQl5CYw8PJJLiZeY1GgSS9ovQSFT8DDjoRBUJAmBRWZJJmKRmFqqWliaWqLWqckozjAmUhRSwTNCU6H53WvHVGJqTMR4WnniZ+9HXce6uJg7oXocR/zpPVxOuMgZVzUPfk3TikB7AAAgAElEQVToNLD2J9y/GwH2AUSlR7EjegdZpVk4WziTW5aLTq/D29abmJwYwTNGakp5RTmWJpbkl+cL14LBgLIcbG1qkFKaTmhiBVe3QsNxIu45C+dVIpIQ6BAoBBW/voIcBZWyyMRIjsceJyI2gpicGGRiGTUsa1CkKSK7LBtHc0f6B/RnUN1BhLqGAnDx5UW+ufoNp+JP4WHlwadNP2V4/eEoZApupd6i+dbmTGw0kRUbXwoeXPfvG/1N/k8jPjeedtvbkViQiLOFM6eHnibQIfAfjak36Jl+ejorbqxgdvPZLGy7kF0Pd/HBLx/Qzacbx2OPs7DtQmY0m/Ev7cV/+DfxX6DxJ6GuUBOyKUSQLxx9g5LyEkK+D6FII8j/XfjgAs3cm1W77XdXv2PG2RlVjJ7+FmrUgFGjYN68f7Anb2Pk4ZEcizlGwpQELEwseJn/Ep81PsxrPY9rKdeIzojm6cSnmMnMcFrqRIGmgBdTXhC8MRhvW2+ODTyGy3IX42I9xDmEqIwotr6/tYr2dSXKdeXMOjuLFTdW0Me/DyvCV3A1+Sr7n+4nIiaCsooy6jvVp4+fUOnwtXutjDHjjFCxSJ0m0BWsv7FGLpWTr85nYqOJzGszDyu5FTq9jr77+nI6/jSRIyIJdg42jlGkKcJthRtFmiL06PG08iS9OJ3SilLCXMNo5NKIndE7qRObz1NHEWnzSghYF0BiQSIJHyXgrnLHeZkzGSUZWMmtGF5vOBklGex+tBs/Oz8sTCy4l3bPqFCVW5ZLUXkRB/sdpKdfTwwGAxu/6ceAr/aT4CAhfKCOnNdKvrhZujGu4Th87XwpUBcY1bPOvTjHk6wnAH/KlEosEiMVSd/5cK6UxHVRuuBm6Yabyg1XpSsn4k6QUZzBwf4HcVG6GL0jKvQVzDw7k+XXlyMTy9jZaye96vRCuUSJukKNrakNZjoRNcpkXDlsi/jRY+GDPD0Z3kvMY1sdt80/ho8+IvnsASZnbefwc0HCsKNXRxLj7nBb+xKxAU4PO0vZo/v0uvMpWhEgFpSMii1klFFVRclWYcvhdbnEWukZ1UuCRCwhxDmE1Z1XU64r527aXeH16i5Psp6gM+iQiCSYm5hXa4YHgsFcF+8unH953ki3+i2cxZaEPSokt2l97pbEGhe1UrEUuVROK4dQIpLPs/COks8jiljex5VPAlOx1Jug1ZXzrd1AJhfsxtncmeyybFZ0XMHE0Ikov1ZSrC3GQmZB7tVmZOSl4tbxEQ5mDihkCprUaEJKUQqzms2i624hiPbPEeNeACeWZ7Lp5QHGHRNkILvGiDi4B47XNtBjADgrnanQV5BVmoWnlScJ+QnYm9mTVVrVfnnYYykmZRVsbogx8Jt6Hb47DTlmgkTthhBBwaw6WMgsKNYK94NW7q2wUlhxJekKOWU51QbInzT5hBlNZ2DAwIyzM9j+YDu1rGoRMSgC/0Zd4P33ITiY+NXziCl8ScM0eBRcg2XuKZzxgg51ujCy/ki6+XZDb9DT9aeu3Ey9SX///myJEigj1nJruvp0pbl7c7Q6rbH6WCk+EZcXR1JB0jtVmWRiGSpTFfmafCr0FcaAP8w1jP4B/Y3VhdPxp1l5cyX9/Puxved2jsUco//+/tgobCjRlmBpYkl6STr1HOvxIOOBsTl9athUVt5ciRgxBoOe/o8Ep2ubAR+QH1KXAk0BUelRHI05Sh3bOjhaOFKgKaBALSgP/Z55XKV0qkquQiwSE5cbRxPXxvheeoS5hQ1n/OXE5MYQaB/IFG1DaqzbQY6pnkWdLegZ/hHTmkzD1sz2neNXwmAwUKAuYNXNVSy5sgQLEwvaebYjtyyX2JxYUotSjQFXdSIblXO1MLHA0dwRT2tP3FRuOJg74GjuaJRBr3xZmloKyo8Z0YJrdqZAv0opFOiPJgYJ/jliglK0BJVbUTeoA0Hdx2Lw9+dUwmm23t/KjZQbxjnVsqrFgIABDKs3DCcLJ7ZFbWPNrTW8zH9pPE8gBD+96/Rm16NdRuNasQ4QgbwCChfD+K6wuSFcHXGVYJdgI9MhtTCVE3EniIiN4GzCWYrLi3E0d8Rd5U5WaRYv818KAaJ/HwYGDqR1rdbv7Hm4n3afb699y97He7Ezs2Ns8Fh+fPAjzkpnLnfcg4lHbVi9GiZM+MNz92/CYDAw48wMll1fBsC0JtP4rsN3/7i6UZmwHVF/BBu7buTI8yMMPDAQF6ULmgoNL6a++FNUvv/wfxf/BRp/EjPOzGDVzVXcHXsXf3t/evzcg3MJ5yitKGXDexuM+s6/RWXj5Bctv2Be63n/7Ivm5QV9+8KSJX9/jGqQmJ+Iz1ofvmj5BXNazmHE4REcjz3O+i7r6b2vN/v67jM6c8oXyrFR2OBj68PznOfcH3cfJwsnzsSfIXxnuNB0KZIQXjucozFHWdJuCTOazah2vw8+PciIwyNwMHdgf9/91HOqR0l5CSfjTrL/6X6OPj9KibaEQIdAY9CRXJBM5586c3LwSdbfWc/h54exMLHg2shr1HWsW2X8Um0prX9oTUphCjdH30QlV7Hu9joWX1lspDbVc6yHo4Ujdgo7fnr0EwA/dP+BDyM+ZOgtDVvq6/mk+Qy2Rm1FU6GhrUdbvmn/DXX+VweVqYoCTQFNajQxcmxFiDCVmjK6wWimhE1hzoU5RtWXA/0PUKGvYMfUdgz5XyQXPEX06WOgSC48uEylpvTw7cGdtDs8ynyEg7kD/QP6I5fK2XJvC6UVpXhae/Ik6wk1VTUZXm84Bgzsf7KfJ9lPqux7JRVELpVjq7AlrTgNmViGQqagQF29OZZYJAaDoB7/JmRiGeYm5pSWl1KuL8dEYsLoBqMJdQ2lllUtllxdwoUXF7BR2JBWnAYgyBDWHiJQrS5dYlXKfmYGpFH0NcikJmBlBd9+y64aeQy58jFSkYQKvbDoONf3KDV+PMTk9K2c9sJY7UnwXouqeXsGz67DSe/X8zOTmXF1g5aHzhJGddW9xb2vbPR3s3TDw8qDmqqaJOQlEBEXYZQMfjPjXAkvay+8bLywMrXi8PPDxoqSRCTB09qT7FdxXNklxz+xBANQZ20d4vPijYunMJcwojOjESEiP2AHXS6P44oiG7UUZHqY/tiKxUH5xs/q4t2FoUFDCd0cajyHp1+2IGDXGWxnCsdgQMAAUotSiUqPorl7c07EnQDAVAdtXoDMVMFRN2HB2ecR7D4AB/1gcG+hkvEuVF7LAOblULAYmoyCO66w9RBsDRZ8A9omwLaGYspMRJhKTKv3IfkVShMlYpEYdYVgNFbZt1Ip1SsSiXBVupJWnEYHzw4MqjuIaaemUVZRRi2rWphJzbjeKwJsbWHXLhg0iINPD3JhWm/WnISNLcwYd7mUfEsTDgbJWO9XwoMaUiQSIfttb25Pvjq/Sr9QJSrpN04WTq/9fBR2WMmtiMuN41T8KUq0JcYgdEX4CiaFTkIqkVKqLSXs+zAeZT0y0i3f932fLe9vwc7MDoC9j/cy9NBQWri34EC/A0TERjD44GBAaOpVyBSkFKYYt6/vWJ/HWY/R6rXGLHnUFhmici1BK4R9r8SCSwuYe3EuRwYeoatPV+Jy4whaH8SIBiPok26L98cLiDvyIzIPLwo0BSy9tpT4vHg+DPmQfHU+Pz38iSJNEU20jmSkPueJqwnqP6gygVAxqFT9k4llQjUGg9HRWl2hplhT/Nb9oxJmUjNUcpXRfyijJAO9QY+NwoZQ11DaebSjq3dX6tjX+cO5vBMxMbB7N7kHdvKwMI5oLwseNnIn2hEelr00VtnMpGZo9Vq0ei21rWsLvj/mDlxOuszlpMuU68pxs3Qj3CucEOcQYnNjOfTskNGToxLGoPnNirQBHqyHW+4SxncDzRwNN1NvGqsWUelRiEViGjo3xMnCiaSCJB5kPEAhVfC+7/sMDBxIp9qdfre5/reIz43nu2vf8f2979Eb9IwNHsvcB1a4fL0G0tLeKSv+fxqPMx8TvjOcV0WvqKmqydlhZ9/JVviz2BW9i+GHhxPuFc7ePnu5lHiJHj/3QKvXsrrTaiaHTf6XZv8f/i38F2j8CVRyir9p/w2fNvuUxZcXM/v8bKRiKSPqj2BTt03Vblf5vrmt5vJV66/++UT8/aFjR1ix4p+P9RtMOTGFHx78wInBJ2ixrQXfdfiO9XfW465y5+zQs4hEIkGbfJECezN7cstyufDBhSp8W7tv7cgpy8HZQsiaDggcwJpba5gcOpkVHVdUm5WJz42n776+PM1+ytrOaxnZYKQxKCnTlnE6/jT7nuzjyPMjFJUX4W3jTWxuLBKRBCcLJ3r792b1zdUkTU2qtrE8ozjDyFPXVGgoqyjDVelKblkuShMl/QP7c/DpQTZ320y7He2wU9jhpHSio1dHNl5aTsMUA1e8hMzbuIbj2Hh3I7WsXvPbRYjo4NmB9p7taefZDgdzB0YfGc2p+FOEOIdwJ+0OMrGMpI+TsJCZc7R/AwYejmdjQ5jU5fXir61HW7b32I6rpauRO/7FhS84GXcSnUFnXJC4WLgwt/VchtcfbnRlTS1Mpf6G+mSXVeWK28htjBrz4V7h7Ou7D6WpkplnZvLz4585N+xctVLCJ+JO8DTrKX72fmSVZJFVmlXtYq06VDawgxDE1XOsh7vKHa1eyzdXv+GqxyKaHLqF6JfDxm0e2sMnHeGsFzjpzWifKOHnmkXUkFjT1KQ2u8oFydtgp2CiMgQVMZMKKJeCvZk9dmZ27F7wlMia8ElXGRKxBHOZOZ7WnpRoS8hX55NXlve7Gd/a1rXR6rVVFHrkEjlzW89lQsgEuu7uyu3U22+5atevsOXs/EQeZz0mbHMYphJTfGx9eJb9rErg4mzhTFpxGi0dw4jMuIlzoRBsFMiF15vKQ28iPA5O7YTakyHeVghIZRIZhZpCFFIF5bpyY2DjrJaSJq9ArIfv0gKZuvkRO4Jg1Ptgq3QgV51LXfu6PMt5Rkevjvzy/BfMZeaUaEvY+N5GxkUIyZJlp2DUQxlfNteyujE8XS04rh8KgLENx7Lp7iYiBkbw7bVvuZR4qUqQZi41x87cjuLyYsxl5kZK5ZswlZii0Wlwt3RnfMh4XuS9YPP9zRgwEOQYRHuP9kRnRHP2xVmmlNRl5XcPaTfLmRvKAiF58AIu/Ajek8BcC8Meihn0CJwK9Ty3E7GjroGdQaCu4YibpRt30u5wZMARnCyckIqlHHl+hI13N5JWnEan2p2Y1nga7T3bV0mGFGmK+O7adyy6LDSY6g166jrUZXXn1bSu1ZrN9zYz5ugYZGLBiE4ilmBpasnOXjtp69EWgEsvL9FjTw/cVe6cGHyCYzHHGHdsHN423qQWpWJhYmHMkFf2cdRzqkd+WT7ZZdmMfyjnu93ZpCyZTY2Zrxtd9QY9vfb04sLLC9wcfZOxR8eSUphC9IfRHD6zlsFdP0N35DCSbkJPzOfnPmfXw128nPqS+2n3Cd4UzMZWyyibO5vP2+gwt7ChgdiVuSvuUy8Nvuxvx9nmLuSq88gtyzVW6t6ETCzDRGJirEpo9Vq0Ou2frrRamFhgb2ZvrKJayQVPmjelid/8vfJvcqn87aRVSgrs2QM//QT37oFSKZjaDhoE7dqBVAg8Dz49yKqbq7iZehO5RE4NyxqU68tJLkgWZNpFYjysPLA3s6dEW0JGSQY5pTnG71flvop+/WfgNeVNgsToxyMywObDUC8DwsZLUMlV5JblYquwpZ1HO2wUNjzPeU5kYiQikYiOXh0ZGDiQ7nW6G/1+/g4qs/19/ftyKv4U6tJChpX68OlnR6tIOP/fhsFgYOLxiWy4swGRSMQXLb/4x+uhM/Fn6LW3F/72/hwbeIyHmQ8J3xGOTCLj1bRXWCuqcR/9D/+/4b9A4w9QXF5MvQ31cFG6cPGDi1x8eZEOOzpgYWJBoEMgFz64UG3mYWHkQr648AVftfqKua3n/juTadAAmjaF/1XvMvpPkFmSiecqT1yVrmh0GkYHj+ari1/xYPwDAhwCAHiR9wLP1QKnf2mHpXzStGpTet31dYnPjUddocZF6YLSVMnY4LFMPzOdXn692NFzR7VlTXWFmiknprDp3iaG1RvGui7r3uIBq7Vq5l2ax5pba4wPPi9rL7r5dmPNzTWs6rSKiaETq2yTUZzB8uvLWXt7raC5rarJwX4HabylMSKRiNnNZ+OsdBbM/j4rwu5bOwwGA2qdmnVd1jH98AQ8c+CFm3mVh23lQ8ZcZs7YhmNZ3nF5lc81GAwMPzyc7Q8ETvSQukP4tuUCot4LpvOtPGa2F6gnIpEwzvw285ndfLYxELuadJXpZ6ZzI+UGrkpXXhW9wlRqalS2CfcKZ1jQMMK9wtkWtY3Z52YbF3qeVp4kFSbhZ+eHTq8zVjpMJCa0rtWart5dKdAU8NXFryj7vMzYAP4mll9fzlcXv+LkkJOMOjKKuNw4RIgIcgxi8/ub0eq0ZJdmk1KYwov8FzzNesovz38BhB6UkvKSahcnb8K+VISzJgi5xSjkeg9My+KxT9tKpEs0KZbQJNuUluWuHBEn8NRZ2MZOYYdELCGzOKOKEpi7pTvnlrwiwgemtn9Ne1GaKAXDKmtPPKw88LT2xMHcgU9Of4JULGVcw3HMOjcLqUiKn70fz7OfV0szqzzfTuZOlOvKBZWq3+mpeRdEiPC29SavLI+CsnzKDVrCUuCWKzgVQ56FBLVIh43chuLyYsr15fiJHXnyZQaDekHnL7cztN5QozGoCBGTQiex5tZrDfk1x6GTYzNqH73KllAZYzppUcpfGz2u7byW7+99T0ZxBuklr/1DKmlUACd2QHi80OA+qI/gjq6VQgv3FjzIeICtwpZnE5/hv87fqNpmKjZFo/+1h+iNvoPKfgsTsYkQSBkMVRZo1cFMZoaliSUZJRkseeDAlOM5LDo6A1ulA7Zmtqz/eTpXF2fQbhgMnrqFEfVHYNBVsHxRVxwPnWFAjAmyMg1PfG2Y2CSPi7UM9PHvw6gGo+jg2QGJWDA72/NoD8tvLCcqPYq6DnWZ1mQaAwMHGu/nZdoyVEtUhLiEcDP1JjKxDI1OQ3ff7kSlR+Fq6cq15GtGJbBKBbdZzWYxv818ZBIZjzMf02lXJ0SIODnkJJ+c+oST8Sfp7tOdwzGHq+x35ThzWs5hYeRC3PLg6jZI86tB6I2qXiiFmkJCvw8lX51PRkkGJwafwNfWl4WXFtD5820UDO1HZrP6ZJZkEpkUSVR6FIEOgcTkxKCuUFcZq9lLOLBPkCXu3deAIbQR/vb+b9GUHMwdkIqlPM9+zvWU60QmRnI//b4Q+P+aCKlrX5eWtVoSlxvH9ZTrFGoKMZWY4mfnR22b2rgoXbAwsRAoX7/SvvLV+RRofv2pLqBQU/jO60MmlglBh8wCqxI9qswCVOn5WGnFqFw8sQpoiCowBJVSqE4Vago5m3CWiJgIctW5tHBvwbiG4+jp15NXRa+4l3aPGyk3uJp0lcdZj433rTfpfXKJHEcLR/QGvdGTxkJmgZvKjRd5L6okHyqn3T0hCO+KkVzz8sLeWo937STiy85zPPY45bpyWtZsycDAgfTx7/OnKGl/hGvJ12j1Qys+bvwx33b4lsKIg2z8ujfLu9qSUZ5LL79ezGw2k0aujf7xZ/1d3Hl1h867OpNdmo23jTdnh539XUPjP8K9tHt02dVF8KgacpJLLy8x8shIvKy9uD3m9n/Bxv9D+C/Q+AOMPzaendE7eTD+AaZSUxpsaIBWr8VMZsbdsXdxVjq/tc38S/OZe3EuC9osYE7LOf/eZBo3hsBA2Lz53xvzDYw6PIqtUVv5stWXLLu2jDHBY1jR6XX1ZM+jPQw4MABPa0/iJse9lVnyXetLY9fG7IjegZXcChAydBNCJjDsl2GEuYbxy4BfjH/7LXZG72TcsXFCM2K//dSxE0rojzMf89HJjzj/4jxdfbriofJgS9QW+gf05/Dzw+SW5aKQKpgUOok+/n1wMndi6fWlfH/ve2RiGZNCJxHsHMzAAwNp5NKI269uo9PrSJyaSFxuHG23t+XZxGdMOTmFU/GncFW6VsniV2Z9hwUNY3TwaFr+0NKY3bo5+qaxQa8SF15coOPOjtSyqkV8Xjwi4IMoESsjdIx+H/YGvn6Qbe62mVHBowB4nv2cz859xqFnh7BT2JGrFpSSPmv+GWMbjkVdoWbfE8ERuLq+gUrX1JNxJ+n+c3fKdeXMaDqDMQ3HEBETQURsBBdfXjQGJaMbjGZw0GCauTWrEnCsvbWWySeE8nMduzq8yHtBU7emHBl45J0ZN981vrwseMmsZrOY12Ye+57so9++fgBGd/j5F+fjaumKu8qd0pcSDKUzMYhEVcwfo0Ufki+JrvYzTCqE57j2V++KSkhFUr45YyCjlj232/vxNPspGKC5e3OKtcUUaYqMyjVpRWlGCtTvoZJ//7t4I9ioPJ9jgscQ7hmOr70vzubOTDs1jR0Pd1TZzMncifSSdPz1tkgzc4h2AktMKDSUo9CCX6mCaCsNOgw0c2/G1ulXuBRgzshLhYhFYqPZZg/fHkxvOp3m25oLcxaJKfjRFYuEZNY2lbC0jyu56jyKy4sZFDiIXY92EewUzA89fiBkk6CS9uax+OS+gmt2ZWSZQYtEOBqqIruiAIVEQZmuDB8bH2JyBfnKIk0RGp2miqJSdcfQztyO7JJs47H0sPKgoXND9j/dTw1lDVKLUmnv2Z72Hu25knyFozFHsZZbU1xejFavZccB8MmXMPnLhvjZ+eFn58eFZyc5OeYio3qIsJvwKUvaL2HKySmsvbWW7T23M8SrJ/zyC+zYwZas04x+38CpXyxY51vMg2AXBjUczvD6w/G29cZgMHDx5UWWXV9GRGwEjuaOTAqdxIchHxKdEU3b7W2JHh+NSCRixpkZnIg7YfzuD68nNN9ui9rGsvBlzL80n0JNIeoKNY1cG/FTr5/wsvEitTCVzrs6k1yYzKaum+i3v1/V61psglYvVANCXEJIKkiida3W3L+8j4+vGvDIh+T1iylRyo2qSpklmcRkx/A89/k7RSFsFbY4mDtgwMCz7GdGKWgbExV5mgJkiPn4pohFp/XomjdFtvcA3nua0apmK7Z0F/paXhW9MqpBRSZG8jhL6Ltys3SjVc1WaCo0HIk5gggRCpmCPHUeMrGMJm5NaOfRjrYebQl1DTVWX/8M9AY9RZqiKsFHgaaA/Lw0Cu5cIf/+DQqSYykwhfyajhTUsCPfSk5BRTH56nzyy/KrLv5/e13+pgG/kl7qrHSmpqomPrY+uCpd0Rv05JblklacRkphCleTrwoy3W+MU11/l6U+iAb69Yj1Igzi1/c2tcNK+jUMo39g/7/tJVUdKiXLa6pqcuGDC8K9vFcviI9HfecGO6J38t2174jNjaWtR1tmNZv1VgXv/xb0ej0jDo9ge/R2JCIJi9st5tNmn/7t8RLyEui0sxOFmkKODz7OxIiJ3H51m0CHQM4MPYO9uf2/OPv/8HfxX6DxOzgRe4IuP3Vh/XvrGdlgJK1/aE10RjRavZZLwy/RuEbjt7b56uJXzLs0j0VtFzG7xb+nDgUICj7u7rBjxx+/92+g3Y/tuJh4EQ8rD4rKi4iZFINKLnA7S7Wl1Flbh+TCZL5t/221N4eaK2syNGgoWp2Wb699S5tabbiafJV+Af0YFzyO939+nxqWNTgx+MQ71bmeZD0xyiuu6rSKR5mPWHNrDR7WHqzqtIou3l24nnydplubcn3UdRo6N2TqyalsuLMBlVxlVCoxlZgyNGgoS9ovMWaMtt7byqijo1BIFbTxaMPhAYeJiImgx54eBNoH8iznmdGxW12hpkeuI6fNMzCztsNWIZiZLeuwjIknhMqJs4UzqdNSq9ywn2Y9pcmWJtRzqsfNlJtMtOlExbEj/K+RAbkWSn4tfolFYiY1msSqzqvIKM5g/qX5bLy7EYVMQZm2DCu5FbOaz+LDkA8xNzGnTFvG3sd72XRvE9eSr6EyVRmb2UGgEH0Y8iGtarVi0vFJpBal4mbpRkxODCs6rmBCowmIRCKKNEXsjN7JhOMTsJZbk6fOQ2WqomPtjrzn/R4KqYKJxyeSVZrF0KCh/PzoZzp4dWB/3/2/K2f50YmP2HJ/C762vtwbdw8QpJPPvziPylRFZmkmvra+WMmtOD/sHDO/f8idpBL0otd0OgM6crnFQ6kgyynVCdQysQ70Euj8HGrnQ6IKEqyFn0Vyfre6UNmXYi4TKmRpxWn42/njZ+/HsZhjaHQa+vr3ZUjQEHr83AMTiQl+dn5EZUSxuO1iPjv/GQCfNf+MQk0h39/7HoCm8eXEOMp4pajamP7mgs/SVHCLftOZ29HckcySTAwYMNWL0IgNVRyxx9l24oes04h0etQygV617RC0xQPnaKHiMPjAYH569BPftPuGTfc2GasKW6M9GXFQeM+cOU3JaOTPpcRLxObGsrrTaj46+RFSsRRXC1cySjNQV6ipmy3lmXUFH0TBzCswpw3srfvH3jEgVEG0Oi1ZZVlvZcnnt54vBEFbm3M//T4GDMxtNZdPm37KgP0DOBZ7DD87P7Z231rlPrr9wXaG/zKcDxt9iLulO117zaKocQM2jAziafZTnmY9pai8iNSlsDEEvm4jxcvGi+c5zxlVfxSTwibha+trvFY3X1jGmMjp6A83QHT/PsVKU/b4G9gSUI60WXNGNBhJ34C+WJhY8Cz7GStvrOTHBz8iQoS/vT/xufHkzMwR+peA0/Gn6ba7G+W6csQiMVamVsgkMmpa1eTIgCNMOjGJ/U/2Yy4zR4SI9V3XMyRoCPll+XTb3Y3rKdfRG/TG68Td0r0Kvez3AjeFVIGjxa8N0WYO3H51m+LyYkq0JfTz78eYhmP48sKXzNrxgi5iH6TnLxnn3HFnR1q4teBy8mVEBlBq4NLl2tS/Gqno0EwAACAASURBVAczZ8LChRgkEiYfn8zWqK309e/L1eSrxmvLx9aHlu4tqedYDz16bqXe4tCzQ8aeh/pO9eno1ZG2Hm1p7t4cM5nZW/P/W9Bo4MQJ2L0bjh6FsjJo1gwGDhT6FR1em7TF5MSw4c4GtkVtI1+dj6O5I6ZSU9KL0o2VykrxC1szW0Gh7NdetjcrK5W//54R5O+hbsVKbAhFxOt7m1gEIV4qvvnA93e2/OuoFD64/eo298fdFwKYtDRwc4NVq2Ci8KzS6XVGP6u7aXdp4NSAWc1n0duv979irvdXcSXpCt12dyNfnU+gQyBnh541el39VWSVZNF1d1eeZD1hbsu5fHr2U6xMrXBWOnN22FlclC7/8uz/w1/Ff4HGO5BblkvgukCCHIM4MfgEU09O5X+3/4fOoKuSha6EwWDgq4tfMT9yPovbLWZW81n//qTCw4Um2r17//WhL768SJsf2xDuGc7phNMsabeEmc1nAsK+jTg8gl3Ru6gwVHBq8CnCa4e/NYbTUicmhU5idovZ+K71JS43julNprP0+lK+bPkl/QP702lnJwBODTmFn71ftXMp1BTScUdHbqTeQCqW8mXLL5nRbIaR0lChr8DmGxtmNpvJ5y0/Nz5IQVCW8bPzIz4vnoySDFyULvT2600f/z6IEdPiB6GnxMvai8ySTKOsZ6BDIKPqj+LTM5+ikqvo4t2FU/f30euumg2hMKvZLPY83kOJtsQox+iidDF6eIBA1Wq8pTEWJhaEuYSRcGIXe3aoyVeIaDPUQOqvhRwbhQ12CjuujrzKhrsbWHJlCRX6Cir0FShNlMxoNoNJoZNQmip5nPmYTXc3sT16O/nqfDp4dqCNRxvmXZiHRq9BjJjF7RcTkxPD7ke7KdWWIpfK+az5Z4wPGc/CyIWsubWGYfWGseG9DShkCrQ6LfJFcta9t44Q5xCOxRzjyPMj3EsXAgSFVEFZRRlixPSo04PdfXb/YUYyIibCqICU/HEyNSxrkFaUht///Ohm3wzz/FI2Fl9EqheRsM2SaT13km35tpOrhkyuS7tV+xkyg5gOMXreSzal1XMNci3Ungpj7ov5voGeYU9kRNdWEm2S/1Y1ojIIkIqlmIgFadF3LSTMZGYYDK+bXCvRs05P6jvVZ9H5eej1esykcpxta1Yx8gtxCWF5h+WklaQRnR7N0utLsVZYU6gurLZx2lItNF9nmAvBlJO5ExklGYz2GcDWmJ/RYWDhOZh9RUTZ6mWcauJAr2NDkIgkguSnTgMGcCiBjKXweRsY8kRCsp2Mzv3K3+nXEJYMn9wUMaOdAfNyCMqAlzYizvxooObHVFFBW9N5DTuid3Ar9Zbx/8xl5jhZOBkXopXH900KVWWjvb+dP+nF6bSp1Yb7GfdJzE9EKpZS+FlhtdfVprubGHdsHNOCxvNt7w1cnDWAdl/vBoR70aADg5gy9WfKvGvRtvVLgCoSvZXu4352fmh1Ws69OMflEZcJzBKh2n8U/a6diJNTeOWgYLNfGQeCFTRsNYAR9UfQ3L052aXZbLizgQWRC9DqtXTz6ca0JtNoVbMVm+9tZuyxsSxut5i1N9eSWpxqnHebWm3oXLszkYmRnIo/ZZRYNpOZUa4rf6ealVwqR1OhEfoEEGNpakm+Jp+hVq2Z+N1FTvtKGH1bh/XLDOQ2wnem0pPp0vBLnH9xnvmX5hMxKILpZ6az7IoFnS4mw6tXAES+jKTVj62Mn/fZJZj33AlpUTFPNywk0sfUWLGolOH2sPKgq09XGjo3BASayrkX54wVDYlIgonEhMlhk5nVbNb/x955R0Vx9u3/s52l9yYoRYqiiAp2xV6J2EvsxhLT1MQSk8ckJiYRTaIm9t5774pdsWNFBVEUFZRed4Ft8/tjZJWgKc+b5D2/8+Y6x8O6O3vPvTP3zHzrdf3XZSrl11mZoQydUYfOqKNMp0UXdxrdvt2UHY9FV1KMLsifsjYt0UU2Q+dkT5mhTAyG5dzj7OOz3M68XUFFG8T7rJPayUwDbK20RkCouC/jy9el+lJKjaWUGcooM5ahN4rN4r+nefJrNDbsRUXle5u9lYSdn/61pUszzs5gyrEpHBxwkI7VxWcr330H06eL59++YvWAIAgcf3icGXEzOJoiNmZPaDyBIWFD/nG2JqPJSL9t/dh2dxtyqZy5HefyXsR/x46l0Wnos60Ph+8fxsfeB3sLezI0GahkKo4NPmZWYP8X/zv419F4A97e/jYH7x8kYUwCZx6fof/2/sgkMkbXH11BiRrEi3fqial8e+ZbYtrG/H1czlFRIJPB7t2/v+2fgCAINFvZjFJ9KTqTjqTsJHrV7MWGniIL09L4pYzaN8osLHb7vdvUdKlZaRz7GfZ83vxzJjadSGp+KtV/qY5SqmRCkwl8ffprVkavpJ1fOzqt78TTwqfs7b+3EiXw5bTLfHjwQy6mXSTCM4KbGTcJcQ1ha++t+Dm81HzourGryGRhX40dd3egkCoIcw/j1NBTqBVqjCYj55+eZ+W1lexI3FEh5Q2iMTKq/iiGhQ3jnT3vEFktkvld5hO5MpLTj09zbPAxOq5ux0fnTPzYFLoFdeO9iPdov66ig7Wmm1g3/yrD1ZbeW/hlYiSrt5u4UgWi+4mMPSDSpibmJOJj74NGpzHTfVoqLJnQZAJjG45FKVOy9c5WFscv5tyTc7hauZpVu58WPqXd2nboTXpUMhXHhxyniXcT1txYw4g9I8x10CcenUAhVRAdHI23jTcLriwgyDmIHX124Ovgi88cH/rX6s/3bb9n592dvHfgPYp1xfSq0YvzT8+bjecqNlXoHNCZqMAo2vi2eSOHfnFZEQ4xjpgEI/Pl0bx7xxJu3GCp+g6jogRi18Cp2rZMr1uISg+N9D8jVUYg8FKOtzyjIcv5mJbNBlC/lnisYx/EsubmGvN5a+vXFutjZzC4OXNQnUaPFDUemVp+aQgH18POYNgVDFH34KQP3HfEnPGQIkUqkVYQ4/o1lFIlKrmKIl3Raxs/fw9yiZzOgZ1JzE4krTCNr1t+jaXSkjH7xyBBgkwqY2rzqcy9NBd9Xi4lClEixPSGwGKTxxC3AuqNgmu/Cs5JgEHXYU0YjLgCFzrXYlKiEwN+OYXnt45YW4lZq2VvLaPHlh4cCv0Bt69mEnork8ihYn+ISSbBgMCVJZBtCR1fYaS2U9kR6BTI5XSxIf/X7FzlWTE3KzcyNBlYK63p4NeB7YnbAdEhWR29ms9PfE5SThKR1SLxtffl/NPzJH6Q+MZjOPfCXDYsH8fFZTDiizCWTbsGiP1cXj95sWhNLtVxom7vbKo7Vif5w2TyS/NJzE7kbtZdMfuRfZcLTy9UENRztXKlhmMQXTPs6XAuk4CTN1EWl3CtmoplIWVcaFKV5vW7E+EZwZBdQ6jrXpfUglSytFnYqezQ6DVYyC2QSV6KML4KmUSGt503LpYuPC54TIbmpfiji6ULbXzbmAVOAx0D6RLQhdkXZ+Nn78fToqfmTIm3rTemEi0J07JoMwjOrYD4cX1o9ONm7uXco86iOoyuP5o5HedgEkxEb4rm7OOzGEwGNpZGEfX1JkpynjPjxgK+O/Odeb2vPGHHA1khFwLVxHvLydMXIpPICHQKpJZrLfzt/Vl2bRlKuRILmQUP8x8iIOBg4UBVu6pka7NJK0ojwDGAyGqRSCVSdKYXRvsbDPjfe/+PXle/B5lEhoXcArVCjUqmQi6VmzNR5cxQJsEkCsYKRrMjUT6Xv2oe4WVzsJY2gNdka2Veq+gX0o++tfr+rkDt7+F06mlarW7FlGZTmN56uvimySSyU7ZsCStX/ub349PjiYmLYdudbbhauTK+0XjeDX/XXMXwTyH2QSw9t/SkSFdEuEc4RwYd+a8cV4PJwOi9o1lxfQUAm3ttZsqxKWKwYfAxApwCfmeEf/F34V9H4zXYcnsLfbf1ZX2P9YS5hxG+JBwBgQjPCI4OPlohCicIAp8f/5zvz37/2gbpvxQ9e4JGA4cO/aXDljeXvhf+HguvLGRy08nExMVw/d3r6I16mq5oyrCwYdzKvEXckzgKPi14rQKn+ls1M9vONNPLlauTNvFqQk2Xmqy6sYpDAw5R37M+3TZ142LaRTb23Ei34G5kabKYcmwKK66toLZbbX7p9AstqrXg6rOr9N7amxxtDqu7rSY6OJpzT84xcu9I7mTdwc/Bj8+afcb93Pssjl9M0gdJnH18lqMpRzn68Cj3cu4hQUJ1x+o8yHtgjk7JpXLkEjmLohaxI3EHpYZSDg88zIZbGxiwYwCTm0wm9/IpthZeIF8tbr+z705zE66blRstfFpw4uEJ7rx3h5H7RhL7IJbjg49x6oMoJu7OZkMtGB4NZQrxITigtljyoparzdFXpUzJpCaT+Ljxx6QXpVfIXrT1a8vo+qPpGtQVpUzJweSDRG2IwoTJTOkb4hrC1ONT+e7sdwwPG87CqIUoZUrSi9LZcGsDq2+sJiEzAQcLB3PJxuZem4mJi8FOZWd2aroGdWVB5wXsTtrN+wfEdPvcjnN5lP+Ifff2kZybjEqmopVvK7r4tKeLUB3f+zlw4wbcvAk3b9KqSza33KDhcxn77zeEOnUw1gqhgWYOiWVP0b6om/ax8yE335Z6xkVITWCSyhBJdU0UF7yLvb+CUwU3kEgktPdvT3u/9ow7LJZTlZeajM6syvcP/WkdnUeEZwQLe64g6osAzvOEt7X+7BLukDbThMRk4tMoC36oX8oCYyfUteuxUhvHmSdnsZBZUGIoIdInkrjHceZ+BbVcTamh9C8xPP5Ir0d5idirJWDSFw6YCRNqvcjL/0EnWBxR8XvbD9nRLKEA50ngZOXMvv778FV74FizPpZjcqnpXhsXKxdmOfSlbvxILi4FtR4G9pVz08mAQqoQiS0S8zi9CjoOgMO/eh7LJDKcLJ0qMCQJCEQHRZOjzeHsk7N80ugTfrzwI3KJHCSYo/dVbKqQVpRmZiM7NOAQK6+vJFOTyfEhx3/zuBya0J02s3dh8xk8nJSOh40Ha26sYciuISw9ZUeLGwV8MKcdR1OO8mjco9c2ls4+P5tPj33Kiq4ruJlxk8TsRB7lPyK9OJ3cklyUOhNvJcGgm9DxhXbjweqwtg7sDQSDUmS3UyvUPCt6hkavwVJuSaRPJFGBUVS1rYpUKmXdzXVsTNhoPnfDwoZR1b4qs+JmUawvNq8DhVRBI69GaPVa4p/FU8e1DlZKK849PWfuBXt17QRlmnjkKKHOcwGHUglC+/acT7tAmbGMWi61zFm3EkOJWQPESmqBXleKTl7pcPxXUEqVyGVySvQia5uLpQsOageUMtEhV8qU4mvZy9fmz6TK39xOlZGN8vJVlOcvoUzPBAd7cprW436IB/dVGh7lP+Jx4WNyS3IBzI66wWRAKpFio7RBLVej0WveqBIvQYKtyhZLhSUKmQKTYMJgMlCiLzGzEf7Ra91F7YLWoEWj15ivA7VcTSe/DkTfKqPTzwd53vxtxkeMRQBMglg2hQR6tsniVOYa9ibtpcRQQmOvxvSr1Y/eNXu/ttfzt5CpySRsURiBToEcHXz0pTL4kSMiM+W5c9C48R8aKzknmR/O/cCqG6uwkFswJnwM4xqNw93a/U/N6X8CnVFH983dOZB8AKVMyeKoxQwNG/qnxxEEganHp/Lt2W/xtffl1NBTtF/XnvzSfI4OOmomtvkX/yz+dTR+hWdFz6i1sBZtfNuw7K1lRCyL4EnBExzVjsSPiq9QRygIAlOOTSEmLsbciPu34u23xfrLEyf+siFNgom6i+tirbDmbvZdetTowcIuC6m5oCZ+Dn7cyxGbP88OO2sWrdNP1VcaRxAEpF9LWRy1mFH1R5nfa7y8MRfTLvJT+584/OAw55+eJ254HNUdqzN452C2391Ozxo9OfLgCFKJlG9afcPo8NEvb5xAQWkBw3YPY2fiTrxtvXlS+AR/B38e5D1gV99d2KhsWHNjDatvrDY36FV3rE4b3za09WtLK59W7Enawzt73kFAYGffnRx/eJyFVxaKPRkyC+QyOVt6baGRVyOcZzlT1a4qJ+zGEZI8Dku1DXK1Fa5WrtzMuGlWZz497DTB84LxtfclISuBzdHrkY8bT7eTz5neHL5oBS7WrlSzr8aTwicUlRWh0WtEOkyJDD9HPxKzE2lYpSEAF9Mu4mrlyrCwYYysNxJ/R3/zMdh6eyt9t/VFQMBJ7cTlkZdxs3Zj8M7B7Li7g5ntZvJJ408qNfiVU+WuubGGtTfXklOSA4iR6IKyApzUTvzS6Rf6hPThh3M/MOnoJIaFDWPl9ZXEDjxCW4uacPMmydeOsT/tOPuEe5x21qCXQc1M6JJlTxeL2jTxb8WP7il8mbkZiURK5oRMjqQcISYuhivpV5AgoUtAFy6mXeTd8HcJcAxg8q55eJW+jbt1BDVK8wiIncJnUanI1VbM6zyP58XP2ZiwkbOPz5p/z5eRX2JvYc8XhyZjqdXjH9QImUTG6XfOUrD0FxqVzSdHm0OJvoSiD9I4cXABbe5OYfo9Lz7b8oxslRHfcRJGFwWy0OkhHtbuJI9/iOpbC6wUVjioHdjUcxOt17SmedXm3M66baZivfLsitkZUAkyyiT/XQ33r+GkgTw1WOqg+A3VC/GLYFYT2BQq/l9pFCk0374l0teuDqNCn8rQmzJW1TbS9YGMKefkSMvKaDgSBmZ6sM75GUjhixZfcD3jOvuS9vFzbC3u+A/nWlV/inmAzvYgSdrD5vHK+5YAWlRtYQ4clL83qt4ollx9SfM9su5Ill4T+1nquNUhKTsJo2CklW8rSvQlVLWryroe637zuAgjR/Ls2C6qDMkmKiCKJW8tocPaDmgNWjoffMDMo/D1gU/54cKPBDkF4WHjQV5JntgQXJZPYVnha2mZLeQWqOVqLOQWZi0Ig8kAZTps8zTYFemxMECJHDKtxGykTik3Cz2+6kj9FXhVWLPceJW86NYwIeBm4YymIJvmj+FekBMPTDm092+Pt613BeP9Xs49diXtQgIIrzitcomMajlGGj6FUJknlp98SmJ2ItefX+d6xnW0ei02ShsaezWmRbUWBDkF0Xtbb9Z1X0fH6h0Ze2gs62+tp2tQVxZHLf5NA9RoMlJYVkheaZ6ZVjq/NJ+80ryXrzNTyb9/i7z0FDKNxWTYSsi3kqGVVqZ3LservSu2Klv8HPwIcgoyi4kKgoDOqKOgrIBsTbZZiLGgtAC9UPl59aZ92FnYEeQUZCYNuZh20UyC8CrcrNzoVbMX3YK70SLbCuWwEXD/PnzzDXzyCbeeall3Mp2UDC1+bpYMauVJrao2gMhkuSdpD5sSNnHo/iEMJgMtfVrSr1Y/etbo+bssVEaTkY7rO3Iz4ybXR1+v6KT07AnJyWIA6E82ez8resacC3NYeGUhOqOOIXWGMLHpxP+x7sWfQbkAn1avpZl3Mw4OOIi16s9T/g7ZOYQ1N9fQwb8DS99aylsb3+Jp4VOODDpSQbz3X/wz+NfReAWCIPDWxre4kn6FW2Nu8cGBD9iRuAOpRMrZYWcrUMMJgsDko5OZdW4WczrMYWyjsX//BIcNg6QkMVrxF2FTwib6b+9P18CunEo9xb0P7+Fq5cr6m+sZuHMgtipbbrx7Ax97HxxiHJAiJWdyTqVxdEYdqukqVndbzeA6g83vZ2uz8Z7tjcFkIH5kPIN2DSKvJI8LIy6QmJ1I7629yS3JpZ57PQ4NPFSJJUIQBA4kH+Cb099wMe0iANXsqtE3pC9zLs4xR6dcLF0o0hXRvGpzlry1pFJautmKZiRkJhBRJYLYQbEA3Mu+R8SyCORSuTliZqeyQyaRkVuaS2r9dSyePZCYFlK+ajmNqSenVhhze5/tbLi5ge2J2/mo1gh6f7GJhonFjI6ClfWga2BXGns1NjcUg5gZ+TDiQ7rX6M62O9tYdm0ZWr0WlUzFxCYTmRo5tVLd+qrrqxi2exgAXrZeXB55GZNgouvGrtzNvsuGHhuIDo7+3XOtN+pZc2MNYw+NNUdOI6tFMrr+aBKfXmfvrpn8xy6KSH0VnO0Xs/2ANT0uierO2NhAaCjUqUNhrQCOepayT3+bA49izQrpEZ4RxKaIx9bd2t1clz+56WTin8XzxYkviKgSgauVK7v77ebxqrkMPTmOE74w9gJ83/RL8seOZuDOgZx4eILPmn/GVy2/YufdnRWYehwsHOhkUZu066c55QNKqYKyL/Swbh33OzUkbFEYGr2G5A+SabayGVXtqjKt5TSKctLZeOIXDpfc4thuR5p0z6ZTMnx3SkbdkUYcSsAggSIVlZrLbZQ2aPVaTCYjvrmQ4oSZ0nNE3RH0DumNk9qJ9MJ0emzpUaE0SyVTEe4RTrGumISshDf2hliXQfEbNLra3oejL573MiOs3wE978DAHrC59q82FqDdA/jiFDR7Alc84KOOcP5XZcq2Slsc1A64Z3hjLYnBKJWA5CVLzi3Z++RJKrOb2ans6B3Sm2VXl+Fn78ejgkdiOdoL49vH3oenhU+RIEFv0uNp7Ukt11qcfnyaUkMpMokMFyuxKVdn1FGiL6HUUGoW9tMb9RhMBs4vNnLbBYZ1r3w8ou/Crs3gOgGyfsMOKQ882FvYYyGzwEJugVL+q6j6a6Lt524fxDfTQPUMHbaFOkrlkOgMN90g+0X1oIXcAr1Rj1Ew4mPvQ1sfkTkrMSexguq1n70fnQI6Mf/yfHOmylppTYRnBLeybqEz6PCy9cLf0Z999/YhIGASTFggR1ViwMXDn9zSPH7YmMuYt2BM07HM7jiH/NJ84h7HceLRCXYm7iQlL6XimjH58p/wTxA++oArHnC+KpwKcyCnLA+1XE2zqs1o7duaNr5tqOtR1xzcKTWU0mR5E4wmI2lFaZQaShkUOogQ1xDRiXvhQJidiVecit+iprVBhUWZEanOgF4OGpWUMqmY7VPL1XjbeRPgGEBNl5qEuISQkp/CrsRd3My4iZXCitqutXFQO5CtzSa9KP1P6fuA2HtlqbDEYDSQXyaW0tZwrkFUQBS9QnoR7hmO0WRkxtkZfHP6m5cO6As4qh0Z23AsvWv2Jtg5GIleL/ZCfPcd1KkDa9ZAyJ+LmOeV5LEzcSebEjZx7OExpBIp7f3b0y+kH9HB0a+tHPj61Nd8dfIrYgfF0savzcsPnj0TyWJmz4YPPvhT83gV+aX5LLqyiDkX5pClzaJXzV5Mbjr5HzPQtXotURuiOPHoBBZyC9Z0W0PvkN5/agy9UU+Vn6qQU5JDZLVIVkavpO+2viRmJ3JwwEEae/+xbM+/+Gvwr6PxCpZfXc6IvSPY238vKXkpjD0kOg+/Np4FQWBi7ER+PP/jP6tE+e67cOWK+O8vgN6op+aCmrhbuRP3JI45HefwUcOPgJc6ILVda3PjXbGMRfGNAl97X+59eK/SWIVlhdjNsGNzr830CalI31heilbdsTpHBx2l0fJGlBnKyCvNo1GVRoR7hjPv8jzeqfsOi6IWIZfKMQkmdtzdwfTT07mRcQM/Bz/crd25lXHLnCJ3UjuhlqvZP2A/tVxrMWbfGI49PEbyh8kVIvuJ2YnUmC82nm/ptaXCTevs47O0Xt0avUnP7r67iX8Wz5KrS3he/ByVVMFbN/XsriWjd+2+bLi1QTSSLF2IqBJB3OM4kYJWYY9zej5nl0Of3nDCX8rsDrO5k3WHxVcXm/dVz70eQ8OGsuXOFs4+PouLpQvD6w6nS2AXpp2cxrGHx/iwwYfMaDvDzNryKtVskFMQF0ZcICUvha4buyKRSNjTbw91Per+7rk2CSYWXl7Ip0cnE1xmi4+1F9u0l83MR7al0Oc2DL4JDZV+qAaksJJuYvo6NBR8fF4bITMJJuLT49l+dztrb6wlvVhsQFXJVAyvO5zR9UcT6haKwWQgfGm4eFxlKh6PfwyLFmF6/z1+bgiftpfi5xLI2u5rCXMPY8bZGXx58kuxzESnJSErAYPJgK+9Lw28GnDsfixZpTkokKHHSNZM+LKPK2cauPEw7yHF+uI3HgsbpQ3u1u4k5ybT0uBN6OMyfvbLxFIH/W/B8vqw+GEIvWr3w6JtR6Zn7WDW+VkiCYFRiWuBgUTHlyV42ROzzXXN5Ux1rzYnl2Nqi6noDDpizsUQWS2Sq8+umrexNErRyn6jxEqA2Yfguxawdr+SVok6+vQGbed2nHlyxpxZGHLPkrHHtdR9DherwLrasKKxBQaJ6bUaIQB9ns8h27HBixK28t1VZAD7s3BUO+Jq5cqD3AdmZ0MhU5gFESVIsJBbVBAcLIcECfYyK9KnFTM72o3lLazNTecgGoefWrZn8PC5LF00Csfm7em1tRfruq+jU0Ans7Mgl8qZfWE2005No+DTyv0Ub4JWr8V+hj2zO8zm/Yj3KD19nC2fvkW3W3psNQaueMKGUAkXmvuid3EkNS+VrJKsCmOo5WqaVm1KfHq8mQmvik0VVndfzYQjE7jx/IbZIP+p/U/MvTgXg8lADecanEw9aTZwJQJIpTK6Bnbl2I2dWOkhsmoLElWF5jHKnZpy2mSlVInOoKPTcytuWmtIswWZCVwNSkKCWuBh7YGV0ooiXVHFTMMLh+HXDGLlUEgVOKgdcLBwwN7CHgf1i78WL/86qB2wVdlSoi8hPesBj26eJunpDW4p8819am4yO2pXqUs1J39cLF3MivFPCp+QkJHA/bz7v6vD86b5uVu742PvQ02Xmvg7+JNfmk9SdhJnn5wlQ5OBrcqW9v7t6RLQhY7VO5qzM3kleYw7PI6Ntzaae5BkEhl13Oug0WlIykmqKAp76xYMHgwJCTB1KkyZAorKmkR/BhnFGWy7s41Ntzdx9vFZVDIVXQK70L9Wf5ERUKHmWMox2q1tx5eRX1bW5/r+e/j6a9HhsH89hfyfQamhlNXXVzPz3ExS8lJo59eOyU0nEEgCtwAAIABJREFU09q39T9Cjbvh5gaG7xlOmbGMdn7t2NNvDxaKP96wPu/SPMYeGouVwgpfB1+29t7KyL0jiU+PZ2//vbTybfU3zv5fvIp/HY0XeJj3kNBFofQN6cvwusNpsbIFAoKZgrQcgiDw8eGPmXNxDvM6zaskEve3YuxYOH5cvMn9BShv8g51C8UkmLg2+hpyqZyjKUdpv7Y9fWv1FdO7Aw7RxLsJtjNsaVGtBaeGnqo0VpYmC9cfXNnVd9dro+tdN3Zl7729NPFqwtXnVykzlBHqFsqlkZdQypSsvbGW4XuG096/Pa2qtWL2hdmkF6ebVYTlUjkNqzSkrV9bwj3D+fnizxxNOYqAQOaETFysXMzMR3feu1OB0WpS7CR+vvgzNkob0j5Jq5QxKDfmB9QewLoe6ygoLcA+xh4HhS1eTwu59SvWvV41ejG87nA6b+hMIE78sD6H6LfBrQgybaWMazSOhVcWmpWobRQ2yGVitDCvNI82vm0YXX800cHR5rmYBBPzLs1j8tHJ+Nj7sLb7Wo48OMLnxz8HINwjnFPDTnHkwREG7BhATZea7Om357dre0tL4fZtnsUd5sze+TjfT6dBjgrrojIueEHjEVCtUEa6lZGGVOGJlZHU0uf42vvypPAJnzX7jGmtpv3mGkorTGPOhTksjl+MzqjDw9qDbG02epMeuVSORq/By9aLLgFdCHAMYGLsRAQEro26hnH2j2TvWEdOo9okDO7EyltryNRkUtOlJs6WzjwtfEpKXsobWV+URpBJ5ZRIDJxZATFN4ViImjpudbiQdgGAqMAoprWchrOlM9NPT2fbnW08HPuQBZcX8Nnxz4gdFMu4Q+NIyk7CIBjwUDhSo8yGo0c9kVy6DAYDpe7O1BhYQJnExKTbdoxvkEtktUgSMhPIKckxZzQLywoJWRBCTeeaxLSNoenKphiMhgoGfnmtfrhHOPHP4ikXfvy1YfVrR8UrH57MgUueUDsTuvd9pZdCgC734Ew1GHsROibDtJZw3Af00+H9KCm7ImxIF0Rj28PaAxcrF54UPMGYn0fbkr3k2ryeAeyiPPr39UT+IHztfcnWZlOkK8JGaUOxrpi2fm0ZHDqYKrZVzKJwjmpHZLfviA7uqVPkhIfg+oOreR2s676OAZ4dwMWFpZ91ZMT0A9RdXBdfB1929t1ZYZ8/nPuBb898S97kvD88z6MpR2m3th0JYxIIcQ3hp/M/MSl2EvdG3cLvfCJlK5chP3gYwWQk1g82hynYEqjHzdUHhVRBcm4yIGYtdHodOqGigxfsFIybtRunU0+ba/wPvH2A8UfGk5KXQk2Xmlx6ekk87iZ4hS8BABudBFsnT3JKcig1lOKgcsCEqVJzetgzcCyBU9Ve0ifbKG3MTkIFh0El/n1e/JxNCZvQ6rWUGcuY1nIa79R9Bwe1A2q5upKBaTAZSMxO5Oqzq1x9dpX4p5e5nn6VYkF0VqrmQ5BWjaWNI088rHhGEVnarEqlZ6/TApEgQSKRVLj+7VR2VLOvRpBTEDWca+Dv6I+fgx/+Dv64WbmRlJPEgeQD7E/ez5nHZzCYDNR0qUnn6p3pEtilgmZQan4qcy7MYeudrWa2LQkS6rjVYVLTSfSq2Qu5VI7Vd1aiivvETDAYYNYs+PJLCAqC1auh3l8f6X9S8IQtt7ewMWEj8c/isVZa096vPcceHqO+Z32ODDxSkZbWZILq1aFFC1i16i+di8FkYPud7cTExXDt+TXCPcP5tOmndAvu9rdT477KQGmlsGJzr810Cezyh76r1WvxmeNDa9/WnHtyDolEws4+O5lyfAqnU0+zo88OOgV0+lvn/y9E/OtoIBp5rVe35lH+I44NPkbTFU3JLcmliXcTYgfFmm9MgiAw7tA4fr70Mws6L2BMxJh/dqKTJolCVPcqZxT+LEoNpVT/uTpetl5cTLvIiSEnaOkjsibVXVyXeh712N9/P5GrIyk1lLKu+zpqLqjJoNBBrOm+ptJ4TwqeUHVOVQ4NOESH6h0qfb7l9hb6b++PSTDRL6QfvUN602drH0bXH833bb7n2MNjfH3qa65nvCzV8Hfw563At2jr15YW1Vpgo7Ixf2YSTEyKncSP53+ktmttjg4+io3SBudZzkxtMdVML6w36vGa7UVBaQEfNviQWe1nVZqbSTChmi4qb6/tvpaBoQMJmhdEck4ymukCcyY0Y6r6vDnyKpVIUUgVVC2UkmxVwsK98HEHKFG+pIYth53KjoKyAhwsHBhZbyQj64/8zZrXu1l3GbhzINefXzc/YNv5tWNf/33MvjCbKcem0LNmT1Z3W/2Sq14QIC1NbMoub86+cQPh3j0kRiMmCaQ6K7AOb4JL4zYQGkpadTe8tonp4wZVGnAp7RLjGo4jKjCKDbc2sPL6SgQEmlVtxuDQwfQO6V1BaPFu1l1mxs1k3c11qBVqetboSfvq7Tn58KS5Vr9bUDfySvNIyUshQ5Pxm2UO5aJZBpOBDE0GTmon2vu35/D9w+iMugoZirkd5zKi3ggsu/WmTDBg2egoi3abeNqhEdMtLpmPm7OlM/ml+RwZeAQfex8C5wUyvdV0JjebTM/NPdmRuIOsT7LwnO2Jg4UDmdpMZBIZy7sux1HtSEl+Njbxt7C5cJXbd07xbpSo4K2TQ4FSNN6qYU8q+bhYuqDRa9DqtW8UUHsdZBJZBV2F8j/BziI7WTlsSyB3JhikEDVIxlEfIxITdEsSS6TCnkObwXDXx4rRrSaw+fYWUvNT2bVCyxN7CSOiBIRXDVYB6mZKWbbTxKaWc7ji1wDhVxmNPC5zU/7flYTKpXKsFFa4WblhFIw8yHtAsFMw7Xzb8cuVX9jWexuJ2YlMOzWNYOdgVndbXTEzt2YNDBkCBQVc1dwnYmkEJsFEt6Bu7Evex7ZeW+kY1otfoj2YsOUJ8y/NZ+yhsTwZ/6SC8x1zNoaZ52aSM6lyueeb8J/j/2FJ/BIyJmSg0Wvwm+tHdFA0S7suNW+jz8rg5Kz3sdqykyapJoqUsKMGXG1bE/uO3dlxbzcJWQkoJAr0gkiR+yj/EQmZCW9cGwqpAoPJ8NtrRwCpACapmDWUSqTm+41MIsPRoGDGOUs6X87n26Ym5jWATVvhWdsGbK4t5fyI868dtqisiImxE1kcv5i2fm1Z3nU5Q3cNRSaVmUtNNToNp1JPcSb1DFefXSUxR2RVK78vumkk1Hou4FUIxQpIdob7zhKMKiVGk7ES05tcIkdAqJDRkiDBy8aLQOdAAp0CzU6Ev6M/vva+FZ4BIKq3n3x0kv3J+zmQfICH+Q+xkFvQ2rc1XQK60Kl6J3wdfAHxPn8l7QqL4xez995esrQvs1AyiYxR9UbxS+dfKhjPF59epNHyRgwOHczqGlPENXnlivgs/uorUL2h1vEvRHJOMhsTNhITFyNm2yzs6VWjF/1q9aOlT0txvrGxIv19XBw0afK3zEMQBGJTYplxdgYnHp0g0CmQiU0mMih0kJl6/u/C8qvLGbN/DHqTnuigaLb23lpBZPZN+Pb0t3xz+hvOvXOOIbuGkF6UzvY+25lzYQ4Hkg+wqdcmetTo8bfO/V/AX8RL8f835l6Yy6nUUxwddJThu4eTU5KDm5VbhcUsCAIfHfyIeZfnsajLIkaHj/7nJ6pUigJGfwEWXF5gVknuE9KHlj4t0Rl19N7aG7Vczfoe65HL5Hzf5nsiV0Wy4ZZIdftqg/KrKGfs+fUNJzknmXGHx3Eg+QD1POpx9dlVjqQcYWjYUDpW78iCKwtYeGWh+eHqYe1BYVkh7tbuxA6KNT8kfg2pRMoP7X9gU8Im7ufeJ2xRGJt7baa9f3v2JO0xOxr7k/eb2XJG1BvxxrGCnIIwmowM3z0cb1tvBtYeyBcnv2BDLfDLMSH1lmIUjOamWKtiHclWAhIBxkTxgkbRRImhBF97X1ILUjEJYpSxV41erO+5/g+p4wY7B1PfvT5Xn4maFo5qR37q8BPv7n+XlddX8lWDyUx17oF07aYKjE/kij0m2NpCaChZjUJZXE/DfssntI76iM87fWd2TPRGPeN3DABgQO0BrO2+lrkX5zLhyATOPz3PtJbTOHD/gJid0GQzet9oxuwfg6eNJyqZigxNRoVoe5GuiFU3VrHqxirzexIknH96ntputWlatSlOaickSEQWq+R95qbqwAIFXTp8QPfg7jT2boxcKuf8k/MM3iUSBeiMOi69c4mPDn3EhbQLyCQy9iTtoYl3EzT1nSk+uAs3pSN3XbJp6h3BpICW/Hj+R/QmvZnWtM2aNubfvvzacuZdnkd6kVji5fKj2BOUqRXXiFEwMnT30ArnRBmoROcPKpOM59ZGPrjnwFqfPDTArRn5fNVOxk8NRKNlkFNrmjbohZWFDdZKa7bc3sLm25txUjtVMGzKMTxsOCdST1BYVkhuURYGiXgdlNfbyyQy3PUWbF2vQQASAmzZsyid/TOGE7hoC6GZcMwXIofCtUAxS2CjshXr1006Og8Eg1QwOzAIEPkQ5h+EGlkm8i0gTViBSRIBGEWRMcGIIBF4JFtmnme5wfwqqlhXqaAjUY7ooGhSC1J5Xvycx4WPzaU4iTmJZuep77a+OFs6m6+V8KXh9Ajuwfdtvsff0R/JtWvg78/t0ie0X9veTDM8v8t85Ifk9Nnel8euNsifpqHRaRgQOoAJsRNYdX0VU5q/7IkyCSaxgftP4OSjk7T0aYnBZCDmbAz5pflEBUZx5MER8kryuJJ+hXW31pFhlUHNSTVppvek4ekHtDzzhCE/3iFtyR2sa8PaULjlLh6zvff2mseXS+XmiP6r6tKv0gYDqPRQJgVenb7k5am0t7A36+bM7TCX9C3LmDD/OtYeDgjTv2L09I9YFAG7mtjj3ak52cmvp0U/8fAEw3YPI0ubxceNPqa+R33W3lhLYWkh8c/jcZrpRGFZYcUshACWBvAokyLXQ44aMqwEMl48HqRIUSvUyKUyTAZdpZ6l8mynWq6medXm9K/dn8hqkXjbeVcgAnkdUvNTzVmL4w+PU2IooZpdNboEdKFLYBda+bQyCzZqdBp2Je5i7Y21HH5w2Jw5VMlUOKodyS3JpV9IP37q8NNrs8MLLi8A4L379vB2XbEHIi4OGlUW6/27EOAUgN6op9RQyoquK7ife59Ntzex7Noy3Kzc6F2zN/023aJxrRCkf5Bp6r+BmQXQvz2X0i4RExfDqL2j+OLEF4xvNJ7R4aNf21PyV+Cdeu/QLbgb7da2Y3fSbpxnObOr767fLX96v8H7xMTFsOX2Fs4MO0P0pmg6re/E+h7rUSvU9Nnah1XdVjEwdODfMu9/IeL/fEbjTtYd6i2ux3sR76GSqYiJi0EhU3D+nfPm5idBEPjgwAcsuLKAJVFLGFl/5P/OZL/5BubPh+fP/0fDFJYV4jfXD08bTx7kPSDx/US87bwZe3AsC68s5MywMzT0amjevtP6TsSnx5OlzWJr7630qtmr0pgJmQnUXlib8++cp5FXI4p1xXx7+lt+uvAT7lbujGs0DpNgYs6FOTwtegqI0f8yYxkmwUSEZwSroldR01VU4+2wrgMavYaDAw4S5h72xt/y3v73OHT/EN523sQ9jqNHcA+23t3K80+e42btxlsb3+LUo1PU86jHyaEn3zhO983dKdYViyVkz66xr/8+mq5sSoM0GJvlz4CwB0iQoJIqsS0so/4zqJYHSxpUpi8tNySq2lbF0dKRiyMu/iEnwySYGLh9IBtvbwQBhnh04kzuVZ6WZjL4Osy65Y59aoaYJpdIICDA3KBNaCiEhlJaxY1vTk8nJi6G6o7V+az5Z7hauZKjzSFbm21mcnpc8BilTIm10hqVXEW2Nvu1GQe1XI2DhQOlxlLyS/MxCSYkSPB18KVHcA/qe9bHSe2Es6UzzpbO2FnY0Xh5Y4p1xVgqLFnfY72oXqzTUKwrpri0gCk73idDqaO+1h6tsZSHDmKGrbwG3FphjQQJKfkpZgae34ry2pRBs8egsVZxyUtCmVGkq3xdn4S/gz9h7mHsu7cPtVwtkgOkxJrFqk4OOYmzpTPWSmusldYoZAqq/1ydYOdgYlNicdTJCanemFuZtygqK+IDj2imP6mOt+lH8hVGZh6GiUmOEBkJkZEYI5sTeKo3KfkpDAwdyPqb6yv8FgkSLOWWaA3aSlkNG5UNjhoT+1br8cjRcSRIRsBzI9YmGcGZRo74wYzWCk54vZlVRylRYKvRo0DKM0sTPdJs2b60kAxXK7ZX1TC3ESQ7Qb97dXBpupi0+zmYdMk07+XNxDN9zNFmV0tXszNmJbdCY3hzDX2XgC542XrhaeOJp42nKEJYlMGoA6MQBFGPRClVYmchZvtet+5OrZKSb6OgV28TCpkCrV6LVCJlRpsZjG00lp5bejJ26n7ylQIuB04S6RPJ4J2DiXsSR/KHySKb1AsR1YVXFnJ8yPGKDcy/6kso71XILcnldtZtc8nmmyCTyPCw9sDN2u1lGZLKjtqpZdQ7dptaxxOwK9Jxww22hCm4274uccZHZGozxevJUFoh8ylBgo3ShkJdIdYKa0JcQ7iYdhGJiYqZKKDpI2j/AL5qAw5qR0aFjWD43qf4z99AQnhVQo/c4Ez8Tpq3Hc6sJjC9XSh1lZ+gL3HC102NZ9VENLLbPCp4xOW0y691gF/F69TKlQaw1oFcIkVvoaRIqsfwSmaiik0V/B398XcQS5ssZBbEP4/n8P3D5JXm0dq3NaPqjaJbcLffjYbrjXrOPTlnzlrczrqNXCqnWdVmdAnoQueAztRwrmEu63pc8Jh99/ax5fYW4p7EmR0klUxFS5+WOFs6s/XOVrxsvVjQecFrM/DlcJ3hRLE2H803JiTjxsG334LlX6R6/gdx+P5hOq3vxPTW0/ms+WeAaJNcSb/CpoRNbL61kTTNM6pKHejbaAT9avWjrnvdf6SPIik7iVnnZrHmxhosFZa8H/E+HzX86L9W+f4jmHthLhNiJ2AwGegX0o91Pdb9ZgnXpNhJLLqyiMfjH2Mht2DQzkHsuLuD+Z3nczntMiuvr2RR1CIzW+a/+Ovxf9rR0Bv1NF7eGK1ey7SW08zMNuu6r2NAqBjxNQkmPjjwAYuuLGLpW0srKYL/o5g5U2z4yvvj9cavw9envmb66ekICHwV+RWft/jczD41v/P8Suqc155do94S0em6Ourqa5uP49PjCV8aTvzIeJJykhh/eDw5JTkEOwWTockgS5uFhdyCCM8ILqVdosxYhgQJI+qOIL04nWMPj3F88HEzG0SmJpMuG7qQlJ3Ezr47K7JrvILtd7bTa2svHnz0gGVXl/H92e8BsbymV81eeM/2xiSYKpzT12FS7CS23dnG1dFXabqiKcVlxTwufIzCCEtPWDO0bTEKA+jlMOEs/NCs8hjeNt5klWSZI7gSJExtMZUPG36Is6Xzm09ISQmGWzdYsGw0ws2b1HkODXMtUBeVUqSE97rAujrQRO/O+y5dMFX1JsdJTbahiGxtNjklohPxuOAxqQWpb6TetFRYYjSJvPth7mE8L36OTCqjR3AP1Aq1WaF4Y8JGUgtS8bb1ppFXI04+OkmWNgsXSxe8bL3IL83naeFT9CY9FjJRIEsikaDVa9/YSPoqpC+MJ4kAAVpLbANCEBAoLCskS5Nlbp4FCHEJ4VH+I7OQmcFkMBu/3ap2YNYnh5n/SXN2ZZ1hRpvv6Xd1CjPbzWRS7CQODzyM0WSkx5YelBpKcVY74+vgaxafc7V0RSFTmOuzh4cNZ3n08gpz3XZnG7239sbJwpHwO3lMCBlFuxKxwX9Sk0nMPDeTbsHdOHz/MENrDWTh9aXMNLVl4ik9nD/PumAdg3qAg0GBpUGCvU5U7S5XMa5Uh/7ibmyhB7syiF0rqn7PaQjDr0NArqjz8FNbK0576pFIJGaDuNwhe5XxyNXKFUGroc8FDfMbwo5YR7yGj2OC5CinH5+mXZoFs/aVUeeZALVqUVCcw27bZ+z5vCcHkg9UMIZfpbgt39eO3jvI0mYxev/LDG+n6p3I0GSQXpRORnHGG53E1r6tqeFcA3drdyRIuJN1h/3J+yksLSAvRsLMJvBdi9d/VylTsmCHjtoZ0O4DW6rZV6PMWMa9nHtUsamCzqgjvzS/UpagHGq5unIzs9qBorIidiftZnLTydzLucfee3tZ130dt7Nu88ulXxAEge/bfM+o+qN+07hZc3k5CxeNoEapFalyDRe8QKsEuUmCWm5BkakEdyt3ooOj2ZO0h2fFzwAq9uu8QlH7KuTIMGAk/JkEZfVgpi5Nov09E1+0ghktJNhbOlKqLSTvGz37a9dh9lsLXuSDREYxELijHEe26cobz41KpsJGZUNxWTEmwYilSUaBUIrwYj4qQYavlRf+VULwd6gulji9cCx8HXyxkFtQoi9h+93tLIlfwpnHZ3C2dGZY2DBG1BtBoFPgG48diI3Rh+4fYn/yfo48OEJBWQFuVm50CuhEl4AutPNrZyZgMJqMXE6/zN6kvexK2sWdrDvm9amQKmjn185MmT720FhS81OZ3HQynzX/zJz5qARB4PH876iW8x/apFtw9O1DYvDgH0Z5KXO4Zzj7395vFiB8FabvvyNuxTQ2xQxi64M9ZGmzCHAMoF+tfvSr1e+14rp/NdIK05h9YTaL4xejN+oZXnc4E5pMqCCy+1fiWdEz2q5py53sOziqHdnffz+NvF+fZXpW9Azfub58GfklU5pPwWgyMu7QOOZdnscXLb4gpySH+ZfnM7vDbMY1+u/IL/7Fb+P/tKMx7eQ0vjn9Ddv6bGPgjoFo9VrGNxrPjx1+BEQnY8y+MSy9upTlXZczrO6w/90Jz50rsltotf/1ENnabHzn+OJo6YhcKuf2e7dJyUuhwdIGRAdHs677utdGQjx/9ORZ8TNSx6W+VhirvBHb2dLZXLIilUgJ9wynjW8b6nvU5/zT82LTsEGHzqTDQmbBg7EPcFQ70nZNW5JykrjwzgVzeVaxrpheW3px/OFxVndbTf/a/SvtN7ckF+eZzubzs//efrpt7oZCqmB43eEsjl+MlcKK5xOem6PWr8OS+CWM2T+Gks9LSC9KJ2xRGEJpNaoZh+NR5k+O/AHvHV3BlMibZFphNgDKDQMvWy9cLF1QyVVceCo2IpeXhUiQ0NKnJT1r9KC9ZW2kiUlk371KTkoC2en3ySp8Tq6FQJYlPLKHAhdr8mwUpAr5lMlfbwqUGwJWCitUchW5Jblka7OxVloT4BiAldJKVMF94ViUGkpJyUuhzFhWwWD8I1DJVLhbu+Ni5WKO9FsqLMkryeNh/kMe5onqwcFOwbSo1gI7lR0x52KQSWRMaDKBYWHDxO8tWIbV51+xcvZg3s1fh4NORrsiFzbOrVh+cyfzDuFLw3G3didTk4lGr6lQbqKSqYgOimZ/8n48s0oZZqjF5043sJZb0Tk4ivmd5+M8y5ntfbbjY+9D/SX1zbz4jmpHpjafyvgj47FX2ZtpLgFmd5jNRw0/qvAwb76iOXez7yLR67k5oxCPq/fwPdCexwWPSfkwhV5be3Hl2RWG1hlK54DOrLi+gkP3D9GoSiMspApOPTmLjaDEoC9D+7qk1q+MSVsh1Lzmqj9/wIC4FXjnJuCdb2JfAFgY4OfGopicXCrH1coVS7kl9/PuM7D2QDR6DXuS9oiOhiAOvWk7rA6FAwHQO6g7W+/tJMTajx8WpdChySAkGzbCihWwezeavTuYHy4wuT3UswnkWlFyBWO0vNTH09qT9OJ03q3/LvM6z0PxjcK83auCnnqjntSCVO5l3+NB7gM+PfYpWoPYx+KgdkAhVVBQVlBhPfrmQsrP0GkAHPoNMd//nIIPLoH7xMqflWfrEECj1zCy7ggauNenqUdDqli5o5LIxcZeo1H89+L1D6dj2J6wmQP99+N3oD0dXZvySJPGhfxbDPHoxEz/d3GV2lT6XpGumHNFtzldfIdjmltcLBNZsuwkaqoUCoQ/MTEo2ZIWN/MRBDhWXcK+WkrOuJXxyAGKlSIzlG8eBOZAYBbsDIEyGXx9UiyjyrCCXxqJ2h6Tz8Dnp0WhR4UJElygwAIUAsgFCRKjQJ0M+LTfHG5Uq9x/k8slEuTjsVXZisa2IJZAvkpK4IQldhoDKVY6PriqoJ53BH6R3fBv0xtPh6qvNXpBrBJYEr+ENTfWmLMXo+uPJjoo+o3Zi3L2uvKsxeX0y0iQEFElwpy1qOdRz7zPorIiYlNi2XtvL/vu7SNbm21WrZdKpLTza8fgOoPpGtSVYl0xnxz5hA23NhBZLZJFUYsIdg5+88J68gTeeYcv9LF80xK2dFlF7/Ahb97+b4LeqKf1GrF39Nroa68PVplMYma7WTNYvRqDycDxh8fZlLCJHXd3UFBWQKhbqFmN/O8y/MuRV5LHgssLmHtxLjklOfQJ6cPkppN/syrhf4LvznzHFye+wCgYeafuOyyJWoJUWnldvrvvXXYm7uTR2EeoFWoEQSAmLoYpx6Ywou4IHNQOzDo3i+mtpvN5i8//lrn+X8b/WUfjSvoVGi1rxOSmk9mZuJOknCSaV21uVtk0CSZG7x3N8mvLWRm9kiFh//yNphIWLRL5sQ3/vVjUxCMTmXd5HqWGUvb020NLn5Y0WNYAmUTGxREXsVJavfZ7NefX5G72XX5s/yMfN/4YrV5rVuA+fP8wNzNvAmJDY6fqnRgaNpSWPi3R6DXMipvFkqtLUEgVvB/xPuMbj+fniz/z7ZlvifCM4MKIC+SV5NF4eWMkEgnnhp8zixbpjXpG7B3Bmhtr3qi8Hr4knCDnINb3WA/AlKNTmBE3AxCNsTH1x/Bz559/87iceHiC1mtak/h+IkHOQfRY/TE593uZI4EIorbANdkYCqU3cbNyI0OTQTW7atiqbBkeNpyPj3xsjqLpTXoa2NWkWJPHc10uhejE+vvXRCiKfWrIAAAgAElEQVQlr1TMWCgsEATBnPH5M+rUdio73K3dsVZaY6W0MjsF5UxiBaUFDA0bSg3nGlgrrTmdeppNt0VWMRuVDTqDjk23N7HmxhoKywqxUdpQZiwjxDXEbLS/DrkluWy5vYU1N9Zw/ul5s+aEu7U7tV1rc3DgQdi0Cfr3h//8hytjoolYGsFXD334yvcRe/vvJSowyjzep0c/5ZdLv/Dgowc4WDhwOvU03535jpOpJ83b2ChtGN94PNsO/ohlroYrXuBh4cqdsUlYKizNmi6bEjaRkpdCwnsJ/Of4f4iJizGPMb7heGZfnF3ht1SxqUJUQBTNqzUnW5ttViTvWlIN2+e5pLUK5+Sjky/OV+VzI5PIUCvUFOuKkUqkOKvFkrK72Xfp4NOWQ4/ExtpNt2uyzPIuR30FquVBqgPYmkIJMy00rzmpyYhEEOh2egwrQm5yzQOyZytI6dmGjX2CmX1xDi4qB4IcgzibfoFBwX0YFtSX1nt6mucTEwu1cxX06q5HqwAbiYrP/IcyYc195Al3QKMRmWo++giMRrKWzCHE/zBGmYRctYDCCHop5nWrMop9A53znKmRnIfcBC29mxP36AwL64laJJ/d90CvL8OgL8WgKwWjCZkAchMsrQf3ncQxZ8RCVZ0FauSoJAqUggSNXGCXewHz9psIexfuusDoKzD0tpx8mZF2gwS+OAV9E8ChBNy04D0OLiwDlUTGonomvmkukPQLuGlgegtYFwqpc/7gRfQC/4+9946Oqs7//x/T03sljRQgJCH0ECD00AII0gOCShEsiIIi4K6KawFBRaUr0kR6kRI60kKkt5AQkkBI731KJjNzf39cMhATsKz72e9vd5/nzJmck1vet8y971d5Pp/z+sDirqLoU8tiWHkQuj949P8SSzjnC2f8xM9VT5Gg7VYtHmelCvb9CN0zQSqTk2Fj4HSAjDP+Ek76GnhgL1b2OuRC1APxO6RQDBSMUvE8LY+ANfshuBiOBcBnUeCiFgOMTjnQqkD0fPnFT0aZ0ohRIooFaBRQYAN+VVK29f4JveoJimKKofja+4pka8dAAlUeBCTlEXjsCgEnr2IvqKh6pj9uYYdZ0P095vR88gRMW6tlZ9JO1lxdY5burqteNHNuPFos15VzNP0ocalxHEo7RKG6EAcLB/oH9iemWQwDggbgZv1o7BnlGexP2c+B1AOcyjiF3qg3P2uMgpEefj0Y12qc2fTOJJhYc2UNc4/PRSFTsKTvEia2nvjkliJBEFWkZs4EW1tazIC0mjzU89VPTVL9q/DOsXf4POFzTr9wmq6+XRtf6Phx6NsXzp2DrvWXqTHUcDjtMFtvb2Vfyj40tRoivCIYGzqW0aGj8bLz+peNXVurZd31dSw+v5iM8gwGBA3gna7v0MOvx1/e0pVRnkH0xmjSy9Jxt3bnyHNHaO3Rut4y6aXpNF/WnK8HfF1PKXTjjY1M3jeZAYEDaOfZjg/PfMi8qHl83Pvj/5PWs/8W/FcGGtpaLe3XtMdKYUVLl5ZsvrUZT1tPbk6/aX5ATd03lXXX17Fh2AYmtJ7w7x6yiHXrYNIkMdCQ/XFZuZzKHAK/DsRSbklnn84ciD3AuN3jOJh6kMtTL9PCpcUT1/X6wouC6gJUchXtPdtzIecCeqMee5U9WoMWQRCoNdWSMTMDPwc/7pXdY+G5hay/vh4bpQ1vRL7BjIgZOFo6AqJkXvjKcJKLk1nUZxFzouaQVppG57WdxX74CY/65gVB4N2T7/LpuU+ZFTmLxf0W18umzT0+lw03NpA7KxeJRFLPNwNgQNAAto/c3kCx5HFkV2bj86UPB2IPMCBoAN0/WY+iJkQMMh5CEIyUSv68twCAAhlIJNQ+JEc+HkxE+0dTqCnkZsFNIr0iGRk6EjulnTlgsFZaY62w5ueMn/n47MeYBBOaWg29mvbiu2e+azRbVVBdQN9NfcmrzuPoc0frtb3tS9nH0K1DSZicwKYbm/j++vfIJDKmtptKkaaI5OJkvhvyHcO3D6eyppItI7bQL7DfU4/vbsldNt3YxJKEJeYs9Ty/55jyzjYC+o2BjRvRGWuw+cSGZTe82NvcxG03SHolCVuVLdmV2TT7phlvd3mbD3t9aN5unYFkkGMQWZVZ9frnmxfDXRdoqWjCqZnXcLN2Q/kPJTMiZvDFL1+wevBquvh0oaC6gI/PfszPGT/XG7Ol3BKDyWDmAvwaSqkS/xIjbrYeVHm7ciP/BkNbDGVvyl6kEikzI2by5YUvWRS9iLe7vE2Vvoqgr4Mo0hQR5RvFucxzLB+4nL6BfYlcG0mptpS/d/s7KomMv5/5QCxqmGBY8VJKHSOQSOrfc2WSi9yUvwEC3FwBrR621C+NhDcHQIsiyLaDCTfhq8NgM1+cyD9zB6Lvwwc9odQSrGshf4nYW/8kDBgPxwPFoNf08CcmM8Hz1+BQc8izhYASKLSBy6vBQw1GmQSDRGBvC5j2DOzbbUHnIhUSuRyJTIFEoUAqVyCTK+jbKwsPtYRzTmr8yyEuqS0utu4gk1GpMBHd/BfGxlcw46oCzbODGSvbzZEAgS56d9ZX9WGq3SkkAmwo7oYxO5OmhxJoNgOG3lNipTNgsrHm09ZVRGVCeAGc9xE5KBPuqJAplAgyKXpM1AgGtNSiw2CeoBulomFjrh3cdRZjq0iJD4McO+Hi5INaBXd1OcSXXiexXFT+87FuQg+vLnT36kJ3n25cKb7J+LjJvNf1b9QIes5nJ5BUlESJVlS9kkvlCIKA0WSkVQG8cF10d/dQQ5KLGBStawMaW7GyZYPo1P5A9j2VkpsoDKKfyog7sKwDnPSH1GBnPGw8SSxKxE5lR2VNpfl6tjYsxYGIes8xCQIhfgq+fLEVCo0OfvoJtmyBo0fFyXZ0NIwbB8OGgZ0do3aMIr00navTrja4X24X3ubbq9+aqxeNSXc/upcFc3tcXGoc5zLPYRSMhLmFmasWXXy6mMngRpORCzkX2J+yn/1395u5GS5WLpRpy6gx1tChSQdiw2IZEzqm3sT5Rv4Nph2YxoWcC0xpO4WF0Quf7ridnw8vvQT798Pzz1O56EMcVjUlzC2Mmy/ffPJ6/yIcuHuAIVuGsLjvYt7q8taTFxw9GpKSRMn7p0yM1Xo1B+4eYOvtrcSlxlFrrKW7X3ezG/mvjXL/KhhMBnbc3sHC+IXcLLhJJ69OzI2ayzMtnnliRezP4t0T77Lw3EIEBGZEzGDpgKX1goXYXbEkZCWQOiO1nmLV4bTDjNw+klburYgJiuG9U+/xesTrDdb/H/48/isDjdlHZrP80nLmR83n/dPvo5QpuTjlIq09WmM0Gc0Z9A3DNvy/pUaweTM895yYhfwThLTpB6az8cZGDCYDia8kcjjtMDMPz2xgYgfiS+FO8R2O3zvOifsn+CnlkWJJC+cWDAwayJH0IyQXJ/N86+fp5teNKfumED8pnpWXV7Ll1hacrZyZ3Xk2L3d4udFJfmpJKiErQjAJJq5Pu04r91YkZCXQa0Mvnm35LJuHb673MFp2cRmvH3qdsWFjWT9svflFdiz9GP1+6GfWvRcEAfuF9mhqNQQ4BJCvzsfT1pMdo3YQ7h5u3p7eqCe1JJXr+dc5lXGKtdfWmtuKIg37UNF4JjBBPuTpJ/qxdhgpUhQyBQqZwsxnsFHaoJAqSC5KrqfkU7fv2NBYZnSagYeNB+427g306/ck72HagWmUaksxCSbeiHyDT/p80iDrll2ZTfTGaCprKjk+8XiDXt0dt3cweudoJEhwtnLm9YjXeTXiVZwsnZhzbA577+zl7oy7lGpLGbdrHEfTj/JR74+YGzX3N18SS84vYf6J+SKPoxZ0Cojy7srzbV9gVMgootZF0TU+i7keIwl12sLktpP5euDXTN03lb0pe0l/Pb2egkldUDQxfCJnHpwhoyIDuVSOJXKqjDps9WCUiH3wThZOlOpK6yn6PA0KqQIfex9e7fiq6ONg4SQ6mZ96z7xMp2wY1+M11qvjcbJ0Ymq7qcTuikUhU/BRr4/YlbyLy7mXiQmK4ULuBUo0JShlynocBwBLvdjqYpCCTyXccwS5EaZcg9zm+ylpxM8CSjkjj8GEQGS2hNM/Krj3txncKLnNF+WHuegtVsWGFNqzdnM1TWYaqZWBtQHUcnCskVBmIeBbLmb+jwbAiGTQS+FoECwcaIOjtQtpsgqyTWU4q6HMUgw0gh2aUVVTSbW2ApO+Bq9ygTuugAScVI6U1pTRxbsLMqmMs5lnxXPl1YmEyQmNvqT9v/InNiyWi9kXOZFxgrYebbk67SqaWg0DNw/kRv4NHhwPw15lz/L3Y5h5eCbbRm5jzvE55FfnM7jZYHYl7yL/rXxc8iogKIg+E2HUjJUsv7ScUm0pbdzbkFaaxp4xe/jHmX9wMuMksyJnkVuVS251LjmVOeLfVblP5HA8DRIkqGQqbJQ22KpsUcgUGE1GSjQl9Vrx6mCjsMHV2pViTTEGk4Guvl0p05Rxt/QuVfoqZEbocx8m3IAhKdBvSjiWjmJl63Gn9iThZeyqbpJvQ702PJUBnBw8yavOo5VdM7ILUtnjNoNCVS2v5J0nVLLy4ahlSCXifHRpsyLC9m8UJ9ZarZgNHzcORo4Et/r34O7k3YzYPsJc7dXWatmRtIM1V9YQnxWPm7WbuXrxa+luTa2Gk/dPEpcaR1xqHA8qHmClsKKPfx9imsUQ0yymXituZU0lR9KOcCD1AHGpcRRris2V2tyqXKr0VQS7BBMbFktsWGyDakm1vpr3f36fry58RbBLMKsGryLKtxFC3ePYtg1eeUU03FuzBp55hu+vfs/k/ZNZFL2IOV3n/L4b4y/Cg/IHtF3dlijfKH4a+9OTJ7sFBeDtDZ9/LlYkfyfKdeXsvbOXrYlbOX7vOADRAdGMDRvLs8HPmrkvfyUEQeBw2mEWxi/kzIMzBLsEM6fLHMaHj/9dQim/FynFKfTd1Jesyiy87bw59twxgl3FNrkb+Tdos7qNWcL+cVzOvUzM5hicLJ2YED6Bv/38N6a0ncKqwav+5V4h/w34rws0TmecpteGXszsNJNvLn6DUTCa3ayNJiOT9k3ih5s/sOnZTYxrNe7fPdz62LkTRo0SpUwdHf/QqmmlaQQvC0YikTC782yGthhK9/Xdxaxv/y8AseJx4v4Jc3CRW5WLQqqgs3dnzmSeoYVzC7r5dmP9jfUYTAbae7bnm4Hf0NmnM5+e/ZT5J0VFDG87b+Z0mcOUdlOeTLZ7iK9++Yo3jrxBU/umJL+WjIXcwkzAnR81n4/7fFz/FCTtZPzu8XTz7cbuMbuxU9mhqdXguMiRz6I/Y2bkTCp0FTh/5oxRMPLdkO/o6NWRkdtHiiVW/2i0Ri3JRckUqgsbtL9YyC3wsvXCqmgGTr/KBCIY0esvct5arGhITWK7hlQqR6+vwaSUIZVIqTXV1lPU+isgQWJW0jFhQiFV4GTphMFkoFRbioXcgtburfGy88JeZY9UImVn8k4kSFjQawGt3VvjauWKu7U7V/KusCRhCUfTjwIwMXwiKwevfOTLgegMv+ziMvLfEhXOjCYjH5z6gI/OfsSw4GFsGLbhqVKGdSpkPtUyehZZ03/aYjam7+L4veMoZUrcrd1RPcjhtv08vupnz9vH3ubj3h/z7sl3Gd9qPG0921KoLjR/0krTSClJMbelPQ63aggpgqsBltRITfWqHZ42nkQHRNMvsB+RXpG427jj/5U/pdpS0SxNZonOqEMikTC0xVA6e3emoqaC7699T151Hq3dW1NekEFBbQW6p8i2O1s6U6WvwiSYMJgMhLqGkpp3G3+DDSkW1YxJUTL/hJ7QIkh0gw4vgUkC7fMkXPUUeKc4GHXldK43bXjPlTxeRRPg2Ttwww3uPUzQds+AfBuIvgcJAQquuYjnx1phzcTWE7mWf40b+TcIULqTOCcDrVLKJQ8TkTkw8P0gTprSzCpL1jJL1EYtEgH8HQNIfCUR7y+9qaypJP6Fs4QlFRN6ZgwZCg1IRJJ7hdzAwKAYDqYdNA/70PhDDAgaUO8cCYKAxccWfN7vc54Lfw63xW7Ummq5MvUK80/O51zmOY5OOEqXiBEIkyYR2mQPoW6h7Bi1g2p9Ne8ce4cVl0W50YV9FvJOxzfAwoK549yoHj+Kv3f/O93Xd6dcV06hupBzL55jX8o+9tzZw90ZDb2HBEGgRFtCemk6H5z6gMPphxss80fbF+sgk8iQS+VIJJIGfKi6ANheZU9Pv5709u+Nnc6E5NJlNt3aTJHfUpxNv+JVCEYkuov4pr/Bz00h66GljcQEO3bAC8/ZIJFI0OqqWXTdhRYLv+PZ7cPpk2pE6R9DE58PKC4wElCZzYT9XxCWkgBt2ojtjGPGgJ/fE49FW6vFfYk7E8InIJfK2XhzI+W6cqIDonmp3UsNqhf3y+5zMPUgB1MP8vP9n6kx1hDgGCDKzzYbRI+mPeolRdJL0zlw9wD77+7nzIMz1JpqCXIKwtnSmftl9ynUFOJj58PYsLGMazWO1u6tG518772zlxmHZlCiKeH9Hu/zZuc3nz6JLS4WA4wdO8RzsGwZuIg8iK5ru3I++7xZvfD/Cnqjnu7rupNfnc/VaVdxsnR68sKLFoleHjk54PSU5Z6CInURu5J3sSVxC2cfnEUhUxDTLIaxoWMZ3HzwE1up/xkkZCWwKH4RP6X8hJetF7M6z2Jqu6lP7Tj4IxAEgTePiO3ZAHOj5vJJn08AiNkcQ2ZFJjdfvtkgWZZWmsaAHwagrlXzSsdX+ODUB4wNG8uGYRt+U3L5f3g6/qsCjaqaKsJXheNp42k2EZvdeTZL+i3BaBL187fc2sIPw39gbNjYf/dwG2L/fnjmGcjLAw+PP7Tqc7ufY1fyLhwtHImfFE+3dd3wtvPm7S5vcyrjFMfvH+dOsahx38ajDdH+0UQHRBPlGyUq9ix2IcQlhMzKTKr11fQN6Muh8Ye4mHORj89+zMFUcZKxatAqXmz74u/OUgiCQNS6KM5nnWd6++msHLwSEDPibx97m2+HfNvA/+J0xmmGbh2Kv6M/cePi8LT1pPeG3qhkKt7r8R4rL61k061NgDgBrGtb+DW8bL1o4xJGD2VzepfYkX5wEwftCtgUXENkQThK5/pZRRBY3NlIk/aehK/vRKmutJ4MphQpH/b6kFuFtzicdpijE47Sa0MvprWfxsLohZRpy0guSmbI1iFU66uxkFswNmQs225vQyKREO4ejqZWQ15Vnij7aXpKjwuNy07+EdS5VCukCrPMraXcEku5JVX6KnKqchjSfAh2KjscLBxwsnQipyqHzTc342zpzNcDv6aLTxccLR3rXW9BECgrzSH4c3+c1QJ57lZ8HP0pxZpi7pffF82+iu88NZtso7QxO0W7W7sjQcLelL282OZF1l1fR6RXJDcKbmAht+Cjn6pIdDKwrpOKFYNXcuDuAXbf2Y0ECT52PuRW5WIQDChlSixkFmbFpyedU3sLe8p15dgp7RjYbCDOcT/jbOnM2Y7uxGfFY6eyo0RbggwZvg6+3C+/Tx+fHiiS79Lkbh4ROdA+V2zdUZrggx6woBcMuSPKgu4LhloZ5qpX1AM4+CNsad+GH3svr6cQJBUEJPq5nFOdRS8Ha52o2GVtAHus+DBOQ2wi+M0UW34MMsyqUy+1f4lVg1bh9YUXdio7vOy8OPFRFqSmUmtny9GODgzulmW+D+qO37NCQK2Ew68lsOT8Evbc2UO4WzjXpl8D4E7xHdqsaE2NoDdX70akqdgVVIOtFoIDO2IwGbj80uV6L/MSTYmZpD+85XDWXFnDtAPTUMlUCIJA3Pg4+liFgqcnt5a/T3jRAk49L0rX1uHEvRMM+nEQBpOBFYNWMHXw++zt6c7HveRcfuky2ZXZdPu+G9lV2Twb/Cy+9r7sv7ufuHFxZFdmk12ZTWZFJtfzr5NUnMT9svsNXNkBVFIVvg6++Nr74mLlglQipbC6kKzKLArUBVTWVP7p353cCO2K5HTLU9Ahy0SbzBqCi8UAtN006Kbfj0nRsLJloynkF9kQih+f+wkQWApaCxnlVlJUulreazaFWdlrURgFKj4FeXQ/5NduiBnwoCAxuIiNhZYtG+zj16irXrx19C2KNEW4Wbsxqc0kprSbYhbt0Bv1nMs8Z/a2uFN8B4VUQXe/7sQ0i2FQs0E0d25uDg4MJgMJWQlmIndycTJKmZJOXp2wVdlyp+gO98rv4WLlwuiQ0cS2iqWLT5cnVlEflD/g9cOvsy9lHzHNYlg2cNkT/ZfM+OknsVXKYIAVK8RA4yEMJgPWn1jjauVK9qzs3zxHfyVmHZnFsovLGkjMN4DJBM2bi+Z8Gxsa6P4ZZFdms+P2Drbe3srFnItYKax4psUzxIbF0j+w/19uypdUlMTi84v54eYP2CptzdK4f1Ub182Cm/Tb1I8CdQEBjgGcmHCCrMosuq/vzr6x+xjSomFnwuNql29Gvskn5z5hSPMhbBmx5V9uSvifjP+qQGPqvqlsSdxCK7dWXMi5QDe/bpyceBIBgef3Ps+2xG38OOJHRoeO/ncPtXEcPQr9+0NGxlMzUL/GrYJbhK8SW4bmRc1jy60tZFdlYxJMmAQTAY4B9PHvQ3RANL2a9mrwQ191aRUvx4ku6K91fA1LuSVLLywlwiuC+Kx4Wrq0JNI7UmzLeu+PE9VzKnNo9k0ztAYtR547Qr/AfgiCwKtxr7LmyhoOjjto1joXBIEiTREH7h5g9tHZGE1GQl1DSSxMrOce/TgkSPBz8KOTQxjy8kp2lscTpLNm1zEnWlx9AILAJW8J40dIyLAzMaa0CUk2Gu5bNMXb+AKuhkCK5Ok8kK2lf2gw/QP7M2X/FPoH9ud81nmzV4OPrQ/ZVdkICMilcgIcAujZtCdrr63lyktXsFXaEr4qHHWtGjdrNxb0WMAbR96go1dHdo/e3eC8q/VqNtzYwILTC8ymg752vnTy7kRLl5ZYyC0o04na/0XqIq4XXCezIvM3z7dUIkUpVSKVStEZdEiRopKrzPdDXVb+z06knoS6ib6V0gqZREZOVQ5NJPaUSHXmYM3P3o9lA5fhaOlIqbaUUm0pJdoS7hbfZfXV1XT36058ZjwKmQKdQYdcImfiFQNt8uH1gTQg28skMpo7Nxc9G3QVZJZnNuoB8UGPDyjSFLE7ebdZarS9R3skRgPld25Q6mJNqfBIdtRJAzFpIom3Y47ozG1lENu3klzhmpcMdXgw1a1bUhPagq9vrKFIU2TOZo8NHUtWZRaWp+I5uF3OOU8DQ8aDXB5OP8eF5JaY0JrSqNKt5Zn0dMa+8wNL97zNj1bp7NoKk4eCqwZW7Ic3Y0TVIST1g8+hLYbyXo/3aL+mPV19uuJgYc+Bt69Dbi6VVjJeX/MsG9J2mgMTlUyFtdIafXkpUy7DwSHNuFd2j5hmMaSXpXP7ldvm8/XjrR8Zv/uRXLStXkqV0kTcJpB268aApmfZMXI7Ix9ryax7DtV57ZgEExYfWVBrqmVUyCi2j9oOhw5BTAwvf9WPs/Icbr18q0H2+vPzn/P2sbfFdqKNdlQG+dC16x1WxKwwc4u23d6GwWT4TT8MADuVHZ29O3Mk/QhSiZRwt3Ca2DbhbuldsiqyGqxvpbCiiW0TwlzDaOvZFmdLZ949+S6R3pHmMeRW5ZJVkcXR9CNkXj9DyP1qOuVARA60ywNLg8ijueEOF7zhFy/YEQo1cpiQs5QctwhMj1U0JIIJG4c8zpumNkic2AnhNNdPQiELBON9biu/w8QdjsU5E3kpD2xtYcoUMbjo0OGpvfx1SCxMZM2VNWy6uYlyXTltPdpyLf8aFyZfIMI7gryqPA6lHeJg6kGOpR+jSl+Fp42nObDoE9CnXsWzXFfO4bTDHLh7gENphyjVluJm7UbPpj2xlFtyI/8G1wuuY6O0YXjL4cSGxdLHv89T3Z9rjbV8deEr3j/1Pg4WDnw94GuGtxz+9L768nKR7L1xo5i0W726QdLu+L3j9N3Ul+kdprNy0MrfPFd/FfYk72H49uEs7b+UmZEzn77wiRMil+bsWVFx6i/GvbJ7bEvcxtbbW7lZcBN7lT3DWw5nbNhYevv3/ksz/FkVWXz5y5esubIGk2BictvJzO4y+4niI38EJpOJlw68xNpra5FKxETgodRDmAQT8ZPiG71XHle7fCPyDb6+8DW9/Huxe/Tu3+zQ+B8ax39NoFEnvzqo2SAOph7E08aT26/cxlZly8Q9E9l+eztbR25t1Izu/xmcPg09e0JKipjN+A2YBBPX868zfvd4UopT6un192raS3yYB/R5ouRdRnkGs47MYs+dPQDMj5pPV9+uLDi9gIs5F3G2dGb14NU82/JZvr7wNe+efBf1/CcbeT0NdRMXB5UDqa+n4mzpTEZ5BmN2juFmwU0GNRtEoaaQpKIkSrWiC3ZdO1Gd++/j7rM2NRCt9aDVfTVvVYRhdy0JKioASAyyY+TwWnIsDax2foE7TiY+SV+Pl50XWRVZ+Nr7klWZhVKmpMZQwxxVbxZrT5jJsQ4WDqI2e/tpRG+KNk9mfhz+I/0C+3E0/Sirr6zm9IPTgDixt1WKmvRGjDS1b8qY0DEsOr+Iia0nsmbwmgbZEpNgYuWllcw9MRcHCwe+6v8VUqmUnUk72Zeyjyp9FS1dWjIyZCQjQ0bSyq0Vl3Mv02djH2qMNSikCvoE9CE+M54SbQm9mvZiSPMhOFs5i5N3TQl5VXnEpcVRra/G3dqdipoKqvXVDXgFvwW5RI5KpkImk4kTXa0WavToLOXU8Ij0Dn+++mLel1SO0WQ0b8fRwpHXT+volKol5rlH/Iy6yoRJMJkVtAQEqvWNB6MgyuZKJVLz8culckIMjow9UcSlFtbs8VXjVwYWRri+SpSaLfJy5EEzVzar7nLVS8oVdxMalQQLuQU7Ru0gpnczr0sAACAASURBVFkMNwpu0Hb1IxJ+v4B+rBu2jhnT/diy3ciJAAnjY5Vo5KLaWMprKQiCQP8f+vOg4gFL42DWAPh7z/dYcOZDkpaJnN2Il0CtpF5wNSpkFDuSdgBiC+OUtlP44pcviPSKxLa0mp1vnOecLzw3Wk6evRSjyYhJMNHZuzNlujKSi5P56DjE+4rkbxDd6vOr8ymdU1rvxTxt/zTWXF3zaOcC9E2Hg+ebMqRLBg9cldzy/hj58y+CszNH0o4wYPMAHrwherS8fPBl1lxZYzZlTHwlkZBv92JatAjFrCqW9Puc/kH9zZWIuk9aaRo/Z/yMSqZi05YaHHTQb6I4BBcrFzxtPDGajCQVJ9W7vkqZEi9bL2qNtWZneKlEWu+5AWLgUWOoocZYg0wio5lzM6J8ohjUfBADggY04EKN2TmG4+nH2TJyC3lZyZSfOYrs0mWa3i0kIhvcHuoLFLhZUxbejMo2LZlXuQf7zj0Z3HoUNwpusD9lP/fL7zPropyJt0J4Y+JKpIJEDDYEIyaJwHXZdColt+q1c9kJ4bQxrqxXBUMQWLTvLTpFhsH586Kh5+bNT7zv66Cp1bDj9g7WXF3D+azz9aoXXrZeuH/uTqhrKDXGGq7mXUWChEjvSHNw0cajTb37I7Uk1Vy1OJt5FoPJQGv31kQHRCOXyEnITuBs5lmUMiWDmg8iNiyWQc0G/a7JXEJWAtMPTiexMJEZETP4sNeHv+1KfeQITJ4M1dWiVPzEiY0GXSO3j2RX8i5uTL9Rj9P3r8S9snu0W92OPgF92Dlq52+TkMeMgcRE8fMvJiwnFSWxNXErWxK3kFaahquVq+hGHjaWrr5d/zJSd4lG9LP4+sLXlOvKGRs2lne6vkMr91b/9LYvZF8g5scYSrWleNt5k12Z3aBa+jgeV7uc3n46G29uJMIrgn1j9/1lLV7/TfivCDRKNCWErQzD29aby3mXUUgVXJ12lWCXYHNL0dYRWxkRMuK3N/bvxC+/QOfOosJEWFiDfwuCQHpZOifuneD4/eOcvH/SPCkHGNZiGHtT9vJx74/NDqONQVurZVH8IhbFL8LZ0plI70h2Je+imWMzUstS6ezdmVDXUL6/9j3JryXT3Lk5i84t4rPzn1Eyp/E2pSfBaDJyv/w+SUVJzD0+l+TiZOxUdhhNxnotDTKJjECnQARBMLcuADSx8qCmRk2lUc3IRAGlTMkhnxqyvwA5EpKdBHy7DcKmY9dHLtpeXlTpqxm9czSH0w4jQcLfuv+Nbr7d6PeDqKpkrxJdiwH2j/mJRUtHkuluQa5ci8FkYOOwjfxw6wd+vv8ztaZauvp0pVhTTOIriWZlmWHbhhGfGU8nr07EpcWZj8VOaUelvpJJbSaxPGY5For6E5eU4hSm7J/CucxzTG8/nUV9F9V7idYYajh27xg7k3byU8pPlOvK8bbzpqC6AB87H8LcwjiQegCTYMJB5UC/oH7IJDIK1AVmzkOxprgBf0QlU4mtSjbumAQTV/Ou8mzws9gobTCZTOiMOnS1OtS1ost3ha6CfHU+Vfqq393LLpfKUcqUKCVyKnWVWMossLS0oVhTjIulC+W6cnE7Ahgxmq99HTelMbyRIEqgtpzxm7tvOB6JKGX9+Lbb54g8iA654sdZCy8OFVueyixgv3EsvbuOx6JTV8otIHJtJGXaMoo0RThbOjOo2SB+uPUDJsFEU/umqGvVFGmKkElkxIbF8sOtH5iXHcCH39/DMGQQHXumkljxiENQ/HYxzlbOVNZUErbQh6YPKmlZBCOSYG602JZ12h/SnESekPFh4rsu8DY+5tAc6hpKiGsIBeoCvC7ewT9Py8LwKpRGMCjleNt5YxSMfNb3M2J3xdKraS/sDv3MTy1FjsfQFkM5cf8EBeoCOnl14u0ubzMseBgyqcys3pdcnFzvnKa9epfy+BN0uP4y6/bLeCFRDiNHsm6IN5PuLEI7X8vso7NZcXkF0ztMZ83lNZgwYa2wJm6vNbKSUqImNqyMeth44G3njbedNxezL2KrsmXL+SY4nUyg6cs6rBXW2Kpsn2oSWFe9CXQMpLtvd0yYyK3KJSErwVwRbe/Znt7+venj34co36gGferV+mqu5F7hyoMEkk5sRXXlhlityIbgh4+/Mgu44iOjJDQAy649KQ4LoMxOrMLpDDou5lzk6L2j9Avoh1wq51DaIfpUunDsiyJ2dLTGryiQDT0mkegVRIUsnQzpWiokDdWPWhmWNuCSCRipll2l2uUbvtxeQYt8A1vXvim6tNt4mD+uVq7IpLIG1Yu6JEpX366cyjjFwdSDHE47TLGmGKlEyujQ0QxuNpj+Qf3reTvUGmuJz4o38y3ultxFJVPR2783/QL7IUXK0XtHOZJ+BJNgIjogmtiw2D9EQC7TljHvxDzWXFlD+ybtWT14Ne082z19paoqeOstkejdrx+sXSuSqBuBIAg4LnLEKBipnFv5f6I6VGOooev3XSnTlXHlpSs4WDg8fYXCQnH8ixeL1Zn/IwiCwLX8a2xN3MrWxK1kVWbhZevFmNAxjA0bS4cmHf6S86XWq/n+2vcsSVhCZkUmMc1imNt1LlG+Uf/U9o0mIxP2TGBL4hZATKAkv5r8xOUFQWD+ifksjF/ImNAxHEo7RIhrCIfGH/rta/Q/1MN/fKAhCAJjdo7haPpR9EY9WoOWHSN3MDR4KON3j2fPnT1sH7mdZ1s+++8e6m/j2jVo1w4uX4b27QFRvvTk/ZNmEveDigfIJDI6eXeid9Pe7L2zl9tFtxnXSpSx7e7XnT1j9jSahRAEgT139jDriKjQ8mbkmzR3bs7so7OpqKmgi08XPur1ET2b9qTGWEOzb5oR5RvFlhFbWHBqAauvrCZ3dm6jQ69TeEoqSiK5ONn8nVKcYm5NsFHaoK3VYhSMtHRuia2FLRnlGea2IQuTjN6qYCLKrOiQqqbDhUzc86vRymHcWAX7AmpRCBKaFQss6DKfvoNn4rLMx0wSr4PBZGBx/GLe+/k9sxpMG482fDXgK7p83wWAPv59OHH/BJZyS8reKeObOT34u81FdDIBS7klKrmKcp2oMCOXynmh9Qt8d+071g9db/ZcyanMocWyFuaASSaR4WPnQ1ZlFvYqe0p1pVgprOjt35sBgQPoG9iX3cm7+eDUB/jY+7Bq0CpCXEPqkaIf/xSoC8ivzie9NL1RtZs6yCQyWrq0pLlzc2xVtlgprFDKlMikMm4V3OLYvWNMbTsVjUFDibaEEk0JuVW5ZsfsxlDH27BV2mIUjKSXpiMVoE1mLTaevugD/NAZdNwqvGX2BbFR2KA36dEbn849eRrkEjnGh54mrVxbkVKawpG0znT64TRO7ymQyZUEOQUhQUJqaSrqWjWBjoF42XpxPvt8Pdd0l4fqSj3ui0aJ951gWDLs3g55NnCpCVxuAgneouRrYx4ov4ZUIsXL1gtBEMiuykYukZsz5rZKW9HA8lQm89anc7CTIx5bDzL50DSSipIwCSYEBAx/N5iVTrZfXMeYQ5O4skoc4/gRooJX33RY8uIWJiXM44o+Q9z5E8a3OHoxGy6sJq8gjVJLECTQNUdKD9eOfKK8wLpn1jHzyEx6+/cmsSCRtLI05p2Bk7GduJR7CTulHeU15XTy6sSFnAsEOgYyq/MsXmjzAjmVOYSuCK3Ht3mh9Qu8FvEaMw7NIKUomcmG1uSnXuWcQxWZDiCRSjH8KmisC1QzlsnZ11xg+5TOvNrxVRwtRNELda2a3KpcHpQ/IKUkhYSsBIq1xbz+Cyw8DlbvPjp+BwsHghyDUMqUnM8+D4jtTppaDS6WLnjYelBQXUCRRtQJtlfZU62vxigY6e7b3Uzg1hl0aGo1VNZUotGr8SzS0T7LQMccUYWsXZ5Y3aqVwnUPuOgFF7zEVqhUJ5FLUweFVFSek0vlyCViIqKqtgqDyYAECdZ6gbzFYvDYpgC2hsKUZ0D9q7ZwmUSGRCIxV/U6G/Y3qo6np4jz8sHMOQfzz4LD3Mbvj7rASylT0typOcEuwWgNWtJK00gtTcUkmAhzC2NI8yF42Xrx2qHXOPfiObOvQ5m2jENph8wtUeW6cjxsPMRAJLA/RsHI7ju72Z+yH61BSxefLsSGxTIqZNQfIlkLgsCPt35k1tFZ6Aw6Pun9CdM7TP9tRaBTp+DFF6GoSFRneumlp1YAkouSCVkRwpBmQ9g3bt/vHt8/gxlxM1hzdQ0JkxN+O2gC+OwzeO89yM390yTwfxYmwURCVgJbE7eyPWk7hepCAh0DzW7kYW4NE6F/FLXGWrbd3sai+EUkFibSxacLc7vOZVDzQf9UFeVUxiliNsegNWhp7tSc+EnxuFg3Yob4EHVql/0C+3Ep9xJ+9n4cnXC0cQPF/6FR/McHGltubWHc7nF42ojyf7M6z2Jhn4XE7oplX8o+dowSg47/X+D2barbhXFm+2KOW+Ry4v4JbhaIWa5Q11CiA6Lp49+HHk17YKeyM/ea2ihsCHQKpEpf9cSMSXJRMq8ffp3j947TP7A/Ub5RrLu+jntl93CydKJUW4r+b/p6PbPfXf2Oqfuncm3aNbH1LHErt16+RUpJihhIFCWTVCx+p5WmmTOtrlautHRtSaBDIJZKS2oMNeRV5XG76DYPKh65YnXFhx6FVnRMqqD91Xy8K8EklSANbomkrjoRHg7h4Rg9PQhdGUZKSQpyiZySOSXYWdgxcPNA9EY9JyaeAMRqwfN7n+dS7iXmdJnDBz0/ILEwkVE7RlGmK6NcV45UIiXAIYC0sjRiw2L5ccSPpO7+lua3XsJeB2orsX1HIpHQyasTXXy6sOryKrr7dedO8R1SXktBIVMQdzeOQVsGidfHJZSk4iRUchWbn92Mq7Url3IvcS7zHNfyr/Gg/IE5C6uSqVDIFI22+dgobXC1csXR0hF7lT15VXncKbljXs/b1huDYCCvOg+9Uf9It/+xLPfjqJtoeNmKalUqubjvGkMNNwpuEOISIsruGnVoa7VU6auo1FU+magugJ2FHU1sm+Bo4UiBuoDsimwMJgPRgdH0C+iHg4UDjgUV7Fs9m53tVahNNRwZf4SOXh2pqKlg1pFZHEk/wud9P0cikVCsKeZW4S22395eL1NtIRPH9fw1+PgkeP/Ky1GCBEuFJdpaLfZagXZ54mTQKIHk5aIbc9irsH+ngvf6Krhpp8W6RuCDDm8xKeZdkg9t5KflM9na35MMbZ55m372fvjaiyTw7Mps8z6cLZ0p1ooOxTKJDJ2xofv6axfgm0OwsgO8GlN/Mvr4NVFK5Lx4Hf52tIa2L4nk73sP5xQKA6g/gRenurLZs0gkcwsmkIjBU3GdeNjj86mHXpFWevi896f0OJ5GO/laJrR7gTN5opP9C61fYO6JuYyRtGLL+7f4cP9bjOv8Em8ceYO41DgcLRx5NvhZ0svSOfvgLJYKS7GVxlDD/QKhUd8HECsjnjaeVFQXUVFThV5qIqwQwi38EIICSZdXcTH3Eo41Uko/NTFxGOzsYIneqH/ifVuHYcmwZxu4vk19kvRTUGeqaK+yx8nSCZlExvWC67hauRLsEoxar8ZUVkJAajEh99V0yoaIXHB7WGDNd7cmu0UTjrtWcsiplOJgH5Kr7qOSq/C198VaYU2ZtoxiTfFTeWPme1mAn9dD60Kw1cHyMU1Z0VlBVlU2X/X/Ck9bT3Yl7yIuNY5CjZh0UUqV6E36J1Y0DKpkDr09isptG/F6/jXWx33KLWkRF3MvkliYaE6SPHFMv4JKpsLd2p3cqlzcbdzxsfMhrzqPrMosTIKJFs4t6B/Yn5EhI9EZdKIz9Z3dlOvKCXcPZ1zYOMaEjflTffd3S+7yysFXOHH/BGNCx/BF/y9oYtvk6StpNDB/vtgi1b276EEV8Nuu2G8efpOlF5ZyIPYAg5oP+sNj/aPYfns7Y3aOYXnMcl7p+Mpvr2AyQYsWEBkJmzb9y8f3e2AwGTidcZotiVvYlbyLcl05oa6h5qDj15LHfxSCIBCXGsfC+IWcyzxHiGsI73R9h9iw2KdyeJ4Gba0Wl8UuaGo1KKQKVgxa0UB05nHUqV2282zHvTJRqOD4hON42nr+2cP6r8J/dKCRW5VL2Iow7FR2PKh4QFefrhyfeJxxu8Zx4O4Bdo3e1ajywP9LqDXWcjHnIsfvHed40gF+yb+MQSb2X0cHRBPtH01v/94NbnhBEAhdEUpycTJdfbpyJe8KCZMTaOPRpt5ylTWVLDi1gK8vfo2PnQ99A/sSlxpHTmUOI0JGMD9qPrG7Yskoz0D3t0cTp3JdObcKbzFy+0isFdYIgkBOVU69zKa3nTctXVoS4hqCv4M/MqlMVF4qTuZy7mVSS1MBsJVY0L7GSSTWJpax01/LzhBoVSzlcnI3FOFtITycC846+lyewfiOk1k1eFWDMmqdJCHAtPbTWB6znDVX1jDj0AwK3irgh5s/MPfEXHzsfNgwbAOdfTqb1y3TlhG9MZqr+VexkluhMYiN1XvH7GVo8FAqKwqJ+Js7HipnrjjXoNarERCYGD6R2Z1n0+X7LnT06sipjFMMbzkcvUHPgdQDwKPJfGOQIsVCYWF+4NmqbFHr1WZncAcLB+xUdqjkKvQGPaW60nqGXI/DWmGNtdIaS7klCqkCvVEvBgY1lfX2r5Qpn1pVsFPZYae0I7sqm3D3cAIdA8XgwMJR/LZ0rPe3Q2EljiPGY+kbyLzZbVh1/Vsmt53Msphl/JL9C7029CLCKwIHCweOPHdE3El8PPsmRzE0FgYGDSRu/KPWsnJdOS2XtyTCK4K9Y/YikUi4X3afwK8DCXYJZl7XeUw5MMV8DM/mO7JsayV+r5uQyOUEKNxwvZtjJmpH5EkJKhEz6Kq/gUcVvHoJdobAJW/q+Z7UwdnSGadqI04lGhK9FKhr1bR2b016WXq9ANBWKV6vZQOXMbn9ZFZeWskbR94g0DGQ9LJ0ANys3bj18i1Ui7/EfsFCPu8MXwz3JFedZ74/IppEkFScREVNBRHVDqzdrsO7UMfzI2TsCxKv3ajbsONhonDHNnhuhEge/jVsamDkbVhfRwt5eGyBxTDpBnzS3xqTXkeTMiMSuZx0eyMOFg6U6coAiCm05+CKCtq+Kie1iXjfPe730uB+aYQnICBwXfayOdh4HFKkSAGjYEJ47Lx3y4Az66HVy1AY4IbRZERTqzFzZtys3QhyCiLYOZhQt1DWXFlDxzwpmz5JZt23rzIpZzlL+i7h5P2THEk/Uu+e7+Ldhct5l+nk1Ymjzx2luraaq3lXuZRziZXxX+F5v4iIh5WKyBxo/rAFqtJKRqKfFVd9FZz11HPStbrRgEYhVaCUKjFhaiBrLZPIcLV2xcvWCz8HP5raN8XX3heDycCcY3N49RcTS4/JkDo5wa5d0K0bV3Ov0v7b9vVU82wUNgQ4BZBakoqtypbnWj3HuoSTtDIuf9heKEFqMoJUylXZNOb0GcM8l2FoWoewfeM7rFaf5pfsX3C1cqWNRxuq9dVczr1MrakWVytxfBZyUZXtQfmDeq2rSqkSuVQumrM+DEYUUsUTRSMUUgWetp6EuITQwqVFvZYtDxsPPG08cbFyeWpFQmfQsfDcQj499ynedt4sj1neQDK5USQkwPPPQ1YWfPqp6DEh/X0ZcL+lfuRW5aKer/5L/R0aQ2pJKu3XtCemWQxbRmz5fW1BJ09Cnz5w5gx06/YvHd+fgd6o52j6UbYmbmXvnb2oa9V0aNLB7EbuY+/zT23/XOY5FsUv4sDdA/jY+TC782ymtJvyp2R4V15ayWuHXkMlU6E1aIn0juTIc0eeyPWpU7v0tPWkUleJldKKExNP1POB+R8ax39soCEIAjE/xpCQmUCFvsL8sp92YBpxqXHsGr2Lwc0H/7uH2QCCIJBYmGhuhTr94DTV+mocLBzo5R5J9IrDRM/7lmbDJj/1wbQraRcjd4zEzdqNQnUha59Zy6S2k8z/NwkmNt3YxDvH36GyppLuft25ln+NEk0J41qNY17UPIJdgilUF9JiWQtR/rfNC+YKRZ0yT10WzMPGA5NgYlH0IgIdA9Eb9eaA4lLOJZKLk0XfAhS0VdvSMdNIh+QKOuRC8zIp0hbB5gpFdVhzgpNfJUeTz7vd3uWj3h+Zx/39te+ZvK+hkdKD8gf4f+WPgECkVySXci8xpMUQPuv7Gc2/aU5Ll5YkFyfzesTrfBr9aT3PCBD7Qpt/05zc6ketXzKJjPXD1lOuK2dn0k4eXD9Njt1DaVKeHkDUwVphbX5hO1s4ozaoMZqM2CptqdRX1mvlqYNcKpKrJUioNdWaW8tkEhkyiYxaU+1T+RAKqUIMAB4GB/YqewyCgZzKHHNlSSlT0t23O30D+zL/xHze7/E+r0a8ir3KHplURoWuAodFDo2aOdZDSYkosSgIIvHUxYX119cz/cB0Wrm3YsuILbRZ1YZeTXtx9N5Rit8uFsl0hw+TNWYgvrNgRcwKXu74cr3N1pmE7Ri1w+z5cjn3MrFhsTzT4hnePfkuReoiNLoqPMsMvHhNdMC2NkD5pyATQKMAVYdI0gMc+VBzCO8+z7KoeI95Hw4qB8prxArWxPCJ7E3ZS1P7plwvuE7vpr1pf+AKyUH2HLDIxF5lj5+DHyWaEgqqCxoQiOvwuFSs7KHDt8lk5Ovz9rx2rIKl/e15t5ueUaGjuVt8l4ScBPO6lrUgFQABJiQrWN/ahF4q4GThRLm6mL+fhk09nUiTlOJeLTp8pz+hc8K65hFRXFkLNrUw/ZIYfOQ+fI/2vCdyPQQBeGwe5lkJuV/AkFg40OLJlx7EVrZQwxc4CB0aZNVLecz/4yFUMhX9A/vj7+iPn70vPlmVGI4f40vhPFGZ8NFJsJ0HJpmEtp5t6e7bne5+3YnyjWqgyvZlwpcs2vs2+Z8ZWTAjnA+cxaCmzmvlcc+VNu5tUNeqSS1JJahMQsdsQQwscqDtwxYovRRueMAlbym3/K247W9NlrsFPPwdamo1VOgq6vF5pEjNMrjedt5423qbeSQ+9j5423njZu3WoNWj1lhLxJqOGFOSubhMzx0POR4nL7C5+Ge+vfotd0vumkny0QHRDA8ezrfXvuVa3jWmtZ9GN99uvPDTCwxqNojMAglW1UNwV7Qm8O4VJlReZuNUe5b+spTRwSM4cHUrlRbga++H3qgnrzoPpUxJD78eZkfuXxvfFauL2XZ7G3vv7CU+Kx6tQYuVwgobhQ2FmsJGn31yqRwXSxe87LxwUDkgSATzOStQF9TjC4LYZuhm7VY/CLEWv4s0RWy4sYGC6gJmdprJgp4LsFL+hkltTQ28/77IXYiIgPXrxez/70SRugi3JW50aNKBS1Mv/e71/gy0tVq6fN8FtV7N5Zcu/zaRvQ5jx8LNm3D79r+cBP7PQlOr4eDdg2y9vZWDdw9SY6whyjeKsaFjGRky8p/yJ0ksTOSz+M/48daP2FvYMyNiBq9FvPaH2pl0Bh1NlzZlULNBZFdmc/TeUVQyFeuGriO2VWyj69wquMXAzQMBkEhETtyJiSf+6arNfzr+YwON1ZdXM/3gdKRIkUllXJxykfdPv8/htMPsGbOHmGYx/+4hmpFZkSlWLO6JBO4CdQEqmYoo3yiz7Gw7z3bIikvA3R327oWhT273MpqM+HzpY36hTAifwHfPfGf+/5XcK8w4NIOE7ARCXUPJqshCU6shOjCadh7tKNIUmTkUj78cQlxDzBWKum9fe18i10aSV5Unmt1Ze5JYfBuDYEQhSGldaUXH+zV0eFBLh1wIMTohD2/ziJgdHg4hIWBRnxAdnyl6fQCcefFMPXfXv5/8Ox+d/chstAiw4NQC/nHmH9gobfB38Oej3h8xascomtg2Ib0sHQu5BZ/3/Rwfex8zv+FxvsOtwltmLsivUfdStTHJqZYakJpAkErMhly/xTlQypTIJDK0Bq058Hh8QtoYbJQ2OFo44mjpiJXCiryqPHIqc+pNcB0sHBjWYhi9/HvR1qMtTpZOOFo6NnASfxy1xlpmHp7J6surkUnFoEUqkRLmGsaSfkvo2bSn2elY/g853w35jsntJjc+SJ0O+vaFO3fELGLQo4ftldwrjNg+gmp9tZkz8UvOL+wctZMRISNQ/7gRq/HPY/Whinnd5/Nej/fqbbrGUMPAzQO5kncFfwd/bhTcQIoEB7XA8DvQOV9O22wDNzwkvDhUwFkNLYrhvB+MvQm5fg5cttewcti3vHnkTYIcg+jdtDcLzy8076OuGmHChJuVG4WaQgY3G8z98vvcLrpNSAHc81CgE2oJcgzChImqmipzb//vggBfHoY3LsDbfWFJ14aLyIwiodu/FKz1kOQmmvnJpXLcbdzxtPWkqCQTY1Ehnxa25vWwTKrVZdxYAZ1egqqHffxuVm5U1FTUk2OVmsQAY1sr6JIJ+1tQr3oz9TJsbC/Dx8mftLI05nadSw+fbvRuNYT3BqhwnPM+JZoSvvjlC8Ldw3G3dqdSX0mZtozMikzUteon8gRqKCRB3njFWC6Vi4pPJgMmwYQECd/vEQgpgu4vipWaifL2tOgwAKytMJqMGEwG8qvzSS1NJaM8g5yqHPQGPeqP4f1+CpZENKy6KA3iuXRXw5r9YoXL9aEKVLaLkgvecMZDzzVfBVfcjGjkj36TFnILc9DgZOlEZnkm1wuui9dMIuP0C6fp6NXxT/WLLzj2Lv849wkXvwWb4Na0jrqFTmYyn5sIrwiifKL47PxnjA4ZzY6kHbT2aM2qQavIr85n1I7/j73zDo+i3tv+Z1t2N7030khCKKEECIQSmiBNei+CgCJio1hQVPQoFqx4ALGh0qRKjYj0XgKhk0BIJb2X3WT7zvvHkIFAEPSU5znneb/XNddusruzszOzs7/7973LaAY3Hcz6ketJKkii84rOLBu4jCfSnNj48RS+nBjJxZo0ZMhQ2gQsCjE3qA5Y+UkMpgAAIABJREFU9A7vjbODs7Q9giCQUprCzus7SbiRwImcE9gFO7GBsQyOGsygqEG09W9LZkUmHb7rgIBAhbECZwdn2ge0J8w9DAGB7MpsiVJY19WRy+QEuQYR4haCv5O/dE1TyVXYBTu1llpJb5ZXnSdZr99ZGqWmQUBSt4RnVtJ07geo0jORvfuuKP5W/jkL1sWnFjPn9zksG7CMZzs+BI3pH6gZO2ew6tIqTj15ijb+bR7uRXUi8I8/htmzH/z8/0VVbapm+7XtrL+6nj3pe7ALdno37i2lkXto/1wAcV1lV2bz+cnP+e7cd8hkMqa3m87cznMfusuw6NgiFhxaQOasTE7knGDS1kkYrUZ6hvXk1wm/3jMhCaIdb/+1/cnX5eOmdsNkM7Fv0j6ifaP/0mf4v1D/lUAjvTyd1stbYxNsmGwm1g5fy7qr69ibvpdt47Y9XPv1X1jlhnIOZh4UwUXmPtLKxR+E9oHt6dO4D73De9M1uOu9Nn9VVeDuDhs2wJj7Z33U5V44qhxp6tWU49OOo1VpKdIX8eJvL7IxeSOOKkdMVrHFr5QrpZk/jVJDc+/mNPdpTgvvFkR5RTFm8xh6hPZg/+T9d3QpEjmbeYKL5cmYBAsI4mzyuMu3sgUK5LT0bIq6ZcxtQNGmDQQEPPRMzLy98/jkxCf4O/uT8lyK5ExisVkYu3ksCakJfPzox3hpvXjhtxeoMlVJlJWWvi1JLU29r5agTtCtkCmwC3YqjBWSVe79SilTYLXbkAugUN6bUN1Q+Tr5EuoWirvGnTP5ZyT3JrPNzGNNHuPxVo/j5eh1m4akccdd445SrqS4ppglp5ew7MwydGYdE1pNwMfRh89OfkaP0B44qZw4mHUQg9VAkGsQ/SP6M6DJAHo37v1AF5cLhRd4fMvjXC+7jouDCyabiVpLLZ5aT4Y1HSba5m4cxfu932d2pwZ+1Ox2mDgRtm3Dum8PhtgYSUBbtxTqC5l/YD5J+UnIZDJxQOAezqQ2k9B9/Xde+v4qoZ8Ho1I4EOMfQ74uX3LE0huqaFwOmR5gk8PMJBlXvQUa6WD1FkjxlXE6UOBICKxqCwq7+LyHrTv56Hda4sb4x+Dj6ENy5mnybFUIcjFdfGz0WOyCnVWXVoEAlaZK+ob3JSYghlUXV1GsLwaZ2CkcGjWU03mnKdYV8nUCTD8HLw/VsridGV8nXy7MuMAnJz5h8enF/OL7Ar0+XM+CZgUsvsXkqzsP77xFADt2RlyFLdEQVAU5X0DPJ8SuxP3KwS4jpEIg3wWeSXbk761qscqRMjccTQIRFWBsESXu/1eK0aq0VIYF8FNAIc8eM+GgcCD4i2BGNB9BS5+W7E7fzb6MfVSbqvHQeBBhfB8na0z9RHPstGnsiG9kAm8cfEP6b504XilX4u3ojauDq2gjbTOx6f0bJAbJmDVEhaHue/sQl4qUJbCriejIFVOI1KnolAcLu4m6nGs+YuZIsbMo2E5sBHrX2xkb3UK60S+iH+Ee4TTxbEJjj8Z4aj0pqS1h0bFFfHX2KzRKDY9FPsbaK2tZNWwVk9pMevgT7o46n7iDjglDef0Y+NXIeH6gIJ2Pz7R/hqUDlyKXyVl7aS1PbH8CuUzOJ49+wvMdnychNYExm8YwpOkQ1o1cJ3HUh68fTsKNBOQyOWarWTq+AgKvpPnxuDGKVhsP15uAMNvMHM46LLlEZVZm4qhy5NHwRxkUJVrBB7gEUKQvYuPVjfx85WdO5Z5CJRffc93IdQyKGtRgkJnZZianKofMykwyKzLF28pMsiqzyKzIpKimSHqug8KBENcQVAoV6RXpKOVKxrUcR/+I/qiVagwWgwRE7l7Kqgt57YjAm0fgsi88MRxyQ93/EJTULXdTt9p9007s6r9a9seJ3P9g1Vm5NxRG+4f1ySfw1ltiEriX179s+/7VVVZbJjp9XlnPoaxDKOVK+kf2Z3zL8QxuOrgeAH7YKq0tZcnpJSw9s5RqUzUTWk3g1S6vPnDwX2WsImRxCNPbTefTvp+iN+kZ+PNAjt48iqPKkbUj1jKs2bB7XlduKGfo+qEk5Sfh5+yHzqRj76S9tA1o28C7/P/6rwMaNruNHj/14Gz+WUw2EzNjZ5Jdlc2BzANsH7edvhF9/+3bZLAYOHbzmESHOldwDgGBJp5NRJ1FeB96hvV88MXNaAStVgwbmtTwj5zZZsZrkRd6ix5HpSNPtXuKQn0hx3KOSd7xdRXoEkj3kO60D2wvdShC3UOlAU5aeRp70vbwwu4X8FW5o7fUUosZmQDNyuXE5trpkAfta92Y36mGckcZF9p+g7xNjNilUD9ckqYgCFSbquu5KRXXFJOvy2dp4lIqjBV4a71x07hRUltyX40C8FABXQqZArlMjoBQL5OhoXUp5UpqLDWSrqFRNVRr5czp/SY7U3eSUZHBW93fYt6+eRKVoE6oeWfgU4Whgie2PcHO1J2EuYdhsBjoHNyZrWO33vO+GRUZfHriU3688CMKmYKn2z/NrLhZ/HThJ945/A5vdHuD93q9h0wmw2AxcCT7CAk3EtiTtofU8lSUciUx/jF0CupE+4D2hLiGYLKZ6oEAg9WAzqQjITWBYznHUMlV9IsQMwvSK9KlEEJnB2eCXYPRqkRxrsFiENdRXY7RYsDoIMf2B52Z+9Xzp+HjveD0pgxBEIgohw750KVIRWy+jNZ5VgwKOxEvQrUGllxoxKpmRowuWibGTsOiVvHWobeY2HIi6y6vJVzvwGcHlIwYamBO55dwUbvw9qG3AfE8z9fl16N7jGkxho3JG3FXu2OwGkQXNc8mZFZm8mHvDxn23kaaxp3BLoO1w9cyssVI+qzuIwZDmvSMbzWen4b9hFwmZ8W5FUzfOR0BAT8nP5Y/tpwpmx/nh602hl0wcfCtx3krOI1TeaLoOsgliBJ9IeOzXXl7Szmzx7iyPbBaGhjWOSTdXRoLGJUQU6XhqpuZsg/t7BjTmscj79VBqGQq1Eo1LmV6ClzhzlNcZQeriF1wM0L2Yug9GZIaicC4b+O+vPz+ATIM+ez6+ClKa0rZlbYLs82MXCanU6NODGgygJ5hPVl+djkJl67Q1vY1QD2NRqp6LoW20w88FxxVjrjaHchZUMmLA2VcGRlPallqvcGonw7c7Ersbm5UaaDCWElomY2OefDhPpFG5mwB9S0K1OVAORdC1HzSyUqBM+jlNqmD9zClkqtQyBWYrCZkMhmBzoGEuYdxNv8s3k7eDI0aiqvGFWcHZ1wcXHBRu+Di4CL+feu+i9pFelytVHMk+wi7v3yBncZLyAV4Mgm+mtyU6e2m83zH53l86+MczDzIzvE7WXBoAfsy9hHtE016RToFLxVwMPMgYzaPYVizYfw84mfydfm8f+R9tlzbIuk4FDIFg906Mub7k/RbuI5XZfto88lqZuYHokzPpKSmhF03drEzdSd70vegM+sIdg1mUNQgBkcNFgP0VFoqjZVsTdnKz1d+5kDmAeQyOf0j+zOh5QQiPSPp+H1Hto/bzpCmQx5qf95dtZZaCXQcu3mMlRdXUqAvwFPricVmka4/INJPG3s0prH7reXW/WaFViLmvIfi8hWKZ0/n0lODKTCVNghICvWFkgapru6kbvk4+rAvYx+ualf+1vNv94ASV7XrP8W69VrpNWK/jWV48+GsGrbq4dcpCGJ2VlwcrFnzD2/H/5Yq0BWwKXkT66+s52TuSbRKLYObDmZc9DgGNBlwT2bNg0pv1vP9ue/57ORn5FbnMjhqMK/Fv0aX4C73fc38/fNZkriE7NnZ0hhs5cWVPL3zacw2MwMjB7Jl7JZ7ALXBYmDClgnsuLaDUPdQyg3l/Dbxt3raz/9fYv3XAY1Pjn/Cq/tE7n5sQCzejt4cyj7EjnE7eDTi0X/LNtjsNpIKktiXsY/9mfs5fvM4JpsJPyc/eof3lroWf1pEZLeDQgHffw9PPkmNuYZrpdfq2cUeyT5Sj+7krnHHZDVhsBrEGUyVIzPaz2B+t/l4OYqzIoIgkF2VzZnc05xNOcDZmydJ0qVSJbs9YG9ZCFMuy4hVhdE2KBbXVrG3uxT+/nT9MZ4TOSdYN3Id41qOw2Q1UVJbIgIH/W2aUr4un1xdLgW6AopriikzlFFlrGpQ6yCXyREE4S+HvMmQ4eTghLPKmcKaQmTI6BbSjabeTSX9QrWpmo+Of8QLHV/gQOYBKgwV5Ovzae3bmoszLzJn9xy+TfoWi92CxW5hcIkXO33KuDr5NE4efjRd2pTGHo25Vio6PylQYMNG1+CuXC25yrax2zh+8zifnvwUo9VIlFcUySXJDG82nI3JG5nSZgrhHuEYrUZuVt3kZO5J0ivSUSvUhHuE08i1ETa7jetl18nX5ePj6IOTg9M93YM/W0q5Eq1Si0YpCtFrLDXIZXJC3UIJdA7Ejp2z+WclaphKriLcI1ykzeUYcdn+G5rHhqLpIwaYaZQaaX0apQaFXEG+Lp+M8gxSy1JZfXm1pEfxqBGdl0amylnW15OXY0sp/wg8jEBYGHTogNC+PUMct3GyNpVIryaUGcpoH9CeQn0hh6YcAqD5suY4qZy4mH8Od4uSolPxRHc8w6Pdp9I9pDujN4+mmXczLj1zSQrEqhP51w3qT0w9weTtk0krT+PR8EeJ9Ixk+dnl+Oqh2lmFCSvtA9vT1Kspm5I3oZQp6R7WnR3jdqBSqHjv8HssOLQAtULNiiEr+DbpW05lHGHDZhh8Q86EkQKFA7qRXp5OaW0pyloTbQtFO9QRKbCmtUjt0apE9zUfJx+KaorE3BiPCG6U3+DHoT/SJbgLMd/EUGup5YftMqYNFTjwExS1CGVCx5v1viNKlFixMlfbmxc+2E/j2UidgTD3MIr0RVisRmyCwIunYM4pOBYCk0fepvMtS4AuOdC2vnTmvuUqtL7LdWoF1bLLKGQK2vm3w0vrxe6M3QDMjJ3JtLbTcHFwodJYyf7M/fy67m8cX24m7ilIDBLPzzv1Sx61YqeiU664XbEF4HkrV7LKAZRqDTeeH8+Mkh/59OU9dGsqXusnbplIga6ADoEd+PbctyQ+lchzu55jb8Zead1apZa9k/ZSY6mhQFfALym/sCd9DwICsYGxRPuI9r0HMg+Qr8snxj8Gk9WE3qxHZ9ahM+keOLkht8Pbh8Su2wfd4NNDDmyb2hkPR08JmNgFO9+f+x6L3YKXxovpsdNp5duKyVsnMyhqEAmpCcQHxxPlFcWO1B0SEHNVu9IvXNS9fHziYw5NPkiPqe9ARQXlx/cz95kwInNq2DWpE6fyRODXsVFHCVy09muNTCaj1lJLQmoC666sY9eNXVhsFnqE9WBCywmMbDGy3kRY6+WtifaNZt3IdQ93gjRQerOevx36G1+c+oKm3k35+rGv6RYq0mUrjZW3OyF3dEQyKzK5WZ7Jc0eMvHtQtBF+cZwr1S2bNAhGQt1DpcGqyWq6b2ckqSCJxLxEXB1cMdvN91xTH0Tdqlv8nP3uOziutdQS930cVruVM9PP/LmZ+4MH4ZFHxNDe7t3/2g7/X15ZlVlSGvmFwgu4ql0Z3mw441qOe2BK/N1ltplZd3kdi44vIqU0hfiQeF7r+hoDmwy8B9wV6YsI+zKM+fHzeavHW9L/Kw2V9F0jWto6Ozjzy5hf7pmottltvPDbCyw/u5xQt1BKa0tJmJBAz7Ce/9C++G+r/yqgcaX4CjFfx2ATbHhoPGgX0I4TOSfYOX4nvcN7/8veVxAErpddl4LyDmUdotJYibODMz3DekrAIton+i/NitQ5NaWUpJD8xnRSujcnWVtTzwo2yDWIJh5NOJR9CAGBoU2HUmOuYV/mPkCkh8yLn8fM2JnozDrOpB3h7OXdnMk7w1ljBmVy8cIaXCXymGOrHIl1juJSpAsva4+yKfZjenWdSJGlkuKaYgr1hWRXZnOz+ib51fkczDqI3qxHQJAEy/+MquNym21mZMjoENiBRq6N8HPyw8fJB71JzxenvwCQeL/NvZuL4q5JYnaK0WrkvcPvsSdDHDw81+E5YvxjMFgMfHbyM/RmPdPaTmPR8UXSttcNqnel7sLbybuefsPBCjFVWjKDxaC5fwQIyWQy3NRuGKxip6AuvTjELQRHlSNqpZqrxVe5UX6DrsFdiWsUJw3m71y0Ku09/1PIFKSUpnAq9xRHbx7lWuk15DI5HRt1ZEDkAAZEDqB9YHs2J29m7OaxjI0ey4arGxjRfATfDPqGAWsH0M6/HbM6zWJz8mY2J2/mcvFlnMzwmBDJqInvM7DJY1jtVi4WXeRC4QUuFF7gfOF5rhZfxWK34KuHIboAWmYZcCzXMXOADbkd1v0CI1MVJI/qTnTzgxxovohej0wDb1HM9/fTf2fW7lkkjE8g0jOS1l+3poV3C+RyOUlPJwEwZtMYfkn5hbFlAazzzOO8YTLvFm1C/0g8zbybsSRxiaQJAVC+q6y37+/Uu/QI6cH18uuYrCa6KcLZUSO+R5/wPhzOOozFbsFF5UKEZwRfDviSstoyFh1fxOm806jkKmL8Yig3llNSnM2G9VZ6ZsGoMfDrHVrUqdURzNiUSdcpdpQyOaiUxAZ2wG63czrvNHbsBLkG0cKnBXvSRWFiz7CenM49TWOPxhTpi5CZjPRNLMe370gOnP+FM42QQISbgxtV5irp/bb/DI/dgLavuXNZfdvO1NXBVeycKDSU15Ty8jGBvx2CrtNuuXABLx+HN4+I+QsquQqlQtx3UV5RlBvKyavOQ+D2JECdTsFL64XBYrivrev96qkk+DpBFIJb5SIFqnuhAzHZZuLyoMmtuRObuxsXfWzsCNRjVsC0kkYc8NYzOsmAS0UN7h+5s6DHAskoYvwv4ympKWH5Y8uJWhrF6uGrmdhqInHfx4lAGhl27MyOm42r2pXFpxdjtVt5vsPzvNL1FUlcuvP6ToasH1IvJ+fOstgsEvBILklmyeklHMk+gt6ix6MWNmxT4KGz0fkpeDbFGeOYEVQg2kXrzXrydfncrLrZoDnE/UopU+Kp9cTL0UsCK+cKzmGz24h3iabg8kkygxyptNfiZIYw1xAebTOCnmE9CXUPxdnBGY1CQ2J+IltTtrLt+jb0Zj0dAjswvuV4xkSPoZFrowbf+4OjH/D+0fcpfrn4Lzn+7Li+g+d3PU9pbSkLeixgbue5D+fylJqK8MQTkJhIwYwJHJ3Wh3RDXj0wcvd+DHAOaBCENPZoTJBrEEq5kgFrB7A7bTfXnrtGlFcUOrPuvp2RO5eimqJ76LbumvrUrQDnAPyd/UlITSAxL5GfR/5MfEg8XlqvB+eA1NX48XDhAiQn/68Xgf8z6lrpNTZc2cC6K+u4XnYdL60Xo1qMYlzLcXQL6fbQ+80u2ElITeDDYx9yKvcUrXxbMa/rPMa2HItSfvv34Llfn2PD1Q1kz86+53xefmY5s3bPwmK3MLL5SNaPWl/vtYIg8MHRD3jz4JsEuQRRaihl69it/+MU/f9N9V8DNMw2M+2+bkdyabI0mLpQeIGECQk80viRf/r7FegKJCrUvox95OnyUMlVdArqJNGhOgR2eGgULggCxTXFUnfizmC7Qn0hIA6OwisQ9RMdB4m3Pi0QDCFsOV7FmaxcSq1XKNduosByEjt23FWuTA0YiEutlfMllzhrvUmBSgQVvnpoWQwhMnfc3P3A25tidyV5KhPF1koqDZWUGcr+YdCglCvRKDRoVOKst6PKEUeVI04OTjgqxftKhVKiNMlujZzsgh2zXaTrHL95nGpzNU4qJ0LcRCqQwWKgwljxl2b06/angICLgwsapaaeyNfPyU/SSQgIWO1WugZ1xWAzcK7gHK4WOU4efpL7FkCvsF4U6gvJqc5Bb9ZL+o93e77LxNYTJTBwKvcUA9YOkESeAgJt/dsyr+s8RrYYKV3EbHYbT+18ipUXVvLt4G//HJ+3gcqtzuX3tN/5Le039mbspdpUjbejN7EBsSLvftI+Ko2VzEiYIQmRW/i0kGYthXPnODyhCyv6+rA/1EqBvrCe1sHHpGR0bWMeKXcjJsdMo9RCNPkiQDO5u3DAW8fCgc6cca/BIhd49bo3767KxWORBwsfWcjcznMBUT8S930cM2Nnsrj/YgAWHlnIgoMLCHYLJnu2CLB7/dSLQ9mHyDnTg6btj7HAbwxVW9axsp8f1VYxvfzqs1dp4dOCWkstTh84SU5Ezb2b09K3JWabmYRUMUVdJVdJ9Dx3o4xKzYMvjQqZgtiAWMI9w4lQ+jL2tTWEZZRxcsk8vvPIYFPyJlzNMvz0Ah/uhamjlOgUVtw17pydfpYIzwhApMtF/D2C+JB4kkuSpa6kn5Mf1aZqjFYjB544wNGsI7x34G2cBSUVSivh5aBwc+eGon4ugpMZ9B+INCKn+WC9SxdbBzZ0Zh0IsGETDEqXcSgE/jbMnZCsCjZuAvd5UK29DSTqBlUapYauwV0Jcw/DVe3K3vS9ZFVlEegcyI3yGw8PvgUIroQVO6B9oRhY16ZQpECZFGLnpy4E73ywkmvuVhQKJVGeUTTFC8/0fCLPpPPaMVj6ZGu+blqFu1cj/j5gCZ5aT+b8Pocacw17Ju2h18pe2AU7yx9bTsuvWvJ6/Ot8cOyDesdyVtwsXu36aj1HnApDBdFfRdM2oC0J4xManCwq1hez8OhCNl7dKHUaPDQevKDsypt/v4BQoyd2Yg1yIPG1DBwCRERXqC9k7u9zWXdlHT1Ce/DVwK+Yt38e+zL2EeMfQ2JuYj3TiCaeTegf2Z8ozyhqrbUiuDHpKK4p5kb5DTIqMiQalVKQobKBq11F9iIzY0fB9ub3PxRqhVrSit1NA7ubImawGHjj4Bu80uUVBkUNqve4s4MzTiqnBvfTzaqbvPjbi2y/vp0BkQNYNnAZjT3+QGRUV3Y7LFkCr78OjRrBypWi210DZbWLDnt3akLu7Ijk6/Kl87MuRPVm9U2UciVvdX+rHhjxd/b/w8lBm91GmaGMAl3BvUCk5vb97Mpsyaa5rhQyxb2uWw0sAQYlzuHNkC1aBHPmPHhf/ReVIAhcLLoopZFnV2UT6BLImBZjGNdyHB0bdXyoyVtBEDh68yiLji9i141dhLqF8nKXl5nWdhqOKkeyKrOI/Hskn/f7nBfjXrzn9cU1xfRZ1YfLxZdx17izc9xO4kPj6z3nh/M/MH3HdHydfSmrLWPDqA3/GUHQ/4b6rwEabx54k/ePvg+I4XWZlZn8OuHXf1oLq8pYxeHsw1LXIrkkGYA2fm0kZ6huod0e2A4VBIGc6hyxO3FXSnbd4EIpVxLlFXWPw1OUVxRa/yB45RV47TUALmfrmPNDCoIAdkG0lUQQyDbPpNDhEsZbOEdmv2WdKROpGsJfmBSRIxeBwC1bt7qyC/a/DEYcFA71Z+aV987Ma5QarHYru9N2YxNsxAfHEx8Sz83Km6xPXo9dsBPpEUlaRRpDooYwNnosj299nFe6vMKoFqPQKDXIZXLivo/judjnMNgMLElcgrvanbigOHY/vpslp5cw5/c52AQxU6Clb0tO5Z4ixi+GpIIk4kPiOTxFFFPOeieOv5Mo7hPZbbrJqSdPoZAr6LqiK2a7GQ+NB0arkbmd50oWvQaLgZUXV/Lq3lclfnSBvoCLMy7SwreFtF8sNguTtk5ic/JmVg5bycTWE//S/r1fWWwWTuWeYnfabnam7uRy8WUAYgNjiQ+O51TeKU7lnsJT68nEVhNJzjnHhYwTlGnFy0WwzJ3HagJpmWUg5EYxzbNqiLxFgTY7a5HHdkDZsRN06ACxsVT4uuL9qY80UH29shWL3C7TK7y3OJDzjWbV8FXUmGto/217tCotp548JfFizTYzwV8EU2GooPaNWgp0BUT8PQKL3ULlnvZM7FJATUQw05afZvIIcSBdba7m9FOnifGPYfHJxczbPw+AENcQ8vX5NPNqxrWyayJ9zFwrHse6TI0GsjUA5naey9aUrWRWZtIxsCOHpx4WqRIVFdj79UV/OYml7wxk/rwEKC5mw2uDGReaSET5bSva6e2ms+riKp5u/zQf9v6QktoSkvKTGLVpFK90eQUvrRcXCy+y5dqWhik5t8L3XA1Q+TEMHy9nW1N7PQ3KhIuweivM6g9LO4kvuxMUKmQK+kb0JcwtjOVJy1EKMlb/pqXpwMmcPLCKncG1XPGF3D/2FABEMCQIAjWWGgRBQK1U09a/LecLz9/Di1dZRXvol89p6J1ipFOBAveaW7RJZ2dMj/VnXvUWWg15iq6DnqXMrmf0ptESoO/YqCMxfjHoLXrKDeVUGCoIT8rg569LaPI8pN3H3dLb0RulXEmhvhBvRzGoK9glmOvl16WJDQGB4U2H837v9yUHNweFA1O2TWHbtW1cffZqvRl+nUnHouOLWHNpjdRddlI50TeiL291f4u2uy/As89Cixa81aaMj4KyOdN/MzFdRmKz2/j67NfMPzAfB7kDU2KmYLQZ+e3Gb1L+Sp1WTq1Q4+LgQvvA9ux+XKSfCYLApaJL7Ezdyc7UnSTmJSJDJvLDBThXeI70XtsJjO8PS5Zgm/8aM/uYONIrnCpTFYX6QnydfIkPjqd9QHs8tZ7oLSJokShht2hhd1LE6jowDYWJ3lkyZBJQcXZwxlnlTJWpiqzKLBwUDnQN7kprv9b19CwNghu1C655ZTjNfBHZoUNiJsaHH4LjA6xu/6BMVhPZVdkSADlx8wSrL6/GQ+OBQq6gtLZUeq5GqSHMPaxeN0T626MxHhqPBw50rxRfoeN3HRndYjTv9nq34e5ITf2/75w8e+m4GEja+d0QNH6N/hCU+Dn5NSjO/28oQRA4nXeadZfXsTF5I4X6QsLcwxgXLQYD1lEAH1QXCy/y8YmP2XBlAx5aD17s+CLPdXyOWbtncTjrMGkvpt23u/bJ8U94ff/r2AQbk1tP5sehPyK/I6Pl19RfGb1ptBjaaaxg1fBVTGhdY8wyAAAgAElEQVQ14Z+2D/5T678CaCTmJRL3fRwgtkmrTdXsmriL7qF/nctospo4lXtKcoY6k3cGm2Aj1C2UR8MfpXd4bx5p/Ai+TvfaOoI405FRkVEPSCSXJHOt9Jp0kdYqtTTzbiY5PNV1KCI8Iu7fCQkMhBkzRL9wYN7K65xNr8J+x1Fs0MO+7vH7fA/lyFEqlDgoHFAr1GgUGhwdHMmtzsVgNfBo+KNoVVoxFO5WMJyTygmtSotWqRV5tl5NGdhkIK/ufZUpMVOY2Hpig6ChDlColeo/ZQ1ZZ1mskCkYHDWYbde3AeKgqfDlQtZcWsOc3+ew/LHl/HD+ByI9I/l55M/S68dsGkNmZSZnpp9h6Pqh7Li+gyFRQ9g8ZjNTt09lS8oWDFYDAyMHciT7CGqlmjJDGWqFmtQXUsVOitXEgNeCOeRUgtoGRhU80/4Zjuccp8ZSQ5G+CEeVI2W1ZdixM6zpMPZm7OX8jPNsSt7El6e/pLS2lCFNh3A0+yidgzpzrewaQa5BHJh8AJlMhtFqZMymMexO2/1vmRXRmXT4f+ZPU6+mVBmryK7KrqeZcbTKGH/NgZHX5bQMbodfRjGq62nIBEE0J2jXjqrWTTnua2SlKplN5gsolSr6RvRlVItRDGk6RAz4W+SOYBcw2ox8mtuCVuUqxnbMxmAx4OvsS/qL6Ty14ynWXVnHuafP0dS7vgf+7N2z+fL0l3zW9zOulV5j67WtVBmrSNvgx5quLixolMqAG5AQaaOxW2MyqzLx0HhQaaysN8OukqmwCBZC3ULJrspmZuxM2vi1Iac6h/ePvs/rR2BRdxn2O17jpHTCaDNK+2VU81FsGL1BPH+Li6FvXwxZaXQbV8snc3cT/vNvmL5bTpfHTZQ53nIsE2zIkBHhEUGZoeyeQXhduand8HHywWq3klWZBYhhbRIdSRBTqjtXubB8nY6z/VszpOUl1Aq1aAMrWElbKsddb8fn1frp4y4OLjwa8Sg7r+/Ez8kPm2CjpKYEhSBgEmwSyAqqhnFXIN0DsvwcOO9pvufa0SusF7M7zabWXMvr+18nqyqr3uNyQYazBWqUAn3LPCiS6Tn+tYUmL4hJ208mQWKQjKRA2L5Vjfy9hfDSSwxbP4zc6lx2TdzFq3tfZeXFlciQ4aBwoOSVEjGH5c5KS4MmTVjwRldaxPRh/NW/sWOjEq1FYP5wVwzebkyIm05xbQnLzizDYrdIoEyGDLVSfd+uaJ25RJBrEJGekbir3cnX5XOj/IZ0/JRyJa39WjOj3Qz6RvbFU+6Ey8tvIPvuO3jySZKcqohz38yCkEkseHIVSflJTN0+lcvFlwlxC6G0tpRaSy1+Tn54ab3IrMyUZr+beDbh0sxL/Hj+R57b9Rw/DfuJU7mnSEhNIKc6BxcHF/pF9mNQk0EMbDIQHycfqk3VNFvajE5Bnfhoj511Rfv5ubmFVGcRtA6OGsy8rvPoHNz5L1nzgji59PHxj1lwcAHHpx1HLpNLIOROQKIz6bhedp096XsoN5QT5h5GI9dGIr3uDgBTR7utVwJMT4LP9kCZFp4dpeF8c/d7hPYuahecVQ2L8O++XwdgnB2cJfrNUzueYsX5FRyYfIBejXuhM+nETkgD+pDMysx6IMtV7VqfjnXH/TrL3w7fdUApV3L6qdMN2qXeXXXmKIX6Qgp1BbTrNZ68po1Y+cqj9wCS4prie6hbHhqPB3ZJ6ly3/urx/58um93GkewjrL+yns0pmyk3lNPMuxnjW45nXMtxRHlFPXAdmRWZfHbyM1acX4FCpmBk85GsurSKH4f+yJSYKfd9XW5VLr1X9ya1LBVvR29+m/gbsYGx0uOJeYkMXDsQq91Ktan6n8JG+E+v/3igYbAYCF0cSkltiZRQvfvx3ZKo7GHLLti5WHhRokMdyT6CwWrAS+vFI40foU94H3o37k24R3g91GyymrhRfuOeDkVqWao0G+mqdm0wg6LO4elPVePGIl/zA7HlP/rj85Tq7u0m3OlhL0MmAQK1Uo2D3AGFXIEgCFjsFkkfYLAYHhhAd2fJkEn6gGpjNc5q0aGozuGjZ1hPiZakVWqlbbj7tm4dD3qORqkh/od4zhacBSA+JJ5TOacY0WIEG0ZtQBAEZu2exbIzyxjZbCSHbx6m8KVC6XitubSGSVsncemZS3T7sRsdGnXgcNZhejXuRVp5GhkVGciQMa/rPD46/hEeGg8qjBV8O+hbprefTq25ltAvQymtKaVjHhjUcqJ7jmH91fW4qd2oMlXRN7wvm8Zs4sfzPzL799n4OvlSYRAHJHKZnKkxU3mpy0tEekZKoYpvdnuThUcXsnr4aoY3G87wDcM5evMoW8ZsYUCTAX/u/PiDEgSBQn2hpKOo01SkladJ4WDtvFsx0BhMy2wjnD1LVGY10cUCKrtIZSmK8EfRMQ6/noNQdoyD5s3v8avPrc5lS8oWNidv5tjNYyjkCtr4tSGpIAlHlaPoAHLuPHtzepKz4gu6/9SdrMosnox5khUXVvDDkB+Y2nYqNeYacqtzpWXbtW0SuITbYYhnvhHtTd9+BKkTUdetGBc9jj7hfZj560yp67Zs4DKe2/UcrX1bE+QWxK8TfqXCUEGLr1rQocqZnsfzebm7QbJdvbMTUHfeT4mZImZA5Oaw8P2TONZa6P24HX89vLcfNkfDF53BLhe7dp4aTwprCqUBbgvvFljsFopqivhu0HcU1YrW02kvpBHhGUGlsZIO33XgZtVNnJROVJgqpPd+seOLfJn4JfOPQsdccLRA38nitsmR411jp/ATiJ8q5oo8TDVyaYRrfhkpLkZe7PA8L3d5BZ/ASD7tArOPWvihLcwacEtXdEvXUP/kArUVelgbMbrYm6GXzXhfSqdWMNP8OajVyOkiD2VH9EK+98xi+uk3mB03m8WnF9OsBFKWwYmf3qPLE2+y6eomxmweg6vaFYVMwaI+iwB4OuFpuod05/DUw/Xf+5Yb3/QRSuavSCX8y3DW9v2GCYkGhl59E7tez8akxnw7OZqXrLuwYWdqm6mcyT9D24C2rBq+SjSvqClh2IZhJBUk4aHx4Km2T/HtuW/xcvQi1DWUC0UX6oFDpVyJXbDXG+gFVcEvG6BNEbw2zBlnhZZtXiVUuquJaNKJ5NJkiaIpQyamZjv5k6fL40b5DQJdAunUqBPbrm0jzCOMQl0hC3ou4EjWEXal7QKgsXtjBkcNZnDTwXQP7X7P7GtudS6v7XuNtZfXAuBiguFFHowv8efD4T7k6nK5PPPyQw16/6jydfkEfR7E90O+rxcGW1cVhgrm75/PN0nf0C6gHd8M+ob2ge0bXJcgiOF+krg+K53AuW/jeSSR9JGPcGzWcMqVlnvAzP3Ajc6s+0OrchA1fS4OLpTWlmIX7HQN7iqCkTrA0oCLmJPKSaQcmnSUG8opqS0R8z90eWRVZpFVmVUvV0mtUGOxW+gX0Y82fm3q6UNC3EIerEs5dAh69RJve/S452Gb3UZp7X2ctu4CJZXG+vTKh6Vu+Tv74+Lg8k9x3fpXlMVmYW/GXimNXGfW0da/LeNajmNs9FhC3f/4IlhnI7/0zFKqjFW4ql05Pu34A61x3zn0Du8deQ9BEJjRfgbLBi6TuhupZan0Xd2X0tpSaiw1fNn/ywYpWf9X6j8eaEz4ZQLrrqxDLpOjUWj4fdLv9cLd/qgyKjIkZ6gDmQcorS1Fq9TSLbQbfRqLOos2/m2Qy+QNOjwllySTXp4uDc59HH3qA4pbHYoA54B/3pe0WTN47DH47DOg4Y6GXAbtI1yZPcKVa6XX7llyqnOk5/o7+9PMuxnNvJrRzLsZkZ6RhLqH4qX1wmQz0eqrVqLjwthfMFgMGKyGBm8XHV9Ec5/mxAbEUmooZePVjUR5RhHmESZZot7vtX9VTF1XER4ReDt6SxqIi4UXJZHehJYTCHINQqvSYhfsLDyykEjPSHKrc1k6YCmF+kIWHl0ozSCGuYXh6+xLYp5Ijeoc1Jnj045Lftt1touTMpzZGKLn9UfeZuHR97EJNtRKNZ5aT9JfTCe9PJ1HVz9Kgb4AhUyBTCYjaXoSrf1bS9stCAIjNo7gZM5J8X1yjhPhGcHlosv/sHOFzW7jRvkNEVQUnOdCkQgq6kTtrmpX2vm2oZ8llPgiNR/W7MZSo2PP9yYxYVehID/Ui6Mu5fRPtfPBizEsVp3DrhJzEFwcXOgT3ocBkQPoH9mfYLfgBrcjX5fPlpQtvL7/dWkmMNg1mPzKHBIzelP6zqscyDzAouPiYFKr1BLmHkaBvuCeH0YXBxd0Zp0Ezt+Mf5PjucdZOu8wvoPHERGRQJWhEl+DnMl9XuKTE5+wdsRalHIlYzePBcTQyfYB7dmTvoeimiJmx83Gz9mPNZfWkFqWyqG1SvqNNKJ3ePA52bbWnYQfjGhQ8NnTrYjZeopCF3injwKDRomzxpUmnk04MvUIHb/viMFiIKU0hSkxU9h5faeY8C4IYlpuy3E8se0JaufXolaqGbZ+GPsz9ktZQHWWt25qN6x2Ky6CioiMSnqni2GAnvOQuhGzT0GvTBj6kB17rVLLmuFrGF7pz5z3uvJlJ3inxztMnPQxvwfUsnCYJyZjDRWK+jQuFxO0KIZ+6fDEBQi/dbisEeEoO3cRrTg7dmRc2iI23NhCl+AuHJ92HIvNQvRX0aiValJKUlhtGMD4jxLwfBUah7fDZDNxteQqrX1bs2/yPikRPP6HeI7nHG9QkG318+HdFqVEL1nPmwffpH9Ef5YMXMJjax8jt+A6pVX5FMoN2G/N6/wU+TLT0j/nu8Hf1RskC4LA+F/Gs+HqBqA+sJLL5LT2bc3zHZ9nSswUFHJRg1U36LTu/Z3Qma9hUav4/cOnqM7P5Pr+DXzSFQT5bYqlSq6SdF/3qzp73bpOi5+TH3KZnCpTFYt6L8LP2U+id3lqPcUJtrTdrL+6nqPZR3FQOIiWrMhIyx6Ky4rV4OjIjdRTtP66Nc91eI5P+376cCfIH1Svlb1QyVXsmbSn3j5cd2Udc36fg8Fi4P1H3ufZDs8+nIBXEGD1apEi5eQEK1ZA/z8vqhUEAYPVUB+U3EUD05v15Fbn8unJTwlwDqBPeJ/70sV0Jt0DJ+E0Sg3OKmccHURTEp1JR3FtsUTbqzHX1OvcyJDh5eiFv7M/wa7BhLmHEekZSZRXFC28xYlIxeOT4Nw5SEn5h0XgRquRIn3Drlt3gpICXcE9lE2tUvtgLYlzAL5Ovv+j1C2DxcBvab+x/sp6dqbuxGg10iW4C+OixzE6ejT+zv73fa3OpGP+/vksPbMUgGHNhjGv6zw6BXW672vSy9Pps6oPWVVZBDgHsHfSXgmgFOoLGbBmAMmlyZhtZj545ANe7/b6P/cD/4fUfzTQqHMCAXBUOrJ38t4/9EsuqSnhQOYBCVxkVmZKwvE6nUUzr2ZkVGbc06G42+Hp7g5Fc5/mkkPJv7TatBHt7ZYsAe7VaMhl4vVo8ZPNaRni0uAq9GY9qWWp9wCQO7swWqWWpt5NuVh4EX9nfz7v9znNvJsR5RXV4EyY/6f+PN/xed7s/iYAr+x5ha+TvibjxQxpoNBQCYIg5jPc0VW5G4icLzzPFye/oMxQxrBmw9AoNay+tBoAjULD1LZT6+VD6E16TuWdQm/W4+voi4vaRVp/pbHygTNdd9fdVpsuDi744kS6uRCtBQJ8wwl3DycxL5Fqc7U0KHR2cJaAlIPcgW6h3Xgm9pl6HR6dWceI9SPoGtKVvRl7UcgUHJh84B6h2R9VraWWy0WX67k+XSq6JIGnYNdg2vq24RF7KF2KHIjKqML1yg1k585BTQ3IZLw01p2d4VZS/RaKuoo2bfjwkyF8XrOfkpi1MGECSflJPL71cTIqMujTuA+VxkpO5Z3CLtiJ9ommf2R/+kf0J9o3mpLaEqkTsTttN1uvbaWNbxsuFV+6DSzv0kHUuXB5O3ozLWYaLX1bSsnMgS6BHMw6yGM/PyZ1GFYOWymmuPadgWnQAGIifkeDksBSM0LjMNKrs4jyiiKtPO0Pj3kdLamdQyidj2WzrKP4/1HNR+GucWfF+RXIZXKGNh3K9uvbCXAJwDEjl/0rxVyL4y1d0JTrmN9HRqYHTGs7lY6N4piRMIMjU46Qp8tj/C/jOTzlMKsurmLj1Y0cm3aML05+wU8XfwKglW8rrpVeY1bcLH698SsppSkPdeynnIMfd4B8wW2K1I61MGIcWG+N6+5OoZchY0DkAHal7ZIMCwQEvLRetE+r4YSfCb1SYHgyXPGDG3dkg/XJ0zDtpJFHMsW07VKtKNRObCSKts8FK6h0lDOh1QRmxc2ibUBbDBYDjh84opApKH+1HFeNK+sur2PClgn0DO3JwauxWDasw/e5Gglc+jn5IZPJyJubJwHLKmMV/p/5YxfsFMwtwNPxjtyhuDi2qdJZ82JPHFWOJJckM73ddGb/Phuj1cik1pPIK88iJ/8aXsV6TBYD5wMgw+EVGk+dC/7iAORQ1iHeP/o++zL2Sat2UDgwM3Ymi/osangQJQjw8cfY57/O+SEd+fXpnqQk/sqMH67Qewo4KB0w2s10De7KoKhB/JLyC2fzz9LIpRFjo8fSq3EvkkuSWXtpLZeKxUwUtUJNsGswKoWKlNIUwtzDsNvt3Ky+eU+H7c5SyVV4aj0Jcg3CycGJYzePEefRmtnfX2bMJRsbDi3jt4pEVl1cxYZRG+ge2l3SovyV+jbpW2b+OpP8ufn4Oftxo+wGz+56ln0Z+xjdYjSL+y8m0CXw4VZWVCTSgrdvF3OivvwSPP5aYvTD1sLDC3nr0Fv3dROrK0EQMNlMDXZOGgIzmZWZbEreRIhbCE08m9wGLSYdVaYq9Gb9A4GLVw3kfQ4L+ir5vocrzmpn3NRueDt64+vki4+jz33pYg11Yx72GNejbtWBD30DYvdb1K27z0VPredDWQF7OXr9S6lbOpOOHdd3sP7qen5P+x2bYKNnWE/GRY+7x675zur2YzfyqkVzn9TyVHqE9uC1+NfoF9HvvhPGr+x5hc9OipO/czvPlUB8tamaERtGcCjrEDbBVi8D6/9S/ccCjUpDJT6fijxmtVzNoamH7kGeNeYajt48KjlDXSy6CEBz7+Z0Ce5CmHsYWqWWzMrMhh2e6nID7uhQNPNuhqva9d/+eaXq0AHatoVvv5X+dTlbx5pD+WQU1RLu58ikXoH3BRl/VDa7jZtVNyXgcbX4KisurJAC6Ooq1C1U7ILcsQxdP5Q3ur0h2UqW1ZYR/vdwpsVM44v+X/ylj2qymnjn0Dt8fOJjOgR2YOWwlRJv3/cTX0pqS8TjNyuznksMiLMJjb9sjEquImdOjpSU3WJZC1JKU8idk4ujyhGD1cBHxz5iSaII3JRyJYIgYBNsxDWKY0SzEbx+4HVpoBofHI/ZZuZsXiIuJnBROdO2eS9yqnJIL09HZxE7HmqFGg+NBzqzjhpLzZ/+7Cq5qkEamVKuxGKzYLQa0Zv1VJmqpABDGTJ8nHwIcmlEe7MPXYvVtL5pplFqAR5X01HpxO0whQZhbtsaW/u2yGI7oOoQxw/pm5n7+1wMbxjEmceVK1n61RReGqjA9LYIsuyCnZyqHF7b/xrrr6ynqVdT4kPiuVF2g9TyVEpqSu758ZQhGge4ql15pPEjXCi8IHZ/MnNwcvLApUk0R7KPSAPdcS3HsTl5Myabibmd5hLgEkBxTTElNSVcLbnK3oy94myvTIHRJs72Zn0Bq9rAglvmcg5WQKXEKthxcnCixlwjDbSfbvc0P138CYvNwvuPvM+M9jNo+21boryimFYcxAT9TyDAvPh5yGVyPjz2IU4qJ04/dZpo32hO555m4dIxfL/0JqWO8FV7uBgIx0PErIS2jdrzTOwzfHLiEwKcA3i357uM2TwGL60X/SP7k1GZwa4bu6QE57spSK5qV+l4apQa+oX341LxJbKrsrEL9nqDTK3MgfZZZo7+CMoFYkaD060uw5lbDaaOAR0prCnkZvVNcZ0KjbTf6o7PnQMFhQ2QietyMUKfDBiYIaNLlkD087DmYiQTPbpjzspgmtshtjeDya7xrLCcwWQ3oZApUMgVaJQaqk3VdA/tzgsdXmDM5jEICCLAmbiL/Rn76bO6D2382vDbT1bO16QxepyCJl5NuFR0CTe1G5WmSuIaxbG4/2Lp2r756mZGbx5NbEAsZ54+c3vHjR5NVtYFWgzLY0jUEDYkix0Jf2d/Wvu15r1e7xH3fRxrhq/BbDMxbceTBFq05H5m56KnhXfH+rPHo5wau7hvFDLxM9RYagh3D+dm9U3e6PYG87vNrzdgqyrJYe+ro9hVkchvMU4UymqIMDtzcIWNPuNMpLvb8Xb2o21AW47dPEatpZYBkQMY1XwUtdZafkv7jX0Z+6TORQvvFizuv5ieYT0lnd4zCc+w5tIaLs28xJRtUyirLSPKK4rd6bsxWo1E+0QT1yiOZt7NsNqtokjeWEG5oZykgiRyqnLona9m77dGukyDkw3ENzmpnPDUetbrknhq7riv9cRD41H/ca0nZquZgM8D+LjPx1Sbqvnw2IcEugSybOCyP0f73LQJZs4Uc6K++QaG3ZvG/K+oFstacK30GpWvVf7TfterTdXEfhuLk4MTJ588ed9cjbuzWHRmHWW1ZWRUZJBVlUXbtQcYt+4y3d8LJ0NRTZWpqh4tSy6To5CJswl2wf5A4KKSqx4YLPmwGhcXtYuoCRP+gLp111Jlqqq3PQqZAj9nvwcCEn9nf5wdnP+hwXm5oZytKVtZf3W9FEDZL6If41qOY2jTofV0X7vTdjNg7QD2TtqLzqTjo+MfkZiXSBu/NszrOo/R0aPr2dvW1dXiq/Rd05d8XT6hbqHsn7yfCM8IzDYzU7dP5efLol50dtxsPu/3+f8psPEfBTTuHFDnmM6SYltKjfwqx6cdJy4oDovNwpn8M5Iz1Mmck2L4kdaLxu6NxUGHpYb08nSJa6uSq2ji1eSeDkWUVxRalfZ/+BM3UPHxEBEh2vv9i+tG2Q2ilkYxJ24Ob/Z4k+ul1293QMrE2zupYxqlhjZ+bSTwcbHwIr+k/ELyc8lEekb+qfc+X3Ceydsmc730On/r+Tde6fqK9OVOL08ncom4PpVcRZ/wPvw64dd7vrh14uE+jfuwa+IuDmYdpN+afgBsGbNFEln3/Kknh7MP46nxpNwoOn85yB0YEjWELde3YBdE2sTbPd5m3ZV1pJen81b3t6j5ZT3fOl/Dv1FTUkpT6BLchZmxM5mxcwYmm4mWvi3ZNHoTMxJmcDDrIFqFllHRo/iw94dStya7KpuZCTMp0BfgpnbDWe2MDBlzO88lvzqfzMpMcqtzydfnU6wvlgLnFDIFzg7OOKocCayRE5NjpdVNIy1vGmidY8GnRvxa57jC2UBxORMISYFQ/gfUbCeVEw6CDHm1HpNGiV5ulUKsTFZTgzOpXlovglyD8NJ64aBwQGfWUaAvIKsySwJonYM60y6gHTlVOexM3cmMc3LWtIGoRm04V3hOcthpqDw1nvg6+0p5NbEBsXQP7c43Sd/Qxr8Nv8w6wdIO0Oijr3jx9xcZdRU2N7ejdXBCZ9ZJ+hmA7eO2M3T9UBxVjhS9XMS8vfNYeXElq4evZty6EcgECPNtStuAtqy/uh4/Jz8uPnPxNpBNTETo04dUx1pGD7dx2R+UNrAr5DTzbkauLrfB5HqNUkOoWyhBrkHYBTsHsw4yNWYqI5uPxFXtyqOrH61HV/B18qXKWCUFfRbVFPFE6yfoEtKFtZfWcuTmEfE8sMPRFdB9mpg/0SH3Nsh4pv0z9A7vzdpLa9l2fZtk7XtnqW0ybDIBqxxUNtERqv8N+HQPZLhDn0zoM9OJtzu/zojMD3mv13s81/E5RmwYwYGM/ezO7Un37/aQ66Ph2VEakhpryNeLKexKuRJfJ1+JqlmneTo65ShfnP6CkzdPUqAvoPRj2Du4BV2/3U0j10a8uvdVPjv5GVqlFpVcRbW5WnJyig+JZ8CaAexO382SAUt4vuPzANjnzqFy8xq8nrztGLRy6ErWXF6Dh1YM5syuzObyzMsYrUZcP3IVqUWCQIWpCgSxQzM6x4XyFo3Zqczg/DMXeGXvKySkJjA2eizrr64n2iead3q8Q1pFGr9e2MixojNY5dBCE8xj7cYxKLg3rcfPYX5QCsvb/z/2zju8xvv//48zck72TmQPQshAkNjE3pTatdWmapUO7Ud1ovamdmtU7Vm1Y0YICRKyJSF7r7Pu3x+3HE6DaqufX/u9Ps/rynWSnPe517nH+zWezyfYmdqRU5aDi7kLXWt2xUxhxoXkC9x6cguZREYLjxY4WzizO3o3w+oN4/ue31dpMcory6POqjpIkFCoKqRUXYqvnS8j649kYMDAV/agl6nL8F/tT0OpGz+9dxF1aCtyDu8mLCWMAT8NYHDdwbT3bq8PTJ4PUipVvSr/96Lr8/mJLkB1m+o0cmmEg6lD1cDlN8GKQqaAnByYNAl274a+fWH1anB4eQX8TaKwohDrb6ypZVeLmMkxb2SZgiAw8OeBHH94nJvjbv7h595zCxLbpBs2hB+fCZoUlBcYktSfI6sn5SdRqi7Vj7VQWFDNvBr2pvbYGIuSxZXeTDKJjDJN2SurM78nGy+Xyl9dRfnN3wqZAq2gRa0VeaElqhKKVEUUlBeQU5ZDVkmW3lDxt61bpkamr22Y+HuVmyfFT9h7by+7ondx6dEljOXGdK/VnYH+A+lasyvGcmMarG+Avak9p4aeQhAEziWd49tL33Iy/iTe1t7MajaLEfVHVJkj6nQ6Jh+fzNoba5FIJMxtNZf/hP4HnaBj9qnZLLoiVjrGNBjD2u5r/7Vk/D+Kf02g8SIZVwGBt9pmIBgncvTBUa6kXqFMU4aR1AgzhRmlqlJ9Jr5S4em3FYpXKjz9E9GunXgj3rXrb542AvIAACAASURBVF/V/vv76bOnD2u6rmF88PgXjlFpVcTlxOG/xp/etXtjqbTUc1mez7TXtKtpwAWp/LExMSyNq7Vqvg77mvkX5uPvIEqe1q1W12DMR6c/4ttL3xLiEsLVtKuASPCdGDzRYFylGplcKmdo3aGEp4djY2xDdmk2Ia4hbHlrC4IgYPKliV5ZJrUw1UDuEsRzp0etHvx07ydCXENY3nk5YY/CuLh5HgdcC+lm3oAP+y2nuUdzAJZeXcr0k9PxsPIgtyyXbzt8y5RjU9AKWmQSGbGTY6lhW4PEvETabWuHRqdhdvPZTDs5DS9rLx7mPkQhU+izVy4WLtR3qk/9avUJMa5Bo8cSnGPSkEZEQHg4pKWJO+zgoJeTJTgYbVB9yh3EqkpyfjJJ+UmkFKSQVphGelE6T0rE0ndWaZaBmzyATAClkSmlmlI8rDwwkYvVFAEBre7ZwyKnLAeVVoUUqYGB2x+BBAlGUiNUOhUu5i4ICJSqSvXmcwqZAj97P9KK0sgqzWJQwCACHAOIzoxmZ/ROdu+BKE9jGi0W+/NJSCDaXHzgVrepTkJeAiAGUYs6LGLCsQlMbDSR/v79Cd0ayrzQeSy/ugzHlFzuO4pKPw9zH+Jq4cr4huPJLM0ktTAVz4tRfLg5joXNYVkTkAigeprYqtz/YJdgYnJiMDMyQyqRklaUhonchEnBkxhefzgBjgGAaCR3Kv4UF0deZP6F+eyMNnRYdjR1pJ9/PxzNHInPjeenez/pW+H8HPxwNHXkXPI5EMTA4JSPWIWQ6kQC+vNBhbXSmvyKfEKqNeR6RgQWKCmiAmM1tEqGtonQ4DGUyGF1UymnvHWMuC3h2w4LcZw4E+cZ8MRC/J78HPywNbHlWto1Dg08RCefThAby9UxXQkJS0BTw5sfprblC+1ZEvITkEqkyKVy/TmiQ4ex3JhyTTlSpNQokvPgOxXCoUNIevTQ7//Sq0uZdnIacqmcDT02sPjKYqIyo2jj1YbZzWfT96e+lGvKSXwvkQspF0ic9z7TD2bh/Lklwa4hXEm9wqetP+WX+F+QIOHXxF9Z120dUZlR7L67W0/ItlJa0cu3F5+2mkuN2ExObv+Mzk6/sv6olDEevVG9O5KeWcs5m3RO5Jg8uoRap0YhyOiQAF0LHOn6nx/wCmpDRtETjvUPYr/1Ew77AhJRLtrW2JY7mXd4UvwEa2Nruvh0oXut7nT26czRB0cZfmA4I+qPYGPPjfqJhyAIXE29ys7onQbeHO2rtyfySST9/fqzqtuq17q+jjw4Qo+dPaj4zgxFcSk8eAA+Psw+NZtl15Zxe/ztKgpvv8XzXJTKwCMxL5Hvb33Ptadu451rdMbEyKRKsPL85Pd59I1TsuqgGqVWwrJhtbgdWhtbE7sXBibPByxvipi87fY2hh8YzmetP+M/of/5y8sDWB2+mknHJrGn7x76+ff78ws6fx5CQ0VH8NDQ1/qIIAhklWa93FG9IMUg0eBk7vRSxaxKzt3vtYj9Vvb4Ve+97DyoRGXyzEJpgalcDIjkUtFfS0DQBymVLdaVYgC/RaVhorO5M84Wzq9s3UotTGXP3T2i0uHjm5grzHmr9ltYaAMJu63E26wptZ2tGBLqQqCnBbce32LB5QXsubsHe1N7pjaeysTgiVgbWxtsQ0R6BF1+6EJWaRa1bGvx67Bfcbdy19/XJEgYFDCIrb23vrA68n8N/5pA43VlXE2NTAl0DMTfwV9Pxq5jX+fPKTz9E9G1KyiVsH//376qLy98ySdnPyFsZJh+Ev0iqLQqlF8o2frWVobVE+VvBEEgoySDLy58werw1QytO5SMkgxismMM+C6OZo76AMTaxJp99/aRkJfAnBZz+Cz0syrZCY1Og8t3LmSVZnH8neMcij3EhpsbkEqkRI6LpI7DM0cqrU6L3QJRNWx/jHi8wseE8/O9n9lwcwMZMzNIyEug1kpDKbxK9SMQgwxbE1vyyvOY03wOZZoy1txYI7qJ1+jH4Zs7GWjXmsUfnjM4HgGrRX6Bg6kDe+7toV61ekRnRqMTdLT0aEkTtyasDF+JRqtBK2j1UpsCAm6WbmSVZLGt/Sra59lgGx0PN26IPwnipBkrK2jUCE3DIHL8vEmu6Ui8uYrUojSRG1H0TK3pSfETg2ykqZEpbpZuuFq44mjmiLXSGqVcyfLry+mebExAmQUlA/sQlR/LuaRz+Nr5UlhRSFZpVhUCq1Qi1as/yaVyQlxCqGNfBytjK26k3+BiykW+avsVLhYu5JTlcCfjDjuidqBSq+Dp5djAqQGWSkvOJZ9jSOAQcSKqLaewvFBsG8pPNghgKh9CKq2KEnUJ7gXQNRbWhbz0FK0CE7kJFZoKJBKJyFEQBJEz8ptbhEKmwEZuwdfHVBRVFPF5KBQbS2nkHkJ3315svLmRxIJEdIIOV3NX0orFoO/AgAOEpYSx/PpyBgcM5vCDw+SU5dDAuQHtvNuh0WpYfn35C9sdatrWJD43Hh1iq1SQcxAelh4ciD3AoYGHqG5TnYjHEWy7vY3TCaex0tXFQxiFOTUoJp58k5/pH9QIo+w8Eh5Hc7LkDgVSFdKnbVGhyRLevivQoEZzDluks9M0kUQbMFeIXBUTlcjvaFhswS+ripg9sx7rlFEoZUo0Og1qnRpLhSVD6g5hcOBgmro3ZdTBUWjv3Gb77eqwbx/a2rXYN70L89S/cjfrLiC2E5oameqryTVsavBtcVPe/ngHx89uoEuooQTksmvLeP/E+wQ4BnBhxAXOJZ1j/oX53HpyC397f+5m39UH5F8UNOTjJREsPfQRH0ctpZFzI2xNbckuzebW41uotCr9JKtSshbg0MBD9PAVA5yC8gIC1gRQ26oG6wtDOX52PUfNH3OmuoRyuajK9latnjQ7eY9JPzzkQgNbPHf/grOTDxOPTeT85Z2kWQhIAIVMKfLPdCp87XzpXqs7PWr1oJl7M31ia2vkVkYeHMmooFGs77EeqURKVEYUO6N3sit6F4n5iTibOzPAfwCDAwez7fY2vr/1PSPrj2TbnW2kTU977Xaf3rt7M/2TY7RIlSLp3Rt+/JFSdSl119TFxcKFcyPOvfbzUSfo2HhzI7N/nY1MImN+m/lMOzmNz9t8rm+dfR4Vmgp94JFXlkdh5iNqzl+Fz6EwYpvUZOuk5iSbqv5QFeWFVZIXBCUvrKI8RevNrbmQcoGkqUm/q0z0OohIj6DZpmaMbTCWFV1X/LWFvfOOeL+PiXljTuBanVavjvUi2d60wjRDI0Mr9yoeIpWvTuZOf3g+pdVp9R4sVQKUlxH21S9/73VakmUSmV7M4bfnkgQJpkamWCotsTK2wkRmIlZ5Cm2pUbbwqQyEDIlEQCqRsGRUHQI9xRar+Nx4Fl1exObIzRjJjBjfcDzTmk4z4CPpdDpGHhSvVZlExtftvmZW81nsjt7NO/veQSfo6Onbkz399vxpjtS/Bf+aQONlMq4SeSHdOtymnlO9N6/w9E9E796iKtCxY3/7qkYeGMmW21vImZVjSLz8DQorCrH6xopdb+9iQMAAg/fKNeXUWlGLJm5N2NNvDyCSl39LRr+YcpH0onT955QyJbXsalXhgiTkJdDvp344mTmROj2Vck059dbWI60ojdp2tbk25prBRdt7d28yijO4k3GHEnUJP/T5AW9rb5ptasbFkReJy4lj5KGR+vGVVY3n4WTmRBvvNuyP2Y9cKmdsg7G83+R93K3cGT/Jg1MWWcR9XWpw3h2IOUDv3b35sMWH3Hp8ixPxJ6ocNxO5Cf38+tHMvRkNrGpTJ7WC1WtH4Z5WzNSWxbR/qOXHn0FjakxObU+SfeyJ9jTlurOWGyZ5PCpO06tIVcJcYU41s2r6zJ+x3FifMVHpVJSqSskrzyOrNOuFnAoEcDSxx8FCNH66+fgmA/wHUMe+Dg5mDnoSooOZg749QiaVkVaYxsiDIzmVcIpJwZOY0XQGddfWZUKjCSzosMBgFZMPjGXnlQ3kmorb62jmqK86+Dv4M7L+SDr7dMbPwQ+JRMK9zHs03NBQ37pVOVGsrDyYqqB6Hsyb/DP3su4x99xcUW5VrkAniOo+L6u0yCWiipZtKeSaABLR3M3b2hsBgcD7OTS9mMzCpjribMFCI6PQ6PUloEF82BnJjMRK0GsYW0qRElAtgKKKIhLzE/Wtn7czbqMVtPoHpquFK6aaOjgXzdM/FCsNO2/JJ1DEHYIeg7XUhEuOFWQ7LGSw7AD3VWmkFKVydfRVhu0fRkxOjD6AHBI4hNsZt2l1OIpt9aFGLvjkS8nq3JLzyaKs7H9a/4diVTE7o3eSVpSGp5Un5gpzlDIlEeMiICICPv0Ujh1DCAxgylh3VuUcr7KfNW1r8s7PD5l4A+r/x5nYKQ8wVxoantZZVYf43HjqONTh2OBjOJs7M/fsXJZcXaKv8HT16coR33lIgoNJ+XUfnmF9CHAI4H72ff35LZfKCfUM5aOWH3Eo9hD7Y/ZjZ2qHq4UrhwYdQq1V03t3b36J/wVPa0/icuOQS+W0tKpL13gpbQ7dYV4TFXMuS2iaJiF57nuEWu4jpfCReG4JYFkBhU/b8UNcQhgYMJDutbpT065mlX3fErmFUQdHMTpoNLNbzGbP3T38GPUjd7PuYmNsQ1+/vgwKGEQrz1b6VqoSVQn119XHSmnFrce3WNF1RZUq7suQnJ/MsS4+DH6gxCq3BG7dgvr1OZt4lrbb2rK221rGNRr3u8uJyohi3JFxXEm9wsj6I1nQYQH2pvb0+6kf8bnx3Bx389UL+OUXGD0aCgth6VIYMeKlE+kXVVF+G4w8///XqaJUclFsjG2IyoxCIVMwtO7Qv1xFyS/Pp8G6BtiZ2hE2MuyvKS9lZ4vu5199BTNm/Pnl/EFUaCpIKUjRBx96L5Gnf1dWAUF8PntZexl4hjwfjNia2P7t8zCdoNO3X720wvLc73lleWSXZpNTlqPnNpaoSihVl6LSqvT3ikDNUmwJQcKzFkYBLRbWT/iwfzWauDXRB1kZxRksu7aMVeGr9KITs5rNMqgQhqWE0WNnD/LL8wl0DOTU0FPcy7pHtx+7Ua4pp613Ww4POvzPbNV/Q/jXBBovk3FtVMOKb4e/uuz7fwoDB0JWFpw+/bevqt3WdpxNOov2U+0rbxpZJVk4LnLkwIAD9Krdq8r7m25tYvSh0USMjaCBcwOD9+Jy4xhxYASXH11mWpNpjG04lqT8pCpckEqSfiWqW1enW61u1LavjVbQ8v4Jsao1s+lMvu3wrX7cquureO/4eyjlSrrW7MrhB4c5Pvg4g/YNYni94VxKucTl1MuAITG20tTNxcKF9KJ0FDIFHzb/kKlNphq0ex1f/h5d81bwc8dNFJpI9FKytx7f0pd17U3sqWFbg1tPxMyqXAMNs+X84P4+xpHRmERGYx2fjlSno0Iu4VY1gTWNJWyrK+CRJ7oz66TipNxKaYWpkSkKmQIJEjSChnJNOUUVReSX51cJHKQSqUFg4GDmgKOpo+HfxnY4zPoPI+3D8Anpwo7RRwCIzY6l9qraXBhx4bV8aXSCjtXhq5l1apbezT35/eQq6h5LT/yHadfmEWpRl3NFd3g4+SECAiEbQ7AxtuFx8WPKNeW4W7rT2acz1kprFl5ZiJ+DH/ey7lHdujre1t5cSLmATq1mwa8woyOGhnICGEllqAWtPpgY4D+A3Xd306F6B04nntZLClsoLDDOKyLLDOa0mMNXbb9ClRhHxGdjmG10njBPaJ9jzZSxG6nu6Eu5upwSdQnTTk4juzSbua3mEp0ZzYrrK/TnTyXn5HnytUKqQCqRGpCxDb4rpEglUjTCy2VPf4sGqqVYSEKQSJ7r6xe02BffYnrZUeq17MsK0ygWPNxKzuwcVl1fxZTjUwhxDSE2JxYHUwf2D9hPeHo4Yw6PQaPT0Ny9Of2UDQidvoJuQ6BYCRJLsf0KRFWZWc1m8Vbtt8gsyeTHqB/ZHLkZlVaFv4M/gwMHMyhgEN4xT1B9+jFdXM5y1hts5RYYm1qSViRWfSRICD/sjKa8hCb9CjA3MmdqE7EVoTIzuPL6St4/8T5O5k5UaCuwN7UnJjuG9t7t6Vi9Ix+eEV16Wxj7cnFOLNPGebHUOenZMZVIMZWbkj8nXz9hD1oXRH2n+tS2r82Hv35I15pdOZt0llJ1KRYKC/r69aVbzW60r95eLyLBiRPoBgwgRVpI18FQYCYl3exZhtS6DBppHTltnsUnrT7h8zafv/Q723xrM6MOjaKpW1N0go5raaKRWy/fXgwKGEQnn04vzXBeSrlEy80t8Xf0RxAEoiZEvfaE7tS0XrRefgidlwfGvv76ZNW7h97lp3s/cW/iPQPn8+dRoiph3vl5LL6ymFp2tVjbfa2BIe6++/t4e8/bxEyKeXEbVnExzJoFa9dC+/aibK3HC1jpbwi/raL8Nii5k3GHg7EHcbFwwc3S7U9XUWxNbLFWWnMw9iBxuXEs67IMPwe/l1ZRXguLF8OHH4otsfb/BSXL10SxqtiwGpL3jBuSmJ9owE2zUFi81MTQ28Ybc4X5K9b05iEIAo8KH3E/676+tbvytTJZJ0GCl7UXnnnrQGtVZRlqSQ6XZF3xsPLQu5HXd6qPRCKhsKKQdTfWsfjqYjKKM+hTpw+zm88m2DUYEDsxBu0dxN77e5FL5SzrtIzmHs1pu7UteeV5NHZrzKmhp/7rx+W/hX9NoPFnZFz/T2L4cLF95uLFv31Vfqv8RILZx6/urXxU8AiPpR4cf+c4nX2qap5rdBoC1wTiaeXJiSFiZl8n6Fh7Yy2zTs3CydyJLb22vHIym1+ez+VHl+n+Y3cEBDrV6ERyQTJxuXFV2nk6VO9Aa8/W1LavTX55Pu8efpfBAYPZ/NZmuvzQhVuPb9HGuw13M++SmJ9ooORRCVsTW3LLcnEyd6KXby+23t5KiGsI297aRlJ+kl5GNjnmGjcKY/DJhUhnMUvr7+CPp7UnKo2KDdfXMMa0BcHpEiTRd3m/cS597sGmQ6CRQFQ1kaR9211OlIcxD50U5OtKXzoZlUlkBkGCg2nVKoOj2bNAwsbE5tUlbkEQ1V42bmTYslDiTcq4NOoSIHpguC525cigI3Sr1e3ly/gNfon7hU4/dEIqkfJpq0/5qOVH+naR4opiglb6E1eUwjyvkXzxaAejg0YT7BrMgksLKFGVULdaXeJy43hc/PiFPbjwrBJR37wm4R88pNrMZyR3CRIkOgGJVIL2uUqGpcKSQlUhCqkCAUFfXZBrRSK0Qgc6IzkjwjU8thBN9wIzoONDWNoUtK9hA/A6qAxoTaXGlOnKDWstAigECSqpgE8ONE4F5yK45QTnvEUeRmC+MUPyXMgtySHMdwdGUscq66g07JTqwK5UDBY+v2mF1t6OOTUSCHkEPS0aMGXwMiz9gsDMjIj0CLr+2JWskiyczJ24esyVils3aDMC0qzEatOjwkeiitdTSVwfWx+61exG5ONIssuyqedUjwMxByhVl+Ln4EduWS5Pip/gVGFE7GI1SW7mfNffnaNWmeSU55CyGHbVk7G6jzs5ZTnoBB0V2goG+A9gauOpeFl74fSdSP5ML05HLpWzuONipjSegk7Q8dWFr/QVrNIvYU572NraijJ1mZ6f1867Hb8O+xWdoON04mk6bu+It7U3ifmJALiYu1CiLqGWXS2ujL5iSMYWBIQVKziydhrfdDTjmm0J2sqJqAAd42HOFRmCREKHIVrcrNx5OOXhCyeXeWV5TD85nS23tyBBglwqp7NPZwYFDKKnb0/MFGavdf7M/GUmy68tR61Tc37EeYMJ/6ugPnEMoy7dWDzIi+k7k0QeQKtWerPKENcQDgw4UCVwORx7mMnHJ5NZksmnrT5lRrMZVfavTF1GtUXVmNF0Bp+Ffma44gsXYORIePIEFi2C8ePfWDvQn8XAvQPZfXc3V0ZfMVCr/KNVlNyyXFIKUqooKj2PP6LoZWtsQ0BoP6gfhHz3T/+a7gxBEPS8nRfxQ5LykwwI3pVV4xcFIx5WHn+6IqTSqojLjeN+1n2DYCI2O1bfaqWUKfG196WOvagiWvlaKQD0Km+y7qGZ7Izayd77e8kuzaaWXS190FHHoQ7lmnK2397OwssLeZj7kLbebZnTfA7tq7dHIpFwKv4Ub+95myJVEY1cGrGxx0Z67OxBamEqgdUCOT/ifBW+x/8F/GsCDXhzMq7/aowZA7dvw/Xrf/uqqi2qBgJkzMp45bi43DhqrqjJ2eFnX2oyt/feXvr91I9zw8/hbePN6EOj+TXhV31rzetE8osuL+KDUx/QoUYHTg45CYjk8cT8RKIyophyfApZpVl6J/TnMyxWSitaerbEy9qLn+/9jLTCG9uy/vq+9mTZJgold/STwKBqQURlRjG03lC8rL04nXCasEdh+myXkdQIZ3NnLI0tcbp+jxRLKHJzwDY1l3qpahqlQ3AaBD0BMzXogPsO8EUr2B0AgU/ggT2ojKQ4mjniaP4sWLBWWrPn3h7MjcxJK0pjRP0RzGo2S3zP2PqVgYNWp0WlVaHSqqjQVjz7XfPsd4P39uyk4odtqMaPYY99BueSzzG/zXxU2qechAuf07NWT3xsfQyW96rlx+XGUVhRiLnCXG+wV+nXoBW0SHXQIF3c/8IXKz++Npy0pjyeX0qXEXJOeGn03/1vWycqHbmhqqSrc7GEx2YC4yXBKCKjWBtQjrVGzlcnNbTy7ciDzyajMDJGKVeikClQyBTM/GUm97Lu8VbttwhLCdPzEExkxpT9JkiUPKV/yAQQJOK5gET8v1SAeulw0w3aPTGlmtSSg/bZlEjFfZnnOICpge9i6VGTOEUxHXZ0IiAilTRrCbecBDrmL0Vj1hjdc+eEFAgSnjDw9BQiVSmsDpFwzwFkSCmVicfATAXtEqD+E/EcDdI64OHkS3Ytd952DSNM8oh+MTJ279Zy0R1ajRaPm1Ku5NTQU3T9oSsuFi40dWvKqYRTpBWlIZPI6FW7F41dGrMvZp+eJAwiuX2R0IHay34gOB1UrVvg2/AyiYt1DOgLe0SOPK09W9Ohegc2RW4iIS9B5I2oijEzMuPHt39k6dWlhKWEUce+DrE5sQaTl8TVSq7Vd2Bgs1T9dy6RSGjp0RJ3K3eOPzyub//oXqs7/f36c+zhMY4+PIpWpyV6YjTeNt6AeB2duX+U77aO57ziMeVP9UJM5GIft6mRKa4aU6JXgyKvkGmhKpY3ESuPoc5N2dTvB7xtvClVl3I49jA7o3dy9OFRkWNm4cKnrT+ln1+/l2r5vwpl6jIarG9AUl4SPXx76FtSfxcpKeDpSbdBsPWWJ/a2rhAWBhKJviLxPIn5UcEjpp6Yyv6Y/XT26cyqrquoblP9pYsffmA411KvcX/SfXGCXFYGH38stki1aAGbN4uKif8A2H5rK0qEf1T8l7ib11Kv0WJzC6aETOHrdl+/soryOopeLZPgwhZoMxwuVn95FeVVfJS/4ovyd0En6MgoznipYtajgkcG92cXC5cXBiHeNt64WrhSrCquUpn4rQqmrYmtQTBRaU/gaeX5SvPI10lqq7VqziSeYdfdXey7v4/CikLqVaundyP3sPJgf8x+vgn7hojHEQQ5BTGnxRzervM2Wp2W3nt6c+zhMRQyBYs7LmZtxFqiM6PxsfXhyugr/x1Ptv8i/lWBxv8ATJ4sVjNu3/7bV2X6pSme1p7cn/Rq87DozGgC1wRyedRlmro3feEYQRBotL4RBRUFZJVmYam05Pue39OxRsfX2hZBEKi+vDpJ+UkGBM7nEZURRaMNjZAgoZdvL4bWHUqPXT2oblOdwopCUREoO4bcPEvqaVcb9LULCETKJoAyCRMjE/LK8vQZ0UovCIO2JAE88yE4HQZEgW05NHwMVk/nPYn2Mu57mvHA25IDFmlEOAlY2DnTzrsdB2IOYCQzIq88TySY1n4LN0s3gwl8amEqF5IvYGdiR15ZHvWd6yOTyKpO9p+b4FdoK/6wGeGLoJQpMZYbYyQ1IrssGzsTOxzMHPSTbIVUoSdRa3QaNDoNKq2Kck25njT+IrnaSiWk0DIn2l9+wrz2clp6tuJc8jm+7/k9aYVpfHL2E04NOYW7lTsyiYwuP3bB3dKdAwMPoJApaLCuASXqEjKKMpBIJZSry9l0EDa3suCibREyiYzTw08TuiUUqGpWB4ZBh7WxNRMj5CysnY1FBZQrZXygDmbG4quYvzcTFiwQnzJlZSQ9DOfkvcPseXSCM6XRAJjoZCi0UPCUt2FVBgUmINGBfQlkVeZBnpoTWgkKPjbuRJxJKRvyz3C83SYCarXEbY0PDqYOJEwVuSq7onfx/on3KVGXYCwz5u06fXjniSNbbmxgj1cJ3rliQDG00QIuPmiFBp1IXBR0SGVS8aHobg737zN172hO598icmkF3lNBbWxEuYmcEMcgInPvkaUWW6JstArq5ympl6Ii1ryC4zUhfZF4Th9p4cAnAVk8tIe5Fj3oGfg2nW5Ow9Pai5NDTvLOvndIyE1Ah05fKfC08qSfXz+23t6KkdSI9OJ0EODr0qaMP5ROdmYyPnkwa25T8hr6sSlyEwICMokMRzNHHhc/1rvBA/jY+JBWmEaZVuRmWCutmRg8kelNp+O/2p/tazII8e/I4S+GMvLgSINKZ4BjAN1rdicuN44b6TdIfF/cxuVXlzP15FQmB0/my3ZfcjLuJFtub+FM/GnKdRUggJuRLdVdAriaepVq5tVY0WUFIY5BJDSrjf+jCi4eWM5bl9/jq7wGBJ+MYmTnCjItpNS19OGuKo0SdQleVl4kFSQxrO4wNr+1+S8Lk1xPu06TjU2QSCSkTkvF2cL59z+k04G5OT8M9GO/9AF7vy+Cw4ehe3cA+uzuw6VHl4iaEMWOOzv49OynWCotWdZ5GX39+v5udr3Sf+Dm2JsEpajE6ntSksg1JJiiqgAAIABJREFUmDpV9Mj4B6CyJbRD9Q4GjuZ/FLlluQStC8LFwoXzI87/6cn981UUy3cnYXzzDkcPf0dued7vBiwv46KYK8yr+p68rIryNyh6/VFodBoeFTx6xgvJSyQhL4HYnFgS8xL1svMvgrWxNR6WHtRxqEND54aEuIbg5+CHvan9n96XP5LULteUcyLuBLuid3Eo9hBlmjIauzZmYMBA+vn1IyY7hm8ufcOvCb/iY+vDzKYzGV5/OCfjTjJ432BK1aU0c2uGRCLh0qNLuFq4Ej4m/PWu6X8J/hdo/NswYwYcPSqqUfzNkM6TEuoVypnhZ145LiI9gkYbGokPGOegF455UvyE3rt6czXtKm292vLzgJ//UInwyqMrNNvUDFsTWzJmZrxUEm7hpYXM/nU2AgLVbapjbWzNlJApjDw4ksyZmTiYOTBzyz1uJhQhCM9uQi9SMHsezoXQKB18s8WWmnxjOLwTWqRAujlcdYMUSzjiK3pV5L+E11XJrajQVhhk1h1NHXG1dMVYbqyf0Mdkx+j5ITYmNnT16arPqitlz7LrCpnCINv+/HvP/9/gvZu3Ub4zDEX3XijWrEchV3I97Tpttrbh/IjzmBqZklqYyqCfB9HErQmuFq56FavUwlSDTLJcKsfVwhU3Szfi8+JRaVV83PJjvW+ErYktn50TPUiczJ244fklj6eOJngs7Om7h/57+7Pr7V00cWuC1zIvfavW1sitjDg4gvAx4TRyaQSA/yp/7mXfY133dQyrN4zRO/rzY/JhpALonn6dRlIjlDopxVTouTYyZOjQGVQybCVmfJFSg6nOd1DLYLSuHp/ftMLl6AWoX5+yarZc0MRz3Pwxhz1UJNg9q0Jon84T7VRytFIJ+TK1AUdELpGhEbTYGtsiIJBfnq8PvnxsfXiY+5D5bebzSatPiMqIou7auihlSsY2HMvyLssBMYBvtL4R7xR5I3vwkB3+WkzU4F4A5TbmtGrUlw3RW/goqQOH3bphTg3si5P4atpwg4dilx1dOJVwiiBdNW5I0pkf58FcnxQerJLiUzeUx73acSvYjVuqFH1LYCU5f+MBGB0Jbw2W4SC3ZGN1UTFq6lUYcQs6DZfgoDVmxAMz1tQuIsGsgiHVOhBavR2nCm5yMuEX8svzMTUypVxdTn2n+mh0GqKe3GHnQTk972pwmAW3Y9txemhTxt3+Qr/dMomMGjY1SCtMo0TzTGHG396fQKdAdkXvElt1Wn/G5sjNmE2YSmAmNB5TtWrlY+vDxy0/ZsnVJTR0bsimXpsoqijCd6UvOWU5WCmtyC3L1QegFhUwIMWC7v3mMid1Ew9zHjK96XQ+bf0p5kZmMGECwvff03+cLQer5eHv6M+iDov4KfIH9kTvJk8QJ4A+hXJ6WTbmOy4xsdFEVnZd+cYmcjN+mcHiK4uZ2Gjia0vdUr8+pQ3r4uJzkGs7zfAV7CAyEmQy0ovSqbWiFkq5kryyPCaHTGZ+m/nPeCq/A7VWjfN3zowuqsm3X10XZba3bhX9IP5B+ODUByy8vPAvSdDqBB29dvXi8qPL3Bp3Cw+rN8A3yckRSeBffAEzZ77WR57norwOSf6vcFH+riqKWqsmPi9erExk3ScmJ0bPpahMMihkCjysPHAyc8JcaS4atmrKySnNIaUwxUCe3dTItIpa1vNk9b+zNalYVcyRB0fYFb2L43HHUWvVtPZqzUD/gfjY+rAuYh177+3F0cyRaU2mMazuMN7Z/w5nk85iLDcmqFoQV9KuYGdiR8TYiDeihvZPwP8CjX8bPvoIdu6ExMS/dTWF5YVYfWvF8HrD2fLWlleOvZRyiRabW3B34l38HPyqvL87ejcTj03UG3hJkBA5PvIPZfVGHBjBttvb+KjFR3zR7ouXjtPqtIRuDSU8LZwKbQU7++ykpWdL3Ja4sbvvbvr793+pglllX7tdiRhUNEoXKxaN0sH1KVUgwwzOesKcDvDISpyQFJhA/XTQyCHb2wkTIxPRx0VdSkJeAi7mLuRX5ONo6kifOn0wMTJhfcR6FDKFnhgLEOwSzOdtPhfVhIxMxez/llA8rDwITw9nb7+9vO339msfsxcdm4ySDFKjLpE6dSSpvs48GtKD1JLHpBamkpSfVEVxC8SMUd1qdXGzdMPNwk18tXTD3codN0s3HM0ckUqkerfn580QQXyQtNrSiqS8JHTo0JSVsnp3MZOG2TG+0XgOPzhMoGMg23tvx26BHdObTueD5h/gu9KXBs4N+Ln/z4DYf2v7rS1KuZKsWWLVRHP/Lr5rA0h42oHSs1ZPDj04hFJiRIXw7Du2L4Jsc/TBQMN0CXKtwLWn5nah8bDtALgXwQVfYz7uZMRV62I0UgEpEnRPJ61mMhNKnmbUQSQ9lqpLqVetHqFeoSy+uhgXCxcyi0WCoVbQEuwazMYeG1kfsZ6V4SsB8YG+o88OBgYM5FzSOdpsbcOHLT7km7BvuDjyIs09miNERbH0865855FKlhkMT7CEoiJ2NlBQTAW+dr509ulM4MJtvNsqD8dikOsgaVoSRm6eIofh4lfMPTsXWxNb+vv150DsAWImxeCw0IHvzPow5WQenDkDGg00aQJ9+nAo2JI+FybRzrsd/ZPMGP3pfnb7wcD+z50UAthgTD9JINt0NymXaKmZB5v3Q/NHlQfHgvJa3pj0uMOYBFu0+bk8tIVkezkuvg356vtkzJ7k0GqIGjOVyLGxUcspUYBUKjfgKVkqLFHKlUwKnsSaG2vIKMnQGxlWBnBfXVQy4loFPRc34kb6Df1n23i1wdrYWi9x3dWnK3Uc6rDp1iZ9VbEyKOmg8+b9nYmE+nZi+kAb1sXtorl7c9Z0W0NgtUBxgUuWwPTpCBs30sfsCAdiD+irZB5WHgwKGMQg/4GkR5xjcPhs8qUq2ibAqYIeSMeOh06d3kh2v0JTgct3LhSpisifIwZzv4sBAyAzk1Xf9mXH+slc+R7Yvp38vt356PRHrL2xFgGBlV1XMil40h/boMhIJixpxzG7XBLt5iOdPQfk/zyPgOrLqpNckEzRh0Wvd8xegIWXFvLBrx/8Yf7aK7FkCcyeLZLA/2bTwj/DRfkjVRR9MGL87HdTI1NKVaXkV+STVZKll9qNz4vXVx+tlFb6Fqc69nX0rU/eNt6v9JsorCh8KUk9MS/RQArX2tj6pfwQT2vPP31O/Bb55fl6N/LTCaJ4T4caHQj1DCUmO4Yfo3/EWG7MhEYTcLdyZ8bJGVRoK/Cw9CClMAVzhTkRYyKoZV/rd9b0z8f/Ao1/G+bNg3XrID3998f+BVRWECqzrq/CmcQztNvWjvj34g16eLNLs0Xzort76OfXj9XdVhOXG0fT75vyQ58fGBw4+LW2pVhVjP0Ceyq0FSROTcTL2uuV4+9m3iVwTSBSiZTGbo05P+I8gWsCaenRkvU91r+Y7IWOeoVxzP95OmZpYh93vqmU60460VXbVXTXLna0wsTIFATILss2lCsVoJqZIzYmtpSqS0kpTMHF3IU6DnV4VPiIBzkPcLd012e4i1XFr7X/gN5E0NnCWe/waqYwE1+NzERpPAEDU6NSTSnFqmIKygv0D4nns1jGMiUulq64W7qLQYOFG4uuLGJk/ZGMbzQeN0s32mxtQ8fqHVnSeckrt08n6AjZEIKRzIjLoy4bZG0/Ov0RCy8vJGxkGD62Poxf0ZG95TfxtPLEztSOLj5dWB2+msxZmXTc3hFbE1vaerdl8rHJRE2Iwt/RH4Bvw75lzuk5NHcKIazJekhP5/NrC5gnnGNdan0muN3GSIA2aQpOulaI5O3n724S8e/ATJGE71+gxEotJdKyjBUnpIy6qWNCN1gb/Owjcqlc/xC0NrbG3MicnLIc1nVfR1P3pmy8uZGV11dy7V2xVzu/PJ9Gzo1Q6VREZ4rtVeMajmN1t9WUqcsIXBNIUn6SXjFsTIMxhHqF8s6+d8iYkcFbu99CkZ7Bl6m+zNQd56obBBSb8Vhawt1D7lTb9jPlQYFUX1YdmVRGRnEG23erGdgPlGqoMIKF2naM/Xgfww8M50DMAfzs/XCxdCEqI4pBAYNY0nkJ7ba1w0RuwpHBRyAvD44cgX37+PX+Ubr1U9Mjw4pdru8hbxAMPXuikoLzDMg1E4O5h7kPuZ9dtaWyjXsrmpvWJqjcmqAMKZLkJLyr7WLHfimD7uiQPv0+ypUyVIKWozVh8NOkcpsE+PYXkQ/SOR6UQcHY+DVkR9QO/bXiZe2FTCIjPi/eIEDwsvLihmIKdpNmYPwx+LkFUaGt4F72PRq7NmZak2ksvLyQiMcR+uup8rPO5s5klmQyJ8WD+ZuTCZ/Qky6u50AmZUH7BYwMGvksKXL4MEKvXlwa0JRBwSmkFqViIhfLl64Wrlx99yp2pnYArL2xlglHJ1DbphYxeQ/o/tiS9T8U4mzrAe++C6NGiRnsv4Bd0bsY9PMg+vv1Z3e/3b//gU8/hY0b0aY+ImRjCAtXx/HETsn0LlJK1aXMbzOf/TH7SSlIIWpC1OsR1NVq+OYb+PxzzrfyJLRVPJdGXaKZe7O/tG9/ByoVEutWq8vt8X+u/fhSyiVab2nNzGYz+ab9N29mwwQB/PygXr3/ihnvX8Grqii5ZbmkFqWSkp/Ck5In5JTmUFhR+Mq2XgkSLJQW2JvaGzjKv6kqiiAIZJdmv5QfkpyfbPAcr2ZW7aX8EHdL9z9l8JxZksnP935mZ/ROLqZcRClT0ta7LUZSI84mnaVCW8HggMFEPokkMiNS32ZsLDfm8qjLL+0U+bfgf4HGvw3ffAMLF4pl1r8R62+sZ9zRca+VRT/28BjdfuxG6rRUvTziodhDjD08FrVOzequqw38NXrt6sXdzLvcn3T/tS7aSnncVh6tOD/y/O+O//LCl3x27jO9Cd680HlklmRy9u4RopvtIOpyDNMKRHlInVSGVKdFgsDSO2sJ8HXUO2uflSTTdns7Lo+6jFbQEpsdy4OcB8TmxBKbE0tcTpxeitS2TEKuiYAn1uQrBQMVEgkSvG28yS3NxUhmxPy286ltV5upJ6ZSriknNicWP3s/nhQ/wdnCmZjsGMY2HEvnGp0p05Tx7aVvicmOQaVV4W3tjYulC3lleRRUFFBcUUyJusSglen59b6uU7dCpsDUyJRiVTHmCnO8rL0wMzIjOjMaK2MrWnq01Ac1zwc4lb/fenKLRZcXsbLLSlp4tNAHQjfSbvDW7rf4qt1XzGkxBwBh0SJ+2DuXMT3E/tZv2n3DnNNzOP/2EQ7e+Yl9ySep0JbTTvBie2YLSE8nOTcRv+aReOYL2JZB2CaxXa3FKPj4Asx77MugDoUcsc2iTKLFjEA8tc9M7JKlItlfrgPrClCoId0K5BrYegAG3IWRvWB7/WfHRC6R4+/oT49aPRhWbxgmchNqrKjBvNB5zGkxh4ziDLyXedOxRkfOJJ6hSFVEV5+unE8+j5O5Ezv67OBOxh3GHRnHqi6ruJ5+nd13d3NyyEnWhK9h191dyCQy7E3tySzJRD0pg/ufT+Gr9N3sDIR6MleWFjenzso91H1fQUOfVhwd/gsSiYRlV5cx89RMbo27hXX77ri/LZpg1n0itpAluJoikUj48e0f2XBzAzmlOVxJvcL1d68T7BrMwksL+c/5/5DzQQ7GcpGRfynlEh23d6S1sS8HbtZCceQ4FBYiIC7zWC8/eta/B2Cg2iRBgrOFM1klYpXJXCEGY4DezBHgP80+prd5I8qT41l4dwO7v4jlg47gng9Ha8FDO7i7Gua2gfUNIex7OOov51iIDddNclHzjCza0qMlm3tuJq1Y5PVcSL5Au0QJv24V8JkCGc7meqJ6JayUohoVEvRKczbGNqyoNpIjZ9Zy07acjrJarLSMYUT9ESxovwAHMzGz/KjgEWf2L6bf+OWc8NYx4h0zJDIZLpYuRI6L5GHuQ0K3hFLDtganhp5ix50dTDo2ifdC3mNp56UcfnCYsYfHolKVsfJJAwZtuo6krFzkR4wdC507/+kqh/sSd9IK0wgfE05Dl4avHvzDDzBkCBQU8HPqKYb/0JcSBfRVBLF00mFcLV2Jy40jcE0gExtN5LtO3716eXfvilyMyEj48EN0n3yMxyofetfu/ddN6/4GrApfxeRjk1nYYSEzm71ee9LzyCrJImhdEN423pwdfvbNuTpfvAitWomy9W3bvpll/o3Q6DQk5iW+kJCdXy5yvuRSOT62PvrKRC37WnhaiskllVb1X6mivCxgeZ6LohN0pBelv1QxK7Uw1UC23N3S3cBD5PlgxNnC+Xc7NSrdyHdF7yI8PRxTuSk17WqSXJBMYUUhDZwaEJkRqU9wySVyzgw/81oS8/9U/C/Q+LdhyRIxK1X0YtnPN4WZJ2fy3dXveDjlIT62Pq8cu//+fvrs6UP2rGzkUjnvn3yfLZFb6F6rO+u7r69CaorKiKLe2nqs7raa8Y3G/+62BK0LIvJJ5GsFPY+LHlNzRU0mBIzifupNzmWFUyao+OUXJ0KvPkEmAMbGRLXuzY76/UgwdqS6ozFDu/gQ4G3Yi5xamIr7EveXlscrb7Zfh33N5sjNWJdBzUI54dUM5XYtFBZYKi1R69RklmRWCQAUMoXeqdpCaYGdiR0xOTFYG1ujkCmqmPKZyE3wsvYS25cs3fWtTM//WBtb6wnbpepSSsuLKBkznJKrFyn9fi0lNTwoUYtmRZWmRSXqEtZHrEeChA41OlCiLuFE3AmkEim+dr6UqEsMxpaqS1/6APgt5BI5ZlIlZiiYfbqCgRHltJ9oTpSJqAwm00HtLLFF7RcfkOrgwxvGeMrsMLW0ZZnHYxIVJTRT+nCfbHY1+pY+tz/EQWLOlQ9ikUffY23JeSYdnURvr2lkxfWpSvaXTkBQ36FIAUhAoYHdP0G3hzDobTgcqKChS0N61+6Nv4M/YY/C+OneT8TlxmGltMLFwoXk/GSS3k/CwcyBUQdHsf3OdjQ6DcYyY6yMrcgoyeDdoHdZ0nmJXkntvePvsfL6SgQEtr61lWH1hgGwM2on44+Mp7y8CKlW4IPrRiwKVqOQGVEhaDh/sx7BJ6Pgm2841rMO3XZ2Z1nnZbzX+D0KygtwXezKjKYz+HjYBpTvPsZcYU6j2GLOeYNdMeSaS+hasyt5ZXmkF6djJDUidnIsEomEOxl3qLe2HqeGnqJ99fZEpEfQdltbgpyCOP7OcbFCVlEBZ85Q0bsnMrUGmQ6Uc0EtFYtDjV2CWdR5CZ12dKJEXYKTmRN2pnZklmSy8+2dqLQqtt/Zzs7onSikCr24AkDTFLi8CYLGgTrQnxbOTVh/53vqau2xKqzgok0RwlNlriap0O0BdIqDG87waQcpWSY6pIKEtxX1WOU3i5vWZcw4NInoJRW0HQZnqz8LtKVI8bX35X72fcyMzAhwDOD2k9scHnyYlMWfMXjtZbYGSRjfXcDDyoPtvbfTyrMVWSVZ7L23l53RO3l49yLhG6DCzpqoPSs5k3WN9RHriRwfSW17kYNw8/FN2m5ti52pHQl5CUxtPJUlnZboJzQ5pTlMPj6ZXdG76OPTgzUFLXDcsFOcpLu7P6tyuLm91jVViS2RWxh5cCQ1bWsSNSHq1dKgN25Q0SSYBdvH8WX8FhQyBeMulPLNTVtkCYlgJlYwFlxawIenP+Tq6Kt6LwADaLWi38Mnn4hKUlu3QrA4bsbJGeyI2kHa9LQ3NxF/QwjZEEJ4ejhp09MMXJxfBzpBR9cfuhLxOILIcZEv9Rz5Uxg6FK5ehdhYkP41oYA3iRJVCQ9yHlQJJh7kPNAH6xYKC7HVyaEOte1q61ufatjU+FPZ/xfhdbgoL2oBexNcFAuFhV7oJLs0m0eFjwwCkuefz0qZEk9rT30AYhCQ2HhjZ2JnUO2Pz41n993d7IreRVRmFCZyE+RSOUWqIr3iHoj3soMDD75QBOffgP8FGv82rFoF06aBqqr3w5tEn9192B+zH81czSul4ECcMA3eN5hDAw8x6dgk8svzWdZ5GSPqj3gp8XHIviGcSTxD3Htxr+yJvJ91H7/VflgqLcmalfXiUqlGA/fuQXg45/YuwjrqIfUypWQo1QRMBJ1chrXEhFZ3i+nZfy59+s4Fo9+/AeoEHWZfmfF1u695v8mLSeKV2H57O8P3D0Omgzmhn/BB8w+4k3GH62nXuZ1xm5jsGB4VPuJx0ePXrjKASGwOcQ3BzMiMXxJ+wdXCFQ8rD8JGhf0x5Zr334cVK+DgQb3KzIsw6egkwh6F6dsK+u7pS7GqWO9/YoDSUnTpaSy/toJpcSs4ZjIGjxw1pVmPKc57zGz3WGLMK5h3FpRaKDGCEgW0SZHimw0fDq7GPodsJFIJBRIVEsDJyJbH6lwUUgVGMiNK1aWvPF5NUuDKJqj1vox0B2NK1CUE6VZgqWtYxdk1l+vcV8zE3dKdrq5tGDJ7B0HJKoz2H+RmQxdOxJ3geNxxrqZeRSfoCHAMoFP1Tvg6+HI38y7Lry1HQMDcyBwvGy+iM6OxVFgS7BLM6aTT2BjbsLnX5iqmlZcfXabFphYoZAqiJ0Y/C9w1GnLWLGHQjdmc9RQQJOBnUZ0DNT+lz6+jQSIlvN8pjFq2BsSAZX3EesLHhBNYLZDJxyZz8M5PPJybicknYnZem5eHTQUEWFTnoYOcB7kP9NvRy7cX23tvx0JpgSAIuC525Z3AdxhRfwStt7TGx9aHU0NPYaE0VFdJr1ediIokesQKWM8Br2IjSiRqssxg6l1zBvT/guCkOZRqy/G29sZMYUZqYSonh5zkYMxBvgr7CjO5mQGhe9ZNE744WobNx3JKpYaBuVKmxNHMkbSiNLq6tKbx7stMuViBsQYueMJDW8hyMmd1nRIyzUTtYCOdGJyWfwmjesGW+qKUcCVau7fk/KOLzGk+h28ufcOydouYsjUGycaN7GhswtgO5ZTJBRRSBb1q9yKvPI+ziWcB6OYSyvdL4rEtUCG9Hk6YJoFWm1uxoMOCKlnxSoK2u6U7MZNiMFVUvbftvbeXCUcnALCm62r6lnmL7bA7d4qSsN26iVWOLl1eq8pRrinH+TtnCisK+aDZB3zd/uuXjj179wgT1vYg3l7GrBYfMCl4Ej2/rsu1RfnI580XOYCISZSQDSFoBS03xtwwnDA+fCg6el+5IoqTzJ8Pxs90qsPTwgnZGKIPYv8pKNeUY/G1BdXMqpE6vSoX7ffw1cWv+OTMJ5wYcuK11RJfC5Uk8PnzRVPD/w/IKsl6Fkw8R8hOLkjWj3E2d64iFVvHvg4uFi7/WL8PnaCjsKLwxST5N1RFsVBaYCQx0nszlWnKKKwoJKc0h4ySDIMWaXOF+Qv5IV7WXpSryzn8QJTCjs+LN2jbrcTXzXaSlx6kV8MaEupCoOc/3+Lhf4HGvw0bN4peGlrt35r5aLyhMTef3EQ9typp+rdYc2MNE49OBKCtd1s299r8uyoc8bnx1F5Vmy/bfskHzT946bhpJ6ex7OoypjWZJpbxdTp48ADCw+HGDfE1MhLKyhCkUu7a6ZCFNKZOl6EQHMxeRRz9Dr6DUqbEQmlBO+927Or7+j2wgWsCaeXRqoqqS4mqRK/AlFKYwrob6yiOuMZdJzAXjDAyMSevPM/gM7YmtjiaOfIg5wE+Nj742vuSUZzB9fTregO6SsglciyVosHcb282AL52vrT1bouvne//Y++sw6M49/b/2d24u4cIJCGQYME9QNDg7u5FihZrKcXdJRR3Ke7ukAAJkEBCEgJxIe6yu/P7Y2BDmpT2nLfnvO37631dc8Wencw8uzPz3F+5b6qaVaWqWVXsDe0rJh8bNohEY8sWmDDhq+e7+tFqfrz7I9n9g5EkJjI8YB5vc9/zKLef2Bf05ZaZSa4GVJksGpftv6ojPjBtbNhYLYcploFc1B5Fx0qtwcZG3KytxcXJs2fw7BnTrk7jxJsTzGg0g6lXS8ncguYLWOS9iNyiXKptrYarqSs/d/6Z9f7r2Rm4k/ySfKY2mErPaB2ajlvK/gtLiTeA+bfm00B+Dk3KN1MWkUKsyXhaGNdm8dqXmIXFcLGrO31PvCkzLqMgg+tR17kSeYUrkVdIzE1EXaqOUlDS36M/16KuqaJYMmQoUGCmY4b/SH+cTcr6DHzM+4iXnxcWuhZkFWWhJlXjyYjHGF67y7OVU5la9QMPK4GuVItiFCgUcqxyBJYlezDCNZSFLReqeqQK5YXU21kPQRB4Ovop0VnRtF/sTugW0PmijWphVCWWOsYSMzORkJQQ2h1sp1JT0pJp0bNaT4bWHMrh4MM8intEdlE2lrqW3B56u4zrPUB0ZjRv2nuhn5CG1MSEGU0LcG3dm/VWw+h9YSg31WNZfAtGBUK3IRo8sShGHw0MDER52i8loc11zPm2wbe0dGqJ9rhJaIeE4T5CJJL2BvYYaxnzKuVVmYyfjpoOLRxbYCbVw+HuS7zuhBNiAbvqwAcjQEKZZv2kVeBXV8L33kJpf44EjPJh6As4XVsTB8GAGwelSJNTWNRM4NWgNnSo2Yu1T9YSniYSs89meuvarKHKuDlw9So8eEB+dVdqbq+JuY4594ffLxOE2eS/iclXJtOneh/OhZ3D28mb031PV5hhSMlLYfzF8ZwKPUU/j35s7rAZU7m6SDZ27ICgIDGz8TnLYW9fbh9fYs6NOax7so4SZQkPRzwsY0L3+f/NvD6T/S/30zRRne0WI6i+aDsA+17sI3PcMCa80UX9QwyYiMoKgYmB1N9Zn0Xei5jbbK547926FWbNEq/lvXtFf4xfQRAEXDa50MKhBbu67vrqcf83ce7tOboe7co39b75l8u67n64S6v9rZjbdC4/tfrpzz2w9evFOY2LA4vy5pt/FhRKBdFZ0aVk4osMxedSR6lESmXjyribu5fxoHAzc/s/aST3NfzZWRQpUrTVxYyFRCJBrpRTUFJQ5h6pp6GHpa4lxlo1U/K8AAAgAElEQVTGFMoLicqMUhEeA6EGtRTbkCIV9/bJ32PdCPe/PNn4h2j83XDgAAwZIka+tP6HbmdfgdN6JzIKM8j8LvOr4x7EPKD7se6k5qeyucNmxtcb/4cj7RMuTuBoyFGipkRVeBMrkRdjvsIUi6Rc/IWRGL9+B8+fl5aNubio+ikELy86hc7nvfwjr8a9KhOBG3RqEKdCT1EgL8BAw4CM7zK+eow5RTkqEjH7xmyyi7Jp5dSqjLzrr0kEQGVNG7LTEsjSkaKva8zcpnOpbV0bOwM7bA1sVZmbuTfnsv7JesInhWNnYEe3o90IiA8gMTeR9e3W80voL/jH++Pr4ktibiJBSUEUyksVeD43hhtqGZJbnKsiItpq2riZfSIepiL5qPoqHtdh09GeMgOWLYPk5PKE4YvtlNZ7enbMIWUlmOfDlPZwy1lC8GXHUrLwxbZYfoufYg/ydthzHO08QCIhKDGIhrsaMqHuhIqbyAcOFJVV7txRae8/Hf2UprubIlfKUQgKzHXMeTzyMX7P/dgYsJHXE17jbOzMoruL+OHOD/Sq1ovjvY4jOXuW98O7s/fgDPaEHyM2OxZP+XpMqF8uo2Fqko5npav0nbkX68QcOg6AJ5UkVLeoTgPbBtS3rU8D2wZUt6iuKvkQBIGHMQ9pc6AN6lJ1cktKo1NaMi1Vb4yAgLaaNh1dOtKrWi86uXRCR12Hdgfb8Sr5FYFjA8kvyafBdi9qJ0uxj8lmf23w0K+MvqEFJjJd1pzKo4/tY15Zie9xC4cWPIoT5TM/q7l9lrwdXWc0mzpuYuJsT1atC0F3HrR0bMmdD3e4LB1Cj6L9zGk4gwW+q9BfJj6E5Eo5mjJNdDV0SchJEIlsUTb2BvY8G/MMC93SRU6xopi1j9ey6O4ifrotoV9APpk7NzH/9CSKGtfj0uQAlIKS2ddns/rxatw+wq7L6hxyL2FbPegVAg8cIEkP1GXq7PDdweO4x1yKuER8TjxBO6SkutnxfvV8Orp0VJWhTL0ylQ3+Gxhfdzz5Jfnsf7lf5RSvUo4RwLhQdG3XkMP9SlD0KdHp7wevLGFWH2MyijIwEGrgoBiBAVXIIZIYyW5u7XyFayo8dIAjHnDKXTSOrJ6rQ6huATOFxrgU6+OXdZMhrySMf1RM3vFD6PcawLdXvmX78+28HPcSV9NSNZgNTzYw9epUpjeaziqfVdyIukHnI53p6NKRY72OVVhCIggCR0KO8M2lb9BU08TP16+0NOL5c/Dzg8OHIT8fOnYszXJUoOT0IfMDThvECKmGTIOgsUFoq2ujFJTsCtzF7BuzkUgkrPJZxbBp+5FaWMKxY6rj6LKxIUdnPUVr8jRkq1ar9jv7+mw2+G/gdceLVJ6xBG7fFr2cli9XlVlVhPm35rPl6RaSpif92y7PfzY6H+nMhfALX5VhrwjJucnU2lGLqmZVuTH4xu9m+P8lCAJUrw6enqr343+KgpICUazhCzIRmhpKeFq46jmio65TxhX789cqJlX+Mu/X3xVfy6KUISyF6aTnp5OSl0JaQRpZRVmqcrSKUNFzTSqBupUNWTHU7b9xav82/iEafzccPy5KFGZmguEf0zf/d2C03AhDLUOip0ZX+PdCeSHzb81n7eO1OBg5kJybTP68P1av/xmJOYlU3liZaY2msdj7J3Gx+0Wm4nT6I3r45vJqK3hqO6hIBXXrgpcXGJWSk8/Rqor6KTIKMvDc5ikqMBVlscN3B5UMK6lIQ2xWLHE5pSTiS0dxEOs5a1nVUikzfe6DsNKzYt2TdVyOuMy+7vsYVGMQEyc5c0YvDh0bB3KKcrg88HK5h1p2UTYum1xoW7ktB7ofICQlhBrbauBq6oqaVE1UbNndGKWgJGBUAPqa+vg992Pqlamoy9TJLspGTaqmklb9vNiVSaToS7WRKaFAKCYfMRslEcAhR0rVZCVVUyndMmVYGFgjsbFVEYcga6gj34K/xwbqu7VifvQeDkScrPBzkJqfivMGZ0bWHqkiFLnFuXj5eaGjrsOTkU8qfmh17SpGR8+fJ78kH5MVJixvs5yN/huJyYqhtVNr7kTfURkU/tjyR+Y3ny+WM231IDQ1lA9TPvAw9iG7ryzjZn4I+hr69PPoR3ByMG/i8qml2IZMKUGQypAIChQSgdVdTak3ojckJDCot4yEoo8MHLMF/49BBMQHEJwSjFJQoqOuozJ+amDbgBOvT3Ai9ARaMi1mNpnJwVcHeZ/5XpXaVpOq0di+MYaahrzPfE9ISgiaMk0qGVYiMj2SM/3O0EVemcJ5s5nARfbUAi2pBus6bmBUnVG02FibKgHv2HdTn5JDB/hJ9oDF9xaryIu7uTsBowJUC5zPkfN5zeaRsG0lG8+VoD8X5jady9IHS1ngOYnkfVs476XHi2kRWK6xpI1TG/w6+zHx0kQuR16mkV0jgpODVcTJy9qLITWH0N+jP68/vmbCxQmEp4UzpcEU5kXaYPLNDE483ceNzd/y3FzOs1Wi2EHox1DGXRjHvZh7AFhngXOmuIj3ioeXViCXAhJwMXCik3tXOjn40LpmNyRr14qL1i+gFJSYrTQjszCTTi6duBhxEQEBG30bWju1xkrXilWPV1HHqBpx6e9JkRSo1MSQwIljYFAE7YaURgC/7NWRCAI68eO57PAKQQLWGmaM1G7MgHQb3COz6GlwhQi1LF5uUapsUXI04LWVlNf1HBntEcVqi4FMqzcFqlQBY2PWP1nPt1e/ZWbjmaxos0JVRnIh/ALdj3WnV7VeHOx+8DcXqAk5CYw5P4aLERcZWnMo69uvLw285OSIWQ4/P5F82NnByJHi9qssR+cjnYlMj+R9xnsm1JvAiNojGHdhHA9jH5Ztbh83TuwHePFC9drg5GDO9q3J7Mcy1KM+qNSwCorz+WmoI/NPp6NtaYtk925o3brC8/gSr1Ne47HNg7P9ztLFrcvvjv9PQxAE9JeJDcDZ32X/4VIfhVJBu4PtCEkJIWhs0J9vovbgATRrBjdu/KF5/RLpBenlyERYahjvM96X+jPpWpQjE+7m7tgZ2P2PTSP/wf8M2UXZxGTFlNmiMqJUTukpeSllsh2N5OfRpHzGy0xfnROz/tqqVH+tTq1/8PvQ/LRwKyqvMvRnIr8kHxcTlwr/9jT+KUPPDOVdxjtW+qykRFHC6serKxz7m/j4EetnLzgb7kXxweUoMnYiS/7UVGVlBfXqsa2DGQaFuUQc24Zny99uGi9WFDPj2gxaOrbEzsCOi+EXS7MPnwiEVCJVKUGNvTAWKFXL+Uwc2ji1UXlDfN4uRVxi0uVJPBr5qEx/SKG8kL4n+3Lt3TVO9DlBD/ceAHSt3pOtyau51WgZs4NW0nxvc073PV2mVtlA04DF3osZc2EMk+pPor5tfQbVGMTFiIukF6RzKeISp/qcot7Oeow8OZhjnosYk+pAc/P59ErcQKiQjX4xZCgzuHfeDPsPcsKNFLw1VfLWLI9wU3hrISXmUzZVkECSgZQsQy0euUGusuBTqYkCQ80cqppBVTMDqpqJzeWc3kK4iwn1PTwwyLIkp6hi4YEl95YAMK/5PNXvplyeQlx2HIFjAn87MpaTA5aWgBhZa+bQjHNvz6nUPXwq+3Drwy2MNI0oyC/gUewjknKTOPDygEpStcb2GmQXZdNcy429p6HXg2g0tfXRX65PoaSQNtrHyQ124pmTC9rFH4i1uki9Qe8gK4t3p3dz6FZXfomoQ4+G4xn56bDyivMITAwkID4A/3h/joUcY81jUXVHKpFS26o2u4J2kZCTQEvHltjq2XL53WWmN5zOrQ+3uPruKsWKYuwN7NHV0CUsNQzDAkgd0I3jhQIzO0hJ0Jfh7dCM29F3UJfIUFu1hrS4EBpo28KLp6hbW7OItnR27UyP4z3EuUwM5JtL37DNdxsAE+pNYGPARpbcX8ImTVfSdSLg02IcIKjwPcs0muIn3GP+bbGmqra1qJRzccBF9gTtYezFsSiUCmz0bXAwdMBC14JpV6cx9cpUBARcTV15PPKx2AiseQeAzPBXWNRqQkrMeRZt78/mnJt8zP9Y5q1NNIRkIykISp7biiRXvwgK1GHxrvf00X8CDRElUWuLD0dBEAhLDeN8+HnOh58nqygLAYHbH26ryMalAZeoYVmDJ3FPOBxymBdZYUhkErrY+6Ab9p4jOpF0jdIk31CGR6QY8HBQjFCRDPF6lyFIFCQ7jKW9ywU+ZH4gNDWUY3qhWPr6YF9rGKNjHtDhUAcCDq+kweA50KIFkoZeyJ9d4AeHUOrFw5RFh0A4BMC6VjpMa57PrHR3lj/QQpJ0UCQgVarg69KJoz2P0vdkX7TUtNjVZVeFizsbfRvO9z/P3hd7mXp1KjeibvBzl59pX6U96OuLmYwxY0qzHGvWiPX8HTrA2LGqLMeEuhPoeLgjY+uMZd2TdWz034iLqQt3ht6hhWOL0n/o5gb794tk/1P5raelJ8emTCTr6WY0589Cf88hSEhAe9Qoll7+yM+1QbJ2KiNb/rHFcHWL6nhaeHIk5MhfgmgEJgaSV5JHV9eu/1I/weJ7i7n94TbXB1//zzg1+/mJzfTe3hX+WSkoic2KLafuFPoxVHXtSZDgbOxMVbOq9Kjao7Qx26wqJtomf/4x/4PfhVwpJyEnoRyR+HL7UplSJpFhayD2X7qYuNDaqTWVDCupNnsDe5YeSyovyy8BZ8s/x/fjP4l/iMbfDf8FoiEIYlPTr1U1ihXFLL63mKX3l1LLqhaBYwKpblGdH+/8iKbsK+nWzEzxIfllX0VMDACtTYy5bSrhRksH2vXbIWYsbGyIz0ngxjp7dLR06dBkKB/zPpYpXYrLjiM2O5a47DiCU4JJzU8lIj2CWjtEfVKpRIqNvo1KlalXtV4ExAfwKPYRAgLfN/+e+c3n/64qhruZO0pByfuM97iZienJ/JJ8uh3txv2Y+5zpd4aOLh1V41v2mIbButU8uHuAW5Nu0edEHzoe6sjebntLfUMEgRHOPdlkuJppx0dw33QWP8Zbc7Qok6pF+vxwYARvTlqyR6+AXj3P0mjzWb59AlUBf2sz+nXR54J1DrpKNcb7Sgiy3ICjrT1tP5c0yWTQvDn5UgWRp3fxVpHC27RSad6wj2FkF4tZm6yiLF6nvCYsNYwCeYEqdTv0zFAW31uMlpoWmYWZ7Anag7u5O26mbhhrG/Mh8wNbn21lQfMFmOmYAaKm/+4Xu9ndZbdqripEbq64GPuEts5tmXNzDroaumQXZZNfko9cKSclP4WfvH9ig/8GnDY4lSkfG+Q5iKkNp+Jy6g68HIOgY0i9n+urxox49pq8J9soqtmIx1H3qJGsAwWmcP8+O8M2Y1wAnRoPLXNYuhq6NHNoRtNKTdn3ch83399EW02bAnkB3o7e3P1wV9VHc+fDHQDq29THUMuQZa2XUdmkMo9iH3Ek+AhHQ45QPRn8zsGM9gKP7UGiVCKVyNBQ06SFTWPGnxuLyz6BtGHamPYcK/avfEI923q8/eYt31z6hj0v9rD9+XYKSgpY3W41w84MIzI9El11XS7aF9DWxhJIQiaVIZVI+ZD5AQ/fGbS6dY9fZEdVRpkAOcU5bHu+DUNNQ9pWbsuRkCMk5yYzrdE0dDV0kSvlmOuYE54WTruD7ejn0Y9Rpj7UAV48OcMxq1TydMD856Nkd9XEVNuU9IJ0VQRVQ6ZBsaJY9VWQQImeFhQW0q8X5MUUMnzLFgTgzryBnG1pxXm9eKLyRD8Kn8o+7PDdwZ6gPTyKe8TQmkMJ+RjC4NODAQhOCcZcxxyloOTB8AfUt62P+xZ3uum15XS0LfjvRUDCK5N5zMqqQ2FR2SyCBBmOOo04OXACgiDwJO4JG/w3MPXKVObfms+I2iOw1bZg56n5NPD2hkuX0FNX58TlItIDP9DZeygONgeplFqCg4kTR9XCmJ3lybIgQySRP0NiYuk/MzCgZ5UqvDOry6Ebezl4O5rBPRYicXERgylfLHglEgnDaw+njXMbRp0fRYdDHRhdZzRr2q4pbc738hL7N1avFr0W/PygSxcx+zByJO1GDMdS15KDwQeRSqQYahryaMSjcn03uLmJpbdxcVCptJdudselrGu9n3n7DkP12rBkCWhrw4UL+CvOcOzxD7Sr0xs7gz+mitXPox9L7i8hrzjvj/lx/AexK0jsFRntNfoPv+ZG1A1+vPsjC1supJXTf0ByNj1drFBYtIgiZQmRqZHlyMTbtLeqGn0tNS3cTN1wN3enlWMrFZlwNXVVSVT/g/88BEGUr/8aiYjPiS/Tp2GkZaQiDc0qNStDIioZVsJa3/p3FdoGtZTyPCoLKaAUUPVoDPb+19TT/jfwD9H4u+G/QDSiM8UyGScjJ9XvgpODGXJmCCEpIXzf4nvmNJ2jWqQXKYpKb3R5eRAYWEoonj0TVUpAjM55eYmlX3XripujAzdvL2DVo1VssU+hOP40caFxXIq4hIAgytCtMC7jE6EmVcNW3xY7AzvMdczJLcqlkV0jpjearspEWOpZlrtw80vycVjvQGp+KsseLKNntZ7UsKzx1blwMRWzOpHpkbiZuZFdlI3vYV8CEwO5NOAS3k5lI1EaugZ0SDfhbNFNFvxynrOJLRldGM3AUwNJXLGA6f5SSEhAlp/PWmfwGQInfx5K70RjxnY0Yp9TFjlaCg4O8GCY1QxmSm4ws8MF6m44SrNaXdDV0OCcINDxcEeuRF7hNR/53iWOZW0+ufgWFoKPD6Sno/P4MTWqVOHXZygIAh/zP/I29W05AvIu4x0KQYFSUIrKFxI1BARGnBuhev1nd3eZRIa6VJ3LEZfRVddl7IWx9Pfoz7Baw746p+TkgJ6e6kcPCw8UgoLe1XrzPPE5gYmBAFQ1rUpISghZhVkqQ6XaVrUJSgpiQr0J4ntTdBU0NelyrKvKjM1ATQ/DO485VL0EFz0HtlsK9H+mDvfvo7Cz5eCxA/QPBs0J3codWmR6JGMvjOXW+1sM8BjAzfc3sdC14Ob7m6ro+mLvxRx/c5zozGjkgpxvr35LibIEDZkG9Yw9iE0IwzEfan2U0nSUEj11XdSVxZRQgoGmAa/inpNUmIoggdbDpSgoREO9/EJBR12H3V1309m1Mz2P92Tfq30cCj6EjoYOlwdeRvj0OTjRyBVI4tb7WxhqGpKUmwQDujJplYzuzjnIJDK01bTJL8nH97AvEWkR3B56m9rWtalsVJnFDxaz6tEqqptX50L/CzgaO/Lm4xt2Bu5kd9Bu/PK3USAFRdQ70k0lCOrQMxQWtCoiTVmEg6EDANXNq3Ou/znm3prLyocrVeehraaNRF+HjIIMRji8QL2RMQ1eZ9LKOxq7nBh8nwl0zrbCu2E/tB37Qq369HTvicUqCwacGgAClAgltHRsydVBV2li3wTrNdZce3eNt2lveZfxTnSPH1ET6tRBMmkSnpMXU2O4Pf62nuVqmit/igBKJBIa2TeikX0jYrNi2fJ0C8fvb6dHQBa7vKBv97G0UVPj3oe7bAzYyLp265jacCpLWi+h38l+HI26jkwiI7d1c+IXficuwPPy4N07iIxUbQ6RkUwON0Hv/m3YcPvTm6ujynx8udlXqcKV/pfwC/qZ6demc+3dNXZ33V12oauvLwqCjB4t3mv9/IjzW82UsEUkVxMj3Cd6HGXwuWEsuL2AzR03l/1guX0KArx9W4Zo6Gvq4zV5GUWXJ6Izc6bYS7VxI5iYsKqwCRcjLjLh4gTO9jv7h7IC/Tz6Me/WPM6Hn6efR7/fHf+fxJmwM6hJ1f6wClZiTiIDTw2kjXMb5jWb9/sv+IPIKswqJRNXDhDas5gwjR1ELZ2rKpMx1TbF3dwdL2svBtUYpCp7cjBy+Kfc6b+AEkVJhdmI6Kxo1fc5xaVZfjWpGnYGdlQyrISTsRMtHFqUzUYY2mOgafA/Pi5PB33WjXDn4J0ElerUYG8bPCr9tRvB4R+i8feDxqfynf+gvO3LZFHa1NXUFblSzupHq/n+9ve4mrriP8qfOtZ1xIGFhfDqFYXPnqCZnQ4eHhAaKqbktbURatcir3Vzkr8ZyLvKxoSZKInNiScuJ5a47MfEnY8jPjtetYgce2EsGjINbPVticsW5Qd7V+9NTcuaomfEp7ImC10L1Q33c9/C6b6nsdSz/Op56ajrsMpnFcPPDkdPQ4+BpwYSMCpA9Az4Ddjo26ClpkVE8hsyFTbM3DcQp9ho9rmMxmn7FUjYXbahOjubrh4woBfEjRuAnaDPHhtrbBs7MMMlinhHL1abjkdqa0cbGxt8w35g1uh3dP4mjPmFWeze6IybgT0/Kl4zYPwplkrG8fSAD33uTyLQvQnWGtZIJBJO9TmF22Y3EnISWP5wOU7GToypPUqUnXz2DG7dKpM1+BISiQQLXQssdC3KmQDJlXK6HOlCQk4CQ2oO4VrkNa5GXcVc25yPBWKq/rPikoZMg3m35pWpI32Z9JJ+v/QrbUb/FHErE9HMzRUXS59w/PVxpBIp+hr6NKvUjK1PtwIQlhaGVCqlvm19nic+Z16zeSy7L0p33ou+JzqGFxWxzUvgQvgFnIyciMmKYXCJO3oZT7lQBYYe+4WiNlC37TCoVInbUTeIl6czJLdymUVWiaKENY/X8OPdH7HSs+LKwCtcj7pOcl4yBpoGHOl5hCMhR6hiUoX6tvWZf3s+x3sdp3f13hTKC3kZ95zsnzez7dFxAiorkejC4eoCWuraNKzUmLo2ddGSaRL3+Cp3Ex+TaCouCEWHD4FZN2ZxKeISvar1ood7jzJlGt3duzOj8QxWPVqFXJCTX5JPal4qg2oOYnKkKT9WFon89ajrWOlZ8S79HRgZUc3QBaucMJL0FcikMrof605gYiDXB1/HydiJiRcnsvXZVmQSGbWta/Pm4xua7GlCF9cuPIh5wOuPrxEQkMgkxBoKOGWiylx81IUN0e402XEJRyNHmu9pjqmOKTKpjEn1J7Hq4SpAHG+oKfqLfH6tw4cM3jkaEjT2DjWN3ZHcvg2nTsHeQ2RuWs/BZob4NVBDriYHpUguC+QFSCVSlaxor2q9OPDqAEpBSa9qvahpVVOcrIaf1JaOHWPQ2Xv4Cx6AAiSyr0YA7Q3tWd58EUt+ekjUu+dsalBA2wu9qfm0Jok5iTS2b8zkBpMB2BW4i+tR15neaDpGmkas81/HzqCdDK81nO+afodjjRpQoyy91wO231vHxmPTmGvdm0E6DUvJyIkTEB0t3jcBiaYmYytXpm21hoyo+pbW+1sz0aoLK7yXouvsVqYZXF6rBpuHVWVBJSl6CkN2BhkxsXo0kbNHsaJecyY/3UIP9x5liYqjo/gceftWDEp8xi+/0HHcDxSoyUCuoGDyBLQ/KVAZaRmxpeMWehzvwYk3J+hTvU+5Ofw1nI2dqW9bnyMhR/5XiUZsViyJuYnUt63/hxqd5Uo5/X/pj5pUjYM9fru35rcgCALxOfEqdacvsxRJuUmqcY656lS1tsTXvWuZHorPJpH/4M+HIAhkFmaWz0Jkl36fkJNQJhthom2iIg3ejt7lshFWelZ/rkDAV+DpoP+Xb/yuCP80g//d8OyZWF4UGKiqcf4zERydw4+nH5CQpqCypS7vJDvxTzvGd/Wn84NZLzRevIKnTxGePYXgECQlJUzwlXC/sho7It15Za/BQ8tiHuilE5tfVt5SS02rTP/Dl2ZzD6IfsPrxal6Nf0Vqfire+7zxMPcgeELwbx7r29S3eGzz4Cfvn1Su078HhVKB7lJdShQlyKQyxtcZy4Yas76qxOTZMpTmUQq2XPpiR1paKinXX2+ZynzMw0ezwWIIE77Zp3rJloAtTLo8ib4efdnbdS+aapqqc/gs8zvv5jzWPllLobyQbZ22Ma7uOJJzk6njVwdnY2duDbmlyiTd+XAH733eqqbkb+V1Wb7sGRrHTkLPrxsbfg2zr8/mxJsTRE2J4u6Hu7Tc15Lwb8Kx1LMkIi2CkedGEpMVg4+zD+Fp4YSkhKhKiiRI0FLTQikoy2ShbPVtqW5enapmVXFbvpOqHQZTdeIPZBVm4bHNA0dDR1LyU1Sa44aahjgYObDEewmdj3Zmc4fNTKw/kfvR92m+tzkAMxvPxPnmcyZq3sLZrArupu5kFmWy6I6EOsfuYTILVr2xZbpHPNm5k9BbvZHBvwzi6f2jhOrMRLJUJC3+cf6MPj+aNx/fMK3RNL5r8h2L7y9m3ZN1mOuY83zMcxJyEmi4qyH7u+9no/9GpBIpT0Y+ERuGz59HmPMdoyuHsstLnIPRdUbTxrkNoamh+Mf7ExDnT+onCUknhQHV3Zqiqa5N6MdQ3qSK8roaUg0V6W5g14B+1fvR1a0rOwN3svTBUpyMnEjMTUSukCMX5HRx7cLRb+7gNVmLUETyV8uyFi+SX5A3N48VY6qhERnN/DZQw6IGb9PecnHARRJzE5l+bTr5JfksarmIh7EPeZH0An0NfV4klzYIa6lpUSQvEvsl9stI0VIwsK8owzzrPnzrD3N29WeA13AW3lmIi6kLO3x3MPzscE6+OYmBpoFKNlNfQx9LPUti06NJXSZnUTOBm73rcG/YPXTUdXgc9xi/Zzs4HnKMEkUJXT9oMuZBAUc9JRytLrDWcRzj47dzY/ANWju35vb727Ta3woJEoLHB4ukEyAlRez/OX0aXr/GIfs4VSRjKFRzoGlKMoObWeExqGOZsiVAVP8ZOVJ0zr55k47RS4lMj6RIUURMVgxmOmZMqj8JuVLOT/d+Yn6z+SzyXoREIiGnKIetT7ey+vFqMgszGVpzKHOazqGySeVy19bqR6uZeX0mi70Xl+ltorgYPnwokwkhMhJlZARbTKOY3VqJTQ7sPS+jqXplqFKFADc9xpk84oUinomuA1nsuw5DfTOG7erMneg7RGwQaNc9jygbbV7V3YVBl96gpkZwdA4HFx8jyqIKzukYw3YAACAASURBVK7WDKqjh+fyWaLCVY8evF80jZIWzcDZCdeAd2WOv+fxnjyIecCbCW8w1TH93XvJ+ifrmXV9FskzksuXcP2XsPzBcubcnMPWjlsZX2/8746fd3Meyx8u5/bQ2zR3aP6b40oUJbzLeFeOTISlhqnuYxoyDVxNXcs1ZLtFpKPTog1cvw5t/jpeI393FCuKic+O/yqR+NLXQk2qhr2BfTny8OX22Xj1H/z7+Ido/N0QHCxGyx4/Lo3e/Vm7js7h292hKJRKQAqCqNLy3d15tHx6H41iBQoJhFup8cRKToANPLOBQGtAJsXFxKWcQ/WXZMJE2+Q3U+5F8iLcNrvhZeOFUqnkzNsz7O26l6G1hlY4HqDr0a68THpJ2Ddh5WtUFQpx0VEBceiuc47rBqnoFQsk6whcOQDtPj9P1dXLEQdfkyu8LoimXqYuSwftpYpnc1Hx6yvlAz4T9JHq63N1RUKZ3//y5hcGnhpIk0pNON33NAaaBky+PJm9L/YSOTkSDZkGzhucMdMxI78kn8jJkWipafEo9hEt9rZgUv1JrG23VrW/MefHsP/lfooURcgUUF/dgWOT72Nv+HXd/a9hx7MdTLw0kcL5hbxKfoWXnxfPRj/Dy8ZLRTw+R/NvRt3E54APs5vMxqeyD29TS0ux3nx8Q0xWjCqSrSZVE/1CiguRfwoA/dol3VDDkLySPBrYNSAoKUh0u7apy4X+F5BIJKTlp2G2yozBNQZzOPgwErmC9lESDu7MwH69PbObzGbKsG28z42nxWgZfb2GcvfpCd48rU/OxdNYrbRg3vVC5i5/SI6XJ/NuzWNzwGbqWNdhZ+edqMvUGXhqIG8+vkGulBMwKoB6tvVoe6At8TnxLGi+gP6/9BcbbOPVYPZsXkU+ZNggPYL0c3EwdODywMu4m7uXTuiLFwi9e/G+KJmAhaPxtxEISAggMDGwTN+JuY45MomMpLykcnPTsUpHlrVeRvtD7aluXp3Y7Fjepr1lQgA0bT+aAek7MdU2RV2mTlJuEmf7nmXI3q483SXB9RsBCRK2dNzCsdfHuBt9l17VetHVrSt7gvZw58MdlIgRPJlEhkJQIEGCVCLF1dSVmKwYNp0qwCNRSfHjBzTd05TddRYxvMv3zBpkxaoqScgkMlWPR35JPvoa+jSya8S1qGs0smvE47jHGGoa0ku9Jj/PuMeYSY7sNP2ArrouNvo2RKRH4GzszOg6oxlWaxhWupYQGEj04W14qe2iVRREm0rByIgntbZQ2LYV+pttcDJyImJyROlcC4JYlvTtt7BmDaZzpNRwbEh0SjhR16uJ6j5eXrBokdhE/fkaXr4c5swR5cMHDeJM2Bm6H+sOiGpeGYUZ/Bz4MyXKEmpa1mRv173Usq5V5rrJK85jx/MdrHy4ktT8VAbWGMjcpnPL9Sv9dPcnvr/zPWvarmFao2m/f0HK5USE3GXYrck8zgllfFENFFmZ+JlHUytZwo5zAvUSEHuzHBwIqGVOgxr+nFcbgkcKeOofpP8rJX7PbQgeMZ1vJU0RlEqUEilSBCRKJetOzcBz/gQYMAAkEo7/2Ic+C08QfWYfDl2HqA4lMSeRalur0dWtK3u77f3dQ0/IScBurR0/d/mZEbVH/O74/wQ8t3oS8jGElBkpv5stuBxxmY6HO7K01VLmNJsDiHLnv27GDksNIzI9UiUtbqRlVKG6k6ORY8W190OHiopTERF/KSfwvzIEQSCjMOOrJU2/NsQ11Tb9Komw1LX8r2Uj/n/GP0Tj74bwcLHG9s4daNHid4f/K5i97205VQNBUJCvDCBZPhOZti4axqYY65tjrWeNvYE9jkaOnHt7jtziXM71P4epjmnF7t1/APte7GPY2WHIJDLUpGqkz04v7xquVEJaGrdenqH1wzEcNRlD30y78oQiKUlVigCID2ErK7CxYWuNIibbBaMmkWIpM6RYKvDK5xTmTh5galqGQLzPeE/tHbXJLc4ldGKoqmfj97D5hw5ME67wceZHDPXNyvztfvR9uhztolqUasg0cNnkQp/qfdjuu52VD1cy79Y8lEola9utZUrDKQBs9N/IlCtTONbrmKp0IbMwE/c1zsizMlDX0kFqJBr9HOxxUFSt+Tdw7d012h1sR9TkKBSCApdNLtweepsWDi1otKsRCkFBwKgAUvNTqbm9JtUtqnN10NUK64eL5EW8y3inIiCvYwOps+E4P7aSkKlZ+kH7tWHhZ6hL1RldZzReNl5UNauKk5ETNmttmNFoBmser8EpQ+D8Ydi8Zzzbnm0j0uwnKn+zgOVNYG/vKhjqmuAWX8T+TXHsvb6KEWdH8GGvES8v72HClUmkF6Sz2HsxE+tPZOvTrXx34zuqmFShSF5EZZPKXBl0RUWujvU6xtybc2lTaMP2Ryak3DjLgl6m7HRKRyaR4WbmRtDYoFKBAUEQDTYnTYJq1cQSmcqlUe4SRQnbnm1jypUp1LSsqSpZBDESKlfKyxk/WepakpyXzBqfNWR+CGX1m58RJFD4q7WMr4sv92LuceKiLu3alBoOWutbY6tny4vkF2UyTp/3PajGIJo7NOdRzCPW+a+jWFGMha4FZyPrU2X/BSLDH9N4V2MWNF+AxsEjnNeLJ8CkQCyx+oIYzW06F211bZY9WEbOdznMuz2P5Q+W0ycEjp0Es5mQritRvW5aw2msbLuyws9Q/5P9Ofr6KHOLG7JU4wlnjkCsqRpTfOT0i9Bi95pINK2+EK5wcxPL83R1MR7xkapmVSlWFvN8zHPxvrlggbjIa9QIFi+GjAzo1Uv8/aJFgCiJbb7KHEtdS2KnxbLiwQrm3ppLa6fWhKeFE5sdS0vHlkxtMBVfV98yi5WCkgJ2Bu5kxcMVJOUm0bd6X+Y3n6/yQhEEgbk357L84XK2dNzChHpfN9H8DLlCzrCzwzgUfAgJEqY2mMrK1stQS0wukwURIiOoV+kqFulFXDqgxM8LxnaGyye1uO25nGdO9VF+cbxSQUndStqsGFOz9ByK84msYoJUU5NqbzOQfLEY3hW4i1HnR3Ft0DV8Kvvwe/De5426VJ1rg6/9ofP8M5FdlI3RciMcjRyJmhL1m+MEQeB54nNa72uNnaEd3o7evE17S+jHUOJz4lXj7A3sy5EJdzN3sW/tj6pZZWSIQayFC2H27P/hGf7fQbGiWDTA/UqTtcpLB/Ee+bVsxGf1v3/wv49/iMbfDdHRYo3t1avQtu2fuuveK4NIzSnvBK6ukY+15x7S8tNIK0gjLT+N1PxUMgszy0QPPkNPQw8zHTNMtU0x1TEVv375/aevZjpmqu/11HVRZqRjt9OdpKJUhuk2ZU9Jx/IEIjERhbyEOmNBtwQe7gaJhWWFJUxlNnNzkWwA4WnhuG12Y2TtkewO2o2+hr7KxffLh0V4Wjit97emSF5EWkEaBfMK/jCJinlwEYebvhytOp++fcs7yYakhND+YHvUpGpcHXSVy5GXmX5tOi/HvcTZ2JkqG6ugo65DTnEOUZOj0NXQRRAEBp4ayLm353g6+qkYNQ8M5PTIxvToVoSaVI3J9ScTlhbG5YjLzGs2j4UtF/7LEZvI9EhcNrlwY/ANPC09sVxtydl+Z5Er5fQ83pObQ27i7ehN5yOd8Y/359W4V1+VflQKSm5E3WB30G5Oh55GWVJMZ5OGfNAu4mP+R35s8SOBSYFseboFDakGCkFRpuROXaquKin6ElKJlIshtaj+OIJKo3LoESbl5AkJEoUCu9nqGNm7EpkRyQrrwUwZ9TN91jYiIeol1lpmnNSLoX2V9mzrtA11qTrDzg7jRtQNpjaYSpNKTeh9ojf3ht2jaaWmtNjbgtziXCbZdEf44XsGBkvY3M6YRQ0KkKhrYKZjRl5JHoFjAkvnITcXxo+HgwdF34J16yo02Dzw8gBDzgwhb04e31z+hkPBhxjoOZCDrw6ira6NpkxTJWP5OdvwGTYY0OdxNvua6pGhyEVLTQvNEjcqKYajL3FB0EjENGIjF5xfqebrS+Iik8jEc63Wm80Bm/Gy9qK6RXVWP1pNgbyA8XXH4+Psw7xb83C5HsSwl7D2uxbcir+PUlCiJ9WmXUgBnbvPZn3mVepY1+FB7AOVO65CqUBHXYf93ffT2K4x39/5nsordjIgGFxnimaH1cyr8frjawAG1xjMtk7byi0OiuXFmKw0Qa6U09CuIamZCaRlJeEdr87BnekgkyJt0RK6d4du3cS+g7AwuHMHg0edcTZ2xlzXnOuDr4s7FASxZGX+fFGwQiqFli3FbMen63/ixYnsDNyJppom0xpOY9G9RfzQ4gcWtlyIXCnndOhp1vuv51HsI5yNnZlUfxIjao8o0/RZKC9kT9Aelj1YRlx2HL2q9WJ+8/nUsKyBIAh8e/VbNvhvYHeX3QyvPfw3rx+Ad+nvmHBpAtfeXaOtc1uS85IJTglmVuNZLGy5sFzvwZ6gPYw8N5KIvg9wTi6h/ZOJvC6IoUHhKdLVyzemVqTFH7B3CfWHz+fuxum0mFQqXy4IAq33txY9Y8aH/O5izu+5H+MvjidhWsLv9tH92Tj86jADTw9kVuNZrPBZgVwp533Ge5WqU1haqUv2Z7lRNakaLiYuoqqTaSmZcDNz+3PKaDZuhOnTRdUvy//ufPxvQRAE0grSvkoiknKTyqwnzHTMSomDQSUcjBzKEIkvezX/wV8b/xCNvxuSkkQZzHPnoHPnP3XXFWU0vuY8qVAqyCjMoPeJ3siVcmY1nqUiIipCUpBKWk4KaTnJpBWkk1acRTEVRK4VYJoPqTogl0HtRPBK18RMZoCpljGmehaYGlljambPbc0kFiQf5qHvaRrX6CSWO/0LEASBSusr0dO9J0FJQSpNcj9fP5X8YXByMD4HfDDRNuHHlj/S52QfwiaGfV22tew/oc5kTarqO3F46dsKh8RmxdL+UHuScpM43fc0o86NwsnYiSsDr7Dj+Q4mXJyATCJjcavFzG4qRr5yi3Np+HNDMavQ/hf0m7YGOzt6fWvL5Q/XKVGU8GLcC86GnWX+7fm0cGjB4Z6HsdKz+sPzU6woRnuJNjt8dzDQcyA6S3XY23Uvyx4sw8HIgauDrqqckC8OuFhG3vdLfMj8wJ6gPex9uZeYrBjczdwZ6dCdwf2WEnlgA01eTeFwj8P09+xPj2M9uPbuGroaupzrd46GuxqiJlGjpVNLXE1cCU0N5c3HNyTnJav2L0XK5otKGsTC6saw/zQk6kGmqQ41hxVgqGVIZmEm19oexKfxIHz7wy0n0Nc2ZEO37fSt3pdfQn9hzPkxaKtrs7frXto4t6HhroZoyDS4P/w+VyOv0u/n9jz52BX7/Wc556HGgh7GRAlpjPMSvV12PN/B7aG3Sxvr37wRI+QxMaIE6YABvznX65+sZ+7NueTPyye/OB+3LW7EZcfRxbULh3seRkddh/icePzj/AmID+B+zH2eJzynWFkMguhTIXx61lZkUIcgEKQ2Hq28V6ToiYIInVw6MaTmEFo5tUJHXYe84jw6He7Eveh7qEnVGOs1ljnN5iBBwqWIS5x7e46rEZcoEuRoKiSoa+niU9mHIz0Oo1mnHjg5Udc3AQdDB06FneJM3zM0tm9Mh0MdePPxDQXyAvH9kkh5dFyfdGU+HfuWUNm4Mgk5Cdgb2hOeFo5MIsPFxIUTfU7gYeFRZp4+Lxg/l2FJkBA+KZxxu7rTM1yN8bGWcPMmyD/dW3R14cUL9I7XwtbAlpqWNTne+3jZyY+JgVq1RAW//Hxo1w5++olbZjm03t+a75t/z6J7YoZjYYuF/NDyh3Lv39P4p2zw38Cx18fQVtNmRO0RTKo/qUx/RrGimP0v97P0/lLeZ76nW9VuLGi+gNpWtRl/cTx+z/041OMQ/T37l9t/kbyIVY9WseT+Eix1LdnScQudXDshV8pZ+XAlC+8sxNXUlX3d9uFl46V6XX5JPnZr7RhVZxQrfVYSmxWLxzYPGst+pjjH4Y/d4wWBYE9L1NIysIlMxlC31JMhMj0Sz22eTKg7gTXt1lT84f6EtPw0rNZYsa7dOr6p/81Xx/5ZyCvO423aWwadGkRoaihtncXSx4j0CJWEt76Gvkoi9kPGBx7EPuBgj4P0cu/1u7Ln/zYEQXQBd3cXM5z/R1AkLyqXjfiypCkmK0Z1HwAxG1EmA2Hwq2yEoX35aoZ/8LfFP0Tj74b0dLG858QJcTHzJ+Jzj4YglNVpXj/SvWIJtfx8SEzE52I/jOVqHJf0qbihOre0+UoA8swMSHOwIM3WmDQrA1LNdEgz1OC1Vg7bM64hRYq+ph4upq4q0vJrt+7PMNIy+pezJ9rq2gw/O5zAxEDO9juL5zZPbPRsiMuJI2hsENlF2bQ72I5KhpW4NugaRYoi7NfZV+g6/jX8OKs+69Se8XFRIepqFWdCMgoy6Hq0K88SnvFtw29Z+mApFwdcxMfZB/ct7siVcnKKc3g/5b0qWhqeFk5dv7q0eyfh+E1jJE/8SdRR4r5F9Pyoa1OXm0Nuci/6Hv1+EdVejvY8Wta063fgsN6BgZ4DWdJqCRqLNehTrQ+HQw4TOEaUnm24qyET6k5QOYJ/RqG8kNOhp9kVtIub72+qHLtH1B5BA9sGSIKDEWrWpNXGOqSpiaToUsQlOh/pzPxm81l8fzFupuJiW0OmQQO7BlweeBmA7MJsHDY4kFmYST2benR27UyzRftwfhWDXWoJBz2h21tY2QSWfHmqAqSuhHUN4UQ1GNHtB6ra1eZg8EFOvjlJr2q92OG7AxNtE25G3aTNgTZcHniZdjbN2TjEjeGXE4k0kdCnh5x3JuDj7MPadmsJ/RhKn5N9VLKngFjjP24cODnByZNQtepX53nBrQXsfbmXl+Ne0v+X/lx/dx0jLSMcjBx4MPxBhdFihVLBqkermHNzDt5x6jxz1iKnOAdP+XpMqF9GzlVAQToBdH61gKV1cngy8gkN7BoA4mJ0+7PtrHi4grT8NBSCgs0dNpNWkMaF8As8TXiKVCKlkV0jOlu3wHfoUtZ1NWeX3Uds9G14OOIhjr/chNGj6bqwKuEmAvnyfJ6Nfsbh4MPMvTVXXPAa2FHZuDJhH0N5tTCF481NWNtedFE30DRAJpGho65DUm4Suhq6FMuL2dJpC8NrDS+TYay1vRYvk1+iLlVHS02LtFlpbA7YzOwbs0makYRJAaK7ckiIinDozJdgJtOng5MPO4acKC2LzM2Fpk1Fj5/Hj8VSqh9+IPddKJ7TdXC0rUbL6r4svLuQSgaViP42+qvvY0JOAlufbmXH8x2k5afR2a0zUxtMpaVjS9U5lChKOBR8iCX3lxCZHomvqy/zms1j27NtHHp1iOO9j6uMP0EUexh/cTyR6ZFMbzSdBc0XlPs8BCcHM/TMUF4lv2Jes3nMaz5PlXWdfnU6e1/uJe7bOJFIv9jLlDPr8FL6IUHyh+7xyTfPYdmmKwem+zB4ddnSp5UPVzLn5hyejHwiGjt+BZ0OdyKrMIsHIx58ddy/gs8y3V+6Y3/+GpMVoxonQYK3o7eKVLibueNu7o61nqjgd/7teboc7cJqn9VMbzz9Tzu+CvHoETRpAteulVX8+gtDEARS81O/2mD9pZoWiBLov0UiKhlWwlzX/J9sxP9H+Ido/N2Qlyd6EBw69NVI6b+L4OgcDt6OIyoxD2cdBYONU/DI+lAxgcjMBKD5cHDMhP1XdX5TiUm1WVuL0cYKMOLsCPa82MOU+lPYELCBM33P0LVqV0CMCqYXpPPD7R/Y+3IvmzpsQiqRls+efPFzekF6mVKTz9BW00ZbXZv0gnSaVmpKYUkhzxKfoauui56GHpmFmTgaObKpwyacjJ0w1jLGdq0ty9ssL11Q/gG8OLOd2i/Hc73RNtq0/W1n80J5IQNPDeRM2BlcTFyQSCS8GveKk29OMuDUANSl6sxvPp/vW3wvvqC4mFODvOhZPYQ1NWcxrdsKoLR2GuBg94MMrDGQpNwkBvwygLvRd1nsLWZG/sgN3nufN1Z6VhzpeQTTlaaUKErwdfXFr7MfXn5e6Krr8njkY1XJRmBiILuDdnMo+BCZhZk0d2jOiFoj6FWtV9nF0aNH3BjcBJ8hcLbfWdo4t6H61uq4mrpytu9Z9JfrIwgCs5vMZtmDZZjrmpM8I5kSRQlVNlUhJisGaz1rerr3ZFPHTaIXy/PnbKkH7WZso0rf8UxZ0oyNJfeB0obqG/sgVx2mdoQPRqWHoy5Vp7JxZWpY1cDTwpOjIUdBoSBQeyqKBfPIzElj5ih7DhnFYqxtzL5u+/B19SUsNYx6O+vh6+rLkZ5HkBQWwpQpsHMnDBkCW7f+5uf8S0y4OIFb729RrCgmuyibY72OYa5rTuNdjWlXpR0nep+o8P0SBIHOs+0JlKUwrv18frjzA82LziOVWZQbW0QKu7Z3puN39jR1bsHOzjvxe+7HsgfLSMlNoY1zG4y1jDn+5jgCAgaaBrSv0h5fF186uHQQDRkFgSJNNfb3c2dvS0OeJzxHJpWxuNF8pvZdx5FqcgZ7Z1HTqiahqaHIlXK01LRoV7kdx3uL8sWK2BhklRxYP7sFc/UDVBFOCRLMdc0pUZSQW5yLpa4lcTlxDKoxiG2dtqnKVWKzYnFY76Dq69jWaRtdq3bFdq0tWzpuYVyEoXhPnDQJNm2Co0fRfDMA/UKBUYECy99Xhh49RJO75cvh3j1x4efxKXuiUDBhYzv2p91i5DOBjY2gj317jsde4c2EN2Ub/H8DBSUFHA4+zHr/9YSkhFDDsgZTG0ylv2d/lWCFXCnnWMgxFt9fTFhqGD7OPigEBfejRQPQejb1mHl9Jvte7qOJfRO2+24vl+H5EiWKEpbcX8KS+0vwsPBgX7d91LCsQURaBK6bXVWiGoIg0OVoF0Kic+lmuZH/x95bh1WV7u//r013S4ogjSAY2Dl2i9iJ7diOjt2jztjdXRjYWGN3gIEgKKFIC0h37b1+f6xxKwM6embO+X3O93BfF5dee9Wz9l7xvOO+7/gPpd+kxR/ZwhWl4FCyXvhTy6q+/PNSWSkNdjegRFrC09FPv9pWejj4MIPPDCZmSgzVdKt9cb2KIJVJic6MrpCQnV6QDohtgLYGtmUI2YUlhfx46Uf6u/bnSM8jFe47JjOG2jtq08yqGWf7nv0u1/B/CUOHwr17/6dI4IWlhcRlxX01kPhctEJVUbVc4GCl+6mtqapO1a9Kxlfifw+VgcZ/GV5GZXJ47gGiHD2wqW7EoJbm1LT6RsOW0lJITv6qlCuJiZCaWnY7VdWvBg/1Q6fgbl6bXV77v6rE9DUUlRahv0KfUlkp6TPT8TzmSVJuEkE/Bsk5BrFZsThudmRao2ksbbX0L/cpE2RkF2WX45akFaQRnRnNBv8NNKzaEA0lDZ6+f0pOUU6FnJOPUFNSw1rP+purJ/oKmjjM16WbTj02LfT/6lilMimTLk9i61PRQ2JTh02Mqz+OOjvqkJqfSnZRNtFTojFQ0xdfVseOMWObF2vjT3DT+ybNrZojCAJtDrXhcfxjNJU1iZgYgZ6aHlKZlIW3F7Ls3jI62XfioOfBv5SmHH5uOKEfQvEf6Y/+Cn2yC7OJnBTJ0rtL8Q315fmY5xhpGOET7MPeF3t5kfQCMy0zvN29GV57+BdJ88Lvv9PwVEeoVYvH454z9+Zc1j5aS8i4EGKzYml9sDV2+nbcHnqbqutEB+LEqYl0OtKJF0kvmNZwGo8SHmFvYM/+UHuYN48Pxpq0WmjNy7ft4dgxNpyczvTrM+S8DnsDe348EsmIQJgw2Q4fjbdoqmgiQVLGeEkiQOcI+O06OKbByG7g4w6CggKKEkV8e/nSpFoTVBVVabCnAQoSBfxH+qMV8x569xZ9CbZsgWHDvvk+aLSnEQEJAbiZuHGm7xms9awB8Av3w/OYJ/OaizKqnyOvOA+/cD+Mho6je8dMFGWQqwrDYtcTY1YfmeRTRUMiEUgVHnNh288cm96JOUUXMVAzILUglao6VfmQ/4HC0kJs9W2RCTJ01XTxH+lf4aQxyVKf6/aKPJrWl3ux92hVvRUb/TfSK1aLl+o5hFUBaz1rxnqMxdvdG7tNdixqsehTlvjCBbHdMzqaHFMDTr0+xdpHa3mZIkpYf5RFliDBRt+GmMwYLHUt8e3ti5uJGzlFORivNqawtBCXKi5kFGbwZuIbvHy9kKSmcWnpO2jVCkaPFiVD37xB+YgTKgoqLDTvz4zHinD2rKhGB9ClC0yZAs2bg7KyvJrV0aYDl6N+Z+kzXX7+PRuLWSp4uw5kTZ893/SbghgI3nx3kw3+G7gQcQEjDSN+9PiRsR5j5TweqUzKyVcnWXpvKSEpIRiqG5JZmImGsgZKCkqsbLuS4bWHf3Pm9/n753if9SY8NZyFLRYys+lMOh/pTGZhJv4jxefP+5z3uGx1oYNdhy9Ovv+MkuAXKNSqzbp+Vkz1iSoznsD3gdTbVY/FLReXlev9Ez7+dr+0/IXpTaZXuE5BSQERaRHlgomItAj5RFdTWVPuz/OxMuFk5ISdgV25a3bImSEcCj4kl0T+M4qlxTTb14zk3GQCxwT+++V3P5LAFy6EWd8mx/538bHq8zWlpo++SB9homnyVaWmKhpV/v0BWSX+n0JloPFfBHlrU6kUmcInA6p1wxypqV741wFEcrLYI/oRSkpiheGviNT6+l+dOLlvd6d5teZihvlfxNGXRxlwegC9a/TGt7cv/vH+om+B50EGuw8GYODpgdx8d5OICRFoq/59N0yXrS40rtqYXd12cTjoMIPPDkZTWZP8knxO9D6BnYGdPEBZdm8ZeSV5dHXoWi5oSctP+yIxXlkQCbi1LOqWCU4+b+X6+K+BugH7Xuxjyd0lqCqqEvdTHAEJAXQ52gVVRVWmNZrGsnvKsHgx+PhQ2q8PbQ+1JSw1TE5EfpP+BtetrsgEGaPqjGJL5y3yrdn62gAAIABJREFUsVyOvMzgM4PRVNHEt5evvIWmIiy9u5SN/hsJmxBGlVVVcK3iyqymsxhwegDTGk0jPjueM2FnkAkyujp0ZXjt4XSw61CxlONnOLdvJp6xK7ne4wzmZo64b3dnbrO5TGwwEbdtbmgoaxCdGU3mrEzq76pP6IdQPMw8ePr+KX1q9OF47+N0ONwBzYhoTi0JR3B05JrCO66un8jqSRcoatyA2nWf8Dr1NSD6dyTnJdMltJR4HXhRVZFFLRczs+lMlBSUyCrMIjI9krTr5zFYvJJ6UYWsaaHMvKYlFH6hTVtRooiAQEe7jjTP0sN5x2mcFI2pvuc0SrXqfMOVJ2aDZ1+fzepHq6mmW43X41+X60n+qP9/tOdRejj14Pc3v3Ms9Bh+4X7kl+STsEkFn0ZazPAQs7p7TNdxJLHxp9ZHmRRBUYFnCqPY+jyHKyqxHKr5Sca2SbUmdHXoSheHLjgaOrL1yVZ+uvITaTPSKry/oho58TrrLU+2zGXzk810tO+Ib6gvJdISeoYKqEtU2LA/CX11fXKKctBZriPn4ACwZIlIik9LK/M8uR9zn45HOpbRt//I11BUUORtxls2dNhAan4qi+8sRlNZk6zCLCQSCSvarMBM2wzpoIEMiNVFMSwcsrPBwQFu3kTxXhtkguwT/2rbNhg3TiR/R0WJPA0DA3K6d6Sm/TUU1NR5lx0jypvWnwp79jDt+gwO2OeRkD4M1fmLyhg9fgsi0yLZFLCJvYF7KZYW08+1H5MbTJZzKmSCjI3+G5l7cy75JfniV9VyCXObz/3uCV1RaRGL7yxmxYMV1DWri7e7NxMuT+DJqCd4mHsAcOTlEQaeHsjJ3ifpWePb/HaSeneCy5e5fHkjw5pNLLNs1vVZrHu8jqAfg3Ay+nKrYO8TvXmb/pZrg699CiY+I2RHZ0bLn6EmmiblgglnI2csdCy+OfAyWmlETnEOubNzK+RcTPl9ClufbOX+8PvUt6hfwR7+YWzaBFOnQlycqID4D6CgpIC47AqqEZ/9fa4up66k/tUgoqpO1fJS8ZWoxN9EZaDxX4QKydoyKR7vnrDi6OTPPlQQ1Sz+KoAwMvpHyreOmx3p6tCV1e1W//XKX0CdHXUITAos80LscbyH3Ccj8H0gDfc0ZHfX3YyoM+Jvjxlg0uVJnI84z8o2KxlwegC1TWvzJPEJ9gb2FEuLCfoxCF01XQBmXJvByVcnvyiR+JEY/3n1JK0gjUe3D7Mz6wY9qrVHoqlZbvlHYuLn+KgupKKgQj3zeoSlhZFXkkdpaTFzb8uwau2FYW9vDNXFqkRP357YGdhxy/sWyorKrHqwipnXRfK4/0j/Mv3TcVlx9DnZh2eJz1jdbjUT60+scDLjE+zDoDODmFR/EpufbKaFVQsexj1EUUGR/JJ8kdhdewSD3AZ9s5KMTJBR6zcrjCLiubGziB+OiATN4B+DGXJ2CDeibnCy90laH2rNpQGXeBz/WE7GbWrZlHvD74FMRu/5jmTFveGq+2pyLpzm95SHmGzcS/M2wxk2VI9D1XOwN7QnLDUMa11rkvKSKC4uxC4delp1YNFP5z5lP1+9gjlz4Nw5TjvCcm9rnhRHo66kTk2TmqgpqhGcEkxfl76EpIQQlBREbsmnCTECIPn0u5lpm+Fo6EgdszrUNK4pmnMZOZZRI0rLT6PfqX7cencLUy1Tujh0YXuX7eW+rxJpCR19OnI7+jbqyurkFufiZuJGf5d+DH+lhvGPUxGUlWg815THxOPXzw9rtZYcvp3I2/c5aEU/JkL7CI+0HgGgWwi6hhZkl+bxesLrcgIBH9XGzvU7RzfHbuXG83RgK3xTbnGgvTEpeSnY6tsypu4YqmhUQTpiGO3fQqO5JqztvImaxjVx3uos+o185AZ5eUFWlkja/hMKSgro6NOROzF3yqhrqSmq4WbiRkBiACqKKni7e9PPpR+tD7WmikYVZIKMV44bMfYcyNlZPfD87TQUFICGBsK+fSjEiGpOJ3qfoFeCruidMW6cqPwjCKLx6enTjIndik+1TB7vBEW3mjiPmgOdOoGODq/jA6mxpw7HrmjT91mRWDGZM0dM0nwHMgsz2Ru4l00Bm4jOjKZptaaMrTuWoOQg1j5ei62+Lf1d+rPm8RpyinNwNXZlVdtVtLdt/90Bh3+8P95nvYnOjEZdWR1PR0/2ee4DxCx3rxO9uBtzl9BxoRhrlm+3K4eYGErsbFjRSoUxp2PL+FEUlBTgvt0dEy0T7gy9I1c3i82K/RRMpIZxL/aePAEAojhAdb3qclWnz2Vj/251ITw1HKctTjSv1pw7w+6UW3769Wl6+vZkQ4cNcsf3fysEQfS/cnQUuVvfAJkgIyUv5atBxEdFuo8w1TIt08b05z9DdcPKakQl/uOoDDT+i/Al+VkjhWJO1E3/FEAYG4vViv8QrNdbM8ht0De1M1WEmMwYrDdYY6ljScyUGPmDMDQllJrbarKxw0aOhBwhvySfZ6Of/WMGO37hfnQ/1h0JEvrX7M/+7vsZ4TeCM2FnEAQBTydPDnsdBj5JNH6PxC1ASUYaVVYaMUWvA4tmXi6zTBAE8kryxMrInwKQXc92EZwSjL6aPtZ61gQmBYIMVCQKFEtkFR5LVVEVS11LDNQNeP3hNfkl+RhqGDKh3gSqaFaRV090VHXY8XQHuwN306tGL3Z33S0PqD7iUdwjGu9tjCKKKCsqUygtRIKEwW6DGVtvrEjs/s4X1seq1cODykSe3o33WW+uDrpKQk4Cw84Nw7eXL71q9MJqvRU9nXtSUFrAjmc7UFNSI3d2LooCMHo0w9P28rp+dR7NiSKuji3nVN+hbO/M0COv8N7dmRsf/GlUtRHnI87Lj93njRo7TxayoLUC97q6c7TBKhw3H4V9+0i3s6CHVzF31ZKx0bOhs0NnNgVsYn/3/Qw9N5R93fcxtNZQbkffps3BNkx2Hsbw7Y8JT3lN+OBOBFqrEfIhhJisGHlG+s/QUdWhul51LHQseBz/mFJZKTs672DG9RkMcR8iv3cEQeBR/COOvjyK7ytfUvJSUFVURVlRGb9+fvyQpS9yEO7/QardvZtbrWxodbAV7W3b092xO+cjznM96jolshJMciBZG3a1XId3++lE/jYdl+zf8PHyYUDN8hwvu412tLdtL6+ECYLA/dj77Hi2g5PBx5DJpDibuRGcEkzq9FQMNQxpf7g9af63ebq5mHUTPJhq9JT65vUJSAwgYkLEpza66tVFx/rVFSckBEFg7s25/Hb/N/lk9c+SvFU0qnCh/wVm35jNzeibIn/pqQY9YjXxGqZOxMRI8bo0MUE2fhyKwiIAHjXaQ8PeP4lEXD+/Ms/Hq2+u0t6nPSY5cDy7PS2ep8KzZ6CiIhJ2vbxoVroTVWV1rie1g1WrxGBm/HjRB6HK103g/gypTIpfuB/zb82XS/t2sO3Afs/9mGiZkFOUQ4PdDYhIi0AqSPEw92BB8wV0cejyXfdcQUkB827OY91jUbDh86RDSl4KLltdaG7VnJO9T37TfvPHj6Z0zy7m7RrAxsE+gFhBiUyP5NSrUyy6swgPMw+kgpTwtHD5vaCupI6jkSP2BvacCz9Hd8fuzG8+H3tD+39b9nzezXksu7eMA54HGOI+pMyyt+lvqbuzLm1s2nCi94n/zMT70SNo3LiMLH1+SX55bkR2LDGZYltTXHZcmUSUhrLGVwnWVXWqlpM5rkQl/i+gMtD4L8L3ys/+p2C62pTx9cYzv8X8f2n7aVemsfbx2gqdcr3PenMu7BxZRVncGHKDVtVb/RNDBmDdo3VMvTqVppZNuT30NooKimQWZlJzW010VHR4lfpK3vpx690tWh1s9X0St39gwEQzXqvlErgq569X/gMFJQVYb7AmszATGw0LzEJjCTJTIE9NQe6E/nlw4hvqy7HQY3R16IqRhhFRGVHciREzeVrKWhSUFlRIjAdRN95W35aqOlUx1DBEJpMRmRZJUIpoIKeioEKxrJjDPQ7T2aEzuqq63/1yLpGWUGNrDRwzFTm4PQWnKUq0tmnN0h+WUmtHLXo695Q7DY/0G8mlyEu8z30PgK6qLpnTPogka19fJq9uww3VBIJ+DGJBNy3W1S7ikq8yzkbOKF+/ieFKQ9xN3HmZ8hKZIKOqmglxs5LBzo40dwdOZ/sz6FYaJdoaHJjVkQWy62QWZdHDqYdIpN3uRl2zuvLWuBdjXpCUm0SdnXVwUTDl6rJYlHT0wNcX6pVV20nLTyM8TTQnDE4KJjA5kMi0SN7nvi9nvvcRemp6OBk6ISDwNv0tqQWpmGuZ08+1H/1r9sdC24L6Oz0wzSjhzqpUNOycYexYZJMm8vTmIQ7mP2bLEzEwkCBBXUmd/NJ82lVtSZfjgUxtnE3JIpnIScjKou1oNXKKcng88nG5sUy4NIFLkZcIGBnAoeBD7Hy+k7DUMOwM7BgsqcXYmSfZ6zubWU9/I2x8GBKJBMfNjphqmXLHRxUHxSr4HZrHML/hpBek80vLX5jVdBbK2blgYCD6igwc+NVr5ULEBXoe70mxrBgFiQJKCkoUS4vRU9Ujs0gUoGhctTEBiQFoFcqQCjKOtd5G5/tjeTTiEQ2rNoR69Sit5YZy1b1oFUGqjwWqOvrw4AHofKouZRVmUW19NbKLslneerlcRproaJHPcfo03L/PQXfw9hR4o7cA27Z9xd9+7VrRFHTyZPj5Z7HF9BsQnx3PlN+ncOr1KRpaNMRM24yLkRdFP5daQ5nUYBImmia0OdSGyLRIbPVteZ70nNqmtZnffD7dnbp/l2LPubBzeB73RFlBmdXtVjOh/gQUJAqcfHWS3id6l21v+wIyCzN5HfGA0FGeHHYupbR5E5LzkonKiJJf12pKapRIS+jr0hcPcw+5oV013Wry8Xqf9cY/3p/X41//Wyf4dhvtiMqIIn1mOnpqn9QfCksLabK3CZmFmTwf/bxcguWfgkyQkZyb/CmA2LmS2KQIYnv8QOwfrU6p+Z+4kBIkmGmbfTWQMFA3qKxGVOK/Ev+5tHcl/jYGtTTnWVQWCpSVnx38g/n/r+MqLC38lzNTUpmUvYF7UZQoMqJ2+ZaoOU3ncDDoIM5Gzv9okLH20VqmXZ2GqaYpZtpm8iqJnpqe6KdwqA11zOow9uJYGls2lmdl36S/+e5Ao7ttZ45m7SEmJhgrK7dv2kZdWZ117dcx8PRAspJjSDOWkK5cgoZEg9UPV7O50+YyrS+eTp5IJBL8wv0IGBVAjSo1mH19NisfrgQJxP4Ui4ayRjluSXhaOLuf7yYyLZL8knwyEjLILc5FwqcXWrFMzKoNOjMIEFuEDNQNKibBV0CON9Qw5FzYOd6kv+FEyQjmtDhOkVTKyjYr6XOyD8aaxmzsuFF+PGMNY97nvkdTWZNaJrV4EP+A7D7d0bl4HXx90dYPJD3wJY32NOJJvUIGJVahRXQWknHDuJ4oyu8GJQdhpmXG+9z3eBQZgGYu6OpiePYKI1VV+dXbkQUW4cgKTlFdrzoqiqoc6XmEfYH7iMmMYUbjGYy7NI4L/S8gFaT0OdEb5Zx8jq0JRql1N9i/v8KJpaGGIY01GtPYsrH8s1JZKT9f/ZkN/htoXb01bW3aEpwczNPEp0SkR5BZmMnjhLKT/sTcRPa/2M/dqFuMf6GM7810WvctpP9cZ4Z4LuTSre1cnAbJdwajq6or/12kgpRmVs1Y2mopHuYerC0YiHriEVFdqXdvGDaMiSv20P3acAISAsr0pguCgIWOBe8y32G+Vnym9KzRk62dttLSuiU8e4Yk/ySKCYmAmBU/9foUVTSqoKGswf2edXCYd5JuqYb81PAnltxdwqI7izjx6gRHDUbjAlDnrzksXRy6ED4hnEZ7GpGUl0SJtER+T+z33M/iO4t5GP8Ql2QINQElQcK5/EDMtc05FHRIDDSqVUMaFwtVYcpjUCosgrsXygQZgiDQcn9LsouymdN0zqcgA0RT1ClTxL/kZHqdPcGk+J/Yc3Epv075BRo0gJ9+En2N1q8XRQCmThXX1ylviPfxOtgSsIV5t+ahqazJ0Z5H6evSF4lEQlJuEtufbmfb021sebKFTvadmNV0FotvLyYxN5HDPQ6z98VevHy9cDV2ZX7z+fR07vlN1d3uTt3pXaM3V99eZfLvkzn9+jT7uu+jV41e9HPtx/hL42lp3RJTLVPis+PLqTu9/vBa7l8j6QjVsiA34QWD64+ihlENOYdCSUGJGltqkF2czZSGUyqcFPdz6cfBoIMEJQdRy7TWX479X8GHvA+8zXiLk5FTmSADxKRWSEoIj0Y8+ltBRl5x3ldVmuKy4sqYjGpqgZWLMdWkRXiYeeDl5FUmiLDQsfiuSnklKvHfhMpA478INa20WTfcmcO3E4lKzv8macL/BIqkRf9yyfZa1DUyizLpZN+pwgf/mbAzKEgUiM+OJ6Mg42/37gqCwNK7S1lwewGzm4qmZDue7ZC3aQC0tmnNpPqT2Pl8J3qqegw5O4Trg6+jpqRGZHrkdx+zo+d0lPfuwe/CGiaOP/DN2/Wz6syGdA0KhGKUHJzIyAgDCex4uoPpjadjpWclX1cikbCr6y6Ck4Pp6duTgJEBLGixAN9QX2KzY/n56s8c6XkEPTU9uZmYTJBxI+oG4WnhnH59mrjsOKrpVmNft30cCD7AlTdXUFJQQl9dHxUFFfZ031OhgldaQRqvPrySf55RmFHh+SgpKNFZ8RiJjnk4azvT6UgnQlNCGV5rOAeDDmKobkhGYQYrHopyvdMbT0dfQZMH8Q84H3udgWfPUtD2Bx4c2cz73PcoKyhz8BR0N3NBUnybJw0tywRDDS0a4vf6DC3vRoMMeP4cmYKEHusb4pd4EzdjNxJyEniX+Y7+rv2RyWQsvbeU/q792fp0Ky2sWtDJvhOTT47gSexj7uyXYLx4tTih/MbM4oe8D/Q92Ze7MXfZ2GEj3R274/vKl7C0MCLSIwBobtWc3jV6o6+mT0hKCM/fPyciPQLr4DjWXQxEvxDmtoJiBfATXuN3pi9VChQYFCLheZ9mRKa9IasoCycjJyLSIqhjVkfOcyp0q4FaopLY4vNHy1DnJ1lU16vOpoBNHOpxiLT8NA4EHWDns52Ep4nmkp3tO7Oz684yvfjY2ACgFpMAKhCbHcu+F/sYX288x0OP86aeregbsnYtaaOtsNG3wcfLhzEXxrB370R+VVWioJoxZad+FcNa35roKdG0OtCKh/EPxe8y/wOjzo/i7rC7vIx7imv7IcxsI3DeQWDn852Ya5tzIOgAS1otwcDKCtmVC9AIbNOh4MQxtKw+3S+CIND/ZH9eJL+gl3MvlrVe9uXBmJigMWYCgy6FsU/nJIuHrED5jN+nFionJ9DVhaVLxaBj1iyxreozeeMnCU/48eKPBL4PZKzHWJa1XlZmEmyqZcqilouY3XQ2x0KOsd5/Pb18e+FoKCY1Zlyfwf1h90nISWDJ3SX0PdkXZyNn5jabS1/Xvn8pwjC5wWROvDrBijYr2BKwBZetLgx2G4yNng0FpQU4b3FGKkjlhHxVRVUcDB1wruJM82rN5cGEg7IpKvZO7LXJIr+tldzg9CO2dNqCl68XvqG+9HXtW24cbWzaYKhuyNGXR/9tgcbp16cBGOBatjXweMhxtj7dytZOW6lj9uWAVybISMpN+qpS00dZXRCrEeba5vKgoZ55vbLSr75X0Zs2B0lc0D9GAq9EJf6bUNk6VYm/BUEQUPhFgR1ddjC67ujv3r7l/pbcibnD/WH3aVKtSZllybnJ2G+yp59rP3xe+jC5wWR+bf3r3xrr7BuzWfFgBUt/WMrc5nO5HX2bHw78QOCYwDIvvvySfOrsEF9G4Wnh/Nb6N3xe+tC8WvMySk7fivYTdJGqq3F9VfJfrwyiFHHXrjx8d5cm/fPZ2mkrPi99eBD3AFVFVQa5DWJ3t93lNpOb+dm1x7eXL3dj7tLyQEsAucxjdGY0+1/sZ9+LfZ8cu2uPQE1JjRnXZ2CiaSKaqanoUFBawMT6Ezkeepz4qfHfNPTPifGp+ansD9rPnud7mNpoKofub0EmLaWGXWPuxt7FWNMYRYkiqfmpZTKAANqFoi9lh0FgWaKOflV73ma8lfd+N67aGM99D/HMq8Yhqwx+rZuPvpo+EomElLwUeqebs9T3Aw5JJWQ0qoVPW1Mm/PI77WeaM2rIBno692TMhTEcCDpAsbQYdxN3QlJCWNZqGbNuzOLxiMe8uXuGQZEr2HJfl3GLLoo9/t+I5++f0+N4D/KL8xnkNohn759xL/YeqoqqdHHoQqOqjfj52s+f2n0+fn9xsQQsGsmF6Gv41VIjRKcQBYkCJpom5BXnkV2czdDnMP0huPzJaFlDSYP80ny62nelk30n/BP9uRF6gdi5qXD+PGzfDllZrFnhyawbs+jq0JWLkRcRBIGeNXoyus5olt5dirqyOhcGXCi7c0EgT1MF3x4OjHIMp49LH46HHufd5He03N+Sfq79+PWNFYwdS9+9HUlVKOTGkBtIZVLedG5IVuhzuk2qwvoO6+WZ/L/C7OuzWfNojfzaUJAooKOiw+2CPrj9to8uMy25pCQKNFTRqMKH/A+oKqqyJ6om3Y49R2emjEZx8GCXTH48QRD46fef2BCwAQcDB8ImhH3TWIKSgqi1oxZn+p7B08lTNCy9ckVsrzp/XiS66+iIZoC6ujB/PlnDBzDvwVK2PNmCu6k7O7rs+CaFI0EQuBtzl/X+6zkXdg6JRIK2ijbXhlyjnnk9/OP9WXJ3CRcjL2JvYM/cZnMZUHNAGXWl7KJswlLDCEsN49WHV2x7ug2ZIKOwtJBSmWhoqKSghJWuFW8z3tLHpQ+D3QbjbOSMtZ71l6sla9cinf4zHlPUubAwAgsdizKLe/mKRPPX419XKKM99sJYLr25xLvJ7/4tpm2NdjficcJj3kx8I0+qRKRFUHdnXdELqMvOryo1xWfHl3kWaalofZVgbaFt8WUncUEAd3ewt4dTp/7xc61EJf4bUBloVOJvoVhajOpS1QpJd3+FtPw0jFcbU0WjCu+nvS/3sh9zfgwnXp3gzaQ3rHm4hvX+63k76W05tZxvgUyQMfnyZDY/2VzGyfmjf8cvP/zCz41/LrNNQEIAjfc0pmHVhvgn+NO0WlNUFFW4MujKdx9/65JuTC45z4dpSejp/oVKkyCI7tJ798KlS/TL2iNXiKm/uz5v0t8AEDkxEjsDu3Kbf1RU+ch5Ge03mj0v9mCkYYSrsSu33t1CU0WTfi79GFFnRBlid2hKKPV21aOwtBABgWq61ZhUfxKL7ywme3bF7uxfQ15xHjYbbehs3xk3Ezem/v4TN0PqMrxZOqZaptwddhclBSUyCzKx3mBNVlEWK9usJCLyMT/OO4trlip6P5dSIpEhFaToq+mjoaxBQk6CaMYnCHgkwjNzEP64fDSKoVAJcn6DAEsFhnaV8d5QBe1CGam/lnJl0WCye3VFQaLAgNMDmFh/Ik5GTow+Pxo1JTU0VTRpadWC+a+q0LB0O70yzDiw8AUS429Q5/kDO57uYOLliaJaVFEuEomEdrbt6OfaD08nT3RUdeRBbsSECEy0TLgWdonzfqu4lPOcD5pgqKBFZ9cedHHoSjvbduio6nDlzRUGnhlIXk46229qkvDbbOKz49n+bDsW2hak5adRKC0sOxgBbh9UwLRQiXOdbPh5bxh155vwQiEZQ3VDZjedzRD3IfLqxcoHK1l8ZzHpM9LLVSrjbIx4bAmTuikjE2Q0sWzC6b6nPwlCNJwDlpY0G6uGdd1WHOpxSNzQxYXcRh4MbZfHqdenaG/bnq2dt2Kjb/PF7zAlLwWbDTZMajCJRlUb4XXci1JBnCBrFsFN5RG4z99CzW015ZVGaz1rNJQ1mHYikV6PMtGdLZoyBo8NxsnISTSDvD6TVQ9XoaqoSviE8DKVwb9C/V31qaJZhYsDLpZdUFwMt26JQcepUwhpaZxwgSkdJWRrKrHkhyVMbDbtLysPFSEqI4pf7/3K3sC9CAj0cOrBzCYzaVC1AU8TnjL31lyuvr2KobohbiZia2Z4WjiJOYnyfVjqWKKtos2r1Fcsa7WMJpZNeJ/znmlXp5FbkoursSsvk1/yavwrqupU/fqACguR2dniZ5TGsXmeHOt1rMzipNwknLc4092xu5x39TnuRN+h5YGWPBj+oEyL4T+BvOI8dJfroqOqw9bOW4nNiiUqI4ojL49QLC1GXVmdzMJM+foKEgUstC2+Kvn6r3DS5Hj8GBo1gt9/h/bt/6GzrEQl/rtQ2TpVib+Fj0ZKqorf3zq1/el2ZIKMCfUmlHuQv0x+ye7A3axttxYDdQOmN5nO1qdbWXp3KZs7bf6u40hlUkafH82+F/vKVV5UlVRpZtWMG+9ulAs06lvUZ26zuSy7tww7AzuCk4PRVvnX2tS6dZjM+EvnueS3hgGDV3595ZUrYedOMdBo25blmfY4bXZi/eP13Bxyk+obqiMVpHQ/1p2XY1+Wywp6OXsxo/EMZlybIcqqSj5JJb5Nf8ve7nvpXaN3WcfuPxCVEUVBaYGco5GYk4iaohq5xbll2su+FRv9N5JRkMHoOqNpe7gtY5Orsd/iAx/y07k+5Lqc6Ftze02yirLY1HETE6x6kzdyO/kZMg5uGEpp4i6kgpR17dcxqcEk/ML96HG8BwIC2sWQpgG+NjOxsqhB72uj0csqIl9VQuvhirwyhmxFGbrK6ujrVSHGIIqXVw8xnUPyMa55tEb+/2JpMQX5BdwJOsdloRQNVXUsPIewMeoohknluSefT0IKSgo4G3aW+bfm8zbjLQANTBowsOZAetXoJTpsf4ZXH14BMPrCaB7E3KdEKMUlBUboeNC191IaOLVBUUFRbv624PYCHsY9pL55fYoTg1jQCgLqjCAtP43tz7ZzovcJGlk2kqtjdXWznWxQAAAgAElEQVToSkRaBNFZ0Uz3VMQuNoffDcOYIoFmAcm8aAhpBWksv7+c46HHcaniQkPLhljpWpFfks/92PvljM7yq5pgkBSBhnI1ojKiGF9vPMCna0NDA8aOJTHvVxor/5HNzs+HsDC0pkzhZJ9RXIi4wPhL43HZ6sLCFguZ1mhahRnhlQ9WoiBRYFqjaRhqGBI5KZIGO+vzIe8DeSrQXOkw1xK8CRkXgvav2hTLiknITqBBrIxhDxTI+iMhXyorxXmLMx5mHuio6XDz3U0ANnXc9F1BBsDIOiMZe3EscVlxWOpaflqgoiJOJNu3J2rZz4w/Npjf0/zxilBg/YUSLJfMgUbnYdo06NAB1L/dOdlG34btXbbT1aEr/U/1xy/cjzNhZ9BU1kQmyOQO6+kF6dyKvoW6kjotrFuwrNUyahrXxNHIES0VLXKLc7FYa0FecZ5ccriDfQem/D6FA0EHUFVUZeDpgdz2vv31ibWaGgqLf8Fz5Eh+uXaca7VH0Na2rXyxqZYpq9uuZuT5kQyoOYB2tu3KbN7Mqhnm2uYcfXn0uwONnKKcL7YzfaxGSAWxotr/VH+0VbRRUlAirySPns49qW1a+1NLk54V5trm/1Lw983YuVPk+7Rt+5erVqIS/6+isqJRib+FD3kfMF5tzNm+Z+nu1P2btxMEAfO15qTkpvBhxgcM1A3KLGt3uB0xmTGEjAuRk+SW31/OglsLCJ8QTnX96t90nBJpCUPODsE31JcDngcY5Dao3DofM7gZMzPKEfJKpCU03NOQzMJMYjNjKRVKKZpX9P3EPUHAY7I6thoWHF/+9svrHTsG/fvD/PnwyydH6NnXZ7PBfwMREyPY6L+RtY/WIhWkdHXoysk+J8uMJ70gnYNBB5l/az65xbmYaJrQpFoTTr8+jbKCMmETwirMJEtlUly3uYoO7IaO1DOvx87nO7HUsSQuO47sWdnfZZSYWZhJ9Q3VGVhzIMl5ydyLucdvAToMd4lkf/f9eNfyRhAEam2vRXBKMDObzGS543ho04bSrAxq90ojpIoM1yquhHwIkcvMfqzYAHgHK7DxqiI6vQdR4LMfzdkC5kr6vJdliRn3BEVCLZSZ2Hy66LDt5YWQk0207y5qbquJl7MXXRy6MOzcMNxM3HiR+By9nBKSNASQgJWuFVJBSlp+mnxC9zkUJYpoqWgBkFOcI1fgsTewp6dzT2wNbOVEeT01PaIzo7kbe5dLkZfkgUbbLCO6Pkili1Ejqq/cBS4u8v3fib7DgtsLuBtzl3rm9fjlh19ob9ueRNsq1PMuxqqqC5s7bsZjl0eZFqxZ12ex9tFanIyciEyPpLC0EIciLUa+UGBQjg3FWekMm2rLrZhbqCqqljH1+ghlBWWsdK2wN7Snjlkdmlo2xXThKtSu3qTZTCOKSovImiUa51VdW5WRdUayqOUihMRENLZasFyzO5NnnwV/f2jYEJ48AQ+RO5JXnMei24tY93gdTkZO7Oiyo0zr5Puc99hstGF64+llnNGL1q5i6o0ZbK3/6fu/OOAiaflpDDwzEAS4sxdMVQ0wSkjHcKY4UV/eejmzbswiKkNsszLWNGZ75+10duj8XfdyTlEOZmvMmN54OgtbLiyzrFhazOqHq1lydwnGmsZs6bSFLvadRd+EBQsgLExcUVVVdEjv2VPu1fERucW5hKeGlyNkR6ZFytt5JEhQUVRBT02P5DyxKuVdy5vpjaaTViCaix4LOYa5tjkzm8xkZJ2RqCuLgc2ky5M4Hnqc2CmxZapVfuF+DD07lIzCDIbXGs7ubru/HmyUliK4uvJEOYVBo414OfZlmf0JgkCbQ22Iyoji5diX8nvkI6ZemYrPSx8SpibIJ/qlslLe57z/Ksn682qEokQRCx2LMkpNl99cJig5iAPdD9DdSZR6Hnxm8D/qv/TNyMoSvVbmzRN9VypRif9R/PMNkpX4n4K8ovGdZPAnCU9Iyk2imVWzMkEGwKXIS1yPus7qdqvLTAImNZiEoYYhC28v/PPuKkRRaRG9T/Tm1KtT+PbyrTDIAGhdvTX5Jfk8ji8v96msqMyhHodIyE7A1cQVgD3P93zraX6CREJ3rbpcVnxHUXH5CSsA9+6BtzcMHiy6f3+G2c1mo62qzZwbc5jVdBZaKlqoKapxMfIiXY92Jaswi2tvr9HvZD9xInRtOs2qid+trb4tx3oew9PJE6kgZcyFMVSUXzgUfIiw1DAEQeBYr2NMqC8SAPJK8gA48erEd53y6oerKSotorFlY06+OsncZnOZah9F70JbeZtdh8MdCE4JZoDrAJZXH4XQrBnZWSnUHpjDWzNValSpITezO/ryKFffXmXMhTEA2KqZs/+0DJ28UvDz49mvExEkkCDNQCbIWGY1nHu7pDQx8SAgIUAcVK1aSF4EcTjoEFJByqq2qwhJCUEQBGonCigWFjPsgyVIxGAhPjueEbVHkDUri/w5+cT9FMezUc9Y024Nrau3RlVJlayiLARBQFGiiLKCMjWq1EBAYMezHYw6PwovXy+a72+O23Y3uh3rxuqHq4lMi0RTUEZBBgo5uTzu35T1Ezz4JfUUWwK2sPj2YmrvqE3LAy1F+eJevjwe8ZgOdh2QFBVh8S6Ns6ZTeJH0gkV3FgFiG4ggCNyOvs27jHeUykp5mfJSbNPyvk3YkCdMv5qHmaUzViFx3Gx7iDY2bXA3dadgbgEvx75kf/f9/Fj3R4w1jBEQiMmK4fKbyyy7t4yORzqyJ/Mm1pmQmpdKsbSYEX4j2PF0B0WlRfIgK1NfnUJlMP/9gcg1CgwERUVwdZVfG5oqmqxqt4qno5+iqaJJ031NGX1+NBkFopDAigcrUFVULSt3/e4dqvMXscV2IjObiApRUkFKR5+OqCqpUlvfBQkwrw009kynUFmcKOuq6vIo/hFRGVHUNauLqqIqxprGePl6Yb7GnAmXJvAk4UmF98Sfoa2qTT/XfuwJ3INU9kku+k70HWptr8XC2wuZVH8Sr8a9ootDF1E0oHdveP1aNAds0QKhqIjkm+e5M6s/29sZMHlcddqvcKXamqpo/6aNxy4PBp0ZxP4X+8kszKSVdSvWtV/HjSE3SJyaSOCYQDRVNLHWs+bh8Id4OnmyJWALNhtt2BSwiXnN5/Fq/CtaVW/FlCtTsNlow9pHa8krzmOsx1hS8lLkhOmP6ObYjciJopTu3hd76ejTkZS8lC9/EUpKSJYto35IBpaBb1n1cFWZxRKJhJ1ddpKUm8SCWwsAUUr4ZfJLLkaIUr4peSm0P9SeZvuaYbXeCrWlalRbX42m+5oy4PQAlj9Yzv040S+mqWVTZjWZxRGvI9wfdp/YKbEUziskZkoM94bdw8fLh19b/0pURhRqSmoMdBtIYk4iYy6MYbDbYIbXHv6Xv+0/jsOHxZa6YcP+88euRCX+D6GyolGJv4WPbsK3vG+JEpjfiG5Hu4nGYn8QlD+iRFqC23Y3zLTMuDHkRrms2tYnW5lwaQLBY4NxNXb9827lyC/Jp8fxHtyJvsPpvqfpZN/pi+tKZVKMVxszod4EFv+wuMJ1PnpugGi+Fj4h/Lu5IsGX9+MeMIzf666jfZcpZReGh4u9vLVqif28KuWzrLue7WL0hdEEjAzg6turLLqziFJZKcoKykgkEoqlxeUcux/GPaTF/hZMqDeBmU1nYrfRjrySPE71OYWXs5d834WlhVistSC9IF1eOcgtzkX7N22mN54un0hMazSN31r/9mXy4x/42F8/pu4YzoafxVrXGpkg482rewQpjMdg+QaGnxvOvhf7aGHVgtsNtlHcqgXvZdm0GFhMj3aTqaZbjRnXZxA9OZqq66qiJFGiVCilkXkDHiX6c/uwMi3elCCr6cqeraOYdm8eOcWiV0k1nWpEx3khOe7LLz6jWe+/gbQZaUjOn4fu3XGdo8cPTQaxsOVCqq+3ZmCCIfsNYuklceGo0mvmNJ3DghYL+PXeryy5u4TaZrWZ0XgGD+Me4vvKl8ScRKz1rOnn0g8NZQ2W3VtGLdNanOpzisLSQs5HnOd8xHnuxtylVFaKo6Ej9S3qU7OKKwYv35Dhd5wTljmEmavQxqEDqcUieT4pN4n0gnQEyj+WVRRVRAlhRW0MA8Mx9GhGhrYyN6PFVqA2Nm14/eE1CTkJVNerTqvqrdgTuAdnI2dejRerJ4weLTLs8/Jg9WrOt69Ot2PdeDziMQ2qNpAf63jIcfqd6kf8T/GoKqkSkhzCw7iHFJ89xaJ1z9GcDfkV5Ba0VLQwUDMgNjuW+3tA8+fZOAUlovbkOQQHV3itSGVSdjzbwewbs1FTUmNes3lMvzaduc3mfvLmEQSxNSk8HEJDQUtLbKE71gMZYoCzIdKehVUjyfyjK+nRbgmNRgoYqRuRWpDK2Lpj2fZsmzy7HZISwsGggxwOPsz73Pc4GzkzxH0IA2sOLNsW9Sf4x/vTcE9DLg24RD2Leky/Np39L/bT2LIx2ztvp6ZJTfl5RWdGyyVi5VWKpBAySsXrVFEGdrkqOCcU45QGzoZOODXojFP3EejYOH9xDM8Sn9HqYCtqmdbi8sDL5BXnsePZDrY+2cr73Pe0s23HlAZTsDWwZcX9FRwMPoi+mj4/N/6Zi5EXkQky7g27V26/2UXZ2G60JaswC101XbZ22kpvl94VD0IQoH59YvISceyfynVv0fFd3taUGcPt6NuEpYWhqawpT1iAWI2QSCQYqhvSxqaN2Mr0GeHaUtdSbPv8Djx//5y6O+vS3rY9p/qcosHuBsgEGU9GPamwTfTfio8kcDs7kbdTiUr8D6My0KjE30JISgg1t9Xk4fCHNLJs9E3b5Jfko7dcDy0VLXHy91kwsTlgM5MuT+L5mOcVyh8WS4tx2uyEu6k7Z/qeqXD/OUU5dDnahWeJz/Dr7/dN/hu9fHvxPvc9D4Y/qHC5TJDR+kBrbsfcRlNZk2ZWzbg04NJ3kQSF0lJsZqrSUcOdrUuef1qQkiK2lqiri4ZiehULgEplUmrvqI2WihYj64zkxws/UiIrQVGiiIqiCvrq+twacgsHI4cy223y38Sk3ydxvNdxcopyGHl+JEYaRryb/E7e0jDn+hx+e/AbXRy64NfPT35eJqtN6FWjF1ufbGVKgylsfrKZBhYNONbr2FdJo1OvTGVP4B5G1RnFpoBNTKo/iTWP1nDjrC4/9JzGwiYl/HL3F5yNnHnisQtZ+7ZEqxYweaozKwYdoJ5FPd6mv8Vukx3r2q1j+vXplMpKGafdiinbg3AYmMb9W7Y0ufOWNjPNuaGeiJuxG1EZUeSW5LK45WIWjPaBFi34fYYXHX06iuT5XBWwsqLbQAU2b3nHprNz2B55hC5RSlytoQYqyniYe3BpwCUUFRQJSQlhzaM1+AT7UCIrQVtFm6HuQxngNoA6pnWYdnUam59sprN9ZxwNHbn05hJhqWGoKKrQqnorujp0pbN9Z5ELEBQEkybB3bvQowfDvBQIK0rg0YhHPEt8xsLbC7kYeRFnI2dmN51Nk2pNyCjIKC8nHBFE2tWzpLZtQkyx6BnwJTPGj7DWs8ZUyxRDiSaGl24xM1gHbXVdLuyeyeI7i6lpXJM17dfIuSd5xXkYrzZmV9ddZbLBhYFPUatTjwbzTHinI+Ph8IcEJAQwwm8EptqmSGVSknKTKJGV4HMSqmeKk+lwYwnTBxpjpWdFjSo1aGDRgJbWLbE3sJerGyXmJPLTlZ/wDfVFSUGJgFEB1DatLR74wAEYOhQuXxY5Dn8gOjOaWtvcySvIplQB2qi5cL0oFAkS7l42p1nHBECU6w1MCsTNxK3cfSuVSbkedZ2DwQc58/oMhaWFtKreCm93b3o49yjX9iMIAu7b3VFWUCY6KxqZTCYKClRxIjw1XN7yFJEWIW9J01LRwsnISTSxMxKlYp3f5WK7Yicqdx+I/iItWoiVjxs3oKQE6tcHLy/xz96+3G/6MO4h7Q61o5FlI873P4+akhrF0mJOhJ5gvf96niY+xdHQkckNJtPCugUb/TeyN3Avqkqq5BbnVqj0B3Dz3U1aH2yNu4k7QclB9KnRh99a/0ZuSW75tqaYYGLjQ4nX+STGAKCvpi8GDDqW+Cf4oyBRYHW71djo21BNtxpmWmYsvL2QLU+2kDQt6R9xtJ58eTIbAzZyvNdxLkVe4sSrEzwZ9YQaVWr87X1/Nz62C/7peq1EJf4XURloVOJv4VniMzx2efB89HNqm9X+pm22Pd3GuIvjmNl4JsvbLpd/nlGQgd0mOzwdPdnT/cvtSYeDDzP4zOByWdiP++jg04Gw1DAuD7z8zWTD7U+3M+HSBNJnpn8xkxaTGYPNRhvMtcyJz4kXicv1J1S47pcwZZoLJ5UiiFteLE528vPhhx8gNlZUKLH6Mjk18H0gi+4swi/cDwBbfVs56fhMnzPMujGLtII0eab1IwRBYNCZQZwLO4f/SH9Gnx/No/hHTKg/gY0dN/Ih7wNma8zQUNYgfmp8mfNvuLshVXWqcur1Ka4NvoamsiZ9TvahsLQQHy+fckRPEJ2P7TbaMarOKHY824G3uzcHgg4wpeEUVnpu4dSMrvTiOKZaphyvOhX3YbN4oy9wf+c8xnWYL6+WyAQZxquMySjMQEuiRkFpPuMCoH+xEw2bh/H7BX2MEjKYMNme9QMPsfbxWq68uUJWURZx3e9QtXYLOHeOtDZNMFplhI+XD15OPSjQ1eSWVy0a1fXEJm0h3u+N2VEthWq61ZAg4VSfU1x5e4WjIUcJSQlBT02P7o7dySzM5Fz4OdrZtmNu07mMvjCaiLQI1JXVyS/Jx0TThC4OXeji0IU2Nm0+TVDT08Ue/W3bwMEBNm6Etm3pdrQbmYWZGKgbcC78HA6GDixqsYg+Ln2+asT2Yc9GDuydzM6+dkRmvMFK14qYrBjUldS50P8CxlrGcr+TmddnEpMZg5m2Ga2qtyK9IJ3U189o9jCBX2+A1VQJ8drlXwEayhqUykrRUNbAw9xDDEDUDUnOiKPZ5vP4tjLhkWoKD4c/xFjLGI+dHkxvPJ3ZzWZz4MUBhp4bSqDFEmqNmk+JkgLrPE1Y7lFIVlFWGYd0CRK0VLQw1TLF3sCe6nrV2f5sO1oqWhSWFjK/+Xym2w1BxdUdOneGQ4fKjVW6fh2RS6fiNg5KFEVuSYmshPFPFdjiIcNE04TkvGSUFJR4Pvq5vOJQEbKLsjn56iQHgw5yJ+YOmsqa9KzRE293b1yNXYlIi+BG1A3WPV5HVlEW6krqcoU2EInQZYIJI2ecqzhjoW1RcVJCEOD6dbGPPyBADDZmzICMDDETfvmy6NXh6vop6HBzk/u43I6+TUefjrSu3prTfU/LW00FQeBh3EM2+G/g1OtT6KjqMKrOKLycvDgQdIDtz7ajoqjCnKZzGOsxlvzS/DIBxJGXR3id+hpjTWOScpPKDFlJQQlLHctP3IgLd6mSmM1P9TPY0GkjQ2sNLcPlepH0Ao+dHixquYh5zefJPw9NCcV1myvn+p2jm2O3L/4m3wrLtZYk5iayudNmxl0c9y8pIf5jGDFCDBjfvhXbBitRif9hVAYalfhbeBD7gKb7mhI6LvSbM0d2G+2Iyogi6eckjDU/SYZOuzKNHc92EDkxEjNtsy9uL5VJqbWjFsaaxtwYckP+eUpeCu0OtSM+O56rg69+1ZTpz4hMi8RhswPn+58Xe6u/gDo76hCYFEhHu47cir7Fs9HPvitjduvwUlq9nc/T9qeoW6879OoFV6+KWe66dcutn16QzpGXR9gTuIcXSS8w0xIDgqLSIkLGhVBrRy3S8tNoZNmII15H6Hq0K0HJQZzsfZKO9h3l+8krzqPhnoaUSEs41usY9XbVQyqT8uLHF4w5P4bHCY+50P8CnR06lzn+gFMDiMmK4WHcQ073OU0P5x6k5qcy6PQgrr69yvzm81nQYkGZifGY82M49foULsYuxGbFoqqoioayBo+G3ueNpSZ1fwRldS0mF9dm5q/3iLHSRfPqbapbf6pgxWXF4X3Wm9vRtxgQqohjkpQlP0iw0DSlWFFCclYiqasgTgdct51C4uWF2zY3wlLDMNIwIlFhOsyeDWlpoKmJ/SZ7Ott3Fk3H+oylXqkJc1yT8amnSj2bZjxMfExBSQFORk6EfghFQ1mD7o7d6e/an/Z27VFRVCEiLYLVD1ez78U+uQ+Bg6EDfV360tWhK3XN65ZV5ZJKYfdumDtX7NVetAgmTgRlZUJSQmi5vyVpBWnY6tuysMVC+tfs/0UFHEEQuBV9i53P/j/23jquqvzf/n+ew6E7RJQQKUXsQAywuztR1LG7x3YcYxxjdGwdG8VAERUTEzsREZSUEFC685z9/WPLcfhgzXjv797H77IeDx/qOe+993vvU3u9X6+11m5Ov/JGWiKnf4NhjGs0Dk2ZJs5/OeNg7ECRvIhHPz1SWtW6/OWCoYYhlyIvsafHHn5q+BNkZIhOONnZKDZuJHZEL5x2ODGk9hD6OvZVVk98Xvvw6N0jujt0V+aihKaEolJQRP5nOuekEikmWiYIgkB6QTrd7LpS96g/K87n4bVlPHnNm2CkaYQgCERlRPEm5Y3SFSs5N7mc2F4qkaIQFHh7S2kfo4LP6dU0q98DB2OHTzftfn7QsyfMnMmk1nnseLpDuX31nLroaIzGWMWJVPkrPqgdRU0nkWP9j31xAUIhKIjNjCU0OZR7cfe4GHGRV8mvlFq0UsgkMjGF3coVj/oeymrFvw4UFQTxXJYsgcBA6NgRfv1VJBiXL4OPjxi4mJkpBif26SOSDhcXLkddpeexnvRw6MGx/sfKvIcEQeDl+5dsfLAR7xBv8orzsDe2p6C4gNis2M9OxUjTCEs9S8LTwtFX12d0g9FcjLjIs8Rn9HPsx85uOzHR/puD2qNH0LQpGybUZbNDOqGTQ8u1Ki3wX8DGBxsJHB+IY6VPLWF1dtShtmltvPp5/bvr9hFxmXFYbbLCwciBuKw4htQe8tXFqv9WZGZC1ari98/ixd8eX4EK/P8cFUSjAj+E0jJ75LTIr3ril6L0ht7Z3JmHPz0s83ip3eUit0Xf3M/ZN2fpdawXV92v0t6mPe+y3tH+cHvS89PxH+H/Vf3G5yAIAtabrelbsy9/dP7ji+PmXpnL9sfb0VbTxkDDAC1VLR7+9PC7S/8lOVmYrtRnim47ViTXhi1bwNcXun8iN6WJ3fsC9+ET6oNckNPdoTtjGoyhs11nItIiqLOjDqvarsJMx4yRZ0YCcMvjFo2rNmaw92AuhF/gr55/4VHfQ7nfsNQwmuxpQgebDjSq0oiF1xcqHaXaWLfh+sjr5ea76NoiDgcdJi4rTukUVTrH1QGrWXZzGW2rt+VI3yOYapsSmRZJzW01GVhrIEeDj9LNvhvXoq/xbNwz8tOT6bWzFRnaUtomaHDsUB4ZjZww83+AROdTe8qx4GNMPDsendxiDnrlY5wHL1fPwD1uk3JMq1gpN/d9XBn380PeuROaqzQpVhTjXtedQ1vfie4+Fy4AMOz0MCLTInmfHsfWA8l0DCtBe7GUplbNuBMrCk5VJCp0d+jO4NqD6eHQAzUVNe7G3eXcG1FvEZ4WjqpUVbnSn1ucy9A6Q9naZWv5G8x790RS8eyZKPD/7TcwM+N1ymt+ufULx4OPoyJVoa11W/yG+X2RYHzI/cDBwIPsfrabiLQIMe8jQp8RDwsxvvccEI0VnP9y5sLQC3j4elDDuAb+I/xRU1Gj3s56uFm5ibqc0FOETAoRA9bWrRNXzhs1gidPmOw3mVOhp4iZEaN8Lz+If0Czvc2UbZGlPfAhh/Q45SiwpEk23gO8MdAwoOexnnSy7UTDKg3xDvEmJjOG5pbNaXL6EctPpVBtqS6x0uzPnqOeuh4mWiZoq2rz8sNLqupWRVtVm6zCLCzepjHnVjG7GsHNvxnN6ajq0DrLiOOb3xHTwIa3+zbiZtOGs6/PMtRnKHpCXerLdyBBggQVQLTfLTL7k/spx1jeajk9avTgTWpZh6c3KW+UhEdTpqkkEOn56dyMuakkHI2rNkaChJS8FCKnRf77nIX/hEIhkoqlSyEkRHSnWrFC1G4VFcHNm2Klw8cHPnygyNyMd73bccFJjZnvD1DLrC7O5s5lAulK075BfI9LJVKlg5WjiVhtCYgNQCqRMr7ReBa4LsBU25SAmABaHWjF+o7rmekyk4MvDjL90nR01HTY23Mvne3+1hLUrx/FTx5hMjqZiS1m8Fv738qcVn5xPvV21sNU25Tbo24rCfnqgNWsCljFhzkffkhHsf7eeuZenUslrUqY6Zjx4KcHaKlq/ev9/RC2bxdbJGNjRcJRgQr8H0eF61QFfgj/NEdj5e2VACxxXVLm8fn+8zHTMSvrMvMV9HDogYuFCwuvLSQ6PRq3A27kFuUSMCrgH5MMEF1S2lVvh3+0/1fH2RvbK29EzPXMefXhFYuvf/+qlUxHj275Fvh+CIDNm0Wi8ZFkvM14y/Kby6m+uTodPTsSmBTIyrYriZ8Zj88gH7o7dEcmlVHTpCYTG09kVcAqOth0wKmSEzpqOiy5sQRNmSanB51mdIPRjPIdxeqA1Uo3HQdjBw70OsCp0FOoSFSwMbAhLisOqUTKqYGfT621MbQhPiseNamaUmgN4mrzYrfFXHW/ysv3L6m/sz4BMQEsv7UcEy0TrkZdpYVlC/zC/djYcSOaqpq0PNaBFC1oEa3g1KECpB06UuXmEyXJyCjIYLhnX4acGkKnwGyCThrTbMluGk2QMD/9hPg6fcz36BulTq7+R9WvujpvM94qb5487PuLFaJun6ozzlWb8PTdY97mJSDX0UK1REC9UK4kGS2tWpI8N5l9vfYhV8j56dxPmK43pc3BNngFe+FazZXOtp0pVhQzrtE4Uuam4NnHE78wP+rsqIN/1Mf3TWKi6BrWooXY3nLvHhw4QLhqNu4+7jhtdyyAO2EAACAASURBVOJu7F12dt+JgYYBbtXcypGMUqI5yHsQFhstWHJjCS4WLtz2uE3IpBBmhuhjXMWmzHgACz0LfAb58PDdQyaen4ggCOQX56OpqsmGjhvQUtViop/4OFOmgKEhPH0K794xxXkK73Pfl3EWa1K1CYYahlyOFAMqtz3ahqWeJfJqVti+Ez8DRppGtLNph0wqo4VlCxa7LcbWyBZnc2f8hvqx3GwQSKXE5I6jeEkxH+Z8IHRyKHdG3cF3sC/7eu5jidsSBtQaQGFJIeoq6tgY2KCmooZEgCCjYob0L0syAHKLc3gsj6XeWDm1O4TT9XgPdNboMNRnKADV5KORCKUkA0CsjqhldUFXXZclN5dQf1d9BnkPYuujrbzLeodzVWdWt1vNxWEXeTv9LTkLczg35BzFimIuRV6ipVVLXk58yckBJzHTMeNpwlOiM6Jx2++G72tfiuRFn/0M/SNIpaLtbVAQwuHDpEYG87xLA3zHtGDLpV+Yy1UGtU+n2arqmK8xQeOnJGwqHWHKh/0USwSiYl9w8ckx1JHRvnp7lrdarnQsS5iVQNGSIgoWF3Bh6AUqa1cmNCWUV8mvmOkyk3GNxvHX87+w3mTN7MuzsTOyY4bLDBZeW8ib1Dd41PcgeGIwtU1r0+VIF8aeHUtW4ccQz5UrUY1P4HhaOzbc36C0bi6Fpqome3rs4W7cXXY+2al8fHDtweQV53Eu7NwPXbZDLw4Bov7v5ICT/3MkQxBg1y6RIFaQjApUAKgI7KvAD6KwRBQ7asg0vjm2RFHCyZCT6Krp0tXhkwvUzbc38Xntw5G+R5R+79+CRCJhddvVtD3UliZ7mmCgYUDAqIB/HMD1d7S3ac/+wP0k5SR90VHK3sgeAYGlrZYy9eJUBtYayPr76+ls17lcuNmX0EvFCU/9eKInD6PKuNH4vPRiX+A+rkVdUyZ2j24wGhcLly+ulC5rtYzDQYdZcWsFK9uupM/xPtyOuc216Gu0t2nPru67MNc1Z9H1RbzLesefXf5ERapCH8c+zGs+jwXXFmBnLKaKSyXSL4qJqxtWR0BAW037003F39C2eluej3/O4FODaX2gNQICLa1a8jTxKa9TXtPdoTt9a/al2uZqFCqKGBEM+89Jkfbvj8zTE1TFHpxbwX6M8B5KRlEWnjd1GDpgBTFbujL+9hLkEoH8knyMNY0pUZRQKC+kY5ic0HpWNL4dAerqZW5sXEKyRVvVj0SjICOFXM8DlFRSIBVgccNMej6C3nIHPAmjmn41uth1odexXtyNu4tCUNCoSiNmNJ1Bd4fumOmYMdB7IE8SnrC7+27GNhoLwLC6w3Cr5oaHrwdd93fgZGJLeh4PRKKhAXv2wOjRRGW+5VffURx+cZjKOpXZ0mULYxqMQVVFlYl+EzHWMlbO+0PuBw4EHmDPsz1EpEXgaOLI7x1+x72ue5lxxMWJrTUfUaoPkEgkNLdszu7uu/Hw9aBO5ToUlBSgIdPAUNOQ7V230/dEX44FH2NInSHiSvnUqfDHHziuX08Hmw5sebRFaQOtIlWhg20HLkVcYqrzVI4GH2Wp21IIvofTq2DlnIEyYY4J2QnUNKkpTu7VK1HIvGcPsmXLqKRbSdnW9XeEp4az/t56NnTcwHSX6eKD48cjeB0lJ/ARqUaavE55zeqA1dyPCmBomBp5avC+RX0UhSl8yPtAblGu8lroYItE8p+98VIK84yoYVUDPXU97sXdQ0tVC+8B3rhZu5UZKVfI2fpoK4uvL0ZLVYujfY8yuPZgJBIJtU1r079Wf97nvKfuzrq8Sn5F7+O9MdY0ZkjtIYysP5JGVRp9s8pRJC8iPiu+jEvTf+ZG5A3M+zj6HmqP72Gl0MXKsjY1qzjS0bbTx/wIS6wScrC88pCi40cwiHpHocYl1Hr0QdLHBbp1KpPVAdDFvgte/bxoe6gtjas2ZvPDzSgEhTLIc+/zvWx/sp1R9UdhrmfOyDMjuTv6Lpb6llwadok9z/Yw+8psrkRdYV/PfbRzbAcjR9LpmB9Oc6sxyW8SN0beKHMNWlm3YlzDccz3n08Phx5Y6ltiY2iDs7kzx4KPMbj24K9ery8hqzCL4A/i+3FPjz3UMKnxr/bzX4LHj0V3td9++/bYClTg/wgqiEYFfgj/JEfjVMgp8kvymdR4kvKmRCEomHV5Fs7mzv/4h6aSdiXlSvvz8c+/akn5PSh1p7oefZ2hdYZ+doy9sej+Ut2gOiPrjeR06GmaWTRj5JmRBE0MKpcJUg4PH9LprxvIpsOIqg8J3lCFjIIMWlq1ZF+vffSv1b+cy83nYKxlzFK3pcy5OodJTSbR1LwpwR+CWXRtEe2qt0MikbCs9TKq6lZlgt8EknKTONL3CBoyDVa1W8Xp0NOEpYYpw9omnJ+A90DvcscpbYdTl6l/lmgAVNEVrYidtjsRlhpGQGwADkYOZBRmMLbBWCw2WVCiKGFRnDW/+r5F0qMbHD0KKioU5Wax9M/e/F54A9c4KYeqTMHY92eWvNzB+j31MNI0om/NvlyNukpzy+Zcj75OiaIEkwyBgNomSqJxJfKK8nXRunCVkjpOXJeH4XVwJqfDzpJVSVz1b1nNDWNbXS5c9eOcLAKAmMwYVt5eSQfbDsoQt6q64mrk/bj7NNnTBIlEwi2PW8pAvFJY6ltytdJsMpe8RDf+Dp5uhtTZdgLDqjas8pvA/sD9GGsas7HTRsY1Gqck5On5YtaHoaYh16KusfvZbnxCfZBKpAxwGsD+XvtpYdmi/M2qIIgtGVZWyodKKxqln6mR9UfyKvkVs6/MRkdNB02ZSN77OPZhQK0BTLs0jfY27ak0YYLYR/7XX7BuHdOaTqOHVw8exj9Umix0tu3MmLNj2PJwCwpBwU8NfyIjIBXr5POoSlVJzktWzuHvRKOtdVtxrs+fw/jxsHGjmHQ/ffpn30PLbi7DWMuYOqZ18A7xJvF5AAmRu0lc2JSEu9NJzEkkITuBtPw0kMGhWh+rB+8fIUHyiWwhwVTbFJXCZCgwoWzRXoFMI5m3WfG8yxbdqHKLc2l1sBVVdaviauWKg7EDKhIVjgUf403qG8Y3Hs+admsw0CjvBFdZpzJzm89l0fVF3Pa4zdk3Z/F86cnWx1upaVyT/rX609yyOYXywvJuTZmxJOUklbExrqRVSSmw7lRKIkr/aFTG9Ng5pKvXwPtHMMoJFo/+ZB5hB7j1RWvlWo6fWkHgjmVMenEby5MnRavs9u1FTUfPnlBJJHqtrVvjaOKIukyduJlx7Hm2h22PtxGfFY9bNTcsdC3weulFTnEO0enRLLq2iLUd1iKRSBjXaBwdbTsyyncU7Q+3Z1LjSaxdNBedI0c4mdAFh9yDHHl5pFx20e8dfudc2DkmXZikdLcbUnsI8/3nk1GQ8dnr/C1se7wNAYHalWqLBPp/Ert3i5/NjuVNMipQgf+rqCAaFfghlNo3fk9FY82dNQBlNBiHXhziedJz7o6+W1ZI+w08TXhKR8+OWBtai04w0dfK6BH+Dcx0zHCq5MS1qGtfJBpVdauiIdMgPC2czZ03c+PtDUBM9B1/fjwn+p/44kpmWshTji5sz96xqpTIinhUGMlM13mMbjAaB2OHz27zNUx2nsyOJzuYc3UOq9uupt3hdjxKeIRfuJ9S0D620Vgq61RmkPcgOnl24sygM0RnRPM28y0gtttkFWZxKvQUATEBuFZzLXMMCz0LZFIZMqmM7MLP99iD6IgVlhpGJa1KpOSlEJYWRguLFvQ6LqbFr85qyoJ9HzU569cDEPrXbwx7sZRgw2LW5DZl1vLjHE29yYJDTUjLT2NO8zn83PJnQpJDOP36NBoyDWV71DkHeOygzVgAdXWuRl0FoIaxA5NzjnOyr5Rkz07Yp0mYnmjM8aY6xOQnEpEewe3sBHzcAUGBq5Ur81vMp231tuWqabuf7mbKhSk4mzvjPdC7fJUrMhJmzUJ69iyGrVsTeWg6a18tJuRkO6QSKUaaRqxtv5YJjSeUa+UISw0DRBvghOwEHE0cWddhHe713L9OVtPTxQyMvxGN0ta40rYygDXt1hCaEsr5sPNlCOKWLluotb0W0y5NEwW4o0eLLlheXnQdMhhbQ1v+fPQnRyyOANDRtiMCAtufbGdw7cFU0q6E4FgfVQEMZDrlKhoKQUFidqJI1KKjITOTxEY1iBzRmoQzq0h0VpCY+56E7AQleYjPilfOsd1hsSqoqgD9pjLU1OIQPogVrcyCTOV56Ek10dLUJyk3CXUVdQrkBfzW7jfmNJ+DilSFlzHZzNwXiiAIKAQJCHJUFAKbol5Se30wuVqqRKZH8jrlNbue7OL62+tcjrjM2Tdny4jSjwUf42nCU+yM7LA3ssfe2B57I3ss9S3JK87DxtAGuULO6oDVmOuZU9u0NjKpjPC0cFYGrFTupzRlvdTet7Nd5zJEwlLP8tvV3MlTYPQY2LkT1qwRLX/HjRNTp//WpjOo31LeWxhgdWk6GxymMeuDjajrGDtWHO/mBn37Iundm0lNJjHj0gw2d97Mzy1/Znaz2ZwOPc2mh5s4GnwUG0MbXCu5cjXyKr/f+52ItAjWdVyHjaEN1gbWXBtxjW2PtjHffz6XIi9xYGovXPf4MHpTL2ZfmU13h+5lyIO+hj7bu22nz/E+HH91nMG1BzPQaSCzLs/idOjpfxysl1WYpWzH3dV91z/a9r8cWVng5QU//1zhNFWBCvwNFRqNCvwQCkoKkEqkXxSzliIpO4kX719Qx7SOcrU4tyiXhdcWMtBp4Hfb0ILodNX2UFvsjex5MOYB/Rz7sfzmcmUb14+gvU17/KP9v5gSLJVIsTOyIzw1HH0NfQ70OsD9+Pv0qtkL7xBvDr44WGa8QlBwNfIqQ472peqxJsxsmYN1vVZMkjWjBIF59Sf/K5IBYoDbug7ruBJ5hUJ5IR1sOqClqsWS60vKWIj2rNGTayOuEfwhmOb7mjPg5AA0ZBpUN6hObGYsblZi28jgU4MplheXOYZMKsNKX7ypzSr6fEUDYPGNxVTWrkxyXjIqUhWkSLkbL2aSLM6ox4KND8Xec0B49Iht/axo+HYB+ToaPOhyCtcZG2lxaQAevh64VnPlzZQ3rGy7Eh01HRpVaYShhiExmTEANMrRxauRKu9lYjXteVoob1LfAHAp8jJnrQoY8b4yx0/AKOpzys2EsJy3FMoLScpJQltVGwSY/kKD26Nu082hW5mbvMKSQsadG8f48+MZ23As10deL0sycnNFNxknJ1Hsffw4ib5H2Jx3nfC0cDRkGigEBdYG1vSs0VNJMhSCAv8ofwaeHEiLfWJ+QQOzBgSMCuDVpFdMd5n+7YpYXJz4t+Wn6t1/VjRAbHs60lckC389/4vUvFRAXIXf3Hkzx4KPiTbJy5eLWpJ585AKMMV5CideiYGEIOqQrPWtSc5LZnKTyQAY1WpEripoyiW8SHrB8eDjFMuLOfvmLIO8B1GsKGbNnTWMWCrayDZ4NAZXK38GtU7m56s/c+LVCaLSo1BXUaeGcQ101HRQV1GnbuW6VNISV9uLpZCiVoJMKqNu5bp41PNgh/EIbu2H95pLyVicy7vZ7+jn2I8Cufg+eJP6hoyCDADqVNPlj9GONLY1QJ1M0iSPmKp7i9ond0PdumjfeUjdynUZ6DQQ/xH+LHZdTFZRFgUlBYypP4arw6/yW/vf6GbfTczkiLnN2rtrcfdxx2WvC+YbzbHfYk+/E/2QC3IuR17mevR15Ao5PRx6sL7jeg73OcwSN1FfU6woJjEnEQs9C9zrurO01VJGNxhNe5v2OBg7fHfLKJqaMHMmREWJrW9Hj4KtLcyeLebxfMS0ptP4rd1vzA77k98a5cOtW6J+aOdO0NAQx1tZMWHyARbelXLqjLgIpKqiyqDag7g/5r5oH27elIsRF1FVUUVLpoXvG1/s/7TH44wHYalhSCVSpjadStDEIKroVKGVrjez3PJZ89yEvOK8z+rXetfsTf9a/Zl2cRqpealU1a1KK+tWHAs+9n3X4CMEQWCM7xjyivPQUtX67hyn/zYcOQKFhSJ5r0AFKqBEhetUBX4Imx9sZuH1heQuzP3quNIwJa++XgyuI7ZILbuxjLV31/J6ymusDay/63jXoq7R81hPGldtzPkh59FV1yU0OZTaO2qzqdMmpjad+kPnc+7NOXoe6ymGuxnZfXZMn+N9yCvO4/JwUSQ789JMdjzZQWe7zlyLvkbg+EBkUhn7A/dzIPAAMZkx1MzVZEygBPcN16hcx4WEoLuY+7TksOV0ho/e9NnjfA8EQaDtoba8z3nPvp77aLZP/LH1HuBNv1r9yox9nfKaxrsbKxN6zw85T3RGNFMvTsW5qjOPEh6x2HUxv7b9tcx2HQ53IPhDMM7mzvgO9i03h9sxt2l1oBXqKuoIgkCRoogqOlVIzEmkUzhcOgKFSxehLlUlaf1yRvWCS/Ywxao/U3usYvmt5XgFe9GwSkM2ddpUrqoCMPDkQC5FXKI4N5uf76vwWwsBa1UTQpd+wGQOpH7sNpuaWxvhVTB+9hBtCNqq2qjL1NFX16d3jd788fAPVKWqWKQVE75DFZWcPJB9IskJ2Qn0O9GPZ4nP2NFtR9kVVkGAEydgzhxIToa5c3k/ZRRrA7ey48kONGQazGk2h2lNp/Hyw0tG+IwgMSeR5a2WIxfk/PXsLyLTI6lVqRYtrVqy++lu4mbGfTX4sBzOnRPbXxISoEqVMtf/zZQ3ZUhrsbwYtZVqaKtq09SiKZeGXUJVRRVBEOju1Z3nic8JmRyCQduucP8+eHkR36UlDlsdGFBrAJ3tOpOYk8gvN38huygbt2puJOUkkZiT+Nk2ukpalTDXMycwKZBBToOYdi6Z+heecuLKJrKLsknZto5ozQLeNKnO65TXZfZRVbcqzS2bU7NYH8ff91Gz/0RqzPv9kxPR7dti+8+IEbBnDwoExp0bx77n+9jbay8l8hLm+c9DJpWxvsN6RtQboawsFmWlU2+ZKaYyA25OeULhaHfiAgOIHd2Xp90asuflASLSIjDWNCa3OLecla2GTENZeSi1l5ZKpBSWFJJRmEFociihKaFltjHWNBarIB8rIPrq+oQkh3Al8gpvM99iqWeJe113RtQb8WOagsxM2LRJbE2Ty0W3ozlzwEgkrMtvLueXW7/wR6c/mOEyo+x2fn5w+jSF531RLyxBcKqFpG8/scWqXj1lVkd8VjzbH29n++PtZBZmUlm7MsWKYtLz0xlaZyiLXBfhWMkRuULOpgebWHRlPtXSFPR1GcXa8P08HvuYRlXLWncn5SThuM2RnjV6crD3QXY/3c1Ev4kkzEqgsk7l7zr1rY+2MvWi+H3fu0ZvfAZ/PsD1/xMIAjRoINpGnznzPzePClTgfyEqiEYFfghr76xl7d21pM1P++IYQRAwXGtIkbyI7AXZqEhViM+Kx2GLg7jy1v77hHN+YX70O9GPVtat8BnkU6YdZbTvaPzC/YicFvldGocvIaswC6O1Rmzruo3xjcd/dsy8q/PwDvEmanoUIFo3NtzdEDUVNRKyEihWFJNVmPVR2D2I0T5vcTl2B8n1G9Ds06pb02laWGmYcvL3t/96viAGYjXc1ZAtXbZwM+Ym58POY21gTfDE4DL5Fl4vvRh6eiiqUlUEBK65X8O1mivDfYZzJvQMAgJF8iKipkVhZfCpNWfcuXF4h3hT36x+OQtcQRBw2+/Gs6Rn5BWLwtU21m24EX2DPh+MOLUjjY1uatTOVCO/MIexPUBmYMj23n8R+P4F6+6tQ09dj9XtVuNR3+OL7XO7nuxigt8EukVIWemvoMEE0CmCyM3gvNycmNx3yrFWWRJ61B9I92YeyCQyOnh2wHewL2vvrOVe/D0kSPhdqxdz5p2B4GCxMoFYKet/sj8qEhVODzqNs7nzpwm8fCnexN28Cb16kbpyEWsTT7L10VZUVVSZ5TKLGS4z0NfQB8Qqw/mw88y4NIPojGikEin9HPsxvel0mls2xzPIkxFnRpC3MO/7V7MBtm0TV7QLCkSHIkQzhTYH25Qjx1mFWej/ps9St6WsCljFgFoDGNdoHIk5iYQkh/D73d+x1LPEMl+VhIQ3JOpJyFEt+3OgpaqlfF072XaiVqVaVNGpgvbchexqro6qQ02ujbiGwVoDFrRYQLGiWGmO8POaAPKK8ug6TNynnlQLx9g8HF2641jTlZomNdn2eJuYpzE1DDVBKqZhy+Xw5InSKICICGjaVLz5vXQJhaqMsWfHsj9wPwd7H8S9njsA73PeM/PyTCVpHVlvJHKFnNjMWB6/uMDdgjD0VLTIkueVOUcpUmyNbKlnVg8LPQtCk0O5HHmZJlWbsK/XPpwqOX1V2K0QFNj9aUdzy+bMajaL8NRwItIiCE8LF/+khiu1LAAGGgaoq6iTlp9GsaIYO0M7+tXqx4TGE757waUc0tLElsTNm0XiPGsWzJyJoKvLz/4/8/u939nZbednv9OCoh6wdGEzNue7Ue12kJizUr36p4BAFxeQSskrzmPgyYH4hfsBYltlblEu6QXpDHQayGLXxdSpXIfQ6MeMXNecp6ZyjLVNsNK34uFPD8uFUO57vo8xZ8dwadglGldtjNkGMzZ12sRk58nfPN0nCU9ovrc5dkZ2hKaEcnbwWXrU6PHvrt1/BR4/Ft+7fn7Qteu3x1egAv+HUKHRqMAPodTV5mvwj/YnszCT4XWGK39sFl5biI6aDgtdF37XcbxDvBl6aihd7btyvP/xcuLz5a2Xc+TlETY/2PxdORxfgp66Hs7mzvhH+3+RaNgZ2RGTGUORvAg1FTVep7ymrmldToScUI7pVaMXnn090Vm6Eg7ug5Mny5AMgF76zqxR3KKwIBd1jX/vIV/frD6j6o9i2c1lXBh2gdOhp3md8ppjwccYVncYAFHpUYw/P55mFs24H3+fRlUa0dGzI0f7HWV3990EvQ8iJS+FpJwk+p/sz6Oxj5T7tzG0Ia8477Or2Luf7eZO3B3l/7s7dOd82HnckrU4sSsNiasr4x7dZXyPYrycoEGShLEDVjH10jSS85KZ5TKLha4LyyQJ/x3vc97jHeLNn4/+BKDzGwWGhRJkUhXy1RSYzVEgfCQZxrlw/RDUWbUHifsYcbxnZ+qY1sFQw5B78fcAsT1k9LANMO8MBAYi1KrFzic7mXZpGs0tm3Oi/4lPq6rp6bBsmeiNb2tL9pkT/KYTyOazbZBIJMxuNptZzWYpczSScpKUzlFR6VE4VXJiXKNx+IT6cD36utK5KDU/FU2Z5j8jGSC2TllYgFSKIAhkFmbyNv0tAL6vfVEICqX+obTVbO3dtcgFOcdeHePYK7E9RVdNFyNNI6Iyoqhu7krPm2FUyRKo0m8kxe3a4OHrwe7uuwlJDuFw0GHyS/JpY92GkfVH8jrlNTdNNMlV5JGYIlYTAdbcXaOcZpG8iPqJENGzI9dHzKemSU3MNCshcXCAPD0YM4/ApECuRF5hb8+9YqL12rXw4gU8fPiJZKSni+5hJiZw6hQ5QhEjTgzmzOszjGkwhoi0CEb5jlIKrOMyxdayZ4nPeJb4DJlUhq2hLdWqWmMdHEOqagGzWs7g1Gsf4jLjmB5hzIpTaegsGgkT5yurW9ejrzP01FDaH2rPkb5HvuooJ5VIGdNgDKsCVrGt67bPBoVmFmR+Ih+pIgEJSw0jJDmEiPQI1t4VF2zUVdSpblCdJuZNqGFcA3tje6U+5EufEUCsYKxeDTNmiI5Ha9bAn38imTeP3yYvIb8knwl+E9CQaSizcEpR18aFlI4tGKWiwvWT7z9ldXh6woYNYGYGffqg1acPp/sex/lACzILM3E0ceRixEV01XS5HHGZE69O0KdmH5a4LeGe3RrW+c5jabs0kvOSWXxjMWvarSlz3FH1R3H05VHGnx9P8KRgOtp2xCvY65tEIz0/nQEnB1DfrD5R6VGoSFRob9P+q9v8t2P3brGdsVOn/9l5VKAC/wtRUdGowA9h4bWFeAV7ET09+otjWu5ryd24u0RPj8bawFoZMPalFbb/xOEXh/Hw9WCQ0yAO9j6IqspnYomBGZdmcCDwAFHTo77d6/4VLL2xlG2Pt5E8N/mzK+w3om/Q9lBbFrsuxi/cj+dJzzHTMcPW0Jb7cfcZVX8UB14cIMBwNs2m/S7+WM8qnw/y6voxagcM4UKdtXTpO+9fzxcgMTsR+y32TGg8gfT8dDxfemKhZ8GbKW8QBIGW+1vyIfcDcoWcxlUb49XPi5FnRnLi1Qm2dt1Ke5v2NNnTBBWJCukF6Rztd5QhtUUHl+PBxxl8ajA2BjZETo8ERB3Dqtur+DVAbLNSlapS06QmwR+CqZeiwr2dJWhKVHlgr8nwQaokyQqwK9bhBe8BkYht7LTxsyGPGQUZ+IT64BXsxbXoa0onocTsRKI2g589TO8uRRAUDHoJx51AkMCITGsObokT25oMDXmS8IQme5rg1c+L5TeXK3UcTpWcCJ4UDNWrU9K3N+PdstgXuI+pzlPZ0HGD+P6Sy0WXpIULoaCA/AVzWde4iPVP/0QuyJnqPJU5zedgomWizL3Y9XQXvm98kUllDHIaxLhG42hm0QyJREJybjLjz4/H57UPI+uNpJJWJY69OkbczLhy5y8IAhkFGWUE04nZH//29yFRkUlCdRMSsxPLpWnrqetRVbcqVXSqoK+uz5k3ZxjfaDytrVtzKuQUp0NPc2bwGXrU6IFCUNDuUDtiMmIIu1wD2dNnAMjDw2h9qjsJ2Qm8y3yHg4kD8VnxZBdlKxPRZQrQLYQcbVVmN5vNb3d/Y6HrQiRI2PNsD+/dg8Qb1JMnoX//TxPcvFls7YmOpvedKQR/COb1lNfIIqNR1K3DhymjiJ3xkTikRRN78E9iC94T61yD2IL3ZSoDAFV0qijbmqrpV1P+21TblJMhJ9nycAs2Rjbs7LYTj2S85AAAIABJREFUw+hEGt8ahlwKzSyasbP7Tuoa1oRffhFvzp2d4fBhsBOrQkk5SQw/PZzr0ddZ4raEpa2WlluVL8W7rHdYbbJia5etTGwy8Suf1PLIKMjgQfwDjr48ytWoqyTlJCkNGP7exlVZu3IZ4lEqTrczsitfxX33TiQee/aAoSGKn39msmUQu0MOcbTvUQbVHlRmeGm1M2RSyKfkbrkcHjwQScfp0/D2LRgakta+JWNlF6g9fBZDncew5dEWDgQeoFBeiKZMk+yibPpad+XowqeEta1HmzpPSc1PZZbLLNa0XyOSyo+ITIukzo46jG80nkZVG+Hu407MjBilLuw/IQgCfY734VbMLbwHeNP+cHuamjflwU8P/tE1/y9FVpYoxp83TwxarEAFKlAGFUSjAj+EWZdncTHiIqGTQz/7fHZhNgZrDbAxtCF8arjYanPAjYyCDJ6Pf/5NEfmuJ7uY6DeR0Q1Gs6v7ri/+0IPo6W+z2YbJTSaztsPaf31Ot97eovXB1jwd97TM6qRCUHA9+jpbHm3h7JuzqEhU6FGjB6Prj6aLfRcEQaD5vuZkF2ajm68gLT6cQGEcupt3Kvud/w5BLsd+rjrtNWqxc3XQv55vKVbeXsmKWyvwH+FP+0PtKVYUs7fnXjGj4P56pjaZyuZHmwmeGIxjJUcUgoLZl2ez6eEmFrZcSKMqjeh3sh9SiRQtVS3ez3mPlqqWkhgaaxqTMi+FgJgAxp4bS3hauFKIrK2qTWFxPnapAvd3C+igysp5TVkpu0/dynWx0rfC940vlrky3utKqWFSg5MDTir70/OK8zj35hzHXh3jQvgFiuRF1DCugaZMk7C0MPKK86ibIuPF1hK6DAOTvsPxfOlJzWQoUlchSk/O1pjaTI4yFldkgX4n+hH0PohpztOYdmkaZtpm5BTnoK+uT/ysePJ7dCYo8j6thhayq/uuTyu99++L+RJPn1I0dDDb+lrwS/geCuWFTG4ymXkt5mGqbUpSThL7n+9nz7M9RGdE41TJifGNxjO87vDySeGAQqFgx5MdzLs6DwUKdNV0meky8xOZyElUEopSN7dSGGgYiATi9TuqqBlRtdMAquhWoapuVd5lvWPWlVllbxIRNTmO2xy57XEb12qulChK6H60Ow/fPeTRT48w1zPHP8qf/if60y3fAtWIaEIrQZipCkV8ylWpa1oXdZk6zxKfcaj3IRpWbUj2orncCTrPrM6QvygfzVWa7O25l8fvHvPg3QOeV1sDXbqIbU+2toBo/hCX+JrYHm4EdazHXN37tLRsiaqKKrEh94lTL6Dobx9vLYWMaqklWNVwxrJaXZ4kPuFF0gsWui5kdIPRmOuaf9NW+9WHV4w/P567cXfFUNHiYopREDT8Lk72fzOguHdP1H8kJooLA+PHg0SidJRafms5btXcONr3KFV0q3z2WD29ehKfFc+z8c++OqdvIeh9EIdfHMbzpSdJOUlUN6iOs7kz5rrmvM99r6yKpBekK7cx0zErRz7sjeyxy1FD+7cNcOAAgpkZB7uZM7HyE44NPU2vmr2U2xeWFGK1yYpBToP4s8uf5SclCBAY+Il0hISQqwqFHdtiNOwnMtq1YG/ESbY82kJMZgyaMk1cwvK5ehjueG+kc+hCCksKqWdWj4O9D1K3cl3lrtffW8+8q/Pwd/enm1c3VrRewdwWcz97bf64/wezrszizKAzPEt8xorbK9jWZRuTnCf90DX/IezcCZMni7bT5ub/c/OoQAX+l6KCaFTghzDZbzJ34+4SOCHws8+XihF3ddvFuMZir/+AkwO4MvwKHWw7fHXfpT8qU52nsqnzpu+yv11yfQnr768nclqk0t3qn6KwpBCj341Y3mo5c1vMJSYjhgOBB9gfuF8UdpvUJCItgqVuS1nSqmzCeWhyKA13NmBgUAmnHGFAg+Hs73Pgi8eaPa8eXpJXxK8pRPoVEvU9yC/Op8bWGjQxb0I1/WpsebQFA3UDUvNTWd56OVsebaF3jd7s6blHuY0gCGy4v4G5V+cyqv4ojDWNWX9ftJ8dUnsIR/sdJTUvFZN1JqhJ1fCo78HuZ7txMXfhXfY74rLEFXndYimGuQru7YX8tq4M75TDk+Qg3Kq58SD+ATpqOqxKdGT0rWxCLx6i/4n+vMt+x6Qmk4jPiudM6BnySvIw1zVHRaJCbFYsUomUZhbNaG3dmlUBqzgb50q7gwEYz4dJNGaj7AlIwEHflrDMSO4fVsdl/K8wdy4hySE4bXdiY4eN/Hz9Z1QkKuSX5DOx8UR2PNnB6YGnCZ/uzph7+bx985BG5o0hKQnmz4dDh5DXr8fRsS7MyDlJblEuExpPYH6L+VTWqYx/lD+7n+5WVi8G1hrIQKeBWOhZKMnC38lDaUUiMSexXHq0hkwDG0MbzHXNqaJbhSo6VZQViaq6VZWPKVusqlWD4cNh1SrlPq5EXqGTZyfeTn9bJrAyMCmQBrsacGX4FTRkGoSmhPIi6QUHXxykUF6orE4ASARoHSPBUbUKNV+n4PDHIXpccMdU25T4WfFEpEVgv8Ve2Qsfum4+UXt+p/swiJkRQ7VN1fij0x+cDj1NTlEOm56b0djzGkP3dCY2K47YzFhS81PLHE8mldHIvDHVUkqwuvYEK/cpWDl3EKsSh89iOG8ZkgMHkLsPZ5TvKI68PIJnH89/lJUQkhzCxPMTuR17GzWpGpoqGqhnZFNXzYIrv8aU1V7k5IjVll27RJK0d69ScH/r7S2GnBqCXJDj2cfzs99dpUYST8Y+KSd+/jcoUZTgH+XPoReH8HntQ2FJIe1t2jOi3gj61OxDobxQ2YYVnhpORHqE8v+l7lsgCu3tNM2xD0/D7nEklYvVOGdTwsiFJ+hV+5NhxKJri9j6eCvvZr37ps6tJCSYXYs74/Y0lTqxBcqsjpI+vfCtLeOPkH3cjbuLRRZ0CYNbHR0ISwujukF14rPiWdZqGfNbzkcmlVGiKMHlLxcK5YU4GDsQnR79WbL2IP4BrvtdmeY8jQ2dNlBjSw3C0sJImp303QLy/3IIAjRsKNpN+5Y3yqhABSpQQTQq8IMY4zuGV8mvvli6NltvRnpBOjkLclAIChy3OeJYyRG/oX5f3KcgCKwKWMWSG0v4ucXPrG63+pspu6XILMjE5k8bBtYayI7uO/7VOQF0ONSB97nvMdMxwz/KH201bQY5DWJMgzG4WLhQd2dd3Kzc2NZtW9kNY2PZ/FNtZrTIZnbjaWx48icnB5ykf63+nz3O7ZPraRUyl4etj+Dc6vPZHf8ER4KOiOLuQWcYcmoI+SX5yvCw9ffXEzE1AnO98qtuR4KO4OHrQXub9uQW5ooJ2Sh4Ou4p9SvXR2OVmGGhq6bL2vZr0ZRpMursKKQKMPzY3RFwQMLdpR7MyDyBjpoOgiCQXpDODJcZLHJdhP7YKQixMdw4sJyDgQc5+vIoJUIJ6irqykBAPXU9Otl2oodDD7rYd8FEy4SjL48y7PQw8q46cz35Mb2GCIwIhP0NQCYHHS0DMgszyV0poBkUAo6OuPu4cyP6BsZaxgS9D8LRxBGJRML5Ieex+dMGqUTKgtRarPwzWLQKPXUKVqxAUFPj6pjWuBvdJK0wE/d67gx2GkxyfjKnQ05z/e11Mgoy0FXTxVjTmGJFMR9yPyjzPUphrGmsJAqlxOHv5GHOlTlkF2UTlhqGg7EDnn08qWdW7+svbkmJaE26bZu44v4RlyMu0/lIZ+6MukNmYSavU14TmhzKo4RHBL3/VCmTSqTYGtpipW/Fndg72BnZsbP7ThxNHOl6tCtrN73CTbsW0tdviO/XEctq3iLpmxmLnroetbbVol7levSs0ZOQJxcJu+XDhRrijWypHW4pTnnLsChUY9kyN6z0rKhm8KmtKSsqlHYdJvBqvgeNJ62EWrXE9qq9e8WNz5wRRcgLFiD/dQUevh54vfTiSN8j5Vp+voS84jxW3V7FunvrsDawZke3HdSpXIfZV2bjGeQJwB/15jOj92eMKC5cgDFjoKhIXK0eMAAQK6buPu5cjbzKQteFLG+9vExFtkRRQrVN1ejh0IOd3Xd+1zy/F5kFmXiHeHMo6BC3Y26jo6ZD/1r9GVF3BK2sW5VZhBEEgdT8VFETUkpESrUhyW/IKslRjq0s0cXRqiH2xg4Yaxqz9u5aFrstZkHLBd/UD4Ukh9BwV0OWWI9kUZqTWOkICBCfdHXlac8mbCoO4HjuQ5BKKJYIqKuo07tmb06GnKRhlYYc7H2QWpVqEZgUSOPdjelfqz/HXx3n9eTXZdy4UvNSabCrARZ6FtzyuEVGQQam602pblBdacrxP4InT6BJEzh/XtQSVaACFSiHCqJRgR/C8NPDicuK45bHrXLPPU14SuM9jeldszc+g3xYd3cdC64t4OXEl2VaPP4OQRBYeG0hv939jV/b/Moi10XfTTJKse7uOhZeX8jrya+xNbL9R9s+T3wuWmY+30t+ST7NLZvzU4OfGOA0oMwq339a3AKiW0vLlihyc+iwyJKw7LfUN6vP3di7BE0M+qyNaUl+Lma/6DJe05VVy8pfw38KhaCg2d5mFMuLyS7MJiI9AiNNI/KL87/p8HU18ip9T/TFzsiO+Mx4UvJTqKJThYZVGiqdZl5NeoWdkR1WayqTm5eBQiLqI076qLFnigu+H25TWbsy73Pf06tGL9Z3XI+toS0P3z1Ee+AwXhXEM6RXEVoyLYoURcpV9craldnQcQMDnAaU6eEGGHlmJJFRT7kzN5Q/XGB5awHnyo3wT38CAiABS7kOsUdMISKCqIxoHLY40Ma6Df7R/ljrW/M28y3eA7w5F3aOgy8OUr9yfXY3/oUPQ3uRaGnAO0UmwXUqc8k4jRyKxFaw/1j1B7ECYaFrgZ2RXRkS8ffqg5mO2TdbehrsaoCLuQsTm0zE3ced0ORQfm3zqzJw7rOIi6PAxoqwY9t4XdNEaav6+N1jojI+3WxpqWpR06QmBhoGYqtfly20sW6DnZGdcl7+Uf509uzMFOcpbOi4gVtvb/HH0g4MD1QQ26sVbwNvcayJJhnSQtRU1MpoBaQSKVU1TTENT+KZOfRz7Mep0FPMdJmJZ5AnHvU9WDvJB0n37vDHH+VOo5NnJ2ZufECnnMpIHB3h0SMICQFDQzGXxNUVunalxOsII8+O4njwcY72O8pAp4FfvaaluBRxiUl+k3iX/Y6FLRcyv+X8MoYV/m8u0Ptwd3JlAvNbzGN5m1/KG1qkpMCECSIBHTYMtm4FAwMUgoK1d9ay+MZiWli2wKufVxnivuT6EjY/3EzC7IQfcr/7GqLSo/AM8uTQi0NEpkdipW+Fe1133Ou6f9MqVxAEUvJSeHX3DNe2zYLsHF5X0yKqphnhimSyiz6FclroWZRpx7I3EluybI1slddr3d11zPefT8CoAFpYtRCzPM6eFUmHvz8UF5Noqsn2ZqpsblxC9kfHL2sDa0oUJSTnJvNrm1+Z1WwWS24sYf299aipqDG3+VyWtV4GiN9pPb16cj/+PoHjA7HUt+SvZ38x9txYFrRcwOp2q/9brvN3Ydw4uHhR1K9UhPRVoAKfRQXRqMAPof+J/mQXZZe94f6ILke6cCniEq8mvaKSViXsttjhXtedrV23fnZfCkHBjEsz2PJoCxs7bmRms5n/ak75xfnYbbGjjXUbPPt6fnN8en46R14eYd/zfUphd2fbzhx4cYAbI2/Q2rp1uW3+0+KWoiKx3eLZM7h3j9iq2tTZUYcudl0IiA3A0cSRK+5XPtv+5TGzOk+kSQRvyC/33L/Bvbh7ykA4HVUdcopz0JBpkDAr4bPagb/jWeIzuh7piqpUlfjseHEfajqY65rzJvUN77pdx2fXDKaYiyvlUgEWPVRjZyttsuR5FMoLqW0qZpqYapty9OVRDr04REJOAjVSJbwxFpBKpLSwbEEPhx70qNGDnMIcBnoPJL0gnUO9D5WxqRQEgaobq7LugS7DvcPZPsCaabXjMNMx4132OySCSHR6xGhwWvcnPqxcwNQLU7kYcVEplNZV00VFqkKRvEhp1fp3SARQFSQUSQUsdC1oUKUB2UXZBL0PIi0/DVtDWzzqeTCu8ThMtU3/S14jqz+sGFFvBCvbrqSwpJClN5ay7t46Wli14FDvQ+hr6CsrE69TXhOaEkpo/HOi8xIQPvJuU21TaprURFtVm4sRFznS9wgtLFtgqW+JVCLlQvgFuh3txpvJbygRSojNjCUmI0YUWmfF8iD+ARFpEcpE71JoC6pYphRjKtMn1cGCtxlv2dplK0m5SSy4tkDUghg5kK4jw+hn2NtzL2POjuFwn8OMPDOSv9w2MKrNTDG5esSIMud9J/YOrvtdueawirZDP7rDnTolVjDevRMF2ebmlFz3Z8TlCZx4dQKvfl4McBrwzWuakJ3AzMszOfHqBO2qt2N7t+1fDMMMPbGdOq8mI0gl2BrZsaPbjvLOUoIgOi9NmQJ6enDgALQTxwTEBDDk1BAK5YUc7nOYznadAXib8RabzTbs7bmXUQ1Gfcc74d9DEATuxd3j0ItDHH91nMzCTJqaN2VkvZEMqj3om4YYecV5zF7Rkv7Hg2gXLkdoUJ+TMzowKHodC1uKboB/b8fKKRIrIRIkWOpbYm9kj62hLZcjL1MkL+LckHPUNq39iWSXZnXs3AkBARTIYEcrbX5vkEuSDiCAnoYe2YXZNLNoxq4eu+h3oh/p+ekYaRoROjkUiUTC73d/Z77/fPyG+tHVXrSOdd3nyp24OwRNCKJO5Tr/bdf4q8jOFlvr5s4VnekqUIEKfBYVRKMCP4QeXj2QSqTlgtyK5EXorNbBTMeM2JmxTPKbxNGXR4mYFoGJlkm5/cgVcsafH8++5/vY0W3Hd7lRfQ2lIvIXE1589oeoVNi99/lefEJ9kAtyujt0Vwq7pRIpputMmdh4YrkAO0AZMJW/KB81qSp4eMCxY3DlCrRqBcChF4cYeWYkS1stZcWtFazvsJ7ZzWeX25fP7ln0TfyDiP63sXUqH1b3T/Es8RlN9jRBU6bJxMYTWX9/vVLc/T2rrBfCL9D3eF+lIFkqkdLHshMBIReJ3iLFcrqCNE1AAq3iVLhlKUdFooKeuh4zXWZSUFKAZ5AnsVmxSJAgIKCtqk2PGHW6q9ely9pT5W6C0vPTGeU7Ct83vsxrPo9V7VYhk8oICrlBvZNtidoEldWN2H16ETOvfrqGGiVQIBMdkHLVpShQlNlvaQ+4TCpDQ0WDoTUHoHvjLi7XwqikooM0L594TTkXf3WnjXUbzoWd4+ybs6ipqDG49mDGNRpHU/Om/7iq9i1or9ZmResVDHAaoCQT16OvK2/aBMSvZQkSqhtWx9HEkZop4HjAj5pHLlOzWiOMtYyRK+QcDjrMKN9RbO+6neyibKXVa9D7IKXFbSlUJCqY65kr25hCk0N58f4Fq9quoqNtRxK7tsIks5DDdSVsOVvMm9uncbzWh0O9D9HHsQ9Ga43Y2GkjU5ynEF9ZE/vx/4+9tw6rMvv+9+9Dp4iKgRKiiCAGtqMzduuoY3d3d8yoiN0xYo2JLTp2x9hdgAEqSIlBSUifs35/PONRBgN14vv+/Livy+vBJ/beT5699l7rtVKZ2mAWE09PZEWTFQw6MoiLxWZRvesk8PWF0pnfvTqb6hCdHM2dtqfRKVgIcudWVMISE+GHHyAqioyrl+l6ZSze973Z0WbHR90O36LWqFl5cyU/n/kZIz0jFjdcTEfXjp++ZyK49y3OLOsgyhWuwI0Xt+hSpgsLGyzMakyGhirv9x9/wPDhinSssTFRSVF029uNo0+OMr76eKbXno6+rj4NtzQkITWBy70vZ/t5+FaS05M5+OggXj5eHHtyDF0dXZqXaE63st1oXLzxR5X6ElITaLilIblv+LHLxwmTa7dwGmNIZbvv2DrotFbEQkR4+eZlFnesJzFPeBT9SGvAq1Bha2GbaQbEMY8jjqNm4HA/AqpX583endwtAItqGXLYLhUdDaCni66OLn3L92Xz9QvYqXvhYFoNK0sNe54PpH+NRsyup8jjpmSkYD7bHDMDM2LGxfzt72a2WbMGBg6EkBBFcjqHHHL4IDmGRg7fRP3N9bE0smRX212Z1i+7uozhx4czv/58GhdvTJlVZZhXb94HO9rp6nS67+vOzvs72dhiozYB17eQrk7HZYULzvmcOdDxgHb9hwK7e7v1pmuZrlkCCtt5tyM8PvyDHYa3Erf+g/1xWr5dkcjcuhU6vYuzEBFa72rN+ZDztHFuwwafDVzvcz2LL/6byGfkW1qEmblbMWrM79903olpiZRfXR5DPUMeRT2iWJ5iBEQrErez6s5iQo0JHz02OT1ZMYiuLKC4ZXFQwfNnASTrCpUi4IY19MhwZY3hPVBB3iSINQZ0dKhUqBIRiRHa4HCAwuaFaePShpYlW1Ldpjr6ZcpBgwZad5p0dbo203REQgQRCRHsfbiX009PKypLuhaExIbwRk94sQDWlYdJf5HLN0lXkaQv9PTVpeq4pRwMPMbhx4cVhazkKMwNzElIS6COfW326nXBfNI01M+fMbeqmjk1YOvdYlT1jabK2NwEvw6mdH5FarNzmc7kNsr9TffiLWnqNB5HP9bOTNx7dY+d93dioGugDQ430jPCKa8TxfIUIyg2iLsv7lLLrhbLmyxHEMV48F5L6KUjhPZuozUmwuPDUcs7hSgLQwutEZGSkcLpp6fZ0GKD4u5mYYu1uXWmuIJ0dTqNtjbC54UP1/teR7NhA8VHz+DHOWU5sC4JihenUScNUUlR3Oh7g7pedTE1MOVgx4PcK1uI+o1e0bnuSBZeWcisOrOYdGYSoarR2Mxaroz46r/r4L59Z/a130eLufuULOtJSYqf+/TpcPo0GRfO0eXJPPY83MOO1juyZLf/K7ef36b/of7cirhF/wr9mVV31mdn7d6S7Hcbl3UVcM7rRJum4xh7aiwiwvz68+np1jPz7KNGA8uWwYQJ4OCgyOBWqIBGNCy4vIBJpydRpUgVdrTewbVn12jr3ZZ7A+9RKn+pbLXl7+RF4gu2+23Hy9eLuy/uks8kH51cO9GtbDfKFyqfpWP+OuU1db3qEvY6lBsOc9iz24MJJUIJu1yVAlPmKgbgJxARpp+fztSzUxnz3Rj0VHqZDJG3RoiOBuwMrDDLXYDYwHv0SnWmyP1wLlomsNsZkgwgF2VwU69EMVl0kT/Vz5b0dqacvfI+Hn18lCbbmtDJtRNbW2/9+y9gdqlQQVGZOnDg8/vmkMP/j8kxNHL4Jn7Y8AP2ue3xauWVab3DUgfC4sNInJhIy50teRz9mPuD7mfxXU/NSKXDng4cenSI7a23f3b08kt4qw1/ptsZXr55yfo76z8Y2P2xEbHVN1cz+MhgYsbHkMswV6Zt4fHh2Cy24ZDVCJoOXqKoAE3Kmnww8k0kritdqWRdidC4UNSi5mbfm1kCLZsPtyJeN4Nzi2KzlPEl9NzfE+/73tzuf5tZF2axyWcTbV3a4v3AG3MDc8JGhmmzV7/PqaBTDDg0gLD4MCb/MJlxFYcjnitI8ZjMqjLpzKpXBjtNL8woRiKBhOqs5434omPwrrOsQoWzlTMdXTtSw7YGRnpG7/I/JD4nYt0SnhcvyPNCZkQkRBCVFKUduQdltL2gWUFyGZrzNOoJpGeQW61P7VRrti0O4dHedeSq14SmW5ty+4WiSlM4SY9nJhnsD6pKtRUHKLSwEDoqHQqYFSAhNYG41DjGWLVkzu7X6P5xltOlTOhXJ4mgvOBi5ULlUw9Zt08Yuq0r3WoMpnLhyl89QhqXEqc1JrTuTpEPCYoN0hoDeYzzUMyyGDcibtCzXE9q2tXEWN+YNHUa4fHhWgPi3qt7hMaFZr4+oqJIkh62zlW1xoSthS3P4p8x48KMLJnB3/qxa6ZoPnlOMckxVP6tMkZ6Rowr1Z8OdYYxvpEO/TrMx7nbaI7snk3TexO53OsyF0IvMO3cNGLGxeDXoio97X1wq9eFzb6bGffdOOZdnsebR+0weRSkZEv+k7ey1knpSdy0n42qYUNF3WnmTDAzA39/1Pv20il1K78//J2dbXbyk/NPH21zfGo8k89MZvmN5bjmd2V1s9VULVL1i+/Z/jHNaGl+mP0NN1KtdBPGnhzLJp9N1LCtwepmq3Gxcsl8wIMH0LWrMlszZQpMnAh6elwOu0yH3R14k/6Gtc3X0v9QfzqV7sSSRku+uE1/J74vffHy8WKr31ZeJL6glFUpupXtRufSnTPFlkQnRVNrUy2ik6I50GE/36+rweT7eZm067kyODB9uuLW9hE0oqHOpjqExIXgO8BXm1xQRHie+FyZBZk5isexT3jSujbHn54iKT1J+3zrigqLVLDRXUxuVWVUvIt30FFBxWIWzO2uxJ+0826H9wPvbCkX/mPcugUVK8LBg9Cs2X/Thhxy+B8hx9DI4Zuo/FtlyhYom0kyNSgmiGK/FqO+Q31GVRtF462N2dNuT5aOQ1J6Ej/t/ImzwWfZ024PTUv8vaodt5/fpsHmBsSlxpGhyaCGbQ16leuVJbD7YwTGBFL81+JaSc/30YgG0xnGzD6WwQiXXso0+kc6c/v999NyZ0s8ankw88JM+lXol0Wr/reFnRgQv52XA56Qr9CXBbC/5a0608YWG+lerju1NtbiYuhF2pVqx/Vn13n6+imTf5iMey137TFRSVGMOTGGTT6bqGlXk9VNVuB0/BZMngxhYWh69aSzC0TE9EL13iijINzVHUiCyo98JvnIb5ofQXiZ+DKTjCkoyfwKmhWk0KMIrK1LUqj8D1mCqK3Nrclnkg+dmFjo1o3Is0foMMaeMzrBbL1bjI7nYlC9egV6ejgtd+JR9CMAjDMgVQcG5qrDkwL6HA88TquSrdjrvxcE2scXYduyCELy6NK7UTovqjgTlxJHRGIEeY3z4lkCeOytAAAgAElEQVS4H+27zIZLl+C77/gcIkJEQsQ7Y+LPgGz/KH+eJz7X7mdnYYdjHkcKmhUkt1FuDHQNyNBkEJUcxcPIh9x5cQcdMrt6WRpZZjIgLI0stQkhO5bqyPpNrzHSqBS/9/fY57+PVjtbETk2MpNb4q/XfmXcqXEk//z52J+HkQ+puq4quipdDmwHo4Rkhk1y48KqNFQ6Ojh1iaWidUUmVJ9AudXlONX1FLkWLeeXuH3QoAEngk7Qr3w/1t5ZS8YeV1RVqijvxJ+cDDxJgy0NONpiN41ajVFmBU6dgvbtwdsbtftUOro8YK//Xna12UUr51Yfvf57Hu5h+LHhvE55jUctD4ZXHf7ZfDwfQ2JiaDKmIP6FDXkw5RXG+sb88fQPBhwewNPYp4yrPo6fv/8588BAWprS8Z41S1Ec8vKCEiWIToqm5/6eHHx0kErWlQiMDeTZqGdZA83/AzI0GZwMPImXrxf7/PdppXK7l+1Oy5ItMTUw5WXiS2purElyRrKSBC/8Kk9tF6I7dRrcvw/Nm4OHB5Qr98E6gmKDKLOyDF3KdPmw6tbDh+DqCosX49+pAaVXlGZolaH86PSjYohEP+LmpQaIJutASD5zfbzHuSEi5J6TmxR1CgkTE7IIR/xr9O+vqJM9farNJp9DDjl8mJw3JIdvIlWdmuWHdOKZiQB41Pag94He/GD3A61KZu44JKQm0Gx7M25F3OJI5yPUKVrnb2lPbHIs2/y2se7OOu68uIOlkSUZmgx+a/4bfcr3+aKyHCwdsLOw41TQqSyGhs69+xR/lcHjMoVh2YqPGhkALUq2oGe5nsy7PI/x1cfjcd6DxsUb09ixsXaf5s1G03/7dg7vX0D3AV8uyxsUG8SAQwPoVFpxkTgZeJJzIee0eSNm153NxNMTmX95PkMrDyWPcR62+m1l5PGRZGgyWNv8N3q9sEZVv6MyWtuqFRw7hk7Jkths8ud5TKx2lFFZqrFT9+KJ0UT0dPQw1jfGKa8TJfOWpHCuwpkUmfKa5EUHlaK1v3QQNP1Icq1r16BdO3jzBqvdRxjpoObMjuY4XQvkrFNBXFNjSUhI0BoZCCTrQoFE8Dbx5VVgFA6WDuz330+eVB1SdDR4bAqn/U9wqZIVr5KjMIwLoUOpDjxPfE7km0jat3WHnguUZGTvGRrp6nQCYwMzBWP7R/njH+WvVeYx0DWgsHlhrEysKJmvJC5WLqRkpBCbEkt4fDinnp7Slqeno0eRXEWwtbAlr0leAKbWmkrlwpWxtbDFJpeNdhT4fTxqe7DuzjpGHBtB4J108tRuwl/Txb0N5FaR+RlMyUjJdifX2cqZmXVmMvToUNa0Lo/XlNuEPLiC57DBDOvmyZDePRnzYDPz682noFlBjgcep2txZwqf3cfNOEU04HXKa2yNCqB68EBRbPoTEWHK2SlUKVyFhpsuwsuXipFx5gzs3Yvo6bHPZwd7dQLxbutNy5ItP9jGp7FPGXJ0CEceH6GFUwuWNV720QzS2UWVJw/L3H7G9ZU787xHMLXTamoXrY3PAB/mXJzD7Iuz2XFvByubrnw3em5goBgaTZoowe5ubrBgAXkHDGB/h/0svrqYcSfHoRY1a26uYVjVYd/Uxr8DPR09Gjsq35y4lDi8H3jj5eNFl71dMDMwo61LW+W70fUktTbV4nLYZZ4lPOOwqyE/+vjAzp1KwLObmyJFPG2aIkv8Hg6WDsyvP59BRwbxk/NPNCjWIHMjnJ2VWJcZMyjZsyfjqo9j4ZWFDKo0SCu4Mf55ADcD49C8N/ypowKHAiYA3Hlxh/i0eGrZ1/rvjIyEBNi2DUaPzjEycsghG+TMaOTwTTgtd6J5ieYsaKAkedOIBtNZplgYWjC15lQGHxnMjb43MiWwik2OpfHWxjyMesjRzkf5zubzI8mf4m1g9/o76/n94e9KBuQSzejt1puGxRpS26s2KRkp3Oh7I1tJ/96nz4E+XA2/yr1B996tjIiAqlVp1TiOpGoVOd7j9GfLiU+Np8zKMthZ2GGkZ4TPSx98B/pmCjytNtyMQnq5+X1h+Be1MV2dTo0NNYhKiuJO/zuYGZhRcU1FjPWNOdf9HOXXlCeXYS4S0hK49+oefd368jTuKScCT9C+VHuWFOhOwSnzlIza338Pc+dCtWra8tvOu0NUQnqWelOJ5IpeVrcBIz0jLAwtKGBWAHsLe5zyOVEubykq1+uBw5KN6HTrnvkAEcX/fexYxR1h506wsWHEsRFcvObNTfcIBnUw50ClXDQq3oid93diom/Cq8RXoIJGr3JxLH88ALaxEG6h5NdweA1hBYx4o0mhbIGy9K+guLNYGFmw/PpyRh0fRcSoCIKbVedhGWse/lhNa1Q8iXmilbY11jPG0sgSQz1DNKIhMS2RmOSYTG5NeYzzvJuNyGWbaWbC1sKWgmYFtbK1b5NWRo+L/qwy0FsCYwLJZ1uSuVXVyITxTKs9TdvR2vNgD2282xAzLiZTfILHOQ9W3VxFxOiIjxWbiT4H+rDnwR5ep75m4wFdTCpVo4ftbe5dLU+epy8o0ukFI6qMIDwhnFsRtzjsMBnPBe3wqpOX52nR1HeoT4GAcDbPfKhkV6+quDK99am/UnopVduOVJ6vZs2gWjU0lSpxTCeQyheCuHpxJ83cskrYpqnTWHRlER7nPMhnko9fG/+aKav1N5ORwaSu1ix2jObBiMcUzeOg3RQQFcCAwwM4G3yWTqU7sajBosyxXG/eKEn+Vq2CRo2UXCDW1lwLv0bNjTVRi5rdbXf/ve39GwmKDWKzz2a8fL0Iig3CzsKO5k7N2X1/N69TX1OtSDXOdD+j7JyRocSmTJumBMh36qQYH46O2vJEhAZbGuAf5c+9gfeyummGhkKJEvDzzyRNGI2Lpwsl85XkaOejqFQq/EISGLn+ISKgEcXIUKmUGA1XW3NGHx/NoquL2NBiAz3K9fj3LtT7/PabYkgHB4ONzX/Thhxy+B8ix9DI4ZuwX2JPlzJdmFFnBgBbfLfQdW9XxlQbw0afjTR1bMrGlhu1+0e+iaTBlgaExoVyosuJb8qg+9fAbqe8Tkpgd9muFDQrqN3vfMh5am6sya42u7Ilk/k+b+M8IkZFUMi8kDKa9ac6zrilzdgddjzbCaPOBZ+j9qbaTKk5Bc8bnlQrUo39HfZr/efneNRnetopoibEYmyW/UDkCacmsPDKQi71ukTlwpXZcW8HHfd05HyP83xv973WbWVSjUnMuqhozhc2L8xqtyk0XXESdu9WXBrmzFFGaf8yOzN+04dHGSsWs2BW1+I8jnnM1fCr+L70JSAqgNC4UF6+eUlcalyWTNgAhrqG5DbKTQHTAtibFcbp6hPKnX9MpYY9KTrTEz1DxU3F2dOZCf5WdPe8yPNAH9r+MZBLYZeoZF2JgrpVCH5aHDOKIYTwQGcNVQJ9uVkEkvUUJSpDPUO6lOlC3/J9sbWw1RoRDyIfcDH0Ij4vfTK1y0jPCF2VIoP7fgI+PZUetrltP2pI2FjYfFHOhNU3VzPoyCDSJ6dn3/B98wbMzDjwS1taG+zFNb8rm1ttxjW/K973vRV54PGxmQLYJ56ayK4HuwgcFvjZ4mOSYyi8qDC/fP8LT18/ZfOtDZy84ULXBvGU0C/EiSHXGDa/NjvlHgsbLKTbvm4EdrzGvh5V+LmhHilkULFQRbrfTGfIOj/lPTExQUSovLYypqLPH78moDI0VJKbVa+OxsiQbmOKccP3GP5L1ahWrsyUiBAUOdwBhwbgH+XPyKojmVpr6j+Sn+LNycOUPNqMCtYV2DfmZqZtIsJm382MOj4KtaiZW28ufcr3yXzvPpDkb83NNfQ/rJzPiCojmFt/7n83Cv8ZRIRLYZe0UrnxqfHoqnRRi5qTXU5Sr9h7KgxpaYpBNWOGMjvVo4fiammnZKUPjQul9MrStHZuzfoW67NWNmoUrF0LQUEciL5Mix0t2N12tzbw3y8kgS1nIwh6mYRDARO61rbG1VaZ7bNdbEtYfBhRY6O0M4P/OhUrKrK2Bw/+N/XnkMP/GpJDDt9AgfkFxOOsh/b/Lp4uojNNR0YcHSEmM00kPC5cu+1Z/DNxXu4sBeYXEL+Xfl9VX3J6smz32y71veqLyl0lZrPMpPf+3nIp9JJoNJqPHtdoSyNx+tVJ0tXpX1Tfi4QXgjuyxWeLSHq6SKNGIubmIj4+svrmatGZpiOpGanZLm/UsVFiON1Qll1dJrgjq26s0m57cGGv4I4c3D4t2+WdeHJCcEfmXpwrIiKpGanisNRBmm9rnmm/6uuqi4GHgeCOmE5CTjRzEdHVFbGxEdm4USQj46N1+AbHS90p16TO5GtS6xdlWXfKNfELif9s+zLUGXL/1X1Zf2KejGiINF5SWUp5lpJ88/KJwTR9YSqCe+Z/htMNJd/cfII70qdrblnW0lq2+m4Vr7tegjuSa2oZqfnLZan5y2Wp9cs15e+fL4nl5DLaMhyXOUrNDTXFfom9GE43zFLH+/96tDeUV6ZIqy3NZeiRoTL/0nzZeW+nXA27KhHxEaLWqLN9P7LDzPMzJe/cvF920MOHIiBy7pzcjrgtLp4uYjjdUBZeXijb/bYL7khcSlymQ0YcHSEuni7ZKn7BpQViMN1AXia+lNSMVPl+dgnJPwbZcXKJ4I6s7V9J/J3zC+6I53VPUbmrZP3tdbLO7d11dFjiIGeblBJxdtaWu99/v+COBI7sIaKnJ3L9ukiNGqKxspJ+y+qLvoe+HPA/INKqlUjJkiJq5VpHvYmS3vt7C+5I1bVV5e7zu192vb6CXT0rC+7IEd/fP7g98k2k9NzXU3BHvlv3XdZvWGSkSJs2yn3q3FmSI5+L5RxLqbOxjuh76EulNZUkKCboHz+PbyUpLUl2+O2Q6mura+/tj9t+lAP+ByQtI+29HZNEFi8WyZ9fRF9fZNAgkXDle7/u9jrlWxZwMGsFr14p39DRo0VEpPm25lJ4YWGJT/n09yT0dajgjpRcXvJvO9cv5uZN5f4eOPDftSGHHP7HyJnRyOGbsJxryaQakxhbfSyRbyLJvyA/bgXduB95n0k1Jmmzuwa/DqauV13S1Gmc7nb6o4m0PsbdF3dZd3sdW/22EpsSS3Wb6vR2653twO47z+9Qfk151v24jl5uvb6o7jIry1ChUAU2HDWA9euV0cv69TNL3H4mI+9bUjJSqLCmAoa6hpQvWJ5t97Zxp/8dnPI5IRoNTmMMqaXvyJq5Dz5b1qs3ryi7qiyu+V053uU4OiodPK97MvToUHwH+uKa35XEtESm/DGFpdeWglrDolBn+mx9SKoe6P48GYvRk8Do8378nxplzBb37ik5Fa5cgbeBwsOHk+bqzKPVs7iu8xzfF74ERAdoE8q9SU2kUAJEmMP74Qdl1EuxlEqZlGkENTFcx09vRKZqdVQ6ilSumTXF8xTHxcqFopZFsbWwZfTx0bgWcGV7vgFQq5YS8PoXv/N/gtHHR3Po8SEChgRk/6ATJ6BhQyX41N6elIwUJp2exOKri3HJ58KDqAfET4jPFOcx4NAAbkbc5Ga/m58oWMlDUWJ5CarbVNeqx0VGPKHyfEcs8hbG1aUWh/wP8GB+Er1HFSOygDl6OnrY5bajybx99GiqzFrlNsqN72ZzbMr9AFu2oBEN5VeXp2ysAZvcfRSf9vBwZNcuJkyqzBKda+xpt4dmJZrBhQvwww/I4cNssn7FmBNjUIuaOXXn0LdC3y92efwaJCiI+h7FCbG35N4vER/N7n42+CwDDg0gMDaQMdXGMLnmZEz0Tf4sRBSZ6yFDwNyc4ZMrsSP+Envb7aXL3i7EJMewvsX6Typq/b/EW4UnYz1jkjOSsTKxoqNrR7qX645bQTdlNvbNGyVz+rx5yt+DBiHjx9PsdC/uPL/DvUH3sroITpum5CN5/JinZhmUWlGKwZUGM7/B/I+2ZcnVJYw8PhKPWh5Mrjn5Hz7zjzBggDIjFxycE5+RQw7Z5J//eufwf5qUjBTtD/LPZ5RMv+YG5liZWDHmuzEAPI5+zA8bFC32Cz0vZNvIiE2OxfO6J+VXl8dttRveD7zpW74v/oP9udjrIj3dembbjcKtkBvtSrXD/aw7KRkpX3SOdYvW5bTPXmTNGqWDXF8JCnXMq/gmP4l5ku2yjPSM8Grphd8rP/Ka5MXGwobOv3cmTa2o+7QwLMtBAtCoMz5ZjkY09NjXA7VGjVdLL3RUOiSmJeJx3oPu5brjmt+Vo4+P4rrClVU3VzHHsClRywzpt+UhBxrYU3y4inFlXmbLyAAobWfO3O5OeI9zY253py8zMkBxpQHQ1VXkQQcMgF69MLh4BdcKjenl1osljZdwtMtR7g++T4NiDegTU5Rni2BeYjWqZ1iDgK4GTMUhk5EBSoC6GcW019glnwvNSjRjZNWRTKs1jVl1Z+FR24PxNcbTp3wfGhRrQE37mtx5fgfK/pnX5O7dLzunryQmJYa8xl/o9hEWpri0FVYkSY30jFjUcBGnu53mxZsXAOy8t5P3x42SM5KzyCh/iGNPjhEUG8TgSoO166ysi3Mg/HsCU18QmxKLob4xAwfaMHRPGLee38LFyoWTgSfRM30n+xyf9JqCgS+VgGFg78O9+D33YdnuJChaFAwNYfNmFvYtxRKda+xtv1cxMgBq1OBhrVLUPtWZnvt70qh4I/wH+9O/Yv9/xcgAUDk48GuRfgRrYlh49OMd2Vr2tfAZ4MOUH6aw+OpiXFe4cuzJsT8LUUGXLuDnByVK0GfyXl69ecXzmBBu979NPYd6tN7VmqFHhpKakfqvnNe3MLvubCXppggVrSvSwbUDO+/vpMKaCpReWZr5l+YToYmD8eMVI3jSJFi3DpWDA7/dcyA5PYlhRz8QDD9qFJibg4cHRS2L8ssPv7D46mLuvbqXdd8/8fJRjOD2ru3/qdP9NImJihHZu3eOkZFDDl9AjqGRw1cjIqRmvFOd2nlvJ2YGZpwPPc+surMwNTDl3qt7fL/he0wNTDnf4zz2ue0/WaZGNJwKOkWnPZ0otLAQw48Nx9bClv0d9hM2Moy59edme/bgr0yvPZ2IhAhW3fyA9OInqBemTxhxPJk8CHr21K63NrfGSM+IxzGPv6i8CtYVmPLDFBZcWcCE6hPweemD+1l3AFpU7c4LEw3XT3t9soylV5dy9MlRNrXcpMSOAIuuLCIuJY4hlYbQcU9HmmxrQok0c/x25mHspMMYt2xLhbG52Ne9Mq+NYO2dtQS/Dv6itn81iYnKsmNH2LcPtm1DPD15mRHHBb9DrN05nrELGtDi52KUHG/K7w9+p+SNp4SbwzSDKzxLVgK/W8cVxjAlCN5LUgfKjMYbVRAmeiZMrDGRqkWqkpyezP6A/Yw6Poofd/xImVVlsJhjQZ65eXBb7caV8CsERAcwy28Fe7+34rbvcSXI+x+e5I1Oiv5y//LQUMUvXD9zhuc6Reswu66SMbnvob60292O6CRFXji7qlPLbyynonVFKhfOnCehdLPebNul5ujjo3xv9z0HDIN5rafGUWNJaFwosSmxPCvyztAoEQ36KWng5oZGNEw9O5WlQSWwuH1fue/u7mxrXYJfCtxnX/t9NHFsAiiJIn/5YzJla/kTkfGakzXWsOWnLVkSaP4bOE9YwIh7psy4uYjQuNCP7meoZ8jkmpPxHehLUcuiNN7amI57OvIiUTH6sLGBkycpPWkJVZ6p+G1VX3Lfe4J3W2+WN17OmttrqL6+OoExn4+f+S8plqcYjYo3wt7SngeRDwiIDiBwWCBHOh3BNb8rk/+YjM1iGxpuaci2kEMkTRyjGBwjRmC9bAO/7ktlq99W9t7akrlgc3P4+Wdlhtjfn9HVRlM8T3EGHh74wfcvITUBn5c+WJlYffFs+N/Gjh1Kgsnevf+b+nPI4X+UHNepHL6aNHUahjMM2dhiI1amVjTd1pT8pvmxyWXD9b7XufviLg02N6BIriKc6Hoik8LSX8luYPe30vdAX/YF7CNoWNAH5USzcP48CU3rkWd0BsuaLmdgpczSrKVXluYH2x/wbOr5Re3I0GRQfX11YpNj6VS6Ex7nPDjb4yzVC1Wh0GRjehtWY7bHpQ8ee/v5baqurcrQykNZ2HAhoLhROSx1oLptdW48u4FuhprFV3PT+VAoqlatlMRozs4svrKYMSfH0LBYQ44HHqeza2e8fvq0UfOtJKUn8Xhsbx6d3EFAsVwEuNnySP2KAKKJ01cMBh0N2L8GpxQTzI0t2WX5jJgV5uhXqY7pNm9q7GzI3Zd3SU5PppvTFMLvNVSUaXR0QdSISrijO4A0vcfETojN1MHWiIYXiS8Ifh1MyOsQZRkXwv3I+1wMvYihriGp6nejy2YGZtjntsfOwk67tMv97u/8pvm/OqkfQPX11XHM45hJJOGz9OwJ/v6K69lfeCvAsPWnrQw9OhQDXQPW/7ielTcVmeQDHT+eufhJzBMcf3XU5l7JxOvXkD8/82Y0ZnzyASoXrkxQ+D1Gnktlci3B3NCclq8Lssk4AAQ6+sG234HoaHZGnGTcug4ErTFGt1Fj5MgRzpXPQ6NGUezruJ9GxRsBcPzJcQYdGUR4fDgTq41jQq/1GNX7U73pPyLB6zecfPtR3aEm3oPOfnZ/EWGL7xZGnRhFujqdOfXm0K9CP+1MzLrD0+l7YwpBy3WxHz4VJk7kdqQv7bzbEZkUydrma79YpOLf5NCjQzTf3hzPJp6MPjGaBsUasLvtbvR19Xmd8hrv+954+XpxMfQi5gbmtHFpQ/ey3fne2AnVvHm0erGUy0WE+7knYTVsIpiaKgWnpICTk5II0Nub00Gnqbe53gefRe8H3rTzbkcftz6Zcjb9q1SqBAUKKK5TOeSQQ7bJMTRy+GriU+OxmGPBjtY7WHhlITcilEzA53ucR1dHl8ZbG1MyX0mOdT6WSXbzLSkZKez338+6O+s4FXQKE30TOrh2oJdbL6oVqfZNnbmPERYXhuOvjkz6fhJTak759M7+/kpuhXLlqNE5lYLmhdjdbnemXVrtbEVSehLHuxz/4rYERAXgttqNXm698H3pS/DrYHwH+jLql4pclXAeLMzq4pWYlkj51eUxNzTncq/LWre1br93Y9u9bahFTbcXBVno9YJ85WsoftPvSdWmqdMotaIUhcwKcTnsMhrR4D/E/5tHCTWiITQulIDIhzx6co2A4FsERAfwKCWCUP032v3yJoFTtIoS6tw4mdjglN8Zp2JVKFa6JoYlS4GhIdPOTmPfoQXcWZhI/E4vBukdZ6vfVmxz2bK73W4q6dvhV6UxHi37EmdalEj8iTLcjo21DlfCr3Ck05FMOUo+1eY8c/Mw9rux9D3zmpDdawneuZqQuFCtMfLWOHmbOwMUuVtbC9vMxkhuO+3fhcwLfdLdp+TykjRxbMKihouyf4Hr1YM8eWDXriybvHy86L6vOyk/pxCTHEOvA7049uQYhc0LU6VIFfa02/PRYkcdH4WXjxfho8I/PPvRrBkS95ruoxzYdX8XhroGNHiQyjEHDTb5HdF9HU9Y4jNSdGH6HzAq3AaePsV1RSk2/xZNxVd6iEbNQ4sMqnV8w66uB2hYvCHPE54z8vhIdt7fSZ2idVjRZIUyUzl3riKZGhKidOr+CzQatrVxonPZJ5zsdIx6jg2zdVh0UjTjT41n3Z11VC1SlTXN1lC6QGkS0xIptLAQI1PK4THjsjbJX7xdQfoe7Muu+7sYVHEQCxsu/H8iud9fUWvUFFtWjFr2tejg2oEft/9Iy5It2dZ6W6ZEiYExgWz23YyXjxdPXz/FzsKOrmW60jxXJZocbE8d/1R2nbWCCRMU10ljY9i4UTGib9yAihXptKcTp4JO4T/EP1NcR9NtTTny+AjnepzjB7sf/v2LcPs2VKgA+/fDjz/++/XnkMP/Mv9NDHoO/xd4lfhKcEe2+W0TlbtK9D30pfXO1nI66LSYzjSVHzb8kEUJR0TkzvM7MvTIULGcYym4I9XXVZf1t9dLQmrCv9LukcdGivksc4l8E/nxnV68EClaVMTFRSQ2VqacmSKWcywlQ51ZnWnsibFSdEnRr27Lr9d+FdyRzXc3S67ZuaTj7o6yb8N4wR15dPtUlv177OshpjNNJSAqQEQUlalRx0eJaipiM15fTjogUqqUyMGDIh9R4dr7UFG3arKliajcVdJmV5tstzc6KVquhF2RjbfWyaRdA6T14mriOq2AGE7R0SrUGPyClBqE/NRRVyY01JMNbiq5XNtRosx1RR49UtS7PsF3676Tdd3LSIa+nthNzytG041Ez0NPIhP/vF8LFkiGvp7kGYe03dVWjCarBHfkdsRtsV9iLwMPDcz2+dTzqicttrcQ2btXUZN59izLPhqNRmKSYuR2xG3Z+3CvLL6yWEYcHSEtd7QUt1Vu2uf47T99D30ptrSY1NlUR3rt6yXTzk6TTXc3ydmnZyU4Nljyzs0rM87NyHYbRUTE0VGr0vNXNt7ZKLijVQTSaDSy8sZK0ZmmI+azzOVq2NUPHpeYmigWsy1k/MnxH69340YRkOTgJ1J1bVWxmG0huCPNOiFmM0xFx10lDsMQ8wnIKQeVaFq2kM0+m6VzK0RA1Ha28tzKWGwmGMrxJ8clQ50hy68tl1yzc4nVPCvZ7LM5s1pcTIyIiYnI1Klfdn3+ZjRXr8oPPZCS0wt+kaqciMj54PPivNxZdKfpyrgT4yQxNVH6HegnhRcWlvRLF0SKFxcxNhbx9BSNWi0rb6wUw+mGUm5VOXkU9egfOqNvY/aF2WI43VCi3kTJ3od7RXearnT9vesHFdk0Go1cCLkgffb3kVyzc2lV4HBHNg/6XlG7s7YW8fRUlKucnUXq1xcRkYj4CDGfZS4DDg7QlpeuThfjGcZiNMPoi1UD/zYGDFDa/JlvVw455JCVHEMjh6/mrdzgTzt+EtwRvWl6stAw70gAACAASURBVPbWWjGcbigNNjeQN2lvtPvGJMXI8mvLxW2Vm+COFJhfQMadGCf+kf7/ertfJb4Ss1lmMvr4hztu8uaNSOXKIgULigQHi4jSecAdufnsZqZdv0bi9n3UGrXU86onhRcWltU3VgvuyLorK8T4Z2T+7GaZ9t3qu1VwRzbd3SQiIpdDL4vrspKiMxUZWx9JsCsksmHDJ6VqRZSOQK2NtcRxmaMYTFckb++9vKfdnpKeIvdf3Ze9D/fKnLMzpOeGllJ9rpPkm2qSqUNdZCRStxsyqJWBLOlgL0cHN5Sg+ZMk4/BBpRNhZiZSooSIr6/InDkiefJ89nrEJseK7jRdueBkLMeKIV1/7yqlPEu9M4Y0GtGULCnHKueVSmsqieF0QzHzMJLOPyFy7ZoMPTJUbBbZfFLq+H0mnZokBRcUFE1QkGJoHD6creP+SnxKvPi99JODAQdl+bXlMub4GGm7q61UWlNJ8s/Pn0VSN8/cPPLDhh+k6+9dZfKZybL21lo5FXhKHkc/lpT0lMyFazQihoYiS5d+sO71t9cL7mTphJXyLCVW86xEd5quTD4zObM0qbx7dp/GPv34icXGKtKlS5fK84TnYrPIRnLNyiX5xqm051JiCJJrPBJtopIM96lSeWZRiTPVE02hgpJorCflhhnIiScn5FbELam0ppLgjvQ/2F9ikmI+XOegQSJWViLJyZ+77P8oPn2ai+4UZP4pj8/v/BdSM1JlxrkZYjjdUOyX2MuSK0veyb0mJooMHKg8bw0bijx7Jnee3xHHZY5iNstMtvtt/wfO5tt4lfhKDKYbyPxL80VEZLvfdtGZpiP9DvT75LuWlJYk2/22S+MtjbXPS88ltSXsx1qiUalE7OxEBg9WrsXp0yIisvTqUlG5q+Ra+DURefftbbSl0T9+nh8kIUGR4508+b+pP4cc/sfJMTRy+GoeRz8W3BHzWeZarXV9D31psb2FpKSniFqjlpOBJ6Xj7o5iON1QdKfpSovtLWS///4snZ5/m6l/TBXD6YYSFheWeUNGhkiLFsqo6s13RkVqRqqYzDSRORfmZNr9TNAZwZ1vMphCX4eKxWwL6byns3Tc3VFyzc4l9Ubmkxojcmn3eRL9RMxnmUvnPZ3ldfJrGby3r6imIhX7qeScLXJleGtldDCb3Hp2S3BHKqyuILgj9ovspLHnd1JsRn7RmfquE2k+EanYF+n8E+LR2FR2tHWRO8PaSeKyBUrHICIi88xJSorIkCFKx6FDB5H4P7Xxf/5ZxNb2k22KT4mXZlubielEJFUXeTRliNx9fjezHv/FiyIgtbspMzImM01E30NfnpZ3EGnRQptX5M7zO9m6Dvse7hPckdDYEBELC5GZM7N9Db+EN2lv5GHkQ9l1b5fgjrTc3lI67u4o3637TqwXWovK/d01V7mrxHqhtVRbW0067u4oE/YPlVUVkKObfpGHkQ8zGfAi73IW/HV02cXTRYYdHSYeZz1Ed5quVFhdQR5GPhQRxdgss7KMMpvzOZo2FalRQ0REbkfcFuMZxqLnriNFRiJGHgZSZCSSd6wyg3FyyXDZ6opkGBhIho5KmvTQl/3++2XE0RGiM01HSq8oLZdDL3+6voAAEZVKZN267F/gf4KICBnWXF/MpurLs/isM13Z4XH0Y6nvVV9wR3LPyS0NNzd8t/HoUZFChUQsLUV27JD4lHjpuLuj4I70O9BPktKy/z7/G3T5vYs4LHXQPmdvZ9KGHRmWLcPe76WfmM0yk1yzlFmO6qMt5fb3jiIgGkNDEQcHkfR0SVenS7lV5aT86vKSoc6Qfgf6Ce7IDr8d//Qpfpi1a5XnMSTkv6k/hxz+x8nRaMvhq3krE5uQloCeSo+Djw7S3rU9M2rPYM7FOZkCu6fXnv63B3Z/C6OqjWL59eVMPzed1c1Xv7dhlJLxdf9+xSf3Twx0DahpV5PTT08zvsZ47fr3JW6/Vg3LxsKG5U2W03VvVza02MClsEuE5EnhSXo8kWH+WFg70HFPR6xMrWhiX59S8+x4nRrH4vN6FMhdhNGDdbkyZgfoZH2dE1ITeBT9SImXiH5EwHM/Ap7f41FiCAC3nt8CgeD4EGyCQ2gZAU4aS0rkLoaTjRsFSlZE1cQFnJ0h72eUkoKDoV078PGBFSsUP+y3cTaJiYrSzAcQEXY/2M2I4yN4mfiSzs9yYaCOx7HbCEb7rMDKxIqGxf70k1+7lggrIyIrOeAfdAJdlS5DKg/B3qYM9OxJzWlTMDcw52DAQcoVLPfZa/9Wael6xA1sypX7xyRuTfRNKJmvpNanfWiVodQpWke7PTUjlbD4sEzB6m9jRC6/Okt4U1A/nQGeMwDIb5pfG6QenxoPwOFHh7XxIrkMc5GSkYKJngmTa06msWNjuvzeBbfVbsyrN48yBcrg+9KXBfUXfL7xbdsq2Z+fPcOtsBtbftpC612tCbcANGm8MgWLP8OJjl3byoJ7AGkM/VGPit0mMujwIGJTYplbby7DqwxHX1f/43UBlCgBzZrBokWK//4/EKuVLQoVYlq1ieyI8WDs7v5s7fnlmaCL5ynO8S7H2X5vO/0P9ed44HFmX5jNuOrj0G3USJHBHTgQOnTAvGNHti5fTm372gw7Noyrz66yq82ur/6u/N0MqjiILb5bOP7kOI0dG9O9XHeSM5IZeHggxvrGihTuJ+7V22z2rXa2YkbtGUQnR9Oo4FYKucDiC7rUfhBEelE79BcvZWVjTxquH0jn5acJj2pBaXHB3qjmv3i277F6NTRuDLa2/039OeTwP05OMHgOX4VfSAKexx/iG/aKRAIJ0V1Pefs86OnqcTroNCb6JrQv1Z7e5Xv/Y4Hd38qiK4sYd3IcDwc/VAyGJUtg5EilkzxwYJb9F15eyC9//ELs+HeqRhrRYDrLlNl1ZzOi6ogsx2QXEaGtd1vOBp/lt+a/0XPnNGzVPSmiUxoDi0TOJ7hTxiiZcyn+NH0EK8zaE979J6qfbM/O1jspb12egKiAPw2KAAKe3yMgKoDnadHaOgok6eD0SkOJaHCKBitTKwZWjaY8BbmkG0HtPBU40+OPjxoEn+TAAejeHSwtwds7k5EGKJKQ9+/D1auZVj+OfsyQo0M4EXiCFk4tuBlxk10ncvNdcAYZD+5RZFEROrh2YEmjJRAXh7pQQSZXS+Fqt9pce3YNXZUuQcODyKdvAcWLQ40atG2ZRsjrEK73vZ6tptsstqGTayfmHk5VkjE+evTl559NroVfo+q6qtztf5eyBctm76C9e8lo8xPPHt8iWCchU5B6SFwIvi99iUyKzHSIpZElCWkJFM9TnIbFGmKf256CZgXZ77+fHfd3kN8kP2YGZjwe9vjzeSr+VJ9iwQIYpuREmH5uOlPOTkFHAxodyJ0MQZ66ZKjV5EuGabV1ONapEteeXaN5ieb82vhX7HLbZf9C/fEH1KmjJCr8M2/Nf0JKCht/tKVn9UjOdj9LTfuv7+wGvw6m+LLiqEVN5cKVWd1stWIMi8C2bTB4MJiZwcaN+JbOTzvvdoTHh7O62Wo6l+n8N57U1yEilF9TniK5inCw4zuj620iPfea7toErZ+i696uHAw4yP1B9ylgVoATgSfY5LOJZ8e8mXxWaBgIl6s34Jda7mhUSo4cQY2eji6LezlT2u4rvk9fy507UL68IsndosW/V28OOfwfIsfQyOGL8QtJYOT6h2hEEFEhqAHhju5AStua08utF+1Ktct2Mr3/ipSMFBx/daSGbQ22q9pCmzYwZoyi1PQBfF74UG51Oc50O0PtorW1679W4vavRL6JpPTK0rjlbkVKaHdERPsjC8LTtIH0jkvDunknAvTjWXt7LRlpyaSiJl2UBH/Gah1KxKhweqlWDIpYHZxM7XC0diV3yXLKzISLizJqbGzMjPMzmHZ2GiYGJsSnxnOl9xWqFqma/Uanpyt6+PPnKz/EGzYoxsZfad8eYmLg5ElAyZ0w5+Ic5lyag7W5Nb82/hXHPI6UXF6S5JV5MOrSgyMD6tJ0W1Nu97uNWyE3WLUK9aCBVHe34QbPAJhRewYTv5+o1OHpCcOG4XVsLt0vjyViVIQ2x8inaL2rNTHJMfwh3aFXL4iPVzp8/wBHHh+h6bamhI0Mo0iuItk7aOlSRaknKemDo/urb65mwOEBhI8Mz2SEuJ9zxz63PToqHYJfB2dJVKlChVtBN6rZVMsi42tlYpV5cKBZM4iLUzJ4o3Q6m29vzoWAMOw0vTCjGGXDAun3x3pWlPVjc2UDrEyt+LXxr7Qs2fLLL5SI0sErVEgx/v5DNHt/p8bh1iSUsOPOmCeZlJa+lB77enAi8ASWRpYERAcwsupI3Gu5Y2pgqiRl7NkTTp+GoUNJ9PiFQX+MYbPvZnq79WZZ42XvMpD/R6y9vZZ+B/sRNDwoU06kWRdm8fOZn5lbby5jvxuLWtSoNeoPLqOToqm1qRbO+ZxZ9+M6NKJBIxpi71zm6MxehJTIj17GJJ4WqqzIV/+JjgoqFrNgbvd/cYZn0CDFyAgNzUnSl0MOX0mOoZHDFzN+UwA3A+PQZHpyNLjY6ePZp8LHDvt/krW319L3YF/urDegXNWWsH076Hx4hFcjGgosKEC/8v2YWXemdv23SNz+lUOPDjFpcyD5qIrwrqMnqInhOn56I1AJ2CTp4fgiA5cocIoCp3h9nPI4UrhoWXScXRRjwtlZGeXX/7irSlJ6Ek7LnchnnI+7L+9SpXAVrva5+tH9MxEeDh06wLVriizpyJEfd3Np0kTJDL13L8eeHGPIkSGExoUyvvp4Jn4/ERN9E5ZdW8aWTaO5vjIDTp+mQ8wa7kfex3eALyqViqSypTiV8oBZY6vg98oPC0MLngx78q7zlZwM9vZEtWpIAeutrG62mj7l+3z2NOZenMuMCzN43fAsuhUqwuXLmSSB/042+2ym275uJE1KylbWbkAxfg8c+OhMy6qbqxhyZAgZUzJnkzeeacy8evMYWmUoIkJkUiTBr4OZf3k++/33Y2NhQ1BsEBaGFqg1ahLTE98dq2ecSbLXLjAau3W7sd+4D7viFSlkXojbQTGM2agkq1Shi0qjRqMSfPUG07NaHabVnvZtgw1eXsos2YMHyrP8N6MRTaZOsEY0H+4gqzPw6d+Cli6+TPhuHJ3LdftkR/pTyweRD3A/587oaqMJfh3MgYADmBua086lHaXyl0KdkU4Z7/PUWHGI+IKW7Jv0E4csXnLo0SEsjS1p4dQCS2PLj9fxle366Ln/ZZmuTufVm1cY6hlipGeUaXu6Jh2NaP6We1Mt4yCGZM27lM9cH+9xbn9LHZ/lzRvF0B0+HKZP/3fqzCGH/4PkmOg5fDFBL5P+YmQA6PAq5n8v0XwP8++ZH6vLz81NObxg00eNDAAdlQ51itbh9NPTzOSdoeGYx5HdD3Z/9Lhsk55OM3UxlugYotZk7rCr0MU2uRjb9phQtIAzx3hMbNFC9Bm0QDEq7OxAV/cjBX8cE30T5tSdQ5e9XchjnIdrz65xLvjc511ETpyAzp3ByAjOnVPyjXyKxETe5DKm+6427Hm4h7pF63K40+FM/ucnAk8w4KUNmEfxuqIr+5btY0adGcrI+p07mPg+4PeeShsBljZamnmE19gYRo0i3+TJVFtWgYOPDmbL0KhcuDKJaYkE5NfFRV9fidP4hwyN6ORojPWMs29kgDKa+gn/cI1osrgmiggpGSnaelQqFflN85PbKDcXQy/Sp3wfVjRdwXa/7Qw6MohchrnY2HIjDpYOmXOIxIVw7dk1diUHE9saOKjMThjoGuCm+RUjSqNCee5ERxdQU9X0F/R1bzDt7LRPd14/09lVqdPZbGHApYF1md+92Fd1oD+1/CJKKYvZV+Yx+8qHZzy/hIVXFmr/jkmOYdWtVahQYahriF5+PZwHG7FmVwzdB60mpp4ZN+rk4WVKDOvurNPeR10dXXRVul+0NFAZfHC9DjrZLud44HF8XvowptoYjPSMtOt1VDrsC9jHqaBTdC/bnTpF63yynKXXlnIh9ALrflyHtbm1si00DN2OnVjXR80jtTJj/hYdFTgU+BdndHbuVGLL+nz+G5JDDjl8nBxDI4cvxqGACTGJmWc0/vUfgb+D6Gj0mjZnuq0V7b9/wcVXN6lhW+OTh9QrWo8BhwcQlxKHhZEFoAR8hsSFkKZOw0DX4PP1Jicro9MPHij/Hj5Ulo8fQ0YGZTst4VbRyqhU77kNIJRytME1KJHVt9Yw8PBA7vQ/D9n18/8EHUt3ZNn1ZbxKfEVMcgzDjg3jbv+7H46rUavBw0MZ4WvYEDZvhnz5Pll+ujqdmJdBHEi9wqWwfGxvvZ32pdpnKj81I5U/gv9gdUA+aNAA78f7Sdek07m04pv+2nMhSWbgW74wxnHJ2FrY0qNcj6yVDRwIc+bQPNiQaeYnSU5P/mynvoJ1BVSouBZ5BxcXl38sIByUpG55TT4TVP9XQkMVY/IjiEiWOIu3blLGepnP/feHv/Mi8QWDKw0GlHv/vd339NzfkzbebRhaeShz6s35oItO/I8NCUl7RciSaQTfPcsBPzvSdTIbtyp0MXxuSMXdnvgUNcHXwYSn1iao9PQ+2enUUelk7RAbmHGysRM//f6AYz1rkJzHVNn+hZ3r7Cz/Wv+Hlm+WL6Kb0RG+c6zL1Pozv7quFTdXMPnMZEJGhGjFMXbe38mIYyNISk9iZp2ZDKo0CN25Gpg+nbGzZjE21pmkdccYHLSMjXc30qh4IzybeCouV/8yHVw7UNKzJHa57ehSpkumbYMqDWLIkSGsvLmSeg71Phlb8p3Nd5ReWZq1t9dyousJ5Rm2BRqewmj3Qoa3mo+gRoUuOiplsrRrbet/+OzeY/VqaNRIGcTJIYccvpocQyOHL6ZLLWtuBcWhA2iE/+ZH4FtJSVFiCmJjaXPkMuVOt2Pi6Ymc73H+k4HrdR3qohENZ4PP0qKkEhzomMcRjWh4Gvs0s0JMQoJiRLw1JN4aFUFBig86KFPzLi5K5uehQ8HFhR65Hbi7J0IZ1dX+yKro2tiBN+lJuJ9zp1PpTtkPJv4MOiodFjVYRI0NNbAyscL3pS8nAk/QsPhfMiK/fAmdOsHZs4qhMXHiJ2eAAC6EXGDg4YHsjXqGQ5kK+A8+rTXQ3udS2CVMXidh/SAMRrvj5bueBsUaKDEWyckYbPdmfRVj7kT7ATC33twP+8rnygVDh9J843wm9E7hzNMzNC3R9JNtzGWYC2crZ64/u07Pf1B5CpQZjbzGX2hohIUpRt1H0IgGFZmf2beGxl8zTXve8KS2fW1K5S+lXVckVxGOdzmO53VPxp0ax4nAE2z5aQsVrSu+OzAjg1zO5Sg9bx6la/SC6GjCOthx0+EvfvQaNSX00miT7kib3b6gfgWmplC5MlSt+u5f/qxuMR+kdhTs+//YO+uwKNPv/79nhhYQRERUUDGwUVEM7MS1dXVd1+52jcXWARWLsLu7u7tbDOxWbKUE6Zn3749bShiYQXD3+/k9r+vy4vJ57nom4D73Oed97LAwsBzQdbx2fbKLceUxq5U9+hiewHh6okq+KpkapmeFnph4aiI2BmzEiOojAIjNu1tRN4w5PgZDDg/B2jtrsbTZUlTw9ASaNgU6d4ZJFVesmjULdVvWQf+DA3D17VVsbbcVZfKUycqnzBDH3I6oX7g+Fl5bmMrQkMlkmPfbPETHR6Pr7q4wVBiiXel2aY6T0ygnVrZciYbrGmLx9cUYUHmAuDFpEsoWKwYzuRdC9FvDRt8JDjYm6Fw3H8rY/6JE8Fu3gKtXgV27fs18EhL/w/zfi3WR+NcpW9AMfj1KolKRnMhtpo9KRXJids+Sv+6PwM+iVovY7xs3gH37IC9aDF71vHD+9Xkcfno43a4Olg4obFEYJ16cSLzmKMsN11dAzKL5Ik+hcWMR6mJuDlSpIqRBt24V87ZqBSxfLvIAQkKAd++A48eBuXPFaXzt2ijrZIfZPUshp+UnxOAzHO3kia/vnCtzEBQZhMl1szZm2NXeFe1Lt0e8WsT5Dz4k4voTOXMGKF9eKEcdPy4SwNMxMj5/+4xuu7uh1upaMDM0QyG93KhfrmWaRgYAHHl6BH8EmkNG4mXVkjj/+jy6lOsCAPiybglMImNxsIYNDBWGqF6gOlo4ttD8MEOHomSwHA60wL7H2kmSuuR3wdV3V8Uz3rkDxMdn3CkTBEXp6NGIjQXev083dIpI7dGIio8CgBTenFsfbuH86/MY5DIo1RhymRyDqwyGfx9/mBqYotqKaph6bCJU+/YKxbC8eZNEEoKDAXNzdHKUQQZCrhZhSHIQMhCdP5wVm7SwMPG5mTAByJkTWLlSGPc2NkCRIiL0bt484No18ZxpkTs30KWLSPSPidH+dcsOrKzQo/00VHoLDNrREyq1juFX38ltkhttSrbBMv9lKb5jFkYWWNRsES70uIDo+GhUWlYJw48MR0SF0kL9qHt3YNAgdBm1EbeaHYBCroDLMhes8F+BX51qObDyQFx6cwk3399MdU8uk2Np86XoUKYDOu7siH2PNH8HGzg0QD/nfvjn2D94HvJcXLSzQ/TAvjgRtxdNKj3FNvcKmNHV8df+fVm2TBwCNU3/kEJCQkILfnnlDgmJfxt3d1GAaceOxEtqtZo1V9Zk+cXlUxU++95AFKc7cYIb+lTjxpoWZJ06ZJ48ojgdQJVCLipht2pFjh1LrltH3rghKgFngqi4KJZeUJpOi5wYEx/DL9++0HyaOYccHJLZJ0+XFyEvaOBpQOuZ1oQS3P1gN6lSkV5epFwunvf9+3THUKlVXHxtMS2nW9JyuiWXXl8qXs8cOUg/P439yi8uz0uuBUlnZ046NYlmXmaJhekel83PUw6KxIJ2F15fyPhhhg/n0BYGzO+dT6tiYouuLaKepx6jjx0W7+f9+xnPkQnqr6nPdlvbad8hoWL50aMam/hd8qPJVJMU154GPSWU4MnnJxOv9drTiwV8C6SqIJ6CiAjGbd3M2/VKM8xQfK5j7AuQFSqQenqiSnjBgqIQ45AhvFOgHN27LeLvo0/QffVDBqzbTyoUZKdOqSvUq9Xky5fk5s3k0KFklSpiPIA0MiJdXckRI8ht28jAZIU0798Xbdas0f51yy7i4nilRmFCCS68uiDTw5x4foJQgmdfnk3zfmx8LGecn0HjKca087Xjnod7xI1kRf6i169hrz29CCXYaWcnhseEZ3o9uhKnimN+n/zsvbd3um3abGlDg8kGPPL0iMZ24THhLDy7MGutqpX4u/fQ9c2EErw7skuWrz1DIiJIc3NRZFRCQuKnkQwNif957rz8SvfVD/n7DH+6Tz7KOwXKkb6+qdqdf3Wesong3iPzyIMHSR8fsmdPslo10sIi0aCI19fj7TxgZJvmpFJJbtnCVuOLcsiuvlm+dv93/tTz1OPY42M5/PBwmnmZ8VPEpyyfJ4FRx0bRwNOAUIL2PnZU/dZEPPf48WRcOhtUkjfe3aDLMhdCCfbY3SNpnSqVGGPZsjT7fQj/QMUEMNrMhOoJE1h4dmH23NOTJPnZ/wIJcFAnKxpMNtCukjVJvn3L48X1CCXo/84/w+Y33olK6VfufDc0Nm7Ubh4dKb+4PPvt66d9hzNnxHoePNDYxPeiL029TFNcu/vxLqFEYhXu4MhgGk8x5pQzU1IPEBpKrl9Ptm5NGhuL+Zyc+LbXHzzolIOxcjDSwpTq6dPJxYvF/XPnhPGZKxdpZkbOmJE03ubN4l6vXuK9T4+oKPLSJWGEtm8vqsd//56xQAHy999Jb2+yalWybNmUVej/LY4dY88WoKVnDn7+9jlTQ6jUKhaZU4Sdd3ZOt93z4Od0W+9GKMHWm1szMCyQ/PJFvFYA+eef3Hp+KU29TOk4z5G3P9zO1Hoyg+dpT5pMNWFIVIjGNjHxMWy6oSmNpxjz9IvTGtudfnGaUIJ+l8RhRP/9/emgtKTa0IB8/TrL154uK1eKg6gXL37tvBIS/6NIhobE/zR3Xn5l/YlXWG/CFdYZf4X1xl5k/XGXeOdpMPn4Mbl7tzix79yZdHZmpKEiaaNjYkI6O4t7Xl6i7aNH/BT6jlCCa2+tTZyn1eZWbLSuUbY8w5QzUyj3kFPPU48epz2yZY4EwqLDmGdWHuaeakEowY1Vc4hT1HQIiQrhoAODKPeQs+zCsjz/6nzKBl+/itdz06Y0+6+9tZY1u4nX3H/3YkIJnnl5hiR5qn0VBhmDhuNAmVLG+5+09zTE9O1F8zEyehwbn2Hb2PhYGk425OxLs8WJvbu71vPogp2vHced0OGkdN068dql4xXzvuBNMy+zFNeuvb1GKMGb72+SJH0u+tBgsgE/RnwUDT59EoZfkyZJXoUqVciZM8kTJ8gePUg9ParzWHN796o0GQs2Wd+E718/EJ4NGxvRZ+VK8fPAgZSLWrNGbNYGDdLdOHj7lty5U7wHNWsmGT8A6ehIDh5MbthAPnv2rxken9q60WKMjL13ds/0GF5nvWg0xYjBkcHptlOr1dxydwvzeuelqZcpZ1+azfj4OPEaWFiQ+fPz9bYVLLeoHI2mGHHJ9SVaefF+lndf31HPU098Z9IhKi6KDdY2YI6pORIN37QYemgojaYY8cGnB8zvk59D9/Qnra3FYc+vpEoV0s3t184pIfE/jJSjIfE/zfrT70AiUSFLLVeAJNZPXCeK1rVqJWLPnz4FypdH8Oi/0eQvYNO+aSKZ+/p1oec/ZoyILy9eHNY5beFk45QiT6NYrmJ4EvQkW55hVI1RsDK2Akn0de6bLXMkYG5ghsnq2vgSFwoAGN7aBKpGaVdmJokNdzagxPwSWH17NbwbesO/rz9c7V1TNoz4Xp9BQ8Xxo8+Pose7PECePFjEayhsURg17Gsg5OsnlDpwFTucjRFvoEDPCj1R0lr7egoG7mPg9hTYd3lthm31FfqoivdPXgAAIABJREFUaFsxKU8jmxLCdU4Gf/0asLISCdUaSDNHI+57joaeMdRUY8G1BeibtxnyrNoK1K0rci769hVFAH18RML5+vVCsKBRI+DAAWDGDMhevETblZewrdsB3PxwE6U3uSKskK0QBqhRIympu8wPCcldugCLFwPz5wPu7kniB9qQLx/QurWozXL2rMj1uH5dxMxHRACHDon8jiJFxHO0bAlMmyaqiUdEZDx+FmA9fR6mnJZj+Z3VuPb2WqbG6Fa+G+JUcdgQsCHddjKZDO1Lt8fDgQ/RpVwXDDsyDFVWVMWNOo5AQABQsiTs2vXEjYDq6OXYEX3390XHnR3xNeZrptalLbZmtmhTsg0WXl+Ybo6IkZ4Rdv+xGxVtK6LJhibwf++fZjuv+l6wM7dD++3t8Tb8LVqU/R0YP14UAX34MLseIyW3b4u6QH36/Jr5JCT+P0AyNCT+p0mr5odarsDzohVFBd5370Ry68WLwPLlyK/0hmXrP/HP4/mIUmlOPq1fuD6OPz+e+Ac2ucRtVvPg8wN8jvwMhVwBzzOeWT5+ImFhwO+/o8eYbSijyg0Lw5z4EPUZa26vSXNN9dfWR6ddnVCrYC08HPgQw6oNS1sJKjxc/Eyj2raaahx9dhRuj9WIb9wIWx5uQ+dynSGXyXFs7lDk+UbMKxMFhUwBj7oeuj2PgwOaW1XDddVrvAt6mWFzl/wuuPLmijA0bt7UbXOsBdHx0YiMi9QtGTwwELCzS7dJWnU0ElWn3n3CozG9sX7Wc8ztvRMYPlzUPlm8WCSZnz4tJDzHjQNKlAAOHwa8vYUy2vDhgImQuf2t2G8I6B+ANuZVYfI8EAAQPnkCcPeuED1Ia419+oiq5t7ewKRJ2j/zj+jrA87OwJQpwNu3wgj6/BnYv1/M8e2bMDTq1RNJ5+XLA/36AatXiw2qOmuKyKWgaFH0qzUcTh+Bgbt7Z6pQna2ZLZo7Nk+VFK6JnEY5saDpAlzqeQlx6ji4LHfB33e9Eb53OzB3LvRWrsa88RdwxHEKDjw+AOelzmkma2clAysPxOOgxzj54mS67XIY5MD+jvtRIncJNFzXEAEfA1K1MdE3wepWq3H3010YKYxQ076mMIbt7ITB8StYtkwYr82a/Zr5JCT+P0AyNCT+p3GwMYH8B7VauQxwcLAWGxNb21TVrD3reuLjt49YeG2hxnHrO9TH2/C3eBwkqjUnl7jNasaeHIsilkXg3dAbC68vxJGnP1+BPBX+/kBFYXzp7dgF364bERoTBhlkcD/mjjhVHABRSXzsibFwWuyEwK+BOPzXYWxttxX5zfNrHjsdj8btD7dh+PYT8r78gitOVvga8xWdnTojIjYCFuu344adAvds5RhZfSTymekun9yk90zI1cCBDRlvdF3yu+BZyDN8LVlEbGQ/fNB5vvQIigwCAN09GukoTgFp1NG4fx9RG1YDAIyr14KD72pE57YA164FPn0SHoHevYXqWefOwsA4fhzw9RUGxt9/JxoYycltbIWlu+KhpwZUALzn/IEPl44Lb4YmSeghQ4RnYvJkwMtL++dOi44dhQdlzhyhRtW0qRj3+HHxLAEBovZBpUrAuXNCpalkSdG2SRPAwwM4ckS0zQIU4yZg/iVLXPtyGytvrszUGL0r9sadj3dw7Z32XpEqBargeu/rmNFgBpb5L0OpxWWwu6GdMI5NTdGo0yS8COkKS4VQD1t0bVG2qVLVtK+J0talsfC65t+VCZgbmuPQX4dgn9MeDdY1wMMvqb0U1e2qwzqHNWLVseJ3q6GheN927BDqZNlJZKSoC9SjhzBuJSQksgTJ0JD4n6ZTnXyQyZBobGhT86NorqLoWaEnpp2fpjH8oFbBWtCT6yWGTxWzKgYAeBr8NEvXf+7VOex/vB9T603FIJdBaOjQED329kBIVNZslkCKzVn16oClpTA4WrVCwyIN0bRYUxjrGyMoKgiLri/C3kd7UWpBKfhe8sX4WuMR0D8gda2NtEjHo3H02VG0eW4A6unB1/wuXO1cUTRXUWw8OAP1H8djUXkVTPVN4e7qnqnHs6roCtdIK+wL2CGKDaaDS34XAMBNm++n01kcPhUU9d3Q0MWjoYWhoaYKsniV8EqULAmULo2ovTsAAKFzZyD3SDVerfKDrHNnwMJCnPL/9Zeo33LqlNi4P3smjALjdIob7tgB2dGjkFlYILZeLfx+T40Pl4/jUs7wRA9Kmri7A0qlWJ+fn/bP/iNGRkICevVq4YVMjkIhDJ5evYR89L17wqA4elRITsvlQkLazQ3IlUs8e48ewNKlQs44g89GmpiZwXWoD7rcAkYfHongqOCM+/xA4yKNYWduh2U3lunUT1+hj5HVR+L+gPtwsnFC6y2t0fLWKLw+vAUYNw5WvotweZUCY/O0xYCDA/DH9j8QFh2m8/oyQiaTYUDlAdjzcA/efH2TYXtLY0sc63wMuU1yo/7a+ngW/CzF/cCwQHz69gm2prboururOODo1Em8X2PHZvn6U7B1q/hdJVUCl5DIWv699BAJiV9DCtWp1Q8Z8Oprhn3ehL2h0RQjTjo1SWObGitrsPXm1iSFiozRFKNE1ZSsQK1Ws9ryaqy4pGKi7GNgWCAtplvwz+1//vwE4eFkx44iyXbAAKEAlIz7n+5TrpRTppRRz0MoOLmtd+PToKe6zbN/v5jj3btUt+qurssr5fMwumZ1yj3kXHJ9CaPiojijkSnDDUDTMfjp13Tm5sE0HgdGblqXbju1Wk3L6Zb0OKUkc+YUAgBZyMnnJwkl+PjLY+07mZunVHRKQKUiL1wghw/n1OYWtP4HpKUl2a0buW8fV19dRijBoQeHMteMXIyMjSTv3SM7dBBJ2gUKkAsWkNHR2q0jKEgoTAHkqlXk6tVCgU1PwaFNFSy9oHT66l5qNTl6tOi/IPOysPzwgTQ0JKdN072vWk0+eiQS1fv3F5K9iu/iD6amZL16QpZ6716RLK8NKhXfuzrRfJycA/b3131NJCedmsQcU3Pwa3TGv5fSQq1Wc/u97bT1tmWOqTnoe9GXcZcuCKltY2P6j+3BnFPN6DDHgdffXs/UHOkRFh1GUy9TTjg5Qes+78Pfs9jcYizoV5CvQl8lXl94dSH1PPV44vkJKjwUnHxmsrixa5d4n44fz+rlJ1G1Ktm4cfaNLyHx/ymSoSEhoYGRR0bS1MtUo5ys8pSSFtMtGK8S9QLKLCzDAfsHZNn8ux7sIpTgsWfHUlzfcGcDoQQ3B2zO/OABAWSJEmKDpUENKiY+hlWXV02sX9Fxe8fMqdls3iw2CV9TbqTCY8JpNkGPsYb6PDWwKQ0nGzIkKoSLryzki5zgsgqgrbcto+O03Axr4MHnB4QS3Ne4cIYqRY3XNWbTDU3JWrWEhGgWsu3eNkIJBkUGadchNDSlWldcnNhoDRggaikAZN68nDzShXmmWpCxsYldF11bRIWHghbTLeizpLt4FplMyMcuWqS9gZFAt25iU+7kJIyckBChPgXw+c6VdFrkRH1PfXqd9Ur8PqRCrRb1MwByxQrd5k9Ojx5k/vwpnjfTRESQp0+T06eL+jcJaloAWaQI+ddf5Lx55LVrmue7eJF+VUG5UqaVlPKPvAp9RZlSxmU30pZ/1pbQqFAOOjCIMqWMFRZX4NWnZ8mBA0mA3+q40m16WRpMNuC8K/OyXJWq//7+zOudlzHxMVr3eR36moVmF2LRuUX59utbkqTbejfWX1OfJDnuxDjqe+rz1vtb4rNTpQpZuXL2KI3dvi3e82S1lSQkJLIGydCQkNBAQoG8YYeHpXn/3KtzhBK8+uYqyayVuI1TxbHk/JJssLZBqntqtZrttrZjrhm5Ev9A68Tq1UIytGxZ8uHDNJuceH6CJeaXoMJDQQNPA8o95DSZaiJOxnVl2TLxR/yHmgr7Hu1jk45iU9d8QlG239aecao4duonNntVeoLrb6/Xfb4fUKvVLDojP/s0g/CupMOEkxNoPdOa6sGDxYlwFrL42mLKPeRpF4RMi4AA8brNmkV2757kUbC3J4cNE7Us4uPpedqTeb3zpujqe9GXFQfqc2up75vmggXJJUvIGO03gokcO5a0+b6YTJ60YkVx7dMnRsdFc/Sx0ZQpZXRd4cpnwc/SHkutJvv1E0bPhg26r4Uk79wR82a2f3qo1aJ+wqZNaRcVrFGDHDmS3L6dfPMmsVvsX3+y9GAFqy+pov37m4wm65vQZZlLljzClTdXWH5xecqUMg4+OJhhB3aS+fJRbWHB1e6NCSXYZkubdOtf6ErAxwBCCW65u0Wnfs+Dn7OAbwGWnF+Sz4Kf0WCyAedcnkNSHHSUW1SO5RaVEwbMyZPZZwwMGiSMzKwwXiUkJFIgGRoSEungedqThpMN+To0ddGo2PhYmnqZcto5Ecbxz9F/WHh24SyZd/mN5YQSGkMdvnz7wrzeedlkfRPtTycjI4UmPSA2rt++pWry7us7dtzRkVCCNVbWYMDHAPpc9En0auhUAyIBPz9RGfwHBh8czDWupoy2z09MAg88PsC1t9ZySykwwBosMdcxU5u2tBh26G/mG21AdbWq6Z6I7nu0j1CCn+fPFJvh8Kyrtjz17FRazbDKuGFEhNjI1q6dtMEvXpwcM4a8fj3V+pWnlLT1tk26cOsWH9QqTQL8YG0iDL3MGBgJa7G3F5vtjh1T3mvZUqwt2Yb73KtzLDy7MHNMzcFlN5al/dlUqZI8JNu3Z25dDRuKGje/oo5GVJQwsHx9hWfIzi5lUcF27cgJE3iqmD6hBNfc0r2C+c77OwklsqzgXpwqjj4XfWgy1YT5fPJxx5XVVP8hivy9buLKghPMWHh24cRDkqyg1qparL2qts79Hn15RJtZNizoV5BQgs+Dnyfeu/n+JvU89Tj+xPdaOI0akSVLZlg8VCe+fROhkmPGZN2YEhISiUiGhoREOnyN/krrmdaJlap/5LcNvyW6+pdcX0K5h1yn8IG0iIyNZH6f/Pxj2x/ptjvw+AChBJdcX5LxoI8ekeXKCU/GypWpbsep4jj38lyaTzOn9Uxrrr65OnGTGBMfQ4c5DpR7yGk42ZDhMTpuvj09ybx5U10uPrcYP+cx5dnmTswzK48I1fIqwhgFOLQxePTpUd3mSYeE/IjrtiBPndLY7kP4B0IJHtk2PfUJ/k8y/PBwFp+nwUsSEiKK8yWvzl2ggDB2bt9Od0M96dQk5vfJT/r7i/AfgB9tTNm9BXj0wQGN/bRi2DARImVkRAYGprzXvLlY35w5KS5/jf7Knnt6Ekqw+cbm/BD+IfW48fEiX0RPj9y3T/d1HTwoXqOzZ3XvmxW8eSNO1v/5J0VRwQ5tQZvRegwd2ldUl3/+XCtjKDY+ljazbDjowKAsXear0FdsvrE5oQSbbWzGl2vmkBYWjLO14eChxanvqU+/S35ZEkq1OWAzoQQDPgbo3DfgYwANJxvSeIoxQ6NCU9zzOO1BhYeC195eE4Z2QqHIrOJ7vhGfafDCSUhI/BSSoSEhkQGzL82m3EPOh59Thxn5XvSl4WRDRsZGJm5m02qnCzPOz6Cepx6fBD3JsG2fvX2YY2qO9BO0t2wRuRiOjiLs5AcuB15mhcUVKFPK2G9fvzRzCBLyRaAEhx4aqtPz0N2dLFo0xaUXIS9YaoA4Ff6jZ04OOzyMO+7v4LBGYLQCbDK7sm5zZEBsfCxzTsvJSX/YiNPwdCjoV5Du+4aKTfDChVm2hq67urLa8mpJFxKqc7u5pa7O/eSJSEy2t89w3IWLe/FIaaOkvIJVq1hmtiP1PfV/ziN0+TIpl4t/np6p7xcrRhYuTLq6ptl9z8M9tJ5pTeuZ1tz1YFfqBrGxwrAyMCCPHNFtbSqVyDFq3Vq3ftlFbCx5/jzf2FkwxzgZ//4jZ5LXw8ZGeH+mTRNGrgYv2ehjo2kx3SJz4YnpoFarufP+Tub3yU+TqSb0PjiecQ3rkwDPNXei8Viw5aaW2ucOaSAmPoY2s2wylacWp4qjxTQLGk42pOsK1xSHGbHxsXRe4sxSC0oxKi5KeJDs7VOJV2SaatWEp0RCQiJbkAwNCYkMiI6Lpr2fPdttbZfq3u0PtwklePzZcQaGBRJKcP+j9PMA0iM4MpgW0y20/mMdHhNOhzkOdF3hmjoJNzpaxB4D4vT4h2TsoMgg9t3XlzKljBWXVOSVN1c0zqNWq1lzZU3KPeTU99TXLb67f3+yfPkUl5ZcX8JRDWWMMzak4Tjw5rubdFpYjveswU2lwRvvbmg/vpZ02N6BFacXFq/HVc0hI+23tWfNlTWFB6hPnyybv9nGZmy2ooFILq5TJ2kTX7s2OXcu+fqH8LxOnUROgCauXSObNSMBPrPWE2pKcXF89/UdZUoZ8/nky/xiY2LIMmVESImdnQi7S05kpPBmdO+eKnwqOR8jPrLFphaEEuyxuwfDosNSz/Pbb8IjcPq0bmtcskSs4amOKmjZybZtnOEKKpRy3nlwWnhrxo0j69cXxj4g3vPy5UWuyurVIk9KrebToKeEElx7a222LO1r9FcOPTSUcg85nRY58bLvcNLIiOGF8rH+QDPa+9nzUuCln5pj/InxNPUy1VlB6+zLs4QSXH5jOc28zFh3dd0UBlfAxwAaTDag+1F38XopFCIk82dJyPfJbAifhIREhkiGhoSEFqz0X0koU2+AVWoV88zKwzHHx2SJxK37UXfmmJqD78Pfa93n3KtzlCllnHE+mQzq8+dkpUritHjhwhThGyq1iqturmLumblpPs2c86/M16wUlAz/d/6JXo2eu9MOJUuTzp1FeEky2mxpQ//i5rzmbMtyi8rx8JPDrNZDnABPGFNNw0A/R4Ja1xunwiLESAPeF7xpMtWEqs6dSJcsSNB99oycOZPVhpqyaysIT0njxuTSpeTHj5r71a5N/pmGjPGVK2JzDpCOjtwyugUdvJM8H8pTSup56LHSkkqZX7OHR5L065Y0Enxv3EiSG9XXTxU+lRy1Ws0V/ito6mXKQrML8ezLH8KdoqLIBg1EHo8uoWqRkaSVFTlkiPZ9shu1mjF1atJxuAFrr6yVMiQpPl5sbJcuFcpZpUoleT0sLckmTVhPWZg1fcqIULps4trba6y4pCJlShkHru/I0KrlqVYouKx5fhpNUtD7gnemQ6kCwwKp8FBw4VXdPIEjj4ykzSwbqtQqnn15lsZTjOm23i2F4ty0c9Mo95Dz4uuLZK9eZO7cqQ5PdGbwYCkJXEIim5EMDQkJLYhTxbHE/BJ0W++W6l6H7R1YeakI9fkZidvAsEAaTTHSSY8+Afej7jSYbCCSSffsIS0sRFjL9ZTJ5Hc+3GGNlTUIJdhpZyedDBpShP/IlDIqPBT8/O2zdp1atSKbNEn8b5wqjvYTzRkvl3FgCz36XPRhteXVuLI8+MwCfP4le06ogyODqfBQcPGcLmJzd/dumu0STlffeowUJ+3xGRthqbh3T4QblS+fqFhUfLQph/u5ab+JLFyYHDUq6f+XLokwK0CEDW3YQMbHc8zxMYkiBDHxMczrnZfF5hbLVGJu4tr19cVGrmbNtHMMEuLaw8PJpk01hk8l51nwM9ZYWYMypYzuR91TyhZHRIi5zM2Fp0Zbxo0TnoJs3JjrzM2bPFpURijBjXc2pt82JESEjXl4kE2acFOVHIQSfJAbIum5Rw9hmNy5k7nPoQbiVHGcfWk2Tb1Maetty62TfqdKIefr4nnpOFDkc3z59iVTY7fe3JplFpbRyVgpPq84e+3plfj/Y8+O0XCyIVttbsXY+NjENVdZVoXF5xXntxePRT0VpTJTayQpksAtLER9FwkJiWxDqgwuIaEFenI9TK47GYefHsbZV2dT3KtfuD5uvL+B0OhQFM1VFE9DMlcdXHlaCVMDU4ysPlLnvp51PVE8VzF0XtAAMW1aAnXqiCrfzs4AgPCYcIw8OhIVllTAl8gvONnlJNa1Xoe8pnl1mservhf05fpQUYWBBwZq1ykiAjAzS/zv1bdXUfX+VyjUxL6iKjhYOODu00tofw+43dQZha2K6LQmbbE0tkQN+xrYl+szYGcHTJuWZruKthUhl8lx04ZAVBTw5EnGg5Pi9U5WnRszZwIlSgDbtgGfPyPI0hBWzjVFde6MUKuBN29EVfCLF4HGjYFq1USl8E2bgLt3gY4dAYUCaqohk8kAALse7MKHiA8omLMgjPXTqfKtCZUK6NlTVIn/8kVUDf8+dgru3gUKFxbV3tu1Ay5cAN6+TXdoB0sHnO56GtPqT4PfZT+4LHdBwMcAcTNHDuDAAfHaNWokqnVrw8CBQEyMqAb+X6F8eTSs3wdtn+hj5JHhCI8J19zWwkI878SJwMGDaH3uC6wMLLB8rBtQu7b4TPXrB5QrJ96TBg2A8eOB/fuBz58zvUQ9uR6GVh2K+wPuo0qBKmgv247mc6tClcMY95YboPTmk6i4qDwuBl7UeewBlQfg7qe7OPf6nFbtH315hMdBj9HCsUXitQYODbCj/Q4ceHwAXXZ3gUqtgp5cD2tarcHrsNcY93AhMGgQ4O2d+ddh+3YgNFSqBC4hkd3825aOhMT/FdRqNZ2XOLP6iuopTutehLwglOCuB7syLXF779M9yj3knH1pduYWFxjIm42dqD8BHO1VL/EUOqFqcH6f/DSeYsxp56b9tCqWxykPQgnKlDK++5q62ncqqlQRJ7PfmXhyIjdVMODjAiZssr4J662pxz7NwHgZ+OVx1sh7asL7gjeNphjx21wfESuvQWmm3KJyHLK+U8qCeT+iUpHnz5PDh5OFCiWFwHyvzp08WVWlVlHuIefia4u1W+i7d2I8Jyfxs3RpEcKkSp3c7X7UnUXnimT7mitrss7qOmyyvkli1XqdmDNH5D2YmYnwFE24uQnVKVKcymcQPvUjN9/fZJmFZWgw2YCzLsxKCt0LCRH1Oaytyfv3tRusSxeRHJyVkqc/y6dPfFXAjMaT9PjP0X906jrs8DDmnpk7yeMTHi7yV6ZNE0nlefIkhVwVLSpyeebPF97LTIYA7X6wmwV8C9B4ijFn/FOdsXLwaqmctB8u5/Rz03USFVCpVSw+r3iGqnkJzDw/k8ZTjPktNrXc9o77O6jwULDrrq6Ja/C96EuZUsYzt/cKD9iwtOscZYira4bCEBISEj+PZGhISOjAkadHRJXpRyklOR3mOHDggYGZlrhttbkVC80ulLkq2EeOiDCXAgXotb4f5R5ynn91nk+CntBtvRuhFKoyL0Je6D52GnyL/UarGVaEEqKKdkaULi2Kn32n2hIXhprpc2oN0Ouslyh6mA+8X7VoOoNkDY++PCKU4J7bW8WGTUOyd689vVhuUTmxgU0evqShOjf79xeF7TRs9IIjgwkluO3etowXeeaMyK8BhLLTtm1pGhgJjDwyksXmFuOt97cIJbj93nbWXV2Xf25PI78jPV68EHkSZcsKQ+NDGrK0CRQoIFSxEtAyfCo5UXFRHHFkBGVKGWuvqs2XIS/FjS9fRCK6ra1Q38qImzc155L8m/j5cUotGfU89Hj/k5ZGE8WhQ7rF7xKKCm7cKPJTXFySVMuMjUUI2j//CPndt9oX9Pwa/ZXDDg+j3EPOsjML80L53Iw0NWSHtmCT9U34KeKT1mP5XfKjnqeeVqGZNVfWZItNLTTe33BnQ6IinlqtZrwqnjVW1qDDHAeGe44XeWivXmm9NpIibBIQ3y0JCYlsRTI0JCR0QK1Ws87qOiy3qFyKU74+e/uwxPwSmZK4vfD6AqEE191ep9ti4uPJCRPECbSbG/n5M+NV8ay6vCotp1vSwNOAhWYX4t6He3UbVwvW3V6XmBieoQFjby9i6SmUrqr1kpEAG/XNwUZrG9Gprzidjdq2OcvXmRaJ8eDTpolNShqKSUuvL6XcQ864Zk3Fqef+/elW586IJ0FPCCV48vlJzY1OnRJqVAmVvAGx6c6AEUdG0HGeI3vv7c38PvkZp4pj1eVV2WN3jwz7JqJWC4nPvHmFp2fWLM1tg4PF2jYmyz9IyNnQoD6VHqdenKK9nz3NvMyS6rd8+CDkmO3sxKY6I+rWJatW1XnubCU2llGlirPIKGM2WNNAp5yF6iuqs8HaBtrPlVBU0MdHyL8mLypoZycKDfr6ijYZyMLeeHeDzkucKVPK2H9oUYYYgTudDFhqct7UifwaCIkKofEUY04+Mznddp+/fabcQ87lN5an226F/wpCCQ47PIzq7wpdJlNNOGBXb3Fg0L27VutKZMgQ0S+zhSwlJCS0RjI0JCR05FLgJUIJbrizIfHalrtbxMn826s6SdwmyMY6LXLSrebB+/dicyWXk1OnJp54H35ymPa+9oQSrLi4YprhCFmBSq2i4zxHQomMk45z5SKnTydJbr27lZ61wBBjOdtvakMowbkuYISV2S9TfhlxZATzeuelKjREyLcOH56qzZ1nl9imPRhRvLAw5DKozp0RlwMvE0rw1vtbKW+o1eSJE2StWmKOChXI3btJb2/hXdBinmGHh7HY3GIpNnZOi5w48MBA7Re4Zo2Yv3x5EY6T3gbs3DnRNnlNlkyETyUnNCqUXXZ1IZRgmy1thNDAmzekg4P492OxwB/ZuzfLCyxmCYcO8UAxaO/N+s6qm6sIJfgs+CeKyCUUFRw5UsgkG32vtaKvL7wgQ4eKsMAXL1J9zuJV8Zx7eS7NvMyYd7IFN1Y25kcLfbp1lnHKmSla/a7qtacXC/gWYJxKc0jbmltrKFPK0i7q+APzr8wnlODY42NT/P+4z0Dxe1DbULvISJEEntxTKSEhkW1IhoaERCZosakFi8wpkqiI8vnbZ0IJrrq5SieJ232P9hFK8ODjg9pPfuqUOHnOmzexynVgWCB/3/o7oQTrranHSacm6T6ujpx/dT7Rq/Hg0wPNDQ0MRAw5yZ57ejIgvz43lAFrraxFo3FgiLGMqlHu2bbOHzn94rQwIeHCAAAgAElEQVQwCt9cJcePJ01MyM+fU1TnVn+v9ByS11Jszk6f1tm4SE5CFffAsO8bZrVahFrVqCHGd3YWm+WEOYYOFapDWvD3ob9pM8uG+p76iRs2x3mOHHFkhHaL+/BBGIO1a4u17M3AA7ZokZDo/dEYyUT41I9sv7edVjOsaDPLRhjrL18K71Hx4sK41oRKJcLM2qWudfOv06wZm/cwpp1PAUbERGjVJSImgubTzBM31VlCbKwwkufNI//6SxR3TPB65M0r1OGmTxef9QixzsCwQLbZIg4EGg214jNLcEFlsPmyevwYkY40M4VnBEpw5/2dGtu03dKWVZdr74nyvuBNKMHJZyZTpVax3pp6tPe1Y1hRO7JNG+0GWbtWPLM2YXkSEhI/jaQ6JSGRCabWm4rnIc+x4uYKAEBuk9won7c8Tr44iaK5iuJJUMZKRSq1CmNOjEGdQnXgVtQt40nVasDLC6hfX6jz3LyJuJqu8L3ki5ILSuL86/PY2GYjjnc+jkm1J6FxkcboubcngiKDfvZx08TV3hUNHRoCADrv6px2o9hY8c/MDCRxy/8gyryNwxUnK5x9fRZtHgAWUYS8V+9sWaOmdVsaWWLf433AX38B8fFA1apAnjxA587Au3eQeXigwzRnjB9fTXSKikpbfUlLEt4DK6NcwNGjQI0aQMOGQjFp/37g2jWgefOkOV6/FopTWqCiCsFRwWhXuh1sTG3EcuOjYKynperUkCGAXA68eiUUkJo1S799QADg6AgYGKS83r69VupT6dG2VFsE9A+Acz5nNNvUDH3veOHbob1CuaxBA6GElRZyOfD338COHcDLl5meP1vw8cHsfXH4FP4BXue8tOqSwyAH/ir7F1bdWoV4dXzWrENfX6jQDRoErF8PPH0KfPoE7NsH9OgBfP0KTJkiFOty5gQqVECB0V7YEd0SJ6oswsOCJig9VB+hORSYOe40uo8phdMvT2ucrqJtRVQtUBULry9M8350fDQOPz2MFsVbpHk/LUZUH4HJdSdjwqkJ8LvkhxUtViA4OgQj+jkAO3eK71FGLF0qPktFi2o9r4SExE/wb1s6EhL/V+m0sxNtvW0TK9iOPDKS+XzyseWmlmy0rlGG/VffXE0owcuBlzOe7MsXUYtCJhOn8PHxPPfqHMsuLEu5h5xDDg5haFRoii5vwt7Qcrql1uovmeF58HPKlKJmwPW311M3CAoSp4c7dvD+p/vs2VyoS7nOKEEowYtFDKmuWzfb1pcmb96wo1cllh9hKkIuZDJRnG7mzBTVuYcfHs5CfgWFss20aT81pd9FX7boYiDyCAChxHXwoGYvibNz+qpPyWixUVTevvg6KWzIeqY1p56dmnHnPXvEev78U7wG9+5l3KdWLfKPND5TCeFTszOpnJYMtVrNxdcW02SqCYvMKUL/kxtFTH358iJHJC0iIoTqVxqhcP86I0dyYkM9Gnga8PGXx1p1SSiQuefhnmxeXDKSFxXs3l141b57PdS5LHm/cmFOrCtjz7b6PG8HetYGJx+fqLHg59pbazXmrB16cohQggEfA3Raolqt5pjjYwgluODqAi69vlR4b+vbiwrs6ZGQBL51q05zSkhIZB7J0JCQyCRPg55Sz1OPM8/PJJn0h7PH7h4ZStxGxUXR3s+ebbe0zXiiixdFQqeVFXnoED9FfGL33d0JJVhlWRX6v/PX2HVTwCZCCW4K0CDRmgX03tubUIIl5pVIffPlS/GH/ehR+l3y464SMp63E+FWRQd/D9vYsCF1v6zme3XuhI3+pnJyQgm+XjSdvHVLhHd9zyNJYHPAZkIJxrhWS3tjrQ1qNXngAF+XyCeetVo18vDhjMOw8uQRBf+0oKBfQRpPMU6RbGzmZUafiz7pdwwNJfPlE1W5TU1FleSMUKtFmNVkDUm+WRA+lZzHXx6z6vKqlHvIOXdZb6pz5RL5BWFhaXcYNUoYhj9bMTqrCQ1lpK01C43LwSbrm2idGO68xJnNNjbL5sVlQEJRQaWSdHNjXE4zEqAK4FtT8W9lGwd+vnIqlTBCVFwUc8/Mzb8P/Z1q2P77+7Pw7MKZqkKuVqv596G/CSW4/MZyuq13Y76puRhsBBGSqImhQ4V0spQELiHxy5BCpyQkMkmRXEXQu2JvTL8wHWHRYahpXxP6cn1ExkXiVdgrxKpiNfZdeG0h3n59i6n1pmqegAT8/IBatQA7O6j9b2Cp9Ws4znfE7oe7saTZElzseREVbCtoHKJDmQ74o/QfGHBgAN5+zXxIS3p4N/KGvlwfD4Me4uzLlMUMEREhfpqa4uTDQ2jwnDhd2gQA4P7IShQha9Mm6xdFAvfvA5MnAxUqAEWKiKJoefMCa9ei8ZFnUMgU2O9sDjg5Ad26Ab6+IkTqOy75XQAAbx1yA7du6T7//v2AiwvQtCli5Gr0G+IgQosaN04/DCsqSoS0aBE69Sz4GV6FvYK1iXVi0T5Ay9Apd3cgPBywshJhUEplxs/14QMQHAyULZv2/SwIn0pOMatiONf9HDzqeGD4+1Xo1D8PVA8fAE2bAt++pe4waBAQGQmsXJkl82cZOXPCePI0+O34hkNPD4mwPS3oXbE3Dj45iDdf32TzAtMhoajgpEnAoUPQCw6F6v49nJzYCYdK6iHYBOi68zlyV6mL+JzmIiRwwgTgwAEYhUagZ4WeWHVrFb7FJr1fJLH30V60cGyR4nOrLTKZDL6NfdHPuR967+uN34r+hm9yFYZ2zg2MGSO+fz8SFQWsXQt075467E9CQiL7+LctHQmJ/8u8+/qOxlOMOf7EeJJkrVW16LrCNV2J29CoUOaakYt99qZdw4GkOEVs3Vqcgo8YQf/XV1hlWRVCCXbf3V0nTfugyCDaetuy8brGmTo91IbpZ6cTSrCAb4GUNy5dIgFG+19jk25C679cP1BvAhhrbaXdKbq2qNUi2XXsWCGNCoiT+g4dRKhEeHiK5gmF7UiST5+KMKp585INp2bumbm5858WIrwqQotEXrVahCM5O4v5a9Ykjx9n+63tWG9NPe2e4/Fj0fdkOlK43xlxZAQNJxvSaZFT4rU4VVyiMIFGTp8Wc4waJZ7te7J+hhw5Ivo9fZr2/SwMn/qR62+vs8T8EqzZR58xJoZU16snFIR+pGNHsnBhrWSHfynx8VRXrEC3ATlZaHahxJDL9AiLDqPJVBN6ntbOu/Wrefv1LdttasMcY8ARDcEbecEnzg5UJysqGOtQkGvKgedHdSRv3CBjYxMTxU88P/FT86vUKnbd1ZUKDwUHHRhEKMHdjiC3b0/deN06KQlcQuJfQPJoSEj8BLZmthhSZQj8LvvhY8RH1C9cHwGfAgAAT4Ofptln5oWZiIqLwqQ6k9Ie1N9fJG2eOoWwHRswpH4sKq2qhm9x33Cu+zmsbLkS1jmstV5jLuNcWNlyJY48O4IlN5bo/IzaMMJ1BMwMzPDm6xvsf7Q/6cZ3j8a18Ido+DAOgebAHRtgeFBx6H8OAnr1+rmJ1Wpxgj5iBODgAFSqBCxaBFSrJpJcP38GNm0C2rUDTE1TdG1evDlOvjgpTlqLFAE6dABmzhTJ6xCnplXyV8GJnF/ElikgQPM6SGD3bvG+tWwp5jp5EjhzBqhfH0FRwbAyttLumQIDxU87u3SbRcZFYsXNFSiRuwT05HqJ16PjowEARnpGaXeMihKve40awLlzQKlSQN++2q3t7l3A2BgoXDjt+wmn39u2aTeeDjjnc4Z/H39UaNUfDdrHIOb8aUS1bCoS6pMzbBjw4gWwZ0+Wr+GnUCggmzMXc7aE4W1oIGZemJlhF3NDc3Qo3QErbq6AmupfsEjdyGeWD1s77MCWbvuxvW4euPYC1pg/h2dLS3y8fRHYuBH6zVqiakROuMzaKL4fOXPCyq01/E4aoJZ/EPD+fabnl8vkWNFiBX4v9TsWX18Ml/wu6NvWAEGeY4TIQ3KWLhVCGlISuITEL0UyNCQkfpJRrqOgJ9eD1zkvNHBogK8xX2GgMMCT4NTKU+/D38Pvsh/+rvo38pnlS3mTBBYvBqpVAy0tsGmHEiVejMCqW6swq+Es+PfxRw37Gplao1tRN/Rz7ocRR0doNIB+Bj25Hla1XAUA6LanW9KN8HAAwNEPF9H0CXCwGAAZMOlpAaByZaBcOd0ni48HTpwABgwA8ucXG+YNGwA3N+DYMeDjR2DVKqGeZKRhsw1haMSoYnDs+TFxYcwYscnfsCGxjUt+F+yQPQD19NIOn1KrhdpNhQpA69ZCrefUKeD0aaBu3cQQqaCoIO0Njdevxc8CBdJttilgE8Kiw1DKulTKsKk4Ef6lMXRKqRTP2aYNcPEiMHs2oKeXdtsfuXsXKF1aqDxpIovDp5JjrG+MOU3mYOKEY+jW3RKyU6cQ2MQVjE0WplipkvhM+Pll+fw/TY0aKN6wA0b6G2H6+el4EfIiwy69nXvjVdgrHHt27BcsMHM0Ld4U90Y8x2CXwZhWS4at+o+w4u/aOFVMH5gzB08Pb4T5GODuriXAlCl4rP8Vne/pQe/39kC+fEDBgsAff4jP4uXLqY3HdFDIFVjXeh2aOTbDrfe3EGWsj4HFn4gwqQTu3xdGdZ8+2fD0EhIS6SEZGhISP4mlsSXcXd2x+MZi5DHJA1MDU1gYWaQpcetxxgPG+sZwd3VPeSM8XEit9u+Ph/1+R4NB5uh47m/UsK+BBwMfYHi14dBX6P/UOmc1mgVbU1t02dUFKrXqp8ZKi7al2iKfWT4ERQVh/e314uJ3j8bVm/tRPAg4UAzoaFELJsdP6+bNiIkBDhwQMpw2NkKe8sAB4M8/xQbi7VvhyWjQQMh4akExq2JwtHLEvkff4+XLlBHeiOnTAZV4fVzyu+BDXAhiixdJaWio1cD27UD58kDbtiLP4cwZYWTUqZNqrqDIIFiZ6GBo2NikaySRxPxr89GseDPk0M8BuSzpV3lU/HdDQz8NQ8PfH/DxEUaVn5943gYNtFsXIAwNTfkZCbRoId6D7du1H1dHGjg0wCK/J5j7Ty3YnLmBS3WLIjjic1KD4cOB8+e1kzv91cyYgXGnVcgdr49hR4Zl2LxK/iook6cMlvkv+wWLyzw5DHJgZvO5uNHvJkwKFMa42nFYPq0dFkxrgwYODWBrXRgzeR5verVHo+ahOHZ6hTB4t28Xxum7d+JzWa0aYG4uJKeHDQO2bBHSy2nlXXxHX6GPzW03o55DPUQxFlvKANtWuwPRwruHZcsAa2ugVatf9GpISEgkIBkaEhJZwNAqQ2FpZImp56eiTqE6UFONpyEpPQePgx5juf9yjK0xFhZGFkk37t4FKldG5KG9GDevFcrl3oZXXwNx6K9D2NZuGwqYp3+yrS2mBqZY02oNrry9olXYRmbY10Fs2vsf7C8uhIeDenoocTMQ0QrghAOwLNhVbKI7dEh/sG/fxCakY0exSWjWTJyU9+0LXL8u6iX4+orTa4UiU+ttXrw5Djw5kBSWMnYs8Pix8FIAqJyvMgDgnYO1MDTUamDrVpFA3q6dMAjOnRMellq1NM6jk0cjMDDDsKmLgRdx68MtDKw8EAQhQ5JHQ2PoVFwc0LOnMKjUapHY7e2t3ZoA0efePdE/PbIxfCo5lsaWcPc6gyu+w+FyORAn6hbEkceHxM0WLUQo3X/Rq2FvjxzDR8N3VxT2PNqDQ08OpdtcJpOhd8Xe2PNoDz5GfPxFi8w8TnmdcGX0UyyoPhX7SsrhEbIL7n/lQbO8fXHnZiX0mvsC5VRzUNCwtvDatW0LzJolvkdhYcI49PERIU779onfE4UKCc9HmzYivPHs2VRiAIZ6htjZfidq2NdAzjgF+lcLwscFM4WxsWaNEHyQksAlJH45kqEhIZEF5DDIgfG1xmPt7bUoY10GIVEhePTlUYo2406OQz6zfBjoMjDp4po1gIsL9hWMRqmxOeETegjjao7D3QF3tSvipyOu9q5wr+6OSacn4dYHHZWUtKBivooom6csImIj4H3RG4iIwDdTAzR9ApwuBPxWtg1M1m4Smwdz89QDhIaKYmKtWwO5c4vN/P37wMiRwiB7+FAULXR2/qkCegk0d2yOj98+4trb7yffLi7ihH/qVICElYkVilgWwW0bCG9A2bIixCNfPmH0HDsmDJ10iI6PRmRcpG4ejQwUp+Zfm49iuYqhYZGGUFOd0qOhKXTK2xu4c0c826xZ4rRYl3j1Fy+EolNGhgaQreFTP1JzqA++LpuPtjei8LLjbxh0YCAi1TGiEOG2bUk5L/8l/vkHv4fkRb3w3BhyeAhi4tMPFepUrhMUMgXW3F7zixb4c8hlcgxoOBaP3APhYlocq0oUxJ2AmrBgZcTEGCIXXTBhfSACXoWn7GhgIELfkhcV/PgR2LtXeDPDwoSSXO3aIkyxYkVg4EBg3TrgyRMY6xlh75974VjQGfqKcuj0zgLtpl/HqMaTENCy+7/zYkhI/H+OZGhISGQRfZz7wD6nPa6/uw4VVXgd9jpR4vbq26vYfn87POt6ipPmyEigZ0+8GtoNLQdbo0X1VyhhWxZ3B9zFpDqTNCfyZgHKOkqUtC6Jzrs6Z7jByQxHOh0BIAwrRoRjt0Msar8EDhYHNlj0FJ6I5GFTnz8Dy5cDTZokVed+/x7w8ACePBGehIkTRW5AFhgXyaluVz2pSngCY8cCt28Dhw4BKhWGPcuDqruuCo+AlRVw6RJw5AhQvbpWcyRWBdclRyMdQ+N9+Htsv78dAysPhFwmFx6NH6RtgR9Cpx49Eq/niBHAxo3CyBs3Trv1JHD3rviZUegU8EvCp5KTq8dAYMUK9L0BlJy6BBUWl8cNNyfAxASYP/+XrEEnTEwgm+WNeWu/4GXIC/hc8km3eS7jXPi91O9Y7r8cTCeE6L+GrXk+7J/4CC3NZgKQQYYEz6McJLD+9LuMB8mTB2jeXBjIJ06Iw4jbt4GFC0Xo4smTQJcuQPHigLU1TFv/gYVv/kAJ+WLEGVfGF5UBrhepgmFHw1MbNhISEtmOZGhISGQRBgoDKGsrcfzFcZgbmIMgXoS8AEmMPj4apa1Lo3O5zsCjR4it5oLpz9ei5HAD3LBRYXu77Tj01yEUzZX9iiiGeoZY13odHgc9xsRTE7N8fFszW9QvVB9G8SXQUlUYqxvswoT2sxHXeAgMVq8VKkd2dmIDWLeuqG3Rt69QQ/LxERvty5dFnYdsVojRk+vht2K/pTQ06tQR8eFDhwKlSmHg3Eu4axkn7g0YIO7pQFDUd0NDG48GmWHo1DL/ZTBUGKJr+a4AkMqjkSp0Sq0GevcWYSqNGwtDw8srbY9SegQEALlyifcrI35R+FRy5N17AIsWYeAlFcYeCEeVzfVx0a00uHRpUj2X/xLt26OUYw0MfWiBKWen4HXY63Sb967YG0+Cn+DMqzO/aIFZR5QqD2SylOGNagLPP0bqPphCIUQk+vQR9VIePBC1XQ4fBgYPBtRqbH1hCDmROKdapoNhIyEhkaVIhoaERBbSqVwnlLIuBUM9QwBC4vbos6M49fIUptWfBsW27TjVujyc6j/B+LrEgKqD8WDgA7Qt1TZThasySzmbcphcdzJmXZyF86/PZ/n4M2psQXnVInyVl4TKIA+uO7jgSVBHBFx6JGKr7exE6I6hoVDaev9eKDUNHpxhfkJW07x4c9z5eAevQl8JRau1a4Wx8/QpYGWFO/uWo2FnIjafje6F+6CjRyMkRLw+Gjwacao4LL6+GJ3KdUrM8yFT5mikCp1aulTEvy9ZAowaJcLOunXT+Tlw964Im9L2c/oLw6cS6dcP8PND1yMfcOx5DXTKfwXqsFB8XDjr161BW2QyYM4cTNwZBAu1PkYcHZFu81oFa6FYrmL/+aTwtHCwMYH8h4+NXCauZwmWlsKI/l5U8HmZ6lDLs8iwkZCQ+CkkQ0NCIgtRyBWYUncKPkcKBZybH25i1PFRqGtbHZXm70SnrR1Q749oWJWsiJt9b8K7kTfMDM3+lbWOqDYC1e2qo8uuLgiPydqQgq3nv0AOeWKohFquAFVqrK/eTXg01q4VIVOHD4vT9jx5snR+XXAr6gY9uR72rx0HlCghNuGVKglvipkZijXuCIVMgXdF8mTO0NDFo5EgbavB0Nj1cBfeR7zHwMpJeT6pcjSSh069eSM8Q717C0/JjRtCQjQ9eVpNJBga2vKLw6cS+ftvYNo01F17FqcN++FIeVOEz5yMhVfm//fCjipWhHnnXph1MB7b72/H8efHNTaVyWToVbEXdtzfgeCo4F+4yJ+nU518kMmQaGzIZcLO6lw3X/odM0m2GzYSEhJaIxkaEhJZTKsSrVDRog3Kxs/G0ROVYfiqO6qd0UcJ09U44mSKVS1W4myvCyhro0WsezaikCuwptUafPr2CSOPjszSscXJYcpfL2q5As8LlgEOHhR5GBYWaXf+lcTFIeeG7aj1Vg/7rm0QIRn+/qLY25QpwNGjML51F+VsyuGOrVzEhutIUGQQ5DJ5SqUxTWRQrG/BtQWoXbB2is/OjzkaiaFTCkOgf39RPHDCBCEd2qFDhsnraRIbK/I8tMnPSOBfCJ9KZPRoYOJE2E9fiAauXVA0iDg8ezCabGiCd+H/sfCZKVPQ8b4CNePyYfChwYl5XWnR1akrVFRh3e11v3CBP0/Zgmbw61ESlYrkRG4zfVQqkhOze5ZEGfvsOWT51YaNhISEZiRDQ0Iii7n7OgIWQe7IBRco1JYwVrjgvIMXWtoPwaN/XqFbhe4pTqD/TYrkKgLfxr5Y6r8UB58czLJx0zxRVKvgkCf7ktx1IjZWaOsXLw706oXmLI5TxfURvmmNKL4HAL//DhQrBkybBpf8LjiZM1hIwn74oNNUQVFBsDSy1O49f/1aeAFsbFLduvPxDs6+OotBLoNSXNekOmW0Yw+wf7+oL7JwoVDsmTFDp7Un8uiRCCvTxaMB/DvhUwkolYC7OwzmL0SAS2MUsViOiMdD0dxnF+ae3vvr16MJGxvIJk7C/JUf8CToCeZemau5qakNWjq2xDL/Zf8970wGlC1ohhldHbHNvQJmdHXMNiMjYa5fadhISEho5r+x25GQ+B9CJBwmKazIZAooZArYmgxALuNc/+7i0qB3xd5oUrQJeu7tiS+RX7JkzMQTxe+FAeVUQwagc5t/14uD2FiRq1C8uEhAr1wZuHMHzaftRKw6LqlKOCCSTkePBnbtQqOYAthn/N3boKNXQ+difXZ2aYY2Lbi6APnM8qGlY8sU11PlaMRHwUBuAPmQoUIeuEwZUW/E3T1D2VyNJChOlS6tW79/K3wKEEfY06cjYNhkDKs/EXdylYI+rWCucsaOE7nRbu0/CI0O/fXrSovBg1HOtAgGvrGFxxmPdL0uvSv2xr3P93Dl7ZVfuMD/e/xKw0ZCQkIzkqEhIZHFPP8YCfUPh42k7D+biCiTybCixQrEqmLR/0D/LDkpLVvQDH5tbFHp+VXklsei0strmG14HWUK6ah0lFXExIiT/aJFRThR1apCRWnrVqBsWRTJVQQlc5dMqT4FAJ06AQUKoN7mK3hhAcSb5dA5T0OnYn0JhsYPhEaHYn3AevRz7peqQnxaqlPGcRTVzefNw/9r777joyzTNY7/3kkPBEKHUAIBElpABCOIKKhYgNldFT2roihFRdhVVhHL2o6KiqvAAoKKWBZdt6hnRawooCsqRcAZOoQqECC0VFJmzh8PEzIpMJlMMglc33+yvvPOO498XJ0rz30/NxMnmh6YBx8s+VjfOZ3QsqVpuq2IYJZPAVgW83sMw22zFWsOthFihbBtWzzJs5P5Zvs3wVlbceHhMHUqT/1tD9GuECZ+NbHcWwe1H0R8/XheX1X7msJF5NyjoCESYLWxEbFFTAtmD5nNv9f/m787/x6QZyavXcwL79/Hv2J+5IW/30e3kdcG5LkVkpsLs2aZgDFunOlPcDrh/fdL/Xbenmhn4eaFFJ7chQHMF8CJE6n/0Wd0zY5mX0LFG8LTcyqwo7F7d5m7Dm+teYv8wnzG9BpT6rVSczTWryUqO99MxXY64aOPzDTl6Er88+dwVKw/o7hglk8BqWk5uEqUrbndFm2j+9CxYUcuf+dyJnw+oajkLGgGDyZ2wNW8sDSc9xzvsXRH2cfY2iwbo3qO4v1173P8xPFqXqSISMUoaIgEWG1tRLyx643c1O0mxn06jj3H91T+gQsXmtOb/vUvM4yvVavKP9NXubnmt/kdOpgJ0ZdeaiaMv/eeOfWqDPYkOwezD7L81+XeL4wejdWwIc+urI+jha3iQSO7gjsaJYKGy+1i1opZDOsyjOZ1S8+w8NrRyMggZ+F/iAyLhJtvNicw9etnmsAro6InThUXzPIpyg/+HZvHsOi2Rbx85cvMXjmb3q/3ZvW+1UFZI2D+JfHyy9y2+DB9rDaM/2w8Ba6CMm+9o+cd5Bbk8ndHYH4pICJSVRQ0RAKsNjcizho8i+iwaEb+Z2TlSqjy88307N69Yfly70ngVSknB6ZPh4QE8yX7sstMwJg/3xxdexp9W/WlUVSj0uVT0dEwYQKDvz/AyvB00xidleXzknwunSooML/1LxE0vtz2JVsPby3VBO7h1aPxyCPk5ucQ1ayVmbbudJrjbCszoyUzE7Zv9z9oBLl86nTB32bZmNB3AqvuXEV4SDgpc1OY/N3kcr/gV7nOnbGN/wOz3j7IugPrmLV8Vpm3tarXisEdB9fKmRoicm5R0BCpArW1EbFBVAPe/O2bfJX6FbNXzvb/QcuWmVOODh82JygNGRK4RZYlO9uUCiUkwP33my+2GzeaeR1JST49IsQWUnpKuMc99+CKjKDt9qNmerenOdoHPjeD79tnpniX6NGYtWIWPZv3pG+rvmW+rWhH4/vvYdYscvqlEBVexxxpe8cdJuxVxvr15qe/pVMQ1PIpX4J/16Zd+Wn0T0y8aCKPLX6MS968hG2HtzcJA9gAACAASURBVFX7WgF4/HHOP16Hu44n8viSx0nLTCvztjHnj2HVvlXB3YURETkDBQ0R8XJl+yu5p/c9PPDlA2xJ3+LfQxYuNA3IX3xhBuCFhZ3xLX7JyoKXXjIBY+JEU6K1cSO89ZY5mraC7Il2nAec7Di6w/uF+vXJuWsU120AV0iIz+VTLreLI7lHfNvRKGNYX+qRVBZuXsj4lPHlTo534yY832V2jVJSyO3Ukch9B0wD/OTJPq3ztBwOswXQubP/zwhy+ZQvwT88JJzJl0/m29u/JS0rjR5zevD6qiAcI9ugATzzDM/O3kSYy2LSokll3ja442DiYuK0qyEiNZqChoiUMmXQFFrWa8lt/3ebf2Ukn35qSpWOHYNRowK/wKwsePFFaNfOHEE7dChs3gzz5pm+DD9d1eEqwmxhLNhUelej3sQ/Y7MssmMifA4aR3OP4nK7KjYVvNiOxuwVs4mNjOX33crvsXC5XfzPf7bBtm3wxhvkHDlA1K598Oc/Q/PSPR0V5nSaP9OoKP+fEezTpyqgX5t+rLlrDTcn38ydn9zJb97/DfszKzY7pdJGj6Zhx+5MXt2Qt9e+zbLdy0rdEmoL5Y7z7uBdx7tk5fleyiciUp0UNESklDrhdXjnd++w/NflvPDfCg5527kT1q2D9HTThO3HzkK5MjPN0Lm2beGRR+B3vzMBY+5cs6tRSfUi6nFp20vLLJ+ymjZl0RXtiMjIgVWrfHpeenY6gG87Grt3Q/36UM8cAZydn80bq99gVM9RRIeVf2JU/M5jXP/xFvPn0aULOWtXEhUebXpUAqEyjeDFBfn0qYqIiYjhNftrfPz7j1n+63KSZyfz0YaPqm8BISEwfTqjPthO74h2jP90vPdpaCeN6jmK4yeO86/1NT/Aici5SUFDRMrUt3VfHur3EE8ufbJideALF0JoqAkbY0ofx+qXjAx47jkTMB57DK6/HrZuhddeM7saAWRPtLNkx5Iyjw7dMfJ6LJcb95o1Zk7FGaTnnAwavu5oFCubet/5PkdzjzL2grHlv6eggD++9gt7W9SFhx+GTz8l9/BBIrv2gIiIM3+mLypztG1xQS6f8oc9yY5zrJOL21zMdf+8jjv+c0f1HSk7YAAh1w9j5vsZrN6/mtdWvVbqlnYN2jEoYZDKp0SkxlLQEJFyPTHgCbo17catH91KbkGub29auNAMd4uNheuuq9wCjh+HZ581AePJJ81vxbduhTlzID6+cs8uhz3RTr4rny+3fVnqtc49B/FFB7Dy831qCK/QjkaxoOF2u5mxfAZDEoeQ0OA0OzXTp9NhxzFeuauX6aOYMIGcJrFExftfPubl4EFISwvMjkYtKp8qrkmdJnx444fM+808Plj/Ad1nd+fbnd9Wz4e/+CIXbsxglOs8Hv3mUQ5lHyp1y5jzx7Bs9zLWHVhXPWsSEakABQ0RKVd4SDh/u/ZvbDm8hce+eezMb8jOhm++MadNDR/uf13/sWPw9NMmYPzv/8JNN5mA8corZQ60C6R2DdrRtUnXMsunesf15olLT/7F9OlnfNbhnMOAjzsau3cX9Wf8sOcH1uxfw7gLxpV//7Zt8Nhj/OfKNmxLagwzZ8K2beTEtyQqtBL9FMWtO/nlNRBBA06VT+0JwJyWamRZFnf0vIO1d6+lTf02DHhrAA9+9SAnCk5U7Qe3bQsTJ/LcX9fjdhXyyNePlLrlt51+S+Poxsz9eW7VrkVExA8KGiJyWt2aduPZy57lpR9eOvNvchcvNsPyMjL8m51x9Cg89ZT5gvXssyaspKaaL9Eljn2tSvZEO59u+bRUXXyDqAZk9EgkLyIUPvjAzAs5jfScdKLDookMjTzzhxbb0Zi5fCYdGnbgyvZXln2v2w133gnNmvHm9e2xTuSZP7e77yY33PLt83zhdJrp6JVosPfiKZ/64IPAPK+atWvQjsUjFvP8Fc8z7cdpXPD6BfyS9kvVfuhDD9GkThOe2ZHA3J/nsuLXFV4vh4eEM6LHCN755R3fdx1FRKqJgoaInNGEPhO4uM3FjPi/EWScyCj/xoULzYC7Xr2gRw/fP+DIEXjiCRMwnn8eRowwAeOvfzVlWNXMnmTnUPYhftzzY6nXUlqm4IyPMmVd77132uf4PBU8K8vsArVpw/7M/fx7/b8Zd8G4UxO/S5o3z+wcvfoq2RE2bE4n2Gzw1FPk5OcQFRagHQ2HwxxrG6jjiWtp+VRxIbYQHuz3ICvGmC/8F7x+AS9+/2KZzdoBUacOvPACd81dQ/c6CYz7dBwut8vrltHnj+ZwzuHqbVgXEfGBgoaInFGILYS3fvcWh7IP8acv/lT2TW43fPyxKZ/ytQn88GHT3N22rTmuduRIEzCmTYO4uICtv6IubHkhjaMbl1k+lRKXwuctsnBHRJgG9dM0hafnpNMwquGZP3D3bvOzdWteX/U6YSFh3H7e7WXfu3evGUo4YgRceSXujAysralmR6NxY3IKcgJXOhWoE6eKq6XlUyX1aN6DFWNWcO+F9zJp0SQGvj2w9PyVQLn5ZkIv7MushbBi7wrmrZ7n9XKnxp3o36a/msJFpMZR0BARnyQ0SGDqVVOZu3oun2z+pPQN69aZo0sjIkxPxemkp8Ojj5qA8dJLJphs3w4vvwwtWlTJ+isixBbCkI5Dyg4aLVNY1cyFdeIEbNoEH5X/W+T0HB+ngp+coZHfsgVzVs1hePJwYiNjy753/HjzZ/zyy+B249qyCVu9ejDWnE6VW5AbmNIpzwT0QAeNWl4+VVxEaARTBk1h8YjF7Dq2i+6zu/PWmrcCP+TPsmD6dPot2catkRfy0KKHivp/PMacP4bFOxaz9fDWwH62iEglKGiIiM9G9RzFkI5DGP3xaA5mHfR+8ZNPzBeiG24omgVRyqFD5hjWtm3NrsXdd8OOHfCXv0CzZlW9/AqxJ9pZf3A9qUdSva6f1/w81sWFnvyL88z07XK+WPpcOrVrF1gWH2euYm/GXsallNME/sEHJtjMnAkNG8IHH+A+dgyrV6+i8qaAlU7t3m3KwwJxtG1xZ0H5VEmXtr2UX8b+wvVdrueO/9zBdf+8rvT/Pyrrggvg9tuZMmszeQUnSh3OMKzLMGIjY3nj5zcC+7kiIpWgoCEiPrMsi7m/mUuBq4C7F97t/Zvb994zX7jHljH34eBBmDTJBIwZM2DcOBMwpkyBpk2ra/kVcmX7KwkPCS81JTwiNIL6nc4jJyoMeveG1avh88/LfEZ6TgWCRosWzFg9h0viL6F7s+6l7zlyxPy5/fa3MGwY5OTAAw/gatQQW1wrwByLG7DSKc/xvYHe0YCzpnyquHoR9Xjzt2/y4Y0f8t9d/6Xb7G5l7/xVxuTJND+Sz1PHz2fOqjle822iwqIYnjycN9e8SX7h6Q8pEBGpLgoaIlIhzes2Z87QOXy44UPedbxrLh45Yr6YNm8OffueujktDSZONAHjlVfgj380AeP556FJk2As32cxETEMaDugzPKpC1pfaHY1MjOhTx+zq1GG9GwfS6d27ya7RWOW7lxa/pG2999vTvR65RWzc/Tyy7B3L+6EdliWBUBeYR5AYEqnnE6oW7dqjhM+i8qnSrq287U4xjq4IO4C7H+3c+eCO8nMywzMw1u0gD//mfFTv6dzTALjPxvv1Rg+ptcY0rLSAh9wRET8pKAhIhU2rMswhncfzvhPx7P72G4z7dntNr0WlgX795svxu3awauvwoQJJmBMngyNGwd7+T6zJ9pZunMpx3KPeV1PaZnCD41yKFyzGh55BP77X/i29NG/FdnRWB+VSYu6Lbi207WlX1+0CN580zTMx8WZXpjJk+GPf8QVGVF0OlVOQQ5AYEqnPP0ZJ0NMQJ2F5VPFNa/bnAU3LeDVoa/ynuM9eszpwbLdywLz8PvuI6x1W2b+0IBlu5cx/5f5RS91b9adlJYpagoXkRpDQUNE/DLjmhk0tvXmtleWcsPmNkz6/TQcA683oaJdO5g7Fx54wASMZ56BRj584a5h7Il2ClwFfLHtC6/rKS1TWNMcbJu3wMCBpo+hxK5GbkEu2fnZPu1oFO7cwX/Zxd297yYspMRRsllZZmbGgAGnZpM89JA59vSxx3C73ViYMJCTfzJoBKJ0yuEIfH9GcWdh+VRxlmVxZ687WXP3GprVaUb/N/vz6NePFu06+e3kQQAD/rWC3ze8hAe/etArCI85fwyfb/2cXcd2VfLvQESk8hQ0RMQvu9NCaJP5LO7s9hyKbMDKhBQmLMrC8flPph9jxw4z1buhD8e71lDxsfEkN00uVT6V2CiRrW3qYLlcsH692dX44gtYubLonvTsdIAz72i43bh372JnPRd39rqz9OuPPQb79sHrr5vdhR9/hPnzzUDD+vVxuV1FOxqegW2VLp0qKIANG6qmP8PjLC6fKq5Dww58e8e3PD3waaYsm0KfuX1Yd2Bd5R5qt8OgQbw4dxeZeZk8ueTJopd+3+331AmvU+oIXBGRYFDQEBG/zF+yFwsLixAAXLYQ3DYb8x94DZ58Eho0CO4CA8QzJbzAVVB0zWbZiO5xAYU2C9asMSdtdehg5mqclJ5zMmicYUfDdSCN0LwCWnW7iOZ1m3u/uHw5TJ9uAluHDuBywb33mtOuRo4EwE2xHY1AlU5t2wYnTlRt0DjLy6eKC7WF8kj/R/hp9E/kFuTS67VeTPtxWqnBez6zLJg6lVbrdvM4lzJj+QwcaQ4A6obX5aZuNzFv9byqGyIoIuIjBQ0R8UtqWjauEqe6urCRmn52nXhjT7JzOOcwP+z+wet6z3Z92dw0BPfq1RASYnZxPvzQ7HDg+47GT8vMF+3LL7nD+4W8PBg1Cnr2NOVoAO++eyp8hJwMeMV2NAJWOuUwX1qrtHQKzvryqZLOb3E+q+5cxdjeY5nwxQQG/W2Q/yVOXbvCPfdw35Rv6VC/HX/47A9Fp8CNOX8Mu4/vLlXyJyJS3RQ0RMQvCc2isZXoE7ZZ5vrZJKVlCk3rNC1VPpXSMoWVTQvI+3mFuXDbbdCqlTlRC993NBZ/9w4APS4Y6v3CCy+Y8qW5cyH05AlXkyaZ3ZNLLim6ze12F506FbDSKafTHDtc1SeDnSPlU8VFhUUx9eqpLLp1EZvTN9N9dnfm/zLfvyF/Tz5JeEg4f93cnqU7l/K+830Aesf1pkezHmoKF5GgU9AQEb8MHxCHZVEUNmyWqei4dWBccBcWYDbLVuaUcE9DeIhjHRQWQni4aX5/7z3Yvp307HRslq38Cd/A9iPbObBhJQURYVjFv9SvXw9PP22CxXnnmWvPPw+HD5vZI8V47WgEqnSqKiaCl+UcKp8q6fKEy3GMdTA0cSi3fnQr//Pv/ynaBfNZw4bw9NNcOftLrms+kAe+eoCMExlYlsWY88ewYNMC9mXsq5q/ARERHyhoiIhfkuNjmDqyM73b16dxTBi929dn2qjOdGsTE+ylBZw90c7GQxvZenhr0bW4mDj2tGtEaE6u6WkAc7xvgwYwZQrpOek0iGxQFALKMnvlbDpmRmBr0/bUMbKFheZ0qYQE0wgOsH27mZ7umUlSjFePRqBKp6oraMA5Vz5VXGxkLPOvm88/hv2DRamLSJ6dzOdbyx7+WK4774SuXXn5X8c5knOEp799GoBbut9CeEg4b615K/ALFxHxkYKGiPgtOT6GF0Yk8a8He/LCiKSzMmQADGo/qMwp4ZG9LjT/Y80a8zM62vRTzJtH+sFdpy2bysnP4Y3Vb3CxFY+t+FC8V16BH34wp0xFniyBmjjRzB956KFSzwn4qVM5ObBlS9X3Z3icg+VTJd3Y9UYcYx0kN0vmmnevYdzCcWTlZfn25tBQmDaN+K9X8UjsUKb+OJWNhzYSGxnLDV1vYO7quf43nYuIVJKChojIGdQNr8tl7S4rVT7VuXN/9tS3cK3++dTFe+6ByEjSf/7vaRvB33e+z5GcIyRlR52avr1zJzz8sHlG//7m2pIl5kv488+b2RklFO/RCEjp1MaN5nSr6trROIfLp4prWa8ln9/yOTOvmcmba96k56s9+WnPT769+fLL4dpreeDFZcTXa1PUGD6652hSj6SyePviql28iEg5FDRERHxgT7Tz3a7vOJp7tOjahS0vZHUzN1krik19jo2F8eNJ37mRRqFl7/C43W5mLJ/B4I6Didx7wAQNtxvuusuUXnmOyS0shPvugz594Oaby3xWyVOnbJaNMFtYmff6xOk0P7t08f8ZFXUOl08VZ1kW41LGsfqu1cRGxtJvXj+eXPIk+YU+nOT2l78Que8g049cyKLURXy44UMubnMxnRp3UlO4iASNgoaIiA+GJg6lwFXgVUPfK64Xa5tDyFqH98333Ud6lJtG29PKfNaPe35k9f7VjO9xJ+zfD61bmyF8X3wBc+ZAvXrmxjfegLVrzXG2trL/dV28RyO3IJfI0MiiHQ6/OBwQH39qDdVB5VNekhon8f3I73nsksd45ttnuGjeRWw6tOn0b0pIgPvvZ8gLH2FvfQUTvphAdn42o3uO5qONH3Eo+1D1LF5EpBgFDRERH7Sp34YezXp4lU/Vi6hHesdWRB86CmnFQkWTJqQ3r0ej1RshI6PUs2atmEX7Bu25Mqqr2cmIiTE7FzffDEOGmJuOHoVHHzXH5qaklLuukqdOBaQRvLr6MzxiY3FcO4pJm2K5YcpqJr29CcfO0n9u55KwkDCeGPAEy0Yt4/iJ4/R8tSczl888/TG4Dz8MDRowbXEEB7IO8Nx/n+O2Hrfhdrt5Z+071bd4EZGTFDRERHxkT7Tz2ZbPvKaEh/c+GQLWrvW6Nz3aotGxfLNDUUxaZhr/XPdPxl0wDtvuk6VCb79tTp2aNu3UjU8/bRqzi00bL4tXj0Z+Tu052rYYx84MJiTezsoGiRzKyGfltmNMmLfhnA8bYI5RXn3Xakb2HMkfPvsDV797Nb8e/7Xsm2Ni4PnnSZi/kEmtb+LFZS9yNPco13a+lrk/z/VvVoeISCUoaIiI+MieZOdI7hG+3/V90bW2PS8jIxzyV60ouuZyuziSd4xGPfrCSy9Bbm7Ra6///DphIWHcft7tsOvkVOhPPzXlUZ5ZGps2wV//Co88AnGnn0tS8tSpSp04dewY7N5d7UFj/pK9uC0Ll80z7dxs9Mxfsrda11FTRYdFM3PwTD6/5XMcaQ6SZyfzD+c/yr55+HBISWHSzNW0qNuCez+/l9E9R7Ph0AaW7V5W9ntERKqIgoaIiI96x/Wmed3mfLL5k6JrKa37sLYZHPtpadG1o7lHcbldNPrN/8DBgzBvHgAFrgLmrJzDLcm30CCqgTlG1rJg8GDvZu8//clMGf/Tn864Jq85GpUtnfI0gldz6VRqWjauEr9sd7nNdTnlqg5X4Rjr4IqEK/j9B7/nlg9v4UjOEe+bbDaYPp3olWuZFjKEz7Z+RlZ+Fu1i26kpXESqnYKGiIiPypoSntwsGUecDWvtL0XXPBOeGyV0MycqTZkC+fn8Z+N/+DXjV8ZdMM7c+O9/m6Axe/apgX2ffWZ2OP7yl1NzNE6j5KlTldrRcDohJASSkvx/hh8SmkUXTZj3sFnmunhrFN2Ifwz7B/Ovnc/CzQtJnp3MotRF3jf16QO33spvn/4nV8Vfzp+++BMjeozgn+v+6XVqmohIVVPQEBGpAHuinU3pm9iSvgWA8JBwjiS1pcGuA5BtfgOfnnMyaEQ3Mg26O3fC3//OzBUz6d+mPz2a94ClS2HDBuja9dQcjfx8s4sxYABcd51P6yneo5FbmFu5Hg2nExITISLC/2f4YfiAOCyLorBhs0zuunXg6cvGzlWWZXFL91twjHWQ1DiJQX8bxH2f31c0GR6A557Dys7hr+vasOf4HjLyMsgrzOM9x3vBW7iInHMUNEREKuCKhCuICInw2tUIP/8CbC53UelR0Y5GVCPo3h3sdnKfeZKlqUvMbkZODowebSaJX3LJqYe/8gps3myawn08orbkjkalS6equT8DzIT5qSM707t9fRrHhNG7fX2mjep81k6aD5TW9Vvz1a1fMe2qacxZOYder/Vi1d5V5sWWLeGRR0ic9jfuT7qdWStmMbDtQF7/+XU1hYtItVHQEBGpgDrhdbg84XKvoNGq71UUWJC13DSJe+1oADzyCJFbtjNyRyzXdr4WnnrKNIJblplZAaaX44knYMwY6NHD5/WU7NHwu3TK7TYzNKr7aNuTkuNjeGFEEv96sCcvjEhSyPCRzbJxb597+fmun4kMjaTPG3149ttnzcloJ3t9/jx/F42jG5OZl8ma/WtYtW9VsJctIucIBQ0RkQqyJ9r5bud3RY24vdpfzMbGkP7DN4DZ0YgOiy760n/svM4sSbDx9A+RhK9xmP6LBx+ErKxTZVOPP25+Pv10hdZS8tQpv0un0tIgPT0oOxpSeV2adOHH0T8yqd8kHl/yOP3f7M/W7D3w0kvUWfAFLzUZzo+//kijqEa8vkpN4SJSPRQ0REQqaGjiUArdhUVTwjs07MD6lmFYv5hZGuk56aZs6qS3177N5P7QYst+0xzeteupHozWreGXX+C118yOhueIWx+VmqPhb+mU58QpBY1aKzwknGcue4bv7viOg1kH6TGnB6+2PoB74EBueOZDLosfiNvt5l3Hu2TmZQZ7uSJyDlDQEBGpoFb1WtGzec+i8inLsjjWqR2Nt+wFl4v07PSisimX28WsFbNoOGSYObI2NRXeeAP27TMPa93aTAXv2BHGjavwWgI2R8PhgKgoSEjw7/1SY1zU+iLW3L2G4cnDufvTsYy/Mh+2bGVGegrH846TlZ9V/hwOEZEAUtAQEfGDPdHOZ1s/I78wH4DQ83sTdaIQ99atXjsai1IXsTl9Mw80+a0pTwLTDL5rlzlK9qefYPFiePllCA+v8DoCNkfD6YQuXcyapNarG16XV+2vsuCmBXwQuoU3U8Lo8NQM7k0eQ4gVwszlM4O9RBE5ByhoiIj4wZ5k52juUb7fbRrAW/YfDMChZYs4nHO4aEdj1opZnNekO70en2P6Mbp0gcmTzQTuuDjTq3HNNWZonx9KnTrlb49GkE6ckqo1NHEojrEOlo68nKz8bAa89iV1w+uSut/FPa+v5IYpq5n09iYcOzOCvVQROQspaIiI+OH8FufTom4LFmwy5VM9ul3BnhgTNDw7GjuO7mDBpgXM2JOM9d138Prr8Oc/43DuZVJGF2644TUm9bkPx0NT/F6H1xwNf0unXC5Yt05B4yzVpE4T3hr9CZv/cAuDP99GwrEunFc4mw27CjiUkc/KbceYMG+DwoaIBJyChoiIH2yWjaGJQ4v6NJrVbcam1lGwdo3p0YhqxOwVs+l8IoZ+Mz82czMGDsRx4TVMuG0OK2MSOBTdkJUJKUz4OtvvL3leOxr+lk7t2GFOwArS0bZS9SzL4sJn36QgsQMpB28+WW5n/rlxuc3pxvOX7A3uIkXkrKOgISLiJ3uinS2Ht7Dp0CYAjnZqS+PNv5Kek05MRAxv/DyXf37TGKtuXXjxRQDmf5eG22bDZTO9EC7LVqkveV49Gv6WTunEqXNDWBjh02eSXqctFt69OC43pKZlB2lhInK2UtAQEfHT5QmXExkaWbSrEXZ+b2Iy88jOz2ZL+hYGrThM159SzcTv2FjAfJlz4T31uzJf8jw7GoWuQvJd+f6VTjmdZn1xcX6tQWqRq64igePYXIVel20WJDSLDtKiRORspaAhIuKn6LBorki4oihoNL/4atJPbij8tHERs78Kh2HD4He/K3pPQrNobN45o1Jf8jw9GrkFuQD+lU45HGY3w7LOfK/UesNv7ImFGxsuwPzzZ1lw60AFTREJLAUNEZFKsCfa+X7X9xzOOQxxl/HU9dPoW7CADjvvY3tcT5gxw+v+4QPisCyKwkZlv+R5djRyCnIA/C+dUn/GOSO5X2emFnxH7+0raBxto3f7+kwb1ZlubWKCvTQROcuEBnsBIiK12dDEodz1yV28+cNiPlvaGlfLFCII4VhsIyYO68PUE3Uo/hU+OT6GqSM7M3/JXlLTskloFs2tA+P8/pLn6dHw7GhUuHQqLw82boSxY/36fKmdkh8dywsdOwKD4OH5wV6OiJylFDRERCohLiaOXi168eXKAtxucFsnm7xtIdgs0+T9wogkr/ckx8eUuuavoh2N/JM7GhUtndqyBQoK1Ah+rqlXD557DkaNgnvugYsuCvaKROQspNIpEZFKsifaycyMweX2vl4dJ/l4ejT8Lp1yOMxPBY1zz+23Q69ecO+9ZpaKiEiAKWiIiFSSPclOhnsLluWdNKrjJB/PjobfpVNOpzltqmHDKlid1Gg2G0yfDitXwjvvBHs1InIWUtAQEamkns17kh2zALfbHbAmb195ejT8Lp1yOrWbcS7r1w9uugkeegiOHw/2akTkLKOgISJSSZZlcUWXDqTF/i+92tejcUxYtZ3kU+lTpzxH28q5a8oUyMiAyZODvRIROcuoGVxEJADsiXZeXTWUD257ic5Nelbb55aco1Gh0qmsLEhN1dG257pWrcyOxjPPwOjR0KFDsFckImcJ7WiIiATAZe0uIyo0qmh4X3Wp1KlT69ebn9rRkAcegObN4f77g70SETmLKGiIiARAVFiU15Tw6lLUo3GydKpCOxpOp2kk6dKlilYntUZUFPzlL/Dxx/Dll8FejYicJRQ0REQCxJ5oZ9nuZaRnp1fL57nd5pQrz6lTYbYwQmwhvj/A4YD27SG6ak/Gklpi2DC45BKYMAHy84O9GhE5CyhoiIgEyNDEobjcLj7d8mm1fJ4bEzQsy5w6VeFGcJ04JcVZljnudsMGmDMn2KsRkbOAgoaISIC0iGlB77je1VY+5XKbIWueU6d0tK1U2nnnwZgx8PjjcOhQsFcjIrWcgoaISADZE+18vvVz8grzqvyzPKVTFubUqQr1Z6Snw759ChpS2jPPgNsN50COhwAADqVJREFUTzwR7JWISC2noCEiEkD2RDsZeRl8u/PbKv8srx2NipZOOZ3mp462lZKaNDEhY84c08cjIuInBQ0RkQA6r/l5tKrXigWbqr58yqtHo6KlU04nhIVBx45VtDqp1caNM/9s3Huv2d0QEfGDgoaISABZlsXQjkNZsHlBUWlTVSm+o1Hh0imnEzp1MmFDpKTwcJg6FRYvhv/7v2CvRkRqKQUNEZEAsyfZ2X50O+sPrq/Szyneo5FTUMHSKYdD/RlyetdcA4MHmyF+ubnBXo2I1EIKGiIiAXZZu8uIDouu8tOnSvZo+Lyj4XabHQ31Z8iZvPwy7N5tdjdERCpIQUNEJMAiQyMZlDCoyoNG8R6N3IJc33s0fv0Vjh3TjoacWVIS/PGP8OyzsHdvsFcjIrWMgoaISBWwJ9r5YfcPHMw6WGWfUWqOhq+lU56ThBQ0xBePPWamxz/8cLBXIiK1jIKGiEgVGJI4BDfuKp0S7tWjkZ9DZIiPpVNOJ9StC/HxVbY2OYvExpodjXfegZ9+CvZqRKQWUdAQEakCzes2J6VlSpWWT3lKpzynTvm8o+F0QteuYNN/AsRHI0eaqeH33gsuV7BXIyK1hP4rIyJSReyJdr7Y9gUnCk5UyfM9pVMVnqPhdKpsSiomJASmTzc7Gu++G+zViEgtoaAhIlJF7Il2MvMyWbpzaZU831M6VaE5GoWFsH69goZU3CWXwI03wqRJkJkZ7NWISC2goCEiUkW6N+tO63qtq2xKeNGOxskeDZ9Kp7ZtMzMRdLSt+GPKFDhyBJ57LtgrEZFaQEFDRKSKWJaFPdFeZVPCi/do+Fw65XSan9rREH/Ex8ODD8JLL0FqarBXIyI1nIKGiEgVsifZ2XlsJ84DzoA/27OjAfheOuVwQOPG0LRpwNcj54gHH8TR9WImzVjODVNWM+ntTTh2ZgR7VSJSAyloiIhUoQFtB1AnrE6VnD7l2SVxuV243C7fSqc8E8EtK+DrkXOD45CLCYOfZWV0PIcy8lm57RgT5m1Q2BCRUhQ0RESqUGRoJFe2v7JKgoZnRyO/MB/A99IplU1JJcxfshe3ZeGyhQDgcoPbba6LiBSnoCEiUsXsiXZ+2vMTB7IOBPS5nh6NAlcBwJlLp3JzYcsWBQ2plNS0bFwlWo5cbnNdRKQ4BQ0RkSo2JHEIAAs3Lwzocz07GnmuPIAzl05t3GiOt1XQkEpIaBaNrUTlnc0y10VEilPQEBGpYk3rNOXCVhcGvHzK06Phc+mUTpySABg+IA7Loihs2CzT8nPrwLjgLkxEahwFDRGRamBPtPPlti/JLcgN2DNL9micsXTK6YQ2baBevYCtQc49yfExTB3Zmd7t69M4Joze7eszbVRnurWJCfbSRKSGCQ32AkREzgX2RDuPfvMoS3Ys4eoOVwfkmZ4ejXzXyR2NM5VOqRFcAiQ5PoYXRiQFexkiUsNpR0NEpBp0a9qN+PrxAZ0SXtSjUXiyR+NMpVMOh4KGiIhUGwUNEZFqUBVTwot6NFw+lE4dPw67dpkZGiIiItVAQUNEpJrYk+zsPr6bX9J+CcjzSu1onK50at0681M7GiIiUk0UNEREqsml8ZdSN7xuwE6f8vRo+FQ65XBASAh06hSQzxYRETkTBQ0RkWoSERrBVe2vCljQKH7qlIVFeEh4+Tc7ndCxI0Se4WQqERGRAFHQEBGpRvZEO8t/Xc7+zP2VfpanRyOvMI/I0Egsyyr/Zp04JSIi1UxBQ0SkGg3uOBgLKyBTwj07GicKT+hoWxERqXEUNEREqlGTOk3o27pvQMqniuZoFOaf/sSptDQ4eFBBQ0REqpWChohINbMn2vkq9atKTwn32tE4XSO402l+6mhbERGpRgoaIiLVzJ5oJzs/m2+2f1Op5xTv0Tht6ZTTCRER0L59pT5PRESkIhQ0RESqWZcmXWgX267SU8KLz9E4bemUwwFdupjjbUVERKqJgoaISDXzTAn/ZMsnlZoS7unR8Kl0SmVTIiJSzRQ0RESCwJ5kZ8/xPazZv8bvZxT1aBSc5tQpl8tMBVcjuIiIVDMFDRGRILgk/hLqRdSr1OlTJedolGnXLsjMVNAQEZFqp6AhIhIE4SHhlZ4S7tOpUw6H+amgISIi1UxBQ0QkSOyJdlbuXcnejL1+vb+oR6PgRPk7Gk4n1K8PrVr5u0wRERG/KGiIiATJ4I6DsVk2v6eEFz91qtwdDc9EcMvyd5kiIiJ+UdAQEQmSRtGNuKj1RX6XT3l6NHILcstvBnc4VDYlIiJBoaAhIhJE9kQ7i1IXkZOfU+H3Fu/RKLN0Kj8fNm5U0BARkaBQ0BARCSJ7op2cghy+3v51hd9bvEejzNKpLVtM2NAMDRERCQIFDRGRIOrUuBPtG7T3a0q4Z0ej3NIpp9P87Nq1MksUERHxi4KGiEgQVWZK+BnnaDgc0Lw5NG4ciKWKiIhUiIKGiEiQ2ZPs7M3Yy+r9qyv0vjPO0XA6VTYlIiJBo6AhIhJk/dv0p35E/QqXT3l6NIDyS6fUCC4iIkGioCEiEmRhIWFc3eHqCh9z69nRAEqXTmVlwbZtChoiIhI0ChoiIjWAPdHOqn2rKjQlvHhPR6nSqQ0bwO1W0BARkaBR0BARqQGu6XgNIVYIn2z+xOf3FN/RKFU6pROnREQkyBQ0RERqgIZRDenXpl+FyqeK92iUKp1yOiEhAerUCdQSRUREKkRBQ0SkhvBMCc/Oz/bpfq8djZKlUw6HyqZERCSoFDRERGoIe6Kd3IJcvk71bUq4V49GWaVTChoiIhJEChoiIjVEUuMkOjbs6HP5VLmnTh0+DHv3aoaGiIgElYKGiEgNYk+088nmT7xCRHm85mgUL53yNIJrR0NERIJIQUNEpAaxJ9nZl7mPn/f9fMZ7yz11yumE0FBITKyKJYqIiPhEQUNEpAbp17ofsZGxPk0JL96j4VU65XRCp04QHl4VSxQREfGJgoaISA0SFhLGNR2u8alPw7OjEWoLJdQWeuoFNYKLiEgNoKAhIlLD2BPtrN6/mj3H95z2Pk+Phld/htuto21FRKRGUNAQEalhru5wtU9Twj07Gl5lU3v3wtGjChoiIhJ0ChoiIjVMg6gG9I/vf8byKU+PRpknTuloWxERCTIFDRGRGsieaOfr1K/Jyssq956iHY2wEo3g0dHQtm0Vr1BEROT0FDRERGoge6KdE4UnWJS6qNx7yuzRcDiga1ew6V/vIiISXPovkYhIDdSxUUeSGiWdtnzKs6NRqnRKZVMiIlIDKGiIiNRQZ5oSXtSj4RnWV1gI69erEVxERGoEBQ0RkRrKnmQnLSuNlXtXlvl6qVOnUlMhJ0dBQ0REagQFDRGRGuqi1hfRILJBuVPCi3o0PDsanhOnFDRERKQGUNAQEamhQm2hDO44uNw+jVI9Gk4nNGoEzZtX1xJFRETKpaAhIlKDDU0cytq0tew6tqvUa263GwvrVOmU02l2MyyrmlcpIiJSmoKGiEgNdnWHqwm1hZY5JbzUjobDobIpERGpMRQ0RERqsNjIWPq3KXtKuFePxokTsHmzgoaIiNQYChoiIjWcPdHON9u/ITMv0+u616lTmzaZ4201Q0NERGoIBQ0RkRrOnmQnrzCPr7Z95XXd7Xbjxm1KpxwOc7Fr1yCsUEREpDQFDRGRGq5Dww50atypVPmU146G0wmtWkFsbDCWKCIiUoqChohILWBPtLNwy0KvKeFePRpOp8qmRESkRlHQEBGpBeyJdg5kHWD5r8uLruUX5gMnT53yHG0rIiJSQyhoiIjUAn1b96VhVEOvKeF5hXkA1D3hhh07FDRERKRGUdAQEakFypoS7gkaTXccNBcUNEREpAZR0BARqSXsiXYcBxzsPLoTOBU0Gm3bBzYbdO4czOWJiIh4UdAQEaklrmp/FaG20KJdDU/QqL9lF3ToAFFRwVyeiIiIFwUNEZFaon5kfS6Nv7QoaHiawWO27FTZlIiI1DgKGiIitYg90c6SHUvIOJHBicITAERvStXRtiIiUuMoaIiI1CKeKeFfbvuSAlcBTTIh9NBh7WiIiEiNExrsBYiIiO8SGiTQpUkXFmxeQH5hPt0OnHxBQUNERGoY7WiIiNQyninheQV5dDsA7ogI0wwuIiJSgyhoiIjUMvZEO4eyD5GWnWaCRqckCNUGtYiI1CwKGiIitUyfVn1oHN2YXzN+JfkAWMndg70kERGRUhQ0RERqmRBbCIM7DiYt0+xoWOrPEBGRGkh77SIitVDvBtezOud8brunPYkh9Rm+M4Pk+JhgL0tERKSI5Xa73cFehIiI+M6xM4P75m2g0FWIRQg2CywLpo7srLAhIiI1hkqnRERqmflL9oIbLEIAcLnB7T55XUREpIZQ0BARqWVS07JxldiLdrnNdRERkZpCQUNEpJZJaBaNzfK+ZrPMdRERkZpCQUNEpJYZPiAOy6IobHh6NG4dGBfchYmIiBSjZnARkVrIsTOD+Uv2kpqWTUKzaG4dGEe3NmoEFxGRmkNBQ0REREREAk6lUyIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnD/D5RVlKu5NdqHAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "gId = 10\n", + "gId = 8\n", "plt.figure(figsize=(10,10))\n", "spring_pos = nx.spring_layout(graphs[gId])\n", "plt.axis(\"off\")\n", @@ -399,9 +911,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 7506\n", + "0 7506\n", + "Name: is_fraud, dtype: int64\n" + ] + } + ], "source": [ "from sklearn.utils import resample\n", "\n", @@ -420,7 +942,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ @@ -435,7 +957,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 40, "metadata": {}, "outputs": [], "source": [ @@ -446,9 +968,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Computing transition probabilities: 100%|██████████████████████████| 1672/1672 [00:01<00:00, 1476.85it/s]\n", + "Generating walks (CPU: 1): 100%|█████████████████████████████████████████| 10/10 [00:24<00:00, 2.45s/it]\n" + ] + } + ], "source": [ "from node2vec import Node2Vec\n", "from node2vec.edges import HadamardEmbedder, AverageEmbedder, WeightedL1Embedder, WeightedL2Embedder\n", @@ -459,9 +990,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 42, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Precision: 0.761485826001955\n", + "Recall: 0.5221179624664879\n", + "F1-Score: 0.6194831013916501\n", + "\n", + "Precision: 0.7349746560463433\n", + "Recall: 0.6802949061662198\n", + "F1-Score: 0.7065784893839192\n", + "\n", + "Precision: 0.6103082851637764\n", + "Recall: 0.849195710455764\n", + "F1-Score: 0.7102017937219731\n", + "\n", + "Precision: 0.611406476558724\n", + "Recall: 0.8478552278820375\n", + "F1-Score: 0.7104745857905083\n" + ] + } + ], "source": [ "from sklearn.ensemble import RandomForestClassifier \n", "from sklearn import metrics \n", @@ -494,9 +1048,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 43, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Computing transition probabilities: 100%|███████████████████████████| 1672/1672 [00:01<00:00, 999.96it/s]\n", + "Generating walks (CPU: 1): 100%|█████████████████████████████████████████| 10/10 [00:31<00:00, 3.18s/it]\n" + ] + } + ], "source": [ "nod2vec_unsup = Node2Vec(G_down, weight_key='weight')\n", "unsup_vals = nod2vec_unsup.fit(window=10)" @@ -504,9 +1067,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 44, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "NMI: 0.3514455486071317\n", + "Homogeneity: 0.3395244596151279\n", + "Completeness: 0.36430541902321095\n", + "V-Measure: 0.35147868620757017\n", + "\n", + "NMI: 0.07245485107467836\n", + "Homogeneity: 0.071565264378958\n", + "Completeness: 0.07346200214557116\n", + "V-Measure: 0.07250123002857786\n", + "\n", + "NMI: 0.06077436627865752\n", + "Homogeneity: 0.060819295892827745\n", + "Completeness: 0.06082215188793648\n", + "V-Measure: 0.06082072385685444\n", + "\n", + "NMI: 0.050716796308473665\n", + "Homogeneity: 0.0501841306223444\n", + "Completeness: 0.05135781753703392\n", + "V-Measure: 0.05076419096690334\n" + ] + } + ], "source": [ "from sklearn.cluster import KMeans\n", "\n", @@ -541,9 +1131,9 @@ "toc_visible": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "chap9", "language": "python", - "name": "python3" + "name": "chap9" }, "language_info": { "codemirror_mode": { @@ -555,9 +1145,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.8.14" } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 4 } diff --git a/Chapter09/poetry.lock b/Chapter09/poetry.lock new file mode 100644 index 0000000..2544f23 --- /dev/null +++ b/Chapter09/poetry.lock @@ -0,0 +1,1726 @@ +# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. + +[[package]] +name = "appnope" +version = "0.1.4" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = ">=3.6" +files = [ + {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, + {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, +] + +[[package]] +name = "asttokens" +version = "2.4.1" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = "*" +files = [ + {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, + {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, +] + +[package.dependencies] +six = ">=1.12.0" + +[package.extras] +astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] +test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] + +[[package]] +name = "backcall" +version = "0.2.0" +description = "Specifications for callback functions passed in to an API" +optional = false +python-versions = "*" +files = [ + {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, + {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, +] + +[[package]] +name = "bleach" +version = "6.1.0" +description = "An easy safelist-based HTML-sanitizing tool." +optional = false +python-versions = ">=3.8" +files = [ + {file = "bleach-6.1.0-py3-none-any.whl", hash = "sha256:3225f354cfc436b9789c66c4ee030194bee0568fbf9cbdad3bc8b5c26c5f12b6"}, + {file = "bleach-6.1.0.tar.gz", hash = "sha256:0a31f1837963c41d46bbf1331b8778e1308ea0791db03cc4e7357b97cf42a8fe"}, +] + +[package.dependencies] +six = ">=1.9.0" +webencodings = "*" + +[package.extras] +css = ["tinycss2 (>=1.1.0,<1.3)"] + +[[package]] +name = "certifi" +version = "2024.8.30" +description = "Python package for providing Mozilla's CA Bundle." +optional = false +python-versions = ">=3.6" +files = [ + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, +] + +[[package]] +name = "cffi" +version = "1.17.1" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, +] + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "charset-normalizer" +version = "3.4.0" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:4f9fc98dad6c2eaa32fc3af1417d95b5e3d08aff968df0cd320066def971f9a6"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0de7b687289d3c1b3e8660d0741874abe7888100efe14bd0f9fd7141bcbda92b"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5ed2e36c3e9b4f21dd9422f6893dec0abf2cca553af509b10cd630f878d3eb99"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40d3ff7fc90b98c637bda91c89d51264a3dcf210cade3a2c6f838c7268d7a4ca"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1110e22af8ca26b90bd6364fe4c763329b0ebf1ee213ba32b68c73de5752323d"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:86f4e8cca779080f66ff4f191a685ced73d2f72d50216f7112185dc02b90b9b7"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f683ddc7eedd742e2889d2bfb96d69573fde1d92fcb811979cdb7165bb9c7d3"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:27623ba66c183eca01bf9ff833875b459cad267aeeb044477fedac35e19ba907"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f606a1881d2663630ea5b8ce2efe2111740df4b687bd78b34a8131baa007f79b"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0b309d1747110feb25d7ed6b01afdec269c647d382c857ef4663bbe6ad95a912"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:136815f06a3ae311fae551c3df1f998a1ebd01ddd424aa5603a4336997629e95"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:14215b71a762336254351b00ec720a8e85cada43b987da5a042e4ce3e82bd68e"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:79983512b108e4a164b9c8d34de3992f76d48cadc9554c9e60b43f308988aabe"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-win32.whl", hash = "sha256:c94057af19bc953643a33581844649a7fdab902624d2eb739738a30e2b3e60fc"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:55f56e2ebd4e3bc50442fbc0888c9d8c94e4e06a933804e2af3e89e2f9c1c749"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0d99dd8ff461990f12d6e42c7347fd9ab2532fb70e9621ba520f9e8637161d7c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c57516e58fd17d03ebe67e181a4e4e2ccab1168f8c2976c6a334d4f819fe5944"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6dba5d19c4dfab08e58d5b36304b3f92f3bd5d42c1a3fa37b5ba5cdf6dfcbcee"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf4475b82be41b07cc5e5ff94810e6a01f276e37c2d55571e3fe175e467a1a1c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ce031db0408e487fd2775d745ce30a7cd2923667cf3b69d48d219f1d8f5ddeb6"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ff4e7cdfdb1ab5698e675ca622e72d58a6fa2a8aa58195de0c0061288e6e3ea"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3710a9751938947e6327ea9f3ea6332a09bf0ba0c09cae9cb1f250bd1f1549bc"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82357d85de703176b5587dbe6ade8ff67f9f69a41c0733cf2425378b49954de5"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:47334db71978b23ebcf3c0f9f5ee98b8d65992b65c9c4f2d34c2eaf5bcaf0594"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8ce7fd6767a1cc5a92a639b391891bf1c268b03ec7e021c7d6d902285259685c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f1a2f519ae173b5b6a2c9d5fa3116ce16e48b3462c8b96dfdded11055e3d6365"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:63bc5c4ae26e4bc6be6469943b8253c0fd4e4186c43ad46e713ea61a0ba49129"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:bcb4f8ea87d03bc51ad04add8ceaf9b0f085ac045ab4d74e73bbc2dc033f0236"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-win32.whl", hash = "sha256:9ae4ef0b3f6b41bad6366fb0ea4fc1d7ed051528e113a60fa2a65a9abb5b1d99"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cee4373f4d3ad28f1ab6290684d8e2ebdb9e7a1b74fdc39e4c211995f77bec27"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0713f3adb9d03d49d365b70b84775d0a0d18e4ab08d12bc46baa6132ba78aaf6"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:de7376c29d95d6719048c194a9cf1a1b0393fbe8488a22008610b0361d834ecf"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a51b48f42d9358460b78725283f04bddaf44a9358197b889657deba38f329db"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b295729485b06c1a0683af02a9e42d2caa9db04a373dc38a6a58cdd1e8abddf1"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee803480535c44e7f5ad00788526da7d85525cfefaf8acf8ab9a310000be4b03"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d59d125ffbd6d552765510e3f31ed75ebac2c7470c7274195b9161a32350284"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8cda06946eac330cbe6598f77bb54e690b4ca93f593dee1568ad22b04f347c15"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07afec21bbbbf8a5cc3651aa96b980afe2526e7f048fdfb7f1014d84acc8b6d8"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6b40e8d38afe634559e398cc32b1472f376a4099c75fe6299ae607e404c033b2"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b8dcd239c743aa2f9c22ce674a145e0a25cb1566c495928440a181ca1ccf6719"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:84450ba661fb96e9fd67629b93d2941c871ca86fc38d835d19d4225ff946a631"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:44aeb140295a2f0659e113b31cfe92c9061622cadbc9e2a2f7b8ef6b1e29ef4b"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1db4e7fefefd0f548d73e2e2e041f9df5c59e178b4c72fbac4cc6f535cfb1565"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-win32.whl", hash = "sha256:5726cf76c982532c1863fb64d8c6dd0e4c90b6ece9feb06c9f202417a31f7dd7"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:b197e7094f232959f8f20541ead1d9862ac5ebea1d58e9849c1bf979255dfac9"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:dd4eda173a9fcccb5f2e2bd2a9f423d180194b1bf17cf59e3269899235b2a114"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e9e3c4c9e1ed40ea53acf11e2a386383c3304212c965773704e4603d589343ed"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92a7e36b000bf022ef3dbb9c46bfe2d52c047d5e3f3343f43204263c5addc250"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54b6a92d009cbe2fb11054ba694bc9e284dad30a26757b1e372a1fdddaf21920"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ffd9493de4c922f2a38c2bf62b831dcec90ac673ed1ca182fe11b4d8e9f2a64"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:35c404d74c2926d0287fbd63ed5d27eb911eb9e4a3bb2c6d294f3cfd4a9e0c23"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e7fdd52961feb4c96507aa649550ec2a0d527c086d284749b2f582f2d40a2e0d"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:92db3c28b5b2a273346bebb24857fda45601aef6ae1c011c0a997106581e8a88"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ab973df98fc99ab39080bfb0eb3a925181454d7c3ac8a1e695fddfae696d9e90"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:4b67fdab07fdd3c10bb21edab3cbfe8cf5696f453afce75d815d9d7223fbe88b"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:aa41e526a5d4a9dfcfbab0716c7e8a1b215abd3f3df5a45cf18a12721d31cb5d"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ffc519621dce0c767e96b9c53f09c5d215578e10b02c285809f76509a3931482"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-win32.whl", hash = "sha256:f19c1585933c82098c2a520f8ec1227f20e339e33aca8fa6f956f6691b784e67"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:707b82d19e65c9bd28b81dde95249b07bf9f5b90ebe1ef17d9b57473f8a64b7b"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:dbe03226baf438ac4fda9e2d0715022fd579cb641c4cf639fa40d53b2fe6f3e2"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd9a8bd8900e65504a305bf8ae6fa9fbc66de94178c420791d0293702fce2df7"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8831399554b92b72af5932cdbbd4ddc55c55f631bb13ff8fe4e6536a06c5c51"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a14969b8691f7998e74663b77b4c36c0337cb1df552da83d5c9004a93afdb574"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dcaf7c1524c0542ee2fc82cc8ec337f7a9f7edee2532421ab200d2b920fc97cf"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425c5f215d0eecee9a56cdb703203dda90423247421bf0d67125add85d0c4455"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:d5b054862739d276e09928de37c79ddeec42a6e1bfc55863be96a36ba22926f6"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:f3e73a4255342d4eb26ef6df01e3962e73aa29baa3124a8e824c5d3364a65748"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:2f6c34da58ea9c1a9515621f4d9ac379871a8f21168ba1b5e09d74250de5ad62"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:f09cb5a7bbe1ecae6e87901a2eb23e0256bb524a79ccc53eb0b7629fbe7677c4"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:0099d79bdfcf5c1f0c2c72f91516702ebf8b0b8ddd8905f97a8aecf49712c621"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-win32.whl", hash = "sha256:9c98230f5042f4945f957d006edccc2af1e03ed5e37ce7c373f00a5a4daa6149"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-win_amd64.whl", hash = "sha256:62f60aebecfc7f4b82e3f639a7d1433a20ec32824db2199a11ad4f5e146ef5ee"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:af73657b7a68211996527dbfeffbb0864e043d270580c5aef06dc4b659a4b578"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cab5d0b79d987c67f3b9e9c53f54a61360422a5a0bc075f43cab5621d530c3b6"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9289fd5dddcf57bab41d044f1756550f9e7cf0c8e373b8cdf0ce8773dc4bd417"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b493a043635eb376e50eedf7818f2f322eabbaa974e948bd8bdd29eb7ef2a51"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9fa2566ca27d67c86569e8c85297aaf413ffab85a8960500f12ea34ff98e4c41"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8e538f46104c815be19c975572d74afb53f29650ea2025bbfaef359d2de2f7f"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fd30dc99682dc2c603c2b315bded2799019cea829f8bf57dc6b61efde6611c8"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2006769bd1640bdf4d5641c69a3d63b71b81445473cac5ded39740a226fa88ab"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:dc15e99b2d8a656f8e666854404f1ba54765871104e50c8e9813af8a7db07f12"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:ab2e5bef076f5a235c3774b4f4028a680432cded7cad37bba0fd90d64b187d19"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:4ec9dd88a5b71abfc74e9df5ebe7921c35cbb3b641181a531ca65cdb5e8e4dea"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:43193c5cda5d612f247172016c4bb71251c784d7a4d9314677186a838ad34858"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:aa693779a8b50cd97570e5a0f343538a8dbd3e496fa5dcb87e29406ad0299654"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-win32.whl", hash = "sha256:7706f5850360ac01d80c89bcef1640683cc12ed87f42579dab6c5d3ed6888613"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:c3e446d253bd88f6377260d07c895816ebf33ffffd56c1c792b13bff9c3e1ade"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:980b4f289d1d90ca5efcf07958d3eb38ed9c0b7676bf2831a54d4f66f9c27dfa"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f28f891ccd15c514a0981f3b9db9aa23d62fe1a99997512b0491d2ed323d229a"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8aacce6e2e1edcb6ac625fb0f8c3a9570ccc7bfba1f63419b3769ccf6a00ed0"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd7af3717683bea4c87acd8c0d3d5b44d56120b26fd3f8a692bdd2d5260c620a"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5ff2ed8194587faf56555927b3aa10e6fb69d931e33953943bc4f837dfee2242"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e91f541a85298cf35433bf66f3fab2a4a2cff05c127eeca4af174f6d497f0d4b"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:309a7de0a0ff3040acaebb35ec45d18db4b28232f21998851cfa709eeff49d62"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:285e96d9d53422efc0d7a17c60e59f37fbf3dfa942073f666db4ac71e8d726d0"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5d447056e2ca60382d460a604b6302d8db69476fd2015c81e7c35417cfabe4cd"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:20587d20f557fe189b7947d8e7ec5afa110ccf72a3128d61a2a387c3313f46be"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:130272c698667a982a5d0e626851ceff662565379baf0ff2cc58067b81d4f11d"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:ab22fbd9765e6954bc0bcff24c25ff71dcbfdb185fcdaca49e81bac68fe724d3"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7782afc9b6b42200f7362858f9e73b1f8316afb276d316336c0ec3bd73312742"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-win32.whl", hash = "sha256:2de62e8801ddfff069cd5c504ce3bc9672b23266597d4e4f50eda28846c322f2"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:95c3c157765b031331dd4db3c775e58deaee050a3042fcad72cbc4189d7c8dca"}, + {file = "charset_normalizer-3.4.0-py3-none-any.whl", hash = "sha256:fe9f97feb71aa9896b81973a7bbada8c49501dc73e58a10fcef6663af95e5079"}, + {file = "charset_normalizer-3.4.0.tar.gz", hash = "sha256:223217c3d4f82c3ac5e29032b3f1c2eb0fb591b72161f86d93f5719079dae93e"}, +] + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "comm" +version = "0.2.2" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +files = [ + {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, + {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "cycler" +version = "0.12.1" +description = "Composable style cycles" +optional = false +python-versions = ">=3.8" +files = [ + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, +] + +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "cython" +version = "0.29.14" +description = "The Cython compiler for writing C extensions for the Python language." +optional = false +python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "Cython-0.29.14-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:47e5e1502d52ef03387cf9d3b3241007961a84a466e58a3b74028e1dd4957f8c"}, + {file = "Cython-0.29.14-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:1dcdaa319558eb924294a554dcf6c12383ec947acc7e779e8d3622409a7f7d28"}, + {file = "Cython-0.29.14-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:7bc18fc5a170f2c1cef5387a3d997c28942918bbee0f700e73fd2178ee8d474d"}, + {file = "Cython-0.29.14-cp27-cp27m-win32.whl", hash = "sha256:89458b49976b1dee5d89ab4ac943da3717b4292bf624367e862e4ee172fcce99"}, + {file = "Cython-0.29.14-cp27-cp27m-win_amd64.whl", hash = "sha256:c0b24bfe3431b3cb7ced323bca813dbd13aca973a1475b512d3331fd0de8ec60"}, + {file = "Cython-0.29.14-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7f89eff20e4a7a64b55210dac17aea711ed8a3f2e78f2ff784c0e984302583dd"}, + {file = "Cython-0.29.14-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:6c53338c1811f8c6d7f8cb7abd874810b15045e719e8207f957035c9177b4213"}, + {file = "Cython-0.29.14-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:521340844cf388d109ceb61397f3fd5250ccb622a1a8e93559e8de76c80940a9"}, + {file = "Cython-0.29.14-cp34-cp34m-manylinux1_i686.whl", hash = "sha256:75c2dda47dcc3c77449712b1417bb6b89ec3b7b02e18c64262494dceffdf455e"}, + {file = "Cython-0.29.14-cp34-cp34m-manylinux1_x86_64.whl", hash = "sha256:05eb79efc8029d487251c8a2702a909a8ba33c332e06d2f3980866541bd81253"}, + {file = "Cython-0.29.14-cp34-cp34m-win32.whl", hash = "sha256:1fc5bdda28f25fec44e4721677458aa509d743cd350862270309d61aa148d6ff"}, + {file = "Cython-0.29.14-cp34-cp34m-win_amd64.whl", hash = "sha256:0c70e842e52e2f50cc43bad43b5e5bc515f30821a374e544abb0e0746f2350ff"}, + {file = "Cython-0.29.14-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:094d28a34c3fa992ae02aea1edbe6ff89b3cc5870b6ee38b5baeb805dc57b013"}, + {file = "Cython-0.29.14-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:280573a01d9348d44a42d6a9c651d9f7eb1fe9217df72555b2a118f902996a10"}, + {file = "Cython-0.29.14-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:773c5a98e463b52f7e8197254b39b703a5ea1972aef3a94b3b921515d77dd041"}, + {file = "Cython-0.29.14-cp35-cp35m-win32.whl", hash = "sha256:986f871c0fa649b293061236b93782d25c293a8dd8117c7ba05f8a61bdc261ae"}, + {file = "Cython-0.29.14-cp35-cp35m-win_amd64.whl", hash = "sha256:78c3068dcba300d473fef57cdf523e34b37de522f5a494ef9ee1ac9b4b8bbe3f"}, + {file = "Cython-0.29.14-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:f3818e578e687cdb21dc4aa4a3bc6278c656c9c393e9eda14dd04943f478863d"}, + {file = "Cython-0.29.14-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:bb487881608ebd293592553c618f0c83316f4f13a64cb18605b1d2fb9fd3da3e"}, + {file = "Cython-0.29.14-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:03f6bbb380ad0acb744fb06e42996ea217e9d00016ca0ff6f2e7d60f580d0360"}, + {file = "Cython-0.29.14-cp36-cp36m-win32.whl", hash = "sha256:b8ab3ab38afc47d8f4fe629b836243544351cef681b6bdb1dc869028d6fdcbfb"}, + {file = "Cython-0.29.14-cp36-cp36m-win_amd64.whl", hash = "sha256:298ceca7b0f0da4205fcb0b7c9ac9e120e2dafffd5019ba1618e84ef89434b5a"}, + {file = "Cython-0.29.14-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:fe666645493d72712c46e4fbe8bec094b06aec3c337400479e9704439c9d9586"}, + {file = "Cython-0.29.14-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:4074a8bff0040035673cc6dd365a762476d6bff4d03d8ce6904e3e53f9a25dc8"}, + {file = "Cython-0.29.14-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:a14aa436586c41633339415de82a41164691d02d3e661038da533be5d40794a5"}, + {file = "Cython-0.29.14-cp37-cp37m-win32.whl", hash = "sha256:41e7068e95fbf9ec94b41437f989caf9674135e770a39cdb9c00de459bafd1bc"}, + {file = "Cython-0.29.14-cp37-cp37m-win_amd64.whl", hash = "sha256:05e8cfd3a3a6087aec49a1ae08a89171db991956209406d1e5576f9db70ece52"}, + {file = "Cython-0.29.14-cp38-cp38-manylinux1_i686.whl", hash = "sha256:e8fab9911fd2fa8e5af407057cb8bdf87762f983cba483fa3234be20a9a0af77"}, + {file = "Cython-0.29.14-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:d4039bb7f234ad32267c55e72fd49fb56078ea102f9d9d8559f6ec34d4887630"}, + {file = "Cython-0.29.14-cp38-cp38-win32.whl", hash = "sha256:c7894c06205166d360ab2915ae306d1f7403e9ce3d3aaeff4095eaf98e42ce66"}, + {file = "Cython-0.29.14-cp38-cp38-win_amd64.whl", hash = "sha256:a0f495a4fe5278aab278feee35e6102efecde5176a8a74dd28c28e3fc5c8d7c7"}, + {file = "Cython-0.29.14.tar.gz", hash = "sha256:e4d6bb8703d0319eb04b7319b12ea41580df44fd84d83ccda13ea463c6801414"}, +] + +[[package]] +name = "debugpy" +version = "1.8.9" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "debugpy-1.8.9-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:cfe1e6c6ad7178265f74981edf1154ffce97b69005212fbc90ca22ddfe3d017e"}, + {file = "debugpy-1.8.9-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ada7fb65102a4d2c9ab62e8908e9e9f12aed9d76ef44880367bc9308ebe49a0f"}, + {file = "debugpy-1.8.9-cp310-cp310-win32.whl", hash = "sha256:c36856343cbaa448171cba62a721531e10e7ffb0abff838004701454149bc037"}, + {file = "debugpy-1.8.9-cp310-cp310-win_amd64.whl", hash = "sha256:17c5e0297678442511cf00a745c9709e928ea4ca263d764e90d233208889a19e"}, + {file = "debugpy-1.8.9-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:b74a49753e21e33e7cf030883a92fa607bddc4ede1aa4145172debc637780040"}, + {file = "debugpy-1.8.9-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:62d22dacdb0e296966d7d74a7141aaab4bec123fa43d1a35ddcb39bf9fd29d70"}, + {file = "debugpy-1.8.9-cp311-cp311-win32.whl", hash = "sha256:8138efff315cd09b8dcd14226a21afda4ca582284bf4215126d87342bba1cc66"}, + {file = "debugpy-1.8.9-cp311-cp311-win_amd64.whl", hash = "sha256:ff54ef77ad9f5c425398efb150239f6fe8e20c53ae2f68367eba7ece1e96226d"}, + {file = "debugpy-1.8.9-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:957363d9a7a6612a37458d9a15e72d03a635047f946e5fceee74b50d52a9c8e2"}, + {file = "debugpy-1.8.9-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e565fc54b680292b418bb809f1386f17081d1346dca9a871bf69a8ac4071afe"}, + {file = "debugpy-1.8.9-cp312-cp312-win32.whl", hash = "sha256:3e59842d6c4569c65ceb3751075ff8d7e6a6ada209ceca6308c9bde932bcef11"}, + {file = "debugpy-1.8.9-cp312-cp312-win_amd64.whl", hash = "sha256:66eeae42f3137eb428ea3a86d4a55f28da9bd5a4a3d369ba95ecc3a92c1bba53"}, + {file = "debugpy-1.8.9-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:957ecffff80d47cafa9b6545de9e016ae8c9547c98a538ee96ab5947115fb3dd"}, + {file = "debugpy-1.8.9-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1efbb3ff61487e2c16b3e033bc8595aea578222c08aaf3c4bf0f93fadbd662ee"}, + {file = "debugpy-1.8.9-cp313-cp313-win32.whl", hash = "sha256:7c4d65d03bee875bcb211c76c1d8f10f600c305dbd734beaed4077e902606fee"}, + {file = "debugpy-1.8.9-cp313-cp313-win_amd64.whl", hash = "sha256:e46b420dc1bea64e5bbedd678148be512442bc589b0111bd799367cde051e71a"}, + {file = "debugpy-1.8.9-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:472a3994999fe6c0756945ffa359e9e7e2d690fb55d251639d07208dbc37caea"}, + {file = "debugpy-1.8.9-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:365e556a4772d7d0d151d7eb0e77ec4db03bcd95f26b67b15742b88cacff88e9"}, + {file = "debugpy-1.8.9-cp38-cp38-win32.whl", hash = "sha256:54a7e6d3014c408eb37b0b06021366ee985f1539e12fe49ca2ee0d392d9ceca5"}, + {file = "debugpy-1.8.9-cp38-cp38-win_amd64.whl", hash = "sha256:8e99c0b1cc7bf86d83fb95d5ccdc4ad0586d4432d489d1f54e4055bcc795f693"}, + {file = "debugpy-1.8.9-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:7e8b079323a56f719977fde9d8115590cb5e7a1cba2fcee0986ef8817116e7c1"}, + {file = "debugpy-1.8.9-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6953b335b804a41f16a192fa2e7851bdcfd92173cbb2f9f777bb934f49baab65"}, + {file = "debugpy-1.8.9-cp39-cp39-win32.whl", hash = "sha256:7e646e62d4602bb8956db88b1e72fe63172148c1e25c041e03b103a25f36673c"}, + {file = "debugpy-1.8.9-cp39-cp39-win_amd64.whl", hash = "sha256:3d9755e77a2d680ce3d2c5394a444cf42be4a592caaf246dbfbdd100ffcf7ae5"}, + {file = "debugpy-1.8.9-py2.py3-none-any.whl", hash = "sha256:cc37a6c9987ad743d9c3a14fa1b1a14b7e4e6041f9dd0c8abf8895fe7a97b899"}, + {file = "debugpy-1.8.9.zip", hash = "sha256:1339e14c7d980407248f09824d1b25ff5c5616651689f1e0f0e51bdead3ea13e"}, +] + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +optional = false +python-versions = ">=3.5" +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] + +[[package]] +name = "executing" +version = "2.1.0" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.8" +files = [ + {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, + {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + +[[package]] +name = "gensim" +version = "3.8.3" +description = "Python framework for fast Vector Space Modelling" +optional = false +python-versions = "*" +files = [ + {file = "gensim-3.8.3-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:61eed1d6b5fbe6dda0586ea447ebc2dc7890a7f70c2ed953d5abc3fe3cfb94bb"}, + {file = "gensim-3.8.3-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:3af62709369331c85552fd26caa21504baa64accc426dc094172f5c688750013"}, + {file = "gensim-3.8.3-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:8ff471921b3b10ffb3ae6cbb598dd9c07d9dc030dee5aa167e7682b549c42f87"}, + {file = "gensim-3.8.3-cp27-cp27m-win32.whl", hash = "sha256:440700e29b494bc2e1d52e14b69a821f46ab09ecf85cf36c8988f18e1d6c7a8b"}, + {file = "gensim-3.8.3-cp27-cp27m-win_amd64.whl", hash = "sha256:f8ea67bf8c47ee55cb1b32c97fa1474b7d6d22959dd8097c019a5d9c9df34f5f"}, + {file = "gensim-3.8.3-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:7a90549dfc8ee3822fcad6da957de07d927e4e90ef42b3699543dee35ab2da13"}, + {file = "gensim-3.8.3-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:7629b33cf35f672efdd5269381f7e301958ee2638f27dfc63b80c5bfeaa827d3"}, + {file = "gensim-3.8.3-cp35-cp35m-macosx_10_9_intel.whl", hash = "sha256:6711b6d3a0007530ee7de7adc30a4c48a1d26ec6312ac50e1d1e0a1d54f9de5b"}, + {file = "gensim-3.8.3-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:ef2ddeceff482aee17c1e185f63bf027c8de8f595fdd9fd2d2503de96008f3b7"}, + {file = "gensim-3.8.3-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:41dcf6ecdc9acc657157967c791b8cbaba90ee6391f64efd28339b72f5e0c327"}, + {file = "gensim-3.8.3-cp35-cp35m-win32.whl", hash = "sha256:685a7657278161628821c8f873c5d7d2ffc0c28866648e39f76b450e4c7d5390"}, + {file = "gensim-3.8.3-cp35-cp35m-win_amd64.whl", hash = "sha256:b61a7c841a752c84b685674aa0d610289faad38795b325176481abe19b487e98"}, + {file = "gensim-3.8.3-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a61179df454a0d4b06a111c4ede0536f61c8121b4c0d0d02d23560a2fd4b3aff"}, + {file = "gensim-3.8.3-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:cc387d0d8bddbf3609ab95b3453296e4c9ff92c35e9799a17d86b1571d77a5fc"}, + {file = "gensim-3.8.3-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:b36e6330471061cfd78aad751e24c6b4f56d575697af0fbab42655128927d296"}, + {file = "gensim-3.8.3-cp36-cp36m-win32.whl", hash = "sha256:1e3d66c2eec494376fc599701d9c2868549aed6e93e47177e39217f0188e2d88"}, + {file = "gensim-3.8.3-cp36-cp36m-win_amd64.whl", hash = "sha256:91fa62d61b21f1878f140b10520f9de4a26a52672fbe407edfc7e09ca2eff235"}, + {file = "gensim-3.8.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:637fc5969f3cef4b7c8fd3e78e31ef09565c5566d5ceabf076b4170eb6444a80"}, + {file = "gensim-3.8.3-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:22f45fd239cacd0e3715ac447a2c8a5eea02e730ec1f701c55b359e9298e63a8"}, + {file = "gensim-3.8.3-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:d79370f78e9013b9d1e867c85ecc678d46a7ae0f01a8ca29e8f4291e5373b170"}, + {file = "gensim-3.8.3-cp37-cp37m-win32.whl", hash = "sha256:9c214b341f5304b906c79844e2787c13b46505df9dc70afca79a9a7dc0894478"}, + {file = "gensim-3.8.3-cp37-cp37m-win_amd64.whl", hash = "sha256:fe98277a7b3b4987b40c928056bbaae1d0715022cf27bba89d05cd0d4fe51a84"}, + {file = "gensim-3.8.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a47903d104469a7a8b6f22ad5ef74681b19c4f4b71ff2c2893271b53161a43e4"}, + {file = "gensim-3.8.3-cp38-cp38-manylinux1_i686.whl", hash = "sha256:05bfc02e102a34c9c795095b688b1b4aaa2529c624821368c9c3ea6a16536f77"}, + {file = "gensim-3.8.3-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:a8807ebf324dd11e1298a91a92d6e57c7bdabb91d0d5240bf1efa0c0eacd86f0"}, + {file = "gensim-3.8.3-cp38-cp38-win32.whl", hash = "sha256:90115d12ee545c21cc75521ef1bb3dd66aae8a378e9c2eb029c9f22df173c125"}, + {file = "gensim-3.8.3-cp38-cp38-win_amd64.whl", hash = "sha256:4e34cf2e50f3eab3e303da46089ea4972567bf216e28f7535ada155770784ac8"}, + {file = "gensim-3.8.3.tar.gz", hash = "sha256:786adb0571f75114e9c5f7a31dd2e6eb39a9791f22c8757621545e2ded3ea367"}, +] + +[package.dependencies] +Cython = "0.29.14" +numpy = ">=1.11.3" +scipy = ">=0.18.1" +six = ">=1.5.0" +smart-open = ">=1.8.1" + +[package.extras] +distributed = ["Pyro4 (>=4.27)"] +docs = ["Morfessor (==2.0.2a4)", "Pyro4", "Pyro4 (>=4.27)", "annoy", "cython", "matplotlib", "memory-profiler", "mock", "nltk", "nmslib", "pandas", "plotly", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "sphinx (<=2.4.4)", "sphinx-gallery", "sphinxcontrib-napoleon", "sphinxcontrib.programoutput", "statsmodels", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] +test-win = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "pytest-rerunfailures", "python-Levenshtein (>=0.10.2)", "scikit-learn", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"] + +[[package]] +name = "idna" +version = "3.10" +description = "Internationalized Domain Names in Applications (IDNA)" +optional = false +python-versions = ">=3.6" +files = [ + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, +] + +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + +[[package]] +name = "importlib-metadata" +version = "8.5.0" +description = "Read metadata from Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "importlib_metadata-8.5.0-py3-none-any.whl", hash = "sha256:45e54197d28b7a7f1559e60b95e7c567032b602131fbd588f1497f47880aa68b"}, + {file = "importlib_metadata-8.5.0.tar.gz", hash = "sha256:71522656f0abace1d072b9e5481a48f07c138e00f079c38c8f883823f9c26bd7"}, +] + +[package.dependencies] +zipp = ">=3.20" + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +enabler = ["pytest-enabler (>=2.2)"] +perf = ["ipython"] +test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-perf (>=0.9.2)"] +type = ["pytest-mypy"] + +[[package]] +name = "ipykernel" +version = "6.29.5" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, + {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=24" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.12.3" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, + {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "sys_platform == \"darwin\""} +backcall = "*" +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} +pickleshare = "*" +prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" +pygments = ">=2.4.0" +stack-data = "*" +traitlets = ">=5" +typing-extensions = {version = "*", markers = "python_version < \"3.10\""} + +[package.extras] +all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +black = ["black"] +doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +kernel = ["ipykernel"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] + +[[package]] +name = "jedi" +version = "0.19.2" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +files = [ + {file = "jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9"}, + {file = "jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0"}, +] + +[package.dependencies] +parso = ">=0.8.4,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<9.0.0)"] + +[[package]] +name = "joblib" +version = "1.4.2" +description = "Lightweight pipelining with Python functions" +optional = false +python-versions = ">=3.8" +files = [ + {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, + {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, +] + +[[package]] +name = "jupyter-client" +version = "8.6.3" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-core" +version = "5.7.2" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, + {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "kaggle" +version = "1.6.17" +description = "Kaggle API" +optional = false +python-versions = "*" +files = [ + {file = "kaggle-1.6.17.tar.gz", hash = "sha256:439a7dea1d5039f320fd6ad5ec21b688dcfa70d405cb42095b81f41edc401b81"}, +] + +[package.dependencies] +bleach = "*" +certifi = ">=2023.7.22" +python-dateutil = "*" +python-slugify = "*" +requests = "*" +six = ">=1.10" +tqdm = "*" +urllib3 = "*" + +[[package]] +name = "kiwisolver" +version = "1.4.7" +description = "A fast implementation of the Cassowary constraint solver" +optional = false +python-versions = ">=3.8" +files = [ + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8a9c83f75223d5e48b0bc9cb1bf2776cf01563e00ade8775ffe13b0b6e1af3a6"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:58370b1ffbd35407444d57057b57da5d6549d2d854fa30249771775c63b5fe17"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa0abdf853e09aff551db11fce173e2177d00786c688203f52c87ad7fcd91ef9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8d53103597a252fb3ab8b5845af04c7a26d5e7ea8122303dd7a021176a87e8b9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:88f17c5ffa8e9462fb79f62746428dd57b46eb931698e42e990ad63103f35e6c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88a9ca9c710d598fd75ee5de59d5bda2684d9db36a9f50b6125eaea3969c2599"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4d742cb7af1c28303a51b7a27aaee540e71bb8e24f68c736f6f2ffc82f2bf05"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28c7fea2196bf4c2f8d46a0415c77a1c480cc0724722f23d7410ffe9842c407"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e968b84db54f9d42046cf154e02911e39c0435c9801681e3fc9ce8a3c4130278"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0c18ec74c0472de033e1bebb2911c3c310eef5649133dd0bedf2a169a1b269e5"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8f0ea6da6d393d8b2e187e6a5e3fb81f5862010a40c3945e2c6d12ae45cfb2ad"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:f106407dda69ae456dd1227966bf445b157ccc80ba0dff3802bb63f30b74e895"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84ec80df401cfee1457063732d90022f93951944b5b58975d34ab56bb150dfb3"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win32.whl", hash = "sha256:71bb308552200fb2c195e35ef05de12f0c878c07fc91c270eb3d6e41698c3bcc"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_amd64.whl", hash = "sha256:44756f9fd339de0fb6ee4f8c1696cfd19b2422e0d70b4cefc1cc7f1f64045a8c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_arm64.whl", hash = "sha256:78a42513018c41c2ffd262eb676442315cbfe3c44eed82385c2ed043bc63210a"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d2b0e12a42fb4e72d509fc994713d099cbb15ebf1103545e8a45f14da2dfca54"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a8781ac3edc42ea4b90bc23e7d37b665d89423818e26eb6df90698aa2287c95"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46707a10836894b559e04b0fd143e343945c97fd170d69a2d26d640b4e297935"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef97b8df011141c9b0f6caf23b29379f87dd13183c978a30a3c546d2c47314cb"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab58c12a2cd0fc769089e6d38466c46d7f76aced0a1f54c77652446733d2d02"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:803b8e1459341c1bb56d1c5c010406d5edec8a0713a0945851290a7930679b51"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9a9e8a507420fe35992ee9ecb302dab68550dedc0da9e2880dd88071c5fb052"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18077b53dc3bb490e330669a99920c5e6a496889ae8c63b58fbc57c3d7f33a18"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6af936f79086a89b3680a280c47ea90b4df7047b5bdf3aa5c524bbedddb9e545"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3abc5b19d24af4b77d1598a585b8a719beb8569a71568b66f4ebe1fb0449460b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:933d4de052939d90afbe6e9d5273ae05fb836cc86c15b686edd4b3560cc0ee36"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:65e720d2ab2b53f1f72fb5da5fb477455905ce2c88aaa671ff0a447c2c80e8e3"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3bf1ed55088f214ba6427484c59553123fdd9b218a42bbc8c6496d6754b1e523"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win32.whl", hash = "sha256:4c00336b9dd5ad96d0a558fd18a8b6f711b7449acce4c157e7343ba92dd0cf3d"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_amd64.whl", hash = "sha256:929e294c1ac1e9f615c62a4e4313ca1823ba37326c164ec720a803287c4c499b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_arm64.whl", hash = "sha256:e33e8fbd440c917106b237ef1a2f1449dfbb9b6f6e1ce17c94cd6a1e0d438376"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:5360cc32706dab3931f738d3079652d20982511f7c0ac5711483e6eab08efff2"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:942216596dc64ddb25adb215c3c783215b23626f8d84e8eff8d6d45c3f29f75a"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:48b571ecd8bae15702e4f22d3ff6a0f13e54d3d00cd25216d5e7f658242065ee"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad42ba922c67c5f219097b28fae965e10045ddf145d2928bfac2eb2e17673640"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:612a10bdae23404a72941a0fc8fa2660c6ea1217c4ce0dbcab8a8f6543ea9e7f"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9e838bba3a3bac0fe06d849d29772eb1afb9745a59710762e4ba3f4cb8424483"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:22f499f6157236c19f4bbbd472fa55b063db77a16cd74d49afe28992dff8c258"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693902d433cf585133699972b6d7c42a8b9f8f826ebcaf0132ff55200afc599e"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4e77f2126c3e0b0d055f44513ed349038ac180371ed9b52fe96a32aa071a5107"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:657a05857bda581c3656bfc3b20e353c232e9193eb167766ad2dc58b56504948"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4bfa75a048c056a411f9705856abfc872558e33c055d80af6a380e3658766038"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:34ea1de54beef1c104422d210c47c7d2a4999bdecf42c7b5718fbe59a4cac383"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:90da3b5f694b85231cf93586dad5e90e2d71b9428f9aad96952c99055582f520"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win32.whl", hash = "sha256:18e0cca3e008e17fe9b164b55735a325140a5a35faad8de92dd80265cd5eb80b"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_amd64.whl", hash = "sha256:58cb20602b18f86f83a5c87d3ee1c766a79c0d452f8def86d925e6c60fbf7bfb"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_arm64.whl", hash = "sha256:f5a8b53bdc0b3961f8b6125e198617c40aeed638b387913bf1ce78afb1b0be2a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:2e6039dcbe79a8e0f044f1c39db1986a1b8071051efba3ee4d74f5b365f5226e"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a1ecf0ac1c518487d9d23b1cd7139a6a65bc460cd101ab01f1be82ecf09794b6"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7ab9ccab2b5bd5702ab0803676a580fffa2aa178c2badc5557a84cc943fcf750"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f816dd2277f8d63d79f9c8473a79fe54047bc0467754962840782c575522224d"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf8bcc23ceb5a1b624572a1623b9f79d2c3b337c8c455405ef231933a10da379"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dea0bf229319828467d7fca8c7c189780aa9ff679c94539eed7532ebe33ed37c"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c06a4c7cf15ec739ce0e5971b26c93638730090add60e183530d70848ebdd34"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5337ec7809bcd0f424c6b705ecf97941c46279cf5ed92311782c7c9c2026f07f"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4c26ed10c4f6fa6ddb329a5120ba3b6db349ca192ae211e882970bfc9d91420b"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c619b101e6de2222c1fcb0531e1b17bbffbe54294bfba43ea0d411d428618c27"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:073a36c8273647592ea332e816e75ef8da5c303236ec0167196793eb1e34657a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3ce6b2b0231bda412463e152fc18335ba32faf4e8c23a754ad50ffa70e4091ee"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win32.whl", hash = "sha256:f4c9aee212bc89d4e13f58be11a56cc8036cabad119259d12ace14b34476fd07"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_amd64.whl", hash = "sha256:8a3ec5aa8e38fc4c8af308917ce12c536f1c88452ce554027e55b22cbbfbff76"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_arm64.whl", hash = "sha256:76c8094ac20ec259471ac53e774623eb62e6e1f56cd8690c67ce6ce4fcb05650"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5d5abf8f8ec1f4e22882273c423e16cae834c36856cac348cfbfa68e01c40f3a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:aeb3531b196ef6f11776c21674dba836aeea9d5bd1cf630f869e3d90b16cfade"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b7d755065e4e866a8086c9bdada157133ff466476a2ad7861828e17b6026e22c"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08471d4d86cbaec61f86b217dd938a83d85e03785f51121e791a6e6689a3be95"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7bbfcb7165ce3d54a3dfbe731e470f65739c4c1f85bb1018ee912bae139e263b"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d34eb8494bea691a1a450141ebb5385e4b69d38bb8403b5146ad279f4b30fa3"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9242795d174daa40105c1d86aba618e8eab7bf96ba8c3ee614da8302a9f95503"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a0f64a48bb81af7450e641e3fe0b0394d7381e342805479178b3d335d60ca7cf"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8e045731a5416357638d1700927529e2b8ab304811671f665b225f8bf8d8f933"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4322872d5772cae7369f8351da1edf255a604ea7087fe295411397d0cfd9655e"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e1631290ee9271dffe3062d2634c3ecac02c83890ada077d225e081aca8aab89"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:edcfc407e4eb17e037bca59be0e85a2031a2ac87e4fed26d3e9df88b4165f92d"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:4d05d81ecb47d11e7f8932bd8b61b720bf0b41199358f3f5e36d38e28f0532c5"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win32.whl", hash = "sha256:b38ac83d5f04b15e515fd86f312479d950d05ce2368d5413d46c088dda7de90a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win_amd64.whl", hash = "sha256:d83db7cde68459fc803052a55ace60bea2bae361fc3b7a6d5da07e11954e4b09"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3f9362ecfca44c863569d3d3c033dbe8ba452ff8eed6f6b5806382741a1334bd"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e8df2eb9b2bac43ef8b082e06f750350fbbaf2887534a5be97f6cf07b19d9583"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f32d6edbc638cde7652bd690c3e728b25332acbadd7cad670cc4a02558d9c417"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e2e6c39bd7b9372b0be21456caab138e8e69cc0fc1190a9dfa92bd45a1e6e904"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dda56c24d869b1193fcc763f1284b9126550eaf84b88bbc7256e15028f19188a"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79849239c39b5e1fd906556c474d9b0439ea6792b637511f3fe3a41158d89ca8"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5e3bc157fed2a4c02ec468de4ecd12a6e22818d4f09cde2c31ee3226ffbefab2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3da53da805b71e41053dc670f9a820d1157aae77b6b944e08024d17bcd51ef88"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:8705f17dfeb43139a692298cb6637ee2e59c0194538153e83e9ee0c75c2eddde"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:82a5c2f4b87c26bb1a0ef3d16b5c4753434633b83d365cc0ddf2770c93829e3c"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce8be0466f4c0d585cdb6c1e2ed07232221df101a4c6f28821d2aa754ca2d9e2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:409afdfe1e2e90e6ee7fc896f3df9a7fec8e793e58bfa0d052c8a82f99c37abb"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5b9c3f4ee0b9a439d2415012bd1b1cc2df59e4d6a9939f4d669241d30b414327"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win32.whl", hash = "sha256:a79ae34384df2b615eefca647a2873842ac3b596418032bef9a7283675962644"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_amd64.whl", hash = "sha256:cf0438b42121a66a3a667de17e779330fc0f20b0d97d59d2f2121e182b0505e4"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_arm64.whl", hash = "sha256:764202cc7e70f767dab49e8df52c7455e8de0df5d858fa801a11aa0d882ccf3f"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:94252291e3fe68001b1dd747b4c0b3be12582839b95ad4d1b641924d68fd4643"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:5b7dfa3b546da08a9f622bb6becdb14b3e24aaa30adba66749d38f3cc7ea9706"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3de6481f4ed8b734da5df134cd5a6a64fe32124fe83dde1e5b5f29fe30b1e6"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a91b5f9f1205845d488c928e8570dcb62b893372f63b8b6e98b863ebd2368ff2"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40fa14dbd66b8b8f470d5fc79c089a66185619d31645f9b0773b88b19f7223c4"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:eb542fe7933aa09d8d8f9d9097ef37532a7df6497819d16efe4359890a2f417a"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bfa1acfa0c54932d5607e19a2c24646fb4c1ae2694437789129cf099789a3b00"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:eee3ea935c3d227d49b4eb85660ff631556841f6e567f0f7bda972df6c2c9935"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f3160309af4396e0ed04db259c3ccbfdc3621b5559b5453075e5de555e1f3a1b"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a17f6a29cf8935e587cc8a4dbfc8368c55edc645283db0ce9801016f83526c2d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10849fb2c1ecbfae45a693c070e0320a91b35dd4bcf58172c023b994283a124d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:ac542bf38a8a4be2dc6b15248d36315ccc65f0743f7b1a76688ffb6b5129a5c2"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8b01aac285f91ca889c800042c35ad3b239e704b150cfd3382adfc9dcc780e39"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:48be928f59a1f5c8207154f935334d374e79f2b5d212826307d072595ad76a2e"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f37cfe618a117e50d8c240555331160d73d0411422b59b5ee217843d7b693608"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:599b5c873c63a1f6ed7eead644a8a380cfbdf5db91dcb6f85707aaab213b1674"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:801fa7802e5cfabe3ab0c81a34c323a319b097dfb5004be950482d882f3d7225"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0c6c43471bc764fad4bc99c5c2d6d16a676b1abf844ca7c8702bdae92df01ee0"}, + {file = "kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60"}, +] + +[[package]] +name = "matplotlib" +version = "3.2.2" +description = "Python plotting package" +optional = false +python-versions = ">=3.6" +files = [ + {file = "matplotlib-3.2.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a47abc48c7b81fe6e636dde8a58e49b13d87d140e0f448213a4879f4a3f73345"}, + {file = "matplotlib-3.2.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:20bcd11efe194cd302bd0653cb025b8d16bcd80442359bfca8d49dc805f35ec8"}, + {file = "matplotlib-3.2.2-cp36-cp36m-win32.whl", hash = "sha256:2a6d64336b547e25730b6221e7aadfb01a391a065d43b5f51f0b9d7f673d2dd2"}, + {file = "matplotlib-3.2.2-cp36-cp36m-win_amd64.whl", hash = "sha256:4416825ebc9c1f135027a30e8d8aea0edcf45078ce767c7f7386737413cfb98f"}, + {file = "matplotlib-3.2.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:465c752278d27895e23f1379d6fcfa3a2990643b803c25e3bc16a10641d2346a"}, + {file = "matplotlib-3.2.2-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:81de040403a33bf3c68e9d4a40e26c8d24da00f7e3fadd845003b7e106785da7"}, + {file = "matplotlib-3.2.2-cp37-cp37m-win32.whl", hash = "sha256:006413f08ba5db1f5b1e0d6fbdc2ac9058b062ccf552f57182563a78579c34b4"}, + {file = "matplotlib-3.2.2-cp37-cp37m-win_amd64.whl", hash = "sha256:da06fa530591a141ffbe1712bbeec784734c3436b40c942d21652f305199b5d9"}, + {file = "matplotlib-3.2.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:894dd47c0a6ce38dc19bc87d1f7e2b0608310b2a18d1572291157450b05ce874"}, + {file = "matplotlib-3.2.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:1ab264770e7cf2cf4feb99f22c737066aef21ddf1ec402dc255450ac15eacb7b"}, + {file = "matplotlib-3.2.2-cp38-cp38-win32.whl", hash = "sha256:91c153f4318e3c67c035fd1185f5ea2613f15008b73b66985033033f6fe54bbd"}, + {file = "matplotlib-3.2.2-cp38-cp38-win_amd64.whl", hash = "sha256:a68e42e22f7fd190a532e4215e142276970c2d54040a0c46842fcb3db8b6ec5b"}, + {file = "matplotlib-3.2.2-cp39-cp39-win32.whl", hash = "sha256:647cf232ccf6265d2ba1ac4103e8c8b6ac7b03a40da3421234ffb03dda217f59"}, + {file = "matplotlib-3.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:31d32c83bb2b617377c6156f75e88b9ec2ded289e47ad4ff0f263dc1019d88b1"}, + {file = "matplotlib-3.2.2-pp36-pypy36_pp73-win32.whl", hash = "sha256:67065d938df34478451af62fbd0670d2b51c4d859fb66673064eb5de8660dd7c"}, + {file = "matplotlib-3.2.2.tar.gz", hash = "sha256:3d77a6630d093d74cbbfebaa0571d00790966be1ed204e4a8239f5cbd6835c5d"}, +] + +[package.dependencies] +cycler = ">=0.10" +kiwisolver = ">=1.0.1" +numpy = ">=1.11" +pyparsing = ">=2.0.1,<2.0.4 || >2.0.4,<2.1.2 || >2.1.2,<2.1.6 || >2.1.6" +python-dateutil = ">=2.1" + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +files = [ + {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, + {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, +] + +[[package]] +name = "networkx" +version = "2.5" +description = "Python package for creating and manipulating graphs and networks" +optional = false +python-versions = ">=3.6" +files = [ + {file = "networkx-2.5-py3-none-any.whl", hash = "sha256:8c5812e9f798d37c50570d15c4a69d5710a18d77bafc903ee9c5fba7454c616c"}, + {file = "networkx-2.5.tar.gz", hash = "sha256:7978955423fbc9639c10498878be59caf99b44dc304c2286162fd24b458c1602"}, +] + +[package.dependencies] +decorator = ">=4.3.0" + +[package.extras] +all = ["lxml", "matplotlib", "numpy", "pandas", "pydot", "pygraphviz", "pytest", "pyyaml", "scipy"] +gdal = ["gdal"] +lxml = ["lxml"] +matplotlib = ["matplotlib"] +numpy = ["numpy"] +pandas = ["pandas"] +pydot = ["pydot"] +pygraphviz = ["pygraphviz"] +pytest = ["pytest"] +pyyaml = ["pyyaml"] +scipy = ["scipy"] + +[[package]] +name = "node2vec" +version = "0.3.3" +description = "Implementation of the node2vec algorithm." +optional = false +python-versions = "*" +files = [ + {file = "node2vec-0.3.3.tar.gz", hash = "sha256:a122796952137bc91df5e9a51525180d510e1f4e4208eb4a21329137c38354d8"}, +] + +[package.dependencies] +gensim = "*" +joblib = ">=0.13.2" +networkx = "*" +numpy = "*" +tqdm = "*" + +[[package]] +name = "numpy" +version = "1.24.4" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, + {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, + {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, + {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, + {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, + {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, + {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, + {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, + {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, + {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, + {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, + {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, + {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, + {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, + {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, + {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, + {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, + {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, + {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, + {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, + {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, + {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, + {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, + {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, + {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, +] + +[[package]] +name = "packaging" +version = "24.2" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "packaging-24.2-py3-none-any.whl", hash = "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759"}, + {file = "packaging-24.2.tar.gz", hash = "sha256:c228a6dc5e932d346bc5739379109d49e8853dd8223571c7c5b55260edc0b97f"}, +] + +[[package]] +name = "pandas" +version = "1.1.3" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.6.1" +files = [ + {file = "pandas-1.1.3-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:882012763668af54b48f1412bab95c5cc0a7ccce5a2a8221cfc3839a6e3394ef"}, + {file = "pandas-1.1.3-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:206d7c3e5356dcadf082e64dc25c24bc8541718045826074f96346e9d6d05a20"}, + {file = "pandas-1.1.3-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:ca31ac8578d48da354cf66a473d4d5ff99277ca71d321dc7ea4e6fad3c6bb0fd"}, + {file = "pandas-1.1.3-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:fd6f05b6101d0e76f3e5c26a47be5be7be96ed84ef3981dc1852e76898e73594"}, + {file = "pandas-1.1.3-cp36-cp36m-win32.whl", hash = "sha256:ca71a5aa9eeb3ef5b31feca7d9b6369d6b3d0b2e9c85d7a89abe3ecb013f1e86"}, + {file = "pandas-1.1.3-cp36-cp36m-win_amd64.whl", hash = "sha256:54f5f564058b0280d588c3758abde82e280702c440db5faf0c686b80336096f9"}, + {file = "pandas-1.1.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a038cd5da602b955d335aa80cbaa0e5774f68501ff47b9c21509906981478da"}, + {file = "pandas-1.1.3-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:24f61f40febe47edac271eda45d683e42838b7db2bd0f82574d9800259d2b182"}, + {file = "pandas-1.1.3-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:427be9938b2f79ab298de84f87693914cda238a27cf10580da96caf3dff64115"}, + {file = "pandas-1.1.3-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:5a8a84b75ca3a29bb4263b35d5ed9fcaae2b062f014feed8c5daa897339c7d85"}, + {file = "pandas-1.1.3-cp37-cp37m-win32.whl", hash = "sha256:c22e40f1b4d162ca18eb6b2c572e63eef220dbc9cc3de0241cefb77972621bb7"}, + {file = "pandas-1.1.3-cp37-cp37m-win_amd64.whl", hash = "sha256:920d30fdff65a079f071db635d282b4f583c2b26f2b58d5dca218aac7c59974d"}, + {file = "pandas-1.1.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d6b1f9d506dc23da2915bcae5c5968990049c9cec44108bd9855d2c7c89d91dc"}, + {file = "pandas-1.1.3-cp38-cp38-manylinux1_i686.whl", hash = "sha256:b11b496c317dbe007898de699fd59eaf687d0fe8c1b7dad109db6010155d28ae"}, + {file = "pandas-1.1.3-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:d89dbc58aec1544722a8d5046f880b597c497ef8a82c5fe695b4b2effafac5ec"}, + {file = "pandas-1.1.3-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:df43ea0e9fd9f9672b0de9cac26d01255ad50481994bf3cb4687c21eec2d7bbc"}, + {file = "pandas-1.1.3-cp38-cp38-win32.whl", hash = "sha256:a605054fbca71ed1d08bb2aef6f73c84a579bbac956bfe8f9718d5e84cb41248"}, + {file = "pandas-1.1.3-cp38-cp38-win_amd64.whl", hash = "sha256:84a4ffe668df357e31f98c829536e3a7142c3036c82f996e639f644c5d32eda1"}, + {file = "pandas-1.1.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:147162568b1242355290341baf281926cfac66ada07e634f3fc521ac967e4653"}, + {file = "pandas-1.1.3-cp39-cp39-manylinux1_i686.whl", hash = "sha256:2999adc6736f8cb4c69d65a6e2b25a11bcb395da5b048342b8e4d6fe055e57ae"}, + {file = "pandas-1.1.3-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:f4cb8252ae71f093f4a6b847adf0bc9330f109c48f08363c2071f189f1c89c87"}, + {file = "pandas-1.1.3-cp39-cp39-win32.whl", hash = "sha256:b026e913d88fad3a74eea8ed5a5f98e8823080ea02f8d9bb0ec19e92552daad6"}, + {file = "pandas-1.1.3-cp39-cp39-win_amd64.whl", hash = "sha256:11c284769f41e95f7d16a327eb555989c5f29418aad075fa80c97ef3aa8fb885"}, + {file = "pandas-1.1.3.tar.gz", hash = "sha256:babbeda2f83b0686c9ad38d93b10516e68cdcd5771007eb80a763e98aaf44613"}, +] + +[package.dependencies] +numpy = ">=1.15.4" +python-dateutil = ">=2.7.3" +pytz = ">=2017.2" + +[package.extras] +test = ["hypothesis (>=3.58)", "pytest (>=4.0.2)", "pytest-xdist"] + +[[package]] +name = "parso" +version = "0.8.4" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +files = [ + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, +] + +[package.extras] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["docopt", "pytest"] + +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pickleshare" +version = "0.7.5" +description = "Tiny 'shelve'-like database with concurrency support" +optional = false +python-versions = "*" +files = [ + {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, + {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, +] + +[[package]] +name = "platformdirs" +version = "4.3.6" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." +optional = false +python-versions = ">=3.8" +files = [ + {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, + {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, +] + +[package.extras] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.48" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, + {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "psutil" +version = "6.1.0" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "psutil-6.1.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:ff34df86226c0227c52f38b919213157588a678d049688eded74c76c8ba4a5d0"}, + {file = "psutil-6.1.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:c0e0c00aa18ca2d3b2b991643b799a15fc8f0563d2ebb6040f64ce8dc027b942"}, + {file = "psutil-6.1.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:000d1d1ebd634b4efb383f4034437384e44a6d455260aaee2eca1e9c1b55f047"}, + {file = "psutil-6.1.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:5cd2bcdc75b452ba2e10f0e8ecc0b57b827dd5d7aaffbc6821b2a9a242823a76"}, + {file = "psutil-6.1.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:045f00a43c737f960d273a83973b2511430d61f283a44c96bf13a6e829ba8fdc"}, + {file = "psutil-6.1.0-cp27-none-win32.whl", hash = "sha256:9118f27452b70bb1d9ab3198c1f626c2499384935aaf55388211ad982611407e"}, + {file = "psutil-6.1.0-cp27-none-win_amd64.whl", hash = "sha256:a8506f6119cff7015678e2bce904a4da21025cc70ad283a53b099e7620061d85"}, + {file = "psutil-6.1.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6e2dcd475ce8b80522e51d923d10c7871e45f20918e027ab682f94f1c6351688"}, + {file = "psutil-6.1.0-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:0895b8414afafc526712c498bd9de2b063deaac4021a3b3c34566283464aff8e"}, + {file = "psutil-6.1.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9dcbfce5d89f1d1f2546a2090f4fcf87c7f669d1d90aacb7d7582addece9fb38"}, + {file = "psutil-6.1.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:498c6979f9c6637ebc3a73b3f87f9eb1ec24e1ce53a7c5173b8508981614a90b"}, + {file = "psutil-6.1.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d905186d647b16755a800e7263d43df08b790d709d575105d419f8b6ef65423a"}, + {file = "psutil-6.1.0-cp36-cp36m-win32.whl", hash = "sha256:6d3fbbc8d23fcdcb500d2c9f94e07b1342df8ed71b948a2649b5cb060a7c94ca"}, + {file = "psutil-6.1.0-cp36-cp36m-win_amd64.whl", hash = "sha256:1209036fbd0421afde505a4879dee3b2fd7b1e14fee81c0069807adcbbcca747"}, + {file = "psutil-6.1.0-cp37-abi3-win32.whl", hash = "sha256:1ad45a1f5d0b608253b11508f80940985d1d0c8f6111b5cb637533a0e6ddc13e"}, + {file = "psutil-6.1.0-cp37-abi3-win_amd64.whl", hash = "sha256:a8fb3752b491d246034fa4d279ff076501588ce8cbcdbb62c32fd7a377d996be"}, + {file = "psutil-6.1.0.tar.gz", hash = "sha256:353815f59a7f64cdaca1c0307ee13558a0512f6db064e92fe833784f08539c7a"}, +] + +[package.extras] +dev = ["black", "check-manifest", "coverage", "packaging", "pylint", "pyperf", "pypinfo", "pytest-cov", "requests", "rstcheck", "ruff", "sphinx", "sphinx_rtd_theme", "toml-sort", "twine", "virtualenv", "wheel"] +test = ["pytest", "pytest-xdist", "setuptools"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +files = [ + {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, + {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "pycparser" +version = "2.22" +description = "C parser in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, +] + +[[package]] +name = "pygments" +version = "2.18.0" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, + {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, +] + +[package.extras] +windows-terminal = ["colorama (>=0.4.6)"] + +[[package]] +name = "pyparsing" +version = "3.1.4" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.6.8" +files = [ + {file = "pyparsing-3.1.4-py3-none-any.whl", hash = "sha256:a6a7ee4235a3f944aa1fa2249307708f893fe5717dc603503c6c7969c070fb7c"}, + {file = "pyparsing-3.1.4.tar.gz", hash = "sha256:f86ec8d1a83f11977c9a6ea7598e8c27fc5cddfa5b07ea2241edbbde1d7bc032"}, +] + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, + {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "python-louvain" +version = "0.16" +description = "Louvain algorithm for community detection" +optional = false +python-versions = "*" +files = [ + {file = "python-louvain-0.16.tar.gz", hash = "sha256:b7ba2df5002fd28d3ee789a49532baad11fe648e4f2117cf0798e7520a1da56b"}, +] + +[package.dependencies] +networkx = "*" +numpy = "*" + +[[package]] +name = "python-slugify" +version = "8.0.4" +description = "A Python slugify application that also handles Unicode" +optional = false +python-versions = ">=3.7" +files = [ + {file = "python-slugify-8.0.4.tar.gz", hash = "sha256:59202371d1d05b54a9e7720c5e038f928f45daaffe41dd10822f3907b937c856"}, + {file = "python_slugify-8.0.4-py2.py3-none-any.whl", hash = "sha256:276540b79961052b66b7d116620b36518847f52d5fd9e3a70164fc8c50faa6b8"}, +] + +[package.dependencies] +text-unidecode = ">=1.3" + +[package.extras] +unidecode = ["Unidecode (>=1.1.1)"] + +[[package]] +name = "pytz" +version = "2024.2" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ + {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, + {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, +] + +[[package]] +name = "pywin32" +version = "308" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ + {file = "pywin32-308-cp310-cp310-win32.whl", hash = "sha256:796ff4426437896550d2981b9c2ac0ffd75238ad9ea2d3bfa67a1abd546d262e"}, + {file = "pywin32-308-cp310-cp310-win_amd64.whl", hash = "sha256:4fc888c59b3c0bef905ce7eb7e2106a07712015ea1c8234b703a088d46110e8e"}, + {file = "pywin32-308-cp310-cp310-win_arm64.whl", hash = "sha256:a5ab5381813b40f264fa3495b98af850098f814a25a63589a8e9eb12560f450c"}, + {file = "pywin32-308-cp311-cp311-win32.whl", hash = "sha256:5d8c8015b24a7d6855b1550d8e660d8daa09983c80e5daf89a273e5c6fb5095a"}, + {file = "pywin32-308-cp311-cp311-win_amd64.whl", hash = "sha256:575621b90f0dc2695fec346b2d6302faebd4f0f45c05ea29404cefe35d89442b"}, + {file = "pywin32-308-cp311-cp311-win_arm64.whl", hash = "sha256:100a5442b7332070983c4cd03f2e906a5648a5104b8a7f50175f7906efd16bb6"}, + {file = "pywin32-308-cp312-cp312-win32.whl", hash = "sha256:587f3e19696f4bf96fde9d8a57cec74a57021ad5f204c9e627e15c33ff568897"}, + {file = "pywin32-308-cp312-cp312-win_amd64.whl", hash = "sha256:00b3e11ef09ede56c6a43c71f2d31857cf7c54b0ab6e78ac659497abd2834f47"}, + {file = "pywin32-308-cp312-cp312-win_arm64.whl", hash = "sha256:9b4de86c8d909aed15b7011182c8cab38c8850de36e6afb1f0db22b8959e3091"}, + {file = "pywin32-308-cp313-cp313-win32.whl", hash = "sha256:1c44539a37a5b7b21d02ab34e6a4d314e0788f1690d65b48e9b0b89f31abbbed"}, + {file = "pywin32-308-cp313-cp313-win_amd64.whl", hash = "sha256:fd380990e792eaf6827fcb7e187b2b4b1cede0585e3d0c9e84201ec27b9905e4"}, + {file = "pywin32-308-cp313-cp313-win_arm64.whl", hash = "sha256:ef313c46d4c18dfb82a2431e3051ac8f112ccee1a34f29c263c583c568db63cd"}, + {file = "pywin32-308-cp37-cp37m-win32.whl", hash = "sha256:1f696ab352a2ddd63bd07430080dd598e6369152ea13a25ebcdd2f503a38f1ff"}, + {file = "pywin32-308-cp37-cp37m-win_amd64.whl", hash = "sha256:13dcb914ed4347019fbec6697a01a0aec61019c1046c2b905410d197856326a6"}, + {file = "pywin32-308-cp38-cp38-win32.whl", hash = "sha256:5794e764ebcabf4ff08c555b31bd348c9025929371763b2183172ff4708152f0"}, + {file = "pywin32-308-cp38-cp38-win_amd64.whl", hash = "sha256:3b92622e29d651c6b783e368ba7d6722b1634b8e70bd376fd7610fe1992e19de"}, + {file = "pywin32-308-cp39-cp39-win32.whl", hash = "sha256:7873ca4dc60ab3287919881a7d4f88baee4a6e639aa6962de25a98ba6b193341"}, + {file = "pywin32-308-cp39-cp39-win_amd64.whl", hash = "sha256:71b3322d949b4cc20776436a9c9ba0eeedcbc9c650daa536df63f0ff111bb920"}, +] + +[[package]] +name = "pyzmq" +version = "26.2.0" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea"}, + {file = "pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6"}, + {file = "pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b"}, + {file = "pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e"}, + {file = "pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0"}, + {file = "pyzmq-26.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3b55a4229ce5da9497dd0452b914556ae58e96a4381bb6f59f1305dfd7e53fc8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cb3a6460cdea8fe8194a76de8895707e61ded10ad0be97188cc8463ffa7e3a8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ab5cad923cc95c87bffee098a27856c859bd5d0af31bd346035aa816b081fe1"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ed69074a610fad1c2fda66180e7b2edd4d31c53f2d1872bc2d1211563904cd9"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cccba051221b916a4f5e538997c45d7d136a5646442b1231b916d0164067ea27"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0eaa83fc4c1e271c24eaf8fb083cbccef8fde77ec8cd45f3c35a9a123e6da097"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9edda2df81daa129b25a39b86cb57dfdfe16f7ec15b42b19bfac503360d27a93"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win32.whl", hash = "sha256:ea0eb6af8a17fa272f7b98d7bebfab7836a0d62738e16ba380f440fceca2d951"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:4ff9dc6bc1664bb9eec25cd17506ef6672d506115095411e237d571e92a58231"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2eb7735ee73ca1b0d71e0e67c3739c689067f055c764f73aac4cc8ecf958ee3f"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a534f43bc738181aa7cbbaf48e3eca62c76453a40a746ab95d4b27b1111a7d2"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:aedd5dd8692635813368e558a05266b995d3d020b23e49581ddd5bbe197a8ab6"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8be4700cd8bb02cc454f630dcdf7cfa99de96788b80c51b60fe2fe1dac480289"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fcc03fa4997c447dce58264e93b5aa2d57714fbe0f06c07b7785ae131512732"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:402b190912935d3db15b03e8f7485812db350d271b284ded2b80d2e5704be780"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8685fa9c25ff00f550c1fec650430c4b71e4e48e8d852f7ddcf2e48308038640"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:76589c020680778f06b7e0b193f4b6dd66d470234a16e1df90329f5e14a171cd"}, + {file = "pyzmq-26.2.0-cp38-cp38-win32.whl", hash = "sha256:8423c1877d72c041f2c263b1ec6e34360448decfb323fa8b94e85883043ef988"}, + {file = "pyzmq-26.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:76589f2cd6b77b5bdea4fca5992dc1c23389d68b18ccc26a53680ba2dc80ff2f"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b1d464cb8d72bfc1a3adc53305a63a8e0cac6bc8c5a07e8ca190ab8d3faa43c2"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4da04c48873a6abdd71811c5e163bd656ee1b957971db7f35140a2d573f6949c"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d049df610ac811dcffdc147153b414147428567fbbc8be43bb8885f04db39d98"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c811cfcd6a9bf680236c40c6f617187515269ab2912f3d7e8c0174898e2519db"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6835dd60355593de10350394242b5757fbbd88b25287314316f266e24c61d073"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc6bee759a6bddea5db78d7dcd609397449cb2d2d6587f48f3ca613b19410cfc"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c530e1eecd036ecc83c3407f77bb86feb79916d4a33d11394b8234f3bd35b940"}, + {file = "pyzmq-26.2.0-cp39-cp39-win32.whl", hash = "sha256:367b4f689786fca726ef7a6c5ba606958b145b9340a5e4808132cc65759abd44"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e6fa2e3e683f34aea77de8112f6483803c96a44fd726d7358b9888ae5bb394ec"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:7445be39143a8aa4faec43b076e06944b8f9d0701b669df4af200531b21e40bb"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2ea4ad4e6a12e454de05f2949d4beddb52460f3de7c8b9d5c46fbb7d7222e02c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fc4f7a173a5609631bb0c42c23d12c49df3966f89f496a51d3eb0ec81f4519d6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:878206a45202247781472a2d99df12a176fef806ca175799e1c6ad263510d57c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17c412bad2eb9468e876f556eb4ee910e62d721d2c7a53c7fa31e643d35352e6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0d987a3ae5a71c6226b203cfd298720e0086c7fe7c74f35fa8edddfbd6597eed"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:39887ac397ff35b7b775db7201095fc6310a35fdbae85bac4523f7eb3b840e20"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fdb5b3e311d4d4b0eb8b3e8b4d1b0a512713ad7e6a68791d0923d1aec433d919"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:226af7dcb51fdb0109f0016449b357e182ea0ceb6b47dfb5999d569e5db161d5"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bed0e799e6120b9c32756203fb9dfe8ca2fb8467fed830c34c877e25638c3fc"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:29c7947c594e105cb9e6c466bace8532dc1ca02d498684128b339799f5248277"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cdeabcff45d1c219636ee2e54d852262e5c2e085d6cb476d938aee8d921356b3"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35cffef589bcdc587d06f9149f8d5e9e8859920a071df5a2671de2213bef592a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18c8dc3b7468d8b4bdf60ce9d7141897da103c7a4690157b32b60acb45e333e6"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7133d0a1677aec369d67dd78520d3fa96dd7f3dcec99d66c1762870e5ea1a50a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a96179a24b14fa6428cbfc08641c779a53f8fcec43644030328f44034c7f1f4"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4f78c88905461a9203eac9faac157a2a0dbba84a0fd09fd29315db27be40af9f"}, + {file = "pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "requests" +version = "2.32.3" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.8" +files = [ + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + +[[package]] +name = "scikit-learn" +version = "0.24.0" +description = "A set of python modules for machine learning and data mining" +optional = false +python-versions = ">=3.6" +files = [ + {file = "scikit-learn-0.24.0.tar.gz", hash = "sha256:076369634ee72b5a5941440661e2f306ff4ac30903802dc52031c7e9199ac640"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:890d7d588f65acb0c4f6c083347c9076916bda5e6bd8400f06244b1afc1009af"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:e534f5f3796db6781c87e9835dcd51b7854c8c5a379c9210b93605965c1941fd"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:d7fe05fcb44eadd6d6c874c768f085f5de1239db3a3b7be4d3d23d12e4120589"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:7f654befc5ad413690cc58f3f34a3e906caf825195ce0fda00a8e9565e1403e6"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-win32.whl", hash = "sha256:afeb06dc69847927634e58579b9cdc72e1390b79497336b2324b1b173f33bd47"}, + {file = "scikit_learn-0.24.0-cp36-cp36m-win_amd64.whl", hash = "sha256:26f66b3726b54dfb76ea51c5d9c2431ed17ebc066cb4527662b9e851a3e7ba61"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c08b27cb78ee8d2dc781a7affed09859441f5b624f9f92da59ac0791c8774dfc"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:905d8934d1e27a686698864a5863ff2c0e13a2ae1adb78a8a848aacc8a49927d"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:d819d625832fb2969911a243e009cfa135cb8ef1e150866e417d6e9d75290087"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:18f7131e62265bf2691ed1d0303c640313894ccfe4278427478c6b2f45094b53"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-win32.whl", hash = "sha256:b0d13fd56d26cf3de0314a4fd48037108c638fe126d813f5c1222bb0f08b6a76"}, + {file = "scikit_learn-0.24.0-cp37-cp37m-win_amd64.whl", hash = "sha256:c912247e42114f389858ae05d63f4359d4e667ea72aaabee191aee9ad3f9774a"}, + {file = "scikit_learn-0.24.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:758619e49cd7c17282e6cc60d5cc73c02c072b47c9a10010bb3bb47e0d976e50"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:66f27bf21202a850bcd7b6303916e4907f6e22ec59a14974ede4955aed5c7ed0"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:5e6e3c042cea83f2e20a45e563b8eabc1f8f72446251fe23ebefdf111a173a33"}, + {file = "scikit_learn-0.24.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:2a5348585aa793bc8cc5a72f8e9067c9380834b0aadbd55f924843b071f13282"}, + {file = "scikit_learn-0.24.0-cp38-cp38-win32.whl", hash = "sha256:743b6edd98c98991be46c08e6b21df3861d5ae915f91d59f988384d93f7263e7"}, + {file = "scikit_learn-0.24.0-cp38-cp38-win_amd64.whl", hash = "sha256:2951f87d35e72f007701c6e028aa230f6df6212a3194677c0c950486066a454d"}, + {file = "scikit_learn-0.24.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:44e452ea8491225c5783d49577aad0f36202dfd52aec7f82c0fdfe5fbd5f7400"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:800aaf63f8838c00e85db2267dd226f89858594843fd03932a9eda95746d2c40"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:3eeff086f7329521d27249a082ea3c48c085cedb110db5f65968ab55c3ba2e09"}, + {file = "scikit_learn-0.24.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:4395e91b3548005f4a645018435b5a94f8cce232b5b70753020e606c6a750656"}, + {file = "scikit_learn-0.24.0-cp39-cp39-win32.whl", hash = "sha256:80ca024154b84b6ac4cfc86930ba13fdc348a209753bf2c16129db6f9eb8a80b"}, + {file = "scikit_learn-0.24.0-cp39-cp39-win_amd64.whl", hash = "sha256:490436b44b3a1957cb625e871764b0aa330b34cc416aea4abc6c38ca63d0d682"}, +] + +[package.dependencies] +joblib = ">=0.11" +numpy = ">=1.13.3" +scipy = ">=0.19.1" +threadpoolctl = ">=2.0.0" + +[package.extras] +benchmark = ["matplotlib (>=2.1.1)", "memory-profiler (>=0.57.0)", "pandas (>=0.25.0)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=2.1.1)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.0.0)", "pandas (>=0.25.0)", "scikit-image (>=0.13)", "seaborn (>=0.9.0)", "sphinx (>=3.2.0)", "sphinx-gallery (>=0.7.0)", "sphinx-prompt (>=1.3.0)"] +examples = ["matplotlib (>=2.1.1)", "pandas (>=0.25.0)", "scikit-image (>=0.13)", "seaborn (>=0.9.0)"] +tests = ["flake8 (>=3.8.2)", "matplotlib (>=2.1.1)", "mypy (>=0.770)", "pandas (>=0.25.0)", "pyamg (>=4.0.0)", "pytest (>=5.0.1)", "pytest-cov (>=2.9.0)", "scikit-image (>=0.13)"] + +[[package]] +name = "scipy" +version = "1.10.1" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = "<3.12,>=3.8" +files = [ + {file = "scipy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e7354fd7527a4b0377ce55f286805b34e8c54b91be865bac273f527e1b839019"}, + {file = "scipy-1.10.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4b3f429188c66603a1a5c549fb414e4d3bdc2a24792e061ffbd607d3d75fd84e"}, + {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1553b5dcddd64ba9a0d95355e63fe6c3fc303a8fd77c7bc91e77d61363f7433f"}, + {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c0ff64b06b10e35215abce517252b375e580a6125fd5fdf6421b98efbefb2d2"}, + {file = "scipy-1.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:fae8a7b898c42dffe3f7361c40d5952b6bf32d10c4569098d276b4c547905ee1"}, + {file = "scipy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f1564ea217e82c1bbe75ddf7285ba0709ecd503f048cb1236ae9995f64217bd"}, + {file = "scipy-1.10.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d925fa1c81b772882aa55bcc10bf88324dadb66ff85d548c71515f6689c6dac5"}, + {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaea0a6be54462ec027de54fca511540980d1e9eea68b2d5c1dbfe084797be35"}, + {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15a35c4242ec5f292c3dd364a7c71a61be87a3d4ddcc693372813c0b73c9af1d"}, + {file = "scipy-1.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:43b8e0bcb877faf0abfb613d51026cd5cc78918e9530e375727bf0625c82788f"}, + {file = "scipy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5678f88c68ea866ed9ebe3a989091088553ba12c6090244fdae3e467b1139c35"}, + {file = "scipy-1.10.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:39becb03541f9e58243f4197584286e339029e8908c46f7221abeea4b749fa88"}, + {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bce5869c8d68cf383ce240e44c1d9ae7c06078a9396df68ce88a1230f93a30c1"}, + {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07c3457ce0b3ad5124f98a86533106b643dd811dd61b548e78cf4c8786652f6f"}, + {file = "scipy-1.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:049a8bbf0ad95277ffba9b3b7d23e5369cc39e66406d60422c8cfef40ccc8415"}, + {file = "scipy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cd9f1027ff30d90618914a64ca9b1a77a431159df0e2a195d8a9e8a04c78abf9"}, + {file = "scipy-1.10.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:79c8e5a6c6ffaf3a2262ef1be1e108a035cf4f05c14df56057b64acc5bebffb6"}, + {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51af417a000d2dbe1ec6c372dfe688e041a7084da4fdd350aeb139bd3fb55353"}, + {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b4735d6c28aad3cdcf52117e0e91d6b39acd4272f3f5cd9907c24ee931ad601"}, + {file = "scipy-1.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ff7f37b1bf4417baca958d254e8e2875d0cc23aaadbe65b3d5b3077b0eb23ea"}, + {file = "scipy-1.10.1.tar.gz", hash = "sha256:2cf9dfb80a7b4589ba4c40ce7588986d6d5cebc5457cad2c2880f6bc2d42f3a5"}, +] + +[package.dependencies] +numpy = ">=1.19.5,<1.27.0" + +[package.extras] +dev = ["click", "doit (>=0.36.0)", "flake8", "mypy", "pycodestyle", "pydevtool", "rich-click", "typing_extensions"] +doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] +test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "six" +version = "1.16.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, + {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, +] + +[[package]] +name = "smart-open" +version = "7.0.5" +description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)" +optional = false +python-versions = "<4.0,>=3.7" +files = [ + {file = "smart_open-7.0.5-py3-none-any.whl", hash = "sha256:8523ed805c12dff3eaa50e9c903a6cb0ae78800626631c5fe7ea073439847b89"}, + {file = "smart_open-7.0.5.tar.gz", hash = "sha256:d3672003b1dbc85e2013e4983b88eb9a5ccfd389b0d4e5015f39a9ee5620ec18"}, +] + +[package.dependencies] +wrapt = "*" + +[package.extras] +all = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "paramiko", "requests", "zstandard"] +azure = ["azure-common", "azure-core", "azure-storage-blob"] +gcs = ["google-cloud-storage (>=2.6.0)"] +http = ["requests"] +s3 = ["boto3"] +ssh = ["paramiko"] +test = ["awscli", "azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "numpy", "paramiko", "pyopenssl", "pytest", "pytest-benchmark", "pytest-rerunfailures", "requests", "responses", "zstandard"] +webhdfs = ["requests"] +zst = ["zstandard"] + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "text-unidecode" +version = "1.3" +description = "The most basic Text::Unidecode port" +optional = false +python-versions = "*" +files = [ + {file = "text-unidecode-1.3.tar.gz", hash = "sha256:bad6603bb14d279193107714b288be206cac565dfa49aa5b105294dd5c4aab93"}, + {file = "text_unidecode-1.3-py2.py3-none-any.whl", hash = "sha256:1311f10e8b895935241623731c2ba64f4c455287888b18189350b67134a822e8"}, +] + +[[package]] +name = "threadpoolctl" +version = "3.5.0" +description = "threadpoolctl" +optional = false +python-versions = ">=3.8" +files = [ + {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, + {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, +] + +[[package]] +name = "tornado" +version = "6.4.2" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">=3.8" +files = [ + {file = "tornado-6.4.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e828cce1123e9e44ae2a50a9de3055497ab1d0aeb440c5ac23064d9e44880da1"}, + {file = "tornado-6.4.2-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:072ce12ada169c5b00b7d92a99ba089447ccc993ea2143c9ede887e0937aa803"}, + {file = "tornado-6.4.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a017d239bd1bb0919f72af256a970624241f070496635784d9bf0db640d3fec"}, + {file = "tornado-6.4.2-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c36e62ce8f63409301537222faffcef7dfc5284f27eec227389f2ad11b09d946"}, + {file = "tornado-6.4.2-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bca9eb02196e789c9cb5c3c7c0f04fb447dc2adffd95265b2c7223a8a615ccbf"}, + {file = "tornado-6.4.2-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:304463bd0772442ff4d0f5149c6f1c2135a1fae045adf070821c6cdc76980634"}, + {file = "tornado-6.4.2-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:c82c46813ba483a385ab2a99caeaedf92585a1f90defb5693351fa7e4ea0bf73"}, + {file = "tornado-6.4.2-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:932d195ca9015956fa502c6b56af9eb06106140d844a335590c1ec7f5277d10c"}, + {file = "tornado-6.4.2-cp38-abi3-win32.whl", hash = "sha256:2876cef82e6c5978fde1e0d5b1f919d756968d5b4282418f3146b79b58556482"}, + {file = "tornado-6.4.2-cp38-abi3-win_amd64.whl", hash = "sha256:908b71bf3ff37d81073356a5fadcc660eb10c1476ee6e2725588626ce7e5ca38"}, + {file = "tornado-6.4.2.tar.gz", hash = "sha256:92bad5b4746e9879fd7bf1eb21dce4e3fc5128d71601f80005afa39237ad620b"}, +] + +[[package]] +name = "tqdm" +version = "4.67.1" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tqdm-4.67.1-py3-none-any.whl", hash = "sha256:26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2"}, + {file = "tqdm-4.67.1.tar.gz", hash = "sha256:f8aef9c52c08c13a65f30ea34f4e5aac3fd1a34959879d7e59e63027286627f2"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["nbval", "pytest (>=6)", "pytest-asyncio (>=0.24)", "pytest-cov", "pytest-timeout"] +discord = ["requests"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + +[[package]] +name = "traitlets" +version = "5.14.3" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +files = [ + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "typing-extensions" +version = "4.12.2" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, +] + +[[package]] +name = "urllib3" +version = "2.2.3" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=3.8" +files = [ + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, +] + +[package.extras] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +h2 = ["h2 (>=4,<5)"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "wcwidth" +version = "0.2.13" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +files = [ + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, +] + +[[package]] +name = "webencodings" +version = "0.5.1" +description = "Character encoding aliases for legacy web content" +optional = false +python-versions = "*" +files = [ + {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"}, + {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, +] + +[[package]] +name = "wrapt" +version = "1.17.0" +description = "Module for decorators, wrappers and monkey patching." +optional = false +python-versions = ">=3.8" +files = [ + {file = "wrapt-1.17.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2a0c23b8319848426f305f9cb0c98a6e32ee68a36264f45948ccf8e7d2b941f8"}, + {file = "wrapt-1.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1ca5f060e205f72bec57faae5bd817a1560fcfc4af03f414b08fa29106b7e2d"}, + {file = "wrapt-1.17.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e185ec6060e301a7e5f8461c86fb3640a7beb1a0f0208ffde7a65ec4074931df"}, + {file = "wrapt-1.17.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bb90765dd91aed05b53cd7a87bd7f5c188fcd95960914bae0d32c5e7f899719d"}, + {file = "wrapt-1.17.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:879591c2b5ab0a7184258274c42a126b74a2c3d5a329df16d69f9cee07bba6ea"}, + {file = "wrapt-1.17.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:fce6fee67c318fdfb7f285c29a82d84782ae2579c0e1b385b7f36c6e8074fffb"}, + {file = "wrapt-1.17.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:0698d3a86f68abc894d537887b9bbf84d29bcfbc759e23f4644be27acf6da301"}, + {file = "wrapt-1.17.0-cp310-cp310-win32.whl", hash = "sha256:69d093792dc34a9c4c8a70e4973a3361c7a7578e9cd86961b2bbf38ca71e4e22"}, + {file = "wrapt-1.17.0-cp310-cp310-win_amd64.whl", hash = "sha256:f28b29dc158ca5d6ac396c8e0a2ef45c4e97bb7e65522bfc04c989e6fe814575"}, + {file = "wrapt-1.17.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:74bf625b1b4caaa7bad51d9003f8b07a468a704e0644a700e936c357c17dd45a"}, + {file = "wrapt-1.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f2a28eb35cf99d5f5bd12f5dd44a0f41d206db226535b37b0c60e9da162c3ed"}, + {file = "wrapt-1.17.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:81b1289e99cf4bad07c23393ab447e5e96db0ab50974a280f7954b071d41b489"}, + {file = "wrapt-1.17.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f2939cd4a2a52ca32bc0b359015718472d7f6de870760342e7ba295be9ebaf9"}, + {file = "wrapt-1.17.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6a9653131bda68a1f029c52157fd81e11f07d485df55410401f745007bd6d339"}, + {file = "wrapt-1.17.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4e4b4385363de9052dac1a67bfb535c376f3d19c238b5f36bddc95efae15e12d"}, + {file = "wrapt-1.17.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:bdf62d25234290db1837875d4dceb2151e4ea7f9fff2ed41c0fde23ed542eb5b"}, + {file = "wrapt-1.17.0-cp311-cp311-win32.whl", hash = "sha256:5d8fd17635b262448ab8f99230fe4dac991af1dabdbb92f7a70a6afac8a7e346"}, + {file = "wrapt-1.17.0-cp311-cp311-win_amd64.whl", hash = "sha256:92a3d214d5e53cb1db8b015f30d544bc9d3f7179a05feb8f16df713cecc2620a"}, + {file = "wrapt-1.17.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:89fc28495896097622c3fc238915c79365dd0ede02f9a82ce436b13bd0ab7569"}, + {file = "wrapt-1.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:875d240fdbdbe9e11f9831901fb8719da0bd4e6131f83aa9f69b96d18fae7504"}, + {file = "wrapt-1.17.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5ed16d95fd142e9c72b6c10b06514ad30e846a0d0917ab406186541fe68b451"}, + {file = "wrapt-1.17.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18b956061b8db634120b58f668592a772e87e2e78bc1f6a906cfcaa0cc7991c1"}, + {file = "wrapt-1.17.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:daba396199399ccabafbfc509037ac635a6bc18510ad1add8fd16d4739cdd106"}, + {file = "wrapt-1.17.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:4d63f4d446e10ad19ed01188d6c1e1bb134cde8c18b0aa2acfd973d41fcc5ada"}, + {file = "wrapt-1.17.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:8a5e7cc39a45fc430af1aefc4d77ee6bad72c5bcdb1322cfde852c15192b8bd4"}, + {file = "wrapt-1.17.0-cp312-cp312-win32.whl", hash = "sha256:0a0a1a1ec28b641f2a3a2c35cbe86c00051c04fffcfcc577ffcdd707df3f8635"}, + {file = "wrapt-1.17.0-cp312-cp312-win_amd64.whl", hash = "sha256:3c34f6896a01b84bab196f7119770fd8466c8ae3dfa73c59c0bb281e7b588ce7"}, + {file = "wrapt-1.17.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:714c12485aa52efbc0fc0ade1e9ab3a70343db82627f90f2ecbc898fdf0bb181"}, + {file = "wrapt-1.17.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da427d311782324a376cacb47c1a4adc43f99fd9d996ffc1b3e8529c4074d393"}, + {file = "wrapt-1.17.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ba1739fb38441a27a676f4de4123d3e858e494fac05868b7a281c0a383c098f4"}, + {file = "wrapt-1.17.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e711fc1acc7468463bc084d1b68561e40d1eaa135d8c509a65dd534403d83d7b"}, + {file = "wrapt-1.17.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:140ea00c87fafc42739bd74a94a5a9003f8e72c27c47cd4f61d8e05e6dec8721"}, + {file = "wrapt-1.17.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:73a96fd11d2b2e77d623a7f26e004cc31f131a365add1ce1ce9a19e55a1eef90"}, + {file = "wrapt-1.17.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:0b48554952f0f387984da81ccfa73b62e52817a4386d070c75e4db7d43a28c4a"}, + {file = "wrapt-1.17.0-cp313-cp313-win32.whl", hash = "sha256:498fec8da10e3e62edd1e7368f4b24aa362ac0ad931e678332d1b209aec93045"}, + {file = "wrapt-1.17.0-cp313-cp313-win_amd64.whl", hash = "sha256:fd136bb85f4568fffca995bd3c8d52080b1e5b225dbf1c2b17b66b4c5fa02838"}, + {file = "wrapt-1.17.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:17fcf043d0b4724858f25b8826c36e08f9fb2e475410bece0ec44a22d533da9b"}, + {file = "wrapt-1.17.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e4a557d97f12813dc5e18dad9fa765ae44ddd56a672bb5de4825527c847d6379"}, + {file = "wrapt-1.17.0-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0229b247b0fc7dee0d36176cbb79dbaf2a9eb7ecc50ec3121f40ef443155fb1d"}, + {file = "wrapt-1.17.0-cp313-cp313t-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8425cfce27b8b20c9b89d77fb50e368d8306a90bf2b6eef2cdf5cd5083adf83f"}, + {file = "wrapt-1.17.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:9c900108df470060174108012de06d45f514aa4ec21a191e7ab42988ff42a86c"}, + {file = "wrapt-1.17.0-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:4e547b447073fc0dbfcbff15154c1be8823d10dab4ad401bdb1575e3fdedff1b"}, + {file = "wrapt-1.17.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:914f66f3b6fc7b915d46c1cc424bc2441841083de01b90f9e81109c9759e43ab"}, + {file = "wrapt-1.17.0-cp313-cp313t-win32.whl", hash = "sha256:a4192b45dff127c7d69b3bdfb4d3e47b64179a0b9900b6351859f3001397dabf"}, + {file = "wrapt-1.17.0-cp313-cp313t-win_amd64.whl", hash = "sha256:4f643df3d4419ea3f856c5c3f40fec1d65ea2e89ec812c83f7767c8730f9827a"}, + {file = "wrapt-1.17.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:69c40d4655e078ede067a7095544bcec5a963566e17503e75a3a3e0fe2803b13"}, + {file = "wrapt-1.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2f495b6754358979379f84534f8dd7a43ff8cff2558dcdea4a148a6e713a758f"}, + {file = "wrapt-1.17.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:baa7ef4e0886a6f482e00d1d5bcd37c201b383f1d314643dfb0367169f94f04c"}, + {file = "wrapt-1.17.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8fc931382e56627ec4acb01e09ce66e5c03c384ca52606111cee50d931a342d"}, + {file = "wrapt-1.17.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8f8909cdb9f1b237786c09a810e24ee5e15ef17019f7cecb207ce205b9b5fcce"}, + {file = "wrapt-1.17.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:ad47b095f0bdc5585bced35bd088cbfe4177236c7df9984b3cc46b391cc60627"}, + {file = "wrapt-1.17.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:948a9bd0fb2c5120457b07e59c8d7210cbc8703243225dbd78f4dfc13c8d2d1f"}, + {file = "wrapt-1.17.0-cp38-cp38-win32.whl", hash = "sha256:5ae271862b2142f4bc687bdbfcc942e2473a89999a54231aa1c2c676e28f29ea"}, + {file = "wrapt-1.17.0-cp38-cp38-win_amd64.whl", hash = "sha256:f335579a1b485c834849e9075191c9898e0731af45705c2ebf70e0cd5d58beed"}, + {file = "wrapt-1.17.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d751300b94e35b6016d4b1e7d0e7bbc3b5e1751e2405ef908316c2a9024008a1"}, + {file = "wrapt-1.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7264cbb4a18dc4acfd73b63e4bcfec9c9802614572025bdd44d0721983fc1d9c"}, + {file = "wrapt-1.17.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:33539c6f5b96cf0b1105a0ff4cf5db9332e773bb521cc804a90e58dc49b10578"}, + {file = "wrapt-1.17.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c30970bdee1cad6a8da2044febd824ef6dc4cc0b19e39af3085c763fdec7de33"}, + {file = "wrapt-1.17.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:bc7f729a72b16ee21795a943f85c6244971724819819a41ddbaeb691b2dd85ad"}, + {file = "wrapt-1.17.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:6ff02a91c4fc9b6a94e1c9c20f62ea06a7e375f42fe57587f004d1078ac86ca9"}, + {file = "wrapt-1.17.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:2dfb7cff84e72e7bf975b06b4989477873dcf160b2fd89959c629535df53d4e0"}, + {file = "wrapt-1.17.0-cp39-cp39-win32.whl", hash = "sha256:2399408ac33ffd5b200480ee858baa58d77dd30e0dd0cab6a8a9547135f30a88"}, + {file = "wrapt-1.17.0-cp39-cp39-win_amd64.whl", hash = "sha256:4f763a29ee6a20c529496a20a7bcb16a73de27f5da6a843249c7047daf135977"}, + {file = "wrapt-1.17.0-py3-none-any.whl", hash = "sha256:d2c63b93548eda58abf5188e505ffed0229bf675f7c3090f8e36ad55b8cbc371"}, + {file = "wrapt-1.17.0.tar.gz", hash = "sha256:16187aa2317c731170a88ef35e8937ae0f533c402872c1ee5e6d079fcf320801"}, +] + +[[package]] +name = "zipp" +version = "3.20.2" +description = "Backport of pathlib-compatible object wrapper for zip files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, + {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, +] + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-ignore-flaky"] +type = ["pytest-mypy"] + +[metadata] +lock-version = "2.0" +python-versions = "~3.8" +content-hash = "20fc82932f9d03242bc017adff9e56d3e54015c0e540ecfcfb3c350ed2371e61" diff --git a/Chapter09/pyproject.toml b/Chapter09/pyproject.toml new file mode 100644 index 0000000..683bc65 --- /dev/null +++ b/Chapter09/pyproject.toml @@ -0,0 +1,26 @@ +[tool.poetry] +name = "Graph Machine Learning - Chapter 9" +version = "1.0.0" +description = "" +authors = ["Enrico Deusebio "] +packages = [] +package-mode = false + +[tool.setuptools] +py-modules = [] + +[tool.poetry.dependencies] +python = "~3.8" +ipykernel = ">=6.0.0" +matplotlib = "==3.2.2" +networkx = "==2.5" +scikit-learn = "==0.24.0" +pandas= "==1.1.3" +gensim = "==3.8.3" +node2vec = "==0.3.3" +python-louvain = "==0.16" +kaggle = "*" + +[build-system] +requires = ["poetry-core"] +build-backend = "poetry.core.masonry.api" diff --git a/Chapter09/requirements.txt b/Chapter09/requirements.txt new file mode 100644 index 0000000..93304bb --- /dev/null +++ b/Chapter09/requirements.txt @@ -0,0 +1,67 @@ +appnope==0.1.4 ; python_version >= "3.8" and python_version < "3.9" and (platform_system == "Darwin" or sys_platform == "darwin") +asttokens==2.4.1 ; python_version >= "3.8" and python_version < "3.9" +backcall==0.2.0 ; python_version >= "3.8" and python_version < "3.9" +bleach==6.1.0 ; python_version >= "3.8" and python_version < "3.9" +certifi==2024.8.30 ; python_version >= "3.8" and python_version < "3.9" +cffi==1.17.1 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +charset-normalizer==3.4.0 ; python_version >= "3.8" and python_version < "3.9" +colorama==0.4.6 ; python_version >= "3.8" and python_version < "3.9" and (sys_platform == "win32" or platform_system == "Windows") +comm==0.2.2 ; python_version >= "3.8" and python_version < "3.9" +cycler==0.12.1 ; python_version >= "3.8" and python_version < "3.9" +cython==0.29.14 ; python_version >= "3.8" and python_version < "3.9" +debugpy==1.8.9 ; python_version >= "3.8" and python_version < "3.9" +decorator==5.1.1 ; python_version >= "3.8" and python_version < "3.9" +executing==2.1.0 ; python_version >= "3.8" and python_version < "3.9" +gensim==3.8.3 ; python_version >= "3.8" and python_version < "3.9" +idna==3.10 ; python_version >= "3.8" and python_version < "3.9" +importlib-metadata==8.5.0 ; python_version >= "3.8" and python_version < "3.9" +ipykernel==6.29.5 ; python_version >= "3.8" and python_version < "3.9" +ipython==8.12.3 ; python_version >= "3.8" and python_version < "3.9" +jedi==0.19.2 ; python_version >= "3.8" and python_version < "3.9" +joblib==1.4.2 ; python_version >= "3.8" and python_version < "3.9" +jupyter-client==8.6.3 ; python_version >= "3.8" and python_version < "3.9" +jupyter-core==5.7.2 ; python_version >= "3.8" and python_version < "3.9" +kaggle==1.6.17 ; python_version >= "3.8" and python_version < "3.9" +kiwisolver==1.4.7 ; python_version >= "3.8" and python_version < "3.9" +matplotlib-inline==0.1.7 ; python_version >= "3.8" and python_version < "3.9" +matplotlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" +nest-asyncio==1.6.0 ; python_version >= "3.8" and python_version < "3.9" +networkx==2.5 ; python_version >= "3.8" and python_version < "3.9" +node2vec==0.3.3 ; python_version >= "3.8" and python_version < "3.9" +numpy==1.24.4 ; python_version >= "3.8" and python_version < "3.9" +packaging==24.2 ; python_version >= "3.8" and python_version < "3.9" +pandas==1.1.3 ; python_version >= "3.8" and python_version < "3.9" +parso==0.8.4 ; python_version >= "3.8" and python_version < "3.9" +pexpect==4.9.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" +pickleshare==0.7.5 ; python_version >= "3.8" and python_version < "3.9" +platformdirs==4.3.6 ; python_version >= "3.8" and python_version < "3.9" +prompt-toolkit==3.0.48 ; python_version >= "3.8" and python_version < "3.9" +psutil==6.1.0 ; python_version >= "3.8" and python_version < "3.9" +ptyprocess==0.7.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" +pure-eval==0.2.3 ; python_version >= "3.8" and python_version < "3.9" +pycparser==2.22 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" +pygments==2.18.0 ; python_version >= "3.8" and python_version < "3.9" +pyparsing==3.1.4 ; python_version >= "3.8" and python_version < "3.9" +python-dateutil==2.9.0.post0 ; python_version >= "3.8" and python_version < "3.9" +python-louvain==0.16 ; python_version >= "3.8" and python_version < "3.9" +python-slugify==8.0.4 ; python_version >= "3.8" and python_version < "3.9" +pytz==2024.2 ; python_version >= "3.8" and python_version < "3.9" +pywin32==308 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" +pyzmq==26.2.0 ; python_version >= "3.8" and python_version < "3.9" +requests==2.32.3 ; python_version >= "3.8" and python_version < "3.9" +scikit-learn==0.24.0 ; python_version >= "3.8" and python_version < "3.9" +scipy==1.10.1 ; python_version >= "3.8" and python_version < "3.9" +six==1.16.0 ; python_version >= "3.8" and python_version < "3.9" +smart-open==7.0.5 ; python_version >= "3.8" and python_version < "3.9" +stack-data==0.6.3 ; python_version >= "3.8" and python_version < "3.9" +text-unidecode==1.3 ; python_version >= "3.8" and python_version < "3.9" +threadpoolctl==3.5.0 ; python_version >= "3.8" and python_version < "3.9" +tornado==6.4.2 ; python_version >= "3.8" and python_version < "3.9" +tqdm==4.67.1 ; python_version >= "3.8" and python_version < "3.9" +traitlets==5.14.3 ; python_version >= "3.8" and python_version < "3.9" +typing-extensions==4.12.2 ; python_version >= "3.8" and python_version < "3.9" +urllib3==2.2.3 ; python_version >= "3.8" and python_version < "3.9" +wcwidth==0.2.13 ; python_version >= "3.8" and python_version < "3.9" +webencodings==0.5.1 ; python_version >= "3.8" and python_version < "3.9" +wrapt==1.17.0 ; python_version >= "3.8" and python_version < "3.9" +zipp==3.20.2 ; python_version >= "3.8" and python_version < "3.9" diff --git a/docker/Dockerfile b/docker/Dockerfile index bb0ba20..42c1efb 100644 --- a/docker/Dockerfile +++ b/docker/Dockerfile @@ -72,3 +72,9 @@ RUN ls -d -1 */ | grep -v -e Chapter08 | xargs rm -rf RUN conda create -n chap8 python=3.8 RUN conda run -n chap8 pip install -r Chapter08/requirements.txt RUN conda run -n chap8 python -m ipykernel install --name chap8 --user + +FROM base as chap9 +RUN ls -d -1 */ | grep -v -e Chapter09 | xargs rm -rf +RUN conda create -n chap9 python=3.8 +RUN conda run -n chap9 pip install -r Chapter09/requirements.txt +RUN conda run -n chap9 python -m ipykernel install --name chap9 --user From e979afefbcdc10333c924f04473c028c23d0688a Mon Sep 17 00:00:00 2001 From: deusebio Date: Mon, 25 Nov 2024 20:04:09 +0100 Subject: [PATCH 20/31] [MISC] setting package-mode to false to prevent installation warning (#20) --- Chapter01/pyproject.toml | 1 + Chapter02/pyproject.toml | 1 + Chapter03/pyproject.toml | 1 + Chapter04/pyproject.toml | 1 + Chapter05/pyproject.toml | 1 + Chapter06/pyproject.toml | 1 + Chapter07/pyproject.toml | 1 + 7 files changed, 7 insertions(+) diff --git a/Chapter01/pyproject.toml b/Chapter01/pyproject.toml index 02eb203..a27a361 100644 --- a/Chapter01/pyproject.toml +++ b/Chapter01/pyproject.toml @@ -4,6 +4,7 @@ version = "1.0.0" description = "" authors = ["Enrico Deusebio "] packages = [] +package-mode = false [tool.poetry.dependencies] python = "~3.9" diff --git a/Chapter02/pyproject.toml b/Chapter02/pyproject.toml index 957e591..b6c4916 100644 --- a/Chapter02/pyproject.toml +++ b/Chapter02/pyproject.toml @@ -4,6 +4,7 @@ version = "1.0.0" description = "" authors = ["Enrico Deusebio "] packages = [] +package-mode = false [tool.poetry.dependencies] python = ">=3.9" diff --git a/Chapter03/pyproject.toml b/Chapter03/pyproject.toml index 3822235..c0bdb7b 100644 --- a/Chapter03/pyproject.toml +++ b/Chapter03/pyproject.toml @@ -4,6 +4,7 @@ version = "1.0.0" description = "" authors = ["Enrico Deusebio "] packages = [] +package-mode = false [tool.setuptools] py-modules = [] diff --git a/Chapter04/pyproject.toml b/Chapter04/pyproject.toml index 4d42f64..d1e24e7 100644 --- a/Chapter04/pyproject.toml +++ b/Chapter04/pyproject.toml @@ -4,6 +4,7 @@ version = "1.0.0" description = "" authors = ["Enrico Deusebio "] packages = [] +package-mode = false [tool.setuptools] py-modules = [] diff --git a/Chapter05/pyproject.toml b/Chapter05/pyproject.toml index 5fd476d..5a3a39b 100644 --- a/Chapter05/pyproject.toml +++ b/Chapter05/pyproject.toml @@ -4,6 +4,7 @@ version = "1.0.0" description = "" authors = ["Enrico Deusebio "] packages = [] +package-mode = false [tool.setuptools] py-modules = [] diff --git a/Chapter06/pyproject.toml b/Chapter06/pyproject.toml index ae7f351..78b9a07 100644 --- a/Chapter06/pyproject.toml +++ b/Chapter06/pyproject.toml @@ -4,6 +4,7 @@ version = "1.0.0" description = "" authors = ["Enrico Deusebio "] packages = [] +package-mode = false [tool.poetry.dependencies] python = "~3.8" diff --git a/Chapter07/pyproject.toml b/Chapter07/pyproject.toml index cb4d1d6..ccf4220 100644 --- a/Chapter07/pyproject.toml +++ b/Chapter07/pyproject.toml @@ -4,6 +4,7 @@ version = "1.0.0" description = "" authors = ["Enrico Deusebio "] packages = [] +package-mode = false [tool.setuptools] py-modules = [] From e6e7024ff8cec77b8bce26a0f14b871debae4c63 Mon Sep 17 00:00:00 2001 From: deusebio Date: Mon, 25 Nov 2024 20:04:30 +0100 Subject: [PATCH 21/31] bug: allow data dir specification (#21) --- README.md | 13 +++++++++---- docker/Dockerfile | 1 + docker/README.md | 2 +- utils.py | 9 +++++++-- 4 files changed, 18 insertions(+), 7 deletions(-) diff --git a/README.md b/README.md index d2c504e..a62a9fe 100644 --- a/README.md +++ b/README.md @@ -26,10 +26,6 @@ If you feel this book is for you, get your [copy](https://www.amazon.com/dp/1800 https://www.packtpub.com/ -## Errata -Page 16 - -The expression nt.to.numpy.matrix(G) should be nx.to.numpy.matrix(G) ## Instructions and Navigations All of the code is organized into folders. For example, Chapter02. @@ -44,6 +40,15 @@ generator = HinSAGENodeGenerator( head_node_type="document" ) ``` + +The notebooks in the repositories save files and figures into dedicated folders as they are executed. The format for these folders are: + +``` +/Chapter +``` + +where `DATA_FOLDER` is an environment variable that you can use to customize the position for the data. If the variable is not set, its value fall back to `/data`. + **Following is what you need for this book:** This book is for data analysts, graph developers, graph analysts, and graph professionals who want to leverage the information embedded in the connections and relations between data points to boost their analysis and model performance. The book will also be useful for data scientists and machine learning developers who want to build ML-driven graph databases. A beginner-level understanding of graph databases and graph data is required. Intermediate-level working knowledge of Python programming and machine learning is also expected to make the most out of this book. diff --git a/docker/Dockerfile b/docker/Dockerfile index 42c1efb..23175ad 100644 --- a/docker/Dockerfile +++ b/docker/Dockerfile @@ -15,6 +15,7 @@ USER ${user} ENV HOME /home/${user} ENV NB_USER=${user} ENV XDG_CACHE_HOME=/home/${user}/.cache/ +ENV DATA_FOLDER=/data RUN git clone https://github.com/deusebio/Graph-Machine-Learning.git /home/${user}/Graph-Machine-Learning WORKDIR /home/${user}/Graph-Machine-Learning diff --git a/docker/README.md b/docker/README.md index d062fc7..cfd50d5 100644 --- a/docker/README.md +++ b/docker/README.md @@ -32,7 +32,7 @@ $ docker run --rm \ graph-machine-learning:latest ``` -to start the image. We suggest to use the default port 8888 for the ``. This will start a Jupyter server which should be locally accessible at `[http://localhost:8888](http://localhost:8888)` (or change the port accordingly). +to start the image. Please make sure that the data folder can be written by the Docker image. We suggest to use the default port 8888 for the ``. This will start a Jupyter server which should be locally accessible at `[http://localhost:8888](http://localhost:8888)` (or change the port accordingly). ## For Developers diff --git a/utils.py b/utils.py index b9a368a..a524daf 100644 --- a/utils.py +++ b/utils.py @@ -6,7 +6,12 @@ _chapter = os.path.basename(os.getcwd()) -DATA_DIR = pathlib.Path("/") / "data" / _chapter +if _chapter.startswith("Chapter"): + BASE_FOLDER = os.environ.get("DATA_FOLDER", os.path.join(os.getcwd(), "..", "data")) + DATA_DIR = pathlib.Path(BASE_FOLDER) / _chapter +else: + BASE_FOLDER = os.environ.get("DATA_FOLDER", os.getcwd()) + DATA_DIR = pathlib.Path(BASE_FOLDER) FIGURES_DIR = DATA_DIR / "figures" @@ -65,4 +70,4 @@ def draw_enhanced_path(G, path_to_enhance, node_names={}, filename=None, layout axis.set_ylim([1.2*y for y in axis.get_ylim()]) if filename: - plt.savefig(FIGURES_DIR / filename, format="png") \ No newline at end of file + plt.savefig(FIGURES_DIR / filename, format="png") From e8447cf20935a32807c8dd9aea9265f33b00c218 Mon Sep 17 00:00:00 2001 From: deusebio Date: Sun, 5 Jan 2025 11:36:48 +0100 Subject: [PATCH 22/31] [MISC] Remove pip install commands from notebooks (#25) --- Chapter05/04_Graph_Neural_Networks.ipynb | 27 ------------------- Chapter05/pyproject.toml | 2 +- Chapter07/02_Social_network_analysis.ipynb | 30 ---------------------- Chapter07/pyproject.toml | 7 +++-- 4 files changed, 4 insertions(+), 62 deletions(-) diff --git a/Chapter05/04_Graph_Neural_Networks.ipynb b/Chapter05/04_Graph_Neural_Networks.ipynb index 271d478..f648c56 100644 --- a/Chapter05/04_Graph_Neural_Networks.ipynb +++ b/Chapter05/04_Graph_Neural_Networks.ipynb @@ -20,27 +20,6 @@ "In Chapter 1 you learned how local and global graph properties can be extracted from graphs. Those properties represent the graph itself and bring important informations which can be useful for classification." ] }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "id": "5k3sYIRJpMgb", - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Uninstalling stellargraph-1.2.1:\r\n", - " Successfully uninstalled stellargraph-1.2.1\r\n" - ] - } - ], - "source": [ - "!pip install stellargraph" - ] - }, { "cell_type": "markdown", "metadata": { @@ -921,9 +900,6 @@ "metadata": {}, "outputs": [], "source": [ - "#!pip install fsspec==2024.3.1 # needed for PROTEINS download torch geometric\n", - "#!pip install torch_geometric\n", - "\n", "import torch\n", "from torch_geometric.datasets import TUDataset\n", "from torch_geometric.data import DataLoader\n", @@ -1031,9 +1007,6 @@ "metadata": {}, "outputs": [], "source": [ - "#!pip install torch==2.1.1 # needed for dgl\n", - "#!pip install dgl -f https://data.dgl.ai/wheels/torch-2.1/repo.html\n", - "\n", "import dgl\n", "import torch\n", "import torch.nn.functional as F\n", diff --git a/Chapter05/pyproject.toml b/Chapter05/pyproject.toml index 5a3a39b..40827a3 100644 --- a/Chapter05/pyproject.toml +++ b/Chapter05/pyproject.toml @@ -25,7 +25,7 @@ chardet = "==5.2.0" torch_geometric = "^2.5.2" torchvision = "^0.16.0" torchmetrics="^1.3.0" -# dgl = https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl +# Since 2024.06.27, DGL have stopped providing packages for Windows and MacOS. The latest version of available package is 2.2.1. dgl = {url = "https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl"} [build-system] diff --git a/Chapter07/02_Social_network_analysis.ipynb b/Chapter07/02_Social_network_analysis.ipynb index e346a1f..af2bb87 100644 --- a/Chapter07/02_Social_network_analysis.ipynb +++ b/Chapter07/02_Social_network_analysis.ipynb @@ -9,18 +9,6 @@ "# Link prediction on social network using DGL" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "xqMpPrND8SeA" - }, - "outputs": [], - "source": [ - "# !pip uninstall -y dgl\n", - "# !pip install dgl==2.2.1 -f https://data.dgl.ai/wheels/torch-2.3/repo.html" - ] - }, { "cell_type": "code", "execution_count": null, @@ -478,24 +466,6 @@ "We will now replicate the example using another popular library for graph machine learning: Pytorch Geometric" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "_Smng0hRNtbZ", - "outputId": "21f31f79-a12c-49b2-9212-b0a5a0d901b6" - }, - "outputs": [], - "source": [ - "!pip install torch_geometric\n", - "\n", - "# Optional dependencies:\n", - "!pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.3.0+cpu.html" - ] - }, { "cell_type": "code", "execution_count": null, diff --git a/Chapter07/pyproject.toml b/Chapter07/pyproject.toml index ccf4220..e3cac0e 100644 --- a/Chapter07/pyproject.toml +++ b/Chapter07/pyproject.toml @@ -30,15 +30,14 @@ torch = "^2.1.0" torch_geometric = "^2.5.2" torchvision = "^0.16.0" torchmetrics="^1.3.0" -# torch-sparse = {version = "^0.6.18", source = "torch-wheels"} -torch-sparse = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl"} -pyg-lib = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/pyg_lib-0.4.0%2Bpt21cpu-cp38-cp38-linux_x86_64.whl"} python-louvain = "==0.16" -# communities = "==2.2.0" nxt-gem = { git="https://github.com/palash1992/GEM.git", branch="master" } # This is what is holding us back to python 3.8 stellargraph = "^1.2.1" +# Since 2024.06.27, DGL have stopped providing packages for Windows and MacOS. The latest version of available package is 2.2.1. dgl = {url = "https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl"} +torch-sparse = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl"} +pyg-lib = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/pyg_lib-0.4.0%2Bpt21cpu-cp38-cp38-linux_x86_64.whl"} [build-system] requires = ["poetry-core"] From e5cd803c0ff62050efe1fe1ea404585669193007 Mon Sep 17 00:00:00 2001 From: deusebio Date: Sat, 18 Jan 2025 11:07:50 +0100 Subject: [PATCH 23/31] [Chapter05] Adding Planetoid notebook (#32) --- Chapter05/05_Planetoid.ipynb | 715 +++++++++++++++++++++++++++++++++++ Chapter05/poetry.lock | 39 +- Chapter05/pyproject.toml | 2 + Chapter05/requirements.txt | 2 + 4 files changed, 757 insertions(+), 1 deletion(-) create mode 100644 Chapter05/05_Planetoid.ipynb diff --git a/Chapter05/05_Planetoid.ipynb b/Chapter05/05_Planetoid.ipynb new file mode 100644 index 0000000..1c82649 --- /dev/null +++ b/Chapter05/05_Planetoid.ipynb @@ -0,0 +1,715 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "azD4cTRtNMPD" + }, + "source": [ + "# Planetoid" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z298uxJkikP9" + }, + "source": [ + "In Chapter 4 and 5 we have presented Planetoid.\n", + "\n", + "Planetoid is a framework designed for *semi-supervised learning* on graphs, particularly useful when only a small portion of the graph nodes are labeled. It is applied to problems where we have a graph-structured dataset, such as citation networks, social networks, or knowledge graphs.\n", + "\n", + "The key idea behind Planetoid is to learn node embeddings that are able to capture both graph structure and label information. Planetoid achieves this by combining a supervised loss (for labeled nodes) and an unsupervised loss (for the graph structure, inferred from the edges), leading to more accurate predictions for the unlabeled nodes. Specifically, it uses random walks to capture the local graph structure and applies a Skip-gram model (similar to Word2Vec) to learn node embeddings, while also incorporating label information to improve performance.\n", + "\n", + "Key Characteristics of Planetoid:\n", + "- Semi-supervised: Combines labeled and unlabeled data to improve the model.\n", + "- Graph-based: Uses graph structure information to learn the relationships between nodes.\n", + "- Random Walks & Skip-gram: Uses random walks on the graph to capture the local structure and applies a Skip-gram model to learn embeddings.\n", + "\n", + "Planetoid comes in two version, a _transductive_ and an _inductive_ one, namely *Planetoid-T* and *Planetoid-I*\n", + "\n", + "The original implementation can be found at [this repo](https://github.com/kimiyoung/planetoid). However, it uses quite old frameworks such as Lasagne and theano. For this reason, we have provided a sample implementation below.\n", + "\n", + "_Important Note: since this is a custom implementation, results may be different from the original paper. However, it should be close enugh to capture the theoretical concept_" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "-RT2rekt_uST" + }, + "outputs": [], + "source": [ + "# adapted from https://github.com/kimiyoung/planetoid" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9iG24owekG3g" + }, + "source": [ + "#### Planetoid-T: A Transductive Approach to Semi-Supervised Learning\n", + "Planetoid-T (Transductive Planetoid) is an extension of the original Planetoid framework. While Planetoid is primarily inductive (learning embeddings that generalize to unseen nodes), Planetoid-T specifically focuses on a transductive setting, where all nodes (both labeled and unlabeled) are known during training, and the model uses this to learn embeddings for all nodes in the graph.\n", + "\n", + "In Planetoid-T, the model learns node embeddings in a way that explicitly incorporates both labeled information and graph structure by utilizing two types of losses:\n", + "\n", + "1. Supervised Loss: This is based on the labeled nodes, encouraging the model to predict the correct label for these nodes.\n", + "2. Unsupervised Loss: This loss captures the graph structure by predicting node pairs based on their proximity in the graph.\n", + "\n", + "The architecture used in Planetoid-T is typically a multi-layer feed-forward neural network where embeddings for nodes are refined during training. It combines the benefits of label propagation (through graph structure) and deep learning (through neural networks), making it an effective approach for large-scale semi-supervised learning tasks on graph-structured data.\n", + "\n", + "_importat note: The implementation below may require a lot of time. However its easier to follow from a didactic point of view. To speed up the process, we have provided a faster implementation using sparse tensors in the next cell_" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "vSl1MoWzBCs7" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import torch\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "from torch.optim import Adam\n", + "from torch_geometric.datasets import Planetoid\n", + "from torch_geometric.utils import to_dense_adj\n", + "from torch_geometric.utils import subgraph\n", + "\n", + "from tqdm import tqdm\n", + "\n", + "# Load Cora dataset\n", + "dataset = Planetoid(root=\"data/Cora\", name=\"Cora\")\n", + "data = dataset[0] # Graph object\n", + "\n", + "###########################################\n", + "# Computing embeddings and training may require a lot of time.\n", + "# You may want to subsample the graph for didactic purposes.\n", + "# Do it here.\n", + "###########################################\n", + "\n", + "features = data.x # Node features\n", + "labels = data.y # Node labels\n", + "adj_matrix = to_dense_adj(data.edge_index)[0] # Dense adjacency matrix\n", + "num_nodes, feature_dim = features.shape\n", + "num_classes = dataset.num_classes\n", + "\n", + "# Parameters\n", + "hidden_dim = 64\n", + "embedding_dim = 64\n", + "learning_rate = 0.01\n", + "lambda_weight = 0.5 # Weight for unsupervised loss\n", + "pretrain_epochs = 100\n", + "train_epochs = 200\n", + "neg_sample_ratio = 1.0 # Ratio of negative samples to positive samples\n", + "random_walk_length = 10\n", + "window_size = 5\n", + "\n", + "# Random Walk Sampling\n", + "def random_walk_sampling(adj_matrix, num_walks=10, walk_length=10):\n", + " \"\"\"Generates random walk sequences.\"\"\"\n", + " walks = []\n", + " for node in range(num_nodes):\n", + " for _ in range(num_walks):\n", + " walk = [node]\n", + " for _ in range(walk_length - 1):\n", + " neighbors = torch.nonzero(torch.Tensor(adj_matrix[node]), as_tuple=True)[0].tolist()\n", + " if neighbors:\n", + " walk.append(np.random.choice(neighbors))\n", + " else:\n", + " break\n", + " walks.append(walk)\n", + " return walks\n", + "\n", + "# Generate positive and negative pairs\n", + "def generate_pairs(walks, window_size, neg_sample_ratio):\n", + " \"\"\"Generates positive and negative samples for context prediction.\"\"\"\n", + " pairs = []\n", + " for walk in tqdm(walks):\n", + " for i, node in enumerate(walk):\n", + " # Positive pairs within the sliding window\n", + " for j in range(max(0, i - window_size), min(len(walk), i + window_size + 1)):\n", + " if i != j:\n", + " pairs.append((node, walk[j], 1)) # Positive pair\n", + " # Negative pairs (corrupted context)\n", + " for _ in range(int(neg_sample_ratio)):\n", + " neg_node = np.random.randint(0, num_nodes)\n", + " pairs.append((node, neg_node, -1))\n", + " return pairs\n", + "\n", + "# Model definition\n", + "class PlanetoidT(nn.Module):\n", + " def __init__(self, input_dim, hidden_dim, output_dim, embedding_dim):\n", + " super(PlanetoidT, self).__init__()\n", + " # Feature-based layers\n", + " self.feature_nn = nn.Sequential(\n", + " nn.Linear(input_dim, hidden_dim),\n", + " nn.ReLU(),\n", + " nn.Linear(hidden_dim, output_dim),\n", + " )\n", + " # Embedding-based layers\n", + " self.embedding_nn = nn.Sequential(\n", + " nn.Linear(embedding_dim, hidden_dim),\n", + " nn.ReLU(),\n", + " nn.Linear(hidden_dim, output_dim),\n", + " )\n", + " # Parameters for embeddings\n", + " self.embeddings = nn.Parameter(torch.randn(num_nodes, embedding_dim))\n", + " # Classifier\n", + " self.classifier = nn.Linear(2 * output_dim, num_classes)\n", + "\n", + " def forward(self, x):\n", + " h_feature = self.feature_nn(x)\n", + " h_embedding = self.embedding_nn(self.embeddings)\n", + " combined = torch.cat([h_feature, h_embedding], dim=1)\n", + " return self.classifier(combined)\n", + "\n", + "# Loss functions\n", + "def supervised_loss(predictions, labels, mask):\n", + " \"\"\"Cross-entropy loss for labeled nodes.\"\"\"\n", + " return F.cross_entropy(predictions[mask], labels[mask])\n", + "\n", + "def unsupervised_loss(pairs, embeddings):\n", + " \"\"\"Negative sampling-based loss for graph context prediction.\"\"\"\n", + " loss = 0\n", + " for ith, (i, c, label) in enumerate(tqdm(pairs)):\n", + " score = torch.dot(embeddings[i], embeddings[c])\n", + " old_loss = float(loss)\n", + " if label == 1:\n", + " loss += -torch.log(torch.sigmoid(score))\n", + " else:\n", + " loss += -torch.log(1 - torch.sigmoid(score))\n", + " if torch.isnan(loss) or torch.isinf(loss):\n", + " print(loss)\n", + " print(torch.log(torch.sigmoid(score)))\n", + " print(old_loss)\n", + " print(score)\n", + " print(label)\n", + " raise ValueError()\n", + " return loss / len(pairs)" + ] + }, + { + "cell_type": "raw", + "metadata": { + "id": "vSl1MoWzBCs7" + }, + "source": [ + "# Training setup\n", + "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", + "model = PlanetoidT(input_dim=feature_dim, hidden_dim=hidden_dim, output_dim=hidden_dim, embedding_dim=embedding_dim).to(device)\n", + "optimizer = Adam(model.parameters(), lr=learning_rate)\n", + "\n", + "features, labels, adj_matrix = features.to(device), labels.to(device), adj_matrix.to(device)\n", + "train_mask = data.train_mask.to(device)\n", + "test_mask = data.test_mask.to(device)\n", + "\n", + "# Pretraining embeddings\n", + "print(\"Pretraining embeddings...\")\n", + "walks = random_walk_sampling(adj_matrix.cpu().numpy(), num_walks=10, walk_length=random_walk_length)\n", + "print(\"Generating pairs...\")\n", + "pairs = generate_pairs(walks, window_size=window_size, neg_sample_ratio=neg_sample_ratio)" + ] + }, + { + "cell_type": "raw", + "metadata": { + "id": "vSl1MoWzBCs7" + }, + "source": [ + "for epoch in range(pretrain_epochs):\n", + " optimizer.zero_grad()\n", + " embeddings = model.embeddings\n", + " loss = unsupervised_loss(pairs, embeddings)\n", + " loss.backward()\n", + " optimizer.step()\n", + " if epoch % 10 == 0:\n", + " print(f\"Pretraining Epoch {epoch:03d}, Loss: {loss.item():.4f}\")\n", + "\n", + "# Joint training\n", + "print(\"Joint training...\")\n", + "for epoch in range(train_epochs):\n", + " model.train()\n", + " optimizer.zero_grad()\n", + "\n", + " # Supervised loss\n", + " predictions = model(features)\n", + " Ls = supervised_loss(predictions, labels, train_mask)\n", + "\n", + " # Unsupervised loss\n", + " embeddings = model.embeddings\n", + " Lu = unsupervised_loss(pairs, embeddings)\n", + "\n", + " # Combined loss\n", + " loss = Ls + lambda_weight * Lu\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " if epoch % 10 == 0:\n", + " print(f\"Epoch {epoch:03d}, Loss: {loss.item():.4f}, Ls: {Ls.item():.4f}, Lu: {Lu.item():.4f}\")\n", + "\n", + "# Evaluation\n", + "model.eval()\n", + "with torch.no_grad():\n", + " predictions = model(features).argmax(dim=1)\n", + " accuracy = (predictions[test_mask] == labels[test_mask]).float().mean()\n", + " print(f\"Test Accuracy: {accuracy:.4f}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iHKhTmZlk8yt" + }, + "source": [ + "##### Faster implementation of Planetoid-T" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Ww0a9xyYUDVC", + "outputId": "f641cb99-b519-4ccd-e647-ea6910df7aa7" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pretraining embeddings...\n", + "Pretraining Epoch 000, Loss: 3.2761\n", + "Pretraining Epoch 010, Loss: 2.8495\n", + "Pretraining Epoch 020, Loss: 2.4809\n", + "Pretraining Epoch 030, Loss: 2.1658\n", + "Pretraining Epoch 040, Loss: 1.9020\n", + "Joint training...\n", + "Epoch 000, Loss: 2.7846, Ls: 1.9508, Lu: 1.6677\n", + "Epoch 010, Loss: 0.7608, Ls: 0.0014, Lu: 1.5189\n", + "Epoch 020, Loss: 0.7075, Ls: 0.0000, Lu: 1.4151\n", + "Epoch 030, Loss: 0.6647, Ls: 0.0000, Lu: 1.3294\n", + "Epoch 040, Loss: 0.6297, Ls: 0.0000, Lu: 1.2595\n", + "Epoch 050, Loss: 0.5959, Ls: 0.0000, Lu: 1.1917\n", + "Epoch 060, Loss: 0.5666, Ls: 0.0000, Lu: 1.1331\n", + "Epoch 070, Loss: 0.5413, Ls: 0.0000, Lu: 1.0826\n", + "Epoch 080, Loss: 0.5166, Ls: 0.0000, Lu: 1.0333\n", + "Epoch 090, Loss: 0.4965, Ls: 0.0000, Lu: 0.9931\n", + "Test Accuracy: 0.4490\n" + ] + } + ], + "source": [ + "import torch\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "from torch_geometric.datasets import Planetoid\n", + "from torch_geometric.utils import to_dense_adj\n", + "from torch_sparse import SparseTensor\n", + "import numpy as np\n", + "\n", + "# Load Cora dataset\n", + "dataset = Planetoid(root=\"data/Cora\", name=\"Cora\")\n", + "data = dataset[0]\n", + "features = data.x\n", + "labels = data.y\n", + "adj_matrix = to_dense_adj(data.edge_index)[0]\n", + "num_nodes, feature_dim = features.shape\n", + "num_classes = dataset.num_classes\n", + "\n", + "# Parameters\n", + "hidden_dim = 64\n", + "embedding_dim = 64\n", + "learning_rate = 0.01\n", + "lambda_weight = 0.5\n", + "pretrain_epochs = 50\n", + "train_epochs = 100\n", + "neg_sample_ratio = 1.0\n", + "\n", + "# Convert adjacency to sparse tensor\n", + "adj_sparse = SparseTensor.from_dense(adj_matrix)\n", + "\n", + "# Efficient random walk sampling\n", + "def efficient_sample_context(adj, num_samples=10, neg_ratio=1.0):\n", + " \"\"\"Sample positive and negative context pairs efficiently.\"\"\"\n", + " row, col, _ = adj.coo() # Edge list\n", + " num_edges = row.size(0)\n", + "\n", + " # Sample positive pairs\n", + " idx = torch.randint(0, num_edges, (num_samples,))\n", + " pos_pairs = torch.stack((row[idx], col[idx]), dim=1)\n", + "\n", + " # Sample negative pairs\n", + " neg_pairs = []\n", + " for _ in range(int(num_samples * neg_ratio)):\n", + " neg_src = torch.randint(0, num_nodes, (num_samples,))\n", + " neg_dst = torch.randint(0, num_nodes, (num_samples,))\n", + " neg_pairs.append(torch.stack((neg_src, neg_dst), dim=1))\n", + " neg_pairs = torch.cat(neg_pairs, dim=0)\n", + "\n", + " # Combine and return\n", + " labels = torch.cat([torch.ones(pos_pairs.size(0)), -torch.ones(neg_pairs.size(0))])\n", + " return torch.cat([pos_pairs, neg_pairs], dim=0), labels\n", + "\n", + "# Model definition\n", + "class PlanetoidT(nn.Module):\n", + " def __init__(self, input_dim, hidden_dim, output_dim, embedding_dim):\n", + " super(PlanetoidT, self).__init__()\n", + " self.feature_nn = nn.Sequential(\n", + " nn.Linear(input_dim, hidden_dim),\n", + " nn.ReLU(),\n", + " nn.Linear(hidden_dim, output_dim),\n", + " )\n", + " self.embedding_nn = nn.Sequential(\n", + " nn.Linear(embedding_dim, hidden_dim),\n", + " nn.ReLU(),\n", + " nn.Linear(hidden_dim, output_dim),\n", + " )\n", + " self.embeddings = nn.Parameter(torch.randn(num_nodes, embedding_dim))\n", + " self.classifier = nn.Linear(2 * output_dim, num_classes)\n", + "\n", + " def forward(self, x):\n", + " h_feature = self.feature_nn(x)\n", + " h_embedding = self.embedding_nn(self.embeddings)\n", + " combined = torch.cat([h_feature, h_embedding], dim=1)\n", + " return self.classifier(combined)\n", + "\n", + "# Loss functions\n", + "def supervised_loss(predictions, labels, mask):\n", + " return F.cross_entropy(predictions[mask], labels[mask])\n", + "\n", + "def unsupervised_loss(context_pairs, labels, embeddings):\n", + " src, dst = context_pairs[:, 0], context_pairs[:, 1]\n", + " scores = (embeddings[src] * embeddings[dst]).sum(dim=1)\n", + " return F.binary_cross_entropy_with_logits(scores, (labels + 1) / 2)\n", + "\n", + "# Training setup\n", + "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", + "model = PlanetoidT(input_dim=feature_dim, hidden_dim=hidden_dim, output_dim=hidden_dim, embedding_dim=embedding_dim).to(device)\n", + "optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)\n", + "\n", + "features, labels = features.to(device), labels.to(device)\n", + "train_mask = data.train_mask.to(device)\n", + "test_mask = data.test_mask.to(device)\n", + "\n", + "# Pretraining embeddings\n", + "print(\"Pretraining embeddings...\")\n", + "for epoch in range(pretrain_epochs):\n", + " optimizer.zero_grad()\n", + " context_pairs, labels_context = efficient_sample_context(adj_sparse, num_samples=1000, neg_ratio=neg_sample_ratio)\n", + " context_pairs, labels_context = context_pairs.to(device), labels_context.to(device)\n", + " loss = unsupervised_loss(context_pairs, labels_context, model.embeddings)\n", + " loss.backward()\n", + " optimizer.step()\n", + " if epoch % 10 == 0:\n", + " print(f\"Pretraining Epoch {epoch:03d}, Loss: {loss.item():.4f}\")\n", + "\n", + "# Joint training\n", + "print(\"Joint training...\")\n", + "for epoch in range(train_epochs):\n", + " model.train()\n", + " optimizer.zero_grad()\n", + "\n", + " # Supervised loss\n", + " predictions = model(features)\n", + " Ls = supervised_loss(predictions, labels, train_mask)\n", + "\n", + " # Unsupervised loss\n", + " context_pairs, labels_context = efficient_sample_context(adj_sparse, num_samples=1000, neg_ratio=neg_sample_ratio)\n", + " context_pairs, labels_context = context_pairs.to(device), labels_context.to(device)\n", + " Lu = unsupervised_loss(context_pairs, labels_context, model.embeddings)\n", + "\n", + " # Combined loss\n", + " loss = Ls + lambda_weight * Lu\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " if epoch % 10 == 0:\n", + " print(f\"Epoch {epoch:03d}, Loss: {loss.item():.4f}, Ls: {Ls.item():.4f}, Lu: {Lu.item():.4f}\")\n", + "\n", + "# Evaluation\n", + "model.eval()\n", + "with torch.no_grad():\n", + " predictions = model(features).argmax(dim=1)\n", + " accuracy = (predictions[test_mask] == labels[test_mask]).float().mean()\n", + " print(f\"Test Accuracy: {accuracy:.4f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 718 + }, + "id": "OLIFm8ICflPZ", + "outputId": "68f1f6d3-e486-4f78-8330-060a88954901" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2IAAAK9CAYAAABGsN/cAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde3wU5b348c9c9p77PYEA4a6iQEHw0ooCSmm9oMV7D6jVejxay1F7jva0tbbnV0+1tfb0aFt7EW2rVfFY9diiiAhWqBYE6xUEIkJC7tlNspu9zMzz+2PJypIEAmSTAN/3y7xwZ2fmeXYys5nvPM/zfTSllEIIIYQQQgghxIDRB7sCQgghhBBCCHGskUBMCCGEEEIIIQaYBGJCCCGEEEIIMcAkEBNCCCGEEEKIASaBmBBCCCGEEEIMMAnEhBBCCCGEEGKASSAmhBBCCCGEEANMAjEhhBBCCCGEGGASiAkhhBBCCCHEAJNATAghhhhN07jpppsyXs6rr76Kpmm8+uqrB1z3zDPP5Mwzz0y9/vjjj9E0jaVLl2asfgPlu9/9LpqmDXY1eqzHqFGjuOqqqwa8LoNVbpd77rmHiRMn4jjOQW872HXvb/tee705mOv5QJqbmwkEAvz5z38+7H0JIXongZgQYlBt27aN66+/ntGjR+P1esnJyeH000/npz/9KZ2dnYNdvZSum+Tefurq6ga7imKPk046iREjRqCU6nWd008/ndLSUizLGsCaDS1r167lu9/9LsFgcLCrkqatrY0f/vCH/Pu//zu6/ultyt7Xm67rVFRUcM455/RL4JEpQ+kYjxo1ar/fYV0/S5cupbCwkGuvvZZvf/vbg11tIY5q5mBXQAhx7HrhhRe4+OKL8Xg8LFq0iEmTJhGPx/nrX//KN77xDd577z0eeuihwa5mmp///OdkZWV1W56XlzcItRk8I0eOpLOzE5fLNdhV6ebKK6/k9ttv57XXXuOMM87o9v7HH3/MunXruOmmmzBNk29961vcfvvtg1DTA9u8eXNaMNKf1q5dy1133cVVV13V7fzNZLkH8tvf/hbLsrj88su7vXf22WezaNEilFJUV1fz4IMPMnv2bF544QXmz58/CLXdv/0d47566aWX+qUu999/Px0dHanXf/7zn3n88cf5yU9+QlFRUWr5aaedBsA///M/89///d+88sorzJ49u1/qIIRIJ4GYEGJQVFdXc9lllzFy5EheeeUVysvLU+/deOONbN26lRdeeOGwy1FKEY1G8fl8h70vgIULF6bdtByrNE3D6/UOdjV6dMUVV3DHHXfw2GOP9RiIPf744yiluPLKKwEwTRPTHJp/Dj0ezzFVLsDDDz/M+eef3+P5NX78eL785S+nXl944YWcdNJJ3H///UMyEOsPbre7X/azYMGCtNd1dXU8/vjjLFiwgFGjRnVb/7jjjmPSpEksXbpUAjEhMkS6JgohBsU999xDR0cHv/nNb9KCsC5jx47l61//euq1ZVl8//vfZ8yYMXg8HkaNGsU3v/lNYrFY2najRo3i3HPP5cUXX2T69On4fD5++ctfAskbvNmzZ1NSUoLH4+H444/n5z//eb9+rq5xGk8++SR33XUXw4YNIzs7m4ULFxIKhYjFYixZsoSSkhKysrK4+uqru32GLn/4wx+YMGECXq+XadOmsWbNmm7r1NTUcM0111BaWorH4+GEE07gt7/9bbf1du3axYIFCwgEApSUlPCv//qvvZb70EMPMWbMGHw+HzNmzOC1117rtk5PY8SuuuoqsrKyqKmpYcGCBWRlZVFcXMxtt92Gbdtp2zc3N/NP//RP5OTkkJeXx+LFi3n77be77bOuro6rr76a4cOH4/F4KC8v54ILLuDjjz/use4AlZWVnHHGGSxbtoxEItHt/ccee4wxY8Ywc+ZMoOexWStWrOCzn/0seXl5ZGVlMWHCBL75zW+m3l+6dCmapnWrR0/jdF577TUuvvhiRowYgcfjobKykn/913/tU9fbfcc77a9LWVdd/vGPf3DVVVeluvuWlZVxzTXX0NzcnNrPd7/7Xb7xjW8AUFVV1W0fPY2z2r59OxdffDEFBQX4/X5OOeWUbg9L9j7//9//+38MHz4cr9fLnDlz2Lp16wE/b3V1Nf/4xz+YO3fuAdcFOPHEEykqKqK6urrXdVpaWrjttts48cQTycrKIicnh/nz5/P2228fVt3feOMNPv/5z5Obm4vf72fWrFm8/vrrqfcPdIz7+p3W0xixg7meD8fZZ5/N888/v99uvkKIQzc0HwEKIY56zz//PKNHj051gzmQa6+9lkceeYSFCxdy66238sYbb3D33XfzwQcf8Mwzz6Stu3nzZi6//HKuv/56rrvuOiZMmAAkuxWecMIJnH/++ZimyfPPP8+//Mu/4DgON954Y5/q0dLS0m2ZaZrduh3dfffd+Hw+br/9drZu3crPfvYzXC4Xuq7T2trKd7/7Xf72t7+xdOlSqqqq+M53vpO2/erVq3niiSe4+eab8Xg8PPjgg3z+85/nzTffZNKkSQDU19dzyimnpJJ7FBcX85e//IWvfOUrtLW1sWTJEgA6OzuZM2cOn3zyCTfffDMVFRX87ne/45VXXun2WX7zm99w/fXXc9ppp7FkyRK2b9/O+eefT0FBAZWVlQc8PrZtM2/ePGbOnMmPfvQjXn75ZX784x8zZswYbrjhBgAcx+G8887jzTff5IYbbmDixIk8++yzLF68uNv+vvSlL/Hee+/xta99jVGjRtHQ0MCKFSv45JNPenyK3+XKK6/kq1/9Ki+++CLnnntuavk777zDu+++2+147+29997j3HPP5aSTTuJ73/seHo+HrVu3pt1kH4ynnnqKSCTCDTfcQGFhIW+++SY/+9nP2LVrF0899dRB7et3v/tdt2Xf+ta3aGhoSHWZXbFiBdu3b+fqq6+mrKws1cX3vffe429/+xuapnHRRRexZcuWbl3TiouLeyy3vr6e0047jUgkws0330xhYSGPPPII559/PsuWLePCCy9MW/+//uu/0HWd2267jVAoxD333MOVV17JG2+8sd/Pt3btWgA+85nP9Ol4tLa20traytixY3tdZ/v27fzpT3/i4osvpqqqivr6en75y18ya9Ys3n//fSoqKg667q+88grz589n2rRp3Hnnnei6nnrQ89prrzFjxowDHuOD+U7b28Fcz4dr2rRp/OQnP+G9995Lfe8IIfqREkKIARYKhRSgLrjggj6tv2nTJgWoa6+9Nm35bbfdpgD1yiuvpJaNHDlSAWr58uXd9hOJRLotmzdvnho9evQB63DnnXcqoMefCRMmpNZbtWqVAtSkSZNUPB5PLb/88suVpmlq/vz5afs99dRT1ciRI9OWde13/fr1qWU7duxQXq9XXXjhhallX/nKV1R5eblqampK2/6yyy5Tubm5qc97//33K0A9+eSTqXXC4bAaO3asAtSqVauUUkrF43FVUlKipkyZomKxWGrdhx56SAFq1qxZqWXV1dUKUA8//HBq2eLFixWgvve976XVZ+rUqWratGmp108//bQC1P33359aZtu2mj17dto+W1tbFaDuvfdedbBaWlqUx+NRl19+edry22+/XQFq8+bNqWVdv9suP/nJTxSgGhsbe93/ww8/rABVXV2dtrzr9991TJXq+by7++67laZpaseOHb3WQ6nk+bx48eJe63HPPfcoQD366KP7Le/xxx9XgFqzZk1q2b333tvjZ+ip3CVLlihAvfbaa6ll7e3tqqqqSo0aNUrZtp32+Y877ri0c+inP/2pAtQ777zT62dRSqlvfetbClDt7e3d3gPUV77yFdXY2KgaGhrUG2+8oebMmaMA9eMf/7jXukej0VT9ulRXVyuPx5N2rva17o7jqHHjxql58+Ypx3FS60UiEVVVVaXOPvvs1LLejvHBfKfNmjUr7drr6/V8IPv7/XdZu3atAtQTTzzRp30KIQ6OdE0UQgy4trY2ALKzs/u0flcK5VtuuSVt+a233grQrXtUVVUV8+bN67afvceJhUIhmpqamDVrFtu3bycUCvWpLk8//TQrVqxI+3n44Ye7rbdo0aK0RBYzZ85EKcU111yTtt7MmTPZuXNnt+x9p556KtOmTUu9HjFiBBdccAEvvvgitm2jlOLpp5/mvPPOQylFU1NT6mfevHmEQiHeeustIHn8ysvLWbhwYWp/fr+fr371q2llrl+/noaGBv75n/85bVzKVVddRW5ubp+ODyQH+e/tc5/7HNu3b0+9Xr58OS6Xi+uuuy61TNf1bq2SPp8Pt9vNq6++Smtra5/LB8jPz+cLX/gCzz33HOFwGEiOF/zjH//I9OnTGT9+fK/bdrVuPvvss4eUPn1fe5934XCYpqYmTjvtNJRSbNy48ZD3u2rVKu644w6+9rWv8U//9E89lheNRmlqauKUU04BSJ0TB+vPf/4zM2bM4LOf/WxqWVZWFl/96lf5+OOPef/999PWv/rqq9POoc997nMAaedBT5qbmzFNs8eEOJBssS0uLqakpISZM2fy+uuvc8stt6Raf3vi8XhSiUds26a5uTnV3bSn43Ggum/atImPPvqIK664gubm5tR1Fw6HmTNnDmvWrDngeXOw32n7btuX67k/5OfnA9DU1NTv+xZCSNdEIcQgyMnJAaC9vb1P6+/YsQNd17t1PyorKyMvL48dO3akLa+qqupxP6+//jp33nkn69atIxKJpL0XCoX6FGycccYZfUrWMWLEiLTXXfvet3tfbm4ujuMQCoUoLCxMLR83bly3fY4fP55IJEJjYyO6rhMMBnnooYd6zSzZ0NAAJI/f2LFju42D6uqy2aXrOO5btsvlYvTo0b1+1r15vd5u3dvy8/PTAqkdO3ZQXl6O3+9PW2/f36/H4+GHP/wht956K6WlpZxyyimce+65LFq0iLKysgPW5corr+SZZ57h2Wef5YorrmDt2rV8/PHHaWMPe3LppZfy61//mmuvvZbbb7+dOXPmcNFFF7Fw4cJDyiT4ySef8J3vfIfnnnuuW0DZ1wcA+9q1axeXXnopp59+Ovfdd1/aey0tLdx111388Y9/TJ0Dh1vejh07UmPq9nbcccel3t+769q+53/XDf3BBtT7uuCCC7jpppvQNI3s7GxOOOEEAoHAfrdxHIef/vSnPPjgg1RXV6eNV9z7mutr3T/66COAHrvSdgmFQqntenKw32n7btuX67mjoyMtS6JhGL12Pe2N2jM2bCjMsyfE0UgCMSHEgMvJyaGiooJ33333oLbr681ATxkSt23bxpw5c5g4cSL33XcflZWVuN1u/vznP/OTn/ykX1o+9mYYxkEtVwc5GL6rvl/+8pd7vSE86aSTDmqf/aG3z3eolixZwnnnncef/vQnXnzxRb797W9z991388orrzB16tT9bnvuueeSm5vLY489xhVXXMFjjz2GYRhcdtll+93O5/OxZs0aVq1axQsvvMDy5ct54oknmD17Ni+99BKGYfR6Lu6blMS2bc4++2xaWlr493//dyZOnEggEKCmpoarrrrqkM67eDzOwoUL8Xg8PPnkk90yPl5yySWsXbuWb3zjG0yZMoWsrCwcx+Hzn/98v5/nvTnU87ywsBDLsmhvb++xxXz48OF9TuTR5Qc/+AHf/va3ueaaa/j+979PQUEBuq6zZMmSHo/Hgeretc29997LlClTely3txa9fWUywPnRj37EXXfdlXo9cuTI/Sa56UlX8CmZYoXIDAnEhBCD4txzz+Whhx5i3bp1nHrqqftdd+TIkTiOw0cffZR6Ag/JBALBYJCRI0cesLznn3+eWCzGc889l/bEe9WqVYf+ITKo66n73rZs2YLf70891c7Ozsa27QPemI4cOZJ3330XpVTajd/mzZu7rddV9t7pqhOJBNXV1UyePPmQP8++5axatYpIJJLWKtZbVr0xY8Zw6623cuutt/LRRx8xZcoUfvzjH/P73/9+v+V4PB4WLlzIo48+Sn19PU899RSzZ8/uU2uaruvMmTOHOXPmcN999/GDH/yA//iP/2DVqlXMnTs31dqx70S9+7ZkvPPOO2zZsoVHHnmERYsWpZavWLHigHXozc0338ymTZtYs2YNpaWlae+1traycuVK7rrrrrSEJD2dTwcTBIwcObLb+QLw4Ycfpt7vDxMnTgSS2RP760HCsmXLOOuss/jNb36TtjwYDB5SgDFmzBgg+UDpQNdeb8f4cL7T+no9L1q0KK0r6aFM4dGVjXLvOgoh+o+MERNCDIp/+7d/IxAIcO2111JfX9/t/W3btvHTn/4UgC984QtAckLSvXV1yfriF794wPK6nnLv/UQ+FAr1OL5rKFi3bl3a+JWdO3fy7LPPcs4552AYBoZh8KUvfYmnn366x5bFxsbG1P9/4QtfoLa2lmXLlqWWRSKRbl0ap0+fTnFxMb/4xS+Ix+Op5UuXLu0WcByOefPmkUgk+NWvfpVa5jgODzzwQNp6kUiEaDSatmzMmDFkZ2f3OVX3lVdeSSKR4Prrr6exsTE1d9j+9JQZs6vlo6vcrpvxvacUsG272zHt6bxTSqXO7YP18MMP88tf/pIHHniAGTNmdHu/p/Kg+7UDpLr09eV3+4UvfIE333yTdevWpZaFw2EeeughRo0axfHHH39Qn6M3XQ9l1q9f3y/7g+Qx2fd4PPXUU9TU1BzS/qZNm8aYMWP40Y9+lNb1r8ve115vx/hwvtP6ej2PHj2auXPnpn5OP/30vny8NBs2bCA3N5cTTjjhoLcVQhyYtIgJIQbFmDFjeOyxx7j00ks57rjjWLRoEZMmTSIej7N27Vqeeuqp1DxGkydPZvHixTz00EMEg0FmzZrFm2++ySOPPMKCBQs466yzDljeOeecg9vt5rzzzuP666+no6ODX/3qV5SUlLB79+4+13vZsmU9djs6++yzu7VOHI5JkyYxb968tPT1QFpXo//6r/9i1apVzJw5k+uuu47jjz+elpYW3nrrLV5++eVUQHHdddfxP//zPyxatIgNGzZQXl7O7373u25jtFwuF//5n//J9ddfz+zZs7n00kuprq7m4Ycf7vMYsb5YsGABM2bM4NZbb2Xr1q1MnDiR5557LlXfrqf8W7ZsYc6cOVxyySUcf/zxmKbJM888Q319/QG7F3aZNWsWw4cP59lnn8Xn83HRRRcdcJvvfe97rFmzhi9+8YuMHDmShoYGHnzwQYYPH55qYTjhhBM45ZRTuOOOO2hpaaGgoIA//vGP3ZKuTJw4kTFjxnDbbbdRU1NDTk4OTz/99CGNlWpqauJf/uVfOP744/F4PN1aBC+88EJycnI444wzuOeee0gkEgwbNoyXXnqpx3m2upLB/Md//AeXXXYZLpeL8847r8cxV7fffjuPP/448+fP5+abb6agoIBHHnmE6upqnn766UMaO9eT0aNHM2nSJF5++eVuiW0O1bnnnsv3vvc9rr76ak477TTeeecd/vCHPxzyOa3rOr/+9a+ZP38+J5xwAldffTXDhg2jpqaGVatWkZOTw/PPPw/0fowP5zutr9dzf1ixYgXnnXeejBETIlMGPlGjEEJ8asuWLeq6665To0aNUm63W2VnZ6vTTz9d/exnP1PRaDS1XiKRUHfddZeqqqpSLpdLVVZWqjvuuCNtHaWSqau/+MUv9ljWc889p0466STl9XrVqFGj1A9/+EP129/+9oApnJXaf/p69koZ3ZUC+6mnnkrbvivd+d///vce97t3qnRA3Xjjjer3v/+9GjdunPJ4PGrq1Kk9pqWur69XN954o6qsrFQul0uVlZWpOXPmqIceeihtvR07dqjzzz9f+f1+VVRUpL7+9a+r5cuX95ju+sEHH1RVVVXK4/Go6dOnqzVr1nRLod1b+vpAINDrsdtbY2OjuuKKK1R2drbKzc1VV111lXr99dcVoP74xz8qpZRqampSN954o5o4caIKBAIqNzdXzZw5My1td1984xvfUIC65JJLenx/3/qtXLlSXXDBBaqiokK53W5VUVGhLr/8crVly5a07bZt26bmzp2rPB6PKi0tVd/85jfVihUruh3T999/X82dO1dlZWWpoqIidd1116m333672/E7UPr6rmPe20/XObxr1y514YUXqry8PJWbm6suvvhiVVtbqwB15513pu3/+9//vho2bJjSdT1tHz2lzd+2bZtauHChysvLU16vV82YMUP93//9X9o6vZ3/PZ0vvbnvvvtUVlZWtzT8XdfFgfSUvv7WW29V5eXlyufzqdNPP12tW7eu2zl9sHXfuHGjuuiii1RhYaHyeDxq5MiR6pJLLlErV65MW6+3Y9zX77R966nUwV3PvTlQ+voPPvhAAerll1/u0/6EEAdPU0qmSxdCCDH4/vSnP3HhhRfy17/+9ZC6UYmjQygUYvTo0dxzzz185StfGezqHLOWLFnCmjVr2LBhg7SICZEhEogJIYQYcJ2dnWnJA2zb5pxzzmH9+vXU1dUdUmIBcfT44Q9/yMMPP8z777/fb90eRd81NzczcuRInnzyydR4NiFE/5NATAghxIC79tpr6ezs5NRTTyUWi/G///u/rF27lh/84Afccccdg109IYQQIuMkEBNCCDHgHnvsMX784x+zdetWotEoY8eO5YYbbuCmm24a7KoJIYQQA0ICMSGEEEIIIYQYYNLxWgghhBBCCCEGmARiQgghhBBCCDHAZELnfuA4DrW1tWRnZ0uKVyGEEEIIIY5hSina29upqKjYb+ZXCcT6QW1tLZWVlYNdDSGEEEIIIcQQsXPnToYPH97r+xKI9YPs7GwgebBzcnIGuTZCCCGEEEKIwdLW1kZlZWUqRujNERWIrVmzhnvvvZcNGzawe/dunnnmGRYsWJB6XynFnXfeya9+9SuCwSCnn346P//5zxk3btx+9/vAAw9w7733UldXx+TJk/nZz37GjBkz+lyvru6IOTk5EogJIYQQQgghDjhk6YhK1hEOh5k8eTIPPPBAj+/fc889/Pd//ze/+MUveOONNwgEAsybN49oNNrrPp944gluueUW7rzzTt566y0mT57MvHnzaGhoyNTHEEIIIYQQQhzjjth5xDRNS2sRU0pRUVHBrbfeym233QZAKBSitLSUpUuXctlll/W4n5kzZ3LyySfzP//zP0Ay8UZlZSVf+9rXuP322/tUl7a2NnJzcwmFQtIiJoQQQgghxDGsr7HBEdUitj/V1dXU1dUxd+7c1LLc3FxmzpzJunXretwmHo+zYcOGtG10XWfu3Lm9bgMQi8Voa2tL+xFCCCGEEEKIvjqixojtT11dHQClpaVpy0tLS1Pv7aupqQnbtnvc5sMPP+y1rLvvvpu77rrrMGsshBBCCCHE0UcphWVZ2LY92FXJCMMwME3zsKetOmoCsYF0xx13cMstt6Red2VGEUIIIYQQ4lgWj8fZvXs3kUhksKuSUX6/n/Lyctxu9yHv46gJxMrKygCor6+nvLw8tby+vp4pU6b0uE1RURGGYVBfX5+2vL6+PrW/nng8HjweTz/UWgghhBBCiKOD4zhUV1djGAYVFRW43e7DbjUaapRSxONxGhsbqa6uZty4cfudtHl/jppArKqqirKyMlauXJkKvNra2njjjTe44YYbetzG7XYzbdo0Vq5cmUr64TgOK1eu5KabbhqwugshhBBCCHGki8fjqcR3fr9/sKuTMT6fD5fLxY4dO4jH43i93kPazxEViHV0dLB169bU6+rqajZt2kRBQQEjRoxgyZIl/Od//ifjxo2jqqqKb3/721RUVKTNNTZnzhwuvPDCVKB1yy23sHjxYqZPn86MGTO4//77CYfDXH311QP++YQQQgghhDjSHWoL0ZGkPz7jERWIrV+/nrPOOiv1umuc1uLFi1m6dCn/9m//Rjgc5qtf/SrBYJDPfvazLF++PC1K3bZtG01NTanXl156KY2NjXznO9+hrq6OKVOmsHz58m4JPIQQQgghhBCivxyx84gNJTKPmBBCCCGEONZFo1Gqq6upqqo65O56R4r9fdZjbh4xIYQQQgghhDhSSCAmhBBCCCGEOOY98MADjBo1Cq/Xy8yZM3nzzTczWp4EYkIIIYQQQoghw1GKmnCQLaEGasJBnAEYSfXEE09wyy23cOedd/LWW28xefJk5s2bR0NDQ8bKPKKSdQghhBBCCCGOXtvaGllVu4W6SBsJx8alG5T5czirYjxjcoozVu59993Hddddl8qc/otf/IIXXniB3/72t9x+++0ZKVNaxIQQQgghhBCDbltbI8u2b2RnRws+00WhN4DPdLGzo5Vl2zeyra0xI+XG43E2bNjA3LlzU8t0XWfu3LmsW7cuI2WCBGJCCCGEEEKIQeYoxaraLUSsGEXeLDyGia5peAyTIm+AiBXn1dotGemm2NTUhG3b3aavKi0tpa6urt/L6yKBmBBCCCGEEGJQ7Y6EqIu0keP2oWla2nuappHt9rA70sbuSGiQatj/JBATQgghhBBCDKqwFU+NCeuJWzdJODZhK97vZRcVFWEYBvX19WnL6+vrKSsr6/fyukggJoQQQgghhBhUAdONSzdIOHaP78cdC5duEDDd/V622+1m2rRprFy5MrXMcRxWrlzJqaee2u/ldZGsiUIIIYQQQohBVe7Ppcyfw86OVoq8gbTuiUop2uMxRmTlU+7PzUj5t9xyC4sXL2b69OnMmDGD+++/n3A4nMqimAkSiAkhhBgQSimspggqaqF5Tcwif7dxAEIIIY5NuqZxVsV4lm3fSFM0TLbbg1s3iTsW7fEYftPNmRXj0TP0d+PSSy+lsbGR73znO9TV1TFlyhSWL1/eLYFHf5JATAghRMbFa9qIvFWL1dKJshw0U8cs8OH/TAXuYTmDXT0hhBBDwJicYhaOnpqaR6zdieHSDUZk5XNmhucRA7jpppu46aabMlrG3iQQE0IIkVGxXUF2v/l34nYH7twssq0ysBSJhjDtr1aTfWaVBGNCCCGAZDBWlV3E7kiIsBUnYLop9+dmrCVsMEkgJoQQImMaIx/y3u4naR9ZjzIddGWSFStiRMsM8lyV2MEYkY27cVVkSzdFIYQQQLKb4tlgo38AACAASURBVLBA3mBXI+Mka6IQQoiMaOzczFu1SwmZNZjKhy+Rh2l7afPuZnPZSwT9O9EDLqzmCFZTZLCre1RQStHYGmFXXTuNrRFUBiY+FUII0T+kRUwIIUS/U8phS+tfiDthfNE8dNMEDUzlxkgU0Olq4ZOCv3NieDgq7KCi1mGVRVMtxMLgCUBRBZp27D1nrG3oYOOHDbQEO7EdhaFrFOT5mDqxhIqSrMGunhBCiH1IICaEEKLfheI7aYvX4DNyUZqNUirV9VBDw21n0+FppN2sI8ssQvMe2p8jVbsVZ+NKaNkNtgWGCQXl6FPnoFWM7c+PNKTVNnSwev1OojGbgM/ENHUsy6GhOcLq9TuZNb1SgjEhhBhijr1HhkIIITIubodxVALT7UNzGWA7sFcvOcMxcTSLeKIDs9CPWeQ/6DJU7Vac1U9Awyfg8UNOUfLfhk+IvvIYb7+zhrV129nZ0YpzFHfRU0qx8cMGojGbvGw3bpeBrmm4XQZ52W6iMZtNHzZIN0UhhBhipEVMCCFEv3MbAXTNha0SGLlerOYIyrLB0NE0DUtLoFk6biML/9Tyg07UoZSTbAmLRiCvBPZsH9E06nUNf1sT0bde5LHRkzANk1HZBZw38qSMpz4eDE3BTlqCnQR8ZrfjqGkaAZ9Jc7CTpmAnxfkHH/AKIYTIDGkRE0II0e9y3ZXkuIfRaQfRPAZmoR/NbYKjcCyLuNFBtlNG+YyTDy11fVNtsjtiIPfTICwRY1c4SNhOEHK5KO8MUxnrxHIctrY18fuP3mRbW2M/f9L9c5SiJhxkS6iBmnAwIy1zsZiN7ShMs+c/6aapYzuKWMzu97KFEEIcOmkRE0II0e80TWd8/nw2NjxKh1WP152HWeLDincStTvw6nmcUHExHv8hpieOhZNjwkx38rVSNEXDJJxksGEbJqaVIMu28ZomMcuiJRZmVe0WqrKLBmQ+mm1tjalJSROOjUs3KPPncFY/T0rq8RgYuoZlObhdRrf3LcvB0DU8nu7vCSGEGDzSIiaEECIjin0TmFqyiHzPKBJOmLDVSMKIUZg1ls8Mu5pi/8RD37knkEzMYcUBiNoWnXYCUOiahstxsDSDTjP5vNFlGDgKPuloZXck1A+fbv+2tTWybPtGPmlvRkfDF/dghF3samxj2baN/doyV5TnoyDPR7jT6jYOTClFuNOiMM9HUZ6v38oUQghx+KRFTAghRMYU+yZQ5B1HKL6TuB3GbQTIdVcefnr5ogooKE8m6nB5sJWDUgoFaEqRk4hRE8il3p8NJMdKoRQJxyK8J3jLFEcpVtVuIRiLoEdMrBYvrrgLTWn4dLDdCV62PqJqev+0zGmaxtSJJaxev5Ngezwta2K408LrMZgysUQmzBZCiP1Ys2YN9957Lxs2bGD37t0888wzLFiwIKNlSouYEEKIjNI0nTzPSEr8x5PnGdkvc3xpmo4+dQ54/RBswLQS6IDHtiiMdtJpulhXNhK1J/hQSoGm4dJNAl3dGTNkdyTEjvYW7A6NQH0enpgbZTjYLgtLs9CjLkLV8M4ndf1WZkVJFrOmV1JS6CcWt2nriBOL25QW+iV1vRDiiDMQ42v3FQ6HmTx5Mg888EDGy+oiLWJCCCGOSFrFWPRZl+JsXImnZTfF8Shh5bAzkM0b5aP4JCc/tW7CttF1jRFZ+ZT7czNar45EjLZ4J4XBYgxHx3ZZoIEGKAMsLYFpufjgo1ZOGlHWby1VFSVZlBcHaAp2EovZeDwGRXk+aQkTQhxRBmp87b7mz5/P/PnzM7b/nkggJoQQ4oilVYxFLx8NTbVEW2p4oW4bH+g6StdwqeTcZQnHAQ0KPAHOqhif8UQdYSuGHjVxx904pp2MwLrqC6BrWIZFqD3W7ynlNU2TFPVCiCNW1/jaiBUjx+0jR/eScGx2drSybPtGFo6eelRNQyKBmBBCDACllLRUZIim6VA8nOHFw5lXPprYjn/wSXsLcTuZQdGtG4zMLuS8kScOyB/wgOnBhQlKQ2ndu9MopZIDAxztmEgp7zgWNeH1RBIt+F0FDAtMR9cH5vZDrjshjhxd42sjVowib1bqWvUYJkXeAE3RMK8OYObbgSCBmBBCZFhtQwcbP2ygJdiJ7SgMXaMgz8fUiSUydqefjckp5uuTZlMbDrKjoxUNqMzKZ1ggb8D+cGe5PPjcJmgK5QB7ZY3vympoYuIy9KM+pfxHwRW83/y/RO0Q7Bmn5zVyOb7wIsblnZ3RsuW6E+LIsjsSoi7SRo67+wMTTdPIdnvYHWljdyTEsMAhTn0yxEggJoQQGVTb0MHq9TuJxmz8XgMFJBIOuxs6CLVHOfPkEXJT2M90TWN4Vj7Ds/IPvHIGlPtzGV6US2OThRl1kdAtIBmE6JqOBnhtF6UFgaM6pfxHwRVsangUR1kYmhtNM1DYRK0gmxoeBchYMLb3dbd3FsmG5gir1++UBCZCDEFhK07CscnRvT2+79ZN2p1YxjPfDiTJmiiEEBmilGLjhw1EYzZet06wPU5TayfB9hidcYvmYJS1m2q6zf00mAYjU9XRRtc0Zg8bj1lioxngtd14cOHRTAyl47Jc5Pq9TJ1YetR2k3Mci/eb/xdHWZiaD113oek6uu7C1Hw4yuL95mdwHKvfy977usvLduN2GeiahttlkJftJhqz2fRhw5C67oQQEDDduHSDhNNzl+24Y+HSjYxnvh1I0iImhBAZ0hTspCXYiWlotLTFcPZ0j9L0ZC8ty3Gobejg/e3NnDCm6KD3r5TTr/NzDVamqqPRmJxivnTiiaxwf0RbjYUWM9BsDY+hU16cxedOPLpbQmvC64naoWRLmJ5+Tmq6juG4idpBasLrqcw+pV/L7rru/F6DhOWkuiW6TB1N0wj4TJqDnf2eKEUIcXjK/bmU+XPY2dFKkTeQ9qBKKUV7PJbRzLcdHR1s3bo19bq6uppNmzZRUFDAiBEjMlKmBGJCCJEhsZiNZTvEEzaOozANLfWHRdPA1HTiCYcPtjZz/OjCg2odaezczJbWv9AWr8FRCXTNRY57GOPz51Psm5BaTykHmmohFgZPAIoqegzWjrVMVQNhTE4xVdOLqD0uSF1LGMMxGJaTS3H+0Z8wIpJoAaXQtJ7HwGkYoOLJ9fpZLGYTjdtEogkSltM1NA2XaZCb5cbtNohErWMiUYoQRxJd0zirYjzLtm+kKRom2+3BrZvEHYv2eAy/6ebMDGa+Xb9+PWeddVbq9S233ALA4sWLWbp0aUbKlEBMCCEypCsRQzzhJFvC9v3jocDQoT0SP6in842dm9nY8ChxpwOfkY+hubFVnNbYx2xseJSpJYso9k1A1W7F2bgSWnaDbYFhQkE5+tQ5aBVjU/s7FjNVDZTBHq82WPyuAtA0FDZaD6MgFDZoWnK9fhYKx+iMJgAwDT3VAh1P2DSHouQE3Bi61muilK6W5pjVQSRiYlpleL0uybgoxAAYk1PMwtFTU70z2p0YLt1gRFY+Z2a4d8aZZ5454F2WJRATQogMKcrzkeV3E+qIYxjpN3AKsB2FyzTQ6Hsac6UctrT+hbjTQZb56WTApuYlSyulw6rno9blFLZoqDVPQTQCgVww3WDFoeETnNVPoM+6NBWMHYuZqkRmDQtMx2vkErWCaI6R1j1ROQ62iuM18xkWmN6v5Sql+HhXCF3XcByFpmtoJFvENA0sWxFsjzF6eG6PiVK6WpqbwzvpjEexLR0nVoQKzqDAO0EyLgoxAMbkFFOVXcTuSIiwFSdguin35x6VDwIlWYcQQmSIpmmcMLYQXQPLcnAchQIcR2FZDrquEfC5MIzen87vKxTfSVu8Bp+R32PQ5DXyCMV30fr+88kgLK8E3F7Q9eS/eSUQjeBseiXZbZFPM1W59J7r4NZNEo59VGWqEpml6ybHF16ErplYqhPHSaAcB8dJYKlOdM3k+MIL+30+saZgJy2hKHlZHgxDT7vulKPIidsURi3GZnu6bdvV0twY3ka4QyfRmYOmfJi+OszSFTRGNrN6/U5qGzr6tc5CiO50TWNYII/xuSUDOv3IQJMWMSHEEetImKz1uNGFvL+tmbqmMLbjgKOhaeB2GeQEXETjDqWF/j6nMY/bYRyVwNB6zhplam5iiSYS4ToIJLtwRK0EtnIwNB2PbtLsqyDWFMW3fQdFo0elZaryGN3/LByNmapE5nWlpv90HrF4ch4xM5/jCy/MSOr6WMzGdhQ5WW5MUyfUESdh2RRELMaGLXIshQFkvVVHqKYD/2cqcA/L+bSl2e4g3pmHbTu4TA0wUbYbzWzGV7KByI7hbPqwgfLiwH6/a/o6NlMIcWyTQEwIcUTqcbLWXC9TyjUq/Ikhc/OjaRqnTRnG6r/vJBxN4HEZuFzJ7G2RTguvx2DKxJI+B5BuI4CuubBVHFPrPteKpeLoSsMVhwiKpnArMdtCKUVQK2QnI+nUcpPJQza1UlCjmDyheFAzVYmj17i8sxmTcxY14fVEEi34XQUMC0zv95awLh6PgaFrWJaD12Pi8Zh4g1FGt8QxbYi7daIKsj0GiYYw7a9Wk31mFZGiVtriNRjkkEg4e7oS70msg4ays1GuBvw5zTQH9f2O6ezr2EwhhJBATAhxxOlpstZEOEzDzhZWf9zJ59S7VBhtQ+bmp6Iki1knV6YCx2jMxtA1Sgv9TDnIMSe57kpy3MNojX1MllbaLWiK2kEKXBV4Ix00OEGiuoapG7RSyIecQFy58KkI2ShsdyENzRFe27CLyceNoDkaHpRMVeLoputmv6eo701Rno+CPB8NzZFkunqgsjWKy1FEPTqWrfC4Ddx+N/gVdjBGZONuYmdZyZZmJxulYuj7nurKBVoHhjuG3a56HdOparfirH6iT2MzhRBCAjEhxBFl38laNU1DRcO4Q7txOTYhPYe3zYmUm++iDaGbn4qSLMqLA4fdlVLTdMbnz2djw6N0WPV4jTxMzY2l4kTtIG49wJiiC6jxPENOsAHHn4NCo5oqErgIaGFM2yLqchPw+XADwfY4jTsTfGnyFF7d/dGAZ6oSB0cphdUUQUUtNK+JWeQfcl1yB4umaUydWMLq9TsJtscp1sAbtYiZGpat0HWNnCwPycOloQdcWM0RjDYfuuZC6Qk0DRxFejCmJUCZ2HFPrxkXlXKSLWFdYzO7fiduL7g8EGzA2fQKevnoQW+pF0IMDRKICSGOKF2TtQZ8ZjIIQ0GoCRwbzeXBrxK0OH6azQKK8obWzY+maf0ygWyxbwJTSxal5hGLqSC65qLAU8W4/M8Td0p5vWwEcyMhcqMd7HaX0K5n4VOduB0LW9NpdfswHQuv4UpNcJvrlHHNhNOOiUxVR6p4TRuRt2qxWjpRloNm6pgFvtRYJ7GnBXp6sgXaqW0DS2G5NDxug5wsD969gijN1HHCCXISpcmW5mg1LlcO8bhDsvfknu8Yox0tPoxIWyGlhb6ex3Q21Sa7IwZyPw3CUgVpyeXNtcn1iodn9BgIIY4MEogJIY4oXYPxTXNPUBWPQSIGhgsAE4cIOjFlHtU3P8W+CRR5xxGK7yRuh3EbAXLdlWiazpZQAx9n57NuwnRO/GQzKqIDGiYJYqabdl+AiG5gOQ4YYJp6aoLbrkxVYuiJ17TR/mo1TtRCD7jQAy6U5aSNdeopGDsWW9C6WqAbt7dgr6omy5PsjthtKr89wazuczM+K9nSbPlC2LaHhGVimBaa0YGyfUQbpuH1mL2P6YyFk2PCektqY7oh0pZcTwghkEBMCHGE2XswvttlgGMlZ2vd09ploWPg4NGs5AZH8c2PpunkeUZ2W96VBXFnTgENJ32W7OYwnbVeOg0PltvEUQ66Uph75nayLGe/E9yKwaeUIvJWLU7UwsjzpAIBzW2gufTUWCdXRXZakHAst6Bpmkbx6AJC7zeSaAiDX9GVgAOSx9QJJ3CVZmEW+SnWPm1pbmYnnfE2bEvH7ixDBWdQ4p+w/zGdnkAyMYcVT3ZH3JcVT77vCWTmAwshjjgSiAkhjij7DsZH39PypRwUOhHlptgIU6hHkhscgzc/5f7ctCyIbYVZWG16smVMKSzHwWe68BgulFKEO62DSqEvBp7VFMFq6UQPuHqcP65rrJPVFMFVnDzXD7UF7WiiaRr+z1TQ/mo1djCWPH6mjrIcnHAC3Wvin1qeOqZ7tzTHrA4iERPTKsM7znXgMZ1FFVBQDg2fJMeE7b2uUhAOQenI5HpCCIFM6CyEOMJ0Dcb3egyC7XHimoljeojbDiHlxaNZTHbXJe+Bum5+CiuOqZsfXdM4q2I8ftNNUzRMzEmgF8dRusKOKgylU+AJkEjYBNvjB51CXww8FbVSLVo96QouVDTZErxvC5ruNkDTSAAJr0kiHCf8Vi1KqQH8FIPDPSyH7DOrcJUEUDEbOxRDxWxcpVk9BqNdLc2lgROoKp5AZXkuxfkH7s6paTr61Dng9UOwAeJRcJzkv8EG8AbQp8we9LGqQhwJlHJQjbtQuzYn/1VORsu7++67Ofnkk8nOzqakpIQFCxawefPmjJYJ0iImhDgC7T0YvyXYSaenAN0KUmw3M9lTT4UehXg8GYQdozc/Y3KKWTh6KqtqtySzIJoxPGVxskM5+CwvVhSUbh9SCn0x8DSvmQq2NHcPGfv2BGmaN/lnfd8WtGjMJtQRI5FwUChMB7yfBOnc0kTFhKM/I6Z7WA6uiuyMj5XTKsaiz7r003nEIm3JFvnSkcnvIUldL8QBDcZcfKtXr+bGG2/k5JNPxrIsvvnNb3LOOefw/vvvEwhkrkeNBGJCiCNSt3TwoVryP/oIrbUOYpbc/JAMxqqyi9KyIJb5cmgJRQ8rhf5gUkod9hQAA6G/62kW+TELfCQawmh7JgTfu6y9xzrBpy1oesBFNGbTHOzEcRSGoaFpOkpzcGIOm/6xG/J9R0UgrpTTY/KaLpqmpbptZpJWMRa9fHQyQVAsPGQmlxfiSDBYc/EtX7487fXSpUspKSlhw4YNnHHGGf1eXhcJxIQQR6y0dPBlE1Djx8nNzz56yoLYHyn0B0NtQ0eqFdR2FIauUZDnY+oQa9HLRD0PdqxTqgUt4RDqiOHsyTTaFb4ZSgNTI2wrNn3YQHlxYEgGtH3V2Lk5NZ2DoxLomosc9zDG58+n2DdhwOujafpRlaVViIEwlObiC4VCABQUFGS0nGP7DkUIcVTRNB2teDja8AnJf4/xIOxoUtvQwer1O2lojuyZD8qNx23Q0Bxh9fqd1DZ0DHYVgczW82DGOqVa0NpjJOJ2siWs602lcFkOUa+JynXTHOykKdh5eB+8nzlKURMOsiXUQE04iLOfsWyNnZvZ2PAorbFq3HqAgFmCWw/QGvuYjQ2P0tiZ+XEeQoh+cDBz8WWQ4zgsWbKE008/nUmTJmW0LGkRE0KIHijlSOvaEKGUYuOHDURjNnnZ7j0TeYOjO5heRUdnnI0f1g96q05P9QRwuwxcpk6wPX7YrU99HevU1YLW+dJWfJEElmagdIXugMtysE2dumI/pssgErOJxezD/vz9ZVtbY2psY8KxcekGZf4czqoYz5ic9PFsSjlsaf0LcaeDLLMsdRxMzUuWVkqHVc9Hrcsp8o6T61eIoW6IzMV344038u677/LXv/41o+WABGJCiAFypIztgcEZKCx61xTspCXYScBnomkaYStOc7SDmG3hKIXu6ITrY2za5WVq5bAhU8+9aZpGwGemWp8Op3toX8c6uYflYJw6PJmqPuGg26A0jYjfpK7YT0eWGythD6k55La1NbJs+0YiVowct48c3UvCsdnZ0cqy7RtZOHpqWjAWiu+kLV6Dz8jv8Zh7jTxC8V2E4jt7nHNPCDGEDIG5+G666Sb+7//+jzVr1jB8eOa7F0sgJoTIuJr6NjZse4dQOIhjedETJRTkBYbc2B5IHyis/Lk063nELPA0tFL46hMYZ2ZmoLDoXSxmY+8Z4xS24uyOhLAdB1M3MHUNR1MkYjYrdmwmJ9fdrdVkMOrZE9PUiUStAW19Kp5QzN/r24ns7iDfa2CbOp3e5Nx7Q20OOUcpVtVuIWLFKPJmpQIrj2FS5AngNHfy9j82k1Wmkwi48HhNHHcHjkpgaD0/QTc1NzEVJG4ffRO6C3HUGcS5+JRSfO1rX+OZZ57h1Vdfpaqqqt/L6IkEYkKIjPqgdiObap/H8TdgZNkYmBArorHpZFavjzFreuWQCcb2HihcmzWGtxPltMR9WEpDNxwKY61MefNvDL8g8wOFxac8HgND10hYDs2xDmzHwW18+udLUxqGodFOnFdrt1CVXYQ+CK2tXfW0LAe3q3sLk2U5A976pGkaU48rZXU4zs6YTcDUMQErYRPutIbUHHK7IyHqIm3kuNNbywtbYczHBlltWehxCGqbCbsNdhV4obIDig1sI46pdX+Cbqk4uubCbRw7E7oLcaTqmovPWf1Ecu69vbMmZng6mhtvvJHHHnuMZ599luzsbOrq6gDIzc3F58vcgyq5kxBCZExj5EPeaf49tqsW2/KQ6MwhEXNju2oxSl8ioraz6cOGoTOp7J6BwrXeSl6LjaLe8oMTxaXaUXYnHXY+mxpKeOf1TUOnzseAojwfBXk+2iIxYpaFqX8ayCgFWBqazyGQbbA70sbuSGhQ6xnutLqdH12tT4V5vgFvfeqad6+k0E8sbtPWEScWT84hN5QehISteGpMWJfCVjjpA4O8oEbC0unQwTI18hIOE5s6sT72Ew7l0h5r6fGYR+0gue7h5LorB/rjHPGUUjS2RthV105ja0S+88SA6JqLj5IREItAW1Py39KR6LMuyViPlJ///OeEQiHOPPNMysvLUz9PPPFERsrrIi1iQoiMUMrhnYYXSDhh7GgeoCX/U26ceD66uxU9/03q6oYf9piZfhMLo2yLt/URdDoGbtUOSpGfMBkV9uKzNVBeEn/vYFfDPyidmZ6pTmSGpmlMnVhCw986IKyjuTWUDjgkgzADjJIEhmHSnogRtuKDWs/V63cSbI8T8JmYpo5lOYPe+tRt3r0hOE4zYLpx6QYJx8ZjGBiqhYqmOJbbQ2e8ONlNSVcoUydmgCfuMC5isaFxOoZnJR1GHV4zH1NzY6k4UTuIWw8wLv/z0oJ9kI6UqSLE0Wkw5uIbrAcNEogJITIiFN9JR6IGKx5AoaHvdb+noaGsLAxvE2F2E40OTF/sA/IEaNbzabF9uFQnKMXwqJsxHb7kvEsoHEC3NeK72mmLVJNzlgRjA6GiJIvPTC7mxY1tqLiJZu0J7P0ORkkCPcshalu4dINAbxm3+oFSar8ZC7tan7puYiNRC0PXKC30M2WQb2LT5t3LIEeptEnEy/25feoqWu7PpcyfQ1NkMwWurbidVppH2DQrA3d7ATk7J5PVPgx9z0OdhKnjj9oUxUbQunsuRePfJ+bUEVNBdM1FgaeKcfmfH5R5xI5ktQ0drP77TsLRBB6XgddjoGlaagqGodSKKo5ex8pcfBKICSEyIm6HsVUCZfu6TQcCgGOimTZK76Qzbg14/XpUVEEspww7qDBJkJ8w9wRhYOOkVjOVhh63sILtRDbuxlWRPaRaFo5WJ44o483Idmqbg+QZfjQTNJ+DpiUDpPZ4jBFZ+ZT7czNSfrymjchbtVgtnSjLQTN1zAIf/s9UpAXjR0LrU6b0lHq+1JfNiQUVFHiz9huY6ZrG9CKDTQ0bQEXBzsIdMbFMm2h2I4nxr+HZdha+9uTNmaODZiu8gB2pZJznNLILkok53EaAXHeltIQdJKUUazfV0BzqRClFZ9RC08BlGuQEXERj9lExAbgQQ4UEYkKIjHAbAQzNhWbYKEdnr+lkk3QL5Rhojg+fZ2h8FWmaju+46eh/24VmaYwKezBUsgdcV/UVGkqBoYBojMTuFqymSJ/SiYvDo2sas4eNZ1lsIy1WG9luD25MYrZFezyG33RzZsX4jCTqiNe00f5qNU7UQg+40AMulOWQaAgn08PvM6HyQLU+DSU9pZ5vi0XZXNfIlppmPG4Tb0CnLND7nGDh+N/IdWt0WAVY2KDp6LaOy8rF8odoGb6J7A+GoaGhO8l0/FHA0DW8XpekqD9MH2xvTk06bho6mq6hHEU8YdPS5pATcPfLFAxCiCR5VCSEyIhcdyVZrmGY7jAayaQKXT2wFQrN7MCOFuGhAu8QCcQAisaPJ7soF50AfjuZNEClaq6h0NA0B3BA6aiOTpzOwRmTdCxRSpFoDFMZcnNx7vFUBvKIWhbN0TBRy2JEVn63Oab6g6MUNR2t1L1RTTwSQ8/1oLsNNF1DdxsYeR6cqEVk4+5jOpnBvqnnPYZJNKRQH/sorCuhsKGY7Np8fLtyqW3oYNn2jWxra0zbR9ecYDnuIkZkFVCWm4/pceHRjORUBbEAUX8z0UATKIXLcoh4DRodNShJUI42Sine29qMo5JTLeh68vGZrmuYpo7jKMKdCWxbDakJwIU4kg2dux8hxFFF03ROLPkiTe2/QnmDOIkAyjZRuoXu6gDHhxOcQXlR1pC6gdI0jRnTJ7DmpfdwSCSDME1DkWwN0wAdG01ToAxQUbRoK5A/yDU/eu3bJTDH1PlSQRGR40YTLjYPahzSwejqZhdr6OCMeg8JE4xInEJPgIArOQ5N0zT0gAurOXJMt4zum3rebtdwdnlw2RqOaeNoCpSG2ekmK5FLB6FuUw3E7fBec4JpeA0XTp6G1RzBZTkox8RyR7C1TjxxB8vQ2Op34fWaQyYF/5GsKdhJRySOoWvJp2Zp43rZM4WEjcdtDJkJwIU40kmLmBAiY4r9Ezmx8MsYiQoMM4bL14bLE0dPDMNu+P/svWmMZddZ9/tba+3pDHVOzWMP7tFT4u62neCYEDtxMHEiCLwMERfdhCD4AFy9IHQlxP2AEFOiy1dQFF5BIIoQXPJCuNw3A3EcOwmZ7Lg9hNjdHnqu6prPfPa41v1wqqprOFVd3V2nqrq8iGu5rgAAIABJREFUf1KrVadO7b3Ons561vM8///jZDm8KydQ+4a6uOftA8TKkADSCEAg0Sgi5FJIJlCyjpVJM2KdYrEkMJqqI1yFKroIVxFP1fG+N80dNY+xXHdHgrDPv3maS7U5CtrCMQptCZpxxESjQj26ds6FJTGxxvi7pNdxB1guPW8MxJMWJILEjkEaEGCExjgJJIJcKc9EfaXVgKNySGGTmGvHVnoWVl8W6VkoK8HSCidwKNmSV/szuPsKqXjEFrGY5XJsSaLN2gyvgERDV9bZVYtnKSm3M2lGLCUlpaPcPXqKgjrCD954mXK9hI49ZDTIYHdux1XkNuLEicOMvzoNV6qgbWwjQCQLxYkSjEKImGz+AsJ7504Pd09ijKHx/Djaj1Hd7lLALhyFsCVJKeiIWMrqMjsTCbQCWwukUoQ6YTaok7WcllDIgnCH8LbnK/VmVQk7yXLpeTtwMH7LZHlFa6gQrfNkGYRvkTTFCquBorOfgjPGfHCevBhaOqfSsxBuFt+v0CsOMfyedxHlXPZ71m0lgmKM3lY57hvFdRWWklhKEichcWJQkgUxHIgTjRRw99G+2+aYp6TsdtJALCUlpeOMDRUYHXz4tlKRE0LQ/+67qH7h+yRBiDEWLfOqhWBAJuQyZ3BGWxOqvYgxmnJ4acdU6OKZBvFcE5mz11wrnSwJXF1mV+mCas7QXYFaFiwpCZKYIIlxlULXI+yhPFZ/58UL2qkSDmfbi1+0o1PBwKL0/KXaPL2xgzACowwCsN1ZhPIhySCTYYwEE4FtrBVWA0JIjvc8wempz1KLJ/FU90pPMKeLuwZ/hoHMzfcB7tQ1bcZfR5/+GsxNQBKDsqB3BHnqsY4Z1N4oi4bkU7MNegsulXpEFCcYTcsqQghGBnLcc7hvp4eakrJnSAOxlJSUbeF2VJFz93XDT+yj8c1XiEMPgwNCoKwGWecMTiFCnvylXbWqvVVMN89wdv5LVMIraBMhhU3BGeN4zxPb5stk/BgT65ZCoYEgiYmNxhISV1kIS6Lr0ZaXBC6W2RWk13pBwBt3aO57RZFvGHxH0BSaOIyxghjpWWRPjXR8YaGdKmGkEy7V5vn8m6evK1bSyWBACsF7R4/z+TdPU/Ib5IVDNjNJvv8FHG8eIRIwFknYR33mJH44Sn8uu8ZqYCBzJ6cGP7p07W2lJ9hOXdNm/HX0M/8EfgNyRbAciEOYuoh+5p+Qj3xkVwRjyw3J/SChu8vBAFGkCcKEbMbi4ZNjO7aAttMLQykpnSANxFJSUlI2wD1xD3a/TfTd/0SXSkjjoxwf0T+KPPm+XTGB2mqmm2c4PfVZwqRGxmRQ2iaRmnn/HKenPsupwY9uSzAmvFaw1fADZnWTIInRxiCFwFUWfTKD14GSwOVldq5qbXu2B166O+HIeUm+BoVEYkmDPdRF9tRIx029V5dLLk6GXWXR7+WY8etrxC+Wsx3BwJHCAL9w+BRPXTlLvX6R7v5vIawmcZxDGAspEix3kq6hZzDWT/C+I4+0HetA5k76vWNbOuleuqZ1jYzqQQmHxITMB+c7ek0bo1vBr9+A7kGWTBUdD2wXSlPoF55CjhzeFUHFakPyRBuUFIwO5ne0lHw3LAylpHSCNBBLSUlJuQ5y7BjOfzuyq/s7tgpjNGfnv0QYzJEtC4ibGKNRMiHnuNS7Il6b/zL93rGOf36rP0uzS1KfqND0EiylsIREY2hGETU/wYx207fFJYHLy+z6vWvGtbM9MFNM0LNNDtgFPnTsLuxtMrZdXS65EkFXkmFyuskrhSnuGVkpgLOdwcCRwgB35Hv5svV/U2qGJEEfShi0MWgj0UE3tlvm0B2vc6Tw8+tuRwi5ZZ5gS9e0rpG3hpeOjSU88mKIWjzZuWt6ZryVgcwVrx33RYRovT473nrfwL6F8ZodLePebYbkrSD67wnCGp7pwlJdaDvpeBCdsrNs933wqU99ik996lOcP38egHvvvZc//MM/5IknnujYPmGPBWJ33HEHFy5cWPP6b/3Wb/FXf/VXa17/u7/7Oz7+8Y+veM11XXzf79gYU1JSbk+EkEsTpb1MObxEufwGVkmSRA6QAWEQOkHpBp72KfMG5fBSx81zDfD94SpHpg29gYXvQqzASQSFQNGwND8aqjIGq+3Cb4nlZXYzfr1lHC0tQr1gHN3tcN/hO3EK25cdWFMuuYCuSZIpG9mU2InmOzNXOd9X59Ty7MVNBAO3QjW6jLTn6JH91JGEUYJe8OKzbUkhN4Cw5rblGoJr/mQZ1dO219BT3ZTDy50ZT1BvlYEu64VbgeVAo9J6HzA+VVuTjertzqw8n9vAbiklN0bz6pX/F78xj9cogkmIRRNhK7KFPhrW7LYtDKVsHztxH+zbt49PfvKTHDt2DGMMf//3f8+HP/xhTp8+zb333tuRfcIek69/9tlnmZiYWPr31a9+FYBf/MVfXPdvCoXCir9pF8ilpKSkvFWoX50kbvjIyAEpQOqW9LixiJMuZGiR+BWCuNrxsUw0yrziVXnxroRSAexYkG8I7FgwX4QX7kr4kVddIYG+VSyW2e3P92yLcfT1WF4uuYiuSZJLLqYhMTIBR+O5iqnZBs88d4nxqVrrjZsJBpJ4KRi4VRb9wLJOlsHeDIO9WQZ7sgz35Rjpz5F1s2gTESZbs7/NjqflT7YWSzidG4+ba/XixetYXMRh6/dujvGpGs88d4mp2QauoyjkHVynzfl8CzFz6VXKlQvYzQxCSoSlQApMGJPMNXHj/FIQnbI32Kn74Kd/+qf54Ac/yLFjxzh+/Dh/9md/Rj6f57vf/W5H9rfInsqIDQys/GL85Cc/yZEjR3jkkUfW/RshBMPDw50eWkpKSgqwuxvOjTEkL80jhiSJFSG1g0AgMCAMGEkoHFQU4FQa0GHv4sUsULlP8v0+TaEKTgyhBZUu0EgiP1khgb6VHCkMcKirf1dIxa8ulwRBMmVjEsAxxFqTsWxyrguOoVQNeeHVKUYGciuDAcdbu/FlwcBWsNwPzBIejr3S/Dc2AVLYOGp7zK8tmSMxkmpUw1EZPGWxPIcam7Bz4+kfhd4RmLrYKgNdfu0YA/UyDB3E9I1w+lsXlkQyFjN3jq2wLbnifO5mtdmtxBhD9exFkr4YV16zqBBCgFCYOIEK6J7tC+pTOosxhtOvTu34fZAkCf/8z/9MvV7nXe96V8f2A3ssEFtOGIZ87nOf4/d+7/c2PFm1Wo2DBw+iteb+++/nz//8z6+bggyCgCAIln6uVCpbNu6UlJS9y1LDeeMcWkdIaVPIHto1DefxTAPrShd2vpd6YQan4SEXrKuVSBBCEzghvfUMxbir4+NZLZpRWaWHESYxtlQrJNC3GikEY7nujm3/RsaxolwyySCbEqMSYq1RUtLn5VvhhRDkMhazpSYzpSb9mwwGtsqGYT0/sNbuDH5Sotc9RNHZvyX724iW3P8ldGzjyEliU8BVNv1ejqzldnw8QkjkqcdaQimlqZVCKfUyeDnkyfcxUw6YKzXJZay25ZPLz+duKBncDuKZBmJOoPosEhljmWX3uQCUJE4ChFbbFtSndJaZUnNH74OXX36Zd73rXfi+Tz6f51//9V+55557tnw/y9kdy7Ad4Atf+AKlUolf/dVfXfc9d955J3/7t3/Lv/3bv/G5z30OrTUPP/wwly9f3nDbn/jEJygWi0v/9u/v/JdJSkrK7c108wynL/818zOnsedKZGfr2HMl5mdOc/ryXzPdPLPTQ2R6okrTh77zJ3FCjyRTQYgQoTWxSGhkqtiRy6GJfQiv84HYYhaoEvoYY1b8zhhDNQwYyRbWSKDvVZaXS4ahIUk0Whgyls1ItrgiILUsSaINQZAsBQN42VYwEPqgdev/0tRSMLBVmdlFPzBH5qjFk0TaxxhNpH1q8SSOzHGs5wMdzwQvyv1fqs3jm7cjRQZH1giSBhONEtWwsi3jEaNHkY98BAYPQNCAykzr/6GDyEd+CTF6lCBISLTBstqPYfn5fKtg/JhctY9cOEBoVTGsfAYgILRrFBjelqA+pfPs9H1w55138sILL/C9732P3/zN3+RjH/sYP/rRjzqyr0WEWf3ttkf4qZ/6KRzH4d///d83/TdRFHH33Xfzy7/8y/zJn/zJuu9rlxHbv38/5XKZQqGzEsYpKSm3H8Zovv3mnzNffZVcUyGUDVKC1pgkop5J6O26i3cd/r92rEzRGMNTXznLwVdncCNNtWecK4deotk1h5YJUiuy1V4OXDjOwW5wfu5/35axXvPOCteKZljOjvRr7TTaGF6ZmOI737uK5ypyrrtGrCSMEoIw4QM/cWhp5bitj1hf52wY2kmOF519t+wHthm0MfztmW9zqTa3JPdvMYEnX0YxT2IiLOlwqHAnx7dhPLCxmfb0fIMvf/McrqPWlHJC+/O514mm65S/eJZy7zhn9z1JJJs4SRdKtzJkgaxixx6nRn+VkdGTOz3clAV83+fcuXMcOnQIz2tTCr0Bu+0+eP/738+RI0f49Kc/3fb3G33WSqVCsVi8bmywJ0sTL1y4wJNPPsm//Mu/3NDf2bbNqVOneP311zd8n+u6uK57K0NMSUl5C1EKLlKpv4EXSITtstSfIhVCSrzApyzfoBRcpMe7Y0fGOFNqMu6HHAYkgvz8CMdLwzQKs8R2iBW4dFX7sGSE9fj29bUtZoG+Pn6Wq40KVR1gS8WBfA+Pjh5/ywVh0CpTvGdkkPN9daZmG+CYFeWGxhjqzZihviz93Zml18XoUeTI4W2zYeiEH9hmaSf3HzNCTQ+jmCPSdfxA8ei+JxjI9HZ8PLCx8mp/d4be7gxTsw1sS64p52x3Pvc6Vn8WqzdDYWqY4+pxLvV9n5o7Q6hipFF0VYc4FLyb4QdO7PRQU7aI3XYfaK1XJF46wZ4MxD7zmc8wODjIhz70oRv6uyRJePnll/ngBz/YoZGlpKS8FQnnLpDoEE94rBVaFyhh42ufcO4CjN6xAyNslYRkAo0RAiMN0rT8unLlfqBVx24QaC+DdsdYu1bZOQ539dM1mONKpUwiE4Z7c4zmundENGO3IITg1F2DPPPcJUrVkFzGwrIkcaypN2M8V3HyrsE2fRbba8OwlX5gN8J6cv8gSOgD0Us9qdNI4m0fWztu9nzuZYQQZO8fpfr0OQoTg7yt8rPUczOENLBqFl16hMKjh99Sx2Svs5P3wR/8wR/wxBNPcODAAarVKv/wD//A008/zVe+8pUt39dy9lwgprXmM5/5DB/72MewrJUf76Mf/ShjY2N84hOfAOCP//iPeeihhzh69CilUom/+Iu/4MKFC/z6r//6Tgw9JSVlj+LEoBJBosBqUwyeWK3fOzs4J3RdhWsMRkDDU7ihRunWF6MBYgFNS9Hj2Bh/+wbazk9msjtE3mVvyk9mp81xO8noYJ5HHty/dHwafoySgqG+LCe32Xdqt7Fa6GU1ob4xoZeNygq3ivR8rsUZK9D16CEaz48TzzXJ1rvJWb1YfVmyp0ZwxtJ2kL3GTt0HU1NTfPSjH2ViYoJisch9993HV77yFX7yJ3+yI/tbZM8FYk8++SQXL17k137t19b87uLFi0h57cE5Pz/Pb/zGb3D16lV6enp44IEH+Pa3v91xhZSUlJS3FkXvEAXfYz4fkIvUgg5hC4PBVyE9NY+id2jHxtjfnSHbnSGebGCEpJGRSG2QBrSAQBsylsSyFcLbnq+ORT8ZP0hWrIwu+sk88uD+Db+Ud4s5bicZHcwzMpDbs8HmzbJa7n91iVM1DDiQ79mU0Evb3rreEeSpx7a8ty49n2txxgrYo13EMw2MHyM8C6s/+5Y+JnudnbgP/uZv/qZj296IPSvWsZ1stiEvJSXlrYkxmqmn/oIXCz8kdARe4qC0JJEaX4U4oeFE5e0Mvu//3FFPsfHJKlP/9gr5RkzgSoSULW+xxCAF9ClFZqxA8UPHOz4JMsbwxW+eY2q2scJPZvF3pWrIUF+WJ37iUNuxrBfELZa3XC+IS7n92QqhFzP+ekt63m+0kZ7PIh/5SEeETlJSblduRazjdmMrxDr2rHx9SkpKym5BCMng3T/PiYn99FQtIhlSt30iEZKtZhi9ci9y34dZ2z+2vYwOdTH48EFwW6WJJkrQiSGjBH1K4eQdsqdGtmUl+kb8ZFaz2hTUsRVSCBxb0d3l4AcJL7w6tUYSP2VvsVzu349jZv06fhxzIN+zuSDM6FYmzG9A92DLDFvK1v/dg+A30C881SpbTElJSbkJ9lxpYkpKSspuRIweZfDBX6Pv9JOUr55nQni8kRxkOjzMRa8LdSamd/LcjpfNjb5tiKDbY/57l8nNNxEGLFth9W9vT8Zm/GQaftzWT2anTUFvlr3cz7ZTHCkMcKirn4lGmXockrMcRrLFzQm9zIy3yhFzxZUm2ND6OVeE2fHW+7ZRACUlJWXvkAZiKSkpKduEGD2KGjmM/9p5Xv6vEr4RZPs9bEvdUO9Tp3H3FRkaK2xrT8ZqMQTX6UFJQRzrtn4ycaxRUuC6a3+3JogzhowfY8WG2BJoV9HYZea4S/1s8w0yfoJrDNnuDHefGmV0qPPm2XsZKQRjue4b/8Og3uoJWyXoYQzM6iwBedxkhgG/tsO57JSUlNuVNBBLSUlJ2VYEL1wFH4fu7mu9T46tsC1JqRrywqtTjAzkdjQbIoTAHshty77aiSH09IzQ6zzEVNPcsJ+M66qlIK43SBiebgU3whiMENQdyfmi2zaI2wkW+9m8UsCJWkg2TBDaEE82mLpYhocPMvq2oZ0e5i1jjN4RT7Gbxs21hDnisFWOCIzHXbwYDjOXZEiMQImD9L0Sc8qtpT2HKSkpN0waiKWkpOwo2pibKxu6Tbldy+Y6xXpiCGL6Ivc5Md/KPUypyg35yfQVPXJZm2Sixv5yiK0NkSXRUiA0ZBsx9ySGQj2Cnh340MtY7GdzSz6Hw8vojE/NzeA0+5FakG/ENL55nqDbw913fYW/3cp08wxn579EJbyCNhFS2BScMY73PMFA5s6dHl57+kehdwSmLoLtMp4U+KZ/kMBYZEWIlTSJnTxTdbMrMtkpKSm3H2kglpLyFsAYsyulf9+oTPP18bNcbVSIdIItFcPZAu8dPX7dRvrblVvpfdprrBFDWLwmHQ9sl9HSOO/O/4iXeh5iruxvyk9mscSvVPa5txRApClbAlu0pFASY4gdSZ+UNF+4ijNWuKF7Yav7uGZKTeb8M/Tt+zbnM7MkKkFoC6/Ry8CV+8mURnDDhPnvX2boBse6E7Tz25rxX+P01GcJdY2M6kEJh8SEzAfnOT31WU4NfnRXBmNCSOSpx9BP/yNm9gov2gcJhKJIHZHEIC2cYg+O667JZO/WZ25KSsruIg3EUlL2OOGVypIZpok1wpJYvRmy94/uqBnmNWnpgIKToUt4xA3D+GSNz8+/xM/f83aOFgd3bHydYnnZ3I32Pu05NiGGMFp5jbF3vYdZe+S6wc9yyfpBJek10FQCDQRRgqUknqMo5F0cAfFsg3imsakSTGMME2dneO21GeaaEWVLoJS8JV8yYzRTU9/F6vsyAU1UmMMJbbSKaeanuHLkaUbfeBRmh8nNNTc91p2iXYmp6R3m7F0zhLJG3hpeOm+W8MiLIWrxJK/Nf5l+79juLVN0MsyWA+aER9aUEEKDm4WeIYTXOh/LM9nFRrwrn7kpKSm7jzQQS0nZw4RXKlSfPof2Y2TORuZsTKyJpupUnz5H16OHdmRioI3h6+NnacQB/V4eU1ckUzaiKckbSNB8afYcP/eODPv2mFBBf3eG3u4MU7ONG+592nOsI4awhOVAo4IIGwwM7t9wU6sl6zO1CCXAchQSiONWr9lAbxYhwGiDrkcYP77uMMMrFWa/c5H6RJWxxDCmBE3P4kqvx8RNCqyY8ddJTj/JZPcLiEyCWytihAApUImDbNqEmRLTo8+zb+6DCMOmxrpTrFdiWq69TqUySSY/grDXluJ6qptyeJlyeIlu9+AOjX4txhiiH71K8uzXkFFIUNxHEnlYJKAX/i1jKZN9qUL15cld98xNSUnZnezS5aeUlJRbxRhD4/lxtB+jul2koxBSIB2F6nbRfkzj9MSOeClNNMpcbVQoOJlWEHbJxTQkKANOyzw4qMBXvnOOK5PVbR9fJxFCcOquQTxXUaqGhFGCNoYwSihVww17n/Ycy8UQ2hGHrd+7188Cre69iy2BEQKlQQmBbQmSpHWcgaVMhfA2Xo8Mr1SofP0c/kSNEAg9RaIkuWbMkat19glxw75ki0FLufY6QbaBFXkYBGAWJvgGgcAKcwTZWUxhFstW1x3rTrGR31bUXSAhIa7UaQbRwvG/dpws4aBNRJjUd+4DrCK8UqH0/52h/LXL1GaPUmk8gFPaR28MsXJbn08nUJnFLHyWONatwP+12V35zE1JSdmdpIFYSsoeJZ5pEM81kTm7rSiEzNlLpVnbTT0OiXSCJVqZMJMAjkEYAU2JCCxEJKhWQ774zb0XjI0O5nnkwf0M9mUJwoRKLSQIE4b6sm+thv9FMYR6uaUJvhxjWq/3jbbedx1W9941PYump7BjDca0+nYwaN1apND1CKsvi9W/viDK4mJG3AipScBuZTC1EgSORCWGkZkGOU+tay69dpvXgpaou0CiICcTtARhRGtab3Rrgh8rjExw7BCrf+Ox7igblJiWwiJ1k2cmsZiZazA112BqrokftrJ7sQmRwsZRu6PkcrGKIB4vIXUT6YRIlaBCh3ur4ARO61JVNoQ+hMFSJnvMtbGq4a585qak3G4YY4im64SXykTT9W1fwPjkJz+JEILf/d3f7eh+dufyWkpKyi1j/BgTa2TObvt7YclNl2ZtNTnLwZaKuGEQTQmWQSQC40swYIQBZVBSUG9GfO17F3n/Qwf3VIAyOphnZCC36w18O2kyvCSG8Mw/QWlqRUkb9TJ4OeTJ922qd2hN750QXB3IcvByFTfUBEogAJkkJKUI6VlkT41s+FkWFzO0a2HiZOV7hSCyJBk/oRAbrm7Wl2xZ0GLrBKUltgyRtiIJPaRp9bSBQVgxlrHIOF3XHeuOsk6J6XjcxfO1AyS9U1jZSdAZkIIgTJgrNekpesSyRK97iKKzcenpdrC8ikDmBMKPQTogNNIOyUaSQw3BadtrqSaamDiMaPgCz1XcNVrEXKkhrd33zE1JuZ3Y6d72Z599lk9/+tPcd999Hd9XGoilpOxRhGchLImJNdiqVQKnFyqGbLXp0qxOMJItMpwtMD5ZI28ACaYpWhVL0mCMQQmJkhKMWSr92mlvra1GCLFCot4YTSm4uK0+SxsFWksmw6UmiW4FxrciTtEOMXoU+chHrok8NCqtcsShg60gbPToprbTrveulne4sK+LoakGTiMiLyVWAtZQnuypket+oS8tZmQtRL2lhLf8+tMSRGIQYYKy5eYEVpYFLcVAUAizzHs1ckZinIQ4cjFagFT4bpNiPMbIO99x/bG2USvcNvGLNn5bxsCL4TCBsemaPE58YB7cEugClrCIdUS5OU9PVw/Hej6wK4Q6VlQRGFhoJgShEAJcK2QwNhwwCVdwaIgclpZLKp4DQlBeeOYKZ+21sJPP3JSU24Wd7m2v1Wr8yq/8Cv/jf/wP/vRP/7Rj+1kkfRqkpOxRrP4sVm+G5niVsjBEscEs9J7YlqBoBJmxwo6UO0kheO/ocT4//xIJGhnRyogJszTZtZUCsyCet6z0a7u8tTqZCWrHks9S4xxaR2hj49n7uCP/OEcH7uvIvjcKtIAlBcLlHl5TNylOsRFi9Chy5PAtBRKLvXfPPHeJUjVcGvOcq7jU59HX5/Hg0QGKI12blhJfXMywEdi2JAwThLUwOTcGqUELqESavoHc5gRWlgUtwvE4Oj/Ki4NvUnd8vNjBFgGxMfgFD8/u5t7RX8TNdm+4yXZqhfSOIE89tulA9mbRxjCRyZLr6sWbG8fuHgYpmdVZ5pIMWRGiKr2I8R8n3vcmxp4GEaO0Im4Mc2jww22l63cisFxRRSA8sD0ImmDL1oNIaGwMD1uXqYQzBD37ybznnfT3ZJck663eDNFUHWGvFeLR9Qh7KL97S0xTUnaY1b3ti/eQcBTCliSlgMbpCezRro59H//2b/82H/rQh3j/+9+fBmIpKTuN1jHlyecJwzkcp5fi0P1IeXvcNkIIGod6qF4oYcUaY0uMEojEYDUSKpbE3NFN9w5lmI4UBvj5e97OF2fPEVYAvVCOKCS2UigEsTY4tsLzLKr1aNu8tbYjE7Sc6eYZTl/+a8LmDMK3qCU5YgUV5zWmS1f40Rs/wzuOvPOmJdLbTWiXS72vDrSefvYijq2WFAgXv/AcW2Fbco1n0lYghISBfbe0jcXeu8Vzt+Q71p9b13dsIxYXM6KpOsWcw2zUIA4ClEkQxmBrScmWxG6yeYGVVSbB/c0CJ6YO83rPOBWngW+HKOXSVzzOseuYHRujKV3+NsEL/wu7EVF0BxCW28pMTV1EP/NPyEc+0rFgbLkP4FBXkcdnLpGfvojb1Utg5UmMwEqaIC2kuhdn/kGMNYWRTYz2qM33kDlwx9rPtUOB5fIqAukoTLEfZschCsGywFhAgmxM0Z83yHe+E9F7rbdNCEH2/lGqT58jKQWtzNrC9nR9c+WwW83igpIfxDSDmIxj4XnWriyDTkm5kd72Tlh5/OM//iPPP/88zz777JZvez1ujxllSsoOMH3pa5yd/FcqskwiNMpICleKHB/6OQb2P7bTw1vCGE05vLSmnM0Yw+m5OmGvx9F6RDZIEJHGCEEjb/N61sadqzOyqtxqOzlaHOS/vSPDV75zjmo1REmxUI4IsTZIKSjmHZLEbJu31kYBylZngqB1/s6O/zNhfRLV9JgX3WghUFpDMwtejYp4hmeeG+KRB2+sT269Ca04+T5Ov7F+oDVb8pkvB/T3rp2sCSFWeCbFU3iSAAAgAElEQVRtV4Zys2xl793yibVVbdAblqjgoLFxtCCShopX4t2NlxiJC8D6QcLygFgcejumPL3UF9ev8/SVD1I200RZB/fkB+keeXjDDNBSBnX+RZJ9AUo4FMIGR+dH6W8WwHahNIV+4SnkyOEtzyat9gFsDh3gP22Hey68ymBtHmlJlDpI7ORxij1LflsiHgYgjBKUTNbc0+vJ4G9HYLk88Ba2RHhZTN8olGcwoY9OHCy7ihrtQ55qXzbrjBXoevTQUn+LrketrOomy2G3ksUFpcmZOg0/aj1HlSDrWQz15zu2sJSScrPsZG/7pUuX+J3f+R2++tWv4nnelm9/PdJALCWlDdOXvsbpqc8SqggvcWm5x8TMqzlOT32WU7ArgrGlyVh4BW0ipLApOGMc73kC/P3MlZq4vR5vDGbJ+DFWbIitlgdSFGtqu2AyvW+oiw+86xBf/OY56s1oQeGuFRQU8w6u05J53w5vrdVeVNuRCSoFF6nU38ALJHOygDYCW7TkGhAKE3rY7iQ+E7zwambT+95oQjv99BeZ836CXG5tiZ4QAtdR1JvRuipVS55J25ShvFFW997dCs5YgfwjB2n8r2+BFvRKjRYhiRehinMczcwgyhsHPG0D4kxXq5+qWWt5pSmL7r7jm+qLm26eaT2fwhKer/HIkCjBvFfjxcE3OTF1uBWM5YqtjM7M+C1nG5ez2gdw8Rqa6xvhmz1DyLkJDlgevfVBpuvguO7K47GOX94aGfzFa9PxOh5YwjoZLSeD6R5DVxpIG7I/dhR1z8b7d8YK2KNdxDMNjB8jPGvT5bBbxeKCUq0R4YcxRreCMG2g0YwZn6xRqQVvLZXWlF3P8qz0dvdZ/uAHP2Bqaor7779/6bUkSfjGN77BX/7lXxIEAUpt/WJwGoilpKxC65izk/9KqCJySQ6x4PJg4ZBLLOqqztnJL9A39siOlikuTcZ0jYzqQQmHxITMB+c5PfVZ9qlfINF2S85bCJqZlStMu2kyPTbUxQd/4hBf+97FVibKa5UjJonZVm+t1V5Uy+lUJiicu0CiQ6TIE2mFWgzCFjEW4OM5jU3v+3oT2qCUEJs62WL70g7bbl3zUaTx2ngtx7G+6QzldvfebQWOW0NlniPJ9aNVFiljlOMvHFaxYcCzbkBcnQMvi7j/cUSxb9N9UMZozs5/iVDXyNMNSR1shWUEudCj7vi83jNOX7MLsWCITbC1Hl3LfQDX3CdS0uwZ4JVkmnePlqi+kVCq9pHL2EvZ5Xozbn9PbyCD32oW7UxguZx1M1pjPTeU0RJCdKR0ajNcW1CKSRINBmxbtZzqjCFODNpomn68J0WQUm5f1mSlt7HP8rHHHuPll19e8drHP/5x7rrrLn7/93+/I0EYpIFYSsoaypPPU5FlvMRdCsIWEUi8xKUiS5Qnn6dn5J07MsYVkzFreOlhZQmPvBiiFk9y1TyFko9fk/NexaIBqVMPCS+Vd2TVdjljQ128/6GDS/0985UAKQTdBZcfe/vItqzarvaiMuilnhahMygzQOJvUqZ8kzgxqEQQS9MSaFv9BqVBS5R28G9CIr3dhNbNuKggJG76qOzaLzQBWEoSRAn5VaWr62UzNsN2995tGUEdoWOsfAyytvb36wQ8m8nwmAs/RDzx65vO8JTDS1TCK2RUD8IYjBC05FAVAoEXO1ScBmW3QXdVbdoQ+0ZY9AEsyLXlOxYT9NkvgzXDZOKQO+hi1Xvwpx6gUdvf6tlbUBlcc87XkcG/tvHOBJar2Q0ZrVthcUHJtluZbSXF0nNFCLCz0xjVxHULzJbYsaqI23FRJqWz7GSfZVdXF29729tWvJbL5ejr61vz+laSBmIpKasIwzkSofHWuT0UFr4ICcO5bR7ZNVZMxtpkbjzVTaCvUuyvMDtZXJLzXsQYgz3n8zY/Rn7zIuVk+3062jE6mMcYw/deniAsJ+g4olYKeeHFEE4cYGyos+Na7kWlcpeJc99B21MYYgQWhAMo/Q5c9/CW7bPoHaLge8zkfERcwHAtGDMYsBuIei9JMLz5LNR1JrR9dkSvX2Ha78HJrA20Gn7CUH+WKNIrFAg3zGawoKDXKFOPQ3KWw0i2iFwmhb+dvXdbSht59hXEYfuApwMZnjCpo02EEg44ojWeoNnypUCgtMS3NFFSg1II/WOYvuG1Af4tsOgDGOkEV117TlpMkFX/CcYnMhkyVj+2NEg1Ta7rGe5wP8JA7s71J9w3e5w7wM1ktHZLYLG4oOQogTEgVGsMKnsZZ+BZpDsLIkZIG+H3M13/GQZ6Tm3rGG/bRZl1WK9XO+XG2U19lttBGoilpKzCcXpRRpIQY7F2IpsQo4zEcXp3YHQtVkzG2mAJh8CUOHrQo15SaybT9pzPPXM+BVshigppba9Px3qMT9X4xg8u49eb5MMSVtwkNpKpuscz0zM8cmqYsXvu6tj+F72ophtncAr/QSLqxGEWo12EjFHWFezheXAPAVszDjGwj6MvH6Pm/BDfKxGFOYSRIBOwGxDZqJkTVLViqC9zwxLp7Sa0Igk5IS/yLefwuoHWwyfHANYqEK6TzViuoBfpBFsqhrMF3jt6nMNd/dvee9eOm5ZEX6V0uCKoMqZlPj10sPW+5WxhhmdxoleLrrbKy3SArTKIQj9mbkHZT1kkIkaFMfbVq9C0oTSJ+dLfYLZQcXDRB/BSbZ5+b/GcGTz5MsIE+DpPRjlkLAcQ5O1havEkJfkN7u4+sf45vtnjvAMYY1ZkzKa15vSZ6V0RWCwuKGmzaIVmsPJX8MaeRKgmSZSHJIeyNcKb4HzwTww0sxsqdN4s7RZnrk7Xb99FmTZs1KvdiWP6VmC3ZKWffvrpju8jDcRSUlZRHLqfwpUi82qOXGKtKE80aHwV0JP0URy6f4OtbD3LJ5G2qiGFTWJCLLF2oh2bEClsRvv76X6wb+VkWsDb/JiCrXD7r63YbqdPR/vPt9DXUG9SbFxFmASUjSMktg4oRw6nnzvLSFEhx451ZAxCCE7e2c9TFz9LbOrEYREhZCubkCjixMbkSpye/jd+8sDxLVnxFEIyePfPc/K5Mi/1zjGdDUikRmqJqPXC5Nup6rvxctZNS6S3m9CODh3kPQ8c4oUzMxsGWptRIFytoFeQHpFOuFSb5/Nvnubxvnu3vfduNbciiS6ERJ56rNXrtaB0uNTrVS+Dl2uJbKy+HrYow7Nioqcj/KRMM56n6OzH9boQvaOYygwmqOM7AT0Vi2KUh8FBUPaWKw4u+QC+eZoZv06X45KRZQRzBNpFCUWfl2Mxt7uYpS+HlymHl+h2D7bd7k0f520mvFJZWq03sSY2himtCfMObq+344HFNXPzOpaSRHFCbuBZhGqigx4wglZFq8JhAC0qvDb/Zfq9Y1t6bNstzgxlChTGe/ADvaOLMhtxI9mt6/Vqnxr8aBqM3SQ72We5naSBWErKKqS0OD70c5ye+ix1VcdLXNSCaqKvAhxtc3zoZ7dVqGP1JLJLKQp3N5kv1sl7+9eUlvlJiV73EEVnP92DcsVk2qmHyG9eRBTVjvh0rMdiX0M2LLWCMPua0ppQkqzUzMVZpn/wHQZHj3RsMpYpziNyU8TNbCszZVqr/SiQDkS4TDUvMB9cotdrP6G8UcToUQYf/DXee/pJXp+Y41XZRyXpIQmHsTJ5hoa6b8gHa7MT2rGhAqODXRsGWtdTIFxPQc+VFoejHM2Szytz54njArlse0niTgvHbIUkuhg9inzkI9fuw0alFUQNHVxf6XALMjxrJnrKRhuLRjzOfHCOghkj4/YQ9w/iz5/DCS2O1g4hhgeu7a8DioNHCgP8wuFTSxPtWJTIqxhP5enzushaK5USF7P0YbJx9u+mjvM2El6pUH36HNqPW/0rWZvqbJ28n3BvpLmYs6nZakcDi+Xm5nFi0PYElj2D9HMIDbE0CCFRUlDMuyir57pB8o2y3uLM+GyV8oxiIL/2eGzXosxGJdSbzW5pYxivz/PD2S/gxxW6nZGl+2p5r3YnAtyUvUUaiKWktGFg/2OcgiUfMV+EKCPpSfo4PvSz2ypd324SKeKQo+ervHholhqX8NxBLOEQmxA/KeHIHMd6PrD08F8+mQ4vlSknGmltv0/HRgRBQhKGWHGztYq/CgtNQ7oEpdItqaZdrzzt1YmL6DiGZDEINSBBOBphgTQ2iaky0ZjcskAMWhNQNXKYO2fGOe7XmA1d/FwvnmvfVK/J8gltNHMZE0cIy8YePLAiC3SrUu/tFPT65uHIeUlXXSCTHDExvqgzbcDvbpPBvQUVxuuxlZLoYvQocuTwpssbbzXDs1qUJ4gS5moBYeSCHEK4U5T8qwTKx5WSnprD0fkR+pOBlaovHVIcPNzVT9dgjiuVMg36mNU/ImflsKS75r2LWXpHXX9x50aP83ZhjKHx/Djaj1HdLkIIgjAh0CBdSSYyDE83eD1ngxA76rm3aG5+9tnLqHKdaSKcIIMQmkQI4qwk1+3hORbGyE0FyZtl3cUZZWFJmyRJaDbmKchucDzEsou104syG5VQF+y5TWW3Frcx1zzPgPsG2rhUoxL9Xm5pAWKzWeCUlDQQS0lZh4H9j9E39gjlyecJwzkcp5fi0P3bmwnbYBLZbw5y4hy8fkdIpb9OYEpIYdPrHuJYzwfWLYfYSZ+OjXBdhRKG2EicNhOuGIkSBjfxb1o17XrlaeNTNc6e8RFDFkLFGOOAATQYX0JGo5RGG0ms2weyt4IQEgb2IYCBLdjem/kiXz98L0lXESv0iR0PNbCP9+aLHNmC7cNaBb2+ebjvFYUdGZquIXFAx5qepiZ7pcZlJal3XeuZuhUVxk2xxYIZi+dos9xKhme5KE8QJQv9R6CUQIocOhxFyyrN6Ye4p3eUw689iSj0Qbt4ZYsVB9eKLWTwDvSic1N0e96GWfrNcKPHeTuIZxrEc81WJmzh82ndEtURUhJZhoyfkPHjJbuQnbQJ6Y80znxASWSZFw7CM1haYWuDiDTWglPGjQTJm2E9e4Oh+SkOXrjCD8N7cfwQ3aggbQ9T7F8y/O7koszGJdTPc7LnBaINlIhfm/8y5bCb/3nuxVaQ6SZYEmJt4ycRE40KI9nCUjC22SxwylubNBBLSdkAKa0dk6gHrjuJ7NfD9L1Sp/r+DxEV85tSa9pJn46N6O/O0NvlMFXzsHWAUMt68ww0jMOAqNAnGzelmna98jTxnl/i9BuKqD6ACHtwvGmSqLWyjaAVjAUCma0T6T76tjAb1glWTDq6+5dU7ir1Ep9/8zS/cPgURwq3Hu6tUNCTFkfOS+zIUMuCEQY/M0OsArKmB+dKgd6JGvNuActW11Vh3BJuUjBjKxXwlmd4tF9nxmjKhR5ytseIMUtlUau5JspjM1cLSDTYlmCp9woHJSV+s5vXJgY4LO2OKg4uZpPHJyt8440IX8uV/mBXH8Ad+Q9ggrzbu2GW/nbE+DEm1sjctUUYKUEgWs9OCSIxWPE1I/ROBhYbjnUhe2eCmJ7u/RSiASreBE7kIozExAlJ2Ue42RsOkq9HO3uDofkpHj7zA5wo5Lx7kHnZjYuPDJswO47pGwU327FFmY2ydP1ejmp4menmBUayA+sqEZfDy7xS+S6NWNLv5bFECCik0DjCItQJs36dbL4lUrPVAW7K3iQNxFJSdhkrJoClCj1JjFA2fhyRGI0SEk9ZrQDBchCNCt1JEZHdXEPwTvp0XG9cJ08c4JnpGcqRQ1ZqLDQxkoZxcEXMiegMYmj0hlXTNlOeNv2D7zDHAxRyHrPlB7Dsr6OcEjrOYXQrQyatBnHiYlsPMprr6cBR2BquN+mY8es8PX6WQ1396wYBm2W5gt7hKEdXXdB0Dc2uCeaHXsLPzCFUQhUXd7iH/nMnEJXDlB0bS23gKbVV3IRgRiektYWQvO44fO3SRWbrDSJxAZUxDOdaZVHtgmJH5ZDCphn5hJFGqWtBWGujERiLjJVjri6YLR6if+5sRxQHF7PJZnaC0/oEvuimaCUIpx9h51o9UeYI5YnHsYd/QGSXN52lv11oV03g2ArbloRhghICIwSx1Tr2Hc/2bsDy7J0UkgNz7+TM8H/QtOdwki6kUcRJE9+v4DhdWxokr7E3MIa3XTyDG4WUs3kOmvPUuJeqyJFTUUsdtzxPI6Pw3BsQJboBNjQhF4K8bUhMSKQlVpvDYAmHWjLHfHOWQ2GBrmaDwLYJiz0optEUUULiJzF+EuNKa8sD3JS9SRqIpaTsItZMAE1MkQfYX32TjJjHLJjrusqi382RNeamVrnX8+mwBnM4h7qJ55rEc02soRz2NjaZjw0VeOTUMKefO8tcnKUhXZQwDIgKJ6IzjHoB8uSHb3zCsInytKBUIsmG2Nkcxfg405MJud4XcNx5pNXAaEXYGKQm7uan73n0lgOYTnK9SUeX4zLRqDDRKDOW676lfS1X0GuWfGSSo9Y3wdSBb5FYPirM4cQOsQgp5yZoHJ+nVm8S5A9zcuQgJ/eNdvb6ukHBjE75nT177hLPvHQR40tc04UnwbgJ4z1VPu+3z1AWnf0UnDGm629iTH7FNWcwoKrIcAxlhmnqmPDYj8FLl7dccXB5Nnk2M8pc1EPWRIjIX8pmiAUZ+yyHaF7cxwNjDrlcsqc8ldpVEwgBxbzL7HwDK0yoZW3qriKOks5nezdgdfaup3mAO68+zsXe71NzZ9BujIglPeIO7hz8mS0NklfbG/TVSvTUy9RdDxAUzCwn1KtMyOPM6QwNWUBFMYMDglMnOqMwuZEJOYASWbSRRDogQ7sexwATRrz3zA85MJ+gMITK5vKQzWtHJLEqg8iSGEGYNIl0Y09kgVM6TxqIpaTsEtpNAKu+Zlx0U0ru4U71Cn2yhMHgxxETcZn9SYwzcvimVrlX+3TEFZ/mDyepPXUOE7eaB4QlsYfz5H/84Lb5io3dcxcjRcX0c98mKJdxE58+2UAMjbaCsJtRTdtEeZqrfZQwVIOActzAj0eo1Qew3VmUChBJDuUP88hD+7akpK+TXG/S4UiLqg6ox2Hb36/2SLqef8uigt5z4RlCETM39CKJ5eME3ViitTJusHDiIrFXxur7L85HRf5jtkah6HT0eN6IYMaShcIW+51dnqzy7ecnMKFEOQKkAQ3CV+SnitQot81QCiE53vME5eZnEM4cWnchcFqZMFUFnUXVH2q1O0qBN3oA2dO+H02ceBRsD3P5zA2JX6zOJgdJjiSSWNKAciEKoDKL8bIIxEJPlMBORhnMdt3w+drthMd6SWYaJLNN7C4XYUscAX1KUXcFF4oOlXq0oefedtAue9fTPED3lX3U3GkCXcdqOow9+jBOZmvP02p7g/6ggdIJ0UJPlhKS417ICes1ZnWWIJG4jRkG7voZZIeO1Xom5Is0dQGbHhJTxZiV1i31yKdeu8DgTMQ9EyFGSAwCS8UcuRKSDTxeulMROA0cGWOQ9O2RLHBK50kDsZSUXUC7CaABykkT7RpU02U83s+wnCZRFq7WOEGDkpth8MR7b3rFbdGnI7xSof79KyTzzYWSx9b2TKIJr1Qp/8frFB8/um3BmBw7xuDoka1TTdtEeVqfbOBl4EKlTmLF2ErhYhFHI0RBghXZ7Bvs4uS+nTeTvR7Xm3SEOsaWilybwHS1R5KwJFZvhuz9oxue/yOFAe54sI83Zp/CZErkkgKWcvCTCINBIrA0JEkWMiWGVMCkL7asRHIjNiuYsWihsJV+Z8YYvvtfVwhDjXRh6RJWYKSBUJAr5ZnItc9QDmTu5B0jv8rTZz9PyFWUVQdjtTJh9YeQwQEqzXCp/E30rFUcNGET88JTmJvwUFudTXZFjFooGXbQLYXT0IcwAMe7pZ4oYzRm+jJl/xyhBU7vQbrdA7sio7C8WqHLkxwMIopzDTK2wnYtMmMFek8OU8zZW9JXeKus1wsskOT9QTKlAHsojz3QmcBnub1BpVEjQCCSmIzj0efmyC7Yk/SrBiQ+qAbC61zA2t6EvIUxhmoY0pd/kKx1mlo8iae6W+WIUY1yY4LeesCx8x6htNEYJGAlMcpoRmZsiPv4wp0nGcm5vHv0IXrcvZEFTuk8aSCWkrILaDcBDJKIIImRboZARMz4vTSjLH3hHIlUzBT6eHb0EI93DzB2C/s2xlD/wRWSSgBStBQTF8ZglMCECboSUH9+fFtNnrdUNW0T5Wli8ACz/U10TWDHNgiDkaCMRMWKWCWUCiUMK5XBdyPXn3QEHMj3MJItrvi71R5JMmdjYk00Vaf69Dm6Hj20YTCmpCR3bxHmDKqpMFKjjUEZgdKgJfiuBaKJFCFdTnHLSiSvx2Yk0YMgIdEGq12TCDengDdTalIqB2grwZIrgxMhwFgG4VskTbFuhnIgexcPj/x3vvHy8/hJnYyVQ5lhkhgqzXBN+dvye8eMv475xv9z8x5qq7LJfbJBr2oyneSw8Vv7MjHo+JZ6osz460y98j953XuNiueTKIOacSjkjnB89Bd3NLOwulpBZ21e63YR5ZCcEpy8b4S+4/0tK4gdG+VKdkMv8JHCAIe6+pnYN09ubor+uXHsbHdL4WSRLehf3AztTMgdaRHqmGoYkLUc3jP6YxTs+5Z8xAJdohQG9Jfgvtc9ClUXLSXCGDSGEHC1RiUJhco8Q827eM+x99Lr7ZarIOV2IA3XU1J2Ae0mgLFuTWKlEISOQ9XL893DD/CNex7iqbf/OE/d927Od/WsO3nbLPFMg3i6AcYglFz1xSwQUmCShHi8RDRdu6V97RSL5Wl42VZ5Wui3dKdDv/Wzl2P2rncyY1VQ+wJETkMiIBSQCEROI/f5TKsyE43yTn+c67I46chaDjN+HT+J0MbgJxEzfp2s5fDo6PGVPUerPJKkoxBSIB2F6nbRfkzj9ATGmA32DLmhQaxcBu2C0QYraVXiRTZU8xDaMaAwtCZCkU5u+RreLEJIxMA+xL47W/+vWrF2XYWSgnihNHc1m832aGO4Ui9xtjzF5XIZY1pzT93u2EkwGmxjtc1QLjI2VOCR+x5kIHM3YX2Aai0mCBOG+rLr9q2tEalxvNZAHK/1s99Av/BUSw1xPZZnk2kFjyecq7gipmw8Qi3QQhDqVunmzfREmfHXmXrub3mx8EPm8wE2LrnQw24mzFdf5fTlv2a6eabt8b1SL7U/rlvE6moFx1ZIIXAcC6s/w6QleWGy2rH93wqLvcD2YA4TJCTlABMk2EP56y6qbBVSCMbyvRTf+UHsTBeUp9s+f2+2f/FGWMzS7c/34Mcxs34dP445kO9Z6tEcyNzJwyP/nXeN/B/c0f2/0Zw7yQMvd9FTsjGi9f0oFzziEIJICFSSkDOanxo4uOvL1m8njNGUggtMNX5EKbiw8XNqC/ijP/qjhb7Pa//uuuuuju4T0oxYSsquwHEUGk3F9/EcC1fZWFIihUAbg9AtCfVKV55adsGYOYnWLS+7EYwfY6KFFf7liSKdQBSCTsAoTK1J8vQXMO9+1831ae0w1ytPK+UKRPNXKBRAFAJMU/L/s/emMXJe573n7yzvUltX9c7u5iJKIilZi0VHtuIt3m4SO3Hu+M7EuWNkkmBgYD4GiJEgcIAgcQLYyLcEyCBBAowzxkxurp3cZLLJiZ3Etmx5kS1KsmyJiyhKZLPJ3muvdznnzIfqbvZK9lLV3ZTrBxBkd7PrnKp63zrnOc//+T8YQIHIWBSCamv/goa9sloadKNRoWojPKk4nu/nvZu49G3WI2kZIQQy55HONUhnG3jDW5vDFP1jFHPHWVCvotN+5htVhBIYLQCHpEHqhjEM3FYiuRrnLOX4KrGpd9X8YaiUYaCUYXqugac3tnbYTrZnfcNYP/bJmRJKyPbX66WiFqywDOWyGzKU6xkfyTM2nNu+rX4neqhtkk0e11XeHb7G89ER5hOPhu5DO83oYGbHNVHOWcy5L3Np4AZxIMjFSw1+JWgUuWZEXc1yceFJhsJTXK7ObdmQtxub4G7IVfeT9bXA26n57AZ76afXSVaydI0y9TQmp33GssUNtZml4ATTrQyy8UOUA9duUtD+WwiUEzjhcFg8HKGfoTSwF21Kj9XMNM+vZCatS5DCo8+f4HT/h7qaHX/ooYf48pe/vPK11t0Pk3qBWI8eB8wrlRn+/eYFFnCIqgLfEmjNYJAlm10gsXVknMP4A4hM+0TodvKynSJCjfAUtFKWdXfOmvZppXPtohYHSIcsX9uenOmQcjt5Wq6+uKauSmTXnr5FZntBw2FiO5uOZTbrkbQaoSW2nuBa6W3HXDaYODf9OWIWIBQ0DfhLQZgTIZF5BOfY1jW8nwuyEIKzD4zw1e9eZbEar3FN3I4D3qYNYz1Dy4tQTY3wBbFJlw5ZJNZabCwQWcv77zu1rTo5IcT2N/y77KG2drzNzU7G7Qxj8SXm/FHix36KcPz47mqiZq9Tbl6hMpESJn47CLs1OkJ5hM2EcuNVXpx/gX++Or1FQ97O9cZbTTfkqvvNci3wQbMdefB+IIXYlhQ6p31SPyTSHtqkeNaQSnGrt6Rr/yWcg/4jXZVW/igx0zzfXj9sjYzqRwkf42IWoiucm/4cZ0d+uWvBmNaaI0eOdOWxtxxzX0fr0aPHGtZs3EbyiOsal2hM+Dqt/ucphotYl+BQpLJIJB6hYYZXNO3r5WW7QQ9l0cNZTC3GGduWXyTxShDmrEQIhxe2UINZKE9jn/t35Ni9d2Ux8la1Z7utqzrsbHfTsZnL2mqWjTtEeOdlYzhzhrMjv8yFhScx7jWsq2GdIGWQyD5KwwxRjddKJDdroDzburDvC/L4SJ73PH5sxZih0Uq35YC3Ze82rdFHLNHrDp1opA+JTUmtQRqF70ve8ehR7i+OdPR5tAffeQ+1zdgqmyFGTzCy12xGVCcRMUZA6Db5PJESlUDLJjwzc55Gmu16b7zVrJar+t7G++KgGjbfrXS09rfLjGWLqOGj3LqV59EAACAASURBVHztJU6kCcoatDUY2XZNFNYQWIsMMognfvauXA8PG85ZLiw8SWxr5PWRlftci5C8GKWW3uTiwhcZCk915fW+ePEi4+PjhGHI29/+dj7zmc9w/Pjxjo+zml4g1qPHAbFh45YRWBUjKzMUBp9CyBYmzeOrAoluouUMuK9Tt2/jeP7UpvKy3SCEIPdjE6RzzbZrYmxwxrYzYVaCAOklZEozCLlNOdNdyHaKuTsR+B5WtnJZg3YgausJ3mgePbS9bMxw5gxD4SnK8VVerUzy7NwMUw2PxFo8ma6RSG7WQLm/FBAe/Qdisf8L8o4lgNy+d5sqOOTRFum0zxB9WOtAQ2kw4McfmuDoaNs+fLNgdE8Ssh32ULsdnc5mLMtNI3mDlu+QzmGERbt1AY21GAUOxWwz3ZfeeKvphFz1R5GOX8sHgBSC902c4enp1yldeJY+HNoYtEkRzrVzt36IeNf/jJw4ddDTfUNQjq9SiSfJqP5N7/NQlSjH1yjHVykFJzo69hNPPMFf/MVfcObMGaampvjUpz7Fu9/9bl588UUKhe614ugFYj16HBCbbdxk3pDr+x7SNUlMH1bBkb4soeqjmQ7QSKc5UZjhfUd/CSU7dwLrT/RR/Kn7qX39NZKpMs4ocAIhLTqokxu8gZdZki9tQ850t7LTuqq7ka16hG3msoaS0GxiGykyVGQeG93RZmq51uLs8AnePOQ2lUhu1UB5tvYaQe01irnivi/Iy2PspObnjr3b+gRz3iLvH72HI35xw+Z0s2B0oJTh7B76UO2kh9p2H68Thy9r5KY2QZ4ok7iUxLP0xblV8kSHMwmtPHj+BPVKH4ObZKXgzr3xdste5ao/inTjWj4o7usbhrM/yQt+yD2vvMBAvUxoNFIqvIExcu/8CHLi9EFP8w1DbOpYl6DE5nJqLXwit0hsOr//+NCHPrTy70cffZQnnniCEydO8PnPf56Pf/zjHR9vmV4g1qPHAbHZxk0xjxYLWHJILTDWYJwFBBnto+UQiZ2mmlzr+ObTn+ij/xceJr5wmeQrXwbto3MJOmitrfPfppzpbmUndVW7xbrNg5Juc6ceYcsua41nr5PeXMTVa2BjtKqR8SbRz5/DyW30ntqEzSSSt2ugrPyUFim1OuSCjU0Durkg74Zt9W5TirHBPBO5taerWwWj03MNvvrdq1u6Im6Hw2KSsMyG+g/lYzI+cfMasUqo+HVyaYhKwbiEVsbih6Mc7ftPfHd+Zle98fbKbuWq3cY5e+D1Vuvp5rV8UNzXN8zJH/8vTD3yXpKZa9g0ob80ghyaOPDX+42Gr3JI4WFcjBYbD7VSFyOFh6+6v/8olUqcPn2aS5cudXWcXiDWo8cBsdnGTRCxbNVnXdunSa36oO/25lMIgX/6JPoSMH0JgpE9yZnuVrZbV7Ub1rvqddv1bZk79QjLv+ceZKDBOrL3Wuz8t3CZFJkNUZkUYZLt957aJrd1pLNZJJokjYiTzIb6nDstyNYaXpu7RCOqkg0KnBi8H9nBLPJ6dltjeLtg1NNtS/jnXp5mbDi366zLYTFJ2LL+IzNAEZ9y9Bo4Q+xaWB+U9BnInebU+EcZDE9zZPrpjtdwbteRczdy1W7irl+6FVzvtEl3t+a0D9fyQbFsw09+4KCn8oam6B+jz59gIbpCXoxuuM9bZpGB4CRF/1jX51Kr1XjllVf4pV/6pa6O0wvEevQ4IDbbuDkCQAEpxkkyyiNcdfq7H6dBnZYz9bjFpq56XXZ9g409woQQOAexdKQ5gV5oUv7H88jQa9cH1ufRbpzMcAWdbQASVNiuM1rsnFnL7RzpRDqCTEewehJj+mBVIHanBfml6+d4cfqfSMRNnEgRTvPdyVEeHvlZHhw/u6c5b8Vuawz3yx59t7LCTtb63Lb+I5MnF9xLEi3ykPcTBP4Q/sAJSsHxleus0zWcO3Xk3KlctVu465fan8+7bdLdJe52q/8eB89q191aepNQldDCJ3UxLbOIL3Oc6v9gV/Yfv/7rv87P/dzPceLECa5fv87v/M7voJTiYx/7WMfHWk0vEOvR44DYfOPWT2yLKGZQoshgmGNZkrWfp0GHTc70RmCDOQuCvir4qWZI57jsuuP6Bht7hNWTmLmo3rbkj2GgqdBOQCgIMwKqTVJXojbXR15M3qoP3G7vqW1yO0c6gYTyE4j+J4mYwSYFHBpBinU1fJXfdEF+6fo5npv5HFY2EaYAToEwxPIaz818DqBrwdhuagwPsz16p2t97lz/ERBpQTjyICPZN234eSdrOA/SInsvbGjSvfxZ4Xf+oGSnHOZrucfdw2rX3Uo8SeQWkcJjIDjJqf4Pdu2+vHbtGh/72MeYm5tjeHiYd73rXXzrW99ieLi7teG9QKxHjwNks41FpB9gLKyT0zGedDhn9+U0aD2HRc70RmG1OcvQouC+K5JCXaAMGAWns3m+P1Fj6lhnXd9gbY+wehIz1ahgnEELRTGSSMA4x2LcYEhqQpEidYxNA5qLw+iwfkuh2kGzljs50jUWx8non6YcPoWNZ1mW7Uo5zKNDH96wIFtreHH6nzCiQRoXsQDOghBI04f2Kvxg+p85c+TRrskUd1pjeFjt0btR67N5/Ydr9yy0hlSkSHX7jH8naji3a5E9GNzPXDk6FFLEFTrRpLtLHNZrucfdx2rX3TvJhjvFX/3VX3XtsW9HLxDr0eOA2Wxj4Ykf5+LiF/f1NGgz7qaeL4edZXOWk+UMj76s8BJHM3CYAJSBwarkbRcDWhNlONPZQGylR1himUvqGGfwpUYb0Ck4AUhIsCwmEUeEQGCROiWNQ0wcooNW+8E6aNZyJ0c6tOV16VOvPcFA0MSXKbHVzDeyTLUqFPyZNVmQ1+YuEXGDJM202+AtN16lnZFM0hDUFK/NXeLkcPfuo53UGB5Ge/Stan08T1K0lnI95tzzVzjygQd3FNBuqP+IGrjKLMQtnLO0Min9aT99XgQTWz/OXms4t2ORPVt/nX/81rcoz5YOl/NfB5p0d4vDeC33uHtZdt19o9MLxHr0OARs3FiUGM6c3tfToB7dpR1gK+69Al7iqGVZCRKMgsXQkm+AeHEOc+oYSnbuvV7uEda8USFSKVqqdn84uzQFC4kHzpPUnMVoHxVHoCU4jbVLS0UXzFq2cqQbGcxwNXOTuqgzFBYQoq+dD5MwFLpNG/jWogqOBGfDTTfYzmqcalKLKlvOZ78dLQ+jPfpmtT6uVYfyLCKJyDrJXMNn5h++x8hb37ltqfKa+o/WVcJyA5U4jCdpeQ7feNx/xcdd/AKui3VOd5JIpomk3moQVRfJ+oOHyvnP+VlSW8TWQmQgUf7hcbU9jNdyjx6HnV4g1qPHIeVH5TToR4WxbJFTpkC+ltL0uRWEWUdsU4yzWE9ip6v89Xef5vEHznTMuGO5R1jtyzUKNUESCFINwraDMSOhkXVIIUgdxPl+MuUZSAwIgyRpy8e6ZNaymSNd5EWcu3CBPr39Br6RVTinUKKd5rPr5ihlinWKaH3T4CUOytHysNmjr6n1cY5MuYpamMWQ0vAVWkoaThPNz+3YHGI4c4azw/8bF374f1IRKa2cRFlHf5Tn/oVxhlQBqt2tc7q9Rbaj0qhjjaIQFlCpwgEOCHxJvZlw7uWbB+L8F09WqD9bJ609hkkcVkmkH1Es3cDP1g+Fq+1hu5Z79Djs9AKxHj169NgHpBC8re8YkXuNsjAoJ5cMWFIc7VYF2lN4LcFCpdpxF0V/og/xznHmnj7PQEMRxgIjoRmAwBFrsLSDMRnmcEpjZytouYBqXQXdXbOW9Y50F8q1TRskOweuKfHSgHpqaNysEHsCKtc5ef4pLg1nSPMVVCuLFYpUqaWAzCFVkygeIp8f2zD+QTlaLnOY7NGXa32y5YiJhRaZWhNpQ6yApnZcyxnqniMoFKA6t+OgaaheoP+lQcrFIZJA4VlNMcq2GzkLul7ndDuL7Cg2JK6MTCeQ6SitKKVci4mSFOcAHFeupbx0eY433TfU8bltxXL7ibgWU9U5IpsigaDlU53O4RVf5RiXDoWr7WG6lnv0OOz0ArEePXocCjppk31YOTo4xHQ4TUpE3SbE1uBwKCHxpca3AqsEmVzIVNp5F8Wx+8Z4MrlM/WaFEZkl8cBL4dGXFfmGo+pZAt/DNwLbUsihYbKP3YMqPrrvZi2b9dmzNYmZ9nBNyWDT8rZaHvH8JHPyGjouI8UoJ6Iml0+1MGEDGQf4qSL2QHgtrAmomAco+GtrVDY4Wi693oHSDIW5TWWQ3eCw2KMPlTIcU4rRKxUC54gxWCWQTpBLBPdUfMJig0HV3F3QFNURxlBKh8Bucj11uc5pa4vsiGo6i01DZO1xWpFldrFBYixOuPaBiROY1PH1565RKoT7kuFZbj8R12LmjME6ifA0No1oCgiNYr56DzcGGxx9/AmOHgJX28NyLffocdjpBWI9evTYF25Xe9Npm+zDih7Kkhsu4E9L6tmAqWYVJSR6KbgJI1goOqoFQcFulN7tFSkE75s4w19H53g5ra30YnrmdMy9VwSDDUU/Pg6DN5one3YMf6KvI2PvlPV99lxdYa4GOANDqeWxsiG0ECloJSkDzuIxyPGbeYwUXD06g8nUECJCOUUcDTNrTjPYf++Gpr+rHS23K4N8o3OmmdJwjpp0KCsQQmAE1IQkZxxnmgZK7C5oCnLtOqY0btuur2cf6pzWW2RX07l2hjXqozn5VuKoiIqruBScdAghkAgc7c+yStTiqe+/zi+8/8GuHxilsw3SuSZVZ7EOhILIWJz2UM7hDGSsx3fUo3y1Ns/PV2a6mr3t0aNH5+gFYj169Og6t6u9ybQyHbfJPgxsleHLvmWc6ldexau28IVAaIk27SAs9gSXTxgQ4EtN1UbU07gDc7ErbQjuDXL8/Mk38x9Tl1ZaJlQKCvO2AkfDexjSBUSo0UPZA81Irumz16zTd6MfkYLzUu6fcwQWokCjABNDRWUZkg104nP85kn6G2XKuSMY6chFCU9PPIArjWza9HfZ0XK9DHKZ7bwX+23y0U3S2QZePSHbnyFpRiStFOckQjh8YcioBB37xLUivn8TsdOgaWgcBsZg+vV276vVr9M+1jktW2S/OP8C/zb5PI1UEKgxpMsjE4lNHE62r0UB4EA4EBoSbZiarzGz0GRkoLuZH9dKSRNDZBxKCSKb4mjPywlBIhxBArlYc7Nu+Or1p8mp+wl1vmfy1KPHIacXiPXo0aOr3Lb25pVz3DN3lFozIcxKrLQIofA9hacli9WY516ePpDC+L1w2wzfRB+F954keuY1gqkWXgJWCRaKjssnDHP97ceIbYonFbmtbKq3ibt+6VZjbpOC0twzMMb//tj7uXHsoUMdOCz32fvypYtUWgKrUgZiR38KxtdoKXHWoLAkKFKh8DwDaR+WflSzDNbSHzV4OEm4P1NkIopwzq7ZnG4mg1zNnd6LgzL56BbLfeeCYsBIzie+WcbGMVIEiFTjjI9FUJudwJMZMhMRwQ6CJiEk8uwHsF/977A43ZY3ar+dCeuSIcxWOATfnqmzEA+syFLtaIJ91Qdku4GyBSVE27FDCPANWgrS2DJZKXc9EBOhxgmQrl1Nap1j9Z2qHRgBaeE6R/u+h7RzfOtGQKAC+vwJTvd/aE3bk9UHM73+kD16HCy9QKxHjx5d4061Nzfn61yZXURocA2LFJDNLlIKBRnRRzYzyNxik9nF5l1Tb7CtRrgTfYyOPcRT332ahUqVTC6kWrjV88o5RzWOOJ7v3yCj2wnu+qX2ZrfVWLvZnX4dvvZ5xrtoEd4p7usbxhsP+NcrrxJkJENNSyAaRHLpxRICgcM5gXViyeXRZzQYwPoSaov4acq7r12EyVewSsPAGPLsB1ae+3oZ5Pr+R7d7Lw7a5KMbrPSdSy3CU3i5EjZawEQeTsi23SYC6VqktkitWkJer+1IxirG70e+57/eOiRoVNpyxC4awmzGBlmqg5K12EyLpB5S1gIQ7b50CtDtjLWwEiscRpquz1EPZRH9GYJrMQ1pV7JhADhHmMLU8BTyxFNo3SRyAZ7sx5eChegK56Y/x9mRX2Y4c2bTg5n190OPHj32j14g1qNHj65xu9qbpkmIY4uztAOw/E0ypXPoYA4jLS18VGEEO/M4UXS8o/OyzjFVXyCZfp3CwjSlIIsYOY4YPrqnk+GtGuFuluFTUvL4A2f468vnmErrFGy7Xiu2KdU4Iqv9TWV0t8ayt+0z55xtb7haDSiN3JJ/+WFbDrbYXYvwTpIJNIHWBEIhfYsTAmnBKkBInFAIZ5FYcBKEQyqDn0RQngGpIFtsP++lQHS17foaGWSrvlI7d6f3otMmH8450tkGrpUeqDx0ue9cfL2KSw0utWDyOCz1/AypF+EZRTEtIIv92JaicW4Kb7ywo/mK8fuRY/fuOjvTCYOf1bLUwQW474qkUBdI40jihIoSvJSHRc8HKyBWEIPD4TIJRwa6369LCEH/E0epTdfIRAarIBUODwhTiKRj8p7nEbpFQgEALTVaeuTFKLX0JhcXvsjgvMB97QubHszstA3BXjks13qPHquZnJzkN3/zN3nyySdpNBrcf//9fPazn+Xxxx/v2pi9QKxHjx5dY8vaGwezrTqpcDjhCDJTFEa+hlAtbJLDJAqnDMK7jjf6rzTlOPDmjszplcoMP/jBUzz4w2cYqTiU00REKK+BHjuJfMdHdr0Z2awR7jJCCHIZvSbDtyy9W5a1VW2EJxXH8/289zaytpnm+RWTAesSpPA2SpBmr7dPvXPFtTU47cl03SK8kwyVMgyUMkzPNfDyHs1QkW2kRFKCEBip8U0LnTRJ6MP4MQsmZmh+sp1kHJqAYMkpcYtAdDfvxW5NPjbbhCbXqzSevU4632xnorRED2TIvmV83w1ThBB4x4q0XpkH40AJyqXrXDv5PI3CPFYapNDk01FOzL+NYnmCdK7Rri0b3llgIoTc1fXXKYOfZVlqcc7y6AUfL3E0A4fxwYqUgZbH2xYFzxYsc6FsyxNd27TDtx7UNexDCWtwtEj23fcw/Y3XCJoxIe24cMEXXBieh9w8TmQxzpFRHuGSxFYIQahKlONrLFz8B0qH4GAmnqxQ+94kZqq8cq2rsSL5H5s4MHOgHoePOx02dpqFhQXe+c538r73vY8nn3yS4eFhLl68SH9/f9fGhF4g1qNHjy6yVe1Ny6REJkWEkPgxuf7nEaqFiUuAQAiHMZLUhvhhmZn0K9zvHtnzh/ArlRmePvclPvDiKwTNB4lcCYcCYdDRIpmrFwi+9H8jf/JXdhWMrWmEuwlaSxqtlCi6JWe6r2+Yk4WhbRs9zDTPc276c8S2Rkb1o4SPcfEGCRJRvS092qrGrMsW4Z1ECMHZB0b46nevslhLuNYfcm9Ux48tLQFSSbJ+lmpdESF4yVdU4wcYCEd4s3+D8cyGB9w0EN3pe7Ebk494srIh4JIZjaknYB0y5yFzHi61JNN1ql95lcJ7T+7rBtU5R3K1jAw1zjoWM1e59MBTpF6EH2WRRmN9SzUzxfkj/8pp91P0TY3gWmlX5rPeCMXVFE9971pHDH7GskWOZAqc/H6MlzhqWW5JhENBJXUUEzjdMHzTlzgBTlnwLFmV4YXzM0yM5PclmzP+8CgMZ3n2mVeZn6sTCUclEASliD4vIcZHCclgmLv1JAAtfKJklqR+A3LDB3owE09WKP/TDzCVqB3ULmGqLco3Fin+7EO9YKzH9g4bO8wf/MEfcOzYMT772c+ufO/kyZNdGWs1h1uP0qNHj7ua5dqbStzCuVurrnEWay0GCyPX8DJz2DgHbnkHJMC1LbMLmQHK8TXK8dU9zcU6x39Mnuctl6bwmg9j3CCIBKiBcyRuhFr6NuIFiT33b+2C9h2y3Ag3TTf/3TS1KCkIArXm+1IIJnIlThdHmMiVbitHvLDwJLGtkddH0DJECImWIXk9SmzrXFz4Ynvuqy3CN51M9y3CO8n4SJ73PH6MkcEsM57khwMhFV+SkYKSEESRYz4MeXU8jx0rEhQKzOghnhIPcz0tbHxA7bcD1XWB6PbfC0eubDlW9smV7ZpN5TLrTT6Wm/ImN+skGlo5QaIdyVQNs9BEhArpK4QUSF+hSgG2ldI4N7Xm/uk26WyDdL6JKoXo0SyTp79P6keEzRLKBQipUIlHGPWTyCav938HtIBAMVlf5EJ5msn6IrYDc36lMsP/df5pPnv+m/y/F7/DZ1/+Jv/jmR9SbUaUCj6+p5BC4HuKUsGnFRmee3l626+XFIL3h/cw2FBUPIPFgWt/XlgDEkFLQ9E68jLBZlL8PIwV+yjlwpUM925xzjGz0ODajSozCw2stWu+Xv88xkcL/OzPPsIj7z+OeQBax6pUBlpYIckoGMv2kdXBmt9JXYx0Ai/m9gczm9wPncQ5R/XfXsaU4yXjE7tkQ9m+f0w5pvpvL+/rtb5xjhY3cw137Xz7712sAz32xvJh40L0Kr7MkdMj+DK3ctg40zzflXH//u//nscff5yPfvSjjIyMcPbsWf78z/+8K2OtppcR69GjR9fYqvbGWIvFoYWkr2gROsWZHFhubWilo9jnk/V96mmN2OxtgzDVKGOmrzFYGcM5H0QVCHD00/4oFFgyVJK303ftBcJdnAyvkdBpucH0od5MGR3MMlRan6LZHuX4KpV4kozq31QKtyxBKsdXKQ4dOxQW4Z1kfCTP2HBupS7I9yWlxPLNZ64xXYvRgyFCShQgVQuvNkvZ5Xk+PsKYqq5NBOwhEF3OavlzTd7TzNIipVGQXL7Hrrherjf5WG7K26pHzAYxUZxinSMwgiGjkUDDXMNmBL7NkI+G2+6COW/Xsr/dsuyaKLIeNXmVRmYGP8qx9oprNzf20wI1f5q54Tn+v7nnuHGt2jHnyE2NUOqOqG6JVYOc8doZMhzEEdiUrJY7Nvg5qgvM6gypHxPZlNRZpBAEQoNUeEoSxIbxTJa+gk+gPATtYG19hnsnrJdXWmsxFpQUSClQUtBfCjh9KqFUdGvkWWePTfDmo+NMNcrUkhZXKzdopdfIqLWBlnOOlllkwBunGLWAg+vdFk9XSWYa7S+Ea9d3Au3mAO0AOJlpEE9XCUb3PyvWMzI5eNYfNi6vc1qEa+odh8JTHZcpXr58mT/5kz/hE5/4BL/1W7/FM888w6/+6q/i+z6/8iu/0tGxVtMLxHr06NFVNqu90VLS54fgwJcSpEJmE5zx2ouxM4S+pi8TkNgIKTx8tbcNQj2N6a9YhCkgaOAIsK6PtjDA0I4AJY6QWu0h5LVFgh0GYmskdNV4jWyq3kwJA8VjD4zsWsYUmzrWJSix+am2Fj6RWyQ29UNlEd5JhBBrNtgzCw1et5agFCDk0nNxjqxRKBvimybzZJizWYZUY+XnuwlErXNMvTKF+8Z1VGzx8yGZMEutWqWv7Hj4h4IXHnRMFZMNJh/JTJ36TJVp0SQyBi0VWkh06iiXrnP9nudp5RfAd0g0+WiI4/Nvo2SPYetJ12R/myFCjXAJTM+Q9L2OdRF+6rdft2ULdwDnkLHAZAzfKk1xtd7fMefIrYxQPKdIkSQkzLVq7exPeRaSCJxDC0FD9tG6rqD/gW0/X9/3OOqHxMqROosWEmEFM1ETYRxIiRf4hMpb+b2tMtzbYb27amos84sxqW33ChsqhsjsNRaCb/K9mVmyNYHvrbWjX87eAgwE/5lz05+jlt4kVCW08EldTMss4sscp4Y/ghj42oEezJhXJsEKnLAYFG6p1q7tAunQGISV7f+3z4HY7Rxm99vI5EeZnRw2loITHR3bWsvjjz/Opz/9aQDOnj3Liy++yJ/+6Z/2ArEePXrc3WxWe9NMY/7m1ee42YoIskV8MUciCxjnUEIyFOZwjvZpbnCSon9sT3PIaR8pQpxQOGdWBWGrN7iWdjDm0XglwX/M7ThoWpbQLZ90N1opSgpGB7M8tkMjgfX4KocUHsbFaLHxVDt18Zqg9bBYhHeT9XV5+VrMkZkGmZZBmBBrNBUNsQ2gr7brQPSVygz/MXmeB55JGKxJqhlHkMQMBjmG+/qYa9Xxa4Zjly2vPpxyPN/Pe8ZO0WdyXJ2qEF0rYxsRceDwpV4p4WkUbzBz/OskXosgyqFdgNWWSrhUf3XtP1HU44hw/5ZrFV9HtSZJ4xw6DZFWYXWCSsChl5wp21bvNnA0PcH1EIb8vTtHLrOlEYoCBGgkotXAtmaRzoLyQEhSK1Amwn/uX3D9elvX+LJLZDJdJygFhKL9WjsHnhbohqGR92iueg/2kuFe764KsFCJ2gYgnsQYR91dJj/473iySRrliQjIB2pjLegSw5kznB355ZW6msgtIoXHQHCSU/0fbFvXn/UO9GDGpdFSHzS9pi7GAQZB4jQeDpdGXZvDpvN6AznM3u3s5LCx04yNjfGmN71pzfcefPBB/uZv/qbjY62mF4j1eEPQCRvjHt1l9entMsuZsvnWAwx430GLCr7KMxDk8aSjlt5sn+b2f3DPC+BYtogZHiG5WCGwIeDRzoStpi2RkT6Ymtu1HGy9hK5T12TRP0afP8FCdIW8GN0gfdwsaN2rRfhhZ3Vd3kBkOHGtijKOREus1pAK+mKDtzBEktzECxs7DkSXJXLhYsJAo0AcgJTQTBOmTIWxbB/H8v20dESukdCv70XoPC8/V2Z67gaNVkqulfJEAoHRGA9E4HDaMjPxAonfIqwX2xItLdFOo5IBmt48r5W+w1nxv6KH9qePnnMW99y/k/Er1OwjZMtj5Or9VAqzZIyPsO26HjVQQISKOtNUm30EemxHzpF3YisjFJGxiNCiatAfVdvRkp8B0f5nQwQMezUG4+1vnoUQZN8yTvUrr2IWI2TOW+mjVnSCipZcynokqe1Ihnu9u2qcGJLUtCWJQoB06IFncKKJSAdREpLEYY1PXm8tzxrODB562wAAIABJREFUnGEoPLWl09yBH8xoH4dAsrakUtJWKjrajan1Hg6rdsUbyGH2bmenh42d5J3vfCfnz6+tP7tw4QInTnQ287aeXiDW466nUzbGPfafW5myh7jZeID55lMkdhrryiR27WnuXpFC8PgDp5l98RxHFjIIt1SXsAaFlAbRX8RGbk9ysPUSuk4ghOR0/4duL0HaJGjdiUX4fhxqrHfBu50z4Z1YqcubrfPgXAtlHJHfztg4IBUSkdco59Esvgf/vUcQwxPbDkRXS+SOywLaClratQ0ipCK2hrmojrSKSj1FNw0XX5jnmpi79SBCUPUFZSUYSB01Ac5K4sFZ4uw8Os4hac/XOodc0mt5rSyN3BzpiZ1nZnfN0qbUK2XJm0mai8Mcfe1hLp75Fs1MlSD28UmwoUdLtpAuw3x8hqy/+XZiM+fI7bCV4+qRxWkmKje5FN9PbDMUTUyYJETaZ8YLCGTKm4ObCG9nm2d/oo/Ce0+uOFraeoLQksxEH+6eEv58ndpik3ozxQlLtk/z4P0ljuzioGZ9FtdY124YvXRJquwsKpyFtJ1hFMJhHFjr7ijPEkLeVrJ1UAczzjmq182S5mDdz7jl8bjgCfzhI4x0dTbreAM5zN7t7OawsVP82q/9Gu94xzv49Kc/zS/8wi/wne98hz/7sz/jz/7szzo+1mp6gViPu5r1Ovu92Bj3OBiWM2UTuR/Hubd1tW/IfcURXn33gzS+9ArZhlw6m7UIBI62W50aKIDOIIzZNznYToKf7UiQdst+HGq8UplZqRfshKnDcl3ed7/+Kn4jIfIkTgiccxjjkFJQLIRIAaZpMGIAbwfX1GqJXJKAUaAMmLa/C1pKosgwW2ugTPs1a9HeWFvX/tv3BEIpLuQlb6lY8sbRco6GjXEYVKpIVTsbEDpwqQEh0F6Iyae4oR2/LLtn1abU8+vosE42DslM38urI69Sy9RouARlQgYy91MK38kLizMbAqZl1jtHbpdlx9WrtQWGwhxCCEYXpnnH+e8RJDFFKyA+hWfzSCewwnHSSyj2TzOmq2B3vnn2J/rwxgsberyVhGDMOZ67dp1vT73GXFoj9mIuzSmeae782l2dxfW99r/FUkZPCBCyCdIgU43GYmh/X8pl44K9ybN227ttL6SzDdxiRN0T5BK3EowtH4ct/5nsCygl++yauNph9oCMTHq02e1hYyd461vfyt/+7d/yyU9+kt/7vd/j5MmT/OEf/iG/+Iu/2PGxVtMLxHrctazX2S9vXH1P4WnJYjXmuZenGRvOdfU02Tn7hpV97Td3Os3tBCdPH6eV6WPhH1/GNRTCOZwUSF+i+nOIUGEWI7zR/L7IwXYT/NxJgrQbJm9W+Nr3nyUydTK5HNodwaR09FBjUxc8mzLduMw/XLnEBybezMMDj+74eYyP5Hn8/mGiyTo1B860g+vAV/TlA8JA4azblenFaolcpQDVnKNUgdpSrZJAIBKBtZa8E1RDzbwEJQQmcQjAGIcnJfOB5nuFlAcajj5jKTQDZq0iDgwVz6FCTcHPg3EIJUh1grJBV2Q4W7JuUyoE6KDFmPU4cuMUZblAYusET3yU0pHHcQiOTD+9JmBaZr1z5E7Y4Ljq+Tz8+nn8JGJejtPfOI62KVaUscIhLajYQ8z3k6gGnprb1eZZCLGpHPlydZZ/nfsBDRnRl89QkLldG5Ksd1dt/1HEiQEBfQ2PIJH4aQud+m1LfS3RxoKnuirP6haulSIcxJ4GZQnjFG3BLYViqQArJXHG35X5yZ4YGn/DOczezXTzsPFOfPjDH+bDH/5w1x5/M3qBWI+7lvU6+9UIIchl9IqN8VAp0xW5Vc/u9u4kPFZi4OcepPrlV7Atg8xqRMYDY9s1IqEme3ZjzUun2UtGt1NBq3OOG1PP8Z3Jf4DBaUJtcWhMMoyqv52SPt6RQ40NLngIrL1GUb2I5y3iXMLzM9+mEp3eVdPO4bEC5UJARoFVCinbhzIrBn9LzZN3muVcL5F75R7Loy8p8g1HK4DYObxEkgeMJ7k2EOCitF33Im49dxx4SjEXOL6hHSUt8NMRnOzHhjexFBkJc0i9bBThaKWz25LhdFLquXpT6nTAnMsROU0gUgZFndJCAqOnkEceRwiJgE1bVMQ23eAcuVNWO66a6asUqgtUvJBs416UCFGyjHYWECDB2RbGlKjOD5APL+IfOdmRzfNWDo67NSTZzF21kPOYXzQU6gmPVItcHxmgXpzGGQ+FwLOQzjVRA9DS3ZNnbcX6rP1gMWSu3Nr2mipCjfYUgTG0kJhcgDK2fRAmBA6BSC25UmbX7T12yxvVYfZuphuHjYeVXiDW465lvc5+PVpLGq2UyZs1vvP9Gx2XW/Xsbu9ugqNFxE/ef6smpBIhtMQbzZM9O4Y/0V375MOQ0Y0nK0z+8Fv8sPRPIJvkm1kcPlHoMP51rP5nvPLPkE3HmWtc4eL0IiOlwV0tiKslfk2T0EyuMBY+iyCmmYY4cmhrmGm+Qj3Z6Ap3J/RQFj2YwU3X8UvehsyMrSe7ynKul8jN9QteeNBw3xVJoQZe0nYPbOQ9poez1AKFiNNb1YdLBTAO0ELipCZxhnnPgBaI9EGOyCo5HeNJh3N2RzKczks925vSa//xLzxfGWdeljBCoZxhwC7yZl9zdN2mdLMWFZ5UHM/389499BFbfuyThSFm1bMULj5HEh4jqvUhPYNwPsQtcG5J2mYxro5oeczoLM8NDPNQdW5P48NtHBzZvSHJendVYx3ZUPFgOSaDoDh5lmb2q6TZMp4tIJxHals0mwuExYGuybM2Y2O/M7e0loKUcltr6vL9WbieEgtDahxOtXstOmsJIkstq3ng7PiBGG0duJFJjw3sh0LmMNALxHrctazX2a8nTS3WOl64MIMxrqM1ZHe73W3PZbLNVjUh+/Fa7CSj22nTD2gHYZWvXOaVY0/RUk10vYhDoIBMQ1A3RWxYJs59CbJZpJrmh/OWV6o+fdmTO85aLUv8tJXcbJQ5mXsZLWIimwcE1jliJMb2Edv6jpt23s75ztaTXWc5N2tKPlPSTD4S4S0kFFshmXIJ0ZfB9zW+c3gSosS2m/5Cu1etddilgpis76GUT6Hk8a43fRhfvpWLi1/csQxnc6nnneVyd7r/p/QRvp57B61ajYyp4ywkQnNDDTMXHOfEjCafXuPIQI7xXAkpxKYtKvaUmVv3HgyXRrF+CEYROQHCgtTgh7gkwtm2A6pwKUbmeHHiYb7n+by0yz5mq9nKwXGZ3RqSbGhQXo8RT72GKQiy8hT90yHXR75LPZglEW1DmEJ1hAeG/ktX5VmrWZ+1N8YyW25hjENLwUApRCt5xzV1+f40lVcZrMVUnSUyDuksgXEQKEbecYLx0cK+PK/NeKM7zPY4nLyhArHf/d3f5VOf+tSa7505c4aXX355y9/5whe+wG//9m9z5coVTp06xR/8wR/wMz/zM92eao8OsF5nv/4EvN5MMNZBaunvCzqbcbiL7W57LpNr2aompNtsN6MbRest9veOc47Gs9eZZ5JybhYZ3wo+DaAsBJGloiQ6fB2TZLFRAdVs4alFFhrnOFe/ytmj/8e2N4Q57aOlZKZVI5CL5HSVxGZY9ktbNiuopRHFoLirpp1bOd/tNcu5Vcan/0iRd42d4vzzNabnGmjTQlTm6Esss66AFUuFZAji1CJSkEqglCSf8fiJR44xns8D/QxnTu9IhrNbudyd7v+VTK3zCPoHKVdzxKnFOTAOXN0y+/w01je40NA3IfnJM6e4r2940xYVHWNJMimvzy95nculYEzRUh7KOYz2qIQlcJrZwYCh0O26j9lqtnJwXGa3hiSw1l01vlqmbBx+3kdIQSa5h+HJ49SCGRLVRCchmekipeMnd/U8dsqGfmdCsFCJwN3qd1atJ4wMZCgV/DuuqavvT2+uSZoYnAAxkKH/bUcJju6sjrAbHISRSY8fbd5QgRjAQw89xJe//OWVr7Xe+ik+/fTTfOxjH+Mzn/kMH/7wh/nLv/xLPvKRj/Dss8/y8MMP78d0e+yBzXT2q3u8KCVxzpDPep3POByQ3e1ea0H2UpPU0TqUHtvK6CopulK4ns42SOaaLORrOJki3drr3wrQ1qF0HbC4OAs2oCo0HoJcvUHd3uTi9S8wdO9vbevEeCxbpOhnuNGokPNThLBYbj03B0ghSVJLveVAxkRpDYKdPbduZTlvl/HJPpDlq09fpDxXJutinPCQ2Vl8HWPTkLQ5BKi2XNFBf1/AOx6bWHOv7VSGsxu53Hbuf8+TzC820aq96Tamra1MrcMtCy6dQDmBa3lUXjX8Tfx9/pdHHtmzBPB2LEsmVfm/oxuLpEkJ6RmcMyiTYJViMduHl2gWilAp7K2PGdwyYjrSqvNgmvKCSRnK5Dcc+u3WkGTDcwz1ShZX+O17QyApRKMA2Njg9P65uc4s1JlvXCHbH+NEjrg5uK7fGSSpIVn6DLvdmupcuy8j1pF9YinQicy+qhC2i3P2R6I2qcfh4A0XiGmtOXLkyLb+7x/90R/xwQ9+kN/4jd8A4Pd///f50pe+xB//8R/zp3/6p92cZo8OsV5n32ilKCkYHcwyPpznufPT3ck4HIDd7V5rQfZSk7SbsZcX3v2W/O0Xew1M75zRTRkdzHalcN21UtI0IU41wmqcMm0rf9MuZrI4XNBA6BYOCU7hYbAIKi7DiGcIoxZl+QqL0ev0h/fccUwpBI8MTHBhcZrIaqyTSAxmKUBRRuIbH4ygEtdR2vLt5xd5/P7ajjO13cpybpXxGRvO8i5+wPMux1xfEzv6QwqZeaRIwUpEs4iZeQztvZlGlJIJNWPDuT1JhHcql9vu/f/I6SFSY2m2UuLE4NYUu93q94SRiKxFx4p4xuM/rp3n2FCmq5trMX4/6r3/lcw3nqY2GWNjDdLQUh7NsA8v8Yg9weUTZmmijowsk4pFZpuvMp5987Y31OuNmD4EnPE8vnnkHsrD4x0zJIFVnyVeRL6o8eZihLfxM2G3dY67YabxEs/OfwE5PomVjtgFuGgY1XoMouPAUhbbtvugwdZrajxZWclSL5vm6IEM2beMH4ga4XbMNM+vuPVZlyCFR58/sSsDoR91rLUHPYWu04nn+IYLxC5evMj4+DhhGPL2t7+dz3zmMxw/fnzT//vNb36TT3ziE2u+99M//dP83d/93W3HiKKIKIpWvq5UKnufeI9ds15nv7yhmV1s8v2LM93JOOyz3e1ua0FWs9uapN2MfbuFt9smGPtBJwwS7pTRDQPFYw+MdCV4FaHGSkFY7SdoDhDlphG2iJBgRESSqWC9FkiDcAIvs4CICggTkDhF7DSe8GjZFvH8azB+z7bGPV0coT/I0jSKpimQVYsYm0NbjZf4bcWZsGi/DtEEczf7+OriXdAPcPY649VL2FLEM0enaSkJSQZpfZAp5Gbxgq/BYo4+fZr5xRYvXZ7j1cnKriXCWaXJqTLCzaNEDsMAq8KkDXK57d7/zSglTS2teKnmakkyuqGzk1tyIPEcYxXNfd+OmONltBVdvd/F+P0EP38v4oeXaby4QFRJacYxzgkWinD5hGGuHzRThPL7CObJq5TXKj+kFn91WxvqzYyYgjTmvuo8g6+9xBel5EqhvyOGJOs/Syb6PN41m6M4bwgLYUfqHHfKxcUv8cLMfyOxTYQGkDgXQ9gkd2ye5uQHcM1jK33P1FJ/s83W1HiyQvUrr2JbKTLnIXMeLrUk03WqX3mVwntPHpo1YaZ5nnPTnyO2NTKqHyV8jItZiK5wbnrnBkI/qvi+j5SS69evMzw8jO/7b6hDWGgfjMRxzMzMDFJKfH/nsuRl3lCB2BNPPMFf/MVfcObMGaampvjUpz7Fu9/9bl588UUKhY0FoDdu3GB0dHTN90ZHR7lx48Ztx/nMZz6zoRatx8GyWme/TDczDvtpd7sX6+TVWamoFmGMRWuv/TMgMgmptWgp8bTGrDvN3M3Yd9PCuxs6ERQvc7uM7mNdrNnTQ1nEQEh+skHrxiPM3vMN0qAMRpMGFZy0KzI6YRWoGJdZQDT7cWkGi8BoUEbg76At11i2yInCAK9X57GcRYlvkddNbLPQloGpBM9rIlwer/l2wkKwb/0A90RUx5mE88PTOBXjohEUSyel1oNIQ1Al7vs2ueppoprhO9+/gXPsykRopnme1ypPMp65QGpjlPAw9NOyj5Aytqlcbrs1iaGnSJcyHELcargLq8O8JRwMxY6zCwYtBWm/IAiDrt/vQkiCh+7Hf5Mjmanz9MXnuJpUkIMZhBRopsiqbyBcRGQDQpUnp3Pb2lDfzojJHxhjZHGaj1bLXD/7k+S8cE8S7c0+S6q+4SuuymOTGU40BL6T++rmOt14iRdm/hupbaJFQEL7NREyBpciPYc/9F2ar09g7K2M6mZr6nItqm2lqNKtOm3hK4QnMYsRjXNTeOOFA7+3nbNcWHiS2NbI6yMr89EiJC9GqaU3d2wg9KOKlJKTJ08yNTXF9evXD3o6XSWbzXL8+HGk3P018YYKxD70oQ+t/PvRRx/liSee4MSJE3z+85/n4x//eMfG+eQnP7kmk1apVDh2bP/6efTYHt3OOOyX3e1OakHGssVbcrmZlOxLFcxSVkoDb05SblqYy0vmWjUik7Z7HAGeU2RliO+rXY09kSvdVQvvbuh0PyHYOqMrhOiau6UQgsHHj7M4W2bo5hieeRczE8/TKL2Gk205nXM+wqVtQwQrQRpcUIU0Q+wEkUwYqocUw+0bB6x2IJyP+xHix8nzEkouIoI6OI1KJvAa70DFJ0BALlREN2vMvDRN/3D+cEpcgxxz2Zhm2MJLfFos9UValvM5AXGICOZpViaJ4gEABkvhjk2EVp/al/wS060WqY3x5TRZ+Q0W0yeYi/o3yOW2W5PYSgzLsZpbst5fZt2XgOP0osW3UM5CydcIKfbtfhdC4I/keXN4houXz9GI6hR8n0Hv++BatGweJRSDYQEtA/IivPOGehtGTJnyLKeSFFHavTHJ7T5LzKjiX/pqPOQ0//nIw6iMty/XvXOWH8z9D1LbRIkAKTWediQJOOsjZIxSKS4zi9U3EXaUQs5r13Vusqamsw3S+WbbwXST9UPmPNK5Buls48AliuX4KpV4kozq33SuoSrtykDoRxXf9zl+/DhpmmJM5wynnHPMl5vMLUYgHEPFDP3F8EDWBKUUWm9UGOyUN1Qgtp5SqcTp06e5dOnSpj8/cuQIN2/eXPO9mzdv3rHGLAgCgmCHFeQ9DoRuZxz2w+52u7UgF8rTPHn1B9xoVBhYgHdeypA1mkxfhmwuQCaW0mxCMFnlxpCjGTikEBjnsNZiU0E1WOT/ufZN/if9KPf1Dd8aW4S00hTjLEpIQqVBbKxDuZsW3t3QjX5Cy7+7PqPbbXfL4GiRzE8cZ+pblynMjxK0fozLj8zgrKYlwPoNtLQIaQCDcwInI6xuUNUxJH0w/wRTrsTEDsZd60CoWKz+BH0LCX4mougNkHET7Xo1IF+LGZ1uEDQSzHxEOdQbJG+HwkRmaJx6sQ/ENTxr0aSkaBTLGxCHdR5ONGglNWCAwhb3yO0NDyzn5/+ZZrpAqEoo5XEk4zMXNYiMhxYVQvEix/M/x3vHz6zJzG5XIZAJNForQt8RraoRW50Za3/DUUygL3Y0PEfgqzWOgvt5v6++puabV0DPkrgMGeUzGObI6mBlTnfcUO+TEdMdP0uCgAtplblBmMjtz2dlOb5KLbmBEBIh2sG6lALPU0vtYDSIBKljMtkUITVxYjHGbbqmulaKSy3/P3tvFmTZdZ3pfXvvM91zp5yzMrMGFApVmAhiIEUKEEGQYkutoSVZ0aZkhpvqsF/6UXrQk0IRerPCD3qx/WI5whEtO9pUtGyzrW5KNpsiKJAgRYAsDCRAoApDjVmV853OPdPe2w/nZlYONzNvDlWVAPMPABGozLrn3DOutdda3y/Lbt/tCUdiOhk23kNZ/S4p1R2MzVCi/3l3hEdiV0j14QK4Ps4SQuC6Lq7b//zvVTfn2rz82g1uL0Tkuug4cJRkcizcAj/6KOljnYi1223ee+89vvrVr/b9+bPPPsu3vvUt/uiP/mjtz775zW/y7LPP3qtdPNY90E4Vh71oO5LS3cbdDoJONtby0uxltNXU3BKfmvUIclgMMlSmmXIlZd/DHy2RzrW4sAQLk4IEDQZc7WKUoVlvsNRO+ffv/Zgvn3uGsuNhrOFKZ4ncGKy1CCHWKkBSiA1zKPt58d4LQtVhbeNu+Qlt1h26XU7oGBxHk1vF3GLnQP53m3X2wmnMZMCr77xLo9vEdwypFpS8JkoYrHEKhKLUICxCaRyvjWxOwu0nWDKP848/usELn5Z72p/1BMLZxTZvLC9Rth6+vVOpqbRTzlxvIXNLoiSiVswZrG95u1ZNDtXMeL8SQsK5z0DjbSQ5ZduhKWpoq9aSsdyxYByUDRGewu1TlYKdIUIfNl/iVvQ6xmpS3QIEjgw4URrHUCXVJSwxn5s+xUiw8fsP2iHguhJHSaplD9tO0b1h9FwDd7iJCMfgxSAt5L5lKqhsLSDdw0B79Zp6e9nl3aXvU3LGKDkem2t4uwbUPRCTTRMWbZnEKHypGfU1QopDAzHdq2fJXpTqTtGGiMJieq6CRTLmeRJjBLnNCVyPX//iE+h4Ysd3aj8K5Hqtzg/fKwrkTvJUGSlctE1xxNZzktsUKVw89dFbQPw46OZcm29+/0NWWgmC4jmJtWhjuNH72a88+8BHMhm7/1f/IeqP//iP+a3f+i3OnDnDzZs3+bM/+zOUUnzlK18B4A/+4A+YmZnhz//8zwH4wz/8Q1544QX+4i/+gt/8zd/ka1/7Gq+++ip/+Zd/eT+/xrHugvpVHPai+0lSmgrrnAhrXGsvMxaUt6xkN5OY3GqEhfGgQr0lqHUEcWDxlCLRObe7TaZEnUTktIOcocSh2oXccQoEcZDSGW5jggwMNLOYF2++y/MnHqKTp8Q6x5cKqRTWWuI842Z7hZLr8VBtfG0OZa8v3ntxXA9zG/v1E9pLIrhGt+t0qadLiDwBa/GEwHV8GvnIoc5MnatP4J0O+PprS/g1j5LbRqwmYYiCmqhdhMgRUiPjCu61X0HWxvH9cN8zXKsEwumwzu0PU+YWI7zVSo21nJiPUNrSVkVbnec5xcxSr+Xt9g8/4G8euE2kDz6rdxg68+A/49Wf/H/k6haVKGbIGtqiQiZctBBIt4FOJ/nshSe5+PZgEKH11b5cX+WDxtfRJkEJHyGKYDk3EY30BnXvJFW3QiePyE3/JGOQDgFr7VrlbKTu0+xkBbIc0GvJmEVj6ZY0RDBVKlN2t1YS7nWgXVxTk1xtlnDl1kZKGCCgHpvmpjfD660aS3IIjURhGIlaPBncZjo9HBDT3fQm2688VcaRJXKboE1BTL1zTwtAI4RlqDTDcHAaUdp5McsZC3FGSmRznT1RIO8HcbfunaLmzbCcfEhFTG7Z11ivMOKfpe4dj6Hca1lr+fHbt2m2U6QQOEr0zo9AKsgyTauTcvFnt4/2LPE2+lglYtevX+crX/kKi4uLjI+P87nPfY4f/OAHjI8XL+OrV69uGKh77rnn+Hf/7t/xp3/6p/zJn/wJ58+f5+tf//qxh9ixNuh+k5TWz9UsxB2qnr8BnexKhTWWeq/FxctBaUhdS9qbAcsyzXvNBcBiJXjS0qq1WKoKpGPJvQwESCvQWEqOw81Og7+//ha+dDDWoq0Fa5AIlBQkWqN0zuenzq+1gu3lxTvIcR0NLhyo7eywz91uSXE/P6G9JoILK12W5lcIo3mETUG5ICRYg8i6hPk8i/Psz/+uj27OtfmHV64Qt8cpj1ZwgiWsdlkLYiVgAGkRJoBAwLSPyItA9kB+fPSv1NQyQ9DN6QqQSlKr+GvVFiEEMnSJ5poEwxnh2OHM6h1USiouTH+Z1+b+NyInwjEuRlhyMoToYAh46oHf5PGxca7MtndtEWzINv/hnYu9al/OTPBdQqeJIxRCFIFIUbmQGJvQzuaouFO7rtrv1iGw/nysou6TVNPsZBitQQhKvkOlFvLEI8NM/qRFPtfBlux9xa2v6qAB9c233+Wl+AyJlIQmwhGaHId5UeeluMTzTsrJHojpIG2x+3mW3G3VvVPU/ZNk3Q5GZBibIHARFJ6c2iY4ssTjI787UEeBEILwmWlaL36AXkmKlvVdKJD3i7grhOTC8K9zce6vaOe3CdQQjvDIbUqsV/BkmfPDv3YM6rgPWljpMr8UAQWhc/31IijaE7UpYEeH9V68l/pYJWJf+9rXdvz5iy++uOXPvvzlL/PlL3/5Lu3RsT7qOiokpY1zNU1aJllDJ5+rjfPtm+/iymJ1PXUglwaT5RhVtBXZ1f9acI1AS0ujlNDycgLloHr7brAIAb5yWUm6JN3CwDQ3hsWkgHtoW/xOyXEJlUe4bsV20Bcv2F2P68W5r3O1+0vcilp7bjuz1jK/3OGNlb+la1rU/RNr5+cg5263pHgzIGHXRHD8X+GqcEOlLE4y8qhDaNPCGmHt4EqQPk6WEHU7xEk20D7vdpwu/myOONUYV5N2HsSvXEPIYiasQJTb3v8rrB5GqBRkvPYZB/Lj62lzpSbpZGAsTsmhVg0INllMpMJgcs0IAY1DnNU7qJ4a+0UA3lj4WxKzAEQIFEqe4Imxf7H2891aBMdPufyfH7y2RtMblh181SDWJXyZI0hxZQBrCZlLbmKifIHx0oVdV+136xBYfz5uz7eRzYRhY8FViJEAx1F0ujlvv91k4uwIfjMZONDeTQdtIz5IQG2M5uLrV0isR10VyBWsxbMZrs1oyBqvqwvMnDjL+we0sNjrs+ReaPXYdbJ5yEHbDG1SDCnWWhxZ4pPjX2E8fHTgz/RmalS/cHYtuTKdbFsK5P0m7o6XHubpiT9YWzhL7ApSuIwX6X8HAAAgAElEQVT4Zzk//GvH6Pr7pCTR5PoOyXWzhBRYDbm2B3oP3S99rBKxYx3rsHWUSErr52rWr8DORg2+e+u9tRaXZgVuBxnjbUUmLUYUDzDZq3BUMslsOWOhlGGB1GhKssAPa2MJHAdBEShYLK4shvBDZ7iXiBXADlcqlpJoywzDIC/eleTKjscVGzIbfcBcd4qSM72ntrMbt5v86L03aaQfIIcvga6SOjG1ikfgOWvb2O+52ykpXu8ntFsS30iv8vLs/4Ary1jytUrZRPQkyhhyGeBtdW8ilwFKpwSdJeBgq+XrvaWasSCJZihnVYRMCkiHKNq7rPbIszq+dIvKnLlj+XAgP7512lCpudXGefkaTqm4Fk03AykRXlFBynNNLi3G7x+g38v5ms1kyydHP8sTI7/Ae823aWUNqm6dc7VHUfLO8dmpRfCTD4/z98tvbKDpKVKkMLjSJzUGJZoIm6B61QqsxdgMR3qHtmo/PVFhNMl5951FvE6GI8AqTZwabo2HuFWvaEtd6vClFx6ge3F210B7Nx1WG/F+A+rFD66ylDqEMkcoBU4JjC5sHASE1rCkA3761k/4Rn77wBYWuz1LzlbHuNFZuacgmvXHrpFcJxddhJBU3SkeG/1dJvaQhK3Km6nhTld3bDc8KsTd8dLDjAXn7/rc8rEGl+8rHFWc81XvuvWyplgcdtTB30P3Q8eJ2LGOtYOOGklpda5mvTa3uCRG88qJNl/6sMZQomg5RdDqWUk5FXRdwysnWtheoqWtITcGYy1KCEb9Mu0sZbJUZSXtriV4QggC5w6EI9bZtjMMu714dz6uluU0xdqMYV+he4+pQdrO3r55kddu/i0mnMOpxaDaYFKSxLC0UlDjVpOxg5y77ZLi9fuzUxKfmc7aMQj8Or4aWauUdexV6uVHWOo+gmvjDS8dayESPuNmkVEv4aBa9Zaqeh5+5tDtDpPFJ3CC29g0BGGxRmKMi7QCUWoisxlEPtHbn4P58W3WaqXGDpVYfuM26a02q5XcYj5MIes+TlfTKFsWQo3f5zV2GPM1g7Sd7US2vDCxc4v7di2CN6MGt25spOlZfCimtBCiRGwEdZViSMDmWCxK+jw28l/se9V+cyWqNF9n+R/epxRlZJ4klQJpIIxyzlxvceVklazXltosu4z9i4cPNNdz2G3E+wmo4yhCW4Ej1y2ArEugHQOREbx9+xpR3R6KhcV2z5IPWgv8r++8fF9ANAdNRraz3diJnLkdcddaIE2QKie/vUI238ab2OoLe5gSQh4j6o+QxoZKjI+EtKMGupd03Xk2Qq4NUgomDuk9dK91nIgd61g76KNAUtrc4uIIyVwl4dtnmzx1I2S06+DmAi3hdiXn4nSX2VDjS4dEF1Wx3GhCx6PqBUR5Ruh4/Pqpx3lx9tK+Zxh2evHudFxjnZPqBEe6YDf+bKe2s/noZ7y5+L9jvA7K1kD7WBWBTFDBPDoep9lWBCMKEAc+d/2S4vW6k2y6xDpbqyT6yqGdzWGsRggHIRRCyHUtk9cpT71G570HaRAQkuJgyJFE1sO3GU/Kq4jgF/a13+u16i2lc8NoUGE2atBYeILhqQbSiTBZiNEOwk9wRUKelxCLnyJPNdbkJJmhFDgH8uPrp+xmCx0V7YlgQUksYBONud3BGS5x+yGXZtZhTB3+fM17A7Sd3SFb6n2ZMkP/FsF+ND3NCNoOo5jHihqZ8QicCXylMSYn1iuMlS7wQO35fX3ffpWo0nyVSe+TZM4kjirq6UZBIiV+ajgxH9E8UyMyRTvQboF2P60G7HGccSn5j0X12D28FvC9BtRBGKKEJbeifzXaCpQwLNqUmlfrj50fsC3WWrNmeyL8MtPrbE8O0zR+v9pvMrJf241+xF0bR9BYgCwGY7EmRL/4deznnj00n86Pku4FYfgoSgjBM49OsrjSZaWVkOUWpVapiQXJtVr2ePqRyUN9D90rHSdixzrWDhp08LvmzrAcf8By/CEIy7D/IEP+6Xv2kFzf4nK1vYzBcrWSMPtITr0tqBiH1IWFMMdgUVZyMhyilccsJxEVN8AVAl8sc7Li8Onxk5yrjSGEuCszDDsd19xolIgwTKIZ2fJ3+7WdWWt4c+4/kdkOUo8Wn2cM1vjFPJPQKH+FNA5IM4PryLtOwfJUmdwIrnXmSbTE9ix+A2VwZRclHCwWKTZ6LwX+GFn1Ks/43+dy/mmWTImoR24bl22eTN9merK6LbVtLy/r9d5SQ9ViJX4xVjRuCcojr+F6y7hul2o5xMvPMvveJ2gvTmDpIoCw5PL4udFDRQavtihhLM54iGkm2KywTkCAkBJVdnnq8Qtc/uC1Q782BwmCH6yOFbN1PZjFXk2Zd1J/mp4gNk8Qqu8hbQNJiaJTR5LaiMAZ5vzwr+/redOvEpWnEQ3nJp3zS4y983kqrZk730MIMkdSijVeJ9t3W+r6gN24t3CnP8SRIW5Zr1Wti83duxbw0bOnGfnhu8wnLq7Mt1ajjWLYS3iv5jIq+3/nQdpi7c3LmIvfKoyjdV7g8EemkE9/CTt17tBN4++VDrI4sZm4a+MIFm8WqE7Hgd5zUjauY77z18gXfv/nKhm7n+Tmo6DpiQq/8uwDd3zE8js+YifGyjz71PRHEl0Px4nYsY61owYZ/B4PH+PFG/8dS/H7aFO8fJX0GAnO8cTY792zh+Rqi8uNzgp/8/6PmY/bTAYVbqgGC3mCK3vzNdpQclwC5dDOBU+OnuS5cZ+r7W+R6tsoDNdbr9JMXuTC8K8PNA+1V+10XDOziMWnlT+GlFsDjX5tZ4UR6Q1sVkVgCq8faxC6hA1TEBpEjKFLJwGh25Tc6l2lYC3EAfOxjyPmUaJe4MatJTEpggyEKnDRmyqCjvBJSiWGwohfW/gui6VpElnCN11GuzcRQRn51O/03e+9vqz7EQtnysNEaZno+kN4lUWe+cQQrizzo4sGmRhGhxVSFMWqLNP89L1FxobDQ3sJrm9Rkp5CllxsqosN9q4H0805nZYHvjYHpdsZa3cOgrsdvnX5ElEV5hY7hIHTtypyEJLkdjS9nCk6+jmEfY2K00abZSwHAwlsN8eojE8prtMNGyyfeo3gzSlcR63B4I0EkVvyKGf0ZG3XdqD11R/8MjdNjX/80Y21gF2WczKpSRPJUtbd0EIM964FXErF00+e4TuvXqORO4RS4/QqZJFR+NJw/tFJfmJv7xs7b29exnznryGOoFwvDKLzFOauYr7z1yx+5jfuimn8YaofXh440OLEeuIujkQ0FookzPWwCEzu4vhd1GgIjTnMa/+AnHrw56IitLZYotsEtorUFYzKWI4/uCfk5qOi6YkK//JXLjC/HDG32AVhmRwpMza8d1/Yo6TjROxYx9pFOw1+j4eP8e7y39HObiEQazNP2mTMd9/mlVv/M79w4t/cs4ekFIJTlWF++4FP8jfvX2Qp7VJ1A1LdIekNnTtCUHV9FpIOoePx6THF9fb/TW7alJ3+sxn/7cPPHQgj30/bHdfx0kMsZdMsRiXGgq1I7H5tZ6nuYIVGGBerE0RvoleYEnQF1mth3RTcJu04Q6QToD9HGkwzH0cHMvruJ2MtL85eZiE5z3SpjaCFIUQIhyJssBhjKYsqIovBC1jFxec2Rbpl/Kd+E/HGTxlbv2o+eQb51C/3XQne74zNZnCE7oEjTo3XeeqR80yNl/nGSx8QJxFDVX/j+QicA1V/+mlzi5IQINZVXKyxmKgwCT43vvus3iBthquajRrbBsG2o6jdGqYRC74nb5DEmjTT1CsQ+BtfpQchSUoh+OLUQ7z45ndgZQEZlmlVR0mtppXWCJ0v8UtTk0yWvLWKp0XsC+qwklxlOf6gqILZLq4oAQKhBEJIvKxCWl0iqy4iWmOonn+P0JbMWmSgdm1L3Vz9sdLhovsssTPO0HCR7BoTInBwXE2eSZrtdK2FGO5tC/jMY4/wAnDx9SsspQ6REShhGQ9ynv7kaaYefZjvv/Pyvlq2rTXFsYgj4sowGosymsD1YWgCVubwfvIS2fRZat7dN3reD35/O7x8en5kDfyzn8WJ9cRds9hGJlnxzLMKkzsIpSkNzRem2uV6US1buAnjJw98HI6yVhdLkqRJ0KphM422OQiB71aIq817Qm4+KhJCMDFSZmLk42OsfZyIHetYA6jf8HLNneHl2f+RKJtHIHsmq8ULSFpFZhI6+QKXlv/unj8kN9O4SqqYU0JA4HiA4HRlmBemHuJ25//YHc8/df6urL5uNxR+orK4p5ZIT5XxlIsjIjLrI9cN21tdIo1dpIlIbv4CJe8s3fYoK7Hl2vuXKAUOSsmBZxkG0WpAX3LOEJmQQL6JEstAFyc3uFohrMHpzmPFEngBojaG9cO1lsmhqefg5HMbKgmsmyNZr4PaLOzkLTW/HA0UYF26ukzouwdOaPdqCr7TrN5eZ236zWcBmLZEX/MRORiV4weSLNXEiSbNutSrPtWyt1Yx2g9JcjUozm9cYvLtf+K/Wr7FbOrSwqMTXOHdk5MMTz+4pdq3l0Rzvea77/DG/Nfo9J5fQvbmFN0JPK+McBUq1WSupjxsEYkiywzWasLcklY9Pv1LD+w899On+rOYuizFijCdh1BCUEbkE8hsHOPdRJkR0kyTZoXh9f0w05157BGmHjnP4gdXiaOIIAwZPXsa2WtH3Ct2frUiaG9/SDr7PgtK0YlWsLZYaPKVw5hfJizXCVbmmR6eoO2X7qrR836um53w8nohohpITOj2/buDLE6sEnc7332HvOMALgiL43cpDc3jlnoVUceDqFk8Fz/maqTXaHSu4jR8yDUoiRAF5ZhU4zR8VsSVe0JuPtbd0XEidqxj9bQd6WlVm4eXV5IrrCQfYgEpNpKeEAJHumibsRR/cF8ekptpXKFysUBXZ2urn830KpeW7y+ev99Q+KCI+FXVvVPUGCVRb6PzcTIrUcIgLGQIhNcl70wgb5/htlvGmgysQABZxzAxGuIquSfQwk5aH9DnTNE2J1AsMdq+xVPvX0ZYl7fON2mWNZ4GJ2sjViKSehnPG97YMjnAiu9h2Cxs5y21SlZ0nDsJnMVCmoDJ0bmg0TG89Or1Q0lo92IKvpN2bTPsM2vTbz7LWtBzLlaD9TSSwgrCWNCmGBZfXOkSdTOGqj6+p/ZMklwNitXs+3zx8ut8aIZ42/8UnWAIYwXKZIxdi3h6coRTm5Kw/UAdVqun3XwZIRQShUCQmS6N9Dp17yROPSBbjhG5pKQDqkMlsjjDRDmy4jD8pQfxJ7fS69YAHEmG98r3GI0jxNDEGnM6ccpo5eHoBjQXsUFYLGR1nsU430A4S9isgtY+mcrum5mulIrxc2f7/mwvzyd78zL6x99icalNJ84IYiiLFWxYJXV9LJY4z5jVTaaCCqG1TDsur6bxXTN63s91sytefrHLmSTj0pCP520NLQddnPBmajhfPEH2H1/EOFWkL1HeRnoseVpUy/yPT1VkOyV5m7wbE6RlcCwCg7GywLgricolcTciydvg7/55xzp6Ok7EjnUs9kd6SnUHbVPAFl4+m1T4+4C26T3D22/W4GS/o4HnX69BEPGrEkJyQX6aTv4WlBZJ0iq59jAyR7gxaB8z+yiRKIORCCvo8fiwtgikJ4ZDhla9kQ7Yarc1oBdoO8IT773FSBOujYdFhU4lJG4GASgtGGkFPPHIv9pzK+vdPI+rZMU871Uo4k6PZJYQW4cFUUXj4AcQVip7Jgdu1qCm4Ludm53aDLebtek3n2W7EtuV4FhyawjwaLfyNaS+LTx/SdKc+RVD4DlUQndgkuRaUJzF/N7N94nsMK8Enya1Hr6NqQqBUQ6LeZWXXrvNC2MzzEzW9pVowsbqac09yYr9kNxECPy1Oc1ONseQ/wB5PaHaOEG5MYrJExxH4szUtvUH2/AcTVNk5yQj7ihP6nmmnVaxfyJH0fPJS+MiofcCVHoGGr9BGr6MdOZJSLHGO7JmuoM8n+zNy1z/9v/L69k0S/ICqWdxVcqIXuGx+C0CkZC4Pp5UpEbT6DYJlcuT0xd4a2X2rhg97/e62Q4vDz1CbtWnvhQhGil2TG1JIPeyOCHGZ3AmazB3Fbw7SXzvw6DTgMkz2wKLPi6y1tL52W0wBi26yNQlR2ERWCEQCKyTQSZQTQUf/7z0Y6njROxYP/faL+nJU+Ve4CuwGAQbV/osBgQo4d1XvP1OOup4/t0SyfUaCR/h8asTXJ5q0g6b5J5AG5d2NIG49RBx+xR2XcIsev+xtvAhabRTJkZKBwItrKpfQD/SXmG402B21HL19BzGNQzFZYywaGlIZUZmurCyAHvc7N08j+vJik7eRSzNgtFY5dIwFTSKkk0IWwsIfxovKB+YHDiIKfhu2q7NcG0bfWZtNltBVD0fN/exBnKZo6TEzRy0tXiewhhLlumCsi8EWlsE8PlPnRwoAV0fFF/Ic0aiFi95z5HhURYdrLVkSEpC4sqcRu7z2htXmf5nj+8r0YSN1VMpJRV3gkZ6HWMThHCRKFIT0UyvE/jDPP74lxl64NSu/mCbn6NKWvJ2yryt8VIc8nxwhWmnxaiMGFFd5nUZ1yQIk985/slp4oVJxiabfOahIXyncqQR3Ts9n6w1XP/hD3gpe4hElQhIEMQoLPNqlB+oz/ILyasop5j3cYTAjdp0Zx7i1JnH+S9HThwqJGm19fVKa4mr7WVqbrCn62Z1dlOELnGek1uD07PjEAKEKym5irIS3O6Bf1bfpZ1uTuDvPk+4etwa6TWSJx7E+dE16iu3EeWhO1CTTgOCcjEre0Svi8PQzbk2F3/8Hvoa+OdGadfncaISkiLikNZihCR1O1SbEyRuDabu914faz86TsSO9XMta+2+SU917xRD/gN082WMzYo5i9XfsZbcZEgpGQnu3WzDXjUonv+o7v+q3mvO8+2FK3ymW+XC6xm3RutIT+CKcV5pfJrUZBgchOiR91bHFHqjZFZYkiwny82BQAur6hvQpwlC51yfaqAdQy0r4QhV7IOBAJeOirgUvciY/aU9BRnbn0dLqiOifIG6f4qaO7PtZ2yHvV8jK75ylcZym9CA4/h0rUuCg4Ol5mSIXN9pNTsgORB2NwXfTf0x8He03azN5razTq4pWw/felSVTzfWKFm0tSopwC0SsnrVR4miXdHrM9vWT+uTqaAb0bJVmqKGT4ygKASY0hKZp1E6oNSqsdRMWVjp0pF7TzRha/XUUxXq3kna2Ry5ibEYrDVUvBM8Mfb7RSVql9PX7zlqrYsnDK6NaBDyenqCKdVCCHjSu8VL0WkaokxoJK616wJ2h0899CQTYdibj7yE3WE+8qjKzt/g9UaFRAbURYy2hhwQCqp5i5ao8o66wJP56yAEpSSm47jEj3yWipB76gjYTevnwTp5QjONifOU0aBC2d14/W933YjAIRWG5dYKkcgx1iJ7822jfpmSVbi+w1OfnOLi7RZLK12iHvhncjTkqQFalbdQXz9hqDUMD13LGWt4uwKLPi66OdfmO69cJV5uMi5SJq48QffR75GFDZwkRGmFUTm5H+HkIaNXn+KdpMX0E3bPi17Huv86TsSO9XOthZXuvklPQkgeHvmNHjr9FtrGSFsMKmubgbCUnYl9+/vcCw2C57/Xsxl71fp5h/D0w3z+0mucXEpouD5GNamKJnNmCCMFpm9bIxhsMQtkLOwDtNBPmwP6OatpVHKyUkbZ+EUStn4/jCUwDg0W9jyT1+88GpPSym6T2wiBpJXO8v1b/1NflP1u2PvpiQqfPx9w8fuLLMk6kVUYK5BYhmVEIHJQLqxrNTuMhHY/JsGrWqtKtpYZpQpagAJRMsDWWZv1M6I1v8x/c+FZfnLtNm8tLrFgY3QM7TjDWPCc3rq0LeiXnquohsUMZrOdDvyd11ftEtcjlgHWSpTQUJlDnPgZIlhBK4MxCrp1TON5kuQ85er+Es1+1VNPVRiWZXIbk+oIY1OeHv8qw0H/GanN2vIctZZQK5QJ0Dom81OWdIlFEzKmIqZVk+f1a7xeeoJl69BtpxsC9qn8FuYb/X22Bg3Ad5v5vdtaXGqxZCuEMisqRhTESYMgdxwC3WVZDZMlLmWny+3qMK9Mn+VXZ86vfcZeOgK20+Z5ME86tLOUSGdkUYMTYX1DMrbddXPV63Db6TDcAhkKHCkxWLp5xmzeZFqXKE/VGb0wxtSFsT0f+77UV5WyPLLM60OGp90XGAsf/cgl5HvV2qJGN6Gum2SeQjamOP3289x84HXSyjLaz5FGUWqMM33tGUjOcCPJDtTFcaz7p+NE7FhHWnf7ZdoPRLBeuwWT46WH+cyJf8ObC399333E9qud8PxHcTZjvTbPOyyVqnxfKj5x9R2GOw1s2uVU/ccsVc+T5iPYZGzLZ1hpEb15HynYM2hhJ21Y1c5i/OQDpFzC05uTPAs6R/klEin2Ncu1/jwuxe8R5YtgLa4qU3EmUNLri7IfFHs/HWZM2ldZDE+TCI/IOPxTfBJHFMaaCAk2h16rWb/h/L2YTe/33l8l1ImkwzNJhZUbkCQSaWWxi35OZ7hNWLsza9NvRrQUOHS6GcbAUCWg0U7RujCWTjKD2zttUgrqlaIKlGV64CTeWkvWsfjdgExbFstDxCUPJ80x1QWcM6+CSiArQeaCyLDlZdzyP9CVpzkXfrKv39jqZ28HddiueiqEwCEgpsFI8OCeFgLWP0cr7ZQT8xGlWCN0gDEO3SjncihIfAk6hk6D6aDMzPNnWQxnNpxjZt/DvPi1gornhxBUipuz57M1iJHvfmZ+D1uxCNBC4dgEkCghkAi0NSAkQllS6/LmycfojPm867icro4cCMKxWX3nwSSUHJdulpJjWEzahM5wr4rZ/7ox1vLt2UukMxGff79CrQuxD7kShEbhJpaGnzL21B1i614Sgh2pr+6JgvrqvsXY2Jc+1kkY3FnUCF1b2LAoyfWy4czKNOcvTtGoLZK6CWHmUG+Ooj2PKydDtLUHWvQ61v3TcSJ2rCOre/Ey3Qwi2KxBSE/jpYf54sk/ZSW5wnL8IQjLsP8gQ/7pj8xLYzuM/FHf/35zMreHJ7g9NM5I9xLCfQvt3MQXt3BTBx2N0bn9DFl7pmgJFIUvlRQSV0k63ZxS4AwMWhhE61e1lx/9AmrhHbROcIQHUoIxvVV/ha7WkNLiqfIWE9xBVoLHSw8z6p/jOzf+e7TNKDsTuPLOsdmMsgcGxt7jlxHKYcyugBtgLVzOR4tZH2KENb1s1uk7nL8Xs+n93vvrPatu6ho/E59gWAYkvqXjGIwB2VXU82GeOzXFudp43xnRLDfcWuigjWViuEQpcHEdSaOdEMV5MVeYG8LApV7xCPz+33k7rf9+YbdGhiYvwTsTD1K53qQ7+U6RhMVVxBoKyCPPKrilJvP5izzEE3vGqMPdqYKvPkfDRsKZWx2UtmSOxDgOQgvCVPBoCzybQBBtaC9bP+1krcG8/HVYnC3+oNsurik3gNooxJ1djXzvnM+csLaI8hJ06jO3OMp3XrnK588HTIfZlntqP/fbTgrGJ1HqevFuUb0zKBWxsRhrEUZgFVwen6DldA8M4einvnOEAsaCMrM6JzOGbp7R1RlSiG2vmzU7jnGPN33DuQ8l1Y4gSEArWKkZ3pzpUB+2bN/8vL0Og/r6cdHaoobn9GhAhrZneKOqOB9pas0xBCCFIXJybk2VWA4Kq4mDdnEc6/7oOBE71pHUfgEae9V6EIHrbEVlDxpYCSEZDs4O3Mpzv7STgWc/jPxR13ZABkfcIq++gbAJiQkY9mo0TQdVvkX1zD/QuvUCaTSNTSTCFCvVvqc4MVYeaJZhvxo6+Ry19EWWO5coRzlCU7xs/RJUR4mdNiPeWWoLCea1/2VfrVnN7AaxXqHqnsDZdFw2BzXAwAFQfewUjEwVJDO3wFc/6d3ipfgMDRsQ6jaOF5ALh6iVbhjO34vZ9E73/ouvXOPxTwxRGlJbrt/1nlU2rPN6/giJ9hnWDUSsSIcmyLwAJQRxZJi/lmHOmL4zolDc/wJodjIC3yHwHXxP0Y4ylpsxxljCkoPnKdJMDwwk2Pz9xryQW+0meQeWhGTowRs4lXl0Uu5B5cFIhZYuSkmqpZG1c3KudmZPNg+rOuwq+NhQiZF6wMRbCyhtSTy5RrozjkPHCqrG4tc/jfjCCcT4TN8kx771A7j5XvE/jturshpIu8W9UBvb0ch3ta0rkR8SnnkV686TixysQ1gbpnvjcS5+32PSvopYd08BG0yn99MKueWYDIeMjtWZu21wsxZCuSghCYRE64yGqBCXLLGbcbq8fwjHTtru+Rg6HlPlOvPdNlGeshxHlF1/2+tm/ecsDsPikKHWAi+H1IGVimUxyfZtMn23qK/7Maw+qA66zbXFYeniuT6k3WJe3TP8wHEY0hrHSKqiQxY62HpIp5UdWhfHse69jhOxYx05HQSgsVetgQhevcbKAUhP91r7advar/HrUVZ/IIMlkG8ibEJmC5+jilcidH3m222QDUojr5G0pnF8wVg15BNnJpg5UbnrcyRCSC5Mf5mLc/+WTqlBQIgjA3JXEutGUY3Qn8B+999j4w6NUY/Mc3FTS33uykCtWXsNagb9XSEk8ukvFcnOyhyU60w7hufVu7yeTLIo6mROHdHJGK4HfPaJKaYnKnsymwax7b2fkjPXaHH94iKdmRVcdef6fbA6WgTScQRDEyyaMktpWMznKB+yBK/TwCvXEAhUSbO40uXytZW+M6KmwCCilCDLNVmvYi6EoFr2UEqw1IjJMkNTpwMDCfo92zwUU2MNkvBllLuIcLrgRkgnw6TDGF1CSInvKmoVD9+VdPL22vnbL9ThMKvgQgiePlGj88Yc3TuFF6y1aG2RShLUPHQXtBjB3caU3L79MhgNXqmoFkNBtxCyIOZFjeJn2xj5Lqx0WYrfwZ/6JlZ1QawPwEQAACAASURBVFfBumBjrHMDf2aeZfM5FvXporI7dxXzzb8CbFGZ7plOk6d7aoXc9pg8c47vvHyJRlsR6g6OTdHCIfJGCMISn3xqklOT1buWIOwErAkdj8lSlWaW8M9PPsYDvbbIfvux5XMENNeBS1N9MJPpu0F9vR/vu8PY5obF4dooYmkWkSfUpGRRlFl0HHyb4gqDLo8QtbIjG6ccazAdJ2LHOnI6CEBjP5qeqPDCp0+ttQrtlfR0r7Wftq3dDDz/5dmnqJvKfRts36/6YeIVSyixjLFF33xJuQQ9L68zQx6dzKMbNHl80uPc0KOMD9/b71pUI/71umpEC2l61YihX2Xk2//IgrvI5Qe7NP0uWhqUkdQmSzx0LWZsl9asvQY1e/ldMf0Q8oXfv1M9iJpMKweGqrzinGUlVRhr6UQZr70zX3iC1RcHrrpl0Xjfe7+Tp9zqNtHS4qQOI1TJnWzt+v3K0BQzS7NFIC0EiXXQSBx682vbgEQ6nazvjKiUoijo2HUQl3VylKRW9vjFp6YJfXfge6bfs017H6KGvkFJdjF5GZP5KC9FuBnCXca1Pr4qUS65gCAz8ZagdL9Qh8Osgo+FHsJ3aGDJctuz9CgqzbWKj+9KdCPBxnn/D1i4Ca1lUIo1nOmdHS2qVGkMXrCtkW8cZ4ihHyJUF/LRXj3RQgrWVKDUhsmfEs8+VLQ7Oh7cvFRsbub8neTPC8D1YWVu11bInTQ9UeGF585z8e3bLC216OYG5UgmRqs8/cjkXX+39Hs+rspaSytLOFMZ5tnJszsmgrt+zgFNpg+b3rtfo/OD6L3mPH/z3kXijqYiA6quJFfZnre5fnG4kUBYn8JpLyLzHN+mSOHgKUG7NIkSHpOjpSMZpxxrcB0nYsc6cjooQGM/mp6oMDVevq+UrUG0n5bN3Qw8l5dS/u6lDxgylUObxbtXLSH9MPFlFWNtTmp8lJCMBmV6rmGAIHTKWDqcmywViOw96LDgMdtVI1i4yVz6Hq8/uETqGILMI8glWhiWSx1ef7DLk1cuM7FNaxbsPajZawAkph9CTj24Nk9zM3L57qWYODVUwq3X5JNPRgNX3dJkZMu9b4HFuI02BtdxIBUILTYY0L5x811mdF4E1qwzDUbiYbYFiZTLbt8Z0aL6rkjSHCEFShZegdaZw8qIKHEYHz7D+dNbk8udtP7ZZrFocYls+P8C1QEk0osR2kVaF20zrE3JzTxRR9Hp5lTLLrm8u5YSewGqrJcIHFzfYdxTZKIoMElJr5IIJtUIRyKCbcKOpNObBytBFhfnbMOxFUXbYHVkWyPf3LmF9BeweRW5es8bA9YghMRmIbK0RB6sQK4gS4rWRwTkSVFtW9ucKBL7HVohB9H9fLf0ez7uxxz6sD5nOx3m3OJ+DasPImMt33znEvZGiWrqFewlAbLkMTLuskRrT9vcvDjcDU+gyJkuwZNnq/jjJ0gSjRdl1F2F7IFWjlq8cqzBdJyIHevI6TAAGvuREOJIo1/327K5k/Gr7SjKt+vEuUXULTXPO/As3r1uCdmMiU9zQymQlBSMBjVCx9/w+/s1Nz5seEy/aoSJW1weXyBVhnIa9Fb0wbGKchrQcWMujy8wHrfY7pW716BmPwGQEBLGT2Kt5bWXPiBOzbbX5HtXYpzpwapuos+9n+iMROc4UkEvZl71Tl81oL0RtcmEwM1T8IKNpsHbgURGSjwQuMxKydxKgh0NEL2KiABqZZe5NEdYMN4V0qEfYpw5DDl+3cGvnGEh/q2B5qlWFyZupW0MhqzTweGnZKf+EWS7IB6gig3LhNyszm0CKkaohCTPyKN5qqX6XbOUWA9UWSXAlpwRHqx/gQdqz++4TWcsxBkpkc118Ib8LUm96WS4kxWcsW2esX65qHpV6tDIivZA5dyZE8tTkArx2HPb7kcY5ijHkHUV0unReLDFPwK0dnHciNBpQT5UtEGu/prus7DneAW9cZtWyEF1t94tgywMbX4+7tcc+rA+ZzsdxtyitZbZa7fhRofTQUg32FqB386w+iB68+otWh8KXO2Ba0ECBmwkMdcDqtN6z9vcKYFPbzTXzO6buUE4EmekRPjM9EBm98c6WjpOxI515HRYAI2PgvZSOdpvy+Z2A9vWgp5zEVpg3Ax6C9Cuzai7GY1IcPFnt/c0i3c/WkJg45xMO4u51rxFnF+npDyK1qQYjMYKSSwKPPdeKgqHBY/ZrdrQcFo0w4wgc9aSsFUJBH4mWS4nfMBbjCbhttWKseACZ0u/x5X2N+mms0ipkbJ/UDNoANQv6BvkmlxZqDEzfYJIX9u96uaJLfd+bgzGWhRQj8D3NDo3tHoBtCscbok6H5bPMdy6zahjEXJnkMiENjw936X54WUuJDnTSU5rOWZuIiSq++S56SWXPqWhWfL632NlF5tVUKpCGELMtS2gkX7asDChNWNZCd2B6kOvg5MCEuwquU9ghYuQGcK6xZ/LLrhNHFMii05g2s8zdu7CrtfaXrUeqOLgk5mIzMR0sjkW40t80PzHHe04hBCEz0zTevED9EqCLLsIR2Jzg+lkyMAhfHpq+2fJ2PQdGMzIFDQXi8qY7bUySgVTDyIe/cVtv4PvVCh5ASbNyXKJUsU1BqCtRMgEx2QsdSIqpkQo1Z1iueqzsLeaDG7TCnk/tZeFocMyhz5Mk+l+Osjc4mpywnyL57o+QglaFbh8xrAQSNCAAjfob1i9X1lrefvSMuQgAnuniKsKaxSbCtRCiWwq2vM2+yXw6Y0mrRc/wMQ5suwiyy42N2RzHVovfkD1C2ePk7GPmI4TsWMdOX1UARp71V4rR/tt2dxuYNt2ZfGvo5FS4KYxLN2CLEFYSygcFq+2WHg3Z/zhwVb9D7slZC9tUuvnZEb83y6qPPE1gnaGSjK0MMS+xqPEefcTA1cUDgseMwi+Pa2F6AVJ0DbFyuq6ZCyVGR0nJnUNP0n/M97sD/ri3+8EaA7a/HNUME+tbnj0gRnOn3h4m8TtPM6It639wnZB38xEZYBrUjDhfJEPs79mKblBoOqETkhus75Vt833vhKCyUjwcNNQzyzKsZgVRatsuTQBt7qKMA74rhjHk6cZaTZ40r/NtN9YA4ksiTpdbwiVGh70HC7MRzjaIsouftmFKMNpJIQ32/ws1SRll8nRkCcfHuND/Z+51U7ppFVSz2BFTCcT+Maj4jQ2gEbyhQgb54jAwRkLeb+1sHFhwvV5OvkJ7wej5KU2Mi0hVIrFUiyj9zztcEBqyOpgA9zmC8hsBtEdpZHaQzduXQ9U8USFZnYDa3OkcBG45DZhMb7Exbl/y9MT/3rbZMybqVH9wtm11XrTyRCOxJ2sED49tWOAuAEGE3dgaKKohGUJJF0o15DP/s6O923dO8Vo+RSG90m7AUmqyY3FEQrXJjjeCtXIQ7Qks6LJVKlKKGRRFdtUOcda6DRg8sy2rZD3SpsX7Gxb8dKPrm+7MPT5T80wLZsbUPxSyEOpAB2GyfRO2s/c4obkJHBoY/EMDK1Inlh2uFhXLLi9xQ5f44/l+waLbNbCSpeonYNre8XVO89sIcA6FhMLvMw78DattUQ/vomJc9S6qrPwFMKV6JWE6OIs7nT1Ix8f/TzpOBE71pHURw2gsVftp3LkebKoCEYZvqe2VAu3a9ncdtBaAxZyDHVj8VbmilYdVWCjHWOI8pzuq9/CVtWu5LCdWiD30xKyF9+pzRovPczT8pd5d+FrNL0ucUmgrGI4LvHQ9TIjb/8A+8KZgWhohwGPGRTf7jtVVFBHJ02crLcaLyWpSGl6XYy0COkQOqNI4Wz5+1srdy55Ps3SrZwfLUPl09GWe2e347xTNXBxpYsxdsc24hzN9+ZimvJRqs5bBHIBV1oqbpnx0tYK3eZ7v9LOeGIJXKvRXk7mWTQuQyuCTy4JspqgUZMM12rkHcV8y+WltMzzyU+YVreYGpcsP/QYSX0az5O437tGru2GQCaoeHihS7bU5TOOg/O5BxgfDmmkV1m4foVmrshFjiMlQqheJS8nNxIpPmTh2s9wX5fkS11sr1VIjZR4bXSByLuzMDHSXOZcdAUzMs91maLjGtKLQKVIU6RiGlX00QkDKkIlD6C6TyOQuI6lG6cDzcfuxRdr1ccpkEO0stleEtY7PgIc66FtTpyvrCWe28JiZmq409UtSekggeEWGMwqSn763Jrv2I5/v9eW28n+Ckc1ibuCPAeflMCs4GWCmdkqgVCYPCVdvkVYHekdhPmN1MROA4Jysd376Ke4ZcFOKGqzIwSJz3g93LowtNzm4re/z2T6fYQ5HBT/Udbm5EQh8LVDnORoK6jkcKFhWKgrQEAqCKIh5idSZh45+PaTRCOsxHMUsc7wNtEpkWBSy5hTObBZd74QkS91i2pzn3eRLLvkixH5QoQ7fvSquMfqr+NE7FhHVh8VgMZetZ/K0c25Nhffvk3Uzcm0QSmB56iBzGS3HbQWGRYXhWQ0aRdJmHtnVTiXDkpI/LQ1EDlsuxbIVXly8JaQvfhO9ZO1hpE3LvPZuXEakxUypXGNQz0JEQpoDU5DOyg8Zi/49rp3ilr5QZZ5l3LLINIEqzM65QQjwSoHX1V6821iw98f9R/ac+Vu1+M8/lUu/szb9jOXmwnaWDrdrG8b8Uonpul0aOklas5JUk6T6Hm6SQsvqfD42BcZL01uOWar9/78ckT+jZ+CjRFmCRFbbCLIlMuiGCHUgoe7hvdP1FBCoCoV3HJIYyXijcovM/PMKHJ8hvHeOc7mOzS2CWSkFLg1Hxtl1HUR2MR5m3bWIbchnuwFchQ/84QgNZYo7rDy5mWGFmc2tArFt5o8dDOn/UhIqySI8hTZWsTkGUHWIjAxVmpIJHloQWZYIwGBxSIwCFNCdX5xzdJ50PnY9cbWg/hirVoeWGHITYwQbgHYsGZtlV8AriwPZKwrhNh3ILgZBrNXc+XVVtvX5/8fjLiM7xm0cIiTKU7Ouowt5yjTJheS6+Ua+tnfYbxU3UACRTkbTKfvl/ou2HUsSceQqoiydjdWWZKIMJpnySoWg3HGvOxQUPxHWf2Sk1G/zK12B2sFXWGp5Za6Niw7AiEEwghefu0G48MlZiarB9q+7yscJRhSIfO2RaqLBRspJMYa8tyipOIzU6cP3MJp4xybG2TZ7ftz4UhMJ9ueTHqsI6njROxYR1pHHaCxH+21crS+IlGveKy0E4yxJGnOwoqhXvHItd2xZbPvoLWjqJcrBJGDypeLSlhP1kJkPcZVh1FPDEQO28mzBiA1g3nN7NV3an2iPlr3aWbXSRY/xOl+QL08zFC6aZZQsCca2kHhMavVhkHw7UP+mQKekc3TGWoT2CGszsjsLSwWJT3K7gTrE4LVv39l8TJLK/nAlbtBjvObc/+JpZVfpVzqvwJbCV3aUYpSsk8bcUaXlGi4xVjpzoIDYpKyO8FC3OE7s5d5sDbRN0ARQjA0e5XGwiLSphjXJbUWawwit0hpSRSM5ZJmLun2Ll8pJOVKiaVUs+iOriVhsPdApplZMiNwxSolZMNv4wiDGyvoqC2tQnnVwVsUPHLN5Tv1mNmowYQALSWVtsSPXOJKihs7uJFL6mdoZRAixwoLuoa78tuotEh4Bp2PXW9sPagv1qrlQW5iwKKNJrUZBou1EoFFCltUAGWyZ2PdvWoVBrNee5mnHS89zKnaV/nhwjcZ9iUQoJ0RFs7ByOQKfpbSdVwuOS7/9dgME/WJAyV/d0PbLdi5VpEjychYjNuElZEeksRCYwHHpkSqTuKUQTYPDcV/VNXvnnaswrEKjSEXUDLgmSIhcpVCGMgywz+9OcvvTlT6vjMH1fqZ9hOlGktJh0Tn5CZHIvCNy9RYhadOHry9VQTO2tyl8La+b1ar8duSSY91JHV8to51rHusvVSO+s0nOY6k0U5Js5xcG5rtlAdmajz96M6+NP0Gre1JxUsvX6IRhYRoHFsgvyPr4YucJ71bCOlBd3dy2GF5zQyauFy69f+z92ZPdp3XlefvG85wz51yRA5AggMIgBRFgtTUkmwNllQeZJcrqsvhh47oqTr6pf+ejn6q6Oh2V0eH3a4e3GXLkstlUZJLtChxkERSAEHMyEzkeKdz7pm+7+uHk5nIRGYCmZhIgrki8EJG3uEM9+y919prneeDD4Lbe0vRdcJjvyCor6PcEPlMj1bZ5bnOcSaGd+ymHMINbS/zmF1W5iNP7VscHzZg+U7zjJwEVzp8WafhT+Grxp5/n2R9jA0PzNwd5DgPsptYbwmlTpAXZms/bPM4aC2RUvLy6UluLPVZWo8pja1ytto+C94i9fbejeG9pKrOWcy7PwczCRvNcM05jHSkTiOsQDuDEgpd3pHztQ9LedhCxjFBatvU1ToWn53NmMN3Q6L+JIGb2vUdtVQMfUdzIGAtxQSWtcYIS7UG03GX0fkWS8+uUYQlOlfUEh8nC5JQMjQtysXvosQcQrsD78c6Z3cEW285B9yjGN+MPFhK3qV0eSVr3OThhMAhKJ3PSpYwFuhDO44+KO7HibXhhVgmSIxHIDWtPvgl5HqUtREIeyVzPUu9a3Ett2fz91Fi34HdBjGrkWSmJDMFofKqjLwio5QhCksgtrEiD8mK/+OIve5pazdYXCHwHFgJeB6h1lXTqkBYQ6eXPfC+5fad9nRomKq1scKQFYYidzQaPl97ae6hKHm2O5MKb7cC4Z7OpEf4WOKoETvCER4zDsMc7bWfFAaaINDkhSHPDaWxfOmlGSbH7v3ju2vRug5ff3GEt356jTXXJsFHYZlUMef8RWZ1H/KDOYc9rKyZgzQucbHGLy5dIe3OUa9pZHSdov135CKhHDQZjcbQJmY9HPDOsUucW3p2ZzN2CDe0O81jopF5aP/TgazMnXPEscKUkqEbEvkRdzIre9npb3cPWxte4r21/4eaHkHL3c3e5t9HQRMlywMzdwc5zk4YnEhYWk0wtgo3FoKKTW34yM2MrUbBAosseTGmcChP0IkU/lrGTKdB6UGvufOr31OqujKPHCyCmqSqPisLeiUEnhMIC8I5LI5S33FM92EpD1vINLyQfvkZQvUGii6WiOqxWSJJwAYcu/4ynrf7Pg6URvkaBiUiteiawgnBT6ZP8odX3ufkaonPCEuzA/IopxQO4STGTbM4fJlp+RS9JAMHgdYH249dma/kdRvB1jtwl2JcCMmx6EVu9n+O25IjbsJuSBNDBAm9Yoamd/tvnXP3tQ92UNyvE+vmYCi/2ePzCz6tWKA29mKlhVIIlFL41xfojnc+dtbfew7sHOReDoGCocLqktLajdujrPalZFApGWSy8wU3hk/u1pWPDev3MLDXPb2Zy411hBa6viT21dY17azbkN66h5JHeudeq9lg345NPOywZUftWU25XGBWCmQrQniHcCY9wscSR43YEY7wmHEY5mi+P9hzP0kAwcaeTm+Qk+X3/zCZPf00Uxf+jtXl82SNYwTSMC6Tqo47pHPYw8ia2ZRJ7Z87lZFmgiz1GWn6IBx543WQQ0QxRmmglwqOqYh6khBHJRdH5xkfNqtNl/twQ9t80L7x4c+Ia9/DySGUTTwd0KhDKm7s2l277TSYI6bbiHCBPpO0GwGhv8G47BOaDLfdw9r+HAvJOxuhy+G+9u9PjT/HeyNXDxz7cO/jnCOcIk19ssLiaYmS1eHLC8NqJ8X3FK0xzQ9W3iUxGa1GDU8q2quWp9+GdhwRIEBL+nXHh09bVker17+nVDWLUaKL9jPKPEJ6+VZv4WHwMGirGNYEw21SnLtJ+A5rsT4TtRkNT7OYWKZqF9FiHRgCitJNkvRO04xP4Ld2F7NCwLiqsS4HxKrEUTWyV5qj/F9zp/nG0g1m1xNm1pp0G5Zeq861Y6e5KGZZIyEeu4aqazynGa9HfOXUJLPtqqDbV6aXxdVO2H7HdB8m2DnLUvIuStXJCocSOZWVIFQ7awIpBhhGWUyfY3HY53h9ZEeekXsEeUYP4sQqheDbco7+h5fxCkcWOJQQtAcCacFKiRoPkIGiWIrp/d1vaJ6L8E+MfCwalDsHdkmZs5JWsje/HjM6HEfmkjQvibRPYSWJqBO4olIy3FmLx12Iu7g3/gYn5F33Bh9WcP3jwF73tKckgRAIA4USXG76W4MJB9UzVSkCTz20PNJHvdO+ufep1xZomAbD/GnK5TYEDUQYHsiZ9AgfTxw1Ykc4wmPGYZijxxFuLYREfe7bTLz25zC4uDFN96G4P+ewB82a2ZRJVY3H7typOF+nTCaoyapgHrp5jLyFSSOwVfE4TEsGjTEaJidMC3rBgK43YCT29vxOB5nqz0xGTJS/hMQQcBylJL63Ya7g6jt21xaWk21Ogx4y/SpF8D0KllnrNhltNdGevWto8vbzc5DQZSnVoWIf7nWc03KdLD6GKqfRymBtlc8lpEA6R2EsQsJac0BibhfK4+vw8gUfr3Cs6YKBLGgKn5EevPy+4pcvGFZGDiBVDeoIrak15hl0n8EWPlKXlZugk7SsoS8kF+seRWkPHHFxGIv12/dqzJV4ktEgIZAlmdWsZxFRFBBNNrHrBcLf3fwGGdQmG3QbSxhrMRumF9dbY/zvzTFOZkNCUxArjZ6Yw2C5NeigpKDth3i1qhCfz9f4d5ff5k+efRVgX5nes5uhyBvB1ruwDxO8KVP15ThrtkYgU5SIge1L/5LMvsSgnCAu88eSZ/QgTqzOOUbPJ/jUWGnk5KZkLK62qYyWeA5SscSwlqKzlGh1jOTHV1Aj7yHGP3qXwe0Du0h7LCY9jLNoqTD1glVWaHdH6AwltoCa5zEZ5Jwb/ppZpdlBPw8HFVMqFUTtSqa6z97gww6ufxy48552ZUHbV1x3lvOhoqcrma2zDrPBhmktGR+pPdQ80kcW3H3H3qdX1+jiEqZnsF4T9YVv433mzEfaLDtn6WTXWe6u4soao7U5JkcPnkH6acZRI3aEI3wEOChz9LjCrXfZRj+gc9iDZM3cq/FQRJTrX6SmK4vinukSUYKrI0Q18XTW0R2C15rBT1ZI6VOkq5C1dn2ng071N4vVhj+Glt4dn/n27lonu85bvzE7nQaLpxG971LWf0opb9FNE1oq2jNgeS8cNHR5ZjLi86/C+1cW6XUlyWASJeWesrZ7HWfpItKlz9FuBFjr6A5yitLgyqqQCTyF0oLlckCrsVEoOzh1ReIVjkEEwkmcKUlESVFTtIbw9GX4zfMxkXcPqepGwK+3dI3GuMewe4wyD8FpEI6aWsUeU/gzJxh000NFXNzLYn07I9AK6vyrZ17hhwsfsJho1jean5ONFt+cPcPUseCuDNvcl5/mM/0hl/urtLwALRWltdwa9rhWi3AOIu0xiWM+6YKA2ahNoKvHcyA1DR2wmsf85aU3sdaR2mJvmd4z53h6MxTZC3bKE+/CBG/KVD3ZQJBiXB1HA0EB2I3rJSWzUcViKu+x5Bk9iBNrsTxgfXiVciZnRNTxOu3KfVML+mOLfHjiLeJoFadyxIykFo8yd/Wz1MQE3iN2GTyI8cjmEOD/vPQm80kXYy2B0ljcxk5sQTCeEccpTb/F7z33ChNDH/ejn0Nnm1FLkeFWb9BtlBTHxvC0pZ0JxB57gzsHSPcfXP9RYK97enl1QP/tecrCIqypGjCl0FrSiLxPRB7pfnufIgjREw46C3D1x/CZs+w2FHocn8+xuPAO73b+lrXyJiUlziooJmmUX+OLp770sb1mPi44asSOcIS74FFKNA7CHD3OcOsHtY1+mLhb4zGpv8nrmabwDN1BjtEBOI2QJdhKkrWp/+/litGJKVQeEHzxXyBrp3Z8p8NM9fffqXLkhcUYSU7OcmeVtU6wy71Q5U8h8zlggdzGPP/Kczw9sX8e017HZCI8TSe7znBtFa8IaOuTeGH1kNueB6anCkYmFaEZ5Wn3BU6NvYiY3D2pvdtxHrFfZynx0A25wc5We4nWOqSsjDpWuwmmcHiyYmRbfWjGgmHgQICHwgiHrxTGOfqepTmQvOhG+PyzZ+8qVd0e8Oull9FjaxjbxhYOma2j6o6Rr/8px2eeves9ul+e1p0W69VE9xrzKytcvJrSXWlhrNhiBH7/7MuIObP7Xm1xT4btW72zG3tOOU2liDyfMVdnJR1gqfZJ+mWORDBZa1DfiJHYLkcz1tLJEjypOFEf2dov3SHTW7jIf/PKt+BHfwGdpQPnYm3KVD1ZFfupKfCFwrF5recIpxkUgpmoxWTi0XsMeUb368S6PDzPb3p/RefUFZy2SKepj40xW76EUIIPTr9GqVP8YYS1NYw2dFvrJGd/xtWbX+IFFzE7+PCRuAwexnjkVGuSb86c4c8//DlOCAprEQJCrRkPGtQ9H6UKlssuRZAjx07j7hiorTQSLr7Up9cEo2+grKSVRzy3PlvtzW7sDbrlm7z1m+KBg+s/Stx5T788WWd8NOKffrVAp5dhnSPwFOMjD3t36xHiPvc+Hwfymz1uvvc67438NbkcEmYRUCMLHGW4yKD8/3jtVwXfeOm3PhnH+iPCUSN2hCPsg8ch0TgIc/Q4w60/Ts5h2w0rchPjyRogyE1Me6LD0nyDvDQocwybjaNqt7CZB04ghERrSV6UxPmAyegUIzNf21FQbQ8Cle0AUWSQGYRUyHaA7e6c6u+1U5XmJb1BTl4YnMiRyvL2tT5ZrqlHuy3SBRLPzTKMczxz+Ca3mB8g3hzirwlcmdLTF9FjNYbnEn7l/t3tPLCioBwskYpFLhfnab0/w4R/ak+51Z3H2Vd12v4cK50UJS9vyWI39xI3kRcGrSTKE1uFsl+CMmA24ugsDi0lM1EbgaA0Bh2X/PH0GcLWvRnT7UytWFtAmw2m9vjsDlZzPznQQfO0NpvY1fg6cZpgI4U+foxa/BVsMsfSasKPf3GDb3xhjjPHdn/uuzFszjlaps43Wy/wduc6y0WXvqsY8JdGZ/ns2CxjEENP7wAAIABJREFUYYOV4YDv33iPll+x20mZsxB3t+RoQkgKZzDOsZj0mI7a1L3NwcNtmd7i3IvMHpLd3i5THQ9GWBz2ya1BCYkUIImJzRhKHuObs2egax5LntFhnVg3p/O/jP8PchujyxBlPKwy9KJbJM+voUqfQqeEcRvhwEiQRhIkLYpal7Wp3/Djq9/ia2HO7B0F7n6DuYOGZ9+P8chYWKfphTT8AOdcle2obg957mQFtw/UVpL3eSf5K/LUENoaYa4wwu40MbINSHqsrvVZ67gHCq7/OOL4VJN/eazxidl524X73Pt81Mhv9uj98BKXT/4jmRqikxEUAulADwUJo5T+OkXjdd76zSlmJk99co75Y8ZRI3aELWx/yHgeyPwGeTYgCJqMTZ1Gyoez1PpJwPbsro+DRONJDbe+FzYNK5aH53lv7f+ll9/EugImFaFukd18BTecI1v+IrXZ/4Dw13FlA0/6CJmB6qMY2XMHaysIVJeI5SUoUjZtAYUXIqOxHVP9zWJ1efghnhzHltDvF1gLSoHQA1w2S29thCQtCBNFo7774XmYvb4dEqblkuD1ZVy2k73Llwb85sa/J5vo0azNIrIEt76INoa6ComDgoszXcbfv7qv3EoISds/yUpnyCAzFEHKeDs8gCy2jhmtcyOuCuVMQykdorAYLSidoaZ9QrUREGwFzhOo2t4F/J7XwH0ytQfN01pOfsMbC/8LuY1JkxqmaKM9C8ECpfc9PPFdRvTJezICe4UY3znMiWSb5xtjnHi6ztxUcwcDvoP9kZqVNMY4i7/BBBksAvClxDjHajYg0qN7FuR3O2bO2V1Nt0MwGv42q+k8pVtlMmzSyXNykwEJhoBAf5E/Ofk5TrUmKbJ4l2W4c1T5Sc6iS4dWD55ndJh92vxmj/jNG7w/9n+TRh1q6SiiUlWihY8oR4n9Jcr6OlF3HJzACgCHAKQTmCLC1VdJgj4/y57hj80N5EaBu99g7pWJnOnLr92z2b9f45G69vGVrhowfTBWUAiJm5jlwsJfkmtLPfMRUoAUaKeo5yGxn1YmRt2nEEqTihBjk/sOrv844xOdR3qfe5+PEptDzL5cIG6sotP6xjUrsMIhLYSZZaAb6NoKa+vXWOnMfnLPwSPGUSN2BGDnQyZylwlGXsdEa6AM0mmaN6Y4O/VHzJz83Ef9UR859srugo9eovGJfpg8AJaH53lr6c9usz3Cx6icsr2CVf9AfP13yHpzWPstalNv4kerCDmsdOrpLGen/8WeO1guLXFpisiWwBrQGoQEZyEbQrGIC45tTfUv9Vc53zuOsBcQXMelTUTp4/sOoQdgI/zhVwjaIcMspjPIiCJvR1F1mL2+HRImY/hn79eZGnjUxiLqG8Wv8BWDRpdBsIw3qCMicL0VMAY8vzIdN4JemNGdajByK95TbrVfkTk31aA3yPaVxb76/BTPhy3+8tJbzMddrmA4ETSZij36FEghqGu/2t3bwx5+r6ZgrwbrsEztQfO0FuQEP138S3LZwWajGFPJLp3xEG4c9Cqm/joynzs0I7DfMKffLbn8mwEnG6PI+u1rYzv709ABmSnRcrPJcRjcho28QEk2MqRKQl01tXcW5Hsds+3yVesKpPCQYoKbw2eZTxponmfMP0+kOzS0RPk+vjrDyea3eX708whgeT0hKw264aM6KcKTJGXB6kaQrbWOdiqJRxU9P+YUD1YgHmSfdlNi3JPzJCdWCWwLoSRYi7MWlzlKQIgAGw4QojL1qdzsBco5rIDEeZQipVAlN8wIfyW+wpcTD7HfYO5Wh9eurPI1M2C2Ht01PPt+jUfuN5+xk11nLbmOFCMUHvh5TOXrvhFGUPr0/ISuW2Zk/Azh5BTq/JVHagx1hPvAxq7sYfc+HyU2h5jlWIkVBmG2X9NVM6asQ5WaMjBYMfxENvCPC0eN2BF2FAwT+iLu2N9T6BSV1xGpQuqSTnCDN5f+jFedY/apz3/UH/mRYq/srk18kiUan0Q4Z7mw/j1yO6Chp7fOhxYhY9EMRXEDZt5Gr5xCqTN48VnIqqDlfl8z2XiK5yZP7f3igYRsUFVj/m17Y4QCT0JuIB9AILdJikLGg6/S4D2U7ECQUDiNl80QJF9F5U+BhJFmwHovZa2b0qr7h9rrc87y67Vf8vc33yEpBTU9w1wWMpYoul5BZ9hnRogtWVqpU5yyyFRg4yEiT6sJ6cbitrKSVFsKZfbcJ7gb+9sbZLx4apxrizvDmqfG67z6/BQzkxGsdPg9ofhBf51rQcgb0zHfudJiPNMkvqOTDgmtIsjYYQ+/V1PQ8o9zZvQP7mleck8cYK9ifmXIT95+Azu9iNwo3I01WAd5afG1RJgm1lvC6SW0mzowI3A/w5zt7M9qHmOsRSmFcRZjHZ6Q+Loy+vBExYoZZ7fe714ulHsNNAbFgKXsA5y9Qsv7LRDP0LdzrCSLRNry7ePn+OzYywghdzXrY6XhM3mJv1ywqjJyaQicIsolmQc/m+rTv/w2f/LMOZ7NiwfaO73bPu12ibGZtVhpUEZXDJCvIAdjq+OkjUeGoPAKhAkrJz0HuRAkCnJdIp1ClD7CWdbUCK99kOJ7N3edS8+TtPM1ulbxjv8CM97F6lLbJzz7fo1H7iefcX5pwBsffkBcT7C5j3AtPOHRKmJCZUFKVOlIvZwi8pGvfIuJ0eixGEMdBvuxt/fryPtJxPZd2cPsfT5KuLTElRafCOkUTpU4Kzc8YakePQ6EKMEqpKsdNfB3wVEj9inH9oKhpTNU45/IdIo3bAMCi8CUCll65FGPt6/9FS54juPT+1hOPwHIMrNndtcmPskSjUeFg7iA3Q82nQpralOC5UhNiXEWJSTNcAxrV8jEIrViElcaStciKUcIA82rz0/v2/BoOmjRpaSFpNjhN+UQWGpoOkjW+Yf569skRU0G/Tm41UeGKXmh0Waaucb41t/XI480N4w0AoZZeeC9vs3m5HLvAiM6Y9zzMYzi8xLankAGitwZVrOYaINp8kwNicKIAq9UVWUpb1+7RlqUlXhW79onOEjD8P6NFboz6yxvC2s2o3XOddexb/wC1haYS3r8Fzg6jRHeOnGaXz/f4vMXFeNDgXWWOBxSn52gvuFEuSfL6XLWsyu78tjuC/fYq3DK5x17kszGhNpC6VWS1M2rwEFROnypQZQ4OcQcghG432HOJvvz19d+zYX81saeltgyZxACFuIumakc4IQQpKa4Z2D63gMNx3pektsGoYypmbfxO5rcC1itH2clS/jZcsyLY4KFPZr1NLT8ylhmOwl1A5HwsArW245LT1nMSMjYrWvY99/AlsVdZXsHwX77tFsS47qHb2tIpzGiRDsfBDglsBbSQOO0xeExjEpiK5BOYLHkCIRwKC/GJsewyRhCQLNZY5CWrHczJkZ3ZviRZ4gyI5I+azZi1UZMqCpE2SFYrc2SraTULl1l4tmn79t4ZPt1cZB8xs3BSoYgqGu0Z3DWJ6fGmvUYs11Ck2OUQ6mA4JXvbp2Lx2UMdRDci729l9HJk4S9XI2d1KyOnyU/9SXC2iwTzj22cyNCjdCSejxBI59kPZhHJx5K3P79dDiMHlAOpxmLTj7WBv6ThqNG7FOOzYIhqinC3ofkUx1UXmezCduEREBWIw+XeeMXbyC++OUn1gXncWR3PUk4jAvYYbHdqTApsy0HObch0wqUJNIFNXOD3pogcQIlHGNewdzJcVy9xDq3Z3Eq8oRaeIXB8LO7MqpsqRHKUAuvstZ9drekSAnKbBJKh5OWzBkyUxCqSiZWlpbQV3z9iycQQhxor2+zOUnKHplRSNHGYlEsY5v/SG/063jJNFrJbbI0TSObpD6coBcuEugNhsVakAqHI9U5o2mDdhZt7MFZXGcZgjoravSuDYP0HddXesRBj0bL2yokmb+IvfwuuRC4qM1KUCOwlulBh2/9ep28nMUrBMKBE5LMWZJJj9HjrbuynA0xtSOP7b6nvEEdpxRd3aEIFJ7VtLNoq9FaLTzWRKtiB5wGUSDxN/bY3JbJhqNEOA02PBQj8CDDnFOtSf6Hz3yD/+m911iIu4yF0caOXfXZp6MW80kXiWCQZ/hK3zMwffdAA9KNa6huDI0kR8h5Pnv1J9SGIev1Nm+eeI7LUjEfd3jnN+t7NuvDcZ8fiZQxrYmmCgoPek1AwPT6Ml++8i5+npGNTBHUR7Zke+aHf449959Da3bf3L6DYnM6L+sejWySRjZBL1xAFWMIBG4zkkBC6ceI/AROprhalzyvg1UIUaC8AZQB2eI5jPDwA03QbFLEOXFSbMVbb8GW4BxaOhIkmavKqfmyyTv5NGumhrEW/fY6Yzcd585O3pfEcPt1cS+X3e2DlXbzOGV5DOvPI9w4nqcoSkFfTxJGkIoOY/XTjMx8devvH5Yx1EFyGe+Gg7G3x+9pdPIkYfve5/ytHm/PW9ZSgfmgRH14+bFmvemJCD1Wo1iKObn6JZKp75NFXVwWIW3lYJyGCaWJ0IMv8+pL+w9Ej3DUiH3qsVUw2AJBjJMGadTG+vJOSKMwQYo1ycfexvZB8Liyu54E3I8L2GGw6VQ4KAYspVnlICfkhumAg6yPV/b50uAdRBDTdZo86zDRXSB9U/OD3jnMzLN7N4VBHS8c0AguM4yP78io0sGQWv0mnhiQaG+XpEjULKJmcYlE+BLrSpKyoLQWJQTp0DI1Xmdy9GAFyPbmxJPjWLooIQGFpQ2qy8LJdzj99hRZzWGwlBuyNJzgxPVXuXjmNRKvRxhoVJpjtCPVBb7RPLc+ixjGsHITpMT9/G9xSjNsnsaUL6Cj3Q9vB3SKBGcdI6qOUtX7BVLx27eu4RcplyZrRNGQeJAh0xpx/jxBcoYAQanBCpAOglIgf7pIHEYUL+S7moKt4ypu57F18+uMBE8d6nrZxEq9z4UXVumJDsaTOy27kybZMMN4PlpNYItJjDdPPhzBuo0cOucAh5V9ZHac3trooRiBBx3maCn5w5Of5S8vvcWgyCvXzg05WlIWzERtvjlzhrGwTqQ0ke5T2mU6WbLnnt1e0QvGWYIiY3w4QFhDEkG3HiALj8n+Gt/44G2Spz/D4lq8b7NunMNqS9dp4ppBRpvXpOOz185TKwqWwzo17RFICX5IUY4xXG5R/scbECX75vYdFJvTeVdapK84ufYlzk//gKG3hm+aiFJiVI7xe2DreP1vV8ek9p9weqliPK2iTGbIl18lH55Aeop2K0RQSRABisISbierpAYhKJ1ACUsgSubLJj9OnyJzmshlaJFT+uNbrpvnXjjJahofWGJ4JzZZwS2XxvVbuG1yz+1MrBQKFX8Fq/8G9CrONFFKk9ucrsyoeSOcHv2DXdfKgxpDHTSXcT8chL2V8j1ie/yeRidPGoSQzLsRfnStT5pBvaY+EiMxIQTR52bp//AyrYVjPG/+GVfG36DvL1GKBKzCZDM0+TpfeOkoR+xeOGrEPuXYKhiKEld6CKuwyoDZXSBYZRBWob36E70j9Tizuz4OOKhhwp24Xxeww2DTqfBy7z2Miyqp2MaQQAhH3cU0Boph2WQiTOgmPRSGftRgZBjzpfnL/EVjZO+mcFtgsJ7KMUUNazVSlihviOguwdRTeJMn8NZv7pAUCQHqWIG5HlBmYKRjOemDE0ij8D3JZ+dGDnyNbGcsSqeqSf6W1ERQuhrrrWVWW0u0OxP0fcty0kd4dXRiaXhznAr/lOXwdXrmEqkYooxhNKnz3PpxJlYMrN2o3mz0GERtKHOC9RtIOUPhCYLGzodlZgrywiCVRGx7UowNOkh1i1++FJNEa0glsMZRS3xOXjiDj0RS4IQHSIyoLMKVdcT/dAN7urZPHlsFLXwy1yE392fHvDw8z1vL/5a8bQi7mjB2GE+wHgx4Z/Ii5y6NEfhPo8M6thSY9S9RjHwP4a8hygbCaJwokF5MmYe45c8xNV4/FCPwMIY5B5GjHXTPbq/oBSUEI1mCtJbMkwhX2bj3moY1JWkPBnxx4RLu2e/sy+5pKZESXEG1a7mBsUGH0bjLwA8RUm4MFaAY1hmsHsdZiXRDqDmQas/cvoPAOYdzDhlqyk4K4zVGhyc5u/i7XBv7GYNgGROUWKvIhzNE2VdRRdXch/kcqZ2nE3eq85xPIqXE9xXthk8YbN7romKhc0Mj2ib/8gOcDkgKyaSXMCYSvp+dJnOatkgRJoMgwo9q+A46/Zzl6wX/6txmOPjdJYb7fue7RDJkcmrHuVL5U9D9Lqb+U6y3DKqEUlKXT3Pu2D/fJf+9057/+FTjUM+5TUvzvlygHCvxiajHE4c6v3djb7VQWCK0WEexhmH8rkYnTxo+TkZi/vHWVn5ie22Wl5b+iLi5StYqEcdnGD1+hsnRJ3NY/7Bx1Ih9yrFVMCzl6HyEWjJK1lhGDr0tGc+GsAPjJwTJNEM9i8nME70j9Tizuz5KPIhhwv26gB0GQkhGw9/mQucCgYxxRFQ/WyWeHRAUjsmlCTJruDXsY5zZ2OuBYRAynvQ4UxZcEGJXU7h9CVp0l9D1NgQbS9Dd20vQM/XRPSVFsmFJZwakCxK/8NFWV6aLkaE70uU/djuM9cIDFVfbGQstxbZQXYFxjtQ4Alnyi7k1PlO2mRx6+ANHzw1JPM2Npkf/QpPRkT/izOmCdnADff6XtBd7iDLbyJJSMH4cahvXrh8yrh1jvS7LfQ9dDxHeCk4OEbZGkbehFMi6Q9Ts1mf13DwfPrNO5oHKFZHxSSlIopJLL/yMU+8qWp1pnJE7mPUSYJAjbvjIYGdTsB2ly5HCw1eHd9vbMU0PTyJEguutoPOUeiGIawUXny748vTvMXbJY2k1JutO4frfIpr+BSpYBR3jrMKk05RrX2QsOM3v/dZTmNWE5avvUngZtbFxRoL9BxYPa5hzNznaYfbstueENcQUQggCY5DGkEtB4Rn8XLMws0pay7HSIQy0kpgT5jxKTlGWFs9TO0K9A63xhSYXFtRt8V5Q5ChrSLVPqDSh0jgHw84kziiklyFMCa6yvxeexHR25vZtYr/90+3Mix0W2GGJS0tUO2DEztHqztJ385RRgTt1gl/cCuhljnrNoLRkmBqG6Tg1PYFf18SyoFn3CHy9ddU650iGJdMTdbKi3H0u/TECs8q5/H3WVMiaqRG5rGrCpIbWePUcFWztBbbtNP/67Ffva6f2XpEMwef+ZBcTuxkk7/QShYspU5+XT36JydrOZ9iD5mY657j53utcPvmPJM1VrKgclxvZBHOrX6K1cGzP83sn9mNvHW7jftPAEEG29f/3Mzp50vBxMxK7Mz9xNHzhgWTGn1YcNWKfcmwVDP2UXtrGv/U8Muxjal1UHoHRoApKP0GVIaRfxVjxqdiRetKzux7UMOF+XMD2C0S9G7Q6ya30C0zVLqLFOjAEFLJoc+ZigMybZM6Qu2rZfbOKKpWmlqeEZUGz3tyzKdxrCfrO8FsBe7qWZabgpuhgph1zahxP+KAq2aKPfyhG8E7GYiKss5D0yK2htBZBiUMxH0oun+nyQjxB7ZZP6hxJHU60I4LSsrya0h8ovvGFr3DsO9+GlXncrSu4N74HUQuCnQyMkIJzwS1+7A9Imv8BXVsDacAqXDiOb1+iHB3bdo4cRf0yRWkJUw8rJBJBDR85VORByo1nfs1zbx3f0YRJIbC2Yi/sQoPWmZ1NweZr26xkaFYZ9Z6m5R0+WHzXND2MKNRxTJ6jnCH0DD1l6E+GvOqP8x9ev0qW5yhzguTKcVTrAugelC2afJZIeejVIRe//wNutl8nDlcq+fayR7t+kueP//G+98jDGubsZVJx2D07ISRnRv+At5b+jEF5i1CNoE2BU47ct5VzoF+SByU6VygjcNIRN3KuuH9Pa/KPWLo5gTGW0tjNuD20kvjCpwgTVunTNNW90VOyMotwjvGgDkJgspAyD6vcPmz1Ahv2/EIIZN3bkdsH+++fflvO0XpjvQpjr3vouoeJc0wno1xPkZlBhprR8WeJXp3BP96icaxqNG6txCRpgTEOpQRKanxPUpRVcyaF2NU0f+WVyhp817mcGuHcRMT05UvcXM2qnTCRQxBVTVh4e5iwfS9wP+ORu+EgkQyjF19jrP1tltaGO5hYgYRiiqSfMzUeMTm6O+/uQXMzFxfe4f3Rv6HQKYFpojZMU3rhAhdmfsAZ8x3aq7M7zu9e2Ju9ldtUAiWgcARbf3M3o5MnCR9HI7G98hOPcDgcNWJHqAqGL57krTcLVm+dILqq8Y+9i6mvgZ8grCLoT0Lyn5EFp4jj/FOzI/WkZnc9DMOEw7qA3e/Eta59SmZYK+aoyR4iz7FlQGPo0Ri8RqZKkKIqDrcV/9qUGKnIPP+uE9ODBAbvJRNzgASO1wta/hKOAMMYVSd4OEbwTsYi0gEzUYtbwz65KQhVRlKO4CvJdC0hG/QZ+DWc57AYClsSet4d8pRnEJMnIIsrwwIv2PO9/ZElWhOXiUOfsmjhNpatg/oSY43XuJm9gu+eQQhRyYG8GJEFKFsilNoK8vSlRKQBSXOduLlGNJisnP0QGw5/laHjlU7KmZHf563l/22rKZCZJO/3yUQfrwyYvnaG3q8/OPTe0PZpepqX9AY5eWG2GgfP0wS1hNzEzB57ipdPT/KTt26g6jcIJ3+Brq0gpEUJjSovUl/+AseyhA+efg0TZPimhSoUxuWsuQ9588b/zOdO/Os9mzHrHK5e8tzLdcqkTlPWqAX6oQxz9pJvbWK/PbvJ2llePfZfbTHgGUOkB2PDGrEqyfycMFGVe6SQ+EhEJokbGd7YG6SXvoOxoJVAqaqxTnODkoJXz0xzOWTr3ugFdYatcU4kffyN+99aDU4ABsoSghqZUpRFjhYSXylcWWzl9u27f9pfZ+H9Aj+NqI3fnr7rZoCse5jVFD0a0vjmM3jbJFqzxxo45/j7zhDf09SbijDUGOPoxwVSQrPuMUz3dzndbzDnXjhD7dJV9NvrlP44flTb8VsED8Hk6QCRDGJtnldOC34UqwMzsQ9D7uac5WLydxRqSFSM3z4nzkcVYwy9Na4d+zkvLv3h1vndD3uxt6HSGyqBnFAklG5y47f2YEYnTwqOjMSeTBw1YkcANtif33uZlQsXGL6/QPfqU1z0X8Jqi8YnqT2D9erE/fyJ25F6UnAYtul+Crk7cZig0QeZuG6+z/zSANmZxaUSHGQCfhh8nc8Of0kUZhTYLTdFnCPKU5abY6w1Ru45MT1IYPCdMrEb/V9zofMjItVHCAMojBsltS9RMnMoucxejEVN+YwFPs6tI9A0PMuI/3NwBjelKUfGSTqvEA+mKK2t2Li95ClBvWL5yryanm+Dw3Fx9CZ4OVPRHIUMtmRnnh5lPZtnggtcH07S9EPqKsVR0vUi/GKA7+yGQ6NEqxyTB1hpMF6OktuuK+uQDnJPcgnLmeyZraagG1+jjIcIJ2kNj3Fy+RVG4mmKzuH3hjan6Ume0O06jAWlBFKwkQ+WYYaOzvWckajLrK9ojy+ipv4BoVIwzcolkRKj58lGvsetuibTKf5gBCslSks8WUMNPVLZ23NgcTcn0Ulxf4Od7fd3IlaxtkCpw+3ZTdbOMhGepptfJyv76P/0fVi6ys/OrtBMQRtTOYcKWRX3YZ0wmGC1N0/UWqMcTlKUFmMcQkAtUEghyXqC//blr7A47G3J7aanT8OP/mIr+0gSAAYKg1GCFc+nH3e2XE0jpxkVASLUd90/fbas04xhPcip3REWLaWEdoAdlgghdv0mvX1+GWMck9us6JVkq+GoBZpvfGGOLN/7N3S/wZwQkolnn2bspmNpNcF3sL0PeygmT/eIZNiMppiNCr7x+RO8/9Y8SWdIJgRZqPZlYh+G3K2bX6fPIn6x8drbXkYg8E2T2F8mbq4yGr5w16+5J3srfEZ9zWq2Rm59YvsCCMjtvaMbDoJHFb/ysHFkJPZk4qgRO8IWhBBMnj2LO3OauZV5xrZbpBqHcuaJ25G6X3zcfrj3Y5teOTuJ76tdzdleOvztOIhhwkGDRgXsmLgixNaeSS1UDNPyrhNXKQTngpN0bt2gLEF6BqEkzlhuqTEy/wt8o/wVddUhNobAOaIiJdM+vz55FgcPbWK6KSlaHp7nQvF9anIN6yIEEWBQLBOpfyQxv8XAThxKLrOLsXAdQGJcA18OEcRY6jijoLTo8BaNY69h7NfQcmzrdXbJUzZMSVi6VrFi245x14/peTGhixBBDf+OKX7Tn0CKLkJZFpKSvLTUQokOfURtFhl3IU+rAlEITJgjrSIsAoR1bNaj0lVkyPxUHUNl539i9CzjwXPc/LsfM1xfxs9ymt0awgJcQyoPm40Rvzl/z72STWxO02+sXcDYETwt2W7u4qs+0fok6tdDuuFFhBKMP/c6PRIwE5WEC7BGYPMWzl8hjjLCeBKxIa/MC4PvKYRSeGlEJ7m2Y2DxKJxEd93fYQf/hEPUEurB7t/iu+3ZCSGrzxqAnVph6db7GGEIjaoaMBxYUzFjYQNbaozNaTQNfi2qGrGN3xhPS4rSstoZstZNOT66jfmtj+C2yX5V2UOrcXLTZimEWAq0EGghsc6hhoarrZjUjwmTYt/906AU+E7SpTJwCJTC5bcHAmiBK+0u5uUgDcdaNwUBJ6abhzo/m6/xSE2e7jJQAar/rjR5VxFdusm51SFlYXAChNaMPjtOsMdz+2HI3XJTOS57KoLcglA7mjFlNJkusWOOpVpO3I3v+tzc67dQSY+Z6DQ3hs/SyxoUNj680cketvqX+iuPLH7lYePTZiT2acFRI3aEXdhkB45PwuyLh9/pedLxKHOz7gf7sU3zSwOuzncJfYWUcocUsNaqI4yiKGI8XUP4iu1PzoMaJhzI2W092SqAstzQHeQU5W25mJKSxZV434mrc46l6wUtWWNYy8htibUlUgp03aPwJnjXvszvpD8myBJyIVi54mzRAAAgAElEQVRsjPLeU89zrTVKP40feGK68/NUsk5cipSjpKbEFwLwsLSRrksgf8XC8CucbIwdqvnbzljkJkaJGn999d9g7QAhRgBZhdRajck9pN+hNf5L/P7LW69xpzxluynJJjuxueRfmGWMglr9GLD72Gjho6XjD+eew3CcQZFyvbdIWt4g8NqIertqxKzBCUnhOphbE+jhBNJVr+iAQktuTte5ORKgNtgGALOaUrseEsUhwimQAlwJ1iLKHElO+WFM8Z7Df/Huk/TN73pM/w5Xy6uoYB1nm+C8KidM9AiHPieuvELmBCbSpLUlynCVaBgxlBbrVzLKorRoJ1BFQBHGsMG0ClENYYoNaZAqFblNtwYW93YSHfA3197ld0+8QMMLDjTA2ev+zospsniU0i5iS49m3d86f845UtNhLHiGtj+37+s6Z3HXz+OJOsolGAXabBhuyEqi6NIBhe/jrEKJSgZ4pyTqboX6nbLfWley8NNb6KwkkpJSgjYQZoLch7dnE4KFD/jt6ef23T/NNVgJ0jhMWlAOUlxhsM6RNFcpwpygVqcdnNnxd49jv+aRmjzdZaCCcxB3KZrPM3hrgMtMFXDd8HClxXZSBq9dQezBLj8MuZuv6kjpQUvCGrjSgKoYG+ccpcsQTvFmM+X8hdcP9Ny887dw09HXIe5rCLqXrf6wKXltbJnrjeEjiV95FPi0GIl9mnDUiB3hrvgod6Q+bqwTPPrcrMPCOcdb799C93LmQoUpLUMtsdaR5SWlqSwTjo0HGFPJZt760SVeRRDONOhHi9SyUaSnUe0QGeoDF3KbuFfQ6GYBZIxlrZdhN6bpQgmcdRSlIS8NN28N9rzWNifZI/WQSa9OZqq8Li0lgfIoCsN6XiP54n9HXi7xT90l3leKwlm8sjzUxPQg2JJ16lGUFFumGkpIpKis5mGFthfzzdkvH/qa3WIsgE52lbaXsJbVKaxFCZBKgHI4I7AmIgg7MFyCcnpfecp+piTezAlU3WACb8+HwWZDHuoGI0HFdowFf7xTNuQFlC4nNR1qsslQfoPX5lo8a8EvLbknWW8HOCGI+zv3S+0wx8UDhC1Aq6qpqw5CNVU3JRQl5qd/ix1RyONn9viUO1Gzz1Lc+l3CyZ/jvGUQA3CaRucYxy+fwxueoJQO6yoGD88SZB4SR9c67MY/BEhbBXRbnYMJtz6asw5nLEYZpLw9sLibk+jQFAzKnNXOIgtJl0j79xzg7LW/k2Yl3UGJzT9HdPzvWbcLJFmLVr2B9iyp6eDLOqdHf3/f/U5ga+eoHczSMjnr0YB65lWsoJRgLS4fUpp1yKcxwwm0t8c1co9Cfbvsd3W0w09uXeKlmwEjiSDMq6SU9bbj0lOWpKVZi3vcWosJhiGFcfh1saPn6DWhU7eMr0tUkuMcdMcWuHHybeL6KlaUSKe50fs1zzdvm6k8rv2aR2XytO9Apcgo4nVKr8ageA6VGtRosNEEgXAFMiixg2JPdvlhyN229rrcFaKxcWwvwxWmavYFZLWEvhvlopK0tHfg5+b238Kt/waHNjrJb/bo//DylrmLrHu4wpIu9PjcokdwxmNtupLbfhKyyZ50I7FPG44asSN8LLGLdRKKSdHmlZE5nh0d/0h+dB5HbtZhsXx+mdn3V2gWFgk4IUhCxfu+wqlq96Fqghy+pxhNDSfmYzIcT4mXOf90h2HYwc8i7GqJGNNkenCwQm4b7uYCtlkAdfo5dmMivXl0hBQoKnnTpRsdzp2d3HVet0+yBRAqD7bVSluT7PoEJ6afYdY5vvwIG/jtss5IS2aiFitpTGZKjLMIJDUFvzN78oGbv9zEaOmYqo2ymg233kN6DmU9lAkQXh8rE8rC7JKnbA0ziox62WDspT9FpevoWo4IG4yOT9Na/B/3cDDcn1nZSzYkhcdY8AynR3+fonac19avcykz1Jv+NulMsUs6I4ZrGGsoZIQsUzyq4Q/OVf9QQInsL+D+5t9gv/vfI4+fvusxCwKFzE7C0lP4tVWcHBIOPc5cCDEbLIxAICV4poZ0GhtYgkJxrBkwtI5uP0N6EpcqpNEYlW3tHwoEFoc1liJKmIie3zo++zmJJmXOQtyl3JD8Nb0AX+l7FqJ3yunSrGS1m1bDDDNHevPb+JO/QESrrCd96mHERL06D/eKn9jcORI64LnOcd45dok4LAlLH2WpAsFFQU2GYH6btaHF1+6+CvVNxGXOzVZBOukzMjD4ZcVw9ZqAAK/vUy6GXLjWJ8pbFBjKGqipAtmoIhQcjrdmUv5wtYkwjs7kIhfPvkapU/wsQpoI61nWk0u8tfS/8uqx/7piVx7jfs2jGmBuH6gUKzfIi4zEWW7VGrw/cobPXs8hMIyUksiU0F2BIkU4h3Sa8nJ/F7v8MORu2/e6Er1KONlGFz6lychEn4HxuJk8x0TYfOzPTeccyZvz2LREjQQb95FhvT8kMdA0ilPnBUuJQE2VyIblo8gm274D6vsCL1qlsPtnez6pRmKfRhw1Ykf42OFO1qmZRJS3PHqp4Cdunl+Fa8yMNQ+cb/KwsPe026FYRYlljoWG1WGH+fgFTjRuOzo9qqlVfrOH+ekNmqmh9BVOgrQQJSUvDgrsiM96qCgtGFsVttO3evimYCAckzc8zsYvcu2pD4mbA3KRoBKPscnnDlbI3QXb2czI86hHHmvdFK12eok5V7EPgScZxPmWPHGHMUFWIAUHnmTfjzX0YXCnvXKkA042fNKNJgmXI4THM63jD+29fCk42Rjdeg8lJJSCbtKntIp4oJHFzh3OzWGGnR/w/HWPsUSRoIiCgPpkk+hzLXyp91yM32S49mvI95MNCSGhxoGkM/NLA9661GNWBTRLyVCEeKqkZQeEbohzYKmhxSpK9SG2uL//t7jv/JeI2ef2PWbbC+4RPYUUgjDJka5HLsEYR+ArfE/hZ5M0sgl64QKqaOMJQS1Q9OMc5xxZlFDvTWNURl7roPMIWWqQBVktJayN7Dg+de3jCUUROzynKgOV0LKSxhhn0UphncOT6kCF6PYhhHOO7mBjmKEqIwqbnmRw+Tjjx3pkNqHRHOHLp76MlAdgdbbtHE0MW5xbepaLo/P0/IRUW5SF0bjGmal/SdF+ldfWH3wvZctp1Rl6rZ3lhx1Iyus+qoSwrQhrEYuDHmUssNd89FxGEeX0/3/23qxJrvO88/y9y9lyrR2oKqzcIFomKVKibNGWREu2Z8bh7nBPt5eLmZjwzcyFv4HnAzj8CSZiLmYUHTHh7om2e5kZW25ZNiXSliyJBBeJJAiQIAmgCqiqrMo9z/Iuc3GqsnagAAJcpPpfkAEU8uSpkyff8z7P81/yjIUoIkgCKBw3Tl/E6JR4OFGadYQSKUANQ/Kkv8tM5ZPW19wPlsd7tSb/8NDnGVWrmFGPgdJ06pP8Utok8IK2L/DdNaJRH+U8aF1q/5yD3GJ//F38ZLDrO3Q/6G77GjSyQKqARJ7m7fVZAn3qQG3egy54zNoQsz5CVoNxEdZqjzDO4SWkAhrG0+gounkEpzNkzX2s2WQ7NaAu+hA99SN0sk4cecIgOnK25zE+mzguxI7xqcLeqZMfKOz1CGFBKY9xln6Rsbwi6PYyvv7snfNN7hf2drs1yyTyR2ixgijjamkoxaurl4jU/0DRW/xIAZm3w1aXTxSWUSCRcjOrSZVRl2HmeHhQ8ONQbuqwBEmnRzLMKYTFiwCnQia7J5m4OE2/2SNv1tCmzuL8c4TJ3YvVt3CQhm5ST+AJsF4gnB9bmdtNh75mPSIvHFlmDzQeyQpHlufM7HA727oOH7dT1EH2yiCIVYD3nr7ZYCo8Gq3zbt8rVtvcMC89FZFSked4dO5LxHEwLvS3mhn1luGr79aIDAxDz0AU9K1l7qbHvpBRf/48s4u3n3Ad9vA/iDa0hTtRZ8a6pyHISk61F1JxkMqAddFkCkGAQpCTyEsIpUFYSIe4V/8eOf8QQki8dwcWg3s33IUSOMAXDqkljVq0SXeTnFn/Mm/P/S2juIOUAYFOCEJD4ToIKsjBN5nZyGifeJm02qIIhoBmpv7wvhwx31c0lqfIBg6zpeeLLNQUKimn07HW47iHvRvRhUpz1zULQzmm0wEUprSL37qO3pUTKmXnqQDtNUurkx2tU75HczQzajA9qtOJhhSyIGh3adYfRc3/GkLI+6JLOcxp1XuwtwKc8YSJpBpFCGC+3mRt1CdPPaObEnO6pBp/o3aKQK8xWGgznGgTmgYy2jTh2BImeoh8fZf76yepr7kf2uKt7/WgyMhEA6erJEmbUN5iVfQoxHlir6iP2jhrUGGyrSUTAWiJLHq7vkNbuB90t4MaNLdGES+u/ITp+ODmwIMueHxq8MaVdEQPnX622cyQGGspgNhDuEn3tisBopp9bNlkOzWglYkl/PR38GJEkdVwuSZoqiNnex7js4njQuwYnyrsnDpBuSh6SxnYlEuUlVhgIHLS3PCDV5f473/r0Y+FprgzN6uqVqmqF5B0APAEm9QlSz9/l3+6/r8x/PC/I+0u3tau/V47pFtdvqAeEfQz8twidDltElKQSqgXjmruSCsBWgtUt430GisVQnikAIRCBJJ6R+BHCS6agczd8zU6TEO3pjtU9QQxYZmvtJnnGgaKZi1EytKZszPIeP3S6j7jkTS3pLlhbSOluYvu9vE7RR1mr3ynKdIDeS9V44m532U22TYEGTczioznl5tEBvoVQAgCr8iEZU3lLKSK4cVlgoU6M/Fj+HiRDX8NoUfMNqeZiPbTYe7u3A+mzuzUPTWbCXKgWI0ypjJN5CSgGIk6CddJ5NsEqgWEm1lJDWgtwdoSq7XBuHh0vkCKYNw5Xpi7sGvDfdM6TgSSicITN2PiSJUhxoUlHi3wcOd5lh9+nZHqkZk+caywnQXStWeRnGc0JQjaD2PXlxGVnM8/+TCPzl/YdX2WVvq8+PJ14iwiV0MKCjQSP5JMjKZYn1mDSsF0VNt1r25tRK/d6vHq9fXdjZtmTBJreoOCKJSl5mfzLT1lIyMMyume936f2YT37tB8vIM0R0KHTPQUDPoQTyG/8M3xvz9ooz7djBCtZfz1Gwfm7+3FoU6rA4cfgQg8M0ltPDWv6pBKfYp+mJFllq/MP8bj83PYtSEdvU7BECctkQj2NWgQAq0icj/Y5f76Sehr3u2u8h/evUg6sNRkTD2QGFVwrbfOC6//A9HsWRanFm97/ba+11nX0diYQokl6jOvESTrIA2mApefuMT5q08RdTWFlEjvUZtaMWc0OhqhGmr8Hdob2XE/6G57GzQD076rvMn7DRFrhJZ44yiAonCozYmyFGVj0AooFKA9fiTxI0FPPPhssl1rYV1jmv+MlyOEmSZQUBjPYCCZnZyjb1bumO15jM8mjguxY3yqsHPqVC6IZVeZrMyOEsLjKKcoznlurPR4670Wv/TwzAM/t+1u7jpT1deR9DZ/Uj5AvPebhg2eoVnD1H5A0/8RUpSdwL0BmcNoyAvLl++pQ7qzy9esRSXVwmw/YKwQCOuJgagWIooc63Kc0OAlgbQEbG7YhCjpK3mBiEpb33vB7TR0QVMxXCsoUsn8RB3vGdtfA7R7OXNTCe9f7xwYLDozEbPWLo0c0szgUj5Rp6jDdFKT4TkWak/jvS2NNg7g9t+v9zpsYrXVzDiTV2gMBKPIbxsiCtBSkjmDiQWiNWT5nTUu3urtKAAipiYsT39u+ECu65buad55Tn3QIx4mSFPgnCNXlrUgYy2QPJf+jIZfBxWVduphAnENei3Whm9xcfgCueuTqEmUCLE+39U5Xpi7sGvDHbZHyJ8s40eG1Dg6aYHLHaFxeHUCX/83PHxKMNH0hKrKoD3Jq8O1cnLiPEpKpqceOfB+27mhmm1WqNqAVtovNX26QOaSie4EwXRONdi94cydIRpFXPpZG2fE7sbN+qicdksYjsqpu/MgvN+eJtfK0IFiD0XXL13ZNmexpqQhTs0jn/7mmJZ2mIkLJ84iv/CNfRTQnRt1v3QF90/fxd/m+AfhIKfVKI+poJipVfZtyAVQDUNsntOUlXLzPFNBTyXovkZ6hRUG7TdfV1aoiFBjA4t0+91fP059jfOe71y6jL+RUM9D8GAFVKXnK+n7nBlcJeGHuErjttdvedhhZXVI9dYEQXyD+uL3kSrFFlUoKghp6DVW+eCxfyQpvkilM1lmtDmJMxqhLMnEKiIIYdQti/OPAXeTN/kgoDfvlWJlgIt12TAVpd44EIrQGlohbAQOIRS+gPYwpdK8f067h2GnBpRgFResllmGmwu2UmWzqDD+SNmex/hs4rgQO8anCjunToFV5UPViPL/cjOXyIOUAiEFeeF480qLxx+afuATka1u7n+++l2EXylPhHJh37JiD1RQuo35HF25CekqmJPjY2zl1Syt93jjzasMg+E9uS/u7PLFkWJ6IqHTzygKh8cRCIGXHh+osmg1BW0JXS1pFp5Epbvdj5E4p9F1iZ65tw3K7RzjpBTouQJzQ9Mb5TQrEXozg2hrqnX+VJOXf3br0JyfZi0kyy2/8tQ8lSj4xJ2i9tJwBsUqS4OLvL3x/+6b0HxUOsltNVl7sNXMSKxCWbDR7p9LBMY7jAQyw6uvL7OiJZVE44QlKyxLaz06P854/gFQf7PMUh8UPLSeoq2n0Ipcg8xzYqs4mUta2pGrCHwI3pV26s0ZsAVeKd5xPyGnT02fHH/+WsTUxAn65tauzvHMRFxet8YAXwkofiQZLPdLq3YlGNUCbkzGLOeOmxcVX//SGebmakycgIW5+pEmJ3tNNao6pFKbGjt8rgz6yFwSG0GZ9lvCe08vy5jpzOIKz0Kg0KnFaMco1gT1kHYvp1ENCZuSD5d6mwUXhIGmWQuJI72PouuXrpSTrnS4K66AlQ9x3/v3yK//4e5ibIfF/FEmW3dz/IOw12m1GHhe2Vgj5GD62v5IBkHlmQXMCymV3jS9+i1UMTUuwpAS2YgY2taR3V8/Cm6nBX7jw5v03hcENoTAg4Qwz1E9xxX/CFGQUpNtEh0S3eb69YsM2YoRFqpzF5Eqpcib5aZdgLAhWTbBsNLm+rnXufDqNxE2wgmPjkYkE6sEyQDyMm+M6PbRJPcLR82bfFAFz9a90nvhKnKQox144VBeUDWePFBcnQKHwxmLFJKT9TrffOjRB+6AvEsDKkcgTBm3sQkpwHpKHbW+c7bnMT6bOC7EjvGpws7u2bQKNh+sokyEZefUSeI36Tu9YX5oBtX9xsONWX5j4QxvtkoRgvObnSshCJRGCcmYGCRNubjugdKSfpaR5YaZ+r25L+7s8olAEkeKKKyUQcnWIwc5biqhPpuw3kmxuUDKkE61z8m+JrAKLzwIB17iCoWQOZXPT95zYdMvMuxQoFWI0yASt6vYCxuCtulyOm+SDe0+fYZz/kg5P5UouKfA1QeBLRrO6ugSl9v/9bYTmsOKsaPSUw/SZB20AdxqZoyUxarNYmzHSu/wSCFQDkaFZWA9QR1uZR0ya8ouOoJBP+DFNz7kD77x+H0tdsNQcraToYwni2QZHIzGJZrU5ESp5VwmCJUtxyFBUhZhUQXaK3ROT9EVN0nk/ntVCLGrc1y4dB99sf9IEx99gSl7Dqslo1iDEEx4P55Wb4WLH3VyclBG1S6Hzyrcag/KTnskd29ETcJCL+DRXko1dwjv8UIwihU3ZysUiWaYFnztS+d56PSQn7xxk8I66tWQQEvyPW6Z4MsJVzqEibltjVAYl/lT7ZV9GqGdFvN3gvfuro9/EAQQ5iE+U0SxYrLZZ3V9dGRHw3CxQeP5hzj/5q/xVvLXDHWLsKihwwgasvzzfaQJH4aDNK1bWuD52SpvXd4AAyL240vVzPqEPqejmlzmEX7Z/ZihEETNWeisHnj9zBBUplHVFYJoHWOq7Mz+88IjvSKlSmdilWL6Jab1I0jtUOFm420zb4wTZ0uN4MeEo+RNPkiEiw3qz59n8MoS8YdtXOZAC4YVzc3ZCpVayCmT0+0XTE/H/KsvPIaSD57+tzNSQQcJeA2iAF92z9xmg1dKceRsz2N89nBciB3jU4Wd3bNW0aMRhIi81EaUlAJBoBRsUnPCoFwsP0oI593ifGORG706gyJDSIXczI/afihuaqycRrj9BhLDPKfAUo2DAzeSR3GR2tnls+2sdITSkgA2s1JC6l85w+8slB39NCsI//l1ptffwcycZ9SZw+Tx5sLv0WqDZCEn/KWH7upabJklLK2t8bN3e1SWGxivELIsxNTctu107kpr4F9/bJ6oiPZ1j1c3hh9Lzs/9xlbAc+6ONqHZiY8i4D9sA/jUhVlOVhp8aDf45WrAZBf6W3ndHoxzJCpADiwdJRjWBKujLtY5tFRoWdreZ7Lg2lqXV68v8fTpj+4AuYUJ4+lbz0iW9/EO1iReh6RBQcMUTIQRNE6WdERblDqmuIp57EmcvYYSB2lKPM4oMpvx3tprrJkfkrvBuDgeFSNyeR15Zp1O93dQ+XZhuzWtbrVHd93YuVNGVYimGcfUajVMu4/KU1QomZyd4Iv9E0Rra0S+DL52UozdT89e7+EX69zAk+WWX3poignb5dX3uqyPUkZolNpN0fWr10uaYbW5O/S3/CXLvz9EI3QkbOaP3evxnfe88eFN3rq8wbBvEF6ilSCJNVJyqKPhUxdm9zUdwsUG5xZ+i3h5jivD79DjJrkcImXAVHhEG/89uJ2ubi8OCtveqQV+8sIsw76BYJPNgSA0BYEtsFKh/YguNTq+ikz79EzGbJSQHHD96jIhQOHVCKQFU27f/I7zkYBxkjQMUE1HuHEVgmY5WS7ysgiLqyXt9GPWGd0pb/JBI1xsECzUGb2zxquvLzOwHt8M0YHCFJZ05GkkEc/98qmPpQiD3Q6vTT2LLGZx4RLelHTjLYfXQAv65ujZnsf4bOG4EDvGpw47u2erEyPCQQ08SCEJpER6gdnUR1Ticoz/cW7Om+FpJuPzjOwGzhmkiNgqwrz3eGEQQmKGJ4mK2Z1Ny1JQPzLYyBBWDn4AHdVFaqvLN3xlCbM+wg2Kshg7UaPy9DzhYgNgW9Px7K/hvnedIL2KnlrHuiau8MhsA1X1qOf+4K4ezqujS7yz8Te0BtcYpENcQzEdTdJpPYEfncEPJfZaaQcsqnaXFmC9k+473seZ83MUHDV6YBzwrO48odk50foo4eC32wC++PJ1nnr8DK10wMvzA746rFAbCoahJxOOyElmbIgPFO9HAW0zwjpHuENIL4Ug0Aqben60/AFPnVq46w3TYY6GZJYkUAyNxe7QNXpf5t1JrahogZ8+D9m70Gvt0i1F0wFy+b+O4wO2kOaGbj8nN+VG9a3uD9BRh2Yyjw7KdUL6CJ9PIaINbPWHyPx0GWC8iXEm3V02dmYmEqaaMSurXXTsESqAMEIgxvfuo2HEk0sR6VpUUqC0ImpXyftD+s4zCiVSltfYKcikJModcytDbp5IiDpLuJdf4OT6Mv+NNbTkJFnjJMmFLzHz2Pnte28zH4zDzA90WGrBjqgR2vs9mE7793z8d7urfOfSZXrvCzBA4Am1YkJV6A0KpIR6NWCUml0T81Mnarx6afVQB9r5hS9w0j95JOrubX/XI+jqdl6XvWHbsFsL/NaVFjhBqBWpLQiVRvpy6mnwKGHIibAiJpApqSlYxnDKGeI91y+JNLUoom8TvJNIYWDT/GgbglhDNZ6g/sV/Ca//7Ejav48LDzpa5E4QQrBwYRYmk23nzMx+YnrjnRlunZ6hon4Fpr+NVy1MUUNJTbUq6JuVj2W6e4xPBseF2DE+ldjqni2davP337tOu52XDzoHTpROYY1qQJq7j3VzDttOdp3sQ3rFTQqXokS50XMUeKCiZxn2v0KnZ6gm7O7uhgo3kWK8QB3wFbwbF6mtLp9ZG+LT0mhDz1QOLBh2CvPF+jLabj6cFxfu6uHsvefK6utc6v4FliHpKMbmE+jAEldWkeFLbCz/Oi49BbmiuKXoznepBCFPRmf49kvv79pQTTZjTp+rkEwoTp1N6PSyTyznZwtLK30uvnWL9fVeWSxoydRUnacfP7HvQb0z4PkgaLGf23+34eC7NsOh4pW3bh28AVQC00oZ/azP73/+cf4++oAfiME4R6xKUOaIzTXIH5lk4+2b5Mai1QGNDAdSCdZM764zfraK9IMcDSfiUwSRZjrWdDIz1jUKBFGoaESawIN6/veQorNvMtH0bl98QJqb7Xsq6iPMFD7oUmQVWtmIat2QRBopywLf2xouWMHrFcQODec9T12X3+XJjR/y4mCOTj+gIjK01pjaNEMXMGcdj60OMdYTVsOxvtMs92FYIEKJdaUj4vjuFoJcS+JRwYJXTL78nyEbjt0NZ0wOG2/CK+9D/Q9h6/u7Ix+MMN5/ruboGqEDp66x50k5y4LJ7ur4W86B/kZCYENEXE6JUluw6nucTOoYt0JQdzzzhdMEdp44Dshzy/dfvn7o1GnLgfZ2cQpHwd3q3vbqAndia7raG+YIARNBhVXfI7cGTcmZEHgMARJHRVqkEIRS4YuMnneEUWWXYm5mImF+qs6N1dPYfAYd3cLlQWlegkAiCQNJPUmZis8zMf8cnHruyNM97/2RniM/D/gknDNvdy7bDq+LuPy30FM/IkjWiaMMoaJ7nu4e47OB40LsGJ9aSCE4VZvkN58NeOHHHzIcmXJMH5SOR8PUfuzW5VuYTS7w7Mn/hTfW/m/W03exrpxeKRkyFT/MEzN/QNFcPDCv5skLs3x7o3vfXKSEEASzR+ON34swfyeWVvq88vZNOsl/gqiNzyextiw0hddIO0Oo15iYeYO16ws45ZEjyaKa4unmaa681d+1oeplGVdutnhrZYXRiS6y5piZazLZnSAbWIYjg8dTr4Q8/sg080f8PT8Kllb6fO+fLpP2eyThdWI1xBYVVq6d4nsbXZ8iLWcAACAASURBVL7+3KO7irG9Ac97cRC3/3bGJmN66qDLW8srFB3BezfaDIYF1vnxVLVRC3e9ttbPObk6JB4ZuDWgcmvIv56bYfj4QwyeUVS7nmliVBKMDVkq19dorQqE2n0OftMkRyaOPMjvKuNndXSJiyv/9nC93Oz/SDCV4FcGzE4mFMbhSn8FAi1xnQx1osKgsU7hBoSNKs1wt+36bkv/Jp2+xZKjoz74Ciq7QFH9AcbHOGdJuwU+Ke2ztQqwRqP1YJeG816nrlsb+IV0yFfjPq+5M6zbhGHhUe0N5k5M8XRPI3JLUQ2RQCgEMlT4aoDr51ScZ7RZYOyaEDpHFbgweheRHVGTtZkP5lc+oFOrUShL4DTNrFL6Cx2iEXLO8kHrCsOsRyWqE9iTvPjK0v4CaFDwonqKrw5eZiHwu+mJh2iQthoP6cCWzoGBI4jXEDIjdBHGDymmfkoctxlg+Fm3wmRyikXxNK+/Z8gQNOuLhzrQbmn69n02h01lD/h39pXv0ko1We0RImmZFkMIYmzSxHV7yB/+I8HvnR+HZR+kC9wJrSUCQbUS0B8WnEwarGcDhgZSqYitYaBiJkSHCdHfOhMaRcZybYIiqbKTELw1Pen2M7L1r6Dnv4OKe2DqeCtR2pBUM0JVZ1Y/z41bg7LAmFm84/Mxv9EdMyu8cQgt0VMJlWcWxsyKnzd8nM6Zd8LuwvAMYfhVgkqrXP/ucbp7jM8OjguxY3zqsTBX4/lnz4yLmvQTpBLsxGxygd849b/Szj5kI3sPvGAyPsdEdLZcNBMO7br9RvJJukgdXZi/E1t0uIwlook1hG9ghcR7izEOKUBKiXQNkqTDqckCk86QjRy/PX+ONy63xlMcgE6asTbqY4VDG0293cA1Byy7dTpTfX7lxCOs3ijoD3N6w5xXfnaL929070sg9mHw3nPxlXfJ7NtUzr2Cr3Sx0oGTVIYNRree4eJFyfxvPzne3Bwc8Lx9vNRuc/u3us5pq0296xHTB09egmGIuRnz4ntLZJkDX24+J+ohxnoK6+j0cwItiSNNrZ9z9noPZT25luTSUdESszIg7mbMPn+e8Mz+DdXnHpngWquDHwnQvnwibBZhQoGdGRGo3dPZ21E2j6SXa/8tX3z6f8J+7wNcJyOoBoiwnBC5TkZ3epmlz71F/+bKoe6TOy3914fXMAxRWiOKRXznywxygYgFXhQIESGcBO9JbYFSjtCBNRKRhyVN7B6nrnuNKxZEzry/QstVyJwi6q+Qd86Trp0h9WDMCIEgCCRJopDeoyUI65luhvsmhImWVALP1Oh9qB1NkyWEZP3JR3jn+k/ohh9itUB5RSONePh6FRGeIz/7NeJ2Ov7s3lq6yE9X/j8KcQsvDHiFTWcoeJap+nZO47gAMg1es48y3/5nxM7p0SEapK3GQ03GBMkNqnMX0VELpEXgECrF2wDcNM5ofJKzPLjIjf5PsLWEqJpgzBxq8JVtXZ+Aira0Vtusvfc+Mw+d3fWet5vK7p0sLF1+n4utE6yrx7CpQuE4bTIujCxBocsR1sCg/+p1ql95mHCxcUdd4FZR/flHpnnt0irpyHIiadLXKe3cUEsdFZfxmLiCVB5tDJU8JQ0ifjR/nq9bs++Y29OTiPVbAjHxI2S0hg4dSRhTVWfpLz3ND1c11n2wj8J5EPIbXXovXN3UFgdl8LFxFCsDei9cpf78+Z/bYuzThP2F4SezrznGx4/jQuwYnwk8KCrBvQYqb0EIyWR8jsn43CE/P7jr9km7SN0tduohGjOGQlowQRkjIEojlcJ4otCX9ruiT6iLkrKpLWluxzSeLLd0+jmDLEd4RSBKwxA/kAR5yEyi2FjPeW11jYZMqCbBoXSk+421jSHr6dtEZ17EBzkUFSh06YBZ2yCKXmT9hmRt4xFmp8oJ11EDnoul/rjrXCkKvllU6dU875+H1uT2Obi+xFwLUQVYWRrUKAnGOta7GY1qiJLgXFmMRYHk5OoQZT1ZKEvak5PISKFqAbadjYObd35fllb6XP9ghPYKa0EYWUYyaI+oOeRsTlsPOVPZns7eziFuYa52ZL3caL5zoL6xf3adK2dfpFApiby9++SWpf87S5f44bvvEcoK7Y1JCuPIraFZmyaormBdCAiEF4RKkWMgHhLmZ0gH04xcfu+NnQOMK4SAGTUEBUtxkze6UzxWWHyk0FJinGOQ5vQzjw0NM1ISFxK8YW5q0/nUgRQeNTToukMNOqAPyUrco8laHV3iovt78hlN3E+IRwVWOFajEdfPa/Jb57CXDerdq0xNJEyfWOFq+u9xcoR0DaTXOFdAtExw4jukbU3CtomPEIJqvcKGPEVLbzDTvXqoBmlv40HXb1Fb/CeESnGmijeaIL6FkDngsNaANIzcOqW/pwdhwSW4cAmn/xo6v4PszkBnDV1kDH3C6B9fwr0djbVcd5zK7riPllb6fP9nbVLfpCItWhRUcsXJboWR86BHREEBxmLW0nFxMrNQP5Km9fGHppmox+PvjTcCIyOK+ojPp1dYGN1C5RYrFav1KV459Qi3ahOHUtO3n4UnSdPnMPomlYqh05W8fNGRZp5qoo60ZnrvGb6yhEsNaiIa/w4iVIhAHrp2HOMYx7h/OC7EjvGZwf2mErzbXeXvb7zDysYAW3hUIJibrPKNxY+nEPqkXaTuBrv0EK4yttmVRAgh8d7hvS/tdmVR/tzF481IEmqs8xjr2OhmWFt2/ZGbVn4eKCS+LxGJo7pRI88d8ZQk1HdHR/ooGK0uw+xrEOSQNcbBmrgAnzUg7MLsa4xWvwhT23qRO4UuN9fnd3Wdw0oAvZyJruWJtwRvPO5oTZbMLnsrwBlPEElcBloKpCwtJYxxDFNDGGiy3JAbSzAoSFJLoSVeCKxxRKEiDFRpfVwNMK0hZm04prDuNPuYqiespj2MAWVVOQmbHtHWw13T2e3XGCqNFirMsHnESmt6vNHTtaPr5SYWz+7SNxJJLpnvUWTpkd0nhZBMVc5iB4a1tADvELK08h6sPkMzegEVdHCmUgqwMERyQOFDnjn93zJ79mHStNjczI6IdAvvK0enAd3GGMN7eM2dYSQUSNBekHtP7gxegPACbTRpaAmNJ+2O8EpSiaNyOjgwyFhT+XwV8crRNF+7JpLxGUQC5Cl5ZhgNHU5voOdeo9J+DGtgpdVnNfgbdGWEdtNj4xKBwGeTyGiDvPoDosE55F5TExWS/8rvIVXvQJrzTrpbpSj4RlHh6pMv0aul5NkESIGUOUJavAsQwuH1BgDWFuCD8lgyB+PBTINuYZKXCK4+i3AOI2OUlESBGmu5xNd+n3fE0VxMQZQNJitoiiECBUhODRSRc/SVpBARsz5DSIdsBLiRYXhxmeZCfWy0cCdN685G4igz/M3ST1myQ16OP8/7g1NERU4WhLSqTdayIWcqjdtS03c/C5t47/nJy1dJs+GhxiEHrZlmbYhZH5Wuuwc0Tg5aO45xjGPcXxwXYsf4hcS73VX+8o03cKsBcd5AeIEXntZKwV+uv8G/fuKJj6UY+6RdpI6KnXoIYeZ22ewGWpAXpabFOYfSPXy2QHd9crwZCQKJFNDpZTjny83yVh0GYw9m19ZQdYhM47TB7nIE+2gW40eB8R8iKytgFcii3CACXhVl5poLkfE61l8DdpubHBa6DILOK5f2dZ0nqlWW6VIbec5dhdWmJx86/AhE4GmGCf3UsFUTCCgnYXqZWt3ieopsMFOK653HKLCmdBNt1KIxi01oiRsUZbHDwW5vWktaaZ/MGMglfiXk9IWI39hsSmy9JpPvUzn7E3ywihEGvKYyOcto5Uu8+nbEV758d3q5nfrGdvYB3eW7d5+cbsZYVzouhoHE+dIEwgwW6V5/nursRXSlhVAFCIXxc9xKH0HrMxBe48PR39Ad3MD17yGE+zbGGC1XYd0mRDpjFFeopo6BsmU2vdwMqbcQCElr0tNVhhODEVEGQknsZEz2yDRuvs7k5Dxi9cNSE3YbTdaBE8kwptsfYT1o6hCtIoJVQnESq9cpojVcUUXoHcfdjONwRQ0ZrZIPlol3KJa2TE3iKEBM7qc576W7hZWAzC5hww3qowo9IcgdIB1lI0bhnUConPKdy2w37wHhsc4QyAhva3h1Ex+3ID/J0EfMyj5VlTKoNgn76wze/H/oPnrzSPdRMZxlvT2iUosReQT5iAoxiRHkEpRwFF5SOAijGBElSGnHxcluo4XRvmzEnROoncXTb1YeLanp2ZCsUtumpmfDe6KmH8U45KA106cGbxyyGuw9ZPnaPWvHg8QW5TnNCuLBOtNhhohrd6Vh/qTxURk2x/jFxHEhdoxPDbx3+NXrdNKr5BrCqbNMRGfu+yLsvOc7ly7DjZjQKQg8SI9wEKYh5obi78LLnP/S4YHKn1Uc1ZJ9L/bqIdTgKyVNSLcQto72CuMK0AOsSXDrX+LEdHU728h7atWQ9W5GoEtrOFFKnzZnTgKUxxcCRqIs0gLQB+S53KvF+J2wOrrEVf13yKiHR4IX4GVZIwpX0ic9SARDc41idbDPWewg57ZidXBg17kahMxXG6y7HrWex6wNyHREFcVMrUKIZiAMftMPQVWuk8z+GBmuoQNHc06TD6YYtZ7F+CmELd3+GrWIeIfr35b4XsTlcn/Qpq2qQyq1KTJbkOYGZ+B3TzzCXKOy/Zr0EtH8d8ocI1vfpKAW+HCJaP47tG5BMfxqqZcbXKbGBELpzQJFHKCX222kkJneAdM0T164sngXCkexy30SoNVJUbKcHFrjaFhH0zhyKejYBdq9RXRtheBsD6KQga1jsBj7IRdX/uN++lp6lVdu/J88qX+fmernbu8et2mMwcr+IilzqmxehAE3J2qcud6hljsKKXCiZIEGDvIEXn244Fotpd5L+a3aAjfXCpayAvveGur9FlPhr/JkaFhoL+129NujyTrIwTMvHHlhUUqUeVJih0mJHCGkxRUap7YbI1KUG3jnNAiLF6Nxs+ROpiaH0d2SRGC1JcgUVenIQ4H3knHAnRAI4cv1wIlyjRAej8A5QeEcSiiQhiKAURYTUHDSXeb6cAPvPSFgNt4nywxJZXLfucHuqWyeTWGdJ9CqDA1vLaFSg/QhTlKGayNwUkNzpvx49xQn90Kbv9/U9KMYhxy0ZopYjx08Rbhf57Z37XhQGFOeV9uY4QDlMprJNR4OrjFfqzL5S/8CufjYAz2Hj4qPkgl5jF9sHBdix/hUwC9dYeWtv+RKfJlunGKVR62FNKoP89jC799X29alQZvuDYdyAUR+e++kwEuPyiSdG4alx9ucqh38MP8s4k76ntthb8aXys9C53ew1R/gglUICmIZMFt7lJP6G8yeu7BrMyKE4KFTE1y72cNah1YSISTOuZIOJYDQl6J4D044QqGJ1P5O7YMIdt7SlKSijURgncQLj1BZeW42AKuRWFCW99IfEn1/kpnw0Ts6ix3WdR4UOa1sQCYsNS+IjUTVQqphRIgm0JJAK/LComvXiRe/C3KEK2qU+UGGpLFK9cRLWPl1pm7MEEwm4ywqKDfFblAQnKiNnRIP2rR5POQZ0WZ0Qs9L8nx705amBWLiRwg1AjO9Tdn0UbmJ1+v45j8zWjrDI7cyXmv26Ks2caFROsHWG6Q6H+vl1tLL+4wUEj2B83Y8TRvnghW2LEZljg497Y5gbscgNMssUkrOhYqTKyOqhUU6jxXQDQTvNCVr+SzkDURo6eUDztQm2Ehf2kdfk5km6tQYyhZv9f8LT7wnCKYqh37GQkjk098sbc/bK7uKpGgwQsmzmLBKf7jMqrIsphFVo7auOCMleG1qyMWgg0s9Gybib6+uUJMxE9V4W+cz8rxUfY5fr/6Mhd6VQzVZBzl4OrfZQBDgRUkb3gqaFz4pQ8u26MTjxVCUk25r8E5hTYyTRzM1OYzuFhYVlNVYaQmsQhsoVID3AVLm4DXelwU73oGXCGnAxUhiAi0xNgOnsbbKlOhywr5D1a+hpCop0kKgUsswz9FBn3q4/zPbOZUVOxtMcRU/vYBda+H6IL3DCMjqLbqTDhP2qGUx3vh9xcm90ObvJzX9SMYhB6yZeqaCnkooVgaIYL/Obe/acT+xFZx941aH718akqtbxGKVaLKDnbxJP+nwujS8Z3OmP3ybx9wfMXv6m/f9PO4HPkom5DGOcVyIHeMTh1+6wspP/g9em79GHkJsIuIcrC/YcG9z8fr/ztOn/uf7VozdXB8gMoUIPHufeUIAAYhMcXN98KkqxLYeXPdqO39YAPBRzC92Bk+O9RD+DH6wQOqWieKcpx8/x6MnLxx6TosnatQrIVlusc6hvMTjcdIhIrdp2Q1tNaAa10lMwngcNL4Gd28xfie6yE5dTSM8hbUZuemXNaEo/yOEQ3oJ0qNNgtOWawuv0HhzHnsHZ7GDus6DImd52MV6S+wVQgmiSsQtehRS4wae2WaFZi2k1RkRTP8E5AibTSCFxDqBkiHNpIGRLVoXfsZs+zdxnQyqwfj93KAodUZPz483WeNNW2FpWo8ajrCjNkOfAh4jNFJViDoBnCy/c0bfREZreFNHbhZh1jtyZ3DeI1yMCm/R+um/4/FBzlMnznJldo1uNCD1XVR/wFTjAo+e+DeYjRGvD/6CnBGVaBIlIqzP6ecrmxMdQ8QCG50U69i0c/d41ScfnOTlDx011R/fr1GkmMosj62N0NaThYrMe5y1TBjP0xuWixOwIgp66YiKDvnybI3rvd0UPpcaTGsIzhEGNYb1FoNmi+qKv6173M58vp3hudNzC0yZhNV2ylSeM5dWcAL6yoAHS+nOd6GlWW6G3KgVTHQmMMbTjYZURUAo1A6dD7w+/RUWn/s6Ih8euAYc5OC5ZajjvEfoHjJfRJg5AELmybIZRHIT3G5qpZCg1ACXzuPTGbpHNDU5qPGQZpa0XSeamiat3yIYBISyLPxEPoUPV0BmeFOeg1D55ndTY7MmwkOjFpHbdSprkieKJYa+RebzzeOU7xNYS2ASchvSzteoBbVd12fvVJZQ7DbciKsMFxNGWRsXfciNs6+R1zeQ2iG9pprNcOqDLzA7/bn7UpzcL2r63kbZYcYhe9dMIQSVZxbovXAV287K4vk2a8f9wlZwtr/1Pi9XT2EXrxEnLbzKsWEGXiLTBjZtMFI5G3GLi+t/wdPTC8xWHr+v57LrvO7hGbs7E7KKFhsIMgIVEUYTyPWbvPXT73Pu0S8jZxY/MzTLY3x8OC7EjvGJwnuHvfh3XJm6SR4JqnlcdtslaBTVUcZArXF54292ifQ/CpRTY03YuLO/85yEQ3iJcvdv4vJRsfXgYn25NAdQGqbmxy5ht33tAZoguHvzi8P0EHMT54/kNjczkXBipspKa0ASR3hfhle37ZDcuFKblFgWZ+o8deoMV97qf+Rg56PQRXbraiS1aJ4NdxXIEX6LNmVBgURTMVMIFINkjdGJDpVbE7d1FtvbdQZBKxtgvSUUmkoOG00YNRUzVNmY7BOsBrR7imoSMDnTwSYtXF4Fyo11FGoatZA41BRugp64hf9qSPCa3OVCGJyoUXl6flcBMTORcFopGu93aBQGaQwOxSiocLNiuR4EzJoWky+/iK+XIbaVikFpRzFSSO2xm1bwJaNMgA3QqkfFr3JNzTA/avAryzN0oiGFLAjaXSrqDKM3HW9M/UfSSpskm8QHFt906DimFpzE+hzjUkbZEpYaWpf0R1QP4SpUsufoZn7X/TrdjHl4UCALRxqrUncGGCUZ2IJaDg8PDB+qnNPVSb5YO4ccLZObnCTa2gR7bCcF5xBaoREUYoCNc9REdEf3uIPy+fz0SZ76L/+OF90s02kd5T1DZXECHBrpHZIBiU14eqnKjTM9wiJEB4LCW1ppn0ptqtRMbep81tsprWCe2bnTB97vBzl4BjogCA2F66BcBTX41W1TDi8wG18mDL+D0+vg6wgCPAVO9FBUeObUv2T2sYfHYeIeT547VjeGB1Lw9jYevIdOP8M7mF16huWH/oGs0kH5GoHQFFaAiRBK4l2EEBZBjvcSlzVxJkDIjJw+STzBk2mT5ugGbanQUm0nYHtPJU9ZrU/Rleeoux/QzpepBdMHuphuPUsOMtz44FQLO/UiLkiJbR3tQowo6IZLXH54g9rsaSY+RbT1AxtlR1wzw8XGgQ6mB60d9wPj4Ox+m/cSR/+hN9E6xWcRBOkmX91B3EN5jTEJga+Th30u3/pPzJw7vNn3kc/rHp6xW9EM01GHuvoBSmwAFm08Ez3P+eWYybamuPwqwcypIz2zj/GLhZ+rQuzP/uzP+Ku/+ivefvttkiThueee48///M+5cOHwScq3vvUt/viP/3jX30VRRJqmD/p0jwGwtkRn9D7dRUNchHsKI4FQAfGooDO8uk+kf69YbDTRSpLZglAeQOOwnkhJFhtHC1R+0Bg/uNLhbn3IpkuY/Pof3nZhv1ch90H4KDECOzcLo7SczNXDiNgEdG2GrgqeeWqWJ86c3OwU948kgj8MR6WL7NTVpLlh0AblG9hKa8fJg3Ih1WKGwCV4HLkyGJ3e0Vlsb9fZxILcGGKnqOSQB4L3ztpSE4OgMiEZiA6LRYNR3+KiIYGyBCKmGkfEkSYMtrQ125oXPwPN370wdiEUsUZNJ7Q6KdnN3vizKpZ6XFgdMswtqXcgHQpJpZCc6mmyhuGp+gaiPxwHBUe6RhLGuNxQGIHBlkUYAhxIWZDYAieaeDytbMBpHTKRldejyGbpr0/Rm3mX4akWkWsgpMTn5RRKT1eQsaYanKCfrZFmdVTQBzkAr5H5Imrwq6jiLNXE7rpfbWvElIN2ICms39Q3AR40GhN4TinJvwoe5+qK5aeX27igQ7DgyEZdmtU6EeALW7qhCLDSIL0msMnYPa5oDWjdvIRrugNDVvfl861eZ6F3ha+qgtw+RCYFVmjc5ufmhCDzVZyF6b5mpl/mVaW+IJCSzBoyWxBv0nOPqo3c7+BZEMcK21kgXXsWySmE3qYZVqKHOF/7I66N/o5C3MKJPsJrIn+az8/9Do8vPA2UU/Uf/fTmHanNexsPeeEoCkcETNycozr8dZbOvUa/vo5QBoRi2F9kdPMZtE7QyU1EtIFOlhFBHxV1wWvq+jxPzP0uM4FiuPx/MdFbJ4sqWK3RtszgynTIT89cADnLrfRLzFdXKdzaDhfTczzKF5lpgY+uw8zCAQ2mgmDxx4RRQSObQToP3qNFgBYzpPUuV/WLnPRf+NimG0fR9t6NcchehIuNXQ6mIta310be8++xnbvnreGD0z3QAtIqQhq8MuAkIEFZiHp4k+BRxJmiUyzdt33ArvP6CM/YgcnRLDOhX0GQ4XyVsLA0R23y2HD54ZT5D2ap5BHBEZ/Zx/jFws9VIfa9732PP/mTP+HZZ5/FGMOf/umf8tu//du8+eabVKuHW682Gg0uXbo0/vNxXsbHiGxAIXKsgNgf8FCTElVA5vaL9O8Vs5MJ81M1rq12yYVBK4kUEucdxjqU1czP1pidPBr17UFib2DsmKYXxqU5QHtlvFk+bFNwr0Luw/BRYgQO2ywsztT3bRY+StG3my5S26blKc1MXGUtHfDC0jucr8+MdTXDfMhg3VFJLV5HmFjDpmZFSEh6k2gVg9qzUT+Cs9jOrnO+2qM6Eggl2GjCe2ftrhyxUGp6yYAnnphkytdZH0reGVWohAFaRnuO7BkVI6yVDAaK2YRdFvUXX3p/98a5GfPMaknhq0xoinZKgcYKQSE8Ned4Jh0xN9nfFRTcnDnNdPU0jvcYDULynO2mifIEYY/mBkR5BScFqTWk1hDrAO9h1F/AO42p9XHSoqxGSAFC4Y3FdlJkXEWLEJCYtV+jGjcQMkW4BGHmxlOcvferTw1aCCq1kKyXk9vt+1hJSa0eEWaWD97psqol1USj9CK5maXQS6y3FVNxhPS+1BnhyVWPRrpALSunpu3GDT6o/5C018On7mjuipvW9jOBpUdOoKDtY/C+1Br6siQrCKgaSdNE9KXHO0+OQW5mjrHZK7obbeRBDp6D9iSvDtfK792ooGk8DycBjzw8w/xjn+PL/lk+aF1hkHaxJmYyPk0Sh3jvWV4dHJnavLfx4LREG0sld0gPjfWTqM4Mw8YGQmdgYt7w86RTS4Qz/4iurCOEwXuFzWsUnUeQ2TkePfllZpMmJDD41X9B56X/wPRogMwg1wGr9Sl+euYCtybnyG2BYZ5fnv49akGP3A4IWuvUL/4Usf5d3J6Jx8LCI+O1Zn34Ae+MulTCObSM8bnFW49QoszXcsGB7p3jb+Q9GiLtPsa2kU27I3jncsBGO7ujtvejNsoelEX9Vp6cu7kMt7qoIKYj1kirKeRTgAKRb51J+T8nQRYIlSN9SWXPhL9v+4DtczvaM1acPE+rk+27rhWlmQovASmOcsLeGHUJDOBDssiwNt/hc8uLkNSP9Mw+xi8Wfq4KsW9/+9u7/vytb32Lubk5Xn75Zb72ta8d+johBCdPnnzQp3eMgxBVCXyI8mCFQ/s9mwznSidxuW15/VEhhOCrT5zhb3/4Hp1RSuENRhikl0QupFmN+eoTZz4dBfkBgbFjCLFrs7yrG78D9yrkflC4m83CvRZ9W3SRRngAdUoI6mHE8rDL8rDDQqXU1Vxff4c4ryEROBchbYhVGUIIVBGiihCcxUtFrnrUh/NU2lM4WyCUhEixujE89Hfa6joPrt3iny6/jogVo+YOatUm8k3DjFoQMVutMDNxgbXl05u6n3h8zDQ3dPoZBav4dJ6X3sp5c+IqT3+u1P8ctHEeLvfprw6pNWMiZZmlTaESHBIpPNp5fKGxeYwO3DgoeIvyNij+LU50GIwEmhAhDFINwYUsLidoazcNGBzWOwBsHmPyCClzQl9Feo0VBu3DrQ8EnxnsoMAlFiUCpK/gRnNHul9FrDHeM+wXSAEqUFs+HBDyBwAAIABJREFUfHjnGfZzCucZ2JCJyR3U3OFzFM2/xqh12mmNCSROGIqgT+ASzqw/i0CykXzIpbm/pZAjqmoWrSuHhgPvwqa1vfQpQnhSF4KAUGxeF19+9BqPExKRR5iwIMhDclGA96jNjZp3DtHOOFsLaRZlZt+d1qe9Dp4TJ2Bhrs7qpVXMGyvIbo7qFojWdTrvtKg8s0AULPLm1WCzeL8+Lt5HmSHNLM16SO4MQ2PQUtKsh3QOoDbvbDzYlQG1oizCjHRk0mKVIhrOgIfQCk7PXOfGme/hgxxb1MFVQRp03CGM3uT/Z+/NYiS77jPP31nuFmtm5J5ZG3dSpEhRFCWSki15bLVkedwYjG30AAMbhsdGG5A9MATPg8dPtmHrwQYEDDAwNA+2oQZ6YLfHS0NtW5bcTUoULZESKYqUyCKLxWJtmZVLZOxxt3POPNzcIrfKIqtItljfW2ZGRtzl3Dj/5ft/n1k+RhgWnUF3+QwTp5+BLMVtPI99P+LF43dyZXwa5xzdNOFEZZz58jhSNIqOx5NPXLXjMTVewgUOmRqUCACB8PXII7pTdXE33oog0iZWhqe3uplpljAYOvJgEr/6KJ45ddXZ3uvtt/lWsdNPzsUx9O9F+0OGtTZCdtCZI0OhtwqxG1q6TuCkQ8sMP43JQw/pRdctDtjCEfbYy6tDvv+1l2jGYs99LdW6lHSX2IR4Erw8wzM5RkoEEpUqkigjKaVEqX+kPfsm3lv4kUrEdqPdbgPQaDQOfV2v1+PkyZNYa/ngBz/IH/3RH3Hvvfce+PokSUiSZOvnTqdzfQ74vYjJeerRKWq9ZdarKeUs3EFPdDiTEVegUdoYrr5OmJ+u8KlHbuXZl66wvN4nNxatJTONMg/ePXPkTfOG4xDDWKD4/UawfBDe7CD3m8FRq8E3Oljo5ymZNdTkPga4bHSdbEI/TxFCMq1/ggvpOWzYIktLSOuh0xKmlOCweElEIWSRkOoYHQcsvHIfebNf2CCFmqeevsAFaw8NwIQQzB2fgUGZ8711JimP0HF3BpGbhq77zf3kmWS908XKLpISXvwY1vdYXhvw+DPn8T2170xgJVQI4+jEGVPVYp7KJ4MNiq6T4IwuZMt3GAXDNuXt+ZX/TCc9gxQxQmhyN0Wf+7DmNcppk/WNOa3NJMIaBQaIPCr2GJVkkk64iIzHERtJBQ7ytT5xpcN46VZE6QQra/HIenU4XBLT7+dMj/lM1IvuoJqIaEoIMovb+Oyt6ylAx4amFtjaqIpfPJijPfwYfu1ZTNCkE+Z4RlEZzHBr6xHGhydwWN5oPE0mh5TsJF5QzOkdZjK9hcl5XGOWXvcMa1MRaX8cOWhsBXsCh0UQOsGa5+jiEVe6qJbGyz2sNjjnCFsx08sDqrml0knp/OOr6EZ0VbXOnWtqk3KWd2Lkc4t4iRkRZsiW+6x99QzPVTTLSo4k74urfQbDjFJFc7G/TmIKgRYpBIHS1P3SvtTmzcKD/8oqy185Q99aLGaHeSAgIJYQH/seUicQl1FeAEqA8BAuxIg1oulnmaj/mxEKWak8xqIXI0xGbdjl0Vee5Yk7PsArpeqIF9eejgcQmxwjBKoyTthbH+lQ7Kc8uRO7vfA28VYFkZxznFn5Pqc7/y+GARV/nO4wwGQJXmkJF/0Trv0ZfHHyhhvbXy/s9pMTngfDnDytkA3vRZglKqJL23nkNkQZD1QGdlMoCSomxilJXPFo+MeuaxwAXHWPvSwm+IY9RtJOKVdLe+7rAw8MKGtFaj1Sa/CtQTiHlRLnHAqBVY5MbXTqj7Bn38R7Cz+yiZi1lt/6rd/iox/9KPfdd9+Br7vrrrv4sz/7M+6//37a7TZ/8id/wmOPPcYPfvADjh3bv1rx+c9/nt/7vd+7UYf+noIQEvXgT3H7d87zfHCBvj8kND4qL1QT48jihzPcMf7T172N/1ZoHG8XnF8it3VsL0QGEuXHo0W7XcHyfngrg9zXgutRDd4ZNL6VOYWy9vGkIrOGQO39mtvsOpU3Nt9wJcA78xjlye/Rr6yT+wOEVZRbC4WhrB4SlztIq6isT3LsjQeodeYLbzEBcZIzc7ZFvFBhUA8ODcCkEPzE/J2FoWvcp+oH24auabKvoevuuZ9OPMAKgTbH0BuzU3jgaclaK2a9nTDZ2LuWjZagBCa1pCLE90JIhuDJIkFwEoRDimzEKHjncfzEsc/xF698maXhCjVvDCsmAMGLJzSPnv4u1UGXPKoQCglpjOz3QS1AuYEUkhPND/Py9FcY6jV8U0IaD6sz0ijGSwLmz97DbbdXeaKXba1XlQ/J2+sMckHgUu4fvoz7x2/iHvxJ1qJ5Xit73D3MCVNLpmXBarLg5ZZUCV6JFHrHtejnKYuDNsZOo3ufwVNNRL3D8YsB9fYEfr2KCx0dvURPL+PnVfR4xM725WEm00Ah0X/3Kp3OFRK3issjyr1xGuffT2l9BoXAQxNL+GHNFcIZOqM5sUatXcfPfLy1mFPNlABBWA8JSt5W4nSYkuPWOt/Zjcgttp/iHOjJCLmh4Cl8BVoSL/aYHWakt48hNvz7fE9RCjXdfkq7H5MHGVoptBQFlVst0lYpJTdGHO/dL4UQ6JJPEGp6aYo1CoXb6lgaJGl1hbTSRKUlUqdROKSUWAd5DkpV8StN2ukFajsSqkgIZr2A1aRPU2nGhj3uO3+a+KGf4hMLd23Lhe/oeAzylNWkT2Lyra5iWcDE8nmijQ7FfsqTm9ijurjj929FEOnyco9nX16iHf0dBC3IGsTKkOUWpQIwAeg1TPlbyLSYTbyRxvbXgoOUBvfzk3MuIvcVNu4QdaeIOpP0xpaoD9fpyypZUkVELZAGgcWzksBT9Csevj8+IrJy3XCIKbtz8HwyQyJ86mWN3OjQ77yvr70RE86HTEuP9TQnMzmWwoNOSllQ153Asxv70BH27Jt4b+FHNhH77Gc/y4svvsiTTz556OseffRRHn300a2fH3vsMe655x6++MUv8gd/8Af7/s/v/M7v8LnPfW7r506nw/Hj17lK8x6CmL+d6Q/9Cg/s8BGLfYeSPo3yndxxnX3ERj77XUbj2In0Uof+s33y3gcgM6Al2o+Jxlbwon6xS+wTLO+HtzLIfRRsV4NzSrU1lJ9g0oDltQmeeOYC9989Rb0cHJrs7g4ahZYjlf9rmb2YK9WZLdW40FtnMizvCaZ2dp3c5TP43/sKYngfpy59in51lSxIUKlH2JsAP2RYaSLcgPrQp9ybRCiJEA58RVfA0FgqFo6tx5ypB1cNwN6Moevm3M+51Vd58tUz+LKMz9zW7BQU6znwFf1hVnSadmEYaoahJupnWOO2TGzJUpzSWOOjvR5qcB6ibaPgnVBS8Yn5x/jrs89xJU6p+jm+1LxRG6d16n08unSOW7MMumugNGp+Ht2fJO8KhHOMDU5w+8s/zoX5ZxlUmthgiHSKWjrHibUPU1ubxtMtPv7wMZ47vVKYvPY6KGeZ0jEPBFeYdwksL2Of+Evi+3+OZqB4Y6HK3OqAKDYI43BCMChpzo8HrA0yGpkl9IsEYC3uYazFVxpnIE+maJVrnD1pOXbWIvtDggSy8QHOcwRRDbmPqe1BNLVNX7pU9ogqc8hOj3XrYesrxHc9xcmXP4bfnmMtkPyw6lj2QRpHLnNkycH4gDxO+dCFiCjQeI1tfzjhK4Qnr6rkuLsbgSdx3aSQzl8bIibF1jlluWUooJ5bSolhGG3fc6WKuTlnBJ7QCAFedInS+HPoYLlQtXQ+r8TfJxz+7J7vahFqvEAzoS3tbkLmNE4IBA5fGLTfwamcaiboCkHmPExeWItoLQiiECvbJM1zeyhkJS/ghPaJTY71I+7KEu6bPIna+fxsdDwGOBYHXYwz6E3fMRx9awmSAc3mJY5NHdu3A32Y6iK8NUGkS1c6fP2FZ0nlRfxwCWwNZCFyYmxBwxVC4kwV6y3j9DIin71hxvbXgp1Kg1mWYKXCjs8SfehTWH9+j5/cIE9Z93wayRAlEo69fh9n710hjQaMJTE28UlQJKUclMTzq2RenYZ/jDvGP31j4oBDTNnXTEQzDyn5IIJd9g4b97W1WmNhfpaBuMDx8jRJVEGlKX4Wg9L0vYTxuEI9KV3Tnv1uxdXsYG7i2vEjmYj9xm/8Bl/+8pf5+te/fmBX6yB4nseDDz7ImTNnDnxNEAQEwe6h+Zt4KxDztzM9938wtXKRdvw6qQa/cZKx4MR7cqB1JIiq16C9BAbyOKK3skBl7HU8cxHC/YPl/XCjOoCb1eBEnqN08js4b4Vc5OA0YX2S9qUP8Pi3Y0qRRiu51SWbnSpvf6Gv5ATfWsElRdAoy6OV/+SBWZ5r9o/cbTtq10ngsM/9CxPpMn6Y0hv6jHUmiRUbzQ8DeYbfnqBmJghx6KkIpCC3jhTHsJuitCSzEMWGKM4ZRt5VA7BNQ9dL/RYXeus44GRlnPlDfIWEkHhmHtPP0BWN85axcjgiaOF5xVrINhKPXW/ApUbIqThH9lNcLSiCkNY6NnEIEROF5xCzo0bBu3FQIjm+cDvRhz5NlGYjFfLy5d6WeIPwJLXmLO9b/QyDcpH0huUxasyCkzhvQL7YZLLt8emPHmf1y98gsWsE1SoTargRJ20P0vuvPY2SD7HuK/qn6kRxjs4duRYMQ02SW3RiSFJDpeRIbE5icrQspNXJBaJkEZGlWYLLNUPU7vM/zd3CeKWMlzyJk3bf67AfTW2nL11FzyI8gY7GUSs9hllIXmrz2r0v0z13giVp8KQmTAWulDM7XsFXirVkwL1eiUoMshaMmHQXt1Ecqta5XzfCDjfEZLQAU8j1i6AoEFgLuXCEFnQ+msBbYQuvPyPBgle5RG32qyhvJyU/YS17nqeXLvPh2X8/EjBvqii6Zcukl5CnPazykQK0M3STCOUEnugx7ZXJxicZZBntbMiQnF6eok3Gt1Zf41NZjL/7+RCCUHsFvTaNkclg9O8bHY/WoIPBjfiOCQSBc6RC8O32MvMblMu9ypObqou37JsQvFlBpJXByzy1+NfYySV8LwbZAxsjTAPtQowpkuTAl+A8ED2cHAJv/2zvbmzSRNNBh1WlGUiJMhnVy2fofuUi5p7/mSBXW35yzsFa0meoFLI6RnXQo9ae5+6X57hw6jKdisGoFF+HTAb3MT/145S9qX0VSq8nDjNlT/o5Rmp0rb6v1U1xXwWz+n/govlrevlykbjXJ8nbl4hVHz/3uX1tFpEmRRJ2DXv2uw1HsYO5iWvHj1Qi5pzjN3/zN/nbv/1bHn/8cW655ZZrfg9jDC+88AKf+cxnbsAR3sRhEEIipk8wzol3+lDeUewNokKcNw/tVWTax+YRw/Yk+laFevDgYHk/3IgO4GprSDM+TTD3VZwagqmC83AuJdeXKS2s0b/4k0TBHUghWF4b8JVvnSWZ67Gq2mTG8MmXysz0PKJGifIOypTwJMnqkOWn3mB5MqJc8o48e3GUrpNbuQjNRUS5zgNyiefLp4g6msA4MukwKDCCMo6g5CEdZFrS7qdkWTEPZqzFOoGTAs+5kUD2alXr17ur17yxBYFClS6Qjj+D8FdhI+mV2RSq/ygiXSjsGTJDZZeog3OORSmIbh1nxoJpDnG5QpSn0DOC0m0e/rEHj2RkuplIbibTJaUp6S65XaMdlqn723NTO8UbsqUebKjQVbMZVClEonHxANqrkMY4E2G+8W3UizDZugKVcdDD0QPYGKSfaJ2lMftBlvsZpiTpaYf2JYHywDkGw5zZyTJJltPqpgjPYq1DCVEkYQrUdLYtlqY0y6U+/WmP+dqd1BavjaY26ku3+XpBrR7RbA3JTBUbrqImBqj1CJOA1ODNGDIJa8mAkvZ5ODwOZhWhPXbDuUJd0Q4zsqXeHgpvvjogWxsgRQydHk554G12ZQUoUagBphYRKKQE7QRWFAnsThhnsdqgrYQcKhNPofxWkTTbomLhpME5Sy9b4oXVv+ITC/8nZi3eohhHD85hnjiHzcfwxCpkA1A+1gZU+hXqA0G7ZqmUJ8iFYS3vYbBoIdAiIXWTXIoD1vOMWtwjKu1DxzyI8jU5z7A2iX/5DLpUGRXHcY5SFrNUGeclpXhk0N4yWN5PefKghODNCCKtDE/zzOJfkMoW0tYgD8EfgIxxYhnhphHSx1pXqPnqDJxG2OhIs73Xi+a9/3sXc3fpoMMF5RX3SiqQAR3tUR106Zz+OnXx44QbfnKFHUNRAEmUxpQaRKnhzNwjGNujmwzoK8OP3/IJ7hi7921NVA4yZQ8mbkVnNYyO2C/d3byvU+W7mAp3JO46Q9ZrjLctt18oMdlOQVmYObzA9W6Fc5YXm9/nXy49zyAXRHruQDuYm7h2/EglYp/97Gf5j//xP/L3f//3VKtVlpaWAKjX60RR8WX1S7/0SywsLPD5z38egN///d/nkUce4fbbb6fVavHHf/zHvPHGG/zqr/7qO3YeN/HeRr462EPpEGEJF5xApDEyyTFmHPvwp9HT1Xf4aCGOM8TY0wg1hHxiq3KYZh7OjSGDFuH0d3Gt2/B9n5ScpdaA/JIhusXjeBLSGCjaXkZr2GVOCMreZitH0HWWKDbMe4rhPhz9w2YvdicLe6gUOwa152UXauc4I+YZ60WUckngQJATTYfUHzxB+18v0FofkgFKCYQU2BSsdVjjMFKQaYfVSzg5JE99lJzYt2p9VJ+zPQjOE8x9jcz1Uba2USnPsP5lrP4H4v4nmZm8lSyzB84E3vGhY4xNld9yoFb4vY2NKL1Zl+0r774p3hC/ukbviXNFArCxxl08KCiSxoD0QQlkoGHtDRh0Iazsmd8AQPsI22Gh0edMV7C6brHKICX4QhO5gGoU8OgHChrQcy8vc6XZQ+UaJ0GWLGo6Q1a2O1475wffDE1tpy9dAYdLDb5xNMo+7Rhyepg8ZkxPMghjevUOHZ3g5duFgmNJibZubhkjb8LGOaYVY1MD1tF/+iLpufUR8Q7zg2dgbQi2DWJDhU5phJopxFO0KDia1gLFsxQ5aGrJIFAjuYoSAoHElXO88jJedKVQtLO6SIalAyRSaBwpzcEZLn7165SWxkYoxuG902QX2uRXBK7fA5Oi1TpR+RJ3ZrfxfPkKPdVlPRYYB750SAY4EZLZ+7GNGZajVwm6TaKwAnJHoH4I5UsIydo9H8Etn2Ns2GcYhORq1HvshyfvJnOWfp7u+d+jeFZdiyCScxa3cpFXOn9Fajq4tIHUEufA2RBkAiLHyCbOzeCALMtxqoNK5smGEwyG6aGzvYfRvL35yr4zXdeEjbm7VaUx2NEuo5CkQYlafJlm2GW2XxTUcmexzqGFBAdhCs264rVjkyAmsc6xFvdBzrwj3aL9TNmnJuZoPPnGke6rEHsT95q3gDi59Nau9TuAnfTD3JynOXySc91XGNMJE56PYZzYvh+p5vbYwdykKV47fqQSsT/90z8F4BOf+MTI7//8z/+cX/7lXwbg/PnzyB1f4Ovr6/zar/0aS0tLjI+P89BDD/HUU0/xvve97+067Ju4iRG4OMfldovSsQkhgCAEz2HbCST706XebuR6CRms4vIqctOs1rliRkkIbF5GR6vI4QqOBZpJH6MMfuqjU0eQW7QVyECROsNa0qekfYSANDMkxlESoM0oZeooZtTOWcTqZeY3N8La5Ohm6pdYleMkSYnAl8ypLnNjp1mtlsjSEl6aMmZW8P/N/wKTU7z+7Qsj6nwOkFJgjSW0sDixSHv+hzhvpQimckk0MQvBzwN3b33utficyZHN3/JK65/wwxTTbZBbgVICiY/NGli5RjD5DI8e/yhCyKvOBF4P36CteSjbI1LjKOEfKO8uhCC8Y4Lk9CrZcn/jnCg6YcbgtI/NA7TXRclOkYD125jWMrH2UFIRKr09x5GnJMB34zdoT9Uor9dQicZlkApLFvZ58J6JrfOdmyqzsj7kb858jytph/H6KO1vP9XKa6GpWedopZbMCgZ5n8iEmHZSmEVv0N5qfk5WCrnzvltplE7SqIcsDTt7CgXOuRFjZCEENs6L5HnDZFiEGlnyRsQ71Op3Ed/7CthHQXggDOAQJkOaVZyaxGWFOIsTApsabD8jrPosVTStXjaSvMdDi+9J2lPrzDQuIVSGdbrwNxPFc66EQEmJNZrcJqyn5ygHD41QjE0nofLxU8jgOHaYIuJ1dJQiwseYnpznwfhVnl/5z5j4DIG0W4qciXk/OXMICT84eTfjrzxLubWEV2lsy9DvQ/naKSIRhhX+4bb7+fDi60wMukRpjJFqy3vsfG0cL8+3xHuuFUcVRGLxNcxzX+OiPU3z2BW08RCmhBUeUmkw4zixjMWCTJAqxjmJ9AaYPKB98QEia5idLB8427t7NnDnPej880tUKqfx4rNFAWqHl9o1dWmSPlmWMJCy6ITtir1zramkMWcbq0y2xqCVoEOBQiBzRykVI0b2sFdA6Z3AblN2AdckdLVv4v7fmUT9Jv1wsd9Gp1eYqXwHLVMS56NlHYtFsUJJfZOB+Si5mBuxg1k4hFp/E/vjRyoR2284fTcef/zxkZ+/8IUv8IUvfOEGHdFN3MS1Q4R6S1Z6ZyUciqDVDjKwDrMhyPBOqzyWSjlKW7KhQupND5gdz6LRCM+i/YRkmBX0FCUhAwykGowqmBtayS0KS6g11oJ0DifFHsoUHE792zlIvl/QcXm5x3MvpazJhzFJjsolDTXkAX+Jed0F1YdkGeZOIqYWWG3F+6rzBUKgLKyPX+biXU8ivBRMFZMrlMrRlWWeW/kPIwnJtfic7dzYNmlv1WCCSGk6vZQ0M+S2UKLTfpVSvUV5bJ2x4OQNmgncNpv1ZDQ6D7Xx3ofJu+82/JWehTQG6WMzD+EGRPnziLUVDBvf63Gflc4KmRcUyWpQpqR96Le5GJU4H4RMRgE0UtxQFnL5yrFGl+8n8JA7hhQCIQTTjRKfvPsO/tNrz7I07BBpvUVjbKUxvtTcOz43cs67aWqeLFHvSMTaEBdchMl5znbXNmimbSZ9jwpXGOuM46GQWiI2TOMT0aHWnONUZY5go3iwX/Cy+zqJksa0YpxxgEMoia6HyEAh/EK8o//N01QX/wplUrRok7sG0vUQUuCkIncGa7tINVZ0cwcZ0lN4MxXqD87xoLdf8l7mvuNj/Nd2i36eUtnIgx2OjVoL3oYyqcstCBCRRmajFGPTShh+b4n6z9yJEGVgfOR8p6K7OF77RZ5e/SrjgQRCDA12RvlrjVn++Zb7+IVuG6/b3KKQ7aZ87X72J5Xmo9rjidmTlEo1wjwj8XyalTEc0I37I8n3m8HVBJHm8iWWv/NnnGks0aylDLwc6Qwyv4JJxpBUEERkw0mEv47UMdLvgo3w7DFc52GSbI6x8YBPf+zUSEF5E1u09mFOXlXkGLR1BJ5GhjF2ucWwG6BnSghvfy+1IyEoY6VCmQz2mMyDNjlWKS7Wc+67a5KJV4awNmQs0cTkrNcEZ09tG9nvVwB5t+BGC129m7DJ0ui1coJmxOTcGZTJyIZjhXpwYJGeh6WOdG0C+QK5nR2xg7mJa8ePVCJ2EzfxdmBnIHojBok3h9t3VsKBYnNtDXGJASXpPXWe5PTqkf2EbhQCXSHyQ2yak+UStZU7bgRqKkcJjbAlclvQUzYtd+tD8BXEvqM8BBMJcmfJN8yApXAExtGPPIb7qNYdNLC+029oPwPXpQd+jq+fc8SJoVStoluL5AZWXJlvmJP8mH6F+fjCSJU9ScyB6nzdsubsHS9ivBjiBlJKAl9Rq5QJPLUnIbkWnzPYru4ng5ew2RAVjqF9BWVodWMyV1xrk2uG6YDLq6uMLZy87jOBuymIxZxUm7LeTZFykBmCvEzLnKeVXGA83K4U75wZy5fWcSYC6dBuhUi9gue1ME6RmAwtQDvH1LBPUypia1lNY2YdEJb45swJasE2rVKUtjvFVXNwpTbUmqVhSjsdbhXxtFSUPfjapdO80LzM+xsLNMLyVqdqLDi5EeR/BddcxG0k+L1qg6fGJ7lQrlLzIywfIIqfIg1aZHmJiBCUJVVdPFPi2MUHGTav4C/UD02MR2brlvu4OAcpkIGHqgXIqHgmhBBInZNfXMW4MlpkROI0PfMQlgqZM3RkGSs0vpXkwtFcqHHqjkmm5qpbtNR5ODB5b3RCHr88wLlnQBickygh8JQuPOOsxYgc5TzqyWgiezVxkU1UvBDLJAPjHWg70Rmfpv+Rn6U+HOxL+Tro2T/ebfKp13/IV265l8Wp+ataRrwZHCSIBI7l//r/8fzcBdJAoI1G6AzhBFJnONkki0GaGjYPwTZwuk+8/CgVdQpfFOqosmroDzLW2vG+z3W+OqC/0mVdJgwGO/zepGau30aRk7txDG20jAu674bozU4vtU0cqFQ7OY8dn6V6+Qwd7Y3uf85RSou5u/XKOOGxOvU7T5CvDuitrfLUyitcDhOqQYDvrv89uBH478Hq5q1ik6XRa+WUlmr4fhMvapKbUsH8sBIXC4xwKC2wlNBiHUWT2Nbe0W6mdY7FfovhSo8ol0zV63jvYn+93biZiN3ETVwDjjIL81axp2OwQS3JVwdgXCFjPxEhtDyyn9CNRN0/zkT5OJazpMOQLLMbDbENiWp/gMoXEPk0Whokgome466hob4uUFaBgyArJLw7oSiEA1KDGuTgK85WCprmSKhvLaKVcLLiU98wBi68anYZuG6pMBRBh2st89z3zxMHc4xVA4QIcHoev72Kl/Vo2xLP21nmpuWIGMrmQP5+6nz96ipUm4isylgtIvAVvic3jtihXJXV/hucW32VU5N3XpPP2c7qvg76iNtbxJ2YPJqiE0usLSTGpQBLQp4Jnn+py5jX26rWXg/J4f0oiMN8HWMTetkVtPTxVaWYYWrHuMzgnCEP+6w/+RLle8ZH1ujmzFj26uuYr38LGa+j7GpRqUeS2gwrBEZWy0WSAAAgAElEQVQolAAnBGGeUXaWBMGF+gTBg5/kXHeZCbm/ctx+ldqds3nHy+P085SVuLuV/Nf9kNzkrF06zb+eewERlOnVJ5kt1/m0Cpj7zldGg/wsIb9yjh9bOU94z4e5ElWpdOY5ee7HuXLseYalJn01xMOnNJjh2NrDNMyJqyYlu6/T8MVlek+dR1Z9ZKB3qmwXz1u/CU5g8UFKPFap8CxNdz99ptFW4oRloBIuTZRZkvDGxXU+PlthfsebHZS831ab4lTlZ/nn88/STs6AsHjSL55yZ8hdigDqw3mqycye/xdaYvtZkUwegCPbTpTHEZXGnv8/7Nn3G3NMNRf5+MpF/mpsiq67umXEm8F+188uX+BM+CqpD+U0RACxzchkjnay8M3y25ikXFA9vT42nqNiHibaEdxeTfzn4toqSTykH+QoqdBCYnHYdIBJBqA8hBWFYfv2ARdree1yQeXcoNJdzRcy+tCn6H7lItVBlzQokevtubtY+/zr7EnmynXmSkWxwZsqc8tUmZ+aL12Tbce7BTfS6ubdIAm/OGiz2G8TNEsIKxFhHyEM2IJ66ii8Dm1SNKGL9GEIxHTT4B3rZr7WWeF7L55m5kxGvS/IrKCnFaWpKjMfeefiomvBzUTsJm7iiNgbiHqYtMt67zTPDS7y4Pz/xlTpnuvyWSMdg7Uhpj0E6xCRRo+FW/4/R/ETutHYFDToZ19Cqw6KGsJ6pCaml7SwJkS2P4xzAmEls33FA62cUDmGkStoiaagJqocaplG9w1OO7yZCqVTY8Tnm8Q7OPqldsL08oBqbql0Ujr/+Or2MLrf2eM3tONgWYvmaSaKUtnuEEMp48ISIk0opRnrdpz1Rz/JVGM7SB4ZyK/6DKPtGT4nh1hyfK9OteyxmTLGab5BH8zBG/LkuTP8MPB44K6pIwWcs60V7Nf/CuIBwyCinUSogWZY6jNsl8hkiOd7xUwRDqF76HSBQXdiS8Tk7JtQZtwJ5yyt5A1eWP1L4nydmn9sqwLuqRJSeFiX08+W0VlAvjYsRCCUxCqHRCNWHN0rewsGQgj07Sdx342wnSZ4Eyh6WGcxziEQKCyx9hj6Ed+97f3EfkhHSS4FZT4zMYvXXzuycffu2TyAK3EMCErKI7OW0vIFHl08x/Swi7YOKxWd6hhPzZ6ktfQGE/EAvzG/tbZipVkJIibiPvedP82VsSn8XFBbn0MkMwyiFRIxwLclvEGDjpAkssNU6h+alOyEEAJvtoIMNUKKPcuaNIY0A6GRLmWTM6jlCs9GliE543aAkY6BNFAbZ6zkX1XsZjeUVHxo5n/lmaUv0s9XMS4rRD8ESCRBXOPWxR+jF6yQqSGeiagkU4XYx4ZohAj1gYp+b8bsfAQ7zJv3e/b9aoPbkgG/NnULrdo4glVqniDUg2Ke9AYJKbTj1+mEMWEebIkZlbOQTtDHCItyAqliotKQfp4gXIlS9jFUMNphOEyy3jrH050LvE9YQqcxG6cvEQQUHn6ZlfjCIeWudaf9guaZFHOb276QZmQuakSpduEOzI/9PK2n/wtjvTaVNMYqxVJlnH+dPUlzYo6f3+deXVVA6T2Gd4skfD9PyQaOKPGw2mBMgHMKIQ1YidtMxqwgzw1a51gnWU/sO9bNfK2zwhPPPs8HT2uiXBEH0FcO8gy32GLla68w9VN3vuuTsZuJ2E3cxBGwxxsoGeA6V1BpTNlZ+lGHV374fzMx978jF+68Lp95mMrcJo5K+bnR2C1oYEQXT3vMeLfTu/Igne4MQ5uiBNyfSgJpaUYGrSQSQaYcKyXL2FBSbpSoPXYrMvLQkyXGhODj0+Wt6qy/HnNqdUiAIKyHBKVRz7HK+xR6QwlxPyQywjiBFqNVZYEAP8TzAoa9lCQdFUM5bCB/kGiCuqZSLt4JiiSsqCaD0jlCeGhZZnltwDe+e5EH7jnBWtw/OOCcux2e/DuIBwzKdRaHhRnt9PIE506sYcMBKnPExhJqkLoDzkPFd1KKFGutId+7eJl/XvvBtSszbmCzA7wev04/W0EISRa/Tigm8VUFTwdoGZLZPqkdkvQ7KKsQWuGEI9VdavE8Nf8YtpXuKRhsqrtlrfeBOQ7WoLMuvncG6RY3EiFBp1SllMaUkwHtco1uuU6WDCjr4MjG3bB3Ni/Oi5lFTxbzY7f12/z06y9RNhldPySTEm0MU911/m2/A3nGWqnKTuKdcQbPZORSMdVp0uiuk+oGRoHMQORj+NQJlMaTCosjTzPWc0Ocd7mVo1WRD6IsAziTY62PDmNU2isSYSFYkw2aeozA9unKrFib2oNS7VCxm51CF7upf1PRXTw8+++31oVxKUr4jAe3UF2a4PzYMwyqa1hhkE5TSSY5vvZhauvTeDMVbJLT/vLpA43b34zZORSJyGrrCtU0xoZlws0BtpGL6OMGHTqDN7iQ/xeGdhEpDVJef2bDThRzsI4whU3/dd9oakmZvheTyQwnHEol+Nkx3IUPUDezGJ0VlOwN8ZbDJOsXB21eVV1OVCImutDTbFEIrJQ4BBgPEQ1Qfrz1fw5HW7fIxhIC1aZuDc+9vEycGMaq/tY620+p9tgdHyKZPs63Tz9Nr7dOTynWK+PMlev8/CH3alNt9b2ON62cewNQ1j7SqKLrJRxZMkGWNPDDZfK0ztZicmCtxbkeqZ1kpnQLn5i/623vZlrn+G+XTnPnG4KSkfTKbBSEBHiKljSofkz/2cvvWJH6qLiZiN3EuxI30gPlzWDEGygZ4JobUttKI6RHmEs6osX601+i8ZFfvm4+IUIIVOQVcyElb99rcBTKz9uBg3x3uEVsceu9XoJ74g2GlYiQhNTm5FikEESeRyWICBOBjLyRpHKTo7+yPiD/l9eRgcZrRFuKdzsFAQavWapSI/J0X8nzwA5RwpE7dag3zH5V54MGt6fGThJUThKLizhXRgjo9FKMBa0B3UOmC3jM4VcFrW7KyoWMn3vgAzy++Oq+AeetSYJtLkKpxmo6wDiDLzV+X9M4X6c7PcSL1vC9Pk6nRaDlHHn1SUR4GrP8Ib692GYgr02ZcRM7O8CFFLvEGEnu+iTEuGQKX1WIShMYkWBsQuYGSFXFqLSYh7IRJ5oPI4WEXQWDUXW3COIVsJDbMUxyP77KSL0WsR9QG3TxTcb9b7zE3ZdeY61U5en5W6l4wTV1UHbP5hlnN5pHRcfgscU3KJmM1aCEkBJwpErT8gKmBx28LOWiqxCbvDARjvuErWVmkwHSOqRwPHb6uzxz2wN0y7OUW45uUFBmFbIIFJygkimWyjmvxuc45Rb2XP+D5lB3U5Y3RX1s3yFkTlRZRDANa4tgDYnyMUKh2fhuEALGtuf59qO6XU3k5qBnPTMDnp3/C+J+Gz8p4QsfqwztYJHB1D9xV/pJZo89RO+Jc/sq+nUff53Kx0/RKXsEScjPTj1AS75OL+9Q9ercVrsHdQAFdbOrYJYv8DN5StJdQ/phIeribYtJXE5Cnq2epD/8J1waQ17F0xGVMvuqfF4v+I2TqFUf4zI0W27x+EbjmzJDBuSB5N7oFwi/P01/sYcwHVCFKfmlRsiiFIdK1vfzlMwZzp6C2suCysARB5ArsM7DiBraDVGVxa38dDXqcGbsEh3dxfgalfwngvPfoBm/j3J0y75CQruT99vqM9zy8P94s8N1jdjqzmcJE9RgIECBH4l3RBJ+rlRnvBwxEAUFEQGdtftpzD6J9tvkeQmMRipLLUwIvAluH/sF7h5/6B2514uDNslKn8lhxDBgdG5BFMJfXS+nstp7R4vUR8HNROwm3jEcxItOLrYYfOt1zHoh3St8Dz1RekdFKba9gTxc50qRhHk+m0+/wiP2DJnt7zv0/FZwmIoiMEL5eadxkO/O1HiJy8s9Xn55hYVewkALlPCoaI8w0kSBLqhlzhVy3/sklUIIxg20BxmiNio7vvl3WfYwvRxTPYXuvFoMou8appkYXqYR3cFKLvH3MTy+mlHqQYPbq/HPbvlNKVclzXKUzkH3wJZQ/UcQG8H4ZjBTt7P8yl2P7fscuIunweTEUm4ZoW5uNrVeRNp9FNn4Ie74D7C5QNpxBEHhKeZdRs98hV72EDV/7pqUGYvrMNoB7qc9rNlkvPkgUoTfIhmG5LmkXJskZRUrcuKgjXSaWjzPiebDjA8Lg/adBYPdpuUgoF+CZIiUBmtK9NT7SfzvMD3soK0l0R6tUg1lDBOdJp9Ohkzf+Qhq4Y4DOihjfHiqQlWv0EoG1P3je2bzlJBbCoAzgx7Twx5t7SN2ry0pGfghjTQmzBKMsxD3Ye0yyhoyqciExbOW2rDLY698l+dmPsxsd4xGohn4DqkEOocwoZDuPuVYHHb3XP+dc6hpniKcouIt8P7pn2Fq4e5tynJziO1nRUdpfowofgWvd7GYjQJYXyawMcrl5Ch8YWFiHlGb2Pqs3UWHq4nc7FTW2/msO2d5avH/ItMx1fIC1hSS/cooIjFGXGpz+b6XaLx06w6j+tEiSrI65Mw/v8qzEyE2vIBuPI2OmoSBw/cCLvfGmC8/xHTpnhGBpNfay3zt+8/jkhwvnKRbGWeyu8aqkCwaw1ypRskLuJxV+EYyjzn5DbROkGYCJwRp6mjnMF6fIGVtj8rnm8HuRLrmzVPzFlg3r1MeDhE6KHzQrMWZDBPBmLyd2jcncHFKpR7SjjNsaon6GafinOjWce740LEDVfo21/ZSPef798Bt5yTVviBMClXa1To00h8ylncgbbBajXl+6iypSAmNTxQuYKRHJ3kDOXUR2f0MZKf2fM5+yfuN6nDdWFPqA4RI3iYsDtosrwyoNSfIE7VF8RVR4W1Yjd5eSXgpBD99x9385YWX0LGH9QzxYI61pY9RazyPH64jVYwQivnKndzZuDHd46Oin6eo1KKsIFZ7FdMlgkxabG7e8SL11fDOR2438Z7EQbzoT7c89DMdbOaQMkGTIbKIeFil1+whPjrP3G1zb3sFxldl5MZMmErjjWlVgbMF5cPIDGUlnrd36Pmt4lBKknPYfoY3U0FPHm2Q+DDa0Y3C5syB7qUsSIEvJEZCnjkGJifSHkKDzQ5PKg/yWNuE0BJrHNz6YXj5ErSWRwPKfhsRlnnw/hN8/Zw7kjcMbG/acZwzTHOiQBMGmoWZ7U7TTnrmWv88eEOE8JDpAqr/CCrdTlB3BjMHBjFBGZTGZsmGEMn2ParSpeY6xONLCOHIkwZa+0XnyfnkyTgqXKeiXyAVC/teq8Mkh0c6wAL6fYmVPlIlFMMCGmSK9jLyzGMYD5mL7mP2lXtJg4RAVmhks8XxbF7DHQWD/UzLXX0S1i4jTI5UEmXrjA812hpypWmXqhghSKQkiaocNzk8/99w87ftmTvJzXnW4ye52L3E+c62qM4dY58eoTIGqigAxHlOmGdoa8m0v8EeK5QopRBIBLEXYoWkkiZFJ7W9CtaA9vGsQWaGWHusRVXG4gHHWy/wDyffz4ev1JiNfbxcYBSs1x1nTxo6Y5IsNiPXf7MLOUg7pHHhZWfJ6OpXWe78P9w/8Yu8b+FBvPnqngCVRY194sL2mj82xkR3nYbpsawnyMcrqFKFzeLxfkbDh4ncHKSst3u9KM9DRRqXGpxxCCWQOqCbLtEaXqBW3lsYSFJLKzfo2FJbWGE491WcGJIlFWyek0VrdNKLLA9+QKQnaIS3cef4T1Nbm2X966/wWNvDdyFWQeZ9hJRnmUyu0PZ8mnGXyFiej4+TlvqEpRbkJYRzCCmQWpDljm4/Y3ysTju9SDu9cCQj5/2wR9Apt9TalqlVSX9C0A8ywtSgcoXRkrgCfjjDsXOP4GKDGgvQQhCUfdLMYI1D9lNmLIwdUtXfKXTij5VZ+4Cl1gU/h0Q7zuqMh/K7+ZnmCq55mTPzF0hlRtnWkGNTEJbRQElN01cXyUrfQrVPFMWjHTiMMXA9cZgp9WEF2aMkb1cTInk7cOFKF71YRlgFnisoqxbcQGIuBHjHHF399krC3zk2w0P3NHn++2uoTJErQ9ybJe3NEXktVJDwwbtO8Nj8wzc8ZrgaytrH+BIjHcqA2RUyWByeFUit3hVF6sNw5KPLsozf/d3f5W/+5m9oNBr8+q//Or/yK7+y9fcrV64wPz+PMfur+dzETWziIF50/tolmmfGKZmAgRQIGaBdTjntougxzBpcearLP2Zn+YmFt5eTXPePU/MXWO+dpuwsuBCTBDircDiGpZR6e4pSbx7M+a2h5+uB/VQUtylJGTLUlB7cG9zsh6PQjq43nHPbMwcTIXEvpTTISXyJ2EiAOr0E34uumlQetTsoj51Ezvy77XPd5Te0MH87H5/sHckbZnPTvrLaYxDnGONQSlAKPWYmyyOb9yZl69zqqzx57gxaltFuljwvhCOUFHgb53zVYGZyHhpzeFdeR8hinW0O+gsct3nP8XJpnSyrsDHhhnWuOD4pKPljJHmTxKyA2Ktid5iB6nYH2CfNLFlmkXoc5DKIHJwCLE4mqKBHlgW8kp1CJhETq2XWI8dAt5kIypQ9f0/BILvY2ZNQi7CEm5gvEpw0RhpV0Ay9gLWwzFBphHNE2mMiKOM7N1L02Exoi2TmbzdEdcaQmSI3CevZWb6XfYkPTf5b1mJ/i8rYCMosmjbrQpBLSegssSuus0TgS11QXfKcnheA5xO2VyAd4KRmjRqJUGg/w0YGIwRtz2ei30HOtvnX+0ucSD383JBq6FQBAakZvf6bXchB2mHYrZKb4tlRRiPSOiZs8fT5vyPrzfHAXbN7qTbztyM//u9Gnu8UmIyWeU3MsDY0kLXwPcWYV8KmIDU0jnlcHrSZHXSL/yvViE2OcRYl5LaB9j7Kevutl427ifD1FltIO0ls18nEAKFHAzjnoN1LyJyjLMCMPw1yiMgn0N4Qq5fJrEUrD4cls0Oa8es8e/HPOPnCY1TWx4gDQV8XAVkUh/TFw/TDF6lm55H9hCtRhaYaI/QvgEsg9kAMQUjwfJRSRdKTh1iRkZo39/29R9Apycjbl1hXKf1pn1OtBVZKLTp+j1haVFSlUbuTW/gE3mWHKKvtTqGAYOM7ziqBaQ4PpVjtJ3Riq6M03Xvv+giyOkFr6Tt0uv+BSE0jgx3zPxSf6Yk6mb6C1VdQ+fZE5FEYA9cDh5lSH6YSfJTk7UhCJDc4GXPOcfFcH2EkLrDb7A4FTjpcKsiXNd7C2y8J/5l77mEyuMA3X7yIHAiwAiFBezM8cs88D99y/G09noMwV6oTTJVZjVJm+5reNuMXHOTGMpF5hLNHL1K/UzhyIvaHf/iHfOlLX+K3f/u3abVafO5zn+Pb3/42X/ziF7decxRD5Zt4b2O3atnmpuMNPCaWGgTGJ5UWLQXWQYImlXXGbYvA9WkM6vSvdPjr5O0dZN1UBnxucJFe2EcPNcoKjE5J/QFeHrDw+v302xOISp8guL585BEVxR2UJG+mQunBuSNRNq+FdrQTR5HWPawKudoa0mwNKUcaISVLUyVOXuwSbJgiOwkmMWTNIV7ZPzSpvJbuoBC3I+duPbD7dxRvmM1Nu9dPGaZ50SFRYK2jH2dcXu7R6SUjm7cQklOTd/LDwOPylR7WxWT55iwSeFoihWRhpnJoMCOERD74k3hP/CVTnTXWtYfQPtpuSEQ3DMLPMHEZhcQYEMJt+Jf5BJ6g119jmHQpe3s7fIcZqG51gF2Ktbo4bxfh8mmcWgcZAxYhMkw8S3Px/bRqZbyTlrFXFPVY0PMylvIOs36FIGGkYHBQQi3CEi44Af0B9IcoGRBM3IbE7U0MrB1ReivOa5tSWconsc2EPCtUBH1RIi6t08ue5Odu+UUeXzyz1ZGveRHDukezXGO21yaWhQGzpxRSCKy1+MmAK/UJxh/+DHz/CS7HAc/799FUYxihUUrQUAn36ItM0cTvt7gnqvFdZ2hX91Jgd1//za5SGpfIDejcUjIO7RzCQe4iUm+FHz7/HJNjH2Nhprr1flvPaLlG+eO/wOywz2LzMv+0fI7XfZ9SGhM0FSJWpEPLctJDRY54rM/Z5ht4LcUD8YBPJANWcSTWbNlBjBho77re+60XLfbOZeYuRUoPz5Vw5v9n7z2f7DrvO8/PE064+XZGdyMRYKZIigq0wkiiRNtjjTz27ISaN3ZZ9uupfel3fusq+z/YKpd3dmft2pndnRdjl722bFG0LFGixABREgEQIHI3Ot98T3jCvji3EzqgAQZxKXyrWABvo7vPPefc5zy/9PnuvuZZbslzRyAEg/oqJloFWwM5xAcLIAyewl9QIDEuoRbMMuytcnPyx1Q2vlq0NYsiK95TUB0EbATP8epjJ0gHHT4VHMdeFagMrFegXfGPnYMsRQQR3kuMS5E6IFT3vn7vAToJ8N0ldA4VKvTDlJVql+cXnqATDsiHKwSN44x97T9hbvVpm0uHV/pHbb2HrcdHBZ3kjSouUShdZ/dwDYCgXq6wMejQTbqU/fRdOwbeT93ZtnxnC+tBlOCjBG/BXO3IIJIPsk1xtTVk2LOEkSDxhnDHVlwI8NrjhpJp0fiFIOGfP3OCT5+e5/ztFTrDlHop4vFjU6h9TMR/UZJC8NX5x3j51DnqFxyVgSQNIVMeYRzNTFKuxVQ+NfeRBnXAPQRif/EXf8Gf/dmf8Zu/+ZsAfPOb3+TrX/86v//7v8+f//mfA3zk3+wD/eJ1J7UMioyoXgBpJQpPhh9BFDwKj0XTlTXG7QaRcUzLMudN70MdZIWi2vHJ2T/g5wv/mW7cJo+GSK+o9yY4efMJmr0xnJUM7SOEE7N7Hm/vVZsUxfvpmb/ftqOjoHXvloVMU4t1Hj3KhHerIe/MlZhbSaikjpIH4z1urErtCycPDSrvtToohDy0RfQwb5jNSl5nkNDPc7zbxPcWP1c5ibWOJDV7Ht5CCE7MVHn3Rqt470qglMA5zzC1KOk4vqOt8cDjG1U59Kt/Q3n5GjJL8EqzXBvnzfkpMvk6spwzHtSIpEZKseVflruEalAhTKtHAlnsDKbL0XhRAU6vEorJIu7xIF0Z72LQy+hsnOrSr7HUqpAKT/NYTrfseUu5Yj6lp/CZp58PqcxNUtmRlT4soAaPyyV6qlb4yDlDvA90BZPhpWY1DUlvd4kihS6t0MluEZkadn0boy+EBO8JhiVa5iqPhWt7ZvNmSnXWJ09TeeV/UEv6bEjFwAMmpZ6luKjE2PPf4Pgjn+GmH+e7vUukIqQscrS0GCQrrkInP8uXlGUuGPLJ+cd4u7V4pPOf2T6ZycizMto6asYhPbgiKY2wGhUOODHs8PNXrjP3208ihNj3MzpTqrGSdFlSAkxOV7YQky0qpkRZhKzlA1ycc7I6TlVVyJ3lctrnGZNhABVGCCHxeBKTs2g7zAURJaWLhMYd2uoYSK9SFTN7gs7EbFDWJwnFHHkn2QXacc7jrSVynnYpxSmLdwb0El6YohUWUXilCYPFkmVdgqTMoLpBVN0gGE4WtDQAAUkE9b4g8XVuj8VMXLuG8qew2SwiGcOXV/GuXtwXzuFNjtAhOV2mwrMFZGif9eCwpM3udl4B2bCwFVAagSQ2IZ1wQCca0kyrRSC42EWs3UbEY3sSEx63ZQOgkpCKnuCm6fLtCz89dD0+Ch7+boGzDhyVuEyl1qS9ag/tGHi/tV/b8qYOogQfNXjLSmo7KXgEEMkHpc1n4kS5wu1hh8watCwSdM47jHdoH/Bsc+4XBj1RUvLU3N5Oio+Sztan4FPP8ma47SNWSQVSB5Tnakw9/zHzEbt16xaf+MQntv7/4Ycf5jvf+Q5f+9rX+N3f/V3+9E//9AM5wAf6eOlOahmAH0psqpD08ZTZbMIq6qsCicOgMYR44cgDeSho4IPU2OAUT138n+iLdzB6QOBLVPvjCO/BZEjlsXIKu5YgPwBKz6Yx5j1rP38d7yFPCvBIGMPqrV1tR0dB657oRnfNQkZljZICYxy5sKwlPVJveGvcM55DxSmUjvnqiw8Rjt/9vb0f1cGjaGVjwM2VDt08AaMQAqQs7kvnXXGXGqhWwj0Pb+89N5Z6xJHGWoexDms9QkAcKpSS3Fzq8fSjU0cKxuq//Z9oX/sZ5xYusmByFkoVAqU4JW9Q1W3qUbR382tbTJUe4qnJr25Vfw7KkO8XTM/NPUnv9CKZWiEIY7JUIgKDEl2iYZlT55+ntlHmlLO0Y7iSeNbLsDYGa81iPoXU0pUJ/+ZTTzFW3e0fdteA+nOnEOdmYfn6vtCVhb7iXOkLbPxsgHXXUFJQn1qEyRTdCcA5hN4GnAgh0D4iEwO6F68zeeKJPWvH9Nnn8KUa7o1/pLS+SJ6nOBXg5k8Qf+rXWRqb5kJribduZiSqTN1u4GWIRxAKR0BC28ecS2eYnZKcOPUU/3782JFQ7KGqILzCkVM1CukpvKBG79spi/eaOIvRC11WNgZ09WDfz+jF9jLdPEEJSaTUyFrd01UDWr6HiAqKo6fILEdScz2qcDk+xkRqcD6kJnpIIQilIrOGtLtO6fhjRcvsnffoZsfACFYTqyZahBif0UvXyZKAjcUn6RjL46khWuwRNyJClSM3WpTzmFw4NmwGuYNgDYcdNdxuXndReBHiGeTrNMwMeWRRocH0HeEOmI1REKVghhmPRasE4jyNWsj64CS15acwJ34AUQefl8FLrMgJwh6lYIJHxn5jz/zLUWaK9rRnbtJtRlUE5SSJdmTSsGrLJL7K0A4pL7aJj48RjJcwo8REq3yD6+Ov0osKAI4wknh2ip92ztLKm9SDEqHUpC7n3c4qq0mP/3DmU1v3093gGXcNnG2LycpDfO7s51hrpx8q0OJIc8B3UIKPGrxlS/1dScE7dTfD7PdLUaRQUhCimC03imeiNRhnkEIQy4BKHHNmbOLuP+yXXGfrUzz0+UkWn2kxXOlRMpKpRoPgA65qvp86ciB27NgxLl++zOnTp7dem5+f56WXXuKrX/0q38XquyAAACAASURBVPzmNz+Aw3ugj5vupJYBYMEhSXROX1uqRpMKzyZGSOBxXiJ8TK/i6NQkIQeDBj5I+cSACKnFjyM6a0Ug4/NRQ38J6hP4RH30KD1pv5gJ2+w3T/rFLE6eMEo1gwB/6yJi6viBLaS70Oe3LvBvL03eNQs58a8eYbxZ4tZKh44YYL1DS4XWgo70tFIQ8ZCO6jPN7kDsIIz3e6kOHkULyz2+98Yt+v0c4YuNbHE7FsGUEALnPcY5pIDM+V0P75WNPuuDq9QnM7SokA8n8E6MKlaKPLf3lHkVQnLy9NMcP/WJXZnuQJzhzZX/smfzm9gWoazwyNhvMFWa4Ux9+sAM+a6WnnJAHgtMbomvNjnb/xKLn3gbF9/GMgCjqLenmL3+ScLePF3p8MC48dTPK37yhGVtrLidOnVwXrKW5PRtvuc9HSWg9vLFop32DujKQl/xXfUsqRqnEqqt1qmNDUFccoR5glbxnq4rqwwKjVgXB87biLntltZo1NL6bhjw0uIlbi9fQqUtyoMAWZXELYXME+yolTEUkrLrsS4abDz8JFNC7qlQlFVAmEVkA8uKHWy1p2b9CbSbQat3Ua6OLW40oKjEmrBP3J2BwQRVHOlSj5fEpT2f0VAqrCuui/d+C5giECjpya1HevCiaPcESDqe6uIEbwZTVH1O4CxV0eO0uMqMW6GWDunpAPv480wfMKR/p5dg6ltYoxi2J0lXP0uZh3BTkquhKszYNwZU3RDtc9JAc6GkMHkDl5bwUQu8BL/t5ScY/d1LjM/JZA+ROSZNibaQZM4WVQUE0nhajVuUJs8RlTq8drqNEGtEgxl6S58kvvF5mP4pPm7hAoe0ggk9z7PT/3EPCe6oM0V7qkxSbbfQSoWVDucCXu2fYbV/goEPcEKifpJQvvQuZ6KAx5SgZS/zzvRL5DohzKuEeQmrHavVBeosgfg8i0NDas3WOEjfpPzVtbf4nz/x1SNVUA4LnHeuHVKq+6oMvRci4f1Qgo8avIXeIwUMh3kBBBrN7G4e24cFIplslhhvllheG9CshZSr46Q2xziHEoJk4JgZr3ygc3gfJ0khmK+OQXXsF30o96UjB2Jf+9rX+Mu//EtefPHFXa/Pzc3x7W9/mxdeeOH9PrYH+hhqJ9lpy4BVgVWSRMUsREPO2iolK0ikwFIMzJecxyrL22fDfQfdPyxtPiRQAUyfLFpPnC0eumEMuUVo+9Gj9IwIfJisON61heJPpYuBdWvA5vifvIyfPsliY3JPC+mmNtHnyUqfZDUmrISHZiHt2pBnH5vi0soqPhUEYXFuvAVhJCrw9MZ6vLz4DmfqU1sbiT30MbHbdPW+q4N30ebGq91P8fgRYm70RStA+VHcWlQZUlOg5Tcf3ivDC/yk9VfIY1dx2pF7jc8mofU8le5x4sRglOS2dfeced2b6W7u2fxKETAePTQKwh474PsK7WzpSSuCtaxDaos5FKkEYwtNTvlf4xNfH2NxbYXBd1doLNUZaokRgjBU9EROV0N9KDhzTbLWdFsB0GFAELh7u624E0Ax6OCl5lzpC6RqnObYjgAkUGg/jxlMkESLVFy8Kw7zeDLVpZbMUulOHJos2dnSulkZ9u4Gs/E76LAFJY9HkgwbBIuPEbTGAYNBIMISLm6SNrYrR5vnf7/KSmm0VgwTgw2fJppYICu3kVkZ6QK8MpiwjzQxzevPFpt3B4NkyG2/9zOaWkPui/vKUcyPbW/Oiz8tHoVACYnrSbgVEOaeJLAgPM3c0XYN3vZPENuUXr3M92ZO8pXJeaYPPGu7/cVS0+OH51okS3Wate1ETdKMuVoPsDdXmMoTPlm6ytBbWv5xEl9FrT9Ktb5YXDEvEMKxM6JWRuOkI4sSGuuzNG9JquMBK7hRVcGh4yUWHv8+9aqjIurIdIDVHldZRJ1sk13/Euby11GlVep6g8fzZR79yu8gSyd3vZ9doKG7zBTtqTKFcfFMSId4Kegpw6A3R793ksQHBYhFeBzQT3LecZ5eVVE68Sa5HFIaNBFCIkKFr2r6xhKILtqfIzGfRcti5tZ7T2YtlzsrvLp8hc/NnDnkCu2+VkdZO+6mOym8C67OmxdW75tIeD+U4KMGb5kUpLmjP8xRUoxmdhWNakgUqg8FRALF8/G5x6d5+cc3tsi9odZI5+gPDHGkP9A5vAf6aOnIu8U/+qM/4vz58/t+bX5+npdffplvfetb79uBPdDHU/uRnYJY4yNDO68QhetcEwNm0xJxLgi9wArBQKcsPJywNl66K2jgg9TOh4RqSkS0o8XyPlDyH5pGBD6WrhVVsBF2u5gM9kXmOaqANbg3v03/C7+11ULqfdE+igVU4XMSSo3KEpyxeyhom9rZQiLGPf3pNtF6BVIJhiKYKReeKeWS3NVquoc+JkKsz96T6epRsP3OOX7wkwV6/ZwoFvQyj7RydzDmBMjC9NIJR2YcM1MFeGPzuIeuC66ESzXW5wTqFlH1bzh240s0NubxCmZCRdgawrHanmO9Fx1kpH0UvPBmS08aweKwi/W2qFYKicPTCXLi223M4iSPVJ+gnSjMOFSUQspiQ3qjnzM0OUmoqHfhxFIHEw5JdMBFHXCyNn7o5/RuAfXOChVpn9U0ZONnAyqh2rNRkUIRdT+HkH/LMF4ncjWU01hptg2mlz9zZKTxZmXYuxvMld5AkJK4CJnFCGlQ5TXM6dcZ3P4StjdDhkfoEuM62pNV36+yMhjk3Frq4YFGNaSuH8YvO0qlVxhWN7BqiHCKuDtD8/qzlNvzaEAGAt+Q5Ou727yBrSqXQmDxuwIxIbZv5UBKIqkxywHCSkyQIgQMwgBfKhMZyyAv8d34CwzOpCTOHinxtekvtjIY0F69QqW09zoJk+Nkn2tRmaobUPEtnhSWN8SnyXoncGkdoVOEykG4olHdSaTVo+SIR5uQ41efweU1glaf47OzZFmG7WdceOhtdA1q0fFiiQvb6HRIg4B+0GNq7vucvfEpYgwTG1cRM6cQ+8yS7gINHWGmaE+VqTaOcbdIVJ80b5ItPYvzxZqrhUMEMUopjHFY61itrVKqrDFemkJXI4QSiFCRmQxvILUhsW5TD/okrrl1HJFSDK3hlaUrPD/90JHnit7L2gF7KbwLcqqoVId1KrXyfREJ74cSfJTgzTQi/unyKgBKCbwrYDRpblndGBKFmmol+NACoLnpKl/5zIkjkXsf6OOtIwdip06d4tSpg3015ubm+L3f+7335aAe6OOt/chO0bihYhr0gzlU3qEbDgiNInMhRlkGx3t055tkNt930P3D0vuJkv8wtUngc//wX6CzBnrUwuFsUQ2TCppTxZ9rC9Tb64RZSN5WiE4A2ejBLEDEjmS8h1UOK8HnDrFPK8fOFpK+6ZOWUipnNCJRu4I6ISD0262me+ljxbnUIqYqZuiZpXs2XT0Ktn9huccPfrLAjcVu0RGWAaMWLuF3zicBVuCFB+WJw4IiBn7ruBvRMYZiQJIbQqepDuuYUpvlU+cQ7Vm0EzQyh/zxIlktfs9zbQcZad/1vIxaetYYYr3dQrVDUYlGK0TmObdwlbkTVbx1hNVol+HxRFRh0XZwZkht6PmViz9DimUyIXi22qD5/DcO/Jwehci5+f42K1Tp7S7WXTtwzsPKM8xcfoHhiTdJ6utkym4ZTJ9Y+yz15Wn0TPnQZMlma9XNdpul9R7HGu8gSMl9jVwYQikQLiTPNEHYRk+8xSA7gXMel3lKTbUrq75fZSVJDWudBOuKCL/VTUkzS7N6hukLkyi9RDdM0LZE2J9AjnAUZe8pzdRw0zWC1h1t3oASsjiHUuKcxXiH9KL4HPlRPsHDuKvh1jS+LxHaIxFbZEopJHlQEE2Nien3hhyfrN9T4utOSM8uOYP2hlREpF4xJjURFu0NahiTD2YIyrexwzFkkBLKPl7lBdpbWIK0wqMXPs94v4kTHpsp/HqPII4wp1PS6S7laGK7slqfxK8vIPKcGEUadamG12iu5RBXkJ/82r5ryc734HF4vYyXQ4QrIcz0npminVWm9uAGic+R1RqljmTjxvPo7hhdoZACRBAjVLFuKikw1qHDDOtyvIiQpe02OyWKeb4cRUl4tMxgu2sTh0cJwUY2vOe56fteO+6g8HoVcm54ljT3NMxtRHkOEVTui0h4r3PAR3kuXyhpksww2YxJM0u7l5EXHhHYEdH2y58+2DD7g9BRyL0P9PHXR6x/6oHeT1nnWLyxxPpKHxFopo9PMT3+/s3RvBftR3byPcW5Cyust0oMswwlPHEZNiaGrGpDnvQPHHT/MPVhwSLeb4m5hxHPfAX/z/9PUQEzWfH0CUvQmIS4As6xMNCcezuj3GriMoCiAkTkcMJh++AHMYuTA64HfWY2ckrjZSphtPW77qwOVgY5gVQYb4nKe++/nS1se+hjO9+DEMSqeU+mq0fB9i/qY7z84xt0+zlCFEPbeDBGIOMVdJDg8hJmMMnmPJ3TjrguePGzp5mbrtJKr+09bg8V61FeYLMySXWdrLYOvUmSUFJLzb4o5u3zuP+M3ObX3qsxt4g1RnpsZtDBNuxgU9oBSrBg+6yREO3T/lMJQuZVgBhuIJxiIC15VKYCnE2GhD/+O3ylucca4XJnhW/fusCNfovcGQKpOVFp8rW7eARuDrob4wiDvQkAYz1r+iyfvXKKJFzGVA0hZSr9SXzf3DVZsrN9cJjnlHVKUOngVAXkKA7XBpEFSC8xeRkdraH0Kr43jZeW46d3bzbvrKwkqWGlNdwCuADgIc0MKy1HqRnz6Mo05a4j1QInBQFQ8oK4ETHx+ZPoSm1vmzfFHGckNb3RPJqWqsDRu2LnXk3LNNpNIhNhrEQYibcOGUiccEAx+6iFxAuHs4IS9574OvQ6SU0uFNIbYmFxeBKv8UhK9BksPo0+1UYEA1RepZyUMVGCCQeoPOLE+S8z1W0UbeBigMsk1SfGCZ54BFu+il92OzzNgLiCGJ/Dd1ZR2ZBE5eSuDzOPFEHYAR6Km+8hV1cRjR/ighUKHz2NzKfw7V9Byfld1c/G+ixPvv7rtIY3yMWAwJcJxSzdNKPfEND3CL27SiikwBtfWEQ4hXEpEduBWKw0gVAYEpyXGLf93rz3WOcpqQC8/1Dmpvej8K7ZMuu+SlkbhLHQWcPHZQTivoiE9zIH7LxnpelIPtOk9HaHoFW02m8+l7OHx7hxcWXr8xdHmijShXecK86fd55wn7bGD1qHkXsf6JdDDwKxj6muXLzO6ivXqbQgdEU31ZXwFq/PV3n282c/EmXvPXMrFZifru7JDnk4Utb8w9QHDYu4F93LYLSYfxTfmAKhQKnt2bbRv19IY74rzpD2PIFXpFiccEVFKJVkQY5VjsAETPUnuHwqpXreYNe60PCU42jf6uC+s4E7jn9nq+nqcOEOc9jd0iIk9a0jma4eBdtv3/g2b1RfJEktjWpAlhvwEFRvUZ78ESJaRUiDR2GTCXpLz9Ep1Qlqgq8/+TTHG0Vr4Z0myMXmSKJzgxUFftxHQ3yYEmqFdWBDibgDxbypw2bkJjfU+2LMrSfL5I2A0qJgqAV3DFURp7BRh+VSTr8uqOzT/uM9hL0W3eqAvNwljgPGB1OUAlBhAu291giXOyv8H++8ynrax/nRDxEZ7WzAwqDN7zzy/IHB2M5B952D9sWxFIaz1dka42cmGL5R2SJBot1dkyV72gcjGNoEvMUNA4h9YZytLCYClWuECxAkSJHiywYzNuDEzO52092VFWj3MpzdBL+MuoMpLAKscbwrHP2a5mzPcExLQlmYn0fTlV02AHe2eW/i8ZWQaCGJRubXzkNqc/KuoL7RpExEpnNyHDIXeCPQVkMERhkSO0pIeE2sNV85tTc4vls189DrFIT0ZYWx7DahWGcIeIYgDTmCUqdK7/qXiY6dI4jXMeUc7xSl1jxTN55hvlNHyKIKJTAIEaLGqgRTFaK0OoJmpDgTYp3HeItQGj0xizIDlO0T/cp/QB77zKHJi8lmifrUEr34b1FBUvib+QBEjgsWsM2/pRH/ayabTwK7wTf1ymxRlbGOvJPyeGq4FJTZEIZ65og85BI6gdzyGHTpFCKfImcN73euk4JmWMKl6/RMk76tMarRFXNYQlALYwTiw5mb3ofCm3qNRaJxxQx1lkCWFmst90ckPMoc8B77hhOKR+ZqPF8/wfGJSfRkmVtLvT3VWQFEowSB855OL/vAaYkP9ED76UEg9jHUlYvX6f7jVeqJZCgLu5LIwWTiqb/b5YfDi/zK1x79SARjd2q/7JCADxVRf1R9ULCIe9FRsMq7tDkrtnwdKjsCE8A7z7l0hlSXKFVi+htDQq0x3hYUNldsPIkMOgSZBrTLjp8/6Tj+rkX0h0Qp+1YH95sNPMhT6UjmsOKIpqv7Yfs3JQRUGqytdVnPulRKMYGWBFrhwmvEc99G6CE2q2IzBUGGjpeon3yJavxlvjL/wh78+J0myFoIpBCFFZKySK8IXQkhwVmPkxKfmT1GrcZe52b3v5O5/o4ZuZTVwbtsdP4XHj0/xpmNBHEPxtywv/G2emaKbGWDylCQRgX6W9siCMsCwdsnMgKlqATRvu0/G/IS1x5/hX61hVcW4TSVXpMT159icmOWUiUkWFvYskZw3vNX137CStJDeE+giiy1957cWlaS3qEEuP0G3fcznI2mq4Tz9SMnS/ZrH/QotC/jkQhhIAuRYTF7hXSYMCWk8CpjRtAbdjkW1QnSEF/eNnHeWR3yQG5s4StnigjMb84fbrJhPKyFkpVGwIlSyOcem2Zytrbn+A8y8H24McUjjWkutpe3N6hCMdUbJ5IRtTik01dIYzCMCLVeEOQBYSCxeIy1KCMZG48p1zS3+q2tYOso/oJ3u06UIk4klxjP+/TCCCHb1H2brm8S0ifPphhc/QZBsM7Dgy7ORIT9cWbUgHgUhOE9GA+BQswUnkeN8ASBm2G19y5Z0sC6ImDx0kFoicIe06WzNO8ShG1ekMrM6wz6CSYZQymJFOBciM3HUNEGlZk3gBfwngO9rILxEtFij1MrA47hqeSFV6YTgm4geKes6ZQD8twzYb5EHPzDHpphIDtoWWY5fRjnwFK0dcdaMxFVGJicE5UxgjTkZrd7YFLuvRANt3QnhReIhEHhMEhCAfjCA3BTHwSR8CCLlZ/7FleTAf8+KnNWVO5eRX+fj+19OccP9EujB4HYx0zWOdZ+dJ1qKugpCAXU86LFSHiIgacXBlx89Tqz33jiweLw/2MdFau8U1uzYvsgwdf6nnXZoFyr4kabQ60lGolxtqADekUgBUiKOS8L6+OwULeU2n1++9gp4lqftG5AbxD46tZm56BN452tpkfxuBmPHtrXdHWP9tkw7JIOSZ3HGoceZe3rVU069hqoITYtWOxCeKQtISlRqXU4Vl3gTG1iV/BUVrU9Jsh2a4PtMUGfqDuNaI2RYRFCYDJDqOUdRq2G+fifKesNxqM5tIxJMkOn58nyKqhVfjQZcaH/JT4pl5iT3X2NuT1iV8VickMwfGNxj/H25HOz/OBpzdQ7GVNDTZwKBIZhnHN9PuFKWXCyXAA3ZEVQe+Eh+q8vkKz22Chf58rJlzCqT5hWUanG6pxufYV3Hn8F3v48Y62HqJb6BQoeuNVvcbW7Dt4T6e32KyEEkdYkxnCtu8atfosTB+CI72XQvaUFaSCJtGDyjp+zMzBtZYb1jcEuMIMAmuIUSTqBjpfxaUCIJiHH+sK6INQJeTZN7+YUlTRE6Ji/u31lV0JkZ3UoCosKiFYFiGhzRmzzFwohwHms9UwAJIa3F1oc+8T+EIHDDHz/xbGHt17P+57Xb61CAOudFOc8SkqMNLAJurQCcoHSAmEluTT8XF/l3UvXt4KtRxvTvLJ05VB/wc3P8kHXaXqixI24zfdqE3xxsc+xZEDNZzyqLvBa9BmW1DiJ8lRigVQnEStdJtKcsmgTK7+Ftve5wVFBz4wRTBXXfHFlwMqVpzFjN/HBGt6UES5AYpC+T5YH/Kx7nIa9xZmxiUM3ye3sBrlcolGeoO8lWW635omiUFMpT5DJ27SzG1Q6kwd6WUkpiEsBYWtIIgU9OQKw4mmknmfynPOBIq9FfObs8wS1+b00w/gMx+u/wmLSxpNQ0ppIBQigl2dU0jK19hh/986VA5Ny95y42/VZ2W6TDlSPmlIIk21VvCbkgHE1ZMVWCPygOAdSb33O3m8i4ZEsVhYu8lBt8khV9P2Obb/E1d32TO/lHD/QL6fuOxDLsozl5WWcc7teP3ny5AHf8UAfhm7fXKbUtiRSEQL1rBjvcaJY+KWHkoXZyy1WLqww/fhhMOIH+kXpbvM/94JV3jNntQ8SHKVJxx7FmSZBpUJuimyrdx4pxchYlW0/rU2i9CiBGCpNt3qFn0Zv4tNV3PJe3DwcvmncOr4tj5v/jV6ySORraBVhA0ti21seN0eah9qJ7Q/3VtcwGZFUqFEQGwaKqLIOlXXyrAa+QNTji6pGsx6jdEQnu8lP13/CD1f6u6oCc+V5JsMFMjZNkAWZzrG6h8xjxq4/hxQFctq7omWpPRPzf7d+zsAWG9sx2SdSbRIbcnvYZSL3DHoG60AJIAuhvMFalPDd5BRfiq8xp7tbFT7WFrhx7Wf8fdLZOrb5TsC/eLdCw4XE9XiX8bZ9+Sqf+uxJ/lvpPKduLfHc8jL1rE093WD8quD06m7gxo1ayksPr5I2elSrPyQI+ky0ygivEdITWI0e1hiWu9w8/RaNN15kmJwiDMsI4EZvg9zZwoB3HwWy8IS63l1HCnHgfXK3Qfe7bYjuNLG23vNUblmbrdLfkTWv6BiGX8SEf4sKW2Q+QkuFEDlaJhgT0bnxHGESMVEtUYsiwn5OfrPDj1f7fOaLp5mbqW1Vh/rDHPAje6ndgZgQHhWv0PQDTvUCJtvjKAR+bciNjbeY/fJD+7ZVHmRPsPP1m8MuxrqtuRitRFEpEqMby47ObSpx3jEMhvTKA5yHSl5ClT3Xu+v8fGORSGnmyo1DN7+b12q/65QGKW9cvAhTJ/g/q2NMDbpUnSXRAeuklDZCgjwkkgFeCfqnx5hfaKEHJbwZUJB0NE7WkfUalS8+ulVVfeP8MklnjoH5MlHzNcJoA4IhOIXpz9Bf/hRmMMv3Ly9yodxh4pBN8ma7cSUcoxIJstzhRmtiGBSf477pkdk+5aR5oJeV9yDTvJgtjdVoDXUYDz3tqTl4MnM0t2ARB9MMa+F2NbKfZ8W648cJ16oMrDswKQfcc+JuU/u2ST8x5OGrXSb9KRAFCv7Z8DbfTU7RtiHlUKCDEJvbXZXq9yP5671j5cYFgoXLPBSX6cV3JhwLi5WdJN6jVNF3Htt+Jvd6vETpuVlWx/y+69L9JEcf6IHuORB75513+IM/+AO+//3v73rd+6INw9oHPba/SCWDBGkL/626KQIvI9ia/XCj/wLrMG8t4x+belAV+4hpJ+HPW8OaHCOtH6P0xGeYfLTYcNwrVvlO3YkEJ6oULXD/fHUrIAm0IsstYuS3Iii8mASAEYiyQ5Q2TVZvMhP/mMQoasHEobj5gzaNO9VYn+WRiy9wpfw9+vEqXlqkDGhWTvHYsX99dHT9zlbMINrdnug99NtMTJ9ivFpjeX1IoGVBRZOWUId4KTDWEwaSY5MVQOC9pGvW+Mdb59jIxrerAtbSvV1B6WeYnb6Bi1ewDBkISaM9zbFrz6I7sxgcGkEFQSYEr8u0yOqWiqyuIkMKRyAjMutodROULwJsnMNbDWFKVXfp+knOZceYVSPSow7Jeut898o5btQaxbGJmKdvCURqWSgNmRUBFal2GW83L/b5N48YXPIDtM7p+ipO7QVuvFttbLUCjY8NELqDM1W81xSrTrHYCARBGtOprXF7/qfU+scp+zoR2y4Ad4JB2PG6955/un2JlxYvHtj6BrtbmXe2A3X6KW+eXybNDtiYnhwnOne7MLGuBMhKgB3m1PopqvUut8qSJKojzDQCScU+TNL6TfLK9xlrbqCUA0LW0wbtW89iuschNOhenzMLQ2qZRzhP7hwbqz9l4guTzD51tqgOvb3E1VsdcutQqtjQ57lDV29SOfY6UbxG7HPWnabXH6dx41mq63PopT5r37rExK89fF9AoM22qyx3Iw+lAuHtASko/PGcAA29aheZBIy1m+AEUklk2VObkKy5PlJsJ2d2Xos7N7/7XSeAi+0eubNMxBVCpVnVAbdHBsVCpNiyIcwjXpg/wcPjRUUjX+jSf30Bu9ze3hhPN3bNzG2ui0EkGPRnSAbfIIzXEDLFJRGmNQMIJOCEp+MLUmWnl+67Sb6zTfrOtjbj06026cO8rHxmC7qskoyNlakJtiARSgqkdWgLDbljhukAmuFmMmuh3+L2eh9lJe9e6tE2KWP1/ZNyb5xfwnvuK3G3MjjP6wv/edQm3UCHTazP2Wj0OffQGs9egUl3DHTInFvhS/k659SjbETzDHv5+45k33w+1lZu8C+HXdABG5UGPz35GEtj24nlUG6TeOHoVXTvPSsXVrCv3ETklqAWbSWu+rc7LPy/q/zzmT636vmudelMbfK+k6MP9Mutew7EvvnNb6K15q//+q+Znf3oYbp/2RWXYxLlibKiHdHtCMKgaE/0QKol5U66LyTggX5x2kn4W4hPcE6eZN2WsC2P+sEtJq4kPPeps1sP8YMQ3kcZjN6JBAeY9H6rfaOpJY1qyFo7wZiiBUtQUNVELhABqOl8BBpwhOItAmlohse3KlX3i5vfHHivJhM8U/m39CurZAzQPU3NzVJ/YRbmj3Y+D2vFpN+GuIJ67ms8p2e2sqVlEYLXeAzWBWglaNZjNj9Ixqf0jWVgxFZLzMQGnL0aUuuFeFtB6lOUT1uWJz0/vpbh22NM9Cwl7yh5AVowLGnebQYs2CF1t/1w9kQUpUaLQmMtBHrzgyxAGXAS5KnYlAAAIABJREFUYSOmTI7PSqyKMSbjDUSe0nWWlmTr2OodaA4UWeSxWNbSPmUdjkARgs70ba41XyUZ3sSdHSJEQDWxnFmfZTYdtQa2lnFv/CMvnXlqqxUoEF2EsChfxkuBdxacQ0hJrjMGpS55kHH50bfQ5jI3u9d5vP5bnKpOE0pF7lxRbb2jTSi1Fo+nmydMxJVDW982dXOpyys/vclaOyk+G1kx8zTZ3N48h4FCa+ikN7l5/jxTIqbePI4c3ZP9idtcOvV90ngNqy15ECHzKVT/88j0JMPWHNPqd/jCyYCr3Vu8tHCdbrdOtTOODmEiFTy9aomcJdMCj0HgiXqSjW9dovn2K8x+8QvMfvksb7+7xqtv3cYYRxwpuvYylRMvgUwoDUtEpoTRhmF9mfSx78KFL0N7HtXN6L++cCBl8zBNNktUyyHtXoZSowr3ZoLFUwB5lMfjibtlhBdYbXHKE4gAP5CIpEQ8FpOVMhJriPXuLcSdm9+DVNEhgSzQ+2UdcrISklizhc8HT2INJ4/VmaoUAdxRAEmbUBQlCv80LRUmncLnwGA7OBKyQL5b60l9Mce03yb5ntqkJ8XBXlbWgfWIkkaGkujOuS3nse30UJPxnbq90ufc+Q3WW0PS3NIf5ISBJM00cbR9TTaTcstrAwDKJQ15inemaBsMo0MTd+nNFj9b/G8keoNS0sQLiwmGqEZMNT5BjxtcOp0x8XYfMeqsmJuZY/7Zx1krz7/vM1K7CLhxhTaeyDmmuut84cJrfP+xT28FY/uZyR+piv72EnNvr1JLLMNAEvRSGtUIKy2Lakh16Hn6VkQyFZL77XXp1yeeek/J0Qf65dU9B2Jvvvkmr732Go8//vgHcTwP9B517Pg0i41LNJcL7yO7cz3wxWiPESAihYIjL/wP9MFrJ+FvoXqW76anSb2mLDO0dBhjWF7t8PKPrvPM49MHDh97PPlwiLKWqL86om8dHgBtzjpNHA9YbXta3ZRKKWC8HtHqZmS5RSJwypOVcvR0jqoIEmvIzG3mSx2a4eSe33OvuHnv/Z6B93p+rPha6LGt9FDc++bP2HzQhqFExHMkz/w7wks/ZKJ9BeGKDQMzp7bQ1XOwI1s6gRhOIOJFwnCKRjUiDrdnHXr5OgNTI9KzW0HYM28rgtwzjCCPQBpL43qZ+QXNjUiQHot513lquSMGrJYMY003T6EF2mk2jYEs41g/hmIF7xu40TUF8FJAmBJ2xnl4YYaykeAlrnOMblghUBdZrFZImjNEFEHY1DoEOQxD0EKSWkM62kRvlK5zYeYfyOlTSiEQJawSdMtD3o6uEy5rJod1qDTIV29iaw3qzckRyKIIGJ2wOBHglEY5g1Ep/UobJx3CS+KsCV6yZq7xo4X/lU8f+z1O1sa53F4lcxYtC4csRwHrcN4RSMVsqb7lV3ZY69uPrtzguz++RZY7jDIIL4jyECkEy60hzaqjFCrK+hpZ44eUgxVuuYwlEVLLpzi5/jwAF4/9PakYIocxOtWYsseGC9j635Au/hpxdJrnHj9GI6rw2tWbtPMK46qK9QKE47G2J3LQE45ybtGARzCQgrIPGC5G6O/8V9QL/5Enzz5Msxbzxvll1jb6lKZfA5Ugh00i6/ECpIvQwxBTatE6eY7G28dJc0+60CF5Z434kYl72twKIXjq4QkWV3oY49BKIqVEIPHOF+0TgYdUIKTEhDkeX/iKaYFXHpEKGu0Gy9HylnH0Tu23+d1P+1FUN4M67z2rSX+LonrnezgscbgJZRC+qLw774vKXbZ7XfKiqOxrLXC2gDXst0nebpP+3/fAMxLb2tMmfZiXFVLsOz8Guz0X76Y729+UEgyGObn1rLUTJhrxrmBMa4mxHmyOHiyBSdnCNAYRvjGJjsp7EnfZrQ6Lr/6I7qklQltDal20VGcGszZAT5SJo2k6k326v/oNmraxq43+fsxlDoNcOGdZ+dH3SJMSUW2aCTkgtBlDk2PjKo2kxyeuX2CpOYWHXSTenToIF795XnUno5Y7TFiY1meZZa01xEQ5FkseaZoDQbNn6dS316VXF68R2jqV95AcfaBfTt1zIPbkk0+yurr6QRzLA70PUlIy8dmTDL91ldgI5KgqJiiCMA8koWKsFCI8R1r4H+hD0ojw58sNzuWzpF7TEMlWN12oJIHt0B5WuXqrzVgjZmXUTrdVTUn6+NYqA6OY8i3Gvvc/cOcPx5rfSUCLmhHVdh2bxGgU1XJApVzmzHwTX835ce8qS8OUblK0jM2XQ+paU/UKkt42En9UQboX3LxZHRw48C5EsZExB+DeYfdcUJJZsqx46EWhIgw+TXXiOR4aFxyfrjLx0EnEjjmlndnSlf5vcTX9rzjRQekxvJdbmy8pSqxnj1EONXg4e1US5J5emZHlmiBTDlPWBB3L6dTxzlhMGAeYGHo7D9gX4BMjDYrNB7ggcU9TVt9DqjZeVhHEeJGC6qKyMqcvf5JqLkiFwwhP1fbJByFGPMZyc42ZtubR65JaXxDkBQFRWUGvDH3lMN7hcVwff5VcDikNmgSsI0KJ9oJKFtMPEy6NLTAxrCF0iDc5OksIRudsM2BEr5DrBmEuGWqNq7bxqghCtAsx3mG9oNerIcIN/umd/84X679DJ0tYT/uYHXPGRWumZKZU22Uavfm1na1vc+UGb9y4xUuvXcdnklznSCmYSATlzJNJT9uBWBkwE96g9ejLCJVQHpZReYyPPZ14kfPH/g7tIjIxoNIv4xw4LxAp2LyCKHWpHnudz89+kbnpKrf6LW4POtTDEsIX17yRQj3zWAETOWivEBS0zEiA1B7jx7B9iRjBVDbvt6urF3ljrUOvX0V6sCrDSovwCmECVFYmr6whg2UqvXF8bum9fJX0wirlHW15R9ETZyb4+eU1bq/2sa54OGhRQDmMcqh85J8ncxweKQTByHRYCCCAMI8IsmBkL73jVr7DhuIwbVFUL7/BeiulIiOCQJKHGd18N0X1XrQNZegTSk1icwI0uzKSgu0AU0iE9GTG0Es9N9ttJpqlXb93p0nzLnhG9BCPjP3GrjbpAz0m52r4QY7tZVtjHDvP207PxcO0P9mT0Rxv0e7Y7mVE4bZPmTEO7Q0+6WJ8RqhUURL0DrIhrC2QN2ZRMtxqX91MiGW2h9cOnQfbIBmh8MZi2wl6ukTqc/JGFVE+Yrv4ATpsphPgjTevstY6jlWnUUPPuBryuL6OsjfJvKMXRIz121Q6q1wNS/d0D+08ryfiYiX2srhPhRZkxpInoEsKoyHOIBzlsDfXpdVej1lR/dDIjB8Fee9opdfJ1q8RGmjEDyGmjt818ftAu3XPu/A/+ZM/4Q//8A/54z/+Y55++mmCYPdgar3+0TSz/WXSQ4+e5Ir3pH93gygtEp1egJGQR4qxsTJ6aNBHWPgf6Gh6P5HAa7LJelaiLLJdI00IifCGcuBZbyV8+qkZuv1sa/hYmSFmbZmBD4ik49nyOsKXD8Wa74v/DS1r8QpDU+KFmUf3kMWe9XO7YBvx2lu82upjki7aipFJdIyoFybR94Kb94k5cOAdCjS+6+f7VnJ3Zoq1EqSZ3YIJDRJHmknWrePGBtQWe8zcurZnSH8zWzo19hxTw/K+m69m/EV+0lohd5apvqbWFwwjv2MOs9jAaqkIaprG+gDRzvCTas8GzKSeqCJZkwMmd/gGGWbp2y8g3JtUgh5eJCACZDbPyXc+QbM9SSJSjNCEPkP5BIsGX+WJW5PMruVoJGk8qoQZQZhDvSewlWLz3YtW6EUrhGkZGSiEtUVRThZBRGxCOuGAdjSg2VUIHWDCok0wUpqdAeOw2kZ0y0jvyFSGp8C0WpExqK7ihED5CGyVjEUuv3uFf3X2Gd5MrhWGztYQKM1YGLOc9KmH+5PVNlvfbix1eePGGu/cXkMmAQjP8TTk0aGlmYN2BosgkYaS81z75OuYIEEPGggkEo/IQDPGoLRCP1yl2mkgnEMikcLSlAnWOVzicLUF4vo6UC8IhM5SlzGiVMxJhusQWgidL+BIxRUGBIH3kAd4aXHRGOxA+QshaLHGkD42CFHBGkOZFXYHHqQJCYdVEAYvh3gBQklEpMiX+3S/c4XaC/sDPIp7bC/05wufnOflH92gn+REgcLj6fSL2bFNjH5gQ4zMCUOFEpLQ5EhfoMmN10QE9EyCkBxoQ3E3lZISp9ePs7jeKyAiwuMjxdx8hV8988ihpt4HaScyPx9G5N4WGH4vi8CYUTVsFGBa78icxTtPlhv+ZuEtXkve3TOLOFU6GJ5xpw5qocwXugdWy+5mMr6p/WaDd87zSilIc0N7mBBHmlBq+sOcKbOC9wNW1QTBZnJPSJARPk8ZdHtMn5zbogZuJsTCRhXpNVYYtB9VOQWgJD63mGyIVEe0EtlHm1TClcUuP760whpQKQe7Zjq/9cpVAFyWUfYZWloMkmFS4aJ/lMeDiEBeJQXidIhMhpwcn9tF4r2bdp5XaxxejJLYI497KQXCgPAS7TxWQbZj9xxKTTfoU65q+l1zT2TGu52fjyoGf2V4gYsL/xed/mWsy1BWUE9iHn7rEaaf+Hf35Gf5y657DsR+9Vd/FYAXX3xx1+sPYB0fLT302CmScoONv38HOzT4WFEuhQRS4gZHX/gf6O66X1ztThxwqCrF5lNpUsO2Meaub3AgBDrQDDNPvRLtGj427R7KK6aChGejJeZ0H9iLNd/cPByK/y0V7RY/za7z2ebxXffJTtiGX7iE/d7L1E8INmqOSh4jnId0iF9fgLFZEt07Mm7+sIF32N3Cs+shFSpef3tpy5R5ZSPBe0+gJdYX7SXWWcJAYa0jzSzLa/1DSVYHbb48gmPL3+dGb4O5vIqyYKPRNzkQuaMqAwJbzIKVAkVFCZY2A2YlSBJDP7HEkeJzT87yUqe9j79anbJ+kU/Umty4tk6ShExk00ys9EjJMTJA4Cm5nFxMIHwRHClXZmzgWKwavNQoKehVPfWOQFloDjVBU9Jzfaw3hFRRY2XoxJAOQcrRz5Ek/x97bxJk13lfef6+4Q5vfjkPmEkQ4CASpCTKlCyJsl2lwe6y3YwuK7zxwnZ0WDt7YS964Z3DXijk8K6jHQq7K6Kioqs8dZfLg6pliZRkUTIpEqQoziCJKefhzXf4hl7clw+ZiUwgEwBlVgtnwSCAfC/vu/fd+33n/z//c7Qjlzn0ugTTx1FTR2n3NkdyMsMcffvTRPJlTGWNyGd4Ucx4CS/Babwc9uJlAiJD+hKZvMTCouGpR08zsA/St4aKDnHe83++8ew2srcTmTNEg4jXX9kkyxy5N0g0k5njIx1L6GEgYSAF2nsmcxjU1hhU11FZBUGRAaZEMS9L7lBhiVR3Cjt0UUg9vbDkHryQCKOw/ZQffe17HH1AUjlSH803RUqjpnPydkAwjAhxFIWvIvYApC8sRp1TtGSJzDQorbWZnPRc6KzyT1feYyI0BGEXHHgrkU7ghccFGaleJ0zLkEXFrGaoRoWKvaS6W8+VdOkN9Osv0VhsFyR7GPo999jP8eTjxXNjabVLp5+Dh1IYEEaCbi9HeY3KJcoNmMi7BNYgvCcjIFYxH6/Web2qbxhDcSNcK5o45mp1nLCkuSXPPJXlkNKJEtxiTXe7KYNcF3Ty9Jq8VzDMKiyeLak1eFvIF1XJE1fkvrOI+5ln7IW9JJT7dstuEDJuneO1xRXag5R6KaIm4j2DiRvVkJXNPmle3HvL/QSRCAKnaQaKc/lrEEV8yzZo+ZgyGXqY+dWXdSI74NHZa/OaWwWxmpmlmk7SjhdQ+fg191whcN6S2C4TpdMHixLZhZEr4dqAtJNy1jmycsCSknQDNZzplFxd7uI9zDcVsu+oZorZvqZkfDHLK0/RDMfQ5Uvo0iKfP/04U8fuP1Q3dXvg+kBLBrGi3DekUoIQw/cSeOuIc9hoeNrbMtszZwiU4oH7xvjRK5sHdma8ET7INvgrg9d54fL/QdZbIk4lsYixCjaqKefDH3LuuRbTH/31u2TsgDg0EfvGN77xfhzHXbwPiI81mfj82WsWrInFa3/DB/9dHA63ale7px1weITT8yWiixsoPQzG3E7GbA5RGSMDlHREkWJqrFzI6S68y+A7XyeKFROR3dVJEyNb861KPMBCv3VNYrWHDHA/B7QtbM20iWTA6e4pzlfeoRemxCZEyQBrU5LkEmH9yIHt5vVkef+B920SnhXneOFb74wWKe89/YGhXg0x1heBuUNpmzXumiEBoJXEOkcpjhgk9oZOVnttvgSMwqmXXR8jqygDwnvKfUFoNYEQ2F4XtERHmocfnqa3/Bqb3RZZP8T0plBKopVg5bLhZ489wPn04r4b26u1YlF2V9tgHAZPKBwllxC4eEgeHHiPGIocp/qaFWnxkSbRnrziaAwkJStxGwma4jqJcY2MA2CyIM95BkpjtUc5CDbbEI8jH/s5fmbomrg66FFzJQIXkMhpFuTHaYQ9Pj4dc7n9l1hv8TYoZtqGpAQfgkhAtAkmv00HyT9fKTNePjaKOHDeXzc7tP36d9KUydYUzkBclriOQ+A4O3CEHjqSotI/DCgGTx6kIC0i20bsAwnGgfOoXOIjMNqiU0muUwalDlbneFEE6gkv0dk6nW++Q+XJkzuOUVYdajaHxULW54bHLHEo7xDC453CCsn30+O09HH0qxljSxd4I7zERS8YDyx4i3PhqGMnvcBZgdcZXjiq3XG8ANWIR+dlt1R39FzpXcD21lHjUK9VOL1xhMlOPOqOzz35RWY/eQ9/809vYS3UqgHRcA7S5H3SzCC8JEgFgcuxQuKkJKHErNvg42+/xiee/BUWjz20b7zAftg7ekNR0uBjf0fc5bbLjPtJznfOX2GznWKNAy8QXhQkzHskAl1ZQR9rI3RIqMZYTfrXzSIeBDfrYBzEcGQL//LOJb77ylXSnht2qiGMJLGJMEbvkL9Z5UiDrDDxcRLtNF54kijFx8tMbi4QVGb5VLrA2+kU6z6kpSVKOKZUj3P5a8yXrz3ntgpiGM/x9Y/x+uzXGATrhLaGchojcrK4SyybB48S2YYtQyaXGGwo6criuVwZGE5c7vDe0RrdakhuHN4XnWWjQsZdzIm2QiPIBFjpEF6QZVVceoLwWIPpY2cP/b3ZHfi8OFXmxOUOUebItcQJT+A9YeLJYsGFE1vBezsluQ8fn2WqVDtQvuGN8EG2wffe8cbG35MNVqkMFCKIAIH2UMlVIWkfX2Tixa+jthV+72J/HJqIPfnkk+/HcdzF+4TDPPjv4nC41SyvlcHrvLD8H8hct7CM32b1fv644pFuxPjGBitynECkCFxBwqTG18bpD+wOiYMQgskow7llCCeHG9Fd0GGRF5Zem9PaLrHaCzd1QBvOtFFpMJnEnFu+h7fGrtIO+yTaoRyMtQPOTHzhwHbzQogbDrzLWNM/2eTp5y/vWKR6/ZzcOlrdjFolKEiXLMiXGzKwodoLKQXeeLznlp2sRuHUV15n/WLO9KYkshLpBUpJpCoyhkgsq7XLnE//mmR8jajuCb3CZhOEvY8TZvewvNan3VV8/iOPII7ZPTe2WxvLlQvrmP/+OtWkgxQOY0rFMIOwww9YXHsx7KnWB5I1bVBSEpQ0Yb2M6lgqHzlC89j9XDWvspG+S+AriLiCGJ/Ht1fx2YBE5Iz1SjRq9yEfLWYM7wV+tvHAaIOYOUAGTFaqPPHQPKfHDFe6f4NwrphN3fGYMXgKxUSeB/i8TNeB9Rfo5dciDrZI7vUdwpSyKVEyMZVSUJiBKGg4T8N4BpIdv1AOoxZEHqGcAmkQrmhdCikRocBnhRxTWo0JcnLfp1tu4aVHOolwAqcs4Fk68TJH0zHy5xWf+fn7+Mt3z4+OsSJhoAOiXBJ6X/TdhCs6cE7jkOQCxrOcmtSkQnFpeZPEampzA7woYhGktDgHBoHCFwTSKoRXtOvr+MEka1mHSV2hEoQ7pLqj54rtEncHxInChpqN8oDz0buck/cwGUyPuuPrT8zR6+c0auGOTX2jGrK2abG5wRJgVQUhICekIi2PRi1Etw/nv8H8F37zQBut7d3/Xk+xvplRKe09B3qn3OW2mzIESvH0c5fo9nKMteTW4Z0nrC5QnX0eXVtFBBZQWD+Gjx5goa/2LULt/mysXuXqUpsXrzrWE3HDDsbNDEegIGFPP3cZb0AGFN9V68n6DuMynPPMjldGM2JrSRcrbCGJiyxyNkNoCGJLfz2hndUJF08QmwoPeoETBhvkqMY6k/oKwvUL6eoQ2wtizeAYZxc/y8Xx79ONVsmUQRhJwxzhofl/f/AokdH52mnIlKcOL8ArSSo9UeaYXenzViXAOT/yFXHWM5uV0T4jkRZkITc1CJzr4wkZuAeI9s3F2B+7A5+71ZD3jtaYXekTJwZlPKFWrNQNLx7p069rQr+3JPdmzowHOT8fZBv8VnaJdv8d4gSECthuyy0QxDakXc1oLb7D+LbC713sj1tyatjc3OSrX/0qr776KgAPPfQQv/7rv06jceMB3bv418FBHvx3cXjcSpbXqJrkulT17Oh1I6t3lrjwoTKPvNzl260KLRdQFik6LGMq4/TzYG+JwwGCi1F6x2K73UJ6PxnYDR3QhjNtDP99clBnYlCjFfXJpSEwksZKH3ViZ2j4bknm7lmLG0l4So/O8uyFtesXqVChJDjn6A8Dc70X1zKrhqYKgsIqWoiCkN2Ok9UonFpfRfz9ewjnEIEqTCY8YD2bE1d58+wzKJeAqWBtgFAGFS9hwn9AtL5AU9/LZifjpddX+MKnTu27uAohmLpnnM3JEuaixpGDH7otDlmmGNHNwmExcoJpXaJciomUxucWHwnC4w2CqQpnBrsc4aISZnKaJF0lJOLMzP+Mmvvp0fW5utzlrVe71PIy47VCPie8IE89b73apRL2CWSpsOMWGaPEbw9epsVxOoVAg1CYXDDoVKHWGUUcjEju0EBmq0N4rDrGMT/Fe1f7WGGJZECsA5TMkF4UeYnbsCURLHcnKHfGaTdXCJIQ4cWQrwnQElvPGG+VMIGjXd3AAcoqEB6nPMJJyt0aaZSzdPxljr8yS6ntR8e40GtxxSQMdJO+tjQzSckIhC/ExbmEHE/s4Pgggkzjej0mpeGVEqz1Q5yXDEyDkkwQKhvlPUoTUunVsGHKZjmlNgASw6ppQ61GiWHnIpLXniu+AWkbVID2ikqmthmvnEUMu+PJylJBGLTAZwkMLc2jKGKiqtjc6JGIkJ4oEZEzITt8KFhgXvf37LDvh93df2skYraBTD4B+cnrfv79cJfbLldc2+jTS3N87V0ax55GhgOcrOD9VmTECk3dpp9/+KY2/FuZVlfXEr7l7icVIWXt0Y0xrC7dUgfDOsd3X7mKN6BiMaotCC0QCmzfMcjNyNnWCkuaWbQNEBrUfIasbikpBBVmSJMGwipUWISLKi9RmUasTWDiqwRH54vMxa1X7SqINfIjPNx7io5eJMu7hKrK3MceJyrvrZTYPZe4/fm+25BJyuK5tTXekmtJKbGUEkOq5ejz13JHORdkUTAMRHXDx7pDRiGy0sQO1C1F8myfLdySFbYrAethFdHKqCjBo4/MIWc94cKbrN9EkrufM+NBcNB9xcrGgDzKDt2Rvl1ktodzOcpSKAt2QTlJoiAX2Y7C713sj0MTseeee47Pfe5zlEolPvaxwvb3K1/5Cn/wB3/A1772NT784Q/f8YO8i7uAa4O9H5TO3nZd+V7Ya0PRyi7Rzq6gfJ00K4arw6CYyRlZvYsWD3z+Uzx50fHihTbrAxigUUIwM1HaW+JwgOBiZk7sWGz3spC+9pIDOKDtQf4EgmY6XASzBFSwg/ztJ8nckqZtYb9O7n6LVBgowkCTZgZjPVopjC3yz6CgJkoIxDb5SRgo8tzelpOVFILpZpPN8gIuMWA93hSbIKcFF+55kSxIKPUapIEil+B9iM8DZLBJVv5nSp17DtwFEEJQfuIUncUVSKKhAcGW3EoCDoHBCY1FoDyETg2J9vXubPs6wlXOXOcIt7NSG+38voSFpOzt9xLC+SoKjXGreJEhRub74K0qXNd8ITsNA0luPFlSohVcizgYkdyhKcx60uXltStcuPpD0nSKfu6RpYiqjrBhjpUeNYyU3kIuIfcQOcH8u+fofejbZPEmQV4FITEuJa8MiCtjPLzQoNu/xA9O9Yv5F+XAg8o1pUEFaSIQnkFljbS0RtJPuPf4SU7VJnlx7RJ/ZV9kvWyZ6WkWy1BJJYEtrob3kjFb5HMZrRBS4vA0U/ho7nm+UsE5hUWRDaYQKgPh8F7ibEBEjrKKZj+ikYMwCic8+aBPGIaERxv06uu0F69QUmOIoeSO4Wye954g12yGPVphj6YrQ79N7BOUzTBLy4RmMLI0d0EItYRKdQNta9wzWKXKBlXTIreCi7lmMihRtuamG629uv8DP0DEC+TR3yPaP4/Kdkp/b8dd7kYkYHun4tLmBs93/i9E0MfR5FpVX+JoINhkPHydsvrl/X/XMNPKJ33O64+TypiG7yIyC+sJcmKeZq186A7Ga4srpD1XdMJ2/bgQICNXqNRLijSzDPK8CN0uO9RMvo2EAR4euBSSSkksWgjr8WgKD+UclysG8h7Cc49c19ncXRDzPUdVT6Inju872rBFTFlfKIp0w7nE7a69uw2ZwkARBJIsswgtcBKE9WjjCeLiOeE9xN4jvMdrBVqDc1jrCANJODkJ3uMOkcW2G/sFPk/M13asuafqUzvMqu40ATrIvmKzl/BXb73Iqm7dMPD+/UCoKkgZYBVo5wqX5G2w0qE8BD7csfbfxf44NBH7nd/5HX7xF3+RP/3TP0UPcz+MMfzmb/4mv/3bv80zzzxzxw/yLu5iNNi7PhgZNujx0qHtmw+DmxG/3bry3dhrQ3F1dZV2r49JNN67wmAwUNSrIXGoR1bvuetz5MzX6KUgAAAgAElEQVSDzN93MNekgwQXy0d/dsdiO7KQ3k8GdjMHtEOSvxtJMl9YviZNu/aZru/k7rdIbQ2sr25ajPWUY4l1HmPtVoMIKYtrIqWgUQ3hFp2sdsMnpjBRmamSDXJ6vYzMejrVZQaldXRaQSBHVudbR+xtGRmukcqrRPrIgbsA0dEmfOoo3affJE9DQBXnW+YIemQiBBehTdER7HRzBqmlJiRhNbzOpOegjnAHqdRurtaZmq3Qs1eQUuKswnkAh1A5QlmcKY5vK6RaKcgzSWaSHREHW6Ywb7dXePO1Z3n84mtMD3o8q55gTY4TpG26pSqlWoPOZo9m4ukI8LKQBEoEqRTEqaO2eYS5159k9cSLmNoGA9FHec14+V7OTv87JgOFf/6rRNkGKmnipEM6gTYKEKRKIZzHC0sWDNgkHR1jNYjxwvPcbJd/+84Y433NQEJPewIL47a43kYIShlD2SJkApSFs0sTvHjPGFG8ghMx0kQ4MRxoFJ4s7jO5Ps1YawInwA47CEHmsTYnOFqn5zZwPkeJsLDJFQJnLSkO5z3eeLLYcDnbIEocJaUZt5uM9VZZcVUCqRBKkpSXyaZfRZQ3EMISOcXioMyRpRrjvcJhMTE5q1nCjNREUZnF3uaem9Kd3f8ZcuMxzqFlROAnyVnFVJ5FZscQw+iG7e5yE42YlY3+geVdByEBW50KVVrhR2mbxMZ7FfXJXExFb5CYF9lM773uftie+bgWzrCehZRdCzEMh8Ya2FiCuVOHllq2B2nR5A736YyrosJw8nSF+yamuNxq8XdXX0ZWJMGugO16B2pd6JQktXgW12rjUoVzxfcaIchMlWSzTvnI9b/rMKMNO8KWt68/u1x7dxsyCQGNalRkdRlHQBG5M8DT6mTUKoXiYmNgcYBw4KTHOpBK0aiXCulifvAstv1wEFnhdrOq9wM321d00pS2SehlLapxcKDA+zuJRniMevkUG/0XqPRyxNDcCQpDnERljHU0jfKpHYXfu9gft9QR207CALTW/N7v/R4f/ehH7+jB3cVPNrZChpPLLcrfW0VnIKsBshLgjTuQffOt4iDEb7eu/GZ2tVeXu5x/tYObFEhlkRSb1DSzrG8OGG+WUNrssHo/jMRBzJ9GPvnFa5uR/vXBxbuxnwzsIA5ohyF/N5VkmqWRNO1GMyc3WqTiSNOoRrS7GVIKolCRZeCEx3mPcxAGkmYtRErBZicbyTzBF3koN7Gm3sKOyvsgQChBNshZ6xXzG0oLfJThpUWaYVDt1n+2unQuQKg+VvQP3QWIzj2IntCs/d9vYAcBgh5eWnqqTEvU0FbQLPghkfOY1LJUEkyfm2Vij3vlII5wB+sAF9LP4buitcYYcD5n6yQIINQCKYv3kQKsMAivrrPBdt7zyivf4lNv/ICqtfSimGPyEm1fx7gS9V6PnlCsTzeoX+nSdB7KAUGoyXoGmVp6gSTTksnOEY6+foy0uYEf99TOHGfy2P3FdS5BZH+BYP2rgCNIS3hhcEKQS4WVEi8ylNW0teayW+ExXxQpKjpEILhUzXiuCR9ah4bxxHbozOiLy649DDkZeAhdkbU25SF896PIe56BaBOfVZE2AJmjgj5hEjN58RypEATSo4bvl2hPKVLkl9sE91eQIsD6DB3GWB3i0j5OymGHr8i3a6dl3ulKqpNHOXbhJc7ZHt8KHqPly+jKFfyx7yNVgssqeKdQMsVVWlw+MUBcnOZIzxIKSSnt8m5jgu+svMtS0t2zKr/V/ZeuxspGQpbb0byPkgJ8DSMXgQUCP7/DXe7oTJW///a7B3aMs1feJPvGf4K0hy83iMqNYq52n+gO43pUtCJzAZmzRaaYk8U8KQMi3UGJnFfW/guhql7ftd+aj9UhabuNjQSaYm4JXxi8kPSgs4muNg8ltayXIpAUbo56D8JjHUhBoxwzNVZmolni+eRCoWxQO7tuQQ5YjyppAlnGuGGhQhc3nvcCnzt637uMbpb2XEcPMtqwnZjSnL5WlAuvd+3dy5ApjhQTzRKtToIeGNqhYkPAzHh5+HyGF15dorOZUEsseSCJQkW9GhFH6lBZbDfD7cgK7wRutK9w3rPRLcKlxxox8gCB93cao5Dz3iV6bok4TVAiwGpIVEaYwen1WdRHf+6uUccBcWgiVq/XuXjxIvfff/+Ov7906RK1Wm2fV93FXRwOo5DhXptP/zBiuqtIq4oJIalIVVTSArmnffPtYrujk6zsT/z20pXvZ1c7knV1JiiPz+DDq3gzgRQCqSE3nlY3pVxtMx7fc0t2wDAkY3P33FCjvxu7ZWCHkVsclPxtbcpKamzPbkqsmrSya9K0/XAz8mus5+TROo9/aJYsc4RhMdB9ZanLhSub9Po5ae5Q1o+crILaFf554eZyydHv2VV5l1Ij04+SpOM4KdCBKtwZbYxwCpQhdyH51vjW1syHLGa8lCvdUmdOHT1D45emWfvHV0kGIV1tSU2EtoII6MeSlekqWagwSnA1t8ys95jbFSh7UByoAxyvYOhSD46S2E2MHSBl4frmvUbgEarojuGL93DeI3SHanAfteAoV7Z1WLyznHz7JSrW0CrXQAjG2eQh/yMu+FP0XRnRNyw2oHLvOGcGhqCX4zNHNQ4x0yHm9ATNozWaxkNqIZL06uvkrkcruzQi3c2jn6CunmNJ/4hgwyN9iJEFkRfOI+IBujvFe1NNVpLOyMhhrtxgulSj1zasi4CnpxxN6wkt1DJ4Yr041wa2mhB4X/xZA7EDOjNsXnqS2vSLyMoKyvfBaUR3mmNvnsN1Z1msZVTQaC+w0pNqx7EoxKz1qbfnqYdH2EjfpSqmWYti6tmA0DmMFKSBx/Rmeav/CUygMUnIsc4a5+JFPhW8x4vpDGvTryBVikubRVQUOdIpSMrYuM+VmQ7H3tCYvMTl8AhP12ZYa68xIerUnMZIw6XOtap8TffI8pR+RxdkSgmkAOfBWI8QGqkcmevR7xbOkOW6Zm6qxA/fWiPNDuYY93ZrCfvMf6bRWWM9riCyHjpPqIcxlWqTuLWC++e/QXz6V0Zhs6GqEOuYKRmwOehj0xzvCrfKIG4hC2EvZT2JFOr6rn3aA5NDNiByJRQeIwJChtUPBDgL3XXyuHaoIsv9s1N8vfIuaacwo9ktNHC5IK5J7p8timQ3UjYsuxwvK0yoEraVFPOxoRrZ0OM8Xhdk7LbW0W3GTXvqKbfNFIqpo3saMoUCJpTCNgPix+Y4dqy+oxs1N1VhZaaG/e5lqrklqEaIQOIye6gstg86brSvaPVTcmkJps2IhG1/3c2cju8Upkpneezo/1rkiMm3SVyCsoKxbszp5AzTH33qrnX9IXBoIvbFL36R3/iN3+DLX/4yn/jEJwD4zne+w+/+7u/yq7/6q3f8AO/ig42bGS/cCraHDB9Py0wNNEnkSWzOQr/NXLleOIYJcZ198+1/np2OTlsP9f2I33668t12tddkXQGq93Fy/Xeg1/C2Bj5A6YycDtKP3ZId8HYIIQ/tVHQ7couDkL/M9q5Jp/bAliRzuzRtz991APL72P0zTI/v/C5MjZc5d//UdZKT1eSNQ8kl95LfCJORJRdJbZ2KUxgpcRIq7Ukq3XF69RUSU3zuwIMw4KXHBn1sMkPSmtzRmfMrVw5MosMjdYJ/22DwRotw2RItl0AJ0lLA0lSZbvXa+a7k8rbc6A7SAZ6YdUhpiUyDoB2Q2wFeWJyR5NKR1NZA5kVAtQ9BZDjRIRAVxio/zZ+98SyL/faow3I86fMzvRb9sLRjgzcuNhhjg74vYVOQp7/AIw8V12lLRrVFuKRbJ1QpQXiM1eTNYh5ucW/SfWbsC6wlV9l0a5T6FcJcI6XFxH28DVnTD5JORORJb2TkIIXgC8ce4qtL3wMvcNKzPtxzh8Yj2dYJg1FoMkNSooAIWEinSN/5Ar62QGtiAZlXmFybptyp0QkM2miMUxQejh5tFT5WeGMgdZyZLIxXNrMFOhJMtU417ZArS2rqJIuPISUkscJZz1U/xrpp8jP6HR6ov873SmuQx0jhwBfJW0YppPOILMLGXZ4tPUFXHqOjQvK2YrwjEVJQ5LhHNOMSnWabb159g18+cYQkFVhvCHQ0OgFSUBSfnEEKzen7pji/3GbNdMl0xsULTcI0ZLJRHhH+/Rzj3m6v8M2Xn+Zz7VUGURkpJZmzpN7gkx5BliCtQXc3kf/tf8dPn0A+9nM05u4hUnU66Rso4VBRUSERYpg45iUuD7E6JIw0oZmkny3z8tLf8pnjpxFRBfCQJUwow7hvFS63vjMSaSEE3uT0uwkz040DF1mUlHz8oXmefu4yNvHIwCOUxFuHywVCwxMPzaPktefCfsqGsZk69fUa4UqGy2wRBr51hN6DdchIIevh7a2ju4ybrsMu195gvkr10Qr9H25guwPc0HQmmKnS2Gf+TAjB9P3TZLX4mpFT/+ZZbP8jYr99Ra0RsBC0adb3Ps83dTq+g5gqnWXynv+tUJKsv0dooBGfGhU77uLgODQR+/KXv4wQgl/7tV/DmEIPHQQBX/rSl/ijP/qjO36Ad/HBxUGNFw6D3SHDlYFAOYHTEKLInGUt7VHWIUKww775TmC3o9N27Ef8DqIr3y7rktkJaP08tvJdXLACoovwGj+Y4+T4L97yufvXxH7kb4uod7MlvPdYn6LF9RsS47Mdkswb4aDk9/pj3Ck5Oaxc8kbym2ysxKvCcjr1lFxh1OCFoL70Edbq34Bok8agTGg1ThpM0McnMW7pcSoTVR69f5o5s4j7uxvPuGzH6P5zV3D35Nh5S7IxRqn9OCY4c91ieLtudAchwfefPMJbXUm62UYbjVYxAoETDpVZRLfOoNIBafBiA2cl0swzO/YZvnalTd+k1MPSaO5h0GshraUfyesWKyGgrHrUsi4isqPrtyNPa/EKuesjkESqRu4GeNwNSffp5q/w7f5/wdVbpG4ATmHdJL3wYWx5nszm17mJ3teY5jPH7uPFlTW8K4i2ADIptyKgdsezw9bfC8iFAOExyqK7c9iKphdmhJUEK2pEaYiVFE6OFJRGOklrY0Az0ohYj4xXnl/+G6R4GxtCKyhj2+P0Fx/D+RnySoDPinyoPp6+E/y3wRkeil8AaZFeIYfmKh5wQmJ0kU0lZYdWqUqiS6S5JciHnRUhirae9PiBpJI2WBIdFmoRZjCOihfxdqepuAdU0CXtz/BMp00/GFCvlKi069iBJpWGxX6buUpjdJ53O9FONEt84+obiKRHBAyUIrMGj6diDDODLsr74txS3I/RUKq4/sknGJh1rCvWDVFMJhVVkiLeGZs12cxTOjIjMw4vIvrqXf722Wf5yL0PM1sdg9YqQgWcs2/wLfFhWqJG2Q/QPsfIiD5lYuUPFeQL8PipQhExyhHLPciiE/bEQ/Ojf9+O/ZQNpt6h9Y9vQTfDy6Gu1QNDiaNqxIhAYfvm1tfRQ7j2bikK9PoCNWOwooGrzqIe+ijBg2duep5+UiJ59tpXpEHKW2+8d+tOx3cYQkjG4pMwf/LH8vv+/4pDE7EwDPmTP/kT/vAP/5C3334bgHvvvZdy+V9PU3sXP34c1njhoNgdMpxpsKoYarcatJSk1pBaQ6z1aH5rvwHdmwVsXvfzuxydRn+PoxutkMUDVEtSG5wErpGGm+nKd8u6VHYCmR3D62W8HGCyEN+bYOq+ez9w7pC3iu1E3bqMxLYY2A0awTEiXS1cFZ3FC0kiWoeSZN5uVgvcTC4JkgrLg3d5ffMVqsFRzMolZlcvE5Tr18lvImnpRPCjYECz0UCLAKMFg3ic6nJIEH+XrLJOEvURXlHqTXH80oeZNEcZ+/AEoVk80KD79nM7uv9MhOwkJCajU06w0T8QXmkh9YcQ8bXv6O240W3hZiR4drLE1ctNWvoKmonReZVaDrOCDLXVk6z1Po0MMpqVJo/e8yH+cfOHo+LL1msipalWmhgp8XmKl+Wdp90DJkfogInmtYiErXMzMOsYl2F9hveWbr4EQD04ih5m5+1Fuu8f+wj/vJxwpf8OY5EEGWPlOAwttvdzE/3cfWdpXXyVK6sdMpGD8FglSVQxL6Z9Qbq2iNkwdppUCspxmTmTQm6wXrBuJWUdYJuajpRM5tCWhaRUCUEgNQrQiWU18hhjiNa7BOWYY9UneXWjhlYVZFYjfW8eVPGM8oksZvi8xIsio6lPyEuD4zTcj0AacAHCe5woBHqF078Dr7EyKkKlrUYgRtnZ5AJR9gUBTQVyLaY9l2HWP0Y09993dP8ROagOwpXoLJ0jrVvGRR23EOJ6EpFLAqFwuWXVdyk3x0ckbnsxYWutOFquYaUafkckUgjG0wHKezIpURTnfBPPbGMa31rmjaW/xjQlLplFhi2QGWz33HQa4WOSvMjg01oiRICXPdY7mzzz/BU+dfyTzC1cAJMyzxKf8s9zXp1hXTboyxilBFO0eOyhE7cUvvv4qWN8+MQRXltcoT1IqZci7p+d2tEJ2429lA3hkTqVnzpC5+sX8M6P4jtEpFCNGBnrolt2O0YXBzRu8tkA/8x/Hj3nRCVEmwx6r8FLF2Hsi3AASdv7Eclz2L3CjwO79xXOl27P6fguPpC4ZXuZcrnMww8/fCeP5S7+B8GdMl7YC7tDhts16FQ8zTZ0FUgExjuMdzcd0L263B1tGA8y8A1c5+gEsFG6OAqzdBjErOKKfYWzg393YLK5l6xLIBFmtpBDdjJmJsrUezmtb1/8sbpDvh+4jqirMbSIaOWX2UgvUG/FxAOPFY4ksoSUuC/40KG+L7c7VL2fXLJvUlaTHqnNUKLDf3zzW3TNFPd32/zyoENfSialpBSE1zLTbI+xZI5VVyYIHLI0fE/vuefyDHHv52lPrhM1HZErM57PImIxkroq8TTiAIPu1xmfmBpsLIC1lJRGZ1VM2MVMvERwYQwmjiDiyp7mMbeKG5HgfKXH0YuP0T+5ziBcJ7Q1lNNYaciCDpEpc+/SR3n04XNEs1UmmyWu9lssXr1WfNmOjfoYrWqDyfY6Gyog1Hpo2V84Yk7kKdHcPcjJI8PTXZybgVkns308FiUCvFA4ZwBPJ79KIEtEuphp3mtG8Wfmz/IXF/osDrLhzA1kLr+hm6gQgk89cpxv/sslemlGEAoUKRs6Y9J7pAftPXIYaJfj6TXX6cQp95oyY5sTYDW59zxk67x8fMBGWfNOLWTcOsY95ELipUA50LklEXBeeLIXvk009Ry6tE4UeaZiQ9dUse4jRZia9PiBGIWrCYZdbAoDjXQwTTaYICwvIRKJEBIRhOAd3jlU0MP0Z8jzcax1SBcgxNB5Aw9WgBUI5XHaolKNtBKZHkesfR7R+N6o+4/XyOwI6cZH6PebVKoZ7nKML/KUh/AILzF96EQJ9VKxHmwvJmyYAbmztGvjrJVrjLXWSOMSkTWE1mKkBA/aO9IgoIOg6SzJREhbttB2Hm81Ii+DyEAk+GBteL4s1hfy2WK2TeCFQaCpxTXa65bz6TSzc6cRSxfAGubtVebEAmvhDGlliihrMzE9hrrv5C3fa0pKHpqfueXXb6H04DTp2+vkC91C7aEkBJLcONzAIHsZ0Vztlo0uDmLcJM59Bv/iPx3I0OPHLW27lb3CvwZu2+n4Lj6QOBARe+qpp/jzP/9z6vU6Tz311A1/9q/+6q/uyIHdxQcXd8p4YS9cFzIs4O2TjkdeVVT7nn5YPCS18dhuuu+A7tXlLk8/d4kkPdjA9xZ2Ozptli/x+uzXyOWA0NSQmcBFsOkvHarzdyBjj/EK3affvalJyAcd+xH1UjCOzC0tc5me6mNLIcorxpISpy9XGH/1WfyTJ35sQ76h2uY0J4qNXt+kLPTbWO+QWKyXpFaRe8eGFBghsVnCm+Uundku/TgtclOcJB67QnT1p2glTSraorUk7GaE/RwTKObVCeJsuNMcfl1lJcAut7Cija7efNCdqaPb7r8mbCyDtRCEgKDhM9ZNGVPu4OMNglaMURH9gd07CHyIw8567keCfWJobM5zdvFzvDvxPXrRKj6wKK+pJ/McW3ucemeaRjUiHL5+d/Fl9+d/7eRDPP7q95nOEtpE5EISeMd0nhFXxyg//vOjY906N8ZleCxaFNV5782QwBW5a918sejKslVE2jmjeKtuovPTVT7z+LBjuLJJ3u1xoRRQsVDyjkR4ci/pji2wfuI8SXUDLw3Sa9b6E4y9d47JzlHuTTWn3quw+cgk/1Ltc6UmmFvtU0oswjossKYEb1Y07bGrNOe/iVAJeVrFZZpKxWPVKrb0DLaiMYMjBdHx165f4RqiEMKh8QwWHkOf/Ca21Ee6GkJKIm+wuoMzMe31h3FArAKskDjcsFvGNbkbYHBEhMzX66w1c5bX5mnYfw/BCl4OyExAmkzQ6Rls0EO1A2TuCFSGE5JMRwWpE4XTaaebU4uj4ruyrZiQ9bNirfCOHxy9j4/3WkykA4yQSO9wXhJ4j5OSTlwdZqw78lBghSsy//A4J1AyBh/hXQ/kABB4LIitj+ZBdZDZEaSZoVLyrG8mrD/yC0x87z9BvwNRjIirTEoF/cuFa+xjP3vLpOJmwciHgRCCykeOjEyo8sDT6iS4zBEah1GCRQlnVnq3TDxuZtxEEOMPaOhx2Bnn28Gt7BXej9n4g+J2nI7v4oOJAxGxRqMxWrwbjbstz5903Cnjhb2wV8jw2hi89IDlnncl5Y4vnMOkIJip7DmguzN4Nhx9d/cb+N4OIcTI0clsJrw3/z0yOaCUjiFsEZIa1cvEgTp05++Gsq6zU5S/f4X8gCYh7yduV6KxP1H3hN0+zTwkjQVn148yntRopGWEAjrvX0V0L7lnIzy2zWluBiFgNelhvSOUEuv79PIGTkwQSViIKyyWKtT1GpeOd3CBo2ZjYhNihSWJ16nf8y2S9iyt1Rk8MJMV7xWPlYj3kAQKLXHG4YQEvY9kcNeg++j+y90wNFuzRShiYRjznrbMyQLBYCDRg5SZifq+83O3Ouu552Yk1mTCMViqUV1+kqC0hg8yYldm3h2n7DVe2x0SqOuKL7twsT5G7/Q5/pf2JrXNZfxQjhjMnLpufi6zPXLXx/oMJa4l4gp2fn+NT8jdgECWh3++fkbxVt1E56erzE6WWPmv3yJ1a7Trs7yr5pjvaWoGsrGrLNz/bfIwJUjLhLaMCSyD6hLmvqdpvv4kcnMeObCMfX+ZRiNkuRHRPVGnnFqUcSx3M9bwSAmV6R8gVIKwEwSqcGA1qWKydpSN9Crl6R+w8eY80g2jyUQRHu99kSUghUIpiekfJ1v4N9SOnMeqZZzoI7wmssfoLD9KUxwnrmqEkywlPXJfxEKIYYfNOY+xBoWkGkWU4mBUfGp1crQo08s8xliMb+OlJ4wXqW6OU3YJgc/xQtCXJVqygRu+r7We/iAnM35HMWH7WuEaU/zXE/fzqcWLHOm1kYDyjlQF9Ms1kiBEeI8SEtfP8M6zYTrkVBFGIiWESiPtGE6keGEBi8OSkaDlAGXLBL0nEEi09vS7fZJXXy26PiaFtF90f8p1mD21b2TIQXCQTLTDYiugee27F+kudNDWgxIMqgFXxmIWMsPCDYqUB8GNjJv85dcPZejx48Ct7BXej9n4w+J2nI7v4oOHAxGxP/uzP9vz/+/iJxN7dRK24zDGC7uxX+v9St3w2tmU+STis1OnaE5M7js7dZDg2Ru5x20tWEs//AHdaJUwKSM8iFCPNPXALXX+9pN1mdU+rUOahGzBe0++0mOl1WKgHaWpKnOV5i09lO+ERGNfop4lkCVoGZKKnFpWopkOP4vgfauI3igT7sx44TTXNUtIKqQ2IxAOQRfjAlazMxRuaiCV5JmZI3yofAmUIRoESCUROLS1KFmjXRaY0nfx/BJSSIJqSNwzhHLva7F1PFI4MPamg+6w7f5zKcoXxYHtCFRGHcMZvUjglyk98Dkmz57a81651VnP/TYjleAJ+jphrAOqLKkm07ikCPJdpMO8LVGZa+yQQO1VfBmdn+Hcw9jcPZSffAK5tnDDDkGoivBs5y3SB3hRkJUi3lnhKcwY8OC9Hf2OxG4yHp26bkbxVt1ExdoCk+13oFLmSLhKQ6Wcj2ZJ0xh7+iVsnMCgQclKnBAoowgzTVJucfXkeeovzWOtRw4MD2aWf0kNy7WQRjVCxpr1foYUEhEtoctrCFcbkU2lIMstTSJmy3O0ZQsx1qW9OjZybPQj60aQChAKoRxkJ/n47KexwRL9tEM5qnF8/F7+oXuR5bU+UaxBQhRoXOpx7pqxB6kkkCGh1lTHAtIgZb7Z5NMnBf/y4mU2EkWIoOwtTbfEGfM6WM+3yz+NkBYjNcJ7qraPco513cCjcQ6SzDI3Vd1RTNi+VnRNQrcxwX8o1zma9vif3n2NyWTAZqWBUgrjLCUdYJ1FrXaRMyUo5yjh8QnF7/A5gQtARIVppHTooI33inQwSX/jMSbEHBUNea+H7G0SuctQHYPGNAy6MGgXTqrnPnNTwrRfweugwch7YSt7c7/NeTBf4wdTJfrGMhYrrJYMYg1C0PT+hkXKA3/393PtPYShx48Lh90rvF+z8beC9ztY+i5+fDj0jNhgMMB7PzLneO+99/jrv/5rHnzwQT772c/e8QO8iw8eru8k7Nw47bepOSj2bb3XxvjM2TOcuknr/WDBszd2jwuP1AmbU4irksg3kFoNZ8aufdZb7fztJevazyRk9Jp93CGzK22WvneBdHETrMNIeKcGz54OefRDZw8lU7hVOedu7EvUnQXvsRqUkwRu1+PnfaiI3igTrv2NC9Qfq/JY9TO8wXOsuCW06CJFQOYmeLd3nNRPja64RLDUUMxUFdVBhHIWyEBIkrDKpq9hc4OKV6g0NjD9KS6nObPWMdNKiSZL190rrpejpxsoUYeVGw+6MzkPbLv/8jepCBDODXfThYQq0RljSZUTA4NQA3Z8+D0AACAASURBVOREfV854g1nPfNFXl76W+6LZonjYLRR3HczkrzDO+236Z36MD/92r3UB5BEYJSg7BRB4ujpPhNHyrB6BT8kUgede1BS3ZSg9zbHGHTruGCF3OXgC3t1rRVSBDhvhmcJQJC7hMRuEsrKbcdG7MAuO+953WFOdXivYXmltkhgJREtjBzDa4nIHQhBlFfoVtZolVYo5xMIIEJwZmD5bmDIc0ttfANV7uBsjApSlLJgrz03pADriw5VpCOiAJ44N8a3v6PpDcyQjBWyPC8L+Z/wklBLokBRKoVMje3cTD56dpJnnn2HzY0u5VgRh5LeoDiHgmFTFoG1ntQZ3rILvPXGezySDvi5t1/myfYaHVsmFxGaDOkchoCBLKG8xTiFUsXMWa40kU2YcBbTPApW8smPHOG+49dL4bevFe911tiwOe/FFf7f42f55Ytv0Ex7tIMIrQImpSbdWGSgAnrqIyB+hNItXKmMS0PwBqd6+KxKZ+3TkEcIn+JkhM0myaxlTXcplZv0O12mfIuJRlyccIBqAyp12FzGn/8mfv70vt+n/Qpej56dZPaAwci733uUvbkt/mF7wDYMiUcrIWpGdHdlAR6kSHlbOKChx9Zz7seBw+wV3s/Z+Lv4ycahidgv/dIv8dRTT/Fbv/VbbG5u8rGPfYwwDFldXeUrX/kKX/rSl96P47yLDxBGyerDTkKsmmgRYnx2xzY1t9N6P1Dw7AHc4yJdRQVR4QQmr79Vbqfztxt7mYRsx17ukNmVNmt//zKi06Xse0hvQWiqWZnxjuPp7Dx8+NyByNjtyDl3Y1+iLhVeQKIyxtJCkrgDw4qoD8usbvRHleKJRkQ7v3xoPf6NMuGwCW51g/4/vclY9Tw/pRXLU7N8rRazUZ8jd+P07CZKXAs/dni0zDBKslppoKOcuaiCCiI6HYfNHQqN9YZuf5O8Uwc8r4aCct+it4WXeuNGIaSVD88j+Rn81/8jrF6GUh1KVbD5aNBdPnpt1mR0/+XL9Mpd4kGGIsLKgoSFVnN6fQ7Ra99wY3OjWc80t/R6EW3/JpfX/h9EeoSx8nEePTPFG8nf0s/blNU00gi8tSil0XIC6y6iJ97g5QdOcu+7ilpPEKcgfY7ya+Txi6y+3aP0dkyjdBL12L9BzJ++wdxDk49NVanpFTbT/p7Xfkt2urLQ4fm3VpDyp9D3XsSpDOkCMAJrLQQOLSO8d0gZkNkuUgaMR6e4b+zzd6yS7bxnxTlqAGmfKK7gEay5Mn3ZwgtLbAExNO3xww6VEEircUGfXCejZ50JJePOM127QjL9A0Rplaq04DXa1yna9Tn4aPj7h66fUoyeUUcmp/iFT4/xV19/g9w4PB4hhyYUXuC8J/GGqYq4zszFX32L2Re+zidbCefdcdb7ddpUEGikKoiY92C8xUuHkIJKUsZJx/G3ztPtbBBaw5Tb4Eowx4vho2zKJs4LFJZcRDig7Lsj6aSXirL3dHLHzHRtTxK2he1rxZutZV5av0KrVOcfVcBPLbzDbNKj5gwiT3m7UueV42dZr82h7RixfBmlN5B6gLWSTlons+cI5ifxPYm5FBWzddqjhSTNLOtZl7IdcC5aQuzudB9g1ulGBa9nnn2HT7YS5g85R7U9e3N7/MOl7gZ/8fYLfHbyIaaCOpudFGMdFb13we92Iy5uhIMYemx/zv04sLVXyI3DS4dxDi0lkQoQ7NwrvJ+z8Xfxk41DE7Ef/OAH/PEf/zEAf/EXf8Hs7CwvvPACf/mXf8nv//7v3yViPyHYyqzZkielfhMp7uym5lZb7wcJnj2Ie9z73fnbju0mIWhR5MY4V8jOAnGdO6T3nt63X0e02mjfxmuFFQq8Q7s2zaTKI2/BN2de51Rt8qYE9nblnDt/fh+iriEpe8KUgihwfUX06viDvPRqxnrrnaJSXL5EPP08UWUDpe2h9PhbmXCirPFZ4f7mpaAbXcb4K+hKSLk7g42PoVWLmYUWn7u6yd+eGCOZ1kRSY/sQEmD/P/bepEmv67zz/J3hDu+ccyITE0GCIKmJpCjJkiValOkuW253h+VW98IRjoqu8BdQRHvTC3nhjTf+CL3woqOjqhW2o6tklWTJmkdKIClSokgCJDHm/M7vHc/Qi5uZyAQygYQIyJKF/xLI4bx3OHme5/kP0lLoHKlrgML5AhnWCRsditJRmAQpoHAFEgm2htaVVfhGAC/UPJ+oaRq5xU32h5AGYh334terA0meVMJ/pW6rNanev//IG+b/ZWhfJ2OCEprptMHZjTnmNrI7HmwOo5BmhaE77OK2D6jBwrfAxnTTWb708sPUF99GlRGyGGO9RwmB2H5OCWoEYZ/+dJcfTc3SHsFir8/JwQ9ZXb7GsGmRWhJ4QXu8ztkfX2bhQ/9ptxjb23wx9jK97DtcHV3j8vBgLcYu7XQrJR/lvMc6QjfLdfO7XH7se1hVILysdEyFRkYRzWiec9N/SCOYv+dC+92pxGTAnyjFUn+dnzce4pp8hIFv4nyXwF4g85JOINAi2DfldsognCIwMdJX9vdGCYrWNYKHvgMqxZVNlAuwvkSEPbxM8cJAeWxXUxWFikALxubGHtVeFKgTJcUViXRy12BDKI+QVYZZv92nijausJcmt9zosKQucSFv893iDJGw1DozmKDO6mSAsYYgUOA8PpPMDXKOZRNSpWkUGdeCJX4QfYRchNRdQuBLLIpMxRQyAiFpiwItHN5LfKFZLAxPLbbueN3ltmYMKqrrxOQ0Holo6oDZdILMEy6VOf+weYnZWhMJGJYYu2MoughyxqXgrQRONqYJBYimg5M5dj3ApxLhKyP8TsPy0cmrLEWCfpRVrqlOV1pXxG0n+3dsePXGvOxOsaQuceCOrQLKMmd96xqq3tz9zHuzN/fGP8yYFulVyTcvXKOje4AnSQ1aSVqNW7Va9yLi4na4k6HHr8qoaQdzUzXChmBlc0ipSxweKUR17aIGZcruWWEjvX/a+Af47cZdF2JJktBqVRvjV77yFf7sz/4MKSUf/ehHuXTp0j1f4AP8+mK+9hhz8aP/Zu5Bh+FIDoVHCNj8VUz+9q65/sFlBl+5QHltDHs0HAiBakf73CHLn79GeXUN5VKEcGA8TgiM0hil0Dbl2KjGD9fHrJwa7CtoDzJZuBd0zr04tFBvPMoj7yTMbWXQiPZ1RK+Hy3zHv4esWxWEsn6FsvMvFCLBjFtMtzsEgTsyH99nBpeW+ImH0tLvXOfq6ZdIGlt4WSC9oj6e4dxoniVXUX+muit8dPUd/lEvMtebw6USvMALTzMskQsdklqbmuoyHc2RWUNaGpz3eOeQ4RiXLkGxUHX3pUALyYaHF6Yj/ucPnoDc7hqGsHLxhh5kR2uSjWGyozX51KGHk/naY8w9/H/Sv/o98je+Q9Dr0xkrhFKwePKOB5uDKaSewaSPDzaQcltP5WpgI0S0QrSwhhQ5rSxCeocVYLxDygQsdAxMVIkQOQgYtjzvWf8B7zxyhTwAVSoaLsRL6LUKXo6u8ORr/8DC0v+xS1M83pjapj/+4221GJ3u0i7t1IaSsfR0SodysPTO+3HJDOuPvICp9/F4dBkghzNED/0BJU9Q+pC5sHPHfeCouHkq8caZ9+Jff5ufm8fIZERLFgRJjTJpYRo9enaWmXqALCzYKqswDyc0+vO0hjN4IchChXCe1VMv4VSKdLM4D81GyDiRmDxExSXIEq82MWULJTWNhmBs1vftUdcnfXqtPrWHY8RaDZ+LyqpdeUTNIWczNlTOSlLtF9ZZ0hf+OyoZ4trzxLrSr9ZDibSKmh0jxz38TEwhDDqQlRFjVeWgc4tyFik14Hk1fIJchLT9sAqkxiMxTLsuPWZAKUoCaoXkoQm0jaNeWoIfXGXwxtZuhMdBOqi3R5uH0vLUfNUoCyZ9gt61m0xhBJZZAAqbEeUJeI2LZXVNmg7RyPGppCgtBSXPHj+BOL/KD5cGDPe4praLOmd7y8wNwkO1TndqeNVjRTdps1UGzKkdDSPYIiYtHKO8hzQ5/3XtAr2ky7F6m/dNL+3L3tyBG0vc1YjAeEptiOsC6TWTtKQ7zNBKUItvTMb2NilnOxH9/NJ9+bt+O0OPXzXeGm1yKV4FEaNKjQoqym5aGFbTMbON+u5Z4X5q4x/gtxt3XYidPXuWf/qnf+Izn/kMX/7yl/nc5z4HwPr6Ou32r7+19gPcWwghfy3H8HcKnj2q8cSvYvJ3M3bcoPE3cnrG9XUKa2nkC7Q3c+z3vwzu0W2L5SpVVXpPYEtKFeAEaOeZG06YmGL3Zx9msrCgP4WS+l3TOffisEKd2lu3dET9wmleVr/DeAJx3WOlwTd/gFApysxiLIwmhoWZ2j4+fme0DLmDnXXtKXLMMMOl1bRhOLvChce+hdEZYVpH2jouKBi1N/lZZ5Ng4yHm0jZha4ZGoplZa5NaCdpgsQgviIoIsRqhGx+h0f4evfw6uY1wVqERqCDB2xrF5odg37QPlBSM0pJBIJnffva8d9V1uFkP0uhU07D+Ov7lr+OXH0EIeYgQXzJ98hP4E7971webgya+eWExcgMhiyrEFwm6iyPA521kMEHIAicNuBCrM/LaCK+LiiIHKC8RDIFlpkc9NmY2SQKJzkIC4VC6Km4bZcwkTLkQv8H8xlXEwqnd63IULcYT5/+HXdppmVcFmPTs2HFwbPM44WiZotnF6owgi6ilHf5b2qeY/tGBGpo74TDbauf9LVOJtakFup0FxARadoByoJRGdJ+kbL6ADfoMSke9GcIoxYQJuohYeudJSgRFqHASbLhO0urifRvvK1v3ONKEoWI4LiiKadBDKKcJooQ4yhEqYibcv0ftxgS0QbQzfCqrDGMFouZQCEaZZWIKLg43eOkXP+Cjq2+R6gCT9ImUZi5qEEmDwmFkTFhkuCLFeY+WouoflYCDTEQYqVBAV87QV1PUXbKHcVftbQJouxGFbvIxtmiMp5DWoyOHmJsDeyPCY/jhab7mruwruJpByKDIcN7dSst760U++/DTPNKev60pjB0J5GqDY1kb6QVGVYWYWiiRTQc1y0hMONWcRszBy2e6FD4htrVt11RHLx7z8sJbPDmaYm728QMpwXdseNViEhmSpzlEijJrkvbnKfIQ4yDwx8nDnCkxS6arz3h13Cd3hvYeAwzvqSZ5FkQEzjms99QCxWwnZr2XstnPWJgRBIGiNI7RpCBQkrnlDb6/+v/dV1fAQw09ONjh9t02Sw56bz2Cr19/g0k0YeaUwm2I7cmnIBCSIi4ojo05tm2O9atkyDzAbxfuuhD7/Oc/z5//+Z/zuc99jueff56PfexjQDUde/rpp+/5Ah/gAX5Z3C549m7wq5j87eiZcB59vAWlA+fpt65yefHHjPU6vu8JbJ32VsaZWoOg/wgODdgqI0mA8B5tDaWKAYcSJeXEczUdkcq3eDv9zxRucsuUYVL+Z9rzf0B3deFd0TlvxoGF+gEd0ZdSz4UfrlAKg0scYbzFrFpBmyYKiVK+6kiXVaEYmSbd4QWuvf49Gt1pfFF1j0WkkbFGTce41CCkwDnL1dMvYYKMeNJBuIp8pcqYupPkrR4Xpq8zm7ZAhfyc0zREzOxMtE29q+6zcZYsdbR67+GKSqmpn1JTI6TMcU5TThaZrD+NzJfR4sa1s84TBtXP2DdR3LxeFaNH0INcjKLbCvFvd7C53b25eeKbmgGoZOcrwFX5ZKgcVesi0hYiysjrI4KsTt7s4aUDp5DOY5VF4IndT8nTNpPNEJY1tmgghCYXDuELYlHlesU2ZBhnDLK3maYqxI6ixegnl+mnV2g3qimxlCABPDhR1YTaQeAFYjKHdx4cKGEISkGgI5QUtxzWb4fb2VYXbpGVZEAkAxJTooQkLEISF0HTU3gJ1rLQmCKsPUowWsTG3yVX6+RyiIoU04MFli49iRwt01UQWEvDCgbtgjJw4PQu7bB6ngTxjCIvAhKb88TCZ1mYmqN0B+9RN8cEiLrb9/lyawikoptN+ObKm8wNNwm8J9MhSkBmSlbskGM1mFEpG7ZBsO3cKYXAlSAKWYU7Cxj0pvlG9Ht8IP0pUlscCkVlFrLTbBKA9B4tHalX1Ec1AmsROse0lnClq9jZnYisl7Dyw7e48viIdrRdcFnL26MtrHOcbE4TKY33EOQhMyakn0344qWf8Ycnn6AZRHxy6VH+4e2X9pvCDD3uaox2knYtYmhTSmvQE4W/EuKWE0ZhQl2HfHLpLBcG/w9FI6DRixHWghJoKWlkAZMg5cLxMfOnnjvw78Od9MvWeHS9QZQpyo2CcbqE9wGWBOVznAwwzPLU65qfPiEIpxqsJEMyU1BaS6SrI51PZVVoa4/HIUW1RoBaHDDT9gzHBUlmsJOSfGf/nLrChfFXUVlOqzZDI5z+lboC3s7hdiem5m7z1Q57b6fjT+xOElXNI5v5vuaEC3M2rNmdEP8qGTIP8NuFuy7EPvvZz/KJT3yClZUVnnzyyd1/f/755/nMZz5zTxf3AA/wbnFY8Ozd/5xbC4p7Gbi5o2eSjQApBUSKXu0ybxz7KqVMCcomKlGICHq6x/ixEY/m79DsPoL3491zvBcgnEcSkqqEzeIE53+8iXWO4Pg/oWt9OrUldFBRUvZOGZqLL5L0/uhd0TmPir2Fw8XhBv/y+isIU0NGAi01Whd4DJnxxMqhhNh1gnOZwXcNNiwpdYov2ni7HbuaVQYY5coYl5TIZkiiNhjXtgiybQ0HN2ifStuqGAgTBlGCGbTpijb1WBHdkncTEArLSnfIMJpDT30a73oIcsykTnFxGQdIaZG6ski3ziOloL5NAdo3UbzJWe8WbGtNrnWv8YV0cKsQf9Tjqy+/hJw/x4nbxDkchBvW2cucqf1vrJuvM8ivkvq17S8QQAiobS1RgJAlIpygTIiwmqzVxQuPsKqq2VRF0aolc7h6Rt29RmbfS1sYAlsDAQWarlPMyJRYGJSBLPQUe/4S3dCuBWS2xHqHEpJ4Oy9Ni5DMleQk5NYjC0sYKFSg8Lmt7vB2MSa3dVDegxQOqzy5doR4IhUwFzfYzCZ84/obt9VS3sm2Gvkcm9l4l1EshKCZN5hxESIAI0IKYSh1QISgGC6zdflPIFhH6gwtaojBLDNjQ+QdTSrTjW4o2JiewaKxtkTJkHZzuziufhNSWyIZsTg9d1t2wlFiAk42pnile43E5MSNDk4ptDMYHRBKReEs3WLCk9EK3zanGYgGdREQOIvJBMJXRRhxNZ7c0HO8EH6I9xavoXFs29kgvMcL8EIiEBgZ0ikNqgwoQ8lQL1COPZ4EgSAIJCUFrTE8bJqM6tXaPdssbiHYyifEWYzbCKtCxEGEpr+a839vnSdsw7F6m48tnuGNwXplCmNzGutThF4zN1WnGUQ0ygAzHIMxFIWktxZy8vGITx0/x2yU8GbvGrVoETlj8cPNKpbDmqpJQIPhXMxwLuIgdfOR9MvzU8w9/GmGX3wDbxWIIQJHEYSM6k1yrWgmnocvSbamHNNRjdQUbOUTltS2Q+pOeLcE4xw1HRCpGzTERj3AWs/Z01NcuNwHoNlQiMXzOJVRZlP0co9tlMRRQFMvMDbr99UV8HYOt6NvvE3ruTPbetqj56vd7r3dyq6jeZxAngGq3tfe5kToNaMy38co+bdgyDzAv3/cdSEGcOzYMY4dO7bv3z7ykY/ckwU9wAP8JuBeB27ebF/vcVya+RGFSKll01UB4R3aSHSqmdQ91x5+hce6J4AmzmeAQRAAEQbL+WYH4VtEoULWtiijTcq8Qa/IEFOCOKxe/50pQ+FWeeZpyZtvRu+Kznk32KF0peS0VOOGNs7FCK8RwlA4RSSDbSc4sN0MS4ESGj3S4DwikFU8VOlwSYlohjAuMHnB1kKKVYYgq+HwCAQCVx1YtvUdmXaUsqRIc2wQomtxZXJe5OAMSA1hhBMWYx1NGSPEDX2J7wBNh5jIilpjHFIKwkDRbgRkhbt1onjEXJ0fDtaZCE8rjDHO4p3j8bWMU9ciwlRh5BX6tS7BbNU51sutA91G97oLvnZ9wPW8xHpQUjM99SfMnn6BESvbhYxHUFIR/QLwEu8UqBJZRkxff4z1M+epeJcOPGgTUk8aaF8jMxGNsMujrqRnArT3SCNxEiZKMCQiViXWV8VFOHOjgAhVA+MEVyYb5FZWDn9UAvq5uIG3JUnmyceKXpLgpCQIJLV6gE1KlPO751AHeFc9VjUcKzXDQEuOTQJcWNHPWmHESjLc7XzfjDtRJXv5NTayr2LcUwRSo2T1DGQ+p/QGbQVCsTuVSLOS9V6KtR5MNYWzUtCNJP1QspBYGg4yJbikoZHMUsvnCGprdGrt3fe2WtvRKFHee7b6Ke/TJ9jqGgbOENckehoMN2IC3jezzFevvU47rNGLm/QaHeZHXQaqyprSUpJZw0m6PGt7vFx7P12nEJlGeIuTDhE7pBY470hDh/ctroWPM1NM2JBt2m5QOSMqRaYCumENa0OWXMY4jUlECFagVNWw8d6TFQbjoCUUkbGMtj+X9dXBOZASxgrTjRBO4JQlFwYchEVEfSNGhBlXXI+tbML/cuYpajpkZWvMT691aXRCokDRHBec3UiJMxBOYoHRRHPi8YdZbM+znvz8hmFDLBFxvSrEnAWp0EFIbjYONWw4TL9cGscwydFacPx0DRu2sNEYWbPkNFnLJ/gg3q2/swjaY0F7BK4VEKuAUOndSV+gQryowrOVlszGzX3mH8Y4lBKsdxO8h9mpGB+sUQQbYJo4B85ZuoMMrSVhoGg0mvfNFfB2DrcikNh+zuS7b9AyX0bkR8tXu9N72y+uMxO+zsid3Fek7qBw1YS4cVOj7NdVG39UHJZf9wD/drjrQmwymfC3f/u3fO1rX2N9fR3n9tMb3nrrrXu2uAd4gF9HvJvAzcOw176eULAS/ZxBeAWdx/hiR/Ui8E4ghSQuYdzJ8TM/Iui9F+M7eB/jsWixxc8aHS7XYqTKKUVALDOEtGgVYAwMxwXxzI1ctB3Hp6mO54+fPbNvo57txGwNMq6uju64cd8tv38lGbCaDGm2AkTN4ROJlx6Tz2GKWXS0hikCjHfEoUZ7KEtDESe00yXq/WlQezrLSuILi/QeL8HkFptrnFcU2qKsqkJ+vUDj0N5ipUU5CPpDRDiFjhuYSUI42YIyv6HVCyLKWgcvPEFQ6fJ2758AfbzAXA6xhadWD2nFEQJIMnvwRPEIuTrp7BIve0+RwsYw41jS4/fX1lkYnkN6ixcTCiWwsYR1x8ZX3+AHZzNW7QRVOGwoieYbPK9OMf16Qro2Jp0UnADma5q1hQa9ULGZvMlo8G2IDEIocNsW58KDKMCH2yG3FpU1mOoeo3e8gSri7espqZnKqcHHAltKYmVoTyKSdJa0uUaYtFFO0vQwVorcWcqaY6Zxjqno1O5H38xiNrIILTZQooMQarvgKFkZDYn8pDJEMYvUnCNVnqKwGONotyN8PyPwUAgwHrT0BN6QabgQBsyvLyCFwohKGxXMC0Z6f+d7L25PlYSx0WjZYzZM6ZfNXaoeNUcRlogiBBy1IMAbwVZ/uwjb8zOc97QnJY9llrZxSF9lB55QgviRDtHpP92mFW9RurujRO1kVl1bGzFJSwLfINjOUiuvWcx8wqmT0zy3fA7rfaUjkzEIwaunHuN3X/8JnXRMEsaUUiNMiRxuslxvc/zZM1wws3znJ9dAOUZkFNZhbHUNakFAp1ZnZKf44MmA4TtjhsUUOnB0TUomNNpqROSZdCR5V+KcRUV6dzophEApAQasEOR7Ti1qOwIAB81+Z1sT5SmsrZ5fJTCyJLARcitm9iHYyivq5f/+2O/iR4pX6RNoSXNccPrqCGU9pZY4rRAOOrnF/eAqRTsmnLvZsEFAeKO5Ylx2R8OGm/XL/UlG4gqKoCCbmnBt6xoX0xYfLUPi6TrChZS23DY32Y40UBDnEJqqYGgEEX9w/HFe7V2vJn3kNEJFlIfM1er7iomdyVunFTKeFLvGIU6meEqKsla5aYobGr58+/2qt/L74gq4lxFyEB1Z1gPM6hq2JtFzR8tXuxPFuRnMMC432ExWCeWJAyfEp5rTu86U+7//11Mbfyccll/39H1qtD7A0XDXhdhf/uVf8s1vfpO/+Iu/YGlp6UEl/QC7+E3ptLybdR5qsHCEwM3bYce+fiN9nSvHzjOMr5NFI2SQoOKQOGkTmBp24hCqgSpHZCH4eUm7eKkSc1uFImMlrvFm+49woaSwJSvJgKVAo7wGYVAq3Ke3gv2OT3vpnNfXx3zpO+8caeM+Cr//ZuwaCIQxLJTYKxG+EHgNk+5TtBe+iQ4GCNem1YgxJiWNegSuzqm1Z6p6pbWBCXKCMqY+ngXv8VKQKU9godFdIBrPkLU2IA22p4uCXAgKB5aC9rhGu3EW9fTzzLySsL7WI/ApQgWVGYp3+CLFlIq47ihCj7pp+5RNhzue4NdDFJIst7edKB4lV+dHc+9HX3HUypDIOtpFjBwvYTwghyghiKxBjdYoOwskQ8v7f+J5IqghPUxam4xXN+ml6wT5MokTZEoQSEEjNZy6NsKfaOBP/hgjSqTTKKUwskB4t037ctvmHRKBhI1HkCZGWYXwEmUCgsr2D6TAN2Oi4aAqoKgzf/0Zrj3ydYr6EJXXCYwmwpDWHfX6Io8u/6+774rznm+sXGAzf5Tl2hjBCEcdITShcGAnGFOjkf8uG4tN6ldH1EpPoSWFdeQC6g1NmZXkytGUAithPXBcDEP6yCp8WFWaMZ9UWVHRseKWzvfuc32IzT9AZkt8YajJkjM+5RWalK4ytpEIxlND9MY0gQloxzWG4xzrtuOkt1myApgtHE+NSiIPmQIjIBaCqdLRvNhl5sxZphb+46GUqLn4HBt7svd29rSdzKrBKCfZFwZfkXS10URrHZ45eZKHW7O8Ofg5Lb2BtwaokgAAIABJREFU9xMQC6xNL/C9x57hfZdfZ3oyILYZpRDYpYeRH/ojxPJZ6qsjpBS0GzWmRZ3clvvymLyv9EidpSWeOy44/9oaF9a3KG1IoCSiUZliTIRipCVThSexBqXDPQRMqLmKqjlQEknVAI6VJlKacgxhESCCaubtqPL/vPdIIRFBpZsiU7SiGxPQKAorzVZpObaRoKwnD+Xuvm6lpwwkzdKSvLhC+4/P3hPDhh398ktXr/Mvl14nJafZCphSYUU7LgecM03iiadeq7RsmS0JZUUD1hasglzfKBg+svAQH1l4aHcani5YfvZqnzy1FNhbqOYPH5/ipdfXbxiHuBhrFQiDINz+TKLqQSlB6QxZLgjkvXcFvJkRcusXFGAsLpquGkN7cUi+2u3eWwAtIhpaUdfutkHyR8kuvde4l7KHHdwuv+6bP77CJz908kEx9m+Euy7EvvSlL/HFL36Rj3/84/djPQ/wG4rflE7Lu17nXRgs3I15ghCC9MmEN9e/TikSVBFWwcNeYFRB0uzSyOYIyhgrm6DHqNISuADRbpIMN1BFThLFfP/Mhyh7GqE8odAU1rA1qrM4NY8PryP8DH5bbwWHHyDuZuM+Cr//oGJsn4FAU+zL7SkHJxiYT1JfOM/M1ITcbyGcpDk+xkO9j4CE1578EpNmFyct0ikak1lOXHqKljjDODBMFZqahdnLT7L62LcxtQFBXsd5xTiw2MgjTYfR6kf5cjnPU33DB7JX+LafZ6A61EWBxmGEJlF1YptyOr/Gd3vHCRoBouZv6PO8ZxQmnHws4k8Wz1IUdy70b5erc/30s7z02oCwsDhlmS6GTJWC0LUYKkdMSECJkwrtHK7fJ7QttJNcm7/O+smfUtS6SG8ZOMVqNsP05Q8S95Yx1pHiaRaWeu8dts6sI+0UXlicLAhEhKXAiW3Gg/AoFGKyzGDwBBe9IJzMULbWiZIWEo+QDjXTpFQCF0yojReJk3kEgmNvPsfm8fPkjS4mSpFWY/MznJz/n/bpKnYmpDV9msTVq8Bd0QNSvFOUySLj7pNE+jjjZsClEy2ObSTUMkvgPLawqBMdivc2OX/9KsWqpyglQx8CEo1HsH3PFHjpcZmnNWhzrFY9nze7U9YOs63OJqj+OnNmjNWeZy78gmfcOt9aPMmbzTbWe0yc0Z/v8nh5Gp8KstxWFFtRRUJY63HO8WhqCT2M5PYkQlTmg6qmUcaTvLjC3P94jrmlWylRKxsJ//zC27fsaU89Ns9Lr2+QZnvMGPBMWQi9JweGWuC84PxbLzBpvcmwvMZSPKBwgJgjd+9nbXqJtal5pkc9ssmQqfYsf/qhP0bIqolzswFFrALYkUJ6TzAumM0M4aRg/uEZnqrP8PJPLxIToAOFqLlqKjiSvNGSPN23NEqqZ08KpIPIeBINrzdEFbC8+wLBbFRnY5RVwkBZ3T/vd4pdQai2F2MAC6HUjFw1AV2e6jAzVSO5PiLODKW+UYR59mSyNSPMVoLdyu6ZYYMHfjJ5h0k82Zf/Zb1jNcpZjTTHRo4tk6BVNQsrnEULSZwLtlqWt/TkloJhl17bgfla61Dn4CCQvPLmxu59M+kcJphF1dfwRbA9CwOEwAMqGGOSJcpkFg5gUr8b7GWEiPAAZ97CAg4ZHFIUHZDddhS7+VjHPH/8SX64MbkpSL6aEB/VTRXundvjvZY97Kytyq8rabXWECLB+wY6OMGUDumPCl76xTpL841fas0P8O5w14XY9PQ0MzMz92MtD/Abit+UTss9WecRDRYOCvO8Hbx3vKW/VYmjN6cQHgozwQQF0iicsqRBH5nP47yhaGk6Y0376iauLGl6j1WKQVRDKle1kB2gQEtJbi1u9GHE9FfwqotwTYSIKV124AHijsGjo4IXX1sj0JI8N+gfXEGlBjV9ML8/eXGFYLl1yyZ/s4HA3tweb6BnG4T8MWoDhkkfV0acuNxkUr/Glfd+GyMSwqyOdAFOGUatNd584ls8tBagux02Q8g1dHrLhK89y/rpl0maXfLYYrzGJovEa4+jkwU2nOJbP77Cs3aFZ2tjXvan6doaCRKFoykKCql425yhdS0mVyBrDr1oKOvFbhf1U8fPsdA+ukHMQbk6fnaJH37jTWwJNrCEtiS2hkAEaDwZkkw00L5XTZ6kROXVM9mfXWHl7HcwOkMXDcK8en7y+garZ7/Jwhu/R31wHKQgwxOR4F2JcE18OYUItipbBRGhAOctjpJGMMfvPP6foCFIX/sxaTfg7WZJ0dok9jV0aw4TBeTZJoGJmb78FCAq18juEse2Pk3R2sKqlFYRc7F2kpc2Yzp6vPve7U5IZXxL4K6dxOSXlimVwTQdXjmGU10GMxPikSQYTzE0it/52PEqJ+pCQhkWqDqoYYnD4a2ATEBcfb9xDhVIaiamO8gYqskB7pQtTtbmSO3KjSlINsF3ryNMQRY74kmETULmyh5/nI75xtmn2JhZwHiHiz3/4bHT9FcN339phVYjYDAqKEqLVoJ64WkbRybZPfQKD0oL2q0YKcBsJZjNhGC+sY8Sdbs97Ws/vIwxFikl1nnmy6rg62xTH52AgRK8tbxGufAN1iaOTjzLdFRnLe0h/BqxHJC4j5O4ed4IQupzyzz38NMoeeOwfJgBRXNcsLieECYloZTIb19m8PMN8nM1irCgFQdIsUfaoGAzlrw4C2cHljnr0FbghSCpay52YjZdzsQmNKzanV4kpqRTiwm1wjqLFVWlJoUgVBolZFW8bRffe7U/O5qtl9bGYDwmqvSI3nusrYx22s0IEUhcUuIzw/z8vTFs2Gk67M3/SkzBymSA9Y4Xl1M+9bamk2kmoUNIiL0kzGGiq/+fimp8bPEMZ1pzB/6O2zkHe+/33TfnBOn6MzRP/isy6ldOpwTVNFyNEK6G6X2YovAH/q53gx1GSLk+QQT7TUyc85SZResxeZHifAupLCrMbvRCt/W0e7Pbjmo3/76ZD/DeGXGgrvaouFs2yGExGPdD9gDb+XXjV4kXv4+JuyAseIXIptHpJ2jUzrLVT9nsp/fE3OwB7g53XYj9zd/8DZ///Of5+7//e+r1Bzfstx1HObD/OnRa7tk6j2iwcFCY5+2ww2dXvoPD4oQnSttY1cVpi3ACE+SMOitYVSKQjEPJjz5gOLU2S9kTRAimJkM+deHb/OPMn5CVDZAVNcc4g01PUBOfJom+R9joUrKFdAcfIO4UPKqV4J1rQ9a7Ca3C8YG1CYSKVhEQ73EGFEIgG8G+g+ReSCH41PI5vvDWi/vpIVHOSOQ0XJ1otUXXShq1WXQoWZvPYOZFChLq2TTCAt6jXEBsOmTNIaudHzOrn+endcVWC6ZKCN1J8rUTlBtreGXwNsCki8QqJVSGQBoGpeJld4o/Cq6zpN5ky9XJveZS2eGnxSIlColHOYXHYyeC/LLALBWcmr/7LuqN67Tffn6zl9Af5DhdWVIrUyC8p5Dg8NWUDo0lIJbgvUZ4hZWO66dfroqwvINyFQVNWUk86ZA0B/RPvUz9leXKskRAaGKEVZS+QIkazeA4udvE+GxbH+fRIua9s59hvv44/pxnc/4EYmONR/wbrIfnGcoehZ8gXcB08BBz7zyCHx6j8Bbrq/dPCEE0mkN7qElBYzFmkNt9793NFut7A3edkNtDD4mqXaVsvYDTa+ByyobEJ1OYtQ8Q/PBVfhI/RV4o5jo1ssKSSIuQstIOeY/LwNc8NR0wEzUwGbzV2+Ibw9f2u1Nay7XNMWN9ktOzm4z9KrGeQg03KH3BuGaRRjG92sHogC2lmc1S3n/ldf51ep7CWk41p1luTBHNpsShQgpBpxmyNUgR0TpxlFA4hZnMbhMGIY400+2YOFJ453GTqgiAG7Qln4158TVDlnumWtEte9pmPyMvDI2aZq6sqI+hh0yCqZzNmTKOqdkf01MZyi2hZYyWcExINrMI53pI/xKZee7QKcFBBhTTmeXUtRGydJSBJJ6uIaSgXJ9Q7004fiJgFO4NVq70eqLm2HCCtQV4PGhS9wqjBUmk6I9LTrYjhrOWtXT/9OKTjz7KL8yIla0xcU2ymU8orKmKMA8YUTnixZZRvl/7s7zQhA8ska1fRNgqoFwgiEJFuxkRRwpXWISWiLha71x8jo5eZlBepgxzajOzTEV3Z9iwt+lQ3VjYzCZY7wiVZrVj+NpDQ57dmGI6UfjCo7RCLsS8ujBktWERRcpXr73Oq72VQ/PwDnMOvvm+hVpgkhNMrv4+0fxP0LUttE6AAFkcxw8+gsyP31WW5FEhhKD+wWVG33gb288rrZiWJFlOOkwpsTR8iNl8BCcClIQwKqhNbRDE44rKvXh6X3bb3djNCzjQqOcouFs2yKExGFN/yMyL37rnsgeA9evfQS58BVQKZR18AKLE1zYow39G9T+Nzc7sj1e5D7gfGXH/HnDXhdjf/d3fcfHiRRYXF3nooYcIgv2c3vPnz9+zxT3Arz/udGBv1PSvRaflnq3zCAYLN/9BOAoKO6Eoc7JE0cSjPIgypj6eIasNMUGGVxYnHEEZEWctYkb02o5RfZNzacRUVyC8Jy5SnrPf5sudT1JmIVKDlALvYLi1RBx9lqdPSaY6/lDHp9sFj2a5YTAuMNahlWQqEihgYhxFP2V2qra/GNNy30HyZjzSnuezDz+9O4nYOWCdbEzTGkyTWLeveE7nBpjOgDBr4BxVkOx2Y11KSVg2STs9Xn9vn/WVBZQXDKLq/3Vh8ckiolKjIxDIbdMNAcw7izfTbA57zE0XzKmE62WLV4pjlEgCLEJ4vAqq4E88CslCOcNnzp1DyXvjnJXnleZKykrNo3RQTQaEYaItLaMYSwFCosS2MyCCrNUlaXVRRWM3W273PiDQeZ28sUXW3KQ2nkd50OM5XDaLaKyhiGmELRq0KF2Kc4bM9pmrneOh9rMHUHtPMj11lnOPlrvPUzs4wdpPXiO1I1IcfnsRlYU8NIC0pklrmoZx+96721msE1vKsKSlNhHT38YxgSwE2wBlcc0uYfxdBu/MsrV2kvrUNEJESFnpXCSVeYSxFucVM3GTZhxRlhYvLS/1r5C4G4HMbiyR6zGtVFLaDte3aiwc/xmutoGUI5wW1CYRi2szBKOgmmQJwSgMWUjH+K1r1GZP7NLG9k6O2rMrzCx8H6vX8d7w9klJOJlm+soHOSEeplkPb1BetzvsItb7aEubts6WeIa6FhDOQHyjySGEoBZrkrTEWs8TiSH0MFbs7lkGmLQ3KRo9almdoHnj2a3riFPNkEkZUriE3z9xirOd9x46JdhnQNFLmF2ZII3D1jVTrXh3PxCBhH7OB1cb/NdWn7najXssBMj5gjINCG1I0gwpd3RN45I4Ujz7/pMcm3/iwOlF/Yk63/xxQZZZZsIGG25UTR2tQmiPnU3p58mB2p+lc3P039giXxnhGiFSVY6nQlSHRzcpCRab6Ln6vukHxhFqiZhJKT84PlQLexBubjpk1pBbg96eNjo81zsl31syLKQCcsuWHzNqDbFYOmFt9/uPmod3s/ZoaX55975t9ZLKmGN4HLKTxLMDwqhAuBqU8wxGhsXZ2l1nSR4V4fE2refO7F7bfJQxMCmT0NLKNSVTSDFBuwyDwqcxtliiWfsZQauBfOr3b/k7dr/t5o/i9riXDXLbGIzr/xdPFpK5xtw9lT04Z1ibfBGCDIrObrMHH+KLAMIBpv59VPLQfSmyd/DLaMh/W3DXhdif/umf3o91PMBvKG53YIdKB5Fk5r53Wu6Ee7XOoxgsHPQH4U4IZIMsF5TCgFQIU+Xs6DKmWUYMp1ewwlMfzhIVDRwwCCLq2QSjB1w7YZjpNvBCoIXikfwqn5p8h39tf5jCNImkBiNYnK0dyYr+sOBR7z2DcYFzrupKhgprHEhJKAWF8wzHOVFYP/AgeRgeac9zpjW374AV5CFffvPtW4pnL1OctqRhk1wJZloRwY6uwHq09CSiy7nlOa70HDaRyMgjpQS7zdfE4VFEwhIIS7OQHBvryvnPCdzkIUZ5TtzZ5EfuxHYR5pDeVfdHKaT3GAvCQTIydAfZPWk2OO8ZuKTKUfaK0hmkDjE6JDQFV2sFZ8c1Gq6y7ZZ4vHVYJHmYY1R1+ITtnCVRUd0AlAswMsXqDO89kfP0A8lg4xka0b8SNAeULkCLSlNV+IRYT/Po9KdZ2UgOpMFtbGWMxopPfugUCwvNqljD8TDQdoIJHiuqCUzswASK1fl6ZYd+03t3Y0J6nlFxlWbgUaJO6tqMioLGfI12+DKWBJk2Ec7hpcS6AJmHRPEWl08E2F949KSLbza2J0SqOpTLyoLdWI8WCrYd5FodzSU/2KWJubGsjGMsoD1Se5J0kf5bZ2jGq7wn+S7epdSzGCUkVnsKa7DesyWmqeGpp5oPL53dPRjvTiBe+S5Z678jdYZyLbxVCJtRtDfovffbHFuvI9JTu+/bThGgiuu4b/2XXdpSzhw20+hyCFsZfnYZsacYq8UapQSNzNCxvqI+sv+AZ8McqwxRXqd2SxNBUNcNvJkwFco7UrV2aHAbb3WxG28jmiHhnoJy5xrIRsBS4ljOIq6Lm0wSdE7jeJ2l7BjFxJIeEqFxvDG1a7p0fTQmihRL8419boRtXyehoIgLspkJMnacqh8+1Wt8cBm3Z7KB97jS4SZVNmH96SXK66NfSgt7EG5uOljvqsnxdvyBdZ5YayKtGbbBOsE7owk1F3K83tndE3diHe6Uh3eY9mjp6edZevYRNvsp11bH/PTNDax1KHMMwf3Lkty3th0DLSUIP36STun44oWXuTbM+fA7dYIcpJd438F6h7QOKHFek/IE4e89dihl737azZvNBLOVYkNJmVfh4zsF/M1sED1Xu62d/ri8zIX5nNn1JQ68wr+k7GGwdp5cd9GmQ+nVPjqwQODLOi7u0WmvMzf1vndxNQ7HL6sh/23BXRdif/3Xf30/1vEAv6E47MC+A2MqB7H72Wk5Cu7lOm9nsCCf+v1fisNdJrOYdAYVr1LYDtp4hK8O0UYXOGXQZURYNHBSIJzHeEXPNegUGcNmzrDlaI01lqrUOFGs8PH8W/yXE89wsjbDHz7+fuanj+YQeZjuozSOwlSH5jDQhIEi1ZI0VtQTgw0ERekoSksUqlu6ybeDFGIfPeTqaHRg8SxcDbxGKEvpAlygkHuylUqXIV3AmfYJPvkByffOr1AUDqO2D/uAFxqNpy1zWoXk9CBAe8gFGOVpYjFpxKA4gWjEiMAjvd32qd92cxMCJcE4T2HcPWk2XBxuVJPByRAtmshCY7SrirO4zuzEMFE5rzZizmUFbStxuahueKjwLsR7hRcW4arrVkqIzHauljJIr4jKmIb1FEJwsaER2Sn8xn9geu4X5G71QFe+f37h7TtSe4/N1XnxF+usK0l4qs3C+oQwKVGu0iT1tORSO6yMTjj4vWsHXZ6afomN9BLWFzgvCZhmtvkhPnTmBG93R2STFqX3eKERHkJhacscbTVpPEI1epikSVjkiDDepgJmGFMZQyDAWUd/VEULnHiowSvdiibmvUf0+wRxgZMRtpirDqTeENcU2WSRS+MP8oT9QTXhAZQQpHKBtzjD2Deq4nAU8s7rl+nYPkuzc5TJLNZaOidfYlRkmHx615XORQ0aeUQW97g09SM6kxNg/G4RUDwyxdUXvkqUaWY7CwgpiKxDCY/RNUKTwnALH9d3O97WOOpxQLOwKKoJGLA3dQFVxginkYGtEqT3wZOYCaUT9AvHXM3fsRgTQjAVagZCoGrBLY396pdKpPM81VwiDzYY5Ckjv8ck4dw5Hm7N3dbZ9ubJrBTQbIQ8fGKKD79vEYEgLyxhqCjCnMSWB2p/9k6IgqhB85OnSV9cxXRT3KREaEmw2KT+9BLBcovBf3v9yNOPO+FmWnYkqz3Muup9V0IwG90w8RibHOscbR0fyOq4XR7ejvbIpwk2XMIFMdJnqLUb2qP55bPMT9dZmK0favBxP7TeBxlo1ZqKN23BQrfFTGoJt2XPFrDb7q1KSAIpMWIaGy5zu7LqftnNb6yMyEc5Y7nd8NoOH+9sU1r3skHuZKcfqw7D+jUGesCUO8CH4ZeUPRRFFyscbSw94Sm9RAlX5UUC1oVIkfHIfH7fiuzJ+euUk6KaNgOhEMhf8r3594hfKtC53+/zhS98gYsXL/JXf/VXzMzMcP78eRYXFzl+/Pi9XuMD/BrjsAM73MgruSXI9i5xL6xc7/U6DzJYeDcWs0XhMd2PEC39C0U8IDARymi8MhS1EXiIkjZut2vtUcJSIhj7NjW5gQ2rDV04jxOCkQ45niWcC3I245QyKhDiaBObw4JH88JirUerSueyU5Csztc5vW0lnkqPsx5X2H3d5DttsjfHCkThwcWzMAvIch4bXEeIaaQ8WITdCU/y4TOSpfoUP/jZNfqDHC89eZHhvWNaZsQYjo1D9I52BkEoPeHMPH6wRZkpTiWeq22HlxqhA4Taq4EDbyt/sXfbbLg43OALb724q1HSxxzmigATYJRhLDUm7hAXjrrIaatXmBLgWkuo9zyD7yxjvxaxOp5h3FqHvI30Eu0FBBLjPSac0BwuMDWZJWkEXJ2JkY2AKDUsNJ7guVN/xLC8ekvneKOXHInae+FKf/frJoHirWZAujpGFBYXSAYSmsbRGeQQKnqlZXGusfve7VB3SjvmWNDGGUeJo4wS6vpFItlCact8PaJI1zAqRAGxrNwYvJMIXdAOh/QmswS2RBATR5rZTkx/lJMXFqUqE5GdA6ZvGIK+An+NJq+hFnu7gnZTzDLuPolMlgiUImxqeukMNq0RECOJGFDjVfUwpQhouAm2s0HrxEVs1OfFLcvLXY3L5rCjs+jZqyjRYqoVo5XcDv6WuMzih5ZxtMGwvEqrOIbpRLxe01z5xQpmuIxSy8xkGU+Gq/8/e2/+Y+l11vt+1lrvtOeax+62291uT/EYE2dw4suJDwkBcUHkDKCrc8MP+QOIQBAJfgAEESBFiSBSzr1SpJN7xL0JENDlwgFyDsFxbIfTie32EKcHu9s91bxrz++0hvvDu6u6urqqu3qwY5J8pbLk3bt2rf2+7xqe5/k+3y+zqsuYjFk2ZaTIkFmMzBIISptr2sxEhQenqiRrr2NLKyRegsojgu4YPoKoN0E/nmBQW6IkLx3+BjplNelh7TqxHeOVN84yU27v2od02fNwFQW8fp7R6vchN3y7tYpSkkOUuX18ittum2W2MrIZKO1WXd4uUKKNpd1NaXZSzi12qZUDpicqPHz3FFNjZWDnz9mpQuSNzVJ/5N9ggiOX9bE4Zzn9+suk8ev4jTKjzJFqg3YWT0hC5V21F3Y3bKVlLwzaCAG5NVS8gPGoSsXfkJF39LIUJSVVP9zxswKpyFhkcfAqFW8fdX8esbaIS3q4o39P3g2IzbvQ3dJmmdwL9lPSJ/C39B5dTeDjVmM3sZm19QQ/rhBkhmiL9pQQwyo/xVqtEDDQ2Di/5WPby9i/c2qFu2xB0XeqqGRmmWFtSNEPBJtskGvK6Qc1El+S522Qo3tqe9hLz1UQjKGcxBcJY1LSsSG5UwWVGvBVTMnlzI3tLPhys1g4sUpytkXiQOv4imD1RubNDxuuOxB76aWXePLJJ2k0Gpw5c4ZPfvKTjI2N8bWvfY2zZ8/y5S9/+a0Y54/xDsVuB/ZbRWfYulk6k9OuGvLREcIjjzOy7/17DnzeinFuF1i4GYShQqYHEGsfRTT+hTxcJA9jhFX4vXFcRWGdhxSgLBgJBotyhbmnsx5BrlAIPGdIPR8bVYjSPuMIFqzZ1bB2N2w3Hh0kGuccvpI0qgFReGn56FUD3txXY2qpT5Ro5CDHBWozm3wt2sFOWdHRRkQp8uj288uCZ4FE9d5LXvs7vLCFUD7OhbtKSO+brvGLU3dtHiza589x7NULpFZRzwsjYg0IK/CFo1GPEKVKQTPt9Kl3csaFT1MpPHX582Zd8TPaiG442eCcZT09x1MXv42xKRPRvmLsNYc4kCGXfBgopJVEYZmJqRKP7Q/YVz54RQJg6sm7yL73BK+ZvyUPe/h5BS+MoJSj81XyrEx36V6Ol7qkPmgxxiAp+okeunsKKdWOmeO9Unv7/fyy9wkhkGMl1toJo4nm0b6mllv8VoYBpkseU0emhiputqDuZE0qXYfIOuAcgRC4IKRfa3Gx/zy5gcWsw5jNEGiMEMROEEgPpxzKSg7bJs+LfbQTQcUrPJSkLAQYyiWfB+6cZH6mumlWHnclM7KPkM/ikWPSKg4PITRetER96ikGqz9JqKZw0hFQJsweojRQWDwqosT9nmAl7NIaX0QffJHQy5CmQRYLhDQE0SIyWgaRkSdVOjplbKS0mWSQkUcUjqCTlOB9E2TpPp46tUKSacrSUnZ9tIxYMRWeTm7jPd5JZuwJlt3dNF1ExQ7o9VqUygKbic01za+e5+R7vk5XLGGHBlSVzijzZx5itD2H9/r9nLqvRUsvEMpRHB7L8TqCPogSVjxEyQsu9SEdfIgDWWXXw99uCnj9PGOh36EaO+KS4L3nq9T6gHE4uYKdztGPqauuFdtFl9LMsN5JsdbhexJjLGlmWF7rX6GEe1mip32R0e/+BSK9Up3OffOreE/8B9y+QywM2px8/WkWu/+MYJngUI6zimAwSn3xfoL+NFIIQuUx7pcJtSs8sa7Dq3IrLftke5mnF06R28KD0Dp3ma+VJyW5M4Tbjm4eC/jyGPVonXOdoyy3oN62HD5XZmJNkHd9evYncLJUVD+FBSfRaZmeuI/qwnHCLb1Huwl83EpcTUCrFCp6fcFkWlCaYeiI4IZBmAArxLBMZrG79B+/1WNfA7KyTyXWpLIQJBJekTzsdBPGlNpkgwTZteT0c1TUKHza9tD2sNeeq8b0I9QvNFhXTSrGY0ppMqcoJGkMuddh1IzTmH7kll+ni8s9XnxJn35RAAAgAElEQVRpgSO5xYUST14ZrIb+1XvIfxRw3YHYpz71KT7xiU/wR3/0R9Rqtc3XP/axj/HLv/zLt3RwP8a/Dux0YL8VdIatUq6rk5JTk006YR/jzqJWX6We/TNH5v7dnhtu36px3gpcqtjN0TD/jpK+yNRaEz8JMN1Rzj/496T1FYJBgBOCJFRFFtcZCBLCTkS9WwRhVkp65RqBMxip6HlqU675erE9OxoEkqMvL7LcjDeV8DbQrficmyhxWzngA/dOI0v+nlSRdsuKrjRjpCwEK64InjuzRPlHGT/4MrldInXtqzZhbz1Y7Ju5l5Gy5IVjb1JuBYS62NikAKkkqg/W08iSh18t4/d6RLLg/W9Q6YQUWGPJjSPwJY/df2Pm9hsKWmvJWZTrMF/ycIyR2PvRzJJECatTa+gBCCOolSLUeI1s5ghih8pEMF/n4Ny/pbQwxanB1+mySGZbyH6Xyb7PyPIsp/sBTSkwRqLa60wGKzx816GrPv97pfZWKv4V74tCj4O+4vblGM86YgG5EkSeZNw67HfPcSEylPbldPpvELVicu1hVIhTBkWO1APCtqBjL7CmA5SMyTyPSGtypbDWkbgME1jGkxqHW00qYyu8NHKIZjvZMtcrm3P9crNySzD3CkhNamso64MAh49OG3hBm5HxV6B1H+V2xu0tje9Nkrk1sAmZKDOioWIqPP+uNxBehjIT6BzAgpWgxxD+Ck4mKF9j8oBOLyMaU2z0bmmXo/yQ8swUz/7PLklWCNWQF+IyARpfWNZtyHfSKQ664+wT51mxUwQmwvUkadKjNlvngw/sx69d4IXl/4u00cFrl1B9iRE5/foyb9zzTQ699jjl1hxz3/8AF287RnN0jdwrgg1nZ0j0A5hgmlDBRFRBLSW0vneCelYBs/PhbycFPJSk1e9TjR1SKiopiMQRh2BCgdWGYLFL5xunqf/k7v0iW0WXgGG/alGhF6KQ3jHWUopC4uSSIufCSv9Sosc4ZL/JmL6XB6vrzPm94eS5pE7XOfp3/PmRR2i3TjMeHkXKBKkrVOIIozRJdYX89meYfPODRINpYp2zknaZUmVWBxkvPH2lr9vVvCo3aNnzlRH2V0evEC46UB3lidk7+eeFk1cI2XgsUJbPYF2MJ2s0bAXTvsC6yjh2W48HxBxh+y6c85BmHeFFID0QFuln2Dwg7s8TJL2de5PeIlxNQMuXHpOZ4/b4Uj/TBnFWUARnRfIMhJLIq/QfvxVKfZtjL/ssKclt57uEmSX3JFaCD6hYY0Z8GkM2yOVy+lOIPAVrQCqcHxZMjsohRt/z07gXv3HVtofr6bmS0uPI9C/wwvKX6as+kQnxhYdBk6iUwPocmf55pLwhgtyu2AhWB8aBJ/CcGFY1twSrvZSJanjNHvIfdlz3Nz969Cj/+T//5yten5+fZ3Fx8ZYM6sf414dbTWdwzhaVsGTA6mzEsenTZEoT5QGRCzEmZX1wkheW/wsPT/3v1xWMvV20i71ga+b09vk6nW5Ku6vRpTlUZZrJXp/Q5cydeYjz9z5NUmljqaNlAJ4EOqAjDrzpIV1C5vl0S1VSz6cR91ipjXHGjzhQrm/KNV8vtmdHH75nevfKYuRx9yPzhHsMavdiK1Cr+JRCb9uBusxDd3+A2cl/e0UTNgjylf5VN975e+9mojbD+t99Hyc0QoHwPXBgM4NbG+CNl0EJopKHX/EJrUNrizYGZwq2SOBLHn94nvnp2g7f7urYqqAlqJBZSyAdihXK6hma2WMs9COMs6hIkjuLKgWc719dIU0IwezcQ8y4B2ilZ0mf+X/wV1dp2FFEc5G77EXWvAlSERLqHuODDuLYHG5kd4+avVJ7D+8f4eSbrcvf5xwHWimREHR9ge8pyjVFS8e0jKbWE6w9e5wTjy4zmnfo6DracxB2ESpDCIfEEWiwaU7HPsR4mNOrDlA98LQm9wRpYAgyxeFzESKqsu8nHmPf7B07zvXtwb8srZFHa+i8hmf9wkx4qPYopcSjhAgvosNXmFyeJ0RQmm4QmzLr7TZZokiwqHKbKGyR2kahx+nM8BowbMhogIxBtVB2iiw3ZHkRtG6l1eaDcZqtN6lEinKiUVpgiBjoAcIPweUsu2naYoSxXHB3H2pG4HxHLjMSuc5YOsd3dSEOUCvN4aRGL/VRurB5iCttzt52jKneDKY9z6Hn51gabfLCSIq1ES4retFEyaKmciZzy7teL+PnBj0CYTXcPPx1vn6K0oMzBPsaRfZ/mwJelsckwRLd+ZRSEjHaHKdXFpe0Q3zJutJU46v3i2ytzObakuuicrRZLZcCpx3OsUmXffZ75zjxegudO+qVEM9m5J0+qxXL037AI8px2BT9PQhBHJboL71J0hhlpHwcKROMHkE7yIUjMD7EDfJSm9b0MWZP/xSBUESZ42I15eTJFdLc3rBX5U7CRRu9bUKIbVYfCl8ew7oYS4PxqIFoLuLlUKFCP0g5OdnirlN1FEPfLZ2BVIVqrAApU7SpouOA60/V7Y7dvLJ2upfbIQXcFRuUK/rCJGz2NG1S6hwISRGIlPwrPgPeOqW+rWPv+eoyY3lhHFZAJ1BEW9ggm3L65/8Pet3jRAmookBNEkFQmuDOmY8iS0dwc4d3bXu4XqVGgMn9H+Zh4MTSX9GRbRKRoZxk1IxzZPrnmdz/4Ru+FrthI1gNGwFJL6M80KRSDtWKQSlBlhnybko0V79mD/kPM647EAvDkE6nc8XrJ06cYHLy+v1zfowfHtxSOsPqxYKOWKlzauxNMqWpZNFmI7onAip9TT9qc3L975mI7rwumuI7wbRwxyblyMP3JXGiuYBjcaaM38/xzSHCTg09fhTrr4Dog/PQ/X3UL+zjYPwaa+UaPc8nco76oEfs+3xr+gBlP7xCrvlmsJfK4rU24Q3sxVYgTjQfenQfQogdg+etVLq9brzOOeIXF5HKw5UFZIXQhpACpMTlFt1OkKFHaabGoz8xxwvHV2i2YtK8UJAbqYc8dv/sDQVhmzS8oYJWajWCBOsEvikhRI+a+Q7WvpfACwqlMAQl5RMG3jUV0orrJxnpetiLCQST0FkuMrBeMDyISVA+aAf9zlU9avZK7ZVSXvG+em6JYk0sQClJqapYyXoYZ/CkIg8FYwOF92bMYCrEBTkq6hTpbitxVmGEI/NycDnjmWDgf4BIvky7skKoY6TVlBPF1FKJcnAQ+f6f3gwqJ0aiYj3p90FXsOOzVwT/RiYIafBViHAgpcI6ByJGhW2QKWDQtX9g9Z4pKs3HkNSoyACvPsaSHiAEpGWNFAbfeOgNqcrNVL4AF4CLwPkIr4nLqxgTkqv8Mlpt2nbU+jmHejnl1CCcw7oSMYI3S5q+X8YIxWRmua8n8ZykpxSawgi60jKc+/a3aT90llI4FAeQxY9QqshK52W6tSbVapNSb5xMCibXx6kaj3VfYAJNoBRuIDFnA+7o54Ta0YwMFQ8iKXDGYZMclxq633wT1Qjxx8ub882fq7G4cIyXO/+dJX0WJRzlWLEWjzGy/ACl7iy+BuEEqbPosrpqv8jWyqyxRcC19XF11g2DC0GGZi0esPBaC5FLCCxxmjBZWkAeepao3MFIyzEnWM0Ud7bmmBjUWDUZkdGMiRwdNLGmAgiEcHQ9GM0p+i6zMlm5ifGbjLTHSX14JQCd5kw0Lq1PN+KpuV24yDnHyvqAMI34qfH7+E7vDEtxh4xF6tE6nqwxHjUoW4vLElAeAkmkAzrlhH69S70zDFasLX5UoRqKyUA2cNHoVce0F2wkFlf6x1nU/0TqFslMhnCKqj/P/VM/w2T57ivu5fYq+4hxNAwMJCgBgR3aX2y/ToGHP1Pb8RD/Vir1bR97rxpwquJTSjSedsQ41gXs33/550+sKx58LeTUmKJT1SQClIPRjsfhMyETFQWlq7c96NUBuhkXXms77Jm79VxN7v8w4/NP0F56nixrEgRjNKYfueWVsA1sBqtDldztVUNlIcwtrhzsqYf8hxnXfQd+7ud+jt/93d/lq1/9KlDc+LNnz/Ibv/Eb/OIv/uItH+CP8SOKtA9G065oOsGAKA8u+V8ASIkwEFGmnZ2nnZ17S1SR3irsRsfr9nPCQPLu+6apV0LCUJFlhm9+9zyd3j7K5gBeaRXjBsQDn5AZHr1HEZy2jK2co5QOSIALlTov7CsERT5+gybDV8NOlMUNpbKTy8dY1t+40rBy9KevqFzutfcoyyz7Zq4e8Ox143XOkZxcI1/sIUMFJQ+zVngCOSWLdKsQRUWt7FN+eJaR6RqzU9VbVkndrqAVKY+6NZT6HUJrMNJQ9hL+/cXn+e7IEU5VGkSeV/RBxYpaXmGx2ediv8W+6lUOUMN5hHOQJ1z0Zznm301TNjAolGcY89Z5MFhk7hoeNXul9m5/X9rPwTq8kketFrGSdzDOEEgPBGgPwkwQrd5GUvs+3uibw+78grJXFNUkFoFyAt+7iOZRenaGTBwnC4/j2w5xaFmpGZarfd49aphkZ0GG1fpBmvp+KpVLldINJU6ERqkAax21qmFgV3HOFNRCofBtibi+whv1fyJY8hiNDxD4itAv5qk0EdIqhNQgClEFR2GqLoXAicKXSXU/gA6PI70VUjKcDS6j1S6/uczdqzG+Be1LrBRIC5U85GAvYL0K657m4ECgnKQzfA8WjJG0o5ya7aPjhHJUGGI7U9QThFIYZyFX4BuU7BGYOhk+oROE1iJQSK1wgUMEUO9BrSMYlCxSCjwhsbFGrw1w1oGS4NymafPGfGuPLfBy/ufEfofcBCgd4OWGuLpEVv4GM2fvp7Q2R6U7Dnh4eYb1vF37RSZGSow1IpZXOpQ8W1SwnSi89ABjHYGv0GgWex2cFSinEAGFkqX/JtnENwlEYWwrnY8WlrWoxWDqDe5ZOIBZz3DKI1cgMDjnDe8jZApaQM2Apz2sP0CIlPUGnJyG1TXFZCh2TSpdy6vSOndFJWxxK61ymLCbbczwntvvQJff4FznKCPBJEIoSHrDiGWo5mklztPkYQ6UKAh9joIuC2gN0kdUKsjSjdfDnHO89sYar55ao+9ex5/+R5AJVlcRrgTC0PVPstr9P7l//H/jnrmHr1plV9oWJiNKkiDwc1OorG75m74QiMjf8RB/I1Wj68GOYxeCuOTjnKPVzZgeu1z8a4PlM7EmGDcP0O7G5FLjW49GUkK0VvZk2OwSjdO2oPzugKv5dkrpMTr7nuv+vjeCrcHqRg/5ZVVDoBsp6u/b9yMtXQ83aOj88Y9/nKmpKeI45oknnmBxcZH3ve99/P7v//5bMcYf40cRYQWUR06CkZZIb1uYrC18iGRE6rpk5vq8NX6Q2Asd78yFDj/9wYOb/7b1YGuSMZQcZ2rkkieYu+cIpdWLhEmfVWcp10f5KT+6Qq75VmKjsnhxucfRV5ZotmJseBZ/+h9RXkqtNEYlGL1kWLn8ZR6e+k+XBWO3ylZgt40XX2HKjryTkf/LOUZ+Yp7kxUXyxR6mk4IqZHRlLcTFOS43uI0KhpIF3WpL78utqqReoaCVDJgYdDFGk0uJdR5GZozqDh878xr/3213k1UPY85EuFgiHQRYvjVY4EMP+LvTnYbziDzhopzk6eBRUhFQdjEeGu0UK2qcpxnng+Yl9l3Do2Y3ai9wGR10drLC7OTB4n2LPbxnz+GXfTLlSJOhae3wFnmmOBPGLkCtz8LYmW1/1YHSOKfwE5+81EPRRJARqVcQLiWXNYyTOHISc6F41uS/Yexb39703dpofE+ba2jZoRwK8IvrtqHEaYOLCDdW9JWIJko5hIuwZPiiTCMYJ22uk0QdXp94mkfO/UekUDSqIautAVYbVF4iqbUgv5T88D2Bw4HqIrN51OBBeov3MNdY5131EmFYZ2z6TqQsKIr+ySYh0FYONRQBcEqghcKLDXfGjteqEDmffiCKIAxAgrMC6SSBX0Voic5i/LCKUMVh0TmHMwakRhqF0iFGSNSwh8MJg3ACYQXKX8ELMgIbIFdHSXFEyiNUHnq1V1SgfFmIKGiHUAJZCTGtlP4LFzjxyD+Q2R4jwSzdvEWuNVYanMxJwy7n7nyG5fkGpf4Ys28+yERzDps5dCchYAcq9cLrPLD+bZ7uTzFwPp7wyY0PSmFFIchSrwYsJx1cLlChgEyAdDgs1fFjOJVi4hrKgRMO53yCJCSLBrwxusCRN0PWG5P0Sg1qKITQOLeRCHSkCnIPAgxSery2P6Azakk6DrEqCHdYx+Byr8qd+pbe6K5u9obl1uBLxYRpEF6sUI1hype4QNHxBCvNmG4/490PjxGqEOPywhdvSDnEFn6HRhYBTSQkVlWRto1wrkhKSIULSlg1gj8zesPUsIvLPZ598QIXl3tY52gc+hesiDHJCLgiKA38AMw4uVzjxYt/Q10dYn66vmuVfT0x3KYE45WAgbH0BES5xRtaFUgpkEpSeWx+x0P8jVaN9oobEv8asnyoNAq2Qrrl7wr2bNh8NVVS2Jtv59uB7cHq1qqhGt7jymyVh+76MZPuuu9Uo9Hg61//Ot/61rd46aWX6PV6PPLIIzz55JNvxfh+jB9VTMzB2Cx+7yTKSoyweG5j0RluJGEJ7Uuk9QnUrZU93SkzeasCmr3Q8bZnTq/V27ZBZVDA9PDn7cDWyl65JGHyO1iVkCejtDOHGrFEwdCwUi9dQSO9VbYCO228SWpo91Ly3CKtJTrbZnCxS8lX+CWv4LwIgcsMTlvUeAkhJViLMw5nHcG+G+uruxYCtVVBK8R1VpHW4vwQ4QwWA07SEyX2G827VxK+0y3jhs7IDsNICv5SzHe+dZpHP3A7s1PVKw53G/PILbzOMf/dpAQ0XHezthy4HF9Y2oxwTNzBfFC+ZsP+9oD0anTQyfk6bqRE+1STfLmPrhRKcN5GxtdBlMJ6GdYCxWReQ+QRSAtS4zbN9HxsWseYlExYcDGR/B7Cpdjhgd04Q0mVGAlG6OVLnFj5Kx5L6oiR6SEt0IFzhS1ClqPb68hSBUEh8qD678N6f4dTTQQB2sUooXAiQwmPyKvTMefJqwMchqZ/mucP/N8cWvkQlGD5tn+h5y+T+QlGxaAGBN44Nq9gSFGyB3lIuvQQam3Aw33NdLOCd0aAF9MZO0n5kTlEoBisdOlFBp2Czgv9biEFHhItoW6gZkEi0NtvmHMEQjFq5qn0x+lXm3iuMqwGKFymweTo0oBSZ5KgNw5OEFpoedBTUKqeI5x5Ga+yhpAGYRSnx0apLz7AuDxCmqQFnVcWVw9XUAKRcvOg2xqcpT04RykYRQjJRFRhya4Qe+sIZ5FGYYUDK+nXlzl999OI7z1OozXP2vEFwnsmWYw7m2vwTGsFvvlV5pIBH4x6HLMHWNKSzHloYwh8GKmX0RiyxCE9gRrXmCUfayw2XMIPmxhdwUmFMgZhHUIYlE7wraHvtelVx3lx32FsOIaOx/CCFUzus9UMW+Cw/oAsm6I/Ogo4+jaloSpIt3MgtpFUClox7aMXLpsvcU3y1NgK56ox9aBEXUbkxuAfN9zd7DFuBR4CJwRxpFiYKHM+NZw8GTFyeEMAYhoRRIXoSBrjpCDxMkaTKpN+Tl85rK0hQwejY2AVNpd7thfZCReXezx19Bxr7RiAqLZWMDayCs4JNvIDuS7mnaCG8ZZ5/vWXmZt6/65V9vHZKlVP4bVTKqMlcm2xxiGNRQmBG+T4czVK907tOK6bqRrtFdct/rXBTthNNGuPhs27qZLC5QbwP+ieq92C1bYn6eeWqB7w0D3TP9KUxA3ccMj8+OOP8/jjj9/KsdwyfOELX+CP//iPWVxc5MEHH+RP/uRPeM97di/H/vmf/zm//du/zZkzZ7jzzjv5wz/8Qz72sY+9jSP+MbZDCIl8+MM0nlqh3muyXkup5BHCDoMwpaA2TmLam55RtwqbprpbMpMz5fqePHT2gr3S8bYbBL9Tets2sL2y5/wlMn8FYWtFlcs4Wp2EmYnKkH43cgWN9FbZCmzfeJO0kMe11qGUQEhJmOZk1rEmYdwPUYEqhDk8gdAO20nxpiqAxLbSt3Qzu0xBK6/DsK9DSUWEQPuaSi+inJRIQ1jO5pDKYSKYTByH1h2jGkIycpfS++vXaI6UNq/D1mDIf/jDLLdimukIZdsvDswUQQlCILyAsu3T9MZY88a4nid8r3TQDRU9r5sSILDCERhBlELmC07tc9AUdGWDER0gtF9oZWwEYiYAJP3IoJ2mlaxRLjexlDHOFYImQjIeVRBCErkSHXmB9vgEI1ZA0of2KuQJ484xFk2z4ibwOy1EvaB2quw2aP00g/BZ/OoCYHBIPFkmVDUGeg3ndNFXmEuMzOkFy7wy9zdgHdZZAl1BBWMEfkxql8FbIwxi0liRdifoLzxCvTXO3d0BJSlgtIwqX37NegdLxEnMINSoyENkEmeLfqycwog1cqCMwjiNysF4G9WdQnRiJIoQxnFg+VFen32Gnl4iUiPIekDaHJD5Xby8xMSZ+4mMxHNFP86pEsjaAuUDT4OfonUZ5xRSGPqNFXTlGeQ5Qbk1zaiRxRWyEt8JvMhDBEPbAk+SuwHWXqr6llRA1U/ItUPlxdFDSINwkqjfIC13WLj9Jez3p/Avtvmbf3iKC5WM5VKOLyX//sQL7B90CMbmmBMZs+4Ua7bMhbzG6aRC39ZJswiNwUQ5wYxFVh22rTB9UKUEIQzOXgqUjFAELsNzeUGXCoo2vn5eWH0k4n4q5hmU38bqMsJJhNAoL8aaiJj7SDfk5SsBs2NVBh1NsEtS6Y7AQ35ngTzdMl9yS7LY4ZEVj+jeGs1hzmlmJeCBZYFvHbHv8D0fZaE80Nx+oYuZqbDSSjni/ST9/Kub99irjaHtBRLVJ9ABh9dmCFQTEa0Ty0OYaA6X+kOz6vKe7EV2wsb6309ynHN4SqK8dHiNh3TOYQ+fcw7rHIIAqfq0+q3NRONuScb8YrdYW9ppYQAfKpwW2H6OqgZUHpnbdV94u6pG1yX+tcFO0FkRLG/HHg2bd1Il3fiu1+Pb+XbgnaxU/U7CDT2FR48e5Rvf+AbLy8tYay/7t89+9rO3ZGA3iq985St86lOf4otf/CKPPfYYn/vc5/jIRz7C8ePHmZq6Mnvy7LPP8ku/9Et85jOf4Wd/9mf5sz/7M37+53+e559/nne9610/gG/w1sM5R77Sp7XaJxOCYLrC5OjNS7reaoi5w6gn/iOHX/tLjkWv0lcDIuuhwhKmVifxeld4Rt0stpvq1mVEbs0lD51dlOquB7eKjrcbrsfD5mawvbJnZYwjJ08LA1SHI04si6t9RuoRoR+QutYVNNJbsVhv3XjxFe1e4S3kebKQO9YW4UCHCusoZHMbEW5tUKisCYFLCwNql9u3fDPbVNBa/jK9fIVIGJT0MNKQeBmh8bmrNU8qHcu2Qoc6SuSMxIoHVx2hBRN4pFKgckulm5H3c7zxMqoRXhEMZQ99FPPdJbysXxifCVHQmJSHsxonQlK/wlJzwMS2tWA3Q/Xr6cPYUNHrP3+RysUMMzAIBesNeOM2TXukSeAsaS8gzyfww2VEUogkAOTCA2WRkSbXDQwhOE3mIgSOkvIZjyqUvaIvy7OSRFjyQECrX1B+rClEDITkQX2Cp2WVdltRlj5+pXLJFiH8OPfMr3A2+0sCWSGQdVrZmSIIE2FhXUBB6/PyEoNoDQf43VlWIsjdgNB4jAV3oPUCfscRn/kQOp6nhuX+QUrkBD0nGPQSxn1FFF66Zq2Ty0gskfMwPuBZhBU4DTYFH1GosoWSTiYZzS1d40CBdIIo8KiFIbadMjF9hMbcnZxo/T3t9DxaxrhaTrRaZd+J9zKyPg8UIadWDosknDmG8FJ0MoJTDoFAuQDrSmTeKq3xF6mu/hQAygqEs2ghsBWFP3wGnLb4soyUl3yTtEtwLsOXAQg3rPqCckV/qZeV6NWbzITrVNcnuOeE4EhYolstsTCxTrmzxqIfMqEzyn6IEDChBkyoAQ+IhLVUkd37C3RqFf5q4SLa9wmFh5lIsLGPl1ZxTiGEwTMSjYcQjoiETHnIQKIU1G3AexfP8Bf1MWrhGC59P5F+Gc9fx1cGgYfOp2nqI3T8Kr7WHKiO8J7JKmoq5thrXVrdcSol//KkUiA5Emtcevl8SZVjPdI0Esmhs9AcLc5Uh88LAgvdYTFOCRBKkEpJmFnm1xMWxyNK9g4envpPnFj/b3SyC6RejmzUGd3wEWtnoCz+vjmCB+/HBHO3RMp9UxXPV8SJLhQrTYRzHkJqnA02FQ6HCwnIHIGH1dFlicadkozblTdtPx8Gj9f2pnw7q0Z7TpAO2Qksny1sErZe910Mm3fDzVybtxu709kdrfTNawp6/SjgugOxP/iDP+C3fuu3uOuuu5ievrys+E44yH/2s5/lk5/8JL/yK78CwBe/+EX+9m//li996Uv85m/+5hXv//znP89HP/pRfv3Xfx2A3/u93+PrX/86f/qnf8oXv/jFt3XsbweyCx3Wnj1LstgFbTFCsBIpvre/wZGf2PeOy1CIucNMzf46Dy88w4nBP9NhlVQKpHSMBQc5PPIRMjvNifbyTVMIrXN84+IJBjplIqpuPs+h8piIKntSqtsNW3sCGqEqGs6b8U3R8XbCTkqM1/KwuVFsr+xlaYDWCidyoOipcDiy3NJsxTQaAql2ppHerK3A1o3XlB15botKGIBz+LktCisKlBBkuSVXAn+8jGkn2MwUxrKpwZ+tvS2b2WTpruIAtfg1Ov73SFSCcorRpMrh9Tkm8jqDckqvrzBOkWM50pJEFtLQw5OFQEKo7aassx3kyGqA3BYMhe/fjzdi0HmJIG5SGFwJEnw6qkpGgM3g6MuLvHmxu/m87CR2wdgs8uEPo/3Z6+rD2FDRWz9T5bkz36ctMsTYGjX/NSo0cXMGkfsIXSEXHrI8wOZlnPVBaVSphxMRmgfxpa2HZ7cAACAASURBVKAWVPBlmUCViJTHpSOfI3Y5wgqIc2h3LqlFDsc5Z1f5YPpdjpXeRbOriK2PUpeC/9nJe+gtvMh6egbpArRNEGL4PZ3DiAw8GFSbGFfQm+LGCjCCcgGJyVlKNHOJpa0kuYjYZzOquaSuPTIBntBoLWj3UsKgTGI0PZUh+pokdDRS6G18LelAS4SDyDlavqLjKU7XJLV2Ss1A6kAGirFSgG2nm8mEoFwHHK82v0az38dlmjRKWTj4MgJJeX2WRFoqVnCPWONEaZ08KxfS4EicAyscSWhxJoL6OjZcx+tOFL7ACLR05O0Eq3wIFXknJRidI/JmGehzVP0ZrCuEIgQSh8FKgzIhjoDcB5yHIAaZYoFWaAiVYLQjGO1WCewovSBmLe1T3nIvAYQfMBGvIis5bnaK5zr1Tb8tU85ZHW9Tb9Wpx2OEpRVEXkWRUyIu7gOC3HdUkxEQh7gjX+QBB69pTVdU8eUHmEFzuFrntsYs+8cOsZT06OsMbc6ynnyL891CnKhym8Lrj5Isv5tOe/6Swuq+Efx/uYDYNl+0s1gcaQD1nqDeLV6vDyBRxVyyONywgo0Q5J6kFGsa2hGGisnSXUxEd16mVFv35xG3LV6RQLlVR92N9T8KC49FZx02mcQk48hoEZMOI8itBmCqi0vmkPnUnhKNG2vG9fqAvROrRhssH/vUV/Zk2Hwt3Oi1+UFga7DqnOVM55uc7jzFIF8riOFyd0GvHwVcdyD2+c9/ni996Ut84hOfeAuGc3PIsozvfve7fPrTn958TUrJk08+yXPPPbfj7zz33HN86lOfuuy1j3zkI/z1X//1rn8nTVPSNN38/53k/N+JyC50WPu7E+hOgldoXeDjiPqWyskmL8QZfOiOd14wJiSTcx9kwn3gso1mNYn4f8+eYnFw+pZQCBcGbRYHHerBlQGAEIJaELIw6LAwaF8mLXwt7NRD80jF53ksyzdBx9uO3ZQYr8fD5nqwtbLn+4pOc4SgPI5fWcKmPm7YfeMpgbGObrzO/rG7dqWR3gz1cuvGm3cypLUIKZHG4WuL8QROKKQTOClw2KKfveQhoiq2n+FSQ/WJ24nuHH/bNrPJ0l2M3/brrJ/6PHnnPH5pkkZW2VQILXsBczbhNB4H8gpTeUbuyyIIA6R1KFv41nieLPrdMoMI1WXB0Ih2w148hz/TQOQZaZrT7DvM8KAUBYpy5G0+Lx+6XTBz7C+vELtg+Sz2qa9g7/6F6+7DEEJwx8F9uPGQpy7+M8I+h3Ap2pUJVZWK55FkbTIDOquj/BghE5ASraeI9QM4f4qB6VH259B2gVDW2AjCBjplNelh7ToTSYhaaJHlOcrzURv3dChWMBd0mC2dYi07Q3bvLxBNzVwW/G9ULPt6BYdBOg+HQbu08AdDod2l8E+IHI8mhjGkCCFL0InFRZIjacJUaxzPCnwrUMKRiiIgSdOc0601YpfhrGPEKF6qd3lorUalr8gigUbgaYogXMHFyZBAKNak4Vg94FBP0zCWqpT4DrwtmfGV+DgvrPxX+sk6aj0kyMo4aeg3lnnjvm9yx6sfpNqaoyscwosJ0OS2hFUFM1QoR+7nOOHwfY/MS8nDlNR3eMMGNScFKnWkyz1yKYklfF8buifuI5xdQEcLRH4ZEDhhMCpHWIWX1rEScCDRSKvwspDMd2SeQyro+dDoKaw+TGRfIjGaxGgib8tzt4XWJYXgJ+eObPptOefohwP6UwNSvZ8jboVquITKJdIKEuWR+h42L9G++H4W8mnGmOc9pTt4b2OcZJAQlSNm9k2h5KVD8nxlZOgF+FdktkdJjaJEgFEZlmXMzNfR+sOYeD+9fsapU2scSTXhtvniDRU1M+WIMkEwnC4S0AqcLeh9W9ckI0FljvGSv5mwE0JeqRx8FdGHrbgRFsXG+i9E4Q2Y5QYhJdnqo4Sz/x0VtrB5pTCSVhbh98GWSFcfZWqksudEoxDihgQ13olVIzF3GPnEf7iU3NrFsHnPn3eD1+YHhZX4OC+vfoXV+DjOWYRQeKJESYzuKuj1o4DrDsSklHzgAx94K8Zy01hdXcUYw/T05VIF09PTfP/739/xdxYXF3d8/9XMqT/zmc/wO7/zOzc/4LcRzjm633oT206Ktgs1dDmnOMxVtOXAYp8XX1vak8/JDwJbN5rXOyv85elbSyHs64zcGupyB/42EEiPrk3p62zPn7lbD43XTnlECY5PljmXmZvmTu9FiXGvHjZ7xVahjZJz5NrC6qN40f9ABi1MXkHgI1SG8nsYHTHp/S9vGf1gY+PNv30O/0IblRmQkkHZY3GizMzqgPJAo8VQnmFzGA6XW/zZ2tsahG1ASo+x+/7XIlPa6UPF2wx68pYgyO7kYeeDTgmNw7OOFDBeUSHBFUIOhZmtLaiHQ2wEQ6Rmsxev3c0pl3xaqcEMDYelFDSqIWHgEfiKVjflhZcu8tFkgBiZulR9CKKCVtNahtNHEer+G+rDuKM2zmLtPKt9R2DHUconKFURCOKwzFL/LFYE9HuPw0Bj4xI6ngAEzjdEVRib/hAt/mazNyYzjqV4HUEfRImeuherTiLThNQIQkQRjA0V42hMIIKQiaSopIhtSYCNiuUrq3/BcvwqxqUIUXxPIRRKROQ6HV4aQbGdGqToYlxIAFghCbWiHodoAUY5PCvwnCjk4ZUmEZZEa6xyBK4Q4zhTz1isNHnvUp3ZNCTUAmOhGcLxBkSjEVPSIx/6aZ2edqhOxvvumaYxNEd1wPlek1fW/ppEd5CtSuHZBQgrifo1kkqXhYMvctfzU9StRaYZgYEkGBCrEAT4vixaEBxI6QgShZ8FrDfA147KoAgSEYVyolGWM/tq2EZEqA8yuPAkZuIoot4CwJChVBmvV8bPQqwaMgaCmGp7krA/RrM89PUb/qcfScLeCOUkIC7nhfz+5oN2Ja3rUH2Sj9/xMP904Tivri8UbxPQFiOsd+9i3h2jX9UkUpFaHzsYJ1i5l6g/inY5uR5l7Zku015MXQiEJ+mOtS7zI9zuBbixbujcI+5WsapJNPU8QesQRsNyK2Uu1TDIiaqXBBvCDRXKNMdIQTacLlaBJxxZBtKKzXZJ5xzkFqcEh++cuOn16kZZFFvX/3rFp9mxaG1xvX3YCx8mmPgOXmkNIQd40sclc6SrjxLa228o0XgjeCdWjcRcYSuzm2HzDytW4uM8v/Rf6GTnAPBECYRDu4S+Xqbuz5PZ/nX7wv4w4LoDsV/91V/lC1/4Ap/73OfeivH8q8CnP/3py6ponU6H/ftvnVjErcSG+l+81KG80C1oJkpspnEdYKRAWcdIajm11Luqz8k7AW8VhbDiBfhSkVtDqK6cGpnV+FJR2U31aBuu1UNDK+VBC/c+fjtZZm+qn+tGlBhvFluFNrr9HGsdZrCPwflLm7DnDQAfmc+TrLyb0swdt+Rv74Zgvs7UL9zDq/94km4zplQLiEseCMGigAPnu4SpxUUKX0lsZt4RDc47ZUozM8ZiMEdeNwjVJV+q4WuHMo5SahjgyIfZFE8VEuKbxr1DbA2G5iYrm714y2t90swgpSDwFY1qQBQOBRSEoOxZmh2PtdIcE2LYy+EcidEYZ/GiCkHvNKr6ALqdX3cfRuv8s3TWX6KSWDwTF4FeEEF9glJURqoq0jWxTQ89mANv6OaaCkg8wp7PK72I8Zkn8SeOMtBLdHQfcDgxTWrvp1eb5cWDIY9//yjKWqzLUNKDoASNCYgqmyIpuzXIT5bu4on53+CbF/+QdnqeQNbo5YtIoQqp9yKs2fIbCkGGIC98qwJLuT0Gg/Gi8gMYWQRjwjlCo+gqh8PhGUU9lSyUc1YjjZWO89U1DuoK+8wI8ZLPaqAphT4N5SNgs8c0yw1J2Sc80MAfLW8KDjXjM0yGryN1yFjusIiCmibACYWflunX1olry1S7k0SDBkF/HDG+SMk4NJLc+EhZlK2UHVDuTeH0OHiQ+9CqO2TukInCs4JACkToIUXxbPnuEK1z+6hOd3jw7g6vt/8HxuV0SwJrDR4GE8T4Wcjk+QdYKxtiz25WiqDwmktVBKrEWNLGi6pDM/LdaV2H6pME0uNcv0XNhXSyBIvjvHeAx081uc01OVp9gIGZoJ5UijVfwFiac1s/RGLpRYax8QqYKwVotnsBDp98Or0MYwWeqkG4gvBXCMQMbjyiu57gtVOCso8czlMhYDwo0+t2Wa5qlsuFx16rbBjpCLJQENkQa8BR9LpWEUSzVWaOTFxrabkqboZFsXX9T1JDvRLQj3Nybcg686SdWUr1dYIww7oSMp9iaqTytos0vBOrRlczbP5hxEbSIjEtQCBFsDlXPSTaZQz0CtVg9l+lL+zN4roDsV/7tV/jZ37mZzh06BD33nsvvn95mf1rX/vaLRvc9WJiYgKlFEtLS5e9vrS0xMzMzI6/MzMzc13vBwjDkDAMb37AbyGsc/zP5TM8t/QG61nM3Qs+H9JlzPDQcNlxU4AVIJ2jEl+p1vdOw1tFIZwtN5gpX+ot2H6w7GYpB6qjzJb3Jmm+Fy8T04wZNeBfw6z4WrhRJcabxYbQxrdfusi5hRytLbY3D8l+orEWQVgY2ObxODJze/AD21kY4nogpeSeR+Z56jvnWE8NFW3xPEkzVHRHIw72MqalxHbSt4WqslcrhK2Z0pX+9/je0jN0vddxnkU6j9K+cezxdzGyMoOwjjC1UPFQQiC0LWiCkb9ZndopGNroxXv11BrPHbtIreIT+uqK59MThoETpLIE9BjkKatpn9RonHNIYCKNiQ/HRL0IvTJAln1EyQPjrhrcuounSF/8W8y+lIgS+KrwPUpjXPMiYmyOsbDBWjbAkeB8g9ASlxYeW0XvkiBONGdPj+De+DBRY41YdMALEaMNZLWoCp6cu4MDKxeYaq/Q9SOmKiOEpeolOfs9NMhL6XHf+Md5YfnLxLpZGDwPq18Cg8NjmNKiiBYdkGFljp9HTL55H1YoJEUVJ1UO6QTSgXICz0Ep86loSSbhjOcxvTJNq9EijhLOBjG6FCD7Ai/xGQsrl63f2/tKtwoOTYQGTwLWQwBGOLytv209jCwUGsO+IlZl9p05gi5fQPst/FSRO4+4WsH4Gpf5TJ17sEjmbUEqHJ4QqEAhtcPTW6qyQlAp+bRWRxgVD/PozB2cWP9vGPcmLa+LMJIwmeC2Nx7EZTMkXg6Av81rLvMVR/fdxru7hgmdQTq4Jq0rNjkCmCjVqAURq0nxDD89dYCfPBeStg8RihzlieIZ1DkzcRVPKOL/n703jbHrPO88f+9ylrvXvnKVSIqyFmrxJrdlyfZka09mPNPpdgNB4gkwAwSBJ9uXAYIg+RjMhyBOAgRBz0ycpINM0kh63EiQuNuRHSmR7XgRJVkbJUqkuFSRdWu7t+49+/u+8+HcKlaRRbKKLCqSoz9gmKrl1jn3nvOe93me/+JLrIXc2NJ6/SoDmmuyAIEst2S5QSlR2i+KPk6W1u5CShYmqlTneuTLMV4z2NAtBX2HaNR4+UhCYtZYy1O+P+vx8bTGjPMJmyG5c9jcItMCr+bTeOzAbTWO9oJFcbXRUuhrAl/RqPrce2SUew8/ylInuePGUe/j3Y31poUva2Rmbb0dVEIIFJrcJThnsC5/T+XC7gV2XYj9/M//PF//+tf55Cc/yejoO0/juRF83+fRRx/lqaee4rOf/SwA1lqeeuopvvCFL2z7O4899hhPPfUUv/iLv7jxta9+9as89thj78gx7yXWDSEuLC3y9eU3OWnbGBxKSFJTdoTWqQ0SsdW0Z/D/UnDLbn3vFO4EhRC4RlvQ8AN8qcnW7Ym1z5Mzx3Y8ZXsnskzWsVMnRt8Xe+5UNDNR57OfOsKXv3aaxZWEVt3D8xSZ9Yn7Ze5LEhsmR2+sC7iRMcRuufPXc2Ks72sycc84Y1Ji45xObuhVPfJQM+bcnq9nu41CEELSrvc52fkaib+Cbxro3MOIgn71EuceWMV76eM0l6bRAur1EFcYzFI5VZIVDYMN2/WKISEEk2NVQl8hhdj2nAunUMIR2JgoT5mPuhhn0EKhTBNVQJyNcfm1HtOJRKYWG+WgJKrm4U1tb3jinMWefAovygd6mpKmh1QgJeRZmak2NIq0PpIqLlKlKIayAJOU61SWG+RAO5P3x0lkHc9qRA/YnyLrpRD2pYPHeexUnzBLMOu2/Xm6MUkRJ57coj3d7p5Ypym+vPQXXDYvY0gRKIQISEwVT0oEa0iRARZBgUlHOfDGQ4x1myxjKFAoYSmEI1IG3yh8BzUjyJxgyXe82nS0A0GYhYwvjbMw2iYLUyKbsX+2iT9fJY8hw2yrK3WwhS2gRQYoUBaHwuGwoiwCEWBVgbAKaUJw0MoscsUnPdvk8myPtJIhSGnkhtC/m7Or9xCsTlJ4DuOXZjyFtSgUahAK7QQU+qrCflMjaN/wFWOJM92LPLfU5pzwmC5CxjMwVY/CWYxzCFcWrUEKl2sFb8+O8qG7PoXM8h01azazHKra50DNJzEFebXF82KC/JJHxcRII0FIqqpGhYDMEwgszgrsgOp7tQGN39ycBVg+i6wtIwSkoDQtchphr6x5USvgtczwYa1xUb5Ft9R6eJr/aabBRzc1bcaOCeKT8xTLMWrQUNIzzT1pHO0Vi+JmRkvvZnbNXjT+3sfNsd608Ad63nI2f2WfIpDgCgqbIsXe58K+27HrQuyP/uiP+Mu//Es+85nP3InjuW388i//Mp///Of54Ac/yIc//GG++MUv0u/3N1wUf/qnf5rZ2Vl+4zd+A4Bf+IVf4IknnuA3f/M3+cxnPsOf/dmf8d3vfpf/8B/+wz/naewa64YQ/fYaaRzziIADlWGen4mZa+ZcqKTkA0pM4aB8LF8Rrys36OeO71xE+8+FvaYQbsa6tmB987xmUzypOFAf5sldmoC8U1kmsLNg5NGpBd5Ivkq3W7p7SbF3TkVSSj764EypQYpSYpGSuaI0xDAK35Pcv3/ouoWOmztdaqSuYwwhn/jcLRVj19sgzC30OHl2+Y64SzpnNzaZX587Ryev0vSq7E9DZGpZ7nb4i/gkP3H3tTrGK7qTPpVkCKlLupR2PiofIfaWmTv6Eq3eLKQWu5YiK94geNph4wLTufmk72bXS1RIxoOC0XiO81pjnCEsRtHxAWRRQxmFcyFTqSyt3NfpztaBg8pDU9tvFBfnYHmeVjBOM4tYCXvUsnBgTiJKO/0sJs2XsekkdCZRFtzAF1JQmheshxhrWWbEFcYilcD5FnKJWfAQtVK/dXl4gqePPsQD505xLE+v0BEnD7L8wN28Lv6G7vzN74nxyj18Yub/4OmL/yed7AI1PU5uJRejDr3C4GhQkWukps7b8Qlmk32M5uMEQ5aRfodursmdwiExSuB8SZo7vl+DdtWy6jOYADmcV6ByzdjKKNlYnx+aPc6/OnSIy4vRDWMeLvZXt7AFDCMYN4zSbTLVIDCSXDoCI8oYEz+m1h2n2RlDO4sQCSvV83j9OrOv18hqOU5bavkwb/FR8Cfp0We47+jmDuc7Kr5HTYX0kxyvMEQ1j/iqNe3qSI51ve/D4wc5MVZOjJN6h+o/LTKWQxrAkokxWUElg0Q7Fo/6/MTdD+xqDd6O5RDq8tjWRgLSFZ9C+cxUqmWO31qGNH2sNbh1LelqFzc0ggirW5pnrbFNWYBickNrKUQ5BRd6DZnNIoorsTlFYUlrHvrjh2gZttUtbWFx1Eq69Z3QOO0li+LdlnG5E+xl4+993Bi+KpsWAomWIYWNcFx57jhK59/c9hmrXN/Q6wcVu94BjoyMcPfdd9+JY9kTfO5zn6PdbvNrv/ZrXLp0iYceeoivfOUrG4Yc586dG/DdS3zsYx/jT//0T/nVX/1VfuVXfoWjR4/y5S9/+T2VIbZhCBEXrMiUXlCAcUz3PYbPaJ6+q8dcM2e+nrG/G6ARGAdmQDGS5d6JTlVx/JHZd9WUczvsNYXwatzdHOdwY2xHdLIb4Z3OMrlhMHLzInL866yk8RV3L5ftqVPRzESdI/fWefrFZVwikU6jJLiqoTPU4WudVUa64TUbKWsLVl7+L2TeIqqyj3o8hHIG5UvEUGkMYU5+jZVwmnSXWrrtNgh30l2yHZ/ayPNZTjoMezDlxth35gTjl2dQBoz0aFcKXohPcfixKzpG5ywXet9mOXkTT4Ygys3yhrYQgW8a9KtLJDM9assj1D68D2/qyjW00w3bzYO0NQ/fc5D8uYDq2jJSTqOjYwinkS7GuRYOiRw0dZyUSCnL6Vwvo/+Nc/j/9v5r/37aB1MgdMCRlRlemHiLvp8QFj7KSox2JCLHcwH9+YcpzJVpPYNpixCDrzjKYl37CCS+VCQ2xxMC15PYFYUcNoDj9WqD5NH/jg+MHmCp0ybSHlEz5ULv/yMr+tvcE3/EA96/Y9Qc3vJeSqm5f6ykKaa2C64KOCQFnkzIXcj5+APEZojlmsMO+diVgmBihok8JcsLLBLp+bCWcVZkvN40OFl+zhsOjFYijaSSV6hfrvB2L2btwlkePj7Bv3788HWnD9eyBQSJfYCqepaksYbqVVGFIvUN1it1WfvOPIh0AqGWyWtv4lX6aFfqKr1YEatJXnD3kTpFoybozg4xdKHLUG5JrUIaRVYUVHJLJOBVv9RermsO1xtBE6MVUi/l9U6PmtJMxX1kGiGCGjNjM4h7hsjqw0TPzSGWY2aKCoV25KMezQfHeeDu6V2vwTdkOZDSqAzjFTUIq5BGmLU21oWli6FQ+BR4WR+WEtzoDE4GG82zLVmAA8MYT3t4fkFuOyhbRfU/ukHD2vw+AFw2lqDu3XQtu1MapzudZ/luxp1o/L2P66PlX2la1PQ43fwi1qWlmZcTFC5DSkWoh/Y0F/a9AuGcczf/sSv40pe+xFe+8hW+9KUvUa2+tzogdwrdbpdWq0Wn06HZfGctUZ1zdP76FPlCn6KuOB+tltlNxiAcDKeKy/WCv7mny1RX8yOnWrQyjdj0qTsBkRKcmq7xoU8dedfZ12+HKzqIbFsK4V4EL+8FrnZNvDrLZF34fTvYnFG2GGWcvNRluZNsmvQEBPu+TCLOb3H3Wv/dXnGZkeAwj03/77e1AFrn+INT3+D82jKjNMEIUCAqpa3BYtLnQH2Yn7nnYxsbqnZ8itcv/Wc6y6+VAavWo9YbYv+5+xiLWlSG2rTJeSGbYqV5CIPG4TY0CB+4a3f0aOccf/MPZ1hY6hNWJcY5tJQEygPnWF3LmByt8mOPH951Q6K0sv5jMttDUmeuF1MxloqN0HnA+NsfJ4imUQbCBBLlUB88wOTdkxCc4/XVr7CcvEmULyKFRmUeYdzEp7bJXMcSe6scf/2Hmah8gNZnjm17nDvVpW3nmDY6VNmYsLz9+ndY+dZfM7V8HEwLJyJSWcXPS02jEwOLcymQgymIywxCSYb//QP4V60lrn0B+5X/G4Iq+CGLlS6nh+fo+hFGWpSFZt/Hq32OZ18YHhRhdvCHrn3PA5eBkFgvoFKRdKIUZwTCCURgcZWC/nCPoCl4bPIwr3cWBjTRgtnwH6nqFUaCGWreFZqziXN68RyNtQnue+3HkVqhRypbHPPWC+4z3dc36DS5HaJrPoBx0/hSsZRGnMiG+MRbDVx67f1fSME/+o4zYUJqS3qyFAJpBKHqoGSKMyGNYB91P9igIN6oUXCxv8qXTn2Tiva2sAU084Ty++hiCb+weEYT9kYYv/AAOpvmUn2RhxafoVdrgJAblEMpJK+pj7DsmrRMFzE+iwjr1HsZY5f6BFGOoqRZ933FK75gQUu0FIwMhWgl6ccFaEs61WNRdZhcWeAj82eYSvo0pML3wi2TiM3r2V5NgLajCE9XmzwYHOD0qz2StKAatdFZnyO9BrVckSjHiIoIRVFSZv0KNpgoaYSb7rvNzRfrckyh6HdapIsfosrhLQ0OKaFW8YiT4rYn8euT91ulmV9ZC6MtGrH1793OWvhuhnMW+zf/VxmsvNkRtvxm6Qg7eRD5Y//rv7iC4E7iyvOxj8InMSvkNsG5AiEUY5V7eGDs3/1AWdfvtDbY9UTsd37nd3jzzTeZnJzk0KFD15h1PPfcc7s/2vdxy9hsCFFgsK7UhIEpbX99x2ikGYs0882Cb4zCg8swUoBHmanUCzULkzWWndtzi/M7he0ohA4Y9is8NnkXhxu35ya1V7jTWSZXZ5T5WvKxkQr5sXGyoQpBoNCVNt+6dJmKHL7mcxVCEKqhPXEq2jBRCSpItR4xvPGXrjFRWV+Y03gJnTQIrY/ROWvNNm8c/ya8+hi19gFeqGnaCjxrSArIC0OnlzHX7vHqm0t87KHZHW9iFldj5pfX6LuExX6BdQ4pBIHSjIb1W3aX3Gxlre0YK2sJMtPUMtDWI6l1WJp+kem3pjBIegjqMax9+xJfWX6NYPrv8MOM0KsihEYgKbyMvliCCDxbbkYLkSMKia/qW7Rfm3OA2nmX7/bOcjm+uS7tZvoOPXuUZw8+xg/1AgocqWtQTQXB+qfrStqgcIAtCzKnymKjuNzHn6hvzSjyhxkenka0z4EXMBY3GY0bdIKIXOZ4q12a9aN8ubcfIXq4QU6Xu85y5ITEAQpHElu00xhhy0JCGEQkORC1uEtWeXXtLHNhQjOoMCz7BKpDYnwuxWtMC0FVB9gkp1iK0FToVZaIJjoE3RHS+Q7xU31GPnWEYF+L8co9pGacZy//LRVt0LKGYQRPCdafiA0/4BW5xoc/ehj9wirFSoxwoD2FN1nHHRkmeb3NpPJZynrERc6onqM++RJUl7HSgNN4bhIVfYyW3k9nNeLkc6eZemS0LIqu2ihejy1QMM2amWQtv8hUxedfhUdQ9WEqd1WZ2jfByLmXkX/3LYQpyGRp3lLRHsKboJPVqbp04Mg5oPXVPN4c8gl9ge8cjZEqRd1HZoZwLSXNDMudhGbNp9qUpqjlBgAAIABJREFUvB0u0Bd97un1+MTZVwjylI4X0JGaaaWpXDWJ2OsJ0I1YDrO1HiefP8tS1xGpJmerjvvWDCPOEJRXN0gfmwhk1VyjudwuTLm/Oszz0eIWCmmz5tOLM9b6+W1P4q8u/m6FZn7zqfit5Vm+6zGgR1Nr4RCYNMRajZQF0o/pjnrk2RsEl77L0NQH/0UUY7eSI7dbrOts169bT1bxZJWqHuVw6wkONR//F/Feb4ddF2LrJhjv492BzYYQ2pabSkHZWbXOkQtLzWrCQqBSzbL0eHrSMY1m1m9gtCj5/EJQy82eW5zfSaw/XL+9cIZvXj7DShazkkb83cXXeGll7paDnfcadyrL5HoZZcVCH9VNmXjyMP5wlYXoWnevzdDCJ3Wrt+1UtJkW5ZwjHVidKyEJlN5iorJRuJgeYX8ITAay7NTruEFcXePCoe9z8OR+pvuSbjNhJQGLRUmJUiV1Zr7d5++/c44nP3RgR5uYt1aW6CQJhc7RSqFleZ/ERc581GGq0sRYdu0uue4KJW2DlU5CYRyeA8+BlQKdVcnCFVK9QrA2jnWOldYinp8SjJ4ktz1MZ5hKw8NTFXIbl1Q5nZFUuuhe+Z5mYY9WMcv0hz+0UcRvnmrFeU6U9VEqZnK0IJ6okTt7w3y9q+mbzjnydh+XFIwHmmlVxxiLsZJWAd4gwumKYfcVrenVY6ttM4r8j/KgXzCzOge1FkL7DK0p6PcgHGH5yJP0XslQSqCcwxYOI7jmtYGS5ucMuHLD7GmJNAKlBfu1z/6llEpsYKHLsOcRNQPeOmTpDGdIYfFkQGYtS0kf6Snydh9ZWAqhyL2cC71F/EhjlaW1Jrn4zPcZ/swx7m5NEJmCvmkRerUNN9rN8KUm6ln+cblDrh2VhkfgHNWhCvc+PMP0RJ2RhR4LSxEPiCbV4hSL+5/F6BSdVDFWE/sWKvPkjb/GW/4g1f4YSz1N+ytPMTZav0bPspWK12M4iAhkQWo1K2mVqp7kidlrr4H9B+/DTh+hefkMWbWFkopQaS6aKgaJtslgilm6BeeFJTeWItSlmYWvqAhBGGgmA00/zskyw0dOzPBM/Cr9fp+xoMbDrz9PmGd0qg0EgtwaFm3B/tY4dNrY57+GnL7rjmzIyqLrWhfdmYk6U/dq2nPfI62MEdQszYog6YxTZCE4DcKidYfqiX3bNs+uDlMemoSZicamBoTin74/T7fPbec8bp683y7N/HqmRreaZ/mewIAenRfDxEuTg89YsDp8iYtTbxA1ljAiwXX+kGr+NA+O/TgT1eP/3Ed9x3CrOXK3gu2aFnthGPZex64LsV//9V+/E8fxPm4Rmw0hAq8MhoyLHF8qUlOgrKCQjlhZbF5SdrQW6FqD3lVmFnfK4vxO4szaIk/PnyYqUlp+ZcPE43aCne8E9prnf7OMss02y+tC2c3uXptRuGxPnIrWTVS6WUI3jwdW5yXzI1CahhdumKisFy6ha+AKAxLE4IcFAj+t0Kt1WGks0+yOgq1hEWgtN7a8WpXUwigudrSJsc7x/Op5rBB4Qm8wUqQQ+EqTmYKlqM+Iru9aF5GZPtbm9PsBxoLvSUwmWLeZEEZj/QjjUqLmHCsHnqeoLeN0hgn6SKMxzmd1WdAIE/KKoRAGicb4OXbMkNuEUA5x38y/JaiWG8q5hR5Pf+c8/SQnoMDrLTJqMlJRwe973Df/MhcPTXJpaHxH+XpXT1iFlnw4qJLmETUzcH3f9PMDi43yiwNNG8YhtGTVE9tr8WLHP9Y+xsdrLzOzdhqi7hYb8lRM0EjPUC8gspZI5KXBxeB/duMvOwSWmkjoOR8hwRiHlIJDSnH0UoQyjkQLIlOub8NdePBVxYv3BxTDCjAoIcnymOUoo+YA4eFUjrASkQTIRKMCR+IZXH6Zr7/6FtHRBxkODtzYNKjrqFxusiZzWrUAWfOJC8tinLPwvQs88cH9PHx8gpPPvMXMXI/z93+PwkvRUau8Bxx4mWTNNnHhEsXoi6jOJzHSJ9UNWHh7Wz3L3c1xfmRfkxcX/wprFwFDRSlG62M8MPbj13XrlA9/Gu/pP8frd0rdjFQERR9lMgoR4DdHWVexFdZhbfn+y0qbwrMk1PDdFHlRugZa54hcwuW4S9Or0FiKWImHWQjGabg1mmINLSWJKUisIay1YGmunFi8wxlLIqwzpiJgEVQIVfAqfUw2mJaYCGUXUfs+tvPX3NTgaK9ErHSS23IodM6ymr7N9xf/nKRYoenvu5LFJELqYpJecXnXgbg3m4r/wCGokZtReu1ZnPOQumB16BJvHP0Ouc7w4wq+c1xSlhV7ikvROe4f+0keGvvoHT2sndLJ9xJ3Ui99PVzdtHgft1CIvY93FzYbQqghyWhQY950Mc7iSUU9EczXMs4HCWEe4GvFaFDd1lHwvSbOvVPBztvhTtjc3o4WYicZZes2y9u5e20+hsSsMhIc3pVT0Xb6hOlqi5rn82ZnESEoLb1FaXEdFzlRnnOkNcZ0tcViPFdSakwdQwGeD3lSWuIJgTKa1E/IvLS0LHceSootcwchAAuBr3Y0yZ2POrRdh0rYgkQODBKufF8LSZY5KkPqGufQm1E3fFXDWkVepCgVAAIlFVBqf9zAJjz3u6wefBGrE7y0BoUkC/qgClR1EWMVPZHhrCttwGWBcJJcJoxWj3B0+Ec3ut3OOb7x/EWWOjHOWCJbIFwdJQ0VEZE4n8vpFI+d+i7fvOdR0ubwDfP1rjdh1d2U9UznDECCsmxOgik9Da0d/MPhxmp84+wy/ThnpBVu3H9XJgDw4uhjzH7sCUQWbdxT+VwP/c3zPLjQRzoonKMjBWcqlhUfJGXIMDiO6wWyvGBBjWNcOT3zPU2r5nFgvo8yjtSXpWW9LYPre1VHPXIcfmuMVx8eRjOPwiJUDgpiH2ThIZykujJN2B0FIA7nWd3/PEV9mTAoeKH9LQ41jjFTneXtXuUa0yBrHcWCR2gVo8OVbc6/nID86McP8bCTtKuLRI0VVFpFIMpUMlHmWFcLRyer4Ve7FLUuKqoQ+BLCCVhduGaK1I5PsdD/K0b8HlKMUSaHFVjXY6H/V7Rrw4xX7rn2mp6++5pQ8VGpGQmP0lZj+EF5byVpQaebIirnqU09h64s4aQhs4ooGSNZeJSiN4tz8NJry6B8RK/Kaq/Ot9UYpVm1YcitcpxTNNwixtnSMCHqlmvsHcbV5z46Og0j06VuyCunfiJL0LYHQkK+dtO8uRvhdh0K16mIK8kZ+nkbISQmPUvdm8BX5Ub5dmjm/5yuhzt9Dt6uJm7jdUaniYujOCORfgoSzu17hVwlVHpVSnKxYCyO6FSqZDriu5e/TN07zJHW5B6c8bXYbczJXmAvcuTex95gR4XYyMgIr7/+OmNjYwwPX6sz2Yzl5eU9O7j3cXMIIag+MsPa35/BrKZUah7TYYPVOELFhsRzvH7AcLQ1zkcnDrF0CtrLMS5w12zIN4eCvhdwp4Kdr8adsLndbvJwtSHADY9pFxll27l7aeFTuIzErOLL2q6ciq6nTzg69KNsMMjc4B/rI5QN1tpgsR9M6azKy58RArywdK6yBqNypJV4eUghFakUCLn1M16ftnmeJEnNTSe5/SIjd4bGZI69oHCZwGlXVhQWRK5w0rDv0NYHz06oGy1/PxU5TVefRtiBD7mWWCVQxpL5Ef7aOL3xM1id4sVDeBYybcDJsgDVBcgyvFgVBifAKEDCYe7nA/rHEOGVScGrby0xt9ADQLscnMEgyIWHoUFV9FnSw8RplfvPneLMvR+hX6S8vbbMVKWJXYo3Nj9qtLIxYZWtAHKLSw1IgR1ELwjAK98q7LpJx/r1BjhTfiCxL3kBy8V2HymhbRytur/horc+AVheTVjyphmf2I9zlsXzr7F68jQ69XD+MFHh8IRkJDPUevBiHRZ9gcQxLTp8OvsWBFXe3P8pnp0vNxC1RoVqUlBJDLmWDLzEy+tFlIV3EkCrI5HzB5DTZ0EYnNE4V2prjZ+AU4Qr+xAI4qGLtI/9A9ZL8dIq2DqZSFlM3mTMn6PjP8BiwhbToH7XUEsrDNcr1zSBtkxAzqwguylpmOKkQTkPJ8TGxW1waAfK+jgZkSrLmIoZlREAaViDhXOsnT/F+P7jCNyGVrHuXW3MU9+YmGTdaZ4/tbjNNT3F9L/+37Y0nR62TZ753kVW1zK0EnR6KQTnaB78OkIl2LyGsxohC3TlErV9T9G78ClkcoBeN6eaNBBYhHNoV5RFptMsixFeECe4XzzPfhxFpLFmDBV5eK6cJN+JCcH17ueHDj/BVPcvYfECFHm5FjlbfhZeiNh3bEdr5HZNu9txKNxMRVTCL6eXaHIb08ku0PL3bRRje0Uz3+6c7gSdbKfPwd1q4m40XTJLCUaNIVUbUeSsNTv0qyv4STCY+Fqc8PBzx6hdY7lew6llnpn/Fnc1/4c9n1JtDmBv+hWaMnxHWD17lSP3Pm4fOyrEfuu3fotGo3TJ+uIXv3hHD+h97B5XG0IEhWNS1chnNf69Tf7Hfa2NhWhO9t514txbFYreqWDnLce2xza3zjnap9qYb15A5AavEWxMHvKFPmt/f2ZHToq7zSi7WiibulWk8BgJDm+ZstwMN9InfPvyl8jNvUxVJujmaUlNtLZsFng+DS+gl6fMRx1mqoMpXXKGwKtDZkAr8Cs4V5B4MUFvjFpvlCUNi9Ii8hxfK7SQOOcw1uF7ZRreTia569TJoprj7ReYBQ8Xy3JoJcBVC4rhiP2TjY3f2Sl1QwjJwfoPsdC9iFPLYBvgPNLQIl0HLw9oLBxk+dBJdFpFD7KxUnQZVuwVV9wvhEM4iXCujJgoLJ3Ff8KemUOMzCAf/jRM383Lp5co5TkOYeyA1ulQFBg0CSEeBau6xtTaRYrF83QrNZ5/+RT+1+aYTgJ8JxFaImseZjVBeAqz0MfldsM6X4oyY9AJsLKMu9ior92VGtv5ikVPcKYR0Kt7yLV0I3h5qZMw2go3irHNE4CNbv/Km5gDOUpoKvEY9bcehNUZbKiopIZ7k4LveY4qCR8RryGaI+Acd5/5r7xhT9AWQ7hoEeUNI5zDSjGY1IHUgkwYfKconMDPQIcXsCYEDFIWOGlwFlQWglNEI3M0L9zPyoEXMF5KGLUopCAXApcG6FoNxCr3teY4Fx/mUrS2kTs45bcQOqQRBNtei+vnn/UyVGFBBUinccogjSxrx0ExUt7wBbn1EIXPCf8ScZGymPbJipxW3OO/nv4OebTMR8ZrdLOLVNT1jXkW++d4++3nSNbGbnBNXyn4Z4EnPig5+eplzl7sUhhDc+o5hEow6RDr5bizPib1UMEqlfHnqKzeTaeTDAxdJJKs1C/jkOQUThMRslocI2sb4kSDChHfWCV+6UW+PbXGq+HaDScEuy0QbnQ/P9NTPH7wcaaf/wvI0jJgXCjwPNAe7uVncWP7brjeX69pN/rQp26a87hdE3SzCVBdT1G4BJGXDQZN2Uzr5wsDWrnYM5r5ZuyFMch2uN4E/urn4G41cTebLrmkwAkPMTYJ3SVyMYeVFt8oEGKD+mykh7YxjSgmb2oWkuXbbupejXeS1bMZzlmShUuYNEVpjWM9y/EK3otSlfcqdlSIff7zn9/23+/j3YOdGkK828S5tyMUvZPBzjCwuT35VFmEbba59cOSvrINLeim5/rqZWZeXaSeGCIN3pplqFGhElyr7bpRMXorGWW3K5S9elOw4aw30Ccspxdp6FcIOMCQXyXZZNYRKo3FsZT06RfZlild0uiiOwGqsBjPknpruDxg/O0HKEI4XZOAwBlH6gqcUuDK8NRmzSNKzI4muVsc5WoKfdiWhZgBlGOJNQ40ruTP7Za6cWT8QV5588fpymfQtcsgCjKrMGvjzLz1IFUDK9KgCk0uIRcGIxwiq4CXrsusEJS0RCMdykItlnRrBZ2WYGjQAFh+5CfoRRlKDrLGnANR6uecc0hhKNBoCgqXIo2hUmQcicZ5/GwVnRsW/IjxRoMKimIxxkbZQPQlEGpwTTmgsOXQ0EHiK5wUZX6YKOl+IjVUhODCbJ03nGOoGRAUtrxdBoVcYSwraylTfunItz4BiOVbvLLwn0izNXTq41PDKkO/eonk+CqTp58kWJom0ZKaFRweqXH8Lo9p2cA9/zVIY0StxQmxzD/ETTq5xE+WsK4GVlC4UjM23AhZzAsyawgTj359EVddpsiaCONhyRHSIoyknpaT2ry2RH/8TfLaMkFSBQR9rxwFCivBCkJ/iNwu8j8f2k9sWmUHXmn05VX+2/lV8jjGr1au2eSsn79f97FaUuuNE/RHSBoLePGV/MN1laELIkw0gYhHSb1F5tMuxhkqxoIYZShtcfZSh6fS0xysJVSC4W3vAS084iwhNX2GGjM7piPNTNTRWrCwHCH8RWRlCVfUuNZARWDzGrqySLo6T543N37GUebA4Rg0DAxDueRgr0nmEjyVwliD2Dn686vc3Xb0jvt0RuW2E4LdFAjOORZXYp49eZF+lDPSCjbyRK+ce8rz52KmwjpidAasBaXKST3cdL2/UdPOPfOfeOjEv+GZntpVE3RdS7teWGvCK4G4IkAJTe4SchujReWWaOY3wm6KoN1Q7XeqcdbTtRs+c67WxO1kunRgEMyN8mBoHK8/h3CKwnMoM1C9OkBYjJAol6OtJrP6tpq62+GdYvVsxnqzwF/qIe0JiqjA9zSuNYYIrxTw7zWpynsZu9aIdTodvvrVr3L27FmEENx11118+tOffsfzs97HtdipIcS7RZx7u0LROx3svNnmlqvfGyHKr+9QXL5+rnQi7kpz+gpyIE8dcb7GSCtkqBpu0Xbd6LO8mpK6XUbZ1TbL5e/dulD26k3B1ccTqhahXCQ1bZCThHrr8pKZrYXx5ildR5wjiSNELql0xhi6cD+GWV6637Lq5ciLAtdTOAs5lmrgUQs9kszueJK7bbhrZWv+3JMzxzY6j7ulbgghOHZwmOfnBNZYpCqzmFLpeLEuqRUeFS1xYYFxPr4dbFGtxjkFosxbs9IhLHi5oJZovAL6viUPFAwNw+oC8avfA/cAvlfq2tbDgAUCJ1xZjAtJ4CJadplCSjId8Ph8k6AQ9KqQOcNSFrG/Noxs+theWp5cuKmwF4A3mLwCuXUw6Og75zCFpQYwXuOMhFpQahY9LZFSkGZmw4I+NgWXliKG6j5JZpkYDVkovkpme9TcGMZECK2QTqHyEWJvmbVDLzLrDuMMyCjn4w8dxN/fLHOA0nijQTJDn8fFOV5Ip1h2Hl1haeYCWdE0GyFhoPByyWK/TyWHiyMpVhb4eQ0fSV54ZEKS4ehoQdVonIyQQR8nDcYqYs+RSYFzIBFoUU5nU7dKYfvM1g5ubHLc0jzDgymd7hqK+ijWC5GyfG82JiCHh+m80qZ6Nmfk3ENcvucZsnC11IqZku6XhBGuCKgvHKOH5Ll0kvvd21SKUSpr0+RimHvP1DkmHXMjfdr3FRg/RYtrGxNxnmAKSUXXrikOb0ZHyrJyuu2HOUYabLb99sFZDSIiyXsYmiVDef3aXJ/xOYFwjiORw3MCGwjE8BQEVZb6K8ShYSTVHL8g+c6ovWZC0NBLPN/+jzsqENabfQtLfbq9DCkF7ZVr6bJVbVnuapaqs4wF20wBbrDeW2tof+dZ0qRC0JhgVMXlI2NT027q7DN84tF/v0EJ3UkTNDNbHW+FENS9CTrZhUEgrsY5S25iErq7ppnfCDdrvG0ugvK53q6o9jvVOC9ffuOmE951TVzTP7Cj6dL/cuyxjSamDAz1/hC1/hDdxhJhVEc4hZMFCIMFct8g8jqW0Vtu6l4P7wSrZzM2NwtGqy1Gioy2qeFlXcTSHG50BhHW3pNSlfcydlWI/cmf/Alf+MIX6Ha7W77earX4/d//fT73uc/t6cG9jzuHf05xLuyNUHTbjbW8/sZ61xjY3HK9xXeH4vL1c12LU0KbIBwUAuRgmuEsLHVjPE9S1d6GtutmuNMZZVfj6k3B1ajqKp50xOkaNW9iR4Xx5ildWvTotFOeWW1z4ZAmbpWVisQijiXYJUWxqDCZQKlSG7fbSe52+XOeVByoD/PkVbSn3Qrs2/Epzud/QaXVJUuGyBKBISWoLKIOPM2F6CFGZI1adRWTDGOcRDiQKORgY+pbST1SCGPxjAAhKZRFOYln9UYDIOjOoxsfQIcehXEYo5GuGLznEidKauOUOctQnjFfH2Io3MdwrIiDUhennSQ1Bakp8Nc/q0EeGFc1QYUSYBxV44hySyFAI2g4QdgKMPdNYN5a3Hiv0rSglhgauSWX0NHlVjxNCxZyw1Aj4OjRnDfTcpMlncQMiruyqBT4pkE/aJM3lqitjeF8hax4122QzOg1ptUaS0qRmRBP3I9CIQU466g4xUQesKpy8rBJvfDwTIEuPJyDXDh6SpBL6CqDFprzooETCvyMYhDLAJQRCnIrFcxefAP31J9AEiFqTU6ESzyVDDOXV3GrSan/k6LsdNd8Hjo+gZSS2iMzJEsR48vTiNc+QXv/c+T1FZwfYa0mj6fQC0fR3SEqIqHr6qhkkmr/II6AtbpPHDiUgdnFCZKlYdb0IkPVfZvuQUeaGaJsmTwex8WjoM0Gtfd61/RmrOucXBHirAJZgPWvSELXrxVZgFMURYh0Djs4BolAIDesNhuFo2kcmRI0RifB5WT9Di6N0don8QTNDjTaku643TQh6PDi4jd2VCDMt6ONZp9WEjFYd7elywpD5ASpDCFbBGOuTMSEuO56P7cwyCFb3YdRh1CxY0TFnPAvMaPXtjTtZmSXmccP77gJup3jra/qtPx99PIFchvjsBiXMRLetSua+c1w88ZbWQQtnn8N+Q/5TSmGm7GucS58iU0MUpbP/o3+z0DjnKVrO45e2el06VLcZXzQxLS9HOk8Dp67h1ePfY+kEuFnIYgEKy2Fl+MVkm5ymOmR1q6aujuRXNxJVs/VtN2mN4vbxPARQnBCXeYfkoN0RIuq6aE7SxQqIIrND26O3LsQOy7EnnvuOX7mZ36Gn/zJn+SXfumXOH78OM45XnnlFb74xS/yUz/1Uxw/fpwTJ07cyeN9Hz8g2Cuh6G421rtGUCs5/kVWdjavRpGV3w9uPIVcP9dYpDjpsKI0PSgG54osjQ4Woz77w+YWbdfNcKcyyrb9Wze1wc+pezX8tL6rwnhjShdAp1jgfGuO0dBnszeHEKDGDIwUrHZSPj49y5GRsVua5N4o3HUzdiOw39w9HgpnEBXoxAmXowyhmqBXGFKv0k6PElSfR1WWcZlPM87QJiNyBU5CLZL4GaUgS0ocliRwDGd1WungPtA+o3aRkQosxJZGzaPnDCZ3GyYPEseYWOXB7BSFX+Gtux6g5XyUATOQLUkEhbMUzuJbecVkpbClYcTgv21hMUChoO9JPOOoCIEfKmrTDWqPzNCpatTZNrmYo2H6jLctwyvDaAQG6CjB61VNJyx1GLWKR6tZYBfKTZbwBcJTuKwodTkClNVkqiCTMZVNVFt34Xw5DVO6PF8/3CjIhIAxPwc9T3HiI8QX9JYmhRyvcqmXcmhe8PbwML1WG2wLacvct1YBHQ220ieNJom6BxmOXob6EqYo3R+Vk4S+xtOCXlFSwRrtGPe3/w/0u+XmPYvA1xDcXVJGncNZA1Lj3NbryJ9tMvpDR+Cb5xidF7QWJ4maS3TDjMtBA2r7CYMc/EVUGiFthWo0Tb/WIwsuAlX8Yh+ZFxBJweS5B7nU+BY97xKhHqbIJd2oT247mCKke/Ehil6KUhmBr7dMhm5ERxobqjAyVOHy4hiyOYYML2HS0mHuChzS61NEU7hkDCWygctlSUfcqPcdKCuRGJwCb+Ui5AnaWoacpicVmVAEBuR5TdEDNZHj1zQZl+jlczS8GxcIq+l5Tr5mNpp9WWGRA+dVrQSFcXR6GcE6XdYpFJZg+TwU7U1uQCG0xkCqa9b7DVZHP6PqMrQ05EguFXUWzV18MLjIPXqRZTFEajwqS13GxmZ33ARt+ds73vqqzpCo0s0v0vAmeXjipxkKDtzSJOx6BcPNGm9a+KR2lbXT52gk4zeNUdn8WS1GGUmSk8Q5hSynpZ4nadUDwkBtTNWCoIZMdxa9sprsfLo0OztB48nD9J+bozizRrO9j2PW4+2DL9BvLg1cbgXNriZcnuSlQ/fwE7to6u5UcnGnWD3b0nbdCEeyFcZqYxvr5Yxe4/HwbV7Iplh2FaIcdJwyOdr8wc2Rexdix4XY7/7u7/LZz36WP/zDP9zy9UceeYQ//uM/Jooifvu3f5s/+IM/2OtjfB8/gLhdO9/N2OnGetcYm9lqabz59ZyDfmdHlsZpakiLgswVFIGk6zuGU0fPc5teU5DlBVmRUJlubdF23Qx7nVF2PVxvUwBXbPDHK4e5b+yT/P386VsqjG/WIcxdgao6Dkw1Ga/d+kT3euGum88HB2Gg6aylWzQl69/fTN3oZOeu6R4HvkZkA7c+alR1l7lYcT56iIngDSp6jW7dUc8lo6uaJLDk2qGsQBVgZFmE+S7kyOrMFSpZkSGUZt94hbffiMjzgbxcaCQ5mpyGi/ioeJV2Y4SXD9zD8vAEzW7pwqgMGA2WMgBeC1kGPylZ6p98BcZuGHGkzpEqgZKSCweaFNZRRAUyVHzww7MMTzYgeo3wwH/BuEukNqc9pOj0Rxg6/xD1lWlGCsej/YJzwyHdqkecFESR3lLYq1ZA0S7KYkwJCs8grUKtyg2qLfNv4r7zt+W9F3XKzfFgo+zCKp0gIrcRXr1geLaJ/9D+LU0KORIy+UcnUbljeP4R4trTZJVVVFpB5eWbEwYRtoB8/h4CZ7CX78VWv4cfrEFRRyGp1Sy9YqGkgpn74ev/bzkt0R6oki72grgLZwwzaoVCaoxzqOYkXhjS6eVbJv7+bJOpf3Mf7TeX+ca3z+G8JlmDy6c0AAAgAElEQVTdw/f1us9o6TbYnqdeu8SpQy8RNVawyqCMpNpv0lh4GBnvR8ZTHHnzSRYfPc1yOk8/iTBGkfcniRYepujvK1/LOJKsoOhYRlo+fm2JqFhjdGyI0da1JiNCCB4+PsHT303pLX4If/qrqGAVm9dg4JoovT7OhKTtR0BIlBAoWxb2BQrlLA6HcZJMlOPXWt6lyGOk9khVla6t4JwgtDlOaDIPXCQx5wPMTI9abRnrolIHeMWOdQPrU5KF1SUuL2ukB6ktCLTG04osN2gtURLywpAXFk9LosQwXiwzmsyV15QauJlmcUlJ9EOYPbqx3m9mdbRqGhFZEufRpULmFMZJvh7fxTfFAZQzCGHRr2aMLJzZcVjuzRxvK3qIB8Y/x3B46KavtRnrroLnL69x4WyfuGeuKRiqrZvnTwqrEMtiRzEq68+ouYUeT59uc48UtHILWuKALDMsrcaMtkJ0XOBN1mlOHqF5aWfRK/2iu6vp0noTM3/FYb7zFM18jam5Yc4vaTJSGlGOzqq8eN9j/MTdj+y4qbsbycWdYPVcV9eXnOOFfT1OLNYZS698nhtMgiIk7fep3PsjjN1z+P1J2DuIHRdizz77LL/3e7933e//7M/+LD/3cz+3Jwf1Pn7wcTt2vtvhZhvrW8F6yKl9+s9hdWGrALvfgbCGfOhTN+1ClufgaCaOmpTM1aCWO+o5JNpRAJ4DPwXTlNtqu94N2KkN/nhlkruaE7dUGN+JDuFu89o2dzPTzBAlOXFaMNQIqFW9bQX223WPQ1UGrCcmx5caJaCiLf3ODMsrx6iqNTydkashPNPgsHuahZE36VVSXFDgG8Nw1uRI9wBjcXP9ZKDfYW7kA7xyyeCpklpWWIezjsL5SOVz/11DHLj7A3xp8W3O91cZc45uQ7BWcwx1oSehcJaK9giUHmSqCZwSqMkqogBnLMu9lCQ31J0gqmiSqgdC4Oo+S2sZz59q4zUucrL9H/FqXfwlH52H5Kogbi6Q3vMM7tQnMKszNB3sX0l5vRkQpwZdTG04Z9ZTH9FbRTswtoI1iszr0exNMdQ4RO3hWTyxUN6Lcb/cFOcZCAlZzGJxltOTjm4lw7gMpQKaxX/mWPJjjI9foWrl7T4jFlY9SbAyw/TpJ1icPUlcXaTwDcooWqujHLhkSOPzvOQ3aWdHYa7J8OT38asrhEGGUAEj/mGODv0wI19/BtKoPBZV0keX5CjLapiqjZA4fF+WlujSIqTcduIvhGD87hG8uQ4LSxFDm2iDDodbXSSpr1A9+E16IsPPAmQaYpWh11ghrj5L/dzjDEcHGO3s55D8BH914fusdlco0oA8HtvQEq4nSjjroPY22fBJbGWJYMTgwirfvPSdbU0v1s2ennvV5/wFQzD+PXRlCWQEVlFEU8QLj5D39uEpyb6JKrOLL3C6GGNBDJO7ci30XEHVtqli8E2FVEmEtfREiEWiKAispOvldEMNOLSeo66/RyVok5seK7aPJ6tbsrSgLBAKK3j6wgW6yQRGF8hMEChNs1KhMOVzR4rydkqygn4vJ0hWOGFPI7QPtgChy89UKsjT8t8PPoldvMjS6gLzqeLysqRW8RGeJFFVlosAK+RG7HhOWZApVzCqM1Ql2HVY7jWOt3YVg8RX0+xrfJrR8NhNX2Mz1l0FF9oRer6GMKL0rahUqKhw4/g+8ejsTRtvQ8xSWxtFtLZ/Bm6OUVn/vZOvLZBklqXpOo2La4SZJdUCKx2usCRLEc2RKtWHp5FSXeeZk5Kki/gEHA0eAW7t2SGEwL/vXtywhz35FHp5nuM9n1wEJEPjZPc/zn9/10M7LoRuRXKxl6yeDWaG6aHlKKl1KGEIVUBdjdPzupwevsjopdYWjagQMOZWQUXI0ea7cv/xg4wdF2Jzc3McO3b9G/7YsWNcvHhxTw7qffzgY53msls731vBrdrjA4iZI9eEnKI0TB4si7AdWNc3+zkfXs7QPVAYjIBUQSEhMBDaclKx1LI0P7azHLF3Elvfv/08PP5TvL76lRva4N9qYbzXHcL0Qoel757DLSdI69Dawxu9VkS+fo4XL/d48fU2RWGpVz1qVY8wUqz2Ula6CUlmCH11jTZte9qmYCysMR91yQcP11E7Rm15HFuAJWQ0bOALj0v9jPPFDxOmDhUuIGWfZtRjf6/NWM2CthsNABfUeDG4nyS2jA2XfysvLMY6pIB+XHAxq/Hg2D4+GYTlexn3adgKr49LTvSg0neIQDJaqeJyUxq8NMspiOvmiJpHIQVF4ag5gdGSS+PVTRTAdfpwn+8v/Dcy16MlJ8htn1w4pJGIyKOodlg98ALN/j4KJ6gkBr+fo6QgDD2O9R7g5OoL9FxMmAuUBbyINJAEueaetkfrIxox8/+z955Plp33nd/neZ6Tb+h7b4fp7gkYDAaZIACCETLFJIu0FbdqiyqVy3atvC9d9jv/D37ld361Lpe9dtlSybWrtaUVueKKICkGECQSEQYEMJjYOdx40hP84tzO3YPumQZIUfPFiykMMNPnnnPuOb/wDXXs3/xflb6hfaZqfNZugzWstg2vXu5RBBDlPpGIsPWpw53dMo0nBK12THdYIDbPcnZjjmFtGR2keC5kZqPF1Qc3WXkIVpM6G70Bs8Ecv/vQ1wlqa5R2x3GU1dvY9QWIm9UxOQtCkYsAIxSeMFW1b0117uRB+/7d2Nk67Y0YKdOUkZaEF1/H90dEvXa1vcShjIdM62TxgOHs6zx07REEkmtrIxZu1XGuhnVsU3233DkBVO0m9fN/j/QylJigldTxfXukNTjsmD29+f4EP339ErlcIGou4ymJn89i7ST1huLTT83yxKVJWKjz1D/8W1aX1lkUbayAFl1qckidmBGfwbMJhTAUThLi8K2ilJaFMMU3Pra+RGPmBaTKqYkOKEdpRxRmRNftZGlVBfcqa3mdhcyjLiCxIG1JqUtWPcNUvU6eOopSY41DdzeYMSs8PXiZebcKKgBU1Yw5XZ2sMAHlMfrhvyHtreJ0iZVnKMLPk5cejUaboWpiTYlyGoTEjltez2mckPS9BjO+R+CpE4flbmlpf7H+Gj9ducJqqhmaJi+trTC7/MMPDf7d0gtd7d3i729fp1sk1NbaOAOFKnAORqOCxEuZiRtkqeHVK6t85tPf4OWVf33k4O2h8D9Feu7YMSq7JQlDX3FlLmZ6eUAjr6jBFlgKBMMn6kyOn88HGtFyGZmmtPuKywsRnfQ72M6byGe/dtfvDjF/GTl3aTv/LQxrhFPzJ6Z63q3k4rRYPd3iBqvpNXqlIDebOBwCsW1YErmEnj+kGwxpFbuGACdg+NzH6ePYjdhoNCKKDufeAoRhSJZlp3JQ9/Gbj6MKjtPONLsXe/ztY933kN4K6TzOQ7q41WPwwgdMGcGKgpEDX0BSVq7ptxNBPxDcnB2QXEx4/qG5e/q8p40jw08f/TNqcxunHvAJpzchvPrOddLvXUfmhkFgsUqQWI/2Yon5br4tIt/9GbuDHG0ccaiw1kMKQb0WkCQ+692MVj3ktz9zbtslcQtH0TYTL2Q2brCe9xnpNoPb0ygtCGPBVFyn5gVkuaYoDaWxCKGYiS9htGWdET8Ienwxe5V5u1INAGYu8N75z7DwHkQhldU87NkqCyG2X/YPtaf56sTj/OiN2+RDy4IFnTgeTx1zziMcOZxntg1egB33s0zjGcuo5rM4HdFvreNkirAxQs/geZLULTMob1EL2zCuWYPQoygM1jn8okZZW8MkK9jRNGJMa5w812RydAv3/R/xtPZ593xBr2HJhENZQ6crudybY6qb4179+4oavNugI6rB5Dyuu8K755YpfEdtKBBxhGidQUY16s4dsLfeyt8LpGCmk1CUBmthwp1jJR8gtaXwFLc7LVYSTb8YkdQDfufSw5xp1oG9zwy3ZejTmIBhVNHYhCR0BQqDFj6BLaptWFyHoGp277TxPzRixBg68TVEbWns6GixVuHEViMnCPOIsraJViuoiQd5bXlAZXIpsGYrfVtsRxyAoz73Ml6QY/MOrU6NeKwVO8wafDeEEDz50BQyvsEvll+kFEtYoRHOozV1hidnfo/H56eqczR3CZE0aAeL5CwhaGPkJKWJEOIGkXwJeJzSTpMgEMIx8i3X44yhLLGmIGm/jPJyyDsk9TrS8yrnQDTGlgyKJRqhItObDLVkNX+Yx90Ak2uGpkbdVaYZuVSkNcNMe4b19SETZoUv6leZUinCrVWNsimrDLGJ6YoBIRVojV29Tlnm9KIY4jrKQGhL1GDEunFgayjPQxiHdQ7rKp2llNWmtLSVSUjoq2NpoPcPELtywN/cWGakE5pBzKSvjhX8u1svtJ51afvQdJP0eY6U6lklREVXHJmCxVGP6bDB2mYK+YN3zJ+cih6h27ly7BiV3ZKEoS5YEEPemHJMaUnoBDmOdQdueI2419z+PFuN6ObNH5K//tf4o4QJMY3wQgh3cj0vfelP7vrdIYT8UPfjD8O9SC5Og9VztXeLzWJAYWt4QiDGmZuZKVkY9ZhP2pg0pUxXKn76XTB87uP0cSLXxG9961tMTBxOCdrc3DyVA7qPfzr4qDPN7tUefzfu5iG9OyslmoppppK1XoooqwVH3UJ94OhFmjMrAXMPXTjV0MZ7xR3DT392a3z+7s4K/8Owf0KYKB8HpKbk1nDzQ6eF73WXWfrx+7RzGCQCKSpK1MCWpMowPwL18gKrnuCFn90kyw2+X720PCUoSrvHVU0KQbMWkOZ6XLgcNBw5irZp2WQmnqYlf5/XXEI0oaiF4XZB3B0UVdOiBMZatLaEvsJv19ns+7xW/xpnH/O4aUq+nXZZXl3Hz2pgLWHpMRnV97hq7X7Z314e8O5bAxplQqdRWdsLJ3gzsywh+PTlaabnGnvomt5cndWrG3SXh7x+bR0zs4RsvYj1V6g4ix6i6ODWPoWU4ISuKJmqCpXGOXwpsKXFGUXua3w7IkkNpQAZKZ5+dAr3UqWrmkp9Jgcdug1H6Vn8UjDRtYggr+zp125XOk2jcSrA5FHVJMuIwTlHr7VKVEYI5RATM1WTxk6kwuboOqvX36KVXER2ImRS6VbkREgwNmqIUXhKkK6PWKqXvO8N8fUxCrhdhj5FvYVczxBlRkut0vG6rIg2vssRSkFzsrJwP2Tjv58+Ozdd48zURd5eXKGX5rTzPhNX3uRnlEhTq86183DOA2ErY3jrU5Chk5Ly4Q6Dt5ZQcmy6wu7kbUertHjRCjJcRegGcuwCuXM/77UGPyzyYtsltDmgTgthfZwsMaxwo/xLptKk2qaNXS5T/wL0Z1GmjuckYBjZBwi8KyT8gJXa47zlPoGnHDa04MCzHlOtApH0wLSwUiGlOOAcWNghmd4k8s6x0JvmwiDkt375M7qmyYvBp+nJCSKXEpoC0e+xbmMSPeDz5g2mW1GVJdITO+6IuoBRH2YuVB92/SrWWTbCCOFHICARKYkb0bcN4jylL2M83wPPw2mN09UWUoTVd9Npi7XuwHf0MNxa6vHKq9dZ7xcYJ5BBwKYckDctU53jB//u1gtJ6mRFHaUtvlyjfe77qOtfIhvNY3wNqgpx186wWY5ouhp5bjjXvnP+5EliVLYkCaW2rOUDjLUEnkdvXIk6I1BG0Kc49PM0X3sDViW0zu+sdfflel76z/4lDz76/Olrxo+B05ZcnATWOX6+toJ0gkA62DLJEYJACAprWHWGyVoHv3kOFvt3xfC5j9PHiRqxDwtzvs8rvY+T4qPKNDsNe/x7xf6slFYS4VuHXcsAR6kc0gmUr3ggD4h+ukFRa92RmrjfkvY0N1F7f869n78tQfjdvgy3JoTv9Vb425tvsjjqUVqDLxWzSfNIOo51jpeuvMMTQyhCyZbHhkQQSEVhDRuqIFgd8tbLt8lyTZRIslzjXFUk4dwBV7UPK54OUGj2TY/z7jxvimskQbDNzi+1pdQGJQVi/ALfKtbE2F1wPTW8SoNvb74xDiqtIZTEOUh1ycKoy1wysd2MbYcFB5Kf/mJpfA13HM0ckKmChUHJD1c3+Wef2Nk8794OamMp4hvEE3+H8nKkaSBsDCbFeTcw7VVqS5cIhn2Mi/DiduV8mGmwDgmUnkZYhSxCPOOQnuDTD08zK7qsrA3Ig3OE+RKTYkhruOveUAbKrKL6mUpfUppJ0sUH0LpWuUoKR29GoM++Q+QUyHEA79Z9kGlct0TLIRvvvgPdKuMIV/03OyoRoUJNRJVD29ARTTRIPjfJv1DrJLpksjWDbEweer2dszhnSf2AYu0Wt8KYKAzp5ClhmfOkfY0fJZ+j67VJWm38MKEszUF94a3egQymtCF5cbbPW1EPyRqBKPmSSnBlSK4DPOPvuC86CTiMr1EqoPXsZfKgavACX1KUdlsXNlUYHh4ZmtoyUgOuU6JGYBJB4O99juy2Bj/ss29nTPmzu54BAc4le7Zp5EPKrE4xuoxnJE7mOGnBSYztkOvniORL1OUtCu8CXdGhRY4wGhkmhImmFAatFWGgto8zUHXaskZpR4z0Kk90/piSx/n+0k959uYrhGVBmGQ8yZu87x6kLxpkKsY3JdPFIp8y7zJfMyD8ypzDH280vaAqTssMiupZbfMRmfKwQbRN8RQCLnGVN8QTZDYAYTG2CrC3rkpNU14Vsm5t5Rgpx3/4TgX5rTff5oWXF8m1I3EZShhKMUJ5joluggtjRH3HevOo4N/9OWCbaYbIPKq23cf3eyRnXqZ4bx5Z+JRBlQ8nhaQoDc6328d3p/zJO8WoxM/M0k088sU+YaiYnIjotGJur/bJncaTO5/fOUALRGKpNdTBIOMT5HrK6XOnrhk/Dj5OycV+LIy6LIx85qIOHmtYdjuaCpQQGNvHTx6l/bX/HrG2eGKGz318NDh2I2at/SiP4z7+CeOjyDQ7LXv8e8FWVoqsVZlXzjmCgcEKiQvGA2rjmK7VkZE60up3C4da0gZnDxXV3yvu9fxtCcKP2zwdhfd6K/zl+y+PG5CYpow+lI6zMOrS748IXMRQAUbsbAOkw5OS1GryvKS7MaAXalaHuprGOg9dWgJva3JbuaoFvjrWNHN3Ltr+ZnklGx2YlhrrKpdsWRkn7C7WoGoKh6nmJwvXGMkqqBQEOrYwkviBoLSatWxAUu/Arpe9QBy4hkNdsJYNyI3GWuitpPyrV37M71x+mDiL92xABRbXehFURj5qIYUltDngYUwbGXVpTL5P3IdNd5s6AWoipExLcA4nQEcj6r0zTIymkb7Aj3zMlVX+/c2SNfs0RnioOKdjuzxtf8m8XR3fZLLS55R5ResSZxikT+IKi/Q1SAdOIodNKEO0LfGDaDtmwma6cmsjQwYevqxhhiVoW8l/agEyN7jcUC4PsTUPcSahc1HSvvLXVcFnNCgP25lDPvu1PdPireDmfOUG2bBLUmY8WGSsRQkLSZOkLGjodZ40r/LLM79LagPSQXFg41/c6lV5RrsymEZZznChx1x+m/Tx17DhJspobsxJUJrS65L0W1UmF1X+nFUj8gmYaT3B1NxjrG5meEriKYk2Bc4J2pnhmX5J4CCTUOgIYT2ULIlzr8pzirzxViSjMCOcc/jyYNF43IypKmg3Ic0uIqwHali5dSJAWoxKETqmsI+CfpVH/Q94mwZd7ZEI8BoddN7FlZJAlDTDaN/PgtJaHBGaaWpeyHw6pDXYZBhWsQYdNmizQZ8GufMJGfF41sUHaMzt/EUTU1Uhr4uKjmjHjonpEIRgPToYgt0RGzwp3uC6Oc81dR6tHajq+209hxnTFI11BL4i8NUdC3J765e8/NI75LbBhMxxE6vo6V9AtEFbGjQhWnfIeRLDHDhHZ7CJX+QsO8Ow3JGH7L1GkI1M9RAUVay20Ql+vI6KVzHpNKr0MKFBInBakHS8YzcMh8WorFjLP1xZOUBrP3+mzvLmAIYSEYhqjmCpmjBVxRQo5dEv9wUZn1Ku50eJj0tycRiqcGhL7j6JL3+IdF0sCVWZr/HFiMIGdOIvIqV3zzTM+zg9nGgjdh/38Y8Fp2mPf7fY0qNsCZldYXGlQShZhTlbVwnuxyGvh1n9buFIS9o7iOrvBfdy/u6meToM1jn+/vY7jHTVgByXjjPUBUOlsQjUUKDZ24iJ0CGsJseyUZZkvsZTCuFVRYEzjlxrAqXAiXGzdPxp5lHT48OmpUpu6TOqqflWsbYFrS1OWNb0gGZ9Z1OsZkrMjRBXCDwlybVmkOfonO2XfV7svYZDXbAw6mKsxZMK5QlcLljqb/KX773MxfVzZLml1QgYmZJVc5V2tIo1VVOHqyzIAQJhqBtBXusx1ZukZ5bpZ9eJkgsgHUaVFMEQr4w4f/0ZvMhHNUMKYxks9BlNBoRC44kSjWVFdvi+/BRf1D+vmjE3HvzlKW7uIUbvG5zfQNplhDFjRztHI42o9VsMJlbwG5NshZ+ZboazhjIZ0cjmSJaaWGvRwiE06EFBN5QI3xFby5qX81bjHb7x8zdoOUfQmNyhqI31J/JLf4KYv1w1YS/8OWQj1oDNKKGuJNNZykw2JNElqRfwfqPFD2enqF8o+KMzT1IUezf+u6nLWxlMzsGaTdmYvkXvgR8RkTGkRm2YoKwh93KMXzCq94hHTYSRFEFOFueMCHnA/yxCyD33WqcZ0hsUPLJRELjKMRMhCEdTRNkUeWOZIA0x3QztOwblCtpmlQuoDHlz/a8ODHuOlTE13qZpzqPdBJIRgVJkRlfNmAMrJVZkWNp4tsnjeolpT/Jq9Dgb/hRhX/DgzYhVv82osYzY8CgHJWoiIvMMq9kAazdIbYdfvH+dM/EmLRzCaEy4MyASApquT+EMia/w8/Fv7s6IHOsO6a5WDZizlbZv6ix2XWKl2DY/2I0zdoWz5hYLszFRfh5cFdhtjGV9M6MoLUoJmjX/0I3oFpyzrLz0Q9btWRLP4OorlOd/DCqHIkYUEqksXriCxw+J+o/z1PtrtIddpDGUQjCxuYH7zDcQ85f3XKOitBjjkBLMeJVqnUJJjfLyKtPSCjzjIYzEeY7HLx9ssu+E3TEqt5cH25Tv/bT23iDn0sUmK+/3cIWH0BV9ViQWNVMi65bMHBJkfEq5nh81PmrJxVHYin5JzQyS3yKSr6PEBpACisJOsl4+xpnksY/k59/H3eN+I3Yfv5H4VXK1t+BNJXideFvIjLXbGaEOhzMWGXrbblP7rX63sJ9isq3lEdGHiurvFnd7/u62eToMC6Mui6MezeAgVfUoOg5UL6Sh9NlE0inHeW1bWyYjcCOoI1lplqwHHr7wtpkuInS4TOAslM7iK4U1ls2+uedp5mHTUqWqZiwvLZ4STNR3aItbzV/S9Cj8gobcKTBEzSKnS+yaB4UCZ8mlYX6ysf2yX9nY2cD5vmItG2syxhk7zlSLp1YSsTFMWVgfMNdoVvbr2QCCFCEtVnsIaVHGUmOIQiNVQR6WlMpwbWIZZQXWatJiFReDEh7N9CwXlp6jFVxA1Kv7pLs2xDOOdhLQH3lQpASeh1/26YoGr8qHmdPLiK2tRK2JvfifkP94iI0iZDyHP1xDlBk4jRSCB24/yZXGSwzoEVkPVUpKk1LEQwIbc2Hp09jCjjcnVeOrxk6GOWCFpJl5fOHGEjJPuRE3mBOCRMoD+hMxexH38ncgG5HV2/SHGzgBgzBm4EecyYasRQl//cDjLCR1CudoDzcow4Jznb1Uqf3UZYDcaDJT0p//BWWQEQ0nMAh8DSBJ+lOk9TUAsnhIGY6w0iCcxDfwyuq/Yy5pMVt7fPtey3LD2UDRAcpAoqhov61mSKv/Bd6pf5s07iKNR571saKi6EoRUPNm9gx7tra9g3Kx2pzZHF8dHEzsDtoltxDWIR+htCZSksI5nLV41mCUpPAbeJ/+Q6K5hHNhjbOTc6y+s4b50U2EVEx0P8+Vxt+RRpsEeYJeLVhLMow3BBFjxTPEXsDN4SZnnMNIhdUFzg8qXR4OPaYNTqoAQllR2bqrezMioxoEMazfhtYM4kvfhMl5vH//v9C6eYVlIavvz86XlDjPuFVrEl9q8fXOJV7dtQVKYg9j2f6OK+OOLshXb5N3uxh5EUWGnnmjasLyJhKBxSKNQGdN/GSdTvkiU70WoyAm9QLqQhCvL2wPDYLJHSdXa6sg8WAcp+GcA1VincTYip4hEQinKOOS9lnFUxdm7+o5dxxa+2DT0HpEsLC+SUsl1VwltmOJ6RExJaeU6/lx4KSSi3ul8cNe+/4gmkXbWRTrCHKsC1jKQi7UOycOh76Pjx73G7H7+I3Er5KrvQUhxB4hsxhrG5xx4KpNmGqG2++T/Va/WzgJDegoHv9Jcbfn726bp8NQUS0MTXm4W2sgPfp2H30FmI2b1HtNriSG57Sjrsd5baJ64EUaCk/x6tkhctiATIxztADPISJwY3mScxbjLzI55Xjs4lnmpu+Nxrp/WmqKglBanAI/qIwIrHN7qCyPX27x7tpOUKkdSMyyj0sl2HFT71sef6TN80+c3z7vu69hJAy52dFk7NZjiNhRK0O0sVhhyI0lN5rAxWAVQmjE+FWhhEV4OaO4qLa5TpCUEdJBJlMkHnOLz9DOH6BpZyv63DgbOC8MtrCgBMZTO1QwqxFeQGJy1uUEazpiigLmLrH4+O/x7vuOs4OckVe5gPn+FBM1CJUDqWh5IQ9fnWDxU+8wsMtkJscpQzOf48LaZ6mtn0GbUTUEqTxbKiqUczgJ2grioipCte+hTMFaNiTxgqrY260/effVbZ2KodqUbkcKS8lGGFMry/H2VYLWlFYfuEfhIHUZqmy3PF6jjDdQRQ3pBNKCcIx/FSSjJlncx0qNEw7ceFMjczw+4D/c+J94aurPeGbm89v3mr3dQxiH8SVxoGjWQ6JQQXaBRxd/lw86P2G19i4OjcAnVDG1cT6XG7tPvr76FwSyTr+8jbUlmemS6kvI53kAACAASURBVA0mgvOEXmPnc+0L2tVRiogiiGZhtI4qM2LnsEJgoxrEbeoipnXxEcQWE8A5gl+uU1qHmowJ9UUeW/pdrndeZDDOEYu0pO+dIbdPYZkjVDAV1Vhyjm69xZnBJivKG9v1C2LPZzJIiMcFu3j6K7jv/cXhGZG1FvL5P0ZMV2Yd7tmvEW0sMjnYoOeH4Pn4xhAXKUPl8/qFR/ny2Uc512xwdqa+pwCfnIhY62YfXpDnQ0KboZRDx5sQbUKZ4KgCj52Q25viOIM0Lrjd8QlGEiUkE0mz+gzjoUHzG3+27eQaiKnqVkYQKZ/clEhvRJ7OMLQNvFAjnCKd6RN0HL/z0LN3bW5xHFr7+mbGZx68yLeLN1jXvcpqHo/cHG01f1q5nh8Xjiu5OC0a/+HRL517Coe+j48H9xux+/iNxN1wtT8KI4zdQuZybVQVdcZWwcITETIebycOsfrdwkloQKeFu+W6323zdBi2qBZbDch+FPYQ+gqw3s1IdMRqfchPfXi8BxMFRA60gPUQrk+ELEYDWvUSe1PhCoHzXGU0JRzCE8jaDc5eeosg3EBKw3u5z8rCvWvy5mfqzJYLrLz0EvmoS2gzChHyqniMjeE0IxXsobLMTtf4aVpNOju6gb0Z4gzgOfBBa0NofK59MOTB6eH2pH33NewNcqyloiMa9ugxhADflxTCkZcGz5OV/XYxjS4m8aIlnJlA4JDOkIcaJywSiW89fKsQ1lIrA4Z1R3dqgbOvPQMtwW4WlzWOQFvSuk8aeQjh47aoYGWOJy0jfPIzlxFPPcnC5Cf43s9u4Q0KzkpBICRGQlEY1rRgshUThQpXGNr5BR5ofpXRxDqjtTXyV1YIs2l6uWEty2m4qmEd1FYxfo5fBJhsCmElvnMYJ3jDf4pQzPJk+iatdIVCKoLaeHq8pT8ZbmzrVJQ1lYPmjm8CpVQ0XE6sdbV1EAJfegfuUThIXQbwhMR5BVYaPKtwAqxkfO6rkymMogjTseGFQBmvasakw8gSXI+fL//f1P0HuTxzhrnpGivvr2P+/ir1UBEkwZ5lQju9gFjw6F9cwA/rBGFtrAsT2/eRwmc1vUKomtT9GZQKkCKgV95ko7hK050j9loHwt2FkLuYARY5fR5R5mANUiqEHyK6Of6ZZM9z77BtYTu9QOvWOda8RZayFeI84o3LbXRzr9tjI4z4yfyD/Mmtq1wsRpRRHemFRM7uLdjnL+OOmREp5i+TfPW/QL/4NzRXb+DSAaWQLNRbXHvokzz/5Be3i+bDCvBj6ZDDGpNyREcMWFWWQBp0EeDGdOCq4XdI4UiKnDSB0jNMeD6TYY3EH088xkMDsbbIw61v8OLS/8rALiK9GFMqPN8Q+wOMqdHb/BS+8JBOYmPN3HzCV86erAHYj+PS2qf95omt5u8119M5e1cxNB8FrHO8uHyVv73xFoUt6YQ1msHd0fi3cJrh0Pfx8eF+I3Yfv7E4CVf7ozTC2C1kLm52SV9drLZiqtKJHWX1u/3nDw0L3sEeGtAp4iTnb6uJLc0SNdWltCGh8g/8nUc1T4dhN9ViKqqxfyt3KH2FqhDwUMzWm6z7Q34QlTSLKjgb30M1amSpxXceOi6YnByQrSUUZYgWCgR4nes05r6LiiSJP3mqmjx3+13c9/6CqWy0a6qbMzf8Hmt2huKZrxPNX9gzOf/K/CP85bs/x900yFwjA0shVUW38iRTcUKemgNOllvX8Ie/uElvJcXlAiH36jEAyqDAhYqycIS+QAqBdTDaeIbGzAuIoIcqPJRL0bIS/UsnqBWVDT9GI8KYKJxi1Npg1N6gttFBJn7VkBQGmWq0EtxqR9u0IhHVcFECRY4uSjwrib/0OUQ74ZXvX63oTZMR2aAgGWnyQCLGA4HeICfw4+0Bhj9dpyUaTMxdYFG+wWijR6EqKuJm+zbLF19l2FjHSVM5OQ47tK89Q3N9jg1P0FUOIaf4kfo8z49+zLmNxarIi2o7+pNae1unEvkhsfLp2yozTQrwrUELRep5lMYgpdi+R/db1KvJeA91WYgqeDWySbWJxKA9SRY4JpyFcUFeBilWaYSVeHrne+ScAOsjlCZgme8t/IhLzT9CCsH0pQ6bb66QL/TJpEQqQeCrbSpYWQ4QUpFEHYTYT0V2pHoT50wVyzAesiR+ByV8uuUNhnoZ43KUDA6Eu+9mBtju2OI8DKvnXjc/9Ll32LaQ6q4jSqfwBx713CPQBzWqgfT4oNFm5bOPce6XP8dfX6jcDw8p2PdnRLogYc3rkBeWcGO05zso5i/T/KP/Frt6i7XNZbTnMzV9jqdq7dPZMkzNIybneHr5Cv9RX0RbHycN2PEa1wmcECgh0V5AIDRn/TYzteZemt54aHBr/RZ/u6bZyB6n4b1JpHooHNr5qGyecPR5ZjhPT+Z4NcGnnp7mqQuz9/xZTkJrP3cXQcZ3m+u5ZbCz24iHQ4x4PirszoVbKXv8tH+VNzcXKKzBFxLtLJNhnZofnJjGvxunFQ59Hx8fjt2Ivfjiizz33HModbimJs9z/uqv/opvfvObp3Zw93Ef94rjcLUrI4z/jbwYELkGnmpgfXOqRhhbQmZ/uoY/Uz/U6jd5du5Q6/qjwoJhhwbUDi5yczXgrew6zTjksdlplJQHQkFPGg1w3PO33cTakvm4YKDrOJ7BsMPXv1PzdNikUgp5CNXC+1CqxVYhEKA4X++QmxJtLZ6UhKoSzDvP8LBJefi1l5jNhkhrWFcd1qI2H8zN05/5Kb5f0goubr/gT0OT55ytioFsVGVkbR17ECH8kKnNZbj2PeQT/3LPOb406PLNqzf4bv8BfLeByg2l8hjVmjTG1vUF5lAny/mZOv/sy4/wr175MUv9TVpJhIjdDiXWOfplzvzZGrXlgGykCai0JGJwll7xZWozL+MlS2S24sl5WtHUCYGWYApQCtGcwhMhudfF/3QL9eOAcnFQWcZTaSBFqEhzU1FztwpcBM4PGWVVkz/VTvbSm6RkcTrhgZt9wsJSehInweSGcj3FrwUHCvkrsccZIWhqR3/iFtcf+z7azwmzBGE8Ck9TNFdYe/R7+G//Nu/o84xUjY5ZJ5chr0dPci59odrWBfGO/uTy07h3XmJtZZO83kQGPp65RWk11loaRc6tWpNrQYwT0AlrfGX+EfTt/gGLeq8T45+fwPTyPRlM8/k51gdtRo0VUtXEN3q8DVM4HHlcbb6l2T/oGAtQqeik/fzaNgV4YWXIOxJmc403Kik8iQwkE5GPV1qCdh0vjjCuxNvXiJU2RbsUITyU3PszQ69BWz5Ipjd5ovPHdOJLhzIJ7mRxfthz77Bt4RY8IfGtwEhHcUgFszXs8c4+jHz4uQ8t2LcyIneiGz7Y4/L37K6hkxASNX2emenzB3/wPWKLejf33T8nHoQM0w5esozNfXACKRyep7DOMQwE59KYabOvCQPQBTnwrZVr3IhimsE5Ci6QuxXyUUrQbVPPHsDDQ0nD/FSdi2cnmAhD1jbTe46POSmt/W6CjE+a67nbYGcPpXGfEc9Hhd2xIGlZ0tMZRWDxGgEiKSpXS61ZNF1mkwlqfnAiGv9+nEY49H18fDh2I/aFL3yBhYUFZmZmAGg2m7zyyitcunQJqAKd//RP//R+I3Yfv3bYTRXZ35hMToS8fevfkY02iEYT4AxapAhfkTQnGXlrp26EcZjV7+5A3YPHf3RYcGY2KUqPV9+7wHDtg0r7IuE7tQ948twUac+xMbqOFSnSxbSTC3zqsdkTOTfdiet+wM1RBTgGGLeMtj9gaL8A4twdm6c7TSofmr98YqrF7kKg5Uki5W8tE7YLgZnE8KUbP2c07FaajyAiNiMeHqzRWnyHV8+MaAYzhxRt96jJG2fh5FENrQuUkETKO6hFWr29XWhsFREqjak7n6ZzGGFJbUFj1Ie4AV5wRydLKQSfnX6A/zC6wkaWUjM+vvMpZUlfpiR+wO9cepj4gZiX317GrFt0AUZYnH+Gkf4S/fQac/k1ZurvEucgTFkF7IYxojkFUQ1ts2o7Sw1bFIjQQzZVVUwLaPYKnljPeBMoOtGRdNf99KZBPeDauQazKyPizOBbh3YO267TeP7CnkJ+dTPlhjHIyYiLS0OWLrxSNWHDico2HQh1gBr6pLUu7z70GqvvPwBIumqCtl5nU7XY8KeYKla3NWHyma+ysJrxsvd51uQaZliZMEyoC5y3bzGb32Doebwwcw5PKR5oTPIHDzzF+X54wKLeaUu5PMT0cqInZyhvdLcblNhTXEif5/XJb2FkF5X5OBdiVEEZjVDGR7scgdt7kQVbGa4IKr3ZUBc7weyFIZuvc3Y9I840jDSDzOBP11CXnyTyX2Okr+/LBQNrNc4ZAtU4dCPvicrxsR6cueP34STPvf1GR7v/n0AqGqXHQq2gWxd7XAz3D3uEEMcq2O8UXv/CSzfG4fUfjdvdboj5y2w898/JfrpEtPgwXNjAhesIXUPICDyDkH10njB9q1VpHnefvrFpxc044XoY7TFMQpwhbjhWvSGJGvHV+U8wGBa8f7PLz99YOrL5PPFnuEta+0eFOw2/dhvxyLlLHwlNcfe9lcQe63aAsYYgD+jkk/TPbFLGOb50lLYKuk689olo/PfxjxvHbsScc3f896N+7z7u49cFu6dSWy+d2XiFtPMBvo4RUm7bSrtCY9YtYadOV5yuEQbstfo9Do4KC3blGW7+8hHy3hzSp8plMY6853jj6mtMzL1C0FqHMcVlI53ihdc/z5ee+q17LiyOcnNsBE2kCFjPb2PcL7iVtfCld2jzdJxJ5UPzl7epFoMyR4+gIWNiU2UeHSYIv2MhECg+mb5CrAtcZ55hMSI3mlJK0qhGoDao24K6f/j1uRdN3q31W8SjHqthjM3ZpqNNbWk89mXhbBURZT8g0I/ydK5QLsIKGHoxC1FG2l2DKDnSyXL3fd/I2niFxjpHIS14PlO1Op9/cr66Lk22N6Dvb6zxyuYNbuo1NsoRrqiR+Z8kCHKKYAVXRiA9JpuTJF64x6TB+xno3OBN7Z2uyylFY3XEebnAW9KSlhGynOHMZG0P3fUwetOgHvDLxMMfO4tmwG9/9SLB5N77OM8NxljaI02vtc5gYgNZ1tCyal2Eq/pyIwQDXUPW1vGSVfRomlxEDGQNH0fuvCpLqjWNfP6PWfBmxwWVImm18QZraK1ZtzWG6mmaZ6YZPXKJ56fPcb7e5mythQC6L1zZY1EPIAKF8CVmM6e82aP5e49g1tLtBmVy6hkmRw/x0vK/obA3yGoDpFXUu9N0ls7zy6d+gFUWqeV2I2K3JXkWi4dx0yTK3+NglwnBexMhcaYxo5LVtKRvNcl7a3i1JwjnbqOjBephZ8+wRwhJrFqHFs8noUYf97m33+hoa1u4ReNO6hHvXshYzbNjb8qPwmmE158m8ol5bK0kCFvQ66BbP8NF6yD64DxkeZZi+ZNE+U0obh0wrSiCkH84c4FmeLDJrTR0Icu6y0Y+5M0rmx9J8/mrsnA/FCcIgj7tbK3991ZuNYXV1YBJOWQmSTbqdKOcrTiT3Ghyo0FwbBr/ffzjxqlqxD6uCcd93MdJcejEszTEq6sMOhrf1bFsiaEFeAqnDfTAtstTNcK4W+wPC1Yi4f/8ziJ536Eisf2OEZ4g8BZonPsuwssQbgK0D6LETxYxwd/y0ns+fzD9lXv6zt7JzbHmRwRqjpHu87nZc0zFDx7gqZ9kUimFRAw93n17/UBA6GHT2zsVAk/PwuxP3oXaBEkQccEPyYzGuMreOvM9fN3HFH288CC94241ee/1VvjuyjW+jiO0Fu35OByZLlkwPeaSJkqXAPStZdo5xOptysURg/RJlPMxwjIQCgUkJZzXNd4UDj0YkVvvgJPl7vveVwKjHR4SJ0CgaEQ+lIJ33xpwtjZgfqa+vQGdbic8Z8/yP7/5Anpo6EQ1IuVjeAaj/gEhc3IrWcv6+IklM10CWeNBvoRZz/cYLWxhM7nBtU/+hEGwSrMuENKn7p/lqZnfYzrZuYZTrZj2RMTiypAk9vCUxBhLb1hSaIMxDl9JXvrFEs8+zp7rH4aKCe2IM83mZIGRBmHUeIMkcAKMA+Ug0h7GHyFVuv3nB16TCVLCeh3MJOK3vwnT53l5S7PWCBAixNVrBEWOb0q6meDK9EP855+4tOczlyvDA6YTW9idHWjW0j0NSuWkts7i6Blawwt8+b2CqITG6AzORCydf4fNzgJWaaStgp2tAjAIHCMzyWR8kaAIDzrYCcGGFKwZi1FVGxdHHtI+yOjW1zAzP8CxglLgy4Sp+BEy02Ok1w8MPvY7JJ4m7kRnnHh2ji/VU1658iKD1QUGSpHV2yc2JbDO8dbCMgtr/cpF8giXvzuF1582wlChlMDIgIDHkJuP4LxlnEwRNqZMJ5HaEX/6UXj3uwdMK5Yfeobewipzmx7ah16DPVuzQHr0Tc5bv9wgyw1RIimcxlpJ6Pu0Tqn5PKmF+0eGX2EQ9H4HSW0t1jk8WU1NnGfwch+v8NFhiURgnENbQ2r0oTT++/jNw32zjvv4jcdRE88J42ikActWkbsCpasMJyFFxW1XEm1yhJHkpsfy6M1Tc1M87nEffInthAW/cXuJfOiqTdjud5uB2uzLSC/DZC1M4OFJCS7EmQDprdFXP2Bl47PMdO5+Mvnhbo4hSnSZS0JmkkP46ieYVN52rRNTh44qBLj1Dnb3i1kIIm9H+xKaFs2Rz0a9S91NnErhuZWvdiOM6Dc6TPfX6XrVyzmQVcjt9f46U/mIhXqL/2/lKrOjdb6BojY8i3M+pTKUTuKcwABD6ahZuDCS/HizpNGQPP3o9PbxOuf4+duL5NymMaXZ2JA418H3FTiHNo4id0y3Q7qD8tDCaynt0SsypuLGtnOlZo6RqQJDfbmOcZuMtGUqqkwaJlZn6ep3DxgtbMTXuTL7bQqZEqQJgW1ghWZUXuPllf+dZ2f+620t5sLKkCzXjLKSQVoixudQiqo43spcW15PD1z/qVZMJ/bBOJwOwEic0gjt4RDIcRMmgRolWivOd30+MJZVv2pqSjw6Zh3OXERMnzvUklsgKm0fETXPsL6ZHSjWjzKd2MJh2YH7A9Ft6yzaFiQ9i6MPXsGlq5/krWhAHg+w0lZB5KI6qtzUGZjP8IfnH6UYHXSwc0B3UGDHv2+MwzlQ9ZvEtZ+hZZe80NTigEi1uNz6OkLII6nRux0S74S70aseRWdk4T0u/uA7XFxfoCxzrFTY9izxp7+OOqQJ22+U4k0lvNdb4Tvvvcv6ao6XxmANYekxGdX3bCHuRPk9KY5zDg5qrCRCV5le1hlSe4vOtMN74GHEw/8NYm1xWwNX5HX8l27wtYUavhNYJejXHO9dtKy1q7+/sJqgDNjs5eQUrA71+LtVbecno/qpNZ9H0do/VvfCX2EQ9H6KtSfl2AipOt++JzEaTAk2cGz90ytzJoL4vt38PxGcqBF78803WVxcBKoHyttvv81gMABgdXX19I/uPu7jFHBUrolNNVG3QzBokzdXUJkPCKx1FKXB9yRZtImwPq+v/iUOfapuinfCYTTK/dufXpqDreiI23COllgljFaxeYJhL2VYIMDWIVhmI73BDI/f9THes5vjMSeVLhvw8tWCLDdMNAIKqxlpjSclE42A7h2mt4cVAu5DXsxCl1xemeLVWXtPhedubOerhQm/uPAoz1/5GRPpgFEQkQuF0gWNMicLYt558EliP+DGYIMfrhV8WdeRKqfHmLYnDNpJjBCk0tHUjoZ2jFLNK28vI4RgfqbOuyuv0Y3/LWFrlVIYorrAz6YoVz+DGZ1DSSi1QRt3ZOG1FUfQECGZLre3hqGqAkOFW6NfbvLM9HN8cvJphJCU0fCA0YLDcr3zIqVMidMWlA67mQMQiIQs2eBK+f8y9dDDLKyMtpvuTjNikJakmcZRbbKiQNKZiIjCipq6f3ovhODhh6cYvr+Jv9EmGHYoGiso3UC6yvUfwOIowhFRb4aZzQ5toXm54bHqS4QzrAdnmBnnEh3Xknt/sX4n0wk4mB14VCD6zy8pPveGoJE3UDqluVLjMfMZblx8j97EGqPQoK2ksJP43mf4w/Nf5qHmNCtmdIDiWZSGUhuUFNv+HjK+QTnxtyBTpG5gMoUXewz1Cq+s/B88O/NfHUqN3u+QeBSO8zw7CvvpjPvpzH6tVX2X1xfge3+B22e8UNzqHTBK6YaOHzCiJxSBSRBa4qwkCzQLtsvc2AAHjg6vPymOew6OolaX6gOK5EeE8SouFvx4Mdx5F00/SnGrx+CFq/iphlCx6Uoip2j14JNvKV573LDaqjR0LeoMihzjVdmCiirWItWaBdNlNmliLKfSfO7Hx+5e+CsMgt5PsQ6VT6g8Ul0SqCo2QKgqPiS3Fu0soVRcakzylbOP7qXx36Px1q8LnHOsbAzZSG8gvJTpiUla4ccz3P51xYkasa997Wt7irrf//3fB9jW1fxjvCnu41eHj2sqdlgR5YCNXGMRTF1/loVHv0cZd/GKGtJ4GFmSh12MlxMIn1DVT9XC/E44rnC8GYcgq4Bo4QmmUsfDmxZZG3HLafw8QUtHoRxuVw3hrI9QA4SXHn0Qx8Bx3BzvuDk65qRyrQhZ3xwhA8fN4Qa52TvBnQiSk01vj/FinjpzmWfnv8g7m9+6q8JzP3bnqy21Z/jho8/xietXaA+7eHpIKSQ3a03eufgk3fYMIVU47bpUlEKirK5+xSIAT1isU2ggAhIBIxwLq0N6L93gmWcy3hv9OYSbCNfEaYU1BV6yhDr7d2S3fgc3PIuzYKwjDNShjUTNC7DOcWO4QWkMU0OP2EjSUODaMUpNoF2NqfjBHXfJQ4wWBuEKg3AVv6hBYatzrsYmDM7hpzGb+gNWbrzFyx/EZLkmSiTGORLlUWoLjDc3ShKOm5qjqGNzj0zxwSs3iRaGtK4/zeqj36eIe4RZgjM+VmmKaITUERM3nmEoBXULj4w0G02JUorimd/dLgxPYsm9G3cynTgsO/CwQPRhUXDdjeieDXhmNWAm9QmRuNEU8Y3LnJlPkNMSbX0mwwvMpCF0DWU+ZHLyoIOdtQYZLeP5OboM8fUZmPgJToxwZadysXQgbEDoNxnqFd5Y/X/47bP/A8/P/Xd7shab/jnWujk3u/0jw4sXVoYn3mYftsGq6oyTGS8Ut3oHjFKyUYleHPGcgJenYDV2MHIIK/ByD41mLRuQ1Dtwh/D6k+BOz/Tv/vQGT36iRdxS21bj+6nVqbiKP/VtAi+nEXdIgmTvu2j6v8T/OZUWsR3S0pJ01CN1hjKWNFO4eBXefmxI7PngOZxw+NaDQoKpKKo+ClsYVs2QybB+z83ngciG4nYVov0xuhf+KoOgD3OQnIzqLIy6FFrjaQ+ZODoTIRSGQHl849wTfHbm4p5N2L0MMn6dcHOxy4/f+AFp7UVEtIqUFrUSMJmc5+m5P/hIh9u/zjh2I3b16tWP8jju458YPs6p2GFFVFEa1oVj4Es663OYd75I94HXyGvr6GCIsAoceCai1bzAaVqY3wknEY4/NjvNd2ofkPct04XjmTVDYGAzDnFOYTyNrwOC3JJKi1YScBhX4suA6YnJuzq+3S/WR1rf4OWVf31wc6Q3kC6hZX+b1c3s8OndMSeVWa1DWnbp6RHGWTyp8GRF70h1SWH6NF1y7OntcV/M08llpuJHjwz5PkkA+P5w6qX2DEutaWrdVXr9NVIvYDGuc67eIdo+ToGX+Ax8QU3bqjgerzC0E4DDx2GEYCQspRXUfEeWa95Y/mv8+gjKDk7KSiNiA0zuo8JNgqmXKAfz436o+m5IAaO85OZif7uIHumCoc6Z2pR8frHNZOqhLGjhWEsMb5zNaV/Yq2M4zGihiFIsGj+rPp0IJEKKnc/pQgoxYv3ND1hIzzJ0+Q5lyiqU9Qi8anJfakO567t82DZKCIF9pkO22WWmN4f//hfpnXmJvN4nlynCKsLeDM0bTxNvzoGAXDomjGBKeNiJhGj+ws6t2orpTEQsr/TwIodQPgThuGk5ulj/MNOJrQwtcLiVW5i1W7T765jOHACmL9C3Q9p5jcIJflJz1GoljQmHaMP73pALLuRftD9XWeT/6Da9fRb5zz7Y5oVBzma/IGndhjM/piGWKgMf5yFsncJfxugQZ0c466NUSc8sIWyBw7CU/oLv3f4feXLyn28XS7eXB/zD29e2i0Nr3bhIBCklSgraExFZrk9khLF7g/X/s/dmQXZld7nnbw17OnOOykyppFJpqMlVqsEDBoxt6IBr6Cbo2wa6o7vpvgRPPBFBBCYIIgiCJ17pFyI66Htv9ANDm+DeG9yCNnbb5fJQtoua7LKrVKXSrFTOZ9xnT2utftgnTw7KlFIqyRZG35PyxNE5++xhrf/0fZ/NS9NsVfMJPzRLOJMdeJzZTR8mfvXaDqEU56CdZAykw6us8ZBM6YQhzhNIU2DzEJdNkqqCfppSpNyg8nc7z335/v3X9IyC5U6PK6+tMTjcxlOKuUqDTy+c5sTsTGnGvTHgzfY/MLCGZnBkz73onaX/yqPrnx5zEauez3ylwVo6IDUFPc9S70uedC2OLizwxSvvEOkQBqpUr9nmSi6cxAwFssYHSj5v6EQqgUqvEQkfb6b2Q1Uv/KBG0Hf8vXt0NyPtMePX2egPyZVh0OoireVEY3pPfuP9ouj5QfHGt97i5atvEx59EakSTFbFWoXRlhV3jm9d/fd87PC/+1eZjB04ETt27O4pxj3Av144Z2lf+Qbp6/8VL85pBjMIHdzTqtheVSlrHQ7BubrHhzYyZtcOM9l/iGF9FasSkAMunXiZMJi4YVP4wBLmN8F+Y5Sb37u7+v/xJxd48TuXObVs8Q30Ncj+FN5gkrS+AtbDd4IgNWRh2f1QQZ/pyklawd6dqv1GIPYa8fEmI5468z/wKfuw1AAAIABJREFUfvDVcefIFIp0MEuy/BzLsYeS5/cZwSkTIvPiX5Vm0LUIj5DmQCMG3XFCFPgesc0wOHxva8mSQuArTZYbYjL8PUa/9sNBN+btnLztuF0D8D3NqYVgudrgChYcVLRXStlvQ9xQLNUdj/QbiMLiGImcUBYKAivY8ARtXSZm61nMbHNAJpaoyha+J0gzg6fFOBC1eRUZrkKwjFfMo5VgrZ2CgG+9sTiuuE40Q65Ulni4H/KTFyLCQjLwLYUP2sBsX9N6XzFx7MgNPIbdQguqIxGHJFYVaBki1M5nyqgChcatOYRJSCoFWm0l3A5Hagp8pcAJjN0KHPfrRoVHmnzpVMpTVwNa3Xlmlz+DCdbJvJihq8NguuSE4kq5dyEIHYRSEbWinUHo4jme3niZlwazdPoeFZGitaaoTRFbbxysbyZU27v8t/LQ8sQy9oW/hPVFZvOUX8lT2rUmrx16hqWNQ6jcYpWhUTj8QpA7j7W+xJvKqQcjr6Fzi4TfWtlTIj/opnzyzBzf6b3FIPoHnBxi0yrkGhn0EdFFpCyQKgYUzkoQBbkDTwQoNMaldNIr40mAvHd4R3BojGW1k2BMKUQw2QrRSnJ9ZUCc5Ew2wgOtZ+mVNovf/g6Z6eNFEdGgBZnFtBOyaz2GU4pqWsOr7hO6bBNeKFbjG4RSstzQqVxh9fSr5NV1rE6Z8jOcAGsCXB5SDKforZ6hN4yYnajwE08eHq9bt/vcw/5r+qDIuD7sYqRDZ5pJ6hQ653J/g8+//xqffeRZTjRm8Ktr5N0lanpy372om1yl7y/R1FtretXzqWif1BQUxqAHBb88d5pLYdmdr2weihOjZIxyVNUJLA7j7N7n+ADYqxPp4iHFQNNXT1JLFvGibeIY91i9EO7cCPqDYm/hKMmp+SmOHKvs6ITuXkfvN0XPO8WVt37A19/eIDzxOlIluLQJCJwTuEJS2AYD0b0nxe1/CThwInbp0qUDve/o0aO3ftMD/KvEeBPbeANzJEUJn0YWc3Jjgelh455VxfaqSpVrlmNZCb7b8nkis9QyS9CewgnB0sw1Mg9q4d4VwQ8iYX4z3C4X5SPHH8LrZATXFxmWU14IBJNXn2Ht9NcoKl3ytIIqFMIVeGFMNWzy9Px/u+f53XcEYrJK8Mb1PQM9/yXNhz/5vzOc73BtdZU3zvVIelNUIw9du3n1bnXCcPaj0B2sYWyGMoJGEnIyOYV4+OdpVxv0shVSL0UnPk5vGRFD+Xu1UWRhRuanwN6jiXtWse9wY77BO+0AI6tSiD3NqQs3UtESkqmwutMTCMhcwdsPWU5daVLrZMROkWNRFkILmRScrSkEpRxyIQx926YpCoT1aNQk6+0heeFQSlAUDmsUShdIL6WiNWvtlCQrCANN4KtxxXVxrU9vCX560KBuHatRgR15V2UKisgykSjCH3Rxp28cTd8utFAfPszl/htsyPPoYucz5XBkqkd9OI9sN9FVW45MCXASpBY4Ba6AHIsnyw53eV13dqO2X+dIVZELVf6x3uaRvEp9w/H0+xPUE48ATVcwSsHACYF2ZUzqVb2dHZARJ2khiflE2OcNe5R1ExHnDtXeYHZuimeffZj54jr2hb27/P7hk/uKTuzgO1Wa2N4qk911wqxA+4a6KXiiLZnIBJJSnL7Xh3edZv0JQ8+kmDdXbiqRH11YZ/rZN2FoCDhM7OX04g7C6wCOTV1/VwiEThHCYZxHYS1KCYRQVPQ0qe3x7sY/sv7eL42DQ4Rgo5uCA98rxT96g5zZyYhKpOkPS8GVatXffXvvWM9W4rd5a/Fv6B1bwimDyCXVmUmOXH6WRncBckuxXtB3j1ELLqPrOWu2Quo0gSiYkjFim/DCXkIpG9FlluZepPAShFEYnYIoEw6pEooiRFWvU62usjz8COv+HO2NNT4dnabhrd/2cw/7j8avJX2MtXhaQyYQZmRlEVZZTQZ85dpZjtenDyCK5JOIgiLIcNlOLqIQEGqNtQLnCVTkUdXg5355rUMLhQBT8gUBnLY4ZSgyd0diHc65GzqRQCnXLmOsq9PemCPTKwQip+q6lKUlQWiKe6JeuInbNYK+W7hTBcnbLczej7DW8K3Xr2KjBK+yhssrsGm6IVyZjFlHkVVZiy/d9eL2vwQcOBF7+OGH97xptnPDhBAURXHDex7gAcbBa9YmTCwhEUYJNsI+b8y+z5nlR8pk7B5VxXZXpYxxSCHLwHIm4nygiZICXTgKJViUfSLto3QB3Kh4dqcS5rfCnXBRnpiaplNtMwxLeVytFLXgCdqrNS5Ofpt+uELhYqqVClONR/flOO07ArE6YPntVQ45QbDNF2p7oDd8fYnGL57i6+cMSS84UPVufE/IPlHrKCq3GJuyUu9y3l5hsfcG/Y2rGGfJ6o7ZfBaRSZweSd5ZoBAI7UgmB8Qm3/Oc3rKKfRv32X7eaQcZWT3RmLnBnFoLSWPEj4uUt+u7SmL9xMIEk6dPsv7yZfJrXZQpf/qGJzhbVazq0ixZ+A4tJWnmg1U4mRP5Feq1gP4gozAWKQWWciTNo1JyfgWEgWa6Fe64ZmEkaa1AsydJKpZIe6Pu1Mg7WAiGgaG5nlCsxnv6Q20JLVQ5de3f8Nq1/0DsrRPYOspqjCzIVA/PRsxcOYMpBIWVkJS/CeVwvkX4ZZLgrENqUEqQ5WaHQexqcvaG6/xQNM3acJZX8xjbdDRqE8z16wy9FM8lKFfBOgnOUTGOrOHz4Z96eFws2M1JWhAZ8+69MgGwiqC/zFQxgcwj7Ff/n1tyX3aITuzDd2pVW7xDk56t89BwwIlBROAglmXM7COYyB3PXHf884RDhx5eJ0dW/XHXMzUFhbNoIfErHu34Ep34Mp6uE5uU9Twm8DsIYXHGHyVfFiccQpRXWAqDcZLcGjxZwVcVhFCsxZdox5eoRgsIIUi3iX9IIWAkApMXFq3KEcW8MGR5WTyy1iGlwPfUeD0byvd569pfkugNfFNH9QVG5vQay7z76IucevdTNDcWcMZgRcR6e55XZcC6izCU3MlJOeRM9n0WDi2UBZXV4Q6hFIfl2ux3MF6Cjhtk9VWQDqxXNoVEgdQDsuEMqrLOXPNdNoojow7Vqzwz8Tr5HTz3e63pqclJTSmUMfJNGZvOC+DhbIi8ts5KZRJ/tnJLUSTlBYTVJnYjvyUXcR6Y0jV6xqHCct0YJ2LCkVMQKg/h5B2JdezViQRAKlLh03ca0pA3OjWcMNRszIy4xKS4RN0ZkiLjx7Gcv5+C5M1wpyJB9xPWzl+iXWhUlCCEwdldaYdwWASiEBiX3hdWQT9sHDgRe+211/Z83TnHX/3VX/Fnf/Zn1Gr3/5zqA/zwsSN4pQVmAJ5CO0E1Cxn4Ce9NXGNqWEfcQ0+P3VWp7iDl9beXSTKLUhYb6i3T32CeqcpDDM0VaiLctbFZknSFSTFHoyNwM/aude/2GqPc+t69uSibymxVpZDRVoI2MTxK6+oRuvI6uY2Z+PijTM2d3vNYbzYC0fQs0bCgHygCbqzKbXohrZ7fOHD1broV3pjQBJAVmvW4QNJh0n+HQB+ln2VsBG2WJ5eZ7U8jUw0FZfJRsZipITK0expf3kn3avs52V3BvJl32kFGVk80ZnaYUw+KlE465KXr51hN+tT98AZz2k/On2QYtpGfEay+63jn+xab+nSkHIleuDKY0g7hJEV/GmlnSc0qvXXIczsWWdJaEFQyWsFxTs19lGFm+NYbiwS+uuH3eEphhUMZSEQ5vrR9dMY6h1MCad0O+fX9MDd/hsff+kXOh18nrq+RKYN0mkp/jqkrzxAszrCiHZ2qg4wyMCwok0rfIDywpkzCeoMcJQWzUyGnTuX0va9x7voXMS4n0lvXuZtdZia4SDf/EN18mlfmBvw3FxpERUDqCRqRh2cVKjWYqoCfnMbVzFgMZi+LBSFgWsVl4FwVsHYV960XDiwgMcY+9g0VL6ARhhRDzSMDR2gdHSVACqQYGVELRy2HE1cEq6eraCsQWjLIszEvaCxoIzUi6NLJegwyS2YNQS6QUY5zZcJrrUaqDCFHD5YDIRzSGUyhMVmd5eGQelVjXI4VQ/RovNTaUkRFqK3zsykCE/oK35MMk4LVjRjnRl17QZmkKcnCbIXl4p/I7IAoaSGkwrkCZQOioc8w6nDlyGs02vOAwIQVBkOPYWII/BwtHIUTrOQBL6kzfPLhIxwW8gahlH64wjBaw0tqWFXgVIazEiuhHJOSCJUjVAayiic3qKgufjhJL7vCyvAi85WZ237u91rTC2ux1jFZgJ868oplEFoObSyPRXwocuqXzuLPHKHxWJMNt3pTUaTZJ5+ht3qBTnaZolbgU6E6mMYNijEXUYiyE/Gx+WN86fxl8sKgtUAqiXW27IBKScurIM2dKUXuZ9mQolkXDayDunU80bdoq5A0sTyJlodYqV/k7zeu8dnJuQN7wd0urHMsxh0GRbbvSOD9gjsVCbqfkMSj574ouevIAuzWXi0YrQkyR92D4va/BBw4ETtz5swNr33xi1/k93//9zl79iy/93u/x+/+7u/e1YN7gB8P7AhencMJAdaCVAgEYeHT9WM6QUyrp+6ZpwfsrkrVadXDPU1/n3lsFq/+393onZO0SYZL+JnjxIUQN/y/cHdRZGQ/6eKtBHEncRxursyGE1TXJvEOHaU5d3rfUYhyBGJApbGG9TOEjRDFLAKJNg4tIDalrH+wi4u16YWU9bMDV+/2Tmgcq8kA4xxK1vBFm8xt0PCn2Mh8+gyhssQRPVVWcBUQGtppzNHKjcaXH6R7tXtEUwqoVX3mjqyQ6YxoD6Pn8rNvPbIqhSAxOS9df4/rcZfcloF/4QyddIgUEk8qjtYmeH5asTT4S97dKLs8piHJn/ZI2s/C1eNgHfgOJwEDLge0YNr7GVbj/4xlBanqCDwcOVb0SJMK8/Wf5aH5Jleu9/a9ZoHySHyFEQWqALN9t3BQWEsND629sfz6JvYLdg4/8RPUvzJLTy7S9xIGPUXYmSSygkTAu6HGATKyuEyULSALZBJXz8kmYz5x4mmassJQvs9y8U+8l1xh0FvGkuOJGoGqowqNNIokCQndCs+JtzD9M5w/dJTvCcVjFzSNIeRxSi4l7dDx3UMJl3vX8d7ZEkx45CAWC9katJegNnFLAYkd3debfHbTkzQHmtAIEimQjM4DlEqpwFDCZKI4UltA6A5xkrKY9zHOlII2o45/lmYYV4pVSlkgjETiGLdixEiR0mqcVQiZjkdkrdPoYgaokGaGwgwJKwrponFwKKUYJV8OIcU40VKy5CV6WjJwZUFAa4lSJUc3yQxKWmYO9VjLrhKpJk6Y8p7ePH0I/KzCoLrGoLpKrTtNz0mEUEzInJ7LwDp8IfD8kI43yRurPgujSZ3tQinp7AArCgIqZCIuE9DNk1nedWVXLDAIEQAJghQhBDXPYVxGbiV7LW83e+73WtMnYsOJZWhmBgXYgSPvZUxl7xOwTt8PSb2ARlBBLF/mpHG88biiz/52Gl2WePtj/0RncAlrc4RVVJNpjg9/msOPfwz/cGN8TM8cWeDsdIfF1T65zSkokEIQaY/JoEo+hJmp6I7EOvaybHBu5F0nNVGR4VuFQ5IoS44Bp/DsJF7Wor6e8eXwLPWiSpbdXan20ij97Hjd9eQ2cZR7lPh9ENxJYfZ+Q1ip4AlDPpygGE6hK0u4tLQKgtHjJxw6iJmqPH7XjeH/JeCODJ1fffVVPve5z/HSSy/xW7/1W7zwwgvMzs7e7WN7gB8T7Jhx90VZKU6HIEvzVGUlibbkModB/555euyFm89uP7rTOydfRvZ7TAw8TrYPMy2nILj7IiN7k3u3EsTdCkkHVWa72Ua2MngHMfdfcNEauSjAaWQ+gxp8nEIv4KRAOofdg7+9Kdzh1/wDV+/24j0kpijHdYSknD0cIiiDwpmoRtZvMzAZvTCmHoVl1ygtu0Z7GV/eafdq94hmYSydXsp6N+Vap8vECUM67NKs1gn9nUvoQUZWdxv2NmRIbsskzJOKT8yf5FRzFk9c5/WV/3tXNy+lohdRE18lCSC7fgw3lOMOYR5mtBYU6fpDpMOfJ5p9BeetgBggnEbnRxguP8/5TpPH5t244hpnGcjScDRQ3kjEAkS1Qsfr0coMA79MIi2urJwjmTA+3mxlLL+++fv2DXYOz9D41CP0XhToy30mHFgBG1pwtqJZ8wQk4EKLqFgwpb8RFvqTPY7M1Hl8fpa15CzfX/4bMtvHE2UQovAp7JD24CLVwTQqVUyZAqMirN/m+csv86Fzi7zY/Bm+0dI0rUEaR64cHQRyUGWy0BSVLcGE/6k1z2GlcXmGoYW1GiFzBvV1clXgpYamAGHt3smac2XRKRngli7s5CDexL4hs6pMinDY0cifcyWfzllACKznaHkB05OTxJMZw8urmKCUwN5MpKQVBJnkqq7Td3VqsoOgihQ5QhiEKMrc0VEqrSYNCPoIlQISm00jRcldFNphRI9ieIRW9BCr6ymelqPRY1WOHoqyE7Y5jmydK9cvJQg9RW4sxpQ8zyhQSCG5vr6MOpSj/RaFN7yhu6qMJvNjcjnEaUluLL6SmNl5yjndAqRG+AHV3O7gzGwXStFDH1FIrCxQKsCNroOgHE11ojx+qRSOAlA4gvIYRDnCmtuUaPTa7Tz329d0s9jjkaUYaSD2HDYEjWOq41D2cXpNj0SuE2mPIKxCWGV6bZkzlw7x3uP+nnYaQNn5V32iiUlkrihMStzY4F3/y9QmjzLDViImhOATTx3lK9+5zCDN8HxB4CmkU8T7FPwOir0Kg1luyPNy/Q+txgpLLM14vsJKR1t41Izj2Uual7qOv3/nPSTyrkm177fujsVRjj/D0ax6g2XCjxJ3Upi93zB1/ChT3z5LlmrS68+gjr2ICDrYvAJWgzAof0Atmrhtf84fF9xWInbu3Dn+4A/+gL/927/l137t1/j+97/PI488cq+O7QF+TLDb+Fc0pnHr1yAvidVGO5QFr92FcPKeeXrsh5vNbs9EjzIdnqKdXiL9+l/hra7S9EcSwpJ7Jr17u+TeWymzba+G7sbK8B0upH+NCNs400Dggcix/jWsfoG++wyx36QyLJDbZI5hJ/+gcXyCyaudA1XvOtmNZtDGWRxudP5ytgdCFe0zX22yGHdGkvVm3DXaS/IXuAXJ3WELRWpSlttrNGePsumHWI5oFkShZpgWdPsZAJ6WmOEMxXAKKkustxWTrco4GTuId9p+hr2B0sxENVaTAee6K3xi7gQvX/8Pe3TzIiaDBVaSK6joVczRSbwsIM8tA5sSViUfm36S773WpuIfx9t4BKeXcXK4rcvpxsFqR/bZkH3SrsPqAilLwYCpsEZFedhc0j5So7nSoxobYt/gpKBpPBpGE0Sa6Jmt49sZ7IRMyAHWxSzHq3z+/T6ffeQ5js9P8UUPdNOnIgWZFKy60ltMjM6jSwXOMwhkqWhnIaJMuAVuR6czs33AIZxCZmBkztDfoB7XEQikCclkzkA3OWdP4ycFMuzRqdSITVYaVEsPMoFd8fGPu7Fgwj8NO/zP4SMMr4UUtGg3l7h87CxxfR2nM7QpaByqc/Janel8V0KVDKCzCtkQrMF95x9wF9/a6p6P7BvypfNktUmUVIRK4xC8kc3hRIFFIS1YNeo6UY79CQFz1QgfgYw84scbxNeuM5Fq0gAKVSpbBgn0tOGNhYR2cpKT+rtU1caI+1ryA8upVYFw4IVt8qyBUhnCCXwHTlgQOage0lRIlp/nyRMT9Acr4+CwUfVY7Riy3KKVoF71yAtLd5CVI3iNkFqlfG1TBMjTkrywdDqS1ozCuBzVDCmKAWQCrMNJgVEF0ig8E2IrGr+TMqx5DEONEDvH3/bizGyKxlRWDnOl+yYdd5lqcIg065KbGIHG4chdhsPHOY2kS+FmMEwCMLQNPCYwrodz9X3HA29WzV+YrTE3XWH5736ADTRZ1aObDzDO4lmDdj0sVWR8BNVoMxVUtzqs1SbT12Jmnvof6U65HaJDAN9Y/LMbxrx9fDxX27fzPzdT5ckPtfjBuxvE/YIkd2hl9i34HRR7FQatcUhrqRSlPE5bSzLtbSViQoKFoYJmRzGhJHISGqF/V6Tab7buTodV1FJC+/tnaWRVMFvWD5XnFm66d/4wcLuF2fsNUiqePXOM7iuXGfSmSS5+Am/uTVS0hhBDcIpJfYSPHv71f5XS9XAbidhv//Zv8xd/8Rd8+tOf5pVXXuGZZ565l8f1AD9GuMH4N6wiJhdw3VVcNiQRORODiGb9FPKZu+8j9kEhhKTV09hrCQSzsDvRukfSu7dL7t2uUnfQqt7m+J4VQzxmyAqLpwW4AFf4oNcoat/ivdov8bRxqLjACrFnx01KeeDq3V5m0ErIkS+TRYl4RyAEZbdmOqzxS0c/RM0Lbznfv7sAsIkkK5OrrBiCtHzrXJt3K+d59rFZPE+ytDogzQz9OKMwJf9FCpBCIqVksPQcrYe/glXrdAaGwGtQuHzHmNB+yfgOw14EjS74BWQaunVB3S/lyM91f7BvN6/qhVg3Sztr081XWBdNvFBxpNLgUwunCeIQYzfQujyfopjb8f+1LrsU72+s8ZXuD0gbluqwhSo8nLYMbc5i3qEhKtSjgDMffpipzLD2yiUaSzFyUCAsCOVwnmX42iJCCPRCfRzszEU9IvlNlNgADC2tGJg6X73WpQh/rgwmQkWqJNY6yMsEX4hSGdA5sIPR9uRAIZgdzBIlEZ1gZ6dTCo1zUGQF0gmwikJlJJ7ALwROpkirKfLHWJMTVO0AkVi6YaVU3ZSqTHK0ww0lbiiRFUvdDzCLA9rdkyjbY711hXcfewXjZfhJBRVXEEGfjQl4I1jnzHsF0+5YuR4kg3I9sKbMnIIqVBo7uufv15q8NTnDmcX3CNauMggilOcj5STruUegU7KoTiVx9NzmGCHIEVdMpga90EBPVxj4A75+csjzi1UaA0GYglGw1ih4abrLUtNQ5FO0849xmH/EeLbka2AAgTAKnMRJgwp62KSJznyEH4MaAj4yO4zsf4w0nqdRDXaKH1lHNfTGPmJZXna+WrUA56BaKYUbdnfKtZbE/RkiOV/ycYND6KkqZj3GJgXOWrJoQL03S8NMY4qcXAnONRSJLcbd203sx5kRQuDP1nms/su8tvwfGaRLBLaGIcWKtBQdQ5KaAE92cSIkNU/ByCeul2VM1T5MRb92o2fi5nPf+vnSv+wmCqxmbYjuZ4hmQOQrdK5YSweQZIDFqAzP1Gl5c1S8bQIMI+60yIa0gp3Baju9uOeYd5aXPDQl6jd0/nd0rZsGv+IzpWs8M3+MZ44sfOAOy+7CoMwMnnUMR6OKiR4VXja/x21ePwgd+JRdVTm6Zz6oVPteRumbmG4LPnSugpcbihYEtWCsCNz7ynnqnzp+XyRjd6K6eL/g8BOP8UngtTcustafJH/3Z3GVdephzNMnHuL0Ez/zr7ITtokDJ2J//ud/ThiGLC8v85u/+Zv7vu/VV1+9Kwf2AD8+EEJyeuIzO/lWQUQxPUuSruITcPrQf4+a/6n792E8CFfkHomM3A62VOoOhvH4np7Aq+ltUudl8mGLGkZex852qDz9ON75jZt23A5avdvrngikR6AsxvZwRKS2DIRgS0HwaG2CZ6YeOhC5eq9kL8kK1tvDUkEw6CGzBRRz44rrwkyVXpyNVQE3Bc6tgzS3Zcemc5j2hU9TPfTPEK3RSRN87Y/HhGaiR/c1fR0UpYfP8U7EqYuS+kCgTBk096qOd495nI1SennnppLVNa+GIObZ2VN46uEdSemKiQ80Ivp6+zKxTZmerOGCDLPswVDiOYnBklZTfvH5E+NrNsVRel88h3UCWfEQkQdmK2BJPjbD9bjLVNChql5GuBTrqpRkPkNFrWPsl7nQncFRR44NnUcjj86NRUVAoJ1AKnBO4GtJFjtefOUyZ87EO85NkWtMrpEyxRmNcAInHVY6cuFhwj6NTotK5wiVhkZIg7QQpjGp749GYSk73AVlbgL4QvPYZUeWSQZhjfMPnyP1cvy4hWUzOZ+mFjXoiyu8d7jH1NtLiEoTOivlegGgPGjNQBCVHbP2Mt3vvMDnjz5K7Hn0Tz/Hs1feo9XbQA/7LOmAItJUJ5usGJ+jV3o0jSNTAitBOYHODK6qxiPHVe2zPgFfm86YifU4uV+OCq7FOcKVQe/EMCfQkKcBiajhpEV5A1BF2flClBr+154h6DyC85YgEtA4hiwOkecOJctAcGaickNwONUMWesk47+dc/y/X7twi3tRcsw+z3l3jX5xhTCYRs9XyfoDkmQNnfocOX8K19sA2eVcrc6FvEXeGxLosntb1f6BODPN9XlOnf0U5ytfZxCuorTGaYvUEq1CcicYmAaZewrEHJnNx6I5P7PwMRre01uj6tvHA82HmPzyV7F7WBdsLyzuFrLY9PrKlIceDlCC0vtRRkB/24nK9uVO7+78jwtNuRnx9Sw6jLm2ukrr8LEbR/T8kDwwLGbrfGGtT6Pp3xW+1PbCoB3mvPX9JdY3hjy7NsSj1OMRwJiu6EBbgcFRFJqkUyBqkjDQN4g93a764Oa625C7VCcdnLggCQpYDw1VDaEUOxSB49cW8RbqP/Kk505UF+8nHH7iMeYfO8Xa+UskcUxYeZip40eR8v4VGvlh4cCJ2B/90R/dy+N4gB9zzES7+Fabm1j19L5y6vcVbsLnAG66Ud7P2L6Ja18y2YrGm7hxIIRGh46nHq+zcPgQ7snZW3bcDlq9u/GeyGl4gpVkhtXkNFpP40u3Q0FwLy7Yfrgx2Wuy3snJTILWA2QaUlx6mrjIaNR8hknBD86vl12STUb+LlVgR5k42PgInXMLyGiF4082eOKhI+Nk62Zy+VV9iMNdj6ffKzf/YeAwQUl1aXXh6R8IBic96l5Kx99+AAAgAElEQVST5VtIVkvpcbh6iFawk597EIJ3vam56DrjCrGoWUQ1LflmBqzI6egMUTPj/zd8bRFnHHpm2zVXWwGLeXOF/KGCevT9MgmjNO0sIbE0EbSJva8j+IVSxlyVCYLWkjw3I8PqzY8umWpKCSYaIYGvaPcyzl1M0Aub5yagN8gRWRMRrOJUUXKoXHnxskoXnYccvnCcYX0D3TAk1uIPqnjOooXC4rbEMARjGfFK1zDV9+k5x6C2TlrfwMtrCCGxiJKWVwC5JQxm6U6v0zkyRevKWtkRkxL8CjSnIaxu3pRQaZCuXKbWmqQydZj1qM73pOL5979Lc2DwbYIwOUVng7V6g+FcyNH1jGpqkYXD4uiFisbHj4wLINsNw/36VscgcJpAavpFRk37VF0CEqJCoFxOQgWbVbCqQAiDsgbn5eRZE5xAprMwNKAnwBMMhvmORGev4HD73865m9+LvZgZs8Lxb3yTRkXw3nxKt36JNIoQStHIcg6tVogqi3TNNWCD47bBWv5h2qLO0BYsmg4zQR2biZtyZjZNhmvJFE9X/y2D6ioZMaqvEIHG//AE65MeLy/3WB10yG0HTyqO1SzPTdWYCmKa/imm50/tKLI0VlPc125tXQB7C1kIAX5YAz/CJRlWOqTcxpNzDgadfbnT2zv/Ra5HHcry+ZECLAVFLnjjBz0auseXN/Yf0dvuX3Y3lAS3FwYfDzUvfucS3XZKI3PkqvRQFE6UxRNnCS2se4I4UJAb1joJU82QMNAfSKq9qn08qcitIVBbYW+jB/WBIPZLaw+9rRC8XRF4P3uOB7g9SKmYOXH8R30Y9x0eJGIP8EPDJt9qr07BDwPO2ds27x1jxOdg+VLJCduhTHjzjfJ+xu7xvdDXhJNqPNZiRQqywsL0NHDwjpsQgqlWxGLcYaMYksXZnmOEe90Tq0nIVxbfG3tt3YoLths7Zecf4tmZ/5Wz7X9kuXcRR0wNRXVjhtmLZ6h0ZuioIe8PC2j4DIcFWkuMscidUzM7fptSZVCZx7Ncv1Ln44+WHLNbyeWfmf5feO56FZ0b+hVRdmEoFQn7EqIYnr9e5ZH6Y6zEO7t523/fzTgpByF4H3m4ynfXd1aIhSjtAAB8J+klhkFR8uP29QZiK2DxOhnzc30k61iqwM73WQfOVVDBGrXWBr32JFKOfChFmZQZ47Z/ML5WNGs+YVBuVdVI015tcHhhjthcxi+myXKDR5Vo4EiiDsYbIqzCSYsfN/B7E5w/dZY8TMi1wTqPIq5S7f0EWd5iWOR4srRE8FpL6Eof53yKuIIuQlIFhBlOGqTxEEKOuqQOY12ZnHo+qZYUP/kLiPNt7Df+MyY8gtU1pDAol4yXjERIXJEzhWRVCA5tLPOT7/wzQZ7RDysI6ajYLr2sRbR2lfcrDd6e9Jg1mikVMcwF1fkazzy69SzsZxie2QIlJFpIlJQMXEDoSqVE3+VEbgNhBdZqFBYpU2KrcEbRcSEVMrQrKLKcOLl5orMXbnov9mKC4RpnzPcQ1QrTssXU1Vk6boXVyYJrrT6JTnn/oTWMWcWPNfPLU9T7KR9J/pk35FMs6kOY1LJhhpw6NMWzjx3akzNjrGX1OxdxgwTZDAi0ppGXI7vOd5iNFO/NGsknJoCzAFTkCjPhuwT0uNDRXB+EO/0HGXnBvf5/QhLjmrOYPMKmGikLVDNAdHZyh/dTuBUCbGMKm2ygxQaKdinxXWTl3hJW9+VOjzv/yXnifgNjKcfLESXnVvfR2WHi3hQvv3WV6829R/SE2BqNXow7HK7urQx7p1iYrfHJjxzlLFeovL9BsxDE0pHjUM4RjQzqz9d8PK1xzlEYR6efEfjqA0m1by9UTIdbhQq/AGkg1ZZQeTuSNNhSBD6IPccDPMCd4o5UE7fjxRdfZDAY8PGPf5yJiYm7cUwP8EPCfuNT9xJCyB+Ja7q79l5pnnqL0ZH9IIREPvtz2Bf/GtrLOyuft9go72fsNb4H5Vy+c45+0WPSvzkJfS/cjkzw7nuiFcAjjdk78nrZLTu/qbh15vS/o/3eKyysrhLmIWIwjRWCXMBEYXmqnfJaYXGexFiLs2MhwhugZKlwYK0j8CT9Qba/Nxq75PKXX+Dh5BOs+EMyZ9BOIhkpETqL8CVzSYBbT28c591Dsnq/++1WI6KuWuC1b6wQbyKzBZ5UY2+2/byBxtdQS7QVTCtJ3xUIsTtYchhniVSAEgVPnK7wyiuCNDM44XDYcozKiVKyPJTUKprAVwR66/jKqrhgTv8sV8znibNlnAiwysMWClV46LxCbXmetLZOUt1gMHm1lEfONeFQYogoal104xtMrte4vtZEqavUjr2OV18FWWCcQE5N0W89T2VwhKIIEVZjVYEy5TkpuWyOwjnESDUv0HVyERKnH6OIa4Aqv9tPiForeNEAW6RkQlBECZqrnFh+Cz9P6VTqpRqitcy5c/TlGYauRiPJWK8HXBeGlTyhFUScmq2P7rmtgHovw3BPKk42ZzjVnOVsZ5krA4+ZJKKIYvxM4UsPaRNwBidg4FumBh7P0OdNNWC9CIlFFW3lHYsD7HcvzpgVzpjvsdDSMBLdEH5EETa52HqHTBWENsLPFAOXkVQzLh1d5ujlWSZNwafSr/KFY59ixasyIOfM06dY2MPL9Fx3hVfefocnFw2Jtth4WArSBFWqnj8uJAyWu3zxzUtcixKmgw4t/QaQkJiQzHrMSu9G/8GRF1yujjBcOkyRheVo5+Y1r/p427jDN1W4TRSy1SKqLSGSGIbdcp86dKzcW/bZpzY7/9+59u/JWUHpOg4fRAaqB7aCHvwE1chjo53gnEZX/FKwLrI7aoq+1PRsOi7A3G0szNaY/8VHWXlnheK7y1TaQ+JBjpMQVzVnQ82aKgNTIQRSQpYVpP0ew0IyO9u4I6n2/QoVfWnIBPhWMhVU2b3FbCoC77bneIAHuJs48N31p3/6p/T7ff7kT/4EKDegz3zmM3zhC18AYHZ2li996Us8+eST9+ZIH+CuYr/xqVn9aSL7yL84MujN4K69VyZQBxgduRnEwknkJ399K6GLD7ZR3s/Yk793GwH/XrilTPAjz96ysyWFuKEiu5fB8vb7c7fs/GblfXkt5v/7VswTV6s00pCBEohRu8sI6AuoFo5TccFKwysTPg3GbI3J7TxnUBiHlIJmPSDL7U280Tb/TymX302ukkdrzIhDrGUxqSkonB17+ExFFfy4NEiemdlnnHcbF+1m2DEimhT4cU7TUwhgyZYG2CtJn7mojpRb13c7H2/Tm22vkaod12YUsDw2fZx/zjS5TZEiGHO/jLMoIWn5PlIKHn/4CPGw4PXvr5ZeYU6WY1TKYHAMyemlAp3LsYpjVfvjqvhM9VFmwt/gu0t/T6wu4OSANFI0N+ZorB9heeF7FN4Qq0f8KCOxOietCqI4JimmsEEPqt9mMnsOfehFnBeTEYINCZUjrHa49PhXeeTtTxL2DxPGkwxry8hhKRAhHeRSIKWgGHUoo5Umvdcu4GwL6UrjelAUaUR/9TC1qSt0vfd586k+pv5tGi7n6rEha7MBMyuaeq9CZg0t1nhSvMVlHqZv6+hUIITCWEcvTXnt7WW+++7KDbLe2w3DdxcxfnruJItxh/UrOVd7f0cRZFgTIAqBEYYkcPiF5GTnCNPegAV1tuR7TTxE9DMfZXrizuW8bxhXHqwy8fVvIqqVcRIGpTz/e5OLZJ6j2hOIQGGEQBmJspIszFme3aDemyfKEmpyQKdRpZdkxCYff86mj93ZzjIvLb7HTFfguSqZLhPjYZGzaLrMVxpUPR+UJE5TXFowPVGlrr6JIMXSwpOQWUM7KzhSnaVfLPPuxj+ghU8WvwNSItceBquRuih92Zwsr3l+nFo0INjGHb6Vwq238JHbntyYiR7l4eDXWV/7L4hoDcSgtCDJDqMGP4FMjzLIMuK4IEoaFLLUnBKRRc3myFrZCd9dgLkXEEIw+9gs7tEZrr69wvdfv0ZQ80kijc0MspOUzzkWUeQ4BN12Rk0kPL3+Fiw6uIO9dq9CRTdUZM2QuYFPpHcWmbYrAm+357hd3GrfeoAHOHAi9td//dd87nOfG//9+c9/nq9+9au89NJLPP744/zGb/wGf/zHf8zf/M3f3JMDfYC7hxvHpzy6ccyl3jtcKC6QL/08Kjt2V7w7ftRwzpaJUxJDa3ZrpPAOZefFwknk/CN3POJ4Py7K+/L3Dhjwb8etZILvlIOwX6dr8/7ckp03tOr+1ujJSHErXR5QTQ2JHFGBXCndLdxo1E86GgVMFIaOACvBCTHyGBpJh4+Mat3oc5u1Mqkwxu3yRvPIclNyoKTA90q/PC18ElFQBBmNTPNQdWKciGlRJhwuNzhtxhXYDzrOK4SgGRfjoG8ty+nZjJUoR80n9CoJg9G1avrRvny8m5mGbw9Ynjh+kquXv8zK8ByJ8UqeIYJIeUwGFSxtmv5x6t4Rzocv0z25zmTahFySqpxFucrE0jR+FmClQQpRBs1xh7moQT5kzFES4lE+dfQkf//yy6z32tTDOqLTYmPm81gvxU+rxEFcJnlYcuvhlCWvWMg8lKvjNzaYmX6dHIGWR7E4lJCESpNmhvXgCotHX+fUm/PMXn6WK6e+Qha18ZMKVmiGgcOxQiTrnGr9AsMvXcclBtGs4TopIi9AW6Q22NznWpHy7qMb9EJFbjW+0eg8oV/NGIbLHLk4g+popJDMiDYzvIbJNF+f+Qgb8RTSQaELwopAObWnrPdeRYztrx9+9FeYu1zn7NLf0ZUdksiijGOipzm5cZhpNwNFghh0mA6ryI9+FDH5wfgxm+tekhYM0wI7GGBthSnl7+g6d4KYrh8TFh6CDKxBjHzRBOBlmmGUkgUxJlWknn9D8rDZjV8cdFhN+xTWEogIIysoK0ALfKnIrGEtHZRiGVlGisGLfJzYQImNkdBMeXRKyNLn0BoUHtcGr7OenEeYAnc6o9KLOXbtUSa6I76msEgvw2Yew+QYvl/Z8TtvqXB7B8q7M9VHcdf/LaK6hvazsV1FmlrWOwOSrORWSSux0iJ8h4sl5nIAD6WIqhkXYOaiOu304p5rzn5m7bcLIQTBXI1u1SPwJL4QhIFmqhnS6cRkWV565wnBlB7yUXWehY3L2Bcv3rFn516FiulDgv6LF+7Yg/NmuNW+9QAPALeRiJ0/f56nn356/PcLL7zAZz/7WX7qp34KgD/8wz/kV3/1V+/+ET7AXcWmXPnm+FSaG1Y6w3KRdg1U2Ea0vg3LD31g7477AqPREapNbpg7EHcmOy+EvKON8n5elO8Wf+9mMsF3ykG4Wadr8/70PMl6e0g10nt3oxh1MNzIi4kyGXPlvyiAEEfdJvSdV3ZQFBjsOBnTWtCsBkShxhuJebR72Q5vNFMolvtd8kyPEzffUzRqPkoXKC8grDaxGzmqJQm3jd3tVYEtg54ugyKiqptM+83bCgo2BQpsUpAGsKiGCAwzfc3PXqgTntC8FXZYHvaI84yqF+zJxzuoabiUiudmf4XXlv8jcdFDiTqeDNDS7uiwXo87mOXLPO4sNihYb7VYjduYwjKcGuAte8hcgQBPafLCsNqJOVSr7+AoSan48MkzvPjKZbrrhqKximttILImqV+OPAlkaZBcupIhdAEmp8g1TnUQMqcRzqDlzi5A4CukbNJubrA+1WZyYwH99ie5fvR14vo6qRoidMBM5QSnJv4Nrf4R2ks/wCYFGIezTbAGmeVIOUSIIReOXiarVGiEh4iHPTKXoqwkTARJaLh+aJ2Fzgy+HP12U1ARQ4ZZtbT9CsFai3GO6APIes889HNMHf4knaVXybJ1vEFGY+kqor8EZvWudvo3172l1QFxkmOMQwlHJD7KoWGfM+EKC7oHQC4LjLSE1itbNtYgddmlttaVfDbhkHZIz5/CS4dEaczE7DHmK80d3fhAeeDAk4qrQcpikHE49omrZVanpSQ1BWmRYwc5q5Wc5aigagaleg5bnV8pBMZZUtMnLZaxLkNpn0BOkear9BorvFPt8uh7H2GiUyZjAodkSEGLgha7e0y3q3B7K5QiPVWW18S4GJWkBavtIXlhR99ZjvdmxmFTgQgNFJJ8SdGd71LxfJ6fVrx8/f/YU2yom08eeOT84Me8U8wlCBQzboPM5fRknUnZ45cr7yAlEM5+YM/O3YUKV3GY5+cpvruM7KYoOLAH525sL7R2Bilvvr1Cku2/b/2o933n3G3Z3TzAvcGBE7GiKAiCLUf5b37zm/zO7/zO+O+FhQVWV1fv7tE9wF3H9vGpNDest4dk+WiRlhJb1JD+CgNzjab/EElq7ti7477AfSI7f5Bk4ke9KN8N/t4OmWDnmOy3CfKM1PNZq7bwUp84tiyu9Vmo3DqpuFWnazMIfer0NMa6LbXDbUjSgjTLKUMrN+J+bX5vyYnTOCygVUxdKIY2IrMeTqhSrEM5osAnCstrl+/hjTZoTzDoNLHeNaScGo3lUXZW2jFRvc9s9QSzTz5Df/XiLSuwt8Oz2+/cxa9ewyYFshmwFrcxGHxPM/CgFsOZxYj0KZ/FpMtMWONXH3mOhWprzwr3QU3Dyw7r/zbusBoX4+yow9r6BZrvW/pv/id+aeMSvuxglWKtUucL0/NcbkySRyndmQ2ijTq6CBFGoIUiCzKe+FDrhudkBwcpHSBdAWi8QIBSGCNBiJH4igAMQlq0V2CsIM1zjJYUrtjRwQRBo1JlI+7y1pRluloj5FGy9mk6gyWCKOe5xx/m1NyjpTXB29cwvQxwCK3KTo7T2ELjRES80GZQ7xGqSXwvYNJaNoBUagKTozJFXskxNYNMyhZsJUt4v3aUpAhBl1w6KQR6NEq6n6z3QQIsKTUT8x/dul8eL8WMXNJnLQtIqpOEgce0cx+oI/DiK5fpxzlJVuCsQymBdYKYkMVC0E0qfCK8yILu4VmNshLjcnQQlU7eeUYgFUMMhgJdGCrDHD3s8JNvvQxKU9tYwzUO8eXe8rgbHxcZDtAjVc5X5vpMXGxRixVJAIUUiMKStYf0ZM7Ls12uDnNqOqWqHFLkSFHGPNY5BILcrI+TE09VEIVAuwg1FAwrXc4de51jF57Ezz1qnTpSeeDXILV3dP5uB7uFUSqhotNPMWbEv6RcN5UslUqzwmAzSeEX/P/svdlzZdd97/dZwx7OjOEAaAA9sLvZHEWRlEhrsCY7ViTLvnalcnNdlXJVYlUcP9iVB5fz5PKT/wK/uJyUU86tW6mUK3ZyfXWvZcu2KJG0RUkU2ZxEsdlkz0Bjxhn32XuvIQ/7AA2ggW6gG01SVn9fWATQGxtnr73Wb/j+vl+ZSGbVGD93VLLY+8auYkPfm/8/eK/7BOvZyB1Tzm93z5WSRrkMkxsSWaYiM34uvsYmc/oOi6d7YVtxVHsa9YCxUsCZM03GH2oeaN1vvZaxjn5i8HjGG/GmdcNheKIdFrJr7c29fINa/lExsf5Zw74TsdOnT/P8889z6tQpLl++zLlz5/jCF76w+f2rV68yPj5+T27yPg4PW+lTq90UY4v+gBDD0NRphLZ4mdDu5YzUwjv27vhI4CMgO7/fZOKnNtnlBl1lOenigfGV63zi2nlGey2Us1xXk7wZPs6SHqMsG7y+tsrCxey23cDl9eSWna6NIDRJza7eWR5odTN6Aloaxgx0FSD8sCMmYCib3NU5PeUIcIQiwznFajxCLhTpRJfjYpaka3f1RvPec/adZdL+s8Qz/wDBKt7WEAToIMPSIRtUODP7FaLyCOJLcntCoyR2NCZ9cBxX1rRai/z1hbN3NWe3Vekwc5bUGvTQs0XbYj5uZE1QX1SktSq9PCsG5IXYk0K7X9PwidLDjEenudr9If31C5RdxMTa4wxe7NCaW8bbabyYoa1TsvgKzc55/k2vxd8+8BiX66MMSgP6UUJZjaMJ8MrTpkNpZHfFtI0ZpIvLOW+slwiqmlJQYyVZw9BDiIAiFN3ilaW6MBgnVy0WB23w0bYOZhxqdOCoxGUq9VHWMjHsZEsma6e2CVd470nPrxb81UBuziAW0a/C5440T/DSknvJ9e4aqS0CtfW4zGTSpWIdSSQIQoHoZNSHBYx3Jk/DKiDBOEdJB0W3Z4idst53GmAJIZnzI7x6IWN1vY91vbvq2t/Y9wzWuqI7NZxRLERONM7mDIzltcEE06UWjY6kXpOsVQ3VSiEe5NvLkCZoZzAlQ72liPoBK1GEkYoSMLYyR/bc/42aPUl9vChkKCGHVOIiiVoYsfyjaPH5pRFG+orIejIEl6sJb8wOWKp4hIHMNeiZGlW9jkWjhBwKzXisHyCEQMu4sJVQFpTEhJAHOYPSdXrlFsoElHoNxq5/giOJvkns4V4JZW0tSiyu9BiktqB1Cgi0LISGKLqBUguMc9TiEjb3fHn6BFez/3MPsaFJrvYuUpJvoOMbM8OHIXu/U8zFpgbpNRO6x5PRwma3dBOHVDy9uTgakBvH+4lh7r1lvjha2vea33mtwEu6/RzvPSutAQ1bFAmVFARa3pUn2mFgK1NCVgJkJfjImVj/LGHfidjv/u7v8nu/93u88MILvPTSS3zmM5/hscce2/z+t7/9bZ5++ul7cpP3cXjYkCtP8gFZXnhnOHejP4A04DXClchN4etjnb8j7457gQMfYB8B2fm9kgkPpM4gAsf11S5LawmTYz99ye7Ozs3YyhyfvvQTas6RRCUW5Qxv+ccxVjNiW/SqdSpxuK9uYJraPTtdcCMILYV6V7+iLLcMshwv4FxN8Ym2oeo8A1FYhGk8sYNceK6VB5syiV4ItMvAg6w4BvWEJ86MMuZru873bTzjcngS1foatvI9XLAEolsMzaezpKvPwNHjUN4+I7I03+HtuRZzaY59fxl1cYU12SWtO5pjdz5nt6F0KMoBgyzFG4icpJJCoSkgkB4+/mPBGyNl5uohV0Y7iKq+JYV2P5SqpeQdzs39P7R772FdhrSauPV9jnUfo+KbtHUF4yWRKUNvlFdqJ5g1Z/nM/EUuVxtY74m1JqpIhHAMbE5gtosI7GZH8UDzDHP5cdbSi0CZSDZJ/WC4rykQObgIVA9vS3SufYqw+QpRbQHlIrwXww5mwmgjxsh1mpWTfPr0p1lppaSpJQwlguLnltb6NEdKmOU+tpchIgW5w4sbXSSBwEuB7geAYjVbQVhBrDRGB5gwZhGo5120tUwOLM56rlXqvHXiEVZLDfyaxxiL0pLxuLpt3mirrPfdBFiH3bXfeCeCQNFL8qITM/xeYQGhyChRwbJqS6x0Mpoq4cH0EV6bWqCru8RqBDVxlIXWPNZ3aQwEs3NV1qvjaCkIEaTOck6OUkk9Z64s8KPxWaB4XyKlGRhDMLRJuFrLeH4q48ggoN8d0FOGdg0mSlWmrGa+18I4z1J6hkidJWCd3JVRMqAaQGoMSoZUgyE9NlSYKKMbrOCExXuBMBVwmtZIi375e7TmBIPwBKep3Hg39vAZPAw/zY2ixFvvLfO9s/PEkWK9k960VwgpEE6gvUJrcHqBdm93saHUWVIbUVJtvFvDcqPofhiy91vFXAaL1wm//xzj2iL0vSmeHmZxdLdrJWkhdy+lIDeO5fUEreQwIVbUKsGHFldtZUqokejGPvURNLH+WcG+E7Hf/u3fRinFN77xDb7whS/c5Cs2NzfH17/+9UO/wfs4XGzIlS/13sf76maFrJiU8cigh+0fwacTeA95fufeHYeNOznAPgqy87slEz2TsTLoklqDcx5lNP/v+bN8+ZEzB6J3fBgWBFtxk0KiiPjS0jVKJmc+KhFKyfucIhUhJbpEzlLKEnQgCXV42wMvitSuna4NbAShcax39SvKMotzRQNkpQZnY8WZdUcj9QTW4gSsa8HFkmEtiIhJUVi8lySihlAe2xwQKEU1iJio7J4ob33GMjuBzI7h9SJeJghXwucTpP3tZqRCCJa857tX17YFv/0sI217KskIPsoQVbft3+w36BGxxnhPZ6VH4jylXFPPC9l1y1CoBKhaeHrd4rzmzddWeUe2cI47DsaXknd49er/TtZbIE4lsYhJbUynvso7j75E4/JT6LRBkIe4zihlp2j2G/yo+ixPpi8z1muxVGkwHhVJ324qjreyo9iqAqpkDZ+NI8J1kAOKbliMyGZpX3uKQesIzkOp+l3QqwhbQwuNcTmtZI3R2ihnRr9aGJGOlplb7PLDN66TLfaQxuG0JJys8PRohcB6VCPGriZgHF7JIrH3gPNUOmPEXYWrLFFOFAhJrjSdUpU0ilkLB8R2iuZnf4s5Z3g5aXE96ZDbDpVQEaUhzVKZig4LuX+9iJd9+qlmYuQE442Y9ovnsIOcZKqF0QMCW6KaTqCCaDPA0tMV2vnVbXsGiEPv2m+8E6ESBTVO7exoA0IiRiZwSUb28K8gjzSYbM7w9OBdzq19k9X+FTKbkgqDsuM89H5KmNUww7101Y/yvjhJx1cRWiNshnpX4o5KZNUxHlW5blvkzm0mItY73g966DFJ5jwjUdHRLeuQ6UqD5UGPtmlysftxpkvnGQ0HVIPC7NfIiKqeJFQbnVAYlFtFwcNJhPSARviQUi8gLbe4fOIsF+aPcbI+wcrg3C19Bjdl8feJvfZ/IQRT4xXiUBFqSagVWW4Rgs3n513Bhklzy8xElXI5wXVzlLiZxm+9w6GQIkWQ3vT9w5C93zAH9yMP4M5Xi+JpeG+Kp/tlWuynY7XbtZQUmz5oDPdZOfzss9yyum4pl/SHElftxxPyvon1B4sDmSN8/etf3zPZ+tM//dNDuaH7uLfYkCtvJX+BCFfB1RBC4UWODHt4G5MtP4MfeqGkmWVmsnpH3h2HidsZ5d7qAPuwZed3JhM9kzHfb2GdQ0uFEgIvYSFr70k7240qtjw4d08rq7fDbgqJY501JpMeSVxBAGu2QltWicSgMJXVCmVyyFJEGFhhBb0AACAASURBVN/2wNttmHvrZ9JLzBYVPXGTX5H3Hq0FRlm8gmUtWI4ljQwmOj2ssyyHIcfcOxg/Q1/USZEEPqeiuvSOazpBn+PlG0nAbtj5jAUSYY5sfj8z9qaCxl5VWSQ4bVAmwC4GiEq6LRa5XdCzEZzNZUu0SwuML42gQ0nJFknYhjWpEpBLaAdQMfBI3/FDZUiEZXaysilpfyMYT/mXN6/yxCdGqQbRrmppm2JAyTKVRCGCCO8UysRo4ejWWvQeexGdxUgXEHdHmbj0MRqrM0Qu4n35EGWzylhcoaQDBja/ScXxdnYUzS/+xjYVUB3mmLyC8rOo9GFM9zirKw2SQZEUp+1Zupd/ker0K4hoGYRBOYXpH+Hk5K9vvktzi11eff59ppcS6sYhPTgB7eWEtxttHvOeUBemvXZ9UChgDgVbhPQI1+fExYBzjyh6ZU+QOaQfUM5SvNKkssIV+xgL49Mcr4zw9S3qdMmk5a0310kTSxpdgMb3cXoRhyFqaKLqCRau/xK97ApXHvsRvdIKThQUr2ra5Pjqz9HIZ1lOz/HmpW/QEQs32ZasrmuCqCgSaSmJVCHTf9DAdOc74TbURp2/QdnkhgopDlQYEh89iRheO+/Msnb+V1nvXybzXdoZlPIqpvU9bDwAiiTsTf84OQGBT6jInNw72oMy7opGH8uoVEOOlBusDLqbf5fFcbw6yun6BM/NnSOQN97Jsg45Xg6JWxY5GGE9Oc4TH5tlphITyDJvrfx/rGeX8MO5OeMH5CLFCIFSDmUigiwEASYQpEEZoVusJJeY6z3GpfZtfAbX/o5mfGZfxbTbFSa37p31SsBq22GsRw1HII0tGDGVOOCpRyaJ9ApSBFifFbTLLVBCIrE4L/FEN93LYcrefxDF0/0yLfbTsdrtWlqJQhRq4/0v/jCkLP4nyx3OwXhjl47fPcZ+PCHvm1h/sLgrl7pf+ZVf4c///M+Znp4+rPu5jw8AE6WHeXb6f+Q75/6KjOsEJYsxirw3Rbb8DLY/i7GuqBKW9DaVsg8DO5Ue7+QAu1vZ+bvB1gNRa8nKoIt1jlAVynoYgSw7RhsRK+nNtLPd1BbrEwuoiW+BSg6lsnon2E0hMcozlLP4qEQJaLsYITQVaYv5JE9xoLpik7/dgbfbMPdGl2anWAbs4lcUKl56fY73FlZJbUaoNQhBK4JExIQ9y5hd5mFxhZQ5eqZMYAVCec6eOsVqoG6Sct8NN55xD1VaBDnYlI/Gi20J4wb2qspqKZFS4LWDROITiSjf6IplzhAISWN9GXflXPHFqeOI5lGWh52EdnaNdq+Pf0yw3h5l5sKThP0jmybVaphEdIPivwMFY7mgbhztQGGsJ9zyavRtTtv3WV5yvPXmRVTZ7yoc0squ0O5fIB6AUMVclkeQ65R+pY0TDiE8Oi0hUCT1Ja498j2Ctz/HiBljMRhjslKli2Bl0COQapuK437tKJq//D/RnC5UQOeWl3nt7Q5JZxytJK1uijF2uL4gUJJBe4asO8PYRJswyvAuprs2Sun4A0CRNJ/74VVOzfWIgFxLcgnSwUjuKC0ldGLNaC9HjUToqQo+c+AcXgjc4hJKreHyiKNXjnBtdol+ZYBTxeyU9BbMGG4g6OZFx2GbulsDJko1fvjeD+iVvomXCZgagY6oVmAgrvJK9y+wJzO88kSmhvIaKwzteJ53jnyL6fBJ5uqvYnNHOR7ftmcsdP4DbfHz9JNJHB4pxDb/toMEpru9E1oVAjdiSE/03hfdskCS5o6pZgldWmKx32O9JfjRq45B6qmUZtDSspq3GGTwo+CTfMy+QV11eN+fJCegTA8EKBRKekRgsbnCLyh0uSiAxCqgFsR8fvpBzjQmmS43mO+3ePH6e9tMzcfX4PRFSa2nkNaTi5CxVsDIs0cJZ+s8PPa1bZ6L1uU4b/HSYVFYWcPUi3fKaACNFAmOhJXBpdv6DLayq7SyK7cVTdpvYXJj70wGhnKkSFKLsQ7ni2c83azymadmhnOuZerhLGvpRapiats9RlIRqZSuGcEwuqNJdXPH+m5xr4un+2Va7Kdjtdu1jPVDuR826EYAOFese6WKpGylNfjAZ8T26wl538T6g8NdfdLPP/88SZIc1r3cxweIifIjfHb6f+H5N14htT2UL5G2RsmNwzqHFDA9UeGzT81+6Gp++zHK3c8Bdqey83eLrcnESjshtRatFN4CRiAUhammvJl2ttvcRm4MbfkCOmkxWp5BB0Vl604rq3eKbQqJQ6RBiJUKZQ1OBYTkaOFxQgEOvCuiX1lsPfs58HYOc+8mlrEVGxSXDXzysSMst/us9B2Zt2glEF4ycBF5nPGovc6k0Qhn6Ph15ssVfjB9koXaCMfL9Zuk3HeDEIJTD7Zol7/BQC8ilSu0GLMm6dKzxNEDNxU09qrKRiogUprE5QReFjzCIbz3NJbm+HdXz9PsfhO/0RXTIUsnx3ntTIdMG5SvYwYaqSzt0SXS0vMEb3yO2uoMbtgJ6ypBJjxKiKJTmTkC6yEo5kK3PufNDq4PGFFljM52FQ7JbA/n8kL9Wxfy48J5knKKkw5pA1AGpEflAbLfICu3uH7idXj/M3jd4HNnnuWLdb+7T9EB7CjExFFGohOMzJ5gJOjy6tsLXLzWHnYFBN55AiXRWhb1AeNor44yOV4mzy1K2s11ubTWp3GlReghjeTm73YKUikJM0diLDbWsKGGGUi8Ad/qIxkQNJaH76PHKYeyCpXGZLaM8QEy6jEV/ojX3pym9tBnb1rX0xNlmuZ16FsiZlFKbio8el9mKXsbHzkavWOoDVEWH6LyMfrBChcmXkRaRV0dRcobe4a0I3TMNaLmKwyu/TJaK5z3m/5t0+UGgVcHpqhv3feM9eTWkee2mEv2BVVLCkmpMUd09A1eur6AczndvseMj1LrPosazBBIRRQoEnKSPOaSeYAT8gIdakQM8L5Yw9IZiMo06+Ms93tkCay3UlTZc6I2dtN7PF1ucKRc50p3jWZcobku+PjbiiD3JKFnoC0VERCsZJvzdROzNzwXVwaXyW0P8HgfYGggVLxV9R4wOC+RlNAyHwpl7d410iIk9etk9tYiFDcXJmFgDdYLtBgjsyub+//MZJXHT4/z/Teu00/yofojRJHmyYeafOap2RszQkO2zNZEU4sQ4zMGdp1GOMJS9gTrWZ9aGBFKvafv4GHgXhZPD8K0uJNrWVd0TAMN+TApc87fEAOqBKS5+1BmxPbrCXk3Jtb3cTDcT3l/hjE7VeeL4pnNADcOPVHoqZVDHn1wnMdOjX8khjVvKD3e3QH2YWIjmXj+9cusrwiEK+ZHRNkVSdhwDmgr7Wwv6lpQWsGXVzBZlY7PKUWajZLbQSurd4OKDgmk2lZRXq2OsFZpMNFZZS1W1ESHUdln1dcIGCBsDlEZwuhAB95Nna4DmGHPTFb5yqdP8cIbl5lf7WIyhxMeH1uqs5rph36DUpbjBj2ct3SDiMeF4KvVUWb3kHLfiaXkHa7kf0Wp0SYbVMgziccggjnKs//IE+O/eVNgvVdVVgDjcZX5vIXF4URO6CWZMzSW5vg3755lPO0XPks6AjzeZpwvvUvWhWr1JKmM8N4hUTjXZBCvcOXUGzzQP8rAgRFDY2qp0EqirMdJQa5uzDhA8TMbHdxAaJAg9N7CIaGqIGWAlQ6dJeAdRnms8kincMIXBtmuSEgEgnBQpl9bYVBvo9QMpTjYcxbvTu0oZiaraC1YXO2jhwnMWjslN26TZqakIDeWNDMkA7ttXWYLhSF4HqhdE8BcS8LcYh4cJ15Ntsn761FFSf6EoKYIE8WFyTWsdqikQpc6HoHyFpPVUFGXNPge3315li8+c2LbmtkoSFXDUYyH3BucLcynjR/ghccLjyNF+fJmFV4g0C6mGy1QdUeQ0dZj37OS9sl9RFheIQhWMa6JFFAur2Hps+ZWqQyOMzV+cIr61iLKNh8xJSjHmub0MnLi2wxsl5KtYF0Vkybo6BpGLSLWnkH2ppjWAQtBSBIK1vwIR9ISPhRIDApP5DyoAOrjVIKIuB6y1k743PQsx4/Ud6XRSiH4hZmH+Kv3X2U56fHMhSpB7mmXPMY7lJCMlCsoHWwTMGjnY7zdfobVZAJHn2b4Fkp0yJwiVlvaH3gkfXp2lPHSCabLU1xu7079AzA+Q4qAUN16LmdrYTKxGcuDXqHAaUEiCJTA+Iu0siv0W+O89d4KWgnGR0tIAc5DnlsuzXd4YLa3bY0V1hM3aL2pX0eKofXE6Fd5bIuPWMelN3WsDxv3qnh6UKbFQa+18c+ch1BL6tWomB+WgjBQRaHH+g9lRmy/npAfhdjvZwV3lYidOHGCINidZ3ofPx24mwD3g8KG0uPdHmAfNmYmq3zu09P8+9evEhMUUs4lty2u28q131NtUSbFHIuskuWWLN8eyH9QienOirIoJsF58/jDfOadH1HrdzClKp8I53lhENOympJw2HIdl2aY1BNH+6e+7ux0HQQzk1X+3S8+ytJawrV2CystR8Yqm55Z77WXeG7l0h15dm2tUI/EM4jSxgyAR4gGGUus8TzeP7mtmnurqmxZBdRFmUElpa0zOgNLICS/vnCFsXyAlKpIOob/plVztKuWeCDBryBHZxHDoKuQo6/Sq6+SVZZxvWZhDkyRcAnvCYyjV9Z0guL+9DAhS21eyN4LBblAlB2itGEOe3MHtxEeo06TtWCBSiaK+VPlQViwEpRDmghpAhCFyba1ilQZViOFVTkt2WWCPZ7zXdhRZFlBt66UC4PgkRqstAbkZijkIMBaR7ubUauE29Zl6D0DCnVNyc1r1QqPBsLRmMZnj2+T91d+Ff/3XbBlooYkLWeoVNGjMkzCzHCGRKJ8HVleYbAyz6uveY48ohFxFZozZLbHwAxYNp7Uuk1Z9khpGiHFM1USL8Hnhaz6htgJ3uFjjyqHsOX+B9aQWoOSAUL2kMGAwM5RmXwVHa2AsMMZv0lOzvz6HZm/blPESw1JWqicRpHk3dW/Ya1/nUpfIHyPnABPHShDqYeZPkfw/jQ6TzlicpbKddquzJqIUc4gvSSSHhmXoD6OiIvnbo0j0poHx5p7J/XA6foE//bU07z8k3eodS3toLBwL+mA8ahCJSgS/g0BgwsXr/FXrR8PxYmmiKWi70qU5T+jRYfMllAyRAmHoEfmQhL3BF+eeZjRaHxP6p/3noFZY0wcob7Yx8dX9+z+bBQmU+u5nnSwuUfnQeHM4MEISdu2eO3K+3Tn7LCQF23/fbHeU4BlovQwzfjMriIgEyU4WWtuzi7e1LHeArdlxvFWP3cQHKY41UGZFge5lrHFnuIFjDViSvGNOPmgHbd7gf16Qt7HB4MDJ2KXL1/m2LFjCCF48803N7/uvefKlSscP378UG/wPu497ibA/SCwofS45wFm1xmLTg7Vvz7amKmMMDVW2Z68DLGTaz/X6e5KXROuVFgMSIO3AW4LjQw+uMR0W0V50Nukq1yqj7L+wGN85vpFTuU5Uf8in6bND9SDXFej5H0DskNUkXzs0ZltB969OLw3IIRgcqx8k0XATcqPB/Ts2o06uzUxlm501w7l7aqytVLE1z55GlG19ExGo7VC8/UXAYEVCu8dwguUEOSBx0qIrYc0IfQ5YaBIM1uwQH1IHnTJooxGB7q++HlpPZH1GCU4Xw6oVYojodXNqZQ0ubc4C8pKhC4otLcTDnnwUshrdUWvbIkzV2SDeLzOEU4TJTUkCo8nldAPHEaEGFGmVV/nry+c3fszvws7ip0dyDjS1MoBa52UzLgtl/E8fnp827ocaVboagnG40O2pWIewHiklow0i3d6q9qY9yX88J5VI0Ipgc9CDArhXTEzJQoV0eJN7xDn11lZEixd+xFN1YexadbOHKdtc3LnUSJCCDnc/3LMwFBSHikkulFGtMVQLGRIBY4kQioIt79L1hcJnRQOhEIfWaUk30SIAS6v4J3Gq5xqZYGLS/+B4L1foLE+A0qSj2iSR+vERxu3fU93O2PWrrxIu3OOOBMIGYCQyCwfKg9KyEr40jq+0kIkY6g8ZSzL6VWaTDz9FZIfr9DuekoVDVG8adK+NdAdb8QsrfVvWWQ8XZ9g9kjAWnAOU9VoqYiU3ra0NgQMzs5dpB/dECcqvnmUnM/j3SvEqo0SKc5LcjdOoJ/h1459aXMt70n9SxcJexmnL6zhW/8XfosK6M55qI3C5PKghUsVOguHi7CAlBZvNG/8uE/Z9KiWd1fHu5UAixByTzbFttnFPXC3ZvS74V7I/h9mIXrntVq9lNd/ssQgsyhl77jjdq+wX0/I+7j3OHAidvLkSebn55mcnNz29dXVVU6ePIm1Hw2/qfv414PbcddDWeHM6FfvuDL2QWKv5GU3rv2e1DUzicwnsMEcQowWSkxDfNCJ6UZFeSddZXT2QUrPfJVSlnNt9RrPLV3icgh1nxM6j5GGFdnn260WY+2Y0/WJe3J43w67KT/CwTy77oY6e5CqrO+skeYDvLNkQ4ofUMx4ZR7lJVZ6tHfgLPVqzOp6Qm48Smc4ETDfGIG2oppbNAJjHeuB4upYTDRd48uPFPv6xv2kxiGdxJctespsUmg3//adamnLczTnEp5MTnF+fIF20MUKj/QCj6feA+9z1sISxkuMABUmmP4UzjRphBmrprP5mQu4KUjaTVHN5xkrfU8aHqV0+os0d+la7exAppml08+RQqCC4j0LAkUYKN56b4XmaHnz8w8mKpSmqvhrbXp54ee10W2yxlF2HjcRsVTOmR4KIcANrzMxewa/Mkew1kJPCZyWCCPR5IWaWhiBkHjXxzuPSxUZAYNSE8QyLF6mtvA+4qmIqNTHEQMCIQShEGTOY71HCQiiCnJK4DOLtx4kDOgR08C4wSYVs1g7cigq0Mf4CeLSBSQJ1jZACrzwBEZSbdcZROtcmXmFKJ+h1e+hrlnShRX+6UyKnKke6D313pGeexEzZglECScE0jtCnxF4QyYCtJUQWlCFeImXAX0jmKpInjl+jNnSGN99+Qqt1FKR7qZA9+hUlW++eHFPP7ytUKWAIAgIUUi9u4CBkZ5529smTrQBywwD36STLvLzR2apBSOMxyeYqYxu2zd2pf4Zx+hyzoPX6jRdE+rbVUDlF39jWzLWCI8RyEmcfQeVjW8Tg2BoQZP3pkjaYziR0ajfrHIIB1MGPAjutrC1G+5GNfl2OMxC9NZrHaXGaC0+lI7bvcJ+PCHv497jwInY1k18K7rdLnH8wUtx3sdHC/eqo3E77voHIdd+WNgrednJtd+LuiaQqO6nyWt/i47WESrA++hDS0xP1yf2pKs47/m7lUtciUtbEh2HQtL0NxId7z1/feHsoR7e+8Fuyo8b2K9n10Gos7u9H/utyl4xGbF1VL1HiqJr4CkC8LAN1Z6kVTUFJVAq4qHJdaubktPBJ9OsuinEY2WeOlJnvBTQyi3lcsCxWG/7nRv3k6SGb869yZxdpVmqsLUXtKta2nCGq5k1GV9o0gp75K5PTyecn1wmL3kYZKTCgnSooI+3Mb3Wk/hc4q7G1GYs8/02b1y+ztVLyS6B9BGmtyiqzfU1r4mHWA3GcFEV9Y5hbOHCTQH31g7kWjslzUxx3SGFMwgU442YKFQ30baEEIx/5jj8w3lkJyMxHiMc0nti6+iFln+eaLF6bmGzeHCq29rudeYsjVRQ7yqWKwnC1PBSI4MApMY5ixUd8t4UneQkHsHL+TFkLBirStTyVR65HPOThy2SFo4yxRFuiGSP3FWoBmV6dpGYEXQQYnWxJ0SyxsnGl7jQ+g7d/DqKOsIFeJkTqx6pDTAcp6xew/nK0PPLY62lmQZIJ4hcnU68xCVxEc0ouqyoJ5InrkX8XXWV7yw/RzRxgtmx2duKKly59BZmYR43Iuj7HOUk2nsi76n7HquigZEe5RTORBgv6YuYyCU8NV3shbcqYhydqvLWeyv7NqfeTcDAe0itwTiL7hjy8ZDFUs64DDfXf2oNdjhPFkhNx44wWX6chxqTe/3p26h/qemg/+XvaVxdQYxMgd5dBVROn9r8PIWQjMaf4+ryZVS4XnQuhwwJGfTwJqa/+DTCS6zzJANDtXTzCMlBlAH3i8MobO3EYagmf1j4aRj9uI8PH/tOxH7/938fKA6zP/qjP6JcvlFBsNby/e9/n6eeeurw7/A+fmpwrzsat+Kuf1SwXw77rZKXDdySutaeJs6/yvjJN8jdAqlvbSamD458hcxNca61SEWHHCnVcSvJPaUf7EVX2U+iM9dv8bdX3jrUw3u/2E35cSv2Y1S6X+rs8iDmry78M6vJJRwJkhJjpRP8wszDnK5P3LIq67znW0mLZyo1HsoStPcYURTFhAeH59SFkLcetfQqIEWOz0EIQ7naRfpRHhj7NSbOnN4WCOwVLm6t7P5S+cy+OrjAthkuEcaMZFWgyoSB6tIo7zaucDXwSNUBNCadpL/2FCabhdDjM4FaLuEaOa9cXQIr9wykp7/228y9e5EX31pnYAXlakyg1S0D7o3g/aXX57gynyEEeFEM0DeqIfFQyGI32lY4W2f8yw/Se2WO0mKPLM/puJzrtZwLD4AZjykNiwf//Mo/EFy5Dgai0gTj5RxhM0SvxYOLTXqPJAx0jzyvIqTA+wFGtvEmJlt4EhCEWNo+4oXBCZ7VGSKMOL5kOT/7cbLqRZRYAxJAYfwkC4MH+fjEYyT5S3sWq0y/yZtr/4VcLOCFQXiNskfp5A8yCPuUYoOnjPMO6x2Rk4RW4KRAWEUuM3KVUJYTIGAQwUTb8d+//S6VwVVKvIQr1/ek1UFxTrx04TV+seWJBxH9copKi6KNAyI/YNR52hGY5Ajd/jQKz4Ro86R8j5mpx7c9z52B7ngj5psvXjyQOfVOAYM0ghWbYDNDKRNk2vPmRB+HJ3cW4xwrabcQyRh6RWmpKKtwX15aG9Q/376Ku96ByshtVUC3ilbE5hTtq1+iMv4aQWkFZA+cxvSn6C0+TdabRXiQEpKBoRLrm/alezGndBiFrZ04LNXkDwsf9dGP+/jwse9E7NVXXwWKF/iNN94gDG9sNmEY8uSTT/IHf/AHh3+H9/FTgXtBR9gNt+KufxjY2uEw9jJrgxf3zWHfD9f+1tS1n2d64subiV8gy7Tn23z/7FvMmbPMlSrMdkI+cb3C9CAi9LJQcRsrUf7EzAcykHu7RCcQmnYvY7WdUt/RcYGDH967GV/fKuncTflxK/ZjVLof6mw5/BTfuPQtSvJ1puIOUjiclyTmNf7TxSf4tQe+yqna+J5J/Hy/xfWkw48feIyZpEcj6RJYg9kwXbaW8XXFQ5emeOmhgEFvFYQBoZBygo83f5XHmk/f8rPb63OsRxX+25NP8dzcOa701sldj0BqjldHby6y3GKGq9mv4edO8n7tDGtlC8S4bIIbip/gtcclgjivYvA0G3sH0keaD3D2OgwIGRnZX8ANxTv17MeOsNoaUI71UAZebVt5e9G2NuYq8qUe//nds1zJO8jxMkIKJEXxYCyvoS4Z/sl9DHSMyh1jLuHJ8DozIxHN9UWenJ/gjZOCpe5lrO/hvML0jpDNP451MVHtMnUPYVKn5WLezGd4WF5C5hnRoMFq+ctIv4rIMpyJSHwdo3Omyo8wU/65XdfR3GKXs2djBumvU66voMIUm0X02+M0lKc8exHnJcanQEjkA8qZxlmDdQ6nMpCKMLuhyKhcRmWQo31CrxyxLCUlHRLtQavb6JikEoQOmZmvc+GBVbLYEGQK6yg8uaI+o7nggZUKcekCETnjnYuIXeb/dga6S2v9XUWONn52r9moDQGDhe9foL2wTuAKj7l2A35yzPB+qU8vT0lMhvEO6z2BLLqlnkLu33tP/xZFm5twhyqgNVnC9o+xvn6UoLKM1AOcjTFJk8LOoJgXLIV6s8N7N8qA+8VhFLZ24l+DavJ93MetsO9E7LnnngPgt37rt/iTP/kT6vX7qir3UeBe0BE+ithJK+vlA164/hLd9BJSrFPTV9FS0AibBLJK7lKWkvfo5f+epyf/h3s2UDwSncDPnaf9g/9EsHiJZ63BK00nOI4ffAznLIthn4lajRKKfLG36Ytzr5OxWyU6risx1xXVJCokzZXElLbL+cP+D+/djK/3mgnZwK7Kj0McxKj0VtTZB0e+wn++/AZ19S+E0uCo4LwCLBW1RiC+xwtzXa7X0z2T+I0AZ3nsCN99/NM8c/41JtsrBNaCAKMUr1dO8UPxCdJ3yoTRKioYYFVIqxwyP2hTC5f2VQzZ7XMMKwJbE1Cozm9+PjshhNx1hguTQa9FFh7F+pOQ5QxsTqh27AeF9RiBD6iPRLcMpM9fWd8z4EYIdARzKx1+PL/Io9OT2/aeONJEgRpK2R/M0FUIwVLF8ONSh1ItItoyo+m6EnlZ0Xc1QjGgTOGht2QrvDA4wefjS8xUUppzfX7xia9zvtTj9fOXub7gkCqlNP0yQWkFJQ04SZo0UNcfY7lzlKO2RIU+6wJcV5EvzuATCR48jkZF4o8qROXmYtV2K4wIwSxkRQAQ1jzrnYyZ3qPEE+/Qzi6hXY1u12CcxwtwKiUrtQi644SrE1AClKfWTxAIOiWN0wHOWjLXQERTyO4i6tVvo7bQ6jY6JqWRKdYqDaZXVrFygoWpdQallF4AgfGMtCRn5hs04zK4xUKEJa4UZr63YUDs5c+3gVvNRumZGn//aIfeWJdJWSEPPO0aIBRNXyVzllaW4D3ESm8KphjnCYUkUprn59/ldH1if2fdHaqAliJNLYpomQF5b6KwlRDFq+l9oaYpETTHynzqiWnOvrP0gcwpHUZhayf+tagm/zTgoIXM+zgcHHhG7C/+4i/uxX3cx08x7gUd4aOGnbTLSC4wFrxKRa/SjCyCInEwPmS+r4AYIUCgidUyry7+R758/H+9YxrlregNfu48cXI9qAAAIABJREFU7rt/iWmv0NcaGZVR1tBYn8C5jNW6J1WKlazPscooakRu88W5lxvtXomO60rMlRCXebQWGBweBz2JvRLBsXQzGdvP4b2b8fWtKGobOIh4yu2wF3X2Wm8dY14mVjmOEW50/SSOBqFcAf/PLPZHqIfNXQfRK3pqM8BZGJ3kvzzzS4x11phorwJwUTVZXm6ijEKHAuub2AFgBNWup0tr12LI1uJCWQUsrQw4+9oSJvfUKxGBlnTSlCtLPdyKoHG0QlCH3Fmu9tZ37XaLmQeRW2a46LeLYHLqBKXTX0S/YxhRmrVwAUSC8CVsOoG3YI1HeUUkNMEugbQHrLAkec61tcKcubLj53omY2XQJTUGUsl/evstXrj6Hp+aPsFTR2cQQuzb0HUv1b3dKv/eg10MUNZT8x2MUIAnFI6AAS0f81p2hOmohbBtRJbw0NFHKYlZ/qHzAvHMdxF0EWmE9zFe5vjyCsGJH5BfComWFddLFd4eREzNa5SVeG0xw5nLKI144UdXd13re1lhwI3kdm0949Pxf80F/5esdZZwVBCxoRev4vQAEIhyi+sf+ztGrz7JWLdJmEdY3cHrHiJrUOkfI3MNciQwi36/S/nH7xM9/uDms8mdpR7GvHn8YT77zo84upQx2pqgU7U4kVPrJkz3AoJSDfKVzbUjn/rFXamOO7GXyNEGbpVkb3SeS2MRKzu+LYSgpmNa2YBIK5wvxjKEGMrdxxWkEAc76+5QBbQ5UmJ6vEaeO5LUFEa8vjAMll4ivCAMFQ8/MIr38OzHphAI0uzeBtiHVdjain9NqskfRWyMU8wtL3P+0oDWch3rxL4KmfdxOLhv6Hwfd417QUf4KGEn7XJUrhGL7xHJDlDYdm4kYlpklOUaxtRB1/F4BjZkvn+BN1df54nxw52j9N7hXv0n8n6HpaiEkhIvBNaOYhhBiYTaICWpjpIOPYNirTd9ccxy/56qJu2W6ARCY64rXAoSic41OIssLaGjAc5F2MUxRCUDbn9472V8fTuK2gb2K56yH2zOfgwri9fWelwanCeQa3hupl4W/8YiyFGiih6+Q8Ug+iSt9DqvzX+Dj9X/Zx7JDa3VBeJKnbXaKKv1MVbrYzjn6Z5XKCdRceHzDIACLz1kgsp6lfnK9gBxa3Ghl6cMTM7Y9QmiLEKEjiQdME6FluljtSEwAWIlRtTT23a7xcyDyOlTxWxL2isq+s0Zmgjqq8/Rli8wWVrCkuOcwvTH6S18AtE/ilISZ6HXz6lVQjwOrxdJfJv1gaffGQUn+d7aCmVTQ6aexlAoqmcy5vstrHNooxFOIpcqdBYd/3jhMmcbS3zi0SmeOH7ktoaut1Ldq1Rurvz7ROITidA5hY3yDWErIaBMxqotsZIHNLd0OaJQEk28jFADRD6O8Fmhtmg1wtXwUZdo6nXkepV3TjxGfWUEl4MLc6QUlFTAeFylrII91/p+u0Qld4qTpd9gafE/ouI50G0sHp1HRP0RvJdktSXWTr/A2I8/D34SYatEa58AFyJRqMCCNOAEJq/S+f4yYmSScLa+rWOyMDrJvzz8ST52+R1Gey3KqxYjFIvlaSpf+TUmGpPb1s5+i1j7TbJ3m4263Vm2ca2puEYg9aZQR6w0iKKwcZCz7nYd5L26gBvzw+1uipY5aW6w1g271QKlBY1qxCs/Xrxp7e4s6B2mwNZhFra2fkZ7Ur/NGoErcTL7HGY5uS+/fkBsWAKs9K7QG/RxZYWenaTU+wyuf+y2hcz7OBzcT8Tu465xL+gIHxXcTLuEmNcJZcFHtz5AeYeQoqhgAkpYIr9OqZPTLdVIgxDvB7y89A6Pjz15uPTM5TlYnScvVfFZsumlI3yA8BInPKExRNbQkxLjh2a8Q18cPzCHdy97YGei0+tbyv0SyimUkET1OWoTLyOj5cIbzWlsOkZ38AgrNG57eO+n2r+XXw4Uyex41OdXj43Qzht4mlSD+I4Dkp3UPkoLqGmwQheeXlvvjxxBEbhLeYPqN8gM7W5GZiK68gJzr/4jIx3Bp7NrNPzrtKoN3jrxKJfro/TalnLWwAYWueMXbMxdiYHGJmIzQNxaXAikJrE5ItXoLMDInEAoEpNzzbZw3hMoBcLfSDbK7rbdbiHkNoEBKA5+NfEtdNLCZlUkNZxLCcqLNI59h+Tqf0VVnma9m7LaHqArV1CjP8ToRSwZVSeJG02SzlPI0QaDVspSx6GUoBJErAy6WOcInIZ0eM/aFn5ozrOw6vnWDy7wvcULfPnhM3esuvf5Tx69ufJvAQ95oEiVomQtWyfPNI4+kjRJYWpms8sRlFfQpVXytEqgNC4Al6dI78GDzSro8ipvPXqa9eAYlYUQE1gmyjXKOiBSweZv2WutH6hLlJ4iv/bfED/wl3hpEWYEYUKkcyjriLKAQaXF1ZOvMbr+LF6CNA2El8iwh1DDdSwMUllcPrLZfd/ZMVkYnWRhZIKx7jphlrLgLfHkCX7r9NN3HFDfzp/vVrNRtzvLvPeb7NxYH85Zd6sO8q26gDvnh5PUgIc4VjjryXK3y9q9xCeflow0PKGqsDyI+c78+UMV2DrMwtYGdqN+CyOprjc5evkp9Dq09Dn0WInS00cIo+4dJfE/S9i0BLBdBoMYm46gAwvRPCb4JoH4GiP6+G0Lmfdx97ifiN3HgbCbKuC9oCN8VLCTdqlYIZDLFIMZmsgKJBIrQHgxLEh6rPYonzHaa7FarZBpzWJiDp+eORz2lnEFkQ/wFPMBXuR44UBo8BnCW6RQ6OGB5I1DaImIP5gtYKtK5KX5Fi9fWgYpiOvXKM3+E0Il2LyKzRVCGHS8SE2vUgu+xBdmPnXLw/tuZkI2KoJrgwtYn6FEyGh8krHRX0aKgz+n3SiSmaiR2QCsLbqnupCcL3qpBik8EkmsCr+fQWaGSVzh84RPUayzIk/Tjj/F4+41ZtpX+Lm3f0DvwSepVU7jVERXJLgtHlZQFBK88OAk2hcB4tbiwnhU4Wp/jUiuUwsEUazo53WME8QqYOByrHeEqGI+zFAkHEMcpNu9IUONShgtz9B2GcnA4H0ILkDFLRpHzxK3HkYpwWr+Lnnj2zidYvIS1kZIaQnKiwT179Dns6RHZkgvO5ZbfXwVUmPQTsGgWAsusqSY4r1QAiNytI1Yv5bzV/pV/u3pp/na509um4sYq0f8zXPv0e3l1KpB4TnmDAZHXBYM+obX31niS0+e4a8vnL3R6VUhXniMdXRKVSpJD0wKqjArNk6gXEYU6m1djtz1iCOPyzS58SAkmQpQnqEin8PECb2oAp2i14bwhFIRq+2y5Hut9YN0iZbXE1S8jJdthBlD+AiroFeWVHsG6R0iK9NprLI6usb42simciA2xusEgQdjEFEJWS9v677v1jGZK1fp6ICyDvnq7MN3Xaw6iD/fVtzuLEtdTi2MGZicWhAd2lm3Vwf5dgnEzGQV7z3ff2OeLLd4D+1OhgeaI/Fm0h0GClW+Qj/6F15dWaWaCIwXLA0iltMzlPSJQxXY2o8q8EGxlfrdW1gkf3Wd8tooqhIiGhKfO7Irq+TvX6Ucv0sUXkPovY2xNzz+PsiEbb8zWPd6VmurJUDIBK0sQSmB8BpvQtAr2MpLyOzYbQuZ93H3+FeTiF28eJE//uM/5tvf/jbXr19nZmaG3/zN3+QP//APtyk87sSXvvQlvvvd72772u/8zu/wZ3/2Z/f6ln/qcCtn+8OmI3xUsJOqIkgRWCSgbcHFF/giCRN+U8gABLmWxKklsm0G6jg9Wz98euZw2Dt2jkhpBiYnlAqvuzjdQ+VVICenEE+JlC7mCXo5wVQV3fzgNtYNlche4PBuGaX8kJKV4NJRBAIlwHuJSwNq5S7TtTlO1cZved07nQlZSt7hh9f/N7r5Et47/PAek94arfQyzx75nQMJrOxFkYyYxrpJ0NfI0zoZOR5f/D4sNeERMsA4jZaedjfDOgi0wOcJIAlEmVCmtHzMteBRzpQ99c4y/12nRe/jH+db1y+RmZyBK55/7h25s4WghhMor0h8ofh2o7gQo3ibk+UfE6kE4QSyGlFLR1lf/TguPY4WCuMKhTjlRcGs3PIxHqQDsFWGWgca5zxpVszYKCkQ1CFaxutF4niSevNVvB6Q90eG5QXwaBwaJdeJeANTO4I8OiBbDOmlAWSyCKYEEFkyabZ7XwpAO8IspNMb0iofbm4GGHOLXf7mufe4Mt9BCEiyHCscJshx0iGFIERjVx3PuiPbK///P3tvFmPXdd57/tawhzPXPHImNVuzbFl2PChKfJXBaQRJbjeCRsMvzkujH5I8JEEnD8lLELQfAuQhSO5DGkGSRhpJcIF2J53Yji3L98qWZVEDbYniIIpiscgaTtWZ9tnTWqsf9qm5SFZRpMzI/AOCWBLrnFV19t5rfd/3H0io+Iog8RlqNFCVIWgtQZbgXE4kKoyHGeOf+bkth0JfVfC9AK+h6PUkSZqDG5CdNYggA6lwJijopoPCXcudh8ZrXev7mRKNDZWoNyxdl+PnCunsWnY4wjmMFCh80DEMV1BtH2MFYLBW0C6tYFQXz4ZUgwMIT2Kjjen77ZiY7IabyXC6MbUu4LnJo7x09d1bvtftNkG+ES4vdPn2Dy4RJ4ZapWiy9JMM56DZThgVgjDQGP89ssa/oEWfPK3iles0s2W0WGSm1CWyZXKmb6nB1l5cgfcLISQN/xC83idbkaiBoY/t55iVHrafAh6d7H6S0gzl2mW8XRw83eWzWzP+1LULtluFywtdXn3rKgsrPUyaogWMNwIef/Qws5P1LX9vv6ZT+8XmZ3GeFQ0fuf6IFDhTw3oLOL2AdpO3Jfj7LjbwkSnE3n77bay1/MVf/AUnTpzg1KlTfPnLX6bX6/GVr3zlut/75S9/mT/6oz9a/3pzRtpdFNhLsv2Hsbl+2NhOVXEEgEbaogBzAqQDaRRG5yCKSsy5wtI4KluCTCDSg3ha33p65iax91ilwbzpkFqDlpKsdBEvPUEmqoDPqFfGpYask+A8hTsxfGvXskeUAl1034KryGAZm1XZEhRMseGW1DDtPeTD3IwmxDnLK5f/jlY6XzBKnQcInAQhczrZFd5c+r959sD/vucu6bUokgJJGH2aqPpVtG6TWY0VCikMvkwwFJOQi9kyNaswiV9o/awF3UNE44j+8IbOyJbpqSHGahZaS5TNCiNDJfqLGQk5vTzFrlsbgmc0aZBi/Jx/fPc1np44gmaeUe9NPDGPc8Uc1UqNxccPFxmb+g6dhc9h+gcQAnJjUEYhKhZRsuu/2/1MANZsqLNM0uz1i0BlU1AcrQUPhVA5TvZJ3Dz4S7i0glSS3BUFGw5cKrGqjNYrKJr49RGWvVWeGJrg5SvLyNxDLIQ4bbG2eH3BmnxGFDRiAxW5lVa5Ns3s9LLCaEdCag0YkEajShYnHbHJyBPH+xfm+djYGP/LyKMsHsjomYz+hOGHp1ZJ+oasFKImDpL3Y6LYEPqKxz95FDm51al0sxnB+PAEWe6Y77VIbI7nCSQRuRvHMAKhIfMzwiQotIE2QUtJoDy4gf5pr1MiIQQP1EY4FUt02sczPk4U035hixOb8i04j5o/hhyuYJZiWo0rXDp6iqi2hNMWKQKq6XscXHiKhp7ZMn2/HROT3XAtk6Pr5T3upVCcrQz92Pe63Ro//SQHBFoLjHG0uim+LzCVl0D2IR/BGkc3zkiMQqkGgg6BfJPcTgHijjfYypci8mYfWfZIM4uNc2QrhixDCItDAJI8rdBtHaU66uHF764HYzN/vtDkxdFWTd41IhduBS4vdPnX756n2+1SydpUTIJFcaVb4psLizz7xAyzD97PpasdvvHyBeK0YFTUfB+zB9Op/WJzJICVhcmL3VSM4TwQXZzsY25D8PddbMVHphB7/vnnef7559e/PnbsGKdPn+bP//zPb1iIlctlpqambvcS/8Nir8n2z0z/bxy971O3fXP9MLGdqmLECDIbR8oeRuZIW1CDpJO4XGF1IRSRSBCSchRw9GLAlfES0wfqt5yeuVnsXe61mAlKLJkUk6WUs4uklYR28HEmXAXZMbSylJYSvBd6dN5ZZGSh+6G7IoWBphx6JDoBkeNsZeOg7IqOnFICTwZkrrtrPoxzjnwpWg+pfvy+cV74waU9a0LOzL/NanK+OFwSrNeBzgLWA53SjM+xmlxkODyy68+xfQ1Jfm2KpEwP0174LEH9VUq1ZZzskztBLx+hZ8aZVmcZsUvoxKPjRkCmEMSQ+ejFh9a1f+s6I6fXM4ZEGvH4/bMsrHYRPYmTwIAqq43GSku30WYsLBHlKW+tvMJE+H080QLAoItBl8iRQZu8P4JUCZXh11mNptFOo3JFrgxyNEYhSMz+JwC+qmByRbvbwRgfKcS6SZxzjtSm+FaBDeklqwQiB1dGaYEhRQgLTuFyD5v4SN1HkBRTOaW4b3qcC2aRuaUONREWn2XxAa+/hxLFFBsBnifpWEMvT7ccahtVjyTLi4kiDqkEWAGpRJYt04nintWcynfnafmrCC2pjJQYf2IG/3Cd8VJto6MdO5TUTE7WrkmJ22pGsECohhirlLjaXwHXw4iQvv0Y8eB3rkd9/Csec6sdrDJICb7QlFxArRRcU//knMPzJI/cO0Y/ySn5mjDUO6ZE6VybkdcljYOjtKpXEZFfXB+20EdJCYnXpR7PUE3GoSpp6znOHnuJ3E/wTRWZe+QyZzWcJ5r6Nx4o/SKjY1uNim5mYnIr6GTXY3asTcBvVCh+WIXk9bBb40fKwT3lQElBlhsycQXnLeKyKllmiwK+lyGdBgU22GhqGAr2wZ1ssOXinCzOafVjstxRSy3agkOgB00XHEVTxyj6rQn0SBOxfBm3eAl38htFETY0seFS6YeFa+XqwnrBdqtois45XnzzIu1Oh7F0Ce0cRqpCb257xFmFH3z/NEZ1+a9nDEnXYb2cdiwIMs1oWGWo5t9SrdbmSADfC/A9RZKagYZZgMjA6eJZfBuCv+9iKz4yhdhuaLVajIyM3PDv/e3f/i1/8zd/w9TUFF/84hf5gz/4g+tOxZIkIUmS9a/b7fYtWe+div0m299pHbQPgt2oKqL3ML6/TFxqYWWGsLJ4+MuCouj3yxx892Hq/TbluIuwFg6Wb3hgvVle+Gaxd6k5z0FjyZRHPDOD/NhnmD36KFfPLHPyjXl6xuEaPtpTBLeh07YXjA2VmByrcKVVQTg9KMaKSaEQxTUV+Bqpi0J3ez5MOtcmevUyebO/rnUrj5T43NERTjZ7N9SEOOf44aU3cbUM4bZqbMSa54rVGFJWkvO7FmK7rUFXfUZyQxzupEgmJiNqTxG3foHw+GWW3CJRrsjdEEc6LR5rXmJpOqFdtUjZwVmJ7A6j504g45H1J3WORGGLImVTxtDUWIVkukt2KUfHelBsOLIwIxrqkAQJy4lhPKyg3Gt4MhnMzPR6EWzRSJEjwxZ5MowXLCPFMiFTTE9UWamvsqQS2v0chGDYL/HM5FGO1sb29LnXvQMkvWGsvIQWowgkuXEFfVI4pO6SRtOIaJQ0ifCtQnoRMojwRcJaVWWNh83KOKuwzl+fys1Whop7tX+S1E/RsVfo2gZudkIIPKkgE4iyJfNTPFPQKjcfaj0tUUqQms2URgdGMNp1PL5s8B10Khk69CkjcZuy+WZm6/umxG03I3BkjASKVjbN1fgE3byOJ3OGgzIt0ac7uUplpY5KNC6DVFiysMfjD4zueh9fj+60fYIcvXoZFxuOdJ/hdPXfyKptvKyKtAprUtKgh2cqHGp+HIHECculo6+T+wlB1CDXghSLyAU6rhKX25w5+H0Ou2dh6cpNF1Gb6WTO5CzLYZL6FKUHnmLs3nv39KzcC7NjrRi7UaF4O6h3+8GaNlZpSZIVZjRSCjytSDODUgJnwYo+kJGmpcJsRIpBo8qAEdi+j6wUTY013MkGW4tz7xNFMUY4PCzaKKwoCrEMjecMAhDSIWROnoYY20CbdhET0JwvJmHbrxchiv++fLko9vdJE73melf6zDe71PM2nnNkm0xghJQol7BsS7zzvVdI/EeQnkBrXdBM84z5qMV0uXFLtVrbIwHqVZ/map8sdyjlEKqDS2ZoN4dvS/D3XWzFR7YQO3v2LH/2Z392w2nYr//6r3P48GFmZmZ44403+J3f+R1Onz7NP/3TP13ze/74j/+YP/zDP7zVS75j8ZOebL+dqrKYNPjk+We5evxl4toCVmVAQU9stEY4dvphhprTlNSLeKJNHJT4TxNHOXAdysoH5YVvF3sHQYVgcNBxznHyaocFLRka8ignBp1k5FrgVT1Wu9k1O223QzS8oVfpk6djeKWrkBehztYVP3ut4hGb5R35MOlcm8633i3oKBUPWfFwuSVb6BG0E37mc0doV7zrrndptU83ytA12N1OHpx1hfW72/n/r7UGtRrzYJrzpnG4ia02ypkxkAtkBfqqTjMyKCFQCJ65coHJrkT0phmrOd7WJ+jkozTiCjLtgygMHxwQOZ9x1WNU9LZkDM1HLZZUC3fIsdpK8PFwypL7GQhQrphiabGCJ1cJVIXM9rFuzWjdDYoxhZQZIsyxLkXOtPnszJM8dmAGB7y8cIGXrp5nJe2zmvb5+txpTq3M78llbbmVEC88iZ5sgm7iTK04NNoUqbs4UyK6+gTWWtLeGC4v49UuARLhFNYV7hVSJUgdk2bTXE2DLVO54/VxfvX443wtP0PnXYvOPXKVI6XERyEzhVAgx1NWs6KAmyzVeXPxKv0sQwfgCUWppIjSjE1GlmAd93YsvoVmOSMTOWncLaiBWjMW+ahN2Xz7PSztlkNX8w5wpd+hmyVkPceLl85BljA0HCBG0iLQ2QDKsUyHNxJ40h3Y0vDZT8beOu2r4jESH+L+q1/g4sjLdIMlMnKEkVRbExy8+hQNMYvTjra+Qi9YwsuqpAqkdeiCX0ymoaMC4uw8c//6fzCzlNyUJmctK5E44nJ4kNflIZqmhFl1qO/OMfpuzKOPH0NUzTUnVHtldoyF9+y5QLwexfF2IwgU1joWliKMteuGKXLAL8vzgpaLDclzBSJDUGQDSiGRUhTFm8hxmcaqghlwJxts2bkznDx9nhk1xFDuyNcmYLjiKWYlVki0zIsJOoDT2MwV1xwU19+1CswBy4Dk1p1l5totXJZTMim53Env84Sl5xQycfgazCDkXgqBrzSpyVmOu8xWhjG3SKu1IxJADzHcCGhHPTLXgryEbT7F5GjltgR/38VW3PGF2O/+7u/yJ3/yJ9f9O2+99Rb333//+tdzc3M8//zz/Nqv/Rpf/vKXr/u9v/Ebv7H+54cffpjp6Wmee+45zp07x/Hjx3f9nt/7vd/jt37rt9a/brfbHDz40Q0TvJtsv42KkiVUVxc4+sMTRJOrtPVF6K1QX6lTXa3hqKHkCr7qIKVHzQuo/eDfcNXhXQ8d1z8obbUbvt5Gfy2x91q3f9o6DrzXphQbhHM4IeiHikvDIYuDTtvYUGmdbrcUpZy80qbZim+5aLjQqxzm++c+S8/+PzjdhLyG7wVUK5DLZXxZ4Z7h59d/3rVuvY3zdZE2gPAVwitCqvuvXWHsF67fHU8Sg+1PDXjw+bo+bAOusN7G3zENu9EaKkuWo92Uk6GiUvbWP8u4b0GDHYsxrB2aBJNRh4moR9v3EUJSjj2OuYhT7ggdGVLVDp3H5GlGpKsEIudR8R6itbAlY2jNVKaiA/KwhxNmyyFUIjDOkdseUlgquko3XyW3rtAGDBw/nSh0AsLlaOXz0yc+xsOjswCcby/ywvwZojyh4ZfWtZN7cVlzzpFc6VJfnkaJLxCNfh/rLSJUjm8VaTRNdOVxks4sKrR4SqLV2nVuESikkEXo9+AjssINdDn3bXnf4/Vxjj41xpsTV/jBW1dZbvUhB6EEomQxY31WdURZ+9zTmOD/fOclrjZ7+HmNVici8BQ1L8QGGWQaYQXCCRq5pW4c7SAlUwZBMWETAvomYwHDxIKg8gGy+TZy6IoD/nJ8ml5bcOaMx0IzohcrqnIYs+JQE9l66DlAzezU9ew3Y8/FOS63yEoxKR7uHyI8P8NVO0ciImTqM7oyQlry6Mo+vhSkwxHOc7R8SVfklJ1COoEVkGvwMwjTHnHrffAPFxSwfWhy1rISiSMuV4/zYnKExGnKMkVLS57nXFlscfbFt+hNtkhKyQ4bduccF5bOsNy7iKfquwxDdjI7tq5hoyHl+wKvvMxi/y3muj+gn6/gyHelON5OpKkhTnPSzOKpgs5dSy0qN6QCWrootnqrw8jSKH7lKsqGyIHJiy81sUsRXo+sP0mmRsmC7I412HLOsvjKf6fpZlHVjGpb49uBdnGgyVY4LAKn80FDTRbT9mQFZmdg8lBRkOVpQUfcjk0sg1sFIw0Cg0HtuO4AchRCWKouQgqHsWwxRNJSkpicKE1vqVZr+xTeyoxazSPgHqb0TzN+5L7bFvx9F1txxxdiv/3bv82XvvSl6/6dY8eOrf/58uXLPPvss3zqU5/iL//yL/f9fk8//TRQTNSuVYgFQUAQBPt+7f+ouJtsX2AzFSX9eInOt96lcnWYWmUC8j60L2OdjxApZX0GHVagMQZB+Zrc8+sdlLbbDUt5cxt9khhqvYxjzRhtHJmWWCmQFspRzrGkRzwSkrzfpvWdi+TNPlmS04tzJrXAjJaI6oVO5FZSGWcmqvzS+LOcXRzlve7X6Nt5pOwipMeIf5R7hp/f8nNu7tbvRpHda0h1EChkNgnJDIQXB8WYgnWSXg4C6t7RHQeyG63BbwRMdlMOlX0up/k6RXJmrIop9ZgXParCLw4JOEp5jnaGVBSaKYlgWDR5NH+Ny+YYK6JOJGsoLOPpVR4V7zJDf0fG0JqpjBJiwz1TbWzYaxL2KFeo0CdQHnEeYl2EsGq9MBRYkI6yL5gs38fHRh70VdZnAAAgAElEQVQpvn9Hnt7AEXIPLmtrNE690OOhbgJLDfql/8TcgS69So6wJYJ8AqUNQcXw6SdmOD33Nh3Vg3QUdA9Euk5btSZEuirjFclPzRxkJNxZ/EkhePTwNI8cmuK1S5f53vx7LGcdqmlOra85pIeYmpjgpavvFkHtlRKyBDZS9FxKJ0twwuG8HGkFnvHwlMH1cxLPDDR1AiUKvZkvFakzREmC6Wd4O1a0d2zWMKVZQtR35MEYqvoUJm/gCY2LBGKhjVIdKPkYRga6npil/rt4IsBXFdLe6L4y9kSoEVricgueohulrHYSpB2hpkcRxpJKw3dKBqccajimMunQJU2UJkXQrtja1KgkbYQQdGWZWGpCKfenyRlkJbpyg9ezaRKnaYh4/VCrJJSzFdpyjGClQmVIk7tBg+Dcq/ysnGJ+3tEUF5HTfcgCul6fetUn9DeOQNdidmxmK9jgInrkZVR5HqHbgMNTFap6AiX9XSmOtwPOOV47vYinFM7CcJJzTy+nllukK4akXU9S//gsUS3g5IVPoGvfAL2CMzVwHlJmhLpDlpfoLT5Gq54glb1zDbaWLpO0Whh5hEgnvNdwTHU1Q1ahXNGuMcLRU44hYXDWYTOFViuoikM+9tMwdgA3MLfCC7bSE53bwjK4VZgaqSD8nH5SouyiLe/pgMQF1G2TGS6jgpws07iBgQaAFJLc5ET9nIPj9Vuq1dptCn8rprq3237/o4Y7vhAbHx9nfHxvD4S5uTmeffZZnnzySf7qr/5qvfOzH7z22msATE9P7/t7P6q4brK9Wd0xufhJgD9bp/b5oxs6oQQQATqMKNWu4JXL4I1sPHSvwT2/ltPebnbDSpqb2uh9X3K4laByRxLI9TVZBYmU+KnlRDNGvzpHZkCWPVb6KZm11BMI53u8GaW0Kj71ikecmFsmGhZCcM/Eo5wYf/iGm8H2bv2O19pjSHXhslhh8ernCWa/Cnq1KMbW3scKlB3hyan/6abWoIXgpx6cpF3zt2xE5zt1/uH8ycJwQSpSk9NVikxIfGsQXkGX0UnMA/0lHhXvsaxGSPAIqnVG03mE8hFP/jzigU9uWdtmU5nRoMwV0yY1Zt3iPLN2UKRNMV46TDedI42qOC9GiBwhiqLNkSGMwldD3Lvpnt6ep7f9M7yWy1o616b9zXexvRQdapyvSHNLJTIcP1fmvQM1ulUf5xxZZpkaq3Dv4RHyqMPraYrp11DOR6gUp8Dgo0SJ4UaAEU1ye30KkRCCxw/O8qCosvzKRVwzLqhzWvPe2QVqkznlyaKwtJMZ5qKHlwqEyHASUqGRVpMrw3x1lWy1jLICo8CTemOQKiBwkgTDMjGz113VtbFVwzREpx9gsgSvfAVX+jph9imEkFSHX0P7y6AMQkoMw0RmktnwMu+1My51LFJ4eHYSGzyEVrs3FTfnjjnnWFGQlz3sUkRXQj81A30d2BTKxrIcQLsKItM4U+Kii5hJQny5jFinrw8UOybG6IRKNySIfExlY4K3Z03OICtxWQ7RTEuUB0X5GlJnkTg8ZUjjABErgrLgY3HExPnLnDIOIwJK5S5u3IFISVJJc7XPSKO0TtGzIkHKrcyOzWyF8tBl3OjXcCLCuMF1JAOMjWlnl2n4B6jqm6M47hdr+0aj5lPtphxZ7KOtoy/AKNBOMJQ7am8vMfz0AU7lRxDLzyMa38N6iyC64DQ6O4BsfYKqmeJTR0eYHq3euQZbSY/AxijlyJF0fcvZ4ZTRvmK2o5EOYmExQiGNxVqNkCmlmRT1qf+83rRaM7didWGra2KvtYVlcKswUxkiOOQj3urRt2U8kaIGE7KEEE3KQ+lbrNYa5DMgLoFLBU47kOCMReaasHJ7tFprU/hbhQ/Dfv+jhju+ENsr5ubm+PznP8/hw4f5yle+wuLi4vr/W3NEnJub47nnnuOv//qv+cQnPsG5c+f4u7/7O37+53+e0dFR3njjDX7zN3+Tz372szzyyCM/rh/ljsRuyfZSeIwEOycXPynwZ+t4MzXypQj7/nl49Zuo4RChJLCta3UN7vluYcQOu243LPIRnC3s8LW8OS3DUO7oGkdfrk09NuCEIBYwlBikVqixEt0oI04NSEHPOSrWcbyX8z1P0jSWesW/5QGPe9kMNnfrhb+TnrHXkOoNjVpCMveLBOMvQ3AFyLBGIbMZHpn5JcbL9+/83j2uQZa8Hb+bzVrD9zpNkjzn/aDEYrnKoahLyzlSa5hOIjQglMeYaYJfgtoQMAurC7gLpxAPfHLLa282lYnylNGwQiuNiU2OcUURdrQ2yhcPP0JdH+Gb5/4LVvSQZghUD2QMwiCcwvRmsa0vMHb83vXX356nB0UDeU2j5CmfDltd1pxzdP/be5jlqMiu62dUHHjOESkIjGRyMaLpS3qxWReFM3+OqdPf4dyhhL7yyU0JZ0sIY/GFoTEkUJ7F7WLkshvSuTbdFy7gxTmyEiC0JEkyKiuGz3SrnAosy8MwnV1hNLrEUn6QrmhghMLJjF6YcHk0outHLJQ8ZiOfyJMoubmbDuVUcKWS49dv7qC0XcOU5ZYsi1AyABMg9DKNie+CSJE6wWYVXKaRMkOreer6XaBERR9EiQDjUrr5RbzJObKVnyOwR3e851ruWLuX8PqLizRX+5STlPuSDN8WDolIUFYQGEcqBWfrEqkKKpiIFSNxg2b6IGO17xF4bUAjRYQgRWhLKi1e6ohqCcpte17tRZMzyEpMcjBINBvFnHGucFJEgBJgAQOTKws8c/oHvMxTxMpnWCaoZJgsquEqK2jhkRnJQjNCSlFkzflNfHuQXmmYoUmw1vLWq3OUVhOGa5p243s42UeYKtLv4qyHcQLP87EupZstMBwcvS7F8Xqwzu3ZhXF931CCQ6sJoRD0Q4lCoAeT435uqMSG4EyTkUbIQnOGhvk18BaLn8OWIBun1cmZGi3z5MHZgp7qHIsr0Z03zQgqjMqIEdFl0dXxKKaiy2VDoh1THYWfK6pSo8pj6Lqk/NAw/oNbp62bza1ozhfXn9I7WAa3ClIIfvb+e3lh5UWqc5aerZOKACEsDdvkY9lbNLwu/zL1IKJqUQcTzIJXPFvzYtIXVgXPffzIHV/I7EePehcb+MgUYl/72tc4e/YsZ8+e5cCBrZ015wrFdZZlnD59miiKAPB9n69//ev86Z/+Kb1ej4MHD/Irv/Ir/P7v//6Hvv7/CLhdY+z/yBBC4I1XcAxjfxiDkaD2zj1fCyOO0hRkwQf3guWia2lqOCcQwq0LsG+kZdgViaHkKaLcFJkgSqxvuMY4PAHKgQgKel6nExfuWgNfvVhAPTMM54YVIYjirLC7/ZADHvVYGT1SIlvoIbydeWH7CaneyFQKaM4dwHoLSB0zVBniieMPbwnYvJVr2Kw1fKe1wJvNOd7Ic8bOvk496uI8n7JzKKnAFEG+NMZuOFlde+3NpjJl7VPS/sDd8BifmDiCFILFlQrJ/M+gR7+P8Jdwrjjoy7yBjB5Hth+mlbothfb2PD3blRuHBVeEDFd8RX/CwEDf3//RAulcB3A4KcmtxVnQzlG10FMWv5vhdTMmJ6s8ct84rpzS+vo/U25mjM6UWQnbeKkZBEJY/LyPi2J6fsBIeOyGdOhrafpyDa3QMpIojr0nUfYKD7xzhjx3VPXb5EKBUYymfSp5nxemHuN0ucoPpntMXgxpxII4gFyBNhAmkEh4Z9wxGoFruH0fXre701rrNgWtCqyp4peukBufPB4ZvL7AOI0gL9w0pUSJECEEWoQ0gini+BJp+SW8ziGk2GgerGXs1Ss+r729QJJayiXNoieJ6x4neoZaZtEDPV7Tg3fKimUpGdjxQSIxlwJ88QDdcgU58xJhdZ6iIpI461OKiuyz+cOLHFwaIow3GUDsRZMzyEoMFlZQ2lKoNzey7JS1ZNonlV7B9VKOj50/TT8v0wyH8VwMQiKkQi89Qhb8d5y3jLU1nNEo5VB+F2fL9K48wbcvz/G5Q33k6SUOzrVQQJQu05+5gkmr5LrIRRBCYp3DOYkQHrmNyV2MFsG+zavOtRfX79vMmh0at+1Y2zf8XkYpNmQDPdgaiimmRJY1ZrnP8dkqSyt9mq2UWmUc7xrxHmvTjOWViDS3CGC4EfL0w9PMTtb2/PPcFozNIEaneXThNC96j9NyIWVSNJamB5dqjhFheeqJIwxNN9Bj5Wveg9vNrW42CmGvOF4fh2c+w6lTL3Lg3JuU+ikllzCseoSTB+k8+DzNXpMo7lErBXhHDFlkieKcwNf83IMPc6DxY/793wD71aPexQY+MoXYl770pRtqyY4cObJelAEcPHiQF1544Tav7KOFWz3G/shgU7DyfrjnLdllRXZJ2g6rc6QUVLlKgwzpqhjjCHyF721sEPt1qRShxgs0o6GmleRkmR1ImgWBr6gLgUgThK9Iez1MliHYeD9DEVrtZynSk6RZ8XD9sAMehRCUn5ih8613MatJodMaTKdsL0OGmvLj03t+yM9MVDfZjB/ZU/f3VqxhTWs4Wxnic9P3MB+1yGfvp/LW9ygtXdpwlfNLRREWbjqk3mCCsJd8oyQxmN4BxpKDSL1A5sWkXhWRTyKQWO3ox+mWQnsz9XEkr2EvBTgDDOgzeW4IEp8fnlplvFRjerxCfGoBrMN5gizfcHWzQiCtI7QOowQPHRpC3h/y/82/gTn9Pr9w9QLLnk9tvkbnUJ8s6BHmPspKck8Qyw6+re2JDn0tTZ8euMZFvqPekgRxmVdqx8l0hjA+pUhzkPNILyeMU56YO8vyxz7NucYSLxzt8PRCnXpPECbF/dGUgrfLkm4n5NVXlrgw1Ns3FWe7O+1aJtRG0KpDiAztGlgpsXawl4kELSxKBDhSchfjiWIiL4SkVhqhZZdoL89RlrNbM/Z8hcORpJahmk+aW3JjaZU8XgkUYWwIHeSeYFEapJBgBGRFEbZW+AgPkngKl5UxaRkrQ4TSGBS1fIVKkhFXHWdH5hm9XC9y8faoyVnLShz91t8zkq6wKEfwRILAIk1KJgStoAx5EUswmjcZ7rW45E9jUQTCrlNvZW8SfemT9CbeQZRWkV6EkB4ym0X1PkmoD8FCRPTeBcpSkklBriWJnwA5pQj6FUHmCdaKTShC2x051uXkiH2ZV51rLw4m2Ql1v0RdhmTGMLfU4R+X3uRnD9/HYwdmtly/ayH22aU2wjqs3qo7Wts3nJJ0VvuceWeJVEvS1JAkfQJfEfhqS7zH2jSj28vIjSG3DmcdnSjjylKPn3p8lkfum9jTz3Q7sHYdzLzw93wmPsnr3n00XZXICZTNGFc9Hn/qHmYf3Ju+61rmVrcLx+vjHH3ml5l/ZIVs8RLlPGN0aAI5NktDSH51UzHesQmep5ht1O9Mvd4uuJbMAnbXo97FBj4yhdhd3MWtws1YEm8OVt4r9/xce5F/fPc1krql0h9C5R5OW/qJpmwE0iRoGVKv+mx29duvS+XaFMct9BgfLpHlFjugHXlaYpb7uAE10nZXgRAJg1LNoSia35kAkWcY6VEr+z+WgMft2jzbyxBa4k1WKT8+jT+7+yTrWrgZm/FbuYZ1A5h7P46750ncmZO47/wD+GWo1Hdm3exhgnCjfCN/tc+jVyNqmUVSwoky/VBxZTynW/XX6WqbC+116uO5k/QvSbzcIYKCRptbi9KSsVKZpF/oB8eYwHRTUII8LyY7m28hJwWedRjgncVVfuhfITIJDzhLgCNWGm/VMWFG6cx2icKEWFuUlQx3A+4d/sKe6NDX0vQFShMoTZLlmNI8/eMn8SpNPJmD1eT9Ec5deYBSTxP4huFei1p3mboX0hqV/PNwm4NpSLnr0V/yaQqH8GGqWsZH3RQVZ7s7re/JrUGrosh5ki6gpDxSZ9GeoFYu089XB6S9DOu2aiTLfpnMtikPO9qLZkvG3uHZOq/+8CrlkoIswcYZzlqEpxBS0fEcrTXn74GzpgBIxXoRhldcB0GlSamySp42sGhMmBWOkpU6lahDOc5pB11aXpehngfdVdBeQQVbuoy7zkRCzJxAff5/5NGXv8uLrQot61ESMarepxtAlgowAWoiI0xTlDUoaRDO4IQuTFUGMN0DtFv3oGsthJcwXBnCY3rQfHIc66aQGsyIj+1YJKDzEGEVyIywH5L5fkHndUXRXLh5CgRqX+ZVu5ng2K5ELoTU+hJjLC/MzzE3EfPEA5Pr19IavfqVpR6Zc0XDQ22wHKQUhIFmdaWPtBYRakarPllm6PQytJY8+dAkDxwbXWdHnHx7gW4vI83MeoyI0ALrIM0s3zk5x+hQ6cc6GVujFc6c/AbTy6+wbMskMiQYGWL8yWeQs/fs+bV+HNEDUghmqyNQ3ZlveyeEhH8Q7Caz2IzNetS72Iq7hdhd3MUmbHYssy7blyXxfrjnWzbgkSouSDFXNY22xO9N4EZGoLbAcHloi7PXzbhUbp7i2FaCV/EQ/mCK00pQVR8xFGJWe8g0QYgQJSzOSZyD0EJLQ0uLotsLPHhi9EOhF+zmvrRZm+fiHBHq69JQ9grrHJd7q7zXXUEABwchwbtthLdjDUJIuOdx3JlXiskq2wq6W+Dqlc61ka/MM5Q5IkB4EjVwzzx8qcOF2RorzjE5Wt5RaB+vj/OFsYd44ewcmc6x1iKFoKQ9RsMqFe2TYlhe7bO61CvWqyUizgf15FYapwRSX3E26hP3DGNDVWyeY6TCswahPOiEDJ+tUh8JyJTBSwyNlkPd98DefqfX0PQJAaNBhYviDPP3vAh+hMhLuLQEMkNXFrBHOpx771FGuk1KNsZGPY4cmOFz0/fwrfkzXOm10YtBQRErScZK1fUA3OtRcZyzu1KidnOn3QhaNeigD85D5ILMWbQUjNRLKJ3SNwLnDCCQYuu2nrsU3wv45OP3kPfHt9xLc1e7mDRBd5qQJ0inQDRwNsNpDyuKIjrPHU4Wa5dIhBXFMCiwCAGZsdS9DCUtUoUYA/WgROBrQqWhVEe0F4npkMXL0A3AGMDhXvt33JvfvmGumJg5wYH/4RifO3OBV+Z+RLf8fUywTEUaAieIXY1EfYy+rZALSTVfpqa79MQwziXrPQ3rwAlJ1h8nMB5+eWMKXopzyqkhUYKykpQE6ChH9RoszQ7TbSwSRh5e3CAtZQiZDV4zR8uQ2LQIVHXP5lXbTXBsV2Le35g2S+3IbM78cpcXXkm3FPYzE1We+vQRVv7f0wSdlGhARwx8Rb0a0OrEeJmlX/XIq4Ura+BrfE+x2km5MNfmgWOjQDHNWF6JyE1RhOkBfR0K6R1KkGWW7705zy9PVD+UZ/+1sJlWOHGTtMIPss/fTvy4Q8I/CNbosnlu8b2dbJndGnx3UeBuIXYXdzHAVseyYZTwMS7dl1PhXrnn2zfgscxyrJ1Tbxe28u0LD3PxvheJgytoO/6BXSpvNMUBaP/rj1A9j0AaYjShs2grSQScKasiPNNZphtqfQO/nbiR+9LNZjWtYbM4vhl3eenqu1zsNklt0bHzpOJIbYQvHn5kV2rImj7wVuJmJqt7xZpeyiU54WiJXivGmKKTbnxJkFpG5rssHapd051r3KvT0CuE5SKXTEtJoLz1Emut65kKQegpcsAmeTFh3UQLV4M/Xhn2yG1KVRa6pmZ1iJVKg/FOk1ZJDzJ0DGEUMKR08TvZRyF6PU2fsoLOgTfI/ASXVCkKRQHWg9hDhl3SqfN0TlcJ6EFY5nPTJxgL+/ziwSEuNUu8dlESNjSVINhignMtKo67fHajUbNLsPF2d9rA82mUHHHcRPZCJCXSsEmYNggrjUGTRqEIyFwXX9W2ZD1ubtwMBQcR4dbrJmhdRvZWi2JNKTwh8Y0hsQqVxoVGUegiBNsInBNY4YqsudDilCUzFiUldT0CTiNkDsYjkF5RhAGEFYwvUWmAf+IZeP1U4VS6+fq+Qa5Ycb+2uTq8gNIvUrV9PIbQMiChTytdwrcvcSl4ksVyjdlem6fKV3jZ1LfoiYw1OCFQUtKo+luuCZ27guqnJDK3VNKiy2+FYOriY1y4/9vE5RZBUiYXo+hKG0MfgcSTJUbDY/syr9psguMche7SAH7hVCmQ5C4nLEnieKdb7cxkjdEv3MPKN85Rjg2yrPFCjyzO0P0c60mujpe3TNZ3uzaTxBS01MFzdvu9L5VEWMNqO7kjqGUfhFZ4K/b5u9iJNbrswnKEp3fqp3v9fNcG313cLcTu4i6AnY5law8RLfbvVLiXTWLzBjy6Ao+8pfAyRz9wGAV+f5rDb/8Uq0d/RDrRJtH2A7tU3miKU3t6jOjfL1E1CmWKwivycubKFuNLyk5SJuaZ+6cGdJbdO/u3Ah/UfelGa9ssju/lKe20P3AXlEX+liss38+2l/ibMy/zP9/ziQ+Np3+7XL0266VCXzEqSrS6yUAzWAiRhq3jcyfGr/m7DQKFVgLlFKXrdD39yQp6pEQ+36HnKcrGoqxbT2pzAroVj4tVhYscnlfQwhCCU4fu41Onf0C932GxIYk8x6pwTK46RFjdVyF6PU1fJ5+jX20ibA0NGMzgwCqwOFwWIsMVUl8TlUd58r6DXO39X5xZKbroJpeEMw2C7lMQz+CkBj9gzZd0OxXHXT5bFNhxdM0CZHxmqzttnDZxfUs5qWGlIAlaGL9P7kdkeROiKVRYQkmNcRopFLlL0Ny4ceOcZfjMtxhxEyyqUbxBNlddpizZkHwtmFk7CAyeWkbomFU/w1s+iEAgHesT0bIbJcvGMd5lhBjeYh5RFIQtRspHqZ9eLorQoYmNAuEGuWIb92uLMf9blGQTKYcZCz0C7RHgUfOqrKbzTFeWmPzkLzH0/X+h0X+fQAecy2doOp+WlEXuWKBBaYJtzqe5EuQOQiWQ3RTrQAUKlztqKzMceeszzB9+nai+Qkk5fH+EkjfCTOUJJsoP7JveVlGamahLo9cmoc5yvwR6I0PKumLq7ClFUJK7amyCAw1GfubERpOtneCco+0rlqer9Kr+jvfdfm0GgSruTesQemcDxtlBhIFzN0Ut243ZAO5Dpwbeyn3+LrZiw434fVY76ZZ9e7spzF1sxd1C7C7ugp2OZZtxU06FN8C6C50xHL/g42WObpl19lamHTad4sEfHcX0YvxPjxHo6gferK43xfEfPIZ69xuU58+wGB7hgh1hTgQYoVFYpuwyjw5HzNzzMzfs7H8QfFD3pRutbYs43iuxmkQYZwuRu7PgFEpKlJQkeU4z6fHNa4QV3y7sx9Vrr+GZtp/ikhShwDlN4IdMjJQLTYgFiUP1cxrlnQe3Ney16zk+XCZ7Yob8m+8SJoauEmhfoaxDGUfuSd6fqpJlOS4w5H6GGmxHV4cn+G8PHaZmXyXzI5x0LKBo2CHunXyO8X1eX7tNg3EOW+7jpKEUCUBiEcTKFsanQmCth/USKlVF44mnuRB9dUsXvZ+uIoJL5GoBufIksjcJXoBrjCHCyhYqjnO2uCbj6IYFyJo77WryPlf+/RSd6AqXD76O8WK8foUwDclKLXKVsGouUs7HGC/dz3j5QRaiH+49XmTpMmJlnkcDx4umsT41UmSUyEnKMUKlyHILf/hddKmJ8HLqQpIOj2KXnqaujhNqf30aqLqfJKv9MzpYRSgP54KtBSFPIprfKArR7deo2D1XbPP9OhJElFUH68rEJmc+ajNdrlO2FmENVVEhc0sEB0fJe79M9N3zhC3Jg85hRYoJwXtsluzYYb79g0s7DowrmWGypJk0YNMcoQpTF+kXeU5+6wCjbx8knu6SEzH8zH2MTt17cxPqy2eZOvkNfnn+LDZLWfBmeMl7mrwkSFUAQG4tJe0RKA8n3TU1NtubbKtpzg9PzRMEit3u5u00sbGhEsONkE6UFcXn1mSGgVW+IrgJk6bdmA318atUJl8lk1c/VGrgh73P/6Rhw424+Lw361Efu5sjdk3cLcTu4i7Y6Vi2Hft1KrwR1lzoelda1Lo+/YANCY3btAGXSrh5n0Z05JbT4LZDCIl64jnEC3/PdHyKqXKDZTlEkkMQrzAaGNTH/zPMn79hZ/+DFGMfxH3pWlMHd/Ui6de/in34Z3klWyESCWOlKokxJAMq4pr/WWoNpUEQsqcUmbVc7K7sCCu+3djLZHWv4Znu8ln4/negNwFRBtKCF0J9FF8qcAZnBE6p6+aw7afr6c/WqT97lOyli+TzHURmQQm6VY+54ZB556gGPmZCMp/FjKmisNbMEw/9iMQJbFYnFD6VcpkV0eek/Xce7x/Y92Ft80E1vdSi//oVAioIp8i0QRuFcpKyEUQYjHAYZfFQTD3xLG/rk6TJpi563KO0uoy2FfKwTz79Dt75aUTah+XL2JFpepm3QcVZmisaA3ssQISQ9N8ro84Ns/TwS1gvJugPF5+lgSALKXkZSdCm4k/wyan/FSk1JxrP7X3KMAhKnqnEfMa+x+vpFE1TwlaW8Cdeo1JuomREHuQ4JIYGlhqQ45Wv4s38O8kVD5Ud3bgG2tOE2fOMHn2TzF4lca0tBeHYMliTF/flbtjmCrrdzMITHYQwCMr4QiCTPq67irMWnEMJiCuOXvuHmFOzWDWFHHUgC6MXlUnkecPQIbf7gXGswsS9E+iX5zBRhpNuMMIFYR1CCfRwmcDWMK2Eej5900XY2nOqXG4wn8bkJse3KeVeRgtHT2mUlIyGVQSQ3UBjs7nJNu4cI3OtPdPEhBA8/fA0V5Z6pIP7VCqJsw4zmIZpLRkdKu2LWrYbsyFTF+iG/0LUi2mUR6n4wx8aNfDD3ud/ErHVjfgOy6K7Q3G3EPsJgnPulhscfFSw3bEMHGlmsbZwoBJqf06FN8KaC92L86/jjCMLQDiIy0ukMsYzISMcRSiJjTJcnN/4RW8BNtPiRHOeMbNGi5tBPvbTMH0M+8//ZU+d/WsdUG40wblZ96VrTR0yM0o/uY98VWO/fZmHfJ9D1RoXjsLFqt0UaS8knjgAACAASURBVCEKiZBzWOeQYqCVcIVgfnNY8Z2AG9E3P/vkAXxfEV++iP/avzKSLKD9BnlWRYo+Iu5BvwNS4RBYW0ZXclRaA3a6j619btY6Hr1vnPOXWqy04ut2Pf3ZOlO/8hDz7yxx5swSzX5GSwuUkkwOlXjs/gn64Rj/cP4kS3GPmuczIt8EEmJTRShBLShjdEBV1unmCzdNHRJCoMfK9L77Ps446sEBatkErWAeEXk4AcoJAqeLNYYtRqsnkBOHaF/56qYuusO1l8AaGjqnmZfJSy1cuY2OhokN9FcigsYQj943XtB4B0XPXgsQ5xxnziwxXFoiqTbRaXWd8rhmaU8eUHIN4tIK7WyOoeAw+4oXGQQlk6fM+B2mVYfzQcLbU6dJRUKYQlxKKe4Lh6KNcZrc+VhRo1ZO8adeJb54gCgWm66BTzM9/rO7FoQuuLT+nvg3zlvcrqV1BIACDEFmGep3kNZivQApFYYMleaYN+exyTBqrLbl2SKcw6wmRCfnmf6Fe5keP7rrsygS0PnGedzAwl2IImdRNUJkqLGp2VN4/G7Y/pwqCcGUF6DiHqHp0bN1av0edmhs3QRnvxqbm6GJzU7W+KnHZ/nOyTmyrJgwCgFaKbSWVMvevqhluzEbHBbR+B7Ki8njYXpOUgnEh0YN3LnPb8V+HYnvYnfcjBvxTzLuFmI/IUjn2uvUHJdbhJbokRLlJ2b2bfn9UcRmxzKdjdIZ2PgW2UcOHawyVj6+q1PhzWqljtfHEUfuJ3vnAkn5fZZn3yQrrYAyeM4nT09xcOEpGnrmpjb8m8X1aHFu8dK+OvvbsZcJzk27Ly1d3rG2rF+huzSLMwqpE7AdrKgx2gmovyVI7lVc0gMrbtjQMA1Cr9b+7Um97oh3M7jVTZAb0TeXVmP++cV3CTyJaa+gzEOMBPfymL9KuFLC5gHSZEUwr9NYVUOojJJ4C/ft13Hbppq7fm6NkCcemqRRCa7b9RRCMHPfONP3jl2jAK/yq8ce52unz9C/vICaWsWYKsoWdKxlE9FUEYHSDPvlXalDe6VnbtbJSSE5uvo0b43/C0lpBZWUcUYDOb7Xo+zXeXT6i2S2v7WLnsbFP0oTCsOwg7bM6EtHx9YHOWkWlaS8dnoRIQTTm4qevRQgS6t9mv2MepiAMEiz9f4X/z97b/Yc2XXfeX7OcrdcsSTWWkgWi0VRsrhIpCSrRy2pPe2x3FZE99gz0fPQ8zDzMi89Mf/Q9ET0i2M6ZIdn2m7Jco9MLZa10FwkkVSximSxFqAKQALI/W7nnHm4CRSASgCJpYpFCt8niSggM2+ee+7v9zvfRQDWIYUmE/GRJvhba9EOylB6EtW6hpgMQMBq40OkTin1FZBhtMAJj+LOyJGijbGTRMqnHtbI/E1ePufjmcUHrvvIhvCIeYs7tbQAhimMm0SxSmWQo6wjlRolivj52DfUexOE63PIoMVe51EhBLLskTf75Gt9vJnyyIIx+uwsyfvrZMvdQleoJMKXbFm9HyU8/gGM2KdKXsAT2sela/xjXCGlxJwM8ZRHmpljaWyOQxN7/tlZpicifv7rZTbbCdY5Ak8xPRyaHIVaNorZ4PQK1lsFU0UpSZoZ0qzY5x8FNXCUM+kWjuNIfIYznAbOGrHfAaR32oV1eZwXBUjZw+WWbKVH59UPqX7jqd/5ZkwIyZXJb/HzO/8XG4MlTF5BSQ8hM5zskmchKx/+HsuV/gOUr5NopZ568hwfXnqHzYmfYb2YUl5FZx5G5rTDZa7Of5/noj9huvHiw/z4D2BfWtwRJ/s7Ma4Bx7Hdl/a8N+dgsDlTNGFeWnji2YKm1A4ctQE8d8vj7ac1+ZCeaJ1DcN81LDMGKQUXK5MslOpHv5CczhBkb6PhnNuXvpmkhjjNMcYRKUXZtsmlz6ot8yMR8M8n7lJeE+SUQYTgDNrrEE1t4IU+bG7uOtXc93tbH9DuFZba40w/D5qSRnFEbWUCKVaRymJyhRMgrUQmEkJDTMZKnDHp57saj3HpmfBgrtjERoPPrD7PzQvv0q10sUHR9Cx0NFduhTRqitZ0uHuKbk2xuLbpqykRjsR4BCKnREpo+xh/ccfp5Dnmj9CAJIkp4iLSMtIqrExR9j5/WTA83fEdygvGnuA/sBbdZ1BxlSj/gN58j7bfJ0wV0ln6SmCEwG25SSKBDC0M02EZLTwS16JcNsyWxsuWOqor6LaW1hoCpQFBbD9PjR9hvC4pusjOkoaBl+MbzVOrTyGED3mvaJiD3Y2v0BLbO5hlIISg/MVz289NUS7Cq21mjhUevwv77aFC8IQ/YMAK7wwm6Q4yTFKwJybrIV/+/MKRNTbHoYmdm6vyb2YrJ6aWjWI2ODko3DKdhxRgHPeDyXn41MCt5/xOZ9KTOhJ/GjDuIOsMDwdnjdinHFuW1TbOURPB9s0lfIXw5DZNw1usPvY33kGbxWhXJo50CtEIr2BW/5Bc/hiv1ATRA6dR2Tn87pdptxd2mUSM44J2eDPmuPPUW+TdhNJgAqGKyaAyHmFaZxC1uPPkWzzJH7Azh+ljwxEn+1s4qgHHUWg1W9993PPw5STTWYoIQkwakqchUg9zrKxFSolWHn1niX1FrSd4xlT5jcxIrcHB0GrdkhoHAqaCMt9cvHIso47TGIKMajSiQBOnhnJpd1CxA1rdFDf8d1JYpHP4yuER03Ihb1Ljv9PfxXpTWAKk6aEmq4hoaOG+41TTNc6dyDhlHDjn+PGvb7LS7eLK4FuBkzlYDycpMqtShVeC3Mb0couW5e1rcxR3zZ25YngKWmtMJlPUO19nZeY2sT8gGFS4JCz+4Db2zR9Q+6P/ZfcUXaohP9DipCRWKUlvATNo0JB9hLMgBMr38D2fzU7KW1fXWHjxX+B+9J/GakCCQKFsxmoaEnQmGNRWkQNVpPgJgXQCI8CUB8z4z4w1wR+9Fj1ys0g3rRInP8W4jDD3EEEJUY7A3QPnhgfGAiUcjTCipAMyGx+LxnUUV9AtLe2t7gaNsFhjOQt47d+jmv2cdtnglEUhmIwrXN5YZGJQpS0dOFk0zXvX23AYchjL4LTD47exzx66lFcLnV4ekghFnALC4HmSXj/bPl09ajN2HJrYaVDLRjEbhI3AaRAZ1voIwS53zUdBDZyJdjuTjmVs8ynGUQZZZ3g4OGvEPuXYScUZZXywl6bxuOKgzQJ44GcXlOLZQY7Xy8Y+hVjbHNBencP3/we8uImTA4SNEPksAkk5MtsmEY2JcGwXtIOma630Fl29QqncQBhwmSmojkIgfY9SuUFH33t8XJyOSC3awlENOMal1exaF8Yh5StMDZq8IDdoWAqfdFEI+clzCCJqlUl6/TYDYQiMomI9ZitV7g06ZMPCLbMWXyqeqE7z7Sc+fyzr+tMYguzXaGx2EwZxRq+vqJbvT9bTzJDlZru4UWrYNDiLkJISKeumxLqcoCE74FqAAb3DhGTHqeZ+35sD0tyileBes8faxoCZqeMVbm/eXuLWWhsjDTJtkMaTBNEqWVovDp4ECCPAgK9i+vk0/bzK5BGbe+csyq2jwpx8M0FWFSKL2Zhe5+bF9+iVWhhpUU6wYTTPrE7TaC4hmnd3T9F1HeUHmKxP7IEwPvG9FymJrLgd8gyC0raV/dbabpaeojFmAzLdv8Nk7zb3RIW51ecQ5TZZ1MZLSgijSTxLVo6pR1NjTfAPXIuNKmbTx4a/jyo3sbUyOqhTAdK4S2r7SDRgAYkUmm4Wk9kmM9HlfZvAgwZn47qCbmlptzWEfoAvNV03y1fenaZdF5RrZaqiRD0pIRA4P0brPnkSIYXcNb46Kq3woYTHj9hDl/IqP46fIHEabRMSERUnkc6R50UbPE50x8OMFDkqGhMRkxMBa92PUH6OsCXIG8hsBustYbLJYcC0HL73R0cN3HImfdT2+Y8b7j9fcjxP4SuBdbDS7I0VE3OG08FZI/Ypx14qzl6MQ9P4uHHQ1Pvv/vEGANay/bNSK2HuRpu+c5QmI4J6MNYpxBaVwtMeMp9/4Oe7TCJG8Py3MYZWagtbLk5eOAkhZGkPa3KkUmi/KBTSvPvYuDgdN3D4OAYch9FqRjpyySqrm5Yf90p8TS4RCjvkv6SgFNQblD2fhVKNzV6PTBhWbR8QvDB9ns9NLGApzh4vVCY5V544tmX9SYcgzjle/+1dEpaoNYpCRuSz+J5iqh4SJzmbnYRypJFDmpy1rqD6CEHgKbxoOBhIByADNJa+0CQyANsuTgz8qHBQ3H7j9081R31vcZLT6qZkucFah3Pw6i9v8c9eOnfkh7Z1jp8vf4SzAs9XWCyt5vNML/wD2m+R5yWM0WhpEKIHhKynz9I3+ZGa+8ZgabsBiuIK3cFnsH2f9sQqV6+8SaZT/KSEbxUi7LEZdXnrXMwL8SSzSY+ZmT1T9KpEdh2THY/6+hVWuucouT7YDKSG2vTIPLFxGhDnLO7NH/CC6fJj7yXupU8QLQn0zG9Io02sGOBQzFae5oXZbzMTPXsotWictRitz1D1nmCT21RcHSEEFW+WVnobYzPAkjuPdr+NEgMcAevZIvOVJk/XZna9h3Yv2TZz2W/KPm4o79O1Gf7s0kvbuX8dm9AOysS1Bpd6HfygsTuwGEfkXafrXsAOBEizfQp6HFrhaQe3791DXanOW/llEquo2RZrYhInNZ4nkcEKVgyIKTNVOU+7+2Co8xYeZqTIcbAWv0d4/j8TdD8iJkeikfksrv8kpryOCjYol6YLzaJLHjk18EjGNp9CbLFUuv0MYyy9QTbUxINWkty4E7MdzjAezhqxTzl2UnGE/6Dxwbg0jY8LB1HatBLcWekhRFG0y6HD3fmNmADoKkGe5MyUfeQYpxBHMonoHV8rtRNbLk5xvsnAbJLbGHBgBDoJCdXEY+fidJzA4eMacOxHkdlvXQSVSsE42+zyVj7JV0ULk9eQoUJMNBBh8bdK2iNwEdmCz7de/AxlL2ChVD/VnLCTDkGur/6KVvRXBBNrZNKA08hsBtX7fVT6BPVKwEY7Zr2VUKv4aC0xw8ZISahXfKSQuHqjGApkCbkMUQICYSFLiiatvqOQ3XOqGWzGu763OMlptmLssLgWSmCto9VJjjVBXe63aOZdQlUDC1Y44v48a8tfpT79a/xwA6kGOKfppnX64nPkzFPWPklnvOY+XrqJ/dVfbFOIvbKmEtyivz7BRxevkamUqF9DSovyEwQCnYb0vAHXF1rM+BGCB6foXnOd6tJvaG72UDYlF+AHpaIJC+/fr3vX9qENyHDIs1gu8TU5tJXvnmfQvYCK1qjpDT6TrXDl6/8jMro4FrVo51p0jvvZcbLYS4WW0HM8Lb7Jr8VfbutnPFmirGdoZ3fJrSO3oGWOZY5O/lma/YjvfPAG/6L+HCu3MtY3BySpoR9nCCGYqAbUKv6RwthH4enaDE9VGyz3W/TylLL2mZ9/BvahenrVMtXPnmdwU54urfCUsHMPbTa7rFufkhiQ+xUyG+LXlglnX0MFTRA5zilSO0dJf4Xm5rkHojtOhyZ/elgdXOWNlf9IKrrUy3W6PcjyBKvvICrrlLJXqNaXyOQ9enn3d5oa+HFhbXPAvbUecZqDY3s/d9aR5ZbMWO6u9UbGxJzhdPF4Vt9nODXoRgk9FZGt9BDeg8YHJ3J/egQ4aOqdm4Ky4VyxcQSeIopzotiQaYmSkGaWNDMEvjr0FOJIJhH58bRSe1H3LxCoKquD3yKQSOEhkDgsme2T2i4z0XOPnYvTUQKH4YjXdgwctC5kVKGkQzYGVfIrAvlegjUKKT2wbnsybrTEXpph0lVplE5fnHySIcjq4CpX238OwSbC1SD3Cl2Fv4TV/wVaf0zZXSRJDfVqQJzk2/TNUuSBg2D4miIs46YXcZtr9HPFjN1g2k/ADk/LpCqOlEecam4Fvd5d7VGKNK1OAv5dgiDD5QFpr4HvaabqAa1uduQJai9PSb2UUuhwfUmuLABxf4Gkv4AfNPFcTmQVvUCSejB/rspCqU4zHYzV3PvXf/4AhdirZbipD4hrS0SpxgsGCGnvf3dAGAvaVcNmNWdy9fb2Oq83hhSmErjzX2Vm9Q7TrzdZ6Tq8iRJy1+nW0df2TjOHRdlhQbZpJorEKoLMME2G6PUR6eBQjdzXvngeUTH0sxZUVshUStL3UK2p4ecUeJ6kHmg8LWmUr/BS5UH9TGIvshrPUPJmwIUYppBS0AgdG+spP31/mZqMKEUevUG2/VHavRRPS8Lh3z+JplAKsTvHrzyBO2AgFCxexn/+44tsOcwpdWsPTd+7gf3VJrqsSfFQ6TVK53+AUANsVgFbxokcwmXc9Pew6b8kSS7ueJ3xw8KPlXl2RLqjc5b3Nr5Lau/n7pUDR5pFGFMjYZWZ0ipfmf8/aGd3PpXUwJ2nw76vSP2Evskoa//UB37HRfHMyHDW4Xlqm8IrpEBIQZYVA5U4eXzZUp8WnDVin3IIISh9YZHOqx9iNpOCmnICmsajxn6UNuccSWqGjksOaxx4oHOHcA4rC+c7h8Xer68OPIU4ikmEO6ZWajS2TCeKP7P1l5yDx8GfYz9sTfa3H9R3ruFGUq2KguSliRKvrfVotmNK9XWUn2DSgH5nmjDQR7JmPozq6GnFQGjSS08w+4TbJbjPnWNdwvuhZP2DNdSN5kMRJx93CLJVyBj6kE3hpBye9ga43AfdxJR/hustEviCl1+CzCW4PGIyukCWOX70T7d3r2EV0ivNEUrLS0/PoeZewaUD3Js/OPBUc3m1t/3ATuQHRBdeR0dNhDRgFUHSIOh/FcmlA4O290NZ+3hKYRsx3ImQmUJph8GCEzSaczzbd9ScKe5rAf5KwJpcpXGlcWhzP1uB6eUPR1KIM89iPfDiwlET7RVHRNaCyVFKk3ia9Kf/CbsUj6R7CSERsxd46QuT/PC1W7Q62ViZTQdip5mDNYjWGo0svr9BKA+CCOeXeOPde8T9mHpY7HuIYFsjt9rq85e/fIdk8V1q8l2mL7dRzuCcJuxPM7P0BUqtRdIkp9/PKJ2roRslZsTuk7/N1PJPH9wk0j7mgZJBUN6okKaWcKpwFsyNRSuJEMWwrNVNtwdhx1kjB2GrmXGrd8hX2jgXIObmkDNb9MfTpRWOi3GdUoWQhLPzqGCAkQqBJZr9J5ADbDJJQbQErA95iNPr6Mlf4vtfu/9ip0STH4UtuqNbX6IV9Ml88MrzTH7228hzV0b+Tiu9RTu9syN3D0AUwxJPoe0UrfT2dvbdpw07T6gHWUbfFsOmeKqHrFjmSzW+uXjlWLrj08QgKZx1lRIPlBmCwkTFGMfgrBF76DhrxH4H8NDcnx4BRlHatjQqSZZjhta3m90EISDSAicE0kIuCytyuaNWP4yKOa5JxHG1UnvRSm+RmDY17zyx2SR3Mbi80PioEoGqk5j242PWsQeH6RJ2FiRebrlSucUH516nXV4nUQbhNNXpOT43+6+O1AQdheroT5a2Bferyx1eu75KEyiXPGqHuOzt+7mdPVTofdwhyFYhU/EnSb1i4CA1FOcXAmeqWG+FxHuD8vyH/LbfwroMKTxq4hxXJr+1zxou717DgFt8et9p987TlqnZFez0q0WBmJVxViO1IaisIMp/i2n9MdpdHBm0fRC2XfHsBqUFQ3pP42ce2moaqeWLHYuHpactWA/PCPRqyvrfvc87769z4fIU7W6y/+BkwSHujKYQe1aj8DBejlZ+sX5Nce8RRJjQR8breGtrEMweSPfa3jfevUe60kMO95m52TIvPjd3tAZ/a8izdB2SQZH1pjSIoQtg0gdnWf3gA5q3BCXTR3SH79sLcPUGfe3Rdn08u8yMeB0pYpK8TC1ROJUTV+6x9PTfc/7aN5hsLpAIwe1Is6WM3amf2cxWyOwNanLEqe5AIhKN1TnGueLE2YEYFndKQpYbsuF9ul8Y+0mQLXXpv94jX09xeYzQnUONmR6mqcVRnVJ3sgWqU+voUhOT3Q/wxg11fEKQZRW8UrNw9WW4pk4QKXIQtuiOa16T68/0aIcJRhhUvkzt5m+5Yv8tMxf+4MHPP9Q9b+fu7X07D9mi/uPEzj1T+o523sfg0LFHZaWO0wNu2Q2+88Eb/Nmllz7WZizyNWpozuGce3BQ6EApQeSftQkPG2dX+HcED8X96RFgL6UtSc22RkUKUcwLBWRZ8d+pBQxCRamfk0gIAr1dqI9LxRw3e+U4Wqm92HpolfUsJW+SzA5wziCEwpNRMdnPVx6bh9bOBsRrrlP9yauIeEASlsmDCG0MwbBQzT/7b+j+JtsuSFozd/lg7lUyOaCeVRBBBRdaDKvcyr5DY1AaWx9wVKqjEALdKE4QmkKcyIp9dXB1m7plbYa1ikgu8ETlX3J55vldv3ucIcj9QiagVrGsbw7IcodShYOgsxor+/gz/4COFL6cRgkf41I2khu8sfIfeWn2f+aPv3bl8DW8j15ppwavXtXkU69hvIS0P1mUhwKEVQgTgl7fPqEbGbR9AHa64rX8Hp25mCgPkLnilRsRWii6gUSlQSGdVI5EKaLMUb3Z4m0sn7vc4Na97sjByYLYxO5DIa4nJWpxwEaYUakOG2JrQCqcFxBvXGWy51H3zxdNEBxI92pklq+2M5L2fafWIMwoZ3bvxz4QDkHz2Veo3/gNMk+RXgBC4pylSY0kiAhkTvzmTzDh76MloPyiYUsH0FyiU6pijaA6/RZSxJh0AuMkbc9RziV+zyMrt1g79waqd57l6ZA1Y0aeVD2Y5bUDpnhZ6YGWcpjBB866guJUGHZuD8z2DWM/yvXZQfnL2zH9N5ZxiRk7HuJhmlocxyl1JxOjG3fwJw3GauxWaIAQKCWKPUBqwiAhszueB8eMFDn4cxR0xzWvyVtPb5KqnDDzCZ2PEYaNsMcb63/OS9OLzJSe2/W7W7rn7dy9vW9nj0W9dW6X9u8o1L3HySVy957pc7u3gXEW39M47SAVyGbI9JPQTHq8uvQeT1UbHxtNMQw1pVDTH+TkxqHk0GDXFferFFAKNeFj6h/wacLZFf4dwsdF0zgJdj6kNtoJSVqcgikB1rGLmmaMZbObcmsy5Ml+l7JxlAINzmGzo1Exx81ROapWai/2PrQ8ufs1c5c8FLOOowQ4bv3b1d5V7uY/IOEu1mbIbovyecfE2gx+W2xP1QKtmet1SH7+AVbOoyZDEI5b078g1zGldBqMRQwMXq2McyW6+T2ubXyPRvjMWNfuqFljcHQL/VHYFqHbLtJW6fUCsjyhra+z0r7DO+9/m1ee/tKuE5CjDkF2ronQD5maiGh3U9LMYBwImSJ1QqA0E+GF7b+jRUhFzN2/lgvPHJv+tfNa4a1ivVWErSKEHH7PxQPbOYEwFay+S5zdZCY6z3Q9ONJrbbni/eDOVd7ZWKarYxZSn0ZaIQslOlNFmK4YZqNJSa4ddWPRnYzb97p86795kmYrfmA9O1fal0IsHFy+XeatZwxd0SLUk2hRKsJd4zv4qePy5rkH1+MIutfOUxBvx8lnfoS8OID326v8/dJV3PrbfG0ypZzAdDtlTc/zq+CzrKtJjPRRJqVsulihyKXGF7ZoFmWAzWKiXpuk4tBRE2vKbHGcUylIPfCcQGYV+tV1Pmg0kfkC0jHypGpUltc2lMMKiy80gfJAFbTgNDMIKe6zKaU4nl5uiK2CO729Sf/9DNN1OOOwvRTnQDci5JYm8oCm52GbWhzXKXXrRPW16+t0XXHabPPC5GerUA98RbksEGpPgPep0uSHWFvCrS9x/Zkeqcopp+F9F1CnKWcRPX/AtXt/RePJZ3fdI3X/wu7cvT1Dsp0W9cV6L9wwM2vwpBqbuvfYuUTu2DNTm5OYHC238tMEToDrSYgV1SBgud9mud/arXt8hJiuBzTmO6xurmPzgKQ7jbPF8MT3JFJI5huVI9+rZzg6zhqxMzz22HpI/exXS9xaTosiUBSc83qloD+0hoVqkhru+orS05NcGeaImVbyUKmY49owj8JRHlqnhaMEOG7/2/gqcub7oAZ4ok7NryAH6zQrORvhXS7emqXaLeNwxCZnxVYpdSWqUTRnnWCFbrCGnxdFkVOyyExLDcLXhGqCVnr7SBTMcWmkWziOhf5OWGv49b2/pp+1UbZBq5diLCgVIKyPU+u05Y/54WtzfP3lJ3YHCR9hCLJ3TYS+JpxSpJnFGMvArWNQ1Py5kcXeca7lXuy8Vk4OQOTgPDwNNrVFNBvgTA6pwfopfnqX5zeu4r77D7gjFkNbrni/WLnB926/w2QfAhRdKXBW4ETR/HlSIwArwTNQ8yQrmwOarXhk03kYhbgRNnhp6l/xnvr17nBXMc/TN0IacrpI+N6LHXSv08iLg6IJ+39vfI9I/op6bYOrn+nhnEL1y6zfu0Tem6MkMrTtIK1lU1YZOEVqBA3RR6thHpPUkDuUSEDmuHzHdXEAgqwQxeGpPspLifsGMLR6Ceep7npf+2V5pTanQ0I1nCTKIxgOYuoVn2YrJstyVLRKGGZYXWPzGFpQuF9wZ3f7dNuXcc5HBq4w67CuOCltDhANgRxO70c1PXtNLZyg0D3JHK9Spn6veyJTCziZU+ribIU/aXyFV2/+jHb2ESU1gRAM3S0FnhZ08xWm/N3Pg9Oiye9C0qMV9GmHCWHms1dFJKQiTBStbOmBfUYIuTt3T02ghV8MOHZY1H/QafKdD96gnyfU/IiaDMms4Vb3cOre4+YSCbv3zH6eY51DWYFLJRgxvPcgv+XjLTo6OqGXp4/0PW5hi9XBzC1K1T7WKMrZDLS/jOtfIMksUXj0e/UMx8NZI3aGTwQWZyu88nvzrLdiSqFGKVnYLg9/HviKJDN0ehmv/N4Cn7s8DfDYUzHHfWgdHtg6HkXjMJe1LY2Uc5Zrd6/y2js3GAwUwdzPkHoA+TSpgfXEUDMeXgxpaFid26TaKyER+FKROR9rJSLLYZBNrAAAIABJREFUITGk0QArcpS7Xyg5Z3HGITi+bmBcGikc30J/67q9dv0tuuUb2DzA5DHA/TBSC1DoN+LmXd78bXTs/JX91oRQGTmb+IRDG/FRJ0+O3ArifMCd3j1q/sVjUV92XivtReA02qaEsULaoRYIMLmj7xm0gxf8TRZNCisrxyqGpBB8Ze4pZqIKr5mrZMJAZsFJpBL4UqOHn0XaYhjjfIUx9kDN0WEU4pnFyzTcN3dp/motgRv8BwgOp3udNC8OCnrWD5depaZ+ii9zXB4Qxgm5gnYlR4a/JLhpMN1ZpLN4Lqfu2qTKJ3eadQJqJseXjgyPgfCwOYBCiByHPxQF7nhvMsc5jbPFxFtKwY07LT57afqBzzEqy8uTiovVSZ5//iLX3+1un0z7vqI2fRdT+RkyXEMqi0VTbRxdC7pVcKe9Dt34FRwBSseILMe1DLg6aAXGYVoxIrh/zz3Q9OwwtVgrdbg+uUTb7xch3lZSmwq4fDtm5u2fwtyTx6K5nTQuRkrF5+f+ZHjqvkaoJgh08Tzo5vs/D06DJr8LQZnMByMMoRuh9bIW5SSJcCP37JloT+7e1oBjaFE/HV7h//nop/TzhEZY2f7OAqVphGXW4v2pew/bJfK42LVnSom0EhcXdF2EG95/AhJBfisgmC+omI8aO1kd5WASX9Zp93tkchmm/hZr/pD5+rMjh5lneDg4a8TO8IlBGGgCT6GHTdhObImZQ18xt6Ph+iRQMQ97aB2mmxqXonFQJttOjZRXuc17m9/jZvN9zHSKJxzoHklaA5ujhCTNDV1Rpuo2UKmkF8b0gphKEiGzOuHgSZwLMS2D7XaRqUPOK4zI0c7HDTlLQhXvYa9u4CgYl0Z6XAv9reY1UZsEVYMSHob7zp2IrXmxRIUZyotP7Ax30JpYKL/Ibzf++gENRj9PWIt7pGaAFCl/89E1/nElO5ZD185rVdcz+INphLqDNBM4IbBSIJ3Fdwbn9ZiKS1w24lSKoadrMzz58jT3lt7G3O2xLl1R2Gx9X87h5ZZ+SdPWAuUO1xwdRiHeG+7qZixuTLqXu905UV4cwFJvgzx/jVBlOErk2pL4Cp0K8qSODNow9y620xhatoAVgpLoMyAicj36RMTOQ2GYoMVS1iBPptHRPUzq3S8Eiw+B9Hrkg3nS7jRKSWpln/XNeN91OyrLa0vPc668wylOfIg39318HRN5U/gqwMnsyFpQ5yztX/wX8naTppqhlIY4OUBi8bVGZnnhKokGJXCpwaUWMVwLDzQ9Q1OLtWrMW7M37uuecokhZcNv89b5Fi+8/X/TeGP6WDS3UU6p27ltxiF7KcFC9QGN8m6d1Bwvzvw7rm1+70jPg/HCwoeU9DjH72fUPYWMvAeHlI1FvPI8Kl/GCIN2O0tFBybHhB7Si/bds/fm7u00NbrT2+Ruv03NH6VbFVT9A6h7D9El8iTYtWdWPHTmYZ0D5Yb0AYr/HThs4qi2asxHj9YobVS0gA4gCjyStErfrFCbfIdvXPxD5AhznjM8HJw1Ymf4xOC0s6geJxz00DoIR6FojKWRiq/yy+UfMjAd4sTHuQDl9REyx/PbpIkmyUOEEKT4OKeR1pBLx0CmVJJ5/M4VlFEYYZBokILSxiSlzQk6k2uobKrQiPka4auHRsHci+PoynY2r9WpKhkKQ1acJGz9XVcYEziZ44yk21F41pzYGW6/NQGw1HtjF521nycs99sYZwhkjGEGpWbHovkcdq1a7Yzn1p5n9ckmcXkTlZSRRiPUgCQY4GUh5z58nthvYbEoIQlLtQeKoa0iMI4zcn2XUikn0JWR61xJSeOVJ2j//YfUNgb0rcV5EmXByy1GS5YbJXqx2b7nDxP9H4VCfBS610lPQQCa8UcEchUpcgR9AHplh/IFIkkRaYCLWsjSBqpbxwoBQqAwSBzPiOsoUia9SWqDdfyJiP9TNOjce5H6hR+i/M2h26WHkDnS6+FMSLzyRXxPU6/4+L6i3U0PXLcPZHkNsXUyvbrR41eb36VnDfVg5/fqH1kLeuujt9ErH9HXGu0CBApIMA5ikxMqibQZNtfgFdb5RVaJGm3MFJRxSnF98s5u3ZPN0WlO2UGvBNcvJkzfihDHoLntdUrNPUkrzrCpxc8tuRLclXBltbd92rCfTuobC/8Tn5uOj/Q8OGiNb9HMzXKH8+sxlczQE5Iw0kRzlV0uk0JIJj/7bWo3f8tG2KOcRYitvEGT45QkrnhM+ecP3LP3Dji20MtTMmuoyRGnzYAvNR27D3XvIblEnhQ798z1doK0Aisc1rqhiY3AeTm5MyhPEuUh6/tQqh8WRkcLAAgCXyPtFIm9Szu7/Vi6NH9acdaIneETg+MU0o8a49ia74f9HloHvdZRKBqHaaSUBlH7Bant0UtLOCsLszgbgFMgLNrr4NIIkBghackJKmIdZUGlEq97DmUVVvVpBT6TmQTjQErOffQi10s/ou818akS1EpkNjkSBfOkOKqubKt5lb5jadOnFNbwwlUcRcYPgHagjMX5XbLBPFm/gZVmO1D5IBy2XvZbE7upi3XW4h7WJYQywYmQxHyeQHk0Qn0gzWeca/Xu63eYuj2HzL7O2sU3SSvrWNlH5JZaZ5pzNz9D2JxnqbaGUZ1CpyYlc1lKOCyGdmoNxcQvkMEaSlsiP2S6fIFnJv6IzM3vaqL8czVq33yK7B9vki93ELEBJeiVNHcmQ5ad277nP+isHVv0vx/GpXvJ6Yi0rnErfWQ9INDe9q04rlNrkt9Ay/7w/xUna1aA83Kk2oB+DSkNQsZkappBFFKJ+wgDShpCkVLNm5zL1/FLNeSX/5ivJwE/fd2jdfvrlGdexws3kKoPVmMG86juV5gKn8KvFhTvNDMncjQUQuCXm2Tte1T01IP0uSPoF61zvLX0Hq+YHBmUhrECFtBIDBZHiiOQA5yIcJkFUUSX2NSMNmZqLNKar9H23ifMguG5ooMsBWcRQhJm0I5SWlXLhDd7rJPdLafU5j/epLvcQRsHSjCoeMW6TXOWhzTwQTjYVyf1Fx++NRygHL8g3hp+3Lnb5VfXVql2Uz63kaCNI9GS2LoisHepg2nvNpWR565wxf5b3mj+OT1/QJgolJOY0COuePj+5LH37AOdOIHU5nhSjabu7eMS6XCF5s/28So5k370yGM4t/bMn75xh14/QwuFcRYrLcbLEAoi5TEVlMnj0eY4p4VRg6nf5WiBxxlnjdgZHgl2Wg6fRK911EL6UWKXrflWrpNf5DqNa8t+JByRonGoRkrcRQZrSKqkLkFRTJmt9XHWR8gEKTOEzHDWxyFIhaYTeEx0fBbXywhTJlU561EVEYX4qoxpxbjMUt9Y4PI7X2Pps+8wmGox0OtIOz4F87RwFF1ZkhgGWVbkwTgLG1+gPvtDVLCJSkqUMoWSOXnQR8Uhk+8/z63Ushkq3E5BzgicZL3MRM/y0sy/49crf8NmfAtrenhSkTNDYj5PzgIwBs2Hg+/NxdkK05+dY+NWh4q8zIXly6SVJplr4a1uEvUmSIzDOYF2PlIWnztPEzZMTp6n6C1qp7xBsPB3CDXA5VWygcKmOam9xoft91mOv0g3b+xuos7NMP+nn2P5vTWuXVtjfZDR0gKlJHMTES9+ZvbAYvakeT2H0b22TjNsrcuX7gUEazEmUkxEJSKhx3Jqdc7Sy95B4DBO72qWnfAQIsOFPUQaIDIfZQ1BltIJSthM0zBrLKbL5EJgFi4hX/4jxOJlXnaW+Szll9ckG7cvkocb5HaAzQMmgvNEYQDq/hrYYhRM10NWN/pjOaruxWkVesv9Fkt5hlMaZXNy3cXqHjKr4tQACThrQWaouodpGRBg+xnSUyONmYSQ5M8+j1l/g3CQgxo2Ym6rGBYo6RPLnEzmD+yhrrE49pDNW6zy+kxEPzdMhgqjJYNQgxBMOMdmJ+WN395jaebusXRS42Br+NHc6NPupZjc8lwnQ+WOJFAgBFpBllvawjEV5w+Yysxc+ANeml7kvXt/RTtbIhEO6UVM+edPtGcf5MTpnKOTJlysTLJQqj/4yyNcItei9n3Nn0tRKqCW/yVXBg/p2XsAFmcr/PNXzvM3P/ygkFH4CisMxhUU60B5ZJnBSXOiGIeDsN8p65dnjhYtcIZHg7NG7AwPHTtDfbdoOocFbh6EoxTSjwo7BbCRmhyZ63TqD4QjUjQOo3YOTI9IW6TycGJQFGkGEGCSOipcQ8ocqRKs9RAyQ/hd8rzEB+0v0V6Al+6UaJVAKc1CUEZ6GhFWCv2GsUz2n+SJ+T8gnu8c69TwtDCursz3FX2bYnD4nsbE52jf/TpT1TcpBU2IcnKrCTqzTN98kan1eaZlzru+Jk33z4866Xopiiyf9c0/JJHL9GghdYCbrCMruxvAvTSfXZPS1ZzSu23MAfemjDy0rxBKIH1FmM7h3BwkN8nyLg4PJyz9Spss7KMzwVw/Y6lc57V+i/mP7hEnOaUnXsOpwvBFIpDakWYw6JaQ0TpT/lUCfZHM2geaqMVnZ1i40njgnnfAf7j61kMrZmF/utf77dX7DWAj4m0PLt1wVLo53biLCCPKc7VDnVpb6S0G+QaeLOFsjHVi+DkE0lqksViVkGUz2GQWT1hkbsFIskjTng35a/sCE7Vp/vXLfwxCkr79Lubt15jt3uXbosW6miTR83TOv8Sv7gni1KCUeYBRcH6uwnd/cmMsR9VROGqG1H7o5SlLUZnNygQznXVakSYv3cTrXKFfGpD5XYJEoNNzKKPQjYDoxXl0LTxw0BfMXUElUxg3QCeFxgwHSAWej9ECZSWeHZZGwz10rf8u7y1/Z+yhydrmgPVWTDAR0B2hZy5HmnvrPVZ0j1rlGDqpQ7DTlMnXAgdMOqiklp4UyOKQrgjdVoI0d5hIIkaYysyUnqPx5LPHZnrA6LiUby5e4Tvvv45sLjEFGD/ibqlCJ0spaZ9vLF4Zec/upQ2vzUjemr1DKjPCWBCKEFtpPNxn7yGYmSwxO11mpdmnoiVC3F8DD1tGsWtf2jOYasZdXpxsMDDLj8yl+QyH46wRO8NDxc58nXEDN8fBuIX0o8AoASyMyHUaMyNrbBwxyPM+tfMjWuktolKGEiXMoEF/YAmrZSI/LHQqQoBvIFZgwdoImICwhZAGFbRwTpP35unde4nBYI4P62t8VgkiNNOlKmXPH74uiEBhU5CBRpUCJoKp07sODxGpn5B6KTr2cLqwUM/6i1x6f54oXKXjJ8g8IuhNI4Wgr6Fi4eluhu+P/q5Pul52O196aHGOjU4FmStkF7iQICv3m8CdNJ+dk9KpDfhn1yNKRhPVIkrlYOS9OcqAQAhIKhOYuMegvsGtp35Nr76CExZl4N68zz19mXubfeRGj3JtHeetgqnusMIWGFE0FMJW8PUmqdtAqumRTdSoe37pJKL/E8A6x98vvberAdyYgn+ahGrHMej1mKpJ/vTlZ1Dy4Hs+NT0cOXV/gc30NpnJC8t+BMpkIB0SQak1z6YISJxEKct03mQ2X+bvqk9R8hb5xqWXMMs9Wv9wlVb7PTKV49lz1NNnqFeW8TbegcENJl74U95cKz3AKDg/V+Ht95uHOqoehNOK4yhrH09p3jh/ma9fe5P6oMvd6Q5LV64Rh3kRZ2A15fgGl9JvcO65L4/1HKn7F6iVL7GhPqTi6og0xm2ugNI4KYl1zGRcoZ4M11meslZPeSv7W1KbjTU0sc5xu9VikGXoAJyTkCVgc5Aa/KC4tsZiMoe3jynCgTqpA7DXlClOi2YzdMVsbYBDGouUBSVVCIHDYqXEpflIU5mj0uZ3Yr+4lBcbKf/bR1dJ1m7h8oxMSNbLNW48/Tyfu/LlA0+xt2jD5o3/yvWJ10hJKA88hB8hag1kWKbi3MN79h6Cj0tGMWpfgt2DqaXBJc5FrRO5NJ/hdHHWiJ3h1LFlpe7iLr2fD7ADg5oM79sKHzFf53HH/gLY08t1GoljBHl61TvMfOa7NPu3MDYltwpKM0znX+OLl17mhnmTjfhDAuUTk+OFAhdLwCFkTrJ5ic6dLyH8GGEj8n4DnEAD3ZImqWsuxWWU3u0gN65W5nFD32TEUz0qK3VIBU476hnUc0fWm6HUBysdnlZoWTQLSWqoG8dEPpqaeJL1Msr50qEIPMWADC/3MCseopwgxG6aTz9P+csP3ywmpV7EF5d9whyaYYbKDAuepOz7u+5NvVApgpKfmECv92EzKWzatSQTPmvTKXeu/BLjt/FTh7SKxFOsTkmM/C3eRo3czKL8hHyYRbYF6yzWFUJ25zQwQJBsX4fDmijrHDc66/SyBF+p7UDxnThuMbv3mu+lbi73W6MbQAGdmiAua9byDncH7UMbwK1TpNxISGYRYh0hE8BipUI7CI3iqyanG77HSprjbMwkTUq9jOfdU7x46SUudAJu/vJH3Jz5Cf0n17HKIq2i1J3k4q3nOB88hRd/yPyNH/GtP/pfabaS7ROK6XrId39y41BH1cMiGU4rjmOLunbVGrxnv8hTzde5t3iLXFn8VJG7kDjwsbMt3vH+PyqTF5jh8EZs1/uzbcJyHTUIMVmf2APfaC5vLBbDAudwvU2uf75PKtVYQ5OtQce99R5+XiVe32Qq6xNZW8TRCQFeQFaeRiuF8sTxdFIHYK8pk5LF4CSVAiuKvTp3bvt+ccN7UNrDTWXGwc4olaW+x4+uxcSp3d3c39vkhzeafM1kLFYbxFJis4RG3OVzN95FPvE8HEInFouX6Uxp2rffJXJTyHo0HEgO64yH+ewdAx+HjGLffYn7e+qdvuLLs/89G/FPjuXSfIbTx1kjdoZTxU4r9TwJyTvPI30JyTSE9wvwcfN1Pgn4uASwRw3y3KbDiS6N2gQm1+Q2IaNJ6P1X/No5rlAUKRXdIreSzDk8KZC6jzUhvbtfIB/M4hKHHD7g3dCatyIjZr/0JPKXG5gdBbvL7VhamccRZe0jKxanB8hmiBtI/NQVk2XhcMNroOTQhj+3SCWItIJ9hNgnWS+jnC8FMB1WWLYtMpejBwo7EGRBSidNKGmfry88w6vL17YnpfWOoNYTxKHDV4rUGppJj5L2t+/Nwd0O//T9ayylOcY6pkLF072MqW6KFgIlLTev/IZuJUO4KQa6sFTPhk24YJOJ8jto9QImDcBpEBm4Iv9sZ5sqRA4oHPez0Q5qorYK3pvdDdpZTC9PCLXHdFDZPomF4xez27+/D606vhId3/VtD+r+BTw7x2r/fUwyiVILCJnibIbJDM4fMJmUqaclJoKc874jNgpjpvB7m/zrhSvIaoMbP/873lv8Ppnq4qUhwkiMzmhN3ONq1Ea+/wUuluqI5hKiuczMDrrl6kb/cEfVMSMZThrHAbtDpH8TOtqXISKAPGLD97DGxzOKpCsQ/jqvvvcXfHXh33Nu7vBm7IH3V5XIrmOy43F58xyNtAJ5DL0WrQlFuy6J9OFDk2ZSuk8JK0eUVILuW7RLSaTCVxqFwKUD+lmL2blJzGSZ271j6KQOwF5TJk9LPK3YsDkdT1BPLV2KfdsJMMYReBKVWvQJB2U7n//O5LwhXiZW09QnKkivuLc9T1JP12lZxVv+cyz41wkFxTAxqh7JICWzfawSKD0BI/7tx20+8ahlFOO6UWp1ka8u/O8nopue4fRw1oid4dSw10rdyinoaEi70Exw04uInc3YGPk6nwScli7iOBjl7Oakpjn9LOnTXyKMFmkMO6UH8kN8CPBwrrw92f39hX+/XaRY8yH9bICViqw/VzRh3XNIxDDQ12IFiKGm5RsXnuappy+Slie2i1fbyxBajhTPfxIwH9WYoc69rEN9TgIC2wHbK4TuqXFIK7GmmC4HvqIWaDzHvpPlk6yX/Zwvt1yx1gZdstjR6sdIZblYmeQbi1cIlbdrUurnoAyYABCgpSQxOYnJCbUmtY5+L6WzPiCYCtFaEoeWX3iSKQfPPFEmm1yllW6Q2gBP+bDLo8yR2pBS0KY602V9ZZrS5AzOX8Ll/nYWFk6AskjVJ3czGO5TVvdronZqIOpexCBPGeQZgzzjrmkxX6pT9vwDi9lRmpW9xVFyu0Xnv75f0KpLHrIWgCmom6WNHufOe3T80zjNEPTufQEb3kEHG2Cr4HwEDu11MHmJ3t2XwLUZcskItVfom7wAGZbJVrt8WPoHMi9GxQG9qIfVGW6YJZt6Ce898RsWb30Gzzxo7X2Yo6rWkn6cj+3ydtw4jp3YCpF+demnKLtB35SRaYQwcpijVlCFdV4llcv86Nev83Xx8lgnDXvfn9dcp7r0G8TGXTBr2+6Y+e89hTV/c+jQJM67/P3S7fuUMOCF+Ndcd5dpqzqeG+CsRauAvioRmAEvJL/hucX/lu98+BZrcY+qH+BLTWrz7QHKfjqpg7DXlEkIQb3i02xZrpU0L2QZFevIrSM3Fk8Iak6ceFC29/nfFBOsD+qU8g5ivTN8/pchTRB5Qkn6rNsSTVtiWvZp2hKJ0wSRZnptvBywj/PZOy4epYziKG6UJ6GbnuF0cdaIneFUMMpKXToLEpAhmBhaa7jg4n1r5zHydT4JOC1dxHGx09lt6V6bN5cs67HAXMtR73/I1ETEM88kY9PhZqJnmQ4u89c3fobpbCBFSGdlAmeH7EdHEWLsCo2BVIJK5HNpqgEU9s3eYvVUXDI/TmxpG9R6mXKsSIVFhpbN2ZzNqmWiLUgjmA5K+MJDymL6bFvJgZPlk6yXg5wvy9pHh3V6pHzjqfMsTFe2s7Tea63smpSmGowaNmMaJILcWXJncQ467RgHRFUfhq/je4q0lPNhq8/V2y2s/C3zYUpmyxhXPOClEFjnMM6ihEdZ5zzzZMhbLc1g5eWha2ITayoYo1AqwwVtHCGJ/Txbzdx+TdQoDcRMVGG51yK3lgxLM+4iRYXuPqL//TQrOw0pktstWn99FdvPQIBLDKKbouohaiKAzYQv3C3zn6ubNKKTnWasbQ5or87hV7+FqP8c662C6ILTiM4saukKrcGTNEvXaaj+1ovsoh63br5LL1xDWo9eZRMnLcIqpBU44XDS0Jq8x9ubM7yY39eNjrOuoDjpPaq1/WkUek/XZiiry/zDHY/BoExuAcH29XYOslziR4bE9MaiT458fyVw57/6gDtmkN5CLn//0EK/nbldg46pzgaXBh8R6phrPENHVOgiCa1gRvd4QX/EYvsuMv06f3bppW3dZscmeFJtD1CO4/Y5ypQpDDTT9ZCWSnjdOp4dGCaMJRKSMNRE89UTDcpGPf+T3McIhdYa8gTaTVxYKrRyzqGlo4/kTl7ll+Yc6ybCIFFYpuwGL91rc+6Qj/9xP3sfN5zIjfIMHxs+2RXwGR4fjLBSV36M9mPyJEKqHJHFkMYQhJ9YzdAonJYu4qTvYclN8KObHeIEypHaJbZv57coXUiIwsmRv7+XwtFsJbTWJij503haMfD7xGle0FlwBR0RCDyF5ynmG+VdDlBCiE803XSnIUYtCghDRbPfIx0IkluCt6cHfDUJWDQ+odpBwWwlh06WT7JeDnO+7A9y5qcrfPHCuV0/2zspbVeh8/+z92Y/kp73vd/nWd61tt6nu2fjkJwhKUpcRImWbNGUJUte5AQBjgHjIMkBklznL8lFbnIR4ADBwUESwI5z4sBbjq2NIkXZIsVFokQOORwOOXvvtb/b8zy5eLt7qruru6tneoaUVF9grrqqpt6tnuf3+32XimOiBR0FFocUAi0kWVYgU0M38uhHd5aIbpFxq9/CSIfONLGbRAgPLQyFExTWlEYeCCLlMeFrlMxZnJlh4kvTvPlewNpttnPEvMgSac16McNK/wJaz+BLd+BEYJgGItY+C5UyS61f5HSLjDDPOLu5mT1Xm+F6d4NukdHfMPzynQ3SbH9DipnclpOwbo5ToozQcyAyg1vtoadjZMVjoWdZTAJuiHubZmxNozzzEGL9LE4v4WQfYSPoVHHdm/SdJc0sBHYo9Tj3UqwsyGSKk7YM3N7SyjhRmgPqnI9mbvGU+DxyQDc6yn11P13eDkOgqhSZwlEg8MpCbOuPApwoMEYR6srI9MlhGOaOOepG3zFDbq9sNzqCPENZw4Rq8Rxv0HI1+k5xMgw55RcIZyEtIO3yyOwpztVmDgwjP9pxDDeKkFLgaYWbreCfn2HC1zQ8Vbqi3mujbMj6H4gChaVA4iuvXPuztDQsEYLCCSzwTjaPQRCLDI2lsIJlMcGPPsx5ca5z4ITzs7D2fpYwSOk9zinrGPcX40JsjOPBECt1ISCaWKazchJrIiQ9MAVuv8DNX2Mchy7iXjDMxAHuiO2biY9MBdUgRYu9m6ndFI5BqpIAGlWfommxdtMQwTmMLSlL1dj71IO0jxPDzqWPotIISIqMVidnIpzi4T+aJ3nr1l1RMPfcL3YDg8RXC5yqfZPp8MKe77RFpTt3sk6znezvxvXY7J5p5LBO6YcPWZ56V1HtOdqeJfA9fCNIWym5FCzNxdubKgesJh2MtXhaQyaw+QyOKUK1TN94m85ctTIrRyo6xRINv+xGT8zJTa3EPEnyuxT6FnFcEOgqK0nID29eGmkisJ8GItY+Zyo+vSJnPevyx6c+x1dOnOOj9gr/28VXyzwdY6hcn8BPfWYa8fbkZ4chxbu3+WorJ+1lOOHIncGVEVVIIfGNwLRS1EyM7yTfnr3A97h2T9OMPVSyYv7OH0NIJxZQ7TZB3oZ0fWiodDQ1jVsWWJ0hrBpwpiwhBDgrScOEa48+zrkhYcufhsvbKMh70xT9KWRwE1tM7Do2h/S65L0TqGwWY92xhuSOutHPbLij0ZF6PkYqlClw2qNGixjHrCqbF+Q7HW2lEMfq6rmfUcT8TOX+GEUMWf+nZY8p1WfZVPCwCFeU07CwgtMB3VxipaAAJkSyzZTxbYLnxzStHGnC+WmvvZ81bFF6j3PKOsb9xbgQG+N4sI+Vuhft3vCbAAAgAElEQVR1qc5cp782RZEF0AMRmF9bzdBBOA5dxN1imInDFoQQRHKBoj9FJ1ylEYT7dna3KBy7N4fb1JZORl4Y7OZEbGYy4itPLT7wIO0dWVj32EHejf3OpQAi7aMqin7H0K76zPzZY3dNwdy6X95Z+zmvLV9kpV/QNXVeX11mfunVMtC4PjuUSheFGt9T9JNipxvXVIX4p9dpDskF290pXZ7QvHYh4+ErgumeYhIfh0HOxnyQFyShYmtblZqc1BRoWcYZlAFEgsR+gVj9mFB1yG2EEjWUMHSK1T3d6J1aiTvUmIkAHq7PjXQ9D9RACJASKjrgbG2Kj9orO/J0aiamyDSpzLnVb7EgGtsari1DinSpS2ejz4ZMqVNqH4UoC1HjLCmCIC2Q/bLwPjU9w38/c+ae7sVDp5zWY+7MSWYfP4fIentCpctzeBrfm6bPOsrtpQ86aXDGB6HoVYZPqj8Nl7dB7PdMZ5mjWHsef/6fkME6tqgirAZZIL0uzoQkS8+hJUemT46CUTb61rkdjY616gTrlUaZgSY1hbNE2iNUel9H2+PGAzWKGLL+CwFP+7d4OTlL0wbEwqKFwuSWrj+FKtbBFlRkURZh1oLJQWpEY5qK8o5kEPNprb2fRTxSnz3WKesY9xfjQmyM48EBVupe2EFHlzELF+BLX0VG/q+lZmgUfFoC2MPE9p7WJGvPoyZfGonCsZ/OIAg0aVbQ7uZMT4T8V994FHlITtJxYzALK7cGTyrm4/p24XKvOIpxwb1SMC+3V/mHq0v0ipi6HzHtqe3wzb++/CbfaDzBpXc7e7Kd2t2c0Fd88ckTNCoBQaCod3M6L10h3yez7/TXz+3plLZqCvN8jVPhQ8zoGiLUqOkI9coVugPXvrCl1bwSAgqBiA06WgYcifk8nvwYKVbpF8uEOjpyN3rUicCoGogTUZ3/8P5PdmjJrBEIJ/A8RW4LVpMOcXVqe76itUTkln6W0wsMFe3hFWDktiE2DocxFtnN8Gar2H4OKz0WZxp3/Xt2aL5foHj28RPIfQqhLbvwk/JJmvYyRhUoqxGu1IdZaSiX+joCiIPavt/lQbu8beGgZ7oeVJDpGcTqH2PjnyD9ZYQ24DSmN0+y/BxFd5E0NCzOVkeiTw6LJDhs6nLQRn8YJewXZx7jqxdfp9JrIYOIaa9e5okNcbS9X3hgRhH7rP+Lus0LwRXe7k6ypqfppxKlDCdOTLAQBLz1/hra9qBw5XuCGOrTiLCCdu5IBjFj84mdOO4p6xj3D+NCbIxjwWFW6iKq4H/l9xCLwzVKY9wbRhHby+wMj9X/LUvFDw6lcBxEVeonhmrs8ZWnFj+VImxwylGX4Y7C5c8ffvaei7GDzqVzjn4/xxhLL82HZleNikPDN/td/uWXN6jmMRO1YA/ddKOd8fH1Fn/ywjkAmq98gk0K1MSd1w5m9nXfvM7UH8b82ekJWnkDxwxVLxzaKd197ZUQSCtxuSCoX6dy+mdovQYYQJHZBu388zw//xVOVk7ct270qBqI2/3W3jwdRVlRWUcYreFkn0T2CO0igvLeFsqRC0OAohs76i2BKgRbW0FJOR4zaYHc6NP65w93TB3vdsJ/UL7flx55ft9p1KBd+OdMzsUnZsirq6ULy+Y3xkVgGljXI3CnOTv96IHf5UG6vMHhz/S/OffMZlPoJGH/z2lm17c1dDadpSjKKI1KOBpFer9IgsOu32Eb/d2UsF+GMd2Hv8DXbn3CybRP0G8PpZXeDQazuoZNSI/6unvFQev/Yvc2C0GF9ef+DWljcbu4X9no885tKEQdX9rtsOst6undGMSMMcavI8aF2BjHhmFW6se18IxxMEYV2z86e45H+cJIFI5Pm6q0G4cWLkmXH954n3O1mXuiYOx3LpO0oNlJ6acGrQT/+vZNPvh4g2cfn2NhtnJkiuKh4Zs2IulaJmti6N+3sp2W13uwnmBudxCBQu3RBwlac7f4ePKnJNc6OGWQwqPun2Rq8k+QYm/XdPe1L4zDQ+Mmr1A79TJSJlhXoaxuChTLzARdZsNv3/eu9CgaiN0ukQAisviT14hrb6HDVZwocMInL06gOl+h21ogmvZZTQzzXU3HF7SUoOJAu02dmCtpiokri9wg3jl1rH393JGLscPy/bzaSWDvZHG3XbjUPk/ervG2tFi/j3QRiBCcxIo2kpgn5/4UKe9tY3vUadJBGOWZfunmB/zRY0/x8s+ulZNhdYpekpPlFmMdUsDCTJWvPnOHIr0vzfF6i/YPPyojCYZMje/m+g1iGCVsPqohV29uF0N2eoEb/Tbd5tJdUcYGi29MUa6xUwvIZ7+5Y40d9XXHhYPWf/XMN5jd9X8O/s76tWjfNet+GMQ8qAJ1jDFGwbgQG+NYMWilfr9+5I5zI/CbgqOJ7cXIm+XFuSonZmLeu7VMq59SjwIen59FPeBJGIxQuPgBN3stbvaa90TJGHYuC2NZ20gorEMpwXQjRCnJ0mqPN390GYHE6+ZH6rAfFr7pWY/MghNu6N+1ljQ7GT967RrBep8nOhn9VOIlBY1qQLjZSV6PPuHiie+Six6xncELKhiXsZ5e4c2l/8izc/9uKIVwN01tKdvgjfZ/wokeuWsghdy0qpco0aCiMy5t/Gdmowv3fVNzmAYikJrcGpb7bULtUfciPHGTePFVKFJsXsG6GN8TGO8GefXvCXvf4PMnHuZVmTN5SVPpChJg3YfQQZCDB+QSOp4gTwtmKz5yYOrYe/Mm3mJtwF794A2fc3akfL+Z8Pye9+22Cwd43Maw9DC/atwki7ugewg0gTvNk3N/yhOLz97Teb/badJ+GOmZ7jbx4mv8/hnHWzdgLSmnwr6nqMU+n3t0micent5+/740x4XzTL+xduDUePf1uxsMpYRtujF+2FrmB+//y13TqncX39usk6VPMD/8S9af+/Ny6tS8weTP/hqR7n2dfekvkS/+xf0rxkZc/z8tg5j9ClTxzB/QmgnGGrMxHjjGhdgYx45hNsDHAescNz+8ifn5Ml4zR1txLLSg3xTcjwnWnk1NUzHfOj491lFwWOHiS03bpnSL7J7/r8Fzubreo9XNMNYR+oqJWkAYlD+dk4nh1I0uiRD4M/GROuyHhW/mMgfpIdzwjUi3l9NPcoSA+VCBAu0MWepYLSzTExFBIPhk6qfksk+UTOI1IoSQaBFSFSf23ehvYZCmVk3XuJqntPIahQHjzLZV/XRYwZNuO4vuQWg19tNA/OjmB/zDJ++wkfXZKmE9ucEXGm8iVIKRDQwChcLkApFW0P4609V/4PG3TuBrn7emn+DMrRPUC0dowAhoBlDNIfHA04ost2S5IfDL0FxZ8ShWexQrPbzZykgTiWZ2deR8vx3ndIhd+BYezz0uXJ/lE9mg/9RXqUyVdMR7nYTdj2nSYc/0mdY6Fz76JTXzKgHwR1Kz2jhHduF3CBfP7NGvHURz/O7P3+bPlicIK8HQc737+h037pVWvV/xjR9yQ8yUOqzXbmMqGaq7zlTxOZ6urrPodbZfhxfAxhL2re8jFx4eudA4ijnSUdb/B8262F3IOuVj+prl9g0+uvI/0+l6ZLLMyKx6J/nC3HeYjR8/1u8wxhi7MS7Exvi1wIetZd565yKP/qLALwR936F8zbSKCI6JVvKbgOMU2z8IPdZRcFjhktkyVLgyYKF8L9g6lx98ss4rP7uO7ysqkXeH+OccCys9fFdmcUUCAilG7rAfajwh+8xUquSpw/k7tWjWWjbaKVIKpgJD3lyl7ySVXOGkpbCaZtMSnerTCZbx0xjpaYR/ZzN+4EZ/CDLTRUvH6cosqbWboc2ydIJD4JzdkUV3nDhssrS1UXz19mVeuvkB1jk8qSisxeHwxQaCNRITgDSoWDKDQrfXkbZAGkteTWg2BKeX27R7l3i5MUdNCQIkqbCo3PHVVZCqdNN0lHEOaWawFiQOVVhcUhw4uRicSGSmi3U5Sgy/Z3fn+21jiF34IKQX8FCrjaycRszeu323c47eGzeOfZp00DN9Yn2Jr1x8HT9LYeIEBDGiyJhZex9+fg05+ReIyTtTncNojm4joZemhLXhVDehZZkdlxRHPT0HwjnH8nqff770AUlmmG5UkfIuaNX7FN83ihovp2dJpSI2PbSMKUyPZTnFy2mDF8THLOr25kGK8v2rN8rPG6Fgut/mSA/KIGZ3IZsnVfqrs6zETT549F0ynSNXAxIVkitD2/uAlfa/5wvT/809T5LHGOMgjAuxMT7z+LC1zF9/+CZf/UARFh7dGKyAzOTctIaFSo2gWxwLreQ3Acchtt+zqUFQb4NfaGZ0hcvuePRYR8GojnkLceOATxkdW9ld3W6OdY4o1DvUV1FSECWG3JM4HNbe+dsoHfbDjSc8fu90yMXLORsbBXE1xNOKorC0OhnOOSZDgVi7CdZwqxJwtq0IrSSlIE8cJGsYV+BTRTVC2KUf23ejPwS+qiCFh8nahE6DVOD725+5O4vuuDBssuQmF1g//3XSxiLLeYvXO1e42d3gZr+FxaEQaKXKgGpjiI1DO0diFLXQYyasEK3dApuA5+OQJDIhDxT+1AIn1rpUbcZaGGKFQQrBnNRIafCsxTiHc4KNdooxDodDWwgFZN2E+Q+HTy52TyS2z6nL0GLvVGjfc7pPXMidN+7MqdpxPu+C2l2s9CjW+siKd6zTpH2faef4/CcX8bOUfnWCmbBSnsfNc+jWl8j+5cfwpeltF97DaI468kgxZFlOGO0tYLeoliI8vm3RVvTE7bUOnURSlZOYdQdzObJqt7/bSLTqIcW3c/B2Nk/qNA2RIGwBJsd3BZ5MabqQt7N5FlT7Tu2m/VK/lR7+zD+oZtwDMYgZKGTzpLqZbyq59sSPybwU3ZtAOkFMQuIJClslFx3euvG31NUjnDzx293kHeP+YVyIjfGZxlZBEDZzZvshSQjI0r3Ml4rMGlazHqfi+n2llfy2YXBTM7MheOSKpNYVKANGwYW4yi9Odrh5+t70WEfBqI55x1EYDmZ3pbmh28vJc8tk/Q4tURcO4RxGgHCC3bK5UTrs+xlPPJdnvHjtMtX2T5g1dd4WD7OWTNEPqyg/YKIWAI4oWQZrwAvoePCxzJnvaKJC4jmwTYeSHmJKI4dsMA8rngYpSY3lVeobfdb1OpW+LidSfoioz+CCeE8W3XFg2GTpRhry9soca6vXSaM2TVdQBBYxpXHCUlUtZjOHTkJsNkeWVIlUhKq+Q2gksq+RwkCWlMUKAiMNyko8q0EI5qua+aQFrkFQ8fHzFL+/QYKkkipaUuKEoHASpcsA5aCwrHuS99+7yddaCYtDaIO7JxKNmdPU/ZOsp1eoihN7mgv7ntNNu3C39AmrcpIUj0AUTMsegv1zqu5W4+WSAldYZMUb+ve7nSbt90zXWivU2uv0gpiZsLrjPOZJlX7/DEUzgJX3EYGPnopILkQH0hx7dcVabJjsZrjQ255qdoJlMtlHpZKJ6YfQM8dTENxY6vDS61dJUoP0wOgCT2hcT2KuBnA63S7GRqJVDym+V23MmomIRYZwtjxP2gMhEFhikbFmIlZtzIzqlZ9zQJE+iAdljvTAsFnIOuXTX53FGUVv4jbdygYyq1J4GXnUwqochAMpkVZhxXXe+PAXLM797m99k3eM+4NxITbGZxpbBcFZQpQVGDVgXCBAS0lqCjLfojdpQWPcO7a0G+eaEU+9p/ByRz9wmKB0xp5uS57/ICA52YTHHlxWySiOefeKG0sdXnrtE5J+Suw5olCR55I0N6xs9JmZiAgDTaEFVgCFww/VXqv7ETvsu40nJlauM/3Tf9guPha1ZCF/n9WeIxU1oi98E2ZP8/+99D5FUeCrO5vjjm+5NJnh5QpnFF9iicnaAutiCc/tnSIeVDwNUpJOrC/x7Y/eYb7iaF/QdGNHmINKexQbV0kaMb4/yUTwu3x85R3iImd6Yg45c/KuBe/DNDE3ihovm7OkShObDiJJWIsa+IlP2LrNl+beoq5aqMAirSboTBGuPc1Hbp4sncSPliiykLV2zqTzCCU4HInOmEyqNNJyEy48n6f7l2nrMySdHL+3inUZ1+KYh9qS2ApS6VBFihQBvhEYLVlbqJLkKW/bMyyojxm6bRuYSAghuTD5J7y59B9HyvfbghCSW+de5M3V91nrxBjpoYRjSnR4Or/I4pCcqnvReIlQI7Qs72l/SGD0rnv9KJqiYc90I+kTAY3qBLEXbL8271forJzEGYUUPYgBrciXusTrXU6e8mj7+1CXXcF7py3nr2nMRkpr7hafzL1O11/GUKBOaBr1szyeyKHmNVsT8sPoc845Vtb7/PiNa8iNhNORpm9gWYCTDuGDywRmyUNUUoQYkVY9JKsrdRqDRLMZhhzEENehswFZv8w8RJI6vfXlRg6TflDmSA8Mm4Ws6WuKLETqgsJPMdLghCGtrIM0CKsRVuAAJzOkzNjI32dl49mhUzvn7DhIeox7wrgQG+Mzja2CwAYSo8oiwAzctRJB4SxFYUqr8WOklfw2o6J9PKF4+Ap4uaMTs81qMxpa0lHpCaJ3W7gLd5+ldTc4zDFvFOxHz3LO8eYbH5Kst2iYFsKVQaMTKmZVliYV662UuRlFUwlaStLIDHHF3zH8cM5huzneiepIHfYt4wnnLPaV/2cPrU0EITO+g43r8OFLiPP/A1MRLDUDPPIdG34HLGuPWb/DbH4TrV7kTX54pI3+DkqSF/K1258QFzkrSYO5KyHtkx16YUriO1RuqK3DGmcoXv57dLeFc5ZV7RHMnKb+/J/enUPbLk3MbhqWkwJXZMTCwMQtpmZ+RCj6eFmMsQqkpV9fJj//Mp97/wV+despzJlXCMINTFahKSI0LRLf4BvNo+uL2xlGFBmLqscLn2vw1huXWHOKnmrQVRalUqbbAXXjUE5i84JuNeL2bEy36hP3CtZ6dVZzjxk1JIx210RiNnqMZ+f+He+v/+Oh+X5buLHU4UdXHEl0ijjbQBcdCitZFhVe9p/jxafnOTloZX6PGi89E6OnIvKlLsLbG49huzl6rsJSlPH+jev8Yu06zaxPYe1ImqLdz3SjucrE9csMUmmdg/5GOcmQql9OgJTePgY2Ur54q8Lf1jaYiYZTlycXJ5m68Cg33v1XLk7+M7nq4+dVAlWHuqSprg91Eh2ckBvrUFIwNRHx7C5Dia3XZdeanFlNqBcWjQAtmPMEv6wZmhWN0w7Xl7i+hMiMRKseltUViBDlDIUp8KUuw5CFwDVmYPUGRVGgpCGwm0HS3RaEMeLpPzi0WHiQ5kgPBJuFrL3eBidAWLw8QFhFGjfLIswMUm8FOA9Ehqi8T5Lkez5yuX9x+7m1LkcKj5o7wSPiD5ipPD52dB5jJIx3rWN8prEl5l6JDe2KYqJVGiNsrc8Wh0Sg+wa9MNqmd4zDsRA3OG9qVDsF/TsyoBIWRG4R2kOvZOTLXfwHnCm2n2PeKDiIntXs3GT19iqxSxBKgZDgLGHRYVrkbHhTZLlhvZkQeIr2mQYLyz10v8BKsT01sN0cGWriZxeOthAf4IY3SGsTqzd55uE6L91eoukCYpejsRRIes4nEAVPy08QSjMTP8Gz1TMjb/R3U5KmOxtMdpv0gghfaWgLJi9VqU8F5Mpguwn6dptcvIePo+dFZDQgF7jrK6jv/R9UvvlfH70Y26WJGaRh5ShyJGBQ1hJOvokvE4LOBLkq6V7S+Ii+Jo9aNE+9zYX3vs3r/gsszl/EeksYldI3hql+lUc3Fpnpb06DBqYGi1Me8/lPWA1nSXWFQBQkVvN99TDzJsWzDoOhtzCBCMrvqaOQnvRJ+ykEavs6OhxNv0tulvEWTjE5Pb/9WM1GjzETnh+ps+6c4833lkhSw8RkFUQVshTfFnhC0UwFb6/4LA6Ejd+rxksIQfzFRdo//AizkZafM3CvZ57jR9MrvPXuB6ynPRyOUHvMhlU8qe5ois49w5msMlSfNvhMu/oMdtf0x2RhOclQOcIUEETbFL2tY1joWRaTgBuipDl6QpP3LL2kIPYjXlw4j1+vcUP+CtO11NxJpJabUz6BNyQyYJBiGEcaKwxpbrix0qb5WsrXv3yaxbnq9uvCjZQnVhNkbkmUoL+pH5xOBV/OHK9RsB5JhFNkuaEtuiPTqndndU2bFlNijmU9jTdRRYab1y6skNbnabf7TBVrTC39HIwBpUBr3Fvfxwlx4DP5oM2R7je2Clm5+nfQycA4qp0GQRrRqzQRpjTh2bJadTgQBmyI9NoU+hZwp1Dezv+zndL1NJVk7Q6r4hKt4ioXfvaHzPjnx47OYxyKcSE2xmcag2LuS2c1T7+nqPYcSQCFBFFYJnMPrxEcfdP7G4jjyliTQvB8/TSp+5imMCgny4I3d8Q9gW80nhBYl9D5wUdUv3b212KxOYie1frBZRJ1CeOm0FrfKT6FBBkQ5imzrslGNMtzT5zg1EKNmYmI/EZ7u7Cz3RyhJd6JKvGzC0c/J4e44Q3S2hbPn+eFX73K2xsV1sQkPSQKy6zq8rR3k8XO1W0K0qyQI2/0d1OSgjxDWYNR0QAd2BD2AiaU5monp5Gl5NpnPXgI3TuDLioIJ8kxdFda6B+/SvDno9tlA3s0ManTpE7Tsx45qtwvyRjUKr63SpDE2M2cvC0IBCqL6NXWmPHXONl/BG/9aYy+Tbe7xqPJ+5xvbiAqPmhb/l/dJmxS+0j7CFsw4+cgWwCsEKOEpeUJfBwUBtydyZcpHDquECRqe3KxUku4NHmdltctJ/sVQ/3W/8KFyT/ZLoSFkCPZ/q9s9Fnb6OMF5dRCS0ngh2wdeUUaVjf6rGz0t6lUx6Hx8k/WqX393J57PZnS/PPkMle8Hn1Txil4QpEbw+1ei4VKg5mwgrqdsPGr96lnFTAH69OGTX9sEYOlNFjRChozO3oVQkt8J/n27AW+xzWWlnsUqxqVauooqkHAxbyDPb9KK7tOHEyhpL/r/93pJNrwz2wXvV4Et9MmqSmwrmwA9luSV3/a5oXHpvnx5ZxuL+Pz3RzPQlOXnycQFM7REVB1kifbjh95DrBk5EemVe/O6nq25/GjDxKamaWiDcZYNtoZWe6AAClr/Of4Gzzt3WAxLs08RskTe9DmSA8CYvFRvG9+B/13Fym6Gml7zC0tsD51CycNzpZPkRMOpAUnMekEXpATx3eejd35fy41FGs9lJVEapIkWOfq4hvUf7WAGTs6j3EIxoXYGJ9pDIq5L0YdsgsRT1z1qHVAG4eTknChRv358Q/dcYetnpqeYSlcoiCl5wpU5mj0FNIJlNqkJ1lHsZF85uIDhhWkwMH0rJUOXqqRdUHfaSSgcHiYcsOnPEyRE8SWUwu17U2uf7KOt1g7npDxI7jhCSE59fxXWPjhX7KaatJwkkDDtN1AdO4UE1vFz6gb/d2UpNTzMVKhTEGhPcSmVb1xlsQUqKSLcpYNtYDfeQysxskMJw04SWEmaF8rEL+6TPDkEaZiuzQxLevTd2UhobEIZyiExMkUISyy0Jg72QLbHyOMxvh9pJ8xrULaSGx/DllMM/PkE4hLPyynkL1WeW5PnC3P2+KjuOVre67HtOwxpfosmwqe65XXWZZLqXOObr/gxOwEs4/8Ke6t77OSfcjbMzfJPEvoYqLKHCbwDg3U3g+X11dZ7XfJdV4yAoQgUJrpsEpF+6UuKClI0zvF4VE1Xvth971OoPib1be42u1T80Ka3QRPSqSQaOeY6jSpdZqcdic4+3GdIDUUlQIv8hFCHKhP2z39kakFFsGPYXIaEe5kP2wdw6npGf7YTvG9D66QGEOlpol8H1NYllZ7tIqrxKdTonBy6DEOOoluFb3Sd9zqtzHWoqWiYjJq/Q554XEzrfD/rlylJ2ImDXjdgsyTSCextpxKCiGwOHIlmS4cp00AcyFfe+pxFuI6cvUm7trFAwOQd5ybgayuk8CLE5vujCtd2r0M5yDwJPViA+36LHuzvCwmecF9zKLfHilP7EGaIz1IyJPnib8zS/u772OTBpMmJMg/JBcJThYgwQoJNsCkEyihiHxFoO+wPnbm/0HRTMBahFaluaep0Y1W6J9oEt+eGDs6j3EgxoXYGJ95DIq5r8kWHz3WZ67vsagqPL34EKceOvlb/wN3P8JW9UxMZbaGvyQpYonrJQgcwpcIAS63yECjpiNs8+5yhI4LgzlTWVPRu1xgdhWk/sOTB9OzAkHejQiM5pbwKberDl8Y6jLFJ6cftZmc/AQdTeLc6YEiRxyPW+cQQf7AQe4R2ovFR1Ff/wtm3vwerN2AtNhTTBwVuylJa9UJ1isNZttrNJXGbR6vEhJjDXGeYpC47FGE1TjVHxhKWazs4WxM75fr+J8bXU84OBVxG0t8pB9BlIShcgIlBEZKnAlwVmFVgXBe6Xi2eb4EArRFO41nYwot7hRL0zEzF87BhfP7Z5QNuR5CwNP+LV5OztI0PrEv0J6PyQ3dfkEYKJ55fA45V8UunOPSx/8TWd6mqmYRQQQINIwUqL0bH7aW+eHt95HESCfRWmCdo1/kXO9uMBVUCIRGSUEQ3Cm4RtF4japnHLzXr3c3uHWtTd2PKKyhlFQKzrbW+eqtK8z1OihjkemLOGsxSCgyTLtAeBJZD7DJ/tEjg9MfL+mg/7VP0bSoINjxusFjUNMRb79yBVsI5hp3GiLKU3ha0kx8ZCqoBila7M0UG3QS7aSGwjhatoexFl9pgjxlqtMkd5qOrGJQ+GRIZwiNRVjoG4vWEufK7yYE4KAAvMJR15pnvnCGhdYt7Et/hT0g9HsULM5VmZ+J+ZvvX6IwjkbVw3M5YrkHSuGJZJeV/Wh5Yg/CHOnTQHBqAvGtx+m9cYPKWkCjtUCzchNRVEgVGKEQzsf3FH7UZKbyyA5Do8H8P5cZXG5Aye3fPWU1mSoodHLfg8LH+PXHuBAb49cCx2HQcNz4rE2IfrcAACAASURBVLgl3a+w1UFdiGpm2NyBEgi32X2WAlUPynDSgcVGz8T3PZxzEIM5U3lSpdN9HCdC5EQN2ahsF6T5cheXW/Q+9KxMCPpEeBbUpvpQ4kidYiNapzL/Bn60iqso/uXWy9T9kzuoZceBYZSs7TDg7t4pF+ylKo3aVd8PwyhJ75x5jN+9+DPqvQ5NzyfyA0JTkHfX6Wgf4yaRWQUrs11RZeUmVKgM07Z7NiOHBTVvTUWWXvsx6xsRDdemLSoY4SG0wlgD/VnSZJo0vE3Uq2Ngc0oFzjoKr0utdQJXnKCpBN12tl0siS0q4z4b0f2ux6Jd5oV8jbfVBdaDk/Q7OUoKTkzHPDNg4NDKr9MSa0ThCcQu04OjBmpva/d0j4koLs0eVJlhZpzDWMOtXpPABARVQVN2mCXe/r8O0njdlZ6RndPTrYLjTHuN71y5SFTktPwAzGnqZhqJQ4gCIRVIgc0Mbq2PqgeH6NPK6U9Ju2wdegyrzYS1jT6VSA9tuERygaI/RSdcpRGEBzqJ5kGCE5asMGhVFra1fhfhLG1VwyKRWBQFAkEmHE6UrDZjHZ6WFKYM/naAtA7pSZ55aoGF4tZIod+jYrWZ0O3lTNTKAsIlSdm8EWXjLGaXlf2IeWKfxbX3ODA43X2i+1/y8+L/Ipd9AuoI6+FkjqGFr2p7DI0G8/+kUWXTZ+DvRhZIp/FMdN+Cwsf4zcG4EBvj1wb3YtBw3BjmlnQ/Nuaj4H6FrcIdXUjnlY/Julm5sEtZTsLqATIqf0K2Fpvlm23efPf2oe5ixwV34xLmh3+J6UqMP08/PYVzPtK1EK0ueIvIMEZ4kmKlj0sLXG4RwS6reQftvsMJQUW0mJERLReQOYWu3iA++xJS9WlYRSVexLj8rqllh2E3Jcv1WmVW1OSTRE88x8zCI3vfM0BVulcMoyTdnJjlh+ef4cmP32Ou32EyF4DEO3GO1ydneOTdT5hOBZaC7UrMlcVD4Cwy8LHoHZuRYUHNw6YBYvFRst+Zxb5ymVro8KyilTiS3IATCCHpLX+R8OQPkJUmXhqD01iVU4Q9gixi6uozXK74pLndUywdhq3rYd74HmaphS0MUgsWTtQ4+czjrMYn9206DHbOh+Eogdrb2r0gQp3IMVcDTAqZNFgsCoksFMJzbNSb/N8fvbUjcHc/jdfd6hmdc+RdR9APyY3DjzWhVHz15sdERc7KJnWwnp0CBIaCfm2VIjB41Kl0p3G5w/RyZKBH2qiOcgzprTbGOrQe3ojwtCZZex41+dKhTqIzExFxVbO6LBBK4Bc5nslJZUC+uX3SFHguoRARG1rRVoaGgY4tp/G+p8gLiycFU0oSLNRonJ/C/uN/Gin0e9SGSpqanccty0w8nAVRWtzvsLIfMU8MPltr73Fia7q7MPscul/dXtONaJeGRv7DQw2NGv6d/L+KnN50dS2n/Q5HptrUk0Wq6ex9CQq/WxwlVmKMB4dP/84YY4xfM+x2S1LCx7jsWDfmh00Kdrz2PoWtbsE/Waf6B+do/u3FckHxVflvkDVXWArneP3SMqtCUIk0WkuKTV3GS69f5cUvnT5yMXbQ1NE5S/rjV+kvn6dgAteR2MJDSIPwY4TpQXMFF5wpC9K6j1kuMK0UMbNrw5wVyNTQjTR9TxCaLoHKyITGzb+GUz1c2sCfjBBCoYW6K2rZqNiact344ApvXW6x1gfjNOpiwdTtj+5bYbuFYZSkVnWC5Evf4ltRg1D72/flk+1Vft78Ib+zYdHGYSgLWpzFtxapPahMIbizGRkW1HzQNCAMPJTvU2iFBGrK4hcFK2mKlIK8WGDt9teZXvwZBGsI+kiriNtznEt+j+nnv8T8RHTXE9rczdF1L2JcE+cswkmUbVDhxNBsoS0Mds612Kv5OyxQexCD0ydZtbhTCb0bIFON5xROQhakyHnHZMMfGrh7XHrGQTv3uF8nx2AieDjWzPe7ND0fBMi8irQRG5M3uH7u5/Rr61hpkM6j0pvm1MfPUF9bgECPvFE97BiCQKGkoCjsnmw/gKKwyOwMj9X/LUvFDw50EhVC8MT5Sa6uN3GpKGmvzpFJD4tEYYjpoYSgJlM2bMwHkeTprqNaQCEdBRZfCCakxKv4VL64iFi9iRvBHfUg2uBu7DluPyiLuqwPMqDYNPMJRHGkPLHfFhzFuXQw/6/rVtB+SXc1ypHpNp6NOLP2ZXAC281Gpv3eTwzmQubW4AnFrGjwzMRpHp6cvu/MlTH2x7gQG2OMI2C3W9LWD5cW4bFtzEedFGzhuIT4g8e4ezHyZit4cxXypS6y6u2SLpX6jDUJq8BEzd8+L/6mLmOjnfHWe0sszFZG/rE/bOqY/eoynetT5QTMM1hhwXg4qzBZCNoi8wSyBIIQoRXWF1jlMGs9/GqI8DapTa2MXAqW5uvgRdBcQeQpXrRMHq1BUcEqH6vvbKaPSi07Km4u9/jRpZQk1cdW2B4Fo1KSHqnPwu++yNqtt5lY10jbLj0NpUSGFWRjFpsovBMxeiYeGtQM4LyQ1dokabtN8PqrzP7ZOaQs7+eZiYgo1Nxa6eKcA0qtlkaTqRzlFJk5wYr3TTyxTqWfkPSgEZ3hwgu/h5J3XySn1za4+dPXyEwHf7pKrZiHwlGMoL8c7JxXxYkDaXDDMBginFtXuhFuavfyKGPpxDpB7qOtppCG1Ms4XZ1ECL1v4O696hkH7dwrkWbGj7nVaVF0BVl3ipacAdXBOodyHu3J21x+4jWMl+EnMdJorGdoV5f44LGXePSXLzBbffxIG9WDjmFmImJqImJptVdmS+4651v6wEdnz/EoXzh04/2FM/P8ZOkjNq5neImmI2pYJ1DCENNFuwwpJJE0SNel5Qe8rQIe6RomjCWSkjDURPO17amdu3ZzZHfUUTHsuLfyxFye0pN1ZlWX6WINesNpzr/tGNXQCHbm/zVrn5DJPsJIar0Fzqw/T6N1EtNN75r2e5zYkQvpR9R6McVtj1YieMXd4BfhGgtTtfve4BtjOMaF2BhjHAE73ZK2flgdue3jnEGL4J425rsnBU75mL7GXm8jV/8O75vfQZ48v+M9xynEP6j4aRygMTFa8mEoqcTD6ZGVSO+x1D7sexw4dZz9b9HvtHFWI/0MIQWCzQ2FsDgnsSZEyARhDd08Y6PbBWd460TCQ+s+s62MmvTxfQ85G/NBXpCECt/zcWEMWQp+AZ4EESOsLPVwg+f+CNSyo2BHVtQxFbZ3g1EpSY805ki/9Txr37+E69XBd3hhAMLH9nZqkNzy9T1ZaTeKGm9n86yZCKMEar1g+rvv8uwzD7E4V+XmcpduP8dYhwCUEhhrcUagCo/cy1mtLCO7lpofcUsExA2fbz78+L5F2ChRD8u99/jlzb+iffY2Tluk01TTGc6sPc+Ed/pQ/eVg5/wogdowPES4LqfYqG/gTymMszjABAVWGLLCUCti/J6P1eCFxx+4O+y+9FEs1Bqs9DsUPcl76nGeca+BFxAqzcUz72L8lLA7gXCla4UyPmHfJwk3uPbQ25w68bUd5+8wCtVggbp7yimE4NnH53jp9atstLMdTYxBM5UtfeBhv9NSCL712Hn+Wr/Jesfw7MeXmOuu8Wb4FE1X3sP+ZsMgtH18T7BeqfPJos9Dc5KGy5C1CvrRs9uNhaO4o46KoccdxOSNBXrtDoHp83T+HsL27snMZ4w7GJyidW8vYd/tEt6qQ+Fw2tx9jMkxYncupOsqzLUAYUBpR+5yuhaWVuUDafCNsRfjQmyMMY6A3ZqPzHTo5EsUrhRGbznKLfXePXIhtntSkCdV+quzFFkITkAnQ//9ReI/nSU4tbPDfRxC/FEol4199BnpmQZrl1eo76PLGGapfdB5OGzqePH23/NY5/eQMttUJCmEsAhpcFYBDmslSmoSZ7nZbVHtOzbqsPaQz+0zBr3ep+F8fv+hx3no7CLqlSt0B7vofojQU4CHsQWBF+F7O4/vKNSyo2DLNns/w4GjFrYPAsGpBtPfPH/n/uhbxLDNyK6stBtFjZeTs6ROE4usDKa2hqVmxkuvX+X3nzvFWxeXsRbmJiNa3Zw0L8itKR0UBaAtaZhhCkvf5DxSn+G/OPvUvq5uo0Q9LPcv8saN/0Ci1/FNDZ17GFHQCm9ycf6feOzWt2nkJylWe+TLXZqeHFoYDHbORwnUhr1Tp61CIuwGxLfrrNNC1SyC0hQiakVMtmuExqfYMioJCoKp4lgDd/e7LyvaJ65N0fFSOibHT+sYMpajW3SqG3hJBBhAlrl8lCw/P6vQn9ogeyRj6wnaQ6GSivm4zh9suvQNK1B361AX56q8+KXT26/rJcVQM5VR8Uh9lj9/pKTqXiomOH3pYz6f/JKfBV8mEzV8lyHyhEIE9PxJKtryleRnzPzy0jarwX2wgNtiNRzRHXVUDD9un7kzizwzL1iMzw6luh9U2I5xMLamaBNnzuJOH0+O53FiMBcSBGbJK2MP/dJcRztJ5grCWJL0zANp8I2xE+NCbIwxjoBBzYe1Bc3sGtYVKOEhhMS6AmNzLm18l8nw3JG0Ym75Ghv9j8jnPETmkCuLYDRSFyAsGEfR0bS/+z7iW4/v6LLdqxB/VMrlVxf/RxqLj+1ZbPKNPurK6oG6jN2W2vth+NSxxBYdsJVcpxOvU0+9UgOxOQlUXobJQpwT4BxWhaylBdXEYXzJlXMWKQWB1LgZxUdJF5N+zH8nTg7touf9afLeNDq+RS2uM2gJOAq17G6xR3i/C0cpbB8kRtIgDUwDnFdaaqdO0xDJps23xRcWr6JppoZ//cVNur2cSqTxPUUQaK621jFFUTrZOQisz1k9QxHktPKEqhdyrjYz9DuOEvXgLVY3n4cuUTKB3Az41s5H5VP0vTU+mXqNL3RPkbcKfvLTq3xi7b6FwVH0JwdNQ2cbMTTBb0ma8SpBElBbnSBKIoQTZY0jyzBa25NUigauo+CY+gQH3ZcCqAQ+q0GV5czjZHeJdgxWJUgTI5zAiQK8AIkC61DKx8SG3JYT5TsUqoSpoI8vCzKrudop+OvLb/KNxhNcerezp0AdRtddnKuyMFs5tgJjm6p7+kmKk4/z0Lv/SqP5Hm/bM6yJOj09gY4qzFUVT628wmJ240D941HdUUfFUY97lMJ2jNFwbDEmx4gdzqZ9ietL0G679pdCUtgC49xnssH324BxITbGGEfAtuYj+YjM9LCuQItg2zXJYfBVFePyI2nFlvsXeb/1V7TOXcNoCflt4olbnL3+GJOtufJFCqTtYZPGUDrUvQjxRyl+BimXuxebUXUZMxN7c3t2YxSnuUQUFEEGlXkwtyDPQGukdKB7mDzAoTGyAlnBRh2unLOsDmS4CiF26mjmJoZ20Rv2BWT0TxRyldyOTi27F4xiODBKYftpdLoP3YwMTANWa5OsmYhYZHeGAiaHIEYEIRVpWW8mOKASl2Y0mS3IKFDeZp6dAwz4aEJfopXk1hBtFOwf9YCnEJHDtDI6P7kK36lsPg8NnDDbjmgAwgm8vErLX2LJXEMnEyx1MoKJ4MDCYFT9yWHT0IlKSJp5fDGa5+cfr9JLijI6bTM/zVlwqUSEhgifn19c5uRc9Viu+2H3ZV5YusLy2snTxGspcbqMtgbnN7FFA4OHsCBlqW2lDsqz+KqyTaFy9ioPVT5Ei3XAgFLU9SS3+4/yL79sUM1jJmrBjgJ1P7quEOJYN5TbVN0LX8adf47Kyg1OJh1Ws4CkMkXoayZf/d8R2Y3D3RB3uaMOCxS/W4x63PtNXh+UDnWM+4/BXEjPlI0rBpYr6yxSCLSUaPnZbPD9pmNciI0xxhGwpfl4/da/J3cdFD4OcM7gXI4Qmqo3hxB6JK2Yc5YrrZf51drfUNgesZEERUhqQtr1ZS7GTR67+DyN5gJiM8RWxnpfO/q77cjdq8320XQZB2MUpznlBYSVBnZdI6cWEK1VyBNwZZ6P0D56JmLjuTm+d/tXiOloj74LwJc7dTTDu8mfYyU5yfvr/8ha7yrG5SjhMR3vTy27V0w3Qiqxx8p6QqPq4Xuq1Fc5R5Ybmp2cmcmQ6cYQfckm7menexR91X4YzOZK222MEmhsWUGYvLTdrk8jEGUoLuUGeGvzX1iLdQ69dT0t5Thmsy7YfU0HMSzqwfYLTDPB5RZnLdknGZ0fXME8mhJFExReH5cVIBTWOfLCYq0gj3J6/RaFmKAfSTzroLB4WjJR8+9axzfKNLTZTnnnnXWy1CKdBNxmeHD5GikgsCGNanCsHe7DGi6tXkrmZZiFWb53ap6pzjpSv4KNmuRSIwsHxjBXqRCEHp1iiSm/nCjf6DVZTz5gPnoDRYZ1FcqLatAsMx+0aLoGXvDYZ4KuO5hvtkWAdcvXsOt73RAdjmbYI5+TeL3LTC5fQ8ydOfYMwKPgs6JDHeP+YjAXclp55W+lZfv3srCWSHsEyiPPzcjMlTGOD+NCbIwxjojZ6DEemfhD3l7+P3E4nMsAgZYxVW8OX1VLa/VDTBy2jDFudt/C2BQpPGxsiLoZuqii8gr9So8rJz/gc7fPIhBIHSOlh0vNsQZEHofN9nHpMkZ1mpt78hk6Kx9jE5ATJ8FlkBls6lDViNrXz5FMWNp9QeQMwZCfu8wWeFLt0NEM6ybnrUX6P/8jTHKVTCekuoKIz5I/Pg+HD/mOhK0CaqOV0k9zeklO4EmiUNNPCtLcIgRstAT/+MqVoYXVKJ3uu6VtjaKvOgxb04DgtR+jNgoKa/CFhSAui7CwvM+KwuJrSbXi02xneLrs2kohsM4hEFAIRGwRkS2/35BruoXdUQ+2X1Cs9nDWIZQsbfcLh1uxuHlLLvroRkix2sNmhtw5LOBUgbYKV4S8HylWN1KkylBS4GlFo+rfdWFw2NSp2yvvCTtQeFGeiTvn14HJN808rDu2DvdhDRetBclElwnlgxCs1abQfJlY/RjpWlgdk0lBplLyYn3HRLmTJ9T0r8oijAZ3aMASSwNFk8rMW7iN80O/22eCrrtL/wiwErW4NHmDlt/DCIssDFHzf+Wk9/vMxU+UFNVjygA8Cn4ddahjHB2DuZCreZt6oBF9jRWGwlmUlEyHVTgic2WM48O4EBtjjLvAXPwEFW8OJTRCKKTQaBFuL2iHFS5bxhhJsb6pMSvpjYXO6cR9YpOg8xg/EfRqa/Rqy1TbM/z/7L1ZcGTXeef5O+fcLW8u2IECaq8iWaQoLkVJlCiboizZbUmejvZIPTEdDnePJxwOv9iOoPQivXl5kP1iP8kvDrejNREOddsR7Wm3bXX30BZNi6QkUkVKpIq1kKxiVWHfcr/bOWceEsjCkgASQBZZIvP3wAoCicTNmxc3z/983/f/G+thFhuogtfTgMjD2myv04u5jG6d5vzcIOLTcoMoaFXC3KNhey5u0tr2buBokN/2uqpJzInCEJPhwI7HM/3aHPPPX+d4M8MRBYwoUnMlbxUrPFtNeepjvWvf2SigCqFLzlesVhPiJKMZZ3j5RcJ8SjEoIvVExxaibna6X3hlGt9XrJSjfVXLNs1XhS6ZJzGJIZupkv3T25R+bmcr962IqXsY+9enGfn/LjJfTnDzDsIP2pJiY0vrI+fG+OeXb7JaTQhzDp50iNIMVzsIB9R4utam2HpPj+cHMdZyuTy/yXVvY9QDrmpVwozFKEhNhjUtA4xqVMCrDlBXiwwOn8AZyVFfqCMyiwJir45bm+AnHGHRla0jXhOGSapZKkcMlfwDiaDdqk7GWsq1eM/nWBdgSbJ9h3s/GYWd2G3D5ejJHLeWbrUt9gEyJmnonyGQP0awjCczLJKRrZldLBLIMtp2ul8IMhviBksIdwE4se249jOHesfY4oa4mKvw6vhbJCojSD0kKXVPUzVvMb9wjdAZYTg4247keDf5aZ1D7bN/NuZCzg83cGbyiEQSeIqRXB7Xtj5n9tO50qd39IVYnz4HYMA7zoB/rCVcVPfCxVrLwkqdH63+LU1TJXAGiXUVKRQIsBq0tERhnXw5RGqJkZrUjdfCRDVoidUWNdK7XavD2Gxvf67Dz2V06zS311zcxt3AxahO0fPxpENiMqpJTOh4fHrqvm3ZWOvEN8s0nrtGIdakrqRqDMIY8k3DuSjjx4nmhVem+eIv3HvoD6+OAmrNnGKheQl3+Ae44TKua8A6iHSMUu0TVJYmN7UQ7bXT7SjBrfkqYeBSKnhdz4VsnK/Kcg7lWkyaGiwWYaGw0iR94R2OfOnBjueikwCQUnH+0VM8+9INyrEmL03Hltati/+c9kmNJQkSnPEUlRdEuvWeSiGoZTH/6fKL21z3zoyO3o56yFlsajASYt2aA3OtIHXAuJL87INEuRdYadwicIcpewLHtwinCibPQuVxaq5CipbwMXbt/ErItKVcjcnn3H0Lg92qTpV6gjGWfM6lUk9pmcHvdD1BM844fqTU3uHeb0bhTuy04WKBHzS3b3xkTFLVE1STW0yGHj879QmG/M1mJSVX4EpLQ0u81tDbxldDhiBQmkw3scpuu+feFbv5G+YfretxdWiaRGXkk4BUZlS9CCMFSgRom5HqBivR221X2ndTjPVqDrXPTwe3zWbK3JircvNanWZNk0UWK/WBHUX7HJ6+EOvT5wAcRLi0Z3Ya15BHroHJEbsZeGCFQRgQxiKFInNStJMiLEijcLIQi2ytuhwQSqCXmsgeOjQdxGb7TtKt09xec3EbdwNnGxWqJsaVihOFIT69ZondCWstK9+7CYmm6Uoy05rDEVJSF5a8tpypZXxvrsLFt5b40NnOLn3dspOAStU1clPPIFQTkxaw+AiZYbxpzOA/EOrPsbR6tN1CtNtOtwXqzVZbW7jmQgjdzYWsz1dlrmSpHGGMRSmBELIl0kyrMjZzeZGpc5vP6W4CYGrqnq5aWrcu/hfSCi/VrjHXjKlGLcE15OcoJxErcYOSl6MkA1KjuVFb4a/fusC/PXOe4+tRD5UEawypaPX4uVZgBNRDi5SCsHEM//LP8NZDP0bJOrhNrHAR6TFM+XGS6ihS2rWA6dvnVwqBlBCnholR70DCYKeq02DBx1rIBYpqIwXW9md2eB7Pvb3DvTWjcCc3v27ptOEiYI+Njwk+NXWe4WD731zgFCi4eRKjSYxGidstqNoaHGkI3YBEFQ49h7obnQLtu60Ybpx/LCc3qXg1gtQFo6l7DYwEpXyEdBBWoEnxVYnYVPdl7tQL9mOwdNgq6t3GXjl171fWzWaOnhnEnu5HFtwt9IVYn/cV7+YNdj/CZWPLWTiUYBwDqUsSg5Iu1klw23+OAissVqWkTkqhPE6+Orr2nRRZ8sGKns6IbXxN3dpsvxt06zS3F+3dwH1cG9liA7vSJJYCbWzbOU+0DoxYwoA2FFPLT64u8cCZkUN9kHUSUBaDKb7YEmHJUCtPzgqE9bGZB84SDHwfXf437Rai3Xa6k1STZq12NUdtF7S7zYWsz1eVtcasHafY8LPWlYhIc/XKIpP3jbbPRTcCYGrqnq5aWjcu/o9R5BE71X5PQ+XyDzdeZyVuMBrcdgn0lcNokGcxqvOd6cv82n2fwDzpUnntJvZWhl8ZQolWJaweWtLW+BiOgaA2xWJ5kI8Pj3Px2gyOzOMySRQbrG3iKkGa2VY1bO0YjbFo3WpxHBsOuTVXO9BCp1PVyVrL//iXa2BBrV2XiM5izFWSjz88ydR4YXNG4cAYkdFonaKkIhgYg/LCbTe/Q/6tH3TjY8A7zmjuJMZepZb5xFqjrUEgyCmHvJMyEd7LyYce45VLiz3JB9vKboH23W5Erc8/phf/Gs0MQSLIlCVzQCofoRyMNVgLBoPFbHOlvVNsNdk5f26MZ9dafncStsy82ZMq6t3CXjl1HxR67Sja5+D0hVif9w3vxQ22G+GyteXMijyJdUBmuMIjTQZBLpDJFCUs60uqxG/iJzlOTt+L60dgNcIm4AxirezpjNhGeiV+7hY2W7h7TA0OdLUgtmu24Fq0FtdtEbaGFuAbCIBqIzn0UHsnAWWdefAWMHGhJcKg7cYmEFhdxDhzqGAB3z8L7L7TrbVBG8j5ErdDxWy3uRAROGjAJAblbD4XAMoASrDUTNvnYmtI+a523kJuF397VCfaduLArfoqc80qJa+zgCt6PsvRFf7p5vOkZh5zf4qeTPFXBxiYfwSvOXlbTVkIYlgpwXwuo1g8yrA/yPxSA68okFIgxForoiNJM9M+v1IKlJQYa7l6fYU331ltz+A9cm4MUdBdbwZsXSxZaxkezDG3WMf3FFGiW3l53BZjUkDgCo5PDfDAmZHWDy5Ow/IMTT/HQmOVWGftjQVfOYz5OXJL063H9cA44iAbH0JI7hv8ReqNm7iyhpIFjBMiRIaxNTw1sLbBVWJqvNjz3fxuAu33I8b84X+HujmDyftYYcDMYVDEWYqxFjAIYZlv1hn2B7Cku5o7HZZOJjvhcI6nTg9zYbneUdhOZrM9raK+19zOqYt3rJh/kMRYn7uDvhDr81PNegXs0uocz1+7hs6gEPgUQ0Fm350b7F7CZVvLWTaOTMcw3jQ2G0ERYqIxvEIVLStYMqRxKa2Mc2r6foaqYyAzSBOsl8OkEncixBl9/+xmHcYOfTcOY+EuAgfHVXipJjV6m/CQFjRgvZYwOOxQ++hgjuGBgJnFOmHgoJTE8ZoIqRHWwdhWy9ymxax1MCJjYMC0W+B2mzFqRBlSQBi4Hc/vbnMhzmiIKfl41ZjE2fJ9a3EzQz10KDvi9rlYEwBb7bzXDrT19R0EwH6rE+3gUuEzXF3BTxNi12O5MAhCEKoFfPV9KolgwBtDKY9GWKVmF4jCf2Hi+s/iNSZxdEuEJa7g4vEEVykKrs/5+/PtcxrmHBwlSVKNEALPVRTzHq4jSVPNSrU1qxYGDq6ryDLDrYUKVxcWqY+XiXPxgTaKNr63um5RwqABhcVajcAQmIRCEvPwykWYsTB1/lW0JAAAIABJREFUD8R1kjRiRjtkGBypWi2lWKIsZYaMYyYjiHsnBDaK5HV2a3Gz01cZvvDPPJJIro7FVMIa1pXIYIDh/NnNxh493s3vNtB+Y+vgXvesQf8EpfA0K/E1fFnCxJCapLWJJkBgsHg0tWCuucKwr3Z1pT0Mu4WY+5WYn3/qFJW8u0nYgsX8ffebKIdp6Xw3WM+pa2TxrhXz08XRD0SbYp+7h74Q6/NTy3oFbG6hjp73cJMCLgKkxIQWdzxlNK/e8xvs1pYzgUTVn8A4fw/OEkIXsKlPIHJoR6AaDe69dpSh658C62FlDDoB6WLUIDJwCM9Pvm/6uXthh96Jw4aVOqMhzkiOQjOlYW2rTrl+zq0lMJZVV6KLPo44/FD7zEKdZpzRaKbUGilKgh9DoaQQSiNsSzwZa5GiZQ6hbYqSDvefOrrpethpxmhyLE8zyqjW000hxQDGahrmFsNjFidXwNrNCykhBM5D42SzVfzEkDkSI0EacDODdiS3hgKUkrfPRQc77zbWEiGQSUR1dY7R0aPtv8+DVCfyjsep6gqPX3qZkUYVZTRaKlbyA/z4xH1Uh3+EQ0LonMCRrePJ50uUkwwjVlmZ+BFnXp/EKMHKgOXNE5q3c01OhC1XTZkXm87puhADKOU98qFLumaoATA6GOB7rY/YVGgqooGNBf5Knvygs+NG0V4L2o3v7dxijUYjQRuNtIa8SBh36zwi32Fq5Qbm2eut0GA/pGo0WEPkjJHg4pFSpIonFTaNqVqD54fsdhUfZlZopzlB8ehnWKoZmi89g59UGQlHGZmfpOyUSdMyrswz9Pjnkbn7uvo9B2G/gfbd3LM2zhFH2SqZEWANrfi7VpCTsSU8KbG2QiWdpOj23sZ+pxBz4SmEK9GrMc1XZhn9pfs2z4kt3Op6E2WhUD90S+edZqZRZrZR2bViPrNDEHyfPneSvhDr81PJeotBXDZM3SyhEkvkGpZcgxYSr+7CDR91PKaYe29vsJ1azlRyEspfQOdfQDvzSC/DEDJaeJB7cx9m+NZV0sJlmvWjZLoAcgCRz+MeGWpbs78f2G2ntvqdtyl+uns79I30IqxUCEH42BRZOWZwWVMzhkza1uyQhUwKFiZCMgMTI7lDubVtFI1DpYBGlJKkhkZlGLc+TFCcJ1+YII4NSarRFoSwuH6d0fAs9x7ZvtjZydluZqG+rVqWqmsk4Qv4uUVsTvDirN9xITV2boyfvLlM6Z0yJW1wNVghaIQOM6MhM9YyMbjhXGyx816nkcYsxnVMEuFnCX83cwWlo5azYXFk39UJgCOrC3zu7deRcZPID9F+DqUzxqrLPHLjRX4wUAG3SM5xN77LDBYLzDZimiOLLDw8i1VjLIQZ1XS7q+bWc1qpx7x1s8xKOaJSS1riFsFwyScXtH6PBZaiGtoaXM+BSCIihR+KbTvxS9Hlrha07eNYadB49m9orq6Qy+cJlGZENlrr5mC8XbWYffKLvOkfYzGZYpkhjFVIDEWqnOEtTqbvMFMYJM3lObrDNXoYx8Wd5gSn52u8+sxFlimizf0oRzKsmzyiZpkyCuQQrM5jX/0OduqeO1Zh2U+g/X7uWetzxK8u/DeW4xqOTACNxcPYEhaJpIIWAbPRPcw2qz3/jOoUYr6OEAKZd8mWGmSLjc2mR7ttokDr640Ki42LXGh8h0TXkKIAhFib7eoGeac6IHajXTGX23MyYfcg+D597iTvKyF26tQprl+/vulrX//61/nqV7+6489EUcRXvvIVvvWtbxHHMb/4i7/In/7pnzIxMXGnD7fPAVlvMSguZjx1tUQpMghrMQJWPcnrRcNSkCIzDz3v4p7S7+kNdqeZHZWcRMTHaCS3GB6y/Ox99zK4Zulsj/0c/uI0XlQja3rYYAiZ896VD6x3i252ahsXZnCnivt+zb0KK/WOlih++hT1564RzNcR2mKVoBk4TI8EzEt5aLe2TqKxsFZdybQhWn0cVfxHpLvCUG4QkwVkJialSs4d4uHx/23HBWqnFq6t1bKmeBt39H/iOTHF3DChF+5YfRJCcN/HjvEsBqeaUnIl1lNUHEE90tvPxQY7b9xWVl4jjZlpVNAmYzSJWCiNUBsYobJWHfrC8fF9VSda59DAK//IoLXcyBXRWBzAKJeVQGFZJKcjcoVjsKXJNHR8JnJDrMQzzBTqVLMQV+9sLrH5nBZ54MxIW5itVmN+8NoM+fC22It1SqwzHLlWa8po9bSyeSf+jZWXuVn9r11XAYUQjOoVTO0K5EPwzNY3v121mH3zJj90zpPPMkLdQEhLKhwqtsRF+wCum/GDyQme0p0NgA7juLjTnOC0HOM59yRxCqGp4bgOmXBZ0Hmei07yZHCdKae6a/tqr+gcaG9JUoMxFiNipHRxZX7f96yx3DmOl/4931/8X4z6K/jyOlI0ECJBoMjsGE3zYWpZ6Y58Rm0NMd+KcCSmnm43f9phE6VNlmCV4rJ5ibouU8tyxLrZirNA4CuPolziyq3/wkjp/0KMHUMIecc6IPYi73i4Um3KuNvIbkHwffrcSd5XQgzg93//9/mN3/iN9v8Xi8VdH//000/zd3/3d/zVX/0VAwMD/NZv/RZf/OIX+e53v3unD7XPAZlplDHTNZ68WsBrQlNBIsCxMJLAx1ck3xu2VAMDTUnaMLjue3eD3W1mp+VONcVHzx5nKChs+BkJY8cQwPv1Y+HAO7Vd0Kuw0un5GhfeWmI5VLhjOUSsSaQgDh18VzExmDu0W1sn0bg+d+S5Cic9SzwjGb3vJ8RmFiNSpOMy5p09cKzAekWllWn3D9SNZsA/1hZ0u1WfpsYLPPWxE1x4Y5751SZaG5Tt7Fy30c6b1XkISywldWQWM5SmJK7P6yfO4Tsuo8phMarz0sIlxr0UpfauTtw+ia1ZNK84wqQQLMb1NUMK0zJZUQUCXcM3MbC9cukpwXAwwMeOfAzE+L4cVzcKM99XOEpuqn5nxmCsxZECq2npwA39f62d+Ih3qs+Q7bMK2E3VwjYqXL+VkeIRh4Yglrg6JTAxnkioyAG+W/woK4Nxx3vkfg1XttFhTtBaeDU5QmwdBmQVoRMQDp4wuESUbcCryREmVRWxVnlhw/zaZgOew5t1bA20j1NNpZaQpK18OeEt45njNOIAf3l53/esghtgGKWqJ0l4CMUyghiLj2aYSGe4Mrsjn1EbQ8yFt73xdF0MbTN/6rCJcvuHLNTLlI8Ps2husppIMpvhCIkQEi+NKVZXUCSsuG/w9oX/hOueIZh4BPmmxsYH64A4TGvsZDjAkXB7xl3reVtB8CcKrTbkPn3eTd53QqxYLHLkyJGuHlsul/nzP/9z/vIv/5LPfOYzAPzFX/wFDzzwAC+++CKf+MQn7uSh9jkg9TTm/hsufiaoKkAJsJZMQEVAScOHKvBiziBsa8F9dKD0nt5gd5rZ+SCHKB54p7YLehFWum3GLO+Rppq4nuI4ko88OHFoy3roUjTWjnOv/0mKw6s9G4YXQuDll0grcxSc4W3PtVP1CXZue+x0LtbtvM2FZ0gXb5JrVjFSsVga5rUT55gbGm//vqLns9AsM+LJLdWJ22Q2QQp3s7HBBkESSskJxyPSGdoalJD4QrDYXGalWKZgB7YtwtYD2O8d+FDX57RTVEan6rcj1/KwjEVkEhEaRO529SoxGXlVIdFz5J3uq4BAV1WLJTlELXHwfE3dOqTeEJ7OkNZghCTGQWsYF0Hne+QhDFe2vjfrLJmQZZ0jFAlCrp1vY0AqhICQhGWdY8mEjOrl1mv0W+/3YQx4dmLjPNdqNEOz5qO1g3IyhKphTUh99jFerc5xPs7w93nP2ioCtBhpf+9OiwBnNLwdYu5uzwsz9RR3orDN/GnbJsrGSmi9DEGe9L6HqDUukdkQb63i62V1SlEFZS2R9WlKyfPOGbKVSR59Z4lB6xKM5QnWRKHwFDiSdLnJ4vPv4Hz2NGND2zs/zK0rLLz0PHG5jG+iVgvuSPc2+lKIPTLuNrch9+nzbvG+E2J/+Id/yB/8wR9w4sQJfuVXfoWnn34ax+n8Ml9++WXSNOXnf/7n21+7//77OXHiBC+88MKOQiyOY+I4bv9/pVLp7Yvosyv5imW4oWh4FpLWh/h68CcCGhIGE8FABKuOwfecu+IGu5/F691KL3eiD7xT2wVbF8QAaWbQpmV0UW9mHBnNb5vrWp9dMM2Uiz+ZI4oyBku3W5B8rxWCvFpNuHar0rYHP8x56VY0BoHb81iB/czGbGU/znVi6h7k5Blmr73GM2/+ED9fYrU4tG1h70mHpbiEMGNU4xlCNY7vKdbbCTeKpgHvePtri7FHU47jJ4oRv+VkGGycBUsi7lkY5dUjpusA9t3YLSpja/XbdRw8HJLYoFyLHmmSZClKSDypqCYxpwoOCrP/96GLqkU89CDGOoyEDrPNConRGKWQwsVYQ6Y1jnV5ZHCq8z2yy1khdnJc7CAWY+ugkTisCVIhwWig9Z45GBpIYqNai/6JkzA6dWgDnt0Yy53j/Ni/5zuX/xojZnECA9ZBpkdR9U8QOCeo6ybNVOOlBtFhE2ene9Z7KQLWZ12r33kbvRq3qnlr911TT3c1f9q4icLyTOt9Vg7NkUmW7v84054hrQlcYRDEuHYVJWLqeYu1Am0lJvNxUskomkKmaEhNvRwxInIEviKKNeVajEk0znSF1595E2+isElY3/rJG1x46TLL5ihankIpy7Co8cj8Jab2YaN/0Iy7Pn3uJO8rIfY7v/M7PPbYYwwPD/P888/zta99jZmZGf74j/+44+NnZ2fxPI/Bwc3DsRMTE8zOzu74e77+9a/ze7/3ez099j7dM0JAA0VdpThSghYIKdac5FqVsRzgpZJgQPL5Dz1019xgf5pDFHu9E33Qndpu2NgOurgSkWlNZizWtMJ3PVdybKKw6XdunF3IEs3xZsJY4DCvJLWCt+m5N86YpanZdF6kgELe48yxQY5OFPYUZZ1s6z1XIdbOQ72ZMTESHsoMZCc6z8bcpmP16YAIIXHHTzCzcouc4+J3OCdJxZKfH2Jp+WHc8Xnq6iauGKAU5nFcs000bbwmM3EeFcUM65RH/NnWfBG0BcnoxD2cn3qSy6v/Y88A9t3oJotoY/VbRxl5GRDlKiwUl2naCNY0ixSCYT/PR8fOcbP60r7fh26qFrkHPoK6lOGhmAwHWIpqxDojMxlSCALpkg8CzgyNbPu9wO5VN2uJ4wYAVWMYs3a7mOggFn2RoTBkSDwdgx+2hFgag3LJcFBW49fmIcgjH/0MIA5twLMn8Qmid/4NXn4Jx0sQJofIxhFIEGAHPMqrEWE1xtvivrfXPeu9FAGtWdfT7fubqacIR+JOFPY0f1rfRGFxmlvLt/heeZ6LSpFW5tBlzYSfZ8BdxiVB2gzZSqomFQ6oFIXFoYJrRmhtqWRo7VCpxYDP0moTYyxKgWMEoRRMbxDW1hqevTBLbIqEjsYhJkOyYEs8557nyegCU/sIIz9Ixl2fPneSu16IffWrX+WP/uiPdn3MxYsXuf/++/nyl7/c/trDDz+M53n85m/+Jl//+tfxfb9nx/S1r31t0++qVCocP368Z8/fZ3dUziX0fWpak7gZyrgIA4hWyK1jW/8W8jk++7GzHBvYfU6wz970cid6Y/XIu3cYWY73vVPbDVPjBR48O8K/XLhFmhoElgFtySExCl6/usjoUMjUeGGbE5pxJGmcUog0uZtVrh8rbhJj6zNmt2ZrXHx7qX1eMm0oV2OWKzE3ZqsUQ4+J0fyuYrWTbb3rKPI5l0zbQ5uB7MbW2Zjbv8Ni4oymXmLIPUWpR7bau81p6KrA3AzwrEMuOIuqeqT5F0jVPCuNCvkgZDR/WzRtvSbDoQLZUoOF1Oc5fYInc9eYskttQSIf/Qxj4T2M5s4dOO+o2yyi//vcJ/nC2On2db6QVvhvczeJk7gVzG3tpupVzpnc4X3oXAXcyE5VCyZOIh/9DKOTZxmee5v5pQaDRY+wMEysUzJjUEIQNQwTw9urw212qLo10pjFqEZYKzNTGOC/L7zNkcbytly0TmJxRBmGRY2FLMQVDmJozRyrvIhNYxrWZ0yUGRkfQp7/DGLqHhZWGj0x4NmNVpuwwLVTyGT735vjKq4P+ByJzIHuWe+lCPCOlnCnigdyKxRC8qbv89fNMg0JJdejJBW1NOZW4wwDA3MIUqQBYQVGCKyyYCQYBzN5hWx1CiN8JKCkJUk1K5UIs9aWrbTFSsBXDAYOq9WECxfnsHGDOLMMyLj9d+qxYZbQPcfk4kv7MnPplHHXp897xV0vxL7yla/wa7/2a7s+5syZMx2//vGPf5wsy7h27Rrnzm3f7Txy5AhJkrC6urqpKjY3N7frnJnv+z0Vdn32hzMakh8rMj5rWfQSYjJEKhFaIC0UjCQteTzxqbNMTfRF2GHphRX8Op2qaseHfM41FW493ddObTfHfWOuRs53OOVappYi8rFGAUZApZxwhZsc+fx925zQZKIxUtJUllxqObLQ4GrebS9Cs8wgscxeXSRXTRgueqxow0olxhiL6wh0ZoijmPn5jGerEU997MQ2MbaTbX2UaJJUc3S8yBOPTt2xGcKNszHrLXsyliTVKrGo4mY+R965j8prV3riarZji5bOyGYDHCMZHQzxXQXpKdTqCYwzRzWqUigO8omzn0BK1fmadAvIUYG7ukg5U7xaH2ZS3kCsCZL11qW9Ath3Y79ZRGNDIcZavn3pRxgM9xTHiI2+PbsmFYtxnWdnrvKvT3yOVxb+nwO1Tm6sWnQyMtjaLuk5DtIY6o2MwHd2FfqdhFTDWhbrK+TiJonnc/n0g+Rcr2MuWvv4NohFoSs8IgXPuY9Q9ibIq6AVozB8lHq1iSMsR09NsXLmFxhdE1W9MuDZjW7ahOO8izo/hntled/VJXhvRYAQYt/GR7DzBkTR9YnSEKsdlEmxqmXObxHYzENGIViBDSvUCws0ozz5TBEhMBZMZnCUQKwFwjdCh2bgtIX1/HIDsoTQRgi1+f1ozxLaAksmZLyHYeQbX3e/ctbnTnPXC7GxsTHGxg5Wsn/llVeQUjI+Pt7x+x/5yEdwXZdnnnmGL33pSwBcunSJd955hyeeeOLAx9znzrLe866/EzMVKbJQkEmwicWJDDJwGPrsGfy+COsJvbKC36mq9nYzYyYneeqhY4yGXs9yZdaPe9LA2dkGSltSR5JKS5JbRMgmpXmf+ZdyOFvcGz1X4bqSJNEkjiQXaXJRRiPnEmUJaini4XpGGLWEnV1usioEJlSsegKRpghrybQgly7RjEIuXEiZ/FcPt3/HXrb1jWZG4CsmD7Bw2g/rWUeXV/6Bcv0dsnoTYSWleJITK48zmB4lXT1crttGOrVoeYlHPvUZKuYouLc3uQQSlU0S2nFWFzVL5ZixoXDHa1IEeTgSEjaarCQDrDz6KKNnTh7K1GQjB8ki2iTepCCQmz9218Vbah9svw8HaZ1cd1rtxCazoJUGsqzJWcvoYI77z+8t9LcKqaRRwcWyMjDKayfOMT80jg/bctE2Llq3isVjfp6nTIlXLi22DYyMMWjhgBS8ejPltelr7fbnvURSmmmUzfBXb2BVaV+OeuvsFDUCm9uEx86Nwbmxdz0L671ipw0IIQTDgUJaKFZcUk/h2AxjFCuMYK1BCgMyBidh1m9y0hbxs1bcjBagjMBbC4SfHQvbm12OI8m0BSNwhGlVkre8nw6GhhXEMmibufSK3eZA75ZRhz7vD+56IdYtL7zwAt/73vf4uZ/7OYrFIi+88AJPP/00v/qrv8rQ0BAAt27d4rOf/Szf/OY3efzxxxkYGODXf/3X+fKXv8zw8DClUonf/u3f5oknnug7Jt7lbOx5F8tNnPU8kqOHr6R8ENiPDXAvdqK7qqrNVfn8k6d7tpiJY43WhqPLEUpbmq6gVrrF0rELxPllrMyQmWIpfZmTuccYkWfbPysEDBRa8wuJNrjGksYJ7yRVBqqGx1Y1njA0rUR6CscKSrHmkVTzWsGy7KwtjIXECocwq7I0m7J4+TJja9X5PW3rlWS5HB2q1apbRoN7GVYBt37yOlGzgZcfopSuzcZ4HDrXbStbW7TqK5pX5pYo+juYVWy5xna7JgUCN5ejqRPi/GjPRBgcLItoP+Lt6MA5RoN7D9w6uRtT4wVGEs3K95rYaoqw4EQNnO/fIumi2rkupOZvXOLbV3+ADUJqpZFNLZadqoKbnmOLWDwKTI0XWVxtcmu2xo+uLCC0IZ9zt7U/f+ojx3YUSaZZo7FaY0wvMfTiS5h9hE1vPr69okY2twkfpLr008hu17CvCgjrop0MpQHrEOgMT6UkwkPKFIyC1KUWWK4PhYwsaUragLZgW5Ww2bFwU/t3tlYtQ7lkWQ4vrYPc3ImUIVEmxR8ebLXQ9ohu5kD7YqxPr3jfCDHf9/nWt77F7/7u7xLHMadPn+bpp5/eNMuVpimXLl2i0Wi0v/Ynf/InSCn50pe+tCnQuc/dz2F63j/I2Omrt+dJdNaaJ9ll0dILK/heVdX2g+8rBjKL30ypA5X8LebP/jPGjXCSPFKHWJVRz81y5fQ/ImcdhtNT7Z8PfMXIYI5quUkWa2brTSLX8LGGxVeWagA0Aa2x0qEpoaAtZxqwPCCwLbsNpARHOjQyaF58GXtfKwvqTrdadSu216+HbK5CbvVB8tJD+AkMRBC03ovD5rp1YmOL1oJp8Jpa7voa68U1eRAOkkW0X/F2mNbJ3UhuVag9ew0VZciC155t6jbDaf3YygMjvFUaZiTI3654WShVwcsgdhzecuKuw4mFEIwO5vj+j2fR2jJY9Dtu1Lx6aYFHz43xzy/f3CSS0nqdxuoqfm6WU7lrlGWOgbqD6CJsuhP9qJHt7HYNa4aJxShRcIPBhgXHRyiHkm6wjIP2EmRtEJuMkgwf5aZxWTwh+dTZUa5eXWK+luCMBLdjDLhdfRwfbt1/5rNB3CxCrJm5ICTWGBrGYUzWGfvIEz3bcOl2DnRrxbdPn4PyvhFijz32GC+++OKujzl16hTW2k1fC4KAb3zjG3zjG9+4k4fX5w5x0J73Dyp2+mpr1iNqbHZY22XR0m27zm6ufu/GfMdWRgdz5JXAZpZEWVZOvNISYc1BhAULKOPhRh5Rvsz1we8zOH8CueED3fckRsLVYsTFIxVGUkm4XKDsgVAKqcBqSG3LMj2SlmIGpQyWHYknMlyhSa1sCYPKTHuo/E6KiW7F9sbrwTjHQbqgMoibsDSNHZlCrIuxQ+S67cV+r7FeXJMH4SA25HdDkKy1dtscJLQynPZb7dy6KB9ZgbPXJMW6QGnIpOVsmCc/lEGXL6nbjRrPU5tFUjNDicsUzv4Av7DMNZlxw0hKScg9y5OMzjR2D5vegfdD1Egv2f0ahoXkPgreKs2wRhC3HD4dH0K1RJyGJPOPEhWO4wiPiZFcW9CK4ZDpl25Qq6Udq4/nH2iZuDxbTyhzhDBZxcmaZNbSEAG+Kzh//l7k0Xt79lr3Owfap89h6V3PRp8+fe5qrDWtxXnUgMHxlhW1lK1/B8dbi/FX/rFVSdnAertO4Lfys5JUY2zL9Wq1mnTl6rdRdHTiTlUwMiUxArL8Ekl+GZXkEWzMWmrt8gfeMI38EpXkJibRLZv7RNNcbrBgmzw/uYoupOSUxbGCRBhinWI8A0JgTSvpKqN1U5VGIjGUZAwWGtZjWDUZMSvtvKV1MVFvZts2iNbFxMhgbt9ioi2u5t9p2YKXRlv/roltfesKt+qrXF6dpf6Db7evB+lLEBaEC64HWrdc7NYO7TC5bnux32usF9fkQVmfcTteGCLKMpaiOlGWcaIw1LFlaV28hY7HYlQn0inGWiKdshjV35Ug2WyxQbZlDnKdrdXOvVhflFeSiOFlePiiYrACiWOp5SwNpZmoufgvLpDc6i5js5uNGm0scayZGi/whSdP87knT/OxD80zfOzb5IpzhFqSTwJc7bAS1Hh14m0WRiXZbJnktbdIF+rb/s52Yz1q5NiRYseA4Q8Se13DQh7j3JFfY6h4P2lOUfciUmLG6h5PVc7wuQ9/lF948l4+9+RpPv/k6XZVcb36OD4SEieaSi0hTjQTI2Hbibf9mIlBkuIE1fwUSXGC8akxnvr5xzj6oft7+lrX2zBd2fmzyJMOqdFdV3z79NmL901FrE+fPnuwON2qkOQHtgXpIkTr60vTHW2AD9uus58KRq+cqhZXmyxhmcw5uE6MlRkiC0FYhGjJMWEt1pV4hZBE1bBjAntLY+opKMlMPuG7YzWmcymedIhd0BJcI4iVISYhF3iYRCC0QgIaMNIwJGMkhrIN8EXGI/IdhHLaQ+X7nUfphm1ie/1nvQBcn2R5hhvP/Rf+y73nGaqt8Muzb7Hi5xjMEnKewPEisjiHdA3CcSCNsEmTmpFQSTAjAYPDnWedDst+DSXeyxay/dqQny6O8tTkPbww9zYrSRNshKecQ2dIWWu6miezUYbNDDLvdngWQEmyJGFuuoLviF2rP+2q4JsXOPaWwUkktRCMsC1LfEeSK4bYetZ1lW2/1eFWO2PA5aXvYlVCPg1b84yAYxX5JKDmJLxRivjQlU/Ac/MIdxU1FJD/xHH8Y3eu+tgL1oPl76aW+25y0OzI46zG75AsX8fLYCA4jRg7tms1spvq47tZoTzIHGifPoehL8T69PmgENdbbWo7fYA4XiuDaAcb4MN8GHYrOt6qLvbMqSqONdrC4pEC46s5HOMgHI00CmFBWlp5N6FHZlOU5zP0sw9QqI5io4wF2+TbCxeQwkE2BdoYpv2I+SDgSN0l8kELS1MkKF8y4YeIxQorjkW7Eo2DsoYxVecRd4ap2g2YOLlpqLznYmIXsd3IEhYFhOVFjsUN8kLhWsuytTQbFSbDErnBBWqLRzGph1QpkYblxQZeJkkkvFKv0fyb5/iv4fYkAAAgAElEQVToPUOcf/ihnhphwP4NJd7LFrJubci3uq8BDPkhT0yc4fHxUweuhC00L7UdFpMsQVhFwT3KQ+O/xFi4uUogAqc9Eya8zUInijXVchMSzY/emKd5fXnPoPazpTH+j8EPkUbXqHsZibVIBDnHZcTPk3c9DLrrmcKDtJqWkxtUWCRIHQR2c3+PcXCaPtVclWq+Tr4xAHGMrsakMzUKT54k/+hkl2f63WVjsPx6FdoZzvUkPuKw7LUBIYRkKDgFU6f29bzr1cfDPqYX3A2txH0+WPSFWJ8+HxT8fGtWKEvAC7BYyn6DVGa4xmGgKjdVbDpxmA/DvURHM2j21KlqfZd9xVMwdAo3GiUOZ3GaLgJBpgRNRzIYKCK9yLB/mkH/OCJorejq5Zh0XhNIF40h1a22yu8dqfKvrg8xHCtqriGVFtdalM4IBkJG+T4TukEcDOE7MGJWEbXbocJbxUtPxcROYttaFuM6sRAUgKLWxJ6PUYqctTSsYSmuczzvURi9RXN1jEYU0DR5VCZZ9QyzfhNhM2Q54Mc/nKZw5Yfc+8kn92WEsBcHMZR4txZoB2En97XVpMmzM1cYyxUOVA1baF7iwvw3aSQVkigkTUIsGVX3CovVP+OhkV/lganz7cc7oyHOcI50vo5wbwudKNYsrTQIEkM9dJHDAb62XQW1H3OKlJ0cpYIiw+IIia+ctv7fz0zhQarDia5jpEA5OYijVpv1WtuxTj2UliRuROpmrequAGssNtHUnruOMxredZWx5FaFyj+9ha1HyEAgcgqEIp2vU/lfb1B8JMQ7Nngga/5e8X4PQz7IHGifPoehL8T69PmgMDoFw5Mw/w6LpZirwzNUvAZaGpSRlIqSe+L7Ge+hDfBWdhIdFviPl17tqVPVpl32oo+xT6LV35OWKoisSGwUnq9JWMCThW2BuXnHw1jDbKO8abbkRjHhf55c4fHZImNNl0IqsEowO5jy4U89hCdH8C48A8vTEK8ZZWwJFd5Kz8TEFrG9TqQzYp0RWIuWitj1WC4MspIfYKy6TBLkiXRGpDOCXB3lVvn+0ikq0iPKadykjMQgpSIQTRom5PVykTPf+c+oT+/PlW4nemkocTdwp9zXrDVcXvkHGkmFZrWINgKlBFIojPZI5RKvTP8tJXWWoxMt0bqevVj9ztvo1bjVoqgk1XKTIDEYV7IwESKlxJN0FdS+XmXzrCTwtrcT7nemcNtGTTPDYimGHg/cM7ItT89TeaR0MUUPlaWQJqAcLC7WSLTUSOPgkkfItWtJCYwAm2rqL97E+1LprrmWrLXUv3sZu7SKpIqIbKuqLZ1W9T51aTx3DTX4E8TI/q35+3RPN22Yffr0ir4Q69PnA4IQEnn+s8y/9B95deQyiQdB5hEkCm1TVgoZr07McT66smd47OGOY7vomK6v9typavsu+3EkXyDNv4BR8yhXEwQhw8GZjoG5E7kSmTWk1uBJhdYZ63LsRjHhZmGJ8abLGW+IzIPZoMmRIcvR/Obg2r1y2nrKBrGN67fbE7U1WGPIJzGLpWGWC4MgBK+dOMcnL73MYLNO2fXQOgOjma9l3HTzOI5gOIoQRlD2WlUFAfgyZkkMMhcJjhzAla4T+zGUuJudUtdjAxZX59DzNygNjPTUfa2c3Gi1I0Yh2ghcR7BeCZJCICiinXl++OaPmRr/5G0r+A3Zi9lykyxJINHUQ5eFic0ZTt1ESuxUZWudA4upp7gTBZzR7jcY1jdqLr61xOtXl6g1EqqNhB++Pse1W5VN7ZID3nFK3lFW7DUKQ5NQXYIkwhqBtZDkGhSrExSaE9vOvRUCvdK8q66l9CdvkE0vIG2CcFUrvFinENURgHRCMjuAlqM4B7Tm79M9+50D7dPnoPSFWJ8+PaZXZhN3hMkzXH0wJKlL8g2BsBqEwPHyFPIj1JwaV1a+zWhw74EW1vsJit7IfkJv98PWXXYdTaJW/3cGRyucPRkwNTq6o8HBXLOCIxSulGSmJcEkgBWMNR1ymSR1YXEIPEeRRlH7+LYG175brItt8+x/htX5dkSBk6UMRw0iz+O1E+faAm1uaJznz32ED12/yGCtjFdfBden4d/Pg8s5BrTF0z5G+NQdw80wpuxqFJoIn7q3s8HLftnLUOJO2uf3io2xAcUk4peyhGpxiNdOnGNuaHzTYw96TSe6TpIlpEmIUrdF2O2D8JCqzmp9dZuI2pi9ODdd4UdvzCOHA6Tcfv3vFSnRqcq23kpq6ikycAjPT+674jSzUOfVSwtEse4Y7LzeLimE5L6hz3Nh/pvUnBrB6DhOatBJRLNZxklyHLt5frNLKrRyK9bbFNeupffaHMNag379JawepTJSplpaBizFpTzFZK0CbGKQOYwKIT8Oq/MHsubv0z3v9zbMPncHfSHWp08P2TqYfxiziV5hrW23AqZqmooqkxs8hSwARoNUa21sgsA4lJOblJMb+w6V3W9Q9EbupFPVQWew6lmCFILJcICFZpUs0xyreu2WRMcKMmFpzEoun9RUipuP76Ci9LCIqXuQT/2ft9+LRgVfOdwcGuPZsWNEg2Oblqazg2O85ud42MIvT95HVlEE319hKIuJZMsBUghBMVPcU81xtdhkyQUlDIEjIMp2NHjZ13HvYigB3be6bbze303zjq0ZfSbIE1eXGK0s8clLL/P8uY9sEmMHvaY9lUdYhSVDig4W2yJF4GCyoKOIWs9e9B1B8/oyvrZ4HS7LbiIltlbZTD1FOBJ3okB4fnLf5hLWWi68MU8UawaLXsdg543tkmO5c5wf/w9t05JYpsicS6lylKmLH6JUncQK2wq7EgIrLELbVgXPV4jAuTvMMRanWRFX+PHHX6IyuIiWLYEotaK0OsiZKw8ytDSBFRlSZnu63Pbp0+enh74Q69OnR+w0mH9Qs4leMD1fu10NMhaVv4431WAgKOL42xeAjvCI7SqJ3t/C+iBB0Ru5005VB5nBWheHrlScLAyTTtd46nqenJbUPUtdaJQRjFQlj74BpYeK7eM7jCjtBWJqe3uk8lyW336VRqcBdNfn0TPnkcVRmv/9EoEWLPhgM4ESYIWlIQ2hkRxt+NwqwpCsMEW19drWDF4OIz570eq27XqXoqMDYK+r1p1iAwJrkV7AopCMxk0+/M4l5gbHWoLgENf0gHecgnuUqnsFo71Nx22xoKrYaAqZju8qonoVir2xynbYilK3wc4bK31juXOMBvdusvEPVInyi29gE41lQ3ahAOtIpJK4o3lMnFF79homypB5F5l39zSHuRMsNi5y4eyb1AKNtS0BJmhtgpSHl7j40Ms88OrPkq9lxKKMg7+ny22fPn1+OugLsT59esCdGsw/DNPzNZ596cZai0/LhSwVebJUsJJUEQMDBN7mW0BmE6Rw8VS+/br2WrDulV3VTQvNfp2qus1POgybxKGf54m5EjltWfY1Qqwteh3BipMxGCk+NldEcHhR2iu2tkeehT0H0NOFemtOq+AxlAmWVptk1kFZDQIiacllDsMm5nwwi2hW2pb8hxWfh21163i9Z4bpxQoLP3yT+84F3D95guU44DszV3tbte4UGyAEo36eGa0pux6DtVUGqyvM5ouHcl8TQvLQ+C+xWP0zUrmEoAjWA5GCqoLJES9+lPHB/K4iqpc5dutVtsPSTbBzp3ZJIeSmCn4iK4icg0017cHO9ZehDcJ3yD16hOaFmffcHMZaw2X9Axp+BliU9kDYVgelFhhpiXNNbpx+ndNXRkiThLy7dk/Zw+W2T58+dz99IdanTw+YaZR7bjZxGHZs8WESzASZukW5FhAMK9ZXKNZaIr3KsH+aAe94922WhwiK3ki3TlUb85OMTZHCpeQd5b6hz/fUZGSjODRLTQYbBWLfIKTAWNN+TM7xKPg5goohXaihDilK7yR7DaBvnNMaXHNdLJcbmFSCBQMEGD7CTU5GN9qW/My81RPxedBWt07Xez1LKMtLeEdfRngrXK1mXI0kTV1iJTlHTp3keBwgY8NypcxfNy/wb88esGq9Q2xA6PpMhiWWoiqyHhPXK0R+7tDua2Ph/Tw08qu8Mv23aGceqeoIHGw0Rbz4UXxzqisRddAcuzvV/rnfYOedjq3xw2mEkqiJPKYcY1PDuiITUqLyLsJTd4U5TDm5wQpzWAHCgnYS7IbDERaMNdQGZ6gOS/ymT5SlBPXytlzCPn36/PTRF2J9+vSAO2U2cVB2avERSJz6E5jS35OyQCMZI+fmyGxCpFfxZJ57hz7HW9Wl7tssDxkUvZG9hMJ6flJiauTUEEp4aJuwEl/jwvw3OT/+H3oqxtbF4as/voTQmsS1uELiKpeSF5B3/NZMm7Xocoydm+uJKL2T7DaAvnVOazAMGMgF1KtlqFVxshQHSUksti35mTyD+fs/65n4PEir29brvZ4lLNmLlMaeRToxJs1j0jwJDRy1wDG3zok3C4zNTaE0aOmykMt4tXmJ008coGq9Q2wAtMRYaAypsXz27GO44yd6YuDzwNR5SuosL7/5Y8r1VXTqY+NxiqHPA/cN4zqSm7PVPYXSfmcou23/PAi9aJfc6L4pPYUNPWyiwVhYs7E3zYxsrn5XmMMkuo62CVYJrDHYLd+3ApCW1AXjGJwsRVYWISx1zCXsNe9G90Gf3nNXm4b12URfiPXp0wPupNnEQditxUclJ3HLnycKnifNlTGiihQuw/5p7h36HCPBffy/15/vvs1yl0UosO8Wmp2Ewnp+UmJqFJwj7eNyREBBTFDL5g7l+LgTZ0tjHL83x9LlNyi4AsdzNgXXAph0zUhCxD0Tpe8Fnea0hIBCaQBTKGGWajhDCvfT/w4xdhQhJHbhZs/F535b3TZe7xZYiqqERy4gnRgdD9Ku+hoXsiI5mjSGfkS8dATjC5SGibrDwI8zZsZnOHrPPqsMO8QGtH6phUYFd+IkJ099uKfX5tGJElPjn+Qnby1x8eoSVRKWyxH/+L0bYMHzJDnfYWQo3FUodTtD2an9s5Oj4UHpRbvkVvdNIUBsqKBZYzGNtPW9HpjDHBZP5ZG4GNaEorGbzHTs2n+MspTqEUHmoyfPID/6uTve4vxudR/06S3tbpZ6Bd0UuNZhJB/y2bP3cM/A+N5P0OddpS/E+vTpAXfabGK/7NXiYxrHsatf5KHTHvm83rTTeWu/mV57LUJ71EKznp+UU0MdjytQgwd2fNwLdyxPbrRAOl9H5dSWl7jBSGI8xPZQlL7b7DmnVciR/5nTyPENLYI9rIgelI3Xu5EG7czh+iuYuAD6tvBxEpehzKKEoF5Ypllcwm+Ooh2oS8g1BPpHC9iz+7Nd3yk2gCxpXf9rLZx3opIws1DnR2t279Za6lHKev542jRkmSVOalRq8aGE0n4dDQ/KQdsl2/iSWnGRzE/wZZ5CPIbg9nlvOyNO5Hueg3YQBrzjFLwJatksYLFCYrEIRGsOtXVEZNLh2RP3MZA7wy9/9AsIuXN7Zi94t7sP+vSGddOwuGLIr5RwxQpC1GgsN/ibG4anHo7/f/beLDbS67z7/J1z3q0WFneySfaibrVakjepJVl29MWWHGXixFnwfbAn+YAZGMlMMrmZXAS5SDCIgSR3ucvFXAQBAgNGkhn78yRfMhknTiJbbTt2YjtuSV5kLa2WeyHV3KvIqnq3c85cFIvNpcgmi7WQ7fcHSECzuLxVb731nv95nuf/5/3nz/T7MDO2kAmxjIwOcFiziW5zsBafAg+Mnd+1aDpsm2WvFqGxrmJsghKtF/ztOj4ehAMbSYwXsT0QpffiKDM8h57T6nBFtB22vt+dwCKJEGiM3nKLE+BpgacFqVBYqdFOtPmwEZa6ZxkqJ23NBbWKDUA5my2c3ahebBVHvieZXwqbTu0bj0Oc6sZyvsqRhFI7jobt0m7kxEL9NV5P/4GVh6+hTYISDsVonLPLTzNcP7tNYLnjha7koB0WISQzxSeZr30PQ4oQFmvBYBEbQszikOJRGR7i2Qc+iOqyCOtX90HG0WiahkUVw/B6lcLkv+IESyA1GEVcH+Gbrz7JVH6I05MD/T7cjA0yIZaR0SEOajbRC47S4tNOm2UvFqGeKiCFi7Yxjti94N/p+NhpDipQ+lUZadKJGZ5DzWn1qCK6H1vf7+u1GEseaxyETLHGa3QmSou0FmEF1tEIo1Cpv3GckBpDznNxUtH2XFCr2IBu5sc1xVEuUCyt1tnIHb/rAIjFWDDGkGpYXKm1LZTadTRsl8NGTmyt4Pj5Qexyiiam7M/xw8l/4uHbP01p/tQ2gdXpHLR2mcg/St4dI0rXSG0IwjSuHQTaeqS2gCsVz8881pP7SD+7DzLaZ65W5p1qhaGwSunUVxBOiEkK2NRBiBQvP4/jfZmvv1Hgf5z4H3oaWp6xN5kQy8joIPcym+gl7bb4tNtm2e1F6KB3hpI3w0r0NkUxueW4LLGuUUsXGfTPUHJnOvL3WnEQgdKPykiTTs7wHHROq59teVtpvt//7ZVZ1mYnSOsjuPl50tjZcKGzWCkwwmC8Ol5tHK82isGSGoMSklGVQ3C0uaCdsQHdJIo09SRhKYnQiaA5C2eM3SLGGto4NZY4NW0LpU44GnaLXRUcV2BGU2Q5RIUedX+FGyPf5HHxXylcntkmsDqZg3bw491esR4dPM1I8CAr4XV8dYbU1rEWLB7WeqR2ifHcRd4z8r6uHdNW+tl9kNE+1TRG16FYehmhQnS8ZT7WeujERbqrhO7XWVh5homRo5nrZHSGTIhlZHSY/Vzpek07LT5HabPs5iJUCMml4Z/j6vxnWE/vEKghjIlZS+6Q2hoCyVo8xzfe+T+7Okx+EIHS68oI9G6Gp/G3dgQ3T13om/jcyvREkenzAdfuGFaW3sto7quoYIU0bVTIYpkSFur4sc/g7feSGLMRQeAy6uXxqxZnMt/1uaBOsZBUqKQhxhoUbiPHrvmfbcwZAaTaIkVjSdauUOpUAHQ3aFXBkYGDDArYWCNSRX1gHZ7M4wW7q1ydykE7CHtVrC9cfJaqWiAyawRqCEd4DTfbdAVf+oznHqYc3+yJa2G/uw8y2qPgeORlBeUvYdICsPtz3qR5XH+RlfpNJni09weZsYtMiGVk3OcctsUHjleb5VbGcw9zeeKTvL7yDyyH16ilS2AtripQdCZQ0js2w+S9rIxA72Z49gtulh/7jZ6Kz50Ya3m5fAscAfFplt/5EAOjL+H5KwinjrWKuDrB+WuXOVU/jS04OI7Cs7Knc0GdwFjLt9ffJvUNXm2j/dLeXXrZzf8LrAVtLbnAaVsodTIAutPsXcERCM/BdQvEaZXEbK/g9Nqafb+KdWU94PHHP8EyV6jEt4nsKsZqjE2xGN5Y/UeulV/oiWvh3t0Hu/Mmj8KuDZ0ef17cb0zlBxnOi8Z8rHF26TBrQeIiZYRw6v05yIxdZEIsIyOjJcepzXIr47mHGfUf5MrtP0bbhIIzgSvvVvn6NUze79yWXszw6NtvEH/5/4Kois0P4ucHQSeHDm6G7oQCz9XKLNgyuWAQESqIzrI2O4Pyl1AqxKQB8do4Y0NFLgw56PkqNq5jpEWNBhR+4lzP5oKOylytzJ16hdxEALc90A3RtZWdX/Gco7UNHtnRsEu0U8HptTX7QSrW198c5Gd/8reoJLeYr73Km6v/AgjyzkhPXQtbdR9sVui25E0e5bN1vw2dXlXQ7zekEDx9+iGu3n4RRAq4NHdoNkYOUcKgpMf44GhfjzXjLpkQy8jI2JPj1Ga5lUpym1CvMuCewtnh7tiPYfLN3JZahcRoXKk4lS/xkS5VD621u2Zauj3Dc618B/2VzzG4tsRyUEDENXwdM+YXyA9NHCq4uVuhwNU0JrGagckEc0thY4FwFCaawBggEVipmZgKENdXsdUKpAaLhngW+43vYf/TMydiIbjpbloCVER6w4Pa3XPbbFOERjxVqehRj9IjV0TbdTTsJoet4PTDmv2gFeulcsTY0Bm+v/Q3GBIG3LsV2l66Fm7tPmhW6LbmTR7l9bGzb6Jf/CxLkUMUTOMHMGpWEW1s6HSSVp+rJ6E6vpX3jj7Gj5ZPs8qPSKJBEI1PASkEygocf42x/EWG/MzC/riQCbGMjIwTx3EaJm/mttTSiJKXoyQDEqO5ub7C59+6yicuXO6YGLPWEP/gLWrfW0GvGyxOIxNpJEfp8lTXZniuVRZ48btX+Ghlkbqfx1UOFkuYJszpClP5EvkDBjd3MxS46fiZ5hPcMwI972LrElJAgM2njDghU68skFbWUITgCcBBpyXWb/nwT/+A/zM/t20h2O9qZyu2uZsWBep0jH4r2BgQExtZYhbfU4yUcvieorIed8TVsJ12525ymArOYa3ZO9U+d5iK9XFxLRzPPcxY8FBH2zetNdz65r/xcvwulp1hdCpRqWFE1XmsOMf0+rUDb+h0kvh25a57ZqIRQqCKHsF7Jsi9qz8tt+0ghOSDZz7Ov9/+NGuqTBoXwDhIqXG8KoVgkPdN/ULWAnqMyIRYRkZGW/Rz9/C4DJM3c1tqacRYUNx8/r5yGAsKLIZVXpx9nfMDY0deuNvZN4n+9eus3x7BGgcpY4TngjNCMm/QV97m8mOnuLIedXSGp/kcRVjFB2LHQQgQCDypiI1mKaqSzw02Woz2CW7utqHINsfPgsI5bxpCTAPKsmTXeO6NIdR6DUkV4XkgBNZatGswSZ7Vygyj3/kSzsZCsNfVzraea1BAOIBrQTYGxbTW+I7DVKmIFII40X1zNewF2+ZHazfRNkEJl9H89grOYUTO4FLSsfa5w1SsO7HR1KnNAyFkR8Xe7Btv89XyBJH0yYsEB0OKZEEX+Kp5gA8FMdMH2NDpJPHtCmsvXseEKTgCG2tMrNGrIfHsGuH35yn+p5PTtjyee5gPzPzalmuhtnEtPHzkamZG58mEWEZGxqHZuntoU7NZlck/Md2Tm1WvhsnvxVytzDu1CiVvd2uWEIIBz2euVmGuVmamMNS2OUCzlae+8BDWekgvbsz+xHXQ7yBHpjAh5N9e5dn3n+bqawtHnuFpznDdKpe5s1xlOjeAlgqlU1LH3XiS4EhJqFOiuN7IndsnuLnbhiItHT9zdx0/p0OfqZpE2hrCdUAIQqOo2IDESqQQuHqM799xeeSNtwlPDXSs2tnpmbhWz1UFLqYmSJ0U5UrG8g0R1k9Xw15u2CRrM6y8+Qus1m5gRB1pc4j8WZJHTsHG0z6oyInuvI75129CWNseydBm+9xhXCfL8dE2mjY3D6oVBtYsBe0wMJDnqYcv8eDgxIGPudNYa3nprQqRdRmU0WbkoIfBJaRsA142Z5nSt/bd0On0MdW+M4sJU0Sg0Et1MBahJNaxkBiSuXUqX75O6SPnT5QY63Q1M6M7ZEIsI6OPGJNSvvMd4ngZzxthcPIJpDzel+XW3UNZcJEFF5sakvkqay9eZ+C57t+sejFMfhA253Tk7sUSgCcd1kxENY3bNgew1mCuvoCuSlKGkK5GSAEocCUkMaKyhByaIV2qMS4lH/vQ+SMt+rfOcNWTBC8dYDVX5K3cOS5V36KsnM3gZoHAGo2oVWDqwr7Bzb0wFNnP8fOniqdxfzALpCA8QqNYNnkMAoVBCIsygjU9wJXvr1Ipv0NNHL3a2a2ZuJ3P1QxVyEUlfO0xnMuRUy5xovvmatjLDZvtLa/TOKpRDV5YCre1vB60mu689kpDhA1N3A0p94JGaPkh5iGbHMZ18igbTc1W6YGllOdn8wxVJdJALFLu/PAHyA+GnL90tr0X+YgsrtZZrkNeRBsmMndfOyEgT8yyzrEkh5nYZ0Onk6SLNdLlOiLvYFZCMBY2hLJAYB2B1QZTjaldncOdHjhRbYpZ4Pbx53iv+DIy7mMWbr7A63f+hooso4VBWUnp9iCXJv8L42ee7/fhtWTr7qEa8u+GxnoK4Ur0atSzm1U3h8kPyrY5HbX74zQ2aWNmSd/g6vzftGcOsDgLy3MY/xRUBQhz9zEhwHEgCcHG2FQ0Kg9HmOHZNcPlQ3mthqkpvuNcpuDUmanPUfMCUuWg0oSBKITSyD2Dm3sVCryX46derFF23gEcrDFUCDAIHBqvqbRghSVQdRbTASq3DaXzB6t27kU3Z+JaPdf6qubm2zVWyiGV9bhvrobx7QqVL18nqUekOYUTKDwju7Jhc5iW1wOJHCYZfKfSqITt/BwTovH1NtrnDuo62e5GU7ONeGAp5cNvFfESqPugFahUMrxmqX/lBlF+EP/0YJuvdvtEkUbj4DgOJHWQ/rbHHQw1I4mGpvbd0OkkNkwbmwSuxCYa1PZqZdN2VPqKdKlGuljrWeZcxo8HmRDLyOgDCzdfaLh2qYRA+wQ4aFJW1HJjYQ7HUow1dw9lwW25OJUFt6c3q363X+ya09mxqFuLI84Wh1gJv3Zgc4BdRFXQKdIXDQcsK3eIMQk2hVgjHA8RtP+x3mpBa1H4rqJOgkhdvjH0fj4cfo2RWplcHBIhKA+PM/ahX75nq1YnQ4Hv1erXyvFTjOVRE4Ok62votEaiJGpDhGHBs7CuEqrDa7ilFLdqkXHp7p3SWkbWV/GTmLrj8objUk3jFsfWMHiw4TpXX00JI8vQgL+vQGhndq/lDNAgvO9s56MBDoO1ljv/fp2wssZKkGJii0wEvnIYLeTxq2lHN2wO2/J6T5HDUwh9pdGO2ArHa4SWt9E+d1DXyXY2muZqZd6pVnh+No+XwHqeTSGhXagqKNQ0S9++wdTMe3pe2fF9hVKCtDiKV56DJALlbnyGGVJtUMIh9+iTPfsMF0HD8MjGGmt3625s4z2Ep7D1FBumPTmujB8fMiGWkdFjjEl5/c7fEKuEgi4gNtozHDwK2qGqqrx+578zOvPssWtTbO4eyoLb8nHhNIJxe3mz6mf7RcuZJHl3JinveDw9XuTW2hEc0PwCKAclyzheSBrlkG58d8FgDRaBifITgYYAACAASURBVCzOdI4VBfE7a20twFstaAUwGhSZM2USm1LVOf75oQ9RShcwtSoEeZ5777Oowcl7/v5OhQK32+onhKDwxDSVxTJmFaQBgUUi8AysDs9y/eJLJINVPKEZSQWpGiLhvYyuKN5z4zWGq2WU0aRC8r78AEMjp2HL3M3WfKRFnWdJPEneEeCNQFDYfixtzsTdy0Ck366G19++Tf3OKnVXI6XCQWKw1NOEOb3GlF9EdHDD5rAtr/cSOWPrBYz618ZMmNei7TiNG8YdbbbPHfT8HHajqZrGDKxZhqqSus+uQF8pBDVPU1oO+1LZubsRY3FHphCVpYYYsylWCGpOiYnxEmOXLvXsmJyxPM5Ijnh27W7mw8brZrFYbZD+xuehI4+00ZWR0YrsHZWR0WPKd75DRZYJtL8pwpoIJIH2qchVyne+w/DU0306ytZs7h6mBuHtbh9rzoH8ON2s9ptJem76EgPOAjcqR3BAG5uGkSnE/A1yg/OsL53GJB7SSQENicXIAVLP4/sSbn7t7bbnkPZa0DYrLov1dZLQUq5HrA0UmRqZ5rlDugceNRT4qK1+3kyJ0s88yvKV13DvhCgrsFgWxma58ejX0X4CdhC0AyZEefPk7Yu8ezZgvCKp+gFa5jBpzEy1wtA3v4DNDSCmLzZE2JXPbho8RIyhQwcnqcBSiB2dRmwRY+3MxLUTl9CN8Oy9MNby0uzbPGJAOs7d1q6tLpu6znSa69iGTTstr/uJHBsYGJmC+RuNmbCtr5W1UC3D5Lmut881qp4VqmmOgjPImDe473krOI3NPGka7Yi7fh8WqwTS2L5UdrZuxJQjyI/M4JiENEmpJYIgF3D58pmeVuqEEOSfmCYtv4XZ2Gi0zsZ8mDYIKZADHqaW4E4WccaOT2xDxv3Bj89qKSOjT+x0youiJbQwBHtcfgqHUMTE8XKPj/TeNHcPk/kqwt3dWmaqP543q71mkqQQrEa1IzmgCSGRl5/HXPksbnid4mBCfX2aNPYbYkE5JGODXPUd5uP0SHNI+y1oC46HEwxSJea586eZGi22bYndbihwp+zvvZkSE//1Sb7/xddZW1zHz1kqD7yODTSk4wgg1RbPyVHH4qXzvDNZx62fBSFIjUE5Ht7AKFTLmJe+hDj1APbqC9sMHnxtUMKSOjm8tA6VJWyQR2yok8POxLUTl9Ato5C9mKuVmdNVHlE5lAEtAds4dgtII9GxJnI0dMhKv92W172q6VuvOVbnt7smVssQFO45D3lU2olNmMoPMjCQJxYpKpXorY0LFlJjKOLiOG7fNst2bsTUjURJn8mJXM/nGJt4MyVKH7nA+td+1KiMxQarBMJTqLyLjTQycMhfnuqpSMz48SATYhkZXaSVU16gc1hh0aQ47K6SaFKUlXjeSB+OeH+au4drL15Hr0aNWbGNCpmpJj/WN6tWM0nQGat9MX0R+eyvYK6+gLs8h5O7jQ4GMQNTqHc9wT8v+swv14+czXWvBW2tnnJqtMiTZ2aOfI7baZ/rpP29lJJHnzzdaJNkFt9bQugBrG2IMCVhpJTDaotdE6wVNWu5kHw9IOe4jPoF8u6G2cDSLLz5ciNvaovBw6isMaLqLOgCrkwRcQhxBF7QlqX8YeMSum0U0opqGjOfS1gr5hiuQFlYYptCKnBSB6EleQ2znuYb37nFux8a49ELo0d6P3Wq5XXb79xyzbE815gJUw5MnmuIsEPmiB2GdkPipRA89fAl7vzwBwyvWaqq8TWDbWweIBnWHu5Evq+bZe1uxHQTb6bE8C+/h/oP5gm/N49e35j9FAJ3skD+8tSJsa7POFlkQiwjo0ss1F9rGHLscMpb18vELhgRUkqcbe2JFkOoIob1KIOTT/Tx6PfGmykx8Nz5TVtqU00QjsSdLGY3qxZ0ympfTF9ETl1oOLVFVZRfgLFpFldDlq9d74g46dSCtmlWQVRtzNGMTXekerC1ddICcaIxxiKlwHPVoVv9mrvz37p2myopOlEIYfE9RanoEXgOhBJjFZECkxsnZwfxpWJFuNR0yqgyCF2B6koj9HeLwYMQ8Jj3Dl8Nz1EmT95UcXSCTty2BMJh4hK6HZ69FwXHw1WKH55JuPyaQ65msFIgUg/HQs5ALOAHvmBlfp25xSo/uLbEM4/PHEkUHrXltRU7r7lOvpf34qgh8Q8OTiA/GFL/yg0KNU3N01glKOIyrD2CvH8sNsv6PcfYCiEE+XdPknvXRM+y7zIyMiGWkdEFrDW8vvIPLZ3yBrwpyrpOateomiqB9lEbromhivCMy6XJ/3zsjDq24s2UcKcH+naz2tMx7piy1RxgKbyBNjFKeowG57l0CKt9IeQuu+xOZ3MddUG71awCnTaqCCNTyMvPH7mK0GydrNUSqmFKkt51OnMdRT5wDm1/Pz1R5MOlh/jarTwqr3BVDs+VNIebQi1ZVUVSY3g5fJh6OIkAPKHxRcqIWOcxKZgpDDee6w6Dh2lnjQ8FP+LlcJxlkaMeCpSn2xIIB41LKDhe18Oz96LpJPqWWWb5Acv7bgVMruVwDGhhWXYkr+ck8x4INMIq3lmscuVbN3n2/Uer0HWj0tLqmusmh616tuL8pbNE+UGWvn2D0nKINBbHcXEn8tlm2QEQQmQW9Rk94/iu9DIyTjDl+CaVeG+nvEIwQ513KMQQyiqhiFFWMqxHuTT5n4+ldf1O+nWzamd24jhQSUZ4tfIUy/VxDHUkOUbic5wqjjB+sM60lnQjm6vtGa4dZhWbczXzNzBXPot89lf2FGPW2nsK+7GhHLnA4fb8OgJwlEQogTWWKE4J45TTEwMHbvVrMuSfYSR/hpXobVynwKYIi1OWqynGS2B9hHptArNRwY4sBKQs6DxfdR/jw6WLTO1h8DCtKkwlb7I0+jDx008R+G5bAuFgcQnDTOUHmV1b73p4diuaTqJ/+ca3eDNfYfYBw4O38iijMdalIiVWAKLhSpeiEQaqYdKRCt1xrLQchsNUPffDPz3I1Mx7sspORsYxJxNiGRldINZVjN3fKU+6AY9e+l/x1+rE8TKeN8Lg5BPHuhLWb9qdneg1Oyt2tTTmr6+/tHHckwQbVY2b66uHOu5WLX+dzObaymEXtNaaRiVsi1kF0KgOuT6szmNe+hJy6sKu1q74dmWz1bXpvOmM5Mg/Mb3n7v3m87R289/WWhqWEIejdfuoS7m6hlFllM2zfucJrBU4QjfMPJDUjGJM1Kl4k7zy+hLTj/8U9iufa2nwIIICE089gzjVfpDuQeISnpu+hBSiZ+HZrXiwNM6Hpi7y399+CWEkK45AS4Efq8b52aIFDBZtLb6rulKhO2lsVj21xo090IACkTMIsb3qeS+yyk5GxvEnW/FlZHQBTxUO5JQXuCWGpt7bhyM8eRx1dqJX7KzYOUJS043d6+n8YNvHvV/L3+VHTnXUqKAd7MJtFpfWiYJz+EYyKmt3i0JCNITJ0mxDSG5p9YpvV1h78TomTJEFF1lwsakhma+y9uJ1Bp47vynGFlfr1MOUkVJArdmaaBq/3nMbrYn1MN13Mb/X/NrObKlKUifWINIpWPsJ6vURpEgQWLAWJSAWHunQKQp+jqXVOq+KMYpP/gyjr/47ucpiVwwe7hWX0BT03RLoB+XS4ARjfhGjJVZYhN3RGXA3rAmDwUiDTUXHK3Qnjan8IGN6kNUbGhF7m7lWImeQ4zFrzt2qZ0ZGxsknE2IZGV2gE055GdvpxOxEt2lVsVtPIir1EEdI6johv83M4WDHfa+Wv6lnf6XjRgWHYXZ+navfWWLJPIZOPVRqGFF1HvPeYdpZa3yT4zWESXQ3L81aS+07s5gwRQ35d0OkPYVwJXo1onZ1Dnd6ACHE5jxcqehRzLskqdm0ZHc3DDwq6/Gei/l7za+N5x6mHA/xw8q/UV4tI+aGSM0IHi4gUH7QqMBZ0zhWIzBugCZlqV7jb6/NEeVC3NMXeFSf4wODE8yMzHTc4GG/uIQm3XASPAxT+UGmCoO8Ft+h4HoEUWNDSiAQRtwVYjRaFOtRQsH1u1KhO0m8s1DFnyvihDUSleI4AmElpipI6i6FmTzPXbp0rGdiMzIyDk4mxDIyukCnnPIy7tKp2YlusVfFTgnRsJC2lqWwSr7gbWvNutdxH7Tlb+rnfp2p8fM9t4TetEivWVxhcUyCkZIFXeCr4Tk+FPyoIcbSuCF8/LutUulijXS53ohBaCGuZcElXaqRLtZwxwu72u12ttwlid6z3e4g82tvFQf5f66/TC2VlMRpSApIaQhNimMF0oCrFCAxxiKEJTYpC7U1LALfkxSDAonRvGJD3qyX+YR/gQe7cJ3vFZewlW44CR7m+D4yfYnrlSVWBleZWBzH0QphG6+FxW4TY/WaYXzS7VqF7iTQdLpES04NFVmOqkQ6xZAiXYGXukyFp7gwMNbvQz2WNKvdJqyyaA3l0jAFNzj2Zk4ZP95kQiwjo0vsbHWK7CpSuIz453noEE55/WBnCPWgd6anorFV+9hWxzhPKiKdoq1BCYmvnEPNTnSDvSp2SkikEAghCHVKqFMC5+5H7z2Pe3F2Vz7VJjta/sT46Z7O1zQXjuu1BK0F65TAGjACF00qJC/Hp5iSFUS1DJPnYGz67s+HKTY1yILb8vcLR2KqCTZMgfbb7Q4kZq++wJcvvHtTSIMgzRmoSVxXYGJDogVKNv6uNhbPVaykNWwicArgFCRCHK922X5mNp0fGOOZyQv8ffRd5kcXmL4zhbMhxAQCi220LdLYm2hnvu9+YqvTpecqCq5PpBNSY3CkRBhJXNU/9nN0rWhWu6OFm9SjGilQyw/wr6cvoqcuHHszp4wfXzIhlpHRRcZzDzMWPNRXUXNYmiHUy7WbaJughMtI/gyXhn+uJ+Jxr/axU4//FKfyJa6VF9DWEJl007rclw5KSC4OjvdtdmKvip2vHHzlUE8TsKCt2Xxsp9NdS6LqrnyqbbRo+esVi6t17ixWCeMULChHIdLGeUmEIrGW+STPUhQyFhQac1Jb3vsicDYDwYXXooq1Ydwhgsatqu12uwOI2WTxFnpgkNLQ2N1q5kSCvuFRqoJnDLGGdRqiWkqB6wsqdYt0BGoy3varj0u7bPNYer1wb85KzlXLKCExyqCVxkiDY+5WxgCkEowM5O4539cu3cq1a5e94jd2RlEIIFAubFwaRlrqXXC6POk0q91xrcIdIYk8n8DCTLXC6Fvf5R+N4fNh9diYOWVkbCUTYhkZXUYIyZB/rt+HcSAW6q/x77c/TTWskMYFrCkgZEotfJ2V2jt8YObXuirG9msf4yuf48l3P8MraUxqDZ5stKkZa1lPYxwheWhwom+Vh70ynoQQjPpFZvUqqTVoYzDWtnS6a4lfaJlPtUmLlr9eEUYptTDBGovrKgQSKwQijXGsJrGKqvAIh88gn356l1mFM5bHGcmRzFcR7u4Kl6kmuJNFnLG7C/O22u0OIGZtmuDEIa68KwjHE8OFasJARaA0aAxrjuWtokt1wMUYiw4SvFMGWdxdzTlsu6y1ti+Vq06zc1bytBpiKQwRCBI3ISVBWolA4EjFxECJvOPuO9/XLt3MtWuH/eI3Sn6hb06XJ5Wt1e53vIBQJ3jSQQuoOA6D9XV+8s4N/u/SSN+r0xkZrciEWEbGfcxhFnbWGl6e+39Zq5fR0TBKSaQDxiqS0GXNrvDK3N/zU+cf6spu8kHaxwo/+DrF8+8isZbYaFLTME0oOh5KSt4oz/OTpy725Ua7X8ZT3nHJKw+cxmJ+Kay2dLprydg07JFPhbXQouWvV9SjFK0tSt2d9hFKYVUOjEFqg7YQPf5RxPTorp8XQpB/Ypq1F6+jV6PGrNhGhcxUE2TgkL88tes9e+h2uwOIWeG4pF6wKaRHV+B9ryrcxFLPW2pYZAozwuWclKSXJiiPCf5mbpbUdVEtbqeNtlMJdp752uK+FfHZ+fVNcdk0IBkZynG5B2YrnaTVrKSvHETBASmQVoBsZMDlHJfRoEjB8Yj3me9rl6Pk2nWDe8VvfPz84311ujyRbFS7wyDPqlrFuoZUp+TqDfOfmhcwXC3zQBJy+xhUpzMydpIJsYyM+5TDLuxWo5ss1W6i4yKuI2k6SkgB0pEkSZHF2g1Wo5sMB12o8N2jfSwKChTKi1zSmvXSGOGWGbFAOYQm6Wsb2L0ynob8PB8//zg5x9vT6a4VQkjk5ecbC8oW+VS0aPnrFTnPQSmBsY2F4qbrIWCFwAiJkpDzW8+AAXgzJQaeO7+ZI2aqCcKRuJNF8pen9s0RO3AL2wHErDtxFjV+mkp1lTG/wINvN0TY+safSI0hl3fJ5QuYckRwo8zUex7iVGXvgOU0vcm5/DWurX4ZYxOkcCl5M7vafDcNTyK9rd1yfqnGlW/f5NmnzpwYMbbXrGR+QJHmBarmk4qUU/lS43vojsg4Sq5dNzhI/MaVuTf46MPv46v/cauvURT70e/54V1EVRZza/zw9DrLbhWURRpBUPeZnB+mtJYjF4cUU01idN/MnDIy9iITYhkZ9yHtLOwWyktoE6NkHisiEAasBOsjECjhos06C+Wl7gixe7SPpVKhjKaQpqwLthleQP9dE+HgGU+HRUxfRD77K3dbrLqQT9UOQeCQDxxq9ZRUW5RsrHetBW0sUkA+cAiC/W813kwJd3qAdLGGDVNE4OCM5Tu24DyQmL38PB8pDvL5t65iluoU14vUvUbgcGoagn/ULyClgA03R7NU31N8p+lNTgX/QdEReHIMJTy0jVmJ3ubq/Ge4PPFJxnMPbxqehJFmaMDbfM6eq3AdyepazEs/nGdqvHDg16OfLY57zUoKAWoywd70UInC6sZxJt0SGYcwudmaa9ctDhq/wemUxx4e5/tvLrFea3yWOUr2LIpiP5rzw5XadYxJkNKllD/fs/nhVizKeV5+YIHIMahYohKBlVArhNw4M8+Ft0fIRw7rjuqrmVNGxl5kQiwj4z6j3YWdTXNYNMKbw8qUzSRR44EebmTZGIVNu9QWc4/2McdotFRUndYfW/12TWxykIyndhDTF5FTF46V6cDYUI7JsSKzd9Yx1pCkZkvAskQKyamx4oGqHEII3PHuzbm1ErNWOiyNPkz84NMEuWkuDOT4xIXLvPzd1xBaE7oGYUWjhc4vUHAb762tbo4PjrcS35Jz+WsUHcGwP7N5nTkioCgmWU/v8MbKPzIWPMTiarjplNdqgV7IOSyt1g9sYtHvFse9ZiUBZNFgpmvYeQ+TNjLfumanf8xMbg4Sv1FbN3zt3+ZIahatGzOHA3mPRy+O8q4Lo32thC3UX+PqrT8jri8ShDRmJhWs1K5ytXqTy6f/t56LMWsNr/MfxJ6gWFWEQmKsRRmBDF0iP2FhYhkZX+RtN+BsvpQFYWccOzIhlpFxn7HVAvkwCzvhhAgVgozBejQNpZERVsyD8aF2luFcl0Ko79E+5odVqoOjXHd9xra0wTUePoD7YA85SMbTQbHW7qgUzfR1QbaVpothZT2iHqYUcy5CCqyxRIkhFzh9b6XaylYxO3unwkuzhuVQoN9IUdeubwqWX3jocZZe/yFFV+B4DdfLbW/HHW6OO8U3dp5rq1/Gk2Mtr8FADVGOb1GObxJFI9uc8nbiOJLaAZ3yutnieFDnwf1mJa21rHk1zjzs8wuTF4njLlbsjpnJzX4CFSCuWHJ3SqzJhMGCv3nu1moJr7y2wPBA0LdqmLWG12f/G3H1DoW6QigXXIljDIVqQtXc4Y3Z/8bYhf+jpxtD5fgmlfg2udwkIlzC1ykRYCwoLEEEa4WUt2aGybv+/qZIGRl9IhNiGRn3GTstkHfSamFnrWFBX0HiY6xBiBSsA8hGn5lIsEJQ1P+J8eHuLFwO0j6Wf/JnyFeXW85g3dN98AQS365szk41F//OSI78E9N7zk71Emst40Lw7OlhXp0tMxslDfMOKTg1Vuh7K1UrhJDM2iG+cmONMIJCTu0WLE+eJj9WJJmvonJqx55AazfHreJ7vraIsQlKtK7GOMIjsqvEuorvj3fEKa8bLY6bv/sQzoPbZiXrVc7EAXntUFMpN72QvOvxkZlLTJS6bKd/zExu9hOoxljSeZfAKEaHc5ufYZ04d51gNbpBpXqNIJII12czkV4qhJQEUUhZXmM1usFw8EDPjivW1cZ1FkwgRnxkZRE/qqONxgCxclnzBbIwwSemM+v6jONJJsQyMu4zfF8demHX3FksBZOU12oYZxUpYxAarMBoH2kDHn1guqsLgXvNQp2evsgnttg/tzuDtbvK1Ll5pE4R366w9uJ1TJgiCy6y4GJTQzJfZe3F6ww8d/6eYqybz3OrSHRTw2NK8u4Bj/ShUfwzpWNrvb6vYFGCdCnkzW/d4snzI6Tl6FBujk08VUAKF21jHLG7GpPaGCnchtlBmyHVO2m3En7P16sN58EHS+P8cv4Rlr59g6CskQaMdLk8GDDy1FnO92BBfNxMbnaZ+bg+buyRJIZ6PSUX5Rgu5nZtJB3l3HWKePlHaBMTiIBNEXb3CFHCJTQh8fKPYPqBnh3XtussKCCCPCoOkVoTYxHKMkDIT05/kJEgE2EZx5NMiGVk3GeMtbGwa+4sFrxhVCmgvF4gSeqABhSu8vFzawwN7s5K6jT3moU66gzWflUmd7p4LGawrLXUvjOLCVPUkH/XjdBTCFeiVyNqV+dwpwf2FAPdrKbtJRLVaoj73TsMjOYRw8dPhMHegqW4HnNqoUZQT+FOlbU7NbyiB56HqacHdnMEGPTOUPJmWInepigmd12DoV5lxD+/4TjXZkj1DtqphN+Ldp0H49sVSt9aoVjPkZYkqbI4WuDUDfJbK8SFoZ5UdI+byU3TzOefX3uDynVDHCmEFRSRKK3waF31bOfcdRIvBaUFWoGz6xZgSUSKTC31O3PoUxole5Nz1vI623Di9KwlTu8w6p9n2O9SO31GRgfIhFhGxn1GOwu7rTuLgRcQjCjiJMAYi5QCoWIS4+Op3sxTCCH3dTJrdwZrvypT5Z9epVh8DTd8q+/Br+lijXS53qjEtNghlxuufeliraXBRSeqaXvRCZHYT1oJluJ6zLlbayhtiR1JLA15R6LXY4SvyD81jVMKDlxVFEJyafjnuDr/GdbTOwRqCEd4pDYm1Kt4ssBDwz+7KV7aCqneQTuV8HvShvPgtvfHsI+zVYQGtufvj+NmcpMLc5Tmh1E6xi0IfFehY1hcDVksh4wLQeBvX5r1O8h5MDhPKQxYKUYUEkUzNdDoBJNERLmUobIieO3rXPvhNfJPfZTTDz3V9eM67HWWkXEcyYRYRsZ9yGEXdq12FpuLOWst62l5cwf/pNJKQFjLhjlkgllep7paojA2hjOQInT/gl9tmGJTgyy0zt/a6tq362e7LJSOKhL7zS7BYi2nFmoobYk8iQGEkUhfoYouejUivr5K7ucvHer1Gs89zOWJTzbsvuPbRHYVKVxG/PM8NPyzuxzmDh1SvYN2KuH3pA3nweP4/rjXxk6vaLbFRrFmbPDuubXKUq0n1CPN6lrEpO9sNgAehyBnMX6ai999iJe971H1QgLtIRKN1iFRzuAmgjO3i4R+gdLqPPGVz3ELeiLGDnudZWQcNzIhlpFxn3KYhd2Pw87izgWiqafocoiJNKQp4GOMT3lxAC+okhtawB3qffArgAiczZkk4e3eBd/p2reVbi+EjyISjwM7BUs+TMmFmsSRWCHQqcH3FJ7bMOk4yus1nnuYseChAwfgHiqkusXPdqLFcRttOA+e9PdHN9mrLVYIwWDRJ0nqRLGmWk/IB86xCXIWQjLx6Md57Ntl3hx5h0ohJnFilLAMlRUP3Moh0hEi16WqShRqFSr/8UX0g5d70qZ42OssI+M4kQmxjIz7mMMs7O73ncWtC0RTT0mXatjUNLyOG98BCGyqSMICetGjOHYbtxD1NPgVwBnL44zkSOarCHd3daOVa1+r59mKoy6EjyISjwM7BUveWISxpAp02mjFLRX9zU68I79eQjLkdyEAvQWdaHHcRhvOg/14f1hrsAu3WVpeIxQB3tgEiZ9Q00nHcvw6Qcs5PmvJhSkDqSUXONwME+JYb7YjHocgZ2i0eE489b8wevVfWLr5Gmm0ikolQRSwnhsg2sjYQwpCP0ehvMTirdeZPPtob46vh9dZRkYnOZ53yoyMjL5wP+8sbi4QE4Muh1izdep8I7y6KcaMwGpFfXUcZ2INoXsX/AoNsZB/Ypq1F68f2rWv2wvho4jE48JWwVK7s05qLUI3ZnBKRZ9gyyzOcReWOzlqi+NW2nEe7PX7w86+ya1v/hsvl4ss2yIpEiPepp63rEymyKLhVL7ERw7hqtotdrbFNg1icqFGWIsBzrqS0iOT+DOD3ctYaxMxfRE1dQHz7S8SfPP/o5orUh3wdhkpauUSRHWiWqU/B5qRcYI4GXeWjIyMnnFSdxaNtfs6KTYXiPHsGibWjRkxY3b/ImGxViFEQhoH6LqD08Pg1ybeTImB585vOh8e1LVPjQaoAqSLVSi5CD+3WcjoxEL4KCLxONEULAsrNdIXriNX6rjDOaQ8ecJyJ0dpcdz1uw7pPNjL94edfZNbX/4iX00uEsmAQEQoU8dqgV3PM6ILRGcTbpoVPv/WVT5xob9ZUlvbYodDzbnbDYOYxJFoKbCJYSixDLy6ROlUCa8PVvX3QgiJnHyA0PEwiN1u9oDSCVoq/Hz/sw4zMo47mRDLyMg48Vzbki2WGI0r1a5d8OYCMVl4E9ZjrOJuIay5mhAGISzWCqywYCSmFsLp6Z4Fv27FmynhTg8cOAvMzr6JvfoCuXKN9fpFTM1F+gI7NAwq6NhCuF2ReNwQQjAxUiB+5mzDZbIcwQkVljux1nakKgaHdx7s5vujmY1n6jH2m1/j5XiayMkxKEJCnWAAqaCkK6xGQySLAaPnYSmq8uLs65wfGOtbm+JmZcpqzQAAIABJREFUW+y3bjB6Yw2ZWkJfYgGtLdKRBIMBtp4ea+fRsdOXuFYapbQ6T1WVYMvmBcYSRHUqwxM8ePpS/w4yI+OEkAmxjIyME821ygKff+sqtTSi5OUoyYDEaG6u794F92ZKFD4ww9oLb2H1lmqYlGATRGMZBzTmhqyJkYHT0+DXnQghDmQSsTV41x0YpJh7h/rKGGnkwfwKYmAQ99Rwx4TSfiKxkyKgF9wvwrLJ7Pz65pyYNhYlBSNDOS4fYdbosM6Dh91EOAjbsvGiGF2dYkblUMWEqmcx2E2RZaQib6pENQ9CxYDvM1erMFcrtxV90SmmJ4o8e3Gc8O0KoRKkxiIQ+N7dtlgjxbF2HlVSkX/qo8RXPkehViH0c2jlonRCENWJXZ/8kx/tWZ5YRsZJJhNiGRkZJxZjLV+efZ1aGjEWFDcXeb5yGAsKLIa7d8Fz75ogurZMPLeGjTWkBhyJQEISYzUIkWKNwCla3Od/vuc5YgdhWyumcji1I3jX9eo4uZvoyMdU1pAj47gf+5+RHVwctRKJRxEB/RRw3RAO/WB2fp0r375JGOltzonzSzWufPsmzz51pmfGDwfdRDgIO7PxhIKkphlIBYWKw1sDmrqym+fLCIFrEjCABk86rJmIahp35HiOwljeoxy45PMOxgqkZNOlE06Gs+Tph57iFlD59hcpVJYIojpaKirDE+Sf7E2OWEbG/UAmxDIyMk4sc7Uy79QqlLzdC3YhBAPe7l1wIQSFJ2cwL15Hr0UYA2iLFQKEC65FuB6y4JD/6UvImf7tnu/FzlbM6do6/2XuTfL5QXLbbLHBCSKQBqrXEUtzXXV+nJ1f58Vv3aQaxrh+w/xCWnUgEdCNKs5h6aRw6AfNnKow0gwNeJvXhOcqXEeyuhbz0g/nmRovnCiB2ToD0EEKTV1a8kYwXXNZHLgrsqS1JMJtFLgVxCbFlYrCXploPaRpqOMKgWwR0nxSDGJOP/QU+sHLLN56nahWwc+XePD0pawSlpFxCI73VZ6RkdERmnMVJ3mnvxXVNCYxmpJskXHE3rvgW1vRkjvr6GoC2iCURBZc3FMDx7YlrVUr5mC1gkli5uKQU65P3vW3/1CL4N1OY63lq9+9wfz6OomTYCKLjAW+chjJFQjrek8R0I8qzr3MXU4iCys14jvrTEsBYUo9cDYt54UQFHIOS6t1FlfrHTPz6AUts/G8ANdzcOOEUHrkU8mAVlRUihQCaTQ1NYDOC1SgqYQh47kilTjkTv0GBcen6Pp9Oe/3g/NoEyVVzyzqMzLuRzIhlpFxn7NtrmJjp9UZyZF/YvpYCo3DUHA8XKlIjMZXuz/O9tsF39qKZupJo+UpcJA599gK1b1aMY2fA8dF6ISlqEre8bZnPrUI3u00L92a5eZiBS01jpQ4QmCspZ4mvGMqjHsDLUVAP6o4BzF3OWnEtyukX7/Bu2fXcYTASkE9ULwznme92Hj/O46kFqZEke7z0R6OVtl4QgCDY5QW51m2CqzCtS6SBKMFFVEi8R30WJ35WoXIpMTVlD999StoY1BSUnJznBsY6fl5v1+cRzMyMo7OyQ8HysjI2JPmXEUyX0X4CjXoI3xFMl9l7cXrxLdPds7LVH6QU/kSlTjEWrvtMWsta3HEVL7EVH6w5c83W9H8s0PkLo3hnx3CPcZtW3u1Yi4Xh1gpDFJKIsI0IdRbZkuawbuj3XN+NNby73M/whqL66jNCoMUAk85aGNYTWqk2u4SAYurdZZX6xRyTsv20q1VnE7QrCjeXF8m57iMBgVyjrtp7nKtstCRv9NLmte5XKmTKkndFaRSkK+lnLu1RnG9URFuhgT7LdrhjjNbs/G2fz1PMDbBiJMg0IQIIopETp6waFmerlJ2q0QmRQlJPU0wxuBIhbGWSlLnWnmhL+e9WZV3JwrYSKPLETbSuJNFBp47f+I3yTIyMg5GVhHLyLhPaTVXASA8hXAlejXqiUVyNw0YpBB8ZPoSn3/rKothlQHPx5MOsUlZiyPyjsdz05dOfMtZkz1bMYXge2cf5ide+w+G6usYL9fw8N4neLeTzNXKLKXrBKrUMEfYsc53pCRONNY1u0RAFGm0sThO62PrZBWnHXOX487W69wdySFX6sSxRjgCIyV+bDi1UOONvEO1njI5mmdsKNfvwz4U+7Xy4edwc5LcKcFPvtsnkjm8sQkSP6Gaxnzx1g8ghDBNsFh8p1FVU1aQGIO2hmoS9eW83y8GMRkZGe2TCbGMjPuUlnMVGwghkAW36xbJvTBgeLA0zicuXN5sNVszEa5UnC0O89wJbjVrxX6tmHeGJ7jy0OO898ZrXEoiiMN9g3c7STWNid2YfGCxdYmVdltnpEBCasmPOLtEgO8rlBSkqcFzd1dqOlnFacfc5biz9TqXUjBY9FlarTdeNyWIHUlQT0mXQoKSx+OPTJy4hf5BWvkKP7G7inS7ukolDslJl4oJcbaYSAghUFIQmZRBP9e3837SDWIyMjKOxn0jxF588UU+8pGPtHzsm9/8Ju9///tbPvbcc89x5cqVbV/7zd/8Tf70T/+048eYkdFLWs1VbKXbFsm9NGB4sDTO+YGx+858YSfNVsyb6yuMBYVdQ/6v5wcIn/xp3j12DhnV7hm82ykKjoerFGYsRM7msbHAOrbR/G7AJoADj14c3iUCxoZyjAzlmF+q4Tq7jQs6WcVp19zlOLPzOg98xehQjvJ6RJI0Kj6OsUwWPS720Lq+07ST9dY834FysdYi5PbrQCLQ1iIRhCY9Uec9IyPj/uC+EWLPPPMMc3Nz2772qU99ihdeeIGnnto/z+I3fuM3+KM/+qPNf+fzx9+pKCPjXmydqxBeby2S+2HAIIU4MVWMdjlQK+bMw6geVwE3BaJZYeS0xCx42LqEFBCQBDHDM4r3nj2162eFEFx+ZIIr377J6lq8TbRX6ymBrzpWxTmKuctxpdV1HvgK38sTJxoTaWRq+ODTZ/BOqAhrcthWvub5ttZuBo1v/V5Do3JrsCfuvGdkZNwf3DdCzPM8Tp26e5NPkoS//du/5bd+67fueQPP5/PbfjYj436gnxbJTQOGfKBIUrPZltiseJxUG+3jwHFsxdwqEJdZY+Csjxt7JImhaiKCguSnH7y8Z4VyeqLIs0+d2WxjrYUpSgomR/M83sE21ntVFNfiiLPF4T3NXY4je13nQoDnSvTGdd6L9rdexGQcppXv7vlexpOKSKd4Sm0eqzaWQDlEacq5gZETdd4zMjLuD+4bIbaTv/u7v2NpaYlf+7Vfu+f3/uVf/iV/8Rd/walTp/jFX/xFPvWpT+1bFYuiiCiKNv9dqZxs57mM+5N+WiRHkSaMNbUwIUkN1jYWhq6jGCx6eJ46kTbax4WDtGL2Oidrl0AUEW6gOJ0vHUggTk8UmRovdM3YBe5Pc5dOXufWGlicbeTNHbKt9TjGZGw937HRxBqiNEVJibYGKQRKSAquf+LOe0ZGxv2BsDs9n+8TPvaxjwHwhS98Yd/v+7M/+zPOnTvH9PQ0r7zyCr/7u7/L008/zV//9V/v+TN/8Ad/wB/+4R/u+nq5XKZUyixnM44XLRdIo/muBhZ//9oiL3zjRwA4SiJEw0VdG4uUglKh0QL0sx86n1XEukA/c7JOQlByq9dn6oCC8bhy1Ovczr6JufoCyeItbJogHBd37DTy8vP3NHpp2uebMG0pBPttx9483z9aW6KShNtyxB4YGDnR5z0jI+N4UqlUGBwcvKc2OPZC7Pd+7/f44z/+432/59VXX+WRRx7Z/PetW7c4d+4cn/vc5/j4xz9+qL/3pS99ieeff54333yTBx98sOX3tKqInTlzJhNiGceWXrQMbf1bX/jKW1y/XcYYi+sqxJbHUt34yLlwepCPffjCiXNwO85Ya7n+9m2+8vYPKYuIdNjHVY2ZqEocknc8PnHhcrbo5GQIxsPS7nVuZ9+k9qW/JKyWWXU9EiFxrWEoiQkKg+R/6n/aU4xZayn//Wsk89VtMRnNx/RqhDtZZPDnL/X1Wm+e7/UkoppGFByfousfq/Peq/fkUSqfGRkZB+OgQuzYtyb+zu/8Dr/6q7+67/dcuHBh278//elPMzo6yi/90i8d+u994AMfANhXiPm+j+/7h/7dGRn9opcWyYurdZbLIUNFn3I13rQfF1JgLZvBy+dPD2YirIPEtytUvzNLMrvI06mLUB5rRbj2gGFp+OTmZHWLXpu7dDNPr0k717m1hso3v0C0vsKSn8NRDg4Cg2VeSEbXV0i/9QVKv/S/t1ysH4eYjIPQPN+bImR9tSFC8iWg/9dCr6rYzcony3Og00bExcjUgSqfGRkZnefYC7Hx8XHGxw/+IWSt5dOf/jSf/OQncd3Wtt378dJLLwEwNTV16J/NyMi4G9BbKno4jqS8HpOkGpvaDQMBhaMkpUK2mdEpmq1hcS2iKlNMXuAaGKrA+15VvPKoZmm4szlZ2a76welFnl67mMXbRIs3qbgennI3NYlA4CmHiutTWriJWbyNGj+z6+f7HZNxGI6rCLlWWeDzb12llkaUvBwlGZAYzc31FT7/1tWOVbHt7JuYK5+FsAaFQXC8Ruj7/A3Mlc8in/2VTIxlZPSYYy/EDsuXvvQlrl+/zq//+q/veuz27ds8//zzfOYzn+Hpp5/m2rVr/NVf/RUf+9jHGB0d5ZVXXuG3f/u3+fCHP8z73ve+Phx9RsbJZ2tAb+A7+L7TsNHemA8DiGPdkYDejMbmU+07s5gwJR1wiGsWT0i0A+sKijXLhR9JloZMx3KyjuuCthcctrJ1kDy9bpuU7MfS6jw2TSBX3F0YEoDjYuvrLK3OM9FCiPUzJuMwHFcRYqzly7OvU0sjxoLi5nn3VWer2NaaxjUb1mBogs3EdS8A14fVecxLX0JOXcg2VDIyesh9J8T+/M//nGeeeWbbzFiTJEl47bXXqNVqQMPy/l/+5V/4kz/5E6rVKmfOnOHjH/84v//7v9/rw87IuG9oFdDru3cto1fX4o4F9PaD4zZbtLU1zJEWKRptZRIBAkIfSuuC0hrMF46ek3VcF7TtcNiZqsNWtg6Sp/eNl2bxfcVKOexLtazmuDhC4mrN/9/evYdHVZ37A/+uvffck8nkfsEA4RYEUQNUHrBWFA5IaU9prReOP6/UVtS2th6rHnu8nXK0ai/Wx8f29CjoaU9btae2tYJFBGwFAyKxigiC3JMw4TJJZiYze/be6/fHmJEhk3syk2S+n+eZB7P32nvW3llm9jtrrXcZSscHcJtpIiYUGFrqHq9MLpPRU0M5CGkIN6Mx3AKvvWPwLcQA9mIfq49/ceLJ+/T6P32j+Pbj9fFyxWf0/X2IqFdGXCD2v//7v53uGzt2LE7NTVJZWYmNGzemo1pEWSOdC/SmWyazEXbm1KFhDiHgUDW0GTHYFRUQgKECzihgi6Hf62QNxgNtOuZOpdLbdOuHj7Zi3Zb9iOjxnq1cux3maT1bpwdO7evpeVxayodsTRU44m+F22lLDOU9vbdssIMxW/EZOO7xojwYQIumJT+kSwmX3oaGHB+KOnk4z+QyGT02hIOQkKEjZpnwKs6U+weqFxvRULz3urMvYTQ7EG6JlyOitGH/MxENuPYFeksK3YjqJlqCOqK6idJCd1oeLgdD+zyOQ8ETcGk2FDo9cGm2xDyOvS1NGalX0tAwARQ6PFCFAt0yYUkJzQAMRcJvhfu/TlZvHmh7oN4fxCt/24c1f9uH1946gDV/24dX/rYP9f5g3+rXQ+1z6mL+EIRDhZrngHCoiPlD8bl2R5LXhtzT7Mf/bf0A/mAIARlEQ6QZR0InERPxnq5I1ETdh36cnoS4fb6kpnX8qJUAQm0xWBJwuzTYbSoUIWC3qV2ec6CVe/Kxf/zZCKkavOEgbEYMQkrYjBi84SDCqg0Hxp+Nck9+p+ewj/Iid24VbCUeyKgJszkKGTVhK83JeOp6AD0LQkwjI0GIR7PDpsQzm6aiW/3vxQYQn8epavHe61QMPb7fkbmEKkTZaMT1iBHR0JCOBXrTxbQsvP3hLuS1mCjz5KDVGR/2N9DzOPri9KFhHpsd5W4vjkdDiBoGbFHgeK6FnFIvvjCqun89dwP4rXpP5k4NRsB+6py6U9OtC7sKYVNgBqIIb2+ArSIXQgjsbWnC7z94D0rIDcUGaJoGS0q0GTE0hJtR7s6Dx6XheKANxwJtSevinTpf0m5Lnj+lx0zEDBOqIqCpyYGaEKLTcw40RQhMnXoB/qZHMO3gLpS2BeHSIzCEgiMeL94bXY05Uy/otl3bR3lhq8hN2zIZvXJqEGJP0fOUwSCk3J2HMrcXh4InUeT0dBja2d9e7ISiCqCgHPAfjPden9bziVAzUDomXo6I0oaBGBENGiHEsF+wWT/SgmNbD2Bqgwmb9MBSBVo98pO08AM8j6MPUg0Nc2s2uGxe6NEIzBwF3jkVmDO+vP9B4gA90PZk7lTdh36UF3sG/EG+N+nW1SI31tfvRlQ3kAMFUOO9U4qIZxTUTQPHI0GM8uTDjBiIRpN7NVLNl2xnmhZMC3A5FNhS9JhpmoJwinMOhvHeYqDmn7C+ZDTMpsPQ9AgMuxNa8RmY24vgPZ3LZPTKEA5CFCFwUcUkvPjxdhyLhJBrd8CuaNAtA616tP+92J8QQoFSMy8+vzPgT57fGWoGnB4o517MRB1EacZAjIioE+1D2GQogohmQddUqJY8LS38AM7j6KP2oWHtc56sUAxCU+Aqz4O7pnzghoYN0ANtd3OnBrM3qDfp1tsTKXicjngGQQvAKR1bmqIgahoI6zpURXTIBNrVfMlwxIAiALezY0AIILH+Xrqyi473FqMqtwgNo4dOIpqBMtSDkPHeYnx1XE1i/mmrFYVNUTE6Jx9zB3D+qaiYAOXCKz7NeBpuiX9xUjomfv3DJMkO0UjCQIyIspaUFpr1Q9DNEOyqB3n2ysTD2KlD2JQ8B6xwGyAkoIkOaeEHbB5HP6RjaNhAPdB2NXcKGNzeoN6kWw8ZIcQsE7luActlQYYFVFcTFDUKaTlgRItgmBbCbQYqi70pM4G2z5dsz7YYjhhQFYHyYg/aIgZaQzFIKTsMSQu1GWnPLpruRa7TaagHIYlAONyMYCwKIwzkKi64TK1D++gPUTEBSvk4rgFINEQwECOirNTUtgu7T65Gi34EloxBETZ47aMwKX8Ril3VSUPYHJraIRthe1r43FaJJtsAzePop3QMDRuIB9qu5k4Bg9sb1Jt0655wDDZFhSFNuMoOwGW+B9VxEkIxIKWGWLQAQX8NnMjrMhNoZ/MlG5pCIzK76FA11IMQRQiIkIY9H54Y1MW/hVCYop5oiGAgRkRZp6ltF7b7n4NuBeFS86EKO0yp42R0P7b7n0NNyTXIi5QlhrC1ZyNsMFugWyY0RYGhCDhMibZQBO6igZnHMVz094G2q7lTg90b1Jt06+2JFETTFhS562BoJmK6F4aVA6lasDn8yK/ciJnF47p9SE41X7Kz3rLSQjfOTdM6YtlmKAchmUpgQ0SZw0CMiLKKlBZ2n1wN3QoiRytLBAGacCJHlCJoHMVHJ9dgpuOGpCFsSdkITQPCsBATCgq8ufincf3MRjgM9eeBNtNrzXU2p85WmpOYUyelxPFAG6YH7WjEB4gJHe6IDVKEYSIKxAAYEmZhFAHxBqQ8p089KyMpuyj1XSYT2BBR5jAQI6Ks0qwfQot+BC41P2WiCKfqQ7N+GKGCEx2GsHlsdrg1O6JGDFZzFKLcjUtnToWqDI2hTcNJpnuDuppTV+8PJupl6odhq1KhGAWQIgab1KEIE6oqYJcWrLCKZsdhNOuH4HOM6VNdRkJ2UeqfTCawIaLMYSBGRFlFN0OwZAyqSJ1YQxN2RGUAMSsE3/QzUg5h00ImFI8TuZ8ZwyCsHzLdG5RqTt2pw8PcmglFOQFDNWHGPAjDBZ8aglMY8WGolgURjSEaa4Nupn8xYBo5MpnAhogyh4EYEWUVu+qBImwwpQ5NdFwLy5A6FGGDXfX0aAgb9c9Q6g06fXgYoiFYhh3CUqGpMRimA0Hpglv5JOhSFJjSgiIF7OoQXD+Lho1MJrAhosxhIEZEWSXPXgmvfRRORvcjR5R2SBQRMQMocFQhz14JID1p4Sk+dy/T2exOHx4mFQ2iLR+iLQ/ScxyqpSEmVehShV2YkJaJiMNEga0i0V6I+iKTCWyIKHMYiBFRVhFCwaT8Rdjufw5B4yicqg+asMOQOiJmAHbFg4n5lyQFAelIC5/NZP2eT9Phm0Y8HX5BOZSaeWld36nD8DC7A8LmhNYwCbGqdwBHC6TugQnAUAxE1DbYhRsTS5cMmRToNDxlOoENEWUGPzmIKOsUu6pRU3IN8h1jEbNCCBl+xKwQChxVqCm5BsWu6kxXMWvI+j3xBaL9BwGHG/AWxf/1H4S18XeQ9XuSy0sLgegB+MMfIBA9EO9JGyCnDg8DAAEB5BVBCZfDtm86ECqC0HTothBiMor8SA5qCpai2H3mgNWBsld7ApuSQjeiuomWoI6obqK00M3U9UQjFHvEiCgrFbuqUeSciGb9EHQzBLvqQZ69kj0baSSlFe8Ji4QBXwnQ/m2/3QnYHEDAD6vudSjl4yCE0u0i3P2VaniYcHogCysgAnZE9lShwHUA59k+gD23DPlnfhHKqEn9fl+idplOYENE6cVAjIiylhBKn1OO0wA4Vh8fjujJ+zQIaydEfPvxeuBYPZpyQt0uwt3fYKzT4WGqEyF3KZyKhZnjy1BW+k8ZmcNG2WEoJbAhosHFQIyIKEtJKRNJSNCejS1qpi8hSTQUnxOmpV5KAJodCLdARlqxO/Zqt4twFzkn9js46nx9M09a1jcjIqLswUCMiCgL6UdaPk3LHzEgowYAQNhVKC4btAIX3NMrBjdFv8MTT8xh6PHhiKczdEDV0Ky1oiXa/SLc/VlU+VQcHkY9NRSyfRLR8MVAjIgoy+hHWtC6YR+siAGhKbAiMcCSAASgm5AuDTF/CK0b9iF3btXgBWNFFUBBeTxRh82RPDxRSiDUDJSOge51w/J3vwj3QC6qnMnhYZaUaAg3I2To8Gh2lLvz4gtI05AyVLJ9EtHwxUCMiCiLSCkRfqceVsSAkueA6Q8BMt4TBgnAsCDDMajFbljNOsLbG2CryB2U3iAhFCg18+JZEwP++JwwzR7vCQs1A04PlHMvhkOz9XgR7uFub0sT1tfvRmO4BTHLhE1RUeb24qKKSRjvLc509egTiWyfkXByu/0k26dy4RUMxoioW+w/JyLKIsaxMIwTbVA8NiBmQcYsCFWBgIgHW6oCqZtATELx2GAcD8M4Fh60+oiKCVAuvAIoGQ1Ew0DLsfi/pWOgXHg5RMWExCLcbWYAUspPjpTQYybaIjGE9BPIs58x7BdV3tvShBc/3o5DwRNwaTYUOj1waTYcCp7Eix9vx96WpkxXkZAi26fdCShK/F9fCRAJw6p7fUCXViCikYk9YkREWURGDEjDguKxQUZNSCmTe7tEfFQgLAvCocEKxeLJPAaRqJgApXxcp3NtTl+EW7FyEAwBMSMKaK0QlgtomoYGLTxsk2lYUmJ9/W6EjSiKnDmJ34lD1VDk9OBYJIQN9btRlVuUdcMUh9w8rF5k+0TxGZmpIxENCwzEiIiyiHBqEJoCaViA8kkv2CfTwwDEhykKAEq8jNAUCOfgf1QIoXT50Nq+CPe7DX9GU+gALBhQNA2KcQbQfB5OBEqw8eShYbvwbUO4GY3hFnjtHZOCCCGQa3egIdyCI6EAFCGyZv7YkJyH1cNsn4gO3JxFIhqZGIgREWURrcgNrcCFmD8EJc8BYVNg6WZ8aJUEYFoQDhWwCVjNOmylOdCKhsaaRkXOSYgcXoJo8ABycw0Iyw1hlEBAgT1XItCqo+5DP8qLPcMuw2HI0BGzTHiVFNkjAdgVDceNMF78+J1E2ZE+fyzVPCwZ02HWn4DVtAbqZ+bBNmVy+n/XPcz2Ccfwn7NIRIOLc8SIiLKIEALu6RVQnBqs5igUty0+HFE3IWOf9JK5bbCadShODe6a8iET1BwLtOFkIAq3MgqqPg6KUQaB9uGLAh6XhuOBNhwLtGW4pr3n0eywKSpilplyf4vehmAsgqZIa1bMH0s1DysWzUXricloCc9A8PgENL9+GIGXd0E/0pLeyrVn+ww1fzKON6ni8e2FFfFyRERdYCBGRJRl7KO8yJ1bBVuJBxACitMWT9ihCgi7CgEBW2nO4Kau74No1IRpSWha6o8uTVNgWhLRaOpgZigrd+ehzO1Fix45JSFJnLQkmiJBKEKgzOWFQ9WgCJGYPxY2dGyo3w3r9KBgODttHlaszYPgsVEwoi4oqgnFrkMx22DUB9C6YV+fgzEpLQSiB+APf4BA9ECPEmy0Z/uE0x3P9qlHAMuK/xvwJ7J9cj0xIuoOhyYSEQ0DUlpo1g9BN0Owqx7k2Sv79aBnH+WFrSIXxrFwPBmHQ43viJoQTg1akXvI9IS1czhUqIqAYViw29QO+w3DgqoIOBwd9w11ihC4qGISXvx4O45FQsi1O2BXNOiWgRORMCwpUeryQlGSf+enzh9rCDdjlMeXoSsYYKfMw5ISaAsUwTJVSLUNgIACDVKaEHbAihh9WmahKfwh3vP/BcHYEUhhwq7Z4bWPwqT8RSh2VXd5bHu2z8T8tXBLfDhi6Zh4EMbU9UTUAwzEiIiGuKa2Xdh9cjVa9COwZAyKsPX4gbErQgjYiofPPJYinwsFPhf8x8OwaUrSQ7eUEqE2A6WFbhT5XBmsZd+N9xbjq+NqEuuItVpR2BQVxc4cSCnhTTUfCfH5Y61WFAdaT4ycJB6nzMMKxTxoi9hgijBgCKiWC8KK99yKZhPQgFhjK4xj4R6355312/He8V8hJkOQsVwIOGCzW4g6P0Yo9hxqSq7pWTDWRbZPIqLuMBAjIhrCmtpmC41IAAAgAElEQVR2Ybv/OehWEC41H6qww5Q6Tkb3Y7u/Zw+MI4UQAjWTS7Dx7UMItOrwuDRomgLDsBBqM+B0qDh3csmQ68nrjfHeYlTlFqEh3JwIqqSUWLX7LcQsEw6148d2i96GZr0Naw5/AAH0K4nHkEkV/8k8LL1xH46ZKpxSQECBauYAUkDAhCkAodihxEyYMQv64eYeBWJHjragrv7PsOwhKGYhFFXAkoAeVWDGcoDcVnx0cg2KnBO7vfbusn0SEXWFgRgR0RAlpYXdJ1dDt4LI0coSAYYmnMgRpQgaR3v8wDiUWVImBR5d9eZUlOTgwpmV2P6hHycCbQhHDKiKQGmhG+dOLhmWqetPpwiRNMTQkhJlbi8OBU+iyJmcETIUi6KxrRWqEPDaHLCrGmKWmUji8dVxNT0OxoZSqnghFODcixF49Wl49AAsWBCm+5MgzIAUQEzVIKQFh6oChoXo3pNwn9t1chkpJbbtfQ+W2w9VehP/3ygCUDQgZgB6xIVm22E064fgc4xJ1yUTURZiIEZENEQ164fQoh+BS81PubaUU/WhWR/eD4x7W5oSQ/F6mpK9oiQH5cUeHAu0IRo14XCoKPJ1XH9rpOh0/phpoD4cz9xX4fHBqdkA9G0R6FSp4mHogP8grI2/g3LhFWkPxhp9xfhr1VScd+RjFDa1ATIHgAFLUWCoKqRQIC0LEgoUhwozGO12eOKxQBuaQwFouRZg2k7bK6CqQExXoBsR6CbXASOiwTV8v0IlIhrhdDMES8agitQLx2rCDkvGhu0D496WJrz48XYcCp7odUp2IQSK8904oywXxflDL7HIQGufP1aZk4+IYeB4JISWWBQKBMrcefDYHEnlT0/i0ZWkVPF5xYgoKkJmDBFFBfKKgUgYVt3rPcooOJBCho79uflYd84F2DXGA1MIGIoNMdUGCwoUCagWIBVAzXMCpownnulCNGrCMpwQ0AAR67BfEYAUBoRUYVeHz/xJIhqe2CNGRJQBUspExsLOshTaVQ8UYYMpdWiiY6IGQ+pQhG1YPjBaUmJ9/W6EjSiKnDmJa+9Lb062OH3+WFNbEK8e2tFtEo+QoXd94k9Sxbc5XGgKBxA1jXgKfSEQVfLhsVXAe6wVxU1HIEoqB+HKUkusrSYtHCh3obxBwGYAqhn/FlkCiNkAm88JoSmAKSGcXT/WOBwqlFgJpF4E4WiANOwQ+LR9WVJCaK3IsU1Enj1910pE2YmBGBFRmulHWhB+px7GiTZIw4LQFGgFLrinVySt25Vnr4TXPgono/uRI0o7ZAmMmAEUOKqG5QNjQ7gZjeEWeO0dhxSO2JTsA+DU+WMezZ6YE5YqiYduGbApKjxa6h7VhGgIeiyCBlODAQuaouIkCrEPVWgxcyChwAETRe8cR830/LTNw2tfW+1Q8CTsOR4E8iR8zUCrB1AsIAoTmsMGn9sOqzkKW2kOtCJ3l+eMZ970oKnpM3BWrAW045BmLiBtgNBhiVbYhAfTShYP63mXRDQ88K8MEVEa6Uda0LphH2L+EIRDhZrngHCoiPlDHRamFULBpPxFsCseBI2jiFkRSGkhZkUQNI7CrngwMf+SYfnAGDL0xJywVOxKPMDotjcni3W5CLSUaNWjKHd7Ue7O6/I8lsONVsuEMHXYFQ0BFGAHpqIZebCLGNwyCFXq8AclNr59CPX+4GBeVkL73Di3ZsexaAgfVMag2wGHDkSFCakpKFRdsJqjUJwa3DVdJ+oAPs286bDGIlL/T5DRckCJQKonYco2KLEKTCv8fyh2T07LNRJRdmOPGBFRmkgpEX6nHlbEgOpzJB4ahV2FsCkwA9EOC9MWu6pRU3JNYh2xqAxAETYUOKowMf+SYZu6PjHsrL+9OVmsq0WgW/Uo3JodcysmdTu0s9HlwXGnB+XBAJo1Bz5GFWKwwY0QBABNWoiqKpw5dkTaTNR96Ed5sSct8/JOXVvtsNKC8DgdZx9xorjNhlzYYTcVaKVuuGvKk3qTu/Jp5k0HThw5A5bND0WLwOfxYfr4aRhV2rPzEBH1FwMxIqI0kFKi6eMTMI8G4z1h6DgcT/HYYBwPd8j8VuyqRpFzIpr1Q9DNEOyqB3n2ymHZE9bu1GFnp6dkb+/NGZ2T321vTrbrbBHo0Tn5mNvDdcRCpoHa8ios2v8BZFRD0J4Dh4hAlRKqZcIUCk463SiEhMel4XigDccCbSjO73oY4EDpsLbaLBuKwzYganY6v7I7yZk3x474zJtENDQxECMiGmT1/iDe+bARxomPMcYWgGG6kHOiFL4cJ5yOT4fmCU2BFYqlzPwmhDJsU9SnMlC9OZR6Eeiu1mI7nUez42h+Cd6w2THm4HHImIDDisaTdWh2NDvd0DUbNEWBpigIRwxEo+YgX1Wy09dWwwBMU2vPvElElCkMxIiIBlG9P4iN770JI+ct2Mc2Yb8ZA6QKR6gQhYdrMDo6IRGMtSfu6C7z20gxEL05FNchUOmF9t7JXZaJY5PKgY/tiAoboAroqgbdMuFSNThUG2IxE6oi4HCknttHREQ9lx2f9kREGSClxNa9W2AVrIHNFoE0c6FFAYEYIrl+NEzYAG2/gio5EYCEFYr1KPPbSNLf3hzqv1N7J4/HgvC68mG0OSAVE4ZlQlUUFDpzACkRajNQWuhGkc+V6WoTEQ17w3eCARHRENd0MoSg9jcoWgQwCiGkA7rDBsWywxnKg6VFcLR0G6LhKMxAzzO/jTTtvTmT8kowyuNjEJYBiQWjc/MRLQjDUExYugKnsKHM5YVNqgi06nA6VJw7uSTr2igR0WBgjxgR0SA52XYIsDVBWLmJRWMNVUGbS4MjasKme6C7jyOoHkVx6bheZX4jGmiJ3snKZhw62orD+0NoC5owIhJSMVFa6Ma5k0vSto4YEdFIx0CMiGiQCK0NQjEhTQ2ndiAYqgLDLQBDQGptsM7LR974SexlSDMpLeBYPRANAQ4PUFQxrDNRDoT23slR43yQVfKTrIImswoSEQ0CBmJERIOkOK8QapMdsVgMiqoAp6WsjykGbJoDJWdk33DETJP1e2C+sw6mvwWWoUDRLKglXqjT50FUTMh09YYEZhUkIhpcDMSIiAaJz1GJQnclmuRexKI2qKoCRQCWBEzTguoIosg9AT5HZaarmlVk/R5E/7oabc2lMOQYACoAE1prC1zHVsOxYBGDMSIiGnTZPQaDiGgQCaHgnPIvIteVB5szAEtGETNMWDIKmzOAXFcezi7/QtYPh0snKS1E39yE4MmxMGQ+FE1CselQNAlD5iN4ciyimzbHhy0SERENIn76ExENomJXNWaNuh5nFEyC12shJy8Er9dCZUF8e7GrOtNVzCqy6QjaGt2QcECx6RCKBSEAoVhQbDokHGhrcEI2Hcl0VYmIaITj0EQiokFW7KpGkXMimvVD0M0Q7KoHefZK9oRlgOFvgRFzQ7EZOH1anhCAohkwYh4Y/hbYSzJTRyIiyg4MxIiI0kAIBT7HmExXI+tJ6UB8MIiO+Nyw0xkA7J+UIyIiGjz8OpaIiLKGKC0FNBUwJCBl8k4p49ttarwcERHRIGIgRkREWcNWnAOtLB8WnJC6DlhmPACzTEhdhwUntNJ82Iq5aDEREQ0uBmJERJQ1hBDwnD8JwueDpXghDUDGdEgDsBQvFJ8vvp/ruhER0SDjHDEiIsoq9lFeeBecidA79TD9zZCGBaEp0Ery4JleAfsob6arSEREWYCBGBERZR37KC9sFbkwjoUhIwaEU4NW5GZPGBERpQ0DMSIiykpCCNiKPZmuBhERZSnOESMiIiIiIkozBmJERERERERpxkCMiIiIiIgozRiIERERERERpRkDMSIiIiIiojRjIEZERERERJRmDMSIiIiIiIjSjIEYERERERFRmjEQIyIiIiIiSrNhE4itWLECc+bMgdvths/nS1nm4MGDWLx4MdxuN0pKSnDHHXfAMIwuz3vixAlcddVV8Hq98Pl8WLZsGYLB4GBcAhEREREREYBhFIjpuo7LLrsMy5cvT7nfNE0sXrwYuq5j06ZNePbZZ7Fq1Srce++9XZ73qquuwo4dO7B27Vq8/PLLeOONN/D1r399MC6BiIiIiIgIACCklDLTleiNVatW4bbbbkMgEEjavnr1anzhC19AfX09SktLAQA///nPceedd6KpqQl2u73DuXbu3IkpU6Zg69atmDlzJgBgzZo1+PznP4/Dhw+joqKiR3VqaWlBXl4empub4fV6+3mFREREREQ0XPU0Nhg2PWLd2bx5M6ZNm5YIwgBg4cKFaGlpwY4dOzo9xufzJYIwAJg/fz4URUFtbW2n7xWNRtHS0pL0IiIiIiIi6qkRE4g1NjYmBWEAEj83NjZ2ekxJSUnSNk3TUFBQ0OkxAPDQQw8hLy8v8aqsrOxn7YmIiIiIKJtkNBC76667IITo8vXhhx9msoop3X333Whubk68Dh06lOkqERERERHRMKJl8s1vv/12XHfddV2WGTduXI/OVVZWhi1btiRtO3r0aGJfZ8f4/f6kbYZh4MSJE50eAwAOhwMOh6NH9SIiIiIiIjpdRgOx4uJiFBcXD8i5Zs+ejRUrVsDv9yeGG65duxZerxdTpkzp9JhAIIBt27ZhxowZAIDXX38dlmVh1qxZA1IvIiIiIiKi0w2bOWIHDx5EXV0dDh48CNM0UVdXh7q6usSaXwsWLMCUKVNw9dVX491338Wrr76K73//+7jlllsSvVdbtmzB5MmTceTIEQDAmWeeiUsuuQQ33ngjtmzZgjfffBO33norrrzyyh5nTCQiIiIiIuqtjPaI9ca9996LZ599NvFzTU0NAGD9+vWYO3cuVFXFyy+/jOXLl2P27NnweDy49tpr8eCDDyaOCYfD2LVrF2KxWGLbr3/9a9x6662YN28eFEXBpZdeip/97GfpuzAiIiIiIso6w24dsaGI64gRERERERHQ89hg2PSIDWXtsSzXEyMiIiIiym7tMUF3/V0MxAZAa2srAHA9MSIiIiIiAhCPEfLy8jrdz6GJA8CyLOzatQtTpkzBoUOHODwxTVpaWlBZWcl7nma875nB+54ZvO+ZwfueGbzvmcH7nhmDed+llGhtbUVFRQUUpfPciOwRGwCKomDUqFEAAK/Xy/+J0oz3PDN43zOD9z0zeN8zg/c9M3jfM4P3PTMG67531RPWbtikryciIiIiIhopGIgRERERERGlmXr//fffn+lKjBSqqmLu3LnQNI74TBfe88zgfc8M3vfM4H3PDN73zOB9zwze98zI9H1nsg4iIiIiIqI049BEIiIiIiKiNGMgRkRERERElGYMxIiIiIiIiNKMgRgREREREVGaMRDroRUrVmDOnDlwu93w+Xwpyxw8eBCLFy+G2+1GSUkJ7rjjDhiG0eV5T5w4gauuugperxc+nw/Lli1DMBgcjEsY9jZs2AAhRMrX1q1bOz1u7ty5HcrfdNNNaaz58Dd27NgO9/Dhhx/u8phIJIJbbrkFhYWFyMnJwaWXXoqjR4+mqcbD3/79+7Fs2TJUVVXB5XJh/PjxuO+++6DrepfHsb333pNPPomxY8fC6XRi1qxZ2LJlS5flX3jhBUyePBlOpxPTpk3DK6+8kqaajgwPPfQQPvOZzyA3NxclJSVYsmQJdu3a1eUxq1at6tCunU5nmmo8Mtx///0d7uHkyZO7PIZtvf9SfX4KIXDLLbekLM+23jdvvPEGvvjFL6KiogJCCLz00ktJ+6WUuPfee1FeXg6Xy4X58+fjo48+6va8vf186C0GYj2k6zouu+wyLF++POV+0zSxePFi6LqOTZs24dlnn8WqVatw7733dnneq666Cjt27MDatWvx8ssv44033sDXv/71wbiEYW/OnDloaGhIen3ta19DVVUVZs6c2eWxN954Y9JxjzzySJpqPXI8+OCDSffwm9/8Zpflv/Od7+DPf/4zXnjhBWzcuBH19fX4yle+kqbaDn8ffvghLMvCL37xC+zYsQM/+clP8POf/xz/9m//1u2xbO8997vf/Q7f/e53cd999+Gdd97BOeecg4ULF8Lv96csv2nTJixduhTLli3D9u3bsWTJEixZsgTvv/9+mms+fG3cuBG33HIL3nrrLaxduxaxWAwLFixAKBTq8jiv15vUrg8cOJCmGo8cU6dOTbqHf//73zsty7Y+MLZu3Zp0z9euXQsAuOyyyzo9hm2990KhEM455xw8+eSTKfc/8sgj+NnPfoaf//znqK2thcfjwcKFCxGJRDo9Z28/H/pEUq+sXLlS5uXlddj+yiuvSEVRZGNjY2LbU089Jb1er4xGoynP9cEHH0gAcuvWrYltq1evlkIIeeTIkYGv/Aij67osLi6WDz74YJflLrzwQvntb387TbUamcaMGSN/8pOf9Lh8IBCQNptNvvDCC4ltO3fulADk5s2bB6OKWeGRRx6RVVVVXZZhe++d8847T95yyy2Jn03TlBUVFfKhhx5KWf7yyy+XixcvTto2a9Ys+Y1vfGNQ6zmS+f1+CUBu3Lix0zKdffZSz913333ynHPO6XF5tvXB8e1vf1uOHz9eWpaVcj/bev8BkH/4wx8SP1uWJcvKyuSjjz6a2BYIBKTD4ZC/+c1vOj1Pbz8f+oI9YgNk8+bNmDZtGkpLSxPbFi5ciJaWFuzYsaPTY3w+X1Jvzvz586EoCmprawe9zsPdn/70Jxw/fhzXX399t2V//etfo6ioCGeddRbuvvtuhMPhNNRwZHn44YdRWFiImpoaPProo10Ou922bRtisRjmz5+f2DZ58mSMHj0amzdvTkd1R6Tm5mYUFBR0W47tvWd0Xce2bduS2qmiKJg/f36n7XTz5s1J5YH433q2675rbm4GgG7bdjAYxJgxY1BZWYkvfelLnX62Uuc++ugjVFRUYNy4cbjqqqtw8ODBTsuyrQ88Xdfxq1/9CjfccAOEEJ2WY1sfWPv27UNjY2NSe87Ly8OsWbM6bc99+XzoCy7fPUAaGxuTgjAAiZ8bGxs7PaakpCRpm6ZpKCgo6PQY+tTTTz+NhQsX4owzzuiy3L/8y79gzJgxqKiowD/+8Q/ceeed2LVrF/7v//4vTTUd/r71rW9h+vTpKCgowKZNm3D33XejoaEBP/7xj1OWb2xshN1u7zCfsrS0lG27j/bs2YMnnngCjz32WJfl2N577tixYzBNM+Xf7g8//DDlMZ39rWe77hvLsnDbbbfh/PPPx1lnndVpuerqajzzzDM4++yz0dzcjMceewxz5szBjh07uv0MoLhZs2Zh1apVqK6uRkNDAx544AFccMEFeP/995Gbm9uhPNv6wHvppZcQCARw3XXXdVqGbX3gtbfZ3rTnvnw+9EVWB2J33XUXfvjDH3ZZZufOnd1OZqX+6cvv4fDhw3j11Vfx/PPPd3v+U+fcTZs2DeXl5Zg3bx727t2L8ePH973iw1xv7vt3v/vdxLazzz4bdrsd3/jGN/DQQw/B4XAMdlVHlL609yNHjuCSSy7BZZddhhtvvLHLY9neaTi55ZZb8P7773c5VwkAZs+ejdmzZyd+njNnDs4880z84he/wH/8x38MdjVHhEWLFiX+++yzz8asWbMwZswYPP/881i2bFkGa5Y9nn76aSxatAgVFRWdlmFbzy5ZHYjdfvvtXX4rAQDjxo3r0bnKyso6ZFJpzxBXVlbW6TGnT/gzDAMnTpzo9JiRqC+/h5UrV6KwsBD//M//3Ov3mzVrFoB4D0M2P5j2p/3PmjULhmFg//79qK6u7rC/rKwMuq4jEAgk9YodPXo0q9p2Kr297/X19bjoooswZ84c/Nd//Vev34/tvXNFRUVQVbVDNs+u2mlZWVmvylPnbr311kSSqt5+02+z2VBTU4M9e/YMUu1GPp/Ph0mTJnV6D9nWB9aBAwfw2muv9Xp0Att6/7W32aNHj6K8vDyx/ejRozj33HNTHtOXz4e+yOpArLi4GMXFxQNyrtmzZ2PFihXw+/2J4YZr166F1+vFlClTOj0mEAhg27ZtmDFjBgDg9ddfh2VZiYenbNDb34OUEitXrsQ111wDm83W6/erq6sDgKT/GbNRf9p/XV0dFEXpMLS23YwZM2Cz2bBu3TpceumlAIBdu3bh4MGDSd/0ZaPe3PcjR47goosuwowZM7By5UooSu+n9bK9d85ut2PGjBlYt24dlixZAiA+VG7dunW49dZbUx4ze/ZsrFu3Drfddlti29q1a7O+XfeGlBLf/OY38Yc//AEbNmxAVVVVr89hmibee+89fP7znx+EGmaHYDCIvXv34uqrr065n219YK1cuRIlJSVYvHhxr45jW++/qqoqlJWVYd26dYnAq6WlBbW1tZ1mQ+/L50OfDFjajxHuwIEDcvv27fKBBx6QOTk5cvv27XL79u2ytbVVSimlYRjyrLPOkgsWLJB1dXVyzZo1sri4WN59992Jc9TW1srq6mp5+PDhxLZLLrlE1tTUyNraWvn3v/9dTpw4US5dujTt1zecvPbaaxKA3LlzZ4d9hw8fltXV1bK2tlZKKeWePXvkgw8+KN9++225b98++cc//lGOGzdOfu5zn0t3tYetTZs2yZ/85Ceyrq5O7t27V/7qV7+SxcXF8pprrkmUOf2+SynlTTfdJEePHi1ff/11+fbbb8vZs2fL2bNnZ+IShqXDhw/LCRMmyHnz5snDhw/LhoaGxOvUMmzv/fPb3/5WOhwOuWrVKvnBBx/Ir3/969Ln8yUy4F599dXyrrvuSpR/8803paZp8rHHHpM7d+6U9913n7TZbPK9997L1CUMO8uXL5d5eXlyw4YNSe06HA4nypx+3x944AH56quvyr1798pt27bJK6+8UjqdTrljx45MXMKwdPvtt8sNGzbIffv2yTfffFPOnz9fFhUVSb/fL6VkWx9MpmnK0aNHyzvvvLPDPrb1gdHa2pp4Ngcgf/zjH8vt27fLAwcOSCmlfPjhh6XP55N//OMf5T/+8Q/5pS99SVZVVcm2trbEOS6++GL5xBNPJH7u7vNhIDAQ66Frr71WAujwWr9+faLM/v375aJFi6TL5ZJFRUXy9ttvl7FYLLF//fr1EoDct29fYtvx48fl0qVLZU5OjvR6vfL6669PBHeU2tKlS+WcOXNS7tu3b1/S7+XgwYPyc5/7nCwoKJAOh0NOmDBB3nHHHbK5uTmNNR7etm3bJmfNmiXz8vKk0+mUZ555pvzP//xPGYlEEmVOv+9SStnW1iZvvvlmmZ+fL91ut/zyl7+cFERQ11auXJnyb86p35+xvQ+MJ554Qo4ePVra7XZ53nnnybfeeiux78ILL5TXXnttUvnnn39eTpo0Sdrtdjl16lT5l7/8Jc01Ht46a9crV65MlDn9vt92222J31Fpaan8/Oc/L9955530V34Yu+KKK2R5ebm02+1y1KhR8oorrpB79uxJ7GdbHzyvvvqqBCB37drVYR/b+sBof8Y+/dV+by3Lkv/+7/8uS0tLpcPhkPPmzevw+xgzZoy87777krZ19fkwEISUUg5c/xoRERERERF1h+uIERERERERpRkDMSIiIiIiojRjIEZERERERJRmDMSIiIiIiIjSjIEYERERERFRmjEQIyIiIiIiSjMGYkRERERERGnGQIyIiIiIiCjNGIgRERF1YdWqVfD5fJmuRreuu+46LFmyJNPVICKiHmIgRkREA2bu3Lm47bbbelT2l7/8Jc455xzk5OTA5/OhpqYGDz30UGL//fffDyEEbrrppqTj6urqIITA/v37AQD79++HECLl66233ur0/U8t5/F4MHHiRFx33XXYtm1bUrkrrrgCu3fv7uEdyJzHH38cq1atGvT3WbFiBebMmQO32z0sAlQioqGKgRgREaXdM888g9tuuw3f+ta3UFdXhzfffBPf+973EAwGk8o5nU48/fTT+Oijj7o952uvvYaGhoak14wZM7o8ZuXKlWhoaMCOHTvw5JNPIhgMYtasWXjuuecSZVwuF0pKSvp2oWmUl5eXlsBI13VcdtllWL58+aC/FxHRSMZAjIiIBsR1112HjRs34vHHH0/0NLX3Wp3uT3/6Ey6//HIsW7YMEyZMwNSpU7F06VKsWLEiqVx1dTUuuugi3HPPPd2+f2FhIcrKypJeNputy2N8Ph/KysowduxYLFiwAC+++CKuuuoq3HrrrTh58iSAjkMT77//fpx77rl45plnMHr0aOTk5ODmm2+GaZp45JFHUFZWhpKSkg7XEggE8LWvfQ3FxcXwer24+OKL8e6773Y47//8z/9g7NixyMvLw5VXXonW1tZEmRdffBHTpk2Dy+VCYWEh5s+fj1AolLj/pw5NjEaj+Na3voWSkhI4nU589rOfxdatWxP7N2zYACEE1q1bh5kzZ8LtdmPOnDnYtWtXl/fsgQcewHe+8x1Mmzaty3JERNQ1BmJERDQgHn/8ccyePRs33nhjokeqsrIyZdmysjK89dZbOHDgQLfnffjhh/H73/8eb7/99kBXOaXvfOc7aG1txdq1azsts3fvXqxevRpr1qzBb37zGzz99NNYvHgxDh8+jI0bN+KHP/whvv/976O2tjZxzGWXXQa/34/Vq1dj27ZtmD59OubNm4cTJ04knfell17Cyy+/jJdffhkbN27Eww8/DABoaGjA0qVLccMNN2Dnzp3YsGEDvvKVr0BKmbKO3/ve9/D73/8ezz77LN555x1MmDABCxcuTHo/ALjnnnvwox/9CG+//TY0TcMNN9zQn9tHREQ9xECMiIgGRF5eHux2O9xud6JHSlXVlGXvu+8++Hw+jB07FtXV1bjuuuvw/PPPw7KsDmWnT5+Oyy+/HHfeeWeX7z9nzhzk5OQkvfpi8uTJANBpbx4AWJaFZ555BlOmTMEXv/hFXHTRRdi1axd++tOforq6Gtdffz2qq6uxfv16AMDf//53bNmyBS+88AJmznk6FRUAAATRSURBVJyJiRMn4rHHHoPP58OLL76YdN5Vq1bhrLPOwgUXXICrr74a69atAxAPxAzDwFe+8hWMHTsW06ZNw80335zyOkOhEJ566ik8+uijWLRoEaZMmYJf/vKXcLlcePrpp5PKrlixAhdeeCGmTJmCu+66C5s2bUIkEunTvSMiop7TMl0BIiIa2aZOnZro+brggguwevVqlJeXY/PmzXj//ffxxhtvYNOmTbj22mvx3//931izZg0UJfl7wh/84Ac488wz8de//rXT+Vq/+93vcOaZZ/a7vu09TEKITsuMHTsWubm5iZ9LS0uhqmpSvUtLS+H3+wEA7777LoLBIAoLC5PO09bWhr1793Z63vLy8sQ5zjnnHMybNw/Tpk3DwoULsWDBAnz1q19Ffn5+h/rt3bsXsVgM559/fmKbzWbDeeedh507dyaVPfvss5PeDwD8fj9Gjx7d6fUTEVH/MRAjIqJB9corryAWiwGIJ7441VlnnYWzzjoLN998M2666SZccMEF2LhxIy666KKkcuPHj8eNN96Iu+66q0OPTrvKykpMmDCh3/VtD1Sqqqo6LXP63DMhRMpt7T18wWAQ5eXl2LBhQ4dznTr/rKtzqKqKtWvXYtOmTfjrX/+KJ554Avfccw9qa2u7rGt3Tn3P9uAzVc8kERENLA5NJCKiAWO322GaZtK2MWPGYMKECZgwYQJGjRrV6bFTpkwBgETyidPde++92L17N377298OXIVT+OlPfwqv14v58+cP2DmnT5+OxsZGaJqWuBftr6Kioh6fRwiB888/Hw888AC2b98Ou92OP/zhDx3KjR8/Hna7HW+++WZiWywWw9atWxP3mYiIMos9YkRENGDGjh2L2tpa7N+/Hzk5OSgoKOgwzBAAli9fjoqKClx88cU444wz0NDQgB/84AcoLi7G7NmzU567tLQU3/3ud/Hoo4+m3H/8+HE0NjYmbfP5fHA6nZ3WNxAIoLGxEdFoFLt378YvfvELvPTSS3juuecGNBX8/PnzMXv2bCxZsgSPPPIIJk2ahPr6evzlL3/Bl7/8ZcycObPbc9TW1mLdunVYsGABSkpKUFtbi6amppTDMT0eD5YvX4477rgDBQUFGD16NB555BGEw2EsW7asX9dy8OBBnDhxAgcPHoRpmqirqwMATJgwoc/z8oiIshEDMSIiGjD/+q//imuvvRZTpkxBW1sb9u3bh7Fjx3YoN3/+fDzzzDN46qmncPz4cRQVFWH27NlYt25dh3lUp5//qaeeSplMIlUP1m9+8xtceeWVnZ7v+uuvBxBfr2zUqFH47Gc/iy1btmD69Ok9uNqeE0LglVdewT333IPrr78eTU1NKCsrw+c+9zmUlpb26BxerxdvvPEGfvrTn6KlpQVjxozBj370IyxatChl+YcffhiWZeHqq69Ga2srZs6ciVdffTXlnLLeuPfee/Hss88mfq6pqQEArF+/HnPnzu3XuYmIsomQneW9JSIiIiIiokHBOWJERERERERpxkCMiIiIiIgozRiIERERERERpRkDMSIiIiIiojRjIEZERERERJRmDMSIiIiIiIjSjIEYERERERFRmjEQIyIiIiIiSjMGYkRERERERGnGQIyIiIiIiCjNGIgRERERERGl2f8HTj5WF4eyCGsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib import colors\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.manifold import TSNE\n", + "from matplotlib import cm\n", + "\n", + "def visualize_embeddings(embeddings, labels, title=\"Embeddings Visualization\"):\n", + " \"\"\"\n", + " Visualize the embeddings in 2D using t-SNE.\n", + " :param embeddings: The node embeddings (tensor of shape [num_nodes, embedding_dim]).\n", + " :param labels: The ground truth labels for the nodes.\n", + " :param title: Title for the plot.\n", + " \"\"\"\n", + " # Reduce embeddings to 2D\n", + " tsne = TSNE(n_components=2, random_state=42, perplexity=30)\n", + " reduced_embeddings = tsne.fit_transform(embeddings.cpu().detach().numpy())\n", + "\n", + " plt.figure(figsize=(10, 8))\n", + "\n", + " norm = colors.Normalize(vmin=0, vmax=10)\n", + "\n", + " for lab in np.unique(labels):\n", + " idx = np.where(node_labels==lab)\n", + "\n", + " #colormap possible values = viridis, jet, spectral\n", + " color = colors.to_hex(cm.Set2(norm(lab)))\n", + " plt.scatter(\n", + " x=reduced_embeddings[idx, 0],\n", + " y=reduced_embeddings[idx, 1],\n", + " color=color,\n", + " label=lab,\n", + " alpha=0.7\n", + " )\n", + " plt.title(title)\n", + " plt.xlabel(\"t-SNE Dimension 1\")\n", + " plt.ylabel(\"t-SNE Dimension 2\")\n", + " plt.legend() #title=\"Class\", bbox_to_anchor=(1.05, 1), loc='upper left')\n", + " plt.show()\n", + "\n", + "# Extract embeddings and labels\n", + "node_embeddings = model.embeddings\n", + "node_labels = labels\n", + "\n", + "# Visualize embeddings\n", + "visualize_embeddings(node_embeddings, node_labels, title=\"Cora Embeddings Visualization (Planetoid-T)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "501kV9zmlDDB" + }, + "source": [ + "As expected, results differs from the original implementation and more hyperparameter tuning may be needed to achive better results." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xE3a2H-elVp0" + }, + "source": [ + "#### Planetoid-I: Inductive Learning for Semi-Supervised Graph Learning\n", + "While the transductive Planetoid framework is highly effective for scenarios where all nodes, including unlabeled ones, are observed during training, there are situations where we need a model that can generalize to unseen instances. This is especially important in large-scale or dynamic settings where new nodes (e.g., new entities, articles, or documents) continuously emerge, and retraining on the entire graph or dataset becomes impractical.\n", + "\n", + "Planetoid-I (Inductive Planetoid) addresses this challenge by introducing an inductive learning approach for graph embedding and semi-supervised learning. Unlike the transductive setting, where embeddings are learned for all nodes (labeled and unlabeled) simultaneously, Planetoid-I ensures that the learned model can be applied to unseen nodes during inference. This is achieved by designing the embeddings as a parameterized function of the input feature vector.\n", + "\n", + "###### Key Features of Planetoid-I:\n", + "- **Inductive Nature**: Embeddings are learned as functions of node features, allowing the model to generalize to new, unseen nodes.\n", + "- **Embedding as a Function of Input Features**: Instead of learning a fixed embedding for each node, the embedding is defined as a parameterized function of the node's input feature vector \\( x \\), making the approach inductive.\n", + "- **No Shared Embeddings**: Unlike the transductive approach, Planetoid-I does not use shared embeddings across all nodes but instead computes node embeddings dynamically based on features.\n", + "\n", + "###### Loss Function:\n", + "The **Planetoid-I** loss function combines two terms:\n", + "1. **Supervised Loss**: The first term encourages correct label prediction for labeled nodes.\n", + " \\[\n", + " L_s = -\\frac{1}{L} \\sum_{i=1}^{L} \\log p(y_i | x_i)\n", + " \\]\n", + "2. **Unsupervised Loss**: The second term uses negative sampling to learn graph structure by predicting the context of nodes.\n", + " \\[\n", + " L_u = -\\lambda \\mathbb{E}_{(i, c, \\gamma)} \\log \\sigma(\\gamma w_c^T h_{l1}(x_i))\n", + " \\]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "br_ecqVambgh", + "outputId": "5b792f7c-6329-4c7e-dd61-410e8d65fffe" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1, Loss: 176.1518, Test Accuracy: 0.3170\n", + "Epoch 11, Loss: 0.0145, Test Accuracy: 0.5070\n", + "Epoch 21, Loss: 0.0002, Test Accuracy: 0.4400\n", + "Epoch 31, Loss: 0.0001, Test Accuracy: 0.4200\n", + "Epoch 41, Loss: 0.0001, Test Accuracy: 0.4460\n", + "Epoch 51, Loss: 0.0002, Test Accuracy: 0.5030\n", + "Epoch 61, Loss: 0.0009, Test Accuracy: 0.5580\n", + "Epoch 71, Loss: 0.0018, Test Accuracy: 0.5710\n", + "Epoch 81, Loss: 0.0020, Test Accuracy: 0.5700\n", + "Epoch 91, Loss: 0.0021, Test Accuracy: 0.5730\n", + "Epoch 101, Loss: 0.0021, Test Accuracy: 0.5710\n", + "Epoch 111, Loss: 0.0020, Test Accuracy: 0.5730\n", + "Epoch 121, Loss: 0.0019, Test Accuracy: 0.5760\n", + "Epoch 131, Loss: 0.0019, Test Accuracy: 0.5750\n", + "Epoch 141, Loss: 0.0019, Test Accuracy: 0.5680\n", + "Epoch 151, Loss: 0.0019, Test Accuracy: 0.5680\n", + "Epoch 161, Loss: 0.0018, Test Accuracy: 0.5700\n", + "Epoch 171, Loss: 0.0019, Test Accuracy: 0.5730\n", + "Epoch 181, Loss: 0.0019, Test Accuracy: 0.5720\n", + "Epoch 191, Loss: 0.0019, Test Accuracy: 0.5710\n", + "Final Test Accuracy: 0.5710\n" + ] + } + ], + "source": [ + "import torch\n", + "import torch.nn as nn\n", + "import torch.optim as optim\n", + "import torch.nn.functional as F\n", + "import numpy as np\n", + "import networkx as nx\n", + "from sklearn.preprocessing import normalize\n", + "from sklearn.metrics import classification_report\n", + "from torch_geometric.datasets import Planetoid\n", + "from torch_geometric.utils import to_networkx\n", + "\n", + "# Load Cora dataset\n", + "dataset = Planetoid(root=\"data/Cora\", name=\"Cora\")\n", + "data = dataset[0]\n", + "\n", + "# Planetoid-I Model\n", + "class PlanetoidIModel(nn.Module):\n", + " def __init__(self, input_dim, hidden_dim1, hidden_dim2, output_dim):\n", + " super(PlanetoidIModel, self).__init__()\n", + " self.fc1 = nn.Linear(input_dim, hidden_dim1)\n", + " self.fc2 = nn.Linear(hidden_dim1, hidden_dim2)\n", + " self.fc3 = nn.Linear(hidden_dim2, output_dim)\n", + "\n", + " # This layer is the inductive part that computes the embedding directly from the features\n", + " self.fc4 = nn.Linear(input_dim, hidden_dim1)\n", + "\n", + " def forward(self, x):\n", + " # Inductive embeddings as a function of input features\n", + " e = F.relu(self.fc4(x)) # Inductive embedding\n", + " h = F.relu(self.fc1(x)) # First layer\n", + " h = F.relu(self.fc2(h)) # Second layer\n", + " h = self.fc3(h) # Output layer\n", + "\n", + " return h, e\n", + "\n", + "# Training function for Planetoid-I\n", + "def train_model(model, data, optimizer, criterion, lambda_):\n", + " model.train()\n", + " optimizer.zero_grad()\n", + "\n", + " # Forward pass\n", + " output, e = model(data.x)\n", + "\n", + " # Supervised loss (cross-entropy)\n", + " supervised_loss = F.cross_entropy(output[data.train_mask], data.y[data.train_mask])\n", + "\n", + " # Unsupervised loss (negative sampling)\n", + " context_loss = 0\n", + " negative_samples = 10 # Number of negative samples for each context\n", + "\n", + " # Negative sampling\n", + " for i in range(len(data.x)):\n", + " pos_idx = i\n", + " neg_idx = np.random.randint(0, len(data.x), negative_samples)\n", + "\n", + " # Negative sampling loss calculation\n", + " context_loss += -torch.log(torch.sigmoid(torch.matmul(e[pos_idx], e[neg_idx].T))).mean()\n", + "\n", + " # Total loss\n", + " loss = supervised_loss + lambda_ * context_loss\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " return loss.item()\n", + "\n", + "# Evaluate function for Planetoid-I\n", + "def evaluate_model(model, data):\n", + " model.eval()\n", + " output, _ = model(data.x)\n", + " pred = output.argmax(dim=1)\n", + " correct = (pred[data.test_mask] == data.y[data.test_mask]).sum().item()\n", + " acc = correct / data.test_mask.sum().item()\n", + " return acc\n", + "\n", + "# Hyperparameters\n", + "input_dim = dataset.num_features\n", + "hidden_dim1 = 128\n", + "hidden_dim2 = 64\n", + "output_dim = dataset.num_classes\n", + "lambda_ = 0.1 # Weight for unsupervised loss\n", + "learning_rate = 0.01\n", + "epochs = 200\n", + "\n", + "# Model, optimizer, and loss function\n", + "model = PlanetoidIModel(input_dim, hidden_dim1, hidden_dim2, output_dim)\n", + "optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=5e-4)\n", + "\n", + "# Training loop\n", + "for epoch in range(epochs):\n", + " loss = train_model(model, data, optimizer, F.cross_entropy, lambda_)\n", + " if epoch % 10 == 0:\n", + " acc = evaluate_model(model, data)\n", + " print(f'Epoch {epoch+1}, Loss: {loss:.4f}, Test Accuracy: {acc:.4f}')\n", + "\n", + "# Final Evaluation\n", + "acc = evaluate_model(model, data)\n", + "print(f'Final Test Accuracy: {acc:.4f}')" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "chap5", + "language": "python", + "name": "chap5" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.14" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Chapter05/poetry.lock b/Chapter05/poetry.lock index 0e13afb..fd26512 100644 --- a/Chapter05/poetry.lock +++ b/Chapter05/poetry.lock @@ -3202,6 +3202,43 @@ graphgym = ["protobuf (<4.21)", "pytorch-lightning (<2.3.0)", "yacs"] modelhub = ["huggingface_hub"] test = ["onnx", "onnxruntime", "pytest", "pytest-cov"] +[[package]] +name = "torch-scatter" +version = "2.1.2+pt21cpu" +description = "PyTorch Extension Library of Optimized Scatter Operations" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torch_scatter-2.1.2+pt21cpu-cp38-cp38-linux_x86_64.whl", hash = "sha256:2876a541e5428a21fffa8fee97dc3fa833266640e7fb1ec3aab6e8bafa0a2df8"}, +] + +[package.extras] +test = ["pytest", "pytest-cov"] + +[package.source] +type = "url" +url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_scatter-2.1.2%2Bpt21cpu-cp38-cp38-linux_x86_64.whl" + +[[package]] +name = "torch-sparse" +version = "0.6.18+pt21cpu" +description = "PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torch_sparse-0.6.18+pt21cpu-cp38-cp38-linux_x86_64.whl", hash = "sha256:fe2ea180baa399ebb1d695cad1b36e1ffb543e04af30f7880edfa626fbf69e9e"}, +] + +[package.dependencies] +scipy = "*" + +[package.extras] +test = ["pytest", "pytest-cov"] + +[package.source] +type = "url" +url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl" + [[package]] name = "torchmetrics" version = "1.4.3" @@ -3637,4 +3674,4 @@ type = ["pytest-mypy"] [metadata] lock-version = "2.0" python-versions = "~3.8" -content-hash = "efa0179eba359fcaefc59bcf838d3ddb4dc246ee64c0190fea65ca3f732b19ef" +content-hash = "89f2bed3549c14904b7131c0b405e7f7ad775c03b09f33e2364d23ec8d456645" diff --git a/Chapter05/pyproject.toml b/Chapter05/pyproject.toml index 40827a3..6884208 100644 --- a/Chapter05/pyproject.toml +++ b/Chapter05/pyproject.toml @@ -25,6 +25,8 @@ chardet = "==5.2.0" torch_geometric = "^2.5.2" torchvision = "^0.16.0" torchmetrics="^1.3.0" +torch-sparse = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl"} +torch-scatter = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_scatter-2.1.2%2Bpt21cpu-cp38-cp38-linux_x86_64.whl"} # Since 2024.06.27, DGL have stopped providing packages for Windows and MacOS. The latest version of available package is 2.2.1. dgl = {url = "https://data.dgl.ai/wheels/torch-2.1/dgl-2.4.0-cp38-cp38-manylinux1_x86_64.whl"} diff --git a/Chapter05/requirements.txt b/Chapter05/requirements.txt index 104a080..68c0395 100644 --- a/Chapter05/requirements.txt +++ b/Chapter05/requirements.txt @@ -114,6 +114,8 @@ tensorflow==2.7.2 ; python_version >= "3.8" and python_version < "3.9" termcolor==2.4.0 ; python_version >= "3.8" and python_version < "3.9" threadpoolctl==3.5.0 ; python_version >= "3.8" and python_version < "3.9" torch-geometric==2.6.1 ; python_version >= "3.8" and python_version < "3.9" +torch-scatter @ https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_scatter-2.1.2%2Bpt21cpu-cp38-cp38-linux_x86_64.whl ; python_version >= "3.8" and python_version < "3.9" +torch-sparse @ https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl ; python_version >= "3.8" and python_version < "3.9" torch==2.1.2 ; python_version >= "3.8" and python_version < "3.9" torchmetrics==1.4.3 ; python_version >= "3.8" and python_version < "3.9" torchvision==0.16.2 ; python_version >= "3.8" and python_version < "3.9" From e4705c2957a55abdf7d394eda351adcd92fa6106 Mon Sep 17 00:00:00 2001 From: deusebio Date: Sat, 18 Jan 2025 11:08:24 +0100 Subject: [PATCH 24/31] [Issue #26] Enforce probability normalization in LabelPropagation and LabelSpreading (#31) --- Chapter05/02_Shallow_embeddings.ipynb | 11 ++++++++--- 1 file changed, 8 insertions(+), 3 deletions(-) diff --git a/Chapter05/02_Shallow_embeddings.ipynb b/Chapter05/02_Shallow_embeddings.ipynb index f72c486..ea3d0ad 100644 --- a/Chapter05/02_Shallow_embeddings.ipynb +++ b/Chapter05/02_Shallow_embeddings.ipynb @@ -220,9 +220,11 @@ " c_tool = 10\n", " \n", " while it < self.max_iter & c_tool > self.tol:\n", - " Y = A*Y_prev\n", - " #force labeled nodes\n", - " Y[labeled_index] = Y0[labeled_index]\n", + " Y = A * Y_prev\n", + " Y = Y / Y.sum(axis=1) # Normalize rows to sum to 1\n", + " Y[np.isnan(Y)] = 0 # NaN may arise because of all-zeros rows\n", + " \n", + " Y[labeled_index] = Y0[labeled_index] #force labeled nodes\n", " \n", " it +=1\n", " c_tol = np.sum(np.abs(Y-Y_prev))\n", @@ -396,6 +398,9 @@ " while it < self.max_iter & c_tool > self.tol:\n", " Y = self.alpha*(L*Y_prev)+((1-self.alpha)*Y0)\n", "\n", + " Y = Y / Y.sum(axis=1) # Normalize rows to sum to 1\n", + " Y[np.isnan(Y)] = 0 # NaN may arise because of all-zeros rows\n", + "\n", " it +=1\n", " c_tol = np.sum(np.abs(Y-Y_prev))\n", " Y_prev = Y\n", From af94672c363e98de860ce37e509171bacff453d4 Mon Sep 17 00:00:00 2001 From: deusebio Date: Sat, 18 Jan 2025 11:08:43 +0100 Subject: [PATCH 25/31] [MISC] Code Review for Chap8 (#30) --- Chapter08/01_nlp_graph_creation.ipynb | 2491 ++++++++++++------------- 1 file changed, 1240 insertions(+), 1251 deletions(-) diff --git a/Chapter08/01_nlp_graph_creation.ipynb b/Chapter08/01_nlp_graph_creation.ipynb index 6e580d4..c0e3ffa 100644 --- a/Chapter08/01_nlp_graph_creation.ipynb +++ b/Chapter08/01_nlp_graph_creation.ipynb @@ -38,7 +38,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -50,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -67,7 +67,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "[nltk_data] Downloading package reuters to /home/deusebio/nltk_data...\n" + "[nltk_data] Downloading package reuters to /home/deusebio/nltk_data...\n", + "[nltk_data] Package reuters is already up-to-date!\n" ] }, { @@ -288,16 +289,16 @@ "data": { "text/plain": [ "language\n", - "en 9893\n", - "sv 443\n", - "de 364\n", + "en 9900\n", + "sv 429\n", + "de 373\n", "sw 29\n", - "so 24\n", - "nl 8\n", - "pt 7\n", - "vi 7\n", - "da 3\n", - "et 2\n", + "so 23\n", + "nl 9\n", + "pt 8\n", + "vi 5\n", + "et 4\n", + "sl 3\n", "Name: count, dtype: int64" ] }, @@ -427,7 +428,7 @@ "text": [ " % Total % Received % Xferd Average Speed Time Time Time Current\n", " Dload Upload Total Spent Left Speed\n", - "100 916k 100 916k 0 0 3026k 0 --:--:-- --:--:-- --:--:-- 3023k\n" + "100 916k 100 916k 0 0 1364k 0 --:--:-- --:--:-- --:--:-- 1363k\n" ] } ], @@ -577,7 +578,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -586,7 +587,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -595,7 +596,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -604,7 +605,7 @@ "\"THAI TRADE DEFICIT WIDENS IN FIRST QUARTER Thailand's trade deficit widened to 4.5 billion baht in the first quarter of 1987 from 2.1 billion a year ago, the Business Economics Department said. It said Janunary/March imports rose to 65.1 billion baht from 58.7 billion. Thailand's improved business climate this year resulted in a 27 pct increase in imports of raw materials and semi-finished products. The country's oil import bill, however, fell 23 pct in the first quarter due to lower oil prices. The department said first quarter exports expanded to 60.6 billion baht from 56.6 billion. Export growth was smaller than expected due to lower earnings from many key commodities including rice whose earnings declined 18 pct, maize 66 pct, sugar 45 pct, tin 26 pct and canned pineapples seven pct. Products registering high export growth were jewellery up 64 pct, clothing 57 pct and rubber 35 pct. \"" ] }, - "execution_count": 26, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -615,7 +616,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -624,7 +625,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -783,7 +784,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -886,7 +887,7 @@ "test/14833 (INDONESIA, SEES, CPO, PRICE, RISING, SHARPLY,... " ] }, - "execution_count": 29, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -897,7 +898,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ @@ -930,7 +931,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -941,7 +942,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 31, "metadata": {}, "outputs": [], "source": [ @@ -950,7 +951,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ @@ -959,7 +960,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -1077,7 +1078,7 @@ "test/14833 [(oil, (told, False), reporters), (Prices, (ar... " ] }, - "execution_count": 6, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -1088,7 +1089,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 34, "metadata": {}, "outputs": [], "source": [ @@ -1096,12 +1097,34 @@ " {\"id\": _id, \"source\": source.lemma_.lower(), \"target\": target.lemma_.lower(), \"edge\": edge.lemma_.lower()}\n", " for _id, triplets in corpus[\"triplets\"].items()\n", " for (source, (edge, neg), target) in triplets\n", + " if not any([source.is_stop, target.is_stop])\n", + " if (source.pos_ == \"PROPN\" or source.pos_ == \"NOUN\") and (target.pos_== \"PROPN\" or target.pos_== \"NOUN\") \n", "]" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "37729" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(edge_list)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, "metadata": {}, "outputs": [], "source": [ @@ -1110,27 +1133,58 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "source\n", + "company 941\n", + "bank 781\n", + "net 684\n", + "government 422\n", + "agreement 418\n", + "board 398\n", + "plan 374\n", + "inc 333\n", + "group 308\n", + "japan 280\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "edges[\"source\"].value_counts().head(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "edge\n", - "be 5476\n", - "have 2151\n", - "include 1712\n", - "tell 1419\n", - "buy 1177\n", - "sell 1162\n", - "take 976\n", - "make 950\n", - "give 944\n", - "acquire 790\n", + "be 2651\n", + "include 1459\n", + "have 1386\n", + "tell 1118\n", + "buy 715\n", + "take 634\n", + "sell 563\n", + "make 556\n", + "give 522\n", + "exclude 475\n", "Name: count, dtype: int64" ] }, - "execution_count": 9, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -1141,7 +1195,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ @@ -1150,7 +1204,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 40, "metadata": {}, "outputs": [], "source": [ @@ -1160,16 +1214,16 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "7450" + "6112" ] }, - "execution_count": 13, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -1180,7 +1234,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 42, "metadata": {}, "outputs": [], "source": [ @@ -1189,34 +1243,38 @@ " _maxValue=int(np.ceil(np.log10(maxValue if maxValue is not None else serie.max())))\n", " bins = [0] + list(np.logspace(_minValue, _maxValue, nbins)) + [np.inf]\n", " serie.hist(bins=bins)\n", - " plt.xscale(\"log\")" + " plt.xscale(\"log\")\n", + " plt.xlabel(f\"log_10({serie.name})\")\n", + " plt.ylabel(\"Frequency\")" ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 43, "metadata": {}, "outputs": [], "source": [ - "def graphSummary(graph, bins=10):\n", + "def graphSummary(graph, bins=10, plot_edge_weight=False, use_log_y=True):\n", " print(nx.info(graph))\n", - " plt.figure(figsize=(20, 8))\n", - " plt.subplot(1,2,1)\n", - " degrees = pd.Series({k: v for k, v in nx.degree(graph)})\n", - " plt.yscale(\"log\")\n", + " plt.figure(figsize=(14 if plot_edge_weight else 6, 5 if plot_edge_weight else 4))\n", + " if plot_edge_weight:\n", + " plt.subplot(1,2,1)\n", + " degrees = pd.Series({k: v for k, v in nx.degree(graph)}, name=\"degree\")\n", + " if use_log_y:\n", + " plt.yscale(\"log\")\n", " plotDistribution(degrees, bins)\n", - " try:\n", + "\n", + " if plot_edge_weight:\n", " plt.subplot(1,2,2)\n", - " allEdgesWeights = pd.Series({(d[0], d[1]): d[2][\"weight\"] for d in graph.edges(data=True)})\n", + " allEdgesWeights = pd.Series({(d[0], d[1]): d[2][\"weight\"] for d in graph.edges(data=True)}, name=\"edge_weights\")\n", " plotDistribution(allEdgesWeights, bins)\n", - " plt.yscale(\"log\")\n", - " except:\n", - " pass" + " if use_log_y:\n", + " plt.yscale(\"log\")" ] }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 44, "metadata": {}, "outputs": [ { @@ -1225,10 +1283,10 @@ "text": [ "Name: \n", "Type: MultiDiGraph\n", - "Number of nodes: 36\n", - "Number of edges: 52\n", - "Average in degree: 1.4444\n", - "Average out degree: 1.4444\n" + "Number of nodes: 6112\n", + "Number of edges: 37729\n", + "Average in degree: 6.1729\n", + "Average out degree: 6.1729\n" ] } ], @@ -1238,7 +1296,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 45, "metadata": {}, "outputs": [ { @@ -1247,10 +1305,10 @@ "text": [ "Name: \n", "Type: MultiDiGraph\n", - "Number of nodes: 36\n", - "Number of edges: 52\n", - "Average in degree: 1.4444\n", - "Average out degree: 1.4444\n" + "Number of nodes: 6112\n", + "Number of edges: 37729\n", + "Average in degree: 6.1729\n", + "Average out degree: 6.1729\n" ] }, { @@ -1263,9 +1321,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlAAAAKdCAYAAABcTSStAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdbWyV9d3A8V/Lw0ES8WGMIljTPWRzjRMYYtM5E00qjTMsLlnCdBHSTBZdSdRmmXQK3OzB+mIS3hxDhhK2ZItsZjNLICg2I2axGxXGsqU+xPkA0bVAjFTrVljb+8Vue68/KsLk9ND280muF+d//levXzWeePhynVMxNDQ0FAAAAAAAAAyrLPcAAAAAAAAA5xoBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAABK5Jlnnolly5bFvHnzoqKiIp544okPPWfPnj3xhS98IQqFQnz605+Obdu2lX5QAADgJAIKAABAifT19cWCBQuiWCye1v5XX301brrpprj++uvjwIEDcffdd8ftt98eTz75ZIknBQAAsoqhoaGhcg8BAAAw0VVUVMRvfvObuPnmmz9wz7333hs7duyIv/71r8NrX//61+Ptt9+OXbt2jcWYAADA/5la7gHO1ODgYLz55ptx/vnnR0VFRbnHAQCAkhsaGop33nkn5s2bF5WVbiKfyDo6OqKhoWHEWmNjY9x9990feE5/f3/09/cPPx4cHIy33norPvaxj3nPBADApFCq90zjLqC8+eabUV1dXe4xAABgzB06dCguvfTSco9BCXV3d0dVVdWItaqqqujt7Y1//OMfcd555510TltbW2zYsGGsRgQAgHPW2X7PNO4Cyvnnnx8R//4HMWvWrDG//okTJ+Kpp56KpUuXxrRp08b8+gDl4vUPmMzK/RrY29sb1dXVw/8vDP+ptbU1Wlpahh8fO3YsLrvssrK9ZwIAgLFWqvdM4y6gvH8L+qxZs8oWUGbOnBmzZs3yB4jApOL1D5jMzpXXQB/HNPHNnTs3enp6Rqz19PTErFmzRr37JCKiUChEoVA4ab1c75kAAKBczvZ7Jh+gDAAAcI6or6+P9vb2EWu7d++O+vr6Mk0EAACTl4ACAABQIu+++24cOHAgDhw4EBERr776ahw4cCAOHjwYEf/++K0VK1YM77/jjjvilVdeie9+97vxwgsvxMMPPxy//OUv45577inL/AAAMJkJKAAAACXy3HPPxaJFi2LRokUREdHS0hKLFi2KdevWRUTE3//+9+GYEhHxiU98Inbs2BG7d++OBQsWxEMPPRSPPPJINDY2lmV+AACYzMbdd6AAAACMF9ddd10MDQ194PPbtm0b9Zw//elPJZwKAAA4He5AAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIppZ7gPHqiv95MvoHKso9xjnntQdvKvcIAAAAAADwkbkDBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACApS0D56le/GhdddFF87WtfK8flAQAAAAAATqksAeWuu+6Kn/3sZ+W4NAAAAAAAwIcqS0C57rrr4vzzzy/HpQEAAAAAAD7UGQeUZ555JpYtWxbz5s2LioqKeOKJJ07aUywWo6amJmbMmBF1dXWxd+/eszIsAAAAAADAWDjjgNLX1xcLFiyIYrE46vPbt2+PlpaWWL9+fezfvz8WLFgQjY2Ncfjw4Y88LAAAAAAAwFiYeqYn3HjjjXHjjTd+4PMbN26MVatWRVNTU0REbN68OXbs2BFbt26NNWvWnPGA/f390d/fP/y4t7c3IiJOnDgRJ06cOOOf91G9f81C5dCYX3s8KMe/E2BsvP/ft//Ogcmo3K+BXnsBAADG3hkHlFM5fvx47Nu3L1pbW4fXKisro6GhITo6Ov6rn9nW1hYbNmw4af2pp56KmTNn/tezflQ/uGqwbNc+l+3cubPcIwAltnv37nKPAFA25XoNfO+998pyXQAAgMnsrAaUo0ePxsDAQFRVVY1Yr6qqihdeeGH4cUNDQ/z5z3+Ovr6+uPTSS+NXv/pV1NfXj/ozW1tbo6WlZfhxb29vVFdXx9KlS2PWrFlnc/zTcuLEidi9e3esfa4y+gcrxvz657q//k9juUcASuT9178bbrghpk2bVu5xAMZUuV8D378LGwAAgLFzVgPK6Xr66adPe2+hUIhCoXDS+rRp08r6B3j9gxXRPyCgZP5QFSa+cr/+ApRTuV4Dve4CAACMvTP+EvlTmT17dkyZMiV6enpGrPf09MTcuXPP5qUAAAAAAABK5qwGlOnTp8fixYujvb19eG1wcDDa29s/8CO6AAAAAAAAzjVn/BFe7777brz88svDj1999dU4cOBAXHzxxXHZZZdFS0tLrFy5Mq666qq4+uqrY9OmTdHX1xdNTU1ndXAAAAAAAIBSOeOA8txzz8X1118//Pj9L3hfuXJlbNu2LZYvXx5HjhyJdevWRXd3dyxcuDB27dp10hfLAwAAAAAAnKvO+CO8rrvuuhgaGjrp2LZt2/Ce1atXx+uvvx79/f3xxz/+Merq6s7mzAAAAONKsViMmpqamDFjRtTV1cXevXtPuX/Tpk3x2c9+Ns4777yorq6Oe+65J/75z3+O0bQAAEDEWf4OFAAAAEbavn17tLS0xPr162P//v2xYMGCaGxsjMOHD4+6/xe/+EWsWbMm1q9fH88//3w8+uijsX379vje9743xpMDAMDkJqAAAACU0MaNG2PVqlXR1NQUtbW1sXnz5pg5c2Zs3bp11P3PPvtsXHPNNXHrrbdGTU1NLF26NG655ZYPvWsFAAA4uwQUAACAEjl+/Hjs27cvGhoahtcqKyujoaEhOjo6Rj3ni1/8Yuzbt284mLzyyiuxc+fO+PKXvzzq/v7+/ujt7R1xAAAAH90Zf4k8AAAAp+fo0aMxMDAQVVVVI9arqqrihRdeGPWcW2+9NY4ePRpf+tKXYmhoKP71r3/FHXfc8YEf4dXW1hYbNmw467MDAMBk5w4UAACAc8iePXvigQceiIcffjj2798fv/71r2PHjh3xgx/8YNT9ra2tcezYseHj0KFDYzwxAABMTO5AAQAAKJHZs2fHlClToqenZ8R6T09PzJ07d9Rz1q5dG7fddlvcfvvtERHx+c9/Pvr6+uJb3/pW3HfffVFZOfLvwRUKhSgUCqX5BQAAYBJzBwoAAECJTJ8+PRYvXhzt7e3Da4ODg9He3h719fWjnvPee++dFEmmTJkSERFDQ0OlGxYAABjBHSgAAAAl1NLSEitXroyrrroqrr766ti0aVP09fVFU1NTRESsWLEi5s+fH21tbRERsWzZsti4cWMsWrQo6urq4uWXX461a9fGsmXLhkMKAABQegIKAABACS1fvjyOHDkS69ati+7u7li4cGHs2rVr+IvlDx48OOKOk/vvvz8qKiri/vvvjzfeeCM+/vGPx7Jly+JHP/pRuX4FAACYlAQUAACAElu9enWsXr161Of27Nkz4vHUqVNj/fr1sX79+jGYDAAA+CC+AwUAAAAAACARUAAAAAAAABIBBQAAAAAAIBk3AaVYLEZtbW0sWbKk3KMAAAAAAAAT3LgJKM3NzdHV1RWdnZ3lHgUAAAAAAJjgxk1AAQAAAAAAGCsCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkU8s9wOkqFotRLBZjYGCg3KNwCjVrdpR7hHPWaw/eVO4RAAAAAAA4TePmDpTm5ubo6uqKzs7Oco8CAAAAAABMcOMmoAAAAAAAAIwVAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAACScRNQisVi1NbWxpIlS8o9CgAAAAAAMMGNm4DS3NwcXV1d0dnZWe5RAAAAAACACW7cBBQAAAAAAICxIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJFPLPcDpKhaLUSwWY2BgoNyjwH+lZs2Oco/AOPXagzeVewQAAAAAmHTGzR0ozc3N0dXVFZ2dneUeBQAAAAAAmODGTUABAAAAAAAYKwIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAQIkVi8WoqamJGTNmRF1dXezdu/eU+99+++1obm6OSy65JAqFQnzmM5+JnTt3jtG0AABARMTUcg8AAAAwkW3fvj1aWlpi8+bNUVdXF5s2bYrGxsZ48cUXY86cOSftP378eNxwww0xZ86cePzxx2P+/Pnx+uuvx4UXXliG6QEAYPISUAAAAEpo48aNsWrVqmhqaoqIiM2bN8eOHTti69atsWbNmpP2b926Nd5666149tlnY9q0aRERUVNTM5YjAwAA4SO8AAAASub48eOxb9++aGhoGF6rrKyMhoaG6OjoGPWc3/72t1FfXx/Nzc1RVVUVV1xxRTzwwAMxMDAw6v7+/v7o7e0dcQAAAB+dgAIAAFAiR48ejYGBgaiqqhqxXlVVFd3d3aOe88orr8Tjjz8eAwMDsXPnzli7dm089NBD8cMf/nDU/W1tbXHBBRcMH9XV1Wf99wAAgMlIQAEAADiHDA4Oxpw5c+InP/lJLF68OJYvXx733XdfbN68edT9ra2tcezYseHj0KFDYzwxAABMTL4DBQAAoERmz54dU6ZMiZ6enhHrPT09MXfu3FHPueSSS2LatGkxZcqU4bXPfe5z0d3dHcePH4/p06eP2F8oFKJQKJz94QEAYJJzBwoAAECJTJ8+PRYvXhzt7e3Da4ODg9He3h719fWjnnPNNdfEyy+/HIODg8NrL730UlxyySUnxRMAAKB0BBQAAIASamlpiS1btsRPf/rTeP755+POO++Mvr6+aGpqioiIFStWRGtr6/D+O++8M956662466674qWXXoodO3bEAw88EM3NzeX6FQAAYFLyEV4AAAAltHz58jhy5EisW7cuuru7Y+HChbFr167hL5Y/ePBgVFb+/99tq66ujieffDLuueeeuPLKK2P+/Plx1113xb333luuXwEAACYlAQUAAKDEVq9eHatXrx71uT179py0Vl9fH3/4wx9KPBUAAHAqPsILAAAAAAAgEVAAAAAAAACScRNQisVi1NbWxpIlS8o9CgAAAAAAMMGNm4DS3NwcXV1d0dnZWe5RAAAAAACACW7cBBQAAAAAAICxIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAk4yagFIvFqK2tjSVLlpR7FAAAAAAAYIIbNwGlubk5urq6orOzs9yjAAAAAAAAE9y4CSgAAAAAAABjRUABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBEQAEAAAAAAEgEFAAAAAAAgERAAQAAAAAASAQUAAAAAACAREABAAAAAABIBBQAAAAAAIBk3ASUYrEYtbW1sWTJknKPAgAAAAAATHDjJqA0NzdHV1dXdHZ2lnsUAAAAAABgghs3AQUAAAAAAGCsCCgAAAAAAACJgAIAAAAAAJAIKAAAAAAAAImAAgAAUGLFYjFqampixowZUVdXF3v37j2t8x577LGoqKiIm2++ucQTAgAAmYACAABQQtu3b4+WlpZYv3597N+/PxYsWBCNjY1x+PDhU5732muvxXe+85249tprx2hSAADgPwkoAAAAJbRx48ZYtWpVNDU1RW1tbWzevDlmzpwZW7du/cBzBgYG4hvf+EZs2LAhPvnJT57y5/f390dvb++IAwAA+OgEFAAAgBI5fvx47Nu3LxoaGobXKisro6GhITo6Oj7wvO9///sxZ86c+OY3v/mh12hra4sLLrhg+Kiurj4rswMAwGQnoAAAAJTI0aNHY2BgIKqqqkasV1VVRXd396jn/P73v49HH300tmzZclrXaG1tjWPHjg0fhw4d+shzAwAAEVPLPQAAAAD/9s4778Rtt90WW7ZsidmzZ5/WOYVCIQqFQoknAwCAyUdAAQAAKJHZs2fHlClToqenZ8R6T09PzJ0796T9f/vb3+K1116LZcuWDa8NDg5GRMTUqVPjxRdfjE996lOlHRoAAIgIH+EFAABQMtOnT4/FixdHe3v78Nrg4GC0t7dHfX39Sfsvv/zy+Mtf/hIHDhwYPr7yla/E9ddfHwcOHPD9JgAAMIbcgQIAAFBCLS0tsXLlyrjqqqvi6quvjk2bNkVfX180NTVFRMSKFSti/vz50dbWFjNmzIgrrrhixPkXXnhhRMRJ6wAAQGkJKAAAACW0fPnyOHLkSKxbty66u7tj4cKFsWvXruEvlj948GBUVvpwAAAAONcIKAAAACW2evXqWL169ajP7dmz55Tnbtu27ewPBAAAfCh/zQkAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACARUAAAAAAAABIBBQAAAAAAIBFQAAAAAAAAEgEFAAAAAAAgEVAAAAAAAAASAQUAAAAAACAZNwGlWCxGbW1tLFmypNyjAAAAAAAAE9y4CSjNzc3R1dUVnZ2d5R4FAAAAAACY4MZNQAEAAAAAABgrAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAAAAAEAioAAAAAAAACQCCgAAAAAAQCKgAAAAAAAAJAIKAAAAAABAIqAAAAAAAAAkAgoAAECJFYvFqKmpiRkzZkRdXV3s3bv3A/du2bIlrr322rjooovioosuioaGhlPuBwAASkNAAQAAKKHt27dHS0tLrF+/Pvbv3x8LFiyIxsbGOHz48Kj79+zZE7fcckv87ne/i46Ojqiuro6lS5fGG2+8McaTAwDA5CagAAAAlNDGjRtj1apV0dTUFLW1tbF58+aYOXNmbN26ddT9P//5z+Pb3/52LFy4MC6//PJ45JFHYnBwMNrb20fd39/fH729vSMOAADgoxNQAAAASuT48eOxb9++aGhoGF6rrKyMhoaG6OjoOK2f8d5778WJEyfi4osvHvX5tra2uOCCC4aP6urqszI7AABMdgIKAABAiRw9ejQGBgaiqqpqxHpVVVV0d3ef1s+49957Y968eSMizH9qbW2NY8eODR+HDh36yHMDAAARU8s9AAAAAKN78MEH47HHHos9e/bEjBkzRjt1B0EAABfrSURBVN1TKBSiUCiM8WQAADDxCSgAAAAlMnv27JgyZUr09PSMWO/p6Ym5c+ee8twf//jH8eCDD8bTTz8dV155ZSnH/N/27j22yvr+A/inLZfqGMhlFlrrWJxDkdssltXLTzAoYwZSExPmEmF4WbaAc3abgspFmYAXCC4wmahxW0ZAyGSLIIpM4hxkCMgyMtExJZhqq85gsWwttv394ejv1wdQTmnP6eX1SvjjPOd5nu/n5Hz65bTv83wfAADgOCzhBQAA0Eq6desWRUVFTW4Af/SG8CUlJSc87oEHHoh58+bFxo0bY+TIkekoFQAASHAFCgAAQCsqKyuLKVOmxMiRI6O4uDiWLFkS1dXVMXXq1IiImDx5chQUFMSCBQsiIuL++++P2bNnx8qVK2PgwIGN90rp0aNH9OjRI2OvAwAAOhsBCgAAQCuaNGlSvP/++zF79uyoqKiIESNGxMaNGxtvLH/gwIHIzv6/xQEeeeSRqK2tjWuvvbbJeebMmRNz585NZ+kAANCpCVAAAABa2fTp02P69OnHfW7Lli1NHu/fv7/1CwIAAD6Xe6AAAAAAAAAkCFAAAAAAAAASBCgAAAAAAAAJAhQAAAAAAIAEAQoAAAAAAECCAAUAAAAAACBBgAIAAAAAAJAgQAEAAAAAAEgQoAAAAAAAACQIUAAAAAAAABIEKAAAAAAAAAkCFAAAAAAAgAQBCgAAAAAAQIIABQAAAAAAIEGAAgAAAAAAkCBAAQAAAAAASBCgAAAAAAAAJAhQAAAAAAAAEgQoAAAAAAAACQIUAAAAAACABAEKAAAAAABAggAFAAAAAAAgQYACAAAAAACQIEABAAAAAABIEKAAAAAAAAAkCFAAAAAAAAASBCgAAAAAAAAJAhQAAAAAAIAEAQoAAAAAAECCAAUAAAAAACBBgAIAAAAAAJAgQAEAAAAAAEgQoAAAAAAAACQIUAAAAAAAABIEKAAAAAAAAAkCFAAAAAAAgAQBCgAAAAAAQIIABQAAAAAAIEGAAgAAAAAAkCBAAQAAAAAASBCgAAAAAAAAJAhQAAAAAAAAEgQoAAAAAAAACQIUAAAAAACABAEKAAAAAABAggAFAAAAAAAgQYACAAAAAACQIEABAAAAAABIEKAAAAAAAAAkCFAAAAAAAAASBCgAAAAAAAAJAhQAAAAAAIAEAQoAAAAAAECCAAUAAAAAACBBgAIAAAAAAJAgQAEAAAAAAEgQoAAAAAAAACQIUAAAAAAAABIEKAAAAAAAAAkCFAAAAAAAgAQBCgAAAAAAQIIABQAAAAAAIEGAAgAAAAAAkCBAAQAAAAAASBCgAAAAAAAAJAhQAAAAAAAAEgQoAAAAAAAACQIUAAAAAACABAEKAAAAAABAggAFAAAAAAAgQYACAAAAAACQIEABAAAAAABIEKAAAAAAAAAkCFAAAAAAAAASBCgAAAAAAAAJAhQAAAAAAIAEAQoAAAAAAECCAAUAAAAAACBBgAIAAAAAAJAgQAEAAAAAAEgQoAAAAAAAACQIUAAAAAAAABIyEqA888wzMWjQoDj33HPjsccey0QJAAAAAAAAJ9Ql3QN+8sknUVZWFi+++GL06tUrioqK4pprrom+ffumuxQAAAAAAIDjSvsVKNu3b48LLrggCgoKokePHjF+/Ph4/vnn010GAAAAAADACaUcoLz00ksxYcKEyM/Pj6ysrFi3bt0x+yxbtiwGDhwYubm5MWrUqNi+fXvjc++8804UFBQ0Pi4oKIjy8vJmlg8AAAAAANDyUg5QqqurY/jw4bFs2bLjPr969eooKyuLOXPmxK5du2L48OExbty4eO+99065WAAAAAAAgHRI+R4o48ePj/Hjx5/w+cWLF8fNN98cU6dOjYiI5cuXx/r16+OJJ56IGTNmRH5+fpMrTsrLy6O4uPiE56upqYmamprGx1VVVRERceTIkThy5Eiq5Z+yo2N2z25I+9hA55SJue54jtbRVuoBSKdMz4HmXgAAgPRr0ZvI19bWxs6dO2PmzJmN27Kzs2Ps2LGxbdu2iIgoLi6OPXv2RHl5efTq1SueffbZmDVr1gnPuWDBgrjnnnuO2f7888/H6aef3pLlp2TeyPqMjQ10Lhs2bMh0CU1s2rQp0yUAZEym5sDDhw9nZFwAAIDOrEUDlA8++CDq6uoiLy+vyfa8vLzYu3fvpwN26RKLFi2KMWPGRH19fdx+++3Rt2/fE55z5syZUVZW1vi4qqoqCgsL46qrroqePXu2ZPkn5ciRI7Fp06aYtSM7auqz0j4+0PnsmTsu0yVExP/Nf1deeWV07do10+VERMSQuc9luoQ2q630DXQUmZ4Dj16FDQAAQPq0aIBysiZOnBgTJ048qX27d+8e3bt3P2Z7165dM/oHvJr6rKipE6AAra+thBVHZXr+/f/MwyfWVt4j6GgyNQf6mQYAAEi/lG8i/1n69esXOTk5UVlZ2WR7ZWVl9O/fvyWHAgAAAAAAaDUtGqB069YtioqKYvPmzY3b6uvrY/PmzVFSUtKSQwEAAAAAALSalJfw+vjjj2Pfvn2Nj996663YvXt39OnTJ84+++woKyuLKVOmxMiRI6O4uDiWLFkS1dXVMXXq1BYtHAAAAAAAoLWkHKDs2LEjxowZ0/j46A3ep0yZEk8++WRMmjQp3n///Zg9e3ZUVFTEiBEjYuPGjcfcWB4AAAAAAKCtSjlAGT16dDQ0NHzmPtOnT4/p06c3uygAAAAAAIBMatF7oAAAAAAAAHQEAhQAAAAAAIAEAQoAAAAAAECCAAUAAAAAACBBgAIAAAAAAJAgQAEAAAAAAEgQoAAAAAAAACQIUAAAAAAAABIEKAAAAAAAAAkCFAAAAAAAgAQBCgAAAAAAQIIABQAAAAAAIEGAAgAAAAAAkNBuApRly5bF4MGD46KLLsp0KQAAAAAAQAfXbgKUadOmxd///vd45ZVXMl0KAAAAAADQwbWbAAUAAAAAACBdBCgAAACtbNmyZTFw4MDIzc2NUaNGxfbt2z9z/zVr1sR5550Xubm5MXTo0NiwYUOaKgUAAI4SoAAAALSi1atXR1lZWcyZMyd27doVw4cPj3HjxsV777133P23bt0a1113Xdx4443x6quvRmlpaZSWlsaePXvSXDkAAHRuAhQAAIBWtHjx4rj55ptj6tSpMXjw4Fi+fHmcfvrp8cQTTxx3/4cffji++c1vxk9/+tM4//zzY968eXHhhRfG0qVL01w5AAB0bl0yXUCqGhoaIiKiqqoqI+MfOXIkDh8+HHU1OVFfl5WRGoDOJVPzXdLR+a+qqiq6du2a6XIiIqK+5nCmS2iz2krfQEeR6Tnw6M/00c/CtB+1tbWxc+fOmDlzZuO27OzsGDt2bGzbtu24x2zbti3KysqabBs3blysW7fuuPvX1NRETU1N4+OPPvooIvxfAABA59FavzO1uwDl0KFDERFRWFiY4UoA0qPXkkxXQHukb6BjOnToUPTq1SvTZZCCDz74IOrq6iIvL6/J9ry8vNi7d+9xj6moqDju/hUVFcfdf8GCBXHPPfccs93vTAAAdDb/+te/WvR3pnYXoOTn58fbb78dV1xxRezYsaPZ57nooovilVdeSfm4qqqqKCwsjLfffjt69uzZ7PFpvua+d+1JW3+NmawvHWO31hgtdd6WOE9zzmH+axva+vxwqtr66zP/Zf68p3qu9voZsKGhIQ4dOhT5+flpH5u2b+bMmU2uWDl48GB8+ctfjgMHDgjcOCmZnuNof/QMqdIzpErPkKqPPvoozj777OjTp0+LnrfdBSjZ2dlx1llnRZcuXU7phycnJ+eUju/Zs6cf3gw51feuPWjrrzGT9aVj7NYao6XO2xLnOZVzmP8yq63PD6eqrb8+81/mz3uq52rPnwH9Ibx96tevX+Tk5ERlZWWT7ZWVldG/f//jHtO/f/+U9u/evXt07979mO29evVq03MqbY/PeaRKz5AqPUOq9Aypys5u2du+t9ubyE+bNi2jx5M5neG9a+uvMZP1pWPs1hqjpc7bEudp6z3GiXX0966tvz7zX+bP6zMg7U23bt2iqKgoNm/e3Litvr4+Nm/eHCUlJcc9pqSkpMn+ERGbNm064f4AAEDryGpwJ8qUVFVVRa9eveKjjz6SfgKdivkP6MzMgZyK1atXx5QpU+KXv/xlFBcXx5IlS+Kpp56KvXv3Rl5eXkyePDkKCgpiwYIFERGxdevWuPzyy2PhwoVx9dVXx6pVq2L+/Pmxa9euGDJkyOeOp19JlZ4hVXqGVOkZUqVnSFVr9UzO3Llz57bY2TqJnJycGD16dHTp0u5WQAM4JeY/oDMzB9JcQ4YMiTPOOCPuu+++eOihhyIi4re//W0MGjQoIiIefvjh6NKlS5SWlkbEpzd/P//88+PBBx+MhQsXRmVlZTz++ONxySWXnPSY+pVU6RlSpWdIlZ4hVXqGVLVGz7gCBQAAAAAAIKHd3gMFAAAAAACgtQhQAAAAAAAAEgQoAAAAAAAACQIUAAAAAACABAEKAABAO7Ns2bIYOHBg5ObmxqhRo2L79u2fuf+aNWvivPPOi9zc3Bg6dGhs2LAhTZXSVqTSMytWrIjLLrssevfuHb17946xY8d+bo/R8aQ6zxy1atWqyMrKitLS0laukLYm1Z45ePBgTJs2LQYMGBDdu3ePr33ta/5/6mRS7ZklS5bEoEGD4rTTTovCwsK47bbb4j//+U+aqiXTXnrppZgwYULk5+dHVlZWrFu37nOP2bJlS1x44YXRvXv3+OpXvxpPPvlkyuMKUFrQM888E4MGDYpzzz03HnvssUyXA5BW11xzTfTu3TuuvfbaTJcCkDZvv/12jB49OgYPHhzDhg2LNWvWZLokOoHVq1dHWVlZzJkzJ3bt2hXDhw+PcePGxXvvvXfc/bdu3RrXXXdd3HjjjfHqq69GaWlplJaWxp49e9JcOZmSas9s2bIlrrvuunjxxRdj27ZtUVhYGFdddVWUl5enuXIyJdWeOWr//v3xk5/8JC677LI0VUpbkWrP1NbWxpVXXhn79++PtWvXxuuvvx4rVqyIgoKCNFdOpqTaMytXrowZM2bEnDlz4rXXXovHH388Vq9eHXfeeWeaKydTqqurY/jw4bFs2bKT2v+tt96Kq6++OsaMGRO7d++OH/3oR3HTTTfFc889l9K4WQ0NDQ3NKZimPvnkkxg8eHC8+OKL0atXrygqKoqtW7dG3759M10aQFps2bIlDh06FL/61a9i7dq1mS4HIC3efffdqKysjBEjRkRFRUUUFRXFG2+8EV/4whcyXRod2KhRo+Kiiy6KpUuXRkREfX19FBYWxi233BIzZsw4Zv9JkyZFdXV1PPPMM43bvvGNb8SIESNi+fLlaaubzEm1Z5Lq6uqid+/esXTp0pg8eXJrl0sb0Jyeqauri//5n/+JG264If70pz/FwYMHT+rbwXQMqfbM8uXL48EHH4y9e/dG165d010ubUCqPTN9+vR47bXXYvPmzY3bfvzjH8df/vKXePnll9NWN21DVlZWPP300595teMdd9wR69evb/KloW9/+9tx8ODB2Lhx40mP5QqUFrJ9+/a44IILoqCgIHr06BHjx4+P559/PtNlAaTN6NGj44tf/GKmywBIqwEDBsSIESMiIqJ///7Rr1+/+PDDDzNcFR1ZbW1t7Ny5M8aOHdu4LTs7O8aOHRvbtm077jHbtm1rsn9ExLhx4064Px1Lc3om6fDhw3HkyJHo06dPa5VJG9Lcnrn33nvjzDPPjBtvvDEdZdKGNKdn/vCHP0RJSUlMmzYt8vLyYsiQITF//vyoq6tLV9lkUHN65uKLL46dO3c2LvP15ptvxoYNG+Jb3/pWWmqm/Wmpz8AClP86mTXUPmtdvnfeeafJZYYFBQUubwbajVOdAwHaq5ac/3bu3Bl1dXVRWFjY2mXTiX3wwQdRV1cXeXl5Tbbn5eVFRUXFcY+pqKhIaX86lub0TNIdd9wR+fn5x/wRgo6pOT3z8ssvx+OPPx4rVqxIR4m0Mc3pmTfffDPWrl0bdXV1sWHDhpg1a1YsWrQofvazn6WjZDKsOT3zne98J+6999649NJLo2vXrnHOOefE6NGjLeHFCZ3oM3BVVVX8+9//PunzCFD+6/PWUGvu+p8A7YE5EOisWmr++/DDD2Py5Mnx6KOPpqNsgLRZuHBhrFq1Kp5++unIzc3NdDm0QYcOHYrrr78+VqxYEf369ct0ObQT9fX1ceaZZ8ajjz4aRUVFMWnSpLjrrrssLckJbdmyJebPnx+/+MUvYteuXfG73/0u1q9fH/Pmzct0aXRwXTJdQFsxfvz4GD9+/AmfX7x4cdx8880xderUiPh0rcb169fHE088ETNmzIj8/PwmV5yUl5dHcXFxq9cN0BJOdQ4EaK9aYv6rqamJ0tLSmDFjRlx88cVpqZvOq1+/fpGTkxOVlZVNtldWVkb//v2Pe0z//v1T2p+OpTk9c9RDDz0UCxcujBdeeCGGDRvWmmXShqTaM//85z9j//79MWHChMZt9fX1ERHRpUuXeP311+Occ85p3aLJqObMMwMGDIiuXbtGTk5O47bzzz8/Kioqora2Nrp169aqNZNZzemZWbNmxfXXXx833XRTREQMHTo0qqur43vf+17cddddkZ3tOgGaOtFn4J49e8Zpp5120ufRWSfhZNblKy4ujj179kR5eXl8/PHH8eyzz8a4ceMyVTJAi2mJdbMB2qOTmf8aGhriu9/9blxxxRVx/fXXZ6pUOpFu3bpFUVFRkxuo1tfXx+bNm6OkpOS4x5SUlDTZPyJi06ZNJ9yfjqU5PRMR8cADD8S8efNi48aNMXLkyHSUShuRas+cd9558be//S12797d+G/ixIkxZsyY2L17t6UtO4HmzDOXXHJJ7Nu3rzFsi4h44403YsCAAcKTTqA5PXP48OFjQpKjAVxDQ0PrFUu71VKfgV2BchI+a12+vXv3RsSn36pYtGhRjBkzJurr6+P222+Pvn37ZqJcgBZ1MnNgRMTYsWPjr3/9a1RXV8dZZ50Va9as8YcZoF07mfnvz3/+c6xevTqGDRvWeP+U3/zmNzF06NC010vnUVZWFlOmTImRI0dGcXFxLFmyJKqrqxuvlJo8eXIUFBTEggULIiLi1ltvjcsvvzwWLVoUV199daxatSp27NhhyblOJNWeuf/++2P27NmxcuXKGDhwYON69D169IgePXpk7HWQPqn0TG5ubgwZMqTJ8WeccUZExDHb6bhSnWd+8IMfxNKlS+PWW2+NW265Jf7xj3/E/Pnz44c//GEmXwZplGrPTJgwIRYvXhxf//rXY9SoUbFv376YNWtWTJgwocmVTHRcH3/8cezbt6/x8VtvvRW7d++OPn36xNlnnx0zZ86M8vLy+PWvfx0REd///vdj6dKlcfvtt8cNN9wQf/zjH+Opp56K9evXpzSuAKUFTZw4MSZOnJjpMgAy4oUXXsh0CQBpd+mllzb55iSkw6RJk+L999+P2bNnR0VFRYwYMSI2btzYGPYdOHCgyTc0L7744li5cmXcfffdceedd8a5554b69at84fNTiTVnnnkkUeitrY2rr322ibnmTNnTsydOzedpZMhqfYMpNozhYWF8dxzz8Vtt90Ww4YNi4KCgrj11lvjjjvuyNRLIM1S7Zm77747srKy4u67747y8vL40pe+FBMmTIj77rsvUy+BNNuxY0eMGTOm8XFZWVlEREyZMiWefPLJePfdd+PAgQONz3/lK1+J9evXx2233RYPP/xwnHXWWfHYY4+lvGpUVoNrnI6RlZUVTz/9dJSWlkbEp8s3nH766bF27drGbRGfvjkHDx6M3//+95kqFaDFmQOBzsr8BwAAwP/n6wInoblrxgJ0BOZAoLMy/wEAAHRulvD6r89bQ+3z1uUDaM/MgUBnZf4DAADgRCzh9V9btmxpsobaUUfXUIuIWLp0aTz44ION6/L9/Oc/j1GjRqW5UoCWZw4EOivzHwAAACciQAEAAAAAAEhwDxQAAAAAAIAEAQoAAAAAAECCAAUAAAAAACBBgAIAAAAAAJAgQAEAAAAAAEgQoAAAAAAAACQIUAAAAAAAABIEKAAAAAAAAAkCFAAAAAAAgAQBCgAAAAAAQIIABQAAAAAAIEGAAgAAAAAAkPC/D5bOhwNx4ZoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhsAAAF4CAYAAAD9rzvUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3BUZZ7/8U/nnmDCLZIQCGRUiIZLsgTCorgTFAjBQoG1hhUdAksx42xgsxvRgnKHy+KIo5CCnekZBOXmiiKugCsDAhksEBkBIbAMN5E7hAAihISlCZ3n94eb/hmTQNLp051Ov19VVM259NPf7u905+Pp55xjM8YYAQAAWCTI1wUAAIDmjbABAAAsRdgAAACWImwAAABLETYAAIClCBsAAMBShA0AAGApwgYAALBUiK8L8LXKykqdP39e0dHRstlsvi4HAAC/YYzR9evXlZCQoKCguo9fBHzYOH/+vBITE31dBgAAfuvMmTPq2LFjndsDPmxER0dL+v6NiomJ8ciYFRUV2rhxowYPHqzQ0FCPjAnPokf+gT75B/rU9FnVo9LSUiUmJrr+ltYl4MNG1U8nMTExHg0bUVFRiomJ4YPXRNEj/0Cf/AN9avqs7tHdpiEwQRQAAFgqYMOG3W5XSkqK+vTp4+tSAABo1gI2bOTm5urgwYPatWuXr0sBAKBZC9iwAQAAvIOwAQAALEXYAAAAliJsAAAASxE2AACApQI2bHDqKwAA3hGwYYNTXwEA8I6ADRsAAMA7Av7eKFbqPuNTOZz+d9v6k6894esSAADNCEc2AACApQgbAADAUoQNAABgKcIGAACwFGEDAABYirABAAAsFbBhgyuIAgDgHQEbNriCKAAA3hGwYQMAAHgHYQMAAFiKsAEAACxF2AAAAJYibAAAAEsRNgAAgKUIGwAAwFKEDQAAYCnCBgAAsBRhAwAAWIqwAQAALEXYAAAAlgrYsMFdXwEA8I6ADRvc9RUAAO8I2LABAAC8g7ABAAAsRdgAAACWImwAAABLETYAAIClCBsAAMBShA0AAGApwgYAALAUYQMAAFiKsAEAACxF2AAAAJYibAAAAEsRNgAAgKVCfF0Amp6kKet8XYLbTr72hK9LAAD8CEc2AACApfw+bFy9elW9e/dWWlqaunfvrkWLFvm6JAAA8AN+/zNKdHS0tm7dqqioKJWXl6t79+4aOXKk2rZt6+vSAACAmsGRjeDgYEVFRUmSHA6HjDEyxvi4KgAAUMXnYWPr1q0aNmyYEhISZLPZtGbNmhr72O12JSUlKSIiQn379tXOnTurbb969apSU1PVsWNHvfjii4qNjfVW+QAA4C58HjbKy8uVmpoqu91e6/aVK1cqPz9f06dP1549e5SamqqsrCxdvHjRtU+rVq20b98+nThxQitWrFBJSYm3ygcAAHfh8zkb2dnZys7OrnN7QUGBJkyYoHHjxkmSFixYoHXr1mnx4sWaMmVKtX3j4uKUmpqqbdu26emnn651PIfDIYfD4VouLS2VJFVUVKiioqKxL8c1liSFB/FzjrfVt4dV+3mq57AGffIP9Knps6pH9R3PZprQBAebzabVq1dr+PDhkqRbt24pKipKH374oWudJOXk5Ojq1atau3atSkpKFBUVpejoaF27dk2PPPKI3nvvPfXo0aPW55gxY4ZmzpxZY/2KFStccz8AAMDd3bhxQ6NHj9a1a9cUExNT534+P7JxJ5cvX5bT6VRcXFy19XFxcTp8+LAk6dSpU/rFL37hmhg6adKkOoOGJE2dOlX5+fmu5dLSUiUmJmrw4MF3fKMaoqKiQps2bdKvdwfJUWnzyJionwMzsuq1X1WPBg0apNDQUIurgrvok3+gT02fVT2q+nXgbpp02KiPjIwMFRUV1Xv/8PBwhYeH11gfGhrq8Q+Jo9Imh5Ow4U0N7aEVfYfn0Sf/QJ+aPk/3qL5j+XyC6J3ExsYqODi4xoTPkpISxcfH+6gqAADQEE06bISFhSk9PV2FhYWudZWVlSosLFS/fv0aNbbdbldKSor69OnT2DIBAMAd+PxnlLKyMh07dsy1fOLECRUVFalNmzbq1KmT8vPzlZOTo969eysjI0Pz5s1TeXm56+wUd+Xm5io3N1elpaVq2bJlY18GAACog8/Dxu7duzVgwADXctXkzZycHC1dulSjRo3SpUuXNG3aNF24cEFpaWnasGFDjUmjAACgafJ52MjMzLzr5cUnTpyoiRMneqkiAADgSU16zoaVmLMBAIB3BGzYyM3N1cGDB7Vr1y5flwIAQLMWsGEDAAB4B2EDAABYirABAAAsFbBhgwmiAAB4R8CGDSaIAgDgHQEbNgAAgHcQNgAAgKUIGwAAwFI+v1y5r9jtdtntdjmdTl+XAg9KmrKuXvuFBxu9niF1n/GpHE6bxVXVz8nXnvB1CQBgiYA9ssEEUQAAvCNgwwYAAPAOwgYAALAUYQMAAFiKsAEAACwVsGGDy5UDAOAdARs2OBsFAADvCNiwAQAAvIOwAQAALEXYAAAAliJsAAAASxE2AACApQgbAADAUgEbNrjOBgAA3hGwYYPrbAAA4B0BGzYAAIB3EDYAAIClCBsAAMBShA0AAGCpEF8XAOB7SVPW+boEt5187QlflwCgCePIBgAAsBRhAwAAWCpgwwYX9QIAwDsCNmxwUS8AALwjYMMGAADwDsIGAACwFGEDAABYirABAAAsRdgAAACWImwAAABLETYAAIClCBsAAMBShA0AAGApwgYAALAUYQMAAFiKsAEAACwVsGGDu74CAOAdARs2uOsrAADeEbBhAwAAeAdhAwAAWIqwAQAALEXYAAAAliJsAAAAS4X4ugAA/i9pyjpLxg0PNno9Q+o+41M5nDZLnuPka09YMi6A/8+tIxvHjx/3dB0AAKCZcitsPPDAAxowYID+8z//Uzdv3vR0TQAAoBlxK2zs2bNHPXv2VH5+vuLj4/XLX/5SO3fu9HRtAACgGXArbKSlpWn+/Pk6f/68Fi9erOLiYvXv31/du3dXQUGBLl265Ok6AQCAn2rU2SghISEaOXKkVq1apd/+9rc6duyYJk+erMTERI0ZM0bFxcWeqhMAAPipRoWN3bt365/+6Z/Uvn17FRQUaPLkyfrmm2+0adMmnT9/Xk899ZSn6gQAAH7KrVNfCwoKtGTJEh05ckRDhw7V8uXLNXToUAUFfZ9dfvKTn2jp0qVKSkryZK0AAMAPuRU2/vjHP+of//EfNXbsWLVv377Wfdq1a6e33367UcUBAAD/51bY+Prrr++6T1hYmHJyctwZHgAANCNuzdlYsmSJVq1aVWP9qlWrtGzZskYXBQAAmg+3wsbs2bMVGxtbY327du306quvNrqohjhz5owyMzOVkpKinj171hqCAACA77j1M8rp06f1k5/8pMb6zp076/Tp040uqiFCQkI0b948paWl6cKFC0pPT9fQoUPVokULr9YBAABq59aRjXbt2mn//v011u/bt09t27ZtdFEN0b59e6WlpUmS4uPjFRsbqytXrni1BgAAUDe3wsYzzzyjf/7nf9aWLVvkdDrldDr15z//WXl5efqHf/iHBo21detWDRs2TAkJCbLZbFqzZk2Nfex2u5KSkhQREaG+ffvWeWn0r776Sk6nU4mJie68LAAAYAG3wsasWbPUt29fPf7444qMjFRkZKQGDx6sxx57rMFzNsrLy5Wamiq73V7r9pUrVyo/P1/Tp0/Xnj17lJqaqqysLF28eLHafleuXNGYMWO0cOFCd14SAACwiFtzNsLCwrRy5UrNmjVL+/btU2RkpHr06KHOnTs3eKzs7GxlZ2fXub2goEATJkzQuHHjJEkLFizQunXrtHjxYk2ZMkWS5HA4NHz4cE2ZMkUPP/zwHZ/P4XDI4XC4lktLSyVJFRUVqqioaHD9takaJzzIeGQ8eF5Vb+hR0+aNPnnqcx/Iqt5D3sumy6oe1Xc8mzGmyXzb2mw2rV69WsOHD5ck3bp1S1FRUfrwww9d6yQpJydHV69e1dq1a2WM0ejRo5WcnKwZM2bc9TlmzJihmTNn1li/YsUKRUVFeey1AADQ3N24cUOjR4/WtWvXFBMTU+d+bh3ZcDqdWrp0qQoLC3Xx4kVVVlZW2/7nP//ZnWFruHz5spxOp+Li4qqtj4uL0+HDhyVJ27dv18qVK9WzZ0/XfI933nlHPXr0qHXMqVOnKj8/37VcWlqqxMREDR48+I5vVENUVFRo06ZN+vXuIDkqbR4ZE54VHmQ0q3clPWrivNGnAzOyLBk3kFR95w0aNEihoaG+Lge1sKpHVb8O3I1bYSMvL09Lly7VE088oe7du8tm892Xdf/+/WuEnTsJDw9XeHh4jfWhoaEe/5A4Km1yOPlD1pTRI/9gZZ/44+g5VnyPwrM83aP6juVW2Hj//ff1wQcfaOjQoe48vN5iY2MVHByskpKSautLSkoUHx9v6XMDAADPcOtslLCwMD3wwAOerqXW50lPT1dhYaFrXWVlpQoLC9WvX79GjW2325WSkqI+ffo0tkwAAHAHboWNF154QfPnz5cn5paWlZWpqKhIRUVFkqQTJ06oqKjIdSXS/Px8LVq0SMuWLdOhQ4f0q1/9SuXl5a6zU9yVm5urgwcPateuXY1+DQAAoG5u/Yzy+eefa8uWLVq/fr26detW4zebjz76qN5j7d69WwMGDHAtV03ezMnJ0dKlSzVq1ChdunRJ06ZN04ULF5SWlqYNGzbUmDQKAACaJrfCRqtWrTRixAiPFJCZmXnXIyQTJ07UxIkTPfJ8AADAu9wKG0uWLPF0HV5nt9tlt9vldDp9XQoAAM2aW3M2JOn27dvavHmz3nzzTV2/fl2SdP78eZWVlXmsOCsxZwMAAO9w68jGqVOnNGTIEJ0+fVoOh0ODBg1SdHS0fvvb38rhcGjBggWerhMAAPgpt45s5OXlqXfv3vruu+8UGRnpWj9ixIhqp6kCAAC4dWRj27Zt+uKLLxQWFlZtfVJSks6dO+eRwqzGnA0AALzDrSMblZWVtf6RPnv2rKKjoxtdlDcwZwMAAO9w68jG4MGDNW/ePC1cuFDS93drLSsr0/Tp0y2/hDkAeFLSlHW+LsFtJ197wtclAPXiVtiYO3eusrKylJKSops3b2r06NH6+uuvFRsbq/fee8/TNQIAAD/mVtjo2LGj9u3bp/fff1/79+9XWVmZxo8fr2effbbahFEAAAC3woYkhYSE6LnnnvNkLV7FBFEAALzDrbCxfPnyO24fM2aMW8V4U25urnJzc1VaWqqWLVv6uhwAAJott8JGXl5eteWKigrduHFDYWFhioqK8ouwAQAAvMOtU1+/++67av/Kysp05MgR9e/fnwmiAACgGrfvjfJjXbp00WuvvVbjqAcAAAhsHgsb0veTRs+fP+/JIQEAgJ9za87Gxx9/XG3ZGKPi4mL9/ve/1yOPPOKRwgAAQPPgVtgYPnx4tWWbzaZ7771Xjz32mObOneuRwqzGqa8AAHiHW2GjsrLS03V4Hae+AgDgHR6dswEAAPBjbh3ZyM/Pr/e+BQUF7jwFAABoJtwKG3v37tXevXtVUVGh5ORkSdLRo0cVHBysXr16ufaz2WyeqRIAAPgtt8LGsGHDFB0drWXLlql169aSvr/Q17hx4/Too4/qhRde8GiRAADAf7k1Z2Pu3LmaPXu2K2hIUuvWrfXKK6/4zdkoAADAO9wKG6Wlpbp06VKN9ZcuXdL169cbXZQ32O12paSkqE+fPr4uBQCAZs2tsDFixAiNGzdOH330kc6ePauzZ8/qv/7rvzR+/HiNHDnS0zVaIjc3VwcPHtSuXbt8XQoAAM2aW3M2FixYoMmTJ2v06NGqqKj4fqCQEI0fP15vvPGGRwsEAAD+za2wERUVpT/84Q9644039M0330iS7r//frVo0cKjxQEAAP/XqIt6FRcXq7i4WF26dFGLFi1kjPFUXQAAoJlwK2x8++23evzxx9W1a1cNHTpUxcXFkqTx48dz2isAAKjGrbDxr//6rwoNDdXp06cVFRXlWj9q1Cht2LDBY8UBAAD/59acjY0bN+rTTz9Vx44dq63v0qWLTp065ZHCAABA8+DWkY3y8vJqRzSqXLlyReHh4Y0uCgAANB9uhY1HH31Uy5cvdy3bbDZVVlbq9ddf14ABAzxWHAAA8H9u/Yzy+uuv6/HHH9fu3bt169YtvfTSS/rrX/+qK1euaPv27Z6u0RJ2u112u11Op9PXpQAA0Ky5dWSje/fuOnr0qPr376+nnnpK5eXlGjlypPbu3av777/f0zVagiuIAgDgHQ0+slFRUaEhQ4ZowYIFevnll62oCQAANCMNPrIRGhqq/fv3W1ELAABohtz6GeW5557T22+/7elaAABAM+TWBNHbt29r8eLF2rx5s9LT02vcE6WgoMAjxQEAAP/XoLBx/PhxJSUl6cCBA+rVq5ck6ejRo9X2sdlsnqsOAAD4vQaFjS5duqi4uFhbtmyR9P3lyf/jP/5DcXFxlhQHAAD8X4PmbPz4rq7r169XeXm5RwsCAADNS6NuMc8t5QEAwN00KGzYbLYaczKYowEAAO6kQXM2jDEaO3as62ZrN2/e1PPPP1/jbJSPPvrIcxUCAAC/1qCwkZOTU235ueee82gxAACg+WlQ2FiyZIlVdQAAgGaqURNE/ZndbldKSor69Onj61IAAGjWAjZscNdXAAC8I2DDBgAA8A7CBgAAsBRhAwAAWMqtu74CAHwvaco6X5cgSQoPNno9Q+o+41M5nHe/0OPJ157wQlVoSjiyAQAALEXYAAAAliJsAAAASxE2AACApQgbAADAUoQNAABgKcIGAACwFGEDAABYirABAAAsRdgAAACWImwAAABLNYuwMWLECLVu3VpPP/20r0sBAAA/0izCRl5enpYvX+7rMgAAQC2aRdjIzMxUdHS0r8sAAAC18HnY2Lp1q4YNG6aEhATZbDatWbOmxj52u11JSUmKiIhQ3759tXPnTh9UCgAA3OHzsFFeXq7U1FTZ7fZat69cuVL5+fmaPn269uzZo9TUVGVlZenixYterhQAALgjxNcFZGdnKzs7u87tBQUFmjBhgsaNGydJWrBggdatW6fFixdrypQpDX4+h8Mhh8PhWi4tLZUkVVRUqKKiosHj1aZqnPAg45Hx4HlVvaFHTRt98g8N7ZOnvmtRf1Xvuaff+/qO5/OwcSe3bt3SV199palTp7rWBQUFaeDAgdqxY4dbY86ePVszZ86ssX7jxo2Kiopyu9bazOpd6dHx4Hn0yD/QJ/9Q3z796U9/srgS1GXTpk0eHe/GjRv12q9Jh43Lly/L6XQqLi6u2vq4uDgdPnzYtTxw4EDt27dP5eXl6tixo1atWqV+/frVOubUqVOVn5/vWi4tLVViYqIGDx6smJgYj9RdUVGhTZs26de7g+SotHlkTHhWeJDRrN6V9KiJo0/+oaF9OjAjywtV4Yeq/i4NGjRIoaGhHhu36teBu2nSYaO+Nm/eXO99w8PDFR4eXmN9aGioRxsgSY5KmxxOviCbMnrkH+iTf6hvnzz9XYv68/TfuvqO5fMJoncSGxur4OBglZSUVFtfUlKi+Ph4H1UFAAAaokmHjbCwMKWnp6uwsNC1rrKyUoWFhXX+TFJfdrtdKSkp6tOnT2PLBAAAd+Dzn1HKysp07Ngx1/KJEydUVFSkNm3aqFOnTsrPz1dOTo569+6tjIwMzZs3T+Xl5a6zU9yVm5ur3NxclZaWqmXLlo19GQAAoA4+Dxu7d+/WgAEDXMtVkzdzcnK0dOlSjRo1SpcuXdK0adN04cIFpaWlacOGDTUmjQIAgKbJ52EjMzNTxtz53OyJEydq4sSJXqoIAAB4UpOes2El5mwAAOAdARs2cnNzdfDgQe3atcvXpQAA0KwFbNgAAADeQdgAAACWImwAAABLBWzYYIIoAADeEbBhgwmiAAB4R8CGDQAA4B2EDQAAYCnCBgAAsFTAhg0miAIA4B0BGzaYIAoAgHcEbNgAAADeQdgAAACWImwAAABLETYAAIClAjZscDYKAADeEbBhg7NRAADwjoANGwAAwDsIGwAAwFKEDQAAYCnCBgAAsBRhAwAAWIqwAQAALBWwYYPrbAAA4B0BGza4zgYAAN4RsGEDAAB4B2EDAABYirABAAAsRdgAAACWImwAAABLETYAAIClCBsAAMBShA0AAGCpgA0bXEEUAADvCNiwwRVEAQDwjoANGwAAwDsIGwAAwFKEDQAAYCnCBgAAsBRhAwAAWIqwAQAALEXYAAAAliJsAAAASxE2AACApQgbAADAUoQNAABgqYANG9yIDQAA7wjYsMGN2AAA8I6ADRsAAMA7CBsAAMBShA0AAGApwgYAALAUYQMAAFiKsAEAACxF2AAAAJYibAAAAEsRNgAAgKUIGwAAwFKEDQAAYCnCBgAAsBRhAwAAWIqwAQAALEXYAAAAliJsAAAASzWLsPHJJ58oOTlZXbp00VtvveXrcgAAwA+E+LqAxrp9+7by8/O1ZcsWtWzZUunp6RoxYoTatm3r69IAAICawZGNnTt3qlu3burQoYPuueceZWdna+PGjb4uCwAA/B+fh42tW7dq2LBhSkhIkM1m05o1a2rsY7fblZSUpIiICPXt21c7d+50bTt//rw6dOjgWu7QoYPOnTvnldoBAMDd+TxslJeXKzU1VXa7vdbtK1euVH5+vqZPn649e/YoNTVVWVlZunjxopcrBQAA7vD5nI3s7GxlZ2fXub2goEATJkzQuHHjJEkLFizQunXrtHjxYk2ZMkUJCQnVjmScO3dOGRkZdY7ncDjkcDhcy6WlpZKkiooKVVRUNPbluMaSpPAg45Hx4HlVvaFHTRt98g8N7ZOnvmtRf1Xvuaff+/qOZzPGNJlPsc1m0+rVqzV8+HBJ0q1btxQVFaUPP/zQtU6ScnJydPXqVa1du1a3b9/WQw89pM8++8w1QfSLL76oc4LojBkzNHPmzBrrV6xYoaioKGteGAAAzdCNGzc0evRoXbt2TTExMXXu5/MjG3dy+fJlOZ1OxcXFVVsfFxenw4cPS5JCQkI0d+5cDRgwQJWVlXrppZfueCbK1KlTlZ+f71ouLS1VYmKiBg8efMc3qiEqKiq0adMm/Xp3kByVNo+MCc8KDzKa1buSHjVx9Mk/BFKfDszI8nUJbqn6uzRo0CCFhoZ6bNyqXwfupkmHjfp68skn9eSTT9Zr3/DwcIWHh9dYHxoa6tEGSJKj0iaHs3l/8PwdPfIP9Mk/BEKfPP13wts8/beuvmP5fILoncTGxio4OFglJSXV1peUlCg+Pt5HVQEAgIZo0mEjLCxM6enpKiwsdK2rrKxUYWGh+vXr16ix7Xa7UlJS1KdPn8aWCQAA7sDnP6OUlZXp2LFjruUTJ06oqKhIbdq0UadOnZSfn6+cnBz17t1bGRkZmjdvnsrLy11np7grNzdXubm5Ki0tVcuWLRv7MgAAQB18HjZ2796tAQMGuJarJm/m5ORo6dKlGjVqlC5duqRp06bpwoULSktL04YNG2pMGgUAAE2Tz8NGZmam7nb27cSJEzVx4kQvVQQAADypSc/ZsBJzNgAA8I6ADRu5ubk6ePCgdu3a5etSAABo1gI2bAAAAO8gbAAAAEsFbNhgzgYAAN7h87NRfKXqOhvXrl1Tq1at6n199/qoqKjQjRs35HQEq7KZX7rXXzmDjW7ccNKjJo4++YdA6pMn/1Z4U9XfpdLSUkvujXK3s0qb1F1ffeHs2bNKTEz0dRkAAPitM2fOqGPHjnVuD/iwUVlZqfPnzys6Olo22/eJvE+fPrWepVLf9VV3kj1z5ozH7iTbUHXV6o1xGvKYu+17p+2N6VNz6pG7Y9X3MfXZz1N94rPk/uOs+CzVtY0+uf+Y5vadZ4zR9evXlZCQoKCgumdmBOzPKFWCgoJqpLHg4OBam9HQ9TExMT774NVVkzfGachj7rbvnbZ7ok/NoUfujlXfx9RnP0/1ic+S+4+z4rNU1zb65P5jmuN3Xn1u+RE8Y8aMGR591mYiIyPD7fUOh0Ovvfaapk6dWuvt7L2lrlq9MU5DHnO3fe+03d0+NbceuTtWfR9Tn/081Sc+S+4/zorPUl3b6JP7jwnE77yA/xnFClU3d7t27ZrPUj7ujB75B/rkH+hT0+frHnFkwyLBwcHKzMxUSEjA/1LVZNEj/0Cf/AN9avp82SOObAAAAEsF7EW9AACAdxA2AACApQgbAADAUoQNAABgKcKGl33yySdKTk5Wly5d9NZbb/m6HNRhxIgRat26tZ5++mlfl4I6nDlzRpmZmUpJSVHPnj21atUqX5eEH7l69ap69+6ttLQ0de/eXYsWLfJ1SbiDGzduqHPnzpo8ebLHx+ZsFC+6ffu2UlJStGXLFrVs2VLp6en64osv1LZtW1+Xhh/57LPPdP36dS1btkwffvihr8tBLYqLi1VSUqK0tDRduHBB6enpOnr0qFq0aOHr0vB/nE6nHA6HoqKiVF5eru7du2v37t185zVRL7/8so4dO6bExETNmTPHo2NzZMOLdu7cqW7duqlDhw665557lJ2drY0bN/q6LNQiMzNT0dHRvi4Dd9C+fXulpaVJkuLj4xUbG6srV674uCr8UHBwsKKioiR9fwVLY8xd7w4K3/j66691+PBhZWdnWzI+YaMBtm7dqmHDhikhIUE2m01r1qypsY/dbldSUpIiIiLUt29f7dy507Xt/Pnz6tChg2u5Q4cOOnfunFdqDySN7RO8w5N9+uqrr+R0OrmDs4d5okdXr15VamqqOnbsqBdffFGxsbHeKj9geKJPkydP1uzZsy2rkbDRAOXl5UpNTZXdbq91+8qVK5Wfn6/p06drz549Sk1NVVZWli5evOjlSgMbffIPnurTlStXNGbMGC1cuNAbZQcUT/SoVatW2rdvn06cOKEVK1aopKTEW+UHjMb2ae3ateratau6du1qXZEGbpFkVq9eXW1dRkaGyc3NdS07nU6TkJBgZs+ebYwxZvv27Wb48OGu7Xl5eebdd9/1TsEByp0+VdmyZYv5+7//e6/UGejc7dPNmzfNo48+apYvX+61WgNVYz5LVRm+RIoAAAsoSURBVH71q1+ZVatWWVpnoHOnT1OmTDEdO3Y0nTt3Nm3btjUxMTFm5syZHq2LIxsecuvWLX311VcaOHCga11QUJAGDhyoHTt2SPr+7nsHDhzQuXPnVFZWpvXr1ysrK8tXJQek+vQJvlefPhljNHbsWD322GP6+c9/7qtSA1Z9elRSUqLr169Lkq5du6atW7cqOTnZJ/UGqvr0afbs2Tpz5oxOnjypOXPmaMKECZo2bZpH6+COOR5y+fJlOZ1OxcXFVVsfFxenw4cPS5JCQkI0d+5cDRgwQJWVlXrppZeYle1l9emTJA0cOFD79u1TeXm5OnbsqFWrVqlfv37eLjdg1adP27dv18qVK9WzZ0/Xb9TvvPOOevTo4fV6A1F9enTq1Cn94he/cE0MnTRpEv3xsvp+51mNsOFlTz75pJ588klfl4G72Lx5s69LwF30799flZWVvi4Dd5CRkaGioiJfl4EGGDt2rCXj8jOKh8TGxio4OLjG5KeSkhLFx8f7qCr8GH3yD/Sp6aNH/qGp9Imw4SFhYWFKT09XYWGha11lZaUKCws5/N6E0Cf/QJ+aPnrkH5pKn/gZpQHKysp07Ngx1/KJEydUVFSkNm3aqFOnTsrPz1dOTo569+6tjIwMzZs3T+Xl5Ro3bpwPqw489Mk/0Kemjx75B7/ok0fPbWnmtmzZYiTV+JeTk+Pa53e/+53p1KmTCQsLMxkZGeYvf/mL7woOUPTJP9Cnpo8e+Qd/6BP3RgEAAJZizgYAALAUYQMAAFiKsAEAACxF2AAAAJYibAAAAEsRNgAAgKUIGwAAwFKEDQAAYCnCBgAAsBRhA2iGMjMz9S//8i++LqPBjhw5ovj4eF2/fr3OfZYuXapWrVp5sarGmTJliiZNmuTrMgCfImwAaJTi4mKNHj1aXbt2VVBQUJ0hZ9WqVXrwwQcVERGhHj166E9/+lONfaZOnapJkyYpOjra6rK9ZvLkyVq2bJmOHz/u61IAnyFsAGgUh8Ohe++9V//2b/+m1NTUWvf54osv9Mwzz2j8+PHau3evhg8fruHDh+vAgQOufU6fPq1PPvlEY8eO9VLld1ZRUeGRcWJjY5WVlaU//vGPHhkP8EeEDaCZ++677zRmzBi1bt1aUVFRys7O1tdff11tn0WLFikxMVFRUVEaMWKECgoK6v1TRVJSkubPn68xY8aoZcuWte4zf/58DRkyRC+++KIeeughzZo1S7169dLvf/971z4ffPCBUlNT1aFDh2qPXbp0qTp16uSq7dtvv60x/tq1a9WrVy9FRETovvvu08yZM3X79m3X9sOHD6t///6KiIhQSkqKNm/eLJvNpjVr1kiSTp48KZvNppUrV+qnP/2pIiIi9O6770qS3nrrLT300EOKiIjQgw8+qD/84Q/VnvvMmTP62c9+platWqlNmzZ66qmndPLkyWr7DBs2TO+//3693k+gOSJsAM3c2LFjtXv3bn388cfasWOHjDEaOnSo67/ct2/frueff155eXkqKirSoEGD9Jvf/MajNezYsUMDBw6sti4rK0s7duxwLW/btk29e/euts+XX36p8ePHa+LEiSoqKtKAAQP0yiuvVNtn27ZtGjNmjPLy8nTw4EG9+eabWrp0qes1OJ1ODR8+XFFRUfryyy+1cOFCvfzyy7XWOWXKFOXl5enQoUPKysrSu+++q2nTpuk3v/mNDh06pFdffVW//vWvtWzZMknfH/3IyspSdHS0tm3bpu3bt+uee+7RkCFDdOvWLde4GRkZOnv2bI0QAgQMr97QHoBX/PSnPzV5eXnm6NGjRpLZvn27a9vly5dNZGSk+eCDD4wxxowaNco88cQT1R7/7LPPmpYtW7r9vD8WGhpqVqxYUW2d3W437dq1cy2npqaaf//3f6+2zzPPPGOGDh1abd2oUaOq1fb444+bV199tdo+77zzjmnfvr0xxpj169ebkJAQU1xc7Nq+adMmI8msXr3aGGPMiRMnjCQzb968auPcf//9NeqeNWuW6devn+t5kpOTTWVlpWu7w+EwkZGR5tNPP3Wtu3btmpFkPvvssxrvDRAIQnwbdQBY6dChQwoJCVHfvn1d69q2bavk5GQdOnRI0vdngIwYMaLa4zIyMvTJJ594tdb//d//VURERLV1hw4dqlFbv379tGHDBtfyvn37tH379mpHY5xOp27evKkbN27oyJEjSkxMVHx8vGt7RkZGrTX88MhKeXm5vvnmG40fP14TJkxwrb99+7br56J9+/bp2LFjNSa03rx5U998841rOTIyUpJ048aNO78JQDNF2ABgufj4eJWUlFRbV1JSUi0AxMbG6rvvvmvw2GVlZZo5c6ZGjhxZY9uPw8vdtGjRotq40vfzWX4Y1iQpODjYtU96erprfscP3Xvvva7/feXKlRrrgEBC2ACasYceeki3b9/Wl19+qYcffliS9O233+rIkSNKSUmRJCUnJ2vXrl3VHvfj5cbq16+fCgsLq50Wu2nTJvXr18+1/Dd/8zc6ePBgjfq//PLLauv+8pe/VFvu1auXjhw5ogceeKDW505OTtaZM2dUUlKiuLg4SfV7fXFxcUpISNDx48f17LPP1rpPr169tHLlSrVr104xMTF1jnXgwAGFhoaqW7dud31eoFny9e84ADzvh3MnnnrqKZOSkmK2bdtmioqKzJAhQ8wDDzxgbt26ZYwx5vPPPzdBQUFm7ty55ujRo2bBggWmbdu2plWrVvV+vr1795q9e/ea9PR0M3r0aLN3717z17/+1bV9+/btJiQkxMyZM8ccOnTITJ8+3YSGhpr/+Z//ce3z8ccfm3bt2pnbt2+71u3YscMEBQWZN954wxw9etT87ne/M61atao2Z2PDhg0mJCTEzJgxwxw4cMAcPHjQvPfee+bll182xhhz+/Ztk5ycbLKyssy+ffvM559/bv72b//WSDJr1qwxxvz/ORt79+6t9roWLVpkIiMjzfz5882RI0fM/v37zeLFi83cuXONMcaUl5ebLl26mMzMTLN161Zz/Phxs2XLFjNp0iRz5swZ1zjTp083jz32WL3fT6C5IWwAzdAPw8aVK1fMz3/+c9OyZUsTGRlpsrKyzNGjR6vtv3DhQtOhQwcTGRlphg8fbl555RUTHx9f7+eTVONf586dq+3zwQcfmK5du5qwsDDTrVs3s27dumrbKyoqTEJCgtmwYUO19W+//bbp2LGjiYyMNMOGDTNz5sypMXl1w4YN5uGHHzaRkZEmJibGZGRkmIULF7q2Hzp0yDzyyCMmLCzMPPjgg+a///u/jSTXc9UVNowx5t133zVpaWkmLCzMtG7d2vzd3/2d+eijj1zbi4uLzZgxY0xsbKwJDw839913n5kwYYK5du2aa5/k5GTz3nvv1fv9BJobmzHG+OywCoAmacKECTp8+LC2bdvm1ee12+36+OOP9emnn1r6PNu3b1f//v117Ngx3X///ZY+1/r16/XCCy9o//79Cgnhl2sEJv6fD0Bz5szRoEGD1KJFC61fv17Lli2rcfEqb/jlL3+pq1ev6vr16x69ZPnq1at1zz33qEuXLjp27Jjy8vL0yCOPWB40pO/PalmyZAlBAwGNIxsA9LOf/UyfffaZrl+/rvvuu0+TJk3S888/L0nq1q2bTp06Vevj3nzzzTonTzYly5cv1yuvvKLTp08rNjZWAwcO1Ny5c9W2bVtflwYEBMIGgDs6depUnfcJiYuLa1Y3TQNgDcIGAACwFPdGAQAAliJsAAAASxE2AACApQgbAADAUoQNAABgKcIGAACwFGEDAABYirABAAAs9f8Af5ub4C8hyCcAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1276,28 +1334,6 @@ "graphSummary(G, bins=10)" ] }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df2xV9f3H8ddtaW/XSavY2VIp1k3HrEg7+yvFJZYJNEhw1ZixsbgGN92WWwNpoil/DEr8A+Y2ZPnuZrgZJHNhMjFAIg6oVejmj1AodWjFDFcdDlsgjl4oy+V67/n+sfRmpT/obW/v6fv2+Uj6xz330895v/Ph9r649/zwOI7jCAAAwIgUtwsAAACIBeEFAACYQngBAACmEF4AAIAphBcAAGAK4QUAAJhCeAEAAKYQXgAAgCnT3C4gVpFIRKdPn9b06dPl8XjcLgcAAIyC4zi6cOGC8vPzlZIyvs9OzIWX06dPq6CgwO0yAADAGJw6dUqzZs0a1xzmwsv06dMl/bf5rKysuM4dCoV04MABLV68WGlpaXGdezKZKn1K9Jqs6DU50Wty6u+1qqpKN998c/R9fDzMhZf+r4qysrImJLxkZmYqKysrqf8xTZU+JXpNVvSanOg1OfX32h9a4nHIBwfsAgAAUwgvAADAFDPhxe/3q6ioSOXl5W6XAgAAXGQmvPh8PnV2dqqtrc3tUgAAgIvMhBcAAACJ8AIAAIwhvAAAAFMILwAAwBTCCwAAMIXwAgAATDETXrjOCwAAkAyFF67zAgAAJEPhBQAAQDJ4V+lEmNu0X8Hw+O96mSgfbVzqdgkAACQMn7wAAABTCC8AAMAUwgsAADCF8AIAAEwxE164zgsAAJAMhReu8wIAACRD4QUAAEAivAAAAGMILwAAwBTCCwAAMIXwAgAATCG8AAAAUwgvAADAFMILAAAwhfACAABMIbwAAABTzIQX7m0EAAAkQ+GFexsBAADJUHgBAACQCC8AAMAYwgsAADCF8AIAAEwhvAAAAFMILwAAwBTCCwAAMIXwAgAATCG8AAAAUwgvAADAFMILAAAwhfACAABMIbwAAABTCC8AAMAUM+HF7/erqKhI5eXlbpcCAABcZCa8+Hw+dXZ2qq2tze1SAACAi8yEFwAAAInwAgAAjCG8AAAAUwgvAADAFMILAAAwhfACAABMIbwAAABTCC8AAMAUwgsAADCF8AIAAEwhvAAAAFMILwAAwBTCCwAAMIXwAgAATCG8AAAAUwgvAADAFMILAAAwhfACAABMIbwAAABTprldAMavsHFvTOO9qY6eqpDmNu1XMOyZoKpG9tHGpa7sFwBgX8I/eTl//rzKyspUUlKiuXPn6ne/+12iSwAAAIYl/JOX6dOnq7W1VZmZmerr69PcuXP1wAMP6Prrr090KQAAwKCEf/KSmpqqzMxMSVIwGJTjOHIcJ9FlAAAAo2IOL62trVq2bJny8/Pl8Xi0e/fuQWP8fr8KCwuVkZGhyspKHT58eMDz58+fV3FxsWbNmqXHH39cOTk5Y+8AAABMKTGHl76+PhUXF8vv9w/5/I4dO9TQ0KB169apvb1dxcXFqqmp0ZkzZ6Jjrr32Wr3zzjvq6urS9u3b1dPTM/YOAADAlBLzMS9LlizRkiVLhn1+06ZNeuSRR7Ry5UpJ0pYtW7R3715t3bpVjY2NA8bm5uaquLhYf/nLX/Tggw8OOV8wGFQwGIw+DgQCkqRQKKRQKBRr+SPqn8+bktxfY/X352af8V67q+0nUftzE70mJ3pNTvQ6Ph5nHAeceDwe7dq1S7W1tZKky5cvKzMzUzt37oxuk6S6ujqdP39ee/bsUU9PjzIzMzV9+nT19vbqrrvu0h//+EfdcccdQ+6jqalJ69evH7R9+/bt0WNnAADA5Hbp0iWtWLFCvb29ysrKGtdccT3b6Ny5cwqHw8rNzR2wPTc3VydOnJAkffzxx3r00UejB+o+9thjwwYXSVqzZo0aGhqijwOBgAoKCrR48eJxN3+lUCik5uZm/fRIioIRd65/kgjeFEdPlkVc7fPdppqE7Kd/TRctWqS0tLSE7NMt9Jqc6DU5TcVeFyxYELc5E36qdEVFhTo6OkY93uv1yuv1DtqelpY2YQsejHhcu3hbIrnZZ6JfrBP572WyodfkRK/Jaar1Gi9xPVU6JydHqampgw7A7enpUV5eXjx3BQAApqi4hpf09HSVlpaqpaUlui0SiailpUVVVVXjmtvv96uoqEjl5eXjLRMAABgW89dGFy9e1MmTJ6OPu7q61NHRoRkzZmj27NlqaGhQXV2dysrKVFFRoc2bN6uvry969tFY+Xw++Xw+BQIBZWdnj2suAABgV8zh5ciRIwMOuuk/mLaurk7btm3T8uXLdfbsWa1du1bd3d0qKSnRvn37Bh3ECwAAMBYxh5fq6uqrXs6/vr5e9fX1Yy4KAABgOAk/2wiQpMLGvQnZjzfV0VMV0tym/eM+s+qjjUvjVBUAYDwSfmPGseKAXQAAIBkKLz6fT52dnWpra3O7FAAA4CIz4QUAAEAivAAAAGMILwAAwBQz4YUDdgEAgGQovHDALgAAkAyFFwAAAInwAgAAjCG8AAAAUwgvAADAFDPhhbONAACAZCi8cLYRAACQDIUXAAAAifACAACMIbwAAABTCC8AAMAUwgsAADDFTHjhVGkAACAZCi+cKg0AACRD4QUAAEAivAAAAGMILwAAwBTCCwAAMIXwAgAATCG8AAAAUwgvAADAFDPhhYvUAQAASZrmdgGj5fP55PP5FAgElJ2d7XY5mIIKG/e6XcKIvKmOnqqQ5jbtVzDskSR9tHGpy1UBQPyZ+eQFAABAIrwAAABjCC8AAMAUwgsAADCF8AIAAEwhvAAAAFMILwAAwBTCCwAAMIXwAgAATCG8AAAAU8yEF+5tBAAAJEPhxefzqbOzU21tbW6XAgAAXGTmxowAYjfZbyY5FG4mCeBqzHzyAgAAIBFeAACAMYQXAABgCuEFAACYQngBAACmEF4AAIAphBcAAGAK4QUAAJhCeAEAAKYQXgAAgCmEFwAAYArhBQAAmEJ4AQAAppgJL36/X0VFRSovL3e7FAAA4CIz4cXn86mzs1NtbW1ulwIAAFxkJrwAAABIhBcAAGAM4QUAAJhCeAEAAKYQXgAAgCmEFwAAYArhBQAAmEJ4AQAAphBeAACAKYQXAABgCuEFAACYMs3tAgDgfxU27r3qGG+qo6cqpLlN+xUMexJQ1cg+2rjU7RKAKYVPXgAAgCmEFwAAYArhBQAAmEJ4AQAAphBeAACAKYQXAABgCuEFAACYQngBAACmJDy8nDp1StXV1SoqKtK8efP04osvJroEAABgWMKvsDtt2jRt3rxZJSUl6u7uVmlpqe6991598YtfTHQpAADAoISHl5kzZ2rmzJmSpLy8POXk5Oizzz4jvAAAgFGJ+Wuj1tZWLVu2TPn5+fJ4PNq9e/egMX6/X4WFhcrIyFBlZaUOHz485FxHjx5VOBxWQUFB7JUDAIApKebw0tfXp+LiYvn9/iGf37FjhxoaGrRu3Tq1t7eruLhYNTU1OnPmzIBxn332mb7//e/rt7/97dgqBwAAU1LMXxstWbJES5YsGfb5TZs26ZFHHtHKlSslSVu2bNHevXu1detWNTY2SpKCwaBqa2vV2Nio+fPnj7i/YDCoYDAYfRwIBCRJoVBIoVAo1vJH1D+fN8WJ67yTTX9/yd6nRK/JarL1Gu+/RUPNPZH7mCzoNTlNRK8ex3HG/Or3eDzatWuXamtrJUmXL19WZmamdu7cGd0mSXV1dTp//rz27Nkjx3G0YsUKzZkzR01NTVfdR1NTk9avXz9o+/bt25WZmTnW0gEAQAJdunRJK1asUG9vr7KyssY1V1wP2D137pzC4bByc3MHbM/NzdWJEyckSW+88YZ27NihefPmRY+Xef7553XHHXcMOeeaNWvU0NAQfRwIBFRQUKDFixePu/krhUIhNTc366dHUhSMeOI692TiTXH0ZFkk6fuU6DVZTbZe322qmbC5+/8uLVq0SGlpaRO2n8mAXpNTf68LFiyI25wJP9voG9/4hiKRyKjHe71eeb3eQdvT0tImbMGDEY+CYff/IE60qdKnRK/JarL0mog3n4n8mzfZ0Gtyimefcb1IXU5OjlJTU9XT0zNge09Pj/Ly8uK5KwAAMEXFNbykp6ertLRULS0t0W2RSEQtLS2qqqoa19x+v19FRUUqLy8fb5kAAMCwmL82unjxok6ePBl93NXVpY6ODs2YMUOzZ89WQ0OD6urqVFZWpoqKCm3evFl9fX3Rs4/GyufzyefzKRAIKDs7e1xzAQAAu2IOL0eOHBlw0E3/wbR1dXXatm2bli9frrNnz2rt2rXq7u5WSUmJ9u3bN+ggXgAAgLGIObxUV1framdX19fXq76+fsxFAQAADCfhd5UGAAAYDzPhhQN2AQCAZCi8+Hw+dXZ2qq2tze1SAACAi8yEFwAAAMmFK+wCQLIpbNw7YXN7Ux09VSHNbdof16sJf7RxadzmAhKNT14AAIApZsILB+wCAADJUHjhgF0AACAZCi8AAAAS4QUAABhDeAEAAKYQXgAAgClmwgtnGwEAAMlQeOFsIwAAIBkKLwAAABLhBQAAGEN4AQAAphBeAACAKYQXAABgipnwwqnSAABAMhReOFUaAABIhsILAACARHgBAADGEF4AAIAphBcAAGAK4QUAAJhCeAEAAKYQXgAAgClmwgsXqQMAAJKh8MJF6gAAgGQovAAAAEiEFwAAYAzhBQAAmEJ4AQAAphBeAACAKYQXAABgCuEFAACYQngBAACmEF4AAIAphBcAAGCKmfDCvY0AAIBkKLxwbyMAACAZCi8AAAAS4QUAABhDeAEAAKYQXgAAgCmEFwAAYArhBQAAmEJ4AQAAphBeAACAKdPcLgAAkHiFjXvdLmEQb6qjpyqkuU37FQx7Bj3/0calLlSFyYhPXgAAgCmEFwAAYArhBQAAmEJ4AQAAphBeAACAKWbCi9/vV1FRkcrLy90uBQAAuMhMePH5fOrs7FRbW5vbpQAAABeZCS8AAAAS4QUAABhDeAEAAKYQXgAAgCmEFwAAYArhBQAAmEJ4AQAAphBeAACAKYQXAABgCuEFAACYQngBAACmEF4AAIAphBcAAGAK4QUAAJhCeAEAAKYQXgAAgCmEFwAAYArhBQAAmEJ4AQAAphBeAACAKa6El/vvv1/XXXedHnzwQTd2DwAADHMlvKxatUq///3v3dg1AAAwzpXwUl1drenTp7uxawAAYFzM4aW1tVXLli1Tfn6+PB6Pdu/ePWiM3+9XYWGhMjIyVFlZqcOHD8elWAAAgJjDS19fn4qLi+X3+4d8fseOHWpoaNC6devU3t6u4uJi1dTU6MyZM+MuFgAAYFqsv7BkyRItWbJk2Oc3bdqkRx55RCtXrpQkbdmyRXv37tXWrVvV2NgYc4HBYFDBYDD6OBAISJJCoZBCoVDM842kfz5vihPXeSeb/v6SvU+JXpMVvSanq/Ua77/5burvJZl6Gs5E9BpzeBnJ5cuXdfToUa1Zsya6LSUlRQsXLtRbb701pjk3bNig9evXD9p+4MABZWZmjrnWkTxZFpmQeSebqdKnRK/Jil6T03C9vvLKKwmuZOI1Nze7XULCvP7663GbK67h5dy5cwqHw8rNzR2wPTc3VydOnIg+Xrhwod555x319fVp1qxZevHFF1VVVTXknGvWrFFDQ0P0cSAQUEFBgRYvXqysrKx4lq9QKKTm5mb99EiKghFPXOeeTLwpjp4siyR9nxK9Jit6TU5X6/XdphoXqpoY/e83ixYtUlpamtvlTKj+XhcsWBC3OeMaXkbr1VdfHfVYr9crr9c7aHtaWtqELXgw4lEwnNx/JKSp06dEr8mKXpPTcL0m45v8RL6XTTbx7DOup0rn5OQoNTVVPT09A7b39PQoLy8vnrsCAABTVFzDS3p6ukpLS9XS0hLdFolE1NLSMuzXQqPl9/tVVFSk8vLy8ZYJAAAMi/lro4sXL+rkyZPRx11dXero6NCMGTM0e/ZsNTQ0qK6uTmVlZaqoqNDmzZvV19cXPftorHw+n3w+nwKBgLKzs8c1FwAAsCvm8HLkyJEBB930H0xbV1enbdu2afny5Tp79qzWrl2r7u5ulZSUaN++fYMO4gUAABiLmMNLdXW1HGfk6w3U19ervr5+zEUBAAAMx5V7G40Fx7wAAADJUHjx+Xzq7OxUW1ub26UAAAAXmQkvAAAAEuEFAAAYQ3gBAACmEF4AAIApZsILZxsBAADJUHjhbCMAACAZCi8AAAAS4QUAABhDeAEAAKYQXgAAgCkx35jRLX6/X36/X+Fw2O1SAAAuKGzc63YJMfto41K3S0hKZj554WwjAAAgGQovAAAAEuEFAAAYQ3gBAACmEF4AAIAphBcAAGCKmfDCjRkBAIBkKLxwqjQAAJAMhRcAAACJ8AIAAIwhvAAAAFMILwAAwBTCCwAAMIXwAgAATCG8AAAAU8yEFy5SBwAAJEPhhYvUAQAAyVB4AQAAkAgvAADAGMILAAAwhfACAABMIbwAAABTCC8AAMAUwgsAADCF8AIAAEwhvAAAAFMILwAAwBQz4YV7GwEAAMlQeOHeRgAAQDIUXgAAACTCCwAAMIbwAgAATCG8AAAAUwgvAADAFMILAAAwhfACAABMIbwAAABTCC8AAMAUwgsAADCF8AIAAEwhvAAAAFMILwAAwBTCCwAAMMVMePH7/SoqKlJ5ebnbpQAAABeZCS8+n0+dnZ1qa2tzuxQAAOAiM+EFAABAIrwAAABjCC8AAMAUwgsAADCF8AIAAEwhvAAAAFMILwAAwBTCCwAAMIXwAgAATCG8AAAAUwgvAADAFMILAAAwhfACAABMIbwAAABTCC8AAMAUwgsAADCF8AIAAEwhvAAAAFMILwAAwBTCCwAAMMWV8PLyyy9rzpw5uvXWW/Xss8+6UQIAADBqWqJ3+Pnnn6uhoUGvv/66srOzVVpaqvvvv1/XX399oksBAAAGJfyTl8OHD+v222/XjTfeqGuuuUZLlizRgQMHEl0GAAAwKubw0traqmXLlik/P18ej0e7d+8eNMbv96uwsFAZGRmqrKzU4cOHo8+dPn1aN954Y/TxjTfeqH/9619jLB8AAEw1MX9t1NfXp+LiYj388MN64IEHBj2/Y8cONTQ0aMuWLaqsrNTmzZtVU1OjDz74QDfccEPMBQaDQQWDwejjQCAgSQqFQgqFQjHPN5L++bwpTlznnWz6+0v2PiV6TVb0mpySsdfh3qf6t8f7fWwymohePY7jjPlficfj0a5du1RbWxvdVllZqfLycv3617+WJEUiERUUFOixxx5TY2Oj3nzzTf385z/Xrl27JEmrV69WRUWFVqxYMeQ+mpqatH79+kHbt2/frszMzLGWDgAAEujSpUtasWKFent7lZWVNa654hpeLl++rMzMTO3cuXNAoKmrq9P58+e1Z88eff7557rtttt08ODB6AG7b7755rAH7A71yUtBQYHOnTs37uavFAqF1NzcrJ8eSVEw4onr3JOJN8XRk2WRpO9TotdkRa/JiV4nh3ebauI6X/97a2VlpWbOnBmX8BLXs43OnTuncDis3NzcAdtzc3N14sSJ/+5w2jT98pe/1IIFCxSJRPTEE0+MeKaR1+uV1+sdtD0tLU1paWnxLD8qGPEoGJ5c/5gmwlTpU6LXZEWvyYle3TVR763xnDfhp0pL0n333af77rvPjV0DAADj4nqqdE5OjlJTU9XT0zNge09Pj/Ly8uK5KwAAMEXFNbykp6ertLRULS0t0W2RSEQtLS2qqqoa19x+v19FRUUqLy8fb5kAAMCwmL82unjxok6ePBl93NXVpY6ODs2YMUOzZ89WQ0OD6urqVFZWpoqKCm3evFl9fX1auXLluAr1+Xzy+XwKBALKzs4e11wAAMCumMPLkSNHtGDBgujjhoYGSf89o2jbtm1avny5zp49q7Vr16q7u1slJSXat2/foIN4AQAAxiLm8FJdXa2rnV1dX1+v+vr6MRcFAAAwHFfuKj0WHPMCAAAkQ+HF5/Ops7NTbW1tbpcCAABcZCa8AAAASIQXAABgDOEFAACYQngBAACmmAkvnG0EAAAkl27MOBb9V9jt7e3Vtddeq0AgEPd9hEIhXbp0SeFgqiKT7C6f8RROdXTpUjjp+5ToNVnRa3Ki18kh3u+v/e+tFy5ckKSrXituNDxOPGZJoE8++UQFBQVulwEAAMbg1KlTmjVr1rjmMBdeIpGITp8+renTp8vjiW9aDQQCKigo0KlTp5SVlRXXuSeTqdKnRK/Jil6TE70mp/5e//nPf8rj8Sg/P18pKeM7asXM10b9UlJSxp3YriYrKyvp/zFJU6dPiV6TFb0mJ3pNTtnZ2XHr1cwBuwAAABLhBQAAGJPa1NTU5HYRk0lqaqqqq6s1bZq5b9RiMlX6lOg1WdFrcqLX5BTvXs0dsAsAAKY2vjYCAACmEF4AAIAphBcAAGAK4QUAAJgy5cKL3+9XYWGhMjIyVFlZqcOHD484/sUXX9TXvvY1ZWRk6I477tArr7ySoErHJ5Y+t23bJo/HM+AnIyMjgdWOXWtrq5YtW6b8/Hx5PB7t3r37qr9z8OBB3XnnnfJ6vbrlllu0bdu2iS80DmLt9eDBg4PW1ePxqLu7O0EVj82GDRtUXl6u6dOn64YbblBtba0++OCDq/6exdfqWHq1+nr9zW9+o3nz5kUvylZVVaU///nPI/6OxTWVYu/V6ppeaePGjfJ4PFq9evWI4+KxrlMqvOzYsUMNDQ1at26d2tvbVVxcrJqaGp05c2bI8W+++aa++93v6gc/+IGOHTum2tpa1dbW6t13301w5bGJtU/pv1d5/PTTT6M/H3/8cQIrHru+vj4VFxfL7/ePanxXV5eWLl2qBQsWqKOjQ6tXr9YPf/hD7d+/f4IrHb9Ye+33wQcfDFjbG264YYIqjI9Dhw7J5/Pp7bffVnNzs0KhkBYvXqy+vr5hf8fqa3UsvUo2X6+zZs3Sxo0bdfToUR05ckTf/OY39a1vfUvvvffekOOtrqkUe6+SzTX9X21tbXrmmWc0b968EcfFbV2dKaSiosLx+XzRx+Fw2MnPz3c2bNgw5Phvf/vbztKlSwdsq6ysdH70ox9NaJ3jFWufzz33nJOdnZ2o8iaMJGfXrl0jjnniiSec22+/fcC25cuXOzU1NRNZWtyNptfXX3/dkeT8+9//TlBVE+PMmTOOJOfQoUPDjrH6Wr3SaHpNlter4zjOdddd5zz77LNDPpcsa9pvpF6tr+mFCxecW2+91WlubnbuvvtuZ9WqVcOOjde6TplPXi5fvqyjR49q4cKF0W0pKSlauHCh3nrrrSF/56233howXpJqamqGHT8ZjKVPSbp48aJuuukmFRQUXPV/CJZZXNPxKikp0cyZM7Vo0SK98cYbbpcTs97eXknSjBkzhh2TLOs6ml4l+6/XcDisF154QX19faqqqhpyTLKs6Wh6lWyvqc/n09KlSwet11Dita5TJrycO3dO4XBYubm5A7bn5uYOewxAd3d3TOMng7H0OWfOHG3dulV79uzRH/7wB0UiEc2fP1+ffPJJIkpOqOHWNBAI6D//+Y9LVU2MmTNnasuWLXrppZf00ksvqaCgQNXV1Wpvb3e7tFGLRCJavXq17rrrLs2dO3fYcRZfq1caba+WX6/Hjx/XNddcI6/Xqx//+MfatWuXioqKhhxrfU1j6dXymr7wwgtqb2/Xhg0bRjU+Xuua/NckxlVVVVUN+B/B/Pnzddttt+mZZ57Rk08+6WJlGI85c+Zozpw50cfz58/Xhx9+qKefflrPP/+8i5WNns/n07vvvqu//vWvbpcy4Ubbq+XX65w5c9TR0aHe3l7t3LlTdXV1OnTo0LBv6pbF0qvVNT116pRWrVql5ubmhB9gPGXCS05OjlJTU9XT0zNge09Pj/Ly8ob8nby8vJjGTwZj6fNKaWlp+vrXv66TJ09ORImuGm5Ns7Ky9IUvfMGlqhKnoqLCTBCor6/Xyy+/rNbWVs2aNWvEsRZfq/8rll6vZOn1mp6erltuuUWSVFpaqra2Nv3qV7/SM888M2is9TWNpdcrWVnTo0eP6syZM7rzzjuj28LhsFpbW/XrX/9awWBQqampA34nXus6Zb42Sk9PV2lpqVpaWqLbIpGIWlpahv0esqqqasB4SWpubh7xe0u3jaXPK4XDYR0/flwzZ86cqDJdY3FN46mjo2PSr6vjOKqvr9euXbv02muv6eabb77q71hd17H0eiXLr9dIJKJgMDjkc1bXdDgj9XolK2t6zz336Pjx4+ro6Ij+lJWV6Xvf+546OjoGBRcpjus6hgOLzXrhhRccr9frbNu2zens7HQeffRR59prr3W6u7sdx3Gchx56yGlsbIyOf+ONN5xp06Y5v/jFL5z333/fWbdunZOWluYcP37crRZGJdY+169f7+zfv9/58MMPnaNHjzrf+c53nIyMDOe9995zq4VRu3DhgnPs2DHn2LFjjiRn06ZNzrFjx5yPP/7YcRzHaWxsdB566KHo+H/84x9OZmam8/jjjzvvv/++4/f7ndTUVGffvn1utTBqsfb69NNPO7t373b+/ve/O8ePH3dWrVrlpKSkOK+++qpbLYzKT37yEyc7O9s5ePCg8+mnn0Z/Ll26FB2TLK/VsfRq9fXa2NjoHDp0yOnq6nL+9re/OY2NjY7H43EOHDjgOE7yrKnjxN6r1TUdypVnG03Uuk6p8OI4jvN///d/zuzZs5309HSnoqLCefvtt6PP3X333U5dXd2A8X/605+cr371q056erpz++23O3v37k1wxWMTS5+rV6+Ojs3NzXXuvfdep7293YWqY9d/OvCVP/391dXVOXffffeg3ykpKXHS09OdL3/5y85zzz2X8LrHItZef/aznzlf+cpXnIyMDGfGjBlOdXW189prr7lTfAyG6lHSgHVKltfqWHq1+np9+OGHnZtuuslJT093vvSlLzn33HNP9M3ccZJnTR0n9l6trulQrgwvE7WuHsdxnNg+qwEAAHDPlIP2DaoAAABMSURBVDnmBQAAJAfCCwAAMIXwAgAATCG8AAAAUwgvAADAFMILAAAwhfACAABMIbwAAABTCC8AAMAUwgsAADCF8AIAAEwhvAAAAFP+H/Y6q75L0w5YAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "np.log10(pd.Series({k: v for k, v in nx.degree(G)}).sort_values(ascending=False)).hist()\n", - "plt.yscale(\"log\")" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -1307,7 +1343,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 46, "metadata": {}, "outputs": [ { @@ -1362,16 +1398,16 @@ " \n", " 3\n", " test/14826\n", - " they\n", - " correspondent\n", - " tell\n", + " loss\n", + " gain\n", + " be\n", " \n", " \n", " 4\n", " test/14826\n", - " move\n", - " sentiment\n", - " boost\n", + " pact\n", + " semiconductor\n", + " sell\n", " \n", " \n", "\n", @@ -1382,11 +1418,11 @@ "0 test/14826 exporter damage fear\n", "1 test/14826 japan fear raise\n", "2 test/14826 row damage inflict\n", - "3 test/14826 they correspondent tell\n", - "4 test/14826 move sentiment boost" + "3 test/14826 loss gain be\n", + "4 test/14826 pact semiconductor sell" ] }, - "execution_count": 22, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -1397,7 +1433,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 47, "metadata": {}, "outputs": [], "source": [ @@ -1406,7 +1442,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 48, "metadata": {}, "outputs": [], "source": [ @@ -1416,14 +1452,14 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 49, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAAJrCAYAAADj+n3EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3gU5drH8e/sJtl0SCAQSgQC0kR6kyYgCB4QjhQRC6I0K3pERGxY8KDIsb7Hg6igIooKNrASLEhTQIqCIgiEEiIJhPRNdrPz/hETCQFJIGF2l9/nurhIZmeeuTfZJLP33M/9GKZpmoiIiIiIiIiIiIhYwGZ1ACIiIiIiIiIiInLuUoJSRERERERERERELKMEpYiIiIiIiIiIiFhGCUoRERERERERERGxjBKUIiIiIiIiIiIiYhklKEVERERERERERMQySlCKiIiIiIiIiIiIZZSgFBEREREREREREcsoQSkiIiIiIiIiIiKWUYJSRERERERERERELKMEpYiIiIiIiIiIiFhGCUoRERERERERERGxjBKUIiIiIiIiIiIiYhklKEVERERERERERMQySlCKiIiIiIiIiIiIZZSgFBEREREREREREcsoQSkiIiIiIiIiIiKWUYJSRERERERERERELKMEpYiIiIiIiIiIiFhGCUoRERERERERERGxjBKUIiIiIiIiIiIiYhklKEVERERERERERMQySlCKiIiIiIiIiIiIZZSgFBEREREREREREcsoQSkiIiIiIiIiIiKWUYJSRERERERERERELKMEpYiIiIiIiIiIiFhGCUoRERERERERERGxjBKUIiIiIiIiIiIiYhklKEVERERERERERMQySlCKiIiIiIiIiIiIZZSgFBEREREREREREcsEWB2AiIiIeC/TNCkwwW2aeDxgs0GAYWA3wDAMq8MTERERERE/oASliIiIAIXJyCN5BSTnuEnOcXMwx01yrhu3p/S+ATaIDQmgVmgAsX/+i3bYlbQUEREREZFyM0zTNK0OQkRERKyTllfAxlQnmw87ySsovCywASfIS5Zy7H4Ou0GrasG0qR5MlMNeSdGKiIiIiIi/UYJSRETkHOQxTX7PyGdDipM9mS4MoCIuCIrGqR8RSLuYYBpGBmFTVaWIiIiIiPwNJShFRETOMfuyXHySmMnRfE+FJSaPVzRu1SAbA+pFEBceWAlnEak46rcqIiIiYh0lKEVERM4RLo/Jt0nZrE9xVlpi8nhF52kfE8zFtcMItCnRI9ZTv1URERER76IEpYiIyDlgX5aLpYmZZOR7zkpi8ngGEBlkY6CqKcVC6rcqIiIi4p2UoBQREfFz61NySdiffdaqJk+m6Px96obRPibEwkjkXKJ+qyIiIiLeTwlKERERP2WaJqv/yOW7gzlWh1JK91qhdKkZommyUqnUb1VERETENyhBKSIi4qdWJed4ZXKySPdaoXSNDbU6DPFD6rcqIiIi4luUoBQREfFD6w/lknAg2+owTknTvaWiqd+qiIiIiO9RglJERMTP7MtysWBHutVhlNk151dRIkcqhPqtioiIiPgmm9UBiIiISMVxeUyWJmbiK5NLDWBpYiYuj+6XyukzTZNVyTkk7C+sGrb61VR0/oT92axKzkH1ACIiIiJ/TwlKERERP/JtUrZlU1tPhwlk5HtYkeT909HFe3nrYlAA3x3MYfUfuVaHISIiIuLVlKAUERHxE/uyXKxPcfpMcrKICaxLcbIvy2V1KOKD1h/y3uRkke8O5rA+RUlKERERkZNRglJERMQPeEyTT3xoavfxDOCTxEw8mgor5bAvy+UTi0FB4XRvJeFFRERETkwJShERET/we0Y+R31oavfxTOBovoddGUrgSNmo36r4GtM0cXtMnAUeclwenAUe3B5TPUpFRESAAKsDEBERkTO3IcVp+crFZ8oANqTk0qhKkNWhiA/w5X6rl9QNtzocqWSmaXIkr4DkHDfJOW4O5rhJznXj9pTeN8AGsSEB1AoNIPbPf9EOO4bhK+l3ERGRM6cEpYiIiI9LyytgT6bvVx6awO5MF2l5BUQ57FaHI16sqN+qrynqt9q4qoO48ECrw5FKkJZXwMZUJ5sPO8krKEyf24AT5CWLuT2wP9tNUra7eD+H3aBVtWDaVA/W70MRETknGKbmFIiIiPi0rw5ks+5Qrs9Ukv0dA+hYI4RedcKsDkW8lMc0mbMtjXQfqp48lgFUCbIxvnkUNlXI+QWPafJ7Rj4bUpzsyXRVWDV70Tj1IwJpFxNMw8ggvWZERMRvqQeliIiIDzNNk82Hy7Zy99S2MXz0xJRKj+lMmMCmw071ZJOTUr9V8Sb7slzM2ZbG4l2ZJP5ZyV5Rr82icRIzXSzelcmcbWlaaElERPyWEpQiIiI+7EheQfE0wiKJm38gYfZMcjPTLYrqzOQVmKTl/d2ESDmXFfVb9WVF/VbFd7k8Jgn7s1iwI530/MLfV5WVNC8aNz3fw4Id6STsz9JiSyIi4neUoBQREfFhyTnuUtsSN69j+ZyncPpoghJO/LxEivqt+npq5th+q+J79mW5eOWXNDb82Qf1bL0ei86zIcXJK7+omlJERPyLEpQiIiI+LDnH7Xd/zG0GJOcqQSmlbUz1/erJIgawKdX3Fvo5161PyWXBjnRLV5AvWhF+wY501qsSV0RE/IRW8RYREfFhB3PcJVaHTZg9k+VzngJg5sB2xdvvWbqh+OOtX3/KshdnkLp3F9XiGvCPfz1Ck66XlBg3/dBBlr04g+0rE8jNTKdaXAO6X3sz7f95TYn9Vi98me8XvU5a0l7sgUFUq1ufbtfeTOvLhpZ7rCIeE5KyVRkkJZWn36ovKOq32rN2KIYWPvF6pmmy+o9cvjuYU/i51fH8+X/C/mzyCky61AzR6+gYpmlSYILbNPF4wGaDAMPAbqCvk4iIl1KCUkRExEeZplmq0vCC3gNI3fs7mz9/nwGTHiOsajUAwqIK/0/c9D1bv/qEzlfegCM0nNULX2HB5BuZ8ulGwqpGA5B5+BD/u74/GAadR4whPKoa21ctZ/Gjd+LMzqTbNTcB8MP781ky8z5a9LmcriPH48p3krxjG/t+3lCcoCzrWMdLznVjmqbeSEqxE/Vb9XVF/Vajg+1WhyKncGxy0tsUxdU1NtTiSKxhmiZH8gpIznGTnOPmYI6b5Fw37hO0Mg6wQWxIALVCA4j981+0w66/NSIiXkAJShERER9VYFLqDVitxhdQu2lLNn/+Phf0+gdRtc8r8fih3Tv416KVVItrAEB8+248f1VPNn/+Pl2uGgvAl//9N56CAu54d0Vx0rLTsNG8PXU8y196ik5DrycwOITtK5dRs2FTrpk596QxlnWs47k9hZWUdr1nlD/5a1/S5By3EpRebv0h701OFvnuYA4Ou0H7mNK/T/1VWl4BG1OdbD7sLL55YQP+bok1twf2Z7tJyv5r9oHDbtCqWjBtqgcT5dDPooiIVfytbZWIiMg5w22Wv5qsUacexclJKExoOsIjOHIgESisRPl5+VKa9egHpkl22uHif40v6oUzK4MDv24BIDgikvQ/kti3deMJz1WesSrq+Yn/Ur9VscK+LBcJB7KtDqNMEvZn+/3COR7TZEd6Hgt3pvPStjTWHcotUVn9d8nJEuMc83Fegcm6Q7m8tC2NhTvT2ZGeh0d/f0REzjpVUIqIiPgoT1nfiR2jamzdUttCIqrizDgKQHZaKs7MdH54/w1+eP+NE46RfSQVgIuvn8jO71fw4nWXUi2uAed37kmry4ZSv3Wnco91IgUeQMUs8qf/PjmdD/7vSe76YC1fzZnFL999QUBAEB2HXU/fm+8l/Y8kPn7yXnatX0lgcAg9Rt1G9+tuKT4+60gKX7wwnV+/W4YzK4Pq9RrR7dqbaHf5VcX7pCXtZebAdlx258MEh0Xw7esvkP5HErHnN2fw1JnEXdCmREyHdu9g2Yv/5vd1K3E5c6nZsCm9x99N84v7A3Bk/x6eGtSBAXc9RrdrS7YzSNz8A7NvGMAt/3mZ3neNrcSvnJwul8dkaWImBtb3nCwLA1iamMnYZlEE2vyv/HxflotPEjM5mu8pXiyror4vReMkZrrYk+miapCNAfUiiAsPrKAziIjIqShBKSIi4qNsp1FOZpzkIPPPt2fmn1nP1v8YTrvLR5xw39jzmwNQI74xkz5Yw68rvuS31V/x81dLWfvePHqPu5u+N08p11gnYve3cjk5baZpkuUqfD29fe9YajRoTP/bH+TX75bx9StPExoZxQ/vv058h+70n/gQmz5bxKfPTKNu89Y0aNcFlzOXl8f9k8P7dtN5xBii65zHT8s+ZtG023FmptP16gklzrf588XkZWfRccgoDMNgxev/x4K7RzP54/XYAwsTFn/8/iuzbxhAZI1aXDx6IkEhofy07CPevGsU1zw1jwt6DyC6bn3qte7Ips8WlUpQbvp0EY6wcOp0uVT9Vr3Ut0nZlq7WXV5Fq3uvSMrmkrrhVodTYVwek2+Tslmf4qzwxOTxisZN/3OV9PYxwVxcO8wvE74iIt5GCUoREREfFXCShMaZJDrCoqrjCAvH9BTQqNPFp9w/KCSMlv2uoGW/K3C78nlz0mi+mfsMPW+8o9xjHe9kz0/OPQVmYU9SgLgL2nLFA/8BoOOQUcwc2JZPn3mIfrc/wMWjJwLQqv8QZvS7kPUfv0WDdl344f03OLT7N66c/j/a/GMYAJ2GjmbOuMF8+eIM2g++BkfYXwmdo8kHuPvD7wmJrApA9fqNmP+v6/htzdc063EpAEueup+qsXW59c0vCQhyAND5yht56cYBfPb8o1zQewAAbQeM4IPHJ3Fo9w5qNDi/8Pm4XPy07GMu6D0AmyNU/Va90L4sF+tTnFaHUW4msC7FSeOqDr+o/tuX5WJpYiYZ+YU3KM5WsrjoPBtSnOxIz2egqilFRCqdahNERER8lN0oXJH0eEEhhSu55maml3tMm91Oi94D+Xn5UpJ3/lLq8ay0v6ZkZx89UuKxgMAgasY3wTRNPG53ucY6XoCtsD+fCJTsR9r+imuLP7bZ7dRp3hrTNGk/+Jri7SERVaheryFH9hf2Vt2+MoGI6jVo1X9I8T72wEC6jBxHfk42uzasLnG+ln0HFycnARq06QzAkQN7AMhJT2PXuu+48NJB5GVnFfdWzTl6hPMv6s3hvbtIP3QQgAsvHUyAI5hNny0qHu+3NV+TffQwbf4xvNTzE+t5TJNP/pza7YsM4JPETJ/vo7g+JZcFO9ItrWItqkpdsCOd9Sm5FkUhInJuUAWliIiIjzIMg9iQAPZnl1xko3azVkDhCtotL70Ce2BgcdVXWfSb+CC/r1/Fi6P60+GKa6kZ34ScjDSSft3Czu9X8NA3OwCYe8twIqrXoF6rjoRXiyFl9w7WvPMqTbv1La5GK+tYx4sNCdCUVyl2bL/VqrF1SjwWHB5BgCOYsKhqx22PJCc9DYCjyfupFheP7bgWB0UVjUcP7iuxvWqtkr1ai5KVuRmFSf/D+3ZjmibLXnyCZS8+ccKYs4+kUKVGLUIiqtCsx6Vs/vx9Lr1lKgCbPltEZI1axHfoDqjfqrf5PSOfo/mn0eTXS5jA0XwPuzJcNKoSZHU45WaaJqv/+GvldKvTrEXnT9ifTV6BSZeaIfr7JCJSCZSgFBER8WG1QgNIynaXWJE07oI29L3lXr5f9Dq/rf4K0+PhnqUbyjxmRLUa3Dr/C5bPmcXWrz/h+/fmEVo1ihrxTek/8aHi/ToNvZ5Nny1i5YLZ5OdkE1mjFl2uGkevsXeVe6xj2QyoHaapdPKXY/OKNlvpTN7xicdip1lBZpzgHMeOV9Rftft1t9K4S68T7lotLr744zYDRvDTso9J3PwDsY2a88u3X9B5+A3FcavfqnfZ8GevQ6sTY2fCADak5PpkgvLY5KS3KYqra2yoxZGIiPgfJShFRER8WGxoACeq8+k9dhK9x04qsW3GjyknHGPKJz+W2hYeHcPge59k8L1PnvTcHYeOouPQUaeMsSxjHctjFlZQihQ5036kVWPrkrxzGx6Pp0QyM2V3YQVv1Vpx5Rovum49AOwBAWXqr9q4S2/Coqqz6dNFxF3YDpczhzYDhhc/rn6r3iMtr4A9mS6rwzhjJrA700VaXgFRDt8pz11/yHuTk0W+O5iDw27QPibE6lBERPyK7teKiIj4sNhQ/0zk+evzktNjN86sJ2mTbn3ITD3Eli8/LN5W4Haz+p1XCAoNI75dl3KNFx4dQ3z7rnz//htkpCSXevz4/qr2gABa9b+Cn5Z9zIaPFxLbqDm1Gl8AqN+qt9mY6vTZ3pPHM4BNqb6z0M++LBcJB7KtDqNMEvZnsy/L9xPZIiLeRAlKERERHxbtsOPws+V/HXaDKIcuUeQvhmEQHnj6r4mOQ0ZRo0FjFk27nU+fmcbqha/w6s1DSdz0A5feMrXECt5lNejeJ8E0eW7ExXz+wmP88P58vnrlP7w2cSSv3jSs1P5tB4wg++hhdq1fSet//PW4+q2WzWuvvYZhGOzZs6fSzmGaJpsPO712aveccYOZM25wmfc3gU2HnZiVsFhORX8/XB6TpT60MJEBLE3MxOXx1leLiIjv0dW/iIiIDzMMg1bVgn3mTd2pGEDrasFK2EgpZ5KgDAwOYdzLH9L6sqH8uOQdPn1mGrnpRxn28PN0vXrCaY1ZM74Jt725jCbd+vDjkoV8/MQUvl/0OoZh45Lxk0rtX6d5K2o2bIphsxUnKNVvtfJt27aNhx9+uEyJtCN5BeQVWJtw+mPXdhJmzyQtaW+FjJdXYJKW5/0L/nyblG3pat3lVbS694ok36j4FBHxBYZZGbfURERE5KxJyyvgpW1pVodRYSY0j/Kpnmlydmw94mRJYpbVYZyR50f2IjQyirEvvV+8bVC9CJpHOyyMyjcUFBTgcrlwOBzluoGxaNEihg8fztdff03Pnj3/dl9veI39lPAxb90zhnFzPiS+fdcSj7ld+QAEBJZv4ZvKeI299tpr3HDDDezevZv69euf0Vj7slws2JFeMYFZ4JrzqxAXrhsNIiJnShWUIiIiPi7KYad+RKDPV1EaQIOIQCUn5YR8vS/p/m2bOLj9Z9oMvLLEdl9/XmeL3W4nOLhyq6uTc9xlfnOUn3v2K+cCAoPKnZy0GZCc666kiM6cxzT5xIemdh/PAD5JzMSjmh8RkTOmBKWIiIgfaBcT7DNT407GBNppVVQ5CV/tt5q88xc2LFnI4ofvIKJ6TVpe+s/ix9RvteyO73lYv359Bg4cyMqVK+nYsSPBwcHEx8fzxhtvlDhm+PDC1dJ79eqFYRgYhsE333xTvM9nn31G9+7dCQsLY2CTWsydOJI/fv+1xLnfm3Yb07rW4/C+3cy7/SqmdavPO/ffDMDUtjF89MQUtn79Kc8O784DnerwzLBubF+1vMQYaUn7+HDGPfznis48eFEcj/ZqzIJ7biwxlXvDx2/z1j1jAHh5/D+Z2jaGqW1j2LV+FXDiHpRZR1JY/MgdPN6nOQ92rstzI3qyYcnC4sc9Jmze/juGYTBr1izmzJlDw4YNcTgcdOjQgXXr1pUYb8uWLYwePZr4+HiCg4OJjY3lxhtv5PDhw2X+XpXH7xn5HPWhqd3HM4Gj+R52ZWjBHBGRM6VbtiIiIn6gYWQQVYNspPvoGz0DqBJkIz5S0+TkxIr6ra47lOtTr/GfE5bw1cuzqF6vEVfNeIlARzCgfqsVYefOnQwbNowxY8Zw/fXXM3fuXEaPHk27du244IIL6NGjBxMnTuT555/nvvvuo1mzZgDF/8+fP5/rr7+efv368cQTT/D576msee81Zt84kIlvf0VU7fOKz+UpKGDurVdSv00n/nHnIwQG/3UzJXHT92z96hM6X3kDjtBwVi98hQWTb2TKpxsJqxoNwP5tG9m7+QdaXnoFVWrWJi1pL98veo054/7JvxatJCgklAZtL6LLyHGsfvtlet54JzUaNAYgpsH5J3z+LmcuL4/7J4f37abziDFE1zmPn5Z9zKJpt+PMTC/ur5riLKygfOutt8jMzGTChAkYhsHMmTMZMmQIu3btIjCw8HfvsmXL2LVrFzfccAOxsbFs3bqVOXPmsHXrVtauXVvhr9cNKYWrpvvSz/TxDGBDSi6NqpSvulVEREpSglJERMQP2AyDAfUifLaPlwkMrBeBTcka+Rttqgfzw6Fcq8Molz433UOfm+4ptd0EWlcPPvsB+ZHt27ezYsUKunfvDsCVV15JXFwc8+bNY9asWcTHx9O9e3eef/55+vbtW6IHZVZWFhMnTmTs2LHMmTMHt8cke/NhWg8cwdNXXMTXrz7LkAefLt7fnZ/HhX0H0f/2B0vFcWj3Dv61aCXV4hoAEN++G89f1ZPNn79Pl6vGAtC0W18u7DOoxHHNevTjf6Mv4+flS2k78Eqi69anfpvOrH77Zc7v3LNUD8rj/fD+Gxza/RtXTv8fbf5ceKnT0NHMGTeYL1+cQfvB1+AIC6do3Z+9e/eyY8cOoqKiAGjSpAmDBw/miy++YODAgQDccsstTJpUcpGnzp07M3LkSFauXFn8ta4IaXkF7Mn0/cpDE9id6SItr0AtSkREzoDmlIiIiPiJuPBA2sf43oreBtAhJpi6WmRATkH9VuVYzZs3L5Ewi4mJoUmTJuzateuUxy5btoyjR48ycuRIUlNTSU5JITvtMDabnbgWbdm1fmWpYzoPu+GEYzXq1KM4OQlQq/EFOMIjOHIgsXjbsRWXBS4X2UePUC2uAcERVUj6dUuZnu/xtq9MIKJ6DVr1H1K8zR4YSJeR48jPyWbXhtUl9h8xYkRxchIo/tod+/UKCfkrTqfTSWpqKp07dwbgxx9/PK04T2ZjqtPnf5aLGMCmVKfVYYiI+DQlKEVERPzIxbXDiAyy+cybPgOIDLLRo3aY1aGIj1C/VSly3nnnldoWFRVFWlraKY/dsWMHAL179yYmJoa42JpMv6Qp0y9pyo6135CVllpif1tAAJE1a59wrKqxdUttC4moijPjaPHnLmcuy/73BE9c1ooHO9dheu8mTL+kKc7MdJxZGaeM90SOJu+nWlw8NlvJt3Q1/pwSfvTgvhLbj/96FSUrj/16HTlyhDvuuIOaNWsSEhJCTEwMDRoUJl/T0yuuQt80TTYfdmICCbNnMrVtDNlpf9/n8skBbXlv2m3Fn+9av6pEj04o7Bf65IC2JY6b2jaGhNkzKyz2EzGBTYedmFosR0TktGmKt4iIiB8JtBkM9KGp3kVTuwNtvpJSFaup36oUsdtPXIFaliSRx+MBCvtQxsbGkl/g4f3dmcWP2+wl3yYFBAaVSgQWMU6y3TzmFfrxzKls+Phtul49gfNatic4PBLDMHh76nhM03PKeCtCWb5eV155JatXr2by5Mm0bt2a8PBwPB4P/fv3L/6aVYQjeQXkFfjiT/DJ5RWYpOV5iA5WZbSIyOlQglJERMTPxIUH0qduGAn7s60O5ZT61A0jTlO7pRzUb1XK42SLujRs2BCAGjVq0KdPH9weky2bK2elaihcLKntwBEMuOvR4m2uPCfOzJKv4/IsQlM1ti7JO7fh8XhKJE9TdhdWh1atFVeuGNPS0li+fDmPPPIIDz30UPH2omrTipSc4y73MZM+WINhlH8C4KNr9pVKOFeW5By3EpQiIqdJU7xFRET8UPuYELrXCrU6jL/VvVYo7TXNVU6Dr/ZbNU0T+/5fSN25ldxc31rsx1eFhRW2jzh69GiJ7f369SMyMpJ///vfuFwu7AYEHPPO6Pgp3mfKsNvhuMrONQtfwVNQUGJbYHDh7+3czFMn4Jt060Nm6iG2fPlh8bYCt5vV77xCUGgY8e26AGAv4w9KUYXl8RWozz77bNkGKIfkHHe534gGBDmwB5b/hlagIxh7QOUnKG0GJOeWP/EqIiKFVEEpIiLip7rULEz+fXcwx+JISutRK5SLaio5Kafv4tph7EjPJ8NHpnobwJGkvTx7ZT/uceZis9mIi4ujZcuWtGjRgltvvZU6depYHabfad26NXa7nSeffJL09HQcDge9e/emRo0a/O9//+O6666jbdu2XHXVVfzuCWNP4l5+XbmMeq06MvjeJyssjqbd+7Lx0/dwhEdSM74Je7esY+cPKwitGl1iv9pNWmCz2/n2tRdwZmUQEOSgYYduhEfHlBqz45BR/LD4DRZNu52kXzZTtVYcPy9fQuKmHxh493QcYeEAxASX7S1fZGQkPXr0YObMmbhcLurUqcOXX37J7t27z/wLcJyDOW6OnzCeffQIHz1xD7+t/gpbQCBt/jGM/hMfItBRuNr9kwPaEt++C8Mf+b9ynWtq2xguGT+ZPjfdU7wt6dctfPF/j5O4+QdMj4e4Fu249Nb7OK9l++J9Nnz8NosensiEuUv5eflSNn3yHvnOXM6/qCdXPPAfwqOqlziPx4SkbN9flVxExCqqoBQREfFThmHQNTaUPnULK4isrjYzKKzM+frFx9mV8D4ul97Iyekr6rfqC8lJKJzaXT3pZ1zOwspJj8dDYmIiS5YsYcaMGSQkJFgboJ+KjY1l9uzZHDp0iDFjxjBy5Ei2bdsGwNVXX83y5cupU6cOTz31FAsen8qWLz6gduMWtB90dYXGcfnkf9NmwJVs/mwxnzzzEBmpfzDmf4sJCim5QFhE9Zr8876nyE5L5f1H72Th1PEc2vXbCccMDA5h3Msf0vqyofy45B0+fWYauelHGfbw83S9egJQWNVXM7TsNSlvvfUW/fr147///S9Tp04lMDCQzz777PSf+AmYpnnCSsO3p4zFnZdHv9seoEnXPqx++2U+mD6pQs8N8Mfvv/LSmMs5+NtWelx/G73HTeJI0l5eHv9P9v60odT+S2ZOJfm3rfQefzedh4/m1xVf8PET955w7ORctxbKERE5TYap36Ai4udM06TABLdp4vGAzQYBhoHdKF+vJxFfti/LxdLETMuqzYpW69628EX+b/qDAMTExHDbbbcxYcIEatasaUFU4g/Wp+T6TL/VllXsxMfHc+DAgeLtdrudTp06sWLFipMuYiJnx9YjTpYkZlkdRoUbVC+C5tEOq8Mo5vaYzP1S72YAACAASURBVDqm32fC7Jksn/MUzS7uz6hn5hdv/2jGPax9bx4TF35DrcYXlKqg3LV+FS+P/yfj5nxIfPuuQOEq3rvWr2bKJz8Wj3N8BeX8SdezfWUCdy1eRXTd+gBkpCTz9JCLqN3kQsa/8jHwVwVlo04Xc+OL7xVfMy79z4OsWfgyD371G8ERkaWe3+RW1bBr4TcRkXJTBaWI+BXTNDnsdLP1iJPl+7N487ej/GfLYWZtPsyzW47w/M9HeHbLEWZtPsx/thzmzd+Osnx/FluPODns1F1v8V9x4YGMbRZFu5jCqXJn661T0XnaxwQztlkUI/r1LH4sJSWFRx55hLp163LdddeRkpJylqISf+JL/VaDgoJ47LHHSjxWUFBA3759T7pCtJw9seWoNPQl3va83Ce51up85Y0lPr/oqnEAbF9VcdXFnoICdqz5huY9LytOTgJExsTSqv9Q9mz6HmdWZoljOg65rsQN7QZtOuMpKCDt4L4TnuNkz09ERP6ed/21EhE5TWl5BWxMdbL5sJO8gsILQxuU6m90LLcH9me7Scr+qw+Sw27QqlowbaoHE+VQJYv4l0CbQZ+64TSp6uCTxEyO5nsKp11XwrmKxq0SZGNAvYjilbo7dOhAUFAQ+fn5QOE0V4/Hw5tvvsmVV17J5ZdfXgnRiL/zpX6r1113HY8//ji///47AAMGDOCRRx5h/fr1zJs3j5iY0r0G5eyIdthx2I3i6wh/4LAbRDm8K/ntOcnFWfXz4kt8Xq1ufQybjbSkEycCT0d2WiouZw4x9RuVeqxGg/MxPR7S/zhAcHjT4u1VYuuW2C8ksioAuZklF14qUuABdAkpIlJu3vXXSkSkHDymyY70PBbuTOelbWmsO5Rb4k3F3yUnS4xzzMd5BSbrDuXy0rY0Fu5MZ0d6Hh7dCRc/ExceyPjmUQyLj6R+RGHisKIqKovGqR8RyLD4SMY3jypOTgI4HA46depU4hibzcYrr7yi5KScNm/stwqF07q7xIaWqL4KCAjg8ccfB2DChAksXbqUpUuX8v3339OqVSuWL19uQcQCha+jVtV8b3X4kzGA1tWCva6dTZmLhb0kbtvJWi+c5PLQrnfYIiKnRRWUIuKT9mW5SlSAQcVVgRWNk5jpYk+mi6rHVYCJ+AObYdCoShCNqgSRllfAplQnm46tQDYKVyQ99Th/7eewG7SuFkzrU1Qg9+rVi9WrVwOFbRliYmKUnJQK0T4mhJohAV7Rb3Xg3/zdGD58OFWqVKFnz55AYRXlli1buO666+jbty9Tpkzh0UcfJTBQf3fOtjbVg/nhUK7VYVQIE2hdPdjqMEoJOEniMXXvLqLr1Cv+/PC+3ZgeD1G14yrs3GFR1QkMDiVlz85Sj6Xs2Ylhs1GlZp0zOsfJnp+IiPw93d8REZ/i8pgk7M9iwY500vMLax8r6w1o0bjp+R4W7EgnYX8WrrJkbER8TJTDTq86Ydx5YTTjm0UxqF4E7WNCqBsWQMBJrhQCbFA3LID2MSEMqhfB+GZR3HlhNL3qhJ2yPUKPHj0oKCjgvPPOK64Wu+KKK3A6nRX91OQc5C39Vv/uppbNZqN///4EB/+VPKpVqxZffvklM2bMYNasWXTr1o1du3ZVctRyvCiHnfoRgT5fRWkADSICvbJdjd3ghH9b1r47t8Tnaxa+DECTrpdU2LltdjvnX9STX779nLSkvcXbMw8fYtPni6nfuhPB4RGnPX6ArfDGnYiIlJ8qKEXEZxy7CjFUXmLyeEXn2ZDiZEd6/t9WxYj4MsMwiA62Ex1spzmFK76aponHLGz6X+ApnLoWYBjYDE572mDPnj15+eWXGTJkCNHR0Xz88cdcfPHFjBkzhjfffNPrpiOK7/GGfqunw2azMWXKFHr27MnIkSNp3bo1s2fP5uqrr66weOXU2sUEsyfTZXUYZ8QE2sWEnHI/KxiGQWxIAPuz3SW2px3Yyxt3Xsv5XXqzd8t6Nn36Hq0uG0qtxi0q9PyX3jKVnWu/YfaNA+k8/AZs9gB+eP8NCvLz6X/HtDMaOzYkQH/DREROkyooRcQnrE/JZcGOdMum7EHhxX7Gn9WU61P8Y/qXyKkYhoHdZuCw2wgNtOGw27DbjDN6A2a32xk7dizR0dEAdOzYkddff5233nqL6dOnV1ToIpb2Wz0TnTp1YtOmTVx++eVcc801jB49mszMzFMfKBWiYWQQVYNsPltFaQBVg2zER3rvzdRaoQGl3oiOfOJl7EFBfPHCY2xfuYyLRoxh6EPPVvi5azZsyoRXl1CzYVO+mfccy+fMompsXca+9AHnXdjutMe1GVA7zHu/5iIi3s4wTa3+ICLeyzRNVv+R65Urs3avFUqXmiG6Uy5SQaZPn86DDz7IwoULGTFihNXhiB8q7reamkvenyukVWa/1TNlmibz58/nlltuoXbt2rz99tu0a3f6CRQpu31ZLhbsSLc6jNN27flVqOvFsz22HnGyJDHL6jAq3KB6ETSPdlgdhk8wTZOCP2doeDyFiycFGAb2M5ihISK+TQlKEfFqq5JzvDI5WaR7rVC6xoZaHYaIXzBNk1GjRrFo0SK++eabUqt9i1SUESOu4qu163j4mf/SrFN3krJdJOe6cXtK7xtgK5y2WTsskNiQAGJDA4hy2M7qG+gdO3Zw1VVX8dNPPzFjxgz+9a9/YSvzUshyuhL2Z7EhxWnZzI3TYVDYB/WSuuFWh/K3DjvdvPzLUavDqHDjm0URHex9fT+tZpomR/IKSM5xk5zj5mCO+5S/c2uFFv6+jQ0NINphV9JS5BygHpQi4rXWH/LOysljfXcwB4fdoL2X9nkS8SWGYfDKK6+we/duBg0axA8//EC9evVOfaBIObzxxhu8++47AOxatYxbh/QHSvZb/frbFfxz0OW48/JYvXoVHVt1sDJkzj//fNasWcN9993H3XffzbJly3j99depWbOmpXH5u4trh7EjPd/S9jLlUbSCfI/aYVaHckrRDjsOu0FegS98ZcvGYTeIcujGwbHS8grYmOpk82Fn8ffaBpwgL1nM7YH92W6Sst3F+znsBq2qBdOmkqvWRcRaqqAUEa/ka1Orrjm/ihbOEakgKSkpdOrUifDwcFauXElkZKTVIYmfWLduHV27dsXlKlwApXXr1mzcuLHUfh07dmTdunUA1KlTh/3795/VOP/OF198wahRo4DCZGu/fv0sjsi/6Xqk8nx1IJt1h3J9Ivl7KgbQsUYIvep4f3K4snlMk98z8tmQ4mRPpqvCFigrGqd+RCDtYoJpGBmETVWVIn5Ft3hExOu4PCZLEzN9pjm9ASxNzMRVliZmInJKMTExLF26lMTEREaOHElBQYHVIYkfOHjwIAMHDsTj+at2Z/PmzaSnl0w+ZWRkFCcnAQ4cOMDMmTPPWpyn0q9fP7Zs2UKbNm3o378/kydPJj8/3+qw/FZceCB96vpG0qlP3TCfSU4CtKke7BfJSShMnLWuHmx1GJbbl+VizrY0Fu/KJDGz8EZQRX2Pi8ZJzHSxeFcmc7alsS/LVUGji4g3UIJSRLzOt0nZPjOdCv5a3XtFUrbVoYj4jebNm/Pee+/xxRdfcPfdd1sdjviBIUOGcOjQoRIJb9M0WblyZYn97r333lLH3n///WRlec+CHjVr1uTTTz9l1qxZPPfcc3Tp0oUdO3ZYHZbfah8TQvda3t1vunutUJ9rNxPlsFM/ItBnbkifjAE0iAg8p6ceuzwmCfuzWLAjnfT8wptAlXUdXzRuer6HBTvSSdifpSIBET+hBKWIeJV9WS7W+1hDeii8WFqX4tSdXJEKdOmll/LCCy/w7LPPMnv2bKvDER/m8XgIDQ3Fbv8rgVC0yMzXX39dYt/58+eXOt7tdnPllVdWbpDlZLPZmDRpEmvWrCE9PZ02bdrwxhtvWB2W3+pS03uTlD1qhdKlpm8lJ4u0i/H9KkoTaOdjyeGKtC/LxSu/pLEhxQlUXmLyeEXn2ZDi5JVfVE0p4g+UoBQRr+ExTT7xoandxzOATxIz8ai1r0iFufnmm5k4cSK33XYby5Ytszoc8VE2m43ly5eTmZnJ0KFDqV69OoMHDyYmJqbEyrCJiYknrZT0pgrKY7Vr144ff/yRYcOGcf3113PttdeSkZFhdVh+xzAMusaGFk/3tvpapej8feqG0SU21GdXOG4YGUTVIJvlX8/TZQBVg2zER/rO1PqKtD4llwU70i2d+VQ0k2nBjnTWp+RaFIWIVAQtkiMiXmNHeh6Ld2VaHcYZGxYfSaMqQVaHIeI3CgoKGDRoEKtWrWLNmjU0a9bM6pDEh3Xo0IFmzZqdsNrQ4/Hw0ksv4Xa7+fbbb1m8eDEbNmygbdu2FkRafgsWLODmm28mJiaGt99+m44dO1odkl/al+ViaWKmZUkZ0/RQ1RHAwHoRPtFzctOmTSQkJJCWlsaRI0dIS0vj4MGDbNu2jdatWzP3g099aiGi4117fhXq+sD3oSKZpsnqP3L57mCO1aGU0v3PimJfTdqLnMtUQSkiXmNDitNn76AXMYANunsrUqHsdjtvv/02cXFxDBgwgJSUFKtDEh+Vm5vLpk2buOiii074uM1m4+abb+b222+nd+/eACQlJZ3NEM/INddcw8aNG6levTpdu3Zl5syZJRYFkooRFx7I2GZRtIspXBTlbF27GACmyaoFc7gw4zefSE4CPP7440yePJmnnnqKV199lXfffZcVK1aQmppK1apViQsPpH1MsM9dAxpAh5jgcy45CXhtchLgu4M5rP5D1+IivkgJShHxCml5BezJdPlFH6LdmS7S8rTqsEhFioyMZOnSpWRnZzNkyBDy8vKsDkl80Pr163G73SdNUB6rfv36AOzZs6dyg6pgDRs2ZOXKlUyaNIkpU6bQr18/Dh48aHVYfifQZtCnbjjXnF+FKkGFb6kqK8FWNG6VIBtXNYwgZeUSxoy+ntxc30jCTJkyBcMwcLlcuFwuTNPEMAwaNGhQ3PP14tphRPrQVG8DiAyy0aO2b6zwXpHWH/Le5GSR7w7maLq3iA9SglJEvMLGVN+vnixiAJtSnVaHIeJ36tWrx0cffcS6desYN24c6lIj5bV27VrCwsJo0aLFKfdt2LAhAAcOHKjssCpcYGAgTzzxBMuWLePnn3+mZcuWfPrpp1aH5ZfiwgMZ3zyKYfGR1I8orKSrqOuZonHqRwQyLD6S8c2jqF8lmNdee43ExEQeeOCBCjpT5YqNjaVBgwalts+fP5/g4MIq1ECbwcB6ET5zo9oEBtaLINDmL1evZbMvy0XCgWyrwyiThP3ZWjhHxMcoQSkiljNNk82HvWvl7oTZM5naNobstMPlPtYENh12KnkiUgk6d+7Ma6+9xvz585kxY4bV4YiPWbNmDR06dCAgIOCU+xYlVHxpivfx+vTpw5YtW+jYsSMDBgzgX//6l6qPK4HNMGhUJYgRjaowoXkUHWuE4LAbxzxe1nH++thhN+hYI4QJzaMY0agKjaoEYfuzp16zZs147LHHeOaZZ1i1alVFPpUKlZeXx4wZM2jSpAkZGRk4HA6gsJXCrbfeSteuXUvsHxceWLwIkbfrUzfMZ6bYVxSXx2SpDy1maQBLEzNxeXQ9LuIrlKAUEcsdySsgr8C/Lh7yCkzS8tT3S6QyXHXVVTzyyCPcf//9vPfee1aHIz7CNE3WrFlTpundAEFBQRiGwR9//FHJkVWumJgYli5dyrPPPsuLL75I586d2b59u9Vh+a0oh51edcK488JoxjeLYlC9CNrHhFA3LICAk7zzCrBB3bAA2seEMKheBOObRXHnhdH0qhNGlMN+wmPuuusuOnXqxA033EBOjndNtzVNk6VLl3LBBRfw0EMPcdNNN7Fz505mzpwJFFZUnuwGU/uYELrXCj2b4ZZb91qhtI8JsTqMs+7bpGxLV+sur6LVvVck+UbFp4jAqW8fi4hUsuQct9UhVIrkHDfRwSd+YyEiZ+bBBx/k119/ZdSoUdSvX58OHTpYHZJ4ucTERJKTk8ucoAQICAggNTW1EqM6OwzD4I477qBHjx6MHDmStm3b8sILL3DDDTdopdtKYhgG0cF2ooPtNKewctA0TTwmuE2TAg/YbRBgGNgMyv19sNvtvPbaa7Ru3Zr777+fZ555pjKeRrn99ttv3HnnnXz22Wf06dOHJUuW0KxZMwBuueUWtm7dyqhRowgPDz/pGF1qFib/vLHPYY9aoVxU89xLTu7LcrE+xffaF5nAuhQnjas6zrmKVxFfpApKEbFcco7b734Z2QxIzvXPxKuINzAMg7lz59KmTRsGDRrE3r17rQ5JvNzatWuBwjYBZRUcHMzRo0crK6Szrk2bNmzYsIGRI0cyZswYRo4cSXp6utVhnTMMw8BuM3DYbYQG2nDYbdhtxmkniZs0acL06dN57rnn+O677yo42vLJzMxkypQptGjRgl9++YX333+fL7/8sjg5CYUJ/5deeqnU1O7jGYZB19jQ4uneVqfQi87fp24YXWJDz7mkvsc0+cSHpnYfzwA+SczEo9ZLIl5PFZQiYrmDOW7KOhk6/dBBEv73BNtXLScnPY3ImFgad+nNwMmPk5+TzTdzn+W3NV+TdiARw2ajXquO9J/4ILUal1wQYfXCl/l+0eukJe3FHhhEtbr16XbtzbS+bGiJ/XIz0/n02Wls+/ozTExa9BrAoHufJCjk76cfeUxIylZjbpHKFBwczIcffkinTp24/PLLWblyJREREVaHJV5qzZo1NGzYkJiYmDIfExYWRmZmZiVGdfaFhYXxyiuv0LdvX8aPH0/r1q156623ylVZKt7jzjvv5P333+eGG25g8+bNhIWd3R6Opmny1ltvMXnyZNLS0njggQeYPHkyISFnXmXYPiaEmiEBLE3MtGxqcdFq3QPrRZyzFXi/Z+RzNN932xaZwNF8D7syXDSqEmR1OCLyN/ytaElEfIxpmmWuNMxISebF6y5l8xcf0vLSf3L55H/TZsBwdm9YjcuZy5EDiWz9+lOadu/LgLseo/uo20je+Qtzxg4mIyW5eJwf3p/Pkpn3USO+MQMnTafPTfdQq0kL9v28odQ53753LHnZWfS7/QFa9h3MhiULWT5nVpniTc51a6EckUpWo0YNlixZwu7du7nmmmsoKCiwOiTxUuXpP1kkIiLC6/r7VZQRI0awefNmYmNj6d69O48//rh+fnyQ3W5n3rx5HDhwgPvuu++snnvjxo10796da6+9lq5du/Lrr7/y0EMPVUhyskhceCBjm0XRLqZwte+zVcVXdJ72McGMbRZ1ziYnATakOH22erKIAWxIybU6DBE5BVVQioilCkxwl/Gm7OcvPEbm4UPc8sYX1G3eunh735vvxTRNYhs1Y9KH32Oz/XXvpe2A4Tw9pAvrPlzAJeMmAbB95TJqNmzKNTPnnvKctZtcyNBpzxV/nnM0jfUfLeCyOx465bFuT2Elpd3Xr+pEvFyLFi149913GTBgAPfccw//+c9/rA5JvExubi4bN25k9OjR5TouKiqKPXv2VEpM3qB+/fqsWLGCRx55hAcffJDly5czf/586tSpY3VoUg6NGzfm3//+N3fddRdDhgzh4osvrtTzpaam8sADDzBnzhyaNWtGQkICl1xySaWdL9Bm0KduOE2qOvgkMZOj+R4MqJSKyqJxqwTZGHAOV00WScsrYE+m788IMoHdmS7S8gpOuvCUiFhPFZQiYil3GSsMPR4P2775jGY9+pVIThYxDIOAIEdxctJTUED20SMEhYRRvV4jkn7dUrxvcEQk6X8ksW/rxlOet+Ow0SU+r9+mMzlHj+DMKtuUv7I+PxE5M/379+e5557j6aefZs6cOVaHI15mw4YNuN3ucldQVqtWDbfbv/sJBwYGMn36dJYvX8727dtp1aoVS5YssTosKaeJEyfSrVs3brzxRrKzK2fVYrfbzX//+18aN27MwoULeeaZZ9i0aVOlJiePFRceyPjmUQyLj6R+RGHisKLuAReNUz8ikGHxkYxvfm5XTRbZmOr71ZNFDGBTqu8t9CNyLlGCUkQs5Slj9WR2Wip5WZnUbNj0b8bysPLN2cwa3JEHO9dheu8mTL+kKck7tuLMzCje7+LrJxIUGsaL113KrMEd+WjGPezZ9P0Jx6waW7KKJCSyCgC5GWVbNKHAd1v2iPic2267jVtvvZVbb72V5cuXWx2OeJG1a9cSGhrKhRdeWK7jatasiWmafjvN+1i9evVi8+bNdO3alUGDBnH77bfjdOrNvK8omup98OBB7r333gof/9tvv6Vdu3bcfvvtDBkyhN9++4077riDwMCzm8SzGQaNqgQxolEVJjSPomONEBzHTFWxlTGbdux+DrtBxxohTGgexYhGVWhUJQjbObYQzomYpsnmw86z1vtz1/pVTG0bw671qyplfBPYdNip9ksiXkxTvEXEUrYKvE3yzdxnWPbiE7QffDV9b5lKSGRVbDYbS2c9gGn+lSmsEd+YSR+s4dcVX/Lb6q/4+aulrH1vHr3H3U3fm6ccF9/JpoGU7eLGrttAImfVs88+y86dOxk6dChr166ladOT39SQc8eaNWvo0KEDAQHlu/StXbs2ALt27aJFixan2Nv3Va9enQ8//JAXX3yRSZMm8e2337Jw4UKaN29udWhSBo0aNeKJJ57gjjvuYMiQIfTq1euMx9y/fz+TJ09m4cKFdOrUie+//54OHTpUQLRnLsphp1edMHrWDiUtz0NyjpvkXDdJ2S6Sc90nbCEUYIPYkABqhwUSGxJAbGgAUQ7bObcyd1kcySsgr8C/knl5BSZpeR6igzXNW8QbKUEpIpYKKOMFYVhUdRzhEfzx+68n3efnhCXEt+9WomckFK7EHVo1usS2oJAwWva7gpb9rsDtyufNSaP5Zu4z9LzxDgIdweV/IidR1ucnIhUjICCAd955hy5dujBw4EDWrl1L9erVrQ5LLGSaJmvWrOH6668v97HnnXcecO4kKKGwZcqtt95K9+7dGTlyJO3bt+e5555j7NixSuL4gNtuu43Fixdz44038tNPPxEeHn5a4zidTp5++mkef/xxwsPDmTdvHqNGjSrR59tbGIZBdLCd6GA7zXEAhT/3HrOw1U6Bp/CGcYBhYDPQ67iMknP8s71Fco5bCUoRL+V9f2FE5JxiNwrvZp+KzWajec/L+GXFF+zftqnU46ZpYtjsHF/Z+NOyj8g4dLDEtuyjR0p8HhAYRM34JoUXsxXYayzAVvapRiJScapUqcLSpUvJyMhgyJAh5OXlWR2SWGjv3r0cPHiw3P0noXARGYDExMQKjsr7tWzZknXr1jFq1CjGjx/P8OHDSUtLszosOQWbzcbcuXM5dOgQ99xzT7mPN02TJUuW0KJFC6ZNm8ZNN93Eb7/9xujRo70yOXkyhmFgtxk47DZCA2047DbsNkPJyXJIznH7XbLAZkByrn8mXkX8gSooRcRShmEQGxLA/uxTXyz0u+0Bdq79hjljB9NxyHXUaNCYjNQ/+DnhYybMXUrT7pfy1cuzWDTtds5r1ZHkndvY9NliouvWLzHO3FuGE1G9BvVadSS8Wgwpu3ew5p1XadqtL46w06s0OJHYkABdCItYpEGDBnz44Yf06tWLCRMmMG/ePP08nqPWrl0LQOfOnct9bHx8PAD79u2r0Jh8RWhoKLNnz6Zv376MHTuWVq1a8dZbb9GtWzerQ5O/0bBhQ5588kluv/12hg4dWuZFbIr6Sn7++ef07duXJUuW0KxZs0qOVrzVwRw3x86Sz8vO4ssXZ7Dtm8/ITP2D4PBIajW+gP4TH6ROs1Y8OaAt8e27MPyR/ysxzpxxgwEY//JHxdvS/0ji4yfvZcfabwkKCaX1ZUNp3KV3qRh2/7iG1QtfZt/PP5J1OIXw6Oq0uORy+t12P4HBIcX7vTftNn5OWMJdH6zl4yemsPP7bwl0hND28hH0n/gQNnthxaTHhKRs31+VXMRfKUEpIparFRpAUnbJi6ATqVKjFre8/gVf/m8Gmz5bTF52JpE1atG4S28Cg0PoNeZOXM4cNn22mC3LPqJ20wsZ/dxbfP7CYyXG6TT0ejZ9toiVC2aTn5NNZI1adLlqHL3G3lVhz8lmQO0wrf4oYqUuXbowd+5crr32Wpo2bVopC0eI91uzZg3x8fHUqFGj3MfWq1cPgKSkpIoOy6cMHTqUDh06cM0113DxxRczbdo07r//fux2TZP0VrfccguLFy9mzJgx/PTTT0RERJx038zMTKZPn84zzzxDnTp1+OCDDxg8eLBu6pzDTNMsVWn4wb/v5ueEJVw0Ygw14huTczSNxE3fc2j3Duo0a1XmsV3OXF65aQhHkw/Q5apxRMbUZOMn7/H7upWl9v0p4WNczlw6DxtNaJVo9m39kTXvvEL6oSSumTm3xL4ej4d5t15JXIu2/ONfj7Dz+2/5bv6LRNetT+fhNxTvl5zrLpx5pde3iNcxTC1jJSIW23rEyZLELKvDqHCD6kXQPNphdRgi57xp06bx6KOPsnjxYoYMGWJ1OHKWderUifPPP58333zztI632Wz06dOHL7/8soIj8z1ut5vp06fz2GOP0a1bN958803i4uKsDktOYvfu3Vx44YVce+21zJ49u9TjpmmyYMEC7rnnHo4ePcrUqVO5++67CQkJOcFoci5xe0xmbT5cYtsjPRrS+h/DGHzvkyc8pqwVlKveeomlsx7g6idf4cK+hY/l5+bw/FU9ObxvN+PmfEh8+65AYTLz2EpJgG/mPceX//c49yz9kaq16gKFFZQ/LnmHPjffyyXjJhXv+8LVvTEMG7ctSCgxxuRW1bCrD5OI1/G3thIi4oNiQ/2zmNtfn5eIr3n44YcZMWIE1157LevXr7c6HDmLnE4nGzduPK3p3UUCAwM5cuTIqXc8BwQEBPDwww/zzTffsHv3blq1asUHH3xgdVhyiWgyRQAAIABJREFUEg0aNGDmzJm89NJLLFu2rMRjP/74I926deO6666jW7du/PLLLzz44INKTgpQuLjQ8YIjqrDv5x/JSEk+o7G3r0wgonpNWvQZVLwtKCSUjkNGldr32ORkfm422WmHqdeyA6ZpkrT9p1L7dxpWcjG0+m06c+RA6R7CJ3p+ImI9JShFxHLRDjsOu3/dxXTYDaIc+hUr4g0Mw2DevHm0bNmSQYMGsX//fqtDkrPkxx9/xOVyndYCOUWCg4O1OMxxunfvzqZNm+jVqxdDhgzh5ptvJjc31+qw5ARuuukmevfuzZgxY8jIyCA1NZUJEybQvn170tPTWb58Oe+++25xOwMRAM8J+i5ddsdD/PH7rzxxWSv+e92lJMyeyZH9e8o99tHk/VSLa1BqinX1+o1K73twP+9Nu41He57PtK71mX5J0+KKTGdWRol9AxzBhEdVL7EtJKIquRlHS41bcKq+UiJiCb17FhHLGYZBq2rB+EuK0gBaVwtWbxsRLxISEsKHH35IYGAgl19+OVlZ/tdWQkpbs2YNISEhtGzZ8rTHCAsLIzMzswKj8g/R0dEsWrSI2bNn89prr9GhQwd+/vlnq8OS49hsNl599VXS0tK47LLLaNy4Me+88w7PPvssGzdupHfv0guTiJxowfaWl/6TyR+v4/J7ZhAZE8uKN/7LM8O7s31V4fTpk133mgUFpxWDp6CAV28ZxvbvErh49O1c9/QbjPnfIoY98kLhuMdlUcuzyrxdWRARr6QfTRHxCm2qB+Mvky1MoHX1YKvDEJHjxP4/e/cdFdW1PXD8O0PvRVFQsCLYEFARe0k0MbEmsUaNzx4bYkyMGjUm/l6MUQNYscSuqMTEbjT2BiqKiBqxU1QUBOl97u8PAy/Ergx3ZjiftVwrztw5Z897zsy9++6zj709O3fu5MaNG/Tv35+CN7xoErRHSEgIXl5eGBi8+aZlFhYWZGZmlmBUukOhUDBixAjCwsJQKBR4eXmxePFiRIt7zRIdHY2VlRWnTp3C29uba9eu4ePj81afC0G36T8n2WhpZ0+zXoMZ8PNaJu4Kw9TKhsO/+AFgYmlFdlrqU69Jji++asHa3pGkuDtPfU8k3rlR7O/xN66QGH2TD7/4jjb/8aFu2w9w9m6DpZ3927w14PnvTxAEeYkEpSAIGsHGSI9qFgZaX0WpAKpbGGBjJHY2FQRN1KBBAzZt2sTOnTuZPHmy3OEIaiRJEiEhIW/VfxLAxsaGnJycEopKN9WrV48zZ84wZMgQRo8ezUcffcSjR49e/kJBrWJjY+nTpw9t27alcuXKNGnShEuXLmFkJDbwE15MTwH6/8gUqAoKnko+mtvaYWlnT35uLgC2jtWIiQwjPy+36Ji/ju0nJf5usde5tmxPakI8lw7sKHosNyuTM7+tLXacUvnkXPqfiUxJkji5cdlbvTd9JYj9cQRBM4kdHARB0BiN7Iy5k5YndxhvRQIa2YkG84KgyTp16sTPP/+Mr68vLi4uDB06VO6QBDWIi4vj3r17b9V/EqB8+fLk5+eXUFS6y8TEhIULF9KhQwcGDx6Mu7s7GzZsoE2bNnKHVuZkZ2czb948fvjhBywsLFi9ejUDBgwgNjYWNzc3JkyYwIoVK+QOU9BgCoUCexN94jKefPflZKbzY8cG1G/fBYda9TE0NePG6aPEXQ7nwy++B8Cre38uHdjJqtG9afBeNx7F3uHC3mBsHasVG9vrowGEbP6FLdPHcPevCCzKVyR8dzAGxqbFjrOrVgtbx2rs9ZtB6sP7GJlZcPnQrmf2lHwd9ib6og2TIGgoUUEpCILGqGlpiLWhUmurKBWAtaGSGpZiyZQgaDofHx9GjhzJyJEjOXz4sNzhCGoQEhIC8NYJSnv7J8sJxTLvV9OtWzciIiJwdnamXbt2TJ8+XSR4S4kkSezcuZN69eoxY8YMRo4cybVr1xg4cCBKpZKqVasyb948fvnlF/bu3St3uIKGczDVL0oWGBib0LTnYO5HXeLA0tnsnjeVxOgbdJv8E636jwTApfk7fPjF9yTG3GTX3KnERJ5loP9GrCpWKjauoYkpQwN/o1bTtpza9AuHV/hR1cObD8ZNL3acnoEBA/034OBanyOrAji0bC7lnGrQ8/tFb/yelAqoZCbO0wVBUykk0SRGEAQNEpuex4brKXKH8cb617LC0Vyc+AiCNsjLy6NTp06EhYURGhqKi4uL3CEJJWj8+PFs376dW7duvdU406dPZ+bMmURERLzVZjtlTUFBAbNmzWLGjBl4e3uzceNGsVO0GkVFReHr68sff/xBhw4dCAgIoE6dOk8dJ0kSHTt25PLly1y6dAlra2sZohW0weWkbHZG696Gcl2rWlDXVrQ5EARNJCooBUHQKE7mBjS2074dvRWAl52xSE4KghYxMDBgy5Yt2Nvb07lzZ5KSkuQOSShBJdF/EsDR0RGAmzdvvvVYZYmenh5Tp07l2LFj3L17F3d3d4KDg+UOS+ekpaUxceJE3NzcuHr1Kr///jv79u17ZnISnizdXbFiBWlpaYwfP76UoxW0ib2pbnaD09X3JQi6QCQoBUHQOG0qmWGpRUu9FYCloZLWlczkDkUQhNdkbW3Nrl27SEpK4pNPPiE3N/flLxI0XnZ2NufPn3/r5d0A1atXB57shCy8vubNm3PhwgXee+89evXqxbBhw8jIyJA7LK0nSRLr1q3DxcWFhQsXMm3aNK5cuUL37t1f2l/PycmJn3/+mdWrV7N79+5SiljQNrZGehjpacvZ+Ksx0lNgYyRSIIKgqcSnUxAEjWOgVNC5qgXa0n9CAjpXtcBAbAkoCFqpRo0abNu2jVOnTjFy5EhE9xvtFx4eTl5eXokkKJ2dnYEnOyILb8ba2prNmzezYsUKNm7cSOPGjYmIiJA7LK11/vx5WrZsyWeffUarVq24evUq06ZNw8Tk1TfpGzx4MB07dmTYsGEkJyerMVpBWykUCtzLad+qpudRAB7ljMUGOYKgwUSCUhAEjeRkbkB7R+2oSGzvaIaTWNotCFqtZcuWrFixgpUrVzJ37ly5wxHeUkhICMbGxri7u7/1WE5OTgDEx8e/9VhlmUKhYMiQIZw7dw4jIyOaNGnCggULxA2B15CYmMiIESNo3LgxKSkpHDx4kC1btlClSpXXHkuhULB8+XIyMzPx9fVVQ7SCtoiPj2fevHksWrSINWvWsHXrVvbv38/JkycxfRStNQUDLyMBHuWN5Q5DEIQXEA0YBEHQWI3tTMgpkDh+X3N3Tm3lYEpju1evWBAEQXMNGDCAqKgovv76a2rVqkX37t3lDkl4QyEhITRu3BgDg7e/eaSvr49CoeDhw4clEJlQu3ZtQkNDmTRpEj4+Puzfv5+VK1diZ2cnd2gaKz8/n8DAQKZNmwZAQEAAI0eORF//7S7lHB0d8ff3Z9CgQfTo0YMuXbqURLiCljl69Chffvnlc59f/1cicVmSVicqFUA1CwNsjPTkDkUQhBcQFZSCIGi05hVNaOVgKncYz9TawZTmFUVyUhB0yffff88nn3xCv379OH/+vNzhCG8oJCSkRJZ3FzIwMODRo0clNl5ZZ2xsjL+/Pzt37iQ0NBR3d3cOHTokd1ga6ejRozRs2BAfHx969OjBtWvXGDt27FsnJwsNHDiQTp06MXz4cLFRWBnVpUsXrKysnvlc//79aeJgrtXJSXhSPdlIFBQIgsYTCUpBEDSaQqGghb1p0XJvubvGFM7f3tGM5vamoo+NIOgYpVLJmjVrqFevHl26dOHu3btyhyS8pri4OO7evVuiCUpjY2MeP35cYuMJT3Tu3JmIiAjq1q1L+/btmTJlCnl5eXKHpRFiY2Pp06cPbdu2xczMjDNnzrB8+fISrzRVKBQsXbqU7Oxsxo0bV6JjC9ohKiqqqJVFIaVSSZcuXVizZg01LQ2x1qLNK/9NAVgbKqlhKdoxCYKmEwlKQRC0QmM7E/rVspJ1d+/C3br71bISy7oFQYeZmpqyfft29PT06Nq1q9hxWMuEhIQA0LRp0xIb08zMjLS0tBIbT/ifSpUqsX//fn744Qd++uknWrVqxa1bt+QOSzbZ2dn897//pXbt2hw5coQ1a9Zw8uRJGjdurLY5K1euTEBAAOvXr2f79u1qm0fQHAUFBWzfvp22bdvSsGFDkpKSim666+np4erqyoYNG1AqlSgVCjpp0eaV/1a4maVSFBUIgsYTCUpBELSGk7kBQ+vY0MjuSYPr0jrNKJynsZ0xQ+vYiA1xBKEMcHBwYOfOnURFRTFgwABUKpXcIQmvKCQkhKpVq+Lg4FBiY1pZWZGVlVVi4wnFKZVKJk2axMmTJ3n48CEeHh4EBQXJHVapkiSJHTt2UK9ePWbMmMGoUaO4du0an332GUql+i/ZBgwYQJcuXRgxYoRoZ6DD0tLSmD9/Pq6urnTv3p3c3Fy2bNlCdHQ0ffr0AcDS0pK9e/diYWFR9DoncwMa22nfjt4KwMvOGEdx7i4IWkEkKAVB0CoGSgXtHc3pV8sKK8MnX2HqOlkqHNfq76rJdx3NMVBq26mZIAhvyt3dnaCgILZt28aUKVPkDkd4RSXdfxLAxsaGnJycEh1TeJq3tzfh4eF07tyZTz/9lEGDBpGeni53WGoXFRXFhx9+SLdu3XB2diYyMpI5c+ZgaWlZajEULvXOzc1l7NixpTavUDru3LnDhAkTcHR05IsvvsDLy4vQ0FBOnTpFz5490dfX5+uvv6Z69ers2LGDqlWrPjVGm0pmsq5kel2FK59aVzKTOxRBEF6RSFAKgqCVnMwNGF7Xhh41LKlm8eSuaEmdMBWOU83CgB41LBleV1RNCkJZ1aVLF+bOncvs2bNZtWqV3OEIL5GTk8P58+dLPEFZrlw58vPzS3RM4dmsrKzYsGEDq1evJjg4mIYNG+rshlWpqal89dVX1K9fn6ioKLZt28Yff/xB7dq1ZYnHwcGB+fPnExQUxO+//y5LDELJkSSpKAFZs2ZNVq5cyciRI7l9+zZBQUF4e3sXO97d3Z1bt27RsmXLZ45noFTQWYuWehcu7RbFBYKgPUSCUhAEraVUKHC2MqS3sxUj6trQpIIJRnqKfzz/quP877+N9BQ0qWDCiLo29Ha2wtnKUPSsEYQybvz48QwfPpwRI0Zw9OhRucMRXiA8PJzc3NwST1Da29sDTxJKgvopFAoGDhzI+fPnsbCwoGnTpvj5+elMqwWVSsW6detwdXVl0aJFfPvtt1y5coVu3brJvvlev3796NatG59//jmJiYmyxiK8mby8PIKCgmjatCktWrQgIiKCBQsWEBcXx48//vjUhjivw8ncoGjjSk3X3tFMFBgIgpYRCUpBEF5KkiTyVRLZBSoy81RkF6jIV0lIkubcQ7Ux0qNdZTN83WwZXseGrlUtaGxngqOZPvrP+abTV4KjmT6N7UzoWtWC4XVs8HWzpV1lM2yM9Er3DQiCoLEUCgULFy6kdevWfPzxx1y/fl3ukITnCAkJwdjYGHd39xIdt3LlygDcuHGjRMcVXszFxYVTp07h4+PDF198QefOnXn48KHcYb2V8+fP07JlSz777DNat27N1atXmTp1KsbGxnKHBjz5vgsMDCQ/P58xY8bIHY7wGpKSkpg9ezY1atTg008/xcLCgl27dnH16lVGjRqFmVnJJBYb25nQysG0RMZSl1YOpmJDS0HQQgpJkzIMgiDITpIkknIKiM/MJz4zn/uZ+cRn5ZP/jKIFfSXYm+jjYKqP/d9/bI30ZL/7/2+SJKGSIPTsWXr06sOuHdvxcKuPUoHGxSoIguZKTk6mWbNmSJJEaGgoNjY2cock/EuvXr24d+8eJ06cKNFxf/nlF4YOHUpwcDA9evQo0bGFV/PHH38wcOBAFAoFa9eu5b333pM7pNeSkJDA1KlTWb58OfXq1WP+/Pm0a9dO7rCeKygoiE8//VT8m9cCUVFRBAQEsGbNGvLz8+nXrx++vr40aNBAbXNKksSpB1kcv5+ptjneVGsHU5pVNBHn+IKghUQFpSAIACTnFHDobgb+kUks/+sxO6PTOZeQTVzGs5OTAPkqiMvI51xCNjuj01n+12P8I5M4dDeD5JyC0n0DL6BQKNBTKpj57XTiY27z3+++RU+pECcugiC8FhsbG3bt2kViYiI9evQgLy9P7pCEf1HHBjkA1atXByAmJqbExxZeTceOHYmIiMDd3Z3333+fiRMnkpubK3dYL5Wfn8+CBQtwcXFhy5YtBAQEEB4ertHJSYA+ffrw0UcfMWrUKBISEuQOR/gXSZI4cOAAnTp1onbt2mzdupWJEycSExPDypUr1ZqchCfn1i3sTYuWe8t9Rl04f3tHM5rbm4pzfEHQUiJBKQhlmEqSuJ6Sw6YbKSy9kszZh1nkFPyvqPpVOz3987icAomzD7NYeiWZTTdSuJ6Sg0oDCrWjoqLYv38/ANu3b+f27dsyRyQIgjZydnbm999/5/jx44waNUqjWl2UdXFxccTFxaklQVmzZs2iOQT52Nvbs3fvXubMmYO/vz8tWrTQ6GX3R44coWHDhowbN46ePXty7do1xo4di76+vtyhvZRCoWDJkiWoVCpGjx4tdzjC37Kzs1m5ciXu7u506NCBuLg4Vq1aRXR0NN9++y0VK1Ys1Xga25nQr5aVrLt7F+7W3a+WlVjWLQhaTiQoBaGMik3PY9mVZLbeSiM67UkVUEldZheOE52Wx9ZbaSy7kkxsuryVRt9//z1K5ZOvPIVCwf/93//JGo8gCNqrdevWLFu2jBUrVvDzzz/LHY7wt9DQUACaNm1a4mMXbipx//79Eh9beD1KpZIvv/ySU6dO8fjxYzw9PVm3bp3cYRUTGxtL7969adeuHWZmZpw5c4Zly5ZhZ2cnd2ivpWLFiixatIjg4GC2bNkidzhl2oMHD/j222+pUqUKQ4YMoWrVqhw8eJALFy7wn//8R9Yepk7mBgytY0MjuycxlFaisnCexnbGDK1jIzbEEQQdIHpQCkIZk6eSOHovg7CEbBSUXFLyRQrnaWxnTJtKZhi86vbaJeTatWvUrl27WKWTUqnk+vXr1KhRo1RjEQRBd0yePJnZs2ezbds2unbtKnc4Zd6ECRP49ddfiY6OVsv4enp6tG3bloMHD6plfOH1paWlMWbMGNauXUv//v1ZvHgxFhYWssWTnZ3N3Llz+eGHH7CysmL27Nn079+/6AapNpIkiZ49e3L06FEuX75MhQoV5A6pTImIiMDPz4+goCD09fUZNGgQPj4+uLi4yB3aM8Wm57E7Oo3HuSq1XWcUjmttqKRTVQuRmBQEHSISlIJQhsSm57ErOo3UXFWpJCb/rXAJRudSPpkYMGAA69evf+rxQYMGsXLlylKLQxAE3aJSqejZsyf79u3jxIkTeHh4yB1Smda8eXOqVKnCpk2b1DK+sbExtWvX5sKFC2oZX3hz69evZ+TIkVSsWJGgoCC8vLxKdX5JktixYwfjx48nNjYWX19fpk2bhqWlZanGoS4PHz6kXr16tGnThuDgYNHfT81UKhW7d+/Gz8+Pw4cP4+joyNixYxk2bJhWbM6mkiRupeZxLiGL22l5JZaoLBynuoUBjexMqGFpgLIU/y1KkkSBBPmShEoFSiXoKxToiU03BaHEiASlIJQRYQlZHIjLKLWqyecpnL+9o1mp9YmpU6cOV69eferxBg0aEBERUSoxCIKgmzIyMmjTpg0PHjzgzJkzODg4yB1SmZSTk1NUsTZu3Di1zGFtbY2NjY3oYayhbt68Sd++fQkPD+eHH35gwoQJpVK5ePXqVXx9fdm3bx/vv/8+/v7+1K5dW+3zlrbg4GB69epFUFAQffr0kTscnZSens7q1asJCAjgxo0beHt7M378eD7++GMMDLSzSjA5p4ALidlceJRd1OdeqQDVK1yM/PM4Iz0FHuWM8ShvjI2RnhojfkKSJJJyCojPzCc+M5/7mfnEZz1741B9Jdib6ONgqo/9339sjfRE0lIQ3oBIUAqCjpMkiVMPsjh+P1PuUJ7SysGU5hVN1P4DnpubS1ZWFufPn+edd97h+PHjuLm5YWpqqrUnfIIgaI579+7RpEkTHBwcOHr0KKampnKHVOacPn2apk2bEhoaire3t1rmqFy5Mjk5OSQmJqplfOHt5ebmMn36dGbPnk2HDh1Yu3Yt9vb2apkrNTWVmTNn4u/vT5UqVfDz86NLly46nZTo3bs3Bw4c4PLly2r737UsiomJYeHChSxfvpy0tDQ++eQTxo8fr5Z+unKRJInkHNWThF9WPvcy8l6a8KtkZoC9yZOEn42RslQ+W8k5BYQnZhPxz4Qqr7Zx6D+PM9JT4F7OGM9SSqgKgq4QCUpB0HEn4zM1MjlZqJWDKS3sS+di/uzZszRp0oTw8HCxFFMQhBIVHh5Oy5Yt+eCDD9iyZYtW95zTRv7+/kyaNInU1FQMDQ3VMkedOnWIiYkhIyNDLeMLJefPP//ks88+o6CggDVr1vDBBx+U2NgqlYr169fz9ddfk5KSwjfffMOECRNk3aSktCQkJFCvXj1atGjBb7/9ptPJ2NIQGhqKn58fW7duxdzcnGHDhjF27FiqVKkid2ilQpIkVH8vmS5Qgd7fS6aVpbxkWiVJ3EzN5VxCNnfUsCS9moUBjeyMqWlpWKpL0gVBG4mzZ0HQYWEPNbNy8p+O388kLCGrVOYSJ9KCIKiLp6cnGzdu5LfffmPq1Klyh1PmhISE0KhRI7UlJwFsbW3JyclR2/hCyenQoQMRERF4eXnx4Ycf8sUXX5TI/3fnzp2jZcuWDBw4kNatWxMVFcU333xTJpKTAHZ2dixZsoRt27YRFBQkdzhaKT8/n82bN9O0aVOaNWvG+fPn8ff3Jy4ujjlz5pSZ5CQ8OS/XUyow0lNiaqDESE+JnlJRqufrsel5LLuSzNZbaUSn5QEl1wqrcJzotDy23kpj2ZVkYtPzSmh0QdBNIkEpCDoqNj2PA3e1o8rjQFyG+MEWBEHrdevWjZ9++olZs2axdu1aucMpU0JDQ2nWrJla57Czs6OgoECtcwglp0KFCuzatQt/f38WLVpEs2bNuHbt2huNlZCQwPDhw/Hy8iI9PZ3Dhw+zefNmnJycSjhqzffJJ5/Qp08fxowZw/379+UOR2skJyczZ84catSoQZ8+fTA1NWXHjh1ERUUxZswYzM3N5Q6xTMlTSRyIS2fD9RRScp8szFbXstLCcVNyVWy4nsKBuHTyXqUJpyCUQSJBKQg6KE8lsSs6DW2pF1QAu6LTxI+1IAhab8KECQwZMoShQ4dy/PhxucMpE+7du0dMTIza+7UV9tx7/PixWucRSo5CoWDcuHGEhoaSkZFBw4YNWb16Na/a4So/P58FCxbg4uJCcHAw8+fP5/z587Rt21a9gWu4hQsXYmhoyOeff/7K/1uWVdevX2fMmDE4OTkxdepU3n33XcLDwzl06BBdunQR7UBkEJuex4q/kjmXkA2U3uahhfOcS8hmxV+imlIQnkV8IwqCDjp6L4PUXJWsu3W/DglIzVVx7F7pVHyKk2lBENRFoVCwePFiWrZsyUcffcTNmzflDknnhYSEAKi9grJwh/YbN26odR6h5Hl6enLu3Dl69+7NoEGD+PTTT0lJSXnha44cOYKnpyfjxo2jV69eXLt2jTFjxqCvr19KUWuucuXKERgYyI4dO9iwYYPc4WgcSZI4dOgQXbt2xdXVlS1btjBhwgSio6NZtWqV6IMuo7CELDZcT5H1OqnwumfD9ZRSa3MlCNpCJCgFQcfEpucRlpCtNcnJQhJwNiFbrXcTRQ9KQRBKg6GhIb/++iu2trZ07txZVNypWUhICE5OTlSuXFmt8xT2hrt165Za5xHUw9zcnF9++YVNmzaxZ88ePDw8CA0Nfeq4mJgYevfuTbt27bCwsODs2bMsXboUOzs7GaLWXN27d+fTTz9l7Nix3Lt3T+5wNEJOTg6rV6/G09OTd999l9u3b7NixQpiYmL47rvvxM7nMpIkiZPxmRyIe1IMIfd1UuH8B+IyOBmfKYonBOFvIkEpCDpEJUns1qKl3f+mAHZHp6ESP9KCIGg5W1tbdu/ezYMHD+jZsyd5eWIpl7qURv9JgOrVqwMQHR2t9rkE9enduzcXLlzA3t6eli1bMmvWLAoKCsjOzub//u//qF27NseOHWPt2rWcOHGCRo0ayR2yxpo/fz7GxsaMGDGiTCdYHj58yHfffUeVKlUYNGgQlStX5s8//+TixYsMHjy4zGyipMlOPdDcjUOP38/k1ANRSSkIIBKUgqBTbqbm8liLlnb/mwQ8zlVxK1VcyAuCoP1q1arFb7/9xpEjRxg7dmyZvoBXl9zcXMLCwtTefxLA2dkZgLi4OLXPJahX9erVOXbsGJMmTeKbb77B09MTFxcXvv/+e8aMGcO1a9cYMGCA6A/4EuXKlWPp0qXs2rWrTG4MFhkZyZAhQ6hSpQqzZ8/mk08+4erVq+zevZv27duLlTsaIuyh5iYnCx2/nymWewsCIkEpCDrlXEK21lZPFlIA59T8Ay2SBIIglJa2bdsSGBjI0qVLCQgIkDscnXPhwgVycnJKpYKyUqVKAGLnYh1hYGBA//79adSoEZGRkcTHxxMQEMBPP/2EhYWF3OFpja5duzJgwADGjRvH3bt35Q5H7VQqVVECskGDBuzbt4/vvvuOuLg4Fi9ejKurq9whCv8Qm57Hgbul0+P+bR2IyxAb5whlnkhQCoKOSM4p4E5antZWTxaSgNtpeSTnFJT42OJOtiAIchgyZAhfffUVX3zxBbt27ZI7HJ0SEhKCoaEhnp6eap9LqVSiVCpJTExU+1yCeqWmpvLVV1/h5uZGUlIS69ato2PHjowaNQofHx+ys7PlDlGrBAQEYGpqyrBhw3T2JnBGRgaLFy+mTp06dO7cmdTUVDZu3Miwvhr1AAAgAElEQVTt27f5+uuvsbW1lTtE4V/yVBK7tKj1lQLYFZ1Gnko3P0OC8CpEglIQdER4ovZXTxZSABcSxcWBIAi648cff6Rbt2707duXixcvyh2OzggNDaVRo0YYGRmVynwGBgY8evSoVOYSSp5KpWLt2rW4urqyePFiZsyYweXLl+nfvz/bt29nwYIFLFu2DG9vb/766y+5w9UaNjY2LFu2jL1797J69Wq5wylRsbGxTJo0CScnJ8aOHUuDBg04efIkp0+fpm/fvhgYGMgdovAcR+9lyLpb9+sq3N372D3tqPgUBHUQCUpB0AGSJBHxqPjO3QcCf2JyQzsykjX7Qir5XgyTG9pxbkdQ0WMScOFRts7ehRcEoexRKpWsX7+eWrVq0blzZ+Lj4+UOSSeEhISUSv/JQiYmJqSkpJTafELJOXfuHC1btmTgwIG0adOGq1ev8s033xRtYKJQKBgzZgxnzpwhLy+PRo0asXz5cnEu8oo6d+7MwIED8fX11Yk+rWfOnKFv375Ur16dJUuWMHjwYG7evElwcDDNmzcXq3I0XGx6HmEJ2VqTnCwkAWcTssVSb6HMEglKQdABSTkF5BRo20/wi+UUSCTnqNQytrjYEARBDmZmZuzcuZOCggK6detGVpZoiP827t+/T3R0dKn0nyxkZmZGWlpaqc0nvL2EhASGDx+Ol5cX6enpHDlyhE2bNuHk5PTM4xs0aEBYWBgDBgxg+PDh9OrVi+Tk5FKOWjv5+/tjbm7O0KFDtfJcKz8/n+DgYFq0aIG3tzdnzpzh559/Ji4ujrlz51KtWjW5QxRegUqS2K1FS7v/TQHsjk5DpYWfIUF4WyJBKQg6ID4zX+4Q1KKk35e42y0IgtwqV67Mjh07iIyMZODAgahU6rkRUxaEhIQAlGqC0srKSiSWtUR+fj7z58+nVq1aBAcHM3/+fM6fP0+bNm1e+lpTU1OWLl1KcHAwBw4cwMPDg5MnT5ZC1NrN2tqaFStWsG/fPlauXCl3OK/s8ePHzJs3D2dnZ3r16oWBgQHbtm3j2rVr+Pj4iE2TtMzN1Fwea9HS7n+TgMe5Km6liipKoewRCUpB0AHxmfka/WHOzcp87dcoFRCfpZuJV0EQyrZGjRqxfv16goODmTFjhtzhaK3Q0FAcHR1xdHQstTltbW3Jzc0ttfmEN3P48GE8PT3x9fWld+/eXL9+nTFjxqCvr/9a4/To0YOIiAiqVKlC69atmTlzJgUFJb+Jny754IMPGDRoEOPHjycmJkbucF7oxo0b+Pj44OTkxOTJk2ndujXnzp3jyJEjdOvWDT09PblDFN7AuQTt78uvAM4liJthQtmjyTkNQRBe0f3MfJ5Xg5PxOImNXw9hRqvqfN/OhZ1zppCX878NaAry8zm4fB5zunox1bsyszs1ZN+C/yM/N6fYOFeO7GW1T19+eK8+U70rM6erFweXz0P1rxP1ZcO64d+zFXevRLB0SBemN6/CvoX/BSArLYXgb8cwo3UNvmtdky3TR5OV9uxeXioJ7mWIO4eCIOimjz/+mB9//JGZM2eyfv16ucPRSqXdfxKgfPnyIkGlwWJiYujVqxfvvPMOlpaWhIWFsXTpUsqXL//GY1apUoXDhw8zbdo0ZsyYwTvvvKMTPRbV6eeff8bKykojl3pLklSUgHRxcSEoKAhfX1+io6NZu3YtDRs2lDtE4S0k5xRwJy1Pa6snC0nA7bQ8knPE741QtogEpSBoOUmSXlhpGPT1UPJzcnh/zFRcW7TnVNByfv+/CUXP/zbTlwNLfqRSbTc6TZhJ9UbNOLIqgKDJw4uNc27nJgxNzGjZfyRdvvovles04MCSH/lj/syn5sxMSWLV2D44uNan84T/o6ZXSyRJYt34AYTvDsbzgx50GDWZ1Af3CZ4+9rmxx2flq+XEVtNOlgVBKJsmTpzIoEGDGDJkiFg++ppyc3MJCwsr1eXdAPb29gAkJiaW6rzCi2VnZzNz5kxq167NiRMnWLduHSdOnCixZJO+vj4zZszg8OHD3Lp1C3d3d7Zt21YiY+uiwqXef/75J8uXL5c7HABycnKKEpDt2rXjxo0bLFu2jJiYGGbOnImDg4PcIQolIDxR+6snCymAC4nZLz1OEHTJ661zEARB4xRIkP+CFmY2lavwmd86AJr1HoKxmTmhwatoNWAUIHF+52a8PurPx9P8nhzTazDmNnYcX7eIm2dPUNOrJQB9/huIgbFJ0bjePf7D75ZfEhq8ivdGT0bf0KjoubTEh3SfMhfvHgOLHrtyZC+3z4fwwbhvaT1wDABNew5i+fDuz409X/WkklKvhM40RA9KQRA0iUKhIDAwkJs3b9K9e3dOnz5NjRo15A5LK0RERJCdnV3qCcrKlSsDcPPmzbeqyhNKhiRJbN++nS+++IK4uDh8fX2ZNm2a2noGtm7dmoiICIYOHcpHH33EyJEjmTdvHiYmJi9/cRnz/vvvM3ToUCZMmMD7779P1apVZYkjISGBwMBAFi9eTHx8PB07dmTfvn106NBBnBfqGEmSiHikuTt3Hwj8iYPL5jDrfMIrHS8BFx5l07aSqfi3KpQZooJSELRc/kuqAZv2Glzs7836DAMg6uQBok4cAKBlv5HFjmk14Mnfo078WfTYP5OTORnpZCQ/oppnU/KyM0m4c73Y6/UNjWjUrW+xx6JOHECpr493z/8UPabU06N5n6EvjP9l708QBEGbGRoa8ttvv2FtbU3nzp1JSXl22wuhuNDQUAwNDUt9OWaVKlUAuHXrVqnOKzzt6tWrdOzYkY8++ghXV1ciIyP56aef1L6hia2tLVu3biUwMJBVq1bh5eXFpUuX1Dqntpo3bx42NjYMGTKk1FevXLp0iaFDh+Lk5MSsWbPo1q0bV65cYe/evbz33nsi4aODknIKyCnQreuGnAKJ5ByxmZ5QdogEpSBouZdtAFu+SvFqnHKO1VAolSTfiyX5fhwKpZJyTtWLHWNRviLGFlYk348teuzBzausmzCQGa1rMKNVdf7v3dpsmfokkZmdllrs9ZYVHNA3MCz2WPL9WCzKV8TI1Lx4fFWdXxh/gfhNFgRBx5UrV45du3Zx//59evXqRX6+2CDsZUJCQmjYsCFGRkYvP7gEFVa4xsbGvuRIQV1SU1P58ssvcXNz48aNG+zYsYM9e/bg6upaajEoFApGjBhBWFgYCoUCLy8vlixZIlrI/IulpSW//PILBw8eZOnSpWqfT6VSFSUg3dzc2LNnD9OnTyc2NpbAwEDq1Kmj9hgE+cRn6uZvp66+L0F4FpGgFAQtp3zdT/Gz7hi/5C5yVloKy4Z14/61y3T4/Gs+89/AkCW/0tFnOvB0T0cDI+PXDOr59NTwLSUuIARB0DSurq78+uuvHDp0CB8fH/E99RJybJAD/0tQik1SSp9KpWLNmjW4uLiwZMkSvvvuOy5fvkyXLl1kq4arV68eZ86cYdCgQYwaNYqPP/6YpKQkWWLRVB06dGD48OF8+eWX3L59Wy1zZGZmEhgYSL169fjwww9JSkpi/fr13LlzhylTplCuXDm1zCtolvjMfJ1LbigVPHOvAUmSyMoSu3wLukfXPsOCUObov+SkPDGm+DK0R7G3kVQqbCo5YePgiKRS8ehfx6Q9ekh2Wgo2Dk4A3Ao7SebjJHrOmE+LT0dQp/V7OHu3wcTS+pXjtHFwIi3xATmZ6cXji77xwtf98/3l5OSwf/9+fHx86N2792tfwIvlPIIgaLJ3332XxYsXs2TJEhYuXCh3OBorPj6eO3fulHr/SfjfJjn3798v9bnLsrCwMFq0aMF//vMf2rZty9WrV5kyZQrGxiV3Q/RNmZiYsHjxYn7//XeOHTuGu7s7x44dkzssjTJnzhzKlSvHkCFDUL1s6c9ruHv3LlOmTMHJyYnRo0dTt25djh8/ztmzZ+nXrx+GhoYvH0TQWnfv3mXw4MFUrFgRIyMjBrbz4sy2DcWOycvJ5kDgT8zt7s20po788F491k/4D49inyTLb4WdZHJDO26FFd+oLvleDJMb2nFuR1DRY/evXSb42zH81KUx05o68t8Odfl1hg8Zj5++KXEnPJSF/Tswrakjc7p6cfrXNc98DwX5+RxcPo85Xb2Y6l2Z2Z0asm/B/5GfmwM86cV/LyOPatWq0blzZ/bt20fjxo0xMTEplapkQShtIkEpCFpOTwH6L/gkh25ZWezvIZue7Kbo2uJdXFu2B+DkxuI/cCfWBz45pmUHAJRKPQCkf7Sdzs/LJTS4+Ngv4tqyPar8fE4Hry56TFVQwKlNK577Gn0lPIiPZ+XKlXTv3h1ra2vef/99FixYwPbt20v0JFcQBEETDBs2jAkTJuDr68uePXvkDkcjhYaGAsiSoFQqlSiVShISXm2TA+HtPHz4kGHDhtGkSRMyMjI4cuQImzZtwsnJSe7QntK9e3ciIiKoWbMm7dq149tvvxXtGv5WuNT78OHDBAYGvvV4YWFh9OvXj2rVqrFw4UI+++wzbty4wdatW2nZsqW4IV0GPHjwgKZNm3LgwAHGjBmDv78/Vo7V2Pq9Lyc2PPk3piooYM24fhxcNofKddz5cPx3NO87nOz0VB7cvPrac944fZSkuGgade1Ll4mzaPDeR1zcv43VPn2LFU3EX7/CytG9yEhK5N0RX9Goax8OLJ3N5cNP/6b/NtOXA0t+pFJtNzpNmEn1Rs04siqAoMnD/zfe3xWUUVFR9O3blw4dOhAQEICHh8drvwdB0HRiF29B0HIKhQJ7E33iMp59Epx8N4a1vv2p1fwdYi6GcWFPMO4ffIKDS30AGnbpzZnf1pKVlkL1Rs2Ju3ye8zs3U7fdh0U7eFdx98LE0prg6WNp3ncYChSE79kCr1HBWLv1+1T1aMIfC2aSfC+GCjVcuXxoN9npac99jUluBpUrV3v2eLVro6en98rzC4IgaIvZs2dz/fp1+vTpw8mTJ3Fzc5M7JI0SEhJC5cqVZUtSGRoaimW8apafn8/ixYuZPn06SqWSBQsWMGLECPT1NfvSxdHRkYMHDzJr1ixmzJjBwYMH2bBhg2w7WGuS9u3b8/nnn/PVV1/RsWPHonYJr6qgoIBt27bh5+fHyZMnqV69OnPmzGHw4MFYWlqqKWpBU33zzTcUFBQQGRlJuXLlyFdJpDTtSdDk4RxcOgfvTwYSse93bp45RqcvZtKy/+dFr207aNwbtVFp2nMQrQaMKvZYlQaN2TR5OHfCQ6ne8MlNsz8DZyNJEiN+2Ym1gyMA9d/pQkDv1sVee//aJc7v3IzXR/35eJofAM16Dcbcxo7j6xZx8+wJanq1JP/veowbN27wxx9/8P7777927IKgLUQFpSDoAAdT/ed+mPv+uBw9Q0P2LZhJ1Ik/adZ7CJ9M9y96/uNp/rT//Gvirlxg99yp3Dx7graDxtF31rKiY8ysbRkYsAGL8hX5c/Esjq9bhLN3WzqO+/aVY1QqlXzmtx6PD3oQvvdX9i/6AcsKDvT8fsGzj1eAS0Ub2rVr98znL126hJeXF4MHD8bPz48DBw7w4MGDV4pF9HYTBEGT6enpsWHDBmrUqEGXLl1e+butrJCr/2QhExMTHj9+LNv8uu7w4cN4eHjg6+tLnz59uHbtGqNHj9b45GQhPT09pk6dytGjR4mNjcXDw4Nff/1V7rA0wk8//USFChUYPHjwK6+CSUlJwc/PD2dnZ3r06IFSqeS3337j+vXr+Pr6iuRkGZKbm0tSUhKSJLF161a6dOmCJEkkJiYSn5BARvIjXJq1Izs9lbtXL3Lp4C7MrMvRrM/Qp8Z6kypbA2OTov/Oy8kmI/kRVdwaAXDv6kXgSdXm9ZDD1G37QVFyEqBCDRdqNSt+TRN14gAALfuNLPZ4qwEj/37+z6LHJKB69eoiOSnoPO34pRcE4YXsTfX592le+88n0v7ziQD0++n5S7H19PV5d/iXvDv8yxfOUdW9CaPW7H3q8Vnniy9zG758+3PHMLWyodfMRS8dA570XKlsbsShQ4fYsmULgwYNIjc3l/z8fBQKBZ07d8bW1paLFy8SFBREdnY2AHZ2djRo0AA3N7eiP/Xq1cPU1FQs+REEQWuYm5uzc+dOmjRpQvfu3Tl06BAmJiYvf6GOy8vLIywsjJkzZ8oWg5mZGRkZGbLNr6tiYmL48ssvCQ4Opnnz5oSFhdGwYUO5w3pjLVq0ICIiguHDh9OzZ0+GDRuGv78/pqamcocmGwsLC1auXMk777zDokWLGDt27HOPvXXrFvPnz2flypVkZWXRp08ffv31Vxo1alSKEQuaxMvLi4sXL+Lo6Mjjx49ZtmwZy5Yte+axGUmJJMXdoXy1muiV0M2NzJRkDi6bw8V920hPKn7tUrgiLCM5kbzsLMpXebpCuHxV56KkJEDy/TgUSiXlnKoXO86ifEWMLaxIvh9b7PHq1YsfJwi6SCQoBUEH2Jvq5ke58H316tWLRo0a8cknnxAREYEkSYwZM4b27Z/00CwoKODmzZtERkYW/dm1axcBAQFIkoRCocDZ2ZkqVaoAcOjQIaytralZs6ZYJi4IgsZycnJix44dtGnThsGDB7Nx48Yyf6Pl4sWLZGVlydJ/spCVlRWPHj2SbX5dk5WVxdy5c5k1axbW1tasW7eOfv366cS/dWtrazZv3sx7772Hj48PJ06cICgoCHd3d7lDk027du0YPXo0kyZN4sMPP6RmzZpFz0mSxPHjx/Hz82P79u3Y2NgwduxYRo8eTaVKlWSMWtAkcXFxRf9dr149BgwYgJuHJ7/d/l/bKPtadV9tsOd8zagKCp56bOPXQ4m5eJZWA0ZTybU+hqZmSCoVq8b0Rnqbvviv+F0nblIKZYFuZjUEoYyxNdLDSE9BToHuLF020lNgY/S/hes1a9bk9OnTTJw4kQ0bNhSrqtDT08PFxQUXFxc++eSTosczMjK4cuVKUdLy1KlTAEyePJnJkydjYmJCvXr1ilVburm5UbFixdJ7o4IgCC/g5eXF2rVr6dmzJ66ursyYMUPukGQVEhKCgYGBrJV1tra2XL36+hssCMVJksT27dsZP348d+/eZfz48UydOhULCwu5QytRCoWCoUOH0qJFC/r27Yu3tzdz585l9OjROpGEfRM//vgje/bsYdCgQRw5coT8/Hy2bNmCn58f58+fp3bt2ixZsoQBAwaU6YpT4Uk/2qioKC5evEh6evpTz1++fJlJkybRsLEXPZcV34TG1rEacZfOU5CXh56BwTPHN7GwBiArLaXY44/vxxX7e1bqY26eOUb7z78utuosMeZmsePMbMpjYGxCYsytp+ZKjL5R7O82Do5IKhWPYm5RoYZL0eNpjx6SnZaCjcP/+iyXzW8KoSwSCUpB0AEKhQL3csacfZiFLqQoFYBHOeOnTtyNjIwICAjA39//lU7qzczM8PLywsvLC3hSeePu7s6ePXswMDAoVnH5qsvEBUEQSluPHj3473//yzfffIOLiwuffvqp3CHJJiQkBE9PT4yNjWWLwc7OjoKCAlQqFUqlaOf+Jq5evcq4cePYv38/H3zwAfv27cPFxeXlL9RiderUITQ0lK+//pqxY8eyf/9+Vq5cSfny5eUOrdSZm5uzatUq2rZtS5cuXQgPD+f+/fu899577N27l/fee098tsqApKQkLly4wOXLl7l27Rq3b9/m3r17JCQkkJKSQmZmJgXPqGT8N6VSie84Hx4oIV8F6cmJmNuUp/67nYk68Schm38ptkkOULTCysbBCaWeHrfPh1Cv3YdFz4cGF2+PpVDqFb3un05uWFo8Fj09ajVrx5Uje3l8P66oD+XDW9e4HnK42LGuLduzb+F/OblxKR9NnVf0+In1gX8/3wEAffFREMoQkaAUBB3hWd6YMw+z5A6jREiAR/nnX3y+acVB4etsbW3x9vYuWiIOr7ZMvGbNmk8lLsUycUEQSsPkyZOJiopi8ODBVKtWjebNm8sdkixCQkLo2rWrrDHY29sDkJiYSIUKFWSNRdukpqby/fffExAQQNWqVdm5cyedOnUqM5WExsbGBAQE0L59ewYNGoS7uzvr1q3jnXfekTu0UnXlyhU2btyInp4ee/bsoVevXkyfPp169erJHZpQAlQqVVHV419//cWNGzeIjY0lPj6epKQk0tPTycnJeeamlYaGhpiZmWFnZ0fFihVxdHSkZs2a1K5dm/DwcAICAoodr6enx6hRo8jKzOTsugX8dfECN04fY/qR6zTs3Jvw3VvY/fM0Yi+fp5pnU/KyMrlx+ihNew2mbtsPMLawpH77roRsXoFCocDWsRpXj+8nIymx2DzG5hZUb9iMY2sWosrPw7KCA9dDj5B8N/qp99B+xESunTrE0iFdaNprEKr8fE5tXkGFGrWJv3656DgHl/o07NKbM7+tJSstheqNmhN3+Tznd26mbrsPqenVEgB7E5GyEcoO8a9dEHSEjZEe1SwMiE7L0+oqSgVQzcIAG6PSTfq96jLxyMhIFi9eTELCk+bYJiYm1K1b96nEpVgmLghCSVIoFCxbtoxbt27RvXt3zpw5Q7Vq1eQOq1Q9ePCA27dvy9p/EijqhXfz5k2RoHwGSZIokCBfklCpQKkEpSSxYf06Jk+aRFpaGt999x1ffPGFrJWwcurSpQsXL15kwIABtG/fnsmTJzNjxgwMnrMMVRdIksT+/fvx8/Nj3759ODg48M0337B27Vru3r1L7dq15Q5ReAWPHz/mwoULXLp06amqx8ePH5OVlUV+fv5Tr1MqlRgbG2NpaYmzszMODg5UrVqVWrVqUbduXTw8PHB0dHzGjP9ToUKFogSlnZ0da9asYffu3Wzbto3AwEAsbGyxreZKR5/pT+bU0+M/84M4/IsfF/74jcsHd2FqbUNVD2/snesUjdt14ixU+Xmc/nUN+oaGuHXoxoe+M/Dv2arY/L1/WMrO2ZMJ2bISJIlazdrynwWbmPW+W7HjHFzqMXjhZnb/PJ0/l8zGqmIl2o/4mrTEB8USlAAfT/PHtnI1zu3cxJXDezAvX4G2g8bx7oivnrwHBVQy093vBUH4N4X0rFsXgiBopespOWy9lfbyAzVcjxqWOFsZlvi4kZGRNGjQgNDQULy9vd9qrAcPHhRLWkZGRnLp0qViy8Td3NyKJS7FMnFBEN5WYmIi3t7emJiYcPLkSaysrOQOqdRs376d7t27Ex0dXbTpmRzWr1/PgAEDWL9+Pf369ZMtDk0gSRJJOQXEZ+YTn5nP/cx84rPyyX/GfhG5WZnkPbpP41pVca5gjb2pPrZGemWmevJZCgoKmDNnDlOnTsXLy4uNGzfq3E69WVlZrFu3Dn9/f/766y88PT0ZP348vXv3xtDQkOPHj9OmTRvmzZvH+PHj5Q63zFKpVFy/fp2IiAj++usvbt68SUxMTFHVY1pa2nOrHg0MDDAzM8PGxoYKFSrg6OhIjRo1cHV1LToPLombEZmZmbi5udGtWzfmzp37VBuAy0nZ7Ix+uk+ltuta1YK6tkZyhyEIpUJUUAqCDqlpaYi1oZKUXJVWVlEqACtDJTUs1XunsCTuy1SsWJGKFSu+dJn47t27xTJxQRBKTPny5dm1axfNmjWjT58+7Ny5E339snE6FxISgoODA05OTi8/WI0KE0gxMTGyxiGn5JwCwhOziXiUXbRBnxJ40T62hiamGDrWJCoL/vo7iWCk96SHtmd541JfOaEJ9PT0mDRpEm3btuXTTz/Fw8ODpUuX0qdPH7lDe2v37t1j8eLFBAYGkpSURLdu3QgMDKRVq1bFktKtWrXCx8eHKVOm0KlTJ53vRSqH9PR0Lly4QGRkZFHVY1xcXFHVY2Zm5kurHmvWrFlU9ejs7Fys6rG0+oWamppy8+bN5z5vb6qbv4W6+r4E4VlEBaUg6JjY9Dw2XE95+YEaqn8tKxzN1ZOgvHTpEm5uboSEhNC0aVO1zPEsz1omHhkZycOHDwGxTFwQhNd34MABOnbsyMiRI1mwYIHc4ZSKNm3aUL58ebZu3SprHA8fPqRixYqMGjWKRYsWyRpLaVJJEjdTczmXkM2dtDwUUCI3QwvHqWZhQCM7Y2paGqIsg1WVKSkpjBw5kqCgIAYNGsT8+fMxNzeXO6zXdv78efz8/Ni8eTNGRkYMHjwYHx8fatas+dzXZGZm4u7ujp2dHcePHxc3bV+RSqXi9u3bXLhwoajXY0xMDPfv3y+qeszOzn5h1aO1tfVTVY+F56HatupHkiT8I5OKbproAiM9Bb5utmW60lwoW0Q6XhB0jJO5AY3tjDmXkK1VVZQKoLGdsdqSk3L6927ihZ61THzTpk1kZT3Z7EgsExcE4Xnat2/PwoULGTlyJK6urowZM0bukNQqPz+fs2fP8v3338sdStGuy/Hx8TJHUnpi0/PYHZ3G41wVhZfJJXWOUThOdFoed9LysDZU0qmqBU46eD7wIlZWVmzYsIH333+f0aNHc/LkSTZt2oSnp6fcob1UQUEBO3bswN/fn2PHjlG1alV+/PFHhgwZ8kptKExNTVm9ejWtWrXC39+fCRMmlELUmi09PZ2IiAguXbpEVFTUU1WPGRkZz6x6VCgUGBsbY2FhQbVq1XBwcKBKlSo4OztTv359PDw8cHJy0sld0hWKJxXZZx9madU10PMoAI9yxiI5KZQpIkEpCDqoTSUzrqfkkqolS70VgKWhktaVzOQOpVS9zTLxfycuxTJxQSh7Pv/8c6Kiohg3bhzOzs507NhR7pDU5uLFi2RlZcm+QQ48WfaoVCpJTEx8+cFaLk8lcfReBmEJ2SWemPy3wnFTclVsuJ5CYztj2lQyw0BZdi7OFQoFAwcOLGrh0LRpU2bPns24ceM0MkmRmprKqlWrmD9/Prdu3aJFixb8+uuvdOvW7bVbT7Ro0QJfX1+++eYbOnXqpLOb5qhUKqKjo7lw4QJXrlwpVvX46NGjF1Y96uvrF3o7hr0AACAASURBVFU91qpVC0dHR6pXr46rqyv169fH3d1dK6tuS5JneWPOPMySO4wSIQEe5cvmRmJC2SWWeAuCjtK2pd79almpvVqicIn3qVOnNOIi93W86jLxfycuxTJxQdBtBQUFdOvWjePHj3Pq1Cnq1asnd0hqsWjRInx9fUlNTcXExETucDAxMcHZ2ZnIyEi5Q1Gb2PQ8dkWnyXazs/DmZecyWE0JkJOTw5QpU/j555/54IMPWL16tcbsGn/nzh3mz5/PL7/8QmZmJj179mT8+PFPrRR5XZmZmXh6emJjY8PJkye17sZrZmYmkZGRREREFKt6fPjwYVGvx7y8vKde98+qR1tb22JVj3Xq1MHDw4Pq1avrZNWjOmy6kUJ0Wp5WFGk8j4InbS96O5edjfAEAUSCUhB0WlhCFgfiMuQO46XaO5rR2E79F5yXL1+mfv36WpmgfJ5nLRO/fPnyU8vE/5m4FMvEBUG3pKWl0aJFC9LS0jh9+rTGJDFKUv/+/bl27RpnzpyROxQAbG1tMTc319mNcgrPH0qqz+SbKpy/tM4TNNEff/zBwIEDUSgUrFu3jg4dOsgShyRJnDx5En9/f37//XesrKwYMWIEo0ePxtHRscTmOXXqFC1btuTHH39k4sSJJTbu21CpVMTFxRWreoyOji6qekxNTSU7OxuV6ultovT19TE1NcXa2ho7O7uiqkcXF5eiczNLS0sZ3pXuup6Sw9ZbaXKH8dZ61LDE2cpQ7jAEoVSJBKUg6LiT8Zkcv58pdxjP1crBlBb2pZMs08UE5bMUFBRw69YtLl68WCxxeePGjaeWif8zcSmWiQuC9oqJiaFJkybUqFGDQ4cOYWysW8vCnJ2d6dSpEwEBAXKHAkCVKlVIT08nKSlJ7lBKlCRJnHqQpZHnDa0cTGle0UQjlzqrW3x8PJ999hl//vknEydOZObMmRgalk7iIi8vj+DgYPz8/AgLC8PV1RVfX18GDBiAmZl6WvN89dVXLFiwgPDwcOrUqaOWOQplZ2cTGRnJxYsXiYqK4tatW0VVj8nJyWRkZDy36tHIyKio6tHe3p6qVatSs2ZN6tati7u7OzVr1hRVjzJQSRLLriSToiWtrv5NAVgZKhle16ZMbhgmlG0iQSkIOk6TLzZaO5jSrBQvNspKgvJ5MjMzuXLlylOJS7FMXBB0w+nTp2nbti0ff/wx69ev15lETuGu2UFBQfTp00fucABo0KAB169fL6pW1xXipqbmUqlU/Pzzz0yePBlPT0+CgoJeuDP223r06BHLli1j4cKF3Lt3j/bt2zN+/Hg6duyo9qRbVlYWnp6eWFlZcfLkydfuZ1non1WP169fL6p6TExMfGnVo4mJSVHVY6VKlYqqHgs3mrG2tn7btymokba1uvq3/rWsdHLjUEF4GbFJjiDoOIVCQQt7U4z0FGK51t/K6n0ZU1NTGjduTOPGjYs9/vDhw6LqgcKk5ebNm8UycUHQMt7e3qxZs4bevXtTu3Ztpk2bJndIJSI0NBRAo24s2djYkJubK3cYJSrsoWbezPyn4/czMdJTlMnl3kqlki+//JI2bdrQt29fPDw8CAwMpF+/fiU6z9WrV/H392ft2rWoVCr69++Pr68v9evXL9F5XsTExITVq1fTokUL5s6dy6RJk4o9n5ubW3TOcvXq1WdWPT7r81lY9Whubo6joyP29vY4OTkV9Xps0KABrq6uoupRy4WGhjJ27FjajZxMOc/WWlVFqQAa2xmL5KRQZokEpSCUEY3tTKhool+mG97rSjVRSatQoQLvvvsu7777btFjz1omvmfPHubPny+WiQuCBuvVqxdRUVFMnz4dFxcXevfuLXdIby00NBR7e3uqVKkidyhF7OzsUKlUqFQqnUhmxKbnceCu5vesBjgQl0FFE/0yuXEOgJeXF+Hh4YwePZr+/fuzb98+Fi1ahIWFxRuPKUkSBw4cwM/Pj71791KxYkUmT57MiBEjSr2nbXx8POHh4Vy5cgU3NzemTJnCqlWrSEtLIzU1laysrGdWPerp6WFqaorV/7N35+Exnt0Dx78zk33fJQRBFIlILLXvWqor1cWulLSUkFLeFkW9vy5akiqhVGuPllJFUaGorbHFEvu+ZN+3mWQm8/z+SGfejAQJSSbL/bmuXL0yeeZ5zqSSPHPuc+5jb4+Xl5dB1aOvry8BAQE4OTlV6GsRyt/ixYuZPXs2aWlpaDQag6+d+WAo3564Z7T3PaWle5/UtXb5bJ0gCFWBaPEWhBpGrZU4EJPNiURVhVVT6q7zrKsFXWtbYyo3TqLwwoUL+Pr6cvjwYTp27GiUGKq60rSJF05cijZxQag4kiQxbNgwNm3axP79+2nfvr2xQ3oqPXr0wNHRkc2bNxs7FL0JEyawaNEiYmNjcXd3N3Y4T0WtlfjhYmqVexM/upmj0e4nKou1a9cyduxY3N3dCQ8PL9Ih8ThKpZJ169YRGhpKdHQ0/v7+BAcHM3DgQMzNzcs01ry8PP39g67q8e7du8THx5OamkpWVtZDq5JlMhlOTk76vR7r1q1Lo0aNDKoen7QNXKjaHlV8UL9+ff4+f7VKtXoPaWxfYxdfBAFEBaUg1DimchnPedrQxMGcHbczScvTlluiUndeezM5LxmpalIoW2XRJq5LXIo2cUEoHzKZjB9++IGbN2/y2muvERkZSf369Y0d1hPRaDRERkYye/ZsY4dioE6dOgBcu3atyicoD8RkV5nkJBTcV2TkaTkYk00vTxtjh2NUQ4cOpX379gwePJgOHTrwxRdf8OGHHz62qjcuLo6wsDCWLFlCcnIyr7zyCosWLaJbt25P1G2SkJDA6dOniY6O5urVq9y6dYuYmBiSkpJIT09HpVKRn59f5HkKhQJLS0vs7e2pW7cuderUwcvLS7/Xo7+/Pzdu3KBDhw58+OGHfPLJJ6WOTajexowZw/Lly4v92tWrVzE1NeU5T2si7lX+CvHnPK3FeyWhxhMVlIJQg2kliRsZak4mKrmZqS6zRKXuPA1sTWntaklDO9NKMYVOV0F56NAhOnXqZOxwqj1dm/iDicuHTRPXJS5Fm7gglI3ExETatWuHtbU1hw8fxs7Oztghldrp06dp1aoVf//9N507dzZ2OHrh4eEMHjyYVatWMXz4cGOH88Sq+iAJUW1UIC8vj5kzZzJv3jx69+7NqlWrik2cR0VFERISQnh4OGZmZowcOZKgoCAaN25c7Hk1Go2+6vHixYsGVY8pKSlkZ2eTm5tb7HPNzc2xtrbGycmJWrVqUbduXRo2bKivevTx8Slx1ePHH3/M/PnzOXnyJH5+fiX/xgjVnlqtLnaifbdu3di/f7/+czEATBCqBpGgFAQBgNTcfKKSVEQlq8jNL/i1IJeBtgS/IQofZ66QEeBsQYCLBY7mlSvJdPHiRXx8fESC0sh0beIPJi4f1iauS1yKNnFBKL3o6Gg6duxI586d2bp1a5Vrg1yyZAlBQUFkZGRgaVl5BqP8888/tG/fnrlz5zJjxgxjh/NEtJLEsguppOflI2H8RcTSklHQoRHo41gpFkErgz179jBs2DAkSWLlypX07duX/Px8tm/fTkhICAcOHKBevXpMmDCBAQMGcOPGDc6fP8+VK1f0VY+JiYmkp6ejVCofWvVoYWGBvb09Li4u1K5dGy8vLxo3boyvry8tW7Ys830rc3Nzad26Nebm5hw7dgxTU5GUFmDdunUMHTq02K89mOKQJIkj8ZVzEFhXDys61LIUe+ULAiJBKQjCAyRJIjVXS1yOhjilhphsNXFKDZqi+5FjIgd3SxNqW5vibmmCu5UJjubySvsHViQoKzddm3jhxGV0dLRoExeEp7R7925eeuklxo8fT2hoqLHDKZXhw4dz8eJFjh8/buxQDCQlJeHq6srYsWMJCwszdjhPJDohk233i69+q0reaGiHt33RCqqaKiYmhrfffptDhw7h5eVFUlISWVlZWFhYYGJiQl5eHmq1ukgCB8DMzAwbGxscHR0Nqh6bNm2qr3osrlqtIpw4cYL27dsza9YsZs6caZQYhMqjTZs2nDx5EgBfX1/mzJnDG2+8AcCAAQPYtGlTsc87kagk4l52he3D/zC66z/naU0b18qz+CYIxiYSlIIgPJYkSWgl0EgS+VpQyMFEJkMuq1qTsUWCsuop3CZeOHEp2sQFoXTCwsL44IMPCAsLY+zYscYOp8QaN25M3759WbhwobFDKUImk9G/f/9KNbynJCRJ4rfffiMizZTazdugqGJVtYXJAC9bU972tjd2KBUiLS2NU6dOER0dzZUrV7h586ZB1WNOTk6xVY8ymQwrKyvs7OyKVD36+PjQsmXLKrGX6vTp0/n66685ceIELVq0MHY4ghHcuXMHb29v1Go1gMHftMGDBxMREaHvyHmYu1lqtt/ONNreu7pBXy+L/fkFoQiRoBQEocbQJSgr215mQumJNnFBKL2goCDCwsL4448/6N27t7HDeazExETc3NxYv349gwYNMnY4RZiYmNChQwf+/vtvY4dSYhcvXiQoKIhTl67x0e+Vqyr1abzn41jptpUpDa1Wy+XLl/V7PV67do27d+8SFxdHSkoKWVlZ5ObmPrTq0crKCisrK1QqFSkpKZibm9OrVy9eeOEFFi5cSGxsLIsWLWLEiBFVamH5Qbm5ubRp0wYTExMiIyNFq3cNM2XKFObPnw+AtbU1CQkJT9xFo9ZKHIjJ5kSiqsKqKXXXedbVgq61rTGVV92fRUEoLyJBKQhCjXHp0iWaNWsmEpTVWGnbxP38/PD19cXa2trIkQtC+dNoNLz66qscPnyYo0eP4uPjY+yQHmn79u288sor3LhxgwYNGhg7nCKsrKxo0KAB0dHRxg7lsdLT0/nss89YuHAhXl5eTPvxV5JtaleZyd2PIgPaulnSo07l/D2ekZFBVFQU58+f5/Lly9y6dYv79++TkJBAWloaSqUSjUZT5HlyuRxLS0t91aOHhwf169fX7/UYEBCAq6srv/76KyEhIURGRtK4cWMmTpzIiBEjsLEpmHCelZVFUFAQP/30E4MGDWLJkiXY21fditOTJ0/Srl07Zs6cyaxZs4wdjlAB1Go1devWJT4+HoB+/fqxZcuWMjn33Sw1O25nkpanLbdEpe68DmZyXhJVk4LwSCJBKQhCjSESlDXTk7SJ+/n54e3tLdrEhWonIyODTp06kZ2dzT///IOrq6uxQ3qo6dOns2LFCmJjYytl1ZezszOWlpbcu3fP2KEYmD17NnPmzCnYnkWrxc3NjezsbBQKBTNmzGDSpEksuZKtH4hXVZz8PZxNs4OYuv0kjrXrGXzNXCFjkp9Thf470Wq1XL9+nTNnznDhwgWuX7/OnTt3iIuLIzk5mczMzIdWPZqammJtbY2joyNubm54enrSsGFDmjRpQosWLfDz88PCwuKh105NTWXZsmUsWrSIe/fu0bNnT4KDg3nxxReRy+XFPmfDhg289957ODs7Ex4eTrt27crse1HRPv30U7744guOHz9OQECAscMRytGePXvo06eP/n7tyJEjtG/fvkyvoZUkbmSoOZmo5GamuswSlbrzNLA1pbWrJQ3tTMVAL0F4jKq76YwgCIIglIBCoaBx48Y0btyY119/Xf944TZxXeJy6dKl+jZxCwsLfH19iyQua9WqVSmTJYJQEnZ2dmzbto127drRv39/9u7di7m5ubHDKtbRo0fp0KFDpf15s7GxISMjw9hhPNTx48eZMGECycnJNGjQgIMHD+Lp6UmySlPlkpOPk5tfMODPyaJsFpWysrKIiori3Llz+r0e7927R2JiImlpaeTk5Dy06tHCwgI7OzsaNWqkr3r09vbGx8eHgIAAPD09H5pEfJwrV67w7bffsnLlSjQaDUOGDGHSpEkl2o9x4MCBtGvXjsGDB9O5c2fmzp3L1KlTnzgWY5oxYwZbt25lxIgRHD9+3GiDe4Ty1bdvX3bt2gVAvXr1uH37drlcRy6T4W1vhre9Gam5+UQlqYhKVul/T8ploC3Br8zCx5krZAQ4WxDgYlGlt58QhIomEpSCINQ4onBcgIL2zDZt2tCmTRuDxwu3iesSlz///LNoExeqDS8vL3777Td69OjB6NGjWb16daVLAmo0GiIjI/n000+NHcpD2dvbP3YYgzFkZ2cD0LZtW/z9/YmIiKBr1676/fricoom1qqCli+9RYs+/TExKz6hHpejeWyCUqvVcvPmTaKiovR7Pd65c4fY2FhSUlLIzMxEpVI9surRycmJpk2bGlQ96v4WPOl+eI8iSRL79u0jJCSEHTt24OrqykcffcTYsWNLva+yLlE9e/ZsPvnkE/bs2cOaNWuoXbt2mcddnszMzFi5ciVt27bl//7v/5gzZ46xQxLKUHp6Oh4eHvr7rlmzZjF79uwKubajuYIedazpXtuK1FwtcTka4pQaYrLVxCk1aLRFn2MiB3dLE2pbm+JuaYK7lQmO5vJK93dVEKoC0eItCEKNcfnyZZo2bcrBgwfp0qWLscMRqpAH28R1iUvRJi5UZeHh4QwePJj//ve/TJ8+3djhGDhz5gwBAQEcOHCArl27GjucYvXo0YODBw8WOzXZGNRqNYsXL+Y///kPubm5hIWFERgYWOR30N57WZxMVFHM++wqSy4DfwcT7GIvcu7cOS5fvsyNGzcMqh6zs7MfWvVobm6OnZ0dzs7OeHh4UK9ePf2E64CAAOrWrVvhlYYqlYr169cTGhrKuXPn8PPzIzg4mEGDBj2y/buk9u3bx7Bhw8jNzWXlypW8/PLLZRB1xZo9ezb//e9/iYyMpFWrVsYORygDCxYsYPLkyUBBIvr+/fu4uLgYOaoCkiShlUAjSeRrQSEHE5kMuQyRjBSEMiISlIIg1BgiQSmUteLaxAtPExdt4kJlN2fOHGbPns0vv/zCm2++aexw9JYuXcqECRNIT08vl6q0svDWW2+xceNG8vPzjdYme+jQIYKDgzlz5gxQUHnaunVrTpw4oa8C9PLyonv37qxcuRKAldGJrP3uG6L+2Eh6fAymlla4NWhMr8CPaNy+u/7cCTevErH0S24cP0yuMhsH9zo07/UKfcYXJLM3zhrPjRNHmLbjlEFMEUvnsXfZ13xxKlH/2NVj+9m77Gvir11Cm6/Bzs2D5j1fps+EGfpjjmxYzj+bVpEacweFqRnOnl50HjqWgL4DgIfvQXn0lx859suPJN25jvaBBKSpqal+urVcLqdjx45cvnyZ+Ph47O3tmThxIjNmzKAyiY+PZ8mSJSxZsoSEhARefvllgoOD6dGjR5n/3UhKSmLUqFFs27aNoKAgvvrqqzJJflaUvLw82rZti1ar5cSJE6LVu4pr3Lgx165dA6BLly4cPHjQyBEJglDRRIu3IAiCIDyhJ20Td3Fx0Q9CEG3igjF9+umnXL58meHDh1O/fn3atm1r7JCAgv0n/f39K21yEsDDwwOAmJgYPD09K/z6586d4/nnn0cul6NWq6lXrx7Z2dnk5eU99DmSJLEm5HP++vFb2vQbSt3mLVFlZ3H/QhQxl87qE5SxV6L5fvQrKExMadt/GI6165F87xaXDv6pT1CWVPz1S6yaOAT3xj48N3YaJqbmJN+9ye0zkfpjIjevYdu8T2j+3Ct0GhSIOk9F3NUL3D1/Up+gLI4uGerdrhttXx9G0qHtREZG0rx5cyIjI/X7q3bv3p2rV69y5coVBgwYQJMmTdi0aRMzZ86kdevW9O3bt1SvqTycOXOG0NBQ1q9fj4mJCSNHjiQoKIhnnnmm3K7p4uLC1q1bWbx4MVOmTOHAgQOEh4fTrFmzcrtmWTIzM2PVqlW0adOGuXPnMnfuXGOHJDyBqKgoWrdujVZbUNe9ZcsW+vXrZ+SoBEEwBpGgFAShxhGF40J5c3Nzo1evXvTq1Uv/WHFt4n/88QcLFy7Ut4k3bNiwSOJStIkL5Ukmk/Hjjz9y69YtXn31VSIjI6lXr97jn1jOjh49Sp8+fYwdxiPVqVMHgGvXrlV4glKpVPLWW2+hUqlwc3Nj+fLlDBo0iEuXLuHn5/fQ5+VLcPHvPTzT6Tlen7ngocdtm/cxSBIT1u3FweN/r+2FoJmljvXqsf3kq/MY+d0GrB2diz3m8qE91GrUlCHzfizxebNSk9j/07c0bt+ddxb9jFwu56OvPmHpkjDGjx/P+vXrGTlypP74mJgYVq9ezbBhwwB49913qV+/PitWrDBaglKr1bJjxw5CQ0PZt28fnp6ezJ07lzFjxuDo6FghMchkMsaPH0+XLl0YOHAgbdq0YeHChYwaNapKVPr7+/szc+ZMPvvsM1577bUiC4ZC5TZ8+HDWrFkDgLOzM7Gxsfr9cgVBqHmq3tg2QRCEJ1QVbrSF6ks3Tfz1119n1qxZbNq0iStXrpCVlcXx48dZsWIFr776KpmZmSxdupQ333yTpk2bYmNjQ+vWrRk5ciQLFixgz549xMXFiUS7UGYsLCzYsmULFhYWvPLKK2RmZho1nuTkZK5evUr79u2NGsfj1K9fH6DcJssWR5IkNm/eTNOmTbl06RLNmjXj+vXrDB48GJlMRrNmzR6Z2NVIEha29iTcuEzSnevFHpOVmsTNU0dp/epgg+QkPNnfUUtbewAuHNipr5B6kIWtHenxMdyNPl3i81775yD56jw6DXlP32KvkSTGjBmDnZ0dO3bsMDjexsaGoUOH6j83MzOjbdu23Lhxo7Qv6allZWWxePFimjZtyquvvkpWVhbh4eHcuHGDqVOnVlhysjB/f39OnDjBkCFDGD16NG+//TZpaWkVHseT+Pjjj2nRogXvvPMOubm5xg5HKAG1Wo29vb0+OTlmzBiSkpJEclIQajhRQSkIgiAIRlTSNvFz584VaRP38/MzqLgUbeLCk6pVqxbbt2+nY8eODB48mN9++81olbvHjh0DoEOHDka5fkk1bNgQqLgE5YULF5g4cSIRERF06tSJO3fuEBAQwObNm0lJSSE5OZmUlBR9wq1Hjx5kZmYSExPDpk2b2LVrFwpLa16eHsLqD4czv197ank345kOPWn50pt4POMLQMq9gtfj7t20TOJu0bsfx39by+bPgtm98L80atsF354v0fy5V/WJxW4jgrj2z0HChvXGuW4DGrfvjn/fAXgFtHvoedNi7wLgWt9b/1i+FqzMzGjYsGGR/y+enp5FEqyOjo6cPXu2TF5nSdy9e5fvvvuO5cuXk5GRwYABA1i1alWl+bdubW3NsmXL6N27N2PGjCEgIID169fTsWNHY4f2SKampqxatYrWrVszZ84cPv/8c2OHJDzCunXr9IsFCoWC6OhomjRpYuSoBEGoDESCUhAEQRAqoZK2ie/cubNIm/iDiUvRJi6URPPmzfn55595+eWXmTp1KvPnzzdKHEePHsXNzY0GDRoY5fol1ahRI6CgdfhRsrKyiI2NJSEhgYSEBJKTk0lKSiI1NZXU1FTS0tLIzMwkMzOT7OxssrOzUSqV5ObmkpubS15eHnl5eQbVh4cPHwYKJrGHh4cXe92DBw+iUCj0k6slScLa0oIGrTvy0e/HubB/J1eP7ef4b2s5vH4p/T75mmf7Dyvx65dRfDWlVms41dzUwpLAH7Zx4/ghLh3aw9Uj+zj75280enY1o8I2IlcocGv4DJO3HOXSwT+5cmQf5/dt59jGn+g5ZgrPj51W4pgUj+gNe9jvwIqoRj927BihoaFs2rQJGxsbxowZw/jx4/VVuJXNG2+8wbPPPsuQIUPo2rUrs2fP5uOPP67Uf0f8/PyYNWsWn376Kf379+fZZ581dkhCMdq2bcvx48cB8PX15fz580aOSBCEykQkKAVBqDF0lROiNVaoqnRt4rpWcZ0Hp4mfO3eO77//nvj4eKCghdfHx6dI4lJMExce1LdvX0JDQwkKCqJJkyYEBgZWeAxHjx6lQ4cORvm3qdVqSUpKIiEhgfj4eJKSkkhMTCQlJUWfUMzIyCAjI4OsrCwA1qxZw++//65PJqrVajQaDVqttsR/b2QyGXK5HBMTE0xMTDA3N8fc3BxJksjOzgYKEqK+vr44Ojpib29PWFgYLVq0YMqUKbi5ueHq6oq7uzvvvPMOO3fuJD+/IFFYeIq3RivxzZlkrOwdafPaYNq8NpjcnCyWjX6ViO8LEpROngVJs7hrlx4Zs4WdA6rM9CKPp8XeK/KYXC7Hu11XvNt1hclz+WtFCH8u/pwbJw7h3a4bAGaW1rTo058WffqjUeexdvI77P8xhO6jJmJqXnSytINHXQASb1/DydMLABOZjLy8PG7evMlzzz1Xou99edFoNGzevJmQkBCOHTuGt7c3oaGhjBgxAltbW6PGVhL169dn//79zJ07l1mzZhEREcHatWuNMhCqpKZNm8aWLVsYMWIEp06dqlITyau7O3fu4O3tjVqtBiAsLIyxY8caOSpBECobkaAUnpgkSeRLBfv9aLUglxfcGCpkYq8/QRCEilSaNvGNGzeSk5MD/K9NvHDiUrSJCxMmTODy5cuMGzeOhg0bVmiiJz8/n8jISGbMmFGi4/Py8oiLiyM+Pp7ExEQSExNJTk4mOTmZ1NRU0tPTSU9PJysri6ysLH11olKp1FcmajQafUKxpGQymb6aTKVSYW1tjZWVFc7OzlhZWWFjY4ONjQ12dnY4ODjg4OCAk5MTTk5OuLq64urqSq1atfDw8MDGxqbI+SMjI5kwYQKRkZEMHjyYefPm6Yfy6Ny5c4ddu3bRqVMn/WCjixcv8ueffz40boUMcjNSMLdz0j9mbmWDc90GpMcVVILaOLrQoFUHTv6+ni5DxxrsQ6mr1AZw9vRClZVB7JVofXt4RmIc0X8Z7v2Yk56Klb3hnooeTZoDoMkr2C8wOy0Fa4f/xWRiakathk24cmQvWo0GzIu+Fu92XVGYmnEkfDnPdOyFqUKGXAbLVqwgCLNCfgAAIABJREFUPT2dl1566aHfh/KUlpbG8uXL+e6777h79y7du3dn69atvPTSS5W6ArE4JiYmzJkzh549ezJ06FD8/f1ZsWJFpZ2wbGJiwsqVK2ndujWzZ8/myy+/NHZIAgWJ43nz5gEF2wgkJCRgZWVl5KgEQaiMRIJSKBFJkkjJzScuR0NcjobYHA1xSg2aYu7lTeTgbmmCh5UJ7v9+OJkrRNJSEAShgpW0TXzXrl0sWrQIrVZr0CZeOHEp2sRrltDQUK5evcobb7zBsWPHaNr06fcj1Gq1ZGZmcj82joSkZOITk0hNSSI1MZGU5CTS0tK4ffs2WVlZrF27lvDwcHJycsjJydG3O+uqE/Pz80tVDV+4OtHMzAxzc3Ps7e2xtLTE2toaGxsbbG1tsbe3x97eHicnJxwdHXFxccHFxQU3Nzfc3d1xc3PDzMxMf14rKyu8vLy4cOHCU39/AOLj4/nkk0/48ccfCQgI4O+//6Zz587FHjtnzhx27dpFly5dGDduHBqNhu+++w5fX9+H7qsok8lYMKAz9Vt1pE4zf6zsHbh34QznI7bR/u139ce9MvVzlo56me+G9KJt/2E41qlPaswdLh/aQ9CG/QC06NOfXQs/Y+2Ud+g4cDRqlZJjm1biUq8RMZf+d/29y77h1umjNOn8PI4enmSlJHFs40/Y16qNV0DBIKQfx72JrYsb9f3bYuPsSuLNqxz9eQVNOz+PuXXRBC4UJFK7j5zI3mVf89MHb9Gh94tMXHGXsLAwnn32WYOBOBXh6tWrLFy4kJ9++om8vDwGDx7MpEmTCAgIqNA4ykO3bt04c+YMo0ePpn///owbN45vvvkGS0tLY4dWRPPmzZk9ezYzZsygf//+tGv38H1MhfKlVqupW7euvpujX79+bNmyxchRCYJQmYkEpfBIqbn5nE5ScSZZRW5+wRsBOfCoGgONFu5la4jJ1uiPM1fI8He2oKWLBY7m4g2uIAiCsZSmTXzZsmWiTbyGMjExYcOGDbRv357nn3+eBQsWoNFoSEpK0lcnpqWlGbQ7Z2dnk5OTg0qlQqVSkadWY+9Rl1qNffFo2gJP35bUadoCM0tnsHYG62fAC2SArTKHjEtnMbU9hb/Clrgr50mPuaNPKFpYWGBnZ6evVLS1tcXOzg47OzscHR1xcHDAxcUFZ2dnfXVirVq1cHJy0g9iKQ9WVlZkZGQ89XnUajWLFy9m1qxZmJiYEBYWRmBg4CMXBVq0aMHu3bv58MMP+fTTT/H09GTOnDnExsY+cvDLgFFjidi5navH9pOvzsPB3ZPnx31M1+Hj9cd4PNOccat2sSfsS45tWokmLxdHD0/8nn9Nf4y1gxND569ix4JP2fntZzjVqUef8TNIvnPDIEHp0+0F0mLvcnLren2lZIPWHXnu/alY2NoB0G7ACKJ2buLQuqXk5WRj5+ZBx4Fj6DH6w0d+3557fyrWjs4c/WUF67+YjrOTE4GBgXz++ecVMg1YkiT2799PSEgI27dvx9nZmQ8//JBx48bh7u5e7tevSE5OTvz66698//33BAcHc/DgQTZs2ICvr6+xQyvio48+YsuWLbzzzjucPn1atHobwZ49e+jTp4++6vrAgQN06dLF2GEJglDJySSxGZvwAK0kcT0jj5OJKm5lqpEBZfGPRHceL1tTWrta0MjODLl4UytUoGvXrtG4cWP++usvunfvbuxwBKFKKK5NPDo6WrSJV0IqlYr4+Hji4uL07c666c7FtTvrqhNVKpV+/0RddWJp2p3lcjkKhQITExNMTU1x8/Km1WtD8OndH3Prgr32tPkaZPLHd1MUXgStCoubXl5epKWlkZaW9sTn2Lt3L0FBQVy6dIn333+fzz77DGdn5zKM0lB0ioptt7PK7fzG8mp9W3yciukFLwe5ubmEh4cTGhrKmTNn8PX1JTg4mCFDhtSIZNj58+cZOHAg169fJyQkhPfee6/SLVRduHCBli1bMnHiRH17sVAx+vbty65duwCoW7cud+7cMXJEgiBUFSJBKRi4m6Vmx+1M0vK0ZZaYfJDuvA5mcl6qb0tdm/Jf4RYEEAlKQSgr+fn53Lx5k7NnzxokLq9duybaxEtIq9WSkZFBbGwsiYmJBtOdU1JSSE9PLzLdOScnB6VSWVCdWGgYS2nbnRUKBQqFAlNTU327s4WFhUG7s52dnb7dOSsri9WrV9OxY0emT5+ub3d2cXHRtzvX1MXNgIAALl26hEqlKvVzb926xeTJk9m8eTNdunRh4cKFFdIOnKzSsPzikydUK6vAZo44WZTv75eEhASWLl1KWFgY8fHxvPjiiwQHB9OrV69Kl6Arb0qlksmTJ7NkyRL69+/PDz/8gJOT0+OfWIG++uorPv74Yw4fPkyHDh2MHU61l56ejoeHB0qlEoBZs2Yxe/Zs4wYlCEKVIhKUAgBqrcSBmGxOJKrKLTH5IN112rha0K22NabymnVjJ1Q8kaAUhPKlVCq5cOFCkcRlcW3ihROXVaFNXKPRkJCQYDDdWdfurKuge1i7c+HpzrrqxNJMdy5cnahrd7awsMDKygpra+si7c6Ojo44Ozvj7OyMm5ubvt3ZwcHhidud161bx9ChQ/niiy/4z3/+Y/C1mry42bNnTw4cOKCfmF0SSqWSefPm8eWXX+Lk5MQ333zDwIEDK+xnQJIkQs+l6LfuqQ7MFTIm+TmV2/fw3LlzhIaGsm7dOuRyOSNGjGDixIllsjdrVffbb78xatQorK2tWbduHV27djV2SHoajYZOnTqRlpZGVFRUpdwzs7pYsGABkydPBsDMzIxbt27h4eFh5KgEQahqRIJS4G6Wmu23M8nI01ZIYvJBMsDOTM7LlegNh1A9iQSlIBhHYmIi586dM0hcPqxNXJe4fNo28ZycnCLtzrpW50dNd9ZVJ5ZFu7OuOtHc3BwrKyv9dGddQrG46c61atXSJxUr25TTTz/9lLlz57Jp0yYGDBggFjeBgQMH8vPPP5Ofn//Y5K8kSWzevJnJkycTGxvL5MmT+eSTT4qd4l3e9t3P5niC0ij3fWVNBrR1s6RHnbLdVkKr1bJz505CQ0OJiIigTp06jB8/nsDAwEpXKWhsd+/eZejQoRw6dIiZM2cyY8YMTEwqx6iDixcv0rJlSz744APmz59v7HCqpSZNmnDlyhUAunTpwsGDB40ckSAIVZVIUNZwJxKVRNzLrrA3Fg+ju/5znta0cRWrm0L5uH79Ot7e3uzbt48ePXoYOxxBqNG0Wq1+mnhUVBSnT5/m7Nmz3L59W3+Mo6MjTk5O2NjYYG5ujomJCfn5+fq9E5VKpX66s0ajKXW7s0wmK3a6s6Wlpb7d2dbW9qHTnd3c3HB1ddW3O1eWN+TlRavVMmjQILZt28bvB//hqmWdGr+4GRwcTGhoKLdu3aJ+/foPPe7ChQsEBQWxd+9eXn75ZUJCQvD29q7ASA2l5ubz/YVUo12/rL3n41hm+5RmZ2ezevVqvv32Wy5fvkybNm0IDg7mzTffrJDBO1VVfn4+n3/+ObNnz6ZDhw6sW7fukT8TFenrr79m2rRp/P3333Tq1MnY4VQbUVFRtG7dWr+It2XLFvr162fkqARBqMqq95208FCSJHEkXsnfsQXVK8bOUuuuH3Evm9x8iY61LCt9u58gCEJNpdFoiIuL07c7Fx7GkpaWRmpqKpmZmWRkZJCZmalPKObm5qJSqVCr1fr9Ex9VnairdnyQTCbTtzxbWVnh4uKCnZ0dNjY2BvsnFp7u7OLiYjDd2c7OrlynO1dHcrmclStX8u5nCzgud0dupOQkFNw3ZORpWXc13aiLm56enkDBApguGSNJEvkSaCSJtPQM5n35JYu/W0g9zzrs2LGDF1980SixFuZorsDL1pTbmWqj3wM+DRkF+5OWRXLy3r17LFq0iGXLlpGenk7//v1ZsWIFHTt2FPekJaBQKJg5cyY9e/Zk8ODBBAQE8MMPPzBgwABjh8aHH37I5s2bGTlyJFFRUZWuOr0qGj58OGvWrAEKJrzHxcWJBL4gCE9NJChrqMLJycpGF1cnd3HzIAiCUBaysrL07c5JSUkkJiaSlJSkTwBmZGQUaXdWqVT6/RN1CUWtVvtE7c6mpqaYmppibm6OnZ2dfu/Ewvsn6tqdnZ2dcXFxwdnZ2aDdOTMzs9g2cd1ekLo28aZNm+pbxZs3by6miZchSZI4lS7R4q33Cj43djz//teYi5v16tfHpX4jLqblId3LIjZHQ5xSg6bQj4nboCnMGTQFExmkWJmw914W7lYmuFuZ4GT++Mnm5aW1qwW3MtVGuXZZkYDWT5mcjoyMJCQkhI0bN2Jtbc3o0aOZMGECXl5eZRJjTdOpUyeioqIIDAzkjTfeIDAwkJCQEKMmBRUKBStXriQgIIDp06cTEhJitFiqOrVajYuLCxkZGQCMGTOGZcuWGTkqQRCqC9HiXQOdSFAScT/b2GE8lmj3FsqaaPEWqgKtVktKSoq+QlG3f2JKSgqpqamkpaWRnp5e7HTnwsNYdNWJT9rurNs70dLSUr9/YnHtzoWHsejanZ2cnCqk3blwm3jhxOXDponrPry9vat9O3Z5OByXU2kXNwG6eFhV2OJmam4+p5NUnIrPQiMrqN6TAyVJ3xc+zlwhw9/ZgpYuFmXWolxSWkli2YVU0o1YCfs0ZIC9mZxAH8dST3bXaDT89ttvhISEcOTIERo2bMjEiRMZOXIktra25RNwDSNJEitWrCAoKAgvLy82bNhAixYtjBrTggULmDJlCgcOHKBLly5GjaUq0g1Lg4Kkb3R0NE2aNDFyVIIgVCciQVnD3M1Ss+5qurHDKLEhje3F4ByhzNy4cYNGjRqxd+9eevbsaexwhGoiLy9Pn0zUJRSTk5OLTHfOzMwsMoxFl1DU7Z9YmurEwtOdzczM9NOddQnF4tqdddOdXV1di7Q7Vye6aeIPJi4fNk1c9+Hu7i5aOR9CLG4WJPSuZ+RxMlHFrUx1me3frTuPl60prV0taGRnVuqE25OqaveFDxra2B7PUtwnpqen88MPP/Ddd99x+/ZtunbtSnBwMK+88goKRcUmiGuKixcvMnDgQC5fvsz8+fMZN26c0X7P5ufn061bN+Li4jhz5oyosC+Ftm3bcvz4cQB8fHyIjo42ckSCIFRHIkFZg6i1Ej9cTDXahvalpdsAf3QzR6NP6RSqB5GgFAAyMjKIj4/Xf+iSiYWnO+sSioWrE4ub7lyaP6HFDWPRJRStra2Lne6sa3fWDWRxc3PD3d0dMzOzcvwOVV+6aeKFE5ePmibu5+eHr6+vUaYsVyZVLYlVHoubd7PU7LidSVqettwGC+rO62Am56UKHP4TcS+Lk4mqKnFvqCOjYJJ7L8+S/Wxev36dhQsX8uOPP5Kbm8vAgQOZNGkSrVq1Kt9ABQBUKhXTpk1j4cKFvPrqq6xYsQIXFxejxHLlyhX8/f0JDAzk22+/NUoMVcmdO3fw9vZGrS7YDiIsLIyxY8caOSpBEKorkaCsQWrCDaggPIpIUFY9Wq2WpKQk4uLiSExMJCEhgaSkJFJSUkhJSSE9Pb1Iu7NSqSx2uvOTtjubmpoaTHe2trYu0u7s4OCgn+ysq1DUJROdnJzEMJZKrHCbeOHEpWgTL1DTFzfVWokDMdmcSFSVW2LyQbrrtHG1oFtt63JfpK2u/48lSeLgwYOEhITw+++/4+TkxPvvv8+4ceOoXbt2xQUs6G3bto2RI0dibm7O2rVrjbbdTmhoKMHBwezfv59u3boZJYaqYNq0acybNw8Aa2trEhISxIAhQRDKlUhQ1hBVrfrhQaLVWygLIkFZ/lQqFfHx8frpzsnJySQlJT203Vk33fnBYSz5+fmlHsYil8sNhrFYWFhgYWGhr060sbHB3t4eOzs7fbuzbrKzi4sL7u7u1KpVq8ZXywkFCreJF05c6trEzc3N8fX1rfZt4jV5cfNulprttzONlrjTJeJeroBqyqp2n/io+8K8vDw2bNhAaGgop0+fxsfHh0mTJjF06FAsLcXe5sZ2//59hg0bxv79+/nkk0+YNWtWhU9/1mq1dOvWjZiYGM6cOSP+7j9ArVZTr1494uLiAOjXrx9btmwxclSCINQEIkFZA9TkTdAFobCbN2/SsGFDIiIi6NWrl7HDMTqtVmvQ7qyb7JyUlERaWppBu7NuuvOD7c66YSxP2+5sYWGBubm5wTAWOzs7bG1tcXR01Lc7Ozk56fdO1LU8i3ZnoSIVbhPXJS4Lt4k7OzvTokWLatEmXtWSVg96msXNE4lKIu5lV1jV5MPorl8RgwN1r7mye9j3IikpiaVLl7J48WLi4uJ44YUXCA4O5vnnn69WiwbVQX5+PvPmzWPmzJm0bduW9evXV/jU9GvXrtGiRQtGjRrFokWLKvTaldmePXvo06cPkiQhk8nEQCFBECqUSFDWAFfTc/n1Rqaxw3hqbzS0w9teJCKEJ1fVE5QajaZIu3NKSgrJycnFtjvrqhMLT3d+0nZnhUKBQqHQtzsXHsaiq1DUDWNxcHDAyckJJycn/f6JtWrVwsPDAwcHB9HuLFQ7D7aJ6xKXujZxgIYNGxZJXFbmNvGaurgpSRJH4pWVclp5Fw8rOtayLNdkW1Wc1B4dHU1oaChr164FYPjw4UycOBEfHx9jhCiUwrFjxxg0aBApKSksW7aMt99+u0Kvv3DhQiZOnMi+ffuM1m5emfTt25ddu3YB4Onpyd27d40ckSAINY1IUNYAG66lcztTXSXfYOjIKJhu+ba3vbFDEaqwik5QqlQqYmNjSUhIIC4+nuSUVJJSUknLyCAtJYW0lGTSU1P0eyfqBrLo9k4sPIyltO3OuunOhduddfsnWltbGwxjKTzdufAwFtHuLAhP58E2cV3isiq0idfUxc2qmKArS5U5QdvVw4oO/yZotVotu3fvJiQkhD179uDh4cH48eMJDAw02vAV4cmkp6fz/vvvs2HDBkaNGsXChQsrbLq2VqulR48e3Llzh3PnztXYe5709HQ8PDxQKpUAzJo1i9mzZxs3KEEQaiSRoKzmUnPz+f5CqrHDKDPv+TjiaK4wdhhCFfWoBKVWqyUtLU3f7pyUlERiYqJ+GEtqaioZGRlF2p1VKlWRdmetVotT3QbUaeZPnWb+eDZvRZ2mLTCzLPqmMk+ZQ8yls8RcPEP81WiSb1wmOykWiwfanXXDWOzt7fXJRN0wFldXV9zd3XFzc6u01ViCIPzPg23i586d4/z585WqTbwmLm6eSFAScb/qtjiXpcra4p6Tk8OaNWsIDQ3l0qVLtGrViuDgYN566y2x3UcVJkkSq1atYvz48Xh6ehIeHk7Lli0r5No3btzAz8+PESNGEBYWViHXrEwWLFjA5MmTATAzM+PWrVt4eHgYOSpBEGoqkaCs5vbdz+Z4grJKv8HQkQFt3SzpUadiVlWFyk2j0RRUJv7b7pyYmEhycjLJycn6vRMfbHdOT0/n/v372NjYIEmSwTCW0rY7F57urBvG4ubljU+f16nfqQ+mlgX/TiVtPsjkj62GkgO6GklzhQx/ZwtauliIhLwg1BDFtYmfO3eOq1evVnibeE1c3Kxq+21WxPDAyjQkSJ6ewOLFi/n+++9JTU2lX79+BAcH07lzZ6NXGwtl5/LlywwaNIjo6Gi++uorJk6cWCH/fxctWsSECROq7BZAT6pJkyZcuXIFgE6dOnHo0CEjRyQIQk0nEpTVmCRJhJ5LITe/8vwv/riVK70CP+K596c+0fPNFTIm+TmJm9EqKCcnR9/unJCQoJ/snJqaSmpqqsF0Z127s24Yi26689O2O5uYmJCZmYmrqytOTk5YWVlhY2Nj0O5ceP/EwsNYatWqhZVV0QpIrSRxPSOPk4kqbmWqy6zaRHceL1tTWrta0MjOTAyJEoQaqCRt4j4+PkUSl0/TJl7TFjfVWokfLqYaLRFXWrrE3ehmjpjKy/fvglorcSAmmxOJqgqrptRd51lXC2ziLvNdaAg///wzlpaWvPvuu0yYMIGGDRtWQCSCMeTm5vLxxx8TEhLCiy++yE8//YSbm1u5XlOr1dKrVy9u3rzJuXPnsLW1LdfrGVtUVBStW7fW309v2rSJAQMGGDkqQRAEkaCs1pJVGpZfTDN2GAaeNkEJENjMEScLUVVWnrRaLSkpKQbtzklJSQ9td9btnfjgdOf8/PxSTXeWyWT6hKKuOtHc3BxLS0v9/omFh7HY29vj5OSEo6OjwTAWd3d3XFxcilQV3bp1iwYNGrBnzx6ee+65p/4+3c1Ss+N2Jml52nJ746Y7r4OZnJfq25Z7xYwgCFVDSdrE/fz8DBKXJWkTf9ziZsTSeexd9jUz9l7C2tG5zF/Xw5z8PZxNs4P4YO0ePH0CSvXcxy1uRtzL4kSikoLfuFWDDGjjakEvz4pp+6/Iv3f2ZnLsbp1i6ZdzOHToEF5eXgQFBfHuu+9iZ2dXDlcWKqOdO3cyYsQIFAoFa9asKZP7tke5efMmfn5+DB06lKVLl5brtYzpnXfeYdWqVQA4OjoSHx+Pqam4txQEoXIQm5VVY3E5GmOHUC7icjQiQfkAjUZDXFycQbuzbrpzWlqavuU5KyvLYLpzbm6uPqFYeLpzSRXX7mxpaamvTtQNY7G1tdUPY3FwcMDFxQVnZ2fc3NxwdXXFw8MDOzu7KjPd+cGKEii/qhLdedPztKy7mk4bVwu61bYu96oZQRAqN1dXV3r27EnPnj31jxXXJr57924WLVpk0Cb+YOKycJt4Sm5+peq8KAu5+RKpudpi7x1upik5kaCEKlahLgHHE1U842BeIQtXdW1MCfRx5EaGmpOJSm6WQ8eAp6WM2Mi9fD3nY27euEHnzp359ddfee2111AoxH1fTdO3b1/Onj3L8OHD6d27N1OnTmXu3Lnllkxr0KABX3/9NePGjWPAgAE8//zz5XIdY1Gr1bi6upKeXrCVxejRo1m+fLmRoxIEQTAkEpTVWFyOxmBfuyeVp8zGzLJy7Psol0GcUoMP5gaPz5s3j19++YVDhw5hYWFhpOhKLisry6DdOTk5maSkJIN2Z93eibp2Z90wFl27s1qtRqvVPnG7s6460c7OzqA60cbGpsgwFl27s24Yi6ura7HtzpWdrnrmaQrHC+/JBRU3PEB3nZOJKq6m5/GyqKYUBOEBcrkcb29vvL296d+/v/7x4trEly9fTlxcHPC/NnE/Pz+aP/8a+HY11ksoN8Utbv65Zw8H8t2wdqmFXFH1bollwI7bmQT6OFbIFiBymQxvezO87c1Izc0nKklFVLJKn9CWy0Bbgj+KhY8zV8jwUqg4vOEHPv92Pkqlkrfffptffv6ZNm3alOOrEaoCd3d3du3axfz58/nkk0/Yt28f4eHhNGrUqFyu995777Fp0ybeffddzp8/X20qdn/++WcGDhwIgEKhIDo6miZNmhg5KkEQhKKq3t2YUGKxOZpik5PpCbFELPmSy4f3kpOeip2rO8907MnLH/0fZ3b+yqbZQYxZ/htn/9zK+Yht5GvUzDpwjY2zxnPjxBGm7ThlcD5du9cXpxL1j2nyctm1cC5Rf2xCnaeiUZvOvPbxvGLjTE+IZU/YF1w+FIEyMx3nug3oMnQsbfoNKXKsVoKYbLX+8+3btzNy5EiSkpIA+Pvvv8t8xVPX7hwXF1dkurMumZienl5su3Nubm6R6c6lbXfW7Z2oG8ZiY2NjMN3Zzs5Ov3+iLqFYuN3Zzc2t2HZnofQqw1RTCcj4t5qyIia5CoJQ9VlaWtK6dWtat25t8HhxbeLp7k1p36wTyKtPxdqDi5s3b95k8uTJXEzOZkToOiNH9+QkIC1Py40MNd72FTvB2tFcQY861nSvbUVqrpa4HA1xSg0x2WrilBo0xdyAmsjB3dKE2tam1LJUcP/CGZYumMeUrb/h4ODA+PHj+eCDD6hTp06FvhahcpPL5Xz00Ud0796dQYMG0bJlS5YsWcKQIUXfJ5TFtVasWIGfnx9Tpkxh2bJlZX6NitauXTsiIyMB8PHxITo62sgRCYIgPJzIWFRTkiQRpyza4p2RGEfYsN4oMzNo+/owXL0ak5EYy/mIbahVSv1xW7+YhrWjMz3HTEatyin19X/9LJioPzbi33cA9Vs8y/Xjf7MyaHCR4zKTE1gy4gWQyWj/9rvYODpz+fBefv1sEqrsTDoPeb/Ic+KUGi5dusybb77B+fPnDb6WkJBAXl6ePpn44HTntLQ0fUIxKytLn1AsPIylrNqddXsnOjs7Y2lpqa9OLG4Yiy6ZqGt3trGxqTLtzjWBJEkciVfyd2zBz4Kxmx9114+4l01uvkTHWpZicJQgCKVWXJv4mitp3M9+/BYx2WkpbP1yKleO7ENuYkrLF9/ghaBPMTUv6GI4sXU9p3dsJP76JVRZGTh7etFh4GjavznS4DxfvdSKWo2a0n1kEDsWfErc1QvYurrz3Hsf0erltx8ZgzIjjR8/eIuMxDhGL92Mq5d3scfpFjdzcnL46quvmDdvHs7OzkzZsJdcjP87/WnIgJOJygpPUOqvL5PhZKHAyUKhTwBLkoRWAo0kka8FhRxMZDLksoI2019++YWpoaGcPHmSpk2bEhYWxrBhw6pkZ4ZQcZ599llOnz7NBx98wNChQ/nzzz9ZtGhRmQ+08fLy4ptvvuH9999nwIAB9OnTp0zPX1Hu3LmDt7c3anVBYceiRYv44IMPjByVIAjCo4kEZTWVL1Hs6vWu7+aSmZzAuNW7DTaZf37sfwwq+6zsHBi9dDPyJ9jzJ/bKeaL+2Ej7N0fqqyY7vP0uG6a/T9xVw1W7Pxd/jjY/n4m/HMTawQmAdm+8Q/jHgez9/mvaDRiBqYVhhZhGC839/MjXqHnQ0KFDGTp0aIniLDyMRZdQtLe317c76/ZPLNzurEsmOjs7U6tWLX2FYlVoKxeeXOHkZGWji6uTu3hjJwiWJwzuAAAgAElEQVTC05EkifhiFjeLEz5tNI6169Jn/AzunDvJkfDlKDPSeWvuYgD+2bSSWg2b0KxbH+QKEy4d3M3WL6YiabV0ePtdg3Ol3LvJuqmjaPPaEFq9/DYntq5n06wJ1GnmT61GTYu9fnZqMivGvYEyPY3A5VtxrtvgkfHez8ylWTN/4uLimDJlCh9M+Q+rb+WW6LVWZhJwM1NNam4+juaVo+pVJpOhkIECGfwbUlJSEt9//z2LFy8mNjaW3r1788cff9CnTx+xICuUmK2tLatXr+b5559n3LhxHDlyhPDw8DLfDiAwMJBNmzYxevRozp8/j729fZmev7xNmzaNefMK3oNZWVmRmJgoFgAEQagSRIKymtIU00as1Wq5sH8nzbr2KXYCZuEKrGdfH/ZEyUmAy4ciAOg4KNDg8U6D3+PMzl/1n0uSxPm922nx/GsgSWSnJuu/9kyHHpzdvYX7l87iFdCuyDVMzM2LTVA2adKE9u3b64exODs7Gwxj0U13FjfDNdOT7EF5IqHyJid1/o7NwVwhE+3egiA8lYctbhbHsU49hoesAQoWIS2sbTi28Se6DBuHxzO+BC7farDA2HHgaH784C0OrVtaJEGZeOsagT/8ToNWHQDw6/0aX/UN4OTv4bwYPKfItTOT4lkx9g3UuSoCf/gdx9p1HxuvJFcQ0KoVC775hkaNGrHvvnG36yhLMiAqSUWPOpVjv/DCLl68SGhoKKtXr0aSJIYNG8akSZPw9fU1dmhCFTZs2DA6dOjAoEGD6NixI1988QXBwcFldn8vk8n44Ycf8PPz48MPP2TFihVlct6KUKdOHWJiYgB49dVX2bp1q5EjEgRBKDmRoKymiutMzk5NIjcr86HVCIU51q73xNdOjb2HTC7HydPL4HHX+oatV9mpSagy04ncvJrIzauLPVd2SlKxj584dZrJEz5gz549Bsmm3r17s3DhwieOXRAKu5ulJuJ+trHDKJGIe9nUsjQRg3MEQXhixS1uPkz7t0YZfN5h4BiObfyJy4cj8HjG1yA5qcrMIF+jpmHrjlw9+heqzAwsbP83fMKtYRN9chLAxtEFl/repNy7XeS66fEx/Dy9YPuXwB9+x97No8Qx/7LpV8wVciRJ4kyy6qmTk7o9uGfsvYS1o/NTnu3JSUBUsoruta0qxXYfkiTx559/Ehoayq5du3B3d2f69Om89957uLq6Gjs8oZrw9vbm8OHDzJw5kylTpvDnn3+yatUq3N3dy+T89evXZ/78+QQGBvLGG2/Qt2/fMjlvefnrr7/o1asXkiQhk8k4cOAAXbp0MXZYgiAIpSISlNXU0y4gPthWDSCj+JterTb/ia4h/ZtFDXjxTVq/Uvw+U+6NfYp9vHGjhuzevZucnBw++ugjfvrpJ5RKpRgEI5QZtVZi++3MKlNhIwO2385kdDNHTOXGf4MqCELVU4ptl3Gp19Dgc2dPL2RyOakxdwG4FfUPEUvncefsiSJ7WauyDBOUDu5Fh6JY2tmjzEwr8vgvM8chV5jw4a+HsXWpVfKAgXwtoICU3Hz95OnqIjdfIjVXW2RSeUVSKpWsXbuW0NBQLly4QMuWLVm9ejVvvfUW5ubmRotLqL7MzMz46quv6NWrF8OHD8ff359Vq1bxwgsvlMn5R48erW/1jo6OxsHBoUzOW9b69u3Lrl27APD09OTu3btGjkgQBOHJiD7XasqkmBV0a0cXzG1sib9+6YnOaWHngCozvcjjabH3DD539PBE0mpJuXfL4PHE29eKxmNtg6TNx7tdt2I/bJyKX2nXvT4rKysWL15MVlYWERER/Pe//32i1yYIDzoQk01GnrZKJCfhf9O9D8ZUjYpPQRDKhyRJaLQSqnwtOWotqnwtGq1Uoq0tnmpxs9B9R/Ldm6x4fwA5acm89OFnjFi4nneXbKLTv4PvJMkwEyp7yMTw4mL27fkSqsx0DoeXfrqu4t/XF5dTsn02qxpjva7Y2FhmzJhB3bp1ee+992jcuDH79+/n5MmTDBs2TCQnhXLXu3dvzp49S6tWrejbty9TpkwhLy/vqc+ra/XOysoiODgYgN9//53hw4eTm2v8PWzT09OxsrLSJyenT58ukpOCIFRpotysmlLIwERuuJeUXC7Hp3tfov7YxL0LUUX2oXzcmxdnTy9UWRnEXonG45mCvYMyEuOI/muHwXHPdOrF7kX/x5HwZfohOQCH139vcJxcoaB5z5eJ2rWZuGsXcfduZvD1rNQkbBxdisRhIocHC8Tkcjm9evV6ZPyCUNI9KO9mqTmRqKqIkMqUBBxPVPGMg7lo9RaEGkCSJFJy84nL0RCXoyE2R0OcUlPsPpImcnC3NMHDygT3fz+czBUGLcHFLW4+TNKdGzjVqa//PPnuTSStFsfadbl4cDeavFyGh6zFwcNTf8z144ee7IUW0nHgGJzrNiRiyZdY2NjRfeTEEj9322+/Ub9eXeIcvJAjoxQFo5WeXAZxSo1+knZFOHXqFCEhIfz888+Ym5szatQoJkyYgLd38dPUBaE8ubm5sWPHDr799lumTZvG/v37CQ8Pp3Hjxk913rp167JgwQJGjx7NrVu32L9/PwCTJ0/G39+/DCJ/MqGhofqkqZmZGbdu3cLDo+RbXgiCIFRGIkFZTclkMtwtTbiXbbia3mf8DK4d28+y0a/R9vVhuDV4hoykeM5H/M57P25/5Dlb9OnProWfsXbKO3QcOBq1SsmxTStxqdeImEtn9cfVbuKH/wuvc2zjT6iyMqnn/yzXIw+SfPdWkXP2CZrJ9ROHCRv+As/2H0qthk3IyUgl5tJZrv1zkE/3Xy3yHHdLk0qxx5JQPWkliR1VqLX7QTJgx+1MAn0ckYufE0GollJz8zmdpOJMskrfqiyHRybcNFq4l60hJlujP85cIcPf2YKWLhY4miuKXdx8mGO//MgzHXroPz+6YTkATTr14uapo4DhYpAqM4OTv4eX5mU+VK8xk8nNymT3d//FwsaO9m+OfOxz8pQ5vPnGAAACV2zDK6Bdmd1LKDPT+SN0Fhf+2omERPMeL/Hqf77CzPJ/U3NP79jIkQ3Lib9+CYWpGe7ezegx+kOD7+HT0EoQk110eGBZy8/PZ9u2bYSEhHDw4EHq16/PF198wbvvvltp21+FmkMulxMcHEy3bt0YOHAgLVu2ZPHixQwfPvypft7d3NwwMzPTJycBbt68abQEZZMmTbhy5QoAHTt25PDhw0aJQxAEoayJBGU15mFlYvBGBMDezYNxq3bz55IviNr5K7nZmdi5efBMx57F7jtZmLWDE0Pnr2LHgk/Z+e1nONWpR5/xM0i+c8MgQQkwYNa3WDs6E7XzVy7s/4NGz3bhnYXr+bKv4R9yW2c3Plizm73LviH6rx38s/EnrBwccWvYlBeCPi0Sg1wGta1FZZhQfq5n5JGWV3XraiQgLU/LjQw13vZmxg5HEIQyopUkrmfkcTJRxa1MdZFFlJL+1ip8XG6+xPEEJZEJSmzzMsiK/ocs14ZY12lo0LJdnNT7d1g9aSiNO/bkztkTRP2xEf++A/B4pjkmZhYoTM1YPWkobQcMJ0+ZTeTmNdg4uZCZFF/KV168F4Nno8rK4Pcvp2FuZUPLl9585PENXexISkri1u3bREh1kMpwASf8P6NxrF2PPhNmEHPpLMe3rMXayZW+EwvuYyK+/5q938+jvv+zPPf+NBSmptw9f4obx/8uswQlFFRQ6gZklLXMzEx+/PFHFi5cyI0bN+jYsSMbN26kX79+Yv9vodJp1aoVp06dIigoiHfeeYc///yTJUuWYGdn9/gnP2Dq1Kl8/fXXBj9XcrmcW7dulfpckiSRLxUMJNNqC7bVMJHJUMgo0c/t+fPn8ff3R/vvhsGbNm1iwIABpY5DEAShshJ3FNWYu5VJsW9YHDw8eev/2TvzsKiqN45/ZthBdkFAcVfcEMRdXEvLhdym1FxyI7Vyzb3FdjX7KS5hmkuae4qpaVZqWomWioK55Y4gIgiI7DAz9/fHxOQIKMvAMHA+z8MjM3Puue8VZrjne97v+34cnO8xLfu+Ssu+rxY4Z4N2XZn63e95nu8+YZbOYzMLS16aOZ+XZs7XeX7B2fg8x1ZxcqHfnM/pN+fzAs+bi1rSZFAKBKVFWHym0WZP5iIDwuIzhEApEFQQolJzOBCZwsNstbZdnb4+o3LneSi3xqRFD8zT0/599umL5VcXruHQqoX8vOIT5CamtB88ll5TPwTApXZ9hi1azy8rF/Dj0g+xdXal7cujsHF0JuSjwluyn0X/d/9HdkYauz6ajIVNFZp0zb/LrqRWEXXhPBermtKiZSsOXU3Pd1xx8fDyRvHBMu3j9IdJnNm7hV5T5vHgzk1+XfM/mnbrw9Av1iN/rNBnYeqCFgWlWnOfZKJHffL27dusWLGCtWvXkp6eziuvvMK2bdto06aN/k4iEJQCVapUYf369fTo0YMJEyZw8uRJtm3bRtu2bYs0j0qlaQYql8u138tkMm7duvXU4/RdgmPUqFFs3LgRAEdHR+7fv4+ZmUjaEAgEFQuZpO+7I0G5ISFTyZrLeTtgGjvjGjsatEulwHiJjo7G09OTgwcP5tvhMSlLxepLSQaIrHQY38QRRwvxXhEIjJUctcRvMWmcqQAbJ4Zmz8dT+GvPVqo4OPHur//oZc7DqxZx5OsveHPTL3g2baF9/vjmVRxY8j4f/H6TU7u/5eDSD5m07Vc8vLz1ct6nMa25ExYmJeuBKUkSJ06cICgoiO+//x57e3vGjRvHxIkTqVGjxrMnEAjKGTdv3mTo0KGEhYXxySefMGvWLJ3Ngmdx8uRJJk2aRFhYmPa5nj17cvDgwTxji1OCI5fHx+WW4PC2N6FBDTeSkzWNSgMDA1mzZk2hYxcIBAJjQnTxrsA4WZhgoc9t9HKAhYkMRwvxaysoHc49yHxGzpDxIAPCHxhfox+BQKAhKjWHtZeTCPu3YZcQJ0vGD1u+4dy5c8xf+Gy3RlFxcKuu89jKzh6AjEcPSYy+jUwux7Wul97Pmx+qElQoycnJYevWrbRp04aOHTvy999/8+WXXxIVFcXChQuFOCkwWurWrcsff/zBzJkzeeedd3jhhReIiYkp9PHt27fn1KlTbN68GRcXF0AjWuailiSuJWex/Xoyqy8lcTouQytOQvFLcJy6n866a6kMnL+GJl17cv7830KcFAgEFRqh9FRgZDLNzltFElx8nS1FgxxBqSBJEhEJmQWKAFEXz/HVqN7M61CLuX4uxPzzd5nGV1QkIDwhU+8WQoFAUPqcic9gy7VkHmWrhTCpByxMZFS1MsPX15fXA8fofX65vKBM9bL/6RUneTIxMZGFCxdSp04dhg0bhoODA/v37+fy5cu88cYb2NjY6D9QgaCMMTMzY/78+Rw+fJhLly7h4+PDgQMHCn28XC5n2LBh3L59m2HDhmkb5ESl5vD1pSRCbqYQmaJpVKW3d/6/a576bToxYskmQuUeRKWWfjMsgUAgMBSimF8Fp0VVS07FZRg6DL0gAb5VLQ0dhqCCkpil0tntfhxVTg5bZ43FzMKCgOmfYGZphaO7ZxlHWHSyVBJJWWpREkEgMBIkSeLE/Qz+uKepkSjEyZLz5OamaRlvcjrVqI2kVhN3858ysXh/sXAhNT1rUKtWLWrVqkX16tULrFN35coVli1bxsaNG1Gr1QwbNoypU6fi7V36cQoEhuK5557j/PnzjB49moCAAKZMmcLnn3+OhYVFoY63trZm8+bN5KglDkenaktwQOl9ZstNNEv25Gw1W64l08rFki4eNpjJRdKGQCCoWAiBsoLjaGFCbVszIlNyjHqhIwNq25qJenqCEpG7QM0vqzA2XVngcQnRt3l4L4qB7y+h9YARpRZfaRCbrhQCpUBQzomPjyc8PJyzyRJSPT9Dh1OheHJz00SmaUiRX6OK0qBJ1178tPxjfv16cb5NcvTpClFmZbJ82VLi4/9rSCiXy/Hw8NAKlp6enmRkZHDixAnOnDmDq6src+bMYcKECbi6uuotFoGgPFO1alX27dvHl19+yYwZMzh27Bjbt2+nUaNGhTo+KjWH/ZEpPMrWfJCU1Ror9zxh8ZlcS84moJYtnlVEoxyBQFBxEAJlJaCliyW3U4zbDiABLV2sDB2GoAITm64ssIh5WqJmsWdpa6+Xc2VnpGFuVfqWObkMYjOUNKFwWQECgaB0UavV3Lhxg/DwcJ2vmJgYOgx5nZdmzTd0iBWK/DY3ZTIZblamRKcVvCmlT6rWrEu3sdP4dc1ivh4bQNPnAjAxMyf60jnsXNzoOel9vZ2rtlMV4uLiSE9P586dO0RGRmr/vXHjBqdPn2bnzp3k5Px3TxgXF8eyZcvYs2cPNWvW1AqZj3/v4uIiyusIKhwymYxJkybRuXNnhgwZQsuWLVm+fDljxox56u/7mfgMDkenGbRxmQQ8+jebsnsNG1qJNZJAIKggCIGyElDPzhwHcznJRlrLSgbYm8upayd2CAWlx710Zb7i5M4PJnL2hx0AbJ01FoA6LTvw0sz5HN/yFbfO/klKfCyWtnZ4+Xen19QPsXFw0h6f2+V16q7jHF27hH9Cj+Do4cnkbUdRq9X8+vX/OLX7WzJTH+HZzI++cz5nw6RXqduqA6989KV2nsTo2xxc/jE3Tv2BMjsLt/pNeO71t2nU6YUCr0ktQUyacW9OCATGSkZGBhcuXNARIs+fP09qaioAHh4e+Pr6MmrUKLzadSGmRotnzCgoKgVtbrpbmxKTlv9nfmnQ4405OHrU5OSOtfwSPB8zSyvcGjTBr88gvZ1DLgMPG819krW1NY0aNaJRo0bExsaycuVKDh8+TEJCAgEBAUyePJkGDRoQFRVFZGSkjpB56NAhIiMjSU9P185taWmpI1g+KWA+zUYuEJR3fHx8OHPmDNOmTSMwMJBffvmF1atX4+DgoDOuvJXgyD3/4eg0slQSHapZiY0EgUBg9Mgk0UGhUhCVmsOWa8mGDqPYDG9gTw1hYRCUkLt371KjRg1+/PFHevXqpX1ekiQWn0/I1/IXGXGaK3/8wrH1S+nw6uvUaNKCKs4uxF67xKVjB6nfriu2zq7cv3GF099volr9xry58SftTWKuQOla14uqNevSoH03JEmi/aAxHFz2Mb9vXEHjzi/SoH037l29yNUTR1BmZeHVqbtWoExJiGP5kK7kZGbQYcjrWNs7cXb/dmKvX2bYovU0fa5PgddsKofpzZ3FTatAUIrEx8cTERGhI0ZeuXIFlUqFXC6nUaNG+Pr6ar98fHy0dtoctcTay0miIY6eyd3cHNfEEfkTn38XEzP5ITLVMIGVIn1r2dLESZMxHx4eztKlS9m2bRtmZmaMHj1aK0w+C0mSSExMzCNePv74aTby/DIxq1SpUmrXLRDoi507d/L666/j4ODA1q1b6dChg/a10Nh0rThZHunkbo2/m7WhwxAIBIISITIoKwmeVcxo5WJJWHzBXYrLIzKglYulECcFeqGgGpQqqeB6ZLV8WqPKyebY+qXUbtEO7+59Aajt25ZOI97UGVuzeSu2zx3H7XN/Usevvc5r7g2bMmT+au3jlIQ4jm/5iibdejNi8Ubt84dXf8GR1Yt0jv3tm+WkJsQzft0P1G7RDoDWA4ezbHBXDiyZR+OuvXTqmj2OUq3JpDQR+qRAUGLUajU3b97MY9G+e/cuADY2NjRv3pzOnTszefJkfH19adasGdbWBS8af4tJE+JkKSABAbVs84iTAG7WFfP218VSxr59+wgKCuLYsWN4enry6aefEhgYiKOjY6HnkclkODs74+zsjJ9f/jVRc23k+YmXoaGhREdHo1KptOOdnJwKFC+FjVxQXnjllVdo06YNQ4cOpXPnznz00UfMmTOHcwnZ5VqcBPjjXjoWJjJh9xYIBEZNxbxDE+RLFw8briVnG81CSAbYmcvp7FH6tfoElRtlMRLJzSz/uwHMycokOz2Nmt4tAYi5cj6PQNlWMVLn8Y1Tf6BWKmn3ymid5zsMCcwjUP4Tepgazfy04iSAhXUV2gwcwc8rPiXu5j+41W9cYKxKScIEsfATCIpCRkYGFy9e1BEiIyIitBZtd3d3fH19ee2117SZkfXq1cPEpPBNqaJSczgTn1lal1BpedbmppOFCRYmMrJUxnA3VEiU2bT3acqN69dp164dO3bsYODAgZials6t/uM28nzDUSqJiYnRETCFjVxgDNSqVYvffvuNTz75hHnz5nE9IRWvEdMNHVahOBydRjUrU9E4RyAQGC1CoKxEmMllBNSyNRqrd272g5lcCCuC0kVdjEJk6clJHPn6C87/vIfUxHid1zJTU/KMd6xeS+fxw3tRADh71tF53treESs7hyfGRuPdrGWeOV3rNNTO9TSBUqUGRCNvgaBAHjx4kCcr8nGLtpeXF76+vvTt21dr0a5WrVqJzqmWJA5Ephi00UJFpDCbmzKZDB9nS07HZVSI/3u1Skno1jW0atmSzZs20a5du2cfVMqYmppSs2ZNatasSceOHfO8/jQb+blz59i7d6+wkQsMhqmpKR999BHduvfglJknEsbxOS0D9kemENjYUayfBAKBUSIEykqGZxUzutew4XB0mqFDeSbda9iIHUBBmVCAO/qpbJ0dyJ3zp+k04i08vJphbm2DpFbzzcTBSPkonmYWlnqItHiYFOP6BIKKyLMs2tbW1vj4+BTJol1cbjzK5mF2WbVpqTwUdnOzRVVLTsVllE1QpYxMbsKiyWNoWsfT0KEUGmEjFxgDyjq+SEZUHiu3u/fvMWk8X0MI9gKBwPgQAmUlpJWLFVkqqVzXUunkbi1qqAj0TkE1KE2LuGDJePSQG6d+p/uE2Tw/bob2+Qd3bhR6Dgd3zUIyIeoWTo9lV6Y9TCTj0cMnxtYgPvJ6njnib1/Tmasginp9AkFFIDMzM08XbX1btEtCWHymyJ4sBQq7ueloYUJtWzMiU3KM+megUiqJu3yOVad/xN/fH39/fzw9jUeofBrCRi4wJMZagkMCTsdn0tDBQiR6CAQCo0MIlJWUDtU04l95FCk7u1vTvpoQJwVlh4lM0+26oEY5TyKTawSMJ4XO0C2r8xueL/XadEJuaspfOzfQoF1X7fMnd6zLM9bLvzuhW1cTGXGaWj6tAcjOSOPU7k04etTEta5XgecxlYNw+QgqOg8ePMjTRfvy5culatEuCUlZKm6n5Bjs/BWVom5utnSxNPqfg4mpKcpb5/nlp5/48ssvAfD09NSKlf7+/jRv3rzMhPeyRNjIBaWFsZfgkAEHIlMY18Qx30ZhAoFAUF4RAmUlRSaT4e9mjYWJjMPRaQb/A5x7/u41bETmpKDMkclkuFmZEp2mLNR4yyq21PFrz+8bv0StzMHO1Z1rfx4j6W5koc9p6+yK/6vj+GPTSr6dOpwGHZ4j9upF/jlxBBsHZ2SPNbXpMnoyET/vZsOkIXR49XWs7Bw4u38HSXcjGfbFNwV28AZwszIVljZBhUGtVnPr1q08Fu3o6GjgP4t2p06dmDRpUqlatEvCuQcie1LfFGdzs56dOQ7mcpKNpHngk8gAe3M5s+bNQv7BbO7fv8+JEycIDQ0lNDSUkJAQcnJyqFKlCu3atdMKlu3atcPW1tbQ4Zc6wkYuKC7GXoJDAh5mq7n5KIf69uaGDkcgEAgKjRAoKzmtXKyoZmXK/sgUg3X3zi1oH1DLVlgRBAbD3dqUmDQlhb0dHTx/NT98PpeT360HSaJB+66MWrGdBS96F/qcPSfPw8zSitPfb+L6qd+p6d2KMcE7WT02ANPHalbaOrvyxjc/cnD5x5zYvhZldhZuDZrw2tLNNOr0QoHzy2XgYSPeUwLjJDMzM98u2ikpmiZUbm5u+Pr6Mnz4cK1Fu379+uU+U0ySJCISilbTLGzfNnZ9OJm3Nh+iRhPfp479+vV+AIxbsxeApJg7LApoycsfLqdl31cBOLxqEUe+/oIFZ+MLnMcYKOnmplwmo48RNQ98ktx6m7kZUtWqVWPAgAEMGDAA0HSiP3PmjFawXLFiBR999BFyuZzmzZvrZFnWrFnTgFdiOISNXJAfFaEEhwwIi88QAqVAIDAqhEApwLOKGYGNHfktJo0zZfgHOfc8rVws6exhI7rNCUqdgmpQArhZmxYoTtZt5Z9nIW/v6s7wxRvyjH1yXPcJs+g+YVa+88pNTOjxxhx6vDFH+1xGSjLpDxOxd3XXGetUozbDFq0vIML8UUuaDEqBoLzzNIu2TCbTWrQDAgK0Fm03NzdDh10sErNUZKnK37L36LogXOt60bRbb0OHUij0tbnpWcWMVi6WhBlRIwzQXH8rF0tqPOXarays6NSpE506dQI0GchXr17VCpaHDh0iODgYgBo1auSxhZuair8fwkZe+agoJTgk4FZKDklZKhwtyvfGnUAgEOQi7jwEAJjJZXSvUQUvBwsORKbwMFtdakJl7rz25nL6iKxJQTnBzbrsPw5zMjMws9TN+smtY1mnlb9ezmGI6xIICqIwFu3mzZvTsWNHJk6cqLVo29jYGDhy/RGbXrhSEsVlzMqdzxzTLfBtuoyerPPcsfVLadb9pXIvUJbG5mYXDxuuJWcbzElSVFQqJarUZPzqeRTpOLlcrs0WHDt2LADx8fE6tvAZM2aQnZ2NjY1NHlu4nZ1daVyOUSNs5BWPilSCQwaEP8ikW/WK8zdUIBBUbMTKVaCDZxUzxjVx5OajHMLiM7iVkqO3P9K589S2NaOlixV17cxE4WZBucHJwgQLE1mZZjad/2UPYT9sx8u/O+bWNkSG/0XET7tp0K4rtX3blnj+rLQUFn8ShEKhoEWLFmJBIyhTKqpFu6TEpiuRQ6HLSRQVU7Nn2/lMTE0x0WN2nAwwl0OWGqPc3DSTywgwIqu3idyEzXPHs+3hfb777ju8vQtfWuRJXFxc6NevH/36aRfpt5MAACAASURBVEoDZGZmEhYWphUsg4OD+fjjj5HL5Xh7e+Pv70+HDh3w9/enVq1a4u9KISiMjfzevXt5xEthIy97ilOCw5A8q1yHBIQnZNLVw1q8VwUCgVEgBEpBHuQyGfXtzalvb05SlorwB5mEJ2RqhRu5TGMdffY8/42zMJHh62yJb1VLYTMQlEtkMhk+zpacjssosxtTtwZNkJuY8vu3X5KVmkIVZxc6vDqOF96aW/LJJYm0K2Gs/eor5s+fT506dRg4cCAKhYK2bds+tbGOQFBUEhIS8mRFVlSLdkm5l/5frdukmCh+27iCG6d+52HsXcwsrajXuiO9p36Io0femoA5Gel8/+l0/j7yA2plDk269ualmZ9hZeegHfNkDcr8eHJRO9fPBYCzP+zg7A87APB7aTB+AUNYO34Aw/+3gabP9dGZI/xgCDvencCEb36klk9rXKxMaVfN2mg3Nz2rmNG9hg2Ho9P0Pre+6e5Zhf7frGLw4MG0adOG5cuXExgYqBcBwtLSUps1CRrB5nFb+JEjR1i5ciUAHh4eOrZwX19fYQsvBqampnh6euLp6Sls5AamvJbgKAlZKomkLDVOlmL9JRAIyj/iLkLwVBwtTOhW3YauHtYkZamJTVcSm6EkJi2H2AwlynxSQEzlmrp3HjZmuFmZ4mZtiqOFXOzcCQzO02pQArSoasmpuIwyi6d6Yx8CV4WUzuQyGXNHDOCzkf04duwYISEhbNq0icWLF1O9enUGDBiAQqGgU6dOFT5jTaA/1Go1t2/fziNGRkVFAZXDol0SJEkiNuM/i3f0pXPciThF8xcGYF/Ng6SYO/y1awNfv96fabuOY26l23183+dzsbS1o/v4mcTfvs5fuzbw8F4Ur6/ZW6K/sYM+WcnuT6ZRo2kL2gx8DdDUva3ZvBX2btUJP7grH4FyF041alPLpzUAsRlK6tmZGfXmZisXK7JUEn/cS3/2YAPRyd1a0xDIpRF//vknb7/9NuPGjePXX39l9erVerdh524weHl5MWbMGEBTM/ZxW/js2bPJysrC2tqatm3bagXL9u3bY29vr9d4KiPCRl52lHYJDkMRm64UAqVAIDAKhEApKBQymQwnSxOcLE1oggWgWWipJVBKEio1mMjBVCZDLqNS3tQIjB9HCxNq25oRmZJjNPae/JChyTbSLOhN6NGjBz169CA4OJjQ0FBCQkLYvXs3X375JS4uLlqxslu3bsIWJtCSlZWVr0X70aNHwH8W7WHDhlUqi3ZJUEnobOw16tgD7+59dcY07vwiX43qxYUj+/ELGKTzmomZGYGrdmPy7/vU0d2Tg8s+4vLvP9OkS89ix9WizyvsmT8Dpxq1aNHnFd3Xer3M8S2ryEx5hKWtRvxKTXrAtT+P0W3MNO04pVojLJrIjHtzs0M1TV3g8ihSdna3pn21/+oWW1lZ8dVXX9GtWzcCAwPx8/Pju+++K1DE0hdVq1alb9++9O2r+d3NysrSsYWvXr2aTz/9FJlMRrNmzXSyLGvXri3uEUsBYSPXD6VdgsMQyGWaDaTc9ZtAIBCUZ4RAKSg2MpkMExmYIAOxHhVUEFq6WBp990YJaOliled5ExMTOnfuTOfOnQkKCuL06dOEhIQQEhLC119/jaOjI3379kWhUNCjRw8sLS3LPniBQUhISMi3i7ZSqUQmk9GwYUN8fX3p06dPpbdolwTlE9nbjzfJUuXkkJmWgrNnHSxt7Ym5cj6PQNlm4GtacRKg7Suj+Dn4M/45frhEAuXTaBEwmGPfLOPvI/to3X84AOd/3oNaqcS398s6Y5WSpLkn+Bdj3NyUyWT4u1ljYSLjcHSawZtl5J6/ew0bTeZkPgwaNIiWLVsyePBg2rdvz//+9z8mTpxYZv+fFhYWdOjQgQ4dOjBz5kwkSeLatWtawfLYsWOsWrUKAHd39zy28IoodJU3hI28cDxegiM/cstjTN/zF0fXLeHS0YNISDTr1oe+cz7XyXo/d2Anx7esIu7WVcwsLGnQriu9pn6Ig1t1nTnv/B3G4VWfc+fvM6iVSmo08eWFie/mqUV++9yf7F/8PvevX8bO1Z3Or00s1DWpJYhJM+77WoFAUHkQAqVAIBA8Rj07cxzM5SQbSTfXJ5GhaSJR1+7pCz65XE7btm1p27Ytn3/+OREREVqxcuPGjVSpUoWAgAAUCgW9evUSFt0KgiRJ+XbRzrVoW1lZ0bx5czp06MCbb76Jr68v3t7e4uevJ9RPrHxzMjM49s0ywvZt41HcPZ3yE5mpj/Ic71yzrs5jC+sq2FatRlLMnVKJF8C1TgNqNG1B+I8hWoEy/GAInt6tqPpEPCo1z9ywNJbNzVYuVlSzMmV/ZIrBunvLADtzOQGFaApUr149rd168uTJHD16lHXr1uHo6Fg2wT5G7qZGw4YNGT16NKDZBDl58qRWtJw7dy6ZmZlYW1vTpk0bHVu4g4PDM84g0DfCRp63BMfT2DYnEEePmrw46T1irpzn9PebsXFyodeUeQAcXbuEQ18txLtHP1oPGE5aUgInt6/l68C+TNr2K1a2mtIHN079wTeThlC9sQ/Pj5uJTCYjbN921o4fyPh1P+DZTPOziL12ifVvDcLGwZnnx89ErVJyePXnVHFyLVS8sRlKJEkqV//fAoFAkB9CoBQIBJWGZ9WgBE2TqD5G1M31SSQgoJZtkZpIyGQyrUX3k08+4fLly1qx8pVXXsHKyoqePXuiUCgICAgQNcWMhGdZtF1dXWnRogVDhw7V/vwbNGggLNqlyJO9qfYtmkvYvm34Dx1PzeatsKxih0wmY9vccUhS+TEZtugziP3/e5fk+zEos7OI+vsMfWcvzDPOpIL13vKsYkZgY0d+i0njTHwmSBKUwQI/N2uylYslnT1sMJMX7pwWFhYsXbqUrl27Mnr0aPz8/Ni+fTtt27Z99sGljLOzMwEBAQQEBACQnZ3N2bNntYLlmjVr+Oyzz5DJZDRt2lQny7JOnTpCWCkHlLaN/ElLeVnbyJ8swfE0PLy8UXywTPs4/WESZ/ZuodeUeSTFRHF49SJ6vDmXbmP/K4PR9Lk+rBj6HH9+t55uY6chSRLfz59B3Vb+jP5yh/Z3vK1iJEGvdOKXlQsYu3InAIdWfY4kSYxf9wMO7jUAaPbcSywb3LlQ8T5egkMgEAjKM0KgFAgEgifwrGJGKxdLwuIzjSqLUoZmQVvjGZk2z6Jx48a89957vPfee9y4cYPdu3cTEhLC8OHDMTc3p3v37igUCvr164ezs7N+gheUiMTExHy7aD9p0e7du7dWjBQW7bLH9AmR5cLhH/ALGEyftz/WPpeTlUlmSv4bJAl3blKv9X/2zKz0VFIe3MfLv3vJg3uKAOTz4gB+XDKPiJ92k5OViYmpGc1f6J9n3JPXVxEwk8voXqMKOdFX+TVOhbNnHWRISOj/WnOFSXtzOX0KkTVZEP3796dFixYMGTKEjh07snDhQqZNm4b8SYXcgJibm9OuXTvatWvH9OnTkSSJGzduaAXLP/74g9WrVwOaerf+/v506NABf39/WrRogbm5uYGvQPAkpWkjL6gepj5t5E+W4HgabV4epfO4dot2XDx6gMzUFC7+egBJrca7Rz/SkhK0Y2ydXanqWZebZ0LpNnYa9/75m4Q7N3ku8G3SHybqzFe/TSfOHdiJWq0GSeLayaM06dpLK04CuNZtSIP23fjn+OFCX59JKXxuCQQCgT4RAqVAIBDkQxcPG64lZxvM2ldUcq2AnT30a8WtV68eM2fOZObMmURFRWnFysDAQMaNG0fXrl1RKBQMGDBACF5lgLBoGzcmMk0zmNwsHZmJiSYr7zFObl+L+jGb5OOc2v0tLfu+qq1D+dfODaiVSrz8ny9xbOZW1mSm5LWVA9g4OtPQ/3nO/bgLZXYmDTs8h42j7uaEqVzTjKGisuzDd/jn6lU6DRiKad3mNGjfFSSQ6UH0yxUma9ua0dLFirp2ZkXKgs+PWrVq8fvvv/Pee+8xY8YMjh49ysaNG8vtppJMJqN+/frUr1+fkSNHApqNl8dt4e+++y6ZmZlYWVnRunVrbYZlhw4dDGJlFxSNktrIT5w4Uao28idLcDyNJ+tIWtlpnCUZjx7yIOomkiSxuH/+mctyU83n94M7NwHYOa/gWpJZqY9QZmeRk5mRp6QGQNVa9QstUBamBIdAIBAYGiFQCgQCQT6YyWUEGJHVO9faXVgrYHHw9PRkypQpTJkyhdjYWPbs2UNISAiTJk3irbfewt/fH4VCwcCBA6lZs2apxVFZyMrK4tKlS3nESGHRNl5kMhluVqZEp2nqnDXq1INzP+7Eoood1ep6cef8aa6f+h1rB6d8j1fl5LB2wkC8e/TjQeR1/tz5DbV929JYDw1yqjf24fpfv/HH5q+wc3HD0aMmNb1bal/3CxjElpljAOjxxpw8x7tZmVZIG25WVhbz58/n559/BsDm5z1MnVqbPvVsuJIK4QmZZKk0IrNcBmpJgmdkKWnGab63MJHh62yJb1VLHC30+941MzPj888/p0uXLrz22mv4+vqybdu2fLPbyiNOTk706dOHPn36ABpb+Llz57SC5fr161mwYAEATZo00bGF16tXr0L+PlZ0DGkjL8peg1xe0HtVQlKrkclkjFqxHXk+f4/NrTQbhrnlhnpN/RAPr2b5zmZuZYMyO6vwgT2FilaCQyAQVEyEQCkQCCoNhalB+TieVczoXsOGw9FppRmWXuhew6bYdsDi4ObmxoQJE5gwYQIJCQns27ePkJAQZs+ezbRp02jdujUKhQKFQkH9+vXLLC5jJTExMU8X7UuXLuWxaPfq1UtYtI0cd2tTYtI0nWJfmjkfudyEiIMh5GRnUsunDWO/CmH9W4PyPbbv7AWEHwzh8KrPUSlz8HlxIC/Nmq8XIabP25/w/advc2jlAnIyM/B7abCOQNmo84tY2TkgqdV5BFG5DDxsKlYn5ri4OFatWsXKlSu5f/8+NjY27Nq1ixdffFH7/+1uD109rEnKUhObriQ2Q0l0Sja3E1N0uvnmYirXCLkeNma4WZniZm2Ko4W81IW03r17Ex4eztChQ+natSsff/wxc+bMKVeW78Jgbm6ube729ttvI0kSN2/e1AqWubUsAapVq6a1hPv7++Pn5yds4RWAktjIw8PDn2ojv3r9Om8fvFDiGJ1r1EaSJByr18KlVr0CxznVqA2ApY0t9dt2KXCcjWNVzCyttBmXj/Mg8nqh46qIJTgEFQtJkjS1YCUJtVqzaWD6b2M9seFUeZBJhV2pCwQCgZETHx+Pq6sre/bsoV+/foU+LjQ2nT/upT97oIHo5G6Nv1vexbAhePToEfv37yckJISDBw+SkZFB8+bNUSgUvPzyyzRp0sTQIRoUSZK4fft2nqzIO3c0XZhzLdq5IqSwaFc8LiZm8kNkqqHDKDIqpZIFL3rTuPMLOs0hculby5YmThYGiEy/XLhwgaVLl7J582bkcjm9e/cmJCSETZs2MXz48ELNIZfLebFXL/bs+wGVWpO5ZCqTITfwIkupVPLRRx/x2Wef0b17dzZt2kS1atUMFk9pkJSUxJ9//qkVLP/66y8yMjKwtLTMYwt3cso/U1lQsXnSRn7+/HmCg4ORJImPQiPz3VzI5fCqRRz5+gveO3JFp8xF2L5t7PpwMrP2h6FWqVgysD3eL/Rn8Kdf6bznJUkiPTkJGwcn1Go1i/u3RSaXM2nrESysdetppiY9oIpjVQA2TR/J1RO/Mn33SW0dyribV1k2uDNqlYoFZ+N5GqZymN7cWYg8gnKDJEkkZqk0m3vpSu79u8mXX6Oq3M09d2vNxp6btSlOFibi97mCIgRKgUBQaSiuQClJEifuZ5RLkbKzuzXtq1mVyz/SaWlp/PTTT4SEhLB//35SUlJo1KiRNrPS19e3XMatL/KzaEdERJCcrCkb4OLiQosWLfD19dX+KyzaFZ+ETCVrLj80dBhF5u/D+9g6ayyvr9lD3Zb+eV5/xQ3quVc1QGQlR61W89NPPxEUFMThw4fx8PBg4sSJjBs3jsDAQC5evMilS5cwNS2c8cjc3JzmzZtz5syZUo68eBw+fJjhw4cjk8nYsmULzz33nKFDKjVycnIIDw/XybK8d+8eoGkI97gtvH79+hX6b5IgL3PnzmXhwoWAxl4efDqS2Kc4qgsjUDp61OTYN8v4ecWn1PJpTZOuvbGwqULi3TtcPHqANgNfo/NrbwFw80wo30waQhXHqrTs+yp2ru48irvHzTPHsbCxZeSyLQDcu3qRlSN7UsWxKu0GjUatVHJix1qqOLkSe+3iMwXKGjamDG/oUML/LYGg5CRlqTj3IJOIx8ujAIUpAfv4OAsTGT7OlrQohfIoAsMiLN4CgUDwDGQyGf5u1liYyDgcnaZtaGCweP49f/caNrRysTJgJE/HxsZGK0ZmZmZy+PBhQkJCWLlyJZ999hl16tTRvt6mTRujsxs+zrMs2g0aNMDX15eePXvqWLTFYrjy4WRhgoWJTHtjXt6583cYsdcu8evaxXg08s5XnMxISaZBywZ4enoyZMgQZs+ebRTZaWlpaXz77bcsW7aMf/75h1atWrFlyxZeeeUVzMzMiIiIYM+ePWzYsKHQ4iRo6t49fFh+Reju3bsTHh7O8OHD6d69O++//z7z5s2rkJsjZmZmtG7dmtatWzN16lRtFvvjguW6deuQJAkXFxcdwdLPzw8LC+PPChbkT/Xq1YmJiQE0ZRAOHDjAkehU4uIzCyWWPI2uo6dQtWY9Qres4sjXXwBgX606Ddp11SmRUbeVP29s+JFf1yzm5HfryE5Po4qzK57N/GirGKkd596wKWO+3MGBJfM49NXn2FfzoPv42aQ8uE/stYtPjaUiluAQGBdqSeLGo2zC4jO5nZKTZx1V2Pfb4+OyVBKn4zI4FZfxb4M5S+rZmZe4wZzA8IgMSoFAUGl48OABLi4ufP/99/Tv379Yc0Sl5rA/MsVg3b1zu3UH1LIt05qT+iQnJ4djx44REhLC999/T1xcHNWrV2fgwIEoFAo6duxYbhfKz7JoW1pa5mvRrlKlyjNmFlQmfr2bxum4DINudBSWnR9MJPzHXbg3bMbLH63ArX5jnddlgGv6fbZ+OJXjx4+TmZkJQO3atRk6dCizZ8/Gzs7OAJEXTHR0NMHBwaxevZrk5GQGDBjA1KlT8ff319k0ePnllzl37hxXrlzRNtIoDO7u7qjVau7fv18a4esNlUrFggUL+OCDD+jcuTNbtmzBw8PD0GGVOQ8fPsxjC09PT8fCwkLHFt6+fXuqVjXOLGHBfxw9epTnn38eSZKQyWQcOXKEbt26AcZbguNZVJQSHALjIyo1hwORKTzMVpdagkfuvA7mcvoY8fpIoEEIlAKBoNKgD4ESIEct8VtMGmfiM8ssmzL3PK1dLOnsYVOq3brLEpVKRWhoKCEhIezevZvo6GhcXV3p378/CoWCbt26FUkY0CdFsWg/3kW7KJlWgvJFWRVoT8pSsfpSkt7mMzTjmzhqLVY//vgjixcvJjQ0lKwsjVeybt26DBs2jFmzZhlUrD99+jRBQUHs3LkTKysrAgMDmTRpEnXq1Mkz9sKFC3h7e7N27VrGjh1bpPM0bNiQe/fukZKSoq/QS5Xff/+dV199lezsbDZt2kTPniXvCm/M5OTkEBERoZNlmZtp5+XlpZNl2bBhQ5EJb0T06dOHH3/8EQAPDw/u3r2r87qxluB4FuMaO+JkWT43fgUVE0OulVq5WNKlAq2VKhtCoBQIBJUGfQmUuYhdQf2iVqs5ffo0u3btIiQkhFu3buHo6Ejfvn1RKBT06NEDS0vLUjl3UlJSvhbtnJwcHYv241/Com3cGLpA+/bryUSm5BhFFmVByIDatmYMrm+f7+v79u1jyZIlnDx5kuzsbADq16/PiBEjePvtt8tErFQqlezZs4egoCBOnDhBnTp1mDJlCqNHj35qZueQIUP4888/uXr1apG7P7dp04bw8HDtNRsD8fHxjBw5koMHDzJ79mw++eQTg20OlTckSSIyMlJHsPz777+RJImqVavqdAtv1aqVsIWXQ5KTk3F3dycjIwOAOXPmsGDBgjzjJEli6d+JRlOCozCYomZ8fStsbW0NHYqgkiDcZoKSIARKgUBQadC3QAmauio3H+UQFp/BrXzqqhSX3Hnq2JrR0sWKunZmlaquiiRJhIeHExISQkhICFeuXMHW1pY+ffqgUCjo1atXsTpb5y40n7RoR0ZGAsKiXRkoLwXaryVnEXLTODLsnsbLde2ob/90AU+tVrN3716CgoL4888/tcJ//fr1GTlyJNOmTcPauuDOucUhOTmZdevWsXz5ciIjI+ncuTNTp06lb9++zywhcfnyZZo2bcpXX33F+PHji3zu3r1789NPP6FWl7SSXdmiVqtZvHgx77zzDm3atGHbtm3UrFnT0GGVS5KTk/PYwtPS0jA3N6dVq1Y63cJdXFwMHW6lZunSpUybNg3Q1CSNjIzE3d29wPHGVILjWaiUSo5v+Yqfln2Mk5MTNWvWpFatWtqvxx+7uLiITVdBiTkTnyHq9QtKhBAoBQJBpSEhIYGqVauye/duBgwYoPf5k7JUhD/IJPxx4UMG6kJ8yj4+zsJEhq+zJb6iM52WS5cuacXKiIgIrKys6NmzJwqFgoCAAOzt82ZwZWdn57Foh4eHC4t2JeRZBdqLS+48xSnQrpYkvr6URLKBMgxKigywN5czroljkTZP1Go1u3fvJigoiNOnT2vFSi8vL0aPHs3kyZNLlCl948YNli9fzvr168nMzGTIkCFMnTqVli1bFnqO4cOH89tvv3H9+vViZcONHj2aDRs2kJGRUWpZ36XJyZMnGTJkCCkpKWzYsIG+ffsaOqRyj1Kp5Pz58zpZltHR0YDG8v+4LdzLy0sIQWVE48aNuXLlCgDt2rXj5MmTzzymYpXgkGiZfpO429e5c+cOkZGROl/p6enakZaWljqC5ZPf16hRQ2RVCwpEkiRO3M/gj3vpzx5cxnRyt6ZDNSvxuWskCIFSIBBUGkpboMxFkiSSstQa62iGkpi0nGdaRz1szHCz0lhHHS3k4o/oU7hx44ZWrDx16hTm5uZ06dIFX19f7O3tuXbtmrBoC7SU51IMUak5bLmWXAoRlQ3DG9hTowT2KbVazY4dO1i+fDlnzpzRdr1v1KgRgYGBTJw4sVD2akmS+P3331m6dCl79+7FycmJCRMm8Oabbxa56cvVq1dp3Lgxy5cv56233irWdb377rvMnz+fCxcu0LRp02LNYWgSExMZM2YMe/fuZdq0aSxcuLDIVvfKzp07d3QEy/Pnz6NWq3F2ds5jCzdGIbs8c+HCBXx8fLRZzNu3b2fw4MGFPr4ylOCQJInExEStWPm4gJn7fXx8vHa8XC7Hw8MjX/Ey93vhNqm8hMaml0txMpdO7tb4u+nXqSEoHYRAKRAIKg1lJVDmhyRJqP9tvqFSg8m/zTfkem6+UdF50qJ98uRJTp8+TVLSf9kOdnZ2eHt706dPH7p06ULz5s3FTXMlxFgKtB+OTiUsPtOoFsIyNNf4fA39va/UajVbt25l+fLlnD17FpVKhUwmo2nTpgQGBvLGG2/kEciys7PZsWMHQUFBnDt3jsaNGzN16lSGDx9ebMv4qFGj+OWXX7h582axRaPVq1czYcIE9u7da9TZh5IksWLFCmbMmIGPjw87duygbt26hg7LaHn06BF//fWXVrD8888/SU1NxdzcnJYtW+rYwl1dXQ0drtEyZswYvvnmGwAcHByIi4srcuZfZSrB8TTS09O5c+dOvuJlZGQk0dHRqFQq7fgnbeRPWsqFjbxiciYug8N30wwdxjMRdm/jQAiUAoGg0pCYmIizs7NBBEpB0cnPoh0REcHDh5oOm1WrVtWxaFevXp0LFy6wZ88ejh49ilqtpmPHjigUCgYMGCBqqVUijKlAe45aYu3lJIPFWlRyry2wsWOpdchUq9Vs3LiR4OBgwsPDUalUyOVymjZtyoQJExg4cCBr164lODiY2NhYXnzxRaZNm8YLL7xQosXvjRs38PLyYvHixUyZMqXY8xw8eJDevXuzfPlyJk2aVOx5ygtnzpxh8ODBPHjwgHXr1vHyyy8bOqQKgVKp5O+//9bJsoyKigI0zaQet4U3atQIuVxu4IjLNzk5Obi6umrvEUaPHs369euLNVdlLcFRVJRKJffu3ctXvBQ28sqBsTlBhjWwF41zyjlCoBQIBJWGXIEyJCSEgQMHGjocwWM8fPhQp4v2uXPntBZtIF+Ltru7e4FiREJCAvv27SMkJIRDhw6RnZ1NmzZtUCgUKBQK6tWrV5aXJyhDjLFAu7jBLxilUsn69etZtWoV4eHh5N62ymQyOnbsyJdffknz5s31cq7AwED279/PzZs3S9S059q1azRs2JCZM2eyaNEivcRmaJKTkxk3bhzfffcdb7zxBkuWLBG25FIgKipKR7CMiIhArVbj5ORE+/bttYJl69atsbISmUC57NixgyFDhgAaK3JERATNmjUr0ZzXH6Sw806m0Wb8lbQEhz543Eb+pHgpbOTGj9hgFZQGQqAUCASVBiFQGh5Jkrhz506exjW3b98GNLvr3t7eebpo29raFvucycnJHDhwgJCQEA4ePEhGRgY+Pj5asbJJkyZ6ujqBITH2Au25wmp5p6wtUpIk8fPPPxMUFMQvv/yCvb09VlZW3L9/H0mSMDExwdfXlzfeeIPRo0cXO8vs9u3bNGjQgIULFzJ9+vQSxZydnY2FhQXDhg1j8+bNJZqrPCFJEl9//TVTpkyhUaNGfPfddzRs2NDQYVVoUlJS8tjCU1JSMDMzw8/PTyfLslq1aoYO1yD4+/tz4sQJALy8vLRNcUrCqVOnGDFiBI0HjKbdoLFgZCKlhVzGy/XsjCJTLD09naioqOw+rgAAIABJREFUqHzFS2EjL9+IEjWC0kAIlAKBoNIgBMqyJTs7m8uXL+cRIwuyaPv6+tKwYcNS7aKdlpbGTz/9REhICPv37yclJYVGjRppxUpfX19xY2ukVIQC7SHhN7km2ZVRREWnLIvMp6ens2nTJpYtW8bly5fx8/Nj2rRpDBo0CHNzc7Kzs1m9ejVr1qzh4sWLqNVqTExMaNGiBRMnTmTEiBFFEisnTJjA7t27uXXrFjY2NiWOXy6X06NHD37++ecSz1XeiIiIYNCgQcTExLB69WqGDh1q6JAqDSqVSmsLP3HiBKGhoURGRgJQr149HcGycePGFdoWfu/ePWrVqqV1WgQFBTF16tQSzZmTk8Onn37KZ599hp+fH998u4nfVS5GkyGWS3HqIZdXSmIjf1K8FDZy/WFszo8nEVbv8osQKAUCQaUhKSkJJycnIVCWAk9atMPDw7l48WKxLdplQWZmJocOHSIkJIR9+/aRlJRE3bp1GThwIAqFgjZt2lToxV1FwtgLtCcmJvLBBx+wcuVKXp71KS0GvW6A6J5OZ3dr2j8jC1Qf3L17l+DgYFavXk1SUhL9+/dn6tSpdOrUqcBzZ2dns3LlStasWcPly5eRJAlTU1NatmzJpEmTePXVV5/6Xo6KiqJevXp8+umnzJo1Sy/XYWFhgbe3N2fOnNHLfOWN1NRU3njjDTZv3szYsWNZvnx5iWzxguITHR2tFStDQ0O1dVsdHR3z2MIrys9o7ty5LFy4EABra2tiYmKwt8+/W3VhuXz5MiNGjCA8PJx58+bxzjvvYGpqatRCTFHqIRsrxbWR5ydeCht54RA1WgWliRAoBQJBpSFXoNy1axcKhcLQ4RglhrBolwU5OTkcPXqUkJAQ9uzZQ1xcHNWrV9eKlR07dsTExMTQYQrywdgWj4/v2qtUKtatW8c777xDdnY2H3zwAZMmTeJ8ssro6miWlLCwMIKCgtixYweWlpaMHTuWyZMnF7lrdGZmJitWrGD9+vX8888/WrGydevWTJkyhVdeeSWPWDlx4kS2b9/O7du39bYwtbOzw8XFhRs3buhlvvKIJEls2LCBt956i7p167Jjxw6aNm1q6LAqPampqZw6dUorWJ48eZJHjx5hamqaxxbu5uZm6HCLTPXq1YmJiQEgICCAH374oUTzqdVqVqxYwZw5c6hduzabNm2iVatWOmOMpQRHfpTl53h5pag2ckdHxwLFS2EjF13uBaWLECgFAkGlQQiURaM8WrTLApVKxfHjxwkJCWH37t3cvXsXV1dX+vfvj0KhoFu3bsIeVE4w5gLtp/88yaRJkzh79iyjRo1iwYIFOmKBMXUiLy4qlYq9e/eydOlS/vjjD2rXrs3kyZMZM2ZMibOhQLMoXb58Od988w3Xrl1DkiTMzMxo27YtU6dOZcCAAdy7d4+6devywQcf8M477+jhqjS4u7ujUqmIi4vT25zllUuXLjFo0CBu3rxJcHAwo0aNqtSL9/KGSqXi4sWLOs13cjcV69SpoyNYNm3atNw6B44ePcrzzz+PJEnIZDKOHDlCt27dSjTnnTt3GD16NL/++itTpkxhwYIFBTYfKu9lRApDYeohV0ZUKhUxMTH5ipe536el/SdQV3Yb+fbryUSm5BjFfVdByIDatmYMrl/yew2BfhECpUAgqDQIgbJgnmXRrl+/vlaE9PHxoUWLFnh4eFT4m1y1Ws2pU6cICQkhJCSEW7du4ejoSN++fVEoFPTo0UN0sjUgxligHeBB2DEWv/4KrVq1YsWKFbRr1y7fcTlqid9i0jgTn1lm2ZS552ntYknnUqpd9ujRI9avX8/y5cu5desW/v7+TJs2jX79+pXaBkd6ejpLlizh22+/5fr160iShLm5OVWrViU5OZmYmBjs7PRX/9PLy4u7d++SmpqqtznLM+np6UyZMoW1a9cyfPhwvvrqK2GTLMfExMToCJbnzp1DpVJhb2+vYwtv06aNXmqylpSXXnqJ/fv3A+Dh4cHdu3dLNJ8kSWzevJmJEydiZ2fHhg0beP755595THltxFYUyrKWcEVB2Mj/IylLxepLSYYOQ2+Mb+KIo4VwSJUnhEApEAgqDQ8fPsTR0bFSC5SSJBEVFaUVIc+dO6dj0c6tm/Z4VmTz5s3LvUW7LJAkifDwcK1YeeXKFWxtbQkICEChUNCzZ89ysZCrLBibtftxJEmN49VQxg3qV6hspajUHA5EpvAwW11qQmXuvA7mcvqUUtbkrVu3WL58OevWrSMjI4NBgwYxdepUWrdurfdzPY3U1FQWL17M+vXruXPnDqD57OvQoQMzZsygd+/eJT5Hu3btCAsL027yVBa2bt3K+PHj8fDw4LvvvsPHx8fQIQkKQVpaWh5beHJyMqampvj6+upkWXp4eJRZXOnp6bi4uGiboMyZM4cFCxaUaM4HDx4wfvx4du/ezYgRI1i+fDkODg6FPj7X7m3oEhwloTLbvUsLfdrIa9asiaura7lMAvj1bhqn4zKM9nf/cWRAG1crulUX9+7lCSFQCgSCSkNlEyhzcnLytWgnJWl2Pp2dnfNYtL28vIzeol1WXLp0SStWRkREYGVlRa9evVAoFAQEBOg1G0ugS2Us0K6WJG4+yiEsPoNbKTl6WxznzlPH1oyWLlbUtTPTa9F4SZI4fvw4QUFB7N27FwcHB8aPH89bb71F9erV9Xae4jB9+nTWrl3LuHHjtBnSoLHv+fv7M3PmTF588cVizR0QEMCBAweojLfZV69eZfDgwVy+fJmlS5cyfvz4crnQFhSMWq3OYwvPfX/Url07jy28NGo0BwcHM3HiRADMzMyIjIzE3d29RHMeOHCAsWPHolQqWb16dbHvBQ1dgkMfiC7GZYu+bOS535eWjTw7OxszM7N8P7MlSWLp34lkqZ79W3941SKOfP0F7x25go2jc4HjPu/jR91WHXjloy+LHOvnffyoVq8Ro5ZvLfKxuViYyJjq7ST+RpUjxCpUIBBUOirigjE5OTlfi3Z2djbwn0V7+vTpWjGyMli0S5MmTZrQpEkT3n//fa5fv87u3bsJCQlh2LBhmJub06NHDxQKBX379sXZueCbM0HRufEom4fZakOHUWwk4GG2mpuPcgpdoF0uk1Hf3pz69uYkZakIf5BJeEKmdqEgqVTICiESyGWg/vcj0MJEhq+zJb5VLfVuccrOzmbnzp0EBQURFhaGl5cXwcHBvPbaa+Wik3BcXBxfffUVM2bM4OOPP+aLL77g4cOHLFq0iK1bt3LkyBGOHDmClZUVnTp1YtasWc+0gD6Oq6sroMmqKQ/XW5Y0bNiQkydPMn36dN544w1+/fVX1qxZo5e6ooKyQS6X4+3tjbe3NxMmTADg3r17hIaGajuG79ixA6VSiZ2dnY4tvG3btiV2EzRu3JgrV64AmmzkkydPlmi+1NRU3n77bdasWUPv3r1Zu3ZticROzypmBDZ21JbgMDZkwP7IFAIbO5ZKGQ9BXkxMTPD09MTT05OOHTvmeb0gG/mdO3eIiIhg3759z7SRP2kpL46NvGXLlpiamrJp0yaaNWum81pilqpQ4qQxkaWSSMpS42QpbN7lBZFBKRAIKg25GZQ7d+7k5ZdfNnQ4xeJJi3buV25mg7BoG56oqCitWHn8+HHkcjndunVDoVDQv39/o+yaWt4QBdo1SJJETHIaAUNHMWrSdJzrNSY2Q4kyH+3WVA5uVqZ42JjhZmWKm7UpjhZyvW9SJCQksHr1aoKDg4mJiaFHjx5MmzaNF198sVw135g9ezYrV64kMjISJyenPK8nJiaycOFCtm/fTlRUFABWVlZ06dKFuXPn0rlz56fO//777/Ppp58SERFB8+bNS+UajIFdu3YxduxYqlatyo4dO/J0RxYYL+np6Zw+fVqbYXnixAkePnyIiYlJHlt4YbOlL1y4gI+PD2q15kNs+/btDB48uERxHj9+nJEjR3L//n2CgoIIDAzU6+deVGoOu24kk2Vke2YyoJWLJc/XMM5aiJWR0raRK5VKLCwsUKvVmJqaMm/ePObMmaPN1LyYmMkPkYWrq1zYDEpldhYymRyTYmSD6iODEqBvLVuaOFmUaA6B/hACpUAgqDQkJyfj4OBgNAKlsGgbP7GxsezZs4ddu3Zx7Ngx1Go1HTt2RKFQMHDgQDw9PQ0dotEhCrTrcvLkSTp06MDZs2dp0aIFkiShlkApSajUYCIHU5kMuYxSzZi+fPkyy5Yt49tvv0WtVjNixAimTJmSJwOjPPDgwQNtx/D58+c/c3xcXBwLFy7ku+++0zbnsLGxoWvXrsydOxd/f/88x3z99dfaOncDBgzQ+zUYEzdv3mTIkCGEh4fzxRdfMHnyZJG9XwFRq9VcvnxZxxZ+48YNAGrVqqUjWDZr1iyPLfz1119n7dq1ADg4OBAXF1ciC2tWVhYffPABixYtokOHDmzcuJF69eoV/wILwJjrIYOwelckSmojt7e3Z8mSJdrXZTIZTZs2ZdOmTfj6+nLk38aEhdHiCytQlgR9CJRyGbRyseI5UYey3CAESoFAUGkozwJlYS3aj38Ji7ZxkZCQwN69e9m9ezeHDh0iOzubNm3aoFAoUCgUpbJwqoiIAu26fPnll0yfPp2UlBTMzQtnF9cXkiRx6NAhgoKC+Omnn6hWrRpvvfUWEyZMwMXFpUxjKQrvvvsuy5Yt4/bt21StWrVIx8bGxrJgwQJ27dpFTEwMoBEru3fvzty5c2nbti0Ahw4d4oUXXiAoKIipU6fq/RqMjezsbObMmUNQUBD9+vVj/fr1+WauCioWsbGxWkt4aGgoZ8+eJScnB1tbW9q1a6ftFD506FAePnwIwMiRI9mwYUOJznv+/HlGjBjB5cuX+eSTT5gxY0ap1MmsjPWQBcbL02zkkZGRXLt2jeTk/MX2KVOm0OrND4lOUxbqXLkC5fQ9f3F03RIuHT2IhESzbn3oO+dzzK00pU/yq0F57+pFflg0l6iL57C2d6TtyyOxc3En5KMpzNofhqNHTe2x1eo1ouvoyRxYMo/Ya5ewdXGj+/iZ+AUUPvO6ho0pwxsWvlGWoHQRaTYCgaDSYch9mcJYtJs1a4afnx9jxozRWrRFwxXjx9nZmTFjxjBmzBiSk5M5cOAAu3bt4sMPP2T27Nn4+PhoxcomTZoYOtxyiSRJRCRklspCMGzfNnZ9OFnn5re0kYDwhEy6elgXe7Ph7NmzeHt7l6k4mZGRwebNm1m6dCmXLl3C19eXjRs3MnjwYCwsyrdNKjExkRUrVvDmm28WWZwEcHNzY9myZSxbtoyYmBg+++wzdu/ezd69e9m7dy+2trZ0796dkSNHAmgzLis75ubmLFmyhK5duzJq1ChatGjB9u3bad++vaFDE5Qibm5uDBw4kIEDBwKaz47HbeGLFi3SdugGGDJkCD179iQqKqpYDgOVSsXixYt5//338fLy4vTp06XaSb4y1kMWGC8ymQxnZ2ecnZ3x8/PL8/qmTZt47bXXtI/lcjlqtRoLCwssLS2JzSicOPk42+YE4uhRkxcnvUfMlfOc/n4zNk4u9JoyL9/xyXH3WDN+ADKZjK6jp2BuZc3p7zdjWsA9TmL0LbbMGkOrfsPwCxjMmb1b2fXBJKo39qFavUaFijE2Q4kkSSLpo5wgBEqBQCAoJQpj0fb19WXgwIE6Fu3S6MonKF/Y29szdOhQhg4dSlpaGgcPHiQkJIRFixYxb948GjVqpBUrfX19xU3Tv5RlgfaT363H3NKKln1fLdXzlLRAe1hYGO3atdNzVPlz7949Vq5cyapVq0hISOCll14iODiYLl26GM3v6LJly1AqlUyfPr3Ec3l4eBAcHExwcDB37txhwYIFfP/999ovgB07djBs2DB8fX1LfL6KQN++fQkPD+fVV1+lU6dOzJ8/nxkzZpSr+qSC0sPKyorOnTvTuXNn/P39teJktWrV6NmzJ6GhoWzfvh0AT09PHVt48+bNn5oFefPmTUaOHEloaCgzZ87k448/LvUNk7D4TGRglNmTuciAsPgMIVAKuHPnjvZ7KysrBg0axIgRI+jatSuSTM7/IhKKPKeHlzeKD5ZpH6c/TOLM3i0FCpS/bVhO5qOHTNx6BA8vbwBa9n2V//Vvm+/4+NvXGbd2H3X8NJtd3i/04/NevoTt20bvaR8VKkal+v/snXdUVNfXhp8ZivSOWFBsEUFBsAfssUVQoxg1dtSYaIyf0cQWk5hEY4lGE2OMsSBij5hEQY29dwUEe6+g9F6m3O8PwvxEUAFnmBm8z1qzll7mnrMHZuae+569353fPNBAP5YxFR5RoBQREXlj0OQNdGpqKhcvXiwkRMbExKhKtOvWrYuXlxcTJ05UiZHVq1fXm5t6Ec1hbm5O37596du3Lzk5Oezdu5fQ0FB+++03Zs+eTZ06dejTpw99+/alefPmb/SNfFxW6XfvS4q3Xz88u/bG0Dj/hvb0n0GY2dhpXKCE/NdVFoEyOzubS5cuMXbsWA1E9T8iIiJYtGgRmzZtwtjYmBEjRjB+/Hjq1aun0XnVTUpKCj///DNjxozByclJrWPXrFmTZcuWsWzZMu7du8esWbNYuXIlDx48wNvbG2tra7p168aMGTN00pezPKlZsyaHDh3i66+/ZsqUKRw6dIjg4GCdtgUQUR+xsbG4uLggk8kAitggPHnypFBZeGhoKDKZDAsLC1VZuK+vL61atcLS0hJBEFi1ahWfffYZDg4OHD58mDZt2mj8dSTnKribLtP4PJpGAO6ky0jOVbyWH7KI/tOiRQvVerRHjx6YmZmpfpajKFumcIu+wwv9v5Z3Ky4dDCcnIx0Ti6INPK+fOEBNz2YqcRLAzNoWr3cDOLlpZZHnV67jqhInASxsHXBwqUfSw3ulilMuCBgg3pPpAqJAKSIiIlIKBEHg4cOHRbIib9++DeSXsXl4eODt7U1gYKBYoi1SKkxMTOjRowc9evRAJpNx8OBBQkNDWbt2LQsWLMDZ2ZnevXsTEBBA69atNeKppcvEZcmRQokM2kuL1MAAqRZ+n1JJfnmRO6XP9Ll48SIKhYKmTZuqPS6FQsGOHTtYtGgRR44coWbNmsyZM4eRI0diY6OfXk1LliwhNzeXzz//XKPzuLi4sGLFCtauXUu9evVo2bIl27dvZ/PmzWzevBkbGxu6d+/OjBkzcHNz02gsuoqRkRFz5syhffv2DBkyBC8vLzZu3PjK7ugi+s2MGTOYPXs2kJ+hFRsbi7W1daHnODk50bt3b1VzqezsbM6dO6cSLJcsWcK3336LVCrFzc2NzMxM7t69S//+/VmxYgWWlkVFD00QkaD/2ZMFSIDIhJzX8kMW0X86d+5M586di/2ZsowLL5sq1Qv939Qq//OenZZSrECZEvuQmp7Nihy3r1G7ROMXzJGdnlKqOBVK4M1aUussb24ahoiIyBtLST0oZTIZ0dHRhISEMGnSJN555x0cHByoWbMmPXv2ZPHixaSmptK7d29CQkKIjo4mIyODc+fOsXLlSsaNG0fr1q1FcVKkTBgZGdGlSxeWL1/O48ePOXToEL1792bbtm20b9+eatWq8fHHH7N3715VJkpFJzZLrhFxEvI9KKc1cST58X3m+TXhya2r3Dl/gmlNHJnWxJE/PuylkXmVAjzOLNvf78KFCxgZGeHh4fHqJ5eQ9PR0fvnlF1xdXenduzdyuZwtW7Zw69YtJk2apLfiZFpaGosWLWL06NFUrVq1XOY0MTEhOzub1atXk5CQwPXr1xk6dChSqZQNGzbg7u6Ovb09Q4cO5dq1a+USk67RtWtXIiMjqV+/Ph06dGDWrFkoFApthyWiAZydnVXiZPfu3cnKyioiThaHqakpbdq0YerUqezYsYP4+HiuXLnCRx99xM2bN3nw4AGQb6fg7u7OgAEDWLJkCRcuXEAu10zWfXF+yH9+M455fkV9/TTF7XPHmdbEkdvnjr/2WAV+yGLvXJEXUdbiHan0Raqfet5rkheMX9r3soGoiukMYgaliIiICCUv0f7ss8/EEm2RcsfAwIB27drRrl07Fi9ezJkzZwgNDSU0NJTly5dja2tLr169CAgIoHPnzjrfqKQsCIJQJoP2suD/+Sx2zJ+Gsak5HUZ+BoCFvebKT8tq0H7+/HkaNWqklr/33bt3WbJkCStXriQzM5P333+fDRs20KJFi9ceWxf49ddfyczMZPLkyeU2p7m5ORkZGar/v/XWWwQHBwNw5coVZs+ezc6dOwkJCSEkJAR7e3t69OjBjBkzqFu3brnFqW2qVavGvn37+P777/n66685dOgQ69ato0qVKtoOTUQNHD16lHbt2qm+4/bv30+HDh3KPF56ejpz5sxh7dq19O7dm+XLlwMUKgv//PPPycvLw9zcvEhZuDo2jcvTD7m8eF0/ZJGKjWE53e/YVHUm6cGdIscTizmmTsrr9Ym8GlGgFBEReWMouPlPSEhgx44dYom2iF4ilUpp1aoVrVq1Yv78+URGRqrEyjVr1mBpaYm/vz8BAQF069YNc/OKUbKlEPKNzMuDhh26s/e3OZjZ2OHt977G5yurQfv58+dfq7xbEAROnDjB4sWL2bZtG1ZWVowZM4ZPPvmkTB10dZX09HQWLlzIqFGjqF69aDmYprC2tlZldz2Pm5sb69atAyAmJobZs2eze/du1qxZw5o1a3B0dKRnz5589dVXuLi4lFvM2sLAwICZM2fStm1bBg0aROPGjVm/fj2dOnXSdmgir0GPHj0ICwsD8oXo1+1qf+DAAYYPH05qairBwcEMGTJEtbbr1asXvXrlZ7rn5ORw/vx5lWC5dOlSvvvuOyQSCR4eHoWa77i4uJR6c0iTfsglpVaTt/nu5AMMjNTX3KasfsgiFR8DCRhKNb8Oq/92B05tWc3ja9EqH8qs1GQid4VqbE5Dab7djohuIAqUIiIiFRaZTMbVq1dVIuS5c+cA+OSTTwCws7PDy8uL9957T5UV2aBBA7GLtojeIJFI8Pb2xtvbm1mzZnH58mWVWLlx40ZMTU159913CQgIwN/fX6+FdnkFLz0rrUF7bm4uMTExjB49utRzyWQytm7dyqJFizh79iz169dnyZIlDBs2rMII2s+ybNky0tPTmTJlSrnOa2Njw82bN1/5vEaNGrFx40YAIiMjmT17Nnv27GHVqlWsWrWKypUr07t3b6ZPn07NmjU1HbZW6dixI5GRkQwZMoQuXbowffp0Zs6ciaGheMuiT2RlZeHo6Kjq0j116lTmzJlT5vGys7OZPn06ixcvpkOHDgQFBb1UuDcxMVEJkJC/GXP9+nWVYHngwAGWLVsG5AunzwqWXl5er3y/adIPuaRIpVKklUzUN95r+CGLVHwkEglVTA15mKlZcb7tsE+J2LmV1WPe5+0BozA2NePsX+uwqVKd7NRk0EAjmyqmhmJFnA4hVtuLiIhUCNLS0jh69ChLlixh5MiRNG3aFAsLCzw9PRk6dCh///23yuvoiy++4P79+yQkJLB//34WLlzIkCFD8PDwEMVJEb3G3d2dr776isjISG7cuMHMmTN5+PAhgwYNwtHREX9/f4KCgkhMTNR2qKWmrAbt+kJpG2RGR0cjl8tLlUGZlJTE3LlzqV27NgMHDsTKyoqwsDCuXLnC2LFjK6Q4mZmZyYIFCwgMDCx3cc/BwaHUHnheXl78+eefpKamcvbsWfr06UN2djbLly/HxcWFqlWrMnbsWB4/fqyhqLWPk5MTu3fvZvbs2cydO5eOHTvy8OFDbYclUkKWLl2Kubk5WVlZGBkZ8fjx49cSJwsyxZctW8aiRYvYt29fqbOKJRIJrq6ujBgxglWrVnH16lXi4+P5559/GDx4MI8fP2bKlCk0b94ca2trOnbsyFdffcXu3btJTU0F8jOxJ0yYQK1atehWx57v3nFj1Zi+PLoS9cJ587IzCf/pa+a+25gZLauzsHcrjqxdWsgfb92k4SwZ2LHQecH/N4hpTRy5fHi36tj96PNMa+LIteP7gOI9KP/4sBeL32/Dk9vXWDH6Pb72qcmcrh4cXrOkSGzJjx+wdsJgvvZxYdY7bmz/cQa7d+9GIpFw6NChUv1+Rd4MqpoZalw8sqlSnQ//+AvH2m9xaPVijm9YTpMe/WnWayAAhmq2MJJKoJq5eO+nS4jbkSIiInqFIAg8evSIiIiIF5ZoN2rUCC8vL4YPH64q0ba2tiY9PR0rKyuaNm1aocoXRUSKo169ekyePJnJkydz//59tm3bRmhoKCNHjkQqldKhQwcCAgLo3bs3Tk5O2g4XyO8cnZycTHx8PAkJCYUeianpOPSfqO0QNUZpDdrPnz+PgYFBiRrkXLt2jZ9//png4GAUCgWDBg3i//7v//D09CxjtPrD8uXLSU5OZtq0aeU+d4GHYkZGBhYWFqU+v1mzZoSG5pe1nT59mjlz5rB//36WLVvGsmXLqFq1Kn379mX69OkVzq9RKpUybdo02rRpw4ABA/Dy8mLt2rV0795d26GJvAR3d3euXLkCQIsWLTh9+nSZx5LL5cyZM4fvvvsOT09PLly4gLu7u7pCxcHBgZ49e9KzZ08gPyv92bLw5cuXM2vWLCQSCY0aNSI7O5u7d+8ybNgw0qo3Ij0lmXuRp3l65wbV3RoXGV8QBNZOGMLtc8do9t4gqtZvxI2TB9m1eCZpT2Px/3wWALW8W3H58C5yMtIxsbBEEATuRZ1BIpVy98Ip3Nt1A+BuxCkkUikujVu+9HVlp6UQNK4/DTv44dG5FzH7drD7l++o8pYbrr75lgl52Zms/LgP6QlP8PngQyztKxO5exu3zx1T2+9XpOJRxcywxFnDnT6eTKePi3o+N+35AU17fqD6/5TwC0WeU83Vg49W7Sh0bMePX2JYyQRzG/uXngswesU/JYwy316niqkoiekS4l9DREREZ5HJZFy7dq2QEBkZGanK/rKIJLj6AAAgAElEQVS1tcXb27vEJdpi+r7Im0rNmjWZMGECEyZMIC4ujr/++ovQ0FDGjRvH2LFjad26NQEBAfTp00dt4r0gCKSnp5OQkFCs4Fjc8aSkpCKdFyUSCXZ2dlSuUpWh5SlQlvP3RXEG7enp6ZiZmWFgUNQT7Pz58zRs2BBTU9NixxMEgf3797No0SJ27txJ5cqVmTx5MmPGjKFy5cpqj18Xyc7OZv78+QwdOpRatWqV+/wFfpc3b97Ey8vrtcZq2bIlf//9NwDHjx9n7ty5HDx4kCVLlrBkyRKqV69Ov379mDp1aoX6+7Zu3ZrIyEiGDx+On58fX3zxBbNnzxarHXSMmJgYGjdujPK/VPdNmzbRv3//Mo9X0PH+7NmzTJ8+na+++gpjY/V5LRZHpUqV8PHxwcfHhy+++AJBELhx44ZKsAwKCkKpVLJmbQizThd4aX76wvGuHN7NrbNH6TJ2Gh1G5V+73u4/kvWTR3Bi4x+83X8k9jVqU6tJKwSlkntRp3H17cSTm1fITkvBo3NP7kacUo13N+IUVes3xMTC8qWvIy0+jve/W0oT/34ANHtvEPP9vDn393qVQHk6dC1JD+8y5Ke1uLd/F4AWAcNY8kHHF44rIlLFrHykI1lONkYm/1vbZKYkEbHzT2p5tURazHrodSmv1yVSMsS/hoiIiE6QlpZWbBft3NxcAOrUqYOXlxf/93//pxIjnZ2dRdFRRKSUVKlShTFjxjBmzBgSEhLYvn07oaGhfPHFF0yYMIEWLVoQEBBAQEBAoU7COTk5LxQWX3RcJpMVmd/S0hIHBwfVo06dOrRs2bLQsYKHo6Mjtra2GBgYIAgCCy8mllujHGMTM3LSU8tlrgKDdqVSSWRkJLt27WLHjh2cPXuWzz77jAULFhQ558KFC8WWd+fk5LB+/XoWL15MTEwMnp6eBAUFMWDAAExM1OdXpg+sWLGChIQEpk+frpX5C8T+W7duvbZA+Sy+vr7s2JGfXXLkyBHmzp3L4cOHWbRoEYsWLaJGjRr079+fKVOm4ODgoLZ5tYWDgwM7duxg0aJFTJkyhaNHj7Jx40atiM4iRfnwww9ZuXIlkO+7+vTp0zILyIIgsGzZMj7//HOcnZ05fvw4rVq1Ume4JUYikVC/fn3q169PYGAg+/btw9bWlvGfTeJJCc6/dmwfUgMDfD4o7BPcZvBYYvbt4Nrx/fgMGEU1Vw+Mzcy5c+Ekrr6duBNxCmunanj79Wf958PJy87CyMSUu5Gn8e7e95XzGpuZF2ruZmhkjHPDJiQ9uqc6dv3EAawqV8Xtv+xMAKNKJjTvM4SdP31dglcn8iZiV8mASgYSjXewXzb8XWo39aVy7fpkJMVz7u/15Gam03GU+jepKxlIsK0kuh7qEqJAKSIiUq4UlGg/nxV569YtoHCJ9rBhwwqVaKszBhGRNxm5XE5SUhIJCQnUq1ePESNG0LlzZ44fP05ERATTp09nypQpmJqaYmxsTF5eHtnZ2UXGMTY2xtHRUSUoVq5cGXd390LHnn9UKqN/UHkZtBdQ3c2T01vXcGDlQuxr1MHC1oG6LdpoZC7DzBTatHmPmJgYUlNTMTAwQKFQAPnNvJ4nLy+P6Ohohg8frjoWFxfHb7/9xu+//05CQgL+/v78/PPPdOjQ4Y3cyMnJyWHevHkMGjSokNBenhQIaPfu3Xv5E1+Dtm3b0rZtWyC/w/H8+fM5cuQICxYsYMGCBdSsWZOBAwcyZcoUbGxsNBaHppFIJEycOBFfX18GDBiAt7c3QUFBvPfee9oO7Y1FJpPh5OREcnIyAMOGDWPNmjVlHu/Ro0eMGDGCPXv2MHbsWObPn69Tvrjz589n2LBhjAocRjW3xrj6dqKJfz/snGsV+/zk2AdYOlahknlhe4fKtesDkBKb76sqNTCgpmdzVbbk3YhT1PJuRS3vliiVCh5En8fC3pHs1GRqeb9arLWuXK3Id76plTVxNy6r/p8S+wB751pFnmdfo/Yrxxd5c5FIJDS2N+Hs02w0eSfl6tuJ6P07OPtXCCChegMPAr5ZTO2mPmqdRwJ42Zu8kWskXUYUKEVERDRGSUq0vby86Nmzpyor0s3NTSzdEhEpBYIgkJqa+tJMxuePF9xQPotUKsXe3h4HBwdatmyJXC4nMTGRBw8ekJeXR7Vq1Wjbti3+/v68/fbbODo6YmFhUa4Lu6pmhjzOlJdL59SOoz8nOfYhR4J/JTczg9pNfTQiUEolcOnEIY4f/1+jgwJxEsDIyIi0tLRCHdhjYmLIy8ujadOmREVFsWjRIjZu3IihoSGBgYH83//9H2+99ZbaY9UnVq9eTVxcnNayJyHfBxYotwYvHTt2pGPH/BLNf//9lwULFnDs2DHmzp3L3LlzqVWrlkqsfPb9pE+0bNmSiIgIRo4cSe/evRk/fjzz588v88aHSNkIDQ2lb9/8bD6pVEpUVBSNGjUq83ibNm1i7NixmJqasnv3brp27aquUNVGv379aNOmDVtCt/FHaDhH1i7lcPASBi8IUpVOl5VaXi05uGoRstwc7kacosPIzzC1tMaprht3Ik5hae+Y/7wSCJQvKoEVN+dF1IG3gwlnnhbdsFYnXT+dQddPZ2h0DgAB8HJ4sypL9AFRoBQREVELryrRrl27Nl5eXowfP14lRtaoUaNcxQ1xh0xEH8jKynpl6fSzxxMTE4vtFGxtbV0oc/Gtt95SCYvFZTba2toilRYtc8nJyWHv3r2Ehobyzz//sGnTJurUqaMqA2/RokW5fbZKY9BeWp43bre0r8zwXzZoaLb/oRRg/PCBWMddZeHChUV+XtDoqG7dunh7e+Pl5UVcXBwAU6dO5ciRI9SoUYNZs2YxatQobG1tNR6zrpObm8ucOXMYMGAArq6uWoujoMQ7Nja23Ofu2rWrSuTZuXMnCxcu5Pjx4/zwww/88MMP1KlThyFDhvD555+XqYGPNrGxsWHr1q0sXbqUSZMmcezYMTZv3qwShEU0i6+vLydOnADA1dWVq1evlnmspKQkxo4dy+bNmxkwYABLly4tNmtcV6hatSqfjB1Ltm9/MpLiWTLwHQ6uWlSsQGlbtQa3zhwhNzOjUBbl07s3ALCp6qw6Vsu7FQpZHlG7t5H2NFYlRNZu0oq7EaewsHfEwaUulvbq8Ze1qVqDp7evIQhCoet34oM7ahlfpOJiW8mAWpZG3EuXaTSLUtNIgFqWRthWUr+npcjrIQqUIiIipeJVJdpGRkaqEu2hQ4eqSrT1ubRMRKSsyGQyEhMTSyU4FldKbWJiUkhYrFq1Kh4eHi8UG+3t7dXWUMDExIQePXrQo0cPZDIZBw8eJDQ0lDVr1vDjjz/i7OxMnz59CAgIwNfXt9iGLuqiohqZD+3VnbuXo4r92ZkzZ7h8+TKRkZGcO3eO2bNnq94jJ06cwMPDg86dO1O9enViY2OxsrLS6N9AHwgODubRo0fMmKH5DIyXIZVKkUqlxMfHazWO7t27q7pf//PPPyxatIiTJ0/y7bff8t1331G3bl2GDBnCxIkT9UaslEgkjBs3Dh8fH/r370+TJk1YuXIl/fr103ZoFZbY2FhcXFxU3sKLFi1iwoQJZR7v33//ZcSIEWRlZbFx40YGDBigrlDVjkKhICMjA2trawwk+b7BFnaOWDlWQZ6XV+w5rq07cWbbWk5uXkn7Ef/7PR1f/zsSiQRX33dUx2o0aoKBoRFHgpdgam2LU90GQL5weX77Rkwsranvo74GNvXf7sDNU4e4cni3qkmOLDeHc3+FqG0OkYpLU0cT7qYX9RjXJwSgqWPxTQZFtEvFXOmLqBAEAYUAckFAqQSpNL9TqIFEzCYTeTVyuZyrV6+WqkS7QYMGGu+0+LqIZS4iZUGpVJKSklKi5jAFj5SUlCLjGBgYFBEUa9eurWoKU5zgqCs+XEZGRnTp0oUuXbrw22+/cezYMUJDQwkNDeWXX36hcuXK9O7dm4CAANq3b692u4byMmgvTwyUci6eOqrqfvssDg4ONG/eHCcnJ2JiYoiOjiYvLw9ra2vq1KlDz549iYyMZOvWrfz0008AmJqa4uHhofpOLtgk0pX3kKaRyWT88MMP9OvXDzc3N22Hg5GRkeqaqQv06tWLXr16oVQqVWLlqVOn+Oabb5g5cyb16tVT2QSYmZlpO9xX0qRJE86fP89HH31E//79OXDgAIsWLXphd3uRsjFjxgxmz54N5H/HxMbGltkbPDMzk8mTJ/Pbb7/RpUsXVq9erep4r6ukp6fj7OxM3759ady4MVcypZw9cpCHlyLoPvG7Ys9p0LYrdZq1Zs/SH0h+/IAq9Rty89QhLh/ahe/Ajwr5PRqbmlHNrTEPos/h1rar6h6tdpO3ycvOIi87q0Tl3SWlRcBQTm5exabpH+HzwYdYOjgRuSsU0/8aqYn3iCIvo66VMTbGUlLzlHqZRSkBrI2l1LESLcV0EVGgrEAIgkBSroK4LDlxWXJis+TEZcuL7XhqKIUqpoZUNTOkyn8Pu0oG4gXpDSY9PZ2LFy8SERGhsyXaIiLqQhAEsrKyStyNOiEhgcTExELegAXY2toWEhPd3NwKdaF+Xmy0trYutpRa3zAwMKBdu3a0a9eOxYsXc+bMGUJDQ9m6dSvLly/Hzs6Onj17EhAQQOfOnV/LI+7ZzTZ320pEJOSo8ZVoD4Vczr1ju/j666/58ccfyc7OLiRUZmdnU79+fW7duoWlpSWjR4/mo48+omHDhgwfPpzx48ernpuUlERUVJTq+/vUqVOsXr0auVyu6kZb8N1dUCru5OSkjZetUUJCQrh37x5hYWHaDgXIz0AubqNC20ilUnr37k3v3r1RKpVs3bqVn3/+mTNnzjB9+nS+/PJLXF1dCQwMZPz48TrdAd7KyooNGzbQsWNHxo8fz8mTJ9m8eTMNGjTQdmgVAmdnZx49egTkZ+OGh4eXeaxTp04xdOhQHj58yNKlSxkzZoxerCPNzMwYO3Yse/bsYdu2bcgUSmyda9Fr2nxavR9Y7DlSqZShi0PYu2we0Xv+5vz2jdhUq8G7E2bSZsjYIs+v7d2KB9HncPFqqTpm6eCEfY3aJD64Q201CpSVzCwYtXwb2+dN48TGFRibmtPEvx/vtPFl5uhBOv15F9E+UokEPxdL1t9I1XYoZUIA/F0skerBd8+biEQQU4n0nuRcBREJOUQl5qiySqRQIp+uZ59XySC/M5e3g4nox1CBEQSBx48fF8mKvHnzJlC4RPvZ7JuKUKKdlZWFubk5GzZs4IMPPnj1CSJ6Q15eHomJiaUSHHNyiopcZmZmL8xiLO64nZ2d2NTpOQRBICIiQpVZee3aNSwtLfH39ycgIIB33333pZlZpdls03sEgYPfj2XP31uxsLBALpeTl5dXSKQs6OhtYWFBly5d8PT0ZObMmRw7dgxfX9+XDp+Tk6MqD4+MjCQiIoKoqCjS09MBqFKlShHRsl69enoroMvlclxdXfH29mbr1q3aDgeA6tWrk5ubS0JCgrZDKRFKpZLNmzfzyy+/cO7cOZXA7ebmxsiRIxk3bpxOV0lER0fTr18/Hjx4wLJlyxgyZIi2Q9Jbjh49Srt27VQ+hfv376dDhw5lGisvL4/vv/+eH374gebNm7N27Vrq16+v5ojLj0tJOey4l6HtMNROyq41zPvyCx4+fKjzWa0i2mffwwzOx+foVRalBGjmaMI7zvphZ/ImIgqUeopSELiVlsf5+BzupsuQgFq+HArGqWVpRFNHE+paGYu7C3qMXC4vtot2wY2SjY2N6qZUn0q0y4ooUOoHSqWS5OTkEnWjLnikpaUVGcfQ0PClZdPPH7e3t9eLkkZ9QhAELl++rBIrL168iKmpKe+++y4BAQH4+/urugm/zmabPlJg0N6/njU3btxg2bJlrFixgoyM/JteY2NjVqxYwaBBg4iJiSEsLIywsDBOnz6NIAg0bdqUnj174ufnh7e3d4lFRaVSyZ07dwqJlpGRkaoMKXNzczw9PQtdGxo1aqQXJbPBwcEMHz6ciIgIvLy8tB0OAG5ubty/f5/MzExth1JqlEol69at49dff+XChQsoFAqkUinu7u6MGjWKMWPG6OR6ITMzk08++UT1fvj111/fGIsDddGrVy+2b98OQLVq1VTfD2Xh8uXLDBkyhIsXL/LNN98wdepUDA31u4gvMUfOiiu6lxldGmQ52RiZ/O97XZabQ8jwzqBUcP36dS1GJqIvyJQCK68kk6Ynpd4SwMpYyig3W4ykor6hq4gCpR7yIENG+L10UvKUahMmn6dgXBtjKX4ultSwEDOEdJ2CEu1nhcjo6GhViXatWrUKCZHe3t5vXIl2gUC5fv16Bg4cqO1w3ggEQSAjI6NEzWEK/p2UlFSsH5+dnV2pBEcrK6s36v2tD9y8eVMlVp49e5ZKJib0GzsJr54DybOqrLFrmq7St44Vyid3+fnnn1mzZg1yuZyWLVsSFRVFVlYWgiDQvXt3AgMD8fPzw9jYmBEjRrB7927atGnD7t27SUtLo2rVqvj5+eHn50enTp3K1OgkPj6eqKioQjYfV69eRalUIpVKadCgQZENLQcHBw38VsqGXC7H3d0dd3d3/v77b22Ho8LX15czZ86oGovoK0qlkuDgYJYuXUpkZKRKrGzUqBEfffQRo0eP1jnRKTg4mLFjx+Li4sKWLVto1KiRtkPSebKysnB0dCQrKwuAyZMnM2/evDKNpVQq+fnnn5k2bRp16tQhJCSEpk2bqjNcrSEIAoujk/TaDzloXH9sqjhT1bURORlpRO3cStytq+IaWaRUPMiQ6VWp96C3rEVdQ8cRBUo9QqYUOPw4k3PxOeV2E1cwTzNHE9pVMxd3G3SAkpRoN2zYsNBNZOPGjStEifbrIgqUr09BqWJpBMe8YjpcWlhYlEpstLW11bmbX5HX49yth+x/IkMwtUQhl2PwBv19JYCxIpcD340hPCwMBwcHxowZw5gxY6hSpQoAycnJbNy4kaCgIM6dO4eDgwODBw9m//79NG7cmJCQEGQyGceOHSM8PJywsDCuXbuGsbExHTp0UAmWderUKXOc2dnZxMTEFBItC8RTyPeme/Za4+XlRe3atbVSIr5+/XoGDx7MuXPndEoEee+99/jnn38qVHM2uVzO6tWr+f3334mKilKJ2J6ennz88ceMHDlSZ76vr169Sr9+/bhx4wZLlixh5MiR4sbVC1i6dCnjxo0D8teSN2/epGbNmmUa6969ewwfPpxDhw7x2WefMXv2bL3Iwi4NBx5lcvZptt5uqh1b/zvn/l5P8uP7KJVKatdvwPdfTqV///7aDk1EzzgXn82+h7pfJdDJ2ZxmYudunUcUKPWEBxkywu6lay2FuiAl2l/MpixXSlKi/fzNoZubm06WXOkC2dnZmJmZiQLlfygUCpKSkkolOBaUnz6LsbHxS30anz9ub28vGrC/wWhjs03XEASB5SP8sVRk8dlnnzFw4MCXfiaio6NZs2YNISEhxMfH4+zszJQpUxg4cCB2dnaq5928eVMlVh4+fBiZTIabmxv+/v74+/vj4+Pz2sKRQqHg5s2bha5JERERPHnyBMhvWNK4ceNC2fru7u6v1SSpJDE1atSIunXr6kxznAI+/vhjli9fTnJycoXcKJTL5axYsYLff/+dmJgYlEolBgYGeHl5MWbMGAIDA7XuaZqdnc2ECRP4448/GDhwIL///juWlpZajUnXcHd358qVKwC0aNGC06dPl2kcQRBYu3Yt48ePx9ramuDg4DL7Vuo6ybkKll9O1nYYakEQlET8Mp1m7vXx9fWladOm4jpNpFQcj8viaGyWtsN4IW2qmuFbRbRx0gdEgVIPKNiV0PaNXMH84u6DZihtibaXlxc1a9YUMwFKQUUWKAVBIC0trUTNYQqOJycnF8nqkUgk2Nvbv1RsfP5nFhYW4vtQpERoe7NNF1AqFTw+uZf3GlThnXfeKdVn58KFCzRt2pTWrVtz6tQppFIpvXr1IjAwkC5dumBg8L8Gd+np6ezdu5ewsDB27tzJkydPsLGxoVu3bvj7+9OtWzfs7e3V9rri4uKKiJY3btxAEAQMDQ1xd3cvJFo2btwYW1tbtcy9efNmBgwYwKlTp2jZsuWrTyhHvv32W2bOnMnZs2dp1qyZtsPRKHl5eSxfvpwVK1Zw6dIllVjp7e3Np59+yuDBg7UqVm7atInRo0fj5OTEli1b8Pb21losusK1a9do2LAhCoUCyP8dlTWDLj4+no8++oi//vqLoUOH8ssvv2Btba3OcHWOTTdTuZcu0+/rmSCgeHqfAz9O5vTp02RmZmJsbEyzZs3w9fXF19cXHx8fHB0dtR2piA4jCAInnmTrpEjZtqoZbzuZivcqeoIoUOowuvxBb1PVDB/xg14mylKi7enpqbYbuTeZAoFy3bp1DBo0SNvhvJTs7OwSd6MueBTncWZlZVWq7EYbG5tCIoeIiLrQlc02bSIoFZgbwBjPymWyTFmzZg0jRowgNTWVrKws1q9fz+rVq7l06RLVqlVj6NChBAYGFumOq1QqOX/+PGFhYYSHh3P+/HmkUilvv/02fn5++Pv706hRI7Vf0zMyMoiOji7UjCc6OpqcnBwAXFxcCnUQL8vGm1KpxNPTE2dnZ3bv3q3W+NVBUFAQI0aMYPPmzfTr10/b4ZQbeXl5/Prrr6xatYorV66ohOqmTZvy6aef8sEHH2hFrLx58yb9+/cnJiaGn376ibFjx76xa9kPP/yQlStXAvkVOU+fPsXIqGxVUjt27GDUqFEolUqWL19Onz591BmqznIjNZfQ2+naDuO16VvHinrWxsjlcqKiojh+/LjqUdAgqX79+irB0tfXF1dX1zf2syPyYnRlrScmVukvokCpw4ip0vqPWKKtW2hLoJTL5SQmJpZKcCyu42ulSpUKiYmvEhzt7e3F95KI1tHlzTZt8DoG7ePHj2fPnj1cvXpVdUwQBM6dO0dQUBAbN24kJSUFHx8fAgMD6devn6pL+rM8fvyYnTt3Eh4ezt69e8nMzKRmzZoqsbJDhw4a84uTy+Vcv369kGgZERFBYmIiALa2tsVeF18knISGhtK3b1+OHz+Oj4+PRmJ+HQ4dOkSHDh1YsGABkyZN0nY4WiEnJ4clS5awevVqrl27phIrmzdvzoQJE+jbt2+5ipW5ubl88cUXLFmyhICAAFauXFkhy+9fhEwmw8nJieTk/PLkYcOGsWbNmjKNlZ6ezmeffcaqVavw9/dnxYoVKh/dNwGlIPDH5WRS9bQqQAJYG0sZ7W6LtBixURAE7t+/z/Hjxzlx4gTHjx/n4sWLKJVK7O3t8fHxwcfHB19fX5o3by6WhYsA2q+WEa3p9BtRoNRRzj3NZt8j0WxWn8jIyCi2RLsgU0Qs0dY+OTk5mJqavpZAKQgCKSkppRIbC24CnsXAwAB7e3vs7e1xdHQsUXajmZmZ+H4R0Tt0fbOtPHnda6avry8uLi5s2LCh2J/n5OTw999/ExQUxN69ezE1NSUgIIDAwEDatWtXrAiUm5vL4cOHCQsLIywsjDt37mBqaso777yDv78/fn5+ODs7lznmkvBsZcGzDXlu3boF5PvcNmrUqEjzNwsLC7y9vXF0dGTfvn0ajbGsPHz4kBo1ajBhwgQWLVqk7XC0TlZWlqprfYEFgJGRES1btmTChAn07t273MTKv/76ixEjRmBjY8PmzZtp0aJFucyrTQoEfQCpVEpUVFSZu5sfPXqUoUOHkpCQwOLFixkxYsQbuUbRty7GzzP4LWucSyHipKWlcfr0aVWG5alTp8jIyMDIyIimTZsWyrKsXLmyBiMX0WW02dy3uaMJbcXmvnqLKFDqIPp2oXudbBB9RBAEYmNjiy3RLsgKKK6LtliirX2KEygzMzNfWDL9IsGxwKvpWWxsbF7ahfr549bW1lpvHCAiomn0ZbOtPHjdqgOFQoGVlRXfffddiTLxHjx4wNq1a1mzZg03b96kdu3aDBs2jGHDhlGrVq1izxEEgatXr6pKwY8dO4ZCoaBx48YqsbJFixblZgORlpbGxYsXC4mWMTEx5OXlAVClShXi4uIYOXIk7733Ht7e3lSrVk2nRJICH8b+/fuzadMmbYejU2RlZfHTTz+xdu1a1RrK2NiYt99+m4kTJ9KzZ0+Nx3D37l369+9PREQE8+bNY8KECTr1/lEnrVu35vjx40B+ue61a9fKNE5ubi5fffUVCxYswNfXl+DgYOrUqaPOUPWOfQ8zOB+fo1dZlBKgmaMJ7zhbvNY4crmc6OjoQmXhDx48AKBevXqFBMsGDRqIa983jAcZMsLvpZOSp9SYUFkwro2xFD8xa1LvEQVKHUOmFFh5JVlvGggUpFCPcrOtkLsUz5aiPfuIj48HwNrauthSNE12KxV5MTKZ7KVi45MnT9iyZQsuLi4olUoSEhLIzs4uMo6ZmdlLMxmfP25nZ1dm3yYRkYqKvm22aRJ1GLRfvnyZhg0bcvDgQdq3b1/i8wRB4NixYwQFBbFlyxYyMzPp2LEjgYGB9OnTBzOzF4umycnJ/Pvvv4SHh7Nz506SkpJwcHCge/fu+Pn50bVr13JvgiGTybhy5QoRERFMnjxZJVampKQA4ODgUKgZj5eXF/Xr13/t7uWvg4GBAe3atePAgQNai0HXycjIYMGCBYSEhHD79m0g39bEx8eHzz//nO7du2ts7ry8PL788ksWLFiAv78/a9asUWsDKW0TGxuLi4uLyqd64cKFTJw4sUxjRUVFMXjwYK5fv86sWbOYOHGi6FuNeP/2PA8ePCgkWEZFRaFUKrG1tVWVhBeUhWvKTkREd1AKArfTZJyPz+ZOukxtQmXBOLUtjWjqaEodK6NirQpE9AtRoNQx3uQdOG3zqhLtAjP/Zx8uLi4Vdqdd2yiVSlJSUl7ahfr5Y6mpRcUQQ0NDlZhoa2vL0aNH6aNpgkIAACAASURBVNixI76+vi/sUP2yG3YREZFXo283a5pA3QbtISEhDB06lJSUlDKLghkZGWzdupWgoCCOHDmClZUVAwYMIDAwkJYtW770eqZQKDh9+rSqFDw6OhpDQ0Nat26Nv78//v7+1K9fv9yuieHh4fj7+3PgwAHat2/P/fv3i3QRv3fvHgAmJiZ4eHgUEi09PDywsCifdYuJiQmurq5ERUWVy3z6TlpaGj/++CPr16/nzp07QP7vsHXr1nz++ed07dpVI/OGh4czbNgwTE1N2bRpE76+vhqZpzyZMWMGs2fPBsDU1JTY2NgyfX8oFAp+/PFHvv76a9zc3AgJCcHT01Pd4eo1+rYpV54VcOnp6UXKwtPT0zEyMqJJkyaFsiydnJzKJSYR7ZCcqyAyIYfIxBxyFfkrRKkElCVYLD77vEoGErzsTfByMMG2krhJUpEQBUodQt8ubM+jL6XeYol2+SMIApmZmaUSGxMTE1EqlUXGsrOze6VX47MPa2tr1Q1zbm4uJiYmhISEMHjw4PL+NYiIvDHo42abOtGEQfuECRMIDw/nxo0bahnv1q1brFmzhuDgYB48eECDBg0IDAxkyJAhVK1a9ZXn379/n/DwcMLCwjhw4AA5OTnUrVtXJVa2bdtWY026BEGgVatWGBsbc+TIkReKosnJyURFRRUSLS9fvoxcLkcikfDWW28V6iDu5eWlkQYftra2WFtbc/fuXbWPXdFJSUlh3rx5bNy4USU4m5qa0qZNG6ZMmULHjh3VOt/Dhw/54IMPOHnyJN9//z1TpkzR25LUGjVq8PDhQwC6devGrl27yjTOrVu3GDZsGCdOnGDy5Ml8++23YqXQCyjoYKzraLuHgEKhKFIWfv/+fQDq1q1bSLB0c3PT28+gyIsRBIHkXCVxWXLisuU8zpQRly1HXvTWD0MpVDE1pJq5EVVMDaliZohtJamYJFRBEQVKHaGid4HTFmKJtmbIzc0lMTGxVIJjbm5ukXEsLCxKJTba2dm9VpmeKFCKiGgefd9sex00adDepk0bqlevrnYfQ4VCwYEDBwgKCmLbtm3I5XK6detGYGAgPXr0KJHImJWVxYEDB1SC5cOHD7GwsKBLly74+fnRvXt3tQp///77L926dWPPnj107ty5VOfm5uZy+fLlIg150tPTAXBycioiWtarV++1ylidnZ3JyckhISGhzGOIQFJSEnPnzmXTpk0qjzszMzPatWvH1KlTadu2rVrmkcvlzJw5kx9++IHOnTsTEhKiV80+jh49Srt27RAEAYlEwr///lvqzwnkCwgrVqxg4sSJODk5ERwcTOvWrTUQccVC1xvDva4fsqZ4+PBhkbJwhUKBjY1NkbJwsdKpYiIIAkoB5IKAQgkGUjCUSJBKEMXINwhRoNQRbqTmEno7XdthvDZ961hRz1ozGROvQizRLhsKhYLk5ORSiY0FN3LPYmRkVKJO1AUPe3v7cvedKRAo165dy5AhQ8p1bhGRNwF932wrK5o2aFcqlVhZWfHNN9/wxRdfqHXsZ0lJSWHTpk0EBQVx5swZ7O3tGTRoEIGBgXh5eZVoDEEQuHjxokqsPHXqFIIg0Lx5c/z8/PD398fb27vMGTGCIODr64sgCJw4cUIt13ClUsndu3eLiJYF2Wfm5uZ4enoWWj94eHiU+BrWsGFD7ty5Q1aW7ooW+sbTp0+ZO3cuW7Zs4dGjR0D+36l9+/ZMmzZNLeXZe/fuZfDgwRgYGLBhw4ZSeb9qi169erF9+3YAqlWrpvrdlJa4uDhGjRpFeHg4H374IQsXLsTS0lKdoVZYBEHgxJNsnRQp1eGHXF5kZGQUKgs/efIk6enpGBoa0qRJk0KiZUmy/kVERPQDUaDUETbdTOVeukyvb+gkQC1LI/rX06xhviAIxMXFFcmKvHHjxgtLtD09PbGzs9NoXLqAIAikp6e/UGwsTnBMSkri+a8BiUSCnZ1dqQRHS0tLjS54BEFA8d+umlIJ0v921QxKsasmCpQiIpqlomy2lZTyMmi/evUqbm5u7Nu3j3feeUft4xfHpUuXWLNmDSEhITx58gQvLy8CAwMZOHAgDg4OJR4nPj6e3bt3ExYWxr///ktqaipVqlRRiZWdOnUqlRfkvn376Ny5Mzt37uTdd98ty0srMQkJCUXWGleuXEGpVCKVSmnQoEGRhjzF/W5at27NqVOnkMvlGo33TSUuLo4ffviBrVu3EhsbC+RXaLzzzjtMmzaNli1blnns2NhYBg8ezKFDh/j666+ZMWOGTjaFycrKwtHRUSWCT548mXnz5pVprK1bt/Lxxx9jaGjIqlWr8PPzU2eobwwF5d6a6lxcUtTth6wtFAoFMTExhbIsC2wfateuXagsvGHDhmJZuIiIniIKlDpAcq6C5ZeTtR2G2vjI3baIWa0gCBw+fJgWLVqUKi1foVAUW6L99OlTAKysrIpkRbq7u1eYEu2CkrDSZDcWdGl8FktLy1d2on72/7a2tlpdgAuCQFKuIt+XJEtO7H/+JC/zJalqlu9JUsXMELtKBsWKlnl5eVSqVEkUKEVENERF2Gx7EYIgICgUSP+zmShPg/b169czePBgkpKSyt0PWSaTsXv3boKCgtixYwcSiYSePXsSGBhI165dS2W7IZPJOH78OGFhYYSHh3P16lWMjY1p3749/v7++Pn5UadOnReeLwgCbdu2JScnhzNnzmglCyg7O5uYmJhCa5KoqCgyM/N956pXr15EtJw0aRL//PNPkc1AEfXz+PFjZs+ezbZt24iLiwPy10CdOnVi+vTpNGvWrNRjKhQKZs+ezbfffku7du1Yt24d1apVU3foZWbZsmWMHTsWyK9muXnzJjVr1iz1OCkpKXz66aesW7eOgIAAfv/991JtRogU5UGGjLB76VprGKcJP2Rd4tGjR5w4cUIlWEZERKBQKLC2tubtt99WCZYtWrTA3Nxc2+GKlBJ1JKeI6B+iQKkDHHiUydmn2RXihk4CtKhsSofq/7sIZGRk8OGHH7Jp0yYWLFjApEmTij03IyOD6OjoIiXa2dnZANSsWbOIGFmrVi29+YKSy+UkJSWVSnAsuOF5FmNjY5WgWBLB0d7eXm8E2+RcBREJOUQ929kNKEaXLMKzz6tkIKGxvQnezwkHokApIqI5Ktpm27MYSkCSnsidyDOc/HcH96PPU7daZQL69CEgIOClopo6mDRpEn///Te3bt3S6Dyv4unTp2zYsIGgoCAuXrxI1apVGTJkCIGBgTRo0KDU4928eZPw8HDCw8M5dOgQMpkMNzc3VXalj48PRkb/u6k+dOgQHTp0YPv27fTo0UOdL+21UCgU3Lp1q0gX8QKBzMjICJlMxocffkirVq3w8vKiYcOGenNt1lfu37/PDz/8wF9//VVoY7tLly58+eWXJbYtKODQoUMMHDgQuVzOunXr6NKliybCLhUNGzbk8uXLALRo0YLTp0+XaZz9+/czfPhw0tPT+fXXXxk0aJDerK91HZlS4PDjTM7F55RbNqUm/ZB1mczMTM6cOVOoLDw1NRUDAwO8vb0LZVnq0iaDiOaSU0T0D1Gg1DKCILA4OkklxryIB5ciCPvxS2KvX0KWk8WnGw9QzdWjXGL885tx3D53ginhF0r0/EoGEiZ42CGRSIiJiaF3797cuXMHpVLJBx98wLp1615Zou3u7l6ki7YulWgLgkBqamqpxMbk5KI37lKpFHt7+1c2h3n2uLm5eYX6AlYKArfS8jgfn8PddJnaFm8F49SyNKKpowl1rYyRy2RUqlSJ4OBghg4dqoZZRERECqhIm21KhYJmTua0q2ZWxKA9NTWVsLAwtm7dyu7du8nJycHLy4uAgAACAgJwc3NTezzt27fH0dGRP//8U+1jlwVBEIiIiCAoKIj169eTnJxMq1atCAwMpH///lhbl97qJT09nX379qmyK588eYKNjQ1du3bF39+fbt260a9fP5KTk7lw4YJeXAfj4uKIiopi4cKF7N27l5o1a/LgwQPVWsfNza1QQx5dW+tUJO7du8esWbP4559/CjVK7NatGzNmzKBRo0YlGic+Pp6hQ4eye/dupk2bxnffffdazfvKyrVr12jYsCEKhQKAdevWMWjQoFKPk52dzdSpU/nll1/o2LEja9asoUaNGuoOV4T8bMrwe+mk5Ck1JlRq2g9Z31AqlVy6dKlQWfidO3cAqFWrVpGycF20b6joaDo5RUT/EAVKLZOYI2fFlZSXPkchk7HgvZYYVapE60FjMDIxpUGbzpha2ZRLjKUVKAFGu9myY/M6PvroI+RyuWoBZWZmhoWFhc6VaGdlZb1UbHz+Z4mJicV6SVlbW79SbHz2ZzY2Nm+0R0p5L9a6VjOhjp25KFCKiKiZkm626RPPbra9iIyMDHbt2kVoaCjh4eFkZGTg5uamEisbN2782kKaUqnExsaG6dOnM3Xq1NcaSxPk5OSwfft2goKC2LNnD5UqVaJPnz4EBgbSoUOHMl3jlEolFy5cICwsjLCwMM6fP49UKkWpVDJo0CAmT56Mh4eHXoiUAGvXrmXYsGFs2rQJf39/VbVIQUOeixcvig39ypFbt24xa9YsduzYQWJiIgC2tra8++67zJgx45WbDEqlkh9//JEvv/ySVq1asXHjxnIV9UaPHs2KFSuA/HVnfHx8oUzjknLu3DmGDBnC3bt3mTt3Lp9++ukbvSYtD5SCwO00Gefjs7mjgU15TfshVwRiY2MLCZYRERHI5XKsrKwKlYW3bNlSLAvXEOWZnCJ+DvQPUaDUMpeScthxL+Olz3l65waLAnzo89VPNO9d/mWpZREoL677mY0/zSr2ZxMmTKBt27YaK9GWyWQkJiaWKruxoIz8WUxMTAqJjK/KbrSzs8PYWDsdzPUNbZa7HFv/O30b12L4kMHlMKuIyJtBSTbb9JHRbrbYmZRsJz4nJ4c9e/YQGhrK9u3bSUlJoW7duvT5rwy8RYsWZbreXb9+HVdXV/bs2UPnzp1LfX558ujRI9auXUtQUBA3btzAxcWFYcOGMXz4cGrXrl3mcWNjY+nUqRMPHz5EoVCQmZlJjRo1VL6VHTt2LHFHbW1w5MgR2rVrx7x585g8eXKRn8vlcm7cuFFItIyIiCAhIQEAGxubQoKlt7c3bm5uZRKlRApz7do1fvjhB8LCwkhKSgLAzs4Of39/ZsyYwVtvvfXCc0+cOMGAAQPIzMwkODgYf39/jcYqk8lwcnJSVeQMGTKEtWvXlmmcOXPm8P3339O4cWNCQkI0kvkt8nKScxVEJuQQWZbMMQko/1s8l6cfckUkKyurSFl4SkoKBgYGeHl5FeoW7uzsrO1w9R4xk1jkVYgCpZbZ/zCD8/E5L70Y3Tl/gj8+7MXA+avw6NSz3GIroLQCpVQCV/8NJXj6WFWnS6Xyf69w+fLljB49ukRjKZVKUlJSSpXdmJqaWmQcAwODEnWifvZ4aZr5iJQcbRuGKxUKjOS5DGhUVbxgiYioiZjEbMLuF/XM1Xd6uljiblf6jP68vDwOHjxIaGgof//9N/Hx8Tg7O6vESl9f3xKXkm3atIkPPviAhIQE7O3tSx2LNhAEgRMnThAUFMTmzZvJyMigffv2jBgxgoCAgFJfX0+ePImPjw9btmyhZ8+eHD58mPDwcMLCwrh9+zampqa88847+Pn54efnp3Mlqo8fP6Z69ep8+umn/PLLLyU6RxAEYmNjVYJlwePmzZtAvh91w4YNCzXj8fT0LFN5vUg+V65cYdasWezatUslAtrb29OjRw9mzJhB3bp1i5yTlJREYGAg27dvZ+LEicyZM0cjm9WhoaH07dsXyLcHOn/+fKk9NCFfkB0yZAgXLlzgyy+/ZMaMGaLQrWUEQeDjSVN4kq1g/IzveJwpe6X3XjVzI6qY5nvv2VaSihnWakSpVHL58uVCWZa3b98G8vshPFsW7uHhIZaFlxBtJqc0czSh3RvkxarviAKllll3PYWHmUVLhQv485txXNixudCx2k19VP8eveKfIs9/VkxMfnyf+f5NeXfCTEzMLTkcvITUJ4+p8pY7vabNp0ZD70LnXzq4k72/zSHxwR3sa9Sm85ipXD68q9QZlM7mhnSxyWPs2LFs27atUOfK4cOH88knn5QouzExMbGQuFmAra1tqQRHKysrsWxFBzgXn82+h5nldmF6IYISJFI6OZvTzFF3s25ERPSBS5cusXjXSWq17Y6BUcXJIpdKoJmjKR2rv16Jl0Kh4OjRo4SGhrJt2zYeP36Mk5MT7733Hn379qVdu3YvFQi++OIL/vzzT+7evftacWiLzMxMQkNDCQoK4tChQ1haWtK/f38CAwN5++23S3Rj3b17d+7du0d0dHSha7kgCFy7dk1VCn7s2DEUCgWenp74+/vj7+9PixYttH4DqVQqMTAw4P3332fLli2vNVZaWhoXL14s0lAwLy8PgDp16hQSLb28vKhevbooYJSSmJgYZs+eze7du0lJyc8Od3R0pFevXsyYMQMXFxfVcwVB4Oeff2by5Ml4e3uzadOm18oYfp7WrVtz/PhxAOrXr8+1a9dKPYZSqeS3335j8uTJ1KhRg5CQEFq0aKG2GEVej0aNGtG6dWt+//13IP89pfyve7FCCQb/dS9+1g9ZpPyIi4sr1C38/PnzyOVyLC0tadWqVaGycEtLS22Hq3NoOzmlonezr2iIAqUWEQSBhRcTi90hK+Be1FmuHt3DodWL8fngQ5zdvbGwd+TgqkVAyQXKag08yM3MoHnvIUgkEo4E/4phpUp8sf0cBv/dGF0/eZA1nw6gch1XmvUcSFZqEic3r8LaqRq5WZmlEiglSgUzW9dSeSq9DHNz81c2hnn2YW9vrxVDcpGyIwgCJ55kczQ2S9uhFKFNVTN8nEzFBZ+ISCnJyclh1qxZzJ8/n0+Cd+Hk6gml/By9KEN/3+/z2f/Hj8y5EP/CcxPu32L3L99zL+oMOelpmNnYUcurJb2/XIiJpVWZXtPzOJsbMri++vyelUolp0+fJjQ0lNDQUO7evYudnR29evUiICCATp06FfFg7tixI7a2toSGhqotDm1x+/ZtgoODWbNmDffv38fV1ZXhw4czdOjQF3ZUPXv2LC1atGDjxo0MGDDgpeMnJyezZ88ewsLC2LVrF4mJiTg4OPDuu+/i7+9Ply5dsLEpH//u5zEwMKBdh47s/PdflEqQ/ic4GKhBcJDJZFy9erVIF/GCLEAHB4civpaurq7iWqqEREZGMnv2bPbs2UNaWhoAlStXpnfv3kyfPp2aNWsC+e/V/v37k5SUxOrVq+nTp89rzRsbG0utWrVU4vPChQuZOHFiqcd5+PAhgYGB7Nu3j3HjxjFv3jyxSkiHSE9Px9rampUrVzJixAhthyNSArKzszl79qxKsDxx4gTJyclIpVIaN25cKMtS1zL6yxtdSU4pmF9MTtF9RIFSi8iVAguiEl/5vNvnjrNi9HuFSrz/+LAXUHKB0szGjs//Pq1qrHP58G5CPhvC0MXrcWvbBYBfPuhARmI8E0NPqG7ubpw6xOqx72NTtUapBEqAb96uQV5uDhKJRJVBKZVKGTZsGJ9++qlKcNRl3ygR9XA8LksnxckC2lQ1w7eKuFgXESkpBw4c4KOPPuL+/ftMmzYNi/fGIS/DaqKsAqVclsdPfXxQ5OXS6v1ALBwqk/Y0jqtH9zBw3ipsq6nnhsBQCpM87TWygVHQCbtArLx27RpWVlb4+/sTEBBAt27dMDU1xdbWlsmTJzN9+nS1x6AtlEolBw8eJCgoiNDQUPLy8ujatSuBgYH07NmzkEjbs2dPrl+/zqVLl0qVCalQKDh9+rSqFPzixYsYGBjQpk0b/Pz88Pf3x9XVVWN/26RcBXFZcuKy5MRmybmTmIaRSdHrTEHJZlWz/HLNKmaG2FUyeO24BEHgwYMHhQTLyMhIVSauiYkJHh4ehURLT09PLCwsXmveis65c+eYM2cOe/fuJT09HYAqVarQp08fvvzyS8zNzRk1ahRbt25l3Lhx/Pjjj5iYmJR6npkzZ/Ltt98CYGpqSmxsbKnL9wVBYMOGDXzyySdYWFgQFBSk8z62byKHDx+mffv2XLx4EQ8PD22HI1IGlEolV69eLVQWXmDHUaNGjSJl4W/C5pCYnCJSVir+p0OHkZejNuzZuVehrt+1vVsBkPToLgBp8XHEXouhXeD4Qpknb7VqT+U6ruRll/7L5WliEjv+CuXXX3/l9OnT/D97Zx5XU/rH8fe97Ys2SpFKpMXaYsuSLaLGFjFojEHINraxjBg7WcbOiMnIGExlLGmYLI3CtGEw9kiWFksp7XV/fzTdn6YQyq2c9+vlNXPPfc7zfE/33rN8vpu8vDz5+floa2tjbW399gkEqgVRSZXz4vQqZx5noCQnEjxqAgJv4cmTJ0yfPp2ffvqJjh07cvjwYRo2Mi+Ts608SYq9wfOHcSVqM3f1mF6u6+QVFDYikKuAe1iRSISNjQ02NjYsXryYf/75RypW7tmzB1VVVTp06EBqairm5ublb4AMEYvFdO3ala5du7Jp0yb27duHr68vbm5u6OjoMGTIEEaMGAHA4cOH8fPze+c0bTk5Oezt7bG3t2fJkiXcv3+fo0ePcuTIEby8vJgxYwYNGjSQipUdO3YsEb36rjzPzufCkywuldL0ojRxEgq/Yw9e5vHoZZ60HrmSnIjmNZWx/oCmFyKRCCMjI4yMjOjd+/+/kZSUFC5duiQVLCMiIvD19SUvLw+RSISZmVmJhjz6+vrvZUN1xM7OThrN/Ndff7Fs2TJOnDjB5s2b2bx5MwYGBri6urJ8+XLmz59PeHg4+/bte2Oznf9iZGREfHw8AE5OTgQHB7+znU+fPmXcuHH8+uuvDBkyhI0bN6Ktrf3O8whUPBEREaipqWFlZSVrUwTeE7FYjJWVFVZWVowePRqAxMTEYmnhAQEB5Obmoq6uXiwtvE2bNtUyLbyyipOA1C4hOKVyIgiUMqSU0ooVhpZB8a5jRWJl5ovChjIpjx8AUKueaYl9dY0b8vD63++8poKiEsOGDWPYsGFcuXKFrVu3snPnTiFi8hMiPj2XkIdVo3FGyIOX1FaRF2qTCAiUgkQiYffu3UyZMoX8/Hy2b9/OiBEjEIvFZOV/xIvZvyir/xvlf+4U5u26oahScTeZeRIJclSsl10kEtG4cWMaN27MvHnzuHXrFoGBgfj4+AAwZMgQunfvjqurK71790ZHR6dC7fmYaGpq4uHhgYeHB9euXWPnzp3s2rWLjRs3oqGhQa1atejatesHr2NkZMTYsWMZO3YsGRkZnDx5kqCgIA4cOMD69etRV1fH0dERFxcXevXqVWZRrkAi4c6LHKKTs7iXllsija2sv45Xx2XnS4hMyiQiKROTGgrY6irTQEMRcTlEe2hpaeHg4ICDg8P/18vO5tq1a8Ua8ixfvlyazly7du1igmWLFi1o2LChzGt7yprWrVvz22+/ARAeHs7y5cs5deoUGzduBAprVt69exdra2t8fHz4/PPP3zjfmTNncHBwQCKRIBKJOHbs2HtFPAYHBzNy5EiysrLYt28fbm5u735wAh+NyMhIbG1tP/nfU3Wjdu3a9OvXj379+gGFaeFRUVFSwXLDhg0sWLAAsVhMs2bNikVZFpWNqKoIwSkCH4IgUMqQD+nZ8mra9KsUvOZBUSR+zUWvAqM45V45viZNmrBx40bWrl0rXIA/EXILJByJS5N5zZGyIgKOxKUxylJb6PImIPAKt2/fZuzYsZw4cYLPP/+c77//ntq1a0vf/5jOtiJ06hrTftg4wnZv4WJwACYtWmPp4IR1r4HlVn+yiPwC4CNftszMzJg5cybPnj3Dz8+PGTNmEBAQwFdffYWcnBydO3fG1dWVvn37FvssqjqWlpasWLGCJUuWsHXrViZOnIicnBzGxsa4uLgwYsQIevbs+cHpcaqqqtImOhKJhMuXL3PkyBGCgoIYNWoUEokEOzs7XFxccHZ2xsbGptRGe/HpuQTFpZGSUyCVsMvrelc0T1xaLvfSctFSFONcQQX+lZSUpAKkdH2JhHv37hUTLffs2cOKFSuAwr9hs2bNiomWTZo0+WRrG7Zr147Dhw8D8Oeff7J8+XJCQ0PJyCh8SB8yZAjLli3jyJEjpYoP/fr1k4qd+vr63L9//527a6enpzNjxgy2bt2Kk5MTO3bseG1tV4HKQ0REhLRDu0D1RUVFhQ4dOtChQwegMC38xo0bUsHy+PHjbNq0CQBDQ0Ps7e2lgmXz5s2rTFq4EJwi8KEIbY1liPwHeMJVamiRlZZaYnvK4/j3mq8owvJJfGyJ95Ljbr/XnKUdn7y8vFDv4RMh9NFLmXVrex8kwIucAv58VDUuqgICFU1OTg5Lly6ladOm3Llzh+DgYPbs2VNCEPsgZ9trIhMLCvLfuq/z1IVM3hdKp68mk5udxeGVc/h+YHtSEx+9v0GlICfDO6WYmBhat27NlClTCAsL4+HDh6xbt478/HzGjx9PnTp1cHBwYP369Tx48EB2hpYz8vLyhIaGUr9+feLj41m1ahV3796ld+/eGBoaMmPGDP75559yWUskEtGsWTPmzJlDeHg4iYmJ7Nq1iwYNGvD999/TsmVL6taty6hRozhw4ABpaWnkFkgIeZDOz7dSSc0pVOgr6lpXNG9qTgE/30ol5EE6uQUVf2UViUTUr1+f/v37s3DhQg4dOsT9+/d58uQJISEhLFy4kIYNGxIWFoanp6e0e62VlRVDhw5l5cqV/PHHHyQnv77RVXWlY8eOHD16lJcvX3LixAkcHR1RUFDg8uXLGBsbU7duXWbPnk1KSgoZGRmoqalJxclvvvmGx48fv7M4ee7cOVq0aMGuXbvYsmULR48eFcTJKkBSUhJxcXFCR/VPELFYjKWlJaNGjcLX15ebN2+SmJjIgQMHGDx4MPHxnbZYigAAIABJREFU8cyYMQM7Ozu0tLTo2rUr8+bN49ixY6SmltQAKgOvBqdUBYqCUz7GNVWg7AgCpQyRExUWR38fdAxNSL53m/TnT6TbHt+8QtyliPeaT0NXHwPzJsQc3kdW2gvp9lvnT5MUe+Od55MXgxCE9ukSn55LVHJWlREni5AAkclZxKfnytoUAQGZcvbsWWxtbZk3bx4TJ07kypUrODk5lTr2Q5xtyhqvc7aVTWzTN7Oiy6hpjNlxmDE7DvMi6TF/+e98b3tK40OO70OQSCRER0djY2Mj3WZgYICnpycnTpwgISGBbdu2oaamxvTp06lXrx5t2rRh5cqVxMaWdDZWJa5cuYK/vz9z5szBwMCASZMmceHCBWJiYnBzc+PHH3+kcePGtG7dmq1bt5KSklJua+vq6uLu7s7evXtJTk7m1KlTDBs2jPDwcPr3749N154sPnWNqKRM4ONlCBStE52cxfZrz2V2napZsyZdu3Zl2rRp+Pn5cfnyZdLS0oiMjOSHH36gS5cuxMXFsXDhQrp3746enh5169bFxcWFuXPn4u/vz+3btymQRei1DOjSpQvHjx8nJyeHrVu3oqamxqNHj1i+fDna2tqoqamRkZGBvLw8cXFx0gjVspKTk8O3335L+/bt0dXV5eLFi4wdO1YIBqgiREZGAtCyZUsZWyJQGdDT06Nv376sXLmSs2fPkpqaypkzZ/Dy8kJdXZ3Nmzfj5OSEtrY2zZs3x9PTk59//pl79+6Vmln5sRGCUwTKA0GglCEikQh9lfcL17brM4T8vFx8x7txbt8O/tiygh893ahtavHe9vSYMJf0Z8lsHelC2O6tHN+8jD3fjKR2g3efU19FiJT8VCmQSAiqQt6z/yICguLSKKgEF3oBgY9NSkoK48aNo3379qioqBAVFYW3tzdqamqv3edDnG01DU3ISn/B45tXpdteJCdw9VRQcbsePyDp7i3p66z0NPLz8oqN0W9ohUgsJi8n57X7vSuydLbdu3eP58+fY2trW+r7tWrVYuTIkRw9epSkpCT8/PwwMDBg3rx5NGjQAGtraxYvXsy1a9c+suUfzpIlSzAyMuKLL74ott3a2pr169fz6NEjfv31V2rVqsX48eMxMDBgyJAhhISElKvwpaCgQKdOnVi5ciXXrl0j+J/7jNx6AGWtmiAr4ZrCB6qfb6USlZwpExv+i4qKCnZ2dowaNYqNGzcSFhZGamoqN2/eZP/+/Xz55ZcUFBTw448/MnDgQMzMzNDS0qJDhw5MnDiRHTt2EB0dTXZ2tqwPpUIZM2YMiYmJfPXVVyXey8vLo3Pnznz33Xekp6eXab4rV67QunVrvL29WbRoEWfOnHmnZjwCsicyMpJatWphYmIia1MEKiHKysq0b9+emTNncvDgQZKTk7l+/Trbt2/Hzs6OkydPMmzYMOrXr4+hoSFubm6sW7eOqKgocnM/rhNLCE4RKC9Eksogt3/CnHiQTnRy1huLqMdGhePj0bdEt9ILR/0J2bqC1MRH6Jk2wmnSPC79HkBs1FlmBsUA8PzRfbxdbOn59Xd0/GJ8sXln2+jS1WMG3cZ+I9125cQR/ti8jGcP49AxNKG752z+CQ0uNufbEIvATleFLnVf/0ArUH25lZpNQGyarM34YAaYatBQU1HWZggIfBQkEgkBAQFMmjSJtLQ0li5diqenZ5lrBu++mcKDl3lvH/gfXqY8w9vZGvWaetgPHkVuVibn/XeiplWTR9f/ZllMYXrottF9uBt9Vvr66qmjHFoxi6bdelPLuAEF+XlcCPqVxzeu4LH9EEbN7Erd710xVJNnWCOt99r3QwkICGDAgAEkJCS8U53J9PR0goODCQgIICgoiPT0dKysrHB1dcXV1ZVmzZpVagfi9evXsbKyYvPmzYwdO/at4x89eoSfnx++vr7cuHEDIyMjhg8fzvDhw2nQoEG52CSRSCptR9IOBqrY11ap1J/pqyQmJnLp0iUuXrworW9548YNJBIJ8vLyWFpaFmvI07x582rVFOrGjRs0btyY/PzCMha1a9dm9uzZHDhwgHPnzpGTk4NIJKJBgwa4u7szffr0EnU98/PzWbt2LXPmzMHMzAw/Pz+sra1lcTgCH0ivXr0AOHr0qIwtEaiqPHnypFi38MjISHJyclBVVaV169bSOpZt27ZFU1OzQmwokEjY9s9zUqtQ9OSriABNRTEeVtrl0oxO4MMQBEoZc/VZFofjyuYprUr0Nq6BlY6SrM0QkAF7b6cSl5ZbJS9QRYgAkxoKDGpYMRdyAYHKxP379xk/fjxHjhyhb9++bNiwAUNDw3eaoyzOttdx6/xpgtbM40ncHXTqGtF51DSe3o/lxLaVrxUonz2M49T2NcRGn+VFcgIKyioYmDWm88gpNGzdUTr3hwiUsna2zZkzh59++omHDx++9xxZWVkcP36cgIAADh06REpKCg0aNJCKlS1btqx0wpa7uzunTp3izp07KCmV/T5CIpFw/vx5fH192bt3L2lpaTg4ODBixAgGDBjwxijgtxGekFEpxckiOhio0k6/6janefnyJVeuXCnWkOfvv/8mM7MwQtTIyKhEF3FjY+NK9919Gx4eHvj4+ACF3evDwsIYNmwY169fZ926dYwaNYpDhw6xZs0a/vrrL3JzcxGJRJiZmfHll18yefJkkpKSGD58OGfOnGHq1KksXrwYZWVlGR+ZwPsgkUjQ1dVlwoQJfPfdd7I2R6CakJ2dTXR0tFSwDA8P58mTJ4hEIpo0aVKsW7iJiUmZzqPnz5/HwsICLa3SHbZCcIpAeSIIlDLmaVYePtfKr3ZSZcHDUhsdZaFb96fG8+x8fvjnuazNKDfGWGmjrSR8jwWqJ/n5+WzYsIG5c+eiqanJxo0b6dev33vNVV2dbfqJ/9CvbfMKizp4Ez169EBJSYlDhw6Vy3w5OTmcOnWKgIAAfvvtN5KTk6lXrx79+/fH1dUVe3v7MkfMVhS3bt3CwsKCdevWMWHChPeeJyMjg8DAQHx9fTl58iTq6uq4ubkxYsQI2rVr907CVlRSZpXoSNrNUA07XRVZm1Fu5Ofnc+vWrWKi5YULF6RNdzQ1NYsJli1atMDCwgI5BUXyJBIKCgobeMmLRMiJkKmYmZubi76+Ps+ePQMKRfhdu3YBhU6EqVOnsmXLFgYNGsS2bdvQ0NCgoKAAf39/1q1bR0REBHn/lrQQi8Voamqyd+9eunfvLrNjEvhw7t69i6mpKUFBQdJISgGB8kYikXDr1q1iguX169eBwrrWr3YLt7a2LtGgKykpCX19ferXr8/Ro0cxNzcvsYYQnCJQnggCpYyRSCSsvfyM7Pzq8zEoyYn4uqlOlfNsC3w4Jx++JDIps0pfoIoQAa30VOgslCoQqIbExMTg4eFBTEwM48ePZ8mSJWhoaLz3fNXV2ba6b2ueP4zD3t6enj170rNnT5o3b17h17eiyJqJEycyf/78cp8/Ly+PsLAwAgICCAwM5NGjR9SuXZt+/frh6uqKg4PDO3cRLg9GjBjBsWPHiI2NLbeosHv37vHTTz+xc+dO7t27J41G++KLL94aKRyfnsvPtypnt9TSGGqmST31j/+5fSwkEgmPHz+WCpbX7j8iKUuCvE5tDJvYUNeiGYoqJSNJ5cWFtdENVOXR//efjpLcR7lP/e2336SOH7FYTHR0NC1atCgxbv/+/YwePRpdXV327dtXrPZsQkICLi4uREdHIxKJkEgkiEQiLC0tGTlyJBMmTEBRUYj6qWrs27ePwYMHk5SUhK6urqzNEfiEePr0aYm08OzsbFRUVGjVqlWxtPDTp0/Tv39/5OTkUFFRISAgoJhzRAhOEShvBIGyEiCIOgLVgdLE9virFziy8lse37xKblYGE385SR3zpjK08t0QxHaB6kZ6ejrz589n7dq1NG7cGB8fH1q3bv3B81ZXZ1vfGmkcO/Y7wcHBnDhxgpcvX6Kvr4+TkxM9e/bE0dERbW3tcl/7/v37GBsbc+jQIT777LNyn/9VCgoK+OuvvwgICMDf35+4uDh0dHTo06cPrq6udOvW7Z1Srd+X2NhYGjVqxKpVq/j666/Lff6CggJCQ0Px9fXF39+f7OxsHB0dGTFiBH369CkhiOYWSNh+7XmV6UgqAjQUxYyy1EZBVp2dPgLPs/O58CSLS0+zpOcbMYU10N7UuEgikYCkAJG48MFTSSyieS1lrGspV9jDaMeOHTlz5gwADRs25NatNzfsunPnDoMGDeLy5cusWrWKCRMmcOjQIUaPHg3Atm3b6N27N7t372bjxo3ExMSQn5+PWCzGysoKDw8PxowZI4iVVYTp06cTEBDA3bt3ZW2KwCdOdnY2MTExxaIsi6LVa9asybNnz6SOEYDvv/+eSZMmIRKJBB1DoNwRBMpKgOB5EKgO/DeCKj83l1V9W6OgpET7oeNQUFbBooMjKhpvbziRk5nBnz9txNSuHaZ27SrS7LcilCsQqC4EBQXh6elJcnIy8+fPZ+rUqeUaJVe9blIltNJTLXaTmpOTQ1hYGL//XihYXrlyBbFYTJs2baSCpY2NDWLxe7Y0f4UDBw7Qv39/Hj58SJ06dT54vrIikUiIiYkhICCAgIAAbt68iYaGBi4uLri6uuLk5FSiYUd5MXr0aA4fPkxsbGyFrVHEixcv2L9/P76+vpw9exZtbW0+//xzRowYga2tLSKRiJB/66pWpe+zCLDTVaarobqsTSlXCiQS7rzIITo5i3tpuYigXD6Xgvx8xHJyKKU/oZmWHB0sTFAsh3Pi48ePMTExIScnB4DVq1czderUMu2bnZ3NrFmzWLt2LUZGRty/f5/evXvj4+ODnp5ecfsLCvD19WXLli1cvHhRKlY2adKEMWPG4OHhgby8/Acfj0DF0LFjR/T19dm/f7+sTREQKIZEIuH27duEh4czY8YMnjx5UmJM+/btCQ0NZd2V5691Tm8b3YeMlGd8/euZN65X1NR3wHfrse39OQAhW72L1SIHWOFsg6mdPQMXbAT+30h49Lbfyu15UQhOkT0ffhct8MFoK8lhUkOBqv4zEAH1aygI4uQnSkJG8Q6+Tx/cI+VxPB3cPWnl+gXWzgPLJE4C5GZlcmLbSmKjwivC1Hfiv8clIFDVSEhIYNCgQbi4uGBhYcGVK1eYOXNmuafwWtdSrlJizpuQAC1qFY+oU1RUpEuXLnh7e3P58mXu37/PDz/8gL6+PqtWraJly5bo6+vj7u7Onj17Sr2hLyvR0dHo6+t/VHESCuv02drasnTpUq5fv87ly5eZOnUqly9fxtXVFV1dXQYMGMAvv/zCixcvym3duLg4du7cyYwZMypcnATQ0NBg1KhR0lpcY8aM4bfffqNly5Y0a9aMVTt2E5Vc9cR2CRCZnEV8eq6sTSk34tNz2fbPcwJi04hLKzyu8vpcxP/WXM1Q1iIyT5u5v/+N0+dfMnr0aDZv3szZs2dJT3+32rrfffcdderUIScnBxUVFVJSUsosTgIoKSnRt29fdHV1uX//PjVr1mTWrFklxEkoTBkfOXIkUVFRZGVl8cMPP9C8eXOuXLnC+PHjUVJSwsbGhm3btklrWApUDvLy8oiOjqZVq1ayNkVAoARFzbkGDRpESkpKse1Fwt25c+e4k/C0WmXOAGTnS3ie/T4tHwXKC0GgrCTY6lb9BzsJYFuNCrQLvBsJGXnFTigvnxV6vJRrVJ5iw/l5eeTl5pR5vFgECZnCTb1A1aSgoIAffvgBCwsLTp06xe7du/n9998xNTWtkPWqi7MtPy+Pukq81dlWr149Ro0aRUBAAE+ePCE0NJSRI0dy5coVhg4dip6eHq1bt+a7777j/Pnz5Ofnl9mGmJiYYjXoZEFRx8/58+fz999/c/PmTby8vIiLi2PIkCHo6ury2WefsXPnTmnzj/dl+fLlaGlpMXbs2HKyvuyYm5uzbNky4uLiOHr0KJZWViTpWVLwDp9XZUIEBMWlFaY8V2FyCySEPEjn51uppOYUPixW1BHJ/RtlqFO3Hg4zVpLX0I4ZM2fTrl07NDQ0aNSoEW5ubixbtozg4GAeP35MaQloRkZGLFiwAIDu3buTkZHxTg22srKymD59Op07d8bS0pIzZ87QqFEjOnbsyKpVqygoeP1Ds7y8vLSucHZ2Nps2baJJkyZcunSJMWPGoKysjJ2dHTt27HjjPAIfh2vXrpGRkSEIlAKVmhs3bkidGzVq1MDZ2ZmVK1cSERFBZmYmOco1ymUdLYN6LDwXj7Wz2zvtZ2LTloXn4jGxaVsudhQhBKfIFiHFu5JQIJGw7Z/npFaRWkf/RQRoKorxsNJGLIREf5LsvpnCg5eFJ/Rf508g5vC+Yu/Xt7WX/r+Hz8Fi7/06fwKxUWeZGRQjDfP/L109ZtBt7DdsG93nrXPA/9MFen79HWI5Oc7t28HzR/eZ8HMIdcybknT3Fn9sXsqdyDByszKp3cCCLh7TsXJwKjavoZo8wxqVLfJTQKCycPXqVcaMGUN4eDhfffUVK1euREdHp8LXvZWaTUBsWoWvU9E4GyjQVP/9nSuPHz/m2LFjBAcHc/z4cVJSUtDR0aF79+707NmTHj16ULt27VL3lUgk6OvrM2bMGBYuXPjeNlQkcXFxBAYGEhAQwNmzZ5GTk6Nz5864urrSt2/f1x5bacTHx9OgQQMWLVrEzJkzK9DqslFdvsMDTDVoqFk1axHGp+dyJC5NZvU/RUANBRGWuYnEXYqQNuW5ePEiqamFTZP09PSkHcSVlJRYtGiRtEbbsWPHcHR0fKc1L1y4gLu7O7du3WLp0qVMmTIFsVhMbm4uc+fOxdvbm169evHTTz9Rq1atMs+bk5PDDz/8wLZt27h69SoSiQQ5OTlsbGyYMGECw4YNK5eyFALvxo4dO/Dw8CA1NRV19epVkkGg+pCTk8PBgwexsLCgcePGJc4VJ/4thfI6l0dZU7xLoywp3hWBWAR2uip0EepQygzhilRJEItEOBvXqJLiJBR6tV2Mawji5CeKRCIpFmnYqv9wOn1V2OTA/vPRuC3aTOeRU8o0l5p2TfrOWQlA487OuC3ajNuizTTu4vxetkUf+oVz+3bQqr87vaYsQFVDm8Q719ky3Imku7dw+HISvaYsQFFFld1Tv+DqyaBi+ydk5pUaKSEgUBnJysrCy8sLa2trnjx5wunTp9mxY8dHEScBGmgooqUorrpRlJICnsbfxbzmh6UZGxgY8OWXX7Jv3z6Sk5MJDw/H09OTW7duMXz4cPT19bG1tWXu3LmEh4cXS798+PAhSUlJMo+gfBPGxsZMmTKFsLAwHj58yLp168jPz8fT05M6derQqVMnNmzYwMOHD986l7e3NzVq1MDT0/MjWP52opOzqu73919EQHRypqzNeC+ikjP5+VaqTJsTSYC0XAl/oUcT50GsXbuW06dP8/z5c2JjYwkMDGTs2LEoKSmxbt06Fi5cKL1PsLGxITAwkB9++IG//vqLjIyMN66Vl5fH0qVLad26NfLy8kRHRzNt2jSpEKCgoMCKFSs4evQoERERtGjRQtp4pywoKioyceJELl++TFZWFqtXr8bc3JyoqCiGDx+OkpISbdq04ZdffhEiKz8ikZGRWFlZCeKkQKVGUVGRgQMH0rRp01IdGbFJzzm48ltWONswt3VdFne1ZMe4ATy8dqnYuMTYG/h49GWevRHLejQldOeGYu8/f3Sf2Ta6RB/65Z3si40KZ7aNbrGSYNtG92HtwA5vXbNw3Xh2fT2MefbGLO5qyZFVc7kefpKuhuqcPn36nWwRKD8EgbISUU9dATtd5Sp3YywCWuoqY6hevvXMBKoO+RLIe+W+1rh5S8zadALAxLoN1s4Dpa/fhqKKGk26Fnat1Tezwtp5INbOAzFo1Pi9bEtNesS4n4Jx+HIS7YeORcvAkMMrv0VL35CJe07g8OVE2g4ayWifgxg1syN4ffGIpbwCKBD0SYEqwMmTJ2nWrBkrVqxgzpw5XLp0CQcHh49qQ1V3toGIwAWTy6VRRhHy8vLY29uzaNEioqKiSExMZNeuXVhYWLB161bat2+Prq4ubm5u/Pjjj/zxxx8AlVqgfBUDAwM8PT05ceIEiYmJbNu2DVVVVaZNm4ahoSFt27Zl1apVpXaqffToET4+PkydOpUaNconVexDeJ6dz7203Cr8/S1EAsS+yGHf4WDS0qpGNKhEIiE8IYOQBy8LX8vann//G/LgJeEJGdLoyPr169OvXz9mzpzJiRMnyMrKAmDQoEGsXr0aKysrwsLCGD9+PG3atKFGjRpYWVkxZMgQvL29OX78uLQ77u3bt+nYsSNeXl5Mnz6diIgImjRpUqo9PXv25OLFizRo0IBOnTqxZMmSdxYUFRUVmTp1KlevXiUjIwNvb28aNmxIREQEQ4YMQVlZmXbt2rF//35BrKxgIiIiaNmypazNEBB4byQSCVvmTuEv/5006epCn9kr6ODuiYKSMkl3b0nHZb5IwXfCIPTNGtNrygJ0Tcz4ff1CboSHVJhtZVkzJ/Ml28f253bEn9h/PorOI78m7u9Ifv/3OVAITpEdQmu3SoZDHTVupebI1HP8LogADUUxHesIYdCfMnmV+CTepIsL6tr/T4fKSH1ObOQZuo2bSfbLdLJf/r8AvlnbLoRsXUFq0mM09Qyk2/MkEuSqnOtA4FPhyZMnTJ8+nZ9++okOHTpw8OBBLC0tZWZPkbOtKnZAFj24RvKtKxW6jp6eHu7u7ri7u5Ofn09UVJS0M/ioUaOkKZgbNmygV69e2Nvbl3tDo4qiVq1ajBw5kpEjR5KSksKRI0cICAjAy8uLGTNmYG1tjaurK66urlhYWODt7Y2KigoTJkyQtekAXHiSVW4domWNpKCAnSfO88WAvjg4OODi4oKzszMNGjSQtWmlcjYxkzOP3xxtKCuK7GqnXxhZvWXLFmnEr4KCArdv38bIyKjYPllZWVy9elWaGn7hwgUOHz4sbbqjqalJWloaGhoaLFiwgMGDB7+143bdunU5ceIECxcuxMvLi9DQUPz8/N6ppEIRysrKzJgxgxkzZpCRkcG6devYuXMn586d4+zZsygoKNC6dWumTp1Knz59hDTwciQzM5PLly/j4eEha1MEBN6bfAlcO/MHLfsNw3nqq8EdE4uNe5GcwMCFm7BxKawvadd3KN7O1kT99jPm7bpViG1lWfOvgF08e3AP9zW7sOrUE4BWrsPZ8HkXQAhOkSXC1aaSoSAW4VKFok+KUrsVxIJ48ylTmR3t2nWNi71+Gn8XiUTCH5uXs7irRbF/IVtXAP9v8FNEfiU+PoFPF4lEgp+fH5aWlhw8eBAfHx9Onz4tU3GyCIc6amhUoVTvImdb7tVzqKh8vGZvcnJytG7dmvnz53P+/HmSkpJo0aIFtWvXZufOnXTq1ImaNWvSv39/fHx8iI+P/2i2fShaWloMGzaMAwcOkJyczP79+2nUqBHLly/H0tISc3NzNm7cyODBg9HQ0JC1uUgkEi49rVqi+psQy8nRbfh4vFeuRCQSMWPGDBo2bIilpSUzZszg9OnT5OZWjm7fUUmVV5ws4szjDKKSM2nSpIlUnGzZsiU5OTklxEkoFABtbW0ZOXIkGzZsICwsjNTUVMLDw2nRogWpqakYGhqioqKCl5cXZmZmaGpq0r59eyZMmMD27duJjo6WRmgWIS8vz8KFC/njjz/4+++/ad68OSdOnPigY1NVVWX27NncuHGDFy9esGDBAoyNjQkLC6N///6oqKjQqVMnDh069EHrCBRy8eJF8vLyhAhKgSpNnkSCcg1N4q/E8CI54bXjFFXVsHYeKH0tr6CIYWMbnj2MqzDbyrLmzbMn0dAzwPKV3gMKSsq07O8OQH4lDr6p7ggCZSWknroC3QyrRkRiN0M16gmp3Z88ZXWsi15To7TgHRTAd51DQUm52GvJv2pqB/fxjNziX+q/mvWKdzmWE86UApWM27dv4+joyBdffIGjoyPXr19n1KhRlSbKpao627Iy0lFWVn7r+IqiVq1aJCQkMGLECB4/fkxUVBTffPMNSUlJjB07FiMjI5o0acL06dM5ceIE2dnZMrP1XVBXV2fgwIHs3buXpKQkDh48iLy8PPn5+WzduhUzMzNmzpxJRESEzNKqnmXnk51fVb6xZSMXMe4e4zl27BhPnjwhMDCQdu3asXv3bjp37oyuri6DBw/Gz8+PJ0+elOvamzdvZufOnW8dF5+eS8jDl+W6dkXxR3wa6QqFNQN3795NRETEO+3v7+/PZ599RkJCAkePHiUuLo5Hjx6RmJjI8ePH8fLywsjIiJMnTzJmzBjs7OxQV1enadOmuLu7s2bNGk6ePMnTp0/p2rUrly5domnTpjg6OjJv3rxitWzfF3V1debNm8etW7dIS0tj/vz5GBoaEhoaSp8+fVBWVqZLly4EBwd/8FqfKhERESgpKdG0aVNZmyIg8N4UFEDPyfNIvHOd5T2bs8m9OyFbvXn24F6xcZp6dUo8u6loaJL5IrXCbCvLmimP46lpaFJiXM169QEhglKWCCnelRQ7XRWy8yWV2qPcwUAVO92PF2kiUHmRL2NzJJUaWjx7eK/E9pTH/4kKesN8ZZ7jNegYFkZUysnL07B12erzlfX4BAQqmpycHFatWsWiRYvQ19cnODgYJyent+8oA4qcbUU15SozRc62zMzMjxpB+V8eP35MQkICtra2iMVibG1tpc10nj9/TkhICMHBwezZs4fVq1ejpqZGly5d6NmzJ05OTtSvX19mtpcVFRUV2rRpw71795g9ezYdO3YkICCAH3/8EW9vb+rVq0f//v1xdXXF3t4eOTm5j2JXQsaHizuVkYSMPHSU5ahRowb9+vWjX79+FBQUEBMTQ1BQEEeOHOGLL75AJBLRtm1bnJ2dcXFxoWnTpq91CJaFzZs3U6tWLb788svXjsktkHBe0yoqAAAgAElEQVQkLq3KpNUXFBQweMkW5nVtjKpS2TukP3/+nAkTJrBnzx4GDhzIli1bqFmzpvR9PT09HB0di3X+zsjI4PLly8U6iAcGBkqb7tSrVw9ra2vatGmDnp4eixcv5vTp0/zyyy/UrVu3XI5XXV2d7777ju+++44XL16wYsUK9uzZw6lTpzh16hTKysq0b9+eb7755p27ln/KREZGYm1tjaJi2b9DAgKVDbEYmnXvi4l1G66eOsrt86f5c9cmQn/awLBVvtJUavFrruEV6YwsjzWF5FDZUTlCLQRKxb62Ch0MPqyTaEXR0UAV+9qCOClQiJwI5MtwNtExNCH53m3Sn/8/UuPxzSvEXSoehaCoXPjdykwr6V0r6xyvQ11HF1O7dvwVuKvUlIRX54XC4xIuUgKVgXPnzmFra8u8efOYOHEiV65cqbTiZBF2upX3OlbEq862zMxMmUZQRkdHA4WdgP+LtrY2AwcO5Mcff+Thw4dcvHiRuXPnkpqayqRJkzA1NcXCwoIpU6Zw7NixEqmhlYk1a9YgFouZNm0aTk5O+Pj48PjxY06ePEnv3r3Zv38/HTt2xNDQkHHjxhESElIu0WFvIiEjr9rdFItFkJBZ8u8mFouxs7Nj/vz5REZG8ujRI7Zv307t2rVZtmwZzZs3x9jYmHHjxhEUFERmZsV0BA999LLK1FwHkJOTR9ugHueSc8q8T0hICE2bNiUoKIjdu3ezb9++YuLk61BVVaV169aMGTOGLVu2cO7cOV68eMG1a9f45ZdfGDJkCNnZ2Wzbto09e/YgkUgICwvDxMSEvn37snPnTi5evEhOTtltfRMaGhosWbKEu3fv8vTpU2bNmkXt2rUJCQmhe/fuqKqq0qNHD06ePFku61VnhAY5AtWBouANDV192rp9hfuaXXxzJApVTW1O7fhexta9HS2Dejx9cK+EaPk0vrChn5wQnCIzqtu9WLVCJBLRTl9Vmu4t659J0frdDNWw11f9IM+6QPVCJBKhr/L2gGy7PkPIz8vFd7wb5/bt4I8tK/jR043aphbFxikoq6Bnas7lP37j3P4fuXTsAAm3r73THG+i96wVIJGwbpADv29YRESgHye3r2bnpM/ZMXZAsbH6KvLCd11ApqSmpuLp6Um7du1QUVEhKioKb29v1NSqRimQquRsy8rKkmkEZXR0NDVr1iy1pt2riEQimjdvzqxZswgNDeXJkycEBATQsWNH/P39cXJyQkdHB2dnZzZs2MDt27c/0hG8nSdPnrBx40YmTJhAeno6np6emJubU6NGDQYMGEBiYiJhYWGEh4czZMgQgoODcXR0REFBAWdnZ/r27Yuuri5qamr069dP2hG5CBMTE1xcXAgLC6NVq1YoKytjamrKrl27StgSGxvLwIED0dHRoZeZHhu/cOL6mePFxkQf+oXZNro8f3S/+L5R4cy20SU2Kly6bdvoPqwd2IHE2Bv4ePRlnr0Ry3o0JXTnhhJr52ZnEbLVm1V9W+PVxpCl3Ruze9qX0ocjKIzYC/t5K98PaI9XG0OWdLPiwOJpZL5IKTbXCmcbdk4aQmxUOBuHdsOrbT3WunXkdmQ4j17mEhgYSNOmTaV1ES9cuFBsfwMDA+zt7RGLxSgoKKCgoEB2djYHDhzAxcUFHR0dXFxcGD58OCKRiPDwcKZOnfraz8HExISrV68SGhqKSCRCJBLRqVOnYmvGp+cSVcUaaUFhpGdkchbx6W+u35mRkcGkSZNwdHTEwsKCy5cvM3To0A+6n5CTk8PCwoLBgwezfPlyfv/9dxITE3n06BFHjx5lzpw56OrqcvDgQUaMGIG1tTXq6upYW1szYsQI1q1bR2hoKCkpKW9f7A3o6OiwbNky7t27R3JyMtOnT6dWrVocP36crl27oqamRq9evfjzzz8/aJ3qyPPnz7l16xatWrWStSkCAh9GQT65L18U26Suo4uGrj555eQYqUgate3Mi6THXAv9XbotNzuLyEA/QAhOkSWCQFkFsNNVYaiZpkwbDhQ1EBhqpimkdQuUioGq/FtPKHqmjRi4cBNZ6WkErZnHtT9/Z+CiTdSxLFmHp7/X92joGhC02ou9sz24EnL4ned4HbVNzZmw+w/M23cj5vBeDi2fyV/+PyESienqMU06TgzUURNqrArIBolEgr+/P5aWlvj5+bF27VrOnTtHixYtZG3aO1GVnG2yTvGOjo7G1tb2nUUMTU1N+vfvz7Zt27h//z5Xrlxh4cKFZGVlMW3aNMzMzGjYsCETJ07k6NGj0jRRWbB27VoApk2bRmRkJGfPnmXw4MGsX7+esWPHcuLECbp06UKLFi1YvXo1d+/eZf78+QCcOHGCgwcPkp6ejrGxMYcOHWLcuHEl1rh9+zYDBgzA0dGR1atXo62tzZdffsnVq1elYxITE7G3t+fYsWOMGzeOHuPnkJeTxa4p7lw9GfTex5f5IgXfCYPQN2tMrykL0DUx4/f1C7kRHiIdU5Cfz0+Th3Ji20rqWjan15QF2H/uQVb6CxLvXJeO+23JNILXLcC4eStcpi/BtvdgLgb78+N4N/L/0+Dm2YO77J0zBouOPegx4VsyX6Tw09dDOeq/lylTpjBs2DAWLFjAnTt3cHNzo+CV7nZXr16lTZs2XLt2jVmzZvH9999jYWFBUlIS69evZ9GiRbx8+RI/v8IHt27duhEYGIi7uztjxozh8OHDxTqxr127FkNDQywsLPDz88PPz49vv/32/8cvkRD0b2p3VUQEBMWlUfCadMHIyEhsbGzw8fFh/fr1HD9+nHr16lWYPQYGBvTs2ZPFixfz4MEDVq5ciZycHE2aNGHevHm0bNmSK1euMHPmTDp16oS2tjampqb079+fhQsXcujQIeLj498r5bJWrVqsXLmS+/fvk5iYyJQpU9DW1iY4OBgHBwfU1dX57LPPOHfuXAUcedUjKioKQIigFKjypKens6RHM36dP4Gw3VuJCPRjz8xRPLh6geZO/WVt3ltp5foF2nWM2DtnDL9vWET4L9vYNroP8kpKAJWmpvuniFCDsopQT12BUZbahD56SVRy1ker11O0jp2uMh3rqAndugVei76qPK+2qTG1a8eymOQS46x7DcC6V/EoxUZtO5cYZ9y8JRN+DimxvaxzaNcxKnX9InQMTXBbuOm17wMUAMtnT2e3fDYODg44ODhgYmLyxn0EBMqD+/fvM378eI4cOUKfPn3YsGFDhT7gfgzsdFWorSLPkbg0maV1FjnbXIxrlNrgTdYp3jExMbi7u3/QHCKRiMaNG9O4cWOmT59Oeno6J0+eJDg4mMOHD7Nx40aUlJRwcHCQ1q40Nzf/KJHiz58/Z/369Xh6elKrVi2cnZ0ZMKD4ufyzzz6jbdu2BAQE4O7ujkgkkp53O3TowJo1awgMDCQgIICCggICAgLo27cvgwcPxtnZGYAbN27w559/0qFDBwDc3NyoV68evr6+rFq1CoDly5eTmJjImTNnaGPfjlWXnmLbbxjrBnUiaM08LDv1fK8HlBfJCQxcuAkbFzcA7PoOxdvZmqjffpbW5Io5so87EX/iPHUR7YeNle7bacRkqUh078J5Ig/sZtCSrbTo6SodY2rXHt8Jg7gccqjY9uR7txnrexTj5oXCh56pOb7j3fBfNJUb165R36Sw/rK2tjZjxozhzz//lEY1Tp48GSMjIyIjI1H69+HM09OT9u3bs2HDBm7evMn06dPZvHkz48ePR0tLi7S0NL7//ntq1qyJmZkZ/v7+xMXFYWxsTN++fZk7dy61atVi2LBhJf5Gd17kkJJT9uZ4lQ0JkJJTQOyLXBpq/r+OYG5uLkuWLGHx4sXY2Nhw4cIFLCzKnt1RHojFYqZPn0779u0ZPHgwa9aswdfXl23btpGXl8eNGze4ePEiFy5c4OLFi6xbt45nz54BhZGRLVq0kP6ztrbG3NwcBYWyOWr19PRYs2YNa9asISEhgaVLl+Lv78+RI0c4cuQI6urqdO3aldmzZ9O6deuK/DNUWiIjI9HU1MTMzEzWpggIfBCqqqr0+WIUZ06GcPVkEJKCAmrWq0+f2d60GThC1ua9FSVVdUb9EMihFbM5+4sPiipq2Li4YdK8JX7TR8j0XvBTRxAoqxAKYhHdDNUx11IiKC6NlJyCChMqi+bVVBTj/JoHOQGBV9FXrZ6nkybG+pw4FIivry8AxsbGUrGyU6dO1K9fX0gBFyg38vPz2bBhA3PnzkVTU5PAwED69esna7PKjcrubMvKykJVVTbp6ImJiTx8+BBbW9tynVddXZ3evXvTu3dvJBIJN27c4Pfffyc4OJhZs2YxZcoUTExMcHJyomfPnnTp0gV1dfVytaGIdevWkZeXx7RphZHqr0ar5ubm8uLFCxo2bIiWllapYq2HhwdNmzaladOmzJ8/n02bNjFhwgRu3brF559/jpKSEmKxmDp16tCkSRPpfrq6upibmxMbGyvddvToUVq1akX79u3Jyi8Uy5RU1WnV351jGxaTFHsD/YaW73yMiqpqWDsPlL6WV1DEsLENzx7GSbddOXEENa2atB08qsT+RdeTyyGHUFbXoGEbB14+fyp9v65lcxRV1YiNCismUOqZmkvFSQCjJoXfI1O79tR5xblRJAzFxsbSqVMnnj17xsmTJ1m4cCFpaWmkpaVJx/bo0YP58+fz8OFD6tatK/1trF+/nv79+xMREcGRI0f4+eefKSgowNTUlA4dOuDi4vLGDvPRH/G3X1GIgOjkTKlAef36ddzd3blw4QJeXl7MmTOnzMJeRdCmTRsuXLjAV199Rd++fZk8eTLe3t5S58XQoUOBwkj9opq2RaLlb7/9xpo1awBQUlKiSZMmUsGyRYsWNGvWjBo1arxxfX19fdavX8/69et58OABy5YtIzAwkIMHD3Lw4EFq1KiBo6Mj3377bak1d6srERER2NnZCdFZAlUeRUVF5i1ZzuG49NeO8fA5WOr2gQs2FntdWlBJt7Hf0G3sN8W2zQyKKfa6tGCYsq4JoFPXmC/X7ym2LeznrQAYGhqWOo9AxVM9FYVqTj11BTystIl9kUt0ciZ303LL7UavaB6TGgrY6qpgqqGAWBBfBMqAjpIcSnIisvOr8iNHcZTkRKxeOA/Rovk8e/aMM2fOcPr0aUJDQ/Hz80MikWBoaFhMsGzYsKEgWAq8FxcuXGD06NHExMTg6enJkiVL0NTUlLVZ5U5ldrZlZmaio6NTAZa8naIGOeUtUL6KSCTCwsICCwsLvv76azIyMjh9+jTBwcEEBwezdetWFBQU6NChgzS6snHjxuVyTktNTWXt2rWMHTuW2rVrA4V/72XLluHr68vDhw+LpZimppZskvbf2pyNGzcGCjtGm5iYEBgYyOzZs3n06BF6enp06dIFV1dX+vbti7a2Ns+fP5fuGxcXJxXrXsl2Rq9+IwBSHse/l0CpqVenxN9LRUOThFv/SF8/e3CPWiYNkJN//W34k/uxZKW/YEnX0m1If1a8oZuWfvHOzco1NKTb8wuAf5uaFp1Tiv4Wt2/fRiKR4OXlhZeXV6lrJSUlFesMbWRkhJycHG3btqVt27Y4OjrSuXNnJk+ezM2bN/Hy8iIrK4sHDx4wefJknJ2dcXBwQElJiefZ+dxLe3P9xqqABLiblsvTzFx2b9vMrFmzMDEx4fz589jZ2cnaPKAwWjYwMJCNGzcyffp0wsPD2bt3Lw0aNJCOEYlEGBoaYmhoiIuLi3R7amoqly5dknYQj4mJYdeuXeT+W1qgYcOGxUTLFi1aYGBgUOq5wtDQkE2bNrFp0ybu37/P0qVLOXDgAIGBgQQGBqKhoUH37t3x8vKiWbNmFf+HkSERERFv7GwvIFCVqOrBKblZmSgov+Iozc4iImAXDRqaFbvmCXxcqva36hNGLBLRUFORhpqKPM/O5+KTLC4+zZKKQ2IRFJThae/VcUpyIlrUVKZFLWW0leQq0HqB6ohIJKJ5TWUikzKrdFREESKgRU1l6c22jo4Offr0oU+fPgCkpKRw5swZQkNDCQ0N5ZdffqGgoAADAwOpWOng4PDRUicFqi7p6enMnz+ftWvX0rhxY86ePUubNm1kbVaFUxmdbbKsQRkTE4O2tvZHLSOhqqpKr1696NWrF1AoVgUHB/P7778zb948ZsyYQb169XBycsLJyYlu3bqhoaHxXmtt2LCBrKwsZsyYId02ceJEfH19+frrr2nbti2ampqIRCIGDx5crEZiEXJypd+bSCQSjI2NmTJlCuvWrcPMzIx+/foREBDAuHHjGDduHDVq1EBXV1caDfgqbwxmes33piA/v9Tt4jfY+C5ICgpQ19Fl0JItpb6vpl28E7RIXPq6IrEYuVKOr8ieor/z9OnT6dGjR6lzNGzYsNjr130OvXv3plOnTmRkZGBpaUleXh4HDhxg/fr1qKmp0b17d3rPWIJIWbea3CdI+HarHz9M/ZpJkyaxfPlymdawLQ2RSMTEiROxt7fHzc0NGxsbtm/fzsCBA9+4n6amJh07dqRjx47SbTk5OVy7dk0qWl68eJGVK1dKm+7o6uqWEC0bNWpU7PtiZGTE1q1b2bp1K3FxcSxevJiDBw/i7++Pv78/WlpaODk58e233xaLgq4OPHz4kMePHwsNcgSqDVU9OGX39C/R0jfEwLwJWekvuHjUn+R7t/h+925Zm/ZJIwiU1QBtJTk611WjUx1VnmcXkJCRR0JmHo9e5pKQmUdeKWV+5MWF3YnrqCmgryKPvqo82kpiQUgR+CCsaykTkZQpazPKBQnQotbr649oaWnx2Wef8dlnnwGF0Qbh4eFSwfLXX38lPz+f2rVr07FjR6lgaWVlJfzOBKQcPXoUT09PEhMTWbp0KVOnTpVpWuDHprI522TZxTs6OhobGxuZnh+KGulMnDiRzMxMzpw5I42u9PHxQV5eHnt7e3r27EnPnj1p1qxZmexNS0tjzZo1eHh4YGBgIN3u7+/P8OHDWb16tXRbVlbWB3cZVlJSwtPTE09PT5KTkzl48CDffPMNd+7cwdDQkDZt2qChocHff/8NgPwrx5B87xYAWgaFadEqGloAZKalov3KGimP49/bPh1DEx5ciSE/Nxe51/zeaxqacCfiT4ybtyoW4fE+yL/hMzI1NQVAQUGBbt26fdA6RaiqqqKhoUHNmjU5deoUly9fJigoiCNBQTwUqVNdXOASRBjYdeL4H3/g2K0bIpGI+fPn891338natBLY2toSExODh4cHbm5ujBs3jjVr1rxTnTVFRUWaN29O8+bNGT58OFAodMfFxRUTLffu3Yu3tzdQWMahWbNmxWpbNm3aFDU1NYyNjfHx8cHHx4c7d+6wePFiDh8+zN69e9m7dy/a2tr07NmTuXPnYmn57tHMlY2IiAhAaJAjUH2o6sEpZm07E/Xbz1wM9qegoIDa9RvhtXmntASGgGwQBMpqhEgkQkdZDh1lOawoLHIukUgokECeREJ+AciJC29UxSIEkUSg3NFWksOkhgJxablV8kJVhIjCyKt3ETc0NTWLRSKlpaVx9uxZqWA5efJk8vLyqFWrljQl3MHBgSZNmgi1iD5BEhISmDx5Mvv378fR0ZETJ04US7v7FKkMzjZZNsmJjo7m888/l8napaGiokL37t3p3r0733//PXfv3pXWrly8eDGzZ8/GwMBAGl3p6OiItrZ2qXNt2rSJly9f8s03xetJycnJlYgs3LBhA/mviU58H3R1dRk1ahS7d+8mLy+PMWPGEBAQQGRkJMnJyZibm/PFF1+g2MuDzMwMIgL90K5jhJ6pOVAoFALcjTlHHfOmQGH0ZESg33vb1KSrCzfC/uDcvh3FmuRA4X2bSCSiafc+nP/Vl5M+q+kxcW6xMfl5eeRkvkSlxttLQIhFhf9eh56eHp06deKHH35g4sSJxQRkgOTkZHR1dct+cP+ipqZGSkoKIpGIZs2a0axZMzymzMDn2oeJz5UNJXUNbFuWbPRXGdHU1GTv3r107dqVSZMmcfbsWfbt24e5ufl7z1nUxMrExIS+fftKtz979kyaIn7hwgXOnj3L9u3byc/PRywW06hRoxINeYpqfd+4cYOlS5dy5MgR9uzZw549e9DR0cHFxYW5c+dW2QYzkZGR1KlTR0gdFahWVOXglPZDx9J+aPFr8Bir0u9jBD4egkBZzRGJRMiJQA4R1cZlLVCpsdVVrvL1pSSAre6HRazUqFGDHj16SFPmXr58yblz5wgNDeX06dNMmzaN3NxcdHR06Nixo1SwbNas2WvT5wSqPgUFBWzfvp1vvvkGRUVFdu/ezZAhQwSH0SvI0tkmqwjK5ORk4uPjK7T+5IdSv359abp0dnY2YWFhUsHS19cXsVhM27Ztpc12rK2tEYvFpKens2rVKkaOHFmi6LyLiwt+fn5oampiZWXFuXPnCAkJoWbNmq+x4sOQl5fH3d0dd3d3YmNjsbGx4e7duyxYsAC7K/e4d+E8zx/GMXSlr9RxVLuBBfWa2nFswxIyU1NQ0dTi72O/UZCf99522LgM4kLQfoLWeBF/NQYT6zbkZmZw+69Q2rh9hVWnnpjatqOV63BO+67j0c0rmLXphJy8Ak/ux3Il5BAuM5bQtFvvt66lKv92wX7Tpk20b9+epk2bMnr0aExNTUlMTOTcuXM8ePCAS5cuvfMx2trasmXLFhYvXkzDhg3R09Ojdgv7d56nKpCQkYeOctW4botEIjw8PGjTpg1ubm7Y2tqydevWUrutfwg6Ojp07tyZzp3/L95mZWXxzz//SJvxXLx4kaCgIGljJgMDA6lg6ezszNy5c8nJyWHp0qUEBweza9cudu3aRc2aNenduzdeXl7Ur1+/XO2uSCIiIoToSYFqx6ccnCJQMQgCpYCAQLnSQEMRLUUxqTkFVfJCJaKwoYapRvmm2aqpqdGtWzdpCl1mZibnz5+XNt2ZNWsW2dnZaGlp0aFDB6lg2aJFC+Tf0EhBoOrwzz//4OHhQXh4OF999RXe3t4VJsRUNz6Ws01WNShjYgo7U1aVbrZKSkp07dqVrl27snLlSuLj46Vipbe3N15eXujp6dGjRw/y8vJITU1l1qxZJeZZt24dcnJy/Pzzz2RlZdGuXTtCQkJeWwuxPDE1NSUmJoaZM2cSEhJCVKAftc2s+GLtbiw6dP8fe2ceHtP5/uF7Jvu+EGLfSzaJSEQiEmtR1BJF7WlrqbVa2tqKttZQa2nUV+xFpa1SSoVEEUsisYXadyGyyTKTzHJ+f6SZX4cg22QSzn1dc13MnHnf55zMnDnn836e59Hatv+c1fw6ZxJR65djamWNV4+BNPD2538f9ynW3FIDA4Yt/4nD/1tC/J+/cDFiD+a2dtTx8NFqzNNr2iJqOLlzKnwDB76fi9TAALtqtfF45z3quBeujp2R8Goh1dnZmZiYGGbPns369etJTk6mSpUqNGvWjK+++qpY+/jVV19x+/ZtFi5cSEZGBoGBgczYvAcpUIAZusIilUCiTKlZTKkoNG3alJiYGEaPHs3gwYM5fPiwplaorjA1NcXT01PrPKdWq7l586aWaLlx40bmzZsH5F07ubu78/777+Pg4MDx48c5efIkYWFhhIWF4eDgQI8ePZg+fTp16tTRWewlRa1WExMT85yLXETkdUA0p4iUJhKhqFW7RURERF7B3UwFW64+34G1ojCokQ01X9Htt7SRy+WcOnVKI1geP34cuVyOtbU1/v7+msY7np6eomBZwZDL5cyZM4cFCxZQr149QkNDadOmjb7DEikAS0tLvvnmGyZOnFim886dO5eFCxeSmppa4d20CoWC48ePs2/fPvbu3cv58+cB8PHx0XQG9/LyKndO8YspcnbfztR3GKXOtqkjqaxIJzg4mN69e5dYgN+5cyfvvfcekZGRBAYGar0WGhrKqFGjOH/+PK6urly+fJnp06dz6NAhsrOzqd7QCf+PPsM5sLPmPbG//8TOWeMZuW4PFyL2EP/Hz+TKZTTybUOv6YuxtKusNcc/xw4S+b+l3L98HolUQj1PX7pMmEnVBk0AuBFzjB9H9KQgbKvV4os/8hYDpng60H7EZDqM0haMFnT1pL6XH+/NXql5TpaRzsEfFnLx0B4yU55gU7U6LXoPpvWQsUilUmpaGDLoLdvnalDevn2bBQsWEBERwZ07dzA3N6ddu3aEhISUaTOsV7FhwwZGjx5N3bp12bFjBy4uLvoOicePH2t1EY+Pj+fy5cuo1WoMDAyoW7cuCoWCR48ekZOTA+SVK+jduzfTpk17zq2tb/755x+aNGnCgQMH6Nixo77DEREpVdSCwJqE1ApvThnhbFeohooiukUsfCYiIlLq1LI0wsvBlIp2ipcA3g6mZS5OQp6zICAggK+++oqIiAhNl/DPP/8chULB7Nmz8fHxwc7Ojs6dOzN//nyio6NRKCr2iuXrzuHDh2natCkLFixgypQpnD17VhQnyzH6SvEuDw1ySgsjIyMCAwOZP38+wcHBSKVSFixYQO3atVmyZAktW7akatWqDBgwgE2bNvH48WN9hwyAo/nrufAzdnB/FAoFgwYNwtHRkZEjR3LixIkidxXPp2vXrlhaWrJjx47nXtu+fTsuLi64urpy8eJFWrZsyaVLl/jyyy9ZtGgRElMzNn86hIuH/njuvbsXTiHxykXajZhEy/eGcfnIfn6fr+26PbNnBxvGD8DY3ILO42fQ7qPPeHzjCj980I3UB3cAcKjXiL7frNJ6dP98HgaGRljaV35u3leRK8tmzUc9iN+3k2Zd+9J98lzqeLRg/4pv+WPxDCDPQVnQ8Tx9+jTHjx+nf//+LF++nFGjRhEREaHpdF5eGDp0KKdPn0YqleLt7c26deuK/fkoLapUqULHjh2ZPHkyW7Zs4eLFi2RkZHDy5ElWrVrF22+/TY0aNbQWOpKSkvjhhx+oVasWdnZ2DBo0iPv37yYO9sEAACAASURBVOtxL/6f/AY5Xl5eeo5ERKT0kUokdK1jVSHFSchzT3arYyWKk+WE1/NqTERERO8EVrfganouTyvIapoEsDaWElBdd+lNRcHExAR/f3/8/f2ZNm0aCoWCmJgYTdOdOXPmMGXKFMzNzWnVqpUmJdzb2xsTk4qVavY6kpyczKRJk1i/fj2tW7dm165dr0UX0tcZhUKBSqXSS5OcM2fOEBQUVObz6hKZTMbChQsZOnSoJq1RqVRy8uRJ9u3bx59//slPP/0E5NUrzHdX+vj46MUlbm9igImBRNNB/nXAxEDCh+/34aMB73H9+nXWr1/Phg0bWLNmDU5OTgQHBzN48GAcHR0LPaaZmRndu3dn586dLF++XCMQJSYmEhUVpXEPTpgwgdq1a3P69GlMTExQqgUy/PoR+kFX9i3/Gpd2XbXGNbex54NVP2tEerVaTfS2H5FnPMXUypqc7Ex2h0zFq+cges/4TvM+z+79+K6XL4f/t5TeM77DqlIVmnV9T/O6IAhs/GQQBsbG9Jm9osjH8OiW1aTcu8m4nw5RuXZeIzOfPkOxdnDk743f03rwaGwda6Au4GPTtWtX+vTRLgPQvXt3fH19CQ8PZ/DgwUWOR1c4Oztz8uRJJkyYwIcffsihQ4dYvXo1VlZW+g5Ng7m5OS1atKBFi/8vb6BSqbh27ZrGZRkZGUlcXBxpaWls2bKFLVu2YGxsjJOTE8OGDSMwMBBnZ+cyv046ffo0b7311gsbiYmUHwRBQPVvzWu1GqT/1rw2EBvMvpR8c0pskrxC3PflIwG89GROESkY0UEpIiKiE4ykErpVoNW0/NUzo5e1O9UjRkZG+Pr68uWXX7Jv3z5SU1M5efIks2bNwsjIiIULF9K6dWtsbW1p3749X3/9NVFRUcjlcn2H/kYhCAKbNm2iSZMm/Pbbb6xZs4bIyEhRnKwAyGR5XSjL2kGZnJzMrVu3ynWDnOKwdu1akpKSmDp1quY5Q0NDWrVqxbfffktMTAyJiYls2LCBt956i1WrVuHv74+DgwP9+vUjLCyMhw8fllm8EokE90oVz/n/IiSARyVTzQ11gwYN+Oabb7h58yYHDhzAw8ODGTNmULNmTbp3784vv/xCbm5uocbu168fjx8/JjIyUvPczp07UavV9OvXj5SUFA4dOkTfvn3JyMjgyZMnJCYlkZ2WQiPfdiTfuUH6Y+2/bYveg7Vu/us1a4lapSL14V0Arp2IQp6Rjnvn3mSlJmseUqkBtVw9uRFztMBYD/24mMt/H+C92SuoWr/o3arP/7Wbus1aYmZlqzVvwxaBqFUqbp6JBvLEjGf577lEoVCQnJxMw4YNsbW11dSdLU+Ym5vz448/smXLFnbt2oWXlxfx8fH6DuulGBgY0LhxY/r168e8efOIjo5GLpfz8OFDFi1aROPGjVGpVJw9e5aJEyfi6emJubk5rq6uDBs2jKVLlxIZGUlamm67y4sNcsongiCQLFdyMUVOxL1MNl9JY/G5ZBadTWbpuRSWX0hh6bkUFp1NZvG5ZDZfSSPiXiYXU+Qkywt2Tr/JBFa3wNpYWmF+R8ubOUUkD9FBKSIiojNqWRrRoaYFB+9l6TuUV9KhpgW1KtDqmaGhocZJMHnyZFQqlcY9EBUVxZIlS5g5cyYmJia0bNlS47D09fXVSwrrm8C1a9f4+OOPOXjwIP3792fJkiVFciaJ6Jd8Mb+svx/5QsXrJFDK5XLmz5/PwIEDadiw4Qu3q1q1KkOGDGHIkCGoVCpOnz6tabbz4YcfIggCHh4ems7gvr6+GBnp7jzdrLIppx7LdDZ+WSIAHpWfdwMbGBjQsWNHOnbsSGpqKtu3bycsLIygoCAqV67MwIEDCQ4Oxt3d/YVjd+7cGRsbG7Zv30779u2BvPRuDw8P3nrrLU6dOoUgCMyYMYMZM2YUOEZWShI2Vapp/m/jqF0z0MzaFgBZRp5w9OTODQDWjuxV4Hgmls87/f45FkHEmhDaBE/AtX33F+7Py0i+e4PEqxf5tn2TAl/PSnkCgKqAzj8ymYx58+YRFhbG/fv3tcSM9PTyW6d7wIABeHt707dvX1q2bMmSJUsYNWpUhXKPOTo68tlnn/HZZ58BcOTIEb799luOHDlCTk4OFy9e5OrVq2zZsgWlMq+RVN26dTVdxPMftWvXLvF+5+bmEh8fz4ABA0q8XyKlQ2qOirgncs4myzWu+Vc18FKq4V6WkgdZSs12JgZ5C1vNKpuK3Z/5f3NKRelDUN7NKW8qokApIiKiU7wczMhRCfz9sPzUW3qW1tXM8argndsMDAxo3rw5zZs357PPPkOlUnH+/HmNYLly5Uq+/vprjI2NadGihabpjq+vr067dr4JKBQKFi1axNdff42joyN79+6lS5cu+g5LpIjkOyjLOsU7NjYWKyurlwp5FY2wsDASExO13JOvwsDAgJYtW9KyZUtmzZrFkydPOHDgAPv27eN///sf8+fPx9ramg4dOmjSwUu7EYadiQF1rYy4naGoMO7/gpAAda2MXnnDbGdnx6hRoxg1ahQXL14kLCyMTZs2sWzZMpo1a0ZwcDADBgygUqVKQF7adXp6OikpKfj7+7Njxw7atm3L7du3OXbsGK1bt2bEiBFcvXoVyKsjKJFIyMzMJFelZsiSTZq5K9WqrxWL9EVNk/79QwhCniTQ95tVWFWu8txmUgPtW5qU+7fZPv1jGvoE0nFM4T+Hglr1zP/VNGzZhsChYwvcPj/t26CAnLRx48YRFhbGJ598gq+vLzY2NkgkEvr3749aXb57mTdq1Ijo6GgmT57M6NGjOXToEGvXrsXGxkbfoRWLgIAADhw4AEBERAQLFy7k77//1riGK1WqRJUqVUhLS2PFihUkJycDed+R/wqWzZo1o0mTJkVaKDl//jw5OTmig1LPqAWB609ziU2ScytDgQS0zvOF/Ub+d7sclcDpxzJOPZZR18qI5g6mNLA2fqNrGYrmFJGSIgqUIiIiOsevap74Vx5FyoBq5vhWrdjiZEEYGBhoLqg/+eQT1Go1Fy5c0NSwDA0NZc6cORgaGuLt7a0RLFu1aoWlpaW+w68wREdHM2LECC5dusSnn37KzJkzRcG3gqJPB2WzZs2QSl+Pqju5ubnMmzeP/v3707hx0VNq86lcuTIDBgxgwIABqNVqzpw5o3FXjhw5ErVajaurq8Zd6e/vj7GxcYnjb+5gyq2Mit18TACav2DRTa1W8/TpU1JSUkhNTdV6ODg4MGTIEM6fP8/58+eZMGECEyZMwNzcHIDs7OznUhoHDBiARCJBEARu3bpFdna25hxYvXp1unTpgp2dHbb2lUj2DHwunsJSqWZdACzsK9PQ5+XjKOQyNk8ahpmVDe/PW1Pgd8vM2hZZhrbLR6nIJePJI63n7GvWJTc765VzGhYgSOzcuZOhQ4eyePFizXNyuVzn6cSlhampKStWrKBNmzZ8+OGHNGvWjO3bt1d4oa19+/Ya5+/+/fsJCQnh2LFjmkY2devWZeDAgbRq1YorV64QHx/P77//zpIlSwAwNjbG1dVVS7Rs2rQp1tbWBc53+vRpDA0N8fDwKJsdFHmOu5kK/ridQVquWpN+XFqLUPnj3M5QcCtDga2xlK51rN5o4Us0p4iUBFGgFBER0TkSiYRWjuaYGEg4eC/ruVXLMkdQg0RKh5oWb8yPk1QqpWnTpjRt2pRx48YhCAIJCQkawXLdunXMnz9f48Rs06YNgYGB+Pv7v/Ci+00mPT2dKVOm8MMPP9C8eXNiYmLEm48Kjr5qUMbGxtKjR48ynVOXbNiwgXv37jFt2rRSG1MqleLl5YWXlxfTp08nJSWFgwcPsm/fPjZv3syiRYuwsLCgffv2dOnShS5dulCnTp1izdXA2hhbYynpFaTB23Oo1aiynxLyxXRSCxAh09LSCqybJpFIsLW1xc7ODjs7O5ydnfHy8uLx48dcv36dpKQkbGxsaNOmDT179sTJyYnOnTvTtWtXrl+/jlqt5uTJk5rx2rZty7lz5xg3bhzVqlVDEAQWn0tGqYbM1CdY2hWto3Yj33aYWFoRuW4pDbz8MXjGwfbfMX+dO4knt2/w8fq9mlTxZ7GvWZdbcdFaz50K34hape2gdOvYg4jQhVw5foi3/NppvSbLSMfYzAITY0MKyhA0MDB47livWLEC1TNzlHeCgoLw9PSkX79+tGrVioULFzJhwoQKlfL9Ijp16kSnTp0A2LNnD9999x3Hjx9n+fLlLF++nPr16zN48GDWr1+PSqXi3LlzmoY8cXFxbN68WePCbNCggUawzBcvq1evzqlTp3BzcxPL6+gBhVog6kEWMUnyUhcmnyV/3PRcNVuupuPlYEpgdYs3Nn1YNKeIFBdRoBQRESkzvBzMqGpmyJ7bGXrr7q1WqzDIlTHArcYbvbopkUhwcXHBxcWF0aNHIwgC//zzD1FRUURGRrJp0yYWLlyIVCrF09NTU8MyvxHPm4ogCPzyyy+MGzeOjIwMli5dypgxYzSdbEUqLvpI8U5NTeXGjRuvTf1JhULB3Llzee+993B2dtbZPPb29vTt25e+ffsiCAJnz57VdAYfO3YsKpWKJk2aaFLBAwICCv13lUokdK1ANbSeRZDAnrmTyH18VyM21qtXD3t7e83/n33Y29tjbW39QhevIAicOXOGsLAwtm7dyq5du/D19cXV1ZVdu3aRlZXFokWLtN7z/fff4+/vj5ubG8OHD6d+/fqcuHibC7EnSX/0kAnbI4u0X6aWVvScEsKOGaNZMbA97m/3xMKuMmmJ97h89C/quLegx5cLuPz3AeL27MC1fTcSryaQeDVBM4axuQUubd8BwLvnIH6bO4nNk4bRqGUbHl65yJXow1jYVtKaN2DIGC5F/cmGTwbSvHt/aji5kyvLJvFaAhcO7ubzPWeoU7NqgWJdt27d2LRpEzY2Njg7OxMdHc3Bgwc1KfMViXr16nH06FGmTJnCxIkTOXz4MGFhYdjb2+s7tFKjW7dudOvWDYBdu3bx3XffceLECWbPns3XX39Nw4YNGTJkCJ9++qnGVZybm8vly5e1RMtFixZpXLKVK1dGJpPRsGFDtm7dqqnTamgo3oLrmruZCs39BpSdMSJ/ntgkOVfTc+n2hropy5s5JX/+N8mcUlGRCGL7KRERkTLm2RXNsjgJ5c9zfGsonRpUZsyokWUwa8VFEASuXbumESyjoqK4d+8eEokEDw8PjWAZEBDwWt2gvIw7d+4wduxYdu/ezbvvvsvKlSupVauWvsMSKSUOHz5Mu3btuHbtGg0aNCiTOSMiIujQoQMJCQmvRaf3sLAwPvjgA86dO4ebm5teYkhPT+fgwYOadPD79+9jZmZG27ZtNe7Kwvx9D97LJDZJXqFclBLAy8GU9jV1V6ZDLpfz+++/ExYWxv79+zUOwW3btvHee+9piZxxcXFMnjyZkydPkpWVhamlNXU8fGj+bn9N05rY339i56zxjNn8FzWd/9+FfiPmGD+O6MnwNb9R36uV1vORYcu4ez4WpSIXawdH6jVriW+/j6jh7K4ZryBsq9Xiiz/ymlKp1WoOrPyWmN+2kiuXUbeZDz2+XMDaUUHU9/LjvdkrNe/Lyc4k8n9LOX/wd9IS72NqYUXlOvVxadcN//eH41PdmnY1LJBIJMycOZNZs2YBkJaWxqeffsru3buRy+W0atWKZcuW0alTJ9q0acP69etL5W9S1uzevZthw4ZhYWHBtm3b8PPz03dIOkOtVvPrr7+ydOlSTp48iUKhQCKR0KhRI4KDg/nkk0+eW/wQBIE7d+4QHx/PiRMnmD9/PpUqVdLUtTQ1NaVp06ZatS3d3NzE8jqlSEySTBTFyhH/FYv18ffI79b9porFFQ1RoBQREdEbz9aE0cXJKH/c/JowDStZsmTJEkaPHq2D2V5fBEHg5s2bGrEyKiqK27dvI5FIcHNz09SwDAgIoHLloqXulXdUKhUrVqxg+vTp2NjYsGLFCnr16vVapLeJ/D979+6la9eu3Lt3jxo1apTJnCEhIcyePZv09PQK78JVKpU0adIEd3d3wsPD9R0OkHfeunjxIvv27WPfvn0cPXoUhUJBw4YNNWJlQEAAarX6uVTolLSnJDUOQDCxQFIB6oPm34B95GRXZimF9+/fZ+PGjYSFhXH16lWqV69O8+bNMTMz4/z581y6dAnIc5H5+vriFzQYmrYtk9jKknfrWOFsb6LvMMqUu3fv8v7773PixAnmzJnD5MmTX5s6ui9CrVazc+dOli5dyunTp1EqlUgkEho3bswHH3zAuHHjnhMro6KiaNOmDefOnaNmzZqcPXuWuLg4jeMyISFBM85bb731XBdxR0dHPe1txUQQBI4/kpXLtOLW1czxq2r2xl476tOc4u1gSsAbnG5f0RAFShEREb2iFgRuPFUQmyTjZgFd9YpL/jj1rIxo7mBGfWsjpBIJJiYmokBZSty6dUsjVkZFRXHjxg0AXFxctATLqlWr6jnS4hMXF8fw4cM5c+YMo0ePZs6cORW2i6nIywkPD6dPnz4kJyeXmSu4f//+3L9/n7///rtM5tMlGzduZOjQocTFxZV5PVZBEMjKynpOZNSIjf/WYsyvp3j//n1SUlJQKpUvHdfJry2DV2xDIqkYwsvARjZl5g5JS0vj5MmTREdHEx0dzfHjx8nMzNS8Xr16dbp168aYMWNwc3NDIpGQLFfy46WK0SCmKIxwssPetGIvMBQHpVLJV199xbx58+jcuTMbN27EwcFB32GVCWq1mp9++okVK1YQGxurERmdnJwYPnw4o0ePxtjYmEWLFjFr1qwXLkLl5ORw8eJFjWCZ/8jIyADA0dHxuS7iDRs2fO3F4OJyLDG7XIqT+bSuZk4rR3N9h6FX9GFOEV2TFQtRoBQRESk3pOaoiH8iJz5ZTo4q79QklYC6EGep/25nYiDBo5IpHpVNsTPRviAUBUrdcffuXS3B8urVqwA0adJE03QnMDCQatWq6TnSV5OVlcXMmTNZsmQJLi4urFmzhpYtW+o7LBEdsmXLFgYNGkR2dnaZNTNo1KgR77zzDsuWLSuT+XSFSqXCyckJJycndu3aVawxBEEgOzv7lSLjix4KRcGdty0tLQusuWhra4tSqeT+/ftcuXKFS5cuoVQqqVmzJh07duTdd9+lQ4cOXJYZcPBeVkkOT5mgyxRCtVrNP//8oxEjo6OjSUhIQBAE7O3t8fX11TycnZ05cOAAYWFhREZGYmVlRb9+/fjggw/w8fFh2YVUze/764CJgYRP3OzfWFcU5HXCHjx4MEZGRmzdupXAwOJ3a6+IqNVqNm3axMqVK4mLi0OlUiGVSnFxccHAwABLS8siLUKp1Wpu3rypJVjGxcVx//59ACwsLLRSxJs1a4arq+sb34Qn5rGMg/ff7HN1RaGszSkiFQtRoBQRESl3CIJAao6axGwliTIlD7IUJMqUKNXPb2soBUczQ6pbGOFoZoijuSF2JtIX3iyYmJjw3XffMWbMGB3vhciDBw80YmVkZCT//PMPkCfK/FewrFmzpp4j1Wbv3r2MHj2aR48eMXPmTD777DOMjMTV19edtWvXMnz4cM3Npa5JT0/H1taWDRs2MGTIEJ3Pp0u2bt3KwIEDOXXqFC4uLsUWGfO74T6LhYVFgSLjy5q+2NnZYWtrW+jvblZWFpGRkZp08Bs3bmBsbEzr1q15++MvUNdvVpqHrFQ5vnEFNXOSCAoKIjAwsMQNOJ4+fcqpU6c0zsiTJ0+SmpqKRCLB1dVVS5B86623Xvh7e+PGDTZs2MD69eu5c+cOjRs3Zti8VUjquiFQ8W8aJUCLKma0rWGh71D0zoMHDxg0aBBRUVHMnDmTadOmVfiyFcVBrVYTFhbG6tWriY+P13Rsd3d3Z+TIkQwfPrzY38+kpCTOnj2rJVpevnwZtVqNVCqlSZMmz3URf91K7ryIu5mKCtXYrCzd7uWdsjCniFQsRIFSRESkQiAIAmoBlIKASg0GUjCUSJBKKJJzwdTUlMWLF4sCpR5ITEzkyJEjmjqWCQl53VUbNGigESsDAwOpU6eO3uKbMGECO3bsoGPHjqxevbrMmqWI6J+VK1cyadIk5HJ5mcwXGRlJ27ZtuXDhAi4uLmUyZ2GRyWSFFhlTUlKIjY1FIpEgCMILRUZzc/NCC4zPiozGxsZlfATg6tWrms7ghw8fxnfgaN4eM6XM43gVdRVPOL39R8LDw7l9+zaVKlWiR48eBAUF0b59e0xMXl4bURAErly5ouWOvHDhAoIgYGtrS8uWLfHz88PX15cWLVpgbW1d5BjVarWm6/OhEzGM//locXe33DHS2U68Gf4XlUrFt99+y+zZs2nbti2bN2+uEBkTuuLBgwfUqFGDOnXqcPfuXY2Q6O7uzqhRo/jggw9KvJggk8m4cOGClmh59uxZsrPz0pxr1KjxnGhZr1691ypFXKEWWHspVW8NWIqKPuoFVwR0aU4RqViIAqWIiMgbhShQlh+SkpK0BMvz588DULduXY1Y2aZNG+rWravTiw61Ws3atWv54osvMDIyYsmSJQwYMEC80HnDCAkJYc6cOaSllU2NvMWLFzNjxgwyMjJ04jSSy+XFcjGmpKSQk5NT4JhmZmbPiYjp6elERUXx0Ucf0bRp0xeKjK8SysozMpmMI0eOEHUzCasWnVCrVRgYlExYKAkFdYYVBIHY2FjCw8MJDw/n6tWrWFtb0717d4KCgujcuTNmZmZkZmZquSNPnDhBSkoKEokEZ2dnLXdk48aNS13IOHfuHBsTkrBv6IJUj8ewpEiAulZG9Gso1iR+lsOHDzNw4EBUKhWbN2+mY8eO+g5JL/zxxx9069aNGzduUKtWLdasWUNoaCgXLlxArVZjYGCAh4cHY8aMYejQoaX2XVOpVFy/fl1LtIyPjycxMREAKysr3N3dtURLFxeXCnuOPngvk9gkeYUQJ/ORAF4OprSvKXZufxmlZU4RqViIAqWIiMgbhShQll+ePHnC33//rUkLP3v2LIIgUKtWLS3BskGDBqV2YZKQkMCIESM4duwYH3zwAQsXLqRSpUqlMrZIxeLrr79m9erVPHz4sEzmGzBgALdu3eL48eMv3CYnJ6fYIuOLnKCmpqZFTpXOfzx7A6tWq3F3d6d69ers37+/VI9PeeVupoJfr6WSrZaAHm6Q8t033V5S+F8QBC5cuMDOnTvZtm0bV65cwdDQEAsLC54+fYogCNjY2ODj46NxR/r4+Oi0Adjt27eZM2cOYWFhNO/ci55fr9LZXGVFn/rWNLQpe3dvReDx48cMHjyYv/76i6lTpzJr1qwSuwUrGrNmzeL777/n8ePHWtcsubm5rF69mrVr13Lx4kUEQcDAwABPT0/Gjx/PgAEDdOJwTExMfK6L+JUrVxAEAUNDQ5ycnLRES3d39zJrGFdcKlpq97OIqd4iIs8jCpQiIiJvFKampixatIixY8fqOxSRV5CamqolWMbFxaFWq6levbpGrAwMDHxpDbQXIZfLmTNnDgsWLKBevXqEhobSpk0b3eyISIVg6tSpbNu2TdONvrTIzc0tUET89NNPqVu3Ln5+fi8UGWUyWYFjmpiYFFtkNDU1LbV9++WXXwgKCuLYsWP4+fmV2rjlHYVaIOpBFjFJcp11IX2W/Hm8HUwJqG5RYGpgVlYWp0+f1krXfvLkCQAODg6o1WqSk5MxNjbm7bffpk+fPrz77rvY2dnpLO47d+4wd+5c1q1bh42NDZ9//jmjPv6YLbdzSa8gKZnPIgFsjKWMcLYTGzC8BLVazcKFC5k+fTq+vr789NNP5a7mtC555513gLy61i8iNzeXlStXsnbtWi5fvqwRC728vBg/fjz9+vXTaTp2VlYW586d02rIc+7cOc0CV506dbS6iHt4eFCnTp1y4V5TCwJrElLF84iIyGuGKFCKiIi8UZiZmRESEiIKlBWQ9PR0jh49qmm6c+bMGVQqFY6Ojlo1LJ2cnF568Xz48GFGjhzJrVu3mDJlClOmTClV0UakYjJx4kT279+vqY36XxQKRZGdjPmv5dcCKwhra2uqV69eZJGxPHRrFQSBZs2aUblyZQ4ePKjvcPTC3UwFf9zOIC1XrTOhMn9cW2MpXf/jmhQEgRs3bmiJkefOnUOlUmFlZYWPjw++vr74+fnh4+OjESFv3brFL7/8Qnh4OMePH8fQ0JB27doRFBREz549qVKlSqnEfe/ePebOncvatWuxtrZm8uTJjBkzBkvLvJTGiu58GtTIhpqi86lQHDt2jP79+yOTydiwYQNdu3bVd0g6RxAEqlSpwpgxY5g1a1ah3iOXy1m+fDlhYWH8888/CIKAkZER3t7eTJw4kd69e5dJ7UilUsmVK1ee6yKev9hha2urJVg2a9YMJyenMm8meDU9h/AbGWU6py4QndgiItqIAqWIiMgbhShQvj5kZGRw7NgxTQ3LmJgYlEolDg4OWoKli4sLUqmU5ORkJk2axPr16/H39yc0NBRnZ2d974ZIGaFQKEhLS3uhwPjzzz9z//59Wrdu/dzrWVlZBY5pZGRU5KYvdnZ2XLx4kU6dOnH27FmaNm1axkeidPj999/p0aMHUVFRBAQE6DscvaEWBG48VRCbJONmhqLUhMr8cepZGdHcwQxHQwVnYmO1BMnHjx8D0LhxY63akc7OzoWqa/rgwQN+/fVXwsPDiYqKAiAgIICgoCB69epFjRo1ihz3/fv3mTdvHj/++COWlpZMmjSJsWPHYmVl9dy2Yu24N4fk5GSGDRvGnj17mDRpEnPmzNFL86uy4ubNm9SvX589e/YUS5DNzs5m2bJlhIWFce3aNQRBwNjYGB8fHyZOnEiPHj3KtNGNIAg8ePDgOdHy+vXrABgbG+Pi4qIlWjZt2lSnZSO2XUvndoaiQp0/nkWsZSsi8jyiQCmidwRBQPVvAVy1NhxVxwAAIABJREFUGqT/FsA1EAvgiugAUaB8fcnMzCQ6OlojWJ46dQqFQoG9vT316tXj8uXLSKVSQkJCGD58+GvVxfJNQalUvlRkfJmTMTMzs8AxDQ0NsbOzIycnB0EQ8Pf3L7ST0dzcvFi/U0uXLmXKlClkZGRUyLpsgiDg7e2NpaUlkZGR+g6n3JCaoyL+iZz4ZDk5qrzLa6kE1K+40hYEAYkg5F0AASZSCfWMcki/eJKYI4eIjo7m7NmzKJVKLC0tadGihZY7sjTq5iYlJbFr1y7Cw8OJiIhAoVDg6+tLUFAQQUFB1K1b96Xvf/DgAfPnz2fNmjWYm5szadIkxo0bV6AwmY/YfffNQhAEli5dyhdffIGnpyfbtm175eeqorJ9+3b69+/Po0ePSuxKzszM5LvvvmPTpk1cu3YNyBMEfX19mTRpEt26dSuNkIvF06dPNSni+bUtL1y4QG5uLgD169fXEi09PDyoUaNGie/vUnNUhCaklsYulAtGOtthZ1L6zfJERCoiokApUqYIgkBKjorEbCWJ2UoeZitJlClRqp/f1lAKjmaGVDM3xPHfh72JgShaipQIMzMzFi5cyLhx4/QdioiOyc7OJjw8nJkzZ3Lz5k2kUilqtRo7Oztat26tqWPp7u6uky7KIgWjUqmKLTJmZBSczmVgYFCseox2dnZYWFggkUjo168fycnJZZKuPHjwYK5evcqJEyd0Ppcu2Lt3L127diUiIoJ27drpO5xyhyAIpOao8651ZEoeZCleeK0jKBUkXb/E5ZN/8+DyOZ7eu8HjW9fI+ldQb9SokZY70tXVVefnq7S0NHbv3k14eDh//vknOTk5eHp6asTKxo0ba7Z9+PAhCxYsIDQ0FFNTUz777DPGjx+PtbV1oeaqaKneYlOLknPq1Cn69etHWloa69ato1evXvoOqdSZNGkS4eHh3Lx5s1THffr0qUaszK+XbGJiQqtWrZg0aRJdunQp1fmKg0Kh4PLly1qiZXx8PKmpeYJipUqVtARLDw8PGjduXKTFukP3szj9WFYhFjZehQRoUcWMtjUs9B2KiEi5QBQoRcqE1BwVcU/knP2vqwAo4Fr9Of67nYmBBPdKpjSrbCquNIkUC3NzcxYsWCAKlK85CoWCRYsW8fXXX1O1alVWr15NmzZtOHnypKbpTnR0NHK5HBsbG/z9/TWCZbNmzSqkq60sUalUpKenF7keY2pqKk+fPi1wTAMDA2xtbYuUKp3/sLS0LPHiVY8ePVCr1ezevbtE4xQGZ2dn2rZty/fff6/zuUobQRDw9fXF0NCQv//+W1w0LCSCIKAWQKFWc+fefWJOneRk9HGijx0jPj4ehUKBsbExtra2PH36FLlcjq2tLZ06daJz58507twZR0fHMo87MzOTvXv3Eh4ezh9//EFWVhYuLi506tSJx48f8/PPP2Nqasqnn37KhAkTipXSGZMk4+C9gssolCc61LTAy0H/9V9fB9LS0vjwww/55ZdfGDduHCEhIZiYmOg7rFIjICAAR0dHduzYobM50tLSCAkJYevWrdy6dQvIawTZunVrJk+eTMeOHXU2d1ERBIG7d+9qCZbx8fFacbu6umqJlk2bNtXUrH12rKXnUzT3k0Ul9vef2DlrPJ/vicWueu2S7FapYWIg4RM3e/H3VEQEUaAU0SFqQeD601xik+Tc0kFdprpWRjR3MKWBtbHY/Uyk0IgC5etPdHQ0I0aM4NKlS0ycOJFZs2ZhYfH8ynROTg6nTp3SNN05fvw4MpkMKysrWrVqpekS3rx58zIv/l4WqNVqLZGxsC7GfJGxoMsHqVRabJHRyspKrxfnb7/9NjY2Nvz88886nSczMxNra2t+/PFHPvzwQ53OpQsOHDhAp06d2L9/P2+//ba+wyn3yOVyzpw5o1U78sGDBwA0aNBAyx3p5uaGoaEhKpWK06dPs2/fPvbt20dMTAyCIODh4UGXLl3o0qULLVu2LPPzkkwmY8eOHSxYsIBLly4BYG9vz+DBgxk4cCBeXl7F/g4fS8zm74cvbiilb1pXM6eVo7m+w3itEASB1atXM3HiRFxdXdm+fTsNGzbUd1glRqlUYmNjw+zZs5k0aVKZzJmSksKCBQvYtm0bd+7cAfIyhgICAvjyyy9p06ZNmcRRVFJTUzl79qyWaHnx4kWUSiUSiYRGjRo910Xc2M6BHy+lFXvO8ihQAoxwssPeVDTfiIiIAqWITtBnZ0sRkZchCpSvL+np6UydOpXVq1fTvHlzfvzxRzw8PAr9/tzcXGJiYjSC5bFjx8jKysLCwoJWrVppmu54e3uXm+L+arWap0+fFktkTE9PL1BklEgkJRIZK2ptz9atW1OvXj02btyo03mOHTuGv78/cXFxRfp8lgfya3SqVCqio6NFt0cB3Lt3j+PHj2vEyLi4OHJzczEzM8Pb21tLkCxsbbqkpCQOHDjAvn372L9/P0+ePMHGxoYOHTrQpUsXOnXqRM2aNXW6X0lJSSxcuJBVq1ZhYGDAuHHjcHd358CBA/z2228kJydTu3ZtevfuTVBQEH5+fkU6FwiCwPFHsnIpUgZUM8e3qpn4edcRcXFx9O3bl0ePHrFmzRr69++v75BKxPnz52natCmRkZEEBgaW+fxPnjxhwYIFbN++nbt37wJ5175t2rRhypQp+Pv7l3lMRSEnJ4eEhAQt0TI+Pl6TfdHz48/wGf5lscdXq1SolAoMjU3K1Xf63TpWONu/Pi5iEZHiIgqUIqWKQi0Q9SCLmCS5zoTJZ8mfx8vBlMDqFmLhcpGXYm5uzvz58xk/fry+QxEpJQRB0KSJZWRk8O233zJ27NgS12lTKBScOXNG03Tn6NGjZGRkYGZmhp+fn0aw9PHxKVFqmiAIJRIZ1erni2VIJBJsbGyKXI/Rzs4Oa2vrCisylgRvb288PT0JDQ3V6TzLly9n8uTJZGZmVjhnbkREBB06dOCPP/7gnXfe0Xc4eicnJ4e4uDgtd+S9e/cAqFu3Ln5+fhoxsmnTpqXy91ar1cTGxvLnn3+yb98+Tp48iVqtxs3Njc6dO9OlSxdatWpVaosoT548ISQkhJUrVyKVSpkwYQKffvop9vb2mm2USiVHjhwhPDycX3/9lYcPH+Lo6EivXr0ICgoiMDCwUGUzBEFg9d4jpFdzQlALSPVYGzj/2lJM6y4bMjIyGDlyJD/99BMjRoxg6dKlmJlVzOO+bt06hg8fTnp6eoEpymXJ48ePmTdvHj///DP3798HwMLCgrZt2zJ16lR8fX31Gl9hUavV3Lp1i/j4eB7b1eOpba1ClQmrKEgl4OVgRjuxDqWIiChQipQedzMV7LmdobdujPndFbuJbkqRl2BhYcG8efNEgfI14e7du4wZM4bdu3fz7rvvsnLlSmrVqqWTuZRKJXFxcZoaln///Tfp6emYmpri4+ODr68v7u7u1K1bl+zs7EIJjKmpqaSlpRUoMgLY2toW2cVoZ2eHjY3NGykylgRXV1fat2/PsmXLdDrP0KFDSUhI4PTp0zqdRxcEBgaSlZXF6dOny5XzpKx48OAB0dHRGofkmTNnyMnJwdTUFC8vLy13ZFnVi0xJSeGvv/5i3759/Pnnnzx69AhLS0vat29Ply5d6Ny5M3Xq1CnyuMnJySxatIgVK1YAMH78eD777LNXdgxXq9VER0cTHh5OeHg4d+7coVKlSvTo0YOgoCA6dOhQoHialJTEqFGj+OWXXxj55UzcBowlU1k2C93PIl5P6gdBEFi3bh1jx46lUaNGbN++HScnJ32HVWRGjRrF0aNHuXDhgr5D0SIxMZG5c+eyc+dOHj58CIClpSUdOnRg6tSpeHt76znCwrH5Shr3spTFfv+zKd4LunpStUET2gSP54/vviLxagJWDo50GDkZz279tN4ry0gnIjSEi4f3kvHkERZ2lWjg3Zqun36Nhd3Lz42voqaFIYPesi3RGCIirwOiQClSKuQXOC8r1+SLEFe8RV6FKFC+HqhUKlasWMH06dOxsbFhxYoV9OrVq0SiiSAIZGZmFtrFmJKSwqNHj0hJSSE7O7vAdGkAGxubYouMYnfxsqNBgwa89957zJ8/X6fzuLm50apVK3744QedzlPaREVF0aZNG3bt2sW7776r73B0Tm5uLvHx8VruyPzabrVr18bX11fjkHR3dy8XZR/UajVnz57ViJXHjx9HpVLh5OSkESsDAgJe6vhOSUlh8eLFLF++HEEQGDt2LJMmTaJy5cpFjkcQBGJjYzVi5dWrV7G2tqZ79+706dOHTp06YWZmxp49e/joo49QKpWEhoYSFBSk14wcbwdTAsSMHL1x4cIF+vbty+3bt1m1ahVDhw7Vd0hFwtPTEw8PD9atW6fvUF7IvXv3mDt3Lr/++iuJiYkAWFlZ0bFjR6ZNm4anp6eeIywYQRBYfC4ZZQnskwUJlEYmJsgy0vHqMRBrB0didm3l4T/nmbDjCFUbNAEgJzuT1cPeIenmFZq/O4AaTk3JSkvmUtR+ek1fTPXGbiXaN0MpfNa00hu5+Cci8l9EgVKkRJTnmkGtq5njJ9YMEnkGUaCs+MTFxTFixAhiY2MZPXo0c+bM0XSOFQSBrKysIqdK5zsZlcqCV+Wtra1fKTDa2NiQlpbGtWvXuHDhAqdPnyY1NRUjIyO8vb01TXf8/Pz0nvYl8jw1atRgxIgRzJw5U2dzZGdnY2VlxQ8//MDw4cN1No8uaN++PcnJycTFxb2Wv6uJiYkaIfL48ePExsYil8sxMTGhefPmWu7I6tWr6zvcQpGWlkZERIRGsLx//z7m5ua0bdtW02ynfv36QF6ziu+++45ly5ahUqkYM2YMkydPxsHBoVRiEQSBCxcuaMTKCxcuYGFhQZUqVbh58yadO3cmLCzsOedpWdQ0VymVGBgaIk95TBPFI4La+1e48guvG1lZWYwbN46wsDCGDh3K999/X2Czu/KGTCbD2tqaFStWMGrUKH2HUyju3LmjESsfP34M5C2svv3220yfPp2mTZvqOcL/R6kWWHQ2uURjFCRQpj28y4i1v1PPMy/lPTP1CQu6eODb70PemTgbgL9WL+DQj4sYtGg9Lu26ao0pCEKp/C5Odq+EgbgwIvKGIwqUIiVC7LooUtGwsLBg7ty5TJgwQd+hiLwAQRA0KdL/FRETExPZtm0bR44cwc7ODi8vL6RS6XPC44tERisrqyK7GO3s7LC1tS1U/bRnUavVJCQkaJruREVFkZSUhKGhIc2bN9cIlq1atcLa2rqkh02khNjb2/PFF1/wxRdf6GyO6Oho/Pz8iI2NLbcOlYI4evQorVu3Jjw8nN69e+s7nBKjUCg4e/asljvy1q1bANSsWVPLHenh4VGiGrPlhXyBML8z+NGjR1EqlTRo0IBKlSpx/vx5BEFgzJgxfP7554Vu4FNctm7dytixYzV1dE1MTOjUqRNBQUF0794dOzs7zbZqQeDGUwWxSTJuZihKTajMH6eGKTyJjWLzknmcORNL1apVGTRoEMHBwbi4uJTCTCLFZdOmTXz88cfUqlWLHTt24OZWMpearsk/x8fExNC8eXN9h1Nkbt68yZw5c/j9999JSkoC8krNdO7cmenTp+v9+yBXqVl6LqVEYxQkUBqbmTNx51Gt7Zb1a0OlmnUZtHg9AEvfa43UwIDx2yJLNP/LmNjUHhMDsTyPyJtN0e+4RET+JeZx+XRO/pe/H2ZjYiAR071FNLyOzp/yiCAIyGSyYjkZU1NTUSgULxzbxsaGGjVqkJOTg52dHc7Ozq/sOG1ra1vmjhipVIqrqyuurq6MGTMGQRC4fPmyRrDcsGEDCxYsQCqV0rx5c03THX9/f2xtxTpEZY1cLtd5U4bY2FiMjIz0fpNXVL755hvc3Nzo2bOnvkMpFo8fP9YSI0+fPo1MJsPY2BhPT0969eqlcUfquhu2vpBIJLi5ueHm5sbnn3/OvXv3mDRpEr/++ivXr18HwNTUlIsXL/LTTz/RpUsXGjVqVOq/mTk5OXz11VeEhITg5+fHxo0bkUql/PLLL4SHhzN06FAMDQ1p3749QUFB9OzZEwcHBxraGNPQxpjUHBXxT+TEJ8vJUeXJlFIJqAuhWP53OxMDCR6VTPGobIqdiQE4BTFxUBBnz54lLCyMDRs2sHjxYry9vQkODub9998Xz8t6YPDgwXh7e9OvXz9atGjB8uXL+eijj8rttdzp06cxMTEp90Lqi6hXrx5r164F4Pr163z77bfs3r2bbdu2sW3bNuzs7HjnnXeYMWMGjRs3LvP4XlCuu8TYOtZ47jkzaxtkGWma/yffu4Vru266CeBfVGpArOwj8oYjOihFisXdTAVbrqbrO4xCM7CRjVjoXATIKwg+Z84c0UFZSAojMr7otdzc3ALHtLCwKLSLUa1Ws2rVKvbu3UuHDh344YcfaNCgQRkfBd0gCAJXr17VuCujoqK4f/8+UqkUDw8PjWDZunVrrY65IqWPIAhIpVJCQ0MZMWKEzub54IMPOHv2LLGxsTqbo7Q5ceIEvr6+7Nixg/fee0/f4bwSpVLJuXPntATJGzduAFC9enWNEOnn50ezZs0wNTXVc8Rly9OnT1m2bBnfffcdcrmcUaNG8fnnn5OamqrpDH7kyBFyc3OpX7++pjN427ZtS5xie+7cOQYPHsylS5f45ptvmDRp0nN1dh88eMCvv/5KeHg4UVFRAAQEBBAUFESvXr2oUSNPSBAEgdQcNYnZShJlSh5kKUiUKQusTZcry8ZMkUXzhrVxNDPE0dwQOxPpS0Wu3Nxc9uzZQ1hYGPv27cPQ0JBevXoRHBxM+/btxfrAZYxMJmPixImEhobSv39/QkNDy2XmwaBBg7h27RonTpzQdyilyj///MOcOXP4448/SEnJczDa29vTvXt3pk2bRqNGjcokDl05KKs2aMKw5Vu1tlszvAcAI37cBcAM31q4tutGvzmrSzT/yxAdlCIiokApUgwUaoG1l1L11q27qOR3Y/zIyU4seC7yRgqUcrm82E7GnJycAsc0NzcvUpp0/uu2traFaiahVqtZu3YtX3zxBYaGhixZsoSBAweWW9dEaSAIAjdu3NAIlpGRkdy9exeJRELTpk0JDAykTZs2BAQEvLKTrkjRyHdPbty4kcGDB+tsHnd3d3x8fFizZo3O5ihtunbtyq1btzh//ny57Az/5MkTLTHy1KlTZGdnY2RkRLNmzbRqR9aqVeu1Poe8jIyMDJYvX87ixYvJzs5m5MiRfPnll1SrVu25bbOysjh8+LAmHfzmzZsYGxsTEBCgabbj5ORU6GOpUqlYtGgRM2bMoEmTJmzevLlQde2SkpL47bffCA8PJyIiAqVSia+vL0FBQQQFBVG3bl2t7QVBQC2AUhBQqcFACj26d2P/vn0EBgYSGRlZqHif5eHDh2zevJmwsDAuXbpErVq1GDp0KMOGDXttFswqCtu3b2f48OFUrVqV7du3l7tSGW+99RadO3dm+fLl+g5FZ1y8eJE5c+awb98+0tLyHIaVK1eme/fuzJgxg3r16ulsbl3VoCyMQFkWKd5iDUoREVGgFCkGB+9lEpskrxDiZD4SwMvBlPY1xcYUbzqWlpZ8++23fPLJJ/oOpUjk5OQU28kol8sLHNPMzKxIImP+a7a2tjqtyZaQkMDIkSM5evQowcHBhISEvJGCnCAI3Lp1S+OujIyM1NTJc3V11RIsdV0v7nUnLS0NOzs7fv75Z/r06aOTOWQyGVZWVqxcubLCNE+IiYnB29ubrVu38v777+s7HJRKJRcuXNASJK9duwaAo6OjlhjZvHlznafsVwQyMjJYuXIlixYtIjMzkxEjRvDll19qnIivIt/pnd9oJzIyErlcTu3atTXuyvbt22NlZVXg+2/cuMGQIUM4fvw4n3/+ObNnzy7W70dqaiq7d+8mPDyc/fv3k5OTg6enp0asfFG66fbt2+nfvz9VqlTh0aNHRZ73vwiCwKlTpwgLC+Onn37i6dOnBAQEEBwcTJ8+fcTmZ2XE9evX6devH+fPn2fx4sWMGTOmXCw8pKamYm9vr/OFrvLEuXPnmDt3Ln/++Sfp6XmZdVWqVKFHjx5Mnz6d2rVrl+p8uuriXRiBUtdNcsQu3iIieYgCpUiRqGip3c8ipnqLWFlZ8c033+hFoMzNzS22yCiTyQoc09TUtMguxvx/l7fGD3K5nDlz5rBgwQLq1q1LaGgobdu21XdY5Yo7d+5oNd3Jrx3n5OSkaboTGBj4XCdckZfz8OFDqlevzu7du+nWTTc1pk6dOoWPjw+nTp3C29tbJ3OUNj169ODy5cskJCToJaU1OTmZEydOaLkjMzMzMTQ0xMPDQ0uQrFOnjnhj9x8yMzP5/vvvCQkJISMjg48++ogpU6aUuMamTCYjKipK4668evUqhoaG+Pv7a9yV+fX31q5dy8SJE6lSpQobN27E39+/NHaNjIwM9u7dS3h4OHv37iUrKwsXFxeNWOnm5qb5LOTm5mJiYoKxsfELMwKKg0wm49dffyUsLIyIiAjMzc3p27cvwcHB+Pv7i59FHZOTk8Pnn3/O8uXL6d27N//73//0XiP0r7/+4u233+by5ct6qc+ob+Lj4/n222/566+/ePr0KQBVq1alV69eTJs2rdTq+26+ksa9rIKbIRaG4gqUOdmZrBrSmSe3r9H83QHUcHJH9jSVhKj99JoWQrW3XIu/U0BNC0MGvSXWuRUREQVKkUKjFgTWJKSSXkFSu59FAtgYSxnhbIdUvHB8YympQKlQKIotMmZnF9xUysTEpFgCo52d3WtTP+3w4cOMHDmSW7du8eWXXzJ16tTXZt90yf3797UEyytXrgB5aWb/FSwL65Z6U7lx4wYNGjTg4MGDtG/fXidzrF69mvHjx5ORkVEhPttxcXF4enqWmRtIpVKRkJBAdHQ0x48fJzo6WvN5rlKlipYY6eXlhbm5uc5jqohkZWWxatUqFi5cSHp6Oh9++CFTp06lVq1aOpnv+vXr/Pnnn/z5558cOnSI7OxsqlWrhqGhIXfv3mXIkCGsXLnyhQ7LkiKTydi/fz/h4eHs3r2b9PR0GjZsqBErvby8NKUJdHXLc/v2bTZu3Mj69eu5ceMGDRs2ZNiwYQwZMkRnx10kj99++43g4GBsbW3Ztm0bPj4+eotl7ty5LFy4kJSUlHJZDqMsiYmJYe7cuRw8eJCMjAwAqlWrRlBQEFOmTKF69erFHjvi30y+4pooiytQAmSnp3LwhwVcPLyXrNRkLO0r06BFa96Z+DUWtsWvFS6VgJeDGe1qlKzOr4jI64AoUIoUmqvpOYTfyNB3GCWmT31rGtq8ugaeyOuJlZUVs2bNYvDgwUWux5iamkpWVlaB4xobGxcpTfq/jzc5DTE5OZlJkyaxfv16/P39CQ0NxdnZWd9hVVgePnyoSQmPiori0qVLADRs2FAjVgYGBpZ62lVFJyEhARcXF44ePUqrVq10MsdHH31ETEwM8fHxOhm/tAkKyutofPnyZQwNDUt9/NTUVC135MmTJ8nIyMDAwAB3d3ctQbJevXqiI+0VZGdns3r1ao1A8sEHHzB16lTq1KlTZjHI5XLmzp1LSEgICoUClUqFgYEBfn5+mnRwd3d3nYk3ubm5REREEB4ezm+//UZycjJ16tTh9u3bQJ4IrkvhSK1W8/fffxMWFsbPP/+MTCajY8eOBAcH07NnzwqxMFERuX37Nv379ycmJob58+czceJEvQiEPXv2JDMzk4MHD5b53OWZ6Oho5s+fT0REhOYaunr16vTp04dp06YVuUTNxRQ5u29n6iJUvfJuHSuc7V+c2SQIAqp/a+yq1SCVgqFEgoEE8fdR5LVCFChFCs22a+nczlBUSPdkPhKgrpUR/Rra6DsUkRKiVCpfKjC+SGS8e/fuC8c0MjIqlosxX2QULxAKjyAIbNmyhYkTJ6JUKlm4cCEffvjhG+86KG0ePXrEkSNHNILlhQsXAKhXr55GrGzTps1zzSbeNGJjY/Hy8iI2NlZnTReaNWuGp6cn//vf/3Qyfmly7tw53N3dWbduHcHBwSUeT61Wc+nSJS135OXLl4G85gr/FSO9vb1L3C36TUImk/HDDz+wYMECkpOTGTZsGNOmTSvz73R6ejrjxo1j06ZN9O7dmx9++IHs7GxNZ/CIiAgyMzOpWrUqnTt3pnPnzrz99tvY2xffdfQylEolR44cITw8nFWrVgF5Dq5evXoRFBREQECAToT3fDIyMtixYwdhYWEcO3YMW1tb3n//fYKDg/Hy8hKvF0oZhULBtGnTCAkJoWvXrmzYsKHMa1fXqFGDoUOHMnfu3DKdtyJx9OhR5s+fT2RkpEasrFmzJn379mXKlClUrlz5lWMky5X8eClN16GWOSOc7LA3zSulIggCKTkqErOVJGYreZitJFGmLLD2pqEUHM0MqWZuiOO/D3sTA/EcI1JhEQVKkUKRmqMiNCFV32GUGiOd7bAzKft6WiLaKJVK0tLSiuVkzE8ZeRZDQ8OXiowhISH06tWL/v37P/eaubm5+INeBly/fp2PP/6Yv/76i379+rF06VKxZmIZ8eTJE41gGRkZyblz5wCoXbu2RqwMDAykfv36b9R34ejRo7Ru3ZqEhAScnJxKffycnBwsLS1ZtmwZo0ePLvXxS5u+ffty+vRprly5gpFR0es2p6WlcfLkSS13ZHp6OlKpFDc3N/z8/DSCZIMGDd6oz1ppIZPJCA0NZcGCBSQlJTF06FCmT5+u0w66L+LQoUMMGzaM9PR0VqxYweDBg5/7m+bm5nLs2DGNYJnfFd7Hx0fjrmzevLlOFqmMjY1RKBSMHz/+/9g787ia8v+PP2+Lok0Rskz2iGgRokKWyjKDxi409rFl7AyVXYZhMAYzrnUMM9eSpZItUYnS2HeyprTv2z2/P/y632kwtLnFeT4e/dG5534+73O7nXM+r/MHxEIeAAAgAElEQVR+v18cPHiQx48fU6VKFXr37o2LiwudO3emQoXSq6y5c+cO27ZtY8eOHTx79oxmzZrh5ubG0KFDqV69eqnN+zly7Ngxhg0bRsWKFdmzZ0+J9T19H8+ePaN27drs37+fPn36fJQ5yztnzpxhxYoVBAYGKvqs16lTh4EDBzJ79ux3PrwQBIE1V+PJyvt0JAwNVQnuZgYkZsu5/CqTv+MyFcenAh9Uzv7P/TRUJbSsoolFVU1xvStS7hAFSpEP4tSzNC7GZJTr7Ml8JEDrahXpJPb5KBHy8vL+U2T8r16N+U20/42qqmqRshj19fXR0tL6z8Wurq4uXl5eTJ06tbQ+EpF3kJOTww8//MDChQupXr06GzduxNnZWdlhfdbEx8cTFBSkECwjIyMRBIFatWoVECwbNWr0SYtIJ06coGvXrjx48KBUBJ58N+zQ0FCl9kj7EK5fv46ZmRmbNm1i9OjR791fLpdz+/ZthRgZHBzMzZs3EQQBAwODN7IjS6sX4edCZmYmmzdvZvny5cTExDBs2DDmzZtHgwYNPnosGRkZzJkzh7Vr19KpUye2bdv2we0jnj59quhdmW+qUbVqVRwdHXF2dqZbt24YGhqWSJw1atTg5cuXSKVShg8fTnh4ODKZDJlMxt27d9HT06NXr164uLjg6OhYam1X8vLyCAgIQCqVcvDgQeRyOd27d8fNzY0ePXoU6WGAyJs8ffqUwYMHExwczKJFi5g1a1apV2ccOHCAvn378vTpU7HncxE4efIk3t7eBAUFKcRKY2NjBg8ezMyZM98wQPrU1qWN9NTJlsOjlBwkUCLHlT9OXR11rAw1aaBbQfRgECkXiAKlyHv5lJ9UfcoL7sKQl5dHUlJSkUTGpKS3u7qrqqoWSWDU19dHW1u71P42okCpHEJDQxkzZgw3btxg6tSpeHp6imWcZZDExETOnTunMN2JiIhALpdjZGRUoIdlkyZNPqnz5+HDh/nyyy958eJFqWTzbtq0iQkTJpCSklLme84OHjyYc+fOce/evbdmlSUnJxfIjgwNDSUxMRGJRELz5s2xsbFRZEh+6sL2xyQzM5Nff/2VZcuWER0djaurK99//z0NGzZUSjzh4eG4urry4MEDli9fzuTJk4ssAuXk5BAaGoqvry9+fn5cvnwZiURCq1atFM7grVu3LrKTfOfOnTl16hQODg6cPHlSsV0QBK5du4ZMJuOvv/7i+vXraGlp0b17d1xcXOjevXupCerx8fHs2bMHqVRKeHg4hoaGDB06FDc3N4ULukjRyc3NxcvLiyVLltClSxd27txZqtmqc+fOZdu2bTx//rzU5vhc8PX1ZdWqVZw/f57MzEzgdVuaoUOHMn36dHR1dT+5yj6gxITJd41buYIKPYx1qKMtPggRKduIAqXIe/lUe32kHv6FVi2a07t3b2WHUiLI5fJiiYxvOxWoqKgUWWTU0dEpkwtTXV1dPD09+e6775QdymdBUlISc+fOZePGjVhZWbF582YsLCyUHZbIB5KcnMy5c+cUPSwvXbpEXl4e1apVKyBYmpqaluv+oX/++Sf9+/cnMTERPb2S71E8duxYQkJCFCX1ZZVbt25hamrKhg0bGD9+PIIgcOfOnQLZkdevX0cQBPT19Wnbtq0iO7J169bo6uoq+xA+ObKysvjtt99YunQpL168YMiQIcyfP59GjRopJZ7c3FyWLVvGwoULadmyJTt27ChxY7MXL17g7++Pn58fx48fJyEhAQMDA7p164aTkxOOjo6FepCwbds23NzcqF69OtHR0e/c7/bt2+zfvx+ZTEZ4eDgaGho4Ojri4uJCr1690NfXL4nDe4OrV68ilUrZtWsXsbGxWFlZ4ebmxqBBg0qtR+fnwokTJxg6dCgSiYTdu3fj4OBQKvN06dIFbW1tDh48WCrjf64cOXKE1atXExwcTFZWFgANGjTA1dWVhgMm8jRD+CSyKD8G+UJlK0NNOtTUQl2l7K3RRERAFChFPoBP1S1toV1d+n/9Ndu2bVNsy8zMZO3ataioqDBjxoyPHpNcLic5OblIImNiYuI7RcbKlSsXWmDMFxnLs+jwNvT09PDw8BAFylJGEAT279/P5MmTSUpKYsmSJUycOLHIGTAiZYOUlBSCg4MVgmVYWBi5ublUrVoVe3t7RVl48+bNy9W5Y8eOHQwfPpzMzEw0NN7tollUWrVqhZmZGVKptMTHLkkGDRpEQEAAEydO5OLFi4SGhhIfH49EIsHU1LRAdmTjxo3L1d+4vJGdnc3WrVtZunSpomR1/vz5mJiYKC2m27dvM2zYMMLDw5k7dy7z588v9bLk3NxcLl68qMiuvHTpEoIgYGFhociutLGx+U/Dm+zsbDQ0NKhQoYJC5HgfDx8+VIiVISEhqKmp0blzZ1xcXOjdu3eJlZ//O85jx44hlUo5evQoqqqq9O7dm2+++YYuXbqI188iEh0dzdChQzl16hTz589nwYIFJfpZyuVyDAwMmDFjBvPmzSuxcUUKcujQIVavXk1oaCjZ2dk0tXdk2Jpdyg6r3CEBdCuo0FPMphQpo4gCpch7Ofk0lfDYzA9q0FteUJGAR/u6DOj3WqAUBIHDhw8zadIkHj9+TI0aNXjx4kWRxhYEoVgio1z+5ictkUiKLDLq6uqKi8h/IAqUpc+TJ0+YMGGComx2/fr11KlTR9lhiZQCaWlphISEKATLCxcukJ2djYGBAXZ2dgrBskWLFmV6cb1p0ybGjx9PXl5eiWd+Z2dno6Ojww8//MCkSZNKdOziIAgC9+7dU2RHnjlzRuGsraenVyA7sk2bNqWSWSryJtnZ2Wzbto0lS5bw5MkTBg4cyIIFC2jSpInSYpLL5fz888/MnDmTOnXqsGPHDqX1Uo2JieH48eP4+fnh7+/Pq1ev0NPTo2vXrgp38Lf1AJRIJEgkkrfeY72PZ8+eceDAAWQyGWfPngXA3t4eFxcX+vbtS82aNYt9XP/m5cuX7Nq1C6lUyvXr16lduzbDhg1jxIgRSsueLc/k5eWxbNkyPDw8sLe3Z/fu3SX2d7t9+zZNmjTh+PHjdO3atUTGFHk3crmcAwcOsGbtT9jMWEVlo9qoqL77AYXIm+RnU3aprUUrw7Lddkbk80MUKEXeICoqihUrVnDy5EkeP36MmmZF6raypbu7J/o1/9f8PNxnD395Tmbsb4e5EnCIK34HyMvNoUW33vSatYyczAwOe8/l5ll/AFr3ccVpyoICi7/sjDQCNq7gasAhUuNfoV+zDtZ9XLFz/VaxX8Lzx3j3tOJrz5+w+nJQgVjnWBrSecwMuoybCcCJX7w5uXkl0w5e4PRvq7lx2hcBgeadevDl7BVUqFhJ8b63oaKiglwup2LFikRHRxdJZExISHinyKinp1dogdHAwEAUGUsQUaAsPfLy8li/fj3z5s1DV1eX9evX06dPnzJZ6i9SOmRkZBAaGqow3QkNDSUrKws9PT3s7OwUpjvm5ub/mfH0sVm7di1z5swhPT29xMeOiIjAysqK8+fP065duxIf/0NJTU3l4sWLBXpHvnr1CoCmTZuSm5tLTEwMp06dwtzcXLzmfGRycnLYvn07ixcv5vHjx/Tv358FCxaUePl0YXn27Blubm4EBAQwYcIEvL29qVSpklJjyicvL4/w8HCFM/iFCxcQBIEWLVoonMHbtWtHhQoVFNeh4i57YmJiOHToEDKZjJMnT5Kbm4uNjQ0uLi64uLhQt27dEjiy/yEIApcuXUIqlbJnzx4SExOxtbXFzc2Nfv36iaZThSQwMJDBgweTk5PDzp07cXR0LPaYu3btwtXVlfj4+FJrAyDydh4nZ/H7vWQQ7zOLjJ1RJdpVryjeq4uUGcrO6kCkzHDx4kWCg4MZOHAgtWrVYm/YTUL+3Mbm0b2Z+tc5hciXj4/3HHSqVKPzuJk8uRpO2P4daOro8fjvMPSMauM4cR63z53g7I71VG/YBMueA4DXN1073F15cOkcrXoPwahxc+6GnMZ3jSfJMS/oOX1xkY9hz+xR6Nf8AsdJ3/P81hUuHtiFloEhzlMWANB/0c/sXzSVyro6igUaoBAWMzIy3pkt8jaR0djY+INExrKcQfQ5IT6XKXkuX77MmDFjCA8PZ/z48SxdulTMuPoMqVixIp06daJTp07A67YZYWFhCsFy/vz5ZGRkoKOjg62trUKwtLS0VKqDbUZGRqmZ10RERKCiooK5uXmpjP82BEHgwYMHCjEyv/9lXl4eurq6tGnThm+//VaRHZmYmEijRo344YcfsLS0/GhxiqAQShYvXszDhw/p168fR48epVmzZsoOjT179vDtt99SqVIl/P396datm7JDKoCqqiqtW7emdevWLFiwgLi4OAICAvD19WXbtm14e3ujo6ND586dS2zOatWqMXr0aEaPHk1CQgKHDx9GJpMxb948pk+fjpWVFX379sXFxaVEyvElEgnW1tZYW1uzevVqDh48iFQqZdSoUUyaNIl+/frh5uaGvb29KDB8AB06dCAyMpLhw4fj5OTE7NmzWbhwYbGuP2FhYTRq1EgUJ5XAF7oatKpWkfDYTLEXZREJevH6wWz7GmXjwZOIiChQirxBjx49+PrrrwHIlQvEW8dhYufIxhHOXDt5BMue/Qvsr21gyIh1fyCRSLDp/w1xTx4StGM9rV2G03vuSgBa9x2Gd09LLh36XSFQ3gz04/7FILp9O4dOo15ns9kMGMnumd8QvGczNgNGUqVOvSIdQ00TM1w81ip+T09M4NKh3QqB0qJHPw4unY78/4UqiUTyhmi1adMm6tatWyDLUU9PTxQZyzniDXzJkpaWhoeHB2vWrKFp06acP38eGxsbZYclUkbQ1NTE3t4ee3t75s+fT3Z2NhcvXlS4hHt5eZGeno6Wlha2trYK051WrVq91UG6tChNgTI8PJymTZuWatZZenr6G9mRMTExAJiYmGBjY8O4ceOwsbHB1NT0jevYrFmzqFKlCmPGjCm1GEUKkpuby65du1i0aBEPHjzAxcWFQ4cOlQkH5/j4eL799lv27t3LoEGD2LBhQ7kQX6pUqcLAgQMZOHAgcrmcyMhIRXZlPqampjg7O+Ps7IydnV2xes7q6+szbNgwhg0bRkpKCseOHUMmk7F06VLmzZtHs2bN+Prrr3FxcaF58+bFvv/Q1NRUHN+TJ0/YsWMHUqmU7du3U79+fUaMGMHw4cP54osv3j/YZ4yhoSFHjhxh1apVzJkzh7Nnz7Jnz54if25hYWG0bt26hKMU+VA61NTiblI2ydlyUaQsIkEv0tFQlYjl3iJlArF+R+QN/rlIy8jOJi0xnip16qGpo8fzW286kFr3HlLgpqtOc0sEQaBV7yGKbSqqqtQyNSf+WZRi2+1zJ1BRVaXdoIILIruh3yIIArfPnyzyMbT+ekSB3+tatCU9MZ7M1JQC27v36MHt27eZNGkSWlpaBY6jQ4cOdOvWDWtraxo0aICBgYEoToqI/ANfX1+aNWvGhg0bWLx4MREREaI4KfKfVKhQgfbt2zNv3jyOHz9OYmIiISEhfP/990gkEpYuXUr79u3R19ena9euLF68mKCgoA82tigqmZmZaGpqlsrY4eHhJZqVKAgCDx8+5Pfff2fSpEm0atUKPT09OnbsyJIlS0hNTWXMmDEcPXqUV69ecevWLaRSKWPGjMHMzOyN61hUVBTbtm1jxowZZaZ091MmNzeXHTt20LRpU9zc3DA3NycyMpK//vqrTIiTfn5+NG/enOPHj/PHH3/w+++/lwtx8t+oqKhgaWnJ3LlzCQoKomrVqsBrceqPP/6ga9euGBgY0KtXL37++WcePHhQrPl0dHQYMGAA+/btIzY2lgMHDmBhYcGaNWto0aIFJiYmzJkzR2HyU1zq1KnDvHnzuHv3LmfPnqVDhw6sWLGCunXr0rVrV37//XcyMjKKPc+nSr4ZZlBQEE+fPsXc3BwfH59Cj5OdnU1kZKQoUCoRdRUJPY11RHGymJx4msaT1BxlhyEiIgqUIm+SkZHBggULqFOnDnqVKrLYwYTFnZuQmZJEZmryG/vr1ahd4HdNbd3X26vX/Nd2HTKSExW/J7x4go5hDTS0tAvsV61eYwASXzwt8jFUrlGwQXpF3delpv+cH0AQoHHjxqxdu5bo6Gg2btxI06ZNAUQxUkTkHURHRzNw4EC6d+9Oo0aNuHbtGrNnz1Zqia5I+URdXZ22bdsye/ZsfH19SUhI4MKFC3h6eqKhocHKlSuxt7encuXKODg44OXlRWBgIJmZmSUaR2llUObk5HDlyhWsrKyKPEZGRgbnzp3D29ubPn36YGRkRP369RkyZAj+/v40a9aMdevWERkZSWJiIidPnmTRokV0796dKlWqvHf8FStWoKenx7hx44oco8j7ycvLY9euXZiamjJ8+HCaN2/O5cuXkclktGzZUtnhkZaWxvjx43F2dqZFixZcu3aNAQMGKDusEiO/ZF5dXZ2nT5/y999/s2DBAlJTU5kyZQoNGjTAxMQEd3d3/Pz8iiXuVaxYkd69e7Nz505iYmI4duwY9vb2bNmyBWtra+rVq8d3333H+fPni2Ta808kEgl2dnZs3bqV6OhofvvtN7KyshgyZAhGRkaMGzdO0ZtT5E1sbGy4fPky9vb2fPXVV3z33XdkZ2d/8PuvXr1KVlYW1tbWpRilyPuoo61Ol9payg6jXCMBjkSlkCMXzxUiykUUKEXeYNKkSSxZsoT+/fuz648/+ObnPxm58S8qVTZAEN68kVJ5h5CnovKW7UW6QXp7SYw8L++d73jr3K8DKDjyP4bW1tZm7NixXL9+nejoaBo2bFjYQEXKCeKNetGQy+Vs3ryZpk2bcvLkSXbu3Mnx48dp0KCBskMT+URQU1OjdevWzJgxgyNHjhAfH8+lS5dYsmQJ2trarFmzho4dO1K5cmU6dOjAggULOHXqVLHNbTIzM0tFoLxx4wZZWVkfLFAKgkBUVBR//PEHU6ZMoXXr1ujq6mJnZ4eXlxeJiYmMHDmSw4cPExsby507d9i+fTvjxo2jZcuWhX6w9vTpU3777TemTZuGtrb2+98gUmjy8vLYvXs3pqamuLq60rRpUyIiIjhw4MBH7Uv6X4SEhGBubs6OHTv4+eef8fX1LRVnamWSL7Zev34diURCixYtmDVrFqdPnyYuLo79+/fTsWNH9u/fj7OzMwYGBjg7O/PTTz9x9+7dIt83VKhQAWdnZ3799Veio6M5efIk3bt3Z8+ePdja2lK7dm0mTJjAqVOnyM3NLdYxamtr4+bmxtmzZ7l79y4TJ07k6NGjtG3blubNm7Ny5Uqio6OLNceniIGBwWtX6DVrWL9+Pba2th+cUXvx4kXU1NTKzP/y50wrw4rYGYlVAEVFAJKz5Zx9nqbsUEQ+c0SBUuQN/vrrL4YPH86qVavo/3U/GrXtiLF5GzJTkkp0Hn2jOqTERpOVllpge8yjuwBUNnqdmVlRtzIAGf+aP/HFk+IFIJGg8hbxUyKRUL169eKNLVJmEXtQFo2bN2/SoUMHxo4dS58+fbh16xZDhw4VP0+RUkVVVRUrKyu+++47fHx8ePXqFZcvX2bFihUYGBiwYcMGOnfuTOXKlbG1teX7778nICCAtLTC3WBnZGSUSol3eHg4EonknYvXzMxMgoODWbVqFS4uLtSqVYu6desyaNAgjh49iomJCWvXriUiIoKkpCROnz7NkiVL6Nmzp6JktTisWLECbW1tJkyYUOyxRAqSl5fHnj17aN68OUOHDqVx48ZcunSJQ4cOYWFhoezwgNflqfPmzcPW1paqVasSGRnJ+PHjP8nz+siRIwFISEh44zVdXV369OnDpk2biIqK4vr16yxevJjc3FxmzJhB48aNadiwIRMnTuTIkSOFPr/ko6amhoODAz///DPPnj0jKCiIAQMGcOTIETp37oyRkRGjRo3C19e3UFl8b6Nhw4YsXryYR48e4e/vT4sWLZg/fz61a9emV69e7N+/v9hzfEpIJBKmTJlCcHAwcXFxWFhY8Ndff733fWFhYZiZmZVaD2ORwtGuuihSFgcBuBibKZZ6iygVUaAUeQNVVVXFk2JVCaipQMgfv/5nxmJRMLHtgjwvj5C9vxbYfn73L0gkEkzav3Zd1NTWQatyFR5FhBbYL/RPabHmr1CxEklJie/fUUTkMyYzM5MFCxbQsmVLXr58yalTp9i6desHlY6KiJQ0qqqqmJubM2XKFA4cOEBsbCxXrlxh1apV1KhRg02bNtGtWzcqV65Mu3btmDNnDn5+fqSkpPznuKVV4h0eHo6JiYkiO/HJkyfs27ePqVOn0rZtW3R1dWnfvj3z58/n1atXDBs2jEOHDvHy5Uvu3bvHzp07+fbbb7GwsEBNrWR9DZ8/f86WLVuYOnUqOjo6JTr254xcLmfv3r20aNGCwYMHU79+fcLCwjh8+HCxSv1LmuvXr9O2bVu8vb1ZuHAhQUFBNGrUSNlhlRr5plvvE+UkEgmmpqZMmzaNgIAA4uLi8PHxwcnJiWPHjtGrVy8MDAzo1q0bq1ev5ubNm0XKrlRRUcHW1pYff/yRR48eERYWxsiRIwkMDKR79+5Uq1YNV1dXDh48WKxyc1VVVbp168aePXt48eIF69at4+XLl4oHIu7u7vz9999FHv9To1WrVkRERODo6Ei/fv2YMGHCf7YUEQ1yyhYSiYT2NSr9r9y7mC0UPkckwNGoFIWRrIjIx0Z08RZ5g549e7Jz50709PQwNTXFxz+QK+fPUKmyQYnO08TekfqtbDm+YSkJz59Qo3Ez7oWe4cYZX9oPHlvAwbtVnyEESn9CttCd2qbmPIwI4VXU/WLN36C5OSdOnGD16tXUrFmTevXq0aZNm+IelkgZRRAE8gSooKWNoK5BZp4cNYkEVYmYVfkuTp8+zbhx43j48CGzZ89m7ty5pWYkIiJSFFRUVDAzM8PMzIxJkyYhCAI3b95UuIRLpVKWL1+uyMTMdwm3tbVFT09PMU5pmORkZWURGBhIpUqV6NevHyEhITx79gyAevXqYWNjw9ChQ7GxsaFFixYfvYfrypUr0dTUZNKkSR913k8VuVyOTCbDy8uL69ev4+TkxNatW8vcfYVcLmfNmjXMnTuXBg0acOHChRI1cSrrFFZM1NbWplevXvTq1QtBELhz547CGXzu3LlMmzYNY2NjnJyccHZ2xsHBodCCv0QiwdraGmtra5YtW8bVq1eRyWTIZDJ27dqFlpYW3bt3x8XFhR49ehS5HYO+vj7jx49n/PjxXL9+HalUys6dO1m7di2WlpaMGDGCwYMHf/YPIPX09Ni7dy+dO3dmypQpnD9/nn379tG4ceMC+6WkpHDjxg2mTp2qpEhF3kUrw4qE+B/mSeUGGNT8omBPL5H/RAASs+U8SM6hoV4FZYcj8hkiCpQib7B27VpUVVXZvXs3mZmZNLFqy+iNMn6d0L9E51FRUWHYmp0EbFzB1eMHCffZQ+WadXB298TO9dsC+3YePZ20hDiunTjM1YBDNG7XmRHr/2BJ56ZFm1sCUxeuYOt8d77//nsyMjIYPnx4mVtIiBQNQRCIz8ojOj2X6PRcXqTnEp2RS64cph6+TB6w5ko88DpDuEZFNYwqqVHj/38MNFQ/a9EyLi6OGTNmIJVKad++PQcOHMDU1FTZYYmIvJf87CdTU1O+/fZbBEHg9u3bBAYGEhgYyK5du1i5ciUqKipYWFgoBMuUlBSMjIyKNfezZ88ICQlR/ISHh5OdnY2amhqVKlVi8ODB2NjYYGNjQ40aNUroiItGdHQ0v/zyC7NmzSog1IoUHrlczoEDB/Dy8uLq1at069aNLVu2YGNjo+zQ3iAqKorhw4dz9uxZpk6dypIlS8SHToVAIpFgYmKCiYkJU6ZMIT09ncDAQHx9ffHz82PTpk2oq6tja2uLs7MzTk5ONG/evFD3E/n9MVu0aIGXlxe3b99WiJUDBw5EQ0MDR0dHXFxc6NWrV5Ed1ps1a8YPP/zAsmXL8PX1RSqV8t133zF9+nS++uor3Nzc6Nat22drGCmRSBg7dixt27alf//+WFlZsWnTJgYPHqzYJyIiAkEQxAzKMsiDBw+YM+4bXEe40W32Mi7FZiLh304EIu9CAoTHZogCpYhSkAiiW4TIe7gen8nhqNT371jO+NJYB1MDDWWHIVKCJGTlcflVJn/HZZKV9/rUpgJ8SIHHP/fTUJXQsoomFlU10df4fG7OBUFg9+7dTJ06lZycHLy9vRk1ahQqKmI3EJFPA0EQuHfvnkKwPHPmDE+fPgVeGyW4urrSsWNH7Ozs/jOLKDs7m8jISIUYGRwczJMnr/siGxsbY2Njg7GxMStWrCAgIIAuXbp8lOP7UGbMmMHmzZt59OhRkQWOzx1BEDh48CCenp5cuXKFLl264OXlRbt27ZQd2hsIgsD27duZPHky+vr6bN++nY4dOyo7rI9OhQoVyMnJKTWjvPv37yuyK0+dOkVGRga1atVSZFd26dKlWA8EHj58yP79+5HJZISEhKCmpkbnzp1xcXGhd+/eGBoaFiv+mJgYdu/ejVQq5erVq9SsWZNhw4YxYsQITExMijV2eSY1NZXx48eza9cuRo4cyU8//USlSpX44Ycf8PT0JCkp6bMVcssicrkcBwcHoqKiuHLlCjo6OjxJzeFoVAqJ2fJSEyrzcnNRLeFWLMpmrKn+Z7UOEikbiAKlyHuJy8xly81Pr1fjmKb6GGiKJ93yjlwQuJ+cTXhsJo9SckrsxiN/nLo66lgZatJAtwIqn3BW5f379xk/fjwBAQEMGDCANWvWKD3LS0SktBEEgYcPH9KpUyc0NTXJysoiKioKADMzMzp06EDHjh0xMTHhzp07BbIjMzMz0dDQwMrKSpEZaWNjo3A/3r59OyNGjCApKQldXV1lHmYBYmNjqVu3Lt9990MPE2MAACAASURBVB2LFi1SdjjlDkEQ8PHxwdPTk8jISDp37oynpye2trbKDu2txMTEMHbsWA4ePMiIESNYs2bNZ5s1W61aNWJjY9m3bx/9+vUr1bkyMzMJCgpSZFfevHkTVVVV2rVrp8iuNDc3L3K1xrNnzzhw4AAymYyzZ88C0KFDB1xcXOjTp0+xXNgFQSAiIgKpVMrvv/9OQkIC7dq1w83Njf79+5ep89nHQhAEtm3bxoQJE6hfvz779u3D09OT6OhoxecvUjZYu3Yt7u7unDp1ik6dOim2ywWBB8k5hMdm8LAE1wvyvFwkKio8+zuMTh3suZv0aZhPSYDW1SrSqZaWskMR+cwQBUqR9yIIAmuuxisy0j4FNFQluJsZfNZlvJ8CH+OJaP64lSuo0MNYhzraH7dPXGmTk5PDqlWr8PLyonr16mzcuBFnZ2dlhyUi8lFp2rQpzs7OrF69mrt377J79278/Py4du1aAcdebW1tzMzMcHZ2plu3bpibm6Oh8fZM/MmTJ+Pv78/t27c/1mF8EHPmzGH9+vU8evTos+81VxgEQeDIkSN4enoSERFBp06d8PT0xN7eXtmhvRMfHx9Gjx6NXC5n8+bN9OnTR9khKRVbW1vOnz+Pk5MTvr6+H3XuR48e4efnh5+fHydPniQ1NZUaNWrg5OSEk5MTXbt2xcCgaL3eY2JiOHToEDKZjJMnT5Kbm0u7du1wcXGhb9++1K1bt8hxZ2Zm4uPjw9atWzl+/Diampp8/fXXuLm50aFDh8+uwuLGjRv079+fBw8eoKWlxbBhw1i1apWywxL5f+7cuYO5uTmjRo3ip59+eud+CVl5RL7KJPKfFVcSkL93ISEg5MmR/H/GrIaKBPOqmphX1aRyBZVir5c3j/6K9MR43P8MKvIYJYm4XhZRBqJAKfJBnHqWxsWYjE+id4f4RKj8kyMXCHye9lF7yuTP08pQkw41tVBXKf8X69DQUMaMGcONGzdwd3fHy8sLLS3x/0Lk8+Lly5eYmZnRoEED1NXVuXTpEhkZGVSoUAFLS0uaN2+OpqYmcXFxXLp0ibt37wJgYmJCx44dFX0s/52x1L59e7744gv27NmjjMN6K3FxcdStW5eJEyeybNkyZYdTLhAEgWPHjuHp6cmlS5ewt7fHy8urTJdIJycnM3XqVLZu3UqvXr3YsmUL1atXV3ZYSmfdunVMnjyZmjVrKgyrlEF2djbnzp1TlINfu3YNFRUV2rRpg7OzM87OzlhaWhZJ/EtISODw4cPIZDL8/f3JysrCysoKFxcXXFxc3jB6KQxPnz5lx44dbNu2jbt371KvXj2GDx/O8OHDiyWCljfS09MZM2YMu3fvxtbWFl9f3yIbF4mUHHl5edjZ2REbG0tkZOQH3c8KgkBClvx1z/qMXJ6n5Sh61v+b/J71NbXUqVHxdc96fQ0VhXhXEhWHZU2gBLHiUOTjIwqUIh9EQlYem24kKDuMEkPsqVF+eZKaw5GoFJKz5UoRzCWAbgUVepbjbMqkpCTmzp3Lxo0bsbS0ZMuWLVhYWCg7LBGRUic3N5crV64UMLN58OABADo6Ojg6OipKtS0tLd+aHfn8+fMCPSzzMyQbNWpUwCW8WbNmeHl5MX369I96jP/F/PnzWb16NY8ePSp2v7pPHUEQ8PPzw9PTk7CwMGxtbfHy8qJTp05lOpvk7NmzDB8+nFevXrF27Vrc3NzKdLwfk+zsbDQ0NNDQ0CAzM1PZ4Sh4+vSpIrsyICCA5ORkDA0NcXR0xMnJCUdHR6pWrVrocVNSUjh27BgymYyjR4+Snp5O8+bNFWJlYQ188hEEgeDgYLZu3cq+fftITU3FwcEBNzc3+vbtS6VKlQo9Znnj6NGj9OzZk0qVKlG7dm327dtHy5YtlR3WZ83KlSuZNWsWQUFBtG/fvsjjCIKAXIBcQSBPDqoqoCaRoCLhP/9fSsKzoSwKlKJng8jHRhQoRT6YP+4lEZWSU66zKCW87ik4oOHn2X+pvHMpNoMTT9OU7sSXP3+X2lq0MqyoxEgKhyAIHDhwgEmTJpGUlMSSJUuYOHGi2Nxd5JMlNjaW0NBQgoODCQkJ4eLFi6Snp6Ouro6FhYVCjBw1ahTz589n5syZhZ4jvwdZvmB548YNxWtOTk4MHDiQjh07YmxsXJKHVmgSEhKoW7cuY8aMYeXKlUqNpSwjCAL+/v54enpy4cIF2rdvj5eXFw4ODmVa6MvMzOT7779n9erV2Nrasn37durVq6fssMocEokEiUSCXP4h9nkfn5ycHEJCQhTZlZGRkUgkEqytrRVmO9bW1oW+bmdkZODv749MJsPHx4fk5GQaNWqkECutrKyK9P1OS0vjr7/+QiqVEhgYiK6uLgMGDMDNzY22bduW6f+Z4uDp6cmGDRs4d+4cAwYM4NatW6xZs4axY8d+ssdclrlx4waWlpZMnDiRH374QSkxnHyaSnhs5gcZc76LsiZQqkiglWFFHMSqQ5GPiChQinwwd5OykD1IUXYYxebr+ro01Kug7DBECoEgCAS/zCDoRbqyQ3kDO6NKtKtesczfkD558oSJEyfi4+NDr169WL9+PV988YWywxIRKTFyc3O5du1agezIe/fuAVCjRg1sbGxo166dIjuyYsX/PVzQ0NBg1apVTJw4sdhxxMbGsmjRItatW4epqalCsDQ2NlaY7nTo0IF69ep91POGl5cXy5cv59GjR2K571sQBIGAgAA8PT0JCQnBxsYGLy8vunTpUubP75GRkbi6unLnzh2WLFnC1KlTxQdP7yD/b1lelj8vXrzA398fX19fjh8/TmJiIgYGBnTr1g1nZ2ccHR0L/f+clZXFyZMnkclkHDp0iLi4OIyNjenbty8uLi7Y2NgUqbz8/v37bN++ne3bt/P48WOaNGnCiBEjcHV1LZZpT1mke/fuABw7dozMzEymTZvGzz//TP/+/dm8efNna0SlDPJ7rqakpBAREVHg2l4SPHv2jPnz53P06FESExNp2LAh06ZN45tvviEjI0NRgTRz32li8l5XVqUnJbCmny36NY0Z+9thVP7/fHz7/AkCpT/x7NYVJBIJVY0bYjtkHObOLsD/BMpBK37FZ/ksnlyLoKKOHu0GjaHDiEn/O+acbE7/uppbQQHEPX2IPDePWk3M6DJ+Ng2s/2fYlvD8Md49rXB290RTS4fA7etIevmcGo1M+WqON3WaFayeuhpwiBO/eBP/LIoqderRdfxsHp3350lEMI8ePVLsJ5fL+emnn9iyZQv3799HT0+P3r17s3z5cvT19Uv08xf5/BAFSpEPRi4IbL6RQJKSSmuLiwTQq6DCGFP9T9qN+VPkfHR6mRQn87EzqkT7GmWzpCkvL4/169fz/fffo6Ojw7p16+jbt2+ZX3CLiLyPuLi4AtmRYWFhpKWloaamhrm5eQFnbWNj43d+5/Py8lBTU+PXX39l5MiRJRKbu7s7R44c4d69e8TFxREUFMSZM2cIDAzk77//RhAEateuXaCHZcOGDUvt/zIpKYm6desyYsQIfvzxx1KZo7wiCAInT57E09OT8+fP06ZNG7y8vOjWrVuZP0/m5eXh7e2Nh4cHpqam7Ny5EzMzM2WHVaYpbwLlP8nNzSUsLEyRXXnp0iUALC0tFdmVbdu2RU1NrVBjBgYGIpPJOHDgANHR0RgZGdGnTx9cXFywt7cv1HjwWrw4deoUUqmU/fv3k52djZOTE25ubvTq1eudxmLlBUEQqFatGhMmTMDT01Ox/a+//mLkyJFUrVqVvXv30qpVK+UF+RmxZMkSFixYQHBwMG3atCnRsV++fEmrVq2QSCSMHj0aQ0NDfH198fHx4ccff8Td3V2Rad9u0Gi6f7cIgD1zxnAz0I9Je05jaNwAgHCfPci8plCtQRNaOvZBU0ePF7evkpudTf9FG4DXAmXc4wdIVFVp1qkHhnUbcu3EYe5fDGLEuj2YtO8CQFpCHGsHdKClU1+qflGfrLRULh3aTfzTKL7d6U9Nk9fXgXyBsmYTM7LSUrHu44pEIuHs9vWoaWgww+cSquqvRdVbQcfZ4T6U6g1Nseo1kIyUREL2/oZeNSM0ctILCJSjR49m27ZtuLm5YWVlxcOHD1m/fj2mpqacP38edfXy2QJLpGwgCpQiheJJag677yYpO4wiM7SRHrXLad/Az5VLMRmceJb2/h2VTFks9758+TJjxowhPDyc8ePHs3TpUvGpvki5JC8vj+vXrxfIjrxz5w4A1apVK5AdaWVlVageaGlpaWhra7N7924GDx5cIvHa29tjZGTE3r1733gtISGBoKAgRR/Ly5cvI5fLMTIyKiBYmpiYlJhAtnjxYhYvXsyDBw8+uUym4nD69Gk8PDwICgrC2toaLy8vnJycyrwwCXDv3j2GDx9OaGgos2bNwsPDo9wLPx+DChUqkJOTUy4Fyn8TExPD8ePH8fX1xd/fn7i4OPT09OjatSvOzs44OTkV6v89Ly+PkJAQZDIZ+/fv5/Hjx1StWpWvvvoKFxcXOnfuTIUKhatASkxMZO/evUilUi5cuECVKlUYMmQIbm5umJubF/aQywQPHz6kfv36HDlyhB49ehR47cGDBwwcOJDIyEhWrlzJ5MmTy8X5pLxy5coVWrVqxfTp01m6dGmJjz9q1CiOHTvG1atXqVKlimL7oEGD8PX15cWLF1SsWJHZc+bg7e3N6M0HSY2P5feZI+k5fTHtB48FIDMlmeXdW1KtngmjtxxEXUNTMZYgCIrvyObRX/EwPJh+Czdg2bM/8Dpb0ruHBcYtWzNkpRQAeV4ecnkeaur/+3/MSElidV8bmth2xcVjLfA/gbJSZQOmH7xARd3KANwI9GPnVFeGrdlNU/tuAKzt34GMlESmys6jUem16dOD8PNsGd0bY2NjhUB57tw57Ozs3rhn8vf3x8nJqUTvpUQ+Twqfvy/yWVNHW51WhpqUt0utBLA21BTFyXLGk9ScciFOApx4msaT1BxlhwG8FlxmzJiBtbU1mZmZnD9/ng0bNojipEi5ISEhAV9fX+bPn0+XLl3Q19enZcuWTJgwgatXr9K1a1d27drF/fv3iY6O5uDBg8ycORM7O7tCGzTkm2Voamq+Z88PQy6Xc/nyZaysrN76ur6+Pl9++SWrVq3i0qVLxMfHc+TIEYYOHcr9+/eZMGECTZs2xcjIiAEDBvDzzz9z/fr1IgsqKSkprF69mtGjR4vi5P9z5swZOnbsiIODAxkZGRw5coQLFy7g7Oxc5sUEQRDYtGkT5ubmiv6nS5cuFcXJD0RXVxeAP//8U8mRFJ9q1aoxdOhQdu/ezcuXL7lw4QJTp07l6dOnjBo1ilq1atGyZUtmz57NmTNnyMn573sUVVVVbG1t+fHHH3n06BFhYWGMHDmSwMBAunfvTrVq1XB1deXQoUNkZGR8UIyVK1dm7NixhIaGcv36db755hv27duHhYUFFhYW/PTTT7x69aokPo6PRlhYGADW1tZvvFa/fn3OnTvHxIkTcXd3p0+fPsTHx3/sED8LsrOzGT58OCYmJnh4eJT4+IIgIJPJ6NWrF4Ig8OrVK8WPo6MjSUlJREREADB3gQfV6zfhT49JHFo2i3pW7Wg3aIxirLsXzpCVlkoHt8kFxEl403inQiUtLHr0U/yupl6B2s0siX8WpdimoqqqECflcjnpSQnIc3Op1dScZ7euvHEsLbp+pRAnAepZtAUg/tkjAJJjo4m+dwOLHv0V4iRAfav21GhoWqBy8s8//1Q8CPnnZ2JlZYW2tjanT5/+kI9XROSdFC5nX0QE6FBTi7tJ2UpzUS4s+a7L9jXFBr/liRy5wJGoFKUb4nwoEuBIVAqjmuqjrqK8Ba6vry/jx4/n5cuXLFq0iOnTp4ulFiJlGrlczo0bNwpkR966dQuAqlWrYmNjw5w5c7CxscHa2hotrZI9l+cvtEuqb9WdO3dITU3F0tLyg/bX09OjR48eikyclJQUzp8/rzDdmTJlCrm5uRgaGmJvb6/oY9msWbMP6hO3YcMG0tLSmDVrVrGO61Pg7NmzeHh4cObMGSwtLfHx8aFnz55lXpTM58WLF4wcORJfX1/Gjh3LDz/8gLa29vvfKKKgUaNGxMXFIZVK6dev3/vfUE5QVVWldevWtG7dGg8PD+Li4jh+/Dh+fn5IpVJWrFiBjo4OnTt3xtnZGWdnZ+rUqfPO8fKNeaytrVm2bBlXr15FJpMhk8nYtWsXWlpa9OjRAxcXF7p37/5B30NTU1O8vb1ZunSpIq7p06czffp0vvzyS9zc3HB0dCx0SfnH5uLFixgbG1OtWrW3vl6hQgVWr15Nx44dGTFiBBYWFvzxxx/Y2Nh85Eg/bZYsWcK1a9e4cOFCqTygiY2NJTExkc2bN7N58+a37hMTEwOAmloFXDzXsmFoV9Q0NPna86cC15X4p48AqN6gyXvn1atW841rUkVdPaLv3iiwLfzwH5zbuZHYR3fJy/3fwwf9Wm8a8lU2qv2v8V6LlRnJr6siE54/AaBKnTeN1arUqUfKg2uK3+/evUtSUtI7v//5n4mISFEp21cAkTKJuoqEnsY65abUWwB6GusoVTQSKTyBz9PKjQgOr79nydlyzj5Po3Ptj79gjI6Oxt3dnb1799KlSxdOnDhBw4YNP3ocIiLvIzExkQsXLhASEkJwcDAXLlwgOTkZFRUVWrRoQadOnZg7dy42NjY0aNCg1MWjks6gzM+o+FCB8t/o6Ojg5OSEk5MT8DojOjg4WCFYTps2jZycHAwMDAoIli1atHhDsExNTWXVqlV888031K5d+23TfRacO3cODw8PTp06hbm5OQcPHuTLL78sN8IkvM5aGTduHBUqVODo0aMKkw6RwuHi4kJoaCh///23skMpVapUqcKgQYMYNGgQcrmcyMhIfH19FQ8x5XI5pqamCrHS1tb2nSKPRCKhRYsWtGjRAi8vL27fvq0QKwcMGICmpiaOjo64uLjQq1cvKleu/NZx8lFTU6Nnz5707NmT2NhYfv/9d6RSKT179sTIyAhXV1fc3Nxo0uT9Yo4yCAsLo3Xr1u/d78svvyQyMpJBgwZhZ2fH0qVLmT59epEMiEQKEhERwZIlS/j++++LfK19H3L5az/uoUOHMnz48Lfu06JFCwBUVOBu8CkAcrMyefX4AQZvEQo/BJV3GJz9s4ri8tE/+ctjEqadumM3bALaBlVRUVXlzNa1xP2/GPpPJCrvME0rQmWGXC6nWrVq7N69+62vGxoaFnpMEZF/IgqUIkWijrY6XWprceJp2S+/7VJbizpiaXe54klqDpdiM5UdRqERgIuxmTSurPHRvnNyuZzffvuNmTNnoqamxs6dOxkyZEi5WniLfLrI5XJu3bpVIDvy5s2bCIKAgYEBNjY2zJw5ExsbG1q3bq2UbLCSzqAMDw+nXr16GBgYlMh4WlpadO3ala5duwKQnp5OaGiownRn1qxZZGdnU7lyZezs7BR9LM3Nzfnll19ISkpizpw5JRJLeSM4OBgPDw9OnDhBixYt2L9/P7179y5X58eEhAQmTZrE7t27+frrr9m4cSNVq1ZVdljllsmTJzNjxgzi4uKUHcpHQ0VFBUtLSywtLZk3bx4JCQmcOHECPz8/fv/9d1atWoWWlhYODg4Ks5169d7MpMrHxMSEuXPnMnfuXB4+fMj+/fuRyWQMGzYMdXV1OnfujIuLC1999dV7xQpDQ0OmTJnClClTuHz5MlKplF9//RVvb2/atm2Lm5sbAwYMKDMtanJzcwkPD8fLy+uD9v/iiy84c+YMCxYsYNasWZw5c4bt27eLIk4xyMrKYtiwYZiZmTF37txSm8fQ0BAdHR3y8vLo0qXLf+574+pVTm5ZhdWXg3hx5xr7F03Ffe9ZNHVet5QwqF0XgJf3b1H1i/rFju3aycMY1K7L0B+2FbienfhlRZHG06/5Ops67snDN16Le/KQfz66aNCgASdOnKB9+/Yl7pguIgJiD0qRYtDKsCJ2RmXTuTgfO6NKZc64ROS/kQsCR/+/tLs8IgGORqUg/wgN+G/evEmHDh0YM2YMvXv35tatWwwdOrRcLb5FPi2Sk5MJCAhg4cKFODs7U6VKFZo1a8bo0aMJCwvDzs4OqVTK7du3efXqFUeOHGHevHk4ODgorVS1NATK0sroAKhUqRIODg4sXLiQwMBAkpKSOHPmDO7u7qSmpjJv3jxatWqFvr4+8+bNw8LCgujoaHJzc0stprJGaGgojo6OtG/fnpcvXyKTybh8+TJ9+vQpV+fHEydOYGZmxpEjR9i1axf79u0Txclikm/ykp2dreRIlIe+vj79+vXjt99+49mzZ0RGRjJ//nySk5OZMmUK9evXx8TEBHd3d/z9/f+z32S9evWYNm0awcHBPH36lNWrV5OZmcnYsWOpUaMGDg4ObNiwgefPn783rvyelM+fP2ffvn3o6+szfvx4jIyMGDp0KCdPnlRktSmLmzdvkp6e/tb+k+9CXV2dZcuWKZzXzc3NOXv2bClG+Wnj6enJnTt32LFjR6FNmwqDqqoqLi4uyGQyrl279sbrsbGxAOTk5DDqGzd0DWvQa8ZSvvZcR2pcLEdWfa/Yt1HbTmhoaXNGupacrIIJGEXpLy35/yzcf7738dVwHl+5VOixAHQNa1C9YVMuH91HVnqqYvuD8PNE3ytYWt6/f3/y8vJYtGjRG+Pk5uaSmJhYpBhERPIRBUqRYtGuetkVKe2NKtGuuihOljfuJ2eTWI5Ku/+NACRmy3mQXHqGOZmZmXh4eNCyZUtevnzJqVOnkEqlBRwGRURKG0EQuHXrFlKplDFjxmBmZkblypXp1q0ba9asQSKR8N133xEQEEBiYiJXrlzhl19+Yfjw4TRu3LjMCEUlWeItl8uJiIh4p0FOaaCpqUmHDh0UJcyJiYmcPXsWW1tbcnJy+Pvvv2nTpg36+vo4OzuzfPlyQkJC3muYUR4JCwvD2dkZGxsbnj17xp9//klkZCR9+/YtV2WV6enpTJ48ma5du9KkSROuXr0qZsaXMJ+Ci3dJIJFIaNmypSK7Ly4ujv3799OhQwdkMhlOTk5UqVKF7t27s27dOu7evfvOsWrVqsXEiRM5ffo0L168YOPGjairq+Pu7k7t2rVp3749q1evJioq6p1jAGhoaNCvXz+OHTvG48ePWbBgARcvXqRLly7Ur18fDw8PHj58M9PrY3Dx4kVUVFSKdI53cnIiMjKSxo0b06lTJxYvXkxeXl4pRPnpcuHCBby9vfHw8MDMzKzU51u+fDlGRka0adMGd3d3Nm/ezPLly+nfvz8mJiYALF68mMjISMYtW4+GljZGjZvRefQ0wn32cOtcAACa2jr0mLaIp9ci2ODajTNb13Dhr20cXDqDPz0mFjquJnbdiH/6iF3ThhMm24HfukVIJw6gWn2TIh+r44R5JMe84Be3npzb/QsBG1ewa7obtRs3LXDt6dChA2PHjmXZsmV0796dNWvWsGHDBtzd3TE2NubEiRNFjkFEBEAiiFdokRLgUmwGJ56mKd3QJH/+LrW1xMzJcsof95KISskptwIlvP4e1tVRZ0DDki9JOnPmDGPHjuXhw4fMnj2buXPnlljvPBGR/yIlJYWwsDBFqXZoaCjx8fFIJBJMTU1p164dNjY22NjY0Lhx43IjCPn7++Pk5ERUVBRffPFFsca6e/cujRs3xt/fn27dupVQhIUnIyOD+vXr4+zszC+//MKlS5cIDAwkMDCQc+fOkZaWhpaWFu3atVP0sLS2ti7VbJTS5OLFi3h6enLs2DFMTU3x8PDg66+/LjffwX9y8eJFXF1diYqKYsWKFUycOLFcHkdZJn+xLS6B/htBELhx4wZ+fn74+vpy9uxZcnJyaNCggaIUvFOnTlSq9N+JCgkJCfj4+CCTyTh+/DhZWVlYWVnh4uKCi4sLjRs3/qBYQkJCkEql7N27l5SUFDp27IibmxsuLi4lbp72LsaNG8e5c+femlH3oeRnny1cuBAHBwd27dpFjRo1SjDKT5OMjAwsLCzQ1dUlODj4o5kpxcTEsHDhQnx8fIiOjlZUhgwYMAArKyvatGnD+PHj+WrmUsJjM5ED8rw8No5wJjnmBe5/naOizuv1wM1AfwK3reX57WuoqKlhWLcRtkPG0dKxDwCbR39FemI87n8GFYjhT4+JPLgUzKyjr3tcC4JAoHQtF2Q7SI2LoVr9xnQdP5urJ3wK7Jfw/DHePa1wdvfEftiEAmPOsTSk85gZdBk3U7Htiv8BTmxaScLzx1T5oj5OE+fx4PifxD64zc2bNwu8f8uWLWzatIkbN26gpqZG3bp1cXZ2xt3dHSMjoxL9G4h8XogCpUiJ8SQ1hyNRKUozNsl36+5prCP2nCynJGTlselGgrLDKDHGmuqjr/GOxtSFJC4ujhkzZiCVSmnfvj2bN2/G1NS0RMYWEfk3giBw7949hZFNSEgI165dQy6Xo6enR9u2bRViZJs2bcpMf7CicOjQIXr37k1MTEyx+4L98ccfDBo0iNjYWKWW4q5fv54pU6Zw+/btN8yycnJyiIiIUJjunDt3jpSUFCpWrIiNjY1CsGzdunWZf/gRHh6Op6cnR44coUmTJnh4eNCvXz9U32EyUJbJyclhyZIlLF68GAsLC3bu3FlmTULKO+rq6uTm5ooCZSFJTU3l9OnTCrOdR48eoaGhgb29Pc7Ozjg5OdGkSZP/zPRNSUnh6NGjyGQyjh07Rnp6Os2bN1eIlc2bN39vpnBaWhr79+9HKpVy+vRpdHR06N+/P25ubrRr165UM40tLS0xNzdn69atxR7r1KlTDBkyBEEQ2LVr13v7HH7uTJs2jQ0bNnD58mWaNm2q7HDe4Hp8JoejUt+/Yzlj27DO1KlRjYCAAGWHIvKZIAqUIiVKjlwg8Hkal2IzP1o2Zf481oaa2NfUEt26yzGnnqVxUMNcmAAAIABJREFUMSajXGdP5iMBWlerSKdaxXuqLwgCu3fvZurUqeTk5ODt7c2oUaPEjBqREiU1NZWLFy8WyI589eoVAE2bNsXGxkaRIdmkSZNP6vuXLyomJyejo6NTrLFmzJjBvn373lvCWJpkZWXRoEEDHBwc2LFjx3v3z83NJTIyUmG6ExQURFJSEhoaGrRt21ZhutO2bdsy0xD/8uXLeHp64uPjg4mJCQsWLGDAgAHlUpgEuHXrFq6urly+fJn58+czd+5c1NXFB62lRZUqVYiPj+fw4cP07NlT2eGUSwRB4M6dO/j6+uLn58eZM2fIysrC2NhYIVY6ODj85zk1PT0df39/ZDIZhw8fJjk5mUaNGinESisrq/eKjQ8fPmT79u1s27aNqKgoGjduzIgRIxg2bBi1atUq0WPOyMhAV1eXdevWMW7cuBIZ8+XLl7i6unLixAnmzZuHh4fHR8sMLE+cO3cOe3t7vL29mT59urLDeStxmblsuVl++y/m5eSARILqP75/Dy6dZ8uY3ixevJh58+YpMTqRzwlRoBQpFZ6k5nA0KoXEbHmpCZX541auoEIPMWuy3CMIAmuuxpOV9+mckjRUJbibGRT5af79+/cZP348AQEB9O/fnzVr1ohlEyLFRhAEHjx4UMBZ+8qVK+Tl5aGrq0ubNm0KZEfq6+srO+RSRSqV8s0335CTk1PshWHn/2PvzsOiqr8Hjr8Hhl1cEBURBRStSEURicEFNdPEXHFPUMywTMxSK0szcss9l9JcwjUzwzQz01xRARHEFTdUFFNEEFmHZWbu7w9ifvF1AwWGgc/reXqempl775kJhnvPPZ9zXn+dGjVqsH379lKKruRWrlzJ2LFjuXjxorZHVkmo1WrOnj2rTViGhoaSmpqKsbEx7u7u2oSlQqEot2WVhc6cOcNXX33Fjh07aNq0KV9++SVDhw7V28SkRqNh+fLlfPrpp9jb27Nx48YSDd8Qns9rr71GZGQkvXv3ZufOnboOp1LIzs7myJEj2urKuLg4jIyMaN++PT169KBHjx68+uqrTzwfys3N5cCBA4SEhLBz505SUlKwt7fXJis9PDyeemNMo9Fw+PBhgoODCQkJITc3l27duuHv70+fPn0wMTF54rbFFR4ejqenJ1FRUaXaZ1ij0TB37lymTZuGp6cnP/30E3Z2dqW2f32XlZWFi4sL9erVIzQ0tMJ+3+v7dUzqnVusec+H1t4DqV7HhqT4q0SGrKd2zRqcP39e9LkXyo1IUAplRiNJXE/PJ/q+khsZ+aWWqCzcj6OlEW3qmNG4uhEGonG83tP3O49PEvBKLaxMS3YylZ+fz8KFCwkKCqJevXp8//33eHt7l1GEQmWXnZ39SHVkUlISAC+99JI2GalQKHB2dq6wJ/9lZcWKFQQGBr7wlGtJkrCysmLSpEk6qzTIy8ujadOmtGvXjp9++qlU9qnRaDh37py2h2VoaCjJycnI5XLc3d3x8vLCy8uLdu3aldkk9rNnzxIUFMT27dtxcnJi2rRpDBs2TK8rjRISEvD39+fAgQOMHz+eOXPmPLOXn1A6vvnmG6ZMmYKdnR0JCQm6DqdSiouL0/auPHToEEqlEjs7O23vysKbOY+jUqk4cuQIISEh/PbbbyQmJmJra0u/fv3w8fGhQ4cOT/3dT0tL45dffiE4OJjw8HBq1arFsGHD8Pf3x9XV9blvGi9dupRPPvmE9PT0MunXe+zYMYYMGUJOTg4bNmwQ533/CgwMZO3atZw5c4amTZvqOpyn0ueVYDkZ6Wyf+TE3z0SSlZqCsZk5bTt04sclC2jSpImuwxOqEJGgFMpFaq6a08k5nE7J0d5ZMpCBphg/ff99nYmhjFa1TWllbVpqvf2EiqGy9m7pbW+Js1Xx79xHREQQEBDAhQsX+OijjwgKCir3KiVBf0mSRHx8fJHqyNOnT6NWq6lWrVqR6kgPDw+srKx0HbLOLVq0iOnTp5ORkfFC+7l27RpOTk78+eef9OjRo5SiK5nVq1czZswYzp07x6uvvlomx9BoNMTGxmoTlocPH+b+/fsYGhri5uamTVi2b9+e6tWrv9Cxzp07R1BQECEhITRu3Jhp06YxfPhwvU5MFrbtGDduHJaWlgQHB4vec+UsMzMTS0tLTE1NUSqVug6n0svJySE0NFSbsLx06RJyuRxPT09twtLFxeWxiUO1Wk14eDghISGEhISQkJCAtbU1ffv2xcfHhy5dujw1WXjp0iXWrVvHhg0buHv3Li1atGDUqFG8/fbbJe45PHz4cOLi4oiIiCjxZ1BcycnJjBw5kt27dzN58mRmzZpVpds9HDp0iC5durBkyRLGjx+v63CeSfTSF4QXJxKUQrmSJInUXA2J2SoSlSruZOWTqFSh0jz6WrkB2JjJsbUwwsZMjo25nFomBmXa/FrQnQO3M7XT7yoLAxm41TGjSzH6UKanp/P555/z/fff4+rqyurVq2ndunU5RCnoM6VSSVRUVJGE5L179wBo2rRpkerI5s2bV7nqyOKYNWsWS5Ys0VaVPq9ffvmFwYMHc+/ePerWrVtK0RVffn4+zZo1o23btvzyyy/ldlxJkrh06VKRhGViYiIGBga4urpqh+60b9+emjVrFmufFy5cICgoiG3btuHo6MjUqVPx9fXV+wv1lJQU3nvvPX799Vfefvttli9fXuzPRChdMpkMmUyGRlOZzjr0Q3x8vDZZeeDAAbKysrCxsdEmK994443HthaRJImoqChtsjIuLo4aNWrQu3dvfHx86Nat2xP75KpUKvbt20dwcDA7d+5EkiR69eqFv78/PXr0KNZNj2bNmvHmm2+ydOnSF/4MnkaSJBYvXsynn36Km5sbP//8M/b29mV6zIooIyODli1bYm9vz8GDB/Wm9/XPcWnczMjXyyrKQjLAwdKIwU76OwBR0F8iQSnonCRJaCRQSRJqDRgagFwmw0CGSEZWIZuuPOR2VtEllvtXzuPAqvl8/FsEB1ct4OLRvcjlxrgPGMEb739G2r07/D73M65HHcPI1IyOfuPo4DtWu33mg/vsXTaTS0f/JiczHWt7J9oPf482vYYABQ2hZ73hjLPXmwwIWlbk2DmZGczq+gqKwe/g/VEQAKq8XA6t/ZbTe34l7d4dqllZ49K9P2+M/Qy58eOrJO0s5Axv9uQLUEmS+O233wgMDCQtLY1Zs2Yxbtw4kUgSHiFJErdu3SqSjIyJiUGlUmFubo67u7t2kI2Hh4dOp0jrk2nTprF+/Xpu3br1Qvv57LPP2Lx5s86WjBb20jxz5gwtW7bUSQxQ8HN69epVbbLyyJEj/PPPP8hkMlq1aqVNWHbo0OGRCt6LFy8SFBTEL7/8gr29PVOnTsXPz0/vE5MAf/75J++88w55eXmsXLmSgQMH6jqkKq3w/FJcBulWbm4ux48f1w7bOX/+PAYGBnh4eGiH7bi6uj6SnJIkiXPnzmmTlRcuXMDCwoKePXvi4+ODt7f3E1tOpKSk8NNPPxEcHExMTAz16tXD19cXf39/nJ2dH7tNamoqVlZWbNiwAV9f31L/HB7nxIkTDB48mLS0NIKDg+nbt2+5HLeiGDNmDJs3b+bs2bM0btxY1+EU29W0XEKuv9iKjIpgQOPqONUo/VYGgvAsIkEpCILOSZLEwrMpj1TSFiYo67/UnLqOzXBo7cGlo39z+djf9Px4BpHb19O4bQdsnF7h9J5fuXk6koDVO3Fs40l+jpLlb3clJeEGHoPfwapBI879/TvxMRG8NWkm7YaNASAk6EPOH9zNF/tjkRv9/x/iU39sZduX4/hg09/YObdCo9Gwbtxg4k9H4t7fl7qOzUiMi+VEyHpebv8GvosePy1XbgATW9Z+bLI9ISGBcePG8fvvv9OrVy+WL19Oo0aNSu+DFfRaTk4Op06dIjw8nLCwMMLDw7l79y4ATZo0KVId2aJFC71e9qpLkyZNYteuXVy+fPmF9vPGG29gYWHBjh07Simy4lOpVLz88su0bNlSpwN6HqdwKNN/E5a3bt1CJpPRokULOnXqhJOTE4cPH+a3336jYcOGTJ06lREjRpRJn7fylpmZycSJE1m1ahU9evRg7dq1YthZBSASlBVTQkICe/fuZc+ePezfv5/09HTq1KlD9+7d6dGjB926dXvszbdLly5pk5UxMTGYmprSvXt3fHx86NWr1xMrlc+cOUNwcDCbNm0iJSUFd3d3/P39GTJkSJFt/v77b7p168alS5eea/jY80pNTWX06NFs376d8ePHM2/evFIZ+FMRrV27Frlcjp+fH/v27ePNN99kxYoVpTYxvbxoJIlVsamk5Wn0sopSBtQwNiDAuZaY8SDohEhQCoKgcyqNxIIzKY88XpigdO/vR7+pCwHQqNXMe8uV9KS7dA+citfIgp40yow05nRvQYs3ejMwaDnHf/qBPxZMZdDMFbT2HgAUVEyuercPiXGxfL73PCYW1bgSfojgDwbh9+1mXunYTXvsdeOHcj8+jsm/nwQgZvc2tk0fR8DqnTi09tC+7sSv69kxexLvBe/G3sX9se9vskttDA3+/4+8Wq3mu+++44svvsDS0pJly5bRv39/UTFcxSUkJBSpjjx16hT5+fmYmZnRtm3bItWRulhCXFmNGzeOY8eOcfr06efehyRJ1K5dmwkTJvDll1+WYnTFs3HjRvz8/IiJiaFVq1blfvySio+P5/Dhw/z+++/s27ePrKwsAOrXr0+fPn3o0qULXl5eev9zHhYWhp+fH3fv3mXRokUEBASI7/kKwsjICJVKJRKUFVh+fj7h4eHayeBnzpxBJpPRtm1bbXVl27ZtH1lxcv36dbZv305ISAgREREYGRnx+uuv4+PjQ58+fR7bezIvL49du3axbt069uzZg5GREf369cPf35/XX3+db775hnnz5vHgwYNyX2osSRLfffcdEydOpHnz5mzduhUnJ6dyjaE81KlTh+TkZLp06UJsbCzNmzdn3759evmdmZCZz+araboO47kNb1oDu2r6v3JB0E/60cxBEIRKTfWMCwS3fsO1/25gaEgD51ZIkoRbn7e1j5tZ1sDavgkPbt8E4PKx/Vha18Xlzf7a1xgaGeE59F3ysrO4Hh0GQJO2HbCoWZuz+/6/6kmZ/pC4iCO0fKOP9rFz+3+nrmMz6jg0JSs1RftPE/f2AFw/eaxY7+/06dMoFAomTJiAr68vFy9exMfHRy9PwITnl5ubS0REBIsXL2bgwIHY2dnRqFEjBg8ezM6dO2nSpAmLFi0iKiqKtLQ0jhw5wpw5c+jdu7feJ20qGqVSiamp6Qvt4+bNm6SmptKmTZtSiqr41Go1M2fOpHfv3nqRnISCxMPBgwfZuXMntWrVYubMmaxduxZvb2/279/PoEGDqFevHs7Ozrz//vv8/PPP2uphfZCXl8eUKVPo0KED9erV48yZM4wZM0Z8z1cglpaWAOzdu1fHkQhPYmRkRMeOHZkzZw6nT5/mn3/+Ye3atTg4OLBkyRIUCgX16tVj2LBhbNiwQdt/uXHjxkyaNInw8HASEhJYuHAhSqWSMWPGYGNjQ5cuXfjuu++4c+eO9ljGxsb4+Piwa9cuEhISCAoKIiYmhm7duuHg4MD69et59dVXddIHUSaTMW7cOMLDw0lPT8fV1bVc+wyXh+zsbJKTk4GCwTiJiYn07NlTx1E9v4bVjHCrY4q+fePLgLZ1TEVyUtApsR5MEASde1aP+po2DYr8t2k1S+QmpljUqv0/j1cnO61get7DxNvUbtj4kZPJuo5NC56/W9AnzlAu59XX3+LMXyGo8nKRG5tw/uAfqFX5tOz+//1+Um5dJ+nGFWa+/vJjY8xMTX5i/GoNZOVk8dVXX7F48WJeeeUVjh8/jkKhePobFyqNf/75p0h1ZHR0NHl5eZiamuLm5sawYcO0y7VtbGx0HW6VolQqnzhYobiio6MBdJKg/OWXX7hy5QqbN28u92OX1LVr15gxYwabNm2iXr16LF26lNGjR2uXLI4aNQoo+H0pHLpz8OBBVq5cCRQMqSicEu7l5YWdnZ3O3suTnDt3Dl9fX2JjY5k5cyaffPKJ6ClcATVu3Jjo6GhWrlxJ9+7ddR2OUAy2trb4+/vj7++PSqUiMjJSW125ZcsWAFxdXenRowc9evTgtddew87OjsDAQAIDA0lKSmLHjh2EhIQwYcIEAgMDUSgU+Pj44OPjox1EU79+fT755BMmT57MiRMnCA4OZvXq1Vy5cgUvLy/8/f0ZMGDAE3tclhVXV1eio6MZM2YMgwcP5uDBgyxevPiF/369CEmSUP87R0CjAYN/5wgYlnCOQHx8fJF9Anz00UccOXKEkJAQvRmQ819ethZcTcsjXU+WesuA6sYGdLR99mBPQShLIkEpCILOPeu8w8Dg0Yu7J56sPMdyLZfu/YgMWc/l4wd4tbM35/btpI5DU+o3a/6f3WqwcXKm58SvH7uPGvUaPPZxgIMH/ibw/fdITExkxowZTJw4sVL0VhMeLy8vj9OnTxdJSBYOYLG3t0ehUDBkyBAUCgUuLi7iZ0HHcnJyXriCMjo6mvr165d7clmj0TBjxgy8vb1xc3Mr12OXxPXr15k5cyYbNmygbt26LF68mHffffeJn3uDBg0YNmwYw4YNA+Du3buEhoZq+1iuXr0aKOjFWjh0x8vLS6c9fNVqNYsWLWLq1Kk0a9aMyMhIvalorYreeustoqOjtTcXBP0il8vx9PTE09OTGTNmkJSUpO1duXLlSmbNmkXNmjV544036NGjB927d8fW1paAgAACAgJ48OABu3btIiQkhM8//5yJEyfi5uamTVY2bdoUmUyGh4cHDRs2ZNWqVXz44YecP3+eUaNGERgYyMCBA/H396d9+/blVh1dvXp1fvrpJ7p06cL48eMJDw9n69atvPzy42+elyZJkniQqyYxW0Vitoq72SoSlapH+sdDQf91GzM59c3l2Pz7j5WJ4RM/pxs3bjz28ZiYGJRKJRYW+pc0MzKQ8Za9pd4s9ZaAt+wtMTLQt7pPobIRCUpBEHROXgYndjVt7EiMi0Wj0RRJZt6/cbXg+foNtY85uCqwtK7H2X07cGj1GteijtF51EdF9mdl58DdKxdo4t6xxCeifXv1opNXR/7+++9K2Teoqrt79+4j1ZE5OTmYmJjQpk0bBg4cqK2OtLW11XW4wv8orQpKXVRPhoSEcPHiRX788cdyP3ZxxMfHM3PmTNavX4+1tTULFy4kICCgxJ93/fr1GTx4MIMHDwYgKSmJ0NBQ7dCdwvfv4OBQJGHp4OBQLomDGzduMGLECI4dO8bEiROZMWPGCye9hbI1adIkgoKCtMtKBf1Wt25dfH198fX1Ra1WExUVxV9//cWePXt45513kCQJFxcX3nzzTXr06IGnpycjRoxgxIgRZGRksHv3bkJCQpgxYwZTpkyhRYsW2mTllStXAJg8eTINGjTg5s2brF+/nnXr1hEcHIyTkxMjR45kxIgR5VLVLZPJePfdd/Hw8GDQoEG4ubmxYsWKMpsunpqrJiY5hzMpOeSqC4oADICnLX5SaeB2loo7WSrt60wMZbjUNqW1tSm1TIoWHvw3QWloaIixsTHTpk1jwoQJOq0QfVENqxnR1c6C/bezdB3KM3W1s6ChWNotVAD6Vy8tCEKlYygruNtaml5q35WM5KQivSXVKhVhW9dgbG5B4zae2scNDAxo3rUXl0L3ErN7GxqVipbd+hbZX4s3+pCedJeT2zc+cqz8HCV5yseffOTnKPnxx7UiOVlJ5OfnExUVxbJlyxg2bBiOjo7Y2tri4+PD1q1badCgAXPmzCEiIoK0tDSOHz/OggUL8PHxEcnJCionJ+eFLoAkSeLUqVPlnqAsrJ7s1q0bHh4ez96gHMXHxxMQEEDTpk35448/mDdvHtevX+fDDz8slYvNunXrMmDAAJYvX865c+e4f/8+27dvp3fv3pw+fZpRo0bRuHFj7O3t8fPzY+3atcTFxZX6QBRJkvjxxx9p2bIlt27d4tChQ8yfP18kJ/VA4fLcnJwcHUcilDZDQ0Nee+01pk+fTkREBElJSfz000+0bNmSH3/8kU6dOlG7dm369+/P6tWrefjwIUOGDGHbtm3a75KWLVuyaNEiWrRowbvvvku1atVITExEkiTs7e358ssviYuL49ChQ3h6ejJ79mwaNWpE9+7d2bp1a7n8XLVo0YKoqCgGDBiAn58f/v7+2oFjL0ojSVxNy+XnuDR+iE3lZJJSm5yEpycni+znP/+eq5Y4maTkh9hUfo5L42paLpp/v5P//vtvoCD56u/vz/Xr15kyZYpeJycLudUxo0N9c12H8VQd6pvjVkf/P2uhchAVlIIg6JxMJsPGTM7tLFWp7dO9vx+RIRv4dXogdy6eoWb9hpw/sIubpyN5a9JMTCyK9g5q2a0v4T+vYf8Pc7FxcqZu42ZFnm/dcxDn/t7JjtmTuBZ1DHsXdySNmvvxcZz9eyejvvsFO+eiy/kkSaJhdTP8yuiutlD2kpKSCA8PJywsjPDwcKKiolAqlRgbG+Pq6kq/fv201ZEVsR+e8GwvOiQnISGB5OTkck9Q7ty5k3PnzrFixYpyPe7T3Lp1i1mzZhEcHEzNmjX55ptveP/99zE3L9uLM2tra/r160e/fv0AePDgAUePHtX2sdy8eTMajYYGDRoU6WHZrFmz566wvHfvHgEBAfz++++MGjWKxYsXU7169dJ8W0I5EFO8Kz9ra2uGDh3K0KFD0Wg0xMTEsGfPHv766y/ee+89NBoNr776qnYyuLe3N/369SM3N5cDBw4wevRoMjIycHNzw8HBgf79++Pj44OHhwedOnWiU6dOLFu2jG3bthEcHMyQIUOoWbMmw4YNw9/fnzZt2pRZJbeFhQXr1q2jc+fOjB07lhMnTvDLL7/QvHlBi6L8/Hz27NmDt7c3cnnxLvsTMvPZfTODh3ka7ZCX0votKdzPzYx84jPyqWlsQE97S6ytrXFwcGDHjh24uLiU0tEqDs96Bcm/o3ezdRzJozrWN0dRTyQnhYpDJom/zIIgVAAHbmcSfT+nyN3W/SvncWDVfKYeuFRkIM626eM4v38XQcdvFtnHqnf7kP3wARO2HQUg88F9/lo6g0uh+8jJyqCOvRPth79Hm95DHzm+JEnM7dmatMR/6DZ2Cp1Hf/zIa9T5+RzbvJKY3b+QknADI1MzrBrY84rXm7QbNgbTapZFXm8gK7hz2qWB/vXOqYpUKhVnz54tslz7+vXrQEFzfoVCgaenJwqFgtatW4sqqUrCxcWFDh06sHz58ufa/rfffqN///7cvn2bBg2e3Iu2NEmShKurK1ZWVhw4cKBcjvk0CQkJzJ49m7Vr11KjRg0++eQTxo4dW2H6hj18+JBjx45pE5bR0dFoNBpsbGy0ycpOnTrx8ssvFyuRsGPHDgICAgBYvXo1ffr0Keu3IJSBwv/X4lKo6kpNTWX//v3ahOXdu3exsLCgS5cu9OjRg27dutGmTRsmTZqEQqHg119/5bfffuPevXvY2trSr18/fHx86NChgzYBeOXKFdatW8f69eu5c+cOzZs3x9/fn+HDh1O3bt0yey+XLl1i0KBBXL16lWXLlvHOO+/w6aefMn/+fL777jvGjh371O3zNRJH7mQRdT8HGaWXlHyawuO41THFy9ai0vc/jLqvZP/trHL7fJ+k8Phd7SxE5aRQ4YgEpSAIFcKFBznsupmp6zBKXW97S5ytTHQdhvAY9+/fJyIiQlshefLkSbKzszEyMqJ169baykiFQkHDhg3LrQm+UL5eeuklevfuzfz5859r+2nTprF69Wru3r1bbj8jv//+O3369OHw4cN4eXmVyzEf5/bt28yZM4c1a9ZgaWmpTUyW93TbkkpPT+f48ePaoTtRUVGo1Wrq1q1Lx44dtT0snZ2di/QwTktL48MPP2T9+vX07duXH374oUwTDkLZMjIyQqVSiQSlABQkqs+ePaudDB4WFoZKVbCyp1+/fowZMwYvLy+MjIwICwsjJCSE7du3k5CQgLW1NX379sXHx4cuXbpgbGyMWq3m77//Jjg4mB07dqDRaOjZsyf+/v54e3tjZFT6/f6USiUTJkxg1apVdOrUicOHDwMFbTFu3rz5xBurCZn5/HEzQ2cTpwsnSL9lb1np+yCKz1oQnk4kKAVBqBBSclSsvvhQ12GUuoBXamFl+ugUcqF8qVQqzp8/X6Q6Mi4uDgAbG5si1ZGurq6Vou+RUDyNGjVixIgRzJgx47m29/b2RiaTsXv37lKO7PEkSaJt27ZYWFhw5MiRcjnm/7pz5w5z5sxh1apVVKtWjcmTJzNu3LgKn5h8kszMTMLCwrQJy5MnT5Kfn0/t2rW1CUtzc3NmzJhBamoqS5cuZcSIEeKmhZ6rVasWDx8+5MiRI3Ts2FHX4QgVTFpaGtOmTWPZsmXY2tpy584dzMzM6Ny5s3bYTpMmTTh58iQhISGEhIRw7do1atasSa9evfDx8aFbt26YmZnx4MEDtmzZQnBwMNHR0dStW5fhw4fj7++vXY5dmr7//ns++OAD7X/LZDKWLFlCYGDgI68VVX3lT5fVqm3rmNKxClSrCvpLJCgFQagQJEni23MPijTh1ncmhjImtLASF7E6kJKSoq2ODA8PJzIykszMTORyOa1atSpSHWlvby/+H1VhderU4aOPPuLzzz8v8baSJGFjY0NAQMBzJzhL6s8//6Rnz57s37+f119/vVyOWeju3bt88803/PDDD5ibmzNp0iQCAwOxtLR89sZ6JDs7m/DwcA4fPsyhQ4cIDw9Ho9Egl8vp3LkzPXr0wMvLCxcXFwwNxQ0ofdWqVSvOnDnDgAED2LZtm67DESqg8ePHs3fvXi5dukRsbKy2uvLo0aPk5+fTpEkTevToof1OiIuL0yYrY2NjsbCwoGfPnvhnj1tUAAAgAElEQVT4+ODt7U21atU4e/YswcHBbNq0ieTkZNzc3PD392fo0KHUqlXrhWNWqVR06tSJiIgI1Gq19nFra2tu3bqlvQErSRJh95QVsi9ih/rmeNYzq/TnZv/b77MsroAK91vY71NUTQoVnUhQCoJQYRz8J4uTSUqd3sEtLTLAva4ZnUX/yTKnVqu5cOFCkerIK1euAAXLmv6bjHRzcyvzgR2CfrG0tCQoKIiPP3607+yz3L59m4YNG/Lbb7/Rt2/fMoiuKEmSUCgUGBoacuzYsXK7eEtMTGTu3LmsXLkSU1NTJk6cyPjx4yv9UJhTp07h6+vLtWvXGDVqFHXq1CE0NJTw8HByc3OpUaMGHTp00PaxbN26dbEHUQi698UXXzB79mzs7e2Jj4/XdThCBeTh4YGTkxObNm0q8nhmZiYHDx7UJixv3ryJiYkJXl5e2mE7kiSxfft2QkJCiImJwdTUlO7duzNgwADeeustzM3N2b17N8HBwfz555/I5XL69u2Lv78/Xbt2fe6bH5s3b2b48OHIZLJH2hfMnj2bKVOmAHA8MbtCJicLdahvTjubyn++ppEkrqfnE31fyY2M/FJLVBbux9HSiDZ1zGhc3QiDSp7wFSoHkaAUBKHCSM1V80Nsqq7DKDVjnGtRy0RU15S21NTUItWRJ06cICMjA0NDQ1xcXIokJB0dHSv9HXjhxcjlcpYtW8b7779f4m0Le0HeunWLhg0blkF0Re3bt4/u3buzd+9eunXrVubHu3fvHvPmzWPFihUYGxvz8ccf8+GHH1KjRo0yP7YuqVQq5s6dy1dffUXz5s3ZtGkTr776qvb5nJwcIiMjtUN3wsLCUCqVWFpa0r59e23Csk2bNmXSZ04oHQ8ePKB27dqYmZmRnV1xEzWCbuTl5VG9enXmzZvH+PHjn/g6SZK4fPkyf/31F3v27OHIkSPk5ubi4OCgXQru6OjI3r17CQkJISIiAiMjI7p27YqPjw99+vRBpVKxadMmgoODiY2Nxc7ODj8/P0aOHEnTpk1LFPeDBw/44YcfOHfuHNHR0Vy7dk1bSWlkZERubi7R93PY/0/WC30+5aEqLPf+r9RcNaeTczidkqNdUWYgA00xsjX/fZ2JoYxWtU1pZW0qrkMEvSMSlIIgVCg/x6VxMyNfr6soZYCDpRGDnSr3RXx50Gg0XLx4UTvIJjw8nEuXLgEFy5X+m4ws7MsnCMWlUqkwMjIiODiYkSNHlnj76dOns2LFCu7du1fmiXBJkmjfvj1qtZrw8PAyPV5SUpJ28quRkREfffQREyZMoGbNmmV2zIri6tWr+Pn5ERkZyZQpU/jyyy8xNjZ+6jZ5eXmcPHlSm7A8duwY2dnZWFhY0K5dO+2UcDc3t2fuSyhfMpkMAwODIkthBQEgOjoaNzc3wsLCUCgUxd4uOzubw4cPa6srr127hpGRER06dKBHjx60atWK2NhYtm/fztGjRwHo1KkTPj4+9O3bl9u3bxMcHMyWLVtIS0ujffv2+Pv7M3DgwOdqp5Gbm8ulS5c4dOgQd+7cIfDLWWy+mlbi/ejK201rVLllyZIkkZqrITFbRaJSxZ2sfBKVKlSaR18rNwAbMzm2FkbYmMmxMZdTy8RA3JwX9JZIUAqCUKFcTcsl5HqGrsN4YQMaV8ephrgQLamHDx9y4sSJItWRaWlpGBgY0LJlyyIJySZNmogTMOGFZGRkUL16dbZs2cKQIUNKvP1bb72FSqXir7/+KoPoijp48CCvv/46u3fvxtvbu0yOcf/+fRYsWMDy5csxNDRkwoQJfPTRR6XSF62ikySJlStXMmnSJGxtbdmwYUOJkhL/lZ+fT3R0tHbozrFjx8jMzMTMzAxPT0/tlHB3d3dMTExK+Z0IJVH4N0RcDgn/a+XKlQQGBpKenv5Cg/Pi4uLYs2cPf/31F4cOHUKpVNKwYUPefPNNFAoF6enp/Pnnnxw8eBC1Wo2np6e2Z+WpU6cIDg5m//79mJubM2DAAPz9/enYseMj5z9JSUn8/PPPjB079omtJvI1EmsupupsgnRJFU6cHv1KrSo/1EWSJDQSqCQJtQYMDUAuk2EgQ5wLC5WKSFAKglChaCSJVbGppOnJydP/kgE1jA0IcK4ler08g0aj4fLly9pkZFhYGBcvXkSSJKysrB6pjqxsgzgE3UtKSqJevXrs2LGDPn36lHh7W1tb/P39mTVrVhlEV1SnTp3IzMzk5MmTpX4xkpycrE1MymQyPvzwQz7++GOsrKxK9TgV1Z07dxg1ahR79+7l/fffZ/78+aVaja1SqYiJieHw4cMcOXKEo0ePkp6ejqmpKR4eHtqEpYeHB6ampqV2XOHZRIJSeJJRo0Zx+vRpTp06VWr7VCqVHD16VFtdefnyZeRyOZ6ennh5eSGXy4mKimLfvn3k5ubi5uaGj48PCoWCo0ePsm7dOq5du0bjxo0ZOXIkI0aMoFGjRgB89NFHfPvtt/j5+REcHIyBgcEjx99/O5Po+zl6dX4tA9zqmPK6XTVdhyIIQjkQCUpBECqchMx8vVp+8r+GN62BXRVbjlIc6enpRaojIyIiePjwITKZjObNm6NQKPD09EShUNC0aVNxR1goc7du3cLe3v65ejrevXsXW1tbQkJC6N+/fxlFWODIkSN06tSJnTt30rt371Lbb0pKCgsXLmTZsmUABAYGMnHiRGrXrl1qx6jotm7dyvvvv4+pqSk//vgjb775ZpkfU61Wc+bMGW3CMjQ0lIcPH2JsbIyHh4e2h6VCoRBDvcqYkZERKpVKJCiFRzRv3pz27duzcuXKMjvGjRs3+Ouvv/jrr784cOAAWVlZ1K9fny5dulC7dm3i4+PZv38/2dnZtGjRgv79++Pg4MDhw4f59ddfyc7OpmvXrgwYMID33ntP+3M8YcIEFi1aVOQ8St/PraviUm9BqIpEglIQhApJ3OXVb5IkceXKlSLVkRcuXECSJGrVqoWHh4e2OtLd3b3STwMWKqbLly/z8ssvc+TIETp27Fiibf/44w969erFjRs3cHBwKJsA/9W1a1eSk5OJiYkplcT9gwcPWLRoEUuXLkWj0TBu3DgmTZqEtbV1KUSrHx48eMC4cePYsmULgwYN4vvvv9dZYlatVnPu3DltD8vQ0FBSUlIwMjLC3d1dm7D09PSkWjXx96U01axZk7S0tBL3GRQqt4yMDGrUqMGaNWsYNWpUuRwzNzeXY8eOaYftXLhwAQMDA9zd3XF0dOThw4ccP36c9PR0mjVrRq9evbCwsODgwYMcO3bskf39d2K3WJ0kCIK+EAlKQRAqJNEnR79kZGQQGRlZpDrywYMHyGQynJ2di1RHNmvW7LFLjwShvJ05c4ZWrVoRGRlJ27ZtS7Tt119/zZIlS0hOTi7Tat/jx4/Tvn37UqnUTE1NZfHixSxZsgSVSsUHH3zA5MmTqVOnTilFqx/27duHv78/2dnZfP/99wwdOlTXIRWh0Wi4cOGCNmF55MgR7t+/j1wux83NTTt0p127dqL1xQtycXHh7NmzDBs2jM2bN+s6HKGCKKxaP3v2LC1atNBJDAkJCdpk5f79+8nIyKBOnTo0b94cjUbD2bNnSU1NxcHBgZs3bz62CnjevHlMnjxZ9HcXBEFviASlIAgVlr4tR6kqy08kSSIuLk6bjAwPD+fcuXNoNBpq1KhRpDrytddeo0YNMc1cqJgiIiJQKBTPdRHap08flEol+/btK6PoCnTv3p07d+5w5syZ507sP3z4kG+//ZZvv/2WvLw8xo4dyyeffELdunVLOdqKLSsri08//ZTvvvuON954gx9//BE7Oztdh/VMkiRx8eJFbbLy8OHD3Lt3D0NDQ1xdXbUJy/bt24vv2xL67LPPmDt3Lo0bN+batWu6DkeoIBYsWMBXX31FWloahoaGug6H/Px8wsLCtAnLM2fOAPDyyy9jaGjIhQsXnrhtVFQUV2s4cTMjXy9u+D+JDHCwNGKwk/iOE4TKTCQoBUEoFZIkof53upxGAwb/TpczfMHpclH3ley/nVWKkZaNrnYWuNV5/imPFVnhYI7/VkcmJycD8MorrxQZZvPKK6+I6khBbxw6dIguXbpw9epVnJycSrStnZ0dvr6+zJkzp4yi+/8E6tatWxk0aFCJt09LS2PJkiUsXryYnJwc3n//fT755BNsbGzKINqK7cSJE/j6+nL79m3mz5/P+++/r7ffVYUtNAqTlUeOHOHOnTsYGBjQqlUr7dCdDh06VIkJ7C8iMTGR+vXrY25uTlZWxT/XEMrHoEGDSExMJDQ0VNehPNadO3fYu3cve/bsYefOneTl5T32dU2aNCHizAXWXNH/6slCY5xrUctE90ljQRDKhkhQCoJQYpIk8SBXTWK2isRsFXezVSQqVag0j75WbgA2ZnLqm8ux+fcfKxPDEiUtjydmc/Rudim+g9LVob457WwqxyADSZK4fv16kerIs2fPolarsbS05LXXXtMu1X7ttdfExa+g1/bs2YO3tze3b9+mQYMGxd7u3r172NjY8MsvvzBw4MAyi69nz57cuHGDc+fOlaiKJz09naVLl7Jo0SKUSiXvvfcen376aZVMTObn5zNjxgxmz55NmzZt2LBhAy+99JKuwypVkiRx7dq1IgnLhIQEZDIZLi4u2h6WHTt2rFIDkIpLJpNhYGCAWq3WdShCBeHo6IiPjw8LFizQdSjP9PLLL3P58uXHPte5c2embtzFySSlXldPFpIB7nXN6NzAQtehCIJQRuS6DkAQBP2RmqsmJjmHMyk55KoLTnUMgMfkJbVUGridpeJOlkr7OhNDGS61TWltbVqsu6Ce9QoqEytikrJjfXMU9fS3cjI7O5uoqCjtIJuIiAiSkpIAeOmll1AoFLz33nsoFAqcnZ0rxFInQSgtSqUSAFNT0xJtd+rUKQDatGlT6jEVioqK4s8//2Tz5s3F/r3LyMhg2bJlLFy4kKysLMaMGcNnn31G/fr1yyzOiiw2NhZfX1/Onj3L9OnTmTJlCnJ55Tv1lclkODk54eTkxDvvvIMkScTHx2uTlTt37mTJkiUAtGjRokjCsqot838SjeZpZzJCVZKUlER8fDzu7u66DqVYHjx4AIChoaE2yS6Xy6lVqxbvjx3LmZTSGzi5f+U8Dqyaz5xT9wGY29OVxm6eDAxaXkpHeDoJOJ2SQydb8zLt/SwIgu5UvrM0QRBKlUaSuJaeR/T9HOIz8pFBkROd4p7S//d1uWqJk0lKIpOUOFga0aaOKU2qGz9xMp9MJqOdjTkmhjL23856JIbyVnh8fVvWXXjR+t/qyDNnzqBSqahWrRru7u4EBARoqyNFpY1Q2RUmKM3MSvZ7HB0dTc2aNXF0dCyLsACYMWMGzZo1Y/Dgwc98bWZmJsuXL2fBggVkZGQQEBDAZ599VqKq0MpEo9GwdOlSPvvsMxwdHQkPD8fNzU3XYZUbmUyGo6Mjjo6O+Pv7A3Dz5k1tD8s9e/awfHlBQsHZ2VmbsPTy8qqSVbaC8F8nT54EKPHgNF3x8PAgNzcXV1dXWrduTatWrXBycsLAwICUHBWrLz7UdYilKlctkZqrwcpU3DAXhMpIJCgFQXiihMx8dt/M4GGehsLUYWklBgv3czMjn/iMfGoaG9DT3vKpQ2bc6phRz0zOHzczdDbdu3Ba91vPiLUiUCqVREdHF0lIJiYmAtC0aVMUCgWjR49GoVDQvHlzUR0pVDk5OTlAySsoo6OjcXV1LbMKjpiYGH7//Xc2bNjw1N/LrKwsvvvuO+bPn096ejqjR49mypQpejH4pazcunWLkSNHcujQISZMmMDs2bNLnICujOzt7fHz88PPzw+A27dvaxOW+/fvZ8WKFUBB5Xzh0B0vLy9sbW11GXa5kMvlqFQqXYchVBAnT57E2toaBwcHXYdSLL///vsTn0vMrpw/14nZKpGgFIRKSiQoBUF4RL5G4sidLKLu55R6YvJ/Fe43LU/D5qtpuNUxxcvWAiODx1/4N6xmxOhXahWJrzwSlYXHcatjSsenxKcrkiRx69atIsnI06dPk5+fj7m5Oe7u7vj7++Pp6YmHhwfW1ta6DlkQdE6pVGJsbFziYSmnTp0qVmXj85o5cyZNmjRh6NChj30+KyuLFStWMG/ePB4+fMg777zD559/TsOGDcsspopOkiQ2btxIYGAgNWrU4MCBA3Tp0kXXYVVYdnZ2vP3227z99ttAwdCN0NBQbR/LVatWAeDk5KRNVnp5eVXKnzFzc3PS09OJioqqUpW2wuNFRkbStm3bSrGEODFb9cxWTGUtT5mFsVnp9Yw0kEGiUoUzJqW2T0EQKg6RoBQEoYiEzHxthSKU31LqwuNE38/halreUysUjQxkdLWrxks1TYpUeJZFrIX7rVGMCs/ylJOTw6lTp4okJO/cuQMUTG1UKBSMHDkShUJBixYtKmXfNUF4UTk5OSWurktOTubWrVtl1n/y3LlzbN++nR9//PGR39vs7GxWrlzJ3LlzefDgAaNGjeLzzz/H3t6+TGLRF/fv3+e9995j+/bt+Pn5sWTJEmrWrKnrsPSKra0tQ4YMYciQIUDBIKjQ0FBtH8s1a9YABcND/puw1Jcqs6dp1KgR58+fZ+nSpWzYsEHX4Qg6JEkSJ0+e5IMPPtB1KKXibrbquZOT8TER/LFwGvfiLlK9bn06+o175jbRv2/h16/G8+7qHZzdt5Pz+3ehVuUz/UgcuVmZ7Pt+DrGH95CRfA/TatWp3+xV3hw/jQavuBQ7Lo0Ed7Lyn/NdCYJQ0YkrVkEQtKLuK3Xe41EC0v+tpnxWj8eG1YwIcK7F9fR8ou8ruZGeh0ajxsDwxb/aCj+Dgh6ZZjSubvTEHpnl4fbt24SFhWmTkTExMeTl5WFmZkbbtm3x9fXVVkeKoQeCUDxKpfK5lndD2Q3ImTlzJg4ODgwfPlz7mFKp1CYmU1JSGDlyJF988UWlSA69qD/++IPRo0ejUqn49ddf8fHx0XVIlUK9evUYOHCgdkr9/fv3OXr0qDZhGRwcDBQsHS9MVnbq1AlHR0e9qzzr2rUr58+fJywsTNehCDoWHx9PcnKy3vSffBpJkkhUPt8S78Srsfz4wSAsatbm9TGT0ahV7P9hLtWsind+uXPOp1jUqk2XdyeSn1Mw4PK32ZM4v38XisHvULdxM7IfpnLz9AmSblwtUYISCiooJUnSu+8aQRCeTSQoBUFAkiTC7im1U7J1OYDmv8fffzuLXLWEZz2zJ56EGMhkyJIT+PGDsUTFXsHv89nYKbqSL8n+fb7gbuuz/Pd1JoYyWtU2pVUxp4yXttzcXGJiYopUR96+fRsoqF5RKBQMHz4chUJBy5YtMTKqGFWdgqBvlErlcw3IqV69Oo0bNy71eGJjY9m2bRs//PADRkZGKJVKVq1axTfffMP9+/cZMWIEU6dOLdPhPPoiIyODjz/+mDVr1tCzZ0/WrFkjBryUoTp16tC/f3/69+8PQEpKCkePHtX2sdy4cSOSJGFnZ1ckYenk5FThkwiffvop3377rbZHs1B1RUZGAvozIOdp1BKonrN88u+Vc5EkiTFrd1GzfkFP4+ZderFkcMdibW9evSajV27H4D89lC8f/Zu2/YbT8+Ov//PKwOeKT6UpOGc3rNhfLYIgPAeRoBQEoUhysqIpjKudjfkjz+Xn57No0SK++uor6taty4aV39OzZ08kqWDCX2K2ikSlijtZ+SQqVY89UZMbgI2ZHFsLI2zM5NiYy6llYlCuF1R37tzRJiLDwsI4deoUubm5mJqa4ubmxtChQ1EoFCgUCnEBLgil6HmWeJ86dQpXV9cS960sjlmzZmFnZ8fgwYNZtmwZc+bMISkpCV9fX6ZOnUqTJk1K/Zj66NixY/j5+ZGUlMSqVasYPXp0hU+CVTa1a9emb9++9O3bF4DU1FSOHTumTVhu2bIFjUZD/fr1iwzdeemllyrc/6vCv6tKpVLHkQi6dvLkSRwcHCrFShSV9HzlBhq1mqvhh3Du1EObnASo27gZTRWduXxs/zP30ba/b5HkJICpZQ0Szp8i/X4i1eu8+LmsSpIwpGJ9lwiC8OJEglIQqriopIqbnCx09G42JoayIsu9T5w4QUBAAOfPn2fChAkEBQVRrVo1AGQyGVamhliZGmqbaEuShEYqOKFRa8DQAOQyGQYyyvViKS8vj9OnTxepjrx16xZQ0AdLoVAwZMgQFAoFLi4uGBsbl1tsglDVPO8S77JYRnz58mW2bNnCoEGDcHZ25u7du9rEpJOTU6kfTx/l5uby5ZdfMn/+fDw9Pdm/f3+ZVLIKJVerVi169epFr169AEhLS+P48ePaoTvbtm1DrVZTr149OnbsqE1YOjs7V5iEpUajy1EiQkVQOCCnMnjeH+es1GTyc5RYN3r0u9Xa3qlYCcpato0eeazHh1+ybXog3/RwocErLrzUriuubw3Cys7hueJUawAxyFsQKh2RoBSEKiwhM5/9/2TpOoxi2X87i3pmcmpolHz++ed8//33uLq6cvLkSVxdXZ+5vUwmw1BGwd3WcjyhSUxMLFIdGR0dTU5ODiYmJrRp04aBAwdqqyNtbW3LLzBBEEpcQZmSkkJ8fHyxvnNKIjc3Fz8/PwwMDNi2bRtvv/0206ZNo2nTpqV6HH129uxZfH19uXjxInPmzGHSpEkYGoqr04qqRo0aeHt74+3tDRQsyQ8LC9MmLD/88ENUKhXW1tbaJeFeXl40b968TKqTBeFZVCoV0dHRBAUF6TqUUqHLXyMj00f/rrbs1heH1h5cOPQncRGHCd3wHUfWL2P4gmBeate1xMcwFF8TglApiQSlIFRR+RqJP25m6HQgTknIgF8uJrFsiBfJ9xJZuHAhgYGBFWo6dX5+PmfOnClSHRkfHw+AnZ0dCoWCAQMGoFAoaNWqFSYmJroNWBCquJL2oIyJiQFKb0BOXl4ewcHBBAUFcffuXdzc3Ni0aRMvvfRSqey/MlCr1SxYsIBp06bx8ssvExUVRcuWLXUdllBClpaWdO/ene7duwOQlZVFeHi4dujOxIkTyc/Px8rKio4dO2oTli1btiyXRLSBgYGooKziLl68SHZ2dqWpoJQ/Z2WyRS1rjEzNSL51/ZHnkm/GvVBM1evYoBg0CsWgUWQ+uM+yYa9zaO3i50pQPu/7EwShYqs4V/aCIJSrI3eySM/T6EVyEgqSqHkGRvT+OIhJvTrQqNGjy0fKW1JSUpFk5MmTJ1EqlRgbG+Pq6kq/fv201ZF2dnbP3qEgCOWqpEu8o6OjqVat2gtXNubn57Nu3TpmzZrFrVu3cHR0xNramtDQ0BL3xKzMrl+/jp+fH2FhYXzyyScEBQWJGzuVhIWFBV27dqVr14LEhFKpJCIiQpuw/Oyzz8jNzaVmzZp06NBBm7Bs1apVmdyYtLCwICMjg9jYWJydnUt9/0LFd/LkSQwMDErtBpSuGcoK+qyXdFCOgaEhTRWdiT28h4d3b2v7UCZdv8LV8EPPFYtGrSYvOwtTy+rax6pZ1aF6HRtUeXkl3p/coGC4pSAIlY9IUApCFZSQmU/U/Rxdh1FiMgMDbD27I7OqUe7HVqlUnDt3jrCwMG1C8vr1grvLtra2KBQKZsyYgUKhwNXVtcR97QRBKH85OTlUr1792S/8V3R0NK1bt37uJaj5+fls2LCBmTNncvPmTQYNGsSqVavw9vZm/vz5Ijn5L0mSWLNmDR999BF169YlNDSU9u3b6zosoQyZmZnRuXNnOnfuDBT8bp44cUI7dGfq1Kna39f27dtrB++4urqWSsLSzs6OixcvsnDhQtauXfvC+xP0T2RkJM7Oztp+5vpOJpNhYybndpaqxNt2HfMJV8IO8sM7vfAY5I9GpSJs6xrqNn6ZxKsXSry/3OxMvnmzJc279qJ+0+YYm1sQd+IIty/E4F1kqnfx2JjJK0zvWkEQSpdIUApCFaORJHbr0dLu/yUDdt/MIMC5FgZleHKSnJz8SHVkVlYWcrkcV1dXevXqpa2ObNiwoThREgQ9pFQqSzStNTo6mt69e5f4OCqVio0bNzJz5kyuX7/OwIED2bVrF82bNycgIIDatWszZsyYEu+3MkpMTOTdd9/ljz/+YPTo0SxatAhLS0tdhyWUM1NTU23VJBT0aT158qQ2YRkUFMSnn35KtWrVaNeunXbojpubG0ZGRiU+XufOnbl48SJHjx4t7bciVGBKpRK1Wk21atUq1YCcQvXN5dzJUlHS5gX1m73KqOVb2b3oS/5eMZca9WzpOuZTMpLvPVeC0sjUDI+Bo7gacYgLB3cjaTTUbuhInynz8BjoX6J9GcjA1qLkv+OCIOgHmSRJ+pijEAThOV1NyyXkeoauw3hhAxpXx6nG4ydc5+bmlmgZoFqt5vz589pBNuHh4cTFFfTZsbGx0SYiFQoFbdq0EVVOglBJtG3bltatW7Nq1apnvjY1NRUrKys2btzI8OHDi7V/lUrF5s2bmTFjBteuXcPHx4fp06fTokULAG7evEnTpk2ZPXs2kyZNeqH3Uhls376dgIAADA0NWbNmjXYitCD8r7y8PKKjo7VDd44fP05mZibm5uZ4enpqE5Zt27Yt1vlAXFwcTZs2xcLCgszMzHJ4B0JF0KlTJ0JDQ3FyciIuLo4hQ4YwceJEWrRogbHx488x9cmFBznsuln5fp5721vibCXafQhCZSQSlIJQxfwcl8bNjHy9rJ4sJAMcLI0Y7FR0qbckSSxYsIDPP/+co0eP4uHh8djtU1JSiIiI0FZHRkZGkpmZiVwup1WrVkUSkvb29qI6UhAqqRYtWtClSxeWLFnyzNcePHiQ119/ndjYWF555ZWnvlalUvHTTz8xY8YM4uLi6NevH9OnT8fFxaXI68aOHcu2bdu4ceNGpVlW+DzS0tIIDAxk48aN9O/fn5UrV1KnTh1dhyXoEZVKxalTp7QJy6pvSYYAACAASURBVGPHjpGeno6pqSmenp7aaszXXnvtiS1YZDIZBgYGqNXqco5e0BV/f3/Wr19P4eWwTCZDkiRatGjB2bNndRzdi0vJUbH64kNdh1HqAl6phZVp2Q/PEgSh/Ikl3oJQhaTmqonPyNd1GC9MAm5k5JOaq6aWScEJilKpZNSoUfz888/IZDL27duHh4cHarWa2NhYbTIyLCyMK1euAFC3bl0UCgVTp05FoVDg5uaGubm5Dt+ZIAjlqSRDcqKjo7GwsKBZs2ZPfI1arWbLli3MmDGDK1eu0KdPH7Zt20arVq0eee3t27dZu3YtQUFBVTo5efDgQUaOHElaWhrr16/H19dX3BQSSkwul+Pu7o67uzuTJ09GrVZz+vRp7dCdxYsXM336dExMTPDw8NAmLBUKRZFVEWKSd9XStWtX1q1bp/3vwkRlz549dRRR6bIyMcTEUEauWp/LEooyMZRRy+T5+kALglDxiQpKQahCDv6TxckkpV5XTxaSAe51zejcwIKEhAR69erFuXPn0Gg0yGQyHB0dady4MSdOnCAjIwNDQ0NatmyJQqHA09MThUKBo6OjuBAWhCrMzs6O0aNH89VXXz3ztUOHDiUhIYFjx4498pxarWbr1q18/fXXXL58mV69evHVV1/h6ur6xP2NHz+ezZs3Ex8fXyV7LCqVSqZMmcKSJUvo3Lkz69ato1GjRroOS6ik1Go1Z8+e1fawDA0N5cGDBxgbG+Pu7o6XlxezZs0C/j9JJVR+iYmJ1K9fX/vfhoaGdOrUib1792JoWDkq9Crrub8gCJWTqKAUhCpCkiTOpORUihMUKKiiPJ2SQ2rkPvx8fcnOztZeVEiSxPXr13F2dmbKlCkoFAratm2LhYU4oREE4f8plcpi95SNjo6mR48eRR5Tq9Vs27aNr7/+mosXL/LWW2+xadMm3Nzcnrqvu3fvsmrVKqZOnVolk5PR0dH4+vpy/fp1Fi9ezPjx4597MrogFIehoSGtW7emdevWTJgwAY1Gw/nz57UJyx9++EH72sIl4Z06daJdu3ZVusK5srOxsaFZs2ZcuXIFmUxG/fr12bp1a6VJTgK0tjYlMkmp6zBKhQS0si7eqgdBEPSTSFAKQhXxIFddoZZ4pN9PJDJkA86de2D7Uovn2keuWmL8Z1PJysp67PPz5s17Zq84QRCqruIu8U5LS+Pq1at88cUXQMEy0F9//ZWgoCBiY2Px9vZm/fr1xZ4AO3/+fExNTQkMDHyh+PWNSqVi9uzZzJgxAxcXF06dOoWzs7OuwxKqIAMDA1q2bEnLli0JDAxEkiRMTU3Jy8vj1KlThIeH880332BoaEibNm20Q3fat29P9erVdR2+UIo6d+7MlStXMDQ0ZNeuXdSuXVvXIZWqWiaGOFgaVZr+84WtnQRBqJzE7WpBqCISs1W6DqGI9PuJHFg1n7uXz7/Qfn789XeWLVvG22+/Tb169Yo8FxER8UL7FgSh8pIkiZycnGJVUMbExADQunVrfv31V1xcXBg8eDCNGjUiIiKC3bt3Fzs5ee/ePVauXMmECROoUaPGszeoJK5cuUK7du34+uuvmTJlCuHh4SI5KVQIhcNx8vLyAMjNzdU+991339G4cWM2btxIz549qVWrFm3btmXSpEns2rWLhw8r3wCSykiSJFQaiRy1hux8DTlqDSqNhCRJ2lYcc+fOfWy/4MqgTR1TvU5OQkH1ZJs6xVvxIAiC/hIVlIJQRSRmqzAA9LX9e54yG2OzogNsDGQgt7Jh3LhxjBs3Tru0+/Dhw0RGRj5zmaUgCFVXXl6etmrqWaKiojA2Nmb48OGcO3eObt26sWrVKhQKRYmPu2DBAuRyOR9++OHzhK13JEni+++/Z/LkydjZ2XH8+HFee+01XYclCM8kl8sZM2YMY8aMQZIk4uLitFPCt27dysKFC5HJZLRq1Uo7dKdjx45YWVnpOvQqTZIkHuSqScxWkZit4m62ikSlCtVjToDlBlCv0yA2R72Oi2MDUnJUWJkYVrr+5E2qG/N/7N13eFPl28Dx78lo070oLaVA2Za9R5kiDmRvedkiQxw/EUVxFQeKuFAUEBQUFBUR2QoUkCWzbETZpS0tLdDdtM047x8loWnT3ZKmfT7XlSvNyck5T9KV3M/93Leng4KkLKNdBiolwMNBQT13ta2HIghCORNNcgShkouOjuatt95i3aatpCTewd3Xn0Yhvej38lxUagfuRF3jjy/e4fKRfeizMvFv0IRek1/kgW6PmI8RvvEn1s55nlmbw/EKuNfE4MqxAyybMojJS9dTr10XAJZOHkh64h1GffgNG+e9QuTZ4zi5eRAyago9Jjxn8bjchs35grYDRpmPMfztL9n8yRtEnz9F+8Fj0aYk8t/+MF7bdhalOvtNSqCLijGNPHnkkUeIiIjgv//+K8+XUxCESiIpKQlPT0/WrFnD8OHDre4jyzIbNmxg4sSJJCYm0rt3b+bMmUOXLl1KdM74+HiCgoKYMWMG7733XmmGbxeio6OZOHEiO3bs4JlnnuHDDz8UtYCFCmfGjBksWLAgz/bp06fz1VdfWX2MLMtcvXrV3CV8z549REREIEkSzZs3N9ew7N69O9WqVSvvpyAACZkGTtzK4NTtDHNJo6JOzOfcz1Ep0dJHQ+tqmkq1nDgyVcePF5NsPYwSG9PQg0BXEaAUhMpOZFAKQiV248YNOnToQGJiIm0Hj8WnTkOS42M4G7YJXYYWbXIiiyc+ji5DS8gTk3H28Ob45p9ZOWMso+cvp2mvviU6rzY5kRXPjqTpg31p/vBAzoZt4s8v3sG/YTCNu/TGt25Dej/9KmGL59FhyDiCWncCoE7Le0sk05PusOK5J2jx6CBaPz4cVx9fHJycObF5DRcO7ia4e3YANVarJyYmhl27dhEaGlr6F00QypEsyxhk0MsyRiMoFKCSJJQSlS5jo6LTarObBlhb4i3LMhs3bmTOnDmcPHkSZ2dnBg8ezLp160p1zk8//RRJkpgxY0apjmMPfvrpJ6ZPn46zszPbtm3jkUceKfxBgmADn332GUuXLiU9Pd1ie37BScj+e12vXj3q1avHk08+CcC1a9fMwcotW7awcOFCAJo2bWoRsMxdjkYoOaMsczk5i/D4DK6l6JDAIkOwqKuGcu6XaZA5GqflSJyWIDc1bX011Hd3QGHn/6Nruapp56shPN6+GmZKQDtfjQhOCkIVIQKUglCJzZ49m9jYWA4cPMRf6rrm7Q8//SqyLLPlkzdJvR3P1G83mYOE7YeM4fORPdny6VsE9+xTos6qyfGxDH/nK9r0GwFAu0Gjmd+3NcfW/0jjLr1x86lO4y4PEbZ4HrVbtKN137zZSym34hj02sd0HDbevM1oNOLhF8DJrb+aA5R6I6z+6SeMRiNjxowp9lgFobwUd5mZv5OKGs4q/O9eKuMys4rEFKDMucRblmU2b97MnDlzOH78OD179uSPP/7g8ccfp3///qU63+3bt/nyyy959tlnK10Thpzu3LnD9OnT+eWXXxg1ahRfffUVXl5eth6WIBTo5s2buLm5mW8XpfRDbkFBQQQFBTF+fPb7lsjISHPAcseOHSxatAiABx54wNx0p0ePHtSoUaNsnkQVE5mqY0tEColZRkz/Kcsq8GY6TkSKjmspOjwdFPSt40YtOw+S9Qhw4WJSFsl2stRbAtwdFHQPEJn3glBViCY5glBJGY1G1q9fT//+/WnVtm2e+yVJ4r8DYQQ2a2MOTgI4OrvSYchYEm5cJ+5KyZZLOzi7WAQdVWoHApu24U50RJGPoXJwpO3AURbbFAoFrfoM5fzebWSmpZq3r169mpCQEOrWrZv7MIJw3yVkGtgVncaCM3dYdj6RTRGphMdnEJVmPTgJ2YH2qDQ94fEZbIpIZdn5RBacucOu6DQSMg339wkUoKBGA/YmIyMDyM6glGWZLVu20KFDBwYMGICrqyu7d+9m9+7duLi4IMsyba38HS2OBQsWYDQamTlzZlkMv0L6888/adasGdu3b+fnn39m9erVIjgp2AVXV1eef/558+358+eX+pi1atVizJgxLFu2jAsXLhAdHc3q1avp0aMHu3fvZtSoUQQEBNCoUSOmTJnCjz/+SFRUVKnPW9npjDJhUan8eDGJpKzsf6rl9R/IdNykLCM/XkwiLCoVndH+/t+ZqBUS/eq42UVwErJf/3513FArxGStIFQVIoNSECqp+Ph4kpOTadasGcZ8giKJMVE0b5b3Q3f1uo3u3h+Jf4PgYp/bo3pAnswvJ3cPYi/+U+RjuFevgUrtkGd7634j2fPdQs7t3kKbfiOJv3aJ4+HhPPbYY8ybNw83N7cCL66urqhU4k+fULYq4zKzyp4BasqgPH78OC+++CJHjhyha9eu7Ny5kwcffNA89vDwcBwdHQkOLv7fQpOEhAS++OILpk+fjq+vb5mMvyJJS0vjpZdeYsmSJTz66KMsX76cgIAAWw9LEIrl888/58svv8RoNPLss8+iN8plWo4jICCAUaNGMWpU9uRrbGwse/fuNdexXLZsGQD169c3Z1f26NGDOnXqlNlztHeRqTo2R6SQXM6BydxM5wmPz+BiUhb97Dibsparmt6BLoRFpdl6KIXqHehit6+zIAglIz6lC0IVUIJV2pbyeTNuNFjP7FIorRcVL06WldrR+vIqv3qNqRnckhNb19Km30hObP0VSZI4e/YsR44cISUlBZ1OV+CxnZycCg1iFhboNF1cXFxKtAxeqDwq2zKzkjQaMGWA3kjT20WjAVmW+euvvwB4/vnnCQkJYceOHTz00EN5gg/h4eG0bNkStbrkr/kXX3xBVlYWL730UmmGXSEdPHiQcePGcePGDRYtWsS0adMqdGBaEHLLORmzPSKJmHQ9n5y+Xe6TMf7+/owYMYIRI7LL4cTHx1sELJcvXw5kLx03BSt79uxJUFBQlfwdOxavJSwqLc8E4P0kA8l3syl7B7rQzjdvDWN70M7XiUyDzL6Y9MJ3tpFuNZzt9vUVBKHkRIBSECopX19f3N3dOXv2LKp83sh61ggkPuJSnu3x1y7evb8WAE7ungBoU5LIuVgvMSayxOOTKPmb69b9RrD107dIjo/l1J/rGDhwEL//fq95RWZmJikpKYVeUlNTLW7funWLq1ev5tnPmF8KKtmZFC4uLkUOaBZ20Wg0VfKDhz3SGWX23EjjWHxGmQcmc8u9zKydr4YeAS5ltuypMmaAWiPLMmFhYYSGhnLw4EEAvv/+e8aOHZvv793x48fp0aNHic+ZlJTEggULmDZtWqVqjpGVlcU777zDBx98QPv27dm6dSsNGza09bAEocgq2mSMr68vQ4cOZejQoQDcunWLffv2metYrly5ElmWqVWrljlY2aNHD+rXr1+p3zfIsszfN7XmYJqtlyebzh8WlUamQSbEz8kuX/8Qv+zgX0UMUnav4UxnPxGcFISqSAQoBaGSUigUDBo0iB9++IET4cdQOdS1yAaQZZnGXXpzYPXXRJw6au6gnaVN48i6VXgF1KZ6vcYA+AQGAXD1+EECGjcHsrMnj6xbVeLxqZ2cgeygZ3G1fGwIWz8LZfPHr3Mn6hpjFnxscb+joyOOjo5Uq1atxOMzkWUZrVZbpIBn7kt0dHSebWlpBS+pUSqVpcrozH1xcMi7TF4ovcq0zKyyZYBaHYcss2vXLkJDQzlw4AAdOnRgzpw5zJkzh4cffjjfD5dpaWn8+++/vPjiiyU+95dffolWq+Xll18u8TEqmnPnzjF27FjOnDnDO++8wyuvvCJKZwh2wZ4mY6pVq8bgwYMZPHgwkF0qImfAcvXq1RiNRgICAiwClo0aNbLLgFl+cgYnKxrTuLr4O9t4JMUnSRJd/J1xVEo2z0wFzOe358xUQRBKT7ybFIRK7P3332f79u307NmTbsPH4xzYgORbNzkbtpGpyzfTY+LznNq2ju+ee4KQUZNxcvfk+OZfSIiOYPRHK8xLl/3qP0Ct5u3YtnAu2qREnDw8Ob1tPUaDvsRj8wkMQuPmwZHfvsfRxRUHJxdqNWuDd83Cay25elWjUedenNmxEWd3D/r161ficRRGkiScnZ1xdnYuk+wno9GYJ3OzoKzO3BmeubeZGn3kx8HBocyyO11dXVHms3y/Kqksy8wqUwZoQXbv3k1oaCj79u2jXbt2bNmyhT59+vDbb78B2SUf8nPy5EmMRiNt2rQp0blTUlL49NNPmTx5cqWoyWg0GlmwYAGvvfYa9evX5/DhwyV+bQThfrP3yRgvLy8GDBjAgAEDgOzs7P3797Nnzx7++usv1qxZg8FgwN/f36KGZXBwsN0GLI/FVdzgpMm+mHQclZLdBtXa+Trh56QyT7ra4n2NqVu3Pdf2FAShbIgApSBUYjVr1uTw4cO8+eabbNz8K6kpKbhXr0GjkF6oNU44uXnw9Iqt/PHFO/z98zfoszLxb9iEcQt+4IFuj1gc64m5i/l97kvs+e4LNG7utBs4mvrtu/Lt08NKNDalWs3wd75k28L3WP/+yxj1eobN+aJIAUqANv1G8O++7TzYfwiOjo4lGoMtKBQK3N3dcXd3L5Pj6XS6AoOa+V2SkpKIiorKs12vLzjo7OzsXKqMztz1O+3pQ1NlWmZWmTJA87Nnzx5CQ0PZs2cPbdu2ZdOmTfTt29f8Gpma5BQUoDx+/DgODg40bdq0RGNYtGgRqampvPLKKyV6fEUSERHB+PHj2bt3LzNmzGDu3LloNNZrBQtCRVJZJ2M8PDzo27cvffv2BbInRA4cOGAOWD7//PPo9Xp8fX0tApZNmza1i9rZkak6wqIrfiMXyP4/7OekstvgWi1XNU8Fe1n8ntyP9wWm87Tz1dD9Pk1aCoJQsUlycbpWCIJgt87dyWBTRKqth1Fm/vnrD1a9OI6Vm8MY2/chWw+nUpBl2Wr9zpIEQE2Xgv7FSJJUJsFO0zHKu37ngdj0Cp3J0a2Gc5GWmVWEDFAov+Vc+/btIzQ0lN27d9O6dWvefvtt+vXrl+dnY+nSpUybNg2DwZDvz82ECRM4d+4cR48eLfY40tLSCAoKYtiwYSxevLhEz6UikGWZ77//nueffx4vLy++//57evbsaethCUKR5JyMqWqZYampqRw8eNDcdOfIkSPodDp8fHzo3r27eVl48+bNK1zAUmeU+eZ8gs2+b8Vl+j4/Fexl90G23JnG5fH6m45rq7IvgiBUXCKDUhCqCH/nyvXrfmTdKrwDg3i8V8mbVwiWJElCo9Gg0Wjw9fUt9fFkWSY9Pb1Egc3IyMg829LTCw4OqlSqMsvudHNzs+jaXBmWmVWmDFBrDhw4QGhoKDt37qRVq1asX7+eAQMG5HvMjIyMQoPa4eHhhISElGg8ixcvJjExkVdffbVEj68I4uLimDp1KuvXr2fChAksWLAADw8PWw9LEIqkIkzG2LLrs6urKw8//DAPP/wwAOnp6Rw6dMgcsJw1axZZWVl4eXnRrVs3c8CyZcuWNi/nsudGmt0EJ+He93nvjTQeCnS19XBKpZarmilNvLiSrCM8XstVK7VaS8p0nOxarU7Uc1fbtHGeIAgVT+WKWAiCkC9vRyWOSsncqdJendr2O7EXzvHf/h0MmvU+3hpRE7GiMnU4d3Fxwd/fv9THMxgM5mzO4mZ1xsXF5dmWmZlZ4PkcHR1xc3OjQfuuDHhvqV0sRy9omZm9Nxo4efIkDRs2xMXFxWL7wYMHCQ0NZceOHbRo0YJ169YxcODAQjOCtFptgcu709PT+eeff3juueeK8UzuPfajjz5iwoQJ1KlTtLIVFc3GjRuZPHkyRqORdevWmRt1CEJFV9knY0rK2dmZXr160atXLyD7b+Dhw4fNTXdef/11MjIy8PDwoGvXruamO61bt76vTbAiU3Uciy+4vnZFJANH4zNo5Olo9xmBCkmigYcDDTwcSMg0cPJWBidzdruXwFiEX6yc+zkqJVr5aGhVym73giBUbiJAKQhVhCRJtPTRcDROa/M366Xx8+wpODi70G7QaJ6ZPt0ugkZC2VAqlXh4eJRZBpdOpys8uJmWjtxlGMgy2MHPmgRsjkjJs8zM3jNA9+3bR8+ePRkzZgzff/89AIcPHyY0NJRt27bRrFkz1q5dy+DBg4u8VNGUQZmf06dPYzQaadu2bbGfy9KlS7l9+zazZ88u9mNtLTk5mRkzZrB8+XL69+/PsmXLyqRBmCDcL/Y+GXO/ODk50bNnT3PJhszMTI4cOWIOWL711ltotVrc3Nzo2rWruYZl27ZtLVYYlCWjLLMlIsXmJUhKSgK2RKQwpYlXpckM9HJU8mBNF3oGOJOQaSQ2XU+sVs+NNB2xWj16Y97HqBTg76QiwEWNv5MKf2cVXo4K8Z5dEIRCiRqUglCFJGQa+PqfBFsPo8xMbeIlZmGFchUWlUp4fIZdfVCSjUZSzh3CcO4Abm5uOAfUJavVI3YRYAUY3dDDIvskPj6eZs2aERcXhyRJrFmzhuXLl/PHH3/QtGlTQkNDGTp0aLFrqL366qusXbuWS5cuWb3/q6++YsaMGaSkpBSrEZdWq6VevXo89thjrFixolhjsrW9e/cyfvx4bt26xeeff87EiRPFB0rBrhyL09pFY5X7vdy7JLKysjh27Ji56c6BAwdIS0vDxcWFLl26mAOW7du3x8HBodDjybJMWloarq75L4G+mJTJb1dSyvJp2MSweu408Cj8NbF3sixjlEEvyxiMoFSASpJQSIj/HYIglEjFqogsCEK58nJUEuSmxt7fMkhAXTe1CE4K5cq0zMyegpMAkkKBW7POHDh3iSXLviHOrwlGo8HWwyoSUwao7u6aMKPRyOjRo7l9+7Z5n+HDh3Pt2jV+/vlnTp8+zfDhw0vU4EGr1RaYQRkeHk6zZs2KFZwE+Pbbb4mLi+O1114r9phsJSMjg5dffpmePXtSq1YtTp8+zZNPPik+YAp2xd66Pkem6mw9jAI5ODgQEhLC7Nmz2bZtGwkJCRw6dIi33noLpVLJvHnz6Nq1K56envTu3Zt3332XvXv35ls+5euvv6ZatWqsXbs233OG5+i0bq8kIDxea+th3BeSJKFUSDgqFTirFTgqFSgVkvjfIQhCiYkMSkGoYsTstCAUzijLLP0ngSQ7KtKfkwR4OCio7+HAcXsLssoy9VUZhPgo+Oabb5gzZ47F3ZIkcfbsWZo0aVKq00ydOpXjx4/n26G7VatWtG/fnmXLlhX5mJmZmdSvX59evXqxcuXKUo3vfjl58iRjx47lwoULzJ07lxkzZti8QYYgFJfo+nz/6fV6Tp48aW66s2/fPpKSktBoNHTq1MncdKdjx444OTnx+OOP88cffwAwb948Zs2aZRHIEqt8BEEQBBGgFIQqprIEXipTfR+h4qksgXx7JctGvp40gIiTh63e7+vrS8eOHUvUnd3JKbtBxbhx47h27Rp79+7Nc/yMjAzc3NxYuHAh06ZNK/K4lyxZwvTp0zl//jyNGzcu8fO/HwwGA/Pnzyc0NJQmTZqwatUqmjdvbuthCUKJ2GM5Dglo56ux+67PJgaDgVOnTplrWO7du5eEhAQcHBzo0KEDhw8fRqe7lzX65JNPsnjxYvPy8F3RaXZfJ91EAjpUd+LBmi6F7isIgiDcIwKUglAFRabq+PFikq2HUWJjGnoQaOcdEoWK7edLSUSk6CrFByW7JMuk3orl/T6tkI15K/D7+PgQEhJitbFRampqgYdWKBS4ubmRlZWFQqGgSZMmeYKYqamprFq1ihkzZtCsWbMCA56mJeBZWVk0bNiQLl26sHr16nJ5WcrKpUuXGD9+PIcOHeKVV14hNDS02EvZBaGisPf3NLnr7lYWRqORM2fOsGfPHtavX8/u3bvz7NO8eXO2b9+On58fC87cMXeJrgwclRIvNPcWy50FQRCKQQQoBaGKEtkGgmBdZVtmZs+GBLnQwMMRSSp6TSuj0UhaWlq+ndlTU1NJSUlh6dKlGAwGevXqlWef6Oho4uPjcXJyQqstuJaYWq3Gzc0NSZK4ffs2LVu2xM/Pr8gZna6urha3VSpVWbx0VsmyzNKlS5k5cyZ+fn6sXLmSLl26lNv5BKG8iVUh9uGzzz7jpZdewmhlwqlDhw5s3XOAZecTbTCy8pMcH4th7xpGDRtCq1atbD0cQRAEu1B+74IFQajQegS4cDEpy+7qNXUPEMtlhPJ14lZ2kX57+L2ozCTgxO0sGnkVr9OtKUPSzc2twP3+/PNPqlWrZrXG5OTJkzl69CgnT55Er9ebg5r5XRITE/noo49o0KABrVu3Nm+/ceNGnn1zLnG0RqPRlGjpurWLi4uLuYFQTEwMkyZN4o8//mDq1Kl8/PHHBXbTFQR7cDk5i8SsvEEveyEDiVlGriTrKnVd7f3791sEJxs2bEi3bt2oX78+o0ePJjZdb8PRlY/k+Fi+mvsuwQ3qiQClIAhCEYkApSBUUWqFRL86bnazLEoG+tVxs9ti8oJ9kGWZU7ezM4sjz51g80evE3PhHLqMdJ77aRcBjQuv0Re+8SfWznmeWZvD8QqoDcDSyQMBmLJsQ3kOv1KRgaspOhIyDeXSaCAjIyPfLt7h4eG0bdsWAJVKhaenJ56envke67vvviMpKYm9e/fSokWLAs+blZVVYLAzv8vt27e5du1anu3WMpJycnV1Ra1Wk5SUhEKhoHnz5ty4cYOpU6dazeAsSv1OQagoTF2f7XlCydT1uTIHKMeNG0fTpk3p3LkznTp1wsvLy+L+nVGpKAD7DTXfY9DrkWUjClsPRBAEwQ6JAKUgVGG1XNX0DnQhLCrN1kMpVO9Al0pZo0moWO5kGsg0yBh0OlbPmoTa0ZF+M99FrXHCq0YtWw+vypGAk7cyyqXRgFarxckpb3ZmZmYmZ8+eZdKkSUU6jl6vZ+7cuQwePLjQ4CSAg4MDPj4++Pj4FHvMVetnVAAAIABJREFUucmyjFarzTeoefPmTVauXMnx48dp2LAhnTt3RqfTkZqaajW7s7D6nUqlslgBzcIupuYYZUmWZQwy6GUZoxEUClBJEkoJEVytZBIyDVxLKTgj2R6U92RMRTBw4EAGDhxosS0lJYU333yT9evXE30jBkdXd2o0aspjz79JzeCWfNi3DfXahTD87S8tHpd7wu/KsQMsmzKIUR8sJebCOY5tXE1mWhoNOnRjwKsf4ulf0+Kx6Yl3GP72l2ycP5sb/53Bzac6PSY8R8dhEyzOk3onnm0L3+PffTvISE2mWp0GdB0zjbb9nzDvk3DjOvP7taXPC3NQKJUc/OVbEm5c5/EZb7PlkzcBmDhxIhMnTgRgxYoVTJhgeR5BEAThHhGgFIQqrp2vE5kGmX0x6bYeSr661XCmnW/xlnkKQkmYlpndjrpGYkwkQ978lPaDxxbrGK37jqDFo4NROVT8piNhS+azc+lHvLHzX1y8Sh8wK+w8HxyPL9bjZODk7Qx6BjiXeXBJq9VazaA8e/YsOp3OnEFZmJ9++olLly6xZs2aMh1fUUiShLOzM87Ozvj5+VncFxYWxssvv0xKSgqrVq1i9OjRhb6GhdXvLOhy69atPNsyMjIKPJ+Dg0OpAp6urm7g7E662pkkWU2s1kCsVo/eShqWSgH+TipqOKvwv3vxdlSKoKUdq0zlOMpzMsbWEhMTqVOnDs2bN2fFihU0bNgQgGnTprF27VqeeeYZotxrk5KQQMTJw8RdvUjN4JbFPs/ubxeAJNFj/POkJsRzYPVSvn16KM//tBu15t57SG1yIt89P4rmDw+g5WODObN9A+vffxmlSk27QaMB0GVoWTZ5ELcjr9Jp5CS8a9bmzI6NrA19joyUJLr831SLc4dv/Al9ViYdhoxFqXag6YN9yUxPI2zxPCZPnkz37t0BCAkJKenLKAiCUCWIAKUgCIT4Zb9xq4hByu41nOnsJ4KTwv0Rm65HAaTdyQ6kadw8in0MhVKJQlm+WTBZ2nQcnJzL9RwVRaZBJiHTiLembF/TjIwMqxmU4eHhKJVKWrYs/AOywWDgvffeo3///rRu3bpMx1dS6enpvPrqqyxcuJCHHnqIFStWUKtW0bJ/i1q/s6j0en2+TYoKuxRUv9M7MIiOw8bTfvBYnLI0gBGDLgWFSp1vwFFvzO72HJmSiaTI/lmSDDq80+IIJBVfF8d863cKFU/Ochxw/yZbyoK1MiDlORlja5cuXSI5OZkDBw7QqFEjOnXqxPLly9myZQuTJ09m/sef8PGp23f3fq7E50lPTuDF3/7G0SW7tm7NB1qw+pWnOPL7KrqMmmLeLzk+lsdffIduY54GoMPQ8Swa9yjbvpxL674jUKrVHFm3krirFxjx3mJaPz4MgI5DJ7B08kC2L/qAdgNHm88DkBR3g5c2HMHVq5p5W+MuDxG2eB6dOnVmzJgxJX5egiAIVYkIUAqCgCRJdPF3xlEpERaVZvOMBNP5ewe6iMxJ4b6KSdfzS+izHN/0CwCrZ2Uv863bNoT+L7/P/h8Xc/X4IVLiY9G4udO4S2/6vDAHF09v8zGsffjMLb99TEvVJi9dT7122d2Vcy5J2/zJG0SfP0X7wWPp//Jc9FmZ7P52ASf/WEvSzRu4elej5aNDeHj6q3aRwVlUsen6Mg9Q5rfEOzw8nODgYKv35bZmzRouXLjADz/8UKZjK6mjR48yduxYIiIi+Pzzz3n22WdtGmRTqVR4eXnlqTdXEkZZ5t/b6YTHaYnOBAkZmXuBHKW68OXikiSBdO/nSFaqiXf247aqJhcO7ubgL9/w3/4wZKMRSZJwcXEps+XsGo2m0gWebMlUjqMyKa/JmNIwGo3o9Xqr1zm/NhgMefaRZRm9Xs/Fixctjnno0CGaNGmCSqVi586dXI+OBqzXAy6ONn1HWAQNm/UegFs1P/7bH2YRoFSoVHQcOs58W6V2oOPQ8ax//2Wiz5+idot2/Lc/DLdq1Wn52BDzfkq1mpBRk/l59hSuhP9NcPdH7p2rVz+L4GROhkqR4ysIgnB/iAClIAhm7Xyd8HNSsTkixWbdvU3duvvVcRM1J4X7SpZlYrV6OgwZj7tvDf5avoCQUZMJbNIaVx9fLh3ew52oCNoOGIWbT3VuXv6Xo7+v4uaV/5j+/Z/lGnxIT7rDiueeoMWjg2j9+HBcfXwxGo2sfGEM104eocOQsVSv24jYS/+wf/USbl2/zNhPV5bbeO4nhQSxWj1NKNuAa35Nco4fP16k5d1Go5F3332XPn360L59+zIdW3HpdDrmzp3Le++9R+vWrTlx4gQPPPCATcdUliJTdWyJSCExy2gOSeYMTpaGQpX9Vrhx55406vwgDvoMvG+cQRcXlW92Z3R0dJ5taWkF13JWKpXmpkSurq64uLjg4uKCs7Oz+dr0tUajwdnZGScnJ5ycnNBoNOavHR0d0Wg0KBSKPIEhU0Ao53XOfQwGg8V9ubfn/Dr3fbm3595m7doUxDJdTNvy2yfn/bn3yX3t1yqEFmP+VyY/AxXJoyNGcy5sI7Kc/Q4s97W1bdbuy/11QdtsRa/X8++//9IwqA4BwS1p3KU3bfqNwDswqETH86ldz+K2JEn41KpLYkykxXb3av44OFkupa9Wuz4ACTGR1G7RjsTYKHxq1cszwVO9bvby9NzH9KpZJ99xGSvOSy4IglDhiQClIAgWarmqeSrYiz030jh2H7tjms7TzldD9wAX0a1buO8McvYy0Dot22PQZfHX8gUEte5E894DAAhq1ZFuY6dbPKZ2i3b8PHsK104com6bzuU2tpRbcQx67WM6Dhtv3nZiy69cOrKXKcs2ENS6k3m7X/1g1r//EhGnjlCnZYciHT8t8Q4b5s3iwt+7UKjUtH58GI89/xZqx+wA3uw2vnQa8SS1W7Rn17KPSYyJonq9xvSb+S5121rW1Lp24hCbP3mTm5fO4169Bt3HPVuq526U4UaajqysrDxZO7mv88visbZPWloaUVFR7Nq1yxy0yczM5OTJk7Ru3ZoNGzZYDeSYro8cOcL58+fp378/ixYtsgi8FDXQYy2IYy2ok/sxOb9OTEzk4MGDJCQkEBwcTM2aNZk9e3aeY+QX6Cno2vQ1YPU+a7etXXIew9p17v1N96kcNXSd+AJth4xDNsoolMpy+39kCnhqJRUxtdry9/7j7PjqA7Iy8pY+KUmQx2AwkJiYSGJiYqnHWtXknvyRJIk+rXpi0GUVKXO2LMiyjD4zw6KWoYkuMwOl2qHU2coGvY4HOnRFe+Ws+VgKhQJJkszXpou17bm35XetVCqtPsZ0ybmPtdu5txV0rVAoiI+PZ9GiRXmer7u7O7NmzcLVw5Olv21h78qv2PP9QsZ8vILGXXrnO+knGwxI5VxGpbhM/yutEW9nBUEQik4EKAVByEOtkOgd6EpjT0eLrJXy+GBoOq6Hg4K+ImtSsCF9IUGHnB9MdZkZZKWnUbt5dqbdjX9Pl2uAUuXgSNuBoyy2nQnbSPW6jfANakhawm3z9vodugJw5ej+Igcof3rlKbwCavHos29w/Uw4f/+0DG1yEiPe/cq8z9XjBzmzfQOdR01GpXbg0K8rWPHcE0xfuQ3/BsEAxF78h+XPjMDF04eHpr6M0aAn7OsPcfWuXqrnf+VWMo6NS79MOLcvvviCL774Is/2ZcuWsWzZsiIdY/78+WU9rBI7f/4858+fz7PdWoAnv9umrwu7zr2tqF9bu50zWGK6L6BpGx6ZORdXX38kSZFzZXa5Uiqz3xqHPDGZ1o8O4p9fFpMccSFPICh3ACd3oKegIE/ua2vbIDsz1mAwoNPpLC5ZWVnma9MlMzOTrKwsMjIyyMzMNF8yMjLIyMjAYDAU+LwdHR1xcnKyyOQ0fW3K+DRlf5ou7u7uuLq64uHhYb42bVOr1SgUClQqlcW16VIYLy8vEhMT0Wg0vP7668ycOdOi7MIPFxKJStPneVxhky3HNqzmxJZfuXn5XzJSk/EJDKLzE0/RafhEi+N82LcNfvUfIOSJp9j+1fvcvPwvjz73BgGNm7NsyiCe+GApNy+dJ3zjT6Tcusmbf13Eyc2D62fCCVvyIdfPHMOo1xPYpBWPPPs6Qa06FvqclSo1j44Yw6o3SjepU9GcP3/eIkDp7+/PwoULGTYsu7aj3iij7TKS1DvxLPy/h9j97Wc07tIbJ3cPMlKS8xwvITYKbysZi7evX7G4LcsytyOv4t+wicX25FuxZGnTLLIob12/DIBXjex6vZ7+gcRe+gej0Wjx8xp/NXu5umeNwuv6SncnPZRllO0tCIJQFYgApSAI+arlqmZKEy+uJOsIj9dyNUVXZoFK03GC3NS09XWinrsahajPJdiQ0Urn35zSkxLYufQjTm9bT+ody27UGakp5TgycK9eA1WuTKHb168Qd/UC7z1kfSlvasKtIh/fq2Ztxn22CoDOIyehcXHl0K8r6DZ2OjUaNQXg5qXzPPtDGDWbZDePafnoYD4Z0pmwxR8y5pPvANix5ENkWWbqt5vwrBEIQLNe/fl8ZPdiPd/cHJycmTjpKRTIeTJ9ct7O72IK+uzcuZPz58+jVCq5efMm1atXx8vLi6SkJNq3b09aWhq7du3i888/x9nZ2SIYlfP62LFjfPzxx7z//vs0bdoUlUpl3tf0tSkgk/uxpu0598m9b+7tOYM7KpWK6OhoJk6cyM6dO3nuueeYN28ezs6Vp2nSsXitzeshSwoFLj5+tJs+x+7rIcuyTGZmZrEbFRXUsKigLFJJkorVnd3avqmpqUB2KYa33nqLRYsW8dFHHzFq1CgkSSJWmzc4CYVPthxe+x1+9RoT3ONRFEoV/+7dxoYPZiEbjXQeOcniWLciLvHza1PpMHQc7QePxTeogfm+Xcs+QalW023sM+h1mShVai4f2ceK556gZnBLHpryMpIkEb7xZ76ZOoSp326iVrM2hX6vYrXZWduVqV6pn58fkiRRrVo1PvvsM0aPHo3BYCApKQkPDw+UEqgU4Orti7uvP/qsLCC7Gda1E4fQ67LM///O791OUmy01QDl8S1r6PnkC+Y6lGfDNpJy6yY9Jlg23jHq9Rz+baW5SY5el8Xh377HxauauXt44669uXjoL05vX0+ru3UoDXo9f//yDQ7OLtRrW3g3bvXdRnZJSSJrWhAEoahEgFIQhAIpJIkGHg408HAgIdPAyVsZnLydYS5Or5CKVl8n536OSolWPhpaVdPg5VixlukIVVdhST2rX3mK66eP0m3sMwQ0boaDswuy0ciKZ0ciFxbdzC2fD5/GfLKcrC0fk2Uj/g2a0HfmO1Yf4+FXs8jD6TTiSYvbnZ+YzKFfV/DfgTBzgLJ2i/bm4CSAZ41AmvR4jPN7t5vHffHgbpr07GMOTgJUr9eIhp0f5L/9YUUejzWLv/4aR2XpllBGR0ezb98+8+24uDji4uIA2LRpk3n7p59+SocOHXj77bcJDg62OIYsy8ybN49evXoxe/bsUo2nuGRZZvXq1TzzzDO4urqyfft2Hn744fs6hvIkyzJ/39SyLyZ7WbWtS7eZO0RHpZFpkAnxc7LLwJEkSWg0GjQaDb6+vqU+nizLpKenFyvIabpERkbmCZAWVr9TlmViYmIYM2YMb775JhcuXUafz5/cwiZbpizbYJENH/LEUyx/ZgT7f1ySJ0B5O/IqE7/8hUYhvczbrhw7AIA+K5Nnf9hhPpYsy/z+/kvUa9eFiV/+Yv456Th0PJ8N78b2RR8wadGvhb62emP2eyWl/f2Y5cvb29tczsEkJSWFwMBAhg0bRsuWLTmfpuDo3t1EnTvB4y9m/09rP2gMZ8M2seKZkbR4ZCC3I69x8o9f861R6ezuxZIn+9F2wBOk3onnwOql+NSqS/vBYy32c/f1Z+93C0m4cZ1qtetzZvt6Yv47y+A3PkWpzl7F02HIOI78tpK1oc9x4/wpPGvU4uzOTUScPEK/l96zaMaTH5/AIJzdPfj6669xd3fHxcWFjh07Urdu3RK8ioIgCFWDCFAKglBkXo5KHqzpQs8AZxIyjcSm64nV6rmRpiNWq7f6gUGlAH8nFQEuavydVPg7q/ByVNjlhzyhclMV8DOpTU7k8pG99J72Cg9Necm83bQsrLic3D2zj5uSRM6Fy7kL7xfEOzCImAvnqN+he6l/n6rlai7gExiEpFCQcOPeeHxq5/1QVa1OfXQZ6aTdzdbUZWjzHCt7vwalDlAajEAp5zNmzpzJN998kyf7y9HRkczMTPPtiIgIIiIiGDlyJMHBwZw+fZrLly8zYMAAtm7dysmTJ/nrr79KN5hiun37NtOmTWPt2rWMHj2ahQsXlkl37IokZ3CyojGNq4t/5clULSlTh3MXFxf8/f1LfTyDwUBaWppFE6LevXtbnE+WZZycnOjdu3eB5TgKm2zJGZzMSEnGoNdRr20IFw/uJiMlGY2bu/l+r5p1LIKTObXpN9LiWDH/neH29Sv0eupF0hPvWOzboEM3Tmz5Nc9y4fzoZbnSLwt2dnZm+vTpbN++nXXr1qEzGPEKDGLg7Pnm5faNQnrx+IvvsP+HxWz++A1qNmnJ+AWr2fLZW1aP2XPSC8ReOMeeFV+QmZ5K/fbdGDR7Pg5Olr+zTu6eDH/7SzbOn83R33/A1duXAa/Mo8OQe4FMtcaJycvW8+cX73J80y9kpKXgW6cBw+Z8QdsBo3Kf2iq1g5rZC5by08dvM23aNPR6PStWrBABSkEQhAKIAKUgCMUmSRLeGiXeGqW5s64syxjl7DfWBiMoFdkBH4WUt96ZIFREpmVm1gLtkiI7MpY7sHXgx69LdC6fuxkgV48fJKBxcyA7e/LIulVFPkbzhwfy3/4wjq5bRYeh4yzu02VokWVjnk6lRVYBf2dLmTwJQOPGjenfvz9btmzBYDAgSRJ16tShTZs2bNiwwVynT6FQMHLkSIYMyV7aN2/ePH766Sfq1auHLMt069aNHj16lH5ARbR161YmTZpEVlYWa9asYfjw4fft3PfLsbiKG5w02ReTjqNSsuvl3hWRUqnE3d0dd/fs4KCpXIEpMNm0aVNefvllRo4ciaOjI+m6/DPWC5tsuXbyMGFL5nP99DF0uRogZaRaBii9A2rnex6vXPfdulv/8Ne38q8fmZmabJ6cKkhZTMZUdA4ODsyfP99cw/fcnQw2RaTm2a/bmKfNS7FNpizbYPWYCqWSR597g0efe6PQ89ds0pKnv9ta4D6u3r4Mm5O3RnFOXgG1+eB4vNX7jDIMGTiQNyaOKHQ8giAIQjYRoBQEoUxIkoRSulsMvJK/sRYqJ0mS8HdSWW28oHF1o26bzuz9/kuMeh3u1Wtw8dBfJERHlOhcfvUfoFbzdmxbOBdtUiJOHp6c3rYeo8F6XTVrWvcdwZkdG1j//ktcPpbdEEc2Goi/donTOzbw5FdrCGzSqkjHunX9ikVNr9uRV5GNRrwC7jUCuH39at7HRVxGrXHGxasakJ11citXo4Ls/S4V+Xnlp6AM1+J45ZVX2LhxI5AdcP7www9JSUlh3bp1QHZwslGjRixbtsw8uWI0GpEkiatXr5qXt3733XeMHj0atbr8GnulpqYyc+ZMli5dSp8+ffj222+pUaNGuZ3PViJTdYRFF7zMt6IIi0rDz0klGrqVIxcXFzw9PenevTsvvvgi3btbZokXq1l2jsfdjrzKt9OG4hvUgL4vvoOHfwAqtQP/7g/jwI9LkGXLwKeqgM7Mao3lfabJqz4vzCGgcTOrjynqhFFZTMbYG3/nyvmRtLI+L0EQhPIi/moKgiAIwl01nFXcsBKgBBj5/tds+nA2B9csB1mmYeeeTFj4Mx882rxE53pi7mJ+n/sSe777Ao2bO+0GjqZ++658+/SwIj1eoVAw9pOV7P9xCSe2rOGf3VtRa5zwrlmHLqOmUK12/SKP5dCa5TTq/KD59sGfsztYN+7ykHnb9dNHiT5/ytxEIDE2mn/2/EmjkF4olNmzEg07P8g/f/1BYkyUuQ5l3JULXDy4u8hjsUalyK5jWxZCQkJo1qwZZ8+e5YEHHmD48OFERt5byq7RaNiwYQMuLveCCaamNqY6ajdv3mTixImcOnWKzz77rGwGlsvff//NuHHjiImJYcmSJUyZMqVSZqPrjDKbI1Js2hCnOCRgc0QKTwV7oS6rH0rBgo+PDwkJCfneX9BkRUGTLef3bkOflcm4z36wqJN7+ej+Uo/ZVBdR4+JGg46ly64uq8kYe+LtqMRRKZnrm1cGjkoJL8cqGG0WBEEoBRGgFARBEIS7/J1VGIF67brkWbblUb2GuVt1Trn3aztgVJ4aVdaWpHkHBjFp8dpCj5ffcjYApVpNjwnP5elSWlwJ0ddZ+cIYGob04vrpY5zc+ist+wylRqN7mUB+DYJZ8cxIOo+ajErtwKFfVwDQe+os8z69p87iwt+7+HpSfzqNmIjxbtfT6vUeIPbiuRKPz99JVabBuWeeeYann36ad955B0mSqF27Nh4eHiQlJbFq1SoaNWpksX/uunFKpZLAwEAmTbJsqlEWsrKyCA0NZf78+XTq1Ik///yTBg0aFP5AO7XnRhrJWUa7CE5CdhA1OcvI3htpPBRYeKMMoewVVI6joMmWq8cPApalOjJSkgnf+FOpx1QzuCXegUHsXfUVLfsMwdHZ8mcjNeEWrnczzQtSlpMx9kSSJFr6aDgap7WbvwUFkYBWPppKOakkCIJQnkSAUhAEQRDuqqrLsUbNW8aOJfPYtvBdFEoVnUdOos8Lcyz2qdumM7VbtGfn0o9Iio2mer1GDH97obnLN0CNRk158stf2PLpW+xY/CEefgH0nvoKKbduljhAqZAgwKVsltPKsoxBhgmTp9D9oUeoVy8IvVFGKcHUqVOJjY01153MKWf2JED//v357rvv8PDwKJNxmZw9e5YxY8bwzz//8N577zFr1iyUyspbMyMyVcex+AxbD6PYZOBofAaNPB3FUm8bKKgcR0GTLSoHDUq1AytfGEOHoePI0qZxZN0qXL2rkXLrZqnGpFAoGPrWAlY89wQLhnWj7YBRuFevQXJcDFeO7cfRxY3xn/9Y6HHKejLGnrSupuFInLbYj7M2oZifgib8ypIMtKqWf4kAQRAEwbqq+UlMEARBEKyojMvMCtJ72ix6T8vOgBw9f3mh+7d+fBitHy94CXrdtiE8+2Pejt2m8xSXUc7+0F5csixzJ9NAbLqe2HQ9Mel6YrX6HFlX7nA6u9uuSgHNJ83mEWcV5+5k4O+swttRaQ4U3LyZHbxQKBR88skn/O9//yvTIILBYOCzzz7j9ddfp2HDhhw5coRWrYpWP9ReGWWZLXa0tDs3CdgSkcKUJl4oqmhAyZZM5ThyJ1EWNNniG9SA0fOXs33RB2xdMAc3n+p0HDYBFy8ffnv7f6UeU712XXj6u63sWvYJB9d8S1Z6Gq4+1anVrA0dh44v9PFlORljj7wclQS5qYlI0dnl3wQTCQhyU+PlWHknlwRBEMqLJOduSSoIgiAIVdiu6LRKs8ysrMxu40unEU8y8NUPbXL+KcFeeGuK9mEvIdPAiVsZnLqdYQ40KyBPIMOanPs5KrOXHLaupmHwow9x8OBBdu/eTUhISEmeQr6uXr3KhAkT2LdvHzNnzuTdd99Fo6n8mTcXkzL57UqKrYdRasPqudPAw8HWw6hy8uv6bO8G1HGjibejrYdhM+LvgiAIQtUmMigFQRAEIYeSLjMTykdRGg0YZZnLyVmEx2dwLUWXJyuvKMHJ3PtlGmSOxmk5Eqdl6rL1LPZW09jbuZijz58sy6xYsYL//e9/+Pj4sHv3bnr0KF1zDXsSHp9ht9mTJhIQHq8VgQgbqKzlOCrr8yqq+u4OeDooSLKjurQ5SYCHg4J67lU3E1YQBKE0RGsxQRAEQcjBtMxMLNq0vaI0GohM1bH0nwR+u5JCRIoOKLugl+k411P1bLiuZek/CUSm6kp93Js3bzJo0CAmTZrEiBEjOH36dJUKTiZkGrhm58s4Ifvn42qKjoRMg62HUuWYynFUJqLrMygkib513Oz2b4MM9KvjJso+CIIglFDVnqYTBEEQBCva+mq4llL6QFRlUdQGBGWtoEYDOqPMnhtpHLubiWfav7zGAZCUZeTHi0m089XQI8AFdSHtdi9cuICHhwd+fn7mbevXr2fKlCnmrwcOHFhOo664Ttyy/+xJEwk4eSuDB2u62HooVYro+lx51XJV085XQ3h8hl19byWgna+GQNE4SxAEocSq9jSdIAiCIFhhWmYmPirajgTUzafRQGSqjm/OJxB+twP0/foQazpPeHwG35wvOJsyMTGRDh060K1bN7RaLUlJSUyYMIHBgwfTpUsXzp49WyWDk7Isc+p2yQMP4Rt/YnYbXxJuXC/TcZWUDJy8nYEo6X7/ta6msasAVkFE12dLPQJccLej/8ES4O6goHuAmKgQBEEoDRGgFARBEIRc7H2ZWWUgA219nfJsPxav5ceLSSTbsEaZDCTfzaY8Fm+9Xun7779PSkoKly9fZty4cbRo0YJ169axYsUK1q1bR/Xq1e/voCuIO5kGc/OiyiLTIJOQWdRKp0JZqSzlOAqajKmq1AqJfnb0P9i0tLuwrHpBEAShYCJAKQiCIAhWmJaZ2dvHDQloV83RrjNAJcAzV6MBWZY5EJtOWFRa9m0bjc08nrvXYVFpHIhNt8igu379OgsWLMBoNGI0Glm7di2enp6cPn2aCRMmVOllnLHpelsPoVxU1udV0bX1tf8syvwmY6q6Wq5qegfaR0Zi70AXaoml3YIgCKUmApSCIAiCkA97XWbWo6arXWeAWms08PdNLfti0m03qALsi0nn75v3Milfe+01jMZ7GXWSJBEfH4+Xl5cthlehxKbrK92bT4UEsVoRoLQFey/HYW0yRrinna8T3Wo423oYBepWw5l2IsCgybzoAAATTElEQVQsCIJQJirbe0RBEARBKDP2vMzMnjNA2+dqNHAsruIGJ032xaRzLF7L0aNH+fHHHzEY7nV2lmWZmJgYQkNDbThC21i7di2SJLFnzx4AYtL1mEK3h9d+z+w2vsReOg/A5SP7+PrJfrwVUoe3u9dn5YyxxF25UOg5ZrfxJWzJ/DzbP+zbhl9DnzXfNtWvvHbiEBvnz+a9Xg/wdvf6/P7eTPS6LLQpSax58xne7tGAt3s04I8Fb+epLWk0Gtn/4xI+G9aVNzsFMrd3E357dyYXb9imkVRVZ+/lOETX58KF+FXcIGX3Gs6E+IngpCAIQlkRAUpBEARBKIA9LzOz1wzQnI0GIlN1hEWn2W5QxRAWlcaL73xosc3BwYHGjRszcOBAevXqZaOR2U7fvn1xdXVlzZo1yLJskWl4evt6/Oo/gH+DYC4d3sPyZ0eQmnCL3lNfpuuYp7l+6ihLnuxb5g1xNs6fze3rV3ho2iyCezzGkXUr2bFoHiv/Nxqj0cCjz75OUKuO7F35JSe2rLF47Pq5M/nj87ep07ID/V6aS9sBT3Dyj7XMnTiErKysMh2nUDSVaTJGyEuSJLr4O5v/D9v6+2w6f+9AF0L8nat0yQ5BEISyprL1AARBEAShomvn60SmQa7QWXzWlpmZMkB/vJhko1EVT+5GAzqjzOaIFCRsX3OyKCRgwOuf0qNNM3o/2JOGDRtSo0YNFIqqOx/s5ORE//79Wbt2LZ8u+Bz93fTJlFs3uXr8bx6aOguArQvm4OzuxdPf/YGzR/ZS+CY9+7Dw/3qxY8mHjHjnqzIbk6u3LxMW/owkSXQe8SS3I6+yb+WXdBg6nkGvfQRAhyHjmN+vDcc2rKZNv5EAXDtxiKO//8DIuUto1Weo+Xj12nVlxbMjWbPmV8aMGV1m4xSKrkeACxeTsmzaPKs4RNfn4mvn64Sfk4rNESk2+z6bvm/96riJmpOCIAjloOq+YxYEQRCEYrDXZWb2nAG650aa3QQcIDuIanR05sHJL9GzZ09q1qxZpYOTJiNHjiQuLo5du3ebt50J24RsNNLikUEkx8cS899Z2vR/whycBKjRqCkNOvbgwv6dZTqe9oNGW2Q91WrWBlmWaTfoXnBRoVRSs0kr7kRH5BjzRjSu7jTo1IO0hNvmS83gljg4u7Drr90ItmHP5TiEoqvlquapYC/a+mqA+5dNaTpPO18NTwV7ieCkIAhCOREZlIIgCIJQBKZlZo5KibCoNJtn9ZnO3zvQpdAC/faYARqZquNYfIYNR1QyMnA0PoNGno7iQ+xdjz32GB4eHvy6Zg2NnmkNwJnt66nRuBm+depz/fQxAHzr1M/z2Op1G3Hx4G6ytGk4OJVNoN3DP9DitsbVPXu7X0Cu7W5okxPNt29dv0JGajJzHwq2ety4m3FlMj6hZEyTMWFRFb8khOj6XHJqhUTvQFcaezqyJSKFxCxjuf0/Nh3Xw0FBX5E1KQiCUO5EgFIQBEEQisFel5mZMiwrYpCyew1nOufIADXKMlvsaGl3bhKwJSKFKU28RPMLwNHRkUGDBrFpw3pemPouqXfiiTh1hEeefb1czysbDVa3K5RK69sVVrbnaJIjG424evsycu5iq4+f2qFe8QcplCl7nIwRSqaWq5opTby4kqwjPF7L1RRdmf3PMB0nyE1NW18n6rmrxd9yQRCE+0AEKAVBEAShmEzLzPbcSONYfMZ9C6SZztPOV0P3AJdiLQ+0pwzQy8lZJGYZrT7OHshAYpaRK8k6Gng42Ho4NpeZmUmPHj34/vvvuXxkL3FXLyDLMi0eGQSAZ43sjMb4iMt5Hht/7SIunj4FZk86uXuiTbGss6rXZZFy62YZPgvwCQzi8pG91GnZAbUmb4CpTUufMj2fUDL2NBkjlI5Ckmjg4UADDwcSMg2cvJXBydsZZBrku/eDsQj/6HLu56iUaOWjoVU1DV6O1iczBEEQhPIhApSCIAiCUAL2uszMHjJAw+9j0Le8SEB4vLbSByizsrKIjo4mKiqKyMhIq9c3b94LFJ7e9jtx1y4R2KwN3jXrAODu60+Nxs04vvlnej75P5zcPACIvXSei4f+otXjwwocg3dgENdOHLTYduS3lRgN1jMoS6r5IwM59OsKdi37hEefe8PiPsmoJzkpES8vr3weLdwv9jQZI5QdL0clD9Z0oWeAMwmZRmLT9cRq9dxI0xGr1ZsbdOWkUoC/k4oAFzX+Tir8nVV4OSpEZ25BEAQbEQFKQRAEQSgFe1xmVpEzQBMyDVxL0d2H0ZQvGbiaoiMh02C3WThZWVncuHEj38BjZGSkRfARwMPDg1q1ahEYGEibNm0YMGCA+fbSpUvZvHUzmdo0+sx42+Jxj78whxXPPcHi8X1oN2g0uswMDv78DRpXd3rf7fSdn/aDxrD+/Zf44aUJNOzUk5gL57hwcDcunmWb0VivbRc6DB3PXys+58aFszTs1BOlSs2t61c4v3MT9b/6gmHDCg6mCvePPUzGCGVPkiS8NUq8NUqa4AiALMsYZdDLMgYjKBWgkiQUEiIYKQiCUIGIAKUgCIIglJI9LjOrqBmgJ27Zf/akiQScvJXBgzUrXhd1nU6XJ/hoLfNRzlGD0d3d3RxsbNWqFf369TPfNl27ubnle05Jkli7di2SJNHi4YEW9zXo2IOJC38h7OsPCVvyIQqVinptQnjs+bfMmZb5aT9kLAk3Iji2fjUX/t5NUOuOTFr0K99MG1q6F8mKwa9/TM3glhz57Xu2f/U+CqUSr4DaPDL0Cbp06VLm5xNKpyJPxgj3jyRJKCVQIoF9zhcJgiBUCZKc852nIAiCIAhlQpZlu1lmZpTlcs0ArVvEDFBZlllw5o45sFsZOColXmjuned7GRMTg1qtplq1amV+TlPwsaBl17GxsRbBRzc3N4tgY+7AY2BgIO7u7qUe27k7GWyKSC31cSqaAXXcaOLtaOthCAWITNXdt8kYT9H1WRAEQRCKTQQoBUEQBOE+sYdlZrbMAL2doWfZ+cSSDj2PiFNHuHjwL7qMnmqua2gLU4K98NZkvwZ6vZ5PP/2UN998k/79+7N27dpiHUuv11sEH60FIHMHH11dXa0GHXNel0XwsSjK+ntcUeT8HgsVV0WZjBEEQRAEIS+xxFsQBEEQ7hN7WGZmy0YDsen6MnoW2SJOHWXn0o9oO+AJmwYoY9P1eGuUnDp1inHjxnHmzBlkWebff/+12E+v1xMTE1NgzcfY2FiMxnvfBBcXF3PwsWnTpjz22GN5ApAeHrZ77rl5OypxVEqVLkvWy1Fh62EIRWCP5TgEQRAEoaoQAUpBEARBEPKwRaOB2HQ9CsBKDNRuKSSISslg5fxQPvroIwBzduPFixcZPny4OfgYExNjNfgYGBhIkyZNeOSRR6wGHytK9m1RSJJESx8NR+O0labOaCsfjV19D4RsouuzIAiCIFQsYom3IAiCIAgVwg8XEolKK5ssyrAl89m59KM822dtDse9egB/rfic45t+JunmDdyq+dHqsSE8NPVlVA5lX0cw6swxvhrfx+p9Dz74IHXq1LG67Nrego9FlZBp4Ot/Emw9jDIztYmXyJyrZOyhHIcgCIIgVDYig1IQBEEQBJuTZZlYbdkt8W7aqy+3rl/m1J/r6DvzXVw8fQBw8fJh3bsvcHzTLzTr3Z+uY54m8mw4f634nLhrFxn7yfdlNgaTmsEtqVWrFpGRkSiVSgwGg/m+r7/+moYNG5b5OSsyL0clQW5qIlJ0dp1FKQFBbmoRnKyE7KEchyAIgiBUNiJAKQiCIAiCzRlkrC6pLKkajZoS8EALTv25jqYPPo5XQG0AYi6c5fimX2g/eAxD3vwMgM4jnsTVy5d9q77i8tH91G/ftewGAkgqNVevRXDhv39ZuXIlK1as4ObNmwBERUVVuQAlQFtfDddSdLYeRqnIQFtfJ1sPQxAEQRAEoVIQFb0FQRAEQbA5/X2qOPPf/jAAuo5+2mJ7t7FP371/R7mcVy/LBAcH88EHHxAdHU1YWBivvvoqrVq1KpfzVXT13R3wdFBgr4tlJcDTQUE9d7WthyII/9/e/f3WXdZxAH9/v+ec/u5q2cq62qaOQMy4kOHGBSAj2kqiTBMTEy7wkuhfoH+CdybemKgxJhoxmBhvwBuDRoOYaBjZDd5gwLllDMecW7e1o935ejGLkCGDcdrnnPJ6XZ5+830+J+3Fk3c/z/MBgB1BByUAUFx3mybjnH/tVKq6zu6F/e/4fHLP3oxMTuX8aye3ZN1r3bx1VLTVamVpaSlLS0tbstYgqKsqjy5O5smXL5Qu5ZY0SY4uTqZ2HyEAQE/ooAQAiqu3e0eyzcFSy47rBgsTnRyeGRm4LsoqyX0zI5mf0D0JANArtssAQHHtLQgM323a7vS++TTdbs7945V3fL5y7p9ZW7mQ6X0LPa8j2ZrvtxM8PDeeXQN01LtKsmuozpG58dKlAADsKAJKAKC4VpW0e7wrGRodS5KsrvzvGPEnP7OcJHn+5z94x7N//Nn3//vzz/e2iFz/XvWgJHDbrFNXObo4OTDTvDePdnf8QgEAesodlABAcVVVZXa0nVOXN3r2zrkD9yRJfvO9b+dTj3wlrU4nB448kk9/6bH85Vc/zerKhew/9EBOvfRiXnz6F7n7s1/s+QTvJJkdbb9rNyfXLUx0sjw/nmdPXS5dyk0tz49nwdFuAICeq5pmm8ZmAgC8h9+eupRjZ9fSy3k5v/vRd/LnX/4kK2+8nqbbzbeeOZZdt8/l9z/+bo49/VQuvn46E3tuz71f+GqWvvHNtIeGe7j69c7JwzOj+dzHHQm+mefPXMlzr10pXcb/9dC+sTw4O1a6DACAHUlACQD0hZf+tZanT1wqXUbPfXlxMnff1tvgcydqmiZ/en21L0PKI/vGcv/eUZ2wAABbxB2UAEBfmB3bmTfP7NTv1WtVVeXB2bEsz1/vNi0dBW6uvzw/ngdmx4STAABbyI4ZAOgLtw23MtyqcvXazjncMdyqMj3s/8EfxOGZ0ewdbeeZEyu5+Ga3yACdzWndRxcn3TkJALAN7JgBgL5QVVXu2T1SvHOuV6okB3eP6Ly7BQsTnTxxYDqHZkaSbF835eY6h2dG8sSBaeEkAMA2EVACAH3j3j0jRTrmtkKT5OCekdJlDKxOXWV5fiKP3zWVqaHrW9atCio33zs1VOfxu6ayND+RTi1YBgDYLobkAAB95am/XciJlfWBDiqrJJ+Y7OSxO6dKl7IjdJsmr1xcz7Gzq3l1ZT1V0pO/j8337J/s5NDMaO7Y1Umt4xUAYNu5gxIA6CuHZkby95X10mV8KE2SQzOjpcvYMeqqyp1TQ7lzaijnr17L8TfWcvzc2lv3ldZV0n0fieXbnxtuVTm4eyQH94xkeri1hdUDAHAzOigBgL7SbZr88K/nc6HQgJQPq8r1o8Jfv3taN94Wapom5692c+bKRs6sbuT05fWcWd3IRvfGZ9t1Mjvaztx4J7Oj7cyOtTM9XLsfFACgTwgoAYC+c/LSep58+ULpMm7Z1+6ayrwBK9uuaZp0m2SjaXKtm7TqpF1VqasIIwEA+pghOQBA31mY6OTwzOBN9K6S3DczIpwspKqqtOoqw606Y506w606rboSTgIA9DkBJQDQlx6eG8+uoXpgQsoqya6hOkfmxkuXAgAAA0VACQD0pU5d5eji5MDcQ9kkObo4mU49KJEqAAD0BwElANC3FiY6WZ4fjI7E5fnxLDjaDQAAH5iAEgDoa4dnRvPQvrHSZbynh/aN5fDMaOkyAABgILVLFwAAcDMP7L0e/j332pXCldzoyL6x3L9XOAkAALeqappmUK52AgA+4l44u5pnT11OlRS9m3Jz/eX5cZ2TAADwIQkoAYCBcvLSep45sZKLb3aLhJSb07qPLk66cxIAAHpAQAkADJz1bpM/nL6cF86ubVs35eY6982M5MjcuGndAADQIwJKAGBgnby0nl+fWMm/3+xuWVC5+d6PDdV5VNckAAD0nIASABho3abJKxfXc+zsal5dWe9ZULn5nv2TnRyaGc0duzqpK12TAADQawJKAGDHOH/1Wo6/sZbj59Zy9dr1LU5dJd33sdt5+3PDrSoHd4/k4J6RTA+3trBiAABAQAkA7DhN0+T81W7OXNnImdWNnL68njOrG9no3vhsu05mR9uZG+9kdrSd2bF2pofrVLolAQBgWwgoAYCPhKZp0m2SjabJtW7SqpN2VaWuIowEAICCBJQAAAAAQDF16QIAAAAAgI8uASUAAAAAUIyAEgAAAAAoRkAJAAAAABQjoAQAAAAAihFQAgAAAADFCCgBAAAAgGIElAAAAABAMQJKAAAAAKAYASUAAAAAUIyAEgAAAAAoRkAJAAAAABQjoAQAAAAAihFQAgAAAADFCCgBAAAAgGIElAAAAABAMQJKAAAAAKAYASUAAAAAUIyAEgAAAAAoRkAJAAAAABQjoAQAAAAAihFQAgAAAADFCCgBAAAAgGIElAAAAABAMQJKAAAAAKAYASUAAAAAUIyAEgAAAAAoRkAJAAAAABQjoAQAAAAAihFQAgAAAADFCCgBAAAAgGIElAAAAABAMf8Bj1wdiapfVzcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAIHCAYAAAALhKgSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeViUZffA8e8MO8iqKCCKkiuKgksuLZrrz7RcKm3RLF81S7PcsUXTTHHNsiwt00rTysxQ31eTbNMsV1QMFTcQFUH2bWCW5/cHMTmCyjI4DJzPdXWlM89yHsDhOc993+eoFEVREEIIIYQQQgghKkBt6QCEEEIIIYQQQlg/SS6FEEIIIYQQQlSYJJdCCCGEEEIIISpMkkshhBBCCCGEEBUmyaUQQgghhBBCiAqT5FIIIYQQQgghRIVJcimEEEIIIYQQosIkuRRCCCGEEEIIUWGSXAohhBBCCCGEqDBJLoUQQgghhBBCVJgkl0IIIYQQQgghKkySSyGEEEIIIYQQFSbJpRBCCCGEEEKICpPkUgghhBBCCCFEhUlyKYQQQgghhBCiwiS5FEIIIYQQQghRYZJcCiGEEEIIIYSoMEkuhRBCCCGEEEJUmCSXQgghhBBCCCEqTJJLIYQQQgghhBAVJsmlEEIIIYQQQogKk+RSCCGEEEIIIUSFSXIphBBCCCGEEKLCbC0dgBBCCCFETaAoCnoFdIqCwQBqNdiqVNioQKVSWTo8IYSoMEkuhRBCCCHMTFEUUvP1JObqSMzVcTVXR2KeDp2h+La2avBxssXX2Raff/7zcrCRhFMIYXVUiqIolg5CCCGEEKI6SMvXc/S6hmMpGvL1hbdYaqCEnLKYG7dzsFHRtrYjoXUc8XSwqaRohRDCvCS5FEIIIYSoAIOicC6zgMPJGi5maVEB5ri5KjpOI1c72ns7co+bPWoZzRRCVGGSXAohhBBClNOlbC074rJILzCYLam8WdFxPezV9A9wpUEtu0o4ixBCVJwkl0IIIYQQZaQ1KPx6JYdDyZpKSypvVnSeDt6OdPNzwU4to5hCiKpFkkshhBDCTKQaaM1wKVvL9rgsMgsMdyWpvJkKcLNXM0BGMYUQVYwkl0IIIUQ5SDXQmulQch6RCTl3bbTyVorO38vfhQ7eThaMRAgh/iXJpRBCCFEGUg20ZlIUhT+u5fH71VxLh1LMA77OdK3nJA8rhBAWJ8mlEEIIcQdSDVTsS8ytkollkQd8nbnPx9nSYQghajhJLoUQQojbkGqg4lBSHpGXcywdxh3JFFkhhKVJcimEEEKUQKqBCih8uLAhNsPSYZTaM03d5eGEEMJiJLkUQgghbiLVQAUUPmD4NCbNYj8HZVX0czO6pac8mBBCWITa0gEIIYQQVcmh5Dw2xGZYNKFQgMwCAxtiMziUnGehKMSvV3KsJrGEf39ufrtS9afwCiGqJ0kuhRBCWAVFUdAZFDR6A7laAxq9AZ1BwVwTcBRFYV9iLpEJhTfmlk4ois4fmZDDvsRcs12nKJ1L2VoOJWss/nNQVgpwMFnDpWytpUMRQtRAMi1WCCFElWOJHpJSDVQUMSgKq/9OI8OKRi1vpALc7dWMDfKU6sNCiLvK1tIBCCGEEEXK00NSZ4CEHB1XcnTl7iF5KKlq9i+80e9Xc3GwUUk10LvgXGYB6QWl6VxaNSlAeoGB85lamrjbWzocIUQNIsmlEEIIi7pTD8nS3uLfuF2+XuFgUh4HkvLu2EPyUrbWKtpMQOEU2XpOtlLkp5IdvosVgiuLCjicnCfJpRDirpLkUgghhMXc3EMSzHdDX3ScuCwtF7O0JfaQ1BoUtsdlWU0ioQK2x2VJNdBKlJav52KW9a9XVIALWVrS8vWlGr0XQghzkII+Qggh7jqtQSEyIZsNsRlk/DP9sLKSu6LjZvxTfTUyIRutofBVqQYqbnb0uobqkrargKjrGkuHIYSoQWTkUgghxF11Yw9JuHsjhkXnOZysITajgHvrOnEo2fpuvIuqgTbzcJDpsWamKArHUv6tEHvp5FG2L36dq2dOotXk8vLGPfg1D7ZojGWhAFEpGrr7OZe5wJUQQpSHJJdCCCHumkPJeUQm5Fh0GqpC4Sjm7gTrHf1TATvisqQaqJml5uuNhaT0Wi1fTf8Pdg4ODJjyNnaOTnj6NijVcQrycvnt8w8I7HAfgR3uq8yQ7yhfr5CWb8DLUabGCiEqnySXQgghKp2iKPxx7d+KrNYyDbWqkmqglSMxV2f8c0rCRdKvXmLIm8voOHhEmY6j1eTx0+rFABZPLqHwuiS5FELcDbLmUgghRKW7MbEU5lFUDVSYT2KuznhjlJOaDICjq7vlArqJXqdDpy0o0z5qFSTm6e68oRBCmIFKURR5gCyEEKLSHErKs5pWH9bohSBPqQZqJuvPpJOQo+Pb2RM4su1rk/cat+9q/PPYT34wee/b2RM4f+gPZuw4QtqVeBYNaF/s2D3HTqPXuOmsHjPwjscAjMfp9+pbqG1s2P/1GtKuxDNhQyR+zYNJuhDL7pXzOXdwL1pNHvXuaUGPsVMJ6vZ/xc7t72LL8GYe5fuiCCFEGci0WCGEEJXGmnpIWqOiaqAP1XexdChWT1EU4wjfvUNG4ubtyy+fLafrU2PwDwqlVm1vfl7z7h2P4+JZm0GvLWbr/Gm0eqg/rXr0B8CnaVC54jocsRFdQT73DhmBjZ09zm6eXDt3io+f749bXV+6PTcReydnTuz+gfWTn+WZxWuN5yySmKdDURQp6iOEqHSSXAohhKgU1tZD0hpJNVDz0SugKyxgTEDbjui1Bfzy2XIahXYmuNejAKVKLu2dXGjd8xG2zp+GT9MgQvs/UaG4MpKuMPWHA9TyrGN87dNxj+Hh48/49T9ia+8AQOeho1g1qj//e39useRSZwCDAjbyIyKEqGSy5lIIIUSlsLYektaqqBqopaxcuZJ169ZZ7Pzmoquiq4Ra9xhgkljmZqRx/uDvBPd5lPycbHLSUshJSyE3PZWmXXqQEn+ejKSrxY5TVa9PCFG9yMilEEIIs7uUrbXKHpLWypLVQFeuXEmdOnV47rnnLHJ+czFYLj+/Lc/6ASZ/T7l0AUVR2L0ynN0rw0vcJyc1Gfe6viav6Q2ALM0tF0VRCke2FQWDAdRqsFWpsFEhMwaEuIkkl0IIIczKoCjskOmwd01RNdAgHCwdilVTl2Iul0qloqQ6iAZ96TPTsh7DzsHR5O/KP1nwAyPG06zrQyXuU7tBYLHXbGSuWqkoikJqvp7EXB2JuTqu5upIzNMZp0zfyFYNPk62+Drb4vPPf14ONpJwihpNPmqEEEKY1bnMAtJvmg6bduUSWxdMZ+ngzrzZpQFzH2rGhumjSLsSb7Lv4YiNzGznzcWov9i+9E3m9WjBrK4BfDllJNlp1022Xdi/HesmPs3Fo3/y4Yg+vNnZn0WPdODIdtMqnwCpCRfZMH0Uc7s3ZVbXhqx89v849fuPJZ775pjOH9rHzHbenD+0z/ja6jEDWf7EA1w7f5pPxg5iVteGLOgbzK/rVhQ7tzZfQ+THi1gyqBNvdvZnfp9WrJ/yHCmXLhi3MRgM7N3wMe8+fj9vdvbnnV5BfD9vCnmZ6SVe8/lD+/jgmV682aUBy554kJ/2/AzAli1bCA4OxtHRkfbt23P06NFi8Zw6dYrHH38cLy8vHB0d6dChAxERESbbrFu3DpVKxb59+5g8eTLe3t64uLgwePBgkpOTjds1atSIkydP8uuvv6JSqVCpVHTv3r3YOa2BbSkSAidXDzRZGcVeT796yfSF2xyr1Me4BS//wpFMG1tbmnTqVuJ/Di61iu1XmuurydLy9ey5nMPyE6l8EpPOtrhsDidrSMgpObGEwrWsCTk6Didr2BaXzScx6Sw/kcqeyzmk5evv7gUIUUVIcimEEMKsDidruPk2NuHvo8QfO0CbPoN5ZNp8Oj02knMHfmf1mEEU5BXvf7lt0UwSz5ykx9ipdH7iOU79touI8LBi26UmXGDD9FE06dSNhyfNwcnVnc2zX+bauVPGbbJSkvjo+YeJ3f8znZ94nj4vvYauQMMXk0Zwcs+Ocl9nXmY6aycMw6dpKx6eNAfvRk3Z+f5cTu+LNG5j0Ov5/JVn+Gn1Yuq3bMvDk+bQ9amxaLIzTWLc+s4U/vfeHALa3suAqe/Q/tEnifrfZj4bPxS9Vlvsmje99gItHuxL3wmvk5eZztJxT7J+/XomTZrE8OHDmTNnDufOnWPo0KEYbpjvefLkSTp37kxMTAxhYWEsXboUFxcXBg0axPfff1/sGl9++WWOHTvG7NmzefHFF9m2bRsTJkwwvr98+XL8/f1p0aIFX375JV9++SWvv/56ub+mlmSjKhyJuh0v/0YkXzxr8qDj6plo4o4dMNnO3tEJgLwSksjSHuNWanl5E9jhPv7a8gWZyYnF3r/5IQwUXpdacstiDIpCbEY+m85msOrvNA4m5ZGv//exWGnHo2/cLl+vcDApj1V/p7HpbAaxGfkYZL2rqEFkWqwQQgizScvXczFLW+z1Fvf3NlbcLNLywb589Fw/on/aTrsBQ03ec3b3YtTKb43TywwGA/s3fYImKxNHVzfjdskXzzL20wgat+sCQHCfgSzsF8LhiI08PGkOAL+ufZ/slGReWLONRqGdAeg4ZDjvDevOjmWzaNm9H+rSzIm8SWZyIk/M/dAYe4dBz7CofyiHtm6g+X29ADiy/WvOHfiN/pPf5v7h44z7dn/+FePUyItH/+Tg9+sZ9s7HhPR7zLhNYIf7WTthGCciI0xeT754lnFr/0tA244A1A1sztrxQxk7diynTp2iYcOGAHh6evLCCy/w22+/GUcTX3nlFRo2bMjBgwdxcCicRvvSSy9x//33M2PGDAYPHmxyjbVr1+bHH380+T68//77ZGRk4O7uzqBBg3jjjTeoU6cOw4cPL/PXsCpRqVT4ONmSkKO75TYdBj7N3g0fsXb8UDoMfIbs1Osc+O5z6gW2QJOTZdzOztGJuoHNObF7K3UC7sHZ3ZN697TAp0nLUh/jdh4NW8iqUQN4b1g3Og4ejlf9RmSnJhF//BAZ167yyte/mGzv42QrUzVvcilby464LNILDMaHYeZKAYuOE5el5WKWFg97Nf0DXGlQy85MZxCi6pKRSyGEEGZz9HrxUUsovNkuotdqyUlPpXaDxji6unPl1PFi2987ZITJzXDj0M4Y9HrSbpo6WDewuTGxBKjlWYc6AU1ITYgzvnZ6XyT+rdsZE0sAB+da3DtkBGlX4kk6f7o8l4q9s4tJmwlbO3v8W7Uj9fK/547+aTsuHrXp8uToYvsXXd+JyAgca7nRpHM3Y+XPnLQU6rdsi72zC+cP7S12zUWJJUDD1u0B6P7QQ8bEEqBTp04AnD9/HoDU1FT27NnD0KFDycrK4vr161y/fp2UlBT69u1LbGwsly9fNjnX2LFjTb4PDzzwAHq9nri4OKojX2fb294Y1Q1sxhNzP0STncWOZbOI+W0nT7z9IX4tg4ttO+TNd3Hz9mXH0jfZNHMs0ZHbynyMW6kX2JwJ63fT/P5eHNm2iYjwGfy1+XNUKjU9x04x2VatAj8XSWqKaA0KkQnZbIjNIKOgcMyxssYVi46bUWBgQ2wGkQnZaA0yiimqNxm5FEIIcUdvvfUWc+bMMY62NWrUiO7du5u0oFAUhWMpmhJv1LSaPH5Z+x6HIzaSmXTVpKCJJjuz2PbuPv4mf3dy8wAgL8t0DaKHT/1i+zq5uZtsl341geB/ErAb1W3cDID3hj7I9O2HS4j69tzr+hUbDXJycycx9m/j31MTLlKn0T3Y2N761+31+PNosjN5p2fLEt/PTjWd5njzNReN5Nb3b2Aan7s7AGlpaQCcPXsWRVF48803efPNN0s8V1JSEvXr/3v8G5NVKBwNvfGY1Y2Ps61ximNgh/tYcCS52DahDz9O6MOPm7zWrEvxwjoBbTsyYUNksddLewxPv4Ylnr+Il38jhs798JbvFzEohSOXonC0cntcFpmVnFTerOg8h5M1xGYUMEBGMUU1Jp82QgghzCI1X2+yXulGEYtmcjhiI/c9/QIN23TAsZYbKpWKjTPHoijFVzapbW7RM+Gmw6vUJW9XUjXOO7rFtEGDvuTCHLeKsaznVgwGanl5M+ydj0p838Wztsnfb3XNtra3j6do7eXUqVPp27dvids2adLE5O82ZrpGa+HjXD1vi6rrdZXFoeQ8IhNyLFrFWgEy/xnF7OXvQgdvpzvuI4S1kU8bIYQQZXb69Oli6xQTc2+9Vi06chvtBgyj/+S5xte0+ZoSq2aam4evP8lxZ4u9nnwxFoDx63fj4dvghtHRDDxv2K60VTxL4uXfiIToI+i1WmzsSh6pqO3fiHMHfiOg7b0m04fL6k7rXAIDC9tT2NnZ0atXr3Kf52bVaS2fl4MNDjaqWz4ksUYONio8HWruKihFUfjjWh6/Xy0sHGbp72zR+SMTcsjXK3St51St/g0JUXM/bYQQQpSbg4MDdjclS4m5ulv+UlHZ2MBNo137N316y1FBc2p+Xy8Soo8Qd+yg8bWCvBwObPkST7+G+LVog0qlorZ/IwAuHNlv3M6g13Ngy5flPnfrngPISU9h/9drir1XNPoX3GcgBr2ePZ8sLbaNXqcrseJoedStW5fu3buzatUqrl69Wuz9G1uMlIWLiwvp6el33tAKqFQq2tZ2LHHdsDVSASG1HWt08nJjYlnV/H41lz+u5Vk6DCHMSkYuhRBCmNi7dy+TJk3ixIkT1K9fn+nTpxfb5uY1l1qtlg8XvcNvW78m49oV7Jycqdu4KT3HTqNp5+60eKA3R//7LQaDgaTzp7h27jS6gnxUajWXY/4t6HNw6/oSYzocsbHYa7p8DfHHDzDnwXsw6HW41fWldY8BJtv8sekTTu8tXPf28fMP41qnHvfc+yDXzsWQdjmOzkNH8XqHekzffph697SgQXAHdq14hzN//MyVU8fJTk02Tn/Nz802OXbq5TiWP/EATy38lIjwGVyKPgKKgo29g3GbdgOGcXTHN+xY9iaXTh6hUWhntHm5nP3rVzoPHUVQ934Etr+Pex8byS9r3+PKmWiadu6Oja0d1+PPEx0ZwYBp7xSrtFuS0iQQH374Iffffz/BwcGMGTOGwMBArl27xv79+0lISODYsWN3PMbN2rdvz0cffcS8efNo0qQJdevWpUePHmU+TlURWseRA0nV44ZfAULqOFo6DIs5lFR1E8siv1/NxcFGJVNkRbUhyaUQQgijEydO0KdPH7y9vXnrrbfQ6XTMnj2bevXq3Xa/2bNns/WDhXQYNJwGrUPR5GRz+e8orpw6TtPO3Xlk2nzys7M4uuNbQMGzfgDtH3mS379cSca1K2WO89q5U2SnJuNQy43eL87A1s6BlEsXCnsF/pNkHdjyJdsWvUbrXo/QbkBhS4+kC2c4vmsLfi3b8uzy9eSkpZgc98l3PmLNi49zZl8kNnZ2NOnUDTsHR2J+3cl/l79Fsy49TKa3FvW6bPVQf4J7D2TP6iVkpSRxel8kze/rhdrGhufe38jPa94laucWTv60HWcPTwJCOuHT5N8CPoNfX0L9lm058N3n/PjhfNQ2Nnj6NiTk4ScIaHvvbb8WZelfGBQUxKFDh5gzZw7r1q0jJSWFunXrEhoayqxZs0p/oBvMmjWLuLg4Fi1aRFZWFt26dbPq5NLTwYZGrnbEZWktPoWyIlRAI1c7PB1usX65mruUrSXyco6lwyiVyIQc6jnZSpEfUS2olOq6Kl8IIUSZDR48mJ07d3L69GljpdCYmBiCg4PR6/W3rBbbNiSEfNe6PPf+V7c89urRj3Ll9Ale/eZ3PHz/rQarKIpx1O3b2RM4f+gPZuw4YrJv5MeL+Gn1YmP1zL0bPmbH0jd546dTxQreFPly8rOkXLrAq9/+fsuYDkdsZPNbE5m+/TCefg3JTrtO+P+1JbB9V5774GvjutL9X68hYmEYj81+jw4Dny68njEDuXD4D5NelzptAYv6hxLQ9l6eWbz2luc1t0cDXAnycrjzhqJUYtPz+e5C6XpOVmWPB7rRxN3e0mHcdVqDwqcxaWQWGKziAYEKcLNXM7qlJ3ZleVokRBUkay6FEEIAoNfr2bVrF4MGDTJpQdGyZctbVhct4u7uQdL501yPP1fi+9lp17lwZD/tH33aJLGE8hWEcXItbLPx96//M1ZBvZmjqxsZ165w6eTRUh/37F+/odcWcN8zL5gULOo4ZAQOtVw5vXe3yfal6XV5N0g1UPNQFIXt27fzaJdQ8tOvW+3aSxXgYa8m0K1mjoT9eiXHahJL+LeK7G9XrGOkVYjbkeRSCCEEUFjQJS8vj6ZNmxZ7r3nz5rfd943Zb5GXlcHSQZ1ZPvRB/vvuW1w9c9L4fmpCYbLl06SFWWJt02cQASH3smXuJOb3CmJj2BiO/7jVJNHsNnIi9s4urBzRhyUD7+WHBdO5GPXXbY9bVBnWO8C0JYetnT1e9QNIu5pg8vqtel3mZVZ+FdwiNb0aqLkcP36cPn368Mgjj+Dn50vPujZWk5zcTAEGBLiiroGFfC5lazmUXHK/3apMAQ4ma7iUrbV0KEJUiPw2EkIIUWEPdnuQaREHeWz2e9S7pwUHt67ng2d6cvD7slVaVd1irMhgMK0qa+foxNhPt/Gfj74jpP8TJMb+zcawMXz24uPGCrR1A5sx5fv9PLVgNY1COhG9ZzurRg1g90cLy3eRJTBXr8vykmqgFZeYmMiYMWMIDQ0lPj6eiIgIIiMjub9VUzp4W1/lWBXQ0dsR/xq4fs+gKOyIy7K671kRFbAjLguDrFgTVkySSyGEEAB4e3vj5OREbGxssfdOnz59231tVSqc3T3pMPBpnlqwmrD/ReHTNIjIVYsB8PIPACDx7KnbHsfRzaPE3pfpN40YAqjVapp0epABU95m0nf76DP+Nc4d/J3zh/Yat7F3cqFN38E8PmcFM/4bRfP7e/PLZ++izdeUeH4P3wYAxfpi6rQFpF2Ox/OmKb2WVtOrgVZEXl4e8+fPp2nTpnz33Xe8++67REdH88gjjxiT9W5+LrjZq60mWSlau/egn4ulQ7GIc5kFpFvRdNibKUB6gYHzmTJ6KayXJJdCCCEAsLGxoW/fvmzdupX4+Hjj6zExMezateu2+6anpmB7w28UB+da1G7QGH1BAQC1POvQuF0XDkd8VSxRvHGUr7Z/IzTZmSZTajOTEzn58w6TfXIz0orF4Nu8NQC6gnwActJTTd63tbOnXmBzFEXBoNOVeB1NOj2IjZ09f2z8xCSuQ1s3oMnOpPn9vW/5NbjbVEDjGlwNtLwURWHjxo20aNGC2bNnM2bMGM6ePcvEiROL9W61U6sYEOBqNclK0XTYmloU5nCyxmoeBNyKCjicXD1a4YiaSSoACCGEMJozZw47d+7kgQce4KWXXkKn07FixQpatWrF8ePHb7lfq1ataNz+PjybBuPs7kHC38eIjtxG52H/MW7zyPT5fDxqACue6cm9g0fgWT+AtCvxnN67m4mbfgGgTd/B7Hx/LuunPkfXJ0ej1eTx5+Z11Gl4D1dO/Xv+n1Yv4eLR/TS/vzeevv5kp17nz2/X4l7Pj0YhnQH47KUncK1Tl4C291KrtjfJF2LZ//UaWtzfGweXWiVeRy3POnR//hV+Wr2YteOH0rLb/5Ecd5a/vl2Lf6tQQh9+osT9LEEB2ktvvDLZv38/kyZN4q+//mLQoEFERkaWuMb4Rg1q2dHL34XIhKpfbKWXv0uNbWeRlq/nYpb1j/gpwIUsLWn5enlwJKySJJdCCCGM2rRpw65du5g8eTKzZs3C39+fOXPmcPXq1dsmlxMnTmT95q0c37sHnbYADx9/er80kwefnWDcxrdZa176fCe7V4bz5+Z16Ary8fT1J7j3QOM2Lh5eDF/6OTuWzeJ/783Fq35D+k54g5T48ybJZVC3/yP96iUO//AVOempuHh40bh9V3qNm46jqxsAnR4bSdT/NrN3w8cU5ObgVteXrk+O4aHRk2/7Neg1bjounrXZ//Uadix9Eyd3DzoOeZa+E1436XFpSSrAvQZXAy2rixcvEhYWxtdff01oaCg///wz3bt3L/X+HbydyNcr/H41t/KCrKAHfJ3pUIMfNhy9XjhqaS2jzLejAqKua3iofs2c3iysm/S5FEIIYRYnUzVsi8u2dBg1xvCm7jWyaEtZZGZmsmDBAt599128vLyYP38+I0aMwOYWhZhuR1EU/riWVyUTzAd9nelSz6nGFnZSFIXlJ1LJ1xe/pV09ZiC56am37XcLkHYlnkUD2vP4W+/T/tGngOL9dQEW9m9HYIeuPDHnAwDOH9rHJ2MHMWb1VgI73Ge2a3KwUfFqsFeN/Z4K6yUjl0IIIcxCei3eHSqgQw2tBlpaOp2ONWvW8Oabb5Kdnc2MGTOYNm0atWqVPB26NFQqFff5OONgoyIyIcfio2RF5+/l71KjRywBUvP1JSaW1ixfr5CWb8DLUabGCusidwJCCCHMwsvBBgcbVbW7yatKano10NLYvXs3kydPJjo6mhEjRjB//nz8/c1X5beDtxP1nGzZHpdFpoUqkxb9HAwIcK2xayxvlJhbcoGusvDwbcDc/ZewsS3b17NRuy6F+9nZVziGmyXm6iS5FFZHqsUKIYQwC5VKRdva1tcX0JrU9GqgtxMTE0P//v3p06cPnp6eHDx4kC+++MKsiWWRBrXsGN3Sk/behW1g7tZ3o+g8HbwdGd3SUxLLfyTm6ip8Q6tSqbBzcLxl79pbUavVhfupzXtLrVZBYl7Fk2Yh7jZJLoUQQphNaB3HalFQo6qqydVAb+X69etMmDCB4OBgTp06xebNm/n111/p0KFDpZ7XTq2il38tnmnqjrt94e1UZSWZRcd1t1fzTFN3evrXkgcM/8jKymLx69NY0L8db3Sqz7yeLVnz4uNcjjlmst2186f5ZOwgZnVtyIK+wfy6boXJ+2lX4pnZzpvDERvLdP7zh/Yxs5035w/tM762esxAlj/xwB3PWXjeS3zx6nBmdQ1gXs+WbF/yBmf+2MOMUG9+2vNzmWIRoiqQabFCCCHMxtPBhkaudl4zSXQAACAASURBVMRlaSXJNLOaXg30Zvn5+axYsYJ58+ahKArh4eG8/PLLODg43NU4GtSyY2yQJ+cztRxOzuNCltZs6zGLjtPI1Y723k4EutmhlgIvJsaNG0fkt5vpMuw/1A1sRm56GnFRf5F0IZb6LdsCkJeZztoJw2j1UH+Cew8kOnIbO9+fi0/TljS/r1elxFWacxbk5fDpuCFkXb9G16fG4Fq7LlE7t3D+0F6gcC2poihS1EdYFUkuhRBCmI1GoyFh3y6UNj0sHUq1UlQNVBRWBt2yZQvTp08nLi6OF154gbfeegtvb2+LxaRWqWjibk8Td3vS8vVEXdcQlaIxrj9Wq8BQimzzxu0cbFSE1HYkpI6j9Du8jR07dtBx8HD6T557w6svm2yTmZzIE3M/pN2AoQB0GPQMi/qHcmjrhkpLLktzzr+++4LUhIuMWPYFQd37AXDvYyNZ8VTh56deKfx5sJHcUlgRSS6FEEJUSG5uLu+99x5ffPEFp0+fBpWKKVv/wtO3QZnXL1UFBoMelUqNYjBYNH6pBlrcoUOHmDx5Mr///jsPP/ww27ZtIygoyNJhmfB0sOGh+i5093MmLd9AYq6OxDwdV3K0JObp0BmK72OrBh8nW/xc7PBxssXH2RZPB7WMWJWCu4cHl6KPkJmciJu3T4nb2Du7ENr/CePfbe3s8W/VjtTLcZUWV2nOeeaPPbjV9aVlt/8zvmbn4EjHISP477JZAOgUBRtZyS6siCSXQgghyiwzM5Nly5axYcMGzp07h6Io2Nra0rFjR8aNG0fPbsF8dS7L0mGWi1qt5tCX7xPYYxAePv4WSTClGqiphIQEXnvtNb788ktatWrFrl276NOnj6XDui2VSoWXow1ejjYEUThVV1EUDEphwqA3gI0abFUq1CokkSynefPDGTXqecL7taV+y7Y0v68X7QYMxcu/kXEb97p+xb6+Tm7uJMb+XWlxleac6VcvUdu/UbHtajdobPyz3gBY3zM6UYNJcimEEKJUUlNTWbx4MZs2beLixYsA2Nvb07VrV8aPH8+wYcNMKiZ28NZyOFljVWsvC3tIOhG27G1+/GkPn23/nbaPPv3PKGbl/8osGq3s4O3Ig34uNb5oS3Z2NosXL2bx4sW4urqyatUqRo0aha2tdd6+qFQqbFQUjkRJwmAWTwwbSkyd1pz8+b+c/fMXfvviQ379fAXDl6w1Tj+91QMiRam8TydzndNGSm8KK2Odn85CCCHuiqSkJMLDw9m8eTOXLl0CwMHBge7du/Pqq6/yyCOP3LIEfzc/F2IzCizWC7Csbu4h2adnD/r07MGK9d+Q4HEPnvUDMOh1lZJkFiWV7vZq+stoJQaDgc8//5zXX3+d1NRUJk2axMyZM3Fzc7N0aKKKsVWpcPP2ocvQUXQZOors1GRWPN2Tn9e8W2nrKc3Fw7cBSedPFyvak3LpgvHPtjKiLayMJJdCCCFMJCQksGDBAr7//nuuXr0KgJOTE71792bSpEn069evVMexU6sYEODKhtiMygzXbG7VQ/Ll4UPR6fW8/u7HXHeuS5NO3VAUxSzTZaUaaHG//PILkydP5ujRowwbNozw8HAaNWpk6bCEBa1cuZKsrCz69etHcHCwMRHT6/VkZ2Vhq8a4lrWWlzdu3j7oCgosGHHpNOvyEGf//IWYX3caC/po8zUc3PIlUFjIp4ZPXhBWSJJLIYQQXLhwgfnz5xMREUFSUhIALi4uPPzww0ybNo3u3buX67gNatnRy9+FyIQcM0ZbOW7XQ9LWxoaFU8eTmZnJfya8So5XQzoOGYGTqzsg1UDNITY2lunTp7N161Y6derEH3/8QZcuXSwdlqgCli5dyvnz5wkLC6Nu3br079+fhx9+mI4dO9KqVStC+zyKe+Mg7J1dOPvXryScPMrDJtVjq6Z7H3uW/V+vYdNrLxS2IqlTj6j/fYftP+10vBxtZS2usDqSXAohRA0VExNDeHg4O3bsICUlBQBXV1cGDRrE9OnTzXZj38HbiXy9wu9Xc81yvMpQ2h6Sbm5ufPvFZ8TGxjLsyaFcup5Og1ah9B06nKAu3bim0Us10DJKS0tj7ty5fPDBB/j5+fHVV1/x5JNPytdGGLVr146LFy9iMBhISkpi3bp1rF27FoAePXoQdzqagz9uQzEYqN2gMQNnLqLzE89bOOo7c3CuxehVW4hYOJM/Nn6CvZML7QYMpWGbjmyY9jx+7i6WDlGIMlMplbmaWQghRJVy/PhxFixYwK5du0hLSwPAw8OD3r17ExYWRrt27SrlvIqi8Me1vCqZYBb1kCxPMvPTTz8xcuRILl++jJOTE2/Pm8err06SaqCloNVq+eijj5gzZw4FBQW89tprvPrqqzg5SduVmi4vL48TJ04QFRXF0aNH2bFjh3HN9418fHz47bffKKjdgG1x2RaItHLs3fAxO5a+yZ4T53iodaClwxGiTCS5FEKIau7gwYOEh4cTGRlJZmYmAF5eXvTr14+ZM2fSqlWruxbLoeQ8IhNyjGsNLcXcPSQ/+ugjpk2bRk5ODnXr1mXNmjUMGDCgwsetjhRFYfv27UydOpWzZ8/yn//8h7lz5+LjU3KPQlG9paSkGJPIov+fOnUKg8GAWq2mZcuWeHt788svvwCFD2kURWHChAksWbIEBwcHUjQ6PolJt+yFlJNWk4ed47+fQdp8DSue6oHBoOfM6TN4OcqUeWFdJLkUQohqaO/evSxcuJBffvmF7OzCJ/pFa5VmzpxJ06ZNLRbbpWwt2+OyLFZFtrJ6SBoMBqZMmcIHH3yATqcjKCiIb7755q4m71XdsWPHmDJlCj/99BM9e/Zk2bJltGnTxtJhibtAURTi4uJMksioqCjjiKSzszNt2rQhNDSUkJAQQkNDad26NU5OTiQmJuLr64tKpcLR0ZF169YxdOhQk2MvP5FKvt76bmnXThiGh48/vs1bo8nOJOq/m7l27hTPLPiYL2eMlRkPwupIcimEENXE7t27WbJkCXv37iU3t3D6qa+vLwMHDiQsLIyAgAALR/gvrUHh1ys5HErW3LVRzKLzdKzkHpKZmZk888wz7NixA0VR6N27N5s2bcLLy6tSzmcNEhMTeeONN/jss89o1qwZS5YsoX///nLjXE1ptVpiYmJMksioqCjS0wtHF729vU2SyJCQEJo2bYrNbSowBwQE4OLiwtatW2nWrFmx9/dczuFgUp5VtD260d4NH3No6wbSrsRjMBio27gZ3UZOYMyIp3movqy5FNZHkkshhLBiERERLF++nP3796PRaADw9/dnyJAhzJgxAz8/PwtHeHuXsrXsiMsivcBQaUlm0XE97nIPydjYWIYNG8bRo0exsbFh9OjRfPDBB9ja1pxaenl5eSxbtowFCxbg4ODAW2+9xbhx47Czq9l9PKuTrKwsjh07ZpJIRkdHU/BPK5B77rmnWCJZNApZFqmpqdSqVQt7e/sS30/L17Pq77QKX09V8UKQp1SRFlZJkkshhLAiBoOBzZs3s2LFCg4cOGC8gQsICGDo0KFMnz6dOnXqWDjKsjEoCucztRxOzuNCltZsSWbRcRpbuIfkzUV/5s2bx+TJk+96HHeTwWBg06ZNhIWFkZiYyMsvv8wbb7yBp6enpUMTFXD16tVi6yPPnj0LgJ2dHa1btzZJItu2bYubm9tdi2/T2QzisrRWN3p5IxWFfW+HNXG3dChClIskl0IIUcUZDAbWr1/PypUrOXLkCFqtFpVKRWBgIE8//TSTJ0/Gw8PD0mGaRVq+nqjrGqJSNMb1U9Wlh2RNKfqzb98+Jk+ezIEDBxg8eDALFy606BpfUXYGg4GzZ88WWx957do1ANzd3QkJCTH+FxoaSsuWLW85qni3xGbk8935LIvGYA6PB7rRxN2yX0shykuSSyGEqIJ0Oh2fffYZq1evJioqCr1ej0qlolmzZgwfPpxXX32VWrVqWTrMSqMoCmn5BhJzdSTm6biSoyUxT2f1PSSrc9GfCxcuEBYWxjfffEO7du1YtmwZ3bp1s3RY4g40Gg3R0dEmayOPHTtGTk4OUDjN/sbRyNDQUBo1alQ1/30pCqv/TiPDQsXCKkoFuNurGRvkaZFZFkKYgySXQghRRRQUFLBq1So+/fRToqOjTUrxP//884wfPx5HR0dLh2kxiqJgUKgWPSRLKvrz1VdfWd2UZoCMjAzmz5/P8uXLqVOnDvPnz2fEiBGo1WpLhyZukpqaakwgi5LJmJgY9Ho9arWa5s2bmySRbdu2xdvb29Jhl8mlbC0bYjMsHUa5DW/qjv9dWhcuRGWQ5FIIISxIo9GwYsUK1q1bZ9LbLTg4mNGjRzN27FiLTzUTlefmoj+jRo1i5cqVVlH0R6fT8emnnzJr1iyys7OZPn0606ZNw8VFKlxamqIoxMfHF1sfGR8fD4CTkxNt2rQxGZEMDg7G2dnZwpGbR2RCNoeTNVY1eqkCOng70tO/+s5IETWDJJdCCHGXZWdns3z5cr788ktiY2NRFAUbGxtCQkIYN24czz33nFUkF8J8rK3oz65du5gyZQonT55k5MiRvPPOO9SvX9/SYdVIWq2W06dPF1sfmZZWWDm1Tp06xaq1NmvW7LZtP6yd1qDwaUyaxXrpllVR793RLT0rrUWSEHeLJJdCCHEXpKens3TpUr766isuXLiAoijY2dnRvn17xo8fz9NPPy3TCAWrVq1i6tSpZGdnV8miP3///TdTpkxh586dPPjggyxbtoz27dtbOqwaIzs7m+PHj5skktHR0eTn5wMQGBhYbH2kn5+f1U0bNwdrmx77TFP3u9YmSYjKJMmlEEJUkuvXr7No0SK++eYb4uLiAHBwcODee+9l4sSJDBkyRBJKUUxVLPqTnJzM7NmzWb16NY0aNWLx4sUMGjSoRiYtd8u1a9eKjUYWzXSwtbWlVatWxdZHurtL+4obHUrOIzIhx9Jh3FEvfxc6eDtZOgwhzEKSSyGEMKMrV64QHh7Oli1buHz5MgCOjo507dqVV155hUcffdTCEQprURWK/uTn5/P+++8zb948VCoVs2bNYvz48Tg4ONy1GKo7g8HAuXPniq2PTExMBMDV1dWk5UdISAhBQUHyPSilfYm5/H4119Jh3NIDvs7c51M91roKAZJcCiFEhcXFxbFgwQJ++OEH4w2hs7MzDzzwAFOmTKF3794WjrDqURQF/T+VXw0GUP9T+dXGCiu/VjZLFP1RFIXvvvuO6dOnEx8fz4svvsjs2bOtspptVZKfn090dLRJxdZjx46RnZ0NgJ+fX7H1kY0bN5YZDhWgKAp/XMurkgnmg77OdKnnJJ95olqR5FIIIcohNjaW+fPns2PHDpKTkwGoVasW3bt3Z8aMGdx///0WjrDqUBSF1Hx9Yc/KXB1X/+ldebuelb7Ohf0qfZxt8XKwkZsvihf9efvtt5kyZYrZz3Pw4EEmT57M3r176d+/P0uWLKFFixZmP091l5aWxrFjx0xGI2NiYtDpdKhUKpo3b26SRIaEhFC3bl1Lh11tFU2RVYFFi/wUnV+mworqSpJLIYQopejoaBYsWMDOnTtJTU0FwN3dnZ49exIWFkbHjh0tHGHVkpav5+h1DcdSNOTrC3/VqIEScspibtzOwUZF29qOhNZxxNOh+la4LK3KKvpz6dIlXnvtNdavX09wcDBLly6VUfdSUBSFhISEYusjL168CBROiy9q+1GUTAYHB0vLFgu4lK1le1yWxarIFlWFHRDgKsV7RLUlyaUQQtzGkSNHWLBgAbt37yYjo7DyoKenJ3379mXmzJm0adPGwhFWLQZF4VxmAYeTNVzM0pptlKDoOI1c7Wjv7cg9bvaoa/BopjmL/mRnZ7No0SKWLFmCq6sr8+bNY9SoUdW6VUV56XQ6Tp8+bZJERkVFkZKSAoCXlxehoaEmU1ubNWsmrYWqEK1B4dcrORxK1ty1Ucyi83T0duRBPxdpNyKqNUkuhRDiJvv372fhwoXs2bOHrKwsoLBXXP/+/Zk5cybNmze3cIRV06VsLTviskgvMFTaTVvRcT3s1fSXp/9kZmYyYsQItm3bVuaiP3q9ns8//5zXX3+dtLQ0Jk+eTFhYGG5ubnch8qovJyeHEydOmIxInjhxAo1GA0CjRo2KrY/09/eXKdxWQj6vhKgcklwKIQSwZ88elixZwm+//UZOTmHp+nr16vHoo48yc+ZMGjdubOEIqy5LjgR08Hakm4wElLnoz88//8zkyZOJioriySefJDw8nICAgLscddWRlJRUbDTy9OnTxrYfQUFBJmsjQ0JC8PDwsHTYooIMisL5TC2Hk/O4UAkzLRq72tHe24lAN7saPdNC1CySXAohaqz//ve/vPvuu+zbt4+8vDygsFrjkCFDmDFjBv7+/haOsOqTNUxVy52K/pw5c4Zp06YRERFB586dWbZsGV26dLFgxHeXwWDgwoULxdZHXrlyBSgsynVz249WrVpJ248aIC1fT9R1DVE3rhFXgaEUH2w3budgoyKktiMhskZc1FCSXAohagyDwcAPP/zAe++9x59//kl+fj4ADRo04IknnmDGjBlSrbEMpPpi1XVz0Z/ly5fz119/8eGHH+Ln58fChQsZNmxYtZ7CWVBQwMmTJ4uNSBZNdff19TVJIkNDQwkMDJS2HzWcoiik5RsKq1vn6biSo71jdWs/Fzt8nAqrW3s6qKv1vysh7kSSSyFEtWYwGNi4cSMrV67k4MGDaLVaABo3bsyTTz7J1KlT8fLysnCU1qUq9417wNeZrtI3Dij82X/11Vf58MMPMRgMqNVqJkyYQHh4OE5O1SsJz8jIKNb24++//0ar1aJSqWjatGmx9ZH16tWzdNjCSiiKguGfvrx6A9j805dXLX15hShGkssqRJqKC2EeBoOBtWvXsmrVKo4ePWrsK9ekSROeeeYZJk2aJEVLKmBfYm6VTCyLPODrzH0+zpYOw6IURWHbtm1MmzaNM2fOEBAQQFxcHECZiv5UNYqicPnyZZPRyKNHj3LhwgUAHBwcCA4ONkkkg4ODqVWrloUjF0KImkGSSwuRpuJCmJdOp2P16tV8+umnHD9+HL1eb2xUPnLkSCZOnIizc81OOMzhUFIekZdzLB3GHdXkKbJRUVFMmTKFPXv20Lt3b5YuXUpwcDDnzp1j6NChHDlypFRFfyxNr9dz5syZYusjr1+/DhS2BLp5NLJFixZV9nqEEKImkOTyLpOm4kKYj0ajYeXKlaxbt46TJ08ap/61atWKUaNG8dJLL2Fvb2/pMKuNS9laNsRmWDqMUnumqXuNKvJz9epV3njjDdauXUvz5s1ZunQp/fr1K/Yg8k5FfywhNzeXEydOmCSRx48fNxbaCggIKLY+skGDBvKQVQghqhhJLu8CaSouhPnk5uby3nvv8cUXXxhbBdjY2NCmTRvGjBnDmDFjZOSiEmgNCp/GpFmsKmxZFVWRHd3Ss9q3KcnNzWXZsmWEh4fj6OjInDlzGDt2LHZ2t0+sby76s2bNGgYMGFDp8V6/ft2kwM7Ro0c5ffo0BoMBGxsbgoKCTCq2tm3bVtZFCyGElZDkspJJk14hKi4zM5Nly5axYcMGzp07Z+w9FxoayosvvsjIkSOlwmMli0zI5nCyxioSyyIqCvtg9vSvnuvtiopVhYWFce3aNSZOnMjrr7+Op6dnmY4xZcoUPvjgA3Q6HUFBQXz99de0bt26wvEpisKFCxeKrY+8fPkyAC4uLrRt29ZkNLJVq1Y4OjpW+NxCCCEsQ5LLSiJNxYWomNTUVBYvXsymTZu4ePEiAHZ2dtx7772MHz+eYcOGSUJ5l1jbdNibVcfpsXv37mXy5MkcPHiQIUOGsGjRIu65555yHy8zM5MRI0awbds2FEWhV69ebNy4sdRFfwoKCoiJiSm2PjIzMxOAevXqFVsf2aRJE/k3LIQQ1Ywkl5VAmooLUT5JSUmEh4ezefNmLl26BBRWf+zSpQsTJ05k4MCBcjN6lxkUhdV/p5FhJdNhb6YC3O3VjA3yrBbLBs6fP09YWBjffvst7du3Z9myZTz44INmO35piv5kZmZy7NgxkyTy5MmTFBQUAJi0/ShKJn18fMwWoxBCiKpLkkszk6biQpRNQkICCxYs4Pvvv+fq1asAODk5cf/99zNp0iT69etn4QhrttiMfL47n2XpMCrs8UA3mrhbb3GnjIwM3nnnHd577z3q1KnDggULGD58eKU9bNmzZw/PPvssly9fxt7enoceeghXV1eOHj3KuXPnALC3tyc4ONhkNLJNmza4urpWSkxCCCGqPkkuzUSaigtRehcuXGD+/PlERESQlJQEFK6/6tatG9OmTaN79+6WDVAYbTqbQVyW1ipHLYuoKCx8NqyJu6VDKTOdTscnn3zCrFmzyM3NZfr06UydOhUXFxeznkev1xMbG2tSZCcqKsr47xMKp6X369ePxx57jNDQUFq0aHHHokFCCCFqFkkuzUSaigtxezExMYSHh7Njxw5SUlIAcHV1pWfPnkyfPp0uXbpYOEJxs7R8Pav+TrN0GGbzQpCnVbVu2rlzJ1OmTCEmJoaRI0cyb9486tevX+Hj5uXlER0dbbI+8vjx4+TmFv4Oa9iwYbHRyBUrVlRK0R8hhBDViySXZiBNxYUo2fHjx1mwYAG7du0iLa0wSfHw8KB3796EhYXRrl07C0cobmfP5RwOJuVZ9ahlERVwb10nHqpv3hG/yhAdHc3UqVPZtWsX3bp1Y9myZeX+t5KSklJsNPLUqVPo9XpsbGxo0aKFSaGdtm3bUrt27RKPVdGiP0IIIao/SS4ryNqqKFbHqomiajl48CDh4eFERkYaK0V6eXnRr18/Zs6cSatWrSwcoSgNRVFYfiKVfH31+RXhYKPi1WCvKrtEICkpidmzZ7N69WoCAwNZvHgxAwcOLFW8iqIQFxdXrO1HUWEsZ2dn2rZtazIi2bp1a5ycyv7AsTRFf4QQQtRMklxWgDQVF6LQ3r17WbhwIb/88gvZ2dkAeHt7M2DAAGbOnEnTpk0tHKEoqxSNjk9i0i0dhtmNbemJl2PVmhqr0Wh4//33eeedd1Cr1cyaNYvx48djb19yASKtVktMTIxJIhkVFUV6euH3y9vbm9DQUJMRySZNmmBjY97rvrHoj5OTE2+//TZTpkwx6zmEEEJYF0kuK0CaiouabPfu3SxZsoS9e/ca12r5+voycOBAwsLCCAgIsHCEoiJOpmrYFpdt6TDM7tEAV4K8HCwdBlA42rh582ZmzJhBfHw8L730ErNnzzaZlpqVlcXx48dNRiOjo6ONbT+aNGliMqU1NDQUX1/fuzo6u2rVKqZOnUp2djZ169ZlzZo1DBgw4K6dXwghRNUhyWU5Wdt02JvJ9FhRHhERESxfvpz9+/ej0WgA8Pf3Z8iQIcyYMQM/Pz8LRyjM5ad/Hp4ZLB2IGalV0MHbiR5VYN3lgQMHmDRpEn/88QePPPIIixYtwsPDwySJjIqK4uzZsyiKgp2dHa1btzYZjWzTpg1ubm6WvhQADAYDU6dOZcWKFVL0RwghajBJLstBmoqLmsJgMLB582ZWrFjBgQMHjKMlAQEBDB06lOnTp0sxj2pq/Zl0EnJ0Zd7v29kTOH/oD2bsOGLyeuTHi/hp9WIWHEm+5b7X48+x8/23iTt2AE1WJs4eXjQK6cTg15fi6GqeJMrfxZbhzTzMcqzyiI+PZ+bMmXz11Vc0bNiQrl27kp6eztGjR7l27RoA7u7uhISEmKyPbNmy5S2nyVYlmZmZPPvss0REREjRHyGEqIFk9X05nMssIL3Aep/nK0B6gYHzmVqrbiouKofBYGD9+vWsXLmSI0eOoNVqUalUBAYG8vTTTzN58mQ8PCx3cy4qn6IoJOaVPbGsCJ22gM/GD0NfkE/XYaOpVacumUmJnPr9R/KyMsyWXCbm6VAU5a5NG9VoNERHR/Pnn3+ybt06jhz5N+mOj4/HYDAQGhrK2LFjjclko0aNqmzRoTtxc3Nj69atxqI/kZGR+Pj4SNEfIYSoIeRTvhwOJ2tQgVWOWhZRAYeT8yS5FEBho/bPPvuM1atXExUVhV6vR6VS0axZM4YPH86rr75KrVqyTrem0Cugu8vPz5LOnybtchxPL1pDcK9Hja/3HDvVrOfRGcCggE0l5G6pqakcO3bMZGprTEwMer0eAJVKRVBQEE899RSdOnUiJCSk2o7o3XPPPRw+fNhY9OeTTz5h/fr1UvRHCCGqOUkuyygtX8/FLK2lw6gwBbiQpSUtX29VTcWF+RQUFLBq1So+/fRToqOjMRgMqNVqWrZsyfPPP8/48eNxdHS0dJjCAnQWWC3hWKtwZDJ2/880v68X9k7OlXYunaJgQ/mzS0VRiI+PL9b2Iz4+HgAnJyfatGlD48aNSU9PJyEhgaFDh7Jo0aIaV+iqR48eJCQkGIv+TJ06lUWLFvHJJ5/w6KOP3vkAQgghrIokl2V09Lr1j1oWUQFR1zVW0VRcmIdGo2HFihWsW7eOmJgYFEVBrVYTHBzM6NGjGTt2rFWs6xKVy2CBWf9e9QO4f/iL7F3/EVH/+45GIZ1o2e3/CH34CbNNiS2iNwClfKam0+k4depUsUI7aWlpANSpU4fQ0FCefPJJ47RWg8FAWFgY27Zto0uXLnz77bd07tzZrNdgbV544QXGjBljLPozcOBAWrZsyTfffCNFf4QQohqR5LIMFEXhWEph65FLJ4+yffHrXD1zEq0ml5c37sGvefAdj3E4YiOb35rI9O2H8fRrCMDqMQMBGPvJD5UZfjEKEJWiobufs9Wu7xF3lp2dzbJly9iwYQOxsbEoioKNjQ3t2rVj3LhxPPfcc7IOSphQq8u/r+oWI4IGg/6O+/afPJf2jzzJ37/+j9j9v7Bt8Wv8svY9Xvp8J+71zFeJ2OYW15ednc3x48dNksgTJ06Qn58PQGBgIKGhoUyeQzU6ngAAIABJREFUPNlYaMfPz8/4+ZmSksLcuXNZuXIl9evXZ9OmTQwdOlQ+X/+hVqtZtmwZb731lrHoT3BwsBT9EUKIakTuKMsgNV9Pvl5Br9Xy1fT/YOfgwIApb2Pn6ISnbwNLh1cu+XqFtHxDlWsqLiomPT2dpUuX8tVXX3H+/HkA7Ozs6NSpE+PHj+fpp59GXZEMQlRrthVIhhzdPNBkFW/TlH41oVT7+zQNwqdpED1GTyHu2AE+fr4/f21eR5/xr5U7ppvZqlRcu3bNmEAWJZNFD1/s7Oxo1aoVISEhjBgxgpCQENq2bYu7u3uJxysoKGDlypXMnTsXnU7HvHnzeOWVV2Ra+S1I0R8hhKi+5BO8DBJzC6snpiRcJP3qJYa8uYyOg0eU6Rih/YfSpu9gbO2rRhNvKLwuSS6t3/Xr11m4cCHffvstcXFxADg4OPDAAw8wceJEhgwZIgmlKBUbFdiqy1fUp7Z/IzTZmVw9cxLfZq0AyExO5OTPO0y2S7+aQIEmj7qNmwKgyc7CztEJmxsSC58mQajUanT/tMApab+y0hfk41/fj8TERKAw0QkJCeH//u//mDlzJiEhIQQFBZVqeriiKERERDBt2jTOnTvHmDFjmDNnDvXq1StXbDXNjUV/Ro4cKUV/hBCiGpDksgwSc3WogZzUwj5tjq4lP8W+HbWNDWqbyk3kCvJyS10MQ60qLM0fRNVJdkXpXblyhfDwcLZs2cLly5cBcHR0pEePHrzyyitSMEOUi0qlwsfJtlx9Ltv0HczO9+eyfupzdH1yNFpNHn9uXkedhvdw5dRx43bfzBrPhcN/GPtenjv4OxELwwju9Sh1Au7BoNdxdMe3qNU2tO454Jb7lYWiKGRfucjo0aNN2n6U56HL0aNHmTJlCj///DN9+vRhy5YtsnawnHr06MGlS5ek6I8QQlQDMoxRBldzdXw9e4JxjeRX0//DzHberB4zkKtnTvLt7AkseqQDb3b2553eQWx+ayI56akmxzgcsZGZ7bxJuxJ/y/Pcapvzh/Yxs5035w/tM762esxAlj/xAJf/Psaq/zzCrK4N2fXBOwDoCvLZ/dFCFj/akTc61Se8X1v+t3wOuoJ84/4GBa7kWH/125okLi6OcePG4evrS/369VmxYgVpaWn07duXH3/8kby8PH766Se5KRMV4utsW65fEC4eXgxf+jl2jk787725HNn+NX0nvEHLB/ve/nzNWtGsy0PE/LaLHctmEblqMfZOLjy3YtP/s3ff8THffwDHX3fZW0KGCGLEiEYkYlMJKVV7xqpNdFArxq9V1dYu2lJFlNKmVG2lVFQopYTEaI1YkSCRvfd9f3+kOSIhO3cXn+fjkYfc3Xe871zuc+/v5/N5f6jT3K10T+I5WnIZb7RuwWeffcbAgQOpX79+iRPLR48eMW7cOFq2bElERASHDx/myJEjIrEsB97e3iQkJDB9+nRiY2Pp27cvjo6OXLt2TdWhCYIgCMUkei6LKW9R8dYDRmNqWZOAzV/SfthE7BxdMK5uye2/TxIbHkrLPsMwqW5F5J0bXNj7A5F3b/Lu1iMVWtAhNSGWLVOG0rx7P1zeGoxxdUsUCgXbpo3kfvB5Wg94G6t6jYi4/S+nf1pP9IM7vL1qm3L/yl5UXCi5kJAQFi9ezKFDh4iKyu2xMTY2plevXsyZM4eOHTuqOEKhqrEx1Ka0RWMd2rozbeepAvd7Tp6t/P35AmYWteoycMFXRR67LIXPFBLYGJSu2UtNTWXlypUsW7YMAwMD1q5dy6RJk8T8wHImiv4IgiBoNtEqFlPeouJ1nVuRk5VJwOYvsXdpq1zs275FGzq9/W6+feo0d2PHvEncDzpHPdd2FRZbUvQT+v3vC9oMGq28L+jQL9w+f4pJvvuxd3laAt+6QVP2LZ5F6OXz1HVuDVTsouJC6V27do0lS5Zw5MgRYmNze8DNzMwYMGAAc+fOpVWrViqOsHgkScr9+5EkFIrcSqTaMhlaMsQFDTVmY1g1m4eSPi+FQoGfnx/z5s3jyZMnfPDBB3z44YdUq1atgiIUQBT9EQRB0FTi07mYilpUXEffQPl7VkY6makp1HFqCcCjG1cqNLnU1tWjZd9h+e676n8Aq3qNsLR3ICUuRnl/g9a5PVx3L5xWJpdQ9kXFhfJx6dIllixZwrFjx0hIyK24aW5uztChQ5k3bx7NmzdXcYQvJ0kSsRk5RKRmE5GazePUbCLSsgstDKMtz+1Fqmmojc1/PxZ6WiLhVBMWelroacnIyKkKq/rm0tOSYa5X/GGwf/75JzNmzCAwMJCBAweybNkyGjRoUIERCs8TRX8EQRA0i0gui6moRcVTE+I4vnEFV47uIzk2f6GJ9OSkCowMTK1qoq2Tv7JhzIO7PLl3i8+7Nil0n+S46Hy3S7KouFC+zp49y7Jly/jjjz9ISsp9r9SoUYPRo0czb948GjdurOIIixaXkUNQdDqXY9KVyYgcXjqsMlsB4SnZPErJVm6npyXDubo+LjX0MdcTb0hVksly/y8uPEmjKqSXMqBFdf1iXby4e/cus2fPZvfu3bi5uXHq1Ck6depU8UEKLySK/giCIGgGkVwWU1E1H36aM4EHVy7Q6e33sG38GrqGRkgKBVve90IqKjN93gu+/ChyCl+EXEev4FpqkqTApqEjPWd+Wug+Zta18t1+0aLiQsX4448/+OKLLzh16hQpKSkAWFtbK3so69Wrp+IIi6aQJO4kZnIxKp37SVnIIF8SUtx3/bPbZeRIXHiSxvknadib6NDSUp8GprrIRW+mSrjU0Of8kzRVh1EuJKBFjZevOxkfH8+iRYv4+uuvsbS0ZNu2bYwYMUIs4aNGvL29mThxIrNmzWLNmjX07duXpk2bsnPnTlFUSRAEQQ2I5LKYXraoeFpiPHfOn8Jz8hy6TpqlvD/6wZ1SncvANHcuT1pSAubP3B//OKzYx7Cws+fxrX9o0Pr1Yl2pL8ui6ULxHD58mNWrV3PmzBnS0nK/sNva2jJ27FjmzJmDnZ2diiMsvrDkLA6FJhGfqVAOpi6v3q2844QmZXE/KYtqunJ61jWhtrFOOZ1BKC5zPS3sTXQITcrS6N5LGWBvovPC3vDs7Gw2btzIggULSE1N5aOPPmLmzJkYGhZvSSehcomiP4IgCOpLXI4tprxFxQsjk+d+YZGem5d5xm9Dqc5V3c4egHuXzirvU+TkcH7PD8U+htMbfUl88pgLheyTlZ5GZlqK8ra2PHe9S6F8KRQK9u7di7u7O/r6+vTs2RN/f39q1KjBjBkziIyM5OHDh6xZs0ZjEssshYR/eDJ+IQkkZOb2OVZU0pF33IRMBX4hCfiHJ5Ol0OQURzO1tNTX6MQSct9LLS0NCt4vSfz22280b96c999/n969exMSEsL8+fNFYqkB8or+hISE4Orqir+/P9bW1kycOJHs7JKv0SoIgiCUnei5LKaXLSqub2xCPdd2nNq6FkV2FqZWNQk5F0Dcw9BSncu6QRNqO7lxdM0i0hLiMTCrxpWj+1DkFL+xdOk5hKvH9rNv8SzuBOYW75EUOUTdv82VY/sZ981O7BxbALlFVUQRlfKhUCjYvn0769at48KFC2Rl5a4hWq9ePYYOHcqsWbOwsLBQcZSlE5acxa+hSSRWcFL5vLzzXIxKJyQhk14V0IspKtrmkiSJhw8fEhwcTFBQEMHBwQRfvsyAVdsxt62NXEvzmgwZYKYrp75p/vfMtWvXmDlzJr///jvu7u74+fnh4uKimiCFMnm+6M+mTZvw8/MTRX8EjSTaI0HTad43BRWqaajNo0KSSwCvxRs4uGweZ3duBknCoZ07Y9bsYEl3p1Kda+iib9m7aBYnv/8afRNT3PqOoEGrjnz3zqBi7S+Xy3l75TZO+60n6NBO/j1xGB19Ayxq1aXDsEnUqJNb8VAuA1sjMdywLBQKBVu2bGHDhg0EBQWRnZ2NTCajYcOGjBgxgunTp2NqaqrqMMskMCoN//CUAvMqK5MEJP7Xi+lpZ4RbIT1RxTqOqGgLQE5ODrdu3VImkXn/RkfnFvsyNzfHxcWF/v360SQ7kigte9UGXEoS0KuuiXLebmRkJAsWLMDX15f69euzb98++vTpUyX+T191ouiPoGlEeyRURTLp+bGcwgv9E5vOwdBkVYdR7vrUNcHRQk/VYWiUvDlamzZt4sqVK+Tk5CCTyWjcuDGjR49m6tSpVWJYnSRJ/BWZxp+PU1UdSgGdahrS3tqg2A1raSra5nl2O02saJuamsrVq1ef9kYGB3PlyhXl3N+6devi4uJCixYtlP/Wrl0732vrH57Mxah0jRoiKwPcLPXpamdMeno6X375JYsXL0ZLS4sFCxbw7rvvoqurW+RxBM2jUCiURX+ys7NF0R9BrbzK7ZFQ9YnksgRi0rPxvR6v6jDK3aSm5ljoiw+loqSnp7Nu3Tq+//57/vnnHxQKBXK5nGbNmjFu3Lgq+UX1TESqWiaWeTrVNKSDzYuT+KIq2pZW3nHUsaJtdHR0gd7ImzdvolAo0NLSwtHRMV8i6ezsjLm5eZHHzVJIbLoeR2KmQiMSTBlgqitnfJNq7Nu9izlz5hAeHs67777Lxx9/TPXq1VUdolAJEhMTlUV/JEkSRX8ElXkV2yPh1SSSyxKQJIkvr8ZWuUXFpzlZiGEVL5CamspXX33Ftm3buHnzJpIkoaWlhbOzMxMmTGDixIloa1fN0eWBT9Lwf5hS9IYq9qIhss9XtK2Iv9q846qioq0kSdy7dy9fEhkUFMTDhw8BMDY2xtnZOV9vZLNmzdDXf/lyHC8TlpyFX0hCeT2FCueS9ZCF097h7Nmz9OnTh+XLl2vEurFC+btz5w5eXl5cvHgRuVzOuHHj+Pbbb6vs57egXqp6eyQIzxLJZQn98TClSi0q3trKAI9aRqoORa0kJiayatUq/Pz8uHPnDpIkoa2tjaurK5MnT2b06NFVft07TUsiRjiYKRvSLIXEyUcpBEalV9oc0bzzuFnq09nWCJ1yLr+cmZnJv//+m7/QTnAwiYmJANjY2ORLIl1cXGjQoEGFvE/z5t+qu0fHd7HG5x2cnZ1ZuXIlXbt2VXVIghrIK/oTHh6OgYEBCxcuxMfHR9VhCVVUVWyPBKEoIrksobiMHDb8G6fqMMqNt6O5GKcPxMbGsmLFCnbs2MH9+/cB0NXVpVWrVrz33nt4eXlV+YQyj6YOf5zQ1JyI1GxlRVtVxJ4XS1kq2iYmJnL58uV8vZH//PMPWVlZyGQyHBwcaNGiRb5k0sbGpnyfyEv8/vvvrNz7Bx7PrOmrbv7YuIIre7eyaNEixowZg5aW+IwT8ssr+pOcnIyVlZUo+iOUu2crrGtqeyQIpSGSy1LYcTuhyiwq7tXQTNWhqMyTJ09YunQpu3btIiwsDAA9PT3atWvHtGnT6N279yuTUD5LUwu31DbW5kFytkor2ubFIvHi4bp5JEni8ePHBeZH3rlzB8i9uOHk5JSvN9LJyQkTE5PKeSKFOHz4MP3796dbt27M+taPs1GZKovlRf7YsJzWNXSZM2eOSl8rQf2Joj9CRVGHCutQ/PZIEMqTSC5LISQhg913k1QdRpkNqm9KQ7OqVYCmKOHh4SxZsoS9e/fy+PFjAAwMDOjYsSPTp0+nR48eKo5QtTRtOKy6y6toq1AoCAkJKZBIRkVFAVCtWrUC1VqbNGmCjo76XG3ev38/gwcPpmfPnvz888/o6uqqzRcoxX/Vmh8H7GXW4B7UqVNHhdEImkYU/RHKS1WqsC4IpSWSy1JQSBIb/40jQUOGDT4vb1HxSY7mr0RFsXv37rF48WIOHDjAkydPADAyMqJz5874+Pjg7u6u2gDVhKa/r9XV9QM/sGv5R6Sm5n7ZqFOnToFEsk6dOmrd4O/evZuhQ4fSv39//Pz88iW9qh76pVDkkBYbRUezHLq3dlZBBEJVIYr+CGWl6RXWBaE8iOSylDS9h2ekgxl2VXgM/vXr11m6dCmHDh0iJiYGAFNTU7p06cLs2bNp166diiNUP1WlR14dad06T0tLfVq0aIGFhYWqwymRHTt2MHLkSLy8vNi6dWuhX7RVUbQiJycbuVyLagnhjH/dGV2tV28Iu1AxRNEfoTQ0vcK6IJQXkVyWgabOTctbVLyquXLlCkuWLOHo0aPExeUWXapWrRpvvPEGc+fOxdXVVcURqreqMJdYnT1b0VZT/Pjjj4wePZqRI0eyefPmIgvjVEa5fUV2NnJtbUhNZHBTaxpYiGrXQsXYuHEjM2fOJDk5GUtLSzZt2iSK/giF0rQOB01sjwTNIZLLMtDkqppVpTT1hQsXWLp0Kf7+/splGapXr86bb77JvHnzaNasmYoj1AxVrQqyutHEv70tW7Ywfvx4xo0bx8aNG4td3EohSdxNzOJiVBr3ynGhcEVODjK5jPTwO/R2boBrHctXYli/oFoKhQIfHx++/vprUfRHKJT4LigI+YnksozE1arKd/r0aZYtW0ZAQADJyckAWFlZ0bNnT+bNm4eDg4OKI9Q8VWn9VnWlSaMGNm7ciLe3N5MnT+abb74pddXkuIwcgqPTCY5JJyMn990ll4GiGG+0Z7dLS0og6tKfjPFsS+vXmpQqFkEoC1H0R3gRMYpNEPITk1TKqLaxDp52mjEsy9POSGMTy2PHjtG9e3eMjIzo1KkTv/76KyYmJkyePJnQ0FAiIyPZvHmzSCxLQZIkLse8uGH0X7+cea6WpMTFVGpcFw9sZ56rJeH/BlfqeSuKBFyISicsOUvVobzU2rVr8fb2ZurUqaxbt65My/GY62nhUcuIaU4WTGpqTp+6JrhZGmBnpI32Cw6rLQcrHQVRgQHsmDeJNV6v0zY1hHXTxojEUlAZU1NT9u3bR0hICC1btsTf3x9ra2smTpxIdna2qsMTVCQsOYtADUssQXPaI0EziRJo5cDN0oCMHEntK4Rp2gTuAwcO8OWXX3L27FnS09MBsLOzY8KECcyZMwdbW1sVR1g1xGbkKHuVhIolAw6FJqltpebVq1czY8YMZs6cyYoVK8qtgq1MJsNCXwsLfS0c0QNyL2ooJMiWJHIUoCWHjLRUvly1igXLlmFoaEj37t3Zfuwm7dq2LZc4BKGsGjRoQGBgoLLoz6ZNm/Dz8xNFf15BCkniUGiSypdiKi11b48EzSV6LstJe2sDOtioZ/L2+n9rG6k7hULBzp076dSpE3p6evTt25cTJ05gbW3N7NmziYqKIiwsjK+++kokluUoIlVcda8sEhCfqeBuovpdLV62bBkzZsxg3rx55ZpYvohMJkNLLkNPS46+Fvzs9yOOTZqwaNEi3n//fW7fvs2nn36KQqHg1KlTFRqLIJRUly5dCAsLY8OGDWhpaTF79mysrKw4cOCAqkMTKsmdxEziNWSeZWHUuT0SNJtILstJeEo212IzVB2GUt7XQk87I9rbGKrtGnoKhYJt27bRtm1b9PX18fLy4syZM9SuXZv58+cTFxfH/fv3WbZsmZjbUkEiUrPFB0ElkgEXo9JUHUY+n3/+OXPnzuXjjz9m0aJFlfp5cerUKVq3bs3o0aNp3749169fZ9myZZiZmVGvXj3q1KlDQEBApcUjCCUxadIkEhISmDFjBnFxcfTt2xdHR0euXbum6tCECnbxv6WXNJk6tkeC5hPfKctBYFQafiEJJGYqVB2KkqmunBEOZmo5FDY7O5uNGzfi5uaGrq4uo0eP5vz589SvX5/PP/+cxMREZa9FtWrVVB1ulfc4NZvivHNT4mP5ac54PulUj089GnFwxf/IykhXPh64/yd8J/Xn865N+ahNLVYP7MC5X7YUOM6ynq58P3U494PO8c3b3Zjf1o7lvd249OvPRcaQlhjPN293Y8mbzYm6f7skT1NtSMC9pCziMnJUHQqSJPHxxx8zf/58PvvsMxYuXFhpieWdO3cYOHAgnTt3RiaT8eeff7Jz507q16+v3EYmk+Hu7s6JEycqJSZBKA25XM7KlSuJiYmhX79+3LhxAycnJzw9PYmOjlZ1eEIFiMvI4X4VWLpLndojoeoQyWUZSJLEmYhU/MNzF81Vpw+ZZhZ62Bmpz5TazMxM1qxZg7OzM3p6enh7exMUFESTJk344osvSE1N5caNG3z44YcYG4vqZZVFkiQi0oo3LHb7nAlkZ2TQ/f2PaNzBk7+2+7L385nKx//e9T3mNe1wH/cBb01fiJm1LfuXzObsz98VOFZs+D38Zo+jYZvOvDV9IQYmZuxaMIXIOzdeeP6UuBh8vfuTHBPFJN/9WNo3LPkTVhMyIDg6vcjtKpIkSfzvf//js88+Y9myZXz00UeVct74+HhmzZpF06ZNOX/+PD/88AN///03HTt2LHR7Dw8PLl++TGxsbKXEJwilZWpqyt69e5VFf44fPy6K/lRRQdGa32uZRx3aI6FqEcllGfwVmaa2RXz+ikjjr0jVDnVIT09nxYoVNGvWDH19faZOncq1a9dwcnJizZo1pKWlce3aNWbOnIm+vr5KY31V5UiQXcwOd/NadRj15Y+08xqP1+fraDt4LEGHdvL41j8ATPLdz6CFa+g4YjLth05g3LpfcGjnwWm/9QWOFXX/NsOXfUf39z+kndd4xn7zM1o6ulw8sL3QcydFR+I7qR8ZKclM2nSA6rXr8cuC91nW07XUz72k7gaeYZ6rJXcDz5T5WBIQHJOOqlaCkiSJWbNmsXTpUlatWsXs2bMr/JxZWVl88803NGzYkPXr1/Pxxx9z8+ZNRo4c+dKKtO7u7kiSJOZdChojr+jP8ePHsbW1ZdOmTZiamrJixQpVhyaUg6IqrBemJNXPN07sy8aJfZW34x49YJ6rZb72Ma+Ke3lQdXskVD0iuSylwCfqm1jm+fNxKoGVPJY+OTmZTz/9lMaNG2NoaMjs2bO5desWrq6u+Pr6kpGRQXBwMO+//z66urqVGptQUHYJGpO2Q8blu91u6EQAbp7xB0BH/+kQ7PSkRFLiYqjfsj2x4fdJT0rMt69V/cbUc22nvG1sXoMadRsSGx5a4LwJkY/YOLEvOdlZTNp0AHPb2sWOWZ1l5EjEZVT+UHpJkvjggw9YtWoVa9euZfr06RV+vkOHDtG8eXOmTJlC3759uXXrFh999BGGhoZF7m9vb4+9vb0YGitoHFH0p2pS1wrrJ75bzT8nDpdqX1W1R0LVpD7jJjVIWHIW/g9TVB1GsfiHp2BtoF2h61vGx8ezcuVKfvrpJ+7evQuAjo4Obdq04b333mP48OFlWitPqDiKErQlNerUz3e7up09MrmcuEdhANwP/hv/9ct5cCWQrPT8F17SkxPRNzFV3q5mU6vA8Q1MzUhLii9w/8757yLX0mbG7jOY1LAufsDlzN61HZ+eDUNLp/wuikSkZmOhr1VuxyuKQqHgvffeY/369WzYsIFJkyZV6PmuXr3KzJkzOXbsGB4eHmzfvp0WLVqU+DgeHh4iuRQ01qRJk5gwYQI+Pj58/fXX9O3bl6ZNm7Jz505ee+01VYcnlFBFV1gft+6XIrfxmDCDzmOn5rsvYPOXvObZm2Yeb5XqvJXdHglVl/jGX0JZColf/1vXSBPIgF9Dk8hSlO9VtujoaHx8fLC3t8fc3JzPP/+chw8f0qlTJ3755RfS09M5e/ZskUPehMqTmZnJgwcPOH/+PAcOHGDjxo189eWq0h/wmcIvMWH3+G7yQFLjY+g541NGf/0T47/dRYcRkwGQpPxZrExeeANW2LCcZl16kp6UwJntG0sfazmQy+Xo6OmX2/tZLqPY813LQ05ODhMnTmTDhg1s3ry5QhPLyMhIvL29adGiBffv32f//v0cP368VIkl5CaXV69eFcVRBI0liv5UHRVdYV1bRxftIi5iamlro6NXftOJKrs9Eqo20XNZQicfpZCoQesaSUBipoJTj1Loale2QjmPHj1i6dKl7Nmzh4cPHwKgr69P165dmTZtGr169SqHiIWSUCgUxMbGEhERQUREBI8fP1b+/vzP8wVR5HI5trXseM9zTLHOFf3gLha16ipvx4TdQ1IoMLetzfVTR8nOzGDU6h+pVtNOuc2dC6dL/dzyKtHePncSmVyLk1u+5pr/QYYt9aVWU+dC98lMS+HYt8u4emw/ybHRmNvWplX/t+n09rvKKqg/zhxD3OMHTPnpD+V+Wz8YwY0/f+ft1T/g2PlNAB5cvci3o99kzJrtNO7gyd3AM/hO6sfEjfuo79YByJ0bkxofy7BlmziwdA5h1y5hYGJG+2GT6DxmSr7Y4h6FcXD5PG6f/xNdA0Na9BhIdJc36DphECdOnMDd3b3Ur1VRcnJyGDt2LH5+fmzbto2RI0dWyHnS09NZvXo1ixcvRkdHh1WrVvHOO++UeQh83mtz8uRJBg4cWA6RCoJq5BX9uXfvHoMHD1YW/Rk7dizr1q0T00U0wLMV1uMehXFy6xrunD9FfMRDdPQNaNCqI29N+wRz2zoF9s1KS2Xv5zO5evwgiuwsHN3forfPIgxMn1bGz5tvOcl3/wtj8F+/nOMbV7DkUhSAcv7lpYM/c+lgbuV1195euPYayibv/oz84nuademZ7xjBv+3m5w8nM3nLYeo6t+JRiljvUigfIrksgbDkLAKjNK+ilgRciEqnUTW9AsNjFQoFXbp0wczMjP37C36QhYaGsmTJEvbv309ERAQAhoaGvPnmm8yaNYuuXbtWxlN45aSkpLwwSXw2gYyMjCxQhdDU1JSaNWtiY2ODjY0NTk5Oyt9tbGyUj9WoUSP3avqVmGIV9Tm3czON2nkob5/d4QtA4w5duXfpLJC/5zE9KfGFBXqKI29pkvqtOtKgVUcu/bqT+5fO8teOTQxeuKbA9pIksW3a29wNPI1bvxHUbPQaIWdP8NuXn5D45DG9Zn0OgL1LW/49+RvpyUnoG5sgSRKhl88jk8u5f+mcMrm8H3QOmVxjUa5YAAAgAElEQVROXec2L40zLTGeLe970cyjJ05v9OWa/0GOfP0pNg5NadzBE8hNejdNHkBSdCTth03EpLoVwUf2cDew9Ml3cWVnZzNq1Ch27tyJn58fQ4cOLfdzSJLEzz//zNy5c3n48CHvv/8+8+fPx8LColyOX7t2bRo0aMCJEydEcilUCfXq1SMwMJCAgABGjRrFd999x08//cTChQvx8fFRdXjCCzxfYT383yAeXD5P8279MbO2Je7RA/7e9T0bJ/Zj+q7T6Brkn1d+YNk89E1M8fT2Ier+bf7e9T3xj8OY6Lu/TMtADflsHXs+m45dMxdaDxgFgIWdPXWau2FmU4vg33YVklzuwsLOnrrOrYDcnktJktR2XXRBc4jkspgUksSh/4bDakqv5bNkwKHQJCY5miP/74MjOzubFi1a8M8/udU+k5OTMTY2JiQkhMWLF3Po0CGionKvihkbG9OnTx98fHxeuGSA8HLZ2dlERUUV2cP4+PFjkpOT8+2ro6OTL0F0dXXNl0Dm/VhbWxerSMqzbAy0CU8pejhM3MMHbJs2Eof2XXhwJZDgw7/g3GMgNRu9hrauPlo6umybNpLWA0eRmZbC+T0/YGxRg6ToyBLFkyfi1r8AdBwxGTvHFrTqN5I9n80gcN+PNGz9eoHtr588wp0Lf9Lt3Xl4TJgBQDuv8fjNHsdf2zfSzms81WvXw961LZJCQejlv2ncwZPI29dJS4zH6Y0+3A86pzze/aBz1GzUDH1jk5fGmRgVweBPv8G11xAA3PqNYHlPFwL3+SmTy793byM2/D5vr9qGo3sPAFoPHM2aYV1K9doUV1ZWFsOHD2ffvn38/PPPFZKYnTt3junTp3Pu3Dn69u3L77//TqNGjcr9PB4eHgQEBJT7cQVBldzd3Xnw4AEbN25k5syZzJ49mxUrVrBp0yb69Omj6vCE5zxfYb1Jxzdw8sz//9T09e58O6YH147/qmwX8mjp6DBh/R60dHIv9JvXrM1vXy3k+qmjygubpeHSczD7Fs/Cwq4uLj0H53+sxyBO+60nPelp7YPkuGhCzgXgMe5pQbdsBSgk0BK5pVBGIrkspjuJmcRnam4lLQmIz1RwNzGLhma6ZGdn4+TkxI0bT9cV7NChA+Hh4crhk2ZmZgwcOJA5c+bQqlUrFUWu3iRJIiEhocgexoiICKKiogrMKaxRo4YyMaxbty5t2rQptJfR3Ny8wq4m1jTU5lHK02E+LzJsqS/H1i/l6JrPkGtp085rPD2mfQKApX1DRizfzO/rlnD4y08wqW5Fm0FjMDKvzu6FH5QqLh19A7Iy0kiJezofqd+HX5CZlsKuhVOxd2mbb/ubp/2Ra2nRflj+uYSdRr7LNf+D3DxznPZDJ2Db2AldQyPuXTpL4w6e3As6h5m1LS49vfCbNYbMtFR09A24H/w3Lm8NKjJOXUOjfI25to4uds1ciX34tPLtrb/+wNSqJk2f+fKgo6dPqwFvc3jVxyV+bYojIyMDLy8vDh8+zO7du8v9i2poaCjz5s1TFuk5fvw4XbpUXLLs7u7Opk2bePLkCVZWVhV2HkFQBVH0RzM8X2H92SrpOVlZpKckUb12PfRNzHh040qB5LL1gFHKxBKgzeAxHP1mETdP+5cpuXwZl15eBGz5iqvHD9CqX+6UiCtH96HIzqbFc21ctiShpTFVRQR1JZLLYroYla6xvZZ5ZMDFqDTsjeQ0a9aMW7du5Xv8ypUrmJubM2zYMObOnUvz5s1VE6gayMjIIDIy8qU9jHk/6en5h0obGBjk61Xs1KlTgR5GGxsbrKys1GJ+jY2h9ksTS8/Js/GcnLsO4ojlm1+4XdPO3WnauXuB+936Ds93e86hS4Xu//z8kr7zlvHLgils/WAEtZo607iDJ669hjB08QaGLt7ALwvez7d0SdzjMEwsbdAzyj+32Kpebi9a/ONwAORaWtRp3krZS3k/6Bz2Lm2xd2mDQpFD2NWLGFe3JC0hrkACWxgzK9sCib+BqRkRIf8qb8c/DsutrvvcdtVr1yvy+KWRnp7OoEGD8Pf3Z9++fbz1VumqBxYmKSmJJUuWsGrVKszNzdm8eTOjRo1CS6tiqwx6eOQOyQ4ICGDIkCFFbC0Imiev6M+CBQsYPXo0+/fvx8nJia5du7Jjxw5q1Kih6hBfec9XWM9KTyNgy1dcPLCdxCeP808NSU7kedWfq7quZ2iMSQ1r4h49qJB4AazqOWDXzIXgw7uVyWXwb7up7eRWoAp8jgIQBWOFMhLJZTHEZeRwP0nzJzpLwL2kLBo4ufDgucQyz6NHj9DXL78KZOpEoVAQExNTZA9jREQEcXFx+faVy+VYW1srE8OmTZvi4eFRoIfRxsYGY2NjjZqzYGOonh8Dzbv1w96lLf+cOMztcwGc2vYNJ7euYeQXW5TDTUvLvkUbTny3mqyMdO4HncNj/HQMTMywbtCUe0HnMKmeWxyhOMml/AVJlaoWpE5LS6N///6cPHmSAwcO0K1bt3I5bk5ODps3b+ajjz4iMTGR2bNnM3v2bIyNy1YorLhsbW1p1KiRSC6FKk8U/VFfzxcLP7B8HhcPbKfDcG/qNHdD39gUmUzG9nmTClRJVyWXnkP49YsPSYh8RHZmBmFXA+kzZ2mB7bREcX+hHKjnt0o1ExSt+b2WeWSAY/cBPLhxrdDH16xZo3HFBJKTk4td/CYnJyffvmZmZvkSRGdn50J7GWvUqFHhPTOqYqGnhZ6WTC0XhTa1tKHdkHG0GzKO5Ngo1gzvyonvVheaXJrXrM2d86fISEnO13v55H4IQL4qtvYubcnJyuTykT0kPnmsTCLrubblftA5jKtbUqNuA0yql8/wy2o1a/Pk7s0CxRJiwu6Vy/HzpKSk0KdPH86dO8ehQ4fKbZiqv78/M2bM4OrVq4wcOZLFixdTu3btcjl2Sbi7u4v1LoVXhij6o360n7twfM3/IK69vOg541PlfVkZ6aQnJRS6f8yDuzRo9bRuRUZqMknRkWW+YArkWx7sec7d+3N41cdcPrKHrIx0tLR1aN6tX4Htnn9+glAaIrksgiRJXI5JrxKJJeQmyN3GTmX5+MEEBJwgMDCQ69ev8+DBA+Lj4zE1NS3yGJUhKyuLJ0+evHQ4al7imJKSkm9fXV3dfImhm5tbgd7FvOI3BgYGL4jg1SGTyXCurs+FJ2lq8z5X5OSQmZqiLD4AYGxhiamlDdmZmYXu07ijJ+f3bOPsz5twHzdNef8Zv/XIZDIad3ha2bj2a65oaetwausaDMzMsW7QBMhNOi8e2I6+iRmN2pff/MFG7Ty4fS6A6yePKAv6ZGWkE7j3h3I7R1JSEr169eLSpUscOXKETp06lfmY169fx8fHh0OHDtGhQwf+/vtvWrduXQ7Rlo6HhwcbN27k8ePH1KxZU2VxCEJlerboz6xZs5RFf3x9fenbt6+qw3ulaMlAW/60qI9MSwueG6VydscmFM9dyM5zfs82WvYZppx3+fcv36PIzs7XPpWWroEh6UkFh+ICGJlXp1GHrgQd3kV2ZjqN2nfByLx6vm205bnrXQpCWYnksgixGTlq2aNTFhkKiVqNmzLFKX+RAH9/f1JTUyvsvJIkER8fX2S11IiICKKjowsMK7S0tFQmhvXq1aNdu3aFDkutVq2aRg1LVQcuNfQ5/yRN1WEoZaQms/TN5rzm2ZuaDq+ha2jE7b9PEv5PEG89c4X4WU1e7059t478/s1i4h6FYdOoGbfPBfBvwG90GO6db36jroEhtk2dCbsaSNPXuyvfL/Vc25GZlkpmWmqxhsQWV+uBozj783fs+J937lIkNawJ/m03Bv8NQS/r+zUxMZEePXpw9epVjh49Svv27ct0vOjoaBYuXMi3335LnTp1+OWXXxg4cKDK/67y1rsMCAhg2LBhKo1FECrb80V/+vXrR5MmTfjll19E0Z9KIpPJ8lVYb9LpDYIO/4KesSnW9Rvz4MoFbp8/hWG1wpdhysnKYtPkATi90Zfo0Nuc+2UL9i3a5Cv2Vlq1mjpz+++T/Pnjt5ha2mBuW4c6Ti2Vj7v2GoKfzzgA3nhnboH9bQy0Vf4ZL1QNIrksQkRq0Us0aKKI1Gws9HOHeUZERPDBBx+wc+dObGxsSlxVMi0tjcjIyJfOYcz7yXyu18nIyChfYti4ceMCQ1Jr1qyJpaUlOjo6L4hAKCtzPS3sTXQITcpSi95LHX0D2g4eR8i5E/zzxyEkhYLqtevRd95y2g4eW+g+crmcUV/+wLFvl3H1931cPLCdara16THtEzq9/W6B7eu5tCXsaiB1Wzxdx9KkhjXVa9cjJuwe9coxudQzNGbChj0cWDaPv7b7omtghGuvIXTt1IFPJo0o0zzn+Ph43nzzTW7cuIG/v3+ZehYzMjJYu3Ytn332GZIksWTJEqZMmaI287BtbGxo0qSJSC6FV5Yo+qN6z1ZY7+2zGLlci8u/7SYrM526zq0Z/+1uNr9X+LzwPnOWEPzbbvzXLyMnOwvn7gPoPXtxuSR1PWd8xt7PZ3Bs3RKy0tNw7e2VL7ls8np3DEyrISkUBZJZuQxsjcR3LKF8yCRVVZ3QEMfDk7kYlV7kMg2aRC4DN0sD3GsasHHjRnx8fEhLSyMnJwdtbW0yMjKQJIno6OhiLbGRkJB/boGWlpay+E1hazE++1NZxUCEooUkZLD7bpKqw3ilxP/2Pcs+9CE8PJxatWqVeP/Y2Fi6devGvXv3OHbsGK6urqWKQ5Ik9u7dy+zZs7l37x7e3t4sXLgQS0vLUh2vIr377rv4+/sXqHYtCK+ivKI/Fy9eRC6Xi6I/leCf2HQOhiYXvaGaycnOZkl3J5q+3o2BC74q8HifuiY4WuipIDKhqhE9l0X4Ztnn7F27jBl7z/HHxi+4/udRtLV1aT1oNG+8M5eEyEccWDaXu4Gn0dE34PVR7+frJUmOjeLoms+58ecx0pMTqVG3IR1HTqZl76HKbeIePWB5r5b0mPYJ+kYmnNy6hoTIR9g4ONJ33nJqN3PJF9OTeyEcW7eYOxdOk5WehnWDJnSZNEu5RlJs+H1W9GlFzxmf0XHk5Hz7hl4+z/qxPRnz6VdM2vo1d+7cyfd4dnY2NWvWJDo6GsVzNbfNzc2VSaGtrS0tW7YsNGGsXr068udLqglqr4GpLtV05SRkKtSi97KqyUpPy7cmWlZGOnu2fYeDg0OpEsvo6Gg8PT15+PAhf/zxB87OzqWK6+LFi8yYMYNTp07Ro0cP9u/fT7NmzUp1rMrg4eHBt99+y8OHD0v1uglCVSKK/lQ+da2wXpR/Aw6TEheNS6/Ce1U19XkJ6ke8k15CkiSSs3ITrO1zJ2BVrxFvTpnPjT+PcWLTKgxNzTm/Zyv1W3XizakfE/zbLg6vXoCdYwvqtWxPVnoavhP7ERN2j7Ze47GoVYerxw6wa8EU0pMS6DDcO9/5Lh/ZTUZKMq0HjEImk3Fq61r8Zo3B50CgcvJ35J0brB/bE1OrmnQeMxVdA0OuHtvPjzNGMWLFFpp16YmFnT11W7Qm+LddBZLL4MO70DMyxq7jm9z5uPDF7QcOHIizs3O+Xkdra2v09MQVrapMLpPRs64JfiGFV7kTyubHWWOoZmNHzcavkZ6cyOXDu4i4cwM/P78SH+vJkyd07dqVJ0+ecOLEiVLNt3r48CH/+9//2LZtG82aNePIkSN0715wnVJ107lzZyB33uWIESNUHI0gqAdR9KfyqHOF9cI8uHqRiJB/+WPTSmybOFG/ZYcC2+hpyTDXE50CQvkQ76SXyJFA8d9nR+1mrgxdvIG2g8cyavUPmFnbcnj1x7TsM4x+/80DG/3VT+joGxB44CcgtyrYk3u3GPjJ1/Sa+Rnth05kwvo91Gneit/XLSEjJf+wiviIh7z3w+90HjOF10e/z4AFX5IQ+YhbZ5+W3j+44kOq2dgx5afjdB4zhXZe45nou586zd347eunhU5ce3rx8PplntwLefp8srK4euwAzbr0xKiaBStXf0mLFi0A0NZ+ep1hwIABeHt706dPH1q3bk2dOnVEYvmKqG2sg5ulPmJKf/lzaOdB6OXz/PblJxzf+AUmhvrs2LGD4cOHl+g4jx8/xt3dnZiYGE6ePFnixDIlJYVPPvkEBwcHfvvtN9avX09wcLBGJJYAVlZWNGvWTCxJIgiFmDRpEvHx8cyaNYu4uDj69etH06ZNuXLliqpDqzLyKqxrSjv5964t7F/ig7F5DQZ/+k2Bx2VAi+r6opiPUG5EcvkS2c9MR3XrP1L5u1xLi1qOLZAkCbe+T6+cG5iYUaNuA2LDQwG4edofkxpWOL85QLmNlo4O7YdNJDM1hbsX/8p3vuZv9MXAtJrydl5BkdiH9wFITYjj7oU/cerWh4yUZFLiYkiJiyE1PhaHdl2IeXCXhCePAXDq1hdtPX2Cf9ulPN6tsydIiY/B5a3BALw3ZQpBQUEEBwczefJk5TIkiYmFl7IWXg2dbY0w1ZVrTMOpKTqOmMy0X/5k4ZlQPjsbxt8XAvHy8irRMcLDw+ncuTNJSUmcPHmSJk2aFHtfhULB1q1badSoEUuWLGHq1KmEhITg7e2d7+KSJvDw8BDJpSC8gFwuZ8WKFcrk8ubNmzg7O+Pp6Ul0dLSqw6sSXGroa8z0kcEL17LoQgTv+/lj07BpgccloEUN9SjaJlQNIrl8iWenHFazyT+3R9/YBG09/QLrBOkbm5L23+K58RHhVK9dv8D8Q6t6DrmPPw7Ld/+zi7wDykQzLTH3eDFh95AkiWPrlvJ51yb5fvzXLwMgJTYqd18TM5q+3o3LR/Yojxf82y5MrWpSv1Xu+nc5/z0/Z2dn1qxZQ2RkJMePH6dHjx7FeHWEqkpHLqNXXRONaTg1jQyoZ6KDuZ5WifYLDQ2lc+fOZGRkcPLkSRwcHIq978mTJ2nVqhVjxoyhY8eO3Lhxg6VLl2JmZlbC6NWDu7s7d+/e5cGDB6oORRDUlrGxMXv37uXOnTu0bNmS48ePY21tzYQJEwpUbhdKJq/CuqZfhC1teyQIL6NZl6sr2bM5oVxe8A/vhUVrSlmAV1bIOZ49nvRfttvp7fdo1N6j0E2r166v/N2lpxdXjx0g9PJ5bBo6cv3kUdoOHquMW+u58PX19enSpfwWjhc0V21jHTztjPAPT1F1KFWOBLS0NChyu2fdu3cPDw8P5HI5p06dom7dusXa7/bt28yePZu9e/fSunVrzpw5U+Y1MNXBs/MuR40apeJoBEG9iaI/FaOlpT73k7JUHUaZlKY9EoSiiJ7Ll9Au4/jzajZ2xITdLVB1Neq/eZDVatYu0fEs7HK/UGppa9OwTedCf/SMni7t0ah9F4zMaxB8eBf/nDhEVnoqLj0HKx8v6/MTqjY3SwM61TRUdRhVigyopiunvmnx1xO7ffs2r7/+Ojo6Opw8ebJYiWVcXBwzZ87E0dGRwMBA/Pz8OHv2bJVILAFq1KhB8+bNxdBYQSiBvKI/GzZsQFtbm9mzZ2NlZcX+/ftVHZpGyquwrqnfpErTHglCcYjk8iW0ZLlrQpZW446eJEU/4crv+5T35WRn89fPm9A1NKJ+y5J90TO2sKS+Wwf+3rONxKiIAo8nx+WfS6GlrY3zm/25euwAFw/swKahIzUb5S4xoC0v23MTXg3trUWCWZ4koFddE+TFvLBz8+ZNOnfujJGRESdPnqR27ZdfkMrKymLt2rU4ODiwYcMGFixYwI0bNxg+fHiVWx7Iw8ODgIAAVYchCBpHFP0pH3kV1jV1CklJ2yNBKK6q9W2jnMlkMox1Sv8StR4wCqt6jdi1YAqHVy/grx2b+O6dgYQGn6fbu/Py9TIWV5+5y0CS+MqrM0fWfMb5PT/wx6aVfD91GN9NHlRge9eeXqTEx3A38DQt3nr6uI2BtqgMJhRJJpPRwcYQTzuj3Nuqjue/f+0M5aBhTboMaGWpj51x8a4S//vvv3Tu3Blzc3NOnjyJra3tC7eVJIlff/0VJycnpk6dSr9+/QgJCeHDDz/E0LBqXhxwd3fn/v373L9/X9WhCILGEUV/yoemVlgvaXskCCUhkssilCW51NE3YKLvPlr0GMilgz9zePUC0hLiGfTJ1wXWuCwu6/qNef/HYzTu6Mmlgzs4sHQOf+/aikwmp+ukmQW2r+XojHWDJsjkcmVyKZeBrZH4QBGKz83SgBEOZiqtIisDTHXltNeOZflQT1KiIzWmQc+L/XVbo2Jtf+XKFdzd3bG2tubEiRNYW1u/dNtu3brRu3dvatWqRVBQEJs2baJmzZrlFL166ty5MzKZTAyNFYQyEEV/yk7TKqyXtD0ShJKSSVIpq8+8Iv6JTedgaHLRG6qxr4d5YGhqzoQNTyvH9qlrgqOFWLtSKJkshcTJRykERqUjo3L6DvPO42apzwP/Pbz/7mQaNGjAtzv2cDrTvBIiKB8jHMyoXYyrxEFBQXh6elK3bl2OHTtG9erVC90uIiKC+fPns3nzZho2bMgXX3xBr169XqkRCa6urjg5ObF161ZVhyIIVUJe0Z+wsDD09fVZuHAhs2fPVnVYai8sOQu/kARVh1FsxW2PBKE0RM9lEWwMNbugbvi/wTy+eQ2XXkPy3a/pz0tQDR25DE87Y0Y4mGGmm/vxUVGpTN5xzXTlDLDTZdv/3mX82NGMGDGCv//+m47NHJTDddWdp51RsRryCxcu0KVLFxo0aMDx48cLTSzT0tJYvHgxDg4O7N69m9WrV3Pt2jV69+79SiWWkDs09sSJE4hrpIJQPp4t+qOjo8OcOXNE0Z9iyKuwrgmK2x4JQmmJ5LIIFnpa6Glp3he2iNvXuXhwB7s/+QCTGtY079ZP+ZielgxzPfFfL5RebWMdJjmaM6i+KfYmuY1Uef2V5B3H3kSHQfVNaZ/zkL6vt2HPnj38+OOP+Pr6KucRakJF2041DXErRqn3s2fP4unpSdOmTTl27Bjm5vl7ZSVJYvv27TRp0oQFCxYwceJEbt++zdSpU9HReTW/KHh4eBAWFsbdu3dVHYogVCmi6E/JVaX2SBDKQmQYRZDJZDhX17zJ2tf8D7L7k6nkZGcxdMkGdPT0gdwv7i2q679yPRxC+ZPLZDQ008WroRnejua0tjKA7MxnHi/ucZ7+rqclo7WVAd6O5gxpYErAL9to06Y1urq6XLx4kREjRhTYX50r2r5e05D21kU35KdPn6Zbt244Oztz9OhRzMzM8j1+9uxZ2rVrx/Dhw3F1deXff/9l1apVWFhYVFToGqFTp07I5XJRNVYQKoAo+lNyVaE9EoSyEnMuiyEuI4cN/8apOoxy4+1ojrmelqrDEKqgkSPf5lF8Mmu37SAiLZtHKVlEpGWTrSi4rbY8t2qxrZEONgba2BhqY64nRyaTkZSUxOTJk/npp5/w9vZm9erVGBi8vFEMjErDPzyl0uaCvogiJwe5XE7XWka0si76S0ZAQAA9e/akTZs2HDx4ECOjp0Or7t+/z9y5c/n5559xcXFh1apVuLu7V2D0msfNzY0mTZrw448/qjoUQajS7t27x+DBg7l48SJyuZyxY8eybt06dHV1VR2a2lGX9ijv/J52RqLHUqg0Irksph23EwhNytKwxQ/yk5E71NCroVmR2wpCadjb2zNgwABWrVqlvE+SJBQSZEsSOQrQkoO2TIZcRqE96JcvX2bIkCE8evQIX19fhg4dWuzzhyVn8WtoEomZCtX8rUoSqbFP2OYzHqPMJD788EO8vLzQ0ir8Yo6/vz99+vShY8eO7Nu3TzncNzExkSVLlrB69WosLCxYvHgxb7/99guP8yrz8fHhp59+Ijw8XIzIEIRKIIr+FI+q26O8qrC96pqIOZZCpRLDYouppaW+RieWkHv1qqW4ciVUkPDwcEJDQ+nYsWO++2UyGVpyGXpacgx15OhpydGSywokApIksWHDBtq0aYOhoSGXLl0qUWIJuXNBJzQ1p6Xl02HglSHvPK2sDJjfxZHt61ZTt25dRowYQdOmTfn+++/JysrKt8+RI0fo1asXHh4eHDhwAENDQ7Kzs9m4cSMODg589dVXzJkzh1u3bjFmzBiRWL6Ah4cHjx494vbt26oORRBeCXlFf3x9fUXRn5dQdXvkZqnPhKbmIrEUKp1ILoupgaku1TRoHaPnyYBqunLqm4oPGaFinDlzBoAOHTqUeN/ExESGDRvG5MmTGT9+PGfPnsXBwaFUcaiqou0IBzO62hmjI5fRrl07Dh8+zIULF3B0dGTs2LE0btyYjRs3kpmZycGDB+nbty/du3dnz5496Ovrc+zYMVxcXPD29qZ79+7cunWLhQsXYmxsXEHRVw0dO3ZES0tLrHcpCJVswoQJouhPEdShPRKEyiaGxZaApq1j9LyRDmbYiStYQgWZMmUKR44cISQkpET7BQUFMWTIECIjI9m0aRNDhgwpeqdiUkgSdxOzuBiVxr2krHKb/5J3nHomOrS0NKC+qQ7ylwzJvHz5MosWLWLXrl1YWFgQFxdH79692blzJ3fu3GHWrFkcPnyYjh07snr1atzc3MohyldHmzZtqF+/Ptu3b1d1KILwSkpOTubtt99m//79SJJE165d2bFjBzVq1FB1aGqjotojRU42MrkW9U11i9UeaTpJksj5b6qNQgHy/6baaL1gqo1Q+URyWUL+4clcjErXqCGyMnKHR3S1Ez0gQsVxcXGhRYsWbNmypVjbS5LEt99+y/Tp03nttdfYuXMnDRo0qLD44jJyCI5OJzgmnYyc3L9guQwUxfhjfnY7PS0ZLarr06KGfokLY61atYpZs2YhSRJWVlY4ODhw9uxZ7O3tWb58OQMGDBCNYynMnTuXrVu38ujRI/H6CYIKiaI/xVOe7dHlX3/m1/Vf8ODGNeW8/apCkiRiM3KISM0mIjWbx6nZRRYJrGmYWyDQxlAbCz0t0SaogEguSyhLIbHpepzqCoaUUFeVcZcAACAASURBVN6E7glNzcXwCKHCJCYmYm5uzoYNG5gwYUKR2yckJDBhwgR27drFlClTWLFiBXp6epUQaW5jFZehyG2sylDRtqT8/PwYNWoUXl5e1KpVi6+++oqsrCyMjIyYN28eU6dOxcTEpBye4avnyJEj9OjRg+vXr9OkSRNVhyMIrzxR9Kd4yqM92r17N4MHD2bevHksXry48p9EBYjLyCEoOp3LzybfQCEvSwHPbqenlbucoEspLgYLpSeSy1LQtOGxIxzMxIRuoUL9/vvvdO/evVhf7i9evMiQIUOIiYnhu+++Y+DAgZUU5YuVtKJtSW3dupWxY8fi7u7O/fv3efDgAd7e3owbNw5fX182b96MiYkJ06ZNY8qUKVSrVq0cntWrIzk5GXNzc77++mveeecdVYcjCMJ/Nm3axIwZM0hKSsLS0hJfX1/69u2r6rDUWmnaI0NDQ6pVq8ajR48qOdryo5Ak7iRmcjEqnfsVMI3F3kSHlpb6NDDVrdLDhtWBKOhTCrWNdfC0Myp6QzXgaWckEkuhwp0+fZrq1avTuHHjF24jSRJr1qyhffv2WFhYcOnSJbVILKH4FW1LY9OmTYwdOxZra2tOnDihLHjxzTff0LJlS9avX8+dO3cYPnw4ixYtom7dusyfP5+YmJhyeGavBmNjY1q1akVAQICqQxEE4Rmi6E/JlaY9euutt3j8+DH//PNPJUZafsKSs9j4bxy77yYRmpRbWb28er7yjhOalMXuu0ls/DeOsOSsl+4jlI1ILkvJzdKATjXVe2x7p5qGYtFcoVKcOXOGDh06vLDxi4+PZ9CgQUydOpV33nmH06dPU79+/UqOsvItXryYiRMnIkkSFhYWHD16lEOHDuHo6Jhvu9q1a7NmzRru3bvHhAkTWLVqFfb29syZM4cnT56oKHrN4u7uTkBAAGIwjiCoF7lczooVK5TJ5c2bN3F2dsbT05Po6GhVh1clLFmyBIAPP/xQxZGUTJZCwj88Gb+QBBIycwezVtQneN5xEzIV+IUk4B+eTFZxJrkKJSaGxZaBJEn8FZnGn49TVR1KAa/XNKSdtYGYyCxUuKysLKpVq8Ynn3yCj49PgcfPnz+Pl5cX8fHxbNmyhX79+qkgysqVnJzMoEGDOHr0KAYGBqxevZrx48ejra1drP2joqJYtWoVa9euJScnB29vb3x8fLC1ta3gyDXXsWPH6NatG9euXaNZs2aqDkcQhBcQRX8qhp2dHTExMaSkpCCXq3/fUVhyFr+GJqmshkleTZJedU3ECL9ypv7vPjUmk8noYGOoHCKr6jQu7/yedka0tzEUiaVQKYKDg0lNTaVjx4757pckiS+//JKOHTtiZWVFUFBQlU8sFQoF33//Pba2thw9epQ2bdrw+PFjvL29i51YAlhaWrJkyRJCQ0Px8fFhy5Yt1K9fn/fee48HDx5U4DPQXO3bt0dHR0cMjRUENVevXj0CAwM5ceIEtWrV4rvvvsPMzIzly5erOjSNNmHCBNLT0zViSabAqDT8QhJUWhxTAhL/68UMjEpTURRVk0guy4GbpQEjHMww1ZWrLsGUJAxkOYxwMBNDYYVKdebMGfT09HB1dVXeFxsbS//+/Zk+fTpTpkzhzz//xN7eXnVBVoKAgADc3NwYO3YsSUlJvPfee5w9exYzM7NSH9PCwoKFCxcSGhrK/Pnz2bFjBw0bNmTixIncvXu3HKPXfEZGRrRu3ZoTJ06oOhRBEIrB3d2dBw8e4Ovri46ODnPmzMHKyor9+/erOjSNNHfuXORyOcuWLVN1KC8kSRJnIlLxD0/Jva3qeP771z88hTMRqWJaRTkRyWU5qW2sw4Sm5rS01Acqrxcz7zwX92zFp319vlwwl9jY2Eo6uyDkFvNp3bq1cimRc+fO4eLiwqlTpzhw4AArV66s0sOdQkJC6N+/Px4eHsr5kQsXLmTt2rXlNnrAzMyMDz/8kNDQUBYtWsSBAwdo1KgRo0eP5ubNm+VyjqrAw8ODgIAAFIriFKwXBEEdiKI/5UNfXx83NzeuXbtGYmKiqsMplLpOJQP483Eqf0WKHszyIJLLcqQjl+FpZ8wIBzPMdHNf2opKMvOOa6YrZ4SDGSmX/iAzLZXVq1crF2RPSxN/JELFkiSJ06dP07FjRyRJYuXKlXTq1AlbW1uCg4Pp3bu3qkOsMHFxccyYMYNmzZpx8eJF+vXrx8OHD1m8eDEff/xxhZzT2NgYHx8f7t27x8qVK/H398fR0ZFhw4ZpbJXA8uTh4UFMTIx4LQRBwzxb9Kd///7Koj9du3YVRc1KYP78+UiSxMKFC1UdSgGBT9Q3sczz5+NUMUS2HIjksgLUNtZhkqM5g+qbYm+SO0m4vJLMvOPYm+gwqL4pkxzNqW2sQ9u2bZHL5UiSRFJSEnPnzqV+/frs2LGjnM4sCAXdvXuXyMhInJyc6NOnD7NmzWL69OmcOnWKOnXqqDq8CpGVlcXXX39Nw4YN8fX1ZcGCBQwaNIh9+/bxxRdfMG/evAqPwdDQkA8++IA7d+6wdu1azpw5w2uvvcagQYMIDg6u8POrq3bt2qGrqyuGxgqChjI2NmbPnj3cuXOHli1b8scff1CzZk0mTJhAZmamqsNTe7169cLIyIgffvhB1aHkE5achf/DFFWHUSz+4SliqZIyEsllBZHLZDQ008WroRnejua0tjJAT0v2zOPFPc7T3/W0ZLS2MsDb0RyvhmY0NHu6EGyjRo3yDQWTJImIiAimTZsmhogJFeb06dMA+Pj4cPbsWX799VeWL1+Ojk7Vq7wmSRIHDx7ktddeY9q0aQwYMIBbt24RFRXF6tWr+eqrr5g5c2alxqSvr88777zD7du38fX1JSgoCBcXF/r06cOFCxcqNRZ1YGBgQNu2bUVyKQgaThT9Kb2+ffsSFRXFpUuXVB0KkLvcyK+hSSovellcMuDX0CSxTEkZiOSyEpjraeFRy4hpThZMampOn7omuFkaYGekjfYL/ge05WBnpI2bpQF96powqak505ws8KhlhLmeVoHtGzVqVOC+1q1bc+bMGY0oSS1oHoVCwTfffAOAvb09QUFB9OzZU8VRVYzL/2fvzuNqzt4Ajn9ue5asYawhsqsk2dKtGPs2JCNlH8sw1rFvYxvrNIPGvm+RfTeJqJBS9qWk7ERJ+3bv74/UT4Ti3m7lvF+vXjPpe8957h3G9/mec57n6lVat25N586dqVSpEgEBAaxevZq5c+fy999/4+LiwqhRo1QWn5aWFoMGDeLu3bts3ryZu3fvYm5uTtu2bfH29lZZXKoglUrx9PQUD9UEoQAQRX9ybv78+QBMmzZNxZGk8Xwaq9KqsDmVXkX23NP8sdKaF4k+lyoml8v5e/kKJk2Zgtu+A7S2kaIhkaAmIUfFQKKjo9HT08t4jVwuZ+fOndjb2ysrdOE79urVKxwdHTl+/DjGxsb4+voWyNXK58+fM23aNDZs2EDNmjVZsmQJHTp0QC6XM3ToUNatW8fatWsZOHCgqkPNJDU1lT179jB37lxu3ryJVCpl+vTpWFlZFfgWRWfPnkUqlRIQEICxsbGqwxEEQUFkMhkTJ07E2dmZlJQUatWqhaurKw0aNFB1aHmOgYEBz549Iz4+XqULDI9iktkeFKWy+b9VnxrFRA/MryCWtFRMIpEQFRlBYmwM5UoWQ1tdDXU1SY5vAIsWLYqBgQEGBgZcuHCBnj17Mnz4cJ48eaKkyIXvlZeXV0ZCCTBu3LgCl1jGx8czb948DA0N2b9/P3///TfXr1+nY8eOyGQyBg4cyLp169i4cWOeSywB1NXVsbe359q1a+zdu5fIyEisra1p2bIlJ0+eLNDl1i0sLNDW1hZbYwWhgBFFf7Jv6NChJCUlsWHDBpXFIJPLOZqPtsN+SAIcDYtGVoD/vlQWkVzmAVFRaU919PX1v2mcy5cvc+vWLZo0acKqVavQ1dWlX79+YnuYoBAymYwFCxZgZWVFtWrVWLx4MQAtWrRQcWSKI5PJ2LFjB0ZGRsyePZtffvmF4OBgRo4ciaamJikpKTg6OrJlyxa2bduGk5OTqkP+LDU1Nbp3786VK1c4fPgwycnJtG3bFgsLCw4fPlwgk0wdHR2aNWsmkktBKKA+VfRnwIABoujPO2PHjkVdXZ2lS5eqLIb7b5N4k4+2w35IDrxJkhHyVhT3ySmRXOYB6f2IvjW5LF26NDo6aX02S5YsyaZNm3B3d2f58uXfHKPwfQsPD6d9+/ZMnTqVSZMm4eHhwZ07dyhfvjxVqlRRdXgK4e3tTdOmTenTpw9mZmbcvHmTpUuXUqJECSCtSmyfPn1wdXVl165d/PzzzyqOOPskEgkdO3bk4sWLnDx5Ei0tLTp37oypqSl79+4tcA+grKysOHfuHKmpqaoORRAEJfmw6M/GjRtF0Z93tLS0sLCw4M6dOyrrfe4fnpBvVy3TSQB/0Zokx0RymQekJ5eFChVS6LitW7fmt99+Y+LEidy4cUOhYwvfj3PnzmFsbMyVK1c4ceIEc+fORUNDI6O/ZX4/w/fgwQN69epFixYtSElJ4ezZs+zbt48aNWpkXJOUlIS9vT379+9nz5499OzZU4URfz2JREKbNm04d+4cZ86coUSJEvTo0YMGDRqwa9euApOMSaVSoqKivuu2LILwvRBFf7KW3uty+vTpuT53ZGIqodHJ+XbVMp0ceBCdTGRiwfi7MbeI5DKXyOVyUmRyElJlxCXLSEiVkSKTI5fLiYmJUdoN+oIFCzA0NMTBwYHExESlzCEUTKmpqcydOxepVErNmjUJDAykTZs2ACQkJODn55evt8RGRUUxceJEatWqhZeXF5s2beLy5cu0atUq03WJiYn06NGDI0eOsG/fPrp166aiiBVHIpFgZWWFh4cHXl5eVKxYkd69e1O3bl22bNlCSkqKqkP8Jubm5ujq6oqtsYLwHRk0aBBv3rxh/PjxREZG0rVrV2rXrs21a9dUHZpK2NjYoKenp5J+5wGv8v+qZToJEPgqQdVh5CsiuVQCuVzO64QUbkYkcPpxDNvuvWHptdcsufoa52sR/HMjAudrESy5+pql115Tb+Bk2o+Zzc2IBF4npCj0HJSuri7bt2/n1q1bKnl6JeRPL168oG3btsyYMYNp06bh7u5O+fLlM37u5+dHUlJSvkwuU1JSWLVqFTVq1GD58uVMnjyZe/fu4eTk9FFVvfj4eLp27cqpU6c4ePAgHTt2VFHUytO8eXNOnDjBpUuXqFmzJk5OThgZGbFu3bp8e35JW1ubZs2acfbsWVWHIghCLhJFfzLr3r07ERERXLhwIdfmlMvlXH2dkO9XLdPJgcDXCRn35hKJhFmzZqk0prxOJJcKFJmYiseTWJyvR7D29hsOh8XgH57A49gUUj5xpClFBiWq1qJpr0EcDoth7e03OF+PwONJrMKW4Rs2bMi8efNYsmSJuNkSvujMmTMYGxtz/fp1/vvvP2bPno26eubeql5eXhQpUoT69eurKMqvc/LkSYyNjRk2bBjt27cnKCiIWbNmUbhw4Y+ujYuLo3Pnznh6enLkyBHatm2rgohzj7m5OYcOHSIgIAATExMGDx5MjRo1cHFxISEh/z21lUqlnDt3Lt+vwgqCkHOi6E+aefPmAbm7NTYiMZXE1IKSWqZJTJUTmViwahMok0guv5FMLicoKpFdwVGsvhXJ5Zfxmf5QZee3okQiQf29Vg6JqXIuv4xn9a1IdgVHERSV+M2lkMeOHYulpSWOjo68efPmm8YSCqbU1FRmz56Nra0tderUITAwEBsbmyyv9fLyomnTpmhoaORylF/n1q1btG/fnrZt21KqVCn8/PzYtGkTFSpUyPL6mJgYOnTowIULFzh+/Di2tra5HLHqGBsb4+bmxo0bN2jevDkjR46kevXqODs7ExcXp+rwsk0qlRIdHc2VK1dUHYogCCryvRf9KV++PNWrV8fT0zPXCrc9jyuYD/QK6vtSBpFcfoNHMcmsuRXJ3pBowqLTShUr6llN+jhh0cnsDYlmza1IHsV8fTlkdXV1tmzZwtu3b/n1118VE6RQYDx//pw2bdrwxx9/MHPmTE6dOkW5cuWyvFYmk+Ht7Z0vtsSGh4czfPhwGjRowL1799i3bx9nz56lUaNGn3xNdHQ07dq1w9/fn5MnT350BvN7UbduXXbs2MHt27dp3bo148ePp2rVqixatIiYmBhVh/dFZmZmFCpUSOzWEAThuy76M3LkSFJSUli5cmWuzPc8LqXAJRdqEngeL5LL7Cpo//1zRbJMjvvjGLYHRRGVlPYkSFkbANLHjUqSsT0oCvfHMSTLvm62ypUrs3LlSrZv366SA95C3nT69GmMjY25desW7u7uzJgx46NtsO+7ffs2b968oXnz5rkYZc4kJiayePFiDA0N2bFjBwsXLuTmzZt069bts8WzoqKiaNOmDdeuXePUqVN5+j3mlpo1a7Jp0ybu3btHly5dmDZtGlWqVGHu3LkZPXrzIi0tLVq0aCGK+giCkOF7LPozYsQINDQ0ctSWzs3NDYlEgqen50c/W716NRKJJKMLwZ07d+jRowclS5ZER0eHwW1bcsPzRKbX+B/ayWRTfUIDL3Fk6XTmWtdiRrMqbB3nREzkq4/muOvtzuoBHZnRrAozWxiwaVRvXty/k/HzED9vJpvqZ/m1sINpxnWTTfVxX/XxKvXCDqbsmZl5oSU+OorDi6fyZ7uGTGtSgcWdG+O56R9kMhkyOTyNzXqBJywsjOHDh2NkZISuri6lSpWiZ8+ehIaGfvoDLuBEcplDj2KSWXc7Ev/wtDNIubWrPH0e//AE1t3++lXMn3/+GXt7e4YNG8ajR48UF6CQ76SmpjJjxgxat25NgwYNCAwMRCqVfvF1Xl5eqKur06RJk1yIMmfkcjlubm7Url2byZMn4+joSHBwMOPGjUNbW/uzr42MjMTW1pY7d+5w+vRpLCwscinq/KFatWqsWbOG4OBgevfuzdy5c6lSpQozZ85UWR+1L5FKpZw/f57kZNEEWxCENN9b0R8NDQ1atmxJUFAQz58/z9ZrOnToQJEiRdi9e/dHP3N1daVu3brUq1ePmzdvYmFhwe3bt5k0aRJLlixBoqPLtrGO3PQ4+tFrDy+azPN7N7EeMh6Lnv24c+4kh/6clOmaK0d2s3nUz2gVKkzbUdOxHjSOlyH3WDWgI5FPHwKgX7UGdnNcMn11+n0B6hqaFClZOsefUVJ8HGsGdSHwuBsmHezoNGE+VYzNObl8LkeXpp1XfR6fdcHNy5cv4+Pjg729Pf/88w9Dhw7l9OnTWFlZ5aujJIokkssc8AuPZ3tQFG+TZCqrgiUH3r5bxfT7isauEokEFxcXihQpgpOTU4Frni5kz9OnT7GxsWHevHnMmTOHEydOULZs2Wy91svLCxMTE4oUKaLkKHPm8uXLWFpa0rNnT+rUqcP169dZvnw5pUt/+S+a169fY2Njw4MHD/Dw8MDMzCwXIs6fKleuzIoVKwgJCWHAgAEsXryYKlWqMHnyZMLDw1UdXiZWVlbExsbi7++v6lAEQchjvqeiP3PmzAFg2rRp2bpeV1eXTp064ebmlqn/8fPnz/H09KRXr14A/Pbbb1SuXJkrV67w+++/M3T4CAatOUjlBmYc/+ePj8YtVKwkA1ftpZn9INqPmU1T+8Hc9DhCQnRav/fEuBgOL56CWVcH+q9wpZn9IFr1G8mwzcdBLufMemcAipYqg0mHnhlfxu17EHThDOpaWvSYnf0V2nRe2/8l4vEDhm06xo+/TqVJDyfs/liJZb+RXNy9njfPn5Aig6w2Dnbo0IHAwEBmz57N4MGDmTdvHseOHSMsLIy9e/fmOJaCQCSX2SCXy/F+Hof749i071Udz7t/uj+Oxft5XI5bl5QoUYLNmzdz5swZnJ2dFR+gkKedOnUKY2NjgoKCOHPmDFOnTv2oBcfneHt756ntoo8ePaJv376Ym5sTFRXFqVOnOHLkCLVr187W61++fIlUKuXx48ecOXMGExMTJUdcMJQvX55ly5YRGhrKiBEjWLFiBQYGBowbN45nz56pOjwAGjVqRJEiRcTWWEEQPul7KPrTvHlzSpQogZubW7Zf06tXL16+fJnp3LqbmxsymYxevXoRERGBh4cHdnZ2REdH8+rVK56HhxP3JoIaTa15/TCEqJeZ/y4w794309GUqiYWyFJTiXyWtpMu+KInCdFRNGzbndjI1xlfamrqVKpnSoifV5axeqxdyp3zp+g5ezllqxnl4JNJc/2/wxiYWKBbtHimeQ3NWyFLTeXBlbRWLilZ3G/r6upm/HtycjKvX7/G0NCQ4sWLf7cF5URymQ0+L+I5/yxvLm2ffxaHz4ucr2BaW1szduxYJk+eXKDPGgj/l5KSwtSpU2nbti2mpqYEBgZiaWmZozGePHnCgwcP8kQxn5iYGGbMmIGRkRGnTp1izZo1BAQE0Lp162yP8fz5c6RSacZfoPmttUpeUKZMGf78809CQ0MZN24c69evp2rVqowcOVLlW+81NTVp2bKlSC4FQfiiTxX92b9/v6pDU4hevXoRFRWFh4dHtq5v27YtxYoVw9XVNePXXF1dMTY2pmbNmgQHByOXy5k+fTr6+vro6+tTqVxZ5trUwn3VQgBiIzLvZilWrmKm73X1igMQH53WxeDVwxAA1v3Sjbk2tTJ9BV08+4nzmac5vWYxVv1/o55Np2x+Gpm9fhTCPR+Pj+ZcP+ynd+8jbd7ULDb7xcfHM2PGDCpVqoS2tjalS5dGX1+fN2/e5Om6BMqUP/oIqJDfy7ybWKY7/ywObXUJZvq6X774PfPmzeO///7DwcEBX19fdHR0lBShoGpPnjyhd+/e+Pj4MH/+fH7//fccrVam8/b2BlDpymVqaiqbN29m6tSpREZGMnbsWCZNmoSenl6Oxnn69CnW1tZER0fj6emJkVHOn3YK/1eqVCn++OMPxo4dy/Lly3F2dmb16tX079+fSZMmUbVqVZXEZWVlxezZs0lKSkJLS0slMQiCkH8MGjSIAQMGMGnSJJydnenevTu1atXC1dWVBg0aqDq8rzZnzhxWrVrFrFmzsLa2/uL12tradO3alf379+Pi4sKLFy/w9vZm/vz5ABnHqsaPH8+PP/4IQFKqjH0PojPGKFWpWqYx1T5VLPDdgqBcnjam3RwXipYu89FlauqZ05aIJ2G4ThuGYZNWtB4x5YvvKWM6WeoH38swtLCilVPW3RRKV64OgHoWt00jR45k48aNjB49mqZNm1KsWDEkEgn29vbf7dEzkVx+xqOYZNyfxKo6jGxxfxxLWV0NKhXR/PLF7+jo6LB9+3bMzMyYOnUqS5cuVWKEgqqcOHGCvn37oq2tzdmzZ79p1dHb25tq1arxww8/KDDC7Dtz5gxjx44lMDAQe3t7/vzzT6pUqZLjcR49eoS1tTWJiYl4enpiaGiohGi/T8WLF2f69OmMHj0aFxcXli5dyvr16+nbty9TpkyhRo0auRqPVCpl4sSJXL58OU9t5xYEIe9SU1Nj0aJFzJgxA0dHRw4cOEDDhg2xtrZm586dlCnzceKT15UuXZpatWrh4+NDSkpKtvpU9+rVi82bN3P69Glu376NXC7POG9ZrVpa4qipqYmtrS2Rian4h8djWCbhq2MsVdEAgMIlS2PY5PNtwJIT4tk2vh+6RYvRe8GaLB+Y6+oVJz468+phSnIS0a9eZPq1khUNSIqL/eKcGllUm3dzc8PJySnTPXRCQsJ33VNebIv9hGSZnCNh0Xy6aUHeIgGOhEXnuE1J/fr1WbBgAcuWLeP06dPKCU5QieTkZCZNmkS7du0wNzcnMDDwm7ezenl5qWRLbHobDGtra3R0dPDx8WHnzp1flViGhobSqlUrUlJSRGKpREWLFmXixIk8ePCAxYsXc/LkSWrVqkWfPn24detWrsVhYmKCnp6e2BorCEKOvV/0x8zMLN8X/Rk9ejSpqan89ddf2bre1taWkiVL4urqiqurK+bm5hm7UMqUKYOVlRX/rlrNvz53WX3r/50UgCy3sH5JjabWaBcpytkNzqRmUeX7/TH3zx/Pq7AQHJZsythe+6GSFQ0IDbiQ6dd8925Blpp55bJ+6y48vHaZez4fbxmOj44iNSUFDbW0fpcfUldX/6j2yfLlyzMVQvreiOTyEzyfxqq0KmxOpVeRPfc05yuto0ePxtraGicnJyIjIxUfnJDrHj16hJWVFUuWLGHRokUcPnw4W1VTPyc6OlohCWpOREREMHr0aOrWrUtgYCA7d+7Ex8eHpk2bftV49+/fp1WrVqipqeHp6amyrZrfk8KFCzNmzBhCQkL4559/OH/+PPXq1aNnz55cvXpV6fOnl+F/vyiFIAhCTlStWpXLly/n+6I/gwcPRktLCxcXl2xdr6mpSffu3dmzZw+XLl3KWLWEtN19lmPmkZgqY3yHZpxYPodL+7bisW4pm0b1Zv3QHjmOT6dIUbpOXkxowEWW97HhzLpl+O7dwqmV8/mnt5TTqxcDcOf8KQKO7MaouTXPg24RcHRPxtfNM8cyxmvc1YGnd66zbXw/Lrlt4sD8CXhtX0Xh4qUyzWvpOILytRqweXQf9s0ZwyW3TZzf6sKemb/yZ9sGJERHUU5XI8s+2R07dmTr1q2MHj2aNWvW0L9/f/755x9KlSr10bXfC5FcZuFRTDJ+4Qn5JrFMJwcuhyfkuAemmpoamzZtIjY2lmHDhuW4+qyQtxw9ehRjY2MePXrEuXPnmDBhwledr/zQpUuXkMlkubK1MDk5mb///htDQ0M2bNjAnDlzuHPnDvb29ln+zz077t27R6tWrdDR0cHT05PKlSsrOGrhc3R0dBgxYgTBwcGsXr0af39/jI2N6dKlC35+fkqdWyqV4u3tTWJiolLnEQShYMvvRX/U1NSQSqWEhoby8OHDbL2mx+222gAAIABJREFUV69exMTEAGBnZ0eyTI774xi2B0VRqFJNft32H0YtbLlyeBeH/pzIJbfNSCRq2AwZ91UxGrf7iUGr9qGnX45zW1ZyeMlUrp7cT/ma9TDr/DMAsZGvAbhx+gi7pw/P9HVkyf/brTTu3pdW/UYSeuUiR5fNJOJJGANd9qCpWyjTnFq6hRiy7iCWfUcQ4ufN4cVT8dz4D68fhmA7dCKFiupRvnDWx87+/vtvHB0d2b59e0a1dHd39zzXri03SeQik8hEJpez5lYkUflo1fJ9EqCYlhpD6pRALYc34bt27aJ3795s27aNPn36KCdAQWmSk5OZOnUqixcvplOnTmzcuFGhT85mzZrF8uXLCQ8PV0iymhW5XM7hw4eZMGECwcHBDBo0iD/++CPbPTg/5fbt29jY2FC8eHFOnz6tsjOjwv8lJyezY8cO5s2bR1BQEG3btmX69Ok0a9ZM4XNduXKFRo0a4enpmeMKyYIgCFmRyWQZRX+Sk5PzTdEfPz8/GjduTJ8+fdi2bVuOXvsoJpkjYdH5amefonSuUpQ6JbVVHUa+IFYuP3D/bRJv8vEfGjnwJklGyNucrV4C2Nvb06dPH0aMGEFYWJjigxOU5uHDh7Rq1Yq//vqLpUuXcvDgQYVvyfDy8qJ58+ZKSywDAwOxtbWlS5cuVKlShcDAQFavXv3NieWNGzewsrKidOnSnD17ViSWeYSmpiZOTk7cvn2bHTt28PDhQ5o3b46NjQ2enp4Knathw4YUL15cbI0VBEFh0ov+RERE0K1bN+7evZtR9Ofly5eqDu+TzMzMKF26NAcPHszR6/zC49keFPVdJpYA5QqJGqjZJZLLD/iHJ+SbIj6fIgH8w3Pe+xJgxYoV6Onp4eTk9F0fRs5PDh06hLGxMU+fPuX8+fOMHTv2q7eOfkpKSgoXL15UypbYZ8+eMXDgQExNTXn69ClHjx7l5MmTCuk5GRgYiJWVFeXLl8fDwyNfVvgr6NTV1enduzfXr19nz549vH79GisrKywtLfnvv/8Usk1fXV0dS0tLUdRHEASF+7Doz5kzZ/J80R8HBwdiYmI4duzYF6+Vy+V4P4/D/XFaTY/vMbHUVpdQQlukTNklPqn3RCamEhqdnO//4MiBB9HJRCbmPDksXrw4W7Zs4dy5cyxbtkzxwQkKk5SUxLhx4+jSpQuWlpYEBARgYWGhlLmuXr1KbGysQov5xMXFMXfuXGrUqMHBgwdZvnw5165do3379gpJjv39/bG2tsbAwIDTp09/c0EjQbnU1NTo0aMHAQEBHDx4kPj4eNq0aUPTpk05evToNyeZUqmUCxcukJDw9WXyBUEQPiW96I+np2eeL/ozc+ZMJBIJf/zxxxev9XmR9/u9K5MEMC6lo/CH9gWZSC7fE/Aq/69appMAga++7ibKysqK8ePHM3XqVAIDAxUbmKAQoaGhtGzZMqNZ/f79+ylRooTS5vPy8kJbWxszM7NvHksmk7F9+3aMjIz4448/GDp0KEFBQYwYMQJNzez3af2cS5cuYWNjQ82aNXF3d6dkyZIKGVdQPolEQufOnfH19eX48eOoq6vTsWNHzMzM2L9//1c3pbaysiIxMZGLFy8qOGJBEIT/s7S0zPNFf4oXL07dunW5fPnyZ1dX/V5+34klpC3YGJfWUXUY+YpILt+Ry+Vcfa2YCrHuqxYx2VQ/o5qVKsiBwNcJX/20f86cOdSpUwcHBwfi479ui62gHAcOHMDExISXL1/i7e3Nb7/9pvQnat7e3jRu3Bht7W87zO7l5YWFhQUODg6Ym5tz+/ZtlixZotDE2Nvbm9atW1OvXj1OnTpF8eJZ978S8jaJRELbtm3x8vLi9OnT6Onp0b17dxo2bIirq2uOt+03aNCAkiVLiq2xgiDkikGDBvHmzRsmTJjAmzdv6N69O7Vr1+batWuqDg2ACRMmIJPJ+PPPP7P8+aOYZNyf5Ly9XUEiAaoW1aSEtrqqQ8lXRHL5TkRiKomp+X1DbGaJqXIiE7/uKb+2tjbbt28nODiYyZMnKzgy4WskJSUxevRounXrhrW1NQEBATRu3Fjp88rl8oxiPl8rJCQEOzs7WrZsiUwmw9PTk71791K9enUFRgrnzp3jxx9/xNTUlBMnTqCnp6fQ8YXcJ5FIsLa25syZM5w/f57y5ctjb29PvXr12Lp1KykpKdkaR01NjVatWonkUhCEXJOXi/44ODigra3N2rVrP/pZskzOkbDoArOb72vJgUb6uqoOI98RyeU7z+Oyd4OS33zL+6pbty4LFy7k77//5r///lNgVEJOhYSE0Lx5c/7991+WL1+Om5tbrq3IPXjwgGfPnn3VecuoqCh+//13ateujbe3N5s3b8bX11cp7SA8PDxo27YtFhYWHD169LvuMVVQtWjRgpMnT3Lp0iUMDQ1xdHSkVq1arF+/PluFM6ysrLh06RJxcd/3Ni9BEHJXXiz6o6amRuvWrXn8+DH379/P9DPPp7HfbVXYdBKguJYa1fQUc1zneyKSy3eex6UUuA9DTQLP478taR45ciS2trb069ePiIgIBUUm5MTevXsxMTEhIiICHx8ffv3111w9WO7t7Q2Qo/6DKSkp/PvvvxgaGrJy5UqmTJnCvXv3cHR0VEork1OnTtGhQwcsLS05fPgwhQsXVvgcQt5hbm7O4cOHuXLlCg0bNmTQoEHUqFGDf//9l8TExE++TiqVkpSUxIULF3IxWkEQhDTvF/2pWLFiRtGfT21NVbYFCxYAZNqh9igmGb9wxRwTy8/kQMcqRXPcM14QyWWGZ3EpfN0G0k+Lj45iz8xfmW1ZnVmW1XCbOZKk+MxPzAOO7mFl3zbMaFaZ2a0MWT2wE/cuKGbblkwOT2Nz3u/yfWpqamzatIn4+Hh++eUXhbQFELInMTGRkSNH0qNHD3788ceMRvC5zcvLizp16mS7KM6JEydo2LAhI0aMoGPHjty7d4+ZM2cqLeE7evQonTp1wtbWlgMHDqCrK7awfC9MTEzYu3cv169fp1mzZowYMYLq1avzzz//ZHlWvG7dupQuXVpsjRUEQaUsLS0JCwtj3bp1aGpqMnnyZJUU/alXrx7lypXj6NGjAMjkco6K7bBIgMb6OlQsIlYtv4ZILkk7U/atK3xZ2TlpEImxMfw4choNWnfB//AuTq9ZkvFz99WL2T19OOoaGtgOnYjt0N8pVq4CIZfPKyyG5/Ep35wQVqhQgdWrV+Pm5sbWrVsVFJnwOcHBwTRr1ow1a9awcuVKXF1dKVasmEpi8fLyytaW2Bs3btC2bVvatWuHvr4+fn5+bNy4kQoVKigttoMHD9KtWzfat2/P3r170dERFd2+R/Xq1WPnzp3cvn0bGxsbxo4dS9WqVVmyZAkxMTEZ16Wfuzx79qzqghUEQXhn4MCBKi/6069fP+Li4ti7dy/33ybxRmyHRU9LDcvyYgfU1xLJJZAqhxRFL1sC5Y3q47BkExY9+9N9+l/UlXbA7+B2AF49DMFj7RLqSjswZP0RLB1H0Lz3EOznreLHkdMVFkOKLG0F81v17NmTvn378uuvvxIaGvrtAwqftHv3bkxNTXn79i0XL15k+PDhKuuvFBERwa1btz6bXL58+ZJhw4bRsGFD7t+/z/79+zlz5gympqZKjc3NzY0ePXrQtWtXdu/ejZaWllLnE/I+IyMjNm/ezN27d+nUqROTJ0/GwMCA+fPn8/btWyBta6yvry+xsd93FURBEPIGVRf9mTp1KhKJhAULFuAfXnBa8n2t9O2wmmrf+yfx9URyCaQoaauneY9+mb43MLEg7k0ECTHR3Dp7HLlMhvWQcR+dQVN0IqGo97d8+XJKlixJ3759c9wGQPiyhIQEhg8fTq9evWjfvj3+/v6YmJioNCYfHx+ALCvFJiQksGjRImrUqMGuXbtYsmQJN2/epGvXrkpPhnft2oW9vT12dnbs2LFDYf0xhYKhevXqrF27lvv379OrVy9mz55NlSpVmDVrFqampiQnJ2ecJRYEQcgLVFX0p0iRIhgbGxP6MoLQ6OTvetUSwLZiYSqJ7bDfRCSXwFf25P6i4uUybwfU1Uvb1hj/9g0Rj0ORqKlRppqRciZ/T6qC3l+xYsXYunUr3t7eLF68WDGDCgAEBQXRtGlTNmzYwKpVq9i5c2eeaKPh5eXFDz/8QNWqVTN+TS6Xs2fPHurUqcOUKVNwcnIiODiYMWPG5Mrq4datW+nTpw99+vRhy5YtaGhoKH1OIX+qXLkyK1euJCQkBCcnJxYuXEibNm0oVKgQx44dU3V4giAIH1FF0Z8pU6Zg/pMjcmXdEOcTLX8ohJloPfLNRHIJKKF45btxP9V0NXefC6kr8P21bNmSiRMnMmPGDK5cuaK4gb9jO3fuxNTUlLi4OC5dusQvv/yism2wH/L29qZFixYZ8fj6+tKiRQvs7OyoV68eN27c4J9//qFUqVK5Es+GDRtwcnKif//+bNy4EXV10dhY+LIKFSrg7OxMaGgow4YNIzExkeXLlzN+/HieP3+u6vAEQRA+klXRH319faUU/fnpp58w79YXybsbYvdVi5hsqk9s5GuFz6Vo/od2MtlUn8inD79pHMsfCtGsrEgsFUEkl4CGCm7kS1Y0QC6T8TLkrtLnUvT7mz17NvXq1cPBwSHLioxC9qRX4P3555/p3Lkzfn5+NGzYUNVhZUhISMDX15fmzZvz8OFDHBwcaNKkCTExMfz3338cOnSIWrVq5Vo8q1evZuDAgfzyyy+sWbNGKS1NhIKtbNmyLFq0iD///BO5XM6aNWuoWrUqo0aN4vHjx6oOTxAE4SPvF/2JiopSStGfiMRUdIqqpmigKqXfHdtWLEyzcoXyzIP9/E7cnQHqEtDI5U+ijlU7JGpqeKxZiuyDbQiKbPehoZbW71KRtLS02LZtGw8ePGDixImKHfw7cffuXSwsLNiyZQtr165l27ZtFC1aVNVhZeLv709SUhLXr1/HyMgId3d31q5dy5UrV7C1tc3VWFasWMHQoUMZNWoULi4uIrEUvknHjh2Ry+Vs2LCByZMns23bNqpXr86wYcMICwtTdXiCIAiZvF/0p3v37gov+vM8TvEdE/K69KqwfWoUE1thFUzcoZFWQKecbu6e2ypduRrSgWO4eeYoawZ25PxWF3x2rWP3jBGcXDFXYfOU09VQypOYOnXqsGjRIpYvX87JkycVPn5Btn37dho1akRSUhK+vr4MGjQozz0tS01N5a+//kIikbB161bGjh1LUFAQgwYNyvWtqH/99RcjR45k3LhxODs757nPSsh/jIyMKFeuHJcvX2bGjBmEhoYye/Zs3NzcMDQ0ZODAgQQHB6s6TEEQhEyKFCmS1jJEwUV/nsel5GpCIJfLSU7IeudbcmLCR4suipR+B2Gmr8Og2iVE8R4lEMnlOz8U0sj1D6P1sEn8NPNvkhMTOLVyPu6rFvLm2WMMzS0VMr6aBMoXVt4fmhEjRvDjjz/Sr18/Xr16pbR5Coq4uDgGDRqEg4MD3bt35/Lly9SvX1/VYX3Ew8ODRo0asXfvXsqUKcO9e/eYN2+eSlZWFy5cyNixY5k8eTKLFy8WiaWgEBKJBKlUypkzZwDQ09Nj0qRJhIaGsnDhQo4dO4aRkRF9+/blzp07Ko5WEAQhM0UX/XkWl0JW6Vzsmwh2TBzIrJZV+UNak8OLp5CcmJDxc7+DO1g7pBtzbWozrUkF/vqpORf3bPxonIUdTNk06mfu+Xiwoo8tM5pW4tLezYT4eTPZVJ+rJ/dzauV8FvxYn5nNKpMYGw3Aw+v+bBhhxyzLasxoVpk1gzoTGnjpq95j+t1DsXerlTYVi4h2I0oikStyD2Y+djMigcNhMV++MJ/pXKUodUpqK238p0+fUr9+faysrHBzcxM3/59w+/Zt7OzsuH//PitXrqRfv3557rO6e/cuEyZM4PDhw1hYWHDr1i3GjBnDrFmzVBLPnDlzmDFjBjNmzGDWrFl57vMS8rc1a9YwbNgwIiMjP6rMHB8fz/r161m4cCFPnjyhZ8+eTJs2LU8+DBIEQVi/fj1jxowhOjqa0qVLs2bNGrp165at18rlcpZee52p37v7qkWcXrOYcoZ1KFG+EjWaSnl43Z/AY3sw6WCH3ZyVAKzs24ay1YwoV7Muauoa3Dl3kqCLZ+k88U+a9hqYMd7CDqaoa2gQFxWJ+U+OlPihMvoGhgCsHdKVMtWMUNfUxLRDL1KSE2lmP5hH1/3ZONKeCrUbUs+2ExKJBP9DuwgPDeKX9YepVC+tl7b/oZ24zRrF70f8KVG+8iffZ9WimjTS16WaniZq4n5CqcTK5TvlChXMdgbKfl/ly5dn7dq17Nu3j82bNyt1rvxqy5YtmJmZIZPJuHz5Mv37989TidLr16/57bffqFevHteuXWPXrl2sX7+et2/f0qJFi1yPRy6XZySVc+bMYfbs2Xnq8xIKBqlUikwm4/z58x/9TFdXl19//ZXg4GD+/fdffH19adCgAd26dcPf318F0QqCIHzap4r+BAYGfvG1qXIyJZbvK1GhMo7O22jaayC95rpg0bM/AUd38+zeTQCGrD1Ij9nLadFnKM3sBzHAZQ81mkrx2r7qo7FeP3qA/fzVtB05nSY9nKhm9v/+2SlJiQzbeIwWDkOx6v8bmjq67J8/nmpmzRm68SgtHYbRos9Qhm8+jl6ZHzjlsiDbn01jfR1+qVOCXobFMCymJRLLXCCSy3dKaqujrV6wfsNpq0sooa38/8Tdu3enX79+jBw5kpCQEKXPl1/ExsbSv39/nJyc6NWrF76+vtStW1fVYWVISkrC2dmZGjVqsHHjRubOncudO3fo1asX3t7eqKmp0aRJk1yNSS6XM2XKFObMmcPChQuZNm1ars4vfD8MDQ2pUKFCxtbYrGhra/PLL79w7949NmzYwI0bNzAzM6NDhw5cvHgxF6MVBEH4vKyK/piYmHyx6E/KZzYwWtgNyPR9U/vBANz1dgdAU+f/hXASot8SG/maao2aEfE4lITot5leW6JCFWo2s85yHtOOvTKN9ezudV4/DMG43U/EvYkgNvI1sZGvSYqPw9C8JaFXLmT7XGaLHwpRQlu0LctNBXO57itIJBIaltLh8sv4XO5CqRwSwLiUTq6t+Pz99994enri6OjI2bNnv/vG9jdv3sTOzo7Q0FA2b96Mo6OjqkPKIJfLOXjwIBMmTCAkJITBgwcze/ZsypYtm3GNl5cXxsbGuXrOUi6XM378eJYtW8ayZcsYM2ZMrs0tfH8kEglWVlafTS7TaWpq0r9/f/r27Yurqyvz5s2jadOm2NraMn36dCwtFXNOXhAE4VulF/0JCwujR48eGUV/nJycWLVqFVpaWpmu/1yOVrpytUzfl6pogERNjcinjwAIDbyE+6pFPLzmR3JCXKZrE2LeolP0/0cOSn5my+qH21lfPUxbqNgz49dPviYx5i26esU/Hfw7qTJA5Ja5SqxcvsektE6BSCwB5IBxaZ1cm09PT4+tW7dy4cIFFi5cmGvz5jVyuZyNGzfSuHFjJBIJfn5+eSqxDAgIwNramm7dulGtWjWuXr3KqlWrMiWWAN7e3rm6JVYulzNq1CiWLVvGihUrRGIp5AqpVEpAQABv3rzJ1vUaGhr06dOHGzdusHv3bl6+fEmrVq1o1aoV7u7uCm0jJQiC8C2qVKmSraI/Oers9d6CxetHD1g/9Cfi3rymw9g/cPpnBwP/daN5n6EAyOWZs1YN7U/fk2rqZP5Z+v9L242excB/3bL80tItnK2Q1UWmk+vER/6eEtrqGBTVJL9vjpWQdnA5t7cBNG/enMmTJzNr1iz8/Pxyde68ICYmBicnJwYMGMDPP/+Mr68vtWvXVnVYQFrhpQEDBtCoUSNevHjBsWPHOHHiBPXq1fvo2mfPnnH//n2aN2+exUiKJ5PJGDZsGCtWrGD16tWMGDEiV+YVBKlUilwu59y5czl6nZqaGj179iQgIIADBw4QGxtL69atadasGceOHRNJpiAIeYalpSVhYWGsW7cOTU1NJk+ejL6+Pvv37wdA4zM73NJXENO9fvQAuUxGifKVuH3uJClJiTj+tY0mPZyo1aI1hk1aofmZJDK7SlY0AECncFEMm7TK8ktdM3vdED73/gTlEMnlBxrp5//VSznQSEUNYWfOnEnDhg1xcHAgLi7uyy8oIK5fv07jxo3Zt28f27ZtY926dRQqVEjVYREXF8ecOXOoWbMmhw8fZsWKFVy7do127dp9csu0t7c3QK4kl6mpqQwePJg1a9awYcMGhgwZovQ5BSFd1apVqVSpUra2xmZFTU2NLl26cPnyZY4dO4ZEIqFDhw40btyYAwcOKLVXmyAIQk58qujP9atX0fhENnBx94ZM31/YtRYAo+Y2qL3ref3+w7SE6Lf4H9r5zbFWqN2QkhUNOLd1JYlxH3dyiInMXvs7DbW0tnxC7hLJ5Qeq62lRXEst365eSoDiWmpU01NNU1hNTU22bdvGw4cPmTBhgkpiyE1yuZx169Zhbm6OpqYm/v7+9OnTR9VhIZPJ2Lp1KzVr1mTu3LkMHz6coKAghg8f/sXzsN7e3lStWpUKFSooNcbU1FT69+/Ppk2b2LJlC/3791fqfILwofR+l2fPnv3mcdq1a4e3tzfu7u4UKVKEbt26YWJiwp49e0SSKQhCnpBV0R9TUxPCg29DFksrkU8esmW0Axd2b8B12nAu7tlIw3Y/8UPNetSwkKKuqZX2c9f1eG76h+V9bChSsrRC4vxphjNRL57i3KMl7qsW4btvK+6rFrFmUGf2zvrti2PI5XKe3LpKoUKFKFas2DfHJGSfSC4/oCaR0KFK0Xy7eikHOlYpqtJSy7Vq1WLJkiW4uLhw7NgxlcWhbNHR0Tg4ODB48GAcHR25dOkSRkZGqg6L8+fP06RJExwdHTP6VS5atIjixb988B3Sivko+7xlSkoKDg4O7Nixg+3bt+Pg4KDU+QThU6RSKVevXiUiIuKbx5JIJNjY2HD27FnOnTtH2bJlsbOzo169emzfvp2UlBQFRCwIgvBt0ov+PHjwgMaNG3PD+wypyckfXdf7z7Woa2lxcvkc7nr9R9NeA/lphjMA+gaG9Fm0ASQSjjnP4pLbZsy7O9Kst2J2IFUza86wTceoUKchF3av5/Ciyfgf3kWRUmVo8e5c5+fIUpK56+tFQkICb9++/eL1guJI5OJwSJbcH8fgH56Qr5JMCWCmr4NNxSKqDgW5XE6HDh24cuUK169fR19fX9UhKdTVq1exs7Pj6dOnrF27Fnt7e1WHREhICL///jt79+7FzMyMZcuW0bJlyxyNERMTQ/HixVm5ciW//PKLUuJMTk6md+/eHDx4kF27dvHTTz8pZR5ByI7Q0FCqVq3Kvn37st10PCcuXrzI3LlzOXr0KIaGhkyZMgUHBwc0s3leSBAEQdn2+gQSpFtR1WEo3K7JQ7h6cj8SiUTsIMlFYuXyE1qVL4xePtoeKwH0tNSwLJ+96lnKJpFI2LBhQ8aZuoLyDEMul7N69WqaNGmCrq4uV65cUXlimX6Gonbt2ly8eJEtW7Zw6dKlHCeWAL6+vqSmpipt5TIxMZGePXty6NAh9u7dKxJLQeUMDAwwMDD45q2xn2JhYcGRI0fw9/enfv36DBgwgJo1a7J69WoSExOVMqcgCEJOWJl+XNyvIHhy+yoA5cuXV3Ek3xeRXH6CppqEjvloe2z6dljNPHRyuVy5cqxdu5aDBw+yYcOGL78gj3v79i29e/dm6NChDBgwgIsXL1KjRg2VxZOSkoKLiws1atTAxcWFadOmce/ePfr27YtajmqL/5+XlxclSpRQSpXbhIQEfvrpJ06cOMGBAwfo3LmzwucQhK8hlUq/uqhPdpmamrJv3z6uXbuGubk5w4YNw9DQkOXLlxMfH6/UuQVBED6npLY62up55/5REeKjo3j96AEAY8eOVXE03xeRXH5GpSKa2FbMGyuBX2JbsTCViuS9bVZdu3Zl4MCB/PbbbwQHB6s6nK8WEBBAo0aNOHbsGK6urri4uKCjk3t9RN8nl8s5fvw4DRo04Ndff6VTp04EBQUxffr0b65Q6+XlRbNmzb46Of2U+Ph4unTpwunTpzl06BDt27dX6PiC8C2kUinXr18nPDxc6XPVr18fV1dXbt68iZWVFaNHj6ZatWosXbqU2NhYpc8vCILwIYlEQsNSOvlmt96XyFJT8N23JWPXnEguc5dILr/ATF+Xlj+ovqXE57T8oRBmKmo9kh3Ozs6UK1eOvn375ruCFnK5HBcXFywsLNDT0+PKlSvY2dmpLJ4bN27Qtm1b2rdvT9myZfH392fDhg0K2fKRkpLChQsXFL4lNjY2lo4dO+Ll5cXRo0dp06aNQscXhG9lZWUFkON+l9+idu3abN26lbt379K+fXsmTZqEgYEBCxYsEMUnBEHIdSal838rvnRq6hr47t2i6jC+WyK5zIZmZfNugmn5QyGalc27iSWkVSXbunUrvr6+zJ8/X9XhZFtUVBR2dnaMGDGCIUOG4OPjg6GhoUpiefHiBUOHDqVhw4aEhIRw4MABPDw8MDExUdgc169fJyYmRqHJZXR0NO3bt8fX15cTJ05gbW2tsLEFQVEqVapE9erVlb41NiuGhoasX7+eoKAgevTowaxZszAwMGD27NlERkbmejyCIHyfSmirY1BUM9+vXkqAqkU18XE/AUDFiv8vVCSXy0mRyUlIlRGXLCMhVUaKTF5g6oLkFaJabA74hcfj/jgWCVl1A8o96fPbViycp1csPzRz5kzmzZuHj48P5ubmqg7ns/z9/bGzs+PVq1ds2LBBZYVnEhIScHZ2Zv78+airqzNz5kyGDx+OlpaWwudavnw548ePJyoqSiFbft++fUu7du24fv06J06coFmzZgqIUhCUY/Dgwfj4+HDz5k3rDKMIAAAgAElEQVSVxvH48WMWL17MmjVr0NLSYuTIkYwePZrSpb+9d5wgCMLnBEUlsjckWtVhfLMe1fSorqdJRGIqz+NSeB6XwrO4FJ7Hp5CSRdFYDTUop6vBD4U0KPfuq6S2OhIVtvXLz0RymUOPYpI5EhbN2ySZShLM9KqwHasUzZNnLD8nOTmZ5s2b8+bNGwICAihcOO+dZ5XL5axYsYLx48fToEEDXF1dqVatmkri2L17NxMnTuTJkycMHz6cGTNmUKpUKaXNaW9vz6NHj/D29v7msd68ecOPP/7I3bt3OXXqVJ5/mCAI6f1WX7x4QZkyZVQdDs+fP2fp0qW4uLggkUgYPnw448aNo2zZsqoOTRCEAio5JYUF5++jUbQYauoaqg4nxyRAEU01ahXX4lpEIompaXfqakB2GpG8f522eto5VJPSOpTQVldOwAWU2BabQ5WKaDKodgka6aet7OTWM430ecz0dRhUu0S+SywBNDU12bZtG0+ePGHcuHGqDucjb968oUePHowaNYphw4bh5eWlksTy0qVLNG/eHHt7exo2bMiNGzf4+++/lZpYyuVyzp8/r5AtsREREdjY2BAcHIyHh4dILIV8QSqVAiitJUlOlStXjsWLFxMWFsZvv/3GqlWrqFq1KqNHj+bJkyeqDk8QhAImNTWVQQMHsmlcP9TU8mcyJQeik2X4hSdkJJaQvcTyw+sSU+VcfhnP6luR7AqOIigqEZlYj8sWkVx+BU01CbYVi9CnRjH0NJWbXqaPXkxLjT41imFTsUieajeSUzVr1mTZsmWsXr2aw4cPqzqcDL6+vpiYmODh4cH+/ftxdnZGW1s7V2N4+PAhffr0wcLCgri4ONzd3Tl48CBGRkZKnzssLIynT5/SvHnzbxonPDwca2trHj58iIeHB6ampgqKUBCUq3z58tSsWVMl5y4/p3Tp0sybN4+wsDAmTpzI5s2bqVatGsOHDycsLEzV4QmCUACkpqbSv39/tm3bxrwJozAro5uvz14qKgVMHycsOpm9IdGsuRXJo5hkBY1ecInk8itFJqYSFJVEQqpyxpfL0p6fGBTVpEc1PYbUyZ+rlVkZMmQIHTt2ZODAgbx48UKlscjlcpydnWnRogVlypQhICCArl275moM0dHRTJ06FSMjIzw8PFi/fj3+/v7Y2NjkWgzpW2G/5VzkixcvsLa25tmzZ5w5c4aGDRsqKjxByBVWVlZ5ZuXyQyVKlGDmzJmEhYUxc+ZMdu/ejaGhIYMGDeL+/fuqDk8QhHwqNTUVJycnduzYwY4dO+jduzetyhdGT0stXyeYipSeZEYlydgeFIX74xiSZWIV81NEcpkDMrmcoKhEdgVHsfpWJJdfxpOohN9cssR4rh7cxpDaxellWAzDYlqoFaBDxRKJhHXr1gEwaNAglVXpioiIoFu3bowZM4aRI0dy/vx5DAwMcm3+1NRU1q1bR40aNVi2bBnjx4/n3r17DBgwAHX13N2S4uXlRe3atb+6aMizZ8+wsrLi9evXeHp6Uq9ePQVHKAjKJ5VKuXPnDs+ePVN1KJ+kp6fHlClTCA0NZcGCBRw5cgQjIyMcHR25e/euqsMTBCEfSUlJwdHRkV27drFjxw569eoFpO3Q61ilaIFpTaIo6Z+Hf3gC626LVcxPEcllNj2KSWbNrUj2hkQTFp32m0nRf+jS00ddDTUuHt7N/esBCp4h7yhbtizr16/nyJEjrF27Ntfnv3jxIiYmJpw7d46DBw+ydOlSpVRg/ZTTp09jamrK4MGDsbW15e7du8yZM4eiRYvmWgzv8/Ly+uotsY8fP6ZVq1bExMTg6elJrVq1FBydIOSO9H6XeXX18n1FihRh/PjxPHjwgGXLluHh4UHt2rWxt7fnxo0bqg5PEIQ8Lj2xdHV1ZefOnR/18K5URBPbinmv8GJeIAfevlvF9AuPV3U4eY5ILr8gWSbH/XEM24OiiEpK26qqrCc56eMmqWvzy/pDHL3/ukAvu3fq1IkhQ4YwZswY7t27lytzyuVyli5dSsuWLSlfvjwBAQF07tw5V+YGuHPnDp06dcLW1pYiRYpw8eJFtm3bRuXKlXMthg9FRkZy8+bNryrmExYWRqtWrUhMTMTT05MaNWooIUJByB3lypWjVq1a+SK5TKerq8uoUaO4f/8+Li4uXLx4kfr16/PTTz8REFBwH1AKgvD1UlJS6Nu3L3v27MHV1ZWePXtmeZ2Zft7t865q6Xfn7o9j8X4eJ3plvkckl5/xKCaZdbcj8Q9PAHKvt6UckEjU0KphUuCX3ZctW0aFChXo27cvycnKfZ+vX7+mc+fOjB8/njFjxnDu3DmqVKmi1Dnfn3vUqFHUr1+fGzdusHv3bry8vGjSpEmuzP85Fy5cQC6X5zi5fPDgAa1atUIul3Pu3DmVVNYVBEWTSqV5rqhPdmhrazN06FCCgoJYv349V69exdTUlE6dOuHr66vq8ARByCNSUlLo06cPbm5uuLq6frGPd7OyIsH8kvPP4vB5IVYw04nk8hP8wuPZHhSlsn6WAGpq6kQlphboZffChQuzbds2/P39mTt3rtLm8fHxwcTEBB8fH44cOcKiRYvQ1FR+gaSkpCT++usvDA0N2bRpE/PmzeP27dv07NkzzzTn9fLyomzZsjlKDoODg7G0tERTUxNPT89cS9IFQdmkUilBQUH5tt2HpqYmAwYM4M6dO2zdupXg4GCaNGnCjz/+iJeXl6rDEwRBhZKTk/n555/Zt28fu3fvpnv37l98jUQioXm5QhlbZPPGnUvec/5ZXIG9V88pkVx+QC6X4/08DvfHsWnfqzge3iUgBXnZ3dzcnBkzZjBv3jwuXLig0LFlMhmLFi3C0tKSypUrExgYSIcOHRQ6R1bkcjn79++nbt26jB8/Hnt7e4KDg/n999/R0dFR+vw54e3tTYsWLbKd7N65cwdLS0sKFy6Mp6cnlSpVUnKEgpB7WrVqBZAvVy/fp6GhgYODAzdu3MDV1ZWnT5/SsmVLpFIpHh4eBfLvEkEQPi05OZnevXtz4MAB3Nzc6NatW45eb6avm9aCT0sto6OBkJn749gCvdswu0Ry+QGfF/Gcfxan6jCyVJCX3adMmULjxo3p27cvMTExChnz1atXdOzYkYkTJzJhwgTOnDmTK4nQlStXkEqldO/enerVq3Pt2jX+/fdfypQpo/S5cyoxMRFfX99sb4m9efMmVlZWlCxZEk9PT8qXL6/kCAUhd5UpU4a6devmq3OXn6Ouro6dnR1Xr15l//79vH37FhsbG1q0aMGJEydEkikI34Hk5GTs7e05dOgQbm5udOnS5avGqVREk0G1S1CZaORyGXKZkvrx5VMS4EhYdIGul5IdIrl8j9/LvJtYpiuoy+4aGhps3bqV58+fM2bMmG8ez8vLC2NjYy5fvszx48dZsGCB0rfBPnnyhH79+mFmZkZ4eDjHjx/nxIkT1K1bV6nzfosrV66QkJCQrUqx165dQyqVUrZsWc6cOUPZsmVzIUJByH359dzl56ipqdG1a1f8/Pw4evQoMpmMdu3aYW5uzqFDh0SSKQgFVFJSEr169eLw4cPs3bv3m4sYaqpJ6NOoOq5j+/Lm2WNAbJVNl15F9tzTWFWHolIiuXznUUwy7k/yx2+GgrrsbmhoiLOzM+vWrePAgQNfNYZMJmPBggVYWVlRrVo1AgMDadu2rYIjzSw2NpbZs2dTs2ZNjh49ysqVK7l69arS51UELy8vChUqhLGx8WevS1+NrVixIh4eHujr6+dShIKQ+6ysrAgJCeHhw4eqDkXhJBIJ7du3x8fHh//++49ChQrRpUsXTExMcHNzQya2uwlCgZGUlISdnR1Hjx5l3759dOrUSWFjGxTXZXEXc+7tWoFB0bSH97JUxaxkKmocVZADl8MTCuR9enaJ5JK0diNHwqLzzZOXgrzsPnDgQLp06cLgwYN5/vx5jl778uVL2rdvz9SpU5k0aRIeHh5UqFBBSZGmJbJbtmzByMiI+fPn8+uvvxIcHMywYcPQ0NBQ2ryK5O3tjYWFxWdXdS9fvoyNjQ3Vq1fn9OnTlCpVKhcjFITcl37usqBsjc2KRCLB1tYWT09Pzp49S+nSpenZsyf169dnx44dpObjmztBENISy549e3L8+HH2799Px44dFTKuTCZj3rx5HDx4ELlMxvEtq+llWIyGb+9yfpsLarKUjGvVsnlj/f512uoSLH4oTFFNSb65L/+QBDgaFo3sO90RIpGLvTC4P47BPzxB9cV7ckACmOnrYFOxiKpDUbjw8HDq16+PqakpR48ezVahGU9PT3r37k1KSgrbtm2jTZs2So3x3LlzjB07Fn///7F331FRXVsAh39DR0UExRILiB27orEzg9g7okZFRWONLXYBewGxa7D33oka0YBUBTU2VGwIIlgiCgiIdJh5fxB4ITbQgWHgfmtlrcfMvffs4Qncfc8++9xiwIABrFixQum24pDJZBgYGDBx4kQWL178yWOuXr1K165dqV+/PhcuXEBXV7eAoxQIFKNx48Y0a9aMPXv2KDqUAnP16lWWLl3KhQsXqFWrFnZ2dgwdOrRAOmsLBAL5SUlJYcCAAbi7u/P777/TrVs3uVw3JiaGYcOG4erqmv2aSCQiISGBLl26kJiYyPXr14lNlRGRmE5EUjp/J6QRkZRO+ieKItRUoKK2Gj+UVKeithoVS6ihp6lCyPtUToXGyyVmRbIyLk1NXQ1Fh1HglGN6JR+9+JDGzX/2sVQmWdPutctoUrVU0frDb2BgwO7du+nRowdbt25lwoQJnz02IyMDR0dHFi5cSIcOHTh06FC+Npl5+vQps2fPxsXFhRYtWuDn55er9YqFUVBQENHR0Z+N38/Pj27dutG0aVNcXV3R0dEp4AgFAsURi8WcPXtW0WEUqNatW3P+/Hlu3rzJsmXLGDlyJEuWLGHu3LnY2NigoVH8bpIEAmWTkpKClZUVFy9e5PTp03JbonP37l169+6dY5smFRUVpFIp48eP5/Lly5w7dw4VFRX0tUBfSxUTNIHMh9lSGaTLZGRIQVUF1EQiVER8cgLhVmQyIgrBjg3fQQTcikwqlsllsS6LlcpkuCpROex/FeVp9+7duzNhwgRmzJhBUFDQJ4958+YNXbt2ZcGCBcybNw8PD498SyxjY2OZOXMm9erV4/r16xw8eJBr164pbWIJmSWxKioqtGrV6qP3fHx86NKlCy1atODChQtCYikodiQSCWFhYYSFhSk6lAJnamrK6dOnuXv3LqampowfP54aNWqwadMmkpOV72GsQFBcJCcnY2lpycWLFzlz5oxcez/Mnz+f58+f5yiZV1VVRUVFhaNHj9KyZUu6d+/+yXNFIhGqKiI0VVUooa6CpqoKqiqiTyaWMSkZhMWnKXViCZmJ8bP4NGJSit8Sg2KdXD59n0psqlRp/wHLgNhUKaHvi+ai4dWrV1OtWjWGDh1KWlrOz+jt7U2TJk0IDAzE3d2dxYsXo6qqKvcY0tLS2LRpEzVr1mTr1q0sWLCAoKAghg4dioqKcv/4+Pn50bhxY0qXLp3j9YsXL9K9e3fatm3LuXPnKFmypIIiFAgUp0OHDohEoiLXNTYvGjVqxPHjx7l//z5mZmZMmTIFY2Nj1q1bR2Ji4e6sLhAUN1mJpZeXF2fPnqVLly5yvf6uXbuwtbVFU1Mz+zWpVEqFChVITU1l3Lhxud4v+0sCopKVdtLnv0TAnaji90BOue+Ov1PWtLsyy5p2L4pKlCjBwYMHuXv3bvaawIyMDBYvXoyFhQUmJibcuXMHCwsLuY8tk8lwdXWlUaNGTJ48mT59+vDkyRPmzZtHiRIl5D6eInyqpPfChQv06tULiUTC2bNni8xnFQjySl9fn8aNGxfppj65ZWJiwsGDB3n8+DFdu3Zl9uzZGBkZ4eTkRHy88q+LEgiUXXJyMv369cPb25s//vgjX/pOGBgYsHz5cmrVqoWxsTG6urpkZGSQmpoKZN4/fC+ZTMbd6MLbA8Vj60psm+W+W74MuBOdXOy2eiq2yaUw7a4cTE1NWbRoEY6Ojpw9e5bOnTuzePFiFi5ciLu7OxUrVpT7mIGBgXTp0oWePXtSqVIlbt++za5du/J1LWdBe/PmDSEhIbRr1y77tT/++IO+ffvSpUsXXFxc0NLSUmCEAoHiZe13WdxuDD6nVq1a7N69m+DgYCwtLZk/fz5GRkYsXbqU2NhYRYcnEBRLSUlJ9OnTB19fX86dO5cvD9yzuLq6cv/+fXbt2sXLly+ZPHky0dHR6Onpcf78+e++/ruUDFIyitbv25QMGTEpxWuLp2KbXArT7spjzpw51K1bF0tLSx48eICnpycLFiyQexnsmzdvGDduHE2aNCEsLIwzZ87g6en51T0glZG/vz9A9syli4sLlpaW9OzZkxMnTuQoexEIiiuJRMKLFy8IDQ1VdCiFipGREVu3buXp06cMGTKE5cuXY2hoyPz584mOjlZ0eAJBsZGVWGY10+nYsWO+jSWTyVi+fDlt2rTBzMyMkiVLcvXqVdq1a8fYsWNJTEzk1KlT3zVGRGL61w9SQkX1c31OsUwu5THtfuvsEWybGRDzt+I32S7K0+4ZGRksWbKER48eAZk3exKJRK5jJCcn4+joSM2aNTlx4gRr167l/v379O7dWy7rBwojPz8/DA0NqVKlCseOHWPgwIH079+fo0ePCh0hBYJ/tG/fHhUVFaE09jOqVq3Kb7/9xrNnzxg9ejRr167FyMiIOXPm8PbtW0WHJxAUaYmJifTu3Rs/Pz9cXV0xNzfP1/F8fHy4du0a9vb2iEQizp07x82bN1m8eDELFixAJBLh6Oj4XWNEJKYXucRERQQRSR8nlzKZjKSkormsraj9f5grwrS7cvj777/p2LEjy5cvZ+nSpWzbto2jR4/i4uIil+vLZDKOHj1K3bp1WbBgAaNHjyYkJISpU6cW+QTL39+fdu3acejQIYYMGcLgwYM5ePCgsJ+dQPAvZcqUoWnTpsW6qU9uVKpUiTVr1hAWFsakSZPYvHkzRkZGTJs2jb///lvR4QkERU5WYnnlyhXOnz8v94fun7J8+XKaNGlCt27dkMlkLFy4EDMzMyQSCSVKlKBJkybcvn07T82+Xr16xahRo6hQoQKampqMkLTg+ulDOY5JS0nGY+tKVvf9kfmtquDQuT4HZ9gQ/eIZAKE3/bFtZkDoTf8c58X8/RzbZgbcOnsk+7XXTx5wYuEkVvYyZX6rKizvZMLJRVNIiH33UWxhAddwtu7E/FZVWNW7BX+d3PfJz5CRno7njjWs6t2CeT9WxqlHM9x+W0Z6agoAUhn8nZCGkZERPXv2xM3NDVNTU7S1tdm2bVuuv1fKpFgml/KYnm7aYyBLrr6gTKWqcohIPorStLu7uztNmjQhODgYLy8v7O3tGTVqFJaWlowZM+a7b1iuXbtGmzZtGDx4ME2aNOHBgwesW7cOfX19OX2CwishIYHbt2+jqqrKsGHDGDFiBHv37kVNrdhveysQfERYd5l7BgYGODo6Eh4ezqxZs9izZw/GxsZMnDiR588VX+UjEBQFiYmJ9OrVi6tXr3L+/HnEYnG+j/nXX3/h6emJnZ0dIpGIM2fOEBAQwOLFi7MrvOzs7JDJZCxbtixX13zz5g2tWrXCw8ODSZMmsX79enSrGHFqya/4HdoKgDQjg31Th+K5fRWV6zWm+7TFtBk8luQP73nz9HGeP0fIX768exlO896D6TXbkUad+3HP/TR7pwzO8Ts+IvghuycOJOFdFB3HzaJ575/w2ObEA++P15W6LP0Vjy0r+KFuQ3rMWEr15q3x2bOBI7Zj/3+9f2Yug4KCGDx4MJ06dWLDhg1FctkVgEhWDP9ier78wK3IZIrSPJ+KCEwNtDGvrNzbRqSnp7Nw4UIcHR3p3LkzBw4cwMDg/525oqKiaNiwIY0bN+bChQt5LlsNDw9n7ty5HD16lCZNmrBmzZp8LyUpbLy9vTE3N0ckEjFmzBi2bNmi9NuqCAT5xdXVlZ49e/LkyRNq1aql6HCUSlxcHM7Ozqxdu5b4+HhsbGyYO3cuxsbGig5NIFBKCQkJ9OrVi+vXr3P+/Hk6dOhQIOP26dOHoKAgHjx4gEgkomnTppQrVw5PT88cx5UoUQJdXV1ev3791WuOHj2a8+fPExgYSNmyZUmXylh9N5ojtmN54u+Jnft97rr9zqnFU+kxfSntrMfnOF8mkyESiQi96c+OsX0Zs/00xqb/74Af8/dzVvZsjtWijTTvPRiAtOQk1LW0c1znrtvvHLUdy9idZ6nerDUAB2aM4MkVL2a4XKVMpSoAvA19woZBHZBmZOB4OxKA10/us/EnCS36WWM5f132Nc+vW8TlA5sYve13arTIbJy4tZ8p4eHh/Pnnn3LfJqawKZZ3lK8T0787sfzvmkunHs3YO2UIYQHX2DSsM/NbVWFlL1Nunzv20blJ8XGcWz0Ppx7NmPdjZRy7NuL4/IkkxHx7I4SsaXdl9urVK8zNzXFycmL58uWcP38+R2IJUK5cOfbu3YubmxubNm3K9bXfv3+PnZ0dderUwcfHh927d3Pz5s1il1gCrF27FoAJEyYIiaVA8BXt27dHVVVVKI39Brq6utjb2xMeHs7y5cs5c+YMtWvXxsbGhidPnig6PIFAqSQkJNCzZ09u3LjBn3/+WWCJZWBgIGfPnsXW1hZVVVVcXFy4d+9e9hZx/9a9e3ciIiJ48ODBF68pk8k4deoUvXr1QiaTERUVRURkJAkx0dRuLSH5w3tePb7Hfc9zlCxTltY/jf7oGt/SE+PfiWVaSjIJMdFUa9gcgL8f3wMyZ0uDr3pjIu6WnVgClDeuTa3WOcuPg/w8AGg3dEKO19sPm/DP+xf//5mB6tWrF/nEEophcimTyT65sFYe3r18xqHZo6j5oxndpy1GW0eXkwsn55i6T0n8wLafe3H12E5qtRLTa9ZyfrQaQWRYMHFvv6/UMyIpXWlLt/7880+aNGlCaGgoPj4+2Nrafjbp6dKlC5MmTWLWrFk8fPjwi9fNyMhgx44d1KpVi/Xr1zN79myCg4MZOXKk3LvNKoP169dz7tw5jIyMcHZ2FhJLgeArSpcuTfPmzYXk8juUKlWKWbNm8ezZM9asWcPFixepV68eQ4YM+epNqEAggA8fPtC9e3du3rzJn3/+mWMbsfzm4OCAoaEhQ4YMQSqVsmjRIjp16vTJGLIa+tjb23/xmpGRkcTGxrJ9+3YMDAwwMDCgasUKLOtYl5OLpgCQ8C6Kdy/DKGdUA1U5LdtJjIvhj1V2LLcwYUHrqizrWJeVPTOTy+QPmXv2JsREkZacRLlqH1dYlDOsmePrmNcvEamoULZq9Ryv65SrgJaOLjGvX+R4vXr1nMcVVcVukVWGDNLzqR42Miwkx7R6w859cOrWhFtnj9B9WuYTnkv7NvEm5BHWq/dS37xH9rnmo2d8d2KYLs2cwVRVoganaWlpzJ8/HycnJ7p3786+ffsoV67cV89zcnLC09MTa2trrl279skGPB4eHkyfPp3AwECsra1xcHCgatXCs0a2oK1atYrZs2ejoaHB6NGji2wnXIFA3sRiMfv3788uwxJ8mxIlSjB16lTGjRvHnj17cHR0pEGDBvTv35958+YV2fVHAsH3yEos79y5g5ubG23atCmwsYODgzl+/Di//fYb6urqHDt2jAcPHrBjx45PHl+rVi0qV66Mm5sbUqn0sw+wpdLMG3Fra2tGjBgBQGqGFJdn8dnHVKxlkrsgP/MrWZrx8f7vh+eM5vm9G7QfNpEf6jRAo0RJZFIpeyYNQib9juQgl38XtLW1v35QEVDspi3S83Fmr7xxnezEEqCUXjnKGdbk3cvw7NceeJ2jUu36ORLLLPK4acnPzydvL168QCwWs3r1apycnPjjjz9ylVhC5k3KwYMHCQwMZOHChTnee/ToET179qRTp07o6upy/fp1Dhw4UKwTSwcHB2bPns2YMWNITU2lffv2ig5JIFAaEomEiIgIgoKCFB1KkaClpcWECRMICQlhx44dBAQE0LRpU3r37s2NGzcUHZ5AUGjEx8fTrVs3hSSWkPkgv3z58owaNYqMjAwWL15M165dad269WfPGTNmDMnJyRw5cuSzxxgYGKCjo0NGRgYWFhZYWFjQuVMnav5olv1fKX0D9KsYERX2lIy0zy/70tYpA2QuOfu32Ncvc3yd9D6Wp9cvYWYzhU4T5lDfvAe1WonRr2KY47iSeuVQ19Im6vnH+xtHhYfk+FqvUhVkUinR/zk2PvotyfFx6P2r6WdxeixZ7JLL73kw8TVlKlb+6DXt0rokxcdmfx39MowKNerlWwwZStKlyNXVlSZNmvDixQsuXbrE7Nmz81yi2axZM5YuXYqTkxOXL18mKiqKyZMn07BhQx4+fMiJEye4dOkSLVq0yKdPUfjJZDIWLVqEvb09ixcvpnHjxqirqxfr74lAkFft2rUT1l3mg6wqiqCgIPbt20dQUBAtW7aka9eu+Pv7f/0CAkERlpVY3rt3D3d39y8mdPnhxYsX7N+/nxkzZqClpcWxY8d49OjRJ9da/tucOXNQUVHBycnps8eoqqrSv39/Tp06xf379zNfE4HaP7eBH2KiAGjQsScJsdFcPbbro2tkVfvpVaqKiqoqz25fzfH+tRO7c3wtUlHNcV4W/0M5twNRUVWlVmsJD30u5EhQ34Y+Ifhqzr8BddpZZF7jcM5r+B3c+s/7nYD/f67iotiVxebnErOsf7j/VZDrIFUL+T/gtLQ07OzsWL16NT179mTv3r2ULVv2m683a9Yszp07R58+fcj4pwTC0dGRyZMno6WlJa+wlZJMJmPevHk4ODjg4OCAra0tgwcPpnnz5sWmNEMgkIdSpUrRokULfHx8mDBhwtdPEOSJmpoaw4cPZ+jQoSye6eQAACAASURBVJw4cYJly5bRrl07JBIJCxYswMzMTChHFhQr79+/p1u3bty/fx93d3d+/PHHAo9h1apVlCpVinHjxpGens7ixYvp0aMHLVu2/OJ5WlpamJqacuPGDd6/f0/p0qU/edyKFSvw9vbmxx9/ZMyYMZiYmHDjySse3btDyF+XWOATTLOegwhwPY7r2vm8eHAbo6atSEtKJOQvX1oNHIWJuBtaOqVpYNGbq8d2IhKJ0K9ixOPL7iS8i8oZVykdqjdrzaV9zkjT0yhdvhLB13yIeRX+UWwW42bz5IoX237uRauBI5Gmp3Pl2E7KG9clIvj/68Qr1W5As16DuO6yn6T4OKo3b8PLB7e5/ccxTCTdszvFVtQuXulWIU9F5E9NwX+gylYx4s3TR/l2fUV/vi8JDw+nQ4cOrF+/ntWrV3P27NnvSixlMhlnzpzhxYsXxMTEULFiRUJCQpg1a5aQWMpkzJ49GwcHB1avXo2trS0A/v7+BdoIQCAoKiQSCT4+PkrbNE0ZqKqq8tNPP3Hv3j1OnTpFbGwsEomEDh064O7uLnzvBcXC+/fv6dq1Kw8ePODixYsKSSzfvn3Ljh07mDp1Kjo6Ohw5coQnT558ddYyy8KFC7Mrpz6nQoUKXL9+nZEjR+Li4sKkSZPwOLCNpLhYuk5ZAGTOItpsPILk52m8uH8b19Xz8Du0Bc1SOlSs+f8qwN6zHTEx68pfJ/dxcbMjZSpWYcAS54/GHOSwjdqtJVw9vhu335ahqqaGzW9HPzquUu36jHI+Rkm9slzc4sTNs0ewGDeH+pLuHx1rOX89FuPn8PLhHVxXz+PpDT/EI6cy2HF75mcQwQ8l1XP1fSsqit0+lzKZjDX3or+7qc+ts0c4uWgKs8/dQu+Hajj1aEaFGnWx2Xg4x3Hbx/QBYOyOMwBc3OKE147VHzX0yYrte57OqqnAjEZlC+UT3rNnz2JjY0Pp0qU5evQorVq1+q7r3bp1i+nTp3Pp0iW6detGu3btsLe35/jx4wwYMEBOUSsnmUzGtGnT2LBhAxs2bGDKlMzOa8+fP8fQ0JDTp0/Tp08fBUcpECiXixcv0rlzZ+7fv0/9+vUVHU6xIJPJcHV1ZenSpVy/fp2WLVsyf/58evToUSj/zgkE3ysuLo6uXbvy6NEjLl68qLAlLLa2tjg7OxMeHk7p0qWpV68e9evX5/Tp07m+ho6ODtra2rx9+zbX5zx4l8wf4R++JeRCrbehDib6mooOo8AUu5lLkUik0OnpDiMmUt64Dofn/IzL0un8dXIfPrvXs3lEtxxT7d+iorZaofuDm5qayvTp0+nTpw8dOnQgICDguxLLV69eMWLECExNTYmOjubPP//k/Pnz2NraMmDAAMaNG8erV6/k+AmUi1QqZeLEiWzYsIHNmzdnJ5YAfn5+AAXeEEAgKAratGmDuro6Pj4+ig6l2BCJRPTs2ZNr167h5uaGhoYGvXr1onnz5ri4uGR3nBQIioK4uDi6dOnC48eP8fDwUFhiGRMTw6ZNm/jll1/Q19fn4MGDhISEfHEW8lN69+5NZGQkt2/fzvU5FUsUzfLRovq5PqfYJZcAlUqoKeyDa5Yoxbhdf/CjlQ1B/h78scqOayf2YGBUg9Llf/jm6xbGafewsDDat2+Ps7Mz69at4/fff0dPT++brpWQkMCiRYuoVasWFy5cYOvWrdy5cyd7M1qRSMTWrVvR1tbGxsamWN50SKVSxo0bx9atW9m5c+dHa8P8/f2pU6cOBgYGCopQIFBeJUuWpGXLlkJTHwUQiUR07tyZS5cu4e3tjZ6eHv3796dRo0YcPXo0e729QKCsYmNj6dy5M0+ePMHDwwNTU1OFxeLs7ExqairTpk0jLS2NJUuWYGlpmeetgnK75+W/6WuqoqlM++nlgqaqCD3N4pVuFbuyWBCm3QvC6dOnGTlyJGXKlOH48ePf/AROKpVy4MAB7OzsiIqKYtq0adja2qKrq/vJ47NK19avX8/UqVO/5yMolYyMDH7++WcOHDjAnj17GD58+EfHNG7cmBYtWrBz504FRCgQKL/58+ezZcsW3r59m+fu1gL5unLlCkuXLuXPP/+kTp062NnZMWTIENTktNm6QFBQYmJi6Ny5M0+fPsXDw4NmzZopLJYPHz5gaGjI4MGDcXZ2ZteuXYwePZq7d+/SqFGjPF/PyMiI169fk5SUlOvfmV6vErjxNomikJyIgJbltZFULqnoUApUsfzrWFSnpwvD50pNTeXXX3+lX79+mJubExAQ8M2Jpa+vLy1atMDGxoZ27drx+PFjVqxY8dnEEqBTp05MnTqVOXPmZLe3LurS09MZPnw4Bw4c4MCBA59MLGNjYwkMDKRt27YKiFAgKBrEYjHR0dE8ePB9SxgE369NmzZcuHCB69evU6dOHUaMGEGdOnXYuXMnqampig5PIMiVmJgYOnXqRGhoKJ6engpNLAG2b9/O+/fvmT17NqmpqSxdupQBAwZ8U2IJMH78eFJTU9m9e/fXD/5H03JaRSKxBJABTcoVvwaTxTK5FKbd80doaCht27Zly5YtbNy4kZMnT1KmTJk8XyckJARLS0vEYjFqamr4+/tz7NgxqlevnqvzHR0dqVGjBtbW1qSkpOR5fGWSlpbG0KFDOXbsGEePHmXIkCGfPO7atWvIZDKhU6xA8B3atGmDhoaGUBpbiLRo0YIzZ84QEBBAs2bNGDNmDLVq1WLz5s0kJycrOjyB4LPevXuHhYUFz549w9PTk6ZNmyo0nuTkZFavXs2wYcOoVq0ae/fu5fnz5yxcuPCbrzl9+nRUVVVZs2ZNrs/R01TFSEcdZb9LFwHVddTR0/z0NoVFWbFMLkUiEY3Lain9P9ws0vR0amllKLSZz6lTp2jatCnv3r3jypUrTJ48Oc/xxMTEMH36dExMTLh58yaHDh3i6tWreW5Ao62tzaFDh3j48CHz58/P07nKJDU1lUGDBvH7779z4sSJL3bJ9fPzo3z58tSsWbMAIxQIihZtbW1atWolJJeFUJMmTThx4gT379+nbdu2TJ48mRo1arB+/XoSExMVHZ5AkENWYhkeHo6Xl1ee1zPmh3379hEREcGcOXNISUlh2bJlDBo06Lu6Y2toaNC6dWseP37Mu3fvcn1ecwPln72UAc0Niuee4sUyuYSiNe0uUlUh3N9NIWOnpKQwefJkrKys6Ny5M7dv36Z58+Z5ukZaWhrOzs7UqlWL7du3s3DhQoKCghgyZMg3r2tq0qQJy5YtY/Xq1UWyu2NKSgpWVla4urri4uJCv379vni8n58fbdu2LXTdhAUCZSMWi/H19S2WTcOUQf369Tl8+DCPHj2iU6dOzJw5k+rVq7Ny5Uo+fCh6vRYEyic6OpqOHTvy4sULvLy8aNy4saJDIj09HScnJwYMGECdOnXYvXs3L1++ZMGCBd997ay9MfPysL9GaQ3KaKgo7SSQCCijoYJx6cLVaLOgFNvksihNu797Esjvh/YV+NghISG0adOG7du3s2nTJo4fP/7F9ZD/JZPJOHfuHA0bNmTKlCn069ePkJAQ7O3t0db+/qc9M2bMoEOHDgwfPpzY2Njvvl5hkZSURN++fXF3d+fMmTP07Nnzi8enpqZy/fp1oSRWIJADiURCTEwM9+7dU3Qogi+oXbs2e/fu5cmTJ/Tp04d58+ZhaGjIsmXLiIuLU3R4gmIqKiqKjh078vLlS7y8vL55LaO8HTlyhGfPnmFnZ0dycjLLly9nyJAh1KtX77uvbW5unr3HeW6piET0MNRR2kkgGdDTUAeVYvpAv9gml1B0pt2riT7g4+NDZGRkgY17/PhxmjVrxvv377l27Rq//PJLnmbF7t27R+fOnenVqxeVK1cmICCAHTt2ULFiRbnFqKqqyr59+4iLi2PSpElyu64iJSYm0rt3b3x9fTl37hxdu3b96jkBAQEkJSUJyaVAIAetWrVCU1NTKI1VEsbGxmzfvp2QkBAGDx7MsmXLMDQ0ZOHChXkq0xMIvldWYvn333/j7e1Nw4YNFR0SkNmV39HRkZ49e9K4cWN27NjB69ev5TJrmaV///68e/eOq1ev5vqcqqXUMTVQviVsIqCFgRZVShXPWUso5sllUZl2HyBujUwm4/Tp0/k+ZnJyMr/88guDBg2ie/fu3Lp1K0+L0CMiIhgzZgxNmzbl+fPnnD17Fg8Pj3wrCzE0NGTz5s0cOnQoT0/NCqMPHz7Qo0cPrl69yoULF7CwsMjVeX5+fmhrayu8WYBAUBRoaWnRunXrIlluX5RVq1YNZ2dnQkNDGTVqFKtWrcLQ0BBbW9sCfTArKJ4iIyMxNzcnIiICb29vGjRooOiQsp0+fZpHjx5hZ2dHUlISjo6OWFtbU7t2bbmN4eDgAOStNBbA7IeSlFai+3QRUFpDhQ4/FK+tR/6rWO5z+W8vPqRxKFh5S2Ssa+lSpZQ65ubmqKur4+aWf2svg4ODGThwII8ePWLDhg2MHTs217OVSUlJrFu3DkdHR9TV1Vm0aBETJkxAXT3/n+zIZDIGDx6Mm5sb9+7do2rVqvk+przFx8fTvXt37t69y4ULF/K0pUi/fv2IjY0VZloEAjlZsmQJa9euJTo6GlXV4tcJsCh4+/Yta9euZdOmTUilUsaPH8/MmTOpVKmSokMTFDFv376lY8eOREZG4uXlhYmJiaJDyiaTyTA1NUVXVxcvLy/Wr1/PzJkzefz4sdwbANasWZPw8HBSUlLy1E9D2e7Th9bSpWoxnrWEYj5zCUVn2t3KygpPT0+io6PzZbwjR47QrFkzEhMT+euvvxg3blyuEkuZTMaRI0eoW7cuCxcuZMyYMYSEhDBlypQCSSwhszvwli1bKFWqFDY2NkrXiCMuLo7OnTtz79493N3d85RYymQy/P39hZJYgUCOJBIJcXFx3LlzR9GhCL5R+fLlWbFiBWFhYcyYMYNdu3ZRvXp1Jk+ezIsXLxQdnqCIePv2Lebm5kRGRuLt7V2oEksANzc3bt++jb29PYmJiaxYsYLhw4fnS2f5yZMnk56ezqZNm/J0XtVS6lhUUY6ZQIsqJYt9YglCcgkUjWl3S0tLpFIpZ86cketYSUlJjBs3jiFDhtC7d29u3ryZ6xLWq1ev0rp1a4YMGUKzZs14+PAha9euRV9fX64x5oaenh579+7NfjKnLGJiYrCwsODx48d4enrSqlWrPJ0fHBxMZGSkkFwKBHLUsmVLtLS0hNLYIqBs2bIsWbKEsLAw7O3tOXz4MDVq1GDcuHE8e/ZM0eEJlNibN2+QSCRER0fj4+Mjl+Y48rZ8+XJatmyJubk5W7ZsITo6mnnz5uXLWJMnT0ZNTY3ffvstz+eaGmjTvlKJfIhKftpXKoFpMd165L+E5BJQVxHRU4m6UmV1oVJX+X86XLFiRdq3b8/JkyflNk5QUBCtWrVi//797Nixg4MHD6Kjo/PV88LCwvjpp59o06YNqampeHt78/vvv1OrVi25xfYtOnbsyPTp07G1tSUwMFChseRGVFQU5ubmPHv2DC8vL0xNTfN8DT8/P0QiUZ6TUoFA8Hmampq0bdtWKDUvQsqUKcP8+fMJCwtj6dKl2X+zRo4cSXBwsKLDEyiZN2/eYG5uTkxMDD4+PtStW1fRIX3k8uXL+Pn5Zc9aOjk5YWNjg7Gxcb6Mp6KiQocOHQgODiYiIiLP57epUHgTzA6VStCmgpBYZhGSy38UhWl3KysrPDw8iImJ+e4xDh48SPPmzbO3sRg9evRXy2Dfv3+Pra0tdevW5dKlS+zZs4cbN24gFou/Ox55Wb58OXXq1GHo0KEkJycrOpzPyiqlefXqFd7e3t/cjMff359GjRrlaYsYgUDwdRKJhEuXLpGenq7oUARypKOjw5w5c3j27BmrVq3Czc2NunXrMnToUB4+fKjo8ARKICIiAolEQmxsLD4+PtSpU0fRIX3S8uXLadiwIT179mTTpk3ExsZib2+fr2MuWbIE4JtmR0UiEW0rlsi+V1d0tWHW+BZVStKmYglhH/F/EZLLf1H2aXdLS0vS0tI4e/bsN18/MTGR0aNHM2zYMCwtLblx48ZX22Wnp6ezbds2atasyYYNG5gzZw5PnjzBxsam0DW70NLS4uDBgwQFBeVb6cf3yvrDFBkZiY+Pz3e1K/fz8xNKYgWCfCAWi4mPjycgIEDRoQjyQcmSJZk2bRqhoaFs3LiRy5cv06BBAwYOHCjscSr4rNevX2evyfbx8ZFrx1V5unnzJm5ubtjZ2ZGQkMDKlSsZNWoURkZG+Tpu27Zt0dPT+64qO1MDbYbW0lXocras5WlDa+kKpbCfICSX/6HM0+6VK1embdu23/xD++jRI3788UcOHz7M7t272bdvH6VKlfriOe7u7jRt2pTx48fTtWtXnjx5wuLFi796niI1atQIBwcH1qxZg5eXl6LDyeHVq1eYmZllP/H8nsX/b9++5cmTJ3lqACQQCHKnRYsWlChRQiiNLeK0tLSYOHEiISEhbNu2LbvvQN++fbl165aiwxMUIlmJZXx8PD4+PgpfCvQljo6O1KxZkwEDBuDs7Ex8fDx2dnYFMvZPP/1EXFzcd91/VS2lzuh6ejQ30AIKbhYzaxxTAy1G19MTmvd8hpBc/oeyT7tbWVnh7u5OXFze2jbv27cPU1NTMjIyuHHjBiNHjvziWI8ePaJ79+506dIFPT09bty4wf79+6lSpUqexlWUadOmIZFIGDFihFzKiOXh+fPnmJmZkZSUhK+v73eX0ly5cgVAmLkUCPKBhoYG7dq1E5LLYkJDQ4MxY8YQFBTE3r17efToEaampnTv3j1PG8MLiqa///4bsVhMQkJCoU8sHz58iIuLC3PnziUhIYFVq1YxevRoqlWrViDjZ5XGLlq0CKlUyubNm79pGz11FREWVUoxtJYuuhqZ6Ux+3bNnXVf3n9nKjlVK5eh7IshJSC4/Q1mn3fv3709qaip//PFHro5PSEhg5MiR2NjYMHDgQG7cuEH9+vU/e3xUVBSTJk2iYcOGBAUFcfLkSXx9fb+p2YwiqaiosG/fPj58+MAvv/yi6HAICwvDzMyMjIwMfH195dIG3M/Pj2rVqinlvp4CgTIQi8X4+fmRlpam6FAEBURdXZ0RI0bw8OFDDh8+THh4OG3atMHCwgJfX19FhydQgFevXiEWi0lKSsLHxydftvGQJ0dHR6pWrcqwYcPYuHEjiYmJ2NraFtj45cqVo2rVqly+fBkNDQ0mTpyIjY3NN1+vail1xproYWVcGiOdzJlEed23Z13HSEcdK+PSjDURZitzQ0guv0BR0+4yaQbwbdPuVatWpVWrVrkqjX3w4AEtW7bk+PHj7N27lz179lCy5KebGqWkpLB69Wpq1qzJwYMHcXJy4uHDh/Tv319pFzFXrVqVLVu2cPToUQ4fPqywOJ4+fUqHDh1QVVXF19eX6tWry+W6fn5+QkmsQJCPJBIJHz58EMojiyFVVVUGDx5MYGAgJ0+eJCoqCrFYTIcOHbh48SIymbL0nxd8j5cvXyIWi0lJScHHx4caNWooOqQvCg0N5ciRI8yaNYvExETWrFnDuHHjCqzqbM2aNejp6WXvJZuRkXm/m5udCL5ERSSipq4Gg2rqMs5Ej5bltdFUFf3r/dxe5///W1NVRMvy2owz0WNQTV1q6mqgoqT3uwVNSC6/QhHT7u/+fkFL3nzztLuVlRV//vkn8fHxn3xfJpOxZ88eWrRogUgk4saNG4wYMeKzx546dQoTExPmzp2LtbU1wcHBzJgxA01NzTzHVtj89NNPDBkyhF9++YXnz58X+PhPnjzBzMwMbW1tfH195VaWkpiYyO3bt4WSWIEgHzVv3pxSpUoJpbHFmIqKCv379ycgIICzZ8+SnJxM586dad26Na6urkKSWYS9ePECsVhMamoqPj4++baFhzytXLkSfX19fv75ZzZs2EBycjJz584t0PFjY2M/er1ixYpyG0NPUxVJ5ZL82lCfsfX06G2og6mBNlVKqqH2maxHTQWqlFTD1ECb3oY6jK2nx68N9ZFULomeZuFqTKkMRDLhN1+uSWUyQt+ncSsyiWfxaYggX/bGTEmI581NX5ZPGPZN/6jDwsKoXr06hw8fZvDgwTneyyoDPXDgAD///DMbN26kRIlPNzC6efMm06dP5/Lly3Tv3p1Vq1Z9V4OZwio2NpZGjRphbGyMp6dngXW4ffToEebm5ujp6eHp6UmlSpXkdm1fX1/EYjF3796lUaNGcruuQCDIqVu3bmRkZODu7q7oUASFgEwmw93dnaVLl+Lv70+zZs2YN28effr0QUVFeJ5fVGQllhkZGXh7e8ut4ig/vXr1CmNjYxYvXsy4ceMwMjLi559/Zu3atQUWw9OnT2ncuDEJCQk5Xh88eHCBVJDJZDKkMkiXyciQgqoKqIlEqIhQ2iq8wkj4TZcHn5x2z4cFvZoldajStivbHsZwNCSO4LgUpHl4BmBkZESLFi04ceJEjtcDAwNp0aIFLi4uHDhwgJ07d34ysXz58iXDhw+nRYsWvHv3Djc3N1xdXYtkYgmZm2fv37+fS5cuFdgv2cDAQMzMzDAwMMDHx0euiSVklsSWLl36i+tnBQLB95NIJPj7+5OamqroUASFgEgkokuXLly+fBkvLy9Kly6NpaUlTZo04fjx49llgALl9fz5c8RiMVKpFB8fH6VILCGzJLVEiRL88ssvrF27lrS0NObMmVOgMdSoUYPQ0FD09fVzvF5Q30ORSISqighNVRVKqKugqaqCqopISCzlTEguv5Gepio1dTXQyqdJLhU1NQDC49M4FRrP9ocxvPiQu6YRr1+/xsjIiPPnz/PhwwdkMhk7d+6kZcuWqKurc/PmTaytrT8678OHDyxcuJDatWvj5ubGtm3buHPnDp07d5brZyuMxGIxM2fOxN7enrt37+brWHfu3EEikVC5cmW8vLwoX7683Mfw9/enTZs2hW6fUYGgqJFIJCQmJnLjxg1FhyIoREQiERKJBG9vby5fvkylSpUYNGgQDRo04ODBg6Snpys6RME3CA8PRywWI5PJ8PHxyfd9IeUlKiqKbdu2MXnyZNLS0tiwYQMTJ06kQoUKBR5L+fLlCQ8Pz7HOs169ep88ViaTkS6VkZwhJTFNSnKGlHSpTCg3L+SEsthvkCaV4ft3Ajcjk/OtNPa/ssYxNdDC7IeSX1yLOWDAgOyGPvv27cPNzY3Dhw8zduxY1q9fj7Z2zs6zUqmUffv2YW9vz7t375g2bRq2traULl06Hz9R4ZOSksKPP/5Ieno6N2/eREtLS+5j3Lp1i06dOmFsbIy7u/tHT+/kISMjg7JlyzJr1izs7e3lfn2BQPB/6enp6OvrM3v2bObNm6focASF2PXr11m6dCnnzp2jRo0a2NnZYW1tjYaGhqJDE+RCWFgYEokEkUiEj49PgW3dIQ/z589n7dq1hIeHs3btWjZs2MCzZ8/y5eF2bqWmplK5cmWioqK4f/8+JiYmvEvJICIxnYjEdF4nphORlE669ONz1VSgorYalUqoUfGf//Q1VYUZyEJCSC7z6MWHNM6Fx/M+VVogSeV/ZW1P0tNQ55NdZO/fv0+jRo2yn+poa2ujqqrK9u3bP1p/CeDj48P06dMJCAhg0KBBrFixQmmexOWH+/fvY2pqyoQJE1i3bp1cr/3XX3/RpUsX6taty59//kmZMmXkev0s9+7do3Hjxnh7eyMWi/NlDIFA8H89e/YkOTkZDw8PRYciUAIBAQEsW7YMFxcXqlWrxty5cxk1alSRaJJXVIWFhSEWi1FVVcXHx0eptviKi4vD0NCQn3/+GVtbW4yMjJg0aRIrVqxQdGgAXAkIJLm8MXejk0nJyLx3VQE+kVN+5N/HaaqKaFxWi6bltIQmPAomlMXmwc3IJA4FxykssYTM2cv3qVIOBcdxMzLpo/cXLVqUo2lAUlIS58+f/yixDA4Opl+/fkgkEjQ0NLhy5QpHjx4t1oklQIMGDVixYgXr16/n4sWLcruuv78/nTp1okGDBri7u+dbYpk1lpqaGi1btsy3MQQCwf9lrbtMSUlRdCgCJdC0aVNOnTpFYGAgbdq0YeLEidSoUYONGzeSlPTx33WBYj179gwzMzPU1NSULrEE2Lx5M0lJScyYMYNVq1YhEomYOXOmQmOSymQEx6VwNCSOS1Tixtuk7MQScpdY/ve4lAwZN94mfXO/EoH8CDOXuSCTybjyJonLrxMVHcpH2lcqQZsK2ohEIgIDAz/ZGVRPT4/o6GhEIhExMTEsWbIEZ2dnfvjhB1asWMFPP/0klBL8i1QqpUuXLjx8+JDAwMDvLl319fWlR48emJqacu7cOUqVKiWnSD9t6NChPH36lGvXruXrOAKBINOtW7cwNTXF19eXDh06KDocgZIJCgrCwcGBQ4cOUa5cOWbOnMn48ePz/W+F4OtCQ0MRi8Voamri7e1dYPtByktiYiJGRkb079+fxYsXU716dX799VeWL1+usJhefEjDNTye2FRpvi0ty7puGQ0Venym0k+Qf4SZy1worIklwOXXiVx5k/mkc+rUqZ88JiYmBmdnZzZu3EjNmjXZuXMnS5Ys4fHjxwwePFhILP9DRUWFvXv3kpSUxPjx479r4binpyfdunWjVatWnD9/vkBuFvz8/Gjbtm2+jyMQCDI1adKEMmXK4OPjo+hQBEqoTp067Nu3j6CgIHr16pVduujg4MD79+8VHV6x9fTpU8RiMVpaWvj4+ChdYgmwc+dO3r17x+zZs1m5ciWqqqrMmDFDIbGkSWV4vPzAoeA44lIz5xzza3Yr67px/1T6ebz8QJpUmEsrKMLM5VfcfJuEx6uErx+oYE21k+la7/+lGuXLl+ft27fZX6uqqiKVShk9ejRLliyR64a1RdWJEycYOHAg+/fvZ9iwYXk+383Njb59+2JmZsbvD5c8VgAAIABJREFUv//+USOl/PDixQuqVauGi4sL/fr1y/fxBAJBpj59+vD+/Xu8vb0VHYpAyT1//hwnJ6fs7cKmTp3K1KlT0dPTU3RoxUZISAgSiYQSJUrg5eVF5cqVFR1SnqWmplKjRg0kEgkrV67E2NiYmTNnsmTJkgKPpbD3KxHIlzBz+QUvPqQpRWIJEJCkxZLftuHl5UVkZCQVKlTIsQ1FRkYG8+bNY/v27UJimUsDBgxg2LBhTJw4kbCwsDyde+7cOXr37o2FhQWnT58ukMQSMtdbAsLMpUBQwCQSCVevXiU5OVnRoQiUXLVq1di0aROhoaGMGDECJycnDA0NsbOzIyoqStHhFXkhISGIxWJKliyJt7e3UiaWAPv37+fVq1fY2tri5OSEhoYG06ZNK/A4lKFfiUC+hOTyM9KkMs6Fx6MsBaMioJzEinZmYpycnAgMDPxos+ZNmzYJJTZ59Ntvv6Gvr8/w4cNzvfn16dOnsbS0pEePHpw6dSpftjT5HD8/P2rVqqXQ9uICQXEkFotJSUkR1joL5KZy5cqsX7+esLAwxo8fz8aNGzE0NGTmzJlEREQoOrwiKTg4GDMzM3R0dPD29uaHH35QdEjfJD09nRUrVmBpaYmuri5btmxh2rRpBTr7LZPJ8I9IxONl5iSNossks8b3eJmAf0SisFdmPhKSy8/w/TtBoU9Z8irrqcwfj1+zevXqTx7z7t07rl+/XrCBKTldXV0OHDiAn58fq1at+urxJ0+eZMCAAfTt25djx44V+P5lfn5+tGvXrkDHFAgE0KhRI/T19YWyWIHcVahQgZUrVxIWFsa0adPYsWMH1atXZ8qUKbx8+VLR4RUZT548wczMjNKlS+Pt7U2lSpUUHdI3O3HiBE+fPsXW1pYVK1agra3Nr7/+WqAxKEu/EoH8CWsuP+HFhzQOBccpOoxv9uaPXVTT0aBChQro6OgQFRXFqFGj2LFjB6NHj1Z0eErJ1taWNWvWcO3aNZo1a/bJY44cOcKwYcMYNGgQ+/btQ01NrUBjjIuLQ19fnx07djBq1KgCHVsgEIClpSVRUVFcunRJ0aEIirDY2Fg2btzI+vXrSUhIYNSoUcydOxdDQ0NFh6a0goKCkEgklClTBm9vbypUqKDokL6ZVCqlcePGVKlShR07dlCjRg3mz5/PvHnzCiwGZelXYlGlJKYGBbNsqTgRksv/kMpkbH8YQ5wSzVr+mwjQ1VBhrIkeKv/qAmtiYkKLFi3Yt2+f4oJTYqmpqbRq1Yrk5GRu3br10RrK/fv3M3LkSKytrdm9e3eO9a4Fxc3Nja5du/L48WPq1KlT4OMLBMXdxo0bmTVrFjExMZQoUULR4QiKuPfv37N582bWrFlDbGwsw4cPx9bWlpo1ayo6NKXy+PFjJBIJ+vr6eHl5KXViCXDmzBn69u3L5cuXOXLkCEePHuXZs2eULl26QMZXtgmaobV0hSY/ciaUxf7H0/epxCppYgmZ5bGxqVJC36fleN3KyoozZ86QmpqqmMCUnIaGBgcPHuTZs2fMmTMnx3u7d+/GxsaGUaNGsWfPHoUklpBZEluuXDlq166tkPEFguJOIpGQmprK1atXFR2KoBgoXbo0c+fOJSwsDCcnJ86fP0+dOnUYNmwYjx8/VnR4SuHRo0eIxWLKli2r9DOWkLnO0cHBgQ4dOlCtWjV27NjBzJkzCyyxVMZ+JefC44VtSuRMSC7/41ZkstL8UHyOCLj1n25YVlZWxMXF4enpqZigigATExNWrlzJb7/9hpubGwDbtm3j559/Zvz48Wzbtg0VFcX9SPn7+9OuXTth31KBQEHq169PuXLlhHWXggJVsmRJpk+fTmhoKBs2bMDHxwcTExMGDRpEYGCgosMrtB4+fIhEIsHAwABvb+8i0QjP09OT69evY2dnh4ODA7q6ukyaNKnAxlfWfiWX/i78JbzKREgu/yUmJYOw+DSl+aH4HBnwLD6NmJT/dzdt2LAhtWvX5sSJE4oLrAiYOHEiXbp0wcbGBkdHR8aPH8+UKVPYtGmTQhPLtLQ0rl27JmxBIhAokIqKCmZmZvj4+Cg6FEExpK2tzaRJkwgJCWHr1q1cv36dRo0a0a9fP27fvq3o8AqVBw8eIJFIKF++PF5eXhgYGCg6JLlYvnw5zZs3p3bt2uzatYvZs2ejo6NTIGO/+JDGzchkpbuHlgE3IpN58SHtq8cKckdILv8lIEr5Zy2ziIA7Uf/fb00kEmFlZcXp06dJSxN+gL6ViooKu3fvJi4uDjs7O6ZPn8769esVPlsYEBBAUlKS0ClWIFAwiUTC9evXSUgQnoQLFENTU5OxY8fy5MkT9uzZw4MHD2jevDk9evQQtsoB7t+/j0QioWLFikUqsbxy5Qo+Pj7Y29vj4OCAvr4+v/zyS4GMLZXJcFWictj/EgGu4fFIhTY0ciEkl/+QyWTcjVa+Jy6fIwPuRCfn2MfHysqKmJgYoWTrO+3fv5+kpMyy4wYNGig8sYTMklgtLa3PdrIVCAQFQyKRkJaWhr+/v6JDERRz6urq2NjY8PDhQw4dOsSzZ89o3bo1nTp1KrYdjQMDAzE3N+eHH37Ay8uLcuXKKTokuXFwcMDExISGDRuyZ88e5syZQ8mSJQtk7KLar0TwbYTk8h/vUjJIyVDWH4tPi4x4zdz5C7lz5w4ATZo0wdjYWCiN/Q5Lly7F1taWhQsXMmLECKZMmUJoaKiiw8LPz4+WLVsW+L6aAoEgp3r16lG+fHmhNFZQaKipqTFkyBDu37/PiRMnePv2LWZmZojFYjw9PYvNZvL37t3D3NycypUr4+npSdmyZRUdktzcuXMHV1dXbG1tcXBwoFy5cowfP77Axi+q/UoE30ZILv8RkZiu6BDk7n1kBCuXL81OLkUiEQMGDOD3338nPb3ofd78JJPJmD9/PgsWLGDZsmUsWrSIjRs3YmBgwPDhwxX6/ZTJZPj5+QklsQJBISASiRCLxUKFiKDQUVFRwcrKioCAAE6fPs2HDx+wsLCgbdu2XLhwoUgnmXfv3sXc3JyqVasWucQSMmctjY2Nad68Ofv378fW1rbAtkMqyv1KBN9GSC7/EZGYXmS+GRnp6aSnpX7y81hZWREdHY2vr2+Bx6WsZDIZtra2LFu2DCcnJ+zt7YHMNvAHDhzg6tWrODk5KSy+p0+f8vbtWyG5FAgKCYlEwo0bN4iPj1d0KALBR1RUVOjTpw83btzg/PnzAHTv3p2WLVty5syZIpdk3rlzh44dO2JoaIiHhwf6+vqKDkmugoKCOHnyJHPmzMHR0ZHy5cszduzYAhu/KPcrEXybopJPfZP4+Hh+/fVXjIyM6GpcliUd67FrghWvHt0FwKlHM04s/LiF8/Yxfdg+pk/216E3/bFtZsA9t99x+20ZyzuZsKCNIft/tSY24tVH564f0J5XD++yxaY781tXZWXP5vx1cu9H43x4F8mpxVNZbmHC/FZV2DBIzK0/juY4Jubv59g2M+DS/k34HdrKqt4tmN+qMteO7+Y3604AjBw5EpFIhEgkIjAwECMjI6E0NpdkMhkzZszAycmJdevWMXv27Bzvt23bFltbWxYtWsTNmzcVEqOfnx8ikYjWrVsrZHyBQJCTWCwmIyNDWHcpKNREIhHdunXD398fDw8PSpYsSd++fWnSpAknTpxAKpUqOsTvFhAQQMeOHTEyMiqSiSXAihUrqFSpEq1bt+bQoUPY2dmhra1dIGPLo19J1n1xYfCpfiWCvCvWyeX48ePZsmULlpaW9LNzov2wX1DX1OLts+Bvup73rvU89vPAbMQU2gweTfBfvuya0J+05Jw13EnvY9k7ZTCV6zWi29QF6JavxGmHWdw8fSj7mLTkJHaM6UuA6wkad+tPt18XolVKh5MLJ+N/eNtHY986e4Srx3bR0nIY3actpr6kBxYT5gIwZswYDhw4wIEDBzAzM8PKygoXFxcyMoSp/y+RyWRMmTKFdevW4ezszK+//vrJ4xYuXEjjxo2xtrYmMTGxgKPMTC4bNGhAmTJlCnxsgUDwsTp16lCxYkWhNFagFEQiER07dsTHx4dLly5RoUIFBg4cSIMGDTh06JDSLqO5ffs2HTt2xNjYGA8PD/T09BQdktyFh4dz8OBBZs6cmZ1kjh49usDGL4r9SlIyZMSkKP+DFUUq1smlq6srY8aMYeXqNTTrY42ZzWSGrz9I0+5W33S9xPcxjN99jnbW4+k6eT4DlzgTFf6U678fyHHc+8gIOthMpvecFbT5aQw/b3OhUp0GuDkvJ+OfbUKuu+zn7bMn9F+0kZ4zltLmpzGM3upCtUYtcN/sSErChxzXjHv7NxP2XcDMZgrtho5H74eq1GnbEYBWrVpjbW2NtbU1xsbGWFlZERkZyeXLl7/pcxYHUqmUCRMm4OzszLZt25g4ceJnj1VXV+fgwYM8f/6cWbNmFWCUmfz9/YWSWIGgEBGJREgkEiG5FCid9u3b4+7uztWrVzE2Nsba2pp69eqxZ88epdrG7Pbt21hYWFCzZk0uXrxYZB++rly5kjJlytChQweOHDmCvb09WlpaBTZ+UexXAkX3cxWUYp1clilThr/++ovnr159/eBcaNZjIJolS2V/3cCiNzrlKhDk55HjOBU1NX7sPzz7azV1DX7sP4IP7yKzS3KD/DzQKVeexl0ts49TVVenzeAxpCYmEHrrSo5rNjDvSSm9T7fUzvhPwULLli2pWrUqJ0+e/LYPWsRlZGQwevRotm/fzu7du3O1dqFu3bqsXr2azZs3Z69hKQiRkZE8fvyYtm3bFtiYAoHg68RiMbdu3eL9+/eKDkUgyLNWrVpx7tw5bt26RcOGDRk1ahS1a9dm27ZtpKSkKDq8L7p16xYdO3akdu3aRTqxjIiIYNeuXfz666+sWrWKqlWrMmrUqIKNoQj1K8miIoKIJCG5/B5F7d9EnqxcuZL79+9Ty8iQTcM647F1Je9ehn3z9cpWM87xtUgkomzV6sS+fpHj9dLlKqKhnXPvoXLVagAQ88+xsREvKVvVGBWVnP8Xla9eK/P9/1xTr7LhZ+OS/qdiQSQSYWVlxalTp4TS2P9IT0/HxsaGffv2sX//fkaOHJnrcydMmEC3bt0YNWoUkZGR+Rjl/125kvmQQZi5FAgKF4lEglQqFSpEBEqtWbNmuLi4cO/ePVq2bMmECROoWbMmzs7O2fs9FyY3btzAwsKCunXr4ubmhq6urqJDyjdr165FU1MTiUTC8ePHsbe3R1NTUy7XfvXqFaNGjaJChQpoampSv359du/eDUBSUhJ169albt26hL+LJ6uANDEuBofO9dli0x3pv+4tg/w92D66NwvbGbGofXWcrTtx58Kpj8Z8ExrEjrF9WdCmGo5dGuK797cc76enpXJxywp+G9KRRR2MWdDGkG2jevL0hl+O4/7di+T6qf2s6t2CeT9Wxtm6Ey8eBHw0buDFM6zr35b5raqwfkB7Aj1dWTh5DEZGRjmOk0qlrF+/nvr166OlpUWFChUYN24c/2PvzsNjOtsHjn9nJvsqCEFUEFVa+y6WhCAoVbWLrRS1q+Kn1L6vscdeS14UbdVSrZCQWErse6OINYQsssvMnN8fkVQkIYlJTmbyfK6r1/vOzJnn3CeRmXOf5zn3HRERkYOfsGEr0Mllly5duHPnDouXLsPG3oHjW1aypHNjbp1InmlUKDKufyXlw4TM2DTzZRDKDA6jU6dOhIaGpiYnQnJi2atXL7Zv387//vc/PD09s/V+hULBxo0b0Wg0fPPNN3lyQ3hgYCCOjo589NFHub4vQRCyztnZmVKlSomlsYJBqFKlCjt37uTatWu4uroycuRIypUrx+LFi4mNjZU7PADOnDlDixYtqFSpksEnluHh4axevZqhQ4eyZMkSypQpQ9++fXUy9tOnT6lfvz6+vr4MGzaMpUuX4uzsTP/+/fHy8sLc3JzNmzdz+/ZtflowPfV9e+eOJyEmmk7TlqNUqYDkeiCbR/Qg7mUkrv1G0mr4j5Ss+Bn/nDyaZp/xLyPZNKwrDhU+pc3oadg7VeDQsump5+MAiTHRnP11G+Vqu9B6xGTcB40lNvIFm4Z24fGtK+mO49KhPRzfsoK6HXvTcsgEIh8/wOf7vqm3nwHcDPiL7f/3DUojY1oNm8SnzdqyZ/oobl+5mG68QYMGMXbsWFxcXFi6dCn9+vXDx8eHVq1a6dWS8bxgJHcAcitRogRDhwwh3qUrMeFhLO/RHL8NS6jo4o65jS0J0emXNEWEPqRwBjOFL+7fSfNYkiRePLiLQ4XKaZ5/+TyUV/GxaWYvn9//FwC7EqUBKOTgSOjt62i12jSzl2Gviw0Ver3duyheF4dWZVAkun79+pQqVYrdu3fTuHH+qNIlp6SkJLp3787evXvZuXMnX331VY7GcXBwYN26dXz55Zds3LiR/v376zjStE6cOIGLi0umF0IEQZBHSr9Lf39/uUMRBJ2pVKkSW7duZcqUKcyZMye1/cWYMWMYMmQINjY2ssT1999/07JlSz777DP++OMP2eLIK8uWLUOj0dCyZUvmzJnD+vXrMTEx0cnYEydORKPRcOXKldR+oIMHD6Z79+5MnTqVQYMGUa9ePb4fO5b58+dTybUNMeFhXP7zVz7/fib2ZZJX4iVEv2Tfgh9w/LQm36z7Lc0kyNsX31+GhdJ5+kpqft4FgNodejK/bQ2CfvOhoos7AOY2hRh34DxGxv8dZ52OvVjcsQGndqznqylL04wZGfqI73/7G3Ob5GXRRZ2c2Tq6F/+c8qNSk5YA/Ll8FjbFSjB4035MLZJvaytftzHrvulAmTL/necHBgayfv16fHx86NGjR+rzbm5ueHh4sGvXrjTPF3QFduZSo9EQFRUFgEoBRkqwKmyPjb0D6levACjs6MT9K0Gok16lvu/G8b+ICs34Hs3zB35OU2jnqu/vRD9/mlpYJ4VWrebvPVtSH6uTXvH3ns1Y2hWlVKVqAFRs5E7082dc/uu3/2JWqzm5cz0mFpaUq9XwvcdobJ7cQDcqKjLda0qlkq+++ordu3cbRLnxD5GYmEjnzp35/fff2bNnT44TyxQdOnSgf//+jBw5ktu3b+soyvTi4+MJCgoSS2IFIZ9yc3PjwoULREam/wwWBH3m7OzMhg0bCA4OplOnTkyZMgUnJyemTZuW58sET58+TcuWLalSpQqHDh0y+MQyOjqaZcuWMXDgQJYtW0a5cuXo3bv3+9+YBZIksWfPHtq1a4ckSTx//jz1v1atWhEVFcX58+cB+GHyFIqX+4RdU4azd854ytZqSMPu/9WoCP7bn8TYGJr2G5Fudd3bF8RNLCyp0bZz6mMjYxMcP61J+KOQ1OeUKlVqYqnVaomLikCrVlOqUnUe3byc7liqtvgiNbEEKFujPgDhj+4ByQlt6O3r1GjbJTWxBChXywUH58ppqpXs2rULW1tbWrRokeZnUqtWLaysrMQKlbcU2JnL6OhoHB0d6dSpE9WqVeNGrJKzx/14eO0Cbb5Lnuav08GTq7772DS0K1VbfsGLB/e4+McuCjs6ZTimhY0d3l9/Tq323YgJD+PE/9ZSpHRZ6nzZK812NvYOHP9pORGP71P0o/Jc+es3nty6ypeTFqMyNgagbsfenNmzhd1ThvP4xiUKlSjN1SP7CLl4hs+/n5mmcFBmijg6YWFjy5o1a7CxscHS0pJ69epRtmxZIHlp7LJlyzh9+jQNG74/WTVECQkJfPXVVxw5coTffvuNNm3a6GRcLy8v/P396dWrFwEBARgZ6f5P7ezZsyQlJYnkUhDyqZT7Lo8fP0779u3lDkcQdM7JyYnVq1czceJEFixYwNy5c1m8eDHDhw9n1KhRFC2acaFBXTl16hStWrWiWrVqHDx4EGtr61zdX37g7e1NTEwMHh4etG7dmk2bNmH8+tzxQ4WFhREZGcnatWtZu3Zthts8e/YMACMjE76aupSVni0wMjWj09RlaZLGlBomxct/8t792hYrmS7hNLexJTT4eprnzu3bQeDW1YTdC0aj/m8pakZ1RwqVcHxrvOREM/5l8sRSxOPk2iVFSpdN994ipcsSfedq6uPg4GCioqIoVqxYhvGn/EyEZAU2ubSwsGDIkCH89ddf/PLLLyRptNg5OvHFhPnU75xcxOXjhs1o8910AretZv/CSZSqXI0+Xv/jwJLJGY7p2n8Uof9c49imZSTGxVC+TmM6TJiPyesZxBTmNoXoPG0Fv8+fwNlft2FV2J724+dSt+N/SaixmTnfrPuNQ8tmcH7fThJio7Ev40ynqcuo1b57lo5RqVIywWst2xdOY/DgwajVajZt2pSaXDZs2BAHBwd2795dIJPL+Ph4OnTowPHjx9m3bx8tWrTQ2dhWVlZs3bqVRo0aMXv2bCZPzvjfzIc4ceIE1tbWVKlSRedjC4Lw4cqWLUvp0qXx9/cXyaVg0BwdHVm6dCkTJkxg0aJFLFmyBC8vL4YMGcKYMWMoXry4zvd58uRJPDw8qF69OgcPHsTK6v0X3fVdfHw8ixYtok+fPqxevRpnZ+ds14d4l5SVbJ6envTp0yfDbapWrQqAUgnBr++dVCcm8Pz+nQxvGcuKlHs03/bm8tkLB3axe8pwKru1oXHvoVgVLopSpcJ/41JeZFCMU6HMeExyUA9Dq9VSrFgxfHx8Mnzd3t4+22MasgKbXJqYmDB//nzmz58PwLXwBPaFxKTbrrHntzT2/DbNcwPX7c1wTKVKRavhk2g1fNJ791+qcjW+/endLSusCtvTaeqyd25jV/Ij5pzPuDKpQqmimWtTJvW7luHrKpUqdWnswoUL01WmNWSxsbG0b9+e06dPc/DgQdzc3HS+jwYNGjBp0iSmT5+Oh4cHdevW1en4gYGBNGjQAFUmH8qCIMhL9LsUChoHBwcWLFjA+PHjWbJkCcuXL2fFihUMHDiQsWPHUqpUKZ3s58SJE3h4eFCzZk0OHDhQIBJLgI0bNxIWFkabNm3o2LEjW7Zs0enKKHt7e6ytrdFoNLi7u79z2+tXrnBk3SJqte/Ok3+u8suM0YzaeRwz6+RlySmr/J7+e5Oib3VTyImrR/ZR2NEJz4U/pZnl9PWel6Px7Eom1y558eBuutdePLjLm3V3y5cvj6+vLy4uLpibm+dofwVJwckm3sPBwjDz7O1rlr/z9U6dOvHgwQPOnj2bRxHJLzo6mtatW3PmzBkOHTqUK4llikmTJlGzZk08PT11WlFPq9Vy8uRJsSRWEPI5Nzc3Ll26RHh4uNyhCEKeKVq0KLNmzSIkJITx48ezefNmypUrx5AhQwgJCXn/AO8QGBiIh4cHtWvXLjAzlpBceHD+/Pl069aNDRs2ULFiRbp3z9pKtqxKmXTYs2cPV69eTfd6Spu1pKQkBnzdDxt7B9qNnU2nqcuJeRHG/kX/Ta5UqO+GqaUV/puWkpSYkGacnFTTV7yeAHnzvfevnOP+5aBsjwXJt6gVd67EhQM/kxj33+TSnXMnCL2ddjluly5d0Gg0zJgxI904arVa3Ff/FpFcvlbYVIWpysAqbiYl4r1oHrdu3cp0k8aNG1OsWDF2796dh4HJJyoqilatWnHp0iX+/PPPXK+Ua2xszLZt23j06BFjxozR2bjXr18nMjJSJJeCkM+5uroiSRLHjx+XOxRByHN2dnZMmTKFkJAQpk6dyq5du3B2dmbAgAH8+++/2R4vICAADw8P6tSpw/79+7G0tHz/mwyEj48P9+/fp23bthw4cIApU6bkSj2HuXPnUqJECerVq8eoUaNYu3Ytc+fOpUuXLlSsWBGAmTNncvHiRQbPWYGppRUlPv6U5t+M4dzv27kZeBgAMytr2o6ZwcOr51nZqyX+G734e/dP/DZ7LLumDMt2XJ80bkn4w3tsG9OHM3u2cGj5DDYN60qxchVzfKythk7k5bMnePf7nEAfbw6vnse27/vh+HGlNLOjTZs2ZdCgQcyZM4c2bdrg5eXFypUrGTVqFGXKlMHX1/cdeyl4RHL5mkKhoFoRswyadugnBVCruBUlS5Zk4sSJmW6nUqno2LEju3btypO+jHKKjIykZcuW3Lhxg8OHD+fZfaYff/wxixcvZs2aNezbt08nYwYGBqJSqXS+1FYQBN1ycnLCyclJLI0VCjQbGxsmTJjAvXv3mDt3Lvv376dixYr07t37nRfA33T8+HFat25NvXr1ClxiqdFomDNnDl988QVbt26lUqVKdOnSJVf2Vbx4cc6cOUO/fv345ZdfUntdhoeHM2/ePM6fP8/s2bMZNmwYzZu5pSYSTfuNxPHTGvw64zvio5OL5tTp4EnvJdsws7Ti6PrF/LFsOo9uXk5tL5Idtdp3p9WwiTz55xr7FvxA8Ck/us5cRanK1XJ8rJWatqLb7DVokl7x5/KZXPM7QJdpyynr/DFmZmkr3Hp7e7N27VqePXvGDz/8wIQJEzh69Cienp64uLjkOAZDpJAMPaPIhohEDWuu520J7dw0qLId+3b60KdPH06dOkX9+vUz3O7IkSO4u7tz9uxZateuncdR5o3w8HBatGjBvXv3OHz4MDVr1szT/UuSRPv27fn777+5cuXKBxc38PT05J9//uHMmTM6ilAQhNzy9ddfExQUxOXL6cvlC0JBFB8fz/r165k3bx6PHz+mS5cuTJo0ic8++yzD7Y8dO0abNm1o0KABv//+OxYWFhluZ6h+/vlnunbtyvr16xkwYAA7d+7MteQyOzKrV6LvfurdnNIOxTh8+LDcoeglMXP5BjtTFU7Wxno/e6kAylobY2eqomfPnlSpUoVx48ZlOjPZtGlTihYtarBLY8PCwmjWrBn379/n6NGjeZ5YQvLM+Pr16wEYMGDAB88SnzhxQiyJFQQ94erqypUrV3j+/LncoQhCvmBubs7w4cP5999/WbVqFadPn6ZKlSp89dVXXLhwIc0TeN8fAAAgAElEQVS2/v7+tGnThoYNGxbIxFKSJGbPnk2LFi3YuXMnn332GZ06dZI7LED/65VokpLQqNVpnrsTdIJbVy/j6uoqT1AGQCSXb6llb4a+T+VKQC375GpWKpWKefPmERAQwIEDBzLc3sjIiC+//NIgl8Y+ffoUNzc3QkND8ff3p1q1nC+f+FDFixdnw4YN7N+/n3Xr1uV4nIcPH3Lv3j2xDEMQ9ERK0bBjx47JHIkg5C+mpqYMHjyY4OBgNmzYwKVLl6hZsybt2rXjzJkzHD16lDZt2uDi4lIgE0uAgwcPcunSJdq1a8fhw4eZOnVqvqnur+/1Sl6GPWFxxwb4es/nzJ4t7F/0Iz+N6I6DgwODBw+WOzy9JZbFvkUrSay9HkHUK61eJpkKwNZEycDKdihf34wsSRLNmzfn2bNnXLp0KcPWFX/99RetWrXi/Pnz1KhRI4+jzh1PnjyhWbNmREVFcfToUT755P2NfPPCoEGD2LZtGxcvXqRChQrZfv/OnTvp1q0bT548wcHBIRciFARB15ydnfHw8GDFihVyhyII+ZZarWbHjh3MmjWLmzdvolQqqV27Nv7+/gWyBYQkSbi4uKBQKDA1NeXFixdcuHAh3ySXAEcfxXL2WbxenjMnRL/kl5nfEXLpDLERLzAxt6BOY1c2Ll1I+fLl5Q5Pb+Wff535hFKhoG0Za738I4HkWcvPy1inJpaQvCRz3rx5XLt2jS1btmT4Pjc3NwoXLmwwS2MfPnxI06ZNiYmJ4dixY/kmsQRYtGgRJUuWxNPTk6SkpGy//8SJEzg7O4vEUhD0iKurK/7+/nKHIQj5mpGREZ6ennh5eWFsbIyFhQVnzpyhTZs2HD161OBWV72Pv78/p06don379vj5+TFt2rR8lVgC1Ciqvyv+zKxt6DFvPRMOXWbm34+Y7B/Mb3t2i8TyA+Wvf6H5RGkrY2rb61/lWAVQx94MRyvjdK/VqVOHLl26MHnyZOLj49O9bmxsTIcOHQxiaWxISAhNmzYlMTGRY8eO5Wh2MDdZWVmxbds2zp07x6xZs7L9/sDAQLEkVhD0jJubG9euXePZs2dyhyII+drhw4fp0KED7u7uPH36lF9//ZWXL1/SvHlzGjVqxKFDh/T+PCWrZs+eTfXq1Tlw4AA1atTgiy++kDukdAyxXonwYURymYmmJS2xMVHqzR+LArAxUdKkZOaluWfNmkVoaCjLli3L8PVOnToRHBzMlStXcinK3Hfnzh2aNm2a2leuXLlycoeUoXr16vHjjz8yc+ZMTp8+neX3vXz5kkuXLoliPoKgZ1KKQ4jZS0HI3F9//UW7du1o1qwZv/76KxYWFnTo0IGgoCAOHDiAVqtNbUfy+++/G3SSeebMGXx9fWnfvj0BAQFMmzYtTe/F/MTQ6pUIH0Ykl5kwVir4XI+Wx6YshzVWZv7B4+zsnNoENjw8PN3rzZs3p1ChQnq7NDY4OJimTZtiYmLC8ePHKVOmjNwhvdPEiROpXbs2np6exMRkrZT36dOn0Wq1IrkUBD1TqlQpKlSoIJJLQcjEn3/+Sfv27XF3d+eXX37B1NQ09TWFQkGbNm04efIkhw8fxtzcnC+++IIaNWqwe/dutFqtjJHrjiRJqLUSCRot85Ys5bPqNTnq70/t2rX5/PPP5Q4vU+VtTCikRxMyb1MAhUyUlLNJv/JPyD5R0Oc9gsLi8X0YK3cY7+XuaEntLFxxefbsGeXLl2fQoEEsXLgw3et9+/bl77//5vr16/n2CllGbt68SbNmzbC1teXIkSOULFlS7pCy5Pbt21SvXp3u3btnqYLslClTWLlyJWFhYXr1+xEEIbmY1/Hjx7lx44bcoQhCvvLHH3/w5Zdf0rJlS3bt2pUmsczMsWPHmDFjBkeOHOHTTz9l4sSJdOnSJcOihfmRJEmEJ2oIjVMTGqfmSZya0Hg16gzyZIVWQylrU0pYGOHw+r/Cpqp8dR7wICYJn+AoucPIMc8KthneViZkn5i5fI/a9uY0LpG/S183LmGRpcQSoFixYnz//fcsX76ckJCQdK936tSJmzdvcvz4cVatWsXXX39NbGz+Tq6vXbuGq6srhQsXxt/fX28SS0ieTfby8mL9+vXs3bv3vdun3G+Zn75QBEHIGjc3N27evMmTJ0/kDkUQ8o2DBw/SoUMHWrVqleXEEpJ7dPv6+nLy5Ek++ugjevToQeXKldm8eXOOiuXllYhEDUcfxeJ1JZx1NyLZFxLDubAEHsZmnFgCSEoVD2PVnAtLYF9IDOtuROJ1JZyjj2KJSNTk7QFkwhDrlQg5I2Yus0CSJE4+jSfgSZzcoaTTpIQFDYqbZyvZiImJwdnZmVatWrF58+bU5x89esTPP//M2LFj0Wj++7D6559/8l1RnBSXLl3C3d2dkiVL4uvri729vdwhZZskSXTo0IGTJ09y5cqVTKvAJiUlUahQIaZOncrYsWPzOEpBED7UkydPKFmyJNu3b6dbt25yhyMIsjtw4AAdO3akdevW/Pzzz5iYmOR4rKCgIGbOnMnevXspW7YsEyZMoE+fPh80pq5oJYl/X77iXFgC96KTUIBObrtKGcfJ2pha9maUtzFJ0y0gryVpJdbfiOClnrTzS6lXMqCS3TtvKxOyRySX2ZCyRFZXHwo5lbL/rC6Fzcjq1asZOnQoFy5cAGDMmDEcOXIEhUKR5gZ5pVJJQkICxsb574rO+fPnadGiBU5OTvz1118UKVJE7pByLCwsjCpVqlCrVi3279+f4cWCoKAg6tSpw4kTJ2jYsKEMUQqC8KEqVapEkyZNWLNmjdyhCIKs9u/fT8eOHfn888/ZsWOHzpLAy5cvM3PmTHbv3o2joyPjx4+nf//+mJmZ6WT87HoQk8SBkGgiX2lz7fwxZdxCJkralrGmtIyzcPq2PLZnBVtZf16GSCyLzYba9ub0rGAraxXZlKssPSvY5jixBBgwYABlypShdevW1KhRgyNHjmBra5vuXoXSpUvny8Ty7NmzNG/eHGdnZ44cOaLXiSWAvb09GzZs4ODBg3h7e2e4TWBgIKamptSqVSuPoxMEQVfc3Nzw8/OTOwxBkNW+ffvo2LEj7dq1Y+fOnTqdXaxatSo///wzV69epUmTJowYMYJy5cqxZMkS4uLybgVaklbC92EMPsFRRL1KXu+aWxMTKeNGvdLiExyF78MYkrTyTIOUtjLG3THzzgX5ibujpUgsc4FILrOptJUxAyrZUcs++QpYXiWZKfupbW/GgEp2H/TH8OLFC8aNG8eDBw948uQJkiRhZGRE7969KVmyZJoEs1KlSh8Yue6dOnUKd3d3KlWqxF9//UWhQoXkDkkn2rZty7fffsuYMWO4detWutcDAwOpW7dulu9HEQQh/3F1dSU4OJhHjx7JHYogyGLv3r189dVXtG/fnh07duTaBezKlSuzbds2bt68iYeHB+PGjcPJyYl58+YRHR2dK/tM8SAmifU3IjgXlgDk3Wq3lP2cC0tg/Y0IHsTIc++podUrEbJHJJc5YKxU4O5oRc8KttiaJP8IcyvJTBnX9vVsZXNHqw9eFz5o0CC8vLzS3FepUCgwMTEhICCAkiVLpi7LrFix4gftS9cCAgJo2bIl1apV488//8TW1lbukHRq4cKFlC5dGk9PzzQFCSRJ4sSJE7i4uMgYnSAIH0r0uxQKst9++41OnTrRoUMHtm/fnicroypUqMDGjRsJDg6mY8eO/Pjjjzg5OTFjxgwiIyN1vr+gsHh8gqNkve9QAl6+nsUMCouXJYaGxfNvgtmkhAUNi4vEMreI5PIDlLYyZmBlOzqVs8HJOvkDUldJZso4TtbGdCpnw8DKHzZb+aZp06ZRqVIllMr/fv1arZb4+Hg++ugjAgICKFy4MECms4Jv9mKKS9KSoNGi1kq52tDYz88PDw8P6tSpwx9//IG1tXWu7UsuFhYW+Pj4cPHiRaZPn576/J07dwgNDRX9LQVBzxUrVoxPP/1ULI0VCpxff/2Vzp0707FjR3x8fPL8lhsnJye8vb35999/6dGjB7NmzcLJyYnJkydn2Ps7uyRJ4kRoXGr7OrkLmqTs3/dhLCdC43L1/CwjCoUCFweL1CWycpfLSdm/u6MlDR0sRNX9XCQK+uhQRKKGi88TuPgigURN8o9VqYCsLHt/cztTlYLqRcyoXtQMO9Pc6deUkJDADz/8wJIlS1Kf69u3L5s2bQLg1q1bNGvWjO3bt9O4ceMs92IyUoKDudEH92K6f/8+1tbW2NnZAXD48GHat29PkyZN+PXXX7GwyJ9Xw3Rl5syZTJkyhYCAABo2bMjmzZvp27cv4eHhqT8TQRD007Bhwzh06BC3b9+WOxRByBN79uyhW7dufPXVV2zbtg0jIyO5Q+LJkycsXLgQb29vlEolQ4cO5bvvvqNYsWJptnv48CFqtRonJ6d3jnciNC5fdhVI0biEBS4O8pw7PYhJYn9ItGyzuSn1Sj6XudhRQSGSy1wgSRIRidrkZCxezePYpPcmYyUtjXEwT07G7EyVeXZF5ejRo3Tt2pXnz59Tu3Ztzp49m/paRKKGC88TuPRmsgxk0oYpjTe3M1UpqFbEjBpZTJa1Wi0fffQRKpWKkydPcvnyZb788kuaN2/Onj17ZKv4lpfUajVNmzblyZMnXLp0iTFjxnDy5EmuXr0qd2iCIHygPXv20KlTJ+7fv0/p0qXlDkcQctXu3bvp1q0bnTt3ZuvWrfkisXxTWFgYS5YsYcWKFajVagYNGsTYsWMpWbIkWq2WypUr8/TpU65cuYKjo2OGYwQ9i8f3Uf7uCQ4f1mXgQyVpJY49jiUoLCHPui6k7KeOvRlNSlqKdiN5RCSXeUSSJLQSqCUJjRZUSjBSKFAqkH1qPiIigpYtW1KlShXWb9ggey+mwMBAGjdujFKpxN7envDw8NQeWAWpmM2dO3eoVq0anTt35vTp0zRp0iTTSrKCIOiP58+fY29vz+bNm+ndu7fc4QhCrtm1axfdu3ena9eubN68Od8llm8KDw9n2bJleHl5kZCQQP/+/alSpQrffvstSqWSOnXqEBAQkG45r2i9kT0FrTVLQSSSSyFVfvmDHzJkCOvWrUOtVgNgaWnJjRs3CuQV/k2bNvH1118DsHXrVjw9PWWOSBAEXahatSq1a9dm48aNcociCLli586d9OzZk27durF58+Z0rc7yq6ioKFasWMHixYsJDw9P7f+tUCgYNWoUixcvTt02SSux/kaErMV7siNleeiASnayzuJpJYk7L5M4FxbP3VyYyChrbUwte3PK2RhnOpEh5B6RXAqyLlWobW9G0zeWKqjVaooVK0ZERETqtiqVigoVKhAYGKj3/SyzS5IkGjZsyOnTpzl9+jT16tWTOyRBEHRg5MiR/P7779y9e1fuUARB53bs2IGnpyc9evRg06ZNepNYvunnn3+ma9eu6Z7fs2cPHTt2BMD3YQznwhL0IrFMoSD53Ku5o5XcoQD6Va9EyBqRXBZw+e0m68OHD9OyZcs026hUKjQaDXv37qV9+/YyRCmv4cOHs2rVKlq0aMEff/wh+zJqQRA+3G+//caXX37J3bt331soRBD0yf/+9z969eqFp6cnGzdu1MvEUpIkatWqxcWLF9NVWU2pB1Gicg29Wg77NrmXx75Nn+qVCO8mkssCLCgsHt+HsXk2W5mZlP27O1ry3VetCAgISF2GUrlyZbp06ULHjh2pUqWKjFHKx8XFBZVKRUBAAMuXL2fYsGFyhyQIwgcKDw+naNGibNy4kb59+8odjiDohI+PD71796Z3796sX79eLxNLSF5FVbx48TQtSlLat0mSxOTJU3DoPJwoPVkO+zYFyf3TB1a2y9fLRvNzvRIhcyK5LIAkSeLk0/h8WTL7ws/r8N/oxZgxY+jYsSPOzs5yhySrhIQEbG1tWbBgAcHBwaxfv57z589TqVIluUMTBOED1ahRg6pVq7J582a5QxGED7Zt2zb69OlDnz59WLdund4mlik0Gg2SJKFSpW+nFhyVyJ470TJFpjudytngbGsidxiCgRHJZQEkejHpj5TKuefOneOTTz6hVq1amJubc/r0aUxMxBeCIOiz7777jt27dxMSEiKuwgt6bevWrfTp04d+/fqxbt261Fk+Q7XjdhQh0Ul6OWuZQkFyBf+uzrZyhyIYGMP+6xfSCXqWP2cs3xTwJI6gsHi5w8gXAgMDsbKyomrVqlhYWODj48OVK1eYOnWq3KEJgvCB3NzcePDggSjqI+i1zZs306dPH/r3718gEsuIRA339DyxhOTbke5GJxGRqJE7FMHAGPYngJDGg5gkvWjyC+D7MJYHMUlyhyG7wMBA6tevn9obrGbNmkyfPp25c+cSEBAgc3SCIHyIlH6+fn5+cociCDny008/0a9fPwYMGMCaNWsMPrEEuPA8ubK+IVAAF58nyB2GYGAM/1NAAJLbjewPidabD0QFsD8kmqSs1KI2UFqtlpMnT9KoUaM0z48bNw4XFxd69epFVJT+VqoThIKuUKFC1KhRQySXgl7auHEjX3/9NQMHDsTb27tAJJaSJHHpRdZajzy4doHVfdswuWEZJtS05/GtK7keX4pdU4Yxr23N924nARdfJKSriCsIH8LwPwkEAI49jtWbJr+Q/IH38pWW44/1Y6Y1N9y4cYOIiIh0yaVKpWLr1q2Eh4czYsQImaITBEEX3Nzc8Pf3Fyd3gl7ZsGEDAwYMYNCgQaxatapAJJYA4Yma1F6M76JJSuJ/4/oT/zKCz8fMoMuMVdiVKJ0HEWZfoia5BYgg6ErB+DQo4B7EJBGkZ01+ITnBPBuWUGCXxwYGBqJSqahXr16615ycnFixYgVbtmxh165dMkQnCIIuuLq68ujRI27fvi13KIKQJevWrWPAgAEMHjy4QCWWAKFx6ixt9+LhPSKfPKBxryHU/ao3Ndp2xtymUC5Hl3NZPS5ByIqC84lQQGkliQN6tBz2bQrgQEg02gJ4Vf/EiRNUr14dKyurDF/v1asXnTp1YtCgQTx69CiPoxMEQRcaN26MSqUSS2MFvbB27VoGDhzI0KFDWblyZYGrchwap87SiXNseBgAZtb5vxKrUgGh8SK5FHTHSO4AhNz178tXRL7S3+UOEhD5Ssudl0kFoheTVqtFoVCgUCgIDAykffv2mW6rUCjw9vamatWq9OvXj0OHDhWoK8iCYAhsbGyoVasW/v7+DBw4UO5wBCFTa9asYfDgwQwfPpylS5cWuMQS4EmcmvedUe2aMozz+3YC8L9x/QEoW6th6usD1+1Nt/2doJOMP3AegIjH95n/eS1aj5qKmaU1xzYvJ+rpYxwqVOaLCfMp/WmNNO+/5neQw6vm8OLBXYqULkuLb/8vW8ekleBxbMFcISbkDnEmauDOhel/VTMFcK6AtCapWrUqxYoVo23btty9excHBwfU6syvKBYpUoSffvqJw4cPs3z58jyMVBAEXXF1dcXPz0/cdynkW6tXr2bw4MGMGDGiwCaWkiRlaYavbsc+uH49CoCG3b+hy4xVuPUfne39XTq0h+NbVlC3Y29aDplA5OMH+HzfF03Sf4ngP6f88BnbDxQKWg2bRGXX1uyeOoJH1y9la1+h8Wrx+SPojEguDZjoxaR/zM3Nef78OYcOHQJgwoQJWFtb88MPP2T6nhYtWjBy5EjGjx/PtWvX8ipUQRB0xM3NjdDQUG7duiV3KIKQzqpVqxgyZAgjR47Ey8urQCaWABoJ1FlYCFamWh0q1HcFwKlGfWq07Zz6ODsiQx8xdOtfNO07nCZ9htFxihdRTx/zz6n/ltAfWjYdq8L2DN6wn0aeg2k59Ad6zN/A039vZmtfam3yDKYg6IJILg2Y6MWkf5o1a4aRkRFa7X/fYAkJCahUqne+b86cOZQvX56ePXuSmJiY22EKgqBDjRo1QqVS4e/vL3cogpDGihUrGDp0KKNHj2bJkiUFNrEEUOfxzF7VFl+kKQJUtkZ9AMIf3QPgZVgoT25dpWa7rphZ26RuV6G+K8XKVcz2/vL6+ATDJZJLA5WdXkzv4+s9nwk17VMfz2tbk11Thulg5KwrKL2YGjdunGYZrEqlonXr1kydOvWd7zM3N8fHx4fr168zefLkXI5SEARdsrKyok6dOqKoj5CvLF++nOHDhzNmzBgWLVpUoBNLAG0el68oVMIxzeOURDP+ZXJ/68gnDwEoWrpcuvfal3HO9v40+lueQ8hnRHJpoLLai0mfFIReTC4uLqlf4EqlEmdnZ3bs2PHemUuA6tWrM3PmTBYsWMCxY8dyO1RBEHRI9LsU8pOlS5cyYsQIvv/+exYsWFDgE0uAD62Xl9nPUJtJVqdQZvK9n0ufESqREQg6Iv4pGShD7VlkqMeVws7ODkfH5KuVlpaWHDx4EBsbm/e86z9jxoyhSZMm9O7dm8jIyNwKUxAEHXNzc+PZs2fcuHFD7lCEAs7Ly4tRo0Yxbtw45s+fLxLL14w+8Odgbl2IhOiodM9HPnmQo/FSZjafP7iT7rWwkOz3zf3Q4xOEFCK5NFBZ7cWUW17Fx+p8TEPpxSRJEmqtRIJGS1ySlgSNFrVWSp2xcHJyAmDv3r2UK5d+ucu7qFQqNm/eTGRkJMOG5e3SZUEQcq5hw4YYGxuLpbGCrJYsWcLo0aMZP348c+fOFYnlG1QKMPqAE6vCjk6E3btNTMTz1Oee/HOVkEtncjSejb0DJSp+xvl9O0mIfpn6fPBpf57dyV5xMCNl8jmWIOiC6HNpoLLSiykj9y6cZv+iH3l6+wY2xUrQpPf7E5Rzv29n99QRfLPuNy7/tZervvvQqJOYcuw2ibEx/LVqDtf9/yD6+VPMrGwo8fGneIz4kVKVqmUrNn3sxSRJEuGJGkLj1ITGqXkSpyY0Xp1hxTkjJTiYGzHaewf9H96haoP6SJKU7S/3MmXKsGrVKjw9Pfn888/p1q2bjo5GEITcYmlpSd26dfHz82Po0KFyhyMUQIsWLeL7779nwoQJzJo1SySWb1EoFDiYG/EwNmcXuWt/0YNAn9VsGtqF2l/0JCb8OWf2bKZ4uU9IiI3O0Zithk1i88geePf/nNrtexD3MoJTO9ZTvPwnJMZl/SK/g7mR+H0LOiOSSwOU1V5MbwsNvs7GoV2wLFSE5oPGotWo8V0zD6vCxbL0/r1zxmNpV4Rm34whKSEOgF9nf89V33006NqfYuU+Ji4ygpCLf/PsbnC2k0v4rxdTfv8QjEjUcOF5ApdeJKTe+6qEdyb8ai08jFWjxASt/SesuxGJqUpBtSJm1Chqhp3p+++7TNGjRw/27dvHt99+i4uLC6VLl/6wAxIEIde5ubnh7e2NVqtF+aE3eAlCNixYsIBx48YxceJEZsyYke+/Y+VSwsKIx7E5u3hfrNzHdJ6+El/veRxYPDn58YyVXDq0hztBJ3MUT0WX5vSYt4HDq+bw54qZFHZ0otPUZVw/9keWx1QqoKSlcY72LwgZUUiieoDBUWslFl56ke33bR3Th39OHmXML6dS1/I/u/MPS7s2QavRMOd8GJBcLbZc7YZ0nrYC+G/m0ql6Pb5ZtxflG8VnpjUpT/U2nfji/+bp4MiSja1WBFU+XL+hlST+ffmKc2EJ3ItOQgE6qdabMo6TtTG17M0ob2OCMgtf/BEREVStWpWPP/6Yw4cPi5NVQcjnjhw5gru7O5cvX6ZKlSpyhyMUEPPnz2f8+PFMmjSJ6dOni8TyHa6FJ7AvJEbuMHSufRlrKhc2lTsMwUCIs00DlJNeRVqNhuBTflR2bZ2m/HWxch9ToYFblsao07FXmsQSwMzalgdXz/MyLDTbMWUmP/ZiehCTxNrrEey5E01IdPLSXV1FmTJOSHQSe+5Es/Z6BA9i3r882M7Ojp9++omjR4/i5eWlo2gEQcgtDRs2xMTERNx3KeSZuXPnMn78eCZPniwSyyxwsDDMBX+GelyCPERyaYBy0ospNuI5SQnxFP0ofQGZolnsl2RX8qN0z7UeOZmn/95kbutqrOzVEl/v+YQ/vJf9AN+Qn3oxJWklfB/G4BMcRdSr5MByK/VNGTfqlRaf4Ch8H8aQpH333po3b853333HhAkTuHLlSi5FJgiCLpibm1O/fn38/f3lDkUoAObMmcOECROYMmUK06ZNE4llFhQ2VWGqMqyfk6lKgZ2pSAcE3RH/mgyQXKsfjc3M0z1XtWUHxv5+lnbj5mBj78DxLStZ0rkxt0745ng/+aUX04OYJNbfiOBcWAKQe0nl21L2cy4sgfU33j+LOWvWLCpWrEjPnj1JSEjI/QAFQcgxV1dXjh07hjavO7YLBcqsWbP44YcfmDp1KlOnTpU7HL2hUCTXQTCU9FIBVC9iJi4sCDqVT07TBV3KSa8iS7uiGJuZ8/x++n5Jz3PQL+lNNvYONOjyNb0Wb2Hc/iAsbO3w27Akx+Plh15MQWHx+ARH8fKVNs+SyrdJwMvXs5hBYfGZbmdmZsa2bdu4desWkyZNyrsABUHINjc3N8LDw7l8+bLcoQgGasaMGan3V06ZMkXucPROjaJmsn3v65oEVC9qJncYgoERyaUBykkvJqVKRYUGblz3/4PIJw9Tn3925x+CT+Xs/h+tRpOm9xKAVWF7bOwdUL96laMx5e7FJEkSJ0Lj8H2YXOJb7i+YlP37PozlRGgcmdXnqlq1KrNnz2bRokUcPXo07wIUBCFb6tevj6mpqVgaK+SK6dOnM3nyZGbMmMGPP/4odzh6yc5UhZO1sd7PXiqAstbG2apELwhZIe7gNUA57cXkPmgc/5w8ypr+7ajfpR9atZqTO9dTrNwnhAZfy3YciXExzPWoymfu7ShR4TNMLCy5/fcxHl67QJvvpmd7PJC/F9PJp/EEPImTbf/vkhKXi4NFhq+PHj2aAwcO0KdPHy5fvoydnV1ehicIQhaYmZnRoEED/Pz8GDVqlNzhCCgw2/4AACAASURBVAZk6tSpTJs2LXVJrJBztezNuBetX3233yYBtezT384kCB9KzFwaqBIWRtn+5Zb4+FO+XrETS7siHF49j6Dft+M+aDyfurXJUQzGZubU7/w1T25dxXfNPA4smsTzkNt8MWE+jT2/zfZ4cvdiCnqWfxPLFAFP4jJdIqtUKtm8eTPR0dEMGTIkjyMTBCGr3NzcOHbsGBqNRu5QBAMgSVJq0Z45c+aIxFIHytuYUMhEqbezlwqgkImScjaiv6Wge6LPpYEy1F5M7cpYYRH1hIsXL3LhwgXOnTvH+fPnGTZsGBMnTsy1/T6IScInOCrXxte1nhVsKW2V8ZfG9u3b6dGjBz4+PvTo0SOPIxME4X0CAgJo0qQJ586do2bNmnKHI+ixlMRyxowZqW1HBN3Qt/OCt3lWsMUxk/MEQfgQYlmsgTLUnkXN61Tj6Z1/ADAyMkKj0SBJEmp19pYAZ0eSVmJ/SDQK5L/HMisUwP6QaAZUssM4gxtUu3fvzv79+xkyZAiNGjXio4/St5ARBEE+devWxczMDD8/P5FcCjkmSRI//vgjs2bNYv78+YwdO1bukAxKaStjatubcfZpHAq5yvTngAKobW8mEksh1+jPX4OQLYbYi0mTGM+zu8Gpj9VqdWoBmxYtWuTafo89jpW1Kmx2pVSRPf44NtNtVq5ciY2NDX369BEtDwQhnzE1NcXFxQU/v5wVUxMESZKYNGkSs2bNYuHChSKxzCVNS1qijolEq8m9C9y6pABsTJQ0KWkpdyiCARPJpYEyxF5MDUsXZu3atRkW9GnVqhVffvkla9eu5f79+zrb74OYJILCEvQmsUwhAWfDEjLtgVmoUCE2b97MsWPHWLx4cd4GJwjCe7m5uREQEJCrqzIEwyRJEj/88ENqhfAxY8bIHVK+J0kSaq1EgkZLXJKWBI0WtVbKtAJ7CmOlgqvbV6JQ6MfptAR8XsY6w1VNgqAr4p5LAxaRqGHN9Qi5w9CZQZXtsDNV8dtvv9GlSxc0Gg0KhQJ3d3caN27MoUOHOHXqFBqNhsqVK+Ph4YGHhweNGzfGzCz7fZy0ksTa6xFE6dGs5ZsUgK2JkoGV7VBmUmF37NixLF26lLNnz1KtWrW8DVAQhEydOHGCRo0acebMGerUqSN3OIKekCSJ//u//2P+/PksXryY0aNHyx1SviNJEuGJGkLj1ITGqXkSpyY0Xo06g0U8RsrkKvUlLIxweP1fYVNVmovcxYsXp7xbe9qPn5OHR5Ez7o6W1BYVYoVcJpJLA7fjdhQh0Ul6mRylUABO1sZ0dbZNfe748eO0bduWmJgYtmzZQq9evQCIjIzE19eXQ4cO8ccff/D48WMsLCxwc3PDw8OD1q1bU758+SztNzgqkT13onPjkPJUp3I2ONuaZPhaYmIidevWRaPREBQUlKMkXBAE3Xv16hV2dnZMmTKFcePGyR2OoAckSWL8+PEsWLAALy8vRo4cKXdI+UpEooYLzxO49CKBRE3yWZESyMqNIW9uZ6pKXhlWo6gZN879jYuLCwAjl/2EQ6O2uRG6TjQuYZFpqzJB0CWRXBo4Q06QLl++zIIFC1i+fDmFChVK9x5Jkrh69WpqohkYGEhSUhLOzs60bt0aDw8PXF1dsbDI+MPWUBPzt129epXatWvz7bffsmTJkrwLThCEd2rVqhUqlYqDBw/KHYqQz0mSxNixY1m0aBHLli1j+PDhcoeUL2gliX9fvuJcWAL3opN0VpgvZZyoO9c5sX0tbetWY9zY7/NtL+wmJSxoUNxc1j7hQsEhkksDVxCWdmZVdHQ0R48eTU02Q0JCMDU1pWnTpqlLaD/55BMUCoXBLinOjJeXF6NHj+bw4cO4u7vnYWSCIGRmzpw5zJ49m/DwcIyNRWVHIWOSJPH999+zePFili9fzrBhw+QOKV94EJPEgZBoIl9pc6/au6QFhZJCJkralrGmtJUxQWHx+D6Mlb3CfMr+xVJYIa+J5LIAEL2Y0pMkiVu3bnHo0CEOHTqEv78/iYmJlClTBg8PD2p2/5YIm1J6mZC/TQHULWaOW6nMq8NptVpatmzJjRs3uHLlCoULF867AAVByNDp06dp0KABp06don79+nKHI+RDkiTx3Xff4eXlxYoVKxg6dKjcIckuSStx7HEsQWEJeZbgpeyntr0ZTUtaEhqnZn9ItGyV5lOqwn7+OuEVhLykH+WthA+S0otJ3xZDKIA6udSLSaFQ8MknnzBq1CgOHTpEeHg4Bw8epH379hz18+ORwir1C8HXez4TatoTG/FC53HoUsTj+0yoac+537eneV4CLr5IeGfVO6VSyU8//UR8fDyDBw9+b4U8QRByX61atbCyssLf31/uUIR8SJIkRo8ejZeXF6tWrRKJJckX09ffiOBcWAKQdzOHKfs5F5bA+hvJq54GVLKjln1yHYO8Ov9K2U9tezMGVLITiaUgC5FcFhBNS1piY6LUmwQzr3sxWVhY0Lp1a5YtW8apS9cwt878HkV9lKiRiEh8d9kCR0dHvL292bVrF9u2bcujyARByIyxsTGNGjUS/S6FdCRJYuTIkSxduhRvb2++/fZbuUOSXVBYPD7BUbL2pU7pM+0THMWlFwm4O1rRs4IttibJp9u5dQ6WMq6tiZKeFWxp7mgl2o0IshHJZQFhrFTweRlrvVnmKWcvptA4w+wrl5Xj6tKlC7169WLYsGHcu3cv94MSBOGd3NzcCAwM5NWrV3KHImQgp/0RP3Sfw4cPZ/ny5axZs4ZBgwbl2r70gSRJnAiNw/dhbPJjueN5/b++D2M5ERqHo6URAyvb0amcDU7WyTOJujqzSRnHydqYTuVsGFhZzFYK8jOSOwAh75S2Msbd0TL1Azg/c3e0lO0DMjROneXy5HntVXwcJubZLyWuVEBovJrKmL532+XLl3P8+HF69+6Nn58fKlXmhYDeRZIkNBKoJQmtFpRKMFIoUCkQFesEIYvc3NwYP348QUFBNGzYUO5wCjRd90fMqps3b/Lxxx+jVCqRJIlhw4axatUq1q5dyzfffKODI9Nv+bVCK5Aal4uDBc62JjjbmhCRqOHi8wQuvtkSRQHaLGTFb25nqlJQvYgZ1YuavbNgnyDkNZFcFjC17c1J1Ej59oMYknsxyVnZ7EmcOsPEMjYynL1zx/HPyaMojYyp0aYTHiMmY2yafE+FRq3Gf9NSzu/bQdTTx1gXLU51j440HzQWI5P/krrr/n9w5pctPL55hbioCGyLl6Rmu264fT0K5RuJ3NpvviAuMpzO01awf9EkHt24RJ0ve9Fu7Czio6PYv3Ai1/wOokBBJVcPGvUcnOkxaSV4HJuUpeO3tbVly5YtuLq6snDhQsaPH//e98h10iUIhq5GjRpYW1vj5+cnkkuZ5KQ/oloLD2PVPI5VZ9gfMavJwJkzZ6hXrx59+/Zl3bp1jBgxAm9vb9avX0///v0/6LgMQdCz/JtYpgh4EoepSpF6XmNnqsKtlCWuJS2ISNQmf2/Gq3kcm/Te782SlsY4mCd/b9qZKsX3ppAvieSyAGpYPPkDLj9+IKf0YpKLJEmExme8fHT7+AHYlSxNq2GTuH/lHCe3ryP+ZRRdZqwE4JcZozi/byefubejkee3PLh6Dv9NS3l2L5heizanjnNu3w5MzC1p5PktphaW/Hs2AN/Vc0mMiabN6Klp9hkXFc6m4d2o2qoDNdp0xqqIPZIksXV0L+5d/Jt6X/XBvuzHXPc7yK7J7+5rFhqvRpKkLH0ZNWnShHHjxvHjjz/SsmVLatSokeF2cp50CUJBYGRkRJMmTfDz82PixIlyh1NgvK8/YlZXtry5XaJG4uyzeM48i8fJ2pha9maUtzF5Z5utHTt2oFQq2bx5M6dOneLWrVts2LCBr7/+OgdHZVgexCTh+yj/r8SC5CWyxc2N0qzIUigUFDZTUdhMlbqqSJIktK9X/Gi0oHq94kcpVvwIekQklwWQQqHAxcECU5VC9GJ6i0Yiw6uGAHalPqL3kq0ANOjaHzNLK07v2kTjXkMAifP7dlLnS086/rgkeZsuX2NlZ0/A1pX8ezaQ8nUaAdBtljfGZv8dZ71OffnV5ntO79pEy6ET0sxyRj9/RocfFlKvU5/U5677/8Hd86doPXIKTfok9zOr37kf6wZ2eOexqbXJM5iqLH4/TZ8+nT///JOePXty7tw5zM2TY84vJ12CUFC4ubnx448/kpiYiKnp+5e2Cx/m7f6IoLvvyJRxQqKTuBedlKY/4tu0Wi3/+9//0GqTPy1v3bpF48aN6du3r46i0V9JWon9IdGyn79klQLYHxLNgEp276wloXh964gKBYjrrIKeEgV9CrDa9ub0rGAraxXZlKqwPSvYyp5YQvLVwszU75L2SnGDbsn3utw64cutQF8AGvVMW7Gvca/kx7cCD6c+92ZimRgbQ2zEC5xq1CcpIY6we8Fp3m9kYkqtL7qnee5WoC9KIyPqde6b+pxSpaJhtwHvO7x3Ht/bTExM8PHx4e7du6lLYx/EJLH2egR77kQTEp28zDY3Trr23Ilm7fUIHsRkbSmvIBgyV1dX4uPjOXPmjNyhGLQkrYTvwxh8gqOIepWc0OVW4pIybtTryqK+D2NIeuumu1OnTvH06dM0zwUEBIjKsMCxx7GyVoXNrpQqsscf68dMqyB8CDFzWcCVtjJmQCU7WRsONylpmW9KZmvfMe1W9KNyaR4XcXRCoVQS8fgBAAqlkiKly6bZxrpoccysbYl48iD1uaf/3uSvVXP492wAiTHRabZPiH6Z5rFNsRIYGZukeS7iyQOsixbH1MIqbXxlnN99cIBGS7auhlauXJn58+czZtx43AZP4Faisc6v5L/t7ZOulKbU+eXfiCDkterVq1OoUCH8/Pxo3Lix3OEYpAcxSalN70Ge/ojBUa/SNL3fuXMnCoUitfKsUqlEq9Xi4+PDokWLsLKyymRUw/YgJomg130s9YkEnA1L4ONCpqKiq2DQxMylgLFSIXoxvabMzl9ERks237OMMz46irXffMGTf67RYvB4env50H/1bjxGTAZIV74+pViQrqhy8Bffoe8g5gXe5p/E5C9DuZpSi1lMoaBSqVQ0adIEf39/uUMxSPmtP2JQWDxarZZ169alSSxdXV1Zu3Ytd+/eLbCJpVaSOPB6Oaw+UgAHQqLR5mKrGkGQm5i5FFKVtjJmYGU77rxM4lxYPHczuJ8up1LGSb6fzpxyNsb58n46o3fE9Pz+HQqXKpP6+MWDu0haLXYlS4MkIWm1vLh/h2LlPk7dJvrFMxKio7ArURqAO0EniIsMx3PBJsrW+q/yY/ij+1mO0a5E6eRZz7iYNLOXz0Nuf9DxZSQoLD75vlylSb446coP9+UKghxcXV2ZMGECCQkJmJnp9qJTQSVJUpo2FnKf7r/ZH/FlXAIajYbPPvuMUaNG0aFDB4oUKSJrfPnBvy9fEfkqPzYKyxoJiHyl5c7LJJxtTd67vSDoIzFzKaShVChwtjWhq7MtgyrbUbeYOaZvVIDJ6iTjm9uZqhTULWbOoMp2dHW2xdk2/xZqUSmSS35n5PTPG9M8PrVjHQAVXZpTsZE7ACf+tybNNoHbvJO3adQCAKUyeU2q9MZpjDrpFad3pR37XSo2ckerVvP3rp9Sn9NqNJzcsf6d7zNSZv33l9+bUudmg3JByI/c3NxITEzk9OnTcodiMPJzf8Qz4Rr87kdy5coV+vfvLxLL1869vn1HnymAc2HxcochCLlGzFwKmSqIvZgUCgUO5kY8jE3fjiTi0X22jPKkQsNm3L8cxMWDu6jW+itKfPwZADXbdeXML1uIj46ibK2GPLx2nvP7dlLZrU1qpdiPqtXB3KYQuyYPp2H3b1Cg4MLBnyEbydInTVpRpnpdDi2fQcTj+xQrV5FrRw+Q8Nb9m29zMDfK8u8hP590vdmUWhAKiqpVq2JnZ4e/vz+urq5yh6P39LE/YkEXkajhXrT+3x4hAXejk4hI1IjWW4JBEsml8F4FrRdTCQujND0YU3Sfu47D3nP5c/kMlCojGnTtT+tRU1Nf7/ijF4VLOXFu3w6u+x3EqmgxXPuNpPmgsanbWBYqTJ+lPhxYPIXDq+Zgbm1L9TadKV+3MZuGdslSfEqlkt5LtrF/4SQu/LEbBQoqNfWgzXfTWN69WcbvUUBJy6wVEBAnXYKQ/yiVSpo2bYqfnx9Tp06VOxy9pu/9EQuqC8/zruhgblMAF58n4FbKUu5QBEHnFJJYXyYIaVwLT2BfSIzcYeicw9PrfNmgGra2tplu8yAmCZ/gqDyM6sP0rGArTrqEAmPZsmWMHTuWyMjI1L6zQvYkaSXW34jQmzYWKe263tcf0dBJkoTXlXASNfrwW8saU5WCUVUK6/0FeUF4m7jnUhDe4mBhmBP6Ywf1o0iRIjRp0oTZs2dz/vz51ObckLYptT5IaUr9dm84QTBUbm5uvHr1ipMnT8odit4S/RH1U3iiJl8lli/DQvH1ns/jW1dyPEaiRiIiUX+LEwlCZkRyKQhvKWyqSlPEyBCYqhSc8T/CypUrKVKkCHPmzKFWrVqULFmSPn36sGPHDv6880KcdAlCPvbpp59SpEgR0ZIkh1L6I+rLZ1yKlP6IBbkdU2hc+joIcnoZFsqRtQt4cuvqB42T345LEHRBJJeC8BaFQkG1ImZ6M4P3PgqgehEzypZ1YtCgQfz666+8ePECPz8/+vTpw8WLF5kwfylXXupPYplCnHQJBUlKr0M/Pz+5Q9E7oj+ifguNU+v1Ceur+PR1DJQKCI0XyaVgePT5b1UQck2NomZ6l2hlRgKqF03bF8/ExARXV1fmzZvHhYsXGbNprzjpEgQ94ObmxpkzZ4iNFTP22ZHSH1FfPyXe7I9YkDx69Ij+/fvTqWYFfqhXivmf1+K32WNRJ70CIPzhPXzGfc101wpMbvgRq3p7cDPgrzRjnPt9OxNq2hPxOG0/6TtBJ5hQ0547QSdSn1v7zRd4dW7M0zu3WDewA5MbfsScVlU49tPyNO9b6ZncXmz31BFMqGnPhJr2nPt9e5oxHl2/xJr+7Zjc8CP+XDGLnycPZUazimiSkn+HWgkexyb//5YtW1KxYkUd//QEQR6GeXOZIHwgO1MVTtbGhEQn6e3JCCQnXk7Wxu8sd/7vy1fEaJXoa3YpmlILBYmbmxtJSUkcOXIEMzMzrl27xsCBA7G0FFUn3yWlP6K+f56fC4svMJ9zjx8/pm7dukRGRlLry14UKVOBl2FPuOq7j6SEeOJfRrK6XxuSEuJp2O0bLGwLc37/DraM7kXP+Rv5tFnbHO03/mUkm4Z15VO3tlRp8QVXffdxaNl0HCpUoqKLO/ZlK+D+7f/hu3oudTv2xqlGfQDKVKuTOkZcVDibhnejaqsO1GjTGasi9piYW3Bh/8/8c8qP/2/vPsOiOvM2gN9n+jD0JiAIokgkdkABIzaiYElcY91YkhjNbjRuyq677m40m02yUdPNplhiymo07mtcS2zYEo29a4yxoogoIkgvM3PeD+NMHAEpA8ycmft3XX5gPHPmGY4zPvd5yr998gAAppHLa9euYdu2bZg9e7btvzQiB8BwSVSD2ACN5GtqiQBiaynXwU4XkeMzGo3Yvn07tm3bBoVCgWHDhsG82XtycjJiY2Pt3ELHxfqI0jRz5kxkZ2dj95692KFsbXn84d//BaIoYv3bL6MoNwfPLF5rCXjxw8fh/dF9sP6dWWjfJw0yWf0n6BXkZGPkq/9GtyGm8mBxwx7H3MFdcXD1UkT3TIGHXyCie/ZH+sdvolWnOHQdPLLKOQpv3sCwv76FHiMmWh4zGo3wahGCo9+ttIRLvRFY9vXXMBqNGDduXL3bSuSIOC2WqAZtPFXwVsmkOqAHAYC3SoZIz5pLdZg7XVIOloB1p4vIGS1btgwpKSmYM2cO9Hq9JVgqFAo8+OCDdm6dYzPXR3QG5vqIzs5oNGL16tUYOnQoulRz40QQBJzZnY7QDt0swRIA1G7u6D58PPKyLuPGhTMNem2Vm84qMCqUKoQ+2A23rmbU+RwKlRqxj461ekwmk6FL2mM4/f0mlBf/Wu5s2bJlSEpKQuvWre89DZEkMVwS1UAmCBgc7iHZ4CUCGBLuAdl9amix00UkDUOHDkV0dHSVmnidOnWCRqOp4VkkiiKO5dZvh9j0T+ZiZrcAFOflNlm77n6d+hABHM0tg7OXKM/JyUFBQQE6dOgAYw3VOvKvZSIgvG2VxwNbt7vz91ca9NpegSFVPmdaTy+UFtS9BrRnYDAUyqozaboOGY3KslKc2r4eAJBz6RwOHzqE8ePHN6itRI6I4ZLoPsLclYgLkN7OsQKA+AANQt1rHrVsSKfLnmrriLlKp4tck5eXFzZt2gRvb2/LVD+5XI6HHnrIzi1zbI5WH7ExuFp9xAbMbLVWww1Wo6H6mS4yefVTjuvzf4tSXf0NnxaR0WjZvjOOfPdfAMCR71ZCpVJh1KhRdT43kaNjuCSqRe8QHTwlND1WAOCpkiE55P4bfLDTRSQt4eHh2LBhA5RK000jg8GAhISEWp7l2py1jqCzvi+zgIAAeHp64uTJk1DUEA69g0ORk3GuyuM5l87e+fswAIDW0xsAUFpoPfLY0JFNABBs6BF0HTIKFw78gIKcbBzbuAqDBg2Gj49Pg89H5GgYLolqoZQJGCKh6bHm6bBK2f3/83PWzomzvi8iAIiLi8OKFSssPycmJtqxNY5P6vURq+MK9RFlMhmGDRuGtWvX4sihg1DccxFFUUR0zxRknjyMjGMHLI9XlBZj/6qv4BPSCoGRptIefqERAICLh/dYjjMaDNi/6qsGt0+pdQNQNbDWRefU4YAgYN1bf8OtzEsYN+7xBreDyBFxt1iiOghzVyIlVIf0TMevLZcSqkPYfabDmpk7Xc40zmfudMVAbe+mEDWZRx99FNOmTcM333yD8PBwy+OiKMIgAnpRhNFomk6oEATIBVRZQ+YqrpXoG/wdV5x/C/97cwZ++XEbZAolug4agdTpsyxTHmd2C0DCqKfQqlM8ti18C/nXMhEYGY0hL/0TrWOTrM516cherHv7ZVw/dxqegcFInjCtwe/p7vqIzuyNN97A5s2b0adPH/QaORFuoW1RcPM6TqavwTOfrUPvJ6fj2KZV+Py5MUgaOxlaT28cXrcCeVcz8Pi8JZbp4y3aPICwjnHYNP91lN7Oh9bLG8c3rYbR0PCA7hcaAY2HF/b/3xdQ69yh0uoQ1qEbfFuG1/pcdx9/tEvshxNb1sDN0wtDhgxpcDuIHBHDJVEdxQVoUW4Q8cO1Ens3pUa9gt0QV0vpEbPaOl3pn8zF1gXz8NLqfdi++B38tH0DRIjo0HcwHvnLHKju3LkFgCPrV2LX0k9w4+IvUKo1iErog7TnX4F3UEurc14+cQjpn8zB5RMHYdTrERrTBQOm/Q0RXXpYHdfQjpirdLqaAoOJtHzwwQd4Zd67+CmvHNklelwr0SO7VA99NR9qhQwI0ioQ7KZA0J0/vmq5019XURRtGuH7+s9PwyckDAOn/R2XTxzCj18vRGnBbYz6578tx1w8vAcnNv8PiWMnQ6FUYe/KJVjy3Bg8++UmBLVtDwDIPvsTPps6CjpvP/R/5k8wGvRI/3QO3H0DG9y27FLTjsHOfA1btmyJffv24eWXX8aadStRVFgIz8BgtEvqB6VGC62HF36/5Dts+OBV/Lh8EfQV5QiKisGE9/6DB3oNsDrXmNc/xrev/xE7P/8AGg9PxD36ONrEP4TFvx/RoLbJlUqMfPVDbJr/Gla/8ScY9XqMeOWDOoVLAOg2ZBR+/mEz+g4dDrWaN0PJuQgid78gqjNRFPHj9VKHDJjJwW5IbKGtU2dDFEW8fTy32o6omTlchjzQET4hrdC2R29k/XwcB779D5InPoe0P8wCAGxf9A62fPwmOj78KFrHJqE4Lxd7li+Cyk2H577eBq2HFwDg/P4fsOS5MWjZvjM6pAyFIAg4tGY5ci6dxTOL1yKsQzcApo7YRxNTofP2Q4+RT8Bo0GPPisVw9w1E9tlT+NfhnPu+N4UMeKmTn1N3umwliiJulRuQXaJnMJGYvHIDjtwsw7HcMsua6brOQLj7OLVcQGc/Dbr6a5y2ZqLeKOKtY/Xf8dX83de+dyomvPvr1Mn//WsG9q5cgunLdyC43YOWDcam/ScdLWM6AzDtYPr28EREJ/XHuLc/BwB89dJE/PLjNry0ag+8g0MBADcu/IL3RyfDaDDU+p1Wkz919oO8luUPzuLUrTKszSiq/UCJ+GnHBnz14gR8uS4d4wf3t3dziBoVRy6J6kEQBPQMcoNaLiA9sxgCYNe1mObXTwnV1XnEEoBphKqOc8VCojvisdnvW34uyc/Dwf8tRdofZiEv6wrSP52Lh5+dib6TXrAc82C/wZj/237Y+81n6DvpBYiiiG/f+CMi43riyQ9XWIJJj8cm4t2RvbD5o39h0kcrAQBbPpkDURTxzOK1lo5Yh35D8f7o5Dq1V280jWDKXaPPVS8NCSZ6I5BZrEdWsd6lgokjMYoizhdU4FBOGS4VVlb53qnrtM+7jys3iDhwoxT7b5QiwkOJ2AAN2niq7lu6SGr0Nt47Txj1lNXPiWMmY+/KJTizOx3B7Uy1RVt1ircES8C0yUxM71Sc/n6zZTfSs3u2I6ZPmuX7DAACI9shKrEvzuxKb3D79KIIuWS2mrNNkJtzdVf3r/oKvqERGNSvt72bQtTonOvTStRM4gK0aKFVYF1GIQoqjHYJmOZdYYeEe9RpjeXd6tPp6j7iCaufI7om4NT29SgrKsSpbeshGo3o+PCjVjXhPPwC4R8WiQsHd6PvpBdw7cwJ5F6+gH5Pv4iS/FtW52vbvReOrF8Jo9EIiGKjdMRcqdNVGwYTabtSVIn1GYXIrzBa/kU31veN+TwZhZW4VFgJb5UMuy5ytwAAGl5JREFUgxvwfeKoaqqPWFf+rSKtfvYLjYAgkyEv69ddRv1aVS187x/eBpVlJSjOuwkAqCwrrXIu03FtbQqXBiMAF7m346uWQy0XJL/D+bFN3yL7l1M4s2sLhs14A74aF7mA5FIYLokaKMxdiafb+2BnVjEO5pQ12yim+XXiAjRIDtHVuitsderT6bp33aTW0zTNtbQgHzevXDBNsR3Wo7qnQqYwdVJvXr4AAFg5q+a1k+VFBdBXlDdKR2zK736Ph3v3wsCBAxEQUL8i5c6EwUS6Ko2i1XcL0HTfL+bz3q4wYunZ24gL0KB3A79bHInN9RHv5WA3T+TOtg3ufQiCabbEgRulktm5vTrLZ06Byk2HuGGPY+qzz3J5ATklhksiGyhlAlJC3RHtrbbqxDfFf37m83o1Qie+Pp0umaymO6siRKMRgiDgifnLqy08rdKaam2al3anPf8KQqI7VHs2lVYHfUV53Rt2H6dPncKXixZAEATExsYiNTUVaWlp6N69OxQK5//aYzCRtitFlZZZEUDzTb03v86hnDKcvV3RoFkRjqSm+oh1dfPyBasNWnKvXIRoNMInJOzXxy5frPq8jPNQatyg8/EHACg1WssNNuvjqtZorA9b35/UdPXXYP+NUns3wyZ3r6+NDXK3Y0uImo7z97KImkGYuxJTYnxwoaASh3JKcbGa6YcNZT6PafqhFpGeSpunHzZWp8QvNAKiKMKnZTgCwtvUeJzvnTpjGp0H2vaoeY2Jzse/UTpie3b9gJwb17F582Zs2LABH330EV577TX4+Pjg4YcfRmpqKlJTUxEcHFznc0oFg4m0Hcwptft6bhFAwZ2bBfVdz+1I5IJpQ6q6ri+/195vPkO7xL6Wn/csXwgAiO756wYsl48fwNXTx9Cy/Z0NfbKv4qedG9EuqZ/lhltUYl/8tGMD8q9lWm3oc3bP9oY1DKb35Wr3b3zUckR4KJFRWCnp0UsBpv/PuV6dnBXDJVEjkQkC2nqp0NZLhbxyA47eLMPRuzdOEUwbzdR+nl+PU8sFdPHToEsjb5xia6fL7MF+g7Hpw9ewdcE8jH7tY6spPqIoouR2HnTevmjZvjN8QyPw/Vf/Rue04VC7Wd+xLcq7CXcff8jkcps7YuZOV1BQECZMmIAJEybAYDDgwIED2LhxIzZs2IBJkyZBFEV07tzZMqqZlJQEpVLaYYjBRLru3Yna3p1n8+unZxaj3CAiqY47UTsSQRAQpFUgs7hh5Ujyrl7Gl8+PQ1RSP1w+fhBHv1uJzmmPIbjdr7MvWrRtjyVTR1uVIgGAlGdmWI5JecZUK/PTSUORMOpJGPV6/LhiEQIjH0D22VMNaluQViG569EYYgM0uFQo7XJTIoBYfi+SE2O4JGoCPmo5+rbUoU+IG/LKjaaSD6V6ZBVX1lryIUSnRJDWVPLBRy1rkg6ErZ0uM7+w1nj42ZnYNP815GddRkyfQVDr3HHr6mWc2r4e3YdPQPKEqZDJZHhs1ntY8twYvDeiF2IfGQvPwGAU3LiGCwd3Qa3zwMT3lwKwvSNWXadLLpcjISEBCQkJeOWVV3Dz5k1s2bIFGzZswJIlSzBnzhx4eHigf//+SEtLQ2pqKlq1amXT76Y5MZhIn6OWOAJgaVfPILdajnQ8wW4Kq52O62Psmwux5ZM3sWn+PyGTK5A4ehLSnn/F6pjW3RLRqlM8ti6Yh9vZVxEY2Q4j/zHfspssAAS3exBPfbgC69+ZhS0fz4FXixCkPPNnFN683qBwKROAEJ20b4Q1VBtPFbxVMty200Z6thJgWtoS6ema149cA+tcEjUzURRhvFOs3mA0bcqgEATImrlY/dbMIhzKKaux02Wu9fb3rT9D5+NnefzQmq/x31emY8a6Q/AJMQWwk1vXYffST5B15gQAwKtFS7Tp3gtJY6dYTZfNOnMC2xa+jYuH96CipBjufoEI69ANPR6biDbde1mOu3joR6x/Zxayz52GV4sQJE+YhsKb17F1wbz71oSTCaadfPu11NX592A0GnHkyBFs3LgRGzduxJ49e2AwGBATE2OZPpucnOzQha53Z5c4bDABgF7BbpIMJs3l4I1SpF8ttnczaiXFkeimrI84s1sAEkY9hUf/MqdJzn8/j4R7IMbXcb+TmtKVokosPXvb3s1osHFRXgjlkgFyYgyXRC7K2YpSm9na6crPz0d6erplCm1WVhbc3NzQt29fy6hmmzY1ry9tbgwm0ia1jvLjUV6SWkubW6bHwtP5TXJue4bLKe19XLqMRfqdm6NS6sAKMO3y3j+UG/mQc3OhjayJ6G7OVpTazNb35e3tjREjRmDRokXIzMzE8ePHMXv2bJSUlOCFF15A27ZtERUVhenTp+O7775DSYn9RgyvFFVKIlgCpimyV4qkvVaqsVUaRazLKJRMRVYBwLqMQlTWZfG4gzDXR3QmarkAH7Vrd996h+jgqZJJ6rPjqZIhOaTus2qIpMq1v52IXBg7XbUTBAEdO3bEjBkzsG3bNuTm5mL16tVISUnBmjVrMHjwYPj6+mLgwIF499138fPPP6O5JoMwmEjfzqxiFEho7Zh5s6bvs6RxQwP4tT6iVD4ntREAdPHTuPwaZqVMwJBwD0l9doaEe7BEE7kEToslcmHbrhZLvii1mQCge6AWfeux3tIWoijizJkzlumzO3fuRHl5OcLDwy3TZ/v16wcPD48meX1OC5M2qU2HvZeUpsfmlRvw6U959m5Go3kmxodlLO4w75Dt6LgsgFwJwyWRC2Onq/GUlJRgx44dlo2Bzp49C6VSiYceesiyMVDHjh0bZcSBwUTajKKIBT/lSX7HyykxPjbX3G0uy8/ddpr6iKPbetm7KQ6FG5oRORaGSyIXx05X0zh//rxlVHP79u0oKSlBSEiIpa5mSkoKvL29631eBhPpO3u7HP93odDezbDZiEhPtPVS2bsZdcLfufO6txSTI0kOdkMiSzGRi+GaSyIXFxugkWRIuZsjFqVu06YNpk6dinXr1iE3NxdbtmzBmDFjsHfvXowcORL+/v546KGH8Prrr+PQoUMwGutWie98QQXyJRosAdO1yq8w4kKB627ucyinTPJrAAUAh3JK7d2MOjPXR5Tq710A4M36iNUSBAE9g9yQEmpaEmHva2x+/ZRQHZKC3BgsyeVw5JLIxXEkrPldvnzZMn02PT0dhYWFCAwMxMCBA5GamooBAwbA39+/2udypFnaOBXdfqQ+nZz1EWt3pagS6zIK7bZRlnlX2CHhHi499Z9cG8MlEbHTZUcVFRXYs2ePZQrtsWPHIAgC4uPjLRsDxcfHQy6XM5g4AW6iZV/cCMv5VRpF7MwqxsE7MwSa41qbXyc+QIPkEB13hSWXxnBJRADY6XIUWVlZ2LRpEzZu3IjNmzcjPz8fvr6+GDBgAFKm/g03dUGSukY1kWIwsZUoinjvxC2UG5rnCl44uBsLpwzD5AWrERnXs0leQy0X8HxHX8lM/as0ilh0Ok8yJWDMI2FPt/dhYKmnK0WVWJ9RiPwKY5OFTPN5vVUyDOZoJREArrkkojtYlNoxhISE4Mknn8SKFSuQk5OD3bt3Y+rUqTh/4QKyBPcaO0hXTh3Bx08MwqykcMzsFoCsMyeatd31JQI4mlvWbHVBHcGtckOzBcvmUm4QkVdet/XCjoD1EV1HmLsSU2J8MCLSExEeptDXWL9F83kiPJQYEemJKTE+DJZEdyjs3QAicgzmTpdUpse6QqdLoVAgKSkJSUlJ+MNfZ2Hh6fxqjzNUVmLZjElQqtUY8tI/odRo4RMc1sytrT9zMPHVuMbU2OwSvb2b0CSyS/SSuoZh7kqkhOokUx+RoaXhZIKAtl4qtPVSIa/cgKM3y3A0t8xyk0cmAMY63Gm4+zi1XEAXPw26+Gtcblo/UV0wXBKRBTtdjut+wSQ38xLyr13B8JffQfxvxjdjq2wntWBii+wSPWQApDPOVzuZAGSX6hEDtb2bUi9xAVqUG0SHLF9h1ivYDXEOtgu2lPmo5ejbUoc+IW7IKzciu0SP7FI9soorkV2qh76aD6ZCBgRpFQjRKRGkVSDITQEftUwy08CJ7IHhkoissNPlmO4XTIpv5QAANB6Ns/tqRWkxVNqmn24s1WDSUNdK9FbXr7y4CJs/+hd+2rEBhTevQ+PuieB2DyJ1+sto2b4z5gzuhsi4JIz8x4dW51kw+VEAwJSF/7M8dvt6FtbM+QvO7t0JldYNXdIeQ7ukflXacPHwHvy4fCGunDyMotwcuPv6o0P/oRg47W9Qan79TK2cPQ0n09fixW/3Ys2bf8a5fTuhVGvRbehopE6fBZncdEPAKAJZxdIsK5PUwvR+HfG7zlwfkRqfIAjw1cjhq5FbvntEUYRRBPSiCIMRkMsAhSBAJoBBkqieGC6JqAp2uhzPvcHEbOXsaTi8dgUAYNmMSQCA1rFJGPqnN7Br6ce4eHgvCnOyofHwRHTPFKQ9/wp03r6W56d/MhdbF8zD8//dhe2L3sGZ3VvhExKG6V9vh9FoxLYFb2H/qi9RVlSAsA7d8Mhf5uDz58ZWCT23Mi9hwwev4vz+H6CvKEdQ2xj0m/wiHug1oMb3JOVgUl+iKCK71Hr0+ds3/oiT6WuROHoSAiPboSQ/DxlH9+HGxbNo2b5znc9dWVaKRb8bjvzsq0gaMxmeAS1wZP1KnD+wq8qxJ9LXoLKsFAkjnoCbly+unDqMPSsW4faNLDw+9zOrY41GI5ZMHYWwDt0w6IV/4Ny+nfjhq4/gGxqBhJFPWo7LLtVDFEXJdcLN9RHVcgHpmcXNtrNoje258/opoTqXu3lmb4IgQC4AcgiAa0ykIGoyDJdEVAU7XY6lumBi1n34RHgGBGPHZ+8haexkhMZ0hbtfAM7t24lbmRmIfWQsPPwCcf38zzjw7Ve4fuEMnv1iY5UgsGzGJPi3isTAaX+zbLKzaf5r+P6L+WifPBBRiX1x7ZdTWDJ1FPTl5VbPLcy9gY+fHITKslIkjZkMNy9fHF63HF++MB6Pz/0MD/YbXON7k2owqS+DiCrT7s78sAXxvxmHwS++etejz9X73PtXfYmbGefx2zmL0PFh06hm/G/G44MxfaocmzZ9ltUIZffHJsAvrDU2f/g68q9lwjs41PJ3+vIydBwwDP0nvwQA6DHiCcz/bT8cXL3UKlzqjaYbBXKJXsK4AC1aaBWsj0hE1AgYLomoRux0OYbqgolZeOd4GCorsOOz9xDRNQEdUx4BAER06YFe45+1OrZVpzgsnzkFl47sRetuiVZ/F9zuQYx541PLz4W5N7Br6ceI6TsI49/+wvJ4+qfzsPXTuVbP3bnkAxTl5uCZxWsR0TUBABA/fBzeH90H69+ZhfZ90iCTVb85udSDSV3pq9kVV+PhhSsnD6MgJxueAUENPveZXenw8G+BDneuPQCotG7oPnwCNrz/D6tj7w6WFaXFqCwrQ3ineIiiiKwzJ6zCJQD0GDHR6ueIrgk4sn5llTboRdE06iNRYe5KPN3ex271EeNYH5GInARLkRDRfZk7XbEBGgCNt5V7bcyvExegwdPtXXub9+qCSW3uDhGV5WUozstFq46xAICsn49XOb7HY9Yh4vz+H2DU661GqAAgaczTVZ57Znc6Qjt0swRLAFC7uaP78PHIy7qMGxfO3LetDXl/UmOs5uZA2h9m4fr5n/FmWmf8e/wApH8yF7cyL9X73PnZmfALa11l9Nc/om3VY69lYuXsaXi1TxRm94zAa/0fsKzhLCsqsDpWodbA3cff6jGthzdKC6ruWmxwgl2KlDIBKaHueDzKC14qU/eoqb7vzOf1UsnweJQX+oe6M1gSkVPgyCUR1crc6Yr2VjdbUWovFqW2qC6Y1Kbkdh62LpiH45tWo+jOhj9mZUWFVY73aRlu9XP+tSsAAL+w1laPu3n5QOvpfc+xmejYIbbKOQNbt7OcK6ht+xrbajDC6dc5VTdw22nAMER0TcCp7d/h3N4d+P7Lf2PnF/Mx7q0liO6ZUuNUYdFggCCv/y/MaDBg8bMjUHo7H72feA4BEVFQad1w+8Y1/Hf2cxDv+YdW02hzdeROdKvaXB/xQkElDuWU4mJhZaN935nPE+GhRGyAFpGeSsicfEo4EbkWhksiqjN2uuyjHn18i2V/fhqXjx9Ar/FTERLdASo3HUSjEUumja4SIgBAqdY0QksbxpmCSU0UNfxb9gwIQuKop5A46ikU3crB/N/2x/bF7yK6Zwq0nl4oKyyo8py87Ez43nUzwDsoFNfP/1xl7erNS+esnpd97ifczDiPka9+iG5DRlseP7t3h43vrub3J1Wsj0hE1DAMl0RUL+x0Nb/6dtxLC/Jxfv/3SPndn9F/yh8tj9+8fL7O5/AODgMA5F65aBVkivNvVZkW6R0cipwM6yADADmXzlqdqybOFkyqIxdMNfPMa2eNBgMqSoqh8fC0HOPuGwDPgCDoKyoAAL6hEbh0ZC/0lRVQKFUAgNPfb8bt7KtW1yT6oRSc3bsDJ9PXWDb0qSgtwf5VX1q1QSYzfbbEu6Yhi6KI3csW2PTeFDLT59lZsT4iEVHdMVwSUYOx09U87g0mtRGqCREAsHvpp9UdXq023XtBplBg38rPEZXQx/L4nhWLqxwb3TMFu5d9ioxjBxDeOR6AabOY/au+gk9IKwRGRtf4Os4eTMwEQUCQVoHMYtOuv+UlRXgztRM6pAxFcJRpZPncvp3IPHUEg+7sHhs/bBxOpq/Fkqmj0WnAo8i9cglHN6yEb2iE1bnjfzMee1YsxjezpuHq6WPw8DeVIlFq3KyOC4iIgm9oBDa8+woKblyDWueBU9vWVbuGsj6CtAqX+PyyPiIRUe0YLonIZux0Na17g0ltNO4eaN0tEd9/8SGM+kp4Bgbj7N4dyLuaUefX9PALRM+xU/DDVx/hy+fHISqpH7J/OYUzP26FztsPwl1bnfR+cjqObVqFz58bg6Sxk6H19MbhdSuQdzUDj89bct+1e64STAAg2E2BrGJTvVKlRouEkU/h7N7tOLVtPUSjEX5hrfHozLmWTZTaJfXDoBdfxa7/fIx1b/0dLWM6Y+J7y7D+3VlW51Vp3fD0J6uwZu5M/Lh8MVQaLTqnPYbonv2xZNqv01/lSiUmvrcUa+f9FTuWvA+lSoOYvoOQOHpStWVL6kImACE6110XzfqIRETWBPHeW9tERORwtmYW4VBOGaobvLxwcDcWThmG385dbClFcvvGNaydMxPnD+4CRBFRiX0w5I+v418DO6L/lD8h5XczAADpn8zF1gXz8PetP0Pn42d1XqPBgK0L5uHAt1+hrKgQrTrG4ZG/zMGnk4agY8ojGPbXeZZjb2VewoYPXsW5fd9DX1GOoKgY9J/8Eh7oNaDG9yQTTOVu+rXU2f4LkoBTt8qwNqPI3s1odI+EeyDGV23vZhARkQNguCQikgBHCSalhbfxau+2GPDsTPR9+kWbz+dKwSS3TI+Fp22bguqIprT3ga+Gw3ZERMQ6l0REkhDk1vyrGCrLSqs8Zl632TquZ6O8hj3el734quVQy51rCrBaLsBHza4EERGZuM7/6kREEmYOJuZdeZvD8c2rcWjtckT3TIHKTYeMo/twbOMqRCX0QUSXHjaf39WCiSAI6OynwYEbpU1SI7a5CQC6+GlcZs0sERHVjuGSiEgC7BFMgqJiIJMr8P2XH6K8qBDufgFIGjsFA6bOtPncrhpMuvprsP9G1RFhKRIBdPG3X31UIiJyPFxzSUQkEXnlBnz6U569m9Fononxccm6psvP3UZGYaWkRy8FABEeSoxu62XvphARkQNxnflIREQS56OWI8JDCamP9QkAWnsoXTJYAkBsgEbSwRIwjVrGBmjt3QwiInIwDJdERBLCYCJ9bTxV8FbJJHuTQADgrZIh0tN161sSEVH1GC6JiCSEwUT6ZIKAweEekr1JIAIYEu4BmYutlyUiotoxXBIRSQiDiXMIc1ciLkAjuZsEAoD4AA1C3V335gAREdWM4ZKISGIYTJxD7xAdPCU0Ci0A8FTJkByis3dTiIjIQTFcEhFJEIOJ9CllAoZIaBTaPOqslEnlXx0RETU3hksiIgliMHEOYe5KpIRKI3CnhOoQxlFnIiK6D4ZLIiKJYjBxDnEBWvQKdrN3M+6rV7Ab4lx4h18iIqobhksiIgljMHEOSS0c9zomB7shqQWvHxER1U4QRVEqs6qIiKgaoijix+ul+OFaib2bUkVysBsSW2ghuPjusHV1MKcU6ZnFEAC7Tnk2v35KqI43BoiIqM4YLomInASDiXO4UlSJdRmFKKgw2uU6mjdfGhLuwanMRERULwyXREROhMHEOVQaRezMKsbBnLJmu1lgfp34AA2SQ3TcfImIiOqN4ZKIyMkwmDiPK0WVWJ9RiPwKY5NdS/N5vVUyDOZNASIisgHDJRGRk2IwcQ5GUcSFgkocyinFxcLKRruW5vO09lAiNkCLSE8lZFwbS0RENmC4JCJyYgwmziWv3ICjN8twNLcM5QbTlZQJgLEOF/Xu49RyAV38NOjir4GPWt6ELSYiIlfCcElE5CIYTJyHKIrIKzciu0SP7FI9soorkV2qh95Y9ViFDAjSKhCiUyJIq0CQmwI+ahl38CUiokbHcElE5GIYTJyTKIowioBeFGEwAnIZoBAEyATwehERUbNguCQiIgYTIiIishnDJREREREREdlMZu8GEBERERERkfQxXBIREREREZHNGC6JiIiIiIjIZgyXREREREREZDOGSyIiIiIiIrIZwyURERERERHZjOGSiIiIiIiIbMZwSURERERERDZjuCQiIiIiIiKbMVwSERERERGRzRguiYiIiIiIyGYMl0RERERERGQzhksiIiIiIiKyGcMlERERERER2YzhkoiIiIiIiGzGcElEREREREQ2Y7gkIiIiIiIimzFcEhERERERkc0YLomIiIiIiMhmDJdERERERERkM4ZLIiIiIiIishnDJREREREREdmM4ZKIiIiIiIhs9v8CYH9lpzbFjAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1433,9 +1469,9 @@ "source": [ "import os\n", "\n", - "plt.figure(figsize=(13, 6))\n", + "plt.figure(figsize=(9, 5))\n", "\n", - "pos = nx.spring_layout(G, k=1.2) # k regulates the distance between nodes\n", + "pos = nx.fruchterman_reingold_layout(G, k=1.6) # k regulates the distance between nodes\n", "\n", "nx.draw(G, with_labels=True, node_color='skyblue', node_size=1500, edge_cmap=plt.cm.Blues, pos = pos, font_size=12)\n", "\n", @@ -1459,7 +1495,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 50, "metadata": {}, "outputs": [], "source": [ @@ -1468,7 +1504,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 51, "metadata": {}, "outputs": [], "source": [ @@ -1477,7 +1513,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 52, "metadata": {}, "outputs": [ { @@ -1494,7 +1530,7 @@ " ('year', 0.1048399240935248)]" ] }, - "execution_count": 34, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -1506,7 +1542,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 53, "metadata": {}, "outputs": [], "source": [ @@ -1517,7 +1553,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 54, "metadata": {}, "outputs": [ { @@ -1650,7 +1686,7 @@ "test/14833 [(indonesia, 0.24104282355029413), (harahap, 0... " ] }, - "execution_count": 36, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } @@ -1661,7 +1697,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 55, "metadata": {}, "outputs": [], "source": [ @@ -1702,7 +1738,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 56, "metadata": {}, "outputs": [], "source": [ @@ -1711,7 +1747,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 57, "metadata": {}, "outputs": [], "source": [ @@ -1720,7 +1756,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 58, "metadata": {}, "outputs": [ { @@ -1890,7 +1926,7 @@ "test/14833 [(harahap, 2)] " ] }, - "execution_count": 40, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } @@ -1908,7 +1944,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 59, "metadata": {}, "outputs": [], "source": [ @@ -1922,7 +1958,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 60, "metadata": {}, "outputs": [], "source": [ @@ -1937,7 +1973,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 61, "metadata": {}, "outputs": [], "source": [ @@ -1947,7 +1983,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 62, "metadata": {}, "outputs": [], "source": [ @@ -1956,7 +1992,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 63, "metadata": {}, "outputs": [ { @@ -1977,7 +2013,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 64, "metadata": {}, "outputs": [], "source": [ @@ -1986,7 +2022,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 65, "metadata": {}, "outputs": [], "source": [ @@ -2002,7 +2038,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 66, "metadata": {}, "outputs": [], "source": [ @@ -2011,7 +2047,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 67, "metadata": {}, "outputs": [], "source": [ @@ -2023,7 +2059,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 68, "metadata": {}, "outputs": [ { @@ -2032,7 +2068,7 @@ "2383" ] }, - "execution_count": 50, + "execution_count": 68, "metadata": {}, "output_type": "execute_result" } @@ -2043,31 +2079,35 @@ }, { "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [], - "source": [ - "degrees = pd.Series({k: v for k, v in nx.degree(entityGraph)})" - ] - }, - { - "cell_type": "code", - "execution_count": 52, + "execution_count": 69, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Name: \n", + "Type: Graph\n", + "Number of nodes: 2383\n", + "Number of edges: 120596\n", + "Average degree: 101.2136\n" + ] + }, { "name": "stderr", "output_type": "stream", "text": [ + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", + " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n", "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGhCAYAAABLWk8IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df3RU5Z3H8c8kGSYESWLCISGSQI4HBUSJCwRT2QoSiIEiP9J1WVmLyIHdLaCQFiRbwYDYAIcqglFKa7HuIbuU3YWuQIEUUFb5HcQtFRG2KCw04bQxGZIchiGZ/YMybZgAmXAn89zk/TonR+9zn3nmO/nOwIc79844fD6fTwAAAAaJCHcBAAAANyKgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYJyrcBbREQ0ODLly4oM6dO8vhcIS7HAAA0Aw+n0+XLl1SSkqKIiJufYzElgHlwoULSk1NDXcZAACgBc6dO6fu3bvfco4tA0rnzp0lXXuAsbGxlq7t9Xq1c+dOjRw5Uk6n09K1EXr0z/7oof3RQ/sLVQ/dbrdSU1P9f4/fii0DyvW3dWJjY0MSUGJiYhQbG8sLy4bon/3RQ/ujh/YX6h425/QMTpIFAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGCfogLJ3716NGTNGKSkpcjgc2rx5c8CcEydO6Mknn1RcXJw6deqkQYMG6ezZs/79ly9f1owZM5SYmKi77rpLeXl5qqiouLNHArQTPedvDfgBgLYm6IBSW1ur/v37q7i4uMn9//u//6shQ4aod+/e+uCDD/Q///M/WrBggaKjo/1z5syZo/fff18bN27Uhx9+qAsXLmjChAktfxQAAKBNiQr2Brm5ucrNzb3p/h/84AcaNWqUli9f7h+79957/f9fXV2td955RyUlJXr88cclSevWrVOfPn104MABPfLII8GWBAAA2pigA8qtNDQ0aOvWrZo3b55ycnL0ySefKD09XQUFBRo3bpwkqaysTF6vV9nZ2f7b9e7dW2lpadq/f3+TAcXj8cjj8fi33W63JMnr9crr9Vr5EPzrWb0uWkd76J8r0hcw1pYeb3voYVtHD+0vVD0MZj1LA8rFixdVU1OjpUuXasmSJVq2bJm2b9+uCRMmaM+ePXrsscdUXl6uDh06KD4+vtFtk5KSVF5e3uS6RUVFWrRoUcD4zp07FRMTY+VD8CstLQ3Jumgdbbl/yzMDx7Zt29b6hYRYW+5he0EP7c/qHtbV1TV7ruVHUCRp7NixmjNnjiQpIyND+/bt05o1a/TYY4+1aN2CggLl5+f7t91ut1JTUzVy5EjFxsbeeeF/wev1qrS0VCNGjJDT6bR0bYRee+hfv8IdAWPHC3PCUElotIcetnX00P5C1cPr74A0h6UBpUuXLoqKilLfvn0bjffp00cfffSRJCk5OVlXrlxRVVVVo6MoFRUVSk5ObnJdl8sll8sVMO50OkP25A/l2gi9ttw/T70jYKwtPta23MP2gh7an9U9DGYtSz8HpUOHDho0aJBOnjzZaPyLL75Qjx49JEkDBgyQ0+nUrl27/PtPnjyps2fPKisry8pyAACATQV9BKWmpkanT5/2b585c0bHjh1TQkKC0tLSNHfuXP3t3/6tvvnNb2rYsGHavn273n//fX3wwQeSpLi4OE2dOlX5+flKSEhQbGysZs2apaysLK7gAQAAkloQUI4cOaJhw4b5t6+fGzJ58mS9++67Gj9+vNasWaOioiI9//zzuv/++/Uf//EfGjJkiP82r7/+uiIiIpSXlyePx6OcnBy99dZbFjwcAADQFgQdUIYOHSqfL/Ayx7/03HPP6bnnnrvp/ujoaBUXF9/0w94AAED7xnfxAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjBMV7gIAWK/n/K0BY18uHR2GSgCgZTiCAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYhw9qA9qApj6YDQDsLOgjKHv37tWYMWOUkpIih8OhzZs333TuP/7jP8rhcGjlypWNxisrKzVp0iTFxsYqPj5eU6dOVU1NTfDVAwCANinogFJbW6v+/furuLj4lvM2bdqkAwcOKCUlJWDfpEmT9Nvf/lalpaXasmWL9u7dq+nTpwdbCgAAaKOCfosnNzdXubm5t5xz/vx5zZo1Szt27NDo0Y2//+PEiRPavn27Dh8+rIEDB0qSVq9erVGjRmnFihVNBhqPxyOPx+PfdrvdkiSv1yuv1xvsQ7il6+tZvS5aR3vonyvS16Lb2eV30h562NbRQ/sLVQ+DWc/yc1AaGhr0zDPPaO7cuXrggQcC9u/fv1/x8fH+cCJJ2dnZioiI0MGDBzV+/PiA2xQVFWnRokUB4zt37lRMTIy1D+BPSktLQ7IuWkdb7t/yzJbdbtu2bdYWEmJtuYftBT20P6t7WFdX1+y5lgeUZcuWKSoqSs8//3yT+8vLy9W1a9fGRURFKSEhQeXl5U3epqCgQPn5+f5tt9ut1NRUjRw5UrGxsdYVr2vprrS0VCNGjJDT6bR0bYRee+hfv8IdLbrd8cIciysJjfbQw7aOHtpfqHp4/R2Q5rA0oJSVlemNN97Q0aNH5XA4LFvX5XLJ5XIFjDudzpA9+UO5NkKvLffPU9+y15bdfh9tuYftBT20P6t7GMxaln4Oyn//93/r4sWLSktLU1RUlKKiovTVV1/pe9/7nnr27ClJSk5O1sWLFxvd7urVq6qsrFRycrKV5QAAAJuy9AjKM888o+zs7EZjOTk5euaZZzRlyhRJUlZWlqqqqlRWVqYBAwZIknbv3q2GhgYNHjzYynIAAIBNBR1QampqdPr0af/2mTNndOzYMSUkJCgtLU2JiYmN5judTiUnJ+v++++XJPXp00dPPPGEpk2bpjVr1sjr9WrmzJmaOHFik1fwAACA9ifot3iOHDmihx9+WA8//LAkKT8/Xw8//LAWLlzY7DXWr1+v3r17a/jw4Ro1apSGDBmitWvXBlsKAABoo4I+gjJ06FD5fM3/HIYvv/wyYCwhIUElJSXB3jUAAGgn+LJAAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4ln4XDwDr9Zy/NdwlAECr4wgKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOEEHlL1792rMmDFKSUmRw+HQ5s2b/fu8Xq9efPFFPfjgg+rUqZNSUlL0ne98RxcuXGi0RmVlpSZNmqTY2FjFx8dr6tSpqqmpufNHAyAoPedvbfQDAKYIOqDU1taqf//+Ki4uDthXV1eno0ePasGCBTp69Kj+8z//UydPntSTTz7ZaN6kSZP029/+VqWlpdqyZYv27t2r6dOnt/xRAACANiUq2Bvk5uYqNze3yX1xcXEqLS1tNPbmm28qMzNTZ8+eVVpamk6cOKHt27fr8OHDGjhwoCRp9erVGjVqlFasWKGUlJQWPAwAANCWBB1QglVdXS2Hw6H4+HhJ0v79+xUfH+8PJ5KUnZ2tiIgIHTx4UOPHjw9Yw+PxyOPx+Lfdbreka28peb1eS+u9vp7V66J1tMX+uSJ9lqzT1O/kxrVN+L21xR62N/TQ/kLVw2DWC2lAuXz5sl588UX93d/9nWJjYyVJ5eXl6tq1a+MioqKUkJCg8vLyJtcpKirSokWLAsZ37typmJgY6wuXAo4EwV7aUv+WZ1qzzrZt2267dlNzwqUt9bC9oof2Z3UP6+rqmj03ZAHF6/Xqqaeeks/n09tvv31HaxUUFCg/P9+/7Xa7lZqaqpEjR/qDj1W8Xq9KS0s1YsQIOZ1OS9dG6LXF/vUr3GHJOscLc267dlNzWltb7GF7Qw/tL1Q9vP4OSHOEJKBcDydfffWVdu/e3ShEJCcn6+LFi43mX716VZWVlUpOTm5yPZfLJZfLFTDudDpD9uQP5doIvbbUP0+9w5J1mvp93Lh2rwU7A+Z8uXS0JfcfrLbUw/aKHtqf1T0MZi3LPwflejg5deqUfv3rXysxMbHR/qysLFVVVamsrMw/tnv3bjU0NGjw4MFWlwMAAGwo6CMoNTU1On36tH/7zJkzOnbsmBISEtStWzd9+9vf1tGjR7VlyxbV19f7zytJSEhQhw4d1KdPHz3xxBOaNm2a1qxZI6/Xq5kzZ2rixIlcwQMAACS1IKAcOXJEw4YN829fPzdk8uTJKiws1H/9139JkjIyMhrdbs+ePRo6dKgkaf369Zo5c6aGDx+uiIgI5eXladWqVS19DAAAoI0JOqAMHTpUPt/NL3u81b7rEhISVFJSEuxdAwCAdoLv4gEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxosJdAIDW0XP+1nCXAADNxhEUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYJOqDs3btXY8aMUUpKihwOhzZv3txov8/n08KFC9WtWzd17NhR2dnZOnXqVKM5lZWVmjRpkmJjYxUfH6+pU6eqpqbmzh4JAABoM6KCvUFtba369++v5557ThMmTAjYv3z5cq1atUo///nPlZ6ergULFignJ0efffaZoqOjJUmTJk3S73//e5WWlsrr9WrKlCmaPn26SkpK7vwRATbWc/7WcJdwW03V+OXS0WGoBEBbFnRAyc3NVW5ubpP7fD6fVq5cqZdeekljx46VJL333ntKSkrS5s2bNXHiRJ04cULbt2/X4cOHNXDgQEnS6tWrNWrUKK1YsUIpKSkB63o8Hnk8Hv+22+2WJHm9Xnm93mAfwi1dX8/qddE67N4/V6Qv3CUEuPF32VSNVv6+7d5D0MO2IFQ9DGY9h8/na/GfiA6HQ5s2bdK4ceMkSb/73e9077336pNPPlFGRoZ/3mOPPaaMjAy98cYb+tnPfqbvfe97+vrrr/37r169qujoaG3cuFHjx48PuJ/CwkItWrQoYLykpEQxMTEtLR8AALSiuro6Pf3006qurlZsbOwt5wZ9BOVWysvLJUlJSUmNxpOSkvz7ysvL1bVr18ZFREUpISHBP+dGBQUFys/P92+73W6lpqZq5MiRt32AwfJ6vSotLdWIESPkdDotXRuhZ/f+9SvcEe4SAhwvzGm03VSNN865E3bvIehhWxCqHl5/B6Q5LA0ooeJyueRyuQLGnU5nyJ78oVwboWfX/nnqHeEuIcCNv8emagzF79quPcSf0UP7s7qHwaxl6WXGycnJkqSKiopG4xUVFf59ycnJunjxYqP9V69eVWVlpX8OAABo3ywNKOnp6UpOTtauXbv8Y263WwcPHlRWVpYkKSsrS1VVVSorK/PP2b17txoaGjR48GArywEAADYV9Fs8NTU1On36tH/7zJkzOnbsmBISEpSWlqbZs2dryZIl6tWrl/8y45SUFP+JtH369NETTzyhadOmac2aNfJ6vZo5c6YmTpzY5BU8AACg/Qk6oBw5ckTDhg3zb18/eXXy5Ml69913NW/ePNXW1mr69OmqqqrSkCFDtH37dv9noEjS+vXrNXPmTA0fPlwRERHKy8vTqlWrLHg4AACgLQg6oAwdOlS3ujLZ4XBo8eLFWrx48U3nJCQk8KFsAADgpvguHgAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMaJCncBAMzWc/7WcJcAoB3iCAoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDh8DgqAO3bjZ6V8uXR0mCoB0FZwBAUAABiHgAIAAIxjeUCpr6/XggULlJ6ero4dO+ree+/VK6+8Ip/P55/j8/m0cOFCdevWTR07dlR2drZOnTpldSkAwqTn/K0BPwAQDMsDyrJly/T222/rzTff1IkTJ7Rs2TItX75cq1ev9s9Zvny5Vq1apTVr1ujgwYPq1KmTcnJydPnyZavLAQAANmT5SbL79u3T2LFjNXr0tZPkevbsqX/913/VoUOHJF07erJy5Uq99NJLGjt2rCTpvffeU1JSkjZv3qyJEydaXRIAALAZywPKN77xDa1du1ZffPGF7rvvPn366af66KOP9Nprr0mSzpw5o/LycmVnZ/tvExcXp8GDB2v//v1NBhSPxyOPx+PfdrvdkiSv1yuv12tp/dfXs3pdtA67988V6bv9JJtqbk/s3kPQw7YgVD0MZj3LA8r8+fPldrvVu3dvRUZGqr6+Xq+++qomTZokSSovL5ckJSUlNbpdUlKSf9+NioqKtGjRooDxnTt3KiYmxuJHcE1paWlI1kXrsGv/lmeGu4LQ2bZtW1Dz7dpD/Bk9tD+re1hXV9fsuZYHlF/84hdav369SkpK9MADD+jYsWOaPXu2UlJSNHny5BatWVBQoPz8fP+22+1WamqqRo4cqdjYWKtKl3Qt3ZWWlmrEiBFyOp2Wro3Qs3v/+hXuCHcJIXO8MKdZ8+zeQ9DDtiBUPbz+DkhzWB5Q5s6dq/nz5/vfqnnwwQf11VdfqaioSJMnT1ZycrIkqaKiQt26dfPfrqKiQhkZGU2u6XK55HK5AsadTmfInvyhXBuhZ9f+eeod4S4hZILth117iD+jh/ZndQ+DWcvyq3jq6uoUEdF42cjISDU0NEiS0tPTlZycrF27dvn3u91uHTx4UFlZWVaXAwAAbMjyIyhjxozRq6++qrS0ND3wwAP65JNP9Nprr+m5556TJDkcDs2ePVtLlixRr169lJ6ergULFiglJUXjxo2zuhwAAGBDlgeU1atXa8GCBfrud7+rixcvKiUlRf/wD/+ghQsX+ufMmzdPtbW1mj59uqqqqjRkyBBt375d0dHRVpcDAABsyPKA0rlzZ61cuVIrV6686RyHw6HFixdr8eLFVt89AABoA/guHgAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAY/Scv1X9CndIkv+/ANonAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAONEhbsAAO1Tz/lbw10CAINxBAUAABiHgAIAAIxDQAEAAMYhoAAAAONwkiyAVsFJsQCCwREUAABgHI6gAGHEUQUAaBpHUAAAgHEIKAAAwDghCSjnz5/X3//93ysxMVEdO3bUgw8+qCNHjvj3+3w+LVy4UN26dVPHjh2VnZ2tU6dOhaIUAABgQ5YHlK+//lqPPvqonE6nfvWrX+mzzz7Tj370I919993+OcuXL9eqVau0Zs0aHTx4UJ06dVJOTo4uX75sdTkAAMCGLD9JdtmyZUpNTdW6dev8Y+np6f7/9/l8WrlypV566SWNHTtWkvTee+8pKSlJmzdv1sSJEwPW9Hg88ng8/m232y1J8nq98nq9ltZ/fT2r10XrsFv/XJG+cJdgHFeEz/9fu/QRjdntdYhAoephMOs5fD6fpX9C9u3bVzk5Ofq///s/ffjhh7rnnnv03e9+V9OmTZMk/e53v9O9996rTz75RBkZGf7bPfbYY8rIyNAbb7wRsGZhYaEWLVoUMF5SUqKYmBgrywcAACFSV1enp59+WtXV1YqNjb3lXMsDSnR0tCQpPz9ff/M3f6PDhw/rhRde0Jo1azR58mTt27dPjz76qC5cuKBu3br5b/fUU0/J4XBow4YNAWs2dQQlNTVVf/jDH277AIPl9XpVWlqqESNGyOl0Wro2Qs9u/etXuCPcJRjHFeHTKwMbtOBIhMoWPhHuctACdnsdIlCoeuh2u9WlS5dmBRTL3+JpaGjQwIED9cMf/lCS9PDDD+v48eP+gNISLpdLLpcrYNzpdIbsyR/KtRF6dumfp94R7hKM5Wlw2KKHuDm7vA5xc1b3MJi1LD9Jtlu3burbt2+jsT59+ujs2bOSpOTkZElSRUVFozkVFRX+fQAAoH2zPKA8+uijOnnyZKOxL774Qj169JB07YTZ5ORk7dq1y7/f7Xbr4MGDysrKsrocAABgQ5a/xTNnzhx94xvf0A9/+EM99dRTOnTokNauXau1a9dKkhwOh2bPnq0lS5aoV69eSk9P14IFC5SSkqJx48ZZXQ4AALAhywPKoEGDtGnTJhUUFGjx4sVKT0/XypUrNWnSJP+cefPmqba2VtOnT1dVVZWGDBmi7du3+0+wBQAA7VtIvizwW9/6lr71rW/ddL/D4dDixYu1ePHiUNw9gDaiqS9T/HLp6JDdDoA5+C4eAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4IfmgNgAIFT6EDWgfOIICAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOn4MCwPaa+mwUAPbGERQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDh8UBuAduHGD3P7cunoMFUCoDk4ggIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYJyQB5SlS5fK4XBo9uzZ/rHLly9rxowZSkxM1F133aW8vDxVVFSEuhQAAGATIQ0ohw8f1o9//GM99NBDjcbnzJmj999/Xxs3btSHH36oCxcuaMKECaEsBQAA2EjIAkpNTY0mTZqkn/zkJ7r77rv949XV1XrnnXf02muv6fHHH9eAAQO0bt067du3TwcOHAhVOQAAwEZC9kmyM2bM0OjRo5Wdna0lS5b4x8vKyuT1epWdne0f6927t9LS0rR//3498sgjAWt5PB55PB7/ttvtliR5vV55vV5L676+ntXronXYrX+uSF+4SzCOK8LX6L+hYpfniB3Z7XWIQKHqYTDrhSSg/Nu//ZuOHj2qw4cPB+wrLy9Xhw4dFB8f32g8KSlJ5eXlTa5XVFSkRYsWBYzv3LlTMTEx1hR9g9LS0pCsi9Zhl/4tzwx3BeZ6ZWBDSNfftm1bSNeHfV6HuDmre1hXV9fsuZYHlHPnzumFF15QaWmpoqOjLVmzoKBA+fn5/m23263U1FSNHDlSsbGxltzHdV6vV6WlpRoxYoScTqelayP07Na/foU7wl2CcVwRPr0ysEELjkTI0+AI2f0cL8wJ2drtnd1ehwgUqh5efwekOSwPKGVlZbp48aL+6q/+yj9WX1+vvXv36s0339SOHTt05coVVVVVNTqKUlFRoeTk5CbXdLlccrlcAeNOpzNkT/5Qro3Qs0v/PPWh+wvY7jwNjpD+fuzw/LA7u7wOcXNW9zCYtSwPKMOHD9dvfvObRmNTpkxR79699eKLLyo1NVVOp1O7du1SXl6eJOnkyZM6e/assrKyrC4HAADYkOUBpXPnzurXr1+jsU6dOikxMdE/PnXqVOXn5yshIUGxsbGaNWuWsrKymjxBFgDCpef8rQFjXy4dHYZKgPYnZFfx3Mrrr7+uiIgI5eXlyePxKCcnR2+99VY4SgEAAAZqlYDywQcfNNqOjo5WcXGxiouLW+PugbC48V/f/MvbLBwdAczGd/EAAADjEFAAAIBxCCgAAMA4BBQAAGCcsFzFA7RHTZ2UCQBoGkdQAACAcTiCAgBB4PJxoHVwBAUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHG4igcA7gBfOgiEBkdQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMw2XGAGAxqy495hJmtGccQQEAAMYhoAAAAOMQUAAAgHE4BwUA/qSpcz4AhAdHUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjMNlxgAQBnyMPXBrHEEBAADGIaAAAADjWB5QioqKNGjQIHXu3Fldu3bVuHHjdPLkyUZzLl++rBkzZigxMVF33XWX8vLyVFFRYXUpAADApiw/B+XDDz/UjBkzNGjQIF29elX//M//rJEjR+qzzz5Tp06dJElz5szR1q1btXHjRsXFxWnmzJmaMGGCPv74Y6vLAQDb4KP2gT+zPKBs37690fa7776rrl27qqysTN/85jdVXV2td955RyUlJXr88cclSevWrVOfPn104MABPfLIIwFrejweeTwe/7bb7ZYkeb1eeb1eS+u/vp7V66J1mNQ/V6Qv3CXYkivC1+i/bcWNz8mWPj9MeG7fjkmvQ7RMqHoYzHoOn88X0j8FTp8+rV69euk3v/mN+vXrp927d2v48OH6+uuvFR8f75/Xo0cPzZ49W3PmzAlYo7CwUIsWLQoYLykpUUxMTCjLBwAAFqmrq9PTTz+t6upqxcbG3nJuSC8zbmho0OzZs/Xoo4+qX79+kqTy8nJ16NChUTiRpKSkJJWXlze5TkFBgfLz8/3bbrdbqampGjly5G0fYLC8Xq9KS0s1YsQIOZ1OS9dG6JnUv36FO8J6/3blivDplUEa9ZMAAAqkSURBVIENWnAkQp4GR7jLsczxwpxG2y19fty4jolMeh2iZULVw+vvgDRHSAPKjBkzdPz4cX300Ud3tI7L5ZLL5QoYdzqdIXvyh3JthJ4J/fPUt52/XMPB0+BoU7/DG5+PLX1s4X5eB8OE1yHujNU9DGatkF1mPHPmTG3ZskV79uxR9+7d/ePJycm6cuWKqqqqGs2vqKhQcnJyqMoBAAA2YnlA8fl8mjlzpjZt2qTdu3crPT290f4BAwbI6XRq165d/rGTJ0/q7NmzysrKsrocAABgQ5a/xTNjxgyVlJTol7/8pTp37uw/ryQuLk4dO3ZUXFycpk6dqvz8fCUkJCg2NlazZs1SVlZWk1fwAEBbwCXEQHAsDyhvv/22JGno0KGNxtetW6dnn31WkvT6668rIiJCeXl58ng8ysnJ0VtvvWV1KQAAwKYsDyjNuWo5OjpaxcXFKi4utvruAQBAG8B38QAAAOMQUAAAgHEIKAAAwDgh/aA2oL3gCg2ES1PPvS+Xjg5DJYC1OIICAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcLjMGABvhkna0FxxBAQAAxiGgAAAA4xBQAACAcTgHBQDamBvPU+Gj72FHHEEBAADG4QgKcBv8axQAWh9HUAAAgHEIKAAAwDgEFAAAYBzOQQGCxCd5AkDocQQFAAAYh4ACAACMw1s8ANAONfVWZXMuoeeye7QWjqAAAADjEFAAAIBxCCgAAMA4nIOCsAr3+9nhvn8AQNM4ggIAAIzDERS0G3zAGtqr5j73W/Iaaeo2p14ZGfQ6wI04ggIAAIzDERQYL5h/1bkifVqeKfUr3KGTr34rhFUBuJl+hTv8r0NPvaPJOTee79XSz2VB2xXWIyjFxcXq2bOnoqOjNXjwYB06dCic5QAAAEOELaBs2LBB+fn5evnll3X06FH1799fOTk5unjxYrhKAgAAhgjbWzyvvfaapk2bpilTpkiS1qxZo61bt+pnP/uZ5s+fH66y0M5xIi1gtpZ8NABvH9lTWALKlStXVFZWpoKCAv9YRESEsrOztX///oD5Ho9HHo/Hv11dXS1JqqyslNfrtbQ2r9eruro6/fGPf5TT6bR0bQSKulrbaPuPf/zjbefccr0Gn+rqGhTljQhYK5h1ED5/2cP6hqbPX4DZmtPD5rw+m/PnQVNzbneb5t6uPQvV34WXLl2SJPl8vttP9oXB+fPnfZJ8+/btazQ+d+5cX2ZmZsD8l19+2SeJH3744YcffvhpAz/nzp27bVawxVU8BQUFys/P9283NDSosrJSiYmJcjj+nM4HDRqkw4cPN7nGzfbdOO52u5Wamqpz584pNjbWwkcRvFs9ntZcL5jb3W7unexvah/9s/Z2zZnb0h7yGrRHD/lzNDTr0cNrfD6fLl26pJSUlNvODUtA6dKliyIjI1VRUdFovKKiQsnJyQHzXS6XXC5Xo7H4+PiAeZGRkTf9Rd5s383GY2Njw/7CutXjac31grnd7ebeyf6m9tE/a2/XnLkt7SGvQXv0kD9HQ7MePfyzuLi4Zs2LLCwsLLT0nptzp5GR2rp1q65cuaJRo0ZJunZU5Pnnn1deXp6GDBnS4rUzMzOD3veX4x6PR0uXLlVBQUFAKAqHWz2e1lwvmNvdbu6d7G9qH/2z9nbNmdvSHvIatEcP+XM0NOvRw+A4fL7mnKlivQ0bNmjy5Mn68Y9/rMzMTK1cuVK/+MUv9PnnnyspKSkcJUm6dlgrLi5O1dXVYU/+CB79sz96aH/00P5M6GFYjqBIUr9+/RQfH69XX31VK1askCStX79e999/fzjKaSQyMlJDhw5VVJQtTtHBDeif/dFD+6OH9hfuHobtCAoAAMDN8GWBAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0AJwpYtW3T//ferV69e+ulPfxructAC48eP1913361vf/vb4S4FLXDu3DkNHTpUffv21UMPPaSNGzeGuyQEoaqqSgMHDlRGRob69eunn/zkJ+EuCS1UV1enHj166Pvf/37I7oPLjJvp6tWr6tu3r/bs2aO4uDgNGDBA+/btU2JiYrhLQxA++OADXbp0ST//+c/17//+7+EuB0H6/e9/r4qKCmVkZKi8vFwDBgzQF198oU6dOoW7NDRDfX29PB6PYmJiVFtbq379+unIkSP8OWpDP/jBD3T69Gmlpqb6P8vMahxBaaZDhw7pgQce0D333KO77rpLubm52rlzZ7jLQpCGDh2qzp07h7sMtFC3bt2UkZEhSUpOTlaXLl1UWVkZ5qrQXJGRkYqJiZF07aPUfT6f+Dey/Zw6dUqff/65cnNzQ3o/7Sag7N27V2PGjFFKSoocDoc2b94cMKe4uFg9e/ZUdHS0Bg8erEOHDvn3XbhwQffcc49/+5577tH58+dbpXZcc6c9RPhZ2cOysjLV19crNTU11GXjT6zoX1VVlfr376/u3btr7ty56tKlS2uVD1nTw+9///sqKioKea3tJqDU1taqf//+Ki4ubnL/hg0blJ+fr5dffllHjx5V//79lZOTo4sXL7ZypbgZemh/VvWwsrJS3/nOd7R27drWKBt/YkX/4uPj9emnn+rMmTMqKSkJ+FZ7hNad9vCXv/yl7rvvPt13332hL9bXDknybdq0qdFYZmamb8aMGf7t+vp6X0pKiq+oqMjn8/l8H3/8sW/cuHH+/S+88IJv/fr1rVMwArSkh9ft2bPHl5eX1yp14uZa2sPLly/7/vqv/9r33nvvtVqtCHQnr8Hr/umf/sm3cePGkNaJm2tJD+fPn+/r3r27r0ePHr7ExERfbGysb9GiRSGpr90cQbmVK1euqKysTNnZ2f6xiIgIZWdna//+/ZKufQ318ePHdf78edXU1OhXv/qVcnJywlUybtCcHsJszemhz+fTs88+q8cff1zPPPNMuEpFE5rTv4qKCl26dEmSVF1drb179xrxBbG4pjk9LCoq0rlz5/Tll19qxYoVmjZtmhYuXBiSeviaSUl/+MMfVF9fr6SkpEbjSUlJ+vzzzyVJUVFR+tGPfqRhw4apoaFB8+bN48xzgzSnh5KUnZ2tTz/9VLW1terevbs2btyorKys1i4XTWhODz/++GNt2LBBDz30kP+983/5l3/Rgw8+2Or1orHm9O+rr77S9OnT/SfHzpo1i94ZpLl/jrYWAkoQnnzyST355JPhLgN34Ne//nW4S8AdGDJkiBoaGsJdBlooMzNTx44dC3cZsMizzz4b0vV5i0dSly5dFBkZGXCyVkVFhZKTk8NUFYJBD+2PHtob/bM/03pIQJHUoUMHDRgwQLt27fKPNTQ0aNeuXRz+twl6aH/00N7on/2Z1sN28xZPTU2NTp8+7d8+c+aMjh07poSEBKWlpSk/P1+TJ0/WwIEDlZmZqZUrV6q2tlZTpkwJY9X4S/TQ/uihvdE/+7NVD0NybZCB9uzZ45MU8DN58mT/nNWrV/vS0tJ8HTp08GVmZvoOHDgQvoIRgB7aHz20N/pnf3bqId/FAwAAjMM5KAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAY5/8Bi+Nus8LXGqwAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIgAAAHFCAYAAACZ0sLWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdf3xU1Z3/8fcEJhMCTGJwyY8lQLai/FQQFFKpRQmJkFIEupU2StRUFgoKxIKki5ZfGkjlpwKpLYI8Fmplq6wlCBkDmCLhVyCK6CJWMN1CQh+LMAbKMCT5/sE3sw4JEIaZzNzc1/Px4BHvuWfOfCafGTx85tx7LLW1tbUCAAAAAACAaYUFOwAAAAAAAAAEFwUiAAAAAAAAk6NABAAAAAAAYHIUiAAAAAAAAEyOAhEAAAAAAIDJUSACAAAAAAAwOQpEAAAAAAAAJkeBCAAAAAAAwORaBjuAUFBTU6MTJ06obdu2slgswQ4HAABcRW1trb755hslJCQoLIzvuYKJ+RMAAMbQ2PkTBSJJJ06cUGJiYrDDAAAAjfTXv/5VHTp0CHYYpsb8CQAAY7ne/IkCkaS2bdtKuvzLstvtfhvX7XarsLBQqampslqtfhsXTYP8GRv5MzbyZ3yByqHT6VRiYqLn/90IHuZPaAj5MzbyZ2zkz9gCmb/Gzp8oEEmeZdF2u93vE5zIyEjZ7XY+oAZE/oyN/Bkb+TO+QOeQS5qCj/kTGkL+jI38GRv5M7amyN/15k9cvA8AAAAAAGByFIgAAAAAAABMjgIRAAAAAACAyVEgAgAAAAAAMDkKRAAAAAAAACZHgQgAAAAAAMDkKBABAAAAAACYHAUiAAAAAAAAk6NABAAAAAAAYHIUiAAAAAAAAEyOAhEAAAAAAIDJUSACAAAAAAAwOQpEAAAAAAAAJkeBCAAAAAAAwOQoEAEAAAAAAJhcUAtExcXFGj58uBISEmSxWLRx48Z6fT777DP98Ic/VFRUlFq3bq177rlH5eXlnvMXLlzQxIkT1a5dO7Vp00ajR49WZWVlU74MwLA6zyjw+gMAAIDmhzkfgMYIaoHo3Llzuuuuu7R8+fIGz//lL3/RwIED1bVrV+3YsUMff/yxnn/+eUVERHj6TJ06VX/605+0YcMGffDBBzpx4oRGjRrVVC8BAAAAAADA8FoG88mHDh2qoUOHXvX8v//7v2vYsGHKy8vztH3nO9/x/PfZs2e1atUqrV+/Xg8++KAkafXq1erWrZt2796tAQMGBC54AAAAAACAZiJk70FUU1OjgoIC3X777UpLS1P79u3Vv39/r8vQSktL5Xa7lZKS4mnr2rWrOnbsqJKSkmCEDQAAAAAAYDhBXUF0LadOnVJVVZXmz5+vefPmacGCBdqyZYtGjRql7du36/vf/74qKioUHh6u6Ohor8fGxsaqoqLiqmO7XC65XC7PsdPplCS53W653W6/vYa6sfw5JpqOGfJna1HrddycXqsZ8teckT/jC1QOeU8AAAAERsgWiGpqaiRJI0aM0NSpUyVJvXv31q5du5Sfn6/vf//7Po+dm5ur2bNn12svLCxUZGSkz+NejcPh8PuYaDrNOX9593ofb968OTiBBFBzzp8ZkD/j83cOz58/79fxAAAAcFnIFohuvfVWtWzZUt27d/dq79atm3bu3ClJiouL08WLF3XmzBmvVUSVlZWKi4u76tg5OTnKzs72HDudTiUmJio1NVV2u91vr8HtdsvhcGjIkCGyWq1+GxdNwwz56zlrq9fxJ7PSghSJ/5khf80Z+TO+QOWwbtUvAAAA/CtkC0Th4eG65557dOTIEa/2zz//XJ06dZIk9e3bV1arVUVFRRo9erQk6ciRIyovL1dycvJVx7bZbLLZbPXarVZrQP4hEqhx0TSac/5c1Rav4+b4Optz/syA/Bmfv3PI+wEAACAwglogqqqq0hdffOE5PnbsmMrKyhQTE6OOHTtq2rRpeuSRR3T//ffrgQce0JYtW/SnP/1JO3bskCRFRUUpKytL2dnZiomJkd1u19NPP63k5GR2MAMAAAAAAGikoBaI9u/frwceeMBzXHfZV2ZmptasWaORI0cqPz9fubm5euaZZ3THHXfoj3/8owYOHOh5zOLFixUWFqbRo0fL5XIpLS1NK1asaPLXAgAAAAAAYFRBLRANGjRItbW11+zz5JNP6sknn7zq+YiICC1fvlzLly/3d3gAAAAAAACmEBbsAAAAAAAAABBcFIgAAAAAAABMjgIRAAAAAACAyVEgAgAAAAAAMDkKRAAAAAAAACYX1F3MAAAAAAD+03lGQbBDAGBQrCACAAAAAAAwOQpEAAAAAAAAJkeBCAAAAAAAwOQoEAEAAAAAAJgcBSIAAAAAAACTo0AEAAAAAABgcmxzDwAAAADwi84zCuq1HZ+fHoRIANwoVhABAAAAAACYHAUiAAAAAAAAk6NABAAAAAAAYHIUiAAAAAAAAEyOm1QDAAAAgEE1dFNoAPAFK4gAAAAAAABMjgIRAAAAAACAyVEgAgAAAAAAMDkKRAAAAAAAACZHgQgAAAAAAMDkKBABAAAAAACYHAUiAAAAAAAAk6NABAAAAAAAYHItgx0AgNDWeUaB1/Hx+elBigQAAAAAECgUiAAAAADARK78AlDiS0AAXGIGAAAAAABgehSIAAAAAAAATI4CEQAAAAAAgMlRIAIAAAAAADA5CkQAAAAAAAAmR4EIAAAAAADA5CgQAQAAAAAAmFxQC0TFxcUaPny4EhISZLFYtHHjxqv2HT9+vCwWi5YsWeLVfvr0aWVkZMhutys6OlpZWVmqqqoKdOhAs9R5RkG9PwAAAACA5i+oBaJz587prrvu0vLly6/Z75133tHu3buVkJBQ71xGRoYOHz4sh8OhTZs2qbi4WOPGjQtUyAAAAAAAAM1Oy2A++dChQzV06NBr9vnb3/6mp59+Wlu3blV6errXuc8++0xbtmzRvn371K9fP0nSK6+8omHDhunll19usKAEAAAAAPDWeUaBbC1qlXev1HPWVh158QfBDglAEwtqgeh6ampq9Nhjj2natGnq0aNHvfMlJSWKjo72FIckKSUlRWFhYdqzZ49GjhzZ4Lgul0sul8tz7HQ6JUlut1tut9tv8deN5c8x0XTMkD9bi9obfoxRfh9myF9zRv6ML1A55D0BAE2joVsNHJ+f3kBPAM1FSBeIFixYoJYtW+qZZ55p8HxFRYXat2/v1dayZUvFxMSooqLiquPm5uZq9uzZ9doLCwsVGRl5c0E3wOFw+H1MNJ3mnL+8e2/8MZs3b/Z/IAHUnPNnBuTP+Pydw/Pnz/t1PAAAAFwWsgWi0tJSLV26VAcOHJDFYvHr2Dk5OcrOzvYcO51OJSYmKjU1VXa73W/P43a75XA4NGTIEFmtVr+Ni6Zhhvz1nLX1hh/zyay0AETif2bIX3NG/owvUDmsW/VrFvPnz1dOTo4mT57s2ajjwoULevbZZ/Xmm2/K5XIpLS1NK1asUGxsrOdx5eXlmjBhgrZv3642bdooMzNTubm5atny/6Z+O3bsUHZ2tg4fPqzExETNnDlTjz/+eFO/RADXcOUqHlbwAAikkC0Q/fnPf9apU6fUsWNHT1t1dbWeffZZLVmyRMePH1dcXJxOnTrl9bhLly7p9OnTiouLu+rYNptNNputXrvVag3IP0QCNS6aRnPOn6v6xouvRvtdNOf8mQH5Mz5/59BM74d9+/bpN7/5je68806v9qlTp6qgoEAbNmxQVFSUJk2apFGjRunDDz+UdHm+lJ6erri4OO3atUsnT57U2LFjZbVa9dJLL0mSjh07pvT0dI0fP17r1q1TUVGRfvaznyk+Pl5pacb4IgAAAPhXyBaIHnvsMaWkpHi1paWl6bHHHtMTTzwhSUpOTtaZM2dUWlqqvn37SpK2bdummpoa9e/fv8ljBgAA8IeqqiplZGTot7/9rebNm+dpP3v2rFatWqX169frwQcflCStXr1a3bp10+7duzVgwAAVFhbq008/1fvvv6/Y2Fj17t1bc+fO1XPPPadZs2YpPDxc+fn5SkpK0sKFCyVJ3bp1086dO7V48WIKRAD8jpVQgDEEtUBUVVWlL774wnN87NgxlZWVKSYmRh07dlS7du28+lutVsXFxemOO+6QdHky89BDD+mpp55Sfn6+3G63Jk2apDFjxrCDGQAAMKyJEycqPT1dKSkpXgWi0tJSud1ury/Runbtqo4dO6qkpEQDBgxQSUmJevXq5XXJWVpamiZMmKDDhw+rT58+KikpafCLuClTplw1Jjb5QGOQP/+6ckORhn6vvmw6ctXnC6v1+nmlxuS1MfHw/ggMPn/GFsj8NXbMoBaI9u/frwceeMBzXHdfoMzMTK1Zs6ZRY6xbt06TJk3S4MGDFRYWptGjR2vZsmWBCBcAACDg3nzzTR04cED79u2rd66iokLh4eGKjo72ao+NjfVs0FFRUeFVHKo7X3fuWn2cTqf+8Y9/qFWrVvWem00+cCPIn39cuaFIQ5uF+LLpyPXM7VfTYHtjNitpTDxG2/TEaPj8GVsg8tfYTT6CWiAaNGiQamsbX/E+fvx4vbaYmBitX7/ej1EBAAAEx1//+ldNnjxZDodDERERwQ7HC5t8oDHIn39duaFIQ5uF+LLpyNXYwmo1t1+Nnt8fJldN/XtVNmazksbEY5RNT4yGz5+xBTJ/jd3kI2TvQQQAAGA2paWlOnXqlO6++25PW3V1tYqLi/Xqq69q69atunjxos6cOeO1iqiystKzQUdcXJz27t3rNW5lZaXnXN3PurZv97Hb7Q2uHpLY5AM3hvz5x5UbijT0O/Vl05HrPm+NpcFxG5PTxsTDeyOw+PwZWyDy19jxwvz6rAAAAPDZ4MGDdejQIZWVlXn+9OvXTxkZGZ7/tlqtKioq8jzmyJEjKi8vV3JysqTLm3gcOnTIa6dXh8Mhu92u7t27e/p8e4y6PnVjAAAA82EFEQAAQIho27atevbs6dXWunVrtWvXztOelZWl7OxsxcTEyG636+mnn1ZycrIGDBggSUpNTVX37t312GOPKS8vTxUVFZo5c6YmTpzoWQE0fvx4vfrqq5o+fbqefPJJbdu2TW+99ZYKCrx3GgIAAOZBgQgAAMBAFi9e7NmYw+VyKS0tTStWrPCcb9GihTZt2qQJEyYoOTlZrVu3VmZmpubMmePpk5SUpIKCAk2dOlVLly5Vhw4d9Lvf/Y4t7gEAMDEKRAAAACFsx44dXscRERFavny5li9fftXHdOrU6bq7BA0aNEgHDx70R4gAAKAZoEAEAAAAAAbQeQaXgQIIHG5SDQAAAAAAYHIUiAAAAAAAAEyOAhEAAAAAAIDJcQ8iwCS4Zh0AAAAAcDUUiAAAAAAAPuFLSKD54BIzAAAAAAAAk6NABAAAAAAAYHIUiAAAAAAAAEyOAhEAAAAAAIDJUSACAAAAAAAwOQpEAAAAAAAAJkeBCAAAAAAAwOQoEAEAAAAAAJhcy2AHAAAAAAAIfZ1nFAQ7BAABxAoiAAAAAAAAk6NABAAAAAAAYHIUiAAAAAAAAEyOAhEAAAAAAIDJUSACAAAAAAAwOQpEAAAAAAAAJkeBCAAAAAAAwOQoEAEAAAAAAJgcBSIAAAAAAACTo0AEAAAAAABgchSIAAAAAAAATI4CEQAAAAAAgMlRIAIAAAAAADA5CkQAAAAAAAAmF9QCUXFxsYYPH66EhARZLBZt3LjRc87tduu5555Tr1691Lp1ayUkJGjs2LE6ceKE1xinT59WRkaG7Ha7oqOjlZWVpaqqqqZ+KYCpdZ5R4PUHAAAAAGAsQS0QnTt3TnfddZeWL19e79z58+d14MABPf/88zpw4IDefvttHTlyRD/84Q+9+mVkZOjw4cNyOBzatGmTiouLNW7cuKZ6CQAAAAAAAIbXMphPPnToUA0dOrTBc1FRUXI4HF5tr776qu69916Vl5erY8eO+uyzz7Rlyxbt27dP/fr1kyS98sorGjZsmF5++WUlJCQE/DUAAAAAAAAYXVALRDfq7Nmzslgsio6OliSVlJQoOjraUxySpJSUFIWFhWnPnj0aOXJkg+O4XC65XC7PsdPplHT5sja32+23eOvG8ueYaDrNLX+2FrV+Gaeh38eVY4fC76y55c9syJ/xBSqHvCcAAAACwzAFogsXLui5557TT37yE9ntdklSRUWF2rdv79WvZcuWiomJUUVFxVXHys3N1ezZs+u1FxYWKjIy0r+BS/VWQsFYmkv+8u71zzibN2++7tgN9QmW5pI/syJ/xufvHJ4/f96v4wEAAOAyQxSI3G63fvzjH6u2tlYrV6686fFycnKUnZ3tOXY6nUpMTFRqaqqn+OQPbrdbDodDQ4YMkdVq9du4aBrNLX89Z231yzifzEq77tgN9WlqzS1/ZkP+jC9QOaxb9QsAAAD/CvkCUV1x6KuvvtK2bdu8CjhxcXE6deqUV/9Lly7p9OnTiouLu+qYNptNNputXrvVag3IP0QCNS6aRnPJn6va4pdxGvpdXDl2KP2+mkv+zIr8GZ+/c8j7AQCapyt3wj0+Pz1IkQDmFdIForri0NGjR7V9+3a1a9fO63xycrLOnDmj0tJS9e3bV5K0bds21dTUqH///sEIGYDq/w9e4n/yAAAAABDKglogqqqq0hdffOE5PnbsmMrKyhQTE6P4+Hj96Ec/0oEDB7Rp0yZVV1d77isUExOj8PBwdevWTQ899JCeeuop5efny+12a9KkSRozZgw7mAEAAAAAADRSUAtE+/fv1wMPPOA5rrsvUGZmpmbNmqV3331XktS7d2+vx23fvl2DBg2SJK1bt06TJk3S4MGDFRYWptGjR2vZsmVN8wIAAAAAADekodXmAIIvqAWiQYMGqbb26ltvX+tcnZiYGK1fv96fYQEAAAAAAJhKWLADAAAAAAAAQHBRIAIAAAAAADA5CkQAAAAAAAAmF9Lb3AMAAACAGXDjZgDBxgoiAAAAAAAAk6NABAAAAAAAYHIUiAAAAAAAAEyOAhEAAAAAAIDJUSACAAAAAAAwOQpEAAAAAAAAJkeBCAAAAAAAwOQoEAEAAAAAAJgcBSIAAAAAAACTo0AEAAAAAABgchSIAAAAAAAATI4CEQAAAAAAgMlRIAIAAAAAADA5CkQAAAAAAAAmR4EIAAAAAADA5CgQAQAAAAAAmBwFIgAAAAAAAJNrGewAABhL5xkFwQ4BAAAAAOBnrCACAAAAAAAwOQpEAAAAAAAAJsclZgAAAADQxLhsH0CoYQURAAAAAACAyVEgAgAAAAAAMDkKRAAAACFi5cqVuvPOO2W322W325WcnKz33nvPc/7ChQuaOHGi2rVrpzZt2mj06NGqrKz0GqO8vFzp6emKjIxU+/btNW3aNF26dMmrz44dO3T33XfLZrPptttu05o1a5ri5QEAgBDGPYgAAABCRIcOHTR//nx16dJFtbW1euONNzRixAgdPHhQPXr00NSpU1VQUKANGzYoKipKkyZN0qhRo/Thhx9Kkqqrq5Wenq64uDjt2rVLJ0+e1NixY2W1WvXSSy9Jko4dO6b09HSNHz9e69atU1FRkX72s58pPj5eaWlpwXz5AODRmHs0HZ+f3gSRAOZBgQgAACBEDB8+3Ov4xRdf1MqVK7V792516NBBq1at0vr16/Xggw9KklavXq1u3bpp9+7dGjBggAoLC/Xpp5/q/fffV2xsrHr37q25c+fqueee06xZsxQeHq78/HwlJSVp4cKFkqRu3bpp586dWrx4MQUiAABMjAIRAABACKqurtaGDRt07tw5JScnq7S0VG63WykpKZ4+Xbt2VceOHVVSUqIBAwaopKREvXr1UmxsrKdPWlqaJkyYoMOHD6tPnz4qKSnxGqOuz5QpU64Zj8vlksvl8hw7nU5Jktvtltvt9sdL9oz37Z8wFvLXeLYWtcEOoR5bWK3Xz1DH+8wbnz9jC2T+GjsmBSIAAIAQcujQISUnJ+vChQtq06aN3nnnHXXv3l1lZWUKDw9XdHS0V//Y2FhVVFRIkioqKryKQ3Xn685dq4/T6dQ//vEPtWrVqsG4cnNzNXv27HrthYWFioyM9O3FXoPD4fD7mGg65O/68u4NdgRXN7dfTbBDaJTNmzcHO4SQxOfP2AKRv/PnzzeqHwUiAACAEHLHHXeorKxMZ8+e1X/+538qMzNTH3zwQbDDUk5OjrKzsz3HTqdTiYmJSk1Nld1u99vzuN1uORwODRkyRFar1W/jommQv8brOWtrsEOoxxZWq7n9avT8/jC5aizBDscnn8wy76WyfP6MLZD5q1v1ez0UiAAAAEJIeHi4brvtNklS3759tW/fPi1dulSPPPKILl68qDNnznitIqqsrFRcXJwkKS4uTnv37vUar26Xs2/3uXLns8rKStnt9quuHpIkm80mm81Wr91qtQbkHyKBGhdNg/xdn6s6dAswrhpLSMd3Lbzv+PwZXSDy19jxgrrNfXFxsYYPH66EhARZLBZt3LjR63xtba1eeOEFxcfHq1WrVkpJSdHRo0e9+pw+fVoZGRmy2+2Kjo5WVlaWqqqqmvJlAAAABExNTY1cLpf69u0rq9WqoqIiz7kjR46ovLxcycnJkqTk5GQdOnRIp06d8vRxOByy2+3q3r27p8+3x6jrUzcGAAAwp6AWiM6dO6e77rpLy5cvb/B8Xl6eli1bpvz8fO3Zs0etW7dWWlqaLly44OmTkZGhw4cPy+FwaNOmTSouLta4ceOa6iUAAAD4TU5OjoqLi3X8+HEdOnRIOTk52rFjhzIyMhQVFaWsrCxlZ2dr+/btKi0t1RNPPKHk5GQNGDBAkpSamqru3bvrscce00cffaStW7dq5syZmjhxomf1z/jx4/Xll19q+vTp+u///m+tWLFCb731lqZOnRrMlw4AAIIsqJeYDR06VEOHDm3wXG1trZYsWaKZM2dqxIgRkqS1a9cqNjZWGzdu1JgxY/TZZ59py5Yt2rdvn/r16ydJeuWVVzRs2DC9/PLLSkhIaLLXAoSazjMKgh3CNTUU3/H56UGIBABCx6lTpzR27FidPHlSUVFRuvPOO7V161YNGTJEkrR48WKFhYVp9OjRcrlcSktL04oVKzyPb9GihTZt2qQJEyYoOTlZrVu3VmZmpubMmePpk5SUpIKCAk2dOlVLly5Vhw4d9Lvf/Y4t7gEAMLmQvQfRsWPHVFFR4bUNa1RUlPr376+SkhKNGTNGJSUlio6O9hSHJCklJUVhYWHas2ePRo4cGYzQAQAAfLJq1aprno+IiNDy5cuvuvpakjp16nTdnX0GDRqkgwcP+hQjAABonkK2QFS3FWtD27B+e5vW9u3be51v2bKlYmJiPH0a4nK55HK5PMd1d/R2u91yu91+ib9uvG//hLEYPX+2FrXBDsHLlb/HhuLj84c65M/4ApVD3hMAAACB4VOB6Msvv9S//Mu/+DuWJpObm6vZs2fXay8sLFRkZKTfn8/hcPh9TDQdo+Yv795gR+Dtym+zG4rvet94+8Ko+cNl5M/4/J3D8+fP+3U8fzL6/AgAAJibTwWi2267Td///veVlZWlH/3oR4qIiPB3XJ6tWCsrKxUfH+9pr6ysVO/evT19vr1LhyRdunRJp0+f9jy+ITk5OcrOzvYcO51OJSYmKjU1VXa73W+vwe12y+FwaMiQIWwzaEBGz1/PWVuDHYKXT2Z539uiofiu7HMzjJ4/syN/xheoHNat+g1FTTE/AgAACBSfCkQHDhzQ6tWrlZ2drUmTJumRRx5RVlaW7r3Xf0sWkpKSFBcXp6KiIk9ByOl0as+ePZowYYKky9u0njlzRqWlperbt68kadu2baqpqVH//v2vOrbNZvPs5PFtVqs1IP8QCdS4aBpGzZ+r2hLsELxc+TtsKD4+f7gS+TM+f+cwlN8PTTE/AgAACBSftrnv3bu3li5dqhMnTuj111/XyZMnNXDgQPXs2VOLFi3S3//+90aNU1VVpbKyMpWVlUm6fGPqsrIylZeXy2KxaMqUKZo3b57effddHTp0SGPHjlVCQoIefvhhSVK3bt300EMP6amnntLevXv14YcfatKkSRozZgw7mAEAgCblr/kRAABAMPhUIKrTsmVLjRo1Shs2bNCCBQv0xRdf6Be/+IUSExM9W7Rey/79+9WnTx/16dNHkpSdna0+ffrohRdekCRNnz5dTz/9tMaNG6d77rlHVVVV2rJli9eS7XXr1qlr164aPHiwhg0bpoEDB+q11167mZcFAADgs5udHwEAAATDTRWI9u/fr5///OeKj4/XokWL9Itf/EJ/+ctf5HA4dOLECY0YMeKajx80aJBqa2vr/VmzZo0kyWKxaM6cOaqoqNCFCxf0/vvv6/bbb/caIyYmRuvXr9c333yjs2fP6vXXX1ebNm1u5mUBAAD47GbnRwAAAMHg0z2IFi1apNWrV+vIkSMaNmyY1q5dq2HDhiks7HK9KSkpSWvWrFHnzp39GSsAAEDIYn4EAACMzKcC0cqVK/Xkk0/q8ccf99ph7Nvat2+vVatW3VRwAAAARsH8CAAAGJlPBaKjR49et094eLgyMzN9GR4AAMBwmB8BAAAj8+keRKtXr9aGDRvqtW/YsEFvvPHGTQcFAABgNMyPAACAkflUIMrNzdWtt95ar719+/Z66aWXbjooAAAAo2F+BAAAjMynAlF5ebmSkpLqtXfq1Enl5eU3HRQAAIDRMD8CAABG5lOBqH379vr444/rtX/00Udq167dTQcFAABgNMyPAACAkflUIPrJT36iZ555Rtu3b1d1dbWqq6u1bds2TZ48WWPGjPF3jAAAACGP+REAADAyn3Yxmzt3ro4fP67BgwerZcvLQ9TU1Gjs2LFcYw8AAEyJ+REAADAynwpE4eHh+sMf/qC5c+fqo48+UqtWrdSrVy916tTJ3/EBAAAYAvMjAABgZD4ViOrcfvvtuv322/0VCwAAgOExPwIAAEbkU4Gourpaa9asUVFRkU6dOqWamhqv89u2bfNLcAAAAEbB/AgAABiZTwWiyZMna82aNUpPT1fPnj1lsVj8HRcAAIChMD8CAABG5lOB6M0339Rbb72lYcOG+TseACESixYAACAASURBVAAAQ2J+BOBqOs8oCHYIAHBdPm1zHx4erttuu83fsQAAABgW8yMAAGBkPhWInn32WS1dulS1tbX+jgcAAMCQmB8BAAAj8+kSs507d2r79u1677331KNHD1mtVq/zb7/9tl+CAwAAMArmRwAAwMh8KhBFR0dr5MiR/o4FAADAsJgfAQAAI/OpQLR69Wp/xwEAAGBozI8AAICR+XQPIkm6dOmS3n//ff3mN7/RN998I0k6ceKEqqqq/BYcAACAkTA/AgAARuXTCqKvvvpKDz30kMrLy+VyuTRkyBC1bdtWCxYskMvlUn5+vr/jBAAACGnMjwAAgJH5tIJo8uTJ6tevn77++mu1atXK0z5y5EgVFRX5LTgAAACjYH4EAACMzKcVRH/+85+1a9cuhYeHe7V37txZf/vb3/wSGAAAgJEwPwIAAEbmU4GopqZG1dXV9dr/53/+R23btr3poAA0P51nFAQ7BAAIKOZHAADAyHy6xCw1NVVLlizxHFssFlVVVelXv/qVhg0b5rfgAAAAjIL5EQAAMDKfVhAtXLhQaWlp6t69uy5cuKCf/vSnOnr0qG699Vb9/ve/93eMAAAAIY/5EQAAMDKfCkQdOnTQRx99pDfffFMff/yxqqqqlJWVpYyMDK+bMgIAAJgF8yMAAGBkPhWIJKlly5Z69NFH/RkLAACAoTE/AgAARuVTgWjt2rXXPD927FifggEAADAq5kcAAMDIfCoQTZ482evY7Xbr/PnzCg8PV2RkJBMgAABgOsyPAACAkflUIPr666/rtR09elQTJkzQtGnTbjooAAAAo2F+BADB13lGgdfx8fnpQYoEMB6ftrlvSJcuXTR//vx6354BAACYFfMjAABgFD7fpLrBwVq21IkTJ/w5JAATufIbH4lvfQAYH/MjAABgBD4ViN59912v49raWp08eVKvvvqq7rvvPr8EBgAAYCTMjwAAgJH5VCB6+OGHvY4tFov+6Z/+SQ8++KAWLlzol8Akqbq6WrNmzdJ//Md/qKKiQgkJCXr88cc1c+ZMWSwWSZcnX7/61a/029/+VmfOnNF9992nlStXqkuXLn6LA0DwcB05AKNoqvkRAABAIPhUIKqpqfF3HA1asGCBVq5cqTfeeEM9evTQ/v379cQTTygqKkrPPPOMJCkvL0/Lli3TG2+8oaSkJD3//PNKS0vTp59+qoiIiCaJEwAAoKnmRwAAAIHg13sQ+duuXbs0YsQIpadfXjHQuXNn/f73v9fevXslXV49tGTJEs2cOVMjRoyQJK1du1axsbHauHGjxowZE7TYAQAAAAAAjMKnAlF2dnaj+y5atMiXp5Akffe739Vrr72mzz//XLfffrs++ugj7dy50zPmsWPHVFFRoZSUFM9joqKi1L9/f5WUlFAgAgAATaap5kcAAACB4FOB6ODBgzp48KDcbrfuuOMOSdLnn3+uFi1a6O677/b0q7tPkK9mzJghp9Oprl27qkWLFqqurtaLL76ojIwMSVJFRYUkKTY21utxsbGxnnMNcblccrlcnmOn0ylJcrvdcrvdNxXzt9WN5c8x0XSMnj9bi9pghxAQjc2H0fNnduTP+AKVw1B+TzTV/AgAACAQfCoQDR8+XG3bttUbb7yhW265RZL09ddf64knntD3vvc9Pfvss34J7q233tK6deu0fv169ejRQ2VlZZoyZYoSEhKUmZnp87i5ubmaPXt2vfbCwkJFRkbeTMgNcjgcfh8TTceo+cu7N9gRBMbmzZtvqL9R84fLyJ/x+TuH58+f9+t4/tRU8yMAAIBA8KlAtHDhQhUWFnomP5J0yy23aN68eUpNTfXbBGjatGmaMWOG51KxXr166auvvlJubq4yMzMVFxcnSaqsrFR8fLzncZWVlerdu/dVx83JyfFaBu50OpWYmKjU1FTZ7Xa/xC5d/pbT4XBoyJAhslqtfhsXTcPo+es5a2uwQwiIT2alNaqf0fNnduTP+AKVw7pVv6GoqeZHAIDGu3JHXIldcYGr8alA5HQ69fe//71e+9///nd98803Nx1UnfPnzyssLMyrrUWLFp5dQpKSkhQXF6eioiJPQcjpdGrPnj2aMGHCVce12Wyy2Wz12q1Wa0D+IRKocdE0jJo/V3XzvIThRnNh1PzhMvJnfP7OYSi/H5pqfgQAABAIPhWIRo4cqSeeeEILFy7Uvfdevo5lz549mjZtmkaNGuW34IYPH64XX3xRHTt2VI8ePXTw4EEtWrRITz75pKTL1/BPmTJF8+bNU5cuXTzb3CckJOjhhx/2WxwAAADX01TzIwDAzblyVRErioDLfCoQ5efn6xe/+IV++tOfem4W2bJlS2VlZenXv/6134J75ZVX9Pzzz+vnP/+5Tp06pYSEBP3bv/2bXnjhBU+f6dOn69y5cxo3bpzOnDmjgQMHasuWLYqIiPBbHAAAANfTVPMjAACAQPCpQBQZGakVK1bo17/+tf7yl79Ikr7zne+odevWfg2ubdu2WrJkiZYsWXLVPhaLRXPmzNGcOXP8+twAAAA3oqnmRwAAAIHgU4GozsmTJ3Xy5Endf//9atWqlWpra9m6FQAAmBrzIyD0cKNiALi+sOt3qe9///d/NXjwYN1+++0aNmyYTp48KUnKyspihw4AAGBKzI8AAICR+VQgmjp1qqxWq8rLyxUZGelpf+SRR7Rlyxa/BQcAAGAUzI8AwJg6zyio9wcwI58uMSssLNTWrVvVoUMHr/YuXbroq6++8ktgAAAARsL8CAAAGJlPK4jOnTvn9c1YndOnT8tms910UAAAAEbD/AgAABiZTwWi733ve1q7dq3n2GKxqKamRnl5eXrggQf8FhwAAIBRMD8CAABG5tMlZnl5eRo8eLD279+vixcvavr06Tp8+LBOnz6tDz/80N8xAgAAhDzmRwAAwMh8WkHUs2dPff755xo4cKBGjBihc+fOadSoUTp48KC+853v+DtGAACAkMf8CAAAGNkNryByu9166KGHlJ+fr3//938PREwAAACGwvwIAAAY3Q2vILJarfr4448DEQsAAIAhMT8CAABG59MlZo8++qhWrVrl71gAAAAMi/kRAAAwMp9uUn3p0iW9/vrrev/999W3b1+1bt3a6/yiRYv8EhwAAIBRMD8CAABGdkMFoi+//FKdO3fWJ598orvvvluS9Pnnn3v1sVgs/osOAAAgxDE/AgAAzcENFYi6dOmikydPavv27ZKkRx55RMuWLVNsbGxAggMAAAh1zI8AAEBzcEMFotraWq/j9957T+fOnfNrQAAAAEbC/AhovjrPKKjXdnx+ehAiAYDA8+km1XWunBABAACY3c3Mj3Jzc3XPPfeobdu2at++vR5++GEdOXLEq8+FCxc0ceJEtWvXTm3atNHo0aNVWVnp1ae8vFzp6emKjIxU+/btNW3aNF26dMmrz44dO3T33XfLZrPptttu05o1a3yOGwAAGN8NrSCyWCz1rqHnmnoAAGBm/pwfffDBB5o4caLuueceXbp0Sb/85S+VmpqqTz/91HPT66lTp6qgoEAbNmxQVFSUJk2apFGjRunDDz+UJFVXVys9PV1xcXHatWuXTp48qbFjx8pqteqll16SJB07dkzp6ekaP3681q1bp6KiIv3sZz9TfHy80tLSbuK3AUBqeOURAIS6G77E7PHHH5fNZpN0+Rus8ePH19ul4+233/ZfhAAAACHMn/OjLVu2eB2vWbNG7du3V2lpqe6//36dPXtWq1at0vr16/Xggw9KklavXq1u3bpp9+7dGjBggAoLC/Xpp5/q/fffV2xsrHr37q25c+fqueee06xZsxQeHq78/HwlJSVp4cKFkqRu3bpp586dWrx4MQUiAABM6oYKRJmZmV7Hjz76qF+DAQAAMJpAzo/Onj0rSYqJiZEklZaWyu12KyUlxdOna9eu6tixo0pKSjRgwACVlJSoV69eXjfJTktL04QJE3T48GH16dNHJSUlXmPU9ZkyZcpVY3G5XHK5XJ5jp9MpSXK73XK73Tf/Yv+/urH8OSaaTqjmz9ai/qWfjYnRn48zAltYrddPMwu193BjhOrnD40TyPw1dswbKhCtXr3ap2AAoCl1nlEgW4ta5d0r9Zy1Va5qCzeUBBAwgZof1dTUaMqUKbrvvvvUs2dPSVJFRYXCw8MVHR3t1Tc2NlYVFRWePlfuoFZ3fL0+TqdT//jHP9SqVat68eTm5mr27Nn12gsLCxUZGenjq7w6h8Ph9zHRdEItf3n31m/bvHlzkz7OSOb2qwl2CEHXmDyHqlD7/OHGBCJ/58+fb1S/GyoQAQAAoGlMnDhRn3zyiXbu3BnsUCRJOTk5ys7O9hw7nU4lJiYqNTVVdrvdb8/jdrvlcDg0ZMgQWa1Wv42LphGq+es5a2u9tk9mXf9ySn8+zghsYbWa269Gz+8Pk6vG3PeabUyeQ02ofv7QOIHMX92q3+uhQAQAABBiJk2apE2bNqm4uFgdOnTwtMfFxenixYs6c+aM1yqiyspKxcXFefrs3bvXa7y6Xc6+3efKnc8qKytlt9sbXD0kSTabzXOfpW+zWq0B+YdIoMZF0wi1/Lmq6xc7GhOfPx9nJK4ai+Ffw80KpffvjQq1zx9uTCDy19jxbmqbewAAAPhPbW2tJk2apHfeeUfbtm1TUlKS1/m+ffvKarWqqKjI03bkyBGVl5crOTlZkpScnKxDhw7p1KlTnj4Oh0N2u13du3f39Pn2GHV96sYAAADmwwoiAACAEDFx4kStX79e//Vf/6W2bdt67hkUFRWlVq1aKSoqSllZWcrOzlZMTIzsdruefvppJScna8CAAZKk1NRUde/eXY899pjy8vJUUVGhmTNnauLEiZ4VQOPHj9err76q6dOn68knn9S2bdv01ltvqaCArbkBADArVhABAACEiJUrV+rs2bMaNGiQ4uPjPX/+8Ic/ePosXrxYP/jBDzR69Gjdf//9iouL09tvv+0536JFC23atEktWrRQcnKyHn30UY0dO1Zz5szx9ElKSlJBQYEcDofuuusuLVy4UL/73e/Y4h4AABNjBREAAECIqK29/tbSERERWr58uZYvX37VPp06dbruDjyDBg3SwYMHbzhGAADQPFEgAmB4nWdwSQQAAAAA3AwuMQMAAAAAADA5CkQAAAAAAAAmR4EIAAAAAADA5LgHEQBD4X5DAAAgUJhnADAzVhABAAAAAACYHCuIgGaAb7sAAAAAADeDFUQAAAAAAAAmR4EIAAAAAADA5EK+QPS3v/1Njz76qNq1a6dWrVqpV69e2r9/v+d8bW2tXnjhBcXHx6tVq1ZKSUnR0aNHgxgxAAAAAACAsYR0gejrr7/WfffdJ6vVqvfee0+ffvqpFi5cqFtuucXTJy8vT8uWLVN+fr727Nmj1q1bKy0tTRcuXAhi5AAAAAAAAMYR0jepXrBggRITE7V69WpPW1JSkue/a2trtWTJEs2cOVMjRoyQJK1du1axsbHauHGjxowZ0+QxAwAAAAAAGE1IF4jeffddpaWl6V//9V/1wQcf6J//+Z/185//XE899ZQk6dixY6qoqFBKSornMVFRUerfv79KSkquWiByuVxyuVyeY6fTKUlyu91yu91+i79uLH+OiaZjpPzZWtQGO4SQYwur9fpphDzi/xjp84eGBSqHvCcAAAACI6QLRF9++aVWrlyp7Oxs/fKXv9S+ffv0zDPPKDw8XJmZmaqoqJAkxcbGej0uNjbWc64hubm5mj17dr32wsJCRUZG+vdFSHI4HH4fE03HCPnLuzfYEYSuuf1qJEmbN28OciTwhRE+f7g2f+fw/Pnzfh0PAAAAl4V0gaimpkb9+vXTSy+9JEnq06ePPvnkE+Xn5yszM9PncXNycpSdne05djqdSkxMVGpqqux2+03HXcftdsvhcGjIkCGyWq1+GxdNw0j56zlra7BDCDm2sFrN7Vej5/eHyVVj0Sez0oIdEm6AkT5/aFigcli36hcAAAD+FdIFovj4eHXv3t2rrVu3bvrjH/8oSYqLi5MkVVZWKj4+3tOnsrJSvXv3vuq4NptNNputXrvVag3IP0QCNS6ahhHy56q2BDuEkOWqschVbQn5HKJhRvj84dr8nUPeDwAAAIER0gWi++67T0eOHPFq+/zzz9WpUydJl29YHRcXp6KiIk9ByOl0as+ePZowYUKTxwsAAADAXDrPKAh2CADgFyFdIJo6daq++93v6qWXXtKPf/xj7d27V6+99ppee+01SZLFYtGUKVM0b948denSRUlJSXr++eeVkJCghx9+OMjRAwAAAAAAGENIF4juuecevfPOO8rJydGcOXOUlJSkJUuWKCMjw9Nn+vTpOnfunMaNG6czZ85o4MCB2rJliyIiIoIYOQAAAAAAgHGEdIFIkn7wgx/oBz/4wVXPWywWzZkzR3PmzGnCqAAAAAAAAJqPkC8QAYA/XHl/gOPz02/4MY19HAAAAAAYTViwAwAAAAAAAEBwUSACAAAAAAAwOS4xAwAAAADgW3y5PQFgdKwgAgAAAAAAMDkKRAAAAAAAACZHgQgAAAAAAMDkKBABAAAAAACYHDepBgAAAADgGq68abXEjavR/FAgAmBK/E8eAAAAAP4Pl5gBAAAAAACYHAUiAAAAAAAAk6NABAAAAAAAYHLcgwgAAAAAgBt05T0tuZ8ljI4VRAAAAAAAACbHCiIAAAAAN6VuJYWtRa3y7g1yMAAAn1AgAgAAAADgJl15yZnEZWcwFi4xAwAAAAAAMDlWEAHA/9fQtz4AACC0sWoDAPyDFUQAAAAAAAAmR4EIAAAAAADA5LjEDAAAAIDpcGk5AHijQAQAAACgWaH4AwA3jkvMAAAAAAAATI4CEQAAAAAAgMlRIAIAAAAAADA5CkQAAAAAAAAmx02qAeAGXHnTy+Pz04MUCQAAAAD4DyuIAAAAAAAATI4CEQAAAAAAgMlxiRkAAAAAAE3gytsVSNyyAKGDFUQAAAAAAAAmR4EIAAAAAADA5CgQAQAAAAAAmJyhCkTz58+XxWLRlClTPG0XLlzQxIkT1a5dO7Vp00ajR49WZWVlEKMEAAAAAAAwFsMUiPbt26ff/OY3uvPOO73ap06dqj/96U/asGGDPvjgA504cUKjRo0KUpQAAAAAAADGY4gCUVVVlTIyMvTb3/5Wt9xyi6f97NmzWrVqlRYtWqQHH3xQffv21erVq7Vr1y7t3r07iBEDAAAAAAAYhyG2uZ84caLS09OVkpKiefPmedpLS0vldruVkpLiaevatas6duyokpISDRgwoMHxXC6XXC6X59jpdEqS3G633G633+KuG8ufY6LpGCl/tha1wQ4h5NjCar1+BooR3h9GZKTPHxoWqBzyngAAAAiMkC8Qvfnmmzpw4ID27dtX71xFRYXCw8MVHR3t1R4bG6uKioqrjpmbm6vZs2fXay8sLFRkZOTNB30Fh8Ph9zHRdIyQv7x7gx1B6Jrbryag42/evDmg45udET5/uDZ/5/D8+fN+HQ8AAACXhXSB6K9//asmT54sh8OhiIgIv42bk5Oj7Oxsz7HT6VRiYqJSU1Nlt9v99jxut1sOh0NDhgyR1Wr127hoGkbKX89ZW4MdQsixhdVqbr8aPb8/TK4aS8Ce55NZaQEb28yM9PlDwwKVw7pVvwAAAPCvkC4QlZaW6tSpU7r77rs9bdXV1SouLtarr76qrVu36uLFizpz5ozXKqLKykrFxcVddVybzSabzVav3Wq1BuQfIoEaF03DCPlzVQeuAGJ0rhpLQH8/of7eMDojfP5wbf7OIe8HAACAwAjpAtHgwYN16NAhr7YnnnhCXbt21XPPPafExERZrVYVFRVp9OjRkqQjR46ovLxcycnJwQgZAAAAAADAcEK6QNS2bVv17NnTq61169Zq166dpz0rK0vZ2dmKiYmR3W7X008/reTk5KveoBoAAAAAAADeQrpA1BiLFy9WWFiYRo8eLZfLpbS0NK1YsSLYYQGAR+cZBfXajs9PD0IkAAAAANAwwxWIduzY4XUcERGh5cuXa/ny5cEJCAAAAAAAwOAMVyACzIbVJ6GN/AAAAABoDsKCHQAAAAAAAACCiwIRAABAiCguLtbw4cOVkJAgi8WijRs3ep2vra3VCy+8oPj4eLVq1UopKSk6evSoV5/Tp08rIyNDdrtd0dHRysrKUlVVlVefjz/+WN/73vcUERGhxMRE5eXlBfy1AQCA0EaBCAAAIEScO3dOd91111XvrZiXl6dly5YpPz9fe/bsUevWrZWWlqYLFy54+mRkZOjw4cNyOBzatGmTiouLNW7cOM95p9Op1NRUderUSaWlpfr1r3+tWbNm6bXXXgv46wOag84zCrz+AEBzwT2IAAAAQsTQoUM1dOjQBs/V1tZqyZIlmjlzpkaMGCFJWrt2rWJjY7Vx40aNGTNGn332mbZs2aJ9+/apX79+kqRXXnlFw4YN08svv6yEhAStW7dOFy9e1Ouvv67w8HD16NFDZWVlWrRokVchCQAAmAsFIsCA+LYKAMzn2LFjqqioUEpKiqctKipK/fv3V0lJicaMGaOSkhJFR0d7ikOSlJKSorCwMO3Zs0cjR45USUmJ7r//foWHh3v6pKWlacGCBfr66691yy23NPj8LpdLLpfLc+x0OiVJbrdbbrfbb6+zbix/jonAs7Wovfwz7PLPpsxf3XPj5tXlr+4nbt6Vn4WG3q/++rzw96exBTJ/jR2TAhEAAIABVFRUSJJiY2O92mNjYz3nKioq1L59e6/zLVu2VExMjFefpKSkemPUnbtagSg3N1ezZ8+u115YWKjIyEgfXtG1ORwOv4+JwMm71/u4KfN35XPj5s3tVxPsEJqNzZs3ex039H69ss/N4u9PYwtE/s6fP9+ofhSIACAIrlwFdnx+epAiAYDGycnJUXZ2tufY6XQqMTFRqampstvtfnset9sth8OhIUOGyGq1+m1cBFbPWVslXV55MrdfTZPmr+65cfPq8vf8/jC5aizBDqdZ+GRWmtdxQ+/XK/v4ir8/jS2Q+atb9Xs9FIgAAAAMIC4uTpJUWVmp+Ph4T3tlZaV69+7t6XPq1Cmvx126dEmnT5/2PD4uLk6VlZVefeqO6/o0xGazyWaz1Wu3Wq0B+YdIoMZFYLiqvYsJTZm/K58bN89VY+H36idXfg4a+r36+7PC35/GFoj8NXY8djEDAAAwgKSkJMXFxamoqMjT5nQ6tWfPHiUnJ0uSkpOTdebMGZWWlnr6bNu2TTU1Nerfv7+nT3Fxsdf9CBwOh+64446rXl4GAACaPwpEAAAAIaKqqkplZWUqKyuTdPnG1GVlZSovL5fFYtGUKVM0b948vfvuuzp06JDGjh2rhIQEPfzww5Kkbt266aGHHtJTTz2lvXv36sMPP9SkSZM0ZswYJSQkSJJ++tOfKjw8XFlZWTp8+LD+8Ic/aOnSpV6XjwEAAPPhEjMAAIAQsX//fj3wwAOe47qiTWZmptasWaPp06fr3LlzGjdunM6cOaOBAwdqy5YtioiI8Dxm3bp1mjRpkgYPHqywsDCNHj1ay5Yt85yPiopSYWGhJk6cqL59++rWW2/VCy+8wBb3AACYHAUiAACAEDFo0CDV1l59e2mLxaI5c+Zozpw5V+0TExOj9evXX/N57rzzTv35z3/2OU4AAND8UCACAAAAEJKu3PUTABA4FIgAIAQ0NAE+Pj89CJEAAAAAMCNuUg0AAAAAAGByFIgAAAAAAABMjkvMAAAAgBDBJccAgGBhBREAAAAAAIDJsYIIAAAAAIAAYCc+GAkriAAAAAAAAEyOFUQAEKKu/MbJ13tQcD8L/L/27jw6qvL+4/gnAbIREiCRRCAEVEhYg4CxCAJiMKAH2VospQKWgvawikvhKJQISq2IKIKKWhYPVERFFGWTEmRfIoFSQlgEQQlhCUsSNATy/P7gx5QhgUySyczczPt1Dkfn3uc+9zv53pl858lznwEAR/E7AwC8FzOIAAAAAAAAvBwDRAAAAAAAAF6OASIAAAAAAAAvxxpEAOBkfFsFAAAAAKthBhEAAAAAAICXY4AIAAAAAADAy3GLGQAAAAAAbuLI8gRH/v6ICyKBt2MGEQAAAAAAgJdjgAgAAAAAAMDLMUAEAAAAAADg5ViDCAAsrKh71rlHHQAAAEBJMYMIAAAAAADAy3n8ANGUKVN0zz33qFq1aqpVq5Z69uyp9PR0uza//vqrhg0bprCwMAUHB6tPnz7KzMx0U8QAAAAAAADW4vEDROvWrdOwYcO0ZcsWrV69Wvn5+XrooYeUm5tra/P000/rq6++0uLFi7Vu3TodP35cvXv3dmPUAAAAAAAA1uHxaxCtWLHC7vHcuXNVq1YtpaSkqEOHDjp//rw+/PBDLVy4UJ07d5YkzZkzR40bN9aWLVv0m9/8xh1hA4DbFLUuEQAAAKyLdSfhCh4/g+hG58+flyTVrFlTkpSSkqL8/HwlJCTY2sTGxqpevXravHmzW2IEAAAAAACwEo+fQXS9goICjR49Wu3atVOzZs0kSSdOnJCfn5+qV69u1zYiIkInTpwosp+8vDzl5eXZHl+4cEGSlJ+fr/z8fKfFe60vZ/YJ1/GU/PlXMm49v1X5+xq7/1YERV2Lpb0+3H1dF8dTXn8ovfLKIdcEULExCxYA3MdSA0TDhg3Tnj17tGHDhjL1M2XKFCUlJRXavmrVKgUFBZWp76KsXr3a6X3Cddydv3/Eu/X0ljepTYG7Q3Cab775ptC20l4fRfXlidz9+kPZOTuHFy9edGp/AAAAuMoyA0TDhw/XsmXL9N1336lu3bq27ZGRkbp06ZLOnTtnN4soMzNTkZGRRfY1btw4jRkzxvb4woULioqK0kMPPaSQkBCnxZyfn6/Vq1erS5cuqlKlitP6hWt4Sv6aTVzptnNbmb+v0aQ2BRq/w1d5BT7uDscp9kxM0SpHEQAAHORJREFULLSttNdHUX15Ek95/aH0yiuH12b9ArA+ZgsBgGfx+AEiY4xGjBihJUuWKDk5WQ0aNLDb37p1a1WpUkVr1qxRnz59JEnp6ek6evSo2rZtW2Sf/v7+8vf3L7S9SpUq5fJBpLz6hWu4O395VyrG4Ia75BX4VJifYVHXYWmfm1Xek9z9+kPZOTuHXA+AdTEgBACezeMHiIYNG6aFCxdq6dKlqlatmm1dodDQUAUGBio0NFSDBw/WmDFjVLNmTYWEhGjEiBFq27Yt32AGAAAAAADgAI8fIHrnnXckSZ06dbLbPmfOHA0aNEiS9MYbb8jX11d9+vRRXl6eEhMTNWvWLBdHCgDli7+8AgAA4Joba8MDkx5yUySoKDx+gMiY4r+hJyAgQDNnztTMmTNdEBEAAAAAAEDF4uvuAAAAAAAAAOBeDBABAAAAAAB4OQaIAAAAAAAAvJzHr0EEAAAAAABurdnElfpH/NX/5l3xkSQd+fsjbo4KVsIMIgAAAAAAAC/HDCLAw/BV5nCHoq47/uIEAAAAeA9mEAEAAAAAAHg5ZhABAAAAuKkbZ5kywxQAKiZmEAEAAAAAAHg5ZhABAAAAFsK6cQCA8sAMIgAAAAAAAC/HABEAAAAAAICX4xYzAPBCRd2eAAAAgIqFReZREswgAgAAAAAA8HLMIAIAAADgMGahAkDFxAwiAAAAAAAAL8cMIgBAkbhnHQAAAPAeDBABAAAAFRAD/QCAkuAWMwAAAAAAAC/HDCLAhfhLHgAAAADAEzFABAAAAMCpmk1cqbwrPu4OAwBQAtxiBgAAAAAA4OUYIAIAAAAAAPBy3GIGuNGNaxIBAAAAAOAODBABAAAAAABJRf8Rmy/X8Q4MEAEASq0038xH0QEAAAB4HtYgAgAAAAAA8HLMIAIAAAAAwEuxLiquYYAIAAAAAAAvwGAQboVbzAAAAAAAALwcM4hQYZRmsdzyOrerzw8AAAAAQFkwQAQAAAAAAG7KnX+Mh+swQASUAvfuwhs5ct2X9rVx43EHJj1Uqn4AAAAAlA4DRAAAAAAAwGGl/aMgM488W4UZIJo5c6Zee+01nThxQnFxcZoxY4bi4+PdHRY8TEneyPwrGf2DSwhwi2YTV+of8Vf/m3fFp8g2RRUYTH8GSob6CQAAXFMhvsVs0aJFGjNmjP72t7/p+++/V1xcnBITE3Xy5El3hwYAAOCRqJ8AAMD1KsQMomnTpmnIkCF64oknJEnvvvuuvv76a/3zn//U2LFj3RwdAACA56F+AgC4miN3dNw4A5xvjHYdyw8QXbp0SSkpKRo3bpxtm6+vrxISErR582Y3RgZvx0LWgGcq7W1o3L6GioT6qeKh7gBQUZTnF6NQv92a5QeITp8+rStXrigiIsJue0REhPbt21fkMXl5ecrLy7M9Pn/+vCQpKytL+fn5TostPz9fFy9e1JkzZ1SlShWn9YuiVb6ca/f4zJkzxba5ZX8FRhcvFhSZv5L0A/e4lr/K+b66UlD0GjbwXI7kz5HXeGnbFBlTKY/zVuX1OzA7O1uSZIxxWp/eiPrJcxVVY9z17Cf2bUrZtyPvW2Wtcfj9a23kz9rIX/FufD91lq3jHixzH+X5+8/R+snyA0SlMWXKFCUlJRXa3qBBAzdEg/IS/nrZ+/hD2buAG5E/aysuf468xp3VxpnHwTmys7MVGhrq7jC8CvWT9bnqfYvfv9ZG/qyN/LmHVerC4uonyw8QhYeHq1KlSsrMzLTbnpmZqcjIyCKPGTdunMaMGWN7XFBQoKysLIWFhcnH538jrffcc4+2b99e6HhHt1+4cEFRUVE6duyYQkJCSvzcnOlmMbu6v5IcV1zb0u4nf56Rv+LalHQf+XPuceTvf8hf8fuK2lZeOTTGKDs7W7Vr13Zan96I+skxznz9W+G1f6v93p6/svTn6HHkz57V8udIW/Ln+v7I31WO1k+WHyDy8/NT69attWbNGvXs2VPS1YJlzZo1Gj58eJHH+Pv7y9/f325b9erVC7WrVKlSkYkp6faQkBC3v0BvFpur+yvJccW1Le1+8ucZ+SuuTUn3kT/nHkf+/of8Fb/vVu3LI4fMHCo76ifHOPP1b4XX/q32e3v+ytKfo8eRP3tWy58jbcmf6/sjf//jSP1UaeLEiROdfmYXCwkJ0fjx4xUVFSV/f3+NHz9eqamp+vDDDxUcHFymvuPj40u9PS8vT3//+981bty4QgWVO9wsZlf3V5Ljimtb2v3kzzPyV1ybku4jf849jvz9D/krft+N2zwthyiM+skxznz9W+G1f6v93p6/svTn6HHkz57V8udIW/Ln+v7In+N8TAVZ5fHtt9/Wa6+9phMnTqhly5Z66623dO+997o1pgsXLig0NFTnz593+wguSo78WRv5szbyZ33k0Bqon+Bs5M/ayJ+1kT9r84T8VYgZRNLVkbenn35a48eP15AhQ1S3bl13hyTp6rSxTp06qXJly9/N55XIn7WRP2sjf9ZHDj0f9RPKA/mzNvJnbeTP2tydvwozgwgAAAAAAACl4+vuAAAAAAAAAOBeDBABAAAAAAB4OQaIAAAAAAAAvBwDRAAAAAAAAF6OASI3WrZsmWJiYtSwYUN98MEH7g4HJdSrVy/VqFFDv/3tb90dCkro2LFj6tSpk5o0aaIWLVpo8eLF7g4JJXDu3Dm1adNGLVu2VLNmzfT++++7OySUwsWLFxUdHa1nn33W3aHA4riWrIn3cuujnrI+Ps9YiyvGD/gWMze5fPmymjRporVr1yo0NFStW7fWpk2bFBYW5u7Q4KDk5GRlZ2dr3rx5+vTTT90dDkogIyNDmZmZatmypU6cOKHWrVtr//79qlq1qrtDgwOuXLmivLw8BQUFKTc3V82aNdOOHTt4/7SYF154QQcPHlRUVJSmTp3q7nBgYVxL1sR7ufVRT1kfn2esw1XjB8wgcpNt27apadOmqlOnjoKDg9WtWzetWrXK3WGhBDp16qRq1aq5OwyUwu23366WLVtKkiIjIxUeHq6srCw3RwVHVapUSUFBQZKkvLw8GWPE3zqs5cCBA9q3b5+6devm7lBgcVxL1sV7ufVRT1kfn2esw1XjBwwQldJ3332n7t27q3bt2vLx8dEXX3xRqM3MmTNVv359BQQE6N5779W2bdts+44fP646derYHtepU0c///yzS2JH2fMH93Jm/lJSUnTlyhVFRUWVd9j4f87I37lz5xQXF6e6devqueeeU3h4uKvC93rOyN+zzz6rKVOmuCpkuIkrftdyLZUfV+SP9/Ly5cp6l3rK+fi8UrFYZfyAAaJSys3NVVxcnGbOnFnk/kWLFmnMmDH629/+pu+//15xcXFKTEzUyZMnXRwpikL+rM1Z+cvKytKAAQM0e/ZsV4SN/+eM/FWvXl27du3S4cOHtXDhQmVmZroqfK9X1vwtXbpUjRo1UqNGjVwZNtzAGa/1a+vT3Pjv+PHjXEvlrLzzJ/FeXt5ckUOJeqq8uCp/cA3LfP40KDNJZsmSJXbb4uPjzbBhw2yPr1y5YmrXrm2mTJlijDFm48aNpmfPnrb9o0aNMgsWLHBNwLBTmvxds3btWtOnTx+XxImilTZ/v/76q7n//vvN/PnzXRYrCivL6++av/zlL2bx4sXlGieKVpr8jR071tStW9dER0ebsLAwExISYpKSklwaN1zPGa/1G3EtuU555O9GvJeXr/LKIfWUa5Tna5DPM67nyeMHzCAqB5cuXVJKSooSEhJs23x9fZWQkKDNmzdLkuLj47Vnzx79/PPPysnJ0fLly5WYmOiukHEdR/IHz+VI/owxGjRokDp37qzHH3/cXaGiCI7kLzMzU9nZ2ZKk8+fP67vvvlNMTIxb4oU9R/I3ZcoUHTt2TEeOHNHUqVM1ZMgQTZgwwV0hw02c8buWa8l9nJE/3svdyxk5pJ5yHz6vVCyeNH5Q2ek9QqdPn9aVK1cUERFhtz0iIkL79u2TJFWuXFmvv/66HnjgARUUFOj555/nWxs8hCP5k6SEhATt2rVLubm5qlu3rhYvXqy2bdu6OlzcwJH8bdy4UYsWLVKLFi1s9/9+9NFHat68ucvjhT1H8vfjjz9q6NChtgVNR4wYQe48hKPvnwDXirU5I3+8l7uXM3JIPeU+znoP5fOMZ/Ck8QMGiNzo0Ucf1aOPPuruMFBK3377rbtDQCm1b99eBQUF7g4DpRQfH6/U1FR3hwEnGDRokLtDQAXBtWQ9vJdbH/WU9fF5xlpcMX7ALWblIDw8XJUqVSq00F5mZqYiIyPdFBUcRf6sjfxZG/mzNvIHR3GtWBv5sz5yaG3kr2LxpHwyQFQO/Pz81Lp1a61Zs8a2raCgQGvWrGHKngWQP2sjf9ZG/qyN/MFRXCvWRv6sjxxaG/mrWDwpn9xiVko5OTk6ePCg7fHhw4eVmpqqmjVrql69ehozZowGDhyoNm3aKD4+XtOnT1dubq6eeOIJN0aNa8iftZE/ayN/1kb+4CiuFWsjf9ZHDq2N/FUslsmn078XzUusXbvWSCr0b+DAgbY2M2bMMPXq1TN+fn4mPj7ebNmyxX0Bww75szbyZ23kz9rIHxzFtWJt5M/6yKG1kb+KxSr59DHGGGcPOgEAAAAAAMA6WIMIAAAAAADAyzFABAAAAAAA4OUYIAIAAAAAAPByDBABAAAAAAB4OQaIAAAAAAAAvBwDRAAAAAAAAF6OASIAAAAAAAAvxwARAAAAAACAl2OACAAAAAAAwMsxQATATqdOnTR69Gh3h1Fi6enpioyMVHZ29k3bzJ07V9WrV3dhVGUzduxYjRgxwt1hAABgeRW5vnFE/fr1NX36dCdF5XqlyZ+Pj4+++OILp8ZBbYaKjgEiAG6TkZGhP/zhD2rUqJF8fX1v+ot/8eLFio2NVUBAgJo3b65vvvmmUJtx48ZpxIgRqlatWnmH7TLPPvus5s2bpx9++MHdoQAAAAdR3zjf559/rkmTJjm1z+TkZPn4+OjcuXMOH0NthoqOASIAbpOXl6fbbrtNL774ouLi4opss2nTJvXr10+DBw/Wzp071bNnT/Xs2VN79uyxtTl69KiWLVumQYMGuSjyW8vPz3dKP+Hh4UpMTNQ777zjlP4AAED5q6j1jTvVrFnTIwbJqM1Q0TFABOCmzp49qwEDBqhGjRoKCgpSt27ddODAAbs277//vqKiohQUFKRevXpp2rRpDt/GVb9+fb355psaMGCAQkNDi2zz5ptvqmvXrnruuefUuHFjTZo0Sa1atdLbb79ta/PJJ58oLi5OderUsTt27ty5qlevni22M2fOFOp/6dKlatWqlQICAnTHHXcoKSlJly9ftu3ft2+f2rdvr4CAADVp0kTffvut3ZTlI0eOyMfHR4sWLVLHjh0VEBCgBQsWSJI++OADNW7cWAEBAYqNjdWsWbPszn3s2DH17dtX1atXV82aNdWjRw8dOXLErk337t318ccfO/TzBAAAxbN6fbNhwwbdf//9CgwMVFRUlEaOHKnc3Fzb/pMnT6p79+4KDAxUgwYNbHXJ9YqrbyTH6pSi7NmzR76+vjp16pQkKSsrS76+vvr9739vazN58mS1b9/e7phu3bopODhYERERevzxx3X69Gnb/htvMcvIyNAjjzxie44LFy4s8ja606dPq1evXgoKClLDhg315ZdfSrpavz3wwAOSpBo1asjHx8c2EPfpp5+qefPmCgwMVFhYmBISEux+vtRmqMgYIAJwU4MGDdKOHTv05ZdfavPmzTLG6OGHH7bNkNm4caOeeuopjRo1SqmpqerSpYtefvllp8awefNmJSQk2G1LTEzU5s2bbY/Xr1+vNm3a2LXZunWrBg8erOHDhys1NVUPPPCAJk+ebNdm/fr1GjBggEaNGqW9e/fqvffe09y5c23P4cqVK+rZs6eCgoK0detWzZ49Wy+88EKRcY4dO1ajRo1SWlqaEhMTtWDBAk2YMEEvv/yy0tLS9Morr2j8+PGaN2+epKuzjBITE1WtWjWtX79eGzduVHBwsLp27apLly7Z+o2Pj9dPP/3kUEEGAACKZ+X65tChQ+ratav69Omj3bt3a9GiRdqwYYOGDx9u9/yOHTumtWvX6tNPP9WsWbN08uRJ235H6htH65SiNG3aVGFhYVq3bp3teVz/WJLWrVunTp06SZLOnTunzp076+6779aOHTu0YsUKZWZmqm/fvjc9x4ABA3T8+HElJyfrs88+0+zZs+2e4zVJSUnq27evdu/erYcfflj9+/dXVlaWoqKi9Nlnn0m6us5TRkaG3nzzTWVkZKhfv37605/+pLS0NCUnJ6t3794yxtj6pDZDhWYA4DodO3Y0o0aNMvv37zeSzMaNG237Tp8+bQIDA80nn3xijDHmscceM4888ojd8f379zehoaGlPu+NqlSpYhYuXGi3bebMmaZWrVq2x3Fxceall16ya9OvXz/z8MMP22177LHH7GJ78MEHzSuvvGLX5qOPPjK33367McaY5cuXm8qVK5uMjAzb/tWrVxtJZsmSJcYYYw4fPmwkmenTp9v1c+eddxaKe9KkSaZt27a288TExJiCggLb/ry8PBMYGGhWrlxp23b+/HkjySQnJxf62QAAAMdUlPpm8ODBZujQoXbb1q9fb3x9fc0vv/xi0tPTjSSzbds22/60tDQjybzxxhvGGMfqG0frlJvp3bu3GTZsmDHGmNGjR5vnnnvO1KhRw6SlpZlLly6ZoKAgs2rVKmPM1frooYcesjv+2LFjRpJJT083xtj/HK89n+3bt9vaHzhwwO45GmOMJPPiiy/aHufk5BhJZvny5cYYY9auXWskmbNnz9rapKSkGEnmyJEjN31u1GaoyJhBBKBIaWlpqly5su69917btrCwMMXExCgtLU3S1b+4xMfH2x1342NX+OWXXxQQEGC3LS0tzS52SWrbtq3d4127dumll15ScHCw7d+QIUOUkZGhixcvKj09XVFRUYqMjLQdc7Pnd/1f+HJzc3Xo0CENHjzYru/Jkyfr0KFDtnMfPHhQ1apVs+2vWbOmfv31V1sbSQoMDJQkXbx4sRQ/GQAAcD2r1ze7du3S3Llz7eqLxMREFRQU6PDhw7bn17p1a9sxsbGxdrfHOVLfOFqn3EzHjh2VnJws6epsoc6dO6tDhw5KTk7W9u3blZ+fr3bt2tnOtXbtWrvnFBsbK0lFnis9PV2VK1dWq1atbNvuuusu1ahRo1DbFi1a2P6/atWqCgkJKXKm0TVxcXF68MEH1bx5c/3ud7/T+++/r7Nnz9q1oTZDRVbZ3QEAwK1ERkYqMzPTbltmZqZdURMeHl7ol7cjcnJylJSUpN69exfad2NBVpyqVava9StdXb/gxkGqSpUq2dq0bt26yHUBbrvtNtv/Z2VlFdoGAACsrbT1TU5Ojp588kmNHDmyUJ/16tXT/v37nRKfo3XKzVxbM+jAgQPau3ev2rdvr3379ik5OVlnz55VmzZtFBQUZDtX9+7d9eqrrxbq5/bbby/T86hSpYrdYx8fHxUUFNy0faVKlbR69Wpt2rRJq1at0owZM/TCCy9o69atatCggSRqM1RsDBABKFLjxo11+fJlbd26Vffdd58k6cyZM0pPT1eTJk0kSTExMdq+fbvdcTc+Lqu2bdtqzZo1dgsTrl692m420N133629e/cWin/r1q1227Zs2WL3uFWrVkpPT9ddd91V5LljYmJ07NgxZWZmKiIiQpJjzy8iIkK1a9fWDz/8oP79+xfZplWrVlq0aJFq1aqlkJCQm/a1Z88eValSRU2bNi32vAAA4NasXt+0atVKe/fuvWntEhsbq8uXLyslJUX33HOPpKszbq7/KndH6htH65Sbad68uWrUqKHJkyerZcuWCg4OVqdOnfTqq6/q7NmztvWHrp3rs88+U/369VW5cvEfT2NiYnT58mXt3LnTNlPq4MGDJf5joZ+fn6SrazJdz8fHR+3atVO7du00YcIERUdHa8mSJRozZowkajNUbNxiBqBIDRs2VI8ePTRkyBBt2LBBu3bt0h//+EfVqVNHPXr0kCSNGDFC33zzjaZNm6YDBw7ovffe0/Lly+Xj4+PweVJTU5WamqqcnBydOnVKqampdsXQqFGjtGLFCr3++uvat2+fJk6cqB07dtgtxnhtUcfrf8GPHDlSK1as0NSpU3XgwAG9/fbbWrFihd25J0yYoPnz5yspKUn//e9/lZaWpo8//lgvvviiJKlLly668847NXDgQO3evVsbN2607SvuOSYlJWnKlCl66623tH//fv3nP//RnDlzNG3aNElS//79FR4erh49emj9+vU6fPiwkpOTNXLkSP3000+2ftavX2/7phIAAFA2Vq9v/vrXv2rTpk22L+E4cOCAli5dajsuJiZGXbt21ZNPPqmtW7cqJSVFf/7zn+3qCEfqG0frlJvx8fFRhw4dtGDBAttgUIsWLZSXl6c1a9aoY8eOtrbDhg1TVlaW+vXrp+3bt+vQoUNauXKlnnjiiUKDN9LVQbCEhAQNHTpU27Zt086dOzV06FAFBgaWKEfR0dHy8fHRsmXLdOrUKeXk5Gjr1q165ZVXtGPHDh09elSff/65Tp06pcaNG9uOozZDhebuRZAAeJbrFwHMysoyjz/+uAkNDTWBgYEmMTHR7N+/36797NmzTZ06dUxgYKDp2bOnmTx5somMjHT4fJIK/YuOjrZr88knn5hGjRoZPz8/07RpU/P111/b7c/Pzze1a9c2K1assNv+4Ycfmrp165rAwEDTvXt3M3Xq1EILTK5YscLcd999JjAw0ISEhJj4+Hgze/Zs2/60tDTTrl074+fnZ2JjY81XX31lJNnOdW2R6p07dxZ6bgsWLDAtW7Y0fn5+pkaNGqZDhw7m888/t+3PyMgwAwYMMOHh4cbf39/ccccdZsiQIeb8+fO2NjExMeZf//qXwz9PAABQWEWqb7Zt22a6dOligoODTdWqVU2LFi3Myy+/bNufkZFhHnnkEePv72/q1atn5s+fb6Kjo+0WcC6uvrnWT3F1yq288cYbdotCG2NMjx49TOXKlU12drZd2/3795tevXqZ6tWrm8DAQBMbG2tGjx5tWyT7xsW+jx8/brp162b8/f1NdHS0WbhwoalVq5Z599137XJwbdHta0JDQ82cOXNsj1966SUTGRlpfHx8zMCBA83evXtNYmKiue2224y/v79p1KiRmTFjhl0f1GaoyHyMue47+wCgjIYMGaJ9+/Zp/fr1Lj3vzJkz9eWXX2rlypXlep6NGzeqffv2OnjwoO68885yPdfy5cv1zDPPaPfu3Q5NuQYAAOWD+saz/fTTT4qKitK3336rBx98sNzOQ22Gio6rGkCZTJ06VV26dFHVqlW1fPlyzZs3T7NmzXJ5HE8++aTOnTun7OxsVatWzWn9LlmyRMHBwWrYsKEOHjyoUaNGqV27di4pnnJzczVnzhwKEAAAXIz6xrP9+9//Vk5Ojpo3b66MjAw9//zzql+/vjp06FCu56U2Q0XHDCIAZdK3b18lJycrOztbd9xxh0aMGKGnnnpKktS0aVP9+OOPRR733nvv3XQBZ08yf/58TZ48WUePHlV4eLgSEhL0+uuvKywszN2hAQCAckJ9c2vBwcE33bd8+XLdf//9zgq1SCtXrtQzzzyjH374QdWqVdN9992n6dOnKzo6ulzPC1R0DBABKDc//vij8vPzi9wXERHh1L+EAQAAuAL1zdVvDbuZOnXqsIAzYFEMEAEAAAAAAHg5vuYeAAAAAADAyzFABAAAAAAA4OUYIAIAAAAAAPByDBABAAAAAAB4OQaIAAAAAAAAvBwDRAAAAAAAAF6OASIAAAAAAAAvxwARAAAAAACAl/s/zBHolfkmdT8AAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -2075,12 +2115,32 @@ } ], "source": [ - "plotDistribution(degrees, 100)" + "graphSummary(entityGraph, 100, plot_edge_weight=True, use_log_y=False)" ] }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "degrees = pd.Series({k: v for k, v in nx.degree(entityGraph)}, name=\"degree\")" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "filteredEntityGraph = entityGraph.edge_subgraph(\n", + " [edge for edge in entityGraph.edges if entityGraph.edges[edge][\"weight\"]>0.05]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 72, "metadata": {}, "outputs": [ { @@ -2089,30 +2149,32 @@ "text": [ "Name: \n", "Type: Graph\n", - "Number of nodes: 2383\n", - "Number of edges: 120596\n", - "Average degree: 101.2136\n" + "Number of nodes: 2267\n", + "Number of edges: 8111\n", + "Average degree: 7.1557\n" ] } ], "source": [ - "print(nx.info(entityGraph))" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [], - "source": [ - "allEdgesWeights = pd.Series({(d[0], d[1]): d[2][\"weight\"] for d in entityGraph.edges(data=True)})" + "print(nx.info(filteredEntityGraph))" ] }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 73, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Name: \n", + "Type: Graph\n", + "Number of nodes: 2267\n", + "Number of edges: 8111\n", + "Average degree: 7.1557\n" + ] + }, { "name": "stderr", "output_type": "stream", @@ -2123,9 +2185,19 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGhCAYAAAC6URSFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df2gUd/7H8dcmxkjaJK0Gk8as9Z9WLrUmkGyC0INYoqFXFOsJgtCmCi30JtJjaYvhOC/SP1q+10LgHJBr//BaTggWtNDjbG2wBFqPRI8IJeidYItXzz1FzOqGW9fd/f5RsleTNe6v2flM5vmAIjs7+5n35p3svvqZX4F0Op0WAACAISrcLgAAAOCnCCcAAMAohBMAAGAUwgkAADAK4QQAABiFcAIAAIxCOAEAAEZZ4nYB+UqlUrpy5Ypqa2sVCATcLgcAAOQgnU7r1q1bam5uVkXFwnMjngsnV65cUTAYdLsMAABQgMuXL6ulpWXBdTwTTmzblm3bunv3rqQf31xdXV1Jt5FIJPTFF19o8+bNqqqqKunYcB798z566H300Nuc7F80GlUwGFRtbe0D1/VMOLEsS5ZlKRqNqr6+XnV1dY6Ek5qaGtXV1fFH5UH0z/vooffRQ28rR/9yOSSDA2IBAIBRCCcAAMAohBMAAGAUwgkAADCKZ8KJbdtqbW1VKBRyuxQAAOAgz4QTy7I0NTWliYkJt0sBAAAO8kw4AQAA/kA4AQAARiGcAAAAoxBOAACAUQgnAADAKJ4JJ5xKDACAP3gmnHAqMQAA/uCZcAIAAPxhidsFAFj81uz7yz2Pv3v3eZcqAeAFzJwAAACjMHMCoKTmzpKYsH1magBvIZwAKIrbYQTA4kM4AVB2zG4AWAjhBIAR1uz7i6or0/q/Lmnd0OeKJwPz1iHAAP7gmXBi27Zs21YymXS7FMAXFtPsBmcLAd7imXBiWZYsy1I0GlV9fb3b5QC+xPElAMrBM+EEAOYiLAGLE+EEgGcQRgB/4CJsAADAKIQTAABgFHbrAIA4owcwCeEEgCR/Hc/hp/cKeBG7dQAAgFEIJwAAwCiEEwAAYBSOOQF8iGMuHiyXnxEHzQLO8Ew44d46AEyzmO4/BJjEM7t1LMvS1NSUJiYm3C4FAAA4yDPhBAAA+APhBAAAGIVwAgAAjOKZA2IBFI6zcwB4CTMnAADAKIQTAABgFHbrAEAJcXdjoHjMnAAAAKMwcwIADuIqskD+CCdAGTDVj58isAALI5wAgAEIsMD/cMwJAAAwCuEEAAAYhd06gMEKmernarAAvM4zMye2bau1tVWhUMjtUgAAgIM8E04sy9LU1JQmJibcLgUAADjIM+EEAAD4A8ecAIbgWBEA+BEzJwAAwCiEEwAAYBR26wAex+4gAIsNMycAAMAozJwAgIG4OSD8jJkTAABgFGZOAMAjuHMx/IJwAgAexa4fLFaEE3je7Ad0dWVa/9flcjEAgKIRToAiMdUOk/D7iMWAcAK4gGuTAMD9EU6AEiN4AEBxOJUYAAAYhXACAACMwm4dAPAZDpqF6Zg5AQAARiGcAAAAoxBOAACAUcoeTm7evKnOzk61t7dr3bp1+uCDD8pdAgAAMFjZD4itra3V2NiYampqFIvFtG7dOm3fvl0rVqwodykAAMBAZZ85qaysVE1NjSQpHo8rnU4rnU6XuwwAAGCovMPJ2NiYtmzZoubmZgUCAR0/fnzeOrZta82aNVq2bJm6u7s1Pj5+z/M3b95UW1ubWlpa9Oabb6qhoaHwdwAAABaVvHfrxGIxtbW1ac+ePdq+ffu850dGRhQOh3Xo0CF1d3dreHhYfX19unDhglauXClJeuSRR3Tu3DlFIhFt375dO3bsUGNjY9btxeNxxePxzONoNCpJSiQSSiQS+Za/oNnxSj0unFVd+ePMW3XFj/+Wu3+z2y+Htb/5LMv2y7Z5x832cPZfFC/b38Pc39lS/s3wOeptTvYvnzED6SL2qQQCAR07dkzbtm3LLOvu7lYoFNLBgwclSalUSsFgUHv37tW+ffvmjfGrX/1Kzz77rHbs2JF1G0NDQzpw4MC85UeOHMnsHgIAAGabmZnRrl27ND09rbq6ugXXLekBsXfu3NHZs2c1ODiYWVZRUaHe3l6dPn1akhSJRFRTU6Pa2lpNT09rbGxMr7322n3HHBwcVDgczjyORqMKBoPavHnzA99cvhKJhE6ePKlNmzapqqqqpGPDOeuGPpf04/9tv92ZKnv/ZreP4s328LdnKhRPBdwuZ1H4dqhv3rK5v7PZ1ikUn6Pe5mT/Zvd85KKk4eT69etKJpPzdtE0Njbq/PnzkqTvv/9er776auZA2L179+rpp5++75jV1dWqrq6et7yqqsqxX3wnx0bpxZP3fomVu39zt4/ixVMBfq4lku1vIdvfjBPb5XPUu5zoXz7jlf1U4q6uLk1OTpZ7swAAwCNKGk4aGhpUWVmpSCRyz/JIJKKmpqZSbgooi7k3SAMAOK+k1zlZunSpOjo6NDo6mlmWSqU0OjqqDRs2FDW2bdtqbW1VKBQqtkwAAGCwvGdObt++rYsXL2YeX7p0SZOTk1q+fLlWr16tcDis/v5+dXZ2qqurS8PDw4rFYtq9e3dRhVqWJcuyFI1GVV9fX9RYyC7bLAG3UgcAlFve4eTMmTPauHFj5vHsmTT9/f06fPiwdu7cqWvXrmn//v26evWq2tvbdeLEiftexwQA4Bx2TcKL8g4nPT09D7zc/MDAgAYGBgouCgAA+FfZz9YplG3bsm1byWTS7VLgEHYrAQAkF278VyjLsjQ1NaWJiQm3SwEAAA7yTDgBAAD+QDgBAABG8cwxJwAAZ+RyRg/Hf6GcmDkBAABG8Uw44QqxAAD4g2fCCWfrAADgD54JJwAAwB8IJwAAwCiEEwAAYBROJQYAPBC3l0A5eWbmhLN1AADwB8/MnFiWJcuyFI1GVV9f73Y5WIS4tTwAmMEzMycAAMAfPDNzAhSDWREA8A5mTgAAgFGYOQEAFCTbjOQ/397sQiVYbJg5AQAARvFMOOFUYgAA/MEz4YQb/wEA4A+eCScAAMAfCCcAgJJZN/R55l9O4UehCCcAAMAohBMAAGAUwgkAADAKF2GD0ebus+YW7QCw+DFzAgAAjOKZcMJF2AAA8AfP7NaxLEuWZSkajaq+vt7tcnwr26mB7GoBAJSSZ2ZOAACAPxBOAACAUQgnAADAKIQTAABgFM8cEAsA8B4OokchmDkBAABGIZwAAACjsFsHnsIt2AFg8WPmBAAAGMUz4YTL1wMA4A+eCSeWZWlqakoTExNulwIAABzkmXACAAD8gQNi4Yi5B65yXQMAQK6YOQEAAEYhnAAAAKMQTgAAgFEIJwAAwCgcEItFZ93Q54onA26XAQAoEDMnAADAKIQTAABgFMIJAAAwCuEEAAAYhXACAACMQjgBAABGIZwAAACjeCac2Lat1tZWhUIht0sBAAAO8sxF2CzLkmVZikajqq+vd7scAICDuLO5v3lm5gQAAPgD4QQAABiFcAIAAIxCOAEAAEYhnAAAAKMQTgAAgFEIJwAAwCieuc4JAGBxmntNE4CZEwAAYBTCCQAAMArhBAAAGIVwAgAAjMIBsQCAsuIAWDwIMycAAMAohBMAAGAUwgkAADAK4QQAABiFcAIAAIxCOAEAAEYhnAAAAKMQTgAAgFHKHk4uX76snp4etba2av369Tp69Gi5SwAAAAYr+xVilyxZouHhYbW3t+vq1avq6OjQL37xCz300EPlLgUAABio7OHkscce02OPPSZJampqUkNDg27cuEE4AQAAkgrYrTM2NqYtW7aoublZgUBAx48fn7eObdtas2aNli1bpu7ubo2Pj2cd6+zZs0omkwoGg/lXDgDwjTX7/jLvPyxeec+cxGIxtbW1ac+ePdq+ffu850dGRhQOh3Xo0CF1d3dreHhYfX19unDhglauXJlZ78aNG3rppZf0wQcfLLi9eDyueDyeeRyNRiVJiURCiUQi3/IXNDteqcf1iurK9Lxlc38WuayTbb1cfqbZxs5HdUX6nn/hPfTQ+8rZQ79+VjvJye/BfMYMpNPpgn+DAoGAjh07pm3btmWWdXd3KxQK6eDBg5KkVCqlYDCovXv3at++fZJ+DBybNm3SK6+8ohdffHHBbQwNDenAgQPzlh85ckQ1NTWFlg4AAMpoZmZGu3bt0vT0tOrq6hZct6THnNy5c0dnz57V4OBgZllFRYV6e3t1+vRpSVI6ndbLL7+sZ5999oHBRJIGBwcVDoczj6PRqILBoDZv3vzAN5evRCKhkydPatOmTaqqqirp2F6wbujzecu+HerLe51s62VbJ5ft56O6Iq23O1P67ZkKxVOBosaCO+ih95Wzh7l8riA/Tn4Pzu75yEVJw8n169eVTCbV2Nh4z/LGxkadP39ekvT1119rZGRE69evzxyv8vHHH+vpp5/OOmZ1dbWqq6vnLa+qqnIsQDg5tsniyfkfJHN/Drmsk229XH6e2cYuRDwVKNlYcAc99L5y9NCPn9Pl4sT3YD7jlf1snWeeeUapVKrcmwUAAB5R0ouwNTQ0qLKyUpFI5J7lkUhETU1NRY1t27ZaW1sVCoWKGgcAAJitpOFk6dKl6ujo0OjoaGZZKpXS6OioNmzYUNTYlmVpampKExMTxZYJAAAMlvdundu3b+vixYuZx5cuXdLk5KSWL1+u1atXKxwOq7+/X52dnerq6tLw8LBisZh2795d0sIBAMDilHc4OXPmjDZu3Jh5PHsmTX9/vw4fPqydO3fq2rVr2r9/v65evar29nadOHFi3kGyAAAA2eQdTnp6evSgS6MMDAxoYGCg4KIAAMhXtqvGfvfu8y5UgmKV/a7EheKAWAAA/MEz4YQDYgEA8IeyX+cEAIByYVePNxFOAACexJ2JFy/P7NYBAAD+4JlwwgGxAAD4g2fCCQfEAgDgD54JJwAAwB8IJwAAwCiEEwAAYBTCCQAAMIpnwgln6wAA4A+eCSecrQMAgD94JpwAAAB/IJwAAACjEE4AAIBRCCcAAMAohBMAAGAUz4QTTiUGAMAfPBNOOJUYAAB/8Ew4AQAA/kA4AQAARiGcAAAAoxBOAACAUZa4XQAAAOW0Zt9f7nn83bvPu1QJ7odwAgDwtblhRSKwuI3dOgAAwCieCSdchA0AAH/wTDjhImwAAPiDZ8IJAADwBw6IBQDgAThotryYOQEAAEYhnAAAAKMQTgAAgFEIJwAAwCiEEwAAYBTCCQAAMAqnEgMAUABuIOgcZk4AAIBRPBNOuLcOAAD+4JndOpZlybIsRaNR1dfXu10OAGARy3ZFWJSPZ2ZOAACAPxBOAACAUQgnAADAKIQTAABgFMIJAAAwCuEEAAAYhXACAACMQjgBAABGIZwAAACjEE4AAIBRPHP5epiLyzwDAEqJmRMAAGAUwgkAADAK4QQAABjFM8ec2LYt27aVTCbdLgUAgHlyOf7uu3efL0Ml3ueZmRPLsjQ1NaWJiQm3SwEAAA7yTDgBAAD+QDgBAABGIZwAAACjEE4AAIBRCCcAAMAohBMAAGAUwgkAADCKZy7CBgCA12W7UBsXZpuPmRMAAGAUwgkAADAK4QQAABiFcAIAAIxCOAEAAEYhnAAAAKMQTgAAgFEIJwAAwCiEEwAAYBTCCQAAMAqXr8eCsl1qGQAAJzFzAgAAjOJKOHnhhRf06KOPaseOHW5sHgAAGMyVcPL666/ro48+cmPTAADAcK6Ek56eHtXW1rqxaQAAYLi8w8nY2Ji2bNmi5uZmBQIBHT9+fN46tm1rzZo1WrZsmbq7uzU+Pl6SYgEAwOKX99k6sVhMbW1t2rNnj7Zv3z7v+ZGREYXDYR06dEjd3d0aHh5WX1+fLly4oJUrV+ZdYDweVzwezzyORqOSpEQioUQikfd4C5kdr9TjekV1ZdqxsXP5mRa7/eqK9D3/wnvooffRw/yZ9J3j5PdgPmMG0ul0wb9BgUBAx44d07Zt2zLLuru7FQqFdPDgQUlSKpVSMBjU3r17tW/fvsx6X331lQ4ePKhPPvlkwW0MDQ3pwIED85YfOXJENTU1hZYOAADKaGZmRrt27dL09LTq6uoWXLek1zm5c+eOzp49q8HBwcyyiooK9fb26vTp0wWNOTg4qHA4nHkcjUYVDAa1efPmB765fCUSCZ08eVKbNm1SVVVVScf2gnVDnzs29rdDfY5vv7oirbc7U/rtmQrFU4GixoI76KH30cP8Zft8nPt5mMtnaCk4+T04u+cjFyUNJ9evX1cymVRjY+M9yxsbG3X+/PnM497eXp07d06xWEwtLS06evSoNmzYkHXM6upqVVdXz1teVVXlWIBwcmyTxZPOfZDk8vMs1fbjqYCj7wXOo4feRw9zl+3zce7PrtzfSU58D+YznitXiP3yyy/d2CwAAPCAkp5K3NDQoMrKSkUikXuWRyIRNTU1lXJTAABgkSrpzMnSpUvV0dGh0dHRzEGyqVRKo6OjGhgYKGps27Zl27aSyWQpSgUAwAiF3sNs7uu+e/f5UpRjhLzDye3bt3Xx4sXM40uXLmlyclLLly/X6tWrFQ6H1d/fr87OTnV1dWl4eFixWEy7d+8uqlDLsmRZlqLRqOrr64saCwAAmCvvcHLmzBlt3Lgx83j2TJr+/n4dPnxYO3fu1LVr17R//35dvXpV7e3tOnHixLyDZAEAALLJO5z09PToQZdGGRgYKHo3DgAA8CdX7q1TCNu21draqlAo5HYpAADAQZ4JJ5ZlaWpqShMTE26XAgAAHOSZcAIAAPyBcAIAAIxCOAEAAEYhnAAAAKO4cm+dQnCFWACAXxV6FVmv8szMCWfrAADgD54JJwAAwB8IJwAAwCiEEwAAYBTCCQAAMApn6wAA4BPZzvr57t3nXahkYZ6ZOeFsHQAA/MEz4QQAAPgD4QQAABiFcAIAAIxCOAEAAEYhnAAAAKN4JpzYtq3W1laFQiG3SwEAAA7yTDjhVGIAAPzBM+EEAAD4A+EEAAAYhXACAACMQjgBAABGIZwAAACjEE4AAIBRCCcAAMAoS9wuIFe2bcu2bSWTSbdLQYms2fcXt0sAABjIMzMnXIQNAAB/8Ew4AQAA/kA4AQAARiGcAAAAoxBOAACAUQgnAADAKIQTAABgFMIJAAAwCuEEAAAYhXACAACM4plwYtu2WltbFQqF3C4FAAA4yDPhhMvXAwDgD54JJwAAwB8IJwAAwCiEEwAAYBTCCQAAMArhBAAAGIVwAgAAjEI4AQAARiGcAAAAoxBOAACAUQgnAADAKIQTAABgFMIJAAAwCuEEAAAYhXACAACM4plwYtu2WltbFQqF3C4FAAA4yDPhxLIsTU1NaWJiwu1SAACAgzwTTgAAgD8QTgAAgFEIJwAAwCiEEwAAYBTCCQAAMArhBAAAGIVwAgAAjEI4AQAARiGcAAAAoxBOAACAUQgnAADAKIQTAABgFMIJAAAwCuEEAAAYhXACAACMQjgBAABGIZwAAACjEE4AAIBRCCcAAMAohBMAAGAUwgkAADCKK+Hks88+09q1a/XEE0/oww8/dKMEAABgqCXl3uDdu3cVDod16tQp1dfXq6OjQy+88IJWrFhR7lIAAICByj5zMj4+rqeeekqrVq3Sww8/rOeee05ffPFFucsAAACGyjucjI2NacuWLWpublYgENDx48fnrWPbttasWaNly5apu7tb4+PjmeeuXLmiVatWZR6vWrVKP/zwQ4HlAwCAxSbv3TqxWExtbW3as2ePtm/fPu/5kZERhcNhHTp0SN3d3RoeHlZfX58uXLiglStX5l1gPB5XPB7PPI5Go5KkRCKhRCKR93gLmR2v1ON6RXVl2rGxs/1MS7296or0Pf/Ce+ih99FD9+Ty3ZXtc/enr3PyezCfMQPpdLrg36BAIKBjx45p27ZtmWXd3d0KhUI6ePCgJCmVSikYDGrv3r3at2+fvvnmG/3+97/XsWPHJEm//vWv1dXVpV27dmXdxtDQkA4cODBv+ZEjR1RTU1No6QAAoIxmZma0a9cuTU9Pq66ubsF1SxpO7ty5o5qaGn3yySf3BJb+/n7dvHlTn376qe7evauf/exn+uqrrzIHxH7zzTf3PSA228xJMBjU9evXH/jm8pVIJHTy5Elt2rRJVVVVJR3bSeuGPp+37NuhvoJe55Rs9ZR6+9UVab3dmdJvz1QongqUdGyUBz30PnronkI/Z3/6Oie/B6PRqBoaGnIKJyU9W+f69etKJpNqbGy8Z3ljY6POnz//4waXLNH777+vjRs3KpVK6a233lrwTJ3q6mpVV1fPW15VVeVYgHBybCfEk/M/AHKpP9vrnJKtHqe2H08FyvreUHr00PvoYfkV+jmb7XVOfA/mM17ZTyWWpK1bt2rr1q1ubBoAABiupKcSNzQ0qLKyUpFI5J7lkUhETU1NRY1t27ZaW1sVCoWKGgcAAJitpOFk6dKl6ujo0OjoaGZZKpXS6OioNmzYUNTYlmVpampKExMTxZYJAAAMlvdundu3b+vixYuZx5cuXdLk5KSWL1+u1atXKxwOq7+/X52dnerq6tLw8LBisZh2795d0sIBAMDilHc4OXPmjDZu3Jh5HA6HJf14Rs7hw4e1c+dOXbt2Tfv379fVq1fV3t6uEydOzDtIFgAAIJu8w0lPT48edPbxwMCABgYGCi4KAAD4lyt3JS4EB8QCAOAPngknHBALAIA/eCacAAAAfyCcAAAAoxBOAACAUTwTTjggFgAAf/BMOOGAWAAA/MGVG/8VY/YaK9FotORjJxIJzczMKBqNeuquxKn4zLxlufx8sr3OKdnqKfX2k5VpzcwklYxXKsXdUD2JHnofPXRPoZ+zP32dk9+Ds9t50LXSJCmQzmUtg/zrX/9SMBh0uwwAAFCAy5cvq6WlZcF1PBdOUqmUrly5otraWgUC/0vloVDovrt8sj2XbVk0GlUwGNTly5dVV1dX+uJztNB7Ked4+bwul3UftM79ns91uSn9k+hhocvpYXGvK7aHhTxHD0v7ukL/xnJ5PpfvQif7l06ndevWLTU3N6uiYuGjSjy3W6eioiJr4qqsrLzvDzLbcwutX1dX5+of1UK1lXO8fF6Xy7oPWud+z+e73O3+SfSw2OX0sLDXFdvDQp6jh6V9XaF/Y7k8n893oVP9q6+vz2m9yqGhoaGSb90lXV1deT03d1k8Hte7776rwcFBVVdXl7y+fCz0Xso5Xj6vy2XdB61zv+dzWW5S/yR6WMhyelj864rtYSHP0cPSvq7Qv7Fcnn/Qd6Ep/fPcbh0nRaNR1dfXa3p62vXEj/zRP++jh95HD73NlP4tqpmTUqisrFRPT4+WLPHcHi+I/i0G9ND76KG3mdA/Zk4AAIBRPHMRNgAA4A+EEwAAYBTCCQAAMArhBAAAGIVwAgAAjEI4KcLMzIwef/xxvfHGG26XgjzdvHlTnZ2dam9v17p16/TBBx+4XRLycPnyZfX09Ki1tVXr16/X0aNH3S4JBXjhhRf06KOPaseOHW6Xghx99tlnWrt2rZ544gl9+OGHjm2HU4mL8Jvf/EYXL15UMBjUe++953Y5yEMymVQ8HldNTY1isZjWrVunM2fOaMWKFW6Xhhz8+9//ViQSUXt7u65evaqOjg794x//0EMPPeR2acjDV199pVu3bulPf/qTPvnkE7fLwQPcvXtXra2tOnXqlOrr69XR0aFvvvnGkc9NZk4K9M9//lPnz5/Xc88953YpKEBlZaVqamok/Xi55nQ6ndNtvGGGxx57TO3t7ZKkpqYmNTQ06MaNGy5XhXz19PSotrbW7TKQo/HxcT311FNatWqVHn74YT333HP64osvHNnWogwnY2Nj2rJli5qbmxUIBHT8+PF569i2rTVr1mjZsmXq7u7W+Ph4Xtt444039M4775SqZMxRjh7evHlTbW1tamlp0ZtvvqmGhoZSle975ejfrLNnzyqZTCoYDBZbNn6inD1EeRTb0ytXrmjVqlWZx6tWrdIPP/zgSK2LMpzEYjG1tbXJtu2sz4+MjCgcDut3v/ud/v73v6utrU19fX36z3/+k1ln9liEuf9duXJFn376qZ588kk9+eST5XpLvuN0DyXpkUce0blz53Tp0iUdOXJEkUikLO/ND8rRP0m6ceOGXnrpJf3xj390/D35Tbl6iPIpRU/LJr3ISUofO3bsnmVdXV1py7Iyj5PJZLq5uTn9zjvv5DTmvn370i0tLenHH388vWLFinRdXV36wIEDJa0b/+NED+d67bXX0kePHi2qTmTnVP/++9//pn/+85+nP/roo5LViuyc/Bs8depU+pe//GVJ6kTuCunp119/nd62bVvm+ddffz395z//2ZH6FuXMyULu3Lmjs2fPqre3N7OsoqJCvb29On36dE5jvPPOO7p8+bK+++47vffee3rllVe0f/9+p0rGHKXoYSQS0a1btyRJ09PTGhsb09q1ax2pF/cqRf/S6bRefvllPfvss3rxxRedKhX3UYoewiy59LSrq0vffvutfvjhB92+fVt//etf1dfX50g9vrtl5PXr15VMJtXY2HjP8sbGRp0/f96lqpCPUvTw+++/16uvvpo5EHbv3r16+umnnSgXc5Sif19//bVGRka0fv36zH7zjz/+mB6WSak+R3t7e3Xu3DnFYjG1tLTo6NGj2rBhQ6nLRQ5y6emSJUv0/vvva+PGjUqlUnrrrbccO8PRd+Gk1F5++WW3S0ABurq6NDk56XYZKNAzzzyjVCrldhko0pdfful2CcjT1q1btXXrVse347vdOg0NDaqsrJx38GMkElFTU5NLVSEf9NDb6J/30cPFx7Se+i6cLF26VB0dHRodHc0sS6VSGh0dZTrRI+iht9E/76OHi49pPV2Uu3Vu376tixcvZh5funRJk5OTWr58uVavXq1wOKz+/n51dnaqq6tLw8PDisVi2r17t4tV46foobfRP++jh4uPp3rqyDlALjt16lRa0rz/+vv7M+v84Q9/SK9evTq9dOnSdFdXV/pvf/ubewVjHnrobfTP++jh4uOlnnJvHQAAYBTfHXMCAADMRjgBAABGIZwAAACjEE4AAIBRCCcAAMAohJ3AStwAAAAuSURBVBMAAGAUwgkAADAK4QQAABiFcAIAAIxCOAEAAEYhnAAAAKMQTgAAgFH+H54TNkBgBD28AAAAAElFTkSuQmCC", "text/plain": [ - "
" + "(0.01, 8)" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIgAAAHFCAYAAACZ0sLWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde3RTZb7/8U9b0kCBFEHblEOpPYBAuQjCSDMqi0svQuWg9JyRkUvRKgOnMNIqcOpBDtCRYhUQRy7jEQEXMCozMGcEpA33QYpghwqUERVxOg5N6xqECEga2v7+cDU/MwWBkjQJeb/WYsne+8mzvw/ukKcfnuwdUldXVycAAAAAAAAErVBfFwAAAAAAAADfIiACAAAAAAAIcgREAAAAAAAAQY6ACAAAAAAAIMgREAEAAAAAAAQ5AiIAAAAAAIAgR0AEAAAAAAAQ5AiIAAAAAAAAglwzXxfgD2pra3X69Gm1bt1aISEhvi4HAABcRV1dnb799lu1b99eoaH8O5evMHcCACBwXO/8iYBI0unTpxUbG+vrMgAAwHX629/+pg4dOvi6jKDF3AkAgMBzrfkTAZGk1q1bS/r+D8tkMnmsX6fTqaKiIqWkpMhgMHisXwDXxvsP8B1vvv/sdrtiY2Ndn93wjfo//1OnTqlt27Y+rga4MuYCCARcp2gK1zt/IiCSXEujTSaTxwOiiIgImUwm3uxAE+P9B/hOU7z/+FqTb9X/+bdu3dqjcyfAk5gLIBBwnaIpXWv+xJf3AQAAAAAAghwBEQAAAAAAQJAjIAIAAAAAAAhyBEQAAAAAAABBjoAIAAAAAAAgyBEQAQAAAAAABDkCIgAAAAAAgCBHQAQAAAAAABDkCIgAAAAAAACCHAERAAAAAABAkCMgAgAAAAAACHIERAAAAAAAAEGOgAgAAAAAACDIERABAAAAAAAEOQIiAAAAAACAINfM1wUAuDXc+V9bfF2CG2NYnQru9XUVAAD4t6b+/P5yQVqTng8AcP1YQQQAAAAAABDkCIgAAAAAAACCHAERAAAAAABAkCMgAgAAAAAACHIERAAAAAAAAEGOgAgAAAAAACDIERABAAAAAAAEOQIiAAAAP7F8+XL17t1bJpNJJpNJFotF77//vuv4oEGDFBIS4vZr0qRJbn2Ul5crLS1NERERioqK0vTp03X58mW3Nrt379Y999wjo9Gozp07a/Xq1U0xPAAA4Mea+boAAAAAfK9Dhw5asGCBunTporq6Oq1Zs0YjR47U4cOH1aNHD0nSU089pXnz5rleExER4fp9TU2N0tLSZDabtX//flVUVGj8+PEyGAyaP3++JOnUqVNKS0vTpEmTtG7dOu3YsUNPPvmkYmJilJqa2rQDBgAAfoOACAAAwE+MGDHCbfuFF17Q8uXLdeDAAVdAFBERIbPZfMXXFxUV6fjx49q+fbuio6PVp08f5eXlaebMmZozZ47Cw8O1YsUKxcfHa+HChZKk7t27a9++fVq8eDEBEQAAQYyACAAAwA/V1NRow4YNunDhgiwWi2v/unXrtHbtWpnNZo0YMULPP/+8axVRcXGxevXqpejoaFf71NRUTZ48WWVlZerbt6+Ki4uVlJTkdq7U1FRNmzbtqrU4HA45HA7Xtt1ulyQ5nU45nU6PjBe+YQyra9LzNeX1Un8urlH4M65TNIXrvb4IiAAAAPzI0aNHZbFYdOnSJbVq1UqbNm1SQkKCJOmxxx5TXFyc2rdvryNHjmjmzJk6ceKENm7cKEmy2Wxu4ZAk17bNZvvRNna7Xd99951atGjRoKb8/HzNnTu3wf5du3a5fcUNgafg3qY939atW5v2hJKsVmuTnxO4UVyn8KaLFy9eVzsCIgAAAD/StWtXlZaW6ty5c/rd736njIwM7dmzRwkJCZo4caKrXa9evRQTE6OhQ4fq5MmT6tSpk9dqys3NVU5OjmvbbrcrNjZWgwcPVrt27bx2XnhfzzmFTXq+Y3Oa7muMTqdTVqtVycnJMhgMTXZe4EZwnaIp1K/8vRYCIgAAAD8SHh6uzp07S5L69eunQ4cOacmSJfrNb37ToO2AAQMkSZ9//rk6deoks9msgwcPurWprKyUJNd9i8xms2vfD9uYTKYrrh6SJKPRKKPR2GC/wWDgB5oA56gJadLz+eJ64TpFIOA6hTdd77XFY+4BAAD8WG1trdv9f36otLRUkhQTEyNJslgsOnr0qKqqqlxtrFarTCaT62tqFotFO3bscOvHarW63ecIAAAEH1YQAQAA+Inc3FwNGzZMHTt21Lfffqv169dr9+7dKiws1MmTJ7V+/XoNHz5c7dq105EjR5Sdna2BAweqd+/ekqSUlBQlJCRo3LhxKigokM1m06xZs5SVleVaATRp0iS99tprmjFjhp544gnt3LlT7777rrZs2eLLoQMAAB8jIAIAAPATVVVVGj9+vCoqKhQZGanevXursLBQycnJ+tvf/qbt27frlVde0YULFxQbG6v09HTNmjXL9fqwsDBt3rxZkydPlsViUcuWLZWRkaF58+a52sTHx2vLli3Kzs7WkiVL1KFDB73xxhs84h4AgCBHQAQAAOAnVq5cedVjsbGx2rNnzzX7iIuLu+aTogYNGqTDhw/fcH0AAODWxT2IAAAAAAAAghwBEQAAAAAAQJAjIAIAAAAAAAhyBEQAAAAAAABBjoAIAAAAAAAgyBEQAQAAAAAABDkCIgAAAAAAgCBHQAQAAAAAABDkCIgAAAAAAACCHAERAAAAAABAkCMgAgAAAAAACHIERAAAAAAAAEHO5wHR3//+d40dO1bt2rVTixYt1KtXL3300Ueu43V1dZo9e7ZiYmLUokULJSUl6bPPPnPr48yZMxozZoxMJpPatGmjzMxMnT9/vqmHAgAAAAAAEJB8GhB98803uu+++2QwGPT+++/r+PHjWrhwoW677TZXm4KCAr366qtasWKFPvzwQ7Vs2VKpqam6dOmSq82YMWNUVlYmq9WqzZs3a+/evZo4caIvhgQAAAAAABBwmvny5C+++KJiY2O1atUq1774+HjX7+vq6vTKK69o1qxZGjlypCTprbfeUnR0tP7whz9o9OjR+stf/qJt27bp0KFD6t+/vyTp17/+tYYPH66XX35Z7du3b9pBAQAAAAAABBifBkR//OMflZqaqv/4j//Qnj179C//8i/6z//8Tz311FOSpFOnTslmsykpKcn1msjISA0YMEDFxcUaPXq0iouL1aZNG1c4JElJSUkKDQ3Vhx9+qEceeaTBeR0OhxwOh2vbbrdLkpxOp5xOp8fGV9+XJ/sE/JUxrM7XJbgxhn5fD+8/oOl58/OP9zQAAIB3+DQg+uKLL7R8+XLl5OToueee06FDh/TLX/5S4eHhysjIkM1mkyRFR0e7vS46Otp1zGazKSoqyu14s2bN1LZtW1ebf5afn6+5c+c22F9UVKSIiAhPDM2N1Wr1eJ+Avym419cVXBnvP8B3vPH+u3jxosf7BAAAgI8DotraWvXv31/z58+XJPXt21fHjh3TihUrlJGR4bXz5ubmKicnx7Vtt9sVGxurlJQUmUwmj53H6XTKarUqOTlZBoPBY/0C/qjnnEJfl+DGGFqnvP61vP8AH/Dm51/9ql8AAAB4lk8DopiYGCUkJLjt6969u37/+99LksxmsySpsrJSMTExrjaVlZXq06ePq01VVZVbH5cvX9aZM2dcr/9nRqNRRqOxwX6DweCVHyS91S/gTxw1Ib4u4Yp4/wG+4433H+9nAAAA7/DpU8zuu+8+nThxwm3fp59+qri4OEnf37DabDZrx44druN2u10ffvihLBaLJMlisejs2bMqKSlxtdm5c6dqa2s1YMCAJhgFAAAAAABAYPPpCqLs7Gz99Kc/1fz58/Wzn/1MBw8e1Ouvv67XX39dkhQSEqJp06bpV7/6lbp06aL4+Hg9//zzat++vR5++GFJ3684evDBB/XUU09pxYoVcjqdmjJlikaPHs0TzAAAAAAAAK6DTwOin/zkJ9q0aZNyc3M1b948xcfH65VXXtGYMWNcbWbMmKELFy5o4sSJOnv2rO6//35t27ZNzZs3d7VZt26dpkyZoqFDhyo0NFTp6el69dVXfTEkAAAAAACAgOPTgEiSHnroIT300ENXPR4SEqJ58+Zp3rx5V23Ttm1brV+/3hvlAQAAAAAA3PJ8eg8iAAAAAAAA+B4BEQAAAAAAQJAjIAIAAAAAAAhyBEQAAAAAAABBjoAIAAAAAAAgyBEQAQAAAAAABDkCIgAAAAAAgCBHQAQAAAAAABDkCIgAAAAAAACCHAERAAAAAABAkCMgAgAAAAAACHIERAAAAAAAAEGOgAgAAAAAACDIERABAAAAAAAEOQIiAAAAAACAIEdABAAAAAAAEOQIiAAAAAAAAIIcAREAAICfWL58uXr37i2TySSTySSLxaL333/fdfzSpUvKyspSu3bt1KpVK6Wnp6uystKtj/LycqWlpSkiIkJRUVGaPn26Ll++7NZm9+7duueee2Q0GtW5c2etXr26KYYHAAD8GAERAACAn+jQoYMWLFigkpISffTRRxoyZIhGjhypsrIySVJ2drbee+89bdiwQXv27NHp06c1atQo1+tramqUlpam6upq7d+/X2vWrNHq1as1e/ZsV5tTp04pLS1NgwcPVmlpqaZNm6Ynn3xShYWFTT5eAADgP5r5ugAAAAB8b8SIEW7bL7zwgpYvX64DBw6oQ4cOWrlypdavX68hQ4ZIklatWqXu3bvrwIEDSkxMVFFRkY4fP67t27crOjpaffr0UV5enmbOnKk5c+YoPDxcK1asUHx8vBYuXChJ6t69u/bt26fFixcrNTW1yccMAAD8AwERAACAH6qpqdGGDRt04cIFWSwWlZSUyOl0KikpydWmW7du6tixo4qLi5WYmKji4mL16tVL0dHRrjapqamaPHmyysrK1LdvXxUXF7v1Ud9m2rRpV63F4XDI4XC4tu12uyTJ6XTK6XR6asjwAWNYXZOerymvl/pzcY3Cn3Gdoilc7/VFQAQAAOBHjh49KovFokuXLqlVq1batGmTEhISVFpaqvDwcLVp08atfXR0tGw2myTJZrO5hUP1x+uP/Vgbu92u7777Ti1atGhQU35+vubOndtg/65duxQREdH4wcLnCu5t2vNt3bq1aU8oyWq1Nvk5gRvFdQpvunjx4nW1IyACAADwI127dlVpaanOnTun3/3ud8rIyNCePXt8WlNubq5ycnJc23a7XbGxsRo8eLDatWvnw8pws3rOadp7Tx2b03RfY3Q6nbJarUpOTpbBYGiy8wI3gusUTaF+5e+1EBABAAD4kfDwcHXu3FmS1K9fPx06dEhLlizRo48+qurqap09e9ZtFVFlZaXMZrMkyWw26+DBg2791T/l7Idt/vnJZ5WVlTKZTFdcPSRJRqNRRqOxwX6DwcAPNAHOURPSpOfzxfXCdYpAwHUKb7rea4unmAEAAPix2tpaORwO9evXTwaDQTt27HAdO3HihMrLy2WxWCRJFotFR48eVVVVlauN1WqVyWRSQkKCq80P+6hvU98HAAAITqwgAgAA8BO5ubkaNmyYOnbsqG+//Vbr16/X7t27VVhYqMjISGVmZionJ0dt27aVyWTS1KlTZbFYlJiYKElKSUlRQkKCxo0bp4KCAtlsNs2aNUtZWVmuFUCTJk3Sa6+9phkzZuiJJ57Qzp079e6772rLli2+HDoAAPAxAiIAAAA/UVVVpfHjx6uiokKRkZHq3bu3CgsLlZycLElavHixQkNDlZ6eLofDodTUVC1btsz1+rCwMG3evFmTJ0+WxWJRy5YtlZGRoXnz5rnaxMfHa8uWLcrOztaSJUvUoUMHvfHGGzziHgCAIEdABAAA4CdWrlz5o8ebN2+upUuXaunSpVdtExcXd80nRQ0aNEiHDx9uVI0AAODWxD2IAAAAAAAAghwBEQAAAAAAQJAjIAIAAAAAAAhyBEQAAAAAAABBjoAIAAAAAAAgyBEQAQAAAAAABDkCIgAAAAAAgCBHQAQAAAAAABDkCIgAAAAAAACCHAERAAAAAABAkCMgAgAAAAAACHIERAAAAAAAAEGOgAgAAAAAACDIERABAAAAAAAEOQIiAAAAAACAIEdABAAAAAAAEOR8GhDNmTNHISEhbr+6devmOn7p0iVlZWWpXbt2atWqldLT01VZWenWR3l5udLS0hQREaGoqChNnz5dly9fbuqhAAAAAAAABKxmvi6gR48e2r59u2u7WbP/X1J2dra2bNmiDRs2KDIyUlOmTNGoUaP0wQcfSJJqamqUlpYms9ms/fv3q6KiQuPHj5fBYND8+fObfCwAAAAAAACByOcBUbNmzWQ2mxvsP3funFauXKn169dryJAhkqRVq1ape/fuOnDggBITE1VUVKTjx49r+/btio6OVp8+fZSXl6eZM2dqzpw5Cg8Pb+rhAAAAAAAABByfB0SfffaZ2rdvr+bNm8tisSg/P18dO3ZUSUmJnE6nkpKSXG27deumjh07qri4WImJiSouLlavXr0UHR3tapOamqrJkyerrKxMffv2veI5HQ6HHA6Ha9tut0uSnE6nnE6nx8ZW35cn+wT8lTGsztcluDGGfl8P7z+g6Xnz84/3NAAAgHf4NCAaMGCAVq9era5du6qiokJz587VAw88oGPHjslmsyk8PFxt2rRxe010dLRsNpskyWazuYVD9cfrj11Nfn6+5s6d22B/UVGRIiIibnZYDVitVo/3Cfibgnt9XcGV8f4DfMcb77+LFy96vE8AAAD4OCAaNmyY6/e9e/fWgAEDFBcXp3fffVctWrTw2nlzc3OVk5Pj2rbb7YqNjVVKSopMJpPHzuN0OmW1WpWcnCyDweCxfgF/1HNOoa9LcGMMrVNe/1ref4APePPzr37VLwAAADzL518x+6E2bdrorrvu0ueff67k5GRVV1fr7NmzbquIKisrXfcsMpvNOnjwoFsf9U85u9J9jeoZjUYZjcYG+w0Gg1d+kPRWv4A/cdSE+LqEK+L9B/iON95/vJ8BAAC8w6ePuf9n58+f18mTJxUTE6N+/frJYDBox44druMnTpxQeXm5LBaLJMlisejo0aOqqqpytbFarTKZTEpISGjy+gEAAAAAAAKRT1cQPfvssxoxYoTi4uJ0+vRp/c///I/CwsL085//XJGRkcrMzFROTo7atm0rk8mkqVOnymKxKDExUZKUkpKihIQEjRs3TgUFBbLZbJo1a5aysrKuuEIIAAAAAAAADfk0IPrqq6/085//XP/4xz90xx136P7779eBAwd0xx13SJIWL16s0NBQpaeny+FwKDU1VcuWLXO9PiwsTJs3b9bkyZNlsVjUsmVLZWRkaN68eb4aEgAAAAAAQMDxaUD09ttv/+jx5s2ba+nSpVq6dOlV28TFxWnr1q2eLg0AAAAAACBo+NU9iAAAAAAAAND0CIgAAAAAAACCHAERAAAAAABAkCMgAgAAAAAACHIERAAAAAAAAEGOgAgAAAAAACDIERABAAAAAAAEuWa+LgAAAABAcLjzv7Y02bmMYXUquLfJTgcAAY8VRAAAAAAAAEGOgAgAAAAAACDIERABAAAAAAAEOQIiAAAAAACAIMdNqgHc0nrOKZSjJsTXZbj5ckGar0sA4Kfy8/O1ceNGffLJJ2rRooV++tOf6sUXX1TXrl1dbQYNGqQ9e/a4ve4Xv/iFVqxY4douLy/X5MmTtWvXLrVq1UoZGRnKz89Xs2b/f+q3e/du5eTkqKysTLGxsZo1a5YmTJjg9TECAAD/xAoiAAAAP7Fnzx5lZWXpwIEDslqtcjqdSklJ0YULF9zaPfXUU6qoqHD9KigocB2rqalRWlqaqqurtX//fq1Zs0arV6/W7NmzXW1OnTqltLQ0DR48WKWlpZo2bZqefPJJFRYWNtlYAQCAf2EFEQAAgJ/Ytm2b2/bq1asVFRWlkpISDRw40LU/IiJCZrP5in0UFRXp+PHj2r59u6Kjo9WnTx/l5eVp5syZmjNnjsLDw7VixQrFx8dr4cKFkqTu3btr3759Wrx4sVJTU703QAAA4LdYQQQAAOCnzp07J0lq27at2/5169bp9ttvV8+ePZWbm6uLFy+6jhUXF6tXr16Kjo527UtNTZXdbldZWZmrTVJSklufqampKi4u9tZQAACAn2MFEQAAgB+qra3VtGnTdN9996lnz56u/Y899pji4uLUvn17HTlyRDNnztSJEye0ceNGSZLNZnMLhyS5tm0224+2sdvt+u6779SiRQu3Yw6HQw6Hw7Vtt9slSU6nU06n00Mjhi8Yw+p8XYLXGEO/HxvXKPxZ/fXJdQpvut7ri4AIAADAD2VlZenYsWPat2+f2/6JEye6ft+rVy/FxMRo6NChOnnypDp16uSVWvLz8zV37twG+3ft2qWIiAivnBNNo+BeX1fgfVar1dclANfEdQpv+uFK4x9DQAQAAOBnpkyZos2bN2vv3r3q0KHDj7YdMGCAJOnzzz9Xp06dZDabdfDgQbc2lZWVkuS6b5HZbHbt+2Ebk8nUYPWQJOXm5ionJ8e1bbfbFRsbq8GDB6tdu3Y3PkD4jZ5zbt0bkxtD65TXv1bJyckyGAy+Lge4IqfTKavVynUKr6pf+XstBEQAAAB+oq6uTlOnTtWmTZu0e/duxcfHX/M1paWlkqSYmBhJksVi0QsvvKCqqipFRUVJ+v5fpk0mkxISElxttm7d6taP1WqVxWK54jmMRqOMRmOD/QaDgR9oApyjJsTXJXgd1ykCAdcpvOl6ry1uUg0AAOAnsrKytHbtWq1fv16tW7eWzWaTzWbTd999J0k6efKk8vLyVFJSoi+//FJ//OMfNX78eA0cOFC9e/eWJKWkpCghIUHjxo3Txx9/rMLCQs2aNUtZWVmukGfSpEn64osvNGPGDH3yySdatmyZ3n33XWVnZ/ts7AAAwLcIiAAAAPzE8uXLde7cOQ0aNEgxMTGuX++8844kKTw8XNu3b1dKSoq6deumZ555Runp6XrvvfdcfYSFhWnz5s0KCwuTxWLR2LFjNX78eM2bN8/VJj4+Xlu2bJHVatXdd9+thQsX6o033uAR9wAABDG+YgYAAOAn6up+/IlSsbGx2rNnzzX7iYuLa/AVsn82aNAgHT58+IbqAwAAty5WEAEAAAAAAAQ5AiIAAAAAAIAgR0AEAAAAAAAQ5AiIAAAAAAAAghwBEQAAAAAAQJAjIAIAAAAAAAhyBEQAAAAAAABBjoAIAAAAAAAgyBEQAQAAAAAABDkCIgAAAAAAgCBHQAQAAAAAABDkCIgAAAAAAACCHAERAAAAAABAkCMgAgAAAAAACHIERAAAAAAAAEGOgAgAAAAAACDIERABAAAAAAAEOQIiAAAAAACAINfM1wUAuHF3/tcWX5cAAAAAALiFsIIIAAAAAAAgyBEQAQAAAAAABLlGBURffPGFp+vQggULFBISomnTprn2Xbp0SVlZWWrXrp1atWql9PR0VVZWur2uvLxcaWlpioiIUFRUlKZPn67Lly97vD4AAICr8cbcCAAAoCk1KiDq3LmzBg8erLVr1+rSpUs3XcShQ4f0m9/8Rr1793bbn52drffee08bNmzQnj17dPr0aY0aNcp1vKamRmlpaaqurtb+/fu1Zs0arV69WrNnz77pmgAAAK6Xp+dGAAAATa1RAdGf//xn9e7dWzk5OTKbzfrFL36hgwcPNqqA8+fPa8yYMfrf//1f3Xbbba79586d08qVK7Vo0SINGTJE/fr106pVq7R//34dOHBAklRUVKTjx49r7dq16tOnj4YNG6a8vDwtXbpU1dXVjaoHAADgRnlybgQAAOALjQqI+vTpoyVLluj06dN68803VVFRofvvv189e/bUokWL9PXXX193X1lZWUpLS1NSUpLb/pKSEjmdTrf93bp1U8eOHVVcXCxJKi4uVq9evRQdHe1qk5qaKrvdrrKyssYMDQAA4IZ5cm4EAADgCzf1mPtmzZpp1KhRSktL07Jly5Sbm6tnn31Wzz33nH72s5/pxRdfVExMzFVf//bbb+vPf/6zDh061OCYzWZTeHi42rRp47Y/OjpaNpvN1eaH4VD98fpjV+NwOORwOFzbdrtdkuR0OuV0Oq8x6utX35cn+wQkyRhW5+sS/J4xtM7tv/6EvxNwq/Pm55+/v39udm4EAADgKzcVEH300Ud688039fbbb6tly5Z69tlnlZmZqa+++kpz587VyJEjr7q8+m9/+5uefvppWa1WNW/e/GbKuGH5+fmaO3dug/1FRUWKiIjw+PmsVqvH+0RwK7jX1xUEjrz+tb4uoYGtW7f6ugSgSXjj8+/ixYse79OTbmZuBAAA4EuNCogWLVqkVatW6cSJExo+fLjeeustDR8+XKGh339jLT4+XqtXr9add9551T5KSkpUVVWle+65x7WvpqZGe/fu1WuvvabCwkJVV1fr7NmzbquIKisrZTabJUlms7nBJKv+KWf1ba4kNzdXOTk5rm273a7Y2FilpKTIZDJd/x/ENTidTlmtViUnJ8tgMHisX6DnnEJfl+D3jKF1yutfq+c/CpWjNsTX5bg5NifV1yUAXuXNz7/6Vb/+xhNzIwAAAF9qVEC0fPlyPfHEE5owYcJVl0lHRUVp5cqVV+1j6NChOnr0qNu+xx9/XN26ddPMmTMVGxsrg8GgHTt2KD09XZJ04sQJlZeXy2KxSJIsFoteeOEFVVVVKSoqStL3/1ppMpmUkJBw1XMbjUYZjcYG+w0Gg1eCHG/1i+DlqPGvwMOfOWpD/O7Pi78PECy88fnnr+8fT8yNAAAAfKlRAdFnn312zTbh4eHKyMi46vHWrVurZ8+ebvtatmypdu3aufZnZmYqJydHbdu2lclk0tSpU2WxWJSYmChJSklJUUJCgsaNG6eCggLZbDbNmjVLWVlZVwyAAAAAvMETcyMAAABfatRTzFatWqUNGzY02L9hwwatWbPmpouqt3jxYj300ENKT0/XwIEDZTabtXHjRtfxsLAwbd68WWFhYbJYLBo7dqzGjx+vefPmeawGAACAa2mquREAAIC3NCogys/P1+23395gf11r0MsAACAASURBVFRUlObPn9/oYnbv3q1XXnnFtd28eXMtXbpUZ86c0YULF7Rx48YG9xaKi4vT1q1bdfHiRX399dd6+eWX1azZTd17GwAA4IZ4a24EAADQVBoVEJWXlys+Pr7B/ri4OJWXl990UQAAAIGEuREAAAh0jQqIoqKidOTIkQb7P/74Y7Vr1+6miwIAAAgkzI0AAECga1RA9POf/1y//OUvtWvXLtXU1KimpkY7d+7U008/rdGjR3u6RgAAAL/G3AgAAAS6Rt2sJy8vT19++aWGDh3qut9PbW2txo8fz/fsAQBA0GFuBAAAAl2jAqLw8HC98847ysvL08cff6wWLVqoV69eiouL83R9AAAAfo+5EQAACHQ39bivu+66S3fddZenagEAAAhozI0AAECgalRAVFNTo9WrV2vHjh2qqqpSbW2t2/GdO3d6pDgAAIBAwNwIAAAEukYFRE8//bRWr16ttLQ09ezZUyEhIZ6uCwAAIGAwNwIAAIGuUQHR22+/rXfffVfDhw/3dD0AAAABx1Nzo/z8fG3cuFGffPKJWrRooZ/+9Kd68cUX1bVrV1ebS5cu6ZlnntHbb78th8Oh1NRULVu2TNHR0a425eXlmjx5snbt2qVWrVopIyND+fn5rhtoS9Lu3buVk5OjsrIyxcbGatasWZowYcJN1Q8AAAJXox5zHx4ers6dO3u6FgAAgIDkqbnRnj17lJWVpQMHDshqtcrpdColJUUXLlxwtcnOztZ7772nDRs2aM+ePTp9+rRGjRrlOl5TU6O0tDRVV1dr//79WrNmjVavXq3Zs2e72pw6dUppaWkaPHiwSktLNW3aND355JMqLCy86TEAAIDA1KiA6JlnntGSJUtUV1fn6XoAAAACjqfmRtu2bdOECRPUo0cP3X333Vq9erXKy8tVUlIiSTp37pxWrlypRYsWaciQIerXr59WrVql/fv368CBA5KkoqIiHT9+XGvXrlWfPn00bNgw5eXlaenSpaqurpYkrVixQvHx8Vq4cKG6d++uKVOm6N///d+1ePHim/uDAAAAAatRXzHbt2+fdu3apffff189evSQwWBwO75x40aPFAcAABAIvDU3OnfunCSpbdu2kqSSkhI5nU4lJSW52nTr1k0dO3ZUcXGxEhMTVVxcrF69erl95Sw1NVWTJ09WWVmZ+vbtq+LiYrc+6ttMmzbtinU4HA45HA7Xtt1ulyQ5nU45nc5GjQ3+wRh26/6DrzH0+7FxjcKf1V+fXKfwpuu9vhoVELVp00aPPPJIY14KAABwy/HG3Ki2tlbTpk3Tfffdp549e0qSbDabwsPD1aZNG7e20dHRstlsrjY/DIfqj9cf+7E2drtd3333nVq0aOF2LD8/X3Pnzm1Q465duxQREXETo4SvFdzr6wq8z2q1+roE4Jq4TuFNFy9evK52jQqIVq1a1ZiXAQAA3JK8MTfKysrSsWPHtG/fPo/3faNyc3OVk5Pj2rbb7YqNjdXgwYPVrl07H1aGm9Vzzq173yljaJ3y+tcqOTm5wao+wF84nU5ZrVauU3hV/crfa2lUQCRJly9f1u7du3Xy5Ek99thjat26tU6fPi2TyaRWrVo1tlsAAICA5Mm50ZQpU7R582bt3btXHTp0cO03m82qrq7W2bNn3VYRVVZWymw2u9ocPHjQrb/KykrXsfr/1u/7YRuTydRg9ZAkGY1GGY3GBvsNBgM/0AQ4R02Ir0vwOq5TBAKuU3jT9V5bjbpJ9V//+lf16tVLI0eOVFZWlr7++mtJ0osvvqhnn322MV0CAAAELE/Njerq6jRlyhRt2rRJO3fuVHx8vNvxfv36yWAwaMeOHa59J06cUHl5uSwWiyTJYrHo6NGjqqqqcrWxWq0ymUxKSEhwtflhH/Vt6vsAAADBp1EB0dNPP63+/fvrm2++cftXpkceeaTBZAMAAOBW56m5UVZWltauXav169erdevWstlsstls+u677yRJkZGRyszMVE5Ojnbt2qWSkhI9/vjjslgsSkxMlCSlpKQoISFB48aN08cff6zCwkLNmjVLWVlZrlVAkyZN0hdffKEZM2bok08+0bJly/Tuu+8qOzvbg38qAAAgkDTqK2Z/+tOftH//foWHh7vtv/POO/X3v//dI4UBAAAECk/NjZYvXy5JGjRokNv+VatWacKECZKkxYsXKzQ0VOnp6XI4HEpNTdWyZctcbcPCwrR582ZNnjxZFotFLVu2VEZGhubNm+dqEx8fry1btig7O1tLlixRhw4d9MYbbyg1NfUGRw4AAG4VjQqIamtrVVNT02D/V199pdatW990UQAAAIHEU3OjurprP3K8efPmWrp0qZYuXXrVNnFxcdq6deuP9jNo0CAdPnz4umsDAAC3tkZ9xSwlJUWvvPKKazskJETnz5/X//zP/2j48OEeKw4AACAQMDcCAACBrlEriBYuXKjU1FQlJCTo0qVLeuyxx/TZZ5/p9ttv129/+1tP1wgAAODXmBsBAIBA16iAqEOHDvr444/19ttv68iRIzp//rwyMzM1ZsyYKz4aFQAA4FbG3AgAAAS6RgVEktSsWTONHTvWk7UAAAAELOZGAAAgkDUqIHrrrbd+9Pj48eMbVQwAAEAgYm4EAAACXaMCoqefftpt2+l06uLFiwoPD1dERASTIAAAEFSYGwEAgEDXqKeYffPNN26/zp8/rxMnTuj+++/nRowAACDoMDcCAACBrlEB0ZV06dJFCxYsaPAvaAAAAMGIuREAAAgkHguIpO9vznj69GlPdgkAABCwmBsBAIBA0ah7EP3xj390266rq1NFRYVee+013XfffR4pDAAAIFAwNwIAAIGuUQHRww8/7LYdEhKiO+64Q0OGDNHChQs9UhgAAECgYG4EAAACXaMCotraWk/XAQAAELCYGwEAgEDn0XsQAQAAAAAAIPA0agVRTk7OdbddtGhRY04BAAAQMJgbAQCAQNeogOjw4cM6fPiwnE6nunbtKkn69NNPFRYWpnvuucfVLiQkxDNVAgAA+DHmRgAAINA1KiAaMWKEWrdurTVr1ui2226TJH3zzTd6/PHH9cADD+iZZ57xaJEAAAD+jLkRAAAIdI26B9HChQuVn5/vmgBJ0m233aZf/epXPKkDAAAEHeZGAAAg0DUqILLb7fr6668b7P/666/17bff3nRRAAAAgYS5EQAACHSNCogeeeQRPf7449q4caO++uorffXVV/r973+vzMxMjRo1ytM1AgAA+DXmRgAAINA16h5EK1as0LPPPqvHHntMTqfz+46aNVNmZqZeeukljxYIAADg75gbAQCAQNeogCgiIkLLli3TSy+9pJMnT0qSOnXqpJYtW3q0OAAAgEDA3AgAAAS6Rn3FrF5FRYUqKirUpUsXtWzZUnV1dZ6qCwAAIOAwNwIAAIGqUQHRP/7xDw0dOlR33XWXhg8froqKCklSZmYmj3EFAABBh7kRAAAIdI0KiLKzs2UwGFReXq6IiAjX/kcffVTbtm3zWHEAAACBgLkRAAAIdI26B1FRUZEKCwvVoUMHt/1dunTRX//6V48UBgAAECiYGwEAgEDXqBVEFy5ccPvXsXpnzpyR0Wi86aIAAAACCXMjAAAQ6BoVED3wwAN66623XNshISGqra1VQUGBBg8efN39LF++XL1795bJZJLJZJLFYtH777/vOn7p0iVlZWWpXbt2atWqldLT01VZWenWR3l5udLS0hQREaGoqChNnz5dly9fbsywAAAAGsVTcyMAAABfadRXzAoKCjR06FB99NFHqq6u1owZM1RWVqYzZ87ogw8+uO5+OnTooAULFqhLly6qq6vTmjVrNHLkSB0+fFg9evRQdna2tmzZog0bNigyMlJTpkzRqFGjXOeoqalRWlqazGaz9u/fr4qKCo0fP14Gg0Hz589vzNAAAABumKfmRgAAAL7SqBVEPXv21Keffqr7779fI0eO1IULFzRq1CgdPnxYnTp1uu5+RowYoeHDh6tLly6666679MILL6hVq1Y6cOCAzp07p5UrV2rRokUaMmSI+vXrp1WrVmn//v06cOCApO+/73/8+HGtXbtWffr00bBhw5SXl6elS5equrq6MUMDAAC4YZ6aGwEAAPjKDa8gcjqdevDBB7VixQr993//t8cKqamp0YYNG3ThwgVZLBaVlJTI6XQqKSnJ1aZbt27q2LGjiouLlZiYqOLiYvXq1UvR0dGuNqmpqZo8ebLKysrUt2/fK57L4XDI4XC4tu12u2tsTqfTY2Oq78uTfQKSZAyr83UJfs8YWuf2X3/C3wm41Xnz888f3z/emhsBAAA0pRsOiAwGg44cOeKxAo4ePSqLxaJLly6pVatW2rRpkxISElRaWqrw8HC1adPGrX10dLRsNpskyWazuYVD9cfrj11Nfn6+5s6d22B/UVHRFW8webOsVqvH+0RwK7jX1xUEjrz+tb4uoYGtW7f6ugSgSXjj8+/ixYse7/NmeXpuBAAA4AuNugfR2LFjtXLlSi1YsOCmC+jatatKS0t17tw5/e53v1NGRob27Nlz0/3+mNzcXOXk5Li27Xa7YmNjlZKSIpPJ5LHzOJ1OWa1WJScny2AweKxfoOecQl+X4PeMoXXK61+r5z8KlaM2xNfluDk2J9XXJQBe5c3Pv/pVv/7Gk3MjAAAAX2hUQHT58mW9+eab2r59u/r166eWLVu6HV+0aNF19xUeHq7OnTtLkvr166dDhw5pyZIlevTRR1VdXa2zZ8+6rSKqrKyU2WyWJJnNZh08eNCtv/qnnNW3uRKj0XjFR84aDAavBDne6hfBy1HjX4GHP3PUhvjdnxd/HyBYeOPzz1/fP56cGwEAAPjCDQVEX3zxhe68804dO3ZM99xzjyTp008/dWsTEnJzP4jV1tbK4XCoX79+MhgM2rFjh9LT0yVJJ06cUHl5uSwWiyTJYrHohRdeUFVVlaKioiR9v5zdZDIpISHhpuoAAAC4lqaYGwEAADSFGwqIunTpooqKCu3atUuS9Oijj+rVV19tcB+g65Wbm6thw4apY8eO+vbbb7V+/Xrt3r1bhYWFioyMVGZmpnJyctS2bVuZTCZNnTpVFotFiYmJkqSUlBQlJCRo3LhxKigokM1m06xZs5SVlXXFFUIAAACe5Om5EQAAgK/cUEBUV+f+NKD3339fFy5caPTJq6qqNH78eFVUVCgyMlK9e/dWYWGhkpOTJUmLFy9WaGio0tPT5XA4lJqaqmXLlrleHxYWps2bN2vy5MmyWCxq2bKlMjIyNG/evEbXBAAAcL08PTcCAADwlUbdg6jeP0+KbtTKlSt/9Hjz5s21dOlSLV269Kpt4uLieCIQAADwCzc7NwIAAPCV0BtpHBIS0uB79HyvHgAABCvmRgAA4FZxw18xmzBhguv+PpcuXdKkSZMaPKlj48aNnqsQAADATzE3AgAAt4obCogyMjLctseOHevRYgAAAAIJcyMAAHCruKGAaNWqVd6qAwAAIOB4em60d+9evfTSSyopKVFFRYU2bdqkhx9+2HV8woQJWrNmjdtrUlNTtW3bNtf2mTNnNHXqVL333nuuh30sWbJErVq1crU5cuSIsrKydOjQId1xxx2aOnWqZsyY4dGxAACAwHJD9yACAACA91y4cEF33333jz6g48EHH1RFRYXr129/+1u342PGjFFZWZmsVqs2b96svXv3auLEia7jdrtdKSkpiouLU0lJiV566SXNmTNHr7/+utfGBQAA/N9NPcUMAAAAnjNs2DANGzbsR9sYjUaZzeYrHvvLX/6ibdu26dChQ+rfv78k6de//rWGDx+ul19+We3bt9e6detUXV2tN998U+Hh4erRo4dKS0u1aNEityAJAAAEFwIiAACAALJ7925FRUXptttu05AhQ/SrX/1K7dq1kyQVFxerTZs2rnBIkpKSkhQaGqoPP/xQjzzyiIqLizVw4ECFh4e72qSmpurFF1/UN998o9tuu63BOR0OhxwOh2vbbrdLkpxOp5xOp7eGiiZgDKvzdQleYwz9fmxco/Bn9dcn1ym86XqvLwIiAACAAPHggw9q1KhRio+P18mTJ/Xcc89p2LBhKi4uVlhYmGw2m6Kiotxe06xZM7Vt21Y2m02SZLPZFB8f79YmOjradexKAVF+fr7mzp3bYP+uXbsUERHhqeHBBwru9XUF3me1Wn1dAnBNXKfwposXL15XOwIiAACAADF69GjX73v16qXevXurU6dO2r17t4YOHeq18+bm5ionJ8e1bbfbFRsbq8GDB7tWLyEw9ZxT6OsSvMYYWqe8/rVKTk6WwWDwdTnAFTmdTlmtVq5TeFX9yt9rISACAAAIUP/6r/+q22+/XZ9//rmGDh0qs9msqqoqtzaXL1/WmTNnXPctMpvNqqysdGtTv321exsZjUYZjcYG+w0GAz/QBDhHTYivS/A6rlMEAq5TeNP1Xls8xQwAACBAffXVV/rHP/6hmJgYSZLFYtHZs2dVUlLiarNz507V1tZqwIABrjZ79+51ux+B1WpV165dr/j1MgAAEBwIiAAAAPzE+fPnVVpaqtLSUknSqVOnVFpaqvLycp0/f17Tp0/XgQMH9OWXX2rHjh0aOXKkOnfurNTUVElS9+7d9eCDD+qpp57SwYMH9cEHH2jKlCkaPXq02rdvL0l67LHHFB4erszMTJWVlemdd97RkiVL3L5CBgAAgg8BEQAAgJ/46KOP1LdvX/Xt21eSlJOTo759+2r27NkKCwvTkSNH9G//9m+66667lJmZqX79+ulPf/qT29e/1q1bp27dumno0KEaPny47r//fr3++uuu45GRkSoqKtKpU6fUr18/PfPMM5o9ezaPuAcAIMhxDyIAAAA/MWjQINXVXf2x44WF176hcNu2bbV+/fofbdO7d2/96U9/uuH6AADArYsVRAAAAAAAAEGOgAgAAAAAACDIERABAAAAAAAEOQIiAAAAAACAIEdABAAAAAAAEOQIiAAAAAAAAIIcAREAAAAAAECQIyACAAAAAAAIcgREAAAAAAAAQY6ACAAAAAAAIMgREAEAAAAAAAQ5AiIAAAAAAIAgR0AEAAAAAAAQ5AiIAAAAAAAAghwBEQAAAAAAQJAjIAIAAAAAAAhyBEQAAAAAAABBjoAIAAAAAAAgyBEQAQAAAAAABDkCIgAAAAAAgCBHQAQAAAAAABDkCIgAAAAAAACCHAERAAAAAABAkCMgAgAAAAAACHIERAAAAAAAAEGOgAgAAAAAACDIERABAAAAAAAEuWa+LgAAAAAAvKXnnEI5akKa7HxfLkhrsnMBgCexgggAAAAAACDIERABAAAAAAAEOZ8GRPn5+frJT36i1q1bKyoqSg8//LBOnDjh1ubSpUvKyspSu3bt1KpVK6Wnp6uystKtTXl5udLS0hQREaGoqChNnz5dly9fbsqhAAAAAAAABCyf3oNoz549ysrK0k9+8hNdvnxZzz33nFJSUnT8+HG1bNlSkpSdna0tW7Zow4YNioyM1JQpUzRq1Ch98MEHkqSamhqlpaXJbDZr//79qqio0Pjx42UwGDR//nxfDg+3gDv/a4uvSwAAAAAAwOt8GhBt27bNbXv16tWKiopSSUmJBg4cqHPnzmnlypVav369hgwZIklatWqVunfvrgMHDigxMVFFRUU6fvy4tm/frujoaPXp00d5eXmaOXOm5syZo/DwcF8MDQAAAAAAIGD41VPMzp07J0lq27atJKmkpEROp1NJSUmuNt26dVPHjh1VXFysxMREFRcXq1evXoqOjna1SU1N1eTJk1VWVqa+ffs2OI/D4ZDD4XBt2+12SZLT6ZTT6fTYeOr78mSfaFrGsDpfl4BGMobWuf3Xn/B3Am513vz84/0DAADgHX4TENXW1mratGm677771LNnT0mSzWZTeHi42rRp49Y2OjpaNpvN1eaH4VD98fpjV5Kfn6+5c+c22F9UVKSIiIibHss/s1qtHu8TTaPgXl9XgJuV17/W1yU0sHXrVl+XADQJb3z+Xbx40eN9AgAAwI8CoqysLB07dkz79u3z+rlyc3OVk5Pj2rbb7YqNjVVKSopMJpPHzuN0OmW1WpWcnCyDweCxftF0es4p9HUJaCRjaJ3y+tfq+Y9C5agN8XU5bo7NSfV1CYBXefPzr37VLwAAADzLLwKiKVOmaPPmzdq7d686dOjg2m82m1VdXa2zZ8+6rSKqrKyU2Wx2tTl48KBbf/VPOatv88+MRqOMRmOD/QaDwStBjrf6hfc5avwrWMCNc9SG+N3/R/4+QLDwxucf7x8AAADv8Olj7uvq6jRlyhRt2rRJO3fuVHx8vNvxfv36yWAwaMeOHa59J06cUHl5uSwWiyTJYrHo6NGjqqqqcrWxWq0ymUxKSEhomoEAAAAAAAAEMJ+uIMrKytL69ev1f//3f2rdurXrnkGRkZFq0aKFIiMjlZmZqZycHLVt21Ymk0lTp06VxWJRYmKiJCklJUUJCQkaN26cCgoKZLPZNGvWLGVlZV1xlRAAAAAAAADc+XQF0fLly3Xu3DkNGjRIMTExrl/vvPOOq83ixYv10EMPKT09XQMHDpTZbNbGjRtdx8PCwrR582aFhYXJYrFo7NixGj9+vObNm+eLIQEAADTa3r17NWLECLVv314hISH6wx/+4Ha8rq5Os2fPVkxMjFq0aKGkpCR99tlnbm3OnDmjMWPGyGQyqU2bNsrMzNT58+fd2hw5ckQPPPCAmjdvrtjYWBUUFHh9bAAAwL/5dAVRXd21Hz/dvHlzLV26VEuXLr1qm7i4OJ4KBAAAAt6FCxd0991364knntCoUaMaHC8oKNCrr76qNWvWKD4+Xs8//7xSU1N1/PhxNW/eXJI0ZswYVVRUyGq1yul06vHHH9fEiRO1fv16Sd/f6DslJUVJSUlasWKFjh49qieeeEJt2rTRxIkTm3S8AADAf/jFTaoBAAAgDRs2TMOGDbvisbq6Or3yyiuaNWuWRo4cKUl66623FB0drT/84Q8aPXq0/vKXv2jbtm06dOiQ+vfvL0n69a9/reHDh+vll19W+/bttW7dOlVXV+vNN99UeHi4evToodLSUi1atIiACACAIObTr5gBAADg+pw6dUo2m01JSUmufZGRkRowYICK/1979x9VVZnvcfxzkJ+KoIiCOIhWij9GJXEk0kwTQ3M5Wt1pMm9a16uNS02vNY2u1EQtm24/zNJrznQz79Kb9svpaqJIMBkSKhOVifgjG20ETBEVnRDluX+4OKsToEfknMM5+/1ay1V772fv57s5+zl8z5d9np2bK0nKzc1Vq1at7MUhSUpJSZGfn5/y8vLsbQYNGqTAwEB7m9TUVBUVFen06dNuOhsAANDUcAcRAACAF6h5mEdUVJTD+qioKPu2kpIStWvXzmG7v7+/IiIiHNr8/MmxNccsKSlR69ata/VdWVmpyspK+/LZs2clSVVVVaqqqrqR04KHBTW79pQP3irIzzj8110YE7geNdcL1w1cydnriwIRAAAArmrJkiVKS0urtT4rK0vNmzf3QERoLC/093QErreoX7Vb+2NuVDRERkaGp0OAD7tw4YJT7SgQAQAAeIHo6GhJUmlpqdq3b29fX1paqoSEBHubEydOOOx36dIllZWV2fePjo5WaWmpQ5ua5Zo2PzdnzhzNmjXLvnz27FnFxsZqyJAhatOmzQ2eGTzplwu2ejoElwnyM1rUr1rz9vipstrmtn73Lkh1W1/wflVVVcrIyNCwYcMUEBDg6XDgo2ru/L0WCkQAAABeoHPnzoqOjlZmZqa9IHT27Fnl5eVpypQpkqTk5GSVl5crPz9fiYmJkqRPPvlE1dXVSkpKsrd5+umnVVVVZf8wkpGRofj4+Dq/XiZJQUFBCgoKqrU+ICCADzRervKy+wonnlJZbXPreTIm0BC8n8KVnL22mKQaAACgiaioqFBBQYEKCgokXZmYuqCgQEePHpXNZtPMmTO1ePFiffTRR/r66681fvx4xcTEaMyYMZKk7t27a/jw4Zo0aZJ27dqlnJwcTZs2TQ8++KBiYmIkSQ899JACAwM1ceJEffPNN1q/fr1effVVhzuEAACA9XAHEQAAQBOxZ88eDRkyxL5cU7SZMGGCVq9eraeeekrnz5/X5MmTVV5eroEDByo9PV3BwcH2fdauXatp06Zp6NCh8vPz0/33369ly5bZt4eHh2vbtm2aOnWqEhMTFRkZqfnz5/OIewAALI4CEQAAQBMxePBgGVP/E5dsNpsWLlyohQsX1tsmIiJC69atu2o/vXv31o4dOxocJwAA8D18xQwAAAAAAMDiKBABAAAAAABYHAUiAAAAAAAAi6NABAAAAAAAYHEUiAAAAAAAACyOp5ihyeg0e7OnQwAAAAAAwJK4gwgAAAAAAMDiKBABAAAAAABYHAUiAAAAAAAAi6NABAAAAAAAYHEUiAAAAAAAACyOAhEAAAAAAIDFUSACAAAAAACwOApEAAAAAAAAFkeBCAAAAAAAwOIoEAEAAAAAAFicv6cDgPt1mr3Z0yEAAAAAAIAmhDuIAAAAAAAALI4CEQAAAAAAgMVRIAIAAAAAALA4CkQAAAAAAAAWR4EIAAAAAADA4igQAQAAAAAAWBwFIgAAAAAAAIujQAQAAAAAAGBxFIgAAAAAAAAsjgIRAAAAAACAxVEgAgAAAAAAsDgKRAAAAAAAABZHgQgAAAAAAMDi/D0dgBX8csFWVV62eToMAAAAAACAOnEHEQAAAAAAgMVRIAIAAAAAALA4CkQAAAAAAAAWR4EIAAAAAADA4jxaIPr00081atQoxcTEyGazaePGjQ7bjTGaP3++2rdvr5CQEKWkpOjgwYMObcrKyjRu3DiFhYWpVatWmjhxoioqKtx5GgAAAAAAAF7NowWi8+fPq0+fPlq+fHmd21944QUtW7ZMK1euVF5enlq0SOYkLgAAH/RJREFUaKHU1FT9+OOP9jbjxo3TN998o4yMDG3atEmffvqpJk+e7K5TAAAAAAAA8Hoefcz9iBEjNGLEiDq3GWO0dOlSzZ07V6NHj5YkrVmzRlFRUdq4caMefPBBFRYWKj09Xbt371a/fv0kSa+99pruuecevfjii4qJiXHbuQAAAAAAAHirJjsH0ZEjR1RSUqKUlBT7uvDwcCUlJSk3N1eSlJubq1atWtmLQ5KUkpIiPz8/5eXluT1mAAAAAAAAb+TRO4iupqSkRJIUFRXlsD4qKsq+raSkRO3atXPY7u/vr4iICHubulRWVqqystK+fPbsWUlSVVWVqqqqGiX+muNJUpCfabRjAnBOzbhriuOvMd9ngKao5hp3xbXO+AEAAHCNJlsgcqUlS5YoLS2t1vpt27apefPmjd7fon7VjX5MAM5piuPv448/9nQIgFtkZGQ0+jEvXLjQ6Mf0NgsWLKiVx8THx2v//v2SpB9//FFPPPGE3nnnHVVWVio1NVUrVqxw+KPb0aNHNWXKFGVlZSk0NFQTJkzQkiVL5O9vydQQAACoCReIoqOjJUmlpaVq3769fX1paakSEhLsbU6cOOGw36VLl1RWVmbfvy5z5szRrFmz7Mtnz55VbGys7r77boWFhTXaOVRVVSkjI0Pz9vipstrWaMcFcG1BfkaL+lU3yfG3d0Gqp0MAXKrm99+wYcMUEBDQqMeuuevX6nr27Knt27fbl39a2PmP//gPbd68We+++67Cw8M1bdo03XfffcrJyZEkXb58WSNHjlR0dLR27typ4uJijR8/XgEBAXruuefcfi4AAKBpaLIFos6dOys6OlqZmZn2gtDZs2eVl5enKVOmSJKSk5NVXl6u/Px8JSYmSpI++eQTVVdXKykpqd5jBwUFKSgoqNb6gICARk9kJamy2qbKy03rAypgFU1x/LnifQZoilzxe5Xxc4W/v3+dfww7c+aM3nzzTa1bt0533XWXJOmtt95S9+7d9fnnn+u2227Ttm3btG/fPm3fvl1RUVFKSEjQokWL9Ic//EELFixQYGCgu08HAAA0AR4tEFVUVOjQoUP25SNHjqigoEARERHq2LGjZs6cqcWLF6tLly7q3Lmz5s2bp5iYGI0ZM0aS1L17dw0fPlyTJk3SypUrVVVVpWnTpunBBx/kCWYAAMBnHTx4UDExMQoODlZycrKWLFmijh07Kj8/X1VVVQ4P+ejWrZs6duyo3Nxc3XbbbcrNzVWvXr0cvnKWmpqqKVOm6JtvvtGtt95aqz93zd8I9wtq1vTm6mssnpqPkDGB6+HKefuAGs5eXx4tEO3Zs0dDhgyxL9d87WvChAlavXq1nnrqKZ0/f16TJ09WeXm5Bg4cqPT0dAUHB9v3Wbt2raZNm6ahQ4fKz89P999/v5YtW+b2cwEAAHCHpKQkrV69WvHx8SouLlZaWpruuOMO7d27VyUlJQoMDFSrVq0c9vn5Qz7qeghIzba61Dd/Y1ZWlkvmb4T7vNDf0xG4nrvnI2SuQTSEK+btA2o4O4ejRwtEgwcPljH1V/RtNpsWLlyohQsX1tsmIiJC69atc0V4AAAATc6IESPs/9+7d28lJSUpLi5OGzZsUEhIiEv6rG/+xiFDhqhNmzYu6RPu8csFWz0dgst4aj5C5hrE9XDlvH1ADWfncGyycxABgK/qNHuzp0Oo5bvnR3o6BAAN1KpVK3Xt2lWHDh3SsGHDdPHiRZWXlzvcRVRaWmqfsyg6Olq7du1yOEZpaal9W13cPX8j3KepzdPnCu6ej5AxgYbg/RSu5Oy15efiOAAAAOBCFRUVOnz4sNq3b6/ExEQFBAQoMzPTvr2oqEhHjx5VcnKypCsP+fj6668dngSbkZGhsLAw9ejRw+3xAwCApoE7iAAAALzIk08+qVGjRikuLk7Hjx/XM888o2bNmmns2LEKDw/XxIkTNWvWLEVERCgsLEzTp09XcnKybrvtNknS3XffrR49eujhhx/WCy+8oJKSEs2dO1dTp06t8y4hAABgDRSIAAAAvMj333+vsWPH6tSpU2rbtq0GDhyozz//XG3btpUkvfLKK/YHd1RWVio1NVUrVqyw79+sWTNt2rRJU6ZMUXJyslq0aKEJEyZcdc5HAADg+ygQAQAAeJF33nnnqtuDg4O1fPlyLV++vN42cXFxPGkJAAA4YA4iAAAAAAAAi6NABAAAAAAAYHEUiAAAAAAAACyOOYgAAAAAoJF0mr3Zrf199/xIt/YHwHdxBxEAAAAAAIDFUSACAAAAAACwOApEAAAAAAAAFkeBCAAAAAAAwOIoEAEAAAAAAFgcBSIAAAAAAACLo0AEAAAAAABgcRSIAAAAAAAALI4CEQAAAAAAgMVRIAIAAAAAALA4CkQAAAAAAAAWR4EIAAAAAADA4igQAQAAAAAAWBwFIgAAAAAAAIujQAQAAAAAAGBxFIgAAAAAAAAsjgIRAAAAAACAxVEgAgAAAAAAsDgKRAAAAAAAABZHgQgAAAAAAMDiKBABAAAAAABYnL+nAwAAAAAANEyn2Zvd2t93z490a38A3Ic7iAAAAAAAACyOAhEAAAAAAIDFUSACAAAAAACwOApEAAAAAAAAFkeBCAAAAAAAwOIoEAEAAAAAAFgcBSIAAAAAAACLo0AEAAAAAABgcRSIAAAAAAAALM7f0wEAAAAAALxDp9mb3d7nd8+PdHufgBVxBxEAAAAAAIDFUSACAAAAAACwOApEAAAAAAAAFuczBaLly5erU6dOCg4OVlJSknbt2uXpkAAAAJo08icAAFDDJyapXr9+vWbNmqWVK1cqKSlJS5cuVWpqqoqKitSuXTtPhwcAANDkkD8B8BbunhibSbFhVT5RIHr55Zc1adIkPfroo5KklStXavPmzfrv//5vzZ4928PRAUDT54knklwLyRngWuRPAADgp7z+K2YXL15Ufn6+UlJS7Ov8/PyUkpKi3NxcD0YGAADQNJE/AQCAn/P6O4hOnjypy5cvKyoqymF9VFSU9u/fX+c+lZWVqqystC+fOXNGklRWVqaqqqpGi62qqkoXLlyQf5WfLlfbGu24AK7Nv9rowoVqxp8XO3XqlKdDQAPV/P47deqUAgICGvXY586dkyQZYxr1uFZzvfnT1XIneDf/S+c9HYLLkAugoW55coPb+gryM5p7a7VLfmcCNZzNn7y+QNQQS5YsUVpaWq31nTt39kA0AFzlIU8HgBsS+ZKnI0BTdu7cOYWHh3s6DMuoL3fq2rWrB6IBnEcuAG/AdQp3uVb+5PUFosjISDVr1kylpaUO60tLSxUdHV3nPnPmzNGsWbPsy9XV1UpMTNTf/vY32WzO/XXhV7/6lXbv3n3VNmfPnlVsbKyOHTumsLAwp47r65z5uXmKu2NzVX+NddwbOU5D9r2efRh/DcP4c31/jL8rXDn+jDE6d+6cYmJiGvW4VnO9+dPPc6fy8nLFxcXp6NGjPlOo89R7pCv6vdFjNnT/xn4vcbZdfW18LRfwpWu0MY7rTdfp1bZznTbtfj1xnV7vPs60N8YoMTHxmvmT1xeIAgMDlZiYqMzMTI0ZM0bSlYJPZmampk2bVuc+QUFBCgoKqrXuehKcZs2aOT2Aw8LCfGKwN4br+bm5m7tjc1V/jXXcGzlOQ/a9nn0Yfw3D+HN9f4w/R64af75SkPCk682f6sqdpCuvRVN9X7lennqPdEW/N3rMhu7vivcSZ9pdq42v5AK+dI02xnG96Tp15jhcp02zX09cp9e7j7PtAwMD5ed39Wmomy1YsGCB0z03UWFhYZo3b55iY2MVFBSkefPmqaCgQG+++aZCQ0OdPk7//v2vq99rta+srNTzzz+vOXPm1JlUWdX1/pzdyd2xuaq/xjrujRynIftezz6Mv4Zh/Lm+P8Yf489b3Ej+5KuvsafeI13R740es6H7N+Z7yfW0q6uNL16nvnSNNsZxvek6rW8712nT79cT12lj1yacbWczPjLL4+uvv67//M//VElJiRISErRs2TIlJSV5NKazZ88qPDxcZ86c8YlqMOBNGH+A5zD+vEdD8ydeY3gDrlN4A65TNCVe/xWzGtOmTav3K2WeEhQUpGeeecZnKsGAN2H8AZ7D+PMeDc2feI3hDbhO4Q24TtGU+MwdRAAAAAAAAGiYq89QBAAAAAAAAJ9HgQgAAAAAAMDiKBABAAAAAABYHAUiAAAAAAAAi6NA5CGbNm1SfHy8unTpoj//+c+eDgewnHvvvVetW7fWv/zLv3g6FMBSjh07psGDB6tHjx7q3bu33n33XU+HBBfjNYe3IDdAU8TnRrgTTzHzgEuXLqlHjx7KyspSeHi4EhMTtXPnTrVp08bToQGWkZ2drXPnzuntt9/We++95+lwAMsoLi5WaWmpEhISVFJSosTERB04cEAtWrTwdGhwEV5zeAtyAzQ1fG6Eu3EHkQfs2rVLPXv2VIcOHRQaGqoRI0Zo27Ztng4LsJTBgwerZcuWng4DsJz27dsrISFBkhQdHa3IyEiVlZV5OCq4Eq85vAW5AZoaPjfC3SgQNcCnn36qUaNGKSYmRjabTRs3bqzVZvny5erUqZOCg4OVlJSkXbt22bcdP35cHTp0sC936NBB//jHP9wSO+ALbnQMAmi4xhx/+fn5unz5smJjY10dNq7Cne+pvOZoKH73wxvxuRHehgJRA5w/f159+vTR8uXL69y+fv16zZo1S88884z+9re/qU+fPkpNTdWJEyfcHCngmxiDgOc01vgrKyvT+PHjtWrVKneEjatojNc0ISFBv/zlL2v9O378uL0NrzluhLuuU6AxkbPC6xjcEEnmww8/dFjXv39/M3XqVPvy5cuXTUxMjFmyZIkxxpicnBwzZswY+/YZM2aYtWvXuidgwMc0ZAzWyMrKMvfff79b4gR8UUPH348//mjuuOMOs2bNGrfFCufcyHvq1fCaozG56jo1htwArsPnRngD7iBqZBcvXlR+fr5SUlLs6/z8/JSSkqLc3FxJUv/+/bV371794x//UEVFhbZs2aLU1FRPhQz4FGfGIADXcGb8GWP0yCOP6K677tLDDz/sqVDhpMZ4T+U1h6vxux/eiM+NaIooEDWykydP6vLly4qKinJYHxUVpZKSEkmSv7+/XnrpJQ0ZMkQJCQl64oknmIkeaCTOjEFJSklJ0W9+8xt9/PHH+sUvfkECCTQCZ8ZfTk6O1q9fr40bNyohIUEJCQn6+uuvPREunODse+rV8JrD1RrjOpXIDeBefG5EU+Tv6QCs6te//rV+/etfezoMwLK2b9/u6RAASxo4cKCqq6s9HQbciNcc3oLcAE0RnxvhTtxB1MgiIyPVrFkzlZaWOqwvLS1VdHS0h6ICrIMxCHgO48/38JrCG3Cdwhtx3aIpokDUyAIDA5WYmKjMzEz7uurqamVmZio5OdmDkQHWwBgEPIfx53t4TeENuE7hjbhu0RTxFbMGqKio0KFDh+zLR44cUUFBgSIiItSxY0fNmjVLEyZMUL9+/dS/f38tXbpU58+f16OPPurBqAHfwRgEPIfx53t4TeENuE7hjbhu4XU8/Rg1b5SVlWUk1fo3YcIEe5vXXnvNdOzY0QQGBpr+/fubzz//3HMBAz6GMQh4DuPP9/CawhtwncIbcd3C29iMMcYdhSgAAAAAAAA0TcxBBAAAAAAAYHEUiAAAAAAAACyOAhEAAAAAAIDFUSACAAAAAACwOApEAAAAAAAAFkeBCAAAAAAAwOIoEAEAAAAAAFgcBSIAAAAAAACLo0AEAAAAAABgcRSIADgYPHiwZs6c6ekwrltRUZGio6N17ty5etusXr1arVq1cmNUN2b27NmaPn26p8MAAMDr+XJ+44xOnTpp6dKljRSV+zXk9bPZbNq4cWOjxkFuBl9HgQiAxxQXF+uhhx5S165d5efnV+8v/nfffVfdunVTcHCwevXqpY8//rhWmzlz5mj69Olq2bKlq8N2myeffFJvv/22vv32W0+HAgAAnER+0/g++OADLVq0qFGPmZ2dLZvNpvLycqf3ITeDr6NABMBjKisr1bZtW82dO1d9+vSps83OnTs1duxYTZw4UV988YXGjBmjMWPGaO/evfY2R48e1aZNm/TII4+4KfKrq6qqapTjREZGKjU1Vf/1X//VKMcDAACu56v5jSdFREQ0iSIZuRl8HQUiAPU6ffq0xo8fr9atW6t58+YaMWKEDh486NDmT3/6k2JjY9W8eXPde++9evnll53+GlenTp306quvavz48QoPD6+zzauvvqrhw4fr97//vbp3765Fixapb9++ev311+1tNmzYoD59+qhDhw4O+65evVodO3a0x3bq1Klax//LX/6ivn37Kjg4WDfddJPS0tJ06dIl+/b9+/dr4MCBCg4OVo8ePbR9+3aHW5a/++472Ww2rV+/XnfeeaeCg4O1du1aSdKf//xnde/eXcHBwerWrZtWrFjh0PexY8f0wAMPqFWrVoqIiNDo0aP13XffObQZNWqU3nnnHad+ngAA4Nq8Pb/57LPPdMcddygkJESxsbF6/PHHdf78efv2EydOaNSoUQoJCVHnzp3teclPXSu/kZzLU+qyd+9e+fn56YcffpAklZWVyc/PTw8++KC9zeLFizVw4ECHfUaMGKHQ0FBFRUXp4Ycf1smTJ+3bf/4Vs+LiYo0cOdJ+juvWravza3QnT57Uvffeq+bNm6tLly766KOPJF3J34YMGSJJat26tWw2m70Q995776lXr14KCQlRmzZtlJKS4vDzJTeDL6NABKBejzzyiPbs2aOPPvpIubm5Msbonnvusd8hk5OTo9/97neaMWOGCgoKNGzYMD377LONGkNubq5SUlIc1qWmpio3N9e+vGPHDvXr18+hTV5eniZOnKhp06apoKBAQ4YM0eLFix3a7NixQ+PHj9eMGTO0b98+vfHGG1q9erX9HC5fvqwxY8aoefPmysvL06pVq/T000/XGefs2bM1Y8YMFRYWKjU1VWvXrtX8+fP17LPPqrCwUM8995zmzZunt99+W9KVu4xSU1PVsmVL7dixQzk5OQoNDdXw4cN18eJF+3H79++v77//3qmEDAAAXJs35zeHDx/W8OHDdf/99+urr77S+vXr9dlnn2natGkO53fs2DFlZWXpvffe04oVK3TixAn7dmfyG2fzlLr07NlTbdq00V//+lf7efx0WZL++te/avDgwZKk8vJy3XXXXbr11lu1Z88epaenq7S0VA888EC9fYwfP17Hjx9Xdna23n//fa1atcrhHGukpaXpgQce0FdffaV77rlH48aNU1lZmWJjY/X+++9LujLPU3FxsV599VUVFxdr7Nix+rd/+zcVFhYqOztb9913n4wx9mOSm8GnGQD4iTvvvNPMmDHDHDhwwEgyOTk59m0nT540ISEhZsOGDcYYY37729+akSNHOuw/btw4Ex4e3uB+fy4gIMCsW7fOYd3y5ctNu3bt7Mt9+vQxCxcudGgzduxYc8899zis++1vf+sQ29ChQ81zzz3n0OZ//ud/TPv27Y0xxmzZssX4+/ub4uJi+/aMjAwjyXz44YfGGGOOHDliJJmlS5c6HOfmm2+uFfeiRYtMcnKyvZ/4+HhTXV1t315ZWWlCQkLM1q1b7evOnDljJJns7OxaPxsAAOAcX8lvJk6caCZPnuywbseOHcbPz8/885//NEVFRUaS2bVrl317YWGhkWReeeUVY4xz+Y2zeUp97rvvPjN16lRjjDEzZ840v//9703r1q1NYWGhuXjxomnevLnZtm2bMeZKfnT33Xc77H/s2DEjyRQVFRljHH+ONeeze/due/uDBw86nKMxxkgyc+fOtS9XVFQYSWbLli3GGGOysrKMJHP69Gl7m/z8fCPJfPfdd/WeG7kZfBl3EAGoU2Fhofz9/ZWUlGRf16ZNG8XHx6uwsFDSlb+49O/f32G/ny+7wz//+U8FBwc7rCssLHSIXZKSk5Mdlr/88kstXLhQoaGh9n+TJk1ScXGxLly4oKKiIsXGxio6Otq+T33n99O/8J0/f16HDx/WxIkTHY69ePFiHT582N73oUOH1LJlS/v2iIgI/fjjj/Y2khQSEiJJunDhQgN+MgAA4Ke8Pb/58ssvtXr1aof8IjU1VdXV1Tpy5Ij9/BITE+37dOvWzeHrcc7kN87mKfW58847lZ2dLenK3UJ33XWXBg0apOzsbO3evVtVVVUaMGCAva+srCyHc+rWrZsk1dlXUVGR/P391bdvX/u6W265Ra1bt67Vtnfv3vb/b9GihcLCwuq806hGnz59NHToUPXq1Uu/+c1v9Kc//UmnT592aENuBl/m7+kAAOBqoqOjVVpa6rCutLTUIamJjIys9cvbGRUVFUpLS9N9991Xa9vPE7JradGihcNxpSvzF/y8SNWsWTN7m8TExDrnBWjbtq39/8vKymqtAwAA3q2h+U1FRYUee+wxPf7447WO2bFjRx04cKBR4nM2T6lPzZxBBw8e1L59+zRw4EDt379f2dnZOn36tPr166fmzZvb+xo1apT++Mc/1jpO+/btb+g8AgICHJZtNpuqq6vrbd+sWTNlZGRo586d2rZtm1577TU9/fTTysvLU+fOnSWRm8G3USACUKfu3bvr0qVLysvL0+233y5JOnXqlIqKitSjRw9JUnx8vHbv3u2w38+Xb1RycrIyMzMdJibMyMhwuBvo1ltv1b59+2rFn5eX57Du888/d1ju27evioqKdMstt9TZd3x8vI4dO6bS0lJFRUVJcu78oqKiFBMTo2+//Vbjxo2rs03fvn21fv16tWvXTmFhYfUea+/evQoICFDPnj2v2S8AALg6b89v+vbtq3379tWbu3Tr1k2XLl1Sfn6+fvWrX0m6csfNTx/l7kx+42yeUp9evXqpdevWWrx4sRISEhQaGqrBgwfrj3/8o06fPm2ff6imr/fff1+dOnWSv/+1P57Gx8fr0qVL+uKLL+x3Sh06dOi6/1gYGBgo6cqcTD9ls9k0YMAADRgwQPPnz1dcXJw+/PBDzZo1SxK5GXwbXzEDUKcuXbpo9OjRmjRpkj777DN9+eWX+td//Vd16NBBo0ePliRNnz5dH3/8sV5++WUdPHhQb7zxhrZs2SKbzeZ0PwUFBSooKFBFRYV++OEHFRQUOCRDM2bMUHp6ul566SXt379fCxYs0J49exwmY6yZ1PGnv+Aff/xxpaen68UXX9TBgwf1+uuvKz093aHv+fPna82aNUpLS9M333yjwsJCvfPOO5o7d64kadiwYbr55ps1YcIEffXVV8rJybFvu9Y5pqWlacmSJVq2bJkOHDigr7/+Wm+99ZZefvllSdK4ceMUGRmp0aNHa8eOHTpy5Iiys7P1+OOP6/vvv7cfZ8eOHfYnlQAAgBvj7fnNH/7wB+3cudP+EI6DBw/qL3/5i32/+Ph4DR8+XI899pjy8vKUn5+vf//3f3fII5zJb5zNU+pjs9k0aNAgrV271l4M6t27tyorK5WZmak777zT3nbq1KkqKyvT2LFjtXv3bh0+fFhbt27Vo48+Wqt4I10pgqWkpGjy5MnatWuXvvjiC02ePFkhISHX9RrFxcXJZrNp06ZN+uGHH1RRUaG8vDw999xz2rNnj44ePaoPPvhAP/zwg7p3727fj9wMPs3TkyABaFp+OglgWVmZefjhh014eLgJCQkxqamp5sCBAw7tV61aZTp06GBCQkLMmDFjzOLFi010dLTT/Umq9S8uLs6hzYYNG0zXrl1NYGCg6dmzp9m8ebPD9qqqKhMTE2PS09Md1r/55pvmF7/4hQkJCTGjRo0yL774Yq0JJtPT083tt99uQkJCTFhYmOnfv79ZtWqVfXthYaEZMGCACQwMNN26dTP/93//ZyTZ+6qZpPqLL76odW5r1641CQkJJjAw0LRu3doMGjTIfPDBB/btxcXFZvz48SYyMtIEBQWZm266yUyaNMmcOXPG3iY+Pt787//+r9M/TwAAUJsv5Te7du0yw4YNM6GhoaZFixamd+/e5tlnn7VvLy4uNiNHjjRBQUGmY8eOZs2aNSYuLs5hAudr5Tc1x7lWnnI1r7zyisOk0MYYM3r0aOPv72/OnTvn0PbAgQPm3nvvNa1atTIhISGmW7duZubMmfZJsn8+2ffx48fNiBEjTFBQkImLizPr1q0z7dq1MytXrnR4DWom3a4RHh5u3nrrLfvywoULTXR0tLHZbGbChAlm3759JjU11bRt29YEBQWZrl27mtdee83hGORm8GU2Y37yzD4AuEGTJk3S/v37tWPHDrf2u3z5cn300UfaunWrS/vJycnRwIEDdejQId18880u7WvLli164okn9NVXXzl1yzUAAHAN8pum7fvvv1dsbKy2b9+uoUOHuqwfcjP4Oq5qADfkxRdf1LBhw9SiRQtt2bJFb7/9tlasWOH2OB577DGVl5fr3LlzatmyZaMd98MPP1RoaKi6dOmiQ4cOacaMGRowYIBbkqfz58/rrbfeIgEBAMDNyG+atk8++UQVFRXq1auXiouL9dRTT6lTp04aNGiQS/slN4Ov4w4iADfkgQceUHZ2ts6dO6ebbrpJ06dP1+9+9ztJUs+ePfX3v/+9zv3eeOONeidwbkrWrFmjxYsX6+jRo4qMjFRKSopeeukltWnTxtOhAQAAFyG/ubrQ0NB6t23ZskV33HFHY4Vap61bt+qJJ57Qt99+q5YtW+r222/X0qVLFRcX59J+AV9HgQiAy/z9739XVVVVnduioqIa9S9hAAAA7kB+c+WpYfXp0KEDEzgDXooCEQAAAAAAgMXxmHsAAAAAAACLo0AEAAAAAABgcRSIAAAAAAAALI4CEQAAAAAAgMVRIAIAAAAAALA4CkQAAAAAAAAWR4EIAAAAAADA4igQAQAAAAAAWNz/A1SAPDEY2sDSAAAAAElFTkSuQmCC", + "text/plain": [ + "
" ] }, "metadata": {}, @@ -2133,66 +2205,34 @@ } ], "source": [ - "plotDistribution(allEdgesWeights, 100)\n", - "plt.yscale(\"log\")" + "graphSummary(filteredEntityGraph, 13, plot_edge_weight=True, use_log_y=False)\n", + "plt.xlim([0.01,8])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Local and global properties of the graph " ] }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 74, "metadata": {}, "outputs": [], "source": [ - "filteredEntityGraph = entityGraph.edge_subgraph(\n", - " [edge for edge in entityGraph.edges if entityGraph.edges[edge][\"weight\"]>0.05]\n", - ")" + "globalKpis = [{\n", + " \"shortest_path\": nx.average_shortest_path_length(_graph),\n", + " \"clustering_coefficient\": nx.average_clustering(_graph),\n", + " \"global_efficiency\": nx.global_efficiency(_graph)\n", + "} for components in nx.connected_components(filteredEntityGraph) \n", + " for _graph in [nx.subgraph(filteredEntityGraph, components)]]" ] }, { "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Name: \n", - "Type: Graph\n", - "Number of nodes: 2267\n", - "Number of edges: 8111\n", - "Average degree: 7.1557\n" - ] - } - ], - "source": [ - "print(nx.info(filteredEntityGraph))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Local and global properties of the graph " - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [], - "source": [ - "globalKpis = [{\n", - " \"shortest_path\": nx.average_shortest_path_length(_graph),\n", - " \"clustering_coefficient\": nx.average_clustering(_graph),\n", - " \"global_efficiency\": nx.global_efficiency(_graph)\n", - "} for components in nx.connected_components(filteredEntityGraph) \n", - " for _graph in [nx.subgraph(filteredEntityGraph, components)]]" - ] - }, - { - "cell_type": "code", - "execution_count": 59, + "execution_count": 75, "metadata": {}, "outputs": [ { @@ -2232,17 +2272,17 @@ " \n", " \n", " 1\n", - " 1.600000\n", + " 1.000000\n", " 0.00000\n", - " 0.700000\n", - " 5\n", + " 1.000000\n", + " 2\n", " \n", " \n", " 2\n", - " 1.000000\n", + " 1.600000\n", " 0.00000\n", - " 1.000000\n", - " 2\n", + " 0.700000\n", + " 5\n", " \n", " \n", " 3\n", @@ -2260,17 +2300,17 @@ " \n", " \n", " 5\n", - " 1.000000\n", + " 1.333333\n", " 0.00000\n", - " 1.000000\n", - " 2\n", + " 0.833333\n", + " 3\n", " \n", " \n", " 6\n", - " 1.333333\n", + " 1.000000\n", " 0.00000\n", - " 0.833333\n", - " 3\n", + " 1.000000\n", + " 2\n", " \n", " \n", "\n", @@ -2279,15 +2319,15 @@ "text/plain": [ " shortest_path clustering_coefficient global_efficiency 0\n", "0 4.722114 0.21808 0.227060 2251\n", - "1 1.600000 0.00000 0.700000 5\n", - "2 1.000000 0.00000 1.000000 2\n", + "1 1.000000 0.00000 1.000000 2\n", + "2 1.600000 0.00000 0.700000 5\n", "3 1.000000 0.00000 1.000000 2\n", "4 1.000000 0.00000 1.000000 2\n", - "5 1.000000 0.00000 1.000000 2\n", - "6 1.333333 0.00000 0.833333 3" + "5 1.333333 0.00000 0.833333 3\n", + "6 1.000000 0.00000 1.000000 2" ] }, - "execution_count": 59, + "execution_count": 75, "metadata": {}, "output_type": "execute_result" } @@ -2301,7 +2341,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 76, "metadata": {}, "outputs": [ { @@ -2310,7 +2350,7 @@ "2267" ] }, - "execution_count": 60, + "execution_count": 76, "metadata": {}, "output_type": "execute_result" } @@ -2321,18 +2361,18 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 77, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'shortest_path': 4.722114220840121,\n", - " 'clustering_coefficient': 0.2180798636929227,\n", - " 'global_efficiency': 0.22705958935991422}" + " 'clustering_coefficient': 0.21807986369292282,\n", + " 'global_efficiency': 0.22705958936010567}" ] }, - "execution_count": 61, + "execution_count": 77, "metadata": {}, "output_type": "execute_result" } @@ -2343,7 +2383,7 @@ }, { "cell_type": "code", - "execution_count": 152, + "execution_count": 78, "metadata": {}, "outputs": [], "source": [ @@ -2352,7 +2392,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 79, "metadata": {}, "outputs": [], "source": [ @@ -2361,16 +2401,16 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 80, "metadata": {}, "outputs": [], "source": [ - "_betweeness = pd.Series(betweeness)" + "_betweeness = pd.Series(betweeness, name=\"betweeness\")" ] }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 81, "metadata": {}, "outputs": [ { @@ -2383,7 +2423,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGhCAYAAABLWk8IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df3TU1Z3/8dckDBOCDDHhkB9LMNkerGiQWCCYFSpKSARkxaa6rFlFlwO7W9Bi6g9yVmhABORQm4LRlJ6WLueQXWR3oRZdYARr2iX8CsVV11I4C8qRTThtTIYkh2FI5vuHX6Y7TBI+A5/J3AzPxzk58LlzPzfveecDvLjzyxEIBAICAAAwSEKsCwAAALgSAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgDYl3Atejq6tLZs2c1ZMgQORyOWJcDAAAsCAQCOn/+vLKyspSQ0PseSb8MKGfPnlV2dnasywAAANfgzJkzGjFiRK9z+mVAGTJkiKSv7qDb7bZ1bb/frz179qi4uFhOp9PWteMNvbKOXllHr6yjV9bRq8hEq19er1fZ2dnBf8d70y8DyuWHddxud1QCSnJystxuNxfxVdAr6+iVdfTKOnplHb2KTLT7ZeXpGTxJFgAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGCcAbEuAAAQezlL3gkbO71mZgwqAb7CDgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgRB5S6ujrNmjVLWVlZcjgc2rFjR49z//7v/14Oh0NVVVUh483NzSorK5Pb7VZKSormzZuntra2yKsHAABxKeKA0t7errFjx6q6urrXedu3b9eBAweUlZUVdltZWZk++eQTeTwe7dy5U3V1dVqwYEGkpQAAgDgV8TvJTp8+XdOnT+91zhdffKGnn35au3fv1syZoe9E+Omnn2rXrl06fPiwxo8fL0nasGGDZsyYoXXr1nUbaAAAwI3F9re67+rq0uOPP67nn39ed9xxR9jt9fX1SklJCYYTSSoqKlJCQoIOHjyohx9+OOwcn88nn88XPPZ6vZIkv98vv99va/2X17N73XhEr6yjV9bRK+vs7JUrMdDj+vGA6yoy0epXJOvZHlBeffVVDRgwQM8880y3tzc2Nmr48OGhRQwYoNTUVDU2NnZ7zurVq7V8+fKw8T179ig5Ofn6i+6Gx+OJyrrxiF5ZR6+so1fW2dGrtQXhY+++++51r2sarqvI2N2vjo4Oy3NtDSgNDQ360Y9+pKNHj8rhcNi2bkVFhcrLy4PHXq9X2dnZKi4ultvttu37SF+lO4/Ho2nTpsnpdNq6dryhV9bRK+volXVWe5VXuTts7OPKkojn9GdcV5GJVr8uPwJiha0B5de//rXOnTunkSNHBsc6Ozv1ve99T1VVVTp9+rQyMjJ07ty5kPMuXbqk5uZmZWRkdLuuy+WSy+UKG3c6nVG70KK5dryhV9bRK+volXVX65WvM/w/jFfOtzInHnBdRcbufkWylq0B5fHHH1dRUVHIWElJiR5//HE99dRTkqTCwkK1tLSooaFB48aNkyTt27dPXV1dmjhxop3lAACAfirigNLW1qaTJ08Gj0+dOqVjx44pNTVVI0eOVFpaWsh8p9OpjIwMff3rX5ckjR49Wg888IDmz5+vmpoa+f1+LVq0SHPmzOEVPAAAQNI1vA/KkSNHdNddd+muu+6SJJWXl+uuu+7SsmXLLK+xZcsW3XbbbZo6dapmzJihSZMmaePGjZGWAgAA4lTEOyhTpkxRIBD+crSenD59OmwsNTVVtbW1kX5rAABwg+CzeAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACME3FAqaur06xZs5SVlSWHw6EdO3YEb/P7/XrxxRc1ZswYDR48WFlZWXriiSd09uzZkDWam5tVVlYmt9utlJQUzZs3T21tbdd/bwAAQFyIOKC0t7dr7Nixqq6uDruto6NDR48e1dKlS3X06FH9+7//u44fP66//Mu/DJlXVlamTz75RB6PRzt37lRdXZ0WLFhw7fcCAADElQGRnjB9+nRNnz6929uGDh0qj8cTMvb666+roKBAn3/+uUaOHKlPP/1Uu3bt0uHDhzV+/HhJ0oYNGzRjxgytW7dOWVlZYev6fD75fL7gsdfrlfTVjo3f74/0LvTq8np2rxuP6JV19Mo6emWd1V65EgM9nhvJnP6M6yoy0epXJOs5AoFA+FVp9WSHQ9u3b9fs2bN7nPPee++puLhYLS0tcrvd+tnPfqbvfe97+vLLL4NzLl26pKSkJG3btk0PP/xw2BqVlZVavnx52Hhtba2Sk5OvtXwAANCHOjo69Nhjj6m1tVVut7vXuRHvoETiwoULevHFF/XXf/3XwUIaGxs1fPjw0CIGDFBqaqoaGxu7XaeiokLl5eXBY6/Xq+zsbBUXF1/1DkbK7/fL4/Fo2rRpcjqdtq4db+iVdfTKOnplndVe5VXuDhv7uLIk4jn9GddVZKLVr8uPgFgRtYDi9/v16KOPKhAI6M0337yutVwul1wuV9i40+mM2oUWzbXjDb2yjl5ZR6+su1qvfJ2Obs+JdE484LqKjN39imStqASUy+Hks88+0759+0J2OTIyMnTu3LmQ+ZcuXVJzc7MyMjKiUQ4A4BrkLHknbOz0mpkxqAQ3ItvfB+VyODlx4oTee+89paWlhdxeWFiolpYWNTQ0BMf27dunrq4uTZw40e5yAABAPxTxDkpbW5tOnjwZPD516pSOHTum1NRUZWZm6tvf/raOHj2qnTt3qrOzM/i8ktTUVA0cOFCjR4/WAw88oPnz56umpkZ+v1+LFi3SnDlzun0FDwAgMt3tfERrbXZUEC0RB5QjR47ovvvuCx5ffvLq3LlzVVlZqbfffluSlJ+fH3Le+++/rylTpkiStmzZokWLFmnq1KlKSEhQaWmp1q9ff633AQAAxJmIA8qUKVPU2yuTrbxqOTU1VbW1tZF+awAAcIPgs3gAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAME7EHxYIADBLXuVu+TodsS4DsBU7KAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcXijNgC4AeUseSfWJQC9YgcFAAAYh4ACAACMQ0ABAADGIaAAAADj8CRZAOhH/u+TW12JAa0tiGExQBSxgwIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA7vgwIAuGbdfejg6TUzY1AJ4g07KAAAwDgEFAAAYJyIA0pdXZ1mzZqlrKwsORwO7dixI+T2QCCgZcuWKTMzU4MGDVJRUZFOnDgRMqe5uVllZWVyu91KSUnRvHnz1NbWdn33BAAAxI2IA0p7e7vGjh2r6urqbm9fu3at1q9fr5qaGh08eFCDBw9WSUmJLly4EJxTVlamTz75RB6PRzt37lRdXZ0WLFhw7fcCAADElYifJDt9+nRNnz6929sCgYCqqqr00ksv6aGHHpIkbd68Wenp6dqxY4fmzJmjTz/9VLt27dLhw4c1fvx4SdKGDRs0Y8YMrVu3TllZWddxdwAAQDyw9VU8p06dUmNjo4qKioJjQ4cO1cSJE1VfX685c+aovr5eKSkpwXAiSUVFRUpISNDBgwf18MMPh63r8/nk8/mCx16vV5Lk9/vl9/vtvAvB9exeNx7RK+volXX0qneuxMCffp8QCPnVFCb+7LiuIhOtfkWynq0BpbGxUZKUnp4eMp6enh68rbGxUcOHDw8tYsAApaamBudcafXq1Vq+fHnY+J49e5ScnGxH6WE8Hk9U1o1H9Mo6emUdvere2oLwsZfHd/V9Ib149913Y11Cj7iuImN3vzo6OizP7Rfvg1JRUaHy8vLgsdfrVXZ2toqLi+V2u239Xn6/Xx6PR9OmTZPT6bR17XhDr6yjV9bRq97lVe4O/t6VENDL47u09EiCfF2OGFYV6uPKkliXEIbrKjLR6tflR0CssDWgZGRkSJKampqUmZkZHG9qalJ+fn5wzrlz50LOu3Tpkpqbm4PnX8nlcsnlcoWNO53OqF1o0Vw73tAr6+iVdfSqe77O8CDi63J0Ox4rJv/cuK4iY3e/IlnL1vdByc3NVUZGhvbu3Rsc83q9OnjwoAoLCyVJhYWFamlpUUNDQ3DOvn371NXVpYkTJ9pZDgAA6Kci3kFpa2vTyZMng8enTp3SsWPHlJqaqpEjR2rx4sVauXKlRo0apdzcXC1dulRZWVmaPXu2JGn06NF64IEHNH/+fNXU1Mjv92vRokWaM2cOr+ABAACSriGgHDlyRPfdd1/w+PJzQ+bOnauf//zneuGFF9Te3q4FCxaopaVFkyZN0q5du5SUlBQ8Z8uWLVq0aJGmTp2qhIQElZaWav369TbcHQAAEA8iDihTpkxRINDzS9ocDodWrFihFStW9DgnNTVVtbW1kX5rAABwg+CzeAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGGRDrAgAA8SVnyTshx6fXzIxRJejP2EEBAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwju0BpbOzU0uXLlVubq4GDRqkr33ta3r55ZcVCASCcwKBgJYtW6bMzEwNGjRIRUVFOnHihN2lAACAfsr2gPLqq6/qzTff1Ouvv65PP/1Ur776qtauXasNGzYE56xdu1br169XTU2NDh48qMGDB6ukpEQXLlywuxwAANAPDbB7wf379+uhhx7SzJkzJUk5OTn653/+Zx06dEjSV7snVVVVeumll/TQQw9JkjZv3qz09HTt2LFDc+bMCVvT5/PJ5/MFj71eryTJ7/fL7/fbWv/l9exeNx7RK+volXX0qneuxD/tRrsSAiG/msqEnyXXVWSi1a9I1nME/u9jLzZYtWqVNm7cqD179ujWW2/Vhx9+qOLiYr322msqKyvT//zP/+hrX/uafvvb3yo/Pz943r333qv8/Hz96Ec/CluzsrJSy5cvDxuvra1VcnKyneUDAIAo6ejo0GOPPabW1la53e5e59q+g7JkyRJ5vV7ddtttSkxMVGdnp1555RWVlZVJkhobGyVJ6enpIeelp6cHb7tSRUWFysvLg8der1fZ2dkqLi6+6h2MlN/vl8fj0bRp0+R0Om1dO97QK+volXX0qnd5lbuDv3clBPTy+C4tPZIgX5cjhlX17uPKkliXwHUVoWj16/IjIFbYHlDeeustbdmyRbW1tbrjjjt07NgxLV68WFlZWZo7d+41relyueRyucLGnU5n1C60aK4db+iVdfTKOnrVPV9neBDxdTm6HTeFST9HrqvI2N2vSNayPaA8//zzWrJkSfC5JGPGjNFnn32m1atXa+7cucrIyJAkNTU1KTMzM3heU1NTyEM+AADgxmX7q3g6OjqUkBC6bGJiorq6uiRJubm5ysjI0N69e4O3e71eHTx4UIWFhXaXAwAA+iHbd1BmzZqlV155RSNHjtQdd9yh3/72t3rttdf0t3/7t5Ikh8OhxYsXa+XKlRo1apRyc3O1dOlSZWVlafbs2XaXAwAA+iHbA8qGDRu0dOlSfec739G5c+eUlZWlv/u7v9OyZcuCc1544QW1t7drwYIFamlp0aRJk7Rr1y4lJSXZXQ4AAOiHbA8oQ4YMUVVVlaqqqnqc43A4tGLFCq1YscLubw8AAOIAn8UDAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADCO7e+DAgCwR86Sd2JdAhAz7KAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGGdArAsAAMS3nCXvhI2dXjMzBpWgP2EHBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOLzMGAAM0d3LcYEbFTsoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADG4WXGABBlfJovELmo7KB88cUX+pu/+RulpaVp0KBBGjNmjI4cORK8PRAIaNmyZcrMzNSgQYNUVFSkEydORKMUAADQD9keUL788kvdc889cjqd+o//+A/993//t37wgx/o5ptvDs5Zu3at1q9fr5qaGh08eFCDBw9WSUmJLly4YHc5AACgH7L9IZ5XX31V2dnZ2rRpU3AsNzc3+PtAIKCqqiq99NJLeuihhyRJmzdvVnp6unbs2KE5c+bYXRIAAOhnbA8ob7/9tkpKSvTII4/ogw8+0J/92Z/pO9/5jubPny9JOnXqlBobG1VUVBQ8Z+jQoZo4caLq6+u7DSg+n08+ny947PV6JUl+v19+v9/W+i+vZ/e68YheWUevrIvHXrkSA2Fj3d2/7ub1um5CIOTX/qSvf77xeF1FU7T6Fcl6jkAgYOuVnZSUJEkqLy/XI488osOHD+u73/2uampqNHfuXO3fv1/33HOPzp49q8zMzOB5jz76qBwOh7Zu3Rq2ZmVlpZYvXx42Xltbq+TkZDvLBwAAUdLR0aHHHntMra2tcrvdvc61PaAMHDhQ48eP1/79+4NjzzzzjA4fPqz6+vprCijd7aBkZ2frD3/4w1XvYKT8fr88Ho+mTZsmp9Np69rxhl5ZR6+si8de5VXuDhv7uLLE0rzeuBICenl8l5YeSZCvy3HN9cVCd/c/muLxuoqmaPXL6/Vq2LBhlgKK7Q/xZGZm6vbbbw8ZGz16tP7t3/5NkpSRkSFJampqCgkoTU1Nys/P73ZNl8sll8sVNu50OqN2oUVz7XhDr6yjV9bFU698neHhobv71t08S+t3Oa753FiJ1c82nq6rvmB3vyJZy/ZX8dxzzz06fvx4yNjvf/973XLLLZK+esJsRkaG9u7dG7zd6/Xq4MGDKiwstLscAADQD9m+g/Lss8/qL/7iL7Rq1So9+uijOnTokDZu3KiNGzdKkhwOhxYvXqyVK1dq1KhRys3N1dKlS5WVlaXZs2fbXQ4AAOiHbA8oEyZM0Pbt21VRUaEVK1YoNzdXVVVVKisrC8554YUX1N7ergULFqilpUWTJk3Srl27gk+wBQAAN7aovNX9gw8+qAcffLDH2x0Oh1asWKEVK1ZE49sDAIB+js/iAYAY6O7zeQD8CZ9mDAAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADj8Fk8AIA+d+VnEZ1eMzNGlcBU7KAAAADjEFAAAIBxCCgAAMA4BBQAAGAcniQLADa78gmgACLHDgoAADAOAQUAABiHgAIAAIxDQAEAAMbhSbIAcB14Qqw9uusj7y57Y2MHBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADG4bN4ACACfPYO0DfYQQEAAMYhoAAAAOMQUAAAgHGiHlDWrFkjh8OhxYsXB8cuXLighQsXKi0tTTfddJNKS0vV1NQU7VIAAEA/EdWAcvjwYf34xz/WnXfeGTL+7LPP6pe//KW2bdumDz74QGfPntW3vvWtaJYCAAD6kagFlLa2NpWVleknP/mJbr755uB4a2urfvrTn+q1117T/fffr3HjxmnTpk3av3+/Dhw4EK1yAABAPxK1lxkvXLhQM2fOVFFRkVauXBkcb2hokN/vV1FRUXDstttu08iRI1VfX6+77747bC2fzyefzxc89nq9kiS/3y+/329r3ZfXs3vdeESvrKNX1pneK1diINYlBLkSAiG/xhs7rwHTryvTRKtfkawXlYDyL//yLzp69KgOHz4cdltjY6MGDhyolJSUkPH09HQ1NjZ2u97q1au1fPnysPE9e/YoOTnZnqKv4PF4orJuPKJX1tEr60zt1dqCWFcQ7uXxXbEuISreffdd29c09boyld396ujosDzX9oBy5swZffe735XH41FSUpIta1ZUVKi8vDx47PV6lZ2dreLiYrndblu+x2V+v18ej0fTpk2T0+m0de14Q6+so1fWmd6rvMrdsS4hyJUQ0Mvju7T0SIJ8XY5Yl2O7jytLbFvL9OvKNNHq1+VHQKywPaA0NDTo3Llz+sY3vhEc6+zsVF1dnV5//XXt3r1bFy9eVEtLS8guSlNTkzIyMrpd0+VyyeVyhY07nc6oXWjRXDve0Cvr6JV1pvbK12leEPB1OYys63pF4+dv6nVlKrv7FclatgeUqVOn6qOPPgoZe+qpp3TbbbfpxRdfVHZ2tpxOp/bu3avS0lJJ0vHjx/X555+rsLDQ7nIAAEA/ZHtAGTJkiPLy8kLGBg8erLS0tOD4vHnzVF5ertTUVLndbj399NMqLCzs9gmyAADgxhOTDwv84Q9/qISEBJWWlsrn86mkpERvvPFGLEoBAAAG6pOA8qtf/SrkOCkpSdXV1aquru6Lbw8AAPoZPosHAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGCcmLxRGwDEWs6Sd8LGTq+ZGYNKAHSHHRQAAGAcAgoAADAOD/EAQA+6exgIQN9gBwUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDi8zBgAYKQrX+bNO/3eWNhBAQAAxiGgAAAA4xBQAACAcQgoAADAODxJFgDQL3T32Ug8cTZ+sYMCAACMww4KAPx/fHoxYA52UAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjMPLjAHcEHgJMdC/sIMCAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAc2wPK6tWrNWHCBA0ZMkTDhw/X7Nmzdfz48ZA5Fy5c0MKFC5WWlqabbrpJpaWlampqsrsUAADQT9keUD744AMtXLhQBw4ckMfjkd/vV3Fxsdrb24Nznn32Wf3yl7/Utm3b9MEHH+js2bP61re+ZXcpAOJQzpJ3Qr4AxCfb36ht165dIcc///nPNXz4cDU0NOib3/ymWltb9dOf/lS1tbW6//77JUmbNm3S6NGjdeDAAd19991ha/p8Pvl8vuCx1+uVJPn9fvn9flvrv7ye3evGI3plHb2y7mq9ciUGup1/NVeeFw9cCYGQX29EVn/+/BmMTLT6Fcl6jkAgENUr++TJkxo1apQ++ugj5eXlad++fZo6daq+/PJLpaSkBOfdcsstWrx4sZ599tmwNSorK7V8+fKw8draWiUnJ0ezfAAAYJOOjg499thjam1tldvt7nVuVN/qvqurS4sXL9Y999yjvLw8SVJjY6MGDhwYEk4kKT09XY2Njd2uU1FRofLy8uCx1+tVdna2iouLr3oHI+X3++XxeDRt2jQ5nU5b14439Mo6emXd1XqVV7k75PjjyhJL6155XjxwJQT08vguLT2SIF+XI9blxITVnz9/BiMTrX5dfgTEiqgGlIULF+rjjz/Wb37zm+tax+VyyeVyhY07nc6oXWjRXDve0Cvr6JV1PfXK1+kIm2fFlefFE1+XI67vX28i/fPEn8HI2N2vSNaKWkBZtGiRdu7cqbq6Oo0YMSI4npGRoYsXL6qlpSVkF6WpqUkZGRnRKgdAnOKJskB8sv1VPIFAQIsWLdL27du1b98+5ebmhtw+btw4OZ1O7d27Nzh2/Phxff755yosLLS7HAAA0A/ZvoOycOFC1dbW6he/+IWGDBkSfF7J0KFDNWjQIA0dOlTz5s1TeXm5UlNT5Xa79fTTT6uwsLDbV/AAAIAbj+0B5c0335QkTZkyJWR806ZNevLJJyVJP/zhD5WQkKDS0lL5fD6VlJTojTfesLsUAADQT9keUKy8ajkpKUnV1dWqrq62+9sDiCM8vwS4cfFZPAAAwDgEFAAAYBwCCgAAMA4BBQAAGCeq7yQLAD3p7gmwp9fMjEElAEzEDgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDi8DwoAY+QseUeuxIDWFkh5lbslOWJdEoAYYQcFAAAYh4ACAACMQ0ABAADG4TkoAPpEd5+9A1wvPtMpfrGDAgAAjENAAQAAxuEhHgARYUsdQF9gBwUAABiHgAIAAIxDQAEAAMYhoAAAAOPwJFkAPeK9SwDECjsoAADAOOygALAdOy8wyZWfku3rdPDS+H6AHRQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOPwMmMAQdf68mBeVgzAbuygAAAA4xBQAACAcXiIJ45due3OOyfaw8rDGbHudXc1XlkTD8sgXnFtx4eY7qBUV1crJydHSUlJmjhxog4dOhTLcgAAgCFitoOydetWlZeXq6amRhMnTlRVVZVKSkp0/PhxDR8+PFZlGak//I/dLtf6Px/T7v+V9+PKzwG5zErd/G8QsN+N9PdqfxWzHZTXXntN83hgHdoAAAlfSURBVOfP11NPPaXbb79dNTU1Sk5O1s9+9rNYlQQAAAwRkx2UixcvqqGhQRUVFcGxhIQEFRUVqb6+Pmy+z+eTz+cLHre2tkqSmpub5ff7ba3N7/ero6NDf/zjH+V0Om1d+1oNuNR+1Tl//OMfr3ped3OuRzR6ZeW+dsfu+9aba6lxQFdAHR1dGuBPUGfXn3ZQrNR9rT250pXfy6517dZTrxCOXll3Lb3qy79XTBOtfwvPnz8vSQoEAlefHIiBL774IiApsH///pDx559/PlBQUBA2//vf/35AEl988cUXX3zxFQdfZ86cuWpW6Bev4qmoqFB5eXnwuKurS83NzUpLS5PDEZqEJ0yYoMOHD/c61tux1+tVdna2zpw5I7fbbev96K42u87pbV5Pt1np1ZVjJvfK6nl91av/exzNXvVW9/WeQ6+sn3O1OdfTL3rV83i89+pq86LRKyl6f78HAgGdP39eWVlZV50bk4AybNgwJSYmqqmpKWS8qalJGRkZYfNdLpdcLlfIWEpKSrdrJyYmhjXzyrGrHUuS2+22/SLu7vvYdU5v83q6zUqvrhwzuVdWz+urXnV3HI1e9VSLHefQK+vnXG3O9fSLXvU8Hu+9utq8aPZKik6/hg4damleYmVlZaWt39nKN01M1DvvvKOLFy9qxowZkr7aFXnmmWdUWlqqSZMmXdf6BQUFVx3r6djn82nNmjWqqKgIC0V26K42u87pbV5Pt1np1ZVjJvfK6nl91avLx9HuVU+12HEOvbJ+ztXmXE+/6FXP4/Heq6vNs7tXUvT/frfCEQhYeaaK/bZu3aq5c+fqxz/+sQoKClRVVaW33npLv/vd75Senh6LkiR9ta01dOhQtba2RiVlxxN6ZR29so5eWUevrKNXkTGhXzHZQZGkvLw8paSk6JVXXtG6deskSVu2bNHXv/71WJQTIjExUVOmTNGAAf3iKToxRa+so1fW0Svr6JV19Coyse5XzHZQAAAAesKHBQIAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4B5RodP35c+fn5wa9BgwZpx44dsS7LWKdOndJ9992n22+/XWPGjFF7u5kfVGeCnJwc3XnnncrPz9d9990X63KM19HRoVtuuUXPPfdcrEsxWktLi8aPH6/8/Hzl5eXpJz/5SaxLMtaZM2c0ZcoU3X777brzzju1bdu2WJdktIcfflg333yzvv3tb9u6Li8ztkFbW5tycnL02WefafDgwbEux0j33nuvVq5cqcmTJ6u5uVlut5v3IuhBTk6OPv74Y910002xLqVf+Md//EedPHlS2dnZwfdUQrjOzk75fD4lJyervb1deXl5OnLkiNLS0mJdmnH+93//V01NTcrPz1djY6PGjRun3//+9/z93oNf/epXOn/+vP7pn/5J//qv/2rbuuyg2ODtt9/W1KlTuXh78Mknn8jpdGry5MmSpNTUVMIJbHHixAn97ne/0/Tp02NdivESExOVnJws6au3MQ8EAtY+8v4GlJmZqfz8fElSRkaGhg0bpubm5hhXZa4pU6ZoyJAhtq8btwGlrq5Os2bNUlZWlhwOR7cPv1RXVysnJ0dJSUmaOHGiDh06dE3f66233tJf/dVfXW/JMRPtXp04cUI33XSTZs2apW984xtatWqVneX3qb64rhwOh+69915NmDBBW7Zssav0PtcXvXruuee0evVqu0qOqb7oV0tLi8aOHasRI0bo+eef17Bhw+wqv0/15d/vDQ0N6uzsVHZ29vWWHRN92Su7xW1AaW9v19ixY1VdXd3t7Vu3blV5ebm+//3v6+jRoxo7dqxKSkp07ty54JzLj9Ve+XX27NngHK/Xq/379wc/9LA/inavLl26pF//+td64403VF9fL4/HI4/H01d3z1Z9cV395je/UUNDg95++22tWrVK//Vf/9Un981u0e7VL37xC91666269dZb++ouRVVfXFspKSn68MMPderUKdXW1oZ9onx/0Vd/vzc3N+uJJ57Qxo0bo36foqWvehUVgRuApMD27dtDxgoKCgILFy4MHnd2dgaysrICq1evjmjtzZs3B8rKymyp0wTR6NX+/fsDxcXFweO1a9cG1q5da0/BMRTN6+qy5557LrBp06brKdMI0ejVkiVLAiNGjAjccsstgbS0tIDb7Q4sX77c1rpjpS+urX/4h38IbNu27brqNEG0enXhwoXA5MmTA5s3b7at1liL5nX1/vvvB0pLS22p87K43UHpzcWLF9XQ0KCioqLgWEJCgoqKilRfXx/RWv394Z2rsaNXEyZM0Llz5/Tll1+qq6tLdXV1Gj16dLRKjhk7etXe3q7z589L+urJ1/v27dMdd9wRlXpjyY5erV69WmfOnNHp06e1bt06zZ8/X8uWLYtWyTFlR7+ampqC11Zra6vq6uqM+HBWu9nRq0AgoCeffFL333+/Hn/88WiVGnN2/lsYDTdkQPnDH/6gzs5Opaenh4ynp6ersbHR8jqtra06dOiQSkpK7C7RGHb0asCAAVq1apW++c1v6s4779SoUaP04IMPRqPcmLKjV01NTZo0aZLGjh2ru+++W0888YQmTJgQjXJjyq4/gzcKO/r12WefafLkyRo7dqwmT56sp59+WmPGjIlGuTFlR6/+8z//U1u3btWOHTuCbyXx0UcfRaPcmLLrz2FRUZEeeeQRvfvuuxoxYoRt4YaXUlyHoUOH9tvHcPva9OnTeaWFBX/+53+uDz/8MNZl9DtPPvlkrEswXkFBgY4dOxbrMvqFSZMmqaurK9Zl9BvvvfdeVNa9IXdQhg0bpsTExLBw0dTUpIyMjBhVZSZ6ZR29so5eRYZ+WUevrDO9VzdkQBk4cKDGjRunvXv3Bse6urq0d+9eFRYWxrAy89Ar6+iVdfQqMvTLOnplnem9ituHeNra2nTy5Mng8alTp3Ts2DGlpqZq5MiRKi8v19y5czV+/HgVFBSoqqpK7e3teuqpp2JYdWzQK+volXX0KjL0yzp6ZV2/7pWtrwkyyPvvvx+QFPY1d+7c4JwNGzYERo4cGRg4cGCgoKAgcODAgdgVHEP0yjp6ZR29igz9so5eWdefe8Vn8QAAAOPckM9BAQAAZiOgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4/w+kbyVa2HkUlQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAG1CAYAAAAfhDVuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3iMd/7/8ddEIhIkEUqkQtg61SGqDlW0VEixvk6tKq3Dumh3HZtqt7aloU61rVWqVd2uw3fZYov6UoesQx2LUFqtxqFOLYlug0iyYiT37w+X+e1IwmRyT2Zyez6uK5fen/uez7zn7carn7nvGZthGIYAAAAsys/bBQAAAHgSYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFiav7cL8AW5ubk6f/68ypcvL5vN5u1yAACACwzD0NWrVxUZGSk/v4LXbwg7ks6fP6+oqChvlwEAANxw7tw5VatWrcD9hB1J5cuXl3SzWSEhIabNa7fbtWnTJnXq1EkBAQGmzWtF9Kpw6Jfr6JXr6JXr6JXrPNmr9PR0RUVFOf4dLwhhR3K8dRUSEmJ62AkODlZISAh/GO6CXhUO/XIdvXIdvXIdvXJdcfTqbpegcIEyAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNH9vFwAAsJ7o19blGTs9vasXKgFY2QEAABZH2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJbm1bCzfft2devWTZGRkbLZbFq9enWBx7744ouy2WyaNWuW03haWpr69++vkJAQhYWFaciQIcrIyPB06QAAoITwatjJzMxUTEyM5s6de8fjVq1apa+++kqRkZF59vXv31/fffedEhMTtXbtWm3fvl3Dhg3zVMkAAKCE8eonKHfu3FmdO3e+4zE///yzRo4cqY0bN6prV+dP3zx69Kg2bNig/fv3q1mzZpKkOXPmqEuXLnrnnXfyDUcAAODe4tNfF5Gbm6vnn39er7zyiho0aJBn/549exQWFuYIOpIUGxsrPz8/7d27Vz179sx33uzsbGVnZzu209PTJUl2u112u920+m/NZeacVkWvCod+uY5euc7MXgWWMgqc3wo4r1znyV65OqdPh523335b/v7+GjVqVL77U1JSVLlyZacxf39/hYeHKyUlpcB5p02bpokTJ+YZ37Rpk4KDg4tWdD4SExNNn9Oq6FXh0C/X0SvXmdGrGS3yjn3xxRdFntfXcF65zhO9ysrKcuk4nw07Bw4c0HvvvaeDBw/KZrOZOve4ceMUHx/v2E5PT1dUVJQ6deqkkJAQ057HbrcrMTFRHTt2VEBAgGnzWhG9Khz65Tp65TpXe9UwYaPT9pGEuLseU9BxJRXnles82atb78zcjc+GnR07dujixYuqXr26YywnJ0cvv/yyZs2apdOnTysiIkIXL150etyNGzeUlpamiIiIAucODAxUYGBgnvGAgACPnLSemteK6FXh0C/X0SvX3a1X2TnO/wOa37G3H1PQcSUd55XrPNErV+fz2bDz/PPPKzY21mksLi5Ozz//vAYPHixJatWqlS5fvqwDBw7o4YcfliRt2bJFubm5atmyZbHXDAAAfI9Xw05GRoZOnDjh2D516pQOHTqk8PBwVa9eXRUrVnQ6PiAgQBEREapbt64kqX79+nryySc1dOhQzZs3T3a7XSNGjFDfvn25EwsAAEjy8ufsJCUl6aGHHtJDDz0kSYqPj9dDDz2kCRMmuDzHkiVLVK9ePXXo0EFdunRRmzZtNH/+fE+VDAAAShivruy0a9dOhpH39sSCnD59Os9YeHi4li5damJVAADASvhuLAAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGleDTvbt29Xt27dFBkZKZvNptWrVzv22e12/fGPf1SjRo1UtmxZRUZGasCAATp//rzTHGlpaerfv79CQkIUFhamIUOGKCMjo7hfCgAA8FFeDTuZmZmKiYnR3Llz8+zLysrSwYMHNX78eB08eFArV65UcnKy/ud//sfpuP79++u7775TYmKi1q5dq+3bt2vYsGHF9RIAAICP8/fmk3fu3FmdO3fOd19oaKgSExOdxt5//321aNFCZ8+eVfXq1XX06FFt2LBB+/fvV7NmzSRJc+bMUZcuXfTOO+8oMjLS468BAAD4Nq+GncK6cuWKbDabwsLCJEl79uxRWFiYI+hIUmxsrPz8/LR371717Nkz33mys7OVnZ3t2E5PT5d0860zu91uWr235jJzTquiV4VDv1xHr1znaq8CSxn5Pu5Ox7gyb0nCeeU6T/bK1TlthmHkPSO9wGazadWqVerRo0e++69du6bWrVurXr16WrJkiSRp6tSpWrRokZKTk52OrVy5siZOnKjf//73+c6VkJCgiRMn5hlfunSpgoODi/hKAABAccjKylK/fv105coVhYSEFHhciVjZsdvt6tOnjwzD0Icffljk+caNG6f4+HjHdnp6uqKiotSpU6c7Nquw7Ha7EhMT1bFjRwUEBJg2rxXRq8KhX66jV65ztVcNEzY6bR9JiLvrMQUdV1JxXrnOk7269c7M3fh82LkVdM6cOaMtW7Y4hZGIiAhdvHjR6fgbN24oLS1NERERBc4ZGBiowMDAPOMBAQEeOWk9Na8V0avCoV+uo1euu1uvsnNseY6/2zGSVHv8Jqft09O7ulmh7+C8cp0neuXqfD79OTu3gs7x48f1r3/9SxUrVnTa36pVK12+fFkHDhxwjG3ZskW5ublq2bJlcZcLAAB8kFdXdjIyMnTixAnH9qlTp3To0CGFh4eratWqeuqpp3Tw4EGtXbtWOTk5SklJkSSFh4erdOnSql+/vp588kkNHTpU8+bNk91u14gRI9S3b1/uxAIAAJK8HHaSkpLUvn17x/at62gGDhyohIQErVmzRpLUpEkTp8dt3bpV7dq1kyQtWbJEI0aMUIcOHeTn56fevXtr9uzZxfMCAMDiol9bV6xzW+GtLfger4addu3a6U43g7lyo1h4eLiWLl1qZlkAAMBCfPqaHQAAgKIi7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEvz6heBAgB8T8OEjcrOsXm7DMA0rOwAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABL4xOUAQBFEv3aOm+XANwRKzsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSuEAZAO5Rt19YHFjK0IwWXioG8CBWdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKVx6zkAwGfcfjv86eldvVQJrISVHQAAYGmEHQAAYGleDTvbt29Xt27dFBkZKZvNptWrVzvtNwxDEyZMUNWqVRUUFKTY2FgdP37c6Zi0tDT1799fISEhCgsL05AhQ5SRkVGcLwMAAPgwr4adzMxMxcTEaO7cufnunzFjhmbPnq158+Zp7969Klu2rOLi4nTt2jXHMf3799d3332nxMRErV27Vtu3b9ewYcOK6yUAAAAf59ULlDt37qzOnTvnu88wDM2aNUtvvPGGunfvLklavHixqlSpotWrV6tv3746evSoNmzYoP3796tZs2aSpDlz5qhLly565513FBkZWWyvBQAA+CafvRvr1KlTSklJUWxsrGMsNDRULVu21J49e9S3b1/t2bNHYWFhjqAjSbGxsfLz89PevXvVs2fPfOfOzs5Wdna2Yzs9PV2SZLfbZbfbTXsNt+Yyc06roleFQ79cR68KFljKcN72M5x+9QW++vvGeeU6T/bK1Tl9NuykpKRIkqpUqeI0XqVKFce+lJQUVa5c2Wm/v7+/wsPDHcfkZ9q0aZo4cWKe8U2bNik4OLiopeeRmJho+pxWRa8Kh365jl7lVdA3nL/VLLd4C7mDL774wtsl3BHnles80ausrCyXjvPZsONJ48aNU3x8vGM7PT1dUVFR6tSpk0JCQkx7HrvdrsTERHXs2FEBAQGmzWtF9Kpw6Jfr6FXBGiZsdNoO9DP0VrNcjU/yU3auzUtVOTuSEOftEvLFeeU6T/bq1jszd+OzYSciIkKSlJqaqqpVqzrGU1NT1aRJE8cxFy9edHrcjRs3lJaW5nh8fgIDAxUYGJhnPCAgwCMnrafmtSJ6VTj0y3X0Kq/snPwDTXaurcB9xc3Xf884r1zniV65Op/Pfs5OzZo1FRERoc2bNzvG0tPTtXfvXrVq1UqS1KpVK12+fFkHDhxwHLNlyxbl5uaqZcuWxV4zAADwPV5d2cnIyNCJEycc26dOndKhQ4cUHh6u6tWra8yYMZo8ebJq166tmjVravz48YqMjFSPHj0kSfXr19eTTz6poUOHat68ebLb7RoxYoT69u3LnVgAAECSl8NOUlKS2rdv79i+dR3NwIEDtXDhQr366qvKzMzUsGHDdPnyZbVp00YbNmxQmTJlHI9ZsmSJRowYoQ4dOsjPz0+9e/fW7Nmzi/21AAAA3+TVsNOuXTsZRsG3ONpsNk2aNEmTJk0q8Jjw8HAtXbrUE+UBAAAL8NlrdgAAAMxA2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJbm7+0CAAAoSPRr6/KMnZ7e1QuVoCRjZQcAAFgaYQcAAFgaYQcAAFiaW2Hnxx9/NLsOAAAAj3Ar7DzwwANq3769/v73v+vatWtm1wQAAGAat8LOwYMH1bhxY8XHxysiIkIvvPCC9u3bZ3ZtAAAAReZW2GnSpInee+89nT9/Xn/729904cIFtWnTRg0bNtTMmTP1yy+/mF0nAACAW4p0gbK/v7969eqlFStW6O2339aJEyc0duxYRUVFacCAAbpw4YJZdQIAALilSGEnKSlJf/jDH1S1alXNnDlTY8eO1cmTJ5WYmKjz58+re/fuZtUJAADgFrc+QXnmzJlasGCBkpOT1aVLFy1evFhdunSRn9/N7FSzZk0tXLhQ0dHRZtYKAABQaG6FnQ8//FC/+93vNGjQIFWtWjXfYypXrqxPPvmkSMUBAAAUlVth5/jx43c9pnTp0ho4cKA70wMAAJjGrWt2FixYoBUrVuQZX7FihRYtWlTkogAAAMziVtiZNm2aKlWqlGe8cuXKmjp1apGLAgAAMItbYefs2bOqWbNmnvEaNWro7NmzRS4KAADALG6FncqVK+ubb77JM3748GFVrFixyEUBAACYxa2w8+yzz2rUqFHaunWrcnJylJOToy1btmj06NHq27ev2TUCAAC4za27sd566y2dPn1aHTp0kL//zSlyc3M1YMAArtkBAAA+xa2wU7p0aS1btkxvvfWWDh8+rKCgIDVq1Eg1atQwuz4AAIAicSvs3FKnTh3VqVPHrFoAAABM51bYycnJ0cKFC7V582ZdvHhRubm5Tvu3bNliSnEAAABF5VbYGT16tBYuXKiuXbuqYcOGstlsZtcFAABgCrfCzqeffqrly5erS5cuZtfjJCcnRwkJCfr73/+ulJQURUZGatCgQXrjjTccAcswDL355pv6+OOPdfnyZbVu3Voffvihateu7dHaAABAyeDWreelS5fWAw88YHYtebz99tv68MMP9f777+vo0aN6++23NWPGDM2ZM8dxzIwZMzR79mzNmzdPe/fuVdmyZRUXF6dr1655vD4AAOD73Ao7L7/8st577z0ZhmF2PU52796t7t27q2vXroqOjtZTTz2lTp06ad++fZJururMmjVLb7zxhrp3767GjRtr8eLFOn/+vFavXu3R2gAAQMng1ttYO3fu1NatW7V+/Xo1aNBAAQEBTvtXrlxpSnGPPvqo5s+fr2PHjqlOnTo6fPiwdu7cqZkzZ0qSTp06pZSUFMXGxjoeExoaqpYtW2rPnj0FfsBhdna2srOzHdvp6emSJLvdLrvdbkrtt+b7719RMHpVOPTLdfSqYIGlnP+HNdDPcPrVV/nC7yXnles82StX57QZbizPDB48+I77FyxYUNgp85Wbm6s//elPmjFjhkqVKqWcnBxNmTJF48aNk3Rz5ad169Y6f/68qlat6nhcnz59ZLPZtGzZsnznTUhI0MSJE/OML126VMHBwabUDgAAPCsrK0v9+vXTlStXFBISUuBxbq3smBVm7mb58uVasmSJli5dqgYNGujQoUMaM2aMIiMjNXDgQLfnHTdunOLj4x3b6enpioqKUqdOne7YrMKy2+1KTExUx44d86x+wRm9Khz65Tp6VbCGCRudtgP9DL3VLFfjk/yUneu7d9keSYjzdgmcV4XgyV7demfmbtz+UMEbN25o27ZtOnnypPr166fy5cvr/PnzCgkJUbly5dyd1skrr7yi1157zfF2VKNGjXTmzBlNmzZNAwcOVEREhCQpNTXVaWUnNTVVTZo0KXDewMBABQYG5hkPCAjwyEnrqXmtiF4VDv1yHb3KKzsn/0CTnWsrcJ8v8KXfR84r13miV67O59YFymfOnFGjRo3UvXt3DR8+XL/88oukm3dPjR071p0p85WVlSU/P+cSS5Uq5fgQw5o1ayoiIkKbN2927E9PT9fevXvVqlUr0+oAAAAll1thZ/To0WrWrJkuXbqkoKAgx3jPnj2dgkdRdevWTVOmTNG6det0+vRprVq1SjNnzlTPnj0lSTabTWPGjNHkyZO1Zs0affvttxowYIAiIyPVo0cP0+oAAAAll1tvY+3YsUO7d+9W6dKlncajo6P1888/m1KYJM2ZM0fjx4/XH/7wB128eFGRkZF64YUXNGHCBMcxr776qjIzMzVs2DBdvnxZbdq00YYNG1SmTBnT6gAAACWXW2EnNzdXOTk5ecZ/+uknlS9fvshF3VK+fHnNmjVLs2bNKvAYm82mSZMmadKkSaY9LwAAsA633sbq1KmTUwCx2WzKyMjQm2++6fGvkAAAACgMt1Z23n33XcXFxenBBx/UtWvX1K9fPx0/flyVKlXSP/7xD7NrBAAAcJtbYadatWo6fPiwPv30U33zzTfKyMjQkCFD1L9/f6cLlgEAALzN7c/Z8ff313PPPWdmLQAAAKZzK+wsXrz4jvsHDBjgVjEAAABmcyvsjB492mnbbrcrKytLpUuXVnBwMGEHAAD4DLfuxrp06ZLTT0ZGhpKTk9WmTRsuUAYAAD7F7Wt2ble7dm1Nnz5dzz33nH744QezpgUAmCT6tXXeLgHwCrdWdgri7++v8+fPmzklAABAkbi1srNmzRqnbcMwdOHCBb3//vtq3bq1KYUBAACYwa2wc/uXbNpsNt1333164okn9O6775pSGAAAgBnc/m4sAACAksDUa3YAAAB8jVsrO/Hx8S4fO3PmTHeeAgAAwBRuhZ2vv/5aX3/9tex2u+rWrStJOnbsmEqVKqWmTZs6jrPZbOZUCQAA4Ca3wk63bt1Uvnx5LVq0SBUqVJB084MGBw8erLZt2+rll182tUgAAAB3uXXNzrvvvqtp06Y5go4kVahQQZMnT+ZuLAAA4FPcCjvp6en65Zdf8oz/8ssvunr1apGLAgAAMItbYadnz54aPHiwVq5cqZ9++kk//fSTPvvsMw0ZMkS9evUyu0YAAAC3uXXNzrx58zR27Fj169dPdrv95kT+/hoyZIj+/Oc/m1ogAABAUbgVdoKDg/XBBx/oz3/+s06ePClJ+s1vfqOyZcuaWhwAAEBRFelDBS9cuKALFy6odu3aKlu2rAzDMKsuAAAAU7i1svPrr7+qT58+2rp1q2w2m44fP65atWppyJAhqlChAndkAQA8Jvq1dU7bp6d39VIlKCncWtl56aWXFBAQoLNnzyo4ONgx/swzz2jDhg2mFQcAAFBUbq3sbNq0SRs3blS1atWcxmvXrq0zZ86YUhgAAIAZ3FrZyczMdFrRuSUtLU2BgYFFLgoAAMAsboWdtm3bavHixY5tm82m3NxczZgxQ+3btzetOAAAgKJy622sGTNmqEOHDkpKStL169f16quv6rvvvlNaWpp27dpldo0AAABuc2tlp2HDhjp27JjatGmj7t27KzMzU7169dLXX3+t3/zmN2bXCAAA4LZCr+zY7XY9+eSTmjdvnl5//XVP1AQAKKLbb88G7mWFXtkJCAjQN99844laAAAATOfW21jPPfecPvnkE7NrAQAAMJ1bFyjfuHFDf/vb3/Svf/1LDz/8cJ7vxJo5c6YpxQEAABRVocLOjz/+qOjoaB05ckRNmzaVJB07dszpGJvNZl51AAAARVSosFO7dm1duHBBW7dulXTz6yFmz56tKlWqeKQ4AACAoirUNTu3f6v5+vXrlZmZaWpBAAAAZnLrmp1bbg8/AADPy++2cr75GyhYoVZ2bDZbnmtyPH2Nzs8//6znnntOFStWVFBQkBo1aqSkpCTHfsMwNGHCBFWtWlVBQUGKjY3V8ePHPVoTAAAoOQq1smMYhgYNGuT4ss9r167pxRdfzHM31sqVK00p7tKlS2rdurXat2+v9evX67777tPx48dVoUIFxzEzZszQ7NmztWjRItWsWVPjx49XXFycvv/+e5UpU8aUOgAAQMlVqLAzcOBAp+3nnnvO1GJu9/bbbysqKkoLFixwjNWsWdPx34ZhaNasWXrjjTfUvXt3SdLixYtVpUoVrV69Wn379vVofQAAwPcVKuz8d+goDmvWrFFcXJyefvppffnll7r//vv1hz/8QUOHDpUknTp1SikpKYqNjXU8JjQ0VC1bttSePXsKDDvZ2dnKzs52bKenp0u6+VUYdrvdtPpvzWXmnFZFrwqHfrnOir0KLJX3esnbX19+x9x1Xj/D6deSwhu/t1Y8rzzFk71ydU6b4cNXGd96Gyo+Pl5PP/209u/fr9GjR2vevHkaOHCgdu/erdatW+v8+fOqWrWq43F9+vSRzWbTsmXL8p03ISFBEydOzDO+dOlSBQcHe+bFAAAAU2VlZalfv366cuWKQkJCCjzOp8NO6dKl1axZM+3evdsxNmrUKO3fv1979uxxO+zkt7ITFRWlf//733dsVmHZ7XYlJiaqY8eOCggIMG1eK6JXhUO/XGfFXjVM2Jhn7EhC3F2PuZtAP0NvNcvV+CQ/ZeeWnA+Ivf21Fwcrnlee4slepaenq1KlSncNO0W69dzTqlatqgcffNBprH79+vrss88kSREREZKk1NRUp7CTmpqqJk2aFDhvYGCg4yLr/xYQEOCRk9ZT81oRvSoc+uU6K/UqOydvELn9teV3jMvz59qK9Pji5s3fVyudV57miV65Op9bXwRaXFq3bq3k5GSnsWPHjqlGjRqSbl6sHBERoc2bNzv2p6ena+/evWrVqlWx1goAAHyTT6/svPTSS3r00Uc1depU9enTR/v27dP8+fM1f/58STc/42fMmDGaPHmyateu7bj1PDIyUj169PBy9QAAwBf4dNhp3ry5Vq1apXHjxmnSpEmqWbOmZs2apf79+zuOefXVV5WZmalhw4bp8uXLatOmjTZs2MBn7AAAAEk+HnYk6be//a1++9vfFrjfZrNp0qRJmjRpUjFWBQAASgqfvmYHAACgqHx+ZQcAcHf5fTkogJtY2QEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJbGd2MBAEq0/L4X7PT0rl6oBL6KlR0AAGBphB0AAGBphB0AAGBphB0AAGBpXKAMAD4sv4tvARQOKzsAAMDSCDsAAMDSCDsAAMDSuGYHAHwI1+iY4/Y+8iGD9zZWdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKXxRaAA4CV86SdQPFjZAQAAlkbYAQAAllaiws706dNls9k0ZswYx9i1a9c0fPhwVaxYUeXKlVPv3r2VmprqxSoBAIAvKTFhZ//+/froo4/UuHFjp/GXXnpJ//d//6cVK1boyy+/1Pnz59WrVy8vVQkAAHxNiQg7GRkZ6t+/vz7++GNVqFDBMX7lyhV98sknmjlzpp544gk9/PDDWrBggXbv3q2vvvrKixUDAABfUSLuxho+fLi6du2q2NhYTZ482TF+4MAB2e12xcbGOsbq1aun6tWra8+ePXrkkUfynS87O1vZ2dmO7fT0dEmS3W6X3W43re5bc5k5p1XRq8KhX67z5V4FljK8XYKTQD/D6VcrMfv335fPK1/jyV65OqfPh51PP/1UBw8e1P79+/PsS0lJUenSpRUWFuY0XqVKFaWkpBQ457Rp0zRx4sQ845s2bVJwcHDRi75NYmKi6XNaFb0qHPrlOl/s1YwW3q4gf281y/V2Cab74osvPDKvL55XvsoTvcrKynLpOJ8OO+fOndPo0aOVmJioMmXKmDbvuHHjFB8f79hOT09XVFSUOnXqpJCQENOex263KzExUR07dlRAQIBp81oRvSoc+uU6X+5Vw4SN3i7BSaCfobea5Wp8kp+yc23eLsdURxLiTJ3Pl88rX+PJXt16Z+ZufDrsHDhwQBcvXlTTpk0dYzk5Odq+fbvef/99bdy4UdevX9fly5edVndSU1MVERFR4LyBgYEKDAzMMx4QEOCRk9ZT81oRvSoc+uU6X+xVds1jf74AABtLSURBVI5vBorsXJvP1uYuT/3e++J55as80StX5/PpsNOhQwd9++23TmODBw9WvXr19Mc//lFRUVEKCAjQ5s2b1bt3b0lScnKyzp49q1atWnmjZAAA4GN8OuyUL19eDRs2dBorW7asKlas6BgfMmSI4uPjFR4erpCQEI0cOVKtWrUq8OJkAABwb/HpsOOKv/zlL/Lz81Pv3r2VnZ2tuLg4ffDBB94uCwAA+IgSF3a2bdvmtF2mTBnNnTtXc+fO9U5BAADAp5WIDxUEAABwF2EHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYWon7nB0A8EXRr61z2j49vauXKgFwO1Z2AACApRF2AACApfE2FgAUk9vf6gJQPFjZAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlsat5wAAy8vvtn8+5frewcoOAACwNMIOAACwNMIOAACwNMIOAACwNC5QBgDck7ho+d7Byg4AALA0VnYAwAP4hnPAd7CyAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI3P2QGAQuIzdICShZUdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaT4ddqZNm6bmzZurfPnyqly5snr06KHk5GSnY65du6bhw4erYsWKKleunHr37q3U1FQvVQwAAHyNT996/uWXX2r48OFq3ry5bty4oT/96U/q1KmTvv/+e5UtW1aS9NJLL2ndunVasWKFQkNDNWLECPXq1Uu7du3ycvUAfF1+t5Cfnt7VC5UA8CSfDjsbNmxw2l64cKEqV66sAwcO6LHHHtOVK1f0ySefaOnSpXriiSckSQsWLFD9+vX11Vdf6ZFHHsl33uzsbGVnZzu209PTJUl2u112u920+m/NZeacVkWvCod+ue5OvQosZRR4/J3k9zgrCPQznH69F7n6Z4o/g67zZK9cndNmGEaJOatPnDih2rVr69tvv1XDhg21ZcsWdejQQZcuXVJYWJjjuBo1amjMmDF66aWX8p0nISFBEydOzDO+dOlSBQcHe6x+AABgnqysLPXr109XrlxRSEhIgcf59MrOf8vNzdWYMWPUunVrNWzYUJKUkpKi0qVLOwUdSapSpYpSUlIKnGvcuHGKj493bKenpysqKkqdOnW6Y7MKy263KzExUR07dlRAQIBp81oRvSoc+uW6O/WqYcLGPMcfSYi765z5Pc4KAv0MvdUsV+OT/JSda/N2OV7hyu+/xJ/BwvBkr269M3M3JSbsDB8+XEeOHNHOnTuLPFdgYKACAwPzjAcEBHjkpPXUvFZErwqHfrkuv15l5+T9B92Vfub3OCvJzrVZ/jUWpLB/nvgz6DpP9MrV+UpE2BkxYoTWrl2r7du3q1q1ao7xiIgIXb9+XZcvX3Za3UlNTVVERIQ3SgVQwvG9V4D1+PSt54ZhaMSIEVq1apW2bNmimjVrOu1/+OGHFRAQoM2bNzvGkpOTdfbsWbVq1aq4ywUAAD7Ip1d2hg8frqVLl+rzzz9X+fLlHdfhhIaGKigoSKGhoRoyZIji4+MVHh6ukJAQjRw5Uq1atSrwTiwAAHBv8emw8+GHH0qS2rVr5zS+YMECDRo0SJL0l7/8RX5+furdu7eys7MVFxenDz74oJgrBQAAvsqnw44rd8WXKVNGc+fO1dy5c4uhIgAAUNL4dNgBADNx8TFwb/LpC5QBAACKirADAAAsjbADAAAsjbADAAAsjQuUAVjC7Rcfn57e1UuVAPA1rOwAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABL49ZzAJZ061b0wFKGZrSQGiZslGTzblEAvIKVHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGlcoAygxLn9e7AAs/Ada9bEyg4AALA0VnYAeBX/Jw3A01jZAQAAlkbYAQAAlkbYAQAAlkbYAQAAlsYFygCKDbeMA/AGVnYAAIClsbIDwOexIgRfEv3aOgWWMjSjhdQwYaOSp/zW2yXhLljZAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlsbn7ADwCHc/G4fP1AFgNlZ2AACApbGyA5fk93/bp6d39UIl1uPKSoa3e317jfnVw4oMrIjz2hoss7Izd+5cRUdHq0yZMmrZsqX27dvn7ZIAAIAPsETYWbZsmeLj4/Xmm2/q4MGDiomJUVxcnC5evOjt0gAAgJdZ4m2smTNnaujQoRo8eLAkad68eVq3bp3+9re/6bXXXvNydb6nJLxtYhZ3l6B97fXf/jr++0sIs3NsklyrmSV5wHz30t+pJVWJDzvXr1/XgQMHNG7cOMeYn5+fYmNjtWfPnnwfk52drezsbMf2lStXJElpaWmy2+2m1Wa325WVlaVff/1VAQEBps1bVP43Mu96zK+//nrXx9x+TFF4qleuvNb8mPna7sadGv1zDWVl5crf7qec3Jthx5Wa3e3H7fJ7LrPmNlt+vUL+6JXrCtur4vw7xdd48t/Cq1evSpIMw7jzgUYJ9/PPPxuSjN27dzuNv/LKK0aLFi3yfcybb75pSOKHH3744Ycffizwc+7cuTtmhRK/suOOcePGKT4+3rGdm5urtLQ0VaxYUTabc0Jv3ry59u/ff8exgrbT09MVFRWlc+fOKSQkxPTXkV9tZjzmbscUtP9e7NXdjvNEryR5tF/0ynXu9MrVx3mqV7eP0avCjZX0v7Os1ivDMHT16lVFRkbe8bgSH3YqVaqkUqVKKTU11Wk8NTVVERER+T4mMDBQgYGBTmNhYWH5HluqVKk8vzm3j91tOyQkxCN/GPKrzYzH3O2Ygvbfi72623Ge7JXkmX7RK9e50ytXH+epXt0+Rq8KN1bS/86yYq9CQ0PvekyphISEBNOfuRiVKlVK69at0/Xr19WlSxdJN1dqRo0apd69e6tNmzZFfo4WLVrcdSy/7ezsbE2fPl3jxo3LE67Mkl9tZjzmbscUtP9e7NXdjjO7V5I83i965Tp3euXq4zzVq9vH6FXhxkr631lW7NXd2Azjblf1+L5ly5Zp4MCB+uijj9SiRQvNmjVLy5cv1w8//KAqVap4ra709HSFhobqypUrHkmzVkKvCod+uY5euY5euY5euc4XelXiV3YkqWHDhgoLC9OUKVP0zjvvSJKWLFmiunXrermymytP7dq1k79/iX/H0OPoVeHQL9fRK9fRK9fRK9d5u1eWWNkBAAAoiCU+QRkAAKAghB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0fkZycrCZNmjh+goKCtHr1am+X5bNOnTql9u3b68EHH1SjRo2UmembX0LpC6Kjo9W4cWM1adJE7du393Y5Pi8rK0s1atTQ2LFjvV2Kz7p8+bKaNWumJk2aqGHDhvr444+9XZLPOnfunNq1a6cHH3xQjRs31ooVK7xdks/r2bOnKlSooKeeesq0Obn13AdlZGQoOjpaZ86cUdmyZb1djk96/PHHNXnyZLVt21ZpaWkKCQnhsy4KEB0drSNHjqhcuXLeLqVEeP3113XixAlFRUU5PrcLznJycpSdna3g4GBlZmaqYcOGSkpKUsWKFb1dms+5cOGCUlNT1aRJE6WkpOjhhx/WsWPH+Lv9DrZt26arV69q0aJF+uc//2nKnKzs+KA1a9aoQ4cO/GEowHfffaeAgAC1bdtWkhQeHk7QgSmOHz+uH374QZ07d/Z2KT6tVKlSCg4OlnTzKyYMwxD/35y/qlWrqkmTJpKkiIgIVapUSWlpaV6uyre1a9dO5cuXN3VOwo6Ltm/frm7duikyMlI2my3ft5jmzp2r6OholSlTRi1bttS+ffvceq7ly5frmWeeKWrJXuPpXh0/flzlypVTt27d1LRpU02dOtXM8otVcZxXNptNjz/+uJo3b64lS5aYVXqxK45ejR07VtOmTTOrZK8pjl5dvnxZMTExqlatml555RVVqlTJrPKLVXH+3X7gwAHl5OQoKiqqqGV7TXH2y0yEHRdlZmYqJiZGc+fOzXf/smXLFB8frzfffFMHDx5UTEyM4uLidPHiRccxt97fvv3n/PnzjmPS09O1e/dux5ealkSe7tWNGze0Y8cOffDBB9qzZ48SExOVmJhYXC/PVMVxXu3cuVMHDhzQmjVrNHXqVH3zzTfF8trM5uleff7556pTp47q1KlTXC/JY4rjvAoLC9Phw4d16tQpLV26VKmpqcXy2sxWXH+3p6WlacCAAZo/f77HX5MnFVe/TGeg0CQZq1atchpr0aKFMXz4cMd2Tk6OERkZaUybNq1Qcy9evNjo37+/KXX6Ak/0avfu3UanTp0c2zNmzDBmzJhhTsFe5Mnz6paxY8caCxYsKEqZPsETvXrttdeMatWqGTVq1DAqVqxohISEGBMnTjS1bm8ojvPq97//vbFixYoi1ekLPNWra9euGW3btjUWL15sWq2+wJPn1tatW43evXubUqdhGAYrOya4fv26Dhw4oNjYWMeYn5+fYmNjtWfPnkLNVdLfwrobM3rVvHlzXbx4UZcuXVJubq62b9+u+vXre6pkrzGjV5mZmbp69aqkmxe+b9myRQ0aNPBIvd5kRq+mTZumc+fO6fTp03rnnXc0dOhQTZgwwVMle40ZvUpNTXWcV1euXNH27dt94ouXzWZGrwzD0KBBg/TEE0/o+eef91SpPsHMfwvNRtgxwb///W/l5OSoSpUqTuNVqlRRSkqKy/NcuXJF+/btU1xcnNkl+gwzeuXv76+pU6fqscceU+PGjVW7dm399re/9US5XmVGr1JTU9WmTRvFxMTokUce0YABA9S8eXNPlOtVZv0ZvBeY0aszZ86obdu2iomJUdu2bTVy5Eg1atTIE+V6lRm92rVrl5YtW6bVq1c7Plrk22+/9US5XmfWn8PY2Fg9/fTT+uKLL1StWjVTghK3sPiQ0NDQEvu+d3Hr3Lkzd8y4oFatWjp8+LC3yyhxBg0a5O0SfFqLFi106NAhb5dRIrRp00a5ubneLqNE+de//mX6nKzsmKBSpUoqVapUnqCSmpqqiIgIL1Xlm+iV6+iV6+iV6+iV6+hV4fhyvwg7JihdurQefvhhbd682TGWm5urzZs3q1WrVl6szPfQK9fRK9fRK9fRK9fRq8Lx5X7xNpaLMjIydOLECcf2qVOndOjQIYWHh6t69eqKj4/XwIED1axZM7Vo0UKzZs1SZmamBg8e7MWqvYNeuY5euY5euY5euY5eFU6J7Zdp93VZ3NatWw1JeX4GDhzoOGbOnDlG9erVjdKlSxstWrQwvvrqK+8V7EX0ynX0ynX0ynX0ynX0qnBKar/4biwAAGBpXLMDAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADAAAsjbADWEy7du00ZswYb5dRaMnJyYqIiNDVq1clSQsXLlRYWJiXq7KG1157TSNHjvR2GYDXEHYAuO3ChQvq16+f6tSpIz8/vwJD1ooVK1SvXj2VKVNGjRo10hdffJHnmHHjxmnkyJEqX768qTXabDatXr3a1DlLmrFjx2rRokX68ccfvV0K4BWEHQBuy87O1n333ac33nhDMTEx+R6ze/duPfvssxoyZIi+/vpr9ejRQz169NCRI0ccx5w9e1Zr167VoEGDiqnye0ulSpUUFxenDz/80NulAF5B2AEs7NKlSxowYIAqVKig4OBgde7cWcePH3c65uOPP1ZUVJSCg4PVs2dPzZw50+W3j6Kjo/Xee+9pwIABCg0NzfeY9957T08++aReeeUV1a9fX2+99ZaaNm2q999/33HM8uXLFRMTo/vvvz/P41evXq3atWurTJkyiouL07lz55z2f/7552ratKnKlCmjWrVqaeLEibpx44ajPknq2bOnbDaboqOjdeXKFZUqVUpJSUmSpNzcXIWHh+uRRx5xzPn3v/9dUVFRju1z586pT58+CgsLU3h4uLp3767Tp0871fHXv/5V9evXV5kyZVSvXj198MEHjn2nT5+WzWbTypUr1b59ewUHBysmJkZ79uxxmmPnzp1q27atgoKCFBUVpVGjRikzM9Ox/4MPPnD0okqVKnrqqacc+/75z3+qUaNGCgoKUsWKFRUbG+v02G7duunTTz/N9/cIsDrCDmBhgwYNUlJSktasWaM9e/bIMAx16dJFdrtdkrRr1y69+OKLGj16tA4dOqSOHTtqypQpptawZ88excbGOo3FxcU5/UO/Y8cONWvWLM9js7KyNGXKFC1evFi7du3S5cuX1bdvX6fHDRgwQKNHj9b333+vjz76SAsXLnS8hv3790uSFixYoAsXLmj//v0KDQ1VkyZNtG3bNknSt99+K5vNpq+//loZGRmSpC+//FKPP/64JMlutysuLk7ly5fXjh07tGvXLpUrV05PPvmkrl+/LklasmSJJkyYoClTpujo0aOaOnWqxo8fr0WLFjm9ntdff11jx47VoUOHVKdOHT377LOOYHby5Ek9+eST6t27t7755hstW7ZMO3fu1IgRIyRJSUlJGjVqlCZNmqTk5GRt2LBBjz32mKSbbyc+++yz+t3vfqejR49q27Zt6tWrlwzDcDx3ixYt9NNPP+UJacA9wQBgKY8//rgxevRo49ixY4YkY9euXY59//73v42goCBj+fLlhmEYxjPPPGN07drV6fH9+/c3QkND3X7e2wUEBBhLly51Gps7d65RuXJlx3ZMTIwxadIkp2MWLFhgSDK++uorx9jRo0cNScbevXsNwzCMDh06GFOnTnV63P/+7/8aVatWdWxLMlatWuV0THx8vON1z5o1y3jmmWeMmJgYY/369YZhGMYDDzxgzJ8/3zFf3bp1jdzcXMfjs7OzjaCgIGPjxo2GYRjGb37zmzyv8a233jJatWplGIZhnDp1ypBk/PWvf3Xs/+677wxJxtGjRw3DMIwhQ4YYw4YNc5pjx44dhp+fn/Gf//zH+Oyzz4yQkBAjPT3duN2BAwcMScbp06fz7LvlypUrhiRj27ZtBR4DWBUrO4BFHT16VP7+/mrZsqVjrGLFiqpbt66OHj0q6eYdUC1atHB63O3bxeE///mPypQpk2fc399fzZs3d2zXq1dPYWFhjvoPHz6sSZMmqVy5co6foUOH6sKFC8rKyirw+R5//HHt3LlTOTk5+vLLL9WuXTu1a9dO27Zt0/nz53XixAm1a9fO8RwnTpxQ+fLlHc8RHh6ua9eu6eTJk8rMzNTJkyc1ZMgQpzomT56skydPOj1v48aNHf9dtWpVSdLFixcdz7Nw4UKnOeLi4pSbm6tTp06pY8eOqlGjhmrVqqXnn39eS5YscbzGmJgYdejQQY0aNdLTTz+tjz/+WJcuXXJ67qCgIEm6Y18Aq/L3dgEArC0iIkKpqalOY6mpqYqIiHBsV6pUKc8/zq7IyMjQxIkT1atXrzz78gtPtzz22GO6evWqDh48qO3bt2vq1KmKiIjQ9OnTFRMTo8jISNWuXdvxHA8//LCWLFmSZ5777rvP8dbXxx9/7BQsJalUqVJO2wEBAY7/ttlskm5eM3TreV544QWNGjUqz/NUr15dpUuX1sGDB7Vt2zZt2rRJEyZMUEJCgvbv36+wsDAlJiZq9+7d2rRpk+bMmaPXX39de/fuVc2aNSVJaWlpjpqBew1hB7Co+vXr68aNG9q7d68effRRSdKvv/6q5ORkPfjgg5KkunXrOq5rueX27aJq1aqVNm/e7HRbemJiolq1auXYfuihh/T999/neeyNGzeUlJTkWG1KTk7W5cuXVb9+fUlS06ZNlZycrAceeKDA5w8ICFBOTo7TWFhYmBo3bqz3339fAQEBqlevnipXrqxnnnlGa9eudVyvc+s5li1bpsqVKyskJCTP/KGhoYqMjNSPP/6o/v37u9iVvJo2barvv//+jq/F399fsbGxio2N1ZtvvqmwsDBt2bJFvXr1ks1mU+vWrdW6dWtNmDBBNWrU0KpVqxQfHy9JOnLkiAICAtSgQQO3awRKKt7GAiyqdu3a6t69u4YOHaqdO3fq8OHDeu6553T//fere/fukqSRI0fqiy++0MyZM3X8+HF99NFHWr9+vWPVwRWHDh3SoUOHlJGRoV9++UWHDh1yCi6jR4/Whg0b9O677+qHH35QQkKCkpKSHBfeSv//guXbQ0lAQIBGjhypvXv36sCBAxo0aJAeeeQRR/iZMGGCFi9erIkTJ+q7777T0aNH9emnn+qNN95wzBEdHa3NmzcrJSXFafWoXbt2WrJkiSPYhIeHq379+lq2bJlT2Onfv78qVaqk7t27a8eOHTp16pS2bdumUaNG6aeffpIkTZw4UdOmTdPs2bN17Ngxffvtt1qwYIFmzpzpch//+Mc/avfu3RoxYoQOHTqk48eP6/PPP3f0ae3atZo9e7YOHTqkM2fOaPHixcrNzVXdunW1d+9eTZ06VUlJSTp79qxWrlypX375xREKpZsXc9+60wu453j7oiEA5vrvC4XT0tKM559/3ggNDTWCgoKMuLg449ixY07Hz58/37j//vuNoKAgo0ePHsbkyZONiIgIl59PUp6fGjVqOB2zfPlyo06dOkbp0qWNBg0aGOvWrXPab7fbjcjISGPDhg2OsQULFhihoaHGZ599ZtSqVcsIDAw0YmNjjTNnzjg9dsOGDcajjz5qBAUFGSEhIUaLFi0cFxcbhmGsWbPGeOCBBwx/f3+nulatWmVIMj788EPH2OjRow1Jxg8//OD0HBcuXDAGDBhgVKpUyQgMDDRq1aplDB061Lhy5YrjmCVLlhhNmjQxSpcubVSoUMF47LHHjJUrVxqG8f8vUP76668dx1+6dMmQZGzdutUxtm/fPqNjx45GuXLljLJlyxqNGzc2pkyZYhjGzYuVH3/8caNChQpGUFCQ0bhxY2PZsmWGYRjG999/b8TFxRn33XefERgYaNSpU8eYM2eO02uoW7eu8Y9//MMA7kU2w/ivexMB3POGDh2qH374QTt27CjW5507d67WrFmjjRs3Fuvz3gvWr1+vl19+Wd988438/bl6AfceznrgHvfOO++oY8eOKlu2rNavX69FixY5fSBecXnhhRd0+fJlXb161fSvjLjXZWZmasGCBQQd3LNY2QHucX369NG2bdt09epV1apVSyNHjtSLL74oSWrQoIHOnDmT7+M++uijIl2QCwDFhbADoEBnzpxxfNry7apUqcIKDIASgbADAAAsjVvPAQCApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApf0/swz4SAP484EAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2398,27 +2438,7 @@ }, { "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGhCAYAAABLWk8IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df3TU1Z3/8dckDBOCDDHhkB9LMNkerGiQWCCYFSpKSARkxaa6rFlFlwO7W9Bi6g9yVmhABORQm4LRlJ6WLueQXWR3oRZdYARr2iX8CsVV11I4C8qRTThtTIYkh2FI5vuHX6Y7TBI+A5/J3AzPxzk58LlzPzfveecDvLjzyxEIBAICAAAwSEKsCwAAALgSAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgDYl3Atejq6tLZs2c1ZMgQORyOWJcDAAAsCAQCOn/+vLKyspSQ0PseSb8MKGfPnlV2dnasywAAANfgzJkzGjFiRK9z+mVAGTJkiKSv7qDb7bZ1bb/frz179qi4uFhOp9PWteMNvbKOXllHr6yjV9bRq8hEq19er1fZ2dnBf8d70y8DyuWHddxud1QCSnJystxuNxfxVdAr6+iVdfTKOnplHb2KTLT7ZeXpGTxJFgAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGCcAbEuAAAQezlL3gkbO71mZgwqAb7CDgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgRB5S6ujrNmjVLWVlZcjgc2rFjR49z//7v/14Oh0NVVVUh483NzSorK5Pb7VZKSormzZuntra2yKsHAABxKeKA0t7errFjx6q6urrXedu3b9eBAweUlZUVdltZWZk++eQTeTwe7dy5U3V1dVqwYEGkpQAAgDgV8TvJTp8+XdOnT+91zhdffKGnn35au3fv1syZoe9E+Omnn2rXrl06fPiwxo8fL0nasGGDZsyYoXXr1nUbaAAAwI3F9re67+rq0uOPP67nn39ed9xxR9jt9fX1SklJCYYTSSoqKlJCQoIOHjyohx9+OOwcn88nn88XPPZ6vZIkv98vv99va/2X17N73XhEr6yjV9bRK+vs7JUrMdDj+vGA6yoy0epXJOvZHlBeffVVDRgwQM8880y3tzc2Nmr48OGhRQwYoNTUVDU2NnZ7zurVq7V8+fKw8T179ig5Ofn6i+6Gx+OJyrrxiF5ZR6+so1fW2dGrtQXhY+++++51r2sarqvI2N2vjo4Oy3NtDSgNDQ360Y9+pKNHj8rhcNi2bkVFhcrLy4PHXq9X2dnZKi4ultvttu37SF+lO4/Ho2nTpsnpdNq6dryhV9bRK+volXVWe5VXuTts7OPKkojn9GdcV5GJVr8uPwJiha0B5de//rXOnTunkSNHBsc6Ozv1ve99T1VVVTp9+rQyMjJ07ty5kPMuXbqk5uZmZWRkdLuuy+WSy+UKG3c6nVG70KK5dryhV9bRK+volXVX65WvM/w/jFfOtzInHnBdRcbufkWylq0B5fHHH1dRUVHIWElJiR5//HE99dRTkqTCwkK1tLSooaFB48aNkyTt27dPXV1dmjhxop3lAACAfirigNLW1qaTJ08Gj0+dOqVjx44pNTVVI0eOVFpaWsh8p9OpjIwMff3rX5ckjR49Wg888IDmz5+vmpoa+f1+LVq0SHPmzOEVPAAAQNI1vA/KkSNHdNddd+muu+6SJJWXl+uuu+7SsmXLLK+xZcsW3XbbbZo6dapmzJihSZMmaePGjZGWAgAA4lTEOyhTpkxRIBD+crSenD59OmwsNTVVtbW1kX5rAABwg+CzeAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACME3FAqaur06xZs5SVlSWHw6EdO3YEb/P7/XrxxRc1ZswYDR48WFlZWXriiSd09uzZkDWam5tVVlYmt9utlJQUzZs3T21tbdd/bwAAQFyIOKC0t7dr7Nixqq6uDruto6NDR48e1dKlS3X06FH9+7//u44fP66//Mu/DJlXVlamTz75RB6PRzt37lRdXZ0WLFhw7fcCAADElQGRnjB9+nRNnz6929uGDh0qj8cTMvb666+roKBAn3/+uUaOHKlPP/1Uu3bt0uHDhzV+/HhJ0oYNGzRjxgytW7dOWVlZYev6fD75fL7gsdfrlfTVjo3f74/0LvTq8np2rxuP6JV19Mo6emWd1V65EgM9nhvJnP6M6yoy0epXJOs5AoFA+FVp9WSHQ9u3b9fs2bN7nPPee++puLhYLS0tcrvd+tnPfqbvfe97+vLLL4NzLl26pKSkJG3btk0PP/xw2BqVlZVavnx52Hhtba2Sk5OvtXwAANCHOjo69Nhjj6m1tVVut7vXuRHvoETiwoULevHFF/XXf/3XwUIaGxs1fPjw0CIGDFBqaqoaGxu7XaeiokLl5eXBY6/Xq+zsbBUXF1/1DkbK7/fL4/Fo2rRpcjqdtq4db+iVdfTKOnplndVe5VXuDhv7uLIk4jn9GddVZKLVr8uPgFgRtYDi9/v16KOPKhAI6M0337yutVwul1wuV9i40+mM2oUWzbXjDb2yjl5ZR6+su1qvfJ2Obs+JdE484LqKjN39imStqASUy+Hks88+0759+0J2OTIyMnTu3LmQ+ZcuXVJzc7MyMjKiUQ4A4BrkLHknbOz0mpkxqAQ3ItvfB+VyODlx4oTee+89paWlhdxeWFiolpYWNTQ0BMf27dunrq4uTZw40e5yAABAPxTxDkpbW5tOnjwZPD516pSOHTum1NRUZWZm6tvf/raOHj2qnTt3qrOzM/i8ktTUVA0cOFCjR4/WAw88oPnz56umpkZ+v1+LFi3SnDlzun0FDwAgMt3tfERrbXZUEC0RB5QjR47ovvvuCx5ffvLq3LlzVVlZqbfffluSlJ+fH3Le+++/rylTpkiStmzZokWLFmnq1KlKSEhQaWmp1q9ff633AQAAxJmIA8qUKVPU2yuTrbxqOTU1VbW1tZF+awAAcIPgs3gAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAME7EHxYIADBLXuVu+TodsS4DsBU7KAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcXijNgC4AeUseSfWJQC9YgcFAAAYh4ACAACMQ0ABAADGIaAAAADj8CRZAOhH/u+TW12JAa0tiGExQBSxgwIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA7vgwIAuGbdfejg6TUzY1AJ4g07KAAAwDgEFAAAYJyIA0pdXZ1mzZqlrKwsORwO7dixI+T2QCCgZcuWKTMzU4MGDVJRUZFOnDgRMqe5uVllZWVyu91KSUnRvHnz1NbWdn33BAAAxI2IA0p7e7vGjh2r6urqbm9fu3at1q9fr5qaGh08eFCDBw9WSUmJLly4EJxTVlamTz75RB6PRzt37lRdXZ0WLFhw7fcCAADElYifJDt9+nRNnz6929sCgYCqqqr00ksv6aGHHpIkbd68Wenp6dqxY4fmzJmjTz/9VLt27dLhw4c1fvx4SdKGDRs0Y8YMrVu3TllZWddxdwAAQDyw9VU8p06dUmNjo4qKioJjQ4cO1cSJE1VfX685c+aovr5eKSkpwXAiSUVFRUpISNDBgwf18MMPh63r8/nk8/mCx16vV5Lk9/vl9/vtvAvB9exeNx7RK+volXX0qneuxMCffp8QCPnVFCb+7LiuIhOtfkWynq0BpbGxUZKUnp4eMp6enh68rbGxUcOHDw8tYsAApaamBudcafXq1Vq+fHnY+J49e5ScnGxH6WE8Hk9U1o1H9Mo6emUdvere2oLwsZfHd/V9Ib149913Y11Cj7iuImN3vzo6OizP7Rfvg1JRUaHy8vLgsdfrVXZ2toqLi+V2u239Xn6/Xx6PR9OmTZPT6bR17XhDr6yjV9bRq97lVe4O/t6VENDL47u09EiCfF2OGFYV6uPKkliXEIbrKjLR6tflR0CssDWgZGRkSJKampqUmZkZHG9qalJ+fn5wzrlz50LOu3Tpkpqbm4PnX8nlcsnlcoWNO53OqF1o0Vw73tAr6+iVdfSqe77O8CDi63J0Ox4rJv/cuK4iY3e/IlnL1vdByc3NVUZGhvbu3Rsc83q9OnjwoAoLCyVJhYWFamlpUUNDQ3DOvn371NXVpYkTJ9pZDgAA6Kci3kFpa2vTyZMng8enTp3SsWPHlJqaqpEjR2rx4sVauXKlRo0apdzcXC1dulRZWVmaPXu2JGn06NF64IEHNH/+fNXU1Mjv92vRokWaM2cOr+ABAACSriGgHDlyRPfdd1/w+PJzQ+bOnauf//zneuGFF9Te3q4FCxaopaVFkyZN0q5du5SUlBQ8Z8uWLVq0aJGmTp2qhIQElZaWav369TbcHQAAEA8iDihTpkxRINDzS9ocDodWrFihFStW9DgnNTVVtbW1kX5rAABwg+CzeAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGGRDrAgAA8SVnyTshx6fXzIxRJejP2EEBAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwju0BpbOzU0uXLlVubq4GDRqkr33ta3r55ZcVCASCcwKBgJYtW6bMzEwNGjRIRUVFOnHihN2lAACAfsr2gPLqq6/qzTff1Ouvv65PP/1Ur776qtauXasNGzYE56xdu1br169XTU2NDh48qMGDB6ukpEQXLlywuxwAANAPDbB7wf379+uhhx7SzJkzJUk5OTn653/+Zx06dEjSV7snVVVVeumll/TQQw9JkjZv3qz09HTt2LFDc+bMCVvT5/PJ5/MFj71eryTJ7/fL7/fbWv/l9exeNx7RK+volXX0qneuxD/tRrsSAiG/msqEnyXXVWSi1a9I1nME/u9jLzZYtWqVNm7cqD179ujWW2/Vhx9+qOLiYr322msqKyvT//zP/+hrX/uafvvb3yo/Pz943r333qv8/Hz96Ec/CluzsrJSy5cvDxuvra1VcnKyneUDAIAo6ejo0GOPPabW1la53e5e59q+g7JkyRJ5vV7ddtttSkxMVGdnp1555RWVlZVJkhobGyVJ6enpIeelp6cHb7tSRUWFysvLg8der1fZ2dkqLi6+6h2MlN/vl8fj0bRp0+R0Om1dO97QK+volXX0qnd5lbuDv3clBPTy+C4tPZIgX5cjhlX17uPKkliXwHUVoWj16/IjIFbYHlDeeustbdmyRbW1tbrjjjt07NgxLV68WFlZWZo7d+41relyueRyucLGnU5n1C60aK4db+iVdfTKOnrVPV9neBDxdTm6HTeFST9HrqvI2N2vSNayPaA8//zzWrJkSfC5JGPGjNFnn32m1atXa+7cucrIyJAkNTU1KTMzM3heU1NTyEM+AADgxmX7q3g6OjqUkBC6bGJiorq6uiRJubm5ysjI0N69e4O3e71eHTx4UIWFhXaXAwAA+iHbd1BmzZqlV155RSNHjtQdd9yh3/72t3rttdf0t3/7t5Ikh8OhxYsXa+XKlRo1apRyc3O1dOlSZWVlafbs2XaXAwAA+iHbA8qGDRu0dOlSfec739G5c+eUlZWlv/u7v9OyZcuCc1544QW1t7drwYIFamlp0aRJk7Rr1y4lJSXZXQ4AAOiHbA8oQ4YMUVVVlaqqqnqc43A4tGLFCq1YscLubw8AAOIAn8UDAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADCO7e+DAgCwR86Sd2JdAhAz7KAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGGdArAsAAMS3nCXvhI2dXjMzBpWgP2EHBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOLzMGAAM0d3LcYEbFTsoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADG4WXGABBlfJovELmo7KB88cUX+pu/+RulpaVp0KBBGjNmjI4cORK8PRAIaNmyZcrMzNSgQYNUVFSkEydORKMUAADQD9keUL788kvdc889cjqd+o//+A/993//t37wgx/o5ptvDs5Zu3at1q9fr5qaGh08eFCDBw9WSUmJLly4YHc5AACgH7L9IZ5XX31V2dnZ2rRpU3AsNzc3+PtAIKCqqiq99NJLeuihhyRJmzdvVnp6unbs2KE5c+bYXRIAAOhnbA8ob7/9tkpKSvTII4/ogw8+0J/92Z/pO9/5jubPny9JOnXqlBobG1VUVBQ8Z+jQoZo4caLq6+u7DSg+n08+ny947PV6JUl+v19+v9/W+i+vZ/e68YheWUevrIvHXrkSA2Fj3d2/7ub1um5CIOTX/qSvf77xeF1FU7T6Fcl6jkAgYOuVnZSUJEkqLy/XI488osOHD+u73/2uampqNHfuXO3fv1/33HOPzp49q8zMzOB5jz76qBwOh7Zu3Rq2ZmVlpZYvXx42Xltbq+TkZDvLBwAAUdLR0aHHHntMra2tcrvdvc61PaAMHDhQ48eP1/79+4NjzzzzjA4fPqz6+vprCijd7aBkZ2frD3/4w1XvYKT8fr88Ho+mTZsmp9Np69rxhl5ZR6+si8de5VXuDhv7uLLE0rzeuBICenl8l5YeSZCvy3HN9cVCd/c/muLxuoqmaPXL6/Vq2LBhlgKK7Q/xZGZm6vbbbw8ZGz16tP7t3/5NkpSRkSFJampqCgkoTU1Nys/P73ZNl8sll8sVNu50OqN2oUVz7XhDr6yjV9bFU698neHhobv71t08S+t3Oa753FiJ1c82nq6rvmB3vyJZy/ZX8dxzzz06fvx4yNjvf/973XLLLZK+esJsRkaG9u7dG7zd6/Xq4MGDKiwstLscAADQD9m+g/Lss8/qL/7iL7Rq1So9+uijOnTokDZu3KiNGzdKkhwOhxYvXqyVK1dq1KhRys3N1dKlS5WVlaXZs2fbXQ4AAOiHbA8oEyZM0Pbt21VRUaEVK1YoNzdXVVVVKisrC8554YUX1N7ergULFqilpUWTJk3Srl27gk+wBQAAN7aovNX9gw8+qAcffLDH2x0Oh1asWKEVK1ZE49sDAIB+js/iAYAY6O7zeQD8CZ9mDAAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADj8Fk8AIA+d+VnEZ1eMzNGlcBU7KAAAADjEFAAAIBxCCgAAMA4BBQAAGAcniQLADa78gmgACLHDgoAADAOAQUAABiHgAIAAIxDQAEAAMbhSbIAcB14Qqw9uusj7y57Y2MHBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADG4bN4ACACfPYO0DfYQQEAAMYhoAAAAOMQUAAAgHGiHlDWrFkjh8OhxYsXB8cuXLighQsXKi0tTTfddJNKS0vV1NQU7VIAAEA/EdWAcvjwYf34xz/WnXfeGTL+7LPP6pe//KW2bdumDz74QGfPntW3vvWtaJYCAAD6kagFlLa2NpWVleknP/mJbr755uB4a2urfvrTn+q1117T/fffr3HjxmnTpk3av3+/Dhw4EK1yAABAPxK1lxkvXLhQM2fOVFFRkVauXBkcb2hokN/vV1FRUXDstttu08iRI1VfX6+77747bC2fzyefzxc89nq9kiS/3y+/329r3ZfXs3vdeESvrKNX1pneK1diINYlBLkSAiG/xhs7rwHTryvTRKtfkawXlYDyL//yLzp69KgOHz4cdltjY6MGDhyolJSUkPH09HQ1NjZ2u97q1au1fPnysPE9e/YoOTnZnqKv4PF4orJuPKJX1tEr60zt1dqCWFcQ7uXxXbEuISreffdd29c09boyld396ujosDzX9oBy5swZffe735XH41FSUpIta1ZUVKi8vDx47PV6lZ2dreLiYrndblu+x2V+v18ej0fTpk2T0+m0de14Q6+so1fWmd6rvMrdsS4hyJUQ0Mvju7T0SIJ8XY5Yl2O7jytLbFvL9OvKNNHq1+VHQKywPaA0NDTo3Llz+sY3vhEc6+zsVF1dnV5//XXt3r1bFy9eVEtLS8guSlNTkzIyMrpd0+VyyeVyhY07nc6oXWjRXDve0Cvr6JV1pvbK12leEPB1OYys63pF4+dv6nVlKrv7FclatgeUqVOn6qOPPgoZe+qpp3TbbbfpxRdfVHZ2tpxOp/bu3avS0lJJ0vHjx/X555+rsLDQ7nIAAEA/ZHtAGTJkiPLy8kLGBg8erLS0tOD4vHnzVF5ertTUVLndbj399NMqLCzs9gmyAADgxhOTDwv84Q9/qISEBJWWlsrn86mkpERvvPFGLEoBAAAG6pOA8qtf/SrkOCkpSdXV1aquru6Lbw8AAPoZPosHAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGCcmLxRGwDEWs6Sd8LGTq+ZGYNKAHSHHRQAAGAcAgoAADAOD/EAQA+6exgIQN9gBwUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDi8zBgAYKQrX+bNO/3eWNhBAQAAxiGgAAAA4xBQAACAcQgoAADAODxJFgDQL3T32Ug8cTZ+sYMCAACMww4KAPx/fHoxYA52UAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjMPLjAHcEHgJMdC/sIMCAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAc2wPK6tWrNWHCBA0ZMkTDhw/X7Nmzdfz48ZA5Fy5c0MKFC5WWlqabbrpJpaWlampqsrsUAADQT9keUD744AMtXLhQBw4ckMfjkd/vV3Fxsdrb24Nznn32Wf3yl7/Utm3b9MEHH+js2bP61re+ZXcpAOJQzpJ3Qr4AxCfb36ht165dIcc///nPNXz4cDU0NOib3/ymWltb9dOf/lS1tbW6//77JUmbNm3S6NGjdeDAAd19991ha/p8Pvl8vuCx1+uVJPn9fvn9flvrv7ye3evGI3plHb2y7mq9ciUGup1/NVeeFw9cCYGQX29EVn/+/BmMTLT6Fcl6jkAgENUr++TJkxo1apQ++ugj5eXlad++fZo6daq+/PJLpaSkBOfdcsstWrx4sZ599tmwNSorK7V8+fKw8draWiUnJ0ezfAAAYJOOjg499thjam1tldvt7nVuVN/qvqurS4sXL9Y999yjvLw8SVJjY6MGDhwYEk4kKT09XY2Njd2uU1FRofLy8uCx1+tVdna2iouLr3oHI+X3++XxeDRt2jQ5nU5b14439Mo6emXd1XqVV7k75PjjyhJL6155XjxwJQT08vguLT2SIF+XI9blxITVnz9/BiMTrX5dfgTEiqgGlIULF+rjjz/Wb37zm+tax+VyyeVyhY07nc6oXWjRXDve0Cvr6JV1PfXK1+kIm2fFlefFE1+XI67vX28i/fPEn8HI2N2vSNaKWkBZtGiRdu7cqbq6Oo0YMSI4npGRoYsXL6qlpSVkF6WpqUkZGRnRKgdAnOKJskB8sv1VPIFAQIsWLdL27du1b98+5ebmhtw+btw4OZ1O7d27Nzh2/Phxff755yosLLS7HAAA0A/ZvoOycOFC1dbW6he/+IWGDBkSfF7J0KFDNWjQIA0dOlTz5s1TeXm5UlNT5Xa79fTTT6uwsLDbV/AAAIAbj+0B5c0335QkTZkyJWR806ZNevLJJyVJP/zhD5WQkKDS0lL5fD6VlJTojTfesLsUAADQT9keUKy8ajkpKUnV1dWqrq62+9sDiCM8vwS4cfFZPAAAwDgEFAAAYBwCCgAAMA4BBQAAGCeq7yQLAD3p7gmwp9fMjEElAEzEDgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDi8DwoAY+QseUeuxIDWFkh5lbslOWJdEoAYYQcFAAAYh4ACAACMQ0ABAADG4TkoAPpEd5+9A1wvPtMpfrGDAgAAjENAAQAAxuEhHgARYUsdQF9gBwUAABiHgAIAAIxDQAEAAMYhoAAAAOPwJFkAPeK9SwDECjsoAADAOOygALAdOy8wyZWfku3rdPDS+H6AHRQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOPwMmMAQdf68mBeVgzAbuygAAAA4xBQAACAcXiIJ45due3OOyfaw8rDGbHudXc1XlkTD8sgXnFtx4eY7qBUV1crJydHSUlJmjhxog4dOhTLcgAAgCFitoOydetWlZeXq6amRhMnTlRVVZVKSkp0/PhxDR8+PFZlGak//I/dLtf6Px/T7v+V9+PKzwG5zErd/G8QsN+N9PdqfxWzHZTXXntN83hgHdoAAAlfSURBVOfP11NPPaXbb79dNTU1Sk5O1s9+9rNYlQQAAAwRkx2UixcvqqGhQRUVFcGxhIQEFRUVqb6+Pmy+z+eTz+cLHre2tkqSmpub5ff7ba3N7/ero6NDf/zjH+V0Om1d+1oNuNR+1Tl//OMfr3ped3OuRzR6ZeW+dsfu+9aba6lxQFdAHR1dGuBPUGfXn3ZQrNR9rT250pXfy6517dZTrxCOXll3Lb3qy79XTBOtfwvPnz8vSQoEAlefHIiBL774IiApsH///pDx559/PlBQUBA2//vf/35AEl988cUXX3zxFQdfZ86cuWpW6Bev4qmoqFB5eXnwuKurS83NzUpLS5PDEZqEJ0yYoMOHD/c61tux1+tVdna2zpw5I7fbbev96K42u87pbV5Pt1np1ZVjJvfK6nl91av/exzNXvVW9/WeQ6+sn3O1OdfTL3rV83i89+pq86LRKyl6f78HAgGdP39eWVlZV50bk4AybNgwJSYmqqmpKWS8qalJGRkZYfNdLpdcLlfIWEpKSrdrJyYmhjXzyrGrHUuS2+22/SLu7vvYdU5v83q6zUqvrhwzuVdWz+urXnV3HI1e9VSLHefQK+vnXG3O9fSLXvU8Hu+9utq8aPZKik6/hg4damleYmVlZaWt39nKN01M1DvvvKOLFy9qxowZkr7aFXnmmWdUWlqqSZMmXdf6BQUFVx3r6djn82nNmjWqqKgIC0V26K42u87pbV5Pt1np1ZVjJvfK6nl91avLx9HuVU+12HEOvbJ+ztXmXE+/6FXP4/Heq6vNs7tXUvT/frfCEQhYeaaK/bZu3aq5c+fqxz/+sQoKClRVVaW33npLv/vd75Senh6LkiR9ta01dOhQtba2RiVlxxN6ZR29so5eWUevrKNXkTGhXzHZQZGkvLw8paSk6JVXXtG6deskSVu2bNHXv/71WJQTIjExUVOmTNGAAf3iKToxRa+so1fW0Svr6JV19Coyse5XzHZQAAAAesKHBQIAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4B5RodP35c+fn5wa9BgwZpx44dsS7LWKdOndJ9992n22+/XWPGjFF7u5kfVGeCnJwc3XnnncrPz9d9990X63KM19HRoVtuuUXPPfdcrEsxWktLi8aPH6/8/Hzl5eXpJz/5SaxLMtaZM2c0ZcoU3X777brzzju1bdu2WJdktIcfflg333yzvv3tb9u6Li8ztkFbW5tycnL02WefafDgwbEux0j33nuvVq5cqcmTJ6u5uVlut5v3IuhBTk6OPv74Y910002xLqVf+Md//EedPHlS2dnZwfdUQrjOzk75fD4lJyervb1deXl5OnLkiNLS0mJdmnH+93//V01NTcrPz1djY6PGjRun3//+9/z93oNf/epXOn/+vP7pn/5J//qv/2rbuuyg2ODtt9/W1KlTuXh78Mknn8jpdGry5MmSpNTUVMIJbHHixAn97ne/0/Tp02NdivESExOVnJws6au3MQ8EAtY+8v4GlJmZqfz8fElSRkaGhg0bpubm5hhXZa4pU6ZoyJAhtq8btwGlrq5Os2bNUlZWlhwOR7cPv1RXVysnJ0dJSUmaOHGiDh06dE3f66233tJf/dVfXW/JMRPtXp04cUI33XSTZs2apW984xtatWqVneX3qb64rhwOh+69915NmDBBW7Zssav0PtcXvXruuee0evVqu0qOqb7oV0tLi8aOHasRI0bo+eef17Bhw+wqv0/15d/vDQ0N6uzsVHZ29vWWHRN92Su7xW1AaW9v19ixY1VdXd3t7Vu3blV5ebm+//3v6+jRoxo7dqxKSkp07ty54JzLj9Ve+XX27NngHK/Xq/379wc/9LA/inavLl26pF//+td64403VF9fL4/HI4/H01d3z1Z9cV395je/UUNDg95++22tWrVK//Vf/9Un981u0e7VL37xC91666269dZb++ouRVVfXFspKSn68MMPderUKdXW1oZ9onx/0Vd/vzc3N+uJJ57Qxo0bo36foqWvehUVgRuApMD27dtDxgoKCgILFy4MHnd2dgaysrICq1evjmjtzZs3B8rKymyp0wTR6NX+/fsDxcXFweO1a9cG1q5da0/BMRTN6+qy5557LrBp06brKdMI0ejVkiVLAiNGjAjccsstgbS0tIDb7Q4sX77c1rpjpS+urX/4h38IbNu27brqNEG0enXhwoXA5MmTA5s3b7at1liL5nX1/vvvB0pLS22p87K43UHpzcWLF9XQ0KCioqLgWEJCgoqKilRfXx/RWv394Z2rsaNXEyZM0Llz5/Tll1+qq6tLdXV1Gj16dLRKjhk7etXe3q7z589L+urJ1/v27dMdd9wRlXpjyY5erV69WmfOnNHp06e1bt06zZ8/X8uWLYtWyTFlR7+ampqC11Zra6vq6uqM+HBWu9nRq0AgoCeffFL333+/Hn/88WiVGnN2/lsYDTdkQPnDH/6gzs5Opaenh4ynp6ersbHR8jqtra06dOiQSkpK7C7RGHb0asCAAVq1apW++c1v6s4779SoUaP04IMPRqPcmLKjV01NTZo0aZLGjh2ru+++W0888YQmTJgQjXJjyq4/gzcKO/r12WefafLkyRo7dqwmT56sp59+WmPGjIlGuTFlR6/+8z//U1u3btWOHTuCbyXx0UcfRaPcmLLrz2FRUZEeeeQRvfvuuxoxYoRt4YaXUlyHoUOH9tvHcPva9OnTeaWFBX/+53+uDz/8MNZl9DtPPvlkrEswXkFBgY4dOxbrMvqFSZMmqaurK9Zl9BvvvfdeVNa9IXdQhg0bpsTExLBw0dTUpIyMjBhVZSZ6ZR29so5eRYZ+WUevrDO9VzdkQBk4cKDGjRunvXv3Bse6urq0d+9eFRYWxrAy89Ar6+iVdfQqMvTLOnplnem9ituHeNra2nTy5Mng8alTp3Ts2DGlpqZq5MiRKi8v19y5czV+/HgVFBSoqqpK7e3teuqpp2JYdWzQK+volXX0KjL0yzp6ZV2/7pWtrwkyyPvvvx+QFPY1d+7c4JwNGzYERo4cGRg4cGCgoKAgcODAgdgVHEP0yjp6ZR29igz9so5eWdefe8Vn8QAAAOPckM9BAQAAZiOgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4/w+kbyVa2HkUlQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plotDistribution(_betweeness[_betweeness>0], 100)" - ] - }, - { - "cell_type": "code", - "execution_count": 66, + "execution_count": 82, "metadata": {}, "outputs": [], "source": [ @@ -2427,7 +2447,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 83, "metadata": {}, "outputs": [], "source": [ @@ -2436,7 +2456,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 84, "metadata": {}, "outputs": [], "source": [ @@ -2449,21 +2469,21 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 85, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "gas 0.000360\n", - "change 0.000400\n", - "price index 0.000532\n", - "reflected 0.000520\n", - "scheduled 0.000585\n", + "uae 0.000603\n", + "spokeswoman 0.000279\n", + "compensation 0.000595\n", + "wholly 0.000380\n", + "brazilian 0.000223\n", "Name: pageRank, dtype: float64" ] }, - "execution_count": 70, + "execution_count": 85, "metadata": {}, "output_type": "execute_result" } @@ -2474,7 +2494,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 86, "metadata": {}, "outputs": [ { @@ -2483,13 +2503,13 @@ "(1e-05, 0.02)" ] }, - "execution_count": 73, + "execution_count": 86, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+wAAAHbCAYAAABRORC0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxU1f0//tedkB0y2SEbJAYhAiFIANkRUAGpFIkVxCrQSm0JWn+21dB+rMuHNsHt4xa0qEW/VjEqSz8fFVRAhUCFsO+ymJAAARKSTCAZSMic3x/hXma5M3MnmWRmktfz8bA1k7uce++Yc99neR9JCCFARERERERERF5F5+kCEBEREREREZEtBuxEREREREREXogBOxEREREREZEXYsBORERERERE5IUYsBMRERERERF5IQbsRERERERERF6IATsRERERERGRF2LATkREREREROSFGLATEREREREReSEG7ESkeOaZZyBJEiorKz1dFM3mzp2L5ORkTxeDiIioXXhzXT137lx07drV08Ug6lAYsFOn8d5770GSJOWfoKAg9OnTBwsXLsS5c+c8XTwiIqJOj3U1WVu6dCnee+89TxeDyGO6eLoARO3tueeeQ0pKCi5fvozCwkK8+eab+PLLL3HgwAGEhIR4unhERESdHutqki1duhTR0dGYO3eup4tC5BEM2KnTmTJlCoYMGQIAeOihhxAVFYWXX34Z//73v3Hfffd5uHTOmUwmNDQ0ICgoyNNF6dTq6uoQGhrq6WIQEXVIrKuJiJpxSDx1ehMmTAAAFBcXAwBefPFFjBw5ElFRUQgODkZmZiY+++wzm/2MRiMeffRRREdHo1u3bpg2bRpOnz4NSZLwzDPPWGx7+vRp/OpXv0L37t0RGBiI/v3745///Kem8kmShIULF+LDDz9E//79ERgYiHXr1rlUVvkYa9aswYABA5QyyMdx5OTJk+jduzcGDBhgdzjiZ599BkmS8P3339v87h//+AckScKBAwcAAGfPnsW8efOQmJiIwMBAxMXF4ec//zlKSkqclkUuf1BQEAYMGIDVq1erbmcymfDKK6+gf//+CAoKQvfu3fHwww+jurraZrtnnnkG8fHxCAkJwfjx43Ho0CEkJydbtOTLQzS///57LFiwALGxsUhMTFR+v3btWowZMwahoaHo1q0bpk6dioMHD9qU68iRI7jnnnsQGRmJoKAgDBkyBP/7v/9rsU1jYyOeffZZ3HjjjQgKCkJUVBRGjx6Nb775xun9ISLqqFhXO+ZNdTUA/PTTT5g0aRJCQ0MRHx+P5557DkIIi2201NXJyck4ePAgvv/+e2WaxK233oqamhr4+fnhtddeU7atrKyETqdDVFSUxbl+97vfoUePHhbn3rZtGyZPngy9Xo+QkBCMGzcOW7ZssbkOLd+J7777DpIk4ZNPPsHf/vY3JCYmIigoCBMnTsTx48dtjqnl3BcvXsRjjz2G5ORkBAYGIjY2Frfffjt27dqlbHPs2DFkZWWhR48eCAoKQmJiImbNmgWDweDo0ZAPYg87dXonTpwAAERFRQEAXn31VUybNg33338/Ghoa8PHHH+MXv/gFPv/8c0ydOlXZb+7cufjkk0/wwAMPYPjw4fj+++8tfi87d+4chg8frlTEMTExWLt2LX7961+jtrYWjz32mNMybty4EZ988gkWLlyI6OhoJcma1rICQGFhIVatWoUFCxagW7dueO2115CVlYXS0lLl2tXuzYQJExAZGYlvvvkG0dHRqttNnToVXbt2xSeffIJx48ZZ/K6goAD9+/fHgAEDAABZWVk4ePAgHnnkESQnJ+P8+fP45ptvUFpa6jB53Ndff42srCz069cPubm5uHDhgvIyYe3hhx/Ge++9h3nz5uHRRx9FcXEx3njjDezevRtbtmyBv78/AGDRokV4/vnncdddd2HSpEnYu3cvJk2ahMuXL6uWYcGCBYiJicFf//pX1NXVAQA++OADzJkzB5MmTcKSJUtQX1+PN998E6NHj8bu3buVazp48CBGjRqFhIQE5OTkIDQ0FJ988gmmT5+OlStX4u677wbQnEwoNzcXDz30EIYNG4ba2lrs2LEDu3btwu233273/hARdWSsq32jrgaApqYmTJ48GcOHD8fzzz+PdevW4emnn8bVq1fx3HPPKdtpqatfeeUVPPLII+jatSv+8pe/AAC6d++O8PBwDBgwAJs2bcKjjz6q3DtJklBVVYVDhw6hf//+AIDNmzdjzJgxFs9pypQpyMzMxNNPPw2dTofly5djwoQJ2Lx5M4YNGwbA9e9EXl4edDod/vjHP8JgMOD555/H/fffj23btrl87t/+9rf47LPPsHDhQvTr1w8XLlxAYWEhDh8+jMGDB6OhoQGTJk3ClStX8Mgjj6BHjx44ffo0Pv/8c9TU1ECv1zt8RuRjBFEnsXz5cgFArF+/XlRUVIiysjLx8ccfi6ioKBEcHCxOnTolhBCivr7eYr+GhgYxYMAAMWHCBOWznTt3CgDiscces9h27ty5AoB4+umnlc9+/etfi7i4OFFZWWmx7axZs4Rer7c5nzUAQqfTiYMHD9r8TktZ5WMEBASI48ePK5/t3btXABCvv/668tnTTz8tAIiKigpx+PBhER8fL4YOHSqqqqocllEIIe677z4RGxsrrl69qnxWXl4udDqdeO6554QQQlRXVwsA4oUXXnB6PGuDBg0ScXFxoqamRvns66+/FgBEr169lM82b94sAIgPP/zQYv9169ZZfH727FnRpUsXMX36dIvtnnnmGQFAzJkzR/lM/u6MHj3a4vouXrwowsPDxfz58y2OcfbsWaHX6y0+nzhxokhPTxeXL19WPjOZTGLkyJHixhtvVD7LyMgQU6dOdeHOEBF1HKyrfbuunjNnjgAgHnnkEeUzk8kkpk6dKgICAkRFRYUQQntdLYQQ/fv3F+PGjbM5V3Z2tujevbvy8+OPPy7Gjh0rYmNjxZtvvimEEOLChQtCkiTx6quvKmW58cYbxaRJk4TJZFL2ra+vFykpKeL2229XPtP6nfj2228FAHHTTTeJK1euKNu9+uqrAoDYv3+/y+fW6/UiOztb9R4LIcTu3bsFAPHpp5/a3YY6Dg6Jp07ntttuQ0xMDJKSkjBr1ix07doVq1evRkJCAgAgODhY2ba6uhoGgwFjxoyxGIYkD09bsGCBxbEfeeQRi5+FEFi5ciXuuusuCCFQWVmp/DNp0iQYDAaL49ozbtw49OvXz+ZzLWU1v+7U1FTl54EDByIsLAw//fSTzbYHDhzAuHHjkJycjPXr1yMiIsJpGWfOnInz58/ju+++Uz777LPPYDKZMHPmTKW8AQEB+O6772yGpztSXl6OPXv2YM6cORatxrfffrvNffn000+h1+tx++23W9zvzMxMdO3aFd9++y0AYMOGDbh69arTZ2hu/vz58PPzU37+5ptvUFNTg/vuu8/iXH5+frjllluUc1VVVWHjxo249957cfHiRWW7CxcuYNKkSTh27BhOnz4NAAgPD8fBgwdx7NgxzfeHiKijYV3dzJfqanMLFy5U/l3uoW5oaMD69esBaK+rHRkzZgzOnTuHH3/8EUBzT/rYsWMxZswYbN68GUBzr7sQQulh37NnD44dO4bZs2fjwoULynnr6uowceJEbNq0CSaTqUXfiXnz5iEgIMCifACUZ6f13EDzu8C2bdtw5swZ1WuX34W++uor1NfXO71X5Ns4JJ46nfz8fPTp0wddunRB9+7d0bdvX+h019uuPv/8cyxevBh79uzBlStXlM8lSVL+/eTJk9DpdEhJSbE4du/evS1+rqioQE1NDZYtW4Zly5apluf8+fNOy2x9HlfKKuvZs6fNZxEREaqV8V133YXu3bvjq6++0ryeqjwfq6CgABMnTgTQPMRu0KBB6NOnDwAgMDAQS5YswR/+8Ad0794dw4cPx89+9jM8+OCDNvPLzJ08eRIAcOONN9r8rm/fvjZzugwGA2JjY1WPJd9v+ZjWzywyMtLuS4/1c5CDanlupbWwsDAAwPHjxyGEwFNPPYWnnnrKbrkSEhLw3HPP4ec//zn69OmDAQMGYPLkyXjggQcwcOBA1f2IiDoi1tXX+UpdLdPpdLjhhhssPpOPLc+B11pXOyIHxJs3b0ZiYiJ2796NxYsXIyYmBi+++KLyu7CwMGRkZCjnBYA5c+bYPa7BYEBjY6PL3wnrZye/S8jPTuu5IyIi8Pzzz2POnDlISkpCZmYm7rzzTjz44IPKfU1JScHjjz+Ol19+GR9++CHGjBmDadOm4Ze//CWHw3dADNip0xk2bJiSedba5s2bMW3aNIwdOxZLly5FXFwc/P39sXz5cnz00Ucun0tuKf3lL39p9w+0lkDMvHW+pWU17xk2J6ySwADNc9fef/99fPjhh3j44Yedlg9oruCnT5+O1atXY+nSpTh37hy2bNmCv//97xbbPfbYY7jrrruwZs0afPXVV3jqqaeQm5uLjRs34uabb9Z0LkdMJhNiY2Px4Ycfqv4+Jiamxce2fg7y8/3ggw9UX2K6dOlisd0f//hHTJo0SfXY8gvk2LFjceLECfz73//G119/jXfeeQf/8z//g7feegsPPfRQi8tORORLWFdbYl1tKz4+HikpKdi0aROSk5MhhMCIESMQExOD3//+9zh58iQ2b96MkSNHKo098rN+4YUXMGjQINXjdu3aFRcuXADg2nfC2bPTem4AuPfeezFmzBisXr0aX3/9NV544QUsWbIEq1atwpQpUwAAL730EubOnau8Lzz66KPIzc3FDz/8oJrfh3wXA3YiMytXrkRQUBC++uorBAYGKp8vX77cYrtevXrBZDKhuLjYotfXOhtoTEwMunXrhqamJtx2220eKWtLvPDCC+jSpYuS9Gb27Nma9ps5cybef/99bNiwAYcPH4YQQhliZy41NRV/+MMf8Ic//AHHjh3DoEGD8NJLL+Ff//qX6nF79eoFAKrDxOWhcObHXr9+PUaNGqX68mR9zOPHj1v0ily4cEHzEEB52GJsbKzD5yu3iPv7+2v6HkRGRmLevHmYN28eLl26hLFjx+KZZ55hwE5EBNbVMm+rq2Umkwk//fST0qsOAEePHgUAJWGd1roaUB+JIBszZgw2bdqElJQUDBo0CN26dUNGRgb0ej3WrVuHXbt24dlnn7W4JqB5BJyjZ90W3wmt55bFxcVhwYIFWLBgAc6fP4/Bgwfjb3/7mxKwA0B6ejrS09PxX//1X9i6dStGjRqFt956C4sXL3ZLmck7cA47kRk/Pz9IkoSmpibls5KSEqxZs8ZiO7mXdOnSpRafv/766zbHy8rKwsqVK5WlUsxVVFS0eVlbQpIkLFu2DPfccw/mzJljs/SYPbfddhsiIyNRUFCAgoICDBs2zCIYrq+vt8nAnpqaim7dulkME7QWFxeHQYMG4f3337dYruSbb77BoUOHLLa999570dTUhP/+7/+2Oc7Vq1dRU1MDAJg4cSK6dOmCN99802KbN954Q9O1As3fg7CwMPz9739HY2Ojze/l5xsbG4tbb70V//jHP1BeXm53OwBKq76sa9eu6N27t8P7Q0TUmbCubuZtdbU587pUCIE33ngD/v7+yjB8rXU1AISGhlr8bG7MmDEoKSlBQUGBMkRep9Nh5MiRePnll9HY2GiRIT4zMxOpqal48cUXcenSJZvjyc+6Lb4TWs/d1NRkszRbbGws4uPjlftfW1uLq1evWmyTnp4OnU7H94UOiD3sRGamTp2Kl19+GZMnT8bs2bNx/vx55Ofno3fv3ti3b5+yXWZmJrKysvDKK6/gwoULylIxcguyeWtwXl4evv32W9xyyy2YP38++vXrh6qqKuzatQvr169HVVVVm5a1pXQ6Hf71r39h+vTpuPfee/Hll1/anast8/f3x4wZM/Dxxx+jrq5OmUMmO3r0KCZOnIh7770X/fr1Q5cuXbB69WqcO3cOs2bNcnjs3NxcTJ06FaNHj8avfvUrVFVV4fXXX0f//v0tKr5x48bh4YcfRm5uLvbs2YM77rgD/v7+OHbsGD799FO8+uqruOeee9C9e3f8/ve/x0svvYRp06Zh8uTJ2Lt3L9auXYvo6GiHLfqysLAwvPnmm3jggQcwePBgzJo1CzExMSgtLcUXX3yBUaNGKS8t+fn5GD16NNLT0zF//nzccMMNOHfuHP7zn//g1KlT2Lt3LwCgX79+uPXWW5GZmYnIyEjs2LFDWdqFiIhYV5vztroaAIKCgrBu3TrMmTMHt9xyC9auXYsvvvgCf/7zn5Wh7lrraqD5Ob755ptYvHgxevfujdjYWOUa5WD8xx9/tBjWP3bsWKxduxaBgYEYOnSoxf165513MGXKFPTv3x/z5s1DQkICTp8+jW+//RZhYWH4v//7PwDu/05oPffFixeRmJiIe+65BxkZGejatSvWr1+PoqIivPTSSwCal4dbuHAhfvGLX6BPnz64evUqPvjgA6WhgToYD2SmJ/IIeamYoqIih9u9++674sYbbxSBgYEiLS1NLF++XFlCxVxdXZ3Izs4WkZGRomvXrmL69Onixx9/FABEXl6exbbnzp0T2dnZIikpSfj7+4sePXqIiRMnimXLljktNwC7S3toLau9Y/Tq1cti+TLzpWJk9fX1Yty4caJr167ihx9+cFreb775RgAQkiSJsrIyi99VVlaK7OxskZaWJkJDQ4Verxe33HKL+OSTT5weVwghVq5cKW666SYRGBgo+vXrJ1atWiXmzJljsaybbNmyZSIzM1MEBweLbt26ifT0dPHEE0+IM2fOKNtcvXpVPPXUU6JHjx4iODhYTJgwQRw+fFhERUWJ3/72t8p2zr473377rZg0aZLQ6/UiKChIpKamirlz54odO3ZYbHfixAnx4IMPih49egh/f3+RkJAgfvazn4nPPvtM2Wbx4sVi2LBhIjw8XAQHB4u0tDTxt7/9TTQ0NGi6R0REvox1tW/X1XPmzBGhoaHixIkT4o477hAhISGie/fu4umnnxZNTU0222upq8+ePSumTp0qunXrJgDYLPEWGxsrAIhz584pnxUWFgoAYsyYMarl3L17t5gxY4aIiooSgYGBolevXuLee+8VGzZssNhOy3dCXtbNeom14uJiAUAsX77cpXNfuXJF/OlPfxIZGRmiW7duIjQ0VGRkZIilS5cqx/jpp5/Er371K5GamiqCgoJEZGSkGD9+vFi/fr3q9ZJvk4RQyWJBRC2yZ88e3HzzzfjXv/6F+++/39PFoRaoqalBREQEFi9ejL/85S+eLg4REbkZ62oi8iWcw07UQkaj0eazV155BTqdDmPHjvVAichV9p4hANx6663tXBoiInI31tVE5Os4h52ohZ5//nns3LkT48ePR5cuXbB27VqsXbsWv/nNb5CUlOTp4pEGBQUFeO+993DnnXeia9euKCwsxIoVK3DHHXdg1KhRni4eERG1EutqIvJ1HBJP1ELffPMNnn32WRw6dAiXLl1Cz5498cADD+Avf/mLsv42ebddu3bhiSeewJ49e1BbW4vu3bsjKysLixcvVtZCJSIi38W6moh8HQN2IiIiIiIiIi/EOexEREREREREXogBOxEREREREZEX6vSTd0wmE86cOYNu3bpBkiRPF4eIiDo5IQQuXryI+Ph46HRsV3cH1vVERORttNb3nT5gP3PmDLOEEhGR1ykrK0NiYqKni+HT8vPzkZ+fj4aGBpw4ccLTxSEiIrLhrL7v9EnnDAYDwsPDUVZWhrCwME8Xh4iIOrna2lokJSWhpqYGer3e08XpEFjXExGRt9Fa33f6HnZ5aFxYWBgrcSIi8hocuu0+rOuJiMhbOavvOTmOiIiIiIiIyAsxYCciIiIiIiLyQgzYiYiIiIiIiLwQA3YiIiIiIiIiL8SAnYiIiIiIiMgLMWAnIiIiIiIi8kIM2ImIiIiIiIi8UKcN2PPz89GvXz8MHTrU00UhIiIiIiIistFpA/bs7GwcOnQIRUVFni4KERERERERkY1OG7ATEREREREReTMG7EREREREREReiAE7ERERERERkRdiwE5ERGSl3GDE1hOVKDcYPV0UIiIi6sS6eLoARERE3qSgqBSLVu2HSQA6CcidkY6ZQ3t6ulhERETUCbGHnYiI6Jpyg1EJ1gHAJIA/rzrAnnYiIiLyCAbsRETUaVkPfS+urFOCdVmTECiprHfpOERERETuwCHxRETUKakNfR/bJwY6CRZBu58kITk6xKXjcAg9ERGRdys3GFFcWYeU6FDE6YM9XRy72MNORESdjr2h70BzwO0nSQCag/W/zxhgtyLnEHoiIiLfU1BUilF5GzH77W0YlbcRBUWlni6SXexhJyKiTsfR0PeZQ3tibJ8YlFTWIzk6xGGru6PjeHNrPRERUWdlr7F9bJ8Yr6y7GbATEVGnkxId6nDoe5w+WFOl7ew4RERE5F18rbGdQ+KJiKjTidMHuzT0va2PQ0RERO1Dbmw3582N7exhJyKiTsmVoe/tcRwiIiJqe3Jj+59XHUCTEF7f2M6AnYiIOi2tQ9/b6zhERETU9nypsZ0BOxEREREREXUqvtLYzjnsRERERERERF6IATsRERERERGRF2LATkRERF6trKwMt956K/r164eBAwfi008/9XSRiDqccoMRW09Uotxg9HRR2k1nvGZ7eC+8F+ewExERkVfr0qULXnnlFQwaNAhnz55FZmYm7rzzToSGhnq6aEQdQkFRKRat2g+TAHQSkDsjHTOH9vR0sdpUZ7zmcoMRxZV1SIkOtZi73RnvhS9hDzsREXkttvgTAMTFxWHQoEEAgB49eiA6OhpVVVUeLhVRx1BuMCrBGgCYBPDnVQc69N/dznjNBUWlGJW3EbPf3oZReRtRUFQKwH33gvV122HATkREXsneywV5n02bNuGuu+5CfHw8JEnCmjVrbLbJz89HcnIygoKCcMstt2D79u0tOtfOnTvR1NSEpKSk1habiAAUV9YpwZqsSQiUVNZ7pkDtoLNds6Og3B33orX1NYN9xxiwExGR1+mMvR++rK6uDhkZGcjPz1f9fUFBAR5//HE8/fTT2LVrFzIyMjBp0iScP39e2WbQoEEYMGCAzT9nzpxRtqmqqsKDDz6IZcuWtfk1EXUWKdGh0EmWn/lJEpKjQzxToHbQ2a7ZUVDe2nvR2vqajfPOMWAnIiKv09l6P3zdlClTsHjxYtx9992qv3/55Zcxf/58zJs3D/369cNbb72FkJAQ/POf/1S22bNnDw4cOGDzT3x8PADgypUrmD59OnJycjBy5EiH5bly5Qpqa2st/iEidXH6YOTOSIef1By1+UkS/j5jgE+sT91S3nDN7dmr7Cgob+29aE19zcZ5bZh0joiIvI78cmH+EuCsxd9eMh3yrIaGBuzcuROLFi1SPtPpdLjtttvwn//8R9MxhBCYO3cuJkyYgAceeMDp9rm5uXj22WdbXGaizmbm0J4Y2ycGJZX1ShDX0Xnymts7yZsclP951QE0CWETlLfmXrSkvpY5CvY7w3dQKwbsRETkdZy9XFhjhlvvVVlZiaamJnTv3t3i8+7du+PIkSOajrFlyxYUFBRg4MCByvz4Dz74AOnp6arbL1q0CI8//rjyc21tLee8EzkRpw/udEGSJ67ZXq/y2D4xbVoWZ0F5S++Fq/W1udYE+50JA3YiIvJKWlv8PfXyQ+1n9OjRMJlMmrcPDAxEYGBgG5aIiKhlPNmr3FYNFC3toW9NsN+ZMGAnIiKvpeXlgkPqvFt0dDT8/Pxw7tw5i8/PnTuHHj16eKhURESe0VF7lVvaGOBL0zE8NfWOSeeIiMindbZsv74mICAAmZmZ2LBhg/KZyWTChg0bMGLECA+WjIio/XlDwjtvE6cPxojUKK++B57MZs8ediIi8mkcUud5ly5dwvHjx5Wfi4uLsWfPHkRGRqJnz554/PHHMWfOHAwZMgTDhg3DK6+8grq6OsybN8+DpSYi8gxf6lX2Ve7sDff01DsG7ERE5PP48uNZO3bswPjx45Wf5YRvc+bMwXvvvYeZM2eioqICf/3rX3H27FkMGjQI69ats0lE5275+fnIz89HU1NTm56HiMhVnTHJX3txdyJaT0+9k4QQwvlmHVdtbS30ej0MBgPCwsI8XRwiIurkWC+5H+8pEVHnUG4wYlTeRpscAYU541scXLfFMQHtdRPnsBMREREREZHPc9Qb3lKezjvAIfFEREREROQ2nsqm3RnxXltqqyz8npx6x4CdiIhc5o4XhLZ4yWjrFxe+GBEROebu+cOdiat1jLN73RnrrLZMROupvAMM2ImIyCXueBlrixe6tn5J5EsoEZFjns6mrYW3BrGu1jHO7nVnrrM6WiJazmEnIiLN7L0glBuM7XqM9jhmex6f2kZ+fj769euHoUOHerooRJ1CW8wfdidPrqXtSEvqGEf3ur3rrHKDEVtPVHpVnegLa7trxYCdiIg0c8fLWFu80LX1S6K3v4SSuuzsbBw6dAhFRUWeLgpRpyDPHzbnjvnD7uDNDa8tqWNCA/xgdauVe93SOqslgbe3NoJ0JAzYiYhIM3e8jLXFC11bvyR680soEZG38HQ2bUe8ueFVrY7RSUBIgHqoVlBUiruXboX55Zjfa3vHq7x02W4w3pLA25sbQToSBuxERKSZ9cuYDsATk/uqvozZa6mXjyFXQDrA5oXO1Vb+1rwkajmXN7+EEhF5k5lDe6IwZzxWzB+OwpzxXjNv2psbXq3rGKA5+L176VabwNk6SAaag/FVC0Yo99r6eJIECAE8smKPajDe0sDbmxtBOhImnSMiIpfMHNoTNcZG5K09ApMAlqw7gvAQf4uXMk3JbiQA4tr/m2lpopyWJJlx5VwdLYkNEVFb8VQ2bUfcmT3cXYnr5OOEBvghKTIEyx4cjIfe36n0nKsl7VMLkk0CqG8wWXwm11m7TlZj4Ue7XT6mHHg7uj61JdQcjQyglmHATkRELik3GLFk7REIO5lpnWWudfR7AK3KMOzKS2JLshl740soERFp446G15Y2KpsH+QCwvLAYb28uthjWLkmAVdxsEzi7ss54nD4YEaF1Tg4KXpEAACAASURBVI8pz4e3HmLvbPSBdSMIcH1kQEvuC+tXdZ02YM/Pz0d+fj6ampo8XRQiIp/irCW+Nb8XEC1q5W+L6yDfx7qeiKxpbXjdW1aN7SVVGJYciYykCAAtX7bOPMiXB5VZB9EAlIZwc9aBs6sjBZwF+HLZ7M2Hd2bm0J5I69EN0/O3OuzFV9OZl55zRacN2LOzs5GdnY3a2lro9XpPF4eIyGc4q/xb+3utPQdtfR3k+1jXE1FL/OGTPVi567Tyc9bgBLx07yC7Db27TlbDJKogSRIye0XY5GQxD/LVAnVrOgAmNNeHT0yxzRPjbKSAda+1vQDf3nz4ZQ8ORnBAF5QbjJqC9rqGJqe9+NZa2vjRUr7ck99pA3YiImoZ68pfJwG/Gp1s9/d+koQnpvRFcWUdztdeRl1DE56ckobn1/6o+vLw69EpeLewGCbRuuRuapWz1pcYIurcfPnlnlpnb1m1RbAOACt3ncagnuEYmKC3aeiVJCD7o93XfwaQl3W9p1gtyHfET5Lw23E3YOl3J5rzxKw9gvBgf5ueZ3sjBez1WqsF+Pbmwz/0/3ZCuNDr3ZIG8OXX6nlzbTXKzdd78hmwExGRy+TKf/mWYry9qXke3ruFxUolaP5ysO9UDZZcS1An00nAk5PTMDAxXHl5sB4y+JuxKZg3KsVtcwwBaH6JIaLOy9df7ql1tpdUqX7+1JqD0EnA3TcnYM3uM0qDtXXQKdBc18g9xWrzw+3RScDMYUlY+t0Jl4eXA/Z7rdN6dENdQ5NNA5RaoA3AJkeNvf1lrjaAlxuMeHtzser1u3uUW3v35LcFBuxERNRi75glzLGuBOWK8P53flBtwX9+3Y8ozBmvOixPAHh3cwnmjUpxuUxqlfOilfsBs5cSe2Ulos6tI7zcU+sMS460+zuTANbsPoNVC0agvsGEykuX8ciKParblVTWY9PRCpv54dK1/5F7sB8afQOmDuyBgh1l+GhbGT7aZrv+uVrPs9ooEHtD9uX55dYNUHH6YDw5JU1pVJeH4mvd37wMrjSAF1faJsIDmu8F89XYYsBOREQtoqUSdDQU0JVEda0tlwmw6d7wtQqbiNpeR3i5p9bJSIrAnQN64MsDZ1V/3yQE6htMGJEahXKDUbX3XF7aTG1++OoFIxEbFmQR2P7j+xP4aFuZ3TJZDy+3NwrEbo/5tf+3boAqKCpVgnUJwO9uTcWb35/QtL/cGGFdBrX/TqwbF1KiQ23umwRgntn0OnfpCPlquEgeERG1iFwJmrOuBNW2UdtWy7FaUy4d4LbjE1HH5c6/ReS7fjmil93fWX8f5o+xHAkmAfj16BSUVRvtrpcepw/GiNQoZYRZ3tojDstzR//uKK6sQ7nBaHcUiJwgLndGOvyk5i+xWv0rN0CpjWx76/uf8OSUNKf7bzh8zm4ZrBUUlWJU3kbMfnsbRuVtREGR7QgC5ca1Aet74ov5atjDTkRELaJlzpraGq2AbYXpzgRw9o4FgAnmiMghJqPs3OSe4NAAP9Weap0E5ftg3cs9a2hPQBJYsa0Mb28uhgQ4XNtcPldVXYPT+e1rD5zF2gNnoZOaGwPsjQIBgKTIEGXIfkiADncv3arau2xvNMnAhHAU5oxHSWW96v5A83x+LVnh7TUuvHrfIJv9xbVpBG3x35qv56thwE5ERA45ypYsV4I7S6oBCcjsFWGzv3lFWd/QiOLKegxNjlDWtVXbrrUVqr1juXp8Zor2bVyHnVrC11/u3aEz/u2zTnw6+sZobDlW2by8GoCHzBKhqgWiHxeVQojrAbpA83HkwN+88cf8XK4wCeDdwmLVhoB9p2qUnDHmQ9QdNUDZGypuntsld0Y6Fq3cbzG3Xa3YaiNR7DUKQLTfEq4yX85XIwkhXPyqdCzy2qwGgwFhYWGeLg4RkVfRki1Za0ZlX8u87Knysl5yP95TIu187W+1O5QbjBiVt9EmuJQkYP7oGzBvdLJFsPf5vjNYaLaUmyNv3HczoroGKoGwvXO5YvYtSfh4e5nSEPDElL42q7H4SZJFYle1BqiColKbYF7tWX/wnxI89e+Ddstjb1+1a5XLtelohaZzd2Ra6yb2sBMRkSot2ZK1ZlT2tczLvlZeIiJ36Mh/+xyNGrCXIFVc69GeOrCHsu+moxXIWbnfZlvdtczv1j3fmckRFudzdV12a5IErNhWpvTgPzG5L9IT9A6TJZonggWg/Gw9mgRobowQQmBIcqQyGuCvDoJ1nQSsWjDCZtScfB57PfwcyaIdA3YiIlLV0izwavPYfC3zsq+Vl4jIHTrq3z5nowbsZVcHri1rtnSrsgybdVAOXD8mYJsrBQC2nqi0yJBu71zmx/vduFSL9dhl5mOjBZqXSF21YITNMXUSUHnpMvaWVePzfeXKMqwSgLwsy6XdAOCfhcUWS7VKAHKmpGHJuiMO59ibBFCwo0w1YAccTzHx5WHq7YkBOxERqdKyFIrW5VJ8bVkVXysvEfkOb54f3hH/9mkZNSD3BFvP1ZYJs33VLBzfWzmeeXC66WiFMiRcThj3q9EpFr3OFuuy4/pc+Z0nq50mowOuLzNnccxrx1NbI14AyFm532Jpt5yV+20bBgDkOsleL/toWxl6RYbi4XGpqr9nYN46XNaNiIhUaVkKRetyKb62rIqvlZeIfIPmJa48pCP+7XM0asDc2D4xeG32zZg9rKeynJnWQOm1jceV5ykv2Xa+9jJyVlo2FLy9uRgjczcCAApzxmPF/OHYumgCtuZMwIr5w7Fl0QT8+c5+iNMHY+vxSk3nlhtUxvaJwSuzMvDbcSmqowDMCQA7S6qVxgxXRujbW31tydojqsu6uVu5wYitJyrb5Vzegj3sRERexnxZmbqGJpd6YRz13Kj9rtxgxM6T1aiqu4LI0EBk9ro+125vWTVqLzdi2YODcbnRBJMQ6BkZYjG0D7DNAv9TZR32llUjNiyouYfg2lw4Z/PV2qrXSb5G8zl5WqiV15t7xojIu/nK/PCONrdYy6gB6yHzM4cmYXTvaCRGBKsua6bG/HluOlqBHDuBsEDzdoU54zEiNUr53Drvy4rtZU7PKS8zt+lohctZ5yXJ9fn0Ogn43a2pyP/2hM3vTGi7Zdlk7ZUQ0dvqegbsREReRG2pF62VkqOKTO13AGyGwclz27YXV2HlrtN2z2V9/Dh9MF786ke7+5jPmVOr/NqqErYe6mc9d88Z82F8nTFzMhG5jy/ND+9IQ5gdJT4D1BtSVmwvw4rtZfjNmBQ8OSXNJgO7PU1CYGdJdXOvtYPtzXv41QLD4so6p73eOgCrF4wEAEzP3+paL7kEJEYEY99pgwt7Na81/+Z3tsE60PZTJ9qrwcsb63oG7EREXsK6MpJpqZQcVWQAbH63aOV+CMl2yJyw2tYe6zLtLat2GOALNJ9T7RraqhJWG+rnqBxajuXtPWNE5L064vxwXyGPGthZUg1IQGav6wnSHPUyL9tc7DABnDUdgNW7TzutQ+2tmz62T4wyws5RYjoJQG5WOo6cvWi3J99uGSXg7psTVIN8HYBZw5JwU1wY/vrvgza//7ioVLVM7TF1oj0avLy1rmfATkTkJRy9NDirlBxVZALCthEAsDvBTevwOPMybS+pcrq9veFybVUJ27ufLRm250s9Y3Rdfn4+8vPz0dTU5OmiEDnt6aW2ZT5s3LznNDTADxLsz/k2CeCt739Czp1pyFt7xGHPuQnAhiPnHZZDB2DmsMTmY5mdI2flfkjXgnQJwOgbo7HlWKVqEjxJAtJ6dMPd17LXOyJJwOuzbkZwgA7FlfVIiQ7BQ+/vVM10v3rBSGQkRaDcYFRdd12tTn1q6k24c2Bcm3yPzYemt0eDl7fW9QzYiYi8hKOlXpxVSs4qMpvlXoDmHnaVczlbbkbt+MOSI51urwNUr6GtKmF799NeOVw9FnvGvF92djays7NRW1sLvV7v6eIQdbj54b7CXs9pjbERS9Y6XrYMaA7aEsODHWdyc0InAaN7R6PweCU+2mY7P13gep0sAGw+VglJAqYOiMMX+8sttjUJoKikWlNdLQSw73QN3tlcrDQGqO1mEkB9Q3PzwPrD51SPZb2vnyS1WbCuNjS9rRu8vLWuZ5Z4IiIvYZ2dV6alUnKU2Vftd7lZ6cibkQ6rU0G6VilmDU5wWFbrMmUkRTjcRx6+p3YNbZWVWD6u+TU6KoeWY3WkzMlE5BlyFnFv/PvRUTNw2+s5zdM4N91PkmASojXxOkwC2HSs0qUkb0IAaw+Uq/4uJTpEyWbviE4C3t5UrJzX3ul1UnNjdkFRKf66xrZ3HQDuG9azXepBR0PT5ez6hTnj3T633FvrekkIZwMpOja51d1gMCAsLMzTxSEiH+eOzKLlBiNKKusREqBDfYNJadl1dtxygxE7SqpgMDYiPCQASRHBSpZ5ANhRUgWdJGHwtbl7xZV1MDZcxZbjF3Dp8lX0ig5Bz8gQJZP6hsNn8e2PFRjfNwbRXQNRVFKNlOgQhAT422RNlzPan66ux39OXEBMWCASwoOhkySEBwcgMznCbpZ182PI1+tKRnZn25UbjNh1shpCQClHS8nPpi17xlgvuR/vKZFz3phsy13KDUZlPXSZDlAdbm5NTlY6tk+MzTE8acX84SitqrNZe92cJAEPjU7B25uLbfY37y2XJCBvhuNrlABsXTQBABzWg+54D9p6ohKz395m8/mK+cMtMuu3lfao6wHtdROHxBMRuYm7Xnass/NqOa5adnmZ3AAvcD3ZjKOkONbbfPhDqcX+uTPSMSI1yuE5zc+dd61H216meuvPrI/t6F5q2S5OH4ypA91T4XakzMlERDJvTbblLtb5A+Sl2wqKyjQF4PJ9MD9Ge9FdC8Sth6InR4dgRGqUMsUiJEBnswSdJICALrYDqnUA3p6TCWODCZIEDL62pOvWE/ZHANx3SxIAx/Wgu96DPD003dvqeg6JJyJyA3svO60dVqjluPayy8sEYJHYZuUuxxlsrbex3v/Pqw5gb1m1pmzyclZ26+1NojlQz1lpe21q26rdy7a650REHZW9Ie+Okm15G+tr0DqMf+bQnijMGY/fjE2BEM1LtwkBZdqUnyRhzI3RNvsJQLkP8jHeuO9mTcPR3WHBranIy0pXzqeTgCcm90VxZR3KDUbE6YORHB2C7SVVqglml9pZM33+/9uJuoarmDowXglO5UBZzUfbyjAidyP+8b36sm7urJO9dWi6p7CHnYjIDdoz07n1cR1ll28LTUJoTnYDNL8YqG2vtr+9Y6vdS2/N5kpE5I0c9X56ukdTK+trMB8NprVH953NxUojtACgE8B/T+8PfbA/Ljc2YfOxSovtre9DnD4YP8sIRl3DVYuyPDklDdMy4rHrZDUWfrS7VfPdzb3x7QlkDU6wCITlDPPORs05SiKrNopi09EKp1nnc9ceASTg4bGpFp9rqZNdGS7PBI3XsYediMgN1Fql3Znp3NFxHbWItwU/ScLQ5AjN59QBqtvrpOvD9Z0dW+1ettU9JyLqaJz1fnpjj6ZaT7r1NZiPBtPSo6sWVJoAPLXmIB5ZsQd/+my/xe90gM19kMtVY2y8ntVdAOHB/ojTByMiNMBtwbps5a7TFj9rGTXnJ0l4ckqaw7rafBSFfH+1lH3J2iM29zk0wE9125CA5nCzoKgUo/I2Yvbb2zAqbyMKikqdnsebEzS2JwbsRERu0NaZzh0d1152eZlkFhj7SRKyBifY3VZtG+v9/z5jADKSIhyeUzk3mrOyW2/vJ0nInZGOvCzba1PbVu1eeuMLJhGRN9Iy5F0e7t1WGbgdsQ7O1YI7LaPJnA3jt9fAbe+wwmpb83LlfnnEoqd+0ar9+L+9p+0GrjI5+PKTJPxmTIrDbVvq9xN6ozBnPB4em2qzWoo580ZuV0brmQRs7nNdQ5PqtvUNJtXGFvl+cRqbcxwST0TkJm01fEvLcc23kbPLW2eZN9//j5P6KtueqjZCCCApMtgiS7u8jdr+js55qtqI6voGi+zwjq5D7TOt95JD5oiInNM65N0Tybash7k/OSUNS8yWW5N7zlctGOFwiDfgfJSVWvI5R8cTZsPGATjM3WISwCMr9tiMHDMnAVidPVKpa/937xkHW7fc698eR3xEsFJHqrVI6CTL0QNq3xF7HI16U/uOqY5suHa/OtqKBG2BATsRkRu562VHXqJNkiRkXsveaj0kz3wemPXyavJSbsWVdco+x87X4j8/VWJiWiwykiJwvvYytpdU4YboUAQHNFcHAgKFxyqwp6wGE9JiMfGmHgCAvWXVOHCmBvUNjcpycD9V1mFYciRGpEZhw+Gz2HjkPCakxWLqwHibazEvq1pPufVnzpZ/k69R3lfL/kREnZV1oOotI5LUel6XqKyNLuc3mZYRjzV71INcrddk3tC75XgF3lBJymZ97pLKeggITcGso03uG5aE2LAgFFfW4XztZSxZe8Rmm/FpMQgN8MPn+846P5kd5vPTiyvrVMv02qyb8bOM6/W1lvnrgPNRb/a+Y/YaA7xhRQJvf2dgwE5E5GUKikqRs/L6PDJ5aTS59dlR0h2Y7QM0vziYr7UKAK9tOI6ekcEorXI8DO3DbWUY3DMcKdGhNvPnzEWG+qOqrtFin1ULRqmWVUsrurPl32Ralrhjyz0RUTNvHJFkr+fVut4CgMVfHFY9hk5qDj7NR3Q5I293/zuOg3VZSIAOsWFBmnug7ZKgrHOudo0A8P2RCqzOHokv959t1bnkhga1nm/dtbLIWea1zl/XAVi1YAQykiIsPpcD3rF9YlCYM97mOyYH8/ZGKHgyYawvvDNwDjsRkRcpNxgtgnXg+ty4coPRadId833M59ZZcxasy3aV1jgM1gEowbr5PhsOn23REi+q89xW7let5LUsccel3jq3/Px89OvXD0OHDvV0UYi8grcl8bKXPDRnSprTHClAcyCTOyMdP8uI13RN5nPlXZmzXVRSDQB4cnJaq4KnFduur/tu79QmNM/7zp2Rbvdcs4clOb0/8nB063wv0rVzLPxoN0bmas8PYF42c9b5BjYdrVD9js0c2hOvzhqkelwd4JGEsb7yzsAediIiL2Jv6Jqc4EXrkDxP++7HCgQHdHF52TV7GXztvdloWeKOS711XtnZ2cjOzkZtbS30er2ni0PUqWgZZmxvGPXMoT0xbVA8vthXbrdnHQBen32zzTQse+c270mV0Ly+udYe88VfHMbfrpWjNVWwln3lQHtEahTSenTD9KVbbYaqf7S9DIvuTMPAhHDsO1WD59f9iCazjayHo8ujK3aWVOORFbstypOzcj/WZI+0uRdqIwCs567bSyYXEuCHIcmRNs99SHKk6j1/ckqaR+poX3lnYMBORORFUqJDVStJnXS99bnVQ/Lawa19Y1q0rq+joXv2lq1RW+LO29cSJiLqyFwZZmxvqH6cPhhDkyPsDh33kyQM7mU7NHt5YTHevrbWugRg/pgUTB0YZxFYCgD5351AekIY9p+u1XRN7VHtWgfasWFByEjUY0+ZwWbbvC+PYOuiCRiRGoVpg+JtEsDWNTQpQ96B5vspUGVzHQLAvlMG1YYTAA7zHriaTE4t6d+TU9Js1nRviZbMQ/eVdwZJCC3pBTouudXdYDAgLCzM08UhIrKdwy4BeTMs57CbV6DTb47Hmt1nLFrXpWtvOGpz2AFomsMOwOU57PI+5nPY1XpOnF2/o5cGmb3jteSc3oT1kvvxnhK1n3KDUZmnLfOTJBTmjNccSJUbjPhnYTHeLSy221hr/bfdvJHAF0kA1mSPVJLSbTlWifzvHM+xf+M+y8RxgHpjiZx8btfJarz49VHVc+dlpds0nJQbjNh5shoQUM0RoPaszdl77uUGo1tzKbRmHron3xm01k0M2FmJE5EXKjcYsbOkGpIEDO6lXklaV6rmrevWS7EBwPpD51B56QomXMsSv7esGjtKqpEcHYKQAH9l31PVddh3yoBb+8ZYZIk337a+oREllfUYkhyBjKQIbDh8Ft/9WGGxj72yar1+633UrtHe8dz9MtCeWC+5H+8pUfvZeqISs9/eZvP5ivnDMSI1yun+1o3WMp0EvP1gJkIC/G3+tjsLHH3FLSkR2F5crbk33zoprdp9kNDciO/s3ugkYPWCkcoqLJuOVtgNgs17szcdrbBpUDen9bm3lLsaiDzxzqC1buKQeCIiJ1qz3If18mwAlGXRCo9Voq6hCUmRwQgPDkB4iD96RoagrqEJp6vrsfXEBaTGdkWQvw6f7zuDYcmRyEiKUMpjbLiKj7adRFVdA+qvXMXI3tFIiAixKeeOkirU1DeixtgAAaDy0hVsPVGJlOhQDEmOUJZ2E+iClOhQJEeHKMeRZSRFKK3+ydEhOHTGgJ8qLyEsuAvqGprQL16PfvF6FFfWKclaHC3lpuVeW1fwrizfxqXeiIhar72HGTvKVm4SQEiAv2rwt9xOT7w7Sdf+R4jm63liSl8k6IPxwQ8l2FZc7ZZzuHocOSmtvE785/vOqCeh1ZJQTgA/z98KwHKlGfl38tJraoF8Yc547DpZjYUf7bZ4du2RTE7t2bs6D93Z0rmexoCdiMiB1g6zsu4lsDcXT6vBPcOxp6xG9cVk9Z5yAJZLoan1UjhiXkmbX6+9oYYfbiuz2c/eMZxx9V67sr0vLNtCRORNWvp3szVrvjvLVh4SYJs3vdxgxNubi50e25o8pWzVrtOa6kkBIHtcKkbfGKP0xO4tq3ZbsN5SJgEs31KMdza7r9FC7TBNQmDXyWrVrOqFOeMxdWA8Ll25avHeIdC8vntb1bf2nr153h9XeeP7Apd1IyKyozXLfagtzwa0PmnNrlL1YN2cvBSaq8E6YLkcnHy9e8uqnc4LNN9P7RjO7pmr99qV7X1l2RYiIm/R2r+bM4f2RGHOeKyYPxyFOeM1Bzxqy7yZM19STF6ibUeJbSI1Lf6/O27EgyN6QcPqcYr8705g3+kaxOmDUVBUiunXeqQ9bdmmth9h4CdJMAnblWrk3mwAGNsnxuJ+yiMA2qq+tbeyzkOjb2hRz7i3vi8wYCcissPRch9a9vXkVDoT3JPRtkkIFJVUt+pFQMs9c/Veu7J9a54jEZE7ma8D7s3c8XezJWu+y73zagGK+bB687W/H/14j+bjm3vxq6P4ef5Wl+u3vLVHsOHw2RY1ireETgKmD7Jduq61XGinAAA8MaWvsiybtX2nagDYzxq/fIvrIyC0/Lei1sCjAzBvdLLL5wO8932BATsRkR1qFYHWeXjy8myeooPrlbEaP0nC0OQIhz0eWo7h7J65eq9d2b41z5GIyF3Mg8xReRtRUFTq6SLZ5cm/mzOH9sSWRRPwmzE3KGXQSVCG1Vv3grZ3+mwhgF+/v7PNg/VBiXqsmD8cW3ImICGidfOoJ/WLtflMAPjN2BT4aRxiMDAhHHH6YDw5Jc3md8+v+xHlBqPdd5+3NxVjb5n2qQNa/1uRG3jka/CTJDw5Jc0in44rvPV9gQE7EZEdahWB1nl4cfpg5GWl21Rcrgy9UzO4Z7jTytVPkpCbla56fmfkbLLycf4+YwAykiIs7oOz/STpemOB1nvm6r12ZfvWPEciInfw1qG29nj672acPhipsaFKMG4elDua597SKra1dXNb2HfKgOToEJyvvYz8bx0v7yYBDhvWvz503uYzP0nCvFEpWLVghNOySLg+Jzw9QW/ze/NeaLVHIwBMX7pVUyOVq/+tmE+/eGJKXyxZd6TFjWKe/t7bw6RzREQOzBza02ZdUlf3NV+eDWheaq2+oRGFxy6gvvEqkiJCEB7ij/DgACRFBitLq/3nWpb4tB7dLJZQk5cfqW9oxN4yA6rqrqC+oQkjUqOQGBFqUU75/DXGBtTUN6KxyYSBiXplWZzztZctlmuzXg5OPo71fTh0xoDvfqzAwES9ck7z/dSO4e577cr2rXmORESt5Wiorbf+PWrp3013ZNi2zgMjcD1LuVoWepht1xJzRvTC+1tPenQqmzUTgOWFJXi78Cen2943LAkzhyahrMqIRz7ebTPqQO265EC0uLLOpXI5WgXA0bGEWaZ5R9+Llvy3In9+/zs/2AT6zs5nzRvfFxiwExE54cqyZGr7/iwj2OYzADbrlVuKwi+GqCfpMS+P42Oon9/69xlJEaqfOzpvnD5Y9dzWS6u5ytV77cr2rXmORESt0ZqlzjzJ1b+b7sqw/c/CYpsgUw7aRqRGIXdGumoyVB0sE59q9cF/SpEzJQ1L1h6ByfnmLebKSjE6AO8U/qRpyP9H28vwcVEZcmekI88sQ78OsHs9NcZGANen8Dk6jQCUgNnZKgD2GlMAbY1ULf1vxZ2NYt72vsCAnYi8mist9dZrnjva3tUeAOvtzX8GYPHvchmSIoJRWlUPSZIQ7K9D4bELAARG3xgNY6MJ1fUNAAAhBCJDA2FsuIov9jUvzfbAiF6YeFMP7C2rxprdp1FaVQ9/Px0ye0Xg2PlLOFd7GWk9uqFrUBdUXWpESkwIMhLDUdfQZHFNcjlDA/yw75QB5y9eRs/IENQYGzEsORKxYUHYebIaQghlDXjz66ipb4SAgCRJiAgJUO6rfK9LL9Tj8tUm3HZTdyXw31tWje0lVcrx5fPXNTQhNMAPZdVGCCEwJDnS7r1Xe5Zanpm3rZ1KRAS0bqkzX1BuMGLnyWqLXnFXejit69R3C22TlJkPy545tCdqjI3I/fKIxTbj02Kw4UiFy+VvEgIDE8Px2uybsfCj3S7vr8Vvx6Wg1ngVH20v07T9Q2NSsMyF5erMl1grzBmvjMR7yM58+yVrj2BaRrwyhc9ZEr19p2owIjUKgGUvdEiADnUNTSg3GG2+59a0BN4t/W/FVxvFtGDATkRey9V1ts0rGwlAXpb69q1d7/vumxOwevdpmITt+uNaWs6Xbz3pdJvvjlYiMtQfVXWNFp+vO3hO+ffvdzk1QgAAIABJREFUj1aq7mu+Druz5djUOLoOCcCMwQk269a+vvEEsgYnAABW7jqt+Txqz0jtWc4YfP2e23tm3rh2KnlWfn4+8vPz0dTU5OmiEHnlUFt3MP/ba01euzsiVL3BW14ezfxv90OjU5wOdy83GJFnFawDaFGwDjTXM5WXLmOVxvqrJd763rVM6cfOX7L5zNl7hvkohE1HK7Bolf0g3CSAv31+CH/5WT+bKXyHymtt5s3nrT2CaYPiLb63G4+cw7uFxTb1rvw933e6Bs+v/dHlRqqW/LfSkRvFJCHaO7eid6mtrYVer4fBYEBYWJini0NE15QbjBiVt9GmpbQwZ7zNH99ygxEjczfaVEo6CdiSM8Fie1eOa297X6CTmueLeXuxdQC2LJpgMSJA7Vlas35mrj5Xb8Z6yf14T4nahrM6UroWYQrYNnjrJOBJeRi6xsoqf/bNmDowHn9evQ8fbdPWU92ZyPUeAM3vLmoN3P+39zQeWWG7XN6jE3rjvlt6YtPRCtUeebV6V867016NVO19vtbQWjcxSzwReSVX19lWq5NMAjbbu2O9b19g8oFgHWieW2d+77WuX2/9zLx17VQioo7MUR1p3XBsEs0jsMyTguW5EKwDzccrNxgZrKvQSc1rpcuJ5LTeV5MAFq3cb5GFXbKTNv+1jccxMnej3eHzavVunD4YI1Kj2nWFgfY8X3tgwE5EXsnVdbbVqhadBJvt3bHety/QSe5Zh72t6WD5jLSuX2/9zLx17VQioo7MXh05e1hPPPvz/k73d2WcrwQgMzkCO0qqtO9kRScBf7yjT4v3dycJwOxhSa0+zvDk5vwxJtE8L72gqBShAX4uLVUnZ6SXZfaKsFsXO0rqJ9e75QYjtp6o9NplC30NA3Yi8kqurrNtvea4dG2Il/X27ljvO2twgvKzxfrjrbheNZGh/i3az0+SmjPFZjleO90eR7tIEpA1OEH1WrMGJyjz2DWdB0BuluUzsvcsze+52jPz1rVTiYg6sjh9MJ6cnGbzeUFRGdw96zZnShqWFxbjUZWh2lpNy4iDPkR73aoPart0XwLAiu1lqvWpJAF3pvdQ6jRHHQc/lFQr/24SQM6q/Ziev9WlxhCgOSP93rJqbD3RnB8nLyvdpQ4LndS8VNymoxUYlbexxWuhky3OYee8NiKv5spcpHKD0WLNc2dZ4l2Z42S9vfnPgOX643IZEiOCUVZlhCQBQf46bDl+ARDAqBujcNkiSzwQGRqA+mtZ4iUJ+OVw8yzxZ1BWXYcuuuYs8cflLPFx3dA10B9VdQ1IiQ7FwEQ96htMFtcklzMkQIf9pw2oqL2CxMhg1BqvYkhyBGLDgrDrZDWEgLIGvPl11BgbIETzy0NESIByX+V7fbKqDg2NJky4KdYiS/yOkmrl+PL56xtMCAnQ4VS1EUI095Q4yvZu/Sy1PDNfmrtmD+sl9+M9JWo7W09UYvbb22w+z7+Wcb21gcajE3ojNKiLS3PdfYnc8G+zRJ0EPDk5DQMTw3G84iKeWnOw3cokz2sf2ycGu05WI9sqc755mSUA88emYN6oFAC2c+d9NZ9Me9BaNzFgZyVORERehPWS+/GeErUdR0k/Nx2twKKV+2FC87De392aivzvTtg7lA0/ScKqBSNw99KtHTJYl71x382QJNg0cPhJEp6Y3Bd5a4+0e14a82eotnKLvFqM+Yov9hpvVswfriwJR9cx6RwREREREbUpR1OSZg7tiS2LJmDF/OF48s40vPm942B9fN8YZRi2nyThiSl9sb2kqkMH6xKAamMDjpyttQnKm4RArkqwLgGYM6JXq8/raMi7vCSf9dJwkgSLpV0Fmtd/LzcYVfPQSLDNJ0Su4TrsRNQq1uupetvx3FGe9YfO4fzFy7jtpu6ovHQFn+89g96x3TAjMxEAlPIeOmPApztOobGpCZcbTWhoEhgQF4aay42IDQtEekI4gv112HvKgH1l1ThRUYchvSIwd1QKSqvqUVPfiCNna3HgtAFRXQMRpw/ChUsN6BUdgsSIEEAA4SH+6BkZgtKqekiSBGPDVWw4fB5d/IBbbojGbTd1txgOL5d9UFI4ggO6ICU6FACwo6QKNcZG1NY3orKuASnRIchIDEddQ5OyTXFlHUID/FBaVY8DZww4X3sFI1OjkBARAmPDVfxUWYdhyZHKUHi1e7fzZDWEEBZlznQyXaEtedv3i4ioI3C2bnblpcvI+9JxL3H2+FT8aVKaMrVp36maDjsM3pwAXB7uLgB88MNJDO4Zjl2lNS6fU25UGdsnBl/sK8fiLw7bbKMDYBLC5v6rPQ85O7xqYN4GGXA7W13OgJ2IWqygqBSLVu1X1lO1XsfT08drrYKiUjy5cr/y8+sbzXsGyvHC10dxbYlZu4rMksGoKasux+o95a0qp+zzfefw1JqDWJKVDgAWZZc5K6+8Dexst3r3GZvPsgYn4KV7B1l8VlBUanfZF/Phc+3J275fRETewF3BT5w+2GZ/87+7zozuHaMcBwBmv/2DTyxP6ikmAewtM+CFe9Kx4fB5rDt4TtN+//3z/rit3/XG/aHJ6o3uvxufiiHJkdBZza+3Xq4PuJ4dXm1pVnFtiV13BdadsS7nkHgiapFyg9GiEjaJ60OivOF4rVVuMCJnlW3Aa80bXyaeXLnfbtm1lNfRki1qVu46jb1l1xsm5Gdp7xgCwKJV+9v12Xrb94uIyBsUFJWqZvR2x7Jc1n93nQkJuB6W/LOw2Cvr1/YyPCVS03ZNQuBPn+3XHKwDQO/YbhbBc11Dk+p2o3vHqE53sF6FxnwKhDuWWHX03eusdTl72ImoRYor62wqYXlIVEtaUd19vNYqrqxzeUkUb9LeZd9RUq0MjVd7ltZMbm5xd8bbvl9ERJ5mL/ipMTYqQ9Fb04OppS4wd/fSrUpm8ncKi10+X0fyQ3HL15p3RC14loNs66SB8nb2pjuofSYH+H9edQBNQri8xKqz3vPOWpczYCeiFnH2B97Tx2utlOhQSFL7B77u0t5lH2I2pE7tWVrTSe2bhMbbvl9ERG1JyzB3e8FP3tojSv0hB/Fj+8S4HBBpqQvMmUTz6KtZQ5Papf7SMkXMFbf2jcHDY1Ob596v8465978Zm4J3N5c4DJ7lINs8ULbeTm26g9pngPN8BvbYa0Ay/+511rqcQ+KJqEUcZYX1huO1Vpw+GHkz0p3mSpHaIJlKay3JSrdbdi3llddX1SprcIJF4jn5Wdo7hnSt1bw9n623fb+IiNqKvWHu1tSGL+tg29gr92BaczZsXv6760qwYRLAR9vLXNij5dwdT3/3YwWSo0MwbVA8Xp01CLOHJbVFvjXN/CQJ80aloDBnPFbMH47CnPEOR0rIz93VxhK170GcPhgjUqNcqmMd9Z7L5ymurMOTU9I6XV3Oddi5NitRq8jZXF1pRW3P47mjPBsOn0NF7RVMuCkWlZeu4It95UiN7YoZg5uzxMvlPXTGgM92nkJjkwmXG5vQcFWgf1wYDGZZ4oP8ddh3yoC9Vlniy6qMqLm2rMuBUwZEdw1ED30QKi81IFnOEg8gPDgASZHBKKsyQpKA+oar2HjkPLroJNxyQxQmWmWJl8s+MEmPkAB/pRV6Z0k1aowNMBgbceFSA1KiQzEwUY/6BpOyTUllPUICdCirMuLAmRpUXLyC4TdEITEiFPUNjSiprMeQ5AiHWeJ3nayGELAo82APZ4n3pu+XGtZL7sd7Sp3F3rJqTM/fapMQrDBnvOrfvIKiUovhy09M7mvTO6y2v/nQZQlAzpQ0PDwuVbVMn+87g4Uf7XbTFXq36Rnx+N99Z5T78vNBcVjjpsSy1nQSMGtoElZsL7NpfJADWS1TGcoNRozK2+j0mauN2nBnAjhH5dh0tMLiPE9OTsPAxHCvrsu10Fo3MWBnJU5ERF6E9ZL78Z5SZ/CPTSfsLp22Yv5wjEiNUt3PvCETaE749m5h8fXgaEoapmXEK8EaAJvACgAWjk/FHyelKcc0335k7sZOm0TO3UPv5WPi2nF1EjA0ORLbi6sg4LwBxdrWE5WY/fY2m8/NvzNqgfnYPjGaAn1XWDcgyUvPuXIeX1ryTWvdxDnsREREREQ+7B/fn0Du2iOqv3M2x1eei6y2BJtJAHlfHlEaAnQS8NDoFNX52W98ewLdgvwRHuJvE9zNH5OCZZs7byI5HQATHC+bqtXsYZa96iYBbDNLUicAPL/uRwy/IRJ1DU1OA1dn88LtzS1/9b5Bbk8Apzb/feuJSs3n6ahLvjFgJ6IWaUkLZlu1esrHDQ3ws6ic1M6ntu352stYvfs06huakJ6gx239ugMAdp6sRnV9A8KD/XHWcBmrdp2CsbEJCeHBSAgPRmOTCadqLiMxPAi1l6+i9vJV3DskEb8Y0lw5bDh8Fp/uOIUuOglpcWHQB/ujxtiAsiojQgO7IF4fhJ0nq+HnJ2H4DVGI1wdhT1kNgrr44YzBiJLKOgzuGQFJJ8HfT4IOEi5fbULPyBAcKr+I0qo6NDUJxEcE4ZzhCmovX8WAuDDUXG5EamxX3NSjGwqPXUDFxcuICQtCv7huOFR+EUII9I8PQ42xETdEhyI4oAuMDVdRePwCIASm35xgM8xdvm/GhqvYe8qA6K4BuL1fDwCwuJ+hAX4oqzaiqu4KIkMDkWk2/L3cYMSOkipIkmTxuWxvWTW2l1RhWHKkxfnVPvelFnQiorZUbjAi7/9n79zjo6rOvf/dM7lOQiYJAXIhISEooIaQcBEEEdQeRfpRhJ7S0laPVfSUaP28Hi+hPfW87bEC+vbUUw21orZ6zhFpBbEV8FRBC4hVIBBQCEhISMiVkGRCJpPbzH7/mOxhLnvPLZP7+n4+rWTP2nuvvfeaWftZz/P8Hg1jXYengJjWMbRKsDlvssmw2YvhvX53qYtH2SbDum0n+Pld13o9/0hGBv5h+gT+eqq+z552nQQXmi0+j2OVZUdqhC/D1Zeyu1ZuOb1GcagF4NzF7PwVmvNHtG64IkLiRZicQBAwwaxg9teqp5pHQCfB3XlpvHu02uV8QEA1YYMlIzGapNhIiitb+vdE/cjK/DR+9e2ZgPo9VvAV6icBG1ba733htiu12ZXtyhj4lz8eY1txtcf51bbPzUockSvoCmJeCj3ingpGMlohzZIEO9be4NdCp9YxBINHKKu9+BNCHhOhd+jYuOeuu4ek64B3C26gtO6yhwZCzkRjyBfT1ULl3ed9f0L7hxoih91PxCQuEASGv+Ikfd0n2L5ooQMIoLyMAN4ruIHxcVF+32MttMr66CT4tPBmGlo7uKvooMfnz38rhyfeOeGx3f0lJhRjaSgh5qXQI+6pYCSjNReuu2MaDy2y5zH7WjQPaD7t/Q0e6tNpf+SO9xczJxr57Q9mAVeEbBtaO/jT4Qv89+fqKv8u+6cbOVZl8tpGzXDVGhfuizvOBrOCJMHaxdlMT4kDGapNFjbuLu23xXRforH99a7Zn4gcdoFA0C94K7sRaK3XvuQ5aR1XCxsMn5l7iHC4opnpqXF9XuTQ2t8m219MvqxRj0T436/qVbdrlRwaqhOyQCAQ9CfuIc067EJxirHuT6iw+zGkXmvX/edbcopYc46aGor0tW8/mJfBxESDwwiVJBgTGUZrR49H274uDhy7YOLPJTU8tChbU0/AGyU+jPVAQsgrm9rZ9EkZspvhXdnUTtHHZY79ZRnH3+65+TbZHtE4LXmMZiWZQNGq++78ubfQ/uGMMNgFAkFA+JtL1Nd9gu2LFsLDHjizMxMYHxfl9z3WwpuHPTPJgCFCvUrvbddO4KNTDR7b1TzsfR1LgpFJUVERRUVFWK3Wwe6KQNCvqIl1Kfi7aO5+jIbWDo8SccgwLXkMx6tNfhmooQzrHmjiosOBK/OXLKNqrENo/AHrd5UyLyuR8XFRAafv+Wr65O1TAXvYuOI11xoXzka5YsRPSx7DJqft/pzfJsPyooMu6W/9jbfvwXBG/S1JIBAINFBWMPWSfT3VnxXMYPYJpi8KekliZX6ay/nWr8xRbev6l+/t/pCRGE1+RnwfjjD4rMy3C89p3WMFX/dJ8cZsXJnj0lbZnmKMJjc9gZX5aR7n/8fZGarbN/TDWBKMTAoKCjh58iSHDh0a7K4IBAFRa7JwsKyRWpPF731SjNHMzx7r8XuoLG47o5ckDBE6j3M4H8PcZfUwxGTgrqKD/GzHV6p9kNz+nZc+fOfCTR+XsX6Xuphff7G86CC/7y2pFwwaUzWXzJ0s2LCX1Zs/54b1e3l250liIvQe40INqyxzqKI5qEUJGbvB7884DmbMq6H1PRjOiBx2kdcmEASFr1yiUO0TyHENEToXwRS186m1bWjt4L1jNZg7e8iZaOSW6XaV+GKHSnwEtSaLXSW+x8rE+GjSjAa6rFaqWzpIi4/icq9K/D+6qcS/c+QCekliemqvSnx7N1XN7cREhJFijKK4shm9zq4Sn2KM4niViYhwHbUtFs5famdmejw6nUS4XockQVe3jYmJ0ZzqVYnvscmkxUdT39qByWJXiTf1qsRPSx7Dp2cv0dDawfi4KKanjOFU7WUApqeModXS0+vhDqe9q5tPz15ClmF5XqqqSnxFYzvtXd0cv2AiKTbSoabvfD8NETouNFtoMneRGBNBvptK/JGKZiQJl+0KJVXNHK5oZnZmgodKvPv2/hpLQwExL4UecU8Fw4n+EGl1F+1anpfqIczqfo5akyWg+ul9jcYS2NEBchCRCToJNt8ziwfeOOLyzLxFud2dl8aOozX2VAov7d5dewPLNx302iep9//U2jjnz7vnx9eaLPz+QDmb95f7pWo/khhVonN33303n3zyCbfccgvvvPNOQPuKSVwgEAgEQwkxL4UecU8FQwF/ylGGUjjL+XwAhyua0EkSExOiuXvTQb/O8ezOk37XT1+Wk8LOE7V+9y89IZqq5r55UwVXcK7K4tAzkGBOZgKflzer7qOXJLavne9YcHcfF3BFvPB3+7QjDhQje1ryGI80Cuex5b4Y5VzRx71fQ1ksLlT4OzeNiJD4Rx99lDfffHOwuyEQCAQCgUAgEHiw9VClIyR5wYa9bD2krvztLd882PPdsH4vN6zfyyNbjvHIlqO8f7zW73PctzDLrxQxCXhwUZZfIdYKo91Yn5FmDOnxlPDzacljWDVnImD3mGsZ62B/7u1dNuZnjyU3PcElBU4HrHMSL3xoUTYFi7M9jqHD7oFfNSeD3PQENqxUT1tTE7nbVuxprCv9CnTMj2RGhOjc4sWL+eSTTwa7GwKBQCAQCAQCgQv+qLQrhEKk1f18zvaQTYbXDpR7qJrrQFMA1BeKZzc3PYG789LYVlwd1HFCwW3XTODDk/X2yjBDGB3wu3vsZdyeeuc4+75u9Nl+/cocKi+1U/SJtvibVZY9hQK9IIHL2PIl2vbE7dOIM4Q7lPMVg9w5jU3rGIFU9hFisq4MusG+b98+nn/+eY4cOUJtbS3vvvsuy5cvd2lTVFTE888/T11dHbm5ubz44ovMnTt3kHosEAwN/AmtG474uq5ak4WPTtZz7mIbk8fHkmqM4lyjmclJMVi6bb055+F0dFvZc6qBLquNpNhIMhINTBprYHZmIgDbjlzgy2oTY2Mj6O6xYem2MjY2kmtT4/jk9EW+qjYRppfISTMSrtdR3WKhrdNKQnQ4zZZuYiP1JMZE0N5lxdzZw7gxkVydPIaspFhO17by15P1SBJEhulIiYuio8dGt81GS3s3YTqJ2IgwzjRcJiZCT5heR2S4nuS4KDISDSzPswu+1ZosHDnfTEWjmc4eK3FR4VRcMjMzPZ7oiDBkWSYj0UBVs4Xyxjaqmiy0d/WQFBvJ3XlpjI+LUr2XtSYLhyuaaLF0k2CIYJZKPrlzO0mSHKGLsiwzOzPRazhneaOZmAg95i6ry7kHcsyO1O+HQCAYfgRS2jQUpal8GUY22e4Nf21/haOutg24e9NBj9zh8kazpvH3xG1XMykxhvREu0BdSVUz7x4dPGMd4H9P1vsVETB/ciJ/P9c0IGXpJKDwjmk8t/u0xzOtNVk4cNa7sQ6wdkk2i64ex/vHa3y2DeiaVG6Wr/JpDy3K5s7cVE2jXmv+DaSyz/K8VI/3ltE8pw+6wW42m8nNzeWHP/whK1as8Ph869atPPbYY7z88stcf/31vPDCC9x2222cPn2a8ePHD0KPBYLBpz8EaYYCvq5r66FKntp2YkD7dPZiACFZx+tUN5fQqrnLRbod//6qxi4I9/uD58nPiOdoZYvqxPs/n1f57MofDp53/Nv5Xm49VOlRO1fxjrjfa60au2rtlX3cS9Eo5wYGbMyO1O+HQCAYngTqNe9raSpfhpFekrhvQRbLclJchMScPf+AY/FVq8Z4fkYilU1mR97zUCnh5k8X/n6uicI7prH3VAOflzf1e39mpMVzoHBJ0F7nok/KKPq4zOu16SDgyAJZRnXhyBdaRr23+VdtMcpZ/NCZHUdrePy2qap576NxTh90g33p0qUsXbpU8/P/+I//YM2aNdx3330AvPzyy+zcuZPXX3+dwsLCgM/X2dlJZ2en4+/WVu0XaYFgKBJIaN1wwtd11ZosFG4fWGN9MCmubAnZsZzrqKoZ4TJ2Y9rlXmsY64722064jDn35+d87nXbToDTy2N/jtmR+v0QCATDl2C85r68nIGcz1m92/ncR843exjYVlnm95+W8+r+coeBdPt1yez+0nVBWikL5xJ6PwSMdX+RgY27S7nt2uR+P5cOHEa6PykQamjdW70k8eTSqcxIi9cUjQM0F136Enqupvbua/5VW4xaPHUcj2w55nJs5xx2MacPAYPdG11dXRw5coR169Y5tul0Om699VY+++yzoI65fv16fv7zn4eqiwLBgBNIaN1wwtd1lTeah9XLwFDDVx1Vm9Mqu7cQSEd7XFflvXkJbODxptBfY3akfj8EAsHwpq9e876eD3A5txJF5Y5Ogs37yh0/2TYZ/vpVPQ8vyWbTJ2V2Ix548vapmLusw7qMm03GYyGir6hFGcjAvjMXXbzCzsZusHn/j948hauSx7iktTkv1Ogk+M6cDN4+VKlZri3QdAsFNa93eqLBr/nXfeFidmaiZgSKmNPtDGmDvbGxEavVyoQJE1y2T5gwgdLSK2UFbr31VkpKSjCbzUycOJE//elPzJ8/X/WY69at47HHHnP83draSnp6ev9cgEDQD4RCkGYo4uu6spJihky43XBEL0nMyUzQXGXXSbjea412jva4CtV48xLowMXDrvSnP8bsSP1+CASC4U9fvOahOJ97RJT7z7VOgvsXZrHZrYybVZZZMGUcY6LD2dArNrbxg1Keun2aqL3uhto7iqLerniFnY3dAET1PfjN3rPI2BcJCnvV3J0XagwROr6oaNJeTA/yuWl50revnR/U/OsrAkXM6SOkrNtHH33ExYsXaW9v58KFC5rGOkBkZCRxcXEu/xMIhhPKD5tayYzhjK/rSjFGs2FFTp8mt+FEfkY8Uogu1lnFdcNKz3so9a6Ou9xrlXaO9tjVat1fBJ2fn/O516/MGbAxO1K/HwKBQBAMtSYL7x+v4S8l1dSa7GXUtCKifvOdPH640LM0mxL+vnF3qUu++8YPSlm7ONvjd1/gieIVVlPwD3a9Q9lPlmH9rlJ+9ze7enyKMdqhLfDLnep10xUKt59wjAt/0fJ6X2i2BD3/rpqTwYHCJWxZM48DhUs88t5H+5w+pD3sSUlJ6PV66uvrXbbX19eTnNz/OScCwVBloEPrBgpf16V8vudUPWUNZrLHx5BijHK073CoxEdg6e5hb2kDXT02ksb0qsQnxjAr0156ZHvxBb68oKjEy7T39DAuNorpKWPYd+YiJ6pNhOkUlXg9NaZ22jqsxEeH09KrEp8QG4Gly0pbRw/j4iKZOiGOrKQYSntV4nUSRIbrSI6LoqPbRk+vSrxeLxEb7qQSH6YjKkxPsjGK9IQYluelOlTii883U3HJTFe3jdioMCqb2pkx0YghIgxZhvTEaC4020Prqpraae+2X8ddM1MZHxflcS+Ve3ikopkWSxcJhgjyVVTindtJEkxMsJ9HlmFWprqqvPvKfnuXzeXcAzVmR+r3QyAQjG4CVcp2Fw9VBEOnJY9RbZ+eaPfIP3X7NHvZLuyevVVzJ/LRqXpVjZKij8soXDoNvU7imZ2n+nJ5IcVXlNhAI2EvmxdIaTNn/BGU27i7lDtnpgKoasqoIctQfL6ZZTP8nye1IuoefusoG1bmqIrr+YNWBIqY00GS5aETYCpJkkdZt+uvv565c+fy4osvAmCz2cjIyODhhx8OSnTOndbWVoxGIyaTSXjbBQKBQDDoiHkp9Ih7KhjuuOcM378wix8uzPJaYnPBhr0eRpUO+M/vzvQQ+QLYsmYelU1ml3Btf4wECXj8H67m+b+eCfSyRixqKXwS9tD1jR+UBmy0T50Qy9cNbT7327JmHjIyqzd/7vexX/puHt/MtRv6/i4KqVWFAbsH/EDhklFpVAeDv3PToIfEt7W1cezYMY4ds/9wlJeXc+zYMSorKwF47LHH2Lx5M2+88QanTp3iRz/6EWaz2aEaLxAIBAKBQCAQjFTUcoY37y/nhvV72Xqo0qPtwbJGjpxvVjXubIBOkjxTo8BT9d3P/skgjHUnvj8vg+uzEj22y8CG3aV8Z26GI+3A32SC0/VtLLp6nCM0XG0/Jbdb8YD7gwSOyMOthypZsGEvqzd/zoINnmPLmVVzMvjP78z02O6s7i4IHYMeEn/48GGWLFni+FsRhLv33nv5wx/+wKpVq7h48SJPP/00dXV1zJw5kw8++MBDiE4gEAgEAoFAIBhpaIVR+xIzU/OQ67CnOHkgQVWzRQjIhYD//ru2oSsDb31eiQQ8uCiLnDSjarSDGn87fZEdBTc40s3+fKzGJXXh/oWZgKeImxY64Kldg9cVAAAgAElEQVSl0yhvNNPQ2hFw+TRv6u6C0DLoBvvixYvxFZX/8MMP8/DDDw9QjwQCgUAgEAgEgqGBtyocWvWqZTyNdgl46o5pfFHR5GHIy73qZ0L1fWCQsUdJvHrPLL9TD2SgvcvG/OyxADx0UzZ3zkzl9wcqePXAOV7ZX86rB8pZvyLHkfe983itqrbAz5ZNp0eW7Qa/rB7C76t8mi91d0HoGHSDXSAQDA2c85YAzRymQEVvFEqqmtlT2kBEmI5JiQZmZybS0NrBR6fq6bLa6OqWyRpnIHdiPOYuK5auHkoumOjo7qGlvQdZlpmRHs+MNCMlF1r4qroVWZbJmRhPanwU5xrNIMOR8820dXTTcLmTtk4rqfFRGKPDaDJ3AzA2JqJ30utBp5No77KCDGE6ieb2bsxdPVzu6CZcryM9wUBiTARRYXrOXmzD3NlDTGQYE+OjaLZ009bZg6XTSoIhAkkH1yTHUdncTl1rBzERYVybauS26yZQ09LBuYttRIbpuNBioccqM2tSAq0d3XT12IgI03HrdHvU0Een6okK01NrsnC6vo2J8VGEh+mRZZlJSTFctnRTcamdnIlGbpyShLnLSlZSDA2tHewpbSBcLxEfHUG8IZyMRAOVTe1IkkR0uI5zjWbmZiY6BO0OVzRReamdjh4rt06fwPi4KMobzVi6ejhW1cL4MVHces0Er+Mh2DGWYoz2Opb2nKpjb2kDN08bzy3TkympauaLiiZH/wUCgWC0oBhGWjnDWvWqZeDf77qWxrZOkmIjae+yOgw0d/SSxKzMBL88s4LQIMvwwBtHXIx1SYKCxdmcazSz64RrjXgt7/WrB85pesaXzUjh2V2nXJ65ToLwMIlf/vnKdrXH7Y+3XAjCDQxDSnRuMBBCNAIBqjVBZew/6spKrXs798+88S9/PMa24ur+uwBBQORnxHO0ssXv/ERl9T+QZ+6O+9i5Oy+Nd49Wq46lFZs+pbiyxbFvYky4Y8EFYGV+Gr/6tmfu3EhBzEuhR9xTwXBGWdyMidCz80Qtr+4rx4bdoHry9qnkTDTy6dlGij4uc9lPwm4AKr+zsqztyV13h72Ot3K+F/d8zVtfVPXrdQnUUebED76s4+PTFx3b78hJ5vvzJrksch8sa1QVmNuyZp7DE7/1UKVjEUbqndC1xoGiRq94y4OZ74N17IRq/+GEv3OTMNjFJC4Y5WgpySooip+ARzt/1EBLqpq5q+hgKLssGESCUYD1Ncacj3uyxsT9bxzxecz3Cm4YsZ52MS+FHnFPBWoMVcPAuV/7zlz0WChXPJrHq1s0PeYQeGmzB2/M4r6FWQDcsH7vkCqLNtrQAWikJzgvcpdUNbN800EXD7nze5tz5GTx+WYefuuo5nPVSxLb186nqskCEsxSKfnqi2AdO6Haf7jh79w0akPii4qKKCoqwmq1DnZXBIJBxVdNUCWHSUb2aOcrvwngi4qmEPVUMBTw55m740/dWeW4e0sb/Drm4YrmEWuwCwSC/meoGgbu/XL2iivhzgcKl5CZZOB7r/7d629roAb3K/vL2by/nAduzBryxnqwddYHIkf/pe/mMSszwZ6qdqqBF/eeDbivNtC8QGUctFi62bi71MNYf3bFdaoLPemJBq/G+rMrrqO07nJQ3wslzc5f4Tq1xTK1agi+hO9GC6PWYC8oKKCgoMCxsiEQjFa8idmAaw5TMGqgczM9S5sIhi/BKMD6GmPOx7152nj+53PfYZizM4WxLhAIgmMwDQNvXn21frnjbRHdGTUPra9waLgihjbUCdbmvis3lVmZCfzrjq9C2h+F1XPTmZVp90ynGKPJTU8gLSHaQxdASQ3bcbRGVS/Am4cd7ONgg5uxrgO2r53P+Lgol6g2ZXz/8+LJqud5cXUe+ZPsc6pzZIW/3wutmuxKP90X+bUWy9QW9305CYZqlEyoGfQ67AKBYHBRxGwctT2lK3nszoqf7u38VQPNTU9gZX5af16CIEDyM+L9rv0KvS95+P/M3VEbOyvz01TH0i3Tk8nPiHfZPzEm3OXvlflpwrsuEAiCxpth0J/4qnPtTzQSwIGzF33W2r47P83ld1cnwQMLs9hRcAOrr0/vy2UMa94rqcEYHe67oQ+Wz0xh9fXpLnOpBLz1RZXHs101J4MDhUt4cFGWY5tNhhRjFC98J5ei1XmsWzrNZU5cvzLH5fm5o8NTKM6GXUVea3xv+sRV4wDsVQOWzUglxRjN6wfKPRZCfH0v3BeZ3HFf5K81WSjc5rlYVmuyqI5pb06CQOrGD3dGrYddIBBcwV3lE1BV/AxWDfRX357JPfMnsdehEh/jEi7WZbXS1SOTlRTDjIlG2rtstHd1c/yCiY5uKy2WbpAhZ6KRnDQjxy+Y+LLGBDbISTeSYoyiorEdmyxTfL6Zy53dNLR2Yu6ykmqMwhgdTpO5CyRIjIkAGczdPeglifZuK9hAr5doNnfT3tVDa69KfEaCgYTYCKL0esp6VeINkWFMTIiixdJNW0cP7V1WEqIj0OkkpiePsavEX+4gNjyMa9OM/MO1E6g1dXCuwUxEuER1i4WeHpn8SQlc7uihy2olQq/nlunjAdh7qoGIcB21Jgtn6tpIS4giIkwPMmSMNXC5o5vzl9q5Ls3IwilJjnqsDa0d7C1tIFyvI94QTnx0BOmJ0VQ1WZAkiArXUdHYzuzMBIdK/JGKZs43menqtnHz9PGMj7Pfx/aubo5XmRgXF8ktver1fVWAVRs7j982VfW429cuYM+pOj45fZHFU8c5VOIPVzQ7+i8QCATBohb109/1o/3x6vsTjQTw24/L+P68SV4V3XccreHx26ZyoHAJv/+0nM377OHurx0o5/6FWSyfmcqOYzWhvswhj92rKwUdUq+w41itxzF8eaZfdYtceKlXJFDxMh8oXOIxJzr0Ci608NwHpx3l0568fSobPyjVHMPu40iH+riakWZfIK81WXjtgGdkhQ68fi+8LTKpLfJ7WxSYnz3W7zJxoy18XhjsAoEAwOFFd/7bn3b+kpvuaWgp4WJa3DI9WfNYI5Vgr03rXmodL8UYzTdzPZ+j8mzd730oJkC1MaZ13FumJ7v0QW38CAQCQTAMRv1of8J93fulZbzbsC+iequ1rRw7M8nAq/vLXYxJJeS9r0brcKW0rpU7c1N5r6RvCxbe7p37s/Vm2DprEyjK7grK/jIyr9yTT3ljO3N6F67jDeGaY9h9fPsy8LX698CiLK/fC7VFJucwe+d9/VkU8NcxFEz4/HBGGOwCgUAgEAgEglHFQNePjonQexjIal599379uaSG9btKXdroJGhs66DWZHHU2v7lzlOu9byxG0EfnarXNBRl7ClPg1UvSgJmTYrn8PkWn21DyYt7PUPDQ437s81KivF6r7WMTbX8cOe8b60xrPaZNwNf1fCW4L4FV8L41dBa/Fo2I9Wjrb+LAv44hgYjSmYwEQa7QCAQCAQCgWDUEUjEWF/ErRSjy91Y1/LqO/froUXZIGMv38YVA/uRLcdcyrx5IMG//+Uku76s89q3m6eOY0/pRa9t+gsZBtxYD5Ybp4xl/9lLfrVVe7YpxmgKl07zWHxRkABDhKu0mFZ+uHv4t78Rkd4M/L5Enfi7+BXsooDWtQ10lMxgIuqwi9qsAoFAIBhCiHkp9Ih7KugLfSkBV2uyuCh2g/0Y7669QTPNR6vklVodbR3wm9V5PPzW0SCvTuAPr907izVvHvGar/3k7VOZMTHeq9H6u7+VORZf3JGADSuvjK1nd57kFS+K/VvWzPMIoe8rtSZLv0adbD1U6WFk96WcYn/3t78RddgFAoFAIBAIBII+0FdxK7UwYJtsV/NWw9viQI3J4pE3bQMOnr3k4bkcrfnpEpA70cixC6aA933itqv5f/97xuO+3ZGTzDWpRrLHxfJ1Q5tje05aHK/cMzsgg/Ghm7K5c2YqRyqaeeTtoy4h8jKwbtsJR8SEt/J6/RX+HaxOkb/48saXVDXzRUUTczMT/dKtcdYIcP57pCEMdoFA4BPn1X6Aj07Wc+5iG5PHxTJjopGqZguyLDM7M5EUYzS1JguHK5o4f6mdzh4rt06fwPi4KD48WceX1a3EROhZeFUSNaYOGlo7yEg0cLL2MuaOblotPZyoNhEVoWf6hDFUmyzMnBiPudvK1/WXMXf1YLPJxESG0dVjIzYynNaOLhpaO7HJMmOiwkkxRjE2NpJZkxIoudDC2YY2JKDO1EFnj5WxsZGkGaNpaOugq1umrbObSWNjmJ89liZzF9UtFqqbLfTYZGRZpq3DSmS4RFqCgcyxBmpNHVzu6EECYqPCuPGqcYyPi2TPqQbC9BCu03GixkRHl5WJCQbWLLLXPn3/eC3jxkSgQ6L+ciffnJHiEFbbc6qO94/Xkj0+lunJYzhW1UJXj41mcxcxkeEsz0t1TF57TtXxfkkNU8aPYeFVSZi7rI5nU95oJiZCz64TtXxZbWJ5Xhr/ODvD5VkermhCkiRmOQnC1JosfHSqnnMN9ueaGh/FgbOXkGWZu/MCL6M2WmqjCgaGlpYWbr31Vnp6eujp6eHRRx9lzZo1g90twSigr+JWJ1QMRy1jS21xYN32E5RUtfD2oSpN7+7bhyp5auk0ntt9RUX8nxdPpuhj/3O1lVB7CVizKItwnY5Nn5QNO6NfhqCMdYBpyWN44MYsXjtQjq33XqxdnE2cIZz56/d6tD9R3UpDaweGCB3vH68JyMhMjDWr5rMrgoIysua9D2X492DM1VqLAv/yx2NsK652/L0yP41ffXum12P1JfplOCFC4kWYnEDgFecfQ18r9hKwIj+N7cXVw26SHyyUmuPFlb7z+Fbmp1HeaFZtq5QuVbvvGYnR7HvyZrYeqqRw25U8SiX8DuCpbSd8ntvXxKkwWibQ/kLMS55YrVY6OzsxGAyYzWauu+46Dh8+zNix/oWDinsqCBa1kHa9JHGgcIlPA0dtX4B1d0yz56a7cbCskdWbPw+qn1vWzCMzyUDx+WZsskxGooH/99cz7P+60a/9n1l+LdnjxpCZZOB//n6eoo+Hn7HeV5R3HGXR4r4FWfz5WA3rd6vnnQPMSIvjeHWr429fc6ViIMdE6Ll700GPsaEDPl13M4DH2JGAl1TU173hzSAfSnN1SVUzdxUd9Nj+XoH31JFgv5tDBRESLxAI+oz7ar+vyVsGl9VRgW/8MdQVvN1bb8+mssnC5n1lPLur1KNmrJqgjda575k/yaf3YLTVRhUMDHq9HoPB7pHs7OxElu3RLwJBf9MXcasj55u91r52JyspJqhQdsVjv+/MRb9/052RAGN0OJlJBn7xl5Ps9iFUN1KRnf772v4KluWkeDXWARdjHbzPle4G8t15aWw/Wu3wtEvA+pU5mqXZtNTXtfBmkNeaLC4L+DYZCref8DlX95dH/ouKJtXthyuaNd87RlNpt1FrsBcVFVFUVITVah3srggEQxZvdUMFw4sPvqxTfQkM5Pl6mzgVRtMEKrjCvn37eP755zly5Ai1tbW8++67LF++3KVNUVERzz//PHV1deTm5vLiiy8yd+5cv8/R0tLCTTfdxNdff83zzz9PUlJSqC9DIFAlmBJwSkSTO6HIPZawh7Db5Cvh0eD/Aqz7scCuOj9aUVskscoyhyqagzqe81zp7FF3X8zecbSGHWtv4ES1iYbWTm6ZPt5ljtUad/4Yzb4Wz4+cb/a4ZlmG4vPNLJuhfsz+9MjPzUxU3T47U/udYzSVdhu1BntBQQEFBQWOUASBQOCJ2o+hYHhy+3XJFFe2eEzQgTxfbxOnwmiaQAVXMJvN5Obm8sMf/pAVK1Z4fL5161Yee+wxXn75Za6//npeeOEFbrvtNk6fPs348eMBmDlzJj09PR77/vWvfyU1NZX4+HhKSkqor69nxYoVfOtb32LChAn9fm0CAQReAs7Ze6mgk/DqnS9vNPv0rjuXcnM25A6WNXr9LVf7rV8+M4X3jtUOeui78wJEKI/53bnpbPmiyuv13TJtPD++ZYpHeLoOyApy3oqLDmPz/jJa2rv57Sdl9pRClRrsVllm5/E6Xj1wDpsML3181sMIdh93/hrNvhbPtSKUtAKX+jN6rtZkwdxlZel1yS7RHSvzvevnjKbSbqPWYBcIBL5x/zFUm3CcETnsgROyHPZeF4FWDvuaRdnERYe75rD3TvbgXw67v2I6o2UCFVxh6dKlLF26VPPz//iP/2DNmjXcd999ALz88svs3LmT119/ncLCQgCOHfPPwzdhwgRyc3PZv38/3/rWt1TbdHZ20tnZ6fi7tbVVtZ1A0B+8fqBc9bf4N9/J45u52iHNMRF6n8d2Lgfn/Lvqa4FdlmHRVUnsc8pp33Gs1uf5BgIZWLNwMq8dKMcaolSXNTdO5ifLpvPILVdxpKKZFksX/7rjK492P75lCrnpCTx1+zSXcms2YM2bR7jjumSfteydyUiM5ol3POdTtcvSgcNYB99GcCBGs6/F89mZiR6RBRIwS2Nhvr+i59wXIB5ekk2CIYLZmQl+vXMEE/0yHBEGu0Ag8Ir7jyHAnlP1nGswM3l8DDlpRi40W5Bl+w99ijGax2+bypGKZs43menstnHL9PGMj4vio5P1fFljwhAexsKrxlJr6qChtZP0xGhO1V6mraOHVks3J6pNGCL1TB0/htrWDmakGWnvtnKm/jLtXT1YZZmYiDC6e2zERIbT2tlFg8me1xobFU5KfBRJMZHkT0rgeHULZfVtyHiqxF9s66BTUYlP6lWJb+umxtTOhWYLPVY3lfhEA5mJdpX4tk67J3BMZBgLrx7H+DGR7C1tIEwnEaaT+LLWhKXTSnqCgQd6VeJ3naglKTYSSYKLrZ3c4aYSv7NXJX5a8hiOV5no7LHSbO4mJiqMu2a6qsQrbRdOSaK9y+Z4NhWN7RgidOw+UctXNa3cOTPVoRKvPMsjFc1IEi7CNYuuHseeU/WUNZjJHh9DijGKT89eAnA5dzBjZqROoAL/6Orq4siRI6xbt86xTafTceutt/LZZ5/5dYz6+noMBgNjxozBZDKxb98+fvSjH2m2X79+PT//+c/73HeBIFBqTRZeO+BZjkuHtjGksPO4tgGteFO9/RY/sDCLV/eXq9b4lsHFWO9P0hOiqWq2BLZPYjTb185n54laXtmnXc7MHyTgvoWZgH1R45u59jkoXK9j3bYTLvdn+aaDLL02mQ++qvO4bzYZ/veregqWZLNJQ4RPJ8Hme2ZR0dhOXHSYqrHu0h77YoBekrh/YaZHnXVvRnAgRrOvxfMUYzQbVuY47ocOe/482MUP3cPt+yN6Tm0B4refnAtYNK6/S9ENBYTBLhAIfOL+Y/j9eZkun7u/QDhPkM78YH6mx7aRhHP5NDUU41zrM+fPA2nrjPKctF7qtJ5NijHa47l664MvRsMEKvCPxsZGrFarR/j6hAkTKC31LuikcP78eR588EGH2NwjjzxCTk6OZvt169bx2GOPOf5ubW0lPT09uAsQCAJAS/vlgUVZPsW81Opu+6MM7u6lXD0ngy1fVPY50i3YWu7VARrrAD977yt0PqL4AuHPJTUeSvyr5mQwLXkMyzcddJxHlvHqQbfKMgunjOP78yZR0djO8eoWNuwuddm/sa2LO2ak8NLer732SS9JvHJPPuWN7czJTGB8XBSv9paQc26jZQQHajQr13uoopk5Kh5r98X1fWcuOlTX3cPt+yN6Tmje+I8w2AUCgUAgEAB2Ybf4eHUF68Fk7ty5fofMA0RGRhIZGdmPPRII1FEzqnQS3Lcgy+t+Wvnra26c7FUZXM1L+XYIjHUIzlgHuwfZVwqd6n4hMtZlYP2uUpDhoZtcjXZzlzWgfikGsbIInZlkYMOuKwuNMlC47YTPHHy9JLE8L5U1bx5xMYidjWAd8OTtUzWN1UCNZl/57s7idYDPcPtFV4/jP787E5wiKvuC0LzxH91gd0AgEAgEAsHAs3HjRrZu3er4+9vf/jZjx44lLS2NkpKSkJ0nKSkJvV5PfX29y/b6+nqSk4OP4hAIhiKKUaWX7Prrekli/Yocn8aNYrw4o+NKaLcWal5KxWAeTOZmJnhcz0CzcXcptSZXb39WUozf90YC7ne7/2oLKzLaxvod1yWzZc08tq+dz/biaheDuHCbvYzak0unImF/bhs/KGXroUrNPq2ak8GBwiVsWTOPA4VLNFXaS6qaKdzmaYAr92ProUoWbNjL6s2fs2DDXn7v5umHK95u5/YPv3WUH799lH1nLmr20V/UvitC80YdYbALBAKBQDAKefnllx1h4h9++CEffvghu3fvZunSpTzxxBMhO09ERASzZs1iz549jm02m409e/Ywf/78kJ1HIAgVtSYLB8saPYw9f/HXqHLngYVZjhdzvSQ5anJ764+aoa+XJAqXTnMYQoPB5+X2GvTzsvzXPwH7QkOojBMbcKSi2eXepRijKVw6ze9jvLK/nAUb9jqMaLX7rcYP5mXwXsENbPr+LOZnj6Wq2aJq6P/f975iw65Sj3ro3sZeijGa+dljvXrWl286qFqqrqKx3VHFwNmYf3V/ueo4ykwyaIrdBfv9cCbY78poQ4TECwQCgUAwCqmrq3MY7O+//z7f/va3+Yd/+AcyMzO5/vrrAzpWW1sbZ8+edfxdXl7OsWPHSExMJCMjg8cee4x7772X2bNnM3fuXF544QXMZrNDNb6/KCoqoqioCKvV2q/nEYwcQlVrOhAdD/dzPrhwMvctzCTFGK3an0VXj7PX0ZZlZmcmcvt1yew6cSUPe3leqj1/W4b1u/3Tiegv/l7ufy1zxcPa0t6t2e9A8uol4MdvH/V4lnfmptpD5n3gbEQ7h4e7h7HLbn3SSxJrl0xxef5aZdT+92S9xzZf9dC9oRjXaqdTDHC1KgY2YNEU1yoCy/NSNUsGhjLXXGje+EYY7AKBQCAQjEISEhKoqqoiPT2dDz74gGeeeQawv1gGauAePnyYJUuWOP5WBN/uvfde/vCHP7Bq1SouXrzI008/TV1dHTNnzuSDDz7o9zrqBQUFFBQU0NraitFo7NdzCYY//VlrOpBzvnagnPsWZqp+VthbgtOb0brjaA33zJ/EhkE21gPlnxdPxhChd1yjO3fNTOWalDie++C0z/JvimEvqzzL8kaz6j6KgrvyX2essuwwotXE2nzllc/OTPR1+S74yrN3zj93PpeW6KEEPLviOgDVKgYScOCsaxWBHUdrePy2qSLXfAggDHaBQCAQCEYhK1asYPXq1Vx11VVcunTJUUf96NGjTJkyJaBjLV68WNODpPDwww/z8MMPB91fgaC/GQzVam/nlJE9PvPHu2yVZQ5VNIdEeG4gKfq4zOvn7x2r4S8lNaxdnE2RRpk1gAdvnExbVw9vfe6aC26VZXYer2VOb369uwG6fe182rtsGCJ03L3poMe9f/ito7R19rBqToaLV9ifUqYpxmjW3THNL8++t3roAL/bV+ZQqtdJcP/CLH640F6FQM24dkbLoF82I5n3j7uq5SvjcH722JArxAsCQxjsAsEQQWu1dKDPWVLVzBcVTUxOiiE6IszxWUlVMx+dqicqTM+Y6DBaLT109ljJSDTQYukmPjqcFks3yPDp2UYutnXSaumms9tKfkYi16UbuXS5ky6rjbKGNi539oAMEeE69BK0tPfQ1WPlcqcVZJnYyDDoVZk1ROrpsdro7JaJDtdzubOHHquVjh4rPVaZiDAdCYYIWjt6sHT1MH5MFGnxUZyub8Mmw8TEaBZOSWJigoELLe00tHYSHxXO/rMXqb/ciQ6ZlHgDsizTY5WZnhxHfVsnEXpIS4ihu8fKxcudpBqjqTZZyOy9J509Vmamx/NFRRN7TtXT1tFDmE4iPdHAivyJpCUYiInQY+6yOu5jrcnCkfPNNJk7kSSJBEMEsyYl0NDawY6jNZi7ekhPjCYrKZb0hGjMXVaPYzg/p7mZiYyPi9IcO+4qsOWNZmIi9FQ2tSNJErN6SwXVmiwcrmhCkiTHeS1dPZxrNGueYzDGrCB0/PrXvyYzM5Oqqiqee+45YmNjAaitrWXt2rWD3DuBYOAZDE+ir3N6M760kIDIsJEpU2WTYdMn6sb6fTdk8uBNkwFYsGGv6v7P7DyFToK789LYcbTGxQBVyp7VmizcvzCL19yE2GRg3bYTJMVGuLwfgX9h3Q8tyqbV0u2xMCH1hgPIXKmHrnWs3/2tzCVdwCbD5v3lvLq/nA0r7SH/61fkuERmKH3/yfYv2b52vmoVgzU3TmbXiTrNcejPooSg/5BkX0viIxwlTM5kMhEXFzfY3RGMUkKVM9fXc35R3sS24mqXdjoJZqbHU1zZ0q/9GekoLwjbi6uD9np4e07Onytjx/kZK1oy7ueWgBX5/vdLOQcw4GN2tCDmpdAj7qnAX7YeqvTwJAb62xboYubv/lbGxt2l2MDjnM798Zdg66e78+jNU/jO9RmcrDHx6w/P8GXN5RAcNTS4X6NekjhQuMSRc7168+de93f2qDsboM7zpi+CnfvUnreWMey+6H7D+r2az9b5HvylpJpHtniWwtyyZh6VTWbVMR6KsS8IDH/nJmGwi0lcMMjUmiws2LDXY1VT+dEdqHMGs4ovGHh8vYgpYwfweMahQtcb+aD1siToGwM1L73xxhskJSWxbNkyAJ588kleeeUVrrnmGrZs2cKkSZP67dwDjZjrBYFQa7IE7UkMdAHeZWFVgsKl0+yCcVwx1ixdPdz/xpE+XZM3ChZns+lvZS5504pBq0R3lTeafRrBA4VOgqdun+bIZdcBTy2dxkM3ZTui2B5566jPRYsta+YxP3us4z7HROhVQ+G9Eezc588YUwt937zfM//cGedr8vZuWWuyUHy+GVuvcKFz5NxI9aIPxahAf+emURsSL5RjBUOFoZIzJ4z14YGvx+Qt9zFUqB23v8esIPQ8++yz/FLg8gIAACAASURBVPa3vwXgs88+o6ioiF//+te8//77/J//83/Yvn37IPew74i5XhAM/oQ3u7/8K2lFvkTr3D2mzu1lGZ7bfZo7c1P587Eau7HWb1cJd89M5cml00gxRpMx1uDiXV2el+owXhUD2d+F/Z8tm05Te5fPnHQFSYLciUaOVZn8am+TId4QzpNLp7Jhdyk22V6//Ez9Zd49Wu2IKlMWuNWU3HVAZpLBY8EkUDemr7lPy0j0NcbUQt9fO1DuddHeOYQ9xRjN3XlpLtF4iuo7wL4zF1UXlkaqYvtgRLKGklFrsAvlWMFQYajkzAkP+/DAHw97X3If/UHLwy4UY4cXVVVVDnG5HTt2sHLlSh588EEWLFjA4sWLB7dzIULM9QKFUHrX3F/+785LcxiK7jgbdO77PbAwS3XB/sW9X/PW51V96qM//Lmklid7a5I75yi7i67ZZNi4u5S1S7L57SfnfIbnR4Tr+P68ScRFh7vUGNdClqGkyhRQKP9T20445iKlj87GqfNxnlo6jXhDOIXbTji2y8Bv9nzN1kNVLgsmgeJt7gvWSKw1WVQV/m0yPLgoi9f2V3g8A3chuFqThXePuqbOKarvwIBXQxhMBqP6Q6gZmYoUAsEwQqnpqZfsWcYDob6pds71K3JYmZ/m0VYvSeRnxPdbX0YLekliZX4akuS7rbdjbFjp+Zwkp8+VseP+jCVQPbckYe9XAH1YvyKHDSsHdswKQk9sbCyXLl0C4K9//Svf+MY3AIiKisJisQxm1wSCkLL1UCULNuxl9ebPWbBhL1sPVfreSQO1l/9txerGOth/YzOTDKr7vbq/HJ3bj69OYkCMdbiymFBS1czm/WU0tHYwP3ss5i6rZxQeUPRJGf9802Sf88XPdnxlF32T4ed3XcOjt0zhtXtn8eCNkx3Xq5NwOY5yOvf74Q1/F6Sf++A005LHuMyBMrDliyrVYyjGka++KHMfwMGyRmpNV343tYxE5zZalDeaVRcudBLctyCLA4VL2LJmHp+tu5nP1t3MljXzOFC4xGUxwFv0prfPRiIj4XpHrYddIBhKDIb6pto5V83J4J75kzhc0UxmkgFDRLjjs5KqZvaeaiAiXEdcVDitHd10dttIT4ym1dJDXK9yvE2W+bSskcbLV1Ti8zISyUk30ni5i26rVUUlXqLZ0k1Xt7pKfEyknm4nlfi2zh66rVY6e6x0W2Uiw3TEO6nET4iLItUYxemGNmRbr0r8Vb0q8c12lXhjVDj7yy7S0NqJhExqvAGbk0p8Q1snEXqJtEQDXd1WGtu6SImLora1g0ljDaTER9PVbWNGupFDFU3sKa2nzdKDXieRPtbAiryJTEyIwRChcxG1efy2qRSfb6bJ3IUkQYIhgvxelfj3jtVg7uwhPdFAVlIMExOiHSVmnI/h/JxmZyYwPi5Kdey4P2PA4T2parIgSZDfqxL/+G1TOVLRjCThOG97VzcVje2a5xCKscObb3zjGzzwwAPk5eVx5swZ7rjjDgC++uorMjMzB7dzAkGICLV3Tassliay9n424MGFk3ntQLkjFP2HCzN95in7y+rr09n6xQV7nrdGZNR/fVbBri+vlPNamZ/G47dNVY3QkmX4rYZCuzs2GZeQbgnYsDKHTwtvpqKxnca2Dg9RNBn47pwMthyqDMrbrYVS5s6f5+arvJsO2HzvLMf70b4zFx254s5e9GDTHWtNFi61dare/6d60xcAj/B6dwKtPjCSo+RGQh15ITonhGgEAoFAMIQYqHmppaWFf/3Xf6Wqqoof/ehH3H777QD827/9GxEREfz0pz/tt3MPNGKuH71oKYYr4lyBUmuyeFXqVmPLmnlkJhk0RcAAl4XVQARDddgNf3eUYze0dnCoopk5mQm8/Ldz7HYyzpdMG8fHpRc99n2v4AZK6y6zbtsJ1WMHk+sNdiPx08KbHTn/HuK3AP2QyqUY4b4E5dSU0b0pp3sTdgPP56gmUOecquGcVy6Bw2nhLKoXCN76PtoU4Yfq9QrROYFAIBAIBJrEx8fz0ksveWz/+c9/Pgi9EYxEhoIqc6DetWD77M1wVqKQ1q/I8TAanD2myrmfWjrNXvbLD8P13hsmkT0+lpM1rbzdm4+tlySeXDqV1w+UO2qJq+WHf6JirAMcrmjm/hsnMy15DMs3HXQxziXsqvL+5LK7Y5Oh+Hwzy2ZEq96P+xdm8kqIogsUdOCosa5Wn1xp8+LqPEfEmTPeIiC9edHnZ4/1+rzBM8fdOQJCBiQZHr1lCjdPG++oEe8L5/Hrre+jra76cL9e4WEXq+4CgUAgGEIM5Ly0f/9+fve733Hu3Dn+9Kc/kZaWxn/913+RlZXFwoUL+/XcA4mY6weeoaTK7K93zZ8+a3nsi1bnIctw8Fwjb39epVpTHdTLZtWaLC7GtU6CVXPS2fJF4Lns35yRzKTEGDb5GbquxnsFNzgMxK2HKl3E2sButK9dnB30OTauzHHxUjtStZotfpVj8xcJKLzjSpk85Xy//7ScV/eVaz4jf/GnLK9WmTS1fbXw9/szlL5zAv8YMA97R0cHUVFRfT2MQCAQCASCAWTbtm384Ac/4Hvf+x7FxcV0dnYCYDKZePbZZ9m1a9cg97DviLJug8NQU2X2x7vmq8/OtbrVPPYXWiwOr7gErJ6bwSO3TPE4l3vZLDWD2CbD1kNVAammK7x/vM53o14k4LrUOE7UtDq25WfEu3hzF109zsM9L2MXoAuWddtPMC15DLnpdo+2eyh4MNethsyVMnnOkQw/ueMa7luQ1Wdvq6+oCaWN2vED0ULw5/sz1L5zgtASlEq8zWbj3//930lLSyM2NpZz584B8LOf/YzXXnstpB0UCAQCgUAQep555hlefvllNm/eTHh4uGP7ggULKC4uHsSehY6CggJOnjzJoUOHBrsro4qhqMqcYoxmfvZYTeNFq8/F55v55c6TDpX5uzcd5O68NJcqGU/ePtUlhF0G3vqikj8fq/HaJ8XIUrPbbLKn0bpu6TReWp3n+2L95K7cVL6qbXXZVlJlclEyL280a+ar+xJ0z0hUv9c2GZYXHeSXO09SUtXsWosee478S9/No2BJ9hXFdj/Op4a3cSeHYFlg1ZwMh2q7u1K7N5RUDWckSdsw8/X98fc7V2uyeCjaC4Y+QXnYn3nmGd544w2ee+451qxZ49h+3XXX8cILL3D//feHrIMCgUAgEAhCz+nTp1m0aJHHdqPRSEtLyyD0SDBSGI6qzGp9liQoeOuoSzubbK9nrSiJZyYZNL2lG3eXcufM1IAWCbxx58xUwFPhO1jyM+PZUeK6qGCVZXYer2XZjBRSjNGq98UZb59VNmkbhTKweX+5qiK+TYaxsZE8cds0vj9vksMT7uyJ9xe1cReq0HHnfPFABQy1vPOLrh7HkYpmfvz20YC+P/5850ZSyPxQ0McYSILysL/55pu88sorfO9730Ov1zu25+bmUlpa6mVPgUAgEAgEQ4Hk5GTOnj3rsf3AgQNMnjx5EHokGCkoxoizF9o9VHio4d5nnZe4bKss095lc3jss5JiXGp8K9jAq1c0KykmIK/xkYpmUozR3H5tcgB7aTM2JlK11vgzO0856tUr90WtnzLwm+/k8a/LpoekPwo6cBiazpERq+Zk8GnhzTy4KMuv+6YIzrnnjgdTH93dM731UKUj6kK5V4Hi7p1fdPU4yhvNzMpMCPj74+s715e68EONUNz74UZQHvbq6mqmTJnisd1ms9Hd3d3nTgkEAoFAIOhf1qxZw6OPPsrrr7+OJEnU1NTw2Wef8fjjj/Ozn/1ssLsnGOYMR1Vm5z6r1QlXUDyXzl6+gsXZvPRxmUc7Q4SOg2WNqp7AP5fUBBSULUl2w8u5NFuw6CWJ/EkJLl5eZ5xzoFfNyaCyqZ0it+vTAbMyE/hziffQf4AfLsjk959WaF6v8/qIDOw7c1HV++ucg/77AxW8euCcPfe99wAy9sWWBxZO5r6FmR73PJj66O6eaXcV/77kiys57mre7wOFSwL6/gSraK98Phy81aM1Vz8og/2aa65h//79TJo0yWX7O++8Q15e6HJrBAKBQCAQ9A+FhYXYbDZuueUW2tvbWbRoEZGRkTz++OM88sgjg909wQhAS3BrKKP0udZkUQ331kl2r627UJqaIZqbbnTU/nYPQa41Wdiw2/+oVEmC/EkJ9pzy4C/PgeJ9VYy8ncdreWbnKZc2zgbdb1VE5mzAn4/VsPED79ehlyTWLJqMydLNtuJqj891gOx0E2X8M8IWTxvHshnJXGi2YJNlMhINjjQFrVrnwZT5czcQ1Uru+TL6vaFlhB4oXBJUqL1aH7Su+/iFFr736t+HTZh8MAsuI4GgDPann36ae++9l+rqamw2G9u3b+f06dO8+eabvP/++6Huo0AwqnFWpq1saqfF0k2CIYJZk+wqrocrmpAkSfXvFGM0JVXN7DhajbnLSkJMOBF6HRmJBg5VNFPf2sG0lDHkpMVzuraVA2cbSTNGU9/WSYReIiEmAoD2Lis2mwzIVDVZmGCMIi4yjKNVLVhtMrGRekwWK1abjfAwHWMN4XTZYO6kBGKiwmhs66S9y4q5s4c6k4W61g4i9HoSYyJAlmnrsjJ1whjaunq43NFNZJieCWMiqb/ciU6SiI8JZ0xkOFeNj+XrhjYa2zqpM3XQbbWREBOB1SojSZAaH82yGSlYuq18Wd1KdXM7bZ09XJsWR6rRQGNbJ1FhOjp7bEweF0tqfBTnGs0gQ8UlM5ljY/i6oY361g4mJkTT3WMjJjKchVeNJToijKykGJd7nJ4Qzb6vL/JVdSuTkgzkpMWTnhCNucvqc6Xa+QWiobWDLyqamJuZ6KLOW2uycOR8M7IsMzsz0SW0TdkXQrsy7k9emHub0ZZLNlKQJImf/vSnPPHEE5w9e5a2tjauueYaYmNjB7trAsGg455jrAMeWJTFfQuyAFxKcmkZ0MWVV7Qg3D2B3sTc1Fi7OFtTpT4YkmIjXDz/y2ak8Mudp1yuRTFkveXab9xdqlp/XrG/ldBsgHePqhjrEjywMMuj/ro3I8zZG+28WKIYnM5Grprn2tlDrpPgyaVTA9IZUFuk6YtGw0AYoWrj+Z8XT2bD7lLHdQwHb/Vw1McIBUEZ7HfddRd/+ctf+MUvfkFMTAxPP/00+fn5/OUvf+Eb3/hGqPsoEIxanCeaQJGAvIx4lxcGNf52ptHl76NVJp/HLnPLyWs0O6XCdFq51Pt3xSXt3L2OHiutnVdypxrPNbl8fqquzWOfD76q99hWf7nL8e8zDWY+cbsegJILrR7bAuH3ByuAwErNeFup9vZcV+an8atvz/Qo9SMBG1bmALi8qMCVEMC+roz7I0jj3ubuvDTePVo9bFbnBZ5ERERwzTXXDHY3BIJBRW3hUSvE+GBZY1DzsrMRFhOh972DE5s+KaPo47Irv7vF1aqGsr/c/8YR4MrvtjsSrvnfWvOfDbv3X3YzoF65J5/yxnbmZCaQm56gec9+8508ZmUm8GpvDXrnY6gZYe7eaPdyeO6l+Nw914XbTiA5GXyKxzw+Olx17tIyEJ+8fSrPfXBas5xbIAyUEbpqTgYtlm429C5WbPq4zOOZDnVvtT+l9EYiQddhv/HGG/nwww9D2ReBQOCE+0QTKDL4NNYFgRHIo9Baqfb1XLcVV3NHTrJHqR8ZzxcNby8qgeJPXphaG+fwxuGwOi+4gtlsZsOGDezZs4eGhgZsNtfXf6Vk63BG1GEfWfRXNI+3xUq1EONAjW0FCWhs66CkqpkvKpp8tndGdvrd3XG0hncLbmDn8To27z9nX7QFbrsumf/9ss5hRCs53d6wyfZFYNmtrST11mDHfg/W3OjpBaf3vE8tncZzu68Yr8vzUlnz5hGX+7no6nGqRumszAS/jbCSqmb+eLjK63uRs8Gp5rmWwSOywSbDum0niIkMc0QnKmj1bdWcDO6cmRoSjYaBMkJrTRY27i51XL/abXQW/HPebyhF0Q1HfYy+ErTB3tLSwjvvvMO5c+d4/PHHSUxMpLi4mAkTJpCWlhbKPvYLYhIXDHUCLfciGHqorVT781w/Pn1RtY3ai4av8/mLPyF5/vR9qK/OC67wwAMP8Le//Y0f/OAHpKSkIKnJXA9zCgoKKCgooLW1FaPRONjdEfSB/ipJFYyIlbnL97ujWti6DJpCdlqoebYVlfqfLJvOfQszqWhs53h1iyM8XQIKl07jztxU1dx0d9R+122yXZX+m7n2e3DfwiwPLzjYjfWHFmVzZ67deDVE6FhedNAjzPpA4RKvRqkvI+xf/nhMNf/dHZ10xeD0VZLO5XqBh986qjq2tPoWSo2Gvhqh/hjV/szhDyzKctm/v0vBBbsYMBz1MfpCUAb78ePHufXWWzEajVRUVPDAAw+QmJjI9u3bqays5M033wx1P0OOmMQFQ51AJhrB0EQtpM2f57pk6jje+rzSo40ELh52f87nL/6E5PnT99GQSzZS2L17Nzt37mTBggWD3RWBwCv9qQztb/6wL+EygNVzM1g1ZyLtXTavKvOB8Oq9sxzeagV39XlDhI4Nu67kIsvAhl2lzMtKZNmMFJ7ddcrr77auN6TdvcmP3z5KtclCTpqRrKQY1q/IcaRqSUDBkmxyJhqpNVkcBtQvd55UXWAoPt/s0yjVMsJKqpr9MtYB7pk3ycWgds/blvEedaA1ttT65qwx5I92jS+CNUL9Nap9zeE6CYdGA9jve2Fv9AWEPopuJNWF72+CqsP+2GOP8U//9E98/fXXREVFObbfcccd7Nu3L2SdEwhGM+41Nd1x3+rxtwT5GfH90rfRSiAOSK2QNl/PdWV+GrdMT7bXvXVqouSwO+8rSVeee19D6Pypm6zWZmV+2rCqtSy4QkJCAomJiYPdDYHAJ75KUvWFE9Weui3uC4/udZ/3nbnoWrMdWLd0Gs+uyCE3PYH52WOZnZkYUI11Lc42mD1+d5fnpXL3poOs3vw5N6zfy11OHm0FGbir6KBHX9V+t9evyGHDyhwPo8Amw/pdpU71rqtcFgVe+rjMpRZ2SVUzr6qEzYPde63UdVfqqvtDrcnCs7u8Rwg4k57oumDsXOv803U3s2Gl9vyr4M/Ych4TdxUdHLSa4IHUV3efw93fIdavyHE8l62HKu2REv30vRtJdeEHAkmWA9GotGM0GikuLiY7O5sxY8ZQUlLC5MmTOX/+PFOnTqWjo6M/+tovKB52k8lEXFzcYHdHIPCg1mRxhJlVNVlosXSRYIggv1cV/khFs6Pci/vfV1Tia2jv7iHBEE6EXk96YjSH3VTiS2tbOVh2iZS4KBraOgnXSyTG9qrEd9pV4mVkqpotJMdFMSYyjGNVLfQoKvEdVqxWGxFhOhJjwumxwuxJCcRGhXPR3IGly0pbh5tKfGwE2GTau61cNX4M5q4eWju6iQrTMz4ukvrWTvS9KvGxvSrxZy+20Xi5k1pnlXibfeU8JSGaZTkpdHTb+LLGRHVTO5e7ergu1UhqfDSX2rqICJPo6paZPD6GFGMUFY3t2GSZyqZ2MhINnG1oo6G1g7TEaLq6ZWKjwlgwZSyGiHDHC5xyjycmRLP/60a+qjExaaxdJX5iQrRqWRmt55qZZKChtYPDFc3M7hXncW5TfL4ZWcaR5+e+LxDSPC7nY3tTiXdu488+Av8ZqHnpv//7v3nvvfd44403MBhGdlSEmOuHN7Umi4sqO9gNjAOFSzS94P78FqkdF+zG90M3Zfs8N3j//X1250nVvO9A0AGfrrvZcS5DhM5RKs4ftPqq9ju+5YtKfrPnbFD9dBZB9dUXf+cJd/FVf3iv4AbGx0V5HQfK3Frw1tGg+qk1bsD+vH6zOs8jF959/1DlhB8sa2T15s89tm9ZM0+zJJyvdwhv1xfoMwxlv0ci/s5NQYXER0ZG0trqqbp85swZxo0bF8whBQKBBs4hUs7GnIKSX6b1d256gup+/zjbNexo2YxU/qWvnR0lON9jtXvrD87PNcUYrXoce6kdz0nRPWwulEayPyF5aucXhvrw41e/+hVlZWVMmDCBzMxMwsPDXT4vLi4epJ4JBK74I8oVTHitVk7vjInxXtsoId7LZqR6XTDQyvsOBBuw83gty2akMD97bMAK9YpHVDGCyhvNgOvvdl8q0ij4s2sgGieKB1bruIuuSmLcmEiXUPmV+WmU1l12LGhojYMUYzQJMWbV4+okfEaKecsF95YLD6EPAw9GYd7XO4S361uelxqS+X60lmcLlqAM9jvvvJNf/OIX/PGPfwTstVwrKyt56qmnWLlyZUg7KBAIBAKBIPQsX758sLsgEPiNt/znYHPc+6LdUfDWUS40W3jopmxqTRZeP1DOa73GubMh5pJDHaQuzTM7T/HsrlOaauveUK5Hy1CsNVkC9mIHi8QVQThfXmZfAmkbvzWDFGM098yf5IhQGx8X5eIZ9jYO1J6rDnh37Q0+F+L90XPxt9JKX3PCQ6Ew7/4svF3fjqM1PH6bdt36gez3aCIog/1Xv/oV3/rWtxg/fjwWi4WbbrqJuro65s+fzy9/+ctQ91EgEAgEAkGI+bd/+7fB7oJAEBBa0Tz+CsepHc+X0aC0UfNAr99dSsmFFnafqNMss+m80PB1QytPv3cymEt31BD/xfJrXcqoeSvfpsPuLQY0DcUj55v7bKyriblp1W1vaO1g35mLPr3M3oxG5wx05yhCtegDrXGg9ez9iZpz31cLfyqthKKySl8U5rUWctavyGHdthPY3NqHshLMaCzPFixBGexGo5EPP/yQTz/9lJKSEtra2sjPz+fWW28Ndf8EAoFAIBD0E0qJ1rKyMp544olhV6JVIAC7ceduIEqSZz1pBWePoi/PfXmjmUVXj+P/3nmNqrG960Sd6jmcDRvlf5fMnT6vRSfBD+ZNwirb+O+/V7l8JgM/2/GVo2zbjInxZCYZOHK+mYdV8rFfXJ3HshmpmobskYpmTtd7prj6y3sFNzg0W/adueiiKK5mxipCeM7Pypsqu9ZCiQyqRmOgYdZ9MRid91U0hn789tGAozVCFQYeTGqaN4//qjkZTEsew/JNrsJzoQ5bFyl1/hGwwd7d3U10dDTHjh1jwYIFohyMQCAQCATDEPcSrWvWrBl2JVp9UVRURFFREVar77rZghGGhuPTWchMqb6xak6Gh9Hg7nn8ztz0gE6vZtikJ/g2TGwyvPHZea9tZGDj7lI+XXczKcZoZk3yrPtu/1um1mRRNRQl4JG3j3qogAdCad1lh2d80dXj/D6WWtk3NQPcYTS6qeBrGY2BhFk7L9oEK3LmrjFk7upxSX94culU9UWIXs+1EgExWAarL49/bnoCG0TY+pAg4LJu4eHhZGRkiMlPIBAIBIJhzGgo0VpQUMDJkyc5dOjQYHdF0I+UN5pVy5q5l59yz9eWsYeZu5eSUvM8vv25q7fbG1rCZeau0L07K2J0Sg1093JdsgyPbDmmWoYOekPYNcLNV1+fwY9vnuKzD85luI6cb1Zt409pO29e29z0BJdSbHpJ4snbp1LeaFYtAeZcxu1A4RJVQTf3Mn2hKsW2ak4GT94+FQn7mNm4u1T92JLbfwcJZSHHGfdn4c/9FPQ/QdVh/+lPf8pPfvITmpqaQt0fgUAgEAgEA8ChQ4d46KGHPLanpaVRV6ce5isQDEX8MTwADlc0qRr2RypcjU01z6MNePDGyS42liRBfka8S7tFV/1/9u49Oqr63B//e08g5AK5ESJJSEhEAdFwjxqCKNjTSrWKZJ3qF9fRotJao13nqEdCV8s5fheWUI8ejzVWBavt7/xA2oL2Zy1WK2oIUYiAEJWIxIREGIWQZALJ5Dazf39M9jCz73O/5P1a65zqXPb+zJ4xM8/n+XyeJxt7q5apBjapiQnGL8YHG9486g44pcCqZtU8rz3tnsucd95fBr0W5DfNngwA2LqvDb/ZfdwwnvTsya3VJfrh705XHEcA3O+XmaytZ9D46PIZ2PRWk26wrdfr3aj/t9VmR31zh1/9wK02Oza91aS49p7Hjqbe4/KJHq33Qu96Unj4tYf92WefxfHjx5GXl4epU6ciNTXV6362giEiIopubNFK8cLsUmhBI1qV36y11/jG2ZNRMiUNbZ19GBhyYE5BBtb84YDXc/ceP6s5zmBm2CVOEVi3oxEzJ09ATloSTtnsqkvOD7R2IWt8ouaydYsAvHnkG6/VB2YSwEdOdqNs2kScsvUr7hMAVCyYgkkTxnm9N48un4G89CRYBAHzdfqVe5Iec8eWj1T3XAMw1dtcbxm4mWJ4eoyWmIeq6FwgWPgtNvgVsLMVDBERUWxji1aKBKN2Xv4yE3gsmJqpWpxu/lTvyuC56clYe8NMbNrVBCdcgeesPOVearVK6HoBmFE7MK3K6pIVc3NRmJWKZ3Yf97rdCWUxN7mfvXoIa5fPVD2/RQDuWVyMzXtavG4XAay6qgCv7mtXVAuXbNrVhKuLs7BpV5PivqrlM5Gbnuz13hz5utt1Xf0IirUC3pf3tmDLHmVLPTVakzEpiZaAW64ZFZWL1t7jLPwW/fwK2NkKhoiIKLaxRSuFm1YLKS2+BvdGgUduejKqK0oUY1ArOLfprSZ3kCoCaDypXI2iFhxLAZja2PUqnwMwjNj/8okVj90ySzPo1wv2nSLw611fYO0NM/Hrt1wt4SwA7l1SjNXlxQDg7iPv+VoeXHYpHlx2Kd48YsWGN4+qHrehtUt1PLOnZHhdh6LsFM0MuZn3V7V3ugBsrm0xrDov0VqN0TvoCDj7bbTSI5p6j4dq4oxCw6+AnYiIiGKb1KK1rq4OR44cYYtWCim9FlJqAYOvwb3WOeVBiVEmXj5OM6QgUgrAao+d8Spu93+uLMDPrr/UnW1OSUzAg9s+URzHqMq6CPjdxx1wBaCzp2Sgrmqp6uvXCyZvnJ2Lx988qpgUq95ULgAAIABJREFUsAhAaVGmaub4yNfd7gBdyuIHEhSrBbx3Ly5SrAyQtgDcNEf9mGqfAavNHpTst9HnKxqWoAfjvy0KL78C9szMTNV9QIIgICkpCZdccgl+9KMfYfXq1QEPkIiIiEJn8eLFWLhwIcaNG6e5x5coUL7s3/U1uFejF5ToZeJflmWZjVgAvHb/hX7kALBo426vwHbb/nZs29+OTRUlWDJ9kuZ/Z3rL5X2ldiwpANV6/XrBpLQ6wXMiQgCwdvlMzCnIVATSjy6f4V76DrjG8lJdi2IRgbQcvb65w1S2Vz5GQLkyAHBtAegdHNYMROXXIJjZbzMrPcwcVy8L7m+GPBj/bVH4+RWwr1+/Ho8//jiWL1+OK6+8EgCwf/9+vPXWW6isrERLSwt++tOfYnh4GGvWrAnqgImIiChwTqcTjz/+OJ5//nl8++23OHbsGC6++GL88pe/RFFREe65555ID5HiiC/7dwMtzuVvUGK12RXZWiNSwCp54/BJzaXpa3c0uq+BYi891PeR+0I6ptTWzZPZAFQvmJSC5d/s/hJb97W7+8FnJI9VBNKqlfZF4MaSydj16TfuFQkr5uXh1ufqNbO9WlsL5CsDpN7mnufyfM/NBLjRkP2W6E04BZIhj8bCd2TMr4C9rq4OGzZswH333ed1+wsvvIC3334bO3bswOzZs/HMM88wYKdRwWqz48CJLoiiiIVFWV5/9KQvidTEBPQOOlCc7eqqoHWb9GVyuL0Lrx06ib4BB66Ykob8jGT8/bNv0WMfwoKpmTjV3Y/Gk9041d2Pi9LG4fsluejpH8LXnX34qqMXA8NOnOsfQs6EJMydkoGPvurAkCiiJC8dU7JSMLcgA03Wczh++hzGWiyoaz4L+5ADeelJmFeYgbEJCcgaPxbnB4ZxuL0bSQkWlF86CSe77eg4NwBRAAYGHRh2ikgak4DjZ85h2Ckie3wi+oecON8/hPFJY1E0MRVjEwQ0nrIBooCS/DQMOUR0nB9A6rgxmJiaiCGHE+3d/SjITEJGyjhMTE1EUXYqFkzNxOenbNjddBrLZuYge/w4vH7oJHoHHRgaduDrLjsWTM3EXeXFON3Tj/2tnchIHou2zj4MOpwYHBaRnZqICcljIEBARspYpCQm4KuOXlxZlOX+keX5HrV19kEQBCyQVa41+rJXu/9wexf2t3biyqIsAHD/s+ePO38+a77MuEtjuDg7FcmJY8KyX83zdQfyWim0NmzYgN///vf49a9/7fVdfcUVV+Dpp59mwE5B5UsGM9DiXP4GJWr93LVYBFew/pMl07xuN1qlIo1LqsLueb7sCeMCyrJvuWsB+oeceGDrIa/jWgDsvL8saH+Pt3n0pJcHxp7XV+21vNn4DQQAP15SjBtLct3BunSsdTsb3ccyG5gumT4JD1x/CZ5517sYnz/V36OhAJvehBMA3fuMJiWitfAd6fMrYP/73/+OTZs2KW6//vrr8fDDDwMAvv/976Oqqiqw0RHFgO0NbYolYtUVri8Dzy8beNwPKGfWpdssAjC3IAMH27rd9//Ru2sM3vrsW69/P2Xrx6F2m+r4TnYPeN13/HSf7uvp6hvCZ9Zzqve9/6V2uxpJ61nPfqL9+PSU97GOn+nVfO7HrdrH/X89fiB4ajjRjedr/ctIVMzPx5XFWar7FbXeR7Uve7X797d0YsfBk5rnffKHc30er68z7mpjCPV+tYf/+InXOf19rRR6f/jDH/Diiy/i+uuv95qAnzNnDpqalBWfiQJlNoMZ6PJkf4MSoyrud5cX4Za5ee7l71qV6M0SZf8sLwrnq5TEsUhOFBWTDk4AfYNadd5987u6FlOV8eXvoScRwJbaFsyekqGahX95bwtWlxebWiXxwgfNqN7VpFkAMBjV38NNb8JJhKheKb+uFVvqvjKclIimwncSTvIbs/jzpKysLLzxxhuK29944w1kZbkySb29vZgwYUJgoyOKctIsqPxLd92ORhxu71INBEUoK7l63uYU4RWsU+jsOHgSVTvUiwuJcM1iy99H6cveanNNTKjNhFftaNQM1qXzHm7v8mmsWjPuVptd9b51O9XHIB9/MB1u71Kc05/XSuFx8uRJXHLJJYrbnU4nhoaGIjCi4KupqcGsWbNQWloa6aHQiNz0ZJRNm2hqr3Jd1VJsW3M16qqWGlaTr2/ucP9dk4KShJFsty/LwTeuLIFFI0n+u72tuPW5erR19upONmyqKFH0MBdg3Nfcsyjcz5Yp/9s00jc4hL8ePqW4PVgZVKvNjpfqlBPkFkD1+NJ7+IsbL1Pc5wRQf/ys6rXeUtuCAyeUleeloFXyQm0zNuoE60bV36XX5PnZiQbSxJEn6T1Uu88CuIN1wPh73pf/toJF6zo//MdPcEtNPR5/swm31NTj4T8qizGSnxn2X/7yl/jpT3+K9957z72HvaGhAX/729/w/PPPAwDeeecdXHvttcEbaZDV1NSgpqYGDocj0kOhGKY2Cwq4voi02pxQdNF7i7Ta1XhmE9Q+A2be9o9bu3yaSfZ1xl3vsxeq/Wr7WztVb/f1tVJ4zJo1C3v27MHUqVO9bv/zn/+MefPmRWhUwVVZWYnKykr09PQgPT090sMhH5lZnqy18sjf/cie+7S3jezT9mQmQysd40BrF7rtg8hITsSCokzUHjujmnGWSEFZ7bEzePa946qP0XPP7w+o3v7dyy8KuMgZoP2b594lxboTGFoV5l9taMPtpQXYut97BZ0TAETlknrPiQerzY5qld7vAPDLGy/D92fnGlZ/j9Zq6fIsuEUAHl0+w32N5RnyexYX4UWVSvl63/PhXPqvdZ21JvnvLJvK3wwyfgXsa9aswaxZs/Dss89i586dAIAZM2bggw8+wKJFiwDAvTQ+WvFLnIJBa/mcBeptTij66LW91WtXI/1oUPsMGLTSBQAsLPLty8hoiadab1qtz16o9qtJe/XlfH2tFB7r16/HXXfdhZMnT8LpdGLnzp344osv8Ic//AF//etfIz08IkNGxeX8DUpqj53Bq/uVwbrEzKRnbnoybppzodgZ4ArkZ06egBU19cr2aAB+tfIKAFBdnReIv3/6Daw2u+54zQSvjV8rt95ZBLj7uGvJTU/GmmuKFUGlUwTKL8nGNtm1ThAELCjKVAStdy8ucj+mpaNXtQ2eBXAH69K51ZaAA9p7wcO5PFxrkuS20kJ09w2heqTSvmdxP7VK+VtklfLDuS/dqLaO1nXmJL95fi2JB4Dy8nJs27YNBw8exMGDB7Ft2zZ3sE40WkhfBJ41ZgQAGytK3G1OEgTvtUuCoFwW53lbgiBgfmFGKIdNIyrm56O6QvkeAa73ZONK5fsoX1qptvSyuqIEFfPzdc/r65eR3hJPtfs2rlQfQyj3q80pyFSc05/XSuFxyy234I033sA//vEPpKamYv369Th69CjeeOMN/NM//VOkh0dkSG/lkRozy5/N9GEXABw/fc5wGfX2hjaUV+/Gqs37UF69G9sb2tA76FCdCPjNqnm4rbRQM4utR2sJv8QJaF4TQH/LledjNr2lzGjffqW5jPTqxcWqy7znT81E1fKZ7oDE8ztKWrr94yXFEEVg854W93VUWxoOuAoBqvU+ly8B9/WzEwpqnw+JdL09t0t6vieeW0v83QIS6tcA6P83ykl+8/zKsANAc3MzXn75ZXz11Vd4+umnkZOTg127dqGwsBCXX355MMdIFNWkmc6DJ7ogisCCogvVxT1nQVMSLV59WrVuk5buHW7vwl8+OYXegWFckZ+OvIwkvP3Zt7CNVIm32vpx5OtunLL1Y3LaOCy/Ihfn+4fR1tmLlpEq8T0DQ8gZP1IlvuUshp1OXJGfjsLMVMwuSEfTN+fQfPo8xggC9npUiZ87NQOJCQnISk3E+YEhHG7vxrgxCSi/JBtWWz/OnOuHCKB/yAGHQ8S4MQloPnMOQ04Rk8aPg33I4a4SXzwxFWPGCPj0pA0iBJTkpWHYKaLj3ABSk8YgK2UchpwOnOzqR35mEjJTxmHi+EQUTUzF/JEq8e9/cQbXzZiE7PHj8JdDp9A7NIzBIQe+7u7HgqkZuGuRq0r8x61dSEseg/ZOOwYdDgwOi5g4PhFpSWMhCEBGciKSEy1o7ejDwqJMdyDp+R61d9ohCMD8qervo9rSSrX7bystxJ1lU/Fxa5f7y0f6Z38DWL1xGI2hKDsFKYljQ96q5skfzvV63QzWo9s111yDd955J9LDIPKLL8XlPDPIAoA11xRj9WLlUm6tgNnzPCKAX/7lM6z/y2fu4qRyWkHwfdddrHisFLhqvSY9v7zxMiwsyvSqtq52fL1sq5mq+lrXZeu+Nry6v81wOblWprv22BlseqsJTrgmyh9dPkNxnC17WhSBa13VUmxcWYKqnY1emfaMlLGa5/d8ryNdLd1odYivnQ4i0ZLOTPtEveucm56Mivn5ikK1/N2g5FfA/sEHH2D58uUoLy9HbW0tNmzYgJycHBw+fBgvvfQS/vznPwd7nERRzbVHy7d9Qka3zSlQBjvXXzY5wJF6C/bxQiE3PdlrnFp/yHPTk/3+I+/5Hukd32j5o/x++XsYjC8hvXGYGUM4ROKc5Lv169dj6dKlKCsrQ1JSUqSHQ+SXexcXY8ueFjjhCgQevWGGewm69PdQHliIAF7c04LNe1pQ9X3v1mzF2amqPdI337lAsUdchKvIqNoyaq2Aq+a9ZsVrePSGC/uTa4+dUV3qrSZBENzLv7UqsicIAh5drrwmntSCKosAdJzvdy+l15tIMLucXG0pd3n17gvvi+iqlH/znDzdiQIpcF0yfZJi/5nZZe2RrpZuFJD7M6EQ7pZ0ZiYVjK4zJ/nN8Stgr6qqwoYNG/DQQw95VYJftmwZnn322aANjoiIiELjww8/xFNPPYXh4WGUlpbi2muvxXXXXYfy8nIkJ0dnuyMiiXzP9Y8XX4yJExKxaWTPr+c+bK3ssAhg49+aABH4ybWuoP10T79yybrgap+qRgRw8ESXYtLel0z57CmubXCH27tcGWOdx0qTCfI93WrBcGtHH4583a24JkumT3LvOQZcgZdnOzlhZNwPbvvEq8Wp1qQAoJ/9lbftkh5T39xhGPDpBa4tHb2mWsxpiURWWmIUkEd6QsEMs5MKRteZk/zG/ArYGxsbsXXrVsXtOTk56OjoCHhQREREFFrvvPMOhoeHsW/fPtTW1uKDDz7AM888g4GBAZSWlqKuri7SQyRSpbYUd0vdVxBFKJZOL5k+CamJCRAEaGauN+1qws1z81B77AyqdjYq7hdF4EzPgOZ41I6rl/X25FmxvGqHcbD+euUivNloxeZa1wqBl+pa3BMTahnWO7Z8pGg7KgXk0hZwaQJg7fKZmJKRjMqthy68NlxYReBZ/f5nrx4ylf19+I+fKJY8P/nDuQDMBXxGgWugy9rDnZX2PK9RQB7JCQUzfJlUiNR1jhd+BewZGRmwWq0oLvauCnno0CHk52sXWiIiIqLoMWbMGJSXl2PSpEnIysrChAkT8Prrr6OpSb1dElE0UOvRrZbJdogiXt7b4toDrRMJOwEcaO3COtl+aEmCIKCnf0jz+QVZ+u3d3jxixYY3jyrul1eG1wvWLXAVtM1JS1Ld0212Wb6ICxMMnnc5R5aj/8fNyp7pIlzX56Y5ye7q972Dw4aBmlHbLrMBn1bgKj1/3Y5GOD2uZyCBoVFru2AyE5BHe6Ab7ZMK8cKvgP3222/H2rVr8ac//QmCIMDpdGLv3r145JFHcOeddwZ7jERERBRkL774It5//3188MEHGBgYwDXXXIPrrrsOv/jFLzB79uxID49IlZSJlrOMZNBF2W2ba1sM22wKI/9PtdgcXHvMq1UqpEv6Bp2a90l9yH/1t6OKPeKv3b8IcwoyVZeGe9qw4nJcf5mrl7qZZeQSXwvYOUQRZ88Pqt4nb6YitahraO1CqcbeYzNtu8wGfLqBq7RPwKBavpFI9GWP9oDcjHh4DdHOr4D9V7/6FSorK1FQUACHw4FZs2ZheHgYd9xxB37xi18Ee4xEREQUZPfddx8mTZqEhx9+GPfffz/Gjx8f6SER6ZKWwit6mI8EVwC8srV3Ly7CZlnvbzUigIavOlULr712/yJXKzaNoNezOBsA1eysvJCcZ9tQwDiwHhhyuo9nHxxW3K+1DFyewbaMvFat+D1BELBsZg6eefe4d9G9kc4pnswEt2bbdvkb8KltjVi3sxEpiQlYWJTl0zHNVDwnihS/AvbExERs3rwZ69evR2NjI86fP4958+bh0ksvDfb4iIiIKAR27tyJ2tpavPrqq/iP//gPzJs3D9dddx2uu+46LF68GCkp4WlvRGSWVvG4Z26fh5vm5AGAovDaS3UtXs+RV4CX/P6jE/h+yWT8/dNvvZZnzynIhNVm1wyoRY/ibMCF/eBSAKs2ySCIrnFKpMBaaw+7FODK94NLVszL0wwq5Rns2mNn3AG8tLJAFC+sJJhTkInqihJFMO55fLPB7ZyCTNW2XTlpSahv7gh42bna50EqludrhtyoL3u4lsn7K5xL+Sn8TAfsDz30kO79H330kfufn3rqKf9HRERERCG3YsUKrFixAgBgs9mwZ88e/OlPf8JNN90Ei8WC/n71qthEkaJVpGyBR8ZWnq1VyzBreevTb/Da/YvQN+hU3SvtPo4A3DwnD3/55JT7ePL94FIA+3FrpzKohGtPeNb4C5XaC7JS8HrlIjz59jHUfnmhgLPUl1ptP7jk9UOn8Mj3ZphaTi4P4P+/w6dQPVJFftNbTchIGWu4TN2XHuHytl1N35xzt3ILdNm5v63m1IJbrc/Wka+73YX7wrVM3leRWMpP4WU6YD906JDXvx88eBDDw8OYMWMGAODYsWNISEjAggULgjtCIiIiComzZ8/igw8+wPvvv4/3338fn332GTIzM3HNNddEemgUx/zNBvrT6soz+DzbO4AHth7SfKxTBL7usuPG2Xm6x5Fair3+ySnNY3kWvJMTAHeVdbXM/F2LpuK9L85g6YxJuP6yyQC094NL5zLbygy4EMBbbXZs2tXkXq4vD3K1judrj3CpbZfVZsetz9UHbdm5USV+teuiFdyqfbYeXT7D3RIvGOMNBS7lHx1MB+zvvfee+5+feuopTJgwAb///e+Rmema1ezq6sLq1av5JU9ERBQDSkpKcPToUWRmZmLJkiVYs2YNrr32Whaco5AKNBvoT1VqzwDVqAjbA1sP4fzAsOqY5EGs3rG0Ct5JS/K1KrVX7WwERornbd3XhrU3zETJlHRcPJKJ1zqXtI9e63p4TpIArix5Z++g6Uy5J38mTqw2O/565JRf59MjfR4OnujCA1sPeV1P+SSCu8+9RnCrNikT7PEGWyyMkQLn1x72J598Em+//bY7WAeAzMxMbNiwAd/97nfx8MMPB22AREREFHz33Xcfrr32WlxxxRWRHkrI1NTUoKamBg6HI9JDiSqR2u+qVSTM12ygv0XK5IGmZ3YbHv9sJkOpONZIJC4CugXvll2Wg3ePntY8rmei2CkCG3e5qtNbBGB+YQYOtnV7PV7qL6+3b9tzksTzNQtQ7umXB7lanxVfJk48zy/na990Na5K/Mk4P6Ddak6rz708uDWalAnGeIPJ19UOgTL628G99KHhV8De09ODM2fOKG4/c+YMzp07F/CgiIiIKLTOnj2Liy++WHG73W7HE088gfXr10dgVMFVWVmJyspK9PT0ID09PdLDiQqR3O+qVSTs5b0t+Pn3Z4VlDPJA8+PWTjy47ROvx5jNUMqPBUC34J0FwO4m7WBdj1MEDrfb8NJdC9zn6B9yemWV1ZZDyydJ5JMTAi4EpWpBrvyzsmT6JK+AzOgayc/vyUxm3hdakwha3QWkMWgFt/6sJAi3cI7R6G8H99KHjl8B+6233orVq1fjySefxJVXXgkA2LdvH/793/8dK1euDOoAiYiIKPgee+wx3HfffYpq8H19fXjsscfiImAnb5He71qcnapapf3F2hasLi82FfwFK3snjoxiYVFWQBlKedCqVfAuQRBwz+IivKixp13awy7vJe/JIYpISRyLe65xTbTVN3cYZoy1KutLRAC/uX2eeyAFma5e76mJCYrPytodjV5jNROQaZ3/lzdehu/Pzg36505tEkHvGjy6XLtYH+DfFoxwC8cYjf52RPpvS7zzK2B//vnn8cgjj2DVqlUYGhpyHWjMGNxzzz144okngjpAIiIiCj5RFCEIguL2w4cPIytLvX8yxbZo2O+qFTsePNGFG2ebW1YdSPZO7Tj+ZCjNTB6oZeC3yLPuArD5zgVo6ehD6UgV9XU7GuFUOZ4F8JpIMLMc2qjHe4Ig4ORI8Tmv9ncCVHvP62Xz1aQmJqjevrAoM2yfOa2JIgCYnZ9h+Hx/t2CEU6jHaPS3Ixr+tsQzvwL2lJQUPPfcc3jiiSfQ3NwMAJg2bRpSU7ULYhAREVHkZWZmQhAECIKA6dOnewXtDocD58+fx3333RfBEVKohHu/q1xLR6/mfWrBoSRY2Tut49RVLUVd1VLTGUpfJg/02swlCAJWzMvDmj8c8DrWa5WLsOK5esU1Wbt8piKbbzTZYLTX/tEbZiiCdUD//ZCYCch6B9XrR/QNqk1JhEZuejKqls901wOQCEBU7UePFDOTT0Z/OyL9tyXe+RWwS1JTU1lNloiIKIY8/fTTEEURd999Nx577DGvvd2JiYkoKipCWVlZBEdIoRLpPbla2V4B8OqlLhes7J3eccqmTTR1rEAnDzyz7n2DQ7j3DwcUVcvrqpaiWtb3fe3ymfjJkmm6x9OabNDba2+0ZF6PPOOvJloCuZvn5qF6V5N3ll25wGjUMTv5ZPS3I9J/W+JdQAE7USxSa22SmpiA3kEHirNTcbqnH/tbO3FlURZy0pLwzuffoOP8IK6fmYOctCTsPPA1jp8+h5vm5CF7/Di8dugk+gYd6OkbxFFrD8YlJqAgMxnJia7/vCaNH4e8jGS0nu3F3IIMnO4ZQOPX3UhOHIOuvkGMT0rAlIwUfHn6PD47ZcOQQ0RJfhoSLBacONuLcWMtyEhOxNgEC2x9Q/iqoxep4xIwPmkMnE4RmSmJ6BtyoLd/GKlJY5AgCOjuG0RhVgq+d0Uu8jKSsOfLDnz57TmcGxhGXloSIAhIHmtB69k+nDnXjzEJCbgiLw23zs9HcuIYpCYm4MjXNrz/xWmc6rYjLyMZcwszkJGS6K5S097ZizPnBjErNw3nBoaROMaCtKQxECCg2z6IIYeIOVPSYR9yQhRFFGaloK2zD919Q8hIGYvCrBQcOWnDV6fPI3v8OBROTMHCoiyvIjEHTnS5n9s76IB9cBhfdfTi4uxU9A06cOJsH872DqI4OwX/NGuy+/0szk7F56ds+OsRK6ZNGo+KBVO8vjSsNjs+bu2EIAhYMDXT65xqt6t9dqQ9W/LPj+dzDrd3uT9Lcwq0f4xqHd/odn/P46twVn1lhdnQu+uuuwAAxcXFKC8vx5gx/CkwmkRyT670o96ztRYAVFeU6I5DLeizADjbO6DbyszUcQTfsqxmJg+M/o7lpiej9tgZ3arlvrxPnll8rXPr7bU3anWnRZ7x1xpbNARyLR29imstihjVS7Z9nXwy+kzGwn7/WCWIoplFL/FLqhxrs9mQlpYW6eFQiGm1NqHoIMD1ww2A6g8ZM8/Xes6mCtessby1i9Y5pdulmWb5LPSt8/Lx2qGTih9+0uz0w3/8BDsOnnTfVzE/H0/+cK7m2LVmuY1mv309j6/CWfWVFWZdwvm91NzcjJdffhnNzc34n//5H+Tk5GDXrl0oLCzE5ZdfHtJzhxO/66OL1WbHwRNdEEVXZt3MD/vtDW2q7dh8/VvxwgfNXkuj5X/r5eOUB79Wmx2LNu72+q4RBKC+ahly05NN/R2z2uwor96tWTm9rmqpqZZZ8n/392+o57X1HMeKeXl4/dCpC9d8ZF+7WsbfTLsvfwK5YE3iql1zvWvt67FjcaK5vrkDqzbvU9y+bc3VKJs2MQIjGn3MfjcxYOeX+Kih9wVJ0cPzR0Gwj/t65SKsqKlXBPVa2QWLAOytWgYApj87CYKAF++cj3t+f0Bx318qF6lmwLV+SOy8vwy3Plev+QPjcHsXbqmpN30eX4XyB04kzxXtwvW99MEHH2D58uUoLy9HbW0tjh49iosvvhjV1dX4+OOP8ec//zlk5w43ftfHB6vNjgOtXfjZq4f8+luh1Q9c/nyrzY7f1bW427J5Br+qATuA+nWu7wr5fWpj0wqU9IJsvUljKYCW70X35W+oFFCnJFrQN+h0B9aegTYA1aA7WJOtwZqA0OI5MWHByKTDtcptBr4eM1Ynmvm9G3lmv5ssYRxTVKmpqcGsWbNQWloa6aFQmASyT4vCR0Twg3XpuA2tXaoZeK3PhXNkuZwvnx2HKOK9pjOq933c2qV6u9YSy4bWLs2llwCwv7XTp/P4Sm/pZ7CF81zkUlVVhQ0bNuCdd95BYmKi+/Zly5bho48+iuDIaDSx2uyob+6A1WY3fGxuejKyxif69bdCrx+45/O3N7Rh0cbd2LznQjV3aamwtG1KsbQawIHWLvyurkVzibvn65SqlnuyAHjt/kWamX750uUdB096/bta4TiHKOLNI1bT17Zs2kTMKchU7OeXWuBJj5Fv2VJbVm3mnJ62N7ShvHo3Vm3eh/Lq3Xihtjkox/V0W2khHl0+AwIAJ4BNbzVhe0Ob38cL1muPFGm7QsJI4VHuO49eo3bjWmVlJSorK90zGxT/jFqbUHQIZYa9tChTddm8XoZdyiqY/ewkCAKWzpyE/92n/BGwUKOoklZRntKiTN1iPVcWqbfe0jqPr8JZLChaChONJo2Njdi6davi9pycHHR0dERgRDSaWG12vFzXgs17WkwtbfesGeLP3wq9iVfp+VIApvYwhyji5bp2W6adAAAgAElEQVRWbKn7SvUYD247pHq7BcCRk924Y8tHXtlxTwKAjRUlmiujzEwaS1v95A/b8OZR/OpvR/3K/JrJHgejIKBa4Ks1ARHInnOrzY7qvzV5taar2tnod6/weGhlxn3nsWHUZthp9JHPJAqCskAoC4ZGlrSXsHplCVTaQxs/X+c51SM/hqorSrzeZ2HkR8gmjdulQj3yWeiK+fnuf5dIs9PXXzYZFfO9f5BVzM/X/DGmNcs9pyBTd/Z7TkGmT+fxVThn3znTH34ZGRmwWq2K2w8dOoT8/HyVZxAFh5RNfXFPi6Kvt1p20jP7eutz9bh1Xr7PfyukSUE5C+B+vlFgvHnPV5r3i1CvoXL7VQVewaeUHRdlz+3uG/J57J4SBAFVy2cqvpekc/qa+TWbPVYbm6+TrWrX3bPWkL/HlTtwQrnKThSBgyf8W5UWjNceDdRWTlB0GbUZdhqdtFqbeO7ZOt3Tj49bu7CwKBM5aUn4x+ffouP8AJZJVeIPfo3m0+dx4+xcZI8fh798cgq9A8Ow2Qdx9FQPkhITUJCVguTEBABAdmoS8jKS0NbZh9lT0nH63AAav7YheWwCuuyDmDBuDPIzk3H82/P41KNK/JgEC1rP9iJpTAIyksdi7BgLunuH0Hq2FymJF6rEZ6Qmwj7kwHn7MMYnjUGCRUBX7yAKJ6bghitykZuehL3Hz+LYtz04NzCM3LQkAK4q8SfO9uH0SJX4krw0rJifj5TEsUhJtKDxpA3vN53GSZsd+RnJmFuQiYyUse5r2d7Zh47zA5g5OQ3n3VXix0IQXD88hhxOzJ6Sjv4hJ0QRKMhKRnunHd32QWQkJ6IgKxmNJ21oPt2L7AmJmJqV6lV8aMn0Se6iRAVZyegbdKJvcMj93tkHnTjR2Yuz5wdRnJ2K78y6yP1+FmWn4PNTNvztiBUX54zHyvkXqsRLn4EDrV0QBGD+VO9zqt2u9tnJTU/GI9+bobrnDwCe/OFc3Fk21f1ZMgqitWa5jWa/fT2Pr8I5+86Z/vC6/fbbsXbtWvzpT3+CIAhwOp3Yu3cvHnnkEdx5552RHh7FKTNL042WXL9+6BRevHM+Wjr6UGry7568WrlFAO5dfDFWLy5yn89oJZ4/hVAXTcvG1n3tho/dtKsJN8/N06wqr9a/XSoIJ01a3FZaiJvn5uHNI1ZsePOo1zF8zfyazR4Howq81gqrR2+YgV+/9UXQqstrle3yd0VftFTAD0SsFswbbVh0joVoiIgoioTre2lwcBCVlZV45ZVX4HA4MGbMGAwPD+OOO+7AK6+8goSEhJCdO9z4XR89tAquAb4VaJOWf/ta6MuoWvn2hjas29EIp+x2y8hWLV9+NEvFTuXFQ7UYVeeWj13rtfhbTEze9larGKpaG1N/q8BLPAvCeU5ABHpc+evTKhgYaAX6WJxojuWCefGCVeJN4pc4ERFFk3B/L7W3t6OxsRG9vb2YN28eLrnkkpCfM9z4XR89Drd3YcVz9YqspgWufdxSkKYXOMp5tlXzhVZ20bW/3rVf3SleWHYPQDWY17NhxeUYm2DxCka/d8VF+FvjN16PC0Z1bs/XU3vsjGoArEUteAOgyOp7VqYPdoAXjsDXc0LG8zM32rBCfHRgwG4Sv8SJiCiahPN76aWXXsJ///d/48svvwQAXHrppfjXf/1X3HvvvSE9b7jxuz46qLVVky9N1wocq3aoF4OT1Kyahxtn5wGAu5q7IAhYMFW9z7vZfunyAFJrwkHPpooSxXafFz5odu1tB0wF1EbUXo/ZLUZ6wRtwYeugXpvRWBKtGXEzveyDtXw93nuwx8pSf7PfTdzDTkRENAqtX78eTz31FB588EGUlZUBAD788EP827/9G9ra2vB//+//jfAIKZ6o7V2XWplJe9C1Cp3tvL8MgkH3EOm+7Q1tXsG9VMzUMxhWO8+6nY2YOXmC1354qeiopzkFmVg5Lx87Dp40/dp/vvNT1FUtdQdCVpsdJVPS8VrlIkX9E39oXbe6qqUoyk5BS0ev+/Wo0duvLhUjq2/uiPmK6BK19zXSjCaQgr18PZ47s8TjUn9WiSciIhqFfvvb32Lz5s3YuHEjbr75Ztx8883YuHEjXnzxRTz33HORHh5FGV/6patRrQQOoG/QqfsYhyiiobXLcA94QZZrT7c8Ey/CFYx7jlurKvmKmnqvvtxqr9lqs+O1Q97BukUAVl1ZqNlpRt7n3bPifVtnr2bwaPaaa123l+tavXqba/UcN1PtPF4qokcjo4r8oej3Hq+dWUJxraIBM+xERESj0NDQEBYuXKi4fcGCBRgeHo7AiChaBSNjZSajp/WY0qJM3ertAHDrc/W4Z3Gx6rJ5pwivTLBWNXgRrh/3S6ZPQu2xM6qvWSvY37a/TXPJvrzPuzyYUOsD7ss1V3s9FsC9B1861zqNnuNmqp3HQ0X0aGVUkT9U/d7jsTNLqK5VpDHDTkRENAr9y7/8C377298qbn/xxRdxxx13RGBEFI2ClbEyk9HTesycgkzF7ZXXTYNny3GnCLxU16J6bosAr4kB6Txqvc0dooiDJ7o0X7NaptkiaFeP93ydesGEJ1+vudp1u/eaYtWJhZf3ql+j20oLUVe1FNvWXI26qqWqkwNmHkO+M1q9EMrVDfHWgz1eV4Iww05ERDRKPPTQQ+5/FgQBW7Zswdtvv42rr74aALBv3z60tbXFTR/2mpoa1NTUwOFwRHooMSuYGSszGT2tx8hvb+noRc37zV7PdYrAj5cUY3Nty4U97CPZafm5bistxMzJE7Cipt4r2E4QBDhFUXdPtzzTrFb13SIAz9w+DwuKMnUz+xYB6DjfD6vN7n6cP9dcfn0AYEtdi+I4W2pbsLq8WLPfu9F7Gq7937FSNCwYjFYvcHWDefF6rVglnpVjiYgoioTye2np0qWmHicIAnbv3h3Uc0cSv+v9F6z2T8EOwIwqmx9o7YIgAPM1qsRL1Kq1awXynq9ZqjSuVj0dANYtn4mfXDtNcT7PfuPCSDN5eT95o2tu9lo+/ubn2LxHmVH3rKgfjeKxaJgZRtXro7W6fTSKlWvFKvFERETk5b333ov0ECjGBCNjFYoAzGhcN80xHt/2hjZseqvJ3Vf9tiunoLtvCLc+pwzW1Zbva1VPB4DZUzJUzyllwg+e6MIDWw+5zyPfz6722gBXEP7SSObc6FrevbgYW/a0KJbrP7D1EM4PDEdlEKxVwT8lMQELi7KiOvgKlNHqhWisbh+t4u1aMWAnIiIiIk2ey61TEi3oHXR4LeHW40uhNbXn6mWSAymapdZmbuu+dsXjLAKw8/4yr3Zvnvxpj5WbnozM1F5FIO257F1+zd88YsXaHY1ejze6lrnpyaiuKFG8Ts/ietEW1GgV9Xtw2yejKttO5IkBOxERERHpyk1P1qycrsffPfBms/L+ZtLUxqXGKXq3nlM7vz8rEMwE+vJrrsYhijjQ2oWs8eoTG7eVFiIlMQEPbvtE8bxorJytVcEf8G2yhyieMGAnIiIiIl3+Zsr9yUAHkpU3Sy8w9OTZkk0r2+9Ppt9MoK+2CkBOAPCzVw/pTmwsLMoyfA+ipchbbnoy7llcrLr3HjA/0RAtr4coGBiwExEREZEufzPl/mSgw9FLWRrXuh2N0MqfS2M1s7LAn0y/UaBvtApA6l6lNrEhPV8KWD1fqwXweg+ircib1t57wFyLrmh7PUSBYsBORERERLrMZsrVMpu+ZqD9ycqb5Tk+aVwv17ViS91XcIqu8zy6fAZm52e4z+dZsT3Y2X69QL84OxUjheS9CADWLCnG7CkZeGDrIa/7HKKIl/e2YMse78J07ieKuBDpIzyrGXwl7b2XJnkkZiZ7ovH1EAWKATsRERER6TKTKdfLbPqSgQ5VL2Wt8f38xsuwenGR6oSCWhX4SO7/FgC8XrkIcwoyYbXZVfu6e/ahd4rAuh2NgKCeiQ/HagZ/yIvu9Q06TU32aL2egye6kJkav0vkD7d3YX9rJ64sytIskEixiwE7ERERERnSy5SbzWya3VtslJX3dY+y0fi0JhSCke232uw4cKILoij61JqspUNZSV4E8GajFXMKMlUnNm4rnYKt+72r3TulJ3qQgvJgrmYI9r5xf7YZqL0eQYC7hV48LpF/+I+fYMfBk+5/r5ifjyd/ODeCI6JgY8BORERERKZoBVFmMrW+7i3WOpc/e5Q/bu0M2x58+VirdjS642UBQHWFuYBRqzDeltoWrC4vVrR/O/J1Nza91aQ4jmXkxGpBebBWM0TLvnH567EIgChCs999rDvc3uUVrAPAjoMncWfZVGba4wgDdiIiIiIKiFGm1ijDbTY7688eZSmYlDObSfa337s0Vs94W4RribqZgFGrYroT8JpokP73ji0fKYJ7C4CNFa497FpBuT+vz/P9AhBV+8Y9X0/H+f6YaWnnj/2tnaq3f9zaxYA9jjBgJyIiIqKAGGVq9TLwZqqwSwHi2fMDPmXK9VqjrZiX59O+el8DPK0q7/KAW49axXS1iQatc/1m1TzcODsPAHSDcl9enzybfs/i4qjbBy+9HrV9/sEqYOirULSau7IoS/X2hUUM1uMJA3YiIiIiCpheplYrA5+SaDHMzr5Q24zqXU0QRwJEeeV0vQBMrzXa64dO4ZHvzfApY+5LwKW1pN0CmA4Y5RXTtZasa13f+VMzvY4VaKCotsLhpboWn96TcApVAUNfhWrLwJyCTFTMz1fsYWd2Pb4wYCciIiKioNAKCrUCp95Bh2529oUPmrFx14V92U7RVUTMIroy1UYBmFbQLD+PJ7XA3J+AS3rNVTsbIXUnE+Baou5LwGhmyXq4AlO1CRCnCPx4STFe2tMa0aBYi79bGoIl1K3mnvzhXNxZNhUft3ZhYVEmg/U4xICdiIiIiEJOLXDSW7JstdlRvUtZRE0UgWdXzXMFwQKwYKp2gCIFsut2NLqqpXuQ77Fv6ehF40kbNu1q8grMl0yf5HfAJb3mgye6IIrAgqJMv4I0M9nxcASmWpn81eXFWF1eHLGg2EgwVhf4Kxyt8+YUMFCPZwzYKWj0looZLSOz2uz4uLUTJ872YWDYge9cdhFy0pK8Cpp4tkT5/JQNu5tOY9nMHMzKS8c/Pv8Wp8/1ozArBQ2tXWjr7EWCIGBC0lhcf1kO+oedON3Tj7kFGegbdEAQBBRkJqO9y47Wjl40fdODjnMDsA85cL7fgbTkBJw9P4TksRZMyUrBxNRETJ2YipO2Pnx28hwSxwiYmDoOC6Zm4lS3Hb0DDkydmAIRwKG2LvT0D+OK3DSc6unH2fMD6B0cxliLBYIAXJGfjhmTJ6DHPoyBYQfSksbiQGsnxoyxYMbkCbBAwImzvYAgoCQ/HXkZSfikvRs5E5KQl5GErzp6kZE8Fp+d6kF7Zx96B4cxPnEMCrJSsGJevvu6pSYmoK2zD4IgwD44jPrms8iZMA5TslLQ3TeIIYeIgsxkdNuHcHF2KuxDTvf1BeB1jO6+IbR39eLMuUHcNDsX1182WbXnp9b77Gt/UF+KD/m7HyzYY/Js21OYlYLeQUfc9nslIvKXPHDSywzXN3co2poBrkD66y5XMD8Ss+tWXpcC2ZfrWrGl7is4Re/MvGf23JMUmP/nLbMCCrhy05Nx4+zwfBeEOjA1yuQH2n4vHgWzdR6NToIoimp/C0eNnp4epKenw2azIS0tLdLDiVl6S8WMlpHJW57IyfdFUegZXfOs1LHo7B1y/3vF/HxcWZyl+j772h/U7LLDQPaDBXtMWp/heOz3SqHH76Xg4zWNflabXZGdtdrsKK/erQiWH1g6DTXvNXv9zRUA1K9bZhgUys+jdQ4jCYKAuqqlozYIVXu/5KKl1Vs02N7QppjkGK3Xgi4w+93EgJ1f4gFT+7KTvsgAaN4nfVEu2ribAXkcUCs48+Kd83HP7w8oHvuXykWqWW29z5LnDwKzj1NzuL0Lt9TUB21MRj/2RvuPOvIdv5eCj9c0dnkGOhYAa5fPRF5GkqJVFwA8+3/m4aY5eT4dv765A6s27/PpOWaDz9GcXQ7kezpemZnkoNHF7HfTqF0SX1NTg5qaGjgcjkgPJebp7c0RIeouI2vp6GWwHifk76NDFPFe0xnVx2r1BzW7zyuQ/WC+9iw1OpdeBWJfxkVENNqpBbhq+7L/euSU6vOPfdsDq823PeJ6Rem0bn/mduOJgVBnl9WuVTRNEIRj33asieQ+eoptozZgr6ysRGVlpXtmg/xntDdH777i7FQueY8Tahn2pTMn4X/3tSkeq9Uf1Ow+r0D2g/nas9ToXHo/9nwZFxHRaKYX4MoDnQVTM1V/OzyzuxnPvtfsLhRnJnhV25P96A0zMHtKBlISLbj1uXrF3/8FBj2urTa71zYppwhU7WwMWlVwtWsFIKqWn3PfNlHwWCI9AIp90pddgiAA8C7konef9NzqihIIOscX9O4khWBcLqNrnpU61uvfK+bno7pC+T5ff9lkVMzPVzxWq8ib0efF18epkXqWBmtM0v1q1yzaWtsQEUUjrbZXVptd9fHSbweLyt9dpwhU7WjEoo27sWrzPizauBvbG5QTx55uKy3EzvvL8IsbL8PO+8vwk2unoWzaRMwpyNT8+2+12VHf3KE6xgMnuhSTCaIIHDzRZXgtjKhdq3U7GlVv07p+4RDI9zTFhsPtXdi8pxmH2wP/XJM+7mHnvrag0dubY7Rvx2qz40BrF0509mJgyInrL8tBTlqS+zkAvFqifH7Khve/OIPrZkzCrLx0vHv0W5zpGcCUrGR83NqFti5Xlfjx41xV4geGnTjdM4A5BemwDzohCMCUzGR83WVH69leNFldVeL75FXiEy0oyErBxJRxKMxOwaluOz472YOxHlXird396B0cRuFE1zgPtXWhxz6My3PT8M25fnScG6kSn2CBAKlKfBp6+ocwMOTEhKQxOHCiC2MTBMyYnAZBAE509EEQgJIp6chNT8KRdhsmpY1DbrrrmqQlj8FR6zm0ne1F7+AwUseNQWFmKm6Zl+e+bimJFrR32iEIQN/gMD5sPouctHGYkpmC7r4hDDmcmJKZjB77MIqyU9A/5HRfXwBex+i2D6K9sw8d5wfw/ZILVeLlPT+13me1x/r7WfLncWqCPSarze7+jBZkJaNv0Ml9auQXfi8FH69pdNPaR75tzdUomzZR83lWmx1vHrFiw5tHDc/x7Kp5WDBVfbm80fJ1+d9/o8e/cfik6T32vi5j92XP/Y+vuRg/v/EyU48NJs/XBID7tuOQr8V7SR2LzpnEL3EiIoom/F4KPl7T6BZIgTJfqrxbBFfRupL8dHeA7Ou5zTxeraCuWhV7f/a5q53fAtf2ALVOJXurjCvnBxMrw/summoPmOFr8V7SZva7iUviiYiIiCgo9JaKa/F3+bQU6Ky9Yab7uXo7upwisPFvTVi1eR/Kq11L5fWKo6m9HqPHS6+nuqLE/SPbAlefeHm3E1+2AXgeW36tNlaUYM01xaqv13NcoebvaxrNtje0obx6t9dnMtrpFe+l0Bi1ReeIiIiIKHjUsqtmi7+pVYP35Vxrl8/E7HxXobgVNfWGxWylYHLn/WWaxdG0Xo+ZYmpGr0cr8D/Q2oWs8frXS+3YVpsdW+paQlLkzWwGmJXhfaM1wRGs4oSh4mvxXgocM+xEREREpMlM1lwt+KjaeaH4m5nsYW56MsqmTTSVWZefa9OuJnSc70dOWpJmQTo5hyiib9Cpmt0HoBpMATC9GkDt9UjXMjUxQTFGAcDPXj2ker3k74H82KEq8uZLBliqDO+JleG1mVmtEY18Ld5LgWOGnYiIiIhUmd2TrBZ8eFZJkgLemZMnoHfQ4bWH3Nf9u2rncorAg9s+cY9xb9UytHb04cjJbmza1aTeZx1AUXYKyqZNVGSs65s7NIMpX1cDSOTX8tZ5+Xj90Ck4RNG9D10t21p77Iyp98DfcWnxNQOs1iKPleG1xXLruyd/OBd3lk31qXgv+Y8BOxEREREpmAnYpIBbyhjrFX9ziCJWPFcP0SNgfe3QSZ8LlKkFOhJpjHVVS1E2bSLKpk3E1cVZqsvk1y6f6ZWh9gwsUxMTIAjekw6ewZT88UbUruXrh05h5/1l6Bt04mzvAB7YesjrOdISeV+D5mAFyP4scQ/2pEE8i/UJjjkFDNTDhQE7ERERESkYBWy6GeORYFetHzngCjw920L5sn9XHujIyYPKOQWZqK648Hhpz/tPlkxTPb70uuTBeiDBlNa17Bt0omzaRFhtdtVsK1QmJsK1L9zfDLDepEGsVUQPNU5wkBkM2ImIiCgm9PX14bLLLsM///M/47/+678iPZy4pxewGWWMi7JTUHvszIUgGYDT4Hy+BKJSoHPwRBce2HrIa2LAbBE4efBotdlx4EQXqnY0eh3PAmDn/WUBZRONgl+tbOuCqZkRWzYd7AwwW76pC+aqCIpPDNiJiIgoJjz++OO4+uqrIz2MUUMvYNPa4y1ljAHvINlM9XZfA9Hc9GTcODsZ5weGTQWVnoGR2uoAaXm+nBNA36DRdIPxWI2CX7VJhe0NbV6ZfkGAT0FzoBntYGWAY7UiOlE0YMBOREREUe/LL79EU1MTfvCDH+DTTz+N9HBGDa2ArTg7FQK8l7wLAhQBt2eQvOaaYry4p0X1PIFkb30NKtWCR8/l+WpjC0ZG28w4Pa+XNE6vaywCS6ZPMnW+YGW0g5EBZss3Iv+xrRsREREFpLa2Fj/4wQ+Ql5cHQRDw+uuvKx5TU1ODoqIiJCUl4aqrrsL+/ft9OscjjzyCjRs3BmvI5AOz7daMmp+vXlysaPtlAVCzah7qqpYaBpN67eW0xqj2HLXgUUuwC4GZvpbQqIYPmGr7pZXRttrsptr0BRtbvhH5jxl2IiIiCkhvby/mzJmDu+++GytXrlTcv337djz00EN4/vnncdVVV+Hpp5/G9773PXzxxRfIyckBAMydOxfDw8OK57799ttoaGjA9OnTMX36dNTX1xuOZ2BgAAMDA+5/7+npCeDVkZqWjl5lQTlAN2OqtSz8xtl5hufzJ1us9Ry9KvMSiwA8c/s8LCjKjFgGOJC2X1oZ7Zf3tmDLnpaw7yOP9YroRJEkiKJKec1RpKenB+np6bDZbEhLS4v0cIiIaJSL9e8lQRDw2muvYcWKFe7brrrqKpSWluLZZ58FADidThQUFODBBx9EVVWV4THXrVuH//3f/0VCQgLOnz+PoaEhPPzww1i/fr3q4//zP/8Tjz32mOL2WL2m0chqs6O8ercimKyrWmpqSbove6KtNjsWbdytKCyndy6j8W1vaPMKHlfMy3NXuJeCyWgoiCYfp9lxHW7vcrfQk6hV7jf7ngWLr+89UTwz+33PDDsRERGFzODgIA4cOIB169a5b7NYLPjOd76DDz/80NQxNm7c6F4O/8orr+DTTz/VDNYBV4D/0EMPuf+9p6cHBQUFfr4CUhNIxtTXPdG/q2tRZPON9j8b7ZlW20/+yPdm+B1MhqpdmT9F37Ta0t29uAibZTUEwr2PnBXRiXzHgJ2IiIhCpqOjAw6HAxdddJHX7RdddBGamppCcs5x48Zh3LhxITk2XWAUTAYjiLXa7HipTlmozgJlgTtPZpaTy4NHf4PJULcr82Vc8r3rwIW2dDlpSXipriUiLeKIyH8M2ImIiChm/OhHP4r0EOKar0G2vKq59NzaY2eCEsRqFYi7d0mx7vjCtWc62tqVaRWq6xt0ch85UYxiwE5EREQhk52djYSEBHz77bdet3/77beYPHlyhEZFagLJFMuf67lXWgpiZ06egN5Bh08Zd7VMuUUAVpcXGz43WD3E9URbuzKjlQXhuCZEFFxs60ZEREQhk5iYiAULFuDdd9913+Z0OvHuu++irKwsgiMjT3ptwPx5rtqe8xXP1WPV5n0or96N7Q1tpsYlZYUTBFdPsARBwMaVJaaL1bV09AYlMNVqhRZou7Jgt1hTu17yLLovreWIKPKYYSciIqKAnD9/HsePH3f/e0tLCz755BNkZWWhsLAQDz30EO666y4sXLgQV155JZ5++mn09vZi9erVIR1XTU0Nampq4HA4QnqeeBBIpthsX3PRz2XjgRReC8a+8u0Nbaja0QgRgACguuLCsQJZZh6qve/MoodXqAoOEknY1i3G2+cQEVF8icXvpffffx9Lly5V3H7XXXfhlVdeAQA8++yzeOKJJ/DNN99g7ty5eOaZZ3DVVVeFZXyxeE3DLdA2bfLnCgJg9Atz25qrUTZtYgCjNj8e6bUA8Cm4strsKNu4W3H7h+uWeT3fn1Z1/l5vih6hLjhI8c3sdxOXxBMREVFArrvuOoiiqPg/KVgHgAceeAAnTpzAwMAA9u3bF7Zgncwxs5Tal+dWLZ+pWCruyajKuxG9peRaqwVermtFefVun5bl/+Pot6q3vyu73ddl5norGig2BLKNhMgXXBJPRERERAEtpZY/12iZvFGVdz1GWU3VQnUAttR95XM199M9/Rq3D/g1dr0xssVabIm2goMUv5hhJyIiIiIAgRUk83yuWjE2idkq7xLPbLqZrKZaxv/ea4r9ymh/57KLVG+//rIc0+NXE8iKBooOgRYcJDKLGXYiIiIiCip5MTaJr4GpPJu+/IrJprKa8ow/AGypa/E5oz2nIBMV8/Ox4+BJ920V8/MxpyDT1Pj1xHJxOBZaC6zgIJEvWHSOhWiIiCiK8HspeDyrxB87dozXNAKkYmwpiRb0DTq9AlOjoE+tMJsaiwDsrXIVgdM75vaGNq/g6tHlM1CSn24q6Dzc3oWPW7uwsCgzKMF6LGOhNW++Fhwkkpj9vmfAzh9GREQURfi9FHy8puFjNvNqJuirb+7Aqs37DM8ptVoDYHhMKbg68nU3Nr3VxKDTR6xuTxQ8Zr+buCSeiIiIiAJmNvOqtQ9dXgBOrTCbGhHAuh2NgMdjtXGBGu8AACAASURBVI4p/fMdWz7yuQAdsdAaUSSw6BwRERERedFrm6b1eLMtrnxpaXbP4mLd9nASJ5SBvdYx2VLNfyy0RhR+zLATERERkZs/e5R9ybyaaWnmOQYBwJJLs1H3ZQeccI1JFF2ZdYkF8Mqwqx0TcE0sdPYOQoD38xl0msNCa0Thx4CdiIiIiACYX64u50tfcaOgTz4GEcDe42fxWuUid+G62mNnFM8HoBtIyicBpKCdQadvYrm6vR5WvqdoxYCdiIiIiAD4v0fZ18yrZ9CXkmhB76ADVpsduenJmmPoG3SibNpExfM9g0atQFJtEsAiAL+5fR4WFGUyQPNRbnpyXF0zVr6naMaAnYiIiOKSZ1s3MseXTLmcr5nX3PRk1B47owiUuvuGFI9VG4Na0KgVSKpNAjhFYOL4cXEVeJLv/F1VQhQuLDpHREREcamyshKff/45GhoaIj2UmCFlyhMEV2UxX5eL56Yno2zaRFOPVwuU1u1oxKa3mhSPfXT5jICCJxZLIy0sQkjRjhl2IiIiInIL1x5l1aw34F0NbsTs/IyAzsViaaQlkFUlROHAgJ2IiIiIvHguLQ9VMS61QMlstXc5M2OM12JpFBhO5lC0Y8BORERERKpCWYxLK1AC9Ku9BzLGeCuWRsHByRyKZgzYRxFp9jk1MQG9gw73/0qz0VabHQdOdEEURSwsylL8sfJ8fltnHz49acOJs30onJiMgsxUdNsHMeQQcf3MHADAu02nkT0+EXOmZKDuyw7s+fIMksYmoPySbJzqtuPM+QFABFLGjcHg8DBaOuwoyEpG8cRU1H7ZgWGnE5nJYzHsFFGYlYo7ri7EnIJMWG127DjwNeq+PINz/UM41z+MbvsQslLGonLZpchKTcQfPjyBgWEHLpk0HlZbPzrOD+Ly/AlYNG0S7IPDePfoaQw5nEhOtCBl7FgUTEyGIAgYHHa6x7+/tRMZyWPRbR8CROBzaw+m5YzHRRPGof54B1LGjUFWaqL7vhuumIx/Xmj8I0YrCyC/Xf5+qWUNDrd3YX9rJ64sykJOWpLu89Xe749bOyEIAhZMzQQAxftvlLHwvB+Aqddl5lr4c/0CfWw0idVxE1F8CUcxLl+rvUdijDQ6cDKHopUgiqLKTqHRo6enB+np6bDZbEhLS4v0cELGc/ZZziIAt87Lx86DJ93bxgQA1RUXZqj1nh9O8wszcLCtO7KD0FGYlYzaR5dp3q+VBZDffuu8fLx26KT3MkFZ1uDhP36CHQdPKs6h9Xz5/Z7vt5wAYOX8C8dQy1jI+9kCF9rkaL0uz2P4k7Xx5Tmx2qIlVsdNwTNavpfCidfUP/XNHVi1eZ/i9m1rrna3V4u0WBgjUaQwARDdzH43sUr8KCCffZZzisAOWfAmwlWp1WqzGz4/nKI5WAeAtk47/vRxm+p9WlmAw+1ditt3HFQG29LjrTY7Drd3qQbres+X36/3dorwPobnudVei4gLNYL0Xpd0DK1rIR1fjS/P8ef40SBWx00UrWpqajBr1iyUlpZGeigxKRYqq8fCGIkiYXtDG8qrd2PV5n0or96N7Q3qv08p+o3agH00fYmrVWE1wwmgtaPP7+ePVm9/9q3q7VptQxpau0xfX6nNyP7WzgBH6TvPFidGnwmt1yUdw58WKr48J1ZbtMTquImiFdu6BSbQFm/hYHaMVpsd9c0dnAClUYEJgPgyavewV1ZWorKy0r0UIZ6pVWE1wwK4Z6j9ef5o9d3LL1K9XattSGlRpunrK2UNUhLDP9fmmbEw+kxpvS7PY/jaQsWXtiux2qIlVsdNRPErFopxGY2RW42iH5duB5deAoDXN/aM2gz7aCKffZZLEARUzM+H590CgI0VJe4CHHrPD6f5hYH1YQ21wqxkzcJzWlmAOQWZitsr5ucrrrdn1mBOQSYq5ud73S94PE7t+ZDdL79XkP2z5zHkGQv5axEA9+dH73VJx/Ana+PLc2IhK6QmVsdNRPEtNz0ZZdMmRvXfIq0xMtMY/bh0O/i4VSS+sOjcKCpEY7XZ0drRh5REC/oGne7/lWajrTY7Dp7ogigCC4oyVb/0pOe3d9rx6aluV5X4rBQUZKWgu28IQw4nlo1UWd/ddBrZ48dh9pR01B3vwJ5jZ5CcmIBF07Jh7e7HmfP9EEUgNWkMBoccaOnoQ8HEZBRluarEO5xOZKSMhcMhonBiKlZddaFK/M6DX6Pu2Bmc6x/Guf4hdNmHkJU6FpVLXVXi/5+PTmBgyIFpOePxja0fHecGcXl+GhZNy0bf4DB2N41UiR+bgJTEMSjISoEgAIPDF8b/cWsX0pLHoMc+DKco4uhIlficCePwYfNZpCQmICt1HERRRNM35/Ddyy8yXSVeLQsgv13+fqllDQ63d+Hj1i4sLMpETlqS7vPV3u8DrV0QBGD+SJV4+fuvNVa1MQMw9brMXAt/rl+gj40msTpuCo7R9L0ULrymoRepDKnReVmULrpZbXaUV+9WrCyrq1rK778AbW9oU7RH5MqS6GL2u4kBO7/EiYgoivB7Kfh4TUMrUkvOzZz3hdpmbPxbk9dtDAijRyxOqMTS8n0mAKKb2e+mUbuHnYiIiIgCE6k+6GbOa7XZsWlXk+K5j94wI+qDl1gKCgMRa7VbYq0eAnvLxwfuYSciIiIiv0Squ4WZ82p1NJk9Jbrr4YymPd2xVLsl0vUQ2Olg9GKGnYiIiIj8EqkMqZnz+jO2SGe2I7ViIZJioRMBENnK67GW2afgYoadiIiIiPwSqQypmfNKj5F+7FoA3bFFQ2Y7UisWIi0WOhFEqvJ6pDP7FHnMsBMREVFcqqmpQU1NDRwOR6SHEtekDOnBE11wiiIWFmWF9byGmVkBgAgo+pl6CFdm2yiDH2t7ukcTaQJIXnk91JMM7KlODNiJiIgoLlVWVqKystJdiZdCp/bYmYgs2dUrquVLEB6OoMjMsuZIBYVkTiSW73MShxiwExEREZHfonXftS9BeKiDIl+uUazs6R6twl15nZM4xICdiIiIiPwW6SW7WsvMfQnCc9OTceu8fOw4eNJ924p5eUEbv6/XiO24yBMncUY3Fp0jIiIiIr9FqhgXoF8ozpeCeFabHa8dOul12+uHTgWtsFckrxHFh1gozEehwYCdiIiIiPwWjErx/vSYttrsqNqhXz37ttJC1FUtxbY1V6OuaqnmvvpQV2ePpX7jEvb9JooOXBJPRERERAEJZMmuvz2mf1fXAlmMrbrM3Mzy8nAU9oqlZc3s+00UPZhhJyIiIqKA+bNk198e01abHS/VtShutwB+BdnhyoDHwrJm9v0mii7MsBMRERFRRLxc12K6GJtncTm1JewAcO+SYr+D4VjKgIdSpIsIEpE3BuxEREREFHZWmx2b96hkyQVllly+RHvtDTMVS9gtArC6vDigMbE6O/t+E0UbLoknIiIiIoVQFx1r6ehV7EEHgHsXX+wVNKst0f71W19g7fKZXkvYN64sGfXBdjDEYoE8onjGDDsRERHFpZqaGtTU1MDhcER6KDEnHEXH1DK5FgCrFxd5PU5rifbs/AzUVS0d9UvYQ4HbA4iiBzPsREREFJcqKyvx+eefo6GhIdJDiSnhKjqmlsndWKHMkuv1MA9WETe2MFOKhQJ5RKMBM+xERERE5BbOomNmMrlSYP/znZ/CIYpBX6LNFmZEFM0YsBMRERGRW7iLjpkp9BaqJdpaqwmWTJ/EzDIRRQUuiSciIiIit2gtOhaKJdp6qwmIiKIBM+xERERE5GW0FB1jCzMiinbMsBMRERGRQqSLjoWjEFy0riYgIpIww05EREREUSWcheBGy2oCIopNzLATERERUdSw2uyo2uFdCK5qZ2PIM+1sYUZE0YgBOxERERFFjQMnuiCrAwdRBA6e6IrIeIiIIokBOxERERFFDVGUh+vS7WEeCBFRFGDATkRERERRY2FRFgTZbQKABUWZkRgOEVFEMWAnIiIioqiRm56M6ooS949UC4DqihLuLyeiUYlV4omIiIgoqrByOxGRCwN2IiIiiks1NTWoqamBw+GI9FDID7npyQzUiWjU45J4IiIiikuVlZX4/PPP0dDQEOmhEBER+YUBOxEREREREVEUYsBOREREREREFIUYsBMRERFRTLPa7Khv7oDVZo/0UIiIgopF54iIiIgoZm1vaMO6nY1wioBFADauLMFtpYWRHhYRUVAww05EREQUR0ZTttlqs7uDdQBwisDPd346Kl47EY0OzLATERERxYnRlm1u6eh1B+sShyiitaOPLeGIKC4ww05EREQUB0Zjtrk4OxUWwfu2BEFAUXZKZAZERBRkDNiJiIiI4oBetjle5aYnY+PKEiQIrqg9QRDwq5VXMLtORHGDS+KJiIiI4oCUbfYM2kdDtvm20kIsmT4JrR19KMpOYbBORHGFGXYiIiKiODCas8256ckomzZxVLxWIhpdmGEnIiIiihPMNhMRxRcG7ERERERxJDc9mYE6EVGc4JJ4IiIiIiIioijEgJ2IiIiIiIgoCjFgJyIiIiIiIopCDNiJiIiIiCimWW121Dd3wGqzR3ooREHFonNERERERBSztje0Yd3ORjhFwCIAG1eW4LbSwkgPiygomGEnIiIiIqKYZLXZ3cE6ADhF4Oc7P2WmneIGA3YiIiIiIopJLR297mBd4hBFtHb0RWZAREHGgJ2IiIjiUk1NDWbNmoXS0tJID4WIQqQ4OxUWwfu2BEFAUXZKZAZEFGQM2ImIiCguVVZW4vPPP0dDQ0Okh0I0KoWjEFxuejI2rixBguCK2hMEAb9aeQVy05NDdk6icGLROSIiIiIiCqpwFoK7rbQQS6ZPQmtHH4qyUxisU1xhhp2IiIiIiIImEoXgctOTUTZtIoN1ijsM2ImIiIiIKGhYCI4oeBiwExERERFR0LAQHFHwMGAnIiIiIqKgYSE4ouBh0TkiIiIiIgoqFoIjCg4G7EREREREFHS56ckM1IkCxCXxRERERERERFGIATsRERERhZ3VZkd9c0dIW30REcU6LoknIiIiorDa3tDm7tNtEYCNK0twW2lhpIdFRBR14iLD/te//hUzZszApZdeii1btkR6OERERESkwWqzu4N1AHCKwM93fspMOxGRipjPsA8PD+Ohhx7Ce+/9/+3dfVBV953H8c+5F0FQngTFgBcxbXRTFYjCJdmtq6TM0szW1odOMvGPatKJTkdMGmJGXUeTTJrFXZLGFGltNROyGZuaGNFMtk2zq6bGaKKSQkwNiBYiMYKignBlQeHsH4QbLs8PF+6F+37N3MTz8Pud7zn3zPnO955zfhxSaGio5s6dq8WLFysiIsLToQEAAKCDsmqHs1hv02yaKq++wQBlANDBiL/Dfvz4cc2cOVMxMTEaP3687rvvPr333nueDgsAAABdmBY5ThbDdZ7VMBQXGeSZgADAi3n8Dvvhw4eVnZ2tgoICXbx4Ufn5+Vq0aJHLOrm5ucrOzlZlZaUSEhKUk5Mju90uSfrqq68UExPjXDcmJkYXLlwY1n1oc7G2QWXVDk2LHCdJzn/fFhrosqy7X48v1jbof05Xqrq+SbbwQNU03FRY4BjVNNzU7ZHjVHyxTqe+rFFEcIDGWC2KDA5QXMQ42cID9emXtbpU939KtIWp+GKdPii9rPrGWzIl3WxukdUw9A+TgzXGatWNpltquNmsMRZDIWPHqPRyvRKnhGl8oJ9u3mrRGD+LEm1hCvT3U0PTLR0pvSLJ1KK7YjQpZKzKqh1qaLqloi9rFTneXwlTwnT+6g0ZhqG5U8N73feO0wc+r9Q7n15UUIBV/larbp84TvExoXI0Nfd6vMqqHRrnb5Wjqdn5//bbOVl+VTU3bkqGFBY4RklxE5z9XaxtUMEX12SapmInBHXbR9s67du2tT9ZflWGYcgWHtipXU/fd1HFNR0vvyp73AQl2ML7dA4NRm/99hbvQOLqyznvLh3PhWmR4/Tin0t0oOSSvjdjkv7z/sQh3T4AoO9uCw1U1pLZ+re9n6nZNGU1DP37klncXQeALni8YHc4HEpISNDDDz+sJUuWdFq+e/duZWZmavv27UpJSdHWrVuVnp6ukpISTZo0yQMRd6394CltPxqbah1IZfFdMcr/64UeB1bZfeK81r11akhj/Lyyvttlf62o7bX9K0e/6NN2DHW/7x2np4QH6vzV7t9Z6+l4tX//rWObxXfFaO8nF9RxsSFpy9LZkqT1b53qtLynPtraPpAcq90nznfZvi/f9xNvFOqtT775UWnpnBi9cH9ij+fQYAbj6a1fST0O/DOQuIZzMKGezgVJeuOTC3rrrxd0Lutfh2T7AID+eyA5Vv88faLKq28oLjKIYh0AumGYptldzTLsDMPodIc9JSVFycnJ2rZtmySppaVFNptNa9as0fr163X06FFlZ2crPz9fkvTzn/9cdrtdy5Yt63IbjY2NamxsdE5fv35dNptNtbW1CgkJGVDcF2sb9E9bDnZbMHRkNQwdWZ/qcnfznqyDA9q2L+jqePXneHdkfP2fgZz5Fkn5q/9Ri3KPdlvsd9Q+/qKKa/pR7tFO67y8fK4e+a+Cbvep4zHoq96OlUWSDLksb7+t3tp3FVdXbQYaf2/6cy7cPyeGO+0YEa5fv67Q0NBB5SW44pgCALxNX3OTV7/D3tTUpIKCAqWlpTnnWSwWpaWl6dixY5Iku92uzz77TBcuXFB9fb3+9Kc/KT09vds+s7KyFBoa6vzYbLZBx9nV4Ck9aRtYpX17dK+r4zXQYl1qvTs80J+pWiSdKL/W52Jdco3/ePnVLtc5VHK5x33qeAz6qrdj1SJ1O/BPX9p3FVdPgwm5W3/OhYMll9y+fQAAAGAoeXXBXl1drebmZkVFRbnMj4qKUmVlpSTJz89PL7zwglJTU5WYmKgnnniixxHiN2zYoNraWuenoqJi0HF2NXhKTzoOrNL2XjC61tXx6s/x7siQZAywvUVScly4+tO8ffz2uAldrpM6Y2KP+zTQwXh6O1YWqceBf3pr31VcwzmYUH/OhXtneM8rNAAAAEBfeHXB3lc//OEPdebMGZ09e1YrV67scd2AgACFhIS4fAarbfAU69dVYPuC0GoYWjonxrmsq4FVbgsN1H98/V61t+utNjLardPVvnecjp3Q8yPS3R2v9se7qzZL58R0GWvbe+hblszusWh39tFuHUNS1tLZSrCFa8vS2V3239v3nWAL19I5MS5tls6J0ffunNzjOTTQwXg6nZuG6/eTtXS2y/KO2+qtfVdxdWwzlIMJ9XYutLEa4nF4AAAAjDhe/Q57U1OTgoKCtGfPHpf32pcvX66amhrt379/0Nt053ttF2sbnIOnSHIZSKX9sp5GPf/f01Wqrm/UlPBAXW+4pZBAP11vuKW4yCAVV9bp1Ncjs/v7WRUx3l9xEeM0JTxQpy7U6vL1RsXbQlVcWacPzrSOEi99M0r8jMnB8vez6kbjLTXcapafxaKQAD+dq3YoPiZUwYFj1NTcrACrVfG2UAX5j9GNppv68OwVyZR+dFe0JoWMVXn1Dd1ouqlPv6xV5PgAxU8JVcXVBhmGNOfrUeJ72veO0wc+r9R/dxglfnZMqG40tfR6vMqrbyjI36IbTS3O/7ffTkH5NdU0NEmSwgL9NTcu3OVd+E++uCbTlGwTArvto22d9m3b2heUX5Px9eB5Hdv19H0XVVzTyfJrSooL7zRKfHfn0GD01m9v8Q4krr6c8+7S8VyIiwzSi38u0cGSS7qXUeIxwvC+tftxTAEA3qavucmrC3apddA5u92unJwcSa2DzsXGxiojI0Pr168f9DZJ4gAAb0Jecj+OKQDA2/Q1N3n8z7rV19fr7NmzzumysjIVFhZqwoQJio2NVWZmppYvX66kpCTZ7XZt3bpVDodDDz30kAejBgAAAABgaHm8YD958qRSU1Od05mZmZJaH3vPy8vTAw88oMuXL2vz5s2qrKxUYmKi3n333U4D0QEAAAAAMJp41SPxnsBjcgAAb0Jecj+OKQDA24yKv8MOAAAAAICvomAHAAAAAMALUbADAAAAAOCFPD7onKfk5uYqNzdXzc3Nng4FAAD0Ii4uTiEhIbJYLAoPD9ehQ4c8HRIAAEPOZwv21atXa/Xq1c6X/QEAgHc7evSoxo8f7+kwAAAYNjwSDwAAAACAF6JgBwAAg3L48GEtXLhQ0dHRMgxD+/bt67RObm6u4uLiNHbsWKWkpOj48eP92oZhGJo/f76Sk5O1a9cud4UOAKPaxdoGHT1XrYu1DZ4OBQPks4/EAwAA93A4HEpISNDDDz+sJUuWdFq+e/duZWZmavv27UpJSdHWrVuVnp6ukpISTZo0SZKUmJioW7dudWr73nvvKTo6WkeOHFFMTIwuXryotLQ0zZ49W/Hx8UO+bwAwUu0+cV4b9p5SiylZDClryWw9kBzr6bDQT4Zpmqang/Ck2tpahYWFqaKiosc/WA8AwHC4fv26bDabampqRuQYK4ZhKD8/X4sWLXLOS0lJUXJysrZt2yZJamlpkc1m05o1a7R+/fp+b+PJJ5/UzJkztWLFii6XNzY2qrGx0TldW1ur2NhYcj0wSlTWNuiLKzc0NSJIk0MDPR2OV6qsbdC/vHhYLe0qPath6M+Pz+OYeYm+5nufv8NeV1cnSbLZbB6OBACAb9TV1Y3Igr2jpqYmFRQUaMOGDc55FotFaWlpOnbsWJ/6cDgcamlpUXBwsOrr63Xw4EHdf//93a6flZWlZ555ptN8cj0AXzfjRU9HgI56y/c+X7BHR0eroqJCwcHBMgyjy3WSk5N14sSJAW9joO3bfnXhjoBnDfb7HwlGwj56Msbh2vZQbMedfXItHB6maaqurk7R0dGeDsUtqqur1dzcrKioKJf5UVFRKi4u7lMfVVVVWrx4sSSpublZjzzyiJKTk7tdf8OGDcrMzHROt7S06OrVq4qIiCDXo1sjIRcOxkjYP3K95/t0R19cD/umr/ne5wt2i8WiKVOm9LiO1Wod1Ekz2PYhISE+cdJ6q8F+fyPBSNhHT8Y4XNseiu24s0+uhcNnNNxZd6fbb79dRUVFfV4/ICBAAQEBLvPCwsJ6bMP5jZGQCwdjJOwfud7zfbqjL66HfdeXfM8o8X2wevVqj7aHZ/nC9zcS9tGTMQ7XtodiO+7sk2shBiIyMlJWq1VVVVUu86uqqjR58mQPRdUZ5zdG+3c4EvaPXO/5Pt3R10g410YSnx90zptdv35doaGhqq2t9ZlfmQCgI66FI0t3g87Z7Xbl5ORIan1EPTY2VhkZGQMadG404fwGgFZcD7tmffrpp5/2dBDontVq1YIFC+Tn5/NvLwDwYVwLvVt9fb1Onz6tyspK/fa3v1VKSooCAwPV1NSk0NBQhYSEaNOmTbLZbAoICNCmTZtUWFiol19+WePHj/d0+B7H+Q0ArbgedsYddgAAMCjvv/++UlNTO81fvny58vLyJEnbtm1Tdna2KisrlZiYqF/96ldKSUkZ5kgBABhZKNgBAAAAAPBCDDoHAAAAAIAXomAHAAAAAMALUbADAAAAAOCFKNgBAAAAAPBCFOyjyI0bNzR16lStXbvW06EAgEfU1NQoKSlJiYmJmjVrlnbs2OHpkAC3ItcD8HW+luv5A3ejyHPPPae7777b02EAgMcEBwfr8OHDCgoKksPh0KxZs7RkyRJFRER4OjTALcj1AHydr+V67rCPEqWlpSouLtZ9993n6VAAwGOsVquCgoIkSY2NjTJNU/z1UowW5HoA8L1cT8E+DA4fPqyFCxcqOjpahmFo3759ndbJzc1VXFycxo4dq5SUFB0/frxf21i7dq2ysrLcFTIADInhuB7W1NQoISFBU6ZM0ZNPPqnIyEh3hQ90i1wPAK3I9e5FwT4MHA6HEhISlJub2+Xy3bt3KzMzU0899ZQ++eQTJSQkKD09XZcuXXKu0/aORsfPV199pf3792v69OmaPn36cO0SAAzIUF8PJSksLExFRUUqKyvT73//e1VVVQ3LvsG3kesBoBW53s1MDCtJZn5+vss8u91url692jnd3NxsRkdHm1lZWX3qc/369eaUKVPMqVOnmhEREWZISIj5zDPPuDVuAHC3obgedvSzn/3MfPPNNwcVJ9Bf5HoAaEWuHzzusHtYU1OTCgoKlJaW5pxnsViUlpamY8eO9amPrKwsVVRUqLy8XM8//7weeeQRbd68eahCBoAh4Y7rYVVVlerq6iRJtbW1Onz4sGbMmDEk8QJ9Ra4HgFbk+v5jlHgPq66uVnNzs6KiolzmR0VFqbi42ENRAcDwc8f18IsvvtDKlSudA9CsWbNGs2fPHopwgT4j1wNAK3J9/1GwjzIrVqzwdAgA4DF2u12FhYWeDgMYUuR6AL7M13I9j8R7WGRkpKxWa6eBEqqqqjR58mQPRQUAw4/rIUYrzm0AaMX1sP8o2D3M399fc+fO1YEDB5zzWlpadODAAd1zzz0ejAwAhhfXQ4xWnNsA0IrrYf/xSPwwqK+v19mzZ53TZWVlKiws1IQJExQbG6vMzEwtX75cSUlJstvt2rp1qxwOhx566CEPRg0A7sf1EKMV5zYAtOJ66GaeHaTeNxw6dMiU1OmzfPly5zo5OTlmbGys6e/vb9rtdvOjjz7yXMAAMES4HmK04twGgFZcD93LME3THN6fCAAAAAAAQG94hx0AAAAAAC9EwQ4AAAAAgBeiYAcAAAAAwAtRsAMAAAAA4IUo2AEAAAAA8EIU7AAAAAAAeCEKdgAAAAAAvBAFOwAAAAAAXoiCHcCIlZeXp7CwME+HAQAAhgi5Hr6Ogh0AAAAAAC9EwQ5gWDU1NXk6BAAAMITI9YD7ULADo8CCBQuUkZGhjIwMhYaGKjIyUps2bZJpms51XnvtNSUlJSk4OFiTJ0/WsmXLdOnSJZd+3n77bd1xxx0aO3asUlNT9eqrr8owDNXUrIitHwAABZZJREFU1DjXOXLkiObNm6fAwEDZbDY9+uijcjgc3cb29NNPKzExUTt37tS0adM0duxYSdK7776r7373uwoLC1NERIR+8IMf6Ny5c8525eXlMgxDe/fuVWpqqoKCgpSQkKBjx451u63Lly8rKSlJixcvVmNjY7+PIwAA3opc34pcD19DwQ6MEq+++qr8/Px0/PhxvfTSS/rlL3+pnTt3OpffvHlTzz77rIqKirRv3z6Vl5drxYoVzuVlZWX68Y9/rEWLFqmoqEirVq3Sxo0bXbZx7tw5ff/739fSpUv16aefavfu3Tpy5IgyMjJ6jO3s2bN66623tHfvXhUWFkqSHA6HMjMzdfLkSR04cEAWi0WLFy9WS0uLS9uNGzdq7dq1Kiws1PTp0/Xggw/q1q1bnbZRUVGhefPmadasWdqzZ48CAgL6ewgBAPBq5HpyPXyQCWDEmz9/vnnnnXeaLS0tznnr1q0z77zzzm7bnDhxwpRk1tXVOdefNWuWyzobN240JZnXrl0zTdM0f/rTn5orV650WeeDDz4wLRaL2dDQ0OV2nnrqKXPMmDHmpUuXetyHy5cvm5LMU6dOmaZpmmVlZaYkc+fOnc51/va3v5mSzM8//9w0TdN85ZVXzNDQULO4uNi02Wzmo48+6nIMAAAYLcj15Hr4Ju6wA6PE3XffLcMwnNP33HOPSktL1dzcLEkqKCjQwoULFRsbq+DgYM2fP1+SdP78eUlSSUmJkpOTXfq02+0u00VFRcrLy9P48eOdn/T0dLW0tKisrKzb2KZOnaqJEye6zCstLdWDDz6o22+/XSEhIYqLi3OJp018fLzz37fddpskuTze19DQoHnz5mnJkiV66aWXXI4BAACjCbmeXA/fQ8EO+ACHw6H09HSFhIRo165dOnHihPLz8yX1b2CY+vp6rVq1SoWFhc5PUVGRSktL9a1vfavbduPGjes0b+HChbp69ap27Nihjz/+WB9//HGX8YwZM8b577YE3f5RuoCAAKWlpemdd97RhQsX+rwvAACMJuR6YHTy83QAANyjLQm2+eijj3THHXfIarWquLhYV65c0ZYtW2Sz2SRJJ0+edFl/xowZ+uMf/+gy78SJEy7Tc+bM0enTp/Xtb397ULFeuXJFJSUl2rFjh+bNmyepdYCbgbBYLHrttde0bNkypaam6v3331d0dPSg4gMAwBuR68n18D3cYQdGifPnzyszM1MlJSV6/fXXlZOTo8cee0ySFBsbK39/f+Xk5Ojvf/+73n77bT377LMu7VetWqXi4mKtW7dOZ86c0RtvvKG8vDxJ3/zavW7dOh09elQZGRkqLCxUaWmp9u/f3+tANB2Fh4crIiJCv/vd73T27FkdPHhQmZmZA953q9WqXbt2KSEhQffee68qKysH3BcAAN6KXE+uh++hYAdGiZ/85CdqaGiQ3W7X6tWr9dhjj2nlypWSpIkTJyovL09vvvmmvvOd72jLli16/vnnXdpPmzZNe/bs0d69exUfH6/f/OY3zpFj20ZhjY+P11/+8hedOXNG8+bN01133aXNmzf3+1dui8WiP/zhDyooKNCsWbP0+OOPKzs7e1D77+fnp9dff10zZ87Uvffe2+nP2AAAMNKR68n18D2Gabb7440ARqQFCxYoMTFRW7dudWu/zz33nLZv366Kigq39gsAAPqHXA/4Jt5hB+D061//WsnJyYqIiNCHH36o7Ozsfj8CBwAAvBe5HhhZKNgBOJWWluoXv/iFrl69qtjYWD3xxBPasGGDp8MCAABuQq4HRhYeiQcAAAAAwAsx6BwAAAAAAF6Igh0AAAAAAC9EwQ4AAAAAgBeiYAcAAAAAwAtRsAMAAAAA4IUo2AEAAAAA8EIU7AAAAAAAeCEKdgAAAAAAvBAFOwAAAAAAXuj/ARmkiXJmiN85AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+wAAAHbCAYAAABRORC0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXwU9f0/8NdsyA3Z3JCEhMQgRiAECfd9aAGpFokVxCpQpbYErQ/bami/1uNLm+D18wq2aIt+rWJUQFsVVECEQIVw33IlJECAhCQbSRYSsp/fH2GGPWZ3Z5NNdjd5PR8Pa7M7O/OZmXU/8/4c748khBAgIiIiIiIiIq+i83QBiIiIiIiIiMgWA3YiIiIiIiIiL8SAnYiIiIiIiMgLMWAnIiIiIiIi8kIM2ImIiIiIiIi8EAN2IiIiIiIiIi/EgJ2IiIiIiIjICzFgJyIiIiIiIvJCDNiJiIiIiIiIvBADdiJSPPPMM5AkCZWVlZ4uimZz585FcnKyp4tBRETULry5rp47dy66du3q6WIQdSgM2KnTeOeddyBJkvJPUFAQ+vTpg4ULF+L8+fOeLh4REVGnx7qarC1duhTvvPOOp4tB5DFdPF0Aovb23HPPISUlBZcvX0ZhYSHefPNNfPnllzhw4ABCQkI8XTwiIqJOj3U1yZYuXYro6GjMnTvX00Uh8ggG7NTpTJ06FYMHDwYAPPTQQ4iKisLLL7+Mzz77DPfee6+HS+ecyWRCQ0MDgoKCPF2UTq2urg6hoaGeLgYRUYfEupqIqBmHxFOnN3HiRABAcXExAODFF1/EyJEjERUVheDgYGRmZuKTTz6x+ZzRaMSjjz6K6OhodOvWDXfeeSfOnDkDSZLwzDPPWGx75swZ/PKXv0T37t0RGBiIfv364Z///Kem8kmShIULF+L9999Hv379EBgYiLVr17pUVnkfn376Kfr376+UQd6PI6dOnULv3r3Rv39/u8MRP/nkE0iShO+++87mvb///e+QJAkHDhwAAJw7dw7z5s1Dz549ERgYiLi4OPzsZz9DSUmJ07LI5Q8KCkL//v2xevVq1e1MJhNeeeUV9OvXD0FBQejevTsefvhhVFdX22z3zDPPID4+HiEhIZgwYQIOHTqE5ORki5Z8eYjmd999hwULFiA2NhY9e/ZU3l+zZg3GjBmD0NBQdOvWDdOmTcPBgwdtynXkyBHcfffdiIyMRFBQEAYPHox///vfFts0Njbi2WefxY033oigoCBERUVh9OjR+Oabb5xeHyKijop1tWPeVFcDwMmTJzF58mSEhoYiPj4ezz33HIQQFttoqauTk5Nx8OBBfPfdd8o0ifHjx6OmpgZ+fn547bXXlG0rKyuh0+kQFRVlcazf/OY36NGjh8Wxt23bhilTpkCv1yMkJATjxo3Dli1bbM5Dy3di48aNkCQJH330Ef7yl7+gZ8+eCAoKwqRJk3D8+HGbfWo59o8//ojHHnsMycnJCAwMRGxsLG677Tbs2rVL2ebYsWPIyspCjx49EBQUhJ49e2LWrFkwGAyObg35IPawU6d34sQJAEBUVBQA4NVXX8Wdd96J++67Dw0NDfjwww/x85//HJ9//jmmTZumfG7u3Ln46KOPcP/992P48OH47rvvLN6XnT9/HsOHD1cq4piYGKxZswYPPvggamtr8dhjjzkt44YNG/DRRx9h4cKFiI6OVpKsaS0rABQWFmLVqlVYsGABunXrhtdeew1ZWVkoLS1Vzl3t2kycOBGRkZH45ptvEB0drbrdtGnT0LVrV3z00UcYN26cxXsFBQXo168f+vfvDwDIysrCwYMH8cgjjyA5ORkXLlzAN998g9LSUofJ477++mtkZWWhb9++yM3NxcWLF5WHCWsPP/ww3nnnHcybNw+PPvooiouL8cYbb2D37t3YsmUL/P39AQCLFi3C888/jzvuuAOTJ0/G3r17MXnyZFy+fFm1DAsWLEBMTAz+/Oc/o66uDgDw3nvvYc6cOZg8eTKWLFmC+vp6vPnmmxg9ejR2796tnNPBgwcxatQoJCQkICcnB6Ghofjoo48wffp0rFy5EnfddReA5mRCubm5eOihhzB06FDU1tZix44d2LVrF2677Ta714eIqCNjXe0bdTUANDU1YcqUKRg+fDief/55rF27Fk8//TSuXr2K5557TtlOS139yiuv4JFHHkHXrl3xpz/9CQDQvXt3hIeHo3///ti0aRMeffRR5dpJkoSqqiocOnQI/fr1AwBs3rwZY8aMsbhPU6dORWZmJp5++mnodDosX74cEydOxObNmzF06FAArn8n8vLyoNPp8Pvf/x4GgwHPP/887rvvPmzbts3lY//617/GJ598goULF6Jv3764ePEiCgsLcfjwYQwaNAgNDQ2YPHkyrly5gkceeQQ9evTAmTNn8Pnnn6OmpgZ6vd7hPSIfI4g6ieXLlwsAYt26daKiokKUlZWJDz/8UERFRYng4GBx+vRpIYQQ9fX1Fp9raGgQ/fv3FxMnTlRe27lzpwAgHnvsMYtt586dKwCIp59+WnntwQcfFHFxcaKystJi21mzZgm9Xm9zPGsAhE6nEwcPHrR5T0tZ5X0EBASI48ePK6/t3btXABCvv/668trTTz8tAIiKigpx+PBhER8fL4YMGSKqqqocllEIIe69914RGxsrrl69qrxWXl4udDqdeO6554QQQlRXVwsA4oUXXnC6P2sDBw4UcXFxoqamRnnt66+/FgBEr169lNc2b94sAIj333/f4vNr1661eP3cuXOiS5cuYvr06RbbPfPMMwKAmDNnjvKa/N0ZPXq0xfn9+OOPIjw8XMyfP99iH+fOnRN6vd7i9UmTJon09HRx+fJl5TWTySRGjhwpbrzxRuW1jIwMMW3aNBeuDBFRx8G62rfr6jlz5ggA4pFHHlFeM5lMYtq0aSIgIEBUVFQIIbTX1UII0a9fPzFu3DibY2VnZ4vu3bsrfz/++ONi7NixIjY2Vrz55ptCCCEuXrwoJEkSr776qlKWG2+8UUyePFmYTCbls/X19SIlJUXcdtttymtavxPffvutACBuvvlmceXKFWW7V199VQAQ+/fvd/nYer1eZGdnq15jIYTYvXu3ACA+/vhju9tQx8Eh8dTp3HrrrYiJiUFiYiJmzZqFrl27YvXq1UhISAAABAcHK9tWV1fDYDBgzJgxFsOQ5OFpCxYssNj3I488YvG3EAIrV67EHXfcASEEKisrlX8mT54Mg8FgsV97xo0bh759+9q8rqWs5uedmpqq/D1gwACEhYXh5MmTNtseOHAA48aNQ3JyMtatW4eIiAinZZw5cyYuXLiAjRs3Kq998sknMJlMmDlzplLegIAAbNy40WZ4uiPl5eXYs2cP5syZY9FqfNttt9lcl48//hh6vR633XabxfXOzMxE165d8e233wIA1q9fj6tXrzq9h+bmz58PPz8/5e9vvvkGNTU1uPfeey2O5efnh2HDhinHqqqqwoYNG3DPPffgxx9/VLa7ePEiJk+ejGPHjuHMmTMAgPDwcBw8eBDHjh3TfH2IiDoa1tXNfKmuNrdw4ULl/8s91A0NDVi3bh0A7XW1I2PGjMH58+fxww8/AGjuSR87dizGjBmDzZs3A2judRdCKD3se/bswbFjxzB79mxcvHhROW5dXR0mTZqETZs2wWQyteg7MW/ePAQEBFiUD4By77QeG2h+Fti2bRvOnj2reu7ys9BXX32F+vp6p9eKfBuHxFOnk5+fjz59+qBLly7o3r07brrpJuh019uuPv/8cyxevBh79uzBlStXlNclSVL+/6lTp6DT6ZCSkmKx7969e1v8XVFRgZqaGixbtgzLli1TLc+FCxecltn6OK6UVZaUlGTzWkREhGplfMcdd6B79+746quvNK+nKs/HKigowKRJkwA0D7EbOHAg+vTpAwAIDAzEkiVL8Lvf/Q7du3fH8OHD8dOf/hQPPPCAzfwyc6dOnQIA3HjjjTbv3XTTTTZzugwGA2JjY1X3JV9veZ/W9ywyMtLuQ4/1fZCDanlupbWwsDAAwPHjxyGEwFNPPYWnnnrKbrkSEhLw3HPP4Wc/+xn69OmD/v37Y8qUKbj//vsxYMAA1c8REXVErKuv85W6WqbT6XDDDTdYvCbvW54Dr7WudkQOiDdv3oyePXti9+7dWLx4MWJiYvDiiy8q74WFhSEjI0M5LgDMmTPH7n4NBgMaGxtd/k5Y3zv5WUK+d1qPHRERgeeffx5z5sxBYmIiMjMzcfvtt+OBBx5QrmtKSgoef/xxvPzyy3j//fcxZswY3HnnnfjFL37B4fAdEAN26nSGDh2qZJ61tnnzZtx5550YO3Ysli5diri4OPj7+2P58uX44IMPXD6W3FL6i1/8wu4PtJZAzLx1vqVlNe8ZNiesksAAzXPX3n33Xbz//vt4+OGHnZYPaK7gp0+fjtWrV2Pp0qU4f/48tmzZgr/+9a8W2z322GO444478Omnn+Krr77CU089hdzcXGzYsAG33HKLpmM5YjKZEBsbi/fff1/1/ZiYmBbv2/o+yPf3vffeU32I6dKli8V2v//97zF58mTVfcsPkGPHjsWJEyfw2Wef4euvv8bbb7+N//f//h/+9re/4aGHHmpx2YmIfAnrakusq23Fx8cjJSUFmzZtQnJyMoQQGDFiBGJiYvDb3/4Wp06dwubNmzFy5EilsUe+1y+88AIGDhyout+uXbvi4sWLAFz7Tji7d1qPDQD33HMPxowZg9WrV+Prr7/GCy+8gCVLlmDVqlWYOnUqAOCll17C3LlzleeFRx99FLm5ufj+++9V8/uQ72LATmRm5cqVCAoKwldffYXAwEDl9eXLl1ts16tXL5hMJhQXF1v0+lpnA42JiUG3bt3Q1NSEW2+91SNlbYkXXngBXbp0UZLezJ49W9PnZs6ciXfffRfr16/H4cOHIYRQhtiZS01Nxe9+9zv87ne/w7FjxzBw4EC89NJL+Ne//qW63169egGA6jBxeSic+b7XrVuHUaNGqT48We/z+PHjFr0iFy9e1DwEUB62GBsb6/D+yi3i/v7+mr4HkZGRmDdvHubNm4dLly5h7NixeOaZZxiwExGBdbXM2+pqmclkwsmTJ5VedQA4evQoACgJ67TW1YD6SATZmDFjsGnTJqSkpGDgwIHo1q0bMjIyoNfrsXbtWuzatQvPPvusxTkBzSPgHN3rtvhOaD22LC4uDgsWLMCCBQtw4cIFDBo0CH/5y1+UgB0A0tPTkZ6ejv/5n//B1q1bMWrUKPztb3/D4sWL3VJm8g6cw05kxs/PD5IkoampSXmtpKQEn376qcV2ci/p0qVLLV5//fXXbfaXlZWFlStXKkulmKuoqGjzsraEJElYtmwZ7r77bsyZM8dm6TF7br31VkRGRqKgoAAFBQUYOnSoRTBcX19vk4E9NTUV3bp1sxgmaC0uLg4DBw7Eu+++a7FcyTfffINDhw5ZbHvPPfegqakJ//u//2uzn6tXr6KmpgYAMGnSJHTp0gVvvvmmxTZvvPGGpnMFmr8HYWFh+Otf/4rGxkab9+X7Gxsbi/Hjx+Pvf/87ysvL7W4HQGnVl3Xt2hW9e/d2eH2IiDoT1tXNvK2uNmdelwoh8MYbb8Df318Zhq+1rgaA0NBQi7/NjRkzBiUlJSgoKFCGyOt0OowcORIvv/wyGhsbLTLEZ2ZmIjU1FS+++CIuXbpksz/5XrfFd0LrsZuammyWZouNjUV8fLxy/Wtra3H16lWLbdLT06HT6fi80AGxh53IzLRp0/Dyyy9jypQpmD17Ni5cuID8/Hz07t0b+/btU7bLzMxEVlYWXnnlFVy8eFFZKkZuQTZvDc7Ly8O3336LYcOGYf78+ejbty+qqqqwa9curFu3DlVVVW1a1pbS6XT417/+henTp+Oee+7Bl19+aXeutszf3x8zZszAhx9+iLq6OmUOmezo0aOYNGkS7rnnHvTt2xddunTB6tWrcf78ecyaNcvhvnNzczFt2jSMHj0av/zlL1FVVYXXX38d/fr1s6j4xo0bh4cffhi5ubnYs2cPfvKTn8Df3x/Hjh3Dxx9/jFdffRV33303unfvjt/+9rd46aWXcOedd2LKlCnYu3cv1qxZg+joaIct+rKwsDC8+eabuP/++zFo0CDMmjULMTExKC0txRdffIFRo0YpDy35+fkYPXo00tPTMX/+fNxwww04f/48/vvf/+L06dPYu3cvAKBv374YP348MjMzERkZiR07dihLuxAREetqc95WVwNAUFAQ1q5dizlz5mDYsGFYs2YNvvjiC/zxj39UhrprrauB5vv45ptvYvHixejduzdiY2OVc5SD8R9++MFiWP/YsWOxZs0aBAYGYsiQIRbX6+2338bUqVPRr18/zJs3DwkJCThz5gy+/fZbhIWF4T//+Q8A938ntB77xx9/RM+ePXH33XcjIyMDXbt2xbp161BUVISXXnoJQPPycAsXLsTPf/5z9OnTB1evXsV7772nNDRQB+OBzPREHiEvFVNUVORwu3/84x/ixhtvFIGBgSItLU0sX75cWULFXF1dncjOzhaRkZGia9euYvr06eKHH34QAEReXp7FtufPnxfZ2dkiMTFR+Pv7ix49eohJkyaJZcuWOS03ALtLe2gtq7199OrVy2L5MvOlYmT19fVi3LhxomvXruL77793Wt5vvvlGABCSJImysjKL9yorK0V2drZIS0sToaGhQq/Xi2HDhomPPvrI6X6FEGLlypXi5ptvFoGBgaJv375i1apVYs6cORbLusmWLVsmMjMzRXBwsOjWrZtIT08XTzzxhDh79qyyzdWrV8VTTz0levToIYKDg8XEiRPF4cOHRVRUlPj1r3+tbOfsu/Ptt9+KyZMnC71eL4KCgkRqaqqYO3eu2LFjh8V2J06cEA888IDo0aOH8Pf3FwkJCeKnP/2p+OSTT5RtFi9eLIYOHSrCw8NFcHCwSEtLE3/5y19EQ0ODpmtEROTLWFf7dl09Z84cERoaKk6cOCF+8pOfiJCQENG9e3fx9NNPi6amJpvttdTV586dE9OmTRPdunUTAGyWeIuNjRUAxPnz55XXCgsLBQAxZswY1XLu3r1bzJgxQ0RFRYnAwEDRq1cvcc8994j169dbbKflOyEv62a9xFpxcbEAIJYvX+7Ssa9cuSL+8Ic/iIyMDNGtWzcRGhoqMjIyxNKlS5V9nDx5Uvzyl78UqampIigoSERGRooJEyaIdevWqZ4v+TZJCJUsFkTUInv27MEtt9yCf/3rX7jvvvs8XRxqgZqaGkRERGDx4sX405/+5OniEBGRm7GuJiJfwjnsRC1kNBptXnvllVeg0+kwduxYD5SIXGXvHgLA+PHj27k0RETkbqyricjXcQ47UQs9//zz2LlzJyZMmIAuXbpgzZo1WLNmDX71q18hMTHR08UjDQoKCvDOO+/g9ttvR9euXVFYWIgVK1bgJz/5CUaNGuXp4hERUSuxriYiX8ch8UQt9M033+DZZ5/FoUOHcOnSJSQlJeH+++/Hn/70J2X9bfJuu3btwhNPPIE9e/agtrYW3bt3R1ZWFhYvXqyshUpERL6LdTUR+ToG7EREREREREReiHPYiYiIiIiIiLwQA3YiIiIiIiIiL9TpJ++YTCacPXsW3bp1gyRJni4OERF1ckII/Pjjj4iPj4dOx3Z1d2BdT0RE3kZrfd/pA/azZ88ySygREXmdsrIy9OzZ09PF8Gn5+fnIz89HQ0MDTpw44eniEBER2XBW33f6pHMGgwHh4eEoKytDWFiYp4tDRESdXG1tLRITE1FTUwO9Xu/p4nQIrOuJiMjbaK3vO30Puzw0LiwsjJU4ERF5DQ7ddh/W9URE5K2c1fecHEdERERERETkhRiwExEREREREXkhBuxEREREREREXogBOxEREREREZEXYsBORERERERE5IUYsBMRERERERF5IQbsRERERERERF6o0wbs+fn56Nu3L4YMGeLpohARERERERHZ6LQBe3Z2Ng4dOoSioiJPF4WIiIiIiIjIRqcN2ImIiIiIiIi8GQN2IiIiIiIiIi/EgJ2IiIiIiIjICzFgJyIislJuMGLriUqUG4yeLgoRERF1Yl08XQAiIiJvUlBUikWr9sMkAJ0E5M5Ix8whSZ4uFhEREXVC7GEnIiK6ptxgVIJ1ADAJ4I+rDrCnnYiIiDyCATsREXVa1kPfiyvrlGBd1iQESirrXdoPERERkTtwSDwREXVKakPfx/aJgU6CRdDuJ0lIjg5xaT8cQk9EROTdyg1GFFfWISU6FHH6YE8Xxy72sBMRUadjb+g70Bxw+0kSgOZg/a8z+tutyDmEnoiIyPcUFJViVN4GzH5rG0blbUBBUamni2QXe9iJiKjTcTT0feaQJIztE4OSynokR4c4bHV3tB9vbq0nIiLqrOw1to/tE+OVdTcDdiIi6nRSokMdDn2P0wdrqrSd7YeIiIi8i681tnNIPBERdTpx+mCXhr639X6IiIiofciN7ea8ubGdPexERNQpuTL0vT32Q0RERG1Pbmz/46oDaBLC6xvbGbATEVGnpXXoe3vth4iIiNqeLzW2M2AnIiIiIiKiTsVXGts5h52IiIiIiIjICzFgJyIiIiIiIvJCDNiJiIjIq5WVlWH8+PHo27cvBgwYgI8//tjTRSLqcMoNRmw9UYlyg9HTRWk3nfGc7eG18F6cw05ERERerUuXLnjllVcwcOBAnDt3DpmZmbj99tsRGhrq6aIRdQgFRaVYtGo/TALQSUDujHTMHJLk6WK1qc54zuUGI4or65ASHWoxd7szXgtfwh52IiLyWmzxJwCIi4vDwIEDAQA9evRAdHQ0qqqqPFwqoo6h3GBUgjUAMAngj6sOdOjf3c54zgVFpRiVtwGz39qGUXkbUFBUCsB914L1ddthwE5ERF7J3sMFeZ9NmzbhjjvuQHx8PCRJwqeffmqzTX5+PpKTkxEUFIRhw4Zh+/btLTrWzp070dTUhMTExNYWm4gAFFfWKcGarEkIlFTWe6ZA7aCznbOjoNwd16K19TWDfccYsBMRkdfpjL0fvqyurg4ZGRnIz89Xfb+goACPP/44nn76aezatQsZGRmYPHkyLly4oGwzcOBA9O/f3+afs2fPKttUVVXhgQcewLJly9r8nIg6i5ToUOgky9f8JAnJ0SGeKVA76Gzn7Cgob+21aG19zcZ55xiwExGR1+lsvR++burUqVi8eDHuuusu1fdffvllzJ8/H/PmzUPfvn3xt7/9DSEhIfjnP/+pbLNnzx4cOHDA5p/4+HgAwJUrVzB9+nTk5ORg5MiRDstz5coV1NbWWvxDROri9MHInZEOP6k5avOTJPx1Rn+fWJ+6pbzhnNuzV9lRUN7aa9Ga+pqN89ow6RwREXkd+eHC/CHAWYu/vWQ65FkNDQ3YuXMnFi1apLym0+lw66234r///a+mfQghMHfuXEycOBH333+/0+1zc3Px7LPPtrjMRJ3NzCFJGNsnBiWV9UoQ19F58pzbO8mbHJT/cdUBNAlhE5S35lq0pL6WOQr2O8N3UCsG7ERE5HWcPVxYY4Zb71VZWYmmpiZ0797d4vXu3bvjyJEjmvaxZcsWFBQUYMCAAcr8+Pfeew/p6emq2y9atAiPP/648ndtbS3nvBM5EacP7nRBkifO2V6v8tg+MW1aFmdBeUuvhav1tbnWBPudCQN2IiLySlpb/D318EPtZ/To0TCZTJq3DwwMRGBgYBuWiIioZTzZq9xWDRQt7aFvTbDfmTBgJyIir6Xl4YJD6rxbdHQ0/Pz8cP78eYvXz58/jx49enioVEREntFRe5Vb2hjgS9MxPDX1jknniIjIp3W2bL++JiAgAJmZmVi/fr3ymslkwvr16zFixAgPloyIqP15Q8I7bxOnD8aI1CivvgaezGbPHnYiIvJpHFLneZcuXcLx48eVv4uLi7Fnzx5ERkYiKSkJjz/+OObMmYPBgwdj6NCheOWVV1BXV4d58+Z5sNRERJ7hS73KvsqdveGennrHgJ2IiHweH348a8eOHZgwYYLyt5zwbc6cOXjnnXcwc+ZMVFRU4M9//jPOnTuHgQMHYu3atTaJ6NwtPz8f+fn5aGpqatPjEBG5qjMm+Wsv7k5E6+mpd5IQQjjfrOOqra2FXq+HwWBAWFiYp4tDRESdHOsl9+M1JSLqHMoNRozK22CTI6AwZ0KLg+u22CegvW7iHHYiIiIiIiLyeY56w1vK03kHOCSeiIiIiIjcxlPZtDsjXmtLbZWF35NT7xiwExGRy9zxgNAWDxlt/eDCByMiIsfcPX+4M3G1jnF2rTtjndWWiWg9lXeAATsREbnEHQ9jbfFA19YPiXwIJSJyzNPZtLXw1iDW1TrG2bXuzHVWR0tEyznsRESkmb0HhHKDsV330R77bM/9U9vIz89H3759MWTIEE8XhahTaIv5w+7kybW0HWlJHePoWrd3nVVuMGLriUqvqhN9YW13rRiwExGRZu54GGuLB7q2fkj09odQUpednY1Dhw6hqKjI00Uh6hTk+cPm3DF/2B28ueG1JXVMaIAfrC61cq1bWme1JPD21kaQjoQBOxERaeaOh7G2eKBr64dEb34IJSLyFp7Opu2INze8qtUxOgkICVAP1QqKSnHX0q0wPx3za21vf5WXLtsNxlsSeHtzI0hHwoCdiIg0s34Y0wF4YspNqg9j9lrq5X3IDxM6CTYPdK628rfmIVHLsbz5IZSIyJvMHJKEwpwJWDF/OApzJnjNvGlvbni1rmOA5uD3rqVbbQJn6yAZaK5HVy0YoVxr6/1JEiAE8MiKParBeEsDb29uBOlImHSOiIhcMnNIEmqMjchbcwQmASxZewThIf4WD2Vakt0IYflvVz5rr1yuJplx5VgdLYkNEVFb8VQ2bUfcmT3cXYnr5P2EBvghMTIEyx4YhIfe3an0nKsl7VMLkk0CqG8wWbwm11m7TlVj4Qe7Xd6nHHg7Oj+1JdQcjQyglmHATkRELik3GLFkzREl0Lau/J1lrpXfl+t3gevvA2hVhmFXHhJbks3YGx9CiYhIG3c0vLa0Udk8yAeA5YXFeGtzscWwdkkCrOJmm8DZlXXG45I1D2MAACAASURBVPTBiAitc7rP0AA/pRfe2T6t92/eCAJcHxnQkuvC+lVdpw3Y8/PzkZ+fj6amJk8XhYjIpzhriW/N+wKiRa38bXEe5PtY1xORNa0Nr3vLqrG9pApDkyORkRgBoOXL1pkH+fKgd+sgGrAdcQbYBs6ujhRwFuDLZbMO1rWOPpg5JAlpPbphev5Wh734ajrz0nOu6LQBe3Z2NrKzs1FbWwu9Xu/p4hAR+QxnlX9r39fac9DW50G+j3U9EbXE7z7ag5W7zih/Zw1KwEv3DLTb0LvrVDUEqiGEwODkSJucLOZBvlqgbk0HwAT7eWKcjRSw7rW2F+CrzocHsOyBQQgO6IJyg1FT0F7X0OS0F99aSxs/WsqXe/I7bcBOREQtY1356yTgl6OT7b7vJ0l4YupNKK6sw4Xay6hraMKTU9Lw/NofVB8eHhydgn8UFsMkWpfcTa1y1voQQ0Sdmy8/3FPr7C2rtgjWAWDlrjPISNQjo2e4TUOvJAHZH+y+/jeAvKzrPcVqQb4jfpKE34y/AfkbT9jNEwPYHylgr9daLcBXnQ8P4KH/2wnhQq93SxrAl1+r58211Sg3X+/JZ8BOREQukyv/5VuK8dam5nl4/ygsVipB84eDfadrsORagjqZTgKenJqGAQnhysOD9ZDBX41NwbxRKW6bYwhA80MMEXVevv5wT62zvaRK9fU/f3YIOgm465YEfLr7rNJgbT2MXQBYtHK/0lMsr5eutWd95pCeyP/2hMvDywH7vdZpPbqhrqHJpgFKLdAGYJOjxt7nZa42gJcbjHhrc7Ht+Utw+yi39u7JbwsM2ImIqMXeNkuYY10JyhXhfW9/r5rR9vk1P6AwZ4LqsDwB4B+bSzBvVIrLZVKrnOX5ec7KSkSdW0d4uKfWGZocafc9kwA+3X0WqxaMQH2DCZWXLuORFXtstwNQUlmPTUcrLJKsAtfmsF8L9HUS8NDoGzBtQA8UFJ3Giu2l+GB7mc3+1Hqe1UaB2BuyL88vt26AitMH48kpac2N6rg+FF/r583L4EoDeHGlbSI8oPlaMF+NLQbsRETUIloqQUdDAV1JVNfacqmVwdcqbCJqex3h4Z5aJyMxAlP798CaA+dU328SAvUNJoxIjUK5wajaQ61D89Jmauulr14wErFhQRaB7d83ncAH2y3XRjdnPbzc3igQuz3m1/5t3QBVUFSKJWubg3VJAhaMT8XSa0PxnX1eboywLoPafyfWjQsp0aE2ow4kAPPMpte5S0fIV8NF8oiIqEXkStCcdSWoto3atlr21Zpy6aTrmXlbu38i6rjc+VtEvuv+Eb3svmf9fXhotO1IsIfGpKC0qt7ueulx+mCMSI1SRpjlrTnisDyT+3dHcWUdyg1Gu6NA5ARxuTPS4Sc1f4nV6l+5AcpmZJsA3tx4Ek9OSXP6+fWHz9stg7WColKMytuA2W9tw6i8DSgostMwYedZobWsr4kv5qthDzsREbWIljlramu0ArYVpjsTwNnbFwAmmCMih5iMsnOTe4JDA/zs9pzL3wfrXu57hyZBCODDolIs21ysNBSb78I82JePVVXXoLqcm7kv95/Dl/vPXRtCn2J3FAgAJEaGKEP2QwJ0uGvpVtXeZXujSQb0DEdhzgSUVNarfh4A/ufTgzZltDdsXy2wf/XegTZD4oVAm41k8fV8NQzYiYjIIUfZkuVKcGdJNSABmb0ibD5vXlHWNzSiuLIeQ5IjlHVt1bZrbYVqb1+u7p+Zon0b12GnlvD1h3t36Iy/fdaJT0ffGI0txyqb53Zfm2s+b3Syat4VkwBWbCsFzIJ8k2geZq4TzfPCzRt/zI/lCpNozh2jNsR73+kaJWeM+RB1Rw1Q9oaKm+d2yZ2RrqmsaiNR7DUKQLTfEq4yX85XIwnhrE2nY5PXZjUYDAgLC/N0cYiIvIqWbMlaMyr7WuZlT5WX9ZL78ZoSaedrv9XuUG4wYlTeBpvgUpKA+WaBuuzzfWex0GwpN0fyZ9+CyNBAJRC2dyxXzB6ahA+3lyoNAU9MvclmNRY/SbJI7KrWAFVQVGoTzKvd6//7bzH+/Nkhu+Wx91m1c5XLtelohaZjd2Ra6yb2sBMRkSot2ZK1ZlT2tczLvlZeIiJ36Mi/fY5GDdhLkCoE8I/CYkwb0EP57KajFchZud9mWx1g0cMONAeng3pFWBzP1XXZrUloHnYvJ4p7YupNSE/QO0yWaJ4IFoDyt/VoEqC5MUIIgcHJkcpogGf+bT9YlwCsWjDCZtScfBx7PfwcyaIdA3YiIlLV0izwavPYfC3zsq+Vl4jIHTrqb5+zUQP2sqsDtsuamS8RKpP3CdjmSgGArScqLTKk2zuW+f4WjE+1WI9dJnB9nXRxbYnUVQtG2OxTJwGVly5jb1k1vthXjmXX1j2XAORlWS7tBgD/LCy2WKpVApAzNa05i7yDsgoAH+04rRqwA46nmPjyMPX2xICdiIhUaVkKRetyKb62rIqvlZeIfIc3zw/viL99WkYNyD3Bi1but1mHHLBc1kzNwgm9lf2ZB6ebjlYoQ8IlAPPHpGDe6BSLXmfpWmY6geZe+ofGpmDeqBTsPFWtula5NXmZOet9CgHVNeIFgJyV+y2WdstZuV+1YSDXSfZ62fvbSpEUGYKHx6Wqvs/AvHW4rBsREanSshSK1uVSfG1ZFV8rLxH5Bs1LXHlIR/ztczRqwNzYPjF4bfYtmD00SVnOzN6ypNZe23BcuZ/ykm0Xai8jx3zZNADLNhdjVN4GAEBhzgSsmD8cW3MmYuuiiVgxfzi2LJqIP97eF3H6YGw9Xqnp2HKDytg+MXhlVgZ+PS5FdRSAOQFgZ0m10pjhygh9e5dkyZojqsu6uVu5wYitJyrb5Vjegj3sRERexnxZmbqGJpd6YRz13Ki9V24wYkdJFWrqGxEe4q/MWQOAvWXVqL3ciGUPDMLlRhNMQiApMsRiaB9gmwX+ZGUd9pZVIzYsqLmH4NpcOGfz1dqq16ncYLQoh9Z9q5XXm3vGiMi7+cr88I42t1jLqAHrDPH3Dk3EqN7R6BkRrLqsmRrz+ynPc1f7mLxdYc4EjEiNUl63zvuyYnuZ02PKy8xtOlrhctZ5SXJ9Pr1OAn5zbai+NRPablk2WXslRPS2up4BOxGRF1Fb6kVrpeSoIlN7D4DNA4U8t217cRVW7jpj91jW+4/TB+PFr36w+xnzOXNqlV9bVcLWQ/2s5+45Yz6MrzNmTiYi9/Gl+eEdaQizo8RngG1DigDwwfYyrCgqw0OjU/DklLTmDOwajtUkBHadqrYbrJtvJ/fwqwWGxZV1Tnu9dRKwesFIAMD0pVudruVuTpKAnhHB2Hu6xmateEdmDUnCmxttg3Wg7adOtFeDlzfW9QzYiYi8hHVlJNNSKTmqyADYvLfo2sOE2pw1Zw8aamXaW1btMMAXaD6m2jm0VSWsNtTPUTm07Mvbe8aIyHt1xPnhvkIeNbDrVDVM10ZbyRxliH9rczEkAAsmpGLpxhNOg2IdgJW7TjutQ/0kCfvO2K6bPrZPjDLCzlFiOuna9kfO/aipzrYoowTcdUuCkkjPuvyzhiXi5h5h+PNnB23e/7CoVLVM7TF1oj0avLy1rmfATkTkJRwNTXNWKTmqyASEbSOAg3JorfjNy7S9pMrp9vaGy7VVJWzverZk2J4v9YzRdfn5+cjPz0dTU5Oni0LktKeX2pb5sHHzntPQAD+HvcwCwN82nkTO1DTkrTniMGg3AdhwpEL1PTkA10nAPUN6WqybbhJAzqr915PPScCo3tHYcrxStR6TBJDWoxvuWmobdKvJn30Lgvx1KK6sR0p0CB56d6dqpvvVC0YiIzEC5QYjnvrsoO35qRzsqWk34/YBcW3yPTYfmt4eDV7eWtczYCci8hKOlnpxVik5q8hslnsBVHvYAWgeHme+/6FmvRX26ADVc2irStje9bRXDlf3xZ4x75ednY3s7GzU1tZCr9d7ujhEHW5+uK+w13NaY2zEkjVHnNZ5TUKgZ3iw9hZtFUIAY2+MxuZjlarz080bAkwC2HysOenctPQe+GL/OYttTQCKSqo1zz/fW2bA24Unm+foS+qnYRJAfUNzc/43h86pbGHLT5LaLFhXG5re1g1e3lrXM0s8EZGXsM7OK9NSKTnK7Kv2Xm5WOvKy0m2yvcpzvLMGJTgsq3WZMhIjHH5GApCbla56Dm2VlVjer/nldFQOLfvqSJmTicgz5Czi3vj70VEzcNvrOc1b43iNcZmfJMEkRGvidQgAm45VuryPNQfUg+eU6BBNWex1gBKsA7A7QkAnNTdmFxSV4unPDqluM3tYYrvUg46GpsvZ9QtzJrh9brm31vWSEK6kKOh45FZ3g8GAsLAwTxeHiHycOzKLlhuMKKmsR0iADvUNJqVl19l+5YzvBmMj9MH+SIoMUbLMA8DOU9WAADKTI5T9GRuuovBYJeoam9ArMgRJkSFKJvX1h89h45EKjE+LQXTXQBSVVCMlOgQhAf42WdPljPZnquux9cRFxHYLREJEMHSShPDgAGQmR9jNsm6+D/l8XcnI7my7coMRu05VQ1w799bOi2/rnjHWS+7Ha0rknDcm23KXcoNRWQ9dpoPj6WHmlmQ1zy+33ocnrZg/HKVVddfXXr/2unUi2fljUrBsc7HDfUkSkDfD8TlKErA1ZyIAOKwH3fEctPVEJWa/tc3m9RXzh1tk1m8r7VHXA9rrJg6JJyJyE3c97Fhn59WyX7Xs8jLzSlxONrN69xm7Dx3W2/xrW6nF53NnpGNEapTDY5ofO+9aj7a9TPXWr1nv29G11LJdnD4Y0wa4p8LtSJmTiYhk3ppsy12s8wfoJGDmkEQUFJU5DcAlQLkO5vtwxpXs647oJNisqy4P0x6RGqVMsQgJ0GF6/lbLMkhAQBfbAdU6CXjrgUwYG0yQJGBQr+bG7K0n7MyZB3Dv0Ourwtj7TrjrOcjTQ9O9ra7nkHgiIjew97DT2mGFWvZrL7u8zHyuukkAK3fZD9bVtrH+/B9XHcDesmpNa77KWdmttzeJ5kA9Z6Xtualtq3Yt2+qaExF1VPaGvDtKtuVtrM9B6zD+mUOSUJgzAb8amwIhgBXbyyCuzekGmgPCsTdG23xOAMp1kPfxxr23qA5Hl8z+7a6O+N+MS0VeVroStOkAPDHlJhRX1qHcYEScPhjJ0SHYXlJlc0yTAPJVlmEzCWD+/+1EXcNVTBsQrwSncqBsTQD4YFspRuZuwN83qS/r5s462VuHpnsKe9iJiNygPTOdW+/XUXb5ttAkhEvJbuwlx1H7vL19q11Lb83mSkTkjRz1fnq6R1Mr63MwHw2mtUf37c3FSmArAOgE8L/T+yE8JADGhqvYdC3Zm8z6OsTpg/HTjGDUNVxVyiIByJmahjsHxmPXqWos/GC328556cYTmDEo4XrDOdCcrR7OR83pYH9pOLVRFJuOVjjMgi8A5H55BBDAw+NSLd7TUie7MlyeCRqvYw87EZEbqLVKuzPTuaP92msRbyt+koQhyRGaj6kDVLfXSbBJemdv32rXsq2uORFRR+Os99MbezTVetKtz8F8NJiWHl21oNIE4KnPDmLhB7vxh0/2W7ynk2BzHeRy1dQ3WgS34SH+iNMHIyI0QHPvupZ6VKD5PIXVa4DjUXN+koQnp6Y5PIb5KAr5+mop+5I1R2yuc2iAn+q2IQHN4WZBUSlG5W3A7Le2YVTeBhQUlTo9jjcnaGxPDNiJiNygrTOdO9qvvezyMgmWQ/6yBiXY3VZtG8kssJaPn5EY4fCY5sfOzUq32d5PkpA7ozlTvfW5qW2rdi298QGTiMgbaRnyLg/3bqsM3I5YB+dqwZ2W0WTOhvHbHfLtoBfanHm5cs2WgxNonub1n71n7AauMjn48pMkPDg6xeG2LfXbSb1RmDMBD49LbV4txc525o3crozWMwE217muoUl12/oGk2pjy6KV+/H5vrOcxqYBh8QTEblJWw3f0rJf823k7PLWWebNP//7yTcp25ZVGSFJQM+IYIss7fI2ap93dMyyKiNqjA0W2eEdnYfaa1qvJYfMERE5p3XIuyeSbVkPc39yShqWrD1i03O+asEIp3PDnY2yskk+B+eZ4uVh4wAc5m4xCeCRFXvsBsdA8/mtXjBSqWv/vfesk6O3zGvrjyM+PFipIyXJtlFCB8vRA2rfEXscjXpT+47ZG9mw8IPdHW5FgrbAgJ2IyI3c9bAjL9EmSRIyr2VvtR6SZz4PzHp5NXkpt+LKOuUzxy7U4r8nKzEpLRYZiRG4UHsZ20uqcEN0KIIDmqsDAYHCYxXYU1aDiWmxmHRzDwDA3rJqHDhbg/qGRmU5uJOVdRiaHIkRqVFYf/gcNhy5gIlpsfhpRrzNuZiXVa2n3Po1Z8u/yecof1bL54mIOivrQNVbRiSp9bwuWXPEJoiW85v8bGAcPt1Trrovredk3tBbeLwC+d+qJ1EzP3ZJZT0EhKZg1tEms4YkITYsCMWVdbhQexlL1hyx2Wb8TTEIDeiCL/arn6cWAtcbGuz1nL8++xZMG3C9vnY2f13mbNSbve+YvcYAb1iRwNufGRiwExF5mYKiUuSsvD6PTF4aTW59dpR0B2afAZorbeseidfWH0dSZDBKqxwPQ3t/WxkGJYUjJToUK3edsbtdZKg/quoaLT6zasEo1bJqaUV3tvybTMsSd2y5JyJq5o0jkuz1vKr1CC/+4rDqPnQS8NqsWyxGdDkjb3ff246DdVlIgA6xYUGae6DtkoSyzrm90QKbfqjA6uyR+HJ/easyzcsNDWo9381/CyXLvNb56zoJWLVgBDISIyxelwPesX1iUJgzweY7Jgfzi1buVx3R4MmEsb7wzMA57EREXqTcYLQI1oHrc+PKDUanSXfMP2M+t86as2Bdtqu0xmGwDkAJ1s0/s/7wuRYt8WJvnpvaMEQtS9xxqbfOLT8/H3379sWQIUM8XRQir+BtSbzsJQ/NmZrmNEcKcD3A+mlGvKZzMp8r78qc7aKSagBwmsTNmRXbrq/7bu/QJjTP+zZfys3afcOSnF4feTi6db4XSbo+fH9krvb8AEDz5+obLENu63wDm45WqH7HZg5Jwmuzb1Hdrw7wSMJYX3lmYA87EZEXKa6sU63ETQIuDcnztI0/VCA4oIvLy67Z622x92SjZYk7LvXWeWVnZyM7Oxu1tbXQ6/WeLg5Rp6JlmLG9YdQzhyThzox4fLGv3G7POtDcs249Dcvesc17UiUJyB6fqrnHfPEXh/GXa+VoTRWs5bNyoD0iNQppPbph+tKtNqMN3t9WikVT0zCgZzj2na7B82t/QJPZRtbD0eXRFbtOVSPbbMk5ASBn5X58mj3S5lqYj9SzLptMtZF91X6EBPhhcHKkzX3P7BWhes2fnJrmkTraV54ZGLATEXmRlOhQ1WFyOul663Orh+S1g/E3xbRoXV/VoXsAYOec7S1x5+1rCRMRdWSuDDO2N1Q/Th+MIckRqsPjgebf9sxk26HZ/ywsxj8Ki5VjPzg6BT8dEGcRWAoBvPHtCfSPD8OBs7Wazqk9ql3rQDs2LAgZPfXYU2aw2TZvzRFsXTQRI1KjcOfAeJsEsHUNTcqQd6D5eppElc1+BIB9pw2qDScAHOY9UG1kv9Z7r3bfbZL+Sc3B+sNjLdd0b4mWzEP3lWcGSQgt6QU6LrnV3WAwICwszNPFISKyncMuAXkzLOewm1eg02+Jx6e7z1q0rkvXon61OewANM1hB+DyHHb5M+Zz2NV6Tpydv6OHBpm9/bXkmN6E9ZL78ZoStZ9yg1GZpy3zkyQU5kzQHEiVG4xYXliMtzYXqwbKar/t1nWnr5EzyMtJ6bYcr3SaEO+Ne21HGKg1lsjJ53afqsYLXx+12Y+cK8e64UROgKuTJAzqZZsjQO1em7N338sNRrfmUmjNPHRPPjNorZsYsLMSJyIvVG4wYmdJNSQJditJ60rVvHXdeik2AFh36DwqL13BxGtZ4veWVWNHSTWSo0MQEuCvfPZ0dR32nTZg/E0xFlnizbetb2hESWU9BidHICMxAusPn8PGHyosPmOvrFrP3/ozaudob3/ufhhoT6yX3I/XlKj9bD1RidlvbbN5fcX84RiRGuX08+bBlzkdgLfmZCIkwN/mt73cYMTI3A0+G6zLhqVEYHtJtaZs7YBtUlp7AbSz5fCA6w0G8iosm45W2A2CzXuzNx2tsGlQN6f1vreUuxqIPPHMoLVu4pB4IiInWrPcR7nBiJ2nqiGEwODkSABQlkUrPHYRdVca0SsqFN2CuyAyNBCJEcGoa2jCmep6bD1xETfEhCLIX4fP953F0ORIZCRGKOUxNlzFB9tOoaquAfVXrmJk72gkRITYlHPnqWpU1zfAcLkRJiFQeekKtp6oREp0KAYnRyhLuwl0QUp0KJKjQ5T9yDISI5RW/+ToEBw6a8DJyksIC+6CuoYm9I3Xo2+8HsWVdUqyFkdLuWm51tYVvCvLt3GpNyKi1mvvYcbWc6LNmQCEBPirBn//LFTviXcn6dr/CNF8Pk9MvQkJ+mC8930JthVXu+UYru5HTkorrxP/+b6zqtdOy7UxCeBn+VsB2M5fN196TS2QL8yZgF2nqrHwg90Wx2qPZHLLr01/MOfqPHRnS+d6GgN2IiIHWjvMynp4npZWbkcGJYVjT1mNaoW8+tratOZLobk6PNC8kjY/X3s9Hu9vK7P5nL19OOPqtXZle19YtoWIyJu09HezNWu+O8tWHhJgmze93GDEPwqLne7bmjylbNWuM5rqSQEge1wqRt8Yo/TE7i2rdluw3lImASzfUoy3N9sGri2ltpsmIbCzpFo1q3phzgRMGxCPS1euWjx3CDSv795W9W25wYi3Ntvee/O8P67yxucFLutGRGRHa5b7sLemaWvr0l2l6sG6OXkptBwNa6paM18OTj7fvWXVdns81D6ntg9n18zVa+3K9r6ybAsRkbdo7e/mzCFJKMyZgBXzh6MwZ4LmgEdtmTdz5kuKyUu07SipalGg+vhtN+KBEb2gYfU4Rf7GE9h3pgZx+mAUFJVi+rUeaU9btsl9wbo9fpKkmgBW7s0GgLF9YiyupzwCoK3qW3sr6zw0+oYW9Yx76/MCA3YiIjscLffRks+2JxPUs+q6qkkIFJVUt+pctFwzV6+1K9u35j4SEbmT+Trg3swdv5stWfNd7p1XC1DMh9Wbr/396Id7NO/f3AtfH8X0/K0u1295a45g/eFzqo3ybUEnAdMH2i5d11quLif/xJSblGXZrO07XQPAftb45VtcHwGh5b8VtQYeHYB5o5NdPh7gvc8LDNiJiOxQqwi0zsNz1kvQ1nSAS70G9vhJEoYkq1fQruzD2TVz9Vq7sn1r7iMRkbuYB5mj8jagoKjU00Wyy5O/mzOHJGHLoon41ZgblDLoJCjD6q17QVvTON2SjwoBPPjuzjZvlB+YqMeK+cOxJWciEsJbN496ct/uNq8JAL8am9Lcc67BgJ7hiNMH48mpaTbvPb/2B5QbjMrStNbe2lSMvWXapw5o/W9FbuCRz8FPkvDk1DSLfDqu8NbnBQbsRER2qFUEWufhyZ+1rgdbG0MPSgp3Wrn6SRJys9KRp3J8Z2W5NuJN2c9fZ/RHRmKExXWwty/5bbV9OLtmrl5rV7ZvzX0kInIHbx1qa4+nfzfj9MFIjQ1VgnHzoNzRCDZ7tZSzuteD7et27SszIDk6BBdqLyN/o+Pl3STJcVD31aHzNq/5SRLmjUrBqgUjnJZFwvU54ekJepv3zXuh1W6NADA9f6umRipX/1sxn37xxNSbsGTtkRY3inn6e28Pk84RETkwc0iSzbqkrn5216nmJVoykyMANC+1Vt/QiC3HL6Lu8lUkRYcgLMgfkaEB6BkRrCyt9v3Ji0iJ7oqb47pZLKEmLz9S39CIfWUGXKy7gvqGJoxIjULPiFCLcsrHr65vgMHYiCuNJmQk6pVlcS7UXrZYrs16OTh5P9bX4dBZAzb+UIEBPfXKMc0/p7YPd19rV7ZvzX0kImotR0NtvfX3qKW/m+7IsG2dB0bgepZytSz0MNtOjbPO8AeG98L/fX/Kq5aFM6F5KPlbm5wPJ581JBGzhiTidLUR2R/sdrq9hOsjFoor61wql6NVABzty/weOvpetOS/Ffn1+97+3ibQd3Y8a974vMCAnYjICVeWJVP77LQBwTavAbBZr9xSFH4+WD1Jj3l5HO9D/fjW72ckRqi+7ui4cfpg1WNbL63mKlevtSvbt+Y+EhG1RmuWOvMkV3833ZVh29FSXSNSo5A7I93uWu3miU+1+te2UuTcnoYla454NP+MOZ3UPJRcS3FWbC9DQVEZcmekY0nW9Qz9OjQH/tYEgBpjIwAow9gdHUcASsDsbBUAe40pgLZGqpb+t+LORjFve15gwE5EXs2VlvpygxE7SqogSRIye0U43N7VHgDr7c3/BmDx/+V115MiQ1BWbYQQAiEBfig8VglIEkb3jkJ9QxNq6huvrekqEBkaCGPDVXy+rxwSgPtH9MKkm3tgb1k1Pt19BmVV9ejip0Nmrwgcu3AJF2ovI61HN4QGdUFVXSNuiA7FgJ561DU0WZyTXM7QAD/sO2PAhdrLSIoMQY2xEUOTIxEbFmRRXvnz8nlU1V2BhOYx7uHB/hicHKmc/46SKpy6WI8rV5tw683dlcB/b1k1tpdUKfuXj1/X0ITQAD/lmsj70novtdwzb1s7lYgIaN1SZ75A/s1WG8qspYfTuk5VW6rLfFj2zCFJqKlvRO6aIxbbTEiLwfojFS6Xv0kIDEgIx6uzBuKRFS1LYufMr8emoPbyVXywvUzT9g+OTlG9DvaYL7FWmDNBGYn30Ls7VYPxvC+P4M6MeMTpg5GXle50Gdh9Z2owIjUKgGUvdEiADnUNTSg3GG2+59a0BN4t/W/FVxvFtGDATkRey9V1ts0rGwlAIDSWPwAAIABJREFUXpb69q1d7/uuWxKwevcZmITt+uNaWsKXbylxus3Go5WIDPVHVV2jxetrD5632EaN+TrszpZjU+PoPCQAMwYl2Kxb+/qGE8galAAAWLnrjObjqN0jtXs5Y9D1a27vnnnj2qnkWfn5+cjPz0dTU5Oni0LklUNt3cH8t9dakxDYdaoaEaHqDd7y8mjmv90Pjk6xOw9aVm4w2gTrAFoUrMsu1l3BKo31V0v8TcPQdnPHL1xy+RjmoxA2Ha1wmMleAFj8+WH8z09vVr6bO0uqIUnAobO1NvPmzQN82bdHzuOtzc2jAMzrXfl7vu90DZ5f+4PLjVQt+W+lIzeKSUK4Y+Ef31VbWwu9Xg+DwYCwsDBPF4eIrik3GDEqb4NNS2lhzgSbH99ygxEjczfYVEo6CdiSM9Fie1f2a297X6CTmpP0eHuxdQC2LJpoMSJA7V5as75nrt5Xb8Z6yf14TYnahrM6UrrWAiwHdOYN3joJeHJKGpastRyGLkn2M7/nz74F0wbE44+r9+ODbd6bZd9T5HoPgOZnF7XG8//sPaM60uDRib1x77AkpTHAev9q9a6cd6e9Gqna+3itobVuYpZ4IvJKrq6zrVYnmQRstnfHet++wOQDwTrQPLfO/Nrbu5fWrO+Zt66dSkTUkTmqI60bjk2ieQSW+ZD5PJU54466EoVoDshWMFi3oUPzWulyIjmtzy4CwKKV+y2ysEt2VoV5bcNxjMzdgJyV9kdUWNe7cfpgjEiNatcVBtrzeO2BATsReSVX19lWq1p0Emy2d8d6375AJ3nnMjXWdLC8R/bupTXre+ata6cSEXVk9urI2UMT8ezP+jn9vKsNy5nJEc15V1z8nEwH4A+T+7Tw0+4lofk6tdbwayvQmAAsWXsEBUWlCA3wc+kZwARgeWGJ8ndmrwi7n3eU1E+ud8sNRmw9Uem1yxb6GgbsROSVXF1nOy8r3aJyka7NpbLe3h3rfWcNSlD+Nl9zXIJ7g+TIUP8Wfc5PkpA7Ix15WY7XTrfH0XlIALIGJai+nzUoQZnHbr69o+PkZlneI3v30vyaq90zb107lYioI4vTB+PJqWk2rxcUnXbrcSQAi6amYXlhMRZqWLbMnjsGxiEsSHvdqg/ya/GxnBEAPiwqs9vhcHv/HkqdpoP9+vT7kmrl/5sEkLNyP+5autXlRo23C09ib1k1tp5ozo+Tl5XuUoeFDs1LxW06WoFReRtavBY62eIcds5rI/JqrsxFKjcYlYQpgzRkiXdljpP19uZ/A5brj8vrridGBuN0tRFCAMEBOhQeuwhJAkb1joKxwYQaYwOA5iF+kaEBqG+4ii/3lUNIwP3DzbPEn0VZdR38dToM6hWB4xWXcN5wGWlx3dA10B9VdQ24ISYU6Ql61DeYLM5JLmdIgA77zxhwofYKEiODUWu8isHJEYgNC7Ior/x5+Tyq6hogx/zhwQHITL6esX1nSTVOVdXhSqMJk26OtcgSv6OkWtm/fPz6BhNCAnTKNZH3pfVearlnvjR3zR7WS+7Ha0rUdraeqMTst7bZvP7GvbfgkRW7Wz0969GJvREa1MWrllxzJ0kCJGG7/JpOAp6cmoYBCeE4XvEjnvr0YNuXBbBIIDe2Twx2naq2WdtdulZuORfBQ6NvwLzRyQBs5877aj6Z9qC1bmLAzkqciIi8COsl9+M1JWo7jpJ+bjpagUUr98OE5h7YBRNS8ca3J+ztyoafJGHVghG4a+nWDhmsy/Jn3wIhgEc/3G1zHZ+YepNHGivM76Hayi3yajHmSevsNd6smD9cWRKOrmPSOSIiIiIialOOpiTNHJKELYsmYsX84XhyahrynQTrE26KUYZhy8Hq9pKqDh2s66TmJeWOXvhRNXlq3pe2wboEYM6IXq06riQ5DgTlJfnUloZbvfv60q4Czeu/lxuMqnloJNjmEyLXcB12ImoV6/VUvW1/7ijPusPncaH2Mm69uTsqL13B5/vKkRrTFVmZPQFAKe+hswZ8vOM0GpuacLnRhIYmgf5xYagxNiA2LAj9E/QICfDD3tMG7CutxonKOgzuFYG5o1JQWlWPmvpGHD5nwMEztYjuGoA4fTAqLzWgV3QIeoaHABIQHuyPpMgQlFbVQ5IkGBuuYv3hC+jiJ2FYShRu7dvdYjj8ukPnceHHyxiYGI7ggC5IiQ4FAOwoqUJNfSMMlxtx8VIDUqJDkNEzHHUNTco2xZV1CA3wQ1m1EftP1+DCj1cwMjUKCREhMDZcxcnKOgxNjlSGwqtdu52nqiGEsChzppPpCm3J275fREQdgbN1sy/WXVFdN93cwgmp+P3kNGVq077TNR12GLw5kwD+/Nkhu+/bW5P+ve9PYVBSOHaV1rh8TLlRZWyfGHyxrxyLvzhss41OAkxC2Gbxh20mfzk7vGpg3gYZcDtbXc6AnYharKCoVFmHU57vZL6Op6f311oFRaV4cuV+5e/XN1j2DLz49VFlvpc9RWbJYNSUVZdj9Z7yVpTyus/3ncNTnx3Ekqx0ALAou8xZeeVtYGe71bvP2ryWNSgBL90z0OK1gqJSiyF01vu3XvO1PXjb94uIyBu4K/iJ0wfbfN78d9eZUb1jlP0AwH1vf9/hg/XWMAlgb5kBL9ydjvVHLmDtgfOaPve/P+tn0bg/JFm90X3B+FQMTo68Frhff10HAFavydnh1ZZmFdeW2HVXYN0Z63IOiSeiFik3GC0qYZO4PiTKG/bXWuUGI3JUAl5r3vgskbNyP3JWqZddS3kdLdmiZuWuM9hbdr1hQr6X9vYhACxatb9d7623fb+IiLxBQVGpakZvdyzLZf2760xIwPWwZHlhcacO1offoB5EW2sSAn/4ZL/mYB0Aesd2swie6xqaVLcb1TtGdbpDbla63SkQ7lhi1dF3r7PW5exhJ6IWKa6sU51r1dJWVHfvr7XUWol9hVD+p/3sKKlWhsar3UtrJje3uDvjbd8vIiJPsxf81NQ3YsnaI63uwdRSF5i7a+lWJTP5ss3FLh+vI/n+ZLWmEXGuUgue5SBbrcccsD/dQe01OcD/46oDaBLC5SVWnfWed9a6nAE7EbWIsx94T++vteTEKb4YtEvX/qc91wAZbDakTu1eWtNJ7ZuExtu+X0REbUnLMHd7wU/emiNK3ScH8WP7xLgcEGmpC8yZBLBo5X7MGpro0nG8xcSbYjB/bCr2nXHP3Ht3VOG/GnMD/lFY7DB4loNs82z+1tupTXdQew1wns/AHnsNSObfvc5al3NIPBG1iKOssN6wv9aK0wcj79pccEfaIJdKq8jzw/NmpKuWTdJQYHl9Va2yBiVYJJ6T76W9fUjXWs3b89562/eLiKit2Bvmbk1t+LJOsg0U5R5Ma86Gzcu/u9bHcMQE4IPtZdo/4EW+/aECydEhuDMjHq/OGojZwxI9+ozgJ0mYNzoZhTkTsGL+cBTmTHA8UkKy+rdGat+DOH0wRqRGuVTHOuo9l49TXFmHJ6ekdbq6nOuwc21WolaRs7m60oranvtzR3nWHz6PC7VXMOnmWFReuoIv95XjhtiumDGoOUu8XN5DZw34ZOdpNDaZcLmhCQ1NAv3iwmC43IjYboHonxCO4AAd9p02YG9ZNU5W1CHzWpb4siojaowNOFxeiwNnDYgJDUSP8CBU/tiA5OgQ9Ixobj0ODw5AYmQwyqqMkCSg/lqWeH8/CcNuiMKkmy2zxK8/fB4VtVcwIFGPkAB/pRV6Z0k1aowNMBjlLPGhGNBTj/oGk7JNSWU9QgJ0OF1txP4zNaiovYLhqVHoGRGK+oZGlFTWY3ByhMMs8btOVUMIWJR5kIezxHvT90sN6yX34zWlzmJvWTWmL91qMcJKXk9b7TevoKjUYviy2prfap83H7osSUDO1DQ8PDZVtUz/2XsGj6zY47Zz9GbTB8bj33vPKtflZxlx+NRNiWWt6SRg1pBErNheZtPIIgeyWqYylBuMGJW3wek9Vxu14c4EcI7KselohcVxnpyahgEJ4V5dl2uhtW5iwM5KnIiIvAjrJffjNaXO4O/fnbC7dNqK+cMxIjVK9T3zhkygOeHb25uLleHRT05Nw50D45VgDYBNYAUA2eNT8Ycpaco+zbcfmbvBJ6eYuUNbTK8zX81FJwFDkiOxvbgKAs4bUKxtPVGJ2W9ts3nd/DujFpiP7ROjKdB3hXUDkrz0nCvH8aUl37TWTZzDTkRERETkw/6+yX6w7myOrzwX2aLXHM3/mADkrTmizGvXScBDo1NU52fnbzyBsBB/hAf72wR388ekdOpEcvK8a1fm9Nsze1giPth2fdqASQDbiquUv4UAnl/zA4anRKKuoclp4OpsXri9ueWv3jvQ7Qng1Oa/bz1Rqfk4HXXJNwbsRNQiLWnBbKtWT3m/oQF+FpWT2vHUtr1Qexmrd59BfUMT0hP0uLVvdwDAjpIq1BgbERESgPIaI1buOo3LjVfRMzwEcRHBuHrVhNPVRvSMCEbt5aswXL6KmYN74ueDmyuH9YfP4eMdp9HFT0JajzCEBXdBrfEqSqvqERrgh/jwYOw8VQ0/PwnDU6IQHx6EPWU1COrih7MGI0oq6zAoKQKQgEB/P0gCuHy1CUmRIThU/iNKL9ahySSQEBGMc4bLMBgbkR6vR83lRqTGdsXNPbqh8FglKi9dQVTXQPSLD8Ohs7UAJPSN74YaYyNuiA5FcEAXGBuuovD4RUAITL8lwWaYu3zdjA1Xsfe0AdFdA3Bb3x4AYHE9QwP8UPr/2Tv38Kiqc/9/9iSZJBPIJCFALiQkhEpQIRAuchNF7RHURxF6qqWnerSiR4Pt8/NYDaennsceK6i/tv5qQ1XUVs85UtqC2IpwqqKFiFWuAYWAQEICuRGSTMhkcpmZ/ftjsoc9M3vPLZP7+jxPK9mz915r771m1n7X+77ft6mdlvZukkwxzM5J8bj3+yubkCSJWRph8WXVzXxR2cTcnBSP9rW2D6UVdIFAIOhLai021usY6wbJV0BM7xxqo0xtH6n/7ZRhox/De/2Oco9wfEVI7unlVyH1sxjqYEEG/mHqeP56rL7XxrpBguqmwCXMHLLM8pK97kUWf4ZrIGV3vdxyNBYgIiEA5y1mF6zQXDCidUMVERIvwuQEgpAJZwWzr1Y91edVMEhw58xM3jl03qM9IKSasOGSnRJP6qhYDla19G1DfcjKwkx+/u0ZgPY9VggU6qeI4IGrPrzstV0ZA//6h8NsOXjep32t7XNzU4blCrqCmJcij7inguGMXkizBGwrWhDUQqfeOQT9izKnRrraSzAh5AnGKLeOjXfuundIugF4p2gB5XWXfDQQpmWaI76YrhUq7z3vBxPaP9gQOexBIiZxgSA0ghUn6e0x4fZFDwNABELRRhLvFi1gXGJc0PdYD3WunRqDBJ8W30BDawd3lOz1Oe6Fb03jR386GvD8kRhLgwkxL0UecU8Fwxm9uXDtsnweus6Vxxxo0Tyk+bTHkBzs0+lQKs06Y4KZ33xvFnBZyLahtYM/7j/Hf3+urfLvcXyWmcPVFr/7aBmueuPCe3FHbTArSJJLt2BK2mgMksS5ZhvP7Szvs8X0QKKxffWu2ZeIHHaBQNAn+Cu7EWqt197kOemdVw8nDJ2Ze5Cwv7KZqRmJfVZL1im7Xky+rNGORPjfr+qDOn8kxpJAIBAMVbxDmhUVbUV0LJhQYe9z6Hl4JVXEmjpqajDS2759b142E1JMbtV8SYLRsdG0dtgj0j81h89Z+PPhGh66Ls9HTyAYygIY66GEkFc1tbPhk9PIXoZ3VVM7JR+fdh8vy/Drnr+9F3GUVIj8tNG6lWRCRa/uu/pzf6H9QxlhsAsEgpAINpeot8eE2xc9hIc9dGbnJDMuMa7XIjn+POw5qSZMRoPmcTdfNZ4PjzcEPH8kxpJgeFJSUkJJSQkOh2OguyIQ9ClaYl0KwS6ae5+jobXDnQftRob8tNEcOW8JyiAeynnrifExwOX5T5bpE2NdYd2OcuZNSmFcYlzI6XuBdn1i6RTAFTaueM31xoXaKFeM+Py00WxQbfdGq69OYPmGvazvx7Q1f9+DoYz2W5JAIBDooKxgRkkuMyyYFcxwjgmnLwpRksTKwkyP9tatnKa5r+dfkSE7JZ7C7KQ+OHP/sbLQJTynd48VdDZf/hxXrvr6ldM87rXipUk3x1OQlczKwkyf9v9xdrbm9udWRn4sCYYnRUVFHDt2jH379g10VwSCkKi12Nh7upFaS2CBMYV0czzz88b4/B4qi9tqoiQJk9Hg04b6HNYuh48hKAN3lOzlJ9u+0uyD5PXvmVlDdy4s+fg0697XFvPrK+4o2csbpRVhL5LrTckXrZ0sXL+LVRs/Z+H6Xfxs+zESjFE+40ILhyyzr7I5rIgFucfgD2YchzPmtdD7HgxlRA67yGsTCMIiUC5RpI4J5bwmo8FDMEWrPa19G1o7ePdwDdZOO9MmmLlxqksl/kBlMy22LpJNRmpabLxz6BztXXYmJJvISDLRbXdwrqWDCUlxXOqw09ph5x81VOJjontU4uNiaO3opqqpHVNMNBlJcRysaibKIDFv0hjSzXEcqbZgjDFQ22Lj7MV2ZmQlIUkSsTGu9dWubicTUuI5XnuJqiYrdofMhB6V+NaObq5KN2PpUYnPTxvNp19f5IK1g7Gj4piaPprjNZdAgqnpo2m12Xs83DG0d3Xz6amLyDIsn5mhqRJf2dhOe1c3R85ZSB0V61bTV99Pk9FAdZONFlsXSfFGZuUke9z7A5XNSBIU6qjE769sZnZOso9KvPf2vhpLgwExL0UecU8FQ4m+EGn1Fu1aPjPDR5jVu41aiy2k+umRFkobqYQb1WaQYOM9s3jgrQMez0BPc0ACVhRmsu1QjTuVQqtdgwTvPLLAN9rC+3w9ogFa+6jz573z42stNt4oreD1noWK4Sgmq8eIEp278847+eSTT7jxxhv505/+FNKxYhIXCAQCwWBCzEuRR9xTwWAgmHKUkRTOUrcHrlKlBkliQnI8d27YG1Qbz24/FnT99NumpfHe0bqg+5eVHE91c++8qYLLqKuyqPUM5uQk83lFs+YxUZLE1kfmuxfcvccFwNpbXHoIr/ztNOv0ygcC61ZOIz9tNMs37PVYMFCPLe/FqDtnZrL14HkfI3+wi8VFimDnpmEREv/DH/6Qt956a6C7IRAIBAKBQCAQ+LB5X5VHSPLmfdrK3/7yzcNtb8G6XSxYt4tHNx3m0U2H2H6kNug27luUG1TqmEGC1YsnBRVirTDSjfXpmeaQ7lcgZC7nm397zgQkXB5zPWMdXM+9vcvJ/LwxFGQle6TAGeipNNAjXvjQdXmsWZLncw6D5CrxdtecbAqyklmvkwKpJXK3RcNYV/oV6pgfzgwL0bnrr7+eTz75ZKC7IRAIBAKBQCAQeBCMSrtCJERavdtTG0ROGV7bU+HThkFCVwA0EIomSUFWMnfOzGTLwfNhnScS3HzVeD44Vu9SdWfwFIfxFt8zAK/c4yrj9uSfjrD760a/xyse7OqmdrcyuxYOWdYsk6rbL/AYW4FE2x6/OZ/RcTEu5XwuG+TqNDa9c4RS2UeIyXoy4Ab77t27eeGFFzhw4AC1tbW88847LF++3GOfkpISXnjhBerq6igoKOCll15i7ty5A9RjgWBwEExo3VAk0HXVWmx8eKyeM41WclNNZCbFc6bRyqTUBGzdTpqsnaQkxGLrsvPRsXq6nTJjEoxMHJNA9hgTs3NSANh64BxHz1sYM8pIl8OJrcvB2FGxXJmRyN9ONvDlOQvRUVFMy0wkOsqVU36p00FyfDTNNjujY6NITjDS3uWgvcvOmIRY8tMTyUlN4ERtK389Vo8kgTHaQEZiHDa7E7vDSYutm2iDgVHGKE40XGJUTBTRMQZio6JIM8eSPWYUy2e4cshrLTb2VzZRdbGdDruDxLgYKi9amZGVRFxMFJIkkZUcT1VTO2eb2qm62E57l53UUbHcOTOTcYlxmvdSOW+LrZtkk5FZGvnk6v2UdqqbbciyzOycFL/hnBWNVhKMUVi7HB5t9+eYHa7fD4FAMPQIpbRpJEpTBTKMnMCDiybxemmFu662U4Y7N+z1yR2uaLRqGr0S8PjNV5AzJoEJyS6BurLqZt45NHDGOniWA/VnGy6YlMJnZ5r6xaCXgOJl+Ty/44TPM6212Cg95d9YB3j4+jwWXzGW947URL5zXgQqn/bQdXncPiND16jXm39DqeyzfGaGz3vLSJ7TB9xgt1qtFBQUcP/997NixQqfzzdv3sxjjz3Gyy+/zDXXXMOLL77IzTffzIkTJxg3btwA9FggGHj6QpBmMBDoujbvq+LJLUf7tU+nLliD3lcvd+8IrbrHNNLt/vdXtZeARn77aSWF2UkcqmrRfJn4n8+rA/bld3vPuv+tvpeb91X51M5V8t6877VejV2t/ZVjvEvRKG0D/TZmh+v3QyAQDE1C9Zr3tjRVIMMoSpK4b1EOt05P8xASU3v+Affiq5anWgYKs1OoarK6854Hk0c7EJ+daaJ4WT67yuv9hoxHAhmYnplEafGSsL3OGz45zW/+dtrvvuGI1ckymgtHgdAz6v3Nv1qLUctnZvDOwfM4vc6z7VANj988RTPvfSTO6QNusC9btoxly5bpfv6LX/yC1atXc9999wHw8ssvs337dt544w2Ki4tDbq+zs5POzk73362t+i/SAsFgJJTQuqFEoOuqtdgo3tq/xvpAcrCqJWLnUtdR1TLCZVzGtMe91jHW3ftvOeox5ryfn7rttVuPeijU9uWYHa7fD4FAMHQJx2seyMsZSntq9W512wfO+pbqcsgyv/20gtf2XFbsXnp1Gju+9FyQVsrC6YXeazGYDHoZeG5HOUunpfV5WwYJt5EeTAqEFjLa6vtRksQTS6cwfUKSrmic4kTXaqI3oedaau+B5l+txagl+eNY8/Yhj3Orc9jFnD4IDHZ/dHV1ceDAAdauXeveZjAYuOmmm/jss8/COue6det4+umnI9VFgaDfCSW0bigR6LoqGq2iVEwvCFRH1alaZdcLgfTYH89VeX9eAq3tfTVmh+v3QyAQDG166zXvbXuAR9tKFJU3Bgk27q7wWGD961f1rFmSx4ZPTruN+CeWTcHa5QjJozvYpnAn8H4IqvbBoBmNIMPukxc8vMJqYzfcvP8f3jiZyeNGeaSpqRdqDMDd12Tx+y+qtcu1QcjpFgpaXu+sFFNQ86/3wsWsicm6EShiTncxqA32xsZGHA4H48eP99g+fvx4yssvlxW46aabKCsrw2q1MmHCBP74xz8yf/58zXOuXbuWxx57zP13a2srWVlZfXMBAkEfEAlBmsFIoOvKTU3wEW0RBE+UJDEnJ1nXw6F4AKDnXuvs594fT6Eaf14CrRqwfTVmh+v3QyAQDH164zWPRHveEVHeP9cGCb6/KJeNXmXcHLLMwsljGR0Xw/od5Thll3f6yWX5YdcMH65o3QpFvV3xCquN3d6IxP+/j04Bl3PkH7ouz2OhxmQ08EVlk/5iepjt6nnStz4yP6z5N1AEipjTh0lZtw8//JALFy7Q3t7OuXPndI11gNjYWBITEz3+JxAMJZQfNq2SGUOZQNeVbo5n/YppvZrchhKF2UkRu1a1iuv6lb73UFH49bjXGvu598elVuv9Iqh+fuq2162YxvqV/TNmh+v3QyAQCMKh1mLjL2Xnee9IDbUWVxk1vYioX909k/sX5fqUGlPC35/bWe7heX9uRzkPX5/n87s/WJDonUEcSRSvsJaCf2/XO2Rg3Y5yXtntUo9PN8e7tQV+tl27brpC8daj7nERLHpe7+omW9jz711zsiktXsKm1fMoLV7ik/c+0uf0Qe1hT01NJSoqivr6eo/t9fX1pKX1fc6JQDBY6e/Quv4i0HUpn390vJ4zF1yhZBlJce79O7qdNFm7SEkw0t5l56PjDdidTsaYYslONTExJYFZOa7SI1sPnuPoOQupo4102WVs3XZSE+K4MmM0u09e4Oj5FmIMUVw9IRFjVBTnW9pp63CQFB9Ni83OqLgelfhOB+3ddlJNseRnJJIzJoHyHpV4gwSx0QbSzHF0KCrx7d1E9ajEn2xoIyHGQEyMAWN0FOnmOLJTErhDpRJ/oLKZs01WurqdjIqLpqqpnekTzMTHRCNJMCE5nuomG2ebrFQ1tdPeaWfs6DjumJHBuMQ4n3up3MMDlc202LpINhkp1FCJV++ntHOu2YYsw6wcbVV575X99i6nR9v9NWaH6/dDIBCMbEJVyvYWD1UEQ/PTRmvun5Xi8sg/uTTfXbbLIMFdc7P48Hi9pkbJho9PU7wsnyiDxDPbj/fq+vqCweL8l3CVzQultJmaYCIZnttRzu0FGQCamjJayDIcPNvMrdODnyf1Iup+8PtDrFsxTVNcLxj0IlDEnA6SLA+eAFNJknzKul1zzTXMnTuXl156CQCn00l2djZr1qwJS3TOm9bWVsxmMxaLRXjbBQKBQDDgiHkp8oh7KhjqeOcMf39RLvcvyvVbYnPBul2aYe+/+s5MH5EvgE2r51HVZPUI1w7GSJCAx//hCl7468lQL2vYopXCp4SuP7ezPGSjPX/8KE42tAU8btPqecjIrNr4edDn/vV3ZnJbj6Ef7KLQ5n1VrN1y1CesPkqSKC1eMiKN6nAIdm4a8JD4trY2Dh8+zOHDhwGoqKjg8OHDVFVVAfDYY4+xceNG3nzzTY4fP87DDz+M1Wp1q8YLBAKBQCAQCATDFa2c4Y17Kliwbheb91X57Lv3dCP7K7VrjDt7YrB9UqMgZNV3BRmEsa7in+ZlMy83xWe7DKzfUc7dc7PdaQfBhuyX17dx3RVj/aYfKLndigc8GCRwRx5u3lfFwvW7WLXxcxau9x1bau6ak82vVs302a5WdxdEjgEPid+/fz9Llixx/60Iwt1777387ne/46677uLChQs89dSTppSdAAAgAElEQVRT1NXVMWPGDHbu3OkjRCcQCAQCgUAgEAw39MKo/YmZ6RlsBskV+u6DBNXNNiEgFwH+++/6hq4MvP256/MHF+cyLdPMo5sOB3XeT05eYNsjC9zpZn8uq3GlLvQ87/sX5QC+Im56GIAnb8mnotFKQ2tHyOXT/Km7CyLLgBvs119/PYGi8tesWcOaNWv6qUcCgUAgEAgEAsHgwF8VDn/1qr3DsiUJnlyazxca3ne5x/MuVN/7j427K3jt3llBpx7IMrR3OZmfNwaAhxbncXtBBr/9tIKNuyvYuKeC10srWLdimjvve/uRWk1tgZ/cOhW7U3Yb/Foh/IHKpwVSdxdEjgE32AUCweBAnbcE6OYwhSp6o1BW3cxH5Q3EREnkpo5i1sRkGlo7+PB4PV12J112J5PGjWJ6phlrlwNbl53D1S102Z00t3cjIzN9QhLTM80cOW/hSHULkiQxbYKZDHMcZxqtIMOByibaOu00tHVg7XCQnhSPOT6GJmsnSBIpJiMA1i47BknC1uUAZKIMBlrau2jvctBq6yYmWiI7JYFkk5G46ChONV6ircPOqNgYJiTF0Wzrpq3Tjq3TQbLJCAa4Ki2RquZ26lo7SDBGc1WGmZuvHk9NSwdnLrRhjDZwvsVGt0Nm9sRkWju66bI7MUYbuGmqK2row+P1xEZHUWNp5+t6K5lJsRijXT/VWSnxtHXaOdvYztWZZq79RirWLge5qQnuexkbHYXZFENSfAzZKSaqm23IsozJGMWZRitzc1IuC9qdbabyopXObgc3TR3PuMQ4Khqt2LrslJ2zkDrKyDevTPM7HsIdY+nmeL9j6aPjdewqb+CG/HHcODWNsupmvqhscvdfIBAIRgqKYaQlJOavXrUswzPLr6KhtZNxibFYuxxuA82bKEliVk5yUJ5ZQWSQgQfePOBhrEvAI0vyOHPByo4vPWvE63mvX9tT4aHer/aM3zo9nWffP+7xzA0SGGMMPLPtK/dxWo87GG+5EITrHwaV6NxAIIRoBAI0a4LKuH7UlZVa7/28P/PHv/7hMFsOnu+7CxCERGF2EoeqWoLOT1RW/0N55t54j507Z2byzqHzmmNpxYZPOVjV4j42JSGGJmu3+++VhZn8/NszQu7DUEHMS5FH3FPBUEZZ3EwwRrH9aC2v7a7AicugemLpFKZNMPPp142UfHLa4zip58dbxnNu90YCim/J56HFee72Xvroa97+orrvLkqgizIn/u+Xdew6ccG9/ZZpafzTvIkei9x7TzdqCsxtWj3P7YnfvK/KvQijHhOabYN7bD274uqw5vtwHTuROn4oEezcJAx2MYkLRji1FhsL1+/SDYFTFD8Bn/2CUQMtq27mjpK9keyyYAAJRwE20BhTn/dYjYXvv3kg4DnfLVowbD3tYl6KPOKeCrQYrIaBul+7T17wWShXPJpHzrfoeswheJV3hdXXupTnAU2FeUHwhHrvvTH0nETr2aoXucuqm1lestejLfV7mzpy8uDZZta8fUi3X1GSxNZH5lPdZAPJlaMe6vciXMdOpI4fagQ7N43YkPiSkhJKSkpwOBwD3RWBYEAJVBNUyWGSkX32C5TfBPBFZVOEeioYDATzzL0Jpu6sct5d5Q1BnXN/ZfOwNdgFAkHfM1gNA+9+ySpvqBLuXFq8hJxUE9997e9+f1tDNRg37nHlQT94be6gN9bDNYh7a0gHQ8mqmRT2pP3tOt7Arz4+pRly7g8n6HZUGQcttm6e21HuY6w/u+JqzYWerBSTX2P92RVXU153KazvhZJmV7zlqG54vvf+3otlWtUQAgnfjRRGrMFeVFREUVGRe2VDIBip+BOzAc8cpnDUQOfm+JY2EQxdwlGADTTG1Oe9IX8c//N54DDM2TnCWBcIBOExkIaBP6++Vr+88beIrkbLQyvhCpMPtID66p6KYC5lQAnX6L5jRgazc5L5921fRbQ/Ct+Zm0Vhj2c63RxPQVYyGcnxProAErCiMJNth2o09QL8edjBNQ7W7yj3WAgwSLD1kfmMS4zziGpTxve/XDfJtx0JfnX3THdpN3VkRbDfC/Uik1Y/vRf59RbLtBb3AzkJBmuUTKQZ8DrsAoFgYFHEbJTanpJ0OddNrfjpvV+waqAFWcmsLMzsy0sQhEhhdhJ+Srn6oOwbrgKs1thZWZipOZZunJpGYXaSx/EpCTEef68szBTedYFAEDb+DIO+JFCd62CikQBKv74QsNb2nYWZHr+7Blwh7+88soBV12T14iqGNu8eriGpR3y2NyyfkcEqjXrqm76o9nm2d83JprR4CQ8uzvWou55mjuPFuwsoWTWTtcvyPebEdSuneTw/bwz4CsU5e1Tk9cb3Bi+NA4Anl+VzW0EG6eZ43iit8FkICfS98F5k8sZ7kV9vsazWYtMc0/6cBKHUjR/qjFgPu0AguIy3yiegqfgZrhroz789g3vmT2RXeQMxUQZyUxM8wsU67Q467TJ54xKYlmmmvctJe1c3R6otdNodPSrxMH2CmWmZZo6et3D0nAUkmJZpJt0cR2VjO05Z5sDZZto6urnQ1klbp52MpHjMcTE0WbtAwqUSL7lU4qOQaO92pcVESRLNti7aO71U4hOMxEVFcbrxEpc67IyOjSEzOY7m9m6snXbae1TiDQaJqWmjqW5up7a1g1HGaK7KNPMPV42n1tLBmQYrxmiJ8y027E6Zwuxk2jrsdNodxEZHccPUcQB8dLyB2BgDNS02vq5vIzMpDmNMFMiQlWKirbObsxddKvGLJqe667E2tHa4jzXHx5AUbyQrJZ5zzTZkGeKNBiob25mdk+xWiT/oVol3cuPUcYxLdN3H9q5ujpyzkDoqlpuuHK87HnozxtLN8Tx+8xTN8259ZCEfHa/jkxMXuH7KWLdK/P7KZnf/BQKBIFy0on76un50MF79YKKRAH7zyWn+af5Ev4ru2w7V8PjNUygtXsJvSyt5rfQMr/aEvK++NpflM9LZdrg20pc56JF7/q+3ofHbDtd4nEN9Lj3PtFrNXQZKPnYZ0IqXubR4ic+c6NYrONfC8ztPuMunPbF0Cs/tLNcdw97jSG9cTc90LZDXWmy8XuobWWEAv98Lf4tMWov8vy2t0F0sm583JugycSMtfF4Y7AKBAMDtRVf/Hcx+wVKQ5WtoKeFietw4NU33XHqsDrlng4twjVG9e6l3Ple5F9/nqDxb73sfiQlQa4zpnffGqWkefdAaPwKBQBAOA1E/OphwX+9+6RlZTlyLqP5qbSvnzkk18VrpGfd5ZIZGyHtfcqK+ldtnZPDu4Zpencefwe/9bP0ZtmptAkXZXUE5Xkbm1XsKqWhsZ07PwnWSKUZ3DHuP7yeWTfERKFQb+Hr9e2Bxrt/vhdYikzrMXn1srcXGRo2xZ5AuLwoE6xgKJ3x+KCMMdoFAIBAIBALBiKK/60cnGKN8vLpaXn3vfv25rIZ175d77GMALlo7qbXY3LW2f7b9uE8975xUEx8erw8qzH6gmD0xmf1nm/u1zZd2+YaGRxrvZ5ubmoAkadc7B31jUys/XJ33rTeGtT5Litc38PUM7/sW5vq9Tr3Fr9sKMnz2rWi0ai5yPLBoUtCL+QoDESUzkAiDXSAQCAQCgUAw4gglYqw34laK0aWl5q11LnW/HlqcBzIu7yiXQ7nXvH3Io8ybDxL851+O8f6XdX77dlP+WD4sv+B3n76kv431cLl28hj2nLoY1L5azzbdHE/xsnyfxRcFgwQmo6e0mF5+uHf4d7ARkf4M/N5EnQS7+KW5KADctygnYBta19bfUTIDiajDLmqzCgQCgWAQIealyCPuqaA39KYEXK3F5qHYDa5zvPPIAt00H72SVwcqm/nB7w/5GDz/7zszeHTT4XAvT9CDv7z21++dxeq3DvjN135i2RSmZyb5NVpf+dtp9+KLVvvrV14eW89uP+Y3fWHT6nk+IfS9pdZi69Ook837qnyM7N6UU+zr/vY1og67QCAQCAQCgUDQC3orbqWVa6uoeWvhb3GgttXmey7g72eafDyX/VFvfLAyI8vM4WpLyMc9fvMV/N//Pelz35ZdncaVGWbyxo7i64Y29/ZpmYm8es/skAzGh67L4/YZGRw820zR24c8PpOBtVuPuiMmtPK9Ffoq/DtcnaJgCeSNL6tu5ovKJubmpASlW6PWCFD/PdwQBrtAIAiIerUf4MNj9ZxptJKbaqJgQhLVzTZkWWZ2Tgrp5nhqLTb2VzZx9mI7nXYHN00dz7jEOD44VseX51tJiI1m0eQxnG+x0djWRVZyPMdqL9HW0c0lWzdHzrdiMhrIH5/IeYuNGROSaOu2c6q+DWuXHadTJsEYTZfDyajYaCy2bi5c6sSJzOjYGNLNcYxJMDIrJ4Uj51o41dCGDDS0dtBhd5JiMjIhKY76ti667Q7aOh1MTDFxTV4KLVY7NZZ2zjW1Y3eCU5Zp6+gmNjqKCSkmcsaYqLV00NZpB2BUbDTXfmMs4xJj+eh4A9FREtEG+Or8JWzddiYkm1i92FX79L2yGsYlxoEEDa2d3DY93S2s9tHxOt4rq2HyuNHkp4+m7JyFjm47lnY7JmMUy2deLmWm3nfRN1Kxdjncz6ai0UqCMYr3v6zlq/Ot3DEjg3+cne3xLPdXNiFJErMmJnt4bz44VkdFYzuTUhPISIqj9NRFkGWPtsMZM8N1AhX0Hy0tLdx0003Y7Xbsdjs//OEPWb16qEtMCoYCvRW3OnrO13DUM7a0FgfWbjlK2TkLv/+iSte7u+mLKp5cmu+hIv4v109yq5AHg2LgS8DqxbnERBnY8PHpIWn0h2OsA+SnjeaBa3N5vUfJXJKg6Po8RsfHMH/dLp/9j55vpaG1A5PRwHtHakIyMpMTrJqfOWWXoKCMrHvvIxn+PRBztd6iwL/+4TBbDp53/72yMJOff3uG33P1JvplKCFC4kWYnEDgF/WPYaAVewlYUZjJ1oPnh+QkPxAoNccPVrUE3HdlYSYVjVbNfZXSpVr3PTslnt1P3MDmfVUUb7mcR6mE3wE8ueVowLYDTZwKI2UC7SvEvOSLw+Ggs7MTk8mE1Wrl6quvZv/+/YwZE1w4qLingnDRCmmPkiRKi5cENHC0jgVYe0u+Kzfdi72nG1m18fOw+rlp9TxyUk0cPNuMU5bJTjHxf/96kj1fNwZ1/DPLryJv7GhyUk38z9/PUjJEjfXeoIjCKYsW9y3M5c+Ha1i3QzvvHGD6hESOnGt1/x1orlQM5ARjFMtL9vrcY4MEnxbfAOAzdiTg16tmUjgxOWjj2p9Brn4n8A7H72/Kqpu5o2Svz/Z3i/ynjoT73RwsiJB4gUDQa7xX+wNN3jJ4rI4KAhOMoa7g7976ezZVTTY27j7Ns++Xe+ynhN8FoyC85eB57pk/MaD3YKTVRhX0D1FRUZhMLo9kZ2cnsiwzwv0Ngn6iN+JW+yub/Na+9iY3NSGsUHbFY7/75AWf3/RgzicB5vgYclJN/PQvx9gRQKhuuCKr3nVe31PJrdPS/RrrgIexDv7nSu/FbG8Hh9SzwK1Xmu3ZFVdz63Rf9XU9/KZXWGweC/gyULzlaMC5uq888l9UNmlu31/ZrPveMZJKu41Yg72kpISSkhIcDsdAd0UgGLT4qxsqGFrs+LJO86UtlOfrb+JUGEkTqOAyu3fv5oUXXuDAgQPU1tbyzjvvsHz5co99SkpKeOGFF6irq6OgoICXXnqJuXPnBt1GS0sL1113HV9//TUvvPACqampkb4MgUCTcErAKcaSN5HIPZZwGXdO+XJ4NGgvwAZjrAM8uumw37JjwxmtRQ2HLLOvMjwFe/Vcqfaoey9mbztUw7aiBRw5Z6GxrZMb8sd5zLF64y4YoznQ4vn+yiafa5aBA5XN3Fagfc6+jJ6bm5OiuX12jv47x0gq7TZiDfaioiKKiorcoQgCgcAXrR9DwdBk2dVpHKpq0Qy/C/b5+ps4FUbSBCq4jNVqpaCggPvvv58VK1b4fL5582Yee+wxXn75Za655hpefPFFbr75Zk6cOMG4ceMAmDFjBna73efYv/71r2RkZJCUlERZWRn19fWsWLGCb33rW4wfP77Pr00ggNBLwKm9lwoG8Oud16tTrUYJXfY25PaebvT7W+5tlErAHTMyePdwzWUv6wDN9eoFiEie8ztzs9n0RZXfe3pj/jh+cONk7tyw10d9PzfMeSsxPpqNe05jae9mwyen3fnw3vfXIctsP1LHa6VncMrw0q5TPkaw97gL1mgOtHguSZLPMeDqpxZ9GT1Xa7Fh7XKw7Oo0j+iOlYX+9XNGUmm3EWuwCwSCwHj/GIoc9sgTsRz2noejl8O+enEeifExnjnsPZM9BJfDHqyYzkiZQAWXWbZsGcuWLdP9/Be/+AWrV6/mvvvuA+Dll19m+/btvPHGGxQXFwNw+HBwZanGjx9PQUEBe/bs4Vvf+pbmPp2dnXR2drr/bm1t1dxPIOgL3iit0PwtfmnVTL8hzQnGKL/nlYBtqpxe9e9qwAV2CRZPTmV3T067DGw7XOO3vf5CBlYvmsTrpRU4IrRqsHpxLv92y5U8euNkDp5tpsnaxVPvfuXzXH5w42QKspJ5cmm+R7k1J7D6rQPccnVawFr2arJT4vnRn3znU63LMoDbWIfARnAoRnOgxfNZE5N9F3EkKJzYv+Hn3gsQa5bkkWwyMjsnOah3jnCiX4YiwmAXCAR+8f4xBPjoeD1nLrjCsaZPMHOu2YYsw6wclxDK4zdP4UBlM2ebrHR2O7lx6jjGJcbx4bF6vqyxkGCMZuHkMdS0dNDY1smE5HiO117C2mnH0t7F0fOtxPeoxNe2djA904y128HXDZdo77TjlGVMxmi67C6V+FZbNw2XOpFxqbanm+MYMyqWWROTOXK+hVP1rjIs9a0ddNqdJJuMTEiO48KlLjoVlfgxJuZNGkNLezfnW7xU4ju7iYtyqcRPHGOiztLBpS47yD0q8VeMZdzoWHaV96jESxJf1rRi67KTlWLigWtdKvHbj9QybnSsWyX+Vi+V+O1HaskbN4r8tNEcOWeho9tBi62bhJho7piZ4aESr+y7aHIq7V1O97OpbGzHZDSwo0cl/naVSrzyLA9UNrsnZmVyW3zFWD48Vk9Fo5VJYxNIN8fx6amLyDIsV7UdzpgZrhOoIDi6uro4cOAAa9eudW8zGAzcdNNNfPbZZ0Gdo76+HpPJxOjRo7FYLOzevZuHH35Yd/9169bx9NNP97rvAkGo1FpsvF7qW47LgL4xpLD9SK3uZ4o31d9v8QOLcnltT4VmjW9Zxm2s9zVZyfFUN9tCOmZCShxbH5nP9iN1bNxzpleL/gYJ7luYC7gWNW6d7pqDjNEG1m456nF/lpfsZenVafzvV3U+980pw/9+VU/Rkjx+0+Mp12pr4z2zqGxsJzE+WtNY99gf12JAlCTx/UU5PnXW/RnBoRjNgRbP083xrF85zcdbDy7xQ+9w+76IntNagPjNJ2dCFo3r61J0gwFhsAsEgoB4/xj+07wcj8+9XyDSzfGaOVDfm5/js204oS6fpoVinOt9pv48lH3VKM9J76VO79mkm+N9no+/PgRiJEygguBobGzE4XD4hK+PHz+e8nL/gk4KZ8+e5cEHH3SLzT366KNMmzZNd/+1a9fy2GOPuf9ubW0lKysrvAsQCEJAT/vlgcW5AcW8tOpuGyT41d0z3QviWnh7KVfNyebtL6rCvobecr4lNGMd4Kl3j/mtdhIKThn+fLiGh67zVOK/a042+WmjPdTZZfArsueQZRZNHss/zZtIZWM7R861sH5n+WWBOhka27q4ZXo6v971td9+RUkSr95TSEVjO3NykhmXGMdrPSXk1PvoGcGhGs3K9e6rbGaOhsfae3F998kLbtV173D7voieE5o3wSMMdoFAIBAIBIBL2C0pSVvBeiCZO3du0CHzALGxscTGxvZhjwQCbbSMKrXHVw+9/PUHFk3itgL9MHotL+Xv9w2csa70IRy1+0im0q3bUQ4SPuXzrF2OkNpRDGJlETon1cR6lXK8DBRvPaqbkqY+z/KZGax+64CHQaw2gg3AE0un6BqroRrNgfLd1eJ1QMBw+8VXjOXFuwswSFJIpeX0EJo3wWMY6A4IBAKBQCDof5577jk2b97s/vvb3/42Y8aMITMzk7Kysoi1k5qaSlRUFPX19R7b6+vrSUsLP4pDIBiMKEZVVI96V5QkeZTq0kMxXtQYgPsW5fg9TstLqRjMA8ncnOQBNzKe21FOrcXT26+UzgsGgwT3e91/rYUV2Y+xvuzqNDatnsfWR+az9eB5D4P4yZ4yak8sm4KEK1T+uZ3lbPaz4HLXnGxKi5ewafU8SouX6Kq0l1U3U7zF1wBX7sfmfVUsXL+LVRs/Z+H6Xbzh5emHy95u9f6PbjrMo5sOsfvkBd0+BovWd0Vo3mgz0N8lgUAgEAgEA8DLL7/sDhP/4IMP+OCDD9ixYwfLli3jRz/6UcTaMRqNzJo1i48++si9zel08tFHHzF//vyItSMQRIpai429pxt9jL1gCdao8ub7i3LdRnuUJLFupcvQ99cfLUM/SpIoXpbvNoQGgs8rm3EC83K1y3XpIYHP9YSLU4aDZ5s97l26OZ7iZflBH79xTwUL1+9yG9Fa91uL783L5t2iBfzmn2YxP28M1c02TaP+6Xe/Yv375e7PnLLLY+9v7KWb45mfN8avZ335hr0+7SkGuFLFQG3Mv15a4bOQoXi79cTuwv1+qAn3uzLSECHxAoFAIBCMQOrq6twG+3vvvce3v/1t/uEf/oGcnByuueaakM7V1tbGqVOn3H9XVFRw+PBhUlJSyM7O5rHHHuPee+9l9uzZzJ07lxdffBGr1epWje8rSkpKKCkpweFw9Gk7guFDpGpNh6LjoW5TAh5cnMt9C10571r9WXzFWA6cbUaWZWbnpHDzVZ7lsJbPzHDlb0uw7v3gdCL6ir9XNAW9r+JhbWnvdoW09xJJgjVvH0LG81nePiOD9TvKgw6N9w4P9whjl3w97FGSxCNLJns8f1lH/X7nsXqfbXLPQoMilhcKinGt1ZxigGtVMXDKsPgbqR7ChMtnZuiWDIxkrrnQvAmMMNgFAoFAIBiBJCcnU11dTVZWFjt37uSZZ54BXC+WoRq4+/fvZ8mSJe6/FcG3e++9l9/97nfcddddXLhwgaeeeoq6ujpmzJjBzp07+7yOelFREUVFRbS2tmI2m/u0LcHQpy9rTQfbpgy8vqeS+xbmavanuKcEpz9jc9uhGu6ZP5H1A2ysh8rD10/CZIxyX6M3d8xI58oMM8/vOBGw/JsEHnnl6meppxeg5FNrlcdzyDIHKpu5rSBeU6wtUF757JzQIg0CVbdT55+r29ITPZSAZ1dcDaBZxUACSk95VhHYdqiGx2+eInLNBwHCYBcIBAKBYASyYsUKVq1axTe+8Q0uXrzorqN+6NAhJk+eHNK5rr/+el0PksKaNWtYs2ZN2P0VCPqagVCt9temjOzzWTBeYYcss6+yOaIibv3Brz8+7ffzdw/X8peyWh6+Lo8Nfzuta9Q+eO0k2jq7efuLao/tDllm+5Fa5uQkaxqgWx+ZT3uXE5PRwJ0b9vrc+x/8/hDWLjt3zcn28AoHU8o03RzP2mX5QUUOSLjK5Orxyt9OuyMEDJIrleL+Ra6IDC3j2n1S9A36W6en8d4RT7V8ZRzOzxsTcYV4QWgIg10gGCTorZb2d5tl1c18UdnEpNQE4o3R7s/Kqpv5qLwBY7SBxLhoLtnsdNgdZKeYaLF1kxQfQ4utG2T49FQjFy51cKnDTme3g5kTk7kq00yTtZsuu4PTDW1c6rCDBMYoA1EGiZZ212eXOuxgkBgVE+V+2TDFRtHtcNJldxIfbeBSpx27Q6bD7qDbLhMbYyDJZHT1qdvB2MRYMs3xlNe1ApCZbGLRN1KZkGziXEs7Da2dJMXFsPvUBRpaO5AkicykeBxOGYdTZmpaIvWXOoiNNpCRFE+3Q6bhUgeZ5nhqWjuYOMY1IXfaHczISuLziovsOn6Btk47MQaJzOR4Vs6aQGayiQRjFNYuh/s+1lpsHDjbTJO1EwmJJFMMs3NSaGjtYNuhGqyd3Uwck0D2GBPZKSasXQ6fc6if09ycFMYlxumOHW8V2IpGKwnGKFc+XU84pdKv/ZVNSJJEVnI81i4Hti47Zxqtum0MxJgVRI5f/vKX5OTkUF1dzfPPP8+oUaMAqK2t5ZFHHhng3gkE/c9AeBIDtalpfAVAAozRAy071ze4anWf1lyMuH9hDqsXTwJgwbpdmsc/s/04BgnunJnJtkM1HgaoUvas1mLj+z017dXtOGVYu+UoqaOMHu9HEFxY90PX5dHa0U2J18KE1COpL+MSF1O0C7R4ZfdpD6NfybN/bU8F61e6Qv7XrZjmU29e7okw2PrIfM0qBquvncT7R+t0x2EwixKCvkOSAy2JD3OUMDmLxUJiYuJAd0cwQolUzlxv2/yiooktB8977GeQYEZWEgerWvq0P8Md5QVh68HzYXs9/D0n9efK2PHOiwRf74wErCgMvl9KG0C/j9mRgpiXIo+4p4Jg2byvyseTGOpvW6iLma/87TTP7SjHCT5tqvvT3/zwhsncfU02x2os/PKDk3xZc6nf+6CHJHmGjUdJEqXFS9w516s2fu73eLVHXW2AqufNQIQ7972yu+d5y5eft54x7L3ovmD9Lt3IAvU9eO9IDWvePuSzz6bV86hqsmqO8UiMfUFoBDs3CYNdTOKCAabWYmPh+l0+q5rKj25/tRlOzVRB/xPoOSljB/B5xpHC0NOR/hyzI4n+mpfefPNNUlNTufXWWwF44oknePXVV7nyyivZtGkTEydO7LO2+xsx1wtCodZiC9uTGOoCvMfCqgTFy/LdtcMVY83WZeeBNw/02RxdtCSPDR+f9hFO2/rIfHd0V0WjNaAR3HQqbHcAACAASURBVF8YgCdvyXfnshuAJ5fl89B1ee4otkd7xOb8sWn1PObnjXHf5wRjlGYovD/CnfuCGWOv7O4Jfe8ZSw8syuXVPb7552rU1+Tv3bLWYuPg2Wacqki7YPs1VBmMUYHBzk0jNiReKMcKBguDJWdOGOtDg0DPyV/uY6RwanSkr8esIPI8++yz/OY3vwHgs88+o6SkhF/+8pe89957/J//83/YunXrAPew94i5XhAOwYQ3e7/8K2lFgUTrvD2mHoJzMjy/4wS3F2Tw57Iat7HWVyyfkc6Ty6aSbo4nO8Xk4V1dPjPDbbwaJHhyaX7Q4fk/uXUqze1dAXPSFSSgYIKZw+csQe3vBJLiY3hi2RTW93iqn9tZzsn6S7xz6Lw7qkxZ4NZScjdIkJNq8olEC/V2B5r79IzEQGPslb/5hr6/tqfC7zNQh7Cnm+O5c2amRzSeovoOsPvkBc2FpeGq2D4QkayRZMQa7EI5VjBYGCw5c8LDPjQIxsPem9zHYNDzsAvF2KFFdXW1W1xu27ZtrFy5kgcffJCFCxdy/fXXD2znIoSY6wUKkfSueb/83zkz020oeqM26LyPe2BRruaC/Uu7vubtz6t9TxZh/lJWx5PLpgKeOcreomtOGZ7bUc7DS/J4+ZMzAcPzjdEGvjtvIqPjYvyWT1Onah05bwnpPUQpXaZWgVcbp+rzPLk0nyRTDMWqcmdOGV7a9TWbPq927xvOdOlv7gvXSKy12FivIU7nBB5cNInXSytwyLLH/fMWgqu12HjnkGfqnKL6DvR7NYSBZCCqP0Qaw0B3QCAY6Sg1PaMk109vf6hvarW5fuU0VhZm+uwbJUkUZif1WV9GClGSxMrCTKRe6AD5e07K58rY8X7GEmi2LYGrXyH0Yd3Kaf0+ZgWRZ9SoUVy8eBGAv/71r3zzm98EIC4uDpvNNpBdEwgiyuZ9VSxcv4tVGz9n4fpdbN5XFfa5tF7+txzUNtbB9Rubk2rSPE7xmKoxSPSLsQ6XFxPKqpvZuOc0Da0dzM8bg7XL4XM9TmDDJ6f5l+snBZzHfvLuVyxcvwskePqOK/nhjZN5/d5ZPLg41214KP9VG9xIwRsmTjl4A/v5nSfITxvtc8DbKmNdjfJMAvVFmfsA9p5upNZy+XdTz0hU76OHv7Jz9y3KobR4CZtWz2Pv2hvYu/YGNq2eR2nxEo/FAH/Rm/4+G44Mh+sdsR52gWAwMRDqm1pt3jUnm3vmT2R/ZTM5qSZMxhj3Z2XVzexyq8TH0NrRTVe3kwkp8bTa7CTGR9Nqs+OUZT493UhjayeXOrrpsDuYmZ3M1ZlJNFm7XCrxFy6rxMcYDERHSbRYu+lUqcSPNka5Vs8lSDC6VOI7g1SJH5cYS4aXSvy1V/SoxDe7VOLNcTGUnrpAfY9KfIaiEi/LTB2fSENbB8YoAxlJJrodThrbOklPjKOutYPsnnvS2e2kIMvMFxVN7DrewKVOOzFREhOS4lkxawITkhMwGQ0eojaP3zyFg2ebabJ2IUmQFG9kVk4yDa0dvHu4BmuHnexUExNTEshKiXeXmFGfQ/2cZuckMy4xTnPseD9jwO09OddsQ5ZdpWOUfh2obEaSYEKyq932rm4qG9t12xCKsUObb37zmzzwwAPMnDmTkydPcssttwDw1VdfkZOTM7CdEwgiRKS9a3plsXTxU07L22MaJUncvyiHjQHylINl1dwsNu87587zlsEnT/2/Pqvk/S8vl/NaWZjJ4zdP0YzQkmX4zcfaCu3eOGVYp6oDLwHrV07j07U3UNnYzkVrp48omizDd+ZmsekLbUM6XEIpcxeovJsB2HjvLPf70e6TF9y54moverjpjrUWm+v9AN8FiSeX5Xuo0itonS/U6gPDOUpuONSRF6JzQohGIBAIBIOI/pqXWlpa+Pd//3eqq6t5+OGHWbp0KQD/8R//gdFo5Mc//nGftd3fiLl+5KKnGK6Ic4VKrcXGgnW7QjIoN62eR06qSVcEDPBYWA1FMNQAHuW7vM/d0NrBvspm5uQk88ruM7x/9LJxviR/LB+XX/A59t2iBZTXXfIpDabgrdAeLAYJPi2+wZ3z732dWrnmkUAxwgMJymkpo/tTTvcn7Aa+z1FLoE6dqqHOK1eHu6tF9ULBX99HmiL8YL1eITonEAgEAoFAl6SkJH7961/7bH/66acHoDeC4chgUGUO1bsWbp/9Gc5KFNK6FdN8jAa1x1Rp+8ml+e4yb4H454U55KYmcLzuEr//ospdKuyJpVP4bWkFG71qiav5RMNYB9hf2cz3r51Eftpolm/Y62GcGyR45Po8fhNELrs3ThkOVDZzW0G85v2IZHSBur9KjXWt+uTKPr+6e6Y74kyNvwhIf170+Xlj/D5v8M1xVy9WKGJ5jy6ZzI1Tx7lrxAdCPX799X2k1VUf6tcrPOxi1V0gEAgEg4j+nJf27NnDK6+8wpkzZ/jjH/9IZmYm//Vf/0Vubi6LFi3q07b7EzHX9z+DSZU5WO9aMH3W89iXrJqJLMPeMxc9DGfvtrTKZtVabLxRWsHrpRXutu+emxVWLvtt09PIGZPAhk9Ohy06+m7RAreBuHlflYdYG7i8v49olIILBiU0Xu2lVlK1qpttQZVjC6Wt4lsul8lT2vttaSWvlZ7RfUbBEkxZXr0yaVrH6hHs92cwfecEwdFvHvaOjg7i4uJ6exqBQCAQCAT9yJYtW/je977Hd7/7XQ4ePEhnZycAFouFZ599lvfff3+Ae9h7RFm3gWGwqTIH410L1Gd1rW4tj/25FpvLK96zfdU1WTx6wzd82vIum7V5XxXFW456GKlOGX7/eXVYoefvHakLvFMPBgmuSk/kaE2re1thdpKHN3fxFWN9+iDjEqALx7CWcSmU56eNpiDL5dH2DgWPVNUamctl8tSRDP9261TuW5TTa29roKgJZR+t84eihRDM92ewfecEkSUslXin08l//ud/kpmZyahRozhz5gwAP/nJT3j99dcj2kGBQCAQCASR55lnnuHll19m48aNxMTEuLcvXLiQgwcPDmDPIkdRURHHjh1j3759A92VEcVgVGVON8czP2+MrvGi1+cDlc08u/0YC9a5VObv3LCXO2dmelTJeGLpFA9jHVwK5H8+XOO3T4qRpWW3OfE11tcuy+fXq2YGuNLgub0gg69qWz22lVVbPJTMKxqtmscGs5CQnazt0HPKcEfJXp7dfoyy6mbPWvS4cuR//Z2ZrFmSd1mxXSLoaiZq/I07OQLLAnfNyXartnsrtftDSdVQI/lRyQ/0/Qn2O1drsfko2gsGP2F52J955hnefPNNnn/+eVavXu3efvXVV/Piiy/y/e9/P2IdFAgEAoFAEHlOnDjB4sWLfbabzWZaWloGoEeC4cJQVGXW6rMEPPr7Qx7GqVN21bNWlMRzUk263tLndpRz+4yMkBYJ/HH7jAzAV+E7XGZNTGab16KCQ5bZfqSWW6enk26OJzc1wa/H219fqpo7/Lb/6h7tHHunDGNGxfL4zfl8d95Etydc7YkPFq1xF6nQcXW+eKgChnre+cVXjOXg2WbWeKUGBPr+BPOdG04h84NBH6M/CcvD/tZbb/Hqq6/y3e9+l6ioKPf2goICysvL/RwpEAgEAoFgMJCWlsapU6d8tpeWljJp0qQB6JFguKAYI2ovtHeo8GDDu8/uOuEaxqFDlmnvcro99rmpCZq1yZ3g1yuam5oQUh8Pnm0m3RzP0qvSQjpOj2ST0cfLC/DM9uPuevXp5njWr5ym693+1d0z+fdbp4bdB8164+A2NNWREXfNyebT4ht4cHFuUN52A/iMu3Dro3t7pjfvq2LhelfUhXKvQsXbO7/4irFUNFopnJjM+pWhfX8Cfed6Uxd+sBGJez/UCMvDfv78eSZPnuyz3el00t3d3etOCQQCgUAg6FtWr17ND3/4Q9544w0kSaKmpobPPvuMxx9/nJ/85CcD3T3BEGcoqjKr+6xVJ1xB8VyqvXxF1+fx649P++xnMhrYe7pR0xP45zL/IfPeyLLL8NrxZfB56npESRKzcpI9vLxq1DnQd83Jprqp3ef6DMCsnOSAof8A9y/I4bd7K4MKQpeB3ScvaHp/083x/NstV3LfwlwP8TgJoCfn3yDBA4smcd+iHJ97Hk59dG/P9JPL8j1SIHqTL67kuGt5v0uLl4T0/QlX0V75fCh4q0dqrn5YBvuVV17Jnj17mDhxosf2P/3pT8ycGbncGoFAIBAIBH1DcXExTqeTG2+8kfb2dhYvXkxsbCyPP/44jz766EB3TzAM0BPcGswofa612DTDvRWvrbdQmpYhWpBldtf+9g5BrrXYWL8j+KhUCZdxXNFojYggm+J9VYy87UdqeWb7cY991Abdhk9O+5xDxrXo8NxO/9cRJUmsvm4Slo5uthw87/O5VkmzYIyw6/PHcuv0NKqbbCBBVnK8O01Br9Z5OGX+vA1Eb70CCGz0+0PPCC0tXhJWqL1WH/Su+8i5Fr772t+HTJh8OAsuw4GwDPannnqKe++9l/Pnz+N0Otm6dSsnTpzgrbfe4r333ot0HwWCEY1ambaqqZ2W9m6STDHMzkkBYH9lE5IkMWuiS9X1wNlmZFlmdk4K6eZ4yqqb2XboPO1dDpISYjBGGchOMfFFZRMXWjvJTxvNVZlmTtZdovRUI5nmeOovdWCMNpBsMgJg63Zgd8pIskxVczsZ5nhGxUVzqKoFh9PJKGM0lg47DqeTmOgoxiQY6bI7mZuTQkJcDBfaOmjvcmDrslPTYqPe0oExxkCKKRYZmfYuB1eMG01bl51WWzdxMVGMHx1H/aUODAYJc3wMiXExfGPcKL5uaKOxrZO6FhvdTkhOiMHukImSID0pnlunp9Nhd3L0nIXzze20dTq4OjORDHM8jW2dGKMNdNmdTBo7ioykOM40WkGGyotWcsYk8HVDGw2tHUxIjqfT7mRUXAyLJo8h3hjtDl9U7nF2iok9pxo5es5CTqqJaZlJZCXHY+1yBFypVr9ANLR28EVlE3NzUjzUeWstNo/nqw5tU46FyK6MB5MX5r3PSMslGy5IksSPf/xjfvSjH3Hq1Cna2tq48sorGTVq1EB3TSAYcLxzjNVeW8CjJJeeAX2w6rIWhLcnsKLRGpIC/CPX5+mq1IdD6iijh+f/1unp/Gz7cc28ab1cexlt4xUuL2IoodkA7xzSNta/vyjXp/66PyNM7Y1Wt6UYnGojV8tzra5zbwCeWDolJJ0BrUWa3mg09IcR6jOegX+5fhLrd5S7r2MoeKuHoj5GJAjLYL/jjjv4y1/+wk9/+lMSEhJ46qmnKCws5C9/+Qvf/OY3I91HgWDE4j0phYIEzMxO8nhh0OKTk40efx+qtgQ895lGz5ynRqv98h+dTi5aXakxlU2+k7NCh8NJa8fl81xoa/L4/Hhdm88xO7+q99lWf6nT/e8TDVaf6wEoOxf4mvzx208rgdBKzfhbqfb3XFcWZvLzb8/wKfWj1K4FPLw64Pmi0puV8WAEabz3uXNmJu8cOj9kVucFvhiNRq688sqB7oZAMKBoLTzqhRjvPd0Y1rysNsISjFGBD1Cx4ZPTlHxy2ud3N1y+/+YB4PLvtjcSnvnfevOfnvH66j2FVDS2MycnmYKsZN179qu7ZzIrJ9ldg159Di0jzNsbjaptrVJ83p7r4i1HkSSXvgC4/vvcznKSTDGac5eegfjE0ik8v/OEbjm3UOgvI/SuOdm02LpZ37PIUvKxb9TEYPdWB1NKbzgSdh32a6+9lg8++CCSfREIBCq0JqVQkCGgsS4IjVAehd5KdaDnuuXgeW6ZluZTl1epXesdNhiovWAJJi9Max91eONQWJ0XXMZqtbJ+/Xo++ugjGhoacDqdHp8rJVuHMqIO+/Cir6J5/C1WaoUYh2psq7lo7aSsupkvKpsC76xCbZRuO1TDO48sYPvRWjburnAv2i69Oo2dX9a5jOgeKzrQvOWUYe2Wo678b9V2SXLVYAfXPVh9bS6vennB6Wn3yaX5Hsbr8pkZrH7rgMf9XHzFWE2jdFZOctBGWFl1M3/YX+33vUhtcGp5rmV8hQSVe5AQG+0RzaZcu1bf7pqTze0zMiKi0dBfRmitxcZzO8r9RnaoBf/Uxw2mKLqhqI/RW8I22FtaWvjTn/7EmTNnePzxx0lJSeHgwYOMHz+ezMzMSPaxTxCTuGCwE2q5F8HgQ2ulOpjn+vGJC7qejFDbC5ZgQvKC6ftgX50XXOaBBx7gb3/7G9/73vdIT09H0pK5HuIUFRVRVFREa2srZrN5oLsj6AV9VZIqHBEra1fgd0e9sHU9ITs9JMnXwFRU6hXxtcrGdo6ca/EIby5ems/tMzI0c9O9cYKPZe+UXar0t0533YP7FuXympcXHFwCbA8tznMbryajgeUle3283qXFS/wapYGMsH/9w2HN/HdvDNJlg1PLc+3vHqx5+5Dm2NLrWyQ1GnprhAZjVAczhz+wONfj+L4uBRfuYsBQ1MfoDWEZ7EeOHOGmm27CbDZTWVnJAw88QEpKClu3bqWqqoq33nor0v2MOGISFwx2QploBIMTrZC2YJ7rkilj+Z+/V/kY7d7CPMG0FyzBhOQF0/eRkEs2XNixYwfbt29n4cKFA90VgcAvfakMHWz+cCDhMoBVc7O5a84E2rucNLZ18Oimw73qG8Br98xye6sVvNXnTUYD67wE7NbvKGfepBRunZ7Os+8f9/u7bQDQuJ41bx/iXIuNaZlmclMTWLdimkf0V9GSPKZlmqm12NwG1M+2H/OZoxyyzIHK5oBGqZ4RVlbdHJSxDnDPvIkeBrV33raM/6gDvbGl1Te1xlAw2jWBCNcIDdaoDjSHGyS4b2Gu+++y6maKeyL7IPJRdMOpLnxfE1Yd9scee4x//ud/5uuvvyYuLs69/ZZbbmH37t0R65xAMJLxrqkZCO+9JKAwOyni/RrJSPjeZz30QtoCPdeVhZncODXNp+6t1DOZqWuzSj3b/bUXLMHUTdbaZ2Vh5pCqtSy4THJyMikpKQPdDYEgIIFKUvWGoxoaJ94Lj951n3efvOBZs12Ctbfk8+yKaRRkJTM/bwyzc1I0a5yHyqkLVp/f3eUzM7hzw15WbfycBet2cUfJXp/jZOCOkr0+fdX63V63chrrVkzz6a8MrHu/XFXvutrD2C35+LRHLeyy6mZe0wibB/jB7w+567orddWDodZi49n3/UcIqMlK8VwwVtc6/3TtDR5zqB7BjC31mLijZO+A1QQPpb669xzu/Q6xbsU093PZvK/KFSnRR9+74VQXvj+QZDkUjUoXZrOZgwcPkpeXx+jRoykrK2PSpEmcPXuWKVOm0NHR0Rd97RMUD7vFYiExMXGguyMQ+FBrsbnDzKqbbLTYukiKNzIrp0cVvrIZSYLCHpX4g2ebkWXceWFl1c28e6gGa7edZFMMxqgoslLi2VfZTMOlDvLTRnN1RhIn6lrZe/oi6Ylx1Ld1EhstkWwyIsvQYXdgd7jWpaubXF6HUXHRHKpuweHwVIk3KirxDidzJqYwKj6GC5dcKvHt3XZqm23UKSrxCbEgy1h7VOKtXXYstm7ijVGMGxVHfVsHUZJEUnwMo+NjmDzWpRJ/0dpJbUsHdqdMssmlEm8w4Fa67bQ7OXrewrmmdqw9KvHpSfE0XuoiNkais1smb1wC6eY4KhvbccoyVU3tZKeYOHWhjXpLBxNS4um2yyTERrNw8hhMxhj3C5xyj7NS4ik91ciX5y1MHONSiZ+gU1ZG77nmpJpoaO1gf2Uzs3vEedT7qJ+vOpdcORaIaB6X+tz+VOLV+wRzjCB4+mte+u///m/effdd3nzzTUym4R0VIeb6oU2txeahyg4uA6O0eImuFzyY3yKt84LL+H5ocV7AtsH/7+/Pth/zUT8PFYMEnxbf4G7LZDS4S8UFg15ftX7H3/78LC/t8hUiCwa1CGqgvgQ7T3iLrwbDu0ULGJcY53ccKHPro78/pJnPHaifeuMGXJ7QX62a6ZML7318pHLC955uZNXGz322b1o9T7ckXKB3CH/XF+ozjGS/hyPBzk1hhcTHxsbS2trqs/3kyZOMHTs2nFMKBAId1CFSamNO4bYCzx9NJd9MoSArWfO4f5ztGXZ0W0EG/9rbzo4Q1PdY694Gg/q5ppvjNc+Tbo73eb7exyp/R4pgQvK02heG+tDj5z//OadPn2b8+PHk5OQQExPj8fnBgwcHqGcCgSfBiHKFE16rl9M7PTPJ7z5KiPdtBRl+FwzuX5TLa3sqelU33SnD9iO13Do9nfl5Y0JWqFc8oooRVNFoBTx/t8MxjL0J5thQNE4UD6zeeRd/I5Wxo2M9QuVXFmZSXnfJvaChNw7SzfGkjNIuq2eAgJFi/nLB/eXCQ+TDwMNRmA/0DuHv+pbPzIjIfD9Sy7OFS1gG++23385Pf/pT/vCHPwCuWq5VVVU8+eSTrFy5MqIdFAgEAoFAEHmWL18+0F0QCILGX/5zuDnuvdHueHTTIc5bbDy0OI9ai403SivcpcnUhtj6lZcXGkIpDarmme3Hefb947pq6/5QrkfPUKy12HptrAeLpBKEC+Rl9mc0SsBz35pOujmee+ZPdEeojUuM8/AM+xsHWs/VIME7jywIuBAfjJ5LsJVWepsTHgmFee9n4e/6th2q4fGb9evW92e/RxJhGew///nP+da3vsW4ceOw2Wxcd9111NXVMX/+fH72s59Fuo8CgUAgEAgizH/8x38MdBcEgpDQi+YJVjhO63yBjAZln7VbjqIufKjkdx+uamHnl3W6ZTbVCw1fN7Ty1LvHwrp2pYb403dcyZPL8nl+h6uMmr/ybQbJ5S0GdA3F/ZVNvTbWtcTctNTtZRkaWjvYffJCQC9zsMK76ihCregDvXGg9+yDiZrzPlaPYCqtRKKySm8U5vUWcrTGfKT6G4l+jzTCMtjNZjMffPABn376KWVlZbS1tVFYWMhNN90U6f4JBAKBQCDoI5QSradPn+ZHP/rRkCvRKhCAy7jz9l5L+NaTVlB7FAN57isarSy+YixP33EVP3n3K59z7fiyTrMNtWGj/O+itTPgtRiA782biEOW+e/PPQXMZOCpd48hAcXL8pk+IYmcVBP7K5s0Fel/dfdMbivI0DVkD55t5uuGtoB90uPdogVuzZbdJy94KIrr2bF3lOz1eFb+VNnXrZjmsdCgIIOm0RhqmHVvDEb1sYrG0A9+fyjkaI1IhYGHk5rmz+N/15xs8tNGs3yDp/BcpMPWRUpdcIRssHd3dxMfH8/hw4dZuHChKAcjEAgEAsEQxLtE6+rVq4dcidZAlJSUUFJSgsMRuG62YJihIwSuzteWgPUrXR5Fb6PB2/N415yskJrXMmyykgMbJk7gzb+f9buPDDy3o5xP195AujnerUjvEd4NILmMMi1DUQKKQqwJr0YCyusuuT3ji68Yq2uka/VfjZ7X1m00quq6g77RGEqYtXrRJlyRM2+NIWuX3aOE3BNLp/iN1ggmX74vCeTxL8hKZr0IWx8UhFzWLSYmhuzsbDH5CQQCgUAwhBkJJVqLioo4duwY+/btG+iuCPqQikarjxEoy/iUn/LO15ZxhZl7l5LS8jxu3lcddH+UUHRvw8baFbl3ZycuMTqlBrp3uS4Zl/iZVhk60M+ll4BVc7P4wQ2T/bYv41mGa39lU9jX4s9rW5CV7FGKLUqSeGLpFCoarZolwNRl3EqLl2gKunmX6YtUKba75mTzxLIpSJLr+Ty3s1z73JLXfwcIZSFHjfezCOZ+CvqesOqw//jHP+bf/u3faGoK/8spEAgEAoFg4Ni3bx8PPfSQz/bMzEzq6rTDfAWCwUgwhgegma8t4yqPqkbL8/j/2bv78KjqM3/87zMJSSaBJBNCJISEBJQnDeEpagBRtNuKWovk2trFa7VUba3R/nbV1dCrZde9aAl1dV1LrAKutt9+QdqC9usDVitqCFEIz1GIaExIgFEYCBOSTJ5mzu+PyRlmzpxz5szzQ96v69qrMg/nfOZMNif35/587tshAj9eXOLxmCAAc4uyPR5bfEUudlffqBjYZKQk+fwsStTiujVvHXMFnFJgtf6f5jj3j7uNW1rmvP3BCs0Y8bbSfAgCsHlvB9Z/8KXPcbn35BZUepv/23emQv6UALi+Lz1ZW/eg8fGl07DunWbNYFur17uv/t9mqw0NLZaA+oGbrTas29HsWmmgdOxY6j0un+hR+y60ridFRkB72NevX48vv/wSEyZMwKRJk5CRkeHxPFvBEBERxTa2aKVEoXcptFpQKX9Yba/xraX5KC3IQvv5XvQP2lFWmI37/7Df4727vzynOs5AM+xaK80dIrBqWxOmjx+DvMw0mLtsqvvVTRkpqscyAHj7U7NHMKmnqv2RkxdQMWUsTnV6B52CACyfOxG5o1M9vpvHl07DhKw0GAQBczX6lbuTXnPXpk8U91wD0NXbXGsZuJ5ieFp8LTEPV9G5YLDwW3wIKGBnKxgiIqL4xhatFA2+2nkFSk/gMW+Sybs4nQDMneRZGTw/y4gnlk7Huh3NrsB15gTvvdRKAa1WAKa38rmaZWUTUDQ2Hc/t9Mx+OwAsq20AFMYjeWjzQVQvna54fgOA+64rwYZdrR6Pi3Auj391b4dXtXDJuh3NuHZyDta90+z1XPXS6cjPMnp8N0dOXnBdV3+DYrWA9+Xdrdi0y7ulnhK1yZj0FEPQLdd8FZWL1d7jLPwW+wIK2NkKhoiIKL6xRStFmloLKTX+Bve+Ao/8LCNqKku9xqBUcE4KKgFn4Np0yns1ilJwLAVgSmPXqnyux18Pn8Z/fu9KxYkCX4cTAfzmnc89WsIZBOC+RZOxclExAGDTcB9598/y8E1X4OGbrsBbR8xY89Yxr+M6ADS2dSp+nlkF2R7XoTg3XTVDruf7VeudvrGu1WfVeYnaaoyeAXvQwO/BWwAAIABJREFU2W9fKz1iqfd4uCbOKDwCCtiJiIgovkktWuvr63HkyBG2aKWw0mohpRQw+Bvcq51THpT4ysTLC9PpIQWRUgBWd/ysxzFWXFOIh2+8wpVtTk9JUmzD5osI4Jd//SzgWmV2UcSsgmzUVy9R/PxaweSts/Lx67ePKWbny4tNipnjI6cuuAJ05+RASVBBsVLA+6NFxdgoWxkgbQG4dZbyMZV+BsxWW0iy375+vmJhCXoo/n+LIiuggN1kMinuAxIEAWlpabj88svxwx/+ECtXrgx6gERERBQ+ixYtwvz585Gamqq6x5coWP7s3/U3uFeiFZRoZeL/t77Vv2AdwGsPXupHDgAL1u70OMbmPR3YsqcDNZWlWDx1nPpe+uH/1ZMt90UpCy8FoGqfXyuYlIJl917rAPDE0ukoKzR5BdKP3zzNY5WCQwQ27WpVXY7e0GLRle2VjxEAXpKtDACcWwC6+4dUA1H5NQhl9lvPSg89x9XKggeaIQ/F/29R5AUUsK9evRq/+tWvsHTpUlx99dUAgL179+Kdd95BVVUVWltb8dOf/hRDQ0O4//77QzpgIiIiCp7D4cCvfvUrvPDCC/jmm29w/PhxTJ48Gb/85S9RXFyMe++9N9pDpATiz/7dYItzBRqUmK02vFTfqvq8Eilglbxx+JRiQC21kJP+22svPYD7FfaR+0M6ptJ0gN4AVCuYlILl9Tu/xOY97c5+8O80Izt9lFcgrVhpH8BtV+Xj7SYzHMNjWjZnAu54vkE126u2tUC+MkC+zUBqOyd953oC3FjIfku0JpyCyZDHYuE78i2ggL2+vh5r1qzBAw884PH4iy++iHfffRfbtm3DrFmz8NxzzzFgpxHBbLVh/4lOiKKI+cU5Hr/0pJtERkoSegbsKMl1dlVQe0y6mRzu6MTrB0+jp38QpROzMSE7DX/77BtYbYOYP8mE0xf60HTqAk5f6MNlmam4pTQfXX2DOHnehq8sPegfsqPLNoTLMlMxe2I2PvnKgkGHiNKCLEzMScfswmwcNXfhq7M9GCUIqG+xwDZgxwSTEWWFWUhNSkbO6FHo7hvC4Y4LSBuVhIWX5+L0BRss3f0QRcA2aIfd7kDaqCR8ebYbQ3YRuWNSYRu0o6dvCBmpyZg8LgPJBgM+PX0BogiUFmRj0O6ApbsfGanJGJuRgkG7Aycv9GFidhqy01OQOzoVRWPTMb84B0dPW7Gz+QxunJ6H3NGpeP3gKfQM2DE4ZEdHpw3zJpnww4UlONPVh71t55FtHIX2870YGHJgYMiB3NGpGGNMhgAB2emjkJ6ShK8sPbi6OMf1R5b7d9TRadP8HtVu9krPH+7oxN6287i6OAcAXP/t/sddID9r/sy4S2OYnJsBY0pyRParuX/uYD4rhdeaNWvw+9//Hr/5zW887tVXXXUVnn32WQbsFFL+ZDCDLc4VaFCi9D41BsEZrP9k8RSPx7VWqYiy/5YH7WNHpwZVlG7TPfNgG3DgZ68e9Nrnvf3BipD9Pt6yt111z7j79VX6LG82mWEQgB8vmoxbZ413BevSsVZtb3IdS29gunjqOFQtmYLf7mzxeDyQ6u+xUIBNa8IJgOZzviYlYrXwHWkLKGD/29/+hnXr1nk9ftNNN+HRRx8FANxyyy2orq4ObnREcWBrY7vHXjUBQE2l82bgfrOB2/OA98y69JhBAGYXZuNA+wXX83/af8rjnH/77BuPf5+29uFgh1VxfPLnvjzbq/l5Om0X8dnpi4rPfXjcovleAGg779na5TOz57G0zt+ocdz/u6dD8fF9Jy7gxbrAMhKVcwtwdUmOYgEgte9R6Wav9Pze1vPYdsDze3M/79Pfn+33eP2dcVcaQ7j3qz36p0Me5wz0s1L4/eEPf8CGDRtw0003eUzAl5WVobnZu+IzUbD0ZjCDXZ4caFDiq4r7jxYW43uzJ7iWv+utRK9GHsDLi8L5Kz1lFIwpomIP+d4BtTrv/nlZYfm50mSI/DuUj2dT/VconZipONaXd7di5cISXaskXqxrQY1b73N3oar+HmlaE04ivL9ffyrlx1LhOwkn+X0zBPKmnJwcvPHGG16Pv/HGG8jJcWaSenp6MGbMmOBGRxTjpFlQ+U131bYmHO7oVAwERShXd3WfrXYP1il8th04hWqVar1q36N0szdbnRMTSjPh1duaVIN16byHOzr9GqvajLvZalN8btV25THIxx9Khzs6vc4ZyGelyDh16hQuv/xyr8cdDgcGBwejMKLQq62txcyZM1FeXh7todCw/CwjKqaM1bVXub56Cbbcfy3qq5f4rCbf0GJx/V6TgpKk4Wy3P8vB1y4vhUElSf6/u9twx/MNaD/foznZUFNZ6rUsXYDyUnV37kXh/r+bvP9/05fegUG8efi01+OhyqCarTavAm+AM0BUOr70Hf7i1hlezzlE4OOWc4rXelNdK/af8K48LwWtkhc/asHat9WDdV/V36XP5P6zEwukiSN30neo9JxUKV/t7xQ5f/5/K1TUrvOjfzqE79U24FdvNeN7tQ149E/+F2McCQLKsP/yl7/ET3/6U3zwwQeuPeyNjY14++238cILLwAA3nvvPVx//fWhG2mI1dbWora2Fna7PdpDoTimtnxOq80JxRatJIba9+ieTVD6GdDzte9r6/RrJtnfGXetn71w7Vfb23Ze8XF/PytFxsyZM7Fr1y5MmjTJ4/G//OUvmDNnTpRGFVpVVVWoqqpCV1cXsrKyoj0c8pOe5clqK48C3Y8sve+3O7/Alj0dXr/P9WRopWMcONGJ8z0DyMlIwdxJJtQdP6uYcZZIQVnd8bN47v0vFV+j5d7f71d8/NtXXhZ0kTPAeR9SGvl9iyZrTmCoVZh/dW8HfnB1ITbv9VxB5wAA0XtJvfvEg9lqQ80O5ZVAv7x1Bm6Zle+z+nusVkuXZ8ENAvD40mmua6y3Ur7WfT6SS//VrrPaJP/dFZP4N4NMQAH7/fffj5kzZ2L9+vXYvn07AGDatGn46KOPsGDBAgBwLY2PVbyJUyioLZ9Ta3NCsUcQ1IN2rXY10h8NSj8DepZDzi/272bka4mnUm9atZ+9cO1Xk/bqy/n7WSkyVq9ejXvuuQenTp2Cw+HA9u3b8fnnn+MPf/gD3nzzzWgPj8gnX8XlAg1K6o6fxat7OxT3mQP6Jj2dgeqlYmeAM5CfPn4Mlj3f4HXfMQD49fKrAMBr5V6w/vbp1zBbbZrj1RO8Np303npnAFx93NXkZxlx76ISr6DSAWDh5bnYstdzYiRJEDCv2LPyvAHAvW7nUZs8MAhwBevSuZWWgAPqe8EjuTxcbZLkzvIiXOgdRM1wpf11O5qRbRylOBkFeFfKj+S+dF+1ddSuMyf59QtoSTwALFy4EFu2bMGBAwdw4MABbNmyxRWsE40U0o3AvcaMAGBtZamrzUmS4Ll2SQAge8jjsSRBwNyi7HAOm4ZVzi1AjcJ3BKh/j/KllUpLL2sqS1E5t0DzvP7ejLSWeCo9t3a58hjCuV+trNDkdc5APitFxve+9z288cYb+Pvf/46MjAysXr0ax44dwxtvvIF/+Id/iPbwiHzSWnmkRM/yZ3mAoRQUCgC+PHPR5zLqrY3tWFizEys27sHCmp3Y2tiOngG74iTxb1fMwZ3lRX4VvpOoLeGXOADVawJob7lyf826d7wz2j+4ulDXGH+0qMRrS0CSIGDuJBOql053BSTu9yhp6faPr5sMCMCGXa2u66i0NBxwFgJU6n0uXwLu789OOCj9fEik6y0v7ue+7UPaWhLoFpBwfwZA+/9HOcmvX0AZdgBoaWnByy+/jK+++grPPvss8vLysGPHDhQVFeHKK68M5RiJYpr70jdRBOYVm1y/JN1nQdNTDB59WtUek5buHe7oxF8PnUZP3xBKC7OQn5WGdz/7Bl19g5hbZILZ2oemk5eqxC8tzUd33xDaz/eidbhKvLVvCOMzU1FWkI1PWs9hyOHAVROyUJiTgbLCLBwzX0SrpRtJELC7xYLeQTsKso0oK8xGanIScjJS0N03iEMdF2AclYQFl+fi9IU+WHr6AAdgG7JjyC4iLdngqhI/LjMVtgE7uvuGkJE2XCVeMOBT8wXAAVxVkI0huwOWHmeV+Jz0VAw67DjV2YcCUxqyjanIHZOCSTkZmFdswtHTVnz4+VncMG3ccJX40+gdHMLAoB2nLtgwt8iEe4arxO9r60SmMRkd520YsNvRPygid0wKMtNGQRCAbGMKjCkGtFl6Mb/Y5Aok3b+jk502ze9RaWml0vN3lhfh7opJ2NfW6br5SP8daACrNQ5fYyjOTUd6yqiwt6p5+vuzPT43g/XYdt111+G9996L9jCIAuJPcTn3DLLUQm3lohKv34dqAbMBw0u14Qzif/nXz7D6r5+5ipPKqQXBD1w/2eu1UuAqfSa9ResA5/Lv+cUmj2rrSsfXyrbqqaqvdl027+3Aq40dPpeTS3v75ZnuuuNnse6dZjjgTFw8vnSa13E21X/ldR3rq5co9oXPNo5SPb/7dx3taum+Vof42+kgGi3p9LRP1LrO+VlGVM4t8CpUy78bvAUUsH/00UdYunQpFi5ciLq6OqxZswZ5eXk4fPgwXnrpJfzlL38J9TiJYpq09E3tOaVfnL4eKyv0DnZumjE+yJF6CvXxwiE/y+gxTrVf5PlZxoB/ybt/R1rH97X8Uf68/DsMxU1Iaxx6xhAJ0Tgn+W/16tVYsmQJKioqkJaWFu3hEAXkvkUlzurYcAYCjy+d5lqCLv0+VMqab9jVio27WlF9i2drNqWAWRCAjXfP89ojLsJZZFRpGbVawFX7oWfrMcBzf3Ld8bO6P3uSILiWf6tVZE8SBDx+s/c1cacUVBkEwNLd51pKr1VBX+9ycqWl3Atrdl76XkTgNzs+x+1lEzQnCqTAdfHUcV4zG3qXtUe7WrqvgDyQCYVIt6TTM6ng6zpzkl+fgAL26upqrFmzBo888ohHJfgbb7wR69evD9ngiIiIKDw+/vhjPPPMMxgaGkJ5eTmuv/563HDDDVi4cCGMxthsd0Qkke+5/vGiyRg7OgXrhvf8uu/DVssOiwDWvt0MiMBPrncG7We6+ryz2yJw+kKf4jhEAAdOdHpN2vtqEeduVoFzG9zhjk5nxljjtdJkgnxPt1Iw3GbpxZFTF7yuyeKp41x7jgFn4PXEzdPxm3ec7eSE4XE/vOWQR4tTtUkBQDv7K2/bJb2mocXiM+DTClyV9rH7U1Q1Gllpia+APNoTCnronVTwdZ05ye9bQAF7U1MTNm/e7PV4Xl4eLBbffZqJiIgout577z0MDQ1hz549qKurw0cffYTnnnsO/f39KC8vR319fbSHSKRIaSnupvqvIIrw2vO7eOo4ZKQkaRYYXbejGbfPnoC642dRvb3J63kRwNmL/arjUTquVtbbnXvF8uptPoJ1AXj9wQV468jX2FT/FTbsasWm+lbXxIRShvWuTZ94th3d3gQMXydpC7gIZzD/xNLpmJhtRNXmgx6fXVpF4L4F8KHNB70KxSllfx/90yGvJc9Pf382AH0Bn6/ANdhl7ZHOSruf11dAHs0JBT38mVSI1nVOFAEF7NnZ2TCbzSgpKfF4/ODBgygoUC+0RERERLEjOTkZCxcuxLhx45CTk4MxY8bg9ddfR3Ozcrskolig1KNbKZNtF0W8vLsVm3a1+mzheeBEp7M6u8LrkgQBXX2Dqu8vzNFu7/bWETPWvHXM63l/KsNL2fG8zDTFPd16l+W7fz73pxzDy9H//XbvnukigP1tnbitzOjaAtjdP+QzUPPVtktvwKcWuErvX7WtCQ636xlMYOirtV0o6QnIYz3QjfVJhUQRUMD+gx/8AE888QT+/Oc/QxAEOBwO7N69G4899hjuvvvuUI+RiIiIQmzDhg348MMP8dFHH6G/vx/XXXcdbrjhBvziF7/ArFmzoj08IkVSJlrOMJxBF2WPbaxr9VnATQDgEEXVYnOP3zwNNQoV0iW9Aw7V59T6kBsE4LUHF6Cs0KS4NNzdmmVX4qYZzl7qepaRS/xZli8dx9I9oPicvJmK1KKusa0T5Sp7j/W07dIb8GkGrtI+AR/V8n2JRl/2WA/I9UiEzxDrAgrYf/3rX6OqqgqFhYWw2+2YOXMmhoaGcNddd+EXv/hFqMdIREREIfbAAw9g3LhxePTRR/Hggw9i9OjR0R4SkSZpKbw8/pSCKwAe2dofLSr26v2tRMogKxVee+3BBaqt2ABnjHiup9/VbkspO1t3/KzH+4Xh8UpBq6/Aun/Q4TqebWDI63m1ZeDyDLbSpIb8ODdNz8Nv3//Sq+ieVMVeoie41du2K9CAT2lrxKptTchITca8SSa/jqmn4jlRtAQUsKekpGDjxo1YvXo1mpqa0N3djTlz5uCKK64I9fiIiIgoDLZv3466ujq8+uqr+Pd//3fMmTMHN9xwA2644QYsWrQI6emRaW9EpJda8bjnfjAHt5VNAACvwmsv1bfqyjC/8vEJLL1qPN797BuP5dllhSaYrTbNgPqhzQe99oNLAazSJIMgOscpkQJrtT3sUoAr3w8uWTZngmpQKc9g1x0/6wrgBQAYDuINwy3VygpNqKks9QrG3Y+vN7gtKzQptu3Ky0xDQ4sl6GXnSj8PDji/D38z5L76skdqmXygIrmUnyJPd8D+yCOPaD7/ySefuP77mWeeCXxEREREFHbLli3DsmXLAABWqxW7du3Cn//8Z9x2220wGAzo61Ouik0ULWpFyua5ZWzl2Vp5hlkreP/bp1/jtaoF6B1wKO6Vdj/O7WUT8P8On/ZoFSdxD2AV99vDuWfelHGpUnthTjper1qAp989jrovLhVwlvpSK+0Hl7x+8DQe+840XcvJ5QH8/zt0GjXDVeTX7WhGtnGUz2Xq/vQIl7ftav76oquVW7DLzgNtNacU3Kr9bB05dcFVuC9Sy+T9FY2l/BRZugP2gwcPevz7wIEDGBoawrRp0wAAx48fR1JSEubNmxfaERIREVFYnDt3Dh999BE+/PBDfPjhh/jss89gMplw3XXXRXtolMACzQYG0urKPfi0dPfh4S2HVF/rANBx3ubK1qsdR2op9vqh06rHkgrebazzXpIvCHBVWVfKzN+zYBI+bD6LG6aPw00zxgNQ3w8unUtvKzPgUgBvttqw7p1mxcr6WsvU/e0RLrXtMlttuOP5hpAtO/dViV/puqgFt0o/W4/fPM3VEi8U4w0HLuUfGXQH7B988IHrv5955hmMGTMGv//972EyOWc1Ozs7sXLlSt7kiYiI4kBpaSmOHTsGk8mExYsX4/7778f111/PgnMUVsFmAwOpSu0eoPrKsv/s1YPoGRhSHJM8iNU6llrBO/k+cnlmvnpbk6sP+v/d244nbp6O0olZmDyciVc7l6W7D2arTfV6uE+SAM4s+bnuft2ZcneBTJyYrTa8eeR0QOfTIv087G/rxM9ePag5ieDqc68S3CpNyoR6vKEWD2Ok4AW0h/3pp5/Gu+++6wrWAcBkMmHNmjX49re/jUcffTRkAyQiIqLQe+CBB3D99dfjqquuivZQwqa2tha1tbWw2+3RHkpMidZ+V8UiYdub/M4GBlqkTE9vdL0ZSvmxhOFK5SKgWfBuybQ8vN98RvW4IuARUK7d4axObxCAuUXZONB+weP1Un/5h7ccUp0AcZ8kkWf0pQLrEnmQq/az4s/Eifv55fztm64kP8uI28qM6BlQbzWn1udeHtz6mpQJxXhDyd/VDsHy9buDe+nDI6CAvaurC2fPnvV6/OzZs7h48WLQgyIiIqLwOnfuHCZPnuz1uM1mw1NPPYXVq1dHYVShVVVVhaqqKnR1dSErKyvaw4kJ0dzvqlgkTARe3t2Kn98yMyJjkAea+0904qHNnts+9WYo5ccCoFnwzgBgp0awrsUhAoc7rHjpnnmuc/QNOlxL66XXyCcb5JMk8oy+IAAG0bkdQCnIlf+sLJ46ziMg83WN5Od3pycz7w+1SQS17gLSGNSC20BWEkRaJMfo63cH99KHT0AB+x133IGVK1fi6aefxtVXXw0A2LNnD/7t3/4Ny5cvD+kAiYiIKPSefPJJPPDAA17V4Ht7e/Hkk08mRMBOnqK937UkN8Mrows4l46vXFiiK/gLVfZOHB7FvEmmoDKU8qBVreBdkiDg3kXF2KCQdZeuiWH4f9VW7NtFEekpo3Dvdc6JtoYWi8+MsVplfYkoAutXzAHg7EVflJOOhhYLMlKSvH5Wqrc1Od8D/QGZ2vl/eesM3DIrP+Q/d0qTCFrX4PGl6sX6gMC2YERaJMbo63dHtH+3JLqAAvYXXngBjz32GFasWIHBwUHngZKTce+99+Kpp54K6QCJiIgo9ERRhCAIXo8fPnwYOTnK/ZMpvsXCfleluEnqg35bmb5l1cFk75SOE0iGUs/kgVIGfpNC1n3jPfPQaulF+XAVdbWMtEGAx0SCnuXQvnq8JwkCTnY6i8+5v0ZpYkWtEr7WtcpISVJ8fH6xf33Sg1GSm+HaOiA3qyDb5/sD3YIRSeEeo6/fHbHwuyWRBRSwp6en4/nnn8dTTz2FlpYWAMCUKVOQkaFeEIOIiIiiz2QyQRAECIKAqVOnegTtdrsd3d3deOCBB6I4QgqXSO93lWu19Kg+pzB35BKq7J3aceqrl6C+eonuDKU/kwdabeaSBAHL5kzA/X/Y73Gs1x5cgGW1DV4B8xNLp3tl831NNnjttQdcvdeTBAGPL/WshC7RSMq76AnIegaU60f0Djh0nCE08rOMqF46HWvfbvZ4XABiaj96tOiZfPL1uyPav1sSXUABuyQjI4PVZImIiOLIs88+C1EU8aMf/QhPPvmkx97ulJQUFBcXo6KiIoojpHCJ9p5ctSXxAoC5k0wK73AKVfZO6zgVU8bqOlawkwfuWffegUHc94f9XlXL66uXoKbSre87nMH6TxZP0Tye2mSD1l57X0vmtcgz/kpiJZC7vWwCat5u9vzZ05gkGin0Tj75+t0R7d8tiS6ogJ0oHim1NslISULPgB0luRk409WHvW3ncXVxDvIy0/D3o9/gzMU+fGvGZcjLTMO2/SfRcrYbt83KR+7oVLx28BR6++2w2vpxzHwRaSlJKDSlIz0lCSKAcaNTMSHbiLZzPZhdmI2vu/rw2akuGFMM6OwZxOi0ZEzMNuKLMxfx2emLGLQ7UFqQiSSDASfO9SAtOQlZ6aOQnGRAV+8gvjrXg4xRSRidlgyHCGSnj4JtwI6egSFkpCQj2SDgQu8AJuak4ztXjUdBthH1X1jwxTcXcbHfjvGZKRAEA4yjDGg714uzF/uRbBBw1cQs3DGnAMaUZGSkJOHIKSs+bD6D0xdsmJBtxJxJJmSljRqemRdxqtOGMxf7MTM/E119g0hNTkKWcRREiLhoG0LfkB2zC7PRO2CHIAgoNBnR0WlDZ+8Aso2jUJSTjiOnrPjqbA9yMkahJHc05k26tETObLVh/4lOiMN76noG7LANDOErSw8m52bANuhAq6Ub57sHUTIuHf8wc7zr+yzJzcDR01a8efg0Ls8bg+XzJnrcNMxWG/a1nYcgCKrnnF+c43Wjkc9CS/92//lxf8/hjk7Xz1JZofofo2rH9/V4oOfxVySrvrLCbPjdc889AICSkhIsXLgQycn8U2Akieae3PwsI2oqSz2qdQsAaipLNcehFPQZAJzr6ddsZabrODqCTnd6Jg98/R7LzzKi7vhZzarl/nxP7ll8tXNr7bX31epOjTzjrza2WAjkWi093kv8RYzoJdv+Tj75+pmMh/3+8UoQRZW+FiOEVDnWarUiMzMz2sOhMFNrbUKxQfrDDYDiHzJ63q/2nnWVzlljeWsXtXNKj0szzfJZ6DvmFOC1g6e8/vCTZqcf/dMhbDtwyvVc5dwCPP392apjV5vl9jX77e95/BXJqq+sMOsUyftSS0sLXn75ZbS0tOB//ud/kJeXhx07dqCoqAhXXnllWM8dSbzXxxaz1Yb9bZ0QBGdmXc8f9lsb2z2XdcO/4meSF+taPDKt8t/18nHKg1+z1YYFa3d63GsEAA2rbkR+llHX7zGz1YaFNTtVK6fXVy/R1TJL/u9Af4e6X1v3cSybMwGvHzzt1bbOlfG//lLGX0+7r0ACuVBN4ipdc61r7e+x43GiuaHFghUb93g9vuX+a1ExZWwURjTy6L03MWDnTXzE0LpBUuxw318XSgYBqvsCDcPn83ocwO5VNwKA7p+dJEHAhrvn4t7f7/d67q9VCxQz4Gp/SGx/sAJ3PN+g+gfG4Y5OfK+2Qfd5/BXOP3Ciea5YF6n70kcffYSlS5di4cKFqKurw7FjxzB58mTU1NRg3759+Mtf/hK2c0ca7/WJQQr0f/bqwYB+V6j1A5e/32y14X/rW11t2dyDX8WAXQAaqpXvFUpjUwuUtIJsrUljgwA8cfN0r8Jx/vwOlQLq9BQDegccrsDaPdAGoBh0h2qyNVQTEGrcJyYMgvo2A3+PGa8TzbzvRp/ee5MhgmOKKbW1tZg5cybKy8ujPRSKkGD2aVHkiAh9sA44l3o1tnUqZuAdCsE64OxL22bp9etnxy6K+OBz5T67+9o6FR9XW2LZ2NapuvQSAPa2nffrPP7SWvoZapE8FzlVV1djzZo1eO+995CSkuJ6/MYbb8Qnn3wSxZHRSGK22tDQYoHZavP52vwsI3JGpwT0u0KrH7j7+7c2tmPB2p3YuOtSNXdpqbBr25Ts/aIIHDjRiZdlFeDdj+3+OaWl+e4McE4qq2X65UuXtx045fFvpcJxdlHEW0fMuq9txZSxKCs0ee3nl1rgSa+Rb9lSWlat55zutja2Y2HNTqzYuAcLa3bixY9aQnJcd3eWF+Hxm6dBwKVrtrWxPeDjheqzR4u0XSFpuOIj953HrhG7ca2qqgpVVVWumQ1KfL5am1BsCGeGvbzYpLhsXit0Ws7JAAAgAElEQVTDLmUV9P7sJAkClkzLwx8/6fB6bn6xctZbrShPebF2f+Cri5Vbb6mdx1+RLBYUK4WJRpKmpiZs3rzZ6/G8vDxYLJYojIhGEq0sttrrpZohgfyu0Jp4ld4vBWBKL7OLIl7e3YqNda2Kx3ho80HF9xkE4MjJC7hr0yce2XH3e5wAYG1lqerKKD2Txg5AsXXZmreO4ddvHwso86snexyKgoBKge+6Hc2Q15EPtk2Y2WpDzY5L2yEcIlC9vSngXuGJ0MqM+87jw4jNsNPII59JFATvAqEsGBpdguDcS1izvFSzxY/W+9WsXe78Y6imstTjexaG/wipqfQ8p/QHlFSoRz4LXTm3wPVviTQ7fdOM8aicW+DxXOXcAtU/xtRmucsKTZqz32WFJr/O469Izr5zpj/ysrOzYTabvR4/ePAgCgoKFN5BFBq+sthKr5eyr3c834A75hT4/btCKasNOP8Qlt7vKzDeUNeqWidF7fEflBd5LFWXsuPurxcBXLAN+j12d0mCgOql073uS9I5/c386s0eK43N38lWpesuTUAEc1w5rdURgQjFZ48FSisnKLaM2Aw7jUxqrU3c92yd6erDvrZOzC82IS8zDe8f+wZnu/px44w85GWmYfuBk/jqTDduGa4S/9dDp9HTPwRr7wCOft0F46gkTDSlIz01CQAwLiMN+dlpaD/fi1kTs/BNVz8+O21F2ihnlfgxxmQUZBvx5ZlufHqqC0N2B64qyERykgFtlh6kjUpCtnEURiUZcKF3EK3nepA+KgmjjckQHZeqxHfLqsQXjk3Hd67Mx4TsNNR/cQ5fnOlCd58d4zNTIRgEpCUbcOJcL84MV4kvnZiFZXMKkJ4yCukpBjSdsuLDz8/gVKcNBSYj5hSZkGUcBcB5gzt1oRdnuvoxIz8T3X1DSBllcFaJF4GuvkEMDDowqzALtgEHBAGYaDLipKtKfAoKc4xoclWJT0FJboZH8aHFU8fhwIlOiCJQmGNE74ADvQODru+ub9CBVksPzvcMoCQ3A9+aeZnr+yzOTcfR01a8dcSMKXmjsXzupSrx0s+AUsEj93POK/YshKQ0C/3Yd6Yp7vkDgKe/Pxt3V0xy/Sz5CqLVZrl9zX77ex5/RXL2nTP9kfWDH/wATzzxBP785z9DEAQ4HA7s3r0bjz32GO6+++5oD48SlK8stjw7qRQ4vn7wNDbcPRetll6U6/y9J69WbhCA+xZNxspFxa7zhXolngBgweVjsXmv72XX63Y04/ayCapV5ZX6t0sF4aRJizvLi3B72QS8dcSMNW8d8ziGv5lfvdnjUFSBV1th9fjSafjNjs9DVl1erWxXoCv6YqUCfjDitWDeSMOicyxEQ0REMSRS96WBgQFUVVXhlVdegd1uR3JyMoaGhnDXXXfhlVdeQVJSUtjOHWm818cOtYJrgH8F2iRaVd6V+KpWvrWxHau2NXktx1bbOqVFAPB61QKv4qFqfFXnlo9d7bMEWkxM3vZWrRiqUhvTQKvAS9wLwrlPQAR7XPnn06rwH8xx43GiOZ4L5iUKVonXiTdxIiKKJZG+L3V0dKCpqQk9PT2YM2cOLr/88rCfM9J4r48dhzs6sez5Bq+sprwSu1bgKBdo0KWWXTRbbXi5vg2b6r+CQ7y07B6AYjCvZc2yKzEqyeARjH7nysvw9qdfe7wuFNW53T9P3fGzigGwGqXgDYBXVt+9Mn2oA7xIBL7uEzIGOLe+jcQglRXiYwMDdp14EyciolgSyfvSSy+9hP/+7//GF198AQC44oor8C//8i+47777wnreSOO9PjYotVUzALhvcQlWLixRbeUFANXblJfRS9b/0xzcVjYBgDMY2dd2HoIgYJ5Kn3e9/dLlAaTahIOWdZWlXtt9XqxrcVV21xNQ+6L0efRuMdIK3oBLWwe12ozGk1jNiOvpZR+q5euJ3oM9Xpb66703cQ87ERHRCLR69Wo888wzePjhh1FRUQEA+Pjjj/Gv//qvaG9vx3/+539GeYSUSJTaqhkAvFa1wLUHXa3Q2fYHKxQroLuTCpRtbWz3CO6VlswrnWfVtiZMHz/GYz+8VHTUXVmhCcvnFGDbgVOXzg3tpfI/3/4p6quXuAIhs9WG0oIsvPbgAq/6J4FQu2711UtQnJuOVkuP6/Mo0dqvLhUja2ixxH1FdInS9xptviaQQr18PZE7syTiUn9WiSciIhqBfve732Hjxo1Yu3Ytbr/9dtx+++1Yu3YtNmzYgOeffz7aw6MY40+/dCVqlcB7Bxyar7GLIhrbOn0uiZ9ocu7plmfiRQCrtjd5jFttLMueb/Doy630mc1WG147eMrjvQKAFdcUqo5P3ufdveJ9+/ke1eBR7zVXu24v72716G2u1nNcT7XzRKmIHot8VeQPR7/3RO3MEo5rFQuYYSciIhqBBgcHMX/+fK/H582bh6GhoSiMiGJVKDJWejJ6aq8pLzZpVm8XAdzxfAPuW1SimOl2iPDIBKtVgxeH/7hfPHUc6o6fVfzMasH+lr0dqp9d3uddHkwo9QH355orfR6DAGx0a0MnrSJQOpeeaueJUBE9VvmqyB+ufu+J2JklXNcq2phhJyIiGoH++Z//Gb/73e+8Ht+wYQPuuuuuKIyIYlGoMlZ6MnpqrykrNHk9/tCSKXBP+DpEYNOuVsiSwACcwav7xIB0HqU/gu2iiP1tnaqfWSnTbID6cn33z6kVTLjz95orXbd7FSYvHABerm9TPMad5UWor16CLfdfi/rqJYqTA3peQ/7ztXohnKsbEq0He6KuBGGGnYiIaIR45JFHXP8tCAI2bdqEd999F9deey0AYM+ePWhvb0+YPuy1tbWora2F3W6P9lDiVigzVnoyemqvkT/eaunB+g9aPN7rAPDj6yZj466vLu1hH85Oy891Z3kRpo8f41VALkkQAIXsu/uebnmm+dtXXoYdsqrvBgC/XTEHc92K3qllwi3dfTBbba7XBXLN5dcHcE5gyIP2TfVfefSed6dnb3ek9n/HS9GwUPC1eoGrG/RL1GvFKvGsHEtERDEknPelJUuW6HqdIAjYuXNnSM8dTbzXBy5U7Z9CHYD5qmy+v60TggCPgFmJUrV2tUDe/TNLlcaVqqcDwKpbpuMni6d4nc+937gwXK1OhHdbO61rrvda/vqto9iwq9Xr8doVc3DrrAmq74u2RCwapoev6vWxWt0+FsXLtWKVeCIiIvLwwQcfRHsIFGdCkbEKRwDma1y3lfke39bGdlewDgB3lk/Ehd5B3KEQrCst31erng4AswqyFc8pZcIPnOjEQ5sPeuwxd9/PrvTZAOBXbx3FS/Wtuq7lykUl2DT8WncPbT6I7v6hmAyClbYDVG9rQnpKEuYX58R08BUsX6sXYrG6faxKtGvFgJ2IiIiIVLkvt05PMaBnwO6xhFuLP4XWlN6rlUkOpmiWUpu5zQqF4wwAtj9Y4dHuzV0g7bHys4wwZfR4LVd3X/Yuv+ZvHTHjiW1NHq/3dS2lwF/+OUXo/w4iTWk7gAjg4S2HRlS2ncgdA3YiIiIi0pSfZVStnK4l0D3werPygWbSlMalRN56Tun8gaxA0BPoy6+5Erso4sCJTpgylCc27iwvQnpKEh7ecsjrfbFYObskN0O1r70/kz1EiYQBOxERERFpCjRTHkgGOpisvF5qrd3k3FuyqWX7A8n06wn0lVYByAkCXEvr1SY25hfn+PwOYqXIW36WEfdfV6K49x7QP9EQK5+HKBQYsBMRERGRpkAz5YFkoCPRS9m1XHxbE9Ty59JY9awsCCTT7yvQ97UKwCA428kp7YOX3i8FrO6f1QB4fAexVuRNbe89oK9FV6x9HqJgMWAnIiIiIk16M+VKmU1/M9CBZOX1ch+fNK6X69uwqf4rV6X4x5dOw6yCbNf53Cu2hzrbrxXoqy0PFwDcv7gEpQVZikvd3T+PFLC63igO/++wSKxm8Jd8kkeiZ7InFj8PUbAYsBMRERGRJj2Zcq3Mpj8Z6HD1UlYb389vnYGVi4oVJxSUqsBHe//361ULUFZogtlq8+7rDriCdcD53KptTR695d2D2EisZgiEvOhe74BD12SP2ufZ39aJnNGJu0T+cEcn9radx9XFOaoFEil+MWAnIiIiIp+0MuV6M5t69xb7ysr7u0fZ1/jUJhRCke03W23Yf6IToij61Zqs1eJdSR4A3jryNcoKTYoTG3eWT/Sqdu8AvNL0UlAeytUMod43Hsg2A6XPIwD42asHE3aJ/KN/OoRtB065/l05twBPf392FEdEocaAnYiIiIh0UQui9GRq/d1brHauQPYo72s7H7E9+PKxVm9rcsXLAoCaSn0Bo9qS+E31X2HlomKv9m9HTl3Auh3NXscxDJ9YKSgP1WqGWNk3Lv88BjivX6IukT/c0ekRrAPAtgOncHfFJGbaEwgDdiIiIiIKiq9Mra8Mt97sbCB7lKVgUk5vJjnQfu/SWN0DbhHOJep6Aka1iukOER4TDdL/3rXpE69JCQOAtZXOPexqQXkgn8/9+wIQU/vG3T/PuZ5+PLT5oMfzsbDkP1T2tp1XfHxfWycD9gTCgJ2IiIiIguIrU6uVgddThV0KEM919/uVKddqjbZszgS/9tX7G+CpVXl3ALoDRqWK6UoTDWrn+u2KObh11gQA0AzK/fl88mz6vYtKYm4fvPR5lPb5h6qAob/C0Wru6uIcxcfnFzNYTyQM2ImIiIgoaFqZWrUMfHqKwWd29sW6FtTsaIY4HCDKl4lrBWBardFeP3gaj31nml8Zc38CLrVe7wZAd8Cod8m62vWdO8nkcaxgA0WlFQ4v1bf69Z1EUrgKGPorXFsGygpNqJxb4LWHndn1xMKAnYiIiIhCQi0oVAucegbsmtnZFz9qwVq3fdkOERAEwCA6M9W+AjC1oFl+HndKgXkgAZf0mau3N0HqTibAuUTdn4BRz5L1SAWmShMgDhH48eISvLSrLapBsZpAtzSESrhbzT39/dm4u2IS9rV1Yn6xicF6AmLATkRERERhpxQ4aS1ZNlttqFEooiaKwPoVc5xBsADMm6QeoEiBrNKyePke+1ZLD5pOWrHunWaPwHzx1HEBB1zSZz5wohOiCMwrNgUUpOnJjkciMFXL5K9cWIKVC0uiFhT7EorVBYGKROu8skIG6omMATuFjNZSMV/LyKSWJ23netA/aMe3ZlyGvMw0j4Im+9rOQxAEzJtkwtHTVuxsPoMbp+dh5oQs/P3oNzhzsQ9FOelobOtE+7keJBsEjE4bhZtm5ME2aIelewBlE7PQO2CHIAgoNBnRfr4XJ871ovnrLlgu9qN3wI6e/iFkpiXjXM8A0kYloTAnHWMzUlA0NgPmLhs+PWnFqCQDckenYt4kE05f6ENP/yAmjc2AAyIOtV+AtW8IpfmZMHf1wdLdh55+O1KSDACAqyZmYXp+Ji70DmDQLmJMajL2n+hEskHAjPxMOCCi45wNoiBi1sRsTMhKw6GOC8jLTMOErDR8ZelBtnEUjp7uQvv5XvT0DyE9NRmTxmZg2ewJruuWkZKE9vO9EAQBtoEhNLScw2VjUlGQk+46d6HJiAu2QUzOzXBdF+kPH/djXOgdxMnOXpy52I/bZuXjphnjFXt+qn3P/vYH9af4UKD7wUI9Jve2PUU56egZsCdsv1ciokDJAyetzHBDi0WxrZlBAE522rwCa7WMtxTIvry7FZvqWr0y8+7Zc3dSYP7vt88IKuDKzzLi1lmRuReEOzD1lckPtv1eIgpl6zwamQRRFJV+F44YXV1dyMrKgtVqRWZmZrSHE7e0lor5WkYmb3kip9TShMLL1zXPyRiF8z2Drn9Xzi3A1SU5it+zv/1B9S47DGY/WKjHpPYznIj9Xin8eF8KPV7T2Ge22ryys2arDQtrdnoFyw8tmYLaD1o8fucKAtBQfaPPoFB+HrVzuFO6JyYJAuqrl4zYIFTp+5KLlVZvsWBrY7vXJMdIvRZ0id57EwN23sSDpnSzk25kAFSf03ujpPigVHBmw91zce/v93u99q9VCxSz2lo/S+5/EOh9nZLDHZ34Xm1DyMbk62d4pP9RR/7jfSn0eE3jl3ugYwDwxNLpKDAZvVp1AUCtW0V0vRpaLFixcY9f75FapfkKuEZydjmY+3Si0jPJQSOL3nvTiF0SX1tbi9raWtjt9mgPJe5p7c0RIWouI9Oq3krxRf412kURH3x+RvG1av1B9e7zCmY/mL89S32dy9fPcLRb2xARxQulAFdpX/Ybh08pvv/zry9i7iSbX79vtYrSGeAsbCf3Wx0TA+4rrwQANToCfH8oXatYmiCIxL7teBPNffQU30ZswF5VVYWqqirXzAYFztfeHK3ntG6UFF+UMuxLpuXhj590eL1WrT+o3n1ewewH87dnqa9z+foZ5j41IiLftJZPywOd+cU5isvUn9v5JdZ/8KWrUJye4FVpT/bjS6dhVkE20lMMuOP5Bs1WaUrMVpvHNikRQPW2ppBVBVe6VgBiavk5920ThY4h2gOg+Cfd7JIEAYBnIRet59zfO/y0B+khpedIXbCXS9BxjJyMUR7/rpxbgJpK7+/5phnjUTm3wOu1akXefP28+Ps6JVLP0lCNSetnONZa2xARxSK1tldmq03x9flZRtRUlir+EesQgertTViwdidWbNyDhTU7sbWxXfP8d5YXYfuDFfjFrTOw/cEK/GTxFFRMGYuyQpPq73+z1YaGFoviGPe1nfeaTBAB7G/r9HElfFO6Vqu2N6F6m+yxbU2q1y8SgrlPU3w43NGJjbtacLgj+J9r0sY97NzXFjJae3N87dsxW2044KoS78BNM/KQl5nmeg/gvNEJAjB3uEr8h5+fxQ3TxmHmhCy8f+wbnO3qx8QcI/ad6MQJSw+SkwSMTnVWie8bdMDS3Y9ZE7NgG3BAEICJJiM6zttw4nwPmr/uwtmuftgG7ejuc1aJP98zgNSUJBTlpCMnPRWThlvMNJ20IiXZWSV+bpEJZmsfevqGUJSbDlEEDrV3oqtvCFfmZ+Lri32wXOxH98AQUgwGQBBQWpA5XCV+EIN2B0anJuPAiU4kJwmYnp8JUQQ6zvdCBDBrYhbys9JwuMOKvMxU5Gc5r0mmMRlHT19ER2cPuvuHkJHirBL/veEq8W2WXqSnGNBx3gZBAHoHhvBJyzmMy0zFRFO669wTTUZ02YZQnJvuui5S5sD9GBdsAzjZ2YuzXf24xa1KvLznp9r3rPTaQH+WAnmdklCPSfoZFkWgMMeI3gEH96lRQHhfCj1e09imto98y/3XomLKWNX3ma02vHXEjDVvHdM8vgDguX+ajfnFOYq/k30VR5P//vf1+jePnNa9x97fZez+7Ln/8XWT8fNbZ+h6bSi5fyYA3LedgPwt3kvKWHROJ97EiYgolvC+FHq8prEtmAJl/hSvNQjAEzdPR+nELFeA7O+59bzebLVhwdqdPqvYB1JFXen8qnvwBWC3jsr5ocTK8P6LpdoDevhbvJfU6b03cUk8EREREYWE1lJxNYEun5YCnSdunu56r9Y2OocIrN3R7LFUXqs4mtLn8fV66fPUVJbCMDwWgwDULC/16nbizzYA92PLr9Xa5aX48XUlip/XfVzhFuhnGsm2NrZjYY3+7RuxQKt4L4XHiC06R0RERESho5Rd1Vv8TakavD/nemLpdFehuGW1DV57yOWkYHL7gxWqxdHUPo+eYmq+Po9a4L+/rRM5o7Wvl9KxzVYbNtW3hqXIm94MMCvD+0dtgiNUxQnDxd/ivRQ8ZtiJiIiISJWerLlS8FG9rcmv7GF+lhEVU8bqyqzLz7VuRzMs3X3Iy0xTLUgnZxdF9A44FLP7ABSDKQC6VwMofR7pWmakJLky8BIBwM9ePah4veTfgfzY4Sry5k8GWKoM746V4dXpWa0Ri/wt3kvBY4adiIiIiBTp3ZOsFHyIAERZwDt9/Bj0DNg99pD7u39X6VwOEXh4yyHXGHevuhFtll4cOXUB695uVuynbgBQnJuOiiljvTLWDS0W1WDK39UAEvm1vGNOAV4/eBp2UYRh+HopZVvrjp/V9R0EOi41/maAlVrksTK8unhufff092fj7opJfhXvpcAxYCciIiIiL3oCNingljLGWsXf7KLoWq4uBayvHTzld4EypUBHIo2xvnoJKqaMRcWUsbi2JAfLnm+AvMzyE0une2So3QPLjJQkr17v7sGU/PW+KF3L1w+exvYHK9A74MC5nn6vyvLSEnl/g+ZQBciBLHEP9aRBIov3CY6yQgbqkcKAnYiIiIi8+ArY9GSMlfqRA87A070tlD/7d+WBjpw8qCwrNKHG7fXSnvefLJ6ieHzpc8mD9WCCKbVr2TvgQMWUsTBbbYrZVihMTERqX3igGWCtSYN4q4gebpzgID0YsBMREVFc6O3txYwZM/CP//iP+K//+q9oDyfhaQVsvjLGxbnpqDt+1iNI9tV6zZ9AVAp0DpzoxEObD6pmwuWvlxdqcw8ezVYb9rWd9/hcgHMyYvuDFUFlE30Fv2rZ1nmTTFFbNh3qDDBbvikL5aoISkwM2ImIiCgu/OpXv8K1114b7WGMGFoBm9oebyljDHgGyekpBtzxfINm0O5vIJqfZcSts4zo7h/SFVS6B0ZKqwOk5flyDhHoHVDaBa+fnuBXaVJha2O7x1J+QYBfQXOwGe1QZYDjtSI6USxgwE5EREQx74svvkBzczO++93v4tNPP432cEYMtYCtJDfDa4+3IMAr4HYPku9dVIKNu1oVzxNM9tbfoFIpeHRfnq80tlBktPWM0/16SeP0uMYisHjqOF3nC1VGOxQZYLZ8Iwoc27oRERFRUOrq6vDd734XEyZMgCAIeP31171eU1tbi+LiYqSlpeGaa67B3r17/TrHY489hrVr14ZqyOQHve3WfDU//9GiEsi6fsEAoHbFHNRXL/EZTGq1l1Mbo9J7lIJHNaEuBKb7WkKlGj6gq+2XWkbbbLXpatMXamz5RhQ4ZtiJiIgoKD09PSgrK8OPfvQjLF++3Ov5rVu34pFHHsELL7yAa665Bs8++yy+853v4PPPP0deXh4AYPbs2RgaGvJ677vvvovGxkZMnToVU6dORUNDg8/x9Pf3o7+/3/Xvrq6uID4dKWm19CgWlNPKmOZnGVFT6b0s/NZZE3yeL5Bssdp7tKrMSwwAfrtiDuZOMkUtAxxM2y+1jPbL9W3YVP9VxPeRx3tFdKJoEkRRobzmCNLV1YWsrCxYrVZkZmZGezhERDTCxft9SRAEvPbaa1i2bJnrsWuuuQbl5eVYv349AMDhcKCwsBAPP/wwqqurfR5z1apV+OMf/4ikpCR0d3djcHAQjz76KFavXq34+v/4j//Ak08+6fV4vF7TWGS22rCwZqdXMFlfvUTXknR/9kQHci5f79na2O4RPC6bM8FV4V4KJmOhIJp8nHrHdbij06uVnQHwqjqv9zsLFX+/e6JEpvd+zww7ERERhc3AwAD279+PVatWuR4zGAz41re+hY8//ljXMdauXetaDv/KK6/g008/VQ3WAWeA/8gjj7j+3dXVhcLCwgA/ASkJJmPq757ol+tb/d7/7GvPtNJ+8se+My3gYDJc7coCKfrmaksnC8zvXVSMDbIaApHeR86K6ET+Y8BOREREYWOxWGC323HZZZd5PH7ZZZehubk5LOdMTU1FampqWI5Nl/gKJkMRxJqtNsVCdQaFAnfu9CwnlwePgQaT4W5X5s+45HvXAWdmffuDFcjLTMMm2eQH95ETxT4G7ERERBQ3fvjDH0Z7CAnN3yBbXtVcem/d8bMhCWKV9soDwH2LJmuOL1J7pmOtXZlaobreAQf3kRPFKQbsREREFDa5ublISkrCN9984/H4N998g/Hjx0dpVKQkmEyx/L2ieKlovBTETh8/Bj0Ddr8y7kqZcgOAlYuKfb43VD3EtcRauzJfKwsicU2IKLTY1o2IiIjCJiUlBfPmzcP777/veszhcOD9999HRUVFFEdG7rTagAXyXnlW3C6KWPZ8A1Zs3IOFNTuxtbFd17ikrHCS4OwJliQIWFtZqrtYXaulJySBqVortGDblYW6xZrS9ZJn0f1pLUdE0ccMOxEREQWlu7sbX375pevfra2tOHToEHJyclBUVIRHHnkE99xzD+bPn4+rr74azz77LHp6erBy5cqwjqu2tha1tbWw2+1hPU8iCCZTrLevuRjgsvFgCq+FYl/51sZ2PLGtyfXvdZWXjhXMMvNw7X1nFj2ywlVwkEjCtm5x3j6HiIgSSzzelz788EMsWbLE6/F77rkHr7zyCgBg/fr1eOqpp/D1119j9uzZeO6553DNNddEZHzxeE0jLdg2bfL3CgIAhUy7uy33X4uKKWODGrfe8UifBYBfwZXZakPF2p1ej3+86kaP90eiVR3FnnAXHKTEpvfexCXxREREFJQbbrgBoih6/Z8UrAPAQw89hBMnTqC/vx979uyJWLBO+uhZSu3Pe6tvng5BUH+PryrvvmgtJVdbLfDy7lYsrNnp17L8945+rfj434961mTwd5m51ooGig/BbCMh8geXxBMRERFRUEup5e/1tUzeV5V3Lb6ymoqF6gRgY12rVyE8X8vyLd0DKo/3BzR2rTGyxVp8ibWCg5S4mGEnIiIiIgDBFSRzf69SMTaJ3irvEvdsup6splLG/95FJYqF8HxltG+anqf4+I0qj+sVzIoGig3BFhwk0osZdiIiIiIKKXkxNom/gak8m770qvG6spryjD8AvFTf6ndGu6zQhMq5Bdh24JTrscq5BSgrNOkav5Z4Lg7HQmvBFRwk8geLzrEQDRERxRDel0LHvUr88ePHeU2jQCrGlp5iQO+AwyMw9RX0KRVmU2IAsHu4CJzWMbc2tnsEV48vnYbSgixdQefhjk7sa+vE/GJTSIL1eMZCa578LThIJNF7v2fAzj+MiIgohkBOAfMAACAASURBVPC+FHq8ppGjN/OqJ+hraLFgxcY9Ps8pAKipLAUAn8eUgqsjJy9g3TvNDDr9xOr2RKGj997EJfFEREREFDS9mVe1fejyAnBKhdmUiHAG6qJbGzm1Y0r/fdemT3yen7yx0BpR5LHoHBERERF50GqbpvZ6vS2u/Glpdu+iEtXide4cCj3f1Y7JlmqBY6E1oshjhp2IiIiIXALZo+xP5lVPSzP3MQgAFl+Ri/ovLHDAmW0S4RmgGwR4ZNiVjgk4JxbO9wxAgO/XkjcWWiOKPAbsRERERARA/3J1OX/6ivsK+uRjEAHs/vIcXqta4CpcV3f8rNf7AWgGkvJJACloZ9Dpn3iubq+Fle8pVjFgJyIiIiIAge9R9jfz6h70pacY0DNgh9lqQ36WUXUMvQMOVEwZ6/V+96BRLZBUmgQwCMBvfzAH84pNDND8lJ9lTKhrxsr3FMsYsBMREVFCcm/rRvr4kymX8zfzmp9lRN3xs16B0gXboNdrlcagFDSqBZJKkwAOERg7OjWhAk/yX6CrSogihUXniIiIKCFVVVXh6NGjaGxsjPZQ4oaUKU8SnJXF/F0unp9lRMWUsbperxQordrWhHU7mr1e+/jN04IKnlgsjdSwCCHFOmbYiYiIiMglUnuUFbPegHe5dwCzJmYHdS4WSyM1wawqIYoEBuxERERE5MF9aXm4inEpBUoGAAggeNIzxkQtlkbB4WQOxToG7ERERESkKJzFuNQCJUC72nswY0y0YmkUGpzMoVjGgH0EkWafM1KS0DNgd/2vNBttttqwr+08BEHAvEneFVPd39/RacORk51oP2fDpLHpmJiTDqttEP2DdnxrxmUAgL8f+wZ5mWmYVZCFXV9aUH/8LNJGJWHh5bk4dcEGS3c/ACA9JRkDQ0NotdhQmJOGkrGjUfeFBUMOB7KNybA7gKKxGbjrmiKUFZpgttqwbf9J1H9xFhf7htDdN4gLtkGYMlJQteRy5GSk4P98fAJ9g3ZMyRuNr619sHT346qJWaiYnAvbwBDeP3YGg3YHjClJSE9JRtFY58y9+/j3tp1HtnGUs/iNCBw1d2HyuAyMz0xDQ8s5ZKQkwZSR4nru5qvG4x/n+/4jRi0LIH9c/n0pZQ0Od3Rib9t5XF2cg7zMNM33K33f+090QhRFzC/OAQCv799XxsL9eQC6PpeeaxHI9Qv2tbEkXsdNRIklEsW4/K32Ho0x0sjAyRyKVYIoigo7hUaOrq4uZGVlwWq1IjMzM9rDCRv32Wc5gwDcMacA2w+ccm0bEwDUVF6aodZ6fyTNLcrGgfYL0R2EhqIcI+oev1H1ebUsgPzxO+YU4LWDpzyXCcqyBo/+6RC2HTjldQ6198ufd/++5QQAy+deOoZSxkLezxa41CZH7XO5HyOQrI0/74nXFi3xOm4KnZFyX4okXtPANLRYsGLjHq/Ht9x/rau9WrTFwxiJooUJgNim997EKvEjgHz2Wc4hAttkwZsIYNX2JpitNp/vj6RYDtYBoP28DX/e1674nFoW4HBHp9fj2w54B9vS681WGw53dCoG61rvlz+v9XWK8DyG+7mVPouISzWCtD6XdAy1ayEdX4k/7wnk+LEgXsdNFKtqa2sxc+ZMlJeXR3socSkeKqvHwxiJomFrYzsW1uzEio17sLBmJ7Y2Kv99SrFvxAbsI+kmrlSFVQ+HCLRZegN+/0j17mffKD6u1jaksa1T9/WV2ozsbTsf5Cj9597ixNfPhNrnko4RSAsVf94Try1a4nXcRLGKbd2CE2yLt0jQO0az1YaGFgsnQGlEYAIgsYzYPexVVVWoqqpyLUVIZEpVWPUwCHDNUAfy/pHq21depvi4WtuQ8mKT7usrZQ3SUyI/1+aesfD1M6X2udyP4W8LFX/arsRri5Z4HTcRJa54KMbla4zcahT7uHQ7tLQSALy+8WfEZthHEvnss1ySIKBybgHcnxWGb2hSAQ6t90fS3KLg+rCGW1GOUbXwnFoWoKzQ5PV45dwCr+vtnjUoKzShcm6Bx/OC2+uU3g/Z81pfpyDA4xjyjIX8swiC5/nVPpd0jECyNv68Jx6yQkriddxElNjys4yomDI2pn8XqY2RmcbYx6XbocetIomFRedGUCEas9WGNksv0lMM6B1wuP5Xmo02W23Y39YJQQDmqlSJl95/stOGIycvoP18LybluFeJd+CmGXkAgPePnUFeZipKC7JQ71YlfsHluTBb+3D2Yh8AqUq8Ha2WXhTmGFE8NgO7XFXiR2FIFDFpbAZWXH2pSvz2AydRf9xZJf6iVCV+dAqqbnBWif/jxydgG7Tj8stGw3yhD+d6+nFVgbNKfO/AEHYeO4NBx3CV+FHuVeIvjX9fWycyjcnosg3BIYpo/roLJbmjcVlmKj5uOYf01CSMTU8dfu4ivn3lZbqrxCtlAeSPy78vpazB4Y5O7GvrxPxiE/Iy0zTfr/R9HzjRCVEE5hWbAMDr+1cbq9KYAej6XHquRSDXL9jXxpJ4HTeFxki6L0UKr2n4RStD6uu8LEoX28xWGxbW7PRaWVZfvYT3vyBtbWz3ao/IlSWxRe+9iQE7b+JERBRDeF8KPV7T8IrWknM9532xrgVr3272eIwBYeyIxwmVeFq+zwRAbNN7bxqxe9iJiIiIKDjR6oOu57xmqw3rdjR7vffxm6fFfPAST0FhMOKtdku81UNgb/nEwD3sRERERBSQaHW30HNetY4msybGdj2ckbSnO55qt0S7HgI7HYxczLATERERUUCilSHVc95AxhbtzHa0VixEUzx0IgCiW3k93jL7FFrMsBMRERFRQKKVIdVzXuk10h+7BkBzbLGQ2Y7WioVoi4dOBNGqvB7tzD5FHzPsRERElJBqa2tRW1sLu90e7aEkNClDur+tExCAeZNMET2vz8ysAEAEoNHONFKZbV8Z/Hjb0z2SSBNA8srr4Z5kYE91YsBORERECamqqgpVVVWuSrwUPnXHz0Zlya5WUS1/gvBIBEV6ljVHKygkfaKxfJ+TOMSAnYiIiIgCFqv7rv0JwsMdFPlzjeJlT/dIFenK65zEIQbsRERERBSwaC/ZVVtm7k8Qnp9lxB1zCrDtwCnXY8vmTAjZ+P29RmzHRe44iTOysegcEREREQUsWsW4AO1Ccf4UxDNbbXjt4CmPx14/eDpkhb2ieY0oMcRDYT4KDwbsRERERBSwUFSKD6THtNlqQ/U27erZd5YXob56Cbbcfy3qq5eo7qsPd3X2eOo3LmHfb6LYwCXxRERERBSUYJbsBtpj+n/rWyGLsRWXmetZXh6Jwl7xtKyZfb+JYgcz7EREREQUtECW7AbaY9psteGl+lavxw1AQEF2pDLg8bCsmX2/iWILM+xEREREFBUv17fqLsbmXlxOaQk7ANy3uCTgYDieMuDhFO0igkTkiQE7EREREUWc2WrDxl0KWXLBO0suX6L9xM3TvZawGwRg5cKSoMbE6uzs+00Ua7gknoiIiIi8hLvoWKulx2sPOgDct2iyR9CstET7N+98jieWTvdYwr52eemID7ZDIR4L5BElMmbYiYiIKCHV1taitrYWdrs92kOJO5EoOqaUyTUAWLmo2ON1aku0ZxVko756yYhfwh4O3B5AFDuYYSciIqKEVFVVhaNHj6KxsTHaQ4krkSo6ppTJXVvpnSXX6mEeqiJubGHmLR4K5BGNBMywExEREZFLJIuO6cnkSoH9z7d/CrsohnyJNluYEVEsY8BORERERC6RLjqmp9BbuJZoq60mWDx1HDPLRBQTuCSeiIiIiFxitehYOJZoa60mICKKBcywExEREZGHkVJ0jC3MiCjWMcNORERERF6iXXQsEoXgYnU1ARGRhBl2IiIiIoopkSwEN1JWExBRfGKGnYiIiIhihtlqQ/U2z0Jw1dubwp5pZwszIopFDNiJiIiIKGbsP9EJWR04iCJw4ERnVMZDRBRNDNiJiIiIKGaIojxclx6P8ECIiGIAA3YiIiIiihnzi3MgyB4TAMwrNkVjOEREUcWAnYiIiIhiRn6WETWVpa4/Ug0AaipLub+ciEYkVoknIiIiopjCyu1ERE4M2ImIiCgh1dbWora2Fna7PdpDoQDkZxkZqBPRiMcl8URERJSQqqqqcPToUTQ2NkZ7KERERAFhwE5EREREREQUgxiwExEREREREcUgBuxEREREFNfMVhsaWiwwW23RHgoRUUix6BwRERERxa2tje1Ytb0JDhEwCMDa5aW4s7wo2sMiIgoJZtiJiIiIEshIyjabrTZXsA4ADhH4+fZPR8RnJ6KRgRl2IiIiogQx0rLNrZYeV7AusYsi2iy9bAlHRAmBGXYiIiKiBDASs80luRkwCJ6PJQkCinPTozMgIqIQY8BORERElAC0ss2JKj/LiLXLS5EkOKP2JEHAr5dfxew6ESUMLoknIiIiSgBSttk9aB8J2eY7y4uweOo4tFl6UZybzmCdiBIKM+xERERECWAkZ5vzs4yomDJ2RHxWIhpZmGEnIiIiShDMNhMRJRYG7EREREQJJD/LyECdiChBcEk8ERERERERUQxiwE5EREREREQUgxiwExEREREREcUgBuxERERERBTXzFYbGlosMFtt0R4KUUix6BwREREREcWtrY3tWLW9CQ4RMAjA2uWluLO8KNrDIgoJZtiJiIiIiCguma02V7AOAA4R+Pn2T5lpp4TBgJ2IiIiIiOJSq6XHFaxL7KKINktvdAZEFGIM2ImIiCgh1dbWYubMmSgvL4/2UIgoTEpyM2AQPB9LEgQU56ZHZ0BEIcaAnYiIiBJSVVUVjh49isbGxmgPhWhEikQhuPwsI9YuL0WS4IzakwQBv15+FfKzjGE7J1EksegcERERERGFVCQLwd1ZXoTFU8ehzdKL4tx0BuuUUJhhJyIiIiKikIlGIbj8LCMqpoxlsE4JhwE7ERERERGFDAvBEYUOA3YiIiIiIgoZFoIjCh0G7EREREREFDIsBEcUOiw6R0REREREIcVCcEShwYCdiIiIiIhCLj/LyECdKEhcEk9EREREREQUgxiwExEREVHEma02NLRYwtrqi4go3nFJPBERERFF1NbGdlefboMArF1eijvLi6I9LCKimJMQGfY333wT06ZNwxVXXIFNmzZFezhEREREpMJstbmCdQBwiMDPt3/KTDsRkYK4z7APDQ3hkUcewQcffICsrCzMmzcPd9xxB8aOHRvtoRERERGRTKulxxWsS+yiiDZLLwuUERHJxH2Gfe/evbjyyitRUFCA0aNHY+n/397dB1V133kc/5x7EQTlSVAMeK+YNrppVIiRS7JbV0mZpZmtXcVOMvGPatKJTldMWmJGXUeTTJrFXZLWFGlttVOyGZuaGNFMt00zq0mt0UQlhSSNIFiI1ACKytOVgsDZPwi3Xp4fLtwL9/2auaPn4fc733PumfOd7z3n/HjgAb399tveDgsAAAC9mBM9RRbDfZ7VMBQfHeKdgADAh3n9Dvvx48eVnZ2tgoICVVVVKT8/XytWrHBbJzc3V9nZ2aqurlZCQoJycnLkcDgkSZ9//rni4uJc68bFxenSpUtjug9dquqbVV7r1JzoKZLk+v9t4cFuy/r69biqvln/92mNLjf+TfZpIaprvqmI4Emqa76p26On6FxVoz65VK+oqYGaZLUoOjRI8VFTZIsM1kd/rdflxr8p0RahT6sa9F5prRr/1iYZUlt7hyyGoX+YGapJVqtutLap+Wa7JlktCgsKUOmVJiXOilBoyCS1tLUr0GpRoi1CwYEBam5t04myq5JpasXdcZoRNlnltU41t7apsLJOM0Ina+GscF28dkOGYeie2ZED7nv36aPnqvWbos8VEhSgwACr5kSHKGFWhJyt7QMer/Jap6YEWuVsbXf9e+t2zlZcU13zTUlSZEig7pkd6eqva7lhGLJFBvfbR9e+3RpLVX2zCj67LtM0ZZ8W0qNdf993UeV1na64Jkf8NCXYIgd1Do3EQP0OFO9w4hrMOe8p3c+FOdFT9KPfl+hoyWV9bd4M/feDiaO6fQDA4N0WHqys9AX6j0OfqN00ZTUM/Wf6fO6uA0AvvF6wO51OJSQk6NFHH1V6enqP5QcOHFBmZqb27Nmj5ORk7dq1S2lpaSopKdGMGTO8EHHvbh08petHY1OdA6msvDtO+X+61O/AKgfOXNTmNz4e1RjPVTf1uexPlfUDtv/lyc8GtR1Dfe979+lZkcG6eK3vd9b6O163vv/Wvc3Ku+N06MNL6r7YkLRz1QJJ0pY3Pu6xvL8+uto+lGTXgTMXe20/mO/7ydcK9caHf/9RadWiOL34YGK/59BIBuMZqF9J/Q78M5y4xnIwof7OBUl67cNLeuNPl3Qh619HZfsAgKF7KMmuf547XRW1NxQfHUKxDgB9MEzT7KtmGXOGYfS4w56cnKykpCTt3r1bktTR0SGbzaaNGzdqy5YtOnnypLKzs5Wfny9J+t73vieHw6HVq1f3uo2Wlha1tLS4phsaGmSz2VRfX6+wsLBhxV1V36x/2nmsz4KhO6th6MSWFLe7m/+485h855vwLb0dr6Ec7+4shkbUNv/f/1Erf3JyWN93UeV1/VvuyR7r/GLNPXrsfwr67LP7MRisgY6VxZBMU24/PNy6rYHa9xZXb22GG/9AhnIuPLgojjvtGBcaGhoUHh4+orwEdxxTAICvGWxu8ul32FtbW1VQUKDU1FTXPIvFotTUVJ06dUqS5HA49Mknn+jSpUtqamrS7373O6WlpfXZZ1ZWlsLDw10fm8024jh7GzylP10Dq9zanmK9b70dr+EW3NLwi/Wutmcqrg/7+z5dca3Xdd4pudJvn92PwWANdKw6uhXr3bc1UPve4upvMCFPG8q5cKzksse3DwAAAIwmny7Ya2tr1d7erpiYGLf5MTExqq6uliQFBAToxRdfVEpKihITE/Xkk0/2O0L81q1bVV9f7/pUVlaOOM7eBk/pT/eBVeZET5ExhPb+prfjNZTj3d1I2ybFRw77+3bET+t1nZR50/vtc7iD8Qx0rCzG3x9z721bA7XvLa6xHExoKOfC/fN85xUaAAAAYDB8umAfrG9+85s6f/68ysrKtG7dun7XDQoKUlhYmNtnpLoGT7F+UXUbkqsAtxqGVi2Kcy3rbWCV28KDtTN9QY/CyRcNJsb+9r37tH1a/49I93W8bj3evbVZtSiu11iNL96n/q9V/R/v3vroaptgi1RW+oJef2QZ6PtOsEVq1aI4tzarFsXpa3fO7PccGu5gPD3OzVsKdKthKCt9gXauWtBnvAOd273F1b3NaA4mNNC50MVqiMfhAQAAMO749Dvsra2tCgkJ0cGDB93ea1+zZo3q6up05MiREW/Tk++1VdU3uwZPkeQ2kMqty/ob9fzouRpdaWjRrGnBamhuU1hwgBqa2xQfHaLi6kZ9/Nd6RYcGKtBqVdTUQMVHTdGsyGB9fKleVxpatNAWrnNVjTpRdkVNf2uTJN1s75DVMDRvZqgCA6y60dKm5rZ2TbJYFBoUoAu1Ti2MC1eYa5R4qxJs4QoJnKQbrTf1XtlVmaa04u5YzQibrIraG7rRelMfVdZreliQFsSFq/JaswxDWvTFKPH97Xv36aPnqvW/H1UpJND6xSjxU7RwVrhutHYMeLwqam8oJNCiG60drn9v3U5BxXXVNbdK6hwlflG3UeILKq7L+GLwu/766Nq37u9qf/jZdZmmZJsW3KNdf993UeV1na24rsXxkT1Gie/rHBqJgfodKN7hxDWYc95Tup8L8dEh+tHvS3Ss5LLuZ5R4jDO8b+15HFMAgK8ZbG7y6YJd6hx0zuFwKCcnR1LnoHN2u10ZGRnasmXLiLdJEgcA+BLykudxTAEAvmawucnrf9atqalJZWVlruny8nIVFhZq2rRpstvtyszM1Jo1a7R48WI5HA7t2rVLTqdTjzzyiBejBgAAAABgdHm9YD979qxSUlJc05mZmZI6H3vPy8vTQw89pCtXrmjHjh2qrq5WYmKi3nrrrR4D0QEAAAAAMJH41CPx3sBjcgAAX0Je8jyOKQDA10yIv8MOAAAAAIC/omAHAAAAAMAHUbADAAAAAOCDvD7onLfk5uYqNzdX7e3t3g4FAAAMID4+XmFhYbJYLIqMjNQ777zj7ZAAABh1fluwb9iwQRs2bHC97A8AAHzbyZMnNXXqVG+HAQDAmOGReAAAAAAAfBAFOwAAGJHjx49r+fLlio2NlWEYOnz4cI91cnNzFR8fr8mTJys5OVmnT58e0jYMw9DSpUuVlJSk/fv3eyp0AJjQquqbdfJCrarqm70dCobJbx+JBwAAnuF0OpWQkKBHH31U6enpPZYfOHBAmZmZ2rNnj5KTk7Vr1y6lpaWppKREM2bMkCQlJiaqra2tR9u3335bsbGxOnHihOLi4lRVVaXU1FQtWLBACxcuHPV9A4Dx6sCZi9p66GN1mJLFkLLSF+ihJLu3w8IQGaZpmt4Owpvq6+sVERGhysrKfv9gPQAAY6GhoUE2m011dXXjcowVwzCUn5+vFStWuOYlJycrKSlJu3fvliR1dHTIZrNp48aN2rJly5C38dRTT+muu+7S2rVre13e0tKilpYW13R9fb3sdju5Hpggquub9dnVG5odFaKZ4cHeDscnVdc3619+dFwdt1R6VsPQ77+/hGPmIwab7/3+DntjY6MkyWazeTkSAAD+rrGxcVwW7N21traqoKBAW7dudc2zWCxKTU3VqVOnBtWH0+lUR0eHQkND1dTUpGPHjunBBx/sc/2srCw9++yzPeaT6wH4u3k/8nYE6G6gfO/3BXtsbKwqKysVGhoqwzB6XScpKUlnzpwZ9jaG277rVxfuCHjXSL//8WA87KM3YxyrbY/GdjzZJ9fCsWGaphobGxUbG+vtUDyitrZW7e3tiomJcZsfExOj4uLiQfVRU1OjlStXSpLa29v12GOPKSkpqc/1t27dqszMTNd0R0eHrl27pqioKHI9+jQecuFIjIf9I9d7v09P9MX1cHAGm+/9vmC3WCyaNWtWv+tYrdYRnTQjbR8WFuYXJ62vGun3Nx6Mh330Zoxjte3R2I4n++RaOHYmwp11T7r99ttVVFQ06PWDgoIUFBTkNi8iIqLfNpzfGA+5cCTGw/6R673fpyf64no4eIPJ94wSPwgbNmzwant4lz98f+NhH70Z41htezS248k+uRZiOKKjo2W1WlVTU+M2v6amRjNnzvRSVD1xfmOif4fjYf/I9d7v0xN9jYdzbTzx+0HnfFlDQ4PCw8NVX1/vN78yAUB3XAvHl74GnXM4HMrJyZHU+Yi63W5XRkbGsAadm0g4vwGgE9fD3lmfeeaZZ7wdBPpmtVq1bNkyBQT4/dsLAPwY10Lf1tTUpE8//VTV1dX62c9+puTkZAUHB6u1tVXh4eEKCwvT9u3bZbPZFBQUpO3bt6uwsFC/+MUvNHXqVG+H73Wc3wDQiethT9xhBwAAI/Luu+8qJSWlx/w1a9YoLy9PkrR7925lZ2erurpaiYmJ+vGPf6zk5OQxjhQAgPGFgh0AAAAAAB/EoHMAAAAAAPggCnYAAAAAAHwQBTsAAAAAAD6Igh0AAAAAAB9EwT6B3LhxQ7Nnz9amTZu8HQoAeEVdXZ0WL16sxMREzZ8/X3v37vV2SIBHkesB+Dt/y/X8gbsJ5Pnnn9e9997r7TAAwGtCQ0N1/PhxhYSEyOl0av78+UpPT1dUVJS3QwM8glwPwN/5W67nDvsEUVpaquLiYj3wwAPeDgUAvMZqtSokJESS1NLSItM0xV8vxURBrgcA/8v1FOxj4Pjx41q+fLliY2NlGIYOHz7cY53c3FzFx8dr8uTJSk5O1unTp4e0jU2bNikrK8tTIQPAqBiL62FdXZ0SEhI0a9YsPfXUU4qOjvZU+ECfyPUA0Ilc71kU7GPA6XQqISFBubm5vS4/cOCAMjMz9fTTT+vDDz9UQkKC0tLSdPnyZdc6Xe9odP98/vnnOnLkiObOnau5c+eO1S4BwLCM9vVQkiIiIlRUVKTy8nL96le/Uk1NzZjsG/wbuR4AOpHrPczEmJJk5ufnu81zOBzmhg0bXNPt7e1mbGysmZWVNag+t2zZYs6aNcucPXu2GRUVZYaFhZnPPvusR+MGAE8bjethd9/97nfN119/fURxAkNFrgeATuT6keMOu5e1traqoKBAqamprnkWi0Wpqak6derUoPrIyspSZWWlKioq9MILL+ixxx7Tjh07RitkABgVnrge1tTUqLGxUZJUX1+v48ePa968eaMSLzBY5HoA6ESuHzpGifey2tpatbe3KyYmxm1+TEyMiouLvRQVAIw9T1wPP/vsM61bt841AM3GjRu1YMGC0QgXGDRyPQB0ItcPHQX7BLN27VpvhwAAXuNwOFRYWOjtMIBRRa4H4M/8LdfzSLyXRUdHy2q19hgooaamRjNnzvRSVAAw9rgeYqLi3AaATlwPh46C3csCAwN1zz336OjRo655HR0dOnr0qO677z4vRgYAY4vrISYqzm0A6MT1cOh4JH4MNDU1qayszDVdXl6uwsJCTZs2TXa7XZmZmVqzZo0WL14sh8OhXbt2yel06pFHHvFi1ADgeVwPMVFxbgNAJ66HHubdQer9wzvvvGNK6vFZs2aNa52cnBzTbrebgYGBpsPhMN9//33vBQwAo4TrISYqzm0A6MT10LMM0zTNsf2JAAAAAAAADIR32AEAAAAA8EEU7AAAAAAA+CAKdgAAAAAAfBAFOwAAAAAAPoiCHQAAAAAAH0TBDgAAAACAD6JgBwAAAADAB1GwAwAAAADggyjYAYxbeXl5ioiI8HYYAABglJDr4e8o2AEAAAAA8EEU7ADGVGtrq7dDAAAAo4hcD3gOBTswASxbtkwZGRnKyMhQeHi4oqOjtX37dpmm6VrnlVde0eLFixUaGqqZM2dq9erVE9QuJgAABbVJREFUunz5sls/b775pu644w5NnjxZKSkpevnll2UYhurq6lzrnDhxQkuWLFFwcLBsNpsef/xxOZ3OPmN75plnlJiYqH379mnOnDmaPHmyJOmtt97SV7/6VUVERCgqKkrf+MY3dOHCBVe7iooKGYahQ4cOKSUlRSEhIUpISNCpU6f63NaVK1e0ePFirVy5Ui0tLUM+jgAA+CpyfSdyPfwNBTswQbz88ssKCAjQ6dOn9dJLL+mHP/yh9u3b51p+8+ZNPffccyoqKtLhw4dVUVGhtWvXupaXl5frW9/6llasWKGioiKtX79e27Ztc9vGhQsX9PWvf12rVq3SRx99pAMHDujEiRPKyMjoN7aysjK98cYbOnTokAoLCyVJTqdTmZmZOnv2rI4ePSqLxaKVK1eqo6PDre22bdu0adMmFRYWau7cuXr44YfV1tbWYxuVlZVasmSJ5s+fr4MHDyooKGiohxAAAJ9GrifXww+ZAMa9pUuXmnfeeafZ0dHhmrd582bzzjvv7LPNmTNnTElmY2Oja/358+e7rbNt2zZTknn9+nXTNE3zO9/5jrlu3Tq3df74xz+aFovFbG5u7nU7Tz/9tDlp0iTz8uXL/e7DlStXTEnmxx9/bJqmaZaXl5uSzH379rnW+fOf/2xKMs+dO2eapmn+8pe/NMPDw83i4mLTZrOZjz/+uNsxAABgoiDXk+vhn7jDDkwQ9957rwzDcE3fd999Ki0tVXt7uySpoKBAy5cvl91uV2hoqJYuXSpJunjxoiSppKRESUlJbn06HA636aKiIuXl5Wnq1KmuT1pamjo6OlReXt5nbLNnz9b06dPd5pWWlurhhx/W7bffrrCwMMXHx7vF02XhwoWu/992222S5PZ4X3Nzs5YsWaL09HS99NJLbscAAICJhFxProf/oWAH/IDT6VRaWprCwsK0f/9+nTlzRvn5+ZKGNjBMU1OT1q9fr8LCQtenqKhIpaWl+tKXvtRnuylTpvSYt3z5cl27dk179+7VBx98oA8++KDXeCZNmuT6f1eCvvVRuqCgIKWmpuo3v/mNLl26NOh9AQBgIiHXAxNTgLcDAOAZXUmwy/vvv6877rhDVqtVxcXFunr1qnbu3CmbzSZJOnv2rNv68+bN029/+1u3eWfOnHGbXrRokT799FN9+ctfHlGsV69eVUlJifbu3aslS5ZI6hzgZjgsFoteeeUVrV69WikpKXr33XcVGxs7ovgAAPBF5HpyPfwPd9iBCeLixYvKzMxUSUmJXn31VeXk5OiJJ56QJNntdgUGBionJ0d/+ctf9Oabb+q5555za79+/XoVFxdr8+bNOn/+vF577TXl5eVJ+vuv3Zs3b9bJkyeVkZGhwsJClZaW6siRIwMORNNdZGSkoqKi9POf/1xlZWU6duyYMjMzh73vVqtV+/fvV0JCgu6//35VV1cPuy8AAHwVuZ5cD/9DwQ5MEN/+9rfV3Nwsh8OhDRs26IknntC6deskSdOnT1deXp5ef/11feUrX9HOnTv1wgsvuLWfM2eODh48qEOHDmnhwoX66U9/6ho5tmsU1oULF+oPf/iDzp8/ryVLlujuu+/Wjh07hvwrt8Vi0a9//WsVFBRo/vz5+v73v6/s7OwR7X9AQIBeffVV3XXXXbr//vt7/BkbAADGO3I9uR7+xzDNW/54I4BxadmyZUpMTNSuXbs82u/zzz+vPXv2qLKy0qP9AgCAoSHXA/6Jd9gBuPzkJz9RUlKSoqKi9N577yk7O3vIj8ABAADfRa4HxhcKdgAupaWl+sEPfqBr167JbrfrySef1NatW70dFgAA8BByPTC+8Eg8AAAAAAA+iEHnAAAAAADwQRTsAAAAAAD4IAp2AAAAAAB8EAU7AAAAAAA+iIIdAAAAAAAfRMEOAAAAAIAPomAHAAAAAMAHUbADAAAAAOCDKNgBAAAAAPBB/w8PCFQl3BJ7zgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2519,119 +2539,6 @@ "plt.ylim([1E-5, 2E-2])" ] }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAF3CAYAAAB33UvNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2deZgU1bn/v12NDMrqgiiZATRAIiIDwgygEpCQTEzEKwajxuhoJjJEXG5GEBADNwZFQQEDI4pMxC3A6HUJ3sSYi6OILAMI6JWo4AWc0QDiwjI/A9p9fn/UrZnq6tq7qquq+/t5nnp6prr61Kn1fM973vc9MSGEACGEEEJIQEhBV4AQQggh+Q3FCCGEEEIChWKEEEIIIYFCMUIIIYSQQKEYIYQQQkigUIwQQgghJFAoRgghhBASKK2CrkDYSSaT+OSTT9C+fXvEYrGgq0MIIYREBiEEDh8+jK5du0KSjO0fFCMWfPLJJygqKgq6GoQQQkhkaWhoQGFhoeH3FCMWtG/fHoB8Ijt06BBwbQghhJDocOjQIRQVFTW3pUZQjFigDM106NCBYoQQQghxgZWbAx1YDaiurkafPn1QUlISdFUIIYSQnCbGifLMOXToEDp27IiDBw/SMkIIIYQ4wG4bSssIIYQQQgKFYoQQQgghgUIxQgghhJBAoRghhBBCSKBQjBBCCCEkUChGCCGEEBIoFCOEEEJIDtHYCNTVyZ9RgWKEEEIIyRFqaoDu3YGRI+XPmpqga2QPihFCCCEkB2hsBMaNA5JJ+f9kEqisjIaFhGKEEEIIyQF27GgRIgqJBLBzZzD1cQLFCCGEEJID9OoFSJpWPR4HevYMpj5OyHkx0tDQgBEjRqBPnz7o168fnnnmmaCrRAixIIoOeH7Bc2EPniegsBBYvFgWIID8+cgj8vqwk/NipFWrVpg/fz62b9+OV155Bf/+7/+OpqamoKtFCDEgqg54fsBz0YKZ2OB5aqGiAti9Wz5Xu3fL/0eBvJu1t7i4GC+99BKKiopsbc9ZewnJHo2NcmOiHveOx+WXahR6d17Cc9FCTU2LY6Ykyb1/pZH18jw1Nsp+F716uT/HXpSRS0Rm1t7Vq1dj9OjR6Nq1K2KxGF544YW0baqrq9GjRw+0adMGgwcPRn19vat9bd68GYlEwrYQIYRklyg74HlNGM9FEEMhVhEiXp0nL6wrtNC4J3Ax0tTUhOLiYlRXV+t+v2LFClRVVWHGjBl46623UFxcjLKyMuzfv795m/79+6Nv375pyyeffNK8zeeff45rr70WixcvNq3P0aNHcejQoZSFEJIdouyA5zVhOxdBNbRWYsOL8+RFSGyUw2pDgQgRAMTzzz+fsq60tFRMmDCh+f9EIiG6du0qZs2aZbvcf/3rX2LYsGHiiSeesNx2xowZAkDacvDgQfsHQghxzZIlQsTjQgDy55IlQdcoOMJyLhoahJAkuR7KEo/L68Ow70zP06uvppavLHV12S0jaBoa5OPw8roePHjQVhsauGXEjGPHjmHz5s0YNWpU8zpJkjBq1CisW7fOVhlCCFx33XUYOXIkrrnmGsvtp06dioMHDzYvDQ0NrutPCHFOVB3w/CAs5yLIISM7ESKZnicvrCvZsGT5OUwW9BBTqMXIgQMHkEgk0KVLl5T1Xbp0wd69e22V8eabb2LFihV44YUX0L9/f/Tv3x/vvPOO4fYFBQXo0KFDykIIyS6FhcCIEXQABMJxLoIeMrIjNjI5T16ExPodVuunWAjDEFOr7O0qGC644AIktZLeBtXV1aiurkYikfChVoSQbMMoB/coDW1lpWwR8aKhdXo9Cgv9vW4VFUBZmWzt6dnT3b68KEMPI7FQVubNPswsX9l6VkJtGTnllFMQj8exb9++lPX79u3Daaed5uu+J0yYgO3bt2Pjxo2+7ocQ4j9Bm6CdEsYEXnrWCbf1tHM9gjgHXlih/LBk+T1MFrTlCwi5GGndujUGDhyIVatWNa9LJpNYtWoVhg4dGmDNCCFRIQwmaCeEWTipG1q39bRzPTIp262ACaMAVPBbLIQic6t3PrPuOHz4sNiyZYvYsmWLACDmzp0rtmzZIvbs2SOEEGL58uWioKBALF26VGzfvl2MGzdOdOrUSezdu9fXei1cuFCcddZZonfv3oymISTCRCnKIcioFScY1XPFCuu6rlhhfj3clr1kScvvJMlZRE0mv80W2YisamiQr0MQ0TSBi5G6ujrdUNry8vLmbRYsWCC6desmWrduLUpLS8X69euzVj+7J5IQEk6i0sAL4b1wyiRUU/tb5f/6eiF++1v9elo15upG3+h6GJ0Do7IbGmShEou5u8aZCCurc+Y1fogFv4mMGAk7FCOERJ+w5Ouwwo1wqq8X4oEH5E81Zr19q0ZT+9vycn0RYbTo1Vnv2LR1MxIWRmUbiRtlmTvXuuF2Kn6MiIJ1JQgoRjyCYoRkC797VflOVHqVToRTeXlq4zl2bIv1wkjUzJlj3mjW15uLAbuL1ppj1OjX1rYct1KvWMy8Dsp1tCOQrISBVTl2LCxBWd+i8M6gGMkQ+oyQbMJeFVFjRzjV15s3wHrrKyszszQ4WWbPTj8mowbb6Ltf/MK4vmYWDb3f1NcbN9xqgWYmrIwa/4kT7QkyL4nKO4NixCNoGSF+EyWfBhIOGhqE+PWvnYkDs8a2tta+pSETAaC15CiugUbCQs86ooichob072MxIaZPNy8rFpPFg10BpjyLRo1/Q4P57/y6/lF5Z+REOnhC8oEwzs4aJsIcchkEStjrokXW2yrhoLGY3GQZccUVwIMPpt+HShnl5S1hn3ZJJIDBg1vCc++/H3jyydRtnnpKvq56oauSpF/nkhLz/V58cXpZQEtZQsh16d4dGD8euOGG1OOOxdJDXAHjcOS1a/Xr8atf+Rcam4vvDIoRQgImDAmHwkqYc274gZXw0uboMCMeB9avbxEtZmJECGDuXH1BsH49MGxYyz5jMeC737Xev3qfySQwebJxA/q3v6XWT5KA++7Tr4/yXOzYkX5MQgAvvSQLDEVQxGL6dUsmZaGhV8ayZanJ3dw0/t//vvF3mZKL7wyKEQOqq6vRp08flFjJcEIyJJsJh6JkZYhasrJMsSO89BpFI0aNAl57DbjxRnMhopBMyudbaeTicaCqSv573LhUy8J779mrg7Z8LfE40LZtavkK3boBU6emiolkUhYugH6DDAB33SU/P4mEfL84JR4Hhg5NzaJq1vifd1664JEkuQy/CEWSMq/J0rBRZKHPCMkWfkd7RMXhTSFKycoyxa4PgFeRLkaLXtl+7U+JFDJKgmZWRz8cbpXFLEeKUZRTpqHjbqNinL4zgoi+oc8IIRHDz9lZo2hlyEVTtBF2hgFqaoAhQ+xZOewgSek9er2y7e5v5Ehn+1+2DPj8c9lfxQlCAOvWyffusWP2LUV2kCR58jk9zGYOtjOrsBGZDEU6eWeEfciTYoSQPCCKDm85aYo2wGjIYdMm+dOJr4hdnJZl5HuhUFdnvyxJArZtA26/3VkdFFatkodxbrzR+W/NjiOZNH8mzBp/O8JAO0yarU5CFDojFCMG0GeE5BJRtDI0NgJnnin3gt30OKNEYSFw773p66dMkc+DUaRLpjixslht66SsqVOBWbPsb68mFtN3PLWL2e+UZ8IP3yo9y0S2OglR6IxQjBgwYcIEbN++HRs3bgy6KoRkTBitDGYvfPWLe8gQ4MMPo2kRcdKoDRqUvi6RkKNDHnjA/j5HjLC/bRBcfbUcaeJWXGUyTDVkiL4FCmh5Jv72t1TRcP/97venYGSZaNcuO52ESHRGsuTDElnowEpyibCkRLeaNyUqCZ30UOaKueMOZw7DXiQdUxKN+enkanf59rf110+frp+uPtNFkoS4+mr72yrna86clmfC6BroZZN14ghq5oydrXmTgpqfiRlYPYJihBBvsRIbYYuiMZq9Vq8h0mYYdSqo1A2Gm2XiROt6hGGRJCEGDfK2vNmznYkwJeusGqN7T5L0I3gkSRYzVsLE6p7PVichiM4IxYhHUIwQ4i1WYiNMlhGz2WsVa4ciTh57zLoBtCOonIa6KosS8up1WveglnjcnriYMcP5XDWKGNFidu6sJueLxcytDUFZJoKeTI+hvYSQUGI1fu2nf4sTHw69cf7HH0/9f9w4Oapj5Ejg+uvNy7M7Rn/GGdaRK3r06SN/1tb64+yabWbNAm67zXwbSWpJu65EHmXKDTekr1OunVnSOSHk3xrdW5mE/7ol7OG8KWRJHEUOztpLiH/Y6SV6bVJ2mvTNaU/bqpevnlhtxQp50U4kl2kSrzD4ini1KNfe6pjq651bg9TDLnr3h9m1s9qPnsXFLZlYNcJiYeQwjUdwmIYQf8jm+LWbF7MXwx2XX57qHDlxonGW02nToj28cuONQlx/vXflVVamz5art8RiQvzsZ86EiHp4zWpoSzv8YuXX44UYUe6VTDImh8X3imLEIyhGCAkHmfQS3b6YtRac886z1+DFYkKsXJlaTi5ZLbK1KH46Xp67lSvTrWQTJ1rXQ33fNTTIosNqOzcY3StOrRpGAlxrjfMbihGPoBghJHgynVcnE5O1YsGxGzKrmPUV8bRyZbQtHn4u06YZW4v8Wmpr06+HJFnXYfx4/fvSrlOqHTFtZY1zatXQ1k/PAdtvKEY8gmKE5ApBe9W7xaux70yjGcx8SBRLiDIk48cEbrm4xGLZPU/xuHG0UlmZdVj1uHHp952d4Ua7YtrsHpMkWRA7RS2mg/AhoRjxCIoRkgtEbcZeNZmOfWt9A9z6qZg5U44dm7odhYj/i1NriuL7YXR9lMa+rk6In//cXBQ4eX6ciGmreyeTZzcoHxKG9hJCAERjkiwz3KSyVkJ458xJDW38299a0qXbCfFVhwIXFgKPPqq/3fPPt5RlFv5JvGPDBmDiRPth0ELIM/IWFgJVVenfJ5PAmjXyffVv/2ZcjtPnx8m8MNqwdu2xZfLshj0lPMUIITlOFCbJMsNp3hF1boXbb08XYVqBUlPTIjo2bmwRH9ocDXPmyFPW66E+n716eXv8RJ+HHgJOPx344x/t/+buu+Xr+7Of6YuYqir5Wn/0kXk5Tp4fpyJAnY9k+fLM9q0mjPNTpeCvgSa6MM8IyRXCkm8gU+wMsbgZItHzW3AzzKKM59fXBz+EEcVl3jz34c0DBzrbXpLMI6PicTm9vNn3Tp4ft/5Kfjy72U4Jz2GaDOGsvSRXCH2PyCaFhfIQi1m9rYZI9GZsFSL9N26GWdaska0npaXOf0uAAweAo0fdnfvNm4ExY1qsHUYz8yokk8DatcbfJxLA/v2p5Shlu3l+3GZf9ePZtfMcBUFMCCGCrkSYOXToEDp27IiDBw+iQ4cOQVeHENc0Nsrm3Z49w/ci8orGRjk9u95bTZLkdN2PPJL9epHsoggHt61bPC4LFvXvJUkeNhk6NPvPT5SfXbttKC0jhOQJYe0RqXEyd4wehYXAffelr5ckYP164M473c37QqKFEO6vczwO/OY36UImmQQ6d/bv+TG796Pw7GYKxQghJBQYTerlVKBMmiQPlygm9nhcNnWXlBiLFTtQxESLZBKYPl3/O0mSI2v0WLZMdnDVo21bZ3Wwe+9GakI7n6AYIYT4ht2XsVH48f33O3tJK/u78kpgzx79MfpBg5wfRywm12/MGOe/JekMH+7+t/E4sGQJUF8PzJhhLBIlCbj44nT/EcVKtmRJ+m8lCejRAzhyRL/Mpib79bQSGOoIriiH3ntGVtxpIwyTnhHiDGVW2nHjWhJTWSVrMkrIpE1spUQS6GWT1c7pMXt2er1efVU/EyWX7C2SJMRvf2u+zVln6d8LtbXpUSBjx+qXMWdOy32hRLJIUst67Xfq+s2enVkUi1UUjDoJoVHyNnUysqhmTxaCGVg9g2KEEPuYTQhn9jJ3EpJbVpaeTbahQX/badPkl/icOam/GTuWE9eFdYnFZDGrDvM1Coc1um+mTUvdbvZsY2FslCZ9zhz30weYZTu1c68bCZeoZU8Wwn4bymgaCxhNQ4g9zCJZFOrq5IiAHTvkZFBqh7yaGtk8nUg42288Dtx1FzBtmrt6k3AiScC998q+PkZRJHV18jCIltpa4JRTWhLQde+eGjIciwEzZ7YkHrviCv0yhg51F8XS2Ji+z3hcHjLcsUO/zpIkb6+E71ZUmJcTFWdWu21oqyzWiRCSw+zYYS5E4nFg0ybg+9+XX66SJDuWKv4cFRWyU+Ezz+in6zYikQBeey2jqpMQkkwCU6fKDS8gCw+tgN28Of13sZgsLoSQ77GqqvTcJUJYi9crr5SdnQcOdF53JT+IIq61+UEU4aEQjwPr1sk+KWrhY5Y9OSpixC60jFhAywjJRxob9a0XVr8xy/Fx773AlCn6vTygZX9Aem+Q5C8TJwJz58r3QywG3HYbcOut8nd27hO9nCFO0QpnOzQ2yonVYrH03CRqK6DaEqJXRr5YRpCFIaNIwnTwJJdw4gCXyRi11mckFhNi/HjZB8Bo6vaJE9P3p3U6pH9HeJdYTIif/tS/so3WT5xov5yJEzO/h/R8nrQzQit/23mG7KZld5tKPizQZ8QjaBkhUaempiV00KqH50VPrLFRNjkD8u+01hA1Rpku9+yR/1bG6//5T2Dw4NTtCNEOdxhts2cPsHIlcOONme2vrq5l1mf1c6XO+CpJLRJGIVNrBjOwEkIijVH+DqMcBl7M8FtYCFx+uWyaNhMiAPCrX6ULjGQSePDBlqyTgJz34b77mHiMpDJuXOq8LXr3x333yffS6NHW908sZjyvjXqmXe1zpRYfekNC2mfIaSI/ZmAlhEQap+LC6XTnTvet5fvf128g5s2TX9TqxFFTpsgNAAmGbt2CrkE6I0emTkD36KMt4kSSgNmzZZ8TQG7IH33UWJCMHw989JFsRVF+oyBJqQ6odu5tNepniNlWDcjKoFGEYZ4REmXcTEHu1Ri1VT4FpR4//KH+97W1+nX3wueAi/lSXp7qszN2bDgTxWkT2yn3nZkvRkODEJWV6WWpE+ppj1WSUstzkhcHkH1W3D6PUcduG0rLCCE5jJspyI2mO1enr7ZjYlb2rdcTVXqaAPDKK+nfx+Pyq1rPqjNqlPl+1Qhhf1vSwpNPAi+8IF/n9euB557zN7rJ7fDb1Kmp96ESBWbmW1FYqJ9XJJGQfZ30rB7JZKo1UftcSZJ5Wnol+seLYdBchWKEkBzHSFyYoR2jVpuWS0utTcyKcOnXT/8lLYScU2TmTP3f33ADcN55+r/97/+2rj/JjGQSuOQSWXi+8Yb/QkTt++GERELOS6Md0rMa/tAbjgRkkbJpk72hSvVztWePPMRTVycPDanF/+LFLc+Rl8OgOUeWLDWRhcM0JN8xM0lrTcwNDalhlGbDJNOnG3+nzEHCYZboL3avYSwmxM9+5m4feuHfToYjtb/LJBW88hwYDRVFPVTXKXbbUGZgJYSkoE14tnatcc9YbWJ+8EHggQfkV7qC+m8td91l/J0Q8n7Nfk+iQWWlbB1QQmCNrqkQwLPP2gvX1aK3vVWm0ooKoH379CGbREKe2XndOmDNGuCCC+SU9E4oLGzZr/Z5UjINRzVU1y84TENIFnEa0pft/WtN3dddJ6fFNkJJ8d69O3D//d6JhyuukBeG8kafhx9uESL33QeMHWu8bTIpp293M2Sjx6ZN5t+fd57+sMnGjcCQIXJdhgyxHo60+zwp5RiF6gb9fgiULFlqIguHaYhXBD37ptX+nUYIxOP6U63rmdCDHirgEo5FkqwjrNQz7DpZ9H5jJ1JF/VwYlaVXjjrbcCxm73kyq0/Q7we/YDQNISHCafIxr/ddWys7hZrt30nuhEWLgD/9yXpuEGVOGqNEUiS/SCbNs/Eq8xcJYa885b6Kx4Ef/jD9ezuRKmVl6fvT/q+XtOyGG1q2E0L+3+p5MqpPkO+HsECfEUKygNvZN91MWKdGnbJai3b/iqe/HUHy61/Ln7GYuR/A1KnApElAQwOwYIHz+pPssGgRcPLJ8t+7d8vXLZFwVoYiJiZPNr6HFPGg/l6SgOXL5Yy9TgSxJMlhx01NQNu28nCK3jZWkSpWs00D6REvev5MQsh+JpdfLv+v9zwZRc7k0+y8hmTJUhMYX3zxhRg4cKAoLi4WZ599tli8eLGj33OYhniB2+RjmZht7SYd0+5T7ek/fLh987vR+rFjgx8e4OLsPjCa1NCsjCVL5HLMtps92zyaxCjhmN79NWdOy+9efVV/f0qyMafPSSxmHvFidH5qa1u2qa+Xo4OUss0iZ3I5GZrdNhRZqk9gfPPNN6KpqUkIIcSRI0dEjx49xIEDB2z/nmKEeIWTkD4vXk5ms5oa7V876+7NN9trjH7xC4bhRnExug+c+A/FYnLDK4S1iKmraynfTuirJKULGGVdQ0PLbND19Zk9L3rPplkd9cLO1Vlay8tTvysrc+67oueHEkUoRnT47LPPRPfu3cWnn35q+zcUI8RL7E4bbtTTU17mVvtYsUJfHEhSSw4Pvd+5dTaNx4W4447gG9dcX844w7uy1CJCfQ+8+qr8qW1QzRblvjQTI/G4/L0dgTBnTrpVUP3saEVzLJaawt7KCqEco3a9nWdTwahzUV+vf/zac61XL6e5UqJAZMTI66+/Li6++GJx+umnCwDi+eefT9tm4cKFonv37qKgoECUlpaKDRs2ONrHF198Ifr16yeOP/54sXDhQke/pRghQeDWMqJ9SWsXM7O1kQBy0iBNmxZ8g83F/rJoUYt1QSsA9Hr+evdWLNZyXxolqovFWtZbDTla3ftG+4jH5QbfTFB4HbGiFTANDUL8+tf653rePPOyMumAhJnIRNM0NTWhuLgY1dXVut+vWLECVVVVmDFjBt566y0UFxejrKwM+/fvb96mf//+6Nu3b9ryySefAAA6deqEbdu2YdeuXfjTn/6Effv2Gdbn6NGjOHToUMpCSLZxM6eM1sNfi3qODD0ySbMej8tOhCed5L4M4p4BA9z97sYbW3K6TJqUGs2hvY+UCA8zlJlxFUfVWEyeDRdoKc8qUsQqCsXI4TSRkJ1vje5/PyJW1PlClJwiixbpb3v++eZl5X2q+CyJI1sA6ZaR0tJSMWHChOb/E4mE6Nq1q5g1a5arffz6178WzzzzjOH3M2bMEADSFlpGSBA4MR1bmciteqN2fT7i8XSTeHk584k4WWIxIa6+Ovh6OF2M7jFt71193zrp8VvNqKtsY3ROzawvfloerIY4y8vtlZOLqeIjYxkx49ixY9i8eTNGqabplCQJo0aNwrp162yVsW/fPhw+fBgAcPDgQaxevRrf+c53DLefOnUqDh482Lw0NDRkdhCE2MAo86JRpkYnzJhhPUGe3dTr48fLZc2cKecZqa2VwxmffNLfydRyDSGACy8E6uuBuXOBlSvlfBeZ0Lu3N3Uz45FH9LPiajOdqu9buz1+xbKgzOas5t57W56BZcvSv1fqpNzDelaPzZvTf+eV5cEoJHnCBPkaL11qrxw3k1rmDFkSR7YAUi0jH3/8sQAg1q5dm7LdpEmTRGlpqa0yN2zYIIqLi0W/fv3EOeecIx5++GFHdaLPCPEbr8axrTz87exfu9x8s9xTVfc41VYQSTKe3GzGDEbYmC3qnrwSOVFfL8SNN7orT5KEGDNGvj4335yZpcrpb51MSidJsrOz2onUyrKgWC/mzNGv60MPmf/OqPzZs909a1pyOTQ3U3LCMuIFpaWl2Lp1K7Zt24a3334blVaDnv9HdXU1+vTpgxKnMyQR4gCvx7Fvuy01K6V6+nI7+1eIxeSp0G+/XfYBEKKlfo8/nlrf2lr9sgcNkssm+ijNlvL3r34F7NolzwfkJmNtMgk8/7x8fQoKjOdTMUK55nV1cjIxJ/MCqX06jKx8ShK1ZBK4557U+Vqskp1t2iSXN3ly+nfKvDd6tG0rfxqV79Xr3Y2PF9GQJXFkCyDVMnL06FERj8fT/EiuvfZacckll2SlTrSMED/JdBxbGZPXRkJMnGivV2a0fyX894EHste75iIvsZgQgwbpfzdihPvzahQhs2iRfri3k8goxQpgFJJrZiFTomCsEvQZ+atIkrUvS7YsF07Dg73ap16ocljICctI69atMXDgQKxatap5XTKZxKpVqzB06NAAa0aIOXZn33TqQa8uVz0jqDYSYt48e3UyGkffuhXo1k22tLiFPiTuEMJ4ttnXXpM/nc5mrKROf/TR1N774sWyH9Dll8u9ePU9MnMm8JOf6Jel3r8kyVaAZcvS78PKSmt/pERCTumutizobROL6VuMLrvMePZd5TnKluXCCx8vJxjNChxJsiSODDl8+LDYsmWL2LJliwAg5s6dK7Zs2SL27NkjhBBi+fLloqCgQCxdulRs375djBs3TnTq1Ens3bvX13otXLhQnHXWWaJ37962VB0hCk59QOx60GvLtfLHUOcU0auT0Tj6T34SvHWAi/eL0mNfsULfEmJ0395xR8u9ps5OWlvbkqekvt74fqyttbaMqH1HFi3S366+Xt9nRPm9necoCMuFX0TFTyUySc/q6uoEkB5KW66KhVqwYIHo1q2baN26tSgtLRXr16/PWv04TBNuwmaidPOCMGsg1Ns4dQZVnFeN6uR0/hE/l9Gj9eew4VCPN0s8rj+EYve+VRrx+vqW500tXozuTeUeNErGpxYNyrNsNuRiNayZS2LDiqgkSYuMGAk7FCPhxetsil7g9AVhdQzKC9ooWsBqMXuB19aGp7F/7DHj9dmsY5Dnw4nYVE8eF49bWx5mzzYXG3buW6eWOSB1MjvFmlJbm54pVStsjNKiR8UakA2ici4oRjyCYiSchPVBdFIvo22V3qe6J+tmsfMCdzL/iJ/LZZfpr58xQx5uylaI8PXXBxOOrFz3iRONr7nZRG7a0NmJE1MbfDsWBSvLiNN7UZ0m3ukzYzRrbkND6jnKlcRgbi28UUiSRjGSIfQZCTdhNlHafUEYHYOTxtDMPK7er9GspGHJA3LVVebfS5I882lYLDleLnpDJloBFovJ4tRsCEJvKEVZv2KFtUg2u2/dzltk53k0s9wZWSEFGfcAACAASURBVE/UEWNhG6p1SqYW3rAPTVGMeAQtI+EkrJYRBTsvCLe9TeXv737XeDvF/0TbKKnrFKZ05HaGoeJxIVauzJ6A8kIUWi2SJIsH7bXScwi1O1GiumFTJ6iLxawtCkb3rdW9aja0YudZsXqW9bZRkqfZnYAvjIT9PeYFFCMeQTESXvwyUWarp6X0gNXmdavG2G6kizoDp95LWi8qwW6D67UYuPBC/Z673lJX567uXi6LFsliQfF/0A6TOBEiS5boCwijczx3rrllxOocSpK5o7QZZscoSfJ1cfs8Wj3Ldi0zZkOiYbSehNnC6xUUIx5BMRJuvDZRZsMpVmuGj8VaxvjN/AXuuMN9A6okhqqvlz/DMjyjHL/yadaYKpEZbocMtPtctMjcOmRUF71J4R56SIhf/tL+tVAPMTi1jhndl3bPi5mgsXPvzp1rfF7cPI/KNdU6tWq3sXvPaq9Pthzd3QgeWkZaQJbqEznoM5J/OH0xuHn5GM0Do5crQZKEGDfOm2yoUVkkSYjp0/W/Gz68pdEya5jsNu6KH4ZRyKlVBIoiKp0e46JFLfeNW2Gld186ETbqXDNBNqBOhIKdc62ei8mur4wXZCJ4ouCEmgkUIx5By0j+4MRk6ublY9VYqCMb1BEDkiSn5r71VnsvY68FwuDB+tEOTvblZFujpFfqssz8ZZzUTREdSmMQi8kT/9XXt1xnvYbCKG+Gk3MhSfqCx+5idF+q63v55fbOk9k9rCdYvGhA3Yh/q3OlTHxnNvmj0blzixfiLOxOqJlAMeIRFCP5g92XituXj1kvOJMwyuHDUxsYv4dg3Oxj0SJ7x+RV/Z2UM3duelitunHWNhRuhlbMrrvW16K83Nr/xKrRtgrptVummejOtAF14y+htRyqh/imTbN/fRSx6QX54PeRCRQjHkExkl/Y6fEZmYuNXj719fIQy8qV+i9JbcNnZzimZ0/j7+wmpMrmYpTKW907z4aQMlqcRIPYaeAXLUp3Nv7e94zvGz3BYzRc5WQYwKlwUt/DfvszuC1ffa5mz06PprFzfcJmGcllKEY8gmIk/zDr8Rk50hm9fLRJxc47L1XsqGfXtTItO1lqa1MjdYJeFKfNbO7Pi3Op12hZNfCKb0tDgyzC5s1rCd+122gZ3QtGocBm6EXB6AlWtb+FENnp8Wcy3GN0Pu3MAOyHz0gu+31kAsVIhtCBNbr4GcZn9IJWT0qnUF+vv+3Klelix0m0gNWiN6fI3Xf72/gPHy5bA8yOIVuWD6UxUA9fZXoetViFuSqf2nlX7IS/Gokdo1Bgu/5KSkI05VN7LbQZU43uXy+HONR1c/q8mokl9fWxk1/FC3LZ7yMTKEY8gpaRaOH2RW1XvBglX9JmvRTCeLhl3rz0cisrvWmIlQichx6SIwnUosRvERDkMIu6DorlwCw7rZ3zaHXv6Dka6w31qJ1UFadVs0bLLCOpV0MCdqweYfaFsBMpoxYHFArBQTHiERQj0cHNi9qNeNGaZNVZLtVl2O1Zzp7tTUN8xRX6vV1lsrJM8pR4vZj5tUiSEP/+7+7Lrq019xuYNs1ecjA9gam939T5MYxmm9UbDjGzLpjdx14JBDvPipvnyUzYe2Wx1E6qlw2rB3EPxYhHUIxEB6cv6kx6mWqzt1kZWp+R8vL0crywJlj5SIwda68BzqYg0fNpUc+bo3de77jDup6xmHHIrN7vrSwoSnZRNXoiVq/OducOUu4FpbE28kHwOseH1ZCRE18IM2Fvd3ZqO86repZJt1llif9QjHgExUh0cPqidtPL1L407ZShdmK0Wwc7i9YRNlNxcMcdmVkknNZdbT7XZt/UDoFoG+S6OnOLkjZkVhEUmZxvJYeF2X2m9VWwcw6EMBY36mEGK6HiBjvDF3a3MRq+tHounVgngx46shJNSuSc1341UYZixCMoRqKFkxe1U/FitzesbmitentuclbEYvqNVaaWDSUSIRtCxEkPWx1xpMZqeMsoZNathUiJNjHz6VD2UVtr73oodXPaWAflA2F0T5vNQG0WCu/0GfQrjNbOs2olmqysoPkKxUiGMJomujh5UdsVL0Y9vxUr9CMktOPalZWpDqXaOjgREkpyp0zLMWpQ/XJCtWNON2pstOfOanjLrqjUazzNZgY2akCV3yr3jx0LjB0/EL8aXzdYJUAzE3Fe+sB4HUZrxzJjdR2yFXkURShGPIKWkdzHSrw0NJgnItNGSJjlOVA3WErZr75qPmGb3qIMGejV1SidupXIkCQhLr7YvdiwKl+xcKh7oOr/rc6zk8beqle6cqXxb40EmToPh1For9oqZiWW7PiBBD0soWBHFJmJPLV/kBc+MF5Zhuzu3+o6OImcyzcoRjyCYiS/mTPHnrVB7TNgp9FXtjUr26ocp74wmQgJO783mnRO+V4b4qqOQrIbFqzkwrAabrGyjBjtS7HCGDWoaoy2UxpJvX1Mm6bfiDp1WLWK9PEau6JIL3+J1j/I7rFnA7vHRcuIeyhGPIJiJH9xGnJr108AsDdXi1XSLvVU8FoLg916jB/vrN5Gi1pgGYUXexWto/hmmCUe02tQlPNkFeFit7fsxqIxfrx56KudxtoolNxPnFgw3IiLIH1gvDou+ozoQzHiERQj+YlZozVjhrFfgxeNrdLI2LEUaC0MSuNk1VAr29bXO6v3t75l3fgrDpyLFrX4iLix1lx7rbkYUfZlNCzlNHpp0SLnEStmFg2z62clIvSGs6xCye04YWaCU+dwu+LC73pb4eVxmUXO5SsUIx5BMRJNMn3BGTVaaguA9gXmRUSLUl4mobpK1k+7wx52h2huusn8+5UrzXv9Ts/NtGnW86eYXSsnlhH1eXAasWK0ndU11EsypqSMN7J8mE1HkA1ridcWDDdJB/0gKMtMPkAx4hEUI/YJuoejoI1kMYo+McOo8VQnv9J7gWmnOLfb8Cp5MLwK1fU6IuaBB6xnE9Y25lq0ZuyBA639PmbPTj2f2jDfhgbZsmN3xl3lGlkdr1fholbXUBFMZv5D2hTnepYRJ8cfFoKKFLLzngrLuywXoBjJEIb2OiNMPRy9hnjsWOflqCMAlIgZu781MqmbiREzXwFJkv0NVq50nycj0+UnP7G/rZ3U4ur6Gs3NU1sri43KypbrqjjDqq0/asuGm/wyZkIhE8yGy9TDK3ZFi7ZMMytaGOaQMSOISCE776mwvMtyBYoRj6BlxJqgejh6mPk/2B3H1VpWjJJu2UFrDXDa+KmtL3q9Z8WhUd04eeksql1+/GP74sfOpGvqMrxI2mYnLbiTHCBeoFxDtZVHLZis6mPkPGtmRcsny4hdK4ad/UX1XIYZu22oBI/48ssvvSqKRIwdO4BkMnVdIgHs3BlMfYx4803rbRobgXHjWo5HCGDuXOCf/3S+v8ZG4MknU9dJEnDPPUAslro+Hgd69kwvo7AQGDFC/ltdL6WsdeuApUuB3buB2lrgT38CrrwSWLxYLlMpu7JS3j5TevQAVq4E5s2TP+vqgPXr08uWJGD/fvkcAECvXub7TyaBG27IrG6JBNC5s3zOGhvluin7V9Ounf7vlfrF48Ajj8jlmGG2DzXKNZw0Sb5OdXXyZ0WF/H2vXun3g5rf/Ca9LkqZhYXyor3eRvW3W+ds4KTeRtTUAN27AyNHyp81Ncbb2nlPReVdlpO4UTr33nuvWL58efP/l19+uZAkSXTt2lVs3brVTZGhhZYRa8LUm2hoMO5hPvSQ+16zG3OtmbOh1tSuzJtilD/CyqStDqnVpotXylT3zI0WvcnrzM6F0itVl611BlWOTZ2pVq/3n2k0kl7+Fr3rZpbO3ciJUdv79tqUb+bsavc5snLCDOvwg1vnUafvHVpGgsHXYZoePXqIN998UwghxCuvvCI6deok/va3v4mKigrxgx/8wE2RoYVixB5BJi7Sq4udhlQPMz8Ppy+lOXPMG021+V67T3W20YYGWUjplfXYY/oOnEpyMG0DNG2a8bnRJqe6/HLzbbVRH3PmmOcsUWeq1RuyyNRpd/Zsfxoc7TnUGwbLtMEyOnZtxl4vy496I+tXKvkwvctyAV/FSJs2bcRHH30khBDilltuEePGjRNCCPH++++LTp06uSkytFCM2CdM4XFGQsDsJWxnbhe7znVWDas6J4dZ6vhM/D/0EquZZUjVe+nW1wtx443G4kJ7Xq2sG9rIEKtoJLWFxWj/ikAQwn4DlemcRJncG0YY3X96zs1OCUtaeS9xK7DsvKfC9C6LOnbb0FZuhnZOPPFENDQ0oKioCC+//DJmzpypDPkgkUh4NIBEooYyfh0kjY3A2rXA5MnG2yQSsq/FKafI4/WKj4HWJ0OPTZtafDjM0Bt7VpAkoG1b6+2EAG6/Xf50w6ZN6WUblRWLAWVl6etLSoDTTwcefjjdX0VvbD0W0/9Ovc3OnS33ivZ+qaiQ67Fzp3yOdu0CPv8cuPHG1O3icfka7t4tH9N558nrFd8U9f71/HHU++nZ0/i+1bs+yaR8nOpzaeTz44SKCuDYsfRjTSblY738cvdl2z0vUeJvf0u9BpJkz+fEznsqDO+yvMON0pkwYYLo3r27GDVqlDj55JPF4cOHhRBCLFu2TAwYMMBNkaGFlpHoYHfWWm2Pe8kS+xlC9Xqp9fVyDg51tI6VZUTpzXuVKM1ocZJvxIl5W29oyU6yNbu9fG1Ek15ZRom+vDSzG/W+jSJjMsXIsqTOOusWP4YfrCJZ/MrXYWSxymVLRlRzn/g6THPs2DExZ84cccstt4i33nqref3cuXPFo48+6qbI0EIx4j9ePGR2G3WjBFFOcoKoGwaz+SiMhhzUy+zZxiLKSXZUMzGidiw1Oy964aN6KcnVTpxWIcXaY7ATKm3nWuqFAlsNAbnFLOW716Z8vTw5iv+PV+V7eV7MHGL9dJjNxWEnM8LqfGwH5hnxCIoRf/HqITOzbCgNZV2d+Uyrdi0r48fL+7QzU6fy8jfar9qZtawsXdjYmWPGjniqrTWfqdZtQ6Ju3IyugVH6daMyzSKalPpmO9FXNn0IotDwWPlr+O0wm4sOuUZE/Vh9FSNLly4VL730UvP/kyZNEh07dhRDhw4Vu3fvdlNkaKEY8Q8vHzK9qcslKT0JltU+7VhIlO2N0qPPm2fvWNUNqNXU62Ziwk5dzcSaVhgYnSMlRNgo/NiJs6fynV4iOrP9hyHRl9pi5OcwRJgdKK0sE9mwXORL1EvUrUC+ipHevXuLVatWCSGEWLt2rTjhhBPEI488IkaPHi3GjBnjpsjQwXTw/mOW78EJRplJ7c60Ont2eg4JK2uEIiD0vjPK9GoUKnv55fYiNOwM+yjiQnsOrIY+1A25E/8Zs3wjRr4lZkLI6BqFJQRT68tiNR9PrhK0ZURdjzCLNi+gZcSE448/XuzZs0cIIcTtt98urrnmGiGEEP/zP/8jTjnlFDdFhhZaRvzDi9wKRr1xq9TvykvMaIZU5XuzKduFMPcZsXOsZovaGqH1hTAa9lH8MfRe0FYiy064sV4d9fKNGPmWWAkhZf+KBSZMIZh6/hyZNBBRdUhUsBKD+WK5yAZRPpe+ipHOnTs3O672799fPPHEE0IIIXbu3Cnatm3rpsjQQjHiL0YNldGLXfsCz8SEabfHYfUiqK+Xh2aMhhxefdV5dlFJkoWNke9AJjkW9IZ8tL+16z+j1M2sh6wIi4kTjRtzvdlrw2ZtsHMN7ZrOw3ycTrASg/lgucgWUT2XvoqRn//85+Lcc88VFRUV4oQTThAHDhwQQgjx4osvirPPPttNkaGFYsR/zJxK1ei9wI0a5RUrrB9au0KmoUEuz84kbEb1dRIZI0n6s/PqCQar3pJSd+35sPNbo6yvZkJEWWprU8WHcr30MsCqfWP8yGzqlfXBSUI3qzq5vWdzEb3QeJI7+CpGvvjiCzFhwgRxySWXiL/+9a/N66dPny5mzpzppsjQQjHiP3YaIbNtzLJ2aq0J2iEPOw2+mx6snkOqOsxWvT/trLtmeU/0hJJRb0k9X42yf+35MOtp2Wl89XxCjPxZ9MJxAbkMITK3cmlFh9fWB7NhGiemczOfnChbSdxgd5iTRBeG9noExUh2sOqpWzVUVsMPRg2TVshUVrb0UN321M2GOJTJ2LT+EFphkKmVwMjvw0liKKPGNxZLtRJpr53TqB8zXxWn59vKYpap5UFvnhqnpnMnzsRB4rdPi1MHcBJNfBcjq1evFldffbUYOnSoaGxsFEII8cQTT4g33njDbZGhhGIke5j11O00LmbROVZ+DVp/BiU5l9OeulVDo7xo9aw0Zj17pU5e9L6dhATaPQdWjrVK4+3F0JN2v0ZDHpkeu9k+Mx27t+tMHBTZ8GlxEhpPoouvYuTZZ58Vxx9/vPjVr34lCgoKxIcffiiEEGLBggXioosuclNkaKEYCQ9WDZXbhsnIAmA03KBMyqaHVVisNrmakaOq4uth5WhqhBeWEaNzY1YHs/0uWWLfz8VuY5+JAA06ksWuM3EQ9cpGKCktI/mBr2Kkf//+4vHHHxdCCNGuXbtmMfLWW2+JLl26uCkytFCMhAurhkqvsbN6uZoJiMrK9HWxmLGzoZllxG7aebMcInZ7zUbWHjc9XCfWCmW/6u216d+9jAqw60ukrnfYIlnCFraZzSRb9BnJfXzPM7Jr1y4hRKoY+fDDD0VBQYGbIkMLxUj00GvszIY8jCwj8bh5RIm6IVNHBOiZ4K0cU+0udnqo6rwfsZicvt5pJJCdc6q1Lmijh6zmoPEKs8bca18cvwhT2Ga2z5FZaDyJPr6KkTPOOEP8/e9/F0KkipHHH39cnHXWWW6KDC0UI7mB1XCDNvJEERp2Ikq0mVV/+MMWB9X6elkIqJ1i3U5+p5ctVsvs2c4EjNvhCq11wSiqJlsNjFVjrhynn74kuYSVwAt6iMtLGFrsL76KkXvuuUf06dNHrF+/XrRv31688cYb4qmnnhKdO3cWf/jDH1xVOKxQjIQLvRehnZejHdOzMoavtiK4FQ9KpIU218acOcZWGOXTaI4do2yx6vpbJRVT43a4Qq/nbDT0FJZhELN8L2GwjIQRKwtjGK5tpnCYyH98FSPJZFLMnDlTtG3bVsRiMRGLxUSbNm3EnXfe6aqyYYZixD+c9rD0XoR6PXS9Ms0morNC+8JSL06FilXIb0OD/gsyk2gixWlVfb7NyjO6LlbWBTNfGa8ae6f3jN5xqvO9hMFHIyqEdYjLLXSgzQ5ZyTNy9OhR8e6774oNGzaIw4cPZ1KU7zQ1NYlu3bqJ2267zdHvKEb8wU4Py07jaSQGtLlE9H5rpxGyCtX98Y+dW03MZuddscJ9qKpRXefMST/fRiG7Eyca52NRr9c7BrXlxqyebnHTKzeLtgmLj0ZUiPrssVoYWpwdmPRMwx133CF+9rOfUYyEADs9LLuNp9lilFbdiS+DlcOpns+I1faVlenRJlaz21qFqqrPmzqJ2+zZxsMqdtbF48bnUFmnFnZWEwv6ec9k8rtc84PwA1pGiBt8FSNHjhwRd955pxg6dKj49re/Lc4444yUJWx88MEH4rLLLhOPPfYYxUgIsJNN1W5DaTVM4sSHQg8ry4hSVn29EKNHm2+r9leIxYQoK7M3zGMVqqpXZ3Wv3+h864XgOhF7RtYFo/DqTBr7THrldmaXzSU/CD8JWxhyptBnxH98FSNXXnmlOP3008Xtt98u5s2bJ+bPn5+yOOH1118XF198sTj99NMFAPH888+nbbNw4ULRvXt3UVBQIEpLS8WGDRsc7eOSSy4R77//PsVISHCb96OsLP1FaJXJ0qxxt6qj0nia7UMv3XwsJsTYsal1HT/enSOsVahqpudbXZ4d4WX3HKrLNWrsnQiUTHvlRuct13r72SBMYchewNBif/FVjHTs2FGsWbPGVcW0/OUvfxHTpk0Tzz33nK4YWb58uWjdurX44x//KN59911xww03iE6dOol9+/Y1b1NcXCzOPvvstOXjjz8WL7zwgpg4caIQQtgSI//617/EwYMHm5eGhgaKER+wCh00yuKpndNF2b6uztxnQW9IQY+GBv3ZZpV9zJ5tP6mauq5O84soETRORJPb8220nRcRMkbDNuphKbvl+dErzzU/CELChq9ipEePHmL79u2uKmaGnhgpLS0VEyZMaP4/kUiIrl27ilmzZtkqc8qUKaKwsFB0795dnHzyyaJDhw7id7/7neH2M2bMEADSFoqRzDAKyTXqYRkNGcydmxp2qy3TqPHTEzFajCa40/aU7Q6D2HEutWMNsVNfOw263R6tsp3euXTib6PN3aJeMklz72WvnJYRQvzFVzHy5JNPirFjx4qmpiZXlTOsjEaMHD16VMTj8TSBcu2114pLLrnEcfm0jASDmzF5s5wZRvO5KL/T+kJ4ETXjdHI8K+fSeFw+BvX/2hlgzaweXjWiVpYVt9YIs/PpZ8SNG3LND4KQMOH73DTt27cX7dq1E3379hUDBgxIWdyiFSMff/yxACDWrl2bst2kSZNEaWmp4/LpM5J9Mmk0nfiDxGJCXH11qoOok3TkZsModupr5Ainbey1PXujnr7WB2XaNHv1ddKg2xWJbqwRZjlP9IbTgrZG5JofhBGMGiLZxm4b2gouuPTSS938LHCuu+4629tWV1ejuroaiUTCvwrlATt2AMlk6rpEAti5EygsNP9tRQVQVgY88wxQVWW+rRDA00+n/j9vHnDrrfbq2asXIEnpdZUkYNYs+TgA/To3NgJPPpm67qmngL59gcmT5TIlCVi8WD4mdRmFhellNjYC48a11EUI4O67gfffl8+FUX3jcaBnT3vHq91HMglUVsrnW1sfvTpaoVc/SQLWrwdKSoATT5T3l0jI9X7kEef78BI3xxg1amparrn6fiQkFGRJHNkCPg/TuIGWkczwYjjBib9FJpYCrVNlZaV1CnYhzK0Abo7bzEqj9tfIZHghG46bVvXLF2tEGKBvDAkKu22o5FbEfPnll1iyZAmmTp2Kzz//HADw1ltv4eOPP/ZGJQFo3bo1Bg4ciFWrVjWvSyaTWLVqFYYOHerZfoh/FBbKPbB4XP7fTS9Yr4zycrl3Z0Y8DrRtC9TVyZYAM2pqgClTUi0FixcDt9+ebj1QympslMtu1y69LnpWlkRCtmxY1aVXLyAW0//uzTdb/q6oAHbvluuwe7ezXq5iuVDjxLJiB6v6FRYCI0Z4Y5FQroXVuc1XzCyUhIQCN0pn27ZtonPnzqJnz56iVatWzbP2Tps2TVxzzTWOyjp8+LDYsmWL2LJliwAg5s6dK7Zs2SL27NkjhJBDewsKCsTSpUvF9u3bxbhx40SnTp3E3r173VTdNgsXLhRnnXWW6N27Ny0jHuBFL7ihIXUGXL35Zuw4ueqV68TyUleX7m+hdUY1y6hqx4l32jRry0im5IrjJpOWWUPLCAkKXx1Yv//974tJkyYJIYRo165dsxh58803Rffu3R2VVVdXJ4D0UNpyVSq8BQsWiG7duonWrVuL0tJSsX79ejfVdgWHabzHrROd1UR5asdVJ2nJjeZ9MVr00qPrhQ8bhQrbbQjGjtV3ivWSqA+VsJG1T66ITxItfBUjHTp0EDt37hRCpIqR3bt3i4KCAjdFhhaKEW/xctp6dRbR2trUJGFGPhHqPCVCyD4hTjOjzp1rz9/CTIzY9c9gdkhz8jFpWSYRMVEXnyR6+BpNU1BQgEOHDqWt/+CDD9C5c2dXw0Uk93ESwaHFbMx7xAjg8stTvzOKjqmqAiZOlP1BPv9c9gkxIh6Xfy9E6roLLrCOZNEeq17ZdvwzSkrkheiTaVRR1Mg0IiYfooZINHHlwHrJJZfgrrvuwtdffw0AiMVi+OijjzB58mT89Kc/9bSCQVFdXY0+ffqghC2BZxgJCrtOnU4cLrVOr2qSSfmFPnmy/m8XLWpxunz00XTn29NPl0WNUh89p1y9Y1XXO+hQ1lzBCwfpqGAk5um0S3ICN2aXL7/8UowaNUp06tRJxONxUVRUJI477jjxve99Txw5csSVKSescJjGO6yycloN2bgZ825oMB5WMaqH3mRqRpO+GSVWMxpWsjPfDHFOPgw/5OOQFIk+dtvQmBBqI7Qz1qxZg7fffhtHjhzBueeei1GjRnmnkkLCoUOH0LFjRxw8eBAdOnQIujqRp6amJdmVlnhctkaY9WobG+WhmZ497fd+GxuB7t3TE3AB6daLOXPkYRy75ZjVWX2sSo+dSaaIW5zef1GnsVG2MPbqlZvHly/YbUNd+YwoXHDBBRg0aBAKCgoQM0qMQIgKs6yqdjKzuhnzVkz5WmEAtKyTJODee42FCOAsm2xjI3DmmcC6dUBTkzPxRMJDmBpEo/s46Hr5AbPF5iFuzC6JRELcddddomvXriIejzdH09x5551iSY7EizHPiL8EEZKpZ8p3Yt7Xy2tiNCEe815En7Bex1wfkmK4dm7ha2jv7373O3HmmWeKp556Shx//PHNYmT58uViyJAhbooMLfQZ8Q8nPiBBT/ClF6ZrlOLcjmAh4SZXGsSgnxs30Dcmt/A1HfwTTzyBxYsX4+qrr0ZcFa5QXFyM9957zxOLDcl97KYzr6mRx8pHjpQ/a2qyWUv9MF1JkodgtHV+8MHUUGDAOu12WFOZh7Ve2SAX0qcH/dwoOL2PsjFVAQkfrsTIxx9/jJ46d0YymWwO9yXEDlbzk4QhnFGvYUomZV8QNY2NwAMPpP9ekoxfpGFpMLSEtV7ZIuoNYhieG8DdfZRP4dqkBVdipE+fPnjjjTfS1j/77LMYMGBAxpUiRMGoh/rgg9mrg92GSc8qAsiOunov0mw3GHZ7qGFpyIIk6g1iGCw7mdxHmUwCSaKJq2ia6dOno7y8HB9//DGSySSee+45vP/++3jiiSfw0ksveV3HQKiurkZ1dTUSejGoJGsYZVKdOxe49dbs11sHcAAAHThJREFUNA52ohgaG+U6aZEkuZ56OInOyRQn0QnZrFeYUSK/nIaSh4EwZKbN9D5ittj8wpVl5N/+7d+wcuVK/Pd//zfatm2L6dOn4x//+AdWrlyJH/zgB17XMRAmTJiA7du3Y+PGjUFXJa8pLEwPAQbkl5ybXl4mfhCKLtXTp0YZV42sIgCweXP6Oj8aDKc91LAOUQThw2I1jBhWwmDZCet9REJKlhxqIwujaYLHqwiVOXPcT9Kn3X8slh4i7CT6wigb7ezZzo7JDm6iE8I2w2tYw2zDTtBhwGG7j0j28TWaZvr06airq8O//vUvb5URIToUFurPEeOklzdnDjBpkj3rgLYHvnZtui+IEHI0jbqOTnqiRpYUP6ZCctNDDdOYPX1Y3BO0ZSdM9xEJN658RtatW4e5c+fim2++QUlJCYYPH44RI0bg/PPPx/HHH+91HUkO4jSzZSbj942N+pPi6Y1f6/lWtG9vbz9O6pjNMX23mTvDMmZPH5ZoE5b7iIQb13PTfPPNN9iwYQNWr16N119/HWvXrsXRo0dRUlKCNWvWeF3PwODcNN6T7VTPdXVyaKEWSQL27Gl5URrN/bFuHTB4cKp1RPtbN9x/vyySksnszF3jZl6fMJBvc7IQkkvYbUNdDdMAQKtWrXD++efjpz/9KcaMGYOysjIkk8mcSXpWXV2NPn36oMQPu3keE4TJXW+YAgDuuy+1MTPqgTc1pQ8TLV6cWUNYU9MiRGIxYNYs/03YQZvs3RIGZ0xCiL+4sowsXrwYr732Gl5//XUcPXoUw4YNw4gRIzBixAj069cvpybNo2XEW4ysFHV1ckPpF+oZdJVJ8SZNSt3GqgfulWWBPX13RNWyQ0g+Y7cNdSVGJElC586dcdttt+HGG29Eu3btMqpsmKEY8ZYgG2KjxmzjRuCNN4Bhw4C33073rfDaYhGUICOEkGxjtw115cD63HPPYfXq1Vi+fDlmzJiBAQMGNFtGLrjgApxwwgmuK05ymyCnQddzpLvuOuDxx1v+Ly+XhZGfPfAwJKQihJAw4dqBVeHgwYN444038Mwzz2DZsmWQJCmnQn5pGfGHMJjcN24ESkvT19fX+xNiq0Y9bJQN51VCCAkCXy0jAPDZZ5/h9ddfx2uvvYbXXnsN7777Lk488UQMGzbMbZEkjwhDuJ/O9EoAgDff9F+MRDnVOCGEeI0rMXLOOefgH//4B0488UR873vfww033IDhw4ejX79+XtePEN8w0s3nn5+d/YdBkBFCSBhwJUbGjx+P4cOHo2/fvl7XJzRworzcp6RE9hHR+owwmpsQQrKLqzwjn332Gc4888y09V999RXuuuuujCsVBjhRXn6wdKnsIzJvnvy5dKm93wUxaRshhOQqrhxY4/E4/vnPf+LUU09NWf/ZZ5/h1FNPzSlrAh1YZZymb89lsp1BlhBCooqvGViFELqJzbZt24aTTjrJTZEkxNTUyLlBRo6UP2tqgq5RcHDSNkII8R5HPiMnnngiYrEYYrEYevfunSJIEokEjhw5gvHjx3teSRIcRo1vWVl+Wkg4aRshhHiPIzEyf/58CCHwy1/+Er/73e/QsWPH5u9at26NHj16YOjQoZ5XkgQHG99UmLCMEEK8x5EYKS8vBwCcccYZOP/889Gqles0JSQisPFNJcgMsoQQkqu48hkZPnw49uzZgzvvvBNXXXUV9u/fDwD461//infffdfTCpJg4Yyp6VRUyCnj6+rkTzqvEjswAosQY1yJkddffx3nnHMONmzYgOeeew5HjhwBIDuwzpgxw9MKkuBh45tOYaE8qV0+izJiHzqBE2KOKzEyZcoUzJw5E3//+9/RunXr5vUjR47E+vXrPascCQ9sfAlxByOwCLHGlRh55513MGbMmLT1p556Kg4cOJBxpQghxC+yPVxi5gROCJFxJUY6deqEf/7zn2nrt2zZgm9961sZVyoMVFdXo0+fPihhbnBCcoYghksUJ3A1+ewETogersTIlVdeicmTJ2Pv3r2IxWJIJpN48803MXHiRFx77bVe1zEQmA6ekNwiqOESOoETYo0rMXLPPffgu9/9LoqKinDkyBH06dMHw4YNw3nnnYc777zT6zoSQkjGBDlcQidwQsxxNTeNQkNDA9555x00NTVhwIAB6JmDdkfOTUNIbtDYKA/NaHPm7N5NKwUhfuHr3DQAUFNTg4suughjxozBL37xC1x66aVYsmSJ2+II8QXmdiAKHC4hJLy4SqE6ffp0zJ07FzfffHNz+vd169bhN7/5DT766CPcddddnlaSEDdwdl2ipaJCnldp507ZgZRChJBw4GqYpnPnzvjDH/6Aq666KmX9smXLcPPNN+dUeC+HaaIJTfKEEBI8vg7TfP311xg0aFDa+oEDB+Kbb75xUyQhnsLcDoQQEh1ciZFrrrkGixYtSlu/ePFiXH311RlXipBMYW4HQgiJDrZ9Rqqqqpr/jsViWLJkCV555RUMGTIEALBhwwZ89NFHOZNnhEQbzq5LCCHRwbbPyIUXXmivwFgMr776akaVChP0GYk2jY10ViSEkKCw24batozU1dV5UjFCsklhIUUIIYSEHdd5RgghhBBCvMBVnpGo0aNHD3To0AGSJOHEE0+klYcQQggJEXkhRgBg7dq1aNeuXdDVIIQQQogGDtMQQggJJZzOIX8IXIysXr0ao0ePRteuXRGLxfDCCy+kbVNdXY0ePXqgTZs2GDx4MOrr6x3tIxaLYfjw4SgpKcHTTz/tVdUJIUQXNqKZU1MjZ1EeOVL+rKkJukbETwIXI01NTSguLkZ1dbXu9ytWrEBVVRVmzJiBt956C8XFxSgrK8P+/fubt+nfvz/69u2btnzyyScAgDVr1mDz5s3485//jHvuuQdvv/12Vo6NEJJ/sBHNnMbGlnmlAPmzspLiLpdxNTeNX8RiMTz//PO49NJLm9cNHjwYJSUlWLhwIQAgmUyiqKgIN998M6ZMmeJ4H5MmTcLZZ5+N6667Tvf7o0eP4ujRo83/Hzp0CEVFRcwzQgixhHMieUNdnSzm9NaPGJH16pAM8HVummxx7NgxbN68GaNGjWpeJ0kSRo0ahXXr1tkqo6mpCYcPHwYAHDlyBK+++irOPvtsw+1nzZqFjh07Ni9FRUWZHQQhJG/gnEjewOkc8o9Qi5EDBw4gkUigS5cuKeu7dOmCvXv32ipj3759uOCCC1BcXIwhQ4bg2muvRUlJieH2U6dOxcGDB5uXhoaGjI6BEJI/OGlEvfQryTUfFWU6h3hc/p/TOeQ+OR/ae+aZZ2Lbtm22ty8oKEBBQQGqq6tRXV2NRCLhY+0IIbmE3TmRampafCIkSf5NRYW7fXpZVpioqADKyjidQ74Qap+RY8eO4YQTTsCzzz6b4kdSXl6OL7/8Ei+++KLvdeLcNIQQp5jNieSlXwl9VEjYyQmfkdatW2PgwIFYtWpV87pkMolVq1Zh6NChAdaMEEKMKSyUHS31BIGXfiX0USG5QuDDNEeOHMFO1ZOza9cubN26FSeddBK6deuGqqoqlJeXY9CgQSgtLcX8+fPR1NSE66+/PsBaE0KIOxS/Eq01w41zppdlERIkgVtGNm3ahAEDBmDAgAEAgKqqKgwYMADTp08HAFxxxRW4//77MX36dPTv3x9bt27Fyy+/nObU6jXV1dXo06ePqbMrIflGrjlKBoGXzpl09CS5Qqh8RsIIfUYIkQmTo2RjozxE0atXdBteM7+SIMsixEvstqEUIxZQjBASLkfJMIkiQog5OeHAGiQcpiGkhbA4SjJNOCG5CcWIARMmTMD27duxcePGoKtCSOCEJSNmWEQRIcRbKEYIIZaExVEyLKKIEOItFCOEEFtUVMg+InV18mcQfhphEUWEEG+hA6sB6nTwH3zwAR1YCQkRjB4hJBowmsYjGE1DCCGEuIPRNIQQQgiJBBQjhBBCCAkUihFCCCGEBArFiAFMekYIIYRkBzqwWkAHVkIIIcQddGAlhBBCSCSgGCGEEEJIoFCMEEIIISRQKEYIIYQQEigUIwYwmoYQQgjJDoymsYDRNIQQQog7GE1DCCGEkEhAMUIIIYSQQKEYIYQQQkigUIwQQgghJFAoRgghhBASKBQjhBBCCAkUihEDmGeEkPDR2AjU1cmfhJDcgXlGLGCeEULCQU0NMG4ckEwCkgQsXgxUVARdK0KIGcwzQgjJGRobW4QIIH9WVtJCQkiuQDFCCAk9O3a0CBGFRALYuTOY+hCiwKFDb6AYIYSEnl695KEZNfE40LNnMPUhBJCHDrt3B0aOlD9raoKuUXShGCGEhJ7CQtlHJB6X/4/HgUcekdcTEgQcOvSWVkFXgBDinMZGeeiiV6/8aZArKoCyMnlopmfP/DluEk7Mhg55bzqHlhFCIkY+m4YLC4ERI/iyJ8HDoUNvoRghJELQNExIOODQobdwmIaQCEHTMCHhgUOH3kExYkB1dTWqq6uRSCSCrgohzSimYbUgoWmYkOAoLKQI8QIO0xgwYcIEbN++HRs3bgy6KoQ0Q9MwISQXoWWEkIhB0zAhJNegGCEkgtA0TAjJJThMQwghhJBAoRghhBBCSKBQjBBCCCEkUChGCCGEEBIoFCOEEEIICRSKEUIIIYQECsUIIYQQQgKFYoQQQgghgUIxQgghhJBAyQsxsmvXLlx44YXo06cPzjnnHDQ1NQVdJUIIIYT8H3mRDv66667DzJkzMWzYMHz++ecoKCgIukqEEEII+T9yXoy8++67OO644zBs2DAAwEknnRRwjQghhBCiJvBhmtWrV2P06NHo2rUrYrEYXnjhhbRtqqur0aNHD7Rp0waDBw9GfX297fJ37NiBdu3aYfTo0Tj33HNxzz33eFl9QgghhGRI4JaRpqYmFBcX45e//CUuu+yytO9XrFiBqqoqPPzwwxg8eDDmz5+PsrIyvP/++zj11FMBAP3798c333yT9ttXXnkF33zzDd544w1s3boVp556Kn70ox+hpKQEP/jBD3w/NkIIIYRYE7gYueiii3DRRRcZfj937lzccMMNuP766wEADz/8MP7rv/4Lf/zjHzFlyhQAwNatWw1//61vfQuDBg1CUVERAODHP/4xtm7daihGjh49iqNHjzb/f+jQIcfHRAghhBD7BD5MY8axY8ewefNmjBo1qnmdJEkYNWoU1q1bZ6uMkpIS7N+/H1988QWSySRWr16Ns846y3D7WbNmoWPHjs2LImIIIYQQ4g+hFiMHDhxAIpFAly5dUtZ36dIFe/futVVGq1atcM899+B73/se+vXrh169euHiiy823H7q1Kk4ePBg89LQ0JDRMRBCCCHEnMCHabKB1VCQmoKCAob+EkIIIVkk1JaRU045BfF4HPv27UtZv2/fPpx22mm+7ru6uhp9+vRBSUmJr/shhBBC8p1Qi5HWrVtj4MCBWLVqVfO6ZDKJVatWYejQob7ue8KECdi+fTs2btzo634IIYSQfCfwYZojR45g586dzf/v2rULW7duxUknnYRu3bqhqqoK5eXlGDRoEEpLSzF//nw0NTU1R9cQQgghJNoELkY2bdqECy+8sPn/qqoqAEB5eTmWLl2KK664Ap9++immT5+OvXv3on///nj55ZfTnFq9prq6GtXV1UgkEr7uhxBCCMl3YkIIEXQlwsyhQ4fQsWNHHDx4EB06dAi6OoQQQkhksNuGhtpnhBBCCCG5D8WIAYymIYQQQrIDh2ks4DANIYQQ4g4O0xBCCCEkElCMEEIIISRQKEYMoM8IIYQQkh3oM2IBfUYIIYQQd9BnhBBCCCGRgGKEEEL+j8ZGoK5O/iSEZA+KEUKIKfnSQNfUAN27AyNHyp81NUHXiJD8gWLEADqwEpI/DXRjIzBuHJBMyv8nk0BlZe4LMELCAh1YLaADK8lXGhtlAaI00AAQjwO7dwOFhYFVyxfq6mTBpbd+xIisV4eQnIEOrISQjNixI1WIAEAiAezcGUx9/KRXL0DSvA3jcaBnz2DqQ0i+QTFCCNElnxrowkJg8WL5+AD585FHcs8CREhYoRghhOiSbw10RYU8BFVXJ39WVARdo/CRL87MJPvQZ8QC+oyQfKexUR6a6dkzd4UIsaampsXJV5JkoUrBRqyw24ZSjBhQXV2N6upqJBIJfPDBBxQjhJC8JZ+cmYm30IE1QyZMmIDt27dj48aNQVeFEJIhHF7IjHxyZibBQDFCCMlp8iVXip/kkzMzCQaKEUJIzsJkZt6Qb87MJPu0CroChBDiF2bDC2xInVFRAZSV0ZmZ+APFCCEkZ1GGF7SOlxxecEdhIUUI8QcO0xBCchYOLxASDWgZIYTkNBxeICT8UIwYoM4zQgiJNhxeICTcMOmZBczASgghhLiDSc8IIYQQEgkoRgghhBASKBQjhBBCCAkUihFCCCGEBArFCCGEEEIChWKEEEIIIYFCMUIIIYSQQGHSMwuUNCyHDh0KuCaEEEJItFDaTquUZhQjFhw+fBgAUFRUFHBNCCGEkGhy+PBhdOzY0fB7ZmC1IJlM4pNPPkH79u0Ri8UMtyspKcHGjRsz3l8m5Rw6dAhFRUVoaGhgttgI4NU9E0Widuxhqm+26+L3/rwuPwzvYoDvYwUhBA4fPoyuXbtCkow9Q2gZsUCSJBTamNQiHo97csN5UU6HDh3y+uaPCl7dM1Ekascepvpmuy5+78/r8sP0Lgb4PgZgahFRoAOrR0yYMCFU5ZDwk8/XOmrHHqb6Zrsufu/P6/L5Lo4mHKbJITipHyGEhAO+j51By0gOUVBQgBkzZqCgoCDoqhBCSF7D97EzaBkhhBBCSKDQMkIIIYSQQKEYIYQQQkigUIwQQgghJFAoRgghhBASKBQjhBBCCAkUipE85v/9v/+H7t27Y+LEiUFXhRBC8pIvv/wSgwYNQv/+/dG3b188+uijQVcpEJgOPo+5++67MWTIkKCrQQgheUv79u2xevVqnHDCCWhqakLfvn1x2WWX4eSTTw66almFlpE8ZceOHXjvvfdw0UUXBV0VQgjJW+LxOE444QQAwNGjRyGEQD6m/6IYCSGrV6/G6NGj0bVrV8RiMbzwwgtp21RXV6NHjx5o06YNBg8ejPr6ekf7mDhxImbNmuVVlQkhJCfJxvv4yy+/RHFxMQoLCzFp0iSccsopXlU/MlCMhJCmpiYUFxejurpa9/sVK1agqqoKM2bMwFtvvYXi4mKUlZVh//79zdso44/a5ZNPPsGLL76I3r17o3fv3tk6JEIIiSR+v48BoFOnTti2bRt27dqFP/3pT9i3b19Wji1MMB18yInFYnj++edx6aWXNq8bPHgwSkpKsHDhQgBAMplEUVERbr75ZkyZMsWyzKlTp+Kpp55CPB7HkSNH8PXXX+O2227D9OnTfTsOQgiJOn68j7XceOONGDlyJMaOHetZvaMALSMR49ixY9i8eTNGjRrVvE6SJIwaNQrr1q2zVcasWbPQ0NCA3bt34/7778cNN9xAIUIIIQ7x4n28b98+HD58GABw8OBBrF69Gt/5znd8qW+YYTRNxDhw4AASiQS6dOmSsr5Lly547733AqoVIYTkH168j/fs2YNx48Y1O67efPPNOOecc/yobqihGMlzrrvuuqCrQAgheUtpaSm2bt0adDUCh8M0EeOUU05BPB5Pc3Dat28fTjvttIBqRQgh+Qffx95BMRIxWrdujYEDB2LVqlXN65LJJFatWoWhQ4cGWDNCCMkv+D72Dg7ThJAjR45g586dzf/v2rULW7duxUknnYRu3bqhqqoK5eXlGDRoEEpLSzF//nw0NTXh+uuvD7DWhBCSe/B9nCUECR11dXUCQNpSXl7evM2CBQtEt27dROvWrUVpaalYv359cBUmhJAche/j7MA8I4QQQggJFPqMEEIIISRQKEYIIYQQEigUI4QQQggJFIoRQgghhAQKxQghhBBCAoVihBBCCCGBQjFCCCGEkEChGCGEEEJIoFCMEEIIISRQKEYIIcQBS5cuRadOnYKuBiE5BcUIIYQQQgKFYoQQkvMcO3Ys6CoQQkygGCGEuGLEiBG46aabcNNNN6Fjx4445ZRT8Nvf/hbquTeffPJJDBo0CO3bt8dpp52Gn//859i/f39KOX/+85/Rq1cvtGnTBhdeeCEef/xxxGIxfPnll83brFmzBsOGDcPxxx+PoqIi3HLLLWhqajKs23/8x3+gf//+WLJkCc444wy0adMGAPDyyy/jggsuQKdOnXDyySfj4osvxocfftj8u927dyMWi+G5557DhRdeiBNOOAHFxcVYt26d4b4+/fRTDBo0CGPGjMHRo0cdn0dCCMUIISQDHn/8cbRq1Qr19fV48MEHMXfuXCxZsqT5+6+//hq///3vsW3bNrzwwgvYvXs3rrvuuubvd+3ahbFjx+LSSy/Ftm3bUFlZiWnTpqXs48MPP8SPfvQj/PSnP8Xbb7+NFStWYM2aNbjppptM67Zz507853/+J5577jls3boVANDU1ISqqips2rQJq1atgiRJGDNmDJLJZMpvp02bhokTJ2Lr1q3o3bs3rrrqKnzzzTdp+2hoaMCwYcPQt29fPPvssygoKHB6CgkhACAIIcQFw4cPF2eddZZIJpPN6yZPnizOOussw99s3LhRABCHDx9u3r5v374p20ybNk0AEF988YUQQoiKigoxbty4lG3eeOMNIUmS+Oqrr3T3M2PGDHHccceJ/fv3mx7Dp59+KgCId955RwghxK5duwQAsWTJkuZt3n33XQFA/OMf/xBCCPHYY4+Jjh07ivfee08UFRWJW265JeUcEEKcQ8sIIcQ1Q4YMQSwWa/5/6NCh2LFjBxKJBABg8+bNGD16NLp164b27dtj+PDhAICPPvoIAPD++++jpKQkpczS0tKU/7dt24alS5eiXbt2zUtZWRmSySR27dplWLfu3bujc+fOKet27NiBq666CmeeeSY6dOiAHj16pNRHoV+/fs1/n3766QCQMrz01VdfYdiwYbjsssvw4IMPppwDQohzKEYIIb7Q1NSEsrIydOjQAU8//TQ2btyI559/HoAzh9IjR46gsrISW7dubV62bduGHTt24Nvf/rbh79q2bZu2bvTo0fj888/x6KOPYsOGDdiwYYNufY477rjmvxWhoR7KKSgowKhRo/DSSy/h448/tn0shBB9WgVdAUJIdFEac4X169ejV69eiMfjeO+99/DZZ5/h3nvvRVFREQBg06ZNKdt/5zvfwV/+8peUdRs3bkz5/9xzz8X27dvRs2fPjOr62Wef4f3338ejjz6KYcOGAZAdY90gSRKefPJJ/PznP8eFF16I1157DV27ds2ofoTkM7SMEEJc89FHH6Gqqgrvv/8+li1bhgULFuDWW28FAHTr1g2tW7fGggUL8L//+7/485//jN///vcpv6+srMR7772HyZMn44MPPkBtbS2WLl0KoMUiMXnyZKxduxY33XQTtm7dih07duDFF1+0dGDVcuKJJ+Lkk0/G4sWLsXPnTrz66quoqqpyfezxeBxPP/00iouLMXLkSOzdu9d1WYTkOxQjhBDXXHvttfjqq69QWlqKCRMm4NZbb8W4ceMAAJ07d8bSpUvxzDPPoE+fPrj33ntx//33p/z+jDPOwLPPPovnnnsO/fr1w6JFi5qjaZTIlH79+uH111/HBx98gGHDhmHAgAGYPn26Y0uEJElYvnw5Nm/ejL59++I3v/kN5syZk9Hxt2rVCsuWLcPZZ5+NkSNHpoUtE0LsERNClRSAEEJsMmLECPTv3x/z58/3tNy7774bDz/8MBoaGjwtlxASXugzQggJlIceegglJSU4+eST8eabb2LOnDmOh2AIIdGGYoQQEig7duzAzJkz8fnnn6Nbt2647bbbMHXq1KCrRQjJIhymIYQQQkig0IGVEEIIIYFCMUIIIYSQQKEYIYQQQkigUIwQQgghJFAoRgghhBASKBQjhBBCCAkUihFCCCGEBArFCCGEEEIC5f8DLQBDh7q7EUYAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(6,4))\n", - "plt.plot(kpis[\"pageRank\"].values, kpis[\"betweeness\"].values, 'b.')\n", - "plt.xlabel(\"page rank\")\n", - "plt.ylabel(\"betweeness\")\n", - "plt.xscale(\"log\")\n", - "plt.yscale(\"log\")" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", - " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" - ] - }, - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'Edge Weight Distribution')" - ] - }, - "execution_count": 75, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAAHHCAYAAADZOPmeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxU9b3/8fdkmxAgYUlJCCREwVpHIPEmAz8WS9hMI2KrUrm2lUAr0nbi0rS2ia0s2hZrWxqXqYgWqduVQlv0NgjECFIQrwOC1qZYqUARIWxCSNAQJuf3h49MHbKQZTLfmeT1fDx46PmeM+f7mck3Oec9Z7NZlmUJAAAAAAAEXYTpAgAAAAAA6K4I5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAAAAADCGUAwAAAABgCKEcAAAAAABDCOVANzV79mylp6cHpa/09HTNnj3bN71ixQrZbDZt3749KP3n5OQoJycnKH0BANpn3759stlsWrFihelSOk1Htkc5OTkaPnx4YAtqp4ULF8pmswWlr/M/s02bNslms2n16tVB6T+Y+0vovgjlCGsN4a7hX2xsrFJSUpSbm6uHHnpIp0+fNl1iUDRsHBv+xcXFKS0tTdOnT9eTTz6p2tragPRTUVGhhQsXat++fQFZXyCFcm0A0B2cv00+/9/rr79uusQmPfDAA7LZbNq5c6dfu2VZ6tu3r2w2m/bu3es375NPPpHdbtfXvva1YJbaKh9++KEWLlyoXbt2tWr5YO1LtbWuYArl2tA9RJkuAAiEe++9VxdddJHq6up0+PBhbdq0SXfeeaeWLFmiF198USNHjjRdYlA8+uij6tWrl2pra3Xw4EGtX79e3/zmN1VSUqK//OUvSk1N9S37+OOPq76+vk3rr6io0KJFi5STk9Omb43fffddRUR07neALdW2YcOGTu0bAPAfDdvk8w0bNsxANRc2fvx4SdKWLVt0xRVX+Nr//ve/6+TJk4qKitLWrVv93pPH49HZs2d9r22tYGyPPvzwQy1atEjp6enKzMxs9evasi/1k5/8REVFRUGpy/Rn1p79JaCtCOXoEvLy8pSdne2bLi4u1iuvvKJrrrlG1157rf7xj3+oR48eQavHsix98sknQe1TkmbMmKHExETf9Pz58/Xss89q1qxZ+upXv+p3lCI6OrpTa/nsZ2C32zu1rwuJiYkx2j8AdCfnb5NDXXZ2tmJjY7VlyxbddtttvvatW7eqf//+ys7O1pYtW/SNb3zDN2/Lli2S1OZQHsrbo7bsS0VFRSkqqnNjxJkzZxQXF2f8M+vs/SVA4vR1dGGTJk3SPffco/379+uZZ57xm7d7927NmDFD/fr1U2xsrLKzs/Xiiy82Wsfbb7+tCRMmqEePHho8eLB++tOf6sknn5TNZvM7TTo9PV3XXHON1q9fr+zsbPXo0UOPPfaYJOnkyZO68847lZqaKrvdrmHDhukXv/hFo29d6+vrVVJSossvv1yxsbFKSkrSvHnz9NFHH3Xoc/j617+uW265Rf/3f/+nsrIyX3tT10g9//zzysrKUu/evRUfH68RI0bowQcflPTp6W1f/epXJUkTJ070nea2adOmC34G519T3uDMmTOaN2+e+vfvr/j4eM2aNavR+7XZbFq4cGGj1352nReqralr+I4cOaJvfetbSkpKUmxsrDIyMvT73//eb5mG6xt/9atfadmyZRo6dKjsdrucTqc8Hk+TnzcA4MJOnjyp2bNnKyEhQX369FF+fr5OnjzZ5LKrVq2Sw+FQbGyshg8frj//+c9NbsPaux2NiYmR0+nU1q1b/dq3bt2qMWPGaNy4cU3O69Onj+8a79b23dT2aP/+/br22mvVs2dPDRgwQN/73ve0fv16v+3YZ1VUVGjixImKi4vToEGD9MADD/jmbdq0SU6nU5I0Z84c3/awvdfpN7cv1dQ15WVlZRo/frz69OmjXr166dJLL9Xdd9/dqroarpffsWOHvvjFLyouLs732uauw/d6vbr77ruVnJysnj176tprr9WBAwf8lmlu/+Oz67xQbU2NtZqaGn3/+9/37dtdeuml+tWvfiXLsvyWs9lsKigo0Jo1azR8+HDZ7XZdfvnlWrduXdMfOLotjpSjS7v55pt19913a8OGDZo7d66kT09HGzdunAYNGqSioiL17NlTf/jDH/SVr3xFf/zjH3XddddJkg4ePOgLeMXFxerZs6eeeOKJZo/6vvvuu7rppps0b948zZ07V5deeqnOnDmjCRMm6ODBg5o3b57S0tL02muvqbi4WIcOHVJJSYnv9fPmzdOKFSs0Z84c3X777dq7d68eeeQR7dy5U1u3bu3QN7U333yzli1bpg0bNmjq1KlNLlNWVqabbrpJkydP1i9+8QtJ0j/+8Q9t3bpVd9xxh774xS/q9ttv10MPPaS7775bl112mST5/tvcZ9CSgoIC9enTRwsXLtS7776rRx99VPv37/fdxKW1WlPbZ3388cfKycnRnj17VFBQoIsuukirVq3S7NmzdfLkSd1xxx1+yz/33HM6ffq05s2bJ5vNpgceeEDXX3+93n//fb5BB4DznDp1SseOHfNrs9ls6t+/v6RPz6T68pe/rC1btujb3/62LrvsMv35z39Wfn5+o3WVlpZq5syZGjFihBYvXqyPPvpI3/rWtzRo0KBGy3ZkOzp+/Hj99a9/1b59+3wBbOvWrbrllls0atQoLViwQCdPnlSfPn1kWZZee+01jRkzxndpVnv7rqmp0aRJk3To0CHdcccdSk5O1nPPPaeNGzc2ufxHH32kL33pS7r++ut14403avXq1frRj36kESNGKC8vT5dddpnuvfdezZ8/X7feequuvPJKSdLYsWObfe8X0tS+1Pn+/ve/65prrtHIkSN17733ym63a8+ePb4vM1pT1/Hjx5WXl6f//u//1je+8Q0lJSW1WNfPfvYz2Ww2/ehHP9KRI0dUUlKiKVOmaNeuXW06U7Gtn5llWbr22mu1ceNGfetb31JmZqbWr1+vu+66SwcPHtRvfvMbv+W3bNmiP/3pT/rud7+r3r1766GHHtINN9ygf//7377fCUAWEMaefPJJS5Ll8XiaXSYhIcG64oorfNOTJ0+2RowYYX3yySe+tvr6emvs2LHWJZdc4mu77bbbLJvNZu3cudPXdvz4catfv36WJGvv3r2+9iFDhliSrHXr1vn1fd9991k9e/a0/vnPf/q1FxUVWZGRkda///1vy7Is669//aslyXr22Wf9llu3bl2T7edbsGCBJck6evRok/M/+ugjS5J13XXX+dry8/OtIUOG+KbvuOMOKz4+3jp37lyz/axatcqSZG3cuLHRvOY+g4Z5+fn5vumGn1tWVpZ19uxZX/sDDzxgSbJeeOEFX5ska8GCBRdcZ0u1TZgwwZowYYJvuqSkxJJkPfPMM762s2fPWmPGjLF69eplVVVVWZZlWXv37rUkWf3797dOnDjhW/aFF16wJFn/+7//26gvAOiuGv62N/XPbrf7lluzZo0lyXrggQd8befOnbOuvPJKS5L15JNP+tpHjBhhDR482Dp9+rSvbdOmTZYkv21YR7ejpaWlliTr6aeftizLsg4dOmRJsl599VXr9OnTVmRkpFVaWmpZlmW98847liTrZz/7WZv7Pn979Otf/9qSZK1Zs8bX9vHHH1tf+MIXGm3TJkyYYEmynnrqKV9bbW2tlZycbN1www2+No/H0+hzbEl79qUa9jsa/OY3v2lxP+RCdTW8t6VLlzY577Of2caNGy1J1qBBg3zba8uyrD/84Q+WJOvBBx/0tZ2/r9DcOluq7fz9pYbx+9Of/tRvuRkzZlg2m83as2ePr02SFRMT49f21ltvWZKshx9+uFFf6L44fR1dXq9evXx3Dj1x4oReeeUV3XjjjTp9+rSOHTumY8eO6fjx48rNzdV7772ngwcPSpLWrVunMWPG+N3wo1+/fvr617/eZD8XXXSRcnNz/dpWrVqlK6+8Un379vX1dezYMU2ZMkVer1ebN2/2LZeQkKCpU6f6LZeVlaVevXo1+415Wz4DSS3eQbVPnz6qqanxO8W9rZr6DFpy6623+h09+M53vqOoqCitXbu23TW0xtq1a5WcnKybbrrJ1xYdHa3bb79d1dXVevXVV/2Wnzlzpvr27eubbvgW/f333+/UOgEgHLndbpWVlfn9e+mll3zz165dq6ioKH3nO9/xtUVGRvpdzy19evOtv/3tb5o1a5ZvOyZJEyZM0IgRI/yW7eh2dOzYsYqIiPBdK95wdNvpdKpXr14aOXKk76hvw38brifvSN/r1q3ToEGDdO211/raYmNjmz0i3atXL79r22NiYjRq1KhO3x59dl+qKX369JEkvfDCC+2+KZrdbtecOXNavfysWbPUu3dv3/SMGTM0cODAoOxDREZG6vbbb/dr//73vy/LsvzGuiRNmTJFQ4cO9U2PHDlS8fHx7EPAD6evo8urrq7WgAEDJEl79uyRZVm65557dM899zS5/JEjRzRo0CDt379fY8aMaTS/ubvHNnWn2ffee09vv/22Pve5zzXbV8Nyp06d8tXZ3HLtVV1dLUl+G6/zffe739Uf/vAH5eXladCgQbrqqqt044036ktf+lKr+2nqM2jJJZdc4jfdq1cvDRw4sNMfa7Z//35dcsklje4I33C6+/79+/3a09LS/KYbAnpHr/cHgK5o1KhRLd7obf/+/Ro4cKBf0JbU6JKnhr/FTW13hw0bpjfffNM33dHtaJ8+fXT55Zf7Be8rrrjCdxr02LFj/eY1hOGO9r1//34NHTq00SVbze1rDB48uNGyffv21dtvv93i++uoz+5LNWXmzJl64okndMstt6ioqEiTJ0/W9ddfrxkzZrT66SuDBg1q003dzt+HsNlsGjZsWFD2IVJSUhrtU7V2H0L69GfGPgQ+i1COLu2DDz7QqVOnfBu3hm9vf/CDHzR7RLe9j2xp6vql+vp6TZ06VT/84Q+bfM3nP/9533IDBgzQs88+2+RyzYX61nrnnXcktfzeBgwYoF27dmn9+vV66aWX9NJLL+nJJ5/UrFmzGt0ArTnBvNu81+sNWl+RkZFNtlvn3dAFAGBGILaj48eP19KlS3Xy5Elt3brV75risWPHavny5aqrq9OWLVuUlZWl2NjYgPXdWia2R+fvSzWlR48e2rx5szZu3KjS0lKtW7dOK1eu1KRJk7Rhw4Zm6z5/HYHW3P1pvF5vq2oKBPYh0BqEcnRpTz/9tCT5AvjFF18s6dNTladMmdLia4cMGaI9e/Y0am+qrTlDhw5VdXX1BfsaOnSoXn75ZY0bN65TNkrnfw7NiYmJ0fTp0zV9+nTV19fru9/9rh577DHdc889GjZsWJtuvtYa7733niZOnOibrq6u1qFDh3T11Vf72vr27dvojrxnz57VoUOH/NraUtuQIUP09ttvq76+3u8b/N27d/vmAwA6x5AhQ1ReXq7q6mq/o+Xvvvtuo+Wkpre757cFYjs6fvx4Pfroo3r55Ze1c+dO3XXXXb55Y8eO1ccff6zS0lK9//77uuGGGwLS95AhQ1RRUSHLsvy2Y23Z1zhfoLfVrd2HiIiI0OTJkzV58mQtWbJEP//5z/XjH/9YGzdu1JQpUzplH+KzLMvSnj17/J6n3tQ+hPTp0eyGfUKp7fsQL7/8sk6fPu13tJx9CHQE15Sjy3rllVd033336aKLLvJdBz5gwADl5OToscceaxTqJOno0aO+/8/NzdW2bdu0a9cuX9uJEyea/Sa8KTfeeKO2bdum9evXN5p38uRJnTt3zrec1+vVfffd12i5c+fONfuYmNZ47rnn9MQTT2jMmDGaPHlys8sdP37cbzoiIsK3YautrZUk9ezZ01d7ICxbtkx1dXW+6UcffVTnzp1TXl6er23o0KG+a+8/+7rzj5S3pbarr75ahw8f1sqVK31t586d08MPP6xevXppwoQJ7Xo/AIALu/rqq3Xu3Dk9+uijvjav16uHH37Yb7mUlBQNHz5cTz31lO8yLEl69dVX9be//c1v2UBsRxuuEV+yZInq6ur8jpSnp6dr4MCBvsePffb55B3pOzc3VwcPHvR7LOsnn3yixx9//IL1NieQ2+qm9qWacuLEiUZtDffk6ax9iKeeesrvOvfVq1fr0KFDjfYhXn/9dZ09e9bX9pe//KXRo9Paug/h9Xr1yCOP+LX/5je/kc1m8+sfaC2OlKNLeOmll7R7926dO3dOlZWVeuWVV1RWVqYhQ4boxRdf9J1iJn16A5rx48drxIgRmjt3ri6++GJVVlZq27Zt+uCDD/TWW29Jkn74wx/qmWee0dSpU3Xbbbf5HomWlpamEydOtOpb1bvuuksvvviirrnmGs2ePVtZWVmqqanR3/72N61evVr79u1TYmKiJkyYoHnz5mnx4sXatWuXrrrqKkVHR+u9997TqlWr9OCDD2rGjBkX7G/16tXq1auXzp49q4MHD2r9+vXaunWrMjIytGrVqhZfe8stt+jEiROaNGmSBg8erP379+vhhx9WZmam7zqpzMxMRUZG6he/+IVOnTolu92uSZMmtXidWUvOnj2ryZMn68Ybb9S7776r3/72txo/frzfDW9uueUWffvb39YNN9ygqVOn6q233tL69euVmJjot6621Hbrrbfqscce0+zZs7Vjxw6lp6dr9erV2rp1q0pKSlq89h4A0LKGbfL5xo4dq4svvljTp0/XuHHjVFRUpH379snhcOhPf/qTTp061eg1P//5z/XlL39Z48aN05w5c/TRRx/pkUce0fDhw/2CeiC2o2lpaUpNTdW2bduUnp6ulJSURvX/8Y9/lM1m07hx4wLS97x58/TII4/opptu0h133KGBAwfq2Wef9e23tOfo8tChQ9WnTx8tXbpUvXv3Vs+ePTV69OgL3velLftS57v33nu1efNmTZs2TUOGDNGRI0f029/+VoMHD/Z9gdHeuprTr18/jR8/XnPmzFFlZaVKSko0bNgwv5vk3XLLLVq9erW+9KUv6cYbb9S//vUvPfPMM343XmtrbdOnT9fEiRP14x//WPv27VNGRoY2bNigF154QXfeeWejdQOtYvDO70CHnf/4lZiYGCs5OdmaOnWq9eCDD/o9KuOz/vWvf1mzZs2ykpOTrejoaGvQoEHWNddcY61evdpvuZ07d1pXXnmlZbfbrcGDB1uLFy+2HnroIUuSdfjwYd9yQ4YMsaZNm9ZkX6dPn7aKi4utYcOGWTExMVZiYqI1duxY61e/+pXf48Asy7KWLVtmZWVlWT169LB69+5tjRgxwvrhD39offjhhy1+Dg2PJmn4Fxsbaw0ePNi65pprrOXLl/s9/q3B+Y/4WL16tXXVVVdZAwYMsGJiYqy0tDRr3rx51qFDh/xe9/jjj1sXX3yxFRkZ6fe4lpY+g+Yeifbqq69at956q9W3b1+rV69e1te//nXr+PHjfq/1er3Wj370IysxMdGKi4uzcnNzrT179jT5mJPmajv/0SeWZVmVlZXWnDlzrMTERCsmJsYaMWJEo0ehNDwS7Ze//GWj96RmHtUGAN1VS49E03mPmzp+/Lh18803W/Hx8VZCQoJ18803Wzt37mzysVTPP/+89YUvfMGy2+3W8OHDrRdffNG64YYbrC984QuNamjvdrTBTTfdZEmyvva1rzWat2TJEkuSddlllzX52tb03dT26P3337emTZtm9ejRw/rc5z5nff/737f++Mc/WpKs119/3e+1l19+eaN+z9+eW9anj+50OBxWVFTUBR+P1p59qfMfiVZeXm59+ctftlJSUqyYmBgrJSXFuummmxo9Era5upp7b019Zg2PRPuf//kfq7i42BowYIDVo0cPa9q0adb+/fsbvf7Xv/61NWjQIMtut1vjxo2ztm/f3uTPobnamvp8T58+bX3ve9+zUlJSrOjoaOuSSy6xfvnLX1r19fV+y0myXC5Xo5qae1Qbui+bZXGXAaAt7rzzTj322GOqrq4O2k1CAADAf2RmZupzn/tchx7jGcpKSkr0ve99Tx988IEGDRpkuhwAnYxryoEWfPzxx37Tx48f19NPP63x48cTyAEA6GR1dXW++6802LRpk9566y3l5OSYKSrAzt/X+OSTT/TYY4/pkksuIZAD3QTXlAMtGDNmjHJycnTZZZepsrJSv/vd71RVVdXsM84BAEDgHDx4UFOmTNE3vvENpaSkaPfu3Vq6dKmSk5P17W9/23R5AXH99dcrLS1NmZmZOnXqlJ555hnt3r27TTeWBRDeCOVAC66++mqtXr1ay5Ytk81m03/913/pd7/7nb74xS+aLg0AgC6vb9++ysrK0hNPPKGjR4+qZ8+emjZtmu6//37179/fdHkBkZubqyeeeELPPvusvF6vHA6Hnn/+ec2cOdN0aQCChGvKAQAAAAAwhGvKAQAAAAAwhFAOAAAAAIAhYXdNeX19vT788EP17t1bNpvNdDkAgG7OsiydPn1aKSkpiojgu+5AYFsPAAg1nbm9D7tQ/uGHHyo1NdV0GQAA+Dlw4IAGDx5suowugW09ACBUdcb2PuxCee/evSV9+mHEx8d3aF11dXXasGGDrrrqKkVHRweiPCBsMP7RnQVy/FdVVSk1NdW3fUL7ud1uud1u33Op9+7dq379+hmuCuGAbRraijGDtjpx4oQuuuiiTtneh10obziNLT4+PiChPC4uTvHx8fwyotth/KM764zxz2nWHedyueRyuVRVVaWEhAT17t27w9t6dA9s09BWjBm0VV1dnaTO2d5z8RsAAAAAAIaETSh3u91yOBxyOp2mSwEAAAAAICDCJpS7XC5VVFTI4/GYLgUAAAAAgIAIm1AOAAAAAEBXQygHAAAAAMAQQjkAAAAAAIYQygEAAAAAMIRQDgAAAACAIYRyAAAAAAAMIZQDAAAAAGBI2IRyt9sth8Mhp9NpuhQAAAAAAAIibEK5y+VSRUWFPB6P6VIAAAAAAAiIsAnlAAAAAAB0NYRyAAAAAAAMiTJdANCdpReVGuvbHmnpgVHGugeACxq9uFznonq2+XX77p/WCdUAANA5OFIOAAAAAIAhhHIAAAAAAAwhlAMAAAAAYAihHAAAhAS32y2HwyGn02m6FAAAgoYbvQEAgJDgcrnkcrlUVVWlhISEdq/H1E00ucEcAKA9OFIOAAAAAIAhYRPKOaUNAAAAANDVhE0od7lcqqiokMfjMV0KAAAAAAABETahHAAAAACAroZQDgAAAACAIYRyAAAAAAAMIZQDAAAAAGAIoRwAAAAAAEMI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAAAAADAmbUO52u+VwOOR0Ok2XAgAAAABAQESZLqC1XC6XXC6XqqqqlJCQYLocAAAAP+lFpUHvc9/904LeJwAgsMLmSDkAAAAAAF0NoRwAAAAAAEMI5QAAAAAAGBI215QD6BzDF65XrddmpG+uhQQAAEB3x5FyAAAAAAAMIZQDAAAAAGAIoRwAAAAAAEMI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AADrFmTNnNGTIEP3gBz8wXQoAACErynQBgEnpRaWmSwCALutnP/uZ/t//+3+mywAAIKRxpBwAAATce++9p927dysvL890KQAAhLSwCeVut1sOh0NOp9N0KQAAdGmbN2/W9OnTlZKSIpvNpjVr1jRaxu12Kz09XbGxsRo9erTeeOMNv/k/+MEPtHjx4mCVDABA2Aqb09ddLpdcLpeqqqqUkJBguhwAALqsmpoaZWRk6Jvf/Kauv/76RvNXrlypwsJCLV26VKNHj1ZJSYlyc3P17rvvasCAAXrhhRf0+c9/Xp///Of12muvXbC/2tpa1dbW+qarqqokSfYIS5GRVuDeWBdUV1dnuoSQ0PA58HmgtRgzaKvOHCthE8oBAEBw5OXltXja+ZIlSzR37lzNmTNHkrR06VKVlpZq+fLlKioq0uuvv67nn39eq1atUnV1terq6hQfH6/58+c3ub7Fixdr0aJFjdp/ckW94uK8gXlTXdTatWtNlxBSysrKTJeAMMOYQWudOXOm09ZNKAcAAK129uxZ7dixQ8XFxb62iIgITZkyRdu2bZP0achuOHV9xYoVeuedd5oN5JJUXFyswsJC33RVVZVSU1P1050ROhcd2UnvpGt4Z2Gu6RJCQl1dncrKyjR16lRFR0ebLgdhgDGDtjp+/HinrZtQDgAAWu3YsWPyer1KSkrya09KStLu3bvbtU673S673d6ovbbepnNeW7vW2V0QJvxFR0fzmaBNGDNorc4cJ4RyAADQaWbPnm26BAAAQlrY3H0dAACYl5iYqMjISFVWVvq1V1ZWKjk52VBVAACEL0I5AABotZiYGGVlZam8vNzXVl9fr/Lyco0ZM8ZgZQAAhCdOXwcAAH6qq6u1Z88e3/TevXu1a9cu9evXT2lpaSosLFR+fr6ys7M1atQolZSUqKamxnc39vZyu91yu93yernjOgCg+yCUAwAAP9u3b9fEiRN90w13Rs/Pz9eKFSs0c+ZMHT16VPPnz9fhw4eVmZmpdevWNbr5W1u5XC65XC5VVVUpISGhQ+sCACBcEMoBAICfnJwcWZbV4jIFBQUqKCgIUkVoTnpRqZF+990/zUi/ANAVcU05AAAAAACGEMoBAAAAADCEUA4AAEKC2+2Ww+GQ0+k0XQoAAEFDKAcAACHB5XKpoqJCHo/HdCkAAAQNoRwAAAAAAEMI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AAEICj0QDAHRHYRPK2VADANC18Ug0AEB3FDahnA01AAAAAKCrCZtQDgAAAABAV0MoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAEBJ4/CkAoDsilAMAgJDA408BAN0RoRwAAAAAAEMI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAAAAADCGUAwCAkOB2u3ZJSOMAAB7sSURBVOVwOOR0Ok2XAgBA0BDKAQBASHC5XKqoqJDH4zFdCgAAQRNlugAAAACEl/SiUiP97rt/mpF+AaAzcaQcAAAAAABDCOUAAAAAABhCKAcAAAAAwBBCOQAAAAAAhhDKAQAAAAAwhFAOAAAAAIAhhHIAAAAAAAwhlAMAAAAAYEiU6QLQvaUXlZouAQAQItxut9xut7xer+lSAAAIGo6UAwCAkOByuVRRUSGPx2O6FAAAgiZsQrnb7ZbD4ZDT6TRdCgAAAAAAARE2oZxvzwEAAAAAXU3YhHIAAAAAALoaQjkAAAAAAIYQygEAAAAAMIRQDgAAAACAIYRyAAAAAAAMIZQDAAAAAGAIoRwAAAAAAEMI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAEBIcLvdcjgccjqdpksBACBoCOUAACAkuFwuVVRUyOPxmC4FAICgIZQDAAAAAGBIlOkCYFZ6UanpEgAAAACg2+JIOQAAAAAAhhDKAQAAAAAwhFAOAAAAAIAhhHIAAAAAAAwhlAMAAAAAYAihHAAAAAAAQwjlAAAAAAAYQigHAAAAAMCQKNMFdHfpRaWmSwAAAAAAGMKRcgAAAAAADCGUAwAAAABgCKEcAAAAAABDCOUAAAAAABhCKAcAAAAAwBBCOQAAAAAAhhDKAQAAAAAwhFAOAABCgtvtlsPhkNPpNF0KAABBQygHAAAhweVyqaKiQh6Px3QpAAAEDaEcAAAAAABDCOUAAAAAABhCKAcAAAAAwBBCOQAAAAAAhkSZLiAUDF+4XrVem+kyAAAAAADdDEfKAQAAAAAwhCPlAAAACAvpRaVNttsjLT0wqnPOftx3/7SArg8AzseRcgAAAAAADCGUAwAAAABgCKEcAAAAAABDgh7KDxw4oJycHDkcDo0cOVKrVq0KdgkAAAAAAISEoN/oLSoqSiUlJcrMzNThw4eVlZWlq6++Wj179gx2KQAAAAAAGBX0UD5w4EANHDhQkpScnKzExESdOHGCUA4AAAAA6HbafPr65s2bNX36dKWkpMhms2nNmjWNlnG73UpPT1dsbKxGjx6tN954o8l17dixQ16vV6mpqW2vHAAAAACAMNfmUF5TU6OMjAy53e4m569cuVKFhYVasGCB3nzzTWVkZCg3N1dHjhzxW+7EiROaNWuWli1b1r7KAQAAAAAIc20+fT0vL095eXnNzl+yZInmzp2rOXPmSJKWLl2q0tJSLV++XEVFRZKk2tpafeUrX1FRUZHGjh3bYn+1tbWqra31TVdVVUmS6urqVFdX19by/TS83h5hdWg9QDhqGPcmx39Hf4eB9moYe4EYg4xjAADQEQG9pvzs2bPasWOHiouLfW0RERGaMmWKtm3bJkmyLEuzZ8/WpEmTdPPNN19wnYsXL9aiRYsatW/YsEFxcXEBqfu+7PqArAcIRybH/9q1a431DUhSWVlZh9dx5syZAFQCAAC6q4CG8mPHjsnr9SopKcmvPSkpSbt375Ykbd26VStXrtTIkSN916M//fTTGjFiRJPrLC4uVmFhoW+6qqpKqampuuqqqxQfH9+heuvq6lRWVqZ7tkeott7WoXUB4cYeYem+7Hqj4/+dhblG+gUa/v5PnTpV0dHRHVpXwxlcAAAA7RH0u6+PHz9e9fWtPzJnt9tlt9sbtUdHR3d4R6pBbb1NtV5CObonk+M/UL/DQHsFYlvCOAYAAB3R5hu9tSQxMVGRkZGqrKz0a6+srFRycnIguwIAAAAAIOwFNJTHxMQoKytL5eXlvrb6+nqVl5drzJgxgewKAAAAAICw1+bT16urq7Vnzx7f9N69e7Vr1y7169dPaWlpKiwsVH5+vrKzszVq1CiVlJSopqbGdzd2AAAAAADwqTaH8u3bt2vixIm+6YabsOXn52vFihWaOXOmjh49qvnz5+vw4cPKzMzUunXrGt38DQAAAACA7q7NoTwnJ0eW1fJzjQsKClRQUNDuopridrvldrvl9XoDul4AAAAAAEwJ6DXlncnlcqmiokIej8d0KQAAAAAABETQH4kGAA3Si0qN9r/v/mlG+wcAAADC5kg5AAAIDydPnlR2drYyMzM1fPhwPf7446ZLAgAgZHGkHAAABFTv3r21efNmxcXFqaamRsOHD9f111+v/v37my4NAICQw5FyAAAQUJGRkYqLi5Mk1dbWyrKsC94kFgCA7opQDgAA/GzevFnTp09XSkqKbDab1qxZ02gZt9ut9PR0xcbGavTo0XrjjTf85p88eVIZGRkaPHiw7rrrLiUmJgarfAAAwgqhHAAA+KmpqVFGRobcbneT81euXKnCwkItWLBAb775pjIyMpSbm6sjR474lunTp4/eeust7d27V88995wqKyuDVT4AAGGFa8oBAICfvLw85eXlNTt/yZIlmjt3rubMmSNJWrp0qUpLS7V8+XIVFRX5LZuUlKSMjAz99a9/1YwZM5pcX21trWpra33TVVVVkiR7hKXISE57x4XZIyy//wZSXV1dwNcJ8xp+rvx80VqdOVbCJpS73W653W55vV7TpQAA0G2dPXtWO3bsUHFxsa8tIiJCU6ZM0bZt2yRJlZWViouLU+/evXXq1Clt3rxZ3/nOd5pd5+LFi7Vo0aJG7T+5ol5xcWz30Xr3ZdcHfJ1r164N+DoROsrKykyXgDBx5syZTlt32IRyl8sll8ulqqoqJSQkmC4HAIBu6dixY/J6vUpKSvJrT0pK0u7duyVJ+/fv16233uq7wdttt92mESNGNLvO4uJiFRYW+qarqqqUmpqqn+6M0LnoyM55I+hS7BGW7suu1z3bI1Rbbwvout9ZmBvQ9SE01NXVqaysTFOnTlV0dLTpchAGjh8/3mnrDptQDgAAwsOoUaO0a9euVi9vt9tlt9sbtdfW23TOG9iAha6ttt6m2gCPGQJb1xYdHc3PGK3SmeOEG70BAIBWS0xMVGRkZKMbt1VWVio5OdlQVQAAhC9COQAAaLWYmBhlZWWpvLzc11ZfX6/y8nKNGTPGYGUAAIQnTl8HAAB+qqurtWfPHt/03r17tWvXLvXr109paWkqLCxUfn6+srOzNWrUKJWUlKimpsZ3N/b24qauAIDuiFAOAAD8bN++XRMnTvRNN9yELT8/XytWrNDMmTN19OhRzZ8/X4cPH1ZmZqbWrVvX6OZvbcVNXQEA3RGhHAAA+MnJyZFltfy854KCAhUUFASpIgAAui6uKQcAAAAAwJCwCeVut1sOh0NOp9N0KQAAAAAABETYhHKXy6WKigp5PB7TpQAAAAAAEBBhE8oBAEDXxllxAIDuiFAOAABCAmfFAQC6I0I5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAAAAADCGUAwAAAABgCKEcAACEBB6JBgDojgjlAAAgJPBINABAdxQ2oZxvzwEAAAAAXU3YhHK+PQcAAAAAdDVhE8oBAAAAAOhqCOUAAAAAABhCKAcAAAAAwBBCOQAACAnc1BUA0B0RygEAQEjgpq4AgO6IUA4AAAAAgCGEcgAAAAAADCGUAwAAAABgCKEcAAAAAABDCOUAAAAAABhCKAcAAAAAwJCwCeU8uxQAAAAA0NWETSjn2aUAAHRtfAEPAOiOwiaUAwCAro0v4AEA3VGU6QIAAACAUJVeVGqk3333TzPSL4Dg40g5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAAAAADCGUAwAAAABgCKEcAAAAAABDCOUAAAAAABhCKAcAAAAAwBBCOQAACAlut1sOh0NOp9N0KQAABA2hHAAAhASXy6WKigp5PB7TpQAAEDSEcgAAAAAADCGUAwAAAABgSNiEcq4zAwAAAAB0NWETyrnODAAAAADQ1YRNKAcAAAAAoKshlAMAAAAAYAihHAAAAAAAQwjlAAAAAAAYQigHAAAAAMAQQjkAAAAAAIYQygEAAAAAMIRQDgAAAACAIYRyAAAQEtxutxwOh5xOp+lSAAAIGkI5AAAICS6XSxUVFfJ4PKZLAQAgaAjlAAAAAAAYQigHAAAAAMAQQjkAAAAAAIYQygEAAAAAMIRQDgAAAACAIYRyAAAAAAAMIZQDAAAAAGAIoRwAAAAAAEMI5QAAAAAAGBI2odztdsvhcMjpdJouBQAAAACAgAibUO5yuVRRUSGPx2O6FAAAAAAAAiJsQjkAAAAAAF0NoRwAAAAAAEMI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAEBLcbrccDoecTqfpUgAACBpCOQAACAkul0sVFRXyeDymSwEAIGgI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AAAAAgCFRpgsAAAAA4C+9qNRIv/vun2akX6A740g5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAAAAADCGUAwAAAABgCKEcAAAAAABDCOUAAAAAABhCKAcAAAAAwBBCOQAAAAAAhhDKAQAAAAAwhFAOAAAAAIAhhHIAAAAAAAwJm1DudrvlcDjkdDpNlwIAAAAAQECETSh3uVyqqKiQx+MxXQoAAAAAAAERNqEcAAAAAICuhlAOAAAAAIAhhHIAAAAAAAwhlAMAAAAAYAihHAAAAAAAQwjlAAAAAAAYQigHAAAAAMAQQjkAAAioAwcOKCcnRw6HQyNHjtSqVatMlwQAQMiKMl0AAADoWqKiolRSUqLMzEwdPnxYWVlZuvrqq9WzZ0/TpQEAEHII5QAAIKAGDhyogQMHSpKSk5OVmJioEydOEMoBAGgCp68DAAA/mzdv1vTp05WSkiKbzaY1a9Y0Wsbtdis9PV2xsbEaPXq03njjjSbXtWPHDnm9XqWmpnZ22QAAhCVCOQAA8FNTU6OMjAy53e4m569cuVKFhYVasGCB3nzzTWVkZCg3N1dHjhzxW+7EiROaNWuWli1bFoyyAQAIS5y+DgAA/OTl5SkvL6/Z+UuWLNHcuXM1Z84cSdLSpUtVWlqq5cuXq6ioSJJUW1urr3zlKyoqKtLYsWNb7K+2tla1tbW+6aqqKkmSPcJSZKTV0beDbsAeYfn9F+1XV1dnuoSgaHif3eX9ouM6c6wQygEAQKudPXtWO3bsUHFxsa8tIiJCU6ZM0bZt2yRJlmVp9uzZmjRpkm6++eYLrnPx4sVatGhRo/afXFGvuDhv4IpHl3dfdr3pEsLe2rVrTZcQVGVlZaZLQJg4c+ZMp62bUA4AAFrt2LFj8nq9SkpK8mtPSkrS7t27JUlbt27VypUrNXLkSN/16E8//bRGjBjR5DqLi4tVWFjom66qqlJqaqp+ujNC56IjO+mdoCuxR1i6L7te92yPUG29zXQ5Ye2dhbmmSwiKuro6lZWVaerUqYqOjjZdDsLA8ePHO23dhHIAABBQ48ePV319649Y2u122e32Ru219Tad8xKw0Hq19TbVMmY6pLsF1Ojo6G73ntE+nTlOuNEbAABotcTEREVGRqqystKvvbKyUsnJyYaqAgAgfBHKAQBAq8XExCgrK0vl5eW+tvr6epWXl2vMmDEGKwMAIDxx+joAAPBTXV2tPXv2+Kb37t2rXbt2qV+/fkpLS1NhYaHy8/OVnZ2tUaNGqaSkRDU1Nb67sbeX2+2W2+2W18vN3QAA3QehHAAA+Nm+fbsmTpzom264CVt+fr5WrFihmTNn6ujRo5o/f74OHz6szMxMrVu3rtHN39rK5XLJ5XKpqqpKCQkJHVoXAADhglAOAAD85OTkyLJaft5zQUGBCgoKglQRAABdF9eUAwAAAABgCKEcAAAAAABDCOUAAAAAABhCKAcAACHB7XbL4XDI6XSaLgUAgKAhlAMAgJDgcrlUUVEhj8djuhQAAIKGUA4AAAAAgCGEcgAAAAAADCGUAwAAAABgCKEcAAAAAABDCOUAACAkcPd1AEB3RCgHAAAhgbuvAwC6I0I5AAAAAACGEMoBAAAAADAkynQBAAAAAEJDelFp0Pvcd/+0oPcJhBKOlAMAAAAAYAihHAAAAAAAQwjlAAAAAAAYQigHAAAhgeeUAwC6I0I5AAAICTynHADQHRHKAQAAAAAwhFAOAAAAAIAhRkL5ddddp759+2rGjBkmugcAAAAAICQYCeV33HGHnnrqKRNdAwAAAAAQMoyE8pycHPXu3dtE1wAAAAAAhIw2h/LNmzdr+vTpSklJkc1m05o1axot43a7lZ6ertjYWI0ePVpvvPFGQIoFAAAAAKAraXMor6mpUUZGhtxud5PzV65cqcLCQi1YsEBvvvmmMjIylJubqyNHjnS4WAAAAAAAupKotr4gLy9PeXl5zc5fsmSJ5s6dqzlz5kiSli5dqtLSUi1fvlxFRUVtLrC2tla1tbW+6aqqKklSXV2d6urq2ry+z2p4vT3C6tB6gHDUMO678/jv6N8QhK+Gn30gxgDjKHDcbrfcbre8Xq/pUgAACJo2h/KWnD17Vjt27FBxcbGvLSIiQlOmTNG2bdvatc7Fixdr0aJFjdo3bNiguLi4dtf6Wfdl1wdkPUA46s7jf+3ataZLgGFlZWUdXseZM2cCUAkkyeVyyeVyqaqqSgkJCabLAQAgKAIayo8dOyav16ukpCS/9qSkJO3evds3PWXKFL311luqqanR4MGDtWrVKo0ZM6bJdRYXF6uwsNA3XVVVpdTUVF111VWKj4/vUL11dXUqKyvTPdsjVFtv69C6gHBjj7B0X3Z9tx7/7yzMNV0CDGn4+z916lRFR0d3aF0NZ3ABAAC0R0BDeWu9/PLLrV7WbrfLbrc3ao+Oju7wjlSD2nqbar3dM5QA3Xn8B+pvCMJXILYljCMAANARAX0kWmJioiIjI1VZWenXXllZqeTk5EB2BQAAAABA2AtoKI+JiVFWVpbKy8t9bfX19SovL2/29HQAAAAAALqrNp++Xl1drT179vim9+7dq127dqlfv35KS0tTYWGh8vPzlZ2drVGjRqmkpEQ1NTW+u7EDAAAAAIBPtTmUb9++XRMnTvRNN9yELT8/XytWrNDMmTN19OhRzZ8/X4cPH1ZmZqbWrVvX6OZvAAAAAAB0d20O5Tk5ObKslp9rXFBQoIKCgnYX1RSeXQoAAAAA6GoCek15Z3K5XKqoqJDH4zFdCgAAAAAAARE2oRwAAAAAgK6GUA4AAEKC2+2Ww+GQ0+k0XQoAAEFDKAcAACGBS9UAAN0RoRwAAAAAAEMI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGhE0o546sAAAAAICuJmxCOXdkBQAAAAB0NWETygEAAAAA6GoI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAEBLcbrccDoecTqfpUgAACJqwCeVsqAEA6NpcLpcqKirk8XhMlwIAQNCETShnQw0AAAAA6GrCJpQDAAAAANDVEMoBAAAAADCEUA4AAAAAgCGEcgAAAAAADCGUAwAAAABgCKEcAAAAAABDCOUAAAAAABhCKAcAAAAAwBBCOQAAAAAAhoRNKHe73XI4HHI6naZLAQAAAAAgIMImlLtcLlVUVMjj8ZguBQAAAACAgAibUA4AAAAAQFdDKAcAAAAAwBBCOQAAAAAAhhDKAQAAAAAwhFAOAAAAAIAhhHIAAAAAAAwhlAMAgJDgdrvlcDjkdDpNlwIAQNAQygEAQEhwuVyqqKiQx+MxXQoAAEFDKAcAAAAAwBBCOQAAAAAAhhDKAQAAAAAwJMp0Aa3ldrvldrvl9XpNlwKgi0gvKjXa/777pxntHwCAUGBie2yPtPTAqKB3CzQpbI6Uc/MXAAAAAEBXEzahHAAAAACAroZQDgAAAACAIYRyAAAAAAAMIZQDAAAAAGAIoRwAAAAAAEMI5QAAAAAAGEIoBwAAAADAEEI5AAAAAACGEMoBAAAAADCEUA4AAAAAgCGEcgAAAAAADCGUAwAAAABgCKEcAAAAAABDCOUAAAAAABgSNqHc7XbL4XDI6XSaLgUAAAAAgICIMl1Aa7lcLrlcLp06dUp9+vRRVVVVh9dZV1enM2fOyFsbqXqvLQBVAuHDG2npzBkv49+gQPwdQ/s0/P2vqqpSdHR0h9bV8HO0LCsQpUH/+Szra8/w9wmtwjYNbdUwZgKxHUD3cPr0aUmds723WWG2F/HBBx8oNTXVdBkAAPg5cOCABg8ebLqMLuH999/X0KFDTZcBAEAj//rXv3TxxRcHdJ1hc6S8QUpKioYOHaodO3bIZmv5m1Cn0ymPx9Ps/KqqKqWmpurAgQOKj48PdKkh5UKfRVepI1Dr7+h62vr6zlie8f8fjP/grqc9r2/La0Jt/FuWpdOnTyslJaVD68F/9OvXT5L073//WwkJCYaraVkw/r6Y/t0O9u9ne+aH0zatq48ZE/s0Lc1vbh5jpnP66Mpj5tSpU0pLS/NtowIp7EJ5RESEYmJiWrWRjoyMbNUvWXx8fMj/MnZUaz+LcK8jUOvv6Hra+vrOWJ7x/x+M/+Cupz2vb8trQnH8h3pwDDcREZ/e8iYhISEkfndbEoy/L6Z/t4P9+9mR+eGwTevqY8bEPk1L8y/0WsZMYPvoDmOmYRsVSJELFy5cGPC1BsGoUaM6vFxtba3uv/9+FRcXy263B6q0kNXaz6yzdXYdgVp/R9fT1td3xvKM//9g/Ad3Pe15fVtew/jv2sLt5xOMvy+mf7eD+fvZnvmMmc7ro7P/nrd2+Y6MmabmMWY6rw/GTNuF3TXlgVRVVaWEhASdOnUq5L8hAwKN8Y/ujPEf2vj5oK0YM2grxgzaqjPHTNgeKQ+UyMhI5eTkKCoq7M7kBzqM8Y/ujPEf2vj5oK0YM2grxgzaqrPGTLc+Ug4AAAAAgEmBv0odAAAAAAC0CqEcAAAAAABDCOUAAAAAABhCKAcAAAAAwBBCOQAAAAAAhhDKm/GXv/xFl156qS655BI98cQTpssBgu66665T3759NWPGDNOlAEF14MAB5eTkyOFwaOTIkVq1apXpktAMflZoD7ZvuBByANqqo39XeCRaE86dOyeHw6GNGzcqISFBWVlZeu2119S/f3/TpQFBs2nTJp0+fVq///3vtXr1atPlAEFz6NAhVVZWKjMzU4cPH1ZWVpb++c9/qmfPnqZLw3n4WaE92L6hJeQAtEdH/65wpLwJb7zxhi6//HINGjRIvXr1Ul5enjZs2GC6LCCocnJy1Lt3b9NlAEE3cOBAZWZmSpKSk5OVmJioEydOGK4KTeFnhfZg+4aWkAPQHh39u9IlQ/n/b+f+XdJrwziOf/qBfOcIDC3pDwg8UJwIaigEpySIxrLmhsD+gMamIIiWxqDBKadaEiGQIjCCGoMmJSOaFCLQ+zs9QvTQ40k7x+ec9wsczo/hgutz3+dcWF5eXmpxcVGRSER9fX3K5XJf7jk8PNT4+Lj+/Pmj6elp3dzctK5VKhVFo9HWcTQaVblcdqV2oBs6XQPA/1k3818qldRoNDQ2NvbbZfuSm3sRvfIHnl/oFHMAnOqFfceXQ3m9Xlc8Htfh4eG/Xs9ms8pkMtrZ2dHt7a3i8biSyaReXl5crhT4HawBBFm38v/29qa1tTUdHR25UbYvdaMXlmVpYmLiy6dSqbTuoVf+4VZm4F+8A8GpnsiM8TlJ5vT09NM527bN5uZm67jRaJhIJGJ2d3eNMcYUi0WztLTUur61tWVOTk7cKRjosp+sgX8UCgWzvLzsSp3Ab/hp/t/f383c3Jw5Pj52rVa/62Qv+g698q/fyowxPN+CgjkATnn13uzLb8q/8/HxoVKppEQi0TrX39+vRCKhq6srSZJt23p4eFC5XFatVtP5+bmSyaRXJQNd1c4aAPyqnfwbY7S+vq6FhQWtrq56VarvdWMvolfBwvMLnWIOgFNu7TuBG8pfX1/VaDQUDoc/nQ+Hw3p+fpYkDQ4Oam9vT/Pz87IsS9vb2/ziInyjnTUgSYlEQisrKzo7O9Po6CgvPPCFdvJfLBaVzWaVy+VkWZYsy9L9/b0X5fpau3vRd+hVsHQjMxLPtyBjDoBTbr03D3alWh9KpVJKpVJelwF45uLiwusSAE/Mzs6q2Wx6XQbaQK/wEzzf8F+YA+BUp/tK4L4pHx4e1sDAgKrV6qfz1WpVIyMjHlUFuIc1gCAj/72DXsApMoNOkSE45VZmAjeUh0IhTU5OKp/Pt841m03l83nNzMx4WBngDtYAgoz89w56AafIDDpFhuCUW5nx5Z+v12o1PT4+to6fnp50d3enoaEhxWIxZTIZpdNpTU1NybZt7e/vq16va2Njw8Oqge5hDSDIyH/voBdwisygU2QITvVEZn70m+09rlAoGElfPul0unXPwcGBicViJhQKGdu2zfX1tXcFA13GGkCQkf/eQS/gFJlBp8gQnOqFzPQZY0z3RnwAAAAAANCuwP1POQAAAAAAvYKhHAAAAAAAjzCUAwAAAADgEYZyAAAAAAA8wlAOAAAAAIBHGMoBAAAAAPAIQzkAAAAAAB5hKAcAAAAAwCMM5QAAAAAAeIShHAAAAAAAjzCUAwAAAADgEYZyAAAAAAA88hc+zJSgCNUctgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(12, 5))\n", - "\n", - "plt.subplot(1,2,1)\n", - "plotDistribution(degrees, 13)\n", - "plt.yscale(\"log\")\n", - "plt.title(\"Degree Distribution\")\n", - "\n", - "plt.subplot(1,2,2)\n", - "plotDistribution(allEdgesWeights, 20)\n", - "plt.xlim([1E-2, 10])\n", - "plt.yscale(\"log\")\n", - "plt.title(\"Edge Weight Distribution\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [], - "source": [ - "allEdgesWeights = pd.Series({(d[0], d[1]): d[2][\"weight\"] for d in filteredEntityGraph.edges(data=True)})" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", - " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGhCAYAAACUFDUXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAZBUlEQVR4nO3db2id5f348U+Spil1abY2mFqbkm2MQVZNIE2Cw0Hq4oqTSu0cgqCxwgbbqQgZg+TBtLIHlsFGYR4QN4ZzTCgK9sHqnDVUCq6jaaUyCTq6tVuxa7QWmzZlaZac34Nhvuuvpy5/TnKfK3m9QMq5c3KdT/HKybv3+VdRKBQKAQCQqMqsBwAAmAsxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJW5b1ADM1OTkZZ86cidra2qioqMh6HABgGgqFQly8eDHWrVsXlZWlPZeSXMycOXMmGhsbsx4DAJiF06dPx/r160u6ZnIxU1tbGxERJ0+ejNWrV2c8DUSMj4/Ha6+9Ft/4xjeiuro663EgIuxLys/58+fj85///NTv8VJKLmY+eWiptrY2Vq1alfE08J9fGitXroxVq1b5pUHZsC8pN+Pj4xER8/IUEU8ABgCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApCUTM/l8Ppqbm6O9vT3rUQCAMpJMzORyuRgaGorBwcGsRwEAykgyMQMAUIyYAQCStizrAeB6mvr2z3mNU7vvLsEkAJQzZ2YAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGnJxEw+n4/m5uZob2/PehQAoIwsy3qA6crlcpHL5WJkZCTq6uqyHodENPXtL8k6p3bfXZJ1ACi9ZM7MAAAUI2YAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCStizrASAFTX37r/u1mqpC/KQjYuOuP8TYRMV1r3dq993zMRrAkufMDACQNDEDACRNzAAASRMzAEDSxAwAkLQFj5mPP/44Nm3aFK2trbFx48b4xS9+sdAjAACLyIK/NLu2tjYOHToUK1eujNHR0di4cWNs37491qxZs9CjAACLwIKfmamqqoqVK1dGRMTY2FgUCoUoFAoLPQYAsEjMOGYOHToUW7dujXXr1kVFRUXs27fvmuvk8/loamqKFStWRGdnZxw5cuSqr3/88cfR0tIS69evjx/+8IdRX18/+78BALCkzfhhptHR0WhpaYlHHnkktm/ffs3X9+7dG729vfHMM89EZ2dn7NmzJ7Zs2RLvvfde3HjjjRER8dnPfjbefvvtGB4eju3bt8d9990XDQ0NRW9vbGwsxsbGpi6PjIxERMT4+HiMj4/PdHwSUlOVxhm7msrCVX9ej/3KQvpkv9l3lIv53IsVhTk8xlNRUREvv/xybNu2bepYZ2dntLe3x9NPPx0REZOTk9HY2BiPPvpo9PX1XbPG97///bjjjjvivvvuK3obu3btiieffPKa4y+88MLUw1UAQHm7fPlyPPDAA3HhwoVYtWpVSdcu6ROAr1y5EseOHYv+/v6pY5WVldHd3R2HDx+OiIjh4eFYuXJl1NbWxoULF+LQoUPxve9977pr9vf3R29v79TlkZGRaGxsjM2bN3vS8CK3cdcfsh5hWmoqC/HjTZPxo6OVMTZ5/c9memfXlgWciqVufHw8Dhw4EHfeeWdUV1dnPQ7ERx99NG9rlzRmzp07FxMTE9c8ZNTQ0BDvvvtuRET8/e9/j+9+97tTT/x99NFH45ZbbrnumjU1NVFTU3PN8erqaj+gi9ynfWhjORqbrPjUme1XsuC+knIxn/twwV+a3dHREcePH1/omwUAFqmSvjS7vr4+qqqqYnh4+Krjw8PDsXbt2lLeFABARJT4zMzy5cujra0tBgYGpp4UPDk5GQMDA7Fz585S3hRlrKlvf9YjALCEzDhmLl26FCdOnJi6fPLkyTh+/HisXr06NmzYEL29vdHT0xObNm2Kjo6O2LNnT4yOjsaOHTvmNGg+n498Ph8TExNzWgcAWFxmHDNHjx6NzZs3T13+5JVGPT098dxzz8X9998fH374YTz++ONx9uzZaG1tjVdfffW67yMzXblcLnK5XIyMjERdXd2c1gIAFo8Zx0xXV9f//PiBnTt3elgJAFgQC/7ZTAAApSRmAICkiRkAIGliBgBIWjIxk8/no7m5Odrb27MeBQAoI8nETC6Xi6GhoRgcHMx6FACgjCQTMwAAxYgZACBpYgYASJqYAQCSJmYAgKQlEzNemg0AFJNMzHhpNgBQTDIxAwBQjJgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKQlEzPeNA8AKCaZmPGmeQBAMcnEDABAMWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApCUTM94BGAAoJpmY8Q7AAEAxycQMAEAxy7IeAJaKpr79c17j1O67SzAJwOLizAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQtGRixgdNAgDFJBMzPmgSACgmmZgBAChGzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRtWdYDANPX1Le/JOuc2n13SdYBKAfJnJnJ5/PR3Nwc7e3tWY8CAJSRZGIml8vF0NBQDA4OZj0KAFBGkokZAIBixAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNKSiZl8Ph/Nzc3R3t6e9SgAQBlJJmZyuVwMDQ3F4OBg1qMAAGUkmZgBAChGzAAASRMzAEDSlmU9ALDwmvr2z3mNU7vvLsEkAHPnzAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAElb8Jg5ffp0dHV1RXNzc9x6663x4osvLvQIAMAismzBb3DZstizZ0+0trbG2bNno62tLb75zW/GDTfcsNCjAACLwILHzE033RQ33XRTRESsXbs26uvr4/z582IGAJiVGT/MdOjQodi6dWusW7cuKioqYt++fddcJ5/PR1NTU6xYsSI6OzvjyJEjRdc6duxYTExMRGNj48wnBwCIWcTM6OhotLS0RD6fL/r1vXv3Rm9vbzzxxBPx1ltvRUtLS2zZsiU++OCDq653/vz5eOihh+LZZ5+d3eQAADGLh5nuuuuuuOuuu6779Z/97Gfxne98J3bs2BEREc8880zs378/fvWrX0VfX19ERIyNjcW2bduir68vvvrVr37q7Y2NjcXY2NjU5ZGRkYiIGB8fj/Hx8ZmOzwKoqSpkPcKCqqksXPXnUuHnr7x98v/H/yfKxXzuxZI+Z+bKlStx7Nix6O/vnzpWWVkZ3d3dcfjw4YiIKBQK8fDDD8cdd9wRDz744P9c86mnnoonn3zymuMHDx6MlStXlm54SuYnHVlPkI0fb5rMeoQF9corr2Q9AtNw4MCBrEeAiIi4fPnyvK1d0pg5d+5cTExMRENDw1XHGxoa4t13342IiDfffDP27t0bt95669TzbX7zm9/ELbfcUnTN/v7+6O3tnbo8MjISjY2NsXnz5lizZk0px6dENu76Q9YjLKiaykL8eNNk/OhoZYxNVmQ9zoJ5Z9eWrEfgU4yPj8eBAwfizjvvjOrq6qzHgfjoo4/mbe0FfzXT7bffHpOT0/8XbE1NTdTU1FxzvLq62g9omRqbWDq/0P/b2GTFkvq7+/lLg/tKysV87sOSvmlefX19VFVVxfDw8FXHh4eHY+3ataW8KQCAiChxzCxfvjza2tpiYGBg6tjk5GQMDAzEbbfdVsqbAgCIiFk8zHTp0qU4ceLE1OWTJ0/G8ePHY/Xq1bFhw4bo7e2Nnp6e2LRpU3R0dMSePXtidHR06tVNwOLQ1Le/JOuc2n13SdYBlq4Zx8zRo0dj8+bNU5c/eXJuT09PPPfcc3H//ffHhx9+GI8//nicPXs2Wltb49VXX73mScEzlc/nI5/Px8TExJzWAQAWlxnHTFdXVxQKn/5+Gjt37oydO3fOeqhicrlc5HK5GBkZibq6upKuDQCka8E/NRsAoJTEDACQtAV/nxmA/1aKJxJ7EjEsbc7MAABJSyZm8vl8NDc3R3t7e9ajAABlJJmYyeVyMTQ0FIODg1mPAgCUkWRiBgCgGDEDACRNzAAASRMzAEDSxAwAkDQxAwAkLZmY8T4zAEAxycSM95kBAIpJJmYAAIoRMwBA0sQMAJA0MQMAJE3MAABJEzMAQNKSiRnvMwMAFJNMzHifGQCgmGRiBgCgGDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJC0ZGLGxxkAAMUkEzM+zgAAKCaZmAEAKEbMAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSlmU9AMBcNfXtn/Map3bfXYJJgCw4MwMAJE3MAABJSyZmfDYTAFBMMjHjs5kAgGKSiRkAgGLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQtGRiJp/PR3Nzc7S3t2c9CgBQRpKJmVwuF0NDQzE4OJj1KABAGUkmZgAAihEzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASVuW9QAA5aCpb39J1jm1++6SrANMnzMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJC2ZmMnn89Hc3Bzt7e1ZjwIAlJFkYiaXy8XQ0FAMDg5mPQoAUEaSiRkAgGLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAElblsWN3nvvvfHGG2/E17/+9XjppZeyGAFgXjT17Z/zGqd2312CSWDpyOTMzGOPPRbPP/98FjcNACwymcRMV1dX1NbWZnHTAMAiM+OYOXToUGzdujXWrVsXFRUVsW/fvmuuk8/no6mpKVasWBGdnZ1x5MiRkgwLAPD/m/FzZkZHR6OlpSUeeeSR2L59+zVf37t3b/T29sYzzzwTnZ2dsWfPntiyZUu89957ceONN854wLGxsRgbG5u6PDIyEhER4+PjMT4+PuP1mH81VYWsR1hQNZWFq/6EuSrFfdsna7ifpFzM516sKBQKs74HrqioiJdffjm2bds2dayzszPa29vj6aefjoiIycnJaGxsjEcffTT6+vqmrvfGG2/E008//T+fALxr16548sknrzn+wgsvxMqVK2c7OgCwgC5fvhwPPPBAXLhwIVatWlXStUv6aqYrV67EsWPHor+/f+pYZWVldHd3x+HDh2e1Zn9/f/T29k5dHhkZicbGxti8eXOsWbNmzjNTeht3/SHrERZUTWUhfrxpMn50tDLGJiuyHodF4J1dW+a8xvj4eBw4cCDuvPPOqK6uLsFUMDcfffTRvK1d0pg5d+5cTExMRENDw1XHGxoa4t1335263N3dHW+//XaMjo7G+vXr48UXX4zbbrut6Jo1NTVRU1NzzfHq6mo/oGVqbGJp/kIfm6xYsn93SquU923uKykX87kPM3mfmddffz2LmwUAFqGSvjS7vr4+qqqqYnh4+Krjw8PDsXbt2lLeFABARJQ4ZpYvXx5tbW0xMDAwdWxycjIGBgau+zASAMBczPhhpkuXLsWJEyemLp88eTKOHz8eq1evjg0bNkRvb2/09PTEpk2boqOjI/bs2ROjo6OxY8eOOQ2az+cjn8/HxMTEnNYBABaXGcfM0aNHY/PmzVOXP3mlUU9PTzz33HNx//33x4cffhiPP/54nD17NlpbW+PVV1+95knBM5XL5SKXy8XIyEjU1dXNaS0AYPGYccx0dXXF/3prmp07d8bOnTtnPRQAwHRl8tlMAAClImYAgKSJGQAgacnETD6fj+bm5mhvb896FACgjCQTM7lcLoaGhmJwcDDrUQCAMpJMzAAAFCNmAICkiRkAIGliBgBImpgBAJImZgCApM34s5my4lOzgaWiqW//nNeoqSrETzpKMAwkIJkzM95nBgAoJpmYAQAoRswAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNKSiZl8Ph/Nzc3R3t6e9SgAQBlJJma8aR4AUEwyMQMAUIyYAQCSJmYAgKSJGQAgaWIGAEjasqwHmKlCoRARERcvXozq6uqMp6GYybHLWY+woCaqCnH58kRMjFXF5ERF1uNARPzfvhwZGXFfSVm4ePFiRPzf7/FSqijMx6rz6G9/+1t88YtfzHoMAGAW/vrXv8YXvvCFkq6Z3JmZ1atXR0TEP/7xj6irq8t4mrlpb29f8PfNKfVtznW92X7/TL5vOtedy3VGRkaisbExTp8+HatWrZrWTOVqMezJUqw5m+8v9Z6czvU+7euLZV/ak7P//nLbkxcuXIgNGzZM/R4vpeRiprLyP0/zqaurS/oHNCKiqqpqwf8Opb7Nua432++fyfdN57qluM6qVavsyTK5zSz2Zan35HSuN511Ut+X9uTsv79c9+Qnv8dLqWrXrl27Sr7qPBobG4vdu3dHf39/1NTUZD3OnHV0dCR/m3Ndb7bfP5Pvm851Z3sde7I8bzOLfVnqPTmd613v64tpX9qTs//+pbInk3vOzMjISNTV1cWFCxeS/tcGi4c9STmyLyk387knkzszE/Gf01hdXV2xbFlyj5KxSNmTlCP7knIzX3syuTMzAAD/zZvmAQBJEzMAQNLEDACQNDEDACRNzAAASVu0MXP69Ono6uqK5ubmuPXWW+PFF1/MeiSIiIh77703Pve5z8V9992X9SgsUb/73e/iy1/+cnzpS1+KX/7yl1mPA3O+X1y0L83+5z//GcPDw9Ha2hpnz56Ntra2+Mtf/hI33HBD1qOxxL3xxhtx8eLF+PWvfx0vvfRS1uOwxPz73/+O5ubmOHjwYNTV1UVbW1v88Y9/jDVr1mQ9GkvYXO8XF+2ZmZtuuilaW1sjImLt2rVRX18f58+fz3gqiOjq6ora2tqsx2CJOnLkSHzlK1+Jm2++OT7zmc/EXXfdFa+99lrWY7HEzfV+MbOYOXToUGzdujXWrVsXFRUVsW/fvmuuk8/no6mpKVasWBGdnZ1x5MiRWd3WsWPHYmJiIhobG+c6NovcQu5LmI257tEzZ87EzTffPHX55ptvjvfff39BZmdxKof7zcxiZnR0NFpaWiKfzxf9+t69e6O3tzeeeOKJeOutt6KlpSW2bNkSH3zwwdR1WltbY+PGjdf8d+bMmanrnD9/Ph566KF49tln5/3vRPoWal/CbJVij0IplcWeLJSBiCi8/PLLVx3r6Ogo5HK5qcsTExOFdevWFZ566qlpr/uvf/2r8LWvfa3w/PPPl2xWlo752peFQqFw8ODBwre+9a2SzMnSNZs9+uabbxa2bds29fXHHnus8Nvf/nZhBmbRm8v95lzuF8vyOTNXrlyJY8eORXd399SxysrK6O7ujsOHD09rjUKhEA8//HDccccd8eCDD87XqCwhpdiXMJ+ms0c7OjrinXfeiffffz8uXboUv//972PLli1Zjcwit1D3m2UZM+fOnYuJiYloaGi46nhDQ0OcPXt2Wmu8+eabsXfv3ti3b1+0trZGa2tr/PnPf56PcVkiSrEvIyK6u7vj29/+drzyyiuxfv16IUTJTGePLlu2LH7605/G5s2bo7W1NX7wgx94JRPzZrr3m3O9X1y0nwt/++23x+TkZNZjwDVef/31rEdgibvnnnvinnvuyXoMmDLX+8WyPDNTX18fVVVVMTw8fNXx4eHhWLt2bUZTsdTZl5Q7e5Rys1B7sixjZvny5dHW1hYDAwNTxyYnJ2NgYCBuu+22DCdjKbMvKXf2KOVmofZkZg8zXbp0KU6cODF1+eTJk3H8+PFYvXp1bNiwIXp7e6Onpyc2bdoUHR0dsWfPnhgdHY0dO3ZkNTJLgH1JubNHKTdlsSdn9RqoEjh48GAhIq75r6enZ+o6P//5zwsbNmwoLF++vNDR0VH405/+lNW4LBH2JeXOHqXclMOeXLSfzQQALA1l+ZwZAIDpEjMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJO3/AY9tn75SI0zeAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plotDistribution(allEdgesWeights, 20)\n", - "plt.xlim([1E-2, 10])\n", - "plt.yscale(\"log\")" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -2641,7 +2548,7 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 87, "metadata": {}, "outputs": [], "source": [ @@ -2651,7 +2558,7 @@ }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 88, "metadata": {}, "outputs": [], "source": [ @@ -2663,12 +2570,12 @@ }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 89, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXRU15Xo/++9NakklWYkIYEEkhjFPCPcNpjg2cZ2HOy4cew4QyfpjP16xf26+72Xfr/X/eukf91O8rozeDlO49iOp/YcPIABYwNCAgSIGUkgCc1jaazx3t8fpSqpSlUaQCDJ2p+1vIyqbt17qhB19j1nn30UXdd1hBBCCDFlqePdACGEEEKMLwkGhBBCiClOggEhhBBiipNgQAghhJjiJBgQQgghpjgJBoQQQogpToIBIYQQYoqTYEAIIYSY4iQYEEIIIaY4CQaEEEKIKU6CASGEEGKKk2BACCGEmOIkGBBCCCGmOAkGhBBCiClOggEhhBBiipNgQAghhJjiJBgQQgghpjgJBoQQQogpToIBIYQQYoqTYEAIIYSY4iQYEEIIIaY4CQaEEEKIKc443g0Qk0dpZScv7KuloqGHnLRotm/MABj02OJs2zi3VAghxGgouq7r490IMfGVVnbyo+fOouug6aAqwc/7H1MUePrJBRIQCCHEJCLTBGJEXthXGwgEwPd/Tdf7/ut/TNd9xwohhJg8ZJpAjEhFQ0+g0++nDDpO033HCiGEmDxkZECMSE5a9KCpgXBUxXesEEKIyUOCATEi2zdmoCj9uQKqEvyf/zFFgcc2ZYxfQ4UQQoyaJBCKEQtdTfDYpoxAjsDAxxZlSfKgEEJMJhIMCCGEEFOcTBMIIYQQU5wEA0IIIcQUJ8GAEEIIMcVJMCCEEEJMcRIMCCGEEFOcBANCCCHEFCfBgBBCCDHFSTAghBBCTHESDAghhBBTnAQDQgghxBQnwYAQQggxxUkwIIQQQkxxEgwIIYQQU5wEA0IIIcQUJ8GAEEIIMcVJMCCEEEJMcRIMCCGEEFOcBANCCCHEFCfBgBBCCDHFSTAghBBCTHESDAghhBBTnAQDQgghxBQnwYAQQggxxUkwIIQQQkxxEgwIIYQQU5wEA0IIIcQUJ8GAEEIIMcVJMCCEEEJMcRIMCCGEEFOcBANCCCHEFCfBgBBCCDHFSTAghBBCTHESDAghhBBTnAQDQgghxBQnwYAQQggxxUkwIIQQQkxxEgwIIYQQU5wEA0IIIcQUJ8GAEEIIMcVJMCCEEEJMcRIMCCGEEFOcBANCCCHEFCfBgBBCCDHFSTAghBBCTHESDAghhBBTnAQDQgghxBQnwYAQQggxxUkwIIQQQkxxEgwIIYQQU5wEA0IIIcQUJ8GAEEIIMcVJMCCEEEJMcRIMCCGEEFOcBANCCCHEFCfBgBBCCDHFSTAghBBCTHHG8W7ARFVa2ckL+2qpaOghJy2a7RszWJxtG+9mCTEi8vsrhBgNRdd1fbwbMVqRvujG6guwtLKTHz13Fl0HTQdVAUWBp59cIF+oYsKT318hxGhNumAg0hfd9+7K5v/urByTL8CndpznSLkdbcAnoyqwKjeenz4+b4zfkRBjS35/hRCjNelyBl7YVxvo8MH3f03T+fXOcjRND3pc133Hj1ZFQ0/QF6n/fOUNPdfYeiGuv0i/vxXy+yuEiGDSBQPhvuh0FFyaAR0l6PGr/QLMSYtGVUIf1TA4Gjl58iSapo36nELcKOF+f1XF97gQQoQz6YKBSF90cVbTmH0Bbt+YgaIQOJ+qgKqorJ/Rw5tvvslvf/tbzp8/zySbYRFThP/3F3xBq3/K7LFNGdd87tLKTp7acZ4v/ayEp3acp7Sy85rPKYQYf4af/OQnPxnvRoxGeqKFD483owA6/V9037pjJkUX7YMef+rBHFLjLaO6RlqCheU5cTR3uHG6NfJn2njqiznct3Epubm5XLlyhc8++4zy8nISExNJTEy8Du9UiKuTlmBhbprKsVMVRFljWZwdz1MP5rAo69qSB/35OrWtTrqdGnVtTj483szynDjSEkb3b0wIMbFMugRCGLya4LFNGSzKGryawP/4WNN1nYqKCvbs2UNtbS05OTls3ryZjIxrv/MSYixUVFTwhz/8ge9973skJSWNyTklMVGIz69JGQxMFLquc/bsWfbu3UtzczMLFixg06ZNTJs2bbybJqa44uJiXt5ZiGHWFi419I5JrYEv/ayE5k73oMdTbCZe+/Hya2nuDSG1F4SITIKBMaBpGidPnmTfvn10dHSwdOlSbrnlFhISEsa7aWKKevbV3bxUakNRlDGrNfCd357m7JXuQY8vmBHDr/4i/1qbfF1J7QUhhjbpEggnIlVVWbZsGd/97ne5/fbbuXjxIv/+7//O+++/T1dX13g3T0xBn1QYAMZkqW1ApNuGSXA7EW5J8jV/HkJ8jkg54jFkNBpZu3Yty5cvp7CwkIMHD1JSUsK6desoKCggKipqvJsoxtBEHnZu7jWN2VJbv6YO16gen0ik9oIQQ5Ng4Dowm83cfPPNrF69mgMHDnDo0CGKi4u56aabWLNmDSaTabybKK5R6LBza5edoxX2CTHs7PV6idbtOJkWdNN+rbUGctKiaemyo4ckEE6G+gWZiQaaO50MHAydLG0X4kaQaYLryGq18oUvfIHvf//7LFq0iD179vDLX/6S4uJivF6vrNmexCbysHN7ezvZallQrQxfzQH9mmoNbN+Y4XuT16F+wfXk9XpJ6T2JghJUO2QytF2IG0VGBm4Am83G3Xffzfr16/nkk0/YuXMn7+0v5TP7ImDi3VmK4U3kYeeWlhbilXb+8ZGZvFncQUVDD/GmXhK7jjEzfv5Vn3dxto0CWynnujNQYqZf1+W7Y+nAgQNo7RX8j/s38MEp13VfeizEZCTBwA2UlJTEAw88QEFBAX/9+7NouoZ/cEbTfX96YV+trNmeBHLSomntGrzmfiIMO7e2tvryVxaks27hdACcTie//OUB9u3bx9atW6/qvJqmYXbUclumxje/eddYNvm6aWxsZP/+/RQUFLBp5Ww2rRzvFgkxMck0wThIS0vDocYT+vFPlDtLMTx/yV//KPxEGnZuaWkhKSkJRelPILRYLNxyyy0cP36choaGqzpvVVUVuq6Tm5s7Vk29rjRN45133iEhIYGNGzeOd3OEmNAkGBgnspnM5LY428bTTy5g+ewYzDiYm6rw868tmBDDzq2trSQnJw96fOXKlSQlJbF79+6rOm9paSkAS5Ysuab23SiFhYXU1NSwdetWjEYZBBViKBIMjJNwmyFNlDtLMTKLs23865P5fCn7AptSL02IQAD6RwZCGQwGNm/eTFlZGRUVFaM+b2VlJQaDYUwrbF6vJNqWlhb27t3L2rVrmTlz5picU4jPMwkGxon/znJVbjwpNhOrcuMnzJ2lGJ158+ZRVlaGx+MZ76bgdrux2+1hRwYAFixYwIwZM9i1a9eod91sb28f0025/Mszj5Tbae50c6Tczo+eO3vNAYGu67zzzjvYbDZuvfXWMWqtEJ9vEgyMo8XZNn76+Dxe+/Fyfvr4PAkEJql58+bhdru5dOnSeDeFtrY2gIjBgKIobNmyhfr6+sCw/0g0NTXh9XrJzs4ek3bC9VueWVxcTFVVFffeey9ms3kMWnrjybJjcaNJMCDENZo2bRqJiYmcO3duXNtRWtnJP7xezUHPJn6xuzNiB5KVlcX8+fPZs2fPiEczTp48CVx7voCmaVRXV/Pxxx9TWtE05ssz29vb2b17NytXrmT27NnX1Nbxcr1GTIQYimTVCHGNFEVh3rx5nDp1Cl3Xg7L4bxR/B6JpOjpRHL/czY+eOxuxbsXmzZv51a9+RVFREQUFBcOev7y8HEVRRjT/HlqmeVtBChZnHRcvXuTixYv09vZitVqZFruO6g49qGzytSTR6rrOu+++i9VqZcuWLVd1jokg3IiJLDsW15sEA0KMgXnz5gWy12fMmHHDr+/vQPwd63AdSEpKCitXruTTTz9l+fLlWK3WsOf1d+wnqucTb8rmVFXXkEWxQss0t3S2U1zWxjLDYeamW1i5ciVz584lMzOT09Xd/ODZM/h2OlKuOYm2pKSEiooK/vzP/xyLxXJV55gIyidwQSvx+SXTBEKMgaysLKxWK+fPnx+X619NRcRbbrkFr9fLp59+Gvb5gcPVTqJocicMO1z9/N4raJoeaIsvOFFh5ma+9a1vsXnzZmbOnImqqizKimVD3ClmJ7ivOYm2o6ODjz76iGXLlpGXlzfq108Uuq4To3TiL/nsJ8uOxfUmwYAQY0BVVebOnTtuwcC0GC+j7UBiY2PZsGEDRUVFtLe3D3o+dLhaRxkywa++vp5Tl1oG7ZaoA9Ut7kHHNzU1Yey5wt9uTb+mJFpd13nvvfcwmUzcdttto379RFJYWEhydwmqosqyY3FDSTAgxBiZN28eTU1NtLa23tDrNjU1Edt6OGgjHn9gMFwHsn79eqxWK3v27Bn03EhHG3Rd59ChQzz77LMkmHpHXEzrwoULmEwmZs2aNWQbh1NaWsrFixe55557Ik53TAYVFRXs2rWLOzcs5Odfk2XH4saSnAEhxkhubi4Gg4Hz58+zfv3663ot/1x+eUM3RmczC202/vXeObz8WRPlDd3Q3cC9y6zDdiBms5mNGzfy3nvvsX79eqZPnx54bnaqlZZOV9CdvoLO7NT+Drezs5O33nqLiooK1q1bxz1zVvPXOy707W44dB7AxYsXycnJuabqgF1dXbz//vssWrSIefMmb3Jda2srr732Grm5uWzevBlVVSVZUNxQMjIgxBgxm83k5ORc96mCgXP5LZ0eGlzxfNI6H6PRxE8fn8frP17B19ZBY1nxiJYOLl++nJSUlEGFiBYlNOIb5O/fshh0ZhnL0XWds2fP8utf/5rGxka2b9/O7bffzrKcBJ5+cgHplg5iTd6Id7U9PT1UV1czd+7coPc12rX1O3fuRFVV7rzzzpF8dBOSy+XilVdeITo6mgcffBBVla9lcePJb50QY2jevHlUVVXR0zPyzO/RdoKhc/n+7ZIGzuWvXr2anp4eTp8+Pez1VVXlC1/4ApcuXaK8vByAhoYGKks/4b7ZdSTSQlwUrMqN5we3RtFUfoTf/va3vPrqq2RnZ/Ptb387aPOixdk27p7VwGPzqyPmAZSVlaHrOnPmzAl8BqNdW3/mzBnOnj3LXXfdRXT05Eyu03WdN998k/b2dh555JFJPc0hJjcJBoQYQ3PnzkXXdS5cuDCi46+mExzJXH5KSgq5ubkUFxcPul64wGPu3LlkZWWxa9cuPB4Pb7/9NsnJyaRZHSw1HuGV/7aEnz4+j9XzUomOjqahoYGFCxeybdu2sB1xbGwsnZ2R38PFixeZPn06NpsNl8vFr949F7QKYbhqhD09PezcuZP58+ezcOHCiNeZ6Pbv38+5c+d48MEHx3TPByFGS4IBIcaQzWYjMzNzxFMFV1OSd2ayiZGsHFi9ejU1NTXU1NQAQwceiqJw22230djYyBtvvEF9fT1bt26lrq4Oi8WC2Wzm008/5Xe/+x3x8fEsX76cM2fORBx5iI2NpaurK/DzwCDk2785xfMn4ninbhGP/+wT/vafn6GioXfQKoShlkZ+8MEHeL1e7rrrrnEp8jQWzp07x759+9i4ceOkzncQnw+SQCjEGJs3bx6ffvopHo9n2OS48zVdYe/yz9d289SO84Eqfts3ZrA424bH4yGm9TAK+YCvep+Cr+phaJLenDlzSEhIoKioiAceeGDYynaZmZnk5eVx9uxZ1q1bx/Tp0+ns7GT69Ok8//zzVFZWctNNN7Fx40ZUVcXr9fLmm28SHR1NTk5O0LX9wYCu65yq6goqRNTc6QLiwKPQ3WmgmlUkmR20uQn6LCKtQjh//jylpaXcf//92GyTM8O+sbGRN998kwULFnDzzTePd3OEkJEBIcba/Pnzcbvdw24TXFrZib3XG/Y5e48n7B38q6++irHnCg/kNbI6L4Foo4fMmN6wSXqqqrJ69WpOnz5Nd3f3sNMLmqZxqUXnhGcV/1Eczw9+ewK7nkBjYyNtbW08/vjjbN68GYPBgKIo3HfffcyePZtXXnmFurq6oPPGxsbi8XhwOp38YV8N2qAcByXwZ0VRmTYtBaUvQREir613OBz86U9/Ii8v75r3SRgvvb29vPzyyyQkJHD//fdP2pEN8fkiIwNCjIGB9fhnp1mJjs3i/PnzQdnyoV7YV4ui9K3CC/D9oKAMuoP/5ZunmGG/SEpKCt9+7B5UVWXXrl2cPn2aRVkbw15j+fLl7N27l6NHj5KTlkZrlz3i3fer7x9mT1MeoKA7FU7VuoB1TDM5+PHd+cyalRJ0boPBwLZt29ixYwcvvvgiX/va1wJbHMfGxgJw7NgxSis0dD3y7oGaDs0dbp5+cgH/Z8dBepR4FmYl8timDBZl2YI+2xilk1RnFF+7555J2YlqmsZ//dd/4XA4eOyxxybtrori80dGBoS4RqFz8UfLO/ikfSHPHbUOuUKgoqEnJBAA/x1z6MOaDlUtbiwWC08++WRg+VlaWhp2ux2HwxG2bVarlcWLF3PkyBEevTkdRfHVCoDgu+/W1lZeK2rD92z/XTsoNDms/M2LFWHfg9ls5tFHH8VisfDCCy/Q3d2N1+vlypUrAOzatQuz3hPmHfXzBySLs21sSDjPD9Z3BVYhhH62lR1mjrpWUdUe/qtrom/9u3v3bioqKnjooYcCgZMQE4GMDAhxjcLNxQO0e23Q6aals50j5Xa+e4uJBZlWLBYLFouFGUlGWrvcIUP3kTpNjRg62b59e9Dys7S0NMA3B52VlRX2lWvWrKGkpARTbw1PP7mA/3jnLJcaHSzNTeUrmzLJnxnLjh076NFzByXxBa6uwf948SImoxKUwwAQExPD9u3befbZZ/nnX73Mhd4ZtLutxLCKdHMLHZ64kLP53+PwmxMNXkapBh4PLcoTuklSa5edoxX2iDs33mgnT57k0KFD3H777YNyLIQYbxIMCHGNws3FM6BT9dX01/jDvlqWGo/0H6EnoOtr+35SGdhJBvN10bMMZfzfHVU4phVQ266RkxbNozeno6oqDQ0NEYOB9PR0srKyKCoq4oknFvK9W2P43WuH0PXb+IeXy0gwO7C12zHpPTgwh7m+r2X2Xl8Bo+ZOO0VldhZkxvDtO7NYkGnl4sWLtHnjKezO72utggszbS7/1ELwOY14SbBZyUmLDkwHgG876IGFj0azAdNE3vq3traWd999l6VLl7J27drhXyDEDSbBgJjUBs4nh96x3ig5adGD5uIHU1FtGdy19Tu89Gk9lc1OMhOM3BPfw2dn2ujGhlex4NUHd8QKGssMRSxatJgXTkSjVzsAJdApr4ibT0NDw5BtXLNmDa+//joNDQ1U2w0c965Fqej0zdejoLAWK92jet9na3xbEK+LOUGUq55L6nqCkwP9AU7oe1JQ8fCP98cMmVMBvs+2pbM9aMQi0iqDq9m58Ubo6urilVdeIS0tjXsmaa6D+PyTYEBMWmM9LDxcYBHp+e0bMzhaYUeFiAGBAqTGm/nvL10KtNfe4+JMrZGlhjLilXYaU+/lXJ1n0LRBnNpFoqGDvWUq4dJ8jnVkMa3qEvcM8d7mz5+PzWajqKiIj2pnojMwcVFFR8NBDOFGBYaiA6e6s1lprKPVaQkzzaAQGhCoCqRY3Bw8eHDYYOCmWS6Ky/S+c6hDTivMCrOXwnhv/ev1enn11VfRNI2HH374mvZhEOJ6kgRCMWldTcGeSIarBDjU84uzbTz95AJW5sSh4GXwvL/ue6SvfQPbq+k6p7yrOOTZRGePp++Vwa/v0OJp88bR2K1GzCg40hAfNLweymAwsGLFCk6cOMHFmk4G/9NX+1qphXn1UBS68OUExCqdYV6v9R3lb5uOosCX/yyNysrKQKJhOPX19Zz87B2WGYrIS9aH3MFP13VyjBWAPqG2/t25cye1tbVs27Zt0tZEEFODBANi0hrLYeHhAovhnl+cbeNnT8zHatAINyxuwsWlurawuQVujDiJ4kq7HmF1gU41c4k3RsrKV+jUYmhpaYn4/srLyzl79ixer5cEUy+hnbaCTiwdIWsZhpz3CFAVA/XJd9Opx/W1139uDQWYZzjDslkxWHCQamrn519bwF03LSQpKYmDBw8Gt6MvZ6C7u5uXX34Zo9FIRqyL//jOSl778fKIex0cOnSIxvJivrfRMmG2/j1y5AjHjh3j7rvvZubMmePSBiFGSsasxKQVfq5eJ97US29v76g2fRkusIj0/JmqNkpLS8nIyCAqKoo4Yw89XhvBcbZGLHbQwEEyg2Nwfxc8eEjd/3iHN4Z8QwlNrAtzjI6GwvZfnGHujDg2L5vOwXPtVDT0kJloYKZ+ga6608yYMYOY6fn0XvHP6w/cZlhhS46TS5cOU+pdgSdCImG49nl1ONfgASyB5404iVe7yFJ8ezRcuXIFnWg8Hi8ejxdVVVm/fj1/+tOfaG1tJSkpqf8Kus5rr72G0+nE6XRyxx13DLke/+LFi+zatYsNGzbwhc3LeSDikUMby/yTyspK3n//fVavXs3y5cuvskVC3DiGn/zkJz8Z70YIcTXSEy18eLw50K35h4dzvEc5UbQft9tNWloaJpNp2HMdLeugrs0ZdC+sKpA/08aWZSkcOttMvd1NcEeooXs97DrdyweFFZQc2o1Na6ZBz+w7Sgms2p9vKCXZZKfOm9n32khz8+ECAp1kUxczKcNmUWj0JA041jcSoWHAi4nGDg+FF9qpaXXQ49JosLu42BHH5pXZzF28hmcOKTh0M/0BicLcDCs3p9XQermEGKObK9osvGHvEwZ+OkrIz2rQ42lRvSxSinDoFo5719GtReHFRC9R7DrRyoqcOBbNmcGxY8fo7e0N5A4UFRXR0dFBXV0d06dPR1EU7r///ojb+jY2NvLiiy+Sm5vLfffdx6mqLv7t7cs881E1R8s6SE+0kJZgifBZ9/NPA9W2Oul2atS1OfnweDPLc+JG9PqB7HY7zz//PBkZGbIlsZg0JBgQk1ZagoXlOXE0d7hxujXyZ9r4my/mcP+ty/F6vRQVFXH48GFcLhfp6elDBgWhgQVoKAo89cUczHovRw/sptqZiqooQV21vxN2YKVBn8mKGTox3Wdx6FFoGIhX7Cwyn0HTNS55cnFhQsdA5GBgIF9nrwDzlJNMT44mLcaNuacSpx4Fqgl0L1rQ+cL9X6estotdp7vwYiC049Y664jrOOr7HNLTafEm0eEKbaOOERe56jncuhkXUQPOMXhaxOXR+VJBOrsvJ+BUYkIKGem0dLi5fUUqHo+HoqIiVq5cidlsZv/+/bS1tVFQUMCpU6e44447mD59ethPp6enh+eff56YmBgeffRRztb0XnWH/m9vX6a21RkY/fH/HTd3uNmyLGWolwK+YOLf3r7Mbz+q5oPCMmIMLv7iiYexWEYXSAgxXiQYEJNaWoKFLctS2LZhOluWpZAa79thLzc3lxUrVgSCgsLCQpxOJ2lpaWGHnEMDi8w4L1nOw2TaPOzatYsYo5vHt27gSqsHe8/AjP/gTq69RyPXUs3chC7WZ7lJ1qpo79U57l1LL9HogTvuoYIB/7iCRiKtzDeUkmjooL4niqP2WdTo2Zhx8WfTW7jcGYuX0CAnTOdMVEjQ0P+choFsYxXf+ta3uPnmm0mOVfjkbBf9XaJv9CGGTlr0NNyYI5zLT2dWksrDt87ltSPdeAaNMih09bp45M8ySU1NpbCwEFVVUVWV4uJi0tLS6O3txWw2R9yV0Ov18sc//pGOjg6+8pWv0N3dzU//q4yWbj0QeIymQ//th1X0uILzKHTA6dbYtiF8MOI3cFShx6nR5TFxxZXO2nnJox5VEGK8SM6A+NwIN+e7ZcsWNmzYwKFDhygqKqKoqIjVq1dTUFBATExM0OsXZ9uCitN88EE7n376KVarlW9+85tU2w1cqKtC1/t3EAimYvdE48KFy+Wira0NgMveVf4CwH3HjWxUwISbWYYyyrzz6fLGB91du7Dwfq2/gwu3ln+gSMWMfM/FKp1s2rSJ1NRUAByN51lmOMtlbx5OQwIGbxedxNNJPJFrBwRf6wcP5mOz+QIIN6FLDjXU3haKi4tZvXo1K1asoKioiOLiYkwmE4mJiZw7d45HHnkk7BC72+3m9ddfp6qqiszMTJ555hkcDgeXPZvQAyMWfVcaQUJpS0sLRlczEB/0vka6LHE0VRKFmKgkGBCfC8PVHNi8eTPr16+nsLCQw4cPU1xczKpVqygoKAhsqjNQd3c35eXlmEwment7qa6u5vmjJjRNJ1LJXgWd1BgNCxacTmf/uQhNKBwJDQu9lHjXBc4eerV+/nX4kRL+wr2+/7mc+F4KCu4EoL29neLiYuIVD0uNR1i8eDH/WeKvPxA8ChL+nAoGXOzYc4XLTU48GAcsl+yf9rgpy8HOnTvp6OhgxYoVHD58GKvVis1mo7q6mhkzZgTyCHp6eqiurqaqqoqqqipqamrQdR2j0YjFYmH9+vU4Lekc+7gTV8gukKoC0+LNYbeDBt8qi9dff535MWk0uRN8n7w+umWJZXXht6Ee72JHQoyGBAPic2G4UrT9owaJZKdvZXFCE8eOHQoKCvzrwHt7e3nhhRfo7e3lG9/4BgcOHOCNN96g1HsrOpGGfX1DzLnmS0SpUYFgQFF8naMv036kBX1CO9rhXufvnMNX+1PQ+moIhFvFoFPrTAws6Xv//fexWCx4PL7Swy1uG53EhT1v+OvpeDFxtKKj73q+DtaIB6NBId7YTTYXmTs9i6T8LezatYvS0lIURcFoNOJ2u+nu7mb58uW89957VFVV0dzcjF1P4Ioyj259PhZvOrfO0fnO9rtQVTUQCA5etqmh6wrna3yVFYOCxK/Op6vuNLt27SI3N5cvfvGLfLHBHTSyNLBMcji9vb3s27cPejQghasZVRBiopBgQIyrsVrONdTSwMGjBm6OK1b++c+/TlftKQoLCzly5AgrVqxg1apVvPXWW9jtdp544gliY2PRNF9HH6134Az50vcVuZbx5AMAACAASURBVNFJoIVstQylsx37wGd1HRcjX+Lo47uDdhDNyAMI/3GhHbRGnNpJh2brCwgGd+rNvSaee+45Fi5cyIULF7jnnnt47733UBSFg9VRhOc/V6SRh+ApEQ9GNA0eXBXP2cNNlJW5+OEPf8iVK1c4e/YsVquVKx0GLnvz6MbG0X29mEwxuFhBcpyRqlZfsSJNh15SeKtc4ZbqbhZn2wKBYGiNhiijjtnbSaceFxjN8QeJ//racWb37KWgoIDNmzejqiqLs6NGNKzv9Xo5cuQI+/btQ9M07l95E78/4h//GH7zJSEmIkUfqmyZENdRaCft/xK9mnLCT+04T3GZPaRMjs6y7GjMJjNHyoPrEagKrMqN56ePz8PhcHD48GEKCwtxOBwYDAa2bduGy+Xivffew+l0YjQaaTbmcrxrNgM7XgVYZigkNaoXp9PJnXfeydKlS3n55ZdpaWkhIyOD354e+Jpwwt9h9xttLfvgjtqICys99BDbt2QwOFhIMbSxSCkCwGKxMGvxLbxa2EoPtr5kweGmOIbLWeh/F8tmx5BY8waappGcnBwolGTXEzjuXRuSWxGZqsC8jBhsViPF5fYwxZogxujB7fEMWPnQz4KDn30pgSVLlgx7LT9d17l48SIfffQRLS0trFixgk2bNnHmzBle3lkIM2+lusU9olEFISYaGRkQ42Ysd5krmJ9AUZl90OOOmmNUGBeEHTU4V92O3W4nPj6egoICKioqqKmpwWAw8Mc//jFwbH5+PtmLb+FvXrxEaHW+/KiLfOfhu5k9ezbPPfccp06dYvXq1eTn57Nz507mrb4N9cxFNH2oOf3wc+/+LP7gY0YSJAy8Y9fxYKGTgSsoNHyftG/+Psd4Cfqm2juVZJ4pVNADxZGGykcYrh3BdKDkUheJrGCWoQxaWkhNTeXuu+/mX95vRb/iYKS5FZru2yhJVfwjAoNHRGKUTswxZq50+99vf0vmzYwfVSDQ2NjIRx99RHl5ObNmzeKhhx4iPT0dXdc5fPgwBYsyeOihRSM+nxATjQQDYtxEGtq/WNs56nMdPNeOogQPFSuKgiMmB4O9CYWUoMQ/BR2jq4Wf//znZGRk4HA4sNvtLFmyhBMnTgRer+s6HR0dPP36CTQ9ltDh70rHNOrr68nLy2Pjxo289NJLXLp0iaysLNq1eP56RxmaPrAjD19UKHyHqmLEiZWeQP1/BQ1t0N394POpePqOG9heDRt2jHjoxkYMncwylGGjEy++u/PSrvmBLYj7XzcwIBgqIXFge8Id4ztHuzKN495kVpqP8N+/9jXMZjNVTXWMLsmyrxqEHtrOvkJPisrff2U9Xq+Xv/rPC+h9AZDvOYVv3JEzoqt0d3ezb98+jh49SmJiIg8//DDz5s0LLHe8cOECra2tPPDA1dY9vDYTYddO8fkgwYAYN+HKCSvo0NPAhx9+yK233jqi6oHgCyxCh4p1HWq6orBYotCdGgM7NFVV+PvH1qF2Z7Jr1y66u31JZiUlJaiqyvz583E4HFRWVlJdXU2LJ49wnVUnCbz5cRE5OTnk5eWRmZnJvn37eOKJJ6hmbt/mQaEd1kBDJf9p2OhgqfEI4OusfasLhk/mGxwwAKg4sbLSuBe7nsBlbx6nvcuJ8XaSojZQpi0MCQQGnt8bOMfw/KMa4dvn/3uqcM/mypUrlJeX9/39JIS5djiRgg0FpW/65yubMlmUZUPTNO7OusKBqigcajz5s1N4/NbMYYfw/cWQ9u/fD8CWLVtYs2YNBoMh6LjDhw+TmZnJjBkzRtDusTXWu3aKqU2KDolxE66csKoqbF9r4fSxg5w8eZK0tDQSEhKGPVe4csKgo+ng8hK4kzPiIoZOpifHsvtUB8UX29B6molSHL7njUa8Xi/Nzc309PSQl5fH3XffzcmqXlp7w3WUoJtsdF/6jBUrVpCQkMCBAwfIysrinVIPbs0QcnSkzjb0Z98Q/nxDKU6iOO9dxGU9L8LrQzvH8O0EnTjasSo9gSJI/uqJrXrqkK/rfy7SMcGtXzAjluYO15Dv2YuBtlNvc6qqi0o9N+S4yCMQCjoGvOioQc+rCqzOjednj88nNd6Cw+Hgtddeo77yHOlqLYsS2/j7v7h7yEJAuq5z7tw5XnnlFc6cOcOyZct45JFHyMnJGVTzoL6+nt27d3PbbbcFajQM5K9KONrSyCN1rVUThRhIggExbsKVE37qwRw2r84jPz+fy5cvs3//frq7u5k1a9agu7KBX7ZGo0JLp9s3VRB01MDOQmF6goEWh4W2Hp1el0aH20iDPoNEpYUoxUFcXBzTp0/HZrPhdrupq6vjxIkT6I4W6vUZhOvUurwWGnosdDRVsuXm1ZSVlVFVVUU702jrJeQ1ke9qAWy0AwpxtDPfUAoQ6LgZsurfyObtTbho1VNwEsXgIkgjWcI4HN/YgsHbTZd76CqF0XQxw1jLOU9+38qJ8Esfw02J+K4ysACS73P98f2zSEuMoqWlheeff57m5ma2bdtGaWkpDoeD5ORk0tLSwraovr6eN954gwMHDpCZmckjjzzCsmXLIo5Offzxx/T09HDPPfcMChTGcq+DcFwuF//xpwqc3uDrjrRqohChZJpAjKvQqn9+ycnJPPHEExQVFfHxxx9z8eJF7rvvPnJyfHO94ZYLgi/DvKnDhb3Hgzu4/gyaDnV2CL4DVdHRuOzNY6nxCO3t7bjdbuLi4ny7/MXE4Ha7aW1tpbzSToceXKXO3xm16sm8cga8L77P6qVL2blzJ3nToqlgVmC+OjhMCZ8nYMTDSuPewM8nPKHVC0Pp+OoIBN8lhzsOFDrxj7IMP9UQ/NxwfK2MpgsDHuq7hx/y92JE07QIRZkiBSiBcaSgn60mBaO7jb974SzZKWZiWg8zMx6+/vWvk5ycjMFgICUlhY8//pj58+djMpkC8+3l9d3Eql0kdZeQO83Io48+ypw5c4Zse3d3N6WlpWzcuHFQkArwh301Y5YcG6q6upq33noLsze3Lxemn9Q3EFdLggExYSmKwtq1a5k7dy7vvPMOf/jDH1i+fDm33XZb2JUICjq9Xa08MKOadyumUe8NLZajoek6vo2CBlLRrKl8/9vfx2azYTSG/2exsqKd//afF9B1fxXCgZ2nio7OB+cNNJXvRFEUnE3nyVN7uKjlE3oHG+Ed93WM/e9/JNUL9VEt/YvUhnArFwa+njCPD+QrrtRLTN/RQwUXvud7icauJ+AdtsTx4NcOOpcbFBLQXQqna10orGDbtjySk5MBMBgM5ObmBipQxs9c6itU1FdRsgUL1cp6Hr9rHnNmxw/bguLiYlRVZdGiRdTU1NDc3ExLS0vg/ydr89GuojTyUDweD/v27ePgwYNkZmbyVw8t4X+9Xjtoaa7UNxBXQ4IBMeElJibyla98haNHj7Jr1y7Kysq44PizQSsRdBQaOhVUVWVTnsYrZ/pS8/oCBYBYOvsq6gUvNTO5WqivjyUxMTFiO5blJPDzry3ghX21fWvbB3dKnSRg1xOIpx2AZi2NwXeyvr0OQ9f8K+jE0BlI7uvB1pc5MHSnOvpSxOGz/MM/pkV4LvQ8+oANk0Y67UBfbYHh8xCGbu/AqQMAFUWBVw82s3KOLxgwGo1ERUWxatUqPv30UypjzXi10CAJXtpfz9KQYEDTNNrb2wOdfVNTEydOnMBgMPCLX/wicJzNZiMlJYWsrCyy3BbKmoLDrmu5a6+vr+ett96iqamJTZs2sWHDBlRV5em4+FFVTRQiEik6JCYVu93Ou+++yxvnE2kPs1xwVZ4vgQwGL7u6aZaTvXv3BhW38S81u292Le1VJ1i+fDl33HFH2J0NB3pqx/mwdQ1AJ5HmwAqAg55NYYveGHChBer296/5z1NPU6blBz0+ss51LAoXhetkw71+YK2FgdMfo+vQfcsfB26pPLLXBV8r8rWTbSZe//FySis7+X/+8wAOQwLZyRZMDfs57V0e9u8lMVrlf95ppKWlJdD5t7a24vX65pyMRiPR0dF0dHSwatUqsrKySE5OJjk5OWi74rcPN/Dz9yrpX+4Iqgo//9qCUXXWmqZx4MAB9u3bR0pKCg888ADp6ekjfr0QIyXBgJh0dF3nzY+P8e+fuAN3lYoC6Br35zTwncfuHjTU73A4ePbZZwHoNaVx6Ep0YK39tvVJbLtjLcePH+eDDz7AZrPx4IMPkpmZGbENpZWdfP/Zs2GfM+LERgfdfXf2HsyE60znqKep1zIDNQSi6MaFNWyVwP6RBBhdp9t/veGH7kdOwUsCrbSTNEy+QqRrDxdARB7tiKaL6UnRVLe6iaETBxZ6sRH6GadFu/i7Ly/lR78/N2AUoD+3oYfYQa/xB3JxcXEkJyeTkpIS9P+4uDieeeYZ4uLiePTRR8O2fOBeCQO/XX90bzb3rQmfvBhOS0sLb731FjU1NRQUFLBx48aIU1hCXCsJBsSkdfhMPf/+zjkau1XSbToPrIzj1KE/kZ2dzcMPPxy4u9c0jZdeeomamhq+8Y1vkJCQwL59+/j0008D58rJyWHr1q243W7eeOMN6uvrueWWW7jpppvCbqOr6zqP/vQA9d0mQjvu4CS3yHfXCYZO7N7YAaMAQ3WQ+oAOLNIxwxntSMHQ51puKIx4hx3+mqHXvbqAwIiTZeYTlLtm040NL4YwARTYaMNmNVHbG7pSIVKtB4Unb07k4VuyI44MXb58mR07drB9+3Zyc3PDHvPUjvNDlr8ejq7rFBcXs2vXLuLi4rj//vuZOXPmsK8T4lrI0kIxac2YFssDG7JZmtJBR9kntNZfYt26dZw6dYpLly6xYMECjEZjYGe8L3/5y2RkZKAoCrNnz8ZqtVJWVoaqqjidTg4fPkx6ejq33XYbuq7zySefcPnyZWbPnk1UVH+HV3q5g7/9/VHqOvS+Ye6Bd7v989Y+kbPinbq/QuDAYyPN/Su4AyWFr7YjVyL8efC1RqJen4GZ3jAjH6HXHGplwFDtCb+0UMNArTcDR1+dhMgjEwpdHgMaoUsDw13XN5RvMlm4Y2Xku/cPPvgAVVW57bbbArUrQj3zUTXdTi3osZEu+bPb7bz22msUFxezYsUKtm3bRlJS0pCvEWIsSDAgJjVFUUhLS2Pp0qU0NTVx9OhRsrKyaGho4Pz582iaxt69e7n99ttZvHhx0GtnzJhBSUkJDocDr9dLeno6RUVFtLS0cOuttzJ37lyOHz9OYWEhcXFxpKWlUVrZyQ+fO0trr9LXyQxOQhvZsj1/auBoVwJc6x39UPkHQ49MhOtEPUFbOg+92iByTsJI3lO4zzh4eWHo5xtHOy4sIQHbwPMNvu5QHXZrays7d+5k8+bNZGREztgPVwBLVSB/pi1iMSBd1zl58iR//OMfcTqdbNu2jbVr14ZdtijE9SDBgPhcMJvN5OfnM23aNI4fP46u6/T09HD+/HkWLlwY8U5OURTKy8tJSkqioaGBnJwcqqqqOHbsGHl5eWzevJnW1lY++eQTWltbeaGwp68SYeidPwN+Hm69vq+bsOAMO7wd/jVDGc1ywKGmCoYamYh0/MA/DzeqMHgFwPDvL9wxkR7rXwGh4Kve2KRP7yvNHE5we4frsPft20dbWxtbt24dspP2V9b0l6L2L/l76sEcUuMHFxzq7u7mzTff5LPPPiM/P58vf/nLYSsaCnE9jSaNV4gJLz8/n7/8y79k1qxZuN2+QkRVVVW0traGPX7ZsmUoikJHRwd33nknly9fJjExkeTkZF566SV2797NPffcw4MPPsiZM2eobvUw/D+b/kS14Mf6WXDgxHpV7zHYcKsIwj0+miRCf9UAjfDnHWoaYCijuX7odcM/ZsCDghf/SoVT3hV9R4Vrt/999WVs9HXYkdboOxwOSkpKWLly5bD7ZSzOtvGPj2STSDNmHCzMMEVcRXDu3Dl+9atfUVVVxbZt23jggQewWsfi90KI0ZFgQHzumM1murq6iIqKwmq10t3dzTPPPENdXd2gY6OiosjLy8PtdhMbG8tXv/pVuru7aWpqYu3atZw8eZLf/OY31NbW4vV6iTa4CN85DfVzKGVAIHAtw/7DjUBEupMfzT97pe9K/jvh8cg3Hm5kwNcmL8a+1SUGvJhwY+nLZ+g/ZqC5060szY7GjIOcJO+Qy/5KSkrwer2sXr16RC1OMvo2mCow7uWHW+IGndfhcPDWW2/xyiuvYErOoz75Lv7nuw6e2nGe0srR79opxLWSYEBMOqWVnTy14zxf+lnJoC9PXdd59913aWho4LHHHuN73/seCxcuxOVy8eyzz3L27ODlgOvXrwfg4MGDzJgxg29+85ukpaVRVFTE6tWr0XWdwsJCMjMzsVjCZc6H66wi3UkP9bpQQ73+as49kiqIkV7jP2e4Of+xEmnkYTgDP+9IiZuD/45au7w8/fXF/NVNvczu2cuspPDX0jSNw4cPs2jRImy2kdUIqKurC9QdCF2wVVFRwa9//WvOnTvH4g338l5lJscvd9Pc6eZIuZ0fPXdWAgJxw8miVTGpDLdt66FDhzh58iQPPvhgIMnroYceYsGCBfz+v/bydy9V4DC2YzKZURSFeRkxbL9lOtHR0dTU1NDW1kZiYiLbt29nz549HDhwAIDp06dTU1NDq2cew3dQGkY0PEPsJzC6pLlIz/mHy0eS8DfwfCOZ3490jpG270byBwFDrWgYnB/grwZ48803s+/oJb73mxK6tFhy0qLZvjEjsA3wuXPnsNvtrFu3bsQtqq+vJzU1lVNVnfx8VwcNb5QwKzWKudYr1J47yOzZs9m6dSv/+FYdut5xXfYwEGI0JBgQE1ZoBcHtGzPC7kng//L8xgYDu3fvZsOGDRA3i6d2nA+8tmB+CiWeNWjo4FHo9XgAheJyXzDx2NLVXC79hCNHjrBlyxZUVSU9PR1FUVAUhZ6eHl/SmCdSRzoweU3pm2MfaSd9tSLd5Y/kjv1aA4Hr4WqvN9oRFt/W1ncs8s39lzV6KHIsR+vVAfegALOwsJDs7GymTx/5ToB1dXV0xuZT4rVBrQeA5k4XR7Hx+IqNLMq2sXv3bk6Wp6LpwUmF17qHgRBXQ4oOiQkpdATAn+AVG2XE3uMZdHyM0cN6416ys7NZctO9/NXvzwdeqyjBleBCKQosmWklsfYNeoyp6JmbuFDbicHRyOa5Cg9sXs7vfvc7vF4vReqd9LginUnHiIulpuNUuHNoI4Xr26GOZlTgehsqQBpP4VdCpJi7yVHP4ZhWwNlaF25v8C+IokBclBFV1aC7gSe3ZHHPzcFLUyPp7e3l7376DCXe9YRbTplIM8tMR8nIyKCwYyGX2o1XXaBIiLEiwYCYkCJVcYs2K/S49JBNijQSaWGp8QiqqnJOLaDOEYse8iU8VMdkxsFi00mOuVfhyzH33XUrQIHtJGZHHWazmaLuxbSRTKR0GyWQutY7xHbBkYxk3X1oSd+J1AGPtOzx1T53Le0JFmc10NnrCawpGO48BlUJjBRE4h/JulDTQVevI2Ixpnirwst/tZioqKiIQe9o9zAQ4lrJNIGYkCoaegbtSqjp4HA60AMV5fo3+JllKPMdo2k0u0whgQAM/YWvEUMnFe7ZIZ2Dgo5OYecC4oy5OBwWjHT1PRe+I9ZRcRGFK6gYT2ji3nBz20MdF7q2fyIZLo9hoGvt9If7LIdKltTRNA1FUYYcMernOy7SPL7X62Xv0Uv8v++1oOv+EDJyVcZ5mXGBipaLs208/eQC2XlQjDsJBsSEUFrZya8/qKKszjdXajaoYb7KNeLVLm5boHKmczrVLW7ijE6Sukp45O4CXC4XhYWFxNo7adMtYQKCgfo7CwW4I9/Ih5Up0OUNOc53r9/m8e9B4LvbN+LAE6jJH66jD239wM5pqI5wtNn+4V4/Fga2dyxHNoZ6fqTv2x+yeQcseVSCnhuu9oHT6UBjcAGgSAbO4+u6TkNDAxUVFZSXl1NVVcVRxzK0oBGjyJ9BaC2Dxdk2mRIQ406mCcS4K63s5Ie/OztoJAD6uyNV8X0JrzIfIUZrRlEUUlNTaWhoYMuWLRQUFADgdrt5eWchvz/iHx0YuuOJw06u4SzxSjslWgF2LW6I1wS/tr+FIzk23JK8iXZnH+pq7t6v9r2NZoohdLnjwNcPXF4YXpKpG93dE2a6x3feKBM43INXH2TFOVkbe5qWlhY8nuC8lUhbVYfatiGNb9+RPexxQtxoMjIgxt0L+2rDBgKgYzFqmI0GspJNPLYxg1VzV3P8+HH27NlDQ0MDAMXFxVitVpYsWYLJZOKxrX/G3Dn1/Oq989R1qn0b/ISvBWDATbzSDvimGEZmNHfMww31T1RXO4x/Na+JNKoSOuIy8M/h/j51BgcLg6+jKjA70cmRNtDRCN3jwOH2/6T3BZQaug6JXcdo7LETHR1NWloamqbR0NCAoijEerto1c0MFYgowOUGxzCfhRDjQ0YGxLj70s9KaO50h33OojgpMO4NFG6xWCwkJSXR3NyM2WzGarXS3NwMgNFoZNmyZWzYsIGEBN9w/p4j5fyft5sjJooZcXKTcQ8An3luDdl4Z7QmQvb8ZDGSPIpwgUCkY8OdN9JojG/Zp5VOerENeNxPw4YdIx56lDiSo9zcucjE7evnY7FY2L9/PyUlJX05B778A7ueyHHv2mETElNsJl778fIh2i/E+JCRATHuctKiae60h3lGJ0bpRNd1jEYjycnJWK1W6urqAsO03d3dACiKgsfj4ciRIxw5coSkpCTWrl3L+2dsQySK6Xgw06Um4/V6+7K/rzb5TQKB0RlJQuXA50by2YZOH0QKOFRA7wsEwp1XxYWVf3s8g7y8PHRdp7Kykvfee4/q6upAYOqvQbFmzRo2b97M/uNV/ObDalpc0WHbPLDQkRATjYwMiHEXOWdAZ7mhkI0rZpOcnExlZSXl5eVomobBYGDGjBmkp6cHSsS2tLRQWVlJW1tb4At7+Llc37pvr2KiQ4/n6oe5xzMQGO/rX62xXkYYaXRhdNdQ0EmP6mSRUkR2djZVVVW4XL7iEomJicTFxVFVVUVmZib33nsvNTU1FBUVUV9fj8VioUtNptm2jvO1vYFzypJBMdFJMCDGzcAKg9PizPS4vNS2OgHIS4/m23fOpL3qBHv27CE/P5/p06eze/duNm7ciMViobKyksrKSnp7e1FVlczMTLKzs8nOzqa7u5sDBw6wuy57yLoAAAZcePGvFrga/nnqyb7Vx40MKsZy+eHYBgKgs8xwOJBLoqoq+fn5LF26lI8++ojm5mbWr1+PruuUlJTQ29vLnDlzWLNmDbt37yYjI4P77rtvUAVNWTIoJjIJBsS4iFRs5eknF7AoKxaPx4Pb7cbtdnPu3Dk++ugjNE1jzpw5rFixIvCcy+Wivb2d5uZm2tra6OjoCEwhmEwmml0xfXO5kVYWjGZlgP/4wfPLoy8wNNVd78BjuBUJhDyvo6CRqLQyL7oGi9O3w2VMTAwej4fFixdz9OhREhISiI+Pp7KyErPZzLJly1izZg1JSUl4vV7+6Z/+idtvv501a9Zcx/cmxNiTYEDcULquY7fb+buXyjlb5xlUJTBJbWGJWjzi8xmNRkwmU+A/o9GXBtPV1RXIJ7DrCRz3rhmwJn1Qqxh5IOD/vxr4WcWDhnGE5/i8mYhTFMMFeKFJhr7CVf7RAEVRWLx4MTU1NdjtdnRdx+v1EhUVhcPhYNq0aaxZs4YlS5ZgNpsDZ62rq+OZZ57hySefZObMmdfzDQox5iSBUFw3Ho+HxsZG6uvraWhooKGhgfr6epxOJ2WeTeiD5vIVPKZk7r3r3kDnrus6H374IQB33XUXe/bsoaWlhXvvvZfFixcHMrqbmpq4fPkyly9fpqKiAqfTN92QlZVFeno69rMal9rUCIWIIi0VHJzNbqEHJ9FBz03dQADG530PtVJgpJUJ+4834WGR4WhgWkDXdU6ePInFYgmqJ+ByubjrrrtYtWoVitJ/fv90wLkrdgyeVTS7YpBQQEw2MjIgxkRXV1egs/f/v7m5OZDIl5ycTHp6OmlpaaSnp/P/7erlQl3wmuvQDVp0Xefll1+msrKSr3/966SkpOB2u3n77bc5ffo0c+bMwWg0UllZSU9PD6qqkpqaSlNTE8nJyTz++ONER/uyt/3TEt6wpQQi3UlGKmk7VTv+cMZjZCBcMDDaQKCfGQffX9eJoigUFxdjMplwu8MvdVUUhVmzZpGdnU1qaiqtHhv/6/X+nTQVdNQR7GMgxEQjwYAYFU3TaGlpob6+PuiOv6vLV7PfbDaTlpYW6PTT0tJITU0NGk4Nv3pAR1UUfnBPNgfOtlPR0EO8sZe4jmK+9eidJCUlcenSJSorK7l8+XJgCsBqtRI/cynHW5Ko6wCTq5lF8Y18+e71qKqKx+PxLRv0eChr9PBqcTeNvf5aAv0dSH+BmdHMM4vJJXyugBEXBnRSor1keM8S420CCEwLhP4ZfEmFmqZxwrNqUIKqqsDSWTH861cXBo0gCDGRSTAgInI4HEHD+w0NDTQ2NgaGTuPj44M6/vT0dBITE4f9Agy3IyHoxJucdLgtfT8NnMstIl5pC3suXz6Av9iLSuj8b6TXXPbm0UVcX3VCkE5+qgg3peDPARn+dydUpKWrZhzcGnuI1NRUpk2bRmpqaiAwtlqtQceGrjrYvjFDRhXEDSfBwBQw3JeNP6lv4N1+fX097e2+L0SDwcC0adOChvnT0tIGfamNVKSKgyoaOv7tgwOtI8PaxU3ZLo41JdLYrZIRr3D7QhNz0838fFcnF5thYGeuALFRKigKCr4KcVZvK7PUclKtvYFRhdOso8mTgAQCU0WkfSKCV4ckKS0sMRwJPGIwGMjMzKSuri5o+sBoNHLSu4pGd/DvkKrA/OlGHlnUTWNjI42NjTQ3NwfKXcfGxpKamkpqairdhhT+Y79vc6zQVTUDjJMqoAAAIABJREFU/41KwCCuNwkGPufCLeED+M6fGYj29Cf3+RPu/HXXB3b8KSkpGAyRMvEHX2+4L61IIwM+gzvmeKuBLqc37DLE//1KWYRSxqEZ474wY+Bd3wHPrbiHLD88ETPlxdUZ+TSPRXHyg9tTePOInSttHoxeX/DoVqJJinKR5jodGKnyjUytD8oqURX4xdeDiwt5vV5aW1sDo2tNTU00NjaytzEn7DTDytw4fvb4fGDoZbgSEIixIsHA51z4jlcjkRZuTbsU1Omnp6cTGxt71fOcw9UO0DQNt9vNiUt2/vaPlb6WBNoV/staQSfKqOPwBI8Y+KvE6bpOgzNu0GhC+C993/teavTd9fn2IgjdxCjcP4fRLDv8PAQPn5cgaCQJoOHrRnQRj6KoIb+fg5ch2vUESrzrgs6r9lUaHElH/dDPSmgJE8xaFCdfX9JAXl4ezx81cqKyJ+jfcGiyrRDXSpYWTmIjuQuvaOgJU+ZXRbVl8N3v3h32vP5O2+l04nK5cLlcI/rzWxeT0TRroGPWdEDX+YfnPmOJoZiBcWeuMpMKbR79v4KR1oPreDwedMwhzyi0OMzkG0poYC3Ba/8jdWQq3dgCOQODAwF/O662ouDnpQP9PBhYA8JA5L/P4HoDoNBFvG8cSQ89zndGHZ1T3pWstJ7icu/MsOd+YV/tiDrq3LRo2rrsgzr6GYlGGhsbOX36NKc9m9BC8hI03fdv20+mEcS1kmBgkgq9C2/tsnOk3M5Pvjid2clKoINOifbQ0hm6eE4nhg5efPHFsJ16pGVVA1ksFsxmM2azOfDnVuf0MOv4FdymJO66465AgaDKNoX9H3Ux3IbBChrLDEVc9uYNGkpV0EmN8bI8M4mktjJOtk0bwfy/hhdDyJ1cpDXrUzEQgMnzPoYbvfD93WqBQlOR/j59qwmAvuAQ9GH/7hXcmCjsXY7VpEDIP5fQjnoo2zdmcLTC7ktfDEzj6cw2ltPU1ITVamWa10ttj07oyNi0GC89PT2UN3kHfRccrbDLNIIYFQkGJqkX9vWvbQb//zWefv1kYBgcwKonAGuhb9mc0tfZLYpvxGg0Eh0dPahTH+7PRqMx7FTCmTBTEqoC82cmsGpV/13S8zvOj+Ad6qh4Oe1dTqzJA+7+jlvp++NcazUVFZcAWGdr5IRnJdWd1pB72+DcAe+gAkGhAcHVdobDlb+9mudEZCP5zCIVk/Lz/abMVi/QrKUPu4dFuHP3uvUB/6r8NGYmm0Z0lsXZNv7tq/N45v1yLjc6sHjbmW0oJ3faNJZteZg5c+Zw5kpPUGfvv1pU0wH+5V/+xHnjBjTNFjQipzLy0QkhQIKBSSvS8D/RaXzryW8FdeJnr/Twwid1IRumrB3zNoW7y1EUeGxTxgjaPpgXE14UWt2+MYQ4pQOHbiFG72R+TA1LZqWRnb2V7OxsEhISOFXVxY+eO4um+b/mBy4dG6pjGIvOOFJFvKHOL4HA9TdUdUnf1ECZlo8RN1c3GqQHKlQMXA5L9cccO+ZixYoVEV/d3NzM8ePHOXHiBNO6ushPTWXZsmUsWfIkMTExgeMWZ9t4+skFQdMAD66Ox9Hk4NSp/5+9N4+Pqz7v/d9nds1oFu2btUuWvGHZlnewgWAMhIYlIYRgbCCUdLld0iZNe++vt+ntfbVpe9OmbdqkeQFJjEkChEITCGCMN8Cy8b7ItqzFkmXt62g0+8w5vz+OZjTLGS22HNtw3q8XjDVz9jlzvs/3eT7P85zhQK8hySMnStDa657l+ah8mlEFhDcpSsLAG0FUNJNObcqixukQKU738XsbTbS3t9PU1ITD4WDjxo3ccsstaDTyg/xH75zjZx8NEUSPHAPWMP2AO9VgcSXMZl3VIJi7a3ClIk4RHUFC6Ik3CGa2PY0g4WAQr2CnKCedwYEBPKIRCy5uLfXz+098FqNRzlrx+Xw0NjZy4sQJLl++jMlkYsmSJdTV1VFQUJBSvCtJEn19fZw/f56mpiZ6e3vRaDRUVFTwwXA1zQMkiYQzhSHuL++nqqqK6upq8vLyFMsoqzoDFVCNgZuWVMr9m6FfeuKxzxQDPtbp9mAwGMjIyCAQCDAyMoLVamXNmjWMkcHfv+0kEhKZeZtcUiw3nUfhavkkZSD8ppjpdzq7a6rDH9UMTK6bWJRIebsC8NLvFfPDn+9k33ANssgQIl6C1WkneODOOrq7uzl37hzhcJjKykrq6uqoqamJNtdKRBRFOjo6aGpq4vz58zidToxGI9XV1dTW1lJVVYXRaEydPnyrhtBIK21tbQQCAaxWa9Qw8Orz+LMXW9R0RZUoqjFwE3Mz90uPPfZgSMLpDU2zRnxaoBJHQ2smWgnPJM1Qvu0NeAhgnnhPab1rOXNXvQI3BvK95cOIFyuJ94GWEFrCBDCi9H1pNbDrr1fxJ8+f4US7O8FlP3nfpqWlsWbNGurq6rDZbIpHEggEaG1t5fz58zQ3N+P1erFardTW1lJTU0NZWZlizY+pngXhcJhLly7R3NxMc3Mzg4ODnArXMyJlxx3rjeBZVLl+qMaAynVHuVfBJMJEql+d9hAA7eEq3FhJ14xTKjRHiwjtC92Ncpvi5IwBHQGWaI9xOrw8Ra0BdZC+vlxrr0l8DYJqTSMt4gLF+0cgzCM1I7x+IYOglBx2mmcXuT2jkVfaq1OWJl6n2wNAYWEhn//858nMzIx+Pj4+zoULF2hqaqK1tZVwOExubi41NTXU1tZOGT64EkZHR9n27xcY8yV/lm3V8+qfLZuzfancPKgCQpXrzpJSK9/9ygK+//YlWnrllKzCTCNmg5aBsQAVeWYe35DPvv39vN6SG80gHxaNjJA5g1ry8bnkArBEewy7MDpFrYGZoBoN14ZYQ2AurnF8Ym3yq8SgmDfl2q82ZTLZyCrekMjzHEbItJCdFqTbayCxmmBVvgXk3kf09vbygx/8gNtuuw1BELhw4QKdnZ0IgkBJSQmf+cxnqK2tJSMj4yrPOTUOh4PaeXZFzVFFnjn1iiqfaFTPgMpNwzd+fJ6jrU5FN2x92kkOelcohAlimfQIRIyHD0N3EUpKN5wNVzpYqYZEapRqP1zN9wNmXHiSQgCTCITR45sIGcXvWy5clHiPSJi0Ip+tGEQcvcjIyAhhSzEfjS0ChGiqr0bQ8C/PLCBDO8Zzzz0XXdspOegQq/BpMyjJ0vOVu8uon59zhec4e25mzZHKtUE1BlRuGlI1ODLrQqwWdjEuZHEkUD/x+Fd+6Ovxs163O9qS9uPQbXiwMP3gcy1qBagGQTJzf030+BGQFF348fuNECsgjBxP8jEZ8LEx7UMWLlxIXV0dpaWlnLk0Ho3dWwQXef4zrF1cSGtrK+Pj4zglBy3h2gmjVd7X9RLv3cyaI5W5RzUGVG4KTne4+MuXmnF6g8Q+mAUkVlTa+cuHCzl+/DjvHWrmrKsAJ1kTAYHk/H8ro1Rpz2MXRlO2oI0n3i08dU0BlatjJtdzNoaZ7DkCZlBUSElbEkrhOZK9TAadlqoCC0/cXkhFthaXy0Vrayvt7e10d3cTDofRarXk5ubi0eXwy4uFisZq5D7+xydrpzg+FZVrh2oMqNzwRFya8cWEImVeJO7MbubhTSsQBLkMc1dXF0cuDLJnKKKKVprly0ZBCK2Cgnwq1MF/7pltWCAyY4+k+5Fi/clOlQAnwqujepOZeiAE4ssAx+8jst/45kVKWCwWjnhvoT9gT7E9SNME+Mn/qCEn5zcXLlBRiaAaAyo3PKlaHifG/yM4JQeXpGqGxCymH1QiqIP7zYE8wGsnGgLIRauVZ+4gp44aCeAnDSNeAPykISKkEI8mb0NmOm/Q9KmvU3mhBCRyDU6WaA6zadMmVq5cOacZBCoq06FmE6jc8CiXLxbQawRKHBL33PMo77zzDsFgkGUbH+Lbbw0zMxN3rh62qrfgN0PEL6SJFggSpikxHcAcFQUGMERn8BDrKZhu5h+rHRBR1hBoCOgzMRlN+P1+KisrWbp0KTabja6uLnbu3ElZjpGWQaVCW/L2Kw3t3LLwFt5++21aWlr43Oc+R3p6+gyvjYrK1aH91re+9a3rfRAqKlNxtGWM7mEfiTOxwvQg6Z5mcnJyuP/++2lpaeHnRwJ4JfMsSx1fLYnpairXDqXUwKmuu5CwrIRfSqNU20aGMESfVEhqHUH8vgREMhgmTSfiF5O9ClUFVv7P79+PyWTi7NmzNDY2otPpqK+vZ2BgAJ+zh8uB3Dj1CUCRTaQy9DGW8CADAwPce++9nD59msOHD5OTk0NWVtYMrouKytWhGgMqNzwGyc2+c66o21RWXwtUhI6S6zDS3NzM8uXLWbVqFS99OExAVHq4X+vZ+7WuVvhpR+naTmcIKCEgoqVY045J8OEUM/CRlmLb8X8bCPBASTtVhTbODJiSlhseD1JfnUH9kirq6+vR6XQcPXqUhoYG5s2bx2BXC3csK0aXloU/KLK4xMqff76C37mvkvyMNM6fP48oijQ3N3Pffffh9/vZt28fbreb8vJyxcqDKipzhWoMqNzwHNz3DpZgDznzqggERRYVW/nm5ytYt7iIEydOIIoiPT09LF++nJMdHnoSvAgCUJ6tw2aUcPpmYxTMtuHQTLf7aWe2RtNcXlsRG6Pka7oBSBM89EnzZrB9eT2Luwn8o/T6HfiTyhNL9I542bwsF51OR2lpKfX19QiCwPHjxxFFkdG+dv7gS7fy1N1VbKrLJtcuNzDKz89n3rx5nDlzBoCmpiZuueUWFi5cyEcffURjYyPFxcVYrWrqn8q1QTUGVG5oenp62LlzJw/ddwdPbF7MF9cXRB+imZmZ1NbW0tjYSOtAiF+ckOgcFvGFYmO88kDyhcV+DL37sIl9uKX0GCFXbE45cevMbvC5klnqp5XZelFm+p2kqg8RWU9W/ddqT8teAclBe7iKEHpEtCm3LUzo/yPrBQIBLmtrCYqJM3WBwdFxxEt7CIVC2O12zGYz5eXlrFixgmAwyOXLlzl27BgABQUFcU2KMjMzqa6u5tSpU4iiSHt7O1qtlocffpgLFy7wwQcfoNPpKC4uVsWFKnOOagyo3JCc7nDxT//dznPvdzOmyWPDqsXkOZKV2BaLBX1WNTtOmhn2Cvjj+h1NPjCbu1y0BCvwSOlUaC8wJjkIxqnJI6+yKlwgPAO1ucqVMzvPgJZQTN+AVOumEhJOGh9awnglM2G0nBWX4cWMiD7lNjSEcTBEnbkZizgIyNkq3aF8RQNCREdxupezxw/Q0NBAZ2cnoiiSk5PDggULMBqNHG0eZGdbOts/GGT/qR7m5ZgpyEwDwGq1smjRIs6cOUMwGGRwcJCOjg62bt2KJEns27ePS5cuUV5eHm2LrKIyF6iphSo3HImlUgVB1gmkqtCmnHoYS/LsUH43WVsgEGajbmeKDogq14+5SANNzAhI3FaydyjDGMTtF8kw+CgMnwMiWQjxRkbskS2eZ+Qb92Vy6dIlLly4wKVLl9BqtVRVVZGWV8u/7PZP7G3yfnx2LXzh7vqop8DlcvHjH/+Y4eFhANLS0njmmWdwOp08/+oumjzzCBqyqSmyseX2QrXtsMpVoxoDKjccSoO7gMSCAh3/68ECHA4HaWlpCILA6Q4Xf/LCOULibPYwlcs5zO26nTOsTHglqCLD2XMtrtlMthlvHAhIpOPEhZ2pKhnGdikE0Ov1aDQaRFHkiHdpUiVEAQkHg6yxNrJ8+XKWLl0aTSl86aWX6OrqAkCj0bB606P8/a9HkSS5GJKAhKAR+O5vuJSxyicP1RhQueFI1YMg9iHr1mRzPrwIVzht4tMrGSySK99pCXGbbhcnQ/UzKF+rcv25GnHh7IWMAiLKbbJlNAIsKTbxtbvteL1evF4vPp8v+u//OJKBJ5Rc3iXRgIhgNBoJh8OEQnL862SonlGyE6oYSiyZZ+Jfv7p0FueiohKPWnRI5YajPC+NIVcg7oGnEWBJeTa/vfm3Odo8xD/v8kzZkCieqQvTxP4dRsfJUD3Zmj5GxOwp1lW5MUgsCjRTIqECkdRljZX2FVk31kicFKuKErT2+fjuewLb7ixmWa0jbgv7B5W9XhZcmEwmCgsLGR8fp7+/H4vFQllZGTabjQsXLjA0NIQbq0I5Y4Gmy0727dvHbbfdhkajGrAqs0f1DKjccPxq32n+eZcbQdAotlf95k+a+LjFOcOtSTGv0z0kJ2PKckRYnGhdq5KauTKWrnY7s8kGkV3+VZqzDIp5uLFixDvh/p8qK0TCyijj2GN6HMhGhZbQRFlkKfq+AKw2n6QyR0tGRgZ2u52RsJ0ffCSvHXtv/+8H8wgMNdPY2Mjo6ChmsxmDwcDo6CjZ2dnccccd9Pf386/vuxU9Vmk6iVrpEItL0nnooYfIyMi4gmuo8mlGNQZUbijC4TDf//738Rvy6TcuUWyvmiqMkIw8Y6zWNNIrzotrG6u8rJKYLNXySuvPdNlPG1cz0M9kXZE0xglijJYpnnqdMNWac1FDwIKLMm0LOq2Oo4EViIpGo/z9VmvOkC6Mc1moYVxKJ010UqppoT1cpTBIT/YriAgDQ6FQNKXRjRW7zkNd1hDVeQbsdjsOh4NQKERvby9tbW243W50Oh2hUIjs7Gz0WVX8rDHWaJGvjyDIf623nSEt2EftqntouJzGxT4vFXnmORUZJrY+VgWMnwxUY0DlhuLIkSO89dZbfPWrXyU/P19xmZl5BsJYGWNVdj/PPLqJb25v4pLLiLJ7NxXXszjOJ4W5DLMkzv4TC/vC9J4BCZvgxCXZorN7AQlBEPjuVxawY283h1ucSVuNrJvBYLQZkclkYv78+Zw5c4aG0B14RUPSGjajxLc+a6C/v5+BgQH6+voYHx+Pfp6WlobBIK8XCoXwer2I4qQa1mg0otVq8fl8iKKIU3JwPLwmxfnJR23T+RgLmaKyx4j3IVU2zmxIzPSZy22rXF9UH6jKdScy02jt86DxDrKxoj6lIQCw5fbCaVMJBQTurg7yO19+DK/XS79bQ3KYYKriN1cyiKlGQDJzeU0EBMITNQci3Qoj+4j9vlLpCCZuGCnyvjDxroAA7NjbzZbbCzna5iSsmJ0i4NNOagB8Ph+nTp0CwCQ68Sp4BrT+IVwuK5s3b45bb2BgIGogRF7dbre8F0HAZrORnp6OXq9HEASCwSBOp5NTo1WkDnnJ5zMWMkXPCybScyWJf/mv0/zpPRkUFBRgt9uvqHDRjr3dUUMgsm3NxPt/v61mynVVbmxUz4DKdSVxpgEiGkHDd78yOdOIdUuW5abxhdUZ+P0+frJ/iEtDoYm0wsQHv0imMMQtWnkWp5wdMJeGwEzWU8WIV4ec7WFmnHFsE3UiprveEOstmCe00S8VKaaNZlv1vPpnyzjd4eIvX2rG6Y2rYIWAxMoqB3/zWDnPP/88/f390c9cQhbHgvVxWgIBuUOiXRilurqaL33pS1OK+7xeL/39/VHjIGIoeDweeasaDQdCd+BT8EDMhNiMBb1eT15eHkVFRRQWFlJQUEBWVlbK44v8BlMZ4ZFrp3LzohoDKteVVDUFyhxB7i/v5+KgyFudxTGZA/EPWUjdJ94o+LjN+AGhUIhgWhEHXEvitpO68Ezks7loeKQ0O/20GQSxLv2r1Q5ceShGQKI2X4teb+DMZV/cPacRoL7SHp3dnu5w8cfPn0OU5MyBSOGriIgVoK2tjZ/97GfRtL9YLUC64KJU0xK9RwEyMjJ49tlnMZlmV7/C7XZHDYTv7/fT4TQoZBRMx6R+IRWCIGCxWMjIyCAvL4+SkhLKy8u5OCjytR+djzHYk79He5qOv3m8Wg0V3MSo5YhVris/3NmJ25/okxXwBcJUm3s4OFjIWEBP7MAtAILJwaLcAAaDgV6fFY9kItEzYGOUXC5jNpvJtRsotQfxS0bCkoYim0iJpp3+YKyoMDJ7vIiLTJIHMSm67alV5/HnMvXfnwYS3fcznc3Hvhe7jdRq/2lTAwUdX3ugkndPDEaPJhL3/ubDFdHGQSH3IG3H3yOACWNaOreU2vnmwxVRQwDkwf3WW2/F4/HQ3d2NSfCRr+mmWNPOmkoj/rF+YudaPp+Pjz/+mKqqqlk1HDIYDGRkZFBUVERlUSY7TwwiSbHGbKprMXHOCT0ZQDZcLoiLaWcB/rQSinPSSdfLmoWRkRG6u7s5d+4cDQ0N/PxoCI+UFmOAJO83EBLZeWKQZRU28hxqmeSbEdUzoHJdUfIMxM7SUmUOmHUhfntpP2lpaQz4zfzoiPwAioiaJEmkTnuIL923llWrVinu+0TrCN966TTOYOThFZFcTaadjWEnHK1df3UzUxnVU5Caq7m2qTw98dtfWKDj339vRZIiPjZbxel08r3vfY9wOMxjjz1GdXX1tHt3Op288MILjI2NRd+zWq1oNBqcznixq1PKwJu9lkGP7orU+Kc7XPzvFw4xKkbWSRXqAj0BTMhhBh/mCSWFkHBPy8ZCveEo+RY/kiTR5zFxPlA1TTgm/t5N9K6o3FyoAkKV60pEsKUhXp38xB2FAFTkmRkeTzYWFpdl8eCD66LvLV06+XDPTRcx9jdQnWdIaQic7nDx9e3NhMXENrQCEhKDYh5PrRLZP5TFsTZXzP5nm12g5Bm4XuV1b/R9pBL+TYX8xeTqndjDXbSIC6csRmXs/5A33+zhvvvuUxy0xsbG+MEPfkAoFOKRRx6hurp6Rql0drudP/zDP+Rv//Zv5VLBkoTL5ZL3aTTi9/sRBIFR0c6J8CqkvjAgMTzu5Gibk396qob5+UaCwSCBQIBAIBD378S/dUKQZCFhsohSRJOQUqsUstEgIdISKMMiHpnIWFhBvBdmeiNWlKCtz6N43VVufFRjQOW6sqTUyj8/vSDlLG06YyF2O3+/rYauri5+/OMfY0w3kpVVkHK/EVW08qChYVTIYf+QlTPtI4jS1fxMUhkESv++Gn4T3oXZGDJXajgopQtOvbwOPwulgyyvX07bYB9vtmUqdJyUCwbZhVGOHj3K8ePHWbduHfX19TT3Bfj5RwO09XnR+vopxsTDd61n4cKFSQLX4XEnR1qd/N9Hi6nK1SUN1g6HA61WSyAQiHoE/P6JxkSSRHu4KkZkOBGDl0S+9fyHU8bzQRYQGgwGDAYDznA9ytkx8X/LGRdK91vishrcyL+59nAVyeEYpYyNhC0IsvGucnOihglUbnimcunGMjIywnPPPUdmZiY2mw2Px8O2bdsUt/ng3x3D6Qkpfpbc3W4m1QtTbeOTGAa4kc4pPvffKTloCdcmzIaTRacRnJJjogshxJYltjJKlfY8HWIVw1LqYkKpMJvNhMPhqCEQIZXY1YCP3185yvz58zGZTNFB32AwoNPp8Hg89PT00NXVxfHWEXb2VsScX+prM/PvafKcZtekK77o0XeerKauQq1+eDOiegZUbngis/6p8Hg8vPTSS5hMJh577DH27t3L0NCQ4rKnO1wThoDSwzLefRpvGGhSrJPI1DOom5+r0UtczfrK2yvTtgCJA/tkyCFD5+F/3FdKvmUTR48epa2tDb1eTzAYTJqpR47NRQYnxbWY9EAgcb8aJHMuT295Gr1eHzdwt7a28sorr/DVr34Vm83G/v372bNnT3RNCy4CGEg0Liy4OH78OOfOnaO+Xq6zMTAwwKVLl+jq6iIQkA9CEAROBFfEHevktZitFmViIJ94XZ49jN5nwjLuIkBi+Ex5HwYhhICIWRqjTNvCL3e8wwcZGYQtxZxx5jLo1VOWY+Spu0pZWm6f5nhUrieqMaBy0xMKhXj55Zfxer185StfwWw2k5aWFs3PTuSHb7ei3GwGUsX4rTjxCA7C0lRCqrke7G524q+LAQ8BrsSNnCrDAMyM0xhehgUXIXRJA7uAhEkncufKSgAWLlxIT08PO3fupL29HY9gAym110en1aIRwkmalfmFNoqLi5OWnzdvHgCXL19m4cKF3HbbbYyMjHDy5EmysrIoG2hhNJyFFL3/ZK9FtqaXk6F63ONWDu11UabdleTFANBqtYwHI+WIY0mV9TKVR0vAbtZRU2iZ8LatBuBw0wDf3HERKW7wl2JeIwYELNWfwCIOApCeno7Vms9wyMbOiwUTS0icvOThay+cY2NmEwvnmcnJySE3N5ecnBwyMzPRalN3gVRLH//mUI0BlZsaSZJ444036O7uZuvWrWRmZgKym9br9SYt39bWRnPXGCS5QQUgDCmU03ohRJpOZDyY6sEllz8GJlzUV5r+diMyN8d8pYaAhtBEw6jEwQ48WADNxGw7Oe1QQmDYb+TEiRPYbDbsdjs5OTls3bqVCxcucO6VDvoCepQGTVECj9eHhA6NIEypWYlgtVqx2+10dnaycOFCBEHg/vvvZ3R0lN7eXu67dQXCR4e5GKqI9kXI1vTSIi6KGjIBDIyGs6JhjdzcXNasWcO8efN4/tX3CfboSf5ORHQE0SB3QMzVDtAsLoyeRwSLUYNOK1BTmJ4y3FY/P5uHqhp4r9WEV3AgCAKVeWbWVOg50OSkezSMVeumSDyPRZS9b5HGSl6vl8PD8yYMicg1lV87xErKPK2829BEk8eNm0HSBRd1mUMsLLaQk5MTNRQyMjJo7HQn6TWOtjnV0sfXCFUzoHJT895773HgwAEeeeQRFi6UH36nO1z8x6+a5NlEYSaCINDn9GPXeXC4jtEhVibFgTUCWKQRXCjHOw34sOCaooph4ux3KmOAKT6/Hkynb5iLY061janqCkzG+oFoQZ+IF0DuMjidd0dCQMTBMGXaySJAfmMB7eEKhgNm/KJWYb3J7VVrGhkU8/AKNoqz9Pz25gpW1uamnLW+9tprjI6O8oUvfIHz589z7tw5+vr68Pl8ildGuTqmHMNfbjyORqMhGAzGLJutcL1gmfYgDo2TDRs2cNttt3H2smdGWptE3n//fT788MO435QSoigyODhIb28vPT0+DbXyAAAgAElEQVQ99PX10dPTw+7xtYqag0yLlr/6UhV/8qOm6AAvTBz/5sKLMNYRvUY6nY4z0ir6/DYSW5mr6YvXBtUYULlpiTQ1uvvuu1m7di2gVN44ufjKZxeI/Pq8Lq66nCRJ6AjE5GBPPoAEJHINTgrD5xTEZjMZ3BK51gbB9UhdvNJ9xj5+JkWbegKkM0a5thWbMALIjYEig8WHoTsJoVTcJvbaJn/3EcMi/ntMLOATP9AWprlZbjwe12BIn1XN+/1VwGSWC0h8JrcFcfQi4XA45RkLgoDD4UCSJEZHR6cUFS7SHo8zgsZwxNQImERLkC2VzTz++OPo9cmfz5Tjx4/zy1/+kk2bNrFu3brpV0hAkiT+9IVGTnZ4EsoWy8aNRiMwLGYpDvDf3jqf8fHxaLXF/7tTwq3giVNLH18bZiuRVlG5Ibhw4QK//vWvWbVqFWvWrIm+n9hIJd51rEEQNPQHs/ifv5VFBkNYDExUiZMIYYx50MbGXSWW54yQY/Rwm+MsdaWWqOgqmWRXtfIyc0EkJz/xvWvBbM9J6TiU3pMH/gwGMeAjgyGWaQ9ym2EvqyynydDJoReNRqMws57Jucd/98G8Dfhy1iM/+ibd2PK3ppwGOhIwotFo4hr7HOmzI0piXMMeUZI40udQNAS0Wi02m43MzEwkSSIcDlNZWcmtt96KXedFvs9iETHi5UR4NSNkEcDECFkTqYLJ551mNPDkk09elSHQ1tbGm2++yYoVK6LG9WwRBIGn7iqNlm8G+VUjaPjdz1YT1McbAjBZn0AQBKxWK5WVlaxZs4ZFpZnRbURQ0xevHapmQOWmo7u7m1/84hfMnz+fzZs3xz2k2/oSZyTxRB482lInS3VHOBmox0M2UpyaXMSoETHqtZTlmvn8Sjsfv/8hVoeDrVsfxWAw8MS399AfsCc92GbGXOXqCwnL3UghiFSGUiIS6YyxVHckWtu/MbwMS9hFWbiFbIObcDgc19ZXEAQERaNr6lx4UYJeF4B2QsAXexQCmgnjKnHWuqQ8m69t+xqiKOJyubhw4QINv/IpCA81eLCSXrCIA5fTCOizqC6ysnVjIXWVk+GnM2fO8Nprr5Gens7tt99ObuUYf/T8uRhRoXwObqwTx6KU3RJ/3tJVzusGBgZ45ZVXKC8v57777ruijoYRpqodsqtJueKo0gA/0xojKnOD2ptA5aZidHSU7du3k5WVxWOPPYZOF2/PHm0Zo2fEn3J+rBEgUz/OWOs+NBoN3Yal+JLKDQjoCLBl/iXqiiQOf/geNpuNbdu2YbFYeP/99xm4fIFeKSKUmirDYKbvx34229TEqzEEfpOCRqX0NwhiYFDMpUOqxIeZMHp8pNEnzcMm9ZOmic/VFwSBESkTn6I2I/W5CEhU5OjIdZiT7hEBiWxTAE9IGz1OAQlBgK1r0yjOtdLW1sbrr7/OqVOnGBaz8CftX5SzG8Zy8WImENbQNxpg58khqrKhONeKIAjk5uai1WrZu3cvGRkZ3FJbSpHFy4kLvTHhAiHBEIg9v+TrGAxLvHGwl+NtLvIzjLPqDzA+Ps727duxWCxs2bLlqrwLEfIcRjbVZfPF9QVsqsuO9nzIzzBO2xcidhvLKmwMjgXxB0UWFVuT+kOozB2fKs2AmqZyc+P1ennhhRcIhUI888wzWCyWpGWSNQOTCBMzv1ttjZRkSOh0Os4Ja5VnKpkiqyyn6e7uBsBisVBZWYnD4eCDDz7gjjvuoOFMNx92OxIK3MSSKn6diqud2f+mB3Zmub/E66GUDhc/yNmEMbRSIBozX1/sZbyncaJk7mpmFpaJ9KuQqNMepKCgkHe6SoH4Ged3v7IAURR54b0OLvZ5seu9FInnMQX64raVk5PDwjX38Tdv9Ed1JxF3tkM3znDQjJIYcGN2C5WVlVRVVVFWVsa7777LqVOn2Lp1K263m//vZxcVhIRTXctk0WXkXGaquA8Gg/zkJz/B6XTyzDPPYLdfXS2AmTxjZ1pETOU3y6fGGEgcJGb7o1G5voRCIV566SX6+vp4+umnyc7OTrls7MMmM13L2NgYw24Ru87DF1Zn8vBdy3n++ecpLCyk7Jbb4+4LAQmNRuAvH8jl0K5XsNvtbNiwgYNne9l5LsSQ3xQdtqyMsdDajdlsZldfpaKrVphI+QomlcdN5EYxBGYTwogw0/3KIs3kUsHT7SeSpiahEQT+5C4z+z/4gI99y1Psf2JmL4Akgd2spaYwnS23F6D3drN3714u9PrpNy7Bg43qQmvSgOTxeDh8+DAHDhyIFvxJS0tDkiR8Ph8ajYaQuYjTo3mIablUF6az7c55/PXPWxQbaxkFHw/PO4/X62V0dBSNRkNRUREul4vx8XE0Gg17PetnUflvavRagWXltiknPJIk8eqrr9LS0sKTTz5JYeHVud/VZ+zNzadGM5AoLBMl+fGyY2+3mqZygyNJEr/61a/o7OzkiSeemNIQADlm+VePFPPhhx9y+PBh9Ho96+9Zz6pVn0Gv1yNJEsPDwyxevDga3/zX1xvpHAqwsDyLz9WZOfjey2RlZbFlyxaa+4K8dMqFKEbiyfJgM0IWB1xZ1HkOoaVEsR6+ljAhBfV35POpU/pmw3Trz2QfUsxroh5BaX+znUeICrXyZ3I8k3oOUZL4znsu9MItMceRuI6ATiNQXWjm9+4tSZh12qipqeHcuXPs3buXgYEBqnRVZGhvB6wMDw/T0NDA8ePHo0LAgoIC7rnnHkpKSpAkicHBQdrb22loaKBOfxkpKCFcEmh4twCbbiHDgj5JSW/VuGnuC9AWrMKncZBnlkiXBugcGac9XIcb60S+w3SFgmZGMCxxpHXqvPxdu3Zx7tw5Hn300as2BABe3NulPmNvYj6xxoDL5aK3tzf636m2AkTJELeM2mXr5mDPnj2cOnWKz3/+85SWlk65rM/no6GhgYMHDwKwbt061q5di8k0OeNyu90EAgGysrIAqCkwMj/4AQ+sXsCyZZW8+OKL5OTk8Pjjj2MymdixtwNJguR+7nK3t07mJ7xP9O/whCwtdQhhLgyBmXoVpt/XPOEil6VyZm4QzOYYNbMwH1Kdk4CEloCUqq2ujChJXOh2o+T3FASBhQsXsmDBAhobG9m3bx/PPfccFosFt9uNRqNBFEVycnLYtGkTVVVVUUGdIAjR4jjHjx9nyZIlbNiwgfb2djo6OigYOctFacnEnjQTugOBcpuXIyP18vGHBS6OilwcLQQKosvO/J6Y2T0z1WB89OhRDhw4wObNm6mtrZ12W6lwuVy0trbS1tbGqdYcRCk+7q8+Y28ebnpjQJIkhoaG4gb+3t5e3G43ILcPzc/Pp8AG7U7iHg5qmsqNz7Fjx/jggw+46667WLx4cfT9xLjjY7fm4u49y0cffUQwGGTlypWsX79eUVcQ6VkQMQaOHj2Kz+ejslI2BHJzc3n88ccxGuUH29QZChpcooVMvYf+YGIlOzEml12JK33gz1aLELtsKm+E3NXPLVmZdMsrrXelpPKATGVopK4ImeocIn9HugH+3Y5DbFkWoKioiMLCQrKzs6MDuyTJA7XBIE8SIuWrtVotd9xxB+vXr0+pqg8Gg/T19bFs2TKysrLIyspixYoVPCRJNJzp5l/faMQZTMOm81AknqdlpGqKzIBYI3Mm3/tU1y0epcG4tbWVt956i5UrV7J69epptxFLIBCgo6MjagAMDAwAsvekyJFH+ygzyhRQufG4qYyBUChEf38/PT090UG/r68vWp3LZrORn5/PihUryM/PJz8/H4dDLqe5IhLPQk1TuVloaWmJ5j3HFkBJjE0OuZwcbhlhme4Yd6xYyIYNG7DZbCm3GzEGMjIyCAaDHDhwgMrKSt544w3y8/P58pe/jNFoRJIk+vv7yTD6GXJF1N3xCIBdJwvNBlhNJDVNFqxF1lFOB1MmduCNTTWLXUfepoA4y9TGRNf+5H4EoEp7ntPh5UzfGvdKUd7O5HkkiAd1AcZCJqY2GKYKtWgYC5tpazvP4cOHATAYDOTn56PVaunr68Pj8ZCeno4gCKSnp1NRUUFHRwfvv/8+3d3dcupfbm7Snnt7exFFMdqLIHpEgsC6JUUc3/8GWVlZOBwOOjpMnO2yQlJfiyvxtkikMY6XmcXgEwfjvr4+XnnlFaqqqrjnnnumTSEURZHe3t7o4N/Z2clwyMploRaPsIySbD1Pbyqlfn4Oayd+l2oq4M3JdRUQTqU89Xq9cWUue3t7GRgYiFrzWVlZFBQUkJeXF31VmgVOtT9VxXrj0tvby49+9CNKS0v50pe+hEYzOUB98yfJucoCEktLzfzzM0sUthbPrl272He8g0DurZy/7ETrG6DK0M7CYgsPPfQQly9fpqWlhdbWVlwuF25NNkcCEy7emO1MzC9Zpj3Elz67lp5xA7/4eIT+cQ1mXKAzMRJKZ3aDqbwHM+N4sSiEJmL3H54QLc4mBh8/4MaW6gU4Ho4UcEqccSsdw9W6syUK08Yptbpp6M9L2Ie8Ty1BwhgU107OREg+bg0SyyvtfGl9LkZ/D0eOHKGzszOubgHIXqLa2lpKSkrIz8+ntbWV/fv30zECQ+Y6XGI61QXp0WdUQ0MDu3fv5s///M/xer00Nzdz8eJFent7cTqdUdFhhFPhlQxLmcysOdZUiAhISKRu7hOLViNnSSwuseJyuXjuuecwm8089dRTUY9IIqOjo7S1tUX/83q9GAwGysrK0Dgq+GHDpPclUSSoPmNvXq6bMaCkPAWJ3yrrhrEOnE4nINeozsvLi8708/PzycvLm5NcWJUbi8iDpKXXjdbXz9LMIb7x1UeSHlqP/MNxRcX2TMuU/suP/pv/bstHmGg+Iz9gBe7KayU03IIkSeTk5FBVVUVVVRUlJSWc6/KyY283Td1ukEASJGyCizz/aZ5+5DNxNdyDwSCtra18/ZURxXKqySi5u2Fqt7E48dnMBoVU6PBzq243MHXd+8njmXxvsoHQTMIZyp+bGZ9oNpToGYiqA1JkH8RfF/lKxWcexH4CYMNJjaGZBfPM9PX1EQ6HqampwW6309/fT3d3dzRUYLPZEOzl/DLafW+iU58A6/OHONcn4BItpAsuSjUtih0GY4lvrxxbAjlWJJk67BF/XcITRmKq8JO8zfJsHV97sJolpTYCgQA//vGPGR8f55lnnonznPn9ftrb26Oz/6GhIQRBoLCwkJKSEhwOB1qtluHhYbYf1dPlTkPtF/DJ47qFCZTU/SCX+dxWvyg68GdlZcXNClU+mSTXB8hg90Amn+vxs6Q03hioyDMzPD6zKmZKHOySl5tcXxYCnncX8kefraGqqiop33pJqTX6sAsEAvz85z+ns7OTRx9/lKqqqrhl9Xo9tbW1LCpt4uMWZ8LelQbXqdzHSgPpdANIqvWStxPCgFNyYBdGGceW4liSByUro+RrumgWFyl+DhJ6/AQxpvwcBDykpzxeCQG9Vkc4LMWIMBPj7JNbsxgE5hdaONXhJizFblN+HcPO4cAKmtrGEA21zC+yUbOyJOqNlCQJp9NJV1cXnZ2d/PiIltjuexICSBIf9mQRMTqGJQMj4SyW649gleTwk1arJRwOM2/ePMrKyjAYDPT09KBvPk6zrwSfxs68LD3Pbq7AaDKxY283J1oHCUixnRljjYXYcxVJZ4xx7EiKYST539WaM6SPjPPX2104Q2ZESSSdMv7koRrS09Pp7Oykra2N1tZWLl++jCRJWCwW7HY7paWlBINBhoeH6erqiu7Z4XAw7K9PCk2pIsFPBtfNGFAWZQn4tRls2qQ2ofi0odxTQFkJfTVlSiVJYsRvVIi1a/AKdlasmPre83q9/PSnP6W/v58tW7ZMmd2wrtYxYQwkurOvRownoSNIGm6FVsnTz8TjP5ePqT1cxVLdkYlPZzI7FfBhpkVcSPxMPGGQiL6faMzHLpv6OmgEWFyegdHdyoc92QnrJQ+ShsAQxWMXaDGsw+VPHY8fww4BgWMX3Rx77hzzC0xsqgrAWDt9fX2Mjo4SCoUYCd2hcOyR7zG2Pa/EsKWObXfbKSoqwul0sn37dgoKCmhsbGRkZASbzcam1Uv4+tKl5OTkxG3x77fV8NxzH3D2sjvalMiIN6aYVfx1W2zpYM2aNbx9xk/ncAi9KJds9pOGXeelXNdKMBiUizKFJwWLY9j56//qZf4v99AfysGNFasmnxLBhV0Yxe12EwqFyM7OJjs7m5qaGrKzs8nKyiIzMxO9Xk+3QohOFQl+MrhuxsDVzu5UPlkoGYepZhxT1T6fjrGxMcy4CBBvEMzk3nO73bz44ouMjY2xbdu2aXOzD5wfnSh8Ez/4zj6PfNKYEJBYoj3KmfBylAZpWYyXagBGcZ0RMtkXujuF/kA5RBFxyMdnHcSvl9j9ceptKiwlwNY7iti+G8CpsJ58XeQQo4ZqYwd+vx99YAhIjM+n3veFHi/NPRJ12i4yda6oqC7D4GMgaFKctMQfhYArbKGqqorGxkYaGhoAOHnyJAsXLuS3fuu3KCsrm1KsNz4+jl2Q+2WAHLJRuleKbBJ/+41nAfjc7RP7n+h+2N7eTnv7EBcv+vjQV0OyB0VWGzSFFkT/HhaNjAjZ/MVnM1i7uBCz2Tzlcar9AmbGzVjt9roZA+pNpRLLbI3DWLf9bBgelsVyJ8LZE49GYUb3ntPp5MUXX8Tv9/Pkk08qKswTaevzKOS5z8x9P7ms/G8dfmoKLeT4TsPYaMysO34WP2ngxHsjNIQRFfUF8oCTvF7qY5OHmKli1pHtXIlATl7HoXXx5IZstO7LXOhyKWxDNnzStCHsei+1li7MIQ9ut59STTMj4dWk7huRiLxMv3EJGaGPsFqtbN68maCpkK/96HzcM0qUYnUJMhoB0iQn3/nOdxBFkczMTLRaLV//+tdnrG2KbY8M4MaKklfCLyWL/gRBICMjg4yMDJYtW4bH42HP/zsJwVSG2OR1kSa+yffOi9y1emoBNlydIf5pITHkOTw+dfGnG4XrZgyoN5VKLL8p43BoaAiHxkkdBwkX3k73qDjtvTc8PMz27dsBeOqpp8jMzJzRviryzAyNOxUL38QzOWjKBoqEFSeCKQOrxs2KnFHGuk5Tk1FDc/Mlnn7mGfb9oJPUs/hEN7yEctMbFN5T1ghMfiqyznqGc+OFDEtT1dGfbhCOj41bGcVPGhZclGllQd6JD+AEoAnVg4KwUUJgc9kQpRkSRmMeBkMxkiRx4sQJdN5j9JiWczkq2YgN0yjrEwY8OmqNAuXl5aSnp1NUZOUP7ivlR+93MeYLoZUCFAqddFMJREJaEpIkUZN2mTs3fIbFixdz4MABmpubZ2wInO5wccy/LNp/oUzbggUXAQwkGh1Tea88Hg8HDx7k0KFDGMNLGSdL8VyTwjmzjPlfqSH+aWG21W5vFC/Cda0zoN5UKhF+E8bh6Q4X/7HPT1fwdnItYf5sc8W0P7r+/n5efPFFjEYjTzzxxKwauWy5vVBBQBiLnPpmQV4mQBoLyzKh833swiiPPPQIZ89eYmxsjDGgqamJe+65h6KiIjSaLsJiqu0mD/DKeoCp1lcW/TkYRu/tplTjYSScRWLb3dhlk48l3luhx086Y9HBPxVl2hZGwomaAXk7R4by2VBnQKvVotPp0Gq1FBYWsnv3bhzO3Txw2918dMlI+4Afk+Cj161PeW5FOemsXbSWU6dOcfz4cbCVsX+kFhCQJAiio0uqYGl6Gx3jVryCjUKHhm13zmND3Zrollwu15R1LmI53eHij58/hzjRoCiAgdFwFlWas4yKslBRItJBUVA0jj0eDw0NDXz88cdIksTKlSu5q6SOP3/pomKxrFizCNTw7Fwzm5DnjeRFuKmKDql8srmWxmHkRyeKOiT0dHvgay+cm/JH193dzY4dO7DZbDzxxBPT1rFIZEmpFXuaFqc3rPCpPFd/ckWAvpbTcvriuYNYnVb8Rj+BAPzXf/0XtbW10WqaxcXFrFq1itMdrglDYKaDe6xbeybrpF4mUo9g89pabjek8cYxF5dHJYIYYgaZiBJe2euQZ3Dyv7auYUmpDb/fz3/+ZysGQx4LFy5kdHRUNn7GxhgcHESSJOzC6ESDo8S2vAKdoxLb39iX0phobHgLB1A38XeB1sGpcL1ij4TR4RHOnj2L0WgkMzOT/UO5E2GBSRGehMiwppD/95ScKaCU6eRyuXA4EsV/ysizyHhBooTIkJRHnfYQYtEdNHe5yEoL8mePrUhqppRoBKxbty56n373Kya+//YlWnrlQaiqwMzmZdn821sdSc2E1PDs3DGbkOeN1DNHNQZUPhVEfnSR2LjSjy7WXZdvF0gbOEBNQRZf/vKXSUtLu6L91hSlJ6mvIxkB33l6CZcaP8BjtZKfn09zczMul4vs7GxKSko4duwYra2t+P1+ANauXYsgCOzY250gTJS3mToLYKZ6gMgyytvTEooOuu82NBEqyMcVtlBgHcPib8KbVk63U8KqGSfdkUPniBRfGEqAXL2TBWID+99sZt9EKl8oFALk6ng6nQ673Y7dbicjI4Pm5mZKS0vpHNLSOqKc2aAr28xffLmCUChEOByOvvr9fvbs2UNrayurV6+moqKCcDjMX7zuwulNPG+BkNZCbW1tdP13h+0kh0E0eCQrFRUVKa+gy+WiuLh4mussc+7SCMndLjWMS1bswiifXRZgsNhFc3Mzi0tuB5KNgFWrVrF27dokY3VJqZX/+J1FSfusyDOr4dlrSGLIU0BCkmDL7QVJy87Gi3CtUY0BlU8F0/3oEt11gy4RgRU8dnv1FRsCkPxgiAy2GaYwgkaDy+XCarXi8/kIhUKUl5fT09NDV1cXIfM8Do3lR2PJq0cEisfHaewYQpISf7rTpQNGllF2kSf/nSxeE5DjEk4pgxPhVUiXvcjNeEzAfOrChyjTjcpejhEfHVJR/H4liQrdRQjI2o36+noyMzOx2Wzs2rULm83Gtm3b4tTsR48e5c033yTH4KM1Or+P50LXGFqtVrGi3uOPP87bb7/NoUOHGAxYODWSgyeQ6CiXZ24LSjLYtEl293s8Hl468RHuUHzthelc6pIkMTY2htU69eAqiiKvvvoqukA6kKi9ECnNNlBiK6GlpYX58+dz6NAhnE4nhw8f5uOPPwZIaQRMhxqevbYkhjzzbaDv3U9o2ACl8anLpTlGhlyBWWc2XQtUY0DlU8F0rrvkOgcaBAF+/uEAyypnJhhUIvJg+JdfttLa7594V2DQZ+JrL5zjjmyRJaVWzp8/jyAIfOELX2BwcJDvv/Q2hzyLorkAAQz8w9tOdu58F0O4CnfSAJLITAyCRCNgak9DGh5OhuoZJTNOkBjpv9AerqJOf5TBQDpHRopIrEHwB/eV8NDaNezZs4f9+/fj8/lYs2Yy1v7qq6/S2dlJSUlJ9L3S0lJZiBfopTxLx8Wh+JCLgITGN8i//du/sXbtWpYtWxZnFAiCwL333stQ0MoLh/WAk8QaE4mucp/Px0svvUSZVqRfkB/eM3Wp+3w+wuHwlMaA2+1m+/bt9Pf3U6Z1MBqnvZCrYf7BgwtwdobYv38/y5bJx/C9730PQRBYtWoV69atw2xW4/w3KokG1+uvt7Nz507mz58fNd7C4TB5gUagGM1ENdTrGbZRjQGVTwXTZStcS3ddXpoX51APcu775AAqihLHBhwIrpPRZlv/+I//CEBTqD4hj1+DhMTp8HLKNc1x4rJkIgO9shdAR2BCuOgihE6heFHi+rIGwEVEPKlkhGgYx86J4Apc3TkJtQ7k9M2DF8Z4aG0BGzZs4MiRI5w+fZo1a9ZQWFjIggULyMvLY+/evWzduhWQwwYvvvgiNpsNnU5HePwkHYLcuXLyOxT444cWM9jm591332Xfvn2sXLmSVatWRR+6giBwZjQX2RCIR68VWFZui7rKA4EAP/3pTxkeHuaPntrGgN8yK5f62NgYQEpjoKurix07duDz+RAEATuj1GkPMWSuo9clYNO6+eZj9SwptdEuzSMYDPKLX/wCgPLych588EHVCLgJufvuu2lubuZHr+2hU6qmrc+DRXCR7e3jL+5fyq7z0nUP26jGgMqngumyFea6CFa0z0LPOFr/AGNicqlfCYFxyUooFCI9PZ1gMMjGjRs53jrCaFMGSq76EAaaxUUUZxnxuZ0M+gwKxYIS6xTEagYklmiPUZWrp76+nm/v1oBbKS1BQC4bFIwxGpRi6JP7DKJnlGwkMbLvSWINK61Wy/33388rr7zCa6+9xu///u+j0Wi4/fbbefnll2lvb0ev17Njxw4cDgdbtmwhGAzywx/+kPuKO+kzLOJinzf+O6wr5c4776ShoYGGhgYOHDjAsmXLWLt2LRkZGXLNB4Wjtpt10RlcKBTi5Zdfpq+vjyeeeEIuiQ6zcqm7XC5A2Rg4evQob731VrTZmiRJ6PV67MFRMvz7qdCJbN26ldxcM7t27YqGA3Jzc3G73WRlZamGwE2KxWKhavldfG9fAEGQnzODGOgUVrEtv4C/X339NRuqMaDyqWGqWOlc1jlI1B8IZERd6bGDpDAxOzebzZSWltLU1MRr7x3lWDC5/jsxawF0DvkRMFKlOUurtAhRmrrdMQgUWcMUh0/x24/+FkeOHOGdd95BCNdDinz0FZUOnl4NFy6M8INjdhBTGQKTdfSTxXAyiYZVbW0tBQUF9PT08PHHH7NmzRpqamrIz8/nnXfeYXh4mLy8PB5//HFMJhMAn//859mxYwf3bsjkjm13JO3D4XBw7733snHjxmhs/ciRIyxatIhCRzXD48GUxl44HObVV1/l0qVLPP7440mtiWeKkjEQCoX49a9/LacrQtQQ2LhxI/v27UOv1xMMBqmvr6elpYWf/exnCILA6tWrGRsb4/Lly+Tn59Pf339Fx6RyfYlMDI5flBtMTdYdkX8r1yNzQAnVGFBRYWvuxeUAACAASURBVG7rHCTqDySECfU/EI0Ny0P0GA4OjS+i+8wFMrQifYbFSEGYXvUvfz4k5fEX92fxH79qIqDPxBOUdf+Jy2Zb9fzNIzls3/4eZrOZL37xizidTv7xP1/lI1ek8U68iGnbnfNYUGJlwYIFHBhNrkkf8TToCE50FkxtCCQaVoIg8MADD/CDH/yAXbt2sWjRIqxWK7W1tezdu5f8/HyeeOKJuPh/ZWUld955J7t376awsJCaGuUHqNlsZuPGjaxbt47jx4/T0NCAduQykrQmLjYL4PKGeOQfjpMmOcnxDfK7jz9KWVnZNNc+NS6XbNxptfJ34HQ6eeWVV+jp6Ymet0aj4eGHH462OQ4Gg5hMJk6ePBk1AtauXYvZbKapqYlTp05RUVHB+fPnr/i4VKZmtoV/JEkiEAjg8Xhwu93R18i/I393jMCuvqqYsNnVFXy6lqjGgIrKBHOlslbSH0gSaAlO1OufJIyewXAmg6xBFw4QDuiYae8CCQE3NurnZ7NU9xKZGZns6a/AKeTEp/QhUZFnpri4GJ1OR1tbG/n5+YyPj6P3dvG1O1fyyhEP3XK4G4fWzRdXWajMmXw8bLm9kCOtsU2XJrceivYgSBYd6rWauJh8LHl5eSxdupSTJ0/y1ltvUVdXx/79+zEajeh0OsUKfrfeeitdXV28/vrrPPvss1NWg9Tr9axatYr6+noaGxt5Y/cJjg9m4tPYyXWY6BwRaep2T1wrE13Carz6vBld+1REskMA2traeO2115AkiUineLPZzJe//GWGglb+4fVDDIXuwIKLqkA796xfwJo1a+JCAeXl5Wi1WoLBIOPj43g8HjVUMMcoFf450urkd2/VkJfmTRrgI6/hcHL9EJPJhNlsxmKxYDabueCNGMAz85hdT1RjQEVlDjnd4SIYSo5OC1HHv1L+vzyQhqLtfhNJlRkgYtWMYzKZcEoOTg1U4sYmhyYmPBGR2oNP3FGITqejpKSEixcvsm7dOhoaGsjIyOD+jUtYf8tIVK2+aNEizh5t4J9P7GHJkiWsWrWKJaV51BRZOHc5toZ+xADQJPwtiw4F4BbNQVZbiwiP+HBlVCTF0jdt2kRjYyNNTU1cuHCBBQsWcMstt/Dzn/+ctrY2Kisr46+jIPDggw/y3HPP8fLLL/OVr3xFMaUwFo1Gw5IlS1i8eDFtbW189NFHvNGchRhX4nhuXLYRY+DDDz9k9+7dZGVlMTg4CEBOTg5btmyhqcfPN3ecRSId0BDEyNFgDk9ULkga6A0GA6WlpQwPDwNyRcyr8VyoJKNU+AdEfvrBAGttZ+MGd4fDEf134musRyjCa/9wHImg4n5vtIJPqjGgojJHRKscJo3nsjtdUMzfj5BoIEyuKwAlOSY6BnzRdzUTRYeKucC//miME+HV0ewDAdkQsJt16P19PLjCGp2Vl5eXs3//fgYHBzl79iz33nsvGo0Go1Gu7idJEhs2bGDz5s0cPXqUo0ePcuzYMXJzc7nYuwRIHHiTiwAJSGQIQ9ySMQhjw3R0hDh9+jQgi+EqKiqoqKigtLQUi8VCeuFi9rXp8GDF5c6h1lhAUVERe/fupaKiIqmLnslk4otf/CLPPfccb775Jg899NCUnfaiRyYIVFZWUllZyRvfPpIknJwLl63T6cTn89HS0kJlZSWtra0AVFdXc99993Hw4EH+86MQUkxXxUizoFSGSHV1Ne+99x5arZa+vj7VGJhjlDx5oEFrLeQb3/jsVW1bSZgMyVksNwKqMaCiMkdEqxwmxNVNWpEFfEx7uCrJhZ8KvVYgTS+h8w/yp1+sY93ioqS4Zpb3BAWWTH7VZo9LQ5SQjYWqfBPWSx+zrPKR6HYrKip4//332b17NyaTibo6uZBPc1+Ak6F63Fjpe6WD372/httuuw2Hw8GePXvo7+8nTXTiS2oYlIiIgyEemj9CR8dl0qxWLo/pCOQ9QOdwEMe4l66TFzh48CBarZZQWhH7RxdEj/9o6xjHL7r4+uZbOfTey7S0tFBdXZ20l9zcXD73uc/x2muvUVRUxOrVq6e/qDFUF1iTNBBX67IdGBiIivyWLVsWFQwuX74cg8HAv//7vyOKIuPiRhKNwqkMkerqat59910cDocqIrwGzHUmUSyphMn/9HTtDWMERFCNARWVOUJ5hiFg0Guxh0ap0F/kWDCi3E89oGoEqCu3UjT6LkU1RaxbLFfyS9Q0fO9775GbW024OwfGQ3HbECVo6/WwFOLi6vn5+RiNRpqamrj11lvR6/Wc7nDxje0thCcKGZ3vDfPHz59jve0MWncnlZWVPPDAA3SMCPyf1/uSmhNNBgfk/1ebOmhtHcBkMtHrNnI8tAK6/EgIuHwmLgu38FcPb6az8QN+cS7RkJHV1rubITOnhr96pYOgflxR1LV48WK6urrYuXMnBQUFccWKpmOuu2T+at9pfrK7E5e4kRxziJFjp7ELsifm1KlTiKKIKIqYTCZKrAbahpnx4JOVlRX9DlVjYO65lh1Tb6buvKoxoKIyR6SaYaRJcldCuzDC0yuDnBzOprnbAwiEJAm3LzwZfZ94EK0v9nGifZRHH3005f7cbrecv5xv4XDLaFJJ0zwrMAQZGRmT72s02Gw2BgcHWbVqFTDp0YgfkEU6xEq+/ey9FBTINdXLy+WB6TuvHKd3DCyCiyyhl3FDKR5slGSbMPTuZ0NdBY2N40iSREugbGKwl49NnKhl9HdvdFErDRAyVoI/WWF9ocuNy1chp0z6gim7ud1111309PTw6quv8uyzz05bBjjCXD2kRVHkx/+1lx0nzUAWEgJdHpFuVrNMd5iOjg5EUSQtLY3169ezcuVKmnr8fO2Fc7MafKqqqjh58iTj4+PROgUqc8O1HrBvlvLPqjGg8v+3d+fRTZ73nsC/ryzJWmzLi7C8YGwZDDjGBAKEPUBSQghhCD0hJATIhMx0MtN7zzRdbuacnrmn93R6p7edTtN0SS5NaUKchrBMNtYQGlq2sGMcY5vFtrCMI+/WYmux9M4fQi+WJRnvm76fc1RTYaTHEuH56nl/z++hAQos31fU2kOK90RRREbnNUDwT1wLFy7E5gh//t62pnScPPg+8vLykJaWFvY5Ozs74XQ6ERcXh83LM3D+Zqv/+e4W74migPnpNjQ6tVI9QODPVTcDNz1z8OLvr2OyQYOyu+MOJkM7EqQgEFCYHY9/fFQrNc958sknUVFRgVu3TkFj1UA/SY+LFy9i3bp1OHToEJyy8P0JOjoFFAsLMG1CHCpqHd2e34dOqVDb/2cjneYWExODZ555Btu3b8eePXvw4osvhhRxRTLQf6QdDgf27duHAzdTAGi7hDH/yYNVnblYmHANS5YswZw5c6RCx8JsZZ8nn7y8PKkJUVtbW69PRaTeGSsT9lBiGCAagNAGQ/4iPAU8iJdZ8fh0Gb657j/pL9K++O7/EFVUVKC+vh5r1kQuXgoca6zVapGXHY+XH+7ExxetgCYNaQlAXMtZ1F1vCdl698mXxbjgesj/ad3mQbOttcv+hd4dlmIwGCCKorTlbfPmzWhsbMT58+dx+fJliKKIgwcP+pv/HGmF8+4n5mB3///d8NT1hDcAcLvd8HUrVox0XT0uLg4bNmzAO++8g88//xyrV6+O+LoNli8vVOLNAzdg9RrRCWWYn08Gb6we3/ve98Jukezr5JOTkwO5XI7Ozk5YLBaGARp0vdvQTERhhTYY8v/vxETg3R89gvn5/k/2Op2uxz3xAaIo4uTJk5g0aVKP18ADYSAuLg4AUJClxQzhHD74fiF++8ps/NMrGyGKIiwWC65duyY99p6vmuCfiIMr2QPnB/j5q+wjLVunpqYC8F8yuH79OgBAr9dj9erV+MEPfoClS5fC7Xbj6NGjeCCuDvfOOQjmE4EGqxu/3paPuZN10McrMNsYh7nKi4gXrFIwCOgpoGRlZWHVqlU4d+6ctHNhqOw7ehE//aQeDZ2JcImx8IpAuFMQp2clhg0C/SGXy2E0GiEIAusGaEhwZYBoACJtS7J5tYiLi4PJZEJMTEzIfvlITCYTzGYzNm3a1OP3dV0ZAO6FAofDAZ1Oh6SkJMjlciQlJWHPnj1YunQpMjMz0eJWhXyKFSFAp5FjWoYWtyztEO138PyS1IjL1kqlEsnJydBoNDCZTOjo6JCOeY6NjcWjjz4KjUaDI0eOICcZcDjOosT70N0uhaGrD90/JZ840YyPjl1Gize5T6e5zZs3D7W1tfj000+RmpoKg2FgDYQAf01AS0sLGhsbUVtbi8uXL+NU63SIQS2cgw92Gqr941OnTsWNGzekboZEg4lhgGgA7rctqaqqCl6vF7m5uT0+TqBu4OvqRiTELILzPp3w7HZ/85/uYcBut0On08HpdKKjowOrV69GW1sbjh07BrVajRTVQ7C4VCHjnZahlSbk3//+NDSdPReopaWlwWq1+osEb95EYWFh0O/Pnz8fFRUVaG5uxmv/dROKPjmBAzUTpbasPU2YCxcuxMWLF6Fsv4Jq32R0KvWY3Ivr6oIg4KmnnoLFYsGHH36I73znO9K5BvfjdDrR1NSExsZG6VZfX4+Wlhape2CAA/EId4iUIsYfqoaqYjywxbK2tnZQH5cIYBggGpBI25IW5Sfi+ztKUdr0ELSwYY0iNeJjBNcdKNDh1eHVP5eHVM535XA4oFKppGK5rmEAgNSxLiUlBYWFhZDL5Thy5AiMqipYXA9CJkSuZDcYDPddik5NTUVVVRUMBgNu3LgREgYCnQLffPNNnDlzBj/4zjNI338ae8+2oF1IgEa0YmZiPex3fHCmzgqatOVyOVauXIm9e/ciHxY8tugxLFkyu8fxBCgUCmzcuBHbt2/Hm+8fQp08XzrhcPOydGQl+oIm/EAACLxugccAIB0rrVar4XK54PP5L59oYYO721kMMgGYbUwY0iI0nU6HuLg4WK1WeL3eXhdKEvVGzE9+8pOfjPQgiMYqQ2IsZucmoNHqgcvjQ0FWPJ5ZlIbfHjChrtUDL+RwQYNjX7didm4CDImxIY/xfz+pxp1mV7fzBIBGqwcrZ+nDPu+1a9fgcDik7YFyuRwnTpxATk4OMjIyYDKZUFZWhozpi/Cb/TXYd7EdbUIqDOp2pIq3oUudBBExKMiKx2vfzg36FNvY2Ijy8nIsXrw44hY2l8uFK1euYMaMGbh27RoWLVoUtlNgXFwc/va3v8FgMODRxQ/BILsD7+3jWL84GzoVcPbsWZw9exZWq1Vq9Qr4W/dWVVXB7Xbj4o0mHL6pwdtf1OLiTSvSkmLDvo4Bcrkc37Sr8JeSONxpdqHd7cOdZicOX25AxbkDuF5yHtXV1XC5XJDJZFAoFBAEAW63G21iIm7iQdzyTUNMynRMN6aiua5SWh0QBAEFUzJQ1qQJqrUQBOC1b+ciVRd5XIPh0o0mfNWYiT3n7bh0y3bf14Kot7gyQDRA3a95v/ZuRVAnwkAjnXDtZn0+H8rNoe1Ke+pIV2Ky4YOrajS2z8LtdyukZjwajSZoZcCpTMNrRbfurjjI0Y4kNLYlYW12LdpqPsOzK1Zg6dJZIZO4wWCA0+mEzWZDQkJC2DEErscnJibC6XSipqYG2dnZId/34IMPoqKiAvv378ekSZOwbNkyOJ1OnDlzBuvXrw9qe3zhwgXk5OTg4YcfhkedgSueh1Bms8IDJVDtACDc6zfw0nTkpAhBn+4Dt7a2NhR3zg26rh8olGxLmIslORbU1dVJZwYkJycjLy8PvrgsvPGlG/D5X/8KixcVljjMikmETmjFlClTMH/+fOzevRurJ+ahPnYGquudw9ZIpsRkw0e3DPDBBzi8uHArfO8Fov5gGCAaZOGKCsNN7iaTCYcPH0aMcyIE6EOaBoWrnJfOP/D5CwG7TghxcXFBYeC2b0rITgdBBO7E5OPJZUn48ssv8c033yBvzrew62SDtOd93Rz/xGKxWCKGAZ1Oh9jYWHg8Hmi1Wly/fj1sGAhcx//DH/6Azz77DBs3bsSqVavgcrnw8ccfY+PGjVi+fDmWLl2Ka9eu4dy5c/jjh5/jinfB3TEHDm/q2rRIxL/8+RQKZeek50hOToZer0dBQQH0ej2KD3uB9uCzB0QIMLd4cUd5B9nZ2XjkkUeQnZ0t/YyvvVsBwB109DQgwixMw/dfngGfz4eioiJkZmZi06anB22nQG8VHb9z91c9914g6g+GAaJBdr+iwtbWVnzxxRcoLS1FRkYGvvsfpuN/72+SJu6eiuuk8w+6TI6BCaGwWxho8xrChpIqSweWv7gcaWlp2LH3r3ir5AaEu1X7gU/eDykmoL6+Puy5AIB/Ag7UFuTl5eH69etYuXJl2O/VarVYu3YtPvzwQxQXF2PWrFlYu3Yt3G439uzZgxdeeAFGoxGFhYUoLCzEf99eDNQ4u4Sj0B4F7THJ2PjsRuj1eiQlJSEmJgY2mw0mkwnV1dVQdioBJKDrdX1BAGbkpOAftv2DdJ/T6UR5eTkqKytxtTIBPrH7QUwy+NSGbkFg07AHAaD3IZOoPxgGiAZZoKhQEP0dAQOT+3NLUvHll1/i9OnTUKlUePrppzFz5kwIgoDU1NRedaTraUJYODUOTU1NAPxhIEnpgsOjQvdCt0AomT59OtwGD3D73mMGwkWtMO2+RYQGgwFVVVXILnwExy7I8defX8SU9LiQMwQCzzVr1iwcOnQIOTk5SExMxPr167Fr1y588MEH2Lp1KyZOnAgAqGnyhGniE0wpVyAzMxPV1dU4c+YMTCaT9LPr9XqsmDIFu8u6fIK++x5sXZGJqqoqVFZWoqqqCnfu3IEoikhMTIQhbjZuW8WQFZoMnYD3338fmZmZeP7550ckCABDe6AOkSB23zdDRANWXNWGn75zCm5FCqZn6bB4khO3Lv8V7e3tWLhwIZYuXSq1p+2L196tCHva3tzJOqzMrEFpaSleeeUV/PznP0ebmIgr3gXSp/7AhPj6y/lS0Njwi8totIWetx4LJ5ZpTmHWrFnQ6/XSLS4uTqoxuHjxIt7/7BSKfQv8Zwh02TIY7jq20+nEW2+9haSkJGzdulUq2isqKkJDQwNeeOEFXL16FW+fEdHa7bJJd0rBg0UxXwDwT/45OTnIzs5GTk6OtLOixGTDe8drcbPOjhRVJ6aqa+BuvI7Ozk5oNBoYjUbk5ubCaDTCZrNhx55jQScoBpowzVVewANZWjz//PP9es8GS4nJhu/9qSzkte76fhL1F8MA0SArMdmw/fAtXDdbkWtQI1t2C66GCuTn52PlypVBBwf157G7tj/uOiF8/XUp9pxthismCUpPM741TcDSJUtQ9Le6iCsO4cKFIAAZajvy3Ceg1+vR3NwsbauLjY2VgoFCocCfvkLIscyBcBLuOnZVVRV27tyJVatWYcECf12A0+nE9u3b0dra6m/QNPsxvH1W1qXe4V7NgJ+IHJ0bP1ydjOzsbGnyB/xdFpuamqRP/tXV1XA6nVAoFMjJyZECQGpqqhRGjh07hnPnziE9PR0VdS5YdXPR6lYhXSdA3XB6VASBgDeLDuLv1Qp0KvWj+gQ8Gnt4mYBoEN0r8BMhQoVyixcVMOJ/rHkIjy+YOuDHj3TCmigCf/xKBp+YDPhkcCAF+67LsHSp0GNxWaQ+Cf/xsSycOgRs2LABKSkpUhe+rreGhgY4sDjsZYsKcxtqa2uh1+uDDkoyGo3IzF+MXx5shnj8IoypKhhjKtHS0gK5XO6/tZuxJMGGq62psCPBv5sgqLufgB88OwsFdydBq9WKqqoqafnfZrNBJpNh4sSJmD9/PnJzc5GZmRmyL7+yshKfffYZ7HY7Vq1aBavViqami/jZK7PR0NCAoqIipE9MHzVBAAC8rZXYPNuINWt613eBqLcYBogGUfcCP0AGQQCOVYh4fMHgPEe4Q27+6Z3yu3vhA/UBMmk8PYWBSOFi8gQ5Th3y7yhITU2VVgO6EkURV376ORo8sd2W9EXInI14++1DAID4+Hjpz9tlenzwdQJ8ogg4vGipsuEyJmC+Jg0q9zfo7OzEV9e+QaN6JnxqNQrTNHikQI/T5a3S+J5dlIIYhxkHD/oDQGCLYFpaGmbMmAGj0Yjs7OyIE7jT6cTRo0dx6dIl5OTkYMuWLVCr1Xj99dcxb968e0EgPR2bNm0aNUGgo6MDTU1NWLp06UgPhcYhhgGiQTQSFd8ejwelpmaI3f5z7u3zRjpBLz4+vsciQkEQsCjLiU8qIXU0FCBCJhPwP7cuQprmITQ0NEi9AEwmE76og3/1Iii0iLAoC/DDdUvxTXss/tcnDYDHfyDzlWoHik0O/OgJHVZmNqGq6gIOfFAHURSRlJQEo9GI5cuXIycnR2pY1JMbN25g//79cDqdWLNmDebMmQNBEHD8+HH4fD5kZ2ePyiAAAGazGYD/UCaiwcYwQDSIJumVaLS50f0ad0bi0LSOdTqd+Mtf/gK1Lw1OQT+olea9aUucnJyMhGor2oVEwOuFFm342UsLUZjj37ufnp4e9P1//cVloFvBoggBNq8WDzzwAN59twKCIAva3QDRh38/eBNz1cUwGAxYsmQJCgoK+nQQUUdHB44cOYLi4mJMnjwZa9euhU6nA+Dvpnj27Fnk5eVh7969ozIIAEBNTQ00Gs2Aak6IImEYIBpEeaoaXEZiUAW/KAKqhpMwmXRhG/P0l91uR1FREdra2vDf1i7Dzz5twr1iO//XgZycl5qaitLS0oi/X2Ky4Z2LsfCJCgR6/NmhQ2VVJQpzZoX9M+G2xwl3w9K5c+dQWt0Jn9j9nyUZnDIdlEolzGYzzGYzTpw4Aa1Wi5SUlJBb4MTGgLKyMhw4cABerxfr1q3Dgw8+CEEQpMOhymtaIXfPQNN1E/Iz00ZlEAD8KwNZWVkRW0QTDQTDANEgqaurg+XGWfyXRU/gUr1Ousb93OIJuHqqHEVFRXj22WcjNvLpi9bWVrz33ntwu9146aWXYOlQA2jq8h132/AOYK+QI2YC/t6Uh5P/dgmT07Qh/QO6d8QLdOzb81Uz1q0I/5jdCxaFu0f/xtz5EkcsVugUi9HeqQ3Z61+YOwE/fPGHcLlcaGpqkm7Nzc2wWCwoLS2F2+32/+SCAJ1OB51OB5vNhubmZkycOBGrVq1CRkaGFATu7coQAKSgxaXH84/kjcog4PP5UFtby3oBGjIMA0SDQBRFHD58GBMmTMCGVfOwURZ8xG1hzgvYu3cvdu3ahfXr12PGjBn9fq6Ghga89957kMvl2LZtG5KSkvCrdyvu/m7wp8b+tqotMdnw2+Nu+JAC2DvREqYPfrj6CECGxo7Qf1Y6OjpQXV2N25WVWKJrwNWWCXAgHsmxLjykb0G7pRXPPbcJTmVa0NZJASIE4d4KR2xsLDIyMpCREbziIYoiHA6HdE5BRUUFKisr4fP5IAgCzGYz/vSnPyEmJgbJycn4yvYAfD51SKHnrpMNmD05uc+v11BraGiA2+2WGjMRDTaGAaJBUFpaitu3b2PLli2Qybqfde8/SW/Dhg349NNPsW/fPrhcLsyZM6fPz1NbW4v3338f8fHx2Lx5M+LjI0/MAylc7E0f/EhL/hrRhrq6OnR0dEj7/evq7hX9zZ2aiw1G/55/jUYDURSxc+dOHDhwAK+88oq0u6HC3AaZsxE/enZ2j3vpA8v9lZZ2TNIrkYXbaKu5gYKCAqxevRpqtRptbW1BKwoHzilCmhqN5ta+NTU1EAQhJAQRDRaGAaIB8ng8OHr0KKZPn47c3NyI3xcTE4Onn34asbGx2L9/Pzo6OrBkyZJeP09VVRV27dqF1NRUbNq0CWq1Wvq9wW5V25twEa7tsigCOTE3sX37BQD+cwmMRiPmzp0Lo9GIxMTEkOcSBAHr1q3Dm2++iSNHjmDdunX4txenwePx4Fe/+hU6LGqgIPwk2L0JU6PNjctIx/dXTsFTjxRK35eUlISkpCRMmTIFAPC3hvCdHEdra1+z2Yy0tLRReQmDxgeGARo2XT/B5Ro0YXvYj0UnT56Ew+HA448/ft/vFQRB+rR67NgxOJ1OPPbYY/ctCisvL8fevXuRnZ2NjRs3hkwK0sQM/4Tc02FHvXG/cCGKItI0TvznBSI+utCGFrcKWtGGvFgTtL42xMaq8NJLL2HChAm9KnhLTEzEE088gU8//RTTpk3D9OnTIZfLkZ+fj8uXL2PKlClwOp3o6OhAe3u79HV3aVy35X4BgiDgRJUSTz0S+fkiNVsaSMHlUDKbzT0GTaKBYhigYdH9E5x0Lv0YP4u9tbUVp0+fxsKFC3u95UsQBKxYsQIqlQqff/45Ojo6sGbNmrCXFwCguLgYn3zyCfLz87F+/fqgSvmAQPOgPx6+hQqzFflZifhPq4x9alXbNaxNSPCHjUD/gECf/gUTHfjoo49QWVkJu90OmUyGJUlJaGpqwpYtW5Cd/QR27tyJ27dvIykpSQoCXq83aBIP99XhcEClUmH37t1QqVRwOp0IdEv/85//LI1ToVBArVZDo9GgqWNGv5b7IzVbGo2tfdvb29HU1IRHHukh3RANEMMADYtAZ77up+O9d7wWv3hx+oiObSCOHj0KtVrdryrvhQsXQqVS4bPPPoPL5cL69etDWubuOvgVdp9pgluxEvb2JEyv7YgYngqz4/HT54x4/fXXsWn5JuT1MQgEhzUPRBHITpah0eaBVrAhw1uGqydbkZqaiqlTpyI1NRU6nQ4WiwXHjx/HtWvXUF5eDq/XCwD43e9+B5lMhvb2dqnSvzu1Wi1N7Gq1Grm5ubh+/Tq0Wi1WrFgBjUaDL774AsnJyVi3bh00Gk1QGKqMcHBTb5b7IzVbGm3YbIiGA8MADYtI16Cv3qzH668fRlxcXNhbfHy89OvuE+VIq66uxrVr17B+/fp+X8udPXs2VCoV9u3bh127dqFgwZP44GQ9Ki3tUMKJOzYZBOghegRcVE0EaQAADPlJREFUvGXFpUprxNUUURSh0fgnwcbGRqSlpcHr9Uq3zs5OeDweOJ1OuFwuuN1uuFwuuFwuFF1Wwue7V1Tnf698aGtuwALVFWkC9nhiUF9fH7YZ0ddffw2dTgeVSgXAvxowc+bMoMm+61eVShV2NaSsrAy7d++GUqlEQUEBbDYbjh49Kp1d0NVYW+7vD7PZDK1WG7begmiw8NRCGhaRjt6dogc2zrDDZrPB4XDAbr/36+5/NdVq9X0DQ1xcHFQqVb8as/SlpsHn82H79u1QKBTYtm3bgBvBVFZW4q33D+GCe67UsAgI/PzB3QwnyFswV30VXq8XPp8PPp8PoiiGvF59cbpzBdxQhdyvifHg5ZmWiBN64OtvfvMbPPzww1i2bBkA4I033oDNZsOPf/zjfo3n448/xpnSOnjSluJ2oxuiow4bFqTguSdDD3jo/r6N1uX+/tq5cyeUSiWee+65kR4KjWNcGaBhEekT3D8+Hf4sdp/Ph/b2dtjtdulms9lgt9vhcDjQ1uY/Fc9ut4csQcfExAQFBa1WGxIYuq829LWm4dKlS7BYLNi2bZv0KbvrzePxhNwX7ve6/rraNxkiRIjivWK4UALaOjXo6OiATCZDTEwMlEol5HI5FAoF5HI5WltboVQqkZ6eDoVCAaVSKd1iY2Olm0qlkr62HWhEsak9JKzNMOrx7W8vvu/7m5KSgqame02P1IZ8HG9w49s/v4C89Pg+F4tmFSzFGxdvAtWOu70N9dh+Bih4wCq1Og4YK8v9/cFmQzRcGAZoWPS1YEsmk0kT9v243e6QwND1FggNkVYb4uPjcap1Gnw+bdAyuSCK+D8fXsITWXeCJm6XywWr1QpBELBjx477jk8ul0uTcffJOT4+XrrvSLMO9w7wCU8mADNzJ+CfX/zniKsR+/btg91uxwsvvHDfsQW89C0tXt1R1u/l9pSUFOnSQYnJhl2lOvjgAxw+XAjTsOh+dp9u7LJCEuhu6MPbn1fhN995sNc/11hXX18Pt9vNegEacgwDNGyG6hOcUqlEcnIykpN77hwXWG0IFxgOnFOFVKWLENDY7v9PJC4uTpq0a2pq4HA4sGzZMsTHx4ed5LtO/pF2CXT3129CL6V0FZigX3x0Yo+XJRISElBbW9ur5wwYaHW9Xq9HWVkZRFHsVcOi+4nU3bDym9HZFGiomM1myGQyNhuiIccwQFGjp9WG4/XhaxpmGPV4/vl7y+T19fU4d+4cHnvsMSxefP/l874IdykFAKZlatHQ5u71BK3T6WC1WiGKYp9qGQYS1lJSUuByueBwOAalG2Kk7oax3lZ4PB4oFIp+jXOsMZvNMBgMUfPz0shhGCDC/avSS0w2vHe8FqVVTYiPWYB1Gf0/WyCSwdr7npCQAK/XC4fD0avLLIOhwaVFcedcbPltOURRJp2bGNDX7n7d3w/Af8bAJOE6ysoyMXPmzMH9AUapmpoaTJ48eaSHQVGAYYAIPU/EwcWFCjh9ifjBOxVD0jBpMC6l6HQ6AEBbW9uwhIESkw3/8v/q4EUK0O6DIPgQvDAgwicKWJzf+61x3d8PrWCDwfU18tK0uHLlSlSEAYfDgebmZixfvnykh0JRgGGA6K5IE3Gkhkn9PRFwqAXCgNVqRWZm5pA/X+D1kY4yDkoCIvwtgoE3DphgNGh6HaC6vh9OpxN/+MMFeDwCamtr0dLS0uuOj2NVoNkQTyqk4dC7yiaiKDbYJwIONbVaDblcjra2tmF5vvDFfgH+mgVR9N/uFRf2jUqlwlNPPYX6+nrI5XJcuXKlf4MdQ9hsiIYTwwDRfeQaNFIxX8BoPuFOEATodLphCwPhXp9wBhqgpk6dipkzZ0IURVy+fBk+n6/fjzUWmM1mZGVlDbihFVFvMAwQ3cfm5RkQhHvV/WOh5W1gR8FwCPf6AP7XqKvBCFCrVq2CQqGAzWbDrVu3BvRYo1mg2RAvEdBwYRgguo9AMdvcyTro4xWYO1mH118O3zlxtEhISBi2lYFwr8+ra7MhG4IApdFosHbtWgDA3//+94EOfdSyWCzweDxsNkTDhgWERL0w1lre6nQ63Lx5c9ieL9zrYzRohuTMgAceeAAGgwFmsxmNjY3Q6/UDfszRJtBsKD09faSHQlGCYYBoHEpISIDdbofX6x2x0x6HMkA9sOBJfL6vBFt/W47C3Al9PvtgtDObzUhLS2OzIRo2PLWQaBw6fLoc2w/dghCXhilpceNqsgz0ffD5RIgQpEsQQ9H3YbgFTmC8WlmP9AQBrz7z4Jj/mWhsYM0A0ThTYrLhl4etaEEKmu1eXLjVhld3lKHEZBvpoQ2KQF+DrodKDWTb4mgRCDkXbrXB6YtFdZtyXL1vNLoxDBCNM+EOChoPk2XAWOv70Fvdm1sNtDcDUV8wDBCNM+N1sgwI39fAB0P82L7iOd7fNxrdGAaIxpmx1iSpr8L2fYCAJNsluFyukR3cAIz3941GN4YBonFmLDZJ6otwfQ3+9blJ0HgbcPTo0ZEeXr9tXp7hP3b67jFP4+19o9GNuwmIxqFAVfpg7/Efzc6fP4+DBw9i69atMBqNIz2cPqurq8Mv/303nBMWo8EREzXvG40ODANENC6IoohfvrUbFxsS4VWlYrJBM6a2VH744Yeor6/Hd7/7XchkXLSl4cW/cUQ0Lnx9244jdUbUe3RosnnG1JbK+vp6lJeXY8mSJQwCNCL4t46IxoWxvKXyxIkT0Ol0mDlz5kgPhaIUwwARjQtjdWteU1MTSktLsXjx4hFrHU3EMEBE48JY3Zp38uRJaLVazJ49e6SHQlGMYYCIxoWxuKWypaUFxcXFWLx4MeRynhtHI4dhgIjGhXD9B15/OX9Ub807deoU1Go15syZM9JDoSjHKEpE48ZQHps82KxWK65cuYLly5fzqGIacVwZICIaAadOnYJCocC8efNGeihEDANERMPNbrfj0qVLmD9/PmJjY0d6OEQMA0REw+3MmTOQyWSYP3/+SA+FCADDABHRsGpvb8f58+fx8MMPQ61Wj/RwiAAwDBARDauzZ88CABYsWDDCIyG6h2GAiGiYOJ1OnD17FnPmzIFWqx3p4RBJGAaIiIbJuXPn0NnZiUWLFo30UIiCMAwQEQ0Dt9uNr776CrNnz0Z8/OhthETRiU2HiIiGUInJhqLjd1Be0wq5uwCPGB8a6SERhRBEURTv/21ERNRXJSYbXt1RBlH0n6AoQIRMJuDX2/JRmM3VARo9eJmAiGiIFB2/IwUBABAhQBT99xONJgwDRERDpNLSLgWBAJ/ov59oNGEYICIaIrkGjXSkcoBM8N9PNJowDBARDZHNyzMgCJACgUwABAHYsiJjZAdG1A0LCImIhlBgN0GlpR25Bg22rMjAjEksHqTRhWGAiIgoyvEyARERUZRjGCAiIopyDANERERRjmGAiIgoyjEMEBERRTmGASIioijHMEBERBTlGAaIiIiiHMMAERFRlGMYICIiinIMA0RERFGOYYCIiCjKMQwQERFFOYYBIiKiKMcwQEREFOUYBoiIiKIcwwAREVGUYxggIiKKcgwDREREUY5hgIiIKMoxDBAREUU5hgEiIqIoxzBAREQU5RgGiIiIohzDABERUZRjGCAiIopyDANERERRjmGAiIgoyjEMEBERRTmGASIioijHMEBERBTl5CM9AKLxrsRkQ9HxO6i0tCPXoMHm5RkozI4f6WEREUkEURTFkR4E0XhVYrLh1R1lEEXAJwIyARAE4Nfb8hkIiGjU4GUCoiFUdPyOFAQA/1dR9N9PRDRaMAwQDaFKS7sUBAJ8ov9+IqLRgmGAaAjlGjSQCcH3yQT//UREowXDANEQ2rw8A/6yHB+AezUDW1ZkjOzAiIi64G4CoiGUZ1BgjvI8qjpz4VakID8rEVtWZGDGJBYPEtHowTBANIRKS0sR52vCg/IWPLHqCcybN22kh0REFIKXCYiGUHFxMXJzc+Hz+aBUKkd6OEREYXFlgGgIlJhs2HG0GtdMU2BMVUEjNiM2Nnakh0VEFBabDhENskCjIZ9PhIjAVgIRuRMU+N66PDYbIqJRh5cJiAZZoNHQvSAAAAIqGzrx6o4ylJhsIzY2IqJwGAaIBlm4RkMB7D5IRKMRwwDRIAvXaCiA3QeJaDRiGCAaZJuXZ0CIEAbYfZCIRiOGAaJBVpgdj19vy0d+pjbofnYfJKLRirsJiIZQicmGouN3UGlpR65Bw+6DRDQqMQwQERFFOV4mICIiinIMA0RERFGOYYCIiCjKMQwQERFFOYYBIiKiKMcwQEREFOUYBoiIiKIcwwAREVGUYxggIiKKcgwDREREUY5hgIiIKMoxDBAREUU5hgEiIqIoxzBAREQU5RgGiIiIohzDABERUZRjGCAiIopyDANERERRjmGAiIgoyjEMEBERRTmGASIioijHMEBERBTl/j9gPJ+41oPzcAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxU15Xo+9+p0lwqleZZIAmhASEQMx4wk8ExDsSOncRxcAby7Nx00t3xu7c7N/e+vjc9fdIZOk7a6QyO7Y5tnMTxFDu2g7EhNsYgQCCBsAbQiCY0q1QqqVTDOe+PUpWkUklIICGQ1vfzsQWlOufskora6+y99tqKpmkaQgghhFiwdHPdACGEEELMLQkGhBBCiAVOggEhhBBigZNgQAghhFjgJBgQQgghFjgJBoQQQogFToIBIYQQYoGTYEAIIYRY4CQYEEIIIRY4CQaEEEKIBU6CASGEEGKBk2BACCGEWOAkGBBCCCEWOAkGhBBCiAVOggEhhBBigZNgQAghhFjgJBgQQgghFjgJBoQQQogFToIBIYQQYoGTYEAIIYRY4CQYEEIIIRY4CQaEEEKIBS5grhsgxGwra7Cw//0WatsGyEwIY++WZAoWG+e6WUIIccNQNE3T5roRQsyWsgYLjz1TgaaBqoFOAUWBx/fleQMCCRaEEAudTBOIeW3/+y3eQADcXzUNnn+/GRgJFoprzHRaHBTXmHnsmQrKGixz2GohhLi+JBgQ81pt24A3EPBQNThX3c4vf/lLfvTiGVRVGxcs7H+/5fo3Vggh5ogEA2Jey0wIQ6eMfUynwKLYYFJSUugcCEBj7BNUzR1ECCHEQiHBgJjX9m5JRlHwBgSenIG/uW8Zu3fvZnlGrN9gITMh7Po3Vggh5ogEA2JeK1hs5PF9eaxdYiLWGMjaJSZ+8tU8li9yJwhOFCw8vDV5DlsthBDXl6wmEAue72qCh7cme4MFIYRYCCQYEEIIIRY4mSYQQgghFjgJBoQQQogFToIBIYQQYoGTYEAIIYRY4CQYEEIIIRY4CQaEEEKIBU6CASGEEGKBk2BACCGEWOAkGBBCCCEWOAkGhBBCiAVOggEhhBBigZNgQAghhFjgAua6AWLm+e7Ct3dLMgWLZRc+IYQQ/smuhfNMWYOFx56pQNNA1UCngKLA4/vyJCAQQgjhl0wTzDP732/xBgLg/qpp7seFEEIIfyQYmGdq2wa8gYCHqrkfF0IIIfyRYGCeyUwIQ6eMfUynuB8XQggh/JFgYJ7ZuyUZRcEbEChoaJrKnTnK5AcKIYRYsCSBcB4avZogIz6UeHsZjq5qvvzlL5OUlDTXzRNCCHGDkWBgARgaGuK5557DbDazb98+oqOj57pJQgghbiAyTbAABAcH89BDDxESEsL+/fvp7++f6yYJIYS4gUgwsEAYDAb27t2L0+nkhRdewGazzXWThBBC3CBkmmCBaWtr4/GnX6ORbIYColgiFQqFEGLBk3LEC0y7LYxTttWomgo46Ok3c7rWLBUKhRBiAZNpggVmpBKh+1cvFQqFEEJIMLDASIVCIYQQviQYWGD8VSgElcigoblojhBCiBuABAMLjG+FQp0CCmDsPcHp06fntG1CCCHmhqwmWIBGVyjMTAjjk4WhHHnzeZxOJ4V3fIpjl0K935OVBkIIMf9JMCAA6Ojo4Ae/fJHT9rUoig5VGx41UJCVBkIIMc/JNIEAIC4uDmfSZjTwJhjKSgMhhFgYJBgQXk3dTnzfErLSQAgh5j8JBoSXv5UGOsX9uBBCiPlLggHh5XelgQIPb02e24YJIYSYVZJAKMbwXWnw8NZkli+S5EEhhJjPJBgQQgghFjiZJhBCCCEWOAkGhBBCiAVOggEhhBBigZNgQAghhFjgJBgQQgghFjgJBoQQQogFToIBIYQQYoGTYEAIIYRY4CQYEEIIIRY4CQaEEEKIBS5grhsgxELgu+fD3i3JFCyWPR+EEDcG2ZtAiFlW1mDhsWcq0DRQtZHdIB/flycBgRDihiDTBELMsv3vt3gDAXB/1TT340IIcSOQYECIWVbbNuANBDxUzf24EELcCCQYEGKWZSaEoVPGPqZT3I8LIcSNQBIIhZhle7ckc7rWjKKBxkjOwMNbk+e6adMmiZBCzE+SQCjEdVDWYOE3hy5xvq6LzIRQvrEnl+WLbq5OVBIhhZi/ZJpAiOugYLGRf9+Xz4OZNWyKvnjTBQIgiZBCzGcSDAhxHeXl5VFTU4PNZpvrpkybJEIKMX9JMCDEdZSXl4eqqly4cGGumzJtkggpxPwlwYAQ15HJZCIlJYWKioq5bsq07d2SjKKAgnt44GZOhBRCjCXBgBDXWV5eHtXV1djt9rluyrQULDby+L48kkL7MQS6WLvExE++mndT5j8IIcaSYECI6ywvLw+n00l1dfVcN2XaChYb2bOkk88vqeX7X8qRQECIeUKCASGus+joaBITE2/KqQKA0NBQBgYkaVCI+USCASHmQF5eHhcuXMDpdM51U6bNYDBgtVrnuhlCiBkkwYAQcyAvLw+73U5NTc1cN2XawsLCZGRAiHlGggEh5kBcXByxsbE35VRBWFgYDocDh8Mx100RQswQ2ZtAiDmSl5fHqVOncLlc6PX6Wb3WTO4pYDAYABgYGMBkMl3XawshZoeMDAgxR5YtW4bNZqO+vn5Wr+PZU6C4xkynxUFxjZnHnqmgrMFyVecLC3MXGZpK3sBMX1sIMTskGBBijiQkJBAVFUV5efmsXmem9xTwBANTyRuQ/QyEuDlIMCDEHFEUhby8PKqqqlBVddauM9N7CoyeJrje1xZCzA4JBoSYQ3l5eVitVi5dujRr15jpPQUCAwMJDAyc0jRBZkIYiuxnIMQNT4IBIeZQSkoKERERs7qqwLOngCcgUNCueU+BqS4v/MLmRPe8AO6RD9nPQIgbkwQDQswhRVHIzc2loqICTdOufMBV8OwpsHaJiVC9nYQwB9lJBv7x99V8+9mqq0rmm3Ktgb4GCvVFRNFFZKgi+xkIcYOSpYVCzLFly5Zx8uRJmpubSU1NnZVrFCw28v0v5fAfv6nijzUJtA9aUTXo7jdzutbM4/vyprXcz2AwXDEYUFWVDz/8kPy0cExNxfzVI39FXFzctb6UG44snRTzgYwMCDHH0tLSMBgMs76qAOBsdwxw7dn9UxkZqKiooLOzk/T0dBRFISoq6qrafCOTpZNivpBgQIg5ptPpMKYU8HSRxmd+UHLVQ/dT0TkYiMbYjL6rye4PCwubNIFQ0zSOHDnCkiVLUFUVk8lEQMD8Goh0uVw88269LJ0U88L8+tcpxE2orMHCHyqiUDUVHI6rHrqfirToAD5usTP6PmC62f1lDRZeroigsXsljc9W+R0Wr6yspL29nXvuuYfjx48THR09Uy/huhsYGKCzs5POzk66urq8X7u7uyl3bEElZMzzVQ3O13dy4kQvS5cuvalfu1g4JBgQ88rNOH87chfp7qBVzf2n/e+38P0v5czotT57SwzffaUVFPcd7HSz+z3D4qqqR0NPcc34wMUzKpCens6iRYt46623WLRo0Yy+jqsx2XvD5XLR09Pj7exHd/yDg4Pec0RGRhIbG0tWVhaxsbF0FOspb3GMqaWgoBEVNMTBg4c5cOAA0dHRLF26lKVLl7J48eJ5N0Ii5gd5V4p5w9NReYZtZ/MOeyZdz8I8G/ISKdT/kf7ojTR0DJGdbORru7KmnN3vqSjoaa6/wOXixYtcvnyZL37xi2iaRnd3N6tWrZrx1zIdvu+Nrn4zp2p62ZPeQsBAMz09Pd7CT0FBQcTGxhITE0NWVhYxMTHExsYSHR1NYGDgmPMGx7nPq2gaGspwcKXwP7+wjuzE26mtreXixYtUVFRw4sQJAgMDycjI8AYHU9nbQYjrQYIBMW/4K307W3fYMykzIYzufvOYgGC2CvMEBweTEGrjnvx+jh49yue3fZ7saSzzu1Lg4hkVSEtLIz09nb6+PpxO55wPlT//l2ZUVfPmS3hWcRa3RfKFwhBiY2O9/4WHh6P4VkqagGfZ5r//oYR2q46CjDge3prsDa5yc3PJzc1F0zTa29u5ePEi1dXVvP3222iaRlxcnDcwSEtLm/UNq4SYiAQDYt64WUvf7t2SzOlaMzrc7XUXBVJmrTBPZGQk/f39ADidzmkd6y9wAZUkk7vzrKmpobm5mb1796IoCt3d3QDExMTMRNOnTdM0Lly4QFldJxpBPt9VGNJHcvfd1zZqUbDYyCfSWlBVlYceut3vcxRFISEhgYSEBG6//XZsNhs1NTVUV1dz9uxZjh07RnBwMJmZmSxdupSsrCyMxht3NEvMPxIMiHnjet5hzyTP3eX+91s4X99FZOAg39m7ftYK85hMJiwW92qF6QYDnsBl9LC4pimEdhyjsTGGI0eOkJKSQmZmJgBdXV0oikJkZOSMv44raW1t5eDBg9TX1xMTsonWwaBZe29YrVZiY2On/PyQkBDy8/PJz89H0zRaW1u9owZvvPEGAImJid5Rg5SUFHQ6WfwlZo8EA2Le8L3Dds9sz94d9kzyFAUqKSnhjTfeJSNm46xdy2QyUVdXB0w/GPAELv/63HGsRLBsURQP3h5P6ZFynn/+eRwOB5///Oe9w+zd3d1ERkZe1+Fvi8XC4cOHKS0tJTY2loceeghbYAKP/Vel970x02WRrVYrixcvvqpjFUUhOTmZ5ORkNm/ezMDAANXV1VRXV1NcXMyHH35IaGgoWVlZZGVlsWTJEu9mUULMFAkGxLwx+g675rIVna2dW9MGyU9bN9dNm7Ls7GwURaGqqorVq1fPyjUiIyPp7e1Fp9PhcDimfXx+moF8TnDXXXexfn0OZQ0WypWNlNk6MGBhc38Q2cPP7e7uvm5TBHa7nWPHjnHs2DECAwPZtWsXq1ev9gYinveGZzXB6Ln9a2W1Wmesgw4LC2PFihWsWLECVVVpbm72jhqUlZUB7j0tPKMGSUlJKIpyU66kETcOCQbEvOK5wwYoLy/npZdeorIyl7y8vDlu2dSWPRoMBtLS0mY1GDCZTDgcDoKDg6c9MgDQ19eHqqpER0f7ZOmHMEQw//TaZXQ6HXcULqKrq8s7ZTBbNE3j7NmzHD58mIGBATZs2MCmTZsICRm7/n/0e2MmORwO7Hb7rNyt63Q60tLSSEtLY9u2bVgsFu+owfHjx3n//fcxGAwYEpfx8gX3NMXNtJJG3DgkGBDzVl5eHjk5Ofz5z38mIyNjXOdwPU1n2WNubi6HDh3CbrcTFOSb9HbtPPP3Op3uqoIBT1JgdHQ03//T2BUcDGfrP/7aBV491Uvl5QIWu4JJXWaZlU6prq6OgwcPcvnyZfLz89m+fft1L3vsqcR4PYbujUYjq1atIj8/n97eXmpqaqirq+OPF3XuolXXoVaFmJ8kGBDzlqIo3H333fz85z/n0KFD3HPPPXPWlukse8zJyeHgwYPU1NTMyoiGJxhQFOWqgwFFUTCZTNS2NYxbwaGh0Ksa6b00CIRQ3QmPPVMxo3epXV1dvPvuu1RVVZGSksK+fftIS0ubkXNP10wGA6qqYrVa6evrw2KxeL96/vP8fWhoaMxxfa6t+FaXVzWobOzFZrPNaSA8m2RqZOZIMCDmNZPJxLZt2zhw4AArVqyYkQ7jaj6AprPsMTo6mvj4eKqqqmYlGAgNDSUwMBBFUSbMGZjsNY5OCvS/1NDzF/cowUzepQ4MDPDBBx9QXFyM0Wjk/vvvJz8/f8p1AWZaWYOFX73dxkXnVvre7uLL2w0TvheGhoau2Mn39/eP2cpap9NhNBq9/2VmZhIREeH9u+fP//C7Ooprxv4eFDQC7F38+Mc/prCwkA0bNszZEs/ZcLMWGbtRSTAg5r1169Zx7tw53nzzTR599NFrymy/2g+g6S57zMnJ4dSpU6iqOuNLyjx39QMDA35HBq70Gnt6erxFhPZuSaa4ptdzZnQKqNr4jvla6z24XC5OnjzJkSNHUFWVrVu3snHjxjkt7estzayBRgil9Va+9XQFj96iERNoGdfp2+32MceHhoZ6O/X4+HhvbYHRnb3BYJhSoOO7ksZbCfHza+lvDaW4uJhTp06RnZ3Nxo0bvTtJ3qw0TePXB2rHFJKSqZFrI8GAmPd0Oh27d+/mySef5NixY2zatOmqz3W1VQ6nW1goNzeXDz/8kIaGBjIyMq66vROJjIzEarX6DQau9Bq7u7u9y+gKFhu5M6GWUnMKPfZQAEL1Oqx2J4zaHVHh6tb0a5pGZWUl7777Lr29vaxevZqtW7feEEvrvKWZR/2cQOUPx7u5I+ait2NPTEwc18kbjcZxpY2vxeiVNONWS+TGs2nTJsrKyigqKuK5554jISGBDRs2UFBQcEPulTDRyFR/fz9nz56ltLSUqssFaH42ibrRi4zdqG68d4EQsyAxMZFbbrmFDz74gPz8/Ksuj3u1VQ5Hf1h/3NCNgT7+vy/eMuHStqSkJIxGI1VVVbMSDJhMJi5duuQ3GJjsNfruNWCz2ejo6KBTXQJoqBo4XK7ho9x1HsB993Zb3vQKD7W0tPDOO+9w6dIlsrKyePDBB4mPj5/2a50NPT09fFzfhar5foTq0IUn8bd/u+u6t2my1RIBAQGsWrWKwsJC6urqKCoq4o033uDQoUOsXbuWtWvXEh4efp1b7J+/kaniGjO705vpaypDp9ORl5dHtt44bpOom6HI2I1KggGxYGzevJny8nLefPNNHn744asaJp1ojtxTjncyng/rlpYWfv3rX6MfSAOW+X2uoijk5uZSWVnJXXfdNeNDupGRkTidTr/BwGRTGhaLZcxeA/X19dS7loDCuABiZGRAQUHjo4pe9qxPuGLbzGYzhw8f5ty5c8THx/OFL3yBrKysq3uhM2xwcJAjR45w8uRJwljHgBKNdhN1RoqikJmZSWZmJl1dXRQVFXHs2DGOHj1KQUEBGzZsIDExcU7b6G9kClROthr51ic+QUFBAaGhoWQPBw2zVUhqoZFgQCwYQUFB3HPPPbzwwgucO3eOlStXTvsc/uZmNQ0CW4/w0UdWbr31Vs5f6h83xAmMeSw6PoeioiKWLfMfDMBI3kBbW9uMf0CbTCZUVR2XlT76NY7dic/9IdvT415W6Fm+V1NTw6AuguEN/0YZG7xoKNRcYfRkaGiIjz76iOPHjxMcHMwnP/lJVq1adUOU4XW5XJw6dYoPPvgAVVXZvHkzu1MK+B/PXUTj5uyMYmJiuOeee9i2bRtnzpzh5MmTlJaWkp6ezsaNG70FsK4XTdPchZXqOlA13yW1OhyBMaxfP7KPxKRTI2LaJBgQC0pWVhYFBQW88847LF26lLCw6d3F+fsA+sIdibTXWHjvvfc4WdnOmw0pwNghTg/PY5DJSt1xmpubSUlJ8Xut9PR0goODqaysnPFgwLO80GazTfga//X5IqxaOMsWRXs/ZE+dqgSgurqajz76iPPnzxOqrsJGDL5L28ZSiQvzv4xRVVVKS0s5fPgwQ0NDbNy4kdtvv53g4OBrfZnXTNM0KioqeO+997w5C1u2bPEOqc+Hzig0NJTbbruNjRs3UlFRQVFREb///e+Jjo5mw4YNFBYWzkq9Cw+r1coHH3zAuXPnGBoaIsS1Fhux3sRAmHjEZbYKSS1EijZ6HYsQC4DVauVnP/sZOTk53HvvvTN23gsXLvC/f1tDpysa3ztjXzoFYgN6+NxyK5/+9KcnfN6rr75KR0cHX/va12asnQAnKtr4/m+LGdSZWJEZ53d55OOPP87ixYtJTk6mtbWV1tZWOjo6ANDr9cTExNDe3k5i9kZeLI9EQwN0w1kCeL+6R080diTU8J1vPjTmGjU1NRw8eJD29nYKCgrYvn07JpNpRl/r1WpqauLgwYM0NjaydOlSduzYQVxc3Fw367poamqiqKiI8vJygoODWb16NevXr5+x340nMfSDDz6gra0NgMDAQPLz84nPWs8//KHRO1XgGXH5yVfzbrpA62ai/+53v/vduW6EENdTUFAQBoOBI0eOsGjRohmrWBcTE8OLJywM2q8cX2uAPjCEwPYiVq1aNeFdsKqqnDx5ksLCwhkrHFPWYOHvn69mQAvFqQXQ2jPEgdJOUsIGaGu8wKlTpzh8+DA9PT20t7dTX1+PXq8nNTUVTdOIiIjgb/7mbwgICODChQv81VcfoqX8COZBCDVEULA4gs/elohT1ejptZAQZuORLZE0lR8lNzeX8PBwOjo6eP3113n//feJjo7ms5/9LBs2bLghiuP09PTw1ltv8c477xAaGsqnP/1p7rjjjhtiBcP1EhERwbJlyygsLERVVc6cOcNHH31ER0cHRqPxqoMCi8XCgQMHePXVVykrK8NqtZKYmMiuXbu47777yM3NJS3eyKrMCDr7HAw5VPLTjHz705kSCMwyGRkQC5KmaTz77LP09fXx9a9/fcaWeX372apxxV/8URRYk2kkuvWPrFu3jjvvvNPv84aGhvjhD3/Ijh072LBhwzW3r6zBwj+8cBHzoO+QvUoUXawJKSUxMZGkpCSKi4u59dZb2bp1q7c2w69+9SuSk5PZvXs3r7zyCt3d3ezatYunnnqKxMTEcSMYJSUlPP/6EdSUrVQ2mkk0atyaNsjlCyeIjIzkzjvvJC8v74ZY8z44OMiHH37oTg4MC2Pbtm2sWLHihshZmGt2u53S0lJOnDhBd3c3KSkpbNy4kby8vCvW7dA0jXPnznH06FE6OzsB9xbOK1eu5I477pj2VJ2YHZIzIBYkRVH45Cc/yS9/+UuOHDnC9u3bZ+S847dRVnEX4xkpjKLgXpz+2Y0xdDes5vTp02zevNlvQBIcHExGRgaVlZXXHAx4lmy5xiX7AejAkMh3/v476HQ6b8JcbGys98Pes6xw+fLlaJpGbW0thYWFvP766+h0OrKzs8edVTFlUOoagkuDaATT0Kdy6eMgHtl4J5+5a/0Nscbd81qPHDmC0+nkjjvu4JZbbpnROgDX02yU6A0KCmL9+vWsW7eOixcvUlRUxCuvvEJERATr1q1jzZo1VLc7x1z33rURNFd8RFVVFU6nE0VRSEtLY+vWrbOyXFZcm7n/lyjEHImNjWXTpk0cOXKE5cuXk5Bw5WVvVzI6wbC6tR8GOsgLb2Fw0EZ/1Hq6bUEsig0iuO0odecusXPnTk6cOMHZs2dZu3at33Pm5OTw9ttvMzg4SGho6FW3zbNkayL9NpXvPH+RvVuSWRLnDgBGJ44NDAxgt9uJjo6mra2NgYEB+vr66O7uRlVVetVIvv1s1ZhO6HcftjFcYmn4LO677NLOKD4/KhCYixrzvsmBq1atYuvWrWPW299ste9nu0SvoihkZ2eTnZ1NW1sbRUVFvP/++7zxl7MU29eiKAqqBp2WXk5V91CobybFGMKaNWu47bbbbtoAayGQnAGxoKWmplJeXk5tbS2rVq2akeHqhMhgdhTG8rnbkzEN1dLVUsu6FUux1h1lS7aerz+wkdR4I0eOHCEtLQ1N06iqqmLdunV+r280Gjl+/DhxcXHXtKrgyYONWIf8DgsA7s6jtWeId0o7WZYSTE35aVavXu2tKdDW1kZJSQmbNm2ipqaGS5cucfnyZdatW0d5k5U/1SfT0jOEdUj1nqfLPIhDHT/MPuRQ+extScBIB9bSPfbYVZkRJETOzoqCpqYmXnnlFY4fP05qaiqf+9znWL169ZjgZy7ada1+/Ho9Ld1D3mkqTyJnZ5+DHYWxM3qt8PBwcnNzWbNmDa+V6egeHB30KShAXOpS/umv7yM9Pf2ayoCL2SeTYWJBCwgIYPfu3TQ1NVFcXDzj59+8eTM6nQ5FUfjMZz5DTU0NTz75JFFRUeTl5fH222+zcuVKurq6qK6u9nsOo9FIamoqVVVV19SWzIQwdONijbFDBepwed0Xj7lXDYzuHD1bF0dFRVFbW4uiKCQlJZGenk69K8t7vOerS9VwOJ24p0rGXIWUqJGOwV+RGU1zPz7Tenp6ePnll3n66aex2+3s3buXL3zhC34rG17Pds2E/v5+Khp7r6pC5rUwGAyYHSH4qy3R0uvyf5C44UgwIBa8RYsWsXr1ag4dOkRfX9+Mnjs0NJTNmzdTUlJCTEwMjz76KCEhITzzzDOkpKSgqiplZWUkJydTVFQ04XlycnKorq6ecJfBqdi7JRlFYVRA4H+UQNXgUqd7Ux3fYCA8PBydTkd9fT1Op5NPfepTmM1mBjD6rUDovldUfLoJhYpmK99+toqyBgsXWyzT6sDKGix8+9kqPvODEu85rmRwcJCDBw/yn//5n1y6dIk9e/bw6KOPsmTJkgmPqblsve4d63R5CvX84Q9/4PHHHyfQ3uXOSRnlelRFzEwIm5PripkjwYAQwI4dOwgMDOTAgQMTPudqOiFw75oYFRXFwYMHiYqKYt++faxatYr33nuP2NhYPv74Y9LS0qitraW9vd3vOXJzc3E4HNTV1V3V64ORfIbVmUaCsBGtdGGkd9yHOKiEau5CSaOXPHp2KywpKUFVVdauXUtCQgI9PT1EBg+NO4+CRmSAla/flTL8nZHv2116TlWb+dbTFbgGuqfckXiG7otrzHRaHBTXmHnsmYoJfxcul4sTJ07wxBNPUFxczKZNm/jmN79JQHQW33n+4oS/y/b2dgLsnfiOnNwoHVxfXx9Hjhzhpz/9KS+88AJdXV3s3LmT7+xdj06neAO+61UV0VNl0/N7vNmqMQrJGRACcE8XmEwmjhw5QmJiIrGxY+dXr2X+WKfTYTKZOHr0KCkpKcTFxZGdnU1sbCwlJSXodDra29sJCQlhcHCQnJzxFdXCwsI4f/48DofD7/enyhjkwnzxfQy9p8k0mgl09tBGKoqieAsEKYpCrq6MQG2AlJQUb2LlRx99RHR0NGfOnMHlcvHlL38ZnU7HiRMn0Aa7aRzyFORRhjsFjb/5RBIfVTto7RkaM5/soaESZdAz6ArwFiny/P+v70ogNW4kmU/TNP7t5QtcNju9iZATzYl7itq8+OKLnD9/noKCAj73uc+RnZ1NedPApL/LyspKfvvb3xJr0NFgi0NRGPWzgW9/OpN40/XPGVBVlYsXL3Lw4EHefvttmpqayM7O9g6v9fAAACAASURBVJYUTk1NJTkmbE7W6EcEq5QfewNjbBqKPlBqA9yEZDWBEMOWLVvG0qVL+fOf/0xGRsaYu+Kr3brYIycnh/T0dA4ePMiSJUvQ6XQsX76cpKQkXnzxRTo6OoiIiODcuXNs377db4GbnJwcSktLUVV12mvfNU3jzJkzHDp0CIfDgV6vZ8+ePfzud79jTdBpXMmbqWkbGu5dNXoNa3B0F/Hqq69y9FwTtY50yi7lENPuIMEexJqlyQQEBNDc3Ex9fT0BLherAwfRUrdS125DGWjj7uVB7LxlI7/+sGSSugs6nDoDj+/L8mbtp8UEEt5zgqJ3izCo2+nu7qapqYmmpibKLRuvuG1tc3MzBw8e9O52+LnPfW5MTsBEv8vn329m1+LLfPDBB+Tl5XHvvfdyb+vQnJcb7u3tpaSkhJKSEiwWi7dIz/Lly/0WaZqLEr0XL17EpPTw3S/nEhERcV2vLWaGBANCDFMUhV27dvHzn/+c5/54hGrbIm8nUN44vpDQdOaPFUVh586dPPnkk7xysJjiNpP33J+/6/OUfvg6DQ0NKIrCiRMn2LZt27hz5ObmcuzYMZqamli0aNGUX1draytvvfUWzc3NFBYWYjabURTF25FE6c3EhDVz1hbp7ST7BhRgA/et0PPSORcafUAwLYOBtLKBW+MCOHToEB999BGapqEoCrs3F3DbbTk89dRTqBEqX/70owCkx4fQabHjr0SzZ9h9+aJwvr07jsbGRpqaGqi32ejs7OWVV14hKCiItLQ01q9fT2OFkfJW/9vW9vb2cujQIc6fP098fDx79+71mxMw0RbN5fXdGOo/YOvWrWzatAlFUShYHDQnte9dLhcXLlzgzJkzVFdXExQUREFBAatXryY5+cYbeq+qqiI5OVkCgZuYBANCjBIZGUnmyq08WaSgKO4AoMvSO2rm+Mqbp0wkKSmJ+CXr+MVHqvfc3nXgX/k0tgO/pa2tjaNHj5KXl0dSUtKY41NTUzEYDFRWVk4pGLDZbBw+fJji4mLi4uL4yle+QlpaGj/4wQ/YsGGDt+BPYWEhTx13eHffA89AvcKhi3oURRtVn0CHhsrLJ7rJ5wS33HILx44dIygoiI0bN/KXv/yFjo4OHnnkEe/5V8f1cLpGx8iM8sjOBZoGic6P+dGP3mBgwB1YxcbGkpqaysqVKzl58iQBAQHs2bOHiIgIYjLc0zUK7sx+z9x4rqGZn/3sJUJDQ9mzZw8rV66ccPQkwajRaVEZnTKloBGimnnwoQevaRrmWnV3d3PmzBlKS0uxWq2kpKSwe/duli9fPqubBV0Lp9NJdXU1t91221w3RVwDCQaE8HGmMwowj+oYlVGb72jDf3ffDU+UIDVRsZqL9sVoWLydq3e64YNW/vdDD/HEE0/gdDp56qmn2L17N4WFhd5zKopCTk4OVVVV7NixY1xNgtHXjA1zEtVfglHrYseOHaxfvx69Xk9HRwc2m41FixZR3e7krHMtpaVx9GkOP2sLFCw2p58hfh1mZxiPfP0R7yYzCUs38D/+q4ILzcEsjt1Bx5CBRMDhcNBccYwtMfGUdsVgVSJRNfeVjPSRrq8mOiCSRWvXkpqaSmpqqrewUlmDhaaqSCoaejj20yIee2AlG/ISeHxfHo+/doH6LjsKOsKVPioqLrBr0+3ceuutk3aatbW1hHQcQ2EdiuIJftwv8LH7C8jJSZ3w2NnidDqprKzkzJkz1NXVERISQkFBAWvWrJmRQlizra6uDrvdTm5u7lw3RVwDCQaE8FHXNjhm+1RwdxemsABSTBrVrVbCFQuP3b/C7/zxZFXgGjvt+C7i8Uw3REREcPfdd/OnP/2JgIAAXn/dPXWwa9cuAgMDKWuw8E5TChfbTdQ8dZ6v7kz3VpXzvWanRUVhJd/7/GI2LBspVNTY2IiiKPSqkfzjq9WoxMCACugZuWN3U9AwhgT6CQg0hlQ9/+fFehYp1Zi1SPafNaBqQ0AINV3wracr+Op6Jz0NJVitVqCOlQF1xMTE0NXVBbinPSore1m9ehsFBQWT/AyDsdmD+M5v6/neQxAWGkpDtxMNBZem0KdFcNqxjocz8iYNBC5dusTvf/97CjMXsfeWbH7+ZhUNnXbiDS7uvWMpb5RY+cmBkutWabCzs5PTp09z9uxZBgcHWbRoEffeey/Lli27qSr1VVZWEhUVtWB2dJyvZDWBED5OV/fR0m3Dd0pgxWIj33t4KZeO7ycjvBfN1jOuE4PJq8BFhQcOZ9Yz5tz5aUZ2FMaSmJhIVVUVZrOZjRs3UlpaSnl5ObagRP7nC3W0W1RcBNBmdvBOSSerhzPgf/THWlq6x2bs6xSFngGNnaOy7E+ePAnA0dZ4WsZk+I+meAf0921L5FRNH6OH9t1fdXQPaNQPRGMlgiEt2Pvzcq8jUKlv7UEd6KTKtZzmgAKMaav51F2bqDhbhKIouFwuEhMTaWlpGTMC4u9n6Dn3ucp6PjrfisUZxEhQpaAok1fZa2lpYf/+/SQlJfHAAw9w8ui72C4d5/N3pLLjjjX868v116XSoMPh4Pz58/z5z3/mvffeo6uri5UrV7Jnzx5uu+02EhMTb6pKfZqm8eabb5Kfn09WVtZcN0dcAxkZEMLH3i3JnKruxV2URweoKIqOh7cmExISQnJyMnq9nosXL1JbW0tmZuaY4ydKUCur6+CB/CGKMY5aRue+hme6QVEUPvvZz/LEE09QUVHBI488wksvvcSPXqlA1SJHndFdA/4Xf77ENzZBWW03GsHjrnmupp0nnzxCTk4OjtAUfns2hAFlBUOuPr9FgkBDh4pRZ2FDXAe1x96nUB9Cr3ENl8yBuMYc484fsGhGP0GFDosaQSkbUBQdqh1K6vopra9khRJJSriTnp4e1q1bx8GDB+nq6iImJmbSnyEo9DpCURww0eiKP+3t7ezfv5/Y2Fh27drF888/T1dXF6s238fBhmBKPrwwZvOm6a4UmYq2tjbOnDnDuXPnsNlsZGRkcP/995Obm3tDbNZ0tZqbm+nv75/TPAsxM27ed6EQsygudIiOwUB0ikaYZmbrIivLF60HICMjg5KSElJSUnj33Xd59NFHx8zfZyaE0d0/dvWBAsQZVHobz7JSp6felcUARgyKhQ3J/WTFr/A+NyoqiuXLl1NWVkZLSwuPPPIIr/1Lid92VjZb+Iffd2EnGn/D/BF6K62trVS22Ch1BaNhwhPgjLTMw328CvSpRjo6yzEpNvZs2cCWLbfzyX88htXp+5GhA1yMBE4eqjcJcfQSPjQoYzUpxjYUaznd3d2EhoZy+vRpdu7c6W6FphGi9gKhPufUWBQTSE9PL0Nq0JjvTZTM2dXVxXPPPUdERASbNm3i2WefJSgoiNvu/gL//Mc2NM3md9nj1VYaHJ23kR4fwi2pA/Q0lNLU1ITBYGDNmjVj9nu42VVWVhIWFkZaWtpcN0VcIwkGhBjFM1etqsFow4Pl/UTS2FhJTU0NAwHxvF4dw4W+DWSGhhHa+RHnzp1j5cqV3nP4bmPsKVbzd59bRX7aJnp6evjL6TpeKzbTMWCkqBku/9uvyE0OZfHixaSnp3PnnXfyUVkz//JaKxxUUTX/GyhpKPQQg7tjHO5th4f5dTqF//OV2zBqeXz3pUtofTB6aH3088cGEu40yWpXLpHhwZw/aeLNunJ0Tgt4gwkPlXAs9BOBNnokZbh1/qYhnATxVmMahfpm78/u7NmzbNu2Db1ez7PPPkuczUwzG9F8Xs+eVQb+8peTdLPBe72Jqt319vby3HPPERISQn5+Pi+++CLp6ek88MAD/ONLjWNqDfi6mkqD4/M27Jyu0bgnzcRnPnMLOTk5N9UUwFRUVVWRnZ097boX4sYjwYAQo3gK0ng6MVVzD903qFn86rcHOO1Y536cEKraXMBGwt45NSbpy1P298kDNVxo6mPZoii+ujPdm2zYbAnkF0ddaFo4KmAniF5XLEtCOykvL6eoqAizFkmpa4P77triZKQsru+dPPh28AouIulm2/J4nn+/hbq2QcwDoaOej/f5Ci40dD7ndZ/TQiRWq4KqOYbrBEQOn8PdCXvyCrL0FWRlLeVoQxBdtiAMWMgMqKXWmUkvsX4CAnc7611ZKPZaXq2MpLFvA3W/KiVVq8LR1UBsUCCF9iK6DauwqOFkJRrYmqVy6vDL3L4in/uWpPCTV85hJYL89Gi+cueiMcmcFouF5557DkVRSExM5PDhw2zYsIGdO3ei0+m42No/aSAw3VK6g4OD/Oz1ClR1dACkoCgK7cEFLFs2/4bROzs76ezsZPv27XPdFDEDJBgQYhR/c9WaBv0Yqbano44aDtdw14Cv6E+iqKiITZs2ASNDxc09LgxYuGfF2Kp1vhXwPHPvF21pPP6tXfT29vK/XqiGNpXRd+vj7+RhfCeuYAhSSHfV8Oq5GDTMkzxfw6hY0GuOUaMLI98DfBL4VCL1/aiqO08AIAQrl/Qrqbigx6i38ne70zE3nuX8+W4SAk30OGLxnb7w/Ox6ieGMMxZ6AAKouOyigiwCWUR8kINH713CHYWLAWhoaGD//v0sXbqUT33qU+j1eipPHqC9vZTooWgyY7/kPbfVauX555/H4XB46zLce++93tGbs2fPogxchnGvGQL1CqsyIiatNDh6KiAxAnJCm+htPEv90B1XrI44n1RVVREQEDDpZk/i5iHBgBCj+JvvB5UIvRWLagRtfOKaPSiao0ffZ9WqVdR1aWOGiiGG773ZTUKCxbtUzX9ynI6KS738+Mc/Jjs7m/b+5OEh8tHcd/KBOAhmkAEMuAhkbEerYghwUO5cO3yHOlEw4danRbBUV06P6q/T9jNa4ApFRe/ZjoZBjAza3c8dcgbzb291s9HQQ352Nhfq4sGhMdF+aOP3KnC30UEwLQPB/NNrbTweFU1MoIXf/va3pKWl8cADD3iH2k0mE3q9nu7ubp577jm++MUvotPp2L9/PxaLBZ1Ox8DAAF/5yldISUlB0zTeeOMNSktLWRIYS68jzvs79IwG/Hhf7qTlhssaLHzr6Qo0zT0C0GlR+Zh4Htm4jZ42E6X1Y3c6vFE2NpoNVVVVLFmy5KZaBikmJksLhRilutXK+UYro+/AFWBl6AX6nCEMEopv5xult5Coa8Vms/Gn8kC/S+K6Ri17O1beQZvZtzyvShj9tNhjONoUgc3hREU//lp0kxdURYNrCSo6RnIFRu7+rY4AXJq/oX9/nS/0aHHocaKNuZ6/HAVteEoBxk5NjNp4SNPot+sxDdXw8cCi4WBlImOPHXddDVo6rdSdfJXY2FhWbvoU//FWE08ebOR0dR8hyiCarYcHH3yQkydPUllZyblz5+js7MTpdJKQkMAXv/hFYmNjGRoa4sknn6S2tpaYmBj++1//P6zPjp7yhj5Op5Py8nK+/8pF+hwBY16/TlHQhUTxxW2pvFPa6f1NzPXGRrOpv7+fAwcOcPvtt5OYmHjlA8QNT0YGxLwyUeW/qXj9RBt/ONaGb+e6Mz8MfWMfBaZ2jvTG+iTKKayI6sDeZae4uJiLwQnjpxkYGSpWVZX4oTIUsrwV8HQKaJqChUgU1RN+aKOOHknwsxBBqX3l8KjB2FyBAOyEMoBlXJIfPucaTRnOMvAdYfDH281N+hwrRgYHBwnSBhlipP7AdGlA5aUeUk064rPW83fPVQMjhZyKieJWYzNxcXE89NBDPPPMM6iqilmLpCd8NWc7w6l6pZlPLA+i6ODvsdvtFBQUcN999w3vOxDC3i3J3vfL839pGfd+uXz5MiUlJd4lgZ2ubeNev2cqwJMrMtcbG10PFy5cQFEUsrOz57opYoYomqaNG7AU4mbkm83tuTN7fF/epAGBJ4A4VW0eNzAPGmFBCr/5bxk8//zz9GlRnOuNx4oRAxaygurZ95ntXL7s3u3unGst3drYuWgFjXVZkXz/SzkUFRXxzjvvsOqOe3m3UuVSt4O4UCf9Nidtg2OXy3mS9fS4Cw2NdMT+OnUIZIgAvY5B10R34/6Pm/r3p/I8d1CiR8OJfrjd45cvTudc7owKBSeB+K5kiKKL26OqsNlsOBwOb+KlJ8jxBFVGerlzyRC3Lk8mKCiIwMBAGnoUfnigz32mUe+X7+9dgtpbS0lJCa2trQQGBqLT6RgaGuJjNtDpjBqTFKlTYO0S05xsaDRXfve73zE0NMSXv/zluW6KmCESDIh549vPVlFcYx43ZzvZB7VvAOGfxuF/Ws/xj1v56atl9DpC3RnzgXUYNXdp3dTUVOx2Oxfb7D6dkXv04NNL2wkcbOHy5cves5q1SBrULAaIwK4FDg/7j7/2iCt1qhCKhUGMTNbBXu2d+pXPM3o0Y+Kg5cpJkCPnGqmF6P9cQdi4NeAv3r+f19bT6Ypi/OiFe6Foof4kJqUHgLPOteMSJxU0opQuVuhPERQUhN1uJzQ0lLy8PAoKCrAQzWP/VTku4PzJV/Pm5QiAP3a7nR/84Ads376dW265Za6bI2aITBOIeWOiyn+TZXOPz+z35f7Gfd99jz41AkWJ8i4HPOOIoVB/ghXpJpqamnC5XJgUKNSfoN6V5R09yAyoxeAKp8dqJSgoiO3bt9OrRvL9t3u9bfSX3OfmWwNgosfdfx/iSslqo4+bzl36+J/JxMf41jLwvYZKAE6M9DFEMAPjghfNz5/Gn0ungEGzABAaGkp6ejpFHxvxP43hzk8IyNjJ/3poCQ6Hg4efqIB+l88rU+jXwgkICCA7O5uCggKWLFkypj7AQpkKmEhNTQ0ul0uqDs4zEgyIeSMzIYyufjNjx7o0kiMnLvTiP7N/5Fg3BbPq3qfddyvfMtdqPq7RMBBHZmAdsUH9mIZ6uSPmIpqm0WjWUa9mU90Sg2rrISYmlhOHFKy2Xp/rjr5T9jXZ3fXY541POrzSa/PkP0wUIEx03NggJBAHiqJg13ynKPwFHzpcBJKud+cAuOspjB5NGD0i4HsuDxVNU0jXVxMfH8/KlSs5deoUoaoBm58lg56WX2i2oigKdXV1hKpmIAzfkYEliWH83SN/N+GmRwWLjQtqSsBXZWUl8fHx86aKonCTYGCariVBTcyuW3MjOVltHvf4UMsZTp0aYu3ateO2/fW/lNDf0Ly/DlKHkyBAwU4wJc44/vu2cGpLD9Pd3U2vahopHGQDiMTS5fJzHt9rXYlvcqGHytTO4XmOvwBgooBAQxkuYexedTD2fAoqBs2CfYJ6BeMrHEKZazXgDg1c3l0TPd/3P4UQoAOXBnrNSYbuAiall64uPe+++y4A6fpqel0xaBMENXaHgx/+8IfY7XbitUha2ICnUqJ7yF/hr3bnTLr74UKmqioXLlxg3bp1c90UMcOkhuQ0eOaXi2vMdFocFNeYeeyZCsoaLHPdNAEcq+z1c6+sYDdm8fbbb/Pyyy9js9nGfH/vlmQUxT3k7Oae6Q/AyZU71rEdnKqpPPVOHV1dXWiau8KeZz2+5zkzQUFlqe7j4S7Vs8eApy0qE48wjD+T/3b5zwUo1J8kku5R1/RQMWAhXV89fKT/AMD3Gk6CcBI8nGTo+zPyXXbonkZxqhqaBk4CqFaXYdYicblchIaGYtYiaSQbQ/DEI0FOpwO73U50dDRR+j4+k9vDuqxIYo2BrF1iWlBz/1ejoaEBm81Gbm7uXDdFzDAJBqbBd35Z1dzDxvvfb5nbhgnAPeTv2w1qgMVl4IEHHqC6uponn3yS1tZW7/c9y8HWLjERbdATRSfrolt87lRHn22iu3IAHVZGOhL3n6f6T2yya419PJw+UnSNFOpPYMTsvWN304863t95fU02PTFyvBF3fsP4Dt+9D0G6vhqT0kuh/gQjAYnvaIPvef3XPZi4naO/uuso1LuyCAgI4PJAMKWujXS5oukfmui1ayyK1vONb3yD+Ph4DAYD+x7Yxve/lMNLf7+K738pRwKBK6iqqsJoNJKUlDTXTREzTKYJpkjTNCqbfIeT53e50ZtNXEQQnRaHz6MqRr2VrKxlbP7kF3ni9XLe/vlFFsc18s09uRSkR4yZA/73J1/mrcZUtHF3pjCynn8IwDtFMPpaBiyEhYURGBiIocuCHd/lgv74BhiTz9tbiMQ8vJ2xBc+2xqOf7z6Hgupd0TBxdv9UggWw4J7yKNSfGJcgGau7PObvno7a33nGvs7pGH+MhrumgdPppC1wOZpr9HU8P8eREROdouNb9xfQ03OZyspK7r//foKD3cWAZPrvyjRNo7KykpycnHHTbeLmJ8HAFPT39/OnP/0JvS0CxWfjlflcbvRmUtZgoarFOu5xBYXYgbP8y39UccxSAJhQgQsdKn/7dAU/+tJSVmeNJELVOjPQcDBZZ+UikCxdOdXqslGJb+475MKYTgb7BhkYGCAvvIVj/aPL/I6eBx/ppBQgS1dOnbrUT4Ax/hWBe0fBsY+Nf56G+47ef9niyY71x50wWe3KJQDnqECgjWo13zsd4g5+YPIOf7qJiuqor2PrDLiDD+i0+Xt97vLNwTonCeEacbZzxASm8dIf/0xmZib5+fnA+OWl3f1mTtear1ifYqFpa2vDbDbLFME8JdMEV1BVVcUvfvELmpub+erOdHQ6xTu/fDW7m4nZMdFUTW5qON/55kPUOTNQNdVncyD4we+Kx0wbNJvd2e4Tc3eynWoChfoTRNFFEDaSQ6xsDDuLZq4HICoqisHBAcbfeSvocRCAnQCGiKKLQv0JwhWLnwI9E7fBQuTwqMDk9QQsRE6xuuBUuHcy7CEGOyH0EMtFNX84OPYtU+xpw9XQ0OFEj3u3xkCcxNGC7yiMZ3oCGA4KfHMZQI+TPOUM//eBNDJi3PsWmM1m7r77bhRFweVy8V/vNUxr+q+swcK3n63iMz8o4dvPVi2YnKHKykqCg4NJT0+f66aIWTCnIwM38tCc3W7nwIEDlJSUkJ2dzZ49ezAYDCxaZFnQa4xvVBMtEaxuHeDRX9djHjLir2Puc4bx9NNP84lPfILg2GzMA57tgifrPMfmBgAM2mzY9DaCFfdwak9PD/Wutd7reL4qaETQy51JDaiqSldX16jtiqfTYU821z9Z4t618FzvSgmRo1cr+F8VMHkQw/ASSffzHATQQbLPcxSydB8TE9iP0znxKgInQZS6NvLHw6XkZ2Vx/PhxQkNDeeutt+jp6aGvr4+PHVtQp7DbYFmDhV/8+RIVzSMjULM1ijDRZ+NcfmZWVVWxdOnSMTUXxPwxZxUIJyod+9e7FnOssndOA4TGxkZee+01+vv7ueuuu1i9erXMkd3g/FUfvDJ3OdvNsdX09vZSE7KZpv4wny7W/zx7GP0MYhiVWzA8TaA/gUlxJ9sddW7Dib8Natzr8nU6HcFqP1bCJrh7n8rc+tXMv1+NiTr12TjW3/PHFy8K0ClE0Mli5SIr0k0UNUCVM8/vsUZ6x0xvrEvsY11OHOHh4fzHoX5abeGMHtXwrVzp+bxyjR98uKZyxP46d2DCz8Yn3m6YdrntmWA2m/nJT37C/fffz/Lly2f1WmJuzNnIgL/MfEWDn7zZgE6Zvbm7ySJrl8vFkSNH+PDDD0lOTmbv3r1SWOMmsXdLMsU1ZsYmy8FEHZCnpE26vpqBAfcdYFu/7gqFbkYMEO7zffecer0ri5UBxTSracPz/+M7MffdbiCoCkOYJr3OlTv76xWk+ibkTfdY/Bw70bmm8piCU4VuoulhA9SfoN2VNeFzRyda2gnm4OVYNm6I49yZ90jVnLQp7lGc0Z3s6Om/3xy6hKr6b+/VJhFPlKuQnWQY99mIBj99s2HM+1PV3O/0/e+3zHoRpMrKSnQ6HUuXLp3V64i5M2fBgL9hXW34/6rm/genau5/es8ebuRHX1l2zdecLFEoyTDEa6+9RmtrK5s3b2bTpk3odJJScbMoWGzka7fCi8e60YUnYR5w4Jigvo8pVE9OSjibMhyUfNCH3a6i1+uJDXTSMjiVzm6iBDj39IFZi+Simj/quR5Xs5xudAd8LXfnUzHbowyjf24z9ZpGgjDrhHsy+F7Dfd0fvV6HIWARzuA4cuJCQIOOPrt3+s/lUvlvT5ykodPOkKpnfLGl4RZcZRKxJ8DwTA95Ovfqy1a/I1z+Br2u12qmqqoqMjIyvKsvxPwzZ8GA/8pvMG75kAZltZ388z//M2FhYURFRZGUlER6ejqZmZnTenP6G43QAT97vYJFlncxmUx89atfJSUl5Zpem5gbJqWHrfG1fPObuyaZNtDoG3SyOr6XHRsK2brm/+U3v/kNnZ2dJDjLaGHjFK/mLyBwZ7e3BS2HQfB3hzp9owMCFSbokGbGVIKgmbjGVHIaphOY6LzD/+OXck6cszBAOANOwOmid8CKAvxkXy7hWhcvvfU2B1oWDx/tGeHx36bpJhE3NTVx8uRJztfFovnJVdBcruHrXPlmZLZXM5U1WHj2cCNltelkxIewssFyw+R1iZk1Z8HA3i3JnK41uxdlDQ/NqZr7H9boLAYFSDRqxEXEYTabaWpqorGxkZMnTwKg1+sJCwsjOjp6TJAQGDh+G9eJNrKp77CxZ2MhO3bskDKkN7Genh6ioqIoa7BgsTknyB9wd0Z/ON5J3dnHWbVqFQ8++CClpaUcPXoUI71XyNL38JzcMy3hzhlYGtLAWVvBFI6fDndOQgBOnOM6ieuVMzCZ6dzdX2sehL9rjVRAHJtE6PnqYuIgyn0eTQMNlf/79IesDCjmrHOtT60J/wmbeakG/uruRVdMInY6nXz88cecPHmSlpYWoqKiWBybQk2X7yZZGkkRcNmiQ9Um/1nN9momz0iqqoFGCBc73LkMsuRyfprTLYx95+9vy4vkP94anyAzukSopml0d3dTU1PDpUuX6OjooK+vb1yZWb1ej8FgICYmhqSkJDIyMvjRuzaqWnyH1DQyYgJ45ltrrtOrFrPlF7/4BfqoJfyhIvIKOxFCWM1wjAAAIABJREFURAh8c72ZM2fOMDQ0RG5uLmlpabz23hmK7WsmKDo0mvvkehy4CCQAOxm6C6TomihT19GlRjPTnbb7Wp6NiHw7p7kMCKb72vzlDjDqscmCC//PDcCOkT5SQ800DZoYwEgYFpYGN1AxtGSKAR4EY+Ou6NO8072GIZ+7dnDvjRBpCJzySqK+vj6Ki4s5c+YMVquVJUuWsH79ejIyMnj76Mf89PCQt1aFwnDnvtLK+Y8/ptaRQS/RaH6KOAXqFVZlRMzaaqayBgv/8MJFzIPOMY9fS7KkuLHNaTDgj2+AMNU3u6ZpdHZ2Ul1dTVNTkzdIGBoa8j7ntHOj3w+FvFQDP/9aPuLmpWka3/ve96g3bKemS7nCqgL3KoLCwNNERkZiMpno6enBbDaTkJBAbYeLEvuKKRQAGt0xuQvjGOllkLDhYz3fm4m5ft8XNJWOc7Lz3AijCZOvFpj6SAOAZ59DjUL9SUxKD2YtknpXFkOBMQw4JrrDH3uN7KQQCtQjHG7LoGfcpkvu983a0LMkJyeTkpJCamoqqampGI0jn1GapnlHLysqKggICGDlypWsX78eg8HAmTNnOHHiBBaLBUNSPvWuTC73QWTQEFH9pwlXu7zn2rz7S/zL6+2T3iDNtMlWTgDEGgN56e9Xzcq1xdy54SoQXu32oIqiEBcXR1xc3JjHVVWlvb2dmpoait7VgWv8B0xTRz9tbW3Ex8fLEsKblNVqxeFw0G71DK/6Gjt0HGqMQgnOwGyup6enB3CPJtV3Q7U9ffhu7EpGv1fcKxhGgk1PG2aq850oI/9qM/s9ZipQmc6wvr/nX21+xcjzPIl4Za5VZOguDleIBBwjq0sCGMJIHzaCGcS3M9Vobb1MckAXS0P0nLLFwPC0pbsT1vGNT+YQ6oiiubmZ8+fPc+zYMQBMJhPJycnodDpaW1vp7u4mOjqanTt3UlhYiNVqpaioiNLSUlRVpaCggI0bNxIdHU1RUREffvghjj53Ke38/HwGBwdxOp1sWZ1OTEzMrNY28b0B6xtwMNEtolRcnb9uuJGB2VLWYOFvnqrw8x2NGF0XBbpTmEwmcnJyyM7OJj09XYpr3EQaGxt55pln6Em+j7JGm8/IgIoe13CFP/B01jpF4fF9ORhcnZw5c4YzF7s4MVg43G1MVMt/Om6Wu/bRr/N65SBc7UjAVM/tMTa3IIouVgYUc8y5FbufaYBAhjDqLAxgJCXOSFBA4JgVBr6dcF9fHxcuXKC0tJTW1lZU1X07rdPpSExMxGQy0dvbS2trK6Ghoaxbt45169YREhLCyZMn+eCDD7Db7fD/s/fm4W3c1733Z2ZAgCCIhbtIiosoUqJESaRWy/IWWfHuOJvtZnGa2E4a3yy3zdv9Pm/f+r25N/etb9ukzdP0tk7cOHa8tHYS27JlKa4lW7G1UaKojYsoivu+AARAEMvMvH+AALEMuEiURFvzeR6I4mA2DIZzzu/8zvkeYN26ddx+++3Y7XaeeuopbrzxRm677bZFuibaJFZYzTSP1v4uJPHKRiV0rh1LLjJwpXj+QF+KFCCBv/raDizyKlpaWmhububo0aMYjUYqKytZvXo1lZWVZGTo3vBSJjK6/+rty/nTX7TFJaaCSKbgxqXEdhEMtxz+x1+f41/+6zZWrlxJ/bMtCBdcMaOixRrNL2UWywhfKydCC61KD4hUHVitVizj2pUHQYyMKTmAwMWhAIIQ0EyYU1WVzs5Ojh49SnNzM0ajka1bt7J582b8fj/19fW0trbS1xcvadzf38/rr79OR0cHwWAQQRBYt24du3btwuFwcLrTzV//+2lavDvoa7aTXX5ls/effrs9rrxRTfGUBLCbDfyPR6pQ1bDI11JUjtW5dK6byMBDTzVodLQDe4bEb/5yJnlQVVUGBwdpaWmJ/jELgkBpaSmrVq1i9erV5OTkXM1T15kHBw4coL6+nj/5kz/RzDt58qU2RjW+fyNT3Jp+kLq6On52qoDxyRQTpXOSykhdbnLdpa5zOSzl/c932kFr+UxkICwBvT1mFJxYgRAmMWEuGAxy6tQpjh49ytDQELm5uWzbto3a2lpkWeb48eMcPXoUt9vNypUr2b59O4WFhfT09HD8+HEuXLgQjR4A5OTkUFpayvLly/GIufz3Xw9EjfOVUhj0eDzs37+fc+fO8a7nRs0ISeSzJ+YpqKq2OqJeYfDR57pxBrTqzueTGet2u2ltbaW1tZX29nZCoRA5OTlRx6CkpEQXJ1oC/OY3v2F0dJTHH39c831t3YEZ4wDQGNrCOLlceiJbqvl4SD1avVQu57wWc/2FshhOU6xDMFtFRXyCp0C8XLRLdXBa3jRnoqiIQrpBwZHmo1huxqKMUFVVxfbt21mxYgVjY2McOXIkmg+wYcMGtm/fTn5+PqqqcvLkSd555x0mJycRBIGamhq2bNnC+Pg4PT099PT0MDQ0xMng5qT7b7Gy92VZ5ujRoxw7diwaRTOZTDRLO+h2pyc9F1cuSyddUukaDVCQqbC9yItddPJqs4N+n4XEzq16hcFHn+tmmkBL12A+NbpWq5XNmzezefNmAoEAFy9epKWlhVOnTkWbnlRVVbFq1SoqKyt1ha5rxPj4+KzS0Ynff2zXu4yMDCYnJymX2hiXY1sOw/wNVKr1IgZrsY3slXAE5rvfy2Exoicz19SED4kQk0nJgDPrpeHHJnooFVqjjgCAXXBO966cvWJEQWAyZGAylEkfW6gSz8L583R3dwMwNTVFWloaNTU13HTTTeTm5qKqKqdOnWLfvn14vd7odMBdd91FZmZYyrqsrAwpayUHR/u4kD6JWw4mNV68XIXB9vZ23nvvPbq7u1FVFUEQKCoqoqamBrPZzPJuD88ci0wOhP9VVZXMof3YBSc5gDQh4cYGViuu4DISG2pdLRVEnSvLdRMZgEsvW9RCVVV6e3tpbW2lpaWFoaEhRFGkvLw8GjVwOBxz70hnUfi7v/s7Nm3axM6dO1OuE/v9WyUvDvdx8tN9+P1+0tPTw3O9wRvmXZMez6Ua+yuVNLgUxIiuNLEVG6kSPlWyxVH++vPL+fWvf520h3A0KLGEMHbKgIR9hpdtlA7HORaxCIJA7GM1JyeHG264gdLSUqxWK2azGUEQkpL3UmE3G/j+l6tmDcPLsozH42FiYoLBwUEaGhoYGBiIS2iMtGyOJSMjgynjMlp9y3EG0imwwj3rjGwot2Gz2eLOFy49wqqz9LmunIEridPpjOYZdHR0oCgK+fn50eqE4uLi6ANgqbZt/qgSDAb5wQ9+wKc//Wnq6urmtY2iKPz7v/87Fy5cQBRFJEnC5/OlzDKfncsV/1kq4kFLjcXJnzCLAW4Q/zN5udnMoM9MQ2gr4Tz68HQCCEiEpqtPtCMZOeIY68Wj0aqB3NxcPB4PnZ2dSQY3EUEQMBqNNAQ2Mhx0JIy0kz+PIISX/OndNgrMPtxuNxMTE7jd7uj/vV4viQiCgMViYfny5WRlZWG1WqMG3mazkZmZicGwsOBwqm6zeoXBRx/dGbgC+P1+2traaG1t5fz58/h8PiwWC5bCGl5pCScf6sk3i8fw8DA/+clPePTRRyktLZ113VhnrDw/nSzPCSRvD4FAgOXLl/Pr9qKrHBnQmZ3FKO8MSzlbmaBcasMuODEajYyFrFwIrAiHwKePkjm9TodcqZE/MkOuNY2ffrOC5uZmTpw4wdDQUPS9goICHnjgAYqKilAUhZGREXp7e+nv72dkZISxsTHcbje/C9y2AMcznN9SLrXRzSq8qpUcc5Da7FFETxdutxsIRwDKysrYtWvXFeuxspgRVp2lw3WTM3A1MZlM1NTUUFNTg6IodHd309LSwjNHQFEjWvZXtwXpx5mxsTEAsrKyZl0vuWtlEKhiu2USm3GMrq4u4FJ03nVH4MpxKU5ZZLvI9yISwsQ4uYzLuVhxskzpnREliuktEXEWUndADJNnMzI8PMzhw4dxOp0IgkBhYSFms5mOjg6efvppCgoKqK6uprq6mg0bNmC1WvH5fHR3dzMu2xBEw/T8wHw+o4hsLuCUPy96//Z4DfR6l1Mn9VJVkM+OHTtYv379FU9ovlRhOJ2lje4MXGEinnpZWRlPn2yAQHx5m558c/mMj49jMBiiiVmp0OpaCQpNniJqDeF6cB8ZXHqo/0ol9S1VlupnSZzrj//pxoFbcTCTawDhVsgqjfINFGZMYgr5NHQIZmju9fCT59/BIbpYu3Yt999/P2azGYCGC2P8dO9Fjg35eaffSemBlwGBDnklPjGfnMwi+v1SjJ6FdlljLKIAsqLEaQJE8iSk8jv5L19bs8BrpKMTj+4MXEW02jbr8p6Xz/j4OA6HY04paa2ulSAiZC7j9z79e/z9ix9Ol5ldenb7/ARxPi4spBRwsZIr59rXfKpAIt9XoqEXUBDonQw7hOFuB5FIXvxxVVQGjet44sESTCYTw8PDALQOBPhfu8dQVRUVA16yGY1ti60I9E4k3iuxyYrJyYvCdIa/3x9EJb5aSUWgYyi+SZuOzqWgOwNXkUstb9RJJnbeMl0xsylv7mtYUZDBqNuVlK63ssDCqY4Jzis1MUsXwpWqCPg4cCmOQGKoX8twptpnZH1mWWeu/YSNvxUnEsEUuQMiI740XnzxxbiljaEtKHHVCTN9EWZ3VMLnk5EGBlFF9TsxGAx4Q2nYDZPcU2OkcTw3SWpbH0zoLBa6M3AVWV9m5YePrdGTby6TZD11M71eM5/snF26dUe1g6NtrpglYR32ic7DvHQhD2ZJGEuN7gjMzqVeF61RMwnLZhMZmk8VAsBMDk/iMVSTnVr5bbptd9A+JiVl/WcZp0CJLyX0YNPY3/y1KlQlyCb1HYS0sDhRbW0tFRUViKIYve/1wYTOlUB3Bq4yevLN5ZM4969Oh1JnS8T0+/3sO9EbDrkmGJqhUN50Rvns4jMz28SiOwEL41KmUlKNpLWWzRU1iP/ujYJMUFUJd6mc2U4UoCzPBAPwhR15/K83x1Cjyb/hZMMiuQkEoo6AS3UQ1JxmSq1XEL9MwSZ5QYGvfe1rSZUx+mBC50qiOwM6Hzm05v5VBM51TyDLMpIkoaoqAwMDXLhwgQsXLtDV1UVb4DbUpFIuYToMrJC6k95Cq2/1aEFqFuuapDL688kniPldldmafopjU5ui+QHC9PdXMHUaGfjg7ReoFR10yJV4sWLBHa06iOSpWK1WTjmrSM5FCJ+nQHgUHxnRz9y/kc+hICBQZepi3cp1KUtk9cGEzpVCdwZ0PnLk2Y0aTadUPH6VP/+f/0xRZgC/308gECAtLY0VK1Zw11130XXUSNtgIGm7SPnZXCNSERkFCW2HIfH3KyFBrBPPQq9v4voKFtyszJMQpwY5PpxNkDQkAqwQziM7u6Nr2gVntIdF3B6nowITExN41diumBEE7BkSf/VgOU+/fYGu0SDpspNyqQ0QGDFvYNAjYsHNp2rNdJ/r47bbPrOAz6SjszjozoDORw/NgXrYALcHV2B1zzy0g8EgFy9e5FTHBG2TdTHrRnY0n8S08LKwIxC7ndb688lm17k8Eh0umH+OwMxIHCCEgVe618SF90MYaVPWkim4sQtOTCYTgiAw6EuPRgdskpcSWnGILr7+9a8jiiKtz5ylz5dGrEMgCmCXPOx5+Z8pUhRurqwgPz+fQ4ecpKenU2k9hxs3RqORkYshamtryc3NXbQrpaMzX/R2ezofOYYnEkf3EQQCadnceeed7Nq1i9raWpYvX47BYKBlcjnJxlvLkM82JRB+XyKosa/5oIt9XhqxRj/RgYv9ORsz320afqy4AAEPDoLRcj0xuq4KdMiVQDjfZIAyGuTtjJNHgHRG5GxOyjfgVOy89NJLWK1W/uJLWxGF2OoBBVVVWGnsYOfOnXzve9/jkUceQRTFqBRwpCTRZrMxNTXFbbfddikXSEfnstEjAzpLgoX0bKgoyGDE7dJ4R8UYHGP//kbsdjtGo5HJyUn8fv+0otxcvu98jLUYEyFYKLHRBH0KYf7Mx4Gbz7UMJ/9ZhYnwr9HEQa39ikwS1vDvdomc9KzQOK5Ah1yJw3OcX/7yl9TU1LAz9yInhrOYxEoGbtbZBvjifbdSVVUV3bK7u5vS0lLa29sRRZGpqSkGBwfZtGmT3tzsOmKp9anRnQGda06yTLCL4+2uaM+GQCCAy+XC6XTicrmoznRzlEhtdWzIH8qlNpyyneOD5XjUcDj3plI/FZMZtA4pCYmHsSFmhfmXpM1nvdm21R2BxWUh11JkQrVNty6ezTlUyCDcBKhD3qJ5HBXwG7JQVZX+/n4GBgZYvXo1D91VSWVlJaOjo+zZs4cXXniB6urqaPvi3t5edu7cSVNTExaLBZ/Ph6Io3HrrrQv72DofWeZ65l0L9EZFOtccrbaoAirL0t1sNDYwOTkj1ywIAjabjYCpkBPOIkZ8RlRVJSfdzyZHH+NOJ/X+zUBEgyAcYq4Uz9E2LSoU253OihM/Ziy4CQhmvKqFuRIEwx3tJPRZto8i4ZvMilOjIVVsZj/USUewC85ZOlmqCChkCeOUieexC0527twZZ9RVVeXs2bPs27cPn8/H+vXraWhooKTmFnY3+pgUwtUJ96438fhDn1yUT7jURpw6ySzFVtB6ZEDnmpOqVNAZSKd8VTlFRUUUFxdH27AmNmJ57bXXGBgY4Gtf+xqP/u1BFHXGgEc0BUaUAuqkw3TIlUxiJcvkpzB0jpw0D4qioCgKx0PbSSY5LB0WrZWmJYv0Ef5Hi5ncgbDmRCRCEF5mwI9NmGCFoR2r6gTAJnkZkU1o6QSoSDjJZVzOZlNaPfv37ycnJ4eamrDjKQgC69atY9WqVbz//vt8+OGHuFQH7zVmoGIBVcCPkRdOi2zbNrto1nxYiiNOnWS0nnnXuk+N9OSTTz55zY6uowMcb5ugf9yfIBOskmVww3AD7e3tNDU10dPTw+DgIJOTk4iiiNlsRhAE3G43jY2NFBUVsfuMTEBJLu8yGM388Lu3c9+2Ilam9+EcuEibv5y2UBWjcg7LHEYu+vJR5vSPFew4qZZO41Lt070MwsfQ+agQnubZINUjmBzIpGE0iJgMImtLbfzR59azrtRKS0sLq1atwjPaxaBaHLNtfAVDxCX0KSZWWMY5e/YsFouFYDCI0+nE6XQyMTFBVlYW/f39NHgq8KlmYhMWBQFGJoLcUbewSgJVVfF6vYyOjjIwMMA/vNnNiGdGWCtybpeyb50rh9YzDyBNEqkpzaTAYdLc7kqiTxPoXHMSRzMRmdUfPb6GilyJ/v7+uNf4+DgABoOBjIwMQqFQdCrhLDcwEspKlo5lhI3GE5SUlJCWU8Uzx9Ji2klH8gUipFawE1Cj4ePjoe2zhJp1li4KWYxSa6jHpTo4Kd9A2P0MK1kKAtziaEJwdwLhluTZ5Zs40mehfwL8snYSqZEpdhj2xy1zqcliRWfljZrTDrnWNP7jzzYCYSM/OTmJ2+2OvjweT9LvHk84shU5jnYfhfh9R9CnE64dkWeeoszEmCJOoShwTSI5ujOgsySIPJha+rzTfxcqq4syow8oVVUZGxujvb2d8+fP09HRQTAYRBRFJEkiGAyLELmFHE4EtwIzuQEC8PVtMunBQfr7+3l3sJwxNfGhOZ96dZU0AmQyQbnURoO8DS65skDn2hC+K7amHycjNExjaAvjcY2FINZZiEWSJHJycjjsXku3Oz3B4QxvUy61RaeizFIAl2yLKg9G8lcyceHGHndMAZXlmT5uzWmLGnpFUeKOb7FYsFqtZGZmYrVaMRqNuN1uznZ5eN+5ZvoOTs5j0ZqLTuWA69MJV4/TnW7+6pfncflCccuvVe6A7gzoLBm0HlAAD64eZWqomYmJCQRBID8/n7y8vGj5oM/no7GxEYC0tDT6PUbaAuVJ0rEu1UGnWsWYksOlawTMCNZcelWBzrVDZaN0GIfoQlXVWZMDsxiJ3juxRKIJM8Y37HCGk1TXxizX7j9gxYUHe9L2dxV1sDLPQGZmJhkZGaSnp2MymUhLS8NgMCDLMl6vl8PnBjjYkYYzGE58VSUTLtma4JzMIArw/z5YyLIMf3Ta4rkTaUkOzbVOYLseeeipBg01Ve1IzpVGTyDUWTIkNiAK/1R4p0Wh1uAGwuHTwcFBBgcHATCbzWRkZCBJEoFAgDVr1lBrsZCRkYHJZKKvz83x4y565JKEFsULDefHrhv7oNdZuiRXglhxYhecRIZAFtwEMKLVT8BJLo1KHv/3p/OoyBVxuVyMjo4yPj5OwWAHJ4azcAXNZEw7nB1yZcLoXOv+EvFjplI8x0WlihBGDARZIZ5ncNDNkb5KvGRMO7ENczoiAYwgz+aUqigq/OpXv4r2UrDb7YxMbklyHq51Atv1SEVBBmOe5KqCa9GWWncGdJYMWhm2IOIT7WzatImSkhJsNhuWaWOfkZERrSw4efIkr732GnfeeScm00zyzcaNG1EyS9n/TuQhN1/Vurmchfk4Enr+wLUjUbFwusRUao5bK6xLkRNtUhT7nYVzCODtM4GUo2VVVdm3bx+HDzvnLWwVIC3OMQ1Ff4+cc9jIO+WcaH5KhGSHI3LOqaW0BQGChbfxh79Xjs1mQxRF+lKUtl0LI3Q988gnijje7loSbal1Z0BnyaDlJQuoWEUvx48f5+TJk5SWlrJy5UoqKyu5OKLw/Hv9tA9OUpwlIaoO+vv7KS8vB2B4eJimpiZe/F0AsHL1DbMuMHT1iQ3Nz8gPpxN2Bs8pmyiyCywLnsPk78cuOONG6YnflaLC+X4PqqpGOxQmJt7dvW4VcHiWKAMJ+5WIvy9inZCZZSoKHXJlXO6CtsMR26ch+V5TVRhwqXHqhkvJCF3PLKW21HrOgM6SIVVS03fvLeXA6WHaByaxGSZZFjyLLMuclMO6ACoCogCqqvDg6jHy0yfp6OjA6/UiCAIfhj6BX9WeF54rYXBpG/Klfn7XguSpgew0L+NBS1RTINKiuE46DJAw/5+4/UwyYXp6OkpmKb8dqJjec7xAUfK+YqtULu17iq1QMBgMNIk30u/LTIigKTgkD45MEz1uE6H4vMOUuQCJTk2sEdIrDa4/dGdAZ0mR+BC6aY2Df3yzM8lBKM2S6BgNaWZ0J2aBa2eMz2VIEx/kuuFdeiQbfq3vSEDRyLQP3yuCAGNqqnsjXokQUt1LM5UEzXINPsJGUyIEqMhRLYq5PgskOiI54jgP17hZuXIl4+PjHDrTx/7RVdHPEy6FFPjR49WsL7PNWqY739GmXmlwfaI7AzpLmlSynaJA0ggIZkZSBoMBwV7O+alShn0mvHGNDmPnk7XmeCOPWjmmnlzPEbh6XMp1TLVN6pJRI1MAKasJVjiCZHsayDF6GAlkcjFUkbKOXyKATFrCsea6zxLPMULY+RQF+GzlEN7+c0xNTZGRkUFVVRWio4L3LxroHPZrhpVPd0zwiwO9XBz0UZKTxmc32yjPEQgEAgSDQQKBQNIrsjwYDPJGex59kxa90uA6Q88Z0FnSpJLtVFWZ8EMzvlbbgpsvfvGLHDrTx7MN5unQMMzMH4d1AnLFgZikrWTJYWDaEUidpa2LDV0pFmbUZ5Zrf5cRIaHE0LoFN3l5ebSNkJSnUmj28k/fupEzZ0z8x9tHaQhtnjaOWsdRNByBxHOa7/0xk+uwUjhLcNRFYWEhDocDk8kUNtpjbWwxB6gtDBvwg28G+M8Yox4MBskE1gP0wv5ejaMIAkajMemVlpaGM5CooaBXGlwP6M6AzpLF5/ORmxFi1K2SqCiYyQQe7IAaVY4DlXKpDUVZyTl3IYLgQlXjQ/0q4SSskGJg7ofzfB2B2dadjY+SA3EtzzUxKVDLuKaODKQbRQIhNZosF5kCChjzkEwWwIsoxAsDFcnneOqpgwBckLdMn0HytJFA7L2pnc0/v8qU2HXCUxQjSgEeTy+BQIDR0VHS0tLiDLfZbMZms8UZci3jrrVMkqRoQmQip/RKg+sS3RnQuSakSlDyeDw0NzfT1NRER0cHZtkGbNd46ArckDPARY+Fcb8Jm+Rl2zI3k4NO3nzzTdpCOzXKFIVoxngAU8y+FsJizqp9lHIRloIjEPmp9R2kjhgEA1NskE7QxSpcama0n4Q3AM09HlSIdq/MFDyUiefJVGbK+WbL4F9fkk7nqIxrMoQ28/l+tdYRCRiyePTRRykuLuZMlyf+7+WmK5fQp1caXJ/oOQM6Vx1tpUGVO5ZdxD/cgiAIlJeXs2bNGlavXk3nuMA/v91FU483Zi8qoijwo0eryTV5OXnyJE1NTbjdYXGiU/IWxtXcpIjCpRu1hRggncXjcp2l+KTS2RIAt2acwuFwMDQ0xPr169m4cSM5OTn8j1/3cfzCRJJzmUaA398Kp8fzOHbBhfaTNNX0xlyRjZnznkor4OjURkC4agl9s1Ua6Hw80Z0BnauOVlIgKCy3TPHHdztYtWoVGRkZc24joJIjjbFOOJp0jGTJ2MUYgcfuY7aENd1JuPpofTfhb9+Mm2rpLHbBmVJ+2MgUNVJDXFOh1eZuKvIkguZiXm3NRVUTXcKwq/mH95fz47c6p3NZiB63LM/MZ7cX8A9vdCRMM8x178RXMWg5MHpCn85io08T6Fx1zve7NZUGp0Q7dXV1mttoJRKqCLiVTFavXU1ZWRklJSUMDg6ye/du/tt3vsyzvzrAB91mvFhRCCu9zUchbvYkNa3/J66jOwRXF63rPbPMh5UGeTtWyUdpgY32oUCSI2o1ypwMzOhWBDBxxJeDv/cIduEYtaKD0/KmBGEiARWF986O8MPH1vDc/l4aLwyRKbjZtQq+9ch9AHSeO8I7F0x4sCEgICDHJBzOYDenkWYQqCjI4Mu3LmO5fRWdnZ0ce90Hofj7VlGhpcdFMBgkLS15Xzo6C0V68sknn7zWJ6FzfeD3+/ntb39Lw0UPU2QQ+wBHzNRcAAAgAElEQVQXBSjNM/P+2XH+dV83x9smWJZlivb11u7/rWJjnDTnGS5cuEBzczOhUIjR0VGWLVvG5+67nfSJcxiHD1NgnqInWDC93WyJgcyxznzQHYGri1YyZ6LjJhBQDYx75Rg3YbrSAAEjU0ypseqBAqIgULxiLd/9ws2sXJ7LwTaFgJKcOzDmdKO0vUapeRSH9xQFQh85mRKFhYUYjUaOf/ifZPnP88lVAlmeBmzqCIPq8phzU5FEgae+tprv3FvGHXW5FGSlYzabKSwspLFzMuneF1Axh0boqv8NLpcLm81GZmbmYlxMnesUfZpA56rQ1NTEnj17mJqaoqJ2Jz89KiV1J4wQzuoOm2Z7hoHVRRZ2VDv48VvJ4kP/1x0WRi+eoL29HUmSol0MAaaMy2j1LceLDaM6iZuIHGuqbPTIMt2Yf7RYSCRGJcvgwSjKTIQyyDL6qcsZ5cBgMZOh5BF2bPc47ektleIML1+/UWRsbIyzZ88mtR6OUFZWxsjICF6vF7eQw5BpHYMekYoCM99+oDppTj62rbdrMhS9ayP3/vcfXs7kQBMnT57E4/FQVFTE5s2bWbduHUbjfISOdHRm0J0BnSuKy+Viz549tLS0sGrVKu655x4cDkdSgpLbF6Klz5v0oI2M3gBqMy/SO+VgQrZgYYIyMbm9bPS4qoOGabni+Ax0raSt+UYE9PD/0iPxu5tLjwBMTPEHG0dYv349FRUVSJLEt/7PWZp6vXHrJc7LayW+qqrKbdnN/PX3vgrAj3/8Y8bGxlixYgU7d+6kq6uLd955B4CcnBxGR0fjjyGKlJaWkpOTE31lZ2fT607jj3/eEj2WIITzEexmidXFmXEJfbIsc/78eU6cOMH58+cxGo2sW7eOzZs3U1SkVwDozA89Z0DniqAoCkePHuXdd9/FZDLx0EMPsWbNmmht8/oya1zy00NPNWiWAkKke5zKQDCHT+SdJxQKIcvytGqahCzLScdvk6vj9jFbDbiBAEb8TJIqW3puA3Np6M7FwtHWGbDiZIoMgnNK/6rICPxLQy6WhlYq0vZSUFBAc1+Z5tqx5XRaTWVuKQ9w/EAHLpcLu91Oeno4OVFVVUpKSvB6ww6GJEls3bqVvXv3smzZMpxOJz6fj/z8fMxmMz09PTQ2NhIKhUsUT8lbkNUZtUN12vlYXZyZlDQoSRLV1dVUV1fjdDppaGigoaGBEydOUFhYyKZNm1i/fn1cN08dnUR0Z0Bn0enr62P37t309/ezdetWbr/99uhDMhVaHQtjURFwBc1YrVbMZnP0lZGREfd/k8nEq6++iqfXxnwV3yRUfGTOsv6lRAvmY+j1KMTC0RboMRAikwkNueDEKgOQMRECgpg4Ecwhs8fFTAvjGVYXW5JC94lOrM/n48R7Au3t7WzcuDFaBRMMBgEYGhoCwOFw0NzcTHFxMT09PSxbtgxZlhkeHubuu++mrKwMVVVxu92Mjo7yRy8MM62WHGU+KoAOh4OdO3dy22230dbWxvHjx3nrrbfYt28f69atY9OmTRQXF6cUHNK5ftGdAZ1Fw+/3s3//fo4ePUp+fj5f//rXKS4unte2iUIniYgCrK/I4ytfuTnlPlRV5a233oo+gOeHQgZu/OQuYJtYrkR5YeL0xcf9wb2wOX8tgR4v1hi54FhmrqNRVAgoQlR7Qp1OEpwSs0FOvunae8d44YUXKC0tpbS0lKKiIgyG+Eem2WymqKiICxcuxDkDkWhVd3c3AAUFBTQ1NVFaWorZbGZgYIAHHniAU6dO8fLLL/PYY4+Rm5uLzWbDZrNRvTxwWSqAoiiyatUqVq1axcTERDRa0NDQQEFBAZs2bWLDhg1zOuk61w+6M6CzKDQ3N7Nnzx58Ph+f/OQn2b59O6I4VxnfDLEh2JZeDy6fHJ0nna8C2uHDh6mvr+dTn/oUDa+P4ZStaJecQWw9d7nUxricDdGmRFpcLcOcOOq9HljI59R2vmQkZAykkoo2MhVWIU7QGFBUEFU1KkccQRRgeZYBWZY5ePAggUAASZIoLi6OOgclJSWkp6dTUVFBfX09iqJEM/oj4f7BwUEA0tPTUVWVvr4+bDYbZrOZ2tpaqqureeaZZ3jhhRd4/PHHsVgswOKqANpsNm677TZuueUW2tvbOX78OG+//Ta//e1vqampYdOmTZSUlCAIgt66+DpGTyDUuSxcLhdvv/02zc3NVFVVce+99+JwOObecA4WqoDW3NzMyy+/zE033cQnP/lJfvzs6/yqrQCtigErLgKYycBNudQGwCl583Ttd6qRPine07m2zC+KkpGm4gsqhDsUJK8TqWjRavurKAqDg4N0dXVFXx6PB4D8/Hyys7Npbm7mi1/8ImNjY+zdu5esrCy+853v8P3vfx+A8vJyJiYmGBsbA+Czn/0sGzZsAMDpdPLTn/6UoLmYMUsdHUNTVBRksKPawYfNziuiAuh2uzl58iQNDQ2Mj4+Tl5dHdvkmnj4sJl0HvXXx9YHuDOhcEpEEwf3792M0GrnnnnviEgSvJn19ffz85z+nqqqKBx98EEEQePHND3npiAcP9mhzGisTVErNOEQXhuyV1A86CJry8fgVZtrMzpYDQIr3dBaX+U4bzFf3P4K2AqAAVBdbCAU8dA372VCZz+/vLE5peFVVZXx8PM45iFQJZGRkMDk5iclk4sEHH+SXv/wlkiShKAoZGRkIgoDJZOJb3/pWXORsf307339tCKaVD66WIVZVlYsXL3L8+HFeOp3BmKorHV6v6M6AzoKJTRDcsmULu3btuupzj5HIQduAF2lqiLqcMf7r1x5gYGCAg43dPHcyY7pHoUiivGv1trv510MCipqcNBZmPg6Bdla7zuWy2I6AMr3e7FNWudY0Ht8wSFtbG9/5znfmc6JxPP/880xMTJCbm0tTU1Pce5IUX/ESGxWIoKVhcLUN8YN/c4JRT3LDpVitBZ2PL3rOgM68CQQCvPvuu9EEwccff5zly5fPveEik1jvDVm8M5jFyN8+g10Y5yw3ABnMGAARFYUOuZJaQz1vnJxEVWPfTyR1VYGAEpN5rvvRl4eW8NN8tgGJ0HSOgHblQESbwkCIIHOV1CnIvjGeOQJuuZbGHx3ivg1mNlVmY7fbsVqtc+a/rFq1ir179/LAAw/Q1NSE0WikqqqKs2fPJq1bX1/P8PBwXN6Bltz2fKoHFpOVyyyM662Lr1t0Z0BnXrS0tPDWW28xOTnJrl272L59O5I0W8Ld4uL3+/F4PHg8Hv559zCKEt/SWEWlS61ig3gMVzAjoVshRDLOAYYnJY3350PkmJHXR71Z0bU+T60ywdmYaeQjR5M9Y5v7CFQXWxieCETn2H/4yinaxxMjQPFJpADjoUwiU0Vtoyr/uH+Kuvd/jV1wIggCNpsNu92e9HI4HNjtdlauXImiKIyMjISPoKrR/IBYRcL169cjyzINDQ387ne/A8KVBpliDaMY4+7Lq22I9dbF1ze6M6AzKxMTE+zZs4fm5mYqKyu577774hIELyf7WJZlvF5v1MjP9orUbQNcCO1ETeo8JxBIy+Leu+9l8KhA84CcpGZoIixTbBW9jCqxOvTh97VHqULC77HLLkWXYCmxFKY5FjIlEFk3PPWzzBLEQIghr4gFNyukCzyx6x6qqmoAaG1txT5Rj8ANzDhy4WmDgowAE1MC6YqLEAbc2IntS6ACoxl1fOUOG7Is43K5oq+uri4mJiaInWE1m82IosiBAweAcDXB8PBw+OxVFUEQyMrK4jOf+QyiKCblHZSeP08na4k4JML0Z76/zhzdHi7v720utESV9NbF1w96zoCOJoqicOzYMd59912MRiN33303a9eujUsQ1JJnFQT4/768glKHmmTQvV4vbrc7+nukh0AsFouFzMzM6Cvx98zMTP5m9zANFz1J7Yw3rsjk7x6r4XSnmz/6WROKmiw4s1E6DAiclLdNL0kM989kpptxM4Vlei1FIyydio9KsuG1dgS00HLCtM9RQKZOOhqVpHapDjrkSmRTLisKzBgHf8emymywlfMfh0fxqlZyM2Ty/af4/p9+HYvFgtvt5iv/2IRrKnn/RqbYYdiP2Wxm5cqV7Nixg8LCQk53unnuQC8XBiYpdojsWgXZBjenTp3C5XLFOa6xWCwW8vPzNSMM77zzDicvjOO0baZnXMYqeigMnsMmjJOenk5paSn9lPHGuZnxmyCE/+b0bH+dxUCPDOgk0d/fz+7du+nr65s1QfD5A30x8/bTP1WFHzx3lFpDfXQ9o9EYZ8zz8vKSDHzE8M9Hm+Crt6dz8pmmuHCmqqpkexqYmlrJ+jIrZTkSF0dik6HCRr5TqeT2gg7KMgY5MexgwC1gwoeMhG/a8GdOVx3YBWfUwCQr26VCTfj/UjO2sSyFyEAikXOa26FSETkp30CddASARmU7Cir4BRq7JhHYzBe2VLHcFqLl2F4cDgfbt29n376JqDiQ1Wpl9XK7ZvLe6mI7a7LWcPHiRc6cOcOZM2fwSnnU+zcjCAKKCk4vnOuDHz5Wxyeys3nllVcQRTGpWZHZbGb9+vW43W6Gh4dpa2uLlidGsJtMVJhOcnu1Y7oL4WZCoRBut5tz3V729EnEfl+qGo5zPH+gT8/217lsdGfgOic27Fien061pZfepg/Jy8vjscceo6SkJOW2WklPIKKY83nsK49FDfxid1DTCmfeV5vOob3v8dJLL/HlL3+Z/vEAySJCArK5kG9/+z5kWebpp5+mddLPSfmGmCiBggc7EB5pzrw3l+HUii5ca2O71Az9fImNCsz2GcK5IqflTcgYYr7DyE+V5w70Upd2AkmSMJvNeL1eMjMz4yJckblyQY1MJYQ7A/3BPRWsK60FYHR0lA8++IDnG4yoqKhqeHtFDR/puQO9PHxjAY2hLXixYpnWsIhELe69917WrVsXd/ahUIihoSGee+45HA4Hq1evxuVyMTExwcDAAC6XK1qF0BjaknBtpq+QCs09LlpbW7FYLNFXWlpyB0YtdJEhnQi6M3AdkxjmH3EHOE4mj2/bxRfunTtBUKufQHhEZZvViVgMEjXiAcqzv8hzzz3HK6+8giyXgJbAjBp+sP/85z/H4/HQIW9JMiKRygNBFBLem83Ia8ngai3X4koY7fnucyk7C7FRglTnKRLCqPm+ikBT5zgOQwe33HILBw8eJCsrC6s1ud/ADx9bw49ePUWfU8EieLijWoibK8/JyeGBBx7gueYGcMdPAygqnGwbob7NBeSiIhDAiFPOoU46wnKbzNq1a5POz2AwcPToUVRV5Utf+lLSeamqyuTkJE6nk28/2wc+rRldFWlqhBdf3BO31Gg0xjkHkVfEQbdYLHS7JJ58tT/6GcY8Lo63u/Rph+sU3Rm4jkkM84OAIAicGsviy/OoFFhq2celpaU8/PDDvPjii6gsR8tAuHwh/uAfDlMmGrALTFcYJE5NTFceKGi8d7mjfW253MXncva5WM7JYuwn0SHQSvRMdYxw3wkIG0ePmMOrzXY8SjHnn22JGwWvL7Py3dstvPbaa9x5553s27ePzs41lJWVxe0xlQNskAyEQsRUA8w4lV/7ZInm9FdbWxuNjY186lOfSnIEAARBiBru1cUejrW5NIovBZ587GZW5N6K1+uNJuRG/h959ff3R/8fG21QmBEZikQ59GmH6xPdGbiOudza5sXIPl7sMGVVVRUlJSVY2ycYJ15NLWI4xtQcxuUcbjCfJDctRJ8vsfRMIVMIG5Exda6qg4WylEfisLhRioXuR+vYYUfAiiumRXGszkPqYwhAhaEdgF+9c5yT8vaoEFX9heRRcG5uuFlVeXk5JSUlvP766zzxxBNxIfdUDrDRaMQXShTsEZkUbKxfvz7p3Px+P7t376aiooKNG+cW9IkcV1HiJ6S+90AZG1aEp7W0HIpEVFXF7/fj9Xr5xr9ehMn43IarrW2gs3SYfycZnY8dFQUZUU32CAutbY6E6//jzzbyN19dvWBH4HvPNFF/wcWIO0j9BRffe6aJ053uee8jkVAoxMDAAJvyxonXrAfiRm3Q4iuhIHB6emnkoRhWK3x4ew5lYlvCPtToOnOTuI3O3GgZ9nBJoQc766QTbJQOk8UoRqaQCJLq+grI3JbVzJN//Ch33nknXeqqGEXKsNFT1fAoOELEGRgdHeWBBx7A5XLx3nvvxe034gBvWWkn15rGlpV2fvT4GlYXWZL+lkAl327UlOh+5513mJyc5P7775+XhHfkuFsrw8fdVmnnx99YwwNbC+bcNu66CALp6enk5ORQVWS97L9/nY8PujNwHfPIJ4qi5Ulw9cP8WtUIiQ/ohXL+/HkCgQC3bSzDinOWNcNTAXbBSaV4DsO0YTEQpNrYSvOxvdPraRmbRCcjFjXhdWniRtfOiViKkYtw7kaHXIldcFJrqKdGaphuLKWFSpYwRoY8jNfr5cYbbwTLMhIfd4mj4PT0dDIzMxkeHiY3N5dbb72VDz/8kP7+/rjttBzgRz6h/TfT6xKSnNvOzk7q6+vZtWsXWVlZ874Kl+N4a3Gt//51lha6M3Adk2qUc7VERlJNUzT3uBgfH1/Qvk53uvnzZ1v4038fp1nawelONz4ymG0+2YIbl+rgvFITTUILYaQpsDpaUhgmMRlQS4go0fjHiuQslMs1yEs9GnEpzs6MgqRLdXBa3jS9PHlaQUDl9z9RjM1m49/+7d/o7OxkpUYUDBQsghuXyxVdkpubG206dNNNN5Gfn8/rr78e11tAi/VlVlYXWRKWhg8Y69wGg0Fef/11SkpK2LZt2zw+95XjWv/96ywtdNEhnUtiMeb6tZqzCKhkCSNskOpxOBysWLGCFStWUF5ennJONLEqQpg2NiKhFG2JY0P4Wln/anQfalJ5Yiq0EtsS96uTuotg7O9aKFgJG203EQVMrfVVim0Kf/7wOlYtM/LSSy/R09ND3a2f4e9/6402pwo7Bio3mE+SIQ+zefNmbrnlFg4cOEBPTw9PPPEEEG7K9dOf/pTbb7+dm2++edZP9vm/Oc6YJ9lpiG3089vf/pYjR47wxBNPRKcldHSWAtKTTz755LU+CZ2PFhHj2zfmx+tX6B/3s/fkCBsrbBQ45moKM8OyLBN7T45Eg+6iAKIo8N+/sp6NayuQJImuri6OHz/OoUOHOHfuHMPDw8iyHFdL/fevddA35o+ripgxznM1I9IawQsJyy+lRG+2ssMryVLXFpjtmmo5bQIRCeEAJgKYSR11Ca/vDYjsPTnC1qpsbr9pE4ODg5yuP8iqFUV0jqmoggFbuoEn7i7lG5+7EYPBQH19PYcOHSItLY2BgQFuvvlmBEHAarUSCAT44IMPWLt2bVSsKO6oqkpDQwMHzwziU9Pjzk0UoKbEyh11ufT29vL666+zc+dOqqurF3zldHSuJLozoLNgEo1v5JE9MhHkjrr5j3YKHCY2VtgYmQjiDyrUlFj5889VUFeRRW5uLlVVVWzdupUtW7ZQWFiIoii0t7dTX1/PBx98QGtrK2NjY7zdIuBLUoAVEKJnlqoUbS6juRCDPp+SwcstS5yLVPueSyzpWjsrqYx7+HoZCE6ndWroRiStH38/3rUpn7Vr19LU6+ONVisKEiAQlBWOnnexpSqLrRuq2LIlLOpz7tw5ZFlmamqKkpISDAYDpaWlnDlzho6ODurq6uIS/txuN6+++iqHDh3CIvnpl4uId2LgLz5fQU6mgRdeeAGbzcanP/3peSUN6uhcTfRpAp0F89BTDYy4k/XXc6xpvHIV+p47nU7erb/Aayc8DHpEZBUN4ZlwWDmsJijMKMstmuFLDG3PFupe6HGX+uj+cljIZ4udzll4elNseP7Pnm2mvs1FYlfALSvtcTX1fX19PP3000iShNFoZMeOHWzbto2+vj6effZZ7r33XrZu3Yqqqpw+fZo9e/YgiiKiKJKWlkaPS6ItUB5VIVwhXeAHf/lNDh06xMGDB/nGN77BsmXLFvxZdHSuNLrOgM6C0RJeAQVpaoj29nYqKioW9XiJ+Qk7qh380/syqpqOGjMCSxSm8ZFBJi4kyYBqtOHSVHAjYVut5SS8p7UsURxnrv2mev9yKhCuhAOx2LkP83WWLs8RSCyRuzjoI7FttVZNfWFhIQaDgR07djA5Ocn+/fs5fPgwt9xyCxs3buSdd96huLiYgwcP0tzczNq1axkZGcHn87Fr1y5eeeUVag0jcfvcs2cPp0+f5qabbtIdAZ0li15NoLNgtEqSREFkS76L5557jjfeeAO/378ox0rUIjjW5uJHuztQVCVO7S0STrYYIWKYQ5hwY8clW6gIfDhdaqgt6apNbNa7kvBztjlvrSS5VMw1taB1TvPZz0KI/ZyJ+xc01pnP+SyERC0HFStODARY2CNKnd6biqoqVJm7CQQCQNgxEBLOVaumXhAEcnNz8Xg83HfffXz3u9+lqqqKvXv30tbWhqIo/OxnP6Orq4vPfe5zeDweJiYmeOSRRzh9+rTmWTU2NpKVlcWtt966gM+io3N10XMGdBaM5lz/5yv4zO0byczM5PDhwzQ0NJCXl0d2dvZlHSs5OTBCskywOQ3WljnoH5uKeT9szEbUfHKFISbIilk+u9EWUNgoHaU6y4MsZTIVkLHhJI0AAdI1t0m1r8XjSk13xO5f65ip3r9CEQNBQoXoHP/cqEiESCOIDSfr05sJjLRy4sQJ7HY7BpOFY+2RLoFCOANBhD//XAX59vik187OTsbHx9m4cSPp6elUV1ezcuVKmpqa8Pl8qKpKdXU1fX199PT08JWvfAW73c4bb7yR8uzWrFnDmjVrFnA9dHSuLnrOgM6i43Q6eeONN2hvb6euro677rpLswXyfEiVn5CMQpHZy+iUEb+qVdEQP4UQMYJV4llGlIIk6WIBlXXL0/n2J9JpaWmhsbEx2pbWpTpokLdH14w9hkQIGQmSJIwj6y4k7H6lcwfmG8G4nKmCSym5jP+OtNef2U9ELOeHj1YTHGvjrbfeQpblaCvhme6T8YmK3/tUGQ9si1fwO93p5h9+dYae8RC1K/N55BNFGKf62L17N6FQiJtuuonDhw/j9XoBuOWWW9i5cyeHDx9m3759cfuSJCmqT2A0Grn74W/y0u+G9Q6BOksS3RnQuSJEyq327duH0Wjk/vvvZ9WqVQvej7YWQVgBIPwznDMgAJ/IaaFxLI9xNSdpfnj6rEg0TOFQdCQBMbL38P42GY5hZQy3kEN7cAWTWMnATa44SI9Sig9rzDbhEzTjTliukDyyTmUQr2bi4JV0BFLlQUTC+HKMfsOlVGnMnFcaAQosMk/cW8mO9cUIgsDU1BQvvPAC3d3diKLIOWE7A/7EhlQKReZJHrtBpaSkhJKSEtqGQnzvmaaoEqYohO/jOukwW1bl8alPfYrMzEx2797NiRMnMJlM+P1+CgoKog2CYh2AWFyqg0ZlOyDE9TTQOwTqLBV0Z0DniuJyudi9ezdtbW1s2LCBu+++G7PZPK9tVVXlg9O9/PUrfajRXvNhQ73W1IbLsBxXyIxV9LDePsSKXJHGiy6OTNahqPM1rPG17GkEyGSCirR2ctI8DPszpkeVMNMcJ7LdzO8ZeJgkokA3s1wihAkfk2Sy9FJ05io5hAzc059rvuJL8zlWeN8OyY1LtqDOWTKojYBKtjjKevEYEB59FxYWUlhYSFFREf39/Rw6dIgPQzunp3XisRhCfMLyYXSU3yTeyFDAnuBIqlQXiPzk21sQBIH333+f/fv3U1tbS2NjI7t27eL06dMMDQ3Neq6NoS1J0SetagYdnWuFXk2gc0Wx2+186UtforGxkb1799Le3s59992nKboSCATo6+uju7ubnp4euru78fl81IoO+g1r8SiZLM828MhtRexYdwOCIBAKhXjqqadYVVjN6dOneeShh/h8WgF/8YtzGuWGs2Xui4BCOpMIosDpYC2ZITdB1ZAQXo6McGNzEhQC0WPFrgcyBiaxsjDH5FLfXyhz1eyrSMhYmZhW/bvUYyeed/j/GUaBFYGjMc7WwvavIuBWMkGE4uJizGYzoVCIpqYmDh8+HN6jIGDBPf39xBvimvIc/vj3/xin00l3dzf1v/FqRJQERiYNCILAsWPH2L9/Pzt37uSWW27B6/Vy7NgxiouLGRkZiZtG6pAro+WF5VKbZqtsvUOgzlJCjwzoXDXcbje7d++mtbWVmpoabr75ZkZGRuju7qa7u5uBgQFUVcVoNLJ8+fJo+La4uDhlzsGFCxd4/vnnMZvNlJWVsfaGe/i3/+zidMd4Uug/0VBrE8maj40CXK4hT1WeuBiaBLH7TzzGfLabO0xfJZ7lvLKWGWdnftvNta6RKXYY9rN6613866HU0s8zEwzx+xIFqMqDwrE9FBQUMDY2RjAYRJIkCgoKMJlMXLx4ETWzlPeda2KiOwoCAndVTdHlyWTADSuXWRhxTnJxJJh0vmmSQGWeQPrwB9y5fTV33XUXgiDgdDr5nz9+nguBFXixYhW9ZNNPm7I24ViQiQs3dvTIgM5SRXcGdBaVVD0LZFmmv7+frq4uzp07R29vb3Sb7OxsSkpKog5AXl4eojh7SD1ynHNd45hCY1SkdfD5z3+e//ZiZ9yUQiT0b5c8ZKn9eE3lTMgZhGSVKTkxPD1fo524TMFAkBBpXN5UwFxGPVUyXiyzOSTzcUaSt8tihHKpjQ65knFy57GdioiMgRAKgkaEJrxOjjjGevEoAC2Gm+ifSpxKUcnNUDDIHkb96QRjnLuZOfdq9r3yNBs2bOD2229ncHCQ7u5uurq6aG5ujo7Wg+ZizrkLo6P1grQRWoKr44x25Bwj2pXx1yjsQPzD42tYW2Khv7+fAyc6+NkxA/FOEtFzjP0cEsGYLosz5683BtJZKujTBDqLRmLDoDGPi2MXnNxVeJHgaBuyLGMwGCgqKmLLli0MDAzQ09PDsko1Xs8AACAASURBVGXLuOOOO7BYEru+zec4Ih6yGQ/kcPHVZhTVxIxBCY/u05lknXA0/HwOdmO1WhlJq+TQUAHxD/y5yuogecQbNjZGAtNG73JC+XONupOrIea3HRrvzXeEL0RbPdca6jke2q4xZZDsRCmI3LNijK6uThrkGxLeD7tqKwwXQAln3S9XWhhgCwjh5L3IiLrEf5RSh8oXv/FF/ve//AcXQxX4RBvrVuTy+zuLWVdqpbW8nI6ODiRJoqioiKKiImRZpqmpiS984QsEAgHOnDlDWms9giCgqiqNwS0xjkDkZ1i10kAIJ9nTuQxE31dR+OufHaTWUA/A8dB2iLsWqb+3mYZZ4chTulHiD+4sWdKOwGI0I9P56KA7AzqLxvMH+qKOAMz8PDuxjG99spySkhKWLVuGJIXDwaqqcu7cOd566y3+6Z/+iXvuuYd169bNqdueeBwQUVSFUX/8vHAYATcO0nKqKM8OH3Nqaoojvabo+wsjPndAQp7OC7AQ+7C/PIdgrvcjJYwG5jZEqYhNhJx92kRBwKWGOwV6yZzHvsPn+P7FNGoNTqoNLZwPVU6fb7jiojajDXNwjOUlJUxOTiKPjlAnHWY0ow5nIB1DYJQysQ274MRuLyU/P5/89EmsvnCy4Fdv+yrl04a0vLycs2fPMjU1RXp6OuPj4+zfv59t27axenU4BD81NUVrays33ngjLS0teAeT5/BBxI+ZzYb9KZIOZ9ooA3iwzXHtZq5h4vc06Zf50Rud7G0Y4b/cXbrkjKyWY3+83aVXP3yM0Z0BnUWjfXBSQxxIwCfY2b49uWeBIAjU1NRQXl7Onj17+NWvfsXZs2e57777UrYrTn0cEZBJZdzqB+0ER+ujvztDVZrrJWsCzD7aDoviJCYUXknC5xfvCMx/u0g0QwAqxbOcV9bNsU04zB/WVYhcD60oQyIik1hxqQ5a5Eg4PnxNp8jE7/djFiEnJ4fu7m4eeOABAoEAR44cYdw3Hle80NXVRWNjI6qqYrFYCAaDfPDBB5SXlwOwYsUKVFWlq6uLqqoq3njjDUwmExaLhVdeeYXe3l6cTicAH374IQCZgpsxNdF5VLDgBtBMOoy8H0kQVOc9JZQ64tTU4+V7zzQtCSOrqiper5eJiQn+z5v9KEpkui3sEIiEHXE9x+Hjie4M6CwaWj0LtCRfE7FYLDz44IPU1NTw5ptv8pOf/IS7776bDRs2JEUJ+vr6SFecgJnEB3VmNOs9EYFAWja1G2qRZZlQKETbRZker/YcvBUnU2RMz1EnhuXj108Uspmby60ISJwimD9WnPgxRzPc7YKTdqV6FscisYJits+afC1lBE7K2zSqMWDQuA578HecO3eONWvWUFdXh8/no6mpCafTSVZWFmNjY9G9PffaQTrkdfgN2RiDYwyfb2PXwAA5OTl4PB4mDfn8Py934AwOkqHmUC6N8+6770anBWIRRZEytY1xOQcVhdhEv3KpDaZ/OjXezxUHE6ofLr/CQ1FUnn23m799dO1l7Wf2YyhR6eRUL7fbHc2xaAvtRE2IjOjVDx9v9ARCnUUjMbR4KUlSk5OTvP3225w+fZqqqiruv/9+bDYbvb29HDhwgLa2NibIpiG0FYh0Iww/qOukI1ykBqccX8qnlbUdOVdFiTWtKlXiGe7fnEd+5Vb+8sWu6eWzPfQvRZRHax9XMqIQ1vqvlJrjSt5yxUHOK2tYHA2ByE8tLYZkbOmwKbQHQRD4zne+QygU4sUXXyQQCPDwww9TVlZGf38/+/fvp751WEPrQcUmuJlSTZjwTWfqR96fuR+yDW5UVY0auVi0SgDtgnPW98NJlPF6AXNXksz93ZqEKf7idoUbb7yR1oHAgubqFUXB7XbPaehjH/UGgwGbzZby9bd7xjjZ4U1y7PXqh48vujOgs6gkJh19ZWfRJSVJtbS0sHv3bgKBAHa7nbahIJ1KFR41k4JMhS0rMnjv7AgeJRMLbtZa+/j0zjrScqr4k2db5+WQnO5089yBXpo6x0kLjlFhaOexh3axdu1a/vTnzdRfcDL7Q3+2qMF8SZy7n6tyYa7l2ue2XLhIj7oi5jwXWrkw23HAIniZVMNiUiLKHNMYKiZRRlVCZIoetuS7YKKDrKwsvvCFL+BwOJBlmeHhYXp6evjBmy7GQ5kkX/vEzxL7vkIWo9Fkv9kQBIG0tDQkScLn88UtlyQJVVWjqoKpBIxS3wNz3xuiAGX2IBW+/XjFXI5ObQRmlAoB/vL+bArMvjjjHvm/x+OJM/RpaWnY7faoYbdardH/R5anp6fPmpuzGI69zkcL3RnQWZJ0d3fz7rvv0tHREdWWj0QChOmRYZ10hEJLgF27dlFbWxtNTDzd6ebpt9tp6XGxpjSLr99VrvkA83g8/OIXv2B4eBibzcajjz6KwxGeZvjsD47hnLXlcSKL4RCk2n4+DsFsuQ5aCYep9pv4mWczwLGGOBIFiJTozTZSnlk/8l3usJ7hjhuq6O3tZXBwMDqSnekDsfDrGtExmAtJkjCbzZjNZiRJYnR0lGAw3A9DFEVuvPFGurq6cDqdXEi/jXP9IRIdDysuPNjQ1kpIrXERa2RLHSp/+K+NdLgSS1RnHBuTyTTriN5ms2EymeZMwp0Pi+XY63w00J0BnSVFV1cX7733Hu3t7RiNRgKBAOeE7QwFE8vZFFbnh2VitTQJ+vr6ePrpp/nmN7+p2UO+ra2Nl19+mVAoxOrVq3nooYeizgTA1/73+3RNmIhVpBMEyDCKeP3JIefZmcvYh9eZqUVPFX1IPU1hxk2aoDCh2mdZb24DISBTKZ6jRynT7LEw+znGn9PcjkSE1KP4U/IWxtT5aBskolJk9vLgGhc2m436+npKSkrYtGkTZrOZ9PT0qANgMBjijGcgEODNN9/k1KlTQNhZqK2t5cSJE9x631f+//buPD7KOk/0/eepqlRVlsoeshESEhKI2VgiaCsIiNqiou2GCyrqcbpn5pzuce5M9zlzXndOv85rZs7pPvdq3zlzenoZbbUZHEVHcUFRQZAthCyELCQhgYTsayWpVJbanvtHUUVVpcIiSwz5vl8vOiap5alKOs/3+f2+C3/3UT8u1TeXQGGptmSaPgzu171Yd5JeRwJWTMRFaImKiqJ/xD7lJDvdYK6YcC1vv5yPwRBsCJcQV04SCMWM8L3qSIjSMzk5SffgOAbnENnGUcJwL3empaVRcspTtudLw8B4yLTNiTxfDxwa43K5+PLLLykpKUFRFDZu3MjNN9/sdxuHw0GirZazLIdzCWQKKhpFYUF8KCc7rJfxSt0ng2xNrU9nuuDJeu51DxXVb+89WBKf//30TLBKdwgI3gN/6rCk6Y81TDNBkysvIEHO/c/EMOOEBT2GqZ+r4E2+CwwOpv4sh4hlWI3227MHGFUvv5Wz+2pb4b9sudl7kj169CiZmZlB22AH0uv1PPTQQxiNRkpLSwkJCaGiogKLEsebX7djMoYzPmFHVe1EMEKGtomsBB30NWF2xjP15wZD2lSKOOxOaJxQMagGfvLQQyxZ4r//npkYxoBlyC8I1SiQnRwhgYC4piQYENdd4H5kv8V27jshjBHHsYk4lmqPgnUIs9lMkimd1hFPMxoPFzFGG6qqBl0S9Vzl+wYDo6OjbNu2jZ6eHkJDQ3n22WeDrhqcPn2aMEcvK/TH6DMW0m2BCGWU//b87fzt242X+WoVQpgkVdNGhGLhhHNFkCtrcJ9sRy7S6S/4FoCBcaocxVgxYWCc81fy55PpjN5pihc+sU66DD6Jer7PqT2XpBf8GAI/D1es6NVxrJiwEzLN8rnvPTQcd65iZehx7l+Tz7x584iKimL4kz6qWoOVkvrfWwGWpIbTN2KbcrVts9mw2+2X3NQK3MHEqlWrKC0txWAw0DcZToW9GNUO7hJW95/OUSJpcS4izNpFlNKPDhsOpp60nfp4nvrBUxw8eJCzZ88yOTnJO++8Q3JyMk888QSRkZEA3FcUyrEmMxrFf7rhM+tSLvnYhfg2JBgQ193UpkG+JxL3leR4/G38/NkcIiMjzwcPuO+jnDsfRQyW8Ic/1PLQQw8RGxvr9xyeYMCTRd7c3Mw777yD3W4nLS2Np59+esqVlme1orZ1EIPzZgpMvfz9f7yFvXv3cvToMXa/V4cylgtTrrwvRCVSM0pERATWMR1OZ0jQ2wDebPYMbRMWZ+Q0g5Y8Hz0nfM6VU7pXE2znyiEjlREmVKM3Cx4I0gkwkIIDbZDvez73vcoPPCb/2y9ITeTBjHZKSr4+t83j35d/agDh/u/G8TT27t3rTYjTauJQ1Zu9ry9Y4KHDzi+ey2X5origr8ozlfByggGA6OhotFotK1eu5Pghx7lAwD9IsmPATByHLPGYSDuXl+F/jJ7y2uzsbLKzs2lvb2f//v00NTXR1dXFq6++yvLly8kouIM39pxFB4QaQ1EUhcUp4bJXL64L7c9//vOfz/RBiLnld1+0XWTfXQGNjmfWZwCQGG1gWWYk/SN2Ju0u8tNMPHOLkaGzVVgsFo4dO4ZeryclJcW7SmCz2SgpKSEvL4/y8nJ27dqFy+Vi9erV/OAHP0Cn84+DPQFH5+AkNqeGcYy0Tc7D2nGc0ycr3PMOVJUInY1ORwoaRQl6GgxmiaaKeJOORlc+IzYdU0+K7mFAesVGrXMpreoiXN5kv/M5A8q526mqBhdaIhkiBDs2fFswu2+rZwIjE1gxMaZGEK0ZZH5IN13OZC4tkJk+YLj4NgHYHSp/+fgKSkpKCHFZ6FbnB7nt1McxhEaQ5DzF7bffzurVq0lPikI/dpYBiwMnIeeaPHnu6171KNIeY2GcBo1Gg16vJyTkfMBV3WrhlY9aqBxK5vSghtT4MBKjL225XVEUampq3NsFvXGM2aZLrjz3O4cR//f23DEqCj97JJN5Ue7njYyMpLCwkIKCAsxmM4ODg9R3jvNGuQHzhMY96cKpYne6+OkPMme8GZGYG2RlQFx3wZoT+QrWqKgg3TSlvrkg/Xm2bduGqqrs3r2buro6Nm3aRHx8vHdl4LPPPsNsNhMSEsLmzZvJysoK+pzTtTg+dNbITzZsoLm5mebmZuLDRvnFo5lsP9BNVeso7i500ycFmhgiShnCbFbodWgI1i4ZONcJMFh5ofvkrsNGgbaCKGWIVE2797sHHeuDPKZmymrBkDOOpRwlRmNm0BUb5D7+z3fxxMXA2wfcRoWwsDBiM5ZzrDFYmaHvVsa5o1ZgcWokt6XexqFDh1i4cCG33norvb29mNSz/Omf/imHqtt55b0TTChRGF1D3pbF+/btY9++fYD7eRMSEpjQJ7GjPgZVBRUj1W0Tl93tLz4+nv7+fjITsy74Oxv0Z6aBWO0wdyx0kL9g5ZR7xMXF8dRTT2GxWPjR/z6GOo73/ZCOf+J6u5IRa0J8K1vWpqAo52uofV3OHmlKSgovvvgiBoOBsLAwRkZG+O1vf8uhQ4f4qrSJKkcxn/Yt5aTmVtY/9Py0gYDL5aKxYyRoi+NxTTQrV64kJiYGgIiICHJTQ8mw7mWFvtxbGufm+wCeFDx3X3+dTneu1W3wZfXzH4MnF2pQyYg9lyB37gp4WI32GY4UzPkhPCrQZyzkxw/lnXuGC6/M6DQKBo0j4HX5vlbf1xnkmBWVA1VtvN8Y7zPYyL8yw7c00ffnvn79ejIzM3nvvfcwm800NzeTmZkJwG0F8/mzNQZu0e6lUFtGcriNhIQEAJ544gkeffRRVq5ciclkYv9pLS7Vv6Wuy6Xy/7xTwf79+6mtraWnpweHw8F0PMHA1N/Zi60LKUSF6fjxnREMtlYyNjZ95z6TyYRNF0Pgn2Pp+CeuJ9kmENdd4LJ/+rxQEkzu8bR5aSZ+9nDmJe+RhoWFkZeXR319PePj42RnZ/NFSQM7TycxThhOQhh3Gfm6doRlmZF+S8TDw8OUlJTw4YcfctZiZDIgU15BJczRT+fxT2hpaWHSkEzpYBpvHxmicyycSAZIDemm1zkPV9AVAoVJDPSSRqSrh6hwPd22aO/3Am97oRWGrAQdIeYaANqd86m0LaNTTZ/msYI//oTdhaHjCyIc3UyqoaDREW40YnO6Am6psjQjgv9rvZbexkNoDNFMOlT0jPskx50/kQd7Pp1G5WhtBxOqYdrXFWbQYlL70YYYKVoY7f25K4pCdnY2VVVV1NbWMjQ0xJo1a4iLc+cEGI1GysvLSUlJ4e6776a0tBSj0YiqqqxZs4aMjAzS09PZfsSMzRmYuKhgc4K+r4SqqirKyso4ePAgVVVVNDc309XVxfDwMHa7Hb1ez8TEBFVVVTz4/Tu4OTuW/hE7vWbruZ934Pvgn8tQsCCSzetzKCkpITQ0lLS0tKDvA8CRk/10D9v8HkOjuP//cNfS+GnvJ8TVItsEYkYEW/b/tkwmE1u3bmXbtm3U1tbS4vQfT+u75PoPWxZx6tQpKioqOHXqFCEhIeTn57N0dS5//3G/d6tAQUWjUfjR9xdx9KsKd+Mja5G77M+lYZw4zM447p/fyen+UAatzoCjOn+1r6oqra5FhKvhTN+i98J9BJIddQB0uNI45coLeI5L4cKkGWVsbIzQ0GgUq4JGoyUl1oCl03GunNF9YlOB8Y5yvujvJjlcIXbyCE6dkypHMeNE4J+f4DlG/yV/66QKF5nqNzbpYvOKCFqrv+TP7v8z4uLOB4ChoaFs3ryZ3//+9yiKwoIFC7zf279/P3q9nr6+PubPn09hYSF1dXVUVVV5pxIeOnQIg2MpVmKnlOkVLIznr5/7a8bGxujv7/f7V19fj9ls9t7ek2T6wQcfkJGRwdpFURxr8h1OdT4gcpeFenIZFJ5Zl0J4eDg33XQT5eXl3HrrrdM2AyqM6aeqNRRFQaoIxIyQlQFxQzhz5gxlZWW4XC5OuxafK987TwXMw6N0lb/L8ePHMRqN3HHHHTz00EPk5eWxMCXGu1phsU4Q7hrg754tpLH8S1RVZSD6DnotTnxPhBpFISo+jViTno7ByQscnYI2xIhlQp1yXL63uZDiNLj7jpW8WxdxLonucmrv3X0bF2tOMImRssnljBOG3aVlcNR+rmTTf+9/wBlHhLMbvTqGyWRiYmIi6PsKEBmqQ3XacfqtjlwoUfD8V7VhMSTQTldXFwUFBX7fj4iIoL6+ntHRUcLDw5k/fz4NDQ3s37+f++67j+bmZpxOJ+vXr6eyshK73U5lZSWtra0UFxdz95oV7KkZ8r4yzwn2Zw+7k/k8bXuTk5PJysqioKCAVatWcdttt3mnaUZGRtLW1obdbqexsZFP6g2M+w3JUlCAKM0ICeEubHYXkcoQT67QcteqHMC9enXkyBEWLFjg3W7y5XQ62fvZv1OcHYMxMpFJu+uyV8iEuFKyMiBmNafTyZ49ezhy5AjgHmd7sl2hZzxIS16n+8o4JSWF4uJicnNz/coLPasVXV1d/O53n3O6apz29na2bt3Kf3qri8CTmmdP9283L6K0aXjaY9QosCglgtbWs0wy3bL5dCsD7mZELc5M1usJUm4Y+Bjgu3RtMmrQ2/rI0DRhYogTzpv9Gh+dz5Pwb5SjotLiXESUUsbQ0BBhYWFEjY3R7/DvygguEsNddDm12GzBqww0CkET71SgpXeCFx64m3fffZfGxkZycnK833c6nQwODpKWlsYXX3xBfHw8n3/+OVlZWSxdupQTZ4b57cEx/k9pNXpHHvPVBqLUIZ5//nnvSsKrLxgvu6VuSEgIiYmJJCYm4opYQO0hBxOj0cyP1WHpHidwZUdFYdxl4LH5bbS3tzMxMcHK3Ce831+wYAEJCQmUl5d7cx98NTY2YrVaeWZtIYmJiRc8NiGuFQkGxKwR2Cv9oeJIqg99TFdXFwBr165lzZo1lPy2jp6O0YB7KyQnJ7Pp1k1UV1fz0Ucf8emnn5KTk0NBQQHZ2dnecsPExER0Oh01NTVs2LABq9WKdrKfwP4CnqqHgnQTf3F/Or/6pDXIUbubIr1wVzpvvLGPIUdckA6DnjOl/1K7zyNQfbqfHWe/JoQ7sU/btGgIg8GI1aHF6Bwmw2RFN6+Q6jMTnHZkUhgdwehQRNDnmPp4GoaJY1iNZkG0yvDwMDmhbfRbYnxO7u7l8AhzCaHKYkaJ8XscBZUlqRGYQnVUnhnB7vSPCDzv35IlOWRmZvL555+TmZnp/Tm0t7djs9m4++672bt3L++88w6qqrJlyxZqzo7y1vEwXKoRJkAhhn5uYam2hLKyMm8wcCXbUecnW8agonCy2wHoCVYFEamxYrVavTMNfJtZKYpCcXExu3fvxmKxYDL5ByMVFRWkpqZKICBmlGwTiFnBtw+AddJFl3mSPTVD6KytRBlVnnjiCZYvX46iKLyxt4Mx29RseUVR+PGjyygqKmL58uWEh4fT2trK0aNHKS0tZXBwEL1ej0aj4ejRo4SGhnLbbbexfft2jFjpUeefO9UpU5acl8yPYEVWJAMjdkbGbLgcNvRalWVZMfzs4Uzi9VZqyg8SowzQryYGLPW7Pxq0yrme94HJhC6ilCEKkhxkpCXT2Dc1eS1bU8PGnEl+/qON9J2u4PSwkVZbEp3mSRyqjgnCaJ1I8FnK91818T0O36/2qPP50ZN3UVywiDP1lUQ4ugiPSUGjMxBvGCNXV81Lm++mrekE7bZ53veHczkXf7t5EU/fkcLShZF8cbzf54hd7vfvkUwSow2kpKRw6NAhdDod6enuxMjKykp6enr4/ve/T3x8POXl5YSHh5Ofn8/Pt51g2KYlcNvGRhjDvWfY3RzBv3zVQXnTCEkxhkvuLeDrlZ0tdA5O+qyEnP/o6TPhqSa5M22Q8eFu7HY7Op2ODRs2+OUHxMXFcfToUfR6vff1gTuJddeuXaxdu5bk5OTLPkYhrhYJBsSs4PnD7FluVj3/q4/k53/2ICkp5xOtyptG6DJP+uW6B2ZmGwwG0tLSKC4uJi8vj5CQEBoaGjh69CjHjh1DURRcLhfV1dU4HA6ijCrzTZMohigmbE6WZcVO2dNNjDawcmEIgyc+oDjJyi9+fB/3LJ/HvCgDhw4doqOjA6MyQbsrI8jeu4JThWxNHWY1week6r76XqI9gcY+AqPtTNhVRonxvgfzlTPcmaPhySefpKJpkF8fcDBJKP4nfc9H/6Y4nj7+StAmSu6T3oDFwePrssnNzaWq9BsiJ5u5OXWClx4sprmunLGxMTasLqbr5AEmVCMutGQl6PhvT93kfX8CK0jmhU6wRFPNI3cXo9VqCQ8PZ2JigpKSEoqKijAYDOzdu5ekpCTy8vL4+OOPsdlsWK1WysrKaJzMwhEkL0QTEkabI5XuITtjNnfQuPt4/5RKkksRvDmWglHrIjPe3fgpb0EEBYZ6HOZmJiYmAIiJiWHVqlV+99LpdJjNZmpra1m1apU3UCgpKaGzs5MHH3xwSiMsIa4n6TMgZoXTPcH602uw6+O9Y4c9AmvCL5aZnZCQwPr16/nxj39MXl4eqqqi0WhwOBzYbDb0ej1Op5M/ffpeHrvJwqakan7x3OIpe882m41/+7d/Q6vVsnnzZr8/7lVVVd4TQIQyXb8BMCvJbFrYzc2Look3hbAoTmWZ9ij33nYTAE3WeNrVhee6BLgfr0PNpOC2B9Bqtfzm01N+OQH+/AMDBSdFGeH8f/8hl1+9mEuIdup9fGvdY2NjiYuLIycnh5GREd58802ys7Mpre/h1S+GqXUuQ1EUloedJHVoN531R7zL5nB+yX7HT5fxq5cKCXP2UVpa6v3+2rVr0ev1fPnll0xMTNDR0UFmZibV1dU0NzczOTnp7S6YFq+f0qdCo4BO625w5NtbQFXdlSSXw+l0EqEZJbAfg4JKTIiV1KHdFE1+wry+T1gQozKixlDlKOawYx1HR/OpbrVMeczi4mJGRkZoanK3h3a5XFRWVpKfL9MIxcyTlQExK0x3tZ8fpA478Cr0UjOzGxoa+Prrr9mwYQMWiwWr1eoNClwuFz09PVitVhwOx5RJh6qq8v7779PR0cGzzz7rNyuhoaGB48ePez83KmN0q8FqzhUcqoZ0ZxVP3LmYLevSuSM3kq6Wk9ScHaVJt4qWiXne2/p+bG7rY7BhD4c7oy5QseD/XHpsPLighXXfW0ZitIHqVgtdgxP4BhKBKyo9PT10d3fzwx/+kMnJSfaWNXPcuYrBccXd04FQOh3JbCjOoKb8IDU1NSQmJk4J2IxGI6Ojo5SXl1NcXIxOp0On0xEWFsaBAwfQ6/WcOXOGxMREvvjiCwBWrVrF5s2bsdvtdDRX063OR1H8KwX0IQoTdv9ASwUm7S4ev+3SluGHh4fZtm0bowNn6VHn48nt0Cig0Sj8/dalPPj9O1i4cCHh4eHUd06wf3Cxt6/FiF3H7so+UsMnWJAY6Z2gaTKZaGxspObsKB9Wa/jnz1o4azGy+mZ3NYsQM0mCATEruMYHOHhq/NxnU/fsAyVGG7hraTyP35bMXUvjg97Gl9lsZvv27WRlZTE4OEhbWxujmjhO2m/irDYPbdwSwjST9LWfwmq10tXVhaIoxMTEoNVq2bt3LxUVFTz++OPePeETLcP88t+b+eOBfgZccYQqY4RqJgnV2LDoUhhzBrbpVYlSholztlJbW0tJiTsZrsuq59jEckYmPcv+U7P2R8cmibZWM+iKZSLomOGpw3OiNMNo+o+zZMkSIiIiUGxDHGgc8+6HB3uPbTYb5eXlrFq1iptuuolPG4z0jPiXXCoKaI0x/MXTd3DmzBm++eYbRkdHSU9P91stSUxMZNfBOj6oVvjjN/2UN42wdMkCRvrbqK+vx+Vy0draiqIobN26lRUrVhASEkJmZiZdLScJtXUSn5qFw3m+WVXHwORFt4gupKGhgW3btjE8PEyoZpI4rZmYxAxUtH5BpVarJSYmhoULF7KzVkuX2eaXW6ACNY1tnD76PqdPn8Zs2Eyt8AAAIABJREFUNqOqKoOOSLZXR9BltjFuh0nCOHhq/FttYwhxNSmqqgZfrxTiO0BVVQ4dOsTevXsJS7qJ7pCbaO2bvOQysUvhdDp5/fXXGRsbIyMjg+PHj2MPTeGwpcDbvMizJH1PSguMtGAwGBgaGkKj0RAaGorVaiUmJgaDwcD4+DhdVgPHJpb5ND9yD9VZqj1KlDLEsBrDcecqnyV9d27ApoWdDLed4Pbbb2dgYIC2tjYODS3BfMFJiSoaVKKVAZL1ZuomF/k8r29THP+T/F/eFc5XX31FpzYXpyGBUHWYOKWHkMQizvSMB32PLRYLr7zyCo8++ih5eXk89stK+i12AsWbQtjx02WoqsqxY8fYs2cPRqOR+++/n+zsbMCdFPqTf6nzvgee93htXAOuodOEhITgcDi8VSK+RkdH+d3vfkdUVBTPPfecN8gIHI/tea2/ejH3gr8rTqeTr776yj1Y6dzzGo1GtmzZ4peP4qu/v58TJ07wv/aHMOGaeiKPCdfw07UOWltbaW1tZXx8nBPOYgbVqVUpxVlRMoNAzCjJWBHfWRMTE+zcuZP6+npWr17N2rVrvUuuV9MXX3xBd3c3K1as4NixY4SGhnKanCldDMFFSUc4RbpxJiYmMBqNuFwu74jckZER4uLiyMjIoK41CXXC91g1qKhoM+7mubWhvPnmm/zN/bG8faiXDrOTGMMkf/PMKqI1Kbz++gny8/NJTEx0B0O/KAfrdLMEPLn5GgbVeAYn4wljlHlxUZitLkzaMRImThASoufUxAKsmDApVm5OGqa9PZbjzltQnSrY7ICRDmUhv9qcOu0gH5PJRGxsLK2treTl5QUdOuU7aEpRFFauXElOTg6ffPIJ27dvp7CwkHvuuYdt+zrdiYvn7ut5j2tHEsnltDtxMyqK733ve1OOIyIigs2bN/Pqax/w0q+OMOqKIDMxjC1rU3j1hVz+uK+DmtP9xIU6+NlTKy4YCAwNDfHee+/R2dlJWFgYY2Nj3iAjsEnQyMgINTU1VFdX093djcFgIDHie7RZAnspuIg1OCkqWkpiYiILFiygtbWVkrpIZAaB+C6SYEB8Z/j2EUiN0RI9Uo7R3sMTTzzB4sXX5qqprq6O0tJSioqKvKOQb7/9dvZ85iDYNMBJXQxpaWk8//zzDA8P8/vf/57ExETuuusu6urqqKmpoaqqilZnQpD7K5zqHCM9fQlRUVGM99bzZGEohw4dYtN9myhIj2R01H0fs9lMYmKiu09/somy5mAT8wJLAt0fx4jg7KCLnJQwWrtsEFrIT59YQXrs+T3/nh4r7530NB/2GWikqvzjBzX89L54EhMTMZlMU1ropqen09LSAriTNctPD7vXPs6dzFVVYcta//356Ohonn76aaqqqti9ezfNzc002O6YdjgULveqUEJCwrRZ9oOOSCodK3ENuwA7g6PDlJ8e5tUXcvnlc0soKytj165dpEUtC3p/gPr6enbu3IleryciIgKLxUJSUhLPPPMMYWHugGZ8fJyTJ09SXV1NS0sLWq2WnJwc1qxZQ3Z2Nic7xnn59ZPe98BTdBg5fJRf/tKd76DT6Zg3bx6JJpWzIyqBLZIDp3QKcb1JMCC+EwKXd/stkyjcxN89fjeLF6dek+ccHBzko48+Ij09naqqKrRaLQ8//DDvv/8+yZG3T7na0ygQH+quI7fZbLz99tvo9XqeeOIJwsLCSEtL46677qKlpYWSt3rAGayroLuMr6CggGPHjpGa6n5tnmAnPDzcW4bmsWVtCmXNw/g3u1F9Nh8CKbhUlfqOMUBP55iel/9Q7x7dm53tXaZ/55eV51YEzlNRODtgZ/v27YA70S85OZnExESSkpK8V7mVlZVYrVYK0k28+kIu2/Z1UnOmn2j9JIm2ahyDekj3PwkrisLSpUtZtGgRn3zyCZraXoI1corUjqFxaUhISODUqVN0dXUFrcE/XyEQfOxvQUEBX375JZWVlaxdu9bvvg6Hgy+//JLS0lJycnLo6urCYrGwcOFCnnzySQBqa2upqanh1KlTuFwuFi5cyIMPPkhmZibDw8N0d3fz+eef09PTw3LdBE22DKyYiNKNcUuKlXCXke5uuO+++1i+fDkajYZbvI2M3AGBzCAQ3xUSDIjvhG37Or2BgJsGRYGdFaN8r+BC97x81a0W3vq6g9oz/Zi0y0htaSBao7BlyxZ27dpFVFQUP/l+Pn/9VpP3as/zR3tFgjtP4P3332d4eJgXX3zRewUJ7vHCSUlJuNQuIHBiHkxMTnD8+HFyc3M5ePAgZ8+eBdyJeWFhYd6kRN9gICdJz5qYk5y0puDQx5MWq0Np34s9aQ11nfagrX59g5DAk6RHsCV+BZX4UDsapwaXy4XT6aS/v5+enh5KSkrctzm3UrBjxw5ycnJISkribx+dz6efVmGz2YiISGf37t1kZWXRalb8ukY+tSYJ+8Ap2tvbWagz+HRkdPf4d6nQY9Uxpiznr1Yvp3L/B3z22Wc8//zzU1YogpWb+i65GwwG8vPzqaioYM2aNd4tpsM1nfzTzjoGJ8JJi7sH29lq9BMW8vLyKCoq4tNPP+XkyZPYbDbmzZtHYWEhoaGhmM1mDhw4wM6dO70/6/j4eJKSkngo93ywFB4e7j4Wl4sdO3bwxRdfkJycTGpqqjd4+vXHDZzuGeOmBTG8eHeGzCAQM06CAfGd0NRtveAf9qul2u/KTM+4S0cfK/mrDZFUVVVhNpt56aWXmDcv1nvF69vXvubwaXp6BhgeHubJJ58kISHB7/GtVitvvfUWkUoG/cTi354X4gwT7Nz5pbeUzuFweO/nKb+LiYlhaGgIcC+Vf/zxx+gnOvmnH91HfHw8NTU1vP/+EPetn89//tcz07Us8BPsvfQs8Suq71Wqwn/ZspKcpNW0tbXR0tLCmTNn6Ox0X4WHhYURHR1NY/ckn7Yk8m/NDsI4SYb2Y+L17lLMZcvc/QZ+vW0XX/VkeoO8wdFhjjUNsVRbwuqiLP7DunU09Tr4p511dIwoONCjAHb0mNV4/u932/jpvRv4/PPP+LP/U0b/mM6bF1CQbrpovgK4a/s9EyoXL17Mx/urefUrKyomQKFpQKWZAtbFG2lubqa2thaDwUBoaCiKotDb20tvby9Go5GkpCSys7NJSkoiKSmJ+Pj4CzYK0mg0PPzww/zxj39k+/btvPjii8TGxlKQbuJ//2gpr7zyCkVpReQvuMrRrhDfgpQWihnX1NTE3oqzjKmernluV3Oee3WrhVd2tvDm1x04XOC7z64oCgMWO6NnDvDAAw+QlZUFBC9PPHDgAAMDA9xzzz0UFRX5Pcfo6ChvvfUWY2NjrL45n2OtTu/VrLtGHf5+axH3rF1FaGgoZ86cwVPMMzw8TFRUFFFRUbS3u6f4rVy5ktLSUo4cOcLDDz98vmTxxAmGh4d55P47WZYZSUvvOP0jUzP6/bmIDbFye06Y98o1MdpAStgY1Y1tGMMiKEiP8iudi42NJTMzk+XLl3PLLbewYMECDAYDp3rsHBrJZ0wNxUkIk4TRrc5nYawLdcKM2WxmbGyMipGFjKmh3v1xz6bJvLRsXn56LUajkZS4MB66LZ3ShgH6LJ5WzOd+LkC/VUvN8Dz6reqUjoKFGSZ2+7Q4DlYKaTKZOHXqFL29vbS1tfH6N8NMEI5/noXK0BjEu9yrNFFRUaSkpJCbm8utt97Khg0bWL9+vXeLIykpiYiIiEtKZtVqtSxevNibS5Kfn+9teW21Wjl+/DirVq1Cq526iiTE9SQrA2LGuFwuvvnmG/bv388tqfnsaotzf/0qz3MPzEcIpKpwpmec7xcvZenSpdM+TktLC729vURHR09pN2uxWHjrrbeYmJjg2Wef5f333+fu5BgGw5cGLdNLS0vD5TpfIdDZ2ckbb7xBVFQU9tBUSnoWsud/lKGM97Ox4DZuuukm7227u7u9g3AK0k38+od5fsmXCVF6GjrcFQ6e9xI0ZIac5p//eT9FRUUkZq/iw7IRalsGiNCH8F+fXExBRuS0r91gMJB9Lt9gT1cD9J6f0qieK40s742mSOcgOzublJQUSj+eAOfUCX8dZicAk5OTnDlzhqamJpq7owD/8jyXCk3dY1MqDny3PIKt3uQvMDE5OUl/fz/9/f3odDqam5sBsLIuYOqi+71xGhN48bkXmTdvHnq9ftr34dsICwtjy5YtvPbaa2zfvp3nnnsOvV5PcXExR44coa6ubkpgKcT1JsGAmBFWq5UPPviA5uZm1q1bx+rVq7n77Ohlj5u9FFPzEfwpqEQbJrn33nunfYzBwUHeffdd99VsSorf/rWnNa/dbmfr1q2cOXOG3t5eXnrpwWlr1EtLS4mLi2PSkMzhNiN2WzzpSQa0un72tkS4V/7HXEA826sVVq60UJBuQlVVbxmkr8DpfIETHp9Zl0Ju6grKy8v5cO9xSspbz71yHWNEn08wnKak0NfpnrEgOxMa7PpYcEFraysVFRVonbcA0QQmURqUCd544w3a2towOyPp1OZiU/VMHePswul0l0368mx5qKpKWpSTl27T0t8/ycBAJ+Vfl7C7v5/R0cCple620xkOA039UxNDl8yPYv78+Rd97d9WdHQ0Tz31FG+88QY7duzgiSee8K68lJWVSTAgZpwEA+K6a2tr47333sPhcPDMM894Z7xfybjZCwk+18BDRUXlP25aMu0V4cTEBG+//TahoaGEh4f7LekODw/z5ptv4nQ62bp1K2FhYXz99dcsXbp02kBgZGSEkydPsmTl9/ntYdyTCicV6jps1KiRAadO9yTD//mvx/hBcSQHWw2cHF7JmZPhxGdapj15T/derly5kh11Jmge8Vu+9/Tvv5T3f7q9+vR4A/TCM888g0aj4T/9Sz2WwcD+CCqWEQv2aDuLlt/JvxzVgctzclb9Hg80xIRYGbCF4ltxoKCis/XzD//wD96cC61WS1xcHPHx8SxbtoyYmBgaGxupr6+noKAArVZLc3Mzf/7wEv7yDw1TEkOvRzZ/cnIyjz/+ONu3b+eTTz5h06ZNFBcX8+677/qt9ggxEyQYENeNqqocPXqUL7/8ktTUVB599FEiI6dfmr5agp28fK9CFRT3VWpahLfJjO+VtcE5xHxVy1/9yWY++ugj717x0NAQb775JgBbt24lJiaG3bt3Y7fbWb9+/ZTj8DzmybNm9M6b6TwTCozj39goWD6ghoFJI78+4EDFARg52eXk5ddPXvLVvK+W3okpS+WXk6wZ2FvAc0J9dFUM+z+GsbExkpOTsdp1QGAug4JNCaWzs5MTbSmoavyUEcFaDSyItJEX2Y3ZPMRhWz6qt6zSnVewNtNJ4cL1xMfHEx8fT1RUlPfn0t/fz44dOxgcHOSBBx5g2bJl9PT0cPz4cfQTXdNuLVwPWVlZbNq0iQ8//JCoqChWr15NREQEZWVl3H///dflGIQIRoIBcV1MTk7y0UcfUVdXxy233MKGDRuuW9LU1MY4EJhA9t7RIRrL/pGkpCTCk2/iD2Xu/Wv37UPpUpbTZTXgcrlQFAWz2cybb76JRqPh2WefJTo6moGBAUpLS1m7di0mk//JxT9vQYNCLAOd4wQ3dY6A0WDEPuHw7p2rgNOl8v++W8nfPjKfjIyMS+7OeClZ+Bfi21vA94Q6P9LJftzBwIWeZ3FaFPcW3UvpZw5Ux9Q+CVrXBCuM1cRHxlO0MIPl6NnXrKG1bxK9w0yGtpnMhMUsW7YMo9Hod9+qqio+/fRToqKizlWFuAc7JSUlkZqaSnl5OU8/vWRGW/8WFRVhsVjYs2cPJpOJ5cuXU1JSwl133SXTC8WMkWBAXHM9PT3s2LGD0dFRHn/8cXJzc6/r8/uevIJ18lNRUCKSeGTjI5w8eZJ3yi241BB8O/MB/PNnZxkayGCkI4x/PV7KTRFRvPz8w0RFRQHutsYmk4lbbrllyjEE5i1MTWJzUxT3kr2Cf1MaFDXIVodCz6iGP/7xj0RERJCXl0dhYSHJyclTavJ9TXdlfzlL5cG2IWw2G+AOBqxWK3ct0VDWfP61gOoeD93xNZ91DhGmrmSc2Cnd+Ioy5/HnW//c77Ef3uD+ODk5yeHDRo4cOeLtH3DzzTejqiq7du3i+PHjFBUVsXHjxinbPitWrOCjjz5iaGhoyhTF6+22225jeHiYTz/9lAceeAC73U51dTXFxcUzelxi7pJBReKaqqqq4pNPPiEuLo7HHnuMuLi4GT2en73ZMCUgCBwU8+gvKxkIMnwHzp/YFFQUReFXL7qX6Zubm9m2bZt3gE+g6Qb6eJ7fc1JWUVmk1BCSuJTeUY33qvuPX08NZDQKrMiK5CcbTJw4cYLa2lqsVitxcXEUFBRQUFDgN0rZV7AEw8tdKnc6nZjNZm/Wfn9/P1VVVX79E4bVGDo0ixlVTSSZVDbmGyhenEB8fDyn+5y8/If6yx4qBO7qjf3791NRUUFERATgbht83333TVsRYrPZeOWVV1i5cmXQbZzrzdOUqKmpiZSUFCYnJ/nhD394wUBOiGtFVgbENeFwOPjss8+oqKhg6dKlbNy4kZCQkJk+rEu6Ks5KDMM8JcfA7XzSnbsOftu+Tv7HM9ns3r2bBQsW+JUA+pp2yTwlHFOozntS1nXvJ9Tey3/90xf8TgrTHfez61JJTTWRmprKPffcw+nTp6murubw4cPs27fP3fWuoID8/Hxvf4HAQGDL2gsHAuPj4/T39zMwMOB34jebzd7ySL1ej2paQLXrZsbtUWTMM7L5ewl8Lz9l2sY8BeF86/17k8nEfffdR2RkJPv27UNVVeLj46dsz/jS6/UUFBRQWVnJHXfcMeO1/b5NiXp6euidCOUnvztB17DLr7mSENeDrAyIq25wcJAdO3bQ39/Pxo0bWbZs+kExM+FiV8XBxuBOV40Qbwrhp+sc7Nq1i5deemnaCoJg43oDr4L7+vr49a9/TVZWFlu2bLns4/Zlt9tpaGigurqapqYmVFUlKyuL8OQ8/mm/bcrV+CvPLyYtyuV3svec/D1TGcHdkCc+Pt6bue/51zKg8vIf6qf03P82CY6Xwmaz8emnn3LixAmWLVtGfn4+X3/9Ne3t7WRmZrJhw4ag8wx6enr4zW9+MyPbVdMZGxvjl//8Dt8M5eJee7r2758QgSQYEFdVfX09H374IeHh4Tz22GOztlwq8MRrmXDQ0GGdcmW/bGEE8/o+YfHixTz44IPTPp7FYuHnr7yBJXol5kl90JP5v//7v1NdXe1Xbnk1jI2NUVdXR3V1NR+fnoc5YDgQqMQq/RRqywD3hL2YmBjvCX/evHkkJCQQGxs7bfnlpWy/XInAiZYxo5WEjHdw//33U1hY6H4Vqkp9fT179uxhYGCAwsJC1q1bNyU/4LXXXsNgMAQNuGbKX75WQ2WLlcDE0av1/glxMbJNIK4Kl8vFnj17OHz4MLm5uWzatGlKpvdsEqyJj++YWs+VW25EJ73dzovuQZeXlxMXYuHvf1gU9H1xuVzU19cTEhLCwoULr+prCQsLo7i4mOLiYj75n+VgdQbcQmFUPR+UOBwO+vr66Ovrc39XUQgJCfH7p9fr/f67tjUVl+q/7O5SoaF9mLq6ugveV6fTXXCfPPhEyyX898fupLDwfKMgRVHIzc1l8eLFVFRUsG/fPmpra7n55ptZs2YNoaGhgDuRcOfOnZjNZm8p6UxrG7AT2JzpWszmEGI6EgyIK2axWHjvvfdoa2vj7rvv5pZbbrnhkqCCldNtWhbO3p27g5YS+nI4HN4uc9MFSE1NTdjtdvLy8q7Ze9fZ2UmIYxAwETg2OC8jjj/f9OfY7Xbsdjs2m83734GfB35vfHycKO0YY/aIgCoJF5qJAXbs+Oyix3ahYOHzthRcrlCfx3ZPtPy40srthVMfS6PRUFxcTGFhIUeOHOHw4cMcP36c22+/nZUrV5KXl8fnn39ORUUFd95555W8pVfNlZZ7CnGlJBgQV+TMmTO8//77aDQatm7dyoIFC2b6kK6ZwNWCt99+m8jISG699dYL3q+urg6r1crKlSunvc3hw4cBLnibb8vpdHLgwAEOHDhAftRC+vrdpZC+KxwvbFhAfPy335teGiTPQlE0/Hzr7eQk33lZwUXg5wMTId+qSZJer+eOO+5gxYoVfPPNN+zdu5fS0lLWrVtHYWEhlZWVrF27dsYTCWG6CZLXpzOiECDBgPiWVFXl4MGDfP3112RkZPDII494s9XngubmZhobG3nssccuOMbW03UxKytryrhjj7GxMc6ePYvBYCAtLe2qHmdfXx8ffPAB3d3drF69mjVr1vBg+9hV78A3XSMiz+NeyZZRxTT5CJd61RwREcHGjRtZtWoVe/fuZefOncTGxmK1Wqmvrw9aCnq9ed6/175o4eRZM9nJEfzovuzr1hlRCEkgFJfEN4ErPcFAirMeS0c1q1evZu3atZfc/e5G4HK5+M1vfkNoaChbt2694LJ+e3s7r732Gk8++SQ5OTlBb1NSUsLu3btZvnw5DzzwwFU5RlVVKSkpYc+ePcTExPDQQw+Rmpp6VR77egtW3XGp/QiCaW9v56uvvuJEyzBt5OA0JpAUHQoK9A3bZrSsT1VV/vEf/5FFixZx3333XffnF3OXrAyIi5qawGWjghT++vu5rL/tu1GedT2VlZXR19fHn/zJn1x0f//o0aPExMSQnZ097W2OHTsGcMHxyZfDbDazc+dOWltbWbVqFXfeeed3osfDt3WxVYfLNX/+fFasfZi3XjuJigpWF2brKJ4EvsHRYcpPD89IWZ+iKOTk5FBfX8/GjRtvuNwb8d0lwYC4qKkjgBUURWFfk4Z7b5vJI7v+xsfH2bdvH0uXLg1ax+7LYrFQV1fHXXfdNe0f9e7ubgYHBwkNDb3iEbqqqlJRUcHu3bsJCwvjueeeIyMj44oe87viak+03La/C0VRUFX/IUlwbvWBS5/ieLUtXryY0tJSenp6Zm1prph9JBgQFxVsBPBcLXvav38/TqfzkrLQy8rK0Ol0F2y6VFlZCUBBQcEVXQVaLBY++ugjmpqaWLZsGffcc48MvbmAC4+1ntnf7/T0dPR6PY2NjRIMiOtGggFxUVL25Nbf38+xY8dYt26dtx/+dDzlhEuXLp32pOx0OqmqqgLcwcC3oaoqNTU17Nq1C51Od8HcBHFe8LHW583k77dWq2XRokU0NjayZs2aGTkGMfdIMCAu6mpMubsRfPHFF0RGRgadShiotraWsbGxC5YKNjY2Mjk5SXh4+CUn9wUmci5QmjC3VpKXl8fGjRsJC5tbAdq3FXystdt34fc7JyeHDz/8kNHR0YsGnkJcDRIMiIu62glcs1FTUxOnTp26aCkhnC8nXLRo0QWnNFZWVqLRaC55iyB4Iuc8/mL9Q2xaV3TZr2kuC/ydTojU+1UTzPTv96JFiwA4derUd262h7gxSTAgLsnVTuCaTZxOJ7t37yY9Pf2Shtu0t7fT1dXF008/Pe1tRkdHvQOELrXOfbpEzkNnjWy6pEcQvr7Lv9Ph4eGkpaXR2NgowYC4LuZOcbgQ31J5eTn9/f3cc889l3QFf/ToUeLi4sjKypr2Np5cgcjIyEveIpBEzrklJyeH5uZmHA7HTB+KmAMkGBDiAjylhMuWLbtoKSHAyMgIdXV1rFy5ctrAQVVVjh8/jkajuaxZBJmJYWgCbjoXEznnipycHOx2Oy0tLTN9KGIOkGBAiAvYt28fTufFpxJ6lJWVERISQlHR9Hv4HR0d9Pf343Q6L6sV7pa1KSgK3oDgu5DoJq6dhIQEoqOjaWxsnOlDEXOA5AwIEcCTsX+qaxRlzMXDN6+5pIxuh8NBeXk5y5Ytu2CN//HjxwkJCSE0NJSUlEs/kUsi59zi6UbY0NDAvffeK90IxTUlwYAQPgIz9iGeP5QpFBZaLtqatqam5qLlhHa7nZqaGm/i4OX+gf8uJ72Jqy8nJ4fS0lJ6e3tJTEyc6cMRNzDZJhDCR7CMfVV1f3061a0WfvpmPX/zwShNhjV0WKafA1BfX8/k5CQOh+M7MS1PfLf5diMU4lqSYEAIH5ebse9ZSShvHmHcpadzLJyXXz9Jdatlyu1+9mYD//n9EWpZhSNs/mVtEYi5SafTkZWVJcGAuOYkGBDCx+Vm7AeuJLhUpqwkeAKGsuZhxpwh9DliOGTJp+bs6LV6GeIGkpOTQ3t7O1ardaYPRdzAJBgQwsflZuxfykpC0GZBKBfcehDCwzP++tSpUzN8JOJGJsGAED48GfvFWVHEm0IozoriVy/mTpuxfykrCdIsSFyJ8PBw5s+fL1sF4pqSagIhAlxOxv6lDHFKiNLTb7FPuW9ClP5qHbK4weXk5HDw4EEcDsdFZ2MI8W3IyoAQV+CSVhKmGZM77deFCJCTk4PNZqO1tXWmD0XcoCTEFOIKXWwloW/EdllfFyLQvHnziIqKoqGh4YIzL4T4tmRlQIhrTGYKiCvl6UbY2NiIqsqSkrj6JBgQ4hqTmQLiasjJyWF4eJi+vr6ZPhRxA5JgQIhr7HIrFIQIJiMjA71eT0NDw0wfirgBKaqsOQkhxKzw7rvvYrFYePHFF2f6UMQNRlYGhBBilsjOzpZuhOKakGBACCFmiZycHEC6EYqrT4IBIYSYJaQbobhWJBgQQohZJDs7m+bmZpxO50wfiriBSNMhIYSYTSLTOTZm4dFfVpCTEsmWtSkUpEtlirgyUk0ghBCzhGccttOlAoq3Z8WrL+RKQCCuiGwTCCHELOEZhw3uDlYuFVQVGYctrpgEA0IIMUvIOGxxrUgwIIQQs4TMuRDXigQDQggxS3jmXCjn5l/LnAtxtUgCoRBCzCLVrRb+17+VMzChJz8jjmfWpcicC3HFpLRQCCFmkYJ0E3eltGE0Gnnsse/N9OGIG4RsEwghxCxjs9nQ6/UzfRjiBiLBgBBCzDJ2u50nYRCWAAADtklEQVSQkJCZPgxxA5FgQAghZhlZGRBXmwQDQggxy9hsNlkZEFeVBANCCDHL2O12WRkQV5UEA0IIMYuoqirbBOKqk2BACCFmEYfDASDbBOKqkmBACCFmEZvNBiArA+KqkmBACCFmEbvdDkgwIK4uCQaEEGIW8awMyDaBuJokGBBCiFlEtgnEtSDBgBBCzCKyTSCuBQkGhBBiFpFtAnEtSDAghBCziGwTiGtBggEhhJhFPNsEsjIgriYJBoQQYhbxzCVQFGWmD0XcQCQYEEKIWURaEYtrQYIBIYSYJapbLbxVpmOPZRU/e7OB6lbLTB+SuEEoqqqqM30QQgghLqy61cLLr5/E5VJRUdAooCjw6gu5FKSbZvrwxCwnKwNCCDELbNvXiaqCijtXwKWCqrq/LsSVkmBACCFmgdM9Y7gC1nFdqvvrQlwpCQaEEGIWyEwMQxNQQKBR3F8X4kpJMCCEELPAlrUpKAregMCTM/DMupSZPTBxQ5AEQiGEmCWqWy1s29fJ6Z4xMhPDeGZdCvkLJHlQXDkJBoQQQog5TrYJhBBCiDlOggEhhBBijpNgQAghhJjjJBgQQggh5jgJBoQQQog5ToIBIYQQYo6TYEAIIYSY4yQYEEIIIeY4CQaEEEKIOU6CASGEEGKO0830AQghhJgZgbMOtqxNoSBdZh3MRTKbQAgh5qDqVgsvv34SVQWXen4K4qsv5EpAMAfJNoEQQsxB2/Z1egMBcH9UVffXxdwj2wRCCDEHne4Z8wYCHi4Valr6aW8PZ/78+bKNMIfINoEQQsxBP3uzgbLmYb+AQFFgnn6YXOdhIlLy2dWWBsg2wlwg2wRCCDEHbVmbgqK4T/Lg/qhR4L9uWcUjjzzCsW4TLtUl2whzhGwTCCHEHFSQbuLVF3L9tgGeWZdC/gITkI9zlx1sdr/7uFT39oK48UgwIIQQc1RBuolfPLc46PcyE8MYHPXfRtAo7q+LG49sEwghhJgi2DaCosAz61Jm9sDENSEJhEIIIYIKrCY4v40gbjQSDAghhBBznGwTCCGEEHOcBANCCCHEHCfBgBBCCDHHSTAghBBCzHESDAghhBBznAQDQgghxBwnwYAQQggxx0kwIIQQQsxxEgwIIYQQc5wEA0IIIcQcJ8GAEEIIMcdJMCCEEELMcRIMCCGEEHOcBANCCCHEHCfBgBBCCDHHSTAghBBCzHESDAghhBBznAQDQgghxBwnwYAQQggxx0kwIIQQQsxxEgwIIYQQc5wEA0IIIcQc9/8DMQA8FwAL2v0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2692,7 +2599,7 @@ }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 90, "metadata": {}, "outputs": [], "source": [ @@ -2701,7 +2608,7 @@ }, { "cell_type": "code", - "execution_count": 82, + "execution_count": 91, "metadata": {}, "outputs": [], "source": [ @@ -2710,7 +2617,7 @@ }, { "cell_type": "code", - "execution_count": 83, + "execution_count": 92, "metadata": {}, "outputs": [ { @@ -2719,13 +2626,13 @@ "Text(0, 0.5, '# Members')" ] }, - "execution_count": 83, + "execution_count": 92, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAHECAYAAABMe8vEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXhU9dn/8c9MEkICWUwghEhIAipLWQWJAcpeIKQsmqogKCoCWhaBupBHVKC2ieKjWEvh0QqoJaJUCkUuadkEqYAsImIRWQUbEhUeEgGZALl/f/hjHkYWCTNJTuD9uq5zXTnne+bc94Es8znfMzMuMzMBAAAAAADHcVd0AwAAAAAA4PwI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA4VXNENOEFJSYny8vIUEREhl8tV0e0AAAAAAK5wZqbvvvtOCQkJcrsvPJ9OaJeUl5enxMTEim4DAAAAAHCVOXDggOrUqXPBcUK7pIiICEk//GNFRkZWcDcAAAAAgCtdUVGREhMTvXn0QgjtkveW+MjISEI7AAAAAKDc/NRLtHkjOgAAAAAAHIrQDgAAAACAQxHaAQAAAABwKEI7AAAAAAAORWgHAAAAAMChCO0AAAAAADgUoR0AAAAAAIcitAMAAAAA4FCEdgAAAAAAHIrQDgAAAACAQxHaAQAAAABwKEI7AAAAAAAORWgHAAAAAMChKjS0Z2dn66abblJERITi4uLUr18/7dixw2efEydOaMSIEYqNjVX16tWVmZmpgoICn33279+vjIwMhYeHKy4uTo888ohOnTpVnqcCAAAAAEDAVWhoX7VqlUaMGKF169Zp6dKlOnnypLp3765jx4559xk7dqwWLVqkefPmadWqVcrLy9Ott97qHT99+rQyMjJUXFysDz/8UK+99ppmz56tJ598siJOCQAAAACAgHGZmVV0E2d88803iouL06pVq9ShQwcVFhaqZs2ays3N1a9+9StJ0ueff65GjRpp7dq1uvnmm/Xee+/pl7/8pfLy8lSrVi1J0owZM/TYY4/pm2++UZUqVX6yblFRkaKiolRYWKjIyEifseTxi0t9HvtyMkr9GAAAAADA1eNiOfRsjnpNe2FhoSQpJiZGkrRp0yadPHlS3bp18+7TsGFD1a1bV2vXrpUkrV27Vk2bNvUGdknq0aOHioqK9Nlnn523jsfjUVFRkc8CAAAAAIDTOCa0l5SUaMyYMWrXrp2aNGkiScrPz1eVKlUUHR3ts2+tWrWUn5/v3efswH5m/MzY+WRnZysqKsq7JCYmBvp0AAAAAADwm2NC+4gRI7Rt2zbNnTu3zGtlZWWpsLDQuxw4cKDMawIAAAAAUFrBFd2AJI0cOVLvvvuuVq9erTp16ni3x8fHq7i4WEeOHPGZbS8oKFB8fLx3n48++sjneGfeXf7MPj8WGhqq0NDQQJ8GAAAAAAABVaEz7WamkSNH6m9/+5tWrFihlJQUn/FWrVopJCREy5cv927bsWOH9u/fr7S0NElSWlqaPv30U3399dfefZYuXarIyEg1bty4fE4EAAAAAIAyUKEz7SNGjFBubq4WLlyoiIgI72vQo6KiFBYWpqioKA0ZMkTjxo1TTEyMIiMjNWrUKKWlpenmm2+WJHXv3l2NGzfWXXfdpWeffVb5+fmaMGGCRowYwWw6AAAAAKBSq9DQPn36dElSp06dfLbPmjVL99xzjyTphRdekNvtVmZmpjwej3r06KE//elP3n2DgoL07rvv6sEHH1RaWpqqVaumwYMHa/LkyeV1GgAAAAAAlAlHfU57ReFz2gEAAAAA5alSfk47AAAAAAD4P4R2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcqkJD++rVq9W7d28lJCTI5XJpwYIFPuMul+u8y5QpU7z7JCcnnzOek5NT3qcCAAAAAEDAVWhoP3bsmJo3b65p06add/zgwYM+y8yZM+VyuZSZmemz3+TJk332GzVqVHm0DwAAAABAmQquyOLp6elKT0+/4Hh8fLzP+sKFC9W5c2fVq1fPZ3tERMQ5+wIAAAAAUNlVmte0FxQUaPHixRoyZMg5Yzk5OYqNjVXLli01ZcoUnTp1qgI6BAAAAAAgsCp0pr00XnvtNUVEROjWW2/12T569GjdeOONiomJ0YcffqisrCwdPHhQzz///AWP5fF45PF4vOtFRUVl1jcAAAAAAJer0oT2mTNnauDAgapatarP9nHjxnm/btasmapUqaLhw4crOztboaGh5z1Wdna2Jk2aVKb9AgAAAADgr0pxe/wHH3ygHTt26P777//JfVNTU3Xq1Cnt27fvgvtkZWWpsLDQuxw4cCCA3QIAAAAAEBiVYqb91VdfVatWrdS8efOf3HfLli1yu92Ki4u74D6hoaEXnIUHAAAAAMApKjS0Hz16VLt27fKu7927V1u2bFFMTIzq1q0r6YfXm8+bN0///d//fc7j165dq/Xr16tz586KiIjQ2rVrNXbsWA0aNEjXXHNNuZ0HAAAAAABloUJD+8aNG9W5c2fv+pnXpw8ePFizZ8+WJM2dO1dmpgEDBpzz+NDQUM2dO1cTJ06Ux+NRSkqKxo4d6/M6dwAAAAAAKiuXmVlFN1HRioqKFBUVpcLCQkVGRvqMJY9fXOrj7cvJCFRrAAAAAIAr0MVy6NkqxRvRAQAAAABwNSK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcqkJD++rVq9W7d28lJCTI5XJpwYIFPuP33HOPXC6Xz9KzZ0+ffQ4fPqyBAwcqMjJS0dHRGjJkiI4ePVqepwEAAAAAQJmo0NB+7NgxNW/eXNOmTbvgPj179tTBgwe9y5tvvukzPnDgQH322WdaunSp3n33Xa1evVrDhg0r69YBAAAAAChzwRVZPD09Xenp6RfdJzQ0VPHx8ecd2759u5YsWaINGzaodevWkqSXXnpJvXr10nPPPaeEhISA9wwAAAAAQHlx/Gva33//fcXFxalBgwZ68MEHdejQIe/Y2rVrFR0d7Q3sktStWze53W6tX7/+gsf0eDwqKiryWQAAAAAAcBpHh/aePXvq9ddf1/Lly/XMM89o1apVSk9P1+nTpyVJ+fn5iouL83lMcHCwYmJilJ+ff8HjZmdnKyoqyrskJiaW6XkAAAAAAHA5KvT2+J/Sv39/79dNmzZVs2bNVL9+fb3//vvq2rXrZR83KytL48aN864XFRUR3AEAAAAAjuPomfYfq1evnmrUqKFdu3ZJkuLj4/X111/77HPq1CkdPnz4gq+Dl354nXxkZKTPAgAAAACA01Sq0P7VV1/p0KFDql27tiQpLS1NR44c0aZNm7z7rFixQiUlJUpNTa2oNgEAAAAACIgKvT3+6NGj3llzSdq7d6+2bNmimJgYxcTEaNKkScrMzFR8fLx2796tRx99VNddd5169OghSWrUqJF69uypoUOHasaMGTp58qRGjhyp/v37887xAAAAAIBKr0Jn2jdu3KiWLVuqZcuWkqRx48apZcuWevLJJxUUFKStW7eqT58+uuGGGzRkyBC1atVKH3zwgUJDQ73HmDNnjho2bKiuXbuqV69eat++vV5++eWKOiUAAAAAAAKmQmfaO3XqJDO74Pg//vGPnzxGTEyMcnNzA9kWAAAAAACOUKle0w4AAAAAwNWE0A4AAAAAgEMR2gEAAAAAcChCOwAAAAAADkVoBwAAAADAoQjtAAAAAAA4FKEdAAAAAACHIrQDAAAAAOBQhHYAAAAAAByK0A4AAAAAgEMR2gEAAAAAcChCOwAAAAAADkVoBwAAAADAoQjtAAAAAAA4FKEdAAAAAACHIrQDAAAAAOBQhHYAAAAAABwquKIbwA+Sxy8u9WP25WSUQScAAAAAAKdgph0AAAAAAIcitAMAAAAA4FCEdgAAAAAAHIrQDgAAAACAQxHaAQAAAABwKN49/irDu9QDAAAAQOXBTDsAAAAAAA5FaAcAAAAAwKG4PR5lgtvwAQAAAMB/zLQDAAAAAOBQhHYAAAAAAByK0A4AAAAAgEMR2gEAAAAAcChCOwAAAAAADkVoBwAAAADAoQjtAAAAAAA4VIWG9tWrV6t3795KSEiQy+XSggULvGMnT57UY489pqZNm6patWpKSEjQ3Xffrby8PJ9jJCcny+Vy+Sw5OTnlfSoAAAAAAARchYb2Y8eOqXnz5po2bdo5Y8ePH9fmzZv1xBNPaPPmzZo/f7527NihPn36nLPv5MmTdfDgQe8yatSo8mgfAAAAAIAyFVzaB2zevFkhISFq2rSpJGnhwoWaNWuWGjdurIkTJ6pKlSqXfKz09HSlp6efdywqKkpLly712fbHP/5Rbdq00f79+1W3bl3v9oiICMXHx5f2VAAAAAAAcLRSz7QPHz5cX3zxhSRpz5496t+/v8LDwzVv3jw9+uijAW/wbIWFhXK5XIqOjvbZnpOTo9jYWLVs2VJTpkzRqVOnyrQPAAAAAADKQ6ln2r/44gu1aNFCkjRv3jx16NBBubm5+te//qX+/ftr6tSpAW9Skk6cOKHHHntMAwYMUGRkpHf76NGjdeONNyomJkYffvihsrKydPDgQT3//PMXPJbH45HH4/GuFxUVlUnPAAAAAAD4o9Sh3cxUUlIiSVq2bJl++ctfSpISExP17bffBra7/+/kyZO6/fbbZWaaPn26z9i4ceO8Xzdr1kxVqlTR8OHDlZ2drdDQ0PMeLzs7W5MmTSqTXgEAAAAACJRS3x7funVrPf3003rjjTe0atUqZWRkSJL27t2rWrVqBbzBM4H9yy+/1NKlS31m2c8nNTVVp06d0r59+y64T1ZWlgoLC73LgQMHAtw1AAAAAAD+K/VM+9SpUzVw4EAtWLBAjz/+uK677jpJ0l//+le1bds2oM2dCew7d+7UypUrFRsb+5OP2bJli9xut+Li4i64T2ho6AVn4QEAAAAAcIpShfbTp0/ryJEjWr16ta655hqfsSlTpigoKKhUxY8ePapdu3Z51/fu3astW7YoJiZGtWvX1q9+9Stt3rxZ7777rk6fPq38/HxJUkxMjKpUqaK1a9dq/fr16ty5syIiIrR27VqNHTtWgwYNOqc/AAAAAAAqm1KF9qCgIHXv3l3bt28/JxRXrVq11MU3btyozp07e9fPvD598ODBmjhxov7+979LkveN785YuXKlOnXqpNDQUM2dO1cTJ06Ux+NRSkqKxo4d6/M6dwAAAAAAKqtS3x7fpEkT7dmzRykpKX4X79Spk8zsguMXG5OkG2+8UevWrfO7DwAAAAAAnKjUb0T39NNP6+GHH9a7776rgwcPqqioyGcBAAAAAACBUeqZ9l69ekmS+vTpI5fL5d1uZnK5XDp9+nTgugMAAAAA4CpW6tC+cuXKsugDAAAAAAD8SKlDe8eOHcuiDwAAAAAA8COlfk27JH3wwQcaNGiQ2rZtq//85z+SpDfeeENr1qwJaHMAAAAAAFzNSh3a33nnHfXo0UNhYWHavHmzPB6PJKmwsFC///3vA94gAAAAAABXq8t69/gZM2bolVdeUUhIiHd7u3bttHnz5oA2BwAAAADA1azUoX3Hjh3q0KHDOdujoqJ05MiRgDQFAAAAAAAuI7THx8dr165d52xfs2aN6tWrF5CmAAAAAADAZYT2oUOH6qGHHtL69evlcrmUl5enOXPm6OGHH9aDDz5YFj0CAAAAAHBVKvVHvo0fP14lJSXq2rWrjh8/rg4dOig0NFQPP/ywRo0aVRY9AgAAAABwVSp1aHe5XHr88cf1yCOPaNeuXTp69KgaN26s6tWrl0V/AAAAAABctUod2s+oUqWKIiIiFBERQWAHAAAAAKAMlPo17adOndITTzyhqKgoJScnKzk5WVFRUZowYYJOnjxZFj0CAAAAAHBVKvVM+6hRozR//nw9++yzSktLkyStXbtWEydO1KFDhzR9+vSANwkAAAAAwNWo1KE9NzdXc+fOVXp6undbs2bNlJiYqAEDBhDaAQAAAAAIkFLfHh8aGqrk5ORztqekpKhKlSqB6AkAAAAAAOgyQvvIkSP129/+Vh6Px7vN4/Hod7/7nUaOHBnQ5gAAAAAAuJpd0u3xt956q8/6smXLVKdOHTVv3lyS9Mknn6i4uFhdu3YNfIcAAAAAAFylLim0R0VF+axnZmb6rCcmJgauIwAAAAAAIOkSQ/usWbPKug8AAAAAAPAjpX73eMApkscvLvVj9uVklEEnAAAAAFA2Sh3aDx06pCeffFIrV67U119/rZKSEp/xw4cPB6w5AAAAAACuZqUO7XfddZd27dqlIUOGqFatWnK5XGXRFwAAAAAAV71Sh/YPPvhAa9as8b5zPAAAAAAAKBulDu0NGzbU999/Xxa9AI7Ea+cBAAAAVBR3aR/wpz/9SY8//rhWrVqlQ4cOqaioyGcBAAAAAACBUeqZ9ujoaBUVFalLly4+281MLpdLp0+fDlhzAAAAAABczUod2gcOHKiQkBDl5ubyRnQAAAAAAJShUof2bdu26eOPP1aDBg3Koh8AAAAAAPD/lfo17a1bt9aBAwfKohcAAAAAAHCWUs+0jxo1Sg899JAeeeQRNW3aVCEhIT7jzZo1C1hzAAAAAABczUod2u+44w5J0n333efd5nK5eCM6AAAAAAACrNShfe/evWXRBwAAAAAA+JFSh/akpKSy6AMAAAAAAPxIqd+ITpLeeOMNtWvXTgkJCfryyy8lSVOnTtXChQtLdZzVq1erd+/eSkhIkMvl0oIFC3zGzUxPPvmkateurbCwMHXr1k07d+702efw4cMaOHCgIiMjFR0drSFDhujo0aOXc1oAAAAAADhKqWfap0+frieffFJjxozR7373O+9r2KOjozV16lT17dv3ko917NgxNW/eXPfdd59uvfXWc8afffZZ/eEPf9Brr72mlJQUPfHEE+rRo4f+/e9/q2rVqpJ++Nz4gwcPaunSpTp58qTuvfdeDRs2TLm5uaU9NaBCJY9fXOrH7MvJKINOAAAAADhFqWfaX3rpJb3yyit6/PHHFRQU5N3eunVrffrpp6U6Vnp6up5++mndcsst54yZmaZOnaoJEyaob9++atasmV5//XXl5eV5Z+S3b9+uJUuW6M9//rNSU1PVvn17vfTSS5o7d67y8vJKe2oAAAAAADhKqUP73r171bJly3O2h4aG6tixYwFp6kyd/Px8devWzbstKipKqampWrt2rSRp7dq1io6OVuvWrb37dOvWTW63W+vXrw9YLwAAAAAAVIRS3x6fkpKiLVu2nPOGdEuWLFGjRo0C1lh+fr4kqVatWj7ba9Wq5R3Lz89XXFycz3hwcLBiYmK8+5yPx+ORx+PxrhcVFQWqbQAAAAAAAqbUoX3cuHEaMWKETpw4ITPTRx99pDfffFPZ2dn685//XBY9Blx2drYmTZpU0W0AAAAAAHBRpQ7t999/v8LCwjRhwgQdP35cd955pxISEvTiiy+qf//+AWssPj5eklRQUKDatWt7txcUFKhFixbefb7++mufx506dUqHDx/2Pv58srKyNG7cOO96UVGREhMTA9Y7AAAAAACBcFkf+TZw4EDt3LlTR48eVX5+vr766isNGTIkoI2lpKQoPj5ey5cv924rKirS+vXrlZaWJklKS0vTkSNHtGnTJu8+K1asUElJiVJTUy947NDQUEVGRvosAAAAAAA4Taln2s8WHh6u8PDwy3780aNHtWvXLu/63r17tWXLFsXExKhu3boaM2aMnn76aV1//fXej3xLSEhQv379JEmNGjVSz549NXToUM2YMUMnT57UyJEj1b9/fyUkJPhzagAAAAAAVLhLDu1dunS5pP1WrFhxycU3btyozp07e9fP3LI+ePBgzZ49W48++qiOHTumYcOG6ciRI2rfvr2WLFni/Yx2SZozZ45Gjhyprl27yu12KzMzU3/4wx8uuQcAAAAAAJzqkkP7+++/r6SkJGVkZCgkJCQgxTt16iQzu+C4y+XS5MmTNXny5AvuExMTo9zc3ID0AwAAAACAk1xyaH/mmWc0a9YszZs3TwMHDtR9992nJk2alGVvAAAAAABc1S75jegeeeQR/fvf/9aCBQv03XffqV27dmrTpo1mzJjB55wDAAAAAFAGSv3u8WlpaXrllVd08OBBjRgxQjNnzlRCQgLBHQAAAACAALvsd4/fvHmzVq1ape3bt6tJkyYBe507gLKVPH5xqR+zLyfDsXUAAACAK1mpQnteXp5mz56t2bNnq6ioSIMGDdL69evVuHHjsuoPAC6KiwMAAAC4kl1yaO/Vq5dWrlyp7t27a8qUKcrIyFBwsF8f8w4AAAAAAC7iklP3kiVLVLt2be3fv1+TJk3SpEmTzrvf5s2bA9YcADgBs/kAAACoKJcc2p966qmy7AMAAAAAAPwIoR0AAAAAAIcq9Ue+AQAAAACA8kFoBwAAAADAoQjtAAAAAAA4FKEdAAAAAACHIrQDAAAAAOBQlxXaR44cqcOHDwe6FwAAAAAAcJZLDu1fffWV9+vc3FwdPXpUktS0aVMdOHAg8J0BAAAAAHCVu+TPaW/YsKFiY2PVrl07nThxQgcOHFDdunW1b98+nTx5six7BAAAAADgqnTJM+1HjhzRvHnz1KpVK5WUlKhXr1664YYb5PF49I9//EMFBQVl2ScAAAAAAFedSw7tJ0+eVJs2bfSb3/xGYWFh+vjjjzVr1iwFBQVp5syZSklJUYMGDcqyVwAAAAAAriqXfHt8dHS0WrRooXbt2qm4uFjff/+92rVrp+DgYL311lu69tprtWHDhrLsFQAAAACAq8olz7T/5z//0YQJExQaGqpTp06pVatW+vnPf67i4mJt3rxZLpdL7du3L8teAQAAAAC4qlxyaK9Ro4Z69+6t7OxshYeHa8OGDRo1apRcLpcefvhhRUVFqWPHjmXZKwAAAAAAV5XL+px2SYqKitLtt9+ukJAQrVixQnv37tWvf/3rQPYGAAAAAMBV7ZJf0362rVu36tprr5UkJSUlKSQkRPHx8brjjjsC2hwAAAAAAFezywrtiYmJ3q+3bdsWsGYAAAAAAMD/uazQDgAIvOTxi0v9mH05GWXQCQAAAJzisl/TDgAAAAAAyhahHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKEI7QAAAAAAOJTjQ3tycrJcLtc5y4gRIyRJnTp1OmfsgQceqOCuAQAAAADwX3BFN/BTNmzYoNOnT3vXt23bpl/84he67bbbvNuGDh2qyZMne9fDw8PLtUcAAAAAAMqC40N7zZo1fdZzcnJUv359dezY0bstPDxc8fHx5d0aAAAAAABlyvG3x5+tuLhYf/nLX3TffffJ5XJ5t8+ZM0c1atRQkyZNlJWVpePHj1/0OB6PR0VFRT4LAAAAAABO4/iZ9rMtWLBAR44c0T333OPddueddyopKUkJCQnaunWrHnvsMe3YsUPz58+/4HGys7M1adKkcugYAAAAAIDLV6lC+6uvvqr09HQlJCR4tw0bNsz7ddOmTVW7dm117dpVu3fvVv369c97nKysLI0bN867XlRUpMTExLJrHAAAAACAy1BpQvuXX36pZcuWXXQGXZJSU1MlSbt27bpgaA8NDVVoaGjAewSAyiB5/OJSP2ZfTkYZdAIAAICfUmle0z5r1izFxcUpI+PiTxy3bNkiSapdu3Z5tAUAAAAAQJmpFDPtJSUlmjVrlgYPHqzg4P9reffu3crNzVWvXr0UGxurrVu3auzYserQoYOaNWtWgR0DAAAAAOC/ShHaly1bpv379+u+++7z2V6lShUtW7ZMU6dO1bFjx5SYmKjMzExNmDChgjoFAAAAACBwKkVo7969u8zsnO2JiYlatWpVBXQEAAAAAEDZqzSvaQcAAAAA4GpDaAcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcqlJ85BsAoPJJHr+41I/Zl5NRBp0AAABUXsy0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKH4yDcAQKXGR8sBAIArGTPtAAAAAAA4FDPtAABcgvKY0eeuAQAA8GPMtAMAAAAA4FCEdgAAAAAAHIrQDgAAAACAQxHaAQAAAABwKEI7AAAAAAAOxbvHAwBwleFd6gEAqDyYaQcAAAAAwKEI7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgULwRHQAAKBO84R0AAP5jph0AAAAAAIcitAMAAAAA4FCEdgAAAAAAHIrQDgAAAACAQxHaAQAAAABwKEI7AAAAAAAOxSGNNwEAACAASURBVEe+AQCASo2PlgMAXMkcPdM+ceJEuVwun6Vhw4be8RMnTmjEiBGKjY1V9erVlZmZqYKCggrsGAAAAACAwHF0aJekn/3sZzp48KB3WbNmjXds7NixWrRokebNm6dVq1YpLy9Pt956awV2CwAAAABA4Dj+9vjg4GDFx8efs72wsFCvvvqqcnNz1aVLF0nSrFmz1KhRI61bt04333xzebcKAAAAAEBAOT6079y5UwkJCapatarS0tKUnZ2tunXratOmTTp58qS6devm3bdhw4aqW7eu1q5dS2gHAAABxWvnAQAVwdGhPTU1VbNnz1aDBg108OBBTZo0ST//+c+1bds25efnq0qVKoqOjvZ5TK1atZSfn3/R43o8Hnk8Hu96UVFRmfQPAAAAAIA/HB3a09PTvV83a9ZMqampSkpK0ttvv62wsLDLPm52drYmTZoUiBYBAAAAACgzjn8jurNFR0frhhtu0K5duxQfH6/i4mIdOXLEZ5+CgoLzvgb+bFlZWSosLPQuBw4cKMu2AQAAAAC4LJUqtB89elS7d+9W7dq11apVK4WEhGj58uXe8R07dmj//v1KS0u76HFCQ0MVGRnpswAAAAAA4DSOvj3+4YcfVu/evZWUlKS8vDw99dRTCgoK0oABAxQVFaUhQ4Zo3LhxiomJUWRkpEaNGqW0tDTehA4AAFRavOEdAOBsjg7tX331lQYMGKBDhw6pZs2aat++vdatW6eaNWtKkl544QW53W5lZmbK4/GoR48e+tOf/lTBXQMAAAAAEBiODu1z58696HjVqlU1bdo0TZs2rZw6AgAAqPyYzQeAyqNSvaYdAAAAAICriaNn2gEAAFB5MaMPAP5jph0AAAAAAIcitAMAAAAA4FCEdgAAAAAAHIrQDgAAAACAQxHaAQAAAABwKEI7AAAAAAAORWgHAAAAAMChCO0AAAAAADgUoR0AAAAAAIcitAMAAAAA4FDBFd0AAAAA4I/k8YtL/Zh9ORll0AkABB4z7QAAAAAAOBShHQAAAAAAhyK0AwAAAADgUIR2AAAAAAAcitAOAAAAAIBDEdoBAAAAAHAoQjsAAAAAAA5FaAcAAAAAwKGCK7oBAAAAoDJIHr+41I/Zl5NRBp0AuJow0w4AAAAAgEMR2gEAAAAAcChCOwAAAAAADkVoBwAAAADAoQjtAAAAAAA4FKEdAAAAAACH4iPfAAAAAAfho+UAnI2ZdgAAAAAAHIrQDgAAAACAQxHaAQAAAABwKEI7AAAAAAAORWgHAAAAAMChePd4AAAA4CrEu9QDlYOjZ9qzs7N10003KSIiQnFxcerXr5927Njhs0+nTp3kcrl8lgceeKCCOgYAAAAAIHAcHdpXrVqlESNGaN26dVq6dKlOnjyp7t2769ixYz77DR06VAcPHvQuzz77bAV1DAAAAABA4Dj69vglS5b4rM+ePVtxcXHatGmTOnTo4N0eHh6u+Pj48m4PAAAAAIAy5eiZ9h8rLCyUJMXExPhsnzNnjmrUqKEmTZooKytLx48fv+hxPB6PioqKfBYAAAAAAJzG0TPtZyspKdGYMWPUrl07NWnSxLv9zjvvVFJSkhISErR161Y99thj2rFjh+bPn3/BY2VnZ2vSpEnl0TYAAAAAAJet0oT2ESNGaNu2bVqzZo3P9mHDhnm/btq0qWrXrq2uXbtq9+7dql+//nmPlZWVpXHjxnnXi4qKlJiYWDaNAwAAAABwmSpFaB85cqTeffddrV69WnXq1LnovqmpqZKkXbt2XTC0h4aGKjQ0NOB9AgAAAAAQSI4O7WamUaNG6W9/+5vef/99paSk/ORjtmzZIkmqXbt2WbcHAAAAAECZcnRoHzFihHJzc7Vw4UJFREQoPz9fkhQVFaWwsDDt3r1bubm56tWrl2JjY7V161aNHTtWHTp0ULNmzSq4ewAAAAAA/OPo0D59+nRJUqdOnXy2z5o1S/fcc4+qVKmiZcuWaerUqTp27JgSExOVmZmpCRMmVEC3AAAAAAAElqNDu5lddDwxMVGrVq0qp24AAAAAlEby+MWlfsy+nIwy6ASovCrV57QDAAAAAHA1IbQDAAAAAOBQhHYAAAAAAByK0A4AAAAAgEMR2gEAAAAAcChCOwAAAAAADkVoBwAAAADAoQjtAAAAAAA4VHBFNwAAAAAA/kgev7jUj9mXk1EGnQCBx0w7AAAAAAAORWgHAAAAAMChCO0AAAAAADgUoR0AAAAAAIcitAMAAAAA4FCEdgAAAAAAHIrQDgAAAACAQxHaAQAAAABwKEI7AAAAAAAORWgHAAAAAMChCO0AAAAAADgUoR0AAAAAAIcitAMAAAAA4FCEdgAAAAAAHIrQDgAAAACAQxHaAQAAAABwKEI7AAAAAAAORWgHAAAAAMChCO0AAAAAADgUoR0AAAAAAIcitAMAAAAA4FDBFd0AAAAAAFQGyeMXl/ox+3IyyqATXE2YaQcAAAAAwKEI7QAAAAAAOBS3xwMAAACAg3AbPs7GTDsAAAAAAA51xcy0T5s2TVOmTFF+fr6aN2+ul156SW3atKnotgAAAADAkcprRr886lxJ5/JjV8RM+1tvvaVx48bpqaee0ubNm9W8eXP16NFDX3/9dUW3BgAAAADAZbsiQvvzzz+voUOH6t5771Xjxo01Y8YMhYeHa+bMmRXdGgAAAAAAl63S3x5fXFysTZs2KSsry7vN7XarW7duWrt27Xkf4/F45PF4vOuFhYWSpKKionP2LfEcL3VP5zvOT6FO6etcSedCHWfXuZLOhTrOrnMlnQt1nF3nSjoX6ji7zpV0LtRxdp3KeC5ntpvZRR/vsp/aw+Hy8vJ07bXX6sMPP1RaWpp3+6OPPqpVq1Zp/fr15zxm4sSJmjRpUnm2CQAAAADAOQ4cOKA6depccLzSz7RfjqysLI0bN867XlJSosOHDys2NlYul+uSjlFUVKTExEQdOHBAkZGRZdJnedSgDnXKqwZ1qFNeNahDnfKqQR3qlFcN6lCnvGpQp3zrmJm+++47JSQkXHS/Sh/aa9SooaCgIBUUFPhsLygoUHx8/HkfExoaqtDQUJ9t0dHRl1U/MjKyTP/zy6sGdahTXjWoQ53yqkEd6pRXDepQp7xqUIc65VWDOuVXJyoq6if3qfRvRFelShW1atVKy5cv924rKSnR8uXLfW6XBwAAAACgsqn0M+2SNG7cOA0ePFitW7dWmzZtNHXqVB07dkz33ntvRbcGAAAAAMBlC5o4ceLEim7CX02aNFF0dLR+97vf6bnnnpMkzZkzRw0aNCjTukFBQerUqZOCg8vu2kd51KAOdcqrBnWoU141qEOd8qpBHeqUVw3qUKe8alDHeXUq/bvHAwAAAABwpar0r2kHAAAAAOBKRWgHAAAAAMChCO0AAAAAADgUoR1XJN6qAQAAAMCV4Ir4yDfgx0JDQ/XJJ5+oUaNGFd2KI3377beaOXOm1q5dq/z8fElSfHy82rZtq3vuuUc1a9as4A4BAAAASLx7vKMcPHhQ06dP15o1a3Tw4EG53W7Vq1dP/fr10z333KOgoKCKbtFxxo0bd97tL774ogYNGqTY2FhJ0vPPP1+ebQXU3r17tWvXLtWuXVtNmjTx+3gbNmxQjx49FB4erm7duqlWrVqSpIKCAi1fvlzHjx/XP/7xD7Vu3drvWuVpxYoV5/zs9OnTR9dff31Ft3ZZPvroo3MuqqSlpalNmzYV3FnpbN++XevWrVNaWpoaNmyozz//XC+++KI8Ho8GDRqkLl26+F3jnXfeUXp6usLDwwPQ8cWZmfbt26fExEQFBweruLhYf/vb3+TxeNSrVy/VqFHD7xoej0dut1shISGSpN27d2vmzJnav3+/kpKSNGTIEKWkpPhdR5K+//57bdq0STExMWrcuLHP2IkTJ/T222/r7rvv9rvOJ598ok2bNqlTp06qV6+ePvvsM02bNk0lJSW65ZZb1KNHD79rnO3YsWN6++23vb87BwwY4P17gP8zatQo3X777fr5z39eoX387//+rxYtWhSQ77WK0qVLF82aNUtJSUkV3QoklZSUyO0+94bikpISffXVV6pbt24FdAX4wfCTnnvuOdu3b1+Z1tiwYYNFRUVZq1atrH379hYUFGR33XWX3XHHHRYdHW1t27a1oqKiMu3hjPz8fJs0aVKZ19m/f7/de++9fh3D5XJZixYtrFOnTj6Ly+Wym266yTp16mSdO3f2u9dNmzbZnj17vOuvv/66tW3b1urUqWPt2rWzN9980+8aZmYPPvigfffdd2Zmdvz4ccvMzDS3220ul8vcbrd17tzZO365UlNTbdiwYVZSUnLOWElJiQ0bNsxuvvlmv2qc8dJLL9ldd93l/fd5/fXXrVGjRtagQQPLysqykydP+l2joKDA2rRpY26324KDg83tdlurVq0sPj7egoKC7JFHHvG7xhkej8feeustGzNmjPXv39/69+9vY8aMsbfffts8Hk9AahQUFFj79u3N5XJZUlKStWnTxtq0aWNJSUnmcrmsffv2VlBQEJBax48ft1dffdXuvfde69mzp/Xq1ctGjhxpy5YtC8jx33vvPatSpYrFxMRY1apV7b333rOaNWtat27drEuXLhYUFGTLly/3u47L5bLIyEgbOnSorVu3LgCdn9/nn39uSUlJ5na77brrrrM9e/ZYq1atrFq1ahYeHm41atSwL774wu86HTt2tHnz5pmZ2Zo1ayw0NNSaNWtmd9xxh7Vs2dLCw8Ptww8/9LvOjh07vN9XbrfbOnToYHl5ed7x/Px8c7vdftd55513LCgoyGJjY6169eq2dOlSi46Otm7dulmPHj0sKCjI5syZ41eNRo0a2aFDh8zsh78tycnJFhUVZTfddJPFxMRYXFycz+/wQDhw4MB5fx8XFxfbqlWrAlrrbCkpKQH5PjMz7//99ddfbzk5OXbw4MGAHLe0tmzZEpDvtR8rKSmxFStW2Msvv2yLFi2y4uJiv4+5cOHC8y5BQUH2xz/+0bseKN9++62tWLHC+/39zTffWE5Ojk2aNMn+/e9/B6zOhRw+fNhee+01v49z4MAB++abb7zrq1evtjvvvNPat29vAwcODMjvNDOzwsJCu+2226xq1aoWFxdnTzzxhJ06dco7Hqjfa2esX7/epk6dauPHj7fx48fb1KlTbf369QE7vpnZokWL7IknnrA1a9aYmdny5cstPT3devToYf/zP/8TsDqnT5++4PYvv/wyIDVKSkpsz5493ud/Ho/H5s6da6+99prP90dZ6Ny5c5nnuT179tg///lP+/TTTwN+bEL7JXC5XBYUFGTdunWzuXPnBuzJ+dnatWtnEydO9K6/8cYblpqaamY//MJs0aKFjR49OuB1z6es/niWRZ3s7GxLSUk554l/cHCwffbZZ34d+2zNmjWzpUuXmpnZK6+8YmFhYTZ69GibPn26jRkzxqpXr26vvvqq33Xcbrc3kGVlZVmdOnVsxYoVduzYMVuzZo3Vr1/fxo8f71eNqlWr2vbt2y84vn37dqtatapfNczMfvvb31pERIRlZmZafHy85eTkWGxsrD399NP2+9//3mrWrGlPPvmk33XuuOMO69evnxUWFtqJEyds5MiRdvfdd5vZD3/YYmNjberUqX7X2blzp9WrV8+qVq1qHTt2tNtvv91uv/1269ixo1WtWtWuu+4627lzp991MjMzLS0tzT7//PNzxj7//HNr27at/epXv/K7zs6dOy0pKcni4uIsMTHRXC6XZWRkWGpqqgUFBdltt93m90WVtLQ0e/zxx83M7M0337RrrrnG/uu//ss7Pn78ePvFL37hVw2zH35HT5482Vq2bGkul8t+9rOf2QsvvGDffvut38c+W9++fa1Pnz62detWGzNmjDVq1Mj69u1rxcXFduLECevdu7cNGjTI7zqRkZHeUNaxY0cbO3asz/iECROsXbt2ftfp16+fZWRk2DfffGM7d+60jIwMS0lJ8T45C9ST2xtvvNGefvppM/vh+yA6OtomT57sHX/uueesRYsWftVwuVze350DBw60tm3b2pEjR8zM7LvvvrNu3brZgAED/KpxRl5ent10003mdru9F9jPDu+B+nd78cUXz7sEBQVZVlaWd90fLpfLli1bZg899JDVqFHDQkJCrE+fPrZo0aILPoG/HIWFhRddPvjgg4D8m6Wnp3v/3w8dOmSpqanmcrmsZs2a5na7rWHDhvb111/7VePMhQ6Xy3XBJVDPodavX29RUVHmcrnsmmuusY0bN1pKSopdf/31Vr9+fQsLC7NNmzYFpNaFBOo5YZs2bWzRokVmZrZgwQJzu93Wp08fe+yxx+yWW26xkJAQ77g/Ro8ebTfccIPNmzfPXnnlFUtKSrKMjAzvc/f8/HxzuVx+1ymvC+wzZsyw4OBga9WqlUVGRtobb7xhERERdv/999vw4cMtLCzM7+c45XWho7wufJfXhbXymGg7G6H9ErhcLps1a5b17dvXQkJCLDY21h566KGAXkUJCwuz3bt3e9dPnz5tISEhlp+fb2Zm//znPy0hISEgtT755JOLLm+99VZAfjgv9ENzZnnhhRcCUuejjz6yG264wX7zm994r6IHOrSHhYV5r861bNnSXn75ZZ/xOXPmWOPGjf2uc/YTzyZNmlhubq7P+MKFC+2GG27wq0ZycvJFr5q/9tprlpSU5FcNM7P69evbO++8Y2Y//NEPCgqyv/zlL97x+fPn23XXXed3ncjISNu2bZt3/ejRoxYSEmKFhYVm9sMFsAYNGvhdp1u3bta3b1/vcc9WWFhoffv2te7du/tdp3r16rZ58+YLjm/cuNGqV6/ud5309HQbPny4946LnJwcS09PNzOzL774wpKTk+2pp57yq0ZkZKT3Qsbp06ctODjY59w+/fRTq1Wrll81zHx/bjZu3GgPPvigRUdHW2hoqN122232z3/+0+8aZmY1a9a0jz/+2Mx++D5zuVz2wQcfeMf/9a9/Wd26df2uU61aNe+FtVq1atmWLVt8xnft2hWQ74G4uDjbunWrd72kpMQeeOABq1u3ru3evTtgT9SqVatme/fu9dYICQnxqbt7926/z+fs74F69eqd83/+r3/9yxITE/2qccbdd99tqamptmHDBlu6dKm1atXKWrdubYcPHzazwIUCl8tlderUseTkZJ/F5XLZtddea8nJyZaSkuJ3jTP/bsXFxfbWW295735ISEiw//qv/wrIxcgzT2IvtAQq6J59Pg8++KA1btzYe4fFgQMHrFWrVvbAAw/4VaNnz56WkZFxTiAL9PMOsx/+7tx///1WVFRkU6ZMsTp16tj999/vHb/33nutX79+ftUorwsq1apV8/5fpKamWk5Ojs/4Sy+9ZC1btvS7Tt26dW3lypXe9W+++cbatGlj3bt3txMnTgTs91p5XWBv3Lix9znnihUrrGrVqjZt2jTv+KxZs6xRo0Z+1SivCx3ldeG7vC6slcdE29kI7Zfg7D8CBQUF9swzz1jDhg3N7XbbTTfdZC+//LLft64nJSV5b3sx++FKvsvlsuPHj5uZ2d69ewMy+2l28W/mQP/xLK+r0d99953dfffd1qxZM/v0008tJCQkoH88Y2NjbePGjWb2wxPd8z2JDgsL87uOy+XyzgLUqFHDJ4yame3bt8/vOn/84x8tNDTURo8ebQsXLrR169bZunXrbOHChTZ69GgLCwvz+YNwucLCwnxupwoJCfE5n3379ll4eLjfdWrWrOnzf338+HFzu93eWwl3795toaGhftcJCwu76IW6rVu3BuR7IDY21t5///0Ljq9cudJiY2P9rhMeHu5zRdvj8VhISIh3dnrBggWWnJzsV43IyEjbtWuXd7169eo+Fyf37dsXkN9rZ/+OPuP777+3119/3Tp16mRut9vvczE793u6evXqPue3f//+gHyvdenSxZ599lkzM2vbtu05F9n++te/BuTiQERExHlvrx0xYoTVqVPHVq9eHZDf0fHx8d7fn4cPHzaXy+XzpPqjjz6y+Ph4v2qc/bszISHhnJ/VQH2vnTn+2be/nnmy2aJFCzt06FDAQsHw4cOtRYsW5/wfBTIcnu9nx8zsyy+/tKeeeso7K+avyMhIe+aZZ+z9998/7/LKK68EPLQ3aNDgnNm0ZcuW+X2hw8zs+eeft8TERJ+Z4bII7ddcc433/7+4uNjcbrfP996mTZvs2muv9atGeV1QiYqKsk8++cTMfngedebrM3bt2hWQ5wRhYWHnvBSmqKjI0tLSrEuXLrZnz56AnE95XWA/33Ops3+/7d271+9/t/K60FFeF77L68JaeUy0nY3Qfgku9Edt9erVNnjwYKtWrZpVq1bNrxoPPfSQNWnSxN577z1bsWKFde7c2Tp16uQdX7JkidWvX9+vGmfExsbaq6++avv27Tvvsnjx4oD8cCYkJNiCBQsuOP7xxx8H/Db8N99802rVqmVutzugP5iDBg2yIUOGmJnZbbfdZhMmTPAZ//3vf29Nmzb1u47L5bLhw4fb2LFjLS4u7pzZok2bNlmNGjX8rjN37lxLTU214OBg7wWU4OBgS01Ntbfeesvv45v98LrL9957z8x+mLl1u9329ttve8cXL14ckCB1yy23WGZmph09etSKi4ttzJgxPjP469at8zsQmJnVrl37orfu/f3vf7fatWv7XefXv/61JSUl2fz5831m9QsLC23+/Pn2/9q716CqqvcP4N99uIgJCqgoJggYigiUY15AA2Q0ykS0ZkzNQbyLl2QsVBpJy0teZnzhJVInMUzNSvNW4BiKjuMFkfHSCIYgiQjahIA3jDjP/4XD+XsEVDybzeH8vp8ZXpyzD/tZz2Ivzl5rr722h4eHzJo1y+Q4nTp1MppWeefOHVEUxTAAmZ+fb3IHNCAgwHAMiDy+sv7klPvjx4+rcgL95Gh3XXJzc42m5b+srl27Gp1gfP3110YDtufOnVPlWDt58qS0adNGFi1aJOvWrZN27drJwoULZfv27fL555+Lo6OjrFy50uQ4ffr0keTk5Dq3zZw5UxwdHVX5Hz1u3Djp16+ffP/99xIRESHh4eHSv39/yc7OlpycHAkJCTH5ipSiKOLv7y+9evUSe3t7+fnnn422Hzt2zOTOTY1WrVrVmsJZVVUlI0aMkICAALl48aJq32179uwRNzc3WbduneE9LTrtNfR6vSozVUJDQ595zJ4/f1612Qk1gzcuLi51DnyrMbAm8vgcxtfXV6ZOnSr3799vlE77k7NURGoPfP71118mD0ZpNaAyfPhww1XH8PDwWrd2bN68Wby9vU2O0717d/n1119rvX/37l0JDAyU119/XZV8tBpgrxlAFREpKioSRVGM8ktPT5fOnTubFEOrgQ6tBr5FtBlY0+JC25PYaX8BzzshLC8vrzVduqHu3r0ro0aNMnSigoKCjBrQoUOHjDo8pnj77bdlyZIl9W5X68szIiJCEhISGj3O0woLC2Xv3r1y79491fZZVFQkHh4eEhwcLHPnzpWWLVvKwIEDZcqUKRIcHCy2trZ1fkk0VEhIiNGCeps3bzbavmTJEgkJCTE5To1///1Xbt68KTdv3lRlgZ4nLVy4UNq3by+TJ08WT09PWbBggbi7u0tiYqJ888034ubmVute3ZeRl5cnXbt2FWtra7GxsRFHR0fD+gMij6eOqTE9KSEhQZycnGTNmjVy4cIFKSkpkZKSErlw4YKsWbNGnJ2dTZ5OLvL4qt306dPF1tZWdDqd2NnZiZ2dneh0OrG1tZWYmBiprKw0Oc748eMlJCREsrOzJT8/37DIWY309HSTpxMnJibKwYMH690eHx9vGAwzxfM6HmqZNm1arTb5pK+++kqGDh2qSqyTJ09K//79a81OevXVV1VZo0Hk8WBjzS0RdYmJiVHlf3RJSYkMGTJE7O3tJTw8XMrKymTWrFlGi6A9eeL2MhYvXmz0k5qaarT9008/ldGjR5sUo4a/v3+tQQGR/++4u7u7qzogfePGDQkLC5N33nlHiouLVT3x9PDwUH3th7ps2rTpmfffl5SUGK3r87IURZGhQ4fKyJEjxcnJqdZA6+nTp1W5JafGgwcPZNq0aeLt7S1WVlaqd9p9fHyM1uw5ePCgYQamyON8TO2waTWgcvnyZWnbtq1ERUXJkiVLxN7eXsaNGyfLli2TqKgoadGihSQlJZkcZ/bs2fUOAlZUVEi/fv1UaZ9aDbDPnDlTvL29ZenSpdK3b18ZP368+Pj4SEpKiqSmpoq/v79MnDjRpBhaDXRoNfBdo7EH1rS60FaDnfYXoNUJocjjKZ1qLlpQlz179si2bdvq3V5aWipbt241Oc7x48eNrrI97d69e88cpTQ3d+7ckfnz54uvr6/Y2dmJra2tdOnSRcaOHStnz57VpAx5eXlSWFioSSxTVVdXy7Jly2TYsGGyfPly0ev1snPnTnFzc5O2bdtKdHS0agMr9+/fl0OHDsmBAwcadfXRFStWiKurq9F0QkVRxNXVVZUrn08qLy+XI0eOyI4dO2THjh1y5MiROu+nf1m3bt0ydAp1Op106dLFaKrfTz/9JGvXrlUtXmMqKCio82kIWsvPzzdafV0Nt2/fltOnT8vJkyeNrrhZgry8vFqzL5qDefPm1bt+RVVVlQwfPlz1AWm9Xi/Lly83PBVD7c6hpYiOjjb6eXrmWFxcnISHh6sed9++fRIbG6v6ueLixYuf+XSazz77TN5//32TYmzatOmZA4FqDaiIPJ4CP3r0aHFwcDAMRNrY2EhQUJD88ssvqsQoLS2tdcXzSRUVFaqce2o1wH7v3j2ZMmWK+Pn5ydSpU+XRo0eyevVqsbW1FUVRJDQ01OTjTquBDi0Hvms05sCa1hfa+Jx2IqIGunbtmtHz09V6ZnZTyM3NxaNHj+Dj4wNra+umLg6R2fvvq87XBQAACt9JREFUv//w4MEDtG7dut7tRUVFjfK87nPnzuHEiROIioqCk5OT6vu3dPfv34eVlRXs7OyauiiqePDgAaysrNCiRYumLkqDiAhu374NvV6Pdu3awcbGpqmL9NIqKipw7tw5o3OC3r171/v/QS2VlZWoqqqCg4ODyfu6c+cObt68iZ49e9a5/e7du8jKykJISIjJsZ7l2rVrsLOzg6urq+r73r9/P44ePYr4+Hi4uLiovv+65Ofnw9bWFp07d1ZlfzpV9vI/rrCwEBMnTmzqYqjG0vJpbh4+fIgTJ07g8uXLtbZVVlYiOTm5CUpl3rSuM09PTwQGBiIwMNDQYVez3WiZj7e3N/z8/Gp12Jvb/wGt6szS4mjFkvKxtrZ+5gl5cXExvvjii0aJ3bt3b8yZMwdOTk5soy+htLQUM2bMMHk/5pALAPzzzz+IiYkxeT/Z2dlISkpCTk4OACAnJwcxMTGYOHEijhw5YvL+n6YoCjp06ABXV1dDh705fodmZ2dj9+7dcHV1xZgxY9CrVy/8+OOPiI2NbZR6e5KdnR0cHBxUqTcnJyfodLp6j4GzZ8+q1mF/1rF27do11TrsT8fp1q0bHj58iAULFqj6t6mJc+XKFQDG+RQUFKjWYQcATo9XgVbPNdeKpeXTnFy5csXwjE+dTifBwcFG023VWsHTkphLnanVburKp6ioyLC9ueWjBa2OAUuLoxVLy+d5tGo7bKMNp0admUsuIurkk5KSIra2tuLs7Cx2dnaSkpIi7du3l8GDB0tYWJhYWVkZ3VffWBrzO7Qx/j6WVG9a5cI4puFcyBewf//+Z27Pz8/XqCTqsLR8LMn8+fPh5+eHzMxMlJWVITY2FgMGDEB6ejrc3d2bunhmSas606rd1JXPwIEDm20+WtDqGLC0OFqxtHy0ajtsow2nRZ1peTxrkc+XX36JuLg4LF26FD/88APGjh2LmJgYLFu2DAAQHx+PFStWICwszKQ4Tfkd2hh/H0uqN61yYRwTqdb9t2BaPm9cC5aWjyVxcXGRixcvGl7r9XqZPn26uLu7S15ensVdkVKDVnWmVbuxtHy0oFWdWVocrVhaPlq1HbbRhtOizrQ8nrXIp3Xr1pKbmysijxeQtba2NlqU9NKlS6qsuG9p36GWVG9a5cI4puE97S/A1dUVe/bsgV6vr/MnKyurqYvYIJaWjyV5+PCh0b3FiqIgMTERERERCAkJwZ9//tmEpTNPWtWZVu3G0vLRglZ1ZmlxtGJp+WjVdthGG06LOtPyeNbqGFAUBQCg0+lgZ2eHNm3aGLY5ODigvLzc5BiW9h1as2/AMupNi1wYxzTstL+A3r1749y5c/VuVxQF0owW4be0fCyJj48PMjMza72/fv16REZGYvjw4U1QKvOmVZ1p1W4sLR8taFVnlhZHK5aWj1Zth2204bSoMy2PZy3y8fDwQG5uruH1qVOnjKaRX79+XZXFwSztO9SS6k2rXBjHNOy0v4C4uDgEBQXVu/21117D0aNHNSyRaSwtH0sycuRI7Ny5s85t69evx5gxY5rNSZpWtKozrdqNpeWjBa3qzNLiaMXS8tGq7bCNNpwWdabl8axFPjExMaiurja8fvppIikpKarck2tp36GWVG9a5cI4puFz2omIiIiIiIjMFK+0ExEREREREZkpdtqJiIiIiIiIzBQ77URERERERERmip12IiIiIiIiIjPFTjsRERGZLUVRsHfv3qYuBhERUZNhp52IiKiZKCkpwezZs+Hl5YUWLVrAzc0NERERSEtLa+qiNZri4mK8++67AICCggIoioLz5883camIiIi0Y/38jxAREVFTKygowIABA+Do6IjVq1fD398fVVVVOHToEGbOnImcnJymLmKj6NixY1MXgYiIqEnxSjsREVEzMGPGDCiKgoyMDHzwwQfo1q0bevbsiblz5+L06dMAgOvXryMyMhL29vZo3bo1Ro0ahVu3bhn2sXjxYrzxxhvYsmUL3N3dYW9vjxkzZqC6uhqrVq1Cx44d4eLigmXLlhnFVhQFGzduxLBhw/DKK6+gR48eOHXqFK5evYrQ0FC0atUKQUFByMvLM/xOdHQ0RowYYbSf2NhYhIaGGl6Hhobi448/xrx58+Ds7IyOHTti8eLFtWLXTI/39PQEAPTq1QuKoiA0NBTHjx+HjY0NSkpKasV66623Xq6yiYiIzAg77URERGautLQUqampmDlzJlq1alVru6OjI/R6PSIjI1FaWopjx47h8OHDyM/Px4cffmj02by8PKSkpCA1NRU7d+7Et99+i/feew83btzAsWPHsHLlSixcuBBnzpwx+r0lS5YgKioK58+fh4+PD8aOHYtp06YhPj4emZmZEBHMmjWrwbl99913aNWqFc6cOYNVq1bhyy+/xOHDh+v8bEZGBgDg999/R3FxMfbs2YPg4GB4eXlh27Zths9VVVVh+/btmDhxYoPLQ0REZG44PZ6IiMjMXb16FSICHx+fej+TlpaGS5cu4dq1a3BzcwMAJCcno2fPnjh79iz69OkDANDr9diyZQscHBzg6+uLQYMG4cqVK/jtt9+g0+nQvXt3rFy5EkePHkW/fv0M+58wYQJGjRoFAJg/fz4CAwORkJCA8PBwAMCcOXMwYcKEBucWEBCARYsWAQC8vb2xfv16pKWlYciQIbU+2759ewBA27ZtjabNT5o0CUlJSYiLiwMAHDhwAJWVlYbyEhERNWe80k5ERGTmROS5n8nOzoabm5uhww4Avr6+cHR0RHZ2tuE9Dw8PODg4GF536NABvr6+0Ol0Ru/dvn3baP8BAQFG2wHA39/f6L3KykpUVFQ0IDPj/QKAq6trrdjPEx0djatXrxpuE9i6dStGjRpV56wEIiKi5oZX2omIiMyct7c3FEVRZbE5Gxsbo9eKotT5nl6vr/f3FEWp972a39PpdLUGG6qqql6oPE/Hfh4XFxdEREQgKSkJnp6eSElJQXp6eoP2QUREZK54pZ2IiMjMOTs7Izw8HBs2bMD9+/drbS8rK0OPHj1QWFiIwsJCw/uXL19GWVkZfH19tSwugMdT2YuLi43eM/VRbba2tgCA6urqWtsmT56MXbt2YdOmTejatSsGDBhgUiwiIiJzwU47ERFRM7BhwwZUV1ejb9++2L17N3Jzc5GdnY21a9ciMDAQgwcPhr+/Pz766CNkZWUhIyMDUVFRCAkJwZtvvql5ecPCwpCZmYnk5GTk5uZi0aJF+OOPP0zap4uLC1q2bInU1FTcunUL5eXlhm3h4eFo3bo1li5d+lL31hMREZkrdtqJiIiaAS8vL2RlZWHQoEH45JNP4OfnhyFDhiAtLQ2JiYlQFAX79u2Dk5MTgoODMXjwYHh5eWHXrl1NUt7w8HAkJCRg3rx56NOnD+7evYuoqCiT9mltbY21a9di48aN6NSpEyIjIw3bdDodoqOjUV1dbXIcIiIic6LIi6xuQ0RERGTmJk2ahL///hv79+9v6qIQERGphgvRERERUbNWXl6OS5cuYceOHeywExGRxWGnnYiIiJq1yMhIZGRkYPr06XU+352IiKg54/R4IiIiIiIiIjPFheiIiIiIiIiIzBQ77URERERERERmip12IiIiIiIiIjPFTjsRERERERGRmWKnnYiIiIiIiMhMsdNOREREREREZKbYaSciIiIiIiIyU+y0ExEREREREZkpdtqJiIiIiIiIzNT/AYDaKy+PDR3+AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAHECAYAAABMe8vEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdfVhUdf7/8dcMIOANEKgQiUCbKa6WLiohbqnxjZT1puzGFrVcy7YVTS1LNi11LbTtW6SZrP5Ky9Vu3ErXvNYyb3NDVFi7WzNNTTYDKxcIjcHk8/vDy/k2qQXOGTjA83Fd57o853PmvN9HcZjXfM6ccRhjjAAAAAAAgO0467sBAAAAAABwboR2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAm/Kv7wbsoLq6WkeOHFGrVq3kcDjqux0AAAAAQCNnjNG3336r6OhoOZ3nn08ntEs6cuSIYmJi6rsNAAAAAEATU1RUpHbt2p13nNAuqVWrVpJO/2WFhITUczcAAAAAgMauvLxcMTEx7jx6PoR2yX1JfEhICKEdAAAAAFBnfu4j2tyIDgAAAAAAm6rX0L5161YNGjRI0dHRcjgcWrVq1Vn77NmzR4MHD1ZoaKhatGihnj176vDhw+7xyspKjRs3ThEREWrZsqWGDRumkpKSujwNAAAAAAB8ol5D+/Hjx3XllVdqwYIF5xz/7LPP1KdPH3Xq1EmbN2/WBx98oOnTpysoKMi9z6RJk7RmzRqtXLlSW7Zs0ZEjR3TjjTfW1SkAAAAAAOAzDmOMqe8mpNPX8b/xxhsaOnSoe9vw4cMVEBCgZcuWnfMxZWVlatOmjVasWKGbbrpJkvTJJ58oISFBeXl5uuqqq2pUu7y8XKGhoSorK+Mz7QAAAAAAn6tpDrXtZ9qrq6u1du1aXX755UpLS1Pbtm2VlJTkcQl9QUGBTp48qdTUVPe2Tp06qX379srLy6uPtgEAAAAAsIxtQ/vRo0dVUVGhOXPm6Prrr9fbb7+tG264QTfeeKO2bNkiSSouLlazZs0UFhbm8djIyEgVFxef99gul0vl5eUeCwAAAAAAdmPbr3yrrq6WJA0ZMkSTJk2SJHXr1k3vvfeecnNzdc0111zwsbOzszVz5kxL+gQAAAAAwFdsO9PeunVr+fv7q3Pnzh7bExIS3HePj4qKUlVVlUpLSz32KSkpUVRU1HmPnZWVpbKyMvdSVFRk/QkAAAAAAOAl24b2Zs2aqWfPntq7d6/H9k8//VSxsbGSpMTERAUEBGjDhg3u8b179+rw4cNKTk4+77EDAwMVEhLisQAAAAAAYDf1enl8RUWF9u/f714/ePCgdu/erfDwcLVv315TpkzRrbfeqquvvlr9+vXTunXrtGbNGm3evFmSFBoaqjFjxmjy5MkKDw9XSEiIxo8fr+Tk5BrfOR4AAAAAALuq169827x5s/r163fW9ttvv11Lly6VJD3//PPKzs7Wf/7zH3Xs2FEzZ87UkCFD3PtWVlbqvvvu00svvSSXy6W0tDQ9++yzP3l5/I/xlW8AAAAAgLpU0xxqm+9pr0+EdgAAAABAXWrw39MOAAAAAEBTR2gHAAAAAMCmCO0AAAAAANhUvd49viGIm7q21o85NCfdB50AAAAAAJoaZtoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2JR/fTeA0+Kmrq31Yw7NSfdBJwAAAAAAu2CmHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsql5D+9atWzVo0CBFR0fL4XBo1apV593397//vRwOh3Jycjy2Hzt2TBkZGQoJCVFYWJjGjBmjiooKX7cOAAAAAIDP1WtoP378uK688kotWLDgJ/d74403tH37dkVHR581lpGRoY8//ljr16/Xm2++qa1bt2rs2LG+ahkAAAAAgDrjX5/FBwwYoAEDBvzkPl988YXGjx+vt956S+np6R5je/bs0bp167Rz50716NFDkjR//nwNHDhQTzzxxDlDPgAAAAAADYWtP9NeXV2tkSNHasqUKfrlL3951nheXp7CwsLcgV2SUlNT5XQ6lZ+fX5etAgAAAABguXqdaf85c+fOlb+/vyZMmHDO8eLiYrVt29Zjm7+/v8LDw1VcXHze47pcLrlcLvd6eXm5NQ0DAAAAAGAh2860FxQU6Omnn9bSpUvlcDgsPXZ2drZCQ0PdS0xMjKXHBwAAAADACrYN7e+++66OHj2q9u3by9/fX/7+/vr888913333KS4uTpIUFRWlo0ePejzu+++/17FjxxQVFXXeY2dlZamsrMy9FBUV+fJUAAAAAAC4ILa9PH7kyJFKTU312JaWlqaRI0dq9OjRkqTk5GSVlpaqoKBAiYmJkqSNGzequrpaSUlJ5z12YGCgAgMDfdc8AAAAAAAWqNfQXlFRof3797vXDx48qN27dys8PFzt27dXRESEx/4BAQGKiopSx44dJUkJCQm6/vrrdddddyk3N1cnT55UZmamhg8fzp3jAQAAAAANXr1eHr9r1y51795d3bt3lyRNnjxZ3bt318MPP1zjYyxfvlydOnXStddeq4EDB6pPnz5atGiRr1oGAAAAAKDO1OtMe9++fWWMqfH+hw4dOmtbeHi4VqxYYWFXAAAAAADYg21vRAcAAAAAQFNHaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2JR/fTeAuhU3dW2tH3NoTroPOgEAAAAA/Bxm2gEAAAAAsClCOwAAAAAANkVoBwAAAADApgjtAAAAAADYFKEdAAAAAACbIrQDAAAAAGBThHYAAAAAAGyK0A4AAAAAgE3Va2jfunWrBg0apOjoaDkcDq1atco9dvLkST344IPq2rWrWrRooejoaI0aNUpHjhzxOMaxY8eUkZGhkJAQhYWFacyYMaqoqKjrUwEAAAAAwHL1GtqPHz+uK6+8UgsWLDhr7MSJEyosLNT06dNVWFio119/XXv37tXgwYM99svIyNDHH3+s9evX680339TWrVs1duzYujoFAAAAAAB8xr8+iw8YMEADBgw451hoaKjWr1/vse2ZZ55Rr169dPjwYbVv31579uzRunXrtHPnTvXo0UOSNH/+fA0cOFBPPPGEoqOjfX4OAAAAAAD4SoP6THtZWZkcDofCwsIkSXl5eQoLC3MHdklKTU2V0+lUfn5+fbUJAAAAAIAl6nWmvTYqKyv14IMP6rbbblNISIgkqbi4WG3btvXYz9/fX+Hh4SouLj7vsVwul1wul3u9vLzcN00DAAAAAOCFBjHTfvLkSd1yyy0yxmjhwoVeHy87O1uhoaHuJSYmxoIuAQAAAACwlu1D+5nA/vnnn2v9+vXuWXZJioqK0tGjRz32//7773Xs2DFFRUWd95hZWVkqKytzL0VFRT7rHwAAAACAC2Xry+PPBPZ9+/Zp06ZNioiI8BhPTk5WaWmpCgoKlJiYKEnauHGjqqurlZSUdN7jBgYGKjAw0Ke9AwAAAADgrXoN7RUVFdq/f797/eDBg9q9e7fCw8N18cUX66abblJhYaHefPNNnTp1yv059fDwcDVr1kwJCQm6/vrrdddddyk3N1cnT55UZmamhg8fzp3jAQAAAAANXr2G9l27dqlfv37u9cmTJ0uSbr/9ds2YMUN///vfJUndunXzeNymTZvUt29fSdLy5cuVmZmpa6+9Vk6nU8OGDdO8efPq5gQAAAAAAPCheg3tffv2lTHmvOM/NXZGeHi4VqxYYWVbAAAAAADYgu1vRAcAAAAAQFNFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2JR/fTeAxilu6tpaP+bQnHQfdAIAAAAADRcz7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsihvRoUGr7Q3vuNkdAAAAgIaEmXYAAAAAAGyK0A4AAAAAgE0R2gEAAAAAsKl6De1bt27VoEGDFB0dLYfDoVWrVnmMG2P08MMP6+KLL1ZwcLBSU1O1b98+j32OHTumjIwMhYSEKCwsTGPGjFFFRUVdngYAAAAAAD5Rr6H9+PHjuvLKK7VgwYJzjj/++OOaN2+ecnNzlZ+frxYtWigtLU2VlZXufTIyMvTxxx9r/fr1evPNN7V161aNHTu2rk4BAAAAAACfqde7xw8YMEADBgw455gxRjk5OZo2bZqGDBkiSXrxxRcVGRmpVatWafjw4dqzZ4/WrVunnTt3qkePHpKk+fPna+DAgXriiScUHR1dZ+cCAAAAAIDVbPuZ9oMHD6q4uFipqanubaGhoUpKSlJeXp4kKS8vT2FhYe7ALkmpqalyOp3Kz8+v854BAAAAALCSbb+nvbi4WJIUGRnpsT0yMtI9VlxcrLZt23qM+/v7Kzw83L3PubhcLrlcLvd6eXm5VW0DAAAAAGAZ2860+1J2drZCQ0PdS0xMTH23BAAAAADAWWwb2qOioiRJJSUlHttLSkrcY1FRUTp69KjH+Pfff69jx4659zmXrKwslZWVuZeioiKLuwcAAAAAwHu2De3x8fGKiorShg0b3NvKy8uVn5+v5ORkSVJycrJKS0tVUFDg3mfjxo2qrq5WUlLSeY8dGBiokJAQjwUAAAAAALup18+0V1RUaP/+/e71gwcPavfu3QoPD1f79u01ceJEzZ49Wx06dFB8fLymT5+u6OhoDR06VJKUkJCg66+/XnfddZdyc3N18uRJZWZmavjw4dw5HgAAAADQ4NU6tBcWFiogIEBdu3aVJK1evVpLlixR586dNWPGDDVr1qzGx9q1a5f69evnXp88ebIk6fbbb9fSpUv1wAMP6Pjx4xo7dqxKS0vVp08frVu3TkFBQe7HLF++XJmZmbr22mvldDo1bNgwzZs3r7anBQAAAACA7dQ6tN99992aOnWqunbtqgMHDmj48OG64YYbtHLlSp04cUI5OTk1Plbfvn1ljDnvuMPh0KxZszRr1qzz7hMeHq4VK1bU6hwAAAAAAGgIav2Z9k8//VTdunWTJK1cuVJXX321VqxYoaVLl+q1116zvEEAAAAAAJqqWod2Y4yqq6slSe+8844GDhwoSYqJidHXX39tbXcAAAAAADRhtQ7tPXr00OzZs7Vs2TJt2bJF6enpkk7fRC4yMtLyBgEAAAAAaKpqHdpzcnJUWFiozMxMPfTQQ7rsssskSX/729/Uu3dvyxsEAAAAAKCpqtWN6E6dOqXS0lJt3bpVF110kcfYn//8Z/n5+VnaHAAAAAAATVmtZtr9/Px03XXXqbS09KyxoKAgBQQEWNYYAAAAAABNXa0vj+/SpYsOHDjgi14AAAAAAMAP1Dq0z549W/fff7/efPNNffnllyovL/dYAAAAAACANWr1mXZJ7q94Gzx4sBwOh3u7MUYOh0OnTp2yrjvABuKmrq31Yw7NSfdBJwAAAACamlqH9k2bNvmiDwAAAAAA8CO1Du3XXHONL/oAmjxm9AEAAAD8WK0/0y5J7777rkaMGKHevXvriy++kCQtW7ZM27Zts7Q5AAAAAACaslqH9tdee01paWkKDg5WYWGhXC6XJKmsrEyPPfaY5Q0CAAAAANBUXdDd43Nzc7V48WKP72VPSUlRYWGhpc0BAAAAANCU1Tq07927V1dfffVZ20NDQ1VaWmpJUwAAAAAA4AJuRBcVFaX9+/crLi7OY/u2bdt06aWXWtUXAB/hhncAAABAw1Hrmfa77rpL9957r/Lz8+VwOHTkyBEtX75c999/v+655x5f9AgAAAAAQJNU65n2qVOnqrq6Wtdee61OnDihq6++WoGBgbr//vs1fvx4X/QIAAAAAECTVOvQ7nA49NBDD2nKlCnav3+/Kioq1LlzZ7Vs2dIX/QEAAAAA0GTVOrSf0axZM7Vq1UqtWrUisAMAAAAA4AO1Du3ff/+9Zs6cqXnz5qmiokKS1LJlS40fP16PPPKIx9fAAWi6uOEdAAAA4L1ah/bx48fr9ddf1+OPP67k5GRJUl5enmbMmKFvvvlGCxcutLxJAAAAAACaolqH9hUrVujll1/WgAED3NuuuOIKxcTE6LbbbiO0AwAAAABgkVp/5VtgYOBZ39EuSfHx8WrWrJkVPQEAAAAAAF3ATHtmZqb+9Kc/acmSJQoMDJQkuVwuPfroo8rMzLS8QQD4KXx2HgAAAI1ZjUL7jTfe6LH+zjvvqF27drryyislSe+//76qqqp07bXXWt8hAAAAAABNVI1Ce2hoqMf6sGHDPNZjYmKs6wgAAAAAAEiqYWhfsmSJr/sAAAAAAAA/Uusb0QEAAAAAgLpR6xvRffPNN3r44Ye1adMmHT16VNXV1R7jx44ds6w5AAAAAACaslqH9pEjR2r//v0aM2aMIiMj5XA4fNEXAAAAAABNXq1D+7vvvqtt27a57xwPAAAAAAB8o9afae/UqZO+++47X/QCAAAAAAB+oNah/dlnn9VDDz2kLVu26JtvvlF5ebnHAgAAAAAArFHry+PDwsJUXl6u/v37e2w3xsjhcOjUqVOWNQcAdhE3dW2t9j80J91HnQAAAKApqXVoz8jIUEBAgFasWMGN6AAAAAAA8KFah/aPPvpI//rXv9SxY0df9OPh1KlTmjFjhv7617+quLhY0dHRuuOOOzRt2jT3mwXGGD3yyCNavHixSktLlZKSooULF6pDhw4+7w8AAAAAAF+q9Wfae/TooaKiIl/0cpa5c+dq4cKFeuaZZ7Rnzx7NnTtXjz/+uObPn+/e5/HHH9e8efOUm5ur/Px8tWjRQmlpaaqsrKyTHgEAAAAA8JVaz7SPHz9e9957r6ZMmaKuXbsqICDAY/yKK66wrLn33ntPQ4YMUXr66c+GxsXF6aWXXtKOHTsknZ5lz8nJ0bRp0zRkyBBJ0osvvqjIyEitWrVKw4cPt6wXAAAAAADqWq1D+6233ipJ+t3vfufe5nA4fHIjut69e2vRokX69NNPdfnll+v999/Xtm3b9OSTT0qSDh48qOLiYqWmprofExoaqqSkJOXl5RHaATQotb3ZncQN7wAAABq7Wof2gwcP+qKPc5o6darKy8vVqVMn+fn56dSpU3r00UeVkZEhSSouLpYkRUZGejwuMjLSPXYuLpdLLpfLvc5X1QEAAAAA7KjWoT02NtYXfZzTq6++quXLl2vFihX65S9/qd27d2vixImKjo7W7bfffsHHzc7O1syZMy3sFAAAAAAA69X6RnSStGzZMqWkpCg6Olqff/65JCknJ0erV6+2tLkpU6Zo6tSpGj58uLp27aqRI0dq0qRJys7OliRFRUVJkkpKSjweV1JS4h47l6ysLJWVlbmXurqxHgAAAAAAtVHr0L5w4UJNnjxZAwcOVGlpqfsz7GFhYcrJybG0uRMnTsjp9GzRz89P1dXVkqT4+HhFRUVpw4YN7vHy8nLl5+crOTn5vMcNDAxUSEiIxwIAAAAAgN3UOrTPnz9fixcv1kMPPSQ/Pz/39h49eujDDz+0tLlBgwbp0Ucf1dq1a3Xo0CG98cYbevLJJ3XDDTdIOn0DvIkTJ2r27Nn6+9//rg8//FCjRo1SdHS0hg4damkvAAAAAADUtQu6EV337t3P2h4YGKjjx49b0tQZ8+fP1/Tp0/WHP/xBR48eVXR0tO6++249/PDD7n0eeOABHT9+XGPHjlVpaan69OmjdevWKSgoyNJeAAAAAACoa7UO7fHx8dq9e/dZN6Rbt26dEhISLGtMklq1aqWcnJyfvOze4XBo1qxZmjVrlqW1AaCx4qvlAAAAGo5ah/bJkydr3LhxqqyslDFGO3bs0EsvvaTs7Gz9v//3/3zRIwAAAAAATVKtQ/udd96p4OBgTZs2TSdOnNBvf/tbRUdH6+mnn9bw4cN90SMAoAFiRh8AAMB7tQ7tkpSRkaGMjAydOHFCFRUVatu2rdV9AQAAAADQ5F1QaD+jefPmat68uVW9AABQa8zoAwCAxqzGob1///412m/jxo0X3AwAAAAAAPg/NQ7tmzdvVmxsrNLT0xUQEODLngAAAAAAgGoR2ufOnaslS5Zo5cqVysjI0O9+9zt16dLFl70BAAAAANCkOWu645QpU/Tvf/9bq1at0rfffquUlBT16tVLubm5Ki8v92WPAAAAAAA0STUO7WckJydr8eLF+vLLLzVu3Dg9//zzio6OJrgDAAAAAGCxWof2MwoLC7Vlyxbt2bNHXbp04XPuAAAAAABYrFZf+XbkyBEtXbpUS5cuVXl5uUaMGKH8/Hx17tzZV/0BAGALdfXVcrWtw9fXAQDQuNU4tA8cOFCbNm3Sddddpz//+c9KT0+Xv79XX/MOAAAAAAB+Qo1T97p163TxxRfr8OHDmjlzpmbOnHnO/QoLCy1rDgAAAACApqzGof2RRx7xZR8AAAAAAOBHCO0AAAAAANjUBd89HgAAAAAA+BahHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBN1fju8T+UmZmpWbNmKTw83Op+AACAj8VNXVvrxxyak+6DTgAAwM+p8Uz7f/7zH/efV6xYoYqKCklS165dVVRUZH1nAAAAAAA0cTWeae/UqZMiIiKUkpKiyspKFRUVqX379jp06JBOnjzpyx4BAAAAAGiSajzTXlpaqpUrVyoxMVHV1dUaOHCgLr/8crlcLr311lsqKSnxZZ8AAAAAADQ5NZ5pP3nypHr16qVevXpp9uzZKigo0JdffqnU1FQ9//zzuu+++xQTE6O9e/f6sl8AANBA1NVn5/mMPgCgMatxaA8LC1O3bt2UkpKiqqoqfffdd0pJSZG/v79eeeUVXXLJJdq5c6cvewUAAAAAoEmp8eXxX3zxhaZNm6bAwEB9//33SkxM1K9//WtVVVWpsLBQDodDffr08WWvAAAAAAA0KTWeaW/durUGDRqkQYMGKTc3V1u3btWePXs0atQo3X///Ro5cqR69eqlLVu2+LJfAACAesFl+ACA+lDjmfYfCw0N1S233KKAgABt3LhRBw8e1B/+8AcrewMAAAAAoEmr8Uz7D33wwQe65JJLJEmxsbEKCAhQVFSUbr31VkubAwAAAACgKbug0B4TE+P+80cffWRZMwAAAAAA4P9c8OXxAAAAAADAtwjtAAAAAADYFKEdAAAAAACbIrQDAAAAAGBThHYAAAAAAGzK9qH9iy++0IgRIxQREaHg4GB17dpVu3btco8bY/Twww/r4osvVnBwsFJTU7Vv37567BgAAAAAAGvYOrT/97//VUpKigICAvSPf/xD//73v/W///u/uuiii9z7PP7445o3b55yc3OVn5+vFi1aKC0tTZWVlfXYOQAAAAAA3rug72mvK3PnzlVMTIyWLFni3hYfH+/+szFGOTk5mjZtmoYMGSJJevHFFxUZGalVq1Zp+PDhdd4zAAAAAABWsfVM+9///nf16NFDN998s9q2bavu3btr8eLF7vGDBw+quLhYqamp7m2hoaFKSkpSXl5efbQMAAAAAIBlbB3aDxw4oIULF6pDhw566623dM8992jChAl64YUXJEnFxcWSpMjISI/HRUZGusfOxeVyqby83GMBAAAAAMBubH15fHV1tXr06KHHHntMktS9e3d99NFHys3N1e23337Bx83OztbMmTOtahMAAMAycVPX1voxh+ak+6ATAIAd2Hqm/eKLL1bnzp09tiUkJOjw4cOSpKioKElSSUmJxz4lJSXusXPJyspSWVmZeykqKrK4cwAAAAAAvGfr0J6SkqK9e/d6bPv0008VGxsr6fRN6aKiorRhwwb3eHl5ufLz85WcnHze4wYGBiokJMRjAQAAAADAbmx9efykSZPUu3dvPfbYY7rlllu0Y8cOLVq0SIsWLZIkORwOTZw4UbNnz1aHDh0UHx+v6dOnKzo6WkOHDq3n7gEAAAAA8I6tQ3vPnj31xhtvKCsrS7NmzVJ8fLxycnKUkZHh3ueBBx7Q8ePHNXbsWJWWlqpPnz5at26dgoKC6rFzAAAAAAC8Z+vQLkm/+c1v9Jvf/Oa84w6HQ7NmzdKsWbPqsCsAAAAAAHzP1p9pBwAAAACgKSO0AwAAAABgU4R2AAAAAABsyvafaQcAAID14qaurdX+h+ak+6gTAMBPYaYdAAAAAACbIrQDAAAAAGBThHYAAAAAAGyK0A4AAAAAgE0R2gEAAAAAsClCOwAAAAAANkVoBwAAAADApgjtAAAAAADYFKEdAAAAAACbIrQDAAAAAGBThHYAAAAAAGzKv74bAAAAQOMUN3VtrR9zaE66DzoBgIaLmXYAAAAAAGyK0A7NrXQAACAASURBVA4AAAAAgE0R2gEAAAAAsClCOwAAAAAANkVoBwAAAADApgjtAAAAAADYFKEdAAAAAACbIrQDAAAAAGBThHYAAAAAAGyK0A4AAAAAgE0R2gEAAAAAsCn/+m4AAAAA8Ebc1LW1fsyhOem2rQMAP8RMOwAAAAAANkVoBwAAAADApgjtAAAAAADYFKEdAAAAAACbIrQDAAAAAGBThHYAAAAAAGyK0A4AAAAAgE0R2gEAAAAAsKkGFdrnzJkjh8OhiRMnurdVVlZq3LhxioiIUMuWLTVs2DCVlJTUY5cAAAAAAFijwYT2nTt36i9/+YuuuOIKj+2TJk3SmjVrtHLlSm3ZskVHjhzRjTfeWE9dAgAAAABgnQYR2isqKpSRkaHFixfroosucm8vKyvTc889pyeffFL9+/dXYmKilixZovfee0/bt2+vx44BAAAAAPBegwjt48aNU3p6ulJTUz22FxQU6OTJkx7bO3XqpPbt2ysvL6+u2wQAAAAAwFL+9d3Az3n55ZdVWFionTt3njVWXFysZs2aKSwszGN7ZGSkiouLz3tMl8sll8vlXi8vL7euYQAAAAAALGLrmfaioiLde++9Wr58uYKCgiw7bnZ2tkJDQ91LTEyMZccGAAAAAMAqtg7tBQUFOnr0qH71q1/J399f/v7+2rJli+bNmyd/f39FRkaqqqpKpaWlHo8rKSlRVFTUeY+blZWlsrIy91JUVOTrUwEAAAAAoNZsfXn8tddeqw8//NBj2+jRo9WpUyc9+OCDiomJUUBAgDZs2KBhw4ZJkvbu3avDhw8rOTn5vMcNDAxUYGCgT3sHAAAAAMBbtg7trVq1UpcuXTy2tWjRQhEREe7tY8aM0eTJkxUeHq6QkBCNHz9eycnJuuqqq+qjZQAAAAAALGPr0F4TTz31lJxOp4YNGyaXy6W0tDQ9++yz9d0WAAAAAABea3ChffPmzR7rQUFBWrBggRYsWFA/DQEAAAAA4CO2vhEdAAAAAABNGaEdAAAAAACbIrQDAAAAAGBThHYAAAAAAGyK0A4AAAAAgE0R2gEAAAAAsClCOwAAAAAANkVoBwAAAADApgjtAAAAAADYFKEdAAAAAACbIrQDAAAAAGBThHYAAAAAAGyK0A4AAAAAgE0R2gEAAAAAsClCOwAAAAAANkVoBwAAAADApgjtAAAAAADYlH99NwAAAADg/8RNXVvrxxyak+6DTgDYATPtAAAAAADYFKEdAAAAAACb4vJ4AAAAoAniMnygYWCmHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKZsH9qzs7PVs2dPtWrVSm3bttXQoUO1d+9ej30qKys1btw4RUREqGXLlho2bJhKSkrqqWMAAAAAAKxh+9C+ZcsWjRs3Ttu3b9f69et18uRJXXfddTp+/Lh7n0mTJmnNmjVauXKltmzZoiNHjujGG2+sx64BAAAAAPCef3038HPWrVvnsb506VK1bdtWBQUFuvrqq1VWVqbnnntOK1asUP/+/SVJS5YsUUJCgrZv366rrrqqPtoGAAAAAMBrtp9p/7GysjJJUnh4uCSpoKBAJ0+eVGpqqnufTp06qX379srLy6uXHgEAAAAAsILtZ9p/qLq6WhMnTlRKSoq6dOkiSSouLlazZs0UFhbmsW9kZKSKi4vPeRyXyyWXy+VeLy8v913TAAAAAABcoAY10z5u3Dh99NFHevnll706TnZ2tkJDQ91LTEyMRR0CAAAAAGCdBhPaMzMz9eabb2rTpk1q166de3tUVJSqqqpUWlrqsX9JSYmioqLOeaysrCyVlZW5l6KiIp/2DgAAAADAhbB9aDfGKDMzU2+88YY2btyo+Ph4j/HExEQFBARow4YN7m179+7V4cOHlZycfM5jBgYGKiQkxGMBAAAAAMBubP+Z9nHjxmnFihVavXq1WrVq5f6cemhoqIKDgxUaGqoxY8Zo8uTJCg8PV0hIiMaPH6/k5GTuHA8AAAAAaNBsH9oXLlwoSerbt6/H9iVLluiOO+6QJD311FNyOp0aNmyYXC6X0tLS9Oyzz9ZxpwAAAAAAWMv2od0Y87P7BAUFacGCBVqwYEEddAQAAACgpuKmrq3V/ofmpPuoE6Bhsv1n2gEAAAAAaKoI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsyr++GwAAAAAAb8RNXVvrxxyak+6DTgDrMdMOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU/713QAAAAAANARxU9fW+jGH5qT7oBM0Jcy0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApbkQHAAAAADbCDe/wQ8y0AwAAAABgU8y0AwAAAEATVFcz+natY+dz+aFGM9O+YMECxcXFKSgoSElJSdqxY0d9twQAAAAAgFcaRWh/5ZVXNHnyZD3yyCMqLCzUlVdeqbS0NB09erS+WwMAAAAA4II1itD+5JNP6q677tLo0aPVuXNn5ebmqnnz5nr++efruzUAAAAAAC5Yg/9Me1VVlQoKCpSVleXe5nQ6lZqaqry8vHM+xuVyyeVyudfLysokSeXl5WftW+06UeueznWcn0OduqnTmM6FOvau05jOhTr2rtOYzoU69q7TmM6FOvau05jOhTr2rlPf53JmuzHmJx/vMD+3h80dOXJEl1xyid577z0lJye7tz/wwAPasmWL8vPzz3rMjBkzNHPmzLpsEwAAAACAsxQVFaldu3bnHW/wM+0XIisrS5MnT3avV1dX69ixY4qIiJDD4ajRMcrLyxUTE6OioiKFhIT4qtU6qdOYzoU69q7TmM6FOvau05jOhTr2rtOYzoU69q7TmM6FOvau05jOxe51jDH69ttvFR0d/ZP7NfjQ3rp1a/n5+amkpMRje0lJiaKios75mMDAQAUGBnpsCwsLu6D6ISEhPv3Hr8s6jelcqGPvOo3pXKhj7zqN6VyoY+86jelcqGPvOo3pXKhj7zqN6VzsXCc0NPRn92nwN6Jr1qyZEhMTtWHDBve26upqbdiwweNyeQAAAAAAGpoGP9MuSZMnT9btt9+uHj16qFevXsrJydHx48c1evTo+m4NAAAAAIAL5jdjxowZ9d2Et7p06aKwsDA9+uijeuKJJyRJy5cvV8eOHX1a18/PT3379pW/v2/f+6iLOo3pXKhj7zqN6VyoY+86jelcqGPvOo3pXKhj7zqN6VyoY+86jelcGkOdBn/3eAAAAAAAGqsG/5l2AAAAAAAaK0I7AAAAAAA2RWgHAAAAAMCmCO2oU9xCAQAAAABqrlF85RsajsDAQL3//vtKSEio71Zq7euvv9bzzz+vvLw8FRcXS5KioqLUu3dv3XHHHWrTpk09dwgAAACgseHu8U3Qd999p4KCAoWHh6tz584eY5WVlXr11Vc1atQor2pMnjz5nNuffvppjRgxQhEREZKkJ5980qs648eP1y233KJf//rXXh3n5+zcuVNpaWlq3ry5UlNTFRkZKUkqKSnRhg0bdOLECb311lvq0aOHT/vAuX355ZdauHChtm3bpi+//FJOp1OXXnqphg4dqjvuuEN+fn6W1dq4ceNZdQYPHqwOHTpYVgMXprq6Wk7n2ReQVVdX6z//+Y/at29fD101PP3799eSJUsUGxtr2TH37Nmj7du3Kzk5WZ06ddInn3yip59+Wi6XSyNGjFD//v29rvHaa69pwIABat68uQUd18zx48f16quvav/+/br44ot12223uX+/NVQHDx50n0+XLl3qux1L/fe//9WaNWu8fo2D2nO5XHI6nQoICJAkffbZZ3r++ed1+PBhxcbGasyYMYqPj7es3o4dO86aZElOTlavXr0sq9GYGGN06NAhxcTEyN/fX1VVVXrjjTfkcrk0cOBAtW7dur5btKX3339fBQUF6tu3ry699FJ9/PHHWrBggaqrq3XDDTcoLS3NumIGXjt8+LAZPXq018cpKCgwBw4ccK+/+OKLpnfv3qZdu3YmJSXFvPTSS17X2Lt3r4mNjTUOh8M4nU5z9dVXmyNHjrjHi4uLjdPp9LqOw+Ew3bp1M3379vVYHA6H6dmzp+nbt6/p16+fJXWcTqfp0KGDmTNnjvnyyy+9Pua5JCUlmbFjx5rq6uqzxqqrq83YsWPNVVddZUmtNWvWmOnTp5tt27YZY4zZsGGDGTBggElLSzN/+ctfLKlhjDEul8u88sorZuLEiWb48OFm+PDhZuLEiebVV181LpfLkhpFRUXmq6++cq9v3brV/Pa3vzV9+vQxGRkZ5r333vO6xs6dO01oaKhJTEw0ffr0MX5+fmbkyJHm1ltvNWFhYaZ3796mvLzc6zolJSWmV69exul0Gn9/f+N0Ok1iYqKJiooyfn5+ZsqUKV7X+KGioiLz7bffnrW9qqrKbNmyxZIa8+fPNyNHjnQ/t7z44osmISHBdOzY0WRlZZmTJ09aUufrr782GzduNN98840xxpivvvrKzJkzx8ycOdP8+9//9vr4ZWVl5uabbzZBQUGmbdu2Zvr06eb77793j1v1vFYTxcXFZubMmV4f54knnjCHDh2yoKPzW7169TkXPz8/88wzz7jXvfWPf/zDNGvWzISHh5ugoCDzj3/8w7Rp08akpqaa/v37Gz8/P7Nhwwav6zgcDhMSEmLuuusus337dq+Pdy4JCQnun+PDhw+buLg4Exoaanr27GnCw8NN27ZtPX6Pe+vEiRPmueeeM6NHjzbXX3+9GThwoMnMzDTvvPOOJce/55573M8zJ06cMMOGDTNOp9P9u7Vfv37nfB6y2rFjx8wLL7zg8zq7d+/26XNBfHy8+fTTT312/OrqarNx40azaNEis2bNGlNVVWXZsfPz801OTo6ZOnWqmTp1qsnJyTH5+fmWHf+aa64xK1euNMYYs23bNhMYGGiuuOIKc+utt5ru3bub5s2bW/KaoKSkxPTp08c4HA4TGxtrevXqZXr16uV+7dunTx9TUlLidZ0zTp06dd7tn3/+uWV1fujAgQPm7bffNh9++KElx/vkk09MbGyscTqd5rLLLjMHDhwwiYmJpkWLFqZ58+amdevWlv1cV1dXmwMHDrhfX7hcLvPyyy+bF154weP1oi/069fP0t+rr732mvHz8zMRERGmZcuWZv369SYsLMykpqaatLQ04+fnZ5YvX25ZPUK7Baz6JXDFFVeY9evXG2OMWbx4sQkODjYTJkwwCxcuNBMnTjQtW7Y0zz33nFc1hg4datLT081XX31l9u3bZ9LT0018fLz7icWqF7fZ2dkmPj7+rBdi/v7+5uOPP/b6+Gc4HA7zzjvvmHvvvde0bt3aBAQEmMGDB5s1a9ac94n0QgQFBZk9e/acd3zPnj0mKCjI6zq5ubnG39/fJCYmmpCQELNs2TLTqlUrc+edd5q7777bBAcHm5ycHK/r7Nu3z1x66aUmKCjIXHPNNeaWW24xt9xyi7nmmmtMUFCQueyyy8y+ffu8rtOrVy+zZs0aY4wxq1atMk6n0wwePNg8+OCD5oYbbjABAQHu8QuVkpJiZsyY4V5ftmyZSUpKMsacfiHYrVs3M2HCBK9qGGPMrbfeaoYOHWrKyspMZWWlyczMNKNGjTLGnH5jJSIiwpJ/myNHjpiePXsap9PpfgPihy+arfo/+qc//cm0atXKDBs2zERFRZk5c+aYiIgIM3v2bPPYY4+ZNm3amIcfftjrOvn5+SY0NNQ4HA5z0UUXmV27dpn4+HjToUMH84tf/MIEBwebgoICr2pMmDDBXH755WblypVm8eLFJjY21qSnp7vffCouLjYOh8Prc6kJq34fOBwO4+fnZ1JTU83LL79s2RtpP65xJqCdb7HiXJKTk81DDz1kjDHmpZdeMhdddJH54x//6B6fOnWq+Z//+R+v6zgcDjNr1izTvXt343A4zC9/+Uvz1FNPma+//trrY/+wxpkX/BkZGaZ3796mtLTUGGPMt99+a1JTU81tt91mSa19+/aZ2NhY07ZtWxMTE2McDodJT083SUlJxs/Pz9x8881ev7HmdDrd55OVlWXatWtnNm7caI4fP262bdtmfvGLX5ipU6dacTo/yar/N2VlZT+5vPvuu5bUefrpp8+5+Pn5maysLPe6twYMGOD++frmm29MUlKScTgcpk2bNsbpdJpOnTqZo0ePelWjrkJuSEiIO/hdc801ZtKkSR7j06ZNMykpKV7XGTZsmElOTjaffPLJWWOffPKJ6d27t7npppu8rlNXbxbXxRtrQ4YMMYMHDzYffPCBmThxoklISDBDhgwxVVVVprKy0gwaNMiMGDHC63OpqzcH6uoN6V/96ldm9uzZxpjTv9vCwsLMrFmz3ONPPPGE6datm9d1ziC018D5/vHPLE899ZQl/zGDg4Pd7wB1797dLFq0yGN8+fLlpnPnzl7VaNu2rfnggw/c69XV1eb3v/+9ad++vfnss88snZHasWOHufzyy819993nfjfYF6H9zC+Tqqoq88orr7jf3YqOjjZ//OMfLQmfcXFxPzkL8MILL5jY2Fiv63Tu3Nn9775x40YTFBRkFixY4B5fsmSJSUhI8LpOamqqGTJkiCkrKztrrKyszAwZMsRcd911Xtdp0aKFe9YpKSnJzJkzx2N8/vz5pnv37l7VCA4ONp999pl7/dSpUyYgIMAUFxcbY4x5++23TXR0tFc1jDn9guOjjz5yr1dUVJiAgAD33+GyZctMx44dva4zatQok5SUZHbu3GnWr19vEhMTTY8ePcyxY8eMMdYF0F/84hfmtddeM8acfsHs5+dn/vrXv7rHX3/9dXPZZZd5XSc1NdXceeedpry83Pz5z3827dq1M3feead7fPTo0Wbo0KFe1Wjfvr3ZtGmTe/2rr74yvXr1Mtddd52prKy09Hnt/fff/8nllVdesSy0L1myxAwZMsQEBASYiIgIc++991o2s2KMMddff71JT08/6wW51c/TISEh7ufhU6dOGX9/f1NYWOge//DDD01kZKTXdX74+2DXrl3mnnvuMWFhYSYwMNDcfPPN5u2337a0xqWXXnrWMf/5z3+amJgYr+sYczqw3X333e4rvObMmWMGDBhgjDHm008/NXFxceaRRx7xqsYPz6dLly5mxYoVHuOrV682l19+uVc1jKm7MH0myJxvseqNKIfDYdq1a2fi4uI8FofDYS655BITFxdn4uPjLalz5t/nnnvuMZ07d3b/Ti0qKjKJiYnm97//vVc16irktmjRwj35ERkZaXbv3u0xvn//ftOyZUuv67Rs2dLj+eXHdu3aZUmdunqzuC7eWGvTpo3517/+ZYw5/drG4XCYd9991z3+z3/+07Rv396rGsbU3ZsDdfWGdIsWLczBgweNMafzVEBAgEfG+uyzzyz5WTuD0F4DdfWPHxERYXbt2mWMOR2uz/WEFhwc7FWNVq1anfNy1HHjxpl27dqZrVu3Wnrp2LfffmtGjRplrrjiCvPhhx+agIAAn4X2H/r888/NI4884n5Hz1vPPPOMCQwMNBMmTDCrV68227dvN9u3bzerV682EyZMMMHBwR7h+kIFBwd7XE4VEBDg8SL94MGDpnnz5pbU+akX/x988IHXP2vGGBMaGmref/99Y8zpn+kzfz5j//79Xp9PbGys+6MExpyeqXY4HObEiRPGmNN/Z1ZcBdGmTRuPn90TJ04Yp9PpvlT2s88+M4GBgV7XiY6O9rgk8cwvsm7duplvvvnGsgB6rp+1H74pcejQIUt+1i666CL3c05VVZVxOp0e51dQUGAuueQSr2oEBwefdUlyeXm5SU5ONv379zcHDhyw7Hntp34fWB0Kzjy3lZSUmLlz55pOnToZp9NpevbsaRYtWmTJxz6efPJJExMT43HFiy9C+/79+93rLVu29Hij7dChQ5b8Hz3X74PvvvvOvPjii6Zv377G6XSauLg4r2ucmdmMjo4+63nUqnMxxpjmzZt7zDq5XC4TEBDgvnJg1apVlp5P69atPZ4DjDl9Plb8LqirMB0SEmLmzp1rNm/efM5l8eLFltS5++67Tbdu3c56PeXLiYmOHTueNTv4zjvveP3mQF2F3P79+5vHH3/cGGNM7969z5oI+dvf/mZJMIyIiDCbN28+7/imTZtMRESE13Xq6s3iunhj7cevB1q2bOnxnH348GFLXt/U1ZsDdfWGdFRUlDu3HTt2zDgcDo+fiR07dpioqCjL6hHaayA6OtqsWrXqvOP/+te/LPmPOWLECDNmzBhjjDE333yzmTbt/7d358E1nf8fwN/nJiKahMQSrkpkaYhItEaJoEkYmlZFqBlFTcQulkq1tg6ljahlxh+WKoYoJWilBE2MJiJj7DGWjtBIpIKEThGxhDT38/vD5P7cZkHuycnN/b5fM/nj3ufmfM7ynOXznOc8Z55J+eLFiyUgIMCsGF27dpUtW7ZUWjZlyhRxdnaulee9EhISpGXLlqLT6TRJ2ssZDAZV7q6IiOzYsUMCAwPF1tbWeJFua2srgYGBsnPnTlVilDeciIjcvHlTFEWRAwcOGMvT09OlTZs2ZsfR6/XVdktPSkoSvV5vdpyBAwcaW4DDwsIqdBfcsGGD+Pj4mBVj+vTp4u/vL8nJyZKWlia9e/eW0NBQY3lKSop4e3ubFUNEZPDgwTJkyBB5+PChPHv2TGJiYkzuRJ84cUKVg7ODg0OF7mGlpaUyaNAg6dSpk1y4cEGVfdTT01OSk5NF5PldO51OJ7t27TKWHzhwwOyEQMS0JVqkYsL2119/mZ3ktG/f3mQ/KVdcXCxBQUHy9ttvq3Zca9asmWzcuFHy8vIq/Ttw4IDqF2ovysjIkFGjRomDg4M4ODiYHUfk+TnMz89PJkyYII8ePVL9wqZTp07Guiby/M76i926MzIyVLkr+eIdqcpkZ2ebdMuvCUVRJCAgQDp37iyOjo7yyy+/mJQfOXLE7Eaocq1btzZ5dOTevXuiKIqxsSY3N9fsC2lFUWTixIny+eefi6ura4XzZWZmpjRv3tysGCLaJdOhoaGydOnSKsvPnTun2qMyiYmJ4ubmJqtWrTJ+VxtJe3mjiqura6WNKubWAa2S3GPHjkmTJk1kwYIFsmrVKmnevLnMmzdPtm3bJl9//bU4OztXu+1e1eTJk6Vt27aSmJho0puwqKhIEhMTxcPDQ6ZOnWp2HK0ai7VoWPP29jZJnr///nuTRuHMzExVrm+0ahwQ0aZBeuTIkRIYGCg//fSThIeHS1hYmHTv3l2ysrLk8uXLEhISokovlXJM2l9BeHi4zJ8/v8pytU4CN2/eFA8PDwkODpYZM2ZIo0aNpFevXjJ+/HgJDg4WOzu7Si9MX8fixYuN3esqEx0dXWvPfubn58uePXvk4cOHqk3Tw8ND1ecVX8WzZ8/k1q1bcuvWLVUHgRF53nDi4+MjixYtkm7dusmoUaPE19dXkpOTJSUlRQICAmTMmDFmx5k/f764uLjIihUr5Pz581JYWCiFhYVy/vx5WbFihTRt2tTsbpciIpcuXZJmzZpJZGSkxMbGiqOjo4wcOVLi4uIkMjJSGjZsKPHx8WbFKC4ulqFDhxobU3r06GFyIj148KBJMlpTOTk54u3tLba2ttKgQQNxdnY2jkEh8vzRBTWe/QwICKiQCIj8f+Lu7u6uyoXAvHnzpEWLFjJu3Djx9PSUOXPmiLu7u6xdu1Z++OEHcXNzq/DMYU34+vqajG2xf/9+Yy8IkeeNHeY2RE2bNq3KE+ODBw8kMDBQtaT9/fffl9jY2CrL1TofvCwBLSoqqvAIlTkeP34sEydOFB8fH7GxsVH1wmbt2rWyf//+Ksvnzp1rbLA2x8sacdWwcOFCk7+UlBST8i+//FKGDRumSqxRo0ZJSEiIZGVlSW5urnHArnLp6elmd8UPCQkxGSx2w4YNJuWxsbESEhJiVgwR7ZLp9evXV/sseWFhockYKOa6ceOG9OnTRz744AMpKCiolaS9f//+MnjwYHFxcanQ2H7ixAmzHy3RKskVeZ64d+/evUIvpTfffFOVMWFEnvdOmzRpktjZ2YlOpxN7e3uxt7cXnU4ndnZ2Eh0dLSUlJWbH0aqxWIuGtYkTJ1bY91/03XffSf/+/c2KIaJd40C52m6QLiwslH79+omjo6OEhYXJ/fv3ZerUqSaDZL/YKGEuJu2vICMjw+QuwX89fPiw2lbK13Hv3j2ZPXu2+Pn5ib29vdjZ2Unbtm1lxIgRcvr0aVVikOV6+PChjB8/Xvz9/WXChAny9OlTWb58udjZ2YmiKBIaGqraRemSJUtEr9ebdFtUFEX0er0qrd3lrl69KsOGDRMnJyfjCbpBgwbSo0cP+fXXX1WL8+TJk1of5fjRo0dy8OBB2bdvX62Ncjpr1qwqxxMoLS2VgQMHqnJxW1ZWJnFxcTJgwABZvHixGAwGSUhIEDc3N2nWrJlERUWp0sC2cOHCat988dVXX8nHH39sVoy7d+9WuPvwogcPHqh2jE5MTJStW7dWOy+bN282O44WCWhl9u7dKzExMXUS21x5eXmVvuGjvrp9+7YxwdHpdNK2bVuTbsw///yzrFy5slbnQ9k49wAAC2BJREFUIScnR/Lz882ezvr166tNytROprVkMBhk8eLFxjeJqJkUREVFmfz9t1ffzJkzJSwszKwYWiW5L7pz546cOHFCjh07ZtITS01FRUWSlpYm27dvl+3bt0taWlql4/jUlFaNxVo1rFUnNzfX5E1TNaVV48CLarNBuio5OTkVepSpge9pJ6oHSkpKUFpaCicnJ9Wnfe3aNZP3mKr5ntQXiQju3LkDg8GA5s2bG9/VSqb+/fdfPH78GI0bN66y/ObNm6q+Q7suPX78GDY2NmjYsGFdzwqRRcrOzsbTp0/h6+sLW1vbup4dqkJmZiaOHj2KyMhIuLi4aBLz0aNHsLGxgb29vdnTevDgATIzM02uB7p06VLlueh/3b1793Dr1i107Nix0vLi4mKcPXsWISEhtTofubm5sLOzQ5s2bWo1jhauXbsGe3t76PV61aedlJSEw4cPY+7cuXB1dVV9+lrQ1fUMENHL2dvbw8nJCfn5+RgzZoyq0/b09ERQUBCCgoKMCXttxFEUBS1btoRerzcm7LURpzY9efIER48exaVLlyqUlZSUYMuWLWbHsLW1rfYiqaCgAN98843ZcSzFP//8g+joaLOno8W2eRVa1Wm14ljKelOLtS0PAPj4+MDf379Cwl7f6kBWVhbi4+Nx+fJlAMDly5cRHR2NMWPGIC0tTZUYQN3VgS5dumD69OlwcXHR7Dhw9+5dTJ482ezpZGVlYffu3dDr9Rg+fDg6d+6MXbt2ISYmpl5uGy3iuLi4QKfTVVmnT58+rVrCXr7vXLlypUKcvLw8VRJ2SzgOXLt2TbWE/b9x2rVrhydPnmDOnDn1sk4DALvHE9Ujar3L9n8tjhquXLlifG+tTqeT4OBgk+5iar5WrDr1aZ29CjWWx1K2jUj92ncsab2pwdqW52XqUx1ITk4WOzs7adq0qdjb20tycrK0aNFC+vbtK3369BEbGxuTsS9qylLqQH06Dljbtqkszs2bN1WPo9V60yKOtR0HrK1Ol2M/KyILkpSUVG15bm4u49SR2bNnw9/fH2fOnMH9+/cRExODnj17Ij09He7u7qrFsaZ1BmizPFptG8C69h0t15sWrG15rKkOfPvtt5g5cyYWLVqEHTt2YMSIEYiOjkZcXBwAYO7cuViyZAn69OljVhxrO05rEcfatk1lcXr16lVv67QWcaztOGBtddpItfSfiMxW3TugX3wXNONoz9XVVS5cuGD8bDAYZNKkSeLu7i45OTmqvpPVWtaZiDbLo9W2EbGufUfL9aYFa1sea6oDjRs3luzsbBF5Pgimra2tyaB6Fy9eNHsUdBHrO05rEcfato211Wkt4nCd1YzW5xw+005kQfR6PRITE2EwGCr9O3v2LOPUkSdPnpg8U6ooCtauXYvw8HCEhITgzz//VCWONa0zQJvl0WrbANa172i53rRgbctjbXVAURQAgE6ng729PZo0aWIsc3JyQlFRkdkxrO04rVUca9o21lantYjDdVYzWp9zmLQTWZAuXbogMzOzynJFUSAqvPDB2uJowdfXF2fOnKnw/erVqxEREYGBAweqEsea1hmgzfJotW0A69p3tFxvWrC25bGmOuDh4YHs7Gzj5+PHj5t0H71+/boqA1BZ23FaizjWtm2srU5rEYfrrGa0PucwaSeyIDNnzkSPHj2qLH/rrbdw+PBhxqkDgwcPRkJCQqVlq1evxvDhw1W5SLOmdQZoszxabRvAuvYdLdebFqxteaypDkRHR6OsrMz4+b+j4ScnJ5v9fClgfcdpLeJY27axtjqtRRyus5rR+pzD97QTERERERERWSjeaSciIiIiIiKyUEzaiYiIiIiIiCwUk3YiIiIiIiIiC8WknYiIiIiIiMhCMWknIiIii6UoCvbs2VPXs0FERFRnmLQTERHVE4WFhZg2bRq8vLzQsGFDuLm5ITw8HKmpqXU9a7WmoKAAH374IQAgLy8PiqLg3LlzdTxXRERE2rF9+U+IiIioruXl5aFnz55wdnbG8uXLERAQgNLSUhw8eBBTpkzB5cuX63oWa0WrVq3qehaIiIjqFO+0ExER1QOTJ0+Goig4deoUhgwZgnbt2qFjx46YMWMGTpw4AQC4fv06IiIi4OjoiMaNG2Po0KG4ffu2cRoLFy7EO++8g02bNsHd3R2Ojo6YPHkyysrKsGzZMrRq1Qqurq6Ii4szia0oCtatW4cBAwbgjTfeQIcOHXD8+HFcvXoVoaGhcHBwQI8ePZCTk2P8n6ioKAwaNMhkOjExMQgNDTV+Dg0NxWeffYZZs2ahadOmaNWqFRYuXFghdnn3eE9PTwBA586doSgKQkNDkZGRgQYNGqCwsLBCrPfee69mK5uIiMiCMGknIiKycHfv3kVKSgqmTJkCBweHCuXOzs4wGAyIiIjA3bt3ceTIERw6dAi5ubn45JNPTH6bk5OD5ORkpKSkICEhARs3bsRHH32EGzdu4MiRI1i6dCnmzZuHkydPmvxfbGwsIiMjce7cOfj6+mLEiBGYOHEi5s6dizNnzkBEMHXq1Ndeth9//BEODg44efIkli1bhm+//RaHDh2q9LenTp0CAPz+++8oKChAYmIigoOD4eXlha1btxp/V1paim3btmHMmDGvPT9ERESWht3jiYiILNzVq1chIvD19a3yN6mpqbh48SKuXbsGNzc3AMCWLVvQsWNHnD59Gl27dgUAGAwGbNq0CU5OTvDz80Pv3r1x5coV/Pbbb9DpdGjfvj2WLl2Kw4cPIzAw0Dj90aNHY+jQoQCA2bNnIygoCPPnz0dYWBgAYPr06Rg9evRrL1unTp2wYMECAICPjw9Wr16N1NRU9OvXr8JvW7RoAQBo1qyZSbf5sWPHIj4+HjNnzgQA7Nu3DyUlJcb5JSIiqs94p52IiMjCichLf5OVlQU3Nzdjwg4Afn5+cHZ2RlZWlvE7Dw8PODk5GT+3bNkSfn5+0Ol0Jt/duXPHZPqdOnUyKQeAgIAAk+9KSkrw4MGD11gy0+kCgF6vrxD7ZaKionD16lXjYwKbN2/G0KFDK+2VQEREVN/wTjsREZGF8/HxgaIoqgw216BBA5PPiqJU+p3BYKjy/xRFqfK78v/T6XQVGhtKS0tfaX7+G/tlXF1dER4ejvj4eHh6eiI5ORnp6emvNQ0iIiJLxTvtREREFq5p06YICwvDmjVr8OjRowrl9+/fR4cOHZCfn4/8/Hzj95cuXcL9+/fh5+en5ewCeN6VvaCgwOQ7c1/VZmdnBwAoKyurUDZu3Djs3LkT69evh7e3N3r27GlWLCIiIkvBpJ2IiKgeWLNmDcrKytCtWzfs3r0b2dnZyMrKwsqVKxEUFIS+ffsiICAAn376Kc6ePYtTp04hMjISISEhePfddzWf3z59+uDMmTPYsmULsrOzsWDBAvzxxx9mTdPV1RWNGjVCSkoKbt++jaKiImNZWFgYGjdujEWLFtXo2XoiIiJLxaSdiIioHvDy8sLZs2fRu3dvfPHFF/D390e/fv2QmpqKtWvXQlEU7N27Fy4uLggODkbfvn3h5eWFnTt31sn8hoWFYf78+Zg1axa6du2K4uJiREZGmjVNW1tbrFy5EuvWrUPr1q0RERFhLNPpdIiKikJZWZnZcYiIiCyJIq8yug0RERGRhRs7diz+/vtvJCUl1fWsEBERqYYD0REREVG9VlRUhIsXL2L79u1M2ImIyOowaSciIqJ6LSIiAqdOncKkSZMqfb87ERFRfcbu8UREREREREQWigPREREREREREVkoJu1EREREREREFopJOxEREREREZGFYtJOREREREREZKGYtBMRERERERFZKCbtRERERERERBaKSTsRERERERGRhWLSTkRERERERGShmLQTERERERERWaj/A6VCfANGmLM9AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -2742,69 +2649,49 @@ }, { "cell_type": "code", - "execution_count": 84, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "16" - ] - }, - "execution_count": 84, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "communities.loc[\"turkish\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 85, + "execution_count": 93, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0:gas,oil,weinberger,barrels,republican,agencies,pdvsa,ecuador,opec,tehran\n", - "1:change,inflationary,coins,acreage,sheet,economy,feet,subject,mint,country\n", - "2:price index,deferred,figure,sectors,mln dlr,steam,distribution,expansion,performance,holder\n", - "3:reflected,special,chief,heller,overseas,commodities,economics,hillards,mid,profitable\n", - "4:scheduled,program initiative,bushels,bonus,whites,glickman,tonne,program initiative announced,lanka,soybeans\n", - "5:block,montreal,norway,champion,entertainment,norwegian,calgary,field,tells,transcanada\n", - "6:million,area,sao,education,upland,utility,normal,zimbabwe,plains,closure\n", - "7:test,adverse,von,sharing,final,stock split,immediately,mining,myers,cathode\n", - "8:manhattan,pincus,security pacific,ameritrust,gaf,center,started,diagnostic,jacobs,security\n", - "9:comdata,acquire,satisfactory,instrument,resulting,drexel,post,wtc,colorado,originally\n", - "10:deposit,fed,rises,mutual,yesterday,england said,dividend payable,repurchase,liquidity shortage,maturity\n", - "11:action,sale,adopted,safety,colonial,approved,automotive,advertising,reduction,decision\n", - "12:crude,fuel,edmonton,posting,company said,postings,eia,marathon,cuts,sulphur\n", - "13:francs,indonesian,conference,sight,swiss,paper,like,israel,consider,indonesia\n", - "14:elevator,bids,rite,credits,lifts,franc,unions,protective,governments,chemlawn\n", - "15:union,deliveries,workers,increase,produced,obligations,meet,cominco,load,long\n", - "16:institutions,davis,greek,athens,conrac,turkish,voting,waters,central,ual\n", - "17:election,leading,psbr,interstate,bureau,currency,great,acquisitions,gerhard,values\n", - "18:primary,shr primary,diluted\n", - "19:end,mths,mthly div,meeting,dlr tax,set,results exclude,share,revs,year\n", - "20:park,the commerce department,little,laws,working,piedmont,florida,press,predicted,tonight\n", - "21:james,swedish,levy,baldrige,varity,purposes,reorganization,continental,organisation,goodyear\n", - "22:committee,cds,taiwan,reuters,told,spokesman told,mercantile,subcommittee,slaughter,versus\n", - "23:reuter,spend,insurance,funding,shipments,life,sprinkel,operators,software,facilities\n", - "24:external,totalling,gross,money market,brokers,assistance,strong,self,remain,positive\n", - "25:quarter ended,itc,gordon,tin,ghana,preference,actively,weight,manufacturing,arango\n", - "26:fujitsu,oaks,trading,minister,periods ended,oecd,economic,dispute,growth,tamura\n", - "27:australian,siemens,local,circuit,cable,m3,final div,stake,internal,issue\n", - "28:extended,near,pakistan,american motors,closing,deadline,vista,motors,renault,studying\n", - "29:pan,mts,bancroft,director,controls,publishing,recapitalization,holiday,worth,remaining\n", - "30:earned,higher,quarter,ended,sees\n", - "31:south korea,african,planning,korean,social,wash,benefits,puts,net profit,jobless\n", - "32:unit,sell\n", - "33:turnover,parent\n", - "34:definitive agreement,combined\n", - "35:profits,years\n" + "0:uae,pretax profit,gcc,profitable,iranian,bahrain,merchant,portugal,saudi arabia,arabian\n", + "1:spokeswoman,rand,television,billion marks,schlesinger,g-7,majority,anti,und,reporters\n", + "2:compensation,plan,previously announced,real estate,jwt,pan,colonial,paid,undisclosed,democrat\n", + "3:wholly,realty,excluding,sanctions,commercial,times,williams,reflected,depressed,administration\n", + "4:brazilian,newspaper,better,intervened,subroto,talks,drug,ceiling,actively,arango\n", + "5:yugoslavia,equipment,dome,allis,nova,sec,petroleum,america,pak,mississippi\n", + "6:oklahoma,railroad,magazine,shipbuilding,soybean,area,plains,previous,temperatures,dry\n", + "7:drill,small,group net,mint,acres,acre,net income,eagle,glass,aug\n", + "8:assistance,acquire,carl,emery,western,application,carson,orange,the bank of england,fcoj\n", + "9:moscow,maximum,india,agriculture,indian,ministers,senate,mln tonnes,usda,offering\n", + "10:dispute,wagner,recapitalization,harcourt,reynolds,reed,jersey,salomon,bancroft,broadcast\n", + "11:value,miguel,jordan,guarantee,scheduled,program initiative announced,kong,tonne,common,issue\n", + "12:social,followed,net profit,utility,mln francs,billion francs,statistics,consumer,planning,shipment trade sources\n", + "13:includes,billion,corp,sets,shrs,oper shr,quarterly,oper,note,prior qtr\n", + "14:denshin,independent,australia,australian,expressed,maker,shoe,periods ended,fairchild,work\n", + "15:voting,institutions,mark,lira,affiliate,donald,davis,trump,greek,premium\n", + "16:earn,internal,old,vista,near,financing,substantial,motors,centers,beneficial\n", + "17:sulphur,light,bbl,remained,distillate,edmonton,potential,demand,citgo,family\n", + "18:loans,coconut,agreements,dividend payable,bank,grew,balance,n.y.,short,mutual\n", + "19:rotterdam,margins,liquidity shortage,waiting,bills,forecast,shortage,late,circulation,gem\n", + "20:ohio,insurance benefits,actually,jobless,wash,commonwealth,columbia,state programs,edison,claims\n", + "21:takes,alusuisse,results reflect,royalty,warrants,illinois,steam,ford,belgian,enterprise\n", + "22:textile,need,advisor,stage,options,king,retaliatory,year ended,club,construction\n", + "23:sell,unit\n", + "24:release,preliminary,calif.,animal,conversion,bayou,benefit,calif,immediate,approximately\n", + "25:ameritrust,shortly,norstar,dart,district,warner,hudson,begins,gaf,citicorp\n", + "26:spokesman told,taiwan,reuters,told,versus,guesstimated,house,laws,chicago,week ago\n", + "27:hospital,legislation,uruguay,congress,heller,appropriate,arco,barge,bilateral,clayton\n", + "28:definitive agreement,combined\n", + "29:pct stake,businesses,grades,singapore,strait,quarter ending,petrol,ecuador,bangladesh,provided\n", + "30:indonesian,francs,conference,rubber,largest,adjustment,economist,needs,xuto,pending\n", + "31:according,increase,force,workers,farmers,ports,representing,meet,job,living\n", + "32:higher,quarter,earned,ended,sees\n", + "33:profits,years\n", + "34:parent,turnover\n", + "35:primary,diluted,shr primary\n" ] } ], @@ -2816,17 +2703,17 @@ }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 94, "metadata": {}, "outputs": [], "source": [ - "comm_index = 28\n", + "comm_index = communities.loc[\"turkish\"]\n", "nodes = communities[communities==comm_index].index" ] }, { "cell_type": "code", - "execution_count": 87, + "execution_count": 95, "metadata": {}, "outputs": [], "source": [ @@ -2835,14 +2722,14 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 96, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/sAAAP7CAYAAAAEeJ46AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdZ3RU5drG8WvPTHohIQQChi5KlY4IIv0oBqQIWBBEFCseOK9dD4iiqFgO2EBUQAR7QYqIBkEBG4QiCCgCCSAJJBBILzOz3w8xkZAEQjJhMsn/txYfZtd7ctY647XvZz+PYZqmKQAAAAAAUGVY3F0AAAAAAABwLcI+AAAAAABVDGEfAAAAAIAqhrAPAAAAAEAVQ9gHAAAAAKCKIewDAAAAAFDFEPYBAAAAAKhiCPsAAAAAAFQxhH0AAAAAAKoYwj4AAAAAAFUMYR8AAAAAgCqGsA8AAAAAQBVD2AcAAAAAoIoh7AMAAAAAUMUQ9gEAAAAAqGII+wAAAAAAVDGEfQAAAAAAqhjCPgAAAAAAVQxhHwAAAACAKoawDwAAAABAFUPYBwAAAACgiiHsAwAAAABQxRD2AQAAAACoYgj7AAAAAABUMYR9AAAAAACqGJu7CwAAoDoyTVMOU7KbppxOyWKRbIYhqyEZhuHu8gAAgIcj7AMAUMFM09TxbIcSMuxKyLArPsOuhEy77M6ix9osUoSfTXX9bYr4+19NHysPAAAAwDkxTNM03V0EAABVUXK2Q1uSsrTtWJayHXk/txZJxWT8Ik49zsdqqG2Yr9rX8lWoj7WCqgUAAFUJYR8AABdymqb2puQoJjFLsam5MiS54oc2/zqNgrzUMdxXTYO9ZaHbDwAASkDYBwDARQ6m5WpFXKpO5DhdFvJPl3/dEG+LohoGqX6gVwXcBQAAeDrCPgAA5ZTrNPXd4XRtSsyqsJB/uvz7dAr3Vc96AfKy0OUHAAD/IOwDAFAOB9NytTwuVSk5zvMS8k9nSAr2tmggXX4AAHAKwj4AAGW0KTFT0YfSz1s3vyT59+8XGaBO4X5urAQAAFQWhH0AAM6RaZr64Uim1sVnuLuUInrU9Ve3On4s1QcAQDVncXcBAAB4msoa9CVpXXyGfjiS6e4yAACAmxH2AQA4B5uOVt6gn29dfIY2JRL4AQCozgj7AACU0sG0XEX/le7uMkol+lC6DqblursMAADgJoR9AABKIddpanlcqjzlTXhD0vK4VOU6mZoHAIDqiLAPAEApfHc43W3L65WFKSklx6nvD3vGSAQAAOBahH0AAM7iYFquNiVmeUzQz2dK2piYxXB+AACqIcI+AABn4DRNrfCg4funMyStiEuVk5V2AQCoVgj7AACcwd6UHJ3woOH7pzMlnchxal8K3X0AAKoTwj4AAGcQk5jlsV39fIakGJbiAwCgWiHsAwBQguRsh2JTcz22q5/PlLQ/NVfJ2Q53lwIAAM4Twj4AACXYkuT5Xf18hqStSVnuLgMAAJwnhH0AAIphmqa2Hav4Gfg/fnyCnovqUMF3yevubz2WJZOJ+gAAqBYI+wAAFON4tkPZjqoVjLMdppKzne4uAwAAnAeEfQAAipGQYXd3CRWiqn4vAABQGGEfAIBiJGTYq9yPpMWQEjIJ+wAAVAc2dxcAAEBlFJ9hV0kD3vdt2qAv//e4juzdreDadXXFmAlKTTqi1XOf1zObEwuO27LiY61fPEdH9/8hLx9fNevaSwMmTVVIxAVnvLfT6dSPH7ypjUsW69iBffLxD1S9FpfoX/c8qsiW7SRJDrtda+fP0uZlH+jkkcMKqlVH7a4apr53PCCbt0/x1zWlw+m5Zfp7AAAAz0LYBwDgNKZpltgBP7z7V82fcJ2CatVRvzsflNPh0LdvvqCA0LBCx6156yV9M/tZtek/WJ2H3qT05GP68YO3NPe2a3Tv+9/KL6hGiff/7ImJiln2gS7q3ledh4yS0+FQ7JafdODXTQVh/7Npk7R52Ydq3W+QLr/pLh3cEaO182fpaOwejX7xnRKvnZBpl2maMoyqss4AAAAoDmEfAIDTOEzJXkJbP3rODBkWq+6cv0LB4RGSpDb9B+t/w7sXHJN8+KCi35ih/nc/ot63/qdge6s+UXrlxj766aN5hbafau/G9YpZ9oG63TBegx6YXrC9x+i7C2bSj/9jhzYv+1Cdh96kYZP/J0m6bOQ4BYaGa927r2nvxvVq2vnyYq9vd+Z1+K1kfQAAqrSq9joiAADlZi9heTqnw6E/f/leLXsPKAj6klSrQRNd3K1vweffvl0h0+lUm/6DlZ58rOBfUFht1arfRPs2bSjx3jtWL5NhGOp7+wNF9uV3439fHy1JunzUXYX29xh919/7vynT9wMAAFUHnX0AAE7jLKGrn3Y8UblZmQqLbFxkX836/2xLOrhPpmnqxSGXFnsdi82rxHsfPxSroPAI+dcILfGY5PhDMiwWhdUvXEdQrTryDaqh5PiDJZ4rSQ6nJOsZDwEAAB6OsA8AwGks5Rz3ZjqdMgxDY1/5QBZr0VTt7RdQvhvkK+N791bG9QEAUOUR9gEAOI2thBAdWDNcNh9fHTu0v8i+4wf/2RYW2UimaSr0goYKb9j0nO5dM7KR9vy4Rhknk0vs7ofWjZTpdOrYgX2q3eSigu2px44qK/WkQuvWP+M9Svp+AACg6uDZPgAAp7Eakq2YX0iL1aoLu1yhnWtWKiUxoWB70oF9+v2H1QWfW/WJksVq1eq5zxdMqpfPNE2lnzhe4r1b9x0k0zS1eu7zRfblX+viy/tJkja890ah/esXzfl7f/8Sr2+zSBayPgAAVR6dfQAATmMYhiL8bDqUXnT5vX53PKg9P63VnFuidOnwsTKdDv344duq07S54n/fIUkKq99Y/e9+RKteeUonDh9Qy15XyycgUMf/OqDf1qxQl2FjdMWYe4q9d9POl6t91Ej98P6bSjqwTxd16yPT6VTslp/UpNPl6nb9bap7UWt1GHSdfvlsoTJTT6pxx2469NtmbV72oVr2vrrEmfglKcLPxrJ7AABUA4R9AACKUdffpsPpdp0+V98FLdvqllc+0JczH9c3s59VjTr11O+uh5S4f48SY/8sOK7XLRNVq0FTbVg8p6BLX6POBWrWtZda9LzqjPcePvVlRTRrqU1LFmvlzCfkGxisC1q2VcO2nQuOGTZ5pmpe0Egxyz7QzjVfKrBWbfW6ZaL63lF0Fv98FkOqF1Dy5IAAAKDqMMzTxxcCAAD9djxLy+LSSn38u/83Rkf27tb9X/xSgVWV3zUNg9Sypo+7ywAAABWMd/YBAChGhH/Jg99yszILfU46sFe/r49Wk07dK7qscjvT9wIAAFUHv/gAABSjpo9VPlZD2Y6iA+Cev6aTOgy6XjUvaKQT8Qf10ycLZPXy0hU3T3BDpaXnYzUU6sNzfgAAqgPCPgAAxTAMQ23DfLXxaKZOj/sXXdZH2776XGnHjsrq7a0GbTrpygmPqVaDc1tm73wyJLUL82VyPgAAqgne2QcAoATJ2Q69sTPZ3WW4zB0tQxXqY3V3GQAA4DxgLB8AACUI9bGqUZCXPL0XbkhqHORF0AcAoBoh7AMAcAYdw32LDOP3NKakjuF+7i4DAACcR4R9AADOoGmwt0K8LR7b3TckhXhb1CTYy92lAACA84iwDwDAGVgMQ1ENgzy2u29KGtgwSBYm5gMAoFoh7AMAcBb1A73UKdzX47r7hqTO4b6KDKSrDwBAdUPYBwCgFHrWC1CwBw3nNyQFe1t0Rb0Ad5cCAADcgLAPAEApeFkMDfSg4fz5w/e9LJ7yeAIAALgSYR8AgFKqH+ilfpGe0SnvFxmg+gzfBwCg2iLsAwBwDjqF+6lHXX93l3FGPer6qxNL7QEAUK3Z3F0AAKDqMU1TDlOym6acTslikWyGIashGVVgVvhudfKC9Lr4DDdXUtQVdf11WR2CPgAA1Z1hmqanvH4IAKiETNPU8WyHEjLsSsiwKz7DroRMu+zOosfaLFKEn011/W2K+PtfTR+rxz4A2JSYqehD6TIkt77Ln3//fpEBdPQBAIAkwj4AoIySsx3akpSlbceylO3I+ymxSCom4xdx6nE+VkNtw3zVvpavQn2sFVRtxTmYlqvlcalKyXG6JfDnz7o/sGEQ7+gDAIAChH0AQKk5TVN7U3IUk5il2NRcl3W086/TKMhLHcN91TTYWxYP6vbnOk19dzhdmxKzzluXP/8+ncN9dUW9AGbdBwAAhRD2AQClcjAtVyviUnUix1lhgTb/uiHeFkV5YKeavxEAAKgsCPsAgDNyZ9e6U7ivenpY19ppmtqXkquYxEztr4DRD42DvNQx3E9Ngr08avQDAAA4vwj7AIAS8T56+SRnO7Q1KUtbT53XwJCcpfhjnnqcj9VQuzBftfPQeQ0AAMD5R9gHABSLmeZdxzRNJWc781YsyLTrcHruWVcsqBfgpQi/vBULQn0sHrtiAQAAcA/CPgCgENM09cORzEq5hnyPuv7qVsevSgRf0zTlNCW7aerhRx7T2jXfatPPP8liqEp8PwAA4F42dxcAAKhcKmvQl1RQV/cIfzdXUn6GYchqSFYZ8veyKDnxiKweNDcBAACo3CzuLgAAUHlsOlp5g36+dfEZ2pSY6e4yXCooKEhpaWnuLgMAAFQhhH0AgKS8yfii/0p3dxmlEn0oXQfTct1dhssEBgYqNTXV3WUAAIAqhLAPAFCu09TyuFR5yiByQ9LyuFTllmZaew8QFBSknJwc5eTkuLsUAABQRRD2AQD67nC625bXKwtTUkqOU98f9oyRCGcTGBgoSQzlBwAALkPYB4Bq7mBarjYlZnlM0M9nStqYmFUlhvMHBQVJEkP5AQCAyxD2AaAac5qmVnjQ8P3TGZJWxKXK6eGryOaHfTr7AADAVQj7AFCN7U3J0QkPGr5/OlPSiRyn9qV4dnc/fxg/nX0AAOAqhH0AqMZiErM8tqufz5AU4+FL8dHZBwAArkbYB4BqKjnbodjUXI/t6uczJe1PzVVytsPdpZQZnX0AAOBqhH0AqKa2JHl+Vz+fIWlrUpa7yygzOvsAAMDVCPsAUA2Zpqltx85tBv7oOTP0SIdwpScfK/GYjx+foOeiOpS/wHNkStp6LEumh07U5+3tLZvNRmcfAAC4DGEfAKqh49kOZTs8MxiXJNthKjnb6e4yysQwDAUFBRH2AQCAyxD2AaAaSsiwu7uECuHJ3yswMJBh/AAAwGUI+wBQDSVk2KvcD4DFkBIyPTfs09kHAACuZHN3AQCA8y8+wy5XDHhPPnxQb905TF4+vrp1zqfF7D+gGQM7asCkqfLy8dW6RbOVduyoGra7VNdOmakaderp27de0i+fvqOMk8lq1rWXhk99Wf41Qs+5FqcpHU7PdcG3cg86+wAAwJUI+wBQzZim6ZIO+LGD+/XWHcPkVyNEt77+iQJCw0o8duvKT+TIzVW3625TRkqyvn/nVb330G1q2vly7Y/ZoJ5j79Wxg/v14wdv6cv/Pa7hU18uU00JmXaZpinD8Lx1BujsAwAAVyLsA0A14zAleznb+kf379Hbdw5TcO26GvfaR/ILDjnj8SlHE3T/kp/lGxQsSTIdDq2dP0v27EzdsyhaVlvez1F68jFtXfmphjz6vGzePudcl92Z1+G3el7WV1BQEJ19AADgMlXtlU0AwFnYy7k83ZG9u/Xm+MEKrVdft87+9KxBX5La9BtUEPQlqX6bjpKkdlePKAj6klS/dQc5cnOUcjS+zPWV9/u5S2BgIJ19AADgMoR9AKhmnOXs6r8zaZS8/QN0y2sfyTcwqFTnhNSNLPTZNzAv+IfUqVfs9syUk2Wuz+GZq+/R2QcAAC5F2AeAasZSzv/nb913oI4fitXWL4tOyFcSw2Itfru1+O2myt6dt3roLxudfQAA4Eq8sw8A1YytnJPXDZg0VRarTV88+6B8AgLVbsC1LqrMNcr7/dyFCfoAAIArEfYBoJqxGpLNUvZJ+gwZGvrfl5SdnqaPH58gb/8Atex5lWuLLCObRbJ4ZtZn6T0AAOBSHjrYEQBQVoZhKMKvfM96LRaLrntqtpp17aX3H7pNe39Z56LqyifCz+aRy+5JeZ399PR0Ocs7qQIAAIAI+wBQLdX1t5X7B8Dq5aVRM+apfpuOWvh/o3Vge4xLaisriyHVC/Byaw3lERgYKElKT093cyUAAKAqMEzTQ9coAgCU2W/Hs7QsruoNGb+mYZBa1vRxdxllsmLFCg0cOFB//fWX6tWrd/YTAAAAzoDOPgBUQxH+VXPKFk/+XkFBecsY8t4+AABwBcI+AFRDNX2s8rF65rvtJfGxGgr18dyftfxh/MzIDwAAXMFz/6sIAFBmhmGobZivqkrcNyS1C/P12Mn5JDr7AADAtQj7AFBNta/lq6oyaYspqV0tX3eXUS509gEAgCsR9gGgmgr1sapRkJfHd/cNSY2DvBTqY3V3KeWS39kn7AMAAFcg7ANANdYx3PO7+6akjuF+7i6j3Pz9/SUxjB8AALgGYR8AqrGmwd4K8bZ4bHffkBTibVGTYC93l1JuFotFgYGBdPYBAIBLEPYBoBqzGIaiGgZ5bHfflDSwYZAsHjwxXz7TNFUjJFRpWTnKyHUqy+GU3WnKND31fx0AAOBOhsl/RQBAtRd9KE0xiVkeFfoNSZ3CfdU3MtDdpZwz0zR1PNuhhAy7EjLsis+wKyHTLruz6LE2ixThZ1Ndf5si/v5X08fq0SsPAACAikfYBwAo12nqrV3JSslxekTgNyQFe1t0W4tQeVk8J/QmZzu0JSlL245lKduR95e2SCom4xdx6nE+1rylE9vX8vX4iQkBAEDFIOwDACRJB9NytXjPSXeXUWqjmtVQ/cDK/66+0zS1NyVHMYlZik3NlSG55IFK/nUaBXmpY7ivmgZ7V4nXGQAAgGsQ9gEABTYlZir6ULq7yzirXhE+6lo3yN1lnNXBtFytiEvViRyny0L+6fKvG+JtUVTDII94AAIAACoeYR8AUMiGhAyti89wdxkl+nbu87L/vlFLlixRcHCwu8spVq7T1HeH07UpMavCQv7p8u/TKdxXPesFeNTrDQAAwPUI+wCAQkzT1A9HMitl4L+irr/se2J0zaBBaty4sVauXKmIiAh3l1XIwbRcLY9Lddv8B/nzGQykyw8AQLVG2AcAFCt/SP/56kyXJP/+/SID1CncT5K0fft2XXnllfLz89PXX3+tpk2burHCf1TmvxkAAKheCPsAgBJV5i51bGysrrzySp04cUJfffWV2rdv74YK81Tm0RA96vqrWx0/luoDAKCaIewDAM7Ine+fdw731RVneP88KSlJUVFR2rVrl5YsWaI+ffqch+qKquzzHPSo66/uEf7uLgMAAJxHhH0AQKlU1pnl09LSNHz4cK1Zs0aLFi3SiBEjKqCykm06mqnovyr/CgYM6QcAoHoh7AMASs1pmtqXkquYxEztd+Ga8U6HXRarTY2DvNQx3E9Ngr3Oac34nJwcjRs3Tu+9955eeeUV3XPPPS6o6uwOpuVq8Z6T5+VerjCqWQ0m7QMAoJqwTp06daq7iwAAeAbDMFTT16rWNX3VqqaPrIahpCyHHH8nfotRuvB/6nFecmrtu6/rssAcjerRTjV9ref8frnVatWQIUOUkpKiKVOmyOFwqHfv3hX6nnqu09QHf55UjsMznpkbkuLSctWulq+svL8PAECVR2cfAFAupmkqOduphAy7EjLtOpyeq4RMu+zOosfaLFKEn031ArwU4WdThL9NoT4W9erVS15eXoqOji53Lc8//7weeughjR8/Xq+//rpsNlu5rlmS6ENpiknMcuus++fKkNQp3Fd9IwPdXQoAAKhghH0AgMuZpimnKdlNUw6nZLVINsOQxVCx3fZ33nlHY8eO1f79+9WoUaNy33/BggW67bbbNGjQIL3//vvy9fUt9zVP5WnD90/HcH4AAKo+i7sLAABUPYZhyGox5GO1yN/LIh+rRVaLUeKw+uHDhyswMFALFixwyf3Hjh2rL774QqtWrSpYns9VnKapFXGp8tSB8IakFXGpcvKsHwCAKo2wDwBwu4CAAF1//fVasGCBnM5ixv+XQVRUlFavXq3t27friiuu0OHDh11y3b0pOTqR4/So4funMiWdyHFqX0quu0sBAAAViLAPAKgUxo0bp7i4OK1Zs8Zl17zsssu0fv16JScnq3v37vrjjz/Kfc2YxCyP7ernMyTFJGa6uwwAAFCBCPsAgEqha9euat68uebNm+fS67Zs2VI//PCD/Pz81L17d23cuLHM10rOdig2Nddju/r5TEn7U3OVnO1wdykAAKCCEPYBAJWCYRi65ZZb9Omnnyo5Odml165fv77Wr1+vZs2aqXfv3vrmm2/KdJ0tSZ7f1c9nSNqalOXuMgAAQAUh7AMAKo3Ro0fLbrfrgw8+cPm1a9asqejoaPXq1UtRUVF6//33z+l80zS17ZhnLbWXL2bp+3qkQ7iSDx8o2PbG+MEaP+RfYlEeAACqJsI+AKDSqFu3rq6++mqXD+XP5+/vr88//1w33nijbrzxRs2aNavU5x7PdijbUbWCsdOUkrNdMyEiAACoXGzuLgAAgFONGzdOQ4cO1a+//qpLLrnE5df38vLS/PnzVadOHU2aNEkJCQmaPn16icsC5kvIsLu8Fnca9/rHkvK+V01fq5urAQAArkZnHwBQqURFRal27dqaP39+hd3DMAw999xzeumll/Tss8/q1ltvld1+5jCfkGE/5x/N3Owsly0l6Go2L295e3srIbNqPcQAAAB5CPsAgErFy8tLo0eP1qJFi5STk3NO565Zs0aGYejzzz8vsu+9996TYRj68ccfC7YNGDBAnTt31vz58+Xj46MOHTpo6dKlhc47fvy47r//fo3t20WTuzfU1B6NNX/CdYr/Y0eh4/Zt2qBHOoRr26rP9fVr0/XMlW30eLcGyk5PLbFep9Op9Yvn6H/DL9fkrpF6ul9Lff7UfcpMOVHouOeiOmjBv29U7Jaf9Nrof2ly10jNGNRJm5d/WOSaR/bu1pu3D9Xky+rrmasu0bdvvSizmAcOc8cP1pzbButweq4kae3atTIMQx999JGefvppRUZGytfXV3379tWff/5Z5PzXXntNTZo0kZ+fn7p06aJ169apV69e6tWrV4nfFwAAnD+EfQBApXPLLbcoKSlJy5cvP6fzevXqpfr162vx4sVF9i1evFhNmzbVZZddJkn67bff1LVrV6Wnp+vWW2+VzWbT3r17NWTIkEIPC/bt26clS5ao2eX9FfV/09RjzAQl/LlLc28brJTEhCL3+fbNF7V7/TfqMfoe/WvCY7LavEqsd8nT92nlrCfUsG0XDbz/aXW85nptXfmJ5t0zUo7c3ELHHj+0X4sfHKcLL+2pq//zhPyCauiTx+/Vkb27C45JTTqiN28fqvg/dqjn2H+r+413aPPyj7Th/TdLrCEh015okr5nn31Wn3/+ue6//3498sgj+umnnzRq1KhC58yePVsTJkxQZGSkZsyYoR49emjIkCE6dOhQifcBAADnF+/sAwAqnVatWunSSy/VvHnzNGzYsFKfZxiGbrrpJr300ks6efKkatSoIUlKTEzU119/rccee6zg2IkTJ6pBgwbauHGjfHx8dPvtt2vAgAHy9fXVfffdp6FDh0qS2rRpo527f9dL2/9ZDrBD1Ai9NKybNi5ZrL7j7ytUgz0nWxMWfSMvX78z1hq75Sdt/HyRrnt6jtoNuLZge5NOl2v+hOu0PXppoe2JsX/q9reWqnGHvIcVbf41WM8NaKeYpe/r6v88IUn6bsErSk9O0t0LV6l+6w55tQ66Ti8OvrTEOuzOvIn68mVlZWnr1q3y9vaWJIWGhmrixInasWOHWrdurZycHE2ePFmdO3fWt99+K5st7z8lLrnkEo0dO1aRkZFn/N4AAOD8oLMPAKiUxo0bp5UrV+rw4cPndN6YMWOUnZ2tTz75pGDbhx9+KLvdrptuuklS3tD8b7/9ViNHjlRqaqqSkpLUpEkTrVixQt7e3tq/f7/Wrl0rSfLx8ZHz78n7nA6H0k8cl7dfgGo1vFCHd/9a5P4dBl531qAvSdujl8o3MFgXdu2p9ORjBf8uaNFW3v4B2rdpfaHjaze5uCDoS1JgaC3Vanihjh+KK9j2+4Zo1W/TqSDo5x936kOD4thP6ezfcsstBUFfknr06CEpb4SDJG3atEnHjh3T+PHjC4K+JI0aNUqhoaFn/d4AAOD8oLMPAKiUrrvuOk2aNEkLFy7Uww8/XOrzmjdvrs6dO2vx4sW69dZbJeUN4e/atasuvPBCSdKff/4p0zQ1efJkTZ48udjrDB48WKtWrVKXLl00638z9cLLryr58AE5HY6CY/xrFA23ofUalKrOpAP7lJWWoqf7tih2f9rxpEKfQyIuKHKMX3ANZab+837/ifhDqt+6Y5HjajW68Iy1OE55pb9Bg8L15wf45OS8kQ1xcXkPF/L/lvlsNpsaNWp0xvsAAIDzh7APAKiUatSooWuvvVbz5s3TQw89dNal8U41ZswYTZw4UYcOHVJ2drZ++uknvfrqqwX782fIv//++3XllVcWOT81NVUzZsxQnz59NHz4cL377rvqNPhG9b/7EfkFh8hisWj5C/+VaRad+M7L17dUNZpOpwJrhuu6p2cXuz8gNKzQZ8NS/PJ4p75vX1bWU8b5Wa0Vdx8AAHD+EPYBAJXWuHHjtGjRIm3YsEGXX355qc+7/vrr9X//9396//33lZmZKS8vL1133XUF+5s0aSIpb+b/fv36FXuNq666SjfccIPeffddtWjRQtc+PqvQ/szUk/IPqVmGb5UnLLKR9v7yvRq27VKqYf+lEVI3UkkH9hXZnhRbdDb9U9nO4UFKw4YNJeWNjujdu3fBdrvdrtjYWF1yySWlvhYAAKg4vLMPAKi0evbsqcaNG2vevHnndF6tWrU0YMAALVq0SIsXL9ZVV12lWrVqFeyvXbu2evXqpTfeeEPx8fFFzk9MTJSfn58++eQThYWFadeuXZLjn9nxt3/zhVKOFj3vXLT512A5HQ59++aLRfY57HZlpp4852te3L2fDiegEGQAACAASURBVG7fpIM7NhdsS0tO0taVn5Z4js0iWUqf9dWpUyeFhYXpzTfflN1uL9i+ePHigqH+AADA/ejsAwAqLYvFoltuuUXPPfecZs2apaCgoFKfO2bMGA0fPlySNG3atCL7X3vtNV1++eVq06aNxo8fryZNmujIkSP68ccfdejQIW3btk02m0133323pk2bpvmTRqtVr6uVsHeXtq78VDUjG5XruzXp2F1drr1Za+fP0uE/dqhZ116y2ryUdGCfdkQv1cAHnlabftec0zWvuHmCtnz5seZPuE7dbrhd3n7++uWzhQqpW18Je34r9pwIP9s5vSLh7e2tqVOn6t5771WfPn00cuRIxcbGasGCBWratOk5XQsAAFQcOvsAgErt5ptvVkZGhj7++ONzOm/QoEEKDQ1VjRo1dM01RUNzy5YttWnTJkVFRWnBggW65557NGfOHFksFk2ZMqXguMcee0z33XefEnZt1fIXHtPh3b9q7Kz3VKNOvXJ/t6GPvaCh/31J6ceT9PVr07Xq1ae0b+N6tbt6hBq27XLO1wsOj9D4Nz5XRLOW+m7By9rw3hvqMHCkut8wvtjjDUn1ArzO+T4TJkzQyy+/rAMHDuj+++/XunXrtHTpUoWEhMi3lHMWAACAimWYzLgDAKjkrrzySmVkZGjdunWlPsdut6tevXoaNGiQ3n777XLX8NvxLC2LSyv3dSqbaxoGqWVNn3Jfx+l0Kjw8XMOGDdObb77pgsoAAEB50NkHAFR648aN0/r16/XHH3+U+pwlS5YoMTFRY8aMcUkNEf5V8823snyvrKysIrPzL1y4UMePH1evXr1cVBkAACgPOvsAgEovKytL9erV0x133KFnnnnmjMf+/PPP+vXXXzVt2jTVqlVLmzdvPuPxpWWapmZuP65sR9X52fSxGprUpuY5v2e/du1a/ec//9GIESMUFhamzZs36+2331aLFi0UExMjb2/vCqoYAACUFp19AECl5+vrqxtvvFHvvPNOoRngizN79mzdddddql27thYuXOiyGgzDUNswX1WV6ecMSe3CfMs0oV6jRo1Uv359vfzyy7r33nv1xRdfaMyYMVq9ejVBHwCASoLOPgDAI2zevFkdO3bU8uXLFRUV5ZYakrMdemNn1Vle7o6WoQr1sbq7DAAAUAHo7AMAPEL79u3Vtm1bzZs3z201hPpY1SjIy+O7+4akxkFeBH0AAKowwj4AwCMYhqFx48Zp6dKlSkxMdFsdHcN95elD4kxJHcP93F0GAACoQIR9AIDHGDVqlCwWixYtWuS2Gvb88K1SEg7J6Tjz3AGVWaDNUJNgL3eXAQAAKhBhHwDgMcLCwjR48GDNmzevyNJvFS02NlZDhgxR1NVX6/dP5spi9dwh8KakKrSoAAAAKAZhHwDgUcaNG6cdO3YoJibmvNwvKytLTz75pFq0aKFNmzbpww8/1CdvvaZO4X4e++5+ht3U94fT3V0GAACoQIR9AIBH6d+/vy644ILzMlHfsmXL1KpVKz311FOaOHGidu/erZEjR8owDPWsFyB/m2fGfVPSxsQsHUzLdXcpAACgghD2AQAexWq1auzYsXrvvfeUmZlZIffYu3evBg4cqGuuuUZNmzbV9u3b9eyzzyowMPCfOgx5bGdfyqt9RVyqnKzACwBAlUTYBwB4nLFjx+rkyZP6/PPPXXrdjIwMTZkyRa1atdL27dv16aefatWqVbr44ouLHLs3JUdpds8NyqakEzlO7Uuhuw8AQFVkmOd7hiMAAFygZ8+e8vLyUnR0dLmvZZqmvvjiC02aNEnx8fF64IEH9Oijj8rf37/Ecz7486TiUnM9ehk+Q1KjIC9dd2ENd5cCAABcjM4+AMAjjRs3TqtXr1ZsbGy5rvPHH3/o6quv1tChQ9WyZUvt2LFDTz311BmDfnK2Q7EeHvSlvO7+/tRcJWc73F0KAABwMcI+AMAjDR8+XIGBgVqwYEGJx5imKbvTVJbDqYxcp7IcTtmdpkzTVHp6uh599FG1adNGu3fv1pIlS7RixQo1a9bsrPfekpTl0e/rn8qQtDUpy91lAAAAF2MYPwDAY40fP15ff/219u/fL8MwdDzboYQMuxIy7IrPsCsh0y67s+h5htOhv3b/qtitv6jTRY1124jBqlvDX4Zx9ghvmqZmbj+u7EqwUP3c8YMlSbe/+UW5ruNjNTSpTc1SfX8AAOAZbO4uAACAsho3bpw++ypa7/y0WycC6xQEcIukYjJ+AdNiVd0W7XRBy3YyZWjh/kz5WLPUNsxX7Wv5KtTHWuK5x7MdlSLou1K2w1RytlM1fUv+3gAAwLPQ2QcAeBynaWpvSo5iErPy3p13OmRYyh9UDeW9x94oyEsdw33VNNhbltO63b8dz9KyuLRy38sV7Lk5kiSbl3e5r3VNwyC1rOlT7usAAIDKgc4+AMCjHEzL1Yq4VJ3IcRa8N++KoC+pYMK9uNRcxabmKsTboqiGQaof6FVwTEKG/awjBypaTmaGvP38XRLyJcliSIfTc9TE35Svr69LrgkAANyLCfoAAB4h12kq+lCaFu85qZM5eVG7ooam5V/3ZI5Ti/ecVPShNOU687b+tv+APn5ioqb/q7X+e+kFmjGwo5ZMf6Cgy378UKwWPzhOT/ZqpindGuj1MVdp97qvC10/Zun7eqRDuJIPHyi0fd+mDXqkQ7j2bdpQsG3u+MGaOaKH/tq5TW/cOkhTujXQqlefLtiX/95+PntOtr6Z/Zyev6az/nvpBXp2QFutnPmE7DnZhY57pEO4vnj2IW358hO9eO3luqpJTX311Vfl/tsBAIDKgc4+AKDSO5iWq+VxqUqp4JB/uvz7xCRmac/JHHXyStHka/sqMzVFXYaNVnijZkpJjNeO6GXKzcpUZsoJzb7lauVmZarb9ePlX6OmNi//QAv/M1qjZsxTqz5RZaoj4+Rxzb/3el1y5RC1v3qEAsPCiz3O6XRq4aSbFLv1F3UZNlq1G1+khD93av17c5R0YK9Gv7Sw0PH7Nq7X9m+W6rLrblVQaE01bNiwTPUBAIDKh7APAKjUNiVmKvpQesH79O5gSkrJceqOhx9S6rGjunvhKkW2bFewv/9dD8s0Ta14cbLSjiXqjreXqVH7rpKkzsNu0qzremnFS1PUotcAWSznPqguNemohjz6gi4dfvMZj9u28lP9+cv3uv3NLwruL0l1mrbQkun3K27bL2rYtkvB9sS4PzXxo+9Vp8nFkqRL2oadc20AAKByYhg/AKBSMk1TGxIyFH0oPe+zm+txOJ3auXalWlxxZaGgn88wDP2+IVqRrTsUCto+/oHqMmy0kg8f0NF9v5fp3jZvH3UcfMNZj9sevVS1G1+k8EbNlJ58rOBf0y6XS8rr5J+qcYduBUFfkuzM2QsAQJVBZx8AUCn9cCRT6+Iz3F1GgfTkJGWnpapO0+YlHnMi/pDatO5YZHvtxhf9vf+gIi5scc73Dq5dt1ST8R07sE9H9/+hp/oWX2NaclKhzzUvaFDos8MpidX3AACoEgj7AIBKZ9PRyhX0Xe605fzyOR2OYrd7+ZRuhnzTdCriwpaKuu/JYvfXqHNBoc+2065rZbwfAABVBmEfAFCpHEzLVfRf6e4uo4iA0FryCQzSkb27SzwmpG6kEuP+LLI9MXbP3/vrS5L8gkMkSZmpJxV6ynEn4g+Wq8aakY0U/8dvatrlChklPFA4E1sZzgEAAJUTz/ABAJVGrtPU8rhUVcbIabFY1LLXAO36fpUO7dxaZL9pmrq4ez8d2rFZcds2FmzPyUzXL5+9q9B6DVT77/fjwyIbSZL2b/6x4Dinw6FfPnu3XDW26T9YKUfjtbGY6+RmZSons+SHKDaLZKmMf3gAAFAmdPYBAJXGd4fTlZLjdPtkfCW5csJ/9edPazX3tsEFS9ulJB3RjuilumPecvW85d/atuozLbj3enW7Ybz8gkO0efmHSv4rTqOen18wE3+dps1Vv00nrXrlaWWePCG/GiH6ddUSOR32ctXXPmqktn/zhZZMv197N61Xw7ZdZDodSoz9U79+84XGvfZRsZMLSlKEn61MowEAAEDlRNgHAFQKB9NytSkxy91lnFGN2nV19zur9PXsZ7R15afKTk9VcO26uqhbH3n5+skvqIbumv+lVr78pH744C3Zc7IV0aylxsxcpOY9/lXoWtc/PVufP32/vlvwsnyDgtVp8Cg17Xy53r5reJnrs1gsGv3iQq1fPEdbVnyknWu+lJevn2pe0FDdb7hdtRo0LfHcxEy7Dqblqn6gV5nvDwAAKg/DNFlnBwDgXk7T1NydyTpZibv61UWncF/1rBcgL8b0AwDg0XhnHwDgdntTcnSCoF8pxCRm6a1dyTqYluvuUgAAQDkQ9gEAbheTmCUx0KxSMCWl5Di1eM9JbUrMdHc5AACgjHhnHwDgVnvjExWbapS49jzOv/zHLtGH0pXtMNWtjl+pJ+8zTVMOU7KbppxOyWLJW9LPaogJAAEAOI8I+wAAt3A4HJozZ46iD6aq8/Cxslj5SaqM1sVnSJK6R/gX2Weapo5nO5SQYVdChl3xGXYlZNpldxa9js2SN+N/XX+bIv7+V9PHygMAAAAqCBP0AQDOux9++EH33HOPtm3bpmk/xMnq41fh99y3aYPevH2Ixs9doiadulf4/aqafpEB6hSe979TcrZDW5KytO1YlrIdef8ZYZFUTMYv4tTjfKyG2ob5qn0tX4X6WCuibAAAqi3aKACA8+bIkSN66KGH9M4776hTp05a/VOMfvaq+KCP8os+lK5cp1NxqXbFpubKkApNqFiaoH/6cdkOUxuPZuqXo5lqFOSljuG+ahrsLQvdfgAAyo3OPgCgwtntdr3++uuaMmWKrFarnnnmGd16663afTJXy+LSzksNTqdTjtwcWb28ZbEwP21lk//wIMTboqiGQaof6OXukgAA8Gj81w4AoEJ9//336tChgyZNmqQbbrhBf/zxh26//XZZrVYlZNjP2w+RxWKRl4/vWYN+TmbGeaoIp8rvPJz8eyWA6ENpynXSjwAAoKwI+wCAChEfH6+bbrpJPXv2lL+/v3755RfNnj1bYWFh/xyTYS/18O+SJB8+qCXPPKgXh3bV5Mvq68neF2nxg+OUfPhAoeP2bdqgRzqEa9+mDQXb5o4frJkjeuivndv0xq2DNKVbA6169elyVoTyyI/3MYlZemtXsg6m5bq1HgAAPBXv7AMAXCo3N1evvPKKpk6dKh8fH7399tsaO3ZskY66aZpKyLSX+36Hdm7RgW2/6JJ/DVWNOvWUfPiAfv5kgeaOH6L/fLJe3n5FZ5E/VcbJ45p/7/W65Mohan/1CAWGhZe7JpSfKSnl7y7/qZMDAgCA0iHsAwBcZu3atbrnnnu0e/du3XXXXZo2bZpCQ0OLPdZhqtgl2s5V88v7q02/awpta3HFlZo9doB2rF6uDgNHnvH81KSjGvLoC7p0+M3lLwYuld/ljz6UrmyHqW51/FiqDwCAUmIYPwCg3P766y/dcMMN6t27t0JCQhQTE6NXX321xKAvSXYXzQ/r5ftPx9eRm6v0E8cVVr+xfINq6PDuX896vs3bRx0H3+CSWlBx1sVn6Icjme4uAwAAj0FnHwBQZjk5OZo5c6aefPJJBQQE6J133tHo0aNL1X11uqCrL0m5WZlaO3+WYpa+r5Sj8Tp1kZmstJSznh9cu65sXt6uKQYVal18hnysBkP6AQAoBcI+AKBMoqOjde+992rPnj2aMGGCpk6dqpCQkFKf76rV75bOeEQxS99X9xvvUINLOsk3MFiGYej9R26XaZ79iYKXj69rCsF5EX0oXXX8bCzNBwDAWTCMHwBwTg4ePKgRI0aof//+Cg8P1+bNmzVz5sxzCvqSZHPRu9c7opepw8DrFPV/T6pNv2vUrGsvNWx3qbJST7rk+uVx+jeMnjNDj3QIV3ryMbfUUxUYkpbHpbIsHwAAZ0HYBwCUSnZ2tp555hk1b95c69ev16JFi/Tdd9/pkksuKdP1rIZkc8GvkGG1Sqe9///jB2/J6XCU/+JlZLNIoy4MVrC3pUjgd6W4bb8oes4MZRbzYGPN2//Tb2u+rMC7u0f+LP3fH053dykAAFRqDOMHAJzVV199pX//+9/av3+/Jk6cqClTpig4OLhc1zQMQxF+Nh1KL9/ye8179NeWLz+WT2Cw6jS5WAd+3ag/f/le/iE1y3XdsjJNU+mHD2jNtt/UvWMnHalVXzFJ2RVyr7htG7V67vPqeM318guqUWjf2nkz1brfILXqfXWF3NudTEkbE7N0UYgPw/kBACgBnX0AQIliY2M1dOhQDRgwQJGRkdq2bZteeOGFcgf9fHX9beX+IRr0wHS1jxqpbSs/1Yr/TVFK0hHdOvtTefsFuKTGc2U6Hfpj4wbdfPPNatu6lYa2qKsfZj4qZ06WW+qpqgxJK+JS5XTRqg4AAFQ1hmnyKwkAKCwrK0vPP/+8pk+frrCwML344osaOXKky9c4/+14lpbFpbn0mpXBNQ2DVM+SqS1btmjTpk2KiYlRxDW3aft3q/Tt3Bd035Kftebtl7RzzUqZMtW6d5Suefg5efv5K/nwAc0Y2FHDp76sjtcUXhLwkQ7h6nv7A+p354OKnjNDq+c+X+TeDy6P0YyBHYts7zDoOo144lVJ0uHdv2rVq08rbtsvMp1O1W/dUf+651E1uKRTwfExS9/XJ1P/rTvmLdeO1cu1dcXHysnKVLPLemnof19UYGgtF//VymZ4k2BdWIPVFAAAOB3D+AEAhaxYsUITJ07UgQMH9J///EeTJ09WYGBghdwrwr9q/gxF+NsU4hui3r17q3fv3jJNUy/+ekw7vvtakvT+w7cptF4DXXnvf3V496/a+PkiBdQM14CJU0p9j1Z9opR0YK+2ffWZou6bpoCQMElSQGiYRk57XZ9N+48iW7VXl2FjJEk1IxtJko7s3a03bh0kn4AgXXHzBFltXvr504V68/YhGv/mF2rQpvCDgmUzHpFfUIj63H6/TsQf1Ib33tDSZ71043NvueAvVT6GpJjETMI+AADFqJr/lQUAOGf79u3TxIkTtXz5cvXv31/Lly9X8+bNK/SeNX2s8rEaynZUnUFmPlZDoT6FX05wmJL9lFUA613cRtc+Pqvgc8aJZG36YvE5hf26F7VSveaXaNtXn6lV76sVWq9Bwb72USO0ZPr9qhnZUO2jRhQ67+vXn5HDbted85YXPABoHzVSLw27TF/NekK3v7W00PH+NWpq3OsfF4zqcDqd+vGDN5WVmiLfINe8zlFWpqT9qblKznYo1Mfq1loAAKhseGcfAKq5zMxMPf7442rZsqW2bdumTz75RKtWrarwoC/lTdLXNsy3QmesP58MSe3CfIu87mA/7Y25LsPHFvrcqH1XZZw4rqy01Aqtz+lwaM+Pa9Wy14CCoC9JweERanvVtYrd+nORGroMG13o+zRu31VOh0PJ8QcrtNbSMiRtTWI+BAAATkfYB4BqyjRNffHFF2rZsqWeffZZ3Xfffdq1a5euvfZal7+bfybta/mqqvT1TUntavkW2e50Fv4cEnFBoc9+wXkz6WemnKio0iRJ6clJys3KUHijC4vsq924mUynUyeP/FVoe42IyEKf/YJDJEmZqWevde74wZo7fnA5Kj47U9LWY1liCiIAAAoj7ANANbRnzx5FRUVpyJAhat68uXbs2KGnn35aAQHnfwb7UB+rGgV5eXx335DUOMir2OHkFsvpn0sacm7+faWinA5HueorK4u1hForMFvnZGYoes4M7du0oVTHZztMJWc7z34gAADVCGEfAKqR9PR0PfbYY2rdurV27dqlJUuW6Msvv1SzZs3cWlfHcM/v7puSOob7FbvPdg4jJf7pnJ8stP1EMcPmzzgCo5h9AaG15OXrr8TYP4vsS4z9U4bFohp1Liiy73zLzcrU6rnPlzrsS1JChr0CKwIAwPMQ9gGgGjBNU59++qlatGihF198UQ8//LB27typwYMHn9ch+yVpGuytEG+Lx3b3DUkh3hY1CfYqdr/VkGyl/MX1DQxSQEiYYjf/VGj7Tx/PL3Kst5+/pKIPBvL3ZaWmFNpmsVrV7LJe2vXdV0o+fKBge+qxo9r61adq1O5S+QYGlVhbTmZ66b7EeWYxpITMs4f99PTKWT8AABWB2fgBoIr7/fffde+99+qbb77RwIEDNXPmTDVt2tTdZRViMQxFNQzS4j1FQ6snMCUNbBgkSwkPTgzDUIRf6X9yOw0dpe/mv6xPn5ykyJbttH/zj0qK21vkuHot2kqSvn5tuqw2b+1c+6UmLF6t7xbMUsaJ49q5dqXeuHWgOg8drVoNL1RQWLh2rvlSVi9vzRk3UF1H3CKL1aZfPluo7LRUhTVoUnDt39aslCQdPxSn9Ytm6/cNqxVar74G3veUJClm+Yf69MlJOnnksIJq1VG7q4ap7x0PyObtU+L3sufmaM1bL2n3um907NB+Oe0OXdC8jfrd9bCadr5ckpR8+IBmDMxb/m/13Oe1eu7zkqS+tz+gfnc+KEna+8s6Rc95Tn/t3i6rzabGHbvJfGiq+lxwacG9pk6dqieeeEK//fabnnrqKa1cuVKNGjXSli1bSv2/AwAAnozOPgBUUWlpaXr44YfVpk0b7d27V8uWLdOyZcsqXdDPVz/QS53CPW9mfkNS53BfRQYW39XPV9ffVurv1nf8/eo0ZJR2RC/TyllPyOlwaOyrHxQ5rn6r9up/98OK/+M37fwuL5x/8Ogdsmdnq9ctkxRQs5Zit/ysj6dM0M+f/DMyoNe4iarTtLnWzp+l1XNfUMjfk/DVqF2vyD2+emWacrMydeWEx9R56OiC7ZuXvq96zdso6r5patzxMq2dP0vvP3L7Gb9XdlqqNn6+SE06ddeAf09RvzseUPqJY5p/z0gd/n27JCkgNExDHs0L+K16R2nktNc1ctrratUnSpL058/fad6EkUpLTlK/Ox7Q5TfdpQPbNuqJ66/S/v37i9xzxIgRysjI0PTp0zV+/Pgz1gcAQFVCZx8AqhjTNPXRRx/pvvvu07FjxzR58mQ98MAD8vUtOkt8ZdOzXoD2nMxRSo7TM97hN50K9rHpinpnn9gwwt+mvnc+qL5/d6dP1fGaG9TxmhsKPnv5+unaKTN17ZSZhY57ZnNikXP73Haf+tx2n6LnzNDquc8rvNGFGvO/dyVJ/e9+WF8886B++ni+Lh91V8E5oXXrq98dhet4pEN4oc/1Lm6tXd+tVIM2HXX99DcKtsf/sUOS1HnoTRo2+X+SpMtGjlNgaLjWvfua9m5cX9ClP51fcIgeXLFZNi/vgm2dh43WS8Mu048fvKVrH58lb78Ate47SEumP6CIZi3VPmpEoWt8OXOq/INDddeClfKvESpJatlrgF65sY8ef3yqFi58p9Dxbdu21XvvvVdsPQAAVGV09gGgCtm5c6f69eun66+/Xp07d9auXbs0efJkjwj6kuRlMTSwYZBnBH1JpikdWLFQFvPsM8FH+J+f5+tdR44r9Pmy6/O62b9viC7T9S699uZCn39fn3edUx8eSFKP0Xf9vf+bEq9lsVoLgr7T6VTGyWQ57XZd0KKd/tr961lrSUlMUPzvO9Rh0PUFQV+S6l7UShde2lMrV35Z5Jw777zzrNcFAKAqorMPAFVAamqqnnjiCc2aNUuNGjXSypUrddVVV7m7rDKpH+ilfpEBij5U+SdT894XoxmP3Kff1n+rxYsXKyio5MntavpY5cjKkNXXv0JrqnXKe/eSFBbZSIbFouTDRWfzL43QCxoW+pwcf0iGxaKw+o0LbQ+qVUe+QTWUXMyqAaeKWfaB1r87W4mxe+Sw55Z4n+KciD8kSQpvWPRVlNqNL9KeH9coPT290BKSjRs3LnIsAADVAZ19APBgpmnqvffe08UXX6zXX39dTzzxhHbs2OGxQT9fp3A/9ahbsaG4vHrU9dd9IwZo+fLlWrt2rbp37664uLgSjzdNU5uXvS/TeZ7Xgy80aWDxswY4HY4ST/fyKWFUSBlWcdiy4mN98vi9qlm/kYZNmalbXv1Qt87+RE0796iwv4ufX/HLIQIAUNUR9gHAQ23fvl29evXSqFGj1L17d+3evVuPPvqofHxKng3dk3SrU3kD/xV1/dWtTl6IHDBggH788UelpaWpS5cu+uGHH4o9Z/PmzVr77hwZlor96U06sK/Q52MH98t0OhVar778gkMkFV2q78RZuvGnCq0bKdPp1LHT7pN67KiyUk8qtG79Es/dsXqZakY20k0vLFCHgSN1Ubc+uvDSnrLnZBU+sIQHCSF18yYSTCxmZYLE2D2qVatWoa4+AADVGWEfADzMyZMnNWnSJLVv315HjhzR119/rY8//lgNGjRwd2kuZRiGukf4q19kXnhz9yz9+ffvFxmgbhH+Mk4JpK1atdLPP/+siy66SL1799aiRYuKnP/VV1/JnnJcDQOsFfpdfvpoXqHPP37wpiTp4u595RsYpICQMMVu/qnwOR/PV2ldfHk/SdKG994otH39ojl/7+9f4rn5DzpM859ZGQ5sj9GBXzcVOs7bN+9ByukPJYLDI1T34tbavPyDQvsS/tylPT+t1dVXX13q7wEAQFXHO/sA4CFM09S7776rBx98UGlpaZo+fbomTZokb2/vs5/swTqF+6mOn03L41LdNku/ISnY26KBDYNUv4Ql9sLDwxUdHa0777xTo0eP1q5duzRt2jRZ/g64X331lfr166dOdfwVty+1wmpN/uuAFk66Sc269dGBXzdp65cfq+2Aa1X3otaSpE5DR+m7+S/r0ycnKbLl/7N331FRHl0Ah3+7CyyISBNFBUXFhg3F3mLXqFhiFKPR2CvGklhjTewlGnvXaGyxiwU+sMUYFcEae+8F6Z0t7/cHgbgBlbKUxXnO8STuvu/MsC6wGX3svQAAIABJREFUd+7MHVceXjzL21Qy5e9TpGwlqrt74L93M7GR4ZR0q8ez6xe56LUTlyZt3luJH6B8w5ZcP36Y3777hvINWhDy4jHnd/9KoVLliI/5t0aDsakZhUqV45rvfgqWKE0+S2sKly6PvXMF2oycxsbh3Vj5zefU6NgDVXwcZ3esI59FAaZNm5bh100QBEEQ8hoR7AuC8MmQJAmNBGpJQqsFuRyMZDIUMnSytLnR5cuX8fT05MyZM3h4eLBgwQIcHBxyeljZxjG/Mf0rWHPqRTQBQXHIIFuC/qR+atiZ0qioOcbyD79PlEolGzZswMXFhXHjxnHr1i02b95MQkICZ8+eZdWqVZQuYIKViZzwLJq4+GrOWnxXzcFn6U/IFUbU9ejH5yOnJT/fbMD3RIcG87efF9d8D1C2XjN6L9vBzGYV0tzHF5MXY1PMiUCvHdw4cYT8BQvRuM8Img0a88H73Np/RVTwG87v2czdsycoVKosHjNWcM3vIA8CdLc/fDF5EV7zJnB44WQ0qgSaDRyDvXMFnGt/Rp+lO/FbPRe/VXORGxlRslodqjdqxpYtW6hZsyY1a9ZM12smCIIgCHmRTHp3LZ0gCEIeIUkSIfEaXsWoeRWj5mWMmlexatSp1AAzkoO9mRFF8hlh/88fG6UiV0wAhIaGMnnyZFauXEn58uVZtmwZTZo0yelh5ainUSoOP44kLEGbZUF/UrtWJnLafiCb/yEHDx6ke/fulC1blkGDBjF48GAeP35M8eLFeRqlYuvd8I83kg5+q+ZxbM18Jh27hbm1rV7bNgTXty/jyPqlhISEAODk5JQc+NesWRM3N7cPnpYgCIIgCHmNCPYFQchTQuM1XHobx5XgOOI1iT/e5EBa6ny/e51SIaOqrSnVCppirVRk0WjfT6vVsmnTJsaPH09cXBzTpk1j+PDhGBunP+jMi7SSxIMIFYFBsTyMVOkt6E9qp6SFMW52ZpQqYIw8E5M+V65cwd3dnbdv32Jvb8+DB/8WtfN7FkVgUJzeJis+9WB/YAVrrJVyHjx4wIULF5L/XLx4kejoaGQyGeXLl9eZAKhatSqmpu85bUAQBEEQDJwI9gVBMHhaSeJ+RAKBQXE8yoLAz8nCGDc7U0oXMMlU4JdWgYGBDBs2jPPnz9OjRw/mz59PkSJFsrxfQxUar+Hy2zguvzvBIwNtGt4E716nVMhwtTXFVc8TPC9fvsTJyQmNRsO2bdvo2rUrACqtxLqboXqrQ/ApB/tKhYyRlW1SXY2j0Wi4efOmzgTAlStXUKlUGBsbU7lyZZ0JABcXF4yMxC7HT4Uhb+8SBEH4GPHbTBAEg/bfJd2gv2XdSe08jlTxKFKVqSXdaRESEsIPP/zA6tWrqVSpEqdOnaJRo0ZZ0ldeYq1U0KSYOY2L5iM0Xpu4dSNWzYto1Ue3bhQ1N8beLHHrhrVSniUf7oODg0lISKBp06Z4eHhw8+ZNpkyZgrFcRrsSFnpfzv+pkQGutqbv/bdTKBRUqlSJSpUq0adPHwDi4+O5evVqcvD/559/smbNGiRJIl++fFSrVk1nAsDZ2VkEfnlAXtneJQiCkFYisy8IecinlKFQaaUcLdb2WRqKtaWVRqNh/fr1TJw4EZVKxU8//cTQoUNFdlEPJElC+8/3xKQpUzl6+BBXLl5Eno3fEwsWLGDKlCkEBwfz888/M2nSJDw8PNi4cSNmZmYEBMXi9yz64w0J7zXIxTrTqzGioqK4ePGizgqApG0XVlZW1KhRQ2cCoFixYnnu52pelVe2dwmCIKSXCPYFwUB9yhmKp1GqXH8MW1r5+/szbNgwAgIC+Oabb5g7dy6FCxfWz0AFHZMnT+bXX3/lyZMn2dpv8+bNUSqVHD58GIA9e/bQs2dPKlWqxIEDByhSpAhnXsVw+mVMto4rL5CRuM3Gw9kyS9oPDg4mICBAZwLg5cuXANjb2+sE/zVr1sTW9tPaPpGb5bXtXYIgCBkhgn1BMDCfeoYiKQuaXdn890nqv7mDOTXszNJ9f1BQEBMnTmT9+vVUrVqV5cuXU69ePb2PU/jXrFmzWLRoEUFBQdnWZ1RUFLa2tixYsIDhw4cnPx4YGEj79u2Ry+UcPHgQV1dX/nodKwL+DPiyVAGcLU2yrb/nz5/rBP8BAQGEhoYCULJkyRQnAOTPnz/bxiYkMpQTOwRBELKaCPYFwQCIDEXiSobcGgw1LJKPeoXN0rRSQqPRsHr1aiZNmoQkScyYMYPBgwejUBjOhIuhWrRoEZMnTyYqKirb+jx06BDu7u7cuXOHMmXK6Dz34sULOnTowI0bN/jtt9/o1KlTrpnMMgQywNJEzkAX6xz9uSVJEvfv309xAkBMTAwymYwKFSqkOAFAqVTm2Hjzsry0vUsQBEEfRLAvCLmcyFAkyu3LnBsWyUd9+3wfvObs2bMMGzaMS5cu0a9fP2bPno2dnV02jVBYtWoVw4YNQ61WZ9sWFk9PT44ePcq9e/dS7TMmJobevXuza9cuZs2axfjx43kWrc7RbSqG5Osyljjkwp9XarU6xQkAV69eTT4BoEqVKsnBf61atahQoYKY8MukvLS9SxAEQV9EsC8IuZTIUPwr4E0sfs9zfwGz9y3pf/PmDePGjWPTpk24ubmxfPlyateunQMj/LT9+uuv9O7dm/j4eExMsmfZt7OzMy1btmTFihXvvUar1TJ9+nR+/PFHvv76a9auXYvCRJnt3/+GREbiz6lmDoazRD4uLk7nBIALFy5w8+ZNJEnC3Nyc6tWr66wAKFWqlMHWVcluuWVFTGa3dwmCIOibCPYFIRcSGYp/PY1SGdTRZD3KWCa/Zmq1mpUrVzJ58mQUCgWzZs2if//+IoOXQ37//Xc8PDwIDQ3Fysoqy/u7d+8eZcqU4cCBA7Rv3/6j12/fvp0+ffrg5ubGvn37KFSoULas7NFqNMgVCpAkMIDgMunnU/8K1rlmQjKjIiMjU5wA8PDhQwBsbGxSnABQtGjRHB5x7pJXtncJgiBkFRHsC0IuIzIU/1JpJdbdDDWY5czvBiHnzvyJp6cn165dY+DAgcycOVNU6s5hXl5etG/fnhcvXlCkSJEs72/58uWMGjWK4OBgLCws0nTP+fPn6dChA6ampnh5eVG5cmW0ksSDCBWBQbE8zIKaHUVNtKyfP4PW3042mMDk3Um1vObt27cEBATg7++fPAHw+vVrAIoWLaoT/NeoUQMbG5scHnHOyQvbuwRBELKSCPYFIZcQGYqU/J5FERgUZxCB/r8k3gaeYuGALtSqVYvly5dTo0aNnB6UAPj5+dGiRQvu379PqVKlsrw/d3d3oqOjOX78eLrue/r0Ke7u7ty/f5/t27fTrl275OdC4zVcfhvH5XdP45CBNg3fJO9ep1TIcLU1xfWf0zhat25NhJUj7cfNTtdYc8KntkRakiSePXuW4gSA8PDEFU+lS5fWmQCoXr065ubmOTzqrGfo27sEQRCygwj2BSGXEBkKXYa2fP9dkqTF+s4ZBnbtgFwuz+nhCP84c+YMDRo04O+//6ZixYpZ2ld8fDw2NjZMnTqVsWPHpvv+qKgoevbsyYEDB5g/fz6jR4/WmWyTJInQeC2vYtS8ilXzIlrFq1g16lTO4DSSg72ZEUXNjbE3M8I+nxHWSrlOey9fvqRYsWJ4TJxD1c59M/Q1ZweRKU2k1Wq5d++ezgTApUuXiI2NRS6X4+LiojMBUKVKlWyrU5EdDO33Q15eiSIIQu4mgn1ByAVEhkKXVpJYcyOUcANZvv9fueVIMEHXxYsXcXNz48KFC1m+2uLYsWM0b96cK1euUKVKlQy1odVq+eGHH5gzZw59+/Zl5cqVHwzYJElCK4FaktBoQSEHI5kMuYw0rcpp3bo1Pj4+LDl8mugi5TM05qzUqEg+6oo90O+lVqu5fv26zgTAtWvXUKvVmJiYULVqVZ0JgPLlyxtk/RBD3t5l6DUmBEEwPCLYF4QcJjIUKd0Nj2fPg8gs7SM7fFmqAM6WeSebZuhu3ryJi4sLf/zxBw0bNszSvsaMGcPWrVt5/vx5poPTzZs3M2DAAOrUqcOePXsoWLCgnkap68WLFzg4OKBQKOjy/TSqdB0kaocYuNjYWK5cuaIzAXD79m0kSSJ//vwpTgAoWbJkrp9MMcTtXYZ4eoQgCHmDCPYFIQeJDEXqdtwL53GkyiBek/eRAU4Wxng4W+b0UIR/PHr0iJIlS+Lj40PLli2ztK/KlStTs2ZNNmzYoJf2zpw5Q6dOnbCwsMDLywsXFxe9tPuu6OhoihQpQmRkJEeOHKFSw+biVJA8KCIigsDAQJ0JgMePHwNga2ub4gSA7ChmmVaGNjn+X2I5vyAI2U0E+4KQg0SGIqXQeA2rb4RmSds5YZCLNdZKw1sqmxe9fv0ae3t79u/fT4cOHbKsn2fPnuHo6MjOnTvp2rWr3tp99OgR7u7uPHnyhJ07d9K6dWu9ta3VaunatStHjhwhLi6OihUrcu3aNVRaiVMvogkIisu2LH9SPzXtTGlU1Fwsfc4Gb968ISAgQGcC4M2bNwAUK1YsxQkA1tbW2T5Gsb1LEAQh/YxyegCC8Kl6GqUiICgup4eRbhJwISiOslbKLMlQXHqbfUFFVpMBl9/G0aRY3q+MbQjMzBKXgcfGxmZpPz4+Psjlcpo3b67Xdp2cnDhz5gzdu3enbdu2LF68GE9PT70su546dSp79+5l7969rFixAl9fX/z9/alVqxbNHfJTzkrJ4ceRhCVos+z7M6ldSxM5bUU2P1sVKlSINm3a0KZNGyCx/sPTp091gv+5c+cSEREBgLOzc4oTAPLly9rCifcjEghLSKUCpYGQgLAELQ8iVGJ7lyAI2UZk9gUhB4gMReokSWLxtZDkI8WyS+DB7eye9i1jDwViXbS4XttWKmSMrGyT6/fBfgpUKhUmJiZs2LCBPn36ZFk/Xbp04fnz5/z1119Z0r5Go2Hs2LH8/PPPDB48mCVLlmBsnPHAeNu2bfTo0YM5c+Ywbtw4nj9/jqOjY3J2P4lWkngQoSIwKJaHkSq9Bf1J7ZS0MMbNzoxSBYxF5jMX0mq13L17N8UJAHFxccjlcipWrJgc/NeqVYvKlStn6n35X2J7lyAIQvqJzL4g5ACRoUhdSLwm2wP9rBavSTwizcZULOXPacbGxigUiizN7KvVanx9fRk9enSW9aFQKFi4cCEVKlRgyJAh3L17l127dmVoafX58+fp27cvvXr1Sj4isFixYjRv3hxfX18uXLhAzZo1AZDLZDhbmuBsaUJovIbLb+O4HByX/D0rl4E2Dd++716nVMhwtTXFtaCp2O6Sy8nlcsqVK0e5cuX4+uuvgcQJtP+eAPDrr7+i0WhQKpW4urrqrAAoV65cho4jDY3X8ChSpe8vKdtJwMNIFaHxGvF+FwQhW4hgXxByQGA27n/NKjIgMChWr8H+qxi13trKTV7FqEWwn0uYmZllabB//vx5wsPD9bqf/n369++Ps7MznTt3pk6dOnh5eVG2bNk03//06VM6dOhAjRo1WLNmjc7qk40bN+Lo6Ei/fv24evVqinutlQqaFDOncdF8hMZreRWj5lWsmhfRKl7FqlGnMpdpJAd7MyOKmhtjb2aEfT4jrJVyserFgBkbG+Pq6oqrqysDBgwAErfJXL58OTn49/X1ZdmyZQBYWFjg5uamMwFQokSJj74HxPYuQRCEjBHBviBkM5GheL9XMWrkgOGueUhJLoNXsWpcUOb0UASyPtj39vbG1tYWNze3LOvjXY0bN+b8+fO4u7tTu3Ztdu/eTbNmzT56X1RUFO7u7piamrJ3716USt335/uy+/8lk8mwMVVgY6pIfo9LksSzFy8pU64cO3ftpnXLFhjJZMhliMD+E2BmZkbdunWpW7du8mPh4eHJJwD4+/uzY8cO5s+fD0DBggV1gv+aNWtSuHDh5HslSeJKcPYUsp1Q3Y5mA8fQfPDYLOtDAi4HxzG9R1sATp48mWV9CYIgpH8tlSAImZKUocgLkjIUGfH8+XP69u1L4cKFUSqVVKxYkR2bNyUH+g8CzjChuh1X/7cfv9Xzmd2qMlMbOLF1TB/iIiNQJ8TjNf8HZjSrwNT6Jdg9dTjqhHidPiZUt+PAnHFcOrKbhZ3qMLmOA0u7N+NhYNr2Up/9fQOLvmzApNrFmNWyEgdmjyU28t9jn3xXzuWHWkWICn2b4t69P41meqPSxMfF8SJaRUBAAK1ataJgwYKYmZlRsmRJ+vbtm6HXTsi47Aj2W7RogUKRfSs5nJ2dOXv2LLVq1aJVq1asXr36g9drtVp69uzJ/fv38fLyolChQqlet2HDBmQyGf369UvXeGQyGQoZxEdHYSxpUCrkKOQyEeh/wiwtLWnatCnjxo1jz549PHnyhFevXuHl5cXQoUMBWLFiBe7u7tjb21O8eHE6d+7MnDlzOHzyTJ7c3qVOy54XQRCETBKZfUHIRh/LUDwIOMPagR0ZsGY/pWrU13v/awYkHjc2cO0BvbSXlKFoXDRfuj7Iv379mjp16iCTyfD09MTOzo6jR4+y7ofhtA0Jo0GPwcnXntz4C8ZKMz7r8y3BTx9ydsc65EbGyORyYiPCaDZoDE+vBRLotQPrYiVoNvB7nb4eXjzLtf8doO5XAzAyNuHcro1sHN6NoZt9sHeu8N4x+q2ax7E183Gu/Rm1v+zN28f3OL97E89uXGbwhsMojI2p1rYLx9cu4KrPfup16598r1qVwN/HvKjUrB3GSlPuPX/Jt51bYmdnx/jx47GysuLRo0fs3bs37S+2oBdZGewHBQURGBiIp6dnlrT/IVZWVhw+fJhRo0YxePBgbty4wcKFCzEySvlrftKkSRw4cICDBw9SuXLl97bp4OCQpux+akTtX+FjChcuTLt27WjXrh2Q+J55/Pixzv7/WbNmUap+C7rN+vAElr78ePYpckX2fDRO0EoYiWMlBUHIYiLYF4RsJArQJfrhhx/QaDRcu3YNW1tbAPoPHIRbm84cWz2f2p2/Sb5Wq9EwcO0BFP9UdY4ODeaqzz7K1GtKn6U7AKjbtS/BTx8ScGBbimD/9b2beP7mRzGXqgBUbdWJhV/UxW/lXL5euCnV8UWFvuXkxl8oU6cxvZftTC4oZedUhoNzx3PpyC5qdOhOweKlKF6lJpeP7NYJ9m+f9iU2IoxqbRPPWL9/6QKhoaH873//o0aNGsnXzZgxI82vmaAfWRns+/r6IkkSLVu2zJL2P8bIyIilS5dSoUIFvv32W+7cucOOHTuwtPy38veWLVuYPXs2CxYsSA6yPmTDhg0UL178vXv3UyNJEhoJlPkt0MiNidNoMfon2y+y+8L7yGQynJyccHJyokuXLkDiKpQ9fz/jvkoLGSjsl17GStOPXpMQG42JWeb228tlkKCRyCc+hQuCkMXEMn5ByEY5XYCu74pd9F2xS+/tpufrkiSJPXv24O7ujiRJvH37lrdv3/IqKIiydZsQFxXB81v/BhXV23ZNDvQBHCtVR5IkanTortOuY6XqhL9+jkatO5biVWomB/oAVkUccPmsNXfOnkCr0aQ6xnvn/0CjSqB+j0E6laNrftETZX4Lbv/p++/42nXl6d+BBD99mPzY5aO7sbQvRkm3egCYWSQGW4cOHUKlMvx6DYYsK4N9b29vXF1dKVKkSJa0n1ZDhw7F29ubc+fOUbduXe7fvw/AX3/9Rf/+/enbt2+aTwtwcHCgWbNmXLt2jQsXLqR4XpIkguPUXA+J49izKH67E8bCq8FsC1Iy7Y8HXC9cjcVXQ1hwJZiFV4P57U4Yx55FcT0kjuA4tVgBILzX8+fP6d+/P/2b1mBSXUcWfdmAgP1bAVDFxfLzF3X5+Yu6qOL+/X6OCQ9lVsuKrOzdJvnn+66pnkytX4KQZ4/YMLQLU+qVYFbLShxbsyDF+29CdTv8Vs1L/rvfqnlMqG7H6we32TFxENM/c2ZV338nyS4d3sXS7s2YXNeRHxuXYfv4AYS9ep7ia/Hfs5n57Wsyua4jy3u25H7gWeLFMn5BELKBCPYFIRslFaDLKUbGJhgZ6696PvxbgC6tgoKCCAsLY82aNdjZ2SX/cbQvzO5p3wIQHfLvHngr+2I695vmLwCAZeGUj0taLXFRETqP2xYvmWIMBUuURhUXQ3Qqe+0Bwl4+BcCuhLPO40bGJtgUK0Hoy2fJj1Vp2REjEyWXj+4BIC4yglunfXH9vHNyFrOkWz06dvqC6dOnU7BgQTp06MDGjRuJj9etMSBkvawK9rVaLT4+PtlShT8tmjdvzrlz51Cr1dSuXZvff/+djh07Urt2bVauXJmuDPvGjRtT7N0Pjddw/Hk0i6+FsPZmGF6PowgMiuNZdOqV+AHUWngWrSYwKA6vx1GsvRnG4mshHH8eTWh86hNvwqcpaauXn58fdTz64T5mJraOJdnz40j+3LoKY1Mzvpy+jOCnD/FZPiv5vgNzxhEXFcmX05cif6duhlarZYOnB/ltC/H5iCkUq1AVv1Vz8Vs1N03j2Ta2H6q4WFp5/kDNTj0BOLHuZ3ZNGUbB4qVoO/pH6ncfxH3/06zp316ntsuF/b+xb+Z3WNja8fmIKZSoWovNo3ry5kXKSQFBEAR9EwuIBCEbvYxRE/rmJX4r53D7zDFiwkMpYGdP2XpNaTdm5nvvu+Z7gJMbl/Dm4R1MzPJRtm5TWo+YgmWhfzOIkW9f47N0BnfPnyI6NJh8llY4VKyO+5iZWBctDqTcs59UI+CrOWsJfvKAc7s3ERMWQomqtej4wwIKFi+lM46zO9dz+reVRL59jb1zBdqMmo7vyjkoFTJunv8z+bq4uDhCQ0MJCwtL8d8nT54AULp0aezt7YmKiiIqKoo4lZrWExYCYF/GhTcP7gAge0+hM/n7CqBlc6bQrIAV5Ru24PLR3TQb+D3Xjh1EnRBPtTZdkq+RyWTs2LWLSxf88fLywsfHh759+7Jw4ULOnTtH/vz5s3XMn7KsCvYvX77Mmzdvck2wD1CuXDnOnTtHp06d6NatG7a2tuzZswcTk/RN+CVl948dP87RgOuEWznwKFKV4ii0tJ6i8e518RqJC29i8X8Ti5OFMW52ppQuYIJcLPf/pCVt9bp05Sob/5lbrf1lb7ZPGJi81at4ZTca9fLk1K9LqdikDVEhQVz12Ue772dgV6K0Tnvq+DjK1mtK+7GzAajTtS+/jujBqU1LqddtAObWth8cT5GyFXXqBoS+eIrf6nm0GDqBJv1GJT9esWlblnZvyrnfN9Ck3yg0KhX/WzaLIuUq0X/N/uTJ9kKlyrFvxmik0iX08XIJgiC8lwj2BSGbSJLE7cfPWNGzJbGREdT6oid2TmWICHrJ335eOksR3xV4cDu7p32LQ8VqtPL8gaiQIP7avpbHV/wZvv148hLxrWP68Pr+bep26491UUeiQ95y99wpwl4+Sw723+fUpiXIZHIa9hxKXFQkf/y6jJ2ThjBss0/yNed2beTg3PE4VatDgx6DCH3xlC3ffYOZhSUF7OypUKFCclD/voy1sbExVlZWyOVywsLCKFOmDI6OjlhbW2NlY0uB2p8lX5sU7GdW8JOHKR57+/g+xqb5MLcumOo9VkUcAQh6fA8bB6fkx9WqBEKfP8G5diOd66u182DLqJ48vX6Jy0f2ULR8ZQqXLq9zjZFMRp06dahTpw4zZ85k27Zt9OjRgx07dtC/f3+E7GFmZkZYWJje2/X29sbCwkLnuLHcwNLSEgsLC4yMjHj79i3z5s1jzpw56T4tYO6aTWz/+yVXFIWR/XN0qL6m1ZLaeRyp4lGkCisTOW1LWOCY3/iD9wl5U9JWr65du6LSaokODU1+rmzdJlz12cfzW1dxcq1Ns8FjuXXal11Th5MQE01Jt3rU+2pgqu3W9fj356xMJqOuRz9u/+nLPf8/qNqq0wfH9G4dGYDrxw8jabVUbtGB6NDg5MctbAtR0LEUDwLO0KTfKJ7duExUSBDNB4/TWVXn5t6No4unZffctCAInyAR7AtCNtFIcHjJT0QGv2HoZh8cXFyTn2sxZHyqe1c1KhXeS36isHMFBq47mFw8yMm1Nr+O6MGfv62ixZBxxEaG8/jKBT4fOY1GvYYl39+478g0jU0dH8/wHSeSP4yYFbDk0PwfeHXvJvbOFVCrEvBdOQeHitXov3ofin8qfNuXcWH31OFYFi7K523bYlWgQGLgbmWV6n/NzMyQyWT06dOHbdu2MX/+fCpVqgQkfsBbeDWYsOC35H9PEJ4RT65e4PnNKxSrkLhvP+zVc26c8qZsvabvXR3gXLsRCmMT/tq+lrL1miUveQ7Yv5W4qAjKNWihc325es0wt7Llj01LeHjxLz4fOU3n+YSoMGTYwDuHLrq6Jv77i6X82cvMzIyXL1/qvV1vb2+aNWuW7qx5Vps4cSJHjx7Fy8uLu3fvMnr0aG7fvs3WrVuxsLD46P0qrcSpF9EEhCmx+WcSLKvik6R2wxO0bL0bTg07Uz4rao6xqFj+SXl3q9eaNWtSvSZpq5eRsQmdp/3C8q9bYKQ05ctpS1LdoiKTy7EppptFT8r+h7548tExWf/n3rdPHyT+zupYO9Xr5UaJE1VhrxKXJfx3lZzC2BgbB5HVFwQh64lgXxCySYJGw42TR6nQqJVOoJ8ktQ8oSVmBZoPG6FQJLt+wJXZOZbj9py8thozDWGmKwtiEBwFnqNmxB2YFrNI1Nrf2X+lkHUpWqwNAyPPH2DtX4PmNy8SEhdDKc1JyoA/g+vmXHF44GYDZc+ehVKStIsGcOXM4ceIEtWvXZsCAAbi4uBASEsK+U+e59tdJppy8m67xf0hh5wpsHOahc/QeQPNBY997T37rgjTuM4Jja+azcVhXKnzWmqDH9zi/ayMOFavpLNGHxA9uVVp15OzO9cgVihRZojtHd1G+30Y6depE6dKliYyMZO3atRQaltDLAAAgAElEQVQoUIA2bdro7WsVPi4rlvGHh4fz119/sXz5cr22m1mbNm1i3rx5LFq0KPl9VrZsWTw8PKhfvz5eXl6UKPH+gONplIpDjyOJSEhceP++LTX6lhT0BwbFcTc8gXYiy/9J0WoT329ff/01X33dk70PI1NcY1/GJfn/7/51HEhcqv/2yYMUQb0+/LdKv6TVIpPJ6L10R6qTxpmt1i8IgqAvItgXhGzy+nUQ8VGRKZZ3f0hSVuC/heIA7EqW4fGl8wAYmShp/e1kjiyayszmLjhWdqN8w5ZUb9cVi4KFP9rPf4vgJU0WxEYkLndOKkhn66hb7E5hZIR10cRsn0YLpDEWKFy4MP7+/vz444/s3buXFStWYGtrSxHn8nz+7ZS0NZJGJavXpXiVmhxbM5/wV88pVKosXaYvpUjZih+8r/ngsZhb23J253oOL5yMmaUVNb/oRSvPH3ROB0hSrZ0HZ3eup3TNhhSws09+XC6Dhp99hvbRNXbs2MHr16+xtLSkVq1abN26lZIlUxYQFLJOVgT7x44dQ6PR0KpVK722mxl//vknAwcOZMCAAYwYMSL58c8//5yzZ8/i7u5OrVq12LdvH/Xq1Utxf0BQLH7PolPsy89OEhDxT5a/uYM5NezMcmgkQnays7PDwsICjUZDyxYtuHol+L3XvrxznWNrF+LW/ite3vmbvT+NYuTOPzC1KKBznaTVEvL8sc5e/qDHiadUfGybW2psHZyQJAnrYiVS1Ad4l5W9AwBvnzygdK2GyY9rVCpCnj/BubBNuvsWBEFID1GNXxCySVYfEdygx2C+23eOVsMnYaQ0xXflHH7uXJ8Xtz5+NvZ7M3bp2FCYxqR+skKFCrFs2TKePHlCQkICL1++ZMuBo9T8IrHScaka9Zl9MYjKzdvr3OfW/itmXwxKsTqi+eCxzL4YlGqhpWptvuT7/ef56dwzhm87Tqka9VNt878f+up69GP03r+Y4f+CH3xv0HHCvOQaCf9l9M8EgOt/sv5aCRrWdGPbtm08fvyYuLg4Xr9+jZeXF25ubml4pQR9yopg39vbm/Lly+Pk5KTXdjPq4cOHdOrUifr167Ns2bIUq4YqVqzI+fPnKVu2LE2aNOG3335Lfk6SJM68isHvWXTi37N15Ckl9e/3LJozr2LEUX2fAIVCQefOndmzZw83r/+N0X9+t0T9c4qKRqVi97ThFLCzx33MLL6ctpSo4CAOLZyUartnd65L/n9Jkji7cz0KI2OdIDytKjZti1yh4Nia+Snek5IkER0WAoCDiyvm1gU5v2cTalVC8jWBXjuIiwxHbFARBCGricy+IGSTIoUKocxvwev7t9J8T1JWIOjxvRQfSN4+uodVEQedx2wdS9Kw51Aa9hzK2yf3WdKtKae3rMRj5spMjd36n36Cnz6kdM0GyY9r1GpCXzzFvowLRnqonm2fz3B/JPnv3YJJPnMqNWub4jlD/rryGn0H+5Ik4e3tTefOnfXWZmZERETg7u6OpaUlu3fvfm8NATs7O/z8/Bg8eDA9e/bk5s2b/PTTT5x9E8fplzHZPOq0SRpXfft8OTwSIaslbfWqU6cODb/sRT7HMsREhPLi1lXunf+DKSfvcnzdz7y8/Tf9Vu1FaZ6fImUr0mzAd/xvxWwqNXen/Du1VYyUptz56zi/TxmGYyU37pw5xu0/fWncd2SGasTYOpakxdAJ+CydQdiLJ7g0boPSPD8hz59w/cRhan3Ri0a9hqEwNqbl0Ansm/kd6wZ1okrLjoQ8f0Lgwe0UcnTS4ysmCIKQOvEJVBCyibFCTqXGn3PxyG6e3bicIjOdWsbKwcWV/DZ2nN/9KzU6dMfIRAnA7TN+vHl4h6YDvgcgITYGmVyus6/QxqEkSnNz1KrMF4Ar5uJKPisbLuzbglv7r5L37V8+upvYiDBkJC5XzywbpQKlQka8xnCydzdP+fDm4W0u7N1CHY9+KfZqKhUyrJViEVVuoe9g/+bNmzx9+jRXHLmn0Wj46quvePbsGefOncPW9sPHiSmVSjZs2ICLiwvjxo0jxKIIJVp1y6bRZszplzEoFTKxpD+Pe3er1+/7DhDy5jX5rKwpVKo8rb+dwvObVzi5cTF1PPrpTEB/1mcEN055s++n0Yzc/WfySiy5XE7fZTvZP2sMRxdPR2luTrOBY2g68PsMj7FxnxEULF6aM1tXcWzNfAAsCxejTJ3GVPjs358HtTr3QqvV8Mfm5RxdPJ3CzhXovXgLZ9fOy3DfgiAIaSWCfUHIJjKZjF5jp3Ln3EnW9O9ArS96UqhkWSLevuZvv4MM2nAoxT0KY2NafzuZ3dO+ZU3/DlRt3Ymo4CDObF+LddHiNPh6MABvn9xn3eDOVGnRgUKlyiJXGHH9xBGigoM+eqRQWhgZm9Bs4Bi85k1g3aBOVG7RgbCXTwn02oGNgxNKhTzVAoPpJZPJqGpryoU3sTm+fDitDs6bQFRIEOUaNKfF4HE6z8kAV1tTvbw2gn7oO9j39vbG1NSURo0affziLDZ27Fh8fHw4cuQI5cunrTaITCZjzJgxOFauwcNCH65jkVv4PYumsJmRKNqXxyVt9Rry4wK8HkeleH6mf8pTNeQKBcO2/C/V9mwcnOi7YtcH+5x9MUjn780Hj6X54PcXc63UrB2VmrX7YJsAdbr0oU6XPjqPDT/sh4uN8qP3CoIgZIYI9gUhG1UsWZxhv/rgs3I2l4/uIT46kgKFilC2XlOMTVPPVLm1/wpjUzNObVqC95KfMDbLR8UmbWg9Ykpy1sKycDGqturEff/TXDr8O3KFEXZOZeg+dx2VmrnrZez1uvUHJE5vWcnRxdOwL1uRXou24DVvIvnz6S/LVq2gKf5v9BOM/feDW1YYd/jie5+TANeCpu99Xsh++fLlQ6VSodFo0n3WfGq8vb357LPPMDPL2UzzunXr+Pnnn1m6dCktW7ZM170qrUSoY1VkCZosGp1+yYBDjyPpX8FaHMv3Ccir26Dy6tclCELuIpNEtRtByDbXQ+JSzVAYKq1Wy4xm5WnTviO7N2/QW7s77oXzOFJlMNn91MgAJwtjPJxTL+gn5Izt27fTvXt3IiMjyZ8/f6baiomJwcbGhjlz5jBy5Eg9jTD9Tp06RfPmzenfvz8rVqxI90oSv2dRBAbFGdT3mwyoYWdKM4fM/RsKuZ8kSSy+FpLh7V27pnryt58X08881vPIMk6pkDGyso1Y9SUIQpYTG0kFIRsZ8ky+Kj4uRV2BS4d2EhseSosmTfTal5udqUEFHqmRADexrzjXScrA62Mp/6lTp4iPj8/R/fr379+nc+fONGrUiCVLlqQ7eHgapSLAwAJ9SPz+uhAUx9MoVU4PRchiSdu78kpYLLZ3CYKQnQw38hAEA2SIBeiSPL0WyKGFk6jcvD35LG14cesqAQe2Yu9cgd7du+q1r9IFTLAykROeoDW4IAQSP8xZmsgpVUDsKc5t9Bnse3t7U6JECcqVK5fptjIiPDwcd3d3bGxs2LVrF8bG6Xu/aSWJw48jkZHzR+xlhAw4/DiSgS7WyEXglKdlZntXl+nL6DJ9mZ5HlHFie5cgCNlJBPuCkI0MsQBdEuuijlgVLsZfO9YSGx6GmaUV1dp2ZeKPM1Eq9VtkSC6T0baEBVvvhIEBfoiXgHYlLEQAkgvpO9hv3bp1jmTo1Go1Hh4evHz5knPnzmFjY5PuNu5HJBCWoM2C0WUPCQhL0PIgQoWzZepHDAp5g7VSgZOFcZ7Z3mWtzHy9EEEQhLQQwb4gZDN9FqDLTtZFi9Nr8W8pHm9S3lrvfalUKtYvmElgtDH1ug1AJjecHUdJe4kdRKXwXElfwf6DBw+4c+cOc+fO1cew0u3777/Hz88Pb2/vDK8sCAyKM9isfhIZEBgUK4L9T4CbnSmPIg1724bY3iUIQnYznE/QgpBHJGUoDD3nKwNKZkGG4saNG9StW5cZM2bgVkDCUqkwmNdKBhQwkdOoqHlOD0V4D30F+z4+PhgZGdG0aVN9DCtdVq9ezS+//MLSpUtp3rx5htoIjdfwyMCzpJAYPD2MVBEabxgnCQgZl7S9y1B+H/yXDLAS27sEQchmItgXhBwgCtClpNVqWbRoEdWrVyc6Oppz584xbfIk3J0KGMxrlbR8XxwHlnvpK9j39vamfv36FChQQB/DSrPjx4/j6emJp6cnQ4YMyXA7l97GGWzQ9F8y4PLbuJwehpDFkrZ3Gcrvg/8S27sEQcgJItgXhBxg6BkKrUaNPC6KEub6+RHy6NEjmjZtyujRoxk6dCgXL16kRo0aADjmN6a5g2Fkyps7mOMolu/navoI9hMSEjh27Fi2V+G/e/cuX375JU2bNmXRokUZbkeSJK4EG14F/veRgMvBKU8LEfIex/zG1LAzvMr8MqCm2N4lCEIOEMG+IOQAQ89QyOQKVgzxoF7duly4cCHD7UiSxPr166lcuTKPHj3ixIkT/Pzzz8kBWZIadmY0LJIvs8POUg2L5KOG2IuZ6+kj2D9z5gzR0dHZGuyHhobSrl07ChUqxM6dOzEyynjJnZB4jUGeCPIh8RqJ0HjDLTYopN1nRc0pYECT5WJ7lyAIOUkE+4KQQww5Q1GrkBnbVixCrVZTu3ZtBg0aRHBwcLraefXqFe3bt6d///507dqVq1ev0rhx4/deX69w7g34GxXJR73CItA3BPoI9r29vbG3t6dq1ar6GtYHqVQqunbtSlBQEIcOHcLKyipT7b2KUetpZLlLXv26BF3GchntDGiyXGzvEgQhJ4lgXxBykCFnKOrVq8eFCxdYsmQJO3fupGzZsqxduxat9uPZtd27d1OpUiUuXLjAwYMHWb9+/Uf3PstkMurb50te0p/Tr1lS/80dzKlnny9Hjl8T0k+pVCKTyTId7Ldq1Srb/s1HjRrFyZMn2bNnD87Ozplu71WM2mB++SfExqTpOrkMXsWKYP9TIbZ3CYIgpI2h/L4XhDzJ0DMURkZGeHp6cvv2bdzd3Rk4cCB169YlICAg1ftDQ0Pp0aMHXbp0oXHjxvz999+4u7unaww17MzoUcaShIgQtNqcqcCdNOnRo4ylWLpvYGQyGaamphkO9l+8eMHVq1ezbQn/ihUrWL58OcuWLaNJkyZ6afNljJqkKbnwNy/ZPe1bZjZ3YVLtYiz6sgEB+7cmX/sg4AwTqttx9X/78Vs9n9mtKjO1gRNbx/QhLjICdUI8XvN/YEazCkytX4LdU4ejTohP0eelw7tY2r0Zk+s68mPjMmwfP4CwV891rlkzoAOLuzTk+Y0rrO7nzpR6xfFZNpPfpwzjp6bl0KhSHru2fmgXFnaqg1aCF9GGfSybkD5ie5cgCMLHiWBfEHJYXshQFC5cmE2bNnH69Gni4uKoVasWQ4YMISQkJPkaHx8fKlWqxJEjR/jtt9/YtWsXBQsWzNA4rv95jJ9au2L25gGQfVn+pH5q2JnSv4K1yNYYKDMzswwH+z4+PshkMlq0aKHnUaXk5+fHt99+y4gRIxg0aJBe2pQkKTkDHhn8hpXftOae/x/U8eiH+5iZ2DqWZM+PI/lz6yqd+05u/IW7Z0/wWZ9vqdGhO9ePH2bfrO/ZPX0Eb5/cp9mgMVRs2o5Arx2c2rRU594T635m15RhFCxeirajf6R+90Hc9z/Nmv7tiY0M17k2JjyEjcO7UaRcJdp9N4PSNRtQvW1XYsJCuHP2hM61kW9f8+DCaVzbdAESM/uiSN+nRWzvEgRB+LCMV/gRBEFvatiZEa+ROP0ybUtWc0JaMhQNGjQgMDCQFStWMHnyZHbt2sWPP/7ItWvXWLVqFS1atGDDhg04ODhkeBxhYWH079+fxg0bMLJ1HZ5Fqzn8OJKwBC0yyJJVElqNGrnCCEsTOW1LWIgg38BlNtivWbMmtra2eh6Vrtu3b9OlSxdatGjBggUL9NauRgL1P2n9/y2fhVajYcTvf2BuZQNA7S97s33CQI6tnk/tzt8k36fVaBi49gAK48T3fnRoMFd99lGmXlP6LN0BQN2ufQl++pCAA9toNvB7AEJfPMVv9TxaDJ1Ak36jktur2LQtS7s35dzvG3Qej3z7ho4TF1D7y3f61mqxLFyUy0d2UaFRy+THr3jvQ9JqqdbmSyDx69JKoBA7aj4ZSdu7lAoZfs+is+x3QJrH80//zR3MRUZfEIRcQWT2BSGXyCsZCiMjI7799ltu375NjRo1GDZsGGvWrGH8+PH4+PhkKtAHGD16NBEREaxbtw6ZTIZjfmMGuljzZakCOFkkBiL6+qyf1I5R+Bu2jOpJC7NwEejnARkN9jUaDf/73/+yfAl/SEgI7u7uFClShB07dmSq8v5/qf/JfEuSxN/HDlGhUSuQJKJDg5P/lK3bhLioCJ7fupp8X/W2XZMDfQDHStWRJIkaHbrrtO9YqTrhr5+jUSeuHrh+/DCSVkvlFh10+rCwLURBx1I8CDijc7+RiRK3Dl/pPCaXy3H9vDM3//AhPjoq+fHLR3dTvGpNbIqVSPH1CZ+WpO1dOVkDR9Jqya9AbO8SBCFXEZl9Qcgl8lKGIj4+nsWLF+Pr60vFihVRqVTMnTuXiIgIZsyYgbW1dYbGdOTIETZu3Mi6desoXrx48uNymQxnSxOcLU0Ijddw+W0cl4Pjko8Xk8sSM34f8+51SoUMV1tTXAuaotTkY/71AH5euIDly5dnaOxC7pHRYP/ChQuEhoZmabCvUqno0qULISEhnD9/HktLS722n1Q/Mzr0LXGR4fjv3Yz/3s2pXhsd8hazAomV/63si+k8Z5o/saCmZeGUj0taLXFREZhb2fD26QMkSWJhx9qp9iE30p08K1CoCEbGJimuq9bOg1OblnL9xGGqt/Mg6NE9nt+8QseJuqseNFpAkfrXLuRtjvmN6V/BmlMvogkIisu236GJ/UgE7P0V40dXGLb1t2zoVRAEIW1EsC8IuUwNOzNkgN+z6JweCi0czHFLZ6B/5coVevbsya1bt5g5cyZjxoxBq9WybNkypk6dyq5du5g7dy7ffPMNcnnaFxeFhoYyYMAAWrduTd++fd97nbVSQZNi5jQumo/QeC2vYtS8ilXzIlrFq1h18hLmdxnJwd7MiKLmxtibGWGfzwhrpfydauv5GDFiBDNnzmTKlCkULlw4Xa+JkLtkNNj39vbG2tqamjVrZsGoErPtw4cP5/Tp0/j5+VG6dGm995H0LSf9E/W7tumCm7tHqtfal3HhzYM7AMgUqUfQ8vc8TtIKAq0WmUxG76U7Ur3WxEy3Xomx0jTV5gqXKkexClW5dGQ31dt5cOnILhTGJlRp2UHnOoVYr/hJM5bLaO6Qn3JWyizf3pXUbtL2rpJVitNt1lg6urejW7duWdCjIAhC+olgXxBymYCg2FwR6EuA77NoJEhTZl+tVjN//nymTp1KhQoVuHDhQvI55AqFglGjRtGtWze+//57+vbty9q1a1mxYgWurq5pGs/IkSOJjo5m7dq1aTryTCaTYWOqwMZUgQvKxK9JktBKiUt9NdrEwMBIJkMu46NtDhs2jLlz57J48WJmz56dpjELuVNmgv0WLVrodVn9u5YtW8bq1atZt24djRo1ypI+jP55n5tbF0Rpnh9Jq8G59mfvvT4p2M8oWwcnJEnCulgJ7EpkbvKiWruuHPl5ChFBr7jivZfyDVokrzxIYiSOwBQgeXvXgwgVgUGxPIxU6S3oT2rHycIYNzszShUwRi6T4eHhwb59+xg6dCiNGjWiaNGieuhNEAQhc8QcuCDkEpIkceZVTK4I9N/l9yyaM69iPljl+u7duzRs2JBJkybx/fff4+/vnxzov6tIkSJs3bqVEydOEB4ejpubG8OHDycsLOyDY/Dy8mLz5s0sXrw4U3v+ZTIZCrkMpUJOPmM5SoUchVyWpskDa2trhgwZwooVKz46XiF3y0iwHxwcjL+/f5Yt4ff29mbkyJF899139OvXL0v6gMTidUbyxIx8pabt+PvYIV7du5niuqjQt3rpr2LTtsgVCo6tmZ/iZ4gkSUSHhbznzpSqtv4CZDIOLfiBkGePcP2nMF8SI3niVhxBgH+3d3k4WzLIxZpahcxQvlO9Ma3vlXevUypk1CpkxiAXazycLXG2NEH+zu+P5cuXo1Qq6devnzgZQhCEXEFk9gUhl/jrdWyurcafNK769roFBLVaLStXrmTs2LEULVqU06dPU69evY+217hxYy5fvsySJUuYNm0av//+O/PmzaNXr14pAu+QkBAGDhxI27Zt+eabb97TYvYYNWoUS5YsYcWKFUycODFHxyJkXEaCfV9fXyRJolWrVnofz82bN/Hw8ODzzz9n7ty5em//XTKZDHszI55Fq2n17WTuB5xhRa/W1Oz0NYVLlSMmIpQXt65y7/wfTDl5N9P92TqWpMXQCfgsnUHYiye4NG6D0jw/Ic+fcP3EYWp90YtGvYalqa381gUpW7cp13wPYmphSfmGuscf2psZpWniTvj0ZM32rpRsbW1Zv349bdu2Ze3atQwcODALvypBEISPE8G+IOQCAW9yb6Cf5PTLGJQKWfKS/mfPntG3b198fX0ZOnQo8+bNw9zc/COt/MvY2JjvvvsueWl/7969WbduHcuXL6dKlSrJ140YMYK4uDhWr16d4x/kixQpQu/evVm8eDEjR44kX77ceXqC8GFmZmaEhKQ9owyJmfcqVarofWlucHAw7u7uFC9enG3btqF43x54PSqSz4gX0WosbAsxbIsPx9Ys4PqJw5zftZF8VtYUKlWe1t9O0Vt/jfuMoGDx0pzZuopja+YDiYX9ytRpTIXP0rdSonq7rtw6/T+qtOiAkYky+XG5DIqai5MyhA/T9/au1LRp04YBAwYwevRomjVrliW1NwRBENJKJol1RoKQo55Gqdh6Nzynh5FmPZwLcHL/ToYPH07+/PnZsGEDLVu2/PiNH3H8+HE8PT25c+cOnp6eTJ8+nRMnTtCpUyc2b95Mz5499TD6zLt//z5ly5bll19+wdPTM6eHI2RA//79uXbtGufPn0/T9VqtlqJFi/LNN9/oNfOekJBAy5YtuX79OhcuXMDJyUlvbX/I9ZA4vB5HffzCXOjGyaNsGd2LgesOUrJ6XZ3n2pewwMVG+Z47BSH7REZGUrVqVYoVK8bJkyezZRJPEAQhNWLPviDkIJVW4tDjyBw7Fzi9ZEhsCHhAv4GDcHd359q1a3oJ9AGaNm3K5cuXmT17NuvWraNs2bJ88803tGvXjq+//lovfehD6dKl8fDwYP78+ahUqpwejpAB6V3Gf/XqVV6/fq3X/fqSJOHp6clff/3Fvn37si3QB7DPZ7iL+vz3bsHGwQmnanVSPGfIX5eQt1hYWPDrr79y5swZFi1alNPDEQThEyaCfUHIQadeRBORoM2Ws4D1QUKGcQEblhz5iy1btmBtba3X9k1MTBgzZgy3bt3C1NSUiIgIgoKC+Pvvv/XaT2aNHz+eJ0+esH379pweipAB6Q32vb29MTc3p379+nobwy+//MLatWtZs2YNDRo00Fu7aWGjVOgUKjMEV3z24bN0Brf/9KXeVwNSLK9WKmRYK8VHGiH3aNiwIaNHj+aHH37Idb/DBEH4dIjfjIKQQ55GqQgIijOYQD+JXC4nzMqBp1FZl9U+f/48T548Yfz48YSFhVGtWjVGjx5NRERElvWZHlWqVKFt27bMmTMHrTaVyk5CrpaRYL9Zs2aYmJjopf8jR47w3XffMXbsWHr37q2XNtNDJpNR1dbUYFYUAeyYMJC/dq6jRsce1OnSV+c5GeBqa5rjNT0E4b9mzJiBs7MzvXr1IiEhIaeHIwjCJ0gE+4KQA7SSxGEDWr7/XzLg8ONItFlQ8iMoKIghQ4bQsWNHZs2axdWrV5k5cyarV6+mXLlybNu2LVccaTRx4kRu3rzJwYMHc3ooQjqlJ9iPiIjgzJkzelvCf/36dbp160a7du2YNWuWXtrMiGoFTQ1qonH2xSCm//mIzlMWozDSXa4vAa4FTXNmYILwAaampmzZsoVr167x008/5fRwBEH4BIlgXxBywP2IBMIMaPn+f0lAWIKWBxH6z+57enqi1WpZtWoVMpkMExMTxo0bx61bt2jQoAE9evSgSZMmXL9+Xe99p0e9evVo1KgRs2fPzhWTD0LapSfYP378OGq1Wi9H7gUFBeHu7k7JkiX57bffcrRol7VSQTGlhKTV5NgY9EEGlLQwxlopCqAJuVP16tWZMmUKs2fPxt/fP6eHIwjCJ0YE+4KQAwKD4gw2q59EBgQGpe+s8o/ZtWsXv//+O8uWLaNw4cI6zzk6OrJr1y58fHx4+fIlrq6ufP/990RGRup1DOkxYcIE/P39OXHiRI6NQUi/pGA/LZM0Pj4+lClThlKlSmWqz/j4eL744guio6M5ePAgFhYWmWovMyIjI5k+fTqLRg1AJjfsIFkC3P45DlQQcqsJEyZQvXp1evXqRUxM7j5mVxCEvEUE+4KQzULjNTyKVBlsVj+JBDyMVBEar5/M4Js3bxg6dCidO3fGw8Pjvde1bNmSq1ev8uOPP7JixQrKly/Pjh07ciS73qpVK6pVq8bs2bPTdL0kSai1EnEaLTEqLXEaLWqtJFYGZDMzs8TgMD4+/oPXSZKEt7d3ppfwS5LEkCFD8Pf3Z//+/ZQoUSJT7WVUfHw8ixcvplSpUsyePZtmVctiocBgJx5lgJWJnFIFjHN6KILwQUZGRmzevJnHjx8zYcKEnB6OIAifEHFOjSBks0tvE7P6eSG8kwGX38bRpJh5ptqRJImhQ4cCsGLFio8W2lIqlUyYMIHu3bszatQovvrqK9asWcOyZctwcXHJ1FjSQyaTMX78eDw8PLhw4QI1a9ZMfk6SJELiNbyKUfMqRs3LGDWvYtWoU6nnZyQHezMjiuQzwv6fPzZKhSg4lkWSgv3Y2FhMTd+/1/vOnTs8evQo0+hlk7gAACAASURBVMH+woUL2bhxI1u2bKFu3bofv0HPNBoNW7ZsYerUqTx79oy+ffsyZcoUHB0deRqlYuvd8Gwfkz5IQLsSFsjF94lgAMqXL8+cOXMYOXIkHTp0oGnTpjk9JEEQPgEisy8I2UiSJK4E51wF/tAXT5hQ3Y7Ag/o5Mk4CLgfHZTozvXPnTvbs2cOKFSsoVKhQmu8rUaIEe/fu5ciRIzx9+pSqVasyduxYoqKiMjWe9OjcuTNlypRJzu6Hxms4/jyaxddCWHszDK/HUQQGxfEsOvVAH0CthWfRagKD4vB6HMXam2EsvhbC8efRels5Ifzr3WD/Q7y9vVEqlXz22WcZ7svLy4uxY8cyceJEvv766wy3kxGSJHHgwAGqVKlCnz59qFWrFtevX2ft2rU4OjoC4JjfmBp2hlWZHxInGmvameKQX2T1BcMxfPhwmjRpQu/evQkPN8xJNkEQDIsI9gUhG4XEa4jX5K6c/q0/ffFbNS/D98drJELjM3783KtXrxg2bBhdu3alS5cuGWrj888/59q1a0ydOpWlS5dSvnx5fv/992xZHq9QKBgzdiw3g6NZf/kFq2+EcuFNrM6/c1pfnXevi9dIXHgTy+oboey4F87d8PgsOf3gU5SeYL9Ro0aYm2ds5cq1a9fo3r07HTt2zPZK3KdOnaJevXp07NiRokWL4u/vz65duyhfvnyKaz8rak4BE7nBBPwyoICJnEZFM7eiSBCym1wuZ+PGjYSFhTFy5MicHo4gCJ8AEewLQjZ6FaPO6SGkcPtPP46tmZ+pNjL6dSXtZVYoFCxbtixTYzA1NWXSpEncvHmTGjVq4OHhQcuWLbl161am2v2Yp1Eq1HU68c3irbzRJBY701dIntTO40gVex5EsuZGKE+j9H8CwqcmLcF+bGwsJ0+ezPAS/jdv3uDu7o6zszNbtmxBLs+eX7eXLl3i888/p3HjxqjVanx9ffH19dXZYvJfxnIZ7UpYGMzWoqTl+8ZyQ5meEIR/lShRgl9++YVNmzZx4MCBnB6OIAh5nAj2BSEbvYpR57lvOrkMXsXqBvuSJKXpaLPt27ezf/9+Vq5ciZ2dnV7G4+TkxP79+zl06BAPHjygSpUqjB8/nujoaL20n0SllfB7FsXWu+FEqBLDpKyqbJ4UhIUnaNl6Nxy/Z1GotIYSmuU+aQn2//jjD+Li4jIU7MfHx9OpUyfi4uI4ePBghlcGpMe9e/f46quvqF69Og8fPmT37t34+/vTvHnzNN3vmN+Y5g6GkSlv7mCOo1i+Lxiw3r174+7uzsCBAwkKCsrp4QiCkIfltbhDEHKlyMhIRo4cSbc6LkysXYwZzSqwfsiXPL95hf+zd9/xNd1vAMc/596Mmz0IQhSxGmKPEnuvGCWo2lttRe0gasVoa4VQilItfrVHG1WrZooKSqwYiQqJ7H3P7480IU1CQnLPvXzfr1debe4953ueG8m957ueB8B3cEe+7tqAkJtX8R3UAU+3D1jUoRZX/PYAcMf/FCv7tGJG3eIs+bgOt84ey3SNiCch7Jg1mrnNKzD9o2J85VGfC7u2vDKu7TNHcuan9QBMqe6Q/pVGq9VycstqvvKoz4w6TsxtXoGfvxxPXOTzF8fI0P0jF9zd3Tl8+DA1a9bEzMyMNWvWvPLaISEhjBw5kk8++YQuXbrk7AeZC+3atePq1atMnz6db775BhcXF3bu3JknS/sfRCex7no4/qHxgO6SLaZdxz80nnXXxSz/m9JozFAbmxAZG59tVYRDhw5RvHhxXFxcctW2LMsMGTIEf39/du/enb43Pr8EBwfz2Wef4eLiwsmTJ1m3bh0BAQF06dIl1wkeazqY0cDRPJ8izRsNHM2pKUrtCQZOkiTWrl2LVqtl6NChoiKLIAj5RmTjFwQdGDZsGDt27KBO94EULFWO2OfhBF06y5O7gRRzqQJAXORzNo7tSZWWH+PavANnd3zHtilDkFNS2LdkOrW79KNq684c37SSLRMHMPngZUwtLAGIevYEn76tQZKo030glnYFuHHqCDu9xhIfE0X9nsOyjKt2575Ehv7DrTO/023OqkzP75o7Hv+926jRvgdunwwmPDiI0z9+S/CNKwxbvx+1cersWooWbty4QY8ePRg6dCiDBw+mfPny2f48ZFlm6NChmJiYvPXy/VfRaDR4enrSq1cvxo4di4eHBy1btmT58uWUK1fujdq8EBqH38MYRSsqyEDkv7P8zZ0sROfnFbKqihASZ8+XZx9xHjgfEJZ+7MtVEW5EJtP+k9wn1PP29mbTpk1s3bqVjz76KA9fSUbh4eF4e3vzzTffYGZmxoIFCxg+fHj6qoU35VY49fwTIfpXC7yhozl1C4vfdeHdULhwYVavXo2Hhwfff/89vXv3VjokQRDeQZIshhMFId/Z2tryac+efDBodpbP+w7uyF3/P+g+bw1VW3cGIPTeLZZ2roukUjFswwE+qFQDgJunj7JhRDc8Zi2jRoceAOz0GsuNk36M+ek4Frb26e3+MGUIN08dYeovARhrzAgPvo+3e40M5+5eMIkzP61n/p8ZlxLeu3iGNQPb033uaqq2eTHzfvOP39gwsnuGxxe2q87zkAccOnSIVq1avfbnsXnzZvr06cOuXbvo2LFjTn+Mb23v3r2MGTOGhw8fMnHiRKZOnZrjJdayLPPHP3F62Qlq4GiOW2EzUarvJeEJKVx8Gs/lZ/HpyRJV5CxZooSM/G+6OlO1RJUCGqoV1GBn+uptGrt27aJz585Mnz4dLy+vt3wFWYuNjWX58uUsWLCAxMREPv/8cyZMmICNjU2eXkcfBrWA9OuLQS3hXdW7d2/27t3LlStX8n0lkCAI7x+xjF8QdMDW1paz584RGfo422NMzC2o0urj9O8dSpZBY2VDoVLl0jv6AB+4pv5/2KMgILUTGnBkHy4NW4EsExP+LP2rXN0mxEdH8ujvv3Id8xW/PWgsrSlTp1GGNou5VMHE3II7F05mOL5kqVI56ug/evSI0aNH07NnT5129AHat2/P1atXmTp1KkuWLKFChQr8/PPPOVpCqa8dfUidhf3jn9fnSHjXaWWZwIgEtt2KeKuqCPJLeelzWhXh0qVL9OrViy5dujBr1qy3fCWZJSUlsXr1asqUKcOMGTPo1asXd+7cYc6cOXne0YfUJf09y9oomqU/Let+z7I2oqMvvLOWL1+OpaUlAwYMQKt988o2giAIWRHL+AVBB7y9venbty8X21ShmEsVytdrTnX3btg7lUw/xqZQ0UwzsxpLa2wKF834mJU1QPq++Zjwp8RHRXDuf5s4979NWV4/JuxprmN+ev8O8dGRzG2W9Z7l6P+0WaJkqde2mbafWaPRsGzZslzHlBfMzMyYNWsWvXv3ZvTo0XTu3JnWrVuzbNkyypYtm+U5F57ob0c/zYmQWEzV0nvbKXoQncT+oCieJ2rTO6f5URXhXlQStiYq2pWwSk8S9/jxYzp06MCHH37Ixo0b8zTzvlar5aeffmLGjBncvn2bnj17Mnv2bJydnfPsGtkpbmnMIBc7jgXHcCE0Xnez/LIWJBU1HTQ0LGohsu4L7zRbW1vWr19Pq1at8PHxYcSIEUqHJAjCO0R09gVBB7p160Ytt3qMXbmFW2d+5/imlRzbuJxeizdQvl5qtmyVOuslwtlleE+bjZb/nQmo2rYrNdp3z/LYImUr5DpmWavF0t6B7nN9snzewq5Ahu/NzTSvbXPjxo0cOHCAPXv2YG9v/9rj81Pp0qXZt28fe/fuZfTo0bi6uvLFF18wZcoUzM1fJCl7EJ2E36O8zeSfX/wexlDYzOi9ylSepJUzdEYh/zqk/62KUNNBw0f2ajp16kRycjK7d+/O8LvzVteSZQ4fPsyUKVO4dOkS7u7u7Ny5k8qVK+dJ+zllrJJo7mRJeVvTDIMp+fEzTms3POQhfauVoEJRy3y4iiDon5YtWzJ8+HAmTpxIy5Ytsx14FgRByC3R2RcEHSletCh1uw2gbrcBRIeFsvzTZhz99qv0zv6bsrAriKmFJbI2hTIfNcr1+dnt8y7gVJLb545TokptjDWvny2WXrPY9+HDh4wZM4Y+ffrQvn37XMeZHyRJokOHDjRv3pwFCxawcOFCNm/ezDfffEOHDh1IlmFfUJTi+5ZzSiI13kEudu/FbOiD6CT2BUURmZg64KVEVYQ/Ap8SJpuwZ88eihUrliftnz59milTpnDs2DHq16/PyZMnqVevXp60/aaKWxozpIIddyKT8A+N425UUp79XaS1U9LKmNLG8TRt3ITEAQP46quv8qB1QTAM3t7e/PLLL/Tp04cTJ05gZCRu0QVBeHtiz74g5LOUlBQiIiJQS6nZvgEs7R2wdihCcmLiW7evUqtxbepOwJF9PL51PdPz0eGvXsJvYpY6ExkXFZHh8UotO6JNSeG3tUsynZOSnJzheAl4VW44WZYZPHgwlpaWfP3116+MRwnm5uZ4eXkREBCAi4sLnTp1wt3dnT3Xg4lM1BpERx9eZOk/HmwYKxHexoXQOLYERij67yMDRla2DPDZCSUqvnV7V69epVOnTri5uREeHs7+/fs5fvy44h39NCpJooyNCd3L2DC0gh21C5lhqpZeej6n7bz4f1O1RO1CZgytYEf3MjbULFGYyZMmsXLlSm7dupXHr0AQ9JeFhQUbN27k3LlzLFq0SOlwBEF4R4hhQ0HIZ1FRUTg5OeHh4UFS0XLEqc24dfYYD69epO3neZOxu9XoGdy+cIpVfVpT6+NeFHYuT2xkOMF//8Wts8fx/D0w23PTSv/t9Z5K2bpNUKnVVGn1Mc416lG7S19+3/ANwTcDKFunMWojY57ev0OA3x7cJ86lUvMOyLJMSnIS169fZ9OmTVSqVAkXFxc0mhfL+tevX8+hQ4fYv38/dnZ2efKa80PZsmU5cOAAu3fvZsGaDdxMMH7lIIY+koHzofGUszV9J5fz/7cqgtIDMSp16seo38MYElLkN6qKEBQUxMyZM9m0aROlSpViy5YtfPLJJ3m69z+v2ZmqaVLMgsZFzQlP0KaWNoxLJjgmicdxySRnkWcsrbRhUQtjipgZUcTcCDtTVaaf17hx41i9ejWTJk1i586dOnpFgqA8Nzc3vvjiC2bOnEnbtm2pUqWK0iEJgmDgRGdfEPKZubk5w4cP55dffiFw5/9ITkmhQPFSdJziTZ2u/fPkGlYFCjFi82GO+C7m6tH9nN2+AXNbOwo5f0jr0Z6vPLdiU3fqfjKIvw7v4tKB7ciynF4V4ONpiynmUoVzOzfyy8p5qNRq7Bw/oGrbrpSoUju1AVmLnJJMSEgIffv2BUClUlG2bFlcXV354IMP8PHxoXPnzjnK1q80SZLo0LEjwWUaEJGQgmKpyN+CBOwPimJIBTtUhjZa8Rr6XhUBoF6RnO3bf/LkCfPmzcPHxwc7OztWrFjBoEGDMDExyc8w85QkSdhr1Nhr1FTAFEgdkNHKkCzLpGhBrQIjSUIlZb9t6GVmZmbMmzeP3r17c/LkSerXr5/fL0MQ9MasWbM4cOAAvXv35vz585iamiodkiAIBkySc1JzShCEPHE1LJ69QdFKh5HnOpSwooK9KZGRkVy7do0rV64QEBDAlStXOHnyJElJSQBoNBoqVKhApUqVcHV1Tf9v0aKZKxEoKTAigZ13opQO4615OFtTxsZwOo6vc+FJnEEkS3xdTfjIyEiWLl3KkiVLUKlUTJo0iTFjxmBhYaHDKPWbVqvlo48+QqVScfr0ab1e5SAIee3y5cvUqlWL8ePHM3/+fKXDEYR3lizLpPw7OK3VgurfwWl1DgenDYHo7AuCDj2LT2bt9edKh5HnhrjYYa/JXDXA19eXoUOHsnXrVgoVKpRhEODq1avExKR23Ozs7DJ0/tP+a2trq+uXAsC2WxEERSUpvkT8bUikJjzrXibva7Ar4UF0ElsCI15/oJ7oWdYm0zaK+Ph4Vq9ezdy5c4mOjmbUqFFMmjSJAgUKZNPK++348eM0atSIrVu30qNHD6XDEQSdmj9/PtOnT+fEiRO4ubkpHY4gGDxZlglLSEnddhabTMi/289ete3M0Tx1y1kRcyPsTdUGOQAgOvuCoEOyLPP1lTASUt6dPztTtcTYSvaZ3gCDgoJwdXXlk08+Ye3atZnO02q13Lt3L73zn/bfGzdukJycDICTk1OmQYD/5gPIa+EJKay5Fp5v7eva0Ap22JlmXb7RUCRpZdZdDzeYZIkSYG2iSq+KkJKSwubNm5k5cyaPHj1iwIABeHp64uTkpHSoeu/jjz/m4sWL/P333/n6dy8I+iY5OZmGDRvy5MkTLl++LFb+CMIbCk9I4eLTeC4/i0+//1YBWfTxM3n5OFO1RJUCGqoV1BjUfZXo7AuCjv32KIbzT+IMotPyOhJQu5AZTYplvAnRarW0aNGCwMBAAgICsLa2znGbiYmJ3LhxI9MgwL1794CM+QBeHgQoXbo0avXbv/m+D/8+hsbvYTT+ofEG9W8iATUcNERf8GPatGlcu3aNrl27MmfOHMqXL690eAbj5s2bVKxYkS+//JJJkyYpHY4g6FRgYCBVq1alX79+rFy5UulwBMFgaGWZ25GJ+IfGcy+fSsXWcNBQ2tpE73Mjic6+IOjY+zBz7OPjk56UsEWLFnlynaioKK5evZre+U/7evo0tbRgWj6A/w4C5CYfwPu08sJQGNry/ZfJssyage0p52DNvHnzqFmzptIhGaTRo0ezceNGbt26hYODg9LhCIJOrVy5kpEjR3L48GFatmypdDiCoPceRCexPyiK54naPOvk/1dau7YmKtqVsNLr6keisy8ICniX94TfvXuXSpUq0atXL1avXp3vcfzzzz8EBARkWAkQEBCQKR/Ay4MArq6uWZYAfN9yKug7rSzjey2cCANZvv9f2pQUzEhmTI2iej/yr8+ePn1KmTJl6Nmzp5jdFN47Wq2W1q1bpye/1efytYKgpCStzLHgGC6ExudbJ/+/0q5T00FDo6IWGKv077NedPYFQQHvarZ3rVZLs2bNuHv3LleuXMHKykqRuHKSD6BYsWJUqlQpwyoAHMtwOCRBkZjzU1q1BEPzrv6dCLm3ePFiJk+eTEBAAB9++KHS4QiCTj18+BBXV1fc3d35/vvvlQ5HEPTOg+gk9gVFKZbbJy1Xj7sezvKLzr4gKMDQZywlwMZElamOe9pyQz8/P5o1a6ZcgNl4XT6Adp97UfeTQaiN9OuN+lUS42IwMct+T75KgpoOZjQ1wH377/IKGCF3EhIScHFxwdXVlT179igdjiDo3Pfff0/v3r3ZsWMHXbp0UTocQdAbF0Lj8HsYo7PZ/OykXf915Xd1TXT2BUEhhrwXGaBXWRucXhq9vH37NpUrV6Zv376sWrVKwchyLy0fwMlEO5IsX7+/3W+1N0d8FzF+11mOfruUa0cPIiPj2qQdHSYvxMTMPP3Yi/u3c3LLap7cvYmxqYaydRrTZuwsbIsUSz/m7p+n+WPbWh4E/En0s1As7Qvi2qw9rUZOw1jz4gNj+8yRBPjtZfS239njPYV7F89QpnZDei/d9Mp4nSyM6FVOmTKGb+p9yG0h5M5PP/1E9+7d+e2332jSpInS4QiCTsmyjIeHB8eOHSMgIIAiRYooHZIgKEqWZf74J44TIbFKh5JJA0dz3Aqb6UW+JJXSAQjC+6q4pTE1HTQo/zaQOxJQy0GToaOv1WoZMGAAhQoVwtvbW7ng3pCVlRUfffQR2BTI1RvzD5MHkRATTatR06ncoiP+e7dxxHdx+vNH1y1lu+cICn7gTLvPvaj36VBunzuB76AOxEW9GOi54reHpPg46nj0o8MX8ylbtwmnf1zHT54jMl1Tm5LC+hHdsLQvSNuxs6nY1P21cT6OS8bQxnUvPo03uL+N7EjApafxSodh8Lp27UqdOnUYP348Wm1OiiYJwrtDkiRWr16NWq1myJAhBveeLgh5TV87+gAnQmL54584pcMAwEjpAAThfdaoqAWBEYkGVz+8YdGMS8JXrFjB8ePHOXr0KJaWlsoE95ZSZEjOZf+haPlKdJn5Tfr3sc/DubB7C23GeBIe/AC/Nd60GD6FJgPHpR9TsWk7ln/alDM/rU9/vM1ozwwz+LW79KFA8VL8smIuz0MeYuv4oh57cmIClVp0oPWoGTmOM1kLWhnUBtJ7lmWZy8/iuX/1IvsWTSPk5lWS4mMZ9cNvFC1f6a3a9h3cEYAha3e/0bmxz8MYu/1Ers6TgUvP4mlc1FwvRvkNlSRJLFmyhHr16rF582b69u2rdEiCoFMODg74+vrSqVMnvvvuO/r37690SIKgiAtP9Lejn+ZESCymaknxJf1iZl8QFGSsknAvYWUQHX1I7bS4l7DKkG00MDCQyZMnM3LkSBo3bqxYbG8r+Q1mSWp79MvwfclqdYh9HkZ8dBRXf9uPrNVSqUVHYsKfpX9ZFShEweLO3LlwKv28lzv6iXExxIQ/o0TlWsiyTPCNK5muW8cj9zd4b/L6lBKWkEJsfCJbvxhIXGQ47uPn0G3OKuwciysdWo5Ehj7Gb7V3hn+7hBSZ8AQxG/223Nzc6Nq1K9OmTSM2Vr9v9AQhP3Ts2JF+/foxZsyY9HwzgvA+eRCdhN+jGKXDyBG/hzE8iE5SNAYxsy8ICituaUxzJwv8Hur/G1dzJ4sMWUZTUlLo378/jo6OLFiwQMHI3t6brAp+ed89gJl1ahK2uMjnPH1wB1mWWdLpoyzPVb2UBPB5yEN+Xb2A68cOExeZsfRffHTkf84zwrpw0VzHmqIFDGTL+OPYZJ49vMfzkAd0nrGUWh/3zrO2B6zanmdtZScy9DFHfBdhV7R4hpUIj2OTDbIEor5ZsGABLi4uLFmyhBkzcr7CRRDeFV9//TW//fYb/fv358iRI6hUYu5OeD8kaWX2BUUpnowvpyRgX1AUg1zsFCvLJzr7gqAHajqYkZAi6/WSpAaO5pmWIi1btoxTp05x7NgxLCwML9v7y97kXkmlyq7jJiNrtUiSRL/l21CpMx+XlkFfm5LCt8M9iIt4TqN+o3AoWRYTM3MinoSwY+Yo5P+MQhgZm7zRjZ3agO4FH8cmExsWCoDG6tVZ7F9XjeC/jIyVKYGnklJzJ1TA8Eog6htnZ2dGjRrFwoULGTx4sEhUJrx3bGxs+O6772jatCnLly9nzJgxSockCDpxLDjGYLa+QuqARGSiluPBMTRzUmabq+jsC4KecCuc2pHW1w7//ahECpmpKW1tgkqSuHHjBlOnTmXMmDE0bNhQ6fDemlEe76Uu4FQSWZaxK1YChxKlsz3u8a1rPA26TVevFVR3757+eOCZ3/M0nrx+fflp1ughnPz5BwC2fjEQgFI13LArWjzbagRarZY/fvDl/M/fE/bwHhpLayo0bkPr0TMws35RiSCrPfvhwQ/Y6z2FW+dOYGJmTtU2XSjn1pQNI7sz2HcXzjXrZYjvnzs32LNgEg8C/sTMyga3HkNo1G8UAHcunGLtkE4A7Jg1mh2zRgPgMWsZRXvk3QqF9920adPYsGEDnp6e+Pr6Kh2OIOhckyZNGD16NJMnT6ZVq1Z8+OGHSockCPnqQXQSF0INL9mtDJwPjaecrWmG1bG6YkBzPYLwbpMkiXpFzGnulDpLqW9ds/vRyey8E4XvtXCCIhPo378/Tk5OzJs3T+nQ8oRaAqM8fEes2LQdKrWaI76LMmVNlmWZmOdhwIvVAS8fI8syp7bmXQfGSJU6s2wIZFmmSqfeNB4wFgC3HoPpNmdVejLD7KoR7Jo7noPfzKZEldq4T5hLjQ6fcOngDtaP6EZKUvb75RLjYlg3rDO3zh3HrccgmgwcS9Bf5zm0zCvL4+Min7NhZHeKlK1I23GzcShZlkPLvLhxyg8Ah1Jlaf7ZZABqd+5Dtzmr6DZnFaWq1zXIqgj6ys7OjpkzZ/Ltt98SEBCgdDiCoIj58+dTokQJevfuTdIr3ucEwdBpZZn9/y7fN0QSsD8oCq0C9wBiZl8Q9ExNBzMKmxmxLyhKr5YqpcURkajlh1uR2Lu1ZcHHTTE3N3/leYZCkiSKmBnxMCY5T9orULwULYZP4fDyL3kefJ8KjdtiamFJ2KP7XD26n9qd+9CwzwgcSpbF3qkkB7+aReSTEEwtrLj6275Me/ffRhEzI4PJAp8ig1OlWiQmJPL7+q8pWa0OlZp3AODSwR1ZViO4d/EM53/+nu5zV1O1TZf0x51r1mfDyO5c8duT4fGXnd25ibCH9+i9dBMVGrcBoHaXvizv0TTL4yNDH9PVayXV3bsBULNTT7zbVePCri2Ur9ccqwKFKF+vGX4+C/igck2qteuafq6hVUXQd8OGDWP58uVMmDCBQ4cOKR2OIOicubk5mzZtws3Njfnz5+Pp6al0SIKQL25HJvI80XCT3MrA80QtdyKTKGOj2+2EYmZfEPRQcUtjBrnYUcNBA7JMSkredEDzggwgSdT7dAhXbT9UPMtoXnI0N8rTN8XG/cfQc9EGJEnFEd9FHPhqJtePHaJsnca4NGoNgNrYmL5fb8GxvCu/b/iG33wXU6C4M129VuZJDCoJilroftnYm8pJ1YD/ViO44rcHjaU1Zeo0ylD5oJhLFUzMLbhz4WS2bd384zesCzmm/3sAGJtqqNU56yX3JuYWGTrwRsYmOFWsTtijoNfGDYZVFUHfmZiY4O3tzeHDhzl8+LDS4QiCImrXrs3UqVOZM2cO/v7+SocjCPnCPzTeYGf100iAf2iczq8rZvYFQU8ZqyQaFjJh9mf9aDJmNuYFCutV9lFJUhGZqGVLYATNnSwUryOaF4qYG5GTcePmw76g+bAvMj1eo0MPanTokeEx12buuDZzf2V7hZzLMdBnR6bH5/8ZmuH7rrNX0HX2ihxE+IJWTp3ZNxSvq4qQVTWCp/fvEB8dydxmLlmeEx32NNv2noc8pzA1pAAAIABJREFUoIBTyUwrHwoUL5Xl8TaFimY61szahseB114d+L8MqSqCIejUqRMNGjRgwoQJNG/eHHUWyTAF4V03ffp09u3bR58+ffD390ej0SgdkiDkmfCEFO5FGf7EkgzcjUoiPCEFO1PdfVYZzh2gILyHVq9ezan9/2PFl55YlLTGPzSOu3r0hpc28OD3MIaEFBm3wmYGs1w8zfPnz/Hz8+PQoUOcuXKdXqt3v/4kA1PE3HDe6l9XaCCragSyVoulvQPd5/pkeY6FXYG8Ci/LygpAjvfiG1JVBEMgSRJLly6lVq1arF+/nsGDBysdkiDonImJCZs2baJGjRpMnz6dxYsXKx2SIOSZi0/j9Wqy621IwKWn8TQpprsKVuK2QxD0VHh4OLNnz2bAgAFUqVKZMjYmOCmQxTOnToTE8sc/ul+elFtarRZ/f3/mzp1L/fr1KViwIF27duX06dO0ql8HtVZ/tkzkheS4GH7eupGwsDClQ8mRN6kaUMCpJLERYZSoUpsyHzXK9OVYzjXbc20di/Ps4b1MnfVnD+7mOo400isWGxpSVQRDUbNmTXr27MmMGTOIjo5WOhxBUISrqytz585l6dKlHD9+XOlwBCFPyLLM5WfxueroL2xXne9Gf/ra46ZUd8BvtfebB/cGZODSs3idJusVnX1B0FPz5s0jISGBOXPmAHDhSZzeluVLcyIklgsK7Ed6ndDQULZu3Urv3r0pUqQINWvWZOHChRQqVIhVq1YRFBTE1atXWbJkCTWKWBn8vrB0spb7f/zK4EGDKFy4MK1bt2bdunU8fZr9snalvUlVhEotO6JNSeG3tUsyPZeSnExcVES255ar24TIJyFcP/YiwVtSQjzn/7c5d0G8xNgsNWnlf69rSFURDM28efOIiIjA21u3N26CoE/GjRtH/fr16du3L1FRUUqHIwhvLSwhhYQU/ZnTv3RwJye3rH6rNhJSZMITdJds0HDWdgrCe+Tu3bssW7aMadOm4ejoyIPoJPwexSgdVo74PYyhsJmRIrVE06SkpHDu3DkOHjzIoUOHuHDhArIsU7VqVQYOHEibNm2oW7cuxsaZY6xWUMO5J/o3YPFGJBULR/Vnds92/Pzzz2zfvp2hQ4cybNgwmjRpgoeHBx9//DGFChVSOtJ0aVURbubiHOca9ajdpS+/b/iG4JsBlK3TGLWRMU/v3yHAbw/uE+emZ/T/r9pd+nD6x2/ZNnUobj0GY1WwMJcO7sTI1PTfgHL/Ggo4lURjZcO5nRsxtbDExMyC4q7VqVyutMFtczEUH3zwAePGjWPx4sUMGTIEJycnpUMSBJ1Tq9V89913VK5cmfHjx+Prm3clXAVBCY9j82+1pdfpB6jUuesKXzq4k39u/039nsPe6tqPY5Ox1+hm376Y2RcEPTR58mQKFizI+PHjSdLK7DOg2qISsC8oiiStbkdiQ0JC2LBhA927d8fBwQE3NzdWrFiBs7MzGzZsIDg4mIsXLzJ//nwaNmyYZUcfwM5UTUkrY4P5eWdHAkpZGWNnqsbR0ZHhw4dz9OhRgoODWbFiBbIsM3z4cBwdHWnatCk+Pj48fvxY6bCB1KoIuf35fzxtMR9PX0pM2FN+WTmPwyu+5M75k1Rt25USVWpne56puSWD1vwP55r1+eOHtRxd9xWlqtWh6aDxABiZ5D7RldrYmK5eK5BUanbNm8i2KUO49+cfBlUVwRBNnjwZS0tLpk+frnQogqAYZ2dnli5dytq1azlw4IDS4QjCW3kcm5xvnVVjUw1qI93Pe6skeBynuy2jkqzLTQOCILzW6dOncXNzY8OGDfTr1w+/h9H4h+Zuv5LSJKCmg4ZmTpb5do3ExET++OMPDh06xKFDh7h8+TKSJFGrVi3atGlD69atqVWr1htl5w6MSGDnHcNfAunhbP3Keq6hoaHs2rWL7du389tvv6HVamnYsCEeHh506dIFR0dHHUb7wtWwePYGKbv3+uSW1exfMoPJh/7CplDe/Bw6lLCigr1pnrQlZM3Hx4cRI0bg7+9PtWrVlA5HEBQhyzLt2rXj4sWLBAQEUKBA3iUpFYS8NmvWLGbPns3169fx9PTk0KFDGBsb06tXL6oMmsKT5NQO+YXdW7m4fzv/3P6b+OhICjiVpO4ng6jTNWM53oXtqlO49If0W7Y1/TH/vdv4n9dY6n06jLbjZgGpe/abDZmYXl0pISaaX1bN59rvB4l6+g8aS2scy1Wk9egZFHOpgu/gjtz1/yPDtWwdizNp/58kJyVydN1S/j7xK88e3kWbnEKxDyvR/LPJlK5VP/348OD7eLvX4JMvvGhSujALFy7k4cOHVK5cmVWrVlGrVq08//mKZfyCoEdkWebzzz+natWq9OnThwfRSVwIjVc6rFyTgfOh8ZSzNc3T5fxBQUHpnfsjR44QFRVFoUKFaN26NZMmTaJFixYULFjwra9T2toEWxMVEYlagxpkSSMBNiYqnK1f/bN3cHBg8ODBDB48mGfPnrFr1y527NjBuHHjGD16NPXq1aNr16506dKFYsWK6SZ4dF89ICk+DmPNi9KRSQnxnNu5iQIfOOdZRx8MqyqCoRo8eDDLly9n/PjxHDlyRGybEN5LkiSxbt06XF1dGTFiBNu2bVM6JEF4rW7dulGyZEnmz5/PmTNnWLZsGdXvPKar10oAzu74jsLO5XFp1AqV2oi/jx9m9/wvkLVa6nYfmG2753ZuYte8CTQeMJaWI6Zme9zP8yYQ4LeXut0HUsi5HLHPwwm6dJYndwMp5lKFJgPHER8dSeQ/IbQbn5pPy8Q8Nat+QnQU53/+niqtO1O7c28SYqK5sHsLG0Z0Y/jmwxQtXynDtU7s2c6F5DiGDh2KJEl4e3vTuXNn7ty5k+3K0zcl7jwEQY9s376dM2fOcOTIEZAk9v+7fN9QO5z7g6IYUsEO1RvecMfHx3P8+PH0Dv7169dRq9W4ubkxefJkWrduTdWqVTOVYntbKkmiXQkrtgRmn9hNn8mAewmrXP3cCxQowMCBAxk4cCBhYWHs2bOH7du3M2HCBMaMGYObmxseHh54eHhQvHjx/AsesDdVY6qWdJaU5/sJ/bAt4oRjeVfioyO5dGAHofcC6T737ZLwvMxULWFnKnbO5TcjIyMWLVqEu7s7+/bto3379kqHJAiKKFq0KKtWraJHjx506tSJTz75ROmQBOGVSpUqxe7dqeWPR4wYgaWVFat9fKjfaziO5SoyZO3uDAPzbp8MYv2Ibpzcsjrbzv6pH3zZv3g6zT+blL49Lzs3TvxKrY970e5zr5ceHZX+f2XrNObUVl/iIiOo1q5rhnPNrG35Yv+fGBm/WE1Zq3Nvlnauy+lt6+gy85sMx4c/fsSlW4EULGAPQPny5enYsSOHDx/G3d39lXHmlrjzEAQ9kZCQwOTJk2nXrh1NmzbldmQizw10ZhlSO5zPE7XciUzK1XmBgYEsX76cdu3aYW9vT6tWrfjpp5+oV68eO3bs4OnTpxw/fpypU6dSvXr1PO/opyluaUxNB43B7d2XgFoOmrcq02hvb0+/fv3Yv38/T548YePGjRQoUIDJkyfzwQcfUKdOHZYsWcK9e/fyLO6XSZJElQK6+9mXrduEoMvnOPj1LI74LkZtbEKP+b5UbdMlT9qXgKoFNGKWWUfatm1Ls2bNmDhxIklJuXv/EYR3ySeffEL37t0ZPnw4wcHBSocjCK80YsSIDN8PGzESgBun/AAydPTjoyKJCX+Gcw03wh7eIz4qMlN7x75bzr5F02g92vO1HX0AjZUNDwL+JDI09/mLVGp1ekdfq9USGxGONjmZYi5VefT3X5mOr9yiI1a2tunfN2jQAIA7d+7k+tqvI2b2BUFPLF++nPv377N//34A/EPjDXZWP40E+IfGvXLfeExMDEePHk2fvb99+zbGxsY0bNgQLy8vWrduTcWKFRXpKDUqakFgRCKRBjLoIgHWJioaFrXIszZtbW3p06cPffr0ISIign379rF9+3amTZvGhAkTqFWrVvqMv7Ozc55dV5dVEer3HPbWmXVfRQaqFsx9oj/hzUiSxJIlS6hWrRpr165l+PDhSockCIpZuXIlrq6uDBo0iP3794tBR0FvlS1bNsP3JUuVRlKpCA9+AMC9S2fxW+3N/b8ukBSfsRR1fHQkGivr9O/v/vkHN07+SqN+o2jYd2SOrt9mjCfbZ45iQZsqFHOpQvl6zanu3g17p5I5Ot9/7zZObvYh9F4gKckvBprtipXIdKytoxMpWuDftFJ2dnYAhIeH5+hauSFm9gVBDzx9+pQvv/ySIUOG4OLiQnhCCveikgyig/kqMnA3KonwhJQXj8lyek37Fi1aYG9vT/v27Tlw4ACtWrViz549hIWF4efnx4QJE3B1dVXs5sRYJeFewspg/h3Slu8b51MxdxsbG3r27MmuXbsIDQ1l69atFC9enJkzZ1K6dGlq1KjBggULuHXr1ltf612sipATsiyTrJWJT9ESm6QlPkVLslZG5NLNnSpVqtCvXz9mzpxJRIRhbscRhLxQoEABvv32Ww4ePMjatWuVDkcQckytfnEH8OzBXb4d1oXY589o97kXfZdtZaDPDur9O1Avyxnr1hd2/hCHkmW4uH87YY+CcnS9yi07MXHPedp/MR9rhyIc37SSr7o2SF9Z8CoX929nx8xR2BcvSWfPr+m/4kcG+uygdK0GyFptpuMllRp1Fr3w/PisFzP7gqAHvLy80Gq1zJo1C4CLTw1/Vj+NBJx9FEHspd/TZ+8fPHiARqOhSZMmLFq0iDZt2lCmTBm9nHEobmlMcycL/B7GKB3KazV3ssjThIivYmVlRY8ePejRowfR0dEcOHCA7du34+XlxZQpU6hatSoeHh507dqVcuXKvdE1ajhouBdl2MuwZaCGg1nWz8kyYQkpPI5N5nFsMiGxyTyOSyY5830BRiooYmaEo7kRRf79sjdV6+XfjL6YM2cOP/74I/Pnz2fBggVKhyMIimnbti2DBw/m888/p3nz5m+8CkuWZVJkSJZltFpQqcBIklBLiPci4a0FBgZSqlSp9O/v3b6NrNViV7Q4148fJjkxgT5ffY+to1P6MbfPn8yyLXNbe3ouWs/qAe6sG9aFYev3Ye1Q5LUxWDsUoW63AdTtNoDosFCWf9qMo99+Rfl6zYHsf88DjuzF3qkkvRZ/l+EYv9ULs72WkY7+ZkRnXxAUdvPmTXx8fJgzZw6FChVClmUuP3vzUnt3Lpxi7ZBODPbdhXPNenka65uQgdMPw5nj4UH58uXp0qULbdq0oUGDBpiZZd0J0jc1HcxISJE5ERL7+oMV0sDRnJrZdCrzm6WlJd26daNbt27ExMRw8OBBduzYwfz585k+fTqVKlWia9eueHh44OLikuN239WqCOEJKVx8Gs/lZ/HpSQhVQBZ9/HTJWngYk0xwTHL6cabq1NwG1Qpqcrxy4H1SrFgxJkyYwMKFCxk2bBglS5ZUOiRBUMySJUvw8/Ojb9++/P77768tSysGIwVdW7lyJS1btkz/ftWK5QCUr9eMu3+eBjLOfMdHReK/54ds27MpXJSBPjvwHdSebz/zYMi6PVjY2md5rDYlhcTYmAxbASztHbB2KEJyYmL6YyZm5sRHZ84PIP2bP0qW5fTf+/tX/Ln/1wVsijhlOl4lpX7pgujsC4LCJk2aRNGiRRk7diwAYQkpOstCritmVjZcCrxL5dKZ9y0ZCrfCqR1pfezwN3Q0p25h/Rg4sbCwSN/DHxsby+HDh9m+fTve3t54enpSsWLF9Bn/ihUrvrKtd6kqglaWuR2ZiH9oPPeikjKt3HlVR/9lLx+XkCJz/kkc557EUdLKmBoOGkpbm7xx9Yt30cSJE/H19WXq1Kls3br19ScIwjvKysqK7777jsaNG/PVV18xYcKELI8Tg5GCUu7evUuHDh1o3bo1p0+f5vvvv6euuweO5VwxMtGgNjZh09he1O7Sh8S4GM79bzOW9gWJevpPtm0W/MCZASu34zukExtGdGPQmp/RWFplOi4hNpoFrSvj2rw9jmVdMTG34NbZYzy8epG2L2XnL+ZShb9+2cW+JTNwqlgNUzMLXBq14sMGLbn6236+H9+XD+u3ICw4iLM7NlLIuTwJsZlXhloZq3Q2GCb27AuCgo4dO8auXbuYP38+Gk1qAq/HsckKR5U/jOxev3xKn0mSRL0i5jR3Sk1+p3R3Ku36zZ0scCtirpczKObm5nz88cds3bqV0NBQdu3aRbVq1fjqq69wdXWlQoUKeHp68tdff2W7T+1dqIrwIDoJ32vh7LwTRdC/2xLyajgvrZ2gqCR23onC91o4D6INe+tDXrK0tOTLL7/khx9+4Ny5c0qHIwiKatiwIZ9//jnTpk0jICAg/XGtLBMYkcC2WxGsuRbO+SdxGSYd3mYwcs21cLbdiiAwIgGtyD0ivMKPP/6IqakpkydPZv/+/YwcOZIZX/mgAhxKlqGn93qQJA58PYuzOzZSu3Mf3HoMeW27RcpWoP/ybTy9f5tNY3uSFJ85+a+xxow6XQcQciMAvzUL2b9kOk+DbtFxijcNen2Wflydbv2p0qYL/nt+4MepQ9njPQWAGh160GrkNEJuXmXvoqkEnj5K9y9XUaxClSxjsjHR3QCYJIusP4KgCK1WS+3atVGpVJw5cya9hNyRh9H4h8bn+MP1v/RtGT+kLlWq6WBG02J5lyVeSQ+ik9gXFKVYlv60rPvuJax0tkc/LyUkJPDrr7+yfft2du/eTUREBOXKlUuf8a9SpUqGwYskrcy66+EGVxWhb3lb/ngcywUdVtZIu05NBw2NilrkW7JGQ5KSkkL16tWxtrbm+PHjejkwJgi6Eh8fT40aNTA1NeXMmTP8kyixPyiK54nafHufSmvX1kRFOwP93BLyz6xZs5g9ezahoaEULFgww3NXw+LZGxStUGT5p0MJKyrYm+rkWmIZvyAoZOvWrfj7+3PixIkMteJDYpOz7OiHBz/g2Mbl3D53nOePH2GsMaN0rfq0HTsLu6IfvPZ696/4c8R3Eff/ukBKUhIFnEpSs9On1Pt0aOp1b17l5BYf7v55hqjQx2isrClfrzltxs7KsMfJb7U3R3wXMX7XWY5+u5RrRw8iI+PapB0dJi/ExMw807W1MgTHvDuzjcUtjRnkYsex4BidduRkrRYkcDHX0rZcYYPtyJmamuLu7o67uzuJiYn4+fmxY8cOfHx8mDdvHmXKlEnfClC9evX0qgiGspxfBmoXMmPjjedEJmrTH9PVtSG1dGdgRKLBDgjlJbVazeLFi2nZsiU///wznTt3VjokQVCMRqNh06ZNNGjUhIW7j2Fcplr6yqn8ep9KazciUcuWwAgxGCnkWBHzd7OrqsvXJZbxC4IC4uLimDp1Kp07d6Z+/frpj8uyzOO4rJfxP7x2kfuXz1G55ce0nziPj7r05fa5E/gO7kRi3Kv3kQee+R3fQR14cucm9XoMod3ns3GuVY+/T/yafsyts8cIexhEjQ49aP/FfCq3/Ji/ftnFd6N7ZLnE+ofJg0iIiabVqOlUbtER/73bOOK7ONsYHsclv1Plw4xVEs2dLOlZ1gYbk9S30vy6bUlr19pExU8T+rJ15ph35ibJxMSEtm3bsn79eh4/fsyhQ4do1KgRvr6+1KxZk9KlS/PFF1/w+PolmhfLPJCkj8rZmvDrwxhFVyLIQOS/N9YXQjMvWXzftGjRgjZt2jBp0iQSX0q2JAjvo0LlKzPj8CXUzpUBZQYj110XW46E17M3VWOqfjfud9KYqiXsTHXXBX83h0sEQc999dVXhISEZCoHlSKTZaZbgA/rt6BS8w4ZHnNp2Aqffm0IOLKP6u7dsjxPm5LCz3MnYFWwMKO3HcXMyib9uZc733W69qdB7+EZzv2gck22TRnCvYtnKFW9bobnipavRJeZ36R/H/s8nAu7t9BmjGeWcSRrU2f437H3bIpbGjOkgh13IpPwD43jbhbJ195UWjupydfMcLY2xmZAT3r37s3AgQMzZK19F5iYmNCqVStatWqFj48Pv//+Ozt27GDDhg0sWrSIEiVK0HvWUiyqNFQ61GyVsDTm5vPUzqTSQ1tp1/d7GENCioxbYbP3egn7okWLqFy5MqtWrUpPiCoI75sLoXH4PYxBZW6tF4ORzZ0sFKskI+g/SUpN9Hj+SZzin6l5QQKqFtDo9LNYzOwLgo79888/zJ8/nxEjRlC2bNkMzyW/YubbWPPiwzAlKYmY52EUKF4KjZUNwX//le15wTeuEP4oiHqfDsnQ0YeM9UJfbj8pIZ6Y8Gd8UKlGahtZtF/bo1+G70tWq0Ps8zDio6OyjeVVr8+QqSSJMjYmdC9jw9AKdtQuZJZhJDqnk/AvH2eqlqhdyIyhFezoXsaGMjapWdZ79uxJo0aNGDFiBPHx8Xn8SvSHsbExLVq0YM2aNYSEhHDkyBHatGmD76TP+GXlfKXDy1IJS2OC9HSm6kRILH/8837P8FesWJFBgwbh5eVFWFiY0uEIgk7Jssypx7H4PUzNDK70p/HLg5GnHse+Uyv/hNyZNWsWsixn2q+fplpBjeK/r3lFBqoW1Oj0mmJmXxB0bObMmRgZGeHpmXkGXPuKrHxJ8XH8vuEb/Pf8QOSTkIy1RrOo+Zkm7MFdAIqUeXV989iIcI74LuKvw7uIDgvN8FxWHXjbIsUyfG9mnTqQEBf5PMuyJgApWuAdr8BjZ6qmSTELGhc1JzxBm1qjOC6Z4Jik19YoLmphTBGz1BrFdqZZl2WRJIlVq1ZRpUoVFi1axIwZM3TwqpRlZGRE06ZNadq0KStWrODEiRMcPH0A2zqt0Wq1qNXKfZSlrb4oZ2PCzQj9Xh5+IiQWU7X0Xs+ieXl5sXXrVr788kuWLl2qdDiCoDN//BOnl6Vj4UVJ23pFDGOrlqBbdqZqCqkS+SdJjaQ23JtIidSVmrouRSk6+4KgQ1evXmXt2rUsWrQIe3v7TM+rXrHWZo/3FPz3/EC9T4fyQeWaaCytkSSJH6YMQZbfNHf/C1snDeL+X+dp0HsERcun1hiVtVo2jOyemhguU6zZvVllP/6qfo/WEkmShL1Gjb1GTQVSM67KsoxWTl3hkKJN/XkYSRIqiVwt6apQoQLjx49n3rx59OzZE2dn5/x6GXpHrVbTuHFjGjeGoMgE/hf4jHhZiyTp/pcrLet+7UJm/Powcx1dfeT3MIbCZkbvbdK+woULM3nyZGbPns3w4cMpU6aM0iEJQr678ER/O/ppxGCkkJXg4GBmz57NyZv36b10s9LhvBUZqKHA7/d7dOstCMqbOHEiJUuWZMSIEVk+b/SKDl+A316qu3en3edeVGregbJ1GlOi6kfER706Q7l98VIAPL51Pdtj4iKfc/vccRr1G02LzyZRsWk7ytZpjL1TiRy8qpx71et7H0iShFolYapWYW6swlStQq2S3mjv1owZM3BwcGDUqFHv7fLHEtamjKzmSK1CqbNB2pQUnVw37V+rpoOGvuVtOfckLt+SM+Y1CdgXFEWS9v38nQEYN24chQsXZsqUKUqHIgj57kF0En6PDGcwUiTtEwCeP3/O1KlTKVOmDDt27GBA+5bYGEsG81n7XxKppSedrXU/0C46+4KgI7/++isHDx5k4cKFmJpmXVtTLaUu6c6KpFbDfzp1p7ete20Hp+iHlbErVoJTW32J+8/AQFonUfp3lv6/ncZTW9a8su3cMFLlfO+68HoWFhYsW7aMAwcOsHv3bqXDUUxaVYQ6qqeEB98H8r8qgo2Jip5lbWjmZMkfj2MVzbqfW2mJsY4HG8bNf34wNzdn3rx57Nixg1OnTikdjiDkmyStzL6gKIPpIInBSCE+Pp4lS5ZQunRpvv76az7//HPu3LnD+M/H4V5SuaSSb0sG3EtYoVJg0kss4xcEHUhJSWHChAnUq1ePLl26ZHucJEkUMTPiYUzm8nsfNmjBxQPbMbW0prBzee7/dZ5b545jbpt5O8DLVCoVnaZ4s2lsL5Z90oQaHXpgXbAwT+4F8uT23wxYtR2NpRWlqtfl+MYVaJOTsC7kSOCZ3wl/FPTWrz1NETOj9zoTeH7o2LEj7dq1Y/To0bRo0QILCwulQ1LM6vmzOHf+PAfOXeFyeFK+V0VQSRIPopO4EGp4SRJl4HxoPOVsTd/b5fw9e/bk66+/Zvz48Zw+fVq8NwnvpGPBypYAza2XByObOVkqHY6gQykpKWzevBlPT0+Cg4MZPHgwnp6eODo6ph9T3NKYmg4a/EPjDeZ3GlLvIWo6aHBS6PNWzOwLgg5s3LiRv/76iyVLlrz2ptLR3CjLP8z2E+dRrV03Lh/cyf6vPIl8+g8DfXZiYvb6Dl45t6YM8v2ZgiVKc/L7VexfOoPb507wYcNW6cd0n7eGcnWbcPqn9Rxe/iVqIyP6Ld+W25eaJZUERS3ez05FfpIkiWXLlhEaGsqcOXOUDkcxN2/e5KeffuKLiRP5sIB59lURINPqmKzkpCqCVpbZb0AzZv8lAfuDotC+p1tAVCoVS5Ys4ezZs/z4449KhyMIeS5tMNLQ/sLTBiPFcv73gyzL7NmzhypVqtC/f3/q1KnDtWvX8PHxydDRT9OoqAXWJiqD+exNy+3TsKhykzGS/L5u9hQEHYmOjqZcuXI0atSIH3744bXHXw2LZ29QtA4i060OJayoYJ/19gXh7cyZMwcvLy8uX75MhQoVlA5H5wYMGMChQ4e4c+cOGk3GkjayLOe4KkJiXCzJYY8pbq2h9ofOFLc2y7YqQmBEAjvvZF9m0lB4OFtTxsZE6TAU07FjRy5fvszff/+d6XdHEAyVVpbxvRZOhAHN6r9MInW71JAKdoosexZ049SpU0yaNIlTp07RtGlTFixYQK1atV573oPoJLYEvjpflT7pWdZG0VV0YmZfEPLZ4sWLCQsLY/78nNUGL2IqkLaxAAAgAElEQVT+bu6ueVdflz6YOHEipUqVYvjw4e9dsr6goCA2b97MhAkTsuyspVVFqGBvStNiFvQqZ8v4ygWYWKUA4yrbM9rVnrGV7Ijfs4qZ9Urw4/jeDGlUhYZlizFmcD/27t1LfHzmpfr+ofEGM7OQHQnwD41TOgxFeXt78+jRI5YtW6Z0KIKQZ25HJvLcQDv6kDq7/zxRy51IMbv/Lrp69SodO3akfv36xMTEcPjwYfz8/HLU0YfU5fzNnQxj22JzJwvFt8uJzr4g5KPg4GAWLVrEmDFjKFmyZI7OsTdVZ1h6/C4wVUvYmYq3m/yi0WhYsWIFx44dY8uWLUqHo1OLFi3CxsaGoUOH5vic/1ZF0BipadSwAQB79+7lypUrjBs3jj///JOOHTtSqFAhevbsyc8//0xcXBzhCSnci0oy2BvpNDJwNyqJ8ATdVDHQR+XLl2fYsGHMnTuX0NBQpcMRhDwhBiMFfXT//n369+9P5cqVCQgIYOvWrfj7+9OyZctc502p6WBGA0fzfIo0bzRwNNeLUpLi7lsQ8tH06dMxMzPLVYknSZKoUkBj8B/UaSSgagGNSICVz1q2bEm3bt0YP348z58/VzocnQgJCWHdunWMGzfurZMTOjs7A3D37l1cXV2ZNWsWV69e5erVq0yYMIErV67QuXNnHBwcmLNhO8hZ7AMwQBJw6anhJRnMSzNnzkSSJLy8vJQORRDemhiMFPTNs2fPmDBhAuXKlePAgQN88803XL9+nR49eqBSvXlX1K2w/nb4Gzqa41ZY+Y4+iM6+IOSbS5cu8d133zFr1ixsbW1zdW61ghqD/6BOIwNVC4q9sLqwdOlSYmNjmT59utKh6MTSpUsxNTVlxIgRb92Wk5MTRkZG3LlzJ8PjFSpUwNPTk7/++ou///6bKVOmYOtaB6S3+/gMD77PlOoO+O95fR6PvOY7uCO+gzsCqX+fl57Fv3fbP15WsGBBpk2bxurVq7lx44bS4QjCW7n41PBn9dOIwUjDFhsby/z58yldujRr1qxh6tSp3Lp1i5EjR2Ji8va5YiRJol4R8/Ql/Ur/3qddv7mTBW5FzPVmkkt09gUhH8iynD6KmZvlxWnsTNWUtDJW/I3rbUlAKStj7EzVSofyXihWrBheXl6sWrUKf39/pcPJV8+ePcPHx4eRI0fmejAtK2q1mhIlSmTq7L+sfPnyDBs/CROL/CkJ9ffJX/Fb7Z0vbb9KQkpqEsP32ahRoyhWrBhffPGF0qHkKVmWSdbKxKdoiU3SEp+iJVkrv9eDO++qWbNmIUkSl5/pNgP/9pkjWdiueobHplR3yPBe5r/nB6ZUdyA8+H6u2haDkYYpOTkZX19fypQpw8yZM+nbty+3b9/G09MTKyurPL9eTQczepa1UTRLf1rW/Z5lbfRi6f7LRMYsQcgHBw4c4MiRI+zevRtj4zdLzFHDQcO9KMNOTiMDNfTsTe9dN2rUKL777js+++wzTp8+jVr9bg60LFu2DFmWGTt2bJ616ezs/MrOPsDj2OQ8uZatY3G8Tj9AbfTi/eHGST/O/LSe5sPyt8M5YNX2TI89jk3GXvNu/q7khEajYcGCBfTo0YPff/+dxo0bKx1SrsmyTFhCSmrlidhkQv6tQJFV5QkjFRQxM8LR3Igi/37Zm6r1ZiZKeHMJKe9WxzhtMPJ9fn8yFLIs87///Y+pU6cSGBjIp59+ipeXV/o2ufxU3NKYQS52HAuO4cK/OSt08ZeQdp2aDhoaFrXAWKV/76Gisy8IeSw5OZmJEyfSuHFj2rdv/8btlLY2wdZEZfClc5ytlc1C+r4xMjJi1apV1K9fn3Xr1r3RyhJ9FxkZybJlyxgyZAgODg551q6zszNnz5595TGPY5NRAW87Dy5JEsamymxvMTLOuHxSJcHjuGQq8H6XxuzevTtff/0148eP5/z582+1l1SXwhNSuPg0nsvP4tM7eq/7HU3WwsOYZIJjktOPM1Wn5oupVlAjVmMJeapau25UbvUxRiZv9h7zvg9GGoKjR48yefJkzp07R+vWrfnxxx+pWrWqTmMwVkk0d7KkvK0p+4OieJ6ozbdOf1q7NiYq2pWwUjzj/qsYxieZIBiQdevW8ffff7NkyZK3miVRSRLtSlgZZEcfUt8E3UtYiRq5CqhXrx4DBgxgypQpPHnyROlw8pyPjw+xsbFMmDAhT9tNm9l/1ZLRkNgXnSO/1d5Mqe5AaNBtfpz2GbMaOvNl0w/5ZdV8ZFnm+eNHbBrXm1kNSjG3RQVObF6V3s5/9+xvnzmSMz+tB1KXwKZ9pbl8+GeWf9qMmfVLMqtBKb7u1pBTW9ekP58Wy39ltXz25T37AFoZgmMMexVRXpAkiaVLl/Lnn3/y/fffKx3OK2llmcCIBLbdimDNtXDOP4nLMKOb08Gol49LSJE5/ySONdfC2XYrgsCIBLRi+bTB0ccbe5VajbHpmyXqTRuMFPTTpUuXaNOmDU2bNgXgt99+4+DBgzrv6L+suKUxQyrY4eFsTUmr1E54Xt2JprVT0soYD2drhlSw0+uOPujne4IgGKzIyEg8PT3p3bs31atXf/0Jr1Hc0piaDoaXmV8CajlocNLzN8B32cKFC5EkiUmTJikdSp6KjY1lyZIl9O/fn2LFiuVp287OzkRGRhIWFpbl87IsZ3nT+cPkQciyltajZuDkWp2j65Zyassa1g/3wLqQI61He1KgeCkOfDWTu/5/ZNl27c59KVOnMQDd5qxK/wIIPPM726YMwczaltajPWk1agbONdwIunwub144qTfTYl8suLm54eHhwdSpU4mNjVU6nCw9iE7C91o4O+9EEfTvVq+8+pdLaycoKomdd6LwvRbOg2gxEKRvTp48Sa1atdBoNOnJz9K8PIBzcf92ln/ajBl1i+PVuCw/TB7M88ePMrR198/TbPliAAvaVmX6R8VY0KYK+xZP5//snXVc1OcfwN93R3dOQDAQVNTNbh06RexAZ+sMpk5nbNb0p4LO7pizY86aLixmoc6cU6xZmwgGBooS0nH3/f3BuMkAqYPj9Hm/XrzkvvfE54sXz6dTk7K2vbt54leWftyUqQ2cWfpxU24eD8iTvNkZHee1q8XmUb25f+U8K/u1YmoDZ+Z3qMPlAz9kmquSIPjpC8aMGYOLiwuGhoa4ubkxb948VKp3u9aINrl37x59+/alZs2ahIaG8uOPP3L+/HmaN2+ubdGAdIeZm6UBPdwsGVrFmnrvGWdqa53XaPvXxxkqZNR7z5ihVazp4WaJm6WBTji0RBi/QKBB5s6dS1xcHLNmzdLYmp5OpgTHpPBKR8L5M4qUfOhUuFZogsJhZ2fHnDlzGDp0KIMGDaJp06baFkkjrF+/nsjIyCIxYrzefs/W1jbL80qJbPOfXarWosuURQDU8+nP/Pa1+HXJNLxHTsFzwCgAqrf2YY73+wTt20752o2yrFG2el3syrhy9/xv1Gz3cabn/jp9FEMzcwat3IW8iGowpKnSD9WKkn9uKXLmzp2Lh4cHS5Ys4X//+5+2xVGTqpIy5aNC0eWkZqwbk6JiW3AMdeyN8Cyh+ajvGtevX6dVq1bY29vj7+9PWloafn5+lCpVKtO4E+sXc3TVXN736kTdLn2Jj3rJ7zvXs9a3IyN3HMfY3DJ9vcB9pCYl0qDbAEwsbQi7eZnff1hPzPMn9Jm/Ub3end9PsG38QN5zrYT351NIiInkR/9RWJZyKvC9RD66x7YJg6jTqQ+12vcgaO92fvQbSWmP6pSqUBmAlMQEpg9sR8rLcIYOHUqZMmU4d+4ckyZN4unTpyxdurTA+wvyz/Pnz5k5cyarV6/Gzs6ONWvWMGjQIPT0Sq5KaW2ooHlpU5o5mRCVrEqva5KYxpP41FzrmjiZ6uNgnF7XxNpQrpN1TUru/4xAoGM8fPiQJUuWMG7cOJydnTW2rr5cRvuy5mwLjtHYmkVJRvi+OBRqH19fXzZs2MDw4cO5fPlygYtFlhRSUlJYsGABvXv3pnz58hpfP0PZDw0NpU6dOlmeT8vB812nS1/173KFgtJVahDz7Al1OvVRXzc2t8SubAUiHz3It1zG5pakJiYQfP43KjVuke/5eSVNklDoXByR5qlQoQIjR45k7ty5DB48GAcHB22LRFhcKgcexPIqJf1UWlyG34x9LkUkERyTQvsSnpv6LjBt2jQkSeL06dOUKVMGgK5du/L++++rx0Q9CSNwzXy8hk+i+eAv1NerftSOFb0/4vyujerrbUZNQ9/o30K69br2x9alPEe+mUX000dYOaafZw4tn4GZjT3DNhzAyNwCgPK1G7Fx+MdYOboU6F4i7t9lyPp9lK/VEID3W3ViXpsaXNq3g7ZfTAfgzLZVvAy7x7UrV6hcqSIAQ4cOxcnJiQULFjB27FhcXAq2vyDvxMbGsnjxYhYuXIhCoWD69OmMHj0aE5OS2ec+O2QyGTZGCmyMFOoaNZIkoZLSv/+UKlDIQU8mQy5DJxX77BBh/AKBhpg8eTKWlpZF0rrJxUyflqV14wO1pbOpOAyWEORyOatWreLWrVssX75c2+IUmi1btvD48WMmTZpUJOtbWVlhbW2dY0X+nCJGrRwypxMYmZmjZ2iEqbXtf65bkBibf6Ndg+4DsStTgc0jezKn9Qf86D+Kv88ey/c6uaEUEbFq/ve//6Gvr4+fn5+2RSEoIpFtwTFaje6SgFf/ePmDIrKGdwuKB6VSyeHDh+ncubNa0Qfw8PDAq1Ur9eObxwOQVCre9+pEfNRL9Y+57XvYubgSGnRWPfZ1RT8lMZ74qJeU/aAukiTx5O/rALyKCOfp3zeo1aGHWtEHcG/QjPdcKxX4ft5zraRW9AHMrO2wK+uWySh6/eh+ytVsgLmVFS9evFD/tGzZEqVSyalTpwq8vyB3UlJS+Oabb6hQoQJz5sxh2LBhhISEMGnSJJ1S9HNCJpOhkMswVMgx0ZdjqJCjkMveGkUfhGdfINAIFy9eZNu2baxZs6ZIeohKksSWmV9xM1Efr+FFo+hogqaOJiWuv+i7Tq1atRgxYgR+fn706NFDo1EnxUlaWhpz587Fx8cHDw+PItvnTe33cirOLpdnDa3PsZJ7AfLizWzsGbnzBMHnTvD3uWPcOXuMS/t2ULN9d7rPWJk+KIeDiUqlzPM+CmH+V2NjY8O0adMYO3YsI0eOpFq1asUugyRJnHuWyOmn6bUDtJ3GlbF/4KN4kpUSjUoZv1UHYl0gIiKCxMRE3N3dszznVrESHDwIwIuw9EKjizrXz3Yd+WstP6OfPuLo6rncPnmYxFfRmcYlxb1SjwGwc8naQs2+rBuP//qzQPfzX0MpgLGFJYmx/8rxMiyU8OCbODuUyjIWKFFFaCVJSk/3kiRUqvTvDD2ZDIUOeolVKhU//PADU6ZM4f79+3zyySf4+/tnMjIJdAOh7AsEhUSSJMaOHUvVqlUZNGiQxtdXqVSMGDGC1atXs3rNGqo5mqgPfyWJDx1NaFhKKPolka+//ppdu3bxxRdfsHt31h7rusCuXbsICQkpcvnLly+fo7KvV8SHtTcdBvX0DfDw9MbD0xuVSsXeORO48NN3fOQ7FrsyrhhbpOffJsbGqHNx4d9Del4o6vvTNYYPH87KlSsZP348B/9RooqT1xX9kkaGXI0ddN+z97bw+rtXUqmQyWQMWLEz2zofBsbpNXVUSiUbhncjMSYazwEjsS/njoGxCTHPn/Kj30ikIi6AJ8vGUApkKhYqqVS4NWjGMv9JGGRjkaxYsWKRyfcmJEkiMlmZnv+dkMbTf/LA35T/7WiSnvvtYKKHjaGiRBoAJEniyJEjTJo0iStXrtCxY0f27dtH1apVtS2aoIAIZV8gKCR79uzh9OnTHDx4UOMFSlQqFUOGDGHjxo1s3LiRgQMHAukVQQMfxRdZ/9C8krF/S2dT4dEvwVhaWrJ48WL69OnDoUOHaN26tbZFyhcqlYpZs2bRtm1batasWaR7ubq65mhQUMjSD23ZHeY0gYFxuuL0X4U9PjoSUysb9WO5XI6DexUAlKkpANg6lwPSK2tX8Uz//01JjOfy/syVrXNCplISFHQRdzc3bGxscp/wDmBgYMC8efPo2rUrR44codVrYdJFTdDzkqvoZ3D6aQKGCpn47C9G7O3tMTY2Jjg4OMtzd+/cUf9u61wOSZKwLl0W+7IVclwv/O4tXjwI4eMZ31CrfQ/19eDzv2Ual5G3/yIsqyE04sHd/N5GvrBxLkdKQjzeXl4oSkAtoKhkJVdeJHHtZZK63aWcN7e7TFPBo/g0nsT/27rVUCGjuq0RNe2MsDYsmsKr+eXixYt89dVXHD9+nMaNG3PmzBkaN26sbbEEhUQo+wJBIUhJSWHChAm0atVK4wqUUqlk0KBBbN26lS1bttC3779FwOrYG1PKWE9dsEkbCn9G1X1RsEk36NWrF+vXr+fzzz/nxo0bGBkZaVukPLN3715u3brFunXrinwvV1dXHj58SGpqapaChjKZDAdjPR7FF03P59Ie1QHYP38y7g2bI1coqO7dhZ+//oLEmChc6zbFspQj0U8fcW7nehwrVcO+fLpXy71Bc6wcnPl5+hgi+o9ArlAQtHc7pta2RIe/2bsvSRL3rl7gK9+OQHoIu5ubG+7u7ri5uWX6PbsuBW8zXbp0oWnTpowbN44rV66gKKJuCK8TFpdK4OP4It9HEwQ+iqeUsZ74DigmFAoF3t7e7Nmzh4cPH6pDqm/fvs2RI4fV46p+1I7D38zk2NoF9Ji5KpMHWZIkEmKiMLWyUacgZfKkSxJnt6/NtK+FvQOOlapxef8PNBswWp23H3z+N56H/l3gAn154X2vThxbM5+jRw5nOWdFR0djZmZW5JXgVZJEyKsULkUkcT82NYujJa/239fHJSslLj5P5MLzRMqZ61Pb3ogKFtpp5Xbnzh2mTJnC7t27qVq1Kvv27aN9+/YlMvJAkH+Esi8QFIJVq1YRGhrKzz//rNF109LS6N+/P7t27WLbtm307NkzyxgXM318PawztWIqDqU/Y5869kZ8KFox6QwymYyVK1dSvXp15s2bVyIKj+UFSZKYNWsWzZo1o1GjrC3rNI2rqytKpZKwsDB1df7XcTTRy+Sd0SRVP2pPw56+/Hl4D1d/3Y0kSVT37kLNtt248NMW/ti9icTYGMxt3+ODVp1pOXS8ujaAQl+fvos2s3fORI6umou57Xs07j0UYwtLfvQf9cZ9FXIZnZs3ZtjlywQHB3P37l31v4GBgTx79kw91traOpPy/7pBwNbW9q07HMpkMhYtWkS9evXYvHkzgwcPLtL9UlUSBx7Eaj1qK6/IgAMPYvH1sBbfBcXE9OnTOXToEE2bNmX48OGkpaWxYsUKqlatyp9/pufO27qUx2v4JA6vmEn0k4dUadYWQ1MzIh8/5OaJAOr59OfD/iOwL+eOjXM5Di7x59XzpxiamnPz+IEsufsA3p9P4bvRvVk9uD11OvYm4VUUv+9cT6kKlUlOKDrj1If9RxBy5jAdOnRgwIAB1K5dm/j4eK5fv86PP/7I/fv3sbOzK7L9w+JSCXgQS3SKSuMtLzPWeRCbyv3YVKwM5LQrRgfK06dPmT59OuvXr8fJyYlNmzbRr1+/YjFqCooPmSQVoFqQQCAgKioKNzc3fHx8NOpxTE1NpU+fPvzyyy/s2LGDbt265Trnv19GRfGmzli3uL+MBJpl8uTJLF68mJs3b1KhQs7hnSWFw4fTvTlHjx6lZcuWRb5fSEgIbm5uOe53MzKJ/Q/iilyO4qZjWXOq2Bhm+1xsbCwhISFZDAHBwcGEh4erx1lZWWVrCHB3d9d5Q0CfPn04fvw4wcHBmJmZFdk+gY/iuBSRpBOKfgYy0o2/LZyL7u8iyMypU6f48ssvuX79Os7OzkyYMEGtuM27HKE2Rt44doCz21arq+pblipNhXpNadRriDq8/3noHfYvmMzD60HoGxhRpXlbGvYYzPKezejmv5zaHXup971x7ABHv51D5OMH2DiXo9XwSdw6eZDQoHNMDLisHjeplj0thoyn5bD07kSX9u3gR/9RTDhwCWun9GiEee1qUapCZQYs357p3tZ+2gmAIev2AiCXQVUTJWc3L2P37t08fPgQCwsLKlasiI+PD6NGjSqStrKpKkmrzhTPInSmxMTEMH/+fJYuXYqRkRGTJ09mxIgROhXxJ8g7QtkXCArIuHHjWL16NXfv3tVYH+aUlBR69uzJgQMH2L17N506dcrzXJUkEfoqlUsRidzLJsysoGSsU95cn9r2xrha6GslzEygGRISEqhSpQoeHh78+uuvJV4B+/DDD0lOTub8+fPFImtqaipGRkasWrWKIUOGZHn+ZVIa625n9XrpOkM8rLExyr83Jy4ujrt376p/XjcEPH36VD3O0tIy27QAd3d37OzsSvzr8MGDB1SqVImJEycyffr0ItkjLC6VbcH5b81YUujjbimMwFrmXTRGFgVhcalvZZpkUlIS3377LbNmzSIxMZEvvviC8ePHY2VlpbE9BCUPEcYvEBSA0NBQVqxYwZQpUzSm6CcnJ9OtWzeOHDnCL7/8Qrt27fI1Xy6T4WZpgJulAVHJSq6+SOLq6wVkZKDKw7fW6+MMFTJq2BpRowQVkBEUDhMTE5YtW0bnzp355Zdf8PHx0bZIOXLq1ClOnz7N3r17i00Z1NfXp0yZMty7dy/b520MFRgqZOr31duAoUKGtWHB+u6ZmZlRo0YNatSokeW5uLg4QkJCshgBTp06xZMnT9TjLCwssk0LcHd3x97evkQYAsqWLcuYMWNYsGABQ4YMoXTprC3DCoNKkgjQofD9/yIDAh7EMqSKtTAGaxEHk7fzWF+c9xUUkaj1AsgS8CpFxbbgGI0UQFYqlWzdupVp06bx+PFjfH19mTZtGk5OTpoRWFCiEZ59gaAAdO/enXPnznHnzh1MTArfeigxMREfHx9+++039uzZg7e3twakTM93jkpWpbeGSUzjSXxqrq1hnEz1cTBObw1jbSgvEQdtgWaRJImOHTty9epVbt++XaRhyYXB29ub8PBwrly5knPf+iKgRYsW2NnZ8cMP2VeyP/44novPE3VSKfsvMqDee8Y0L21arPvGx8dnawi4e/cujx8/Vo+zsLDINhrAzc2N9957r1g/n2JiYnBzc6N9+/Zs2rRJo2sHxyTzU2isRtfUBt1cLXCzNNC2GO8skiSx9HrkW2eMHPO+TZG/1yVJKrHtLps6mtColHG+/waSJBEQEMCkSZO4ceMG3bp1Y+bMmVSqVKmIJBWURN5OE6BAUIScO3eO3bt3s3nzZo0o+gkJCXTq1ImzZ89y4MABWrRooQEp05HJZNgYKbAxUlCF9BA4SZJQSdD4Q09q1q7N0sWL0JPJkMve3Odb8PYgk8lYvnw5VapUYcaMGcyfP1/bImXh4sWLHDlyhJ07dxarog/pRfquXr2a4/M17Yy48DyxGCUqOiSghl3x52mamprywQcf8MEHH2R5Lj4+ntDQ0CyGgHPnzvHo0b+dBczNzXM0BJQqVUrjn2eWlpZMnz6dzz//nNGjR2cbzVBQLhVjXnBRIQMuRSQKZV+LyGTp7dzeFmOkSqnE8GUYycmmRZ5PXlIVfUAtV2OHvJ85z507x8SJEzlz5gzNmzfnjz/+oF69ekUloqAEIzz7AkE+kCSJRo0akZSUxKVLlwqthMTFxdGhQwcuXrxIQEAAnp6eGpI0d2rWrEnDhg359ttvi21PQcli1qxZ+Pv7c+XKFapVq6ZtcTLRpUsXbt26xa1bt4q9MvDs2bNZtGgRL1++zHHMzrsxPIhN1ekDtQwoZ65PDzdLbYuSZxISEggNDVUbAV43CISFhanHmZmZ5dg+0MHBocCGgLS0NN5//32cnJwIDAzUiEEhKlnJmltRhV6npDC0irVI+9Iib9PrSZIkFnaqhxQfQ79+/Rg8eHC2BsLCEvQ8USfaXeYlpP/WrVtMnjyZvXv3qrvvtGrVSjhz3mGEZ18gyAe7du3i/PnzHDt2rNCKfmxsLG3btuXatWscPnyYxo0ba0jKvKFUKkV7lXeccePGsWXLFoYPH87JkydLzGHgxo0b7Nmzh40bN2rlNerq6kpkZCTR0dE5Fi6qbW/E/djUYpZMs0hA7ULmghY3JiYmVKtWLVvjVGJiYiZDQMa/58+fz2QIMDU1zbFrQG6GAD09PRYsWECHDh349ddf811bJTuuvNB9r34GMuDqi6RiTwsR/Iu1oYJy5vpvhTGyvIUBvx87zMaNG9m8eTPLly+nbt26+Pr60rNnTywsLAq9T1hcqk4o+gCBj+IpZayXbdG+sLAw/Pz8+O677yhbtqy6bXNxR8YJSh7Csy8Q5JGkpCQ8PDyoVq0a+/fvL9RaMTExtG7dmlu3bnH48GEaNGigISnzTtWqVfHy8mLp0qXFvreg5BAYGIiXlxffffcd/fv317Y4QHqbszNnznD37t0iaamUGxcuXKB+/fpcvnyZmjVrZjtGJUmsvRVFjJaqNRcWGWBpIH9nCqolJiZy7969bNsHhoWFkXEUMjExydEQ4OjoiEwmQ5IkWrZsydOnT/nzzz/R0yu436Sk5Fhn1xqtoBRXjrUgZ97GGhCpqakEBASwfv16Dh48iJGRET169GDw4ME0atSoQK+3VJXE+ttRWqu6n18yqvT7elir2/JFRkYyZ84cVqxYgYWFBVOnTmXo0KEYGIh0GkE6wrMvEOSRFStWEBYWxsGDBwu1TlRUFN7e3gQHB3Ps2DHq1KmjIQnzh/DsCwBatmxJz549GTduHB06dMDa2lqr8ty9e5edO3eyfPlyrSj6kO7Zh/SuGzkp+3KZjHZlzXW2VZoEtC9r/k4o+gDGxsZUqVKFKlWqZHkuKSlJXSPgdUPAzp07efjwYRZDgJubGy4uLpw4cYLx48czbtw4HB0dC+RBi2PLjTMAACAASURBVExWal3R1zTJyvTCsAVp5SjQDBUsDLAykOu8MdLV4t/vAH19fTp37kznzp15/PgxmzdvZsOGDWzatInKlSvj6+tLv379eO+99/K8z8kn8Tqj6MO/VfpPPYmnoY2c5cuXM3fuXJRKJV999RVjx47F3Nxc22IKShjCsy8Q5IEXL17g5uZGnz59WLlyZYHXefnyJV5eXjx8+JCjR4/mqEgUB25ubvj4+JTI4myC4uXJkydUrlyZvn37ar2Gg6+vLwEBAYSGhmJsrJ0Qc0mSsLS0ZOrUqYwfP/6NYwMfxXEpIklnDouQfpCuY29EC+eS2YWhJJGcnJxtscC7d+9y//599ThjY+MstQEyfndycsrREFBS+qJr0rMPxd8XXZCVsLhUnTVGAvR1t8Q5lx7zKpWKEydOsGHDBn766Sd1pxlfX1+8vLze6NDQ6b+PJPHjxIH8efIIw4YNY8qUKfkycgjeLYRnXyDIAzNmzECSJPz9/Qu8RkREhDr08/jx40VSZCY/KJXKQoWfCt4enJyc+Prrr/niiy8YNGiQ1qJNwsLC2LJlC7Nnz9aaog/pFa1dXV0JDQ3NdaynkynBMSk64x3KCAP90EnkVOcFQ0NDPDw88PDwyPJcaGgoVatWpX379jRq1EhtCNi9ezcPHjxApUrvcWpsbEyFChWyTQ94KrNGDmTTDVVnkcsgPDFN3QFGoB0cDCE1+AoK1w+Q61AUX4YxMjdFH0Aul9OiRQtatGjBy5cv2bZtG+vWraNNmza4uLgwaNAgBg4cSNmyZTPNU0kSAQ9idbZWhlKlpMPkhexcbYBbBVdtiyMo4YiTvkCQC3fu3GHVqlXMnDkTe3v7Aq3x7NkzWrRowYsXL/jtt9+yDSUtbkQYv+B1RowYwaZNm/jss884f/68Vl4bCxYswNzcnGHDhhX73v8lr8q+vlxG+7LmbAuOJv2YWrLJCN/PyPcUFBxXV1fGjx/P/PnzWbhwYSaFIjk5mfv372eJCPjpp5+4f/++2hAwbFMAZT6om22+cXJ8HEe+ncOt3w4S++IZRmYWOFasSutRUyntUR2Ah9cvcWztAh7+GYQyNRVb53LU6dybxr2HAvD0zk3ObFvFvcvniY0Ix8jcgkqNW9JmjD+mVja53uPfZwP5bcNSHv91HZlcRvlaDWkz2o9SFSrnOEclwZN43S5eqeuEhITQp08frl2/ybQj15CZWOiEUlsYY6StrS2jRo1i5MiRXLx4kfXr17No0SJmzJiBl5cXvr6+dOzYEUNDQ0JepRCdorsmNoVCD4WVHdgVvkCh4O1HlGgUCHJhwoQJlC5dmtGjRxdo/tOnT2nWrBlRUVGcPHmyRCj6IJR9QWb09PRYtWoVQUFBrF27ttj3f/bsGevWrWP06NGYmWk/vNzV1ZV79+7laezDaxc4uuLrIpZIM7R0Ns22krOgYEyYMAFra2smT56c6bqhoSGVKlWiXbt2jBkzhm+++YbDhw8TEhJCYmIif//9N/sPHKBstVo5Fhb7ZfY4/vhxM9VatKfTpHk07TccfUMjnt8LBiD4/G+s9e3I89A7NO41hHZfTse1bmP+On1UvcbdP04S+egBtTv2osOEOXzQqgt/HtnD5lG9yC2L8/KBXXw3qjcGJqa0HjWVj3zH8jz0DqsHtSfqycM3zg1PTMt1fYHmkSSJ7777jho1ahAREcGJY0fpW91FJxR90IwxUiaTUa9ePdauXcvTp0/ZsGEDcXFxdO/eHWdnZ7788ktO3XuhA6bZNyMDLkUkalsMgQ4gPPsCwRs4efIke/fuZfv27RgZGeV7/qNHj/joo49ITEzk5MmTuLm5FYGUBUMo+4L/0rBhQwYPHsykSZPw8fGhVKlSxbb3kiVL0NfXZ+TIkcW255twdXXl/v37ub5PDhw4wMcff0z9+vWpay3nYlTJ9RY1dTTJtUezIH+YmZnx9ddf8+mnnzJ69Gjq1auX6xwDAwMqVqyIq5s7N669zHHc36ePUrdLX9p9OeO1q+nvD5VSyS+zxmFuV4pRO09gbG6pHvG6kt3g44E07Tc807plPqjDzklDuH/lPOVrNcx27+SEOPYvmEydzn3xmbpYfb1Whx4s7tKQExuWZrr+X9JU6R5+ha5rVDpEdHQ0w4YN44cffqB///7q6uyQbuQLfFTy28tp2hhpZmbGwIEDGThwILdv32bDhg3sOXKc9/pNzn1yCUcC7sWmEpWsxNpQnOUEOSM8+wJBDqhUKr788kvq1atHz5498z3/wYMHeHp6kpycXOIUfRDKviB75s6di0KhYMKECcW2Z2RkJCtXrmT48OFa7waQgaurK6mpqTx+/DjHMVu2bKFz5860bt2aQ4cO8VFZa5o6mhSjlHnnQ0cTGpUSin5RMHDgQKpVq8a4cePy5c1Oy2WskbklYTcu8yoiPMtzT/6+TtTjBzTuPSSTog9kihTQN/r3/zw1OYn4qJeUeb92+hp//Znj3nfPnyQpNobqrX2Ij3qp/pHLFbhUq0Vo0JlC359Ac5w+fZrq1atz6NAhduzYwXfffZepB30de+MS+9mUQVEbIz08PFi4cCGrDvwGUsk1yuYHGXD1RZK2xRCUcIRnXyDIgW3btnH58mVOnz6d7/6t9+7do3nz5sjlck6dOpWlOExJQCj7guyws7Nj3rx5fPrppwwaNAhPT88i33PFihUolUq+/PLLIt8rr5QvXx5IL8JWpkzW6uSLFi1i3Lhx+Pr6smrVKnWxy8YOJhgqZAQ+itd68aeM/Vs6mwqPfhGiUChYuHAhrVu3Zs+ePXTp0iVP81S56BttRk9jt99I5rapTmmP6lRq3JJa7btj41yOyLD0FBMHt6yFA18nISaKY2sX8OfhPcRFRmR6Liku5z7sLx6m16tYPzT7ezE0y729l1IFiK+YIiU1NZUZM2Ywe/ZsGjVqxNatW3M8b2QY+04/TShOEfPEh44mNCwGY6QkSdyITgVZ8fk6Q4POsm5IZz5duwfXOo01urYEXH2ZRDMnk3yfUwXvDkLZFwiyISEhgcmTJ+Pj40OTJk3yNffu3bs0b94cIyMjTpw4gbOzcxFJWTiEsi/IiUGDBrFhwwaGDx/O1atXi7TffWxsLMuWLePTTz8tUa2DypYti0wmIzQ0lGbNmqmvS5LEV199xfz585k8eTIzZ87McsiqY29MKWM9DjyI1VqV/oxCV+3Lmosc/WLA29sbb29vJkyYQLt27TAwMMh1Tg7d+NR80Koz5Wo24OaJX7l7/jdObVnJye9W0HfhpjzLtX2iLw//vEjTfiNwqlQNAxNTJJWKTZ/3QHqDtUH6x/PZ/etvMbfL+r6UK3I/PipE7GiRklGELygoiOnTpzNp0qQ3fqfLZLJ30hh57tw5jhw5wpgxY1AamZGsfLsiTpKVElHJKmyMxHlOkD3io1ggyIYlS5bw7Nkz5s2bl695f//9N56enpiamnLy5MkSq+iDUPYFOSOXy1m1ahV//fUXS5cuLdK9Vq9eTVxcXK797IsbIyMjSpcunakif1paGr6+vsyfP58lS5Ywa9asHL0pLmb6+HpYU9s+vdZHcflcMvapY2+Er4e1UPSLkYULFxIaGsqqVavyNF4vD544C3sHGnYfRL/FW5hwIAgTS2tObFiCjUt65En43ds5zk18FU3IhVN4DhiF12cTqfpRO9wbNMPGOfdIM1vncgCY2tjhVt8zy09ePJR5uT9B/pEkiS1btqiL8J05c4YpU6bk+fu8jr0xfdwtsTCQa61IXYYxso+7ZZFHHZ07d47p06cTHR1NeEJake6lLd7W+xJoBqHsCwT/ITw8nLlz5zJixIh85dnfunULT09PrKysOHnyJE5OTkUoZeERyr7gTdSoUYORI0fi7+9PWFhYkeyRmJjIokWL+OSTT0qkYez19nuJiYl07dqVLVu28P333zNmzJhc5+vLZbR0NqOPuyWWBulft0V1uM5Y1/KfA3QLZzPRXq+YqVatGoMHD2bGjBlERUXlOl4hA70cTmEqpZKk2FeZrpnZ2GNh70BaSgpOlT/AunRZzm5fS2JsTKZxGXUDZHJFpscZnN22JlfZ3Bt+hKGZOb9tXIoyNWsbvbioF2+crycH8fLTPNHR0fTq1YtPPvkEHx8frly5QoMGDfK9zrtqjAxPSNN5xSclMXOhRbksvfuFQJATIoxfIPgPfn5+6OvrM3Xq1DzPuX79Oi1atMDR0ZHAwEDs7e2LUELNIJR9QW7MmDGDXbt2MWbMGH766SeNr79x40YiIiKYOHGixtfWBK6urty+fZvo6Gg6duxIUFAQe/fupW3btvlax8VMnyFVrAl9lcqliETuxaZqLIQ2Y51y5vrUtjfG1UIfufCoao0ZM2awY8cOZs6cyaJFi944ViaT4WCsx6P4rAf15IQ45rb+gGotO+Donh5+f/ePkzy6eYW2X85ALpfTedJ8tozpy/KezandsRcWdqV4fj+Y5yF/Mejb3RiZmVO+VkNOffcNqrRULN5zJPj8b0Q9fpDrfRiZmdN50gJ2TR3Oij4tqN6qM6bWdkSHP+KvM0cpW70enb7KOfLNwVhP5BBrmNOnT9O3b19iYmLYsWNHgQoHv06GMbKSlSEBD2KJTlEVWWh/xrqWBnLaFWNqkb+/P9OnTwf+rcMCMOHAJaydynAlYDdntq3m+b076Bsa4d6gGW3G+GPlUFo9du2nnUiIjqTXvPXsmzuRsBuXMTa3pFGvIXgOyNw9JubZE/bN+4rg8ycxMDahRpuuVGz0UbayPbx+icDV83h4PQhVWhrOVWrQ6vP/Ua5GffWYwNXzObZ2AWN+PMOJ9Yv5++wxrJ1cGLXjBLEvnnF4xUyC/zhJQtRL7GxtqFevHsuWLaNcuXIa/CsKdB2h7AsEr3Hz5k3Wr1/PwoULsbGxydOcq1ev0rJlS8qUKcPRo0extbUtYik1g1D2BblhYWHB4sWL6dWrFwcPHqRNmzYaWzslJYV58+bRs2fPEtepIgNXV1f279+Pp6cnYWFhHDt2jIYNs29VlhtymQw3SwPcLA2ISlZy9UUSV18mqfNH5bL0VmW5r/PvOEOFjBq2RtSwMxKtl0oIDg4OTJw4kRkzZjB8+HAqVKjwxvGOJno8iU/jv9nz+kbGNPh4EMHnT3DzeACSSoWtS3k6TZpPg48HAlCx0Uf4rv2FY2sXcmbrt0gqFTbO5anbpa96nR6z17B/3iR+37URJAn3hs0YsGInc7zfz/VearTpioW9A79tWsapLStJS03Bwt6B8jUbUKdj7xznyWXgZCrSRzRFforwFYS32Rjp4+PDnTt32LFjB4sXL+ZCohEqFZha23Ji/WKOrprL+16dqNulL/FRL/l953rW+nZk5I7jmbpcJL6KZtPnPajavB3ve3XiRuB+Di2fgYO7B5UatwQgNSmR9cN8iA5/TKOen2JhX4orAbsJuZi1c0XIhdNsGtmT0h7VaTFkPDKZjEv7drJ+qA9DN+zHpVqtTOO3TxiMXRlXvD//nzpSZ9v4gTwL+ZuGPX2xK+1CDYMEAgMDefjwoVD2BZmQSfnpEyMQlGAkSUIppbf7UanSix/pyWQoZOTZw9C2bVvu3LnDrVu38lRgKSgoiFatWuHm5sbhw4dLTNuw3JAkCblcztq1a/n000+1LY6gBCNJEl5eXty7d48bN25gbKyZ/MqNGzcyePBgbty4QdWqVTWypqZZvHgxY8eOxdHRkaNHj2pcTklKL6wUnpBGeGIaT+JTCU9MIy2buml68nRvqZOpPg7GejiY6GFtKBfe0xJIQkICFStWpFGjRuzateuNY29GJrH/QVwxSVZ8dCxrThUbQ22LofO8XoTP398/1yJ8mkBTxkiZMpV6jhZaN0YuXLiQ8ePHExwSyo8x6V0kop6EsbBTXVoOm0jzwV+ox4bfvc2K3h/RcugE9fW1n3bi3qVzfDxjJbXadwcgLTWF+e1qUrZ6PfosSC+YeXb7Gg4snELveet536sTACmJCSzv2YyXYffU1fglSWJRlwbYlC7LwG9+UH+GpyYlsuTjpti6lGfwt7uBfz371Vv70HP2v+k3ibExzPB0o80Yfz7sPwKA8dVtUYjcGUE2CM++QCeRJInIZGX6ITkhjaf/HJbfdEh2NEk/IDuY6GFjqMhySD569CgHDx7kxx9/zJOi/8cff+Dt7Y2HhweHDh3C0tIy1zklBdU/VZiFZ1+QGzKZjJUrV/L+++8zb948/P39C72mUqlk7ty5dOnSpcQq+levXmXmzJkAbNq0qUjklMlk2BgpsDFSUIV0xUiSJFT/GC2VqvSK5noyGfJ8GC0F2sXExIRZs2YxYMAAzp07R6NGjXIc62Dydh7D3tb7Ki4kSeL7779nxIgR2Nvbc+bMmQLl5hcEa0MFzUub0szJpMDGyBH9euBgYcLEHduLRea8oHzNt5kRLfO+Vyfio16qr5vbvoediyuhQWczGQEMTEyp2e5j9WM9fQOcq9Yi8rWUmL/PBGJuV4pqLTv+O8/YhHo+/Tm4bLr62tO/r/PyYSgf+X5JQnRkJhnd6jXlSsBuVCoV8tfaddTv+kmmcfqGRij0DQgNOkvdzn0wtrAiTZJQaK3koqAkIz6NBTpFVLKSKy+SuPa6xRmyhEC+TpoKHsWnZQqVNFTIqG5rRM1/LM5KpZKxY8fSpEkTfHx8cpXj7NmztGnThurVqxMQEICFhUWh7604USqVgFD2BXmjUqVKTJgwgblz59KnTx/c3d0Ltd7u3bsJDg5mx44dGpJQs5w8eZKOHTtSvnx5oqKiSEpKKra9Zf9EIymQiR7lOky/fv1YtmwZY8eO5dy5czkaamwMFRgqZG9VOzBDhQxrQ10vg6Y9oqOj+eyzz9i5cyf9+/dnxYoVWjljFMYY2bT2B6xcubJEpQu+3mnyRVhouoe9c/1sx8r1MqehWL7nlOU9bGxhSXjwLfXj6PBH2LqUzzLOrlzmNLUXD9OLvu6e9nmOsibHvcLYwkr92Lp05rQNPQNDWo+ayq9L/JjVsgou79cm7ePO+A78BAcHhxzXFbybCGVfUOJRSRIhr1K4FJHE/Wxyyd6k6Gda57Xfk5USF58ncuF5IuXM9Ym8epobN29y/vffc/WenTx5knbt2lG3bl3279+PmZlZPu9I+whlX5BfJk+ezNatWxk5ciQHDx4ssJdZpVIxa9YsvL29qV27toalLDx79uyhZ8+eNGnShJ9//hlHR8dM7fcEgrwgl8tZtGgRH330Ebt27aJHjx7ZjpPJ0g3PF58narXnuaaQATVsjUQUSgHRdBE+TZNXY2Tr1q35+uuvuXjxYrFFJOTGa45yJJUKmUzGgBU7kWdzDjIwNs08N4ezUkEyoTPmtBnjj1OlatmO+e/++oZGWcY06TMMjw+9ufXbQe78foKv/aexaP5cjh8/Ts2aNfMtl+DtRSj7ghJNWFxqpiqxoLlKsRnrPIhNRarQAL/AmzhWeXMxpWPHjtGhQwcaN27M3r17MTEx0ZA0xYtQ9gX5xcTEhBUrVtCxY0d++uknunXrVqB19u/fz40bN/j22281LGHh2bBhA0OGDKFr1658//33GBoaUr58eaHsCwpE8+bN6dChA1999RWdOnXCyCjrgR2gpp0RF54nFrN0RYME1LDL/j4FOZOWlsaMGTOYNWtWkRThK27q1auHtbU1Bw8e1Lqyn2F4UrxmgLJ1LockSViXLot92Tef+/KKlYMzz0L+QpKkTMauF/fvZhpn41wOACNTc9zqexZqT1uX8jTtN5ym/YbT2SSS2rVqsmjRIrZu3VqodQVvFyLOSlAiSVVJBD6KY1twDDEp6T75ovJ6ZKxrZGXLtuAYAh/FkZpNJZrDhw/Tvn17PD092bdvn84q+iCUfUHB6NChAx07dmTMmDHExsbme74kScyaNYumTZvStGnTIpCwYEiSxNy5c/H19WXo0KHs2LEDQ8P0sFVXV1eh7AsKzPz58wkLC2PFihU5jrE2VFDOXF/ns21lQHlzfdEZIp+EhITQtGlTZs+ejb+/PydOnNBpRR9AT08PLy8vDh06pG1RMDVN95LHxkSj94/WU/WjdsgVCo6tXZDFOy9JEvH/yaXPC5WatORVRDg3Avepr6UkJnDh5y2ZxpX2qI6NczlOfb+S5ISsxTnjol7kuldKYgKpyf+ml+nJwd2tAubm5iQnJ+dbdsHbjfDsC0ocYXGpHHgQy6siVvL/i/TPUetSRBLBMSm0f60XbEBAAD4+PrRq1Yrdu3fn6KHRFYSyLygoy5Yto0qVKkyfPp2FCxfma25gYCAXL17k8OHDRSRd/lGpVIwbN44lS5bg5+eHn59fJq+Mq6triZJXoFtUrlyZYcOGMWvWLAYOHIidnV2242rbG3E/NrWYpdMsElDbXjPdOt4FtFmErzho06YNgwYNIiIiAnt7e63JkZEuNmXKFFw8OxCjUuDxYSu8hk/i8IqZRD95SJVmbTE0NSPy8UNungignk9/dZX7vFK3Sz9+/2EDu6Z9zuPb1zC3S2+9p2+U2TEkl8vpOm0pm0b2ZGm3ptTu2AuL9xx59fwpoUFnMDQ155Nl296414uHIawf1pUPvDrxnmtFbIwNaDP+MM+ePStxqR8C7SM8+4ISRVBEItuCY3iVotJa/qIEvEpRsS04hqCIRPbu3UuXLl1o27YtP/30k84r+iCUfUHBKVeuHFOnTmXp0qVcv349X3NnzZpFnTp18PLyKiLp8kdqaioDBgxg6dKlfPPNN/j7+2fJNXZ1deXevXvqDhYCQX7x8/NDkiRmzJiR45gKFgZYGch11rsvA6wM5Lha6Oc6VpBehK9379588skndOnShatXr75Vij6At7c3kiRx9OhRrcpRt25dvv76a65du8a6SSPYOWkI8VEvaTZwNH0WbEImk3Ns7QJ+XeLH7ZOHcG/QDA/P1vnex8DYBN/VP+PeoBnndm7gxPollK1Rnzajp2UZ61qnMZ9t/pXSVarz+64N7J8/iUv7d2Jm+x5N+gzLdS/LUqWp7t2F0KCzHF4xkx+XfM2rV6/YtWsXXbt2zbfsgrcbmVSQ6hICgYaRJIlzzxI5/TRB26JkIXD1PKwj77N9+3b09d+Og0x4eDiOjo7s27ePDh06aFscgY6RkpJC9erVsbW15dSpU5laBOXE2bNnadKkCb/88gudO3cuBinfTEJCAh9//DFHjx5ly5YtOXpDDhw4QIcOHXj06BGlS5cuZikFbwvz5s1jypQp3Lx5k4oVK2Y7JiwulW3BMcUsmebo626Js9nb8R1ZlJw5c4a+ffsSHR3NqlWr6NWrl7ZFKjJq1qxJtWrV+P7777UtCgA3I5PY/yBr6Lyu07GsOVVsDLUthqCEIjz7ghJBSVX0AVoOm8ioZZveGkUfhGdfUDgMDAxYuXIlZ8+eZcuWLblPIN2rX7VqVTp2TO9BLEkSaSqJJKWKhFQVSUoVaSqpQNWN80tkZCReXl6cPHmSAwcOvDHs0dXVFUDk7QsKxejRoyldujQTJkzIcYyLmT517I10zrsvA+raGwlFPxfS0tKYNm0anp6euLi4cO3atbda0Yf0UP7Dhw9rPTIqMjKSbdu2MX9Kzu8/XcbBRGRlC3JGvDoEWifoeclV9DM4+ywJY30Fdd6SfESh7AsKy0cffUTv3r0ZP348HTt2xMbGJsexQZcucfHWHWZ/s5YTTxJ4mpBGeGIaadmc//Tk4GCsh6OJHg7//NgYKjTWyuvx48d4e3sTHh7O8ePHqVev3hvHlytXDkhX9ktSUUGBbmFkZMScOXPo3bs3J0+exNMz+yrcnk6mBMekaDWVLT/IAAsDOR86meY69l0mJCSEvn37cvHiRfz9/Zk0aRJ6em//Ebx169bMmTOHy5cvU6dOnWLd++7du+zbt4/9+/dz+vRplEolderWpfKAZGT6b48X3FAhw9pQ+G4FOSNeHQKtEhaXSuDjeG2LkScCH8UTFqfbBZQyEMq+QBMsXLiQlJQU/ve//2X7fFSykuOP4zmUYs/YX87zsvQHXIpI4lF89oo+QJoKHsWncSkiPdxy3e1oll6P5PjjeKKSlYWS9++//6ZRo0a8evWKM2fO5KroQ3rLQUdHR+7du1eovQWCnj17Uq9ePb788sscPZ36chnty5rrhKIPICHRvqw5+nJdi0coHiRJYsuWLdSoUYNnz55x+vRppk6d+k4o+gANGzbEwsKCgwcPFvleSqWSs2fPMnHiRDw8PHB3d2fy5MmYmpqycuVKHj16xMULF6hf2krnomdyQgbUsDXSmDFc8HYilH2B1khVSRx4EKszH7oy4MCD2Gzb8ukaQtkXaAJHR0dmzpzJmjVruHDhAgAqSSI4Jpmdd2NYcyuKi88T0HutGnFegzlfH5eslLj4PJE1t6LYeTeG4JhkVPkM9w8KCqJJkyaYmppy7tw5KleunOe5ov2eQBPIZDIWL17M5cuX2bYt52rbLmb6tHTWDU/5kWXTuXE6UNtilEiyK8LXsGFDbYtVrOjr69OyZcsia8EXGxvLTz/9xIABA3BwcKBJkyZs3ryZRo0asWfPHl6+fMmBAwcYOnSouuZKTTsjnTGm5YYE1LDT/aLRgqJFKPsCrXHySbzOhCrCv1X6Tz3RjUiENyGUfYGm+Oyzz6hevTqfffYZD14ls/ZWFD+FxvLgnzZikobMeRmfEw9iU/kpNJa1t6LyHGlz7NgxmjdvToUKFTh9+jTOzs752rt8+fJC2RdohMaNG9O1a1cmT55MQkLO6Wt17I1p6miS4/Mlgfo2CswiH9K+fXuWLl1aLPU2dIUzZ85Qo0YNfv31V7Zv386WLVuwsLDQtlhaoU2bNpw/f57IyPz3rs+OsLAwvv32W1q3bo2dnR3dunXj0qVLfPrpp/z+++88ffqUDRs20KlTJ0xNsxrNrA0VlDPX1xlHU07IgPLm+lgbinOc4M0IZV+g181/IQAAIABJREFUFcLiUgmKSNIZRT8DCbgYkaTz4fxpaWmAUPYFhUdPT49vVq3GsXkXdtx9RUxKuk++qN7bGevG/NMeM/BR3BujbXbv3k3btm1p3Lgxx44dw9bWNt97Cs++QJPMnTuXZ8+esXTp0jeOa1Sq5Cr8Hzqa0KyMFb/88gtjx47liy++YOjQoaSkpGhbNK3yLhbhy43WrVujUqkIDCxYBIhKpSIoKAg/Pz9q1qxJmTJlGD16NGlpacyfP5+QkBCuX7/O7NmzadCgQZ66w9S2133vvgTUfkvqSAmKFqHsC4odlSQRoEPh+/9FBgQ8iM13GHFJIsOz/67kDQqKjrC4VP40d6dxryEgkxXbASpjn0sRSay/nb2Xf9WqVfTo0YNu3bqxb9++bL08ecHV1ZWnT5++0RMrEOQVNzc3RowYwZw5c3j27FmO42QyGY0dTNQh/dr+zszYv6WzKY0cTJDJZCgUCubPn8/GjRvZvHkz3t7evHz5UqtyaouMIp6zZ8/G39+fEydOqAt8vss4OztTrVq1fOXtJyYmEhAQwLBhw3BxcaFu3bosX76cKlWqsHPnTiIiIggMDGT06NHqjin5oYKFAVYGcq2/pwqKDLAykONqITpgCHJHKPuCYifkVQrROhS+/18kIDpFRegr3fXuizB+gSYIikhkW3AMr1JUyPLgTSkKMtJrtgXHEBSRmH5NkpgxYwbDhw9n5MiRfP/99xgYGBR4j4zD5P379zUgsUAAU6dORV9fHz8/v1zH1rE3po+7JRZaVE4yqu73cbfMtivNwIEDOXbsGDdu3KB+/fr89ddfxS+klpAkie+///6dLcKXF1q3bs2hQ4femOrx7NkzNm7cSOfOnbGzs6N9+/YEBgbSo0cPTpw4wfPnz9m2bRs9evTAysqqUPLIZTLa6VAhzP8iAe3LmiMXhfkEeUAo+4Ji51JEks5aUzOQAZf+USx0EaHsCwqDJEmcDU8g8FF6/QptH5gy9g98FM+Zp/GMHDkSPz8/Zs6cydKlS/MU1vkmMpR9Ecov0BQ2NjZMnTqVdevWcfPmzVzHu5jp4+thTW379GJcxfUdmrFPHXsjfD2scTHL2ZPYtGlTLly4gJGREQ0aNODIkSPFI6QWySjC179/fzp37vxOFuHLC23atCE8PJxr166pr0mSxM2bN5kzZw4NGzbE0dERX19fXrx4gZ+fH7du3SI4OJjFixfTrFkz9PU168V2MdOnjr2Rzp1HZUBdeyOc3/BeFAheR5gdBcVKVLKS+7G66xHPQALuxaYSlazUyeIoQtkXFIZzzxI5/bRkhrSfCU/kdooRa9asYciQIRpZ09HREUNDQ6HsCzTKiBEjWLlyJePHj+fXX3/Ndby+XEZLZzMqWRkS8CCW6BQVMorG2JaxrqWBnHZlzd+o5L9O+fLlOXfuHL169aJt27YsXbqUzz//vAgk1D5nzpyhb9++REVFsX379nc+N/9NNG7cGFNTUwICAnj58iX79+9n37593Lt3D1NTU7y9vdm0aRNt27bF3t6+2OTydDIlOCZFZ4pFZ0TYfOikG906BCUDoewLipUrL5KK7HBS3MiAqy+SaF5a9z50hbIvKChBz0uuop+B12dfUUuDrcvkcrmoyC/QOAYGBsybN49u3bpx9OhRvLy88jTPxUyfIVWsCX2VyqWIRO7FpmrsezVjnXLm+tS2N8bVQj/focIWFhbs27eP8ePHM3LkSG7dusWyZcs07pnVFmlpacyYMYNZs2bRsGFDfvvtN5Gb/waioqI4ePAgVlZW+Pn5oVQqcXZ2pkOHDnTs2JFmzZphZKSd9nH6chnty5qzLThGK/vnl4zwfX25rsUjCLSJCOMX5Bl/f39kMhkvXrwo0HxJkrj2UnMV+EODzjKplj2hQWc1tGL+kICrL5N0st2QUPYFBSEsLpXAx7rRejLwUbxGu2aIivyCosDHx4fGjRszduxY9edyXpDLZLhZGtDDzZKhVayp954xhgrZa8/ndZ1/fzdUyKj3njFDq1jTw80SN0uDAucEKxQKFi9ezLp161i3bh1t2rQhKiqqQGuVJP5bhE8o+tlz9+5dlixZQvPmzbG3t6dPnz4oFAokSeLkyZM8fPhQ3T5PW4p+Bi5m+uoimCWdls6meY6yEQgyEJ59QbERmawkWal7ivGbSFZKRCWrsDHSLaVZKPuC/JKqkjjwTxcNXXgXy4ADD2Lx9bDWiBfE1dWVEydOFF4wgeA1ZDIZixYtokGDBnz33XcMGjQo32tYGypoXtqUZk4mRCWrCE9IIzwxjSfxqYQnppGmyjpHTw4Oxno4merjYKyHg4ke1oZyZBou+OXr64ubmxtdu3alQYMG7N+/n4oVK2p0j+JAkiS2bt3KiBEjsLOz4/Tp0yI3/zWUSiXnz59Xh+ffvn0bQ0NDWrRowcqVK2nfvj0pKSm4urry4sULjb/OCksde2OSlVKJjlpr6miSbXFMgSA3hLIvKDbCE9K0LUKREJ6QJpR9wVvPySfxOpPXCP9W6T/1JJ4WzmaFXq98+fJs3LgRSZJK3EFVoNvUr1+fnj17MmXKFLp3746ZWcFerzKZDBsjBTZGCqpgCKQrqSoJ0iQJpQoUctCTyZDLKLbXcbNmzfjjjz/o0KED9evX58cff6RFixbFsrcmiI6OZvjw4ezYsYN+/frxzTffYGFhoW2xtE5cXBxHjhxh3759BAQE8OLFC+zt7Wnfvj2zZ8/Gy8srS7vTSpUqcejQIXx8fLQkdc40KpWuSJdEhf9DRxMalhKKvqBgiDB+QbERnpBWol9wKYn5D0+WyyA8UfeMGELZF+SHsLhUgiI0l4JTXEjAxYgkjYTzu7q6kpCQwPPnzwsvmEDwH+bMmUNkZCQLFy7U6LoymQyFXIahQo6JvhxDhRyFXFbsBis3Nzd+//136tWrh7e3N6tXry7W/QvKmTNnqFGjBgEBAWzfvp0tW7a804r+o0ePWLVqFW3atMHW1pauXbsSFBSEr68v586d4+nTp+r2ef9V9CG9Kv/BgwdLZPqjTCajsYOJOqRf2ybdjP1bOpvSyMFEGJkFBaYk616CEkp0dDQDBgzAysoKS0tLBg4cSEJCZkvo1q1bqV27NsbGxtjY2NCzZ09uhNzn9WjCtZ92YunHTXkW+jfrhnRmWqMyzPF+n5ObV2TZM+bZE77/sj/TGpVlZgsPDiycQlpKcrbyPbx+iY0juuP/oSvTGpVhrW9H7l/9I9OYwNXzmVTLnmehf7Nz8lCme7qxelB7AGJfPONHv5HMaf0BU+qXZnarqmz5oh9RTx5mWuP3XRtZ1LUJ3uVtcHJyYsSIEURHR2ca06xZM6pVq8atW7do3rw5JiYmlC5dmvnz5+f1z10kCGVfkFdUkkTAP+H7uogMCHgQi6qQh0vRfk9QlJQrV47Ro0ezYMECnjx5om1xigQrKysCAgIYPnw4n332GaNGjSItrWQay9PS0pg2bRqenp44Oztz7dq1d7LaviRJXLp0CX9/f2rVqoWLiwujRo0iJSWF+fPnExISwo0bN9Tt83I7U7Ru3ZpHjx5x69atYrqD/FPH3pg+7pZYGMi19r2XUXW/j7ulCN0XFBqh7AvyTffu3YmNjWXOnDl0796dzZs3M336dPXzs2bNon///ri7u7N48WLGjBnDsWPHmN67HYmxmSueJr6KZtPnPXBwr0rbL6ZjX86dQ8tn8PfZQPWY1KRE1g/z4c7vJ2jYYzDNB4/h/pXzHFw2I4tsIRdOs9a3I8nxcbQYMp5WIyaTGPuK9UN9CLtxOcv47RMGk5qUiPfn/6Nul34AbBs/kJsnfqV2x150mjSPRj0/JTk+juinj9TzAlfPZ9/ciVjYO9B+7HR8fHxYs2YNrVq1IjU1sxcxKiqK1q1bU716dRYtWkTlypWZOHEiBw8eLNh/gAYQyr4gr4S8SiFah8L3/4sERKeoCH1VOO9++fLlAaHsC4qOyZMnY2JiwpQpU7QtSpGhp6fH8uXLWbVqFd9++y3t2rXLYiTXNq8X4fPz83vnivAlJSXx66+/MmzYMFxcXKhTpw7Lli2jcuXK7Nixg4iICI4dO8bo0aPVRtC84unpibGxsVbPP3nBxUwfXw9ratunFw8sLqU/Y5869kb4eliLYnwCjSBy9gX5pmbNmmzYsEH9+OXLl2zYsIF58+bx4MED/Pz8mDlzJpMnT1aP6di5C7Vr1+L8ro00H/yF+vqriHA+nrGSWu27A1Cncx/mt6tJ0J5tVGrcEoALP2/hxYMQes9bz/tenQCo26Ufy3s2yySXJEn8MnscrnUaM/CbH9QhT/W7fsKSj5ty5Ns5DP52d6Y5jhWr0nP2GvXjxNgYHly7SJsx/nzYf4T6erNBY9S/x0W94LdNy3Bv0IwB3/yAXC5nfHVbPDw8+Pzzz9m6dSsDBw5Uj3/y5AlbtmyhX790Y8LgwYMpW7YsGzZsoE2bNvn4y2sOoewL8sqlCN1vlykDLkUk4mZpUOA1zM3Nsbe3F8q+oMiwtLTE39+fkSNHMmrUKGrUqKFtkYqMYcOG4e7uTrdu3WjYsCH79+/Hzc1NqzK9y0X4nj9/TkBAAPv27ePIkSMkJCRQoUIFunfvTocOHWjSpIlGWicaGRnRrFkzDh06xLhx4zQgedGhL5fR0tmMSlaGbLsWBiYWyJCQikD1z/iOtTSQ066suVDyBRpFePYF+WbYsGGZHjdt2pSXL1/y6tUrfv75Z1QqFd3/z96Zx8d0vX/8PUv2TTYSEiKWkFD7Elsp1YQk1FrUXqmWoqVVbWlLraXaX2unqNraohVEixL7lqBfsYsgJCQx2deZub8/phmmCbLMZDJx36+Xl8ydc8957iRz7/mc5znPM2AASUlJ2n8u1arh4uldqEyeubUNzXr2176Wm5nj4decR/dua49dPbofO5dqNOoW8vg8K2ta9xmm01f81f+RfCeGpoF9yUp5RKYimUxFMnnZWdRt3ZHYqBOo1bppidv0Ha7z2szCEpmZOTFnj5GdVrS34capw6jy82g/5G2kUs1XSCkIjBkzBnt7e3bv3q3T3tbWljfffPOx7ebmtG7d2qiiQRT7IsVBkasiNj3fpIU+aCZRt9LzUeQWv7RZUYjl90QMTWhoKPXr12fKlCkVcl+zPunatSunTp1CpVLRpk0bDh06ZDRbUlNTGTJkCMOGDaN3796cP3++Ugt9QRCIjo5m3rx5tGvXDjc3N0aPHs3Dhw+ZMWMG0dHRXL9+nW+++YYuXbroRegXEBgYyJEjR8jIyNBbn4bERabku/4dSNizHi87zYKxvuR+QT9edmb087Yn1Ff05ovoH9GzL1JiatasqfPa0dER0ISrX79+HUEQqFevXpHnSuW6NzGHqtULJR2xsncg4frj/VwpCXE4e9Yu1M7FS9cLkHRHMwn/dcb4p9qem5GGlX2Vx7bXqKXzvtzcgoAJ09mz+HNmd/PFs3ELGnTsTvOgAdi5VNPYE38XANdaj8dXqcHa3Bxvb29u376t06eHh0ch2x0dHfnnn3+eaqehEcW+SHE4l2T6Xv0CJMD5pBy61Ch9PWVR7IsYGjMzMxYsWECvXr0IDw+nR48exjbJoNSvX59Tp07Rv39/Xn31VZYtW8Zbb71VrjYcPXqUN998E4VCwaZNmyrt3vz8/HyOHDnCzp07CQsLIyYmBhsbG7p3786PP/5Ijx49qFq1qsHtCAgIYMKECRw8eJDg4GCDj1dW1q1bx8MHDxg/sBd16zqgyFVxPimH88k52nLSUgmoi/GgfLKdhUxCU2dLmrpY4mghzsVEDIco9kVKzNMEoiAIqNVqJBIJ4eHhOu3yVGq230rH3Ep3oi19Rl8lpeCcwElfUN2nUZFt/ju+mYVloTYdhoylYafXuHQonGsnDrJv2TwOrf2OMSu2U73BS0X2K3tGjMyzPi9jIYp9kechCAIXkk0vA//TEIDzyTl0rl76rMbe3t4cOXJEv4aJiPyH4OBgOnfuzJQpU+jevTtyeeWeqjk6OhIeHs7EiRMZM2YMly5d4uuvvzb480mpVDJz5kxmz56Nv79/pdybr1Ao2Lt3Lzt37iQ8PJzU1FRq1KhBSEgIwcHBdOnSBUvLwvMgQ1KvXj3q1KlDeHh4hRf7SqWSBQsW0L9/f+02E0cLGV1q2NC5ujWKXDUJWUoSspXcz8wnIVuJUl24H7kU3KzkVLcxw81Kjpu1HEcLqZhhX6RcqNxPEJFyp06dOgiCQO3atalfv772uFIt8M+F5FL1WcXNgwc3rxSqb50Ue0OnnZOHFwCWNnbUbfNyqcYqwNmzNh2HvkvHoe+SdOcm//fGKxzZsIyBs5dRxd0TgMTbN7RjyiUS8vLyuHXrFt26dSvT2OWBKPZFnsejXJXWa2FMDq5ZTFVvH/y6lN3DmasSUOSqcbIs3d+9t7c39+7dIycnp9wnyCIvDhKJhEWLFtGyZUtWr15daOtcZcTMzIylS5fi6+vLxIkTuXr1Kps3bzZYmbuYmBiGDBnCmTNn+Pzzz/nkk08qzaLKzZs3td77w4cPo1KpaN68Oe+//z7BwcE0a9bM6CIzICCA3bt3F5rXVTS2bNlCbGwsO3bsKPSeRCLByVKGk6UMXyyAf51egmZrp0qtcQTJJRKkEir0dYpUbsQ9+yJ6pU+fPshkMr788ksdz7VMAjKJQGbKoxL36dOhG2mJCVzcv1N7LC87i9Pbf9JpV6NhE5w8vDi8YQm5WYX3gmUokp47Vl52Fvm5OTrHnDxqY2FjgzJfU+qvbptOyMzMOb55FYIgIJdqQrPWrFlDamoqPXv2LPE1ljei2Bd5HglZFaMk1qEfv+XSoT16668s1+Xt7Y0gCIW26oiI6JvmzZszdOhQZsyYQVpamrHNKTfGjx9PeHg4x44do127dnrfNiMIAhs2bKBp06Y8ePCAI0eOMGPGDJMW+iqViuPHj/Pxxx/j5+dH3bp1mTZtGlZWVvzwww/cvXuXyMhIPv/8c5o3b14hRGdgYCCxsbFcu3bN2KY8FbVazbx58+jRo0exk2VKJBJkUgkWMinWZlIsZFJkUkmF+MxFXlxM9+4mUiGpU6cOX331FdOmTSM2NpbevXtjZ2fHrVu3+OmXbTTrPVQny31xaPX6UE5sXcMvM8Zz7/IF7FyqcW73r5hZWuu0k0ql9J3xLWvfe4Nv+3WkRcgg7Ku6k/YwnpizR7GwsWP4dxufOVbSnZusHtuXl17tRVXv+khlcqIP7iEjOZEmr70OgK2jC51HTuTAyq9ZO24A/t17MHHNXZYuXUqrVq10kvFVVESxL/I8ErKUSIEiIhINjiAIKHNzMLPUb31hqQQSspVaL0xJKSi/d+vWLXx8fPRpmohIIWbPns2vv/7KvHnzmDNnjrHNeS6CIKD616upVoP0X6+mrIReze7du3Py5EmCgoJo06YN27dvp2PHjmW2LzU1lXfeeYfNmzczdOhQfvjhB4NFDhiajIwM9u3bx86dO9m9ezeJiYm4uroSFBTEV199xauvvoqtra2xzXwqnTt3xtzcnL1791bYe+muXbuIjo5m+fLlxjZFRKRMiGJfRO98/PHH1K9fn8WLF/Pll18C4OnpSZuXu1Lv5YAS92duZc1by7ezc8E0jm9Zg7mlFU0C++LTvitrxw/Uaevdsj3vrNvD36sWceKXNeRlZWLrXBXPRs0LZd4vCodqNWjy2uvcPH2Ec7t/QSqT4+pVj8HzV9Oo6+O9Zd3GfoSNozMnflnDprmf4uzkRGhoKHPmzNFr1lpDIYp9kecRn6V8qtDfv3wBB1Z+zfvbjrN/+TyuHf8bqdyMZj36ETBhhjYXxtk/NnFu9688uHmFnIw0nD288H/jLdr2H6nT3/yezalWpwHt3niLv5bM4cHNK7z23mfsXjQdgKiwrUSFbQWgefBA+n/5A7mZGfy1dC6XDoWTnvQAS1t73Ov7ETBhOjUaNinSbrUA9zPzS/2ZeHh4IJfLxSR9IuWCh4cHkydPZuHChYwdO7ZQclxjIggCj3JVmv3KWUri/923/Kz9yu7Wmr3KbtZynCxkz1wAaNCgAadOnaJfv3507dqVlStXMmLEiFLbe+zYMYYMGWLSSfji4uLYtWsXO3fu5O+//yY3NxdfX19Gjx5NcHAwbdq0MZlnuo2NDS+//LI2V0NFQxAE5syZQ4cOHejQoYOxzRERKRMSobLXdhGpMEQ/yiHstmmUWikJIbXs8HUqnafQWKxYsYJ33nmnUClCERHQTHQW/ZNc5MQdHot9t7q+OFb3pJ5/F+78L5Lze36lWc8BDJi1BIAlQ7tTzdsHt/p+SGVyrhz+k+snDxEydR7+A0dr+5vfszkyuZysVAWt+w7D0b0mrl51SX1wn+2z3sfDr5m21KaThxe1mrRiy6djubg/DP+Bo6nqXZ+sFAW3z5+icffeNOvR76nXJpfC5JecSx1WWa9ePXr16sXChQtLdb6ISElIT0+nXr16dOvWjZ9//tnY5qDIVXEuKYcLT2Yip3gRQE+2s5BJaOJsSbPnZCLPy8tj/PjxrFq1ig8//JC5c+eWSNAqlUpmzZrFV199hb+/Pz///LPJJOETBIFz585p999HRUUhk8no1KmTNsFenTp1jG1mqfnmm2/49NNPefToEVZW+o3iKisHDx7klVdeYffu3ZW+IoZI5Uf07IuUG27WlfPPzRSvS6VSmYwHQKT8UQk8Veg/iWONmgxbvAEA/4GjsbSx5eSva+k49F3c6/sRuuoPnVD8dm+8xY/jBnB043IdsQ+QfPcWI3/YSv12r+gc/33OFJw8atGsZ3+d41eP7KPV62/S84OZTxx977k2K9UaD7+slFsoxfJ7IuWJnZ0dM2fO5O2332bSpEm0bNmy3G1QCwI30/KITMwhNj2/UDnO4i4ZP9kuVyVw5mE2px9m42VnRgtXS+rYmyP9zyKcubk5K1aswNfXl8mTJ3PlyhU2btyInZ3dc8czxSR8OTk5HDx4UCvw7927h4ODAz169GDKlCkEBARoyx2bOoGBgUyePJlDhw4RGBhobHN0mDt3Lk2aNKlwdomIlAYxQZ9IueFkIcOitDPsCoqFTIKjhel9jUSxL/IslMUM+Go7YJTOa/83xgBw9dh+AB2hn5OeRqYiGe8W7XgUF0tOum7SMccatQoJ/WdhaefA3YtRpCUmFPucAop7fUUhin2R8mbUqFH4+fkxefLkci/Zejcjn5WXFGyLSed2umYLjL4sKOjndno+22LSWXlJwd2MwttsJBIJkyZNYteuXRw6dIj27ds/M0mmqSXhS0xMZN26dfTp0wcXFxd69OjBX3/9Rf/+/fn7779JTEzUbj2oLEIfNFs1atasyd69e41tig6RkZHs27ePjz/+WEysJ1IpMD2VImKySCSasL3KcuuUAE2dLU3yYSCKfZFnUdzdHS41vXVeO3t4IZFKUdy/C0Ds+VOsHtuXGe1q8eXLdfiqawP+/GE2ADkZumLfqXrJ9iMHTpzBg5tXmBfYhCVDu7N/+QIexcUW61xVGXavFIh9cQecSHkhl8tZuHAhhw8f5o8//iiXMfPVAvvjMth4PZXUPM0XxlB/8QX9puap2Xg9lf1xGeSrC48WGBjIiRMnyMjIoHXr1hw/frxQm9TUVIYMGcKwYcPo1asX58+fx9/f30CWlw5BELh06RLz5s2jffv2VKtWjVGjRpGQkMBnn31GdHQ0N27cYPHixXTp0sUk8gCVBolEQmBgIOHh4cY2RYe5c+dSt25d+vfv//zGIiImgCj2RcqVZi6WBpswlDcC0NTFNGtti2Jf5FlIS/tkeGLhK/nuLdaM7UtWSjI9P5jJ8P/bxOhlv9F+iKZmuCDoKm65Rcm+Sy91782HO88Q/NFc7F3dOPzTEhb376iNKngWsjI8+by9vUlPTyc5Obn0nYiIlJCAgAC6d+/ORx99RF5enkHHupuRz+rLCiITNWVoy+uZXTBOZGIOqy8X7eX38/Pj9OnT+Pj40KVLFzZs2KB979ixYzRp0oTdu3ezceNGNmzYUGGy7efn53Pw4EHef/996tati5+fH7NmzaJatWqsWbOGhIQEbfk8X19fk3QilIaAgACuX7/OzZs3jW0KAFeuXGH79u189NFH4hxJpNJQMWOaRCotjhYyvOzMuJ2eb9KiXwJ42Zk9M7FQRUYU+yLPQl7MiWbSnRicatTSvk6+ewtBrcaxuieXD/+JMi+XYYt/poq7h7bNzTNHS2bMM2yxd3XDf8Ao/AeMIuNRIt8P7srBNYvxad/tmV0W9/qKwttbE80QExODi4tLqfsRESkpCxcupGnTpixfvpwJEyYYZIyzidnsj8sstC+/PBGAtH+9/N08bGjpqpu8zcXFhf379zN27FiGDRtGdHQ05ubmzJ49G39/fw4dOlQhkvClpKQQHh5OWFgY4eHhpKSkUL16dW1yvVdeeQVLS9N0GOiLrl27YmZmxt69exk3rmRlmQ3BggULcHd3Z9iwYcY2RUREb4iefZFyp4Wr6Xv3BaCFa8XKHlsSlEplhd2/KGJ8ZBJN1vrncfKXH3Ven9iyCgCf9l2R/ruY9GS4e056GpE7N5fIFnMr60L7+9UqVaFjtk6u2Lu6oXyO11MuBWkZnGZPin0RkfKkcePGjBo1ii+//BKFQqHXvgVB4FhCFvvjMjWv9dp7Kez59//9cZkcS8gqtG3G3NycNWvWMG3aNObPn8+sWbOYOnWq0YV+TEwM3377LV27dsXV1ZXBgwdz9epVJk6cSGRkJHFxcSxbtowePXq88EIfNAkoO3ToUCFC+e/cucOGDRv44IMPsLAwrQpLIiLPQpzti5Q7dezNqWIuJTVPbfQJRWmQAA7mUrztTXcfnejZF3kWEokENys5cZnKZ7ZT3LvDT5PepF67V7jzz1nO7/mVJoF9ca/fCLm5JTIzc36a9Cat+w4jLzuT09s3YOsTaAjuAAAgAElEQVTkQnrSg2LbUqNhE26ciuDIz8uwd3XDsbqmLN+8gJdo1C0Y93qNMLe24capCOKiz9FDJzt/Ydys5GUKkXVwcMDR0VEU+yJGYebMmWzevJnZs2frtfzj8QfZHInP0lt/+qTArvZu1jrHN27cyA8//EC1atVIS0sjPDycd955B09Pz3KzTaVScfr0aW32/IIog65du/J///d/BAUFlas9pkhAQABffvklOTk5Rl0AWbRoEXZ2doSGhhrNBhERQyB69kXKHalEQs9adiYp9EHjcQiqZVeoRJApIYp9kefhbi1/7gNi0LxVyMzN+fP7WVw9ug//gaPpO+NbAFy96jJkwY8gkbDn2y849dt6WvcZRrtBJZtI9fxgFjUaNmHf0rlsmRbKqd/WYmZpRdv+o4i/epH9K+aze9FnJN2+Qa9pC+j45jtP7Usqgeo2ZV+k8/b25tatW2XuR0SkpLi7u/PRRx/x/fff623B6ezDiiv0CzgSn8XZxGzgcRK+oUOH0qtXL65du8apU6dQKBS0atWKU6dOGdSWzMxMfv/9d0aNGoW7uzvt2rVj9erVtGrVim3btpGcnMyePXvKfeHBVAkMDCQrK4sjR44YzYbExERWrVrFhAkTilXWUUTElJAIYkphESOxPy6DyMQckxL9EqClqyVdPWyNbUqZmD59OuvXr+fOnTvGNqVSIwiCpma9IKBWaxLfySUSZBIqfAKm6Ec5hN3OKPK9/csXcGDl13x24Ao2js7lbFnZCKllh69T2UI0BwwYQHJyMgcOHNCTVSIixSczM5P69evToUMHtm7dWqa+7mbks/F6qp4sMzwv5dzh3UF9UCgULFu2jMGDB2vfe/jwIa+//jqRkZGsXbuWQYMG6W3ce/fuERYWRlhYGAcOHCA3N5eGDRsSEhJCSEgIbdq0ERfQS4kgCHh6ejJw4EAWLVpkFBumT5/O4sWLuX37Ns7OpvVMExF5HmIYv4jReLm6DddT80gzkXB+CWBvLqVTdRtjm1JmRM++/hEEgUe5KhKylCRkKYnPUpKQrURZRJk3uVQTTu5uLcft339OFrIKtQDgZl05Hw/6uC5vb2/OnDmjB2tEREqOjY0Ns2fPZuTIkUyaNKnUpeXy1QK7bqcbNRlfSRDUag4lQ02v2hw8eJDatWvrvF+1alX+/vtvQkNDGTx4MJcvX+aLL75AWoryIoIgcP78eXbu3MnOnTuJiopCJpPRqVMn5s6dS3BwMHXr1tXXpb3QSCQSAgICCA8PN4rYT0tL44cffiA0NFQU+iKVkso5mxMxCcykEoJq2ZmMV6EgfN+sLNm9Kgii2NcfilwV55JyuJCcQ65KM2WWAs8q5a5UQ1ymkvuZSm07C5mEJs6WNHOxrBBVHpwsZFjIJNprqgxYyCQ4WpR995q3tzd37twhPz+/0tbAFqnYDBs2jO+++44PPviA48ePl2qhMOJ+pskstgNIpFIcq3sy/aed1K5ZdKi1hYUF69atw9fXl2nTpnH58mXWr1+PtbV1ke2fJCcnh4MHD2o9+HFxcTg4OBAYGMiUKVMICAjA0dFR35clgmbf/po1a7h9+za1atV6/gl6ZMWKFWRmZvLBBx+U67giIuWFuGdfxKh42prRzcM0POXdPGzwtK0cE3tR7JcNtSBwPTWXLTdSWXFJwZmH2Tqi+FlCX6efJ37OVQmceZjNiksKttxI5XpqLmoj7rKSSDSLD4K6uFdTsZEATZ0t9RI94e3tjVqtFrfBiBgNqVTKokWLOHnyJL/++muJz7+bkc9ZE9tGB5r7UmRyLncz8p/ZZurUqWzfvp09e/bQqVMn7t27V2TbxMRE1q1bR9++fXFxcaFHjx7s3buXvn37cuDAARITE9m8eTODBg0Shb4B6datGzKZjL1795bruDk5OXzzzTcMGzYMDw+P558gImKCiHv2RSoExxKyKnSCoI7u1oUyAZsy77//Pn/++SeXLl0ytikmx92MfHbfTiclT22w8NeCfquYS+lZy85oi0x3klLYdPfZGflNibd9HfUSNRETE0OdOnX466+/ePXVV/VgmYhI6QgODiY6OprLly8Xu1yYWhBYeUlh8hVxQn0dn5so9/z584SEhKBUKtm5cyctWrTgypUr2vD8EydOANC2bVuCg4MJCQnB19e3Qm2pelHo2LEjLi4u7Nixo9zGXL58OePGjePKlSvUq1ev3MYVESlPRM++SIWgXTUrOrpXTDHdyd2adtWsjG2GXhE9+yUnXy2wPy6DjddTSc3TeLsNNVEu6Dc1T83G66nsj8sgX13+0/KfVy7lxqkIJCYpCR4jAWrbmelte4SnpycymYybMTEo1QI5KjVZ+WpyVGqUaqFQTXAREUOxYMEC7ty5w/fff1/sc26m5ZFiokIfNPfHlDw1MWlP9+4X0LRpU44dO0aVKlVo27Yt7u7u+Pr6MnPmTKpWrcqaNWtISEjg+PHjTJs2DT8/P1HoG4nAwED2799PXl5euYynVCpZsGAB/fr1E4W+SKVG9OyLVCjOJmazPy7T6AmDCsbv5mFDS9fKJfQBxo0bx7Fjxzh//ryxTTEJ7mbks+t2utH2txYkhwwqRy9/ZmYmXl5eDJv8Ga6vDSmXMQ1JP2976jqYl/r8/yZg3BlxErf6fkjkhX8fppCAUaTy8O6777Jp0yZu3rxZrARjW26kcjs932TFPmjuiV52Zgys61Dk+ykpKezdu5ewsDD27NlDSkoKVlZWZGdnM2TIEFauXFmsffwi5UdUVBQtWrTg4MGDdO7c2eDjbdq0iSFDhhAVFUWzZs0MPp6IiLEQPfsiFYqWrlYMqeeAvbkUY02LBbUae3MpQ+o5VEqhD6JnvyScTcxm4/VUoyayEoC0f738BbWmDc3KlStRKBSMG9iLKkb8PpYVCZrtEN72pVskUeSq+PteJt/+7xGrLqcQdltTMtStYZMihT48TsAYmagpX7jqcgrf/u8Rf9/LRJGrKsPViIgU5osvvkCtVjNz5szntlXkqog1caEPmnvirfR8ne9TTEwM3333HV27dsXV1ZVBgwZx+fJlJkyYwNmzZ8nIyOCrr75i48aNjB49muzs8rmXihSPpk2bUq1aNcLDww0+liAIzJs3j4CAAFHoi1R6RM++SIUkXy0QcT+Ts4k55ebll6B5ABzduJxBreoz5I2B5TCqcRgzZgwXLlzg9OnTxjalwiIIAscfZFfIXBId/91aYihPcW5uLt7e3rz66qusW7fO5Gpx/5c36zngUYKICLUgcDMtj8jEHGLT8/V2Dyrox8vOjBaultSxN3/unmMRkeIwb948pk+fTnR0NPXr139qu7/vZXLmYbbJi33QfJ88lAqid6xl586dREdHY25uziuvvEJISAhBQUF4enoWOm/btm0MHTqURo0a8ccff+Du7l7+xosUyfDhwzl//jwXLlww6Di7du0iODiYiIgIOnXqZNCxRESMjSj2RSo0xkiG9uFbQ/nrr7+Ijo6utJOAUaNGcfnyZW1yIpHCvMhJI1esWME777zD5cuX8fHxAWB/nMajbUoPDAnQ0tWSrh62xT7nRUrAKFJ5yMnJwcfHh+bNmz81wdnp06cZGDqee1ejyc/J4r3Nf1Pdp3E5W6pfTvzyIzvnTaVv374MHjyYV199FTu7osvyPUlUVBQhISEAhIWFid7dCsKWLVsYNGgQcXFx1KhRwyBjCIJA+/btkUgkHD16VNxeJVLpEcP4RSo0nrZmhPo60s/bHi87zYRYX7flgn687Mzo521PqK8jnrZmLFmyBHNzc0JDQyttoi0xjP/ZnH1YMT36T3IkPssgIf1KpZL58+fTv39/rdAHeLm6jVG315SUgjwHnaoXr7Tni5iAUaTyYGlpydy5c/n999+JiIgo9H5+fj79+g8gM1VB0ORZDJi1FEf3wl5vU8PcUrPVbuHChfTp06dYQh+gefPmnD59Gnd3dzp06MD27dsNaaZIMXn11VeRSqX8+eefBhvj8OHDnDhxgk8++UQU+iIvBKLYF6nwSCUS6jqYM7CuA2/7OtK6qhUWMskT71MsUS594p5uIZPQuqoVb/s6MrCuA3UdHofTOjs7s3LlSnbt2sX69ev1fj0VAVHsP527Gfnsv5dpbDOKxf64zGfWmy4Nmzdv5tatW3zyySc6x82kEoJq2ZmMZ18AgmrZYSZ9/mTubkY+qy8riEzM0Z5bHhSME5mYw+rLCr3/LkVeLN544w1atWrF5MmTUavVOu/dvHmTu3du03Hou7TuO4xmPftjZV/FSJZWDKpXr05ERARBQUH07duXOXPmVNoFflPB2dmZ1q1bG3Tf/ty5c3nppZfo0aOHwcYQEalIiGJfxKRwtJDRpYYNkxo7EdrQkZBadrR0tSLj7k1UeblFniOXgoeNnJauVoTUsiO0oSOTGjvRpYbNU0txhYSEMGzYMCZOnMjdu3cNeUlGQRT7RZOvFth1O92kvNe7bqfrzSusVquZM2cOQUFBNGnSpND7nrZmdPMonqfc2HTzsClWePyLmoBRpPIhlUpZtGgRkZGRbNq0See9hw8fAmBlV3T2+pKSl10xFkTL6pi1trZmy5YtfPHFF3z66acMHTqUnJwc/RgnUioCAgLYt28fSqVS731HRUXx559/8vHHH4tefZEXBnHPvkiloEOHDtSpU4cf165DKQio1CCTglwiQSqhVDf1lJQUGjVqhJ+fH3v37q1UD4YBAwagUCjYt2+fsU2pULwo+9Kfxm+//Ub//v05ceIEbdu2fWq7ypDP4EVOwChSuenTpw9nz57l6tWrWFlZMWLEiEJRarVbtCN01R/cPH2E/cvnc+/K/5DJ5dRu0Y6A96ZT1ftxkr/9yxdwYOXXTPrtKAdXf8PVYwdwrO7JhM0Hmd+zOdXqNKDTsHHsWfw5D2Ku4uxZm5CP5uLdsj0XD+xi/4oFJN+Joaq3D31nLKZ6g5d0bHl46zr7ls7h5pmj5OdkU61OA14JnYLvywE67R7cvMLO+dO487+zWDs40qbfcOxd3Ng2cxK3bt3Cy8urTJ/b1q1bGTFiBE2bNuX333+nWrVqZeqvJAiCgEoApSCgVoP03/mLrJTzF1Pm9OnTtGnThiNHjtChQwe99j1gwAAiIyO5evUqcrlcr32LiFRURLEvUimoU6cO/fr1Y/78+Xrtd+/evQQGBrJ8+XLefvttvfZtTPr27UtmZiZ79+41tikVBlPPOD+knkOZEr0JgkCLFi1wdHTkwIEDz21bUYVyJ3dr/IshlCvDgoWISFFcv34dX19fZs6cybRp0zhx4gRhYWHMnTuXdoPG4OHbDFtnVyQSCWvfewOnGrVo1ftN8nNzOLFlNWq1ivc2HcCxek3gsdiv6u2DS01v6vl3QRAE/AeMYn7P5phZWJCTkU7rvsOxtLXjyIal5GSk0fuThfz1w2zaDhgJwKEfv8PG0ZkPdpxEKtUElj64eYXlI3tiX9Wd5kEDMbey5n/7/iD23EmGfL0Wv1d6ApCe9IDvBnZGrVLSblAo5lbWnN7+E2YWViRcjyYmJobatWuX+bM7c+YMvXr1Qi6XExYWVmSEU1kRBIFHuSoSspQkZCmJz1KSkK1EqS7cVi4FNys57tZy3P7952Qhq9QLACqVimrVqjF27Fi++uorvfV77do1GjRowLJlyyrVfE5E5HmIy1oiJo8gCMTHxxskc35AQABjxoxh8uTJdO/eXS+TiYqAGMavi1oQ2P1v+L4prn5KgN230wn1dSx1Kbfw8HDOnTvH33///fzxJBLau1ljIZOwPy7T6J9bwfjdPGxo6Wr13PamkoDRQiYp1vWIiDxJvXr1GDduHHPnzmX06NH4+/uTlZ3D3Llz8WrWlsbdNFno/29QF6ztHXlnXTjWDo4A+HYO5PvBr7Bv+XwGzFyi0697fT/emLOi0HiJsTcYu3YPtZq0AqCqtw9rxw1gx1cf8MG241Rx9wDAyq4KO2ZPJjbqBN4t2wMQ9vWnVHHzYNzPfyE3twCg7YBRrBjVk/D/m6kV+xHrvidTkcS7P/2JZ6PmADQPHsiiXm0A0Fd+y1atWnH69Gl69epF+/bt2bRpkzZrf1lR5Ko4l5TDheQcclUag6VAERpfi1INcZlK7mcqte0sZBKaOFvSzMXyqVsRTRmZTMZrr71GeHh4IbFflgiI+fPn4+bmxvDhww1pvohIhUPcsy9i8qSnp5OdnW2wMnmLFi3CxcWFkSNHFkp6ZKqIYl+Xm2l5pBhxz3ZZEYCUPDUxaaVL8CYIArNnz8bf35/OnTsX+7yWrlYMqedg1Cz9BVn3h9RzKJYwftETMIq8GMyYMQOZTMbnn38OgOo/QZxpiQnEX71I8+A3tEIfNIK+bpuXuXa0cHRPm75Fi6Sq3j5aoQ9Qs1ELALxbdtAKfQDPxhqR/iguFoCsVAUxZ47QuHsIuZkZZCqSyVQkk5XyiHr+r5B8J4bUh/EAXD22H8/GLbVCH8DW0YWmgX0BjfjTFx4eHhw+fJiAgAB69+7NggULSp24Ty0IXE/NZcuNVFZcUnDmYbZW6MOzhb5OP0/8nKsSOPMwmxWXFGy5kcr11FzUlSxINyAggHPnznHt3gOiH+VwIC6Dn6+lsOifZBZeSObbfx7xfxcf8e0/j1h4IZlF/yTz87UUDsRlEP0oh+Qcpc7vLC4ujg0bNvDBBx9gaWlpxCsTESl/RM++iMkTH6+ZDBhK7NvZ2bF27VpeeeUVfvjhByZMmGCQccoTlUqFhYWFsc2oMEQm5hjdO11WJEBkYjZ1HcxLfG5ERATHjx9n165dJQ4P9bQ1462GjkTcz+RsOX6OBeO0dLWkU3WbYmXdfzIBoyn8rgsSML7V0LFY1yciUoCTkxPTp0/nww8/5L333ivk+U6JjwPAtVadQudWrV2f6ycOkpedibnV44ScjjVqFTlWFTfdeuiWdvZFH7fVHM9O12yXSr57C0EQ2Ld0HvuWziuy78xHiThUdSclPg7PfxcRnsTFqy4A+l6Ht7Gx4ZdffuHzzz9n6tSpXLp0iRUrVpTouXk3I5/dt9NJyVNrF0P1dd8p6Od2ej6x6flUMZfSs5ZdmbZyVRQUuSoc2wYw/dB1tj+UARlljoBYtGgRtra2Yvi+yAuJKPZFTB5Di32ALl26MH78eD7++GMCAgKoX7/+80+qwIie/ccoclXEppu+91QAbqXnayZKJQztnD17Nk2bNi11KSIzqYRuHrb4VLHQmdwaQlAX9OtQisltxP1Mo2bdLykFWfoP38/USwJGkReLcePGsWTJEj788EPefW9imfszsyjaIyqRFn2/kUiLDh4t8LgK/yr0jkPHUb9dlyLbOnt6F8u2pwxVJqRSKbNmzaJhw4aMGjWKGzdusGPHDlxdXZ95Xr5a0Fn8BMMtLhb0m/pvNY+Wrpa8XMzFz4qEWhC4mZZHZGIOsen5SJDoVI4oSwTE6YfZZPh0ZOJXL2FjK95HRV48RLEvYvIUiH03NzeDjjNv3jzCw8MZMWIER44cMWmxLIr9x5xLMn2vfgES4HxSDl1qFL883qlTp9i/fz+//PJLmZM+edqaEerrSExaPpGJ2dxKz9fbZ1vQj5edGS1crfC2NytRfoK7GfmcTTS9kloCcCYxh/pVLCqF106k7AiCQFpaGomJiSQlJZGYmFjo54LXGRkZ7Nmzh71//qXTR0F4feLtm4X6T4y9jk0VZx2vviFw8tBECsjkcuq2efmZbau4e5B0J6bQ8aTYG4Bm37ahGDx4MN7e3vTu3ZvWrVsTFhZGo0aNimx7NyOfXbfTScvTyM7yeq4UjBOZmMP11DyCTMjLXx4REF4t2iGTy1l5SVFpIiBERIqLKPZFTJ74+HhsbGyws7Mz6Dg2NjasW7eOTp068c033/Dhhx8adDxDIop9DYIgcCG57KX2CrJVz41K1ItdpUUAzifn0Lm6dbGF++zZs/Hx8aFPnz56sUEqkVDXwZy6DuYoclWcT8rh5L0UJGYW/75fvGRaT7azkElo6mxJ01ImpBITMIpUZFQqFcnJyUWK9qIEfFJSEnl5eYX6qVKlCq6urri6uuLi4kLjxo3p0qULW7duJTMzk8TEx/cne1c33H0aEbVrC51HTdR6URNuXOb6yUM07dHP4Ndt6+SKd8v2nNr+E/5vvIW9q+6CfYYiCVtHFwB82nfj2KYV3L0Ypd23n6FI4nz4NkBzvzAkbdu25fTp04SEhODv78+WLVvo2bOnTpuzidlGT1haEA208XpqsROWGovyjICQ/Vtmz9QjIERESoMo9kVMHkNl4i+KDh068P777zN9+nR69uyJr69vuYyrb0Sxr+FRrkonWVJlIFcloMhV42T5/N/vP//8Q1hYGOvXrzfI34OjhYwuNWyYM/J1HNw9mbl4KQnZSu5n5j+31FR1GzPcrDSlphwtpGWKOihIwGiqPJmAsTQ5GUTKl+zs7GKJ9oKfFQpFoQRwcrkcFxcXXFxctAK+QYMGOq+f/NnZ2Rkzs6K9lb1798bf37/Q8R6TvmDte2+wbHggLXsP0Zbes7S1p9vbHxnks/kvIR/PZ8WoIL4b+DKtXn8TpxpeZDx6yJ1/zpL6IJ6JWw8B0Gn4eM7t+ZW14wfqlN6r4u5BwvVLLFy4kPbt29OoUSN8fHwMkpOmZs2aHD16lDfffJPg4GAWLlzI+++/D6BTitTYT5SC8ffHZZKrEmhXjFKk5Y0YASEiUn6IYl/E5ElISCg3sQ/w1VdfsWfPHoYPH86JEyeQy03vaySKfQ0JWUpjm2AQErKUxRL7c+bMwcvLi0GDBhnMlvz8fI4fO8YXX3yBr5MFvmgm4YIgoP63hJJKDbJ/SyhJi1FCqaS86AkYRUqPIAikpqYW2+uemJhIZmbhag/W1tY6Ir127dq0bt26kGgveF2lShW9fQ/atm1Lly5dOHjwoE7VjLptXmbk91vZv2I++5fPRyqX4928HQETZuD0lGR8+qaatw/jf97H/pVfExW2hawUBTZOLlT3aUzX0MnadvauboxZsYOdC6YRse7/sHZwpE2/4dg5V2X7rA/Ytm0bS5cuBTSl2+rVq0ejRo3w8/PT/l+vXr0yP69tbW3Zvn07n376KZMnT+bSpUsM+2IxxxNzy9SvoShYgGjvZm1kSx4jRkCIiJQvEqG09URERCoI3bp1w9nZma1bt5bbmKdOnaJdu3Z8+eWXfPbZZ+U2rr5o06YNjRs3ZvXq1cY2xagciMsgMjGn2Ml/nkZFCeMHTThrS1crXnnOvv1r167RoEEDli5dytixYw1mz8mTJ/H39+fUqVO0bt3aYOM8DUWuihWXFOU+rqF429exUtbWLi+USqU2FL44XvekpCSUysKLgk5OTkWK9Kf9bG1tXLF169Yt+k/4mH4zlxjVDkMQUssOXycLUlJSiI6OJjo6mosXL3Lx4kWio6N5+PAhAObm5jRo0EBnAaBRo0bUrl0baSky/P3000+s3neCHh/M0vcl6Z2KIGgFQdCJgKhIdHS3rpARECIi+sD0XJIiIv8hPj7+qclyDEWbNm2YOnUqM2fOJDg4mCZNmpTr+GVF9OxriM9Slljox547ya5F03lw4zL2Vd3pNGx8oTYqpZJDa78jKmwLqQ/uY+dSjaYBfej69ofIzTWe7V2LphO1ayvT/76qnWDsnP8xJ7auIejD2bQfFApAevJD5rzqR69pC2jbf+Rz7VMLcD/z+dUF5s2bh5ubGyNGjCjB1ZeciIgIbGxsaNasmUHHeRovegLGyk5WVlaJvO4KReGFHzMzM604L/jf19f3qV53Z2dnk4voql27Nt1aG+c7aGjcrDW/iypVqtC+fXvat2+v835iYqJ2AaDg//DwcFJSUgCwsrLC19e30CKAp6fnM8Vflz6DuN8o0HAXpkf2x2VSzUpu1JD1iir0oWJGQIiI6AvTelqJiBRBfHy8wTPxF8Xnn3/Orl27GDZsGGfOnMHc3HTCa0Wxr/EyJGSXLIw/4folfhw3AJsqznR9+0PUKiX7V8zH1qmqTrvtsyYRFbaVRt2C6fDmO9y9GMmhtd/xMPY6QxetB6B2s7Yc27icBzev4Fa3IaBZSJBIpcSeO6kV+7HnTmraNy+85/apdmYrEQThqRPV27dvs2HDBubPn4+lZdHltPRFREQE7du3f+p+YkOirwSMpSVy52Z++2ICH+2KxLF6TQBWjukFQOiqP0rcX2kSMJoSarWalJSUEnnds7IKiwdbW1sdkV6vXj38/f2L9Lq7urpib29fKT/P/zJ1/Nt8d1GhrXdfGbCQSXC0eLZX3tXVlc6dO9O5c2ftMUEQiI+P11kAiI6OZvv27WRkZABgZ2dXaAHAz88PNzc3lALsup2ORCIxiYVECRp732roaJSkdGcfVlyhX8CR+CwsZBKjR0CIiOgbUeyLmDQ5OTkoFIpy3bNfgIWFBevXr6d169bMmjWLWbMqfihfAaLYB5VAkQninsW+5fMRBIG314RpS1c1eiWY7wZ20raJv3aRqLCttHr9TfpMXwyA/4BR2Dq6cmTDEm6eOUqdVh2o1awNoBHzbnUbkpOeRsKNyzTqGsStqBPa/mLPncTKwZGq3j7FtlOp1nj4ZU+Z0y1YsAAHBwfefvvtkn0AJUSlUnH06FE+/vhjg47zNF70BIzGJj8/XyvOiyPgk5KSUKlUOn1IJBKcnJx0RHqLFi2e6nV3cXHBykqcrBeFo6MjdikXybG01mYnN2UkQFNny1It1EgkEqpXr0716tXp3r279rharebu3bs62wAiIyP5+eefycnRlO50cnKi32cL8erUE0kpwv+NQcEe9cP3M+nqUb615u9m5LP/XuE8FhWRihABISKib0z/bi/yQvPgwQMAo4h9gGbNmvHZZ58xa9YsQkJCaNWqlVHsKCmi2NckhisJapWK6ycO4ts5UCv0Aap616eefxeuHt0PoP2/w5B3dM7vOM5jeyIAACAASURBVPQdjmxYwtWj+6jTqgO2ji64etXjVtQJ2vYfSeyFU0ilMjoOG8//9u0k6c5NXGrWIfbcSbyatinxhFYpCMgofE58fDxr1qxh+vTp2NgYNhz8/PnzpKen06lTp+c3NgDGTsDYrOcAXnrtde3WDX1R3ASM+kQQBDIzM0vkdS8Ik34SMzMzHYHu7u5O48aNn+p1d3JyeuHvVfoiNjaWh1GHcQxpaGxT9IIANHXRb2SSVCqlVq1a1KpVS6e0nkqlIiYmRhMFcC8JmX+QyUWDCMCZxBzqV7EoNzGbrxY0ERCYxlYqY0dAiIgYAlHsi5g08fHxgPHEPsAnn3zCzp07GT58OFFRUQYPi9YHotgHdQm9+pmKJPJzsnGp6V3oPZdadbUiXxEfh0Qqxdmztk4bO5dqWNo5oIi/qz3m1awtV49pzos9d5Iavk3x8G2KlYMjsVEnsXWqSvy1aJoE9C3h1YFKDRTxK/7mm2+wsLBg3LhxJe6zpERERGBpaWm0RbCELCVSKHMCxifJy87E3Kp4iyRSmQypnr9nUolmm0ZBVYPSolarUSgUxRLtBT8XeDafxM7OTkeo+/j40KFDh6cmr7OzszM5kWTKqNVq/vrrL5YuXcquXbuwt7dnrG977LwamLR3XwJ42ZmVW7LKggz/derWJeGSgtQ8tUmI1/8iAXbfTifU1xFpOXwPI+5nkmZCn5UxIyBERAyF6d7pRUSoGGLfzMyM9evX06JFC2bMmMGCBQuMZktxEcU+GDz6shgTKa9mbTizYwOP4mI1HvxmbZFIJHg1bUPsuZPYubohqNV4NWtb4uFlRVxfcnIyy5YtY+LEiVSpUqXEfZaUw4cP4+/vb5Ca18WhNAkYn6SgysKk345ycPU3XD12AMfqnvT/8geOblzGraiTpCcmYGlnj0/7bgRO+gKbKk7a84vas19WnpaAMS8vr0Re9+Tk5CJD5p2dnXVEeu3atZ/qdXd2djaJxc0XkUePHrFu3TqWLVvGjRs3aNKkCStWrGDw4MHcz5ez7Va6sU0sEwLQwgh7q2+m5ZGSp8/lw/JFAFLy1MSk5Ru8jOfdjHzOJhZeIKzoGCMCQkTEkIhiX8SkiY+PRy6X4+Tk9PzGBqRRo0Z8+eWXfPLJJ/Tu3Zt27doZ1Z7nIYp9TU33kmDj6IKZpRVJd2IKvZd0+4b2Z0d3DwS1muQ7MVT1rq89np78kJz0VBzdPbXHCkT89ZMRxEWf5+UREwFNMr6Tv67FztUNcytrajQsebWHoq7vu+++QxAEJk2aVOL+SoparebIkSNMmDDB4GMVRWkSMD6NTR+NxqWmN6+N/xRBELhxKoJHcbdpETIIO+eqPLh5hTM7NvAg5irvrt9rcM/1nZQsgoOH6gj4tLS0Qu0sLCx0hHqNGjVo2rTpU73ujo6OL/x9wdSJiopiyZIlbN68GaVSSf/+/Vm/fj3+/v7av8s6goCVkE+mWoJUZnrTQAngYC7F2778hVhkoulX95AAkYnZBhX7akFgtwmF7/+X8o6AEBExJKZ3lxcReYKCTPylqZGrb6ZMmcLvv//OiBEjOH/+vNHrKj8LUexrktfJpcVP0ieVyajn34VLh8JJiY/T7tt/GHON6ycOatv5dOjGnz/M5timFbz+2SLt8aM/L//3/Ve1x5xq1MK+qjvHNi1HrczHq6mmDr1Xs7bsWfw5Fw+E4dm4ZYnDbeVSTbj3k6SlpfH9998TGhqKq6triforDRcvXuTRo0dG269fmgSMT8O9vh9vzFmhfZ2fk03Hoe/qtKn5Uku2TAsl9tzJElVOKA1SM3OkcjkNGzakU6dOT01WZ2trK4bMvwDk5uby66+/smTJEk6ePImnpyefffYZo0ePplq1aoXaSyUS+tR34edrhXMqmAICEFTLrtxFmCJXRWz688uaVnQE4FZ6PopclcG2QYgRECIiFQdR7IuYNPHx8UYN4X8SuVzO+vXradq0KZ988gnffvutsU16KqLY14Qsu1nJicssvve329sfce3436wYHUzbASNRK5Uc37qaqt4NSLgeDYB7/UY0Dx7I6e0/kZ2eSu0W7YiLjiIqbCu+XXpQp1UHnT69mrXlnz934FbXFyt7TWh99QYvYW5lTdLtm6Xar+9mJS8k8pYuXUpWVhZTpkwpcX+lISIiAnNzc9q2LfkWBH1Q0gSMz6JN3+E6r80sH4cP5+fmkJeVSc3GLQC4f+Ufg4t9gF9+24ZFUXs1RF4Ybt++zfLly1m9ejVJSUl069aNHTt2EBQUhPw5C4SetmY0tFJxKUuCVGo6zwIJ0NLVEg8jhFefSzJ9r34BEuB8Ug5dahgmSasYASEiUnEQZwoiJk1CQkKFEfsAPj4+zJkzh++++46IiAhjm/NURLGvwd1aXqKboHt9P0b9sBUbR2f2LZvP2Z2b6fb2VPy69NBp12f6t3QbO5W4S+fZvfAzbp45SueRExk0d2WhPgtC+QtK8QHI5HJqvqRJale7hPv1pRKobqM7Ec7KyuKbb75h5MiR1KhRo0T9lZbDhw/TunVro5VBK2kCxmfhWKOWzuusVAVhX3/C7G6+zPD35KuuDVgQpBH7ORnlsxdaZbpOM5EyUJBwr1evXnh7e7Ns2TKGDBnClStX2LdvH717936u0C+gp081yM5ArTJu1YriIgHszaV0qm7YKiL/Zd26dUgkEg7+c00v4jVy52amNXdFcf+O9tjKMb1YOaaXHnovHgJwPjkHQY+LogUURECYstAH3QgIERFTRvTsi5g08fHxFa7c3cSJE9mxYwcjR47kn3/+wda24mV0FcW+BjdreYkTuNVu0Y7xG/cXOt5t7Efan2VyOV1Dp9A19PledP8Bo/AfMKrQ8dHLfiuhZRrUgsaz/ySrV6/m0aNHTJ06tVR9lhRBEDh8+DBjxowpl/GKQp87e8wsdJPQbZr6Fnf+OUPHoeOo7tMIc2sbBLWateMHIuhzleEZiE79FwuFQqFNuHf9+nVeeuklrdAvbQlNM6mEvvVd2B6Xq2drDUNB+L6xSqLlqQXKd5nBsOSqBPYeOUEr3/q4uLjorV8xAkJEpGIhThdETJqCPfsVCalUytq1a3nw4AEffvihsc0pElHsa0i/d8vYJhgEN+vHYj83N5evv/6awYMHU7t27WecpT+uXLnCw4cPjbZfH0qegLG4ZKelcPP0YV4eMYFX35mK3ys9qde2M04etZ5/sh4x1PWJVCzOnz/PmDFjqFGjBlOnTqVly5YcPXqU8+fPExoaWmqhX4BPVQes7/yjJ2sNSzcPG6NkRx86dCiR9xRUeSK5qr4ZtfRXRi391WD9P41pcxbi6upKtWrV6Nq1KxMmTGDlypUcP36c1NTUEvcnCAIXknMqvNAvKrqiKEoSATFixAi8vLz0Y6CIiB4Rxb6IyaJSqXjw4EGFCuMvoE6dOnz99dcsX76cffv2GducQrzIYv/q1avMnDkTPz8/2jXxIyejcBZzU8ZCJsHR4vGt/aeffuLevXtMmzat3Gw4fPgwMpnMqFUpChIw6hvJv/ub/zv5O7ZxRVHNDUJRCRhFKg+5ubls3LiRdu3a0axZM/bu3csnn3zCnTt32LRpE+3bt9dr4sVxQZ05/9savfVnCDq6W9PSCKX2AGQyGQq1HJkBF9jkZubIzcp3b7gU+HTBt/zyyy+MHTsWR0dH/vrrL9555x3at29PlSpV8PT0JCAggClTprB27VrOnDlDZmbmU/t8lKsiV/VsYXzl6D72L6/4JYoLyFUJKHLFfVMiposYxi9isiQmJqJWqyuk2AcYO3Ys27dvZ9SoUVy8eBEHB4dS9SMIgiazuCCgVmvCk+USCTIJpZ7wvWhiPyYmhq1bt7J161YuXLiAra0tvXr1Yt68eVjWciYq2fT3F4Im5LCps6X270KpVDJv3jz69OlDw4YNy82OiIgIWrZsadQtLKVJwFgcLG3tqN3cn8Prf0CtzMe+qjvXTx5Cce+2Xsd5FkUlYBQxfe7cucOKFStYtWoViYmJdO3alW3bthESElLsffilQS6XM6zDSyxcMpfu48pvUbC4dHK3xr+acYQ+aPbsjxw5ko92ReJYvSbzezanWp0GdB45gd3fzCDh+iXsXN3o9vaHNA8aqHPug5tX2Dl/Gnf+dxZrB0fa9BuOvUvhaMSC/fqhq/4AQJmfx8HV33DlyD6S426hVqqo0aAx3d75WCfJq+L+HRYEtSBw0hdY2tgRsf57Uh/cx62eL72mLcDTr5m2bfy1aI5uXMatqJOkJyZgaWdP85e7s33ld/Tv31/bLicnh6tXrxIdHc3Fixe5ePEiO3bsYNGix9VlateuTaNGjfDz89P+36BBAxKynv95Xj26n5O//Kiz9a2ik5ClxMnyxZkziVQuRLEvYrLEx8cDVFixL5VK+fHHH2nUqBHvv/8+P/7443PPEQSBR7kqErKUJGQpic9SkpCtLLKEmFyqmfS7W8tx+/efk4WsWCLgRRD7d+/e5ZdffmHr1q2cOXMGKysrgoODmTFjBoGBgdrEcYpcFZHJCiNbqx8EoKnL4/3lW7duJSYmht9+K93+/1LZIAhEREQwZMiQchvzadiqskGQgUS/Lv6Bc1YQNn8aJ375EQSBev6dGfH9Fua+1liv4xRFUQkYRUwXtVrNgQMHWLJkCWFhYdja2jJ8+HDeffddGjRoUG52BAYE8O3ixZxcu5i2I983+p7rgvG7edgYzaNfQFEh3I/ibrHxo1G07DWE5kEDOfvHJn77/D1qNGxCtTqa31t60gNWhb6OWqXk5RETMLey5vT2nzCzeP715Gakc2bHzzQJ6EPrPkPJzczg7B8bWTtuAO9u+JPqPrr3mgt7t5GbmUHrPsOQSCQcXv8DG6eM4MOdZ5GZae4XN05F8CjuNi1CBmHnXJUHN69wYscGevS4zsmTJ7VzB0tLS5o0aUKTJk10xsjMzOTy5ctcvHhRuxCwceNG7t69C2jmPIO++BbfwP5IZZVHXkglkJCtxBcLY5siIlIqKs+3UeSFIyEhAai4Yh+gZs2aLF68mLfeeos+ffoQFBRUZDtFropzSTlcSM7RhsBJ4ZnJ45RqiMtUcj9TqW1nIZPQxNmSZi6Wz6yfW1nFfnx8PL/++itbt27l+PHjWFhYEBgYyOTJkwkKCipyf6ujhQwvOzNum3j2YAngZWem/b2r1WrmzJlDjx49aNas2bNP1iM3b97k/v37vPzyy+U2JmiuNzo6mqNHj2r/Ofq25I05pQ+v7zb2oyK9Tw5V3Xlz0bpCx+dGJeq8bhEyiBYhg3SOFXjuSktRCRhFTI+UlBTWr1/P0qVLuXbtGo0bN2bp0qUMGTLEKBExEomEr7/+mmbNmtG5RSMsWr5GWp7aKPfEgqz7QbXsjLJH/7+oi/gQEmNvELp6p7bMZuPuvZgf2JTInZvp8f6XAESs+55MRRLv/vQnno2aA9A8eCCLerUp3OF/sLKvwke7o3RC+1v1Gco3ffw5sWU1fT//Tqd9SsI9pvx+Slu+1cWrLhveH8q1Ewdp2Kk7AG37j6Tj0Hd1zqv5Uku2TAvl6NGjdOzY8Zk2paSksHTpUnbv3k1KSgp169bliy++oG/fvkRFRTFo0CD+XLmI+l17Yf7vPSorVcG3/TvgWL0Wb68JY9vMiUSFbQVgWnNXbd8F9061Ws3xzSs5s+NnHsXFYmlrj2/nQAImTNdeG2CQ6AqAq8f2c2jNt9y78j8kUgm1m/sTOPFz7ls30mn3+++/89lnn3Hjxg3q1q3LrFmznvnZiYgYE3HGIGKyFHj2q1WrZmRLns2oUaPYvn07Y8aMITo6GicnJwDUgsDNtDwiE3OITc8v5Ekp7g6xJ9vlqgTOPMzm9MNsvOzMaOFqSR17c6T/8fZXJrGfmJjItm3b2Lp1KxEREcjlcrp3785PP/1Er169sLe3f24fLVwtiU3PLwdrDYcAtHjCA/bHH39w6dIlVq1aVa52HD58GKlUSocOHZ7fuAzk5ORw9uxZrbA/duwYKSkpyOVyWrRoQf/+/WnV+VUqYwrGJxMwipgWFy5cYMmSJWzcuJG8vDz69u3L6tWr6dChg9G3ZjRp0oSRI0fy1eT3uHztOheyLDlbjvXSC8Zp6WpJp+o2Rsu6/1+KWvKo6u2jFfoAto4uuNSqy6O4x9t5rh7bj2fjllqhX9CuaWBfTv669pljSmUypLLHC7c56akIajU1Gjbl3pXCCRVferWXjhguKNn66F6s9piZ5ePnQ35uDnlZmdRsrCkZGhUV9Uyx/+DBA9q2bYtEImH8+PG4uroSHh7O6NGjSUtLY9KkSfz++++079CBv5bOJWiyRvz+MW8qORnp9Pvye6QyGa37DCct8QE3Th5iwKylhcb5ffZkIsO20CJ4EO3eGIPi/m1ObF3D/av/Y+yPu7VRCqD/6IqoXb/w2+fjqeffhYAJ08nPyebUb+tYPiqI97f8jVCvGRKJhL/++ou+ffvi6+vL3LlzSU5OZuTIkXh4eDz18xMRMSbijEHEZImPj8fFxQUzM+Ov/D8LiUTCqlWr8PPz47333tOEvWXks/t2Oil5agqmM/qaTBX0czs9n9j0fKqYS+n5Hw+JqYv9R48esWPHDrZu3crff/8NQNeuXVm9ejWv/z975x0dVdX14edOeu8QQiB0JIC0SEtCkaogTTpSRAjFzifttYBIFewmSJEiNRI6ihSFVOkivUNCSUggPaTO3O+POANDAqRNZiacZy2X5M659+w7de9z9t6/vn1xcnIq1vVq25vjaK4gRU87WaVFAhzMFdSyz3+NZVlmzpw5dOjQodyb5IWGhtK0adMS96h4EklJSURFRWmC+yNHjpCTk4OtrS1t27Zl0qRJ+Pn50apVK6ytrYH85+Hb04nPbBhlTDzegFFg+OTk5BASEkJQUBCRkZFUrVqVadOmMWbMGIPLTPviiy/YuHEjC+fP48svv6S+o4XWb5UuPknq6zoU8ltlCBS2s+/oXrXAMSt7BzLTkjV/J8feolqjFgXGudaoU6R5j+/cSMSaxSTcuIwy7+FitFPVgsofjlW0A0114J+Z+rCj/oOUJP5cupBTe7aRnqidhfSszvsff/wxSqWS06dP4+LiAuT3JRoyZAgzZ85k3Lhx+LRsRbsR7xC6+gcadnyV9MQETu3ZSs+PZuPmVRsAryYv4Vq9FlcOHaRZjwFac9z45xBHt65l0JyfaPrK65rjtXz8WPnOIE7v36F1vCyzK7IfpLNz4f/w6fMG/T79WnO8+WuD+LpvG/Yv/5Yvuq/GRIKpU6dSuXJlIiIiNL9z7du3p2vXrnh5la8qi0BQFESwLzBaYmNjDc5RehIeHh788MMPjB4bgP/BkyQ7eJZ5kP846uum5KhYdzkFHzdL2nvYYPLfI8YW7KemprJ9+3aCg4PZu3cveXl5tG/fnh9//JHXX38dNze3Z1/kCSgkiR5edqy7XHypIUNArT+tzuDYs2cPx48f14sSRGhoKH379i31dWJiYjSBfXh4OGfOnAHA3d0df39/Fi5ciL+/P40bN35i8zJJyi9rORqfaZSLOI/zeANGgWFz8+ZNTcO9+Ph4OnbsSEhICL169TLYRWoPDw+mTJnC3LlzmTBhAjVr1iTA24lrqbkcT8jkeiFZaCVFfZ38LDQratmbFchCMwQKSzBQq3I8TlEk2orCP79tImTGu3h3fBX/EW9j6+yKwsSEgyu+4/6tG0W2h0fsWT91DDGnjuI//G086jfC3NoGWaVi5TuDUKmenEsoyzKbN29m4MCByLLMvXv3NI9169aNjRs3cuLECVq0bkOn8VO4EL6PTTPeJedBBjVbtKXtkIAi3fPp/TuwtLWnTuv2ZCTd1xyv2qAJ5tY2XDsWoRXsl2V2xZVDoWSlpdCkez+tuRUKE6o1as61YxHkyTLxsXGcPHmSadOmaS1od+nSBW9v76cqFQgE+kIE+wKjxZiCfYD2vQfyPw8fEu2cUFB+zY/U8xxPyOJySg7dq+anrxlDsJ+RkcHOnTsJDg5m9+7dZGdn07ZtWxYtWkT//v3x8PAos7mq2Zrh42bJ8QTD1wh+FIn8tFfPR3bD5syZQ8uWLenUqVO52hIdHU10dHSx6/UfrbcPDw8nIiJC0/TphRdewM/Pj8mTJ+Pn50fNmjWLFew2c7XkSHxmsewxVB5vwCgwPGRZ5s8//yQoKIjt27djY2OjabhXnooYpeGjjz5i6dKlTJ8+nY0bN6KQJOo4mFPHwZykbCUn72Vx8tH+MlLhu9+P8+g4CxOJpi6WNH1GfxlDQEHJFiAcq3hyL+ZageP3blx55rln/tyJs2cN3li0Suv7bv9PC0pkS2ZqMlePhNF5/FQ6BXz00JaYq888NyEhgeTkZJYuXcrSpUsLHRMfH49KlS8h+PrM7wh8owumFpb0n/l9kb+v78VcIys9lTmdCv+cpCfe0/q7LLMr1K/T8nGFL1Rb2NqhVOX/xgHUrVu3wJj69etz4sSJQs8XCPSJCPYFRktcXFyhX7iGyLGETPbfysDKyQW5hI5DaZGB1BwVwdczaDNojMEG+5mZmezevZvg4GB27txJZmYmL730ErPnzOH1/gOo4umpkSDMU8mlkiB8nPYeNlxOydFbY6riom5k1c7jYePBsLAwIiIi2L59e7nvAIeFhQE8s9HTo/X24eHhREVFadXbDxw4EH9/f9q2bVuqjA2ouA0YBYZFSkqKpuHexYsXadiwIT/++CNvvPEGdnZ2+javWNjY2DB79mxGjx7NBx98QOvWrTWPOVmY0LGqDe2rWHE9LZerqTnczsgjKVtJzlMazZgr8s+tamNKbXtzatqZoVAYRzlKSVsH1PftTOT6Jdw8c0Kzs5yedI+Tuzc/81zpv+dGlmXN93jM6ePEnDqGg3vxa8PVO/+PZx5ErX92A1P1rv8bb7zByJEjCx3z4osvon45L0fll9blZWdxL+YazoWUHRSGrFJh6+zGoDmLC33cxslF6++yzK6Q5fx7HPhFEHaulQo8rjAxxcQ43q4CQQFEsC8wWmJjY2nXrp2+zXgqsiwTdTeT8Nh88Vl9Bfoae/77f6+p80iPv6zlSOiT7Oxs9u7dS3BwMNu3bycjIwPfrq/y2eLV1PNpywMzG+Iy8whOBBITtc4tjQTh45gpJHoaUTq/On3/0UZWc+bM4cUXX3yi8oMuCQ0NpXHjxpqaTjXqenv1rv3Ro0e16u3/7//+Dz8/P1q2bKmpty9LKmIDRoFhcOrUKQIDA1m7di05OTn069ePpUuX4u/vbxDfrSVlxIgRfPfdd0yaNInIyEjNvZREOQYgRwUJmUruZio5cS+7yMoxhkBJX8d2I9/hn983sfKdQbQdEqBpDudYpRpxl88+9dwX/Lty9q/fWPt/I3nBrwuJd6I5HLKaSrXqk/2g+KnilrZ21GzehrDVP6LKy8W+UhUuHzpIemzMM891c3PDzs4OpVJJ586dnzguTyUTe+ksfy77iha9hhB76QxbvviQD4LDsLR72Cj3Sc+ni2cNrh4Jw6tJS61mgqWhqNkVLp41ALBxdqVOq8Iz00wlSVOTf/ny5QKPX7x4sZTWCgS6QQT7AqNElmViY2Nxdy9cPsVQeDTQNzRSKtUl6m4mvu5lH1wVhdzcXP766y82btzI1q1bSUlJoWWHzkxbsQXLOk3IJX8Z/UoOqHLynnid0kgQFkY1WzM6e9qw/5bh19519rTRamZ19OhR9u7dm596q4dds9DQULp166apt1cH9+p6+ypVquDn58eiRYvw8/N7ar19WVLRGjAK9EtOTg5btmwhMDCQiIgITZ372LFjy7S0SJ+YmJiwaNEiunTpwqaQEJp17aUX5RhDoriW2bu5M3bJVnZ8OZ3QVd9ryb5tnvXBU89t0WsI6ffjObz5Fy7/fYBKteoxaHYQp/fv4NqxqBLZP2juEnYumM7fv64AWaZumw4sWreNgS2e3jDQxMSE119/nfXr13PmzBkaNdKWoUtISMDNzQ1VXi6bZ76LvZs7r02eS+LtaAKHd2XXV5/Qf+b3mvHmVvk+R2ZaClZ2D+veG3ftzaFNK/lr2Vd0e/cTrTmUeXnkZGZojS8KRc2uqNvmZSxs7Ti44ltq+/hpdf0HyEq+h0JyoUqVKjRt2pTVq1dr1e3v27ePc+fOiQZ9AoNEksuqm4hAUI4kJyfj5OREcHAwAwcO1Lc5hXIsPpP9t40jYPQppx1DpVJJaGgowcHBbN68mfv371OvXn2GvDcFT99u3JMtdNT8qfiOZGTcA4NdqAHwr2JdYKGmT58+nD9/nnPnzpVbmYa63n7nzp18/PHHuLi4cP9+foOjBg0a4Ofnp/mvuPX2ZcnN9FyjydgojDfqOmj1ZRCUP7du3dI03Lt79y4dOnTg7bffpnfv3gbbcK+0DJn4ATVfG4W9u6fOu/EXphxjKJxNzGJndLq+zShzennZ4e1s8cxxd+/epVWrViQkJDB27Fi8vb1JTEzkxIkT7N+/n8TERGbMmMEXX3zBWz9tofZL+dKrB5Z/zd6geYz8fj0v+HUB4PS+7ayfOoZmPQZSt01HFCYmNOmWXyu/dc5HHNm8mnq+najbugMmpmbci7nGmf076Dl5Do079wJgQY/mVK79AqO+X69l59KxvQEIWLYdgNSEOL4b1B5ZpdLKrjCzsCLu8lmm7DqOk0d1AE7u3syvn06kUq36NOnaBxsnV5LjbnEhYh8NfVqzb22+jO0ff/xBjx498Pb2ZvTo0SQmJvLDDz/g6elJeno6N27cKOWrIhCULSLYFxgl58+fx9vbm7CwsGfWB+sDYwsshtV10JmDpVKpiIqKIjg4mJCQEOLi4vDy8mLQoEF0HTSCyxZVykXWqbiO5OMlGIZEuyrWtKlspRU4nz59mhdffJEVK1bw5ptv6mzurKwsjh49qqVvn5KSgkKhQKVSMWHCBLp161YmSjimnAAAIABJREFU9fZlzf5b6UbbgLGTp62+TXkukWWZAwcOEBgYyPbt27GysmLEiBFMnDiRhg0b6ts8nZGrkgm9k8GxhExUSiUKE91n4Ki/q9XKMWYlLZbXAfez8lh2PvnZA42MgAZOOFsWbWE4Pj6eWbNmsWPHDuLi4nBxcaFhw4YMGjSIFi1a0KpVK3oOH0Obd7/QZHGolEoWj3qF1PhYPgiJwMrOAZVSya6vPuHUnm08SL6PLMvMO/FQCvDIljUc2bya+OuXUJiY4FSlOvV8O+E7NAB7t/xszqIG+wBxl8+x48vp3DxzokB2xaPBPsC1Y5EcXPkdN08fJy83B3s3d2o2b82Y8W8z/hU/zbgtW7bwySefcO3aNWrXrs3s2bPZvn07Bw8eFMG+wOAQwb7AKPnrr7/o1KkTly9fpk6domnWlhe5Kpnl55OMrsnbmAZOZeZcybLMkSNHCA4OZtOmTdy6dYuqVasyYMAABg8eTDOflwiLfcCxhCydBfmPU1JHUt1csbzsfBLq+Z+UiTF06FAiIyO5cuVKme4yJiUlERkZqQnu1fX2dnZ2tG3bVrNrv27dOsLDw7lw4UKZzV3WiM+moKikpKTwyy+/EBQUxIULF/D29ubtt99m+PDhRtdwr7jcTM9lV3Sa3j4n6vd9TwPa5ZdlmW9PJ2r6FFQELEwkPmjsXKbZVs97BoRAYIiImn2BURIXFwdgkNJ7oXcyjCaYgIdd+sPuZJRq91CWZU6ePElwcDDBwcHcuHGDSpUqMWDAAAYNGoSvry8KhYKb6bn8fCGZ1P9aN+tLgrCojqSPmxWVrUwN2vm9cuUKwcHBfP/996UO9KOjozWB/eP19v7+/gwaNKjQevuJEycWW3KvvKkIDRgFuuXMmTMEBgayZs0asrKy6NevH4sXL6Z9+/ZG3XCvqBjC4qb6N2nd5ZRyLTN7GpKU3wfmaHym0fy2Pw0JaOpiWebvaXfrihlWVNT7EjwfiHevwCiJjY3Fzs4OGxubZw8uR26m53IsIUvfZhQbGTiakEU9R4ti76ScOXNGE+BfvnwZZ2dn+vfvz6BBg2jfvr1W7bixOpLVbM0Y08Dpv7RW/WQjtHtKNsL8+fOpVKkSo0ePLtb1VSoVZ86c0Qru1fr26nr7oujbx8fHc/78eT755JNCHzckjLkBo0A35OTksHXrVoKCgggLC6NKlSp89NFHBAQEVJiGe8+ioHKMnu357//7b2WQrZRp+1jZkj5o5mrJkfhMvdpQVshAU1fLMr+us4UJFiZShcuAcLIQunsC40UE+wKjxBA78atkmd+i0/Se7l1SJOC36DQCvJ2e2cju4sWLmgD/3LlzODg40LdvX77//ns6depUYHe5IjiSZgqJzp621He04LfotHLpM+BQhD4DMTEx/PLLL8ydOxcrq6cvXDyp3t7U1BQfHx/Nrr2vry+urq5Ftjc8PBzA4KUw1fi4WZGtlA2yH4Ma/yrWBrGjWZG5ffs2S5cuZenSpcTFxdG+fXuCg4Pp27dvhW249yQMtT8JoLFLX8oxapwsTKhhZ0Z0Wq7ef8NKg0R+41pdSB6KDAiBwPAQwb7AKImNjTW4FP6rqTkk5xRVhMjwkIHkHBXXUnOp42Be4PHr169rAvyTJ09ia2tL7969mT9/Pl27dsXC4sn1bBXJkaxma0aAtxPXUnM5npDJ9UKkqEqKtoKAFbXszZ658LJw4ULs7OwYP358gccSExOJiop6Yr39Rx99VCb69qGhodSqVQtPT88SX6O8aVs5P5A2xPelugGjoOyRZZmDBw8SGBjItm3bsLKyYvjw4UycOLGApNjzwrF4w/1+VhMe+wALE0nvC2At3Cy5kZarVxtKiwy00OHzKDIgBALDQgT7AqPEEIP94+WY3q0rJOB4QqYm2L958yabNm0iODiYI0eOYGVlRc+ePfnkk0949dVXn7mTDBXTkVRIEnUczKnjYE5StpKT97I4eT9Lk7qokEBVhDfCo+MsTCSauljS1NWyyDsud+/eZfny5UyfPh0bGxutevvw8HDOnj0LaNfb+/v707hx4zKV5gsNDTX4ev3HkSQJX3drLEwkvZeWwLMbMApKR2pqKmvWrCEoKIhz587RoEEDvvvuO4YPH469vb2+zdMbN9NzjUIiFvIzsSpbmeq1tKW2vTmO5gpSjKgvz6NI5GeM1bLX3XMoMiAEAsNCBPsCoyQ2NpYmTZro2wwNSdlKo1/th/xg43paDt8tW8mm1T8TGRmJubk5r776Khs2bKBnz57Y2ha9id/z4Eg6WZjQsaoNHTysScpWEfcgj7jMPO5k5BKXmUdeIckepgpwtzLFw8YMdytT3K1NcbJQFCtVUKlUMm3aNGRZ5tSpU1SvXp1bt24BD+vtp0yZgr+/PzVq1NBZGmJiYiKnT59m0qRJOrm+rjGGBoyCknP27FlNw73MzEz69OnDjz/+SIcOHZ771NxclcwuIyo9k4Bd0Wl6VadQSBI9jKjJ5+Oom34+K2OstIgMCIHAcBDBvsAoiYuLM6id/X/uGf+uvhplnpK952NwcHBg9erV9O7dGwcHh2Jf53lzJCVJwtnSBGdLE7zJL2mQZRmVDHmyjFIFJgowlSQUEsUONB6ttw8PDycyMpLU1FQUCgW3b99m8ODB+Pv707Zt22LV25eWiIgIZFk2mnr9wjD0BoyC4pGbm6tpuBcaGoq7uzuTJk1i7NixRlVqomueV+WY0lLN1gwfN0uOJ2QZzXMH+d83Pm6WeJbDgqLIgBAIDAfRXlJgdGRmZpKcnKyXBn2rVq1CkiSOHTumOSbLMv/e19+P/rVjkUxv7sa1Y5Flcj0TU1M6jXibXbt2MWLECLZu3YokSdy4caNY1zFmR7KskCQJE4WEhYkCazMFFiYKTBRSkQL9xMREdu3axdSpU/H19cXBwYF27doxb948VCoVPj4+mJubc/XqVf7++28WLlxIr169yjXQh/wU/mrVqlGjRo1ynbesUTdgHFbXAQfz/J9GXYXe6us6mCsYVteBTp62ItAvA+7cucPMmTPx8vJi0KBBqFQqNm7cSHR0NJ9//rkI9B9BrRxjLN/PatTKMTfT9btr3N7DBntzhc6+I8oadfZQO4/yUTBSZ0AY2/tLTXllQAgE5YHY2RcYHXFxcQAGs7OfmK2sUDIzADkyJGWrcLYsWa3a8yhBWKp5ZZmYmBjNrn1ERESBevshQ4Zo9O0fPHiAl5cX48eP13uQHRYWVqE0yAtrwCirlEiK0tdtlqQBo+DpyLJMWFgYgYGBbN26FQsLC03DvcaNG+vbPIPkeVKO0RVmComeRpTOrw5ey3NRUWRACASGgQj2BUZHbGwsYDjBftyDPL3OX6N5G2b9fRMTs4Id9EtD3IO8EgX7wpF8NkqlkrNnz2oC+4iICK16e39/f6ZOnYqfn1+h9faLFy8mPT2dyZMn68S+opKamsqJEycYN26cXu0oax5twHg3LZNxs7+hVb+RSOYW/z1ePg0YBU8mLS1N03Dv7NmzvPDCC3z99deMGDGiRGVHzxMVXTmmvKhma0ZnTxv23zL8vjSdPW300g+kvYcNl1NyjCbLr7wzIASC8kAE+wKjwxCDfQWgL9dJoVCgsChbaRiFBHGZeZra8+IgHMmCZGVlceTIEU1gHxUVRUpKCmZmZvj4+Gh27YtSb5+ZmcnXX3/NyJEj9Z6WHBkZiUqlMup6/WdxPPwA27/8mFnDXsOznne5NWAUFM65c+cICgril19+4cGDB/Tu3Zvvv/+ejh07iue3iFRE5Rh94eNmRbZSNmjFGf8q1npT+BAZEAKB/hHBvsDoiIuLw9zcHGdnZ51c//bt23z22Wfs3r2b+/fv4+HhQffu3fnuu+80Y7Kzs5k0aRJr1qwhNeMBdVp3oO8nX2HrpB2oXYzcz8Gfv+X2hdNIComazdvwyvszqFz7Bc2YTTPe4cz+nXwYEsm2eVO4fjwSS1t7Ooz+gDaD3iLu8jl2LvyYm2dOYOPoTLd3P6HpK69rzr92LJJlAX0Yu3QbtXx8NcdjTh/nz6ULiTl1DGVuLi6eNfDpMxTfofm7sLGXzhKxbjHXTxwiLSEOSzt76vt25pUPZmLj6MydjCfXRB47doyPP/6Y48ePk5GRgbu7Ox07dmTFihXCkSS/3j4yMlIT3B87doycnBzs7e1p27YtkydPxs/Pj5deeqnY+vY///wzCQkJTJ06tUS2lSXq5md169bVtyk6IyQkhHr16tG4cSNNE0ZdNGAUPJnc3Fy2b99OYGAgBw8epHLlyrz//vuMGzdO7wtexkbFUo7JJSlbqfdMmbaV8wNpQwz421Wxpk1l/XaUFxkQAoF+EcG+wOiIjY3F3d1dJ870nTt3aNmyJcnJyQQEBPDCCy9w+/ZtQkJCePDg4Q/5u+++i5OTE5999hkhxy4QsW4JO+abMXTBcs2YE7t+JWTGO9Rt05Hu731KblYmh0NW8dPonry34S+cPKprxqpUKla+O5iazdvQ/f0Z/Ls7hB0LpmFuZc3ewLk0faU/DV/uwZHNq9n02dtUf9EH56peT7yPy4cOsvr9Ydi5VsZ3SAB2rpWIv36JC+H7NMH+lcOhJN6KpkWvIdi5VOLu1Qsc3bqGu9cuMnH1H8Rl5iHLBUP2+Ph4unbtipubG9OmTcPR0ZEbN26wZcuW59KRlGVZS9/+0Xp7Dw+PAvX2pdG3z8nJ4csvv2TIkCHUqVOnxNcpKypavf7j5Obmsm3bNiZMmFDoPUqShIkEJkggMvPLnNjYWJYtW8aSJUu4c+cOfn5+bNiwgX79+mFurt8dXWOlIinHSMDJe1l0rKrflGtJkvB1t8bCRGL/rQy9P7/q+Tt72uhtR/9xRAaEQKA/RLAvMDrUwb4umD59OnFxcRw+fBgfHx/N8VmzZmkFvi4uLuzduxelDBn/3kepVPH3xmVkpaViaWdP9oN0di78Hz593qDfp19rzmv+2iC+7tuGAz9/q3U8LzuLZq/2p8PoDwBo+srrzOvWmM2fv8/guUt4sVtfAOq27sDX/dpwYmcwncdPKfQeVEolW+d8hJ1rZd7beAAru4f1q4/eQ+sBb+I/fKLWudVf9GHj9ABu/HOIms3bFFqXHBUVRVJSEnv37tV6jmbPns1ft/Xv6JQVT3IklUolZ86c0Qru1fX23t7e+Pn5PbXevjSsXbuWmzdvMn369DK7ZknJyMjg6NGjDB8+XN+m6IwDBw6QlJRE//799W3Kc4Msy4SHhxMYGMiWLVswNzdn+PDhTJgwgSZNmujbPKOmOMoxm2a8w7VjUUz97YTO7SoJavs+++MfOnhYG8SCo4+bFZWtTNkVnaa3GnV1zXlPLzuD26EWGRACgX4Qwb7A6IiNjdVJvb5KpWLbtm289tprWkGsmkediYCAACRJIk+VX7Bbs1lrItf9RFLsTarYNeTKoVCy0lJo0r0fGUn3NecpFCZUa9Sca8ciClzfp+8bmn9b2Tng6lWb+zev07hrH81xtxp1sLRzIPF29BPv487F0yTdjqbH/32hFeg/fg9mlg9/2HKzs8h5kEH1xi3yr3HhFDWbtyGvkJ19R0dHAHbt2kWTJk0wM8t3KPQtQVhcFvRoTi2ftgz4/MdCH5eBk/ezaOWUL7X4rHp7X19fXFxcdGavUqlk3rx59O3bl4YNG+psnqLy999/k5eXV6Hr9UNCQqhVqxZNmzbVtykVnrS0NNauXUtQUBBnzpyhfv36fPXVV4wcOVI03CsjKqJyTLZSLpVyTFlTzdaMMQ2cCL2TwbFyLGlTz+PjZkk7DxuDrDkXGRACgX4Qwb7A6IiNjaV169Zlft2EhARSU1Np1KjRM8dWr56fgv9frI+VfX4AnJmWDMC9mGsALB/Xt9DzLWzttP42tbAsUO9vaWuPQyWPAjsWlrb2ZKYmP9G2xJvXAXCv0+Cp9/AgJYk/ly7k1J5tpCcmaD2WlZ4GgLKQ5mPt27fn9ddf5/PPP+ebb76hQ4cO9OnTh279BlZIR7J24+bEXbuoVW/v7+/PSy+9hJVV+TkIv/76K1euXGHjxo3lNufTCAsLw9XVFW9vb32bohPy8vLYunUro0ePNohdw4rK+fPnCQoKYvXq1WRkZNCrVy+++eYbOnXqJJ73MkbfyjG6oqTKMbrCTCHR2dOW+o4W/BadRnKOSmeBrfq6DuYKehjgbn5hiAwIgaB8EcG+wOjQ1c5+cVDXXSsUjz3w36+WLOdHyQO/CMLOtVKB8xUm2h89RYELqccV7sAUVktfXNZPHUPMqaP4D38bj/qNMLe2QVapWPnOIOT/VjFMCjFLkiRCQkI4dOgQO3fuZM+ePYwePZo6Xy7ijeW/YWFtW2rbDIkpc77k5QZeNGrUqFT19qVBpVIxd+5cunXrRosWLfRiw+OEhobSrl27ChuQhYWFce/ePZHCrwPy8vLYvn07QUFB/PXXX1SqVIn33nuPcePGUa1aNX2bV2HRt3KMLiiNcoyuqWZrRoC3E9dSczmekMn1tNwyC/rV16lhZ0YLNytq2ZvpTCpWF4gMCIGg/BDBvsCoUCqVJCQk6CTYd3Nzw97enjNnzhT5HNMn/Li6eNYAwMbZlTqt2peFeUXGuVpNAOKunH/i3JmpyVw9Ekbn8VPpFPCR5vi9mKta4550fwCtW7emdevWzJkzh/Xr1zNs2DBO79mKT9+KU8OtkKCJfyea6LkB1M6dOzlz5gxBQUF6tUNNVlYWhw8fZsGCBfo2RWeEhITg5eVVaEmPoGTExcVpGu7dvn0bX19f1q1bx+uvv46FheEFa4bAqVOnaNKkCdu3b6dXr14AHD9+HB8fH5o1a8aJEw9r6l955RUSExM5fPgwALt372bu3LmcOHEChUJB7RZt6PjOZ1pqMABnD/zOvqB53L95HZdqNekyYVoBO5LuxPBlzxa88sFMLG3sCF39Ayl37+Be15ve07+kWsNmWuPjr19mX9Bcrh6NIDcrk8q1X+DlgI/wbt9dM0aZm8uBFd9y8vdNpNy9g5mVNZVq1qVTwGTqtu5QJPtUMhrlmEWLFrFlyxYuXrzIgwcP8Pb2Zvr06VoLdu3btyc5OZl///23wD3Wr1+fGjVqsGfPnme+LkVFIUnUcTCnjoM5SdlKTt7L4uT9LE0WnEKi0N44Ba/zcJyFiURTF0uaulrqXYmgNIgMCIGgfCh8O1EgMFDi4+NRqVQ6adCnUCjo06cPO3fu5NixYwUeL2w33UTK19R+nLptXsbC1o6DK75FmVuwO3160r0ysbkwPF54EaeqXkSuX0pmmra2rfoeJIWJ1t9qItct0fzbVJHvYDxOUlKS5rxRo0ZRo0YNTU1zbk4OAPt/+pLpzd005+RmZbLjy+l88XJ9ZvjV4JcP3iAlPpbpzd3Y/9OXD6995ybb5k3hq76t+bRNNWZ1rMe6KaNJuhOjZcPxHRuY3tyNGycPs+urT5n98gt81taLNf83ssBzK8syfy3/inndX+SzttVZFtCHu1cvFLivBylJ/P7NDL4d2I4Zvl7M9K/Jz28P4u/j+m1QJcsyc+bMoV27dvj7++vVFjWHDx8mOzub9u3LdyGrvFAqlWzZsoX+/ftX2MyF8kLdcG/w4MFUq1aN+fPn8+qrr/LPP/8QERHB0KFDRaD/FBo1aoSjoyNhYWGaY+Hh4SgUCv79919SU1OB/OyfqKgoTQ+NNWvW0KNHD2xtbVmwYAGffPIJMZcv8tPonlrfp5f+PsC6yW+CJNHtnU/w7vAKITPf4/a5gsEwwL9/bCbslx9p2W8EXSdOJ/nOTdZ9NErrd+7u1QssHtmd+OuXaT/qPV798HPMraxZO2kEZ//6TTNu/5Iv+WvpQmr5+NFr6jw6vvUhju6e3Llwqlj2qZVjvvvuO5o1a8asWbOYO3cupqamDBgwgN9+ezjn8OHDOXXqVIFF/aNHj3Lp0iXeeOMNdIWThQkdq9rwQWNnAho40cvLDh83KzxtTAv1IyD/d9jTxhQfNyt6edkR0MCJDxo707GqjVEH+o+izoDoX8ueGnb5QXhZfeuqr1PDzoz+tewJ8HYSgb7guUPs7AuMitjYWACdpfHPnTuXvXv30r59ewICAmjQoAGxsbFs2rSJiIiCTfUkScLdypRLjx23tLWjz/SF/PrpRH4Y1okmXftg4+RKctwtLkTsw6tJS3pP082uqEKhoM/0L/nlgzf4fnBHWvQagr1rZeJvXCb+6gVGB23C0taOms3bELb6R1R5udhXqsLlQwdJeqTxn7uVaaGBzurVqwkKCqJv375cunSJ1NRU+vXrh6WtHfX9Ohdq06YZ73J633aa9RhItcYtuH48itXvDSkw7ta5f4j59wgvdu2LQ2UPku7EcDhkFUvH9uHDkAjMrbQ16Xd+OR0rO0deDviI5NibRK4vKIG4b/F8Diz/mvp+nanv25k7F06xYuKAAoswibejOXvgdxp36YWzhxdpiQkc2bya2cN6MurCOapWrVqs16Gs2L9/P0ePHi3T3abSEhYWhqOjI40bN9a3KTohMjKSu3fvihT+UpCens66desIDAzk9OnT1K1bl4ULFzJq1ChNk0/Bs1EoFPj6+hIeHq45Fh4eTp8+fdi+fTtRUVF0795dE/j7+/uTnp7Oe++9x5gxY1i6dCkAeSqZ1BavFVCD+eP7Wdg6uzH+511Y2tkDULNFW1ZMHIBjlYIlFclxt/lo22FNnxrXGnVY8+FwLv19gAbtugKwc+HHOLp78vbavZia5y/ktB44miWje7D7+1k0fLkHABcj9lHPt7OWMs3jFMW+PFX+rvelS5e0+qi88847NG/enK+//poePfLnHDBgAO+++y5r165l/vz5mrFr167FxsaGfv36Ffm1KSmSJOFsaYKzpYmm/ECWZVQy5MkySlV+CZ2pJKGQeC4WHIuSAaFUyc98LipiBoRAUFpEsC8wKnQd7FetWpXDhw/z6aefsm7dOlJTU6latSqvvPIK1tbWhZ5Txdq00FXopq+8jr2bOwdXfkfYL4Hk5eZg7+ZOzWat8ek1VCf2q6nX9mXGLN3Kn0sXEbE2CFmlwtmzJi890vF/0Nwl7Fwwnb9/XQGyTN02HRj1w0bmdWuMJIGHTeGr3+3bt+fIkSNs3LhRIznXtq0vXT4NxLmqV4Hxt8//y+l92/EdOo6eH80GoM3A0YTMeJfYS2e1xr7g14XGnXtpHWvQrhuLR73CmT930bznQK3HrB2cGR20SeMAqFTaEojpSfcIW/0j9f26MPK7dZpxe36cw8EV32pdy71OA/5v22Gt/gnNewzg635tWf7zz8z47LMnP+E6ZPbs2fj4+NClSxe9zF8YoaGh+Pv7662Hga4JCQnB09OTli1b6tsUo+PChQuahnvp6em89tprfPXVV3Tq1OmJvUkET8ff359PPvmEjIwMbGxsiIiIYO7cuURHRxMeHk737t0JDw9HkiT8/PzYt28fycnJDBkyhHv38jOdspSqAmowqQlxxF48Q/s339ME0pAv8VqpVn1yMgtKpL3Ypbcm0Id8JRqAxNs3gPwMqWtHw+k8YSrZGelkZ6Q/vG6bl9n/0wJS4mNxqFQFSzsH4q9d5F7MVVyr1y4wV3Hsy5NlrUA/KSkJpVKJv78/GzZs0Bx3cHCgd+/ebNiwgXnz5iFJEkqlkuDgYPr06YONjX5KtiRJwkQCEySomF+rRUadAdHBw5qkbBVxD/K4k5FDyL5QarzoAyYFQxdTRf4GhYeNGe5Wprhbm+JkoXguFkoEgmchgn2BUREbG4skSVSuXFlnc1SvXp3Vq1cX+tioUaMYNWqU1jF3a1Nq+vgy70RCgfG1fHyp5eP71PkGfP5jofJvAcu2Fzr+cd3jWk+Yu0bTVrwVtOmJ8zpUqsIbX60qcFx9LXer/K+Hx++5WbNmrF+/XvPYwYMHCdm+nW9PJRY6z6WovwBoPfBNreNtBo/h+E7tzvKPygEqc3PJykjDpVpNLO0cuHPhVIFgv2W/4Vo/5gUkEA+HoczNoe3gMVrjfIeNKxDsq3egAFRKJZlpKZhb2eDqVUerLrY8iYiIICwsjK1btxqM05KTk0NUVBSzZs3Styk6QaVSsXnzZgYMGCCC0yKSl5fHzp07CQwM5M8//8TNzY133nmHcePGaZRLBCXH39+fvLw8/v77b6pVq0Z8fDz+/v6cPXtWs+MfHh6Ot7c3zs7OXL58GYCXX3650Oup1WCSY/MXa12r1Sowxs2rDrcfSadX41jFU+tvjRJNan7J2P2b15FlmX1B89kXNL/A+QAZiQk4VKpCl/FT+WXSCL7q05rKdRpQr83LNOsxgCr1GhbbPqUKdu3exezZszl58iTZ2dmaxx7/7hwxYgTBwcGEh4fTrl079u/fz927dxk+vOL0m6kIPJoB4ZB5jyVvvcaOnTt59dUez20GhEBQEkSwLzAqYmNjcXNzw9TUcN667taGY0tZUpz7Uj2lvXNy7C0khQInD+1df5dCHLjcrEwOrvyO4zs2kBofq9VTICs9tcB4B/cnOJ7/SSAmx94EwLW69ly2Tq5au1P596Aiav1SDm1aQdKdGFRK5cN7qFpQUaE8mDNnDg0bNtQ05jIEjh07RmZmZoWt1z906BB37twRKfxF4O7du5qGe7du3aJNmzasXbuW/v37izr8MsTHxwdLS0vCwsKoXr06lSpVol69evj7+xMUFER2djbh4eH07Zsv9ar67wt5zZo1mv42OUoVW67nS6o+rgZTHNT9Xgrw33e1WsnFf/jb1GvbsdCh6u/+mi3aMnnHUc4d3M3lQwc5um0tket/os//FvJSMRu9/h0ZTq9evWjXrh1BQUFUqVIFMzMzVq5cqVmcVtOtWzcqV67M2rVradeuHWvXrsXd3Z3OnQsvQxPon+jo/BLDGl5emCgkkQEhEBSDihmlCCoscXFxOmnOVxqcLUywMJEqlMa8hYmEk8WzdzXVK+nXDYhqAAAgAElEQVSPb4CqVMpCRj+bHV9O5/iODfgOHUf1F32wtLVHkiQ2TA/QyBk+ypOkCUvSzvfgim/YFzQfn95D6TJxOlb2jigUCnYt+kTjwJYnx48f548//mDdunUGtcMcFhaGnZ0dzZo1e/ZgIyQkJIQqVarQtm1bfZtikMiyTFRUFIGBgYSEhGBqasqwYcOYOHFihX1P6Btzc3NatmxJeHg41atX1zTq9Pf3Jzs7m3Xr1nH37l1Nc77atfNT4itVqqQJYPNUMqf+va91XfUu/b2b1wrMmRB9pUS2OnvmL+qamJoWSYnG2sEJn95D8ek9lOwH6Swd04v9S/KD/eLYt2PrFiwtLdmzZ4/WQtPKlSsLnGtiYsLQoUNZtWoVCxYsYNu2bYwdO7bCliVVBNTBvpdXwVJBgUDwdAzHgxQIikBsbKzO6vVLiiRJNHGxLLPusfpGApq6WBYpJc7JyYnk5OQCEn3q9EvIdyhllYqkO9FaY+4X4sCd2b+T5j0H0WPSLBp37kXd1h3watqKrMdUBYqKuoHTvRjtudKT7pGZmlxg7lo+frw+4zuadOtLvTYdqdOqPZlpKegjO3Du3LnUqVOHgQMHPntwORIaGoqvr69BZdeUFbIsExISQr9+/QxqgcUQyMjIYOnSpTRr1gw/Pz+OHj3KggULuH37NsuWLROBvo7x9/fn8OHDHDhwQBPsu7q60qBBA40Epvp4t27dsLe3Z+7cueT+14j0UeUYtWKJvZs7Veo34sTOYLLSHmZOXT50kPhrF0tkp62zG7V8fDm85RdSE+IKPP6oWkpGsnbpl4W1LS7VaqL8T9WlqPaZKvIDeHX9vZobN26wbdu2Qu0cPnw4SUlJjBs3jvT0dJ124ReUnpiYGBwdHbG3t3/2YIFAoIXwZgRGhSEG+wDNXC11og2rD2SgqatlkcbWrl2blJQUzp4+pXEkUxPiOHvgodRRvTb5daOHftXeYfl743IeRzIx0aSDPjru0ZT64lCnVTtMTM2I2rhcqyTgUYlBzdwKEx5PCTi9bzup8bHlvpBz9uxZtmzZwrRp0wwqqM7LyyMiIkKzg1jROHr0KDdv3hQp/I9w8eJFPvjgA6pWrcqECRPw8vJiz549XLx4kQ8//BAnJyd9m/hc4O/vT2ZmJjdv3tSS4GzXrh2XLl2iRo0aeHrm74Tb29uzePFiwsPDad68OXPmzGHZsmWE/zSf74d05M8lCzXnd3vnE9ITE/jprZ5ErP2JvUHzWD/lLSrXfqHEtvaatgBkme8GteePH77gyJY1/LX8K1a9N4Sfxz/8bH3b34/1U8cQuuoHjm5dw9Y5H3Fm/05e7N63WPa5W5nSs2dPHjx4QPfu3fnpp5+YNWsWrVq1ok6dOoXa2KxZMxo1asSmTZto0KABzZs3L/H9CnRPdHS06P8hEJQQw/EiBYIiEBsbS8eOhdcB6hMnCxNq2JkRnZZr1EG/RL4ebVFlagYPHszUqVPp168fbQePJSE1nUMhq3CtXlujlVzVuwmNOvUkcv0SHqQkaaT37sVc/W/Sh6H0C/5d+Of3TVjY2lO5Vn1iTh3lypEwrB2dS3Q/tk6u+A+fyMGV37H6/aH50nsXT3Mp8k9sHF20xr7g35W/li0iZMa7VG/Skrgr5zi5ezOVqtUo0dylYd68eVSrVs3gGkadPHmS9PT0CluvHxISgpubm1Yw9TySl5fHrl27CAwMZP/+/bi6ujJhwgTGjx8v0mj1RNu2bTExMcHa2pomTZpojvv7+7NkyZIC79mhQ4fi4eHB/PnzWbhwIdnZ2ThX9sDjxZZaajD1fTsxdMHP7Auax54fZ+PsWYP+M7/nXOhurh2LKpGtlWvV5521+9i/dCEndm7kQXISNs6ueNRvTKeA/3t4T4PHcC5sD5cPHUSZm4OjuyddJk6n3Yh3imyf4j/lmJdffpmff/6Z+fPn88EHH1CzZk0WLFjAjRs3OHWqYKNByG/UN2XKFIP7nhUUJDo6Wnz3CAQlRAT7AqNBlmWD3dkHaOFmyY203GcPNGBkoIWb1TPHqXFxcWHr1q1MmjSJ4EUzcPSoTrd3PuF+zDVNsA8wYFYgti6V+HfPVs4e+I06rdozZP5yvu7bGrNH6itfmzwXhcKEf3dvJjcnC68mLXlr8WZWvF3yVPYub/8PUwtLDoes4tqxSKo1as7ooE2sek9b/rDjWx+Qm/WAk7s3c2rfdjxeaMyb368ncvGcEs9dEq5evcqGDRv49ttvMTc3L9e5n0VoaChWVlb4+Pjo25Qy59EU/ue1djc+Pp7ly5fz008/cfPmTVq3bs2aNWvo378/lpZFy/YR6AY7Ozvy8vIKHB82bBjDhg0r9JwOHTrQoUMHzd9nE7PYGZ1eYFyjTj1p1Kmn1rGGL/fQ+tvJo3qhqi9AocedPWswcFZgoePVdBwziY5jJj11zLPsU8kPlWNGjx7N6NGjC5w/c+bMQq9rbm6OJElPfP4EhkN0dLRBbvQIBMaAJMuyMW9ECp4jkpKScHZ2ZtOmTQaZZquSZZaeSyIlR2WUu/sS4GCuIMDbCUUJitSf5Eg+iTsXT/PDkJcZOHsxzV41vNdTTS8vO7ydy6+zeEBAANu3b+fGjRtautGGQK9evcjIyODPP//UtyllzvHjx/Hx8WHfvn3PVVduWZb5+++/CQwMZNOmTZrmZW+//bZIba5g3M/KY9n55GcPNDICGjjhbFm8BTpZlmnSpAkuLi4cOHBAR5YJygJZlrG3t+ezzz5j8uTJ+jZHIDA6xM6+wGiIjY0FMLhu/GoUkkQPLzvWXS5ZMzl9IwM9vexKFOjD06X6crMyMbPUDlwj1y9BUiio2bxNieYrL8pTWvHWrVusWrWKL774wuACfaVSSXh4OB9++KG+TdEJISEhuLi4VNgShcfJyMhg/fr1BAUFcfLkSWrXrs38+fMZNWoUzs4lK5sRGDbPs3KMmoyMDHbs2MGBAwc4ffo027dv16F1grIgOTmZ9PR0kcYvEJQQEewLjAZ1sG+oafwA1WzN8HGz5HhCllHt7kuAj5slnrZmJb7G0xzJ0NU/cuf8v9Ty8UNhasLFyD+5FPknLfuNwNG9aiks1y3FdSRLy6JFi7C1tWXChAnlNmdROXPmDMnJyRUyGFan8Pfp0wczs5J/BoyBS5cusXjxYlauXElqaio9evRg3rx5dO3aVSgQVHDUyjFH4zON6vfpSRRHOUZNQkICQ4cOxdHRkf/973/06tVLdwYKygQhuycQlA4R7AuMBmMI9gHae9hwOSWHVCNJ55cAe3MF7TxsSnedpziSXk1e4srhg/y1/CtyHmTg4F6VTuOm0PEtw90lLokjWRri4+NZunQpU6ZMMUh5odDQUMzNzWnVqpW+TSlzTp06xZUrV/jhhx/0bYpOUCqVmoZ7+/btw8XFhfHjxzN+/Hhq1Kihb/ME5UgzV0uOxGfq24wyoTjKMWpq1KiBqF41LmJiYgAR7AsEJUUE+wKjITY2Fnt7e6ytrfVtylMxU0j0NKJ0fnX6vpmi9EHtkxzJuq07ULd1h1JfvzwpiSNZGr755htMTEx47733ym3O4hAaGkqrVq2MplGbLMsoZciTZVQqUCjAVJIwkSiwgBMSEoKjoyMvv/yynqzVDQkJCZqGezExMbRq1YrVq1czcOBAo3kdBWXL86ocIzBeoqOjMTc3p1KlSvo2RSAwSkSwLzBICnPUY+/GG/yuvppqtmZ09rRh/60MfZvyTDp72lCtFOn7jyIcyZKRlJREYGAgEyZMMMh6aVmWCQsLY/z48fo2pVBkWSYxW0ncgzziHuQR+yCPuMw88lQFx5oq8rt3V7E2xd3alMpWpmwKCaF3794Gp35QEmRZ5tChQwQFBfHrr7+iUCgYMmQIb7/9Ni1atNC3eQID4HlUjhEYL9HR0VSvXl2UGQkEJUQE+wK9U1RHvdKwqQwf8D5rLyVrHHV3a1OcLUzKLdW6OPi4WZGtlAmPfaBvU56IfxVrfMrYYRKOZPH58ccfycnJYdKkZ8tQ6YPz589z7949g6vXT8pW8s+9LP69n6XpFaEAConxNeSp4FZGHncy8jTjBi3ZRTUySMpWGu1O4YMHD9iwYQOBgYH8888/1KpVizlz5vDmm2/i4uKib/MEBkRte3MczRVGrxxTy75i99cQ5BMTEyNS+AWCUiCCfYHeKImjbmJuWcBRtzDJrxVv5mppcI5628r5AaMhBvztqljTpnLZB7TCkSwe6enpfPvtt4wZM8ZglSZCQ0MxNTWlTRv9KyeoZJmrqTkcT8jiRlouEmi9z572/aF1nUf+bWXnwH0cWHIuiRp2ZrRws6S2vXmJlSnKkytXrhAUFMTKlStJSUnh1VdfZc6cOXTr1k3shAkK5XlXjhEYF9HR0TRs2FDfZggERosI9gXlii4c9WylzNH4TI7EZxqcoy5JEr7u1liYSOy/lVHgfsvdHvJfg79XfMW0H+frZA7hSBaPJUuWkJqaypQpU8plvpIQGhqKj48PNjala+JYWm6m5/JbdBrJOSrUr05ZfZ7U14lOy+VGWi6O5gp6eNmVWYlLWaJUKvn9998JDAxkz549uLi4EBAQwLhx46hVq5a+zRMYAc+zcozAuIiOjubVV1/VtxkCgdEign1BufE8O+o+blZUtjJlV3Sa3rr0q7vux/z2Cxf2bgF0E+yDcCSLSlZWFosWLWLEiBFUr169XOYsLup6/REjRujNhlyVTOidDI4lZJX5d8fjqK+bkqNi3eUUfNwsae9hUyYNLEtLQkICP//8Mz/99BPR0dG89NJLrFq1ioEDB2JlJeqXBcXjeVWOERgPWVlZ3L17V6TxCwSlQOT4CXROrkpm/6101l1OISUnf0++vBz1/bfSyVUZhhtTzdaMMQ2caOGW3wW7vEIH9Tw+bpaMaeBEdlwMJia6L3do72GDvbmi3O6ztOjDkVyxYgXx8fFMmzat3OYsLleuXCE2NlZv9fo303NZfj6J4wlZQPllxqjnOZ6QxfLzSdxM108fClmWOXz4MCNGjMDT05OZM2fSoUMHjhw5wpEjRxg5cqQI9AUlQq0cYxi/kM+mLJVjBMbBzZs3AQx2MVwgMAZEsC/QKc+7o/44ZgqJzp62DKvrgIN5/sdPV26L+roO5gqG1XWgk6ctZgoJpVJZLsG+cCSfTm5uLl9++SUDBw6kbt265TJnSQgNDUWhUODr61vucx9LyGTd5RS97jzKQOp/i4fHEspPnzwzM5MVK1bg4+ND69atiYiIYPbs2dy+fZtVq1bx0ksvlZstgoqLWjnGGChL5RiBcRAdHQ0gdvYFglIg0vgFOuNYQqbe69QfddQ7e9qUeef5klLN1owAbyeupeZyPCGT64X0Lygp6uvk9y+wopa9mVb9eXkF+/D8ShAWhXXr1hEdHc3OnTvLbc6SEBoaSrNmzbC3ty+3OWVZJupupqaxpb4XjNTz77+VQbZSpm1lK50pgFy9epXFixezYsUKkpOTeeWVV9i1axfdu3cvt8+t4PnieVWOERg+0dHRSJJEtWrV9G2KQGC0iGBfUOY8z456cVBIEnUczKnjYE5StpKT97I4+agygQRFqUB4dJyFiURTF0uaPkWZoDyDfRCOZGEolUrmzZtHr169aNy4cbnNWxLCwsLo379/uc756PeHoaG2y9fdusyuqVQq2b17N4GBgfzxxx84Ozvz1ltvMX78eGrXrl1m8wgET+J5VI4RGD4xMTFUqVIFc3NzfZsiEBgtItgXlDnPm6NeFjhZmNCxqg0dPKxJylYR9yCPuMw87mTkEpeZR15hMgXKPDztLfGwMcPdyhR3a1OcLBTPXMgo72AfhCP5OJs3b+bSpUusWbOmXOctLjdu3CAmJqZc6/WPxRvu94ea8NgHWJhIpV4gunfvHitWrGDx4sXcuHGDFi1asGLFCgYPHizq8AXliqEpxyDLIEkGlZEnKH+io6NFvb5AUEpEsC8oU54nR10XSJKEs6UJzpYmeGMB5GdKqGTIk2WUKjBRQE2v6owPCOCNzz4r9hz6CPYNzZFUz68PR1KWZebMmUOXLl1o2bJluc5dXEJDQ5EkCT8/v3KZ72Z6LvtvG37JB+RnClW2Mi1R6ceRI0cIDAwkODgYgEGDBhEcHGzw7wdBxccQlGNklYr0hFhG+dSkrqvh/U4Lyo/o6GhRry8QlBLRoE9QZhibo24oTfuehSRJmCgkLEwUWJspsDBR4F6pEnfu3CnR9fQR7KvxcbNiWF0HvXbpV3fdH1bXQS8LPrt27eLUqVN8/PHH5T53cQkLC6Nx48Y4OzvrfK5clcyu6DSjUm/YFZ1WZLWPzMxMTWO9Vq1aERYWxqxZs7h16xarV68Wgb7AYNC3ckwds2x+GNKRbz4zXJUSQfkggn2BoPSIYF9QJlR0R93Q8PDwMMpgH/TvSKolCPXR1Vm9q+/r60u7du3Kff7iEhoaWm4p/KF3MoxG7xseNv8Mu/P0Bc5r164xefJkPD09efPNN3F1dWXnzp1cuXKFKVOm4OrqWj4GCwTFQJ/KMQNerMaCuXNYvHgxv/32m45mFRg6SqWSW7duiTR+gaCUiDR+QZlgzI56J09bfZtTbDw8PDhx4kSJztV3sA8PHcn6jhb8Fp1Gco5KZ6n96us6mCvo4WWnV+mmv/76i8OHD/P7778bRJPIp3H79m2uXr1aLosSN9NzOfafPKcxIQNHE7Ko52ih9b5SKpX88ccfBAUFsXv3bhwdHRk9ejTjx4+nTp06+jNYICgm+lKOGT9+PLt27WL06NGcPn2aSpUqlcGMAmMiLi6O3NxcsbMvEJQSEewLSk1Fc9SNAQ8PD3bt2lWicw0h2FejTwlCfTBnzhyaN29O9+7d9WpHUQgNDQXQebCvkmV++y8ryFgWCx9FAn6LTiPA24mkxERNw73r16/TvHlzli9fzuDBg7G2NqymoAJBUSkr5RhkFUj5WQLPUo6RJIkVK1bQuHFjxowZw/bt2w1+gVRQtkRHRwOIYF8gKCUi2BeUiorkqOs7ECwOHh4e3L17l7y8PExNi/cxNqRgH/QnQVjeREVFceDAATZv3mwUTmtYWBgNGjTQ+Y7a1dQcknMKk5swDmQgOUfFe7MW8vP8GahUKgYNGsSGDRto2bKlUbzWAkFRKYlyjKkC3K1McTbJ439vB/Dem8N4c2C/Z342KleuzPLly+nduzfLli0jICBAR3clMERiYmIAEewLBKVFBPuCUlFRHPVrqbnUcTAeHVcPDw9UKhXx8fF4eHgU61xDC/YfpTSOZHElCMubOXPm4O3tTZ8+ffRtSpEIDQ2lQ4cOOp/neEKW0S4WqlHm5aHyfIEZM2bw1ltv4ebmpm+TBAKdUlTlGFNJQiGh+T6ecusSh//ay+hBrxdpnl69ehEQEMCHH35Ihw4dqFevns7uSWBYREdH4+DggL29vb5NEQiMGhHsC0pFRXDUJeB4QqbRBfsAd+7cqVDBvpqSOpKGyj///MPvv//OmjVrUCgMvy/q3bt3uXDhAp+VQNqxOCRlK7mRZhyqGE/DxNSU6s3bMs67h8FkkggE5Y0kSZhIYIIET/gY+Pn5ER4eXqzrfv311xw4cIA33niDyMhIzMyMq+xOUDJEJ36BoGwwfK9TYLCoHXVjDvQhf6HielouSdlKfZtSZKpWrQpQoo78JUn9NwQKkyA0UUgGH+gDzJ07l1q1ajF48GB9m1Ik1M64rjvx/3Mvy2gUPJ6FBJy8Z3y9SwSC8sTPz49z585x//79Ip9jY2PD2rVrOXHiBLNmzdKhdQJDIiYmRgT7AkEZIIJ9QYkRjrr+cHNzw8TEpETBvjHs7Fckzp8/z+bNm5k6darRLLKEhoZSp06dYmeNFAdZlvn3fhZLxvZm6djeOpunvJCBk/ezqFGjBqNGjdK3OQKBQeLn5wfk9zApDi1btmTGjBnMnTuXyMhIXZgmMDCio6OF7J5AUAaIYL+CIUkS77zzjs7nUTvqxr6rr0btqMty0e5I1w69JEnMnDnziY8rFAqqVKnC7du3i31tEeyXL/Pnz8fDw4ORI0fq25QiExoaqvNd/cRspaYJY0UhWykXrSu5QPCc4uXlRdWqVYmIiCj2udOnT6d169YMHz6c1NRUHVgnMBRkWRZp/AJBGSGCfUGJqKiOelL2ww5wUVFRzJw5k+TkZD1a9WQ8PDzEzr6Bc/36ddatW8fkyZOxsLDQtzlF4v79+5w+fVrnkntxD/IAGB20idFBm3Q6V3my49Apli1bpm8zBAKDRJIk/Pz8ShTsm5qasmbNGhISEnj//fd1YJ3AUEhOTiYtLU0E+wJBGSCCfUGJUDvqFY1H7ysqKorPP/+80GD/4sWLenfoRbBv+CxYsABnZ2fGjh2rb1OKjNoJ1/XOftyDPBSAqZk5pmbG0xzzaSgkSFSZiAZiAsFT8PPz4+jRo2RmZhb73Fq1avHDDz+watUqQkJCdGCdwBBQy+6JNH6BoPSIYF9QbDIyMjSOekVCIUFcZtEWMSwsLPTu0Itg37C5ffs2K1eu5MMPP8Ta2lrf5hSZ0NBQvLy8ir2jcurUKSRJYseOHZpjx48fR5IkmjdvrjX2lVdeIaBHB1TA0kJq9qM2LuOb/n581rY6n7evw4/DOnNy92atMSnxsWz+/H3mdm3EJ62q8mXPFmybO5m83BzNmMRbN1g3ZTSzOtTls7bVCRrRnQvhe7Wuc+1YJNObu3Fq7zYOLP+aed1f5NPWniwf1497Mde0xt6Lucraj0Yxp4s3n7b2ZF73F9kwbSxZafkpxSoZBrVqoFXis2rVKiRJIjIykkmTJuHm5oaNjQ19+/YlISGhWM+xQFAR8PPzIzc3l2PHjpXo/JEjR/L6668zbty4EpWyCQyf6OhoALGzLxCUARUtXquwzJw5E0mSuHDhAgMHDsTe3h4XFxfef/99srIKNpbbtm0bjRo1wsLCgoYNG/LHH39oPR4dHc3EiROpX78+VlZWuLi4MGDAAG7cuKE1Tu2ohoaGMnHiRCpVqoSnpyexD/L4aWxvvh3gT+ylsywd04vP2lZnYa+XOL0/39m/djySwBHd+LRNNb7q25orh0O1rp105ybb5k3hq76t+bRNNWZ1rMe6KaNJuhNT4H7+n70zD4uqeuP4Zxj2fREERWVxAwVMFBUH9zW03CrNJTU10yxb1Cx/ZZaaS1kupZaRpmW5L2nlkgiCopjglrsDLigq+z7M/f2BjCAooMMM0Pk8zzwP3HvuOe+9zAzne97lZKWlsHPhDOYFt2RGm7rM7eXLb/+bSEbSg4q+qtwc9nw7jwXPtWZGm7p83tuP3V99gio3p8iYcUxv6Uj09l9KjDHtGUeWfv6p5nlPmTIFAHd3d2Sygqrvhc+ntJz95ORk3n77bdzc3DAxMcHV1ZURI0Zw584dAHJzc/noo4/w9/fHxsYGCwsLgoKC+Pvvv0vYUh6E2K/afPHFF5iZmTFhwgR9m1IhQkNDnyiEv3nz5tja2nLw4EHNsbCwMAwMDIiJidHk2KrVaiIiIqjXom2p/URt/okd8z/AyaMxfd79jG7jp+LSpDnxp6I1bVITE/hmeA9i/tyKb49+9J0yh2eCX+BKdAR52QXewrS7t/l21LNciPybti+MoseED1DlZrPm7eGc3v97yfv+cTGn/95F0PAJdBz1FnEno/l1xuua86q8XH6Y+BLxJ6MJfGkMz73/OQEDRnDvupKstBRNu3x1ia4BmDRpEjExMXz88ce8/vrr7NixQyf1VQSCqoaPjw9WVlZPFMoPBakAK1aswMTEhFGjRqFWP+JDJ6i2KJVKjI2NqV27tr5NEQiqPdWjNLRAw4svvoibmxtz587l8OHDLF68mKSkJNasWaNpEx4ezubNm5kwYQJWVlYsXryYgQMHEhcXh4ODAwBHjx4lIiKCwYMH4+rqytWrV/n222/p1KkTZ86cKeGJnDBhAo6Ojnz00Uekp6drPOBZqcmsnjwUvx79ad7tOY5s/JH108ch5eez84sZBAwcSYteAzi4Zhnrpozm/d0xmFhYAnDtzD/ExUTh26M/NrXrkHQjjiMbf2Tl2H68vTEcY7MCG3Iy01nxal8Sr5zH/7mXqevlS0byXc6G/knK7RtY2DmgVqtZM3kYV09EETBgOE7ujUm4eIbwn5dzJ+4Sw79cQ3lIz1MjSRIDBgzg/Pnz/PLLLyxatIhatWoBBVXwS70uPZ2goCDOnj3L6NGjadmyJXfu3GH79u1cu3aNWrVqkZqayvfff8+QIUMYO3YsaWlprFq1ip49exIVFUWLFi0q8E4oEPt37twhJyenQvngQuxXPnfu3GHFihW888472NjY6NuccpOSksKJEyeeaIHCwMCA9u3bF9tDOywsjH79+rFt2zYiIiLo1auXRvjXf6Z0sX8ufA+1PZsydP4PjxzrjyWfknb3NhPW/Imr94PPTffX39cU2QwNWUz63UReW7UDt/tjtR4wjK9f6sTvX36EV6feGBg8WO9W5eQwaf3fmpQCM2sbdi74kISLZ3Fu6MXty+dIuq7k5fmr8On2nOa6ruPeK2abBJRW59PBwYG//vpLs1WkWq1m8eLFpKSkVKv3iEDwtMjlcgIDA59Y7EPB5+nHH3+kZ8+eLFmyROTw1zDi4uKoX79+se9ogUDwZAixX81wd3dn27ZtAEycOBFra2u++eYb3nvvPXx9fYGCrb7OnDmDp6cnAJ07d8bPz49ffvlF40kKDg5m0KBBxfru27cv7dq1Y9OmTQwfPrzYOXt7e/bt24dcLkelllgYU+BRT01M4KU5K2jRawAAjdp24ssB7Vj/4XjGh+yivo8/AI7ujQmZ+CKn9u3A/7khADRVdC82aQbw6tCTb0f25tS+nbTs8yIAB1cv49bFswxb+CPNugRr2nYZ865mYh+zexMXow4y7rttmok9QG1PL7bOeQ9lTBQN/ALKfDQqVlgAACAASURBVL5qqeDl6+tLy5Yt+eWXX+jXrx9ubm6PvW7BggWcOnWKzZs3079/f83xGTNmaGy0s7Pj6tWrGBs/yE8eO3YsTZs2ZcmSJaxatapM+4pSuC1aQkJChULdhNivfL766itkMlm1m4AeOnQItVr9xPn6QUFBzJgxg4yMDCwsLAgPD2fOnDkolUrCwsLo1asXYWFhyGQy3Fq0KbUPUytrUm7dIP70P9Rr9kyJ82q1mjMHduPVoWcxoV9IoZg+d2gvrs1bFvs+MDG3JGDAcP5c8hm3L5/DuaGX5pz/c0OK1Q5wv3/dvetKnBt6YWppDcCFyL9p0r6bZjGyNNSl7FMybtw4jW2Fz2rRokUolUrNd7dA8F9BoVCwcOFC1Gr1Ewu6Hj168NZbbzFt2jS6dOmCj4+Plq0U6Aux7Z5AoD3Eklk1Y+LEicV+nzRpEgC7du3SHOvWrZtG6EOBcLW2tuby5Qf5p2ZmZpqf8/LyuHv3Lg0bNsTW1pbjx4+XGHfs2LEagagq4rYyNrfAr+cDcevo1hBTKxuc3BtrhD5A/eYFP9+7rtQcMzJ9YEN+Xh4ZyfdwqOeOqZUNN/6N1Zw7vX8nLo2bFRP6hRROnk/u3Y6Te2Mc3RqRkXRX8/IMKNjT9/LR8nsQVOXcfq8omzZtws/Pr5jQf9hGuVyuEfpqtZp79+6hUqlo1apVqc+8LArFfkVD+YXYr1ySk5NZsmQJ48eP10SEVBdCQ0OpU6dOse+PihAUFIRKpSIyMpJz585x+/ZtgoKC6NChg8bjHxYWRlMvb8xt7Erto+Mrb2JsbsE3w3uw8PkAts2dytUTRzTnM5LukJOeRm3Ppo+1JfnmNRwbNCxx3Mm98f3z8cWO2zrXLfa7mbUtUBC9BGBftwGKYa9zdMtaPuvalB8mvEDkr6s0+fpFKe0r5OGJq51dwf0nJSU99j4EgpqIQqEgJSWF06dPP1U/c+fOpWHDhgwdOrTUlEZB9URsuycQaA/h2a9mNGrUqNjvnp6eGBgYFMu1L2011M7OrtikMisri7lz5xISEsL169eL7S+fkpJS4np3d3fNz0XT42yc6hTzVgGYWlpjU7tO8WNWBV6xwokzQF52FgdCviZ6+y+k3r5ZzIbs9AcT6LvXrtK8S58SNhXlbtxlbl85z2ddSxcA6Ul3Hnt9UfLVQAW18KVLlxg4cGCZ7VavXs0XX3zBv//+S15enuZ40edbXoTYr5osW7aMnJwc3n33XX2bUmEK8/Uf/kyXl1atWmFqasrBgwepX78+Tk5ONG7cmKCgIL755htycnIICwvjuX79HtmHk0dj3t0Syb8H/+J8xH5O7d/J4Q0hdBn7Ht1fn/akt1Ymskd9Jop8LwW/Mwv/voM5E7qbC5EH2LHgAw6EfM2E1X8U+84r7fE96jMnPcHiokBQ3QkICMDQ0JDw8PCn8sibmZmxbt06AgICmDFjBgsXLtSilQJ9oVQqefbZZ/VthkBQIxBiv5pT2qS8PJPKSZMmERISwuTJk2nXrh02NjbIZDIGDx5carGbopEARSPuDB4xlsygbBu2z59O9PZfaP/ya9T3bYWppTUymYxfpo9DkipWcEeS1Dg39Cb43VmlnrepXei1K13EqPPzNT/LKyneZe3atYwcOZJ+/foxZcoUnJyckMvlzJ07l0uXLlW4P3t7e0xMTITYr0JkZGSwaNEiRo8ejYuLi77NqRDp6elER0eXKDxZEYyNjQkICCAsLIz69esTFBQEFHj8c3JyWLduHbdu3aJDUAeuPa4fMwt8e/bHt2d/VHm5rH13JAd+WESn0W9hYVcLE0srbl3697G22Lq4kqi8WOJ44tUL98/Xe6J7dG7kjXMjb7qMeRdlTBTLRwVzZOOP9Jj4gaaNwSO+ZwQCQQHm5ub4+/sTHh7O66+/XvYFj8HPz4/Zs2czZcoUevfuTdeuXbVkpUAfZGdnc+vWLRHGLxBoCSH2qxkXLlwo5gW+ePEiarW6zJzyh9m4cSOvvPIKX3zxheZYdnZ2qXvKP4zhE3r9HubU3h207PMSwe88EOh5OdlkpxWPLHBwdePWpbOP7cve1Y2b50/jGfB4r6QmNPehMYqG9BbeX0W8m56enpw6deqxbTZu3IiHhwebN28u1vfHH39c7nGKIpPJnqgivxD7lcfKlStJTk5m6tSp+jalwkRGRqJSqZ44X7+QoKAgvvzySy5duqSJbqhVqxZeXl7MmzcPgGbe3tyQ8lHLSr4PM5LvYWFrr/nd0MiY2h5NOB+xD7VKhZGJKd6denNi10aunTlRIm9fkiRkMhlN2nfj0M8rUMYcpYFfawByszKI2vwTdnXq4+TRpEL3lZ2ehpGpGXLDB/82nRt6IzMwQJX7YLs/GaV79gUCQXEUCgUbNmzQSl/vvPMOu3bt4pVXXuHkyZOaNBlB9SM+vmA+JsL4BQLtIHL2qxnLli0r9vuSJUuAgn2rK4JcLi8RPrpkyRLyi3i4H3mtDAy18M6RyeUlklsj139fzMsO0KxLH26eP13qdlmF9+DT/XlSb9/k6OafSrTJy84iNysDAFNLKyxsHbh6/HCxNoc3hABgICt4AVhYWACUawFk4MCBxMTEsGXLlkfaWCiwiz73I0eOEBkZWWb/j6JOnToV3mdYiP3KIScnh4ULFzJs2LAKL75VBUJDQ3F0dKRp08fnwpdFUFAQWVlZxMfHExAQwD///MPq1asxMjLi/PnzGBgY0LLlM1w6cbTUEPYfJrzAj28O4e9Vizi6dS27Fn1MxPrvaKrortnJo+cbM7C0r8XKMc+zc+EMojatYe+KBXz1QpAmBajjqDexdHDkx0mD2fPt54SvW87y0X1Iuq4k+J1ZFS4KduloGPP7tGTnwhkc3hBCxPrv+H78AAwM5DTv+iDNqLIigwSCmoZCoSAuLo64uJLb7VYUAwMDVq9eTUZGBuPHjxfpMdUYpbKgtpMQ+wKBdhCe/WrGlStXeO655+jVqxeRkZGsXbuWl19+GT8/vwr106dPH3766SdsbGzw9vYmMjKSvXv3arbmexwymQxns6d/6zQN6s4/uzZgYmlNbY8mxMUe5WLUQcyLePUAOrwykVP7dvDztFfvb73nR1ZqEmdC/6T/hwtwadycZ4Jf5OSebWyd8x6XjoXTwC8ASZ1P4tWLxO7Zxuhlv2k8gK36DyU0ZDGbZk3G1bsFV45HckdZEEZvaWSg8br7+xcUFfzwww8ZPHgwRkZG9O3bV7MIUJQpU6awceNGXnjhBUaPHo2/vz/37t1j+/btLF++HD8/P/r06aOp1h8cHMyVK1dYvnw53t7epKenP9EzLK9nX5Ik8qWC4oNGFlbITcxQqSXksopFMAgezY8//sjNmzeZPn26vk15Ip4mX1+SJOLj44mNjeXo0aPIZDJkMhkKhUKTFlS4bWXz5s356KOPoEkLLuWVHKvNwFc4sXsj4euWk5uZgbWTC4GDx9J5zDuaNjZOLkxY/Sd/fTuXE7s3kZORhrWTC40Du2gKf1o5OPF6yC52L55FxPrvUeXm4NzImxFfraVpUI8K36NL42Y0bteZswf/JDUxASNTM1waNWPkkvXU920FFCwUysXnSSAoF+3btwcKdgHRRsh2vXr1WL58OYMHD6Zv374MGzbsqfsU6J7CxR9XV1c9WyIQ1AyE2K9m/Prrr3z00Ue8//77GBoa8sYbb7BgwYIK9/P1118jl8tZt24d2dnZtG/fnr1799KzZ89yXe9ibvjUWal9p8zBwEBOzO5N5OVm08AvgFe/3cQPE18s1s7E3JLXVu1g7/J5nP57F8d3/oqlfS08A4KwdiooimVgYMDwL9YQvm45//z+G2f+3oWRqRn2dRvQfsg4atV/UF2869j3yEi6y6m9Ozi5ZxuNA7sycul6Znf1Ijv5LpcvX8bd3Z3WrVvz6aefsnz5cv744w/UajVXrlwpVexbWloSFhbGxx9/zJYtW1i9ejVOTk507dpV8w9r5MiRJCQksGLFCv7880+8vb1Zu3YtGzZs4MCBA0/0DOvUqVMifUCSJO7l5JOQqSIhU8XNTBUJWSpU98sgjFy9F4CFMXcxNABnM0NczA1xvv+yN5GLBYAKkpeXx+eff84LL7xAkyYVCw+vCmRlZREVFVWu4lZpaWmcOnWK2NhYYmNjOXnyJLGxsZrCnjY2NigUCnx9fTWvZs2aYWVlVayf0/eyuaBMZ9x324odDxg4goCBI8q0w9bFlRdnLXtsG3tXN4bO/+GxbTxatWfu8cQSx+3q1C923L5uAwZ+/PVj+1JLsD/mPN72JppjI0eOLLUOQqdOnYT3UfCfxtHRkSZNmhAeHs6QIUO00udLL73Ezp07mThxIgqFolpGWf3XUSqVuLi4YGJiUnZjgUBQJjJJzDaqBTNnzuSTTz4hMTGxSmzndfpeNjuUT+aNrsqsnz6OmD+3ULt2bQIDA2nXrh2BgYH4+/tjamqqb/NKMH/+fObMmUNycjJJOfn8cyebmLvZ5OQXfKwNgPKUOizazkQuw8/BlGdqmWJnIsL9y8OaNWt45ZVXOHHiRIWjbKoCBw4coHPnzsTExGj2fM/Pz+fSpUvFBH1sbKxmC0+5XE6TJk2KiXpfX19cXV3LtVh0N1vFd2fLTpGpbozzssPeVHxuBILyMGbMGI4ePUpMTIzW+kxJScHX15cGDRrw999/i7S1asbIkSM5d+7cU6U4CgSCBwjPvuCJcDavmW+dTT+u5N/oV4mIiCAyMpKZM2eSmZmJkZER/v7+GvEfGBio2fpOn7jUqYOLXxvWnbtHfKYaGVB09a68exoUbZeTL3H0dhZRt7NwszLC39EUT2tjDGqwt79omoNaXbDjhKFMVq40B7Vazdy5c+nTp0+1FPoAu3fvxsrKin379rF48WJiY2M5deoUWVlZANSuXRtfX1/69++Pr68vPj4+eHl5PdUCmL2JHBO5TLMwVRMwkcuwMxFJ+wJBeVEoFPzwww8kJydja2urlT5tbGz46aef6NSpEwsWLOD999/XSr8C3RAXFyfy9QUCLVIzFZug0qmpE3WP2vZ4BgcTHBwMgEqlIjY2ViP+t2zZwqJFi4CC4jFFxb+vry9GRkY6szc+PY87TTvzyle9uJaZD8jQ1l+jsB9lWh5X0/KwNTYguIEV9Sx1d3+VRVlpDkUpT5rD5s2b+ffffwkJCdHhXTwZubm5/Pvvv8U89bGxsZq6D9OnT6dZs2b4+voyZMgQfHx88PHxoXbt2lq3RSYriCA5ejtLa+9bfSIDWjiYihQYgaACKBQKJEkiMjKywoWGH0eHDh2YNm0a//vf/+jevbumBo+g6qNUKmnVqpW+zRAIagwijL+aUNXC+AH2X8+oURP1ACczOtctmY//MDdu3CAyMpLIyEgiIiKIjo4mNzcXc3NzWrdurRH/bdu2rZS/VZ5aIvRGBscSsymQ5ZUvLgojBlo5mtKxjgVGBtVP0FRGmoOtsQH+/v7Y2dmxb9++SrK84kiSxI0bN0qI+rNnz6JSqYCCxarCfPovv/ySyZMnM3v2bAwNdbcGnJSTz4ozSTobr7J5zdtOpL4IBBVAkiRcXFx49dVXmT17tlb7zs3NpW3btmRmZnL8+HHMzc212r9A+6jVakxNTVm0aBETJ07UtzkCQY2gxon9pwnHFVQMMVEvIDs7m+PHj2u8/4cOHeLWrVsANG7cWCP+AwMD8fLyqvCWX0WJT89jpzKN1Fy1XhZZZIC1sQF9qomXXy1JXErNJToxm6tpeSXSHJ6Uwn4ss5NZ9v5Els18ny6dO2uh54qTmZnJ6dOni4n62NhY7t27BxQUjywMvS/Mq2/evLkmZPbQoUMoFAqOHTumF+/X+ospKNPyqvWioQxwszLipYY2+jZFIKh2DBo0iMTEREJDQ7Xe99mzZ2nZsiWjR48usXWxoOpx/fp1XF1d2bFjB3369Cn7AoFAUCbVOoxf2+G4gophZyLHzcqoxkzUn9QjZ2pqqhHzUPC+vHr1qkb8R0REsGbNGtRqNTY2NrRt21ZT/K9NmzZYW1uXa5xjiVnsvZahNcH6JEhAaq6adRdS6OZqQStHMz1ZUjbx6Xn8rkwjOVetiX3QdppDqpEVr3y1jvPGBjRKz6vUBRC1Ws3Vq1dLiPqLFy8iSRIymYxGjRrh6+vL5MmTNcK+QYMGj11gCg0NxcrKSm/1BvwdTbmalqeXsbWFBPhX4c+CQFCVUSgUTJ8+nZycHK1XYPfy8uKLL75g4sSJBAcH8+yzz2q1f4F2Kdx2TxtbMQoEggKqpWdfVB2vOlxIyWHT5TR9m/HUDPKwpqGNcaX1n56eztGjR4mIiNAsAiQlJSGTyfDx8SlW+d/T07PYIpQkSUTcyiLsZmal2fekBLmYE1jbrEotmhVNc9DVwoi20xySk5NLhOCfOnWK9PSCHTAcHBxKVMH39vZ+ojDVXr16YWBgwK5du57K5idFLUmsPJNEip6iVZ4WGWBjbMA4b7saXcRSIKgsjh07RuvWrYmIiKBdu3Za71+SJIKDg4mOjubkyZM4OTlpfQyBdli/fj1DhgwhOTkZGxsRKSUQaINqI/YrOxz3v1J1XNuIifqToVarOX/+vEb8R0REcPbsWaBg7+HCSIF27dqR7+bL4TtV1/MZ5GJOe+eqkQtZ3dIcVCoV58+fL7FnfaF3w8jICC8vrxLC3tnZWSsLLCqVCjs7O2bMmMG0adOeur8nJT49j3UXUvQ2/tMyrJENrtUgrUUgqIqoVCpsbW35+OOPmTJlSqWMkZCQoFlY37p1a5VaoBY8YN68ecydO5fk5Jq3LatAoC+qhdh/OBy3Mgwu7LcmVR3XFWKirh3u3bvHkSNHNOL/yJEj+PV9mb5T5+jbtDKpCiH9VSHNAR58lzz8TG7dulVC1J85c4acnBwA6tatW0zQ+/j40KRJE4yNKy/iJCoqijZt2lSaR60i7L2WTnRidrVaNJRREM3R1dVS36YIBNWabt26YWFhwbZt2yptjG3bttGvXz9WrlzJ2LFjK20cwZMzceJEwsPDiYmJ0bcpAkGNoUqL/ZoQjvtfQUzUtc/VlGzWX05DF9X2tcHQRjZ6WSSrymkOGSdCOfzzcmJjY7l9+zYA5ubmNG/evISwt7e317l9CxYsYObMmSQnJ+t028jSyFNLfH82SW9RGRWlMIpjjJed+D8hEDwlM2fOZOnSpdy+ffupitiWxbhx41i3bh0nTpygUaNGlTaO4Mno06cPMpmMHTt26NsUgaDGUGXFfnULx/2vIybq2kU8z/JzKCGzSgr9Qq79vZVaqdc01fA9PDyQy6tGjZC+ffuSnZ3Nnj179G0KUP2ihPS1wCUQ1DT27t1L9+7dOXPmDF5eXpU2Tnp6Os888wz29vaEh4frfZFTUBwfHx86duzI0qVL9W2KQFBjqLzl06fgWGIW6y6k6FXoFK06fiwxS09WVB+MDGT0aWBVLYQpFPx9+zSwqpJCHyD0Rka1Efrw4PNy8EaGTsc9drtqevSL4tq5H30mTmPgwIE0atSoygj9/Px8wsLC6Nixo75N0VDP0ohurhb6NqNcdHO1EEJfINASbdq0QS6XEx4eXqnjWFpasnbtWqKjo/nss88qdSxBxZAkCaVSSYMGDfRtikBQo6hSYl+SJA4lZLL3WoFg0LfQKRx/77UMDiVkUkWDIKoMYqKuHeLT8zhWzVIioODzcjQxm/h03RQTjE/PY+913S4uPCl7r2Xo7LmUl9jYWFJSUujQoYO+TSlGK0czglyqRsHHRxHkYq73GhUCQU3CysqKFi1aVLrYh4KFhY8++ojPPvuMiIiISh9PUD5SUlJIS0sT2+4JBFqmSon9qpp3CxB2M5OIW8LDXxZiov50qCWJ35Vp1SRLvyQy4HdlGupKXhjLU0vsrEbPSQbsVKaRp646SzgHDx7ExMSEgIAAfZtSgsDaVfd7pMP97SYFAoF2USgUOhH7AB988AEBAQEMGzaMtLTqv31wTUCpVAIIz75AoGWqjNivDuG4YTczRUh/ORAT9SfnUmouydUofP9hJCA5V83l1Mr1Yos0h6cnNDSUtm3bYmpqqm9TSiCTyVBfiGbnwg+RJEnvizqF43dztSDQ2Vxs2yUQVAIKhYLLly9z48aNSh/L0NCQtWvXkpiYyFtvvVXp4wnKRoh9gaByqBJiX4Tj1ixkMhntnc01If36nhZXp4l69P2dJ6ozMiC6EhfFRJrD06NWqzl48GCVC+EvJD4+nkGDBmF4/RyDPSyxNjbQ2+eisPjk0EY2VTYiSCCoCbRv3x6AQ4cO6WQ8T09PFi9eTEhICJs2bdLJmIJHExcXh7GxMbVr19a3KQJBjULvYl+E49ZcWjmaMbSRDeYGatTqfL3YUJ0m6kk5+VxNy6t2IvZhJOBKWh5JOdr/m4s0B+1w5swZ7t69W6WK8xWSlZVF//79MTU1ZcOGDbjbmjHGyw5/x4IIBF397QvHaeVoyhgvuypb40MgqCm4uLjg6emps1B+gJEjRzJgwADGjRunk4gCwaNRKpXUq1evUrdeFAj+i+j9EyXCcWs2rhaG7Jk5npjtPwNiov44/rlT/b36hciAE3eyn7oftVrNpUuX2Lp1K7NmzWLsB7NEmoMWOHjwIEZGRrRr106vdjyMJEmMHz+eM2fOsGXLFhwdHYGC3T66uVoytJENNsYF/7Yq67NS2K/N/UXCrq6WVXbXDoGgpqHLvH0oiERcsWIFJiYmjBw5ErVarbOxBcURlfgFgsrBUJ+DF4bjVjcKw3Eb25pUCxGpT9auXcuOrVvYNmokzzSy4XdlGsm5amRUzm4Lhf3aGBsQ3MCq2vx9JEki5m71C01/FBIQEXeXs9vX0D4wkObNm5e55VxycjInT54kNjZW8zp58iQZGQULaw4ODoxc+iuSOh+ZQdXYvu5JKExzaGhjrDcbQkNDad26NebmVau2xtdff82aNWtYt24dLVu2LHG+nqUR47ztuJyaR3RiFlfS8rT2XVLYj5uVEf6OZnhYG2FQhVN+BIKaiEKh4KeffiItLQ0rKyudjFmrVi1CQkLo1asXS5cu5c0339TJuILixMXF4e3trW8zBIIah0zS035yakli5ZkkUqqpl05GgaAc522nlQmhJEnkS6CSJNRqMDAAQ5kMuYwqnWP+OG7evEmzZs3o3bs369atAwr+7pU5UXevphP1u9kqvjubrJexI3/7AWNTM/yfG6L1vr8a1J5bl89jaWlJmzZtCAwMpE2bNjg4OHD16tViwj4+Ph4AIyMjvL298fX1xcfHB19fX3x9fTGxc2Slnp5RZfCatx12JrpftJAkCRcXF0aNGsXcuXN1Pv6j2LdvHz179uTtt99mwYIF5bomKSefE3eyOXE3m5z8gm8SAxmUJ8uqaDsTuYwWDqa0qGWql7+JQCAo4OzZs3h7e7Nnzx66deum07HfeustVqxYQXR0NM2aNdPp2IKCNI7XXnuNmTNn6tsUgaBGoTexfyElh02Xq/92J4M8rCvsoZMkiXs5+SRkqkjIVHEzU0VClgpVKdFjhgbgbGaIi7khzvdf9ibyKr8AIEkSAwYMICIigjNnzuDg4FCijZioP+D0vWx2KNP1MvZXLwRhbmvPuO+2ab3vtuZZRO/8jf379xMbG8vNmzfJz3+Qy29hYYGnpydt2rShY8eO+Pn50aRJE4yMSkZk7L+ewdHbWdVycfBhZECAkxmd61rofOzz58/TpEkTdu/eTa9evXQ+fmlcuXKFVq1a4e/vz65duzA0rFjQmSRJJOWoC75Ts1TcyMgr8zu1joURzmYF36l2JgZV/jtVIPgvIEkSjo6OvPHGGzoXfVlZWbRq1QojIyOOHDmCiYmJTsf/L5OdnY2ZmRk//PADo0aN0rc5AkGNQm9h/IVVx6vzxL2i4bhJOfn8cyebmKLiFnhchphKDdcyVNzIUGnamchl+DmY8kwVFre//fYbW7duZePGjaUKfQA7Ezmd61rQqY75f36inpCpKvO9UN3IV+Uxf/kP7P5qJubm5jRv3pyePXvi4uKCSqXi5s2bHD9+XBO6v2nTJtq1a0dgYCCBgYG0bt0aC4sCMazNNIeVY58H0OrixvSWjnQdN4Vu46eWq70EnLibTac6ut8dIjQ0FLlcrql8rW8yMjLo168ftra2rF+/vsJCHwqin+xN5dibyvGmYIIuSRLq+9FS+WqQ34+WMqjG0VICQU1HJpPRvn17nebtF2JmZsa6desICAhgxowZ5Y4wEjw9hZF9ImdfINA+ehH7hVXHqztFq44/SnSrJYlLqblEJ2ZztZSw9fKKu6LtcvIljt7OIup21v38UlM8rY2rTNh6YmIib7zxBi+88AIDBw4ss72YqMPNTFW53gtJN+IJXb2ES1EHSU64jpGpGZ6tFTw7eSZ2depr2u1dPp99Kxcw93hiseujt//CxplvMnVnNHZ16jMvuCXJNwv+yU5vWVAMzd0/UCOE7127yu7Fs7gUFYYqNwfnht50GfsOTYN6lGmrgdyQni8MZfHEoXh4eDyywm5KSgpHjhwhMjKSiIgI5s2bR2pqKnK5HD8/vwLh36kbOR4F4lQZE8WFyAO0H/oaZlY25XhqVZOc/AJvtL2pbhfsQkNDadmypc7yYR+HJEmMHj2aS5cucfjwYezt7bXWt+x+GpQcGVTNNVGBQFAKCoWCTz75hLy8vFKjvCqTFi1aMHv2bKZNm0bv3r3p0qWLTsf/rxIXFwdA/fr1y2gpEAgqil7EfmHV8ers1S+ksOp4aeG48el5xQrSgfbuubAfZVoeV9PysK1CBeneeOMNJEli6dKlT9zHf2miLkkSCVmqcrW9duYf4mKi8O3RH5vadUi6EceRjT+ycmw/3t4YjrFZxQqu9XnvM3bMn46xmQWdX30bAEuHAtGfdvc23456lrzsLAIHj8Xcxp7jO9ez5u3hDJ3/A826BD+243JurwAAIABJREFUb5lMRp6FLZ6eDo9doLGxsaFHjx706FGwgJCfn8+ZM2c04v/PP/8k7OINBs8pFPtH2bdyAf7PDa7WYh8KIjp0KfYlSSI0NJSXXnpJZ2M+jnnz5vHbb7+xadMmmjdvrm9zBAJBFUChUJCRkUFMTAytWrXS+fjvvPMOu3bt4pVXXiE2NhY7Ozud2/BfQ6lUAlCvXj09WyIQ1Dx0LvZrYtXxh8Nx89QSoTcyOJaYrXWRX9r4ACm5atZdSKGVoykd61jobauozZs389tvv/Hzzz/j5OSkFxuqG/kSpaYslEZTRXd8uj1X7JhXh558O7I3p/btpGWfFys0drPOz7Lnm7mY29rzTPALxc6Fhiwm/W4ir63agdszbQFoPWAYX7/Uid+//AivTr3L3A9XpS6orSCvwNtRLpfj4+ODj48P48aNA2DnhUROpalBpvfdQrWGgQwSslSaaBZdcPXqVa5du0bHjh11Nuaj2L17Nx988AEzZsxgwIAB+jZHIBBUEVq2bImpqSnh4eF6EftyuZw1a9bg4+PD66+/zi+//FIjIwqrEkqlEhcXF1EnQSCoBHQ+c76Xk6/JV69s/g3fw97l8yt9nMJwXCjw5n9/Nono+1sK6mpRo3Cc6MRsvj+bRHy67tMk7t69y4QJE3j++ecZPHiwzsevrqgqUCPTyNRM83N+Xh4ZyfdwqOeOqZUNN/6N1apd5w7txbV5S43QBzAxtyRgwHCSbsRx+/K5cvVTkft7FMmSEcgM2Lt8Pru/mgnA/D7+TG/pyPSWjiTdiCNfpWLfd1+w4LnWzGhTl3nBLflzyWeocnPKtjE3hz3fztNc+3lvP3Z/9UmJa1W5OexcOIPPujTlY4UbayYPI+XWjVL7vPFvLCFvvMTMIHc+bt+A718bQFzsMc15tQQ3MnT7OQ0NDUUmk6FQKHQ67sOcP3+eIUOGEBwczCeffKJXWwQCQdXCxMSEgIAAveTtF1KvXj2WL1/Or7/+ys8//6w3O/4rxMXFiXx9gaCS0LlnPyGzfOHK2uBc+F4O//ZDuYtmPQ0JmSoup+Wy91qGXlMUJCD1vpe/m6sFrRzNyrxGW0yePJmcnBy+/fbbGr8KLkkSeXl55OTkkJubS05OTrFXeY/l5OSQiwGmvceUa9y87CwOhHxN9PZfSL19k6KbaWSnp2r1HpNvXsOnuX+J407uje+fj8e5oVeZ/eSreapUjKJpDs26BHMn7hIxf2wm+N1PsbAtKP5oYefA5k8nc3zHrzTv1hfFsNeJPxXNgZCvuX31AsO/WP3I/tVqNWsmD+PqiSgCBgzHyb0xCRfPEP7zcu7EXWL4l2s0bTfNepsTuzbg13sgDXxbc+loGD+++XKJPm9d+pcVr/bFxMKKDq+8gdzQiCOb1vDduH6M/W4b9X0KnmtClgpJknT2eQkNDcXX11evYampqan069cPZ2dn1q5dW2Z0iEAg+O+hUChYtWqVTr8fH2bw4MHs3LmTCRMmoFAohBitRJRKpcjXFwgqCb2I/epcdVySJFQ52cU8rDIg+k4W1zMKBIm+UxQKx997LYOcfInA2maV/s9y586drF27lh9//BEXFxet9p2fn19hEf1IYa3F658GY2NjTExMMDExwdLWntfKKfa3z59O9PZfaP/ya9T3bYWppTUymYxfpo9Dkop8qh7x91ar80s9XpnIn1LLFU1zcGncjDpNfYn5YzPNOj+rKUp48/wpju/4ldb9hzHgf4sAaPfiaCztHAn7aRmXjobj2bp0b3bM7k1cjDrIuO+2FYtiqO3pxdY576GMiaKBXwA3z5/ixK4NtH1hFM9PL4gYavfSq6z/cDwJF04X6/Ovb+aSr1Ix/oed2Lu6AfBM8It8OaAdf3z9CeO+3w48WZrD0xAaGkrfvn11M1gpqNVqRowYwfXr14mKisLGpnrXXBAIBJWDQqFgzpw5XLp0iYYNG+rNjqVLlxIWFsaIESPYv38/cnkNLyKkJ5RKpV5SNgSC/wI6FfvXr19n1uT3+Sd0D5kpSVg7OtM4sAt9pszG0MiYrLQU9i6fz+n9O0m/dweb2nUIGDCcoBFvaLw/STfimN/Hn96TZ2JqYUXo6iWk3LqBcyNvnp8+n3rNngFgw8dvcHzHr8CDKuOApjq5Wq0m4peVHN2ylnvXrmJqaY13p970evN/mFnbatrPC25Jbc+mBA4ew1/L5nDr0r/0nDQDxdDxXDh8gH0rF3Dr4r+o81VYO7nQvEsfek6aoatHWiZhNzMBaO9cduE2SZI0YrYiYjkpKYkPP/wQb29vbt++zezZs7Uqtovuy15R5HK5RlQXvooK7YeP2dnZlatdRfp8+JixsXGxxReVWmJhzN1y3c+pvTto2eclgt+ZpTmWl5NNdlpKsXZm1gUiKistpVgRu+Sb10p2+oiFAVsXVxKVF0scT7x64f758hXSMXzKhabypAGcC98LgGLo68WOBw1/nbCflnEufM8jxf7Jvdtxcm+Mo1sjMpIe/B08AwraXz4aTgO/AM0YgUPGFbu+/cuvEbN7k+Z3dX4+FyIP4N2pt0boA1g7OuPXayBHt/xEdnoappZWmvuTU/lqPz4+nitXrug1X3/WrFls376dHTt20KRJE73ZIRAIqjbt2rVDJpMRHh6uV7Fva2vLmjVr6Ny5MwsXLmTatGl6s6WmolariY+PF5ETAkEloTOxf+PGDQICAki8l0zAgOE4ujUiNfEmp/buIC87C7VKxcoxz5OaeJOAASOwdXZFGRvFn0s+IzXxFn2nzC7WX8wfm8jJSCdgwAhkMhkHVy9l3XsjmbL9GHIjIwIGvEJq4i0uHj7Ai59+U8KerbPfJXrHevz7DiFw8FiSbiiJ/HUVN86dZPwPvyMvst3LHeVF1n/wGgEDR9C6/3Ac3Rpy69K/rH5rKM6NvOn2+jQMjUy4G38FZUxUpT/LihJ2M5PlS77m3J4tjxXWubm5TzVOVlYWn332WblEr4WFBfb29k8kmMvb1tjYuEquwufm5hIXF8fly5c1L5uBbyE3LrswjUwuh4fEb+T671E/tCDicF9kXjkeiXfHXgXjZmVoFsCKYmxqXmKxAKBJ+24c+nkFypijNPBrrekjavNP2NWpj5NH2WLN0KCgEN3ToC5HGFDSzWvIDAxwqOde7LhVrdqYWtmQdH97wdK4G3eZ21fO81nXpqWeT0+6U2yMogIewLFB8YloRtId8rIzcXQrOUF1cm+EpFaTcus6ppYF4z1tmkN5OXjwIABBQUGVP1gpbN26lU8++YTPPvuM4ODH7+QgEAj+29ja2uLj40N4eDgjR47Uqy0dO3Zk6tSp/O9//6N79+60bNlSr/bUNBISEsjLyxNh/AJBJaEzsT99+nQSEhJ4fc2fuHq30Bzv/vr7SJLE36u+5N61K0z6ZT+16nsC0GbQK1g7OhO2ZhlBwydg61xXc11ywnXe23pE44Wv5daQn94ezvnIv/Hq0IMGfq2pVd+Di4cPlKgyfvWfwxzdspaXZi+nRe8H+8B7tFIQ8sZLnNy7vdjxu/FXGLX0VxoHPthvNXzdcvLzchm1ZD0Wdg7afViVgPfAMdga5CMlJTyRN/pRx8LCwujfvz8rV65k7Nix+r7NKoEkSdy5c6eYmC98Xblyhfj4eNT3FayhoSENGjRgUNvnsHFrUma6RdOg7vyzawMmltbU9mhCXOxRLkYdxNy2+P7kjdp2xtbZlc2fTCZxxEQM5HKObfsZCzsHkhOKe/frevlyZOOP7P/+CxzqeWBpVwvPgCA6jnqTmD838+OkwQQOGYuZtS3Hd/5K0nUlQxeElCvX2tnM8KlTSCqU0v0EY0mSGueG3gS/O6vU8za165Z6XFs8bZpDeQkNDcXb2xtHR8eyG2uZ06dPM3z4cAYNGsQHH3yg8/EFAkH1Q6FQsG/fPn2bARREJf35558MHTqU6OhozM0rts2t4NEUbrsnPPsCQeWgE7GvVqvZunUrz/bpU0zoFyKTyTi5p2B7LzMr22KhtA0DOhIaspgrxyN55tlBmuO+3Z8vFm7vfj/X9t71q2Xac3LvdkwtrWnYtmOxsep6+WFsbsHlY+HFxL5d3QbFhD6gCY0+E7ob/+dervJFpgxkMrwHT2CMl53WtuVLTU3lzTffpFu3bowZU76c85pCdnY2SqWyVEF/+fJl0tPTNW0dHBzw8PDAw8ODdu3aaX728PDA1dUVQ0ND9l1LJzoxu8xaFn2nzMHAQE7M7k3k5WbTwC+AV7/dxA8Ti2+5JzcyYtgXP7Jt7jT2fPs5Vg5OtH/5Ncysbdg4881ibbuMe4+km9c4uHopORnpuPsH4hkQhJWDE6+H7GL34llErP8eVW4Ozo28GfHVWpoG9SjzGRnIoI6FUZntyuLhNIDSFg/sXFyR1Gruxl3GyaOx5nja3dtkp6Vg95iUA3tXN26eP41nQIfHLkwUjnHv2tViXvuHUx0s7GphZGpO4tXSUiAuIjMwKLaA8LRpDuXl4MGDdOnSpeyGWiYpKYl+/frh5uZGSEhIjS/eKRAItINCoeCbb74hMTFRL4uURTE2NmbdunX4+/szdepUli5dqld7ahJC7AsElYtOxH5iYiKpqal4ezd/ZJu78ZdJuHD6kaG0GffuFPvd1sW12O+Fwj8rtWQ48sPcibtMdnoqs7uWXkk8/aGx7OuUDC3y7dGPo1vXsnnW2/y5+DM8A4Jo1iWY5t2eq5LCv7BK/8EbGXR1tdRKn1OnTuXevXt89913NW4CL0kSt27deqSYv3HjhqYSvpGREe7u7nh4eKBQKBgxYgQeHh64u7vj7u5eriJkzuaG5SpaaWZlw6CZi0scn/b78RLH6nr5MWHNHyWO+z83pNjvVg5OjFxc+tZC9q5uDJ3/QzksK4laKvDsPy1yWUE6QGGRPmOzAo9KVloKhTXlmyi68efS2Rz6eQX9Z3yhuTZ87fL757s/sn+f7s9zLnwvRzf/RMDAEcXO5WVnIUlqjM0saNy+K38unU3ELys1BfoADv28otg1BnI5jdp14mzoHyTdiNMUEUy7e5sTf2zCrUUbTb6+NtIcykNCQgLnzp3T+TZ3+fn5vPzyy9y9e5ejR49iaamd7x6BQFDzKdwi9NChQ/Tr10/P1oC3tzcLFixg0qRJPPvsszz77LP6NqlGEBcXh7W1tSjYKhBUEjot0Pc4PSip1TRs24mOr7xR6vnC0H5NXwaPSHItRzEvSa3G0t6Rl2Z/W+r5h8PyDU1MS7QxMjVj3Pc7uHw0nH/D93AhYj+xf23Fs/UaRn+zAYMqmCsuAUcTs2lsa0I9y6fzuO7fv58VK1awbNky3NzctGKfrsnMzOTKlStcuXKlVEGflZWlaVu7dm2NoO/YsWMx73ydOnWeujaAs7nON8bQCdq4L5lMhrOZIdfu73ZRx8sPgL+WzcG3R3/kRkZ4dehBy74vEbV5DVlpKbj7B3Lt9HGO7/gV787PPrI4HxRUyT+5Zxtb57zHpWMFxfgkdT6JVy8Su2cbo5f9hqt3C+o08cGv1wAObwghOz2N+n6tuRR1kLvxV0v02WPCdC4ePsDy0X1o+8IoDOSGRG1eQ35uLr3e+vjB89FCmkN5KMzX79ChQ6WPVZQPP/yQv/76iz/++ANPT8+yLxAIBIL71KtXj/r16xMeHl4lxD7AxIkT+f333xk9ejQnT57Ue8RBTUCpVAqvvkBQiehEYTg6OmJtbc3Z06dp90Lpbexd3cjNzKBhG+1Vin7UJNrB1Y1LUQdp4BdQbAu9imJgYEDDNh1o2KYDvPspf69axF/L5nD5WLhW70ObyIDflWmM87bD4AlFRnp6OmPGjKFTp06MHz9euwZqEbVazc2bNx/pnU9ISNC0NTU11Yj5Ll26MGbMGI2Yd3Nzq3SPpL2JHBO5jJx8fW/cqD1M5DLsTLQT5eJibsiNDBVqoF6zZ+g+4X2ObFzN+Yj9SGo1U3dGM+B/X2Ff143oHes58/cuLGs50WnUW3R9bcpj+zYwMGD4F2sIX7ecf37/jTN/78LI1Az7ug1oP2RcsYXGgR9/jYWdAyd2b+LMgV14tg5i5OKf+by3X7E+a3s25bVVO/hjyWccCPkaSS1Rr3lLXvz0G+r7+BeMq6U0h/IQGhpKo0aNtL4t5uP49ddfmTdvHgsXLqR790dHVggEAsGjUCgUhIeH69sMDTKZjJCQEHx8fBg7dixbtmypcZGNukaIfYGgctGJ2DcwMKBfv36sXbsWt5dO4OJVPG9fkiR8uj/PvhXzOR+xv0R+fFZaCsZmFsgNK2Zu0XDfotuP+fR4nsMbQtj/3RcltsnLV6nIzcoo1r40MlOSMLexK3bMpUlBmoIq9+n2YK9MJCA5V83l1Dwa2hg/UR8ffPABCQkJ7NmzR+8pC2lpacU88w//nJPz4G9Rp04dPDw8aNiwId27dy/mnXd2dtbrvchkMvwcTDl6O4uaIPdlQAsHU61Ngh5Oc+gy5l26jHm3RLuu496j67j3HtvXuO+2lTgmNzKi48hJdBw56bHXGpmY0nfKHPpOmVPseOGWnkWp09SX0ct+e2Rf2kpzKA8HDx7U6ZZ7J06cYNSoUQwdOpR33nlHZ+MKBIKahUKh4LfffiMzM7PKFMVzdnbmu+++o3///qxateo/V7NI28TFxek86kwg+C+hs9jhOXPm8Ndff7F8zPO07j8cJ/fGpN65xam923nth510GDGRs6F/sHryUPz7Dqaulx+5WZkkXDzDqb07mLrzeIWr3te9H+67Y/4HNGrXGQO5HL+e/fHwb0/AwFc4EPI1N86folHbTsgNjbgTd5lTe7fTZ8psfLo999i+961cyNV/Immi6I6diyvp9+5weEMINrXr4Nai7RM/J10gA6ITs55I7IeFhbFkyRIWLVqkk7Dc/Px8rl+//kjvfGLiA5Flbm6uEe+9evUqJubd3NwwM3vyKA5d8EwtU6JuZ5XdsBogAS1qlUx/eVJEmsOTc+fOHU6dOqWz/aHv3LlDv3798PLyqpH1PAQCge5QKBSoVCqioqLo1KmTvs3R0K9fP8aMGcNbb71Fx44dadSokb5NqrYolUqx7Z5AUInobAZdt25djhw5wph33ydi9yZyMtKwdnKhcWAXjEzNMDQyZtz32ziw6itO7t3O8Z2/YWphRa0GHnQbPw1TS+sKj9msSx/aDR5D7J9bObFrA5Ik4dezPwD9P1xIXS8/ojat5q9lczCQy7FzqU+LZ1+ggV9AmX17d+xF8s14orf9TEbyPSxs7XH3D6Tb+KmYWlXcVl0iAVfS8kjKycfOpPy55pmZmYwePZrAwEAmTXq8B7QipKSkPFLMK5VK8vLygALvt6urKx4eHnh7e9OnTx9N6L2HhwdOTk7VWljYmchxszJCmZZXrb37MsDNyqhC762yEGkOT05YWBigm3z9vLw8XnzxRTIzMzl48GCVX2ATCARVm2bNmmFjY0N4eHiVEvsAixYt4u+//2bYsGGEh4djZKSbtKyaRHJyMqmpqSKMXyCoRGSSVI6Kdlrk9L1sdijTy24oqFRkQICTGZ3rWpT7mvfee49ly5Zx4sQJmjRpUu7rVCoV8fHxjxT09+7d07S1srIq5pEv+mrQoAEmJiYVuc1qx4WUHDZdTtO3GU/NIA/rJ04TeRT7r2fUqDSHin7+npTJkyezbds2rly5opOxli1bxr59+0RYpkAg0ArBwcHk5+fzxx8ld5fRN4cPH0ahUDBjxgxmzpypb3OqHTExMbRo0YLIyEjatq3aUbECQXVF57GxNTUct7zsXT6ffSsXlJrjq0sk4MTdbDrVMS+XN/zw4cMsWrSIzz//vITQlySJpKSkR4r5uLg48vPzgYL6DfXr18fDw4MWLVowYMAAjZh3d3fHwcGhWnvnnxZPa2NsjQ1IyVVXS1ErA2yMDfCw1r6HQ6Q5PBm6ytdfvXo1X3/9NUuXLhVCXyAQaA2FQsHcuXPJz89/6p1vtE3btm353//+x6effkrPnj1p166dvk2qVsTFxQGIMH6BoBLRufKuieG4lU1qYgJRm9bg3bk3dZr4aK3fnHyJpBw19qaP/+eZnZ3NyJEjadasGc2aNWP58uUlBH1KSoqmvZ2dnSa8/oUXXijmna9fv74IdXsMBjIZwQ2sWHchpezGVRAJ6NPA6ol3engcIs2h4iQnJ3PixAmtpt2URlRUFK+99hqvvvoqEyZMqNSxBALBfwuFQkFaWhonT56kRYsWZV+gYz788EN2797NsGHDOHHiBFZWVvo2qdqgVCoxNjbG2dlZ36YIBDUWnYv9mlZ1vKJ0HvMOHUe9WaFrUhMT2LdyAXZ16mlV7AMkZKqwN5UjSRJ37twp1TN//PhxUlNTgYJwOkNDQxo0aICHhwcBAQEMHjy4mHfezs6ujFEFj6OepRGtHE2JTsyuVp8RGdDK0RRXy8pbzPF3NOVqWl6l9a8LJMDfUTe57OHh4UiSVKme9oSEBAYMGMAzzzzDsmXL/tOROQKBQPu0bt0aY2NjwsPDq6TYNzQ0ZO3atbRo0YLJkyezatUqfZtUbVAqldSrV0/vOzsJBDUZvcTU16Rw3IoiNzSs8BaClYWUn8+K9Rs5sGI+ly9fJj39QS2FWrVq4eHhga2tLWlpafTr149Jkybh4eGBq6srhlXkHmoqHetYcCEll9RqEs4vA6yNDehQp3Jz0EWaQ8U4ePAgdevWxcPDo1L6z83NZdCgQajVajZt2lTja2oIBALdY2pqSqtWrQgPD+eNN97Qtzml0rBhQ77++mvGjBlDcHAwAwYM0LdJ1YK4uDhRnE8gqGR0XqCvkPUXU6p9OG5RTu7dzs9TX2Xsd1vx8G9f7NyRjavZOuc93vrtIKf27iiRs3/h8AH2rVzArYv/os5XYe3kQvMufeg5aQaXjx3iu3H9Sow3aOZi/J8bwpXjkUSs/474U8dJv5uIpX0tmnftS883PsTI9PHeQ0mSSLl6jrR9vxQLtXd3d8fa2prc3FxatWqFoaEhR44cEeH3OiY+Pa9ahfMPbWRDvUr06hdS3Z7LwwxrZFOp0Q9FadOmDQ0bNmTdunWV0v/48eMJCQkhNDRUFFcSCASVxrRp01i7di3Xrl2rstFDkiQxcOBAQkNDOXnyJHXq1NG3SVWetm3b4uXlRUhIiL5NEQhqLHpzz9aEcNyiNFV0x9jcgpN/bSsh9mP/2kptz6Y4N/Ti1N4dxc7duvQvq98ainMjb7q9Pg1DIxPuxl9BGRMFgKN7I7q9/j57v/2cgAEjcHumYELdwK81ULDIkJedRdtBIzG3sSf+9HEif/2elNs3GDr/h8faLJPJqOXZlLn9l5b6z3P27NmcPXuWY8eOCaGvB+pZGtHN1YK91zL0bUqZdHO10InQB5HmUF7S0tKIjo5m9OjRldL/ihUrWLFiBd9//70Q+gKBoFJRKBTMnz8fpVKJm5ubvs0pFZlMxsqVK/Hx8WHUqFHs3r1bhKeXgVKppFevXvo2QyCo0ehN7Ff3cNyHMTI1w6tDT07t20nfqXMxuF8xNu3OLa4cj6Dra1NLve7C4QPk5+Uyasl6LOwcSpy3cnCiSfuu7P32c+r7tuKZ4BeKne/95kfFPPgBA0fgUM+dv5bOJvnmNWxdXB9rt0oNagnkD2n9mJgY5syZwwcffICfn195HoGgEmjlaEZOvkTYzUx9m/JIglzMaaWjHPRCRJpD2URERJCfn18plfjDw8OZNGkSEydO5NVXX9V6/wKBQFCUwMBAoOC7p6qKfShIgfzxxx/p1asXy5Ytq/TiqNWZ7OxsEhISRBi/QFDJ6G3JsbDqeHWYqJcX3x79SL+XyOVjhzTHTu7dgaRW49ujZCg+gJmVDQBnQnejVqsrPGZRoZ+blUFG0l0a+LZGkiRunDtZrj5UD2Vy5OXlMWrUKLy8vPjwww8rbJNAuwTWNiPIxVzfZpTKvuXzyDl7ROfjGhnI6FONvj8KdykwMtBd+OnBgwepXbt2ia0yn5Zr164xaNAg2rVrx6JFi7Tat0AgEJSGg4MD3t7ehIeH69uUMunZsyeTJk1i6tSpnD59Wt/mVFmuXbsGiG33BILKRq/xRYXhuFUz+6riNA7sgqmlNbF/bdUcO/nXVlyaNMexgWep1/j26EeDFgFsnvU2c7p588v7Y4n9a2u5hX/yzWts+PgNZnVqxMft3fisa1NWjn0egOz01HL1kf/QUPPnzyc2NpaQkBCMjY3L1Yeg8pDJZLR3Nqeba4FXWN+fl8LxOzmbILsSw/PPPUdUVJTO7ShMc6gO6DLNoZDQ0FA6dOig1fzW7OxsBgwYgLGxMRs2bBDpPQKBQGcoFIpqIfYB5s2bh7u7O8OGDSMnJ0ff5ugdSZJQqSWy89Vk5qnJzldzRRkHIDz7AkElo/eS6tUtHPdxGBqb4N25N2f+3sXz0+eTfi8RZUwUPd54tHfcyNSMcd/v4PLRcP4N38OFiP3E/rUVz9ZrGP3NBk06QGmo8/NZNWEQWSnJdBw5CUe3RhibmZNy+yYbP56EVM4FA3mRJZ/Tp08za9Yspk6dir+/f7nvXVD5tHI0o7aZITuVaXr7vEiSGhsTQ/o0sKKepRFbtmyhR48e9O7dm9DQUJo3b65Te1JiIziwaS+dxr6r03Ergj7SHDIzM4mKiuLLL7/UWp+SJDF+/HhOnjxJeHg4Tk5OWutbIBAIykKhULBy5Uru3buHvb29vs15LGZmZqxbt442bdrw0UcfMW/ePH2bpDMkSeJeTj4JmSoSMlXczFSRkKVC9fCU1N6XTw4piVBZoryWjrO5Ic7mhtibyKtsEUaBoDqi98oh1S0ctyx8e/QjI/kul6IOcnLPNiRJemQIfyEGBgY0bNOBPu9+ytubDtFj4gdcOhrG5WMFK9iyR/hyEy6e4Y7yEs++8wkdR76Jd6feNGzTEWtH5wrZbHj/S1WlUjFq1Cg8PT356KOPKtS5iejmAAAgAElEQVSHQDfUszRijJcd/o6mgO68/DIASeLQuhU0Tjyp8VJbWFjw+++/U69ePXr06MHly5d1ZBHs2rWL4OBgDK7G0K5W1fQwd3AxJ7C2boU+wJEjR8jLy9Nqvv7ixYtZvXo133//vVgIFAgEOkehUAD/Z+++w5q63gCOf2/C3qAoIC7cuEdxRa2KE+usq44OLV1Wa6l1tFbr7NCqraN1S39ardI66gS1Km6oe1XrRKSi7BUgub8/MFRkBQRC8Hyep89Tk5tz3yAm973nnPfNqEdiDJo2bcqsWbP49ttv+fPPPw0dTrGLVms4cD+RhReiWHElhh13EgiNTCEsMYdE/wkzSyvCk7WERqaw404CK67EsPBCFAfuJxKt1pTsGxCEMsrgyT4Y13Lc/NT06oClvSPn923l/L5tuDdohlOl3JcoJcVGZ3vMtU7G7Gh6asbSL1PLjP3ayfFZ240pFBmz/k93T5RlmaMblusdr4kCdNuIFyxYQGhoKKtXr8bCwkLvMYSSZaqQ8Ha3YVgte+zNMv4JF1fSrxvX3kzBazXtiD21j3ffHk1S0n8FAx0cHNi7dy82NjZ4e3sTHh5eTNH8Z+vWrfTt25fu3bvz+++/06GyfanZ5qDVZFygeLtb08bFyiAzFIcOHcLJyYn69esXyXgHDhzAz88PPz8/hg0bViRjCoIgFES1atVwc3MzmqX8AH5+frRv356RI0cSHZ39es/YaWWZ67FqNt6I5afL0Zx+mIxa8981qb6VqJ4+Tq2ROf0wmZ8uR7PxRizXY9VoDdMlXBDKBIMv49cxhqrj+lCamtKgkw/n9v5OWnISPcZ/mefx+5fP4/aZ49RRdcHR1Z2EqEec2LwG+4puVGuS0c6qnHs1LGztORWwDnNrG8wsrancoBnO1Wrh5F6N3QumE/fwAebWtlw68AfJcTF6x+tiaYIkSVy7do2pU6cyfvx40UbLSFS2McXX05GbcWmERiZzKz4NCYpklYxunGq2pjR3tsTDzhSFJLFy5UoaN27M9OnT+eabbzKPr1ixIoGBgahUKrp06cLhw4cpVy57d4misGnTJoYNG8aAAQP43//+l7lvvDRscwCZ2IgwUkMDaTFtkkEigP/26xdF26fbt28zaNAgOnXqxFdffVUE0QmCIBScJElGtW8fQKlU4u/vT6NGjfjggw/YsGGDoUMqMvcS0th5J56YVG3mTfai+t7VjXMnPo3b8Wk4mCnwebJ9UBCEgikVM/s6pbnqeCVrE71/WI269iU1KaM3eqMuffI81rNDdxxc3AndtoFtX03ixK+rqd6sNaN/+g0LWzsg4wbCwBmLkRRKts6ZwMbJvtwKPYbS1JTXF67HtU4D/lyziAPL51GusgcDZyzRK06FBG7Wpmg0Gt566y2qVKnCzJkz9XyXQmmgkCRq2psxuKY973g64lXBEpOn7pHrW/z96ePMlRJeFSx5x9ORwTXtqWlvhuLJ7HSdOnWYPn068+fPJyQkJMsYVatWJTAwkMjISHr06EF8fPxzv79nrVu3jtdee43XXnuN9evXZysQZ6htDjypj/GSsyXVwv9i4fTJBAQElNTZs1Cr1Zw4cYL27ds/91iJiYn07dsXe3t7Nm7ciIlJqbk/LAjCC0ilUnH69GlSUlIMHYreqlSpwtKlS/nll1/KRLKfppUJCktg/fVYYlMzvvuK6+a6btzYVC3rr8cSFJZAmlbM8gtCQUiyXPrWxoREJhMUllhks5SFpTu/t7s1lkqJHXcSDBhN8ehd1ZZ9/sv4+OOPOXToEO3atTN0SMJziomJoVbj5ny1bBXVG79EeGJazsVxyNjG4WJpgpu1KS6WGcVxHM0VeS49T0tLo2XLlmg0GkJCQrIl3GfOnOHll1+mWbNm7Nq1C0vLotmzvnz5ct555x3efvttfvzxx3xnrZ+ddSiOzxLduNHhd3mjeXXquTgiyzKDBg0iMDCQs2fPlnhP6ODgYNq1a0doaCjNmjUr9DiyLDN06FB27NjBiRMnaNiwYRFGKQiCUHBnzpyhWbNmHDlyJHMPv7EYNmwYO3fu5Ny5c0Zbgf5eQppBV89JgJ2ZIrNIsCAI+SuVyT6Uvg+UxynprLii//J4Y9HdOp42TeozevRovv/+e0OHIxQBWZaxsbFh1qxZjB8/PvMxrQzpsoxGm9GBwUSSUEgUak/5mTNneOmll/jyyy/57LPs3SaCg4Pp2rUr3t7eBAQEPHeLtu+//55x48bx4YcfsmjRIr1j1spysW5zqG5rSnVlEh0b1mL8Rx8xa9YsIOOGS9OmTXFxceHw4cMl2qJu9uzZfPPNN0RFRaHMo5tHfr7++msmTZrE5s2befXVV4swQkEQhMJJT0/HycmJKVOmMGmS4bZKFUZMTAyNGjXCw8OD/fv3P9fnsyGUxom4ku50IwjGqFQt43+aQauOAy2cLRhdzzHzzqGTuRJzpaFLfxUtc4XER++8hYuLC3PnzjV0OEIRkSQJNze3LIXyJElCqZAwVyqwMlVgrlSgVEiFLh7XtGlTJkyYwIwZM7hy5Uq251UqFb/99ht79uzhjTfeQKtnG8icfPPNN4wbN44JEyYUKNGHnLc5PP3vWJ9tDrIsI2v/qwr87DYHr+qufDhmDAsWLCAiIgLIKFq4ceNGQkJC+Pzzz/V/s0Xg0KFDqFSq57qQ3LNnD5MnT+azzz4Tib4gCKWGiYkJrVu3Nqp9+zoODg74+/tz+PBh5s+fb+hw9CbLMkcjkggKy9ieaugZQt35g8ISORqRRCmdsxSEUqPUzuw/rSSX4+ZVBOTA/UROP0w2+AddUZAA0/tX8XulHQcOHKBjx46GDkkoQh06dMDd3Z3169cX2zmSk5Np0qQJ5cuX58iRIzkuq9+8eTNDhgzhnXfeYcmSJQVK1GVZZubMmUybNo0vvviC6dOnF0lle1mWiVZrM3oAJ6fnu83h4d+XSI+KYPTAvrluc4iOjsbDw4Phw4fzww8/ZD7+7bff8umnn7Jnzx66dev23LHnJy0tDUdHR7744gs+/fTTQo1x/fp1vLy8aNu2Ldu3by+SIn+CIAhFZebMmXz33Xc8fvzYKD+fJk6cyIIFCzh58iRNmzYt9DiyLKN5smJPqwXFkxV7ykKu2MvN0YikUl08u52rFW1dSme9L0EoDYwi2YeSWY77dNXxnESrNfx0uay0TpFZMrgDvTp3YNmyZYYORihiQ4cOJSIigoMHDxbreY4cOUL79u354YcfGDNmTI7HrFq1itGjRzNlyhRmz56t17iyLPPZZ58xd+5cZs+ezZQpU4oy7BzP98GHYwn56wx/HjqcZZvD+++/z7Fjxzh37lyeY8ydO5dp06Zx7do1qlevDoBWq6Vnz5789ddfnDt3DldX1+eOM6+Lu5MnT9KqVStOnDhBy5YtCzx+fHw8rVq1QqPRcPLkSezt7Z8rXkEQhKJ28OBBOnXqxIULF2jQoIGhwykwtVpNq1atUKvVhIaG6lXXRpZlotSajJvUSek8eHKzOq9aPK5WGXV4XKxMcDJXFuoGQMjDZILuJxb4dSVNLOkXhNwZTWll3XLcmvZmRKs1nH2UwtnHKZn9PBUS6FOg8+njzJUSTcpZ0KS8BY7m+S95dTRXUs3WlDvxaUY9uy8Bj66dR0pJ4OuvvzZ0OEIxcHNz46+//ir287Rr14733nuPSZMm8corr+RYdGjUqFHExMTwySefYG9vn++MsyzLfPzxxyxcuJDvvvsus+5AcZIkiYS4WCxMMrY5PM3T05PVq1eTnp6eZzX6sWPH8v333zNt2jT8/f0BUCgU+Pv706RJE4YPH86+ffv0Xl5fmIu7sAfJePUZSrX6jZFluUAXd1qtlpEjRxIWFiYSfUEQSi0vLy9MTEwIDg42ymTf3Nyc9evX07x5cyZOnJhnvaRotYYzj1I49/T1Lnn3r0/XQlhiOuGJ6ZnHmSslGpezoKme17uQsarWGBJ9yFjSX9HSRBTtE4QcGM3Mfk4Kuhy3oFXHc3I9Vk3AzaJvKVbS1o17jYWf+ZXI0mKh5M2fP5/p06cXS/u7Z8XFxVG/fn3q16/P7t27c/03NXXqVGbNmsVPP/2Er69vjsdotVo++OADfvzxR5YuXcp7771XnKFn0a9fP1JTU9m5c2eWx/fv34+3tzfXrl2jdu3aeY6xdOlSxowZw/nz57NchB44cABvb29mzpyZY0HDpxXm4k5Hq0lHocy4IVHQi7svv/ySL7/8ku3bt9OrVy89ziYIgmAYLVu2pFatWvzvf/8zdCiF9sMPPzB27Fh2795N9+7dMx/XyjL/xKUSGpnC7WJYyVrN1pTmzhbUsDPLdSVrmlZm5ZVogxXJLihdUe3R9Rwx1bfnsCC8IIw62c9JUVcdf5ZWlll+OZpYI/kAfJaETNT9uzzauoxVK1caOhyhmGzcuJGhQ4cSFxeHra1tsZ9v586d9OrVi3Xr1jFy5Mgcj5FlmbFjx7JkyRI2bNjAkCFDsjyv0Wh4++23Wbt2LStXruStt94q9rif1qVLF5ycnNi0aVOWxyMiInB1deX333+nb9++eY6RmppK3bp1adiwIdu2bcvy3NSpU5kzZ05mAb2nGfribtu2bfTt25eZM2eWeEFBQRCEgvLz8yMgIIDbt28bOpRC023zOnfuHOfPn8fZ2bnU1KgKCksgNDLFqK5zJTKKa3d2tzF0KIJQqhhfZZN8FHXV8WcpJAmfqrZG9QH4NK0M+xd+wfx58wwdilCM3NzcALJU5C9OPj4+DBs2jPHjx/Pvv//meIwkSSxatIjhw4czYsQIdu3alflceno6I0eOxN/fn59//rnEE33I2K+e042RihUr4ujoyKVLl/Idw8zMjJkzZ7J9+3aOHz+e5blp06bRpk0bhg4dSlRUVObj9xLSWH45moCb8dyJTwOK7gJPN86d+DQCbsaz/HI09xLSshxz+fJlhg8fTv/+/Yu9NoIgCEJRUKlU3Llzh3v37hk6lEJTKBSsXr2atLQ03n1/DEFhCay/HktsasY6ruK6ztSNG5uqZf31WILCEkh7ah/svYQ0Qows0YeM93U6MiXbd5wgvOjKXLJfEirbmNLC2aLE2gEWGVnm6Pofmf7Rezg4OBg6GqEYlXSyD7Bw4UIUCgVjx47N9RjdxY2Pjw8DBgzg8OHDpKamMnjwYH799Vc2bdrEsGHDSizmpyUkJGBjk31GQJIkPD09uXz5sl7jDB06lIYNGzJ58uQsLYFMTEzYsGEDSUlJvPnmm6RqtAa/uIuJiaFPnz5Uq1aNdevWGWVla0EQXjxt27YF4OjRowaO5Pm4ubmxyH8TNV7/lJCHyUDJtbbTnSc0MoWVVzJuBGtlmZ134o3v+vYJCdh5Jx5t2Vq0LAjPRVzZFVIHN2vszBRG84EoIRPzIAynqFtiP+4LQFf1/f79+yV2zvLly/P999/z66+/snXr1lyPMzExYePGjbRp04ZevXrRuXNn/vjjD3777TcGDBhQYvE+K7eZfYD69evrnewrFIrM5fr79u3L8lzlypVZs2YN5+7+y4JTdwmNTAEMdHF3OZp3J0/n8ePHbN26NccbHYIgCKVRhQoVqFWrltEn+yGRydxzbYyja2UownZ5BSEDcU9uBO+9l0CMkW5ThYz3EpOq5WacmN0XBB2R7BeSqUKilxEt59fKsO+7KSycL5bvvwisra2xt7cv0Zl9gCFDhtCrVy/ef/99YmJicj3OwsKCDRs2oFAoCA4OZvHixbzyyislGGl2uc3sQ0ZF/qtXr6LRaPQay8fHhzZt2jB58mS02qyl9dxad+GdVTvQmFoY7PNDBmLU6TQePYXvt+6nRo0aBopEEAShcFQqFcHBwYYOo1BkWeZoRBJBYRnV7iUDr6rSfRede6w2aBxFQQJCI5MNHYYglBoi2X8OlW1M8Xa3NnQYetnxzRSmjvHFycnJ0KEIJcTNza3Ek31Jkli2bBkJCQlMmDAh1+Pi4+MZPHgwaWlpVK9enS+//NLghZbi4+PzTPZTUlK4deuWXmNJksRXX33FmTNn2LJlC5D14k6SpMyq+YYiKRRICgVhtpU5GpFEGavVKghCGadSqTh//jyxsbGGDqXAjv2bzJEHSYYOo0ySgVvxaUSr9bs5LwhlnUj2n1MLZ0vauVoZOow8Ba9ZSGU5jn79+hk6FKEEGSLZB3B3d+fbb79l5cqVHDhwINvzsbGxdOvWjTNnzhAYGMjRo0exsLDA29ubBw8elHi8kFFFPy0tLddl/J6engB6L+UHaNeuHT169ODzzz8nLS2tVF/cHXmQxLF/xUyIIAjGQ6VSodVqOXHihKFDKZCQh6X3u6CskICzj1IMHYYglAoi2S8CbSqW3oQ//NB2Tv7yE4sXLzZ0KEIJM1SyD/D222/ToUMH3n77bZKS/ruoiYqKonPnzly9epX9+/fTpk0bXF1dCQwMJDk5ma5du2apVF9S4uPjAXKd2Xdzc8Pe3l6vivxPmzNnDtevX2fZrsOl/uLuyIMkQsTSR0EQjEStWrVwdnY2qqX89xLSCLqfaOgwSj11UgIBMz5idhdPJjdzZse3nwEQ//gh6ye8yYyOtZnczJng9T/m+HoZOPs4RaxYEwREsl8kJEmirYtV5pJ+Qxft053f+dF1fhg/isWLF+Ps7GzQmISSZ8hkX6FQsGLFCsLDw/niiy8AePjwIR07duTOnTscPHiQFi1aZB5fvXp1AgMDefDgAT179iQhIaFE49WdL7eZ/YJW5Ndp0qQJo/ymkFi54XPHWBKCwhJF2yJBEIyCJElGtW8/TSvzhxFXutfX2d0BuSbh+vpz1UL+2rGRlq++yaCZS2nmMwiAnfOn8vfxg7z85jgGzVxK7Tadcx1DrZGJVmtzfV4QXhQi2S9CLZwtGVbL3qBV+iXAzkxBrwowZXhf+vXrx6BBgwwUjWBIumTfUHe2a9WqxZdffsmCBQvYuXMnL7/8Mg8fPuTQoUM0btw42/Genp7s2bOHy5cv07dvX1JSSm4JXn4z+0Chkv00rUyj4WORtcZxwSEBf9yJz9JzWRAEobRSqVScPHmS1NRUQ4eSr0PhicQZcaV7fZ3dHcDRDcufa4x/TgdTuWFzvN+ZQFOfgVTybPzk8SN4duhB+5Ef0NRnIBWq18pznIik9OeKQxDKApHsF7HKNqaMrudIc2cLoORm+XXnaeFsweh6jsz9dBxpaWksXboUyUDtXATDcnNzQ61WEx0dbbAYPv74Yzw9Penfvz9xcXEcPnw4c/97Tlq0aMGOHTs4evQoQ4cOJT29ZL6o85vZh4z2e1euXMlWXT8vh8ITSZaVBi/Gpy9dC6bD4WKZqSAIpZ9KpSI5OZkzZ84YOpQ83UtIIyQypcwn+kUlIfoRFjb22R5PjHqEha2dXmMoJIhIFsm+IBjHFaiRMVVIeLvbUMfBnJ134olJ1SJRPL20dePamynwqWpLZRtTtm/fzoYNG/D398fFxaUYzioYg0qVKgEQHh5usC4M9+7dIyoqitTUVAYNGkStWnnfhQfo0KEDW7ZsoW/fvowaNYo1a9agKOa2RPrO7CcnJ3P79m08PDzyHVN3cWdsZOB0ZAq1HcypbGNq6HAEQRBy1bRpUywtLQkODqZly5aGDidHWllm55Pl+2Uh2VcnJrBv6Vwu/7mb+Ef/YmFjh2vt+nQfO5Wd333BrdBjAExulrF91MG1MhN3/kV6WioHV37H1SOBPA67hTZdQ6W6DfF+bxI1XlIBcDPkKCt8+wIQff9O5hivTv+eLdPHAnDi19Wc+HU1AHP/isw1Tq0M4YliW5ogiGS/GFW2McXX05GbcWmERiZzKz6tyD7sdeNUszWlubMlHnamKCSJ6Oho3n33XXx8fBg+fHgRnEkwVm5ubkBGst+gQYMSP//ff/9Np06dsLa2ZsyYMSxevJjRo0fnObOv4+Pjg7+/P8OGDcPe3p5FixYV6woVfWb2n67In1+yb+wXdxKw8048vp6OKMTKIEEQSilTU1NatWpFcHAwfn5+hg4nR//EpRKTahxbufTx+5xPuBi0g9aDR1HBozZJMdHcOXuSh7eu03HUeFIS4oj79wE+fjMBMLPKqGelTojn9O//o3H3/nj1H4E6MYGQbetZ88Eg3v95L251GuJcvRaDZi5l5/yp2FV0pd3w9wFwq9uQQTOX8uvU96nZ6uXMPfz5iUhOR5ZlscJVeKGJZL+YKSSJmvZm1LQ3I1qt4eyjFM4+TkGtkZ88n3H3Mf9x/jvOXCnRpJwFTcpb4GiuzHLcxx9/TFJSEj/99JP4cHvB6VZ13H8QQYpGi1YLCgWYSBJKiWL9/bh06RKdO3fGycmJ/fv34+joSGBgIKNGjSI4OBilUpnvGEOHDiUuLo53330XBwcHZsyYUWzx6jOz7+7ujq2tLZcuXaJXr155jmfsF3cyEJOq5WZcGjXtzQwdjiAIQq5UKhXLli0rtUldaGSK0d74zcm1I4G81G84Ph8//Z38Yeb/Hd2wnOS4WJr6DMzyOks7Bz7d+Rcmpv99p7zUfwTf9W/N8Y0rGTBtEbblKtDUZyD7ls7Fztk1yxgVa9Tl16nvU76KR7axc5Ouzbh2Vpa+XwtBKDEi2S9BjuZKOlay5mU3K6LVWiKS0olITic8MY2I5HTSc8gNTBTgYmmCm7UpLpYmuFiZ4GiuyPELbffu3axdu5ZVq1ZlLuEWXhyyLBOl1mT8XiWl8yApnRnH7vKvhSULz2dtZ6f7vXK1yvidcrEywclcWSQXSmfPnqVLly64ubkRGBhIhQoVAFi1ahXt2rVj8eLFjBs3Tq+x3nnnHWJiYpg0aRIODg58/PHHzx1fThISEjA1NcXc3DzXYwpSkb8sXNxJQGhkskj2BUEo1VQqFTNnzuTvv/+mTp06hg4ni2i1htvxZWspuYWtPfcu/kVcZAR2zvpvFVUolSie3OjXarWkxMcia7VUqteE+1fPF1e4pMsyyjLfA0EQcieSfQOQJAknCyVOFko8yUguZFlGK2d8KGm0oHwyA6vQcwY2Li4OX19funbtyptvvlncb0EoRaLVGs48SuHc0ytGAC1gamGZ42vStRCWmE54Yjq6e0zmSonG5SxomsOKEX2dPn2arl27UrNmTfbu3ZulVkDbtm354IMPmDJlCn369KFatWp6jTlx4kRiYmLw8/PD3t6eUaNGFSq2vMTHx+c5q6/j6enJhQsX8jymrFzcycCt+DSi1ZpC/z4IgiAUt1atWqFQKAgODi51yf6ZR8Z/4/dZPcZ9weZpH/JVj8ZUqteYOm29adZrEE7u1fJ9beiOjQT/vIzI29fRpP/3PelYqWqxxavRAuIrTHiBiWr8pYQkSSgVEuZKBVamCsyVCpQKSe+Z1gkTJhATE8OKFStK5TI2oWhpZZnrsWo23ojlp8vRnH6YnJnoA+i7gPzp49QamdMPk/npcjQbb8RyPVaNtgBt+44ePUrnzp2pV68eQUFBORYFnDNnDuXLl8fX17dALQHnzJnDu+++i6+vL5s3b9b7dfpKSEjIc7++Tv369bl8+XKeFfl1F3dlgQScfWR8RQYFQXhx2NnZ0bhxY4KDgw0dShayLHPucdmrwN+oa18mbD/NK5/Oxc7ZhcP+S1gwsB3Xjgbl+bozOzezZdqHOFWuRv8vFvLm4k2MWraFGi+1K9b2tEqR6QgvODGzXwbs37+f5cuXs2zZMqpUqWLocIRidi8hLUuXByi6WQPdOHfi07gdn4bDU10e8nLw4EFeeeWVzNZ5uSXOtra2/PTTT/To0YN169bxxhtv6BWXJEksWbKEuLg4hg0bhq2tLd27dy/AO8tbQkKC3jP7SUlJ3L17N8eVCWXt4k4Gzj5O4WU3K3ETURCEUkulUrF7925Dh5FFlFqT5SZ8WWLn7ELrQW/RetBbJERF8sNrnTm4agF12nrn+l1xcf8OnNyrMXze2izHBP34dbHGaiK+u4QXnLjfZeQSEhIYPXo0HTt2xNfX19DhCMUoTSsTFJbA+uuxxD4p/lZclxG6cWNTtay/HktQWAJpuVSS3Lt3Lz179qRt27bs2rUr3xny7t27M2LECMaPH09ERITeMSkUCtauXUu3bt3o379/kc7ixMfH6zWz/3RF/pyUxYs7tUYmWm28xQYFQSj7VCoVN27cKNB3SnGLSCp7Pd61Gg0p8XFZHrNxcsbO2YX01FQAzCytSEmIy/Za6UkL3adX9d29EMrd8yHFFq+JIqPAtSC8yESyb+QmTZrEw4cPWblyZbH3IhcM515CGiuvRBP6pG97SaWTuvOERqaw8ko09xKy7kXfvn07vXv3pkuXLmzbtg0rKyu9xl2wYAGmpqaMGTOmQPGYmpry66+/4uXlhY+PD2fOnCnQ63Oj78x+lSpVsLGx4dKlSzk+XxYv7qDsvi9BEMqGtm3bAhnbyUqLiKT0UnGRrUlPJz0ttUjGUiclMLd7QzZPG0Pw/37k1G8/s2HiaMIunaFx9/4AVKrXmJT4WP6YP5Wze37jyqG9ANRt15WosNv8z+91TgX4s+eHmawZM5gKHsVXZ8HF0kSsShNeeGIZfwmTZRnNk0J8z9sK7fDhwyxZsoRFixbl2/dbMF4hkckEhSUatMiPDMQ9meX3dremhbMlmzdv5rXXXqNPnz5s2LABMzP9q7aXK1eOxYsXM3jwYH777Tf69++v92stLS3Zvn07nTt3plu3bhw5cuS5izLpO7MvSRL16tXLdWZfd3FX2ubB09QpKE3NCnVDUCFl9CrWFRMVBEEobSpVqkT16tUJDg5mwIABhg4HgAdJ6Xp/F8Q+fEDg0rlcCw4iOT6WcpWr0274e7ToOwyA9LRUDq78jqtHAnkcdgttuoZKdRvi/d4karykyhwnOvwu3/RqTo+PpqNQKjm+aRXR4XcZsz6Iywd3s3/5t/htPcnBVd9x+eBuZGQadPSh96SvMbPM/2a9qQDWdx8AACAASURBVIUlrQa+xfUTB7l0YCeyVku5ytXpM/kbWg3MKA7datCbhP99kdDtv3B0/Y84uFamXoduNO89lITHDzkZ4M/14wep4FGbwbOWciFoOzdDjhX455sfhQRu1nlvQRSEF4EkF6RKllAgObVCy6/Fnr6t0JKSkmjUqBGurq4cOnRIzOqXQbIsc+zfZI48SDJ0KNnY/fs3H/q0Y8iQIaxbtw4Tk4LfN5RlmX79+nHy5EkuX76Mo6NjgV7/6NEjOnToQHx8PMHBwc9Vr6JDhw5UqVKFn3/+Od9j33jjDa5cucLJkyezPfe/v2MISyz8LHjswwcELfuKa0f3kxQbjZ2zC7XbdKLXhNmkJiXy5+qF/H38INH37yApFFRt7EX3sVNxrd0gc4ybIUdZ4duXIXOX8++NK4Ru/4X4R/8y9c/rWNraFyoud2sThtd2KPT7EgRBKG4jR47kypUrnD592tChIMsy888/zvF671nxjx+yZHgXkCRe6jcCG8dyXDu6nyuH9uDjNxPVsHdJjH7MosEdaNy9P+WreKBOTCBk23qiwu7w/s97cavTEPgv2a/gUYf0VDVe/UegNDWjQadehGzbwP7l3+JWtyGOblWo2bID4VfPc/r3/9H+9Q/pMe6LYv6plLzeVW3xdBI3qoUXm5jZLwZ5tULLTUFboX3++efcv3+f3bt3i0S/jCqtiT5AXMXajF/sz9e+Q1AqC9fTRld0z9PTk08++YRVq1YV6PXly5dn3759qFQqunTpwuHDh6lYsWKhYtF3Zh8yKvIHBAQgy3KWm3GyLBORXPhEPy4ygqUjupIcH4dX/xE4V6tFXOQDLgbtIC0lmaj7d7h0cBcNu/TGya0q8VGRnApYx/LRfRgfcDRbv+MDK+ajNDWl3YgPSE9TozQp/AxHRHJ6tvcrCIJQmqhUKjZs2KD3tqzipJHRK9EH2LdkDlqNhnG/HsbaIaOLTctX3+CXyb7s/+lbWg54HUs7Bz7d+Rcmpv+toHup/wi+69+a4xtXMmDaoixjxj4M55Ntp7BxLJ/tfG51GmY5PikmmpBt68tksu9iJdIcQRD/CoqIVpb5Jy6V0MgUbsenZVty/Tyt0E49TKaarSnNnS2oYWfGiePHWbhwId9++y21atUqujchlBohD0tvoq9TvlU3zkSl0sLZstBjVKpUiXnz5uHr68vQoUPx9vYu8OuDgoJQqVR069aNP//8EweHgs9AF+Ti0NPTk4SEBO7du5dlNUFBLu5ysueHmcQ/fsj7/ntx92yS+XiX9yYhyzIuNevht/Vklpt7zXwG8l3/Npzeup7Ob/tlGS89Vc2Y/wVialH4v5/MsbSglUEpcn1BEEoplUqFRqPh5MmTdO7c2aCxpOu5aFaWZS7u/4NGXfqALJMY/TjzudqtO3J+7+/cv3qeak1aonhyY12r1ZISH4us1VKpXhPuXz2fbdwGnXrlmOgDeL36RpY/V2vaiksHd5KSEI+FjX43vY2BuVLC0VxMhgmCSPaLQEm2QrM3lfjl64V4eXnx0UcfFdFZhNLkXkIaQfcTDR2GXoLCEqloaZJva768jB49ml9++QVfX18uXLiAtbV1gV5fo0YNAgMDad++PT4+Puzbt6/AY8THxxco2YeMivxPJ/v6XtzlRKvVcvnP3dRr3y1Loq8jSRImZv8tRdRqNCTHx2JmaU35qjUJz+Fir1mvwUWS6OukyzJKRLYvCELpVLduXZycnAgODjZ4sq9v2/jE6EekxMdy6jd/Tv3mn/MxUY8ACN2xkeCflxF5+zqa9P+K5TpWqprtNTk9puPgUinLny3tMrZ3JcfFlJlkXwKalLMQq9EEAZHsP5c0rcyh8ERCIlOKPMl/lm7cGLWGHtMWU8MkBa2koHALqIXSKk0r88edeIMW4ysICfjjTjyj6zliWsj+NpIksXz5cho1asTUqVP57rvvCjxGgwYN2LNnD507d6Z///5s374dc3P99+klJCTovYy/atWqWFlZcenSJbp37575uL4XdzlJjH6EOiGeijXq5nqMVqvl2IblnNi8mujwu2g1msznrOyz1ztwdCt8DYOcaLQgPnAEQSitFAoFbdu2LdK2rIWPRb/j5CdfHE16DqT5K4NzPMallidndm5my7QP8ezYk3YjP8DGqTwKpZI/Vy/icdjtbK8xNbfII7bcPsiN4apDPzLQpHzuPwNBeJGIZL+Q7iWk8cedeOKKud/5s3R9Sm9prFh5JZpeVW2fa1ZVKF0OhScSl6o1mq9cXZX+w+GJdHYv/B7JmjVrMmPGDD799FMGDRpEq1atCjyGl5cX27Zto2fPngwbNoyNGzfqVThQq9UWaBm/QqHIsSJ/cZfO+HP1AgKXfkWLPq/R5f3JWNo5oFAo+GPe58hy9jsNphZFe6GjFKshBUEo5VQqFTNmzCA9Pb1QhWOLiomeM8rWjuUxt7ZB1mqo2bJDrsdd3L8DJ/dqDJ+3NstsddCPXz93rGWNBFSzNc1W60oQXlTi8q0QQiKTWX891qBJ2dOt0EIikw0UhVCU7iWkERKZYjSJvo4MnI5M4V5CWr7H5uWjjz6iefPmjBo1CrVaXagxOnXqxKZNm9i6dSu+vr5o9ZhuT0rKqI2g78w+ZCzlfzbZ1/fiLifWjuUxt7Hl33+u5nrMxaAdeLRQMWDaIhp360ft1h2p2bIDyfGxhT5vQTzP+xMEQSgJKpWKxMREzp07Z9A4lFJGl6X8KJRKGnTqxcX9fxBx40q25xOiM5bw6yZ6nm6gdfdCKHfPhxRNwGWIDDR/jlpCglDWiGS/AGRZ5mhEEkFhGfupDZ2U6c4fFJbI0YgkRBdF46WVZXY+Wb5vjCRg5514tM/xO2hiYsKqVav4+++/mTt3bqHH6dOnD2vXrmXNmjX4+fnl++8iPj4eoEDVmz09Pbl48SKHDx9m7dq1fPHFF7w+Yjjp6pRCxaxQKPB8uQdXDu8l7PLZbM/LsoykUPLsp86FwG3EPXxQqHMWhIkio2exIAhCada8eXPMzc0NvpRfkiRcLPVbWdBt7FRsy1dk6cju7Pj2M04F+PPnmkVsmDiK7/q1BqBuu65Ehd3mf36vcyrAnz0/zGTNmMFU8KhTnG/D6EiAg5kCDzux4lUQdMQy/gIoza3QdHG1dbEycCRCYfwTl0pM6nNs+jYwGYhJ1XIzLo2a9mb5Hp+bRo0aMXnyZObMmcOrr75KgwYN8n9RDoYPH05sbCxjxozB0dGRL77IvaVQQkICkH1mX61Wc/v2bW7evMk///yT+d/Nmze5fv06qampdOiQsezSzc2NGjVqUOPRA5Ru1QpVFKjbmM+5ceJPlo/ug1f/EVSoXpu4R/9yMWg776z+g7rtunJgxTy2TPuQKo29iLhxmbO7A3Byr1bgcxWUi6WJKHQkCEKpZ25ujpeXF8HBwYwbN86gsbhamWRpp5wb23IV+ODnvexfPo9LB3dycvMarBwcqeBRl+5jM767mvceSsLjh5wM8Of68YNU8KjN4FlLuRC0nZshx4r/zRgJGehV1RaF+L4ShEySLKaD9RLyMNkoKqR7u1s/Vys0wTA23ojlTnyawVeLPA/dPrnBNe2faxy1Wk3Tpk2xtbXl2LFjKJWF33c3Z84cPvvsMxYtWsTYsWOzPR8TE8POnTsZPnw4H3zwAWq1OjOpv3fvXuaqADMzM6pXr46Hhwc1atTA3t6e2bNn89NPPzF8+HCsrDJusu0PSyA0MkXvVpvZ4nkQxr5lc/n76AHUifHYVXCldptO+PjNBFlm35I5nN0dQEpCHG51G9Lzoy/Z88NMAHxXbAPgZshRVvj25bVvVtHQu3chI/mPQoIWzpZ0qlSwDgeCIAiGMGXKFNasWUN4eLhBb1Jeikphx50Eg53/RSMBLZwtnqt+kCCURSLZ18O9hDTWXy+ZfbFFYVgte1G0z4hEqzX8dDna0GEUmXc8HZ+7MM7x48dp27Yt8+fPZ/z48YUeR6PR8P7777N8+XLeeustXFxcsszSR0f/93O3s7OjVq1aGTP0T/7TJfeVKlXKctNBo9Fga2vLnDlzGDduHBo5ozXd5Sg1+8JK/03Bgupd1RZPJ/27GwiCIBjKrl278PHx4caNG9SoUcNgcTxOSWfFlRiDnf9FIgF2Zorn6gwkCGWVSPbzkaaVWXkl2mgqpIsPPONz4H4ipx8mG8XvV34kwKuCJR2LYBZ43LhxrFixgosXL+Lh4ZHrccnJydy+fTtLEq9bbn/r1q0sxf7Kly9PgwYNsiTyDx48YPz48dy/fx83N7c8Y5JlmSi1hoikdOYtX0uVhs2xda9OuvHuwNCLbz1HnCxEZWNBEEq/6OhoypUrx5o1a3j99dcNFocsyyy8EIVaUxa+3Us/MdElCDkTyX4+gp4syzWmH5JYymQ8CnMx8LVPMzxatGHgl4uLMbLCM1dKfNTQ6bmXTyYkJGQm5ps2bcqyd/7p/79//37maywsLPDw8MhM5HX/Va1alWnTprFjxw527tyJt7d35ms2bdrEkCFDiIuLy7Uif7Raw5lHKZx7nJL5d6XVpCMplGV+L3tR/X0KgiCUlEaNGtGyZUtWrFhh0DjK0s380kxsYRWE3IkCfXnQtUIzNrpWaLUdzMVdzlIuSq0plXf9z+4OICEqEtWwdwv8WrVGJlqtLdBMsEaj4d69e9kSeVNTUw4cOICzs3PmseXKlctM4tu3b58lsXd1dUWRS8P7DRs20LdvX/r27UtgYCCtW2dUOdZV47e2zroaQSvL/BOXSmhkCrfj05DIWgtfoSz7H58S0KSchUj0BUEwKiqVioMHDxo6DJqWt+DUQ9EeuTi1c7USib4g5KHsX60W0tOt0EpfKpY/XSs0X09HUZW0FItISjd0CDk6uzuAf/+5WqhkHzLe17PJfmJiIrdu3cpxuf3t27dJS0sDMtrQValShRo1atCxY0fs7Oy4evUqv//+Oy1btsTevnAFAM3MzNiyZQvdu3enZ8+eHDp0iEaNGpGQkIC1tXWWmwT3EtLYeSeemFRtZjtEY/wceF4y0KS8haHDEARBKBCVSsWyZcuIjIzMcrO4pDmaK6lma2r0BXhLq/auVrSuKBJ9QciLSPZzIVqhCSUhIikdBRS6entpJMkyB0LPs/nYriyz9BEREZnHWFlZZc7Iv/LKK1kK4lWtWhUzs/9+Z6OioqhXrx7Lli2jS5cuzxWblZUVO3bsoGPHjnTt2pUjR46QkJCAjU3Glpc0rcyh8ERCIlNe6CQf/uuu8LzFFgVBEEqaSqUC4NixY/Tp08egsTR3tuB2fJpBYygKoVvX07zva0hIBv1e1E3CiaX7gqAfkeznIvTJxb4xX+hLQGhkskj2S7EHSf/14A368Rv2L/+W8QHHCPrxK/4+dgCFiSlNe75K97FfYGqe8wxrUmw0f65eyN/HDxJ9/w6SQkHVxl50HzsV19r/9anXtWQb+tUKHt+9yYkta0mKiaJqYy/6fjaP8lUyiuAtf7sPt0Iz+vZObpYxI+LgWpmJO/8C4NjGFZzcso7o8LsoTc0o514N1fD3aNJjAJBx4+LC3Qi2Ll2amcR7e3tnWW5fsWJFvZeGOzk5sWTJEgYOHEhAQACvvvpqQX/MWdjb27N3717at2+Pt7c3Pj4+2Nraci8hjT/uxBP35CafMf/bLwoy0FxcSAmCYISqVKlC5cqVCQ4ONniyX8PODAczBbFGUuj5WbJWS9T9OwxtUoWXajlkfk8a4r3oilD3qmortqkKgp5Esp+DaLWmTNyFlYFb8WlEqzVidq4UkmWZiOTsy/h/mTgaR7fKdBvzOXcvhHLslxUkx8UyaOaSHMeJun+HSwd30bBLb5zcqhIfFcmpgHUsH92H8QFHsXN2yXL8obXfI0kK2o14n5SEeA6vW8ymz9/jA/+9AHQcNZ6UhDji/n2Q0d8dMLPK2M9+6ref2fHNFBp4v0Lbob6kpaYQcf0y9y6GZib7kiRRq3lrIiIiimyv94ABA+jXrx9jxoyhU6dOODk5Pdd4zs7OBAYGolKp+OWXX+j05oesvx5r9Df4iooE2Jsp8LATF1OCIBgnlUpFcHCwocNAIUn4VLU1qhbOWUjgEHaO/u+PBmB0PccsK+BK4jtTd54Wzha0d7MW3aYEoQBEsp+DM4+Mf1ZfRwLOPkopklZoQtHSyOTYss2xUhVGLvgZgNaDR2FhbcOJzWtoN+J9XGvXz3a8S816+G09mWXPeTOfgXzXvw2nt66n89t+WY5PV6v5cONBTEwzVnxY2tnzx7efEXHjCi4161Gr1csc3bCc5LhYmvoMzPLaa8GBVKxRl2HfrM7zvaXLoJVBWUTfx5IksWTJEurVq4efnx9r1qx57jHd3d3Zty+QDxes4qURY4Gy8W++KMhAr6q2ot6HIAhGS6VSsWXLFpKSkrCysjJoLJVtTGnhbGF03Z20Wg1Rfx3m2/dGZT5mqpDwdrehjoN5lto2xfG+dOPamynwEbP5glAoOZetNhJr165FkiRu375dZGPKssy5x3l/GE9u5kzQj98U2Tnz87VPMzZPG1Oo18rA2ccpFFWHxenTp4vK3EUkPZe/k1aD3sry59ZD3gbg2tGgHI83MTPPTPS1Gg2JMVGYWVpTvmpNwq+ez3Z8895DMxN9gOpNWwEZKwTyY2FrR+y/4dy7dCbfY3N7f4Xl6urK/PnzWbt2Lfv27SuSMSPtKtHR95MiGauskICXnC1wFxdVgiAYMZVKRVpaGqdPnzZ0KAB0cLPGzkyBsVxBaTXpJD+O5IvXfHK87qtsY4qvpyOvethRzTbj+6Ko3ptunGq2przqYYevp6NI9AWhkMTM/jN0rdCuBgcSdvEM3u9+mu9r7pw7xfXjf9J22DtY2hauUnhRjJGbwrRCE4qfNpeqfLq98zrl3KshKRREh9/LZRwtxzYs58Tm1USH30Wr0WQ+Z2XvmO14B5dKWf5saecAQHJcTL4xd3h9LDdOHmbpiK6Uq1ydWq1epnGPAVRr0jLbsRotUMS/cm+99RYbNmzA19eXixcvZhbWK4yQh8kceZBUhNEZP91+yPZuYiWQIAjGrX79+tjb2xMcHEyHDh0MHQ6mColeRrScX1IoGFCnPHbWua+KUEgSNe3NqGlvRrRaw9lHKZx9nJLZUlghZazyy8/Tx5krJZqUs6BJeQuxBVUQioBRJ/sjRoxgyJAhmJubF9mYulZo14KDOPHr6hyT/RnH72XpsX3n3Gn2L/+W5r2HPEeyn/sYfr8fR5KebxFGTq3QBMPKpR18dvmspPhz9QICl35Fiz6v0eX9yVjaOaBQKPhj3ufIcvY7CpIyl98DPWbiK3jUxu/341w9vI+/jx3g4oE/OLF5DZ3e/oQu703McqyyGNYNSZLEihUraNCgAZ9//jkLFy4s1Dj3EtIIup9YxNEZP93yfbEfUhAEY6dUKmnTpk2p2LevU9nGFG93a4LCSv/3T23NY5pUraf38Y7mSjpWsuZlNyui1VoiktKJSE4nPDGNiOT0HLctmijAxdIEN2tTXCxNcLEywdFcIVaQCkIRMupkX6lUoswtcSkkXSu0vORWFb24mJg9380MhQQRyel4UnQ3RYTnZ5LLl9mjuzdxqlQ188+P791C1mpxdKuc4/EXg3bg0ULFgGmLsjyeHB+LlUPhCtnl9UVrZmlNo279aNStH+lpqfzP7w3+XL2Al98al+XfRm7v73l5eHgwe/Zs/Pz8GDx4MK1bty7Q69O0Mn/ciS8zdTmKkre7tVgqKQhCmaFSqfj666/RaDRFfr1YWC2cLVFr5FK9sizox68Jvn+Fnps3Y2lZsK4skiThZKHEyUKZed0pyzJaOWN7n0abMRlgIkkopLyvNwRBeH5las9+tWrV6NWrF8HBwXh5eWFhYYGHhwf+/v5ZXpeWlsaXX35JrVq1sLCwoFy5cqhUKgIDA3mQlM6maWM48WtGAbLJzZwz/9N5es9+0I/fsHvhdAC+6dU889jo8LtEh99lcjNnQrf/ki12fceAnPfsR4XdZv2nbzHj5Vp80aYKS0d25+qRrPuYb4YcZXIzZ87u3cqyeXNxd3fHwsKCzp07c+PGjSzHHjlyhIEDB1KlShXMzc2pXLky48ePJzk5Wd+/DqGAlFLGXe1n6X73dI5vXAFAnbadcxxHUih5Nm29ELiNuIcPCh2bmaUVKQlx2R5PjInK8mcTUzMqetTJ+CJP/6+zgIki4yZTcRk7diwvvfQSo0aNQq1WF+i1h8ITDdY2qDRr52olehYLglCmqFQq4uLiuHjxoqFDyaJNRUvauRq2aGBuNFdP8kl/bw4ePEi3bt2Iicl/i19+JElCqZAwVyqwMlVgrlSgVEgi0ReEEmDUM/s5uXHjBq+++iqjRo3i9ddfZ/Xq1bzxxhs0b96c+vUzKplPnz6duXPnMnr0aLy8vIiLiyMkJITQ0FBMKjTFq//rxEX+y40TfzJo5tI8z1e/kw+P7v7DuT2/4eM3E2uHcgBYO5YjMfqxXjHnNUZO4h8/ZNmbPUlLSabNkLexsnfirz824j9+BMO+WU39Tj5Zjj+09nsUCgV+fn7ExcXxzTffMGzYME6ePJl5zObNm0lKSuK9996jXLlynDp1ih9++IGwsDA2b96s1/sQCkaSJFwsTQhLzNp+L/r+Xfw/Gk6tNp24ez6Es7s207jHAFxrN8hxnLrtunJgxTy2TPuQKo29iLhxmbO7A3Byr1bo2CrVa8z5fVv5Y/5U3Os3xdzSmnodurH6/YHYlq9A1cZe2JRzJvLWdY5vWkVdVRfMrf/bP+9iaVKsX+JKpZJVq1bRrFkzZs+ezYwZM/R63b2ENEIiU4otLmPV3tWK1hVFoi8IQtny0ksvYWpqSnBwMI0bNzZ0OJkkSSLxfDA71m6h1yezUUiSYW9AyzIyMuH7A/j+k3eRJImgoCB69uxJx44d2bNnDxUrVjRkhIIgFFKZS/avXbvG4cOHadeuHQCDBg2icuXKrFmzhnnz5gGwc+dOevbsyfLly7O8Nl0rM+/cY6o2fonyVTy4ceLPbK3HnuVauz5udRtxbs9v1O/YE0e3KpnP6Zvs5zVGTg6t+Z6Ex5G8s2oH1Z5UUn+p/3AWDX6Znd99Qb2Xe2Rpw6ZrtTa2hStKhYSjoyPjxo3j4sWLNGiQkUB+/fXXWZZq+fr6UrNmTaZMmcLdu3epUiXvmITCcbUyITwxnae3sg39agWBP37F3h9molCa0HrwKHp8ND3XMTqO+oi0lCTO7g7gfOA23Oo25I1FG9jzw8xCx9Vq0JuE/32R0O2/cHT9jzi4VqZeh260HPA6Z3dvIXj9j6QmJWJXwZU2Q96m4+iPM1+rkMDNuviXgjdo0IApU6Ywe/ZsXn31VRo1apTn8VpZZqdYvp9JflIhskLUP7RpWrCtEIIgCMbA0tKSFi1aEBwczAcffGDocDLdvn2boUOH4uXlxWs17dh1z5ArzmRi/73PWf+F/LZ6WeaN+tatW3P48GG6du2aufq1WrVqBolQEITCK3PJvqenZ2aiD+Ds7EydOnW4efNm5mMODg5cunSJ69evU6tWrczHi7pVWHG5djQI9wbNMhN9AHMrG7z6j2DvD7N4ePMaLjX/K6qia7WWLssokTJ/Pjdv3sxM9p9O9BMTE0lOTqZNmzbIssyZM2dEsl9MXKxMeLZmjbVjuTz72E/c+VeWP5uYmdNz/Jf0HP9llsd9V2zL8mePFm2Z+1dktvEc3apke9zM0pohs3/MdqzXgJF4DRiZa2yQUVHXxbJkPlomT57Mli1bGDVqFMePH8fEJPfz/hOXSkxqLi0QXjASYG9hQsjqecxctpAmR47QvHlzQ4clCIJQ5FQqFb/8kn07paEkJyfTv39/7O3tWb9+PU525oyuZ8ah8ERCIlNK7Ia07jw3grYS9OPXHDtyONv+/IYNG3L06FG6dOmCSqVi3759eHp6lkB0giAUFaPes5+TnJJSR0dHoqOjM/88Y8YMYmJiqF27Ng0bNmTChAmcP38+11ZopU3MgzCcq9bM9niF6rWfPJ+1RZuu1ZrmyftzdMxox/b0z+Tu3bu88cYbODk5YWNjg7Ozc2armthY42gTY4xcrMrc/Tag5N6Xubk5q1atIjQ0lEWLFuV5bOiTi6gXme79t3C2YHQ9RxbPmkrDhg3p3bs34eHhBo1NEAShOLRt25awsDDu3r1r6FCQZZl3332Xq1ev8vvvv+PklFFE11Qh4e1uw7Ba9tibZVyaF9f3lW5cezMF//yyiA3TxhHw6ybc3NxyPN7Dw4Pg4GCcnJxo164dp06dKqbIBEEoDmUu2c+t2qr81Kx9+/bt+eeff1i9ejUNGjRg5cqVNGvWjHVrVhZxNDl/VD/dB70k6FqtPdsKTfcz0Wg0dOnShZ07dzJx4kS2bt1KYGAga9euBTL6uAvFw8lcibmybKWg5koJR/OS+2hp2bIl48aNY+rUqdkKT+pEqzXcjk97YZfvP31xN6yWPZ3dbTBVSFhaWrJ161YUCgW9e/cmKan0VocWBEEojDZt2gCUihZ8y5Ytw9/fn+XLl+dYQ6CyjSm+no686mFHNduM7XBFdYWgG6earSmvetgRte0nVn47i3Xr1uW7ssvV1ZVDhw5Rp04dOnXqxP79+4soKkEQiluZS/b15eTkxJtvvskvv/zCvXv3aNSoEbOfKvJVkOJiuR1raecAZLRAe9qzM+8FPZ+DqzuRd7InNZG3rz95PucWbbm1Qrtw4QJ///038+fPZ+LEifTp0wdvb+9c7/IKRUeSJBqXsygzM85aTTqPzgRz9uzZEj3vrFmzqFixIr6+vllu7OmcefRizurr9uXrLu58PR2ztdZzdXVlx44dXL16lddff13c3BMEoUxxdnambt26Bk/2jx07xrhx4xg7dizDhw/P9TiFJFHT3ozBNe15x9MRrwqWWSYFtOnpOX7PZR/nv/83hRaoWAAAIABJREFUV0p4VbDkHU9HBte058KBnXz22RSmT5/OwIF516bScXR0JDAwEJVKRc+ePfntt9/0ep0gCIb1Qib7jx9nLZxnY2NDzZo1UavVma3QzCwzWqI8m6jnJLdjLWxssXYox+2/TmR5/MTmNXqPkZM6bb0Ju/gXd86dznwsNTmRU7/9jKNbFSp41Mn2mrxaoelWQzz95SHLcr7LooWi0bS8BTLg/e6nzP0rMtcuDMZAUij5bdFsmjVrRvPmzVm2bFmJbAOxtrZmxYoVHDx4kFWrVmV5TpZlzj1OeSFm9Z/+N65NTeH05tW8VcuGwTXtqWlvhiKXG35NmjRh/fr1BAQEMG3atBKKVhAEoWSoVCqDJvsPHjxgwIABtG7dOrNYtD4czZV0rGTNRw2d8LgfwraZH3Fx1yYcpdQcW/dCxvWeu7UJLZwt6V3VFt96jnzU0ImOlaxxNFdy9uxZhg8fzsCBA5k6dWqB3oe1tTXbt2+nX79+DBw4kNWrc68vJAhC6VA2Nwznw9PTk5dffpnmzZvj5ORESEgIW7ZsYcyYMZmt0CrVy1heteObKdRq3RGFUknjbv1yHM/tybH7lsyhUdd+KE1Nqde+K2aW1rToN4xDa74nYMZHuHs24dZfx3l0558CjfGsDm+O5dze31j74RDaDH0bSzsH/vpjE9H37zDs2zVZKvHr5NUKrW7dutSoUYNPPvmE+/fvY2dnR0BAQJY9/ULxcTRXUs3WlDtGvsxcAqrbmXHh1DF2797NypUr+fDDD/Hz82PgwIGMHj0alUpVbC35vL29eeutt/Dz86NHjx5UqlQJWZa5GZeKWmPMP9n8KWQtbjZmuFmb4mJpgouVCfevX+Gzryfzeut69OnTJ98x+vTpw1dffcXEiROpW7cuw4YNK4HIBUEQip9KpWLVqlVER0dn1i0qKampqQwcOBBJkvj1118xNS1Yt5rU1FQmTZrEggULGDBgAMs+egN7e3tkWUYrZxSX1mgztmqaSBIKKffVohEREfTu3Zt69eqxdu3aHK8X82NmZsb69etxcHBg1KhRREVF8cknnxR4HEEQSsYLmeyPHTuW7du3s2/fPtRqNVWrVmXWrFlMmDCBw/+qCU9Mp36nXrQeMprze7dydtdmZFnONdmvXL8pXd6fxMkt6/j72AFkrZZP/wjFzNKazm9/QmL0Yy4G7eBC4DZqt+nMG4s3MrtzPb3HeJZtuQq8t2YXu7+fwbGNK0lPVeNSy5ORC/9H3XZdsx0vkXcrNFNTU3bs2MHYsWOZO3cuFhYW9OvXjzFjxpSqvrRlWXNnC27Hpxk6jOciA82dLTExMeGVV17hlVdeITw8nHXr1rFq1Sr8/f2pXbs2o0ePZuTIkcXSs3fevHns2rWL8Z9N491ZCzkXpS6ziX43d2vq2JvSskVzXCpWIDAwMMvzTg0b0LRpU/z9/fVK9gEmTJjA5cuXGTVqFB4eHrRuLVryCYJg/FQqFbIsc/z4cXr27Fmi5/bz8+PUqVMcOnQIFxeXAr327t27DB48OLMI7YcffpiZyEuShFICJRLkXK4qi5SUFPr160d6ejrbtm3DysqqMG8HyFgRumzZMsqVK8eECROIiopi9uzZxXYzXxCEwpNkfTb+vEAuRaWw406CocMocr2r2uLpZG7oMIRcaGWZ5ZejiTVYn93nI5FR/M3X0zHHpeJarZZDhw6xcuVKAgIC0Gg09O7dm1GjRtGtW7dcC2sWhFaW+Sculd0X75Bk5QSyFqSyuVNJIUELZ0s6VbJm69at9OvXj6CgIDp37pzluAULFjBp0iQiIiL0ns1Sq9V06dKFa9eucerUKapWrVocb0EQBKHEyLKMm5sbb775JnPmzCmx8/r7+/P666+zdOlS3nvvvQK9dteuXYwYMQIbG5v/s3ff8THffwDHX9+77CkiJJFIrJCgCGLvnVi1G1sVRdFSrdKi9bOrlFIrVmNvsWOLGbVqBhW7IiK5RMbl7vv7IxJOgkQuLuHzfDw8HvK97/jc5XL3fX/G+82aNWuoWrXqO7dDlmW6d+/OunXrOHToEFWqVHnnc71q+vTpDBs2jH79+vHHH3/o5ftcEAT9EcH+KyITkllw+amhm6F3fT3tyG8mPoBzszuxagLD8m6Zw64lbXGxevv0xCdPnrBixQoWLFjA+fPncXFxoVevXvTu3Rt3d/d3uvadWDXbwlU8TdJmq0Zx1P07HFw6ixsnD/H04T2MzcwpXqUWvkPHYuf8oqzn6S0rWTd2MP0WbeX8ns2c37kRTbKaT5q0oeV3E1EnxLN1yg9cPrQLAJ9Pu9FsyE86ox5arZZjqxZwalMgkbdvYmphhbPnJzQZ+AMuXhXe2lYXSyO6euRDlmWqV6+OVqvlxIkTOtd4+PAhhQsXZs6cOfTr1y/Tr8Pjx4/x8fHBysqKkJAQrK2tM32sIAhCbtShQwf+++8/Dh069F6ud+bMGWrUqEHnzp0JCAjI9Kh3cnIyP/74I5MmTaJFixYsXbo0rUTfu5o0aRIjR45k5cqVdO7cOVvnysjixYvp06cP7du3Z/ny5ZiYmOj9GoIgvJsPc9grG0QpNMFQXK2MqeyQ9zLzS0AVB7NMBfqQUglj0KBBnD17llOnTuHn58eMGTMoVqwYTZo0Yc2aNSQmJmbqXGqtTPDdWALDoolOSskin53ey7uXznD73Ek+afIpLb+dQNV2Pbhx8jDzv2hDUnz6snRbpowk8vZNGvYfgWfdZpzcsIw9cyaxbEgXtFoNTQeNwr1CVQ4tm82ZbWt0jt0wbghB00ZjW8iZZoN/pG6vwRibmnH7fGim2vowPiUjsyRJTJgwgVOnTrFx40adfRwdHWnatCnLli3L0utQoEABgoKCCA8Px9/fH817LhcqCIKgb7Vq1eLkyZM63y+yLJOslUnQaHmm1pKg0ZKslTOV7f5NIiMjadu2LV5eXsyZMyfTgf79+/dp2LAhU6dOZfLkyWzevDnbgf7mzZv54Ycf+PHHH3Mk0Afo1asX69atY9OmTbRs2ZK4uLgcuY4gCFknRvYzsO9eHKcexefJ6dSvkgCfgubUL5x+7b+Q+6i1MgsvRxGTR6bzS4CNiYI+nnYYv67cQybExcWxdu1aFi5cSEhICPb29nTv3p3PP/+cMmXKZHjMnVg1QeEqvb5W6oR4jM3MdbbdPh/K3J7N6fDzH3i36Ai8GNkvWb0+vWavTruRm9vTlzsXQvFp14M2P0wFQKvRMKWFN/ld3Om7YDMAN04dYWG/T6nx2Re0/FZ3SmlqAJ8Z35a3R/n8dW/SpAl3797lwoULOtMoV65cib+/P9evX6d48eJZej127tyJn58fX3/9dZYySAuCIOQ2oadP07xdJxas3oh14aI8eJbMw/hkkjOoNmqkSEls7GSRkvDU0cKI/KbKTH02azQafH19OX36NKdPn870Uqjg4GD8/f0xNjZm9erV1KpVK6tPMZ1z585Rs2ZNmjVrxpo1a94pIV9W7N27lzZt2lCuXDmCgoKy3VEhCEL2ieHeDKSWQvsQyECFAmaGboaQScYKiZo2yWjzSB+cDLRws85WoA8p5Xx69uzJkSNHuHTpEj179mT58uWULVuWGjVqEBAQQGzsi1waoRHxBIZF671T5OVAX6NWE/f0CfauRTGztuX+lfPp9q/SpovOzZ9rWW9kWaZymxeZ7BVKJYW9KvDkXnjatn/2bkWSJBr2/TbdObOS4Cj5pffJhAkTuHz5MsuXL9fZp3Xr1lhbW/PXX39l+rypmjVrxowZM/j111/TlTQUBEHIC6ISNey7F8dhIzeGbTzOFRMnTkckcDcu40AfIFkLd+OSOR2RksdpweWnzLjwhH334ohKfPNMp59++ong4GBWrVqVqUBfo9Ewbtw4mjRpQoUKFThz5oxeAv3//vuPVq1a4eHhwdKlS3M80Ado2LAh+/bt49q1a9StW5cHDx7k+DUFQXgzEexnILUUWl6bTv0qCShqbYydqVirn1dcuXKFNnWrceDPiYZuSqY0crHENZPT9zPL09OTadOmce/ePdatW4etrS19+vTBycmJL774gtWnrhF8N2WKoL67RNQJ8eyZO4lJzcvzY7XCjG9QivENS5OgiiYhNibd/raOLjo/m1nZpGwv5PzKdmviY17kAnly9xbWDo5Y2GavBJTmpRvVypUr0759e8aMGaMzTdXCwiJtHeW7TOQaNGgQ/fv3p3///hw4cCBb7RUEQXgftLJMWHQiq65HM+9SFKcexZP40ufla2L89Od56f+JGplTj+KZdymKVdejCYtOTNcxv3HjRiZMmMDEiRNp1KjRW8//6NEjmjVrxrhx4xg3bhw7duygYMGCmWzd6yUmJtK2bVuSkpLYsmULlpbvb3ZnlSpVOHz4MFFRUdSsWZMbN9KXmxYE4f0Rwf5rVHLI+6P7qaXQhLzhwIEDVK9eHQsLC+aPGkJtp3cvi/M+1HayoHIOvr9MTExo164dO3bs4NatWwwfPpzIfEX41yjnpgVumTKS/Yt+o1zj1nw2eSG956zl87nrsMiXH1lOf3uoeE3WYYUig+05MFtD+con+C+//MLdu3f5888/dbZ369aNGzducOzYsSxfQ5Ikfv/9d+rWrUu7du24fv16dposCIKQo+7Eqpl/KYr1N1WEPy9pq69P39TzhKvUrL+pYv6lKO7EplzjypUr9OjRg3bt2vHtt+lnbb3q0KFDVKhQgfPnz7Nnzx5+/PFHvWSyl2WZfv36cfr0aTZt2oSLi8vbD9IzT09PQkJCMDIyolatWpw/n35mnCAI74cI9l+juI0J+UwUeXZ0XwLymSgoZqPfUVchZyxbtowmTZpQuXJlQkJCcHNzo0Yh81wb8NdxsqBGoffXkVSkSBH8vhyBj3/WShdl1T/BW/Fu0Qm/b36mXKNWlKxWD7cKVUlQ6bdKQn4Xd1QRD3kWHZWt8xi9MuW/dOnS9OrVi/Hjx6NSqdK2161bF1dX1ywn6ktlbGzM2rVrKVCgAC1btuTp0w+vYokgCHmbvhO2vknqeaOTtASGRbPjZhTtO3XGxcWFxYsXv3E5llarZfLkyTRo0AAPDw/Onj2brmxqdkybNo2lS5cSEBCQrXJ92eXm5saRI0dwdHSkbt26HD161GBtEYSPmQj2X0MhSfi5WefZ0f3UtdQZ1TwXcg9Zlhk7diw9evSge/fubN++HVtbWyBlRLWmowWNXFKm3xn6N5l6/UYultRwtMjS2vLsuhOrJvhezmf3lZTKdCPwx1YtRKvnbPRlG7ZElmX2zp+a7rHMTrU3UkBGqRLGjBmDSqXit99+S9umUCjo2rVrliodvMrOzo6goCD+++8/OnbsSHJy8judRxAEQd/uxKpZeDmK0xEJQM4F+a9Kvc7ZKDV+EwJYsG7rG0uVRkZG0rJlS77//nu+//57goODcXJy0lt7tm7dynfffceoUaPw9/fX23nfVcGCBTlw4ADlypWjUaNG7Ny509BNEoSPjgj23+BjKYUmGEZiYiI9evRg3LhxTJgwgQULFmBsnP53VtnBnC4lbbEx4EyT1Kz7XUra5ujU/YyotTJB4ar38txL127Mme1r2Tp1FCfXL2PdmK84umoBFvn0u3SgeJVaVPTryNGVC1j8VWdCVs7nSOCf/DW8J8dWZy4RnqO5UYYdLq6urgwcOJBp06bx+PHjtO3dunUjKiqKbdu2vXO7S5YsyYYNG9i/fz9Dhgx55/MIgiDoS04lbM0KSaHAzsmVw4m2hEbEZ7jP8ePHqVixIidOnGD79u2MHz8eIyMjvbXhwoUL+Pv706ZNG37++We9nTe7bG1t2bVrFw0bNqRVq1asXr3a0E0ShI+KCPbfoq6zpUGDrKxKDcrqOItSe7nZkydPaNq0KWvWrGHlypWMHDnyjSPlrlbG9PG0o5JDSmWF9/V+TL1OZQcz+nja6T0ZX2YcvB/33m7iWn47gYp+HTm3Yz3bfvuJmMf/8fnc9ZiY6//vqf3Y32k+dCxR926zY8Y4DgTMRJ2YgFv5Km89ViGBs+XrfxcjR44EYOLEF4kePT09qVy58jtP5U9Vr1495s6dy5w5c5g9e3a2ziUIgvCuZFkm5OGzHEvYmmXPv8OD78YR8vBZ2iwtWZb57bffqF27Ni4uLpw5c4bmzZvr9dIRERG0atWK4sWLs2zZsveSeT8rzM3N2bBhA506deKzzz5j3rx5hm6SIHw0JPld0jN/ZO7EqgkM0++a3ZzUpaStQYIyIXNu3LiBn58fjx8/ZvPmzdSsWTNLx9+JVbMtXMXTJC0SOXODk3refCYK/NysDfZ+ymt/e+9TKzdrvPKbvvbxcePGMXHiRMLCwnB1dQXg999/Z/jw4Tx48AB7e/tsXX/YsGHMmDGD7du307Rp02ydSxAEIatCHj7j8INnhm7Ga9V2sqCMWRK9e/dm48aNDBs2jIkTJ2Y4gy87EhMTadSoEWFhYZw8eZIiRYro9fz6pNVqGTp0KLNmzeJ///vfWwc6BEHIPhHsZ1JoRHxa73Fu1sjF8r1PsxYy79ixY7Rq1Qo7Ozu2b99OiRIl3uk8WlnmZoya0xHx/KtS6y3oTz1PUWtjKjmYU8zG2GB5H7SyzPxLUUQbcGpmbtbX0478Zq/P3KxSqShWrBitW7dm4cKFQEqZJ2dnZ37//XcGDBiQretrNBpat27N4cOHOXbsGF5eXtk6nyAIQmaFPop/L3lcsitk4TSOrJjHkiVLaN26td7PL8syn3/+OYGBgWkVfXI7WZb5+eefGTt2LN988w3Tpk0TAb8g5CAR7GdBXuhFrumYO7O3C7B27Vq6deuGj48PGzduzPbIaqqoRA1nHydwNjKBRE3Kn7NCAm0m/rJf3s9UKVHB3owKBcywM81++Z/sCotOZP1N1dt3/AiZKiWGlsv/1hukGTNmMGzYMC5evEjp0qUBaNmyJRERERw/fjzb7YiJiaFmzZo8e/aMEydOUKBAgWyfUxAE4U3y0owvWZZpaB2PT8mcGW3/9ddfGT58OMuXL6dr1645co2cMmvWLAYPHkyvXr2YP3++XvMXCILwggj2s0CWZY7+F58rA/46ThZUL2QuekdzIVmWmTJlCt9//z3+/v4EBARgavr66dfZuU5UopaHz5J5GJ/M/Tg1D+OTSU5fHh4jRUqCN2dLYxzNjXC0MMLOVJGr3j+rrkcTrlKLUf1XSIBPQXPqF357HoGEhARKlSqFj48Pa9euBWDNmjV06tSJq1ev4uHhke4YWZbRyJAsy2i1oFCklPhTSmT4/rh16xY+Pj54enqyZ88eTExMsv0cBUEQMqLWyiy8HGXQZHxZkZpHqY+nHcYZlU/Jhm3bttGyZUu+++47nfwseclff/1Fz549admyJStXrsTMzMzQTRKED44I9t9B6pT+nFovnVmp1xdT93MvtVrNwIEDWbBgAT/++CPjxo17rwG1LMtonwduGi0onwduitcEbrlFVKKGeZeyV4P+Q9bPyy7Tsy8WL15M7969OXXqFJUrVyY+Ph4nJycGDx7MuHHjeJKoSekgepbMg+cdRW/qIHKySOkccrQwIr+pEkmSOHr0KPXr16dLly4sWrQoV7+3BEHIu4LvxnI6IiFPBPqpJFKS3DZ0sdLbOS9evEj16tVp0KABGzZsyHUJ+bIiKCiIDh06UKNGDTZt2vTG0oWCIGSdCPbf0Z1YNUHhKoP1Lqf2FrcwYPI04c1iYmLo0KED+/btY8GCBfTs2dPQTcoz9t2L49Sj+Dx1Q/c+SIC7tTGdSthm+pjk5GQ++eQTXFxc2L17NwBfDvuOp1aO+LTtTuLzdRwKIIMYP52X9zNVSpS3N6NiATO2r1tF165dmTJlCt9++21WnpYgCMJb5aXp+xnRV/Lkx48f4+Pjg7W1NSEhIVhZ6a8TwVAOHTpEy5YtKVWqFNu3bxdLwgRBj0Swnw1qrczB+3GERiS8t1H+1OtUcTCjjrOl3qeFCfpx584d/Pz8uH37Nhs2bKBBgwaGblKeIcsyMy48Scs/kFcE/zmFvfOnMvHviBy9TvtiNpSwzdpU+Q0bNtC+QwfWHjiO2smDWyo1muRklHpYI5n6meRubczlXesYP6QfGzdsoFWrVtk+tyAIAuT9hK0SYGuioK+XXbaS3iYlJdG4cWOuXLnCyZMncXNz018jDezMmTM0bdqUAgUKsHv3blxcXAzdJEH4IOTdeT+5gLFCopGLFV1K2mJrkvJS5lTonXpeWxMFXUra0tDFSgT6udTp06epWrUqKpWKo0ePikA/i54kavJcoP86+xf9xsX92/VyLq1Gg4WkoZhN1keGqjRuwQ87zhJmVZRwlRpAL4E+vOjkDFepMa/Rmh93X+C7idM5e/asXs4vCIJwIyaJp3k00IeUz8mnSVpuxqjf/RyyzIABAzh+/DgbN278oAJ9gIoVK3LkyBHi4uKoWbMm165dM3STBOGDIIJ9PXC1Mqavlx3ti9ngbp1yI66vMDz1PO7WxrQvZkNfLzsxbT8X27p1K3Xq1MHV1ZXjx4+LcmTv4OGzZEM3QW8OBMzg0gH9BPuSQsHvfdryw8iRxMbGZuoYtVYm+G4sgddjsCrgCOTcDKTU85rbOdD9j7VM3nyQuw8e5tDVBEH4mJx+PoMyL5OA0xHx73z8zJkzWbRoEQsWLKBGjRr6a1gu4uHhQUhICBYWFtSqVYu///7b0E0ShDxPBPt6opAkStia0KmELf287PApaI6pUnrp8cye58X/TZUSPgXN6edlR6cStpSwNTFYzXPh7WbNmkWbNm1o1qwZ+/fvp1ChQoZuUp708FmyzgdTUnzur6Wc07RaLXbR9+jeqikzZ87E09OTdevW8aZVWHdi1Sy8HMXpiISUDe/ps0MmJfljuRadmffPY65HZq5jQhAEISNRiRpufQCVWWTgX5WaqERNlo/dsWMHw4YNY8SIEXTv3l3/jctFXFxcOHz4MO7u7tSvX59Dhw4ZukmCkKeJYD8H2JkqqV/YkqHl8tPX045WbtZUdjDHxdIIo9e84kYKcLE0orKDOa3crOnracfQcvmpX9gyV9Q8F15Po9EwZMgQBg8ezDfffMPatWuxsLAwdLPypLFjx9LI1ZoHN6+y6od+jKtbgj97twDgzLa1zPJvyI/VXfm5XklWfv8FTx/e0zl+/hetmdGhNv/dvMqCvm34qUYRJjYtx8Els3T2S1YnsWfuJGb5N2RsnWL8VMONeb1bcOPUEZ39boaGMNLbgZuhITrbo+7fZqS3A6e3rHztcxnp7UBS/DP+3rqakd4OjPR2YO2YQVl+TSRkkqIjGexbg/v37xMaGoq3tzcdOnSgadOmXL16Nd0xoRHxBIZFG7Q8lUKhxNyuAGvD4wl9lPvKlQqCkDeceZz3R/VTScDZxwlZOuby5ct07twZX19fJkyYkDMNy2UKFCjA3r17qVy5Mk2bNiUoKMjQTRKEPEs/izaFDEmSRH4zJfnNlHiRUlc9r5ZCEzIWFxeHv78/QUFBzJkzhy+//NLQTcrTUkeqV4z4nAJFitF00ChkWWb/wunsmTuJco1bU+XTrsRFRXJs1ULm92nFVyv3YW79Ijt9fMxTFg/qRJn6fpRr3Jp/grey8/efcSzpSamajQBIjFVxauNflG/WFp+23UiMiyV0cyCLB3ZkwPJdOJcql+3n0vGXOWz45WtcylTEp23KSEx+F/esvyZIfF6lOE4zfuPrr79m//79rFixgi+++IIhQ4ZQrlw5hg0bxujRo7GwsODof/EcfvDs+bGGpVCmfMUE33tGohZqFDIXn3OCIGSaLMuci8x+qb35X7QGoO+CzVk+du2YQdwMPcp327I/pVwGzkYmUM/ZIlOfhZGRkbRs2ZIiRYqwYsUKlMqPZ/DH2tqabdu24e/vT5s2bViyZAldu3Y1dLMEIc8Rwf57JkkSSgmUSPDxfGZ/kB48eECLFi24du0aQUFBNG/e3NBNyvNSb+icPMrQecI8AKLu32Fa6yo0HjCS+p9/nbZvmQZ+zPJvwPE1ATrbYyIe0uHnP/Bu0RGAym26MMWvIqGbAtOCfXObfIzY9jdGxi+y2ldp243pbatzbNVC2o2Zme3nUtGvA5smDCe/ixsV/Tq883kauVjiam1Cv379qFevHl26dKFatWr8/PPPnD9/nl9//ZWJEycSGBjI6MXreZK/aLbbnhNSOyBqOopZL4IgZM6HlLA1VaJGJipRS36zN98EJiUl0b59e6KjowkODv4o68+bmZmxZs0a+vbtS7du3Xjy5AmDBw82dLMEIU8Rwb4gvIMLFy7g5+eHVqvlyJEjlC9f3tBN+iA8L/lO1XY90rZd3LcNWaulXOPWxEVFpm23ti9IAddi3AwN0Qn2TSwsdYJrI2MTXMp48+ReeNo2hVKJ4vkIiVarJUEVjazVUtizAveunM+pp5dltZ0sqOxgnvZzqVKlOHr0KGPHjmXUqFHs3LmTZcuW0bVrVyatDMq1gX6qww+eYaqUdJ6TIAjC6+grYWvvOWvf+di2o39DlrV6aUeqh8+S3xjsy7LMV199RUhICPv27cPd3V2v189LjIyMWLRoEfnz52fIkCE8efKEMWPGiFligpBJItgXhCzavXs3HTp0oGjRogQFBYlasHqUmm/OrvCLkkKP79xElmV+bVM1w2MURrrVKWwLOqe7CTC3seVh2CWdbae3ruLI8rlE3ApDk/yiHNLL1zak4jbG1CiUPig2MTFhwoQJNGvWjG7dulG+fHmmL15BMV9/A7Qy64LvxlLI3EhUFREE4a1SE7ZmN9R+eRZXVimN9ftZpZDgYXxy2vLOjMyaNYv58+cTEBBArVq19Hr9vEiSJKZOnYq9vT0//PADT548YcaMGSgUIvWYILyNCPYFIQsWLlxI//79adq0KatWrfoop9XlpNQY3djULG2brNUiSRI9Z61KG41/mYm5pc7PGe3UpWtIAAAgAElEQVQD6GSuP7NtLevGfIVXfV9qdx+IVf4CKJRKDgTMJPLurZcalHE7tZqsZ1POqhsxau7GJb82KK5Tpw7nzp1j0JChXDEuhJ1Wg6TI/WuDtBotW/6NoW+Z/BhntkyJIAgfnTNnzvDNkG+5+vcJZK0W17KVaDLwB4p8UhmA01tWsm7sYPou2MzZHeu5sHcr2mQ1XvV8afnt/zC3yZd2rlfX7N8MDWFB3zZ8NmkBkbdvcnzdEp49fYJbeR/ajJpGgSLF0o7NaM1+Unwce+ZO5sKezcQ+eYydsytVPu1G7W4DdDqbR3o7UK1jb0pUrcueORN5fPsm9q5F6TFyPA36tM/wee/atYuvv/6aYcOG0atXL/29oHmcJEmMHDmS/Pnz8+WXXxIVFUVAQADGeu6MEYQPjQj2BSETtFoto0aNYtKkSQwYMICZM2diZCT+fPQto9jP3sUdWZaxK+yGg1txvVznn71bye/iTtdpS3RuzIL/nKyzn7l1ys1ivCpaZ/vTB3czd6FsTDOUgKBwFX087V4bFOfLl4+e/5tN6KP491ZaL7sUSiUxSRoO3oulkavoLBMEIb2LFy9Su3ZtlBZW1OkxCKWRMSfWL2NB3zZ8sWAzRcpVStt3y+SRmFnb0Kjft0Tcus6JdUt4+uAOXyzY/Nap3geX/I4kKajdbQAJsSoOLZ3N6tFfMnDZrtceI8syy4Z242boESq36YKTR1nCju1nx4yxxDx6QIvh43X2Dz97gov7tlGtYy9MLaw4umohM77qwYg29ShQoIDOvleuXKFTp040b96cyZN1v4+EFP369SNfvnx069aNp0+fsmbNGszNc3ZpmCzLaJ4n19ZqQfE8ubZSJNcW8gARrQjCW8THx9OzZ0/Wrl3Lr7/+ytdffy0+3HNIRq9qmQZ+7Jo9nr3zp9Jp/Fyd116WZZ5FR2GZL3/WrvN86p8sy2nnu33hNLfPh2Lr+GJZhp2TKwqlkn//PkaZ+r5p24+vDcjUdUzMLUhQxWSpbalkIDpJw6H7cTR0scpwnzuxakIjEvJMoJ9KUig4FZFAKTszMZ1fEIR0Ro8ejVqtZsCioLQqJhX9OjK9bXV2zhxH34Vb0vZVGhvT588NadPt7Zxc2TFzHJcP7cKrbrM3Xic5MZGvVu1Pm+ZvbmNL0NRRPLx+GccSnhkec/ngTm6cOkyTASOp3+cbAKp3+pzAEb05unI+1Tt9jr3ri/wpj/4N4+t1R9K2Fatci98712PFypUM/uqrtP2ePHlCy5YtcXFx+egy72dVp06dyJcvH23btqVp06Zs3boVW1vbtx+YCbIs8yRRw8NnyTx8lsyDZ8k8jE8mOYO1JEYKcDQ3wsnCCMfn//KbKsU9opCriGBfEN4gIiKC1q1bc/bsWdavX8+nn35q6CZ90DL6grR3LUrjASPZNWs8T+/fxqueL6aWVjy5d5uL+7fh07Y7dboPzNJ1StduwsV92/hrWA9K12rMk/vhnFi3lILFSpH4LC5tPzNrG8o2asWx1QtTSmm6uHPl8G7injzO1HUKe5bn+omDHP5rLjYOjtg5F9EZkXo7iZOP4rl8YAfdWjbRuZnRyjLbwlVIGL7E3rvQajWs+uc+w6oWQSFujARBeE6j0bB7925atm6tU67UxsGR8s3acWrjchJiVWnbfdp211lXX7VDT3b98T+uHgl+a7BfqdVnOuv5i1asBsCTe+GvDfavHglGoVRS47O+Ottrdx3AP8FbuRqylxqd+6RtL1G1jk7w7+RRBlMra27cuJm2Ta1W06FDB6Kiojh58iQ2NjZvbLcATZs2Zc+ePfj5+VGvXj127txJoUKF3vl8UYkazjxO4FxkQloFiLfli0jWwt24ZO7HJaftZ6qUKG9vRsUCZtiZig4bwfBEsC8Ir3H16lV8fX2JjY3lwIED+Pj4GLpJH41XU+7U6zWEAkWKExL4J3vnTwXAtlBhSlarh+dbbuYyUqnVZ8RGPuLE+mWEHdtPwWIedBo/hwvBW7gZelRn31YjJqJNVnNi3VKMTEwo17g1vkPHMqND7bdex++bX9g4/hv2zJmIOiEe75adshjsA7KWcNuiOBcuTPt27ejTpw+1atXiRkwST5P0myH6fVIqjdAojQg6fpZW1SsaujmCIOQSERERPHv2jJIlS6V7rGDRkshaLdH/3UvbZv/S+noAUwsrrAsUIur+7bdeK59jYZ2fU9f5x8c8fe0xUQ/uYO3giKml7oyrgkU9gPTLvPI5pk/ia26djydRUWk/DxkyhMOHDxMcHEyxYsXS7S9krEaNGhw8eJCmTZtSu3Zt9uzZg5tb5pPsamWZGzFJnI5I4JZKna7zPLPfsC/vl6iROfUonpOP4nG3NqaSgxnFbUxEp7ZgMCLYF4QMHDp0iDZt2uDk5MTevXs/6rI379PYsWPpMPh7tobHpnusbMMWlG3Y4o3HpyZfelWHcbN1fpYkiXq9h1Kv91Cd7aVrN0l3rKWdPV2mLk63feLfETo/N+o/gkb9R+hsc3AvoTPd9F1ICiX2Lu6MnjGPRZPGsGzZMjw8POj1xxoke2fk12URzAO0Gg3bLtyinGM+ihbN3WUDBUF4v95HbCS9bqq8rL/5UtJrM8anXOOPP/5g7ty5LFy4kDp16ujtuh+LTz75hJCQEBo3bkzNmjXZvXs3Xl5ebz3uTqyabeEqniZp075F9fVbTz1PuErNLZWafCYK/NysxbI1wSBEzQpBeEVgYCCNGzemYsWKhISEiED/PXO0EH2Qr5KAYvVacO3aNfbt20eNhk3BvnCeDvQhJVmfe+VafPZ5P2Ji3i23gSAIHxYHBwcsLCy4fu1auscibl1HUiiwLfRiRD7y9k2dfRKfxaJ6/B92zkVypH12Tq6oIh6SGKfbKf3oVhgA+ZwyV45XgcSePXsYMmQIX3/9NZ9//rne2/qxKFasGEeOHMHOzo46depw6tSp1+6r1soE340lMCya6Oez43JqKVzqeaOTtASGRRN8Nxa1Ni8uvBPyMhHsC8Jzsizz888/07VrV/z9/dmxYwf58uV7+4GCXuU3VWKqzNtBrL7JwL8qNdFqmfr169Nt1MQ8Hua/oJDAsUo9OnfuTHJysqGbIwiCgSmVSpo0acKWLZuJefBiKr4q8hFnd67HvUJVzKxeVPI4uWEZGrU67ecTa5egTU6mVM2GOdK+UrUaodVoOLZ6oc72kMA/kSQpU9eVgJiYGDp27Ejjxo2ZOnVqjrT1Y+Lk5MShQ4fw8PCgQYMG7N27N90+d2LVLLwcxemIBOD95btJvc7piAQWXo7iTqz6jfsLgj6JYF8QgKSkJHr16sWYMWMYP348AQEBmJiYvP1AQe8kKSW5zYcSzOqNrGXXpXCSk5M5F5nAJD9v1o4ZZOhWZZuMRM2OvdmzZw/Dhw83dHMEQcgFxo8fj5GREX/2bsn+Rb9xcMks/uzlhyYpiWZDxujsq1GrWdi/LUdXLWTL5O/ZOesX3CtUfad8LplRuk5TilWuxe4/JrBx/DCOrQlg+TfdOb97EzU+66uTjC8jsiyjTkpk8+ZNJCcnU7ZsWTZs2MC1a9fQavNuHpbcwM7Ojj179lCjRg18fX3ZuHFj2mOhEfEEhkUTk6Q1WFJbGYh5PsofGhFvoFYIHxsR7AsfvaioKJo2bcrKlStZsWIFo0aNEmVTDKxiATO9fhmf3rKSkd4O3L10Vo9nfXc3Q0MY6e3AzdCQzB8kKbiskilRoXJapuAPhUZhxG/zA5g5cybz5s3L0rETJkxg06ZNOdQyQRAMoUyZMhw+fJjipb04sHgme+dPI5+jC33mbUyX5LTVdxMpWNSD4D8nc3rrKso3bUu335bn2Pe4QqGg+4zl1PDvx5XDu9k2bTT/3bxK86Fj8Rv2y9uPl0DWJCNJEt7e3gQGBtKxY0dKlSqFtbU11apVo3///sydO5ejR4+iUqneek7hBUtLS7Zu3UqbNm1o3749iwICCHn4jOC7KZV2DP3tmXr94LtxhDx8hqzH/BCCkBFJFu8y4SN28+ZN/Pz8ePToEZs3b6ZWrVqGbpLw3Krr0YSr1Hr5Yj69ZSXrxg5m4F97cPGqoIczZs/N0BAW9G3DF/M3UaxyzSwdK18+huRZneSkRCRJoVNyKi9r5WbN3DHDmTt3Lrt27aJhw8xNwbWysqJ9+/YsWbIkZxsoCMJ7d/FJQoYJWyH3fa5nxZrRXzL924HUq1cPSKlAcO7cOZ1/ly5dSlvaVLx4ccqXL6/zz83NTQxMvIFGo2HgwIGEaSxpPGCkoZvzWrWdLKjpaGHoZggfMJEJS/hoHT9+nFatWmFra8vx48cpWbKkoZskvKSSgxm3VGJd28tkWcb1kyrcV4ORiamhm6M3Cgkexifz22+/ERYWRvv27Tlx4gQeHh4GaU9cXByWlpYGubYgCC98qAlbv+j4aVqgDylJCRs1akSjRo3StiUlJXH58mWdDoBZs2bx+PFjAGxtbfnkk090OgDKli2Lubn5+346uZJSqeTzn6ez994zQzfljQ4/eIapUqKyg/i9CTlDTOMXPkrr1q2jfv36eHh4cOzYMRHo50LFbUzIZ6J4b2v3o+7fYdPEEfz6aTV+rO7Kz/U9CBzRmyf3wlEnvFhbl7ok4NaZ42yZMpLxDUozrk5xNo4fRrI6iXhVNGt+HMi4uiUYV7cEO2aMSzdNL3Vd5toxX/FjNRf+18iLjeOHpavtPNnPmyWD/bl2dB+zuzTip+qubFy2CO3zx1LX7CfFp0xPjFdFEzRtNJP9vBldtTATm33Cmh8HEhcVCUCyOok9cycxy78hY+sU46cabszr3YIbp4688lrcZqS3A4eW/cHJ9cuY2qoKo6sWZnbXxty5eOatr2VWX6Ntv43jXmwSRkZGrF69GicnJ3x9fRk4cCCurq6YmppSqlQppk2bpvNaSpJEXFwcS5cuRZIkJEmiZ8+eaY+fOXOG5s2bY2Njg5WVFQ0bNuT48eM6bV2yZAmSJHHw4EEGDBhAwYIFcXFJyaatUqkYOnQo7u7umJqaUrBgQRo3bszff//91tdAEITs+xATtmoTE+jf/bO37mdiYkL58uXp3r07v/76K8HBwTx69Ih79+6xfft2vv/+ewoXLszevXvp168fPj4+WFlZ4enpSefOnZk4cSLbt2/n3r17H+VU8Tux6lwf6KcKvhsnkvYJOebD7DIVhNeQZZlp06YxYsQIOnfuzOLFizEzMzN0s4QMKCQJPzdrAsOiM7V/9KMHBM+dxNWQvTyLjsLGwRGPGg1o8e3/0vZJTkok6NcfObttLUkJ8ZSsXo9PR/+KlV0B7l46w+1zJ4mNjMDetRiFinlwIXgr/wRvpdngn7h6ZA/xqhhqdekHwJYpI7G2L0jD/iPYNWs8Jzcsw8zaltvnTqKVZUwtrVBFPOTQstmc3bmeOt0HUtM/5dgjf80BoFDx0tTrNYSo++EcW72If88cJ18hZ27/cxptcjJarRatJplVP/TDp113qnzajVvnT7HB2wHrAo78+/cxxtUtgZ2zK/0WbWXe5y2J+PcalVr5U9jzE+KeRnL54C6iH93H0s6exFgVpzb+RflmbfFp243EuFhCNweyeGBHBizfhXOpcjqv6bmd60mMi8WnbXckSeLQ0tkEDu/Jt1tCM7V84OXX6M6F0zqvka2TC00HjeLqkWAOLZuNU8nSdB01AFtbW7Zs2YKnpydz5syhd+/eeHt7s2vXLr799lvu3bvHb7/9BsDy5cvp06cPPj4+9O3bF0iZ7gpw8eJFateujY2NDSNGjMDY2Jh58+ZRr149Dh48SNWqVXXaOmDAABwcHPjpp5+Ii0vpPOnfvz/r1q1j0KBBeHl5ERkZyZEjR7h8+TLe3t6Zel8KgvDuUhO2nnoUb/C11vogazRULWz7ztPvJUnC2dkZZ2dnmjdvnrY9Pj6ef/75R2cWwM6dO4mOTvn+tLe3T7cMwMvL64NNRKzWygSFq5Aw/Br9zJCAoHAVfTztMFZ8WJ1bguGJNfvCRyM5OZlBgwYxb948fvjhB3755RcUCjG5JbcLvhvL6YiEN35hx0Q85I+ujYlXxeDTthsO7iWJiXjAP8Fb6b9kO5f2b2fd2ME4ly6HuXU+vOr78vTBHUJWzKNMgxb4T16IOiEeYzNzJvt5ozQy4ll0FKVrN+HMtjXU7TUEexc3NvzyDY2//J49cydRsnp9es1ezd1LZ5nTrQn2rkV5cvcWpWo15srh3RT3qYNXvebsmTsJEzNz3Cr44D95EbfOHGfe5y0BdNbsH1j8O7tm/YJ9kWJUbd8TSZLYMfNntMlqWgz/HzX9U4LZ4D+nsHf+VBRGRljbF6Je7yHIskxsZAT7Fkyj67QllGngp/P6yLKMJEloNRq0Wg1Gxi9u8OJV0UxvW53StRrTbsxMIGVkf0qLSljky8/wTScwt0kpQXnp4E6Wf92N7jMC8azT5LW/j9S1tKmvUeqN7dyevty5EIpPux60+SGl1JRWo2FKC2/yu7gTdvIISoXE5s2badOmDQqFgj59+vDnnyklrTp06MD69esJCwtLC+pft2b/008/Zfv27Vy+fJlixYoB8ODBA0qVKkXFihU5ePAgkDKy36tXL2rVqsWBAwdQKpVp58iXLx9du3Zl9uzZb3j3CYKQk6ISNcy7FGXoZuhNPy877EyVb98xm2RZJjw8PF0ugBs3bgBgZGSEp6dnuk6AggUL5njbclpm7htyGwmo7GBGQxcrQzdF+MCIkX3hoxATE0OnTp0IDg5m0aJF9O7d29BNEjKprrMlYdFJbyyXs3PWL6giHzFg2S6dRE2Nv/xeZ/qihW1+es9ZmxZ8arVajq1aQIIqBjNrm7T9Iu/8y2eTF1K8ci0uH9pFcmIC5Rq1ZsuUH7h9PhSAKm26IEkSZ7evxcTcgpLV63N8TQAmFpaYWlnT+481KJRKbpw6zL3L5/CfvAiAC8FbMDazQJ3wjHhVNHFRkciyzKkNy5AUSop6V6d21y8BOBL4J6qI/7hyZE9asJ9KaWRCcZ9aVOvQC4AZHWrj5FEmXaAPpD1fhVKJ4nkwq9VqSVBFI2u1FPaswL0r59Md90nj1mmBPkDRitUAeHLv1mt+E7pSX6NUrmW9uX3+FJXbdEnbplAqKexVgXuXz5EsyyiR2L59O0qlklmzZjFgwAA8PT0ZOnQow4YNY926dezYsYNBg15fdlCj0bB7927atGmTFuhDSh1mf39/FixYQExMDDY2L37nX3zxhU6gDynB/okTJ7h//z7Ozs6Zes6CIOiXnakSd2tjvSVsNRQJGXdrk/cS6EPK5767uzvu7u60bt06bbtKpeLChQs6HQAbN25Mm9Hk6OiYrgOgVKlSGBnljZDhTqya0IgEQzcjy2TgVEQCHvlMcbX6MBLvCrlD3vjLFYRsuHPnDi1atODWrVvs2LFDJwGOkPsZKyRavGE6v1ar5dKBHXjWaZphRuaXg02ftt10fi5asRohgX8S9eAOBYyLcWDxTKL/uw/Ayu/6pO2XEJvSGeBVtxnXT6SMCNs6uqDVaDi/exNe9XyxzGcPgE1BJ9Txzwg7foBSNRtiZmWtsxb/8e2bqBNS1hH+NaxHuvZGP3qQtsZelmUs7Qpw6+9jaLVanZkopha6CeQi796ibIMWGb5GLzu9dRVHls8l4lYYmuQXawTtCrul2zefk4vOz6mBf3xM5pZW2DrqHm9mlRJc2xZyfmV7ymuk0QJKCA8Px9nZmS+//JJbt24xbNgwPDw8qFkzZRZEeHj4G68bERHBs2fPKFWqVLrHPD090Wq13LlzhzJlyqRtL1o0fW3sKVOm0KNHD1xdXalUqRK+vr50795dpwNBEISc9yEkbJWRqJQLkrBZW1tTo0YNatSokbZNq9Vy48YNnQ6AVatWMWXKFABMTU0pU6ZMuk4AOzs7Qz2NDGllmW15aPr+qyRgW7iKvl52KESlBUFPRLAvfNDOnDlDixYtMDY25ujRozo390Le4WplTCMXy7Q6uS+Li3pMYqyKQsVLv/U8rwafacGr6ilbpozk9JaVmJhbks+pMH7f/IIkSawc2RdZTkmoV7FFR87vTqnprlAquX7iILGREVT06/BixL91F64dCWbJV52xKeiEsakZ2uflkwBkrRYza1sSVNH4fj0WJ4+y3Dx9lP0LpwMQdnQf4xumfy6JsTE6o+yKdxhlObNtLevGfIVXfV9qdx+IVf4CKJRKDgTMJPLurXT7S4rXjEBlcvWXQpnx8YqMzivLKDNYVTNhwgSuXLlC586d2bVrV6aum1myLKPRpjwXydiUBI0WI0lCKaV0EnXs2JHatWuzceNGdu/ezdSpU5k8eTIbNmzQWS8rCELOSk3Y+jRJA+8tbav+SICtiYJiNrlzxFahUFCyZElKlixJ+/bt07ZHRUVx/vx5nU6AFStWkJiYCICrq2u6DoASJUoYbInkjZgkniZpDXJtfZCBp0labsaoKWH7YeZTEN4/EewLH6ygoCA6d+6Ml5cXW7ZswdHR0dBNErKhsoM5iRqZww/ePbvu64JPZPgneCveLTpx49QR8jm6UrJaPdSJCSSoXoxie1RvgKmlNYlxKgDObF+HdYGClKhaNy3Yt7Sz56tV+wk7up+rR/dyJmgNyUmJrPlpIB1//gN7F/e02QGFPStQrHJN4p4+AaD50LE4lyqbdr1Vo77EztmVpgN/wMT8lVJwr/T627u489+Ny298/v/s3Up+F3e6TluiM8Mh+M/JbzzufTF63iY3NzeCg4NRqVRYW1sTGBhIrVq1aNeuXdrjqTJKdOXg4ICFhQVXr15N2ybLMk8SNRw9exGFQsHRRGt2nI/kxJ2UGt6rbsRwxDTl92CkAEdzI5wsjHC0sKNT7758+eWXRERE4O3tzf/+9z8R7AvCeyQBTw9vRvbxy5O15WWghZt1nhuttbOzo27dutStWzdtW3JyMteuXdPpAAgICODBgwcAWFhYUK5cubTgv0KFCpQrVw5ra+scb+/piIQ8O6qfSgJOR8SLYF/QGxHsCx+k2bNnM2TIEFq1akVgYCAWFhaGbpKgBzUKpUyBfDngt7QrgKmVNf/duJKtc0tKZboR62OrFqLVaNJ+ViiVFClXibDjB0iIU3HpwHaqfNotXSeCkbEJnnWb4lm3KUnxcZzbsYEzQWto0GcY5Zq05vjaxTr753dxB8DE3ILCXhUwt7YFwNjUDMt89pSoWpe3KdOgBfsWTOPivm2vTdAnPR9tSf0Z4PaF09w+H5pu1oMhpCYh9vX1Zf78+cyePZuRI0diZWXFli1b8PDwAKBBgwZpx1haWvL0qW7JQqVSSZMmTdi8eTPnrt4g0sqRc5EJPH70H5vXrcKtQlUiJQt4zQBQshZuxyRy4+ETTJ/ncjBVSpS3t6SQk1PaqJYgCDnv0aNHNGnShHPnzvHp95Px6dArXWdnbpaaeM3lA1mHbWRkhJeXF15eXnz22YsSghERETodAMePHycgIIDk5zPbihcvnm4WgJubm946b6ISNXl+qQekdFT8q1ITlah5b/kdhA+bCPaFD4pGo2H48OHMmDGDb775hilTpqRLuiXkXZIkUdPRAlOlRPDdOCRSph961WvO2e3ruHvpbLp1+5ktOFK6dmPObF+LsZk5Tx/eZd2Yr7h+8hAW+fLr7FekfBXCjh/gwKIZJD2Lo6Jve53Hn0VHYWlnr9NmSSGBBjTqJIpVqknpOk25cmgXO37/mfJNP0WhVGJmZcPWKSMxsbDE26+jzjljox5jZVfgje2v02Mg/+zdyorvPn9eeq888TFRXDq4i09HTcXJoyylazfh4r5t/DWsB6VrNebJ/XBOrFtKwWKlSHyWfonE+yRJUtpNX8uWLalfvz6jRo3i1q1blC9fnt27d5OYmIhSqWTSpEksXboUSZKoVKkSwcHBTJ8+HWdnZ4oWLUoVHx+++O4nduzeQ506taneoReS0oiTG5ahSUqi2ZAxb21P4rNYJjX7hLKNWuJUsiwmFpYsOXGQ86GhdB05nrDoRIrbmOS5kTpByEuWLVvGF198QVJSEo0bNybghwGsvP3mhK25iQTYmCio42z51n3zOgcHBxo1aqSTFykpKYnLly/rdALMmjWLx48fA2Bra8snn3yi0wFQtmxZzM2zntvgzOO8P6qfSgLOPk6gfuEP/30j5DwR7AsfjLi4OLp27cqWLVuYPXs2AwcONHSThBxS2cGcQuZGBIWriEnS0nTQaK4fP8D8Pq3xaduNgkU9iHn8H/8Eb6FfQFCmztny2wkoFEr+3rqaRzevYePgyOdz1xMwUDfwtnNyBeDGyUMULOpBYc/yOo9v+/VHkuLjKFalNraFnLh/5QIatRqnUmVxKJoyMl2765dcObSLhJhodv8xAYVSiYWtPUnxceyaNZ4nd25hU9CJeFU0t8+fYv3YIfSYGQiAyWv6rkwtrOi3aCvBf07m4v7t/B20Gqv8BSjuUxubgikJ8Sq1+ozYyEecWL+MsGP7KVjMg07j53AheAs3Q49m+vXXNwndVbgKhYItW7bw008/sXr1ahYvXoy7uztTp06lcOHC+Pv74+npyciRI5k+fTp9+/Zl9OjRxMfH096/Gw1/KMlTU1f6LtzCzlnj2b94JrJWxrWsNx1/mUORcpXe2iZjM3OqdehN2PH9XNy3DVmrxd61KK1HTqFsh16sv6kin4kCPzdrkTlZEPQsJiaGdu3aERwcjImJCUuXLqV79+4AtHBTvzZha26TOn3/Y62dbmJikhbEp5JlmQcPHuh0AOzdu5c5c+akJaL18PBINwvA2dn5tbMAZFnmXGTWS+2llokdEXQaO+ci2Xim+iUDZyMTqOdskSeXrQi5iyRndthLEHKxhw8f0rJlSy5fvszq1avx80tffkz48Ki1MgfvxxEakUD0g7vsmjuRayH7SIxTYVPQCY8aDfAb9gvndqxn3U4Xw8gAACAASURBVNjBDPxrj87I/83QEBb0baNT736ynzeFipem5+8rXnvdQ0tns2PmOJoOGkW93kN1Hvtn71ZOrl/Gg2sXiVdFY21fEI+aDWnU71usCxR67XUB7l+9wL4Fv/Lv38dIehaHlX1BXMt6U7VdD4r71EaSZU4t+ZX1syYzeu8VnRkEeV0rN2u88ptmat+xY8cybtw41q9fT9u2bQHd98L7Gt1JvU5lBzPqOlt+tDf0gqBPu3btokOHDqhUKj755BN27dqVLudOaER8hglbc5tGLpZUzgUZ+POC+Ph4Ll68qNMJcO7cOaKjUzp27O3t03UAeHp6YmpqSmRCMgsuP33LFdLLyWB//6LfKFisFGXq+77zOfp62pHfTMxOFbJHBPtCnnfx4kV8fX1JTk4mKCiIihUrGrpJwnt2J1bNtnAVT5O07yXQC1kxj22//siIoL/TlafLacF//I9GA0e912u+D1m5qdFqtXz22WcEBQVx+PBhHDzKpc3yMMQXWupU3RZilF8Q3llCQgJ9+vQhMDAQhULBuHHjGDVq1GtHNkMePstWwtacVtvJgpqOIl9QdsiyzO3bt9MC/7Nnz3Lu3Dlu3LgBpOQP8PT0pE6nXrj4dsvy+XMy2B9T042yjVrSYdzsdz5HVjrBBeF1xDR+IU8LDg6mXbt2uLu7s23bNlxcDJ9kTHj/XK2M6etlx80YNacj4vlXpc6xoF+WZUI3raBopRrvPdAHqFemGOr4OIxfzc6fhyk0yVigBjIX7CsUCpYsWULdunUZPX8Fdfp9h4RksLWaMhCTpCUwLFqM5AnCOwgNDcXPz49Hjx7h4uLC7t278fT0fOMxGSVszS3qOFlQvZD4HMguSZJwc3PDzc2NVq1apW1XqVRcuHAhrRMgwcQKjVqN0vjD6WxVSPAwPhkvRLAvZI8Y2RfyrICAAPr160ejRo1Ys2bNeynrIuQNUYkazjyO5+SjBL2dMyk+jksHd3Hz1BFObVxOt9+W41W3md7OnxmmSomh5fKz//4zTj2K/yASEWmSkzkSOJeQgN/o3Lkz3bp1o2bNmm+t0yzLMruuP+JsbO6b4ljbyYIahczFWktBeAuNRsN3333H9OnTkWWZvn37Mnv2bIwzGbRpZZldd2I5F2n4ChmpHcyiw+/9++vaU+7GJWf5uIxG9o+tCeD4mgAi7/yLha0dZer70mTQqLQqOQCPb99g5++/EH7uJAmqGCzy5ce9QlU+HfUrZtY2jPR2SHct75adsjzK72JpRFePfFl+XoLwMjGyL+Q5Wq2W0aNHM3HiRPr378+sWbMwMhJvZeEFO1MlDQpbIctwKkI/AX9cVCSrf+iHmbUt9XoPfe+BvgRUsDdDkiQqFjDj5KP493r9nKJUKvn34Hbi4+NZs2YNCxYswM3NjS5dutCtWzdKly6d4XFH/4vPlYE+vBhpFFN4BeH1wsLC8PX15fr169ja2rJp0ybq1auX6eNfXr6VG4ilPIYhyzIP47Me6Gck+M8p7J0/lRJV61K1fU8eh1/nxLol3L10lv4B21AaG5OsTiJgYCc0SYnU6NQHqwIFiXn0kCuHdxOvisbM2oaOv8xhwy9f41KmIj5tUxJLppbYzYqH8ck6pXIF4V2ICEnIUxISEujZsydr1qxh2rRpfPPNN+JDUHgtbwdzvQX7ds5FmPh3hF7O9S5koEIBs5S2mCpxtzYmXKXO06P7slaDk4lM6OH9jB8/nunTp1O4cGFKly7NH3/8wYQJE6hUqRJdu3bls88+o1ChlASHoY/ic+XU3ZcdfvAMU6UkRvgE4RWyLDN9+nS+++47NBoNvr6+rFq1KtOz815NxmlIWk0yCqWSKg7m1BFJOg1CI0OyHvp7YqMec2DxTEpWq0fP2avTZpc5uJdky+TvObN9LZVb+/Po5lWi7oXjP2UR5Rq9WFrQsO/wtP9X9OvApgnDye/iRkW/Du/cpmQtaGVQireVkA1vnicpCLnI48ePadSoEZs3b2bt2rUMGzZMBPrCG9mZKom8eg6tRj+9/oYiAUWtjbEzfTGSXcnBLE8H+gCSQsm0wb359ttvGThwIOfPn8fT05Ndu3ZRu3Zt5syZg6urKyNGjKBw4cI0b96cgA3bCL6X+7NwAwTfjeNOrNrQzRCEXOPBgwdUrVqV4cOHY2RkRGBgINu2bct0oH8nVs3Cy1Gcft6Ja7A8HdqU6NIMDV1K5qOhi5UI9A0kWU+rka+fOIRGnUTNLv10lpFVadsNUytrrh7ZA4CZlQ0AYcf2kxSf853O+np+wsdLBPtCnhAWFkb16tW5du0a+/fvp127doZukpAH7Nmzh6C5U1Ao8/YkJhmo9MoIcXEbE/KZKAw+svWuJMDGWKJrs3qsXbuWEiVKMGvWLAICAlizZg1nzpzhm2++oVKlSty6dYs//viDuIRErpg45pnOGwkICleh1oqbNUEIDAykWLFinDp1Cm9vb/7991/8/f0zfXxoRDyBYdEGq7qRRpZBkjB6EMbQSs5i2r6BafW0iuPpgzsAOLiV0NluZGxC/sJuRD24C0D+wm7U6volpzb+xfiGpQkY0IFjqxeRoIrRT0Neockdq1SEPEwE+0Kud/jwYapVq4aRkREnTpygWrVqhm6SkAdotVpGjhyJXXJcng+K85koKGaje0OpkCT83Kzz7Oi+DLRyt+H770bw77//MnbsWFauXEnJkiU5fPgw+/fvZ/DgwYwbN446depQpEgRflq+hfyFi+SZzpvULP2H7ueNmQiCkBOePn2Kr68vXbt2JSkpiYkTJxIaGoqTk1OmjpdlmZCHzwi+m/J3ZPDPPElCkiSSnUpy7L94RJ5rw3pLLtcc4ffNzwxZfZB6vYegTvw/e+cdFcXZxeFnlw7SRUBRFLGAFUVjr1gBOzZQo/HTaCwpGrH32KIp9hIb2KJGI6ixxd5AYq9gV0BQinSW3fn+QFZXUEGBZXGeczgHZt+ZubNsmd/73vu7qQQsmMAvXk2Ifxae7+fSEpWayCcivoREijSbN2/Gzc2NWrVqcebMGSpUqKDukEQ0hJ07dxISEsLcOT9pvCj2sDdGmkPJStkSOrha6WvcRIYEqGelj92rFTFjY2PGjx/PgwcPmDRpEn5+ftSsWZP09HSOHDmCvb09wyfOIDgq5dXemoNApkmkmM4v8jly4MABypcvz/79+7G3t+fq1av4+vrmqQTvzLOi69FxMiKZM8+Kh1mqpqKdT+WcZrZlAYh+GKayPUOWTuzTR5i/1WrXppIzrQb/wNA/Ahj6RwAvoyI4v2P96wH5FFd+XZ/I54so9kWKJIIgMGvWLLy9venTpw///PMP5ubm6g5LREOQyWRMnDiRDh060KxZs2IjinOieWkjTDQoc0FCpmt1s9JG2R4zMTFh0qRJPHjwAF9fX9atW0f79u2pVbs2w5ZuUdbJahoSYO/DBBTiCqDIZ0JycjJffvkl7du3Jz4+nuHDh3Pnzh2cnZ3zdBxNMeO8EC0KfnWhJQHtfFAzjl80Q0tHlzNbVqtka1zYvYnUxJdUadIGgNTEBOQZqqVkNo7OSKRSMtLTldt0DQw/ObVfWwqiFYTIp6IZuZAihYYgCJnOpoKAQpGZHqUtkaAlodDM8NLT0xk6dCjr169nxowZTJo0STTiE8kT69evJzQ0lD///FO5rXlpI0Lj09Vf75lL3ieK30RHKsHD3phNofGFE9gnkpWp8D4zK1NTU6ZOncro0aP55ZdfCDh/mZ4+JTR2dloA4tIV3Hspw9FUV93hiIgUKEFBQXTp0oWIiAjMzc3566+/8tRSL4vHiTKNMuO0NtAW6/fVgEQiwcZAmydJn+blUsK8JC0GjubIqgWs+6YnTs3bE/0wjPPb12FXzQWXjpmu+neDT7Jnni813DpR0r4iCnkGF/duRyrVonprD+XxyjjVIuz8cU76L8fEygbz0uUoV6NunmKyMdAW739FPhmJIBYbfbYIgkBMmpzI5AwikzOISM4gMiUjxxYm2tLMDx1bQ21sXv1Y6Gnl+4dQXFwc3bt359SpU6xduxZvb+98Pb5I8SclJQVHR0eaN2/O5s2bVR57nCjTGFEM4F3JNNc3jxeiU5Q1rUUZNzujPLej87v5nCfJCiTqKM7MJyRAeWMdejmaqjsUEZECQSaTMWnSJBYsWIAgCHTq1ImNGzdiapr317xMIbDmZqzGTc4OdjIXXfnVwJEniYREp5LX3K+QPVvYMW0UPwaGYF66HABnt/3B2W1/EPPkAQamZlRr5UG7ERMxMM58Hcc8fcjRNYu4F3KGl9GR6OgbYFupGi2/+g7HL5opjx39IIxds77nyY1LyFJTqOPZC6/pS3Idm1QCrlYGtCrz/gl/EZEPIYr9z5DYNDkXn6dy+UUqafLMf78UcvUh+eY4PS0JtSz1cSmpr9IS7GO5f/8+7u7uPHv2jF27dtGsWbMP7yQi8hbz589n4sSJ3Lp1i4oVK2Z7vDiL4tORyUU65fXfVQuQ37lAy5YtadWqFfXq1UNH5/2TGbFpclbeiC2kCAueoc7m+fJ5KSJSlLh16xadO3fmzp076Onp8ccff3zSZP3hV+JNk25QJYCrlT6t7UqoO5TPjusxqQQ8TFR3GPlOJ3tjnC301B2GiIajucskInlCIQiExqexNSyelTdiCY5KUQp9yJ3Qf3tcmlwgOCqFlTdi2RoWT2h82kfXpAYFBdGgQQPS09M5e/asKPRFPorY2FjmzJnDkCFDchT6kDlT3tTWsJAjyxtNbQ3zLPQBGlkX3WtzJI52lawxNDRkwYIFNG7cGHNzc9q3b8+8efMICgoiIyN7GubF56ka40fwISTApeep6g5DRCTfUCgULFy4kOrVq3Pnzh1cXV0JCwv7JKH/OFHGBQ0T+iCacaoTG8PiWZVcXK9LpHARV/Y/Ax4nytj7MIG4dAUSCqZtTdZxzXSluNsb56lubdeuXXh7e+Pi4sLu3buxsrIqgAhFPgcmTJjAb7/9RlhY2HvbOgmCUGQdnpvZGtLQ2uCTSmSyshcK6v2eW7LO/3aWQkZGBhcvXuTo0aMcPXqUkydPkpSUhImJCU2bNqVVq1a0bNmSmjVr8vv1OJWJSU1HT0vCtzUsxDpMEY3n8ePHeHl5cf78eaRSKT/99BNjx45F+gnlNgpBYNWNWOI1JH3/bSSAqa6UIc7mOXZQESkYBEHg16sx4neFiEgOiGK/GCNTCBwPT+JCdGqh3fRnncfVSp/mpY3eW7smCAKLFi1i7NixeHl5sWHDBvT19QshSpHiSEREBBUrVuS7775j9uzZudonKDKJI+HJCAoFUi31pVa/SxR/Co8TZQQ+TFBbzWtWDatHLib/ZDIZwcHBSvF/+vRpUlNTqVijDoM3HCiwGNNTkjmxYQkOro1xcG1cYOd5myFO5ljoi6n8IpqJIAj4+/szZMgQUlNTKV++PHv27KFGjRqffOzQ+DR23kvIhyjVSw8HE9GMs5D592kSwVEpGjlJ9DYSoH4pA1qK9foi+YCYxl9MeZwoY83NWEKiM1NGC+vDL+s8IdGprLkZ+850toyMDL755hvGjBmDr68vW7ZsEYW+yCcxc+ZM9PX1GTt2bK732bt8Pmv+1xkDiUJtqeJZoti7kmm+CX2AsiV0GOxkTl2rV++rQprXzXoeXa30GexknqssHx0dHRo1asTEiRM5fPgwcXFxHD9+nAGjfijQWGWpKRxZtYB7F04X6HneJjL501yjRUTUxYsXL/Dw8KB///6kpqbyzTffcPPmzXwR+pB576Dp65gSIERsxVfouJTULxZCHzLvpWuXFO+JRfIHUewXQy5Ep7ApNF6tLrYC8DJdwabQ+Gz9ZxMSEujUqROrVq1i9erV/PTTT5+U9iciEhYWxurVqxk/fjxmZma52uf48ePMmjWLL7t0YISLjVIUF9aN5seI4ryiI5XgZlcCb0cTEqMjVM6b32Qd1/TVxEVruxIf7Uqtp6dHs2bNaNS+k0Z+SaWnvNsAUiqByBRR7ItoHvv27cPR0ZH9+/djbm7OkSNHWLJkSb5N1MemyXmQINN4wSYA9xNkxKbJ1R3KZ4W5nhbljXWKxWRRBWMd0chVJN8Q0/iLEUW5DrmprSGNrA14+vQpHh4e3L9/nx07dtCmTRt1hyZSDOjTpw8nT54kNDQUA4MPr47HxMRQq1YtHBwc+Pfff9F6lcJf1P0tPpa//vqLHl5e/HUiiDRrR+4nyPLt+rKOU8FYh7pWBjiY6ORLreq0adOYPn063+86x7+rfubmyQNoa+tSv8cA2gzzJf5ZOHvm+XLvwil09A1o1n8ETfsNV+6fGBPNgcWzuHXyEKmJLylp70gTn6+p69kbgNjwR8z3yN7zuPWQsbh9/SMAd4NOcnjFPJ7euoqWtjYV6jai/cjJlHKorBx/eMV8jqxawLc7TnF0zSJunz6CeemyjNpylITnzziweBah54+TFPsCQ1Mz7KrV4X9T5vFdq5qf/ByJFC8EQUAuQIYgoFCAVAraEglaEtRat5uYmMiIESPYsGEDAJ06dWL9+vWYm5vn63nENGyRT0UsAxERyY5o81iMKKpCH+BkRDKRERGM8miGtrY2p0+fpnr16uoOS6QYcPHiRbZu3crq1atzJfQFQWDw4MEkJSXh7++vFPqQmfo+xNmcey9lhESnFIgoLp/PovhDKBQKpk6dSquWLenSOFPcxqbJufQ8lUtvtt+UgCIXF/rmOD0tCbUt9amdT+033yRrHnqL72BKVahM+5GTuXXyEEfXLMLQxJygvzbgUK8p7UdN4dL+Hez7ZSp2zrWpULcRstQUVv+vCy8e36dBr6+wKFOOq4f2sGPqSFIT4mncdyhG5pZ0mbCA3T+NpVpLd6q1cgfAppIzAGHnj7NuZG8sytjjNnQssrRUzm5dw4pB7ozcfETZkzmLzT9+RclyDrQbMVEZ+6axA3l29zYNew/GvHRZkmKeE3ruOKEPHiAINUTjpc8YQRCISZMTmZxBZHIGEckZRKZkkJFDaxxtKdgYaGNrqI3Nqx8LPa1Cef2cOXMGLy8vIiIi0NfXZ/Xq1Xh7e+f7uQVB4PKL/HXgn+deBwfXRsre5vcunGb1kC78b9XuAvfoEIBLL1JpUdpQfJ8XIhVNdDHTlWq8waODScEvAoh8Pohiv5hwIaroCv0sQjGlifdQfv3uf+91ShcRyQsTJkygcuXKfPnll7kav3LlSnbt2sVff/1F2bJlsz0ulUhwNNXF0VRXI0Txh9i+fTvXrl1j5cqVym3melq0LGNEi9KGxKYpMgVHSgbhSbIPCo7SRjrYGGQKDnM9aYHdyGY9xWWr1aHrpIUA1O/Wn/keddj3yxTajZxE8y9HAVCrfTfmtKvBhT2bqVC3EUF/bSTq/h16zlqOS8ceAHzR/UtW/a8zB5fNwbWzN3pGJaje2pPdP43FppIzLu5eKuff9+s0DE3MGbZ+P4ammSuYzi06sLhvKw6tmEfPGUtVxttWrkbvn14/xykJ8Ty8HEyHb6fRrP83yu0tBn0LZL42tEQN8NkRmybn4vNULr/5mcL7299mKOBJUgbhSRnKcXpaEmpZ6uNSQJ8p6enpTJw4kYULFyIIAvXq1WP79u3Y29vn+7kAYtLkanFSv7R/J4kx0TTx/jrfj50mF4hNU4hmnIWIVCLB3d6YTaHx6g7loxAAD3tjsZODSL4iiv1iwONEGYefvrtGtCjh0mc4Gcam6g5DpJhw7Ngx/vnnH7Zv34629oc/zq5fv853333HsGHD6Nq16wfHa4Iofh9yuZxp06bRvn17GjVqlO1xiUSChb4WFvpaOKMHZK6wKV6lEssVoPUqlVhayKnEWRMlrl19lNukWlqUca5N/LNwXDu/7uNtYGxKSfuKxDx5CMDtU4cxLlmKWu27Kcdo6ejQqM//2Dp+CPdCzuDUrO07z/0yOpKI29doNmCkUuhDpqB3/KI5d04dybbPF90HqPyto6ePlo4u9y6cpl4XbwxMVL0kMgQBLY2vLhXJDQpB4O7LdEKiU3mQQ7bQ+4S+ynHe+D1NLhAclUJQVMqrbCF9Kpro5otIuHr1Kl5eXty+fRupVMrs2bP58ccfVbKg8pvCMK0sX6chM84+RkvndXr0pf07eXb3VoGIfci8LlHsFy5lS+jgaqVPSHT+ZooUNBIyPXzsCqG0T+TzQhT7Go5MIRD4MEHt/bRziwQIfJjAYCfzjzbvEhGBTFE6fvx46tatS/fu3T84PiUlhd69e1OxYkUWLlyYp3MVZVH8PrZs2cKtW7fYuHFjrveRvKoR1kICarxHzXKTMbMpo7Jdv4Qx2nr6GJlbvrXdhOT4WADiIp9gWdYhm/FnqQqVMh+PePzec8dFPAHAyr5itsdKVahM6NmjpKckoWvwuh7XvIzqiqe2rh7tR01m3y9Tme3mTNkadanatC11PHpiXNIauQK1Pr8ihcPbPiCQf9/VWcd5mCDjQYLsk31A5HI5CxcuZMKECSgUCipUqMDOnTtxcXHJp4jfTWRyxgczHD4VqVSKVK/gHc7lGRkIggJdXV0iUzKU3xkihUfz0kaExqer1ag6L2R15WlWWvR4EMl/NNHoWOQNjocnacyHGbx26T8RrhmZCCJFlz179nDu3Dnmzp2bK3E9duxYwsLC2Lp1a65q+z+ERCJBSypBT0uKoY4UPS0pWlJJkRH6GRkZTJ8+HU9PT+rVq6fucPJM1tMolWZXxO/s3qFGv1mdHEREE++v+WHXOdqNnIS2nj6Hls9lUffGhN+6QmDAHlJTU9UQqUhhIFMIHH6SyKbQeOLTMyVsQb06s44b/6oDzuEnichyU2v0Bvfv36dx48aMGzcOuVzOsGHDuH79er4L/YcPHzJ8+HCqVKmCgYEBlpaWeHl5ceXOPRWhf3jFfMbXscq2f8ieLYyvY0Vs+CPlNkEQ+HfNQua0r8mURuVYPaQLz+7eyrbvvQunGV/HStlqc9X/OnP71CHiIh4zvo4V4+tYMc+9jnJ8Ykw0O6ePZrabM5Mb2PFbrxaEBGxVOWZs+CPG17HixMalnNq0ggWd6jG5QRmi7t1GIcD6FUupVq0ahoaGmJub4+rqyubNmz/xWRT5EDpSCR72xhp1b+xhbywugokUCOLKvgbzOFHGhWjNu1kUgODoVCqb6RWKE7lI8UMulzNhwgTc3Nxwc3P74Pi///6bpUuXsnTp0s/GGNLf35+wsDD+/PNPdYfyUXzKPY+ZjR2RYTdQKBQqEwPR90MzH7d95dXwjokZM1u7zPEP72Z7LPpBKEZmliqr+u/DsmwFmvYbTtN+w3n+6C6/927FSb/lLDv0N8YljPDy8sLHx4cmTZqILUiLCY8TZQQ+TOBlAYv8t8k6T0h0KqHx6XjkYpVfEATWrVvHN998Q3p6OhYWFmzevJl27doVSIzBwcGcOXOG3r17Y2dnx4MHD1i+fDlHTp/n2x2n0DUwzPMxDy2fy9E1i6jSxI0qjd0Iv3WFtcO9kMtk792v5VffkZr4kpfPInD/YSYAuoaZ7+vcmHy+ScieLWSkp1G/Wz+0dHRfmYj6sWvWOHr06MHo0aNJTU3lypUrnD9/nr59++b5OkXyRtkSOrjZGXH4SdFfXHKzMxLvh0UKDFHsaygKQWCvBqXvv40E2PswgSHO5qIRiUie8fPz48aNG6xfv/6DY588ecKgQYPo3Lkzw4YNK/jgigAymYwZM2bQrVu3QknBLQg+5VOhShM3Qs8d48rB3dR+Vbcvz8jgzLY16Boa4VA3079AVz8zwyMlQdXMycTKBtsq1fkvcCstBo3G4JXPSGTYTULPHaP2K9O/95GekoxEKlVZ8bewq4CekRHy9FT8/f0IDgpi586drF69Gnt7e7y9vfHx8cHJyekTrl5EnVyITuHwkyS1fjdnZdBtCo3Hzc4IV6ucM5mePXvGoEGD2LdvHwCenp6sW7cOS0vLHMfnB+7u7vToofr+6eDuQdPGjbh2JJA6Hj3zdLzE2Oec2LCEKk3aMOC3TcrMqgNLZnNs7a/v3bdSgxac3ryKlJfx2Qw6c2vymUV8VDhj/g6ihHlJ5bbbpw5hXbEqW7f9iZa4YqsWXK0MSJMLRdrAuqmt4TvfoyIi+YEo9jWUuy/TiUsvyOq2gkUA4tIV3HspE3uJiuSJ1NRUpk6dSo8ePT6Yni6Xy+nXrx8GBgb88ccfRSbFvqBZv349Dx48YM+ePeoO5aP5lP9V/W79Cdq5kR1TRxJ+8zJmtmW5diSAh5eC8BgzS3mTrqNvQCmHKlw9tJuS9hUxNDXHumJVbByd6PjtNNaN7M3yAR1w7eKtbL2nX8IEt6E/fjCG54/usubr7tRs05lSDpWRamlz/eg+El9EY125On169wbAzMyMqlWrIpPJWLRoET/99BNVqlTB29ubwYMHi51LNARBEFTa36p7Ej7r/IefJJEmF2hkbaDyntq9ezcDBw7k5cuX6Ovrs3z5cgYMGFDgn5FvllDJZDJevnxJ+YoV0Tc2JfzWlTyL/bDzJ5DL0mnUe7BK7I29h35Q7L+PvJp8Vm/loSL0AfSNTYh/Fs65oCAaN/jio2MR+TQaWWe+5oqi4G9ma0hDa1HoixQsotjXUEKiUzV2VT8LCRASnSKKfZE8sWLFCp4+fcqsWbM+OHbu3LkcP36cf//9t0BXq4oSaWlpzJw5k549exaLkoWPSWzX0Tfgf6t388/vM/kvYBupSQlY2TvSY9rv1O3UR2Vst8m/EDB/PHsXTkYuS6f1kLHYODrh+EVzBi7exuGV8zi8Yh5SbW0c6jSi/agpWLxlxpcTptZlqNWuK3eDTnJx759ItbSxKl8J7/lr8O7elfn/60lYWJjKT3JyMhEREdy+fZspU6YwZcoUjI2NcXJyomnTpjg7O+Po6IijoyO2trafzeSVJvCm0C9qZMXV2MaQ+Ph4Ro4ciZ+fHwCurq5s27YNBweH9FDmygAAIABJREFUQoklJSWFOXPmsG7dOp4+fYrwhs9GauLLPB8vy2yzZDnV+EuYl8zWASNPx82jyefbBp0AzQeMIuz8CZo0bICjoyNt27alb9++NG7c+KPjEsk7EomExjaG6GlJ1J51AyjP/76sGxGR/EQU+xpIbJqcBwnvr0XTBATgfoKM2DR5ofceF9FMXr58yezZsxk4cCBVqlR579izZ88ydepUJk6cSIsWLQonwCLAH3/8wdOnT5k2bZq6Q/kkpk2bhtcoXwIeJqps95q+BK/pS7KNH7L6b5W/S1hY0WPa7x88j32teozYdDjHxxy/aIbjF83eu7/b1z/i9nX2lX4jMws6+87L+ZxmRjg7uORYYpGUlMS9e/e4ePEif//9N2fOnCEoKIjg4GAVYWRoaEjFihWV4v/NHzs7O7H+vxC5EFV0hX4WJyOSeXwvjB+8OhAZGYlUKmX69On4+vrmqm1pfjFy5EjWrVvHt99+S8OGDTE1NUWmEPDq3QdBeCNb8R0TWQqFvJAizRs5GXSWcqjMD7vO4vDwDEcOHmTnzp0sW7aMKVOmMH36dDVE+XnjamWAtYG20k9DHYI/y3U/N34aIiL5hSj2NZCLzzV/VT8LCXDpeSoty4jtRkQ+zKJFi0hMTGTq1KnvHRcfH0/fvn2pX7/+B8cWJ1JSUpg9ezZ9+/alatWq6g7nk7ExLJ5fUZY67y7BMjIyokaNGtSoUYP+/fsDmU7pmzZtYuPGjYSGhmJubk7NmjUpVaoUcXFx7Ny5kwcPHqBQZB5XT08PBweHHCcCypUrV6jirrjzOFHG4adF3wAM4L6eDXrW5bDX02Pbtm1q6dKxY8cOBgwYoNL+NDE5hdS3fDMMTDJ9MlIS4pWeGfC6LWYWWWabzx/dw8Ku/Otjxj4n5WXcB+N5V3ZMrk0+P4CugRF9evXGp08f0tPT6datG7Nnz2b8+PHo6xd8G0ARVcqW0GGwkznHw5O4UIgZslnncbXSp1lpI9F1X6RQEaf+izDTpk1DIpHw/Plz5TZBELj8IrVYCH3I/PC79CJVZcVKRCQnoqKiWLhwISNHjsTOzu6d4wRBYOjQocTExLB58+bPStisWrWKZ8+eMWXKFHWHki9Y6Gmhp1W8bopSEuKpXNaWXr164efnx4sXLz64T4UKFZg0aRK3b98mODiYfv36cePGDbZv387Tp08ZPHgwt27d4s6dO+zbt4/58+fj5uZGRkYGgYGBjB49mnbt2lGxYkUMDAyoXLkyHTt2ZNSoUfz+++/s27eP0NBQ0tPTC+EZKD7IFAKBr4xyNQGFoGDgLxv57/IVtbXj1NLSyvZ9v2zJYhRy1RV7y1fC/f5/Z5Xb0lOS+C9gm8o4xy+aoaWtw5mta1SOe3rTylzFo2tgmGP5QJUmbiQ8j+LKwd3KbTmZfL6PpLgYtKWvO4vo6uri7OyMIAjIPtApQKTg0JFKcLMrgXclU0x1M2VQQb2Hs45rqivFu5Ipre1KiEJfpND5fO6CiwkxaXLS5OoXxrdOHeLJtYs5pq/mlTS5QGyaAgt9MZVf5N3Mnj0bLS0tfH193ztu/fr1bNu2ja1bt1K+fPnCCa4IkJyczJw5c+jfvz+VKlVSdzj5gkQioZalPsFRKcViglMCOBlLGPPDDwQEBNC/f3+kUikNGzbE09MTDw8PnJ2d37naKJFIcHV1xdXVlZ9//pnDhw/j5+fHzJkzmTBhAs2bN8fHx4f+/ftjZva6XjkjI4NHjx4pvQHu3r1LWFgYR44cYdWqVaSlpQGZQqxcuXI5ZgQ4ODiIK5FvcTw8SW3pwB+DlpY22ibmhMRDa2P1xODh4YGfnx+mpqY4Oztz9uxZDh8+TAkzC5VxlRq0xMzGjr+mf0t0/2+Qamlx4e/NGJlbEhf5enW/hHlJmvYbzrF1v7FhdN/M1nu3r3Ln9BGMzD7s01LGqRZXDu4mcOFk7Kq5oGdghFPzdrk2+Xwfa4d7YWVtTXrbFlhbW3Pz5k2WLFmCu7s7xsZq+geIKClbQochzubceykjJDqF+wmyfFvpzzpOeWMd6loZ4GCiI3aeElEbotjXMCKTM9QdApDpVHvuz7X5IvYh87pEsS/yLrJ6MU+bNg0LC4t3jrt9+zYjRoxg0KBB9OrVqxAjVD/Lli3jxYsXTJ48Wd2h5CsuJfUJikpRdxj5ggC0c7ant8tkJk+eTGRkJHv37iUgIIAZM2bg6+tLhQoV8PDwwNPTk+bNm6Orm7OBqY6ODh06dKBDhw4kJCSwa9cu/P39GTp0KCNGjMDDw4N+/frRoUMHdHV1cXBwwMHBgbZt26ocR6FQ8PTpUxWjwNDQUE6dOsX69etJScl87iUSCXZ2djlOBFSsWBEjo8+rFOtxoowL0anqDiPPCEBwdCqVzfTUUjP822+/IZVK8fPzIzk5GRsbG2xtbXlxOxRB8bq8RUtHB5+F6/l7zjgOLZ+LsWUpGvcdioGJKTumjVI5ZptvJqCtp8/5Heu5d+E0ZavXYdCy7awf9eFe9g16DiT8zjVC9mzh9KYVmNmWxal5uzyZfL7z2D0GEHboL2X5mZ2dHaNGjWLSpEl5e9JECgypRIKjqS6OprrEpsm59DyVSy9SlYtqUgkocqH+3xynpyWhtqU+tUvqi35UIkUCiSDmTxdZpk2bxvTp04mOjqZkycyWLkeeJBISnYq6m+79PXcc5/5cy5z/oj/5WFJJpnFKK7FuX+QdDBgwgAMHDnD37t13ioq0tDQaNmxIcnIyISEhn5X4SEhIwMHBgW7durFyZe7SVzWJrWHxPEyQacwKak5IyFzl6eVomuPjqampHD16lMDAQAICAnj8+DHGxsa0bdsWT09POnbsiJWV1QfPEx4ezpYtW/D39+fSpUtYWFjQq1cvfHx8aNiwYZ4c/AVBICIiQiUb4M0JgYSEBOVYW1vbHCcCHB0dMTExyfU5NQGFILDqRizxGrSq/yYSMtOKhzibF8pqY1xcHMHBwQQFBSl/IiMjAShbtiz169enXqfeCDVaFHgshU0ne2OcLfTUHYZIHhCEzGzTyOQMIlMyCE+SEZmSQUYON97aUrAx0Ka0kQ42BtrYGGpjricVO6WIFClEsV+EyRL7oaGhzJo1i927d5MuV+Dc0p1OvvPQNTAEMuvIjq37jf8CthL/LBzjktbUbt+N1kPHoq37+ktmfB0rWg8Zm201fp57HRxcGykdruUyGUfX/sqlfduJfxaOjoEhpSpUovWQsVRq0ILtU0dkq5sDlMI/PSWJQ8vncfXQ3yTGPMe8dFnqde1H037DVT4Ax9exokHPQTh+0ZyjK+YQ/fAejo6OLFy4kPbt2+f78ymimVy7do2aNWuyZMkShg8f/s5x33//PUuXLuXcuXM5upwXZ+bMmcO0adMIDQ2lXLly6g4n37kSEce+yKKR1fQp9HAwyVWrUUEQuHr1KgEBAQQEBBAUFARAgwYNlKv+1atX/+AN5bVr1/D392fTpk08efIEBwcHfHx88Pb2pnLlyp90LYIg8Pz582ztA7MmAmJjY5Vjrays3jkR8L5MnaJKaHwaO+8lfHhgESe3r8e8kJaWxuXLl5Wi/vz589y5cwcAU1NT6tWrxxdffJEp8OvVw9bWFoCg63f4N13zXgsfYoiTuZi1WAwQBAGFABmCgFwBWlLQlkiQSt5t8igiUlQQxX4RJkvsu7i4UKFCBVq3bs2Gw2cJ2uVPswEj6TA604QrS3xXd/PEwbUJj6+FcDHwT5xbdqTfwg3K4+VW7B9YMpvj637DtYsPZau7kJqUyNMbl7CtXI3mX47i4eVgDq+cT9i5Y/ScuUx5HBd3LwRB4I+vu3Pvwilcu3hjW7k6oWePcvPEARr3HYrHmFkq8dhWrkZizHMa9RpIe0drFi9eTGRkJI8ePfps+qKLvJ/OnTtz7do1bt68+c6U5v3799OxY0d++eUXvv3220KOUL3Ex8dToUIF+vbty5Il2VvSaTIZGRmsWbOGadOn039VIOalyyLRwJZyn7qS+uzZM/bt20dgYCAHDx4kMTERe3t7pfBv0aIFenrvXj1UKBQcP34cf39/duzYwcuXL6lfvz79+vWjV69eucoYyCsxMTHZsgGyfqKiopTjzM3N3zkRYGVlpfYbaUEQkL+6yVcoQCqFXfde8jBRsyefPpRpkhsUCgV37txRWbG/dOkSMpkMXV1dateuTf369ZU/lSpVUjrbKxQKLly4wK5du9i1axd37txhyrFQ9I0/Pp6ihp6WhG9rWKj9NSwiIvJ5I9bsawAuLi788ccfZCgEXjbsSVJcLBf+3kSH0VOIuHON/wK2Ua+rD90m/wJAw56DKGFuxUm/pdwNPkXFek3ydL7bpw5RubEb3SYvyvFx+1r1KFnOgbBzx3Bx91J57Obxf7gbfJK2w8fTcvD3mfH0+opNPw7izJZVNOz1FZZlKyjHR90P5bsdp7AsW4GRtSxp1aoVtWrVYsuWLYwYMSJPcYsUP06fPs2ePXvYvHnzO4V+ZGQkAwYMoEOHDowePbqQI1Q/v/32G8nJyYwfP17doeQbgiCwd+9exo4dy+3bt+nfvz+9qtlwKF7zhD5k1kl72Bt/dMq0tbU1AwcOZODAgaSlpXH8+HHlqv/SpUsxMjKibdu2eHh44O7ujrW1tcr+UqmUli1b0rJlS5YsWUJgYCB+fn589913fPvtt7Rv3x4fHx86deqEoaFhPlwxWFhYYGFhkaPr+8uXL3OcCDh+/Djh4eHKccbGxu+cCLC1tc13ESUIAjFp8sz03eQMIl6l8eaUvqvpCMD9BBmxafJc1xVHRESoCPvg4GDi4zNb5lWpUoX69evTv39/vvjiC2rWrJltAkomk3H06FF27drF7t27efr0KZaWlnTq1IkFCxYQlhBJsoERWsWgg4oEqG2pLwp9ERERtaP5n6ifAV9//TWQubIAUN6lAdeP7iU1MYHbpw4D0MR7mMo+TfsN46TfUm6fOpRnsa9vbErUvds8f3SXkuUq5mnf26cOI9XSolGfIarx+Azn2uEAbp8+QqPeg5XbHb9ophT/GYJAzZo1MTEx4d69e3k6r0jxQxAEfH19qVWr1jvN9hQKBQMGDEAqlbJ+/frP7sYqNjaWRYsWMWzYMMqUKaPucPKFkJAQxowZw7Fjx2jVqhWbN29WlmXEvvIs0aR0NAmZvZXt8skMTU9Pj7Zt29K2bVt+//13rl+/TkBAAIGBgQwePBhBEKhfvz6enp54enpSs2ZNlfeFgYEBXl5eeHl58fz5c/7880/8/Pzo06cPxsbGdO/eHR8fH1q0aIGWVsGkH5uYmODi4pJjuU1SUlKOEwHnzp3j8ePHynGGhoZUrFhRKf4rVaqk/L1MmTIqvdE/RGyanIvPU7n8pjEXqN0bp6CRAJeep9IyB7+chIQEQkJCOH/+vFLcP3mS6YJvY2PDF198wY8//kj9+vVxdXVV6f7wJsnJyRw8eJBdu3YREBBAbGws5cqVo3v37nTt2pUmTZqgra1NcnIy45q1ov/qwIK85EJDAGqXFLtXiIiIqB9R7GsAWTW4WUa1BiaZaW4pL+OIjXiCRCpVWS0HMC5pjb6xKbERj8krbb4ex8bv+7OwSwOsHZ2o3LAVLu5e2Fau9sF9YyMeY2xlk60tTakKmfWhcRFPVLab2bzuly5XAFqZaZ1v1nuKfJ7s37+fU6dOsW/fvnfeuC9atIiDBw9y4MABSpUqVcgRqp9FixaRnp7OuHHj1B3KJ/Po0SMmTpyIv78/zs7O7N27lw4dOqgI1ealjQiNT9eYdmcSwERXSrPSBWMWKZFIqF69OtWrV2f8+PFER0ezf/9+AgICmD9/PpMnT6Zs2bJ4eHjg4eFBq1atVNrnlSxZkuHDhzN8+HDCwsLYtGkTfn5+rF+/njJlytC3b198fHyoWbNmgcSfE0ZGRtSsWTPHc6akpHD//n2VSYC7d++yc+dOHjx4gOLVl6Senp5yIuDNCQFHR0fKlSuHtrY2CkHg7st0QqJTeZBDy63iLvQh83ovvUilsZUO165dU1m1v3HjBoIgUKJECVxdXenbt68yHd/Ozu69E6uxsbEEBgaya9cu/vnnH1JSUnB2dmb48OF07dqVOnXqZNt/8eLFhF4OwVpLRpRcRyPe3+8iq0RCdGIXEREpCohiXwPIWl3Jrnfe+Dr8hBVNQSFX+btC3UaM3RPMjWP7CT13jODd/pzevIIuExZQr2u/jz5PTrxZf6v1xvWJVhKfNwqFgvHjx9OsWbN3mjVeuHCB8ePHM3bs2GztxD4Hnj9/zq+//sqIESOwsbFRdzgfTXx8PHPnzuWXX37BzMyMlStXMmjQILRzSOXVkUrwsDdmU2i8GiLNO1np+zrSwsk4sbKyon///vTv35/09HROnDihTPdfvnw5hoaGuLm54enpibu7u9IcDcDR0ZGpU6cyZcoUzp8/j7+/P2vXrmXBggXUrFkTHx8f+vTpg52d3XsiKFgMDAxwdnbG2dk522Pp6ek8fPhQaRCYNRkQGBjI/fv3ycjIrLHX1tamQfvOtBo9HQNLa1AouHRgF4kx0TTx/vqj4kpPSebEhiU4uDbGwbXxJ11jYZMmF6hQvTbhoTfR0tKiZs2aNGnShB9++AFLS0suXLjAoEGDKF++/HuP8/TpU3bv3s3u3bs5duwYGRkZNGjQgGnTptGlS5f3GkLGxMQwZ84cvv76a5rYW2i8+aEA1LUyUHcYIiIiIoAo9jUK7RwEvbmtHYJCwYtH9yjl8PrLNOFFFKkJ8ZjbllVuMzAxIyVB9SY5Q5ZOwvNn2Y5raGqOa+e+uHbuS1pyIqsGd+Lwytdi/12z+ua2ZbkbdIK0pESV1f2oB6EAmNm++0Yxp+sT+TzZunUrV65c4fTp0zm+1hISEujTpw+1a9dm1qxZORyh+PPzzz8jCAJjx45VdygfhUwmY9WqVUybNo2kpCR+/PFHxo4di7Gx8Xv3K1tCBzc7Iw4/SSqkSD8eNzsjtfQyB9DV1cXNzQ03Nzd+/fVXbt68qWzrN3ToUBQKBa6urnh6euLh4YGLiwsSiQSJREKDBg1o0KABixYt4sCBA/j7+zN58mTGjRtHy5Yt6devH926dStSLfV0dXWpVKkSlSpVokOHDiqPZWRk8OjRI+6E3eWGzIg020ogvFq7l0q5tH8nz+7e+mixL0tN4ciqBQAaJ/YBvp/6Ew0rlMLFxQUDg9cidceOHcycOZNWrVrlKPZv376tNNgLCgpCW1ubli1b8vvvv9O5c2dKly6dq/PPmTMHuVzO5MmTKWmii5muVOPbGjqYqOd9LyIiIvI2mul29JmiJcns6fkmVZq4AXB6s2pv7VP+K1493ka5zcKuPA8unlUZF7RzIwq56sp+UlyMyt96hiWwLFsBeXq6cltW27+3Jw+qNHFDIZdzdtsale2nN61AIpFQpXHrHK9NWwqFtPglUsRJT09n8uTJdOrUiUaNGuU4ZsSIEURGRrJly5Z3GvcVZ549e8bixYsZPXp0gTipFySCIPD3339TvXp1Ro4ciaenJ6GhocyYMeODQj8LVysDmtrmj5FcQdHU1hDXIrK6J5FIcHZ25scff+TkyZNERUXh5+eHg4MDCxcupG7dutjZ2TF06FACAwNJTk4GMgW0p6cn27Zt49mzZ6xZswZBEBg0aBDW1tb07t2bvXv3IpPJ1HyF70dbWxudUmW5X6YustKVMyc1pGKKNWR+77q0aEOjRo1UhH5OCILAhQsXmDhxIs7OzlStWpWZM2diZ2eHn58fUVFRHDx4kGHDhuVa6D969IjFixczZswYSpUqhVQiwd3eWCOFPny6GaeIiIhIfiOu7GsQEokEGwPVf5lt5erU8exF0F8bSUmIp0LdRjy5/h//BWzDuWVHFXO+el182P3TGPzHfEmlBi2IuHOdO2ePYmSm2uLu1x5NqFC3EWWcamFoasaTG5e5djiABr2+Uo4p41QLgID5E6jUsCVSLS1qtetK1WbtcHBtwsGlPxEb/hibytUIO3eMG8f207jv0GzeAlnYGGh/duZqIjmzevVq7t+/z549e3J8fNOmTWzcuJGNGzfi6OhYyNEVDebPn4+2tjY//PCDukPJE8HBwYwZM4YTJ07g5ubGn3/+Sa1atT7qWI2sM4XJyYjk/AwxX2hma0hD66Ih9HPC0tISHx8ffHx8kMlknDx5Urnqv2rVKgwMDGjdurUy3b9MmTKYmpoyaNAgBg0axOPHj9m8eTN+fn54eHhQsmRJevfuTb9+/ahXr16R+yw/fj+KCRMnc+PYfhKeP0O/hAm2lavRftRk9i6awv2QM0BmO1gAM9uyjNv7HxmydI6uWcStk4d48eQ+igw5ZarWwG2Yr/K7NTb8EfM96gJwZNUC5Qr/m21uo+6HcmjZT9wNPoUsNQXrilVpNWQMzs1flyiF7NnCjmmjGPpHAFcO/c2Vf3Yhz5BRs20XPMfNQZaaQsD8Cdw8cQCA+l370X70FJXnWqFQcGbLKoJ3+RPz5AH6JUxwbtGB9qMmY2Dy2kBvnnsdrCtWpcXAUexdNIVnoTewK1OaadOm0b9/fwDWr1/PwIEDAWjZsqXK82lhYUHDhg3R09Pj8ePH7Nu3j//++49///2XtWvX5ul/M3XqVExNTfn++++V28qW0MHVSv+zN+MUERERyQ9Esa9h2Bpq8/ZtVLfJv2JRpjwhAVu5cXQfJUqWosXA0bQeqpreW69bP2LDH3Jh92bunDlKeZcv+GrZdtZ83V1lXKPeg7lx4gCh544hl6VjZmNHm+Hjadb/dSu8aq08aNh7MFcO7ObSvu0IgkCtdl2RSqX0/9WPQ8vncfXgbkL2bMGsdFk6fDuNpv2G53hNUgmUNhK/HEUgMTGRmTNn0r9/f6pVy24Iee/ePYYNG4a3tzf9+uWvf4SmEB4ezrJlyxg3bhwWFhbqDidXPHjwgIkTJ7J582aqVavG/v37adeu3SeJQolEQmMbQ/S0JBx+kpTNYK2wyTq/m51RkVnRzw06Ojq0atWKVq1asXDhQm7fvq0U/sOHD0cul1OnTh08PDzw9PSkTp06lC1blnHjxvHjjz9y+fJl/P392bx5M0uWLKFSpUrKiQQHBwe1XpsgCJx5lsLobzK7wTTs9RWlHCqTHBfLw0vnibofSsuvviM18SUvn0Xg/sNMAHQNMw0V0xITCN7lT6323ajfrR9pSYlc+HsT677pyXC/A5SuUgMjc0u6TFjA7p/GUq2lO9VauQNgUynTV+DZ3VusGOiOSSlbmn85Cl0DQ64e+hv/7/vjvWCdcnwWe+aPx9iyFK2//pHHV0MI+msj+samPLochKmtHe1GTOT2qcOc2LgEa8eq1PF43alk9+wfCAnYSl3PPjTq/T9iwx9ydtsfhN++ytdr96Kl8/p7NubJfTb9OAjXzt64evbi0cE/+fLLL6lbty4ODg6kp6fj5OTEzZs3gUzjXFdXV4YMGUKjRo2oXr06VlZW+Pr6YmZmxoMHD/jrr7/y9P+5evUqGzZsYPHixdmyekQzThEREZH8QSKITmgaxfWYVAIeJqo7jHynk70xzhZ6Hx4oUqyZPXs2M2bM4Pbt29lqRGUyGU2aNOH58+dcvHixSNULFyajRo3Cz8+P+/fvv7PdVVEhLi6OOXPm8Ntvv2Fubs7MmTP58ssvczTf+xQeJ8oIfJigNmGQdaPvYW+sthr9giAmJoZ//vmHwMBA9u/fT1xcHLa2tri7u+Ph4YGbmxtGRpniRi6X8++//+Lv78/OnTtJSkqiUaNG+Pj40LNnTywtLT9wtvzndGQyJyOSmd6sIrU79qCz77wcx60f1Zdnd28xbu9/KtsVcjkKhRxtndelQikJ8Szq1pCqTdrQfepvACTFvmBW66oqq/lZrPm6O0kxz/nG/yDaupnfcYIgsHKQO4mxLxiz+zzwemW/UsOWDFyyTTkRtvzLjjy+eoH63QfQZcICZVzzPepgYVeeIav/BuDBxXOs/MqTXrNXULvD6wn8O2f+Zd2IXirb57nXIS7iMUPW7KFCnYYAdC0RS41q1Shfvjzh4eEkJSVRunRpwsPDWb58OUOHDlXGtHv3brp27UpwcDCurq55/bco8fDw4Pbt29y4cQMdnezvm8eJMo0x4wTwrmRarN7/IiIixQOxZl/DsDEsnskYxfW6RHLPixcvmD9/PsOGDcvRDGrKlCn8999/bNmy5bMV+k+ePGHlypWMGTOmSAv99PR0Fi9ejKOjI0uWLMHX15fQ0FAGDx6c70IfMtN+BzuZU9cqs61cYSWRZ53H1UqfwU7mxe5G38LCgr59+7J582aioqI4duwYffv25cSJE3Tp0gVLS0vc3d1Zvnw54eHhtGnThg0bNvDs2TM2b96MqakpI0eOxNbWli5durBjxw5SU1MLJfYLUSnKEg99Y1MeX/uPl9GReTqGVEtLKfQVCgXJ8bEoMjIo41Sbp7eufHD/5PhY7gWfpEbbTqQlJZIU+4Kk2Bckx8VQqWErXjy6R3xUhMo+9bp4q2S8lK1eB0EQcO3irRJXGefaxDx9qNx29fAe9EuY4NigufI8SbEvKONUC11DI+5dOKVynlIOVZRCH6BuvfrIZDKio6OZOHEiN2/e5LffMiczqlatqhJT1mdPYGDgR/s1HD9+nL179zJ79uwchT68NuPUBNRpxikiIiLyPkSFpWFY6GmhpyUhTV58EjL0tCSY64nzTp87c+fORaFQMGHChGyPHTlyhHnz5jFnzhzq16+vhuiKBrNnz8bY2JhRo0apO5QcEQSB3bt3M27cOMLCwhg0aBAzZszItVnXp6AjleBmV4IqZnrsfZhAXLqiwFL7s45rqivFvZit5r8LHR0dmjdvTvPmzfn555+5c+cOgYGBBAYGMnLkSIYPH06tWrWU7v69evWiT58+PHv2jG3btuHn54eXlxempqZ4eXnh4+No5NhqAAAgAElEQVRD06ZNkWbvKfvJPE6Ucfjp624NHUZPYfvUkcztUIsyTrWo0tiNOh49sbAr/8FjhQRs5ZTfcqIfhCLPeC1szcvYf3DfF4/vIwgCh5bN5dCyuTmOSYqJxrTU6xaIpjaqHWv0S2RObJpal35ruzEpL+OUfz9/dI/UxJfMbu2U43kSY56r/G1mU0bl7zlz57N5w1r09fUZP348ANeuXcvxWM2bN6d79+5Mnz6dX375hRYtWtClSxf69u2Lnt6HM/QEQWDcuHG4urrSo0eP9451tTIgTS4USW+OLIqSGaeIiIjI24hiX8OQSCTUstQnOCpFI+rYPoQEqG2pX+QMnUQKlydPnrB48WJ8fX0pVaqUymPR0dH069eP1q1ba2ybufzgwYMH/PHHH8yaNSvXrvWFyfnz5xkzZgynTp2iXbt27Nixg5o1axZ6HGVL6DDE2Zx7L2WERKdwP0GWb6I/6zjljXWoa2WAg4nOZ+u6XblyZb7//nu+//574uLiOHDgAAEBASxdupRZs2ZhbW2tTPcfNGgQo0aN4tatW2zatAl/f3/WrFlDuXLl8Pb2xsfHB2dn53yJS6YQCHyYoPI/r9m2C+VdGnD96D7Czh3jxMalHN+wGJ+f11Glsds7j3Vx73Z2TB2Jc8uONO3/DSUsSiLV0uLY2t948eTBB2MRFJnt/Zr2+4bKjVrmOMayrKqvgVQr5y4B0py6B7xRhSkoFJSwsKLX7OU57m9krlpG8XY3giH/+4qdWzeRm8pOiUTCjh07OHfuHAEBARw4cIBBgwaxcOFCzp07R4kSJd67/65duzh//jxHjhzJ1WSPaMYpIiIi8vGIYl8DcSmpT1BUirrDyBcEoHZJfXWHIaJmpk2bhrGxcTZ3eUEQGDhwIDKZjI0bNxbIKqCmMGvWLMzNzfnmm2/UHYoK9+/fZ8KECWzdupWaNWty4MAB2rZtq9aYpBIJjqa6OJrqEpsm59LzVC69SFVmREkloMiF+n9znJ6WhNqW+tQuqY+5nti27U3MzMzo1asXvXr1IiMjg7NnzxIQEEBgYCBr165FV1eXli1b4unpyeDBg5k+fTpnzpzB39+fFStWMGfOHOrUqYOPjw+9e/fG1tb2wyd9B8fDk3L0bjCxsqFhz0E07DmIxJhoFvdtzdE/fqFKY7d3TjZfOxKAhV15fH5erzLm8Iq3av/fsb+FXebqv5a2No5fNP/oa8oNlnbluRt0Avta9dHRz7v41M7hGnJ6XgRBQC5AhiBQs259aterz/SZs9i2ZTM+Pj5s3bqVwYMHv/M8GRkZjB8/nnbt2tGqVatcxSaacYqIiIh8PJ/vnbMGY66nRXljnUKrSy0oJEAFYx3xxvkz59atW6xbt45JkyZlW7FesmQJe/fuZf369Z8kADSdu3fvsn79enx9fZWGaOomNjaWMWPGULVqVY4fP87atWv577//1C7038ZcT4uWZYz4toYFQ5zM6WRvjKuVAXZG2mi/4xtQWwp2Rtq4WhnQyd6YIU7mfFvDgpZljMTPqw+gra1N06ZNmT9/Pjdu3CAsLIz58+eTkZHBt99+S/ny5alduzb79u1jwIABPHnyhL/++ovy5cvj6+uLnZ0d7dq1w9/fn8TEvJnRPk6UceGtdm0KuZzUhJcq40pYWGFiZUNGejoAugaGpCaqjgGQvJpcfHO1+9HVEB5duaAyTveVuE5JUDWTK2FhhYNrY87/tTFHv4DE2OfZtn0sNdp2RiGX8+/qhdkek2dkZIvtTbSlmRNbb2NoaAjAlcdRHHmSiP+dOBZeecHMk3f55fILfr8Ww69XYvj58gsuGZTPHBv5kusxqbxIzcgxS2Dt2rWEhoYyd27OZQ3vw9XKAO9KppjoStV2/5NlxuldyVQU+iIiIhqBuLKvodS10udBwscZ4xQVBKCu+GX52TNp0iTs7Oz4+uuvVbZfvnyZMWPGMGrUKNzd3d+x9+fBjBkzsLKyyvYcqYP09HSWLVvGjBkzSE9PZ9KkSXz//fdFZhLiXUgkEiz0tbDQ18KZ167oilerlHIFaEkzVzilkpxXNUXyTsWKFRk9ejSjR48mPj6egwcPEhAQwKpVq5gzZw5WVlZ07NiRvn37smjRIg4cOIC/vz/9+vXD0NCQrl27Kst43mfuqBAE9r6Vvg+QlpzI3PY1qe7miW2l6ugaGhF2/jhPrl+k4/czACjjVIsrB3cTuHAydtVc0DMwwql5O6o2bcv1f/fi/8MAqjZpQ0z4Q87v2EAphyqkJb/2BNDRN6CUQxWuHtpNSfuKGJqaY12xKjaOTnTyncfKQR781qs59br6YFGmPIkxUTy6coH4ZxGM3nYsX55nh7qNqd99AMfW/Ub4nWtUatACLW0dnj+6x7XDe/AYO5sabp1y3NfGQFvl9R6bJufi81SC9OyRamnx84IFNLwfhVRXj4r1mnBp/07ObV9HtZbuWNqVJy05keBdfuiVMMawdnNlxyA9rcyyQ5dX2TBJSUlMnToVb29vateu/VHXmWXGeTw8iQvRqYW2yp91HlcrfZqVNkInp9kRERERkSKIKPY1lIomupjpSonXkB60byMh09zKwaT4G1uJvJvg4GB27tzJ+vXrVYydkpKS6N27N05OTsybl3O7LE3izdRXhQKkr0SlVi5E5e3bt/H39+fXX3/FwEB9k2OCILBz5058fX25f/++Mh3bxsZGbTF9KpJX/wMtJCAu2Bc4WeZ8Xl5eyOVyZc13YGAgGzZsQEdHhxYtWtCjRw9mz57NiRMn8PPzY9OmTVhbW9OnTx/69euHi4tLtvfN3ZfpxKUrsp1TR9+ABl6DCD13lOv/7kVQKLAsW4HO4+fTwGsgAA16DiT8zjVC9mzh9KYVmNmWxal5O+p26kPiiyjO79xI6NmjlHKoTK9Zy7h6eA/3LpxROU+3yb8QMH88exdORi5Lp/WQsdg4OmHtUIUR/oc4vGoB/wVsJTkuFiOLkpSuUoPWQ37IFu+n0HXiz5RxqkXQzg0cXPoTUi0tzG3LUbujF/a1cjY2lUqgtJEOCkEgJUNBgkzByhuxSAA981J0mbCAY+t+Z8eMb1HI5fxv1W4c6jbiyfWLXDmwi8SYaPRLmGBXzYVes1Zg9oZxYZpcIDgqhaCoFMob63D3aACxcXHMnDnzk65TNOMUERERyT0SITduLCJFEk3rQfs2PpVMsRO/OD9r3NzciIiI4MqVK2i9YUw1ZMgQNm3aREhICFWrVlVjhHlHEARi0uREJmcQmZxBRHIGkSkZZGTXIWhLM1fVbA21sXn1Y6GnpSJk+vbty8mTJwkNDUVfXz3+FmfPnuWHH37g7NmzdOzYkfnz51OtWjW1xCJSPLl37x579+4lICCAY8eOIZPJcHZ2xsPDg8qVK3P58mW2bdtGVFQUTk5O+Pj44O3tjb19prjcGhbPwwSZRk5+q5vG1gZcj00rFNGckRDLgDrl8000KwShQM04K4hmnCIiIhqOKPY1nMNPEgl5q0axqCMhMxWutd37HXtFijeHDx+mTZs27N69m86dOyu379ixAy8vL1avXv1eo6eiRlbq6+U3jeCAHDR+Nt4c92bqa3jYLWrUqMGyZcvUksJ/9+5dxo8fz/bt26lVqxY///wzbm7vdi8XEckPEhISOHjwIIGBgezdu5fo6GgsLS1p37495cqVIywsjL1795KcnEyzZs3o89VQ4moULa8ITUMd6fDN8zkdXjTjFBEREcmOKPY1HJlCYM3N2Bzdh4siWeY2g53MxZq3zxiFQkH9+vXR1dXl9OnTypXshw8fUrt2bdq0acO2bduKfN20QhC4+zKdkOhUHhTAqlL8vRuc2bKaA5vWoJ+L/tX5RUxMDLNmzWLJkiWUKlWK2bNn4+Pjo5J9ISJSGMjlcoKCgggMDCQgIICrV6+ira1N48aNKVOmDA8fPsS0Xhsa9x2K9D01/SJFi6x7AY8CSI0XBIHYNEVmdlVKBuFJsg9mV5U20sHGIDO7ylxPWuS/e0RERERyiyj2iwGals7vXclUrHv7zNm+fTs9e/bk+PHjNGvWDMhsydSiRQseP37M5cuXMTP7P3v3HR5Vmf5//H1m0nuAkBASmqACIl0FAkO1gQgiFlBkVUDRn+hiWdxVil2/rr2groIKIk2WIl1pEakCgiuiIMUECBBIIWUyc35/xERCKEmYyWQmn9d1ca05c+Y592RlPPd57ud+ojwc5bntz7K7fb2oo6AAq58fUZW0XjQvL4933nmHZ555hoKCAv7xj3/wyCOPFHflFvG0vXv3Mn/+fObPn88333yD3W5n7KrfCAwNP/+by2n3xmQ+HN6vcJ16u04AzBj7ILs3fscTCzYXn5d3Mov5//cvfl69hKyjaXS8fThJg0fwcp+23DzuTdr2vd0l8Wya+wUzxz3E4/M3ER1fzyVjelJlbmGnZpwiUl3pMbgPSAzzp2dCKMsOZJ//ZA/rmRCqRL+as9vt/POf/+S6664rTvShcB/5tWvXsmrVqiqd6NudZolO0OC+8lfrnzOVJ/KdTNl1wi2lr1B4Izxjxgz+8Y9/sG/fPoYNG8a4ceOIjY116XVELlT9+vV54IEHeOCBB8jKymLBt2vY44ZEvzxW/Od1Ns+bRrd7R1MzoQG1G17s0Xi8RdH35rID2eQ5TDrGBrst8VYzThGprpTs+4h2McHkOUxWp570dChn1blOiPal9QEX0lkeYNKkSezatYvp06cXH1u9ejXPPPMMY8eOpVOnTu4M/4Lsz7Izf28mGX92/a6ssqii62xKy2XXiXyXlr4mJyfz6KOP8v3339OnTx/mz59Ps2bNXDK2iDuFhYVxWaeu7Plzq7fKcNO/XsM0S9aD/7ZhDYkt2tJzxGPFx0zTZMLa/Vj99HC7LIruXTrFqYpIRMSVlOz7kI6xhYl0VUz4u9QJoUOsEn1v4+rO8jk5OYwbN47bb7+9eJ/lY8eOMXjwYJKSkvjnP/9ZWR+t3Dam5bDsQHalNbI6ExPI+HOW/0JLX3/99Vf+8Y9/MGvWLFq3bs3y5cvp3r2764IVqQQHTxaUuRGmK1j9SyfvWelHSs3mG4aBf6Bnds/wVqtTTxJoNTQpICLiQkr2fYhhGHSKCyHQang8KYHKXY8nrlWRzvIFTjiQXUBKdsEZO8tHB1p5++23OXz4MBMmTAAKHyYMGzaMrKwsPv/88yrZAM40Tb47lFP8EM3TTU4utPT16NGjPPPMM7zzzjvExcXx6aefMnjwYCwWi3sCFnGBNWvW8Mgjj/Djjz9St25dHn/8cVJTUxk/fjwvbE4jPWXfWdfIj2kTQ4/hj9HzvscBSE/Zz8rJb/Hb+lUcP/gH/kHBXNQ+iesfHnfetfCnrtkvWtMPkP7HXsa0iQHg8fmbAM4Yz+E9u1j67vP8tmEN9twcYi+6lO7DH6WZ7doS1zn028/MfWkM+37cSEhkNFfefBcRteIu7JfoBZYdyCY22E/L/UREXETJvg9qFxNMbLBfcbmxJ5ITd3baFfc4X2f5ss6cnXpensNkw+Ec1h/OISEIpq/4nuEjRtC4cWMAPvjgA2bPns3s2bNJTEx00SdxrVMT/aqmPKWvubm5vP322zz77LM4nU4mTJjAww8/THCwHsRJ1fbjjz9y9dVXExMTw7hx4ygoKGDs2LEV7ilx4Kcf2Ld1PZdf3Z/I2HjSU/axbuYkPhjWj0dmriEguGyl5DENm3DLM++y4NWniIitQ+c7RgIQGl2T7PSjpc4/9NvPvP+33kTUroNt6EMEBIfw49L/8vnfhzD4lU9o3r03AJlHDvHh8P44HQXF562f/Sn+gb7/d9UA5u/N1I49IiIuomTfRyWG+XNv0+gSjcQqew/dLm5oJCbucXpneXDdvy9F4+w/6WTAsxMJs5rsz7KTsfcXHn74Ye677z769+/voqu51sbDVTfRL3K+0len08mXX37JmDFjOHDgACNGjGDs2LHUrl27kiMVqZinn34a0zRZvXo19eoVzrwPGDCAFi1aVGi8S5N60aJn3xLHmna5hveGXsf25fNp0+eWMo0TXrM2rXsPZMm7LxARU4fWvQcWv3amZH/eK/8kKi6BBz5fgl9A4VaaV91yNxPv7s3CNycUJ/srJ71FdvoRRn66mMTL2gDQ5oZbefXGKyv0eb1J0VKlVSnZ9EgI83Q4IiJeT3WbPszfYtAzIYzBTSKJDCj8v9pdqXfRuJEBFgY3iaRHQpgSfS9gd5osO5DFlF0nOOHmpnPGn2Xi2Q6DKbtO8Mq81TS5tCmvvvqqm654YfZn2Vn2R9Xf4QIKS1/3Z9lLHV+9ejVXXXUVgwYNolWrVmzfvp133nlHib54DYfDweLFi+nXr19xog/QtGlTel19dYXG9A/668GYw24n+/gxaiY2JCg8kpSft11wzGdy8kQ6uzespsXVfcnLziI7/SjZ6Uc5efwYTTp05+i+3Zw4nArAzuRlJLZoV5zoA4RF16LVdQPcEltVYwIb0nLP+J0mIiLlo5n9aiAxzJ/hzaLZnWFnU1oOe85Qol1RReM0CPenbUwwjSL8sWjPWq/g6c7yF/fqT+tr+nHU6U9V679sd5rM35vp8b4XZXV66esvv/zCE088wZw5c2jbti0rVqzAZrN5OkyRcktLSyMnJ4cmTZqUeq3xxZfAwoXlHtOem8OKT95g09wvyDicimn+9bc8NyvjguI9m6P792CaJkvffZGl7754xnOyj6URWbsOx1MPkHhZ21Kv12rQ2C2xVUUGsGBvJsObReueQkTkAijZryYshkHjyAAaRwaQnudgy5FctpzafM0AZxmymlPPC7QatKoZRKs/m6+J96gKneUtFiu54JLO8q62MiXbY/0uKqKo9HXRb0dY8uYE3n//feLj45kyZQq33Xabmu+JTzLO8VMRp8NR6tjcl8ewae4XdBo0gnqXtyMoLALDMPhizPBS2+q5iuksHLfznQ9wccduZzynZmIjt1zbG5nA8XwnuzPsNI4M8HQ4IiJeS8l+NRQdaKVb3VC6xoeQnucs3FYtp4CUbPt5t1WLD/UnLrhwW7XoQEu5uoCL5/laZ3l32J9lZ2NarkdjqAgT2J5p8s0PO3juued46KGHCArS1l/i3WJiYggODmbXrl2lXvv1l1+K/zk4IgqAnMwTJc45nrq/1Pu2L5tHmz630vvvE4qP2fNyyT3tva5UI6E+AFY/Pxpfee4qm6g6CRzZt7vU8SO//+qW2KoqA9iUlqNkX0TkAijZr8YMw6BGkJUaQVaaUdgsyDRNnCYUmCYOJ1gt4GcYWAw8noTJhfOVzvLu4jRNFnhR+X4pJox8dzr3t6ip0lfxCVarlWuuuYY5c+awb9++4nX7//vf/1iyZHHxeUFh4YRG1eT3zd+TNPi+4uPfz/ik1JiG1Qpmyb/ha6d9dMYqAFcJqxFDo3adWDf7Uzrcdi8RMSW30ctKP0JYdC0ALunUk+SpE9m/fXPxuv2s9CNsWTjLbfFVRSawJ9NOep5D1YMiIhWkZF9KMAwDqwFWDNB/W32KL3SWd7ffMvI5nu+eMt7KYFgsZDpQ6av4lPHjx7No0SI6d+7MyJEjKSgo4K233qJ58+Zs2/ZXQ712/Qez8pM3mTXhYRKatWLP5rUc2ftbqfEu7dyLH76eQWBYBLGNLmHftg38un4VIVE13Po5+v7jJSbe3Yc3brXRvv8d1KjbgKxjh9m3bSMnDqUy6ssVAHS560F++HoGnzx4Kx1vH1689V5UnUQO7trh1hirGgPYciSXbnVDPR2KiIhX0kJOkWrAFzrLV4ZNf25T6c2KSl9FfMXll1/O4sWLiYmJ4emnn+bjjz9m/PjxxVt2Ft3I9Bj2KO36DWb7snksfGM8ToeDoW9PKzXeDY89T+vet7B14SwWvPY0GUcOcc97swgIdm9CGdvoEh78fCmXJPVk87xpzH3xCdbNnIxhWOgxfHTxeRExcQyb+BVxTZqxctKbJE+dSJs+t9Dp9mFujc+VXurdhhljHyz+effGZMa0iWH3xuRyjWMCW47mlmiiKCIiZWeY+gYV8Wl2p8lH/0v3moZzBhARYCnuLF9Z0vMcTPwpvdKu524jmkWr9FV82rhx4xg/fjwvbE7zdChVQlVafvRS7zY0ateRgePfBgqT/Q+H92PYB3No1K4TAFsWziLrWFqJZRdnM7xpNDWC9H0mIlJemtkX8XHe2ll+VUrlViL8cMT7Z/WLFJW+iojvcxQUAJCVlkr6xuUejubMGrTpwIS1+2nQpkPxsS0LZ5E89YMyvf/gyQJ3hSYi4tOU7Iv4sKLO8t6S6BcxgQ1puW4v5x83bhyGYWCaJluP5vLiaaWn3kqlr1KdBFp95TFd+RR+apNo50msW5ezd8r/cejIMRx2zyyDOheLxYJ/YFCFtgG1GHAwR8m+iEhFKNkX8VGndpb3RgawYG8mzkpIWI/lOchzeC4x3rt1Pcvef7nUtmEXIs9hkp7nvc0GRcqqZc0gr/2eK49TVzUFWg2uqB3MiGY1GHllIx4beiufTp5MzwG3Y/X3P+P701P2M+eFx3m1/1U81SGRCd0uZsrjd5Oesq/Eecvef5kxbWJKvX/T3C8Y0yamxPmmafLNR6/ywrWX83THenw4vB+Hfvu51HtPX7P/wbAb2blmKcdT9zOmTQxj2sTwUu82Z4zbaUJKdtV7gCEi4g3UjV/ER3l7Z3kTOJ7vrJTO8kUloqO/WothVP4z0L1bN7D8g1do2/c2gsMjXTbuwZMFWucqPmvcuHGMGzeO9DwH6w/7blNKPwvEBfsRH+pPXLAfcSF+RAdaSm2Ha5rmOWfAD/z0A/u2rufyq/sTGRtPeso+1s2cxAfD+vHIzDUEBJd/29Ol773Itx/9m0uSenJJp56k/LyNj0cOPG91Qbd7HiE3K4OMQ6n0Hv0MAAEhZ2+QeDCnANM0tQWwiEg5KdkX8VFFneW9uZC7qLN8ZST7FsAvIPC85+bnZLu9a7crGJjsPZZJsxrn/0wi3iw60EqDcH/2Ztq9/vuufpg//RuF43CC1QJ+hoHFoExJrsOEgnM83700qRctevYtcaxpl2t4b+h1bF8+nzZ9bilXvFnpR1g1+W0uSerFXW9MKY5x8dvPseLj18/53iZXdSV56gfkZJygde+B571WgbNwhr+artgQEakwlfGL+KD0PAe/e/mNLxQ+qNiTaSc9z3HBY61Zs4b27dsTFBTERRddxMSJE4tfSz1ZgJPS20UVla3u3pTMnBce59keTXnh2pbFr+9MXsbEu/vwdMf6jE1qwKSHbj9jCevhPbuY+sQ9PNv9Up7qkMir/a9i8dvPAYUlswtfHwfAy33aFpe0FpXKOgoKWP7hq7zStz3/urIuL/Vuw+K3nqUgP6/ENV7q3YZJDw3il+++4e3BPfnXVYlM+fhDAJYuXUpSUhJRUVGEhYVxySWX8OSTT17w71SkqmgbE+QT33ftagcTaLUQ4m8h0GrBajHKPJtdcJ4lT/5BwcX/7LDbyT5+jJqJDQkKjyTl523ljvfXdatw2PPpeNu9JWLsNHhEuccqi/N9PhERKU0z+yI+qKizvC/cGhV1lu9Wt+Kz6T/++CNXX301MTExjBs3joKCAsaOHUtsbCxw/uZP/33hCUKja9J92GjsuScB2Dx/OjPHPkiTDt249qGnsOfmsG7mJN6/uw8PffEN0fH1AEj9ZQcT770Bq58/V/S/k+j4ehw98Ds/r1rCNQ/+k+bde3Nk329sXTSb3qOfITSqJgCh0YX/O/uZh9k870su63kDSXfcz/7tm1jxyRsc/n0Xd746uUScR/b+yrQnR3DFgCG0738n4Q0bs337dvr06cPll1/OhAkTCAwM5NdffyU5uXz7XYtUZRdFBBAVYOGEF+08cioDiAyw0CjizOvty8J5nlVb9twcVnzyBpvmfkHG4dQSDTxzszLKfb3jqfsBqFWvUYnjYdG1CI6IKvd45+NwAlqVJCJSLkr2RXxMUWd5d93wfjDsRgCGf/jfcr3vTPssl0VRZ/mu8SEVXq/59NNPY5omq1evpl69wiR8wIABtGjRAjh36StASEQU974/G4u18E4z72QW8155knb97uCmp/5dfF6bG27l3/078O1/Xi8+Pu/lMWCa/L8py4mqk1B87rUPPQVAnYubE3/p5WxdNJvm3a4vfkgAkPrLdjbP+5L2/e/gpqdeA6DDLXcTFh3D6s/e4bcNa7iofVLx+Uf37+Fvb3/JxR27Fx9bsvQz8vPzWbhwIbVq1Sr3707EG1gMg971w5myy3VNLiuTCfSpH47lAtakn6/R/dyXx7Bp7hd0GjSCepe3IygsAsMw+GLMcEzzlC/Bs8TgdF54hdWFsKoWVUSk3PTVKeJjjuU5WDd/JmumvO/pUFzmQjrLOxwOFi9eTL9+/YoTfYCmTZtyzTXXlGmM9jfdWZzoA/z6/UpyM0/Q8tqbyE4/WvzHYrGSeFkbdm9cAxSuad2zeS1t+w4qkehD2dbg7lyzDICkwfeXON75zvv/fH1piePRdeuXSPQBwiMLG/7997//xXm+qT8RL5YY5k+7GO/rzG8A7WOCSAir+Kw+FK7vP5fty+bRps+t9P77BFr07EuTq7pSv9WV5J62C0hwROF3xum7gxxPPVDi56g6iQAc2be7xPGs9CPkZBw/b7zlfXh7vs8nIiKlKdkX8TEHTxawZeEskqd+4OlQSmjQpgMT1u6nQZsOFXp/Ucf88kpLSyMnJ4cmTZqUeu2SSy4p0xinzrbDXze3H43oz7M9Li3xZ9f3K8hKPwLAsQN7AYhrfGmFYk9PPYBhsVAzsWGJ4+G1YgkKjyT9zzLaIjVOixPgpptvpVOnTtx7773ExsZy2223MX36dCX+4pNs8aFEBFi8JuE3gIgAC13iL7zpp9Uo7Nx/1mtZrXDauve10z7C6Sg5Y18zoQEAezavLT6Wn5PN5nlflnc7hkIAACAASURBVDiv8ZVdsPr58920j0osCUieMpGyCAgOKfPyAT9Lya0HRUSkbFTGL+JjDp4sqJI3uhaLBUtgUMXeaxSuq2+GZzrLn9rYCigueb3lmXcJr1W71PkWq4u/Wss4o+V3ht9vWGgwq1at4ttvv2XBggUsWrSIL7/8ku7du7NkyRKsVi2CFd/hbzHo40Xl/EXl+/4uyGQNwyAu2I8D2Wd+MHpp51788PUMAsMiiG10Cfu2beDX9asIiapR4rwmV3UjKi6B2eMfJm3IA1isVjb+dyqh0TU5fvCv2f2w6Fp0vnMkKz55g8mjBhVuvbfzR35JXl7ce+Rc6jZtybYlc5j/6lMkNG9NYHAoTW1nrraKC/bTtnsiIhWgmX0RL5SZmcnDDz9MgwYNCAwMpHbt2vTq1YvNmzfz4IBr+XnNUo6n7i/u7P5S7zbAX93lizq9F9m9Mbmw6/zGkk3b1s/6lFf6tuepDom8c+fVJWZ6oHDt+tMd6zPvldKd3U8cSuHJdrHFWzCd6RofDLuR1wd25tDunXw4vB9Pd6zHC9e0YOWkt0qM5TRh2y+/0bdvX0JDQ6lduzaPPPIIixcvxjAMVqxYcdbfVUxMDMHBwezatavUazt37jzr+86laOYrtEYtGl9pK/WnqCdBjYT6ABz8tXSH/lOd7SY2uk4CptPJ0dPKZDOPHiY38wTRf5bRnoufYWCxWOjRowf//ve/+emnn3juuef45ptv+Pbbb8/7fhFvkxjmT8+Eqr89JkDPhFASL7B8/1R1QvzOemN3w2PP07r3LWxdOIsFrz1NxpFD3PPerFJbiVr9/bnj1UnUSGjA0vde5LsvPqR9vzvocOs9pcbs9cCT9LzvCVJ+/pGFb4zn2IHfufvdGfgHh5w31qtu+RstrxvAprlf8OWTI5j78pgznmcxID7Udb8jEZHqRDP7Il7ovvvuY+bMmTz44IM0a9aMo0ePsmbNGn766Sc6/+1hTpw4QcahVHqPfgaAgJDy3/humPM5Xz03mvot29Np0HCOHdjLp4/cSUhkNJGx8QAEhoTRvNv1bFsyh95/f6bEuvati2aDadLqupvPeZ2cjON88uCtNO/Wmxa9bmT7snksenMCcU2ackmnnkBhCekrQ24k5+ghRo0aRVxcHFOnTi1Tsmq1WrnmmmuYM2cO+/btK163/7///Y/FixcDhSWi52vSd6omHboTGBbOio9f56J2SVj9S96IZqUfISy6FmHRtWjYpgOb5k6l8x33l1i3b5pmcZIf8OeNcU7mCaJPGeeSpJ4sfvs5kqdOpP+/Xi0+vubz9/98vdc54/SzwPH0Y9SsWXKWrVWrVgDk5eWd6W0iXq9dTDB5DpPVqSc9HcpZda4TQruY4POfWA5xIX6c7assODySm8e9Wer4Ews2lzpWt2lLRn66qNTxtn1vL/GzxWKhx/BH6TH80XOO2ahdJ17YnFbiWEBwKLc9d/7eMk6zcGZfRETKT9+eIl5owYIFDBs2jFdf/SsBfPzxxylwmhzYepSImA/IyThB694DKzS+w25nydvPU+eSy7j3gzn4+QcAULvRJXz17N+Lk32A1n1uYcvCmez6fgWXdOpRfPyHr2fSoE2HUo3pTpeRdpCBE96hTZ9bAGjXbzAv927NxjlTipP9dbM+5diB35k9+yv69+8HwIgRI2jdunWZPs/48eNZtGgRnTt3ZuTIkRQUFPDWW2/RvHlztm3bds7S1zMJCgun35hXmP7USN4a3IOWV/cjNLoWxw8e4Oc1S6nf8gpu/MdLANzw+PO8f3cf3hrco3Drvbr1SU/Zx841S3lo2goA4pu2BGDJO89z+dX9sfr707TL1dS5+DLa3HAr62d/Sk7mCRq27ciBHZvZPO9LmnW7vkQn/jOJC/bjmWfGsWrVKnr37k39+vU5fPgw7777LgkJCSQlnfv9It6sY2xhIl0VE/4udULoEOvaRB8Kk31f5KufS0TE3fTtKeKFoqKiWLduHSkpKcTH/5V4F5iu2XDvwE9byDqWRs/7nihO9AHa3nAbC18fV+LcxlfaiIiJY8vCWcXJ/sFf/8fBXTtKbEt3NgEhoSUeSvj5B5DQvA3H/thbfOyX774honYdrrvhhuJjQUFBDBs2jNGjR5/3GpdffjmLFy/m73//O08//TQJCQmMHz+e1NRUtm3bRp0QP1LKkewDtLpuABExcaz45A1WffoOBfZ8ImLiaNj6Ktr1HVR8Xp2LL2Pk5EUsffdFvp85iYL8PKLrJNCi143F5yQ2b02vkf9g3czJ/PLdN5hOJ4/P30RAcCg3PfU6Neo2YNO8afz07deE1apN17+NoseIx84ZX1Hpa9++ffn999/5+OOPOXLkCLVq1cJmszF+/Hgi/+zUL+KLDMOgU1wIgVaDZQeyMcBtW5KWKZ4/r98zIdTlM/pFagRaCbQa5Dk8+UldK9BqEB2oVaciIhWhZF/EC7388svcddddJCYm0rZtW66//nqGDBlCXGIDl4xf1ISpVr1GJY5b/f2L16EXsVgstLruZr6f+Qn5OScJCA5hy8KZ+AUG0aLnjZxPZO34UmvWgyMiObjrp7/iSd1PzYQGOM2S5zVu3LjMn6lLly5s3Lix1PFx48ax41guTkqXnrbte3upstVTNWrXqXh9/rnEXnQpd7w66ZzndL93NN3vLf3gwurnd8Yy2dOdHntR6Wuz7t3p3r37Wd4l4vvaxQQTG+zH/L2ZZOQ7PZLwF3Xd71M/3KVr9EtdxzBoWTOIDYdzPPpgw1UMoFXNIDXnExGpID0qFfFCt9xyC7t37+att94iPj6eV155hebNm7N08cJzv/EsN0ynb71UXq373EL+yWx+WrEQ0zTZunA2l3buRVB4xHnfazlLN3jzDFUKVjd9Y/lqiaivfi6R8koM8+feptG0jSncsaKyUsei67SLCeLeptFuTfSLtK4V5BOJPhRWQrSqVbFdXERERMm+iNeqU6cOI0eOZM6cOezZs4eaNWvy8osvAGfv7h4cEQUUNoI71fHT9muPiitcZ3/ktC7wDrudY3+U7OQPENe4KfGXtmDLwpn8vnktxw8eoHXvWyr2wc4gqk4iRw/8zumPBX799VeXjF9U+upLVPoqUpK/xaBnQhiDm0QSGVD4d8Ndf+uLxo0MsDC4SSQ9EsJcsr1eWUQHWmkQ7l8lt2AtDwNoGO5PdKC2BxURqSjdCYp4GYfDwYkTJZP12rVrEx8fT35eHn6Wwu7uuVkZpd5btGXcqVvoOR0O1s/+rMR5Cc1aERpdi3WzJlFgzy8+vmneNHIzz7x/devrb2HX9ytInvoBIVE1uKRjjzOeVxEXd+hGxuFU5s+bW3wsNzeXDz/80CXjF5W+evvNcRGVvoqcXWKYP8ObRXNzowgahBfOtLvqb0rROA3C/bm5UQTDm1XObP7p2sZ4/+y+CbR1U28DEZHqQjWeIl4mMzOThIQEbr75Zlq2bElYWBjLli1jw4YNvPrqq9QO9qNu05ZsWzKH+a8+RULz1gQGh9LUdg2xF11KYot2LH7rOXJOHCc4Mopti+fgdJRsTmf19+fqkWP46rnRfDSiP5df3Y9jf+xj09wvqPHnA4PTtbzuJha+OZ4d3y7gyoF/K7Ud3YW4YsAQ1k//D4MGDWLUqFHUqVOHKVOmEBT0Z0muC5La1rWCWH8454LHqQpU+ipybhbDoHFkAI0jA0jPc7DlSC5bjuYWN7azGIV9L87H6SjAYi28lQq0GrSqGUSrWkEen42+KCKAqAALJzzUo+BCGRRWRTSKqPwHJSIivkTJvoiXCQkJYeTIkSxZsoTZs2fjdDpp3Lgx7777Lvfffz/LD2TR8Za/kfLLdjbN/YLkKe8TVSeRprZrALjtuff46rlHWTnpTYLCI2h342Auap/Ef+6/ucR1rhgwBKfTwapP32Hh6+OJbdyUIa99xtL3XjxjXOE1a9Pkqq7sXLOM1tdXbMu/swkODeP1GV/zxXNP8MYbbxAWFsaQIUPo2LEjAwYMKE76L0RR6eveTLtX3hwXMSicVfR0siHiLaIDrXSrG0rX+BDS85wcPFnAwZwCUrLtHMwpoOAMG9f7WQobYO7dtoW5X0zmv5/9h1rB/lWmmsZiGPSuH86UXWeuxKrqTKBP/XAsVeT3KSLirQzzTF2wRMRr7TiWy7y9WR659mej7+Lgrp94bO4Gl4/dt344zWoEljj2+uuv88gjj3DgwAHq1q17wdfYdSKPWbszL3gcT7u5UQSNIwPOf6KInJNpmjjNwm1NHc7CJqF+hoHFKKwoWrlyJV27duWHH36gVatWng63lGUHstiUlutVDzANChsa9kgI83QoIiJeT2v2RXyMpzqwZ6QdZOfqpS5tzHeqSMNe4ufc3FwmTpxIkyZNXJLow1+lr946l2QAUSp9FXEZwzCwWgwCrRZC/C0EWi1YLUbxDP6VV15JYGAgK1eu9HCkZ2aLDyXCi77TirYo7BIf6ulQRER8gsr4RXxMUWf5orWn7nbsj73s3bKeDXM+x+Lnz5UDhrj8GoFWg3sHDaRevXq0atWKEydO8Pnnn/Pzzz8zZcoUl11Hpa8iUh5BQUFceeWVrFy5klGjRnk6nFL8LQZ9vOg7reg7rLJ2LhAR8XWa2RfxMZXdWX7Ppu+Y/tRI0v/Yx8AJbxFeK9al4xd1lr/mmmtITk7mscceY/z48QQGBjJt2jQGDRrk0uslhvnTLsb7OvMbQPuYIBI80PlbpDqz2WysWrWKqroqMjHMn54J3jFT3jMh1CO7F4iI+Cqt2RfxQel5Dib+lO7pMFxmRLPoSm04Z3eafPS/dDK8pJN1UenrvU2jNSMmUsmWL19Oz5492b59O82bN/d0OGeVfPAkq1NPejqMs+pcJ4ROcSGeDkNExKdoZl/EBxV1lvf2tM8AGnqgs3xR6as3JPqg0lcRT+rQoQN+fn5Vdt1+kY6xwXSuUzWT6S51QugYG+zpMEREfI6SfREf1TYmyGuS1bMxgbYxnrkBVOmriJRFSEgI7du3r/LJvmEYdIoLKf5e8/SjwaLr90wIpWNcSJXZtlBExJco2RfxUeosf+HaxVTdmbAineuE0M5DD0REpJDNZmPlypVVdt3+qdrFBDO4SaRHu/QXLT0a3CRS318iIm6kZF/ERxV1lq/6t55nVlU6y6v0VUTOx2azcejQIX755RdPh1ImiWH+3Ns0mrYxQUDlzfIXXaddTBD3No1WRZKIiJsp2RfxYeos74JYVPoqIufRqVMnrFZrlS/lP5W/xaBnQhiDm0QSGVB4O+iub5OicSP/nM3vkRCmHiMiIpVA3fhFfJw6y7vO/iw78/dmeux3WfS76VM/XDNiIlXMFVdcQZMmTZgyZYqnQyk3p2myO8POyt/TOFzgX/gQ0QUPEg0Kq7QahvvTNiaYRhH+Hq/WEhGpTjSzL+Lj1FnedVT6KiJn403r9k9nMQwaRwaw64u3+HBIL9rWCiDQapzyelnH+eufA60GV9QOZkSzaG5tHEnjyAAl+iIilUwz+yLVxMa0HJYdyPZ0GOfVMyHUKxo27c+ys2BvJsfzncWzV65WNG5UgIXems0XqdLmz5/PDTfcwK+//spFF13k6XDKzeFwUK9ePfr168c777yDaZqk5zk5eLKAgzkFpGTbOZhTQIGz9Hv9LBAX7Ed8qD9xwX7EhfgRHWjRMiMREQ/z83QAIlI52sUEk+cwWZ160tOhnJU3dZZPDPNneLNodmfY2ZSWw55Mu8uS/qJxGqj0VcRrJCUlYRgGK1eu9Mpkf9myZaSkpDB06FCgsF9JjSArNYKsNCMQANM0cZpQYJo4nGC1gJ9hYDFQYi8iUgVpZl+kGjFNk+8O5VTJhL9LnRA6xAZ77Q1jep6DLUdy2XI0lzxH4deqxQBnGb5hTz0v0GrQqmYQrWoFER1odWPEIuJqbdq0oUWLFkyePNnToZTboEGD2LJlCzt27PDa72ERESlJM/si1UhRZ/lAq8GyA9luKz8vczx/Xt9bSvfPJTrQSre6oXSND1Hpq0g1ZbPZ+OqrrzwdRrmdOHGCr776ivHjx+v7R0TEhyjZF6mG2sUEExvsp87ybqDSV5Hqy2az8frrr7N3717q16/v6XDKbPr06eTn53PHHXd4OhQREXEhlfGLVGN2p8nKlGw2puVW2ix/0XXaxwTRJT60SnbdFxGpiKNHj1KrVi0+/fRT7rzzTk+HU2ZJSUmEhYWxaNEiT4ciIiIupK33RKoxf4tBz4QwBjeJJDKg8OvAXal30biRARYGN4mkR0KYEn0R8Sk1a9akRYsWrFy50tOhlNmuXbtITk4ubswnIiK+Q2X8IqLO8iIiLmKz2bxqhvzTTz8lMjKSG2+80dOhiIiIi6mMX0RKUWd5EZGKmTFjBrfccgt//PEH8fHxng7nnJxOJw0bNuTaa69l4sSJng5HRERcTMm+iJyVaZrqLC8iUg6HDh0iLi6OqVOncvvtt3s6nHP65ptv6NGjB8nJyXTs2NHT4YiIiIsp2ReRclFneRGRc2vatCk2m43333/f06Gc01133cXatWvZuXOnvr9FRHyQGvSJSLkYhoHVYhBotRDibyHQasFqMXSjKCLyJ5vNVuWb9GVmZjJz5kzuuusufX+LiPgoJfsiIiIiLmSz2fj55585dOiQp0M5q1mzZpGTk+NVWwSKiEj5KNkXERERcSGbzQbAqlWrPBzJ2U2ePJnu3btTr149T4ciIiJuomRfRERExIXi4+Np3LhxlS3l37NnDytWrOCuu+7ydCgiIuJGSvZFREREXKwqr9v/7LPPCAsL46abbvJ0KCIi4kZK9kVERERczGazsX37do4cOeLpUEowTZPJkyczcOBAQkNDPR2OiIi4kZJ9ERERERcrWre/evVqD0dS0po1a9i9e7dK+EVEqgEl+yIiIiIuVq9ePRo0aFDlSvknT55Mw4YN6dy5s6dDERERN1OyLyIiIuIGVW3d/smTJ5k+fTpDhgzBYtEtoIiIr9M3vYiIiIgb2Gw2tm7dyvHjxz0dCgBfffUVmZmZDBkyxNOhiIhIJVCyLyIiIuIGNpsN0zRZs2aNp0MBYNKkSXTp0oVGjRp5OhQREakESvZFRERE3KBhw4bUrVu3SpTy79+/n+XLl6sxn4hINaJkX0RERMQNDMOoMuv2P//8c4KDgxk4cKCnQxERkUqiZF9ERETETWw2G5s3byYzM9NjMZimyaRJk7jpppsIDw/3WBwiIlK5lOyLiIiIuInNZsPhcJCcnOyxGNatW8cvv/yiEn4RkWpGyb6IiIiIm1x88cXExsZ6tJR/0qRJJCYm0q1bN4/FICIilU/JvoiIiIibeHrdfm5uLl9++SV33nknVqvVIzGIiIhnKNkXERERcSObzcaGDRvIzs6u9GvPnTuX48ePq4RfRKQaUrIvIiIi4kY2m42CggLWrl1b6deeNGkSHTp04OKLL670a4uIiGcp2RcRERFxo2bNmlGrVq1KL+VPTU1l8eLFmtUXEammlOyLiIiIuJFhGHTp0qXSk/3PP/8cf39/br311kq9roiIVA1K9kVERETczGazsW7dOnJycirleqZpMnnyZPr160dUVFSlXFNERKoWJfsiIiIibmaz2cjPz2fdunWVcr3NmzezY8cOhg4dWinXExGRqkfJvoiIiIibtWjRgujoaFatWlUp15s0aRJ16tShV69elXI9ERGpepTsi4iIiLiZxWKhc+fOlbJuPy8vj6lTp3LHHXdgtVrdfj0REamalOyLiIiIVIIuXbqwdu1a8vPz3XqdBQsWcOzYMXXhFxGp5pTsi4iIiFQCm81GTk4OGzZscOt1Jk+eTLt27WjevLlbryMiIlWbkn0RERGRStCqVSvCw8PdWsp/+PBhvv76azXmExERJfsiIiIilcHPz4+kpCS3JvtTp07FMAxuu+02t11DRES8g5J9ERERkUpis9lITk7Gbre7ZfzJkydzww03ULNmTbeMLyIi3kPJvoiIiEglsdlsZGdns3nzZpePvXXrVrZs2aISfhERAZTsi4iIiFSatm3bEhoa6pZS/smTJxMTE8O1117r8rFFRMT7KNkXERERqST+/v507NjR5cm+3W5nypQp3HHHHfj7+7t0bBER8U5K9kVEREQqkc1mY82aNTgcDpeNuWjRIg4fPsxdd93lsjFFRMS7KdkXERERqUQ2m42MjAy2bNnisjEnT55My5YtadmypcvGFBER76ZkX0RERKQStW/fnqCgIJeV8h89epS5c+eqMZ+IiJSgZF9ERESkEgUGBtKhQweXJfvTpk3DNE0GDRrkkvFERMQ3KNkXERERqWQ2m43Vq1fjdDoveKzJkydz/fXXU7t2bRdEJiIivkLJvoiIiEgls9lspKens3379gsa56effmLDhg1qzCciIqUo2RcRERGpZFdeeSUBAQEXXMo/efJkatSoQe/evV0UmYiI+Aol+yIiIiKVLDg4mCuuuKJUsm+aJgVOk1yHk5N2J7kOJwVOE9M0S41RUFDAZ599xqBBgwgMDKys0EVExEv4eToAERERkerIZrMx4+sl7DiWy8GTBaSeLOBgTgEFZ1jG72eBuGA/6oT4Effnn/UrlpGamqoSfhEROSPDPNOjYhERERFxi/Q8Bz8cyWXTwUwclsJ5FwtQllZ9p57nyD3JzuVzef3R+6gRpPkbEREpScm+iIiIiJs5TZPfMvLZlJbL75l2DMAlN2BOJ1gsNAj3p21MEBdFBGAxDFeMLCIiXk7JvoiIiIgb7c+ys2BvJsfzna5L8k9TNG5UgIXe9cNJDPN3w1VERMSbKNkXERERcQO702RlSjYb03LdluSfrug67WKCsMWH4m/RLL+ISHWlZF9ERETExfZn2Zm/N5OMfGelJPmnM4CIAAt9NMsvIlJtKdkXERERcaGNaTksO5BdabP5Z1N0/Z4JobSLCfZgJCIi4glK9kVERERcwDRNvjuUw+rUk54OpZTOdULoGBuMoeZ9IiLVhsXTAYiIiIj4gqqa6AOsTj3Jd4dyPB2GiIhUIiX7IiIiIhdo4+Gqm+gXWZ16ko1pSvhFRKoLJfsiIiIiF2B/lp1lf2R7OowyWXYgm/1Zdk+HISIilUDJvoiIiEgF2Z0m8/dm4i0r4Q1g/t5M7E61bBIR8XVK9kVEREQqaGVKtse216sIE8jId7IqxTsqEUREpOKU7IuIiIhUwP4sOxvTcr0m0S9iAhvSclXOLyLi45Tsi4iIiJST0zRZ4EXl+6czgAV7M3FqB2YREZ+lZF9ERESknH7LyOe4F5Xvn84Ejuc72Z2h2X0REV+lZF9ERESknDal5XrtrH4RA9ikrfhERHyWkn0RERGRckjPc/B7pt1rZ/WLmMCeTDvpeQ5PhyIiIm6gZF9ERESkHH444v2z+kUMYMuRXE+HISIibqBkX0RERKSMTNNk61Hv68B/Niaw5Wguphr1iYj4HCX7IiIiImV0LM9BnsMzifGWhbNYM+V9l4+b5zBJz3O6fFwREfEsJfsiIiIiZXTwZIHHrr1l4SySp37glrE9+blERMQ9lOyLiIiIlNHBkwU+d/NkMeBgjpJ9ERFf4+fpAERERES8RerJAspT8L57YzJfvzaWQ7/9TETtOnQZ8iCZRw6x/INXeGFzWvF5PyyYwZop73N4zy/4BwbR5KquXPfwOKLi6gLwwbAb2bPpOwDGtIkBIKpOIk8s2AzAd9M+ZN3MyaSn7MPqH0DNhAYk3XE/ra4bcN4YnSakZNvL8alERMQbKNkXERERKQPTNMs1A57y8zY+efBWwmvF0vO+x3E6HHzz4f8RGl2zxHnffvRvlr73Ii163Uj7/neQnX6UtdM+4oN7+/L/vviG4PBIut3zCLlZGWQcSqX36GcACAgJBWD97M+Y9/KTXNbzBjrdPhx7fi4Hd/3E/u2bypTsQ+HMvmmaGIav7DMgIiJK9kVERETKwGFCQTmm9Ze9/zKGxcp9nywgIiYOgBa9buS1mzsVn5Oesp9lE1+m18gxdLvnkeLjzbv35q1B3fl++sd0u+cRmlzVleSpH5CTcYLWvQeWuM7ONUuJvehSBr/8cYU/W4GzcIbfqlxfRMRn+NqyMxERERG3KCjH9nROh4Nf16+iWbfrihN9gFr1GnFJxx7FP+/4ZgGm00mLXjeSnX60+E94zdrUSmzE7o3J571WUHgEJw6lsH/HD+X7QKcpz+cTEZGqTzP7IiIiImXgLMesftaxNOy5OdRMaFjqtRqJfx07sn83pmnyar8rzziOxc//vNey3fUQv65bxbt3Xk3NxIY0uaorLa8bQINWZx7zbBxOwFqut4iISBWmZF9ERESkDCxuqIc0nU4Mw2DoW9OwWEtn2gHBoecdo3ajixn91Vp+XrWEX777hu3fzOf7GZ/Qfdij9Lr/iTLHYlW9p4iIT1GyLyIiIlIGfuVoXhdWIwa/wCCOHthT6rVj+/86VjOhAaZpEl23PjH1LzrnmOdqnhcQHMrl1/Tn8mv6U2DP5/PRQ1nx8Wt0vXsU/oFBZYq5PJ9PRESqPj3DFRERESkDqwF+ZbxzslitNL6iCz99u5CMtIPFx4/s283O75YX/9y8e28sVivLP3gF87Q186Zpkn38WPHPAcEh5GZllLrWqecA+PkHENvoEkzTxFlQtt0D/CxgUa4vIuJTNLMvIiIiUgaGYRAX7MeB7LIl0D1HPM6u71fw/t96c+XNQzGdDtZ++R9iL7qU1J3bAaiZ2JBeI8ew+K1nOZ6yj2ZdrycwNIxjf+xjx7cLuOKmIXQZ8gAAdZu2ZNuSOcx/9SkSmrcmMDiUprZr+HjkQMJr1aZ+yysIqxlD2p5drP3yP1ya1IvA0LAyxRoX7Kdt90REfIxhnv4YWURERETOaPmBLDal5VLWXn2/rV/N16+P5dBvO4mMjafr3aMKk/HpH/PM2v3F521fPp/kKe+TsvNHd9bGJAAAFERJREFUACJj63LRFZ3pePvw4vL+/JxsZj87mp1rlpGbeYKoOok8sWAz62d9ypaFMzm0eyf5J7OJqF2Hy7r3odu9fycoLPy8MVoMaBcTTPe65+8PICIi3kPJvoiIiEgZ7TiWy7y9WRc0xmd/H8Kh337m0f+ud1FUF65v/XCa1Qj0dBgiIuJCWrMvIiIiUkZxIeVbAWnPzSnx85F9v7FzzTIatevkyrAuWHk/l4iIVH36ZhcREREpoxqBVgKtBnmOshVGvtK3HW1uuI0adRtwPHU/38+chNXfny53PejmSMsu0GoQHaj5HxERX6NkX0RERKSMDMOgZc0gNhzOoSzp/sUdurN10VdkHT2MNSCAei3acc2D/6RWvXNvs1dZDKBVzSA15xMR8UFasy8iIiJSDul5Dib+lO7pMFxmRLNoogOtng5DRERcTDVbIiIiIuUQHWilQbg/3j4XbgANw/2V6IuI+Cgl+yIiIiLl1DYmqExl/FWZCbSNCfZ0GCIi4iZK9kVERETK6aKIAKICLF47u28AUQEWGkX4ezoUERFxEyX7IiIiIuVkMQx61w/32tl9E+hTPxyLGvOJiPgsJfsiIiIiFZAY5k+7mCCvm903gPYxQSSEaVZfRMSXKdkXERERqSBbfCgRXlTObwARARa6xId6OhQREXEzJfsiIiIiFeRvMejjReX8ReX7/hZveTwhIiIVpWRfRERE5AIkhvnTM8E7Zsp7JoSSqPJ9EZFqQcm+iIiIyAVqEWFh95IZng7jnDrXCaGdttoTEak2lOyLiIiIXICCggIGDx7Mp2MfISHnoKfDOaMudULoGKtEX0SkOlGyLyIiIlJBTqeT4cOHM2fOHKZPn84dHS8rLun39Kr4ouv3TAilY1wIhrbZExGpVvw8HYCIiIiINzJNk9GjR/PJJ5/w2Wef0bdvXwDaxQQTG+zH/L2ZZOQ7PdK8r6jrfp/64VqjLyJSTRmmaXpLA1kRERGRKmPChAmMHTuWt99+mwceeKDU63anycqUbDam5WJApST9RddpHxNEl/hQdd0XEanGlOyLiIiIlNObb77JqFGjeO6553jyySfPee7+LDsL9mZyPN/ptqS/aNyoAAu9NZsvIiIo2RcREREpl8mTJzN06FAee+wxXnrppTKthXeaJrsz7GxKy2FPpt1lSX/ROA3D/WkbE0yjCH8sWpsvIiIo2RcREREps9mzZzNw4EDuueceJk6cWKGmd+l5DrYcyWXL0VzyHIW3YRYDnGW4Izv1vECrQauaQbSqFUR0oLXccYiIiG9Tsi8iIiJSBsuWLaN3797069ePqVOnYrVeWIJtmibpeU4OnizgYE4BKdl2DuYUUOAsfa6fBeKC/YgP9Scu2I+4ED+iAy3qsC8iImelZF9ERETkPNauXUuvXr3o0qULc+bMISAgwC3XMU0TpwkFponDCVYL+BkGFgMl9iIiUi5K9kVERETOYdu2bdhsNlq0aMGiRYsICQnxdEgiIiLnpWRfRERE5Cx27dpF586diY+P59tvvyUyMtLTIYmIiJSJkn0RERGRMzhw4ABJSUkEBwezatUqYmJiPB2SiIhImVk8HYCIiIhIVZOWlkavXr0AWLp0qRJ9ERHxOn6eDkBERESkKjlx4gTXXnst6enprF69moSEBE+HJCIiUm5K9kVERET+dPLkSW644QZ2797NypUradKkiadDEhERqRAl+yIiIiJAfn4+N998M5s2bWLZsmVcfvnlng5JRESkwpTsi4iISLXncDgYMmQIy5cvZ/78+XTo0MHTIYmIiFwQJfsiIiJSrZmmyf3338+MGTOYMWNGcWM+ERERb6ZkX0RERKot0zR54okn+PDDD/nkk0+46aabPB2SiIiIS2jrPREREam2XnzxRV555RVef/11hg4d6ulwREREXEbJvoiIiFRL7733Hk8++STjxo1j1KhRng5HRETEpQzTNE1PByEiIiJSmaZMmcKdd97JqFGj+Pe//41hGJ4OSURExKWU7IuIiEi1Mm/ePPr378+QIUP46KOPsFhU6CgiIr5Hyb6IiIhUG99++y3XXXcdffr0Ydq0afj5qVexiIj4JiX7IiIiUi2sX7+eHj160LFjR+bOnUtgYKCnQxIREXEbJfsiIiLi83bs2EGXLl249NJLWbJkCaGhoZ4OSURExK2U7IuIiIhP2717N0lJSdSuXZsVK1YQFRXl6ZBERETcTsm+iIiI+KyUlBSSkpLw8/Nj9erVxMbGejokERGRSqGuNCIiIlKpTNPEYUKBaeJ0gsUCfoaB1cClW+AdPXqUq6++GrvdzooVK5Toi4hItaJkX0RERNzGNE2O5Tk4eLKAgycLSD1ZwMGcAgqcpc/1s0BcsB91QvyI+/NPjUBrhR4AZGZmct1113H48GFWrVpFvXr1XPBpREREvIfK+EVERMTl0vMc/HAkl61Hc8lzFN5qWIAz5PilnHpeoNWgZc0gWtcKIjrQWqZr5+TkcP3117N582ZWrFhB69atK/IRREREvJqSfREREXEJp2nyW0Y+m9Jy+T3TjgG44iajaJwG4f60jQnioogALGeZ7bfb7QwYMIBly5axZMkSkpKSXBCBiIiI91GyLyIiIhdsf5adBXszOZ7vdFmSf7qicaMCLPSuH05imH+J151OJ0OGDGH69OnMnTuXa6+91g1RiIiIeAcl+yIiIlJhdqfJypRsNqblui3JP13RddrFBGGLD8XfYmCaJg8++CDvv/8+06ZNY+DAgZUQiYiISNWlZF9EREQqZH+Wnfl7M8nId1ZKkn86A4gIsNCnfjjvvzCO559/no8++oh77rnHA9GIiIhULUr2RUREpNw2puWw7EB2pc3mn41BYcf/uS8/yYD2lzJ69GgPRiMiIlJ1KNkXERGRMjNNk+8O5bA69aSnQymlc50QOsYGV2irPhEREV9j8XQAIiIi4j2qaqIPsDr1JN8dyvF0GCIiIlWCkn0REREpk42Hq26iX2R16kk2pinhFxERUbIvIiIi57U/y86yP7I9HUaZLDuQzf4su6fDEBER8Sgl+yIiInJOdqfJ/L2ZeMtKeAOYvzcTu1NtiUREpPpSsi8iIiLntDIl22Pb61WECWTkO1mV4h2VCCIiIu6gZF9ERETOan+WnY1puV6T6BcxgQ1puSrnFxGRakvJvoiIiJyR0zRZ4EXl+6czgAV7M3Fql2EREamGlOyLiIjIGf2Wkc9xLyrfP50JHM93sjtDs/siIlL9KNkXERGRM9qUluu1s/pFDGCTtuITEZFqSMm+iIiIlJKe5+D3TLvXzuoXMYE9mXbS8xyeDkVERKRSKdkXERGRUn444v2z+kUMYMuRXE+HISIiUqmU7IuIiFQjGzZsoGPHjoSGhmIYBv369cMwSqb1pmmy9WjV7cA/Y+yDvNS7TZnPN4EtR3Mx1ahPRESqET9PByAiIiKVw263M3DgQIKCgnjttdcICQlhw4YNpc47lucgz+FbiXGewyQ9z0mNIKunQxEREakUhqnH3CIiItXCzz//TNOmTfnwww+59957ASgoKKCgoICgoKDi83Ycy2Xe3ixPhXleDrsd03TiFxBYrvf1rR9Osxrle4+IiIi3Uhm/iIhINXH48GEAoqKiio/5+fmVSPQBDp4sqNI3CFZ//3In+hYDDuYUuCkiERGRqqcq/7dcREREXGTo0KHYbDYABg4ciGEYdO3alXHjxpVas98zMZyvXnyCHd9+zesDO/OvK+vy2s1J7ExeXuK89JT9zHnhcV7tfxVPdUhkQreLmfL43aSn7Ctx3qa5XzCmTQy/b1nH/Fef4tnul/J0x/p8NvoustKPlIp1Z/IyPri3L2OTGjCuc0PevqMXWxbOKn799DX76Sn7GNMmhlWfvsP6WZ/ySt/2/OvKurx9Ry/27/gBAKcJKdn2wvfPmEGzZs0ICgrisssu46uvvmLo0KE0aNCg4r9gERGRKkZr9kVERKqBESNGULduXZ5//nkeeugh2rdvT2xsLMnJySXOK1rdt3fLOnZ8s4CrbvkbgSFhfDftI6Y8djdPfP0DoVE1ADjw0w/s27qey6/uT2RsPOkp+1g3cxIfDOvHIzPXEBAcUmLseS+PITg8iu7DH+V46n6Sp05k7ov+DHrpo+JzNs39glnjR1H7okvp+rdRBIVHkrrzR3757htaXTfgnJ9x66JZ5GVnccVNQzAMg1WT32bKo0N5bO5GrP7+HMwpYP78+dx66620aNGCF154gfT0dO655x7q1q3ril+ziIhIlaFkX0REpBro0KEDeXl5PP/883Tu3Jmbb74ZoFSyX9SX7/CeXTwycw01ExsC0KhdEm/e1pWti2bT8bbC9f6XJvWiRc++Jd7ftMs1vDf0OrYvn0+bPreUeC0ksgZ3vzujuJLA6XSydtqH5GZmEBQeQW5mBvNeeZKE5m0Y9uEc/AP/Wl5QlhZDxw/+waNz1hEcUbhMoVaDxnz2yJ38svZbmna5mgInPPnkk9StW5fk5GTCwsIA6NGjB127dqV+/fpl+l2KiIh4A5Xxi4jI/2/v/mKzqs84gH/P25a+pX+kYENpQAayYRw6HLi5EcEluCwpjMULlyxIQpZMr5ZsyxK92QVLiNnFjItmLiHRmCUsWeRC57zQLLBdLJt/JjIXsrFNhgqKo1pACv3z7gLbWVug1kLp4fO5aXvO+z7nuev7fZ/f7xwYMfBBqF72xbUjQT9JFnzms2lsac2xNw6OHGuoNo38Ptjfn5PvHsu8RUtSbb0qb+5/ZUztL9xx16gtA0tuuiVDg4PpOXwoSfKPP+3O6ZMnsm7rd0cF/SRjthqM58bbN40E/eH6SXLsjdeSJL1Hj2Tfvn3ZsmXLSNBPknXr1uWGG264YH0AmElM9gGAEUNDZ3/O6Vw45lxT65z09b478nd/36nsfvTBvPjkzvS+fXjU9L3vRO+Y91/1kZrDwfzU8bM1j73+WpJk/rXXTar3OQvOUb/3vSRn7zGQJMuWLRvz3mXLluWll16a1HUB4HIk7AMAIyofrPkrKuMv/qvl/4H+yZ/clxef3Jk137o719y4OtWWthRFkZ33fSe12tDY2nXneMb9FD0EuKicq76nDANw5RH2AYAR9RNYLj/sr889lc9v+Ga6v79t5Fj/6b70HX9vUteeu/BTSZK3/rk/V1+zdFI1zqe9a1GS5MCBA2POjXcMAGYye/YBgBF1E8/6KerqxkzN//irHRkaHJzUtT99y1fS2NyS3Y8+mP7TfaPOTeQGfRcyd35nVqxYkccffzwnTpwYOb5nz57s27fvE9cHgMuJyT4AMGIiN8Ibdt2tt+cvv/11GlvaMn/p8vznledz4M+/z+wPHs33cVVbWtP9gx9n17bv5eG7vpqVX7sjTW1zcvjvr+ZM3/u5c9vDk6o7rLOpPtu3b8+mTZuyZs2abN26NT09PXnooYeyYsWKUV8AAMBMZ7IPAIwxkci/8Yfbc1P3ndn7zBN5+oEfpfedt/Ltnz+RWU3Nk77uzd/YnC0P/DLV5pb8bsdP88zPtuWN/a9k+Zr1k66ZJJUi6WpuyMaNG7Nz586cOXMm9957b3bt2pXHHnssy5cvT7VavXAhAJghitpUrIsDAErj1WN9eepg+abcX1/cmuvnNo57buXKleno6Mizzz57ibsCgIvDZB8AGKVzdjl3+XXOrk9/f38GBgZGHd+9e3f27t2b2267bXoaA4CLoJz/zQGASZvbWJfGuiKnB8uz+K+xrkh7YyUHDx7K+vXrs3nz5nR1dWX//v155JFH0tnZmXvuuWe62wSAKSPsAwCjFEWRz82r5vm3T6UMcb9IsnJeNUVRpL29PatWrcqOHTty9OjRNDc3p7u7O/fff3/mzZs33a0CwJSxZx8AGKPn9GB+8bee6W5jytx9fXvaG+umuw0AuGTs2QcAxmhvrMunWhsmdFf+y1mRZElrg6APwBVH2AcAxrWqozrjl/HXkqzqaJruNgDgkhP2AYBxXds2K3NmVWbsdL9IMmdWJUvbGqa7FQC45IR9AGBclaJI9+LWGTvdryXZsLg1lWKmfl0BAJMn7AMA57SopSGrO6ozbrpfJLm5o5qFLab6AFyZhH0A4LzWdTWnbQYt5y+StM2qZG1X83S3AgDTRtgHAM6roVJkwwxazj+8fL+hMlO+ngCAqSfsAwAXtKilIesXzoxJ+fqFzVlk+T4AVzhhHwCYkNUdTbl1wezpbuO8bl0wO6s9ag8AUj/dDQAAM8eX558N0n84/P40dzLW2gWz86X5gj4AJElRq9VmyhY8AOAy8cLRU3nu9ZMpkmndyz98/fULm030AeBDhH0AYFIOnejPbw4eT++ZoWkJ/MN33d+wuNUefQD4CGEfAJi0/qFa9rx5Mi8c7btkU/7h69zcUc3armZ33QeAcQj7AMAnduhEf54+eDzvnhm6aKF/uO6cWZV0m+YDwHkJ+wDAlBiq1fKv3v68ePRU/n28f8pC/3CdJa0NWdXRlKVtDakUpvkAcD7CPgAw5XpOD+bld/ry8n/7cnrw7EeNSpEMTeBTx4df11hXZOW8alZeXU17Y91F7BgAykXYBwAumlqtlp7TQzny/kCOnBrImyf7c+TUQAaGxr62vpJ0NtWnq7khnU316Zxdn/bGSgpTfAD42IR9AOCSqtVqGaolA7VaBoeSukpSXxSpFBHsAWCKCPsAAABQMpXpbgAAAACYWsI+AAAAlIywDwAAACUj7AMAAEDJCPsAAABQMsI+AAAAlIywDwAAACUj7AMAAEDJCPsAAABQMsI+AAAAlIywDwAAACUj7AMAAEDJCPsAAABQMsI+AAAAlIywDwAAACUj7AMAAEDJCPsAAABQMsI+AAAAlIywDwAAACUj7AMAAEDJCPsAAABQMsI+AAAAlIywDwAAACUj7AMAAEDJCPsAAABQMv8D1wy84wWsOjMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs8AAALPCAYAAACdci23AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3RU1fbA8e+dSZn0Dgm9l1CkRIGA9KKCgqiAoDxFBBXbU+TJz6dgF3wqqM8HShEVBcFCVSEqXVroRekhIQkE0ibJTDLl/v4YZiQkIXWSSbI/a7Ekd849d98JrrXnzL77KKqqqgghhBBCCCGKpanqAIQQQgghhKguJHkWQgghhBCihCR5FkIIIYQQooQkeRZCCCGEEKKEJHkWQgghhBCihCR5FkIIIYQQooQkeRZCCCGEEKKEJHkWQgghhBCihCR5FkIIIYQQooQkeRZCCCGEEKKEJHkWQgghhBCihCR5FkIIIYQQooTcqjoAUXlUVcWigllVsVpBowE3RUGrgKIoVR2eEEIIIYTLk+S5hlJVldRcC8k5ZpJzzCTlmEk2mDFbC45100C4lxsR3m6EX/0T7KmVhFoIIYQQ4jqKqqpqVQchKk5aroX9l40cvGIk12L71WqAQnLmAq4d56lVuClER+dQHUGeWidFK4QQQghRvdS65Lkmli5YVZXTmXnEphg5pzehABXxS7XP08TPna5hOpr7e6Cppu+REEIIIURFqNHJc20oXYjPMrEuTk96nrXCkubr2ecN9NAwtLEfDX3dnXAVIYQQQgjXVyOT59pQumCyqmxOzGZvitFpSfP17NeJCtPRp54P7hrX/mAhhBBCCFHRakzyXJtKF+KzTKyN05OZZ62UpPl6CuDvoWGYrEILIYQQopapEclzbSpd2JtiICYhu9JWm4tiv/7ABj5EhXlVYSRCCCGEEJWnWifPtal0QVVVdlw0sDUpp1KuVxq3RngTXdfL5evDhRBCCCHKq9omz7WtdGF7co5LJs52t0Z40zPcu6rDEEIIIYRwqmqZPNe20oW9lwzEXMh22vwVRUo4hBBCCFHTaao6gNJQVZXtyTnEJNgSyarO+u3Xj0nIZntyDs74HBKfZaoWiTPY3of4LFNVhyGEEEII4TTVKnl21ZpfgK1JOey4aKjQOU1WlbVxeqpLJbECrI3TY7JW9ccaIYQQQgjnqDbJ895Lrps4221NymFvSsUl0JsTs6usprssVCAzz8qWxOqxUi6EEEIIUVrVInmujaUL8Vkm9qYYq03ibKcCe1KMUr4hhBBCiBrJ5ZPn2li6YFVV1lWje76eAqyL02Otfs+iCiGEEELckMsnz7WxdOF0Zh7p1eier6cC6XlWzmTK6rMQQgghahaXTp5ra+lC7NVNX6ozBYitwPpvIYQQQghX4LLJc20tXUjLtXBOb6p2HxiupwJn9SbSci1VHYoQQgghRIVx2eS5tpYu7L9c/Ved7RTgwGVjVYchhBBCCFFhXDZ5ro2lC6qqcvCK65SpfProcD59dHiZz1eBA1eMTtk8RgghhBCiKrhk8lxbSxdScy3kWqr7XeeXa1FJy7VWdRhCCCGEEBXCJZPn2lq6kJxjdm4wVaSm3pcQQgghah+XS54ru3Rh1tAurJjxpNPmL03pQnKO2fV+IeWkUSDZIMmzEEIIIWoGl8vVnFG6EHdwNzHzZmPQZ1TovCVV0tKFpBwz5SlwWDHjSWYN7VLgeMy82UzvEub4ee+qr/ls0t28MaAt/+5Wnw/u6cnOFYvLceWiWVVIzJZ+z0IIIYSoGdyqOoDrOeMr/riDe/j103fpetcYvPwC8r32/A9/oCjO/wyRnGMmWKct8nVVVStthXbXys+p26w1bfsMQaN1488tv7Dq7WmoVis9Rj9S4ddLNphRVRVFqSnFOEIIIYSorVwyedZAuVZgS8PNw9Pp17CXLkRS9LUsKpgr6aYnfbYKd52X4+foMRNZNGUU25bOc0rybLbaVqC1kjsLIYQQoppzubKNpBwzB2NWM71LGGditxd4fdfKJUzvEkbyqeMAnN69lfkThvFKdGNe7d2cL/75IJfOnHCMj5k3m5/mzARg9rCuTO8SxvQuYaQlngcK1jzHrv6G6V3COHdgF2vfe5k3+rfhlejGfPn8P8hKu5wvFqvVSsy82bw1uD2vRDfis0kjuHjmrwJzlqR0wVyJ7dyuTZyN+kyy067QrGs0qQnnMOoznXLNyrw/IYQQQghncamVZ3vpQpteg/Dw9uHwhlU069oz35hDG36kbvM2hLdoy6ldm1n81BiC6zdm4OQXMOUa+WPZAuZNGMpTX/9KUL1GtOs/lMvnT3Pw5+8Z+vzr+ASGAOATFHLDWNbMno6XXyD9J00lPSme7V/PZ/U77oydtcAx5peP3mDLko9o23sILXv0I+nEURZPGYU5N7fAfMWVLlgrsZvbuQO7iJk3m/OH9mIy5uR7zZiVic7Pv8KvabECRVetCCGEEEJUCy6VPNtLF9x1XrTtPYQjv67lzmlvo9Hasi795Yuc3beDAZOnAbB+zky8/YN4/POf8A4IAiCy7+18NLY/G+fNYtRr/yWiVTvqtenIwZ+/p12/Owiq16hEsXgHBDPhkxWOZNdqtfLHss8w6m3Jpf7KJbYt/R+R/e7gwfeWOM6Lmf8uv86fXWC+4koXNBXwHYBSRIM/q/XvPtNX4s+y8LF7CGvSgqHPvUZAeD3c3D34c1sM25fOQ1Wdk8VrXe47DiGEEEKI0nOplObar/Y7Dh5BVmoKZ/b+XbpxOGYNqtVKx8EjyExJJumvI3S5c4wjcQaIaNWOFt36cGLbr+WK5ZaRD+ZbJW7auTtWi4W0pHjAVi5iNZvpft/D+c6LHjOxRPd3PbcKeJhO5x+IsZCOIulJCY6/H9/yC+a8XMZ/8BXd7v0HbXoNokW3Prh76sp9/RupiPsTQgghhKhqLpU8X1u60Cq6Pzpffw5t+NFx7PCGH4lo3Z6wxs0dCWFY4+YF5qnTtBXZ6VfIM2SXOZaA8Ab5fvbyDwTAoE8HIP1qEh3SsGm+cd4BQY6x17PcYFFXq4BbOX8bIQ2aYMzKJOnEUcexzJRkjv6+zvGzfRX/2r7TRn0msau/Kd/Fb8BNY3toUgghhBCiunOp5Pna0gU3D08i+93Osd/XYzGbybiURNzB3XQcPKJyYtEWUaBbjufeblS6oCgK4V7lq6LpOORuPLy8+WrqQ2z/ej6bFs3hk3/cRmijvz9gtOzeD627B188+wB/LF/I5s8/5KNxA/ANDi3XtW8k3MtN2tQJIYQQokZwqeT5+q/2Ow4eQXb6FU7v3sLhjatQVdWRPAdG2FaGU+JOF5gn5dxJfAJD8PDyAXBK4hYY0RCw1RBfKzs9FUNmeqHnFFe6EOHtVq5fiE9gMA+8twR3nRc/zX2NfWuXM+TJf9O29xDHmLAmLRg3exEoCuvnzGTXyiXcMnI80fdPKseVi6ZRoJ6Pu1PmFkIIIYSobC71wKC9dMHe77jFLX3wCgji0IYfuXT2JA3adyG4fmMA/MPCiWjdnn1rl9F3wjOOzU+STx3n5M5NdLrjXse8Hl7eABj0GQRRMZrfcisaNzd2rficlt37Oo7/sXxhoeNLUroQ7u1W7v7WLbv35dlvtxQ4PvCxaY6/t+0zhLZ9hhQYEzV8bL6fJ322qpzR2B6SLO+KuhBCCCGEq3CprMZeupCQbdtpT+vuTvv+Qzn4yw+YDDnc/s9X842/49mZLH5qDP/7x+1EjRjnaFWn8/Vn4OS/k8V6bW8CYMN/36Lj4LvRurvTtvdgx8p0WfiF1KHn/ZPY+uUnfPHsA7SM7k/yiaP8teNXfAJDCnS+KEnpQri3S/06KkxNvS8hhBBC1D4uVbYBBUsXOg4eQV6O7cG/joOG5xvbolsfHv5oOd6BQcTMm8XWL/9Low5deWzROscKNUDDdp0Z9MSLJJ04ysqZT7Fs+iSy066UO9bbnn6F/o8+T8Kx/fw0ZyZX4s8y4b8rUFFxu6Z7RUlLF4I9tXjWsG34PLUKQZ4u989MCCGEEKJMFFV1ra3fjqYaWROXVdVhlJlBn8FrfVow+Inp9Jv4nOP4XY39iAwufivw3y5ks+eSoTzPJboMBbiljhf96pd9hV8IIYQQwpW43JJgdfqK32Q0FDi2fel8AJpG5d8ZsaT31TlUVyMSZ7A1JukU6tz+0UIIIYQQlcnlMlV76UKuxfVTyEMbfiR2zTJa9xyIh7cPcQd2cfDn72nZvS9NOnVzjCtN6UKQp5Ymfu7E6U3VOolWgCZ+7gR5yp7cQgghhKg5XC55VhSFm0J01aJ0IbxlJBqtG1u++JjcLD2+IWFE3z+JwVOmO8YoQKcQXana5XUN03FOb3JCxJVHBbqGeVV1GEIIIYQQFcrlap4B0nItzD+WVtVhVJjJkUGlWoG1qiqfHksjI8/q8h8gCqMAAR4aJkUGoZHNUYQQQghRg7hczTP8XbpQ3dMuBWhahtIFjaIwtLFftUycwbbqPKyxnyTOQgghhKhxXDJ5BlvpQnVNHu3KU7rQ0NedqDBdtfsAoQA3h+lo4Cu7CgohhBCi5nHZ5Lm5vweBHppqlzzaKUCgh4Zm/mVPIvvU88G/Gr0HCuDvoaF3PWlNJ4QQQoiayWWTZyldAHeNwrBq9B7Y79m9uH3IhRBCCCGqKZdNnkFKF8D2HgxsUD1Wcgc28KGhlGsIIYQQogZz6eQZpHQBICrMi1sjvCtsPme4NcKbKGlNJ4QQQogazuWTZyldsImu67oJdO8Ib6LrSuIshBBCiJrP5ZNnkNIFsG0e0zPc2/E+VPVKvP36Axv4EB3uXapNYIQQQgghqqtqkTxD9Shd+G3+bC7HbnbqNaLCvBjXMqBKS1lUVcXfQ8O4lgFSqiGEEEKIWqXaJM/g2qULmxe8R+yKhdx5552sXLnSqddq6OvOxLZBGP7ai6paUSqpqEXBljjv+OZTupkS5OFAIYQQQtQ61Sp5duXShVceuIu8vDyCg4MZNWoUixcvduq1z589w9v/GE7eth8I8NDmi6ei2ecN8NAwpqkPcb8sZ+KEhzCZTE66ohBCCCGEa1JUVa0uz+LlE59lYm2cnsw8a5U8TGjvqjGssZ9jBXb79u0MGTKEgIAAEhMTmTt3Lk8//bRTrj9y5Ej27NnDn3/+ibvOi1OZeRy4bOR8ltm2QlwB17DP09TPna5hXjTzd0ejKOzZs4fu3bvzxhtvMH369Aq4khBCCCFE9VBtk2cAk1Vlc2I2e1OMFZYwFsd+nZvDdPSu51Ogq8bWrVu5/fbbCQ0NJS4ujtdff52XXnqpQh6oU1WV1FwLv+09xOffr2XgPfdj8Q3CbC0uZhW1BOvSGgWsV99ET61CpxAdnUJ1BHlqC4ydNm0aH374IQcOHKBNmzZluR0hhBBCiGqnWifPdvFZJtbF6UnPszotibbPG+ihYeg1q82F2bx5M3fccQf16tXj1KlTTJ06ldmzZ5c5gU7LtbD/spGDV4zkWmx3ZzWb0bi53fhEVcVqsRQ7zk0D4V5u1PNxJ9zLjXBvN4I8NTeM12AwcNNNNxEWFsaWLVvQagsm2EIIIYQQNU2NSJ4BrKrKmUwTsSkGzupNTi9dKM7vv//O0KFDadKkCcePH2fSpEl88sknJU4yrarK6cw8YlOMnKvA+7Fr6ONG5zAdLf09cNMoZUrst2zZQp8+fZxaniKEEEII4UpqTPJ8rbRcCwcuGzlwzUrttSUJN1Ka0oXi/PrrrwwbNoxWrVpx+PBhxowZw5IlS3B3v3GXCldbSb+RKVOm8Pnnn3PkyBGaNm1aoTEKIYQQQriaGpk826mqSlquleQcM8kGM4nZJpIN5kJrhMtSulASGzZs4K677qJ9+/YcPHiQ22+/nW+//RadTldgbFXWcEeF6ehTSA13cfR6Pe3bt6dVq1Zs2LBBNksRQgghRI1Wo5PnwqiqilUFs6pisYJWA26KgkbBaYnfzz//zPDhw+natSv79++nR48erFq1Cj8/P8cYV+weUlK//PILt912GwsWLOCRRx5xToBCCCGEEC6g1iXPVWX9+vXcfffddOvWjf3799OuXTvWr19PcHAwe1MMxCRkV9pqc1Hs1x/YwKfUOwc+9NBD/Pjjjxw7dox69eo5JT4hhBBCiKomyXMlWrt2LSNHjqR3797s37+f+vXr8+53G9mf5XqdKm6N8Ca6rleJV+NTU1OJjIykW7du/Pjjj1K+IYQQQogaqVrtMFjdDRs2jBUrVrB582a6detG04EjXTJxBtialMOOi4YSjw8ODuaTTz5h9erVLF++3ImRCSGEEEJUHVl5rgLff/8973/3C8OmvlnVoRSrtCUc9913H5s2beLYsWOEhYU5MTIhhBBCiMonyXMViM8ysfREOlST0oZxLQNK/BDhxYsXiYyMZMiQIXz99ddOjkwIIYQQonJJ2UYlM1lV1sbpq01NsAKsjdNjKkmTbKBu3brMnTuXb775hjVr1jg3OCGEEEKISiYrz5UsJiGL2BRjlXbVKC0FWx/oAQ18SzReVVWGDRvGgQMHOHr0KIGBgc4NUAghhBCiksjKcyWKzzKxt5olzmBrX7cnxUh8lqlE4xVFYd68eej1el544QXnBieEEEIIUYkkea4kVlVlXZye6lGsUZACrIvTYy3hFxUNGzbk3XffZcGCBfz666/ODU4IIYQQopJI2UYFUlUVy9XdC61W0FzdvVCrwKnMPL47o6/qEMvt3mb+tAjwKNFYq9XKgAEDiIuL4/Dhw/j4+Dg5OiGEEEII55LkuYxUVSU110JyjpnkHDNJOWaSDWbM1oJj3TSgBXILea06UYAmfu6MbhFQ4nNOnz5Nhw4dmDRpEnPmzHFecEIIIYQQlUCS51JKy7Ww/7KRg1eM5Fpsb50GqOZ5calMjgwiyLPkm7u8//77TJ06lW3bthEdHe3EyIQQQgghnEuS5xKwqiqnM/OITTFyTm9CgWr30F9FUYBb6njRr37JSzAsFgs9e/YkIyOD/fv3o9PpnBegEEIIIYQTyQODxYjPMvHpsTS+O6MnTm/rNlFbE2ew3fuBK0ZK85lLq9WycOFCTp8+zeuvv+684IQQQgghnEyS5yKYrCoxCVksPZlBRp6tKKO8SXPcwd3EzJuNQZ9R/gCrUK5FJa2UBdzt2rXj5ZdfZtasWezfv99JkQkhhBBCOJckz4WIzzKx4HgasSlGoOJWmuMO7uHXT9/FWM2TZ4DkHHOpz3nxxRdp164dEyZMwGQqWc9oIYQQQghXIsnzdfamGFh6MoPMPGuVlWdYrVZMucYqunrxNAokG0qfPLu7u7No0SIOHz7M7NmznRCZEEIIIYRzSfJ8laqqbE/OISYh2/ZzBc8fM282P82ZCcDsYV2Z3iWM6V3CSEs8z/QuYax651/sX7+SD+7txcvd63Nix2+c2bud6V3COLN3e7657OfErv7GcWzFjCeZ0bMx6UkJfP70WGb0bMzbQzrwx/KFACSfPMZnk+7mlejGzLqjMwd++i7fnLGrv2F6lzDOxu7ghzee57V+rZh5a1O+fXkKhsz0fGOtKiRml23luGvXrkydOpXXXnuNY8eOlWkOIYQQQoiq4lbVAbiKHRcNbE3Kcdr87foP5fL50xz8+XuGPv86PoEhAPgE2f57Zs82Dm9cTY/Rj+AdGExQvYYY9ZmluobVamXxU2No2qUHtz0zg4M/rWT1rBfx8PJmw3/fotPt99Ku/1B2f7eEFa9MoVHHKILrN843x+pZ09H5+TNw8guknDvFrpWfk54Uz6OfrUJR/t4fMdlgRlXVfMdKasaMGfzwww888sgjbNu2Da225G3vhBBCCCGqkiTPwN5Lzk2cASJataNem44c/Pl72vW7g6B6jfK9nhJ3ime+3ULdZq0dx65fcS6OOddI5zvupe+EZwHodPs9vD2kA9+9+gxj3ppPxyF3A9Cye1/eH9mDfWuWM/Cxafnm0Lq7M3He92jd3QEIimjIT3Nf5fiWX4jsc9vf17LaVqC1Zdhv3MvLi4ULF9K7d28++ugjnn322dJPIoQQQghRBWp92UZ8lomYC9lVHQZNu0TnS5zLKuruBxx/9/ILILRxc9y9vOkweITjeFiTFuj8Aki9EFfg/FtGjnckzgDd7nsIjZsbf22LKTDWXI4W4b169WLKlCm89NJLnDlzpszzCCGEEEJUplqdPJusKmvj9JRh8bTCBddvVPygYrh56vANCs13TOfrT0CdegXKK3S+/gVqmQFCGjXL97Onty9+oXVJSzxfYKylnNsqvv3224SFhfHoo4+Wqm+0EEIIIURVqdXJ8+bE7CrtqnEtN89Cdt0rIqu3WiyFHtdoCv91aoqoKS5vwqot578eX19fPvvsM3777TcWLFhQvsmEEEIIISpBrU2e47NM7E0xVmriXNqH67z8AgEKbKqSnpRQYTFd78r5/CUUuTlZ6C9fLFCjDeBWhocFrzdo0CAmTJjA1KlTSUhw3n0JIYQQQlSEWpk8W1WVdVVQruHh5Q0UTIaLEhTREI1Wy9l9f+Q7vnPFogqPzW73919guWYDk10rPsdqNtO654B849w0tn7PFeG9997Dx8eHxx9/XMo3hBBCCOHSamW3jdOZeaTnlbNgtwzqtb0JgA3/fYuOg+9G6+5O296Dixyv8/On/cC7+GP5AhRFIbhBE/7cuoHs1MtOi9FiMrHgsZF0GDScy3Gn2LliMU06daPtNZ02AMK93MrUpq4wgYGB/O9//2PEiBF88803jB07tkLmFUIIIYSoaLUyeY5NMaJQ8RuhFKdhu84MeuJFdq1cwokdv6FarUxbG3vDc+6a9jZWs4ldK5fg5uFBh0HDuePZmcy571anxHjXv97mwE/fETNvFhaziZuGjOTOaW/lS5Q1CtTzcb/BLKU3fPhwRo8ezdNPP83AgQOpU6dOhc4vhBBCCFERFLWWfU+elmth/rG0qg7D5cSu/oaVM59mylcbaRDZqdjxdzX2IzLYs0JjSElJoW3btgwcOJBly5ZV6NxCCCGEEBWh1tU8779sdInWdNVduHfFf2kRFhbGhx9+yPLly1m1alWFzy+EEEIIUV61KnlWVZWDVwrvsBEzbzbTu4RVekzXS0s8z/QuYcSu/qbYsStmPMmsoV0qIar8PLUKQZ7O+adz//33M2zYMB5//HHS0wv2oRZCCCGEqEq1KnlOzbWQa6lVVSoVTgE6hegq7GHBAvMrCvPmzSM7O5vnn3/eKdcQQgghhCirWpU8J+eYqzoEl9X1rvt5e19KsfXOKtAptJANXSpQ/fr1+c9//sOiRYvYuHGjU68lhBBCCFEatS55rlU3XMEUoKmfO0Gehe9YWJEmTpxI//79efTRR8nKynL69YQQQgghSqJWtapLyjFjBc7t38na917m4qnj+NeJoPf4JwuMtZjNbFo8l31rlpFxMRG/0Lp0um0kAya/gJvH310mZg3tQt3mbej78NOse/8Vkk8ewy8snIGTX6DLsNGOcTkZaWxaNIcTf/xO2oU4FI2Gxjfdwm1Pv0xEq/bFxn709/Vs/ORtrsSfJaRhUwY9/mKFvCeloQIdApyfOIOtfOOzzz6jQ4cO/N///R8ffvhhmeZRVRWLCmZVxWoFjca2M6JWKf2Oj0IIIYQQtSZ5VlWVZIOZ5JPHWDRlFD6BIQyY/AJWi5mY+bPwDc7fV/j7159l35rltB94J70eeJz4I7FsWjyXS+dO8uB7S/KNTU04y9JpE4gaPo4uw0azd9XXrJzxFPXb3kTd5m1sYy7EcfT39XQYdBfB9RqjT01h93dL+HTicP753Xb8w8KLjP3EH7+z9IWHqdOsNUOe/Dc5GamsnPk0AXXrVfwbVQTVaiUt8TxD7xnF22+9xejRo52efDZr1ow333yT5557jtGjR9OzZ88bx6iqpOZaSM4xk5xjJinHTLLBjLmQ/XDcNLaNXiK83Qi/+ifYUysJtRBCCCFuqNYkzxYVzFbYOG8WqqoyeeEaAiMaANC+/53MHd3bMTbpxBH2rVnOzXc/wMiXPwCgx6gJ+AaFsfXL/3J6zzaa39zLMT7l3CkmLVhN0y49AOgweDizbu9E7OpvuOOfrwIQ3qItz/+4C43m78KRLkPv4/2R0ez5cSkDHi364bifP3wN3+AwHlu4Fp2fPwBNu0az6In7CIxoWEHv0I0pGg13twjmrw4duP/++5k7dy4ffPAB3bt3d+p1n3rqKb799lseeeQRDhw4gE5XsN46LdfC/stGDl4xOh4I1QA32kPSbIWEbDOJ2WbHOE+twk0hOjqH6iqlNEUIIYQQ1U+tKQE2qypWi4WTf/xOZN/bHYkzQJ1mrWjZo5/j57+2xQDQa9zj+ea49cHHr76e/yG2Os1aOxJnAN+gUEIbtyA1Ic5xzM3D05E4Wy0WstNT8fDyIbRxCxL/PFRk3JkpyST9dYQud452JM4ALbv3pU6z1iW+//JQgJvDdPRo24xVq1bx66+/YjAY6NGjB2PHjiUuLq7Ic1VVxWxVMVqs5JisGC1WzFaVku7No9VqWbhwIWfPnuXVV191HLeqKiczcll2KoP5x9LYc8mQr5NKSTdfv3ZcrkVlzyUD84+lsexUBiczcrHWrj2EhBBCCFGMWrPybLVCdtplTEYDoY2aFXg9tHELR9KclpSAotEQ0rBpvjF+oXXR+QWQlhSf73hgeP0C83n5B2DQ/92n2Gq1suPrT9m5YhFpieexWiyO17wDgoqMOz0pwRZfw4IxhzVuwYUbJN4VQQH8PTT0rufjONa/f39iY2NZsmQJL730Eq1bt+a5557jX//6F2ZPnwovm2jbti2vvPIKM2bM4L777iOsVQfWxelJz7M6NrypqBTXPk+c3sQ5vYlADw1DG/vR0LdityMXQgghRPVUa5JnTVnW2EtY/6poCv+K/9rV1U2LPmDjJ+8QNXwsg56Yjpd/IBqNhrX/+TeqWtJ10sqnAsMa++Guyf9eaLVaJkyYwKhRo3j3v/PZn2Lgg0NX0PmagIovm5g2bRo/rF7DRxv20FppVOFJ8/Xs82bkWVl6MoOoMB196vkUeB+EEEIIUbvUmuTZTVHwCQrFXefF5fNnCrx+Oe6U42jBBWQAACAASURBVO9BEQ1QrVaunD9DnWatHMf1Vy5h1GcQVIY64yMxa2gW1Yt7ZszNd9ygz8A7MLjI8+zlJZfjC8acck3MzjKwgU+hq65WVeV0Zh6xKRa8Bv+Dnqio12x8Xp6yid2XDDTxc6drmI7m/h5oFIXkXHhg3o/kWG3XqKxiCvt1YlOMnMzIY5isQgshhBC1Wq2pedYq4OGupWWPfhzb9JOjHALg0pkTnPzjd8fPrXsNBGD71/PzzbHtq3lXXx9U6uvbVqfzp3yHN64i81LSDc/zDwsnonV79q1ZjlGf6Th+cucmLp35q9RxlMatEd5EhXkVOB6fZeLTY2l8d0ZPnN620nxt4lwe15ZNfHdGz6fH0ohJyGLpyQxycUNTxCq/s6lA5tVV6L0phiqJQQghhBBVr9asPCuKQriXGwMnT+PEjt+Y/8iddB/1MFazmR3LF1CnWRuSTx4FIKJVe7rcOZrd33+BQZ9B067RJBzdx741y4nsd0e+Thsl1ebWwfz22X9YOeMpGt10C8mnjnHgp+8IbtCk2HOHPPlvljwzlnmPDCPqrrHkZKbxx7IF1G3ehtyc7FLHUhI7lnzIqKcfBv6u+zZZVTYnZrM3xVhpZRPpeVb2phideq2Ssl8/JiGbXItKdF0vaW0nhBBC1DK1ZuUZIMLbjfqt2jHh4+X4BIWw8X+z2Lv6GwZO/hft+t2Rb+zIl+cw8LF/kXDsAOv+829O79lG34ef4f63Py3Ttfs98iy3PvgEJ/74nbX/eYnEPw/x0NyvS9SruXXPAYydtRDVYuGXj9/g6G/ruHfmh9SPvKlMsRRFwVan/fMHM9i3chG33TaElJQUwLbavOB4GrEukshWta1JOey4KCvQQgghRG2jqCXtGVYDHE01siZOtnoujL2rxqC67kwaNZzdu3fj4eFB8+bNmfPDRrammG3JdVUH6mIGNvAptLRFCCGEEDVTrVp5DveuNVUqJWYvOogK0zGxbRAtQv1Ys2YNUVFR5OXlEXLzQLammAFJnAsTk5BNfJapqsMQQgghRCWpVSvPqqoy53Bqvs00aiv7KnJRfYyzsrJ4es5iWg29v0riqy7sK/YT2wZJGzshhBCiFqhVyTPAbxey2XPJUGtXUe1Jc1M/d7qGedHM3x1NIQ+97b1kIOaCcx5GrGkUbCv3Axr4VnUoQgghhHCyWlfH0DlUx+5LNeNBL1VVi+32oFHAevWTgqdWoVOIjk6FbEJyrfgskyTOpaACe1KMtAr0lB7QQgghRA1X65LnIE8tTfzcidObqv3qs06rYMjNQ+PuUeA1N8VW413Px51wL9v210GemmKTbZNVZW2cXh4OLCUFWBenZ1JkUKEr+UIIIYSoGWrVA4N2XcN0NSIxvLOJP5eX/YevxvfnsZbe1D0Ww88v3M+/b6nHu0PacWTROzQ2JhMZ7EmwTluinsSbE7PJzLPWiPenMqnYelKfyZSHB4UQQoiarFYmz839PQj00FTQnniVT8H2oF8zf3dSU1MJDPAn0Nebh8eNYVPMRg7s38eYMWOYP38+LVq0YNCgQaxYsYK8vLwbzhufZWJvilES5zJSgFjZfVAIIYSo0Wpl8qxRFIY29qu2SaIKDGvsh0ZRSE1NJTg4ON/r7du3Z+7cuSQmJrJkyRIMBgOjRo2iYcOGvPjii5w+fbrAnFZVZd3Vcg1RNipwVm8iLddS1aEIIYQQwklqZfIM0NDXnagwXbVLFhXg5jAdDa4+mJaamkpQUFChY728vBg/fjzbtm3j8OHDN1yNPp2ZR7qUa5SbAhy4bKzUa6qqitmqYrRYyTFZMVqsmK0qtayRjhBCCFEpal2rumuZrCoLjqdVmxrfwnoKR0ZGMmTIED744IMSzWEwGFixYgWffvop27dvp06dOjz88MO0HvsMlyzuJX4fYld/w8qZTzNtbSxB9RqV7YbKYHqXMAZMeoGBj02rlOvNGtqFZlHR3PfqxyU+x1Or8GyH4BLVmJeWqqqk5lpIzjGTnGMmKcdMssGM2VpwrJsGwr3ciPC2PTAa7u1GsGfJat+FEEIIUbha123jWu4ahWGN/Vh6MqOqQykRe7nGtZtxpKWlFSjbuBH7avT48eM5cuQIn332GcvX/MTk0VOdEHHZ/LltIwlH9pcoQY47uJuTf2yi57jJePkFlOl6FTHHtXItKmm5VoJ1RbcDLK20XAv7Lxs5eMXo2ORHAxSSMzuYrZCQbSYx2+wY56lVuClER+di2hUKIYQQonC1euXZbm+KgZgE1+9rPLCBD1FhXo6fVVVFp9Px/vvvM2XKlDLPuyEug31XckEpeRWP1WLBYjbh5uFZ4SuZq975Fzu/XcTb+1IKvGbKNaLRuqF1s33u2/LFf/lpzsxyrYDfaA5zXi6KokHrXrr+zXc19iMy2LNM8dhZVZXTmXnEphg5pzdVWPtA+zxN/NzpGqajub+HtNcTQgghSqhWrzzbRYV5kWtR2ZqUU9WhFOnWCO98iTNATk4OeXl5pVp5vp6qqhzNMJcqcQbQaLVotJW/cunuqavU67l5lD4B1iiQbDATSdmT5/gsE+vi9KTnWR11+RX1Kdc+T5zexDm9qcgt2oUQQghRUK19YPB60XW9uDXCu6rDKFTvCG+i63oVOJ6amgpQ5AODJZGaa3GUAZRG7OpvmN4ljLTE84CtNvjzp8dybv9O/vvgYF7u3oDZd0axb+3yfOdZTCZi5r/Lf4bfwsvdG/Bav1bMmzCUkzs3AbBixpPs/HYRYKtvtv85+vt6x7GYebMBiJk3m5/mzARg9rCujrFpiedJSzzP9C5hxK7+pkDsJZ3Dfl8rZjyZ/z1LOMfSaRN4rW9LXoluxCfjb+PPrRscr1tV+PW331EUhW+//ZY333yTBg0aoNPpGDBgAKdOnco338mTJ7nnnnsIDw9Hp9MRFlGfYfeM4uKVdMB5m9XY583Is7L0ZAYxCVmYrLX+iyghhBDihmTl+SpFUegZ7o2nViEmIbvKd9izX//6Uo1r2ZPn8qw8J+eYy3zu9VITzrJ02gSiho+jy7DR7F31NStnPEX9tjdRt3kbAGLmz2bz4rlEjXiAhu07Y8zO4sKxAyT+eYiW3ftyy8h/kJlykVM7NzHq9U8A+O61Zzm2aT3t+t2R73rt+g/l8vnTHPz5e4Y+/zo+gSEA+ASFkJ12pUQx32iOwuivXOJ/D9+ByWggesyjeAcEs2/tMr7454OMm72Idv2H2t6Lq+3q3nnnHTQaDVOnTiUjI4PZs2czbtw4du3aBUBeXh5DhgwhNzeX8ZOfIFEbyMWkRP7cuoEcfQaefv6l+RWUif3feWyKkZMZeQyTVWghhBCiSJI8XycqzIu6Xm6sjdNXWRcOe1eN4pKYtLQ0oPzJ87UPnuUZsvHw8inTXCnnTjFpwWqadukBQIfBw5l1eydiV3/DHf98FYC/tm2kVc+BjHz5/ULnaHzTzYQ2asapnZtoP2AY7jovfnyr8IcZI1q1o16bjhz8+Xva9bsjX71ySZPnG81RmM2LPyTrSgqTF66hSefuANw88gHmju7LuvdfoW3f29FoNNgX841GIwcOHMDDw7aFelBQEM888wxHjhyhffv2HDt2jLNnz/LOwqWonQcTArQHBkyq/Ac4VSDz6ir0jT60CSGEELWZlG0UoqGvOxPbBtE1zFZfW1mPUtmvExWmY2LboGJX/8q78jxz5kwGNvQj6cxfLPu/ybzapwXzJgwDYP+6FXw0dgAv92jIa31b8s2Lj5KefKHAHD+8OZU3B0WSnhSPRuvGzm8XYdRnAuAbFEpoo+b8uS2Gd++6mX93q8+lc6eIO7CLi6eO55vHXvZxYsdvHN64CoBd3y1hepcw8gw57FuznOldwgA4uslWwpGbncWxTT8B8J8R3XljQFsWPn4vF44fLNP7URJ/bY+hQfsujsQZwNPbl1tGPkha4nkunfkr3/iHH37YkTgD3HrrrQCcOXMGAH9/28ryd2t/Is+QU+UtE+3Xj0nIZntyjvSKFkIIIa4jyXMR3DUKAxv4Mq5lAAEetrfJWUm0fd4ADw3jWgYwoIFvvnZ0RUlNTUVRFAICytZezZ4YfT3tEUxGA0OefImb736Q3xe8z4pXphDaqBlDn3uNnmMnc3r3Vj6deBcGva2tn8ViK/dI+usw0aMn4h0QRFC9hqReiHOMAchKSyHl7AnqtenA0Odfp1nXaIxZmcwZ1Zs5o3qz/oOZJJ04CsDluFMs+7/JBNStD0C91h0Y9fonuHl40qRzd0cZR/22NwHww1tTOX9oLwCDnniRWx98AndPHZfOnizT+1ES6UkJhDVuUeB4naatrr4en+94o0b5V7Lt9en2bw2SvMPp9cDj7PnhK94Y0IZFT9zHH8sXOj6AVKWtSTnsuCjbjQshhBDXkrKNYjT0dWdSZBBnMk3Ephg4W4EtwyxmM1o3LU38POga5kUzf/dStQxLTU0lICAAbRm7XtjvIaJVO8a8NR+AtMR4/jP8ZgY9MZ1+j/zTMbZd/6F8NLY/O79dRL9H/ok+JRmA/pNeoMeoCez+4StCG7fgoQ+/dpyTdOIIWVdS8Autw7jZtocAe4yawKp3XmTntwvxCQphz49fsf3reXj6+mPISOPhj5dzfMsvJP55iGZRPQH48a2pBDdoTOeh9/Hty08QeDW5/mvrRhq278L5Q3u4afCIqyUXTznuozBWS+VunV3U70ZVVfZeMrA1KYehz71G1zvHcGzzT5z8YxNr3v0/Ni2eyxNLfiagbr1Kjfd6W5Ny8NQqUsIhhBBCXCUrzyWgURRaBHgwukUAkyODuKWOF55a5ZrXSzrP33/31MC+75eQumo+o1sE0CKg9L12S7tByvXsjRW63fMPx7Gjv61DtVrpMGg42WlXHH/8QuoQ2rAZZ/ZuB8Dd05ZMndv3B3mGwlv8/bUtBoCAOvXzHe8/0ZaU12/TkRd/OkB4y0iM+kyC6jemVXT/EveN1vkFkH6xYCkJgJd/IEC+VXAouDIMlKpPdWBEA1LiThU4nnLu5NXXG5ZonlSjhZgLf/cWD28ZSf+JzzN54RomL1xD5qUkdq38vMRxOVNMQjbxWaaqDkMIIYRwCbLyXEpBnlr61fehbz1v0nKttm2SDWYSs03FbpNcz8edcC/bNslBnhrOLrzAV0tW8vbL08u0epyamlrOHs9X76l+Y8exy/FnUFWV90Z0K/QcjZutDtvejeLQhh85vuUXVKsVT28fjPpMdFc7RKQlJQDgpvu7N3N2eip+oXXR+QWQlhSPp7cvIQ2bknTiKMFXH9bz8LK1DDToM26449/tz7zC8n8/DsDnT4+lw8C76DJsFMENmqDz9cMnMIRz+3bSa9xjjnN2rlhcYJ5rr1dc07/WPQey/ev5xB3cQ+ObbgZsD1nu/v5Lguo1ok6z1gBoi8nHD1wx0A4wZOlx13k5Nn0BCG8RiaLRYM7LKyaayqEAa+P0+baFF0IIIWorSZ7LSFEUgnVagnVax2YYqqpiVcGsqlisoNWAm6KgUQpf3XzwwQf56KOP+O233xg0aFCpYyhv8mwP6dqNR1SrFUVReOijZYVugnJ9J46HP1pGwvED/LbgfS6e/pMP7ut1w3KDOff2omnXaMy5uaReiOOHN6dyJGYN7l4+uF2Nw17TvGb2/9GyRz8s5sLb6XUcPAIPb1+WPH0/OempbFo8l98XzeH+dz6lff9hRN09js2LP+S7156lQWQnzu77g8txpwvMU+/q9Tb89y06Dr4brbs7bXsPLrTrSJ+Hn+bgL9/z+VNjiL7/Ubz8A9m3djlpF+IY9+5iNBrblznBxWx9bTCrqMDpPVtZPetFOgy8i9DGzbFazOxftwKNRkv7AcNuOEdlsXfh2JKYzYAGvlUdjhBCCFGlJHmuQIqioFVAiwIlWEiOioqiVatWfPXVV2VOnuvUqVOGSG0KW0QMadAEVVUJqt+YsMbNi50jrGlLWvUcwJ4fluJfJ5zzB/ewa+XnDJ7yfwRFNADAbDQ6xkePmciR39ZizjOSfOIYJoOBQU9MZ9d3XzjGtOs/jB5jJnLolx85sH7FDTs+tOk1kEFPvMiulUuwWsyoViubFs6hff9hDHh0KtlpVzgSs4bDG1fRKnoAD328jDcHtM03R8N2nR1znNjxG6rVyrS1sYUmz34hdXh88Xp++vA1dixbgDkvl/CWkYyf8xVtbh3seF9DdIX/A0jMzl/+ENGqHa169OP4ll/ITEnGXedFRMt2PPTRMhp1jCrm3a88KrAnxUirQE+X7QGtqiqWqx9erVbQXP3wqi3iw6sQQghRFooqvaiq1BtvvME777zDxYsX8fEpXX/lzp0706NHDz755JMyXXvGjBm89tpr/PvXPx1lGFfiz/L+yB50GDyC0W/8L1/SoaoqORlp+AQGYyyk3CA3O4tX+zSn17jHueOfM0k6cYQPx/TjlpHjufvf7znG/TT3NbYs+YiJ83+g+c29AFururrN2+R74NDuzUGRNOoQxYPv/51gWy0W8nKyHSUidv99cDCqqvLkVxvL9J5UlLsa+xEZnH97bquq8umxNDKqqH94eSnYOsJMigwqdX1+RVNVldRci61sKsdM0tXyqRuVTUV420qmwr3dCPbUSkIthBCiTGTluYqNGzeOl19+mVWrVjF27NhSnVveBwYLSx5CGjZl0BPT+eWjN0hPPE9k3zvw9PEl9cJ5jv6+jltGjqf3+CklKjeIaNWeLneOZvf3X2DQZ9C0azQJR/exb81yIvvd4Uici1O/7U2c2rWZrV/9D/+wcILqNSKsSQveua0j7QfeSUTL9nh4+3Bq12YSju7njudeK/N7UlHCvQv+r3U6M4/0vEKyu2pCBdLzrJzJNNEiwKPY8c6Qlmth/2UjB68YHdvKX7vJT2HMVkjINpOYbXaM89Qq3BSio3OojqBiSmyEEEKIa0nyXMWaNm1Kr169+PLLL0udPJe35tnu+pYrfR9+htBGzdm+dB6/fvouAAF169Oye1/a9rkNKHm5wciX5xBcvwmxa5Zx7Pf1+IbWoe/DzzBg8gsljm/oc6/zwxvPsfGTtzEZDXS5czR3//t9ut83gZM7f3d0CAlp2JTh02fT/b6Hy/2elIenViHIs2Ajm9gUY5Vv+15eChCbYqjU5NmqqpzOzCM2xci5QlpFlvTjyLXjci0qey4Z2H3JQBM/d7qG6WjuX/qON0IIIWofKdtwAfPnz+eJJ57gwoULhIeHl+gck8mEh4cHixcv5qGHHirztY+mGlkTl1Xm80V+CnBLHS/61c9fgpOWa2H+sbSqCcoJJkcGVcqKbXyWiXVxetLzrE774GGfN9BDw9DGfi5b0y2EEMI1SJ9nFzBq1Cjc3NxYtmxZic+x71BX3pXnwsoLRNmpQKdQXYHj+y8bK22bd2dTgAOXjcWOKw+TVSUmIYulJzPIuFrq4qxP+fZ5M/KsLD2ZQUxCFiarrCkIIYQonCTPLiAoKIhhw4bx5Zdflvic1NRUx7nlEeypzbfhiyg7BWjq515gRVZVVQ5eMZYq+YuZN5vpXcIqNL5rzRrahRUznizTuSpw4Irxhl1QyiM+y8SC42nEphgd16sM9uvEphhZcDxNNoYRQghRKEmeXcQDDzzAvn37OHbsWJFjVFXFbFUxWqxcTMvE09ePgKDgciUximJ7cErS5/JTgXNb1rN+/XrOnz/v+L2k5locD7fVFLkWlbTcin/4cW+KgaUnM8iswo4k9r7WS09msDfFUEVRCCGEcFVS8+wicnNziYiI4LHHHuOtt96q1FZcNa0etypYLRb0KUl8eF8vcrJt2277+fnRvn17ut09jroDR5dqvph5s/n103d5e1+KM8LFnJeLomjQupe9vrewdnxlpaoqOy4a2JpU+FbvVenWCG+i63pJazshhBCAdNtwGZ6enowaNYo1v25mQEIWh1JzK60VV5CnliZ+7sTpTdW6E0RVUjQaVrwyhZzsbBRFISIigtDQUIxGI5cMFkJNpnIlqhXNzaN8Sa9GgWSD2bG7Znm5auIMOOLqGe5dxZEIIYRwBZI8uwB7K65OE6fTROvDnkuGv/fOpnJacXUN03FOLzWeZaEAN9fxYuqOTRw/fpx9+/axf/9+x5+bGzRD41b0/2rn9u9k7Xsvc/HUcfzrRNB7fMFa5L2rvmb/uhVcPP0nxqxMQho0oceYifna8n3+9FgunT3BtDV7C5z/yT9ux2o28eTSGMBW89wsKpr7Xv0YAIvJxO+L5nBg/QoyLibi7uVNnaYtGTDpBVp271tgPqtacLfEstp7yXUTZ7utSTl4ahWiwryqOhQhhBBVTJLnKpavFZf2anuzCvp62L6KHKc3cU5vumErrub+HgR6aKrt7ndVRQH8PTT0rueDu0ahY8eOdOzY0dE+0GKx8P6hVCxFVJUnnzzGoimj8AkMYcDkF7BazMTMn4VvcP5t13et/Jy6zVrTts8QNFo3/tzyC6venoZqtdJj9CMAdBw8ghWvTCH+6H4atuvsODctMZ74w3u5/dmZRd5HzPzZbF48l6gRD9CwfWeM2VlcOHaAxD8PFZo8g23lWVXVcpUzxGeZiLmQXebzK1NMQjZ1vdyklZ0QQtRykjxXEZNVZXNiNntT/m5hVlmtuKLCdPS5muzZaRSFoY39WHoyw0lR1EwqMKyxX773Mt/riqbIxBlg47xZqKrK5IVrCIxoAED7/ncyd3TvfOMmfbYKd93fq57RYyayaMooti2d50ieI/vejpuHJ4c3/JgveT68cRWKotBx0PAi4/hr20Za9RzIyJffL/ae7cxW2wp0WZu1mKwqa+P01WbjGAVYG6dnYtugIn/fQgghaj7ptlEFXLUVV0Nfd6LCpPNGaQxs4HPDlUjzDZ7HtVosnPzjdyL73u5InAHqNGtFyx798o29NnE26jPJTrtCs67RpCacw6jPBEDn60erngM4tHFVvg4shzb8SMMOUfmucT2dXwCXzvzF5fOni77ZUt5fcTYnZldpV43Ssnfh2JJYPVbKhRBCOIckz5XM1Vtx9anngw4zVoulaoKrRm6N8C62BtZ6g4L17LTLmIwGQhs1K/BaaOMW+X4+d2AXCx67h1eiG/Nqn+a8MaANv3z8JgDGrEzHuI6DR5CRfIHzh/YAcCX+LBeOH6Tj4KJXnQEGPfYvDPoM3hvRnTmjerP+g5kknTh6w3MALGXsVhefZWJvSul6X7sCFdiTYpQe0EIIUYtJ8lxJVFVle3IOMQm2VauqThrs149JyGZ7co5jpfKntWuYN+V+FI3807iR3lfblxWnIt7GK/FnWfjYPeSkX2Hoc6/xjw+/5pH/raTnuMcAUNW/M9i2vQfjrvPm0IZVwNWSDY2GDjco2QBo2jWaF1bv4Z4Zc6nbvA17fvyKj8cNYM8PN964R1uG+7OqKuuulmtURwqwLk6PVbp8CiFErSQZUiVx9VZcO5JzeOuttxgxYgSREcH0riMPRV3PnuwNbOBDdLh3iR6Uc7vBGJ+gUNx1Xlw+f6bAa5fjTjn+fnzLL5jzchn/wVd0u/cftOk1iBbd+uDuWXAbcA8vH9rcOogjMauxWq0c2vAjTTp3xz8svNhYvQOCiBo+lvvf/pQXfzpAeMtIYua/W+b7K8rpzDzSq1G5xvVUID3PyplMWX0WQojaSJLnSlAtWnElG1h76CyvvPIKK1asoGeDQG6NkL62dvauGuNaBpSqXZlWsW1iUxiNVkvLHv04tukn0pMSHMcvnTnByT9+zzcOyFfHbNRnErv6m0Ln7Th4BJkpyez94SuSThyl4+ARxcaZnZ6a72dPb19CGjbFkpdX5DluGlu/59KKveYh2epKAWJl90EhhKiVpNuGk1WnVlx3TXuLca0C0VytNbCXJbh64u9M9k4QUWE6Rzu6Up2vKIR7uZGQbS709YGTp3Fix2/Mf+ROuo96GKvZzI7lC6jTrA3JJ201xy2790Pr7sEXzz7ALfeMJ8+Qze7vv8Q3OBT95YsF5mzdayCePr6snzMDjVZL+wHDio1zzr29aNo1mvptb8I7IJCEYwc5ErOG7lc7eRSkEu7lXuo2dWm5lhrRT1wFzupNpOVait2ESAghRM0iK89OdG0rrupAURTWxukxWVXHzz3DvRnYwNZ/usrvQ1VRrVZyju8m0MP2T9dZMdnnDbi62jyggW+Z25NFeLsV+T9aRKt2TPh4OT5BIWz83yz2rv6GgZP/Rbt+dzjGhDVpwbjZi0BRWD9nJrtWLuGWkeOJvn9SoXO6e+po2/s2crOzaBbVC9/gsGJjjB4zkbSkeDYtnsuad1/ibOwOBj0xnaH/fK3Q8RaTie8WzWPw4MHMmDGDn3/+mbS04rd433+5+q862ynAgcvGqg5DCCFEJVNUVZ56cZaYhCxiq1lHAQXbKuuABr75jsdnmVgbp6+yLiH2soncvb/wz4fGMm/+fAaMfojYFANn9aYK6xVsn6epnztdw7xo5u9e5K6MJXU01ciauKwKiM61rHvrec7siCE9PZ2cHNu3E23atKFHjx706NGD7t27ExkZifaaspM5h1Md286X1pm92/ls0gge/fRHmkX1rLD7KA9PrcKzHYLLtVGMEEKI6kXKNpzE3oqrurG34moV6Jmvf3FDX3cmtg3Kt7FLZSTR15dNuEWO4eTubTw5ZQo/N2/O6AEDSMu1cOCykQNXjI7ETKPYNvAozrXjPLUKnUJ0dArVVehX8eHeNfN/s6hWTVCTmnLgwAHHsYSEBL7//ns+//xzVFXFx8eH7t27Ex0dTede/cgN61CFEVe8XItKWq6VYJ2UbgghRG0hK89OYFVVPj2WVm23ulawlStMigwqdNU135biOCeJts9b2JbiZrOZoUOHsnv3bnbu3Enr1q0B28pmWq6V5BwzyQYzidkmkg1mzIX0InbTQLiXG/V83An3ciPc240gT41TVhDLu+Lqiq5dcbVYa+LIWAAAIABJREFULJw6dYp9+/axf/9+9u/fT2xsrKOMw8PDA1VViRxwJ2Peml/ma7riyjPAXY39iAz2rOowhBBCVJKauSRWxeytuKqra1txtQjwKPB6Q193JkUGcSbT5LSyiSY3KJtwc3Nj+fLlREdHM2zYMHbu3ElISAiKohCs0xKs0xKJLZlRVRWratsJz2K19SV2UxQ0CpX2VbuiKNwUomPPJUO1/DB1PQXoFKJzvH9arZbWrVvTunVr7r//fsD2vsfHxzsS6n379qG7qQcWUx5a94L/pqorjQLJBrPj35sQQoiaT5JnJ4itxLIGZ7G34ioseQbQKAotAjxoEeBRJWUTgYGBrF27lm7dunHPPfewYcMGPDwKxqooCloFtChQhd+sdw7VsftSzWhtpgKdQgv2mL6Woig0atSIRo0aMWKErVXeVyfSSci+caeNjEtJxPzvHf7a/is5GWn4h4XTKro/w154s9DxZ/f9wY5lnxF/ZB9ZV1LwDQ6l/YA7GfLkS/m2NNdfvsgvH73ByV2byU67gndAIA3adeHOF94kqF4jABKOHWDDx29y4c9D5Bly8AupQ7Oontw788Mi47WqkFjMPQkhhKhZJHmuYLWxFVeQp5Z+9X3oW8+7UssmmjVrxg8//MCAAQN4/PHHWbBggcs+uBXkqaWJnztxelO1/1DVxM+91DXhqqqSbDBzo/4omSnJfPLgYAz6TG4Z+SBhTVqSmZLEkZg1mIyFf/A4HLMak9FA93sfwjsgmPij+/hj+QIyLiXaOpRctfSFh7l4+i96jJlIUL2GZKde5uTOzaQnJRBUrxFZqSkseuI+fIJC6PPQ03j5+ZOWGM/R39YVe2/JBjOqqrrsvz0hhBAVS5LnCmZvxVWdEyQ7eyuufvV9Sja+CsomevXqxYIFCxg/fjxt2rThhRdeKPecztI1TFftP1ipQNdSbBJjZ1Ep9EPUtX7+6HX0Vy7xxBe/0CCyk+P4oMdfpKhHM25/+pV8K8y33DOekIZN2fDxm6QnJRAY0QCDPoO4g3u4/dmZ9B4/xTG274RnHX+PO7gHQ2Y6Ez5Zke/ag6f8X7H3ZrbaVqC1kjsLIUStIH2eK5Cqqhy84hqt6aZ3CWPVO/8q1xwqcOCKscjEpSQURUGrUfDUavB21+Cp1aDVKBW6Svf/7N13XFNXG8Dx303CBhEUFQVBBFRwb1FxYV24d92K1TpabbW21VrtcrW11rcV9yrWimjdVal7b2vrqHugDGVvSO77ByU1BWUIhOD5fj7+kdxxnhtD8uTcc54zZMgQpk+fzrRp0/j1118L7LwFrWopY0obKwy2zrFExgROl1J5X7o9PYf3kEaj4eqhPdTw7qCTvGrbfsH75fnEOTUpgYSoZzjVboQsyzy+cSVjHxNTlEbG3Dl3nKTY6GzPY2ZlDcD1I/tQp+X9B05O1ycIgiCUHKLnuQBFpqhLVEUFMJxSXJ999hk3btxg0KBBHD16lPr16+s7pCwUkkQXJysCbsboO5R8kQFfJ6t81b3W5NDrnBD1lJT4OMpXrZ6n80Y/ecR+/7lcO7w3S2KcHB8LgMrYhI7vfMLuhZ/ypY8HjrUaUL3lG9T37YdV2fIAVGngRc12vvy+bAHHNvjj0qA5Hq07UbdTb1TGOU8GVGvQ65h6QRAEoeiInucCFJqY/RLMhs4QrkuhULB27Vo8PDzo2rUrISEh+g4pW46WRjS0MzW43mcJaGRnioNl3nudARSF8EmjUatZOa4PN44G02r4RIZ8u45RSzbTZ/ZiAOTnMvYWg8by/tZTdJg4A5WJKfuXzOXb3s15fP0PIKNne9CC1by9Zg/N+o0iNvwJQbPf5X+DfEhJzHmBG6X4JBUEQXhtiI/8AhSamJ6vFzQ1KaHAYykomaW4DIG5uTnbt29HoVDQrVs3EhKK5+vaqqIFpQxo+Ebm6o7eFXM39j07qhx6qy1symJiaUXY7eu5Pmforas8vX+bzu/NptXwd/Bo3QnXJq0oZVch2/3LOFah5ZBxjPoxkEmBR1CnpXF0/RKdfSrXbkiHCdOZEBBM/y/9Cbt9nT/2bn3l6xMEQRBKDpE8F6AnieloyCi3FTT7Xb56oyYzmlRivm8Dfv1qKulpqZzf/jMf1bfjzvnj/DrnA75oV4M5Hetoz3Fy0yoW9mnBjCaV+OqNmmyb8wFJcbq3+Z8+uM1PU4bzZXsPPmnqwJyOtfn5w9Ekx8Vmieni7s1807MpnzR1YPGb7bh7/oR22+2zx/iovl22FQUu7Qnio/p23L101qBKcdnb27Njxw5u3LjB0KFD0eQ0XkAPjBQSvk5WxWJsfG5kDtcwUuQ/QVRKGRVWXkShUODRuhPXjuzl0dVLWbZnN+5eoVBm2SbLMsc3LNPZLzUpkbQU3dU+bR2qYGJhQXpaCgBJsdFZ2rCvVhOA9NTUl1xZxnW9wksjCIIgGBgx5rmAZJbiym25rW1zpmFhU4a2o98nLTkRgGD/+fy+bAGuTVrRpM9wnt6/xenNa3h09RJjV+1CaWREeloqq8b3R52agld/PyzLliM2PJTrR/eRFBeDqVUpbRt3L5zkyr5tNBs4GpWRMacCV7N64gDGrdtLBdcauDRsjnWFSlzasxnPtl10rufSns3YOjjjVKeRwZXiqlu3LgEBAfTs2ZMZM2bw1Vdf6TukLBwtjfBxsCD4UfHsHX+ej4OFzgqP+SFJEhXMVDxKePFdjA4TZnDr1CGW+XWnca8hlKviTuzTMP4M3s6YVTuz7G/n7IatgzN7Fs4iNvwJJhZW/HVgZ5axz08f3GbF2N7Ubt+dci7uKJQq/jq4m/hnEdTp0BOA8zs2cipwNZ5tulDGwZmUxHjObl2PiaUV1Vr4vPTaKpipDOZvQxAEQXh1InkuIJmluHJbbsu8VGn8/LegUGb0nsVHPeXQ6kW4NW3N8P/9guKfQaJ2zm5sn/chF3cH0rD7m4TfuUFUyH3enL+SWj7dtOdr99aULDGF3brGhJ+CqeSR0bNdp0NPvunVjOAl8xj8zRokSaJepz4cC/AnOS5Wm3jHRz3l5qlDtBk5GTDMUlzdu3dn/vz5TJ06lWrVqjFs2DB9h5RFQzszUtQyR58k6juUF2ppb07DfJSmy469uYrHCRl3Z7JjXc6ecWv3sm/JHC7tCSIlIY5S5exx92qrU1Ujk9LIiGHfBbBjwcccWr0II2NTPNp0pln/UXw/oPW/5y1fiTodenL7zFEu7tqEQqnCztmNN+etoGa7rgC4NPDi0V8X+WPvVuIjIzC1LIWDZz36f+GPbSWnF16TQoKKFq/2w0IQBEEwLCJ5LiDpspyncluNeg3RJs4At04fQZ2WSvNBY7SJc+Z+e3/4khvH9tOw+5uYWmYkuDdPHqRacx+MzcxfGFPl2o20iTNAaXsHPFp15NqRfWjUahRKJfV8+3No9SKu/L6dRj0GA/DH3l/RpKdTt3MfnetTGswo3Qzvv/8+169fZ/To0bi4uNCyZUt9h5SFV/mMpLA4JtDe9uY0K18wiTNABXPVCxPnTKXtHej32Q/ZbnNp2Jw5FyJ0nivn4s6oJZuz7Pv8fhalben+4byXtluxem0GfLU0h+iy0sgZPc+CIAjC60OMeS4gGk3eym1lLgmcKfrJQwDsnFx1nlcZGWNbyYmoJ48AsK3kRIvBb3N260980a46q8b15eQvK7Md71ymcpUsz5V1qkpaciIJUU8BKFfFDQfPelzaHaTd59KeIBxrNaRsZRftc+riN3Q4R5Ik8eOPP9K8eXN69uzJ7du39R1SFpIk0byCOT4OGZPx9P3zJLN9HwcLvCqYF+hwhArmJTPJLKnXJQiCIGRPJM8FJK+luLK7DZ1bXd77jHd/OUzrke+SlpLMjgUfs7BvC2LCHufrfPW69OPuhRPEhD3m2cO7PLxyjnrP9TqD4ZbiMjY2JigoCFtbW3x9fYmOzn6RDH1raGfGIDdrvVbhyKyqMcjNusCGajzP1kSJiSGN/ckFTUoyV8+fKpYTUwVBEITCYaApUfGjkqR8ldvKVNreEYCI+7d0nk9PSyUq5AE29g46z1dw86Ct3/uMWbmDMSt3EBv+hNOb1+js8+zB3SztPL1/GyNTcyxsymqfq9OhJwqFksu/beHSniCUKiNqv9Ejy/UZKltbW3bu3ElYWBj9+vUjLR8ryBUFR0sj/GrY0MDOFCi6XujMdhrameJXw+aVJwe+sB1Jok4Zw6tx/SKyRsPFnT/TskULKleuzKRJkzh+/LhIpAVBEEo4kTwXEKUExqq8l9vK5NrEG6WRMSd+Xq6z37lfA0iOj6Vai/YAJMfHoU7XrVhQwdUDSaHIUlLrwR9nCbl2Wfs4OjSEq4d/w61Za53x1hY2ZXBv3o6Luzdzac9m3L3aYmFTRru9JJTicnd3Z/PmzRw8eJB33nnnlZYcL0xGCgkfB0sGuVljbZzx51lYL33mea3/6W1u52D5SuXocqNeWVODKdGXE0mhwH/6JI4ePUrv3r3ZtGkTLf5JpCdPnsyJEydEIi0IglACKWfNmjVL30GUBJIkcSc2lVLudbm8ZzOnN68jIeoZ0U8ece3oPrbP+5C6nXoTce8mVw/toXGvoTqLORibmaNRqzn3awAP/jhLcnwcF3cHcmD511TyqEvXKV+iUCq5cfx3Vo3vS0xoCJEh93lw5Ry7F35KQuRTOk36FOvyFQH4fekCyrvW4MzmtaSlpvDwynm2zfmA1KRE+n+xBKsy5XTiVxoZcXLjChJjomj/9oc647YrmquoU7bgb+MXtSpVqlCxYkU+/fRTbG1tadKkib5DeiFrYyX17UyxNzciKV1DdKqmwJLozPNUsTLCx8ESHwcLSpsUzdrSZioFjxLSiEk17KRSIuP1a1TenMqVK9OpUycmT56Mj48PsiwTGBjIokWLWLVqFQ8fPsTa2ppKlSqJknaCIAglgJjpUoDszVU8zmO5ref5jP0AC5synPxlJbu++QQz69I06jWUDhOmozTKuJVu7+6Je7M2XDuyl9iIUIxMzbB382T44o1Urt1Q53xV6jejcu1G/L5sATGhIZRzcafv7MXYu3tmabu6dwfMSpVG1mio0aqj9vmSVorLz8+P69evM3nyZFxdXencubO+Q3ohhSTham2Mq7UxUSlqLj1N5tKzZFLU8j/bM6o95Hyef/czUUrULWNK3bKm2BRRwvxfDexMuRdXPIfO5JYMNPjPuHCFQkHLli1p2bIl3333HcePH2fTpk1s3LiR7777DgcHB/r27Uvfvn1p0qSJTlUdQRAEwXBIcnG9f22A/opMZsf9eH2HkS/q9HTmdKhFDe836P3pIp1t3Zys8LA10VNkBU+tVtOzZ08OHTrE8ePHqVWrlr5DyjVZlolK0RCamE5oUjqPE9IITUonPZuOXJUio4xaRQsjKpipqGCuwsZEoffeT40ss+xqFDGpGoMcwiGRMdTlLQ8bFLl4LdVqNcePHycwMJDNmzcTGhqKo6OjTiKt7/8TQRAEIfdE8lyAniWns/xa8azmkJMrwdvZ8MEoRi//FZcGzXW2vVXDBltT/fRSFpb4+HhatGhBdHQ0p0+fpnz58voOKd9kWeZJWDgurq78/MsmOnfsgEqSUEgU26TsYXwaATdjct6xmBrsZo1DPiZWqtVqjh07pk2kw8LCqFy5Mn369KFfv340bty42P6fCYIgCBnEfcMCZIiluB5cOc+ZLevZ9e1MKlavlSVxNlFK2JiUvLeJpaUlO3bsICUlhR49epCcnKzvkPJNkiQkWUNKQjxGshoTpQKlQirWSZijpREN7Qyv8oYENLIzzVfiDKBUKmnVqhX/+9//CAkJ4dChQ/j6+hIQEEDTpk1xdnZmypQpnD59uthOahUEQXjdlbysSI8MsRTX6c2r2TZnKpY2Zen7n5XdJKBuGdNinYS9CkdHR7Zt28alS5cYOXKkQScrmbEb0jjaVhUt9FrXOq8y62B7V7QokPNlJtI//PADISEhHDx4EF9fX9avX0/Tpk2pUqUKU6dO5cyZMwb93hQEQShpxLCNAhaVombp1Sh9h1FgxnjY6G1iWVHZtGkT/fv3Z/bs2cycOVPf4eTLo0ePcHR0ZM+ePXTs2DHnA4oJQxu+McjNutDqYGdSq9UcOXKEwMBAgoKCCA8Px8nJib59+9KvXz8aNmxYYn/QCoIgGALD6aYyEDYmSpytjAymN+1FMktxlfTEGaBfv358/vnnfPrpp2zcuFHf4eRLZj1hQ0uqHC2NtEuTF3c+DhaFnjhDRo90mzZt+PHHH3n8+DEHDhygU6dOrF27lsaNG+Pi4sIHH3zA2bNnRY+0IAiCHojkuRA0sDP8hSCyK8VVkk2fPp1BgwYxfPhwTp06pe9w8swQh21kamhnRkt7c32H8VIt7c0LZcnynGQm0kuWLOHx48f8/vvvdOzYkTVr1mgT6WnTpnHu3DmRSAuCIBQRw/umNQBVSxlT2oDGcv6XBJQ2VuBSquTUd86JJEmsWLGCBg0a0L17d+7fv6/vkPIks+fZEJNnAPvEME6sW6zvMLLlbW+OV3n9/5BUqVS0bdtWm0gHBwfToUMHVq1aRaNGjahatSrTpk3j/PnzIpEWBEEoRIb5TVvMKSSJLk5WBtv7LAO+Tla5qmFbkpiamrJ161bMzc3p2rUrcXFx+g4p1wx12AbA06dP6dSpI1d3BNDU+p/r0HNMme37OFjgVcG82L2uKpWKdu3a4e/vz5MnTwgODqZ9+/asWrWKhg0b4urqyocffigSaUEQhEIgkudC8rqW4jJ05cqVY+fOndy7d4+BAweiVqv1HVKuGOqwjcTERLp27UpUVBS//fYbrV3KMcjNWq9VODKragxys9bLUI28ykykly5dypMnT9i/fz8+Pj6sWLFCm0h/9NFHXLhwQSTSgiAIBcCwvmkNzOteistQeXp6smnTJvbs2cPUqVP1HU6uGOKwjfT0dAYOHMgff/zBrl27cHV1BTJ+ePrVsKGBnSlQdL3Qme00tDPFr4ZNkUwOLGgqlQofHx+WLl1KaGgo+/bto127dixfvpwGDRrg5ubGRx99xMWLF0UiLQiCkE+G801rgIwUEr4GNHwjc7iGkcJQ0v3C07FjRxYtWsTChQtZunSpvsPJkaEN25BlmfHjx7Nr1y4CAwNp1KiRznYjhYSPgyWD3KyxNs74mCqsK8s8r/U/vc3tHCxLxN+ASqWiffv2LFu2jCdPnrBv3z7atGnD8uXLqV+/Pm5ubnz88ccikc4HWZZJ18gkqzUkpmlIVmtI18jidRSE14So81wEzkUkEfwoQd9h5MjHwcIgblMXpYkTJ7JkyRJ+++03fHx89B3OC129ehVPT0+OHTtG8+bNcz5Az7744gs++eQTVq1axYgRI166r0aWuRObxvmIJO7GpSFBgfwgzTxPFSsjGtiZ4VLK6LUY55+WlsbBgwcJDAxky5YtREZG4urqSr9+/ejbty916tQxmB9hRUGWZSJT1IQmphOamM6TxHRCk9JJ12TdV6WACmYq7M1VVPjnn62JUryeglDCiOS5iBwPTeTok0R9h/FCLe3NaV6heJcL04f09HR8fX05deoUp06donr16voOKVt//fUXNWvW5MSJEzRr1kzf4bzUqlWrGDVqFJ9//jkzZszI07FRKWouPU3m0rNkUtT/jPOWQJOLT7Hn9zNRStQtY0rdsqavRS3zF0lLS+PAgQPaRDoqKgo3Nzftgiy1a9d+bRO/qBQ1F58mc/n59xqQTc6cxfP7mSgzVp6t95q/1wShJBHJcxGRZZkTYUnFMoH2tjenWXmz1/ZLMicxMTF4eXmRkpLC6dOnKVOmjL5DyuLKlSvUrl2bU6dO0aRJE32H80K7d++mW7du+Pn5sWTJkny/52RZJipFk9EbmJTO44S0HHsDK1oYUcEsozfQxkQh3u//kZlIb9q0ia1bt2oT6cwe6dchkdbIMrdjUzkfkcy9QrjL4WxlRAM7U6qWMn4t7nIIQkklkuciljmEo6A+lPMrs30xVCN37t69S+PGjfHw8GD//v0YGxvrOyQdly9fpm7dupw+fZrGjRvrO5xsnT17ltatW+Pj40NQUBAqlapAzy/LMhoZ0mUZtQaUClBJEgrJcMaCFxdpaWn8/vvvBAYGahNpd3d3bSJdq1atEveaPoxPY9f9OKJTNYX2+Zx53tLGCro4WRnkpFRBEETyrBcP49PYeT+O2FSNXhLozKoavuLDO0+OHz9O27ZtGTRoECtXrixWycOlS5eoV68eZ8+epWHDhvoOJ4tbt27h5eWFq6srwcHBmJuLIUKGIjU1VSeRjo6Oplq1atqhHTVr1ixWfwt5laaROfw4gXMRyUXWqZHZTkM7U1pVtCgRE1SFrGRZRv3PD3qNBhT//KBXih/0Bk8kz3qizw/sRnameIsP7Hz56aefGDJkCPPmzeODDz7QdzhaFy5coEGDBpw/f5769evrOxwd4eHheHl5oVKpOH78eLEc9iLkTmYivWnTJn799VdtIp3ZI21oibToyBAKiphY+noRybOeiVuFhueTTz7hyy+/JCgoiJ49e+o7HADOnTtHo0aNuHDhAvXq1dN3OFrx8fG0adOGR48ecfLkSZydnfUdklBAUlNTCQ4O1vZIx8TEUL16dW0i7enpWayTATGETigIYmLp60kkz8WAKMVlWDQaDQMGDGDXrl0cPXq0WPT0nj17lsaNG3Pp0iXq1Kmj73CAjHGz3bt35+jRoxw5cqRYJfVCwUpNTWX//v0EBgby66+/EhMTQ40aNbRDOzw9PfUdolZxnrzd0t4cLzF5u9gTE0sFkTwXM6IUl2FITEykdevWhISEcObMGSpVqqTXeE6fPk3Tpk35448/qFWrll5jgYwEZdSoUaxfv57du3fTvn17fYckFJGUlBSCg4PZtGkT27Zt0ybSz/dI65MoGyq8CnG3WACRPBdbohRX8ffkyRMaN25MuXLlOHLkCBYW+lvW/OTJk3h5eXHlyhVq1qyptzgyzZw5k88//5z169czePBgfYcj6ElKSopOj3RsbCweHh7aRNrDw6NI4zkXnkRwiFiwSsg7MbFUeJ5Ing2IKMVV/Fy6dIkWLVrQoUMHAgMDUSj0s+L9iRMnaN68OX/99VeRJyT/tXTpUsaOHVvsJlUK+pWSksK+ffsIDAxk27ZtxMbG4unpqR3aUaNGjUJt/2F8GgE3Ywq1jYI0yM1a9DgWE2JiqfBf+vmmF/JFkiSUCgkTpQJzIwUmSgVKhSQSZz2qW7cuGzZsYOvWrXleLa8gaTQZtyT0lbxn2rZtG+PGjWPixIlMnTpVr7EIxYuJiQldu3Zl3bp1hIeHs337durVq8c333yDh4cHNWvW5LPPPuPatWsF3naaRmbn/TgM5ZNSAnbejyMtN+P1hEJ1LiKJgJsxekucIaP3OTZVQ8DNGM5FJOkpCuF5InkWhFfUrVs3FixYwJw5c1izZo1eYshMnvX5Q+rkyZMMGDCAnj17snDhQvGjTnihzER6/fr1hIeHs23bNurVq8fXX3+Nh4cHtWrV4vPPP+f69esF0t7hxwl6TX7yKjNZOvK4+A8xKalkWeZ4aCLBjzL+D/T93slsP/hRAsdDExGDBvRLDNsQhAIgyzJvvfUWa9euJTg4GG9v7yJt//Dhw7Ru3Zq///4bNze3Im0b4MaNG3h5eeHp6cm+ffswNTUt8hgEw5ecnMzevXu1Qzvi4+OpVauWdmhHtWrV8nxOQxuu8V9i+IZ+iImlwsuI5FkQCkhqaiodO3bk8uXLnD59GldX1yJr++DBg7Rt25Zbt25RtWrVImsXMiZOenl5YW5uzrFjx7CxsSnS9oWSKTOR3rRpE9u3b9cm0pmTDXOTSGtkmWVXo4gxoF7n50mAtbGCtzxsRMmyIiQmlgo5EcM2BKGAGBsbs3nzZsqUKYOvry9RUVFF1ra+hm3ExsbSuXNn0tLS+O2330TiLBQYU1NTunfvTkBAAOHh4WzdupVatWoxb948qlevTp06dfjyyy/5+++/X3iO27GpRBto4gwZt+qjUzXciU3TdyivjYfxaQaROEPGEI6H8eK9oQ8ieRaEAmRra8vOnTsJDw+nX79+pKUVzQdb5g2kopwwmJqaSu/evblz5w579uzB0dGxyNoWXi9mZmb06NFDm0hv2bIFT09P5syZQ7Vq1ahbt262ifT5f8qKGTIJOC8miRUJMbFUyC2RPAtCAXN3dycoKIhDhw4xceLEIpnYUdTVNjQaDSNHjuTIkSP8+uuvxWJhFuH1YGZmRs+ePdmwYQMRERFs2bKFGjVq6CTSX331FRdv3OZeXJrB9jpnkoG7cWlEpaj1HUqJJyaWCrklkmdBKARt2rRhyZIlLF26lO+//77Q2yvqYRsff/wxAQEBrFu3jjZt2hRJm4LwX5mJ9M8//0xERARBQUHUqFGDr776iun+69GoS0bCKQGXnibrO4wS7WF8Gucikg0mcc4kA2cjksXwjSKm0ncAglBS+fn5cePGDd577z1cXV3p0qVLobVVlMM2Fi9ezLx58/j222/p379/obcnCLlhZmZGr1696NWrFwkJCfxwLQ6NUqnvsAqEDFx6lkzriuaiBGQh0Mgyu/4ZrmFoyTNk/LjadT9OTCwtQqLnWRAK0dy5c/H19WXAgAFcuXKl0NopqmEbmzdv5t133+X9999n8uTJhdqWIORXstIEjbJk9Q2lqGWiUjT6DqNEEhNLhbwSybMgFCKlUklAQABVq1bF19eXsLCwQmmnKIZtHDlyhMGDB9O/f3/mz59faO0IwqsKTUzXdwiFoqRel76JiaVCXonkWRAKmaWlJTt27CA1NZUePXqQlFRwH3CyLJOukUlHgUXpMqSjIF0jF/gkxb/++ovu3bvj5eXFmjVr9L4MuCC8TGhierH9cpNlmbTkvH8GKCQITRLJc0GLSlGLiaVCnokBZVa7AAAgAElEQVRFUgShiJw9exZvb2969OjBhg0b8txLLMsykSlqQhPTCU1M50liOqFJ6aRncydXpYAKZirszVVU+OefrYkyXz3Tjx49olmzZtjY2HD06FGsra3zfA5BKEo//R3No4T8JZrB/vP5fdkCJgedINh/Ln+fOIBCZUS9zn3o+M5MjEwyVs88t20DF3cFEnb7OsnxsZRxcKbZAD+a9h2hc755XepTvmp1vAb4se+Hrwi7fZ0OE2fQYtDYPMfmYKFisHvpfF2XkL0DIQmcDU8y+OQZMnqfG5czo00lC32HUuIpZ82aNUvfQQjC66BSpUpUq1aNTz/9FEmSaN26da6Oi0pRczIsiW334jgTnszfMamEJqYTk6bhReU9NTLEpmkITUznRkwqF54mcy4imaR0mdImSsxUueuXi46Opl27dqSmpnLw4EHs7OxyebWCoB+yLLM/JOGFfxs5uXPuOHfPn+DehZOYmFvQuPcwjEzMOLt1PdGhIXi2zZj4u/XL9ylb2YWaPl1x92pH/LNwTmxcjkXpMjjWrK893/ENS0mOi+bi7kBqvdGdOh16UcG1BjYVK+c5tkS1hmblzQxu0uCaNWuoV68ew4cPp3Tpgk/+7927h42NDc7OztStWzfXx8myzLZ7caRn816JevyAz1q5YmPvSMVqxacU551zx5nv24DyVatT3iXrKptPk9U0LWd47xFDU7JmVAhCMde3b1+++OILZsyYgbu7OwMHDsx2P40sczs2lfMRydyLS8syCzy304ae3y9FLXM2PIkz4Uk4WxnRwM6UqqWMXzg7OyUlhR49ehASEsLx48epVKlSLlsVBP1Ry2R7NyavbCpVZujC9QA06z8KUwtLTgWupuWQcdi7e/LW8m0Ymf67NLLXAD9Wje/HsQB/mvUfpXOuZw/vMuJ/v+Du1faVYkrXZPwwVoq8qEBEpqhJUZeEPud/ZU4stTUtGZVmiqviOixMEEqsjz/+mMGDBzNixAhOnTqVZfvD+DSWXY0i6E4c9+MyZk8X1Md75nnux6URdCeOZVejsq0PqtFoGDp0KKdOnWL79u3UqFGjgCIQhMKVXkAjEZv2G6nzuNmA0QDcOB4MoJM4J8fFkhD1DJcGXkQ+ukdyXKzOsTaVnF45cc5UUNdXlIYMGUJSUhJOTk76DkVHSZ2AWVKvqzgRPc+CUMQkSWLFihXcvXuX7t27c+bMGZycnEjTyBx+nMC552Z+F9bXZOZ5Y1I1BNyMoaGdKa0qWmCkyGh5ypQpBAYGsnnzZlq0aFFIUQhCwdMUUDW3spVddB6XcXBGUiiIevwQgHuXThPsP58Hf5wjLTlRZ9/k+FhMrUppH9vmY4jGi6g1gIF1KiqVSpTFsOZ25sTSklQAMHNiqQcmr3SehIQELCzE2OkXET3PgqAHJiYmbN26FQsLC3x9fbkRFs2Ka1Gcj8hYRayo+pYy2zkfkcyKaxm90N9++y0LFy7k+++/p1evXkUUiSAUjEIrBPPc8KZnD++ycmxvEqOf0eW9zxj2/QZGLdlM838mAcqybjqm+meSYUFQGuC39po1a5AkiXv37mmfc3Z2xtfXl2PHjtG4cWNMTU1xcXFh3bp1WY6Pjo5m8uTJODs7Y2JigoODA0OHDuXp06cvbLN169bZzisZPnw4zs7OADxJTEcDJMXFEPjpBGZ5uzDbuyqbZo4nKS4m2/OG371JwNQRfNbajU+aOvC/QT5cPfybzj7qtDSCly7g6+6N+aSpA5+1ccd/ZBdunjqU00tFUlwMO7+ewbwu9ZnRpBJzOtZm0yfjSYh6prOfrNFwcMW3zOlYm0+aOrBiTC+ePriDRobHCRl3E48ePUrfvn2pXLkyJiYmODo6Mnny5CwVn4YPH46lpSW3b9+mc+fOWFlZMWjQoIx4kpJ45513KFu2LFZWVnTr1o2QkBAkSeK/U+ZCQkIYOXIk5cuXx8TEBE9PT1atWpXjNRsi0fMsCHpiZ2fHzp07mTB/CVtC0lBIkt5mfMtAbKqGgL+j2X7mGh9++CETJkzQUzSCkH+qApoo9fTBHWwr/TvM4NnDu8gaDTYVHbl2ZC/pqSkMXfgTpe0dtPvcPnusQNp+mYK6vuLg1q1b9OnTh1GjRjFs2DBWrVrF8OHDadCgAZ6engDEx8fTsmVLrl27xsiRI6lfvz5Pnz5l+/btPHr0iLJly+arbVmWCU1KR5Zl1k8ewr1Lp2nSexh2Vdy5enA3gTMnZjkm7PZ1/Ed0oVQ5e1oNfwdjM3Ou7N/GT+8NZdCC1drJpMFL53N49SIa9hiMY816JCfEE3L1Eo+v/4Fb09YvjCklMZ6lo7oScfdvGnR7k0o1apMQ/Yxrh/cSE/4YC5sy2n0Pr/keSVLQcsg4kuPjOLL2f/wy423Gr9urva7AwEASExN5++23KVOmDGfOnGHx4sU8evSIwMBAnbbT09Pp0KEDLVq04Ouvv8bc3BzISKw3bdrEkCFDaNq0KYcPH852tdywsDCaNm2KJElMmDABOzs79uzZw6hRo4iNjWXSpEn5+W8qtkTyLAh6IssyUbbOvPHupxmP9R0PgCTRbdocWlYwQ5ZlMWNbMDhKKaNU46tOGjy1aRXuzdpoH5/cuByAas3bcffCSQCdeurJcbGc3/7zqzWaA5Ui47Z8SXHjxg2OHDlCy5YtAejXrx+Ojo6sXr2ar7/+GoAFCxbw559/smXLFnr27Kk9dsaMGa9Uzz5zYum1w79x98JJOr37Kd7DMjoMmvYdwfK3emQ5ZseC6ZSu4MD4n/ahMs4YFtG030iWjuzCnu8/0ybPN47tx725D70++TZPMR1Z+wNht64x+Os12nMBtPV7P8u1pqekMHHjQVRGxgCYlbJm54LphN66RgXXGmhkmDdvHmZm/47Nf+utt3B1deXjjz/mwYMHVK7873CilJQU+vbty5w5c7TPXbhwgU2bNjFp0iQWLlwIwLhx4xgxYgSXL1/WiWf69Omo1WquXLlCmTIZSf7YsWMZOHAgs2bNYsyYMTqxGDoDvAEkCCXDibAkjj5JzHlHPTgamsSJMLFalWB4JEmigtmr9wtFhTxg3aTBnNy0il9mjONU4GrqdOqNvXtN3Jq2QWlknLH9l5UcXvM9iwe1w9I2f72guVXBTFWiftB6eHhoE2fIuBtXrVo17ty5o30uKCiIOnXq6CTOmV7ltciceHnjWDAKlYomfYdrtymUSrwG+OnsnxgTxZ2zR6n1RjdSEuJJiHpGQtQzEqMjcWvWlmcP7hAT/gQAUytrwu/c4OmD23mK6a8DO7F399RJnDP991obdBuoTZwBqtRrCkBkyH3t9T2frCYkJPD06VO8vLyQZZmLFy9maePtt9/WefzbbxnDUcaNG6fz/MSJur3ysiwTFBRE165dkWWZp0+fav916NCBmJgYLly4kOP1GxLR8ywIenAuvPgmzpmOPknERCnR0K7k9BYIrwd7cxWPE9JfaSLYwLnL2e8/l72LP0ehVNGs/yg6TZoFgJ2zK4Pmr2Lfj3PY/d0srMqUo0mf4VjYlCFo9rsFcg3/pZCgooVRoZxbX57v+cxkY2NDVFSU9vHt27fp3bt3gbedObE06slDrMqWx8TcUmd7WSdXncfPHt7NqCH+41z2/zg323MmREZgXc6e9mOnse69oXzToynlXWvg3qwt9br0xd7d86UxPXt0j5ptfXMVf+kKuqVDzUpl1M9Oio0GMiaWPgh5wMyZM9m+fbvOawoQE6M7plulUuHg4KDz3P3791EoFFSpUkXneVdX3dcmIiKC6Oholi1bxrJly7KNNzw8PFfXZShE8iwIRexhfBrBIQn6DiNXgh8lUN5MhaNlyfrSFkq2CuaqV66gYGFThkHzXzzZqUarDtRo1SHL8w27v6nzeNqugulx08gUSI96cfKiChwFsfCxJEnZnketzli+Oq8TS+V/su2WQ8bj7tUm233KOGZUaKnSwIup289y9dAebp46xNlff+L4Bn96fLyARj2H5K3hF5BeVL0k85plNe3btycyMpJp06ZRvXp1LCwsCAkJYfjw4Wj+U5bGxMQERT5n22aea/DgwQwbNizbfWrXrp2vcxdXJesvURCKuTSNzM77cVkWPSmuJGDn/Tj8athoy9gJQnFXwbxkfrWV1Ot6mapVq/Lnn3/m+TgbGxud4R+Z7t/PGNaQOfHSxt6R22ePkpIYr9P7/PT+LZ3jbB0yJo8qVSpcm7TKsX1zaxsadn+Tht3fJCUxnmV+3Qhe+vLkuYyDM2G3r+V8cblw7c8/+fvvv1m7di1Dhw7VPr9///5cn8PJyQmNRsPdu3dxc3PTPn/rlu5rY2dnh5WVFWq1Gh8fn1cP3gCIMc+CUIQOP04gNlVjEIkz/FuF48hjw+gpFwQAWxMlJiVsGT4TpYSNyev3ld27d28uX77M1q1bs2x7WQ911apVuX79OhEREdrnLl++zPHjx4F/J5ZWa+GDJj2d04FrtPtp1GpObFyhcz5LWztcGjbn9JZ1xEaEZmkvPurfsnkJ0ZE620zMLSnjWAV1aupLr9WzrS9P/v6Lvw7sytO1/pdKAUYqZZbjZFlm0aJFuT5Phw4Zd1Z+/PFHnecXL16s81ipVNK7d2+CgoKy/aHz/P9BSfH6/YwVBD15GJ/GuX/qOBsSGTgbkYx7aRMxfEMwCJIkUaeMKWfDkwzmh+rLyBo1dukxgK2+QylyU6dOZfPmzfTt25eRI0fSoEEDIiMj2b59O/7+/tSpUyfb40aOHMm3335Lhw4dGDVqFOHh4fj7++Pp6UlsbKx2Ymmqdwec6jbmt8WfE/X4AeVcqvHXgV0kx8dlOWe3D+exdKQvi/q3olHPwdhWciY+MpwHf5wjJuwJ7/5yCIDv+rSgSgMvKtWog7l1aR5dvcyfwTto+p9l2//Le9h4/vx9BxumjfqnVF0dkmKjuHp4Lz2nL8DevWauXrMKZipqVKlB1apVmTJlCiEhIZQqVYqgoKAsY59fpkGDBvTu3ZvvvvuOZ8+eaUvV/f3334DuJMa5c+dy8OBBmjRpwujRo/Hw8CAyMpILFy4QHBxMZGTki5oxSK/fz1hB0AONLLPrn+EahkgCdt2PQ2OASwMLr6d6ZU3zlTj7jP2AORcidGrq6p2k4N1eHahVqxaLFi3i2bNnOR9TQlhaWnL06FHefvttdu/ezTvvvMOPP/5ItWrVskxwe16NGjVYt24dMTExvPfee2zfvp3169dTv3597T725ipUCgVDF/5E3U59uLhnM/t++IpS5ezp+9niLOcs71KNCT/tp1oLHy7s2Mj2udM4vXktkqSg3Vvva/fzGuBH1JOHHFq9iB0LpnP3/Anaj/uILpM/e+m1mphbMmblDpr0Gc6N48HsWPAxpwJXY+dclVLlKubq9ZL+mVhqZGTEjh07qFu3LnPmzGH27Nm4ublluwjNy6xbt47x48eza9cupk2bRmpqKr/88gsApqb/Lv5Tvnx5zpw5w4gRI9iyZQsTJkxg0aJFREZGMm/evDy1aQgkuSBG5guC8FI3Y1IIupO1J8PQ9HEphau1cc47CkIxsPFWDPfj0gy691kCnCxV2N49w/Lly9m2bRuSJNG7d2/8/Pxo3bp1vid6ve7+ikxmx/14fYdR4Lo5WeFh+2rLc7/MpUuXqFevHj/99JN2JcLXjfiLE4QicD4i2WB7nTNJwPkIUftZMBwN7PLX+1ycyEDDcua88cYbBAYG8ujRI7788ksuXLhAu3btcHd3Z+7cuTx58kTfoRqckjoBsyCv679LeQN89913KBQKvL29C6wdQyOSZ0EoZFEpau4ZeO8XZHyJ341LIypFre9QBCFXqpYyprSxwmB/uEpAaWMFLqX+nWtQrlw5pkyZwrVr1zhy5AheXl7Mnj0bR0dHevbsya5du7Tl2F5XsiyTrpFJVmtITNOQrNaQrpGzTLoTE0tzNn/+fLp168bChQtZvHgxnTt3Zu3atfj5+eHo6Fhg7RgaMWxDEArZgZCEEjNxSQIalzOjTSULfYciCLnyMD6NgJsxOe9YTA12s8Yhh4m60dHRBAQEsHz5ci5fvoyDgwMjR45k5MiRODk5FVGk+iHLMpEpakIT0wlNTOdJYjqhSenZLs+uUmRMprM3V1Hhn3+XnyZzNiJZfD6/wP79+5k9ezZXr14lPj6eypUrM2TIEKZPn45KVTJ77nNDJM+CUIhkWea7K5GkqF/+ZxbsP5/fly1gxu/Xi9dEpWyYKCUm1bItUcsECyVb8KN4zhtYgiQBDe1MaedgmeO+mWRZ5vz58yxfvpwNGzaQkJDAG2+8wejRo+natSvGxiVnvkJUipqLT5O5/CxZ+/mqgFwtjvP8fsYKSH3VFXWKkTEeNtiYvGABFaHAiGEbglCIIlPUOSbOhiZFLROVUoK+bYQSr1VFC0oZ0PANCShlrMC7Yt56ECVJomHDhixdupQnT56wYsUKYmNj6dOnD46OjnzwwQfcuHGjcIIuAhpZ5mZMChtvxbD0ahRnw5N0Pl9z+6n0/H4lJXGWgCpWRiJxLiIieRaEQhSamK7vEApFSb0uoWQyUkj4OlkZTM+zDPg6Wb3Sqp6WlpaMHDmSEydOcOXKFQYOHMjKlSupXr06rVq14qeffsp2Mlhx9TA+jWVXowi6E8f9uDTAMFZpLSoy0MDOTN9hvDZE8iwIhSg0Md3g/shSk16+mqBCgtAkkTwLhsXR0ggfB8MYq+/jYFGgCxLVrFmT7777jpCQEDZs2IBSqWTIkCFUrFiRiRMncvny5QJrq6ClaWSCH8UTcDOGmH+6iUXSrCu7iaVC4TK073VBMChPEtNzfSsRMpZ13TBtFLNaVuGzNu7sWPAxaSm6qxJe3BXI4jfb8UkzRz5r7cbPH44mOjREZ5+7F04S8MFI5nauy4wmlZjbqQ47v55BWrJuT1PgpxP4tLkTzx7eZfXEAXzawplfpr/90hg1MjxOSMvDVQlC8dDQzoyW9ub6DuOlWtqb07CQehBNTU0ZOHAgBw4c4ObNm4wdO5bAwEDq1q1L48aNWbZsGXFxxace/cP4NFZci+L8PyuziqQ5e5l3KhRiHkqREcmzIBQSWZbz3EP78zQ/0lNS6DBhBtWa+3Di5+Vs/eLflasOrviWwJnjKVvZhS7vfUbzN8dw+8xRlvl1Iynu34oCV4K3k5acRNM+w+n2wRzcmrXh5C8r2DRzfJY2NWo1q8b3w9K2LJ0nzcazrW+OcYYmpWcp+yQIhsCrfPFNoL3tzfEqXzS33l1dXZkzZw4PHz5k69at2NnZ8fbbb2Nvb4+fnx+nT5/W69/4uYgkAm7GEJuqEUnzS0hAIzvTHCuyCAXr9a0zIgiFTC2Tbbmkl7GpVJmhC9cD0Kz/KEwtLDkVuJqWQ8ZhalmK4KXzaT/uI9qMmqw9xrNtFxa/2ZZTm1Zpn+/0zkyMTP/9Em7ceyhlHKuw739fEv3kEaXt/13WNj01hVrtu9Fx4ie5jjNdk9EDXcJKpAqvAUmSaF7BHBOlRPCjBCT026OZ2b6Pg0Wh9Ti/jJGRET169KBHjx48fPiQ1atXs3LlSlauXEnNmjUZPXo0gwcPxtbWtkjikWWZE2FJHH2SmPG4SFo1TPmdWCq8OtHzLAiFJD0fvTZN+43UedxswGgAbhwP5q8Du5A1Gmq1705C1DPtP6sy5Sjr6MKdc8e1xz2fOKcmJZAQ9Qyn2o2QZZnHN65kbbfPiDzHmp/rE4TioqGdGYPcrPVahSMz+RnkZq2XxPm/HB0dmTlzJnfu3OG3336jWrVqvP/++1SsWJFBgwZx8ODBQu+Nfj5xFl6uICaWCvkjep4FoZBo8lECqWxlF53HZRyckRQKoh4/RFIokGWZb3o0yfZYherf23bRTx6x338u1w7vJSk2Wme/5PjY/xynolT5inmOVa0BRFUkwYA5WhrhV8OGw48TOBeRXGS90JntNLQzxbuiRbFLfpRKJR06dKBDhw6Eh4ezdu1aVqxYwYYNG3B1dcXPz49hw4ZRoUKFAm33XLhInPOioCeWCrknkmdBKCSKgriv89wEEFmjQZIkhi/eiEKZNWs1Nsu4dadRq1k5rg9JMdG0Gj4RO2c3jM3MiQl/wuZPJyL/J6tXGRmjyEewSnHfSigBjBQSPg6WVCttwq77cUSnagotic48r7Wxgi5OVgaR+JQrV46pU6cyZcoUjh49yvLly5k1axYzZsyga9eujB49mjfeeANlNp9JefEwPo3gkJdX+hH+VZgTS4WcieRZEAqJKh8zn58+uINtpX+X03328C6yRoNNRUcUCiWyLGNTyQk7p6ovPEforas8vX+bvp/9j/q+/bXP3zx1KM/xvEx+rk8QiitHSyPe8rDhTmwa5yOSuBuXVnBJtJwx6a2iCXg5lMallJHBVUaQJAlvb2+8vb35/vvvtcuBd+7cGUdHR+1y4JUrV87zudM0Mjvvx+l9/Lmh8LY3p1kRTSwVsif6jgShkCglUOXxL+zUplU6j09uXA5Atebt8GzbBYVSye/LFmQZdyjLMgnRkQAoFErtc89vP75hWV4v4YVUiox6z4JQkigkCVdrY/q7WjPGw4bG5cwweW5WbG7f88/vZ6KUqGuj4scBrbm/ZSmu1sYGlzj/l42NDRMmTODSpUucOXOGjh078s033+Ds7EynTp3YsmULaWm5L2d5+HGCqKqRg8x3jI+DBV4VzJEM/D1k6ETPsyAUEkmSqGCm4lFC7svVRYU8YN2kwbh5teXBH+e4tDuQOp16Y+9eE4D24z5i7+IviH78AI/WnTGxsCQy5AF/HdxF415D8R46HjtnN2wdnNmzcBax4U8wsbDirwM7s4x9fhUVzFTiw1so0WxMlLSpZEHriuZEpWgITUwnNCmdxwlphCalZ1tJR6XI+NuoaGFEBTMVFcxV2JgokCSJTq1bsGzZMj766CNUqpLx1StJEo0aNaJRo0Z8++23/PLLLyxfvpzevXtTrlw5hg8fzqhRo3B3d3/hOR7Gp3EuIvmF24V/J5b6GshQn9dByfgLFoRiyt5cxeOE3C+UMnDucvb7z2Xv4s9RKFU06z+KTpNmabe3HvEuZStX5XiAP78vWwCAdflKuDVtTY1WHQFQGhkx7LsAdiz4mEOrF2FkbIpHm8406z+K7we0fuVrUkhQ0UJ8gAuvB0mSsDVVYmuqxAMTIONOjkbOqDij1mSM/1dJEgqJF/6oHDNmDMuXL2f37t1069atKC+hSFhaWjJq1ChGjRrFlStXWLFiBcuXL2f+/Pm0atWK0aNH06tXL8zM/h1uoJFldonhGi9U3CeWvs4kWax0IAiF5q/IZHbcj9d3GAWum5MVHrYm+g5DEAxK48aNKVu2LLt379Z3KEUiOTmZLVu2sHz5cg4dOoSNjQ2DBw/Gz8+P2rVrczMmhaA7xWdFw+IiM2kubUATS183InkWhEL0LDmd5dcKbrhEcfFWDRtsTUWdOkHIi1WrVuHn58ft27epUqWKvsMpUjdv3mTlypWsWbOGsLAwGjduTL95q0i3Li96nf+RmTRXsTKigZ2ZQU4sfV2ICYOCUIhsTZQ6E45KAhOlhI2J+OgQhLzq378/pUqVYvny5foOpci5ubkxd+5cHj58yJYtW6jkVoO0EpQ4GytefWJp43JmjPGwob+rdYmYWFqSiZ5nQShkB0ISOBueVCK+JCSgcTkz2lQSy8EKQn68++67bNy4kYcPH2JsbKzvcPQm43MxEVlv6zsWHAloZGdK3bJmrzyxVDAMInkWhEIWlaJm6dUofYdRYMZ42GBjIoZsCEJ+XL16FU9PT3755Rf69eun73AKTVhYGOPHj+fgwYNERkaycOFCJk2aBGRMuPzuSiQp6uKVfiwb3R2At5Zvy/OxJkqJSbVsdRLg/EwszYtZs2Yxe/ZsIiIiKFu27CufT8g9ce9VEAqZjYkSZysjg+9fkcgYiycSZ0HIPw8PD7y9vVmyZIm+QylUkydPZu/evXz00UesX7+ejh07ardFpqiLXeL8qlLUMlEpGd3Mjx8/ZtasWVy+fBmlQsJEqcDcSIGJUoFSIYke5hJAlKoThCLQwM6Ue3G5XzSgOJKBBmI5WEF4ZWPHjuXNN9/k+vXrVK9eXd/hFIoDBw7QvXt3pkyZkmVbaGLua98bktDEdGxNlTx+/JjZs2fj7OxM3bp19R2WUAhEz7MgFIGqpYwpbaww2N5niYyySS6lRMkkQXhVvXr1omzZsixdulTfoeSKRqMhOTlvC5mEh4dTunTpbLeFJqbnOflQp6eTnpaa7bbUpIQ8nq3gKSQITSqZPwqErETyLAhFQCFJdHGyMthJgzLg62QlZn8LQgEwMTFh5MiRrFmzhqSkpCJpc9asWUiSxPXr1+nXrx+lSpWiTJkyvPvuu1kSY0mSmDBhAgEBAXh6emJiYsJvv/0GQEhICCNHjqR8+fKYmJjg6enJqlWrtMeuWbMGSZKQZZkffvgBSdIdphAdHc2C6VP5qlMdZjSpxIJujTi85ns0mn9n1kU9fsBH9e04su4HjgX4s6BbIz5pWonwOzcI9p/PR/XtCLtzg40fj2F2K1f8R/pqj724K5DFb7bjk2aOfNbajZ8/HE10aEiW1+NM0LqM8zZz5Ichb3D3wslcv5Y3Tx3Cf2QXZntX5dPmTnzTsyl7vv+CxwlpHDp0iEaNGgEwYsQI7fWvWbNGe3xgYCANGjTAzMyMsmXLMnjwYEJCssaY+X9lZ2eHmZkZ1apVY/r06S+N7f79+7i6ulKzZk3CwsJyfU1C3ohhG4JQRBwtjWhoZ8r5iGSDSqIlMla4chCF+gWhwIwZM4b58+ezadMmhg0bVmTt9uvXD2dnZ+bMmcOpU6f4/vvviYqKYt26dTr7HThwgE2bNjFhwgTKli2Ls7MzYWFhNG3aVJtc29nZsWfPHkaNGkVsbCyTJk3C29ub9evXM2TIENq3bwAuecEAACAASURBVM/QoUO150xMTKRVq1bcevCIxr2GUrqCA/f/OMPexV8QGxFG16lf6sRwfvvPpKem0LjXEJRGxpiXstFu2/DBKMpWdqHDhOlk1j04uOJb9i+ZS6323WnUczAJUc84uXEFy/y6MfHnA5hZWQNw9tef2Prl+zjVaUTzN98i8tF91k0egrm1DdblK7709Qu7fZ217w6igpsHPm9PQ2VkwrOHd7l/+QyhSen4VK/OZ599xsyZM3nrrbdo2bIlAF5eXkDGj4sRI0bQqFEj5syZQ1hYGIsWLeL48eNcvHhR21v/xx9/0LJlS4yMjHjrrbdwdnbm9u3b7Nixgy+//DLb2G7fvk3btm2xtbVl//79YhJhIRLJsyAUoVYVLbgZk0psqsYgEmgJKGWswLuiKE0nCAXJxcWFDh064O/vX6TJc5UqVdi2LaOaxPjx4ylVqhQ//vgjU6ZMoXbt2tr9bty4wZUrV/Dw8NA+5+fnh1qt5sqVK5QpUwbIGL89cOBAZs2axZgxY3BxccHFxYUhQ4bg7u7O4MGDtcd/++233L59m7cDfqds5aoANOkzjFJ2FTi67gdaDhlH6QqVtPvHhD9myrYzWNpkTQLt3T0Z8NW/w16iHj8keOl82o/7iDajJmuf92zbhcVvtuXUplW0GTUZdVoa+/73FfbVauK37FdURhnlAsu5VGPrF+/lmDzfPHUIdVoqIxZvxMKmjM62dA3YlStPp06dmDlzJs2aNdO5/rS0NKZNm0bNmjU5cuQIpqamALRo0QJfX18WLlzI7NmzAZg4cSKyLHPhwgUqV66sPcfcuXOzjev69eu0a9eOSpUqsXfvXmxsbLLdTygYYtiGIBQhI4WErwEN38gcrmGU26r/giDk2tixYzl16hSXLl0qsjbHjx+v83jixIkAWZYMb9WqlU7iLMsyQUFBdO3aFVmWefr0qfZfhw4diImJ4cKFCy9tOzAwkOYtWmBmVZqEqGfaf66NW6FRq7MMnajZ1jfbxBmgSW/dHxx/HdiFrNFQq313nXNblSlHWUcX7pw7DsCjq5eIj4ygSe/h2sQZoEHXAZhalnpp/IC29/rq4T06Q00ypb+k+u+5c+cIDw9n3Lhx2sQZoEuXLlSvXp1du3YBEBERwZEjRxg5cqRO4gzZl7j7888/adWqFc7OzgQHB4vEuQiInmdBKGKOlkb4OFgQ/Ej/k1xy4uNggaMYriEIhcLX15eKFSvi7++Pv79/kbTp5uam87hq1aooFAru3bun8/x/lw+PiIggOjqaZcuWsWzZsmzPHR4e/tK2b968yR9//MG+vdlXGEmIfKrz2KaS0wvP9d9tTx/eQZZlvunRJNv9FaqMz7Ho0EcAlK3sorNdaWSErcOL28tU+40enP31J7Z8Npm9339B1cYt8WzbhZo+3VAoFKizWRQl0/379wGoVq1alm3Vq1fn2LFjANy5cweAmjVr5hgPQNeuXSlfvjx79+7F0tIyV8cIr0Ykz4KgBw3tzEhRyxx9kqjvUF6opb05DUVpOkEoNCqVitGjR/PNN9+wYMECrKysijyGF9UcNjPT/dvP7GUdPHjwC4eZPD/sIzsajYZ2Pj449x6b7fbMoRyZjExMs90vu22yRoMkSQxfvBGFMmstemOzghl6ZmRqxlsrdnDn7DGuH9vPzRMH+GPfr1RttI6RPwai1MP9/N69e7N27VoCAgIYM2ZM0QfwGhLJsyDoiVf5jC+n4phAe9ub06y8SJwFobD5+fnxxRdfEBAQwNix2SeVBenmzZs6vcq3bt1Co9Hg7Oz80uPs7OywsrJCrVbj4+OTr7arVq1KQkICrk1a5ev4lynj4Iwsy9hUcsLOqeoL9ytdwQGApw/uULVxS+3z6rQ0IkMeYO/umWNbCoUC1ybeuDbxhvc/5+DKhez74SvunDuGqn6vF/4gcXLK6Nm+ceMGbdu21dl248YN7XYXl4xe8T///DPHWAAWLFiASqVi3LhxWFlZ8eabb+bqOCH/xJhnQdATSZJoXsEcH4eMHhF9jyrObN/HwQKvCuZiFSxBKAIODg507doVf39/bdWIwvTDDz/oPF68eDEAnTp1eulxSqWS3r17ExQUlG1SFxERkWPb/fr149TJk9w+dSDLtqS4GNTp+a+T7Nm2Cwqlkt+XLcjyOsqyTEJ0JAAOHnWxsCnL6aA1OnWjz+/YSHJcTI7tJMZEZXnOvlrG8Ao5LQWFBBYWGZ/p0dHROvs1bNiQcuXK4e/vT0pKivb5PXv2cO3aNbp06QJk/FDx9vZm1apVPHjwIMu1/JckSSxbtow+ffowbNgwtm/fnuN1CK9G9DwLgp41tDOjvJmKnffj9FaFI7Oqhq+TlRjjLAhFbOzYsXTs2JFTp07RrFmzQm3r7t27dOvWjY4dO3Ly5El++ukn3nzzTerUqZPjsXPnzuXgwYM0adKE0aNH4+HhQWRkJBcuXCA4OJjIyMiXHj916lS2b9/O6ncGUb/rACrVqENqUiKht67yZ/AOPth5IUsFi9wq41iF9uM+Yu/iL4h+/ACP1p0xsbAkMuQBfx3cReNeQ/EeOh6lkRFvjPuIrV++z4oxPan9Rg8iQx5wfvvP2Do459jO78u+5t7Fk1Rr0R4bewfiI59yKnA11uUr0sSrOZIkUbVqVUqXLo2/vz9WVlZYWFjQpEkTqlSpwrx58xgxYgStWrVi4MD/s3ffcU1d7wPHP0kIeyMOREUcVdQ6QNx7V617a9W6rYL91dZRt3XX1vGte1erdc9aFffe1oFaK4ooIijIHoHc3x9IFEEFSQiJ5/168dLc3HvPSZTkuec+5zndNKXq3Nzc+Pbb11VCFixYQO3atalSpQoDBw6kePHiPHz4kH379mU6wVQul7N+/Xratm1L586d+euvvzKMbgvaI4JnQcgDilgr6V/WgePBsVwKS0AGuRJEp7Xj5WxOXRcrUVVDEPSgSZMmFC9enCVLlug8eP7zzz+ZMGECo0ePxsTEhGHDhjFnzpwsHVugQAEuXLjAlClT2L59O4sWLcLJyYly5coxa9asDx5vaWnJ8ePHGTh6Egd3b+fK3s2YW9mQr5g7jQePylK1i/ep39eXfEVLcHrDEg4vS31NdgUKU6p6fcrWa67Zz7vDV6jVKZxY9xv7502mQMmyfPXr7xxanHkZuDd51GvOy6dBXN71B7Evw7Gyd6S4Z02aDv6BkgVTK4MolUrWrl3LmDFjGDx4MMnJyaxevZrixYvTp08fLC0tmTlzJqNGjcLKyop27doxa9asdCsyVqxYkXPnzjF+/HgWL15MQkICxYoVo3Pnzu/sm1KpZOvWrbRo0YI2bdrg5+dHtWqZT6AUckYm5cZ9IkEQsiwoRsW+wGheJql1FkRL6hRkcgX2pnJaitFmQdC7WbNmMXHiRIKDg3F0dNT6+SdNmsTkyZMJCwvT++IZt8IT2BMYo9c+6MKXxWzwcDTTdzeEXCByngUhjylirWSghwMd3W1xs0kNarU1HiwjNWcu4OIpWhSQM9DDQQTOgpAH9O3bF7Vazdq1a/XdFZ0raGmcN72N9XUJGYngWRDyILlMRkk7U7qUtGOQhwPe+S0wU8jeeD6r53n9dzOFDO/8FnTIn8Jan274bVyNXEwKFIQ8IX/+/HTo0CHXJg7qk6OZIt3nmTEwU8hwMBMh1adCXCYJQh7nYKagQWEr6rtYEpGoJiQumZD4ZIJjVYTEJ5OcSVF+EzkUtDDBxUpJQQsTClqa4GAmf1VBw4quXbuycOFCfH19MTERHwOCkBcMGTKEevXqcezYMRo0aKDv7uiMTCajopM5F0PjDWa11feRAZWczEWFok+IyHkWBAMmSRJqKXVJ2IIuhZk6eRJDBg5ELnv34gcAly9fxsvLi23bttG+fftc7LEgCO8iSRLlypWjfPnybN68Wd/d0amIxBSW+mcs+2aoBnk44GCWcXEWwTiJewyCYMBkMhkKuQwzhZykmCiSE+JRyGUfHAHx9PSkdu3azJs3L5d6KgjCh8hkMgYPHsyOHTsICQnRd3d0ysFMgZuNUu/17XNKBhS3UYrA+RMjgmdBMBJKpZLkbCwyMGLECE6ePMnVq1d12CtBELKjV69eKJVKVq1ape+u6Jyns7nBp21IgKezWI31UyOCZ0EwEkqlEpVKleX927RpQ9GiRZk/f74OeyUIQnY4ODjQtWtXli1bRkpKir67o1MlbE2xN5Ub7OizDLA3leNuKyoWfWpE8CwIRsLExCRbwbOJiQnDhw9n48aNPHv2TIc9EwQhO4YMGUJgYCAHDhzQd1d0Si6T0bKYjcGOPktAq2I2omrRJ0gEz4JgJLKbtgHQr18/TExMWLJkiY56JQhCdnl5eVGlSpVP4veyiLUSL2dzgxt9lgFVnc1xFXXyP0kieBYEI5HdkWdIvUXcu3dvFi1aRGJioo56JghCdqRNHNy3bx+PHj3Sd3d0roqNmoSXz1GnZO/iX19kgK2pnLouVvruiqAnIngWBCOR3ZznND4+PoSGhvLnn3/qoFeCIHyMbt26YWVlxfLly/XdFZ26d+8edWrW4M9xQ5HLDaNiRVq6hjKrq1UJRkcEz4JgJD4mbQOgTJkyNG/enHnz5hn9ymaCYCisra3p1asXK1as+KiLYkOwb98+qlatSkpKCttXLqJxEWt9dylLGrtaUUSka3zSRPAsCEbiY9I20owYMYKrV69y6tQpLfdKEISPNXjwYEJCQti9e7e+u6JVarWaqVOn0rp1a+rXr8+FCxcoU6YMXs4W1Clkqe/uvVedQpZ4idJ0nzwRPAuCkfjYkWeApk2bUqZMGbFoiiDkIRUqVKBWrVpGNXEwKiqK9u3bM3HiRCZPnsz27duxtbXVPF+zQN4NoOsWsqRmARE4CyJ4FgSj8bE5z5A6QcnX15edO3fy8OFD7XZMEISPNnjwYPz8/Lh3756+u5Jjd+7coVq1ahw9epTdu3czfvx45PL0YYhMJqNWQUsau6ZOxtN3VnFa+41drahZ0PKDq7cKnwYRPAuCkchJ2gakrmxma2vLb7/9psVeCYKQEx07dsTR0ZGlS5fquys5snv3bry9vZHL5Vy8eJFWrVq9d38vZwt6lLLDVo+LqKRV1ehRyk6kagjpiOBZEIxETtI2AKysrBgwYADLly8nJiZGiz0TBOFjmZub07dvX1avXk1CQoK+u5NtarWaSZMm0aZNG5o0acK5c+coXbp0lo4tYq2kf1kHPJ3NgdwbhU5rx8vZnP5lHcTkQCEDETwLgpHISdpGmmHDhhETE8O6deu01CtBEHJq4MCBhIeHs3XrVn13JVsiIyNp06YNU6ZMYdq0aWzduhUbG5tsnUMpl9HY1ZoepeywM00NWXQVRKed1+7VaHMjV2tRjk7IlEwStakEwSi0atUKhULBrl27cnSeTp06cf36dW7fvp0hH1EQBP1o3LgxCQkJ762II0kSKRIkSxJqNcjlYCKToZCR67m6/v7+tGvXjtDQUP744w9atGiR43OqJYmAKBWXw+J5EK1CBlpZ2jvtPMVtlHg6W+BuqxRLbgvvZaLvDgiCoB1KpZKkpKQcn2fEiBHUrl2bAwcOaOULTxCEnBsyZAgdO3bkxo0bVKhQAUmSCE9MISQumZC4ZJ7GJRMSn0yyOuOxJnIoaGFCIUsTCr76cTRT6Cyg3r59O71798bNzY2LFy9SsmRJrZxXLpNR0s6UknamRCSmcPV5PKcDX6C0sHr1PKizEE2/uZ+ZQkYlJ3Mq5TPHwcwwFmkR9E+MPAuCkejUqRORkZEcPHgwR+eRJImqVavi5OTEgQMHtNQ7QRByQqVSUbRoUTr36U+bYaP550UCiSmpX99yIJOYOYM39zNTyKjoZE5lLQaNKSkpTJw4kWnTptGpUydWrVqFtbXuFj5ZuXIlAwYMYNehY5SoXI2Q+GSCY1UfvIhwsVJS0CL1IsLBTC4qaAjZJoJnQTAS3bt3JyQkhCNHjuT4XOvXr6dXr174+/tTtmxZLfROEISPpZYk7kcl8efZm5gUKKb1dAU3GyWezuaUsDX96HSFiIgIevTowYEDB5gxYwbff/+9ToPS4OBgPDw8aNeuHatXr073nCRJqF+lr6SoQfEqfUWuh/QVwTiJ4FkQjETv3r0JCAjg5MmTOT5XUlISxYoVo23btixevFgLvRME4WMExajYFxjNyyQ1MiQkHUyXSwui7U3ltCxmk+3qEjdv3qRt27aEh4ezadMmmjZtmul+2szJbt++PWfOnMHf3x9HR8dsHSsIOSVyngXBSOS0zvObTE1NGTp0KDNmzGDatGniy0kQcplKLXE8OJZLYQmacFkXgXPqeVNFJqnZcC8SL2dz6rlYZanSxJYtW+jbty8lSpTg4MGDuLu7p55ThznZ27ZtY8eOHWzZskV8Ngl6IUaeBcFIDB48mEuXLnHp0iWtnC80NJQiRYowdepUfvjhB62cUxCEDwuKUbE3MJqoJLVW0jOyK21xkFbvGYVOSUlh3LhxzJw5k65du7JixQqsrKxeTeRL0FlOdnh4OB4eHtSoUYPt27eLNAxBL0TwLAhGYvjw4Zw4cYJ//vlHa+fs27cvhw8fJiAgABMTcaNKEHTtUlg8fo9jtZbX/LHS2m/sapVhdb3w8HC6deuGn58fs2fPZsS33xIQreJyWAIPdVBC7s2c7P79+rF9+3b8/f1xcXHRQiuCkH3i21AQjIQ20zbS+Pr6smbNGnbs2EGnTp20em5BEF6TJIkzz+I5+TQu9bG++/PqT7/HsSSmSNQsYIFMJuP69eu0bduWqKgoDhw4wGfV67H89stXOdnpj9VWHwKjVTyMVmGaksiRq/78/PPPInAW9EqsgCAIRiKny3NnplKlStSrV4958+Zp9byCIKT3ZuCc15x8GseZZ/Fs2rSJGjVqYGdnx7mLl6BMdTbciyQyKTXZQlcBf9p5EzBh0Mo9uDXviiorBZ0FQUdE8CwIRkIXI8+QumjKmTNnuHjxotbPLQgCXArNu4FzmpNP41iw8zDt2rVjy6ETHIqz5XJYApB7o+RyReokwsthCay4HUFQjPY/7wQhK0TwLAhGQhcjzwCtW7emePHizJ8/X+vnFoRPXVCMCr8nsfruRpZ8+cN0+sxYzNagRL1NZoTUYD3qVWWQS2HxeuqF8CkTwbMgGAmlUqmTkWeFQsHw4cPZvHkzT58+1fr5BeFTpVJL7A2M1lEBOh2Qybj0PBHIWznZp0PiELUPhNwkgmdBMBK6StsA+PrrrzEzMxMLpgiCFh0PjtXrCK6xSMvJFoTcIoJnQTASukrbALCzs6NPnz4sWbKEhIQEnbQhCJ+SoBgVl8ISROCsJSefxokUDiHXiOBZEIyErtI20vj4+BAWFsbGjRt11oYgfArUksQ+Q0rXMBB+j2PFJEIhV4jgWRCMhC7TNgBKlSpFy5YtmTdvnsgvFIQcuB+VxEuRrqF1MmBvYLQoYyfonAieBcFIpKVt6DKwHTFiBNevX+f48eM6a0MQjN3lsAQx6qwDaVU4TgQbRvUSwXCJ4FkQjIRSqQQgJSVFZ200atSIcuXKiUVTBOEjRSSm8DBaJUaddUQCLoYliPQNQadE8CwIRsLExARAZ5MGAWQyGb6+vuzevZuAgACdtSMIxurqczHqrGsyYF9gNGqRXiboiAieBcFIpI086zLvGaBHjx44ODjwv//9T6ftCIKxkSSJf168u8LG80f3WTm0E5PqujOmijO3jv4FQNCtqyzu8wUTahZjTBVngu/ewG/JbMZUcc69zhsQCXiZpCYgSow+C7phou8OCIKgHWkjz7oOni0tLRk0aBC//fYbkydPxsbGRqftCYKxCE9MITHl3aOhWyYMJyI4kKZDx2JhY4erRyVSVCr++KEfSjMzWn03FaW5BQ6FiuRirw2TDLgcFk9JO1N9d0UwQmLkWRCMRNrIsy7TNtIMHTqU2NhY1qxZo/O2BMFYhMS9+3dTlRDPo+sX8WrTg5pd+1O5ZSfsCrjw4vFDXj4Nok6voXh3+IrKLTthYWtPg/7/x5SzQbnYe8MiAQ+iVUQk6m4OiPDpEsGzIBiJ3ErbAHB1daVjx44sWLAAtVqt8/YEwRiExCW/80s3NuIFAOY2dum3h4dlul1hYoLSzFzrfXyfpHjDqmIhA649F4s6Cdonk0TBVkEwCocOHaJp06Y8ePAANzc3nbd37tw5atSowZ49e2jVqpXO2xMEQ3b16lX6+H7P3SvnkdRqipT3pOk3Yyn6uRd+S2ZzeNmcdPvbFyqCu1dNruz5M9324p41Gbh8l+aYGVfC0rezbwtnNi3n2f07KJSmFCxZlgb9/4/SNRpo9rl72o9jK+fx5M4NZHIZxavUoIXvRAqUKKPZZ8vEYdz024PPpmPsnj2Gh1fPUdK7Lr1+WcfzR/f5e8FUAv+5QEJ0FJb2jrhVqka7H+dibmOb4/dqVssquHvVpNPknM+rMFPIGFHBEZlMTNMUtEfkPAuCkcjNtA2A6tWr4+3tzbx580TwLAjvcevWLerUqYPC0pq6vYehMFFyfts6lg9sy4DluyjXsCXmNrbsmzueis3b81mtxphaWmHt6IytcyGOrZpHzW4DcPWojLXTuycJ+i2dw+GlsylWsSqNB49CoVQSdPMKARdPaoLnK3s3s3XiMErVaEBzn/GoEuI5v3UNS75uhc/GIzi4FNWcT52SwqpvOuNWuRpfjJiM0tyCZFUSq77pQkpSIjW79Mc6X36iQkO4c/Ig8dGRWgmetSkxRSIiUY2juULfXRGMiAieBcFI5GbaRpoRI0bQvXt3bt68Sfny5XOtXUEwJOPGjUOlUjF05V4cXd0AqNyyM7+0r8Hf8yczcMVuzK1t2Dd3PC5lPqdyy06aY1NUSRxbNQ+3ytWp0PjLd7bx/FEAR5b/TLkGLek+ZxVy+esEkbQbzIlxMeyZMxavtj1pP/4XzfNVWnfhl3Y1OLpyXrrtyUmJVGjyJc2Hj9dsC757g4gngXSfvTJdfxoNHPnxb9BbvttxFplMe1mlIXHJIngWtErkPAuCkciNOs9v69ixIy4uLsyfPz/X2hQEQ5KSksLBgwdp3aaNJnAGsHUuSMXmHXh47TwJMdE5bsf/2H4ktZqGA79LFzgDmpSF/84dJyE6korN2xMb8ULzI5crKFK+CgGXTmU4r3eH3qgSX+cNm1unjizfO3uUpPi4HPc7MyamZiheDQbklFwGIfG595kofBpE8CwIRkIfI89KpZJvvvmG9evX8/z581xrVxAMRVhYGHFxcZQq9VmG5/IXL4WkVhP57EmO2wl//BCZXE5+94ztAPgtmc36kX0AWDGoHT81KpPu5965Y8REPGdMFWd2zRxF+ONAAH5u482/Z44AEBn6lCPL56I0t+DijvVMrO3Grx1rc/bPlSRERwEQcOk0Y6o4c/3gTvyWzmFGswpMrO3Ghu/7khAdRXJSInvm/MhPjcoysVYxtk4cTnJSYrq+zmpZhS0Th6Xre2Y1rS/v3siYKs5EBD9Kd+wan+4EXDrN/3o05sfqRejdsCrHjh0DYPv27VSoUAFzc3M8PT25evXqx73hwidNpG0IgpHQR/AMMHDgQKZOncry5csZM2ZMrrYtCIYiL81Xc/msAsUqeRP64B73L5ygRLV61O8zHLnChOUD2xJw8RThTwJRmChpOfInHFyKEP0ilMW9m4NMRr2+vqSokrjpt4fQgLvsnj2GY6vnM3Tt35o2jq2ej9LMgnp9fXgR9ICzm1YgN1Eik8uJj3pJo0HfE3TjMpf3bMKhcDGtpn2EP37AprGD8O7Qm0pfdOTU74to3bo1S5YsYezYsQwdOhSAGTNm0LlzZ+7evZthtF4Q3kcEz4JgJPSRtgGQL18+evTowW+//cbIkSM1QbwgCODs7IylpSX//fsvVd56Luzhf8jkcuwKFCY+KiJH7Ti6uiGp1YQG3MXlswrv3beZz3jNBMJdM37g3JbVtPx2MoVKl0vtV+B/lKnbjPvnj1Oj89cAbJsyAnVKCr6bT2Bl7whA06Fj2DhmIHdOHCAq9Cnnt66hZLV6QOpkw4HLd2nSL2IjXnD9wA5K1WxI34WbAKjR+WteBD3g0q4/tBo8hz38j8Gr/6JYxaoA5Hf/jNXfdGbAgAHcuXOHokVTJ0U6ODgwaNAgTpw4Qf369bXWvmD8xKWWIBgJfY08A/j6+vLkyRO2bduW620LQl6mUCho2rQpu3fvIurp6/SC6BehXPt7G26VqmFunfNVOj3qt0Aml3Nk2dwMtdffrEirNLfg2Kp5pLz6nKjRdQCQWr4uJiI19ap4lZpYvFE1Q5Ikbh7eS9m6zUiMiSb6+TNNvnTpGg1Iio9DJpOTnJSkOaZKy87p8paLlK+CJEl4temerm9Fylch8tkTUrR40Z/f/TNN4AxQtLwnAA0bNtQEzgDVqlUDICAgQGttC58GMfIsCEYit5bnzkyFChVo2LAh8+bNo2vXrrneviDkZT/99BOHDh1iydetqdqxD3KFCRe2ryMlKYnmvhO10ka+ou406PctR5bPZVm/VpRr2AqF0pTH/lexdS6IidIMgKbf/Mhfv05gYY9GVGzaFgtbBwBOrltE5LNgABwLF0Wtfr0yX2zEcxKiI7mwfR0Xtq/LtH2ZXEb5Rq00+cv2BQunez5toqFdgYzbJbWahJgozYh2TmVo+9WFQJEi6Zc1t7NLXXgmIiJno/7Cp0eMPAuCkcjtOs9vGzFiBOfPn+fcuXN6aV8Q8qpy5cpx8uRJSpTx4Njq+Rxe9jP2BV3pv3QHRSt4aq2dJkNG02HifFSJCRz8bTp+S2bx8uljSnrX1ezjUb85/Zdsx9a5ICfW/ca+XycAYGnvgNeXqaPCJm+tXCi9Gsmu9EUnOk/9jdI1G2LjXBCF0hQzK2sKlS5P1xnLKPq5l+YYmSLz0nDyd2znfeu1vSNh/M0AP93u8szbafep4QAAIABJREFUULyjbbFWnJBdYuRZEIyEPtM2AFq2bEmJEiWYP38+1atX10sfBCGvqly5Mmu272FPYEymzzu4FM2wWiCAu1etTLc3HvwDjQf/kGG7V5vuGVIjAB5ePQ+k1oMuXaMB7l61AAh9cI9fO9TE88tuFPaoqNm/0+T/aVb4s3LIh5mVNZI6hcotO1O5ZecsvGLtsbBNHSGOj47E4o1lyl8+fZyr/RCENGLkWRCMhL4mDKaRy+X4+PiwdetWnjzJeektQTA2BS31P151bvOqdI/PbloOwGe1Gr3zGLlCQfmGrbh5eC8h/93O8HxarrSuOL2qj/3gylnNtqT42AxLl7+LiYh0BC3T/2+yIAhaoe+RZ4A+ffowbtw4Fi1axLRp0/TWD0HIixzNFJgpZCSm6C9NIOLJI9aN6Empmg15dP0S1/7aQsUWHShU+v0rhDbzGc/9S6dZ9FVzqrbrSQH3z4iLiiD4znX+O3+CCcfu6azPpao3wL6gK9snjyDsq2+QKxRc2vUHVg5OvAz58OhzQQsR6gjaJa7HBMFI5IXg2dbWln79+rF06VLi4+P11g9ByItkMhkVnczRZ8nnbjOXozA15cDCqdw9dYgaXfrRYcK8Dx5n45Sfb34/gOeXXbl1dB+7Z43mzMZlxEW+pLnPBJ32WaFU0nPuGhxd3Ti0eCZnNi6natue1OjS74PHymXgYiXKZwraJZNEprwgGIXk5GSUSiWrV6+mT58+eutHQEAAJUuWZNmyZfTv319v/RCEvCgiMYWl/rlf3cFvyWwOL5vDuMN3sHJwyvX29enLYjZ4OJrpuxuCEREjz4JgJNJmkutz5BnA3d2d1q1bM2/ePDGLXRDe4mCmwM1GqdfR509NXsg1F4yLCJ4FwUjIZDKUSqXeg2dILVt369Ytjhw5ou+uCEKe4+lsjriszB1mChkOZiLUEbRL/I8SBCNiYmKit2obb6pfvz6ff/458+Z9OJdSED41JWxNsTeVi9FnHZMBlZzMkb2jTrQgfCwRPAuCEckrI88ymQxfX1/27dvHvXu6m4UvCIZILpPRsphNro4+Nx78AzOuhH1S+c4SUCmf+Qf3E4TsEsGzIBiRvDLyDNC9e3ecnJxYuHChvrsiCHlOEWslXs7mIBI4dEIGFLdR4mD2jhUNBSEHRPAsCEYkr4w8A5ibmzN48GBWr15NZGSkvrsjCHnOk2O7iAgOQp2S+TLTwseTAE9nC313QzBSIngWBCMgSRLJagkrOwdUMgUJKWqS1ZLeq10MGTKEhIQEVq9erdd+CEJeolKp8PHxoU+vnkSf3oNcIUZHtUkG2JvKcbcV9Z0F3RB1ngXBwEiSRHhiCiFxyYTEJfM0LpmQ+GSS1Rn3NZGnrq5VyNKEgq9+HM0UuTqBpkePHpw9e5Z79+5pyukJwqcqJCSEzp07c+7cOebPn8/gwYO5/DwBv8ex+u6aUelZyg5XaxE8C7ohgmdBMBARiSlcfZ7APy8SNMv7yoFMYuYM3tzPTJG6ylnlfOa5kg944cIFqlWrxs6dO2nTpo3O2xOEvOrcuXN06NABtVrNtm3bqFmzpua50yFxnHwap8feGQcZ4OVsTiNXa313RTBiIngWhDxMLUncj0riclgCD6NVyNDO9KK087jZKPF0NqeErSlyHY5G16xZEzMzM44ePaqzNgQhL1u2bBnDhg2jatWqbN26lUKFCqV7XpIkzjyLFwF0DsgAW1M5/cs6oJSL8nSC7ojgWRDyqKAYFfsCo3mZpNZa0Py2tPPam8ppWcyGIjq6zbl582a6dOnCtWvXqFixok7aEIS8KCEhgeHDh7NixQqGDh3Kr7/+iqmp6Tv3vxQWj9/jWJ39zmdVWvtezuZcCkvQY0+yp0cpO519jglCGhE8C0Ieo1JLHA+O5VJYQq59gb75RVnPxUrrozYqlQp3d3eaNGnCqlWrtHpuQcirgoKC6NixI//88w9LliyhT58+WTsuRsXewGiiktR6CaDTRnBbvbqgTgvo87rGrlZ4iQobQi4QwbMg5CF57UtTm2bNmsXEiRMJCgrC2dlZq+cWhLzm+PHjdOrUCXNzc7Zv346Xl1e2jtfnRXRVZ3PqvnURnddzsusUsqRWQUt9d0P4RIhSdYKQR1wKi2fDvUi9Bc6Q+sUZlaRmw71ILoXFa/XcAwYMQC6Xs3TpUq2eVxDyEkmSmDdvHo0aNaJChQpcvnw524EzgFIuo7GrNT1K2WFnmvpVrass3rTz2pnK6VHKjkau1hnuPtUsYEGdQnkzOK1byJKaBcSIs5B7xMizIOhZXp4oVOfVl5K2StsNHjyYXbt2ERgY+N68T0EwRHFxcQwYMIA//viDkSNHMmPGDExMTHJ8XrUkERCl4nJYPA90MHG4uI0ST2cL3G2VH5w4nFdyspHUSBKYPrjCdx2b67MnghZIkkSKBMmShFoNcjmYyGQoZORqadWsEsGzIOjZp3Q71N/fn3LlyrF+/Xp69OihlXMKQl4QEBBA+/btuXfvHqtWraJLly5ab+Pp06fMW7aK2zESVVp3w9zGDgC5DNRZ+CZ/cz8zhYxKTuZU+oiSlXklvSxw7zrmjP2O/fv307RpUz30RPgYhrZWQWZE8CwIenQpNB6/J5/WRJymTZsSERHBhQsX9P4BKAjacODAAbp164ajoyM7duygQoUKWj3/w4cPmT17NqtWrcLMzIxhw4bh6zsCE1vH1AAkPpngWNUHAxAXKyUFLVIDEAczeY5+//JCTrZcUtO6dWvOnj3L+fPnKV26dC70QvhYhrpWQWZE8CwIehIUo2LDvUh9dyPLtFUC6q+//qJly5acPn063SIRgmBoJEli5syZ/Pjjj7Ro0YL169fj4OCgtfPfvn2bmTNnsmHDBhwcHPj222/55ptvsLOze2d/1K9ufaeoQfHq1rdch7e+9V1SMzIykurVq6NWqzl//jz29vY66IHwsYxlrYIM7YvgWRByn0otseJ2hF4nB2aHNhcfUKvVlC1blooVK7J582btdFAQcll0dDS9e/dmx44djB8/nkmTJiGXa2cO/pUrV5g+fTrbt2/HxcWF77//nv79+2NlZaWV82ubvnOy//vvP7y9vfH29mbv3r1ayTMXck7fF1a6JIJnQdADv8cxXA5LMIjAOY02l7397bff8PX1JSAggKJFi+a8c4LRy0sTiu7evUvbtm158uQJv//+u9aWnT916hTTpk3j77//xt3dndGjR/PVV19hZmamlfPnhojEFK49T+Dam7fms5CTLUkSchlIr2p/ZDcn+/DhwzRr1gwfHx9++eWXHL8O4eMZ41oFGdoTwbMg5C5DS9d4mzbSN2JiYnB1dWXQoEHMmjVLSz0TjEVenlC0a9cuevXqhaurKzt27OCzzz7L0fkkSeLgwYNMmzaNkydPUq5cOcaOHUvnzp0NegRVkiQiEtVZysmWo+bpnRvcv3KW+lUq0LttSxzNs/9v+L///Y/hw4ezcuVKvv76ay29EiE78spkUl2sVZCuHRE8C0LuUUsSy/wjiDSQdI23yUitBTvQwyHH+WUjR45k1apVBAUF5dnb0ULuyssTilJSUpg0aRI//fQT7du3Z82aNdjY2Hz0+dRqNTt37mT69OlcvnyZqlWr8uOPP9K6dWutpX/kNe/LyU5ISGD06NEsWLCAZs2asXr1agoVKpTt8w8ZMoRVq1Zx5MgRateuraNXImQmr5QxTGtflytOiuBZEHLRvchEtgVE67sbOdbR3ZaSdjmr0/zw4UNKlCjBokWLGDRokJZ6JhgaQ5hQFBERQY8ePfj777+ZPn06o0aN+uiR7eTkZDZt2sSMGTPw9/enfv36/PjjjzRq1EhUnyG1ckmfPn1QqVSsWLGCtm3bZut4lUpFkyZN8Pf35+LFixQrVkwr/cpLaUN5zae0VkEaETwLQi7a9F8kgdEqgxx1TiMjNSDpUjLzGf/Z0b59e+7cucOtW7c++S+gT5EhTCi6ceMG7dq1Izw8nE2bNn10PeGEhATWrl3LrFmzePDgAS1btmTs2LGi4kwmnj9/zoABA9i5cyf9+/fn119/xdo663Mtnj9/jre3N7a2tpw6dSpbx0LeThvKiz6ltQrSiOBZEHJJRGIKS/0j9N0NrRnk4ZDjW+InTpygXr16HDhwQCxy8AkxlAlFmzZtol+/fpQqVYodO3ZQvHjxbLcbGxvL0qVL+fnnnwkJCaFTp06MGTOGSpUqZf9FfEIkSWLlypX4+vri4uLChg0b8Pb2zvLxN2/epEaNGjRp0oStW7dmKRUmL6cN5VWf4loFIIJnQcg1R57EcjE03qBHndPIAO/8FjQonLNcZUmSqFKlCoUKFeKvv/764L7itqnhM4QJRcnJyYwePZq5c+fSo0cPli1bhqVl9kauIiIi+N///sf8+fOJjIykV69ejBo1KscTDD819+7do2fPnly+fJmJEycyZsyYLE+k3LNnD23atGHcuHFMmTIl030MIW0orzK0ye/aWqsARPAsCLlCkiTm3QjXjGYYAzOFjBEVHHMcuK5du5Y+ffpw584dTWAhbpsaJ0OYUBQWFkaXLl04ceIEc+fOxcfHJ1v/l549e8avv/7KokWLSEpKon///nz//fday739FKlUKqZOncq0adOoXr06v//+O+7u7lk6dubMmYwZM4ZNmzZlWDLdENKG8qpPea0CEMGzIOSKFwnJLL/9Ut/d0LqBZR1wNM/ZbcnExESKFi1Kx44d+emXBeK2qREylAlFly5don379iQmJrJ582bq1auX5fM8evSIOXPmsGLFCkxMTBg6dCjffvstBQsW1GHvPy1nzpyhZ8+ePH/+nIULF/LVV1998MJGkiR69erFtm3bOHXqFJ6engaTNpSXfeprFYjgWRBywa3wBPYExui7G1r3ZTEbPBxztoCDWpL4aclagmS2lKhWV9w2NUKGMKHo3/1/MmTIECpVqsTWrVtxdXXN0rH//vsvs2bNYt26ddja2uLr68vw4cO1uky38FpUVBQ+Pj6sXbuWTp06sWTJEhwdHd97THx8PPXr1+fJkyfsPX2JszGmeTptKK8ztHSNt2kjfUMEz4KQCw6/ukrPygiqriXFx2FqkfOZx3IZeDlb0DAHec9v3jZNSU5GoYNFIYz1tqmhMJQJRbtnjaG8rYyFCxdmaUW/69evM336dLZs2UL+/PkZOXIkgwYNynZlB+HjbNmyhUGDBmFpacnatWtp1KjRe/d/+vQpX0+aS91Bo5DLZHk2bSivE2sVvDqPCJ4FQffW//uSx7HJRIY+xW/xTO6ePkxcZAS2zgUpXbMhrb6fhonSlPDHD9m/YAr3L5wkOSmRgiU9aDjg/yhT53UlioBLp1k+sC3dZi7nxaMAzm1dQ9zLcIpV9Kbtjz+Tr+jrXMBlA9oQ9zKcTpP/x96543hy+x+qtutF6++n4X9sPxe2ryP4zg3iIiOwK+BCldZdafD1COSK9KkOj25c5vCyOTy6fokUlQonVze82nany4Bv6FnaPtvvh7ht+mkwqBEqSaJHafsPXlydO3eOadOmsXfvXtzc3Bg1ahR9+vTB3Nw8lzoqpHn8+DG9e/fmyJEjfPfdd0ybNi3TCx9DSRsyBGKtglSGu/anIBgISZIIiU8mKiyERb2aEh8dhXf7Xji7lSIq7Ck3/fagSognPuoli/t+gSohnppdB2Bp58iVvZtY920vesxeRbmGLdOd9/iaBchkcur0GkpCTDQn1v6PP8cN4Zt1B9LtFxcZzurhXfm8WVsqf9EJaydnAC7v2YSphRW1ew7BzNKK+xdP4rd4Jokx0Xzx7STN8ffOHWOtbw9s8hWgVreB2OTLT+iDf7lz8hAhPQchSVK2PvjfrLYAuTdxLK2dy2EJ3ItMMujbpoZApZbYGxit98mBWSWTydgbGJ3phCJJkjhy5AjTpk3j6NGjlClThrVr19KtWzeUSvF/SF9cXV05dOgQv/76K2PHjuXQoUP88ccflCtXLt1+eTVwBjT90nYdYl25nIsDHroiAy6HxYvgWRDyshQJktXw98KpRL8IZei6A7h6vK7x2mTIaCRJYt/c8cS8CGPQyj24Va4OQNX2PZnfpT77fplA2fot0tUqTU5MZPimo5goUz8ALGzt2DvnR0L+u03BkmU1+0U/D6Xt2J+p1rF3un51nbYEpfnrW4bVOvZhh+1Izm1ZTdNvxmBiaoY6JYUd00Zik68APpuOYmHzemEUSZJIVoNaAkUWY+e8UG1BAqKS1Gy4F2mQt00NxfHgWIOZiQ+v/1+cCI7VTChSq9Xs3buX6dOnc/78eSpXrszWrVtp166d0S6hbWjkcjnfffcdjRs3pkePHnh6ejJ79myGDRuGXC7nUmjeDZzTnHwah5lCluc/iyISU3gYrdJ3N3JMAh5Eq4hITPnoCeXit18QdCy1LrEa/2P7KVu3WbrAOY1MJuPuaT9cy1fRBM4AZpbWeLfvRUTwI0ID7qY7xvPLbprAGaD4q+PCnwSm28/E1AzPNt0ytPlm4JwYG0NsxAvcKldHlRBH2MN7AATfvUHEk0BqdR+YLnBO63Pa6/sQSZI4HRKH3+PU3Fd9B1Rp7fs9juV0SBwie027gmJUXDKwmfiQ+v/iYlgCgVGJbNy4kUqVKtGmTRuUSiX79+/n8uXLdOjQQQTOeVDFihW5ePEigwYNwtfXly+++IJrgSEGkW8PqZ9FQTF5OzC9+jx11NkYyIBrzxM++njxCSAIOqZWQ2zEcxJjoilQosw793v59DHOxUpm2J6/eOlXzwel225fsHC6xxa2qbnH8VHpS+LZ5i+ULshO8+z+HX7/rjeT6rozqU5xfmpUhs3jhgCQEB0FQHjQA4B0I9lvS8nCLMi8ftv0zLN4fXfDaKgliX2v0jUMkqRm6enb9OjZExcXF06cOMHJkydp3ry5weSlfqosLCyYP38+f//9N7fu3OVP/xAwkAtjGbA3MBqVOm/2V5Ik/nnx7gvi54/us3JoJybVdWdMFWduHU1d9Cro1lUW9/mCCTWLMaaKM8F3b+C3ZDZjqjinO35WyypsmThM8zjg0mnGVHEm4NJp3bwe4NqLhI8eOBFpG4KgY7oapJIp3nG76a0PA6VZxolM8dGRLBvQBjMrG5oMHoWja3GUZmY8uX2dvxdMydYHiuIDr0/cNv203I9K4mVSXqgr85FkcmwLuvLXhRs09/TQd2+Ej9CsWTMWH7rIjSg1GMgFT2ZpQ3lJeGLKexf52jJhOBHBgTQdOhYLGztcPSqRolLxxw/9UJqZ0eq7qSjNLXAoVETnfb1z6hCPb16l8eAf3rtfYopERKL6o9YqEMGzIOiYiUyGlUM+zKxteHb/zjv3sy/kSljgfxm2p6VQ2GvxQyfg0mniXobTc85qinvW1GwPf/Io3X6ORYoDEPLfbUpWy3zBCJP3fDkFxagM6rZpAQsTMYkwh4xlQlGkXeEP7ifkTUExKm7GgMzA0mvS0oZK25vluc+hkLjkdz6nSojn0fWLNOj3LTW79tdsD31wj5dPg2g//heqtuul2d6g//9Rr6/Pe9tzq1KDKWeDUGRy1/RD7p7y49zmVR8MniH1dX1M8GxY/7MEwQApZGBqIsejfgtunzjAY/9rGfaRJInPajXm8c0rBP5zUbM9KT6WC9t/x8GlKPndP9Nan+Ty1A8L6Y0QJ1mVxLktq9Lt51LmcxwKF+P0H8uIj05fckySJEzkqfWeM/NmtQVDkNdvmxqCtAlFhv4OvjmhSDAshp42JAP2BUajzmPpJiFxye8MGGMjXgBg/ta8mNjwsEy3K0xMMr0j+ia5XI7SzFyn8wvkMgiJf/dFwfuIkWdB0DGZTEZBCxOaDRvHf+eOsax/G7zb9yJ/8dJEPX/GTb/dDFq1l3p9ffjnwHbWDO9KzW4DsLC158reP4l4EkiPOau1+iFStGJVLGzt2TJhODW7DUCGjKt/bc6Q8iGXy2k7ZjbrRvRkQdcGeH7ZDdt8BQh9eI/Q+3eYsHbHO/NAjaHagpA9aROKDOXf/H3SJhQ1yMEiQELuM/S0IQl4maQmIEqVo1Jq2hAYGMisWbM4fPgwDwIfYWJuQYmqtflixCQcXIoC4LdkNoeXzQFg/7xJ7J83CftCRXD3qsmVPX8C8McP/QAo7lmTgct3aY6ZcSXsnW2nrWcwYNlO3L1qAfDgylnObFpO0M0rxLwIw9oxH+UbtabZsB81E+C3TBymaffNvOq0ttRqNWc2LuPijvWEP36IpY0tXTu0Y+bMmdlaFVQEz4KQCwpZmhCcvxBD1x7g4OIZXNu/jcTYaGzzF6J0zYYozS2wsLFjyOq/2L9gCmc2rUhdJKWUB1/NW59ukRRtsLJ3pPf8Dez7ZSKHFs3AwsaOSl90ooR3HVZ/0zndvqVrNqT/sh0cXvYzp9YvQlKrcXQtTrX2PXGxyvzWYlq1BUOTl2+b5nUfmlCkbZd3b2TrJB++WX8o0wo2OZU2oai+i6WYKGhAjCVtKKd1iLXh4sWLnDlzhi5dunAbB54/ecT5rWtYNqAt3249hamFJeUatsTcxpZ9c8dTsXl7PqvVGFNLK6wdnbF1LsSxVfOo2W0Arh6VNWsMfKwbfrtRJcRTvWMfLO0cCbp1hbN/riAyNJges1Pvmnq3701U2DP+O3eMzlMXZTjHzmnfcXnPJjxbd6Nm1wFEPg1kw4ZVXL16ldOnT2e5brsIngUhFxS0NEFNal5z5ym/vXM/R1c3zYfAu7h71cr0it3BpWiG7QOX73rneYpV9Gbo2v0Ztmd2brdK1ei3aEuG7QUtMn6EvHnb1BC/wNJum+Z0+dZPzYcmFBminEwo8vf3Z/PmzfTp0wc3N7d0zy1atAhLS0v69OmjnY4KgKhDrG0tW7akY8eOJKslfv4nNTWjbN1mLO7TgpuH91KlVWcKlS6HubUN++aOx6XM51Ru2UlzfIoqiWOr5uFWuToVGn+Z4/608JmQrsSqd4evcCpSnIP/m8bLp4+xL+RKsYpVyVfUnf/OHUvXF4CHV89xccd6ukxbQqUWHTTbR3b6gpZftGDLli107949S30ROc+CkAsKWhrndWpmryvttqmhhlFv3jYVsu59E4oM2ce+Ln9/fyZPnszDhw8zPLdo0SLWrFmTs44JGYg6xNplYZEaqCZLEikqFbEvw3EqUhxzGzuC71zP9f68GTgnxccSG/GCYp9XRZIkgu/e+ODxN/x2Y25tS8nq9YiNeKH5qVilCtbW1hw9ejTLfTHOb3RByGMczRSYKWRGNTKXEBPF+O8m0blzJ2rXro3iVek8cdv005Q2ochws00zSptQ5IGZvrsifMDEiROZMmUK4w7fwcrBSd/dybG8kDYUHx/PjBkzWLV6NcFPnqQrYZoQE5Xr/Xn59DGHlszk9vEDGdYzyEp/nj8KICEmimmN0q9b8NOrP0NDQ7PcFzHyLAi5QCaTUdHJ3GhGRZAk1I/82bNnN/Xr16dIkSL4+Phw6PR5UW0hl02aNAmZTMa///5Lz549sbOzw9nZmfHjxyNJEkFBQbRp0wZbW1sKFizI3LlzNccmJSUxYcIEPD09sbOzw8rKijp16mQ6ArNp0yY8PT2xsbHB1taWChUqMH/+fM3zQZHxHFw6h5/beDO+uitTGpRmydctuXfumGafp//eYsvEYcxu7cX46q5Ma+LB1kk+xL4Mz9BeZOhTtk32ZXrT8oyrVpjZrTzZOf17klVJ6fZLTkpk79zx/NSwDBNqFuP373oTE/E83T5jqjjjt2R2hjbeXpghRaXC743XMKl+aYZ82YhDhw6lO+7OnTt07NgRR0dHzM3N8fLyYvfu3Zrn16xZQ6dOqbeMGzRogEwmQyaTcezYMdzc3Lh16xbHjx/XbK9fvz4AKpWKyZMnU6pUKczNzXFycqJ27doZ2hcyis/lgYmk+Dj8lszW2SIe8DptKLclJCQQGBhI165dmTZtGh4e5eg2awVfL9pCv8VbsbR3RJJyt1/qlBRWDu3I3ZN+1OsznF6/rKPf4q10nLwQAEn94f5IajXWjs70W7w13c++vw9w6NAhpkyZkuX+iJFnQcgllfOZcyHUSFayk8n4tmMLJnV7yPnz59m8eTNbtmzhP4UjtXsMRq4w/I8WQ6u20KVLF8qWLcvMmTPZt28fP/30E46OjixdupSGDRsya9YsNmzYwMiRI6latSp169YlKiqKFStW0K1bNwYMGEB0dDQrV66kWbNmXLhwgUqVUifiHTp0iG7dutGoUSNmzZoFwO3btzl9+jS+vr5IksTvv07n6Kr5eLXtSZHylUmIjeGJ/zWC71ynVPX6APx3/jjhjwPx/LIbNk75eXb/Dhd3/M6zgLsMXfu3ZoQtKiyERb2aEh8dhXf7Xji7lSIq7Ck3/fagSohPt2LmntljsLCxp+HAkbx8GsTpP5aye6aS7rNWZPs99Fs6m+Or07+GYP9rXL58mSZNmgBw69YtatWqReHChRk9ejRWVlZs3ryZtm3bsm3bNtq1a0fdunXx8fFhwYIFjB07lrJlU0e6ypYty7x58xg+fDjW1tb8+OOPABQoUABIvRCaMWMG/fv3x9vbm6ioKC5dusSVK1c07QuZi1HlbjCnSojXVJlIqwahCx9bh/hNkiQRHR3Ns2fPCA0N5dmzZ5qfzB5HRaUfxT1y9Cg/zVwPgCoxgYS3ypbmhpD//HkeeJ9OU/5HlVZdNNvfvDhP866ReidXN+5fOEGxit7pUkCaVXRC8a6aq+9g+N9wgmAgHMwUuNkoCTTwkVkZ4Gaj1ExkqVGjBjVq1ODnn3/ml3+ekyLL3QkuaSWNus9eme1JKRHBj5jdypOOkxbg+WW3dM/lhdum2eHt7c3SpUsBGDhwIG5ubnz33XfMmDGDUaNGAdCtWzdcXFxYtWoVdevWxcHBgYcPH2Jq+joYHTBgAGXKlGHhwoWsXLkSgH379mFra8vLLzmDAAAgAElEQVSBAwc06TlvSpHg9slDlK7VmPbjf3lnH6t36kudXkPTbSv6uRebxgzk4dVzFK9SA4C/F04l+kUoQ9cdSFdJo8mQ0RlWv7S0c+TrRVs0/0ZqtZqzm5aTEB2FuY1tlt8/gLunMn8N31d8nQbg6+tL0aJFuXjxImZmqekcQ4cOpXbt2owaNYp27drh7u5OnTp1WLBgAU2aNNGMLAO0bduWcePGkS9fPnr27JmunX379vHFF1+wbNmybPVbyP3gOTe8L21IrVYTHh6epWD42bNnJCSkz59WKBTkz5+fAgUKUKBAAdzd3alRo4bmcYECBejcuTPNmjVj/fr1zPePJFkNZzetQJ2S+3fkNGsTvPH7L0kSp//I+LtiamEJpK6ka/FGjekKTdtwbstqjiyfS7Ph4wA0axUkJycTExODvb19lvojgmdByEWezuYGPxtcAjwzWcb6pUrK9cBZ13JSbSG39e//emUvhUKBl5cXjx8/pl+/fprt9vb2fPbZZwQEBGj2SwuG1Wo1L1++RK1W4+XlxZUrV9IdFxsby6FDh2jevHmGtpMlCXMbO0ID7vL80X3yFS2RaR/fHO1RJSaQFBdL0QqeAATfuU7xKjVQq9X4H9tP2brNMi1B9/aFjHf7Xum2Fa9cndMblhDxNIhCNuXe/YZl4l2vYeWatalzFhITOXLkCF27dmXr1q0olUpMTEwwMTHBw8ODFStWcPDgQQoXLkxwcDCQmkcZEhKi2VepVGa4AEhjb2/PrVu3uHfvHqVKlcpW3z91acFz7Mtwds38gX/PHEFuoqTyFx1p7jNBsyhHSnIyx1bP58qeTUQ+C8YmXwEqNW9Po0HfY2L6Okh97H+Ng/+bxpM710mKj8PGKT/uXrXoOGmB5qIb4PCyOZoR6EYDv9esanf/wkn8lsziyZ0bKExMKO5Zk+bDx5PfvbSmjbR6x9/tPM/Rlb/gf3Q/EhLlG7Tky9GzMDW34MLdB+yftzZDMBwWFkZycvrJrObm5prAN3/+/Hz++efpHr8ZGDs4OHxw7YA2bdqwYcMGChUqRJSTG9cvnue/CyewtHfM4b9W9jm7lcLR1Y39v04iKvQpZlY23DqyN0PuM0DhshUB2DN7LKVqNECuUFCxWTvcPWvh3aE3x1bPJ/jfm5SqXh8nKzO+Xf2ELVu2MH/+fDp27Jil/ojgWRByUQlbU+xN5UQaaDUKGWBnKsfdNmMtTEOstmBfqEjqErAm767tqY3bprmhaNGi6R7b2dlhbm5Ovnz5Mmx/8eKF5vHatWuZO3cud+7cQaV6fWHn5uZGaGgo0dHR1K1bF1dXV1q0aIGjoyNly5alfPnyFClShOjoaOKS1TQZPIp1//cVc9tWp0DJspSu0ZDKLTtRqPTrADYuMoLDy+Zw/cBOYsLTl0RMiIkGIDbiOYkx0RQoUSZLr9uuoGu6xxa2qSNH8dEZv1Q/5F2v4afvRhL78vV7tnHjRjZu3JjpOZo1a5bucZcuXTLdD9AE02mBtSRJREZGUrp0aUxNTbG2tsbJyQlbW9sM+6b9/UOP9bFvbt+pkSRJEzxvHNUfB5ciNBs2jkc3LnNm43LioyLpPDW1ROj2qSO4sudPyjduTe2eQwi6eZljq+cT+vAeveauBSAmPIxVQzth5eBEvT4+WNjYEhEcxK0j+wCwcnCi7dg57Jz+PeUatKRcw5YAFCzlAaSmJ60e3hXHwsVoPOh7VIkJnN20giVft2T4H4c1C4yk2Ti6Pw4uRWk2fBzBd65zccd6rBydaeE7gSRzW3bu3KkJekuUKJEhEE57bGNjo9X3fv78+SgUCjZs2EBsfAJFPq9Kv8XbWPXWWgC5QaFU0nveBvbMGcux1fNRmprj0eALanTpx4Ku9dPtW65hK2p07c/1Azu59tcWJEmiYrN2ALT78WcKl63IhW1rOfjbdJQmJpQo7kbPnj2pVSvr6TcieBaEXCSXyWhZzIYN93I/Z0wbJKBVMZtM6x/ndrWFlOTkHE9akclk710m1pCqLcTFxREcHEx0dDQxMTGEhIQAqYFe2rbo6Gju379PbGwsPXr04Pbt21y9ehV7e3vy5ctHUlIS8fHxxMXF8fDhQ00u7pvCw8M5ffo0p0+fxtzcHBcXFxzzF6RDjx/4fvdF/I/t5965Y1zcuZ7Tfyyh7dg5VG3XC4A/RvXn0fWL1On1DS6flcfU0gpJrWb1sC5ZmvCTGXkmaSRAlsq9SOr0t5+Le9bM9DUs/G0R/fv24cyZMzRo0IBvvvmGunXrkpycTEpKSro/y5Qpg6mpKX5+fkycOJFZs2bh4eGBSqXS/IwaNQorKytGjBhBcnJyuueio6O5desW9+/f58GDB0RERFCnTh1KliyZYd/k5GTi4+M1f3/7uXc9Tvv72yOX2qJQKHI3gDc1Q/3q39uhcFG++vV3AGp06Ye5lTXntqx+lS4kcWXPn1Rt15P2439N3afz11g7OHPy99+4f/EUJarWJvCfi8RHveTrRVvS3f1o+s1YAEwtrCjfqDU7p39PwVIeGeoJ/zVvEpa2DgxZsx9Lu9RV6zzqt2Bh94YcWjIrQ61/l88q0GHi68m3cS8juLRrAy18J2BqYcmdu/9mOydXG+zt7Vm1KnXdgVvhCewJjAFg1L4r6fbLbI0BePeaBI0H/6AZoU/z9jkzOza/e2n6Ld6a4Xxv7ydXKPjyhxl8+cOMTF+Xd/teeLdP/Uz6spgNHo7Z/3wXwbMg5LIi1kq8nM25HJZ7q7FpgwzwcjbH9Y2V9yZNmsTkyZO5e/cuE0aO4/LRvzExMcW7Y2+aDBlN5LNgds8aTcClUyjNLaj71bB0Oa/JqiSOrviFOycP8eLxA9TJKRQuU4HGQ0ZTomptzX5pt0lbjJiEXKHg7J8riQh+xLANfpn2NTkpkfUj+/Lw2jn6LtxEsYreme73ds7ziXW/sX/eJH7YewUHlyKoJQiOTR2NHTNmDHPnzuXZs2fZWsY1M2lBUlpAm/bnx2wLD0+tVOHu7p5pW927d0cmk2FtbY2NjQ0RERFIksSTJ08IDg7G2tqajh07Ymtrq9ln8eLFREVFsXLlSs02Gxsbzd8tLCzw8fFh6dKlHDhwADf3Evz8zwss7RzwatMdrzbdSYyLYVn/L/Fbmho8x0e95P6FEzQePIpGA0dq+vf80f10/bVyyIeZtQ3P7t/J0Xv8Jgtbe+LfmuSUrEoi+vmzDPtm9hqmT53C0EED8fBIHVm0tbWlc+f3j749ffoUSM1FfzPnGWDmzJk4OTkxZMiQ954jJiaGunXrcv/+fY4fP/6hl5ltkiSRnJycaWCdnSA8u89lZd+YmJgsn0emNMOjReq/R/XOX6d7jTW6DuDcltXcPe0Hr9JlavdI/77X6TWEk7//xt1ThyhRtbYmT/bOiYMUKlUORRZXnYPUya5P796kbu/hmsAZoFDpcpSsVo9/Tx3OcIx3xz7pHrtVrs6to/tIiInG3NqGZElCoedaTZ/SWgVZYZzvhiDkcfVcrLgXmUSUgaRvyABbUzl1XTKvPNGlSxco6E7z4eO5c/IQR1f8gqWtAxe2r8W9ah2a+0zg2v6t/PXrRFw9KlHcsyYAiTHRXNyxnorN2+PdvheJsTFc2rWB1d90ZujvB3D5rEK6di7v3khyUiLe7XuhUJpiaetAQnT6meGqhHjW/d9XPPG/Rr/F2yhSrnKWX+fnTdrw9/zJ3Di0i7q9U0uYhcQlExcXx8aNG6lduzaPHj3C39//o4PdmJgYEhMT39sPExOTDAFr2p9ubm7ptp0+fZoDBw6wbNkyChcurHlu6tSpHDhwgNDQUCwsLDT5jfXr1+f58+ccO3aMDh06cO3aNZYuXap5/vz58/zwww8ULVqUL79MnYD54sULnJzS1879/PPPU/8NExNRyCAxKhwz29e5kGaW1jgVKU5kSGruryyTCT8ApzcsTfdYLpfjUb8F1/7aymP/axnyniVJyvataUdXNx5ePZtu24Vt6zJMfIp9GY6VffrXkK9IcYKvpgbC+fPnp379+ixdupThw4dTqFChdMeHhYXh7Jy6BLGVVervysuXGdNHrKysMt3+9vtsbW1NyZIlCQoKys7LzTKZTKYZxU1bEMMQxanUfDlsNAD5iqa/iHRydUMmlxMRnPoeyuRynIoUT7ePTb4CmNvYEfE0dZ/injUp36gVh5fN4dQfS3D3rIVH/RZUatEhXV70/7N37/E51+8Dx1+f+97h3vnA2GbM+VQxjKKcVQ5DqBRGIb6U6FcpkfhWROUrhCjlkErIMWSiHGMOOVVOmc2MYWbn3YfP74+5x2xjx/uwXc/Howe797k/n+tus133+3O9rysvNy7FAOAXnLvuv1KNupzeu53MtBScXG7/LPX2r5LjOBfPrOQ97eYNdO4eGE2AlSvHyuKsAmetgo9z0To2S/IshBU4ahTC7Kh8w1yu4ZjPrcPQ5s2pNWIKAC16D2R6WFN+/t9Enhw1gbYvvApA4869mfrkQ0SuW56dPLt4ejN246Ecrcea9w5nRu+W7P3+yxy3MgESr8Tyxtr9uPvcruO9fjEq++8ZqcksHt2fK2f/YegXq3Ml3/fjHRBE1YdCOfrLmuzk2aCCh6cnJqORqKio7PZtd9LpdHkmu56enjkS2rxWcfN6zMnJqcAJ4qRJk9iyZQu9evXKUd/s6emJoijZSVxewsLCWL16Nb169aJbt278+++/zJ8/n4YNG5KcnJx93NChQ7l+/TodOnQgKCiIqKgoZs+eTUhICA0aNEBRFGb0eYzgpq2o0qAxrl7exJz8k+MR63mkb9aGRZ27BzWatuT3xXMwGfR4Vgrg9L4dJNzx9TN78pUJnNm3gwVDe9KidziVatTl5tXLHI9Yx/BFG3LsoC+I5k8NYM2UN1j2xgvUeaQdl06d4NTe7bh553xDMPPpx6jRLOdrOBaxnldeud0L+vPPP+exxx7joYce4qWXXqJmzZpcvnyZvXv3EhMTw59//glASEgIWq2WadOmkZiYiLOzMx06dKBSpUo0a9aMefPm8cEHH1C7dm0qVapEhw4daNiwIe3ataNZs2b4+voSGRnJypUrc1xf5HbPfW95/Tu6z78tRVHo//HXXDgayV+/b+H03u2smjyaXcvmMWLxJpxd3YsX8F3MnSRyy0pUtTYwkcM8q+DAlTS7WPC5HwUIqaArco24JM9CWElVd0c6BbkREZNi7VDuq1OQG1Xd8791OWjwEHbd+rtGq6VKwxASL8cS2rN/9jEuHl5UDK7F9ZjbyZJGq82uWTWZTKQnJaKaTFRpEMLFPMa/PtghLEfifKf05JssGvks1y+e56WFawq84exujZ7oyYZPJnAt+t/sFaonO3cm4pdfWLVqVfbGHHOy6+7ujoODff4ofeGFF4iLi8suv2jYsCHLli3jxx9/ZMeOHdnHDRgwgAULFjB37lxu3LiBv78/ffv2ZdKkSdkr1n0GjyBi0wZO79uBUZ+Jt38Qj48cR5uBtxO/vlO+YP20cexdsQhUlTot2/HC7O+Z+mTONzlelQIYuXgLv8ybypFNq8hIScKzUgB1W3XI0bGjoJr3DichNorINcs5tWc71Zs8zJC5P/Llf/rkOK7Vc0M5+fuW268hIIgXx07k0/fHZx/TsGFDIiMjmTx5Mt988w3Xrl2jUqVKNGnShIkTJ2Yf5+/vz/z585k6dSpDhgzBaDSyfft2KlWqxMSJE4mKimL69OkkJSXRtm1bOnTowKuvvsq6dev45ZdfyMjIIDg4mA8++IA333yz0K+5PHG4IwG6euEcvlWCsz++Fv0vqsmET2BVUFVUk4lrF87l6HqRdO0K6UmJ+ARUzXHeao1CqdYolCdfGc+RTav4Yfx/OLrlp6wa/nySLu+ArA2s8VFnc30u/vxp3Lwr5Fh1Luzrs6ayNKtABUIq5r/f5X7s8ye+EGVEqJ8LGUaVnZdSrR1KvloHuBKaR2u6O1UJqgZ37NnQuXvg4KzLNSZX5+5JamJCjscOrv+eXUvnEX/+NEbD7W4PPnf8ArzXY2YbPpmAITODUct/LXLiDPDQ4z3ZOGMiR39ZQ/shr6GqKsePHaNbt2507969yOctLZMmTWLSpEm5Hv/mm2/45ptvcj1+Z1KsKArjxo1j3LhxOY7p1q1bjo/79OlDnz45E827vf72OOo+P+qex3hVCmDAp7ljymtTkXdAUK6NVXdq1uP5XL25Ie+NRhqNhs6vTqTzqxNzPH73JqX2Q/+P9kP/L8djPYI9cLyr5rVmzZosXrw439jMhg4dmqOFoFnlypXZsGFDrsfHjx+fPThFFJxWydrcC7BvxSLqtmyf/bm93y8EoN6jHQHYMudDdi//gl4Tbk/a3LVsftYxj2UNokm7eQOdh1eOVcmAeg8CYMjMmnDpdOtN3N219J5+/gTUe5BDG76n3eDR2XdJ4s78xel9OwjpWrBWaGbmPsS2oKzOKigKSZ6FsLJWlbN+CNtiAt0mwJWWle+/0ufomPuHUL49RO+oeT288UdWvjeKhu270nrgy7j7VkSj1bJj0Wdcizmf+zr36IzRsG0Xjv7yE799PYtn3v/8vj1M8+Pp50/1Jo9wbOta2g95jQtHI4m+cIHptybribzJhiJhLYqi4O6Y9e894eIFlowZQJ1WHbhwNJIjP/9I4y59CKiblfw27d6X/auXkJaUSI1mrYg5cYhD63+gYfuu2ZuUD67/nn0/fs0D7btRIag6GanJHPhpKc7uHtR7rBOQ1bO8Us16HNu6horBtXD18qFyrfr4125A1zGT+HrUc8wb1IXQp/pnt6rTuXvSafjYvF9EPvxdHGxqSFNZnlVQGPJTQQgrUxSFR/1dcdYqRMSkoFCgLlulF8+t63cKcrvvirNZUW8rHt+2Ht+g6gz45JscvyAi5hc+UW3Yvgt1WrZj5XujcHZz56l3Pi5STACNnniKtVPHEn/+DEd/WYOrq6tNrjrbEtlQJKzJnDw//9FCts7/iC2z30ejdaBl3yF0GTMp+7je787Et0p1Dq7/npPbf8a9YiXavTiajsNvl8bUbNaKmBOHObrlJ5Kvx6Nz9yTogSb0/WB+jpKQ3u/+j/XTx7Hx03cx6jPpOOxN/Gs3oPbDbXlx9g9EfDGNiPnT0Dg4ULNpKzq/OjHH8+9HUSDQreCdPiyhLM8qKAxJnoWwEaF+LlR2cWBDVJLVunCYu2qEBXvcs8b5blol6/aioZCtepVbq8N3dlC4cOwgF45G5hp+URBNw/qSnpzE+unjcHbzoMvoifd/Uh4e7BjG+unj+HPzao5HrCMsLOyeG++EbCgS1vXWhIk0DM8quek/fVG+x2kdHOg47I0c7RLvFli/Ec9N+SLfz5sFN26eb7vM2g+3ofbDbe75/Lz6HUPOkiR/F9tK08ryrILCsK2vihDlXFV3R4Y28OG32BQir6RhNBnRakv/n6l5tTnUT0ebQLd8u2rk+3xFwd/FgZiUwg1dqN/6CU78upFlrw+i/mOPcz02ij9WLqZSzXpkpBZtI2Wr54aSkZLEL59PQefuQfshrxX6HO6+ftQMfYxd384jIyX5nlPixG2yoUhYS1ktr7HF11WWZhUUldyPEsLGOGoU2ge4sHXKGNITrgKUWnt883m9nDT0r+NFxyD3QifOZgGuDoX+gdKsx/M8+cp4Lp06wfqP3+H03u30/WAuVRo2LlIMZu2HvEabQaP45fMp7P3hqyKdo9ETPclIScbV3YOuXbsWK57ywryhyN7XahWgRjE3FAnLMpcNlSW2XDbUNtANTyeN3fxbv9+sgkKfT727Y70QwuqWLFnCoEGD2L1nD5UaNuNgfBr/JulLrB7afJ4aHo4083OhpqdjsW9j3Tm+tSwp6vjW8up0YgarziVZO4xie7qmJ7W9nO5/oLAZv15MKVNlQy0qudC+iu2Wi0Un6+2qfKN/Ha9ClSPei+3dDxCinEtPT+fdd9+ld+/etGrZEoDaXk4kZBg5cjWdI9fSszdlaRQwFeA3xZ3HOWsVQiroCKmoK9GVNVu8vVgSyurrKi2yoUhYi5QNWVZZmlVQWPJbQQgbM2fOHC5evMjWrVtzPO7jrKV9FTfaBbqSkGEiLtVAXJqB2BQ9cWmGPDfrOWiyNpwEujni7+KAv6sDPs6aUtkEJd0WBGRtKHo8wJkV51PtcrNdSW0oEpYnfYgtr6zMKigsSZ6FsCHXr1/nww8/ZNiwYdStWzfPYxRFwVenxVenpSFZ5QSqqmJSwaCqGE1Z41wdFAWNgsUSGOm2IAD+/PNPBgwYQM0u/Wj53ND7jkK2JSW5oUhYh/QhtryyMKugsGRJRQgbMnXqVPR6Pe+9916hnqcoClqNgrNWg6ujBmetBq1GsXji16SirkwkzmAft01tidFo5OOPP6ZFixZoNBomDwjDy1lbbjcUCeswlw3Zy/fd3RTA287KhsyzCjoFZf3bsfb/e/P1OwW50crftVR+D0ryLISNiIqKYvbs2bz55ptUrlzZ2uEUiXRbKJ+ioqLo2LEjb731FqNHj2b//v2ENHqIsGAPu3kzZS7XKGq3GWEbzH2I7eX77m72XDYU6udC/zpeVu3CYX4T3L+OV4mXatxJkmchbMS7776Lt7c3r7/+urVDKZZmfva/+mxvt02tRVVVli5dSqNGjTh37hy//vor06dPx9k5q5zIvKHIHpT0hiJhPeY+xPaWfipAczsvGzLPKmjml3XXzlJfA/N1Qv10DG3gU+r/liV5FsIG/Pnnnyxbtoz33nsPd3d3a4dTLHLbtHy4fv06ffv2ZeDAgfTo0YOjR4/Srl27XMeF+rnQOsDV8gEWQmlsKBLWVd77EFuTo0ahU5A7/et44eWUlWbaw6yCQl1X+jwLYX2dO3fm33//5fjx4zg62n/SFp2s59tTN+xqs9idBtTxsuvVn9K2detWXnjhBdLS0pg/fz7PPvvsPY9XVZU9l9NsekORbAwte8pzH2JbYVJVzt3U28WsgsKQbhtCWFlERARbtmxh1apVZSJxTktL49MJ4zjjUJFHnx+GorGfG1zSbeHe0tLSePvtt5k1axadOnXim2++oUqVKvd9nnlDkbNWISImpcR+gRaV+fqdgtxkxbkMK899iG2FRlGo7eVkF7MKCkNWnoWwIpPJRGhoKDqdjt27d9v96tfBgwcJDw/n3LlzTJ3+Mc4d+pOkt49hGebbpkMb+MimsTwcPnyYAQMGcPbsWaZNm8aoUaPQFOGNUXSyng1RSdy00hAV89c5LNijTCYrIrfdcak2edfDrHWAK4/623ZpU0lSVdUmZxUUhqw8C2FF33//PYcPH2bnzp1W/2FQHAaDgalTp/Lf//6XRo0acejQIRo2bGhXt02l20LezC3oJk6cyAMPPMDBgwd54IEHinw+84ai32JTiIxPt9gqtPk6oX462gS6yde5HCmPfYhtma3OKigMWXkWwkoyMjKoX78+jRs3Zs2aNdYOp8hOnTrFwIEDOXDgAO+88w7vvvsuTk5O2Z+PjE+zm9umcgs/p3///ZeBAweye/du3nrrLSZPnpzja1tc0cl6NkYlcSPTVGpJtPm83k4auslqc7lm/lkkZUOiuGTlWQgrmTt3LhcuXODnn3+2dihFoqoq8+fP54033iAwMJBdu3bRsmXLXMeV1/Gt9kxVVRYvXsyrr76Kr68vv/32G61bty7x61R1d2RYQ59S3VBU3UobioTtCfVzobKLg5QNiWKTlWchrODGjRvUqlWLp59+mi+++MLa4RRabGwsgwcPZsuWLfznP//hk08+wc0t/xZL0m3Bfly9epXhw4ezevVqBg0axKxZs/D09LTItcvShiJhu/Qm1WplQ82lbKhMkORZCCt4++23mT17NmfOnCEgIMDa4RTKDz/8wIgRI9DpdHz11Vd06dKlwM+V26a2bfPmzbz44otkZmayYMEC+vTpY5U4ysKGImH7pGxIFJUkz0JYWHR0NHXr1uWNN97g/ffft3Y4BZaQkMDLL7/Md999xzPPPMO8efOoUKFCoc9j7W4LqsmEl7OW7tU95RfZLampqYwdO5bPP/+cJ598kkWLFhEYGGjtsHKwtw1Fwj6U1T7EonRJ8iyEhQ0ePJgNGzZw5swZi90OL66IiAheeOEFkpOT+fzzz+nXr1+xEhbr3TZV2bN8AQ84pzP1A/t541KaDh48SP/+/YmKiuLjjz/m5ZdflmRUlEtSNiQKSjYMCmFBx44d45tvvrFoHWlxpKamZpeYdOzYka+//pqqVasW+7zm8a31vJ0tdtvU69ZtU5OPwrvvTuGp7mE8/PDDpXBF+2AwGPjoo4+YPHkyjRs35vDhw9SvX9/aYQlhNT7OWtpXcaNdoKuUDYl7kpVnISyoW7du/PPPP5w8ebJEW36VhgMHDhAeHk5UVBTTpk3jlVdeKdJQjPux9G1Tg8FAy5YtSU5O5tChQ7i4lL+a57NnzxIeHs4ff/zBuHHjmDhxos1/PwphTVI2JO4kK89CWMj27dv5+eefWbFihU0nKnq9nilTpvD+++8TEhLCoUOHaNCgQaldz9LjWx0cHFi8eDFNmjRh4sSJfPzxxyX9kmyWqqosWrSIMWPGUKlSJX7//XceffRRa4clhM1TFAWtAloUkEqMck9WnoWwAJPJxMMPP4xGo2Hfvn02u1Lxzz//EB4ezqFDhxg/fjwTJkzA0dHym+os0W1h+vTpvP322+zatYtWrVqV0iuxHfHx8QwbNow1a9YwePBgZs6ciYeHh7XDEkIIuyPJsxAW8MMPP/Dcc8+xY8cO2rZta+1wcjGZTMydO5exY8dStWpVli5dSosWLawdVg4lfdvUaDTy2GOPce3aNY4cOYKrq2spRG0bNm7cyJAhQzAajSxcuJCnnnrK2iEJIYTdKvkCRiFEDpmZmbzzzjuEhYXZZOJ88eJFOnfuzKhRoxg8eDCHDx+2ucQZbqoiH8EAACAASURBVN021Sg4azW4Ompw1mrQapQir+JrtVq++eYboqOjGT9+fJHjUlUVg0kl3WgiVW8i3WjCYFKxhXWJlJQURowYQVhYGM2aNePYsWOSOAshRDFJzbMQpWz+/PmcP3+edevWWTuUXL777jtGjhyJq6srW7Zs4YknnrB2SBZVr149PvzwQ9544w169+593xHUqqpyPcOYVU6SauDSrbKSe5WTBLhmlZL4uzrg66y1WMnO/v37GTBgADExMcybN4/hw4fbbLmQEELYEynbEKIU3bx5k1q1atGjRw+++uora4eT7fr164wcOTK7nOTzzz/H19fX2mFZhdFopG3btsTFxfHnn3/mOWY8IcPI4avp/HnnRkYgj5w5lzuPc9YqNK6go0kp9n81GAx8+OGHvP/++zRt2pRly5ZRt27dUrmWEEKUR5I8C1GKJkyYwIwZMzh16hRBQUHWDgeALVu2MHjwYFJTU5k3bx7PPfectUOyutOnT9O4cWOGDh3KrFmzgKwWemdvZnIwPp3zpdBCr7qHI838dNTydCqxyWOnT58mPDycyMhIq274FEKIskySZyFKycWLF6lTpw5jxoxhypQp1g6HlJQUxo4dy9y5c3niiSdYtGgRVapUsXZYNmPWrFmMHj2a7du3Uyv0UYsNb/G+NbylOKPCVVVl4cKFvPbaawQEBLBs2TIeeeSREotVCCHEbZI8C1FKXnrpJX766SfOnj2Ll5eXVWP5448/CA8PJyYmho8//piRI0dK/etdTCYTHZ94koA23WnUvZ+Fx4ZDqJ+OtoFuOGoK93W5fPkyQ4cOZcOGDQwbNoxPP/0Ud3f3UolVCCGEJM9ClIqTJ0/y0EMPMWPGDEaPHm21OPR6Pe+//z5TpkyhadOmLF26lHr16lktHlsWnaznpzMJJBtVNBrLT0FQAE8nDWGFWIVet24dQ4cOBeCrr76ie/fupRihEEIIkORZiFLRo0cPjh8/zl9//YWzs7NVYvjrr78IDw/nyJEjvPvuu7zzzjtS/5qPyPg0ImJSLLbanB/z9TsFuRHql//Y8OTkZF577TW+/PJLunfvzpdffkmlSpUsFqcQQpRn0qpOiBK2c+dO1q9fz/Lly62SOJtMJubMmcNbb71F9erV2bdvH6GhoRaPwx6oqsqey2nsvJSa9bG147n1Z0RMChlGlVaVXXKV1+zdu5fw8HDi4uJYsGABQ4cOlRIcIYSwIFl5FqIEqapKq1at0Ov17N+/H43GsnOIoqOjefHFF9m2bRuvvvoqH330ES4u+a9glne741KzE2db1DrAlUf9syYfmktwPvzwQ5o3b86yZcuoXbu2lSMUQojyR1aehShBq1evZt++fWzbts2iibOqqnz77be88soreHh4sHXrVjp16mSx69ujyCtpNp04A+y8lIqzVsHj+gXCw8M5dOgQkyZNYty4cTg4yI9vIYSwBll5FqKE6PV6HnjgAWrVqsWmTZssdt1r164xYsQIfvzxR/r168ecOXPw8fGx2PXtUXSynm9PJ1o7jIJRVb4e+TQkxLFs2TKaN29u7YiEEKJck6ULIUrIwoULOXPmDCtXrrTYNTdt2sSQIUNIT0/nhx9+4Nlnn7XYte2V3qSyISrJ6psDC8poMhI+/UteaRKAt4e0oBNCCGuzbEGmEGVUUlISkydPZuDAgTRq1KjUr5eSksKIESPo2rUrjRo14vjx45I4F9BvsSnczDTZReIMoNU64Ojhw0E7WSgXQoiyTpJnIUrAJ598QmJiIv/9739L/Vr79u0jJCSEJUuWMHfuXDZt2kRgYGCpX7csiE7WExmfbjeJs5kKHIhPJzpZb+1QhBCi3JPkWYhiiouL49NPP2X06NFUq1at1K6TmZnJhAkTePTRR6lQoQJHjhxhxIgR0qasgEyqysZb5Rr2SAE2RiVhkm0qQghhVZI8C1FMkydPxsnJibfffrvUrnHy5EkeeeQRpk2bxuTJk9m1axd16tQpteuVRWdvZnLDjso17qYCNzJNnLspq89CCGFNkjyLcktVVQwmlXSjiVS9iXSjCYNJpTANaP755x8WLlzI+PHjS6XDhclk4n//+x9NmzYlPT2dffv2MWHCBGlTVgQH49PtdtXZTAEOxqdZOwwhhCjXpFWdKBdUVeV6hpG4VANxqQYupRqISzNgMOU+1kED/i4OBLg64H/rP19nbZ7lEb179+bQoUP8/fff6HS6Eo35woULvPDCC2zfvp0xY8YwZcoUGXhSRAkZRr44mWDtMErM8IY++DhrrR2GEEKUS7J8Jcq0hAwjh6+m8+e1dDKMWe8TNUAeOXM2gwliUgzEphiyj3PWKjSuoKNJRV120rJnzx5++uknli5dWqKJs6qqLF26lFGjRuHl5cW2bdvo0KFDiZ2/PDp8Nd1uWtPdjwIcuZpO+ypu1g5FCCHKJVl5FmWOSVU5ezOTg/HpnE/Sl1jSZD5PdQ9HmlXU8UJYJ1JTkjl48GCJTRO8evUqw4cPZ/Xq1YSHhzNr1iy8vb1L5NzllaqqzDx2PfvNkyUseKknAMMWri2V8ztrFcY85CubRYUQwgpk5VmUKdHJejZGJXEj05Rd31pSKZP5PFFJes4n6Wk1dgatPPQlljhv3LiRIUOGYDAYWLlyJX369CmR85Z31zOMFk2cLSHDqJKQYcJXJ6UbQghhabJhUJQJepNKREwy355OJDEzq9iitNIl83l9Aqvxj3ddImKS0ZuKfrXk5GSGDRtGWFgYzZo149ixY5I4l6C4VIO1QygVZfV1CSGErZOVZ2H3opP1bIhK4mYpJ81302izVv0OxqdzOjGTsGAPqro7Fuocu3fvZuDAgVy+fJkvvviCl156SW7Fl7C4VMN969wLKzMtBScXy9Qcm0wmjPpMHJ1v19VrFIhLM9AQZ4vEIIQQ4jZJnoVdi4xPIyImxaqbwVTgZqaJb08n0inIjVC/+3fEyMzMZNKkSUybNo1HHnmELVu2ULt27dIPthy6lGq4Z+Ic+/dRtsz5kKg/96OaTFR9sBlPvPwO1RqFAnBw3XesnPQqLy1cw9Ff1nI8Yj1Gg573fjsDwP5VS/ht8WxuxsfhX7sBXV+bnOd1DJkZbP9qJkc2rSTxcizuvhVp/GRvHh/5Ng5Ot5PgcU39eOTZwVRr1Jwdi2Zy9cJZ+k37igfad80+xqRCbIr0exZCCGuQ5FnYJVVV2XM5jZ2XUrM+tnY8t/6MiEkhw6jSqrJLvivIx48fJzw8nBMnTvDBBx8wduxYtFqpXS0NqqoSl5Z/ecPls3/zxZDuOLt50GbQK2gdHPlj1RIWDnuKlxaupdpDzbKPXTv1Ldx8KtDhpdfRp2d93x1Ys4yfPnyd4MbNebTfMK7HRLHktXBcvXzwqnx7ZLrJZGLJmAGcP7KfFr3DqVSjLnFnTrJr+XyuXjhL+IwlOeI6d2AXx7auo2XfIbh6++ITWDVX7HFpBlRVlTsVQghhYZI8C7t0Z+Jsa8xxPervmuNxo9HIzJkzeeedd6hTpw779+8nJCTEGiGWG0aVPHt5m/0ydypGg4H/LNqAb1B1AJp0e5YZvVuy+bPJDPtyXfaxrp7eDJ2/Ortcx6jX88ucKQTUe5ChC9bg4OgEQKWa9fjpg//LkTz/uWkVZ/b/zrCFa6ne5JHsxyvXasCaKW8Q9ed+ghu3yH48PuoMo1f8TuWa9fKN3WDKWoHWSu4shBAWJRsGhd2JvGK7ibPZzkupRN4xCe78+fN06NCBN998k1GjRhEZGSmJswUY7tGJ02Q0cnrvDhq265KdOAN4+vnTuHMfzh/5g/TkpOzHm/cOz06cAWJOHiH5ejwP93khO3EGaNb9OXTunjmudSxiHZVq1MWveh1SEq5l/1erxWNA1krznWo0bXXPxLkgr08IIUTpkJVnsm7tGtWsX0QmE2g04KAoaBXklqiNiU7WE3ExxdphFEhETAqVdVq2rVrOq6++io+PD7/++ivt2rWzdmjlhukeq84pCVfRp6fiVz13rXmlGnVQTSYSL1/MfswnsFqOY27ExQBQsVrNHI9rHR3xDQrO8di1C+e48u8pPuhYP89YkhOu5vjYt0q1PI+7m9EESMWPEEJYVLlLnktrTLMofXqTyoaoJLuZFKeg8tWBc0wZMZJ+fZ/ls88+w8vLy9phlSsl1IIbAEdd0Uejq6oJ/9oN6fb6f/P8vFflKjk+dnAu2MRKrdw7FEIIiys3yXNpjmkWlvFbbAo3M012kTgDqCg4efkye9MehreTEo3SdOPGDaKiooiKiuL8+fPZf0ZfjKX3vPV5PsfNpyKOOlfiz5/J9bn482dQNBq8Klch5sThPJ/v7R8EwNUL56jVonX240a9nusXLxBQ94Hsx3yDqnPp1AlqtWhTom++HeSNvBBCWFyZTp7vN6a5oH1f7zwuw6hy4Eoa+6+kZY1p9tNRy9MJjfwSK1XRyXoi49OtHUahaTQaEryCiE7WF7oHtMiiqirXrl3LlRjf+WdiYmL28c7OzlSrVo3q1avT+KEHUQ16FIfc/+81Wi11Wrbjr982kxB7IbssI+naFY5sXkX1kIfRuXvkG1dQwxDcfCryx6pvaNbz+ey654Prvyc9KTHHsQ893pN/dkVwYPVSWvQZmONz+vQ0VNVU6L7RDpqsfs9CCCEsq8wmz5Yc0+ztpKFbEQZkiIIxqSob7ahc424KsDEqiWENfeRNVh5MJhOXL1/OkQzfnSCnpt7eIOrq6kr16tUJDg7m0UcfpV+/ftkfBwcHU7ly5Rwj05edukFMSt7t6p4YOY4z+3Ywf3AYjzzzIhqtA/tXL8GYmUnn0e/dM26toyNPjBzHTx++zpfDe9Hoiae4fvECB9d9l2MDImR18Di2dS1rprzB2chdBDdugWoyEn/+DEe3rmXw5ysIali4uxP+Lg5SQiaEEFZQ5pJnvUnlt9gUIuPTSzxpvpv5vIm3BmSE+uloG+iGoywHlaizNzO5kVmS8+EsSwVuZJo4d1NPbS+n+x5f1hiNRmJjY3OtFpv/fuHCBTIyMrKP9/Lyyk6GO3bsmP13858VKlQoVNIY4OqQo/TqTpVr1Wf4V+vZPPsDdnz9GapJpeqDTXn2/bk5ejznp0WfgZhMRn5f8jmbZk6mcu0GDPzfUrbO+yjHcRqNhvBPl7Dr2/kc3riCk9t/xlHngm+VYB59fhgVq9Uq8OuBrBXnQDd5sy6EENagqGrZ6XV055hma7woBfB00hRpTLPI3/dnEolK0tvlqrOZAlT3cKRv7bK3YTAzM5OYmJh8yypiYmIwGG6v/FasWDFHMnz33729vUs0vhPX01kflVyi57QFPYI9aOgr47mFEMLSyszKs72OaRb3lpBh5HyS/Y8hVoF/k/QkZBjtbqNpWloaFy5cyLOcIioqiosXL3Lne3B/f//sZPjhhx/OkSBXq1YNd3d3i8bv71pmfszlUFZflxBC2Dq7/+lrz2Oaxf0dvpput7XOd1OAI1fTaV+lcBvDSltycnKeSbH575cvX84+VqPRUKVKFYKDg6lRowbt2rXLUVZRtWpVdLqCtVmzFF9nLc5aJbvLTlngrFXwcZY+dUIIYQ12nzzb45hmUTCqqvLntXSbTJzPRe5m4bCn6Df9Kx7q1KNAz1GBI9fSaRfoatE3VDdu3Mi3S0VUVBTXrl3LPtbBwYFq1aoRHBxMgwYN6NKlS46yiqCgIBwd7askSVGy2kseuJJmk99LhaUAIRV08qZcCCGsxK6TZ3sZ0+ysVaSEowiuZxjL1GohZLU6TMgw4asrmdINVVW5evXqPdu43bx5M/t4Z2fn7GS4WbNm9O7dO8fKcUBAAFqtfZWVFESTijr2X0m7/4F2QAVCKtrW6r4QQpQndps8292YZhcH2URYSHGpebcXs3dxqYYCJ88mk4m4uLh827hFRUXlaOPm5uaWnQy3bt2aAQMG5NiMV6lSpRxt3MoLH2ct1T0cy8zGU3urmxdCiLLELpNn+xvTDBuikhjawEfa2BVCXKrhvlMgLc1oMKCqRY9Io0BcmoGGZHVJMBgM923jlpmZmf18b2/v7FXixx9/PFcbN19fX7mdn49mfjq733yqAs3kLpYQQliVXSbP9jemOasLx++xKXQMsmynAXt2KTXv3rwAEfOns23Bx/zfT/v4dcEn/LVzCw4OTrR4ehCPj3ibxMuxrJv2Nucid+Goc6HNwFdoHT4SAIM+k+1fzuDvnVu5FvMvJoORKvUfotOIt6nV/LHsayTEXmB6WDO6jJmERqtl7w9fkRB7gVe+jcgzJkNmBsveeJHzR/bx4uzvCW7cItcxRpPK9kPH+W//t7LbuBmNxuzP+/n5ZSfDPXv2zNXGzcur7LW6s5Rank54O2lItKOfHXdSAC8nDTU95Q6WEEJYk90lz/Y6plkFDsSnU9fbWco3CkBVVeLS7l+28d3bQ6lUoy6dR73L3zu3sv3LGbh6+rB/9WJqNm9N51cncmTTSn7+33sENQyhRrNWZCQnceCnZTTu3JsWvcPJSEkmcu23fP3ys4xcuoXAeg/luMbBdd9hyMygRe9wtI5OuHr6kJ50M8cx+vQ0lvzfQC6ePMKQeauo+kCTPONVFAVnvyoEBATQsmXLXG3c3NxsqxNHWaJRFLoFe/Dt6cT7H2yDVCAs2EOmVAohhJXZVfIsY5rLD6MKhgJUR1R9oCm9JnwKQIveA5ke1pSf/zeRJ0dNoO0LrwLQuHNvpj75EJHrllOjWStcPL0Zu/EQDo63p/017x3OjN4t2fv9l/R577Mc10i8Essba/fj7lMx+7HrF6Oy/56Rmszi0f25cvYfhn6xOlfyfTcHZx3Lvl2OVkp4LK6quyOhfjoOxttmF5f8KECon44geeMthBBWZ1c7h8xjmu3pl96d7hzTLO7NUMDBl6G9BmT/XaPVUqVhCKqqEtqzf/bjLh5eVAyuxfWYqOzjzImzyWQiNTEBk8FAlQYhXPz7aK5rPNghLEfifKf05JssGvks8edP89LCNfdNnAv7+kTJaxvohqeTBnt562KeXNomUO5KCCGELbCrleeD8fY/MEMBDsanUdvL6b7HlmemAu7J8/avkuNjnbsHDs463Hwq3PW4J6mJCdkfH1z/PbuWziP+/GmMhttvZnyqBOe6Rl6PmW34ZAKGzAxGLf+VyrXqFyxowGgCpGGCVThqFMLsqHzDXK4hm42FEMI22M3Ks3lMsz0nzpBzTLPIn1LAHhsaTe4MNN9WbLdWew9v/JGV743Ct2p1ek+cyYtzfmDIvJXUat4aNY+s3dE5/566Ddt2AVXlt69nYSpoxg9o7eZfXtlU1d2RTkH2sZLbKchN9kkIIYQNsZuVZxnTbN8MBgPXrl0jPj4+x39XrlzJ9Vh8fDw3bibx373RpRLL8W3r8Q2qzoBPvsnR1i1i/rRCn6th+y7UadmOle+NwtnNnafe+bhAz3OQmnerC/VzIcOo2vSgpdYBrjJgSQghbIxdJM+2PKa5KFSgQ5A7EydOZPLkydYOp0j0en2eSW9+yXFCQgLqXXW+jo6O+Pn5Zf9XpUoVQkJC8PPzo6KfHzdMRtQ8VpaLS7m1Mq2qanbyfOHYQS4cjcTLP6jQ52sa1pf05CTWTx+Hs5sHXUZPvOfxDpqsfs/C+lpVzkpMbTGBbhPgSsvKkjgLIYStsYvk2Rpjmv/etZWY44fp9J+xpXaNdBsaPZ2RkVHgVeH4+Hhu3LiR6xw6nS5HMhwcHExoaGj2x5UqVcrxeU9Pz3sO9Fh26gYxKSU/ZbB+6yc48etGlr0+iPqPPc712Cj+WLmYSjXrkZFatKmVrZ4bSkZKEr98PgWduwfth7yW77H+Lg4yyMRGKIrCo/6uOGsVImJSrH53y3z9TkFusuIshBA2yi6SZ2uMaf5nVwT7Viwq1eQ5WV96s/NSU1MLvCocHx9PUlJSrnO4urrmSHzr1KlDq1atciTAd37ezc2tRJPCAFcHYlPyH5RSVM16PE/ytSv8sWoJp/dup1LNuvT9YC7HItZxLnJPkc/bfshrpCebE2hPWvYdkusYjQKBblK/amtC/Vyo7OLAhqgkqw1gMnfVCAv2kBpnIYSwYYp69710G7QtJpmD8ekWHdO89qO32LdiEVMPxd/3WPPI5jv7Bt/PuKZ+DHxtHItnTLnvsaqqkpKSUqiV4ZSU3CuoHh4eeSa+ea0K+/n54erqWuDXUxpOXE9nfVSyVWMoDT2CPWjo62ztMEQe9CaV32JTiLRgZx/zdZr76WgT6CZdNYQQwsbZxcrzpVQDCVcuETHvI/7ZvY3UxAQ8/fyp26oDYW9+iIOjE2lJiUTMn86JXzeQfP0qXpUDadE7nNYDX8nuvnDnuGWdmwe/LZ5N4uVY/Os0pOe46dlT4X587xUOrf8ByEpyzaYeir/nyOZKNesVaOyzWUJaBnv37r3vqnB8fDzp6bmnKnp5eeVIfBs3bpxvYlyxYkV0uvy7Rtgif1e7+PYstLL6usoCR41CpyB36nk7szEqiRuZplJLos3n9XLS0E1Wm4UQwm7Y/G9xVVX5JyqGueFPkJZ0kxa9w/GrXoeb8Zc4HrEefXoaJoOBBUN7cjP+Ei16D8TbP4ioo/vZMvsDbsZfpvubH+Y455+bV5GRkkyL3gNRFIXfF8/h2zde4M11kWgdHWnRexA34y9zZt8Onn1/bp5x5TWyubBjn5MyTbRq1Sr7Y19f3xxJr7leOK9V4YoVK+LkVLZ7Rfs6a3HWKhavdy9NzloFH2fpU2frqro7MqyhD+du6jkYn8a/SfoSS6LN56nu4UgzPxdqejrKxFEhhLAjNp88G1XYOOt9kq5dYeSSLQQ1DMn+3OMj3kZVVbZ/NYPrMf8y6rtfqVitFgAPPz0ITz9/di75nNbhI3MM07gRd5E31vyBi6c3ABWr12bpa+Gc2rudBm2eILhxcypWq8mZfTto0u2ZPOPKa2SzyWgs1NhnrYMjfx49RuVKflSoUAEHB5v/cliUoig0rqDjwJW0MtFpRQFCKuhks6Cd0CgKtb2cqO3lREKGkSNX0zlyLT37zZxGAVMBvjHvPM5ZqxBSQUdIRR0+zjIlRwgh7JHNZ2uZRiMnd2yiQZsncyTOZoqicGzreqo3eQQXD29SEq5lf652i7b89vUs/j20lyZdn85+vNHjPbMTZ4AaTR4B4PrF8wWOK6+RzRqtFo026xeiyWQiPSkR1WTKd+wzQL2GDXGWiRn5qqFNY7+1gyghKhBS0b5KZ0QWH2ct7au40S7QlYQME3GpBuLSDMSm6IlLM2DIY0OGgyars0qgmyP+Lg74uzrg46yRN09CCGHnbD55vnw5nozkpHuOPr4WfY640yf4oGPex6Rcv5rjY++AnL18zYl02s2Cj+vNb2RzYcY+g4xpzs+JEyeYNWsWS5cupd+MpdRq/hhKKfR8thSFrNv0stpo3xRFwVenxVenpSFZmz5VVcWkgkFVMZqypkc6KAoaBUmUhRCiDLL55Dm/Sct3Uk0maj/SjraDXsnz8+ZSDrN8k7BCNB7Ja2Szeexzw/ZdaT3wZdx9K6LRatmx6DOuxZzP8zyy6HybyWRi8+bNzJw5k61btxIQEMD48ePp3LUNW6/ZdxKiAs2kb2+ZpCgKWgW0KPJGWAghygGbT54DKlXC2d2Dy2f/zvcY36DqZKamUPvhtiV23aKsGBVl7POdY5pVVcV4awXLZMp64+Bw6xdzWV7BSk5OZvHixcyaNYtTp04RGhrKt99+y9NPP42TkxMmVeVAUgKJVuq/W1wKWR0VanpKNwUhhBDC3tl88uyo1fBguy4c+nklMSeP5Kp7VlWVhx7vybYvpnNqz6/UbdUhx+fTkhJxcnFDW8jNeE4urtnPd/HwKtBzCjv2WVHg7xsZxKUauHSrhvJetZMBrll1k/6uDvg6a+0+oT5//jxz5szhyy+/JDk5md69e/P111/TsmXLHK9Noyh0C/bg29MFL6uxJSoQFuwhHRWEEEKIMsDmk2dFURg49j1O7dvBgqE9adE7nEo16nLz6mWOR6xj+KINtBn4Mn/9tpnFY/rTrPtzVGnQmMy0VOLOnOR4xHrGbjiEm0+FQl23SoPGAKyf/g51WrZHo9XS+Mle93xOYcc+qyqsj0pGA/ccAGMwQUyKIce0PWdtVieKJna2a19VVXbt2sXMmTNZs2YNnp6eDB8+nJdffplq1arl+7yq7o6E+uk4GJ9uV6vPChDqpyNIevgKIYQQZYLNJ88AD9SoxsuLt7Bl3lSObFpFRkoSnpUCqNuqA446FxwcnRj25Vp2fDWTYxHrOLRhBTo3DyoG16TTf95C5+5Z+Gt2CKPlc0M5umUNR37+EVVV75s8F3Xsc0EnJ955XIZR5cCVNPZfSbvVL1ZHLU8nm13dzMjIYMWKFcycOZNDhw5Rv359Pv/8c8LDw3FzcyvQOdoGunE6MdNq45MLyzxuuU1gwV6fEEIIIWyfXYznLqtjmkuKeeiCtw1OKrty5Qrz589n3rx5xMXF0blzZ0aPHs0TTzyRPfmxMKKT9Xx7+gZZr9r29a/jZVNfDyGEEEIUj130epBxxvdmfveTmGni29OJRMQkoy/I9IZSdOTIEV588UWqVq3KtGnTeOqppzh58iSbNm2ic+fORUqcAWJPHOLXzz+8/4E2oFOQmyTOQgghRBljF8mzeUyzuDdzunwwPp0v/0ogOll/z+NLmtFoZM2aNbRv354mTZqwbds23n//faKjo5k3bx4NGjQo1vnXrVtH+/btSfnrAM0KtofTaloHuBIqremEEEKIMscukmfzmGZJnwtGBW7eWoWOjE8r9evdvHmTmTNnUqdOHXr16kVmZiYrVqzg3LlzjB07Fl9f32JfY968efTq1YsuXboQERFBpxoVaB3gWgLRl7w2Aa60qiyJsxBCCFEW2U09RJOKOvZfKf1EsKwwr0JHxKSQYVRpVdmlxFvbCKiG1QAAIABJREFUnTlzhtmzZ7No0SLS09Pp27cvP/zwA82bNy+xa5hMJsaPH89HH33E6NGj+fTTT9HeGoH+qL8rzlqFiJiU7LpvazFfv1OQm6w4CyGEEGWYXWwYNPv+TCJRSXq76LRga1oHuPKof/FXalVVZfv27cycOZMNGzZQoUIFhg8fzsiRIwkMDCyBSG/LyMhg8ODBLF++nBkzZvDaa6/leVx0sp4NUUlW68Jh7qoRZmObNYUQQghR8uwqeT6dmMGqc0nWDsNuFWdVND09neXLlzNz5kyOHTvGgw8+yJgxY+jXrx8uLiW/0nrjxg169+7N7t27Wbp0Kc8+++w9j9ebVH6LTSEyPt1iq9Dm6zT309Em0A1HjRQWCSGEEGWdXSXPJlVlwUn7HdNsCwrbOi02NpZ58+Yxf/58rl27RlhYGGPGjKF9+/alNuEwOjqarl27cvHiRdauXUvr1q0L/txkPRujkriRaSq1JNqWWwMKIYQQonTZVfIM5j6/9jmm2drM5QVDG/jcd5U0MjKSmTNnsmLFCpydnRk8eDCjRo2idu3apRrj0aNH6dq1Kw4ODmzatKlIHTpMqsq5m3oOxqfxb5K+xJJo83lqeDjSzM+Fmp6ONjuURgghhBClw+6SZ4CImGS7G9NsK8zjojsGuef6nMFg4KeffuKzzz5j9+7d1KhRg1GjRjF48GC8vEq/N9y2bdvo1asXtWvXZuPGjQQEBBT7nAkZRo5cTefItXQyjFnfMRoFCtIG+87jnLUKIRV0hNjZOHQhhBBClCy7TJ71JpUv/0qwmzHNtujO8o2EhAQWLlzInDlziI6Opm3btowZM4bu3btnd7YobUuXLmXw4MF06tSJFStW4OHhUaLnV1WVhAwTcakG4tIMxKboiUszYMhjNrqDBvxdHAh0c8TfxQF/Vwd8nDWlVqYihBBCCPthl8kzSPlGcSiAl5OGtporzJ49i8WLF2MwGOjXrx+jR48mJCTEYrGoqsrUqVMZP348gwcPZv78+Tg6WqaGWFVVTCoYVBWjCbQacFAUNAqSKAshhBAiT3abPANExqcREZNi7TDs1uLR/Ug4dZQRI0bwn//8h8qVK1v0+gaDgZdffpkFCxYwadIkJk6cKEmrEEIIIWyaXSfPALvjUtl5KdXaYdgdk9GIS+p1Rj5cE2dnZ4tfPyUlhb59+7J582YWLlzIiy++aPEYhBBCCCEKy24mDObHPAZZEujC0Wi1ZHj4kYoDlk6dL1++TFhYGH///TcbN27kySeftHAEQgghhBBFo7F2AMWlKAqP+rvSKcgt62Mrx2NPFODI1XSLXvPUqVO0bNmSmJgYfv/9d0mchRBCCGFX7D55Ngv1c6F/HS88nTQ2m0AfXPcd45r6kRB7AYAFL/VkwUs9rRaPChy5lo6lKnf27NlDq1at0Ol07Nu3jyZNmljkukIIIYQQJaXMJM8AVd0dGdrAh2Z+OkBWoQsiw5jVwq20rV69mo4dO/LAAw+we/dugoODS/2aQgghhBAlze5rnu/mqFHoFOROPW/nUh/TXFyD5/5o7RAAiEs14KsrvX7Os2bNYsyYMTzzzDMsXrwYnU5XatcSQgghhChNZWrl+U5V3R0Z1tCHp2t6Ut0jq2+wra1EOzg64eDodM9j9BnpmEyltzKsUSAuzVAq5zaZTLzxxhuMHj2a119/ne+++04SZyGEEELYtTK38nwnjaJQ28uJ2l5OJTamWVXVEutFbK53HrZwLQDnInezcNhTPDd1AZfP/MXBdd+RdPUy7+44jWoysWPRTE7t3U7CxSgUjYbgxi3o/Oq7BNR9sMgxmFSITdGXyOu5U3p6OoMGDeLHH39k1qxZjBo1qsSvIYQQQghhaWU6eb6Tj7OW9lXcaBfoWqQxzZV1Wn6OTsZogfXrXxd+itbRkdbhL2PQZ6B1cOTKv6c4sf1nHnq8B76BwSRdj2f/qsUsGNqT11btxtPPv8jXi0szlOibguvXr/PUU09x4MABVq1aRa9evUrkvEIIIYQQ1lZukmczRVHw1Wnx1WlpeKvDcUHGNBtMKusvJFskRkNmBq8s24qjziX7Mf/aDXh9zR9oNLcrbZp2e4YZvVtxYM23dHzp9aJfz5S1Aq0tgdw5KiqKLl26cOXKFbZt20arVq2Kf1IhhBBCCBtR7pLnvCiKglYBLQrks2/OYMFBjE3D+uZInAEcnG6PMjEZjaQlJeLk4kbF4NrE/n202Nc0qGrW6y+Gw4cP07VrV1xcXNizZw9169YtdlxCCCGEELZEkucCKsU9e7n4BFbL4/om9ixfwL4fF5EQewGT0Zj9OVcvn2Jf02gi3zcOBbFlyxaefvpp6tevz4YNG6hcuXKxYxJCCCGEsDWSPBeQxoJ9SRzz6EixY9H/2Dr3I0J79uPxkeNw8fRGo9Gw4ZMJqGrxM3ttMV7fokWLGDZsGF26dOH777/Hzc2t2PEIIYQQQtgiSZ4LyKGENtMV1fGI9dQMfYw+732W4/G0pERcvX2Lff6ivD5VVZk8eTKTJ09m+PDhzJkzBwcH+ZYSQgghRNlVZvs8lzStktV9w1oUjZa7R70c27qWm1cuFfvcDpqsdnyFodfrGTJkCJMnT2bKlCnMmzdPEmchhBBClHmS7RSQoij4uzgQk1I6A0Xup37rJ/h14SesfG8U1Rq3IO7MSY5sWoVvUPVin9vfxaFQbeqSkpJ45pln2LZtG0uWLCE8PLzYMQghhBBC2ANJngshwNWB2BQDFtw7mK39kDHo01M5smkVR7euJbD+Q7zw2XI2z36/WOfVKBDo5ljg4y9dukS3bt04e/YsmzdvpmPHjsW6vhBCCCGEPVFU1YI92OzcievprI+yTK9nS+oR7EFDX+f7HvfXX3/RpUsXDAYDP//8M40aNbJAdEIIIYQQtkNqngvB37VsLtQX5HXt3LmTVq1a4eHhwb59+yRxFkIIIUS5JMlzIfg6a3EuiTF8NsRZq+DjfO9vgxUrVtCpUyeaNGnCzp07CQoKslB0QgghhBC2RZLnQlAUhcYVdMWcw2c7FCCkgi7fzYKqqjJjxgz69u3LM888w+bNm/H29rZskEIIIYQQNkSS50JqUlFHWSkSV4GQirkHsgAYjUbGjBnD66+/zrhx41iyZAlOTk6WDVAIIYQQwsaUzSLeUuTjrKW6hyNRSXq7TqIVoLqHIz7OuWdyp6WlMWDAANasWcPcuXMZMWKE5QMUQgghhLBBkjwXQTM/HeeT9NYOo1hUoJmfS67Hr169Ss+ePTl8+DA//fQTPXr0sHxwQgghhBA2SpLnIqjl6YS3k4bETJNdrj4rgJeThpqeOfs7nzt3ji5dupCQkMCOHTto0aKFdQIUQgghhLBRUvNcBBpFoVuwh10mzpC16hwW7IHmjo2CBw4coGXLlphMJvbu3SuJsxBCCCFEHiR5LqKq7o6E+tlf5w0FaO6nI8j99qrzxo0badeuHTVr1mTPnj3UqlXLegEKIYQQQtgwSZ6LoW2gG55OGrtJoBXA00lDm0C37McWLFhAjx49ePzxx9m2bRt+fn7WC1AIIYQQwsZJ8lwMjhqFMDsq3zCXazhqFFRVZcKECQwfPpwRI0awatUqXF1drR2iEEIIIYRNk+S5mKq6O9IpyO3+B9qATkFuVHV3JDMzk0GDBvHhhx8yffp0Zs+ejVabu2WdEEIIIYTISbptlIBQPxdupqSzP8Fo7VDy1TrAlVA/FxITE+nTpw87d+7ku+++47nnnrN2aEIIIYQQdkNWnktI+2BvzkessnYYeWoT4Eqryi5cvHiRNm3acPDgQX755RdJnIUQQgghCkmS5xKiKAqhPlrWf/wOoGIyGqwbz60/OwW50crflRMnTvDII4+QkJDArl27aNu2rVXjE0IIIYSwR4qqqvay383mXb58GX9/f9r0fJbWL0/EvWJlq8Rh7qoRFuxBVXdHtm/fTq9evahevTo///wzgYGBVolLCCGEEMLeSfJcghIyjIycMou6HXvg4uFl8esrZHXUaO6no02gG44aheXLl/PCCy/Qrl07Vq5ciaenp8XjEkIIIYQoKyR5LiaTqnL2ZiYH49M5n6THaDCgdbDsPkxz0uztpKHbrdVmVVWZNm0a48aNY9CgQSxcuBBHR8f7nUoIIYQQQtyDJM/FEJ2sZ2NUEjcyTdkJrCWZr1nDw5Fmfi7U9HREoygYjUZGjRrFvHnzmDhxIpMmTUJR7GWUixBCCCGE7ZJWdUWgN6n8FptCZHx69sY8SyfOzlqFkAo6Qirq8HG+3aM5NTWV559/no0bN7Jw4UKGDh1q4ciEEEIIIcouSZ4LKTpZz4aoJG5mmgDLJ80A7o4KPYI9qObhlOPxK1eu0L17d06cOMH69evp0qWLFaITQgghhCi7pGyjECLj04iISbFKicadzNfvFORGqJ8LAKdPn6ZLly4kJyezceNGmjVrZsUIhRBCCCHKJll5LgBVVdlzOY2dl1KzPrZ2PLf+jIhJIcOoojl/lB7du1OhQgX27t1LjRo1rBqfEEIIIURZJSvPBbA7LjU7cbZF2xd8TMqx3axdu5YKFSpYOxwhhBBCiDJLkuf7iLySRsTFFGuHcV/tKjvxSKD0cBZCCCGEKE0ynvseopP1dpE4A+y4nEl0st7aYQghhBBClGmSPOdDb1LZEJWEvXRHVoANUUnoTXIjQQghhBCitEjynI/fYlO4mWmy+ubAglKBm5kmfo+1j5VyIYQQQgh7JMlzHqKT9UTGp9tN4mymAgfi06V8QwghhBCilEjyfBeTqrLRjso17qYAG6OSMMk+UCGEEEKIEifJ813O3szkhh2Va9xNBW5kmjh3U1afhRBCCCFKmiTPdzkYn263q85mCnAwPs3aYQghhBBClDmSPN8hIcPI+SS93a46m6nAv0l6EjKM1g5FCCGEEKJMkeT5Doev2v+qs5kCHLmabu0whBBCCCHKFEmeb1FVlT+vlU6HjR/fe4X3Hg2+73ELXurJgpd6FurcEfOnM66pHykJ13I8rgJHrqUjAySFEEIIIUqOJM+3bN6xk42fTyMtKdHaoZSYDKNKQobJ2mEIIYQQQpQZDtYOwFZs27mbbQs+plmP53Dx8LJKDIPn/lji54xLNeCr05b4eYUQQgghyiNZeb4lKbPkV2gz0wo37c/B0QkHR6cSu75Ggbg0Q4mdTwghhBCivJPkGZg0aRILPpwAwPSwZoxr6se4pn4kxF5gXFM/Dq77LtdzxjX1I2L+9OyPzbXHl8/9w/fvDGdy29rMHxyW7zVj/znGBx3qs+ClnmSkJgN51zzv+X4h/3v6MSa2qsbktrWZ078TRzatynW+tKREfnzvFSa3qcWkNjVZ+d4o0lNTiU2Rfs9CCCGEECVFyjaAXr16sfaPYxzZvJpur7+Pm3cFADLTUgt9ruVjh1CxWk2efGV8vpv1ok8c5uuXn6VKwxAGzliCo84lz+P2r17K+unv8GCn7jz6/DD0menEnT5J9PGDhHTpk+PY794eik9gNZ4cNYHYv49y4KdluPn64fraRFRVRVHKSh8RIYQQQgjrkeQZeOChRgTUb8SRzat5oH1XfAKrAZAQe6HQ5wqo+wDPTfki38+fP/IH37z6PNVDHmHAJ1/j4OSc77H/7NpK5Vr16T990X2vG1jvIfq891n2x6k3Eohc+y1dRk/EpIJWcmchhBBCiGKTsg3AUILt3B7uMyjfz509sIuvX36W2s3bMODTb+6ZOAPoPDxJvBxL9InD971ui6dfyPFx9SaPkHrjOunJSSX6+oQQQgghyjNJngGDseQ2C/pUybufsyEzg8Wj+xFY7yGen/ZlgTYGth30Kk6ubswNf4JPerZg7dSxnD/yR57HevtXyfGxi2dWx5C0mzcowZcnhBBCCFGuSfIMfDFvXj6fybvWwWTMf+y1o7Muz8e1js7Ue6wT0ccPcWrPrwWKq1LNurz+016en7qA6iEPc/zXDXwxOIyt86blOlajya8dnYpWvspCCCGEECWi3KdVR48e5d3x7+S5oc7F0xsg1+CUG5eiC30dRYG+H86nVovWLH9rCOcidxfoeU4ubjR6shdPT57NWz8fod5jj7Nj0f/QZxR89LaDbBYUQgghhCgR5Tp5Tk9Pp3///vx/e/cdHlWV/3H8PTOZZNITQkiAQCihKoIQQpFiwYJgR9BFwQr+FBV33VVwLeuuLoIKqAgCCuIirhSVIroGBKQoCQgCKi0QShJII31SZu7vj5BISAKB9PB5PU8ek3vPPffM4B+fOfO954S1aY3N3QMoGZRtXt54+gVwePuPJa77cfG8i7qfi9WV+96cT0jnbnw8fiRHd28/Z/usUymlrg9q0wHDMHAWVGz9ZoupcL1nEREREam8S3q1jYkTJ7Jv3z6io6P5Ym8iy4D/zXidK264A4vVSqcBNxB+x0jWz3uHpa+OJ6RzNw5t30JS7MGLvqfV5s7o6Z8yd+wdzHvyHsbM+YrgsE5ltv3o8bvxbtyE0K4ReAUEknhoP1v++yEd+12Pm6dXhe4XaHPRMnUiIiIiVeSSnXmOjIxk6tSpTJo0iS5dunBV7whuePx54vftYckrT/LZhDFkpSZz3aPPEn77SHZHrmD19H/gdDh44L3PKnVvm5c3D874HO+AJnz0+DCSjsSU2a7XXaPJy85i48JZLJ/0PHu+/5q+9zzK8H+VV6NdWpDHJf35SERERKRKmYzydvJowFJSUujSpQudO3fm22+/xWw2syfFzorYzNoeWpW7NdSbzo3OvSSeiIiIiFTMJTfzbBgGY8eOJScnh/nz52M2F74FwQ10hrahvi4RERGR2lCnk5VhGDiMwk1MnE4wmwtXjrCYuOg63gULFrBkyRIWL15M8+Z/rI3cyM2Cm8VErqPhTMS7WUz4u11yn49EREREqk2dKdswDIOUXAcJ2QUkZBcQn11AQk4BBWVs8OFihmB3F5p6uBB8+qeRm+W8gTomJoauXbty1113MX/+/FLn1x7PIupkDnXiDakkExDRxJ1rmnvW9lBEREREGoxaD8+puQ5+TrKzM9lePOtrBiqyKd6Z7dwsJroG2LiysQ1/t9IbhhQUFHD11Vdz/Phxdu7ciY+PT5lj+eDX1It+LXXN2M7+Zb4XIiIiInJxaqVsw2kYHEzPY1uincMZ+ZigxGxvRXeTPrNdrsMg6mQOW0/m0MrbSo9AG219XDGfno1+44032LJlC+vXry8zOAP4u1lo5W0lNiO/Xs8+m4BW3lYFZxEREZEqVuPh+WhmPqtiMziV5yze/LqqgmpRP7EZ+RzOyMfP1cyQUG8SftvBK6+8woQJE+jXr985++gRaONwRn4Vjah2GECPQPfaHoaIiIhIg1NjZRv5ToP1cVlEJ9pLzTRXl6L77Pn6v+z/ehE/rPseq9V6zmuchsHsX1NJy3PWy9lnE+DramZMZ//iWXcRERERqRo1Ep6PZuazMjaD9FoKpE6nAy8L3BHWiBZe5w7PUDjehfvTztuurrqvnS8hFXidIiIiInJhqn0ds+jEHBbuT6u14AxgNlvIMSws3J9GdGLOedvH7viJX5Z/itPpqIHRVR0T0DPQpuAsIiIiUk2qLTwbhsGmhGwij2UV/l1dN6roeE7/N/JYFpsSsilrwr2goICXX36ZgQMHcmzdl3i7mKgvhQ8mwMfVzIBmWppOREREpLpUW3jefCKHH+Kzq6v7SvkhPpvNJ0rOQB86dIgBAwbw2muv8fLLL7P2u/9xe1v/Wg/9FWUAQ0O9sZrrS9wXERERqX+qJTxHn6y7wbnID/HZxSUc//nPf+jatSvx8fH88MMPvPTSS7i4uNDCy8qgkPoxkzsoxLNC9dwiIiIicvGq/IHB+vaw3cFF05k75V+MHDmSGTNm4OvrW6rNpoTsOv1hoH9TD64K9qjtYYiIiIg0eFUanvOdBnN/S63VhwMvhNPhIP1kHJed+p37/3Rvue0Mw6izZSgDmnrQJ8j9vFuTi4iIiEjlVekmKevjsupNcAYwWyz4NQ2h2RXtztnOZDJxVbAHbhYTkceyamyd6nLHc/r+g0I8CddmKCIiIiI1pspqno9m5hOdaK83wfkPJqIS7RzNPP+uguGB7oxs54uP1YzhrOgm4lWraFWNke18FZxFREREaliVhGenYbAqNqPeLOt2NhOwKjYDZwUqWFp4WXGLXsmmRbPBMGosRBe9t+GBNh7p5K+HA0VERERqQZWE54PpeZyqR+UaZzOAU3lOYtLPP/ucnJzM3579M34Jv3NbMxdOJRwDqLYPDkX9+p6ebb4uxEvL0YmIiIjUkioJz9sS7fV21rmICdhWgd0Hn3/+eQoKCnjrrbdYPPtd3h3en2v9CmjlbS3up6rGA9DK28qwNj6M6azZZhEREZHaVukHBlNzHRzOOP+MbV1nAIcy8knNdeDvZimzzebNm5k7dy4zZszA3d2dqVOn8ugjjxDROpgICt+LHUl2diTbyXUUzsObMDAqEKnNJnCenrp3s5joFmCjW2NbuWMRERERkZpX6aXq1h7PIupkTr0t2TiTCYho4s41zUtvjJKfn0+PHj2w2Wxs2bKFSZMm8eqrrxITE0Pz5s1LtDUMg+lz5/Of5d/w7xlzOGF3kpBTQEEZ5dEuZgh2d6GZp5VgdxeCPVzwdzNr6TkRERGROqhSM8+GYbAzuXpX2Fj88jh2R67gH5tiq/EuhQxgR7Kdq5t5lAqv77zzDnv27CEqKors7GzefvttHn300VLBGQqXttu2YS0uibFc39KnsG/DwGlAgWHgcILFDC4mE2YTCsoiIiIi9USlap5Tch3kOgxid24lctZkcjLqz86C5cl1GKTmlpwiPnr0KC+//DJPPPEE3bt3Z8aMGWRkZPDcc8+V209UVBTh4eHFf5tMJixmE24WMx5WM24WMxazScFZREREpB6pVHhOyC4AIHZnFGtmT8HeAMIz/PG6iowfPx5vb2/++c9/kpmZyVtvvcXDDz9MixYtyrw+PT2dvXv30rNnz5oYroiIiIjUkEqH5yrbZeUseTlZ1dTzuZlNkJDzR3j++uuvWbZsGVOnTsXX15eZM2eSlpbG888/X24f27ZtAygx8ywiIiIi9V+lsm98dgH/mzWZ1dNeAWDy0B5M6B7IhO6BpMYdYUL3QLYtX1TqugndA4mcNbn478hZk5nQPZATMXv5bOJY/jEwjFkPDS33vnF7d/Gvazsy+9HbyM3OBCDtZDxLXnmK1wZ15u+9mjN1WD+iv1xYfE1udiYv9Q1lxZSJpfpLOxHHxPAg1n00DacBcVmFq4dkZ2czbtw4Bg0axIgRI8jOzmbKlCk88MADhIaGlju+6OhoPD096dix47nfQBERERGpVy76gUHDMEjIKeCya4eQdOQgO79ZxpC//BNPvwAA8nKyL7jPT//2MI1btuHGcS9Q3iIgR/f8zLwnhtO8czdGvb0Aq82djOSTzBx9E5hM9B7xMF7+AezdtIalr47HnpVBv5GP4ebhxWXX3Mwv//uSIX/+J2bLH0vA7fxmGRgG3QYPAwpnng3D4LXXXiMuLo5vv/0Wk8nErFmzSElJYcKECed8HVFRUXTv3h2LRcvMiYiIiDQkFx2eHQYUOKFp+8to1vEKdn6zjMuuuRn/Zi0BSI07csF9Nm1/Gfe8/kG55w/v+In5T91Lq269ue/Nebi4ugHwvxmv43Q4ePrzDXj6NQKg17AHWDRhDGs+mEKvu0Zjtblz5dDh7Fi9hP0/rqPDVdcV9/vz10to1b0Pfk1DgMLX9etvvzNlyhQmTpxIu3btyMnJYfLkyYwaNYrWrVuf83VER0dzxx13XPDrFxEREZG67aLLNgoqtzx0mXrdNbrccwejNjLvieGE9RzAfW/NLw7OhmGwe81KOg24EQyDrNTk4p/2fa7BnpnO8d9/ASCs10B8AoPZsXppcb8JB34jYf8errx5WIn7Pf3nvxAaGlpc2zxnzhySkpJ44YUXzvkakpKSOHTokOqdRURERBqgi555dpax4Udl+Tcvu464IC+Xj5/+E807XsG9b8zF4vLHsLNSk7BnpLF12QK2LltQ5vVZKUkAmM1mug0exo9L5pGXk42ruwc7Vi/Bxc1Gl0G3lbjmx5+2suy/n2Kz2bDb7bzxxhuMHDmStm3bnvM1FD0sqJU2RERERBqeiw7P5vPOWZe9frHT4Sj3CqubrczjFqsbHfpdx2/rvmHf5rV0GnBD8TnjdIrvdvPd9LhlRJnXB7frXPz7lUOHs2HBe/y6bjVdb7qTnauX0bH/9di8fUpcc8vQIdxwQ+F9PvzwQxISEs476wyF9c5+fn7nDdkiIiIiUv9cdHh2OWNzj7I2+nD38QMotXHKqfijF3wvkwlGvDaLT565n0+fe5gH3/2MNuFXAeDp3xg3Ty8Mp4OwXgPP21dwWCeadezCjtVL8G3SlFMJx7jluX+Xajd5UuGx3NxcJk2axL333kv79u3P2390dDTh4eHa/ERERESkAbrommeLCVxOX+3q7gGUDMo2L288/QI4vP3HEtf9uHjeRd3PxerKfW/OJ6RzNz4eP5Kju7cDYLZYuPzaoexes5KEA7+Vui4zNanUsStvHs7+H9ex6dPZePg1okPf60o2cBQQ0qwpAPPmzeP48eP8/e9/r9A4o6KiVLIhIiIi0kBddHg2mUwEuxdOXDfr1BUoXPVi+8rP2fntF+TlZBF+x0j2fL+Kpa+O56cl8/ls4lhiojdd9GCtNndGT/+UwNAw5j15T3FYvvGpF/FuHMT7o25ixZQX2Lp0AevmTefT5x7m7Tv6lOqn6+A7Adjz/Sq6XH8bFqu1+JxhGHi6WSkwIC8vj3//+9+MGDGiQms2x8XFERcXp4cFRURERBqoSm2S0tTDBTPQ4rIruf7x54nft4clrzzJZxPGkJWazHWPPkv47SPZHbmC1dP/gdPh4IH3PqvUgG1e3jw443OCJ/wtAAAgAElEQVS8A5rw0ePDSDoSg3dAE5745Ft63HoPe75fxfI3nmfzotlkp53ipqdeKtWHd0AT2vW+GoArb767xDmTyURWgcHc31KZu3QlR48erfCsc3R0NKCHBUVEREQaKpNR3m4kFbAnxc6K2MyqHE+N+eQvo0nY/yt/XR5V5nkT4DScHPtuCTOee7xCfb700kt88MEHJCQkqOZZREREpAGq1MxzsMdFP29Yq9ITE9j7w3dcOWR4uW0MwGQy0+KG4WxKyC53x8MzFdU7KziLiIiINEyVCs+N3Cy4WepPUEw5HsvPqxbz2cSxmF2s9LprVIWu+yE+m80ncs7ZxjAMoqKiVO8sIiIi0oBVKjybTCa6BtjKWdG57jm0bTOfv/g4qcePcPer7+LdOKjC1/4Qn010YvkBOjY2luTkZNU7i4iIiDRglap5BkjNdfDBr6lVNZ46b2Q7X1p4WUsdX7x4McOHDychIYGgoIqHchERERGpPyo18wzg72ahlbe13sw+V4YJWBmbQb6z9OeN6OhoWrRooeAsIiIi0oBVOjwD9Ai0Uanp63rCANLznGyIyyp1TvXOIiIiIg1flYTntj6u+LmaL4nZZwOISrRzNDO/+JjT6WTbtm2qdxYRERFp4KokPJtNJoaEel8Ss89QWL6xKjYD5+ly8f3795Oenq6ZZxEREZEGrkrCM0ALLyvhgfVn5Y3KMIBTeU5i0gtnn4t2FlR4FhEREWnYqiw8Awxs5onPJVK+YQK2nV66LioqirCwMPz9/Wt3UCIiIiJSrao0PFvNJoZeIuUbBnAoI5/UXAfR0dGadRYRERG5BFRpeIbC8o1BIZ5V3W2dZAK2n8xm+/btelhQRERE5BJQ5eEZIDzQnf5NPaqj6xozoXsgX0167pxtDODnpBzsdrtmnkVEREQuAdUSngH6BtX/AF0RBZgJaNmG7t271/ZQRERERKSaVVt4NplMXBXsUVzC0ZAfIowYdDNeXl61PQwRERERqWbVFp6LhAe6M7KdLz6uVX8rp9NJfq69yvu9oDEUFNC594BaHYOIiIiI1IxqD89Q+BDhI5388XIpf/45JnoT740cxIu9Q5hya09+WvIxkbMmM6F7YHGbojrkn79ewtRh/Xixd3P2bV4LQNrJeJa88hSvDerM33s1Z+qwfkR/ubDUfQrycvlu5htMubUnf+/VnEmDu7J62j8oyMs97+tYO/ctJvZowubP5hQfM1ksBIZ1vpC3Q0RERETqKZcau5EJ7M6yF7GL+/0X5o0bgXfjIAY99jecDgdr57yJp39AqbYxURvZ9d1y+ox4GA+/Rvg3a0FG8klmjr4JTCZ6j3gYL/8A9m5aw9JXx2PPyqDfyMeAwpnqBePv4/COrUTceT9NWrcn4cCvbPx0FklHDnL/2wvKHf//ZrzOuo+mcfsLbxFx5/3Fx00mE/g0xjCMwt9FREREpMGqsfDsMKDAWfa5yFmTMZktPDZvFT6BwQB0uf42pg67qlTbxNgDPP35BoLadCg+tvTV8TgdDp7+fAOefo0A6DXsARZNGMOaD6bQ667RWG3u7Fy9lANbNzBmzle0urJ38fVBbTvx5evPErtzK6FdI0rd8+upL7Nx4SzueuUdetxyT6nzTpMZpwEWZWcRERGRBq1GyjYACoyyZ52dDgcHtm6g8zWDi4MzQOOWbejQ97pS7Vt371siOBuGwe41K+k04EYwDLJSk4t/2ve5BntmOsd//wWAXZHLadK6PYGt2pVo1zaiH1A4q12CYfDVpOfYtGg2w/81s8zgfL7XJyIiIiINR43NPDvLmXXOTEkk355DQEjrUucatSjjWPOWJf7OSk3CnpHG1mUL2Lqs7LKLrJQkAJKPxHDy0D7+dV3HsseSmlTi7+2rPicvO4vbJ06h2013lv0CTnM4Acs5m4iIiIhIPVdj4dlcRXPcLm62En8bp1N5t5vvpsctI8q8Jrhd4QN9huEkOKwzQ/7yapntfIOal/g7tGsE8ft2s+W/H9Ll+tvw8PUvd1yWGpvDFxEREZHaUoMPDJZdEOzVKBAXNxvJxw6VOpdytPSxs3n6N8bN0wvD6SCs18Bztm0U0or4fXtoGzGgQg/3BbRozeCnX2bOmNuZN24Ej8xahptn2es5l/f6RERERKThqLH5UosJXMq4m9liISxiAL9+v5r0xITi40lHYti7ec15+zVbLFx+7VB2r1lJwoHfSp0/sxSjy/W3kX4ynqhln5Rql2/PIS8nq9Txpu0v44F3FnHy0D4+Hj+SfHtOqTYuZjArO4uIiIg0eDU282wymQh2d+FYVkGpc4PG/o39P65j1oND6DXsAQyngy3//ZCgth2J37v7vH3f+NSLHIzexPujbqLnHfcR1KYD2empxP3+Cwd+2sBL6/YDcOWQ4ez67iu+fP1ZDkZvJLRrBIbTQeLhA/zy3Vc8NONzQjp3K9V/yyvCGfX2J8x/6l4W/u0h7n9rARartfh8sLuLlqkTERERuQTUaKVuUw+XMm/YvHNXHnz3M9x9fPlu5iSivlzIoP97jrCIAaVqnMviHdCEJz75lh633sOe71ex/I3n2bxoNtlpp7jpqZeK25nNZu5/awE3PvkiJw78xuppr7Bm9psc2/MzV907hsYt25Z7j7YR/bn3jbns/3Edn7/4OM7TtdZmEzTztJZ7nYiIiIg0HCbDqLk11vak2FkRm1nh9p/8eRQnDv7Os19trcZRVd4toV5c1uj8IV9ERERE6rcanXkO9ii/SuTsWuKkIwfZuzGSNuGlN0qpa745msna41mk5jpqeygiIiIiUo1qrOYZwNtaflafcms43W+5h0bNW3Eq/ig/LpmPxWplwOhxNTjCi5PvhKiTOWw9mUMrbys9Am209XHFrDpoERERkQalRsPzhvjscs+173MtO7/5gszkk1hcXWnZJZwbx71wzjrkuqSo9iU2I5/DGfn4uZoZEupNCy/VQ4uIiIg0FDVW83w0M5+F+9Nq4lZ1gonCQB0eaGNgM0+sWstOREREpN6rkfDsNAxm/5pKWp6TGns6sY4wAT6uZoZqFlpERESk3quRBwYPpudx6hIMzlA4+5ye52Th/jSiE0tvsCIiIiIi9UeNhOdtiXYu5aKFog8Nkcey2JSQTQ2uDigiIiIiVajaw3NqroPDGfmX5KxzWX6Iz2bzCc1Ai4iIiNRH1R6ef066tGedy/JDfLZKOERERETqoWoNz4ZhsDPZrlnnMkQey+JoZn5tD0NERERELkC1hueUXAe5DkXnspiAlbEZ5Dv1/oiIiIjUF9UanhOyC6qz+3qtaBWODXFZtT0UEREREamgag/PF3MDp9NJfq69ysdT1xhAVKJd5RsiIiIi9US1bs8dn13AgehNfD31ZU4c/B2fJk0ZMGocGUknWDN7Cv/engjAhO6B9B7+EC2v6Mm6j6aRdOQgf3rjQy675mbSTsbz3fv/Zu/GSHIy0gho0Zr+9/0f4bePLHGvgrxcvv9wGjtWLyHtRBxejRrT9cY7uf7x53FxdSvR9udVi9n82RxOHPwdi9WV4LBOXPPIn2nf55riNns3RbLuw2kc/30XJrOJ1t37MPjplwlq27FK3yMTsCo2gzGd/TGb9GiliIiISF1WbeHZMAy2/bydeeNG4N04iEGP/Q2nw8HaOW/i6R9Qqn1M1EZ2fbecPiMexsOvEf7NWpCRfJKZo28Ck4neIx7Gyz+AvZvWsPTV8dizMug38jGgcKZ6wfj7OLxjKxF33k+T1u1JOPArGz+dRdKRg9z/9oLi+0R+MIU1H0wmtGtPBj32HBarlaO7txMT9UNxeN6+8nOWvDyOdn2u4aanXiTfnsNPS+Yz66GhPLVoLf7NWlbd+wScynMSk55PmK9rlfUrIiIiIlWv2sKzw4Bv35+MyWzhsXmr8AkMBqDL9bcxddhVpdonxh7g6c83ENSmQ/Gxpa+Ox+lw8PTnG/D0awRAr2EPsGjCGNZ8MIVed43GanNn5+qlHNi6gTFzvqLVlb2Lrw9q24kvX3+W2J1bCe0aQdKRGNbOeZPLrhnCn6Z8hNn8R1FJ0cYludmZrJgykfDb7+POF98uPt/9lhG8fUcfvv9wWonjVcEEbEvMUXgWERERqeOqreY5t6CAA1s30PmawcXBGaBxyzZ06Htdqfatu/ctEZwNw2D3mpV0GnAjGAZZqcnFP+37XIM9M53jv/8CwK7I5TRp3Z7AVu1KtGsb0Q8onNUG+HXdagynk2vH/KVEcAYwnS6ZOPDjeuwZaXS96c4SfZnNFlpc3p2Y6I1V+0ZROPt8KCOf1FxHlfctIiIiIlWn2maeExJOkm/PISCkdalzjVqUcax5yVKIrNQk7BlpbF22gK3LFpRqD5CVkgRA8pEYTh7ax7+uK7seOTO1sF3KscOYzGaanBHSz5Z0JAaAuWPvKPO8m5d3uddWhgnYkWTnmuae1dK/iIiIiFRetYVn8wXOabu42Ur8bTidAHS7+W563DKizGuC23UubGs4CQ7rzJC/vFpmO9+g5mUef2NId4LaduSBdz79475G4X2H//N9vBs3KXWN2VI9b5kB7Ei2c3Uzj+JZcBERERGpW6otPDcLCsLFzUbysUOlzqUcLX3sbJ7+jXHz9MJwOgjrNfCcbRuFtCJ+3x7aRgwoFTxPxOxl5zfL6HHrPTQKaYXhdHIyZi/NOnQps6+AkFaF92/U+Lz3rWq5DoPUXCeNbJYava+IiIiIVEy11Ty7ulho12sAv36/mvTEhOLjSUdi2Lt5zfkHZrFw+bVD2b1mJQkHfit1vqgUAwofQkw/GU/Usk9KtYvbu4s1s6eQGneUzlcPxmQ2s3b2WzhPz2wXKXpgsF2fa3Hz8mbdR9Nw5Jdef/nM+1YHbSwjIiIiUneZjKLUWA3+uWwd/7jnRnwCg+k17AEMp4Mt//0Qz0aNid+7u9Q6z7c9/0aJ6zOST/L+qJvISk2m5x33EdSmA9npqcT9/gsHftrAS+v2A0VL1Y1k36Y1dLnhdkK7RmA4HSQePsDPXy8mLzuLR2d/SZvwq/hu5iTWznmL0K49ORGzD5/AYJp37opPYDA3PfkiADtWL+XzFx+nSZsOdL3hdjz9G3Mq4Ri/b/yO0K4RpcZZVcwmCA9051rVPYuIiIjUSdUantccy+S/q75j1bSXOXFwL75Bzbj6oadJPLSfLZ9/xD+3HAXKD88AmSmJrJn9Jr9t+JbMpJN4+PnTpE1HwiIGcOrEcQ5u3cCphOO4uNnwbdIUR14epxKOYbW5Y/P0JjX+aKk+B4x+kgM/rSPu912YXVwIatuRfHsOp+KP4R0YzKCxf8UvOIR186ZzdNc2CvLz8G7cBBdXGzlpKeRkpOMb1IyIO++n/6hxxSt3pMYdYfLQHgwe/wo2T2/Wf/wuaSfiCG7XmdsmTKbFZVcWjyEj6QTfvvsv9v+0nqzUZDx8/Qi5rDuPvvQGz1x7RTX9i4iIiIhIZVRreN6TYmdFbGap45/8eRQnDv7Os19tvei+d0Uu5/u5b9Np4GB8g5qRGneEn5bMx83Tm2eWbMTV3YOUY4fZtGg2mxfN4eqHxtOkdXsAwnoPxDugCW8M6Y7VzY2cjDTCbxuJT2Aw0V99SvzeXYVrTp/eTTAvJ5uZD9xMemI8EXeOwi84hNhftrJj1WL63PMot/z1NeCP8NysYxdyszLpecf9mEwmNnz8Hi5ubvx1eTQWqxWAWQ/ezImDe+lzzyP4N2tBVkoS+39cz43/91dmPHiLHhoUERERqYOqdXvuYA8X8u05WG3uxceSjhxk78ZIupezgkZFdex3PV0G3VriWKcBNzLzgcHsXrOS7kOH0yikFa2u7M3mRXNo1/tq2oSXsTnL4QOMmbuc1t37ANDlhtt4Y3A3ti1fxM3P/AOAjQtnknLsEE8uWkvjlm0B6DVsND6BwfywYAb9738cv+A/VvQ4lXCcZ7/8CXcfPwAatwrjk2fuZ9+W7+k04AZyMtKI3RnF4PGvMGDUE8XXXf3QeACcBliUnUVERETqnGp7YBCgkZuFKbeG8827/2Trsk/434zXeX/0YCxWKwNGj6tU32cGckd+PlmnUgho0Rqbty9xpzdPqYgmbToUB2cAL//GNA4NI+VYbPGxXd+toNWVvXH39iuxcUpYxECcDgeHtm8p0ecV199WHJwBWp/e9TDl+OHCsbvZsFhdiYneRE76qVJjKqi+LwNEREREpBKqdebZZDLR99ob+OmbL8hMPonF1ZWWXcK5cdwLxTO4FyvfnsO6edPZtnwR6SfjObP6xJ6ZXuF+zpwxLuLu40tOxh+hNvloDAn795S7CUvRZi3FfTYNOau/wiCdk54GgIurGzc99SJfT32Z1wZ1pkWXHnTsfwPdhw7Hu3EQDieg1epERERE6pxqDc8AixbM54NfU6u83+WTJ7Bt+SKu+tNYWl4Rjs3LB5PJxKIJY4o3OqkIk7nslHpmGDecTsJ6X83AcmbLz/4gUF6fnNFnv5GP0WnAjfy6bjX7tnzPdzMnsW7edB79YBmWK66u8PhFREREpOZUe3j2d7PQyttKbEY+VVmMsDtyBd2HjmDIn//YVTA/1449I61Eu6p48K5RSCvysrOqfNOUgBat6X//4/S//3GSjhzknXuu5YdPZuIy4poqvY+IiIiIVI1qrXku0iPQVqXBGcBksZSYyQXY8tlcnA5HiWNWmwcAOWeF6gvR5frbOPJLFPs2ry11LicjDUfBhW1skpeTTX6uvcSxRiGtcfP0xJmfi1kPC4qIiIjUSdU+8wzQ1scVP1czaXnOKgvRHftfz89fL8bNy4egNh048ksUB7ZuwMOvUYl2zTpcjtliYf38d7FnpuPi6kbbnv3wahRY4XsNGPUEv63/ho/Hj6THLffQvFNX8nKySTjwK7sjV/C3ldvx9A+ocH9JRw4y97G7uOL622jSpj1miwt7vv+azORErr51mJapExEREamjaiQ8m00mhoR6s3D/xc/+nu2Wv76O2Wxh5+ql5OfZCe0awcMzl/LRE8NLtPNuHMTtE6ewbt47LHt1PE6Hg0dnf3lB4dnV3YMxc79i3YfT2BW5nO0rP8fm6U3j0DYMeuw5bF4+FzR236DmdL3xDg5u/YGfV32O2eJCYKt2jJw8l9vuvOuC+hIRERGRmlOtm6ScLfJYJtsS7VVewtGQ3BrqTedGbrU9DBEREREpQ43UPBcZ2MwTH1czKkooX7BHjXwZICIiIiIXoUbDs9VsYmiot2aey+FmMeHvVqP/JCIiIiJyAWo8qbXwsjIoxLOmb1vnmYBuATY9LCgiIiJSh9XKNGd4oDv9m3rUxq3rLAPo1thW28MQERERkXOotRqBvkEK0EWcDgfu2Sl4W1TQIiIiIlKX1Vp4NplMXBXsUVzCcSkXK5gtFmZNGEdYWBhvvfUWaWlVt6RfXWYYBgVOA7vDSXa+E7vDSYHToAYXgBERERG5IDW6VF15jmbmszI2g/Qq3ESlvjABvq5meuYeZvq0aXz22We4ubnx4IMP8vTTT9O2bdvaHmKVMAyDlFwHCdkFJGQXEJ9dQEJOAQXO0m1dzBDs7kJTDxeCT/80crOoHlxERERqXZ0IzwD5ToP1cVlEJ9oxwSUVou9r50uIlxWA+Ph43n//fWbNmkVycjK33nor48ePZ+DAgfUyPKbmOvg5yc7OZDu5jsJ/VTNQRmYu5cx2bhYTXQNsXNnYhr+bpZpGKyIiInJudSY8Fzmamc+q2AxO5TkbfIg2AeGBNq4L8Sp1Licnh4ULFzJt2jT27NlDt27deOaZZxgxYgRubnV7ExWnYXAwPY9tiXYOZ+RX2b9jUT+tvK30CLTR1scVcz38QCEiIiL1V50Lz1AYvmLS89mWmMOhKgxfdYkJ8HE180gnf6zm8gOgYRhERkYydepUVq9eTXBwMI8//jiPPfYYgYEV32K8ptTEh5+ifv1czQwJ9abF6Vl7ERERkepWJ8PzmVJzHexIsrPjzK/9TeCs06OumJHtfC8o+P3222+88847fPzxxzidTu677z7Gjx/P5ZdfXo2jrJjaKLspuk94oI2BzTzP+SFEREREpCrU+fBcxDAMUnOdhQ+c5RQQl5Vf7gNn9cGgEE/CA90v6trk5GRmz57Ne++9R1xcHIMGDeKZZ57hpptuwmyu+QVUavuBz6JZ/KGahRYREZFqVm/Cc1kMw8BpQIFh4HCCxQwuJhNbTmSzMSGntodXrv5NPbgquPJrXOfn57N48WKmTp1KdHQ0HTp04Omnn2bUqFF4etbMLo7RiTlEHsuq9dKaovtX5kOJiIiIyPnU6/BcHsMw2Hwihx/is2t7KKUMaOpBnyD3Kl05wzAMNm/ezNSpU/niiy/w9fVl7NixPPHEE4SEhFTZfUrds46+x/2betC3it9jEREREWig4bnIpTgrevjwYd59913mzp1LdnY2d999N+PHjyciIqJK77MpIbtOBuciVTW7LyIiInKmBh2e4dKtx83IyGDevHlMnz6dmJgY+vbtyzPPPMPtt9+Oi4tLpfqOPplD5PGsKhpp9VEJh4iIiFS1Bh+eoXZXgugZaGNALa4E4XA4WLlyJVOnTmX9+vWEhoby5JNP8vDDD+Pn53fB/R3NzGfh/vqzffiFrmgiIiIici6XRHgucqmvQbx9+3amnbUF+FNPPUVYWFiFrs93Gsz9LbXebKNe0bW0RURERCrqkgrPUH0bsBT109rbSo9Ad9r4WOvs7ndnbwF+yy238Mwzz5x3C/DIY5lsS7TXi+Bc5Fy7OIqIiIhcqEsuPJ+pMhuwnNnOzWKiW4CNbo1t+LtZqnHEVetCtgCvb+UaZ1P5hoiIiFSFSzo8F7mQDVhczBDs7kIzTyvB7i4Ee7jg72au18uinW8LcKdhMPvXVNLqSbnG2UyAr6uZMZ396+y3ASIiIlI/KDyXo7wNWMwm6nVQPp+ytgC/96nniHL41/bQKm1YGx/CfF1rexgiIiJSjyk8S5mSk5OZM2cO7733HjdMnEpYxADMlvpTknI2E9DK28qIMN/aHoqIiIjUYwrPck6JmXY+3J9Z28OoMmM7+9erunQRERGpW8y1PQCp23alOWgoRSomYEeSvbaHISIiIvWYwrOUyzAMdibXr6XpzsUA7oroxAMPPFDbQxEREZF6SuFZypWS6yhewq+hMAwa3GsSERGRmqPwLOVKyC6o7SFUi5yy1iAUERERqQCFZylXQnZBtf4PYhgG+facarxDaSYgRzPPIiIicpFcansAUjfFxsby7wmvsnPzek4lHMdqc6dtz37cPP4V/Ju1LNE2ft8eVkyewNE9P+Ph60+vYaPxCWzK0n88zd9Wbitu/8aQ7gS17Ujfex7hfzNe58TB37nxyb/Tb+Rj5GSkETlrMnvWriQzJQnfoGZE3Hk//UeNw2z+I8I7nU42L5pN1Bf/IeXYYWxePnS+ejA3PfUi7j5+xe0Mw+D7D9/mpyUfk5N+ihaXd+fW5yZhANmaeRYREZGLpPAsZdq6dSu/bvuJK264A9+gZqTGHeGnJfOZ/ejtPLNkI67uHgCknYxnztg7MJlMXP3g07i6exD1xX9wcS17M5Kk2AN8NnEsEXeNoucd9xPYKoy8nGxmP3Ib6YnxRNw5Cr/gEGJ/2cq37/6L9MQT3PLX14qv//K1v7BtxWf0uOVe+t7zKKlxsWz574fE7d3FYx+twmIt3IL7u5mT+H7u23ToN4gOVw0i7vdf+Ojxu3Hk55NT4MQwjAa92Y2IiIhUD4VnKdNNNw/hqbBrShzrNOBGZj4wmN1rVtJ96HAA1s9/B3v6KcZ9uoZmHboA0OPWe3nz9l5l9pt89BAPvvdf2ve9tvjY2rlvkXLsEE8uWkvjlm0BTs9eB/PDghn0v/9x/IKbc/jnH4n64j+MeG0W3QbfVXx9m/B+zBs3gl2Ry+k2+C4yU5PY8PF7dOh3PaOnLywOyd++9xrrPpqGATgNsCg7i4iIyAVSzbOUyWqzFf/uyM8n61QKAS1aY/P2Je73X4rP7du8lpZXhBcHZwAPX/8S4fZM/s1DSwRngF3fraDVlb1x9/YjKzW5+CcsYiBOh4ND27cUtotcjs3Lh7DeA0u0a96pK64ensREbwTgwE8bcOTn0feeR0rMLl81cmzx7wXaG0hEREQugmaepUxZWTl8N3MS25YvIv1kPGduRGnPTC/+/VT8MVpeEV7q+oAWrcvst9FZ9dIAyUdjSNi/h39d17HssaQkAZB0JAZ7ZjqvXdepzHaZp9udij8KQOOWbUqc9/JvXFwX7XAC2mhQRERELpDCs5Tp2Wee4vv587nqT2NpeUU4Ni8fTCYTiyaMwTAu/oE7FzdbqWOG00lY76sZOHpcmdcUlXIYTidejQIZ8drMMtt5+gdUeBwWfeciIiIiF0HhWcr0xdKldB86giF/frX4WH6uHXtGWol2fk1DSDl6qNT1yWUcK0+jkFbkZWcR1mvgOdsFhLTi4NYNhHaNwGpzL7edX9MWQOFMdaOQVsXHM1OTyEk/BYCLHhYUERGRi6D5NymTxWLBdNbG3Fs+m4vT4ShxrH2fazjySzRxe3cVH8tOS2XH6qUVvleX62/jyC9R7Nu8ttS5nIw0HAWFm7V0ueE2nA4Ha+e8Vaqdo6CAnNPBPqzXACwuVjZ/NrdEucmmhR8AhWs9m5WdRURE5CJo5lnKNHToUP6zcCGunj4EtenAkV+iOLB1Ax5+jUq0GzD6SX7+egkf/d/d9LnnkeKl6vyCm5OTlkphVD23AaOe4Lf13/Dx+JH0uOUemnfqSl5ONgkHfmV35Ar+tnI7nv4BtOlxFRF3jWbdvOnE7dtNu95XY3GxknQkht2Ryxn619foMuhWvPwb0//+x1k3bzofP/2nwqXq9u5i36Y1ePoF4O5i1jJ1IiIiclEUnqVM06dP54TdycbVS8nPsxPaNYKHZy7loyeGl2jnF9ycR2d/wXwRYt4AAAQQSURBVIrJE1n30TQ8/QPoPfwhXN09WDF5Ii5ubue9l6u7B2PmfsW6D6exK3I521d+js3Tm8ahbRj02HPYvHyK297xwps079SVrUs/5n8zXsdsseDftCXdbr6b0K4Rxe2uf2IiLm42floyn5joTbS4vDsPvb+Yj5/6Ex4u+sJFRERELo7JMLRml5RtT4qdFbGZF3XtiikvsHXZAv6x8TBmS91a1uLWUG86Nzp/qBcRERE5m6bgpFzBHhX7YiLfnlPi76xTKfz89WJadetV54IzVPx1iYiIiJxNKULK1cjNgpvFRK7j3F9OzHxgMK17XEWT1u3JTEkk+suF5GZlcO0jf66hkVacm8WEv5s+M4qIiMjFUXiWcplMJroG2Ig6mcO54nOHqwaxa80Kor74BDDRvGMX7np5Gq179K2poVaICegWYNPDgiIiInLRVPMs55Sa6+CDX1NrexhVZmxnf/zd6l4piYiIiNQP+v5azsnfzUIrb2sFFpyr20xAa2+rgrOIiIhUisKznFePQNs5yzbqAwPoEVj+roQiIiIiFaHwLOfV1scVP1dzvZ19NgF+rmba+FhreygiIiJSzyk8y3mZTSaGhHrX29lnAxga6o1ZDwqKiIhIJSk8S4W08LISHmird7PPJqBnoI0QL806i4iISOUpPEuFDWzmiU89Kt8wAT6uZgY086ztoYiIiEgDofAsFWY1mxhaj8o3iso1rOb6EvdFRESkrlN4lgvSwsvKoJD6MZM7KMSTFirXEBERkSqk8CwXLDzQnf5NPWp7GOfUv6kH4VqaTkRERKqYtueWi9I3qDCY/hCfXcsjKW1AUw/6BCk4i4iISNXT9txSKdGJOUQey8IEtVoLXXT/QSGemnEWERGRaqPwLJV2NDOflbEZpOc5ayVAF62qMTTUWzXOIiIiUq0UnqVK5DsN1sdlEZ1or7FZ6KL79Ay0MaCZp1bVEBERkWqn8CxV6mhmPqtiMziV56y2EF3Ur5+rmSGabRYREZEapPAsVc5pGMSk57MtMYdDGflVFqKL+mntbaVHoDttfKzacltERERqlMKzVKvUXAc7kuzsSLaT6yj8X81sAmcF/q87s52bxUS3ABvdGtvwd7NU44hFREREyqfwLDXCMAxSc50kZBeQkFNAXFY+CTkFFDhLt3UxQ7C7C808rQS7uxDs4YK/mxmTZplFRESklik8S60xDAOnAQWGgcMJFjO4mEyYTSgoi4iISJ2k8CwiIiIiUkHanltEREREpIIUnkVEREREKkjhWURERESkghSeRUREREQqSOFZRERERKSCFJ5FRERERCpI4VlEREREpIIUnkVEREREKkjhWURERESkghSeRUREREQqSOFZRERERKSCFJ5FRERERCro/wHCgmCQhniplQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -2850,7 +2737,7 @@ } ], "source": [ - "plt.figure(figsize=(10,10))\n", + "plt.figure(figsize=(7,7))\n", "\n", "pos = nx.spring_layout(smallGrap) # k regulates the distance between nodes\n", "\n", @@ -2869,7 +2756,7 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 97, "metadata": {}, "outputs": [], "source": [ @@ -2884,16 +2771,16 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 98, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "436" + "299" ] }, - "execution_count": 90, + "execution_count": 98, "metadata": {}, "output_type": "execute_result" } @@ -2904,16 +2791,16 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 99, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "57" + "30" ] }, - "execution_count": 91, + "execution_count": 99, "metadata": {}, "output_type": "execute_result" } @@ -2924,14 +2811,14 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 100, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/sAAAP7CAYAAAAEeJ46AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3xUVeL+8efOpAeSAIEIgqEjRZqrq6uoYEFBLKBrW1l0FwQRv6joDwRsCAgLomCjiaIorA6iwEqRIlVUipSIoQWQ0EsSSJ2Z+/tjDDZKkik3M/N5v168FsjMuQ+LCXnuOfccwzRNUwAAAAAAIGTYrA4AAAAAAAB8i7IPAAAAAECIoewDAAAAABBiKPsAAAAAAIQYyj4AAAAAACGGsg8AAAAAQIih7AMAAAAAEGIo+wAAAAAAhBjKPgAAAAAAIYayDwAAAABAiKHsAwAAAAAQYij7AAAAAACEGMo+AAAAAAAhhrIPAAAAAECIoewDAAAAABBiKPsAAAAAAIQYyj4AAAAAACGGsg8AAAAAQIih7AMAAAAAEGIo+wAAAAAAhBjKPgAAAAAAIYayDwAAAABAiKHsAwAAAAAQYij7AAAAAACEGMo+AAAAAAAhhrIPAAAAAECIoewDAAAAABBiKPsAAAAAAIQYyj4AAAAAACGGsg8AAAAAQIih7AMAAAAAEGIo+wAAAAAAhBjKPgAAAAAAIYayDwAAAABAiKHsAwAAAAAQYij7AAAAAACEGMo+AAAAAAAhhrIPAAAAAECIoewDAAAAABBiKPsAAAAAAIQYyj4AAAAAACGGsg8AAAAAQIih7AMAAAAAEGIo+wAAAAAAhJgIqwMAAAAAQHlwNN+pH44W6HiBSwUuU9F2Q5Wj7WpRJUaVY+xWxwNKxTBN07Q6BAAAAABYZUdWodYcytOek0UyJP22IBX/+qIKkboiJVZ1E6KsCQmUEmUfAAAAQFgyTVMrDuRq5YG8P5X8Pyr++NUXxOmqC2JlGEZgQgJlxDP7AAAAAMLSygN5WnkgT9K5i/5vP77iQK5WH8zzay7AFyj7AAAAAMLOruxCrTiQW6b3Ltufq4ycQh8nAnyLsg8AAAAg7Hx7yLN0vywMSd8dYnYf5RtlHwAAAEBYOV7g0q6covMu3T8bU9KO7CKdKHD5MhbgU5R9AAAAAGFl09H8Ms/qFzMkbTqW74s4gF9Q9gEAAACElROFbt+MU+CbcQB/oOwDAAAACCuFbrPMS/iLmZKK3JxijvKLsg8AAAAgrETbDJ8s44+yezsK4D+UfQAAAABhpXKM3SfjVIn2zTiAP1D2AQAAAISV5pWjfTLOJVVifDIO4A+UfQAAAABhpWKUXQ0So8pchmySGiZFqUIkdQrlF/91AgAAAAg7l1eLVVn30ndL+mu1WF/GAXyOsg8AAAAg7NSsEKkba8aX6b3ta8WrRnykjxMBvkXZBwAAABCWLq0aq5tqxkumKZez6JyvtcmzA//NtSqoVTKz+ij/KPsAAAAAwlZ15wm9+8gdKsj48XShP9P/Nq4Upa6NEtUymU35EBwM0zRNq0MAAAAAgBW6deumOXPmKD09XdEVk7TleIGOF7hU6DIVZTdUKdquZpWiFcdmfAgyEVYHAAAAAAArrF69Wu+//77Gjx+vypUrS/Js3AeEAmb2AQAAAIQdt9utyy+/XG63W999953sdrvVkQCfYmYfAAAAQNiZMmWK1q5dqxUrVlD0EZKY2QcAAAAQVk6cOKGGDRuqffv2+uCDD6yOA/gFu0wAAAAACCsvvPCCcnNzNWLECKujAH7DMn4AAAAAYWPLli164403NHToUNWoUcPqOIDfsIwfAAAAQFgwTVM33nij9uzZo02bNik6OtrqSIDfMLMPAAAAICzMnDlTixYt0ty5cyn6CHnM7AMAAAAIebm5uWrcuLEuueQSzZkzx+o4gN8xsw8AAAAg5P3nP//RgQMH9NVXX1kdBQgIduMHAAAAENIyMjL0yiuv6Mknn1SDBg2sjgMEBMv4AQAAAIS0u+66S6tXr9ZPP/2kChUqWB0HCAiW8QMAAAAIWYsWLZLD4dCHH35I0UdYYWYfAAAAQEgqKipSy5YtValSJS1fvlyGYVgdCQgYZvYBAAAAhKS33npLP/74o9auXUvRR9hhZh8AAABAyDl06JAaNmyoe++9V++8847VcYCAo+wDAAAACDndu3eXw+FQenq6kpOTrY4DBBzL+AEAAACElO+//16TJ0/WuHHjKPoIW8zsAwAAAAgZbrdbV111lU6dOqV169YpIoL5TYQn/ssHAAAAEDI+/PBDffPNN1q6dClFH2GNmX0AAAAAISE7O1sNGzbUddddp+nTp1sdB7CUzeoAAAAAAOALQ4YMUXZ2tv7zn/9YHQWwHGUfAAAAQNDbunWrXnvtNT377LOqVauW1XEAy7GMHwAAAEBQM01Tt9xyi9LT05WWlqaYmBirIwGWY8cKAAAAAEFt9uzZmj9/vmbNmkXRB37BzD4AAACAoJWfn6+mTZuqfv36mjdvngzDsDoSUC4wsw8AAAAgaL366qvas2eP5s6dS9EHfoOZfQAAAABBae/evbr44ovVq1cvjRo1yuo4QLlC2QcAAAAQlO677z4tWbJE6enpSkhIsDoOUK6wjB8AAABA0Fm2bJmmT5+uKVOmUPSBM2BmHwAAAEBQcTqduvTSSxUbG6tVq1bJZrNZHQkod5jZBwAAABBUJkyYoI0bN+rbb7+l6ANnwcw+AAAAgKBx9OhRNWjQQHfeeacmT55sdRyg3OI2GAAAAICgMWjQILlcLg0fPtzqKEC5xjJ+AAAAAEFh/fr1Gj9+vF599VVVq1bN6jhAucYyfgAAAADlnmmauuaaa3Ts2DFt2LBBkZGRVkcCyjVm9gEAAACUex9//LFWrFihhQsXUvSBEmBmHwAAAEC5dvLkSTVq1EhXXHGFHA6H1XGAoMAGfQAAAADKtWHDhunYsWMaPXq01VGAoEHZBwAAAFBubd++XaNHj9Yzzzyj2rVrWx0HCBos4wcAAABQbnXq1EkbN27Ujz/+qLi4OKvjAEGDDfoAAAAAWMPplL74QnrvPWn3bikvT0pKki67TOrZU//bu1dz5szRJ598QtEHSomZfQAAAACBVVgo/ec/0rhx0sGDkt0uuVy/fjwiQnI6tS4mRjMaNtQrGzbIMAzr8gJBiLIPAAAAIHCys6U77pC+/lpyu8/5UqckuyTj1VelJ54ISDwgVFD2AQAAAARGYaHUvr20fPnvZ/JL4u23pZ49/ZMLCEHsxg8AAAAgMF55RVq2rPRFX5J695a2bvV9JiBEUfYBAAAA+F9hoecZ/fMs3T8rm80zuw+gRCj7AAAAAPxv1izpyJGyv9/plCZPlk6d8l0mIIRR9gEAAAD435Qpnl33vXHqlOemAYDzouwDAAAA8L+MjLI9q/9bERHS3r0+iQOEOso+AAAAAP/zxfJ7w5Byc70fBwgDlH0AAAAA/peU5P0YbreUmOj9OEAYoOwDAAAA8L9LL/Usw/eGyyU1b+6bPECIM0zTNK0OAQAAACDErVkjXXGFd2PUri3t2OE5hg/AOfFZAgAAAMD/Lr/cMytf1qJus0l9+lD0gRJiZh8AAABAYMycKXXpUvr32e1SpUrSTz9JlSv7PhcQgrgtBgAAACAwOneWXnihdO+x26WoKGn+fIo+UAqUfQAAAACB89xz0siRkqSi873WZvPs4r98udS6td+jAaGEsg8AAAAgcAxDmQ88oL/FxGhds2ZSdLRkGFJkpOdH8Y79NWtKw4dLW7d6dvIHUCpenn0BAAAAAKUzePBgpcfHq9Hy5ZJpSg6HtG+flJvrmclv2VK66SbPEn4AZcIGfQAAAAACZsOGDWrdurXGjRun3r17Wx0HCFmUfQAAAAABYZqmbrjhBmVmZmrjxo2KjIy0OhIQsljGDwAAACAg5syZo8WLF2vOnDkUfcDPmNkHAAAA4HdFRUW65JJLVLNmTS1cuFCGYVgdCQhpzOwDAAAA8Lvx48crPT1dM2bMoOgDAcDMPgAAAAC/On78uBo0aKA77rhDkyZNsjoOEBZsVgcAAAAAENqGDh2q/Px8DRkyxOooQNig7AMAAADwmx07dmjs2LHq37+/qlevbnUcIGywjB8AAACA39x9991avXq10tPTFRcXZ3UcIGywQR8AAAAAv1ixYoU+/fRTTZ06laIPBBgz+wAAAAB8zu1264orrpDb7da3334rm40niIFAYmYfAAAAgM99/PHH+u677/T1119T9AELMLMPAAAAwKdyc3PVqFEjXX755XI4HFbHAcISt9gAAAAA+NSYMWN08OBBjRgxwuooQNhiZh8AAACAzxw4cEANGjRQ9+7d9eqrr1odBwhblH0AAAAAPtOjRw85HA5t375dlSpVsjoOELbYoA8AAACAT2zcuFGTJ0/WmDFjKPqAxZjZBwAAAOA10zR10003ac+ePdq8ebMiIyOtjgSENWb2AQAAAHjtyy+/1FdffaVZs2ZR9IFygJl9AAAAAF5xOp1q3ry5UlJStHjxYhmGYXUkIOwxsw8AAADAKxMnTtTWrVv14YcfUvSBcoKZfQAAAABllpWVpfr16+vWW2/VlClTrI4D4Bc2qwMAAAAACF7Dhg1Tbm6uXn75ZaujAPgNyj4AAACAMtm1a5dee+01Pf3007rwwgutjgPgN1jGDwAAAKBM7rnnHi1fvlzbtm1TfHy81XEA/AYb9AEAAAAotdWrV+u///2vpkyZQtEHyiFm9gEAAACUimmauvLKK1VYWKjvv/9eNhtPBwPlDTP7AAAAAEplxowZWrNmjRYvXkzRB8opZvYBAAAAlFheXp4uvvhitWzZUp9//rnVcQCcBTP7AAAAAErs9ddfV2ZmphYsWGB1FADnwMw+AAAAgBI5dOiQ6tevr4ceekivv/661XEAnANlHwAAAECJ9OrVS9OnT9f27dtVpUoVq+MAOAeW8QMAAAA4ry1btmjChAkaNWoURR8IAszsAwAAADivW265Rdu3b9eWLVsUFRVldRwA58HMPgAAAIBzmj9/vubNmyeHw0HRB4IEM/sAAAAAzsrpdKply5aqXLmyvv76axmGYXUkACXAzD4AAACAs3r33Xe1ZcsWfffddxR9IIgwsw8AAADgjLKzs9WgQQO1b99eU6dOtToOgFKwWR0AAAAAQPn0yiuvKCcnR0OHDrU6CoBSouwDAAAA+JPdu3fr1Vdf1VNPPaVatWpZHQdAKbGMHwAAAMCf3H///VqyZIm2bdumChUqWB0HQCmxQR8AAACA31mzZo0+/vhjTZo0iaIPBClm9gEAAACcZpqmrr76ap08eVLr1q2T3W63OhKAMmBmHwAAAAgzLtPU3pNFOlnklsuUou2GqsdFKDHKrk8//VSrVq3SwoULKfpAEGNmHwAAAAgTOUUu/XCkQOuO5CnX+ecaUDverrcHPKaKhdmaM3u2BQkB+AplHwAAAAgDPxzN1/w9J2VKOmsBcLslm02VjCI92DRFcZEc3gUEK8o+AAAAEOK+O5SnRftOlfj1hqTEKJu6Nkyi8ANBis9cAAAAIIRtyyooVdGXPDP/WYVufbIzW27mBoGgRNkHAAAAQpRpmlq6L7ds75W0P9ep7VmFvg0FICAo+wAAAECI+vmUU0cLXGV+vyFp7eF83wUCEDCUfQAAACBErTuS59U3/Kak3SeLdCy/7DcMAFiDsg8AAACEqL0nnXL7YJzM3CIfjAIgkCKsDgAAQHmQ53TrlNMtl1uKthtKiLLJZhhWxwIArxS4fFH1pXwXm/QBwYayDwAIW27T1M7sIq09nKddOb+ftYqLMNQqOUYtqsQoIcpuUUIA8I7dMFQk74u6nXufQNCh7AMAwlLmqSLN2pWj7CK3zvQ9bK7T1KoDeVp1IE8tk6N1Q80KsjPTDyDIxEfYlO/y/nn7+Aie/gWCDZ+1AICwsyu7UNO2ZSmnyLO89WxzXuYvP9YfKdAnO7LldLOMFUBwaVo5+ow3NEsjymaoTkKUT/IACBzKPgAgrBzMdcqxM1su8+wl/0x25xTpf3tyZJoUfgDBo0WVGK/eb0hqUSVakTZWNgHBhrIPAAgri/edUln2mTIlpR0v1L5TTp9nAgB/iY+06eJKUWWe3TcltUqO9WUkAAFC2QcAhI1j+S7tPln2rapsktYezvNlJADwu+svrKAKkbYyFf62NeJUOYZNSoFgRNkHAISN9UfyvHp21S1p64lCnSryzVFWABAIFSJtuq9+ouIjbTJKcbvzbymxurwas/pAsKLsAwDCxrasQq8PoDIlZeQU+iIOAARM5Ri7ujVK0on0jXK7XWe88Vn8exUjbep4UQVdUyNeBqeQAEGLsg8ACBv5ZXlY/wzyfDQOAATSrq1bNOK+G5W4/n+66oI4JUbZFGF4CkGM3VCdhEjdXTdBjzatpEu83NgPgPUirA4AAAAAwP8GDhyounXrqsc//6HIyEhdXT3O6kgA/IiyDwAIGzF2wyez+7F2lrUCCC6rVq3S7Nmz9dFHHykyMtLqOAACwDA5MBgAECYW7zul7w7lefXcviHpsWaVFR/Jk3AAgoNpmrr22muVnZ2tdevWyWbj6xcQDpjZBwCEjVbJMfr2UNmPzrNJurhSFEUfQFCZN2+eli9frrlz51L0gTDCzD4AIKxM356l3TlFZZ7d/0eDRNWswBJYAMHB7XardevWSkhI0Ndff83u+kAYYWYfABBW2l0Yr6npJ+Ryq9SFv2mlKF0Yzz+dAILHjBkz9MMPP2jFihUUfSDMMLMPAAg7GdmF+mRnttxmyQt/nYqRuqtuguw2vlkGEBwKCwvVuHFjNW3aVF988YXVcQAEGNMTAICwUzshSv9omKhZu3KUVeiW2+WUzf7nfxKLa32r5BhdXzNedmbFAASRyZMna9euXZo1a5bVUQBYgJl9AAhBOYUubTiar+1Zhcpzer7Mx0YYapAYrZbJMarABnOSPDtUz/lmgz799kc1bnOj9JsyHxdhqHVyrFokR6tipN3ClABQeqdOnVL9+vV14403aurUqVbHAWABZvYBIIQczXfq68xcbcsqlPT7JerZRdKhvFytPJCrhklRuq5GvCpFh3eJNQxDSz75QAs+/lhvP7pX+S5DTtNUjN1QhUibbMzkAwhS48aN09GjR/Xiiy9aHQWARZjZB4AQsfdkkT7Zka0it3ne59ANSVF2Q3+vl6AL48N3Z3nTNFWnTh116NBBb731ltVxAMAnjh8/rrp16+rBBx/U2LFjrY4DwCKs4wSAEHAw16n/7sgqUdGXPDP+hS5T07dn6XCe09/xyq21a9dq9+7d6tKli9VRAMBnRowYoaKiIg0cONDqKAAsRNkHgCBnmqY+25UtZymPkjMlOd3SZ7tyFK6LvGbOnKkqVaro2muvtToKAPjEvn379Prrr+uJJ55QSkqK1XEAWIiyDwBBLiOnSCcK3aU+M17yFP5jBS7tOVnk61jlnmmacjgcuv322xURwRY2AELDkCFDFBcXp379+lkdBYDFKPsAEOTWHs7z6ou5TdK6I/m+ihM0tmzZovT0dJbwAwgZ27Zt06RJk/Tss88qMTHR6jgALEbZB4Aglu90a3t2kdxejOGWlH6iUAUub0YJPg6HQwkJCbr++uutjgIAPjF48GBVr15djz76qNVRAJQDrFsEgCB20umbgm5KynWaCqeT+BwOhzp16qTo6GirowCA19atW6cZM2Zo0qRJio2NtToOgHKAmX0ACGI+6vq/jBU+m/Rt27ZNmzZtYgk/gJAxcOBANWrUSP/85z+tjgKgnGBmHwCCWLTdKJdjlXcOh0NxcXFq37691VEAwGtLly7VvHnz9Omnn7LhKIDTDDNcz1sCgBDgcpsau/mYClzefSmPtRvqc0ll2YzwKPyXXXaZUlNT9emnn1odBQC8Ypqm/va3v8npdOrbb7+VESZfxwGcH8v4ASCI2W2GWlaJkTff2hmSWlWNCZuiv3v3bn3//fcs4QcQEr744gt98803Gj58OEUfwO9Q9gEgyLVKjpG3S7RaVonxSZZgMHPmTEVFRaljx45WRwEAr7hcLj377LO6/vrrdcMNN1gdB0A5w0M9ABDkkqLtalopWmnHC0pd+g1Jl1SOVkJU+GzD73A4dNNNNykhIcHqKADglQ8//FBpaWl67733rI4CoBxiZh8AQsAtF1VQ9biIUi3nNyRdGB+hm2pV8Fescmf//v1atWoVS/gBBL2CggI999xz6tKliy677DKr4wAohyj7ABACImyG7q2fqLoJkZJ07tL/y76sUVkHdE/9REXYwucZz1mzZslut+u2226zOgoAeOWdd97Rzz//rJdfftnqKADKKXbjB4AQYpqmdmQXae3hPO3KKZJpmpLbLbvdLvcvr6mbEKlFU8bJMf51/ZiWpqpVq1qaOZBuuOEG2Ww2LViwwOooAFBmOTk5qlevnm677TZNmjTJ6jgAyilm9gEghBiGofqJUbqnfqJ6NqmklRNHKm/zSl1dPU7ta8WrZ5NK+nu9RA15vIdMt1tPPfWU1ZED5ujRo1q6dClL+AEEvTFjxig7O1vPP/+81VEAlGOUfQAIURUjpPmTXtMFuQf0twvi1Co5VknRno34qlWrptGjR+uDDz4Im1nuzz//XG63W3fccYfVUQCgzA4fPqxRo0apd+/eqlWrltVxAJRjlH0ACFGZmZlyOp2qXbv2GT/+z3/+U23btlXPnj2Vm5sb2HAWcDgcatOmjVJSUqyOAgBlNnz4cEnSgAEDLE4CoLyj7ANAiMrIyJCks5Z9wzA0fvx4ZWZm6sUXXwxcMAtkZWVp4cKF6ty5s9VRAKDM9uzZozfffFNPP/20kpOTrY4DoJyj7ANAiCou+6mpqWd9TYMGDfT8889r9OjRWr9+fYCSBd6cOXNUVFRE2QcQ1F544QUlJibqiSeesDoKgCBA2QeAEJWRkaGqVasqPj7+nK/r16+fGjdurO7du8vlcgUoXWA5HA5dfvnlPN8KIGilpaXp/fff1+DBg1WhQgWr4wAIApR9AAhRGRkZZ13C/1uRkZGaNGmS1q1bp3Hjxvk/WICdOnVK8+bNYxd+AEFt0KBBuuiii9SjRw+rowAIEpR9AAhRJS37kvTXv/5Vjz32mAYNGqTdu3f7N1iAffnll8rLy6PsAwhaa9as0WeffaaXXnpJ0dHRVscBECQo+wAQokpT9iVp6NChqlSpknr16iXTNP0XLMBmzpypFi1aqF69elZHAYBSM01TAwYMULNmzXT//fdbHQdAEKHsA0AIcrlc2rNnT6nKfsWKFfXmm2/qyy+/1H//+1//hQuggoICzZkzh1l9AEHrq6++0pIlSzRs2DDZ7Xar4wAIIpR9AAhBmZmZcjqdpSr7knTbbbfprrvu0uOPP67jx4/7J1wALVy4UDk5OZR9AEHJ7XZrwIABuvLKK3XrrbdaHQdAkKHsA0AIKj52r7RlX5LGjh2rgoICPf30074NZQGHw6GLL75YTZo0sToKAJSaw+HQ2rVr9corr8gwDKvjAAgylH0ACEHFZT81NbXU761evbpGjBihyZMna+nSpb4NFkBFRUX6/PPPmdUHEJSKioo0cOBA3XLLLbrmmmusjgMgCFH2ASAEZWRkqGrVqoqPjy/T+7t3766rr75ajzzyiPLz832cLjCWLl2q48ePU/YBBKX33ntP27Zt07Bhw6yOAiBIUfYBIASVdif+P7LZbJowYYJ27dqloUOH+i5YADkcDtWuXVstW7a0OgoAlEpeXp5eeOEF3XfffXwNA1BmlH0ACEHeln1Jaty4sZ599lm98sor2rx5s2+CBYjL5dJnn32mLl268JwrgKDzxhtv6NChQ3rppZesjgIgiFH2ASAE+aLsS9KAAQNUv3599ejRQ2632/tgAbJy5UodOnSIJfwAgs6JEyc0fPhwde/eXfXr17c6DoAgRtkHgBDjcrm0Z88en5T96OhoTZgwQatXr9Y777zjfbgAcTgcqlGjhv76179aHQUASmXUqFHKz8/X4MGDrY4CIMhR9gEgxGRmZsrpdPqk7EtSmzZt1KNHD/Xv31/79u3zyZj+5Ha7NXPmTHXu3Fk2G//MAQgeBw4c0JgxY/R///d/ql69utVxAAQ5vgsCgBBTfOxenTp1fDbmiBEjFB8frz59+vhsTH/5/vvv9fPPP7OEH0DQefnllxUVFaVnnnnG6igAQgBlH0DYKnKbOlHg0pE8p7ILXXKZptWRfKK47KempvpszKSkJI0bN06fffaZPvvsM5+N6w8Oh0NVq1ZVmzZtrI4CACW2c+dOjR8/Xv3791elSpWsjgMgBERYHQAAAsk0Te3PdWrd4XylnSiQ+zf9PtpuqFVyjFpWiVFStN26kF7KyMhQtWrVFBcX59Nxu3Tpok6dOumxxx5Tu3btlJiY6NPxfcE0TTkcDt1xxx2y24P37xBAiPrxR+n996Xdu6XcXCkhQWreXOrWTc8995yqVq0aFCuoAAQHwzRDZCoLAM7jRIFLs3Zl60CeSzZJZ9pb3pBkSmpcKUodLqqoSFvwHdv2r3/9S5s3b9aaNWt8PvbevXvVpEkTde3aVW+++abPx/fWDz/8oJYtW2revHlq37691XEAQDJN6fPPpTFjpGXLpIgIye32/LDbJdOUaRj6yOVS9LPP6q6hQ61ODCBEsIwfQFg4nOfUez+d0ME8l6QzF33JU/QlaevxQn2YfkL5ruA5bq6Yr47dO5NatWpp2LBhevvtt7Vq1Sq/XMMbDodDSUlJatu2rdVRAEByuaS+faU775RWrvT8ntPpKfrFH3e7ZbhcukdSl5EjpWnTLIsLILRQ9gGEvJwil6Zvz1KBy1RJlzKZkg7luTRzZ47cQbYAyp9lX5IeffRRXXbZZerevbsKCwv9dp2ycDgcuu222xQVFWV1FADhzjSlPn2kceM8v3a5zvnyCEmG0yn94x/SjBn+zwcg5FH2AYS8VQfylOssedEvZkrac7JIPx4v8Ecsv3C5XNqzZ49fy77dbtfEiROVnp6ukSNH+u06pbV161alpaWxCz+A8uHDD6W33/aU/tIwDE/hT0/3Ty4AYYOyDyCkFUao7YcAACAASURBVLjc2nQ0v9RFv5ghae3hfF9G8qvMzEw5nU6/ln1Jat68uZ5++mkNGTJEP/30k1+vVVIOh0Px8fG68cYbrY4CINyZpvTKK57iXpb3StJbb/k2E4CwQ9kHENI2HyuQ04tV+KakzFynDuU5fZbJn4qP3fN32ZekwYMHq1atWurRo4fcbuv3NnA4HOrYsaNiY2OtjgIg3K1eLaWllX5Wv5jTKU2eLJ065dtcAMIKZR9ASNue5f0z5YaPxgmE4rKfmprq92vFxsZq/PjxWrZsmaZMmeL3653Lzp07tX79epbwAygfJk707LrvjZMnJYfDN3kAhCXKPoCQdsrp/YyzYUj5ruDYpC8jI0PVqlVTXFxcQK53/fXXq1u3burXr58OHDgQkGueycyZMxUTE6MOHTpYlgEATtu61TM7743ISGn7dt/kARCWKPsAUAJmkOzI7++d+M9k1KhRioiIUN++fQN63d+aOXOm2rdvrwoVKliWAQBOy8nxzTjZ2b4ZB0BYouwDCGnxEd5/mTNNKdYH4wSCFWW/SpUqeu211zRjxgzNnTs3oNeWpH379mn16tUs4QdQflSs6JtxEhJ8Mw6AsBQc370CQBnVTfD+vHXTR+MEghVlX5Luv/9+tW/fXo8++qhOnjwZ0Gt/9tlnioyMVKdOnQJ6XQA4q4sv9v6Z/aIiqUED3+QBEJYo+wBC2iWVo2Uvw8lHxdwup37esl7//vsdWrp0ablezu9yubRnzx5Lyr5hGHr77bd1+PBhDR48OKDXdjgcuv7665WUlBTQ6wLAWfXo4f0z+xUrSqxYAuAFyj6AkBYTYVPTStEqa9+32SO0+r+TNX/+fLVt21atW7fWBx98oMLC8rc7/759++R0Oi0p+5JUp04dvfTSSxo7dqy+++67gFzz8OHDWrZsGUv4AZQvV1whNWsm2cr4rXZEhPTvf0sB2mwVQGii7AMIeVdVj1OM3Sh14TckXRgfoY9GDTldJrdt26auXbsqNTVVw4cP17Fjx3yet6yKj92zquxLUt++fdWiRQt1795dRUVFfr/erFmzJEm33367368FACVmGFL//pK7DCfCGIbnx6OP+j4XgLBC2QcQ8hKj7LqnfqKibCUv/IakKjF23VU3QY0aNtD06dP1/fff66qrrpLkWTL//PPPq2bNmnr00UeVnp7ut/wlVVz2U1NTLcsQERGhiRMnatOmTRozZozfr+dwOHTttdeqatWqfr8WAJTK/fdLffqU7j3GL/9KffSRVL++7zMBCCuUfQBh4YK4CHVtlKjK0XZJOmvpL/79egmRerBh4u924b/00ks1f/58LVq0SHXq1FFRUZFq1Kih6dOnq1GjRurUqZOWLFli2XP9GRkZqlatmuIsXvZ56aWXqm/fvnrhhRe0Y8cOv13n+PHjWrRokTp37uy3awBAmRmG9Npr0hNPSJLO+wR/RIRkt3uK/l13+T0egNBH2QcQNqrEROjfjZN0X/0ENUyK+lPhdxbkq3XVGP27cZLuqpeoaPuZv0S2a9dO33zzjWbOnKnIyEgdP35cl112mdLT09WuXTu1bt1aU6dODfhz/VbtxH8mL774oqpVq6aePXv67ebH7Nmz5XQ6deedd/plfADwms0mvfqqVg8YoKXFv1dc6g3D83ObTYqMlB54QPr+e+neey0MDCCUGGZ53loaAPwo3+nWSadbk6a8r3GvjlJh9nEdOrBfhlHyp/udTqemTp2q559/Xvv379fNN9+s3NxcLVmyRNWrV1fv3r3Vs2dPValSxY9/Eo927dqpatWqmjFjht+vVRJffvmlOnTooKlTp+rBBx/0+fi33367Dh8+rFWrVvl8bADwFdM0demllyopKUmL33lHev99ac8e6dQpKTFRuuQS6Z//lALw7wSA8ELZBxD23nvvPT300EOSpF27dpVpdjw/P19vvfWWhg4dqry8PD3wwAMqKirSjBkzZBiGunbtqr59++riiy/2cfpf1a1bV3fffbdGjBjht2uU1v33368FCxZo69atSk5O9tm4OTk5qlq1qoYOHaqnnnrKZ+MCgK/NnTtXt956qxYvXqy2bdtaHQdAGGEZP4Cwl5KScvrn69atK9MYMTExevLJJ7Vz50499dRT+uijj/T555+rX79+6tevn2bNmqXGjRvr1ltv1aJFi3y+tN3pdGrv3r3lZhl/sTFjxsjtduvJJ5/06bhffvmlCgoKeF4fQLlmmqaGDBmiq666Stddd53VcQCEGco+gLBXXPaTk5PLXPaLJSYmasiQIdq5c6f+8Y9/aMSIEZo0aZIGDRqkiRMnau/evbrhhhvUsmVLvf/++yooKPDFH0GZmZlyOp3lruynpKRo9OjR+uCDD7Rw4UKfjetwONS6dWvVqVPHZ2MCgK8tXLhQa9as0eDBg0v1iBgA+AJlH0DYKy77tWvX9rrs/3bMcePGaevWrWrXrp0ef/xxjRw5Us8++6wWLFigmjVrqlu3bqpdu7ZefvllHTlyxKvrFR+7V97KviR169ZN1113nXr27Knc3Fyvx8vLy9PcuXPVpUsXH6QDAP8ontW/7LLLdNNNN1kdB0AYouwDCHvVqlWTJF1wwQVau3atT5fY161bVx9++KHWr1+vhg0b6t5771X//v31f//3f0pLS9Ptt9+uoUOHqlatWnrkkUf0448/nn2wkyelOXM8mztNmSLNmiUdPSrp17Kfmprqs+y+YhiGJkyYoH379unFF1/0erwFCxbo1KlTlH0A5drXX3+tFStW6LnnnmNWH4AlKPsAwl5kZKQqV66sxMREHTp0SPv37/f5NVq0aKE5c+Zo2bJlio2NVfv27dW7d2899NBD2rt3rwYNGqQvvvhCTZo0UYcOHfTVV1/9etPhxx+lxx+XLrhA6tRJ6tZNevhh6c47perVpW7dVLhihapVq6a4uDifZ/eFBg0a6LnnntPo0aO1YcMGr8ZyOBxq2rSpGjVq5KN0AOB7Q4YMUatWrdSxY0erowAIU5R9AJBn2X1UVJQkaf369X67Tps2bbR8+XLNnj1bhw8f1hVXXKEePXqoc+fOysjI0Pvvv6/MzEzdeOONatm8uTbdcovUpIn09tueY5r+qKhImjZN/544Ue87nZKP9gDwh379+qlx48bq3r27XC5XmcYoLCzUF198waw+gHJt5cqVWrx4sQYNGsSsPgDLUPYBQJ4l/Lm5uapcubLPnts/G8MwdOutt2rDhg2aOnWq1q9fr2bNmunRRx9V27ZttX79ei1etEijT5xQs3nzPG9yOs8+4C8fu+nYMalDB6mw0K/5yyoqKkoTJ07U2rVr9cYbb5RpjMWLFysrK4uyD6BcGzJkiJo1a6Y77rjD6igAwphh+vr8JwAIQvfdd58OHjwou92uChUq6LPPPgvYtQsKCjRhwgQNGTJE2dnZ6t27t4bExChu2LDSD2azSQ89JE2adPbXHDwoLV8uHTvmeX3VqlK7dlLFimX/Q5RCnz59NGXKFG3ZsqXUewx0795dS5cuVXp6OrNlAMqlb7/9Vn/96181ffp03XPPPVbHARDGKPsAIKlv375auHChOnbsqBkzZmj37t0Bz5CTk6MxY8Zo/H/+o20nT6rMT98bhrRtm1Sv3q+/Z5rSihXSm29KDsefVwrExnpuEvTqJTVrVtYrl0h2draaNGmili1bavbs2SUu7U6nU9WrV9fDDz+sESNG+DUjAJTVbbfdpvT0dG3ZskV2u93qOADCGMv4AQREoctURk6hth4v0NYTBdqdUyinu/zca0xJSdHBgwfVunVr7dmzR0d/2eU+kCpWrKjnnntOWwcNUqw3A9ls0vjxv/46L0/q0kW65pozF/3i10yYIF1yifTMM5Lb7U2Cc0pISNCbb76puXPn6pNPPinx+5YvX64jR46whB9AubV+/XrNnj1bAwcOpOgDsBwz+wD86mi+U+uO5Gvj0XwV/aE/RtsNtawSo1bJMUqKtvabonfffVf/+te/tHnzZjVr1kwLFy7UDTfcEPggpunZkO+nnzw/L6vEROnAAc/Pb7xRWrWqdAX+oYekyZM9qwT8pEuXLlq5cqV+/PFHVapU6byv79Onjz7//HPt3r2bJfwAyqUuXbrohx9+0NatWxUREWF1HABhjpl9AH7hNk0t3HtSE388oXWH/1z0JanAZerbQ3l6J+24lu0/5dPz7UsrJSVFkmfWuUKFCn7fpO+sTp6Utm71ruhLUlaWlJ4u/etfpS/6kjRlivTKK95lOI9x48YpLy9PzzzzzHlf63a7NXPmTHXu3JmiD6Bc2rx5s2bOnKkBAwZQ9AGUC5R9AD7nNk19npGjtUfyJUnnqq3FH1t1IE/z9560rPAXl/3Dhw+rVatW1pX948d9NtSIBx6QPvqo7Evyhw713Hzwkxo1amjEiBGaNGmSvv7663O+ds2aNcrMzGQJP4Bya+jQoUpNTdWDDz5odRQAkETZB4Le8QKXfjiSr28O5urbQ3nafCxfuU7/PW9dEkszc/XTidIf/7bhaIG+OZjnh0TnV1z2i5/bt6zsR0f7bKiWP/+sIm8GyM313Czwox49euiqq65Sjx49lJ+f/+sHsrOlnTs9Gw0ePSrHp58qJSVFf/vb3/yaBwDKYuvWrZoxY4b69++vqKgoq+MAgCSe2QeCkts0tSO7UGsP5ysjx1Pnihc2m5JshtQ4KUqtq8bqwvjIgGbLKXLprc3Hzzmbfy4RhtTnksqKtgf2XmRBQYFiYmI0ZcoUGYahbt26KSsrSwkJCQHNocJCKT7+zJvolZIZFycjN7fsAxiGZ/+AzZu9znIuaWlpatmypZ595hm90Lq19MYb0pIlv3vNT5GR+v7KK/XA3LlShQp+zQMApdW1a1ctXrxYO3bsULQPb9oCgDeY2QeCTL7TrY+3Z8mxM0e7c36dtzX165J4tymlHS/UB+lZmr83R+4A3tP74UiBV+93mtLmY96NURbR0dFKSko6PbMvSRs2bAh4DkVFSZ07S94872mzSY0be1f0Jc++AVu2eGb4/ahJkyaafNdd6jl0qOfUgGXL/vSa+kVFun/ZMumCC6Rx4/yaBwBKY8eOHfroo4/0zDPPUPQBlCuUfSCIFLjc+nBbln4+6Zn1Lcmz8OuPFGh2Rk5AnoV3m6bWHckr86x+sbWH8y15dr/4+L3GjRsrJiZG69evD3gGSVLv3t7N7LvdUqdOvsuTleW7sc5k6lT9Y8YMVSv+tcv1p5fY9cvqlVOnpMcfl/r1834TQwDwgeHDhys5OVndu3e3OgoA/A5lHwgin2fk6Gi+q9Rl+scThVp5wP/Pwp8ocCvX6X0BO1bgUr7LurIfERGh5s2bW/fcfps20sUXS2U5o9kwpKQk6aabfJfHn8+fzp8vPfSQDLe7dP8gjR7t+QEAFtq9e7fef/99Pf3004qNjbU6DgD8DmUfCBL7c4u0M7uozLPm3xzKVYHLvxv35ftwfCvLviRrN+kzDGnaNCky0rMkvyzvTU31TZbISCkx0Tdj/ZHbLfXoUfYZ+gEDpF/+vgDACiNGjFBSUpJ69uxpdRQA+BPKPhAk1h3O9+oT1umW0o7791l4mw/PP7dZcJT6b8t+q1atlJaWplw/P69+Vq1bS3PmSDExJZrhN202z+umTpU6dJDq15datiz9zYLfioiQ7r3Xu/0DzmXBAmnPnrKXfbdbevdd32YCgBLat2+fJk+erCeffFLx8fFWxwGAP6HsA0Eg3+lW2vECeTtv/v3h/PO/yAtxET5q6KYpw1n6o/u89ceZfbfbrU2bNgU8x2nXXy+tXi0VHzd3htLt+qXMG82aSQsXSg888OsHH3/cU4jLyun07B/gL2+84d2NBLfbM8YZnvEHAH8bOXKk4uPj1dufXycBwAuUfSAIHMl3yRer2o/mu+Ty46ZmCVF2XRBrlzeV3+1yauvKRapRraq6dOmi9957T4cPH/ZZxnNJSUnRkSNH5HQ61axZM0VERFi3lL9Y8+ae3em3bJF69ZIuuECFdruKDENKTtY3dero4aZNpQ0bpLZtf//ee+7xLMEvy4oLu91z7csv982f449cLunLL70/YjAzU7LyhgyAsHTgwAFNmDBBffv2DfwRrQBQQpR9IAgU+PD59QIfbKB3Ln+pFuvVbvw2e4T+ed1fNGjQIO3fv18PP/ywUlJSdPXVV2vkyJHaunWr33bqT0lJkWmaOnLkiGJiYtS0aVPrduT/oyZNpLFjpf371bNrV1135ZXS4cMafNFFym3W7MyFPi5O+uij0l/LZvM8PjBtWtluFJREVpZ3qw5+68gR34wDACU0evRoRUVF6fHHH7c6CgCcFWUfCAIRPvxMjfDzw/AXJ0Urxl62axiSEiJtuq5ZPfXv31+rVq3S/v37NWnSJCUnJ+uFF15Q48aN1ahRI/Xr10/Lli2T09uZ4d9ISUmRpPKxSV8JZWRkqHbt2md/QYcO0gcfeGbqS/L8vt0uxcd7Zt2bNfNZzj/xVdGXOIIPQEAdPnxYb731lvr06aOkpCSr4wDAWVH2gSBQIdI3n6qRNs8Pf4qwGeqYWqFM7zUk3Vq7oozfzCanpKTo4Ycf1qxZs3T06FHNnj1b1113naZNm6Zrr71WKSkp6tq1qz799FNlZ2d7lf1MZX/Tpk0qLAz8/gHnY5qmnE6n9u7de+6yL3me4//qK6lFC897z7ThX/HvtW0rrVnjOf7Pn5KSfLdqoHJl34wDACUwZswYGYahvn37Wh0FAM6Jsg8EgSoxEarm5bPwhqRmlWN+V6T9pUFitDpcVKHEeQ15dt+/vU5FXVQh8qyvi42N1a233qoJEyZo3759WrNmjXr16qUNGzbo7rvvVnJystq3b68333xTe/bsKXXuP5b9Vq1aqbCwUGlpaaUey5+K/w4zMzPldDrPX/Yl6brrpHXrpG+/1e5rrtF+SWZMjGcWv1YtqW9fKT3ds8lf48b+jO8REeHZgLAEJw2cU9Wqnr0FACAAjh07pjfeeEO9e/dWcnKy1XEA4Jwo+0CQ+EtV756FNyW1So7xVZzzal4lRnfXS1Cl6F92iz/Da4q/AFWJsev++olqlBRd4vFtNpsuv/xyvfzyy9q4caN27dql0aNHy+12q2/fvkpNTVWrVq30/PPPa+3atSV6zj82NlYJCQmny36LFi1kGEa5XMpvmqZ27dolSSUr+8Uuu0zvXXONWlStKiMvTzp50nP83ahRUoMG/gl7No895t1O+na79OijUuTZbxABgC+NHTtWTqdTTz31lNVRAOC8KPtAkGhcKVrRdqNMs/uGTF0YH6FqsX46L/0s6iZEqUfjSrqvfoIaJkX9bu+BKJvUuFKUHmyYqH9dnKSa55jRL4natWurT58+WrhwoY4cOaLp06erSZMmGjt2rP7yl7+oVq1a6tWrl7788kvl55/9CMLfHr9XoUIFNWrUqNyV/eKZ/YyMDElSampqqd6/adMmXXLJJb6OVXodO0rVq5d9Ob9pSt27+zYTAJxFVlaWXn/9dT3yyCOqVq2a1XEA4Lwo+0CQiLQZurN2xVK/z+1yKTf7hFKzdvkh1fkZhqHUilG6s06C+rVI1gt/u0gJ33yqJ1skq1PtBF0YH+nzRwsSExN1zz33aNq0aTp06JAWL16su+++W/Pnz1eHDh2UnJx81mP9flv2Jc9z++VmR/4/yMjIUEpKimJjY0v1vnJT9iMipDfeKPv7Bw6ULrzQd3kA4BzeeOMN5eXl6emnn7Y6CgCUCGUfCCK1E6J0R52KshlnXhb/R4akuEi7vhn3nDq2u0ZLlizxd8RzcrvdKsjPU3RU4JZdR0ZGqm3bthozZox27NihzZs3a+DAgcrMzDzjsX7VqlX7U9nfsGGDXN4sN/cD0zTPvxP/GeTm5mr79u1qXl6ec+/c2XOkoFS6Gf6HH5ZefNE/mQDgD06ePKkxY8bo3//+t2rUqGF1HAAoEco+EGQaJUXrHw0SVeuXZe9/rEemacr45fcbJUXpocaVNPP9Sbryyit1yy236Isvvgh05NOKiookSVFRUZZc3zAMNW3aVAMGDNDq1avPeKzfokWLtG7dutPH+rVu3Vq5ublKT0+3JPOZ/HYZf2nLflpamkzTLB8z+8Uee0z6+GOpgucUh7PeVrHZPKsBXnxRmjTJd7v5A8B5vP3228rOztb/+3//z+ooAFBilH0gCNWIj9T9DRLVvXGSLq0ao8rRNsVFGMrPOqYD29JUM/+gHmtWWXfUSVBilF3x8fGaPXu2OnXqpM6dO+uDDz6wJHdBQYEkKTq65Bvx+dOZjvWrX7++jh07dvpYv/Hjx0uSVqxYYXHaPytL2d+4cePpmx7lyr33SgcOqOCtt7TlTCW+Zk1p+HApM1N67jmKPoCAyc3N1ahRo9StWzfVqlXL6jgAUGKB3a0LgE9ViYnQDTV/PdO+W7enNHXqVI0ZM0bxV/6+zEVHR2v69Ol65JFH1LVrV504cUJ9+vQJaN7i8+qtmtk/l+Jj/fbt26devXpp1apVmjt37umVED179tSnn36q2267TZ06ddJFF11kaV632629e/eWuuxv2rRJ9erVU1xcnH+CeSMuTotr11YH09S2RYtUPynJs1t/pUpSnTreH9MHAGUwYcIEHT16VP3797c6CgCUCjP7QAipU6eO7Ha7fvjhhzN+3G63a+LEierXr58ef/xxvfTSSyU6ks5XytvM/pmkpKTINE3Vq1fv9LF+N998s+rVq+fVsX6+ZBiGCgsL5XK5ylT2y9US/j+YN2+eUlNTVa9tW6l1a+myy6T69Sn6ACyRn5+vkSNH6sEHH1TdunWtjgMApULZB0JI7dq15XQ6z3lUnGEYGjlypIYNG6bnn39eTzzxhNxud0DyleeZ/WIpKSmS9LtN+tq0aaNDhw5pwYIF5zzW73//+985j/Xz2oED0muv6a5vvtEze/ZoqKRLfvpJ+mUvhJIIhrJ/8803+/yEBgAoi3fffVcHDx7Us88+a3UUACg1yj4QQorPW09LSztdrM/EMAwNGDBAb7/9tsaOHauHH35YTqfT7/mCZWZf0p925M/KytKuXbvOeaxfx44dlZycrM6dO5/xWL8yW7FCuucez3PrTz2ldlu26O7jx9VP0oV9+0o1anieY9+//5zDHDp0SIcOHSq3ZX/nzp1KT0/XzTffbHUUAFBhYaFeeeUV3XvvvWrQoIHVcQCg1Cj7QAgpLvtFRUXaunXreV/fs2dPTZs2TdOmTdNdd93l31lpBe/MfqtWrSTpTysmznas3/79+894rF+pl/ubpqfEt2kjzZzpeX7d7VaE261ISaf/XzxyRBo2TGrSRFq9+qzDbdq0SZLKbdmfP3++IiIi1K5dO6ujAICmTp2qn3/+WQMHDrQ6CgCUCWUfCCE1a9aUzeb5tN6wYUOJ3nPfffdp1qxZmj9/vjp06KCcnBy/5QuGmf34+HjFx8f/ruynpKSoRo0a53084nzH+jVq1Ej9+vU7fazfeT3zjDRkiOfn53u9yyXl5Eht20rffHPGl2zatEkxMTGqX7/++a9tgXnz5umqq65SQkKC1VEAhLmioiINGzZMXbp0UZMmTayOAwBlQtkHQkhkZKRq1KihpKSks27SdyYdO3bUggULtHbtWl1//fU6evSoX/IFw8y+5Cn3vy37kmcp/7nK/pnG+OOxftddd52mTZt2+li/rl276pNPPlF2dvafB5g2TRo1qnTBXS7PTYEOHaQz/B1u2rRJTZs2lb0cbnZXWFioRYsWqX379lZHAQB99NFH2rVrlwYNGmR1FAAoM8o+EGJSU1NVsWLFEs/sF2vTpo2WLl2qjIwMXXPNNdq3b5/PsxWX/fI8sy+du+yXZef94mP9JkyYoH379mnNmjXq1auXNmzYoL///e9KTk5W+/bt9eabb2rPnj2e5fsvv1y2s+RdLikrS3r33T99qDxvzrdy5UqdOnWK5/UBWM7lcmnYsGG6/fbb1aJFC6vjAECZUfaBEJOamirDMLRhw4ZSF9NWrVppxYoVysnJ0dVXX63t27f7NFvxMv5gndk/fPiwMjMzvRrbZrPp8ssvP32s386dOzVq1KjfHev3cMOG0tatntJfFm63NG6cp/j/wuVyafPmzeW27M+bN08pKSl8Yw3Acv/973+Vnp6uwYMHWx0FALxC2QdCTO3atZWbm6tjx47p559/LvX7GzZsqJUrVyo6OlpXX321Nm7c6LNswb6MX/rzJn3eqlOnjh5//HEtXLjw9LF+/yoqUskP0zuLvXulhQtP/3Lnzp3Ky8sr12W/ffv2p/ecAAAruN1uvfzyy7rlllt06aWXWh0HALzCd1VAiElNTdWxY8cklXyTvj+qVauWli9frgsvvFDXXnutVq1a5ZNswbBBn3Tmsl+zZk1VqVLF52X/t4qP9bsqPl6R3g5mt0tpaad/WZ534s/MzNTGjRtZwg/AcjNnzlRaWhqz+gBCAmUfCDGpqalyu91KSEgoc9mXpKpVq2rJkiVq3ry5bvz/7N15eEzXG8Dx78xkD0mEkFoSe2KLJNReqmKpLqhSaqfVhdbSqtq7qFaLKqookdpia2tpa6hWFPWrLSTULrEG2URC1pnz++OaSGSfmWQiPZ/nmYfc5dxzRzLy3vOe93TuzM6dO03u2+M0sn/79m30en3mNpVKVeQifUbLrWBfUanVytz9B8LDw6lUqVLm0oKlya5du1CpVHTu3NnSXZEk6T9MCMHMmTMJCAigdevWlu6OJEmSyWSwL0lljKenJwC1a9cuUkX+3Dg5OaHVaunYsSMvvPACmzZtMqm9x2nOfkZGBvHx8dm2l1iw7+Bgeht6PTg6Zn5pKM6nMqboXzHTarU8+eSTVKpUydJdkSTpP2z79u2cOHFCjupLklRmyGBfksoYDw8PQAlYTRnZN7C3t+fnn3+mT58+9OvXj+XLlxvdVlpaGhqNplQuDJFaRAAAIABJREFU/ZaVYfQ7t3n7165dIzo6ung7UKeOkoZvCp0OHjz4gdJbiV+n07Fr1y6Zwi9JkkUJIfj0009p37497du3t3R3JEmSzEIG+5JUxjg4OODm5oajoyMXL17MfQ33IrK2tmb16tW8+eabvP7663z11VdGtZOamlrq5+sDuLu7A7kH+wChoaHF24ERI7JV0jeKkxO8+CIAycnJXLhwoVQG+4cPHyY+Pl4G+5IkWZRWq+XIkSNyVF+SpDJFBvuSVAbVrFkzc765uarpq9VqFi1axNSpU/nggw+YNGlSkZf2S0tLK/Up/JD3yH7t2rVxcnIq/lT+F1+EypWNP1+jgZEjwd4egH///Re9Xo+Pj4+ZOmg+Wq2WChUq8OSTT1q6K5Ik/UcZRvVbt25Np06dLN0dSZIks5HBviSVQZ6eniQkJGBjY2OWVH4DlUrFp59+yty5c/niiy94++230RVhBPpxGdkvV64c9vb2OYJ9tVqNr69v8Qf71tYwZgwYO79epYI338z8Mjw8HJVKRaNGjczUQfPRarV07twZKysrS3dFkqT/qD///JODBw8ybdq0UlnXRJIkyVgy2JekMsjT05OrV6/SsGFDk4v05Wb8+PGsWLGCZcuWMXDgwMwq+wV5XEb2VSpVrsvvQQkW6fvgA+jSRamqX1SBgcq8/wfCwsKoXbs2jlkK9pUGsbGxHDp0SKbwS5JkUZ9++inNmzeXn0WSJJU5MtiXpDLI09OTK1eu0LRpU7OO7Gc1fPhwNm3axE8//UTPnj25f/9+gec8LiP7oKTy37x5M8d2f39/Ll68SEKWZe2KhZUV/PgjdO1auBF+jUZ5MLBsGQwalG1XaS3O9/vvvyOEoGvXrpbuiiRJZVxCmo5j0ckcuHmf/VH3ORqdTGxKBn/99Rd79+5l6tSpclRfkqQyRwb7klQGeXp6kpaWRu3atQkPDycjI6NYrvPSSy/x66+/8tdff9G1a1fu3LmT7/GPy8g+kO/IPlBsD1GycXSEbdtg3jyoWVPZ9kiVfp1KpTwMCAiAPXvg9ddzNFNag32tVouPjw9Vq1a1dFckSSqDhBBcupvGposJfHcqnl3X7nEg6j5/37zP79fu8f3pO/xyS/Dc8FE8/8ILlu6uJEmS2clgX5LKIM8HS65VqlSJ1NRUzp49W2zXCggIYPfu3Zw6dYqOHTvmGiAbPG4j+7ndi5eXF/b29iWTyg/KCP/YsXDxIuzcCf36ceGJJzhtZ8dxNzc21agB58+DVgu5LBcVHR3NrVu3Sl2wr9fr0Wq1Mm1WkqRikaEXbIlMZOPFu1y6m565Xf/gZeBcy4t2oz9i48VEUnX6HO1IkiQ9zmSwL0llkCHYNwTWxT0K3apVK/bu3cvNmzd56qmnuHz5cq7HlYWRfSsrK5o2bVpywb6BWq3M4V+zhm9696a/lxe/vPsubycmImrXzvO08PBwgFIX7IeFhXHr1i0Z7EuSZHY6vWDTxbucu6PUk8lv3RiNRikOeiUpnbXnE0jTFW2VGUmSpNJMBvuSVAa5uLjg7OxMTEwMNWvWLJGU8yZNmnDgwAEyMjJo164dZ86cyXFMamrqYxXs3759O9flBf38/Eo+2M+Fn58f8fHxXLlyJc9jwsPDsbW1pW7duiXYs4JptVocHR1p27atpbsiSVIZ88f1JC4npecb5D9KANHJOn65nFhc3ZIkSSpxMtiXpDLK09OTy5cv07Rp02KpyJ+b2rVrs3//flxcXHjqqac4evRotv1paWmPVRp/WlparnUI/P39OXPmTKGKEhYXIQR+fn4A+T54CA8Pp2HDhqVuaTutVsszzzzz2Dz8kSTp8ZCUric0JtWocwVwLiGNmJTiqXMjSZJU0mSwL0lllCHY9/X15fjx47mOUBeHqlWrsnfvXurUqUPHjh0JCQnJ3Pe4pfEDeRbp0+v1hIWFlXS3ADIrRj/xxBNUrlyZ0NDQPI8NDw/Hx8enpLpWKHfv3uXAgQMyhV+SJLMLi00x6XwVEBpjWhuSJEmlhQz2JamMyhrsR0dHExUVVWLXdnV1Zffu3bRs2ZJu3bqxfft24PEr0Ae5B/uNGjXC2traoqn8QghUKhX+/v55Bvt6vZ6TJ0+Wuvn6f/75JxkZGTLYlyTJrIQQHI1OLlL6fo42UB4YpOvl3H1Jkh5/MtiXpDIqaxo/lNBScVmUK1eOX375heeee45evXqxdu3aMjOyb2trS+PGjS0W7GddCzq/+gGXLl3i/v37pS7Y12q11KtXj9r5FBaUJEkqquQMwb0M04P0dD0kpOrM0CNJkiTLksG+JJVRnp6eJCUl4eTkhLOzc4kH+6AExRs2bGDw4MEMHDiQiIiIx2Zk39nZGRsbmzyXEvT39y81Rfpu3LjB7du3c+wrjZX4hRDs3LlTjupLkmR2qWYcjU+RVfklSSoDZLAvSWVUzZo1AbLN27cEKysrli9fzrhx47h06RKnTp0qsfoBplCpVHkuvwdKkH3y5ElSU40rBGUqw3vo7+8PkGsqf3h4OBUrVsTd3b1E+5afc+fOERkZKYN9SZLMzkpV8DGFbkttxsYkSZIsRAb7klRGeXp6ApR4Rf7cqNVq5s6di7u7O0ePHuW9995Dr9dbrD+FlV+w7+/vT3p6OqdOnSrhXmVP469VqxZOTk65ZhmEh4fTpEmTbMdbmlarxdbWlg4dOli6K5IklTH2VmrMFaOXt5a/IkuS9PiTn2SSVEa5ublhb2+fObJ//vx5kpKSLNYflUpFhQoV6NixI19//TUjRowgI6N0L2+UX7Dv4+ODWq3OtxJ+SVCr1fj6+uY5sl+aUvhBCfbbt2+Po6OjpbsiSVIZY6VW0dDFFlPifRVQs7w1jjLYlySpDJCfZJJURqlUKjw8PDKDfSFE5hxuS0lNTaVly5asWbOG1atX07dvX1JSSu8SR/kF+46Ojnh7e1ts3n7WqRB+fn45gv3k5GTOnz9fqoL95ORkQkJCZAq/JEnFxt/NzuRq/M3c7MzVHUmSJIuSwb4klWGGivwNGzbEysrKYvP2DQzV+AcMGMCWLVvYsWMHzz//PImJiRbtV17yC/bBckX6Hk3L9/f358KFC9y9ezdz2+nTp9Hr9aUq2P/rr79ISUmRwb4kScXmCQcrqthrjBrdV6Gk79dxejxWjZEkSSqIDPYlqQwzBPu2trY0bNjQ4sF+ampq5tJ7zz//PFqtlkOHDhEQEEBsbKxF+5YbQ7CfV0FBPz8/Tpw4YfHpCH5+fkD25RUNWRyNGze2SJ9yo9VqqVGjBg0aNLB0VyRJKqNUKhU9ajpho1EVKeBXAWoV9K7thLoU1TmRJEkyhQz2JakM8/T0JDIyEgBfX1+LFukDZWQ/69J7HTp0ICQkhEuXLtGhQwdu3Lhhwd7l5O7uTkpKSp6ZB/7+/iQnJ3P27NkS7ln2NH5vb29sbW2zpfKHh4dTu3ZtypUrV+J9y4tWq6Vbt26lqmBgidDrYfduGDQI2rUDX1945hkYPx4s8L0jSWWdq52G/nWdsdOoUBUiqV8FWKmhbx0n3B2sir+DkiRJJUQG+5JUhtWsWZO4uDiSkpJo2rQpYWFh6HQ6i/Un68i+gb+/P/v27SMhIYF27dpx8eJFC/UupypVqgDkmcrv6+sLUOKp/I8Gy9bW1vj4+GQL9sPCwkpVCn9kZCRnzpz5b6Xw63SwaBHUqwedO8P69XDgAJw4AXv2wMKF4O0NHTsqDwMkSTIbdwcrhnq7cPfscXQZ6ej1Ongk8Fc9eNV1tmGIlwue5WX6viRJZYsM9iWpDMu6/J6vr29m0TZLeXRk38Db25v9+/djZWVFu3btLF5IEIC7d6l/4ADTAfuPPoJZs+CXX5QA7gEXFxfq1Klj8Yr8oKTyZ33oUNoq8e/cuRONRkOnTp0s3ZWSkZwML78M774LERHKtkenexi+3rcPunSBb74p2T5KUhkXf+MqXw7qzrqRzxOxcxNPOFjjbKPGyUaNu72GNu72vNWoAr1rO1HJTo7oS5JU9shPNkkqw7IG+y1btgSUed3e3t4l3peMjAz0en2OkX0DT09P9u/fT9euXenQoQO//fYbrVq1KuFeAidPwrffQlAQT6SkMAXQbNgAKpUSnFWtCqNGweuvg5ubxYr0PVpHwM/PjxUrVpCSkkJSUhI3b94sVcG+VquldevWODs7W7orxU+ng/79Yft2yKPeQ47jAcaOBVtbePPN4u2fJP1HfP755zg7O/Pv8WNMGPMOQ7xcLN0lSZKkEiVH9iWpDKtatSpWVlZcvnyZihUrUqNGDYsV6UtLSwPIdWTfoHLlyoSEhNCoUSM6derE77//XlLdU3z7Lfj4wPLlkJKCCrABNDrdw1HYGzdg2jTw8oJ//sHf35/Q0FD0en2JdTO3Oe/+/v7odDpOnjyZmRlRWoL9tLQ0/vjjjxJJ4RdCkJKh5166Hp3elAW4TLBwIWzbpszVL6q331YeOEmSZJIrV66wcuVKWrVqha2tLb169bJ0lyRJkkqcDPYlqQzTaDRUr16dy5cvA8occ0sF+6mpqQB5juwbODs7s3PnTjp06MBzzz3Hjz/+WBLdg6++gtGjlZHYgqrr6/Vw9y506MDTdnbcvXuXS5culUw/89CkSRM0Gg2hoaGEh4dja2tLvXr1LNong4MHD5KYmFhswb4QgqtJ6WyNuMtXx2OZHx7HwpNxfHUilqAz8ZyMSyGjpAJ/vR7mzSvciH5uNBpYvDjndiEgJARefRWaNoXatZU/X3lFme9v7PUkqYwyjOrfuHGD7t27/zeyiiRJkh4hg31JKuMMy+9BCVfkv3ULPvsMXnwR2rTB4cUXWQXUCA/PNu89Nw4ODmzZsoXevXvTt29fAgMDi7evO3bABx8U7ZwHo/0tPvoIN0q+SN+jafz29vZ4e3tz7NgxwsPDadCgAVZWpWOmllarxc3NLXOJQHOKup/O8tN3WHs+gbN30nh0LP1Wso5fLiex8GQcx6KTzX79HHbuhKtXjT8/IwOCgpSHSaAE8YGBSiZJx46waROEhSl1AMLC4KeflOJ/devCkiUy6Jck4OrVq6xYsYIhQ4YQGhpK//79Ld0lSZIki5DBviSVZdHRDE5Lo8OBAzBjBr2vXKHGzZvcjIoqvmuGhUG/flC9OkyfrsxbPngQ2/376Qe0/OQTqFVLGUl/kNqfGxsbG9asWcPIkSMZMWIEc+fOLb4+f/opqI34ONTpUCcm8r6TU4kW6ctr6To/P7/Mkf3SksIPSrDftWtX1Ma8x/mIuJvGmnMJxKUqD49yS5o3hL6pOsGua/fYc/1ejgclZhUYCKY+ZElJgR9/VB4ovfUWjBgBFy4o+/Iq8hcRoRw7dCikp5t2fUl6zM2ePZvy5ctjb29PuXLleO655yzdJUmSJIuQwb4klUX/+x8MHAhVqzLs4EFGXL0Kn3+Oz+rVHAIc2rVTgpJkM490btsGLVoogUpGRo45y9aGv1y9Ch9+qIxI3rmTZ3MajYbFixczadIk3n//faZMmWL+QC0sDA4eNG5+NYBez2upqRw/csS8/SpAbu+Dv78/YWFhhIeH4+PjU6L9ycvNmzc5fvy42VP4b97P4MdLd9GJRxfTyt8/t5M5dLsYR/gvXix4GkhBrKwgMhLGjYNly5RtBX3fG/avXq0E/XKEX/qPun79Ot9//z3jxo3jp59+okePHjg4OFi6W5IkSRYhg31JKkv0epgwAVq3hg0bICMDFQ+C7PR0VA8C2nIREcpoob+/aSnHWf3+O7z0kjJaX5hgR69X1hx//nl4MJ8/NyqVilmzZvHll18ya9YsRo8ebd5ieEuXmjwS65qaSvX//Q9x8aIyAhsXV6zBVn4j+8nJydy/f7/UjOzv2rULlUpFly5dzNrujiuJ6Ix8i0Nu3OduWv5TSYoqPT2diIgI7sfEmKfBsDCl0F9Rv4+EgBUrlJ9/SfoPmj17No6OjjzzzDP8+++/MoVfkqT/tNIxoVOSJNMJoSzZ9f33ytf5BNxqQwBx4QK0bAmHD0O1asZfOzYWevVS+lCU4ESnU0bVJ0+GAtL0J0yYQIUKFXjjjTe4c+cOQUFBWFtb53tOoRw9avJIrAC+T0pS5k0b+Pgoa6z37w8lNKrk6+ub+ffSEuxrtVqaNWuGm5ub2dqMup/OrWTTgvXjsSm0f8Kx0McnJSVx+fJlLl++zJUrVzL/bvj6xo0b6PV6/ge0NKlnKD9Dx48rxfoKqG+RK7Ua5s9XptNI0n/IjRs3WLZsGVOmTGH79u24urrSuXNnS3dLkiTJYmSwL0llxcKFDwP9wsrIgOhoePZZOHbM+BHuoCBlSoAxI+56vTK6/vHHUK5cvoe+9tpruLi48Oqrr5KQkMDGjRtNT8/MZxqBSU6ehNdeU1Kxv/zS7Gun55bG7+LiQoUKFUhOTuaJJ54w6/WModPp2LVrF2+99ZZZ2z0WrSyLaGzuhABCo1NoW8UBjVqFEILbt29nC+IfDejj4+MzzzescuHp6UmdOnXo2LEjnp6eeHp64rV8OeLnn1GZ8gApI0NJ4zeWXg///KM8MMjyAEiSyrovv/wSe3t73nnnHfz8/Ojdu3eBK8BIkiSVZTLYl6SyID1dKTJnjIwMCA+H335TKucXlV6vPGgwJbX+/n1Ytw5Gjizw0JdffhknJyd69epFt27d2L59e/Ylle7fh+BgZe7y1avKtAIXF2jTRpnL/GjwY4ZR91yT6g3vR2Kict1r12DmTJOvBXmn8YOykoFer8/3mJJy9OhRYmNjzT5f/+ydNKMDfYNknaDfm+8StncXV65cISUlJXOfo6Mjnp6eeHh40LJlS/r27YuHh0dmQF+1alU0Gk3uDVesqFTMN4WDgzK1xZhRfQMrK1i1Sgb70n/GzZs3Wbp0KR9++CFnzpwhMjJSpvBLkvSfJ4N9SSoLtmwBU+YKazRKwG5MsL9vHzxY2s8ky5YVKtgH6NKlC7t376Z79+507NgRrVZLZQcHmDFDyW5ITASV6uGUgmvX4MwZ5RotWypZBF27Kvtq1VLmR5sSWBXGZ59BlSrwzjvFepnU1FRSUlIQQlg84NdqtTg7O9OypcmJ7Zn0QpCmN089hPikZBwdHWnZsiXOzs44OTnh7OyMvb09Go0GlUqFSqUiKSmJ06dPc+bMGVQqFWq1OnPfoy+1Ws3QatWofOPGw+kyRbk/lYp4V1cq3LhhWlEdvV75vpek/4ivvvoKGxsbxowZw4wZM3jiiSdo3769pbslSZJkUTLYl6Sy4NtvjZ/fC8p5u3crlcTr1CnauRERxl0zKyHg0qUindK6dWv27t1Lly5d6Nm6NSG2tticO/fwPXg00DKkVR8+rExbWLgQRo1Slir76SfT76Ew3n8fBgwAV1eTm8otjT8lJYW4uDj0ej2RkZHUqlXL5OuYQqvV0rlzZ6xMXYouC3PWPbSxsyUlJYXk5GRu3ryJECLXl16vz3NfbvtPpaay2oiO6oB7QvD3tWt0N/Xm9Hq4d8/UViTpsXDr1i2+++473n//fcqXL8/GjRvp169f3hk4kiRJ/xEy2JeksuDYMfOMTIeFFT3Yv3cv+yi6sYxYBtDHx4cDWi1pLVqgLuza4ob0+tGjlRoBD5Yo5MaNIl+/yNLTlfoG48eb1ExeI/anT5/OXKkgNDTUosF+XFwc//zzD8sMS8eZiUatwkoFGWYI+hd/8zU1yxfTfN6PP4aPPir88Wo1GrUap927eWH1avjhB9MKR2o0yvQVSfoPmDNnDlZWVowdO5a9e/dy8+ZN+skClZIkSXLpPUl67AkBSUnmacuYYnVOTuYZbi2gOF9e6ixfjrdOZ9yTy9deg+vXYcwY5YFFSTC1vkE+wsPDAahSpQrHjh0rlmsU1u7du9Hr9XQ1TJcwo5rlrXOvk1AEaSnJvNKtEx9//DHHjh3LNVPCJNOnwxdfKH8vKLNBowFHRyW7pkMHZZ69qQ/vhICmTU1rQ5IeA7dv32bx4sW8++67uLq6EhwcTO3atWnRooWluyZJkmRxMtiXpMedSgW2tuZpy5hidQ0bmnxZoVZDo0ZFP/HuXQgMRGVs8CyEMo9//HhlDn9xp3wKoVRZP3vWDE3lDE7Dw8OpVasW/v7+hIaGmnwNU2i1Who3bkz16tXN3ra/m71JBfp0GRmE79hMRsp9vv76a5o1a4aHhwdvv/02O3bsyFasz2gqFUycqFTF79dPCfjVarC2Bmtr0gzHubrChx/Cv/8qgT4o2Sam/kyr1TBsmGltSNJjYN68eajVasaNG0daWho//vgj/fr1s3jNEkmSpNJABvuSVBZUrWqedqpVK/o5/v7KmvJq4z9OVHo936JUby+SNWvAlMBMp4PvvlNG2jdvhs6dS2aEPzbWpNPz+iU2PDycJk2aWDzYF0Kg1WrNXoUf4PLly0wcMZD4G1cQwriHPBorKw5uDOTYsWNkZGQwaNAgXnzxRbRaLd27d6dSpUr07t2boKAgoqOjTetwixbKyhA3bsA33yhLMY4cyZa6dfm8aVOIilJWacj6UMTFBQYNMn4pTCsreOUVcHMzre+SVMrFxMSwaNEi3nnnHSpWrMjOnTuJj4+XVfglSZIekMG+JJUFw4ebFGwD4OGhLE9XVCoVvPuuSanp9x0cmB8RQfPmzWndujXr1q0jLS2t4BMDA42+Zqa4ONi5U0mj3r4dPv8cHqxRb8KM6fyZO2X8gbCwMJo0aYKfnx9RUVHcvHmzWK5TkPDwcKKiosyawn///n1mzJiBt7c3Bw7sp056NCqVcd/zTVxt+ffQAcaMGUNGRgarV69mxYoVPPvss4SEhDBlyhRu3LjB8OHDqVKlCu3atWP27NmcPn3a+HR/NzelTsTs2bBoESf69mVRdDTktQb4uHFKpklRHz6pVMrr/feN66ckPUbmzZsHwPgHdVDWr19Po0aNaNy4sSW7JUmSVGrIYF+SyoIRI0wL9tVqZUk4Y9vo318JkI1Mg3eYMYMzly6xZcsWHB0dGTBgAB4eHsyYMYOoqKi8T7x61fTAWaVS5u2DMiI6cSJcucKuUaP4BdA1aqQULfT3N+06WRVDNf7Y2FiioqIyg33AYqP7Wq0WBwcH2rVrZ3JbQgg2btyIt7c3X3zxBWPHjuXs2bOM7NmVgOqORW6vVnlrunmUw8nJifnz5xMTE8PkyZNRq9UsXryYTp06ERYWxqpVq4iKimL58uVUqlSJjz/+mIYNG1K/fn3Gjx9PSEgI6YUtCpmLpk2bcuPGDWLyWjKzQQPYuPFh8F4YhuNWr1bm/UtSGRYbG8vChQsZNWoUlSpV4v79+2zdulWO6kuSJGUhg31JKgvc3aFvX+OCbZVKGV00ZX6vg4MyOm5nV7Q+qFTKfOb330ej0dCjRw92797NqVOneOmll5g7dy4eHh7079+fv//+O+eoqjnmVqvVOVcCsLIi+N49PmraFM3Jk3DhAhw9Cu3amT6vv2pV8PY2qYnc0vgNxfmaNGlCrVq1cHZ2tmiw37FjR+zs7Exq58SJE3Ts2JFXXnkFPz8/Tp06xeeff0758uUBaO5mzwue5bAqIBY27G5a0ZaX6zihyfL+lStXjs8++4yYmBg+++wz7O3tWb9+PfXr12fw4ME0btyYLVu2EBsbyy+//MIzzzzD+vXr6dixI5UrV2bAgAFs2LCBhISEIt2bj48PoGRj5OnFF5Vsk8L8XGk0Sj2AH39UUvglqYz7+uuv0ev1vP8gi2X79u3cu3dPVuGXJEnKQgb7klRWLFwINWsWaZ5vZuL9+vVQsaJp12/SBPbtQ7i6UmAdcUPgMnw4rFqVI6OgYcOGLF68mOvXrzNnzhyOHDlC27Ztad68OStXriTZEJw7O5vWZ1Dm7efSzt9//03btm2zb3znHdOqpKvVSip3MRQCDA8Px8bGhnr16qFSqfDz87NIsJ+YmMj+/ftNmq8fExPDW2+9hb+/P7du3UKr1bJ161bq1q2b49hGrnaMbuJK5+qOVLDN+V+ajVrFk5XtGdmgAs96lM8W6Gfl4ODA5MmTuX37NnPnzsXZ2Zldu3bRsmVLWrRoQUhICN27d2fp0qVcu3aNw4cP88477/Dvv//Sr18/KlWqREBAAAsWLCAiIiJ748eOwYwZMGoUvPUWTJlCvWvXsLO1zT/YB+jeXSno+OGHmRkheo2GNEAYftZdXJS0/bNnoVevAt9fSXrcxcfHs2DBAt5++23cHtSmCA4OpkWLFtQp6vKxkiRJZZmQJMm80tKE2LxZiEGDhOjWTYguXYTo31+IwEAh7t8v3mtfvixE/fpCaDRCKAnueb7SQaSBSPj2W7N24begIDENRIqLixAg9FZWIhVEukol0g3X79xZiG3bhNDrC9WmTqcTO3bsEN27dxeAqFixovjwww/Fva5dhbCyKvBeC3yFhma73u3btwUg1q5dm70jqalCVKpk/HWsrIS4dcvk9/jDDz8UtWvXzrbt9ddfF02bNs38ety4cTmOKQlbt24VgDh//nyRz01PTxcLFy4UFSpUEE5OTmLevHkiLS2t0Ofr9XoRfT9dRN5NFZcSUsWNpDSRpivc99ijkpOTxaJFi0TFihUFIABRt25dsWrVqhx9unz5sli0aJHo2rWrsLa2FoDwbdRIbHj+eZHYoMHDf3tra+X14Hv2sq2tWN2ypRBJSYXrVGqqEJs2iWN9+ohZINKmTBFi1Cghhg4VondvIV55RYjRo4UICSn0z5YkPY6mT58u7O3txc2bN4UQQsTHxwsbGxsxb948C/dMkiSpdJHBviSZS0KCEB99JETlyg9/uTcEeYbg28lJiPHjhYiKKr5+xMUJ8c47Qjg6CqFSKa+sAeeDvlypV0+0BTFlyhSzXTojI0M0bNhQdOrUSXno8eOPImb4cLEUhLZePTGvYkUhjAgCszp//rwYO3ascHJyEgGP3lsRXzqVSuiaNctxjS1btghAREbIEuBCAAAgAElEQVRG5uzAunXGX3PmTJPu3WDSpEk5AvlWrVqJgQMHZn69atUqAYg7d+6Y5ZqF9fbbb4s6deoU+bw//vhDNG7cWKhUKvHaa6+JW2Z4KGIOqampYunSpcLd3T0z6Hd3dxfz5s0Td+/ezXF8QkKC+PmHH8RJd/fMh2p5fv89eImGDYW4dq3QfQqeN098DkL/4IGasLJSfs7V6oefO15eQnz7rfKAQJLKkPj4eOHs7CzGjRuXuS0wMFCoVCpx/fp1C/ZMkiSp9JHBviSZw9WrQjRoUKgRdaHRCPHEE0KEhxdvnxIThVi6VIj27YWoV08IDw8hfH2FGDNGiDNnhE6nExqNRjg4OIgbN26Y5ZJBQUECEIcOHcrcdvz4cQGIPn36iMaNG5vlOkIIkZiYKL5bvFhctrZWAiYjX+MqVRLBwcFCn2UkdMKECaJatWrZtmUzZ06Rr3OjVy+zjbZOmjRJ1KpVK/NrnU4nypUrJ2bPnp257eTJkwIQISEhZrlmYej1elGrVi0xatSoQp8TEREhevfuLQDRpk0bceTIkWLsofHS0tJEYGCgqF69ugCESqUS5cuXF5MnT84cXRRCKNk7LVoU7rPgwUtvZaX8fBbmAUdoqLhXvny+DxEEPHzQ16GDEPHxxfa+SFJJ++ijj4SdnZ2IyvLQvHPnzuLpp5+2YK8kSZJKJzlnX5JMFRMD7dvD+fOFm8+t08Ht28o5Fy8WX7/KlYORI2HvXjh3Di5fhtBQmD8fvLxQq9X4+fmh1+sZOXIkQgiTLpeamsr06dPp3bs3Tz75ZOZ2wxJ6er0eW1tbk66RVbly5XjzrbeosWKFccVHNBrSatTgSsuW9O/fn1atWrFv3z4ADhw4QNu2bfNcz5733lNqDTg6IiDXGgV6w8vamqU1a+J34ADXDFX/TfRovy5fvkxSUlJm0TcALy8v7OzsOHbsmFmuWRgXLlwgIiKiUPP17927x/Tp02nQoAEHDx5kzZo17N+/n2bNmpVAT4vO2tqaYcOGERERwapVq6hZsyaJiYnMnj0bDw8P3njjDc6dO6fMyz9ypEi1HVQZGYjr1xE9eyqhel5On4YOHbC7d48CK3MYwv79+6Fbt5xFKCXpMZSQkMD8+fN54403cHd3B+D27dv88ccfsgq/JElSLmSwL0mmGjIErlyBjCKsyq7Twd278MIL+f9yX8yefPJJKleuzC+//EJQUJBJbS1ZsoRr164xc+bMbNsNwb5Op8MmrzXFTaAaNEgpXlYUVlbg7IzNnj1s/uUX9uzZg06no3379vTo0YPDhw/nLM73qEGD0EdFMcnVlZsuLjn3V6/OgmrVaOTigu/69djY2tKrV6+HxQXNKGslfgMrKyt8fHxKtEifVqvFxsaGp59+Os9jhBCsX78eb29vZs+ezfjx4zl79iwDBgzI++FKKWJlZcWgQYM4f/4869ato06dOqSlpREUFERHLy90QUGg1xfYzqNUOh2qgweZ06cPu3btIjU1NfsB6enw7LNw/z7qorSv08HhwzBuXJH7JEmlzYIFC0hOTuaDDz7I3LZp0ybUajW9e/e2YM8kSZJKJxnsS5Ipzp2D334zrkK7TqeM1P35p/n7VUi+vr5cv36dQYMGMXbsWK5cuWJUO4mJicycOZNhw4bh/ciycoagRafTmXVkP5tZs5QX5LsagTCsWV6jBhw6BA+qNj/99NMcOnSINWvW8L///Y/09HQOHjyY9xroD+w5dIjZcXFEbt8OkZHK8nyHDsGFC6gvX2ZAaCjC1ZV+/fqxbNkyTp06ZZYsCiBbG2FhYVSoUIGqVatmO8bf37/Eg/2nnnqKcuXK5br/+PHjdOjQgf79+9OsWTP+/fdfPvvsszyPL800Gg39+/fn9OnTbNy4kbp16zICTHp4p1OpqL1jB127dqVSpUr06dOH1atXExsbC9u2Kdk5RXmoaKDXQ2AgxMYa3TdJsrS7d+/y9ddfM3LkyGyfdcHBwXTp0oWKpq4oI0mSVAbJYF+STLFkiWnLqFlZwaJF5utPEfn6+qLT6RgxYgTOzs6MGDECvRGjkvPmzSMxMZEZM2bk2GcY2c/IyCiWkX1ACeAnTVKmKQwbpqxLDmQAGSpV5hKDZ4B17dtzZtOmzEDfQK1WM2DAAMaMGYO1tTW//vordevW5auvviIlJSXXy65cuZL69evTpm1b8PQEf3948kmlbbUaNzc3fv/9d3Q6He+99x7z589nzZo1fP311ybebvYR8PDwcJo0aZJju5+fH6dPny6WbIJHpaSksGfPnlxT+GNiYnjzzTdp1qwZMTEx7Nq1iy1btpSJJbLUajV9+vQhPCyMyc7OmLKookYIeqWlcXLfPiZOnMiVK1cYPHgwlStXJnTECPSmZD7odLBypQm9kyTLWrRoEffu3WPixImZ265cucKBAwdkCr8kSVIeZLAvScbS6WD5ctPWXc/IUEbsoqPN168iaNy4MWq1mgsXLhAYGMju3btZsmRJkdqIjo5mzpw5jB49mho1auTYXyIj+wa+vrBsGURFQVAQ8ypUYG/btqi//proLVtYP3Uq48+coUHz5gQEBLB161Z0j/z7HTp0iHbt2nHhwgUGDhzIpEmTaNCgAevXr882mp6QkMBPP/3E0KFD800/r1GjBr///jvR0dGsWLGCsWPHMmHCBHbt2mW22zYE+4/y8/NDp9NlpvkXp3379pGcnJwt2M/IyGDhwoXUq1eP9evXM2/ePE6cOEHnzp2LvT8lTZ2YiF1CgsntqDIyaGRvz9SpU/nnn3+4ceMGaz/5BL+EBNSmZITo9fDddyb3T5IsITExkblz5/Laa69RrVq1zO0bNmzAzs6OHj16WLB3kiRJpZcM9iXJWPHxkJhoejt6vTLn3wIcHBzw8vLi+PHjBAQE8NZbbzFhwgQuXLhQ6DZmzZqFWq1m0qRJue5PS0vDGnC4dw8nlapkahS4uMCQIcyxsuKfZ5+FsWNx69GDjz/5hCtXrrB27Vru3btHz549M0fv4+LiEELw999/07ZtWypXrsyiRYs4efIkPj4+OYr4bdy4kdTUVAYPHlxgd7y8vNBqtZw5c4YTJ04QEBBAv379ivQ+P8rw4CE1NZVz587lGuw3adIEjUZTIqn8Wq2WatWq0ahRIwD++OMPfH19GTNmDH369OH8+fOZWRNlkjk+CwyyPDR44okn6Ne8uXnajYw0qp6AJFnat99+S2JiIh8+Up8lODiY559/nvLly1uoZ5IkSaWbDPYlyVj37pmvLXMGCkXUtGlTjh8/DsCXX36Ju7s7w4YNyzHinZvLly+zePFiJkyYkHO+ZFISLF1K53HjSAN+PnCANdu2gaMjvPEGnDhRDHfzaBeScswHt7Gx4dVXX+XgwYMcPnyY9u3bM3XqVKpVq0bfvn2Jjo7OVpzP29ubrVu3Zivi99JLL/Hdd9/RpUuXbKNM+fH392f79u0cPHgQKysrKlWqRI8ePUg04t8+aybB6dOn0el0uQb7dnZ2NGzYsMSC/W7duhEZGclLL71EQEAALi4uHDlyhGXLluHm5lbsfbAoR0fztfVoDQNzfT7o9XD/vnnakqQSkpSUxJw5cxgxYkS27LGzZ88SGhoqU/glSZLyIYN9STKWOUcSnJzM11YRtfD2psrRo+h/+IFyP//M1jff5MT+/cyfP7/Acz/66CNcXFwYO3bsw41CwMyZUKUKvPUWzjduZD8pOVkpFubrC23agAmj2/nR6XQkJyfnW/ytefPm/PDDD1y7do1p06bxxx9/APDJJ5+wceNG0tPTM4/NWsTv4MGDmQF0QUX8smrfvj2bN29m165dNGrUiKtXrzJ48GCj6iQYGFL0GzdunOt+Pz+/Yl9+78qVK/z777/cuXOHBg0acOjQIdatW8e+ffvw9/cv1muXGs7OOYN0Y6hU4OGRfZu5PmvUanBwME9bklRCvvvuO+7evZsjeyw4OJjy5cvTvXt3C/VMkiTpMSAkSTKOTieEq6thNWvjX1ZWQsTGlnz/jx8X4o03RIaNTY4+pVpZicVqtbiwdWuep588eVKo1WqxcOHChxszMoQYMKDw967RCFGhghBHj5r99hISEgQgNmzYUOhzhg0bJjw8PESHDh0EIKpVqyY+/fRTcfPmzWzHvffee8Le3l6UK1dOODs7iy+//FIkJycX+jpr164VKpVKvPjii0KlUokZM2YU+lwhhJg6darw8PAQQggxYcIE4enpmeexX3/9tbCzsxPp6elFukZh6fV68dprrwlA2NjYiClTpoikpKRiuVapN2aM8vNs7GeBRiPEs8/mbPfCBdM/Z0CImjVL/j2RJBMkJSUJNzc3MXLkyGzb9Xq98PLyEoMHD7ZQzyRJkh4PcmRfkoylVsObb5pejb9vX3B1NV+/CpKRoaTR+/rCihVoHlTLz8omI4PX9Xrq9OiB/t13cy1COHXqVDw8PBg5cuTDjePHw7p1he+LTgd370KXLsp8YjO692CahWMR0qv/97//0b17d0JCQjhx4gTdu3dn1qxZeHh4MGjQIA4dOkRGRgbr1q1j2LBhXLp0KbOIn7e3N8HBwYVaVu/VV19l4cKFbNu2jU6dOvHxxx/z888/F7qfWdP4w8PD8fHxyfNYf39/UlJSOHPmTKHbL6zQ0FDat2/P8uXLcXV15fTp08ycObNI73mZ8tZbxi2NZ6DToXvrrZzb69SBp54y7bNGrVb6J0mPkSVLlhAfH59jVP/48eOcPXtWpvBLkiQVxNJPGyTpsXb5shAqlWmjbQcOlFx/MzKE6NGjSH3WgxD9+imZDA8cPHhQAGL16tUP2z582LQRzZdeMuutnjt3TgAiJCSkUMfHxsYKQKxatSrH9jlz5ohatWoJQNSvX18A4kCWf7czZ86IF198UQCiRYsW4q+//irUNT/99FMBCD8/P+Ho6CjCw8MLdd60adMyR/arVasmJk+enOexhgyHH374oVBtF8bt27fFyJEjhUqlEg0aNBAODg7ik08+MVv7j7UuXZTv5yL+DKSBuADCq25dERQUlDMTY+NG0z5nrK2FiI62zHsiSUa4d++eqFy5shgxYkSOfRMmTBCVKlUSaWlpFuiZJEnS40OO7EuSKTw84JVXjBtxs7JS1mRv3dr8/crLhAnKUn+FGH02UAFi/XqYMQMAIQQffvghTZo0yT6q8u23yj0ZQ6eDLVvg0fn9JkhKSgLId85+Vn///TdAtuJ8AK6urrz33nucP3+ebdu2kfCgUnrPnj2ZNm0a169fx8vLK9cifufOncv3mlOmTGHcuHGEhoZSsWJFevToQVxcXKH6K4QgLi6O69ev51qcz8DJyYk6deqYpUhfeno633zzDfXq1WPjxo3Mnz+fb7/9lvv372dbcu8/bdUqqFq1SD8LerWaZODi11/j3agRQ4cOxcvLi8DAwId1I3r2VD5vjPmsUath6FCoVKno50qShSxdupTY2FgmT56cbbter2f9+vX06dOn7K7uIUmSZCYy2JckU33/PTRsWKRfwtOBNBcX2LpVKchVEqKiYMGCIgX6BipAfPklxMaya9cu9u7dy6xZs9AY7jkuTknfNyWFGZT30kyKGuwfOHAAd3d3atWqlet+jUZDmzZtiI+PZ+LEibzyyivMnz8fT09P+vbty759++jQoUNmEb8jR47QqFEj3n333TyL+KlUKubMmcPQoUO5fv06MTExvPLKK2QU8D4a0vgNxfnyC/ZBSeU3Ndj//fff8fX1Zdy4cfTr149z587x7rvvsnv3bipVqkSzZs1Mar/MqFIF/voLPD0L95lgZQXOzjwD3KlalS1bthAaGoqfnx8jRoygXr16LFu2jFS9HnbsAAcHdEX5zNBooFkzKETBTUkqLZKTk/nyyy8ZPHgwtWvXzrbv4MGDXL16lX79+lmod5IkSY8PGexLkqnKlYOQEGjRQgnc8/lFXA8IlYooOztaC0FkamqJdZPvvzcq0DcQaWnoV65k0qRJtG3blueee+7hzp07IZe5/0Wi18OGDaa1kYUxwX7btm2zzYd/VHBwMHq9nvHjx7Nw4UKuX7/O/PnzCQsLo3379vj5+REYGEivXr04e/Ysn376KUFBQdStW5evvvqKlJSUHG2q1Wq+//57XnjhBZKTk9mzZw8TJ04ssL9CCMLDw7G2tqZ+/fr5Huvn50doaKhRVf8vXbpEr1696NKlC66urhw9epQlS5ZkLqWn1Wrp0qULarX87yRTzZpw+DC8/z64uCjbsrw/+gcvYWcHr72G+vhxoqpW5cSD5Sh9fX3ZvHkz4eHhtGrVijfffJN69eqxOCSE1F27SLK2LjjgN3wWtWmj/HzKKvzSY+T7778nOjqaKVOm5NgXHBxM9erVadeunQV6JkmS9Jix8DQCSSo7UlKEWLxYCG/vh1X2rayU+bvW1kKAiLa3F5+5uIjr//4r6tSpIxo2bCji4+OLv2/p6UJUqWLSnF8diHgXF6ECsW/fvuztf/ONEGq16dXC3dzMdssbN24UgLhz506Bx6ampgo7Ozsxb968fI/z9/cXPXr0yLFdp9OJnTt3iueff16oVCrh6uoqJkyYICIiIsTt27fFqFGjhEajEZ6enmLdunVCl6X+gUFycrJ45plnhJ2dXYFz7GfMmCGqV68uRo4cKXx8fAq8vx07dghAXLhwocBjDRITE8XkyZOFra2tqF69uggODhZ6vT7bMbdu3cq1zoGURXKyEKtXC9G7txBPPSVE69YiqlUrMQrEhWPHMg/r1q2beP7553Nt4t9//xUDBgwQarVaVK1aVTxdv77YVKuWEM7OQoDIUKmEDpSfQcNqAPXqCbFwofK5JEmPkeTkZFG1alUxZMiQHPvS09NF5cqVxXvvvVfyHZMkSXoMyWBfksxNrxdi3z4h3n9fiKFDhRg8WIixY4X45RdxKixMqFQqsWTJEnHmzBlRoUIF0alTp+IvMmSupbtA9O/YMWf7c+caVZQsx6tCBbPdcmBgoAAKteScoeDgP//8k+cxJ06cEIDYsmVLvm1dvHhRvPfee8LFxSVzeb3ff/9dnD59WvTo0UMA4sknn8y1iN/du3dF8+bNhZ2dnbCxsRGHDh3K9RqGYL9169ZiwIABBd7fzZs3BSA2bdpU4LF6vV6sWbNGVK1aVdja2opp06bluZTe6tWrBZBjaUIpf4mJicLKykosXrw4c9vEiRNFjRo18j3v7NmzYsiQIQIQtra24psvvhApy5aJXR4e4kCVKkL06SPEqFFC7NmjfA5J0mNo4cKFQq1Wi3PnzuXYt3PnTgGII0eOWKBnkiRJjx8Z7EtSCevXr5+oUaOGSElJESEhIcLa2loMHz48x6ipWR05YrZg/4MXXsjZ/sqV5mm/Th2z3fKCBQuEnZ1doY6dO3eusLe3z/ehy9ixY0XlypUL/WAmKSlJLFu2TDRp0kQAwtvbWyxatEj8+uuvolmzZgIQvXr1EmfPns12XkxMjPD29hY2NjbC3d1dREVFCSGESE7XiUO37ouVp+PErAMRYtqfZ8WErYfE59v2i6h7BT/QqFq1ar5V+4UQ4ujRo6Jt27YCEL179xYRERH5Hj9gwADh7+9f4LWlnNq1aydeyrICxdq1awUg4uLiCjy3devWolatWsLKykq4ubmJGjVqyPXGpTIhJSVFVKtWTQwcODDX/cOGDRN169Yt3v8vJUmSyhA5yVKSStj06dO5du0agYGBdOjQgRUrVhAYGMgXX3xRfBe1sTFbU5u3b2fv3r3ZNz79tOmFBq2soGtX09rIIikpqUjz9Z988sk8KzunpaWxZs0aBg4cWOjqz46Ojrz++uucOHGCkJAQGjVqxJgxY+jfvz9t2rThq6++yrWIX8WKFdm9ezdubm7ExMTwcv8B/BJxh4Un4/jj+j1uJutQ2ZfDwcUV1xq1oFo9gs7eIehMPBF3866b4Ofnx7Fjx3Ldd/v2bV5//XWaN2/OnTt3+OOPP9i8eTM1a9bMsz29Xs/OnTtlFX4jBQQE8Oeff6LT6QDw8fEBHhZdzI+VlRVt27bl/PnzvPTSS1y9epVNmzYxa9Ys7t69W6z9lqTiFBgYSFRUFFOnTs2xLzU1lZ9++on+/fvnW1tFkiRJekgG+5JUwho0aED//v2ZNWsWqampDBo0iBkzZjB58mQ2mLFAXTaVK5ulGaFSUb9NG4YNG0ZiYuLDHTVrwrPPGrcsmEFGBrz9tsl9NChssC+EyCzOl5dff/2VmJgYhg4dWuR+qFQqOnTowObNm4mIiGD06NEEBwczYcIEvL29GTBgQI4iftWqVSMkJIQa9RvSevxswuNS0eVVW1GlfIzfStax4eJdQmOScz3MUKQvq/T0dObPn0/9+vXZvHkzCxYs4Pjx4zzzzDMF3texY8eIiYmRwb6RAgICuHPnTua/iZeXFzY2NplF+vKTnp6OtbU1NWvW5LvvvsPa2prmzZvz8ccf4+npySeffMKdO3eK+xYkyaxSU1P5/PPP6devH15eXjn279ixg4SEhOxLvkqSJEn5ksG+JFnA9OnTuXHjBsuXLwdgxowZDBw4kCFDhmSu925WVarAU0+ZFIzrVCpU3brx7erV3L59mwkTJmQ/YNQoeDBKWWRqNbRtC40aGd2/RxU22L906RK3bt3KN9hfuXIlzZo1K3CJu4LUqFGDzz77jKtXrxIUFERcXBw//PADFStWpHHjxkyaNAlvb2+Cg4Nx96jJmDU7cXGvjkpd8L+b4VnAzqv3OBWXs+q/v78/t27dIioqCoBdu3bRtGlT3nvvPfr378/58+cZPXo0VoVcH16r1eLk5ESrVq0Kff/SQy1atKBcuXLs3r0bAGtraxo2bEhYWFiB5xqCfYD4+HjS09MZM2YMly5dYsiQIXz++ed4enoyffp04uLiivU+JMlcgoKCuHbtWq6j+qBU4W/atCkNGjQo4Z5JkiQ9vmSwL0kW4OXlxauvvsqsWbNISUlBpVKxfPlyWrRoQY8ePbh48aL5L/rOO8YH44BGCBg9mtq1azN37lyWLl3Kzp07Hx7QrRsEBCCK+kBBpVIeQnz5pdF9y01hg/0DBw4A0Lp161z337p1i99++41hw4aZrW92dnYMGTKEw4cPc/DgQdq0acOhQ4ewtrZGpVLx6quv8sHKLSQLDZpCBt9Z/XoliaT07Mvs+fn5Kft+/ZUePXrQtWtX3NzcOHbsGN999x2VKlUq0jW0Wi0BAQGFntYgZWdtbU2HDh0yg32Apk2bFjnYv3nzJgDu7u5Uq1aN+fPnExERweuvv86cOXPw9PRk8uTJmdNEJKk0SktLY9asWfTt2zfXYD4pKYnt27fTr18/C/ROkiTp8SWDfUmykOnTp3Pr1i2+//57AGxtbfn555+pUKECzz33nPlH5Hr2VNL5jVgPXa9SQY0amXPqR44cSZcuXRgxYgTx8fHKQWo1YvNmrjo7k1HYhtVqJdhfu1ZZD9yMihLsN2zYEFdX11z3r1mzBo1GUyypoyqVilatWrF27VquXLnCpEmTSE1NpZyrG9X92xldB0EICIvNPrpfsWJF7OzsePPNNwkNDWXDhg2EhITQtGnTIrcfHx/PwYMHZQq/iQICAti/fz/JycrUCx8fH8LDwzPn8ecla7BvyNRwd3fP3O/u7s6cOXOIjIxk1KhRLFiwgJo1a/LBBx9w69atYrobSTLeDz/8wNWrV5k2bVqu+7dt20ZycrIM9iVJkopIBvuSZCH16tVj4MCBzJo1K/OX/YoVK/Lbb78RExPDSy+9RFpa3gXXiszaGtatUwLIIgSRekBlZaWc+2DU3pCJkJSUxJgxYzKPnbNsGQ3j4rjh66tsyGNUWseDtPPy5WHHDujTx7h7ykdhg/2///47zxR+IQQrV66kZ8+eeT4MMBd3d3emT59OZGQkXwVvQ2XEQxkDARyNTkavrLjCmjVr8Pb2Ji0tjXr16nHmzBn69u1rdJGrP/74A71eT1czFlT8LwoICCA1NTVz6o6Pjw/JyckFZvbkNbL/qMqVK/PFF18QGRnJ2LFjWbJkCbVq1WL8+PGZDwkkydLS09OZNWsWL7/8Mo3ymMoVHBxM69at8y0aKkmSJOUkg31JKqp79yAoCCZMgDfegPHjYcECMCJNdtq0aURHR7N06dLMbXXr1mXr1q0cPHiQ119/HSHyqsxmhE6dYP16JWgvRDCZAaQDvwwdCu3aZdtXo0YNFixYwOrVq9myZQtbtmxh4sSJvDtpEh6hoXDsGAwbRs7Z43C7ShXesrEh4fRp6NLFHHeWQ2GC/Tt37nDq1Kk8g/0jR45w6tQps6bwF8TGxgZV9fomBfsA9zIEu48q9zZo0CDatGnD8OHDSU1NxcHBwaS2tVotDRs2xMPDw6R2/usaNWpElSpVMlP5DVkWBRXpezTYL1++PI6OjnkeX6lSJWbOnElkZCQTJkwgMDCQWrVq8e6773Lt2jUz3Y0kGWf16tVERkbmOaofFxfHzp07ZWE+SZIkI8hgX5IK68IFGDsW3N1h2DD45hsIDIRFi2DcOKhaFQYNgsOHC91knTp1GDx4MF988QX379/P3N62bVuCgoJYtWoVM2fONO99vPwy7NkDD5b6ym30Pf3Bnyetrfm2b196rljBrl27chw3aNAgevTowYgRI3j11Vfp3bv3w/76+cGyZXi5uBDg4EBPGxvlumfOoD96lOU6Has2bzbvvWVRmGD/4MGDCCFok8cUgpUrV1KtWjU6d+5cHF3M06Pz7Y314YxPSExM5M8//2TTpk08/fTTREREPJx6YQQhBFqtVqbwm4FKpaJTp06Zwb6bmxvu7u4Fztt/NNjPbVQ/N66urnz88cdERkYyZcoU1qxZQ506dXj77be5cuWKaTcjSQVJSFD+Hz19GqKiQK8nPT2dzz77jN69e+dZAPWnn35Cp9PRpxgywCRJkso6GexLUmFs3w5NmsC333UQ40AAACAASURBVEJSkrItPV1ZLi49HfR65c/166FlS5g/v9BNT506ldjYWJYsWZJte//+/Zk5cybTp09n7dq15rwbZZQ+NBQOHYKBA6FiRSXot7ZGVKzIOmtr/IAjixczZt06unbtSt++fTl79my2ZlQqFR999BF37tzBzs6OoKAg1I+MSN9KTuZk+fL87ewMTz8NXl5Uq1aNXr16sXjxYvNmLmRRmGD/wIEDuLm5Ubdu3Rz7UlJSCA4OZvDgwWhMWVLQCDrzxPoMGjqM0NBQOnbsCDws0nf8+HGj2zx16hTXr1+XKfxmEhAQwNGjRzMfwPj4+BRbsG/g4uLCtGnTiIyM5KOPPmLjxo3UrVuXkSNHEhERYdyNKB1Tgrhz55Q/09MLPkcq23Q6+OUXpYBrhQpQrx40bKg8HK9dm+ODBnHn0qU8R/VBSeHv2LFjkb/PJUmSJBnsS1LBtm+HHj0gNVUJ7vOTkaFURxs3rtDV5WvXrs2QIUOYPXs29+7dy7Zv8uTJDB06lOHDh7Nv3z5j7yBvTz4JK1cqUxDS0iA1FVVMDFMqV+aUtTVDhgxBo9EQHBxM1apVeeGFF7KNCiclJTF8+HAqVKhAfHw827Zty9Z8Wloaqamp2NvbU758+Wz7Ro8ezZkzZ/jzzz/Nf18UPthv27ZtrnPXt2zZwp07dxg6dGix9C8/Nhrj5tI/6tmAZ7Itpefl5YW9vX3m2u7G0Gq12Nvb0759e3N08T+vU6dOCCHYs2cPoKTyFyWNPyoqyuggyMnJiUmTJhEZGclnn33Gli1bqFevHsOHD+fChQuFb+jsWSXrydVVCeK8vJQ/K1ZUPgvPnTOqf9Jjbt8+qFkTXngBdu9W/m/MQly+TLMNG7ipUtH0xx+Vh+aPiIqKYs+ePTKFX5IkyUgy2Jek/Fy8CH37Kn8v6gj0xImQS+p7bqZOnUpcXBzfffddtu0qlYqlS5fStm1bevbsyfnz54vWh6J4ULgvJCSE69evk56ezrkHv6Q7Ozuzbds2YmNj6du3LxkZGeh0OgYMGMD58+f5888/6devH6NGjcpW+MuQCWBra5sj2G/fvj2NGjVi8aJFoNXChx/CyJHw9tswYwYUEPAUJCkpKd95zOnp6fzzzz95ztdfuXIlbdq0oX79+ib1wxhPOFhhjnC/ikP2KRoajYamTZty7Ngxo9vUarU8/fTT2NnZmdo9CfDw8KBevXqZqfw+Pj5cvnyZhISEPM95dGT/iSeeMKkP5cqVY8KECUpxyK++YseOHXh7ezNkyJAc2TzZxMZC9+7g7a1MZzJkPRkk/p+9846K4mrD+DNb6EhHEQXE3lCwUTSiICqCgt1oFKwRO8aej8TYFSF2okbUWLBgQxAQ7CKK2LBgF7GAioj0be/3x8rGdRdYiprE+Z2zB3bunTt3Zts892250u2NGwO9egHVXWGE5Z/L4cNA167AixfS50oqTDCQ3oTyiYAFC6RhcJ8I/n379oHH46Fv376ff84sLCws/0FYsc/CUhZr1vxtra8oXC6wdKlKXa2srODr64vly5crWPfV1NQQHh4OU1NTuLu7f9Z62USEOXPmwNbWFrq6uggPD5e1NWjQAPv378epU6fg7++PWbNm4ejRowgLC4ONjQ3Wrl0LdXV1uaSCKSkpAKQ1xT8V+8z799jYqBFWHjoE9OwJrFwp9TLYvBlYtAho3RpwcJBWASinFJmy8yjPsn/9+nUUFhYqFfvPnj3D8ePHP29ivvx84PZtIDERSEkBPvKYsDPRQFWCGxgAVrp8GKgrhh/Y2tpW2rKfl5eHs2fPsvH61Yyrqyvi4+MB/J2kr+Szo4yquvGXhpaWFqZNm4ZHjx4hODgYcXFxaNasGYYOHYrbt2/Ld37xQhqyVLKgWdpntMQbKiYGaN9e6t7P8t8mMVG6SC4WK7XWl8ru3cDMmZ9s2o0ePXrAwMCgmifJwsLC8m3Ain0WltLIzwf+/LN81/3SEIulCenKsox9xLx58/Du3TusW7dOoc3AwACRkZHIycmBl5cXioqU5bivOkeOHEFiYiKWL18ODw8PHDhwQK69S5cuWLNmDdasWYOVK1ciKCgIvXr1AiAtG7hp0yZERkYiNDQUAHDjxg0wDAMikhfejx4BdnZwOHwYsnzuItHfORBKhMOlS8DQodIwik8WQcqiqKgIEomkTLF//vx5qKurw87OTqFt+/bt0NDQwMASr47q5Pp1aRUHY2OgeXPpgoaNjfT5h+SJ9XX50OFXrfReGxPllnc7OzukpqbKJYRUlVOnTkEgELBiv5pxcXHBvXv38PTpUzRu3Bh8Pr9UV34igkAgAJ/Ph0AgQFZWVrXHMmtqamLSpEl4+PAh1q5di7Nnz6JFixYYNGiQdBEiLw/o3h1IS1N9IU4slvbv3l3RA4Dlv8WECZVbJCeSLvreuQMAePz4MRITE1kXfhYWFpYqwIp9FpbS2Lu36jelPB6wcaNKXS0tLTFy5EisWLECeUqOa21tjSNHjiA5ORkjR46s9sR2YrEYc+fOhYuLC1xdXdGvXz9cv35doeZ3w4YNwTAMOBwObEoy+n/Aw8MDvr6+mDp1KtLS0pCSkgKGYSAQCP627KenSwXu06dgJJKyv4RKrELR0VJ3YYFApXMpuX7lif127dpBXV1dbjsRITQ0FP3790eNGjVUOp5KvH0rLTPYurW0isOnCzYSicz1ldOyJTpxcit1GAaAqSYX9WuoKW23tbWFRCIp03JcGjExMahXrx4aNmxYqbmxKKdLly5gGAbx8fFQU1ND06ZNS03SJ/4grtXU1JCZmQkAny1xmYaGBsaPH48HDx7gjz/+wKVLl2BjY4O/7O1Bt25VfCFUJAJu3QLWr/8s82X5B5CUJC27WhGL/sdwucCHZLVhYWHQ0tJC7969q3GCLCwsLN8WrNhnYSmN27eBD66ylabk5lZF5s6di5ycHKxdu1Zpu729PbZv347du3fjl19+qdrcPmHHjh24ffs2lixZAgDo0aMHNDU15Vz5U1NT0a9fP7i4uMDZ2Rn9+/fHo0eP5MYJDg6Gvr4+Ro4cievXr4OIIBQKpWJfIvk7drciQkEsBs6dA6ZPV6l7eWKfiHD+/HmlJffOnz+PBw8eVK8Lf2am1OW5JBlhaedesv3ePbRyao12qJjgF4tEKMh+A8/aauAoSToIAC1atACPx6tU3H5JyT1lCQ1ZKo+hoSHatGkji9svK0mf8EOGez6fj4yMDACfT+yXoKamhjFjxuDevXsI3bwZrqmplV9slEikcfyVFYMs/2zWr1dazlVlxGKpR11+PsLCwuDp6Vlm7hUWFhYWlrJhxT4LS2m8f18941QgKZWFhQXGjBmDFStW4H0pxx8wYACWLl2KBQsWYNu2bdUyxeLiYgQEBKBfv35o164dAEBbWxs9e/aUif03b96gV69eMDc3x/79+7Fv3z4YGhrC09NTbq56enrYsmULTpw4gefPn4OIUFxcLBX78fHS+PTKhEZIJFIvCRWuZ0neg9LEflpaGl68eKE0Xj80NBRWVlbo3LlzxeeojMJCqVfC48equzyLREBuLrr0sIfG7QsAALGo9DJmJdK7BkeMEJ+eGDl0MESlXGN1dXU0a9aswnH7Dx48wIMHD1gX/s9ESdw+EcHGxgYpKSmQKBHEysR+VRP0qQqfz4dPzZowE4urdvOQni6N4Wf573HkSOVD30rIz0fazp24ceMG68LPwsLCUkVYsc/CUhrVZU2ooCv4nDlzkJeXhzVr1pTaZ+bMmRg9ejTGjBkjK9lVFUJCQvDs2TMsXLhQbnvfvn1x6dIlPHjwAN7e3sjNzcXRo0ehp6cHQ0NDRERE4Pnz5xgyZIjMvRiQChdvb2/Z8+LiYqnwXru2alYfoRDYurXcbuVZ9s+fPw8ACpb9/Px87N27Fz4+PuBwqunrcft24OrVCicZhFgMyatX4A/rjQ0/dEPy4V2QCKVhDMyHR4l11UyLh96WuvCzrY1tGzcgOjoaY8eOLdX6amdnV2GxHxMTAz6fjy5dulTsPFhUwsXFBZmZmbh16xZsbGxQUFCg4DUDKIp9DocDExOTLzfRiIiqfYYB6f4REdUzH5Z/DkTAu3fVMtSlY8egr6/PLi6ysLCwVBFW7LOwlIalZcUF2qfweIC1dYV2qVOnDsaOHYuVK1eWWn6LYRisX78ezs7O6Nu3L1JTUys9xdzcXCxcuBC+vr5o0qSJXJuHhwf4fD6GDBmCpKQkHD58GPXq1ZO1N2nSBGFhYYiOjsbs2bPl9u3YsaPs/8LCQpgRSW/wq2r1UZLA8FNUEfuNGzeGsbGx3Pb9+/cjLy8PI0aMqNocSyACVq+u9O48AGP4fLy9dQ3Gr+5i3QBHFF6MQldzbXSurQX9FzexalBneJoSmhmqg8th0KNHD2zduhWhoaGYM2eO0nFtbW1x48YNmXBUhejoaHTs2FGhqgJL9eDk5AR1dXXExcXJMvIrc+X/WOy/fPkSJiYm4HIVqy58NrKyqv69KJEAn7GqCMu/nwsJCejbt69CThUWFhYWlorBin0WltL4/nugqtZdkQgYObLCu82ZMwcFBQVYXYZQ5PP52LdvH8zNzeHu7o7Xr19LG8Ri4NgxIDAQCAgAli0D9uyRupMrISgoCLm5uUpzAOjp6aFevXq4fPkyQkND4eDgoNCnR48eCAoKQmBgILZ+ZHW/e/curKysAEiz45vn51euhOHHEEkz+ZezYFCe2E9ISCjVhb9Lly6yeVeZhARp7ocqnDdfKMRwDgc+Pj548TQNnRvVQTtTTdjX1IJbUwtk3L+NCxcuyO0zdOhQBAUFYdmyZQgODlYY09bWFgKBAHc+ZL0uj+LiYpw4cYK1sn1GNDU10bFjR8TFxaFmzZowNTVVmqTvU8v+547XV6A6EoMSVc84LP8sGAbQ06uWoW6/eoXBgwdXy1gsLCws3zKs2GdhKQ0TE2DQoEq7rIoB5FhaShOzVZDatWtj3LhxCAoKwrsy3CL19PQQGRmJgoICjHB3h3DBAqlHgrs7MHs2sHQp8PPPwODBgJkZ8NNPwEfZ9V+/fo3AwEBMnDgRdevWVRh/7969uHfvHgCga9eupc5j8uTJGD16NMaNGydzkU9JSYGtrS0Aqbu5sAK5C8olt+zEdWWJ/ffv3yMlJUVB7D969AinT5+u3sR80dFVdnkmAGPr1kViYiI0NDTkQg+sra1Rs2ZNnDt3TmG/adOmYdasWfD398fOnTvl2lq3bg0AKrvynzt3DgUFBazY/8y4uLjg9OnTEAqFaNWqlUpi/0vF68swNJRmTK8KXK50HJb/Hr16Vfk7T8Dj4Z6xMRsyxMLCwlINsGKfhaUspkyptMsqF8CUtDS4duuG7OzsCu8/e/ZsFBUVYdWqVWX2s7S0xMlFi7Dr8mVwAwJAz59LG8RiaYx7iRU8Jwf4/XegSRPgg/hbvHgxOByOUnfvixcvYsSIEejbty+4XC4OHTpU6hwYhsG6devQoUMH9O3bF48fP8bNmzflSrQd+ZBpvFooJ59CXl4euFyuUhfQxMRESCQSBbG/bds26Orqol+/ftU3z6wsqbWrCnAANDc1RXx8PJycnKChoSFrYxgGHTt2lC2wfMqSJUvg6+sLHx8fREdHy7br6uqiYcOGKmfkj46OhpmZGVq2bFmlc2EpG1dXV+Tl5clK3JXnxv9VLPvdu1c9FEckAtiFo/8kgjFjqvT+IB4Pu9TV0WvwYPCqmhuChYWFhYUV+ywsZdKuHbByZcX3YxgUDB6MFFtbxMfHw8zMDJs2bapQuSozMzP8+OOPCA4OLtO6j3Pn0NTPDzUYBhz8nZldKWKx9EZs2DBkLV+O9evXY8aMGTAyMpLrlpaWht69e8POzg47d+5E586dceDAgTLnq6amhvDwcGhpacHd3R25ubmw/ihfwYUPmcOrjKkpoKa8hnwJeXl50NHRUVoi7vz58zAyMkKjRo1k2yQSCbZt24ZBgwZBS0ureuYJVD0MpGQYLhdnzpyBi4uLQpuTkxMuXboEgUCg0MYwDDZu3IiePXuiX79+uHjxoqzN1tZWZcs+W3Lvy2BnZwd9fX3ExcXBxsYGjx8/VqjK8dXFfp8+0s9gFXjF4SD4wQOZBw7Lvx8iQnh4OJr6+OAGgMoWVmREIgTm57NZ+FlYWFiqCVbss7CUx9Sp0rh3oHz31RJx5+MDre3bkXzlCkJCQgAAY8eORZs2bZCWlqbyoWfNmgWBQKA07hoA8Pw54OEBiETgVDAG1mDWLLhpaWHq1Kly29+/fw8PDw9oa2vj0KFD0NDQQL9+/XDixIlyPRRMTExw5MgRPHnyBADkYt87+/riHACqigDmcoGxY8vtViL2lXH+/Hk4OjrKCdeTJ08iLS2tel34AcDIqMqxycQwyFZTQ15eXqliv6ioqFQrPY/HQ1hYGGxtbdGrVy9ZMkc7Oztcu3ZNaXm3j3n27Blu3rzJuvB/AbhcLrp06YL4+HhZkr6UlBS5PiVin8fj4eXLl19e7PP5gJ9fpT/HxOHgXKtWmDl3LqysrLBgwYJKeT6x/HNISkrCd999h/79+6NJ06aosW0bOJW0yr9mGLgYGMD+Q6gRCwsLC0vVYMU+C0t5MAwwc6Y0/rokw/ynNzIlz5s2BUJDgT//lN4UAxg3bhzS09PRqVMnXL16FfXr18f8+fPlStWVRq1atTB+/Hj8/vvveKss5n39eiAvT5rduoJIAKypXVtOFItEIgwePBhPnz7F0aNHZSW9vL29IRaLceTIkXLHbdmypcwVPiwsTLZ90qRJOGJpCaYSc/170pIqiX2RSITExEQFF/7Q0FA0btxYaQLCKuHpWWWXZ4YI5wwNoaenhzZt2ii029raQlNTs1RXfgDQ0tJCREQEzMzM4ObmhmfPnsHW1ha5ublKy7t9TExMDDgcDlxdXat0Hiyq4erqigsXLqBOnTrg8XgKcfslYr+4uBhFRUVfPmYfwC0XF6QzDCr8zubxwFhZoW98PB4+fIjvv/8eixcvhoWFBWbNmoWM6vL+YfkiPHv2DD/88APat2+Pd+/eISYmBpGRkbAaPlwaKsblVti7yYAIq7KzQbVqqVR5hYWFhYWlbFixz8KiKt27A6dOSbOrT5oEuLlJ3fy7dgV8fKSZ11NSpP9/4u5sYmKCM2fO4K+//oKamhp+/fVXlWOmZ86cCaFQiKCgIPmG4mIgJKTSOQV4ACzv3AEeP5Zt8/f3R2xsLPbv349mzZrJtpuZmcHR0RHh4eEqjS0UClGvXj257PyGhoYYfuAAngMQV8YdnMsF+vUDlCQS/JTSxH5KSgry8/PlxH5OTg7Cw8Ph4+NTbW7qYrEY4eHhcJoyBcmQJmusNDVqYN3r13B2dlZaYo3P56NDhw5lin0AMDAwQHR0NBiGQffu3WVeF+W9B6Ojo9G+fXsYsgnVvgiurq4QiUS4ePEimjRpUqrYLynL+aUt+5GRkbDv2RMTGjUCY2KiejI2Hk+a9PT4ccDAABYWFli9ejWePHmCSZMmISQkBFZWVvDz88Pjj76TWP555OXlISAgAI0aNUJsbCz++OMPXL16FW5ubn93GjhQWhWmJERMxaSOJe8mbm4uMHEiMH06W7mBhYWFpSoQCwvLF+XNmzfUvXt3gjTROo0bN47y8vLK3Oenn34iHR0devPmzd8bw8JKClhV/sHlEs2eTUREa9euJQC0YcMGpXNYuXIlqaur0/v378s9xyZNmtCECRPI1dVVdp5v374lIqI/J06kfIAkHI7q8+TxiBo1IvowRnkMHTqUOnfurLB9zZo1pKamRoWFhbJtf/zxB3E4HHr+/LlKY5dFTk4OBQcHk5WVFQGg2rVrk08VXx/BxInE5/Np9erVpR533rx5ZGJiQhKJpNw53rlzh4yMjMjR0ZFq165Nsz+8/soQCoWkp6dHv/76a6WuB0vFkUgkVLduXZo2bRoNHTqUHBwc5NpPnjxJAGjHjh0EgO7evfvF5hUUFEQcDof69OlDubm5RM+eEbVt+/dntLTPLkDUrh1RGZ+x7OxsWrhwIRkbGxOXy6UffviBbt269UXOjUU1RCIRbdmyhczMzEhdXZ3mzJlDOTk5Ze9UXEy0Zw+RrW2lvwclixd/mRNkYWFh+Q/Cin0Wlq/E/v37SVdXlwCQkZERRUVFldo3MzOTtLS0aM6cOX9vnDWLiM+vuuDv3p2OHTtGHA6Hpk6dWuocHj9+TAAoLCyszPMqLCwkDodDGzdupEOHDsnE/pMnT4hIKiBHN2tGORwOSUoTCJ8uSLRoUaZQ+JQ+ffpQr169FLYPHjxYQTzZ29tTz549VR5bGY8fPyZ/f3+qUaMG8Xg8atu2Lenq6lKNGjVoyfz5dE1Pj4QVvcHlcoksLCg+LIwAlCl8jh07RgDo3r17Ks334sWLpK2tTaampuTm5lZqv3PnzhEASkxMrPA1Yak8Pj4+ZGNjQ8uWLSMdHR0Si8WyttjYWAJAq1evJgDli61qQCAQ0NixYwkAzZw5U24+JJEQJSQQDR2qKPh5PKJhw4guXJD2U4G8vDz6/fffydzcnACQt7c3JSUlfaYzY1GVEydOUOvWrQkADR48mB4/flyxAdq1I6rIAu9HDzFAggcPPst5sbCwsPzXYcU+C8tXJCsri7y9vWWCuE+fPpSRkaG076xZs0hHR4dev34t3TBuXLWI/fzmzUlXV5c8PDxIJBKVOd82bdrQgAEDyuyTnJxMAOjChQtyYr9t27aUn59PRESpqanURE2NzjdvThJ1dRIDJPlU4AP0CiDh3LlEKngTfIyLiwsNGjRIYXvdunXpp59+kj2/c+cOAaA9e/ZUaPwSEhISaMCAAcThcMjAwIAGDRpEDRs2JIZhaOzYsZScnEzNmzcnSz09ym3QQHZe5T1EDENUsybR3bs0Y8YMMjMzK9Nq/+7dO2IYhkJDQ1Wee0xMDDEMQxoaGvLi7SN+/vlnMjQ0LPd9wVK9lFjtd+/eTQDowUdC5+jRowSAfv31V9LU1FTJm6MqvH37llxcXIjH49Gff/5ZdufsbKKUFKLz56V/372r9HGLi4tp8+bN1KBBAwJAbm5udOrUqc9+vizy3L17l3r37k0AyN7enhISEio+yJUrVfqNEgK03cJC3rONhYWFhUUl2Jh9FpaviKGhIQ4cOICIiAgYGBjgyJEjsLa2xp9//gkikuv7008/AQACAwOlGzQ1q2UONx48QL169bBr1y6lMeEf069fP0RFRaGwsLDUPiXZw1u0aIHi4mIAgL6+Pm7fvo2RI0eCiNC4cWP8uHw5nG7dwq/jxsEfgKBHD8DJCejSBejfHzGjRqE2gKWamoCuboXOKS8vD9ra2nLb0tPTkZ6eDkdHR9m2rVu3wsDAAL1791Z5bJFIhL1798LBwQGOjo64du0aAgIC4ODggD179qBWrVpITk7Gjz/+CA8PD+Tn5yM6MRE6V68CAwZI8zmUcp2FJcdo0wa4fBlo1AgnTpxA165dy8wnoKenhxYtWuDcuXMqn4ebmxumTp2KoqIiTJgwQWmfmJgYuLm5lfu+YKleSqoulCTl/DhuvyRmPysrC2ZmZp+1HOKDBw9gb2+Pq1ev4vjx4xg5cmTZO+jrAy1aAI6O0r96epU+tpqaGkaNGoXU1FSEhYUhMzMTzs7O6NixIyIjIxW+H1mql7dv32Lq1Klo3rw5rl27ht27dyMhIaFySUzXr1c9t4MSeAB6paejU/v2smoiLCwsLCwq8pUXG1hYWD6QnZ1NQ4YMkVnC7e3tFeJx58yZQ9ra2vTq1SuiwMBKu0V+bDHZq6FBT58+VWmOd+/eJQB08ODBUvv4+/uTtbU1ERH99ddfBIAsLS1p3759BIAWLFhARERisZg6d+5M2traZGdnpzCOWCwmDQ0NMjU1VfUSymjevDlNnjxZbluJlbTEc0IoFJKZmRlNmDBBpTHfvXtHgYGBZGFhQQCoS5cutGfPHpo5cyapqamRhYUF7dmzhyQSCUVFRZGOjg61bdtW0VPj8WOiOXOIDAzkXgsBl0shAP3s4SHrmpWVRQzD0JYtW8qd3/jx46lJkyYqnUsJaWlpsvdbYGCgXNurV6+IYRjaunVrhcZkqR6aN29OI0eOJGNjY7mcCXv37iUANGTIEHJ0dPxsxz916hQZGhpSo0aNVA4P+ZxIJBKKjIwkR0dHAkA2NjYUFhbGep1UM8XFxRQcHEwGBgakq6tLS5YsoYKCgqoNqq9f9XAzgEZYWpKenh7FxMRUz8mysLCwfAOwYp+FRRkSidR1PCOD6KNkbl+CqKgoMjExIYZhiMfj0W+//UbFxcVEJE3up6urSzNmzJDGsFdR7BNAqWvXVmh+zZs3px9++KHU9m7dupGXlxcREW3evJkAUMuWLYmIaP78+QSAwsPDiYjo3r17BECp2CciGjZsGAGgU6dOVWiOlpaWNHfuXLltEydOpAYNGsieR0ZGEgC6fPlymWM9fPiQpkyZQjo6OsTn82n48OGUnJxMoaGhVKtWLdLU1KT58+fLQhQ2btxIXC6XPD09y068KBQSvXxJlJpKr69dIx0+nzgcjlwsbHh4OAGgtLS0cs+5xPVbFuahAhKJhAwNDalTp04EgLZt2yZr27lzJwGgFy9eqDweS/UxZcoUsrCwoK5du5K3t7dse8nr4uLiQn379v0sx96yZQvx+Xzq2rWrLLHmPwWJREKnT5+WJTlt0KABbdq0iYqKir721P7VSCQSOnToEDVs2JA4HA6NGzeu1JCyCiEWEzFMtYj9/G3bqGfPnsTlcmnNmjVsSAcLCwuLCrBin4XlY1JTiaZOJapRQ/5Go149opUribKyvsg03r17Rz4+PgSAGIahBg0a0Llz54hImnldS0uLMjMzifr1Kz0LdjkPMUCPGIaCAgPlstOXR0BAAOnp6ckWID6lZs2a9L///Y+IiNavX08Mo1PPRQAAIABJREFUw5CTkxMRSW8oBw4cSFpaWnT16lU6f/68zLJ87NgxhbFevnxJAKhDhw4Vun5GRka0+JMMznZ2djRixAjZ8/79+1PLli2V3jBKJBI6e/Ys9e3blzgcDhkZGdG8efPoxYsXlJCQQG3btiUA9P3338u8IiQSCc2dO5cAkJ+fX4UsjpMmTSKGYWjo0KFy2/38/OQWKMqiJIHi4cOHVT4ukTS/gZeXF40aNYq4XC5FRkYSEdEPP/xArVu3rtBYLNVHREQEASBfX1+qX7++bPvWrVtlC2h+fn7VekyxWEwzZ84kADR27FgSCATVOn51k5SURH379iUAZG5uTsHBweVWNmFR5MqVK+Ts7EwAqFu3bnTjxo3qG1worBahTwDRB0+OadOmEQAaP378P/49ysLCwvK1YcU+CwsR0YsXRN26SW8olIlnhpE+1NSkiwFf6AYjJiaGatWqRRwOhwBpmb5Hjx5RjRo1aPr06USnT1f6xkkC0G4HB+JyuVSnTh3auHGjSjdO169fL1Wcv3r1igDQ3r17iYgoODiYuFwu9ejRQ9YnPz+f7OzsqG7dujR16lQyMDAgNzc3ql27tlIrYuvWrYlhmApZGNXV1eVK1eXm5hKXy6WNGzcSkdRDQk1NjYKCguT2EwgEtGvXLmrXrh0BoCZNmlBISAjl5+dTeno6DR06VOaJULL4QiR1fS1pW7FiRYUsTs+ePSMej0cMw9D9+/fl2ho3bkzjxo1TaRyJRELm5uY0c+ZMlY9NJC3raGlpSUKhkPr06UOampp07tw5MjU1LbMsH8vnJScnh7hcLg0fPpwASEvdEdGmTZsIAJmamspCYqqDvLw88vLyIoZhKCgo6F9lNb116xYNHz6cuFwuGRkZ0YIFCyg7O/trT+sfz/Pnz8nHx4cYhqEmTZpQZGTkZ3ndJdra1SP2P3Lf37RpE/F4PHJxcaGsL7QIz8LCwvJvhBX7LCz37xOZm6ucKZ0YhsjN7Yu59+fk5MjKXnG5XDIxMaH+/fuThoYGvXz5kmjevArfNAkBOlmjBuXl5NC9e/fo+++/J4ZhqH79+rRz585Ss7MTSUVlgwYNaPTo0Qpt8fHxBIBSU1OJiGjZsmXE4/Gof//+cv3S09OpVq1apK2tTQMGDKD09HTS09OjYcOGKYwZFRUlszSqgkAgIAByce5xcXEE/F2+bvXq1cTj8aS5D0iacXzZsmVUp04dAkCurq4UGRlJYrGYCgoKaMGCBaSlpUWmpqb0559/yl2f7Oxs6tKlC6mrq1cqq//YsWOJw+EoVA949uyZ3MKJKgwcOFDmRaEqu3btIgCUlZVFBQUF1KlTJ1lJyIqGT7BUL46OjuTq6koAZFnQ169fTxwOhxiGoU2bNlXLcdLT08nW1pa0tbXpyJEj1TLm1+Dx48fk5+dH6urqpKurS7Nnz64eV/T/GPn5+TR//nzS0tIiY2NjWrduXbVbyAUCAcXGxtL48ePpmLo6Caoq9DU0FKo7nDx5kgwNDalhw4YK+W1YWFhYWKSwYp/l2+bVKyJLy4q7wnM4RAMGSOMRvxBxcXFUp04d4nK5MuE/atQoaX4Bf3+ptV6F2EgxQEcB0mYY8vT0lLmbX79+nTw9PanERfjIkSOlWnlmzZpFxsbGJBQK5bYHBweThoaGbMwFCxYQn88nX19fhTFKRLyTkxNJJBLavn07AaADBw4o9DU0NCRtbW2VrE7Z2dkKInn+/PlkYGAgE+m2trbk5eVF9+/fp4kTJ5K2tjapqamRr68vXb9+nYikixr79u0jS0tL4vP5NGPGDIWa5k+ePKFmzZqRoaEhnT17tty5fcqjR49kwu3OnTtybdu2baOKxuCvWrWK1NTUKhSWUVJ+MC4ujoik169mzZrEMIxcyTeWL09AQAAZGhoSh8OhkJAQIpK+xurq6gSAIiIiqnyMpKQkMjMzo7p169K1a9eqPN4/gZcvX9LMmTNJV1eXNDQ0aOLEifTkyZOvPa2vjlgspu3bt5O5uTmpqanRjBkzqtUDIi8vj/bv30/Dhg0jfX19KknOur5v3yoJfQmPJy01q4T79+9TkyZNSF9fn44fP15t58LCwsLyX4EV+yzfNhMnqm7RV/b4wlaw9+/fk5+fn0zs89TUacGfYbT1zls6unA9vbFsIBX0n5yTpKRuPZdLeT//TC6dO1NJrPyUKVPkjpGQkCCL37S3t6cTJ04ozOPixYsEgE6ePCm3feTIkdSmTRvZ859//pn4fL5CZnyivzP1A6Dly5eTRCIhLy8vMjExkVncS5g9ezZ9mkCuNNLT0wkARUVFyba5ubmRu7s7ERFdvXqVAFD79u2JYRgyNjamgIAAOQvgtWvXqPOHa+Tp6ak0G3lycjLVqlWL6tWrJ/NkqCgjRowgDodD/fr1U2gbPnx4hWPmk5OTCYBciEF5PHtfRP3+F0RL4q7T1tRs2n3vHY0O/JMsmrWipk2bsrWtvyJnzpwhAGRtbU3jx48nIqLAwEDS0tIiAJSUlFSl8ffv30+amprUvn17qZfQf4y3b9/SggULyMjIiHg8Hvn4+Cgsqn0rnD59mtq0aUMAqH///tW2kPfmzRsKDQ2l3r17k4aGhmyxOCAggK5cuSJdoBWLiaytq5So78Zff5U6h3fv3lH37t2Jy+XS+vXrq+W8WFhYWP4rsGKf5dslN5dIS6vyQp/LJere/atMPf7ECeo99X8UcPoBLbnymhZdzqAlV17TkuRX9NfmI3SzRz96Zd2YckzN6LW5BV00NaVh2tp094Mbu0AgoEaNGsnE9sfx7URSq/bx48epffv2VJL5OzExUa69bt26NHHiRLn92rZtSz4+PrLnM2fOJB6PR/PmzVM4h++//57s7Oxo7ty5xDAMRUREUEZGBhkbG1Pfvn3lrPiFhYXE5XJVSlZXYqk+c+YMERGJRCLS1dWl3377jf766y8yNTUlANS0aVPatGmTXFmpV69e0bhx44jD4VDTpk0pOjpa6TEiIyNJW1ub2rVrJ02UWAnu3r1LDMMQAIWEWCXx99OnT6/QmEKhkLS1tWnZsmVl9pNIJHQrq4i23Hkrff8kvZS+fz48Fl6SPp/4Vwx5jZnMJj37ShQXF5OWlha1atVKFp6xZMkS0tHRIQD07NmzSo0rkUho8eLFBIAGDhxY9dJq/3Dy8vIoKCiIateuTQzDUP/+/Sk5OflrT+uL8ODBA1kSw7Zt21bKA+lT0tLSaNWqVeTs7ExcLpcYhiFHR0dasWKFQt4RGYcPV0rsSxiGIj54t8yePbtUryWhUEiTJ08mADRhwgQFrzMWFhaWbxVW7LN8u4SEVL0kEMMQfWFXZ7FEQocf58iJs7Ieiy9n0IwjSRR9St7am52dTUZGRjLBr8wluKQcU/PmzQkA9enTRyZMp0yZQrVr15a5xotEItLU1JRLejdlyhTicrm0ZMkSuXFFIpEsw71YLKY+ffqQjo4OpaSk0L59+wgA7dy5U26fbt26EYBya35fvnyZANCVK1eI6G/raMm58vl8hcUEgUBAwcHBpKenR/r6+rRq1apSY1j/+OMP4nK51Lt37yqJ4EGDBhGXy6U+ffootKWmpip4J6iKi4sLeXp6ltoulkgo5mkuLbnympaW9/5JfkVLrrymHwM3lVp9geXz0rNnT2rQoAHp6uqSRCKh3377jWrUqEEAKhVnXVRUJEv6FxAQUGZ+jv8aRUVFtHHjRqpfvz4BoO7du9Pp06e/9rQ+C9nZ2TR9+nTi8/lUp04d+uuvvyr9WkskErp58yYtXLhQ5h3A5/OpR48e9Mcff6juFbJu3d+/m6r8vnI4RK6uJMzPp0WLFhGfz6dmzZrRxYsXSz1ESEgI8Xg86tatG5ukkYWFhYWIOGBh+VYJD6/6GAwDHD5c9XFUhIhw/FkebmcLVN6H4XBhaG6BNJNmKBJJZNv19fVx6dIlaGhoAAD69++Pq1evyu/LMOjTpw+uX7+OHTt2ICUlBa1atcKwYcNgb2+PFy9e4OLFiwCAhw8forCwEC1btpTtLxAIIBaLoaurKzducnIysrKy0KNHD3A4HOzYsQPW1tbo3bs3nJ2dMWTIEEycOBEvXryQ7RMUFAQA8Pf3L/N88/LyAACvX7+Gn58fXFxcAACenp74/fffIRQKMX/+fDAMAwCIjo6GjY0Npk+fju+//x7379/H5MmTwefz5caVSCSYO3cuxo0bh/Hjx+PAgQPQ1tYu5+orJyUlBXv27IFYLMYvv/yi0B4fHw8ej4dOnTpVeOyOHTsiISEBRKTQRkSIf56PK2+KpM/LG+zDNbLs6oXZm/ZAIpGUswNLdePq6oqnT58iNzcXT548gVAoBAAYGxsrvEfL482bN3B1dcWePXuwY8cOzJ8/HxzOt3MboK6ujjFjxiA1NRW7du3C8+fP0blzZ3Tq1AnHjh1T+pn5tyEUCrF27Vo0aNAAISEhCAgIwN27dzFs2LAKvdYSiQSJiYmYNWsWGjdujBYtWmDp0qWoX78+du3ahdevX+PYsWMYO3YsatWqpdqgfn7A7t2Apqb0u+XD94sCXK70r68vEBkJnpYW5s6diytXrkBLSwsODg6YPXs2ioqKFHYdN24cYmJicPnyZdjb2+P+/fsqnzMLCwvLf5Fv51eeheVTMjKk9oOqwOUCb95Uz3xU4GmeEFffFFd8R4aD7GIxzmUUyG22trZGXFwcOBwOiouL4ebmhmfPninszuVyMXToUKSmpmLDhg04efIkfvjhB2hoaGDr1q0ApAIWAGxsbGT7FRYWAoCC2D927Bj09fVhb28PANDR0cGRI0eQl5eH/v37IygoSHZjXnID3qJFC1hZWSE6OlomeD6FiJCQkAAA6N69O8LDw9G0aVPY2toiNDQU8fHxaNu2LVq0aIF79+7Bw8MDPXv2RK1atXD16lWsX78exsbGCuMWFxdj2LBhWLJkCVauXInVq1eDW3JDWgkCAgLA5/Ph7u4OW1tbhfb4+HjY29tDR0enwmM7OTkhKysLd+/eVWi7myNA8mvFG2RVMHXsiXmBayu1L0vlcXFxgUAgXdy7ceOG7L2vssD6wJ07d9ChQwfcvXsXJ06cwNChQ6t9rv8WeDwehgwZguvXr+PIkSMQiURwd3eHnZ0d9u3bB7FY/LWnWGGICJGRkbCxscHkyZPh5eWF+/fv4+eff4aWlpZKYwgEAsTGxmL8+PGoU6cOHBwcEBoaiu+++w5Hjx7F69evsWfPHgwZMgR6enqVm+jgwcDLl8DatUCjRorturrAlCnAvXvA5s2AmpqsqUWLFrhw4QIWLlyI4OBg2NnZyRabP6Zr166y7R06dMDJkycrN1cWFhaW/wCs2Gf5dhGJqjyEUCjEru3bMWDAAEycOBELFy7Epk2bEBERgUuXLuHp06coLq6EOC+FK6+LUIotpFwIwPWsIgjE8gscTk5OMsGelZWFbt26ITc3V+kYfD4f48aNw4MHD7B06VIAwKZNmzB9+nQkJibC1NQUpqamsv75+fkAlIv9bt26gcfjybZZWlriwIEDSEhIQEBAADZt2oSoqChs2bJF1mf27NkQiURYtmyZ3HjFxcXYtm0bbG1tMXfuXADAunXrkJaWhvfv38PZ2RkZGRmIiorC4MGD8dNPP6FFixa4desWwsPDceLECblFio/Jzs5G9+7dceDAAezbtw/+/v4yr4DKcPnyZRw6dAhCoVCpVV8sFuPkyZMyj4SKYm9vDw6Hg3Pnzim0XcosrPT7BxIJnvH0sWLFisqOwFIJWrZsCRMTE2hoaMjEvkQiqZDYj42NhYODAzQ1NXHp0iU4Ojp+xhn/e+BwOPD09ERCQgJOnjwJExMTDBw4EM2aNUNoaKhskeWfzo0bN+Dm5gYPDw+YmZnhypUr2Lx5M8zMzMrdNz8/H+Hh4Rg2bBhMTU3RvXt3REdHY/DgwThz5gxevnyJzZs3o1evXjIvsCpTo4bUyn/nDnDrFnDyJBATA1y6JF2EX7kSaNhQ6a48Hg9z5szBlStXoK2tDUdHR8yaNUvByt+wYUMkJiaibdu2cHNzwx9//FE9c2dhYWH5l8HQf8FvjYWlMnz3HXD2bJWGEAFYZWyMbWZmEAqFePv2LV6/fq3gDqqvr4+aNWuiVq1aqFWrluz/T/+ampqW6pqbKxRj/c3s8l2vy6FnXR20Mla8aQsICMCCBQvAMAxcXFxw7NgxOTGujEOHDsHb2xva2tooLi5G3bp1ce3aNdSoUQMA4OHhgcjISMTGxqJbt24ApAsKJiYm2Lx5M0aOHKkw5pYtWzBq1CisXr0a165dw969e5GSkgIrKysQEbS1taGrq4vMzEy8efMGISEhWLduHTIyMuDu7o4mTZogKCgIIpEImZmZMDc3x/79+/Hw4UPMmzcPenp6KCoqwty5c+Hv71/mDeyTJ0/g7u6OV69e4fDhw3BycqrIpVZKjx49cOrUKXTu3BkxMTEK7cnJyWjbti3OnDlTKTd+ALCzs0OrVq0QGhoq2/aqUIQtqe8qPW9Aaj1c2rMVVi9fghEjRlRpLBbVGTJkCCIjI+Hm5gZzc3Ns3rwZ/fr1w/bt28vdd8OGDZg0aRLc3NwQFhYm+2yyKCcpKQlLlizBwYMHUbduXcyYMQOjRo1S2Tr+JcnIyMD//vc/bNmyBQ0aNEBgYCA8PDzKXYx88+YNIiIicPDgQRw/fhxFRUVo2bIlvL294e3tjVatWlVpQfNLIRKJEBgYiF9++QXW1tbYunUrOnTooNBn2rRpWLt2LaZMmYLAwMByf9dYWFhY/kuw33gs3y5ubsD580AV4pB5APa+eYOUD678tWvXRv/+/dGyZUtYW1tDX18fb968QWZmJjIyMmR/b968iYyMDGRlZSmMaWRkpHQhQKdZe1Dt5qXHOaoAkQQ33xYqFfvz58/HvXv3sGfPHsTFxcHPzw9//PFHmTd9vXr1goGBAXx8fLBlyxY8ffoU9erVw5w5czBhwgQUFEjDBj627MfGxoKI0KNHD6Vjjhw5Erdu3cLUqVOxf/9+xMXFYeTIkbJwgwEDBmD79u3w9PREXFwcAGDEiBGYMmUKmjZtilWrVkFLSwtcLhfnz58HILXg/fLLLzJ33SVLlsDc3LzMa5WcnIxevXpBW1sbCQkJaKTM5bSCnDt3TibwAwIClPaJj4+HlpaWwk1rRXByclJYSLiRVQQOgKpE3XMYBuPmr8CoUSNgZGQEDw+PKozGoiolcfZXr16FiYkJRCJRuZZ9kUgEf39/rFmzBpMnT8bKlStZkaMC7dq1w4EDB3Dr1i0sXboU06ZNw4IFCzBt2jT4+flV3n29GiksLERwcDCWLFkCPp+P4OBg/Pjjj1D7yOX9U54+fYpDhw7h4MGDOHPmDIgIjo6OWLhwIby8vFC/fv0veAbVA4/Hw+zZs+Hp6QlfX184Ojpi+vTp+O2332SLuDweD2vWrEHTpk0xefJkpKamYs+ePf+I15GFhYXlS8Ba9lm+XTIygDp1gErGZxKHg6JGjbB25EgcPHgQFy9ehEQigaampiwxnYaGBtq1awcHBwc4OjrCwcFBzs1dKBTi1atXcgsBn/4t+b/t4LFw9p0CLr/0GzpVePf8CfoYCeHg4KDQJhQK0alTJ1m8Y2BgIKZPn17meL6+vkhISMD9+/excuVK3Lt3D5s3b4apqSnU1NTw5MkT3Lx5E82bNwcADB8+HDdu3MC1a9dKHVMsFsvca3///Xf4+vpi9erVaNq0KZYuXSpLYPfrr79i3LhxcnH2ixYtwurVq5GZmYlRo0Zhz549snCC4OBgTJ06tdxrFBkZiYEDB6Jly5aIiIiAiYlJufuUBxHB2dkZSUlJcHBwQHx8vNJ+3bt3B8MwiI6OrvSxwsLCMGTIEGRkZKBmzZoAgAOP3uNeTtXckjkAWhioYdO0EYiJiUFcXNy36RL+7Jk0wWdGBiAQAPr6gIMD0LUr8BkS3t14mIZ5ITvR2MkF+qa1UFRYCB01HpwamKG1kQZ01eTzR7x//x6DBw9GbGwsVq9eDT8/v2qf07fCo0ePsGLFCmzZsgUaGhqYMGECpk6dKvc9rioZBSI8fC9AwYdEqZpcDqxr8GGmxVPJkk5ECAsLw+zZs/HixQtMmjQJP//8MwwNDZX2vX37Ng4ePIiDBw/iypUr4PP5cHV1hZeXF3r37l3hvA//ZEQiEVauXImAgABYW1sjNDRUlhOmhLi4OAwYMABmZmaIiIj4Vy5wsLCwsFQUVuyzfNsMGgQcOFD5+P0tW6QZgwHk5OQgLi4OUVFRiIyMRGZmJtTU1GBsbIyCggK8eyd1oa5fv75M+Ds6OqJFixYqJXuLf5qDy1kCUOWjrgEA7148xTKPNvDz88PixYsVLBw5OTlo1aoV0tLSAAAHDx6El5dXqeNFRESgd+/eAKTx6G3atMGjR4/w66+/4q+//gIgFdmTJk0CwzAwMzODr6+vLOa/NHJycuDg4AChUIjatWvj7NmzICK0atUK2dnZSE9PR1ZWFgwMDOT2mzNnDvbs2YPhw4fjt99+g7q6OhwdHXH37l2kpaWVe61DQkIwYcIE9O7dGzt37qw29934+Hi4uroCAE6ePAlnZ2eFPsXFxTAwMMD8+fMxY8aMSh/r2bNnqFu3Lg4cOABvb28AQNj9HDzJU57YUFUYAE0N1OFWi4/u3bsjJSUFZ8+elS3k/KchAk6dAlavBo4ckW4reS8RSb9DrK2BSZOk3wnVYDl8kS/EyRf5SM8TQSIWgcOVt8yXfBM01FNDV3Nt6Ktz8eTJE3h4eCA9PR379u2Dm5tblefBArx8+RJBQUHYsGEDJBIJxowZg59++gl169Ytcz8xEe5kF+Pyq0JkFIrB4G/nLCJpLhVTTS7amGiiuYE6eBzl3+8JCQnw9/fHxYsX4eXlheXLl6PhJ3HtEokEFy9exMGDB3Ho0CHcv38fOjo6cHd3h7e3N9zd3f/zYRy3b9+Gr68vLl++DH9/f/z222/Q1NSUtd+9exeenp7IysrCgQMH0Llz5684WxYWFpbPDyv2Wb5t7twB2rUDCgsr5s7P4wEtWwIJCYCSmG8iwrVr1xAVFYWoqChcuHABRAQLCwuYmpoiLy8PDx48gEgkgo6ODjp06CBbALC3t1cQsABwMbMAp14UVDlmP/3mFRyZO0omlNeuXSsThCU8efIErVq1wvv378Hj8XDhwgW0bdtW6XhFRUXQ19eHQCBAfn6+3I2VtbU1Hj9+DABo1qwZfH19MWPGDFnMelm8evUKCxcuxNq1a0FE0NLSgpWVFa5fv44TJ06ge/fuGD16NDZt2iTbpyQ8oCT7slgsxtKlS7F48WKMHz8eixcvLvV4JaX1li1bhsmTJyMoKKhKGfc/hojg4OCAmzdvwtbWFmfOnFFqyTt9+jScnZ2RnJwMOzu7Kh3T0tISAwYMQGBgIADg4OP3uPuuapZ9EouhkZWGrrXUYW5uDhcXF2RlZSEhIQEWFhZVGvsfjVgMTJsGrFkj/eyXtjhY8prWrQscP64827iK3HtXjMNPciGh8kskMgDUuQya5j/BD316QldXFxEREWjWrFmlj8+inLdv32LNmjVYvXo13r9/j+HDh2PWrFlKw3yKRBKEP36P9DwRGJT+Opa01dLiYqC1HrT4f3uHPHnyBLNmzcLevXtha2uLoKAguYVCgUCAU6dO4eDBgzh8+DBevnwJExMT9OnTB97e3ujatWv1Jdb7l/Cxlb9evXoIDQ2V82R7+/YtBg4ciNOnT2PDhg0YPXr0V5wtCwvL10RChAIRQSAmqHEZaPIYcP8FOUsqApuNn+XbpmlTqZVOTe1vK115cLnSm/moKKVCH5DWp7e1tcW8efNw/vx5vHnzBrt370bnzp3x5MkTpKamQltbG126dEHPnj3B4/GwYcMGuLu7w9DQEM2bN8fo0aOxZcsW3LlzBxKJBHV0+FUW+gyAjs3qQ19fH0KhEDo6Oujbty+8vLzkSu5ZWVnh+PHj4PF4EIlE6Nq1K54+fap0TA0NDVhaWkJNTU1O6JdcBwA4f/48zM3NMWPGDHA4HBQUFJRa0/rWrVsYPXo0LCwssHnzZnh6eoLH46Fnz564c+cOgoKC4ObmBiMjI+zevVs2zpUrV/Ddd98hNjYWurq6CA0NhUQiARHh3bt38PHxKfW6FBcXY+jQoVi+fDmCg4OxatWqahP6ABAVFYWLFy8iPz8fAQEBpbrsxsfHw9DQEK1bt67yMZ2cnOQy8htrcKvoEwKAYbB/22a0bt0aFhYWUFdXR25uLuzt7XH58uV/Tp3yrCypBX7yZGDkSGkpr3XrgOzsio9FBIweLS0VBpTtBUQkfTx/LnXrf/iwUtN/kivAwce5EKsg9AFpnyKRGAlCfdh2dMbFixdZof+ZMDQ0xC+//IK0tDQsW7YMx44dQ5MmTTBo0CC50CSBmLD7QQ6e5UnfL2W9jiVtmQVi7LifgyKRBDk5OZg9ezaaNGmCs2fPIjQ0FJcvX4azszPy8vKwf/9+DB06tNQM+ps2bYK7u/s3J/QBaZz+rFmzcPXqVejp6aFjx46YMWOGrBSsoaEhjh07htGjR2PMmDHw9/f/V5ZbZGFhqTzZxWKcfJ6PVSlvsfbmW2y8k421N9/i9xtZiE3Pw+vCqlfs+qfAWvZZWAAgKQnw9AQyM6ViXtkPf4lFr1Mnqeu/knrsqiAWi5GcnCyz+iclJQEA2rZtC3t7exgaGiIjIwOJiYlISUkBEcHAwACNGjXCd3NWQd/cCpwqCNEfmxlAEyIsWrQIixcvRt26dZGXl4fi4mKZBbxE6B44cAD9+vUDANStWxcpKSnQ09NDdrEYN98W4b1AAqGEEHEwHHcunceWRXPRpL617Fh16tTBy5cvZTdSLVq0wMuXL/H27Vs4Oztj0aJFcHR0BBEhNjYWQUFBiI2NRe3atTFp0iSMHTsWhoaGCAn8lYzWAAAgAElEQVQJwfjx49GtWzecPn0aV65cwa5du7B48WKsWbMG169fx59//olmzZrB0NAQGhoa6Ny5M1asWIH27dujoKBAaSk6QGrl8fb2xqVLl7Bjxw7Z+VYXEolEFtrQtGlTXLhwoVSx7+TkBDMzM+zfv7/Kx12/fj2mTp2KnJwcaGpqIkcgxoZblRC7H8FlgJHWGrhz4xouXbqES5cu4fz587KFIkNDQ3To0AHt2rVD+/bt0b59+2rJd6AyV65IRf6uXdLPMJcrFd8MI/3sqqkBQ4dKxX8ppRYVCA4G/P0rPhceD7CwkHoPlZE47VNEEsLam29RLKYKL+6RRIxaWnz4NlWM4Wb5PBQVFWH79u1YtmwZHj16BHd3d8ydOxdvzFsiNVtQ4deQAcDNfonlg12Ql5eHmTNnyoRqSQb92NhYFBcXw8bGRpZB38bG5l+RQf9LIxKJEBQUhICAAFhZWclZ+YkI69atw5QpU9CjRw/s3r37Px/mwMLyrVMsliAyLQ/3cgSlelyVbLfU4aO3lS60+f9u2zgr9llYShAIgIMHpa66H7K4y+DxpPH9EyYA9vZVyoj/KZmZmYiJiUFUVBRiYmLw7t07GBsbo0ePHujcuTMePnyIHTt24NmzZ2jfdzi85gVW6qZOIhbhRUoS+lpqo2vXrgCk1nBfX1/cvn0brVq1QnJyMjp06ICNGzfK6s6vWLECM2fOBAB4+IzHkDmL8DRfLGclFomE4HC4YEiCVqbaaGeqCWMNHkxNTZGbm4vCwkJkZ2fD2NgYGzZsQO3atTFv3jzcuHEDNjY2yMvLw6NHj2BnZwd/f38MGDBAIbP0xIkTERISgjp16sDIyAjHjx+HsbExGIaBvr4+FixYgLFjx8LT0xOampooKipCQUEBzpw5g02bNmHUqFEK1+Tx48dwd3fH69evERERoTRpYVUJDw9H//79AUgT/7m7uyvtl5ubC0NDQ6xevRrjx4+v8nGvX7+O1q1b4/Tp0/juu+8AAPsf5uDhe2GlPEQ4AFoYqsPdUlehLS4uDp6enqhTpw4aNmyIpKQkvPlQocLKykom/Nu3bw87Oztoa2tX4cxKYeNGYPx4aYK8sqzvJRnpt2wBfvih7DGFQqB2beDDuVSK3buBwYNV7n7zbRGOpuVV/ngAfBrro5YWm3n/SyISibBnzx4sWbIEz9++x8yjyVUS34/+WoGRA71lMfglOUucnJzg7e0NLy8vWFtblz8QCwDgzp078PX1xaVLl+Dv748FCxbIPNFiY2MxcOBAmJubIyIigr2uLCz/UQqEEux6kIOsIrFK90EMAF0+B0Mb6UFPrfq8Pb80rNhnYVHG48dAejpQUCBNtNWoEWBk9NkPKxKJkJiYiKNHjyIsLEyWJE9XVxdeXl6YMHkKkrjmyCMOwKi+0kgSCcQiEY7N90PCscMYOnQoAgMDUatWLQgEAixZsgQLFy6EhYUFiAjp6en46aefEBAQAA0NDYwdOw4vdOug0w9+IIkYDKf0Lz0GAIcB+ljpokO9WjI3+r1792LQoEF4+vQp1NTUsG7dOvz+++/Izc0FAHTt2hXr169H48aNlY4rFArRs2dPJCUlIS8vD/r6+sjOzgYR4dKlS2jXrh0AoFOnTrCyssLRo0fRpk0bXLhwARkZGXLl/wBpMsFevXqhRo0aiIqKUkh2VR2IxWK0bNkSGRkZsLa2RlJSUqkCIDIyEh4eHrh79261lPkTi8UwNDTErFmzMHfuXABAep4QO+/nVGo8DgCfJvow1VQuIuPi4uDu7o6BAwdi27ZtePr0qcz6n5SUhOTkZBQUFIDD4aB58+ZyCwAtWrSoWlm4DRuAymScDw0FygjvwL59wMCBlZ4WuFygQwfFxcMy2JqajcxC1W5ElMEAaFnKogzL50cikeDPMzfwWses0h5YJBHj4alI/PnTKKipqcHFxQXe3t7o3bu3rLoGS8URi8UICgrC//73P1haWiI0NFRWTSQ1NRUeHh7IycnBgQMH0KlTp688WxYWlupEJCHsuP8OmQUV+31lAOirczCikT40eP9OCz8r9llY/kEUFxdj27ZtWL58OR4+fAhnZ2e0b98eDx48wPHjx5Gbm4uGLVtj+Ppw8LR0VBL8RBIwYHB/fwi2LAlAr169kJiYCKFQiEWLFsnc9q9fvw4fHx+kpKTAyckJFy5cgIWFBTaEhEDcsD2uZhVX2FK1d/ZoPL92AZmZmRg5ciTOnDmD7777Djt37gSfz4evry/8/Pxw/vx5zJ8/Hy9fvoSvry8CAgKUZrm+cOECXF1dUVBQAIZhZKUBvQcPxYzgjXgnEONIVDS01dVw8UQMXiafhVM7O2zbtk1unIiICAwePBg2NjY4cuTIZ3M137FjB374YD0ur6rB/9k787iY8z+Ov+bomG6VIkUl5ShUyhU5WyK3de2PLZtdVo6wwrKIEFn3OlZuu651s+w6tkuiRMndYZGU7nNmvvP+/TFmVnTMkWv3+3w8vg9pvp/P5/2daWa+r8/7CgwMxKFDh/D48eM6C8ft06cPeDweTp8+Lf9dQnYZzj8pAREptc4Aa320rKdV4zkHDx7EyJEjMW3aNISFhVWaXywWIyUlRb4BEBcXh+TkZDAMA4FAABcXF7i7u8tTAGxtbRWzLyYG8PCQhusrC48HxMUB1RVD7NYNiIpSuT2nnORkQIGOBfkVDDanqJdqAUjTLWa0MQGXDet+70iIsDZJmoah1jwiIWzSo9Gvz2dsaHkdc/fuXfj6+uLq1auYPn06goODoaOjg5cvX2LYsGGIjo7Gli1b4Puq0w4LC8unT3x2Gf54UqLSWA6Ajg0E6NrwHUQlvgdYsc/C8hFQXFyMrVu3IiwsDJmZmRg2bBiCgoIqVWQXCoWIjo7GmTNncCnmKjpPWYyG9o6QMEzVHiSS5vyKykuxd6YvHly5BCMjI+Tn58PBwQHNmjXDqVOn4OzsjJ9++gnt27eHSCTCihUrsHjxYjRp0kTqDbeww+fBm1S6LlFFOX6dPBShixZgyJAhEAqFsLS0REBAAPz9/St1HSgvL8fmzZsREhKCgoICTJo0CXPmzIGZmRny8vKwePFibNiwAQ0aNMDLly+hoaEBlx59YddrEGzadwOPxwcHgJhhIM224oBIAjNJCXycrOVhzZs2bUJAQAAGDRqEvXv3vlVUsK4QiURo0aIFCgsL0bBhQ9y4cQPcGnqwt2nTBs7Ozti5c2ed2RAcHIzVq1fj5cuX8rUjIyPx3bpwDAhaAR6Xi5p6UEgYMfg8Pnys9dGiFqEvY+PGjZg8eTKWL1+O2bNn13huSUkJbty4gWvXrsk3AFJTUwFI8/9f9/67ublV3dt88GDg1CnV2mfy+dIQ+1ctIt/C2Fi1on5vkLFiBV726gWGYcAwDMRisfzn139XxNdBhrmCtQRqYZqT8SfrhfiUKRIx2Jis/t8MAPi3MIKJNpuO8S5gGAY//vgjvv/+ezRu3Bg7duxA586dIRQKMXnyZGzbtg0zZ87E8uXL67RYKwsLy/uHiLDtTj5yK1TfuBfwOJjsZPxJVupnxT4LywfkzTZO//vf/zB79uxqQ9lfJzUtHadib+AJ1xD1mjmC84aX30iDAzdzHTgaayEv+wWuXLmCmJgYnDlzBikpKQAADQ0NaGlpobi4GJ999hnWrl0LBwcHJCUlwdfXFzdu3MDc0/EQ1LeoUahWh4QRI3rvTzizdjEAYN68efjhhx+goaFR7ZiioiKsXbsWK1euBMMw8PT0RGxsLIRCIb7//ntMmzYNly5fRsi+E/Cevqj6zY5XyD6WvSx18MvKhVi5ciWmTZuGVatWvdObuJ9//hn+/v4ApB7v4cOHV3vuixcvYG5ujt27d8sjAeqCixcvomfPnkhKSoKjoyMyMjLg5uYGR0dH7Dl2BjfzRLidVwGGpKkXr/ZIICGAB0LUgXB81sIKk8aNVmrdBQsWIDg4GOHh4Up7x3JyciqJ/7i4uEr5/68X/3M1N4duy5bKtc18Ez4fyMysuuCmpqY0b19NJgDYVutZQFP3rvhq8xG11wOAbx3rQV+DFSnvm5flYmy7k18nc421N4SFbvWflSzq87qXf9q0aViyZAkEAgHWrVuHwMBAeHt7Y//+/W+lgbGwsHw6PC4WYb+KKYyvM8haH80VdHx8TLBin4XlA/Ds2TOsXr0amzdvhkQigb+/P2bMmKFyr/IXRaW4fP0mEm4lIz7uKu7cuI7sR3fg6ekJb29veHt7o1mzZvKw6OTkZPTv3x9ZWVlwdXVFcnIyCgqkH4RmZmbw8vJChw4dkJZXCtN+6oUylhUV4MWBH7F75w7k5uZCS0uxD8oTJ07gq6++QnZ2NjQ1NTFz5kzMnTsXurq6uJpVikvPSpW25bfg6Rjj2Q5Tp05VeqwyVFRUoFmzZhCLxTAyMkJycnKNmyUHDhzAyJEj8fTpU1hYWNSZHSUlJTA0NMTGjRvxxRdfwMPDA/n5+bh27RpMX4nbcrEEKXkVyKtgIJIAmjwOTLR4aF5PE35j/4e//voLDx8+VKqFFxHhm2++wfbt23H06FH4+PiofA1EhIyMjEriX5b/v4DDwQIiqCVpuVwgNBSYMaPSrxmGAdfICJxi9YrlAcAXAPa99n89PT0YGBjIDy6XC5FIBIG5FfotUWRboHZmtDGBBvfT80B86tRF1wsZ45sboX41NTJY6g6GYbBmzRp8//33sLKyQnh4ODw8PHD27FmMHDkSjRs3xsmTJ2Ftbf2hTWVhYVGBi09LcP1FWY2RjLXBAdCynhZ8rD+9jT9W7LOwvEdSU1MRGhqKHTt2QCAQYPLkyZg6dWqd54w/ePAAZ8+exZkzZ3D58mVUVFSgadOmcuHv6ekJoVCIMWPG4OzZs1i2bBm6d++OwMBAREVFQU9PD2VlZRg8fw3aeg8Fj6+ed6k46ykyo89gy6Ig8GsRIOnp6Zg1axYOHz6MDh06YMGCBThz5gy2bNkCExMTzA5di3LHHkrbQETgABjX3AgNdd6tt2zDhg2YMmUKiAj79u3D6NE1e8YnTJiAyMhI3Llzp85tcXNzQ4sWLVBRUYHTp08jJiZG3mmhNu7fv4+WLVsiLCxM6Q0ShmHw+eef48yZM/jjjz/g4eGhivlVIsv/1/X3h/W1a+Cp8TUm5nBwycoKwU2aID8/X34UFRUhGUALSIsTqsODn3+GRs+e0NLSQnp6Om7evIn4+HgkJCQgKSkJIpEIXC4XTs4u+PynE+Cq+X6rp8XFhBb12FZsHwCxhPDjrZdQM2UfHABT2VSM98q9e/fg6+uL2NhYTJ06FUuXLkV6ejp8fHxQVFSEo0ePonPnzh/aTBYWFiU5nVGE5NwKlQvfyrDV18DndoZ1YtP7hBX7LCzvgaSkJCxfvhy//vorTE1NMX36dEycOBGGhu/+Q6OkpASXLl3CmTNncObMGWRkZEAgEKBHjx7o06cPUlJS8NNPP2HMmDHYtm0bYmNjMWnSJNy/fx/zTsZBp2ETtW0giQQcLhdaPA7c6gvQqYHgreJhJSUlWL58OVauXAkTExOEhoZi9OjRcsGSnp6ORYsWAa590KyDJ7g85T1eXAAt6mnCx/rdFbwqLS1F06ZNoaGhAW1tbdy5c6fWdIGmTZuib9++2LBhQ53bM23aNOzevRt5eXk4cuQIhgwZotT48ePH49SpU0hNTVW6ZV55eTn69u2LxMREREREwMnJSanxteLtDZw9q9YUEgBXGjbEll69YGRkVOloFxkJp127wFHxa5IAFNWrh2kDBuB6QgJSUlLAMAz4fD5atWoFV1dXuLi4wMXFBa1bt4auri7O/V2MxJxytW5KelvqwrX+u6lFwVI7pzOKcDu3QmUvEgeAvaEmBtuyhfneN697+S0tLbFjxw40b94cQ4cORWxsLLZu3Ypx48Z9aDNZWFiU4NSrz2R1Ba+NvgZGsGKfheUTp7wcOH8eePYMqKgAjIwANzegZUuVpouNjcWyZctw4sQJNG7cGN999x38/PzeWVG42iAi3LlzRy78IyMjIRaLYWFhgRcvXsDW1hZnz56FpaUlwsLC8LJlT5g2rvuew00NNDDYxgB8LgdEhP3792P27NnIycnBrFmzMHv2bOjp6b01TlqtPBf/ZOIrDxfAZEdj6Gi8G4/ZqlWrEBQUBIZhsGPHDnxZU2s3SDcxbGxs8Ntvv2Hw4MF1bk9QUBBWrFiBwMBAhIWFKT0+PT0d9vb2CA4OrrXgXlUUFBTA09MT2dnZiImJQZMm6m8eyfn8c+DIEfVz9r/4QtqG703y8oCGDaWfBSrAAJjH4+GCs7Nc1Lu6usLR0bHatIgXZWKE31U955vPASY7GUObx3qEPxTPS8XYeU+9vP1RdgZooq9ZRxaxKMu9e/fg5+eHK1euYOrUqfjhhx8wY8YMhIeHY/bs2QgJCVGpjg0LC8v7QygU4tq1a4h4IQRZtVDJSSSDA6BFPS0MYMP4WVg+UVJTgS1bpEdBAcDhSA+ZiPDwAAICgEGDpEW7aoCIcOHCBYSEhODSpUto3rw55syZg1GjRtVYmO59Q0RIT0/HoUOHcP78ecTGxqKkRNqWREdHBwzD4Kvtp2DZsm2dr80BYG+kiUY59zBt6lRcuXIFw4YNQ2hoKGxsbKodF/GsBFeyytTaneUA6Gahg/bmOmrMUjWFhYWwtbWFoaEhiAj37t2r9TUPDw+Hv78/cnJyKnUnqAtSUlLg7u6OkpISHDhwAJ+r2DN+0qRJOHDgANLS0lRqA/b8+XN07twZfD4fUVFRldNWKiqk3vmMDKC0FDA0BJycpO+52sLQg4KAsDDVKvHL4PGABQukR1VMmACEhyvdfk8CAFpaYNLTodGggVJjj6QW4H5eBTgqiIlOn3B7oH8Tu+/lI7NUrPRnFQeAsRYPX7UwYtMwPjAMw2Dt2rWYN28eLC0tsX37dly/fh0zZ87EgAEDsHfv3io3pVlYWD4MpaWluHr1Kv766y9ERETgypUrKC8vR+se3hi1alftE9RCv8Z6cDJRvH7RxwK7LcnCsmkT0KyZVDS8KlIHosrewitXgBEjAGdn4MmTKqeRSCQ4evQo3N3d0bt3bxQWFuLIkSO4ffs2xo4d+96FPhEhOzsb165dw6FDh7By5Up8++236NevHxwdHaGvrw9bW1vMnj0bFy5cAIfDgY2NDQQCAUpLS1FRUYHs9IeQMGoIqepsA3AvX4hvFq2UpxkcOnSoRqEPAC8rGLXDsDiAWu1XamLt2rUoLCxEWloa5syZo9BrfuHCBbi4uNS50M/NzcWAAQNgY2MDa2trxMTEqDzXvHnzUFJSgjVr1qg0vkGDBjh37hzy8/PRr18/FBcXS8X9nDlSz/ngwUBgoFRwT54MdO0KNG8ObNwIFBZWP7Gvr3pCH9IUE1QTlvvixQuc/+wzZJmaglFCeMn+Rle1bw8yNlbOHiJc3RaKp3dvAaRcxEJzI010aVD3m1gsyjPQRh8CPkepGCQOpAUyh9oasEL/I4DH4yEwMBA3b96EmZkZunXrhsePH+PQoUO4cOECOnfujMePH39oM1lY/rMUFhbi999/x9y5c9G5c2cYGRmhR48eWL9+PQwMDBASEoLr16/j+u/HYKCpnuTV4nIUbkH8scF69ln+26xYIfUOKgqfD9SvD8TFAZaWAKT91H/55RcsX74cd+7cQbdu3TB37lz06tXrnd6wycR8enp6lUdGRgZKS/+pWK+vrw9ra+u3jiZNmsDa2hrGxsbgcDgQCoUICAjA1q1bMdB3IjoELH4n9ksYBhplBQjs1FThFni/PixAepF6rdA4kIqigTZ1mw+bm5sLGxsbWFhYoKSkBA8fPoSmAlEgFhYWGDduHJYvX15ntojFYnh7eyM+Ph7Xrl3DwoULcefOHVy7dk3lOQMDA7F9+3akpaXBWEkBKyMhIUH6/mjSBLPv3pXmwlfnMZe9d8zMpKk11RUV7N4diIxU2vMOAGIAv3M4ODtxIvz8/PDs2TN54byEhAQ8ffoUAGBnYIDjQiHsy8tRaxAgjwdwOLgyeTI8N25Ejx49cOTIEYXqHUgkEkydOhUbNmzAmg0bYf7ZGKQXiSDriljNIIDLhSWKMbptk7dqYbB8OHLKxfj1YSFKRJJaNyk5ALR5HIywM0QDHbYC/8cGwzBYt24d5s6di0aNGmH+/PlYuHAhSktLcezYMXTs2PFDm8jC8q8nNzcXkZGRiIiIQEREBBISEiCRSGBubg5PT0907doVnp6eaNmy5VtpNlezSnH5WalKDiMOAHczAbo3+jSj5lixz/Lf5bffgKFDlR/H5wP29iiLicGOffsQGhqKjIwM+Pj4YM6cOXX2pU9EePHiRY1ivqysTH6+gYFBlWJeJujr1VO8OndcXBy+/vprJCYmYubxqzC2tHlnGxdfOhjVenOblZWFGzdu4AYZA2bWKoU3y+ACcDLRQt/GdZt3NW/ePKxevRpCoRDr16/HpEmTah1z+/ZtODo64vz58+jdu3ed2RIYGIh169bh/Pnz6NGjB7Zs2YJvv/0WBQUFShfZk/HixQvY2Nhg6tSpCAkJUdm2OzNmoMXq1SAoWHmBxwO0tYGoKKBtFSklp04BarT2G2dpiT1Pn0L2VWhiYoJ27dpVyrHX1NREe0dHrLOwwJDnz4HcXGnLvtejf3g86f/79QPmzwfc3fHnn39i8ODBaNWqFU6fPg0TE5Nq7WAYRt6ucPPmzZgwYQKICGlFIsRnl+FRgRDgcMB59cwRAGLEaGUswOpAf5RlZiAmJkbhjTOW90OJSIKYrFLcelkO0RuBGiSRABwONLgcOJloo6O5AAaa7Ov3MfPgwQP4+voiJiYG48ePx+3btxEfH4/t27fjiy++qHYcIyEUiSQQSggaXA50+Vxo8tiNORaWmnj+/DkiIyPlYflJSUkAACsrK3h6esoF/uutpaujgpFg970C5CoZIcoBoKvBha+DEXTfUa2ndw0r9ln+mxBJi+7duyf9WQW+NjTEz0VFGDFiBIKCghRuZyZDIpEgKysLGRkZ1Yr58vJy+fmGhobVinlra2sYGRmpdB0yiAi///47QkNDcfnyZTRr1gwDBgxAwotSeE1/N959LgDX+troaSnNe5RIJEhNTcWNGzeQmJgoFfg3buD58+cAgAEzl6D9iK/AVUPQcAB0baiDjnUY7iwrbmhra4ucnBykpqYq1Jd+3bp1mDVrFvLy8qCjUzf27Nq1C19++SXWr1+PyZMnAwCSk5Ph5OSECxcuoEcP5dsWypgzZw7Wr1+P1NRUmJmZKT/BX38BPXpIuzMoM47HA0xMgJQU6b9vEhQkjdJRkpV6eojo1g0tW7ZERkYGTp06BSLCtGnTMGPGDBgbG4OI4O3tjZs3byIpKQkm+vrSjcL9+4GnT6U1B4yNgS5dpPn9bxQgvH79Ovr27Yv69evj3LlzsLKyessOsVgMX19f7N+/Hzt37sT//ve/t875cfPPOPhnJFav3wg+j4eD+3bj970/Iyn+GqKjo+Hh4YGffvoJ33zzjdLPA8u7R8gQUvIq8LCgAiVi6XdOZnoqzu3fjpNbfoSeNluM71OBYRisX78ec+fORcOGDWFvby8PJQ4ODq7kUcyrYHAjpxw3c8pRIfnnXoMDoHk9TbiaCtBIl8+mbbB8GIiAixeBAweArCzp91m9ekCnTsDYsdIaOu+Rv//+Wy7sIyIicO/ePQBAs2bN0LVrV7nnXtVCv4VCBnvuF6BYgWgr4J+IqzH2hjDV/nQjrlixz/LfJDJSmhesImIA6ebmQFQU7OzsqjxHIpHg+fPnNYr5iteqfBsZGdXomVdXzFeHSCTCwYMHERoailu3bsHd3R2zZ8/GwIEDwePxkJaWjpATkbD1+Ewtj3rVELRznyL1eDhu3LiBmzdvoqioCABgYWEBZ2dntG3bFs7OznB2doZ+Aytsv1eg1oocAJMc60Ffo+48aDNmzMDWrVtRVlaGVatWYdq0aQqNGzhwIAoLC3Hp0qU6sSM2Nhaenp743//+h23btslvICUSCUxMTBAYGIj58+erPL8sVeGrr75SqbI/evaUCn4VQu7B5QIhIUBVHQEkEki++w7csDBIOBxwa/hakz1eFBgI/VWrKhUBfPnyJVatWoV169aBz+cjMDAQhoaGmD59Os6cOYO+ffsqbzeA+/fvw8vLCwzD4Pz582jRooX8MaFQiDFjxuDYsWPYv38/hg8fXuUc48ePR2JiIuLj4wEABw4cwMiRI5GZmYkGDRrgq6++wpEjR3D37l2Ym5urZCfL+yU2NhYdO3ZEbGws2rdv/6HNYVESmZc/OjoanTt3RkxMDAYNGoQ9e/ZAQ1sHZx4X4W6+sNo0HC6khTzra/MwxNYA9bTYqA6W94RIBGzeDKxdCzx6JI1YldW/4XKlmwBaWtJ6NjNnAtXc56oDEeHRo0eIiIiQC/z09HQAQKtWreRe+y5dusDCwqLO1i0RSXA0rRBPSsQKvTeH2hrA6BN/b7Jin+W/yahRwOHDahf3yvrzTzzU1q5S0GdkZEAoFMrPNTY2lufHVyXmDavZQZVIJCgvL0d5eTkqKirkPyty1HS+LK88LS0NFRUV0NfXR7169cDlct86l8vjYeCcULgPGQsJw6jlWX/z2lIunsb17Ssqifq2bdu+5Tm+f/8+Fi5cCN1uw2Hj0kklG7gAmhlpYnAd5us/ffoUdnZ2aNmyJZ48eYK0tDSFvPRisRgmJiaYNWsWvv/+e7XtePbsGdq1awcbGxtcvHgRWlqVC8n069cPDMPg999/V2udRYsWYfny5Xj48CEaNWqk+MD79wEHB7XWhqUlkJ4OkUSCO3fuyHPr4+PjkZiYCK/SUswC0AmAmMMBj0j+Zc6R3cx06QJ89x3Qv3+1y2RlZWHFihXYuHEjhEIh3N3dcfHiRZVTIADp38lnn32GzMxMnDlzBu3bt/4fgWQAACAASURBVEd5eTk+//xznDt3DocOHcKAAQOqHe/u7o5WrVphx6sWgc+ePUOjRo1w8OBBDB8+HC9fvoSDgwO8vb2xe/dule1keX+IRCLUq1cP8+fPV6mtJcuHh2EYbNiwAXPmzIGBgQEKCwvh2NYF4zf/hnyGq7D3UIvHwSg7Q5iz9RpY3jWFhdKiuDInQ00ykM+XptGdPAl066bWskSElJSUSuI+MzMTXC4Xbdu2lXvtPTw8YGpqqtZaipBZIkJ8TjlS8irwWtANOAAcjDThUl8Aq39J1A0r9ln+mzRuDPz9t9rT+ALY+epnPT09mJqawtjYGEZGRjAwMICenh50dHSgpaUFIlJakJeXl0NPJMKXAL4A0BCAJoB8ABEANgG4XoVdfD4f2traVR48Hg8vXrzAkydPIBKJYG1tDWdnZ1hYWFR5fnZ2NlasWAFnZ2cYNXeBTXcfNHZqJ883VeeDUMKIgacP4GnKhaura5Wh72lpaVi8eDF2796Nhg0bImjVRhQ7dFZ5zS+aGcJSr+46I3z77bfYt28fSktLsXTpUsyaNUuhcVevXkWHDh0QExOjdp2H8vJyeHp64tmzZ7h+/XqVnt2QkBAsX74ceXl5auV1FxQUwNbWFiNHjsTGjRsVHzhjhtSLoIpX/zUC7e3x0+PHKC8vB4fDgYODgzy/3tnZWdpxwsoKq1q0AB48kHbYMDKSbjR89ZU0fUcBGIZBx44dce/ePZSWlsLY2Bhz5szBN998o1CKRlXk5ubCx8cHiYmJ2L9/PzZt2oSIiAgcO3YMn332WY226OvrY+nSpZg+fbr893Z2dujbty/Wr18PANixYwf8/Pxw8eJFdO/eXSUbWd4vffr0AYfDwdmzZz+0KSxq8ODBA/j5+SEmNhYTthyFVet2SvX05gAQ8Dn40sGIrdvA8u6oqJBG2MXGKv5dzOVKRf9ffwEdOii8FMMwuHXrllzYR0ZGIicnB3w+H25ubvKw/M6dO1fr7HofVDASFAolqGAImjwO9DW4EPA/zdz86mDFPst/EyOjf9rsqYgYwHcAfqziMS0trbdEc1W/q+kwFInQ/fffYR8XB65EArzyUsogHg8chkFFy5YonjsX6NNHvg6f//ZNRlpaGsLCwhAeHg4OhwN/f39Mnz69xtynFy9eoF27dtDW1oaPjw/WrFkDLpeL+rbN4R24CE3duqgl9okIp0ODEH0gHBoaGnBxcUHHjh3RsWNHWFtbIzw8HNu3b4eJiQnmzp2LCRMm4Pjx4wiPuInuXwUqvV6PRrpwNxOobO+bpKenw97eHu3atcP9+/eRnp6ucN9lmfjOzc2t8vVSFCLCuHHjcOjQIURFRcHV1bXK8yIiIuDp6YnExES0adNG5fUAYMWKFZg/fz4ePHigeO6chwcQHa3WumIAJ9q2xRNfX7i4uKBNmzbQ1/+n0KIsd/2PP/5Ar1691ForNDQUQUFBiIiIgJWVFYKDg7Fz506Ym5vj+++/x/jx42vttlAVpaWlGDJkCM6fPw9NTU2cPXu2VmF+//59ODg4vHVdfn5+SEhIQGJiIgBppIynpyeys7Nx8+bNt6I7WD4+li9fjqVLlyIvL0+tzwGWD49EIsGPv56EqIVqm9EcAG1MtNGnsWLfISwsShMYKN10lyjX1hU8njR/PyMDqOYeRyQSIT4+Xu65j4qKQmFhIbS0tNChQwd5WH6HDh3UipJjUR5W7LP8NzEzA7Kz1ZqCAGTNn49yP79KIl1TU/Otlh9Kk5oq3X198qT2VANZftWGDUAVFeBv3LiB0NBQHDx4EMbGxpgyZQomTZpUbWXwnJwcREdHIyIiAtu2bZPn0Mu8webm5sjMzISmji7m/pECTW3VxbNEJMSkFgZIfXAfV65cQUxMDCIjI/H3q6gLLpcLR0dHjBkzBt26dUN0dDQCAwOho6OD3TG38UCiB4lYDG4NN8kkYcDh8mCPfAxu27ROQ7L8/Pxw8uRJFBUVYcGCBZg7d67CY3v27AkdHR2cPHlSLRvCwsIwc+ZM7N+/H6NGjar2vLKyMhgaGmLNmjUKdQqoiZKSEtja2sLHxwc///yzYoNatZIW2FMHDQ1g8mRg9eoqHx43bhyioqLw4MEDtd6Dt27dgpubG6ZNm4YVrxX+e/jwIRYtWoR9+/ahcePGWLBgAcaOHauUSMvPz0ffvn0RHx8PkUiEdevWISAgoMYxR44cwbBhw5CVlVUpvWXHjh0YP348cnNz5TU9kpOT4ezsjIULF2LevHlKXjnL+0aWt3/16lW4u7t/aHNY1GT3vXw8KxVBwV4jb8HjAAFOxtDm/bs8iywfAUVFgLk58FoXJ6XgcIAtWwB/fwDSiMKrV6/Ki+nFxMSgtLQUurq66Ny5szws383Njd14/sCwnyYs/00aNapUmEsVOAAaODvD2toaDRo0gJGREbS1tdUX+tnZ0t7high9QLpDSwR8+y2wdy8Aqbf3woUL+Oyzz+Di4oKrV69i3bp1yMjIwPz58+VCn4hw//59uWho3rw56tevj0GDBmH9+vUoKiqCqakpeDweGIYBwzDIzc2FpaUlvgucjnsXT4JRse6BhBEj9vAueHp0hra2NkaMGIFGjRohJycHBgYGGDVqFAICAqCvr48FCxagffv2CAwMBJ/Px9ixY3F05ffYGTAKZZlpAN64tSIJJIwYRIS8h8m4FDoL878YWKm7gbrcv38fu3btQqtWrSAQCOSV7xWhrKwM0dHR6Nmzp1o2nDt3Dt999x1mz55do9AHAIFAABcXF0RFRam1JgDo6upizpw52LlzJx48eKDYIEEdRVRUM09eXh4OHjwIf39/td6DQqEQY8eOhb29PRYvrtyFws7ODnv27EFycjLc3d0xfvx4tGzZEvv27QOjQEjky5cv0bNnT9y7dw9RUVEIDAzElClTsGDBAtS0737r1i2YmZm9Vceia9euICJEvxYx4ejoiMDAQCxZsgSpqalKXj3L+8bV1RW6urq4fPnyhzaFRU2ySsV4ViqGqkIfABgCknMraj+RhUVZ9u4F1LgHIgBFISH4ft48dO3aFYaGhujWrRtWr14NgUCARYsW4erVq8jLy8O5c+cwb948eHh4sEL/I4AV+yz/TcaOVX8OAwOgTx/153mTKVOkLb1UENHk54cTW7bAzc0NvXr1QnZ2Nn755Rfcv38f3377Lfh8PmJjY7Fq1SoMGjQIpqamcHBwgJ+fHw4fPoxnz57J5xKJRLC1tcXgwYPh6uoKU1NT3Lp1C+Xl5Zg4cSLOnj2Lc1tWQVxRDomSedgkkYARViB6/xY8efIErVu3hqWlJTZt2oQZM2YgPT0d+/fvx5o1axAVFYURI0YAkLYf7NevH44fP459+/bhXvSf2Dt1NO6Hh0Dj6R2YoxRN9PgwERfj8o51qPhjN1aN6o1pYz/Ho0ePlPK818bChQthbm6OuLg4TJ06FQYGihf9i4mJQUVFhVpi/8GDBxg5ciT69u2LpUuXKjTGw8OjkjBUh2+++QYNGjTAokWLFBvQuLE0FFAdxGKgmqq8e/fuhVgsxpdffqnWEosWLUJKSgr27NlT7U1Ky5YtcfDgQdy4cQPNmzfHF198gdatW+Pw4cOQVBMemZWVhe7du+Pvv//G5cuX4e7ujlWrVmHFihUIDg7GxIkTq90wSEpKqrK1p62tLSwsLBAREVHp9wsWLICZmRkmT55c4yYCy4dHQ0MDHh4erNj/F5BaKFRD5v/DwwJh7SexsCjL5s1qDecQQT89HVc3bYKZmRlWrlyJxMRE5OTk4MSJE5g5cybc3d2hoVF3NZFY6gY2jJ/lv0leHtCwobRYiSrweMC0acCqVXVr1/Pn0orjKhYxYwAsBHClZ0/Mnj0brq6uuHLlCiIjI/Hnn3/i1q1bEIlE4HK54PF4EIlEAKQiWlbgjMfjYdWqVZgxYwZWrlyJ27dvw8nJCRs3boRIJMK0adPA4/FQv359vHjxAi69+mPg4p/A4XIVqpAvYcSQMAzu7FmNzJQbldrO9e7dG3v37pV7MIkI/fr1w9mzZ9GiRQskJiZCU1MTXbt2RWRkJKZPnw4iQkxMDG7cuAGRSARdXV24uroiKioK48ePx2+//YYxY8bAxsYG06dPr5N87qSkJLRp0wa9e/fGlStXkJGRgXr16lV9slgMnD4NREVJ/+40NXEhKQkLU1IQkZOjUlpBQUEBOnToACLC1atXFS5uc/ToUQwZMgSPHz+ust+7smzevBmTJk1CUlISWrVqVdviwJAh6i3I50s3wt7wcBMRWrduDQcHBxw+fFjl6a9cuQIPDw8EBwcrtTEUFxeH+fPn4/z582jbti0WL16M/v37y1/bp0+folevXigoKMCFCxcqtd4DgPDwcPj7+2Pw4MHYt2/fW5sMdnZ2GDhwYJXtDkeOHInHjx8jJiam0u9PnDiBgQMH4vDhwxg6dKjC18Ly/mHz9v8dXHxaguvZZZUqe6uCmYAHv+bVfJ+wsKiKvj5QXKz2NPTLL+CMHFkHBrG8L1ixz/LfZfx4YNcu1Xt+37tX971HlywBfvhB+eIpryAAxbq68O3VCzFxccjMzAQAcDgcuYfP3Nwcbm5ucnHv7OyMxo0bg8Ph4O7du2jfvj26dOmC48ePg8fjYejQoUhISMD27dvh4+ODsrIyuLi4ID4+HpMnT4ZAIMC5q4kYtHgTtPWk3m1ODWHUmhzCrimjcCvyAgBpKHJubi5SUlKgra0NXV1d7Nq1C15eXmjfvj3i4+PRpUsXXL58GVwuF6dOnYKPjw/c3NwQFxcnn7esrAzx8fHy3P9Tp05B/Co6gsPhYOTIkbhx44Z8repqFijCkCFDkJCQgJycHEydOrVqz/rLl9Kd9I0bgcxMab45EcDhQCwSgQ9I28AFBABDh0r/phSAYRgMHDgQUVFRiIuLg729vcJ2Z2VloUGDBvjll18wsg6+rIVCIRwcHODq6lq7yBaLpRtZWVmqLcbnA8OHA/v3v/XQlStX0KlTJ5w7dw5eXl4qTV9SUoK2bdvC1NQUkZGRNYsuhgEuXpTW1igulkb5NG+OKADfz5+Pv/76C+7u7ggODoa9vT169uwJsViMCxcuwK6az4zjx49jxIgR6Ny5M44ePSqPFCkuLoa+vj527NhRZdTCpk2bMHXqVBQUFLzV8nHgwIGIj4/HnTt3KhUyZPm4kP39snn7nzas2Gf5qOHxVL63rMTPP0vvn1k+HYiF5b/Ky5dEdnZEfD6RVIYpfqxb925satpUeVuqOHoAxOFwyMLCggYMGEChoaH0559/UnZ2dg1Px0uys7Ojli1bUkFBARERXb9+nQBQjx49CNK9BGrUqBFpamrS9u3biYjou+++IwDUwqkN9fKbQnPO3KBlCdm0LCGbQuJfyH/enJxDqw6cJisbW+LxeNSgQQPi8XgEgPr160fTp08nPp9P+vr6BIAMDAwIAA0dOlRuY3l5ORkZGRGPx6MnT57U+FQGBARQ48aNaf369cTlcqlRo0bE5XIJAPH5fPLy8qIffviBzp07R/n5+Qq/RLLnxMfHh3R1dat+Tm/fJrKwIOJya36teDzpv59/TlRWptD6c+bMIS6XS2fPnlXY5tdp1qwZTZ48WaWxVREeHk4AKCEhofaTg4Nrf05qOqKjq5x23LhxZGNjQwzDqHwdkyZNIoFAQPfv36/+pKwsopAQokaN3n4NAaJmzUiydi1dOnaMOnToQABIS0uLLCwsKD09vVYb/vrrLzIwMCAXFxfKysoiIqLY2FgCQPHx8VWOuXXrFgGgCxcuvPVYeno66ejo0PTp0xV7Elg+CEKhkHR0dGjFihUf2hQWNYjJLKHlr77v1Dl+ua/49xELi8Lo6dXJ/SUdPPihr4RFSVixz/LfJiNDKvhfv2Gv7uBwpP8uWfLu7NHVrZMP4wc//EAlJSUKLysSiahXr15kYmJCjx49kv/excWF+Hw+6erqUr9+/QgAmZmZ0ZUrV4iIiGEYatasGQEgLpdLa9asoe3h4dSkjTu59B9Bo4OW0PVnBbR+z0G52Pb19aXU1FQqLi6mjh07kp6eHpmbm5NAIKBvv/2WmjdvLt9YqFevHt26dUtuz4QJEwgAfffdd7Ve0y+//EIAKCsri0aPHk02NjaUn59P8+bNIwDUtm1bMjY2JrzaGHF0dCR/f38KDw+nu3fvkkQiqXLevn37UrNmzUhfX59mzZr19gn37hEZGSn2NyU7uFwib28ikUiha1q5cmWt118dX375JTk7O6s8/k1EIhE1a9aM+vfvX/vJFRVEXboo99zIjgULqpwyNzeXtLW1KSQkROVrOHfuHAGgDRs2VH/S778T6ejUvFnB4UgPExN69OuvZGxsTFpaWgSAevXqJX/f1ERiYiKZm5uTnZ0dpaWl0datW4nL5VJpaWmV5zMMQ/Xq1aOFCxdW+fiKFSuIx+PRjRs3FHouWD4MXl5e1Ldv3w9tBosaPC8RqS30lyVkU1xW1e91FhZVefToEWU2akTiuhD7N29+6MthURJW7LOwvHxJ5OdHpKn5z8366x9sMs+/vf2739HU0KibndetW5VaNiAggPh8Pl26dImIiLKysqhnz55yURwWFkZcLpd0dXXp6dOn8nFhYWFyYW5hYUFlZWX0zTffUIsWLYjL5RKHwyFtbW0CQKNHj6Z79+5VWjc3N5ecnJyoYcOG5O/vLx8jE+ACgYA0NDRozZo1lJycTBwOh8zMzEhUiygmIsrIyCAAdOzYMbp69ar8ZyKikSNHkpGREWVkZNDdu3dpx44d5O/vT46OjvL1jY2NqV+/frRkyRK6ePEiFRUVUVRUFAGgYcOGkUAgoOfPn1deVCgksrFRTcxyOETz5lV7PfHx8SQQCOiLL76odiNCEbZt20ZcLpcKCwtVnuNN9u/fTwAUErOUl0fk4aGch3/GDKJqrnn9+vXE5/MpMzNTJdtzc3OpUaNG1Lt37+ojA44dk9qroM0SLpfKABpja0uZmZn022+/UatWrUgWxVKdl17Go0ePqGnTptSwYUMaNWoUNW/evMbzfXx8qEePHlU+JhQKqVWrVtShQwe1Ih9Y3i0hISGkp6en0Gcby8fLzrt5ann3Q29kU5mIfZ+yqIdEIqHbt2/T4sWLqU2bNgSAvtbQIIk695VcLpGr64e+NBYVYMU+C4uMly+JwsKIWrcmMjUl0tcnsrQkGj6c6PLlasVGnVKvXt2IfSU2JbZs2UIAaPPmzSSRSGjXrl1kbGxMfD6frKysKCAggACQhoYG/fDDD/JxycnJpKWlRd26daPXvc1OTk7k4eEh3wTQ0NCgxo0bU0pKSpXrZ2ZmUtOmTcnS0pI0NDTk47y8vMjOzk4e6q+jo0PVhStXhUQiIQsLC5o9ezYREXXs2JG6detGRP8IvJ49e74lgPLz8+ncuXO0cOFC8vLykqcTcDgc0tPTo3r16pGOjg59+eWXb4vugwfVe9309IiKi9+6lufPn5OlpSW5ublV6+FVlDt37hAAOn/+vFrzvA7DMOTo6Ei9evVSbEB5Ob38+mvKe/0moqoNtqZNiXburHYaiURCTk5ONGTIEJVtHzNmDBkaGtLff/9d9Qm3bhFpab29CVjLIQaIMTAgejWvWCym/fv3k729PQGgIUOGUFJSUrV2ZWZmUtu2bYnH41Ur5GWsXLmSBAIBVVRUVPl4REQEAaAtW7Yo9qSwvHdiYmIIAF29evVDm8KiBkkvy1QW+ssTsul0et1twrL8t5BIJHT9+nWaO3cuOTg4EADS19enUaNG0eHDh6n4xQvpfa069yi7dn3oy2RRAVbss7B8TPTpo5pX+M3jtVD8mrh8+TLx+Xz69ttvKS0tjby8vOj1HH0nJyfi8/k0adIkAiAXJxUVFeTs7EwtWrSg9u3bEwBKTEykXbt2ycU6APrpp5/o4cOH1KpVK9LX16cTJ05Uacfr4/bv30+7du2i+vXrk76+vjzCQJZrf/z4cYWfzmHDhlGXLl2IiOjAgQNyO4mI/vjjDwJAP/74Y41zMAxDSUlJNH36dHq9loAspWHQoEG0YsUKioyMJHHnzuq/ftu2VVq/oqKCOnfuTA0aNKi1ToEiSCQSMjExqbRxUxccOXKEANDly5cVOt/Pz4+sGzSgiu3bibp2JbKykm6y2doSDR1KdOFCrRtsV65cIQD0+++/q2TzoUOHCADt2bOn+pNGj1atrgcg/VsICqo0nUgkoh07dpCNjQ1xOBwaNWrUWxEvMvLy8ojP5xOfz6eTJ09Wa6IscqWmyApfX18yMjKS1wJg+bhg8/b/HYglEtpzT3nv/vKEbFp7K4cKKsQf+hJYPiEYhqHo6GgKDAwka2trkkUl+vr60smTJ6nszVpA8+YpvXEt/y5r0IBITWcDy4eBFfssLB8TJ0+qJxR5PCIvL4WWevToEZmYmFCPHj1o1apVpKOjQ1ZWVnTq1Clq1aoVaWlpkampKV2+fJm+/vprsrW1lXuy582bR3w+n3bs2CEXvrLcfQC0bNkyer1oW2FhIQ0aNIg4HA4tXbq0kkd8z549xOFwSENDgwwNDaljx45UXFxMubm5NHHiRJJ51V//d8KECQrVJAgLCyOBQEBCoZCEQiFZWlqSr6+v/PGpU6eSlpYWJScn1ziPRCKhDh06kKurK5mYmJCfnx+dOnWK5s6dS927dyddXV1qpu4GDV55uNu2rbSuv78/aWpqKhYiryA+Pj7Us2fPOpuPSGqrs7MzdenSpdY0g4yMDOLz+bRq1Sq11vT19aUmTZqoFJ6emZlJJiYmNHTo0OrtzcpSXejLDiMjovLyt6auqKigzZs3k6WlJXG5XPryyy8pNTW10jlPnjwhANS+fXvi8Xi0qxqviiJCMTs7m4yNjWns2LGKP0ks7xU2b//fQZmIoe0puQoL/pDrz2n1zRzKLGFTOFhqRyQS0YULF2jSpEnUsGFDAkANGjSgiRMn0h9//EFCobCmwVKnkjJpdDyetF4Nm6v/ycKKfRaWjwmxuHKlb1WOarznr1NQUECtWrUiKysrcnV1JQ6HQwEBAVRYWEgzZ84kAGRnZ0cZGRnEMAw1bNiQAgMDiUgabsrlcmnRokXUunVreQEyR0dHGjt2LNWvX5/OnDlDAOjx48fyNRmGoQULFhAA+vzzz6m4uJhWrlxJAEhXV5fu3r1LcXFxpKenR71796byVwKpY8eO8k0EWU49l8slW1vbWivAy0Jjr127RkREy5cvJy0tLbl3s7S0lFq2bElt27atNgSaiOjUqVMEgPz9/UlDQ4MyMjIqPS4SiejR6tXqi32ASFtbPu+GDRsIAO3YsaPW11RhJBLaPWkSbeXzienXj6h7d6knPTiY6NkztaY+ffo0AaBz587VeF5AQAAZGxtTUVGRymvl5+eTQCCgJSoUzJRIJNS/f38yNzenFy9eVH/ismXqdQ+QHXv3VrtEWVkZrV27lszNzYnP59PXX38tTymQvY8ePHhAX331FQGodoOkV69e8iKJEomkyg2Mn3/+mQDIa3OwfFyEhISQvr4+m7f/L6BCLKEjjwrkXvsqhX58Fi1LyKapB/6i81GxH9pklo+Y8vJyOn36NPn5+ZGJiQkBoMaNG9P06dOlUYViJSJCSkuJBg/+x8FQm9A3MSF6dQ/F8mnCin0Wlo+N8HDVBAWfT+TiIt0wqAGxWEx9+/YlTU1N4vP51KJFC4qOjiaxWEyzZ88mAGRubi73nMtaf0VERFBxcbG8PZ+jo6N8UwAA/frrr9S9e3caNGgQ7d27lwBU6X0/fPgw6ejoUP369QkAmZiYVCp0d+nSJdLS0qKhQ4fS2bNnCQA1adKE1q1bR4aGhmRoaEjGxsZy0b9ixYpqPbvl5eWkqalJa9euJSJpe0GBQECLFy+Wn5OQkEAaGhoU9Ea4tQyGYcjZ2Zk6d+5MZmZm5O/vX/UTu3t33Yh9gIhh6OLFi8Tj8WjatGk1vp4KwzDSvy0nJyKAhMA/xXo4HOmXPo8nrVGh4he7RCKhjh07kpubW7Xe8ufPn5O2tjYtWrRInauhjRs3Eo/Hq1QwUlFkore6tBI5Q4aoFvL4+qGhQTRlSq02lZSUUGhoKJmYmJCWlhZNmTKF5s2bR/r6+nLxPnfuXJJ1o3jz+V28ZhONWvoT/Xgzh5a/Ehg/3syhk2mF9LRYSBKJhBiGoU6dOlGLFi1q3Nxi+TDINifj4uI+tCksdcTLMjH9+XcRhSXmvBW2fzS1gLzH+JGuri45ODjIN7hZWIiIiouL6ciRIzR69Gh5+qC9vT3NmTOHrl27plahXhKLifbsIXJz++f+kc+X3gfICkXXq0c0Zw6RCt+xLB8XrNhnYfkYmTVLeaHfuDHRm9Xhq2DMmDEky39fsGABlZeXU15eHvXt21ceJh/9Wj/zoKAgMjU1JbFYTIMHD5b3qtfR0SEHBwcSiUTE4XBo06ZNpKOjQytXrqQ1a9aQ9mse6jfp27cvydr1VdUv/sSJE8Tj8eSV/GVFqzIzM+mLL76Qb0jIPP6dOnWqNp+9Y8eONHLkSPn/v/76a2rQoEElsRMSEkIcDociIyPfGn/48GECQAEBAcTj8Sq1JqzEkSN1I/S1tCg1NZVMTEyoV69edePlKy8nGjlSsZ182Zd+Dd7omrhw4QIBqLa2wuzZs0lfX59yc3NVvhyJREKtW7emQYMGKT02NTWV9PT0yM/Pr/aTPT3Vfz35fCIlQucLCwspODiYDA0NicfjUaNGjSg7O1v++I8//kgAyNfXl0QiEf1dJKTwO7m0LCGblsQ9e8t7uOLVv9vv5NLjIiHdunWLeDyeWq0KWd4NsnSM0NDQD20KSx0jYiSUVy6mzBIRvSwTU7lYukF98eJFAkA8Ho8WVNNelOW/Q35+Pu3bt4+GDBlCAoGAAFDr1q1p4cKFlJSUpJ7Ar46EBKLZs4m+/FJao2bSJKJ9+6pMP2P5NGHFfi9ftwAAIABJREFUPgvLx4hEQhQS8k8YVXVCQvZYmzZEtbQeKywspN69e5Ms/EtWbO/27dvUrFkzMjIyIktLS+rXr1+lcc2bN6cBAwZQu3btCAA1bNiQgoKC6PXK+AYGBjRlyhQCQDExMTR//nxq1KhRFZclkRfca9myJXl6ehKfz6effvrprXM/++wz+U72m19wly5dkrf309HRIQ6HQzo6OnT48OG35pkxYwY1btxY/v/bt2/Tm0XZxGIxde7cmaytramgoKDS71u2bEk9e/YkCwsLGjduXPVPcEJCnYh9pmlTcnJyoqZNm9LLly+rX09RGEbqrVc2HJ3DITp0SKUlu3XrRm3atHkr4iI3N5f09fXlHRJURRZtUtVGUU0wDENdu3alJk2aVHqdq6VPH/VfUw0NogkTlL7G3NxcMjMzIz6fT3p6ejR//nzKy8sjIqK9e/cSn8+ncd/9QCtqChN+w5O4IiGb7uSW08yZM0lbW/utGgEsHx4vLy/y9vb+0GawvEd69Oghf6/XVj+G5d9HdnY2bd++nby9vUlTU5MAkLu7Oy1fvpzu37//oc1j+RfAin0Wlo+Z27eJJk+WFkeReWVfF/8eHkQHDhDVEpJ7+vRpuSfc3d1d7i0+duwY6evrk6Oj41tF9YiIjh8/Lvee83g8at26NZWXl5Ojo2OlAm9WVlbk5eVFWlpaVF5eTpMmTaI2bdpUskEkElHr1q0JAPXs2ZMkEgkJhUKaPHkyAaCvv/5a7m2/ffs2cblceSu+4ODgt66poqKCli9fTgKBQL4DDoBGjBhRKRdc5pl/Pdzby8uL2rVrV2kT4dGjR6Snp1epgJ8sHWHWrFnE5XKrrZpORNINGkdHtXK8JVwu7XByIj09vbq76fvxR9Xs4XCkQjUtTeklIyMjCQAdfKMF5OLFi0lbW7tS2oYq+Pn5UZMmTZTLUyRpwUYOh6NwxwAaP179An08HtHChUpfY0VFBWloaNCKFSto1qxZJBAIyMjIiJYsWUKFhYV08I9IWhL3jEKuZyld9ftOVj5ZWVmRt7f3u/EUsagMm7f/3yM6Olq+kd6xY0eVCo6yfFo8ffqUNm7cSD169CAej0ccDoe6du1Ka9asqVTriIWlLmDFPgvLp0BhoVTUr1tHtHKltD2bAmLwxYsXNHr0aAJAmpqa5OLiQuXl5cQwDC1atIhk/b5zcnKocePGNGzYMCIiunv3Lo0cOZJkFfDbtWtH9erVo6dPn8oFcGzsPwWFHB0dyc7Ojjw8PIiIaMSIEZV6gxcXF1OTJk0IAI0aNeotO7dt20YaGhrUpUsXyszMJCcnJwJAmzdvpsWLFxMA2rBhQ5XXmJ6eToMGDSJZaoKsJZ4s9P/p06cEoJLXX1b4LCoqqtJc27dvJwD022+/kVAopKZNm1L//v3JysqKRo8eXevzTVu3qiUMRTweGaP6EHilEYuJLC3VE6oqeuH79OlDzZs3lwvyoqIiMjY2psmTJ6t1Sfn5+aSjo1PlBlBNJCcnk5aWFk2fPl3xQRcv1km0BtW0SVQNt27dIgDy1JLMzEyaMmUKaWpqkml9M1p2JZ2Wxb9QqZf3uls59NvRYwSAjhw5orRtLO8OmfBj8/b/W3h7e5OVlVWN33UsnzZpaWkUFhZGnTp1Ig6HQ3w+n7y8vGjz5s1qb4CzsNQEK/ZZWP6FSCQS2rt3L5mampKxsTE1adKErKys6Pnz51RYWEiDBw+We8wZhqENGzYQl8ulc+fO0bhx44jL5ZKlpSXZ2tqSi4sLyQrwyQTwgAEDKq3XqVMnEggE8vDsnj170vDhw4lIWpBNVj1WVtG/KqKiosjc3JyMjIxIFubPMAxJJBJ5j/u9NeSRnzx5kqysrCq16QsKCiKxWExNmjSptDbDMGRvb09f+fgQLV1K5O1N1L49Sbp2pb8sLWmMvj6FhYYSAFqwYAFxOBy6fft27U98cTGRsbFK3n0xQFtQdRSDypw6pb5QNTIierNXrwJcu3aNANDu3buJSOpV5/P5b3UyUJZNmzYRj8ertkZDVQiFQnJxcaEWLVpQqTJ9giUSIjs71Yv08XhEr216KYNsU00Wui/j8ePHNC3kR6VF/pvHndwy6t+/P1laWlJhYaFKNrLUPRUVFWze/n+Q+Ph4AkCenp6kr68v78jBUrcwEgk9yK+gE2mFtO9+Hu26m0cHH+ZTVGYJFQnrPqLizp07tHTpUvl9lJaWFg0YMIB27txZN2l6LCwKwCEiAgsLy6dJTg7w+DFQUgIYGADW1sjIz8fEiRNx9uxZjBgxAmVlZfjzzz8RExMDXV1dDBw4EH///Tf27dsHHx8flJaWwtraGkZGRkhLS4OpqSnmzp0LHx8f2NraQiAQYODAgdi/fz+2bt2Kb775BomJiWjdurXcjO7du+Py5cs4ceIEfHx84OzsjA4dOmD69OlwcXFBSUkJQkNDMWvWrBovJyEhAe3atQMRYfny5Zg9ezYAgIgwfvx47N69G0ePHoWPj0+V40tLS7Fs2TKEhISApJuZcHBwgL29PXJychATEyM9MSkJD3x9YR0fDz6XC45EIp+DeDxwGAbPAFxydERwURFau7vj4MGDir0m0dFA9+4AwwCvzVsTEi4XiRIJvPX0EJ2YiKZNmyq2Vm0MGgScOiW1RR0OHgSGD1dh+UFISkpCYmIiHBwc0KdPH4SHh6tsBhHB2dkZ1tbWOHbsmMLjfvjhB4SEhCA2Nhaurq7KLbpxIyggABxVvyqPHQMGDlR6WFBQEH755RdkZGS89dgvDwrwuFgIAkclkzgArPQ00EkjDy1btsTEiRMRFham0lwsdY+Xlxc0NDRw+vTpD20Ky3tk2LBhuHbtGoRCIdzc3HD8+HFwOKq9x1kqw0gI17LLEJ9djiKRBBwAr3+iy55leyNNdDLXgbkOX6V1iAg3b97Eb7/9hiNHjiAlJQW6urrw9vbG0KFD4e3tDX19fXUvh4VFKbgf2gAWFhYlkUiAP/+UCggzM8DVFejaFWjbFoyJCSKbNgX3+nWcOHECrVq1wokTJ7B37148f/4cbm5uEIvFiIuLg4+PDzIzM+Hl5YXs7Gzk5ORg2bJlePToEQICAnDu3DkQEQwMDLBhwwaUl5dj8eLFGDlyZCWhDwAVFRUAgE6dOgEAXr58iYqKCjg5OaG0tBR79uypVegDwOLFi0FEaNq0KYKCgjB37lwwDAMOh4OtW7di4MCBGD58OC5fvlzleB0dHQQHByMlJQVdunQBANy7dw+nT5/GtWvXpHaePg24u8Pu5k1oAJWEPgBwXgnjhgBGJScjPCMDP0yerPjr07kzcPYsIBAA/NpvGIjLxU0NDXxrZwddMzO0b98ekZGRiq9XEw8eqC/0+XwgNVWloYsXL0ZqaiomTpyIrKwsBAUFqWXK9evXcfPmTUyYMEHhMXFxcf9n77yjorjaMP5sYelFBUEsKKhRFAu2JPbeYlSsicYe1NiJDUtixRoLGsUWuzEm9s8kJDH2xCBWrKDYOyi9LTvP98e6G1d2YWGXYpzfOXs8zNy5973jlnnufQvmzp2L6dOn517oA8gcPBgR7u7IzO2FEgkwZAjw8ce5HhMALl26BB8fnyzH0zIF3E1S5lnoA+qH3HtJSpQsUw5fffUVli9fjkuXLuW5PxHz0qxZM5w4cQKZmbl+14m8xcycORP379/Hxx9/jIMHD+Knn34qbJP+E6RlCth5Mx5HH6UgUan+vX9z6ZavXpFxGdgSGYfIuHSj+xcEAf/88w8mTpyIihUronbt2ggODkadOnWwb98+PH/+HLt27UKvXr1EoS9SKIg7+yIibxNRUWrxcP26WoTpeRhUSSSQkXhetSq8r13D6FmzYGVlhcmTJ6Ndu3bYvn07lEolFi5ciJUrVyI9PR1169bF4cOHdX6IqlWrhqtXryI0NBRt2rTB0qVLMWHCBFy7dg2VKlXSGbNatWq4desW0tLSAABWVlbIyMiAVCrFzz//jDZt2uQ4tdDQULRr1w6Ojo64c+cO1q1bh0mTJqFDhw7Yvn07HB0dkZ6ejk6dOuHvv//GkSNHULduXYP9kcSuXbswdOhQxMfHAwCGeHpi7d27aoFv5FefCoCsbl3g2DHAxsaoawAAN24A8+cDO3ao/580zt0AIJMBKhVYqhTWW1tjVnw8Tp49Czs7O3Tv3h2nTp3C2rVrMWDAAOPH04eHh9rzwxQsLICJE4E5c/J0ea9evbB792507doVP/74o0mmfP755wgNDcXt27chk8lybJ+amoratWvD3t4ef/31FywsLHI1XkZGBvr06YPQPXsQ6e0NtytXjH7foE8fYNMmoxZ89FGmTBn069cPQUFBOsdfpKmw9trLPPX5JkOqOMFBJqB27dpwdHTEyZMnIZWKewCFzV9//YWGDRsiLCwM9erVK2xzRAqQvn374siRI6hTpw7CwsJw7do1FCtWrLDNemvJFIgdUfF4nJKZReBnhwRADy8HeDoo9J5XqVQ4efIkdu/ejT179uDhw4dwcXFBly5d0K1bNzRv3hwKhf5rRUQKGvFXXUTkbeHiRaB+fbXgB/QKfQCQvRIjxa5dwxUbGzwOD8fEiRMxefJkbN68GYsWLUKFChWwZs0aNGjQAAqFAnv27NER+mfPnsXVq1fRqFEjtGnTBomJiQgKCsKgQYOyCH0AeP78ufaHbfXq1UhPT4dMJsM///xjlNBPSUnRCtuVK1fCyckJEyZMwKFDh3Dy5Em8//77iIqKgqWlJfbs2YPq1aujXbt2uHr1qsE+JRIJevXqhXv37mHw4MFwBPBNdDQElcp4wQZABoDnzqkFb2547z1g40bg0SNg4UL1Ik2jRkDLlkDv3sCBAxjr54cv7t3D9j174OHhgRIlSiA0NBT9+/fHwIEDMXnyZAhGhgLoxRy7CIKgDhHJI76+vlCpVKhYsaJJZiQkJOD777/HkCFDjBL6ABAYGIi7d+9iy5YtuRb6qamp6NKlCw4cOICte/bA7dw5YPp0wMlJ3eBNUayxyc0NWLIE2Lo1z0L/xYsXePjwYRYPGgBQmXF9XkVAoVBg9erV+Pvvv7Fhwwaz9S2Sd+rWrQsbGxuDHkwi/11mzJiBp0+fwtfXF6mpqZiY298dER2OP07JtdAH1Lv8e28nICXz39/fjIwM/Prrr/D390epUqXQrFkz7NmzB35+fjh69CgeP36MtWvXom3btqLQFylSiDv7IiJvA48eAbVrA7GxuXLLzgRwQyLBhZAQ3HryBEuWLIFSqcSoUaMwZMgQ1KlTB4MHD8aSJUu01yiVSlStWhW3bt3ClStX4O3tjdmzZ2POnDm4efMmypYtqzNGXFwcihcvDhsbG0ydOhVTpkwBAKxfvx6DBw82ys4JEybgm2++Qb169XD69GmdOMUbN26gc+fOePr0KXbu3Im2bdvi5cuXaNq0KV68eIGTJ0+ifPnyOY6xqGxZfPngQd5XOK2sgCdPAEfHvPagw4YNGzBkyBCsXr0aw4YN0zlHEkuXLsX48ePRuXNnbN26FXZ2drkfpHdvYPdugwtDRrN/f57c0QVBQPXq1ZGYmIjMzEzcunULNrnxjniNkJAQjBgxAnfv3kWZMmVybP/nn3+iZcuWWLZsGcaMGZOrsRITE/Hxxx8jLCwM+/btQ+vWrf89mZYG/PQTsHYtcOsWkJSkXlTx9ga++AL46KM8i3wNx44dQ7NmzXD58mVUq1ZN51xChgqrrphnZ394tWJwVKgXKQYOHIj9+/fjxo0bcHFxUTcggdRU9fvH3l4dmiBSIIhx++8un3/+Ofbv348pU6Zg3LhxOHLkCJo1a1bYZr11ZKiIFZdjoTRhvbyRiwVizx7F7t27cfDgQcTFxcHT0xPdunVDt27dUK9ePdEbSqTII75DRUTeBhYsAF68yHX8tRyAN4mIceMQFBSEgQMHIjo6GvPnz8f69euhUqmyxFHPmzcP0dHRqFSpEry9vfHixQssXrwYX3zxRRahDwCnT58GSaSkpGDKlClal0N98cb6iIiIwJIlSyCRSLBx48YsCYnee+89/PPPP/jwww/RoUMHLF68GE5OTggNDYWVlRVat26NJ0+eZD8IiUFJSUbZY7CL9HRgyxaT+tBw6tQpDB8+HMOGDcsi9AG1V0JAQAD279+PP/74A40bN8b9+/dzP9DQoaYL/ZIlgQ4d8nTp3r17ce3aNSxbtgwxMTFYvXp1nvohiTVr1qBjx45GCf34+HgMGDAAzZs3x6hRo3I11osXL9CqVSucO3cOv/32m67QB9SLPn37AsePAw8fAvHxwIMHwG+/qRMimij0AfVnQqFQoHLlylnO2VtIYW9h+k+33Rv9LFy4EAAwYfx44K+/1GEI1taAra16gUsuVyee3LvX9PeUSI40a9YMJ0+eFOP230GmT5+O+Ph4pKSkoFGjRvD390dqamphm/XWcfVluklCnyQOXb6Drl274uzZsxg1ahQuXLiAmzdvYuHChWjQoIEo9EXeCsR3qYhIUSc5GdiwIc8P2AQQIJfjZlQUli5dCldXVzx58gTBwcEYM2YMSpYsqW0bHh6OmTNnQqFQ4NNPPwWgFgEqlQqBgYF6+z916hTkcjlIonz58ti2bRsAoESJEjnaJggC+vfvD5IYM2YMvL299bZzdHTEgQMHMHHiREyYMAH9+vWDk5MTfv/9d6SkpGh3+w1y+jRKxMWZ9IVHEkJIiAk9qLl//z78/PzwwQcfYPny5dm27dSpE06dOoUXL16gfv36CAsLy91gzZoBFSvmfUdWKgVGjMiTgCWJoKAgtGjRAt26dcOgQYMwf/58JCYm5rqvs2fP4sKFCxg6dKhR7ceMGYO4uDhs3LgxVw9jT58+RfPmzXHr1i0cOXIEDRs2zLWt5uDSpUvw9vbWG3ogkUhQx8XKhPR86nhUX2crSF97X7i4uOC7YcPw5ZYt6iSTu3YB6a8lqRIE4MQJwM8PKFNGnYtCJN9o1qwZEhIScOHChcI2RaSAKVeuHPz9/bFo0SIsXrwYd+/exZw85kx5l7kQY9oCiUQigaNraRyLiMKVK1cwa9Ys1KxZU6yQIPLWIYp9EZGizo4dYHJyni+XAiiZkIAyN29qjwUFBUGhUGD8+PHaY6mpqfjss8/g5eWF9PR0dO7cGY8fP0ZwcDDGjh2rsyigQaVSYcWKFdrdp+PHjyP5la3GiP01a9bg/PnzcHZ2xqxZs7JtK5PJMG/ePOzYsQO7d+9GkyZNoFAo8Ntvv+HBgwfo2LGjduws3L6doy05IQWQocmXkEdSUlLQpUsXWFlZ4ccffzQqrq9GjRoICwtD+fLl0bRpU/zwww/GDyiRAFOm5CpHgRapVL2z+/nnub8W6oSL586d04Z1TJs2DQkJCQgODs51X2vXrkWZMmXQrl27HNvu27cPmzdvRnBwMDw8PIwe4/79+2jSpAmeP3+OY8eOwdfXN9d2mgtDmfg1VLGTQBBMq7JQs4SV7oFffkHnJUugXW7Tt7io8Sx6+lS98z9/vkk2iBhGjNt/t5kyZQrS09Nx6NAhTJ06FQsXLhQrZuSSuAwTtvVfw9GttFn6EREpLESxLyJShCGJ++vXw+SfLLkcCA0FANy7dw9r1qzBhAkTdLL8Tp48GXfu3EG9evVQrlw51KpVC0FBQbC0tNRZFNCgKa0XHx+vde9PTk5GTEwMZDIZHHOIbX/06JG231WrVhkdk/7JJ5/g5MmTePLkCerWrYuEhAT8+uuviIiIgJ+fn7YMoA4mLJa8jlypxC+//JKna0liyJAhuH79Ovbv36938cQQrq6uOHLkCPz8/NC7d2/MnDkTRqdbGTBAHUueG6RS9evAAaBUqdxd+4q5c+eiQYMGaNGiBQCgbNmyGDZsGBYtWpS9F8YbJCYmYseOHUYl5nv27Bn8/f3RuXNn9O/f3+gxbt26hcaNGyM9PR0nTpzIEidfkAiCgMuXL+tNzgcAFy9eRNMP38fxzSuNfw+8Qf2S1rB9PRTgn3+Arl0hyciAcakPXxEYCKxblycbRLJHoVCgYcOGoth/RylVqhRGjhyJpUuXYsiQIahcuTKGDBkClamlVN8hMgXzpCTLMFM/IiKFhSj2RUSKKA8ePMDHH3+M6LCw3D2AG+LFCwDA7Nmz4eDgoJO07I8//kBwcDDmzZuH48ePo0uXLrh79y7WrFmDSZMmwUmTgfwV8fHxqFixIq5duwYAWhfD+Ph4xMbGokSJEjm6uo0cORJpaWlo3rw5unXrlqup+Pr6Ijw8HBUrVkSzZs0QERGBAwcO4NixY+jbt2/WByITssm/TppcjkGDBiEmJibX1y5cuBDff/89Nm3ahFq1auX6eisrK2zbtg2zZ8/GjBkz8OmnnxoXxymRACtWAAEB6r9zymQvk6nj0n/+GXgl1HPLiRMncPLkSUydOlXnfRAYGIiMjAydhJA58f333yM1NRWDBg3Kth1J+Pv7A1B7Ahjrann16lU0btwYlpaWOHHiBLy8vIy2LT+4ffs2kpOTs+zsZ2ZmIigoSFuKbd6g7vAuZpnr/t9zUqCp+2tJEklg0CBAqcybB8jIkerEoSJmp2nTpjhx4oQYt/+OosnEv2zZMqxbtw7h4eFYuXJlIVv19qCQmcfd3lIquu2LvN2IYl9EpIghCAJWrVoFb29vnD17Ft7Vq5veqUQCSKWIiorCxo0bERgYqN1Jj4uLw8CBA9GiRQs0bNgQDx48QJcuXTBz5kwUL148S4Kzhw8fokKFCnjw4AFatmwJS0tLvP/++wB0xX52/O9//8PevXshkUiwZs2aPMXAubq64vDhwxgwYAAGDx6Mffv2YceOHdi7dy+GDh2qu+tpIBdArpBKYVGzJjIyMrL2nwOHDh1CYGAgpk2bhh49euTZBIlEgmnTpmHXrl3Yv38/mjdvnnNywle245tvgF9+Adq0ASQSqCQSKCUStbjXxIbb2QGjRgEREcCbielywdy5c+Hj44OOHTvqHHdzc8PIkSO1CfuMYe3atejQoYPe5JCvs2XLFuzfvx9r1qwx2mvi3LlzaNKkCVxcXHD8+PEcxygIIiIiAEBnZz8yMhKNGzfG9OnTMX78eISFhaFWrZroVN4edV3U7viqbASh5tPl62yJzuXtdWL18ddfwNWr6pj8vJCZCWzalLdrRbJFjNt/t3F2dsa4ceOwcuVKVKhQAcOHD8fUqVNx9+7dwjbtrcDZSm5SbhNtP9Zm2W4RESk0RLEvIlKEuH79Opo2bYoRI0bgk08+wdWrV+Hi7Z21pnduIYESJTBjxgy4urpi+PDh2lOjRo1CQkICNm7ciAMHDqBYsWJwcXHBli1bMHXqVNja2mrbXr16FZUrV8bLly+xfPlyFC9eHHXr1tWW6jJG7CclJWHo0KGQSCSYPHkyKlWqlOdpKRQKhISEYNWqVVi1ahW+/fZbrFixAhs2bMCECRP+FeQ+PkD9+qAp91EQYDluHNauXYs9e/Zg69atRl12/fp1fPrpp+jUqRNmzpyZ9/Ffo0ePHjh+/Dju3buH+vXr4+LFi8Zd2K6desf+1i18V7Ysjnt5AZ9+qs7av2GDurTg0qWAp2eebQsPD0doaCimTJmiNzmeZrdKk/09O86ePYuzZ89qd+wNce/ePYwePRr9+vVD165djbLz1KlTaN68OSpWrIgjR47A1dXVqOvym0uXLsHZ2Rlubm4QBAErVqxArVq1EBsbi5MnT2pDawBAKpGgVRk7yE7vRfjeLZBJsi5AySVAbWcrDK7ihDZl3xD6APDtt6ZVEBAEtedIXhcLRAxSr149WFtbi6787zABAQGwtLREUFAQ5s2bBycnJ3zxxRd5DuF5l/B1toIpd0kCoKSVDG7WpldYEREpVCgiIlLoZGRkcM6cOVQoFKxYsSKPHj3678nt20m1XDfpdXPHDkokEq5evVrb9Y8//kgA3LJlC0nSx8eHn332GXv06MFy5coxLS1N2/b48eO0sLCgVCrl999/T0EQ6O7uzokTJzIzM5MAuG7dOrZv356dO3c2ONdx48ZRKpWydOnSTE5ONts9PHr0KJ2dnVmhQgVOnjyZADh37tx/G2zZYto9dHIiX92Pfv360d7enrdv387WppcvX7Jy5cr09vZmfHy82eaq4f79+6xduzZtbW25f//+XF3r7OzMmTNnmt2mrl27smLFiszMzDTYZvr06bS2tuajR4+y7Wvo0KEsXbo0lUqlwTYqlYotWrRg2bJl+fLlS6Ns/P3332ljY8NmzZoxISHBqGsKim7durF58+a8e/cuW7RoQQAcOXIkk5KS9LbPyMhg2bJlOWDAAKZnCrwVn87LsakMjbjFyh+25C+//2F4MEEgFQqzfL/w3Ll8uiPvNq1atWLHjh0L2wyRQmTu3Lm0sLDgnTt3uH//fgLgjh07CtusIk+mIHD5pRjOO/c8z68LMamFPQ0REZMRxb6ISCETFhZGHx8fymQyTpo0iSkpKboN0tLIYsXy/hAulZI1a7Jrly6sUKEC09PTSZKP7txhDUdHBrRqRSEykrcuXiQALlq0iAD43XffaU3Ys2cPpVIp5XI5Dx8+TJK8ffs2AfDAgQMkSTs7Oy5evJj169fn4MGD9c713LlzlEqlOteZk9u3b7NGjRq0tbVl7969CYCrVq0if/qJrFKFBCjk9T6+tnAQFxdHDw8PNm7c2KCozczMZLt27VisWDHevHnT7HPVkJSURD8/P0okEi5cuJCCIOR4TWxsLAFw586dZrXlypUrBMD169dn2+7ly5d0cnLiqFGjDLZJSEignZ0dv/rqq2z7Wr58OQHwjz+yEbWvsW/fPioUCrZv3z7rZ60IULlyZbZu3ZoODg4sW7Ysf//992zbf//99wTAixcv6hwXBIHOzs6cNm2a4YsTEswj9AHyt9/MMX2RN5gzZw4dHByyXfAS+W+TmJhIFxcXDhkyhCTZvXt3uri4MCa5xbUfAAAgAElEQVQmppAtK9qoVCrO2bY/TyJ//rnnXHEphumZOf+eiogUdUSxLyJSSCQlJTEgIIBSqZS+vr48l93OWGAgKZPl+UH89rRpBMDNmzeTt25RGD+eiXK5ThuVVMqdUinH1avH9ypX1j5crl69mhKJhFZWVjqCYtu2bQSgfeAoXbo0p0+fTi8vL06cODHLFDIzM+nr60u5XM4OHTqY92a+RlJSErt3704AfP/99zlFM0eJJE/3TpBIyO7dSZVKZ5yjR49qBbY+xo8fT6lUmqNYMwcqlYqBgYEEwIEDB2oXdAzx119/EQAvXLhgVjv69u3LsmXL5jg+Sa0ny927d/WeX7t2LSUSicHzJHnt2jVaWVllu2jwOjt27KBMJmP37t2NsrGgiY6OJgACYP/+/RkXF5dte0EQWLduXbZq1Urv+a5du7Jp06aGO3jxwnxi/9AhE2YuYoiTJ08SAM+cOVPYpogUIkuWLKFMJmNUVBQfPXpER0dHDhgwoLDNKrLExsayffv2BMBP569lUPjTXAn9xRee81mKuMAm8t9AFPsiIoXA77//zgoVKtDKyooLFizIedfmxQvSy4t8Q6Dn+JLJyEaN2LF1a9aqXJmqXr1IiYQqqVRv+1f5uPmyXDkyKopfffUVAdDR0ZF37tzRMWn48OGsUqWK9m9vb2+OGTOGTk5OXLBgQZYpaHZgFQoFo6OjzXIfDSEIAmfPns1RJogX1avFgYu1a5MZGXrHmTBhAi0sLLKI5q1btxIAly5dmq/zfJPNmzdToVCwSZMmfP78ucF23333HQGYNYzi1q1blMlkDA4ONqp9QkICnZ2d6e/vr/d83bp1s10UUiqVrFevHitXrmzUPDSLB/379y+Su6Q//fQTHR0dCcDgAtKbnDhxggD4888/6z2/dOlSWlpa6oTj6KBSqT1/zCH2//orr1MXyYb09HRaW1tz0aJFhW2KSCGSkpJCd3d39unThyS5bt06AiiQxeS3jfDwcHp4eNDBwYGOjo6sUbMmd19/phXyOQn95Zdi+CS56P1GiIjkFVHsi4gUILGxsRw4cCABsFmzZoyKijL+4uhoskwZ4wW/TEbWrs2/Dh2iA8DYChWMfrAX5HImKRSsCdDNzY2xsbFZzKlRo4aOu/4HH3zAfv36UZ8b971792hjY0OJRMJZs2bl+f7lihs31LvyeRUvZcpwk58fLeRygzvgaWlprFGjBqtXr87UVHVsX1hYGC0tLTlgwACjXOrNzYkTJ+js7ExPT09evXpVb5tJkyaxXLlyZh136NChdHFxydUCwuLFiymXy7OEOZw9e5YAss1DMGvWLMpkMv7zzz85jrNkyRIC4IgRI6h6w0OjsHnx4gX79OlDAPT19aVEIjH6Hnbt2pVVq1Y1OKfw8HAqAIZv2UKePEmeOUPeu6fbqHFjk7yGCJAODqQZF45EdBHj9kVIctWqVZRIJLx8+TIFQWDTpk3p6elp1kXbtxlBELhmzRoqFAp6e3vT0dGRderUYUxMDAVB4M24dO6MitOK+gXnn3PBq3/nnXvO4EsxPPk4mUkZRes3QkTEVESxLyJSAAiCwF27dtHV1ZWOjo5ct25d3oTgkydky5bqB2xDol8mU7us9+5NITGRzRo14j92dhRy+UCvBBgjkzE1MjKLGXFxcZRIJDpx/e3atWOHDh0IgPv27dNp37lzZyoUClaoUEErivOdsWNz7wnx+svGhmnPn9PHx4c1atQwuDt66dIlKhQKfvnll3z06BHd3d35/vvvG95NLQCio6NZrVo1Ojo6MjQ0NMv5Ll26sHXr1mYb78GDB1QoFJw3b16urktOTmapUqXYr18/nePDhg2ju7u7wR348PBwyuXy7OPRqf7czZw5kwA4efLkQll8yY5ff/2V7u7udHR05NatWzl69GhWqlTJqGtv3rxJiUTCtWvX6m9w+zZVEyfyhb73doMG5LZt6nwgu3aZJvRlMjIgwIx3ReRNNHH72SW9FPnvk56ezvLly7Nbt24kyRs3btDS0lJv2Ny7RnJyMvv3708A7Nq1Kx0cHPjBBx/oTdr6Mi2Tpx4n87f7ifzlbiL/fJDE6y/TqCpivw8iIuZCFPsiIvnMgwcP2LlzZ+2P0MOHD03v9PJlcuRI0sZG98G7eHFyyhTyVZxzaGgoe5rwIC/I5aSeZHu//vorAfDGjRvaY7169WKDBg0IgCdOnNAe37t3LzVxyL/++qvpczeGpCTSzs40ESORkKtX8/z585TL5QwMDDQ43OLFiymRSFi1alWWLl06xyzzBUF8fDzbt29PmUzGFStW6JyrWrWq0XHuxjBu3Dg6OTnlqeLAypUrKZVKee3aNZLqZFT29vacPn263vapqan09vZm7dq1s427FwSB48ePZ5aqDEWAxMREDhs2jADYunVr3r9/nyTZokUL7YN8TowaNYrOzs5ZkwxmZJD+/ur3r6EFPo2HT/Hi5P/+Rzo7m/ZZ0bMgKGI+NHH74eHhhW2KSCGzceNGAuDZs2dJqjP1y2Sy7HP+/MeJiopijRo1aG1tzcDAQNra2rJJkyZFrtKKiEhhIYp9EZF8QqVScc2aNXRwcKCbmxt/+ukn8w+SkaHe7b95k3z+nHxt50eTvOuCvT0FU+JyLS3JN1bHp0+fThcXF52dUn9/f7733nsEoHUfj4+Pp7u7Oy0tLenn52f++RvC1N1Kjdhv0IAkOXv2bEqlUv799996h8vMzKSbmxsBaKsVFAWUSiXHjh1LAPziiy+oVCqpVCppYWHBlStXmmWM58+f08bGxqA4z4m0tDSWLVuWvXr1IkmuX7+eEokkS44IDV9++SUtLS15+fJlg32qVCqtmF6+fHme7MovTpw4QU9PT9rY2HDVqlXaz5AgCCxRooRR5RBfvHhBW1vbrJUK0tPJ1q2NT0Yplapfw4bl/TNiIOeCiPnQxO0vXry4sE0RKWSUSiUrV66sDevIyMigj48PfX19i2Qukvxm7969dHBwYKVKlRgSEkIrKyu2bt1aDG0QEXkNUeyLiOQDN27cYNOmTQmAgwcP5osXLwrchr1797KaqYJX80C/bJlO3y1atGDnzp3VfwgCeeQIDzRrxm/s7DgZYPyKFWR8PEePHk25XE5ra2veezNWOD9Ztsw8icdKlyapfsCqX7++wWRwy5YtIwBaW1uzb9++BTdPIwkJCaFcLmebNm0YHh5OcyZ2mjZtGm1sbLJNCJgTmmRTFy9eZP369dm+fXu97TQVELITPUqlkn379qVUKuWGDRvybJO5SU1N5YQJEyiRSNiwYcMs+ToePXpEANyzZ0+OfS1YsIAKhYJPnjzRPfHZZ3l63wsyGbdbWub+e6FjR4PJK0XMS6tWrfjRRx8VthkiRQBNuc2/XiXFPH36dI7fi/81lEolJ06cSI3H5M6dO6lQKNixY8eCCxUUEXlLEMW+iIgZycjI4Lx582hpaUlPT89C2+XNzMxk9erVucbLy/TkWwDZooW2b6VSSVtbWy6bNYsMDiYrVSKhzl6fDjAD6lr2mZaWXA3QB9CbnT9fWbDAtHh9zatECW2Xhsq8/f7775TJZBw/frw2C/8PP/xQsPM1gsOHD9PJyYllypQhALMsvsTFxdHR0ZEBJsZsZ2Rk0MvLi82aNSMA7t27N0ubhIQEli9fno0bNzYYu5yWlsauXbtSLpcXqf+Ds2fPslq1alQoFFywYIFe+0NDQwkgS7LCN8nIyGDp0qU5aNAg3RNhYXl+n2cCvGJlxcSFC0kLi+wXDDSfK39/UegXILNnzxbj9kVIqj2XfHx82OK13+XRo0fT2tqat27dKkTLCobHjx+zWbNmlMlkXLx4MX/88UfK5XL6+fkVyZKqIiKFjSj2RURe5/59cutWtYhduZLcuVNd9s4Izp49y1q1alEqlXL8+PGF6ka2Y8cOAuDDvn2pMofo9fHR9h0eHk5vgGnOzurdvWxchjMAqgAq589XewAUFCEhps8ZID09dbrV7OD/8ccfJNWxgsWKFWO7du2YmZlJQRDYo0cPFitWjA8ePCi4+RrJjRs36OzsTAA8cuSIyf0FBQVRoVCYJQ+FZqGkRIkSzNAjIocMGUI7OzuDD7PJycls27YtLS0tefDgQZPtMQdKpZKzZs2iXC5nrVq1eOnSJYNtFy1aRFtb2xyrBWzfvp0AGBERoXtiwADTF7jCwshnz8j589WVP948b29PjhtHvparQ6Rg0JRZFOP2RUhy3759fD1sLCEhgeXKlWPr1q2LXCJSc3LixAmWKlWKbm5uPHbsGLdv306ZTMZPPvnknQxjEBExBlHsi4gIAvn772Tnzv/uaEml/4pYS0ty0CDyVUKcN0lOTuaECRMok8lYs2bNQn8YUyqVrFSpEj/66COmjRnDdHOI3urVtf1vnTyZ8UCus/uzoErukWR4uOlzlsvJVzWNNahUKjZv3pxly5bl/fv36e3tzUqVKulk/I2NjWWpUqXYunXrIlfmjST79etHOzs7WlhY6FRTyC3Jycl0cXHh0KFDzWJXfHw8pVIpPd9YYCHJgwcPEgDXrVtn8NrGjRvT1ta2yORMuHr1KuvVq0eZTMZp06bluOPUr18/NniVI8IQgiDQ19eXbdq00T0RE0MqFKa/3wcM+LfPzEz15+iXX8iDB9Wl+8Q42EIjLS1NjNsX0aLJyfPhhx9qxf2hQ4cIgFu2bClk68yPIAhcsmQJZTIZGzduzEePHnHDhg2USCQcOHCg6PEiIpINotgXebdJTCQ7dNB1TzX0IAyQo0frJMH7888/6eXlRUtLSwYFBendkSxo1q9fTwA8f/48d9WtS6U5xH7z5urOExIYY22d9z7zI0mhIWrXNj1u/1VM5OvcuXOH9vb2LFu2LB0cHLRZ5F9HU60gODi4IGaaKxo3bsyePXvS39+fADh+/Pg8PSgtX76cMpmM0dHRZrFrw4YN1FRteL2aw/Pnz+nq6sqOHTvq3bGKiYlh3bp16ejoqI1hLUxUKhWXLl1KKysrvvfee/znn3+Muq5WrVr8/PPPs21z7Ngx6q1qsW+f6Z9xgHRxyeu0RQqAli1binH7Ilo0vzOHDh3SHuvduzdLlCjBZ8+eFaJl5iU+Pp7du3fX/l5lZGTw22+/JQAOHz68SC6qi4gUJUSxL/LukpxM1q+fu5h2iYT89FO+jI3lkCFDCICNGzfm9evXC3s2JNW7P+XKlWOPHj24b98++phDAEgk5JIlJElh5UqqTOmnevWCc+ffuNG0OWdj60cffUQA2WagHzlyJK2srLSVCYoKJUuW5Ndff01BELh06VJKpVJ+/PHHTExMNLqP9PR0lilThp999pnZ7GrQoAHbtm3LmjVrsmnTphQEgYIgsHv37ixevLjecoaPHz9m9erV6eLiwvPnz5vNlrxy+/ZtbWLOMWPGZC2LZ4CMjAwqFIocF4c6d+5Mb2/vrIse331nHrGvUOR16iIFgBi3L/I6giCwUaNGrF27tvY74cmTJyxWrFiRTBSbFyIiIli5cmXa29tz9+7dJMlvvvmGADhu3Lj/dMiCiIi5EMW+yLtL9+553vldYGdHBwcHhoSEFKlV5eDgYEqlUp48eZIuLi7s1KkThQ8+MC1Jn6WlOm+BIDDD0zPvYl/zKqjd15QUsmLFvMcxG8iKvmvXLgJglSpV6OrqajALfXJyMqtUqUJfX98ikzTo5cuXBMAdO3Zoj/3vf/+jvb09a9Sowbt37xrVj8Z75MqVK2ax68KFC9Rkoj9w4AA1eRE08em7du3Kcs2dO3dYsWJFuru76/WuKEgEQeC6detoZ2dHDw8P/vnnn7m6/sqVKwTAo0ePGmwTGRlJiUTC9evXZz25aZN5xL6VVW6nLlKAiHH7Im+i8fbRCGGS3LhxI/V6AL1lbNu2jTY2NqxevTpvvMoTMmfOHAJgYGCgKPRFRIxEFPsi7yYRESY9FKdJpXxYRHbzNSQnJ9PV1ZX9+/dn586d6eLioi7NtWNH3ucql5MDB6oHOHHCdDEhl5MFueMQHU06O+da8N94M9P5K86fP08bGxt+8sknfPjwIYsXL87u3bsbfOg4c+YM5XI5p06dmp+zNJrTp08TAM+dO6dzPCIigh4eHnR1deXff/+dbR9KpZIVK1akn5+f2ewaMWIE3dzcmJGRQUEQWL9+ffr6+tLR0ZGffvpplvaRkZEsW7YsK1SoUOjZpx89esSOHTsSAAcNGsT4+Phc96EppRUbG2uwzYgRI+ji4qK/rNTBg+YR+25uubZdpOAQ4/ZF9NG6dWtWq1ZN6/EhCAJbtmzJ8uXLMykpqZCtyz1paWn84osvCICfffYZk5KSKAgCp02bRgCcNWuWKPRFRHKBKPZF3k2++MKkzNWCREKuWlXYs9BhwYIFlMvlnD9/Pl8vXyakp/NWuXK5j7OXydSl5+7cUQ8QHGz6rj5Avvdewd6Y6Gj1Dj+QvSeHTEZBIuG33t60s7PLsnv27Nkzenh40NfXV1tp4YcffiAAbt++3eDws2fPplQq5alTp/J1msawadMmAtD7APj06VN++OGHtLS01Nn5fxNNpQdz7S4mJyfTwcGBU6ZM0R7TxKIWL16cL96ohnHp0iW6urqySpUqhV7xYOfOnSxevDhdXV154MCBPPcTGBjI0qVLGzwfGxtLGxsbzpgxQ3+DhATSxsb0hbgRI/I8B5GCQYzbF3kTzSLutm3btMeioqJoZWVlclnUgubu3busX78+FQoFQ0JCtOFc48ePJwAuXLiwsE0UEXnrEMW+yLtHYiJpbW3ag7FEQlapUtgz0RIXF8fixYuzT58+tLe354BXWbWVSiUHDRpER4BPS5c23p1fLicdHdXZuDXMmsWMt3X3MCVF7ers66u7mKER//b2ZEAAGRnJpKQk1qtXjyVLltTWPE9PT2eTJk3o6uqapT5979696eTkZFB4KpVKfvDBB/T09MxVXHx+EBgYyDJlyhg8n5qayr59+xIAv/rqqyy7JyqVitWrV2e7du3MZpPG5fT1RH+a5EteXl46NoSFhbF48eKsVatWoSagiomJYa9evQiAPXv2ZExMjEn9ffTRR2zfvr3B8/PmzaOlpSWfPn1quJMRI0wvvXf5sknzEMl/xLh9EX106tSJFStW1EkSvGDBAkqlUoaFhRWiZcYTGhrKEiVKsFy5clqbVSoVR44cyaKa8FZE5G1AFPsi7x5nzpguWDUvIxNw5Tdff/01rays+P7779PDw4Px8fFMSUlh586dKZPJ1KV4EhPVeQo0QteQyAdIb+8stbRT58wxT2b/ChUK6S694uxZcs0acsECMjhYXSHgjZJiz549Y6VKlejl5cWnT59y2LBhtLCw4MmTJ7N0pym1165dO4OuhVFRUbS1teWQIUPyZUrG4ufnx5YtW2bbRhAEzp07VytkX08yt3//fgLg8ePHzWbT+++/r1NKLjIykjY2NuzcuTNfj0U9duwY7e3t+cEHH+iUOixoDh06RDc3NxYrVozff/+9WfosV64cJ06cqPdceno63d3dc37vXL6c98+kTEY2bGiWuYjkL5q4/bMGSsGKvJto8p68ntNDqVSyVq1arFmzZpGoFGQIlUrFmTNnUiKRsF27dtrF08zMTA4ZMoQSiYRr164tZCtFRN5eRLEv8u7x++/mE/t6MoTnG5mZZFQUGRZGnjtHvtpJjomJob29PZs0aUKJRMKjR48yLi6OTZo0obW1Nf/3v//p9hMZqd7FdnDI+sDfowd59KjeLPQXAgNNv19SKdm0aQHcLNOJjo6mm5sby5Url+Uh6k009Y3XrFljsM3atWsJgPv3788Pc42iWrVqHGGkq/ZPP/1Ea2tr1qtXj48ePdLG0jdu3Nhs9ly8eJEA+NOrkowaLwgvLy8mJSVpY1EPHTpEa2trtmjRotC8IxISErQVONq3b8+HDx+apd+4uDi+6YL7Olu3biUAXjZm1z0ggEJePpPW1mQRqGYgkjOauP1vvvmmsE0RKWL07NmT5cqVY1pamvZYeHg4pVIp58+fX4iWGSYmJobt27enRCLhzJkztQmPlUol+/btS6lUqt6sEBERyTOi2Bd59zh+3Hxi/4144nzhyRNyzhyyVKms49erx+87dqSTlRUtLCwYEBDAx48fs2bNmixWrFj2ceJpaeStW+qFg+vXybi4bM2YPXkyE81xzzZtMvMNyj/WrVtHACxbtmyOGfWHDBlCW1tbgwnjBEFgp06d6OLikr07dj6RmZlpVHm31zl79izd3d1ZpkwZrl69mubO8Dxy5Ei6urpqd52CgoJ08htoYlFlMhk/+ugj/cnpCoCjR4+yfPnytLOz49q1a82aHEqzU3vp0qUs5wRBYO3atY0Om/j155+5VSLJ3Y6+lRX5229mm49I/tOyZUt26tSpsM0QKWJcvXqVUqmUK1eu1DkeEBBAKysrRkVFFZJl+jlz5gw9PDxYvHhxnd+VjIwM9ujRg3K5nD/88EMhWigi8t9AFPsi7x43b5pH6CsU6t32/EKlIgMD1a71BhLLCa+Ov5RI+EW5crxy5Qo9PT1ZunRp43YCc0GLFi2439PTtDJ+jo5FJvQhJ+7cuUNnZ2fWrFmTFhYW7Nu3b7ZlFhMSEli+fHk2btzYYDztkydP/i2JWMDZhG/evEkADA0NzdV1Dx8+ZJ06dSiVSrPE0JtCcnIyHR0dOXnyZJJqN1QLCwvt3yS5ZcsWAqCdnZ3RNevNSUpKCseNG0eJRMImTZrkS+b/b7/9lnK5XO9i0pEjRwiAvxkhxk+dOkUbGxu2a9uWmzw9mYpXiUT1iX9NuE6lSuqwJpG3ilmzZtHR0VGM2xfJQr9+/ejm5qZNIkuSSUlJLF++PFu0aFEkstgLgsCQkBAqFArWq1ePdzRJgKn2XPn4449pYWHBffv2FaKVIiL/HUSxL/Ju4uubfWb2nF5yOfkqCV6+kJlJ9u5ttD2qVw/2ox0cWLlyZZ0fT3OgVCppa2vLdePH5/2+SaWkgbjkokZSUhJr1qzJChUqMCYmRlsazVBctYajR49SIpFkWxpLE/e+bt06c5udLZpQg7y8N/78808CoEQi4fz5883ywKipDHDz5k2mpaXRx8eHNWrU0LqgajwJNLH73333nclj5oYzZ86watWqtLS05DfffJPtQo8pDBs2jD4+PnrPderUidWrV8/xfl+8eJFOTk5s2LAh27VrRysrKx7dv1+dk0JTieL1z2G3buSff+oN1xEp+hw/fpxi3L6IPm7dukW5XM5FixbpHA8NDS2U79E3SU5OZr9+/QiAw4cP1wk5SE5OZtu2bWllZcWff/65EK0UEflvIYp9kXeTTZtM39nPzx2xgAD9O3LZvASAmQBf7txpdnPCw8MJQJ2gbtWq3N8rmYxs0OCt2NUXBIE9evSgra2tjmv10qVLCYBLly7N9vpx48bR0tIyW88Kjcu/Jtt/QbBkyRJaW1vnSbR27NiRVapU4dSpUwmA/fv313lIywsffvghW7duTZKcNGkSLSwsePHiRZLkwoULCYCjR4+mSqVi9+7d6eHhkWMohTnIyMjgV199RZlMxjp16vDKlSv5Ot6HH37ITz/9NMvxGzduGPVwHhUVRVdXV9asWZMdO3akQqHQDbUQBHW4UXS0Os/HW/AZFMmetLQ0WllZiXH7InoZOnQoS5QowYSEBJ3jffv2ZbFixfjkyZNCsSsyMpI1atSgtbV1ljj8xMRENm/enDY2Njx8+HCh2Cci8l9FFPsi7yYpKWSxYnnbpZbJyDp18s+2yMg8L0AIEgnp5WX2Hbvly5dToVBoY6Z31a+vHs+Y+yeVqoW+ieXJCoo5c+YQAPfs2ZPl3IQJEwgg2yzsKSkprFq1Kn19fQ1mQE5ISKCnpyc/+OADKpVKs9meHUOHDmXNmjVzfd358+cJQPtwtm3bNioUCjZq1CjP5e8iIiIIgD/++CNPnjxJiUTCefPmURAETp8+nQA4depU7Y72lStXKJFIuGrVqjyNZyyXL1+mr68vZTIZZ8yYke8ZrAVBoL29vd7kWcOHD6erq2u2iyoPHjxg+fLlWalSJa3r68GDB/PTZJEiQosWLcS4fRG93L9/n5aWlpw9e7bO8WfPnrFEiRLs3bt3gdu0d+9eOjg4sFKlSlnyk8TFxbFhw4a0t7fniRMnCtw2EZH/OqLYF3l3CQ0lZTK1QM6NK7qDA3ntWv7ZFRBgWlw8QJqyMp6YqC5N99FHapHeoAHPlCrFBZ6eZGKi1oX0f8OHk/Xqqcd7s763ZhHAyYmcMuWt2U3UuNjPmDFD73mVSsW+ffvSwsIi292HM2fOUCaT8euvvzbY5tSpU5RKpZwzZ46pZhtF06ZN2bNnz1xf17NnT1aoUEFnUeKvv/5iyZIlWaFChRxzQwiCwFSlignpmUzPFCgIAkePHs2SJUsyNjaWXl5e/PDDD6lUKjlu3DgC0Ct++/TpQ3d393yJ3c/MzOSiRYtoaWlJb29vhoeHm30Mfdy+fZsAsrisxsTE0NramrNmzTJ4bUxMDL29vVm6dGl26dKFMplM7wKVyH8TMW5fJDvGjBlDR0dHvngjibCmukeWKj35hFKp1C6S+/n5MT4+Xud8bGws69WrRycnJ/7zzz8FYpOIyLuGKPZF3mlUO3dSKZEw09gdfScn8vTp/DMoOTlrSbzcvuRy0s8v92M/ekSOGkXa2qpDCF5bBFG9ChMQbGy41cmJHX19/3UHP3uWHDKE9PEhy5Yl33uPbNWK3LZNnfH/LeHy5cu0s7Njt27dsnV1T09PZ5s2bWhvb8/z2ZQr07iCZyccp06dSrlcXiDi0s3NjdOnT8/VNdevX6dEImFISEiWc3fu3GH16tXp4ODAX375Jcv5ZylKht5L5OILzznv3L+vFZdi2GboBE6ePoPDhg2jjY0Nr1+/ri1r9+233+q1JTIykjKZLMcwitxy69YtNmrUiADRfn4AACAASURBVBKJhF9++WWBZvzXLC7dv39f5/jcuXNpZWVl0HMiISGB9evXZ4kSJejn50epVCpmrX7HEOP2RbLjyZMntLGx4ZQpU3SOC4LAtm3bsmzZslnc/M3N48eP2aRJE8pkMi5evDhL7pFnz56xZs2aLFGiBM+dO5evtoiIvMuIYl/knWbZsmX8AOCLqlX171BrRL5Eot7pjozMX4OOHjVN6GteVla5G/fyZXVpP33zf+OVATDD2ZmMiMife1AIaHaYfXx8jKrjnpiYyLp169LNzY3R0dF626Snp7N27dr09vY2KCDT09Pp6+vLKlWq6GRPNjfx8fHMrpa7IQYMGMBSpUoZtD8hIYEdO3akVCplcHAwBUFgQnomt0fGcd6555x/Tlfozzv3nPPOPuPc8CecF/6UnSYEccW33/KTTz6hVCrlphzKMg4ePJglS5Y06v8oJzQZoW1tbVmhQgUeO3bM5D5zy5w5c1isWDGdh+C0tDS6ubnR399f7zWpqals0aIF7ezs6OfnR4lEkuv/V5G3HzFuXyQnJk+eTFtb2yylXqOjo2ljY8PRo0fn29jHjx+nm5sb3dzc9H63Pnr0iN7e3nR1dWXEf+hZQkSkKCKKfZF3lkuXLtHS0pJjxozRHCCHDyc9PNQl4ooVU5emmjqVvHu3YIzavds8Yh8wflc9OposUSJ3oQMyGVm8uPratxylUslWrVqxRIkSBoW7Pp4+fUovLy9WqlTJ4A5sREQEFQoFv/zyS4P9XL16lVZWVhw1alSubTeWsLAwAsiVB8GdO3col8tzFBOZmZkMCAggAI6aPI3Bl2L0i3w9r6Dwp5z04zFa29nzxx9/NMomCwsLzps3T30gMVG9UPX33+rP7xsuq4Z48OAB27VrRwD09/fP9x0uQ/Ts2ZNNmzbVObZ582YC4NWrV7O0VyqV7NKlCxUKBf38/FgUsmuLFB5i3L5IdsTGxtLBwYEBAQFZzn3zzTeUSCT8+++/zTqmIAhcvHgxZTIZmzRpwsePH2dpc+/ePVaqVImlS5fm9evXzTq+iIhIVkSxL/JOkpqayurVq7N69eoF6rabI3v2mE/sG5O5XBDI2rWN2tHXGy5Qq9ZbX75r7NixlMlk/PPPP3N97c2bN1myZEnWr1+fSUlJetssXLiQEokk253j4OBgAmBoaGiubTAGTZxmbkTtiBEjWKJECYPzepM1Gzdz8i8XOPfME6OEvuY198wTrvrrhtHl/EaMGMGm9vZM79ePtLTMugjVsyd57Jje96UgCNy+fTudnJxYqlSpQi/vVKVKFY4cOVL7tyAIrFmzJjt06JClrUql4oABAyiVStmlSxcC0BteIfLuIMbti+TEjBkzaGVlxQcPHugcVyqVrFOnDqtXr262Kifx8fHaRcgJEyboTT4bHR3N8uXL08PDg7du3TLLuCIiItkjhYjIO0hgYCCioqKwY8cOWFlZFbY5/+LsbJ5+rK0BhSLndqdPA+fPA5mZuR8jMxO4cAH4++/cX1tE2LRpE5YtW4bly5ejefPmub7ey8sLP//8M65evYqePXtCqVRmaRMQEICGDRtiwIABSExM1NvPiBEj0Lp1awwcOBAvXrzItR05cf36dbi7u8Pe3t6o9k+ePMH69esxduxY2NraGnVN+ZZ+cCzpDqlMlivbpDIZ4q2K42ZCRs6NY2LwzfnzOJqYCNm2bUB6uu55lQrYswdo2hSoWROIjn7t0hj07NkTffr0Qfv27XH58mW0b98+V7aak7S0NERGRqJGjRraY0eOHMHFixcREBCg05Ykxo8fj02bNqFjx47Yt28fgoODMXTo0II2W6QI0axZM8THx+PSpUuFbYpIEWXs2LGwsbHB3LlzdY7L5XKsX78e165dw6JFi0we5/Lly6hbty7++OMP7NmzBwsXLoRcLtdpExUVhSZNmkAul+P48ePw9PQ0eVwREZGcEcW+yDvHb7/9hmXLlmHBggXw8fEpbHN0qV8fcHIyrQ+5HOjc2bi2336rbm/KWN9+m/frC5HTp09j6NCh+Pzzz/HFF1/kuZ86depgz549+O233+Dv7w+SOudlMhk2bdqEZ8+eYfz48Xr7kEql2LhxI1JTUzFs2LAsfZjKjRs38N577xndfunSpVAoFBgxYoRR7dNVAi7FpgESSZ7skwA4+zwt+0aPHgH168MyLAwAIBME/e00C1fXrgH16gFXruDgwYOoXr06jhw5gl27dmHHjh0oXrx4nmw1F1evXoUgCDrfQUuWLEGNGjXQokULnbZBQUFYunQp2rdvj4MHD2Lx4sUYNWpUQZssUsSoX78+rKyscPTo0cI2RaSI4ujoiIkTJ2L9+vW4ffu2zrlatWrhyy+/xOzZs3Hjxg31wbNngenTgWHDAH9/YPJk4I8/AEPftwC2bduGBg0awMrKCuHh4ejatWuWNlevXkWTJk1gZ2eHY8eOoVy5cmadp4iIiGEkNPdTpYhIESYmJgY+Pj6oUaMGfvnlF0ilRWu96/nz54jo1AlN/vkHJkhw4MQJoFGj7NskJQHFiuVtV/915HLgxQvAyF3josDDhw9Rt25deHl54c8//4TCGC+IHNi+fTv69u2LKVOmZNlFAYCQkBAMHz4cv/zyC9q1a6e3j127dqFXr17Ytm0b+vTpo/a6WL0aOHMGiI8HbGwADw9g4ED1go6FhVG21ahRA40aNcKqVatybPvixQt4eHhg5MiRmDdvnlH9n3ueit8eJBvVNjuGehdDMUs9ngHJycAHH6gFfC7er5TJEKdQoGpqKup99BHWrVsHNzc3k+00B5s3b9Z6e9jZ2eH69euoWrUqNm3ahP79+2vbrVq1CiNGjEDLli1x+PBhBAUFITAwsBAtFylKtGzZEnZ2dti/f39hmyJSRElOToaXlxc6dOiA7777TudcSkoKfH180E8uR6CdHSTnzql/0yUSdXAUoP7O9fQERo0CBg/W/tanp6dj3LhxWL16NT777DOEhITAxsYmy/gXL15Eq1at4O7ujt9//x0lS5bM9zmLiIj8S9FSOiIi+QhJDBkyBEqlEps2bSpSQv/ly5eYOnUqPD09MSoiArlzhH4NqRSoWhVo2DDntk+emC70AXUfT56Y3k8BkZqaiq5du8LCwgK7d+82i9AHgD59+mDx4sUICgrCypUrs5wfOnQo2rRpg8GDB+Ply5d6+9C4mR/w90d6zZqAry+wcaM6XOL2beDKFSA0FOjRAyhdGpg9G8jI3v1dEARERUUZvbO/YsUKZGZmYty4cUa1B4AbcUa44OeABEBUvIF+NmwALl/O9ftVolLBPjUVf7RpgwMHDhQZoQ8Aly5dgpeXF+zs7AAAy5Ytg5ubG3r37q1ts2PHDowcORJNmjTB4cOH8fXXX4tCX0SHpk2b4vjx41CpVIVtikgRxdbWFlOmTMHmzZsRGRmpc84mMxN/OTpiSmQkeP68+mBmJqBUqv/VfOfevg0EBKi9D+/fx927d9G4cWNs2LABISEh2Lx5s16hf+bMGTRv3hweHh44cuSIKPRFRAqBoqN2RETymfXr12P//v3YsGEDSpUqVdjmAADi4+Mxc+ZMlC9fHsuWLcOIESNw7O5dSL76Km8dSqVASIhx7tTJpu/E5ktf+QhJ+Pv74/Lly9i3bx9cXV3N2v+XX36JgIAAjB49Gj/99JPOOYlEgg0bNiA5ORkjR4402Me6ihXxQ0oK5Jo43DcFruah/vlzYMYMoE0bICHBYH/37t1DWlqaUWI/MTERy5cvx+eff56rh7LkTMMunsYikQCp+vohgeDgPPcrB1D99GlIUlPzblw+cOnSJa0Lf0xMDDZv3oyRI0fC0tISAHDo0CH0798f9erVw/HjxxEYGIivv/66ME0WKYI0a9YMcXFxYty+SLb4+/vD3d1d9zskNRVo0wbFX713pNk5+mrSoN68ibTatdGuVi08e/YMp06dwtChQyHR88xx6tQptGrVClWqVMHhw4cLPXRKRORdRRT7Iu8EkZGRGDt2LPz9/dHZ2Hj2fCQpKQnz5s1DhQoVMG/ePAwePBjR0dGYP38+nJ2d1SLO39/4DqVStevdjh1AkybGXePgkCfb872vfGTJkiXYtm0bNm7cCF9f33wZY9GiRejduzf69OmTJZa2TJkyWLlyJXbs2JFlMQAAEBwM65kzAcA47w5BAE6eVLv0G9jhv379OgAYJfbXrFmDpKQkTJgwwZjRtZglFoyAoK+jI0eAW7f+dSnNCwkJwA8/5P36fCAiIkKbnC8kJAQSiUSbcO/48ePo3r07qlWrhrCwMAQEBGDu3Ll6H6hF3m3q168Pa0tLROzYAfz5pzq++ty5HD1+RN4trKysMH36dOzcufPfhaGRI9UhYrnxCsnMhCw2FntJnA0PR926dfU2O3r0KNq2bYtatWohNDQUjo6OZpiFiIhIXhBj9kX+82RkZODDDz9EYmIizp07Z3R28fwgJSUFq1evxoIFCxAXFwd/f39MmTIF7u7uWRuTwIIFwMyZ/2Ydf/PjKpOpf6jd3YGtW4E3EntlS3o64OICGMgQbzR2dupd5qJU1UAPoaGh6NChAyZNmoSgoKB8HSsjIwMdO3ZEWFgYTpw4oZNxnSS6d++OY8eO4fLly/+6ll+5Avj45E3USqXqBaLp07OcWr58OSZNmoTk5GTIssmUn5aWhgoVKqBjx45Yv359robfFhmHB8mmhYQIqkxcP7gdxeLuoW7duqhbty4qV64MWWAgsHSpaSEnUinQrRuwa5dJNpqLp0+fws3NDT/++CM6deoEDw8PdO3aFatXr8a5c+fQvHlzuLu74/r16xg5ciSCg4NFoS+SldhYYONGPJk2DW5vVqYoXhwYPly9aCwmQxMBoFQqUaVKFdSoUQN7V60CypbNndB/EwO5gUJDQ9GlSxc0btwY+/bt0+veXxQhCYGATCp+14r8txB39kX+88yYMQMXL17E9u3bC03op6WlITg4GF5eXpg8eTK6dOmCmzdvYuXKlfqFPqD2a548WR0PHxwMVKyYtU2LFsCBA8C9e7kT+gBgaalOtpPLUmk6yOXqPoq40I+MjESvXr3Qvn17zJ49O9/HUygU2L17N7y8vNC+fXvcvXtXe04ikSAkJAQymUw3e/+33+b9/0IQgBUr1HGWb3Djxg21aM6h7++++w7Pnj3DpEmTcj28p4MCpj4eSWVyWCQ+w6+//op+/frB29sbTk5O+N/WrVBlkwnaKAQBiIkx0ULzERERAUCdOPH777/H06dPMXbsWNy4cQPt2rWDs7Mzbty4AX9/f1Hoi+hn9Wr1Iu+kSXB9U+gD6qSp8+cD5csDEydmm01d5N3AwsICM2bMwL59+/Bw5kzTvKUMVOI5ePAgPv74Y7Rq1QoHDhwo8kI/MUP1f/buO6yp6w3g+DcJGyeIWsU9qkXcyk8R924VrXVbtWitVRwV6l6oqHXWUfe2Ks462rq3dQ9cFVy4wAmCgKwk5/dHlEoFhSQQoOfzPDxqknvuezGE+57xHo4/juaXa2FM8w9l+uVQpvu/YFXAS66ExpKQ7HQzScpa5Mi+lK0dO3aM+vXr4+vra5LCVvHx8axYsQJfX19CQkLo3r07Y8aM0W9/WSF0I+gvX+qqsOfLZ/j0+cBAKFfOsDYCAiAN27pltIiICFxcXFAoFJw+fTpDpxM+efKE2rVrY2lpyYkTJ7C3t098bseOHbRp04aVK1fS88svoWBB3RpKQ2zapCve945GjRphZ2fH5s2bUzwsISGBMmXKUKtWLTZs2JDm00YnaJl/LUzv6fwKoIC1ip7l8gK6/7OLFy9y/vx5qi5cSN2gIFK378AHNGwIBw8a2opRzJ49m1GjRvHq1SuqVq1KsWLFWLBgAa6urmi1Wh4/fkz37t1Zvnx5piokKmUSPj66mTxp0akTrFunm+Ui/WdpNBoqODnxV1AQdoYu9TAz0w1GvPm9tmXLFjp37oy7uzvr1683WvHb9BCj1rL3YVRicdl//+5SvHnMQqngfwWsqVXAWna6SlmW/NSXsq3w8HC6deuGm5sbQ4cOzdBzq9VqVqxYwaeffkq/fv2oW7cuN27cYOXKlfol+qAb6c+fX5dYlyxpnHXyn36qW++tz4iySgWtW2fqRF+j0dC1a1eePn3Kzp07M3zdYMGCBdm7dy8vXrygVatWvH79OvE5d3d3evTowaBBgwhdvtzwRF+l0lXu/5eAgICPrtdfv3499+/f17tDzNZcSbk8+o/uC6Cag3Xiv3Pnzk2DBg348ccfadShA+ZmBm1EqfvemLIK9KNH4Our2zKxfXuqL1jANDs7Tm7bxtWrV/Hw8KBJkybExsby9OlTOnfuzLJly2SiL71vxYq0J/oAfn4gd3L4z1OpVEweOdLwRB90S6vu3AF0W8927NiRDh064Ofnl6kT/Yh4DasDwwkMj0eQfM2Zt4/FawXHHr9m571ItHJsVMqi5Mi+lC0JIejSpQu7d+/mypUrFM2gNYsajYYNGzbg4+PD7du3+eqrrxg/fjxOTk4Zcn69vHql26rvxo3Ur99TqXRJ/qlTmbo434gRI5g2bRp//vknzZo1M1kc586do379+jRq1Iht27Zh9iZ5DQ8Px9nZmfEWFng8eIDC0K0QP/tMt/b/jcjISHLlysWaNWv4+uuvkz1Eo9Hg5ORE2bJl2blzp96nDo1VsyownHi1FkUaklQFkN9axddl82CW3FrJv/5Kdl1oWr2cP5+8/fsb3E6aHD8Os2bpltooFLovjQa1ECgVCoQQHMiVi/WffMLOp0+Jjo6mTZs2rF+/PvE9IkmJ4uJ0M4DCw/U7XqHQLflydDRuXFKWon34EKWR7okuTp3KrthYfHx86NGjB8uWLfvokjFTilVrWX0znPA4bZpnolWyt6R5kRxyhF/KcmSyL2VLv/76K19//TUbNmxIsm91etFqtWzevJnx48cTEBBA69at8fHxoXLlyul+bqMIC4MvvtAl70plyus73z5Xqxbs2pU4fS8z2rBhA126dGHGjBl4eXmZOhz27NlDq1at6NmzJ0uWLEm8YThw4ABnmjRhuEqFytC9sosX1+2H/MaFCxeoXr06Z8+epUaNGskesmXLFtq3b8/p06dxcXHR+9RarZbvR03A0b03KjNzlKm44dNq1ORUgUeF/Niap9BBIARUqKDrjNLz11UY8AngULhwYvG/6tWrU61aNRwcHPRq84OE0CX53t66qa4f6MRRo5tiN1il4mGrVmzatAlzc4MXLUjZ0bp10K2b/serVDByJEyYYLyYpKwnPBzy5jVKU7WA02/+rlQqyZ8/PwULFqRAgQIUKFAgxb/b29ubZObSgUdRXHgeq/eSs06lc1E8Z+adtSBJyZHJvpTtBAUFUblyZdzd3VmzZk26nksIwfbt2xk3bhxXr16lRYsW+Pj4pJhYZWpxcbBhA8yZA/7+uiTlbQ+2ELqEpVIlGDQIunTRFfjLpC5cuECdOnVo3749q1evzjQ98WvWrKFHjx6MHTsWnzdb7AFsr12bL06dwuCx3MqV4dKlxH+uX7+erl27EhERQa5kZmAIIahWrRp2dnYcOHBA79MKIejfvz+LFi3Ca8JUzGq0IHf+TxLXPf7b28ef/H2RIz+P4cThg+TIkSPlEyxerKssrsevK6FS8eq77zjYqBHnz59P/Hr58iUAxYoVe68DIK+hN8IzZ+oS/TRKmDsX8wEDDDu3lH3973+6rdIMKbaXLx8EB0MmnmYtpTOtFpE3L4pXrwxqRgCFgbodO9KxY0eePXvGkydPePr0KU+fPk38+5MnT4iOjk5yrEqlIn/+/Ek6AVLqGLCzszNKx0C8RjDvWigJev74KIHSuS34smTmnc0oScmRyb6UrajVaurXr09wcDCXL19ONsExBiEEf/75J2PHjuXixYs0atSICRMmULt27XQ5X4Y7dw7+/FO3tRPotnH6/HPIAp0YT58+pXr16hQqVIijR49ilcl2Cvjpp58YPnw4CxcupG/fvgDE7tyJlbu7Qe0KlQpFjx6wfHniY+PGjWPJkiU8fvw42WP+/PNPPv/8cw4dOkSDBg30PveIESOYOnUqs2bNYsqUKdSrX5+JS9Zy4XkMD6OSjmorFfBZXkuq5bMi4uEdqlevjru7O7/++mvKnTJxcVC/ftr3hDYz0207du6c7j38hhCCoKCgJMn/hQsXePXm5rdUqVJJOgCqVq2a+s+SI0dA3++lQgEnT+qSOkl6V2wsWFt//HWp4e+v67iV/ru8vND+/DNKPTuOtAoF+4Tg+MiRTJo06aMd6tHR0Uk6AFL6+5MnT5LUtgEwMzN7r2Mgpb/b2dmlGMvl0Fh2P4jS63rfUgD9nPKS0yLzLlWQpH+Tyb6UrUyaNIlx48Zx7NgxXF1djd6+EIIDBw4wZswYzpw5g5ubGxMnTqRevXpGP5eUdnFxcTRq1Ii7d+9y/vz5lLc1NCEhBIMHD2b+/Pls2bKFtm3bglZLXKFCmD99alDV1G+cnWn444+0b98eKysrOnbsyNOnTzly5EiycdSpUwetVsvJkyf1nv0wdepURowYwcyZM7lw4QJ79uzh+vXrFCxYENAVQ4qM16LWCixVCvJaqrAy++cq3y63WLRoEd99913KJwoNhXr1dLs/pCbhNzODAgXg2DFdQcuP0Gq13L59O0kHwMWLFxNHpD799NMkHQBVqlRJfivPzz+HvXv127/azAy+/BI2bkz7sVL29vixbqs9Yzh0SP8OKSl7uHULypY1qAm/bt3otHatkQL6R1RUVLKdAMk9FvOvwrbm5uYpdgyIas2JtbH7Z8ainpo42iYpKCtJmZ1M9qVs48yZM7i6ujJy5EgmpMOaxCNHjjB27FiOHz+Oi4sLEydOpHHjxplmivh/nRCCPn36sGbNGo4ePcr/MvHoqFarpXPnzuzYsYP9+/fj5uYGM2ag/fFHvZJ9oVQSXqIEHUqU4MCBA9jb2+Ph4cGuXbuoV68eixYteu+Yo0ePUr9+fXbt2sUXX3yh13UsWLCA/v37M3bsWKpVq4a7uztr166lWxrXFffr14/ly5dz6tQpqlatmvILX70CDw/Ytk1XPyK5hPrtGvl69XTLUj75JI1X9Q+NRkNgYGCSDoBLly4RGxuLUqmkfPnySToAKufJg9Vnnxm2f7VKpave/6azRJIAePZM13llDMeOgZubcdqSsq7mzRH79qFI4+dVAhBtZ0eeZ8/028nHSIQQyXYMpNRJ8N2afRQoZdhWw0oF/K+ANXU/SaajV5IyKZnsS9lCVFQUlStXJl++fBw/ftyoBa5OnjzJmDFjOHToEFWrVmXChAm0bNlSJvmZzPz58xkwYACrVq2iR48epg7no+Li4mjevDn+/v4cP36cCoUKIT79FM2LF/qt3d+xA1q35ubNmyxatIiVK1cSHh5OuXLlmDZtGi1btkxSJblp06Y8ffoUf39/vd7Lb4tgDho0iHHjxuHk5ETVqlXZtWtXmtuLi4vD1dWVsLAwLl68SJ48eT58wN27unX8ixdDRMQ/j1tbQ8+euvX9zs5pvqbUSEhI4MaNG0k6AC5fvkx8fDwTFQpGCIFBt79KJUyeDMOGGStkKTtISAArK8PW67/1999Qvrzh7UhZV1QUNG2qK8qbBmrgNbDUw4Mhy5Zl2vsgjUbDkydPePjwIY8ePeLBgwdEV22Jee58BrWrVEDN/NbULySTfSnrkMm+lC306tWLjRs34u/vT+nSpY3S5rlz5xg7dix79uzB2dmZCRMm4O7unml/uf2XHT58mCZNmjBw4EBmzZpl6nBSLSIigrp16xIaGsqpU6co8vw5WldXtLGxaUv4J09+bw/twMBAypUrR5kyZbh16xZFixblu+++o1evXjx48ICaNWvi5+dHx44d0xz39u3b+eqrr+jRowdLly6lT58+bN68mevXr+Oo57ZeQUFBVK1alfr167Nt27bU/Zyp1fDiBQ2qVqV5+/YMmz7dJIXH4uPjuXr1Krn79qXkhQsoDfm1amYG3bsnqb0gSQC0agW7d+u3RAR005dLltRN4Za/x/671Grde2n//jS9lwSgVSrZ7OlJ57lz6dWrF4sWLcrwbUI1Gg1Pnz5NTOST+zMkJATNO9dmbW1N35V/kr9sBYPOrQDqFbLhfwVsDLwKSco4ciNfKcvbunUrK1asYMWKFUZJ9P39/Rk7diy7du2iXLlybNy4ka+++sok28RIHxcUFET79u1p2LAh06ZNM3U4aZI7d252795N7dq1adasGSdOnMDur7+IcXND8fo1SnQ3F8kyM9PdqM2erdsh4V/u378PwO7duwkLC2PhwoVMnDiR8ePHkz9/fhwdHWnXrl2aYz5w4AAdO3bkyy+/ZMmSJRw8eJDly5ezZMkSvRN9gBIlSrB69Wrc3d2ZNWtW6rZLNDODggUJzpGDFxYWJqswbmFhQbVq1cDBwbAp/KAbuTWwSraUTXl6wu+/G9bGwIEy0f+vW7UK9uxJ82EKQCUEncqUIX71ajw8PAgLC2P9+vVGK4Sr1WpTTOTf/j0kJAT1O9uZWllZUaRIEYoUKULp0qVp0KABjo6OiY85OjqSN29ejj1+zemnMXpvuwe6Dg9HW7k1qpS1yJF9KUt79OgRFStWpGHDhmzevNmgUffr168zbtw4tm7dSunSpRk3bhydO3dOMvVZylyioqKoXbs2r1+/5uzZs9i9U3E9KwkMDMTV1ZVy5cqxf/9+zCMjWVCjBu1CQiisVuvWRSqVukRSo9Fte9izJ/Trl+J09Xnz5uHt7c3r168T38NhYWFMnTqV6dOnA+Dk5MT333/P119/napq8ydPnqRJkybUq1eP7du3ExcXh7OzM6VLl2b//v1GmfUydOhQZs2axdGjR1NdZNPZ2ZkGDRowd+5cg89vkI4dYcsWw6Zam5nB11/DihXGi0vKHrRa3cj8w4f6kBzbLgAAIABJREFUvcesrHSF/j62TEbKvoSAihV1Szn0eQ8pFFC6NAQGsuv33+nQoQO1atVi+/btH/0dotVqefbs2QcT+eDg4PcS+beJe0p/fqgC/7si4jUsvP4y7df8jnxWKnqVyyNneEpZihzZl7IsrVZLz549sbGxYcmSJXp/+AYGBuLj44Ofnx/FihVj+fLldO/ePcOnpklpo9Vq6d69O/fu3eP06dNZNtEHXaX333//nYYNG9K5c2e2bNlCs337KFu5MtNbtqRf7dq6tek2NuDoqKvY/pEbq8DAQMqUKZOks8rOzo7g4GAcHR1ZsmQJy5YtY9CgQQwbNoxu3brx/fffUymFLbn8/f1p2bIl1apVY8uWLVhYWDBkyBCeP3/O4cOHjXbz4+vry6lTp+jYsSOXLl3CwcHho8dYWloSFxdnlPMbpHRpw0dNhdC1I0n/plTCypW6tdb6JGrz58tE/7/uzBm4dk3/44XQLQM5epRWrVqxd+9eWrVqRYMGDVizZg0xMTHvJfDvJvIJCQmJTVlaWuLo6IijoyMlSpSgbt267yXy9vb2RvvdkttCRalc5tx9laD36H51B2uZ6EtZjhzZl7KsmTNn4u3tzYEDB2jUqFGaj79z5w4TJ05k7dq1FCpUiNGjR/PNN99gYaKpwFLajB8/ngkTJrBjxw5atWpl6nCM4o8//sDd3T1xLeS8efMYNGiQXu/xJk2akCtXLrZu3Zr42J07dyhbtixz5szB09MTgODgYJYuXcrSpUsJCQmhdu3a9OvXj6+++gpLS0tA13Hg5uZG0aJFOXToELly5eLYsWPUq1ePuXPnMmDAAON9E97EVKVKFSpXrszu3bs/OrvG1dWVMmXKsGrVKqPGkWZ37hieqCuV8OABFC5snJik7GfTJujaVZfwpzbpnzIFhg9P37ikzG/IEJg3T7duX08apZKzFSsy/7PPePjwIXfv3iU4ODjJaywsLBIT+Xen07/7Z758+TI8cX7yWs3am+Fo0pj5KAA7SxU9y+XBXCmTfSlrkcm+lCX5+/tTs2ZNBg0alDglObXu37/PpEmTWLVqFfny5WPkyJF8++23RltzJqW/bdu20a5dO3x9fRk5cqSpwzGqlStX4uHhgY+PD6NHj6Zx48bcvn1bVwAud+5Ut1O0aFG6devG5MmTEx/r06cPO3fuJCgoCGvrpPsEJyQksHPnThYsWMChQ4fIly8fvXr14osvvqBz587kypWLo0ePki9fPl6/fk2lSpUoUKAAx44dS5d6FgcOHKBp06aMGzeOcePGffC1DRo04JNPPmH9+vVGjyPNmjZFHDqEQp8iamZm0Lo1vNNBI0nJOnwYevfW7UzxdrvJd6lUuiU/Dg66uh5du5omTilz6doVNm7Uv8gjoAX22tgwpVq1xOTdysoqcYvXrVu3Urt27Uxb5+hmeBy/BUUCpGqEXwHYmivpXjY3uSzksk4pCxKSlMVER0eL8uXLi8qVK4vY2NhUH/fo0SPRr18/YW5uLvLlyydmzJghoqOj0zFSKT1cuXJF2Nraig4dOgitVmvqcNKFr6+vAMSSJUvEvXv3RM6cOUXPnj1TfXxUVJQAxKpVqxIfe/jwoTA3Nxc//fTTR4+/ceOGGDRokMiVK5cAhLW1tVi9erVQq9VCCCG8vLyElZWVCAwMTPvFpYGPj49QKBRi//79H3xds2bNxJdffpmusaRWqJ+fELrJrmn/UiiEOH7c1JcgZRUajRD79wutu7tQ//u95OYmxObNQsTHmzpKKTNp314IpVL/zygQWhCiVav3mg4ODhYVKlQQ9vb24syZMya4uNQLiogTM/1fiCkXn6f4NfXNn8tvhIlX8WpThyxJepPJvpTl9O/fX1hZWYnr16+n6vVPnjwRgwcPFpaWliJv3rxiypQpIjIyMp2jlNLD8+fPRfHixUXlypVFVFSUqcNJN1qtVvTv318olUqxY8cOsXz5cgGIHTt2pOr4ixcvCkCcPn068bFBgwaJPHnyiIiIiFS1ERoaKpycnETu3LmFk5OTAESxYsVEv379hEKhSFWngaHUarVo0qSJcHBwEI8ePUrxda1btxaff/55usfzMS9fvhSfffaZGKvvzfTMmaa+BCkLevjwoVCC2LN+vRDPnskEX0pZnz5CmJkZlOwLlUqI7t2TbT40NFTUqlVL2NrafrST1tRi1Rpx8flrseR6WLLJ/qbb4eJORFy2HVSQ/jtksi9lKX/88YcAxPz58z/62ufPn4uhQ4cKGxsbkStXLuHj45PqREfKfOLj40X9+vWFg4ODuH//vqnDSXdqtVq0a9dOWFlZiRMnTogvvvhC5M+fXzx79uyjx27YsEEA4uXLl0IIIZ49eyasra3F2LFjU3XuV69eCRcXF2Fvby+uX78utFqtOHPmjPj666+FQqEQCoVCdOrUSRw/fjzdb4SePXsmChcuLOrUqSPiU0hi2rdvLxo3bpyucXxMVFSUqFGjhlCpVMLezk48HzhQCBAJH7lx1rztGJg+XQh5UynpYf/+/QIQN2/eNHUoUma3Zo1hif7br6VLUzxFVFSUaN68ubCwsBCbN2/OwIvTj1arFY+jE8SCLX+Iik3biMCw1yI8To7kS9mHTPalTONFTII4+ChKbL4dLtYGvhSbboeL/Q8jxbPXCUIIIZ4+fSry588vWrZs+cEEIywsTIwaNUrkyJFD5MiRQ4waNUqEhYVl1GVI6cTT01OYm5uLY8eOmTqUDBMTEyPq1q0r8ubNK44ePSrs7e1Fu3btPppgjx8/XuTPnz/x3yNHjhS2trbixYsXqTpngwYNRK5cucT58+eTPDd69GhhZmYmvL29RenSpQUgnJ2dxYIFC8SrV6/0u8hUOHHihFCpVOLHH39M9vlu3boJNze3dDv/x8TFxYlGjRoJpVIp8uTJI65duya0Wq0Y4uwsjufIIbQKhW407G1ir1QKoVIJDYjDOXII7aFDJotdyvrmzZsnzM3NRUJCgqlDkTK7mBgh8uQxLNHPkUOIj8ysi4uLE507dxYKhUIsXrw4gy7OMG9n0L1driZJ2UXmrJ4h/afciYhn3a1wlt4I59yzGG6/SuBRtJo7rxK4+DyW5QHhrL0Zjve0eQghWLFiRbIVXF+9esWECRMoUaIEs2bN4vvvvycoKIhJkyaRN29eE1yZZCzLli1j/vz5zJ8/Hzc3N1OHk2GsrKzYsWMHhQsXplu3bvj6+rJ161Y2bNjwweMCAgL49NNPAQgPD2f+/Pn07dsXe3v7Dx6XkJBAhw4dOH36NL///jvVqlVLfO7SpUtMmTKFMWPGMH36dAIDA9m3bx+lSpXC09OTQoUK0a9fP65evWr4hf+Lq6srP/30E9OnT2fnzp3vPW/Krfc0Gg2dO3fm0KFD2NracuTIEZycnNi5cyezrl4lavNmFLdu6Sqht28PLVpAhw4wahTnN22iQVQUe2JjTRK7lD0EBgZSunRpuV2s9HFWVtCnj66Aox7UwN0GDcDW9oOvs7Cw4Ndff6Vfv3589913TJkyBZHJ64G/jU9urSdlN7Iav2QyQgj+ehLDiSevUfCRqqhCCwolDpEheLg5J/kwjoqKYv78+UyfPp3o6Gi+//57hg0bRsGCBdP7EqQMcOLECRo2bEjv3r1ZsGCBqcMxieDgYGrVqkXu3Ln59NNPOXjwINeuXaNwCtuzVa1alerVq7NkyRImT57MhAkTCAoK4pNPPknxHBqNhq+//potW7awc+dOmjdvnvhcQkICNWvWRKvVcu7cufe2p3z48GHi9n1PnjyhTp069OvXjy+//DJx+z5DCSH48ssvOXLkCBcvXqREiRKJz/Xv35+//voLf39/o5wrLTH17t2bFStWYGNjw7Fjx6hWrRoJCQlUqFCB4sWLs3fv3g8e7+LiQq5cuThw4EAGRi5lJ02aNCFnzpxs27bN1KFIWUFICFSqBC9fpqkqv1CpiFIqcUpIoGGPHvz888/kyZPnw8cIgY+PDz4+PgwZMoTp06dn2ir9y5Yt49tvv0Wr1cqEX8pWMudPnPSfcPKpLtGHjyT6AArdW/V5zkIce6w7JiYmhpkzZ1KyZEnGjh1Lp06duHPnDrNnz5aJfjbx4MED2rVrR+3atZkzZ46pwzGZwoULs3fvXoKDg3n8+DFWVlb07t07yUhJeJyGB1EJ3I2II8rMhrKfVSA6OprZs2fj4eHxwURfCEG/fv3YuHEj69evT5LoA0ybNo2rV6+yYsWK9xJ9gCJFijBhwgQePHjApk2bMDc3p0uXLhQpUoSRI0dy7949g78HCoWClStXYmdnR/v27Yl9ZzTcVCP7P/74IytWrMDKyopDhw4lzoRYvHgxt27d+ui2oAqFAi8vLw4ePJjhHRVS9hEYGJg4k0eSPqpQIdi7VzfKn9oRfpUKhYUFOY4eZcLKlfz22284OTmxe/fuDx6mUCgYP3488+bNY9asWXh4eKD+9zaRmYQc2ZeyK5nsSyZxLzKe42+S9rQ69TSG2b9upWTJkgwbNgx3d3du3brFL7/8kuJIp5T1vH79mrZt22Jtbc3mzZsxNzc3dUgmVb58eX7//XcuXrxIqVKl2LNnD4uXLuNaWCyrA8NZ9PdL1t+KYNPdSDwWb0dTtxO/HL2KVX5HfvzxxxTbFUIwbNgwlixZwrJly/jqq6+SPP/3338zYcIEfvzxxyTT+pNjbm5O+/btOXToEH///TedO3fml19+oWTJkrRq1Yo///wTjQH7O+fJk4fNmzdz7do1hgwZkvi4KZJ9X19fZs6ciYWFBfv378fFxQWAiIgIxo8fzzfffEPFihU/2k67du0oVqwYM2fOTO+QpWwoOjqahw8fUq5cOVOHImUlVavC6dPwdmAkpdH2t487OMDJkyhq1aJnz55cv34dZ2dnWrZsSe/evYmIiPjg6Tw9PVm3bh3r1q2jXbt2xMTEGPFiJEn6EJnsSyZx/lkM+vadajVq/o5W0LRpUwIDA1m6dCnFihUzanySaQkh6NWrFwEBAezYsQMHBwdTh5Qp1K5dm40bN3Lq1Cnqt+1ESJl6/H4/iiev3x8pEQolaofi9P91P+c0dsRptMm2OXnyZKZPn87PP//MN998k+Q5jUaDh4cHJUqUYNy4cWmKtXz58syZM4eQkBCWLFlCcHAwn3/+OWXKlOGnn37i+fPnaWrvrapVqzJnzhwWLlyYWLsgo5P9BQsWMHr0aMzMzNi7dy916tRJfG7y5MnExMQwceLEVLVlZmbG4MGD8fPz49GjR+kVspRN3bx5E0Am+1LaVagAd+7A+vXwprPyPdWqwdq1EBQElSsnPuzo6Mju3btZunQpmzZtwtnZmf3793/wdF26dGHnzp3s37+f5s2bf7SDIKPJVc1SdiWTfSnDRcRruP0q4eNT91OgVJlRqmZdZi9eQalSpYwam5TOYmN1Nw4tWujWDJYrB7Vr64qXBQUlvuynn37Cz8+P1atXU6lSJRMGnPm0bt2auRt+o/GIWVjlzA2kvAxG+aZgV1BkAmtvRhCrTprwz5s3j9GjRzNhwgQGDRr03vFz5szh7NmziVPV9WFra0vv3r25cOECp0+fxs3NjXHjxuHo6Ei3bt04efJkmm+y+vTpQ9euXfn2228JCAjI0GR/w4YN9O/fH5VKxR9//EH9+vUTn7t37x5z5szhxx9/pFChQqlus1evXtja2jJv3rx0iFjKzgICAgDkNH5JP5aW0LkznDyJT8eOtAYi5s+H7dvh2jU4exa6ddNN+f8XhUJB7969uXr1KmXLlqVp06b07duXyMjIFE/XokUL9u/fz5UrV6hfvz5Pnz5Nx4tLGyGEnMIvZUsy2Zcy3NXQOL1H9d9SAFfCZAXrLCMqSpfQFywI3bvDvn1w5QoEBsKpUzBjBpQqBS1acGLmTEaOHMmYMWPem1IuwZPXal6XrY1SZYYylestBRAaq2HL3Vdo3yTWq1atYuDAgXh5eTF69Oj3jrl16xajRo1i0KBB1K5d2+C4FQoFLi4urF69muDgYHx9fTl16hSurq5UrlyZxYsXExUVleq2Fi1aRNGiRfnqq69QKBTEx8cbHOPH7N69m65du6JUKtm+fTtNmzZN8vyoUaPImzcv3t7eaWo3Z86c9OnTh8WLF3/wRlmS/i0gIIACBQp8tFCaJH3M8Rcv+F2hIHf//uDuDk5OqTquWLFi7N+/n4ULF/Lrr7/i7OzMoUOHUny9q6srx44d4+nTp9SpU8coNV2MQSb7UnYlk30pw0XEawxO9gEi4vRf+ytloCdPdKP3M2bA22l72n9NKddoQAjE/v24eHvzU/XqjB8/PsNDzQqOhkSjFWkvIiSAR9FqbkXEs3XrVnr16sW3337L9OnT32tLq9XSu3dvChUqxKRJk4wYvY69vT3e3t7cunWLPXv2ULx4cfr160ehQoXw9PTk+vXrH20jR44cbNmyhaCgIH777bd0H9k/ceIErVq1AmDTpk188cUXSZ4/e/Ys69evZ9KkSeTIkSPN7Q8cOJDo6GiWL19ulHil/wZZnE8ylocPH2Jtba3XsQqFgr59+3L16lVKlChBo0aN8PT0TLED19nZmRMnTiCEwNXVlWvXrhkSulHIZF/KrmSyL2W4eK3Qewr/WwKI08r1VZleRAQ0bAg3bqRqix+FRoMK8D5/HuWff6Z/fFnMyzgNQZH6L4FRAPsDg+ncuTPt27dn4cKFyd7cLFq0iGPHjrFs2TJsP7KfsiGUSiXNmjVjx44dBAUFMXDgQLZs2UKFChWoV68eGzdu/OCI/WeffcbixYs5e/Ys8fHx6bbm0t/fn4YNG6LRaFi7di3t2rVL8rwQAm9vb5ydnenZs6de53B0dKRTp078/PPPmbZatZT5BAQEyPX6klE8f/4cOzs7g9ooUaIEBw8eZN68eaxcuZJKlSpx7NixZF9bsmRJTpw4gYODA3Xr1uXUqVMGndtQMtmXsiuZ7EsZzlJp+IepArBSybdvpjdkCNy8CWlIXpTo/n/p2BHCwtIrsizJ/0WsQbNiBBBlkQv3Lt1Zu3YtqmSWAdy/f59hw4bRt29fGjRoYMDZ0qZo0aJMmjSJBw8e4Ofnh0KhoFOnThQtWpTRo0fz4MGDZI/r1q1b4rr5c+fOGT2uW7duUbt2bRISEli6dCldu3Z97zU7duzg+PHjzJgxI9nvaWp5eXlx//59tm7dakjI0n+EVqvl5s2bcmRfMorIyMgPbtGaWkqlEk9PTy5fvkyhQoWoV68egwcP5vXr93dgKliwIEeOHMHJyYnGjRuzd+9eg8+vL5nsS9mVzJakDGdvpf/N8LvsLI3TjpROQkN1xfj02WpNCIiJgVWrjB5WVnb3Vbzhs2KEwHvyrGS3MhRC0KdPH/LmzctPP/1k4Jn0Y2FhQceOHTly5AjXrl2jffv2zJ07lxIlSuDu7s6ePXvQ/msZiIeHBwCdOnVKVYVntVYQGB7HmaevOfH4NWefxXD3VXxiPYO3goODqVatGjExMcydO5fevXu/11Z8fDxDhw6lWbNm763hT6vKlSvTsGFDZs6cKStDSx/18OFDYmJi5Mi+ZLCEhATUajUlSpQwWpulS5fm6NGjzJ49m8WLF1OpUiX++uuv916XJ08e9u7dS8OGDWnVqhV+fn5GiyGtZLIvZUcy2ZcyXAU7/ap6/1tFe0ujtCOlk5Ur9Uv03zVv3vvr+//DYjWGJ4BKhQKN0izZ51atWsW+fftYvHgxuXLlMvhchnJycmLevHmEhISwcOFC7t+/T4sWLShTpgzTp0/nxYsXgK7AHcCLFy/w8PBIMVGOiNdwNCSa+dfC+C0okiMhrzn55DWHg6PZdOcVC66/5NST17xO0PLixQsqVapEZGQkU6ZMYcCAAcm2uXjxYu7cucP06dONcs3e3t6cO3eOEydOGKU9KfsKDAwEZCV+yXD+/v6AbstUY1IqlQwePJjLly/j4OCAm5sb3t7exMTEJHmdjY0N27Zto2PHjnTp0oUFCxYYNY7UkB2sUnYlk30pw9maKymf10Lv6cgKoHRuC3JZyJH9TG3ZMsMSdSHg3j04edJoIWV1xhpzSG4lTUhICD/88AM9evSgRYsWRjqTceTIkYM+ffpw6dIlTp48Se3atRk9ejSOjo50796doDfbNs6cOZNt27Yxd+7c99oIeBnHkr9fcvppTGKniQC0/LN1YVSClmOPX7Po7zCadepBaGgoo0ePZvjw4cnGFR4ejo+PDx4eHjg7OxvlWps3b85nn33GzJkzjdKelH0FBARgYWFB8eLFTR2KlMW9XQJVtWrVdGm/bNmyHD9+nGnTpjF//nyqVKnC6dOnk7zG3Nyc1atXM3DgQPr378+ECRMyNAGX0/il7Eom+5JJ1Mxvo/exAnDJr1/FWCkDPXpknHYePjROO9mAjZnhNyICsDZL+tEvhKBv375YW1sza9Ysg8+RXhQKBbVq1WLt2rU8evSICRMmcOLECYYMGQLAs2fPGDBgAN7e3kluJK+HxbL9XiQawUeXQQggNkFD28lLGTplNhMnTkzxtZMnTyYmJoYJEyYY4ep0FAoFQ4YMYefOndy8edNo7UrZT0BAAGXLljWoToQkAVy9ehUAFxeXdDuHSqXC29ubS5cukTt3blxdXRk+fDixsf9so6xUKpk9ezaTJk1i3LhxDB48+L1lW+lFJvtSdiWTfckkCtqY0aJo2renAmjqaItjjvfXG0uZzDu/wA0SHW2cdrKBcnktDR7dVwClclkkeczPz49du3axcOFCg6sxZxQHBweGDh3K7du3E6fQjxkzhtWrV5MvXz7atm1LaGgoj6MT+P1+8ts/pUSpUqFSmVGgRTci4pNfinLv3j3mzJnD0KFDjVLU6l1du3Ylf/78zJ4926jtStmL3HZPMpZbt26hUCgoUKBAup+rfPny/PXXX/j6+jJ79myqVauWpLiqQqFg1KhRLFy4kHnz5tG9e3cSEhLSPS6Z7EvZlUz2JZOpaG9Fy6I5QAg06g9/kL/9+G1WxJaqDnJUP0vQY6/xZOXObZx2soGKdlYGJftK4NM8FuQw/+ej/+1oeMeOHWnTpo3BMWY0pVKZWI1/165deHp6olarefLkCWXLlmXzBf1GxxVKJQlauPg8+U6rESNGYG9vj7e3t76hp8jKygpPT09WrVrF8+fPjd6+lD3IbfckY3n48CHW1hl3b2VmZsbw4cO5cOEC1tbW1KpVi9GjRxMXF5f4mr59++Ln58emTZto06ZNstX8jUkm+1J2JZN9yaTK2sJmr668uHwK1ZvPWKVCl9y/+6dTXkt6fpqHKvlkop9lVKoExpheaqS10NmBjYH1LrRA1X/9DA0cOBCAefPmGRacCVla6op12tvb4+vrS3BwMCNGjCBBaU6UTT69dzAQgH9oLGpt0hbOnDmDn58fkyZNwtbW1rDgU/D999+jUChYuHBhurQvZW2RkZGEhITIkX3JKJ4/f26SWV0VKlTg1KlTjB8/nmnTplGjRg0uXryY+HyHDh34/fffOXLkCE2bNiU8PDzdYpHJvpRdyWRfMqlZs2Zx5cRhvq9bAc8KdjR2tKWyvRVOdpZUtreiYWFbPCvY8UXxnBS0Sb6CuJRJ9e9vWDV+lQrc3ECOXCVRr5At1maKNCf8QmhxymNOkRz//Bz99ttvbNy4kXnz5uHg4GDcQDPQ22Q/Pj4e0G3fN3nyZH6cs8zgtuM0goDwf0abhBB4e3tTsWJFevToYXD7KbG3t6dnz5788ssvSda0ShL8U4lfjuxLxhAZGWn05UipZW5uzujRozl37hwqlQoXFxfGjx+f+HnetGlTDh48yI0bN6hXrx6PHz9Olzhksi9lVzLZl0wmJCSEyZMnM2DAAMqWLYu1mZLqDtY0LZKDL4rlpGmRHNTIb42NmXybZklt2qDOm1f/4zUaeDPqLP0jl4WKTqVzY6VKQ8IvBAFH97LSuxdqtRqAsLAw+vXrR+vWrenUqVO6xZsR3ib7704BBSjvUgeF0rDPDyXw5LU68d+//fYbJ06cYMaMGeleGO2HH37g+fPn/Prrr+l6HinrkdvuScaSkJCAWq2mZMmSJo2jUqVKnDlzhlGjRuHr64uLiwuXL18G4H//+x/Hjx8nNDSUOnXqcOfOnXSJQSb7UnYksyjJZEaNGoW1tTVjx441dSiSkQkh+GXpUkZFRurXgJkZlCkD7u7GDSybyG9tRo9P80DEMwAUH5iorlJArYI2tC9rx++7dtKtWzfUajVDhgwhJiaGhQsXZvkbnJSS/ViN4TdvAt3oPuhmDgwbNozmzZvTpEkTg9pNjTJlyuDu7s6sWbMyrCK1lDUEBATwySefkCtXLlOHImVx/v7+gK5wnqlZWFgwfvx4zpw5g0ajoUaNGkyaNImEhAQ+++wz/vrrL1QqFa6urokdAcaSkdv8SVJGksm+ZBLnz59n1apVTJw4kTx58pg6HMmIHj9+TMuWLfH09CTq229Rd+0KaUm4VCpdUb69e8Fc7rqQErOEGGZ2qM/9DbOJDrxEfEzS4kV5LZU0drRlgLMd9QrZ8sXnn7Np0ya2bdtG06ZNWb16NbNnz6ZQoUImugLjsbDQ7S7w72TfXGl4J4ZancCBvXsYNmwYPXr04M6dOwwbNizDbgy9vLy4ceMGu3fvzpDzIQS8eAG3b8P9+3I3jExKFueTjOVtJfwqVaqYOJJ/VK1alXPnzjF06FDGjx9PrVq1uHbtGsWKFePEiRMUKlSIevXqceLECaOdU07jl7IrmexLGU4IweDBg6lQoQK9e/c2dTiSEW3btg1nZ2f8/f35888/+WXBAsxWrwZPT90LzD5Qd0Gh0H0VLQpnzkCJEhkTdBY1d+5cIiIisFbHMLFzM+wu7WJwRTs8K9jhXcme7z6zo7qDNVaqfz7m27Rpw7Jlyzh8+DCFChWie/fuJrwC40lpZD+XhdLgX3JKpYqo0GeS+AKcAAAgAElEQVT4+fnh5+eHEIIGDRqQO3duqlevTufOnRk3bhzr1q3j7NmzRi8g5erqiouLCzNnzjRqu+8JD4c5c6B0aXBw0M2sKV4ccuWC1q1h3z6QswsyDbntnmQsV69eBXRT5TMTS0tLJk2axKlTp4iJiaFatWpMnToVOzs7jhw5QuXKlWnatCl//PGHUc4nk30pu5LJvpThNm3axF9//cXPP/+M2YeSPynLePXqFT179qRdu3bUq1ePq1ev0qJFC92TKpUuiTh8GNq00f1bqdSN2pubo3n7y7VMGZg7Fy5fhlKlTHcxWcDLly+ZNm0aLi4uzJ49G19fXzz798dKpSSHuRKzD4xonz59GktLSx4/fkz//v2zxdTFlJJ9JzsrDE1PFUolM7z60qFDB2xsbDhy5Ai//fYbo0ePpkqVKoSEhLBkyRK6deuGi4sLefPmJX/+/Li6uvLNN98wefJktmzZwpUrV/TaOkqhUODl5cXhw4eTVKk2Gq0Wxo+HggXhhx8gKOj953fvhmbNdB0Bp08bPwYpTTQaDTdv3pQj+5JR3Lp1C4VCQf78+U0dSrJq1KjBhQsX+OGHHxg1ahSurq4EBwezZ88emjVrhru7u1HqmshkX8quZKYlZaiYmBiGDh2Ku7s7jRo1MnU4khEcP36cr7/+mrCwMFatWkX37t3f/4WpUED9+rqvkBDYtg2ePoW4OAJDQui3bh2r9+6lWPHiJriCrGfGjBnExMRw/Phxhg4dyogRI1J13OHDh1m0aBG//PIL1tbWeHh4YGFhwZw5c7L0TY6ZmRlKpfK9ZL+IrRl2lirC4vTbFUIBlMxlTljwA+bOncvo0aOpV69esq+NjIzk1q1b3Lx5M/HPGzdusH379iSj/Y6OjpQtW5YyZcpQtmzZxL+XKFEicTnCv7Vt25bixYszc+ZM1q1bp9e1JEurhZ49Ye3aD7/uTVFH7t+HevXgt9+gZUvjxSGlyYMHD4iLi5Mj+5JRPHz4EBsbG1OH8UFWVlZMnTqVNm3a0LNnT6pUqcKkSZPw8/Pj+++/T7wHGWhAUV+Z7EvZlUz2pQw1Y8YMHj9+zIEDB0wdimSguLg4xo0bx7Rp03B1deXw4cOUSM3U+0KF/pnWD+R/8YKj69Zx/MQJmeynwtOnT5kxYwYJCQn07duXqVOnpuoGJTo6mt69e1O3bl369u2LUqkkPj6evn37YmFhwfTp07P0jY6lpeV7yb5CoaBGfiv2PtRv3bkAqjtYM6LPCPLly8eQIUNSfG3OnDmpWrUqVatWTdqGEISGhiZ2ALztDDh9+jRr165NHO1XqVSUKFEisRPg3c6AIkWKMHjwYLy8vJg6dSpFihTR63reM3ToxxP9d2m1kJAA7drB8eNQvbpx4pDSJCAgAJDb7knG8fz5c/IasnNOBvrf//7HpUuXGDNmDEOHDmXbtm2sXLkSe3t7Bg0axIsXL/Dx8Un2d1m8RhAWpyFOo8VMqSCHuZLcFv/sqCKTfSm7ksm+lGGCg4OZOnUqgwYNokyZMqYORzLA9evX6dq1K3///bduP/Mff9R7G7J8+fLh5OTE8ePH6datm5EjzX6+++474uPj+eqrr/jll19SfXMyevRoHj9+zN69e1G+2Y7ubVsDBw5MXB+ZVW92kkv2ASrZW3H3VQK3I+I/sGdB8mo4WPH074ts3LiRFStWYGtrm+a4FAoF+fLlI1++fNSqVSvJc0IIQkJCkswGuHnzJnv37mXBggUkJCQkXlvJkiVRKpW0a9eO7777LrFDoECBAvr9n924AfrUARBCl/B7ev53pvRrtfDqFcTGQp48YGVl0nACAwOxsrKiaNGiJo1Dyh4iIyMpXbq0qcNINWtra2bMmEHbtm3p2bMnlStXZsqUKUyZMoURI0bw4sUL5s2bl3hP8jxGzaUXsVwJi0X9r3VdhW3NqOZgzae5LWSyL2VbMtmXMsyIESOwtbVl9OjRpg5F0pNWq2Xu3LkMHz6cUqVKcebMGaNU8HVzc+PIkSOGB5jNbd68mR07dlCuXDnWr1+fmLR/zMmTJ5kzZw4zZsx476ZuwIABxMfH4+3tjaWlZZbdCjOlZF+pUNC6eE52BL3i9quEVLdXJZ8lDQrZ4NbRi0qVKqVLMUOFQkHhwoUpXLgwDRo0SPKcWq3m/v37SZYGxMTEcP78ec6fP59YayFnzpzJLgsoW7bsh3c6WbBAVzDz7RT9tNBodEU0L1+GSpXSfnxWcfGi7vu0bp0u0X+rXDkYMAC6ddMVMMxgAQEBlC1bNtU//5KUkvj4eNRqNSVLljR1KGn2dvu9kSNH8sMPP+Dm5oavry9jxowhLCyM5atWsy8kjsCIeBSQbGdvSLSa4OhIbMwUkLegTPalbEkm+1KGOHPmDGvXrmXJkiXkzp3b1OFIenj06BE9e/bk4MGDDB48mMmTJ2NtbW2UtuvWrcuiRYt49uxZpi0SZGrnz5+na9eumJubc+zYMcxTuS1hbGwsHh4e1KxZk0GDBiX7Gi8vL+Lj4xk5ciQWFhYMHz7cmKFniJSSfdBtwfdlyVycfRbDuWcxRKvFezd/QqtBoVSRx0JJrYI2VLSzZNu2bZw8eZL9+/frPXNFX2ZmZpQqVYpSpUrRvHlzAIYPH07x4sWZNGkSrVq1SjIj4NatWxw9epTHjx8ntuHg4JDssoDSBQtis2KFfon+PwHCwoWwaJGhl5r53LqlS+TPnk2+QyQwUDezwdsbhg2DMWN0RUczSGBgoJzCLxmFv78/AOXLlzdxJPqxsbHh559/pm3btnh4eODr68s333yD35at+O6/TG5HXSdGSrO63j4eoxZQoyUlahqnsr8kZSYy2ZfS3dut9ipVqoSHh4epw5H08LYIjq2tLfv376dx48ZGbd/NzQ2AEydO8OWXXxq17ezg+vXrNGnShISEBKZMmYKDg0Oqj/Xx8SEoKIhLly59MGEdMWIEcXFxjBgxAgsLiw+uT8+MLC0tiY+PT/F5pULB/wrYUDO/Nbci4rn8IpankTE8eRGKOvY1CS+fM7BtY4rlMEehUBAfH8+wYcNo0aKF0d/v+ipcuDBdunRhwYIFeHl58dlnn733msjISG7fvp2kPsCNGzfYsWMHL1++BKAF8KehwajVukKb2S3ZP38emjSByEjdv5PrEHm7g0VMjG4ng4AA+PVX3U4jGSAgICDxM1OSDHHu3DkAo8zQM6V69epx+fJlhg8fzoIFCxiw6g9yfFI01Uu3BIBCSeuxc3jyWk1BG5keSdmHfDdL6W7Dhg2cPn2aw4cPZ/jomGSYly9f4unpyfr16+nYsSMLFizAzs7O6OdxdHSkRIkSHDt2TCb7/3L37l2aNGkCQKFChRg8eHCqj71w4QLTp0/Hx8cn2cTw38aNG0d8fDxeXl5YWFjg+U4hxczuQyP771IqFHyax5JP81gCuVm9ei89e/Ykb968zOoelvi6BQsWEBQUxI4dO9Ix6rQbMmQIa9asYcuWLXTq1Om953PmzEmVKlWSvXkPDQ3l5s2baFatgiVLDA8mPFyX+GaXqa937+q2GIyM1C1VSK2NG8HeHubPT7/Y3oiIiODJkydyZF8yiitXrgC8V08kK8qRIwfz58+nYYce3MyZimLB/6JQKFCqVBwJiaZTaTkDVco+5IIvKV1FR0czbNgwvvzyS+rXr2/qcKQ0OHToEBUrVuSPP/5g3bp1+Pn5pUui/1bdunU5fvx4urWfFQUHB9OoUSPMzc0JDw9n3LhxWKWyOFh8fDweHh44OzszdOjQVB2jUCjw9fVlyJAhDBgwgCXGSAgzSGqT/X/r0aMHDRo04OXLl4nvv5cvXzJhwgR69+6Nk5OTsUM1SKVKlWjcuDEzZsxIXLefWvb29tSqVYs6rq7GCSaN58/0vL11hfjSkuiD7vvwyy/wZpQ0PQUGBgLIbfcko7h9+zYKhSJNs8UyO3Whsujb/ahUmXEvMoGXem7XKkmZkUz2pXQ1ffp0nj17xvTp000dipRKsbGxeHl50ahRI8qUKcOVK1fo0qVLup/Xzc0Nf39/IiIi0v1cWcHz589p0qQJGo2GsmXLUqpUKb755ptUHz916lT+/vtvVq5cmer1/aBL+GfMmIGnpyffffcdq1at0iP6jKdvsg+6LUEBunTpwqtXr/D19SUhIQEfHx9jhmg0Xl5eXLhwgWPHjunXgLE67XLnzj6j+sHBsGOH/nUMzMx0xfzS2dtt92SyLxnDw4cPsbGxMXUYRhMep+FuZEKad155lwK4+DzGWCFJksnJZF9KNw8fPmTatGn88MMPWbLS63/R5cuXqVGjBvPnz2fmzJkcOHAgw7Z3qlu3LlqtlpMnT2bI+Uzi0iXo3RtKldJN+y1QACpWhClT4NmzxJdFRETQvHlzQkNDE/8ffHx8Up20X716lUmTJjF8+HAqV66c5jAVCgVz586lT58+eHh4sG7dujS3kdEMSfYrVqyIubk5z58/p3PnzsybN49hw4ZRsGBBI0dpHM2aNaNChQrM1GfrPIA6dcDS0rAgzMzg888NayMzWbrUsOPVali/HkJDjRNPCgIDAylcuDA5cuRI1/NI/w0vXrxI1xl7Ge1+VOp3XEmJAO6kYecWScrsZLIvpZvhw4eTK1cuRo4caepQpI/QaDRMnz6dmjVrolQqOX/+PEOGDMnQrZ1Kly5NwYIFs+dU/kOHoGZNqFoVVq/WrQ0OC9Ml+FevwujRULgwdO3K6zt3+OKLL7h79y779u1j8eLFODk5Jbs+OzlqtRoPDw/KlClj0DaXCoWChQsX0qNHD7p3787mzZv1bisjWFhY6J3sm5mZUaFCBerUqcOff/6JtbV1pi5QqFAoGDJkCLt27Uqc1p0mefLoqs2bGVC2R62G/v31Pz6z2bQJtNqPv+5D4uNh717jxJOCgIAAuV5fMprIyEg++eQTU4dhNLFqrd5T+JO0ozHws0CSMhGZ7Evp4tSpU6xfvx5fX19ymWAfYin17t+/T8OGDRk2bBiDBg3i7NmzODs7Z3gcCoUCNzc3/acmZ1YrV+qqe1+4oPt3ctOEtVpQqxEbN/LayYnXFy6we/duQkNDOXjwIJMmTUp1cctZs2Zx8eJFVqxYgaWBo7dKpZJly5bRuXNnunTpwvbt2w1qLz0ZMrIPutH9t9vWRUVFce3aNWOFli66dOlCwYIFmTVrln4NeHrqP2VdqYRKlaBGDf2Oz4xevDC8DaXSOO18gNx2TzKWuLg41Gq1nHmZjGyyOEmSAJnsS+lAq9UyaNAgqlSpQs+ePU0djpQCIQRr166lYsWK3Lt3j8OHDzNt2jSDE0RD1K1bl7NnzxITk03Wy23dCr166ZL5VIwaKjQa8sTFcdLKChdHR0aNGkWNGjVwd3dP1ekCAwMZO3YsP/zwAy4uLoZGD4BKpWLVqlW0bduWDh068McfmXMfYkOT/QoVKhAQEEDFihWpXr06HTp0ICzsn+r8hIXBhg0wdy7MmgWrVsG9ewbHrS9LS0sGDBjAmjVreP78edobqFwZPDz0W3OvVMKcOdlnvT6kvShfchQK47STArVaza1bt+R6fcko/P39AShfvryJIzEeGzOlQev1321HkrIL+W6WjG7dunWcO3eOn3/+WW61l0mFhobSsWNHunfvjru7O1euXKFevXqmDgs3NzcSEhI4e/asqUMx3MuX8PXXaT7MDLCMjORZmzacPn0aX19fFKlIqrRaLb169aJIkSJMmDBBj4A/EJOZGevWrePzzz+nXbt27Nu3z6jtG4OhyX5ERARarRYvLy82bdpEZGQkPXr0QHv2LHzzDXzyCXTpAj/8AEOH6h4rWVK3bn33bsOngOuhb9++KJVKFuhbGG7RImjZMvVJu1Kp20t+7VrIBJ8XRpU3r+FtaDTGaScF9+7dIz4+Xo7sS0Zx7s3uEVWrVjVxJMZTMpeFwaPyCnizNaskZQ8y2ZeMKioqiuHDh/PVV19Rt25dU4cjJWPfvn04Oztz4MABNm3axJo1a8idO3PsKVuhQgXy5MmTPabyr1oFsbH6bU+mVuNw4QIda9akcePGqTrkl19+4a+//mL58uXpUl3Z3NwcPz8/GjdujLu7O4cPHzb6OQxhSLIfFxfHmjVrAN1ezUWLFuXX1atp8vvvKF1c4NdfdeuxQZfUvx29FUK3RrtlS93+7K9eGeNSUs3Ozo5vvvmG+fPn6zcbxtwctm/Xrb1XKHSJfHLePp43L/zxB6SyfkRWom7SBK2hNUoUCkjHLWbltnuSMV29ehWA//3vfyaOxHhszZWUy2NhcHJTKZ9M9qXsQyb7klH99NNPhIaGyq32MqHXr18zYMAAmjVrhrOzM1evXqV9+/amDisJlUpFnTp1sn6RPq0W5s0zrAlgRpkyqRrVDwoKYvjw4fTv3z9dO9ksLS3ZsmULdevW5YsvvshU/0+GJPsLFizg0aNH2NnZceXKFRCCFn5+DHj7gg+tbX+b+B8+DHXrQlSUXjHoa/DgwYSGhrJ27Vr9GjAz071X79+HkSMJT65oX82auiUMISG6To1sJCgoiKFDh1J3wwaUhszOMDPTdfoUL2602P4tICAAGxsbHB0d0+0c0n/HrVu3UCgU5MuXz9ShGFVVB2v0/UnWatSUzW1BTnM5K1XKPmSyLxnN/fv3mTFjBl5eXhRPxxseKe0uXLhAtWrVWLZsGXPnzmX37t0ULlzY1GEly83NjZMnT5KQkIW3vjl/HoKC9BvVf8MMcDxw4KOvE0LQu3dvHBwcmDJlit7nSy0rKyt+++03XFxcaNmyJadPn073c6aGpaUl8W9H39MgLCyMiRMn8u2331KlShXdaJevL6xbl7bpoBoNXLsGnTunOQZDlC5dmrZt2zJr1iy0hiSrRYqgGTeOIioVnwIh27bBxYvw6BGcPKkbzbewMFrcpqTVatm3bx+tW7emVKlSLF26lNq9exNTvbpuqYI+1Gpd0cN09H/2zjusyauNw3cSNjjALYiCSl2g0jpR6kSrta5P655Va1UUte6B4t6rarXOuvdoLYp7YsWJiqjgAhdh75G83x8RWqpgSMJ+7+viEsk5530SSN7zO8/y9/fHzs4uR7ukiBRcgoKCsiUKLLexMtXD3iLrnnlBqSQpLpbmlqbZYJWISO4h3jFEdMbEiRMpXrw4kydPzm1TRD6gUCiYO3cuDRs2xMTEhFu3bjFq1Kg8vVl0dnYmNjaW27dv57YpmvP6tW7WCQn5bC74b7/9xtmzZ9m4cSNFihTRzXU/g4mJCcePH6dOnTq0bdsWHx+fHLluZmjq2Z8zZw7JycnMmjULBwcHnt65A5oemigU8McfkMN/u+PGjcPf358TJ05otc6DBw+ISUwkUE+PMt99B3XrqlpCFhCioqJYvXo11atXp02bNrx48YINGzYQHBzMkiVLMF69WpWykNXCgzIZuLiovrIRse2eiC4JCQnBwsIit83QORKJhLbWZlQtpv7hpAQgJZkTHq4UNxS9+iIFi7y74xfJV1y+fJm9e/cyf/58zMzMctscESAwMBBnZ2dmzJjBhAkTuHbtWr6ouuvo6IixsXGeChHPMgkJulnnQ0u+jAgKCmLcuHEMHjyY1q1b6+aaamJqasqJEyeoXr06Li4uaZWdcwtNxH5AQABr1qxh0qRJlClTBnt7exoFBiLExWluiJ4eaFowT0MaN25Mw4YNWbJkiVbreHt7I5FIqFy5coEqrvrw4UNGjBiBpaUlbm5u1KlTh4sXL3Lnzh1++OGHf7ybDRuq0hWkUvU9/DKZqg3hgQOaRwWoidh2T0SXxMTEUK5cudw2I1uQSSR0tilCg9JGyDI5u0t9qLSxjNgzO5EH+OWIfSIiOYko9kW0RqlUMmbMGL766iv69euX2+YUegRBYPPmzdSuXZs3b95w8eJF5s6di0E+CcE1MDCgUaNG+btIX/HiulnH0DDD0GlBEBg2bBhFihTRWuRpSpEiRfjrr7+wtbWldevWudqbXhOxP2nSJEqXLo2bmxsADg4OjATtWsqlpKgK+kVGar6GBowfP54LFy5w8+ZNjde4fv06ZmZmBaIAXEpKCkeOHKFly5bUrFmTgwcPMnbsWF68eMHevXtp2rTpp+thdO0Knp6QWrQ0AwGf8mGu8O23cPEiZHNUTVhYGO/fvy8QvxuR3CcxMZGUlBRsbW1z25RsQyqR0NzSjJG1LGhhaUoxg/TvZZkEaloY0t+uGAOrmaOIDs8lS0VEshdR7Itozfbt27l58yYrVqzI0+HhhYGQkBC6dOnC4MGD6d69O3fv3sXJySm3zcoyzs7OXLp0Sbsc5NykTp2MK5uri1QKX32V4cM7d+7kxIkTrFu3juK6OlzQgOLFi3Pq1CksLS1p2bIljx49yhU7sir2r169yoEDB5g3b16aZ7dGlSrUAiRa1FoAVJEdDx9qt0YW6dSpE7a2tixdulTjNVI9+1WrVtWhZTmLXC5nwYIFVK5cmc6dOxMfH8/OnTt5+fIls2bNUq9WSatWEBwM27apUhn+i5ERYV264ADs6NoVTLM/xze1Er/o2RfRBalpcvkh2k9bjPWk1C9tzI81zLk48wfurZ6May0LxtUuwbcVi1DOVB9QHaCrUxBXRCS/ISozEa2Ijo5m8uTJfP/99/lSVBYk/vzzT+zt7bl8+TKHDx9m06ZNOZbDrWuaNm1KeHg4D3NYMOmMsmWhc2dVSLemKJVQuTK4u6sKxm3aBHI5AG/fvsXV1ZVevXrx3Xff6cZmLbCwsOD06dOUKlWKFi1a8PTp0xy3IStiXxAExo0bR506dejTp0/az401KPCXIRERultLDWQyGWPGjGHfvn28fPkyy/MjIyPx8/MjOjoaOzu7bLAwe/Hx8WHAgAFYWVnh7u5Oy5Yt8fHx4erVq/Tq1SvrkU3GxtCvn6rY5pMnKu/9yZNw/Tq8f0/pAweo3KkT7u7uOVJMNFXs5+eDGJG8w40bNwBV2lxhQSKR8C74FUUNZJjoS5H+R9iLYl+koCKKfRGtmD9/PhERESxatCi3TSm0xMbGMnz4cL799lu++uorfH196dSpU26bpRUNGzZET08vf4fyjxiRecs2ddixA+bNUwn+H36A8uWhXz9W9uqFnp4eK1eu1ImpuqBkyZKcOXOGYsWK0aJFC549e5aj10+txi+o4ZXfv38/3t7eLF26NH00kpGR7gwyNtbdWmoycOBAihQpotHfxY0bNxAEAUEQ8o2gTExMZOfOnTRs2JB69epx/vx5Zs+eTVBQEJs3b+bLL7/UzYWqVIGmTVUF+OrXTwvZnzVrFoGBgWzbtk0318mER48eYW1tjWkORBGIFHxSU64aNmyYy5bkLHK5PMNWg6LYFymoiGJfRGOePXvGsmXL+Pnnn7G2ts5tcwol169fp27dumzfvp3169dz/PhxypYtm9tmaY2JiQlfffVV/i7S9/XX0LQpgjbh/EolJCf/c2iQnIxy507mnzvHxUaNKJnHKimXKVOGM2fOYGhoSIsWLTTyMGtKquf2c+33EhMTmTRpEt9++y0tWrRI/6CZGcn6+roxKBcKX5mZmTF8+HA2btxIZBZrBnh7e6cJybwu9oOCgpg+fTrW1tb06dOHIkWKcOTIEQICApgwYUKO9Q13cHCge/fueHh4aNQJIiv4+/uL+foiOuPJkydIJJIce6/kFeRyOSVKlPjkY6LYFymoiGJfRGMmTJhAiRIlmDBhQm6bUuhITk7G3d0dJycnzM3NuX37NsOGDStQNypnZ2cuXryolqc2TyKRELtzJ6/09dHSv58O6Yc6Bl8cOwY//QR57PUpX748Z8+eRSKR0KJFC4KDg3PkuoaGqr7KnxNdv/zyCy9fvvx0NJJEQnCLFmgTlK0E4uzsIJdC4UeOHElCQgK//fZbluZ5e3tjZWWFsbEx5cuXzybrNEcQBC5cuEC3bt2oVKkSK1asoHv37jx8+BAvLy86duyYKx0E3N3dCQoKyvLrnVXEtnsiuiQoKOifLhSFhPj4eOLi4kTPvkihQxT7Ihpx4cIFDhw4wIIFC8RWeznM48ePadKkCXPmzGH69Olcvnw5X+bYfg5nZ2dev35NYGBgbpuiEUlJSXQdMoSmMhkJtWqpfpiJGMmqZJcA/Por/PKLpiZmGxUqVODs2bMkJSXRsmVL3r59m+3XVEfsh4aG4uHhwZAhQzIsTKU/ahTa+PYlwMjHj3Fp0wYvL68cP6wqX748vXr1YsWKFWrnkguCkFaJv2rVqnmq0GpsbCwbNmygdu3aNGvWjPv377Ny5UqCg4NZvXp1rhcYq169Or1792bu3LnEx8dnyzWSk5MJCAgQPfsiOiMkJASLPBYZlt2EhoYCiGJfpNCRd+7oIvkGhULBmDFjqF+/Pr17985tcwoNgiCwfv166tatS3h4OFeuXGHmzJno6yrsOI/h5OSERCLJl6H8SqWSAQMGcO7cObYcO4bZ7dtw+LAqtD8VmQzhXxsLjbcYHh6qUP88RqVKlTh79izR0dG0atWKkJCQbL2eOmJ/zpw5KBQKZs2aleGYct98w3WpFKUmglcqhWLF+GbrVuRyOS4uLjg6OrJr1y5StK3fkAXGjRtHUFAQ+/fvV2t8YGAgcrmclJSUPBPC//TpU8aOHYulpSXDhw/H1tYWLy8vHj58yIgRIyhatGhum5jGjBkzeP/+PevXr8+W9Z89e0ZycrLo2RfRGTExMXkygic7kX8ocJtZ6oIo9kUKIqLYF8kyW7du5c6dO2KrvRzk7du3dOjQgeHDh9OvXz9u375NgwYNctusbKV48eI4ODjkuyJ9giAwevRo9uzZw65du1R54Xp60KkTnDkD/v6qyvoLF7K3cWP8pFLt8vrfv4djx3T3BHRIlSpVOHv2LHK5nNatWxMWFpZt10oV+xnl7D99+pRffvmFSZMmUbp06QzXkUqlLK1Thzg9vSy1T1QCgkSCZDOXYI4AACAASURBVN8+uvXvz82bNzl9+jRlypShd+/eVKlShZUrVxITE5Ol56UJ9vb2uLi4sHTpUrUiC7y9vQHVZjg3xb5SqeSvv/6iffv22NnZsW3bNn788UcCAgI4cuQIrVq1ypOb8SpVqjBw4EDmz5+fLb/f1HaWotgX0QWJiYmkpKRgY2OT26bkKJ8T+/k2ZVBE5DOISk0kS0RFRTFlyhR69epFo0aNctucQsGRI0ewt7fHx8eHP/74g3Xr1hWaisypefv5CQ8PD9asWcP69evp2rXrxwPs7GDQIAI6dcLd25vqSiUShULzC8pksGaN5vOzmS+++IIzZ84QHByMi4sLEdnUku5znv1JkyZRpkwZxowZ89m1LOrVY7C1NRQrppbgF6RSFMDWNm1UFdtReYhatmyJp6cnd+7coWnTpowfPx5ra2umTp2a7akN48aN49atW5w/f/6zY69fv06VKlV4/fp1rqQERUREsHz5cuzs7GjXrh1v375l8+bNBAUFsWDBAipVqpTjNmWVadOmERERwZpseC/6+/tjZmZW6DyxItnD7du3AahRo0YuW5KzpIp9sUCfSGFDFPsiWWLu3LlER0ezYMGC3DalwBMdHc3gwYPp3LkzTk5O+Pr60r59+9w2K0dp2rQpAQEBvH79OrdNUYt169Yxc+ZM5syZw9ChQzMd6+7uTlNdhCIrFPBh85ZXqVmzJqdPnyYwMJC2bdsSFRWl82tkJvavXLnCwYMHmTdvnlpFqRwcHDj0/DlJ166pIjJksk+Lfj09ACROThwfN45BJ06wadOmj4bVrl2b33//nYCAAAYMGMCqVauoVKkSQ4cOTeufrmtat26Nvb09S5cu/exYb29vqlevnuNt93x9fRk2bBiWlpZMnDiRBg0acPXqVXx8fBgwYADGudC+UFMqVqzI0KFDWbRoUZY7IXyOR48e8cUXX4hCREQn3LhxAwBHR8dctiRnCQ0NRV9fnyIfWmf+F1HsixRYBBERNXn69KlgYGAguLu757YpBZ7Lly8LNjY2gpmZmbBp0yZBqVTmtkm5wps3bwRA2LNnT26b8ln27t0rSCQSYfTo0Z/9ffn6+goSiUQ427u3IKjq6Wv3JZPl0LPUDh8fH6FYsWJCkyZNhOjoaJ2ufe/ePQEQvL290/1cqVQKDRo0EOrWrSsoFAq11rp06ZIACPfu3VP9IDhYEGbNEoQaNQShVClBsLAQhMqVBWHECEG4fz9t3o8//ijo6+sLly5dynT9sLAwYf78+ULZsmUFiUQidOrUSbhy5UrWnrAabN26VQCEhw8fZjgmPj5e0NfXF4YMGSIAwtu3b3Vux79JSkoS9u/fL3z99dcCIJQvX16YPXu28ObNm2y9bk4QHBwsGBkZ6fwe6eTkJPTq1Uuna4oUXoYOHSoAglwuz21TchR3d3ehXLlyGT7u6uoq1KxZMwctEhHJGUTPvoja/Pzzz5QuXZqff/45t00psCQlJTF16lScnZ0pV64cd+/eZdCgQYX2tLls2bJUrVo1zxfp8/Lyok+fPvTu3Ztly5Z99vc1Y8YMKlWqRNM2bXRjwAevdl7nyy+/5OTJk9y9e5cOHToQFxens7Uz8uzv27eP69evs3TpUrVrjNT60D3h3r17qh+ULw8zZsCDB6oaCaGh8PSpKn2iZs20eatWrcLJyYkuXbrw4sWLDNc3Nzdn0qRJPH/+nI0bN/Lo0SOcnJxwcnLiyJEjKD+0V9SWnj17Uq5cOZYvX57hmNu3b5OcnIyRkRFFihTJtJ6BNrx79445c+ZgY2NDt27dEASBffv28fz5c6ZPn07ZsmWz5bo5Sfny5Rk+fDjLli3TaX0Kse2eiC558uQJUqk0w3D2gopcLs+0OJ8gevZFCiii2BdRi3PnznH48GEWLlxY6Hqz5hR+fn40atSIRYsW4eHhwcWLF7G1tc1ts3KdvJ63//fff9O5c2dat27N5s2bPysob9y4weHDh3F3d0dPV7nI+SiXt0GDBpw4cYIbN27QqVMnEhIStFpPEAReRifzVGnGN2NmEiiz4Mb7eKKSFCQmJjJp0iQ6dOhA8+bN1V6zePHiWFtb/yP21URfX5/9+/djZmZGx44diY2NzXS8oaEhgwcP5sGDBxw7dgypVErnzp2pUaMGGzdu1Pq1MTAwYNSoUWzfvp137959coy3tzdGRkbExMRgZ2en082u8KGlX58+fahQoQLz5s2jXbt23LlzhwsXLtCtW7cC101k0qRJpKSksGTJEp2sJ5fLCQ0NFdvuieiMoKCgfJUioytEsS9SWBHFvshnSW2117BhQ3r27Jnb5hQ4lEolq1evxtHRkfj4eK5fv86UKVOQaVOhvQDh7OyMr69vtlZy1xQ/Pz/atWtH7dq12b9/v1rCZdq0aWm9uWncGCpU0M4IqRQGDdJujRymSZMm/PHHH1y+fJmuXbtm2i4vI5IUAjdD4tnoF8Gup5H4xuvTuOdQ3hqX5mxwLGsfhLP8wgMMytmwcOGiLK/v4OCAr69vlueVLFmSY8eOERAQQP/+/dXy0kulUjp06MClS5e4du0aNWvWZNiwYVSqVIl58+YRHh6eZTtSGTZsGHp6eqxdu/aTj1+/fp0vv/ySgIAAneXrJyQksG3bNurXr0/Dhg25du0aCxYsIDg4mA0bNlC7dm2dXCcvUrp0aVxdXVm1apVO2k2m1nQQPfsiuiIkJAQLC4vcNiPH+ZzYB7H1nkjBRBT7Ip9l06ZN3Lt3j5UrV4ofhDomODiYb775BldXV4YMGcLNmzcLXdGcz9G0aVNAVWQtL/Hq1StcXFwoW7Ysx48fVyvi5cKFC5w6dQoPDw/VYY5MBiNHImjzvpJKYfBgzefnEs2aNePo0aOcOXOG77//nuTkZLXnRiQq2PwoHK+gWMISVZ0MBCTo6RuAREpqAyWFeXkG/rKP56aWKLPYVsnBwSHLnv1UatWqxY4dOzh06BAeHh5ZmtuwYUMOHjzIo0eP6NSpE7Nnz6ZChQq4ubllmhqQERYWFgwaNIi1a9d+Mm3C29ubhg0b8uTJE63F/suXL5kyZQoVKlRgwIABlCpVij///JMnT54wduxYzM3NtVo/vzB+/HikUikLFy7Ueq1Hjx4hkUhytSWiSMEiJiamUHZ2CA0NzTR1QRBb74kUUESxL5IpkZGRTJs2jb59+1K/fv3cNqdAsX//fuzt7fH19cXT05NVq1YVytC6z1GpUiWsrKzyVCi/XC7HxcUFmUzGyZMn1fKSCILA1KlTcXR0pEuXLoDq/TXm3j0SBAGNsrRlMujRA7Ipzzq7ad26NYcOHeLEiRP06tWLlJSUz86JTFKw/XEEkUmff8VkH6rl3w1N5Pjz6Cxt5uzt7QkODtY4oqRjx47MmTMHd3d3Dh48mOX5dnZ2rF+/nhcvXuDm5sa2bduoXLkyvXv35s6dO1laa8yYMYSFhbF19z6uvo3j8LModj2JZMfD99Tp+RPVG37NmzdvNGq7JwgCZ8+epUuXLtjY2LB27Vr69OnD48ePOXHiBO3atVO7VkJBoUSJEowdO5ZffvlF604i/v7+VKxYUbw3iOiEhIQEUlJSsLGxyW1TchwxjF+ksFK47sAiWcbDw4PY2Fjmz5+f26YUGCIjI+nbty/du3enVatW+Pr60kZXhdoKIBKJhKZNm+YZsR8TE0P79u0JDQ3Fy8sLS0tLteZ5enpy5coV5s6di0Qi4dSpU9SqVYvNx45x+ccfs77J0NMDW1tYtUqDZ5F3aNeuHfv37+fIkSP0798fhUKR4VilILDvaRTxKQJZ9cH4RSTh/S5e7fEODg4AGoXypzJ58mR69OhBv379sizQUylTpgweHh68evWK5cuXc/XqVerWrYuLiwteXl5qHWAYl63AuO0niKj9DZfexOEfkcTLmGSCEiTU69KXkMqNcN17HrMvHNU+EImOjmbt2rXUrFmTli1b8vjxY9auXUtQUBDLly8v9J5oNzc3jI2Ntb53isX5RHTJrVu3AKhRo0YuW5LziGJfpLAiin2RDHny5AmrVq1i0qRJagsakcy5cOECDg4OHDt2jO3bt7N3795CVxFXE5ydnbl16xYxMTG5akdSUhJdu3bFz88PT09PtQWNUqlk6tSpNGnShEaNGjF06FDatGlDtWrVuH//Pq3XrUOybVvG/dz/i0wGlSvDmTNQAEKjO3bsyO7du9m7dy8//PBDhnnuTyOTCE1UZFnop+L9Pp4UpXqz7ezsMDAw0DiUH1QHVZs2baJ69ep07NiR9+/fa7yWqakpo0aN4smTJ+zevZvQ0FBcXFxwdHRk165dGaZBPAhLYLt/JBbVHZHKZOlfO4kEmZ6qzkQZ22o80ivN0efRmb5G/v7+jB49GisrK1xdXalRowbnzp3D19eXYcOGYWZmpvFzLEgUK1aM8ePHs2HDBl6+fKnxOv7+/mJxPhGd4ePjA1Do0gXj4uKIj48Xxb5IoUQU+yIZMn78eMqVK8f48eNz25R8T2JiIhMmTKB58+bY2Nhw7949+vbtK95Y1MTZ2ZmUlBS8vb1zzQaFQkG/fv04f/48R48ezdJm6dChQ9y+fZvOnTvj4ODA7t27Wb9+PadOncLa2lo1qG9fOHcOPtQo4EMIehoSierL1BRGjABvb+2L++Uh/ve//7F9+3a2b9/Ojz/++EnBfzMkAW3eMYkKgUcR6hUD1NPTo0aNGlqJfQATExOOHDlCUlISXbp0ISkpSav19PT06NGjBz4+Ppw+fZoyZcrQu3dvqlSpwooVK9IdiD0KT+T4ixiVwP/MZ430wyGTf0QSx1+kT3lQKBQcP3487YBq9+7djBo1imfPnnHgwAGaNWsmfpZ9AldXV4oWLcqcOXM0mp+UlERAQIDo2RfRGffv3wdUtUEKE3K5HEAU+yKFElHsi3yS06dPc+zYMRYtWiTmCmqJr68v9evXZ+XKlSxatIgzZ85QsWLF3DYrX1G9enVKlCjBpUuXcuX6giDg6urK/v372b17d5bauCkUCqZMmYKVlRXjxo2jatWqaV7QjzYWTZuqBL+fn0rQ164N1tZQtarqsfXr4e1bWLkSihfX8bPMfXr16sXmzZv57bffcHV1TSc4IxIVvIhJ1tirDyBBdWCgLtoU6fs3VlZWHD58mBs3bvDTTz/ppBCURCKhZcuWeHp6cvfuXb7++mt+/vlnrK2tmTp1Kk+C3nLsRXSW1xVQCf4bIQmEhoayePFiqlSpwnfffUdERATbt2/n1atXzJkzhwoF6LApOzAzM2PSpEls2bKFgICALM8PDAxEoVCInn0RnfHkyROkUmmhiygMDQ0F+GyBPlHsixRE9D4/RKSwkZKSgpubG05OTnTv3j23zcm3KJVKVqxYweTJk7Gzs+PGjRtpecAiWSO38/ZnzZrF2rVr2bBhQ1pxPXWZMmUKT548wdjYmHXr1n1a5P+XatVgxQotLM6/9O/fn6SkJIYOHYqBgQFLly5FIpEQkvD54n2fQwBC4tVfx8HBgQMHDqBUKrUuMtewYUM2btxI//79cXBwwNXVVav1/o2DgwPbt29n7ty5rFixglWrVnE3zgCnPsORaGS3wEn/YOa3rY0iJYUePXqwd+9esUirBgwfPpwlS5Ywe/Zstm3blqW5jx49AsS2eyK6IygoqFA6cETPvkhhRhT7Ih+xceNG7t+/z40bN8QPPg159eoV/fv359y5c4wdO5a5c+diZGSU22bla5ydnZkyZQqJiYkYGhrm2HXXrFnDrFmzmDdvHkOGDFF7XnR0NOPGjWPjxo2UKlWK69evF8oKyJowZMgQkpKSGDlyJIaGhsybN49EhW7aIqUI6m/q7O3tiYuLIzAwkCpVqmh97X79+uHr64ubmxvVq1endevWWq/5bypUqMDSpUuZPHUavz2NU7Vl1AgJ+mbFmb7yV37o2IZSpUrp1M7ChImJCVOnTmX06NFMnjw5S8Ld39+fokWLUrZs2Wy0UKQwIZfL1eoeU9BQR+wD4p5XpEAihvGLpCM8PJzp06czYMAAvvrqq9w2J1eJTVbyNi6FVzHJvItLIVGhXnO0Xbt2YW9vz9OnTzlz5gxLly4Vhb4OaNq0KQkJCdy8eTPHrrlnzx5cXV1xc3Nj0qRJas87e/YsDg4OaZ68M2fOiEI/i4wYMYJly5axYMECZs2ahZ70402YQWwMZR/cpuL1C1jd9qZY8Of70Msk6m/oUiNxdBHKn8qCBQto06YN3bt35/Hjxzpb99/IJSagr92BmASwa/GdKPR1wJAhQ7C0tGTWrFlZmvfo0SO++OILUYCI6IyYmBjKly+f22bkOHK5HENDQ0xNTTMco4v0KhGRvIjo2RdJx+zZs0lISGDevHm5bUquIAgCgVHJ3JTHExiVvrq1TAI1zQ1xLGVMWZOP3zrh4eH89NNP7Nmzh969e7NmzRqKF8C86tyiTp06mJmZcfHiRRo3bpzt1zt16hT9+vWjT58+LFmyRK0Nd0xMDBMnTmTt2rU4OzsTGxtL27Ztsbe3z3Z7CyJubm4kJSUxadIkDEpZIm3cGYDSj+9Td98Wav25D/3E9Dn4r2s54tNjCP6tOqAw+Fjwmumrf8ZdpkwZSpUqha+vb5bTNzJCJpOxe/duGjRowHfffcf169cpVqyYTtZOJSJJgQS0qm8gAGGJGbdBFFEfQ0NDpk+fztChQ5kyZYranwdi2z0RXZKQkEBKSgq2tra5bUqOk9p2L7P7uBjGL1JQET37Imn4+/uzZs0apkyZQrly5XLbnBwnJD6FXx+Gsz8wimdRH7exUghwPyyRrf4R7H4SSXzKP57+06dPY29vj6enJ3v27GHHjh2i0Ncxenp6NG7cOEfy9q9fv07nzp1xcXFh06ZNauVrnz9/HgcHB7Zu3crq1atp164d4eHhuLu7Z7u9BZmJEycye/Zspo4cin7Ia7q69WFQj+Y4HN35kdAHKPvwDt9NG86Itg5UuHk13WMSoHYJ9aNsJBKJzor0/ZtixYpx/Phx3r17R48ePVAodCuqkxTC54rvq72OiG4YMGAAtra2zJw5U63xgiCIbfdEdMqtW7cAqFGjRi5bkvOkiv3MEMW+SEFFFPuFjdu3YdUqmD0b5s2D336DD72fx40bh5WVFWPHjs1lI3OeN7HJbH8cQWSSSsBntMVNlfcvY1Tj5dFxjBkzhtatW1OtWjV8fX35/vvvc8TmwoizszNXrlzRuTj6Nw8fPqRdu3bUrVuXffv2oa+vn+n42NhYRo0aRfPmzalQoQL37t2jX79+LFq0iB9++KFQelF0zfTp05k9bhwdujen8iUvAGQZ/A1IP7TsM4qKoMePXaly4WS6x7Mi9kGVt69rsQ9QtWpV9u3bx6lTp7KUIqIOBjIJuohINZSJG19doa+vz4wZMzh8+LBaqUghISGEh4eLnn0RneHj4wOQpbaxBYXQ0NCMK/G/fQtbt+Jy7x593ryBTZvg+fMctU9EJDsRxX5hIDERduyA+vXB0RHc3GDOHJg5E4YMAUtLXrdoQdiff7J48eJCl18ekahgb0AUKUr1w16FD/MWet3mt81bWLFiBadOncLKyio7TS30ODs7ExUVlS3iC+Dly5e0adMGS0tLjh8/jomJSabjL1y4gIODA5s2bWLlypWcO3eOypUrs2zZMuLi4pg2bVq22FnoUCiYdusWVaLC08T855AqlUiVCjpNGESZh3eRADXMDTDNQhg/qPL2AwICiI2N1cDwzGndujXLli1jyZIlWa7UnhkljGRahfCDKgqipJFMF+aIfKB379588cUXzJgx47Nj/f39AUTPvojO8PX1BVSdQQobH3n2BQEuXIDu3cHKCgYO5H83bzL85Uv44QewtYX27eGvv0DNe46ISF5FFPsFnTdvoEED6NsXUr0JSiUkJ0PKhxZUKSmUPneOq0DXS5cgG72meZGrb+NIVAhZ3hwLSLCoZMe+y7cZPXq01q25RD5PvXr1MDAw4NKlSzpfOyQkBBcXF/T09PD09MTc3DzDsbGxsYwePZpmzZpRvnx57t27h6urK1KpFLlczrJly/jpp5+wtLTUuZ2FkhMnkJw7hzSL7mqJICBVKGi22gNzQxmtrcyyfGkHBwcEQeDBgwdZnqsOrq6uDB48mKFDh+Lt7a2TNSsXNcBETzuvvADULVm4Dn6zGz09Pdzd3Tlx4gTXrl3LdOyjR4+QSqU66QIhIgLw9OlTpFJpoa3Gnyb2k5Kgf39o1gwOH07b88oEgbTjTUGAkyehXTuV6I+JyQ2zRUR0gqhOCjLv3kHDhnD/vur/mZxOppabk6xeDYMHo5MY0HxAQoqSB+GJGnvBJBIJr/XNxSquOYSRkRENGjTQed5+dHR0Wo69l5dXptWKL126RO3atdm4cSPLly/nwoUL6TbkCxcuRBAEnYdmF2pWr0aQaeZllioV2Fy/QC/Je4z0sn7Lq1GjBlKpNNuiSSQSCb/88gv16tWjU6dOBAUFab2mVCLBsaQx2sh9c0Mp1maZp7CIZJ3u3btTq1atz3r3/f39sbGxKXSRdiLZR1BQ0Gej1QoqaWI/JQW6dIGdO1UPpDq9PkWq48vLC1q0gLi47DdURCQbEMV+QUWphA4dIDg4a556QYBt22DJkuyzLQ/hG5aItjWo5AkKXsdlcsMQ0SlNmzbl4sWLOjtgSUxMpHPnzjx+/BhPT88MPWlxcar6DF9//TVly5bl7t27jBkzJl1Ex+vXr1mzZg1ubm5iyzJdERAAXl5ItIg4EmQyzH7boNFcY2Njqlatmm1iH1TV2g8dOoSBgQGdOnUiTgebyjoljVCdbWj2PmlYxkQsVpUNSKVSZs+ezenTp7lw4UKG41Lb7omI6Aq5XF4ovfqCIPwj9idMgBMnshaar1CoImMHDsw+I0VEshFR7BdUzpyBGzc0D8mfNw8SPq50XdB4Fp2k9RoS+GT1fpHswdnZmZCQEJ30KFcoFPTt25fLly9z9OhR6tat+8lxly9fpnbt2vz6668sXbqUCxcuULVq1Y/GzZ07F2NjY8aNG6e1bSIqkk+e1D7/XKFQ5V5qiIODQ1q+a3ZRunRpjh07hp+fH4MHD9b6MMtMX4qzWSJKhQKlMmv3AceShjhYfNy2UEQ3dOrUCUdHR6ZPn57h71lsuyeia2JiYjKNWiuoxMXFkZiYSHkDA1izRrPIVaUS9u2DD7U0RETyE6LYL6isWQN6H/eCV5uICDhwQHf25FFik7UvvCKRQIJCLOCSUzRu3BipVKp1KL8gCIwcOZKDBw+yZ88emjVr9tGYuLg4xo4di7OzM6VLl+bu3bu4ubkh+0RI+bNnz9iwYQMTJ07Ued/0wkpMTAxbly1DJ3EzYWEaT02tyJ/d6Tp16tRh+/bt7Nmzh/nz52u11vv37+nTrgUnPEajJwFFZuGqgPDB02UtRNHaykz06mcjEomE2bNnc+nSJby8vD56PDExkWfPnomefRGNEQSBwKgkDgREsvZ+GMvvyhl//CatJq/ANzSBFGXhST2Uy+UA2GvjAAPVnnr9eh1ZJSKSc4hivyASFATHj2eei/Q5pFLVgUEBRycbWgGtcmNFskaRIkWoW7eu1mJ/5syZrF+/ng0bNtCpU6ePHr969Sp16tRh3bp1LF68mIsXL2JnZ5fherNmzaJkyZKMHDlSK7tEVISFhdGqVSteBAWhp4Pil5ExMaxZswZPT0+ePn1KcrL60TgODg6EhYXx+vVrre34HF27dmXmzJlMnTqVo0eParRGeHg4Li4uREdHs3XpXM7PdcX/1CFSGxEoUpIRlAoEhUJ1CCAI2BQ14MKyySwY0ClLr42IZrRr146GDRt+0rv/9OlTlEql6NkXyTKCIHBHnsC6B+HsC4giICqZqGQliUooVqY8JlY2/PkyhtX3w7jwOhZFIRD9qWK/0h9/aFdZPyVF1a46Pl5HlomI5AxauH5F8iy+vtoX2FMq4c4d3diThzHVsmI1qDJiNSn8JaI5zs7OHDp0SOP5q1atwsPDgwULFjB48OB0j8XHxzNt2jSWL19OgwYNOH78+Gc9bH5+fvz++++sXLkSU1NTje0SUfH69WtcXFx49+4deyZNQjJrllbrCcDr5GTGjh2bJmRlMhkVK1akSpUqVKlShcqVK6d9b2trm64wmoODA6BqXZUTHRZmzJjB/fv36dOnD1evXsXe3l7tuTExMbRv355Xr15x8eJF7t27x1+H9nHihwG0rFUCv4hE5qxcx5cNGhLy7i1+t30oHidn0qZfqTZuBPXqbWXu3LnM0vI1F8kciUSCh4cHrVu35rCnFyVrO/E4Mon4FCUJCeaMOXCZqHJViUhUUNxQbIEo8nkEQeBUUAy35Yn//Ow/YyQS1V4lUSHg/S6eoJhkulYuipGs4O5h5HI55oDBu3faLxYTo6ojU6uW9muJiOQQEkEsI17w2L0bevXSzVpJSaBfcCsy35Un8Ncr7VuqDKpWnNLG4tlZTnHkyBE6d+7MixcvsLa2ztLcXbt20bt3b8aNG8fixYvTRXdcu3aNAQMG8OLFC+bMmZNhyP5/6datGzdu3MDf3x9DQzHXWRsCAwNp3bo1SUlJeHl5Uc3cXNUHWYtIJQVw0smJNhcuEBQUxNOnT9O+AgIC0r6P/5fHxsrKKk3829jYMGfOHIYOHYqHhwdFihTRwTPNnNjYWJycnIiMjOTGjRvpe0RnQEJCAt9++y1///03Z8+epVatWtSoUYNq1apx4sQJQHWYZWJiwrZt21i+fDlSqZQXL17w/v17pFIp7u7uzJ07lxs3blCnTp3sfpqFmtD4FDz2naRMrXpIpdKPhRkqsWZbRJ9mlqbiPUYkU84Fx3L9fda8zhKggpk+31cpiqyApe7Ex8cjl8v5/fff2Th1Ks90tfClS9Ckia5WExHJdkSxXxA5cgQ6d9Z+HalUtcEuYDeAf5OkEFh9PxRNU/clQDkTPfp9gvGCYwAAIABJREFUUVyndolkjlwup1SpUuzYsYPevXurPc/T05MOHTrQu3dvtmzZkib04+PjmTFjBsuWLaNevXps2bKF6tWrq7XmrVu3+PLLL9m8eTMDxWq9WnH//n1cXFwwMzPDy8uLihUrqh7o2VNVQ0RDwa+QSLAzNsYnKAhzc/NPjhEEgbdv337yEODp06dERkamjS1duvRH0QCp/7ewsNBZvvuLFy+oV68eNWrUwMvLC/1MDl6Tk5Pp1q0bJ0+e5OTJkzg7O7NgwQKmT5+Or69vWkh4YGAglStX5tSpU3Tu3Jm+ffuyfv167t27h729PUlJSdSrVw+JRMKNGzcyvaaI5gTFJLMvIIokhfKz91gJoCeFrjZFqVTUIGcMFMlXvIhOYvfTKI3nNytvQsMyebMtnyAIxMTEEBoailwuT/dvZj/79+FtWeCNrgzy8YEvv9TVaiIi2Y54TFwQsbLSzTplyxZooQ9gIJNQu4QRN0MSNKr4LQBflTLWtVkin6FkyZLUqFGDixcvqi32r127RteuXWnbti2//fZbmiDz9vZm4MCBPHv2jPnz5zN27Fj0slDcctq0aXzxxRf07dtXo+ciouL69et88803VKxYkZMnT1K6dOl/HhwxAvbs0WxhPT2S27Uj+ORJ1q1bx5QpUz45TCKRUK5cOcqVK0fTpk3TPSYIAgMHDuTKlSu4u7unOwg4efIk79+/TxtbvHjxDA8CypYtm6WDgIoVK3Lo0CFatGiBq6sr69at++Q4pVLJwIEDOXHiBEePHsXZ2Zk3b94wd+5cRowYkS73+80b1ZZXX1+f2NhYWrRowebNmzl37hz29vYYGBiwZcsW6tevz/z58z/bD14k64TEp7A3IJIUJWrdYwUgRQn7A6PoU7UY5UzFAxiR9NwMSUAKaJqRfjMkgfqljZFm855PqVQSGRmptmBP/fdTdUQMDQ0pWbIkJUuWpESJEpQoUQI7O7u071N/fvDgQbz++AMhNBSJNrWsUilXTvs1RERyEFHsF0S+/BKqVoWnTzXP3ZfJYNAg3dqVR2lUxoRH4YlEJaYgVSNkOxUJULGIPtXMRU9LbtC0adNM+1T/mwcPHtC+fXscHR3Zt28fenp6JCQkMHPmTJYsWcJXX33FrVu3qFGjRpZsuHz5Mn/99Rd79+7N0gGBSHpOnz5Np06dqFu3LsePH6d48f9Eyjg5weDBsHlz1j7TZDIoXhyjVasYMH8+K1euxM3NDWPjrB3QSSQS6tevz65du+jWrRsGBunf81FRUWkHAP8+CLhy5QpBQUFp40xMTD46CEj93srK6pMpI02aNGHdunX88MMPODg4MHz48HSPC4LAiBEj2L17N3v27OGbb74BVIdQhoaGzJw5M9341CKDMTGq9CV7e3saNWrEuXPncHV1BcDR0ZFJkyYxZ84cOnXqlFazQER7BEHgyLNoUpQf51NnOg9QCnDoWTTDa5pnuygTyT9EJyl4EpmkVYvS6GQlgVHJVCmm/n5GoVAQFhamtmAPDQ0lLCwMxScq4puZmaUT6eXKlcPe3v4j4f5vYW9iYqLW4enx48exKFcOSatWsHev5ilhMhk0bQqFsH2hSP5G3J0WRCQScHVVfWmKUglDh+rOpjyMnjKZMwvHUWPABIpYlFLL0yIBypro0dmmiLjpyiWaft2Ma8/e4fk0BD0jYwykEooZyqhW3ADDfxUbevHiBW3atKFChQocP34cY2Nj/v77bwYMGEBAQABz585l/PjxWRbrgiAwZcoUateuzf/+9z9dP71Cw6FDh+jZsyctW7bkwIEDmJh8IpRUIoF161Tt844cUU/wy2RQtCicOgUVKzJ+/Hg2btzItm3b+PHHH7Nsp729PcnJyfj7+39UMK9o0aLUrVuXunXrfjQvPj6ewMDAj9ICDh48yPPnz1F+qA5tYGCAra3tJw8C+vXrx7179xg1ahTVqlWjefPmgOpvcOLEiaxfv57NmzfTrVs3QJVasmXLFtasWfNR2sLr168xMjLizZs3SKVSbG1tad68OStXrkSpVCL90Plg+vTpHDlyhIEDB+Lt7S2G8+uIlzHJhCZq1v5LQCXKAqKSqFpMrA0iosIvIknrNSSAz+sIEl69V9vrHhER8cl2pMWLF08n0m1sbKhXr16mwj07a93I5XJVzZMRI2DnTs0XUihA7LYjkg8Rc/YLKpGRYGkJcXFZ9+7LZPDdd6BFtfP8QkpKCj169OD48eMc+cuLUCsHgmJTMgyHS5X1tSwMcalghr5UFPo5TWSSgtshCdwMiSNZkICgRPqhwrAS0JOAQwkjHEsaIcSE06RJE1JSUrh8+TIWFha4u7uzaNEiHB0d2bp1KzVr1tTIjpMnT9K2bVv++OMP2rdvr8NnWHjYunUrgwcPplu3bmzfvv0jj/lHKBQwYwYsWwaJHypO//fzTU9P5blp2BB27IDKldMe6t69O7du3cLf31+twov/JiIiAnNzc3bu3EkvHRVATUpK4sWLFx8dBAQEBBAYGEhSkmoTL5PJsLa2JjIyktjYWMaOHUuDBg04c+YMq1evZsWKFYwePRpQHQA4OzsTHh7OnTt3PjrEmjRpEvv376dr164cOHCAwMBALly4QLNmzbh9+3a6onw+Pj40bNiQWbNmMXXqVJ0854xQKAX8I5O4FRKPPEFBslJAJpFQzEBKnZJG1LIwTHeIl185/CyKJxFJGodbS4BKRfT5vkoxXZolko85GxyLT0g82nbRe37nOr8O+jbt/1KpFAsLi0xF+n+/t7CwyHNRbi1atKBMmTLs3rUL6tSBBw9U95KsIJVC6dLw8mWBLlotUjARxX5B5s8/oUMH1ffq/pplMlWIko+P6oOtAKNUKhk8eDC///47hw4d4rvvvgPgfXwKt+UJ+IYmkPKvl81ET0LdkkbUKWFEEQOxFVJuEBCZxOFnUSiEzENgU49g/t6ylCv7tnDlyhXCwsIYMGAAT548wd3dnQkTJmi8KREEgfr166Ovr8+VK1d0VpCtMLFixQrc3NwYNmwYv/zyS9bEd0QEbN8Oq1er0pVSMTKCPn3gp5/gE152Hx8f6tWrx759+9K84FmhYsWK9OzZkwULFmR5blZRKBQEBQWlOwjw8/Pj1KlTJCcnp/OoWVpapkUDxMbGsmfPHtauXUvv3r0pWrRounX79etHYGAgpUqVIj4+Hk9PTxISEjA3N2f+/PmMGTMm3fjJkyezdOlSbt26Ra1saDclCAJ/v4/H+1088QohrQL9f9GTQO2SRjQrb5pvD1mTFALL74VqFW6dimstC0z08//hh4j2nHoVwx15gsYHSKkYJcXSQPk6TbgXL148LdInP1O7dm2cnZ1ZvXo1+PmpDoJjYlQRrOogkagE/vnz0KhRttoqIpIdiGK/oLNnD/TtqxL7nzvJlMnA2hq8vNJ5wwoigiAwevRo1qxZw44dOz7pqVMIAgkpAslKAUOZBCOZRBR1ucjTyCQOBkapvVEWBAGJRMIXihB8Du9g4cKF1KlTh61bt2otWg4fPkyXLl04d+4czZo102qtwoYgCMycORMPDw8mTZrEvHnzNH9fCQLEx6vEv7ExFCum8sBkQsuWLdPa2WX1ut9++y1KpTKtjV1u4Ofnh6OjIwkJCXz//fe0adOGgIAAAgICePz4Mbdv3053EFCqVKl0aQH79++nbNmyBAcH07JlS9asWQOovF9FihTh6NGj6a6XkJCAo6MjpqamXLt2TadeO6UgcPxFNH7h6oUhS4AyJjK+r1wMY738J0IiEhWsfxiuk7XEdq8iqVx4Hcv1d/Fai/2KZvr0rFrwIkYsLS0ZOnToP/VL/v4b2raFqCj19sX6+nD4sGqOiEg+RLxTFHR69FAJ+OnT4exZ1QfXvz7cBFTFpzA0hP79Yc4cUKOfc35nxowZrF69mvXr12cYkiuTSDDVF8V9XiAsQcHhZ+oLffjwdy0IPJKUYO+pC7i7uzNx4kStc48VCgXTpk2jVatWotDPIkqlkjFjxrB69WoWLFjAxIkTtVtQIgETE9WXmkycOJE2bdpw7tw5WrRokaXLOTg4sH379qxaqVMePnyYFt5vY2OTrt3jnDlz8PX15cqVKwiC8FEbwdTOAQ8ePADg+fPneHt7U6VKFRQKBV5eXpw/fx47OzvKlSuHRCLByMiILVu20LhxY5YuXar97+wDgiDg+TJGbaEPqvvVuzgF+wOi6FW1GHr5zMOv0KFvJUXbmG2RAkM5Ez2thb4EKG9a8CSBIAjI5XJKlCjxzw/r14cbN2DiRJWIl0g+Fv0ymcrz37o1zJ+vCv8XEcmnFLx3tsjHNG4MZ87A48ewfr3q+/BwXsvlRBobU33WLJX3v1jBO9H9FIsXL2bOnDksWrSIYcOG5bY5ImpwU65hPqJEgqBUMGXDbgbVraATW3bv3s3Dhw/ZsmWLTtYrLCQnJzNo0CB27tzJhg0bGDJkSK7Y0bp1a+rUqcPChQs1EvvBwcGEhYVhYWGRTRZmjKenJz179qRHjx7Url2biRMnYm9vT69evQgODmb+/Pm4urpSr149AOrXr//RGubm5nTq1ImtW7fSs2dPZDJZWopAfHx8WvE/ExOTtAKBlStXpmXLlkyfPh1HR0datGiR5ZoH/yUgKpl7YYlZnicAb+JS+Pt9PI3L5s2+4Bmhy5oDRgWgfoGIbqhSzABTPQmxKZofAAlAnZJGujMqjxATE0NSUpKqQN+/qVwZDhyA4GD47Tc4eBBCQ1UC39wcvv0Whg0r8FGuIoUDUewXJuzsVIWtPjBr2DD+/vtvbhei6qK//vorEyZMYOrUqfz888+5bY6IGiQpBO6FJmic5yqV6fEePSKTFBTTstZCcnIyM2fOpGPHjp8UUiKfJiEhge7du+Pp6cmePXvo3r17rtkikUiYMGECvXr14vbt25+soJ8RqVX4fX19+frrr7PLxE9y6dIlunTpQtu2bdm6dSt6enrcv3+fwYMHU7VqVVavXo2pqSnTp0/PcI34+HgiIiIo/aEey9SpU6n8YTObmJiIubk5I0eOpEmTJulqBRw+fJhnz56hVCpxcXFBT0+PypUrp+sckHooUKlSpc8XWgRuhsRnmJ//OYQP8xuWyf6+4LrERE+itSgDMJRJKGogin0RFVKJBMdSxlx+E6fR+0mRkoL80R1e6ll+1GkkvyOXywE+FvupWFrCzJmqLxGRAooo9gsxNjY27N27N7fNyDF2797N8OHDGTVqFB4eHrltjoia+IUnkqxljKIEuCtPwLm8qVbrbN68mWfPnnHkyBHtDCpEREVF0bFjR65fv86xY8domwfyHrt168aUKVNYvHgxu3btUnuenZ0dBgYG3Lt3L0fFvo+PD+3bt6dRo0bs27cvLRVlw4YNPH78mHbt2iGXy/n1118plkmE1ps3bwDV4Yuenh4VK1ZMe8zQ0BAnJyf8/PxYtGjRR3OTk5M5fPgwPXr04Ntvv6VSpUo8ffoULy8v1q9fn5ZaIJVKqVix4idbCNra2mJiYkJ4ooJn0clavSaxKQJPI5OwK55/WtBpK8pA9VlWp4RRvkthEMle6pQwwud9PAkKIct/WzKZjJv7f2P1wCOMGjWKWbNmfVTYM78SGhoKZCL2RUQKAeLRcCHG1taWyMhIwsN1UzAoL3Ps2DH69u1Lv379WLFihVhoLx/xPiEFbfe1AhASn6LVGvHx8cyePZuePXsWOO9HdiGXy2nZsiW3b9/Gy8srTwh9AD09PcaNG8fevXt59uyZ2vP09fWpUaMGvr6+2Whdeh4+fEjbtm2pWbMmR48excjon1BbIyMjDh06RFRUFMbGxvTu3TvTtV6/fg1AeHg4tra2HxXba9asGRcvXiQl5eP3ir6+Pt27d8fNzY2//vqLYcOGcfz4cR4+fEhcXBwvXrzg7NmzrF+/nm7dulG0aFGuXbvGzJkz6dy5M/b29piammJlZcXYhasR1K2EnQESVAeB+Y2UZ/dRZLXt178QEKhbAMOtRbTDVF/K91WKIZOAMot/X99WKsLpA7uYO3cuGzZs4IsvvmDXrl0UhPrdn/Xsi4gUAkSxX4ixsbEByNJmNz9y5swZunfvTseOHfntt98KRCuZwkSiQlC7c2RmxCu0W2TdunW8e/eOWbNmaW9MISAoKAhnZ2devnzJ+fPncXJyym2T0jFo0CDMzc1ZunRpluY5ODhw7969bLIqPYGBgbRq1QpLS0tOnDiBmZnZR2POnz9PUlISKSkp/Pjjj5lu0FM9++/evcPOzu6jx5s3b05UVBS3b9/OcA0PDw+sra0ZNGhQmmiVyWRYW1vTvHlzhgwZwsKFCzl48CB37twhOjqaN2/ecPnyZbZu3crAgQOxKGeJUqm54AXVAV60tiE/OUhERATDhw+nuVNDnl08gSYJDEqlkvunjnL+r+O6N1Ak31PWRI9XB9YSFxnG5/6+JIBMAp0qFaGWhREGBgZMnDiRR48e4eTkRO/evWnZsiUPHz7MEduzi1Sxn65An4hIIUNUPYWYVLEfGBiYy5ZkH97e3nTs2JGvv/6aXbt26bRtlEjOoC+VoIs4DEOZ5qtER0czf/58Bg0aRJUqVXRgTcHmyZMnNGnShNjYWC5dukSdPFjJ2MTEhFGjRrF582ZCQkLUnmdvb8/9+/dRaumZ/hyprfHMzMw4deoU5ubmH42JjY1l4sSJdO7cmW3btrFjxw6WLFmS4ZqvX7/GyMiIZ8+eUbVq1Y8e/+qrrzAxMeH8+fMZrmFiYsLmzZvx9vZm1apVn30eEomEsmXL4uTkRP/+/fHw8MCl7Tfo62nXFQNAy/O7HEEQBPbs2UO1atXYuXMnq1at4hfXvlQqYkBWTjElQDljKfE+p+jcuTOurq4kJua/yAaR7OPgwYOsmjsTy8ArtLYyw8Lwnxo1/777GcskNC5rzLAa5lQzT58GU6FCBQ4cOICnpydBQUFphUBjYmJy6FnoFrlcjomJCcbGxrltiohIriGK/UJMiRIlMDMzK7Ce/Xv37vHNN99Qp04dDh06hKFh/sntFPmHYgZSjfNbU5ECRbUozrdixQqioqIyLX4mouLu3bs0bdoUY2Njrly58kkPcl5h5MiRSCSStF7z6uDg4EBsbGy2fm6GhITQunVrlEolp0+fpkyZMp8ct3jxYt6/f8+SJUvo2bMnU6ZMYeLEifz555+fHP/6zRusbStnKPYNDAxo0qQJ586dy9S+Jk2a4OrqypQpU3jy5EmWn5+RFgdvaQgC+lo3HMteAgMD+eabb+jZsydNmzbFz8+PkSNHYqCnh33yG+6fPgaQ6WFm6mOVi+rTp1oJDuzby+rVq/n1119p3LixRq+/SMHj+fPnDB48mP/973/8+MNgvixlzJDqxeldtRhtKpjydXkTWluZ8j/booy0t6BpOdNM74lt2rTB19eXmTNnsmrVKqpXr86BAwfyXWi/XC4XQ/hFCj2i2C/ESCQSbGxsCqTYf/z4MS4uLtja2vLnn39iaqpdYTaR3KOGufaHNErA3kKzdcLCwliyZAk//fQTFSropn1fQeXq1as0a9YMKysrLl68iJWVVW6blCklSpTghx9+YM2aNcTGxqo1x8HBASDbQvkjIyNp06YNYWFhnD59Gmtr60+Oe/XqFYsWLcLNzQ1bW1tAFWLfoUMHevbsiZ+fHwDhiQrOBsey8l4o5t+PZ+CO88y6FkTSV+25G5pA8n96WjZr1oxLly59Mm//38ydOxdLS0sGDRqU5SiH8qba9wVXKpVsXb6QVq1asXjxYnx9ffOMEElKSmL+/PnUrFmTR48e8ccff7B//34sLS0BVYHE3j174LN5MZ2tDLArbpAm6iWkF/+Vi+rzfeWidLUtqopykkgYOXIk165dIyoqCkdHR3bv3p3TT1EkD5GcnEzPnj0xNzdn48aNaTWJJBIJFcz0qVvSmIZlTPiylDFVihkgU7NmkaGhIdOmTePhw4c4OjrSrVs32rZty+PHj7Pz6egUUeyLiIhiv9BTEMX+y5cvadWqFebm5nh6emZanVok71PUQEaVYgaah/ILAqWNZZQz0SyFY9GiRSgUCiZPnqypBYWCkydP0qpVK2rXrs3Zs2cpVapUbpukFm5ubkRGRrJp0ya1xpcpU4aSJUtmi9iPjY2lffv2PH/+nFOnTn3S+57KxIkTKVq0KFOnTk37mVQqZceOHVhbW/N9v4Hs8JPz68NwbryPT1ezQiqTEa9nzF8vY1jtG8rVt3FpQrl58+bExMRw8+bNTG01NTVl06ZNXL58OUuREQCVixpgpqfd9kMmk9K+dmUMDAyYOXMmDg4OWFlZMWjQIPbu3UtYWJhW62vKlStXcHR0ZPr06YwaNYoHDx7Qvn37dGMmTJiAn58fe/bs4YtSRelsU5SfapnTztqMZuVNaFbehG+szRhe05z/VS6GTVGDj4rKOjo6cuvWLb777jt69erFkCFDiIuLy8mnKpJHmDZtGj4+PuzZs4fixYvrfH0bGxuOHj3K8ePHefLkCfb29kybNi1f/L2FhoaKYl+k0COK/UJOQRP77969o1WrVshkMk6fPp1vBIdI5nxVykjzUH6JhIcn9hEfH5/lqW/fvmXVqlWMHj06rTe5yMfs37+f/7N333E1738cwF9n1Km0NGyXwpVoCBmFrISfcY2ErMK17kWRLXvvESHXTrjmJSlR9g4hKzMjGaV9xvv3x1FXt3VWndLn+Xicx73O+X4/n/eX0+m8v5/P5/3p2rUr2rVrh+Dg4FK1bVPNmjXh5uaGFStWQCgsfDs4DodTJEX6MjIy0LNnT0RFRSE4ODh7BkFeLl26hMDAQCxcuBB6eno5XtPT08Puw/+g26JteJUiLYKX98+ONHnMlACR71Jx/OU3SIjQqFEj6OrqFjqVHwBat26NsWPHYsqUKXj27Jmsl/p9CzothW/gcQD8aijAuFEjcPLkSXz+/BmnT5+Gm5sbrl27Bjc3N5iamqJZs2aYPXs2Ll++rFQFfFl8/vwZI0aMgKOjI3R1dXHz5k0sXbo016yyY8eOYd26dVixYkWOWhZ6GjxYG2uhaUUdNK2oAxtjLRgUsvRIT08Pu3fvRkBAAPbs2QN7e3vcv3+/SK6PKZlCQkKwdOlSLFy4EE2bNi3Svv73v//h/v37mDJlCpYtWwZLS0scPXq0xMyoyQsb2WcYluyXeWZmZnjx4kWRF5sqDl++fIGzszOSk5MRFhaWPWWSKf1q6GnCoZJiBXY0P76A34wJ2SNh8liwYAEEAgEmTpyoUN9lwdatW+Hm5gZXV1ccOnSoVBZC8vHxwatXrxAUFCTT8dbW1irdfk8kEqFfv36IiIjA8ePHC/zSLpFIMG7cONjZ2WHIkCG5Xk8WSnAxQx+6Rqbg8mSvU/HgSybC3qRAQ0MDjo6OBRbp+9GiRYtQqVIleHp6yvV7xNZECzp8xYpvcjlAi4o62X/W0tJChw4dsGLFCkRHR+PVq1fYvHkzqlevjjVr1qBFixYwNTWFq6srtm3bhri4OAV6zRsRYe/evahXrx6CgoLg5+eHixcvwsbGJtexb968wdChQ9G9e3eMGTNGJf1zOBx4eHjg+vXrAIAmTZogICCgRCdgjGq8e/cOAwcOhIuLC7y9vYulT21tbcyZMwf3799HvXr10KNHD3Tt2rXEFnpOSEhglfiZMo8l+2Wcubk5MjIy8P79e3WHopTk5GR07twZcXFxCA0NRa1atdQdEqNijpV00LyiNJGUNUFoUF6AcR0a4datW9DR0UGzZs2yp+UDACQSICwMmDgR8PAAPD0BHx8gMhIvX7yAv78/Jk2alGcldEZaIG748OEYNWoUdu7cCQ0N5Susq4O1tTVcXFywdOlSmZIkKysrPH36VOZ1/gWRSCTw9PTE8ePHcfDgQbRp06bA43fv3o0bN25g9erVeW4jGvE2BclCCSDjutwf3UpIx5tkIdq0aYMLFy7INNNBV1cXW7duRUREBDZu3ChzXzp8LtxqG8i120bWevbuNfVQsYBlOdWrV4enpycOHDiAjx8/4uLFi/jjjz/w8uVLDBs2DNWqVYOVlRUmTZqEsLAwhavaP336FM7OzhgwYACcnJwQExODUaNGgZfHTRaxWAx3d3fo6OggICAg17R8ZdWvXx/Xrl2Du7s7hg0bhgEDBiApKUmlfTAlR9b7ic/nY8eOHcW+pXDt2rVx8uRJHDp0CHfv3oWlpSXmzJmD9PT0Yo2jMGxkn2EADrHbv2VadHQ0rKyscOHChRK3D7as0tPT0aVLF1y/fh3h4eFo3LixukNiilDMlwxc/pCKD2licIEchb6y/lxewEXTCjqwMRZkf6nOzMzEzJkzsWzZMnR0dMTeNm1QfvduIDYW+O+WjCIR3hkYYLVYjJnPn0OXfVnIgYgwbdo0LF68GDNmzMDcuXNVnrwUt3PnzqFNmzY4efIkOnXqVOCxN27cQJMmTXD16lXY29sr3CcR4Y8//oCfnx/27t0LNze3Ao9PTk7Gr7/+CkdHR+zfvz/X6+kiCdZFf1Z4SzoOAMvymqgYH4OmTZvi0qVLaN68uUznjh49Gjt37sS9e/eyt3WVRUK6CEFPk/BNKAEHBe8OrsEFeprpw0xfU+b2c/WXkICwsDCEhITg1KlTeP/+PXR0dODk5AQXFxd07NgRderUKfD9nJmZiWXLlmHevHmoXLky/Pz8Cn3PzJ07F3PmzMHZs2fRqlUrheOXRWBgIEaMGIFKlSohKCgIdnZ2RdofU/wWLFiAmTNnIiwsDG3btlVrLCkpKZg/fz5WrFiBX375BevWrSv056E4EBE0NTWxZs0ajB49Wt3hMIzasGS/jEtOToaenh527tyJgQMHqjscuQmFQvTu3RunT59GSEhIkX+JYkqOd6lCRCWkIyFdjHQxQcDloLyAC2tjLfyiq5Hvl/WLBw7AqH9/1BWJclW+/pHk+2sce3vgn3+pc/N6AAAgAElEQVQAVv8BgHREaezYsdi0aRNWrFgBLy8vdYekEkSEZs2aQVtbu9Ap7KmpqdDT08PmzZvh6empcJ/Tp0/HwoULsWXLFgwbNqzQ42fMmIHly5cjJiYGNWvWzPX6tfg0hMcpN9uAC2BkPX1Uq2CCKVOmYNq0aTKd9+3bN1hZWcHc3BxhYWFyjTSKJISYrxm4EZ+G92m519YbaHLRyFQb1kYCaClZ2O9HRIR79+7h1KlTCAkJwfnz5yEUCmFmZoaOHTvCxcUFbdu2zVEX4fz58/j999/x5MkTeHt7Y9asWdDR0SmgFyAyMhJt2rTBzJkzMXv2bJXFX5CnT5+ib9++iI6OxvLly7O3mWRKvwsXLqB169aYPn065s6dq+5wssXExGDMmDEIDw9Hjx49sHr1atSoUUNt8SQlJcHAwABBQUFwdXVVWxwMo24s2WdQoUIFjB07FrNmzVJ3KHKRSCQYOHAgDhw4gKNHj5aIO8lMCZeQANjbg169AkfWgl18PlCnDnD5MlDGd3bIzMzE4MGDsX//fmzZsgUeHh7qDkml/v77b/Tu3RtXrlwptNiVhYUFOnbsiDVr1ijU15IlSzBlyhSZb5i8ePECFhYWmDhxIubPn5/nMTsefcW71IK3zJNFp190MX1wb2RkZCA0NFTm88LCwtChQwds3LgRI0eOVKjvD6kifEoXI0MiwdnQUGxctQwPLoYXyxKR5ORknD17NnvU/9mzZ+Dz+XBwcEDLli0RHR2NI0eOoHnz5vD394eVlVWhbX769Am2trYwMzNDeHg4+P+dRVSEMjIy4OPjg7Vr16JHjx7Ytm0bW5JUyqnz/SQLIsL+/fvh5eWFL1++YMaMGfD29oZAoPwWuvKKjY1FrVq1cObMGbXPfmAYdWJr9plSWZGfiDBmzBjs27cPe/bsYYk+IxtXV0CeRB8ARCLg8WMgj2JoZUlqaip69OiBQ4cO4cCBAz9dog8APXr0QJ06dbB06dJCj7WyslK4Ir+fnx+mTJkCX19fmWdG+Pj4wMjICFOmTMn3mBSh8oVWOQDSRBI4OTnh4sWLyMzMlPnc9u3bY8SIEZg0aRJevnypUP8VdfiwNBKgoYk2GlUxwNPrF4ptX29dXV107doV69evx9OnT/HkyROsWrUKiYmJmD9/Po4cOQI9PT3UqlUL9+7dw8ePHwtsj4jg6emJlJQU7Nmzp9gTM4FAgDVr1uDw4cOIiIiAra0tLl++XKwxMKpDRPDw8EBqair27t1b4hJ9QFowsm/fvoiJicHo0aMxa9YsWFtbIywsrNhjSUhIAABWoI8p81iyz5S6ZJ+IMHnyZGzatAlbtmxBnz591B0SUxrcugWcPQsosgWXWAwcOQI8far6uEqBxMREuLi4IDIyEv/88w969uyp7pCKBI/Hw6RJk3D48OFCE8ysivzyTo7bvXs3xowZg/Hjx8PX11emcyIjI3HgwAEsXrwYurq6+R6nij1VOADEBLRp0wZpaWm4du2aXOcvW7YM5cuXx7Bhw5SuCJ+1/aCqtzmUlUQiweHDhxEVFQVXV1ccPHgQo0aNwr179zBgwABUrFgRTZo0wYwZM3DhwgWIRDlnVfj5+eHo0aP466+/UL16dbVcAyC9iRUVFYVq1aqhZcuWWLJkyU+xA09Zs27dOhw7dgzbt29HtWrV1B1OgfT09LB8+XJERUWhUqVK6NChA/r27Ys3b94UWwxZyT4r0MeUdSzZZ0pdsr9w4UIsW7YMq1ev/ilHF5ki4ueXuxCfPHg8YNMm1cVTSsTHx6NNmzaIjo7Onqb9Mxs4cCAqVKiA5cuXF3ictbU1Pn36hHfv3snc9pEjRzBkyBB4enpi5cqVMq2hFovFGD9+POzt7eHu7l7gsdo85ddkSwBo8TiwtbWFgYGBzFvwZdHX18eWLVsQFhaGrVu3KhVL+fLlUb16ddy5c0epduSVkZGBuXPnwtraGi9evEBISAiCgoLQq1cvLFmyBFFRUYiLi8O2bdtQu3ZtbNy4ES1btoSxsTF69eqFzZs3Izg4GN7e3hgzZgy6d+9erPHn5ZdffsG5c+fg4+ODKVOmoHPnzoiPj1d3WIyMbt26hUmTJmH8+PHo2rWrusORWYMGDXDu3Dns2rULERERsLCwwPLly2Xa6UNZbGSfYaRYss/AzMwMb968KZYPX2WtW7cOM2bMwJw5czBu3Dh1h8OUFsnJwO7d0in5ihKLgS1bgFLwc6Iqr169QsuWLfHu3TtERESgWbNm6g6pyGlpaWH8+PHYsWNHgYl81nptWUedQ0ND0bdvX/Tq1Qv+/v4yF0vbvn07bt++ne9We0KhEGFhYfjjjz8QFrQDYmXe49/9oqsBHo+HVq1a4ezZs3Kf37FjR3h4eMDb2xuvXr1SKhZra+tiHdmPiIiAjY0N5s2bB29vb0RHR8PZ2TnXcVWqVMGQIUMQGBiI+Ph4XL16Fd7e3nj//j1GjhyJzp07A5BOaw4JCUFaWlqxXUN+NDQ0sHDhQpw6dQq3bt2CjY2NQv++TPH69u0b+vbtiwYNGmDx4sXqDkduHA4H7u7uiImJgYeHByZPngxbW1tEREQUab+fPn2Crq4utLS0irQfhinpWLLPwNzcHBKJROkvZUVtx44d+PPPP+Ht7Y2ZM2eqOxymNHn9GlBwL+0ckpKAQtbp/iwePXoER0dHCIVCXLhwQaZiZD+LkSNHQiAQYO3atfkeU7NmTejq6sqUiF68eBE9evRA+/btsWvXrjz3Yc9LUlISpk+fjv79++fYAi8xMRFBQUHo378/TE1N0aFDBxw9ehSVhF/AU2L2CgdAtXJ8mGpL23BycsKlS5cU2od+xYoV0NfXx4gRI5Sazm9jY1MsI/sJCQkYOnQonJycYGJigqioKCxYsADa2tqFnsvj8WBvb49Zs2bh4sWLGDBgAAQCAf73v//h8OHDcHFxgZGREVxcXLBq1So8fPhQ6SUOyujYsSPu3LkDS0tLtGvXDr6+vhArsryJKXJEhJEjR+LDhw8ICgpSS6E7VTE0NMTatWtx8+ZNGBgYwMnJCe7u7nj//n2R9JeQkMCm8DMMWLLPANl7Ipfkqfx///03PDw8MHz4cCxbtoxtIcTIJylJdW0lJqqurRLq1q1bcHR0hJ6eHi5cuIBatWqpO6RiZWhoiN9//x0bN25EUl7vHYkE3NBQHNfQwIAFC4Bq1YB69YDffgOCg4Ef1kPfvn0bXbp0QZMmTXDw4EFoasq+R/zChQuRlJSExYsX4/Xr19iwYQOcnZ1hamoKNzc3PHz4EOPHj8etW7fw8uVLrFowBzV0NfLdTrIwBKCR6b/JbZs2bZCeno6rV6/K3ZahoSE2b96MkJAQ/PXXXwpGJB3Zf/v2bfaUXFUjIuzYsQMWFhY4evQotmzZgsjISNSvX1+h9oKCgrB79274+fnh4MGDeP36NaKjozF//nxIJBJMnToVlpaWqFGjBkaMGIG///4bX79+VfFVFa5y5co4ffo05syZg/nz56Ndu3aIi4sr9jiYgm3fvh179+6Fv78/ateure5wVMLW1hYXLlxAQEAAQkJCULduXaxZsyZXzQtlsWSfYaTY1nsMhEIhtLS0sHHjRowYMULd4eQSEhKCrl27omfPntizZ4/Mo2IMk+3+faBBA9W09fq1NLn7SUVGRqJr166wsLDAyZMny+x6x7i4OJiZmWHBggWYNGmS9EkiYONGYOlS4OVLiDkc8H78FcrnS5eK/PILMGkSYtq1Q8tWrWBmZoawsDDo6+vL3P/Tp09haWkJBwcHJCUl4datW+Dz+XByckL37t3RtWvXPPewjksRYs+TREjk/M0uEYtRSYePwfWMwPt+M1UikcDExATjxo2TuZjgfw0ZMgRHjhxBdHS0QkXFYmJiUK9evSLZPismJgajRo3CuXPn4O7ujhUrVqBChQoKtxcbG4uGDRuic+fO2Lt3b543pVNTUxEREZG9vd+jR4/A4/HQrFkzuLi4wMXFBXZ2dnku2VAJoRA4ehQICACePQNSU5HC5+P0hw/YJhBg1J496NylS9H0zcjl4cOHaNy4Mdzc3BAQEKDucIrE58+fMX369OytLP38/ODg4KCStnv16oWUlBScOnVKJe0xTGnFkn0GAFCjRg30798fixYtUncoOVy4cAHOzs5o164dDh06VCx7LTM/ocREwMREuTX7ANI5HLy6cwe//qRT2k+cOIHevXujRYsW2duMlWWenp44deoUYmNjIeBygWHDgJ07ZT7/b21tzDc3R1hEhEw3TYRCISIjI3H06FFs3boVaWlp0NPTQ+fOndG9e3d06tQJhoaGhbYT8yUDR198A4EAWcb5ifA57iVub5yDw/sDc1T879GjBxITExVe2/3lyxfUr18fDRs2xD///CP3rCyRSAQ9PT0sWrQI48ePVyiG/0pPT8eiRYuwePFi/PLLL9i4cSPat2+vVJtCoRCOjo74+PEjbt++DQMDA5nOyyoAeOrUKZw5cwbfvn2DiYkJnJ2d0bFjRzg7O6NSpUpKxfY9QOlNqjVrpEuReLwcO5MQjweOWIwYALc6d0bvw4flmoXCqFZaWhqaNm0KkUiE69evo1y5cuoOqUhdv34do0ePxo0bNzBkyBAsWbJEqRtvANC6dWtUr14du3fvVlGUDFNKEcMQUevWralv377qDiOHmzdvkr6+PrVp04ZSU1PVHQ5T2vXtS8TnE0nHZ+V+SHg8CjQwIB0dHfL39yeJRKLuK1KpvXv3Ep/Ppx49elBaWpq6wykRHjx4QAAoYOtWIk9PIg5HrveMGKCUvn2JCnivJCYm0r59+6h///5kaGhIAMjExIQA0OTJkykjI0Oh2J8lZtD8y69o4c14WnQznhbd+pjrsfj7f3c9+kLnLl4mPT09cnBwoMTExOx2Vq9eTQKBQKn3xLFjxwgA7dixQ6HzGzduTEOGDFG4/x+dOXOG6tSpQxoaGjRjxgyV/W7x8fEhPp9PV69eVbiNzMxMioiIoGnTppGdnR1BurKCbG1tacqUKXT27FnF3g/JyUTOzjK9fyXf/7urcmV6Hhur8LUwyhk5ciRpaWnR3bt31R1KsRGJRLRp0yYqX748GRoakp+fH4lEIoXbq1+/Po0bN06FETJM6cSSfYaIiIYMGUL29vbqDiPbgwcPyMTEhOzt7SkpKUnd4TA/g8hIhRP9rEfq5cs0YsQIAkDdu3enjx8/qvuqVMLPz484HA4NHjyYhEKhusMpUbp3705/Vqmi3HsnMDBHm69fv6YNGzaQs7MzaWhoEACysbGhWbNm0bVr18ja2pqaN2+u1A2lc+fOkaZ2Odr4zzlafvl5non+4dhEevUtM7ufK1eukIGBATVr1oy+fPlCRERRUVEEgM6ePatwLERE7u7uZGhoSHFxcXKf6+HhQXZ2dkr1Hx8fT4MGDSIA1LJlS3rw4IFS7f0oJCSEANCSJUtU1iYR0fv372nXrl00YMAAMjU1JQCkq6tL3bp1Iz8/P3r27FnhjQiFRC4uRDye3O/bxQIBHTx4UKXXxBRu//79BIA2bdqk7lDUIj4+njw8PAgANWrUSL4baCkpRKdOEe3eTWP09SnQ3Z3o8+eiC5ZhSgGW7DNERDRnzhwyNTVVdxhERBQbG0tVqlShBg0a0KdPn9QdDvOzkEiIbG0VG93n84lat85u6siRI2RsbEyVKlWikJAQ9V2TkiQSCS1YsIAA0Lhx40gsFqs7pBLn0qVLdB4giZyj+tkPLpckzZpRVFQUzZ07lxo1akQAiM/nU7t27WjNmjX0/Pnz7P42bdpEAOjatWsKxywWi8nOzo6aNGlCYrGYVq5aRTUaNKQnX9Mp5ks6PU/KoOTMvP+tb9y4QeXLl6fGjRvTp0+fSCwWk7GxMc2aNUvheIiIPn36RBUrVqSuXbvKfRNjzZo1JBAIFLoRJZFIKCAggIyMjMjIyIgCAgJU+j5///49VaxYkZydnYv050csFtONGzdowYIF1LJlS+LxeASA6tSpQ2PHjqV//vmHkpOTc5+4YoXcM1J+fDgANHr0aDbbp5jExsaSgYEB9enT56ebPSavS5cuka2tLXE4HBoxYgQlJCTkf/CjR0QTJhDp6+d+HwsERB4eRDdvFl/wDFOCsGSfISKinTt3EgD69u2bWuOIi4sjc3Nzql27Nr19+1atsTA/oefPiYyN5Rvl4vOJqlYlevcuR1NxcXHk7OxMAGj8+PGl7suwRCKhiRMnEgCaM2dOmf9ima9795SeEUIAWQOkp6dHrq6utGfPHvqcx2jTly9fyMTEhAYNGqRUyH/99RcBoAsXLhCRdIp5rVq1ZD7/9u3bZGxsTLa2tpSQkEA9e/akli1bKhUTEdHhw4cJAO3evVuu886ePUsA6P79+3Kd9+DBA2rVqhUBoEGDBlF8fLxc5xdGLBaTs7MzVahQgd795/OhqH39+pUOHTpEv//+O9WoUYMAkKamJrVr146WLVtGd+/eJYlIRFS9usLvWQmfT0/s7EggEJCNjQ09evSoWK+xrMnMzKSmTZuSmZkZff36Vd3hlAhCoZDWrVtHBgYGZGxsTFu2bMl5U00iIZo+XfqeLej3etZN/oEDiRRcGsUwpRVL9hkiIrpw4QIBoHv37qktho8fP5KlpSVVq1aNXrx4obY4mJ/cgwfS5F2WhJ/HIzI3J8pnuqxYLKZVq1aRpqYmWVlZqfXnRx4ikYg8PT0JAK1Zs0bd4ZRsPj4kVmAK9I8PEYdDsb16UXp6eoFdeXl5kY6ODr1580bhcL99+0aVK1fOUYPF3d1d7mT97t27ZGpqSlZWVrRgwQLS1NSklJQUhePK0q9fPypfvrxcyfGnT58IAO3du1em41NTU2nGjBmkoaFBderUoTNnzigaboGWLl1KANQ+u0cikVBMTAytXr2aXFxcSEtLiwDQACMj5W9U8XgUHRZGv/76K5UrV4527typ1mv9mU2aNEnpug8/q/fv39PAgQMJADVt2pRu3rwpTfSHD5d7phW1b0+UmanuS2KYYsOSfYaIpKOUAOjYsWNq6T8xMZEaNWpEpqamFBMTo5YYmDLkwweiiROJDAyIABL+N8EHiIyMiKZOJZJhKcmdO3eoQYMGJBAIaM2aNSV6lDw9PZ169+5NPB6PfXGXRf/+JFEy2ScuV1ogsgCPHj0iPp9P8+bNUyrcmTNnkkAgyHHDtG3btuTq6ip3W/fv36eKFSuSubk5AaCwsDClYiOS3tStUKEC9ejRQ66fk2rVqtGUKVMKPS40NJRq165Nmpqa5OvrW2Qzbq5evUp8Pp98fHyKpH1lpKamUkhICN2sWzfnZ5ui791Vq+jbt2/ZNQ+GDBmS95IBRmHBwcEEgJYtW6buUEq0iIgIql+/PnG5XDrcvLli72kOh2jYMHVfCsMUG5bsM0QkHaEUCAS0evXqYu87JSWFWrVqRQYGBnT79u1i758pw1JTKXzwYNrH4ZCoTRvpHf9+/Yj27iUqZBQ2d1Op9OeffxIAcnFxKfZpvbJITk4mZ2dnEggEdOTIEXWHUzr89ptSa56zH926FdhN165dqUaNGkpVh3/58iVpaWnR1KlTczxfr149Gj9+vEJtxsTEUOXKlYnH46mssvXBgwcJAAX+p3BhQbp06UKdOnXK9/UPHz7QgAEDCAA5OTkV6U3jr1+/krm5Odnb21NmSR4hVDQZ+vGhoSG9Mfrd9u3bSUdHh+rVq1emKsUXpbi4ODI1NaVOnTqxuikyyMzMpLULF1KyMu9rDofo6VN1XwrDFAtuEe7qx5QiXC4XNWvWxPPnz4u138zMTPTq1Qs3btzAyZMnYWtrW6z9M2Wctjb2a2tjnqUleOHhQGgosHcv0K8fIBDI2ZQ21qxZg+DgYNy+fRtWVlY4duxYEQUuvy9fvqBDhw64dOkSgoOD0b17d3WHVDoYGkr3JFcGjydtJx+hoaE4fvw4li5dCm1tbYW7mTp1KgwMDDB16tQcz799+xZVqlRRqM26desiMjISmpqa8Pf3x+vXrxWOL0uvXr3g6uqKsWPH4sOHD8D9+8DYsUCNGoC+PmBgAJiZAd7ewJMnAABra2vcvXs3V1sSiQRbt26FhYUFTp06he3btyM8PBx169ZVOs68EBFGjhyJhIQEBAYGQkNDo0j6UYm0NJW3M3jwYNy8eRN8Ph/29vbYvHkziEg1/ZRBYrEY7u7u4PP52LFjB7hc9rW8MBoaGvjDyAg6yjTC5QL+/qoKiWFKNnXfbWBKDhcXF+pWyOiTKolEIurTpw9pampSaGhosfXLMD9q3rw5DRgwQKVtxsfHU9euXQkAjRw5UiVrnZXx7t07sra2JiMjI6WqvJdJa9cqP7LP4RCtXJln80KhkOrXr08tW7ZUavnHlStXCABt3bo1x/MpKSkEgHbt2qVw20REs2fPJgBUo0YNldRUiY+Pp/YGBnTfxET6d5TXLhlZyyfat6fgZcsIQI6K3NHR0eTg4EAAaOjQocWyFWZAQIDcsxLUpm1b1YzsT5+eq+nU1FQaOXIkASBXV1dWUE5Bc+fOJQ6HQ+Hh4eoOpXSxtFT+c9nAgKiUFdZlGEWwZJ/JNmrUKLKysiqWvsRiMQ0dOpR4PB4dPny4WPpkmP8SiURUrlw5Wrp0qcrblkgktGnTJtLW1qa6detKCwqpwfPnz6l27dpUpUoVuauZM0T05Yt06yZlvlRqauZb+2H9+vXE4XCUen9IJBJq1qwZ2drakkgkyvHa06dPCYDSReru379PAKhSpUpUo0YN2fZ4L8ixYyTi82VbU87jkVhbm9oAFB4eTqmpqTR16lTi8/lUt25dOnv2rHKxyOjBgweko6NDHh4exdKf0iZNkm/nkfweBw/m28X+/ftJX1+fzM3N6fr168V4caVfZGQkcblcpbe1LHO+fVP+PZ31iIpS99UwTJFjyT6TbenSpaSrq1vkxcUkEgmNGzdOJaNNDKOMR48eEQA6ffp0kfXx8OFDatiwIWloaNCSJUtyJWNF6f79+1SlShWqVatWjr3cGTl5euY98izLg88nGjIkz2Y/ffpERkZGSiePe/fuJXxPhP8rMjKSANDDhw+V6kMikVCFChVozJgxVKdOHapWrRo9fvxYscYiI4n4fJLIMTIn4XIpFaD5PXuSubk5CQQCmjt3bqE7HKhKWloaWVtbk4WFRekpTvf0qfLJkKlpoZXLnz17Ro0bNyYNDQ1auXJliS5QWlIkJCRQtWrVqFWrViQUCtUdTuny+rXqkv1iulHIMOrEkn0m24EDBwhAkU+FnDVrFgGgDRs2FGk/DFOY/fv3EwD68OFDkfaTkZFBPj4+xOFwyMnJiV69elWk/RERXbt2jYyNjcnKyqpEFgssVR48INLSkn/aKIcjnRUQHZ1ns3/++Sfp6uoq9e+TmppK1atXp+7du+f5+r59+wiASqZZu7q6UvPmzSkuLo4sLCyocuXK8hfCy8wkqlhRWuVdzi/mQoAeA9S2TZti3/N97NixJBAIKKq0jQQ6Oys+us/lEvn6ytRNRkYGeXl5EQDq2rVrjuUWuTx5Ip114OxM1LgxkZOT9IbYuXPS7dR+chKJhP73v/+RsbExvX79Wt3hlD7v36su2b94Ud1XwzBFjiX7TLabN28SgCJd07t8+XICQIsXLy6yPhhGVtOmTaPKlSsXW3/h4eFUrVo1MjQ0pP379xdpP7q6utS8eXP6/PlzkfVTphw7Jk1+ZE1SORzpsfnsevDgwQPi8Xi0aNEipcKaP38+aWho5DvKvmrVKtLR0VHJaOvGjRuJz+fTt2/f6P3791S/fn2qWLGifMtDDh5U+gu6RAVbAMrjyJEjBIDWrVtXrP2qRESEQjdWxBwOUfnyRG/fytXd8ePHycjIiKpVq0bnz5/P+WJ4uHTHEyD3DYismTO//kq0aRPRT1yVfvXq1QSAjh8/ru5QSqfMTNUsTwFYRX6mTGDJPpPt8+fPBICCgoKKpP3NmzcTgFzbQjGMunTu3LnA7byKwufPn6lPnz4EgAYPHkxJSUmFn/Txo3TU6+hRotOnie7fz3cE7MiRIyQQCMjZ2bn0TDcuLYKDibS1SVJI8iQCSKKlRXTiRL5Nubi4kJmZmVL7wL99+5bKlStHXl5e+R4zadIkql27tsJ9/Ojhw4cEgIKDg4lIWmTP2tqaTE1N6c6dO7I10rq1Ul/UMwES9+ihkuuRxevXr8nIyIi6d+9eeqenb94s19+xiMOhNICOKvi7+vXr1+To6Eg8Ho8WLFgg3U5u3TrpDbDC/u2zZs/07Sv39qelwY0bN0hDQ4MmTJig7lBKtz59FF9aBUhvgNnYlImZJAzDkn0mBwMDA6VHmvISGBhIHA6HxowZU3q/MDE/napVq6rl5pNEIqHt27eTrq4umZub06VLl/I6SDrFsF+/vL/U2NgQBQQQ/VDpf+fOncTj8ah3797Ftpa5zImLI/L1pa/fi/ZJeDxpxfLvSYzQ0JBmA7R/1ap8mzh58iQBoL///lupUIYOHUrGxsb05cuXfI9xd3enli1bKtVPFolEQpUqVaLJkydnP5eQkEANGzYkY2Njun37dsENvHunktE4CZdLVAw3soRCIbVs2ZKqVatW8LT00mDnTunnSGHJNpdLkvLlaUmvXsThcGjnzp0KdScUCmnGjBnE4XBopYWFYsmYq+tPNcKfmJhItWrVokaNGrHPZ2WdO6f8Z0lAgLqvgmGKBUv2mRxsbW1pxIgRKm3z+PHjxOfzaeDAgdI7/AxTAsTHxxMA2rdvn9piePr0KTVr1ox4PB7NmTPn30JNnz5J17EC+Y9eZI0uGxoShYXR2rVrCQB5enoWaxHAsurGlSvUDaAod3eiWbOIli0jOnyYKDOTevToQbVq1cqz8FZmZiZZWFiQk5OTUjc+b968SRwOh9avX1/gcW3btqW+ffsq3M9/ubm5kb29fY7nPn/+TE2aNI8+FaAAACAASURBVKHy5csXXJH99m2VJPsEEKlg+7/C+Pr6EpfLpYiIiCLvq1g8eyZdK29gIP07/M+NKqpRg2j5cqJPn0gsFtOwYcOIy+Uq9Rl5acsW6UwXRf+dS+PSiTxIJBLq168f6enp0VM2dVx5EglR3bqKzRLicIj09XPcKGeYnxlL9pkcfvvtN+rQoYPK2gsPDyeBQEC//fYbqzjLlCihoaEEQP4CYyomFAqzk4oWLVrQ8+vXierUkflLjITLJRGXS90BmjhxIps5U4zatWtHdnZ2uf7Ob926RQBo+/btuc5ZvXo1cblcpQq9SSQSat26NVlaWhb6uWphYaHSKcP+/v7E4/EoMTExx/Nfv36lZs2akYGBAV25ciXvk69cUV2yX8QF+s6dO0dcLpdmz55dpP2oRWoqUVAQ0dKl0gJ8K1dKlwf952a8WCymgQMHEo/HU3wWyqhR0tkvivwbczhEZmY/xeh+QEAAAaDAwEB1h/LzuHFD8cKpR4+qO3qGKTYs2Wdy8PLyUtn6zitXrpCuri516NCBTVljSpzly5eTjo5OiRkFv3jxItWuUYOuc7kklrOglhggIY9HkqtX1X0ZZcrp06cJAIXlUTAur9H9jx8/kqGhodKzpw4dOkQ/rp0viIGBAS1dulSp/n70+PFjAkAn8qhHkJiYSI6OjqSnp0cXLlzIfXJMjOqS/SLcQSMhIYGqVq1KrVq1KjGfD+oiFAqpb9++pKGhIX9BucREIm1t5f+ti3Br1OJw//590tbWpmHDhqk7lJ9PaKj0PSbLDaWsAqt53IRlmJ8ZFwzzAzMzM7x8+RJisVipdu7du4dOnTrB2toahw8fhkAgUFGEDKMaUVFRsLKyAo/HU3coAIAWLVrgjq8vGksk4Eokcp3LBcAHwJk5s0hiY/LWvn17NGzYEEuWLMn12qxZs/Ds2TPs3bs3+zlfX19IJBLMmzdP4T4zMjIwceJEuLi4wMXFpcBjU1JSkJiYiCpVqijc33/Vrl0bVapUwdmzZ3O9pq+vj+DgYDRq1AgdO3ZEREREzgPMzIDy5ZXqnwDE8XiAiYlS7eTbPhE8PDyQlpaGPXv2lJjPB3Xh8/nYtWsXunbtil69eiEkJET2kw8eBNLTlQ0ACAhQrg01SktLQ9++fWFmZoY1a9aoO5yfT/v2wKVLQNOm0j/z+bkOEXM40v+xsABOnQIGDy7GABlG/Viyz+RgZmYGoVCIt2/f5nyBCLhwARg4ELC2BmrUAOrXB7p3B44dA364OfDkyRN06NABNWrUwIkTJ1CuXLlivgqGKVxUVBRsbW3VHUYOOgEBgKLJhVgMnD4NPHum2qCYfHE4HPj4+CA0NBS3bt3K8VrDhg3Ro0cPzJs3DyKRCNHR0di0aRNmzZqFChUqKNznunXr8PLlS6xYsaLQY9+9ewcAKk32ORwO2rRpg3PnzuX5uq6uLk6cOIFmzZqhU6dOCA8P//dFTU3g998Vf49LA8AasRifvnxRvI0CbNiwAceOHcO2bdtQrVq1IumjtNHQ0EBgYCA6duyIHj165Pw3LciLF3kmX3IRiYDYWOXaUKMJEybg6dOnCAoKgo6OjrrD+TnZ2gIXLwJ37wLDhwOmpoCGBsDlIllTE2GGhtLvr9HRQIcO6o6WYYqfuqcWMCXLgwcPCEDOgkS7dxPVqyedBvXfYmFZU6eqVCFatoxePX9Ov/zyC9WtW5c+FOE0S4ZRRlpaGvH5fNq4caO6Q/nXvXvKT3fl8YgmTlT3lZQpQqGQzMzMaNhvv0mL9LVuTWRpSWRpSUmNGtEEgPauX0/t27en2rVrU0ZGhsJ9xcfHk76+Po0ePVqm4yMjIwkAPXz4UOE+87Jlyxbicrn09evXfI9JTU2ljh07kpaWFoWEhPz7wvPn8q+x/eEh4fPJGKDw8HCVXhMRUVRUFAkEAho7dqzK2/4ZpKenU8eOHUlHR4ciIyMLP8HLS1oAUNnPNQuLor+4IrB//34CQJs3b1Z3KGWPREIkkdCmTZuIx+OxbWiZMo2N7DM51KxZEwDw/Plz6a/ZiRMBd3cgJkZ6gEiU84SsEf23b0E+PnjcoAG0iBAWFqbU6BXDFKUHDx5AJBLBxsZG3aH869w5IGu6oaKyRveZYsN/8wYnTE2x4fBhkI8PEBEBPHgAPHgAvZs3sRxAr7Fj0S8sDH5TpkBTU1Phvnx9fcHhcDBnzhyZjs+aoaXKkX0AaNOmDSQSCc6fP5/vMdra2jhy5AjatWuHrl274uTJk9IXatYEPD0BrgJfPzgc0J9/IlkgwN27dxULPh8pKSno27cvLCwssGzZMpW2/bMQCAQ4fPgwmjVrhs6dO+Py5csFn6Cvr5qODQ1V004xio2NxbBhw+Dq6ophw4apO5yyh8MBOBw4ODhALBbj6tWr6o6IYdSGJftMDtra2qhUqRJiY2OBWbOArKmiRIWeyyGCU0oKblpYoFrlykUcKcMo7s6dO+BwOLCyslJ3KP/68kW56c0/tsMUjxs3gEaNYHHrFjQh/Qz8Ly4ATQCDALSfPBn4z3R/WUVHR8Pf3x+zZs2CiYzr1d++fQsdHR3o6ekp1Gd+zM3NUb169TzX7f9IS0sLhw4dQufOndGjRw8cO3ZM+sKGDYCTE0iehJ/DAbp3B3fpUjRo0AB37txR4gpy+/PPP/H69Wvs27cPWlpaKm37Z6KtrY1jx46hYcOGcHFxwY0bN/I/uH59QChUrkM+HyhJn9MyyMzMRL9+/WBiYoLNmzeDo+xNXEZhlpaWMDQ0xMWLF9UdCsOoDUv2mVzMzMygeeUKMH++3OfyAOiGhQH+/qoPjGFUJCoqCnXq1IGurq66Q/mXsmtbs5TxgmLFJiYGaNcOSEwE578znvLAB4CvX6XnPH4sV1dEBG9vb5ibm2Ps2LEyn/fu3TtUqVJF5ckGh8OBW8OGsNyzR1rHpVcvwMMDWL0a+Pw5x7GamprYv38/unfvjl69euHvv/+Wrt0/cQI3vs8ko4Les1k/F56ewIEDAI8Ha2trlY7sBwYGYtu2bVi3bh0sLCxU1u7Pqly5cjhx4gQsLS3h7OyMqKiovA/s1g0wNlauM5EIGDlSuTaK2fTp03Hr1i3s27cPBgYG6g6nTONyuWjRogVL9pkyjSX7TC5mZmZwvHlTueRj1SqZZgMwjDpERUWVrCn8gLS6uAxJY6EqVlS+DaZgREDPnkBKSo7ipIXhiMVAcrI0OZbj8zE4OBinT5/GsmXL5FoG8PbtW5VP4cexY0CbNlh67BgGffgACgwEDh8Gdu0CvLyAypWBoUOlxbC+yyrw1rt3b/Tt2xdBQUE4e/ky7GNjccjLCxxXV2S/879PvwUgvSng7g5cuwZs2ZL9O8nGxgbR0dEQqeDn5dmzZ/j999/Rr18/DB06VOn2ygo9PT0EBwfD3NwcHTp0QPQP/97ZNDWBUaMUvwHJ5QKNGwN2dsoFW4yCg4OxfPlyLF68GE2aNFF3OAwABwcHXLp0SeldphimtOIQsYyMyWnJn39i4rp1UHp8MDwcaNNGFSExjMoQEcqXLw8fHx9MmzZN3eH86/17oHp15RJ+Dke69GbCBNXFxeR27pzyn23nzwOOjoUeJhQKYW1tjcqVK+PMmTNyjdK3bdsWFSpUwL59+5SJVEosBry9gTVrpMlbQV+c+XzpezEwUHpj4zuRSAQPDw/s3r0bpqamsLCwwNmzZ5GZmYlfDQzg7+aGTk2bSs81NpZuq2VklKv5s2fPom3btrh//z4sLS0VvqTMzEw4Ojri06dPuH37NvRVtca8DPn8+TPatm2L9+/fIyIiAnXr1s15QFwcULcukJYGyLmlKADg0CHgt99UE2wRe/v2LWxsbGBvb4/jx4+Dq0hdCkblIiMj0bp165J5k59higH7JGJycXr/XvlG+Hxg507l22EYFXv58iUSExNL3LZ7qFRJmhgpM6NGUxMYMkRlITH52LBBuX8nPl/ahgw2bdqER48eYeXKlXJPx8+axq80IuDPP4G1a6V/LmyETCSSPvr0AY4cyX6az+fjr7/+gqWlJeLj49G5c2dwuVxcu3YNrzMzUWn8eGD0aOlosKtrnok+AFhbWwOA0lP5Z8yYgdu3byMwMJAl+goyMjJCaGgoTExM0LZtWzx9+jTnAVWrAkePSkfp5U1+Z84sNYm+WCyGu7s7NDU1sX37dpbolyBNmjSBhoYGm8rPlFns04jJpYpYDKUnO4lEwKtXqgiHYVQqa31pibzDP2aM4iP7PB7Qvz9QvrxqY2JySkqSTltXZgaGSAQcPAh8+1bgYV++fMHs2bPh4eGh0M0plU3j37UL8POTb2lW1rFubsDz59lPX79+HQ8ePEDTpk0xdepUbN26FZGRkdDX189O4gtjbGyMqlWrKlWkLyQkBMuWLcPChQthb2+vcDsMYGpqijNnzkBPTw9t27bFixcvch7Qrh0QHAwSCFDoT03WTbQFCwAZd50oCRYsWICIiAjs2bMHpqam6g6H+YG2tjbs7OxYss+UWSzZZ3IxVGJrqBySk1XTDsOo0J07d2BiYqL6tcyq4OgIjBgh/xZ8PJ50ZsCCBUUTF/Ovd+/kWqefL5EIiI8v8JC5c+ciMzMT8xUolpqSkoKkpCRUVnZnFCJg8WLFtoUkkl7npk0AgIyMDHh6eqJRo0Y4f/48Ro8ejeHDh2PPnj1wdHQET4613TY2NgqP7L9//x6DBg1Cx44d4e3trVAbTE4VK1bEmTNnoKmpibZt2+L169c5D2jfHnPd3LBeQwOSrN0hNDT+fXC50kS/d2/g4kVg2jTltyItJpGRkZgzZw5mzpwJJycndYfD5MHBwQEXLlxQdxgMoxYs2WdyKaeqJCifKZgMo05RUVGwtbUtmdshcTjS6d19+sh+Dp8vLe4XGiotjsYUrdRU1bWVkpLvS48fP8b69esxbdo0VKpUSe6m3717BwDK39S6eBF4+FDxgqtisXR3lvR0LFiwAE+ePMG2bdugoaGBdevW4Y8//kBMTAz4ci6LsLa2VmhkXyKRYNCgQeBwONixYwebbq1CVatWRXh4OIgIbdu2xdu3b7Nfi42NxYLdu5E6eza48fHS2SITJkh3cRg7Vlpr5M0baZ2HFi3UeBXySUhIQP/+/dGyZUvMnDlT3eEw+XB0dMSrV6/w5s0bdYfCMMWO/ZZjcuE2agSlx/Z5PKBhQ1WEwzAqVeKL9PD50i+8s2cD5crlrE7+o6xRUCcn6X7v9eoVZ5Rllyq30iqgrYkTJ6Jq1aqYoGCxxaxES+lk/4cq+ApLTMTL1auxaNEiTJs2DVbf903ncDgYMGAAAODYsWNYsWKFzE3a2NggLi4Onz59kiuU5cuXIzQ0FDt37kRFtnOFyv3yyy8IDw9Heno62rVrhw8fPgCQ1kcwNTXF+PHjAS0t6S4LS5ZIZ32sXAmMH1/qdhIhIgwdOhTp6enYs2ePXDNTmOLV4vsNJDaVnymLWLLP5NazJ74p++VOIpFOR2aYEuTr16948eJFySvO919cLuDrK63Qv2kTUL9+zoTf0FBaMO3RI+mIfrVq6ou1rKlaFVBBMbdELheifNb2njlzBsePH8eSJUugpaWlUPtZI/tKT+N/8EDpLSGJz0fw2rWwsLDItQNGZGQkdHR0MGXKFEycOBGLFy+WqU1FivRdvXoV06dPh4+PD5ydnWW/AEYuZmZmCA8PR2JiItq3b4+wsDAEBgZi7ty50NHRUXd4KrNmzRr8888/2LFjB6pWrarucJgCVKxYEbVr12bJPlMmsWSfyU1LCxcsLRUv0sfjAZ06ATVrqjAohlFeVmJQ4pP9LLq60ptm9+4BQiHw5QuQni7978qVwK+/qjvCskcgAIYPV3zvcADE5WKjRILAv//O9ZpYLIaXlxdatGgBV1dXhft4+/YtypUrB72s9dGKSkpS7nxIp86nvHuHgIAAaP6nJkxkZCSaN2+OhQsXYvbs2Zg6dSrmzp1baJu//vorBAKBzMl+YmIi3NzcYGdnp1ANBEY+derUwZkzZ/Dhwwf89ttvqFu3LgYPHqzusFTmxo0b8PHxgZeXF7p06aLucBgZODo6snX7TJnEkn0mT0+cnZEKyL9VDiBd2zl1qqpDYhilRUVFQVNTM/de0KUBjycd0RcI1B0JM3KkUkX6OESIbd8e8+bNg+g/o+bbtm3D3bt3sWrVKvnrSty8CXh5Af36of3GjdjB5YLj719o1f8CqWAWg0QiQYPmzXNVvReLxTh//jxatWoFDocDX19fzJ8/H76+vpg1axaogDoBfD4fDRo0kGndPhHh999/x+fPnxEYGAgNDQ2lr4kpXL169TB79mwkJydLb/gUUKOiNElKSoKbmxtsbGywaNEidYfDyMjBwQF37tzBN2U+DxmmFGLJPpMnk4YN0QUA8XjyJ/z+/tKq4gxTwty5cwcNGjRgX/YZ5dSuLd0HXpHRfS4XcHPDyCVL8OTJEwQGBma/lJSUhBkzZsDd3V327eAkEmDnTqBRI6BxY2DdOmD/ftR/8gTdk5Ol+9ZXrCjd1vHZM/njrVtX6TX7GgCchg3L9Xx0dDQSExPRqlWr7OemT5+OpUuXYt68eZg2bVqBCb+1tbVMI/vbtm1DUFAQNm/eDHNzc4WugZGfWCzGpk2bYGdnh/j4eHTu3LnUJ1pZN47i4+Oxb9++XDNVmJLLwcEBEokEV69eVXcoDFO8iGHycOnSJQJAT7ZtI9LXJ+JyiaRj9nk/eDwiPp9o1y51h84w+bKzsyMPDw91h8H8DJKTiezspJ99BX02/vdzsnFjopQUIiLq1q0b1alTh4RCIRERTZ48mbS1ten169eyxZCWRtSnj7Ttwj6j+XyicuWIzpyR7zrPnZP9+vJ5pAsEJPl+zT9au3YtaWpqUmpqaq7XVq1aRQDIy8uLJBJJnqGtXr2aBAJB9t9fXh48eEDa2trk6ekp33UzStu+fTsBoCtXrtC1a9dIX1+fWrVqRcnJyeoOTWFbt24lALRv3z51h8LISSwWk5GREfn6+qo7FIYpVmxkn8lT1uhHdPnywJMnwLx5/27rxeNBxOUie/Kpvr60km5MjLTCLsOUQEKhENHR0SW7Ej9TepQrB4SHAy1bSv9cwCi/5PvsqI8NGgBnzgDfi5T5+vpmj+4/f/4cq1atwqRJk1BNloKLYrF0dkHWun+JpODjRSIgLQ3o2BE4f77w9rO0aiUd3Vdwq0oRgHUZGWjcsiUOHz4MyQ9xRkZGwt7eHtra2rnOGz9+PNavX4+VK1di3LhxeY7wWzdogHoZGXj711/AP/9ItwlMTs5+PT09HW5ubqhRowbWrFmjUPyMYtLS0jBjxgz07t0bTZs2RZMmTRAcHIybN2+ie/fuSEtLU3eIcrt//z7++OMPDB8+HH379lV3OIycuFwuHBwcWJE+puxR990GpmSSSCSko6NDK1eu/PdJoZDo+HGiJUsorHlzWmpkRLR3b/YoFcOUZPfu3SMAFBERoe5QmJ+JUEgUFETk4PDv6L2GhvTxfdRf0rIlzbO2JrPq1enbt285Ts8a3e/VqxdVqVJF9lHP+fOJOBz5R9q5XCIDA6LPn2W/xoAAhUb0xQBJNDTo0q5d5OTkRACoQYMGFBgYSEKhkCpUqEDTpk0rsGt/f38CQCNHjiSxWCx98tMnohUrSFS9eu5+dXSIxowhio6mMWPGkEAgoDt37sh+rYxKLFmyhPh8Pj1+/DjH8xEREaStrU0uLi6Unp6upujkl5KSQvXr16f69etTCvvOU2otXryYdHV1C5wNxDA/G5bsM/mytLSksWPH5vnawoULydjYuJgjYhjF7dq1iwDQ169f1R0K87O6d49o6VKiKVOkj2XLiO7fJyKiZ8+ekba2Nnl7e+c45ebNmwSAANCOHTtk6ycjg8jISPGp9RwO0apVsl+XREI0bJhcNxfEWf+/f392M+fPn6eOHTsSAKpZsyYBoBMnThTafUBAAHE4HBo2bBiJ//qLSCCQxpJfPHw+EUDbAfKT5zoZlUhISCADAwMaM2ZMnq+HhoaSQCCgbt26UUZGRjFHp5gRI0aQtrY2RUdHqzsURgnnz58nAHTr1i11h8IwxYYl+0y+unTpQl26dMnzNT8/P+LxePmupWSYksbb25tq1qyp7jCYMmzx4sXE4/FyfNEUi8VkYGBAAoFA9sQnMFC5dfQcDpGZGVHWSLkshEKikSOJABIV0n4mQEIORzrzKw9Xr14la2vr7KR/y5YthV77zp07acL35F4iz8yCNm2IStEI8s/Ay8uLdHV16cOHD/kec/LkSdLU1KRevXqV+FHWoKAgAkBbtmxRdyiMktLS0khTU5PWrl2r7lAYptiwNftMvszMzPD8+fM8XzM0NIRYLP5pttJhfn537tyBra2tusNgyjAvLy9YWlpixIgREH/fum/37t1ITExERkYG9u/fL1tDmzYpthNAFiLg+XP51u7z+YCfHx7MnYvLPz6XtVsLjwficiHicHBEIEByeDjQr1+eTdnb28PKygr169dHo0aNMHz4cNSpUwd+fn5IT0/P85yB5cph5fd1+7JWD+AC4EREAHnsBMAUjRcvXmD9+vXw8fFBhQoV8j2uU6dOOHDgAI4ePYpBgwZl/zyUNLGxsdlr9D09PdUdDqMkLS0tNG7cmK3bZ8oUluwz+TIzM8OLFy/yLIxUvnx5AMDXr1+LOyyGkRsRISoqiiX7jFppaGjA398fN2/exIYNG5CSkoKpU6eiT58+6NatG+bNmweRSFR4Q48eSQv0KevpU/mO53DgfekSRjVoAMmdO9LCrH36AF27Av364W6/fqhMBM7u3TB0csq3GSJCREQEXFxccPDgQURHR8PBwQF//PEHzM3NsWrVKqSmpv57gkQCTJig2DVKJMDu3UBUlGLnM3KZMWMGjIyM4OXlVeix3bp1w759+7B//34MGzYsR/HGkiAzMxNubm4wMTHB5s2bwVGwSCVTsjg4OODChQt5frdlmJ+SeicWMCXZoUOHCAC9f/8+12uXL18mAHTv3j01RMYw8nnz5g0BoMOHD6s7FIahUaNGka6uLo0fP540NTUpNjY2e+3+Llm2L9XTU3o7POLxiH4swCqDrBj37NmT67WEhAQyNTWlnj17FtpObGwsAaCjR4/meP7Ro0c0ZMgQ4vF4ZGpqSosXL6akpCSi4GDlrpXPJxoxQq5rZeR369YtAkD+/v5ynbd3717icrk0fPjwf4swlgDe3t6koaFB169fV3cojAodOXKEANCLFy/UHQrDFAs2ss/ky8zMDADynMpvaGgIgI3sM6XDnTt3AICN7DMlwqJFi6Cjo4O1a9diwoQJMDMzg52dneyj++XKKR+EWCzdNlUOCxcuRK1ateDq6prrtfHjx0MkEmHDhg2FthMZGQkAcHR0zPH8r7/+ir/++gtPnjzBb7/9hpkzZ6JmzZp4PG4cSJllCyIRsHMnkJioeBtMoSZPngwLCwt4eHjIdV6/fv2wbds2bN26FX/++WeJGHE9ceIEVqxYgSVLlqBx48bqDodRoRYtWgAAm8rPlBks2WfyxZJ95mcRFRUFAwMD1KhRQ92hMAwMDAxQt25dSCQSWFtbZz/v6+uLx48fY9++fQU3ULeucmv2s9SuLfOhDx8+xKFDhzB58mTw+fwcr508eRK7d+/GqlWrUKlSpULbioyMhJWVFYyMjPJ83czMDP7+/nj27Bn69++Pao8fg6PssoX0dODaNeXaYPJ1+vRphIaGYtGiRbneH7IYPHgw/P39sWHDBkycOFGtCX9cXByGDBmCLl26YPz48WqLgykapqamqFu3Lkv2mTKDJftMvgwMDGBkZMSSfabUi4qKgo2NDVtzyZQI165dw/nz52FlZQUfHx98+/YNAGBnZ4euXbsWPro/cqRya/Y5HMDcHGjZUuZTFi9ejCpVqmDQoEE5nk9KSsLvv/+Ojh075notP5GRkWjVqlWhx1WvXh3rVq6EjsxRFuLLF1W1xPxAIpFg8uTJcHBwQPfu3RVuZ/jw4Vi/fj1WrlyJ6dOnqyXhF4vFcHd3h0AgwPbt29nvjJ+Ug4MDS/aZMoMl+0yBzMzMEBsbm+t5LS0tCAQCluwzpQKrxM+UFESECRMmwNraGkeOHMGXL18wY8aM7NdlGt3v2RPIZ1RcZn/88W8l/UK8ePECe/bswaRJkyAQCHK85uPjg69fv8Lf31+mxOjt27d4+vQpWrduLVucMsYoEwVGnJnC7d27F1FRUVi6dKnSyfGYMWOwYsUKLFq0CHPnzlVRhLKbP38+IiMjsWfPHpiYmBR7/0zxcHBwwN27d5HIlvYwZQBL9pkCFbb93hc2UsKUcMnJyXjy5AlsbGzUHQrDYP/+/bh06RJWrlwJc3NzzJ07F+vWrcP169cBAI0aNSp8dF9T8//s3Xd8zPcfwPHXXU4WicROao+YJUgkxKqtRimtUUpsJUVQMWrHSBWxBTVLKEVtv1BCECNixBY7MbP3je/vj6u0qZXcXXKJfp6Ph0e4u+/n+75zufu+P+P9AU9P7Qh9VsnlYGUFffpk+hAfHx9sbW0Z8K8t7I4dO8bKlSuZM2dOppfInPhru79GmZ1VYGICBQtmOtb3KlrUMO0I6VJSUpg4cSJffvll+lpofXl6ejJr1iymTp3KnDlzDNJmZhw/fpzp06czefLkzHdGCXlSw4YNkSSJM2fOGDsUQch2ItkX3utDyb4Y2RdyuytXriBJkhjZF4wuJSWFcePG0aFDB5o3bw7AiBEjqFWrFoMGDUpP7jM1uu/lBe3bZ23kWy7X/tm7F/7aPvVDIiMj+eWXXxg1ahT5/1EYMCkpiQEDBtCoUSOGDh2a6RCOHz+Og4NDptb2p+vWTf9R+aJFwdVVvzaENyxdupQnT54wa9Ysg7Y7fvx4pkyZwvjx41mwYIFB236bly9f0rNnTxo3bpxhpo3wcapUE3hWqgAAIABJREFUqRJFixYVU/mF/wSR7AvvVa5cOR4+fPjWESaR7At5waVLl1AoFFSrVs3YoQj/cQsWLODJkyfMmzcv/TaFQoGfnx+XL1/G19cXyOTovokJbNsGXbpo//2hpF+hAAsLOHgwS2v158+fj5mZGd99912G23/88UeePHnC6tWrkWehwyGz6/UzGDpUW1FfV3I5fPcd5MunexvCG6Kjo/H29mbgwIFUrlzZ4O2/TvY9PT0ztcuDriRJom/fvqSlpfHrr79iYojil0KuJpPJaNCgASdPnjR2KIKQ7USyL7xXuXLlUKvVPH78+I37RLIv5AWhoaFUqVIFc3NzY4ci/Ic9ffqUWbNmMXz4cBwcHDLc5+zszPDhw5k8eTIPHjwAMjm6b24O/v6wfj28nrmiUCDJ5WgAJSABScCLzp0hNBT+mlGQGVFRUSxfvpzhw4enF2UFCA4OZuHChUybNu2N5/I+L1++JCwsLMvJ/kVJ4rKFBbqm+xpJgoEDdTxaeJfZs2eTlpbGlClTsqV9mUyGt7c3np6eDB8+HD8/P90aevwYAgNh/37tzydPMty9YMEC9u3bx/r167G3tzdA5EJe0LBhQ4KDg1EqlcYORRCylUj2hff60PZ7ItkXcrvQ0FAxhV8wukmTJmFqasrkyZPfev+MGTOwtbVl2LBhSJKUYXRf/b7K+3I5fPstXLgA586Bhweyr79mn4kJ/goFe9u2pVbx4kwpUiRLW+0BLFq0CI1Gk2H7sdTUVPr160ft2rXx9PTMUnuvR9Eyux76dSJZr149ppcsiczcHEmHgn2jJYku339PSkpKlo8V3u7hw4csWrSIMWPGZG1JRhbJZDLmzZvH8OHDGTJkCOvXr8/cgWo17NsHbdtC6dLQpAm0a6f9WaoUfP457N/PueBgvLy8GD16NJ9//nm2PQ8h93FzcyMpKYlLly4ZOxRByF6SILxHcnKyJJPJpDVr1rxx35AhQ6Q6deoYISpByByVSiVZWlpK8+bNM3Yown/YxYsXJZlMJi1atOi9j9u5c6cESNu2bZMkSZLOnz8vAdKmTZuyfE47OzupXLlyUpcuXaRJkyZJVlZWUkJCQqaPj4uLk2xtbaURI0ZkuP3HH3+UFAqFdOnSpSzHNGrUKKlMmTKZeuzFixelWrVqSSYmJtKPP/4opaamSpojR6QUExNJCZKUyT+h7dpJxYoWlQDJ2tpa2r59e5bjFt707bffSsWKFZPi4uJy5HxqtVoaOHCgJJfLpc2bN7//wbdvS5KDg/Y9YGLy9vfGX7ffyZdP6vTpp1JqamqOPA8h90hJSZHMzMykhQsXGjsUQchWYmRfeC9zc3Ps7e3FyL6QJ925c4ekpCRRiV8wGkmS8PT0pHLlygwZMuS9j+3UqROdOnXi+++/JzY2Nn10f/r06e8f3X8LKysrbGxsCAsLo3///iQkJLB169ZMH79ixQoSEhIYM2ZM+m2XLl1i9uzZTJgwgZo1a2YpHsjcen2lUsm0adNwdnZGo9Fw9uxZpk+fjqmpKb6XL1NPrebK6we/rWjf6/XWhQvDqlXU2ruXJxERzJw5k+TkZLp27YqjoyPHjx/PcvyC1qVLl9i4cSNTp07FysoqR84pl8tZsWIFvXv3pnfv3uzYsePtDwwLg3r14PWWwe/6vfnr9tJKJdsfPsT09u1siFrIzczMzHB2dhbr9oWPn7F7G4Tcr2HDhlLPnj3fuH3OnDlSoUKFjBCRIGSOv7+/BEjPnz83dijCf9SuXbskQNq3b1+mHv/w4UOpQIEC0tChQyVJ0n1038nJSWrUqJFkYmIiJScnS23atJFcXFwydWxSUpJUvHhxacCAAem3KZVKqW7dulL16tV1GgWNiYmR5HK5tGrVqnc+JjQ0VHJ0dJRMTEykSZMmZThPcHCwlC9fPql8+fJSqVKlpOTAQEnq21eSzM3/Hq2VyyXJzU2S/P0l6S0xvnr1SnJycpLQljKQGjZsKB0+fFjSaDRZfj7/ZW3atJEcHByktLS0HD+3SqWSevToISkUCmn37t0Z73z6VJLs7N49mv+uPyYmkmRvL0nPnuX48xGMy8vLS7KzsxOfAcJHTST7wgf17t1bql+//hu3r1ixQpLL5eJDUsi1xo8fL33yySfGDkP4j0pNTZUqVqwotWrVKkufk76+vpJMJpNOnTolSZIkdejQQXJwcJBUKlWm22jWrJnUokULCZBCQ0Ol33//Pf3vH7J06VJJLpdLt2/fTr9tzpw5klwul4KDgzMdwz/t379fAqSbN2++cV9aWpo0bdo0SaFQSDVq1JDOnz+f4f6oqCipTJkyUuXKlTMsc5AkSZI0GklKTJSk6GhJUqs/GIdGo0l/LlZWVhIgubi4SHv37hXfZZkQEBAgAdKOHTuMFoNSqZS6dOkimZqaSgcOHPj7Di+vrCf6/0z4J0402nMSjGPPnj0SIIWHhxs7FEHINmIav/BB5cqV41FEJIlKDSqNlH67jY0NGo2GhIQEI0YnCO8WGhoqpvALRrNkyRLCw8P5+eefkclkmT5u2LBh1K1bl0GDBqFUKjNXmf9frK2t08959epV2rdvT4kSJVi1atV7j1Mqlfj4+NCtWzcq/lXQ79atW0yZMoVRo0ZRr169TMfwT4GBgRQvXpxKlSpluP3y5cu4uLgwffp0xo0bx/nz56lbt276/ZIk4e7uTlxcHEqlkqZNm9K1a9e/G5DJwNISbGw+vP0g2oJv48aN488//8TS0hJbW1sSExNp3749Tk5O7Ny5E41Go9Nz/NhpNBp++OEH6tevT+fOnY0Wh0KhYPPmzbRp04ZOnToREBAAqamwYsW7p+1/iFoNy5dDWpphgxVytQYNGgAQFBRk5EgEIfuIZF94p9g0NccjErFsP5hhO8+x+GoU8y69YsnVKE49TSK/bREAsW5fyLVEJX7BWF6+fMn06dMZNGgQNWrUyNKxJiYm+Pn5ce3aNX7++Wfq1q1L+/bts7R239ramuTkZEqWLMnVq1fJly8f/fr1Y+PGjSQlJb3zuM2bN/PgwQPGjx8PaBO8/v37U6pUKaZPn56l5/FPgYGBNGnSJL0DQqlUMmPGDJycnEhLS+PMmTPMnDkTMzOzDMctXLiQ3bt306lTJ+7fv8+iRYuy1HHyLo0bN07vDLx27RoDBw7E2tqaL7/8klq1auHv75/lOgmSJHE3No1DjxLYdS+OnffiOPgwgZsxqdrt//I4f39/QkJC8PHxMcj/gT5MTU3Ztm0bzZo1o2PHjlyfMQP0vRaJioJ31QIQPkqFChWiatWqYt2+8FETyb7whhSVht/D41geFs2ZZ8lICtMM9ycoNZyITCKsSE06T5rPy6hoI0UqCO/2/PlzIiMjRbIvGMXUqVORJEnnBLl27dqMHDmSadOmER4enuXRfWtra+Li4qhRowZhYWEADBgwgLi4OLZt2/bWY9RqNbNnz6Zjx458+umnACxfvpyTJ0+yatUqLC0tdXouSUlJnDt3Lr0435UrV3B1dWXatGmMHTuWCxcu4OTk9MZxwcHB/PDDDwwZMoTt27fz3XffpcdlCCVKlOB///sf48aNY9WqVRQsWJD9+/djb29Pjx49qF69Ohs2bEClUr23nTS1RPCzJJaFRfNbeByXXqZwMyaNmzFpXH6Vws578Sy9GsXJyCRSVHlz1kBqaioTJ07kiy++oGHDhsYOB9AWWNuxYwdubm6cnTsXzevijLpSKODPPw0TnJBnNGzYUIzsCx81kewLGcQr1ay/FcPtWO1UtneNRUiAJJPh9EVPgtJsSFXnzQsY4eP1eu9cMY1fyGnXrl1jxYoV/PjjjxQtWlTndqZNm0axYsUYOnRolkf3/5nsX716FdAuyWrVqhV+fn5vPWbnzp3cvHmTCRMmAPDgwQO8vLwYPHgwTZs21fl5nDlzBqVSSYMGDfD29qZu3bqkpKRw5swZvL293xjNB4iKiuLrr7/GycmJ5ORkTE1NmTZtms4xvItCoWDWrFn88ccfHD9+nOHDhzNnzhyCg4NxcHCgT58+VK5cmdWrV5P2lineCUoNm27FcCwiiXil9ntQw9/fna+/GRNVEkFPk1h7M4boVB2nmhvR8uXLefjwIbNnzzZ2KBlYWFiwe/duyhcsqPsU/tfUau3ovvCf4ubmRlhYGNHRYuBK+DiJZF9Il6rWsPVOHDGpmncm+f8mNzEhwcSC38PjUX8E0xSFj0doaCj58+enQoUKxg5F+I8ZPXo0ZcuWxcPDQ692ChQowNKlSzl8+DD+/v5ZGt23srJKT/bv3buXXltl0KBBnD59mitXrmR4vCRJzJo1i+bNm+Pi4oIkSQwaNAgbGxt8fHz0eh6BgYFYW1szYMAAJk+ezJgxYwgJCXnraP7rWPr27Ut8fDzjx49n/fr1eHt7U6hQIb3ieJ8OHToQEhKCjY0N9evX5/Lly+zevZuLFy9Su3ZtBg4cSKVKlVi2bBkpKSmAdhbcr7djeJGiztR3pgTEpWk7B+LT8k7CHxMTw4wZMxgwYABVq1Y1djhvsLS0xLVRI/0bksnevp2j8FFzc3NDkiROnz5t7FAEIVuIZF9Id+55Cq8yedGSgUzGgwQlYVGp2RGWIOjk0qVL1KxZExN9p3YKQhYcPHiQgwcP4uPj89YR66xq3749Xbt2ZeTIkZQvX5727dszY8aMD47uvx7Zr169OqCdbQDQsWNHihcv/kahvoMHD3Lx4kUmTpwIwPr16zl8+DArV67E2tpa5/hVKhUbN24kPj6e5ORkTp8+zaxZs9772syfP589e/awbt06vL29cXR0ZMCAATrHkFnlypUjKCgId3d3Bg4ciLu7Ow4ODmzfvp2rV6/i5uaGh4cH5cuXZ8GCBewOj8lS5zhoE/4klcSO8DikPNJBPnfuXFJSUpg6daqxQ3mnfHZ2yPRN1OVyKFLEMAEJeUaFChUoXry4mMovfLREsi8AoJYkQl4mZz3R/4sMuPAi2ZAhCYJeRCV+IaepVCpGjx5NkyZNDFqt3NfXl5SUFLy8vJgyZQo3b95k69at7z3G2toalUpF+fLlkclk6VP58+XLh7u7e4ZCfZIk4e3tjaurK02bNiUyMpJRo0bRq1cvPv/8c53jDgsLw8XFhfDwcJo2bUpISMgHq/mfPn0aLy8vxo4dS1RUFGfPnmXRokU51mlnbm7O8uXL2bBhA9u2bcPV1ZVbt25RvXp1Nm/ezPXr12ndujVzFi/nXmLWEv3XJOBpspqIpPfXAsgNHj9+zMKFC/H09MTOzs7Y4bxb587IPlBb4YNUKvjyS8PEI+QpbXq6E1WsMrv/Kqx54GE8YVEpGXagEoS8SiT7AgB3YtNIUun+oSYBz5LVRCYqDReUIOgoJSWFGzduiOJ8Qo7y8/Pj+vXrLFiwwKDVyu3t7Zk9ezarVq0iOTk5U2v3X4/Gv074XxfpA22hvpiYGLZv3w7AiRMnCAoKSh/VHzZsGKampixcuFCneFUqFbNnz6ZOnTq8fPkSAB8fH8zNzd97XFRUFN26dcPZ2ZkffvgBLy8vevToQSNDTNHOot69e3P27FlSU1NxcnJKf60cHBxYu3Yty/ceQ9LoPhVfBoTkgQ7yyZMnY2VlxdixY40dyvs1bw7lymmn4utCJoMKFeCzzwwbl5BrqTQSF14k43c9miq9R1OyQUtu/FVY88qrVPY8SGDJ1SiORySSqBR1qYS8SyT7AgC3YtLQ99JUDtyKFXvUCsYXFhaGWq0Wyb6QY6Kjo5k8eTJ9+/aldu3aBm9/yJAhuLi4MHjwYMaPH//B0f3Xyf6/i/SBdtpqixYt0gv1eXt7U7NmTdq1a8f27dvZuXMnS5YsoXDhwlmO89q1azRo0IBJkyYxcuRIBgwYQIECBT74u6jRaOjTpw+JiYls3bqVOXPmEB8fr3e9AH3UqFGD8+fP07ZtW7766is8PT1RKpVoJIn7SlNkct1nG0jA9ei0XF2d/8qVK6xfv57JkyfrtZQjR8jloGeNDL7/XvfOAiFPSVFp8L8Ty/8eJxKdqv0dNFHke6OwZopa4syzZH65Ec3z5Nw/E0cQ3kYk+wIAiUrdpiP+W1IuvnAR/jtCQ0ORyWRZ3t9cEHQ1c+ZMUlJS8Pb2zpb25XI5fn5+3L59m6NHj35wdP99yT5oC/UFBQWxdetWDh8+zIQJE4iKimL48OF07tyZrl27Zik+lUrF3LlzqV27NvHx8QQFBTF37lxOnTqFm5sbig+sp54/fz579+5lw4YNJCYm4uvry8SJEylZsmSW4jA0Kysr/P39WbRoEUuWLKFp06bcffSENAN81WmAuFw8Yujl5UW5cuUYNGiQsUPJnKFD0Tg5oc5qwm5iAq6ukFeep6AXpUZiy51YniRmLnl/XWfj19uxRKXkncKagvCaSPYF4O9eTH1IgFjeJOQGly5dwsHBgfz58xs7FOE/4Pbt2yxevJjx48dn67rmmjVrMnr0aGbOnEnfvn3fO7r/72Q/IiIiw9ZSX3zxBUWLFmXixIlUqlQpvQhgWloaS5cuzdIyhOvXr+Pm5saECRMYMWIEISEhuLq6olKpCAoKonHjxu89/tSpU3h5efHDDz/w+eefM2LECEqXLo2np2emY8hOMpkMDw8PAgMDefjwIe06djJY22nq3PmleezYMfbv38/s2bMxNTU1djiZolIoGFCiBNckCUmeyctbExOoUQP27IEPLDMRPg6HHyXwPDlrxagltL+r2+7GoskjhTUF4TWR7AsAWCpkek/jlwEWCvGWEowvNDRUTOEXcswPP/yAnZ1djiSnkydPxt7enmXLltGuXbt3ju7/M9l/XZH/n+v2TU1N6dChA3fv3sXT05NDhw6xadMmFixYkOkOC7VajY+PD7Vr1yYmJoaTJ0/i4+ODhYUFoO10i4+Pf2+y/+rVK7p3746rqyszZ85kz549HD58mAULFnxwjX9Oc3V15eLFi1SuUN5gbZqa5L5p4xqNhrFjx1KvXr0sz/AwFo1Gw6BBg9iwfz8Pt2xB1qOHNpF/V2FHuVx7X48ecPIk6LBkRch7EpUarkal6lxYMyZNw904sVxVyFtEZiYAUMYqn97T+DVAmQL5DBGOIOhMkiQuXbokKvELhqFWwx9/wOefQ6lSYGMD9vbQqBFs2MDxQ4fYtWsXc+bMSU9ys5OlpSXLly/n6NGjODk5vXN038rKCtAm+5UrV0ahULwxlf918TxJkhg8eDCtW7emT58+mYrjxo0buLm54eXlxfDhwwkNDaV+/foZHhMYGIi5uTnOzs5vbeP1Ov2kpCS2bNmCWq1m1KhRtG7dmg4dOmQqjpxWpEgRdmzdjKTU/4JfDljny32XYb/99hvnz5/Hx8fHoIUms4skSXh6erJu3TrWrVtHu+7dYdMmePgQJk+GEiUyPF5dvDhMnQqPHsHGjVCggHECF3Lc5Vcpeh2v3XlKvzYEIaflvm8ZwSiq25qj76C8VT455a1Fsi8Y1/3794mLixMj+4J+JAkWL4bSpeGLL+DwYXj8GGJjITISTp2CPn2o8/nn/PLJJ3TPwS27WrduTY8ePViyZAktW7Z86+i+ubk5CoWC+Ph4TE1NcXBwyJDsh4eHs2/fPhwcHJg+fToxMTGsXLnyg8mdWq3mp59+wtHRkejoaE6ePMm8efPe2tERGBiIq6srZmZmb21r3rx57Nu3j40bN1KqVCkWLFjAw4cPWbhwYa5OMk0VCpztrbXvER3JgCq2ppjnstlwaWlpTJgwgfbt29OkSRNjh5MpU6dOxdfXl2XLltGrV6+/77C31yb7kZGQnMztoCDKFCtG3RIliBo2DHLzVoJCtgh5maLXwJYE3I9XEpsm1u4LeUfu+pYRjMbUREbNQuY6T+WXAXWLmufqCzThvyE0NBRAJPuC7lQq6NdPW507IkJ727+nymu0lU6sNBr6RkQga9sW4uNzLMQFCxagVqsxMzN76+i+TCbD2tqauLg4gDeK9Pn4+FC4cGG6dOnC06dPGTlyJGXKlHnvOW/evEmjRo0YN24cw4YNIzQ0lAYNGrz1sRqNhsDAwHdO4Q8KCmLChAl4eXnRtm1bHj9+zMyZM/n++++pUqVKVl4Ko6hTxEKvyu3S6zZymZUrV3L//n3mzJlj7FAyZf78+UyfPp05c+YwZMiQdz/Q3JxKDRqw78gRHj9+TKtWrYiJicnwEEmSeJygJPhZEscjEjkRmcjFl8li27WPhFqSiDfQ/2V0qkj2hbxDJPtCOtfiFpiZZH3tvlqlwtpUjmPh3LW+UvhvCg0NpWjRopT419RNQcgUSdJu4bV+faYPkUkSBAZCly6gVGZjcH8rXrw4Pj4+7N27F1dX17eO7r8t2ZckiYiICNauXcuwYcPYunUrCoWChISEd55LrVbz888/4+joyMuXLzlx4gQ///zze5ctXLt2jaioqLcm+y9fvqR79+7Ur1+fGTNmADBu3DgKFCjA5MmTdXk5clwhcxMqWOfTqYNcBpSwMOGT/O/foSCnxcXFMX36dNzd3dPrPORmq1evZvTo0YwfP55x48Zl6pgaNWoQEBBAeHg4bdu2JT4+njS1xMWXyay+EcOm27Eci0gi+Fkyp58mc+hRIkuuRrH7XhyPEnLmd1vIHkoDFsPMrYU1BeFtRLIvpLM2NaFbRWsUcjJ/AaPRkBQTRfvi8lw3HVH4b7p06RKOjo5ilomgm4MHYcWKrE/RVqshIACWLs2euN6if//+uLm5ERER8dbR/X8m+9WrV+fVq1c8f/48PVF/8eIFT5484dtvv2XDhg2kpLy5FvXWrVs0btyYsWPHMnToUEJDQ3Fzc/tgbIGBgSgUClxdXTPcrtFo+Pbbb0lJSWHLli0oFApOnjzJ5s2bmTNnDgULFtTjFclZ7ctYYWMm13b2ZJIMbUHcL8tb57rPKB8fHxITE5k2bZqxQ/mgrVu3MmjQIIYNG5bl7S4dHR05fPgw165do0uvvqy5HsWhR4m8+mtbNQltDaLXY8AScDMmjV9vx3LkcQKSqMaeJ+UzYDHM3FhYUxDeRWRnQgZ2lvn41sEGK1PtW+NdH2evb495cp8lvVqgSYzNkfgE4UNEJX5BL4sWvbuCd2aP1+TMtF+5XI6fnx+RkZFUqlSJGTNmZBjd//fIPmi3uVuxYgVffvkly5YtY9q0aYwbN46oqCh+//339GPVajXz58+nVq1aPH/+nMDAQObPn4+lpWWmYgsMDMTZ2fmN7S9/+uknDhw4wMaNGylZsiRqtRoPDw+cnZ0zXRwwt7BQyOlkn49XD+8iZeL/XAZYm8rp5WCDtake77Fs8OTJE+bPn8/IkSP55JNPjB3Oe+3bt49evXrRq1cvFi1apFOniZOTE7sPHaHe995Ep3x4v/XX/7vnXqRw4KFI+PMiE5mMAgqZXrU2XrPJZb+/gvA+ItkX3lDUQsGQarZ8Wc6K0m+pri8DKhY0pezLa8z9woW455FvrH0TBGOIjo7mwYMHohK/oJvwcDh06M31+ZklSXDvHhw5Yti43qNatWqMGzeO8PBwbty4wbZt29Lv+2eyX6FCBczMzFixYgWSJHH69Glq167N6NGjcXBwoGnTpvj5+QHa0fwmTZowZswYBg8ezKVLl2jYsGGmY5Ik6a3r9U+ePMnEiRMZP348bdq0AbRTsUNDQ1m8eDHyzO6Nnot4jfqeVQM7UsMsBau/KuvLAUmjQaPRIGm07yVLhQy3Epb0rWyDrVnuSxSmTp2KpaVlpqfDG8uxY8fo2rUr7du355dfftH5PaORJG5bV6CAbWHkWezcuxyVynlRkT3PeP15N2jQIPatmIdGj85YGdpdp2xy4e+wILxL7lowJuQacpkMBxszHGzMiE1TE5emIU0tYWYiw8bMhAL55FC+MX6ffcaff/5JRESESLAEo7t8+TIgivMJOtq6Vbv/tq7JPoBCod32q2VLw8X1ARMmTMDf35+oqCimT59Okw5fcjVaiePACUhyBZtvx1LIzIT6rTtw7OAf1K5dmwsXLnD+/HkUCu1lwKBBg+jZsyfjx49n4cKFfPLJJxw/fpxGjRplOZ67d+8SGRmZIdl/8eIF3bt3p0GDBkyfPh2AqKgoJk6cSN++fXFxcTHMi5GDtmzZwrp161i7di0dapRGI0nci1NyOzaNZJWG8Hv3OHPiGGmR91jgNZLydrlzL/dr167xyy+/MH/+/Fy9jOLs2bN06NCBhg0b4u/vn/7e1cXt2DRepap1LrJ4+lkSdYqaY5LLlmIIf4uIiGDjxo2sW7eOGzduUKpUKfoOGoqJiVznivwS2mLUgpCXyCQxF0nQw/nz53F2dqZTp07s3LnT2OEI/3G+vr6MGzeOhIQEvS4Ehf8oDw9YuVL/InvNm2vX7+egI0eO8L33fJr09aD0p07I+XvqMZD+7yfXLxG0aTntnaqlJ90AYWFhODo6olKpGDFiBLNmzcr0lP1/W7NmDQMHDiQ6OpqCBQui0Who164d58+fJzQ0NH2auIeHB+vXr+fWrVt5rqBmeHg4tWvXpl27dvz666/vnEp+4cIFunbtSmxsLBs3bqRdu3Y5HOmHdezYkbCwMK5fv46pqamxw3mrq1ev0rhxY6pUqcL//ve/N5aHZNXm27E8SlDqtQ1bp7JWVLF9+7aSgnGkpqayZ88e1q5dy8GDBzE1NaVz5864u7vTrFkzTExM2PcgnqtRqVn+v3+9DGdwNVvkopNHyEPy3pw5IVepWbMmAHv27CEsLMzI0Qj/daGhodSoUUMk+oJuUlIMsp5Tk5hogGAyT5IkTKq60vvn9ZSsVlsbw79j+uunnUMNvvZeQYP+o5EkCY1Gg6+vb/r6+oIFCzJ37lydE33Qrtd3dHRMHyWeO3cuhw4dYtOmTemJ/pUrV1i2bBlTpkzJc4m+UqmkZ8+eFC5cmOXLl793zXjdunUJCQnBzc2N9u3bM2nSpDd2TTCmEyc7RXmvAAAgAElEQVROsGfPHry9vXNton/nzh1atmxJ6dKl2b9/v96JflSKmod6Jvoy4MKLZL3iEAxDkiRCQkLw8PDA3t6er776ilevXrFs2TIiIyPZvHkzLVu2xOSv5RotSxagmIVJlnbSkAGmchlfV7AWib6Q54hkX9CLqakpFhYW2NraMnz4cFG0RjCq15X4BUEnNjZ67Z0O2mme+4ODqVGjBl999RVTpkzB39+fy5cvv7XavSGciEzizDNt4vGh9cev7w+NUvJ72BOaNm3KyJEjGTBgAEePHiU2NpZdu3bpFc8/1+ufOHGCSZMmMWHCBFq3bg1oL86///57KlWqhIeHh17nMoapU6dy4cIFtmzZkqlp77a2tuzevZvZs2cze/ZsWrVqxfPnz3Mg0veTJImxY8dSt25dvv76a2OH81aPHz+mRYsWWFtbc/jwYWxsbPRu83nyhwvyfYgEPE/OPZ02/0UvXrxg4cKFODo6UrduXbZv307//v0JCwvjzJkzDB48+K3vF1MTGd0rFsQ+k1tfvt5Bo2elghQ2FwMJQt4j3rWC3mxtbWnWrBmbNm1iy5Yt9OzZ09ghCf8hKSoNKWoJpVLJ7Xv36devn7FDEvIqZ2f9p/DL5RRt25amZcty7do1/Pz8ePr06V93ySlfvjzVqlWjatWq6T+rVq1KgQIFdDrdvbg0Tj3TbYTxttIchX0Fjh2bQZMmTQBo3Lgxfn5+dOvWTac2Hz58yP3792nSpEn6Ov1GjRoxderU9Mfs2LGDY8eOceDAgVw7mvwuR48eZfbs2Xh7e2epzoBcLsfLywtXV1e6d+9O7dq12bp1a5YKHxrajh07CA4O5ujRo7myOOKLFy9o2bIlkiQREBBAsWLFDNJuqsYwgxJpBmpHyDylUsnBgwdZu3Yte/bsQSaT0aFDB7y9vWnTpk2mZ/VZKOT0qFiQ0JcpnH+RTEyaBpkkodZokJvIkSFDAsxMZNQubI5TMQttrSpByIPEmn1Bb9WrV6dVq1Y8evSIoKAgbty4kauL/Ah5n1IjcT06lQsvknn2r9EVa1UizSqVoFJBU1E8SciatDSwt4dXr3Rvw8QEHj0CO7v0m6Kiorh+/TrXr1/n2rVr6T8fPnyY/pjSpUtn6AB4/bNQoULvPd22O7Hci9dtSrKk0fBJfgXfVvn7HL/++iu9evXi1q1bVKpUKcttvj7+6dOn9OnTh5CQEEJDQ7G3twcgKSmJqlWrUqtWLf744w8dojaely9fUrNmTapWrcrhw4fTpwVnVWRkJN27dycoKIi5c+fi6emp0/Zx+lAqlVSrVo1KlSqxf//+HD13ZsTExNCsWTMiIiI4ceKETu/Fd7kWlcofD+L1bscEidG1CufKjpKPTVhYGGvXrmXTpk08e/YMR0dH3N3d6dmzJ0WKFNGrbUmSeJCgZP/5a5w8e4EvOnWigLkpZazyUcXGDIVcXEcIeZsY2Rf0ZmNjQ0xMDAsWLKBKlSpMnTqVBQsWGDss4SN16VUKRx4nkqaR3rrmLl6Rn1334rFUyGhbugCVCooCSkImmZrC0KEwe7ZOFfmVwHk7O8oCdv+4vVChQri5ueHm5pbh8QkJCdy4cSNDB8CePXvw9fVN3x6qePHiGToAXv+9ePHixKZpCI/XfSaCTC4nIlnDy2QVRSy0lwNdunTBw8OD1atXM3fu3Cy3efz4capVq8aaNWs4fPgwBw8eTE/0AXx8fHj69ClHcnB7QkOQJIl+/fqRlpbGxo0bdU70Aezs7Dhy5AgTJ05kzJgxBAUFsXbt2hztJPfz8+Pu3bvs2LEjx86ZWYmJibRv35579+5x/Phxgyb6AFam+ifnkkbDs0f3sGlSgXr16uHi4oKrqysuLi4Gm4HwXxcdHY2/vz9r167l3LlzFC5cmG+++QZ3d3eDLteTyWSUtTJFuhbE9h9H8esP/XK8800QspMY2Rf01q5dO/Lly8euXbuYO3cuEydOJCQkJL14nyAYyonIRIKeZm3KcttSBahVRGyVI2RSZCRUrw5xcVlK+CWZDI1cTisrK85rNMyaNYshQ4bolBSmpKRw69atN2YC3Lp1C+VfywxsbW35wnMqDm27I9NjZFEGOBezoNknfxc9GzVqFL/++iuPHz/O8jT7KlWqULlyZfbu3cuECROYMWNG+n3379+natWqjBo1ilmzZukcszEsWbIEDw8P/vjjDzp06GCwdnfv3k2fPn0oWrQo27dvz5EtbOPj46lQoQLt2rVj7dq12X6+rEhNTaVjx44EBQUREBCAq6urwc8hSRLLw6KJU+q+3zpAqeRIHgXuIzg4mDNnzqQv1ylbtmx64u/q6krt2rUxMxOdzpmhVqsJCAhg7dq17Nq1C5VKRZs2bXB3d6d9+/bZ+jpOmTKFNWvW8Pjx42w7hyAYg0j2Bb198803PHnyhGPHjpGWloajoyOFChUiMDBQTG8TDObiy2QOPdKtynmX8lZihF/IvLNnoWlT7bT+zCT8r0eBtm0jqlkzxo8fj5+fH87OzqxYsYI6deoYJCylUkl4eHh6B0BsqVoUrFoXuYnuk/RkQGUbUzqVs06/7dq1a1SvXp1t27bx1VdfZbqtZ8+eUaJECWxsbHB0dCQgICBDZ0fXrl05ffo0N2/e1LlGgTFcunQJFxcXBg0axKJFiwze/t27d+natSs3btxg2bJluLu7G/wc/zRlyhR8fHy4desWpUqVytZzZYVKpaJbt27s27eP/fv306xZs2w7V/CzJP6MSNL5eLkMhtcohKVCe40jSRKPHj3izJkz6cl/SEgIKSkp5MuXj9q1a2cY/S9fvrwYPf6H27dvs27dOjZs2MDjx4+pWrUq7u7u9OrVCzs7uw83YABDhw4lODiYkJCQHDmfIOQUkewLehs2bBhBQUGEhoYC2gJGzZs3Z926dfTp08fI0QkfgxSVhsVXo1Dr+GmVXyFjWI1CYsscIfNCQqB167/X77/rq1IuBzMz+O03+Mce6qdOnWLIkCGEhYXh4eHB9OnTsba2fnsbOtp1L46bMWl6bSEGUN46H19XyDiFvFGjRpibm/O///0v0+1s27aNbt26UbhwYa5cuZLhIv3IkSO0aNGCX3/9NU8VcU1KSqJu3bqYmpoSHByMuXn2zBJKTk5mxIgRrFq1in79+rFkyRIsLCwMfp7IyEgqVqyIh4cHc+bMMXj7utJoNPTr149Nmzbx+++/07Fjx2w9X7JKw9KrUah0+OWRAdULmdG+jNV7H5eWlsbly5cJDg5O7wC4ffs2AEWKFMHFxSW9A8DZ2dkgOw0YlCRBQgIkJoKVFVha6r1byT/Fx8fz22+/sXbtWk6ePEnBggXp3r077u7u1KtXL8c7Q7p27Up8fDyHDh3K0fMKQnYTw66C3l6v2X+tWbNmdO/enbFjxxIdHW3EyISPxZWoVJ0TfYBElcSd2DTDBSR8/OrUgbt3YfFi+Oea4X9Oy7ezg+nTITw8Q6IP0KBBAy5cuMDcuXNZtWoVVatWZfv27QbdntTURJalvaLfSpLI95bugoEDBxIQEMDdu3cz3dTrWi3+/v4ZEn2lUsmIESNwc3OjR48e+kaco0aNGsWDBw/w9/fPtkQfwMLCAj8/P9atW8eWLVuoX78+d+7cMfh5pk2bhrm5OV5eXgZvW1eSJDFy5Eg2bNjAhg0bsj3RB2019i/KvT9ZfxsZYGtmQot/LHt5F1NTU5ycnBg2bBgbNmzg1q1bvHz5kv379zNs2DBUKhULFiygVatW2NraUq1aNdzd3Vm5ciWhoaGoVPpvEaiT8HAYNw4KFwZra+3nXIECULIkeHvDs2c6N63RaDh27Bh9+/alRIkSDBgwAAsLC3799VciIyNZsWIFLi4uRpn18Pz5c1FvQfgoiZF9QW8//fQT3t7eGRL+iIgIqlSpQu/evVm6dKkRoxPyOkmSWHktmpg03ddXyoDSBfLRo5LYJULQgSRBUBBcvw6xsdoL33LloHlzyMRWTw8fPuT7779n9+7dtG3bliVLllC+fHm9wzr7PJmjT3Rb2vKaRq3m2Jr5SHdCaN68Oc2aNaNOnToolUrs7e0ZMmQIs2fP/mA7x44d47PPPsPR0ZGLFy9muG/RokWMHDmSCxcuULt2bb3izUnbt2/nq6++ws/Pj4EDB+bYeS9fvkzXrl159uwZ69ato3PnzgZp98aNG9SoUQMfHx88PT0N0qYh/Pjjj8ycOZMVK1YwePDgHD33tahU9vxVmf9DF8MyoLC5Cd0qWGNlqnuBxn/SaDTcvn07w+j/5cuXUalUWFpa4uTklGH6/yeffGKQ877Vq1fQrx/s2aOdsfS2JUxyufZPnz7ajtBMzj558OAB69evZ926ddy7d48KFSrQt29fvv32W0qXLm3gJ6KbKlWq0K5dO37++WdjhyIIBiWSfUFvq1evZtCgQahUqgxr9BcsWMDo0aM5d+4cdevWNWKEQl4WlaLG77phZoiMrlWYfGIbHcFIdu/ejYeHBy9evGDy5MmMHj1ar33mk/9a3qLXdt+ShMnJbfx5cB+BgYEkJiZSsGBBmjRpQnR0NGFhYURERLy3MNazZ8+oWbMmz58/Z82aNfTr1y/9vhcvXlCpUiW6devGypUr9Qg0Zz18+JBatWrRokULtm3bluMjjbGxsfTv358dO3YwZswYZs2aRb58+fRqs3PnzoSGhnLjxo1cUzBu3rx5jB07lrlz5/LDDz8YJYYniUpORCZxP16JjIxJv0atRm5igqlcRq3CZjS0s8TMJHsnxSYlJRESEpKe/AcHB/Po0SMASpYsmSH5r1u3LpaWlvqf9PFjbZ2S+/czV6dELgdnZzh8WDv6/47nsXPnTtauXcvRo0extLTkq6++wt3dnUaNGuW6mgWFCxdm7NixuWrWiyAYgkj2Bb29Hv2Ijo7OsOZMqVRSp04dLC0tOX36tCjWJ+jkcYKSTbdjDdLWd9VtsTbQiIwg6CIhIYFp06axYMECHBwcWLFiBY0bN9a5vb334wmLTtVp3b5apSLqRgiDXSri4OCAUqnk7NmzHD16lCNHjhAUFIRKpcLa2prPP/+cZs2a0bx5c8qVK5d+oa5Wq2nTpg3nz58nJiaGu3fvZpi1MGjQIH777Tdu3bpF0aJFdX6eOUmlUvHZZ5/x8OFDQkNDsbW1NUockiTh6+vL2LFjcXV1ZevWrRm2MXzfcWqJDPuDBwUF0bBhQzZt2sQ333yTnWFnmp+fH4MHD2bixInMnDnT2OEQnarm4ssUHiUoSVZpUCvTCDl9klafVuDLBo5G7SiOiIjIMPp//vx5EhMTMTExoWbNmhk6ABwcHLJ2vRUXB66ucPs2ZGXpgImJtoPgwAH4qyNKkiTOnDnD2rVr2bp1K3FxcTRu3Ji+ffvy1Vdf5drCnEqlElNT0zc6KwXhYyCSfUFvAQEBtGzZknv37lG2bNkM9504cYLGjRvn+DRI4ePxKEHJryLZFz4yly9fZsiQIZw+fRp3d3d8fHwoUqRI1tu595i9LxXI5PIsbcEnSRIyYOf4flz88xCjRo1i0qRJWFn9vY45KSkJZ2dnkpOTKVq0KOfPn0ej0VCmTJn0xD80NJSff/6Zrl27curUKR49epTeERASEoKTkxO+vr54eHhk+bkZy9SpU5kxYwbHjx+nYcOGxg6HU6dO8fXXX6NUKvH39+ezzz574zExqWouvUrh8qsUEv+qOieXQXELBXWKmDO0c2uSEuI5f/58ruh437JlC9988w3Dhw/H19c3143ygrYjq2DBgkyZMoWxY8caO5wMVCoVYWFhGUb/r127BmjrKNWrVy89+XdxcaFw4cLvbmzKFO1a/CxsNZrB2rVEtGrFxo0bWbduHTdu3KBUqVL06dOHPn36ULFiRd3azUGRkZHY29uzZ88e2rdvb+xwBMGgRLIv6O38+fM4Oztz8eJFHB0d37i/T58+7N27l5s3b+p0MSv8t71MUbH6esyHH5gJnjULY2qS+y4qhf8mjUbD6tWrGTduHHK5nJ9++om+fftmOhk7efIkHTp0oIxrM7rPWqmtLZCJpEmSJGQyGTVNYvmskj3z5s1j9uzZFCxYEB8fH3r16pWefK1btw53d3fCw8OxtbUlMDAwfeT/6tWrgLayuFwup3LlyuzatYtChQohSRINGzYkNjaW0NBQFJmobZAbnDhxgqZNmzJlyhQmT55s7HDSPX/+nJ49e/Lnn38yY8YMvLy8kMvlJCg1HHwYz524N6egA+m3JcfHUkmewDduNY2eWO/du5fOnTvzzTff8Msvv+SKzod3adiwISVLlsTf39/YoXxQbGws586dy7D938uXLwGoWLFihuS/Vq1a2iVESiXY28Nfj8sqjUzGXSsrqiQkYGpqSufOnXF3d6dZs2YZtt3M7S5fvkytWrU4c+YMLi4uxg5HEAxKJPuC3u7cuUOlSpX4888/adq06Rv3P3v2jMqVK/P111/j5+eX8wEKeZpGklgWFk2CUr8CfXaWCr6tnMu2NhIEtIncmDFj2LhxIw0bNmTFihVUr179vcesWLGC4cOHo1arad26NbPXbeXA42QkCUzek1jLkFCrNeyYPpIxPTqmV8d/8OABY8eO5bfffqNBgwYsXryYOnXqkJSUhL29PcOGDcPb2zu9nadPn1KzZk2KFStG3bp12bBhg7Z9mYzatWtjZ2fHvn372Lt3L+3+tVNBbhUVFYWjoyPlypXj6NGjuS5ZUavVTJs2jRkzZtCuXTsWr1nP/hcyEpSaTC/j+LSQGW1LFzDaNqR//vknbdu2pV27dmzdujXXdwKNGDGCAwcOcOvWLWOHkmWSJHHv3r0Mo/8XL14kLS0NMzMz6tSpw+BCheizb5/e59oxfjzNf/gh920fmEmvZ6iGh4dTrlw5Y4cjCAaVe7tThTzj9Yf7P6vx/1Px4sWZOXMmq1evJjg4OCdDEz4CcpmMukXM9dpiTAKcihp+z2pBMIRixYqxYcMGjh49yosXL3B0dGT8+PEkJSW98di0tDQGDx7M0KFDUavV9OvXj7179xKybzsLv2rE+Z0bUKelIkkSKmUakkb9108NChnUKmxBrcS7hOzxZ9myZentlilThm3btnHkyBFiY2NxcnJi8ODBJCUl0atXL3755ReUSiWgTTp79eqFXC4nICAgfQ14QEAAa9asoWLFihw4cACATp060ahRI6ZMmUJgYCCpqak58IpmnSRJDBw4kISEBDZt2pTrEn0AExMTpk+fzv79+7l0/SarQyNISFNnqV7DlahUvXdw0FVwcDAdO3akSZMmbN68Odcn+gB169bl9u3bxMYaZilZTpLJZJQvX54ePXrg6+vLmTNniIuL48yZM8ydO5eyZctie+wYem/wp1DQRS7Ps4k+aDtcAbH1nvBREsm+oLeCBbXbmUVHv7ti+tChQ3F0dOS7775Dreu6MOE/q2Zh/ZJ9cxMZDja6Vz0XhJzw2WefcenSJSZPnsyCBQuoXr06+/4x6vb06VM+++wz1qxZA8CkSZNYvXo1UVFRjB07luIFzAlYPIObKyZzcuVsgjavxCbhGUGbV7Jr9lhamb6kTekCtGvSgAoVKnDy5EkOHz6cIYZmzZoRGhqKr68v27Zto1KlShQoUICnT5+yd+9eAGbOnMmff/7Jli1bKFGiBIGBgRQpUoRmzZrh7u5O+fLlMTU1JSAggIULF1KsWDEWL15MkyZNsLW1pVWrVsydO5dz587l7PfB48cwezYMHAg9e8KQIeDrC1FR+Pn58fvvv7N69WpKlSqVczHpoG3btszfc4L8hYsh6TBCf/5FChGJymyI7N2uXLlC27ZtqVWrFr///nuu2Q3gQ+rUqQPwxnaSeZWZmRkuLi6MGDGCzZs309HFBb27XGQynZcB5BYvXrzAwsKC/PnzGzsUQTA4kewLesuXLx/58+d/58g+aEckli5dSkhISJ7afknIHfLnk9PQTvfthVqUzJ+hMrUg5FZmZmb8+OOPXL16lUqVKtG+fXu6dOnC3r17cXJy4uLFi6jVahYvXsyMGTOQyWSMGjUK0E7FHzx4MMePBmD+8gEHfafT3M6co8vncO73jYScPZN+ng4dOmBpaUmvXr148uRJhhgUCgUeHh7cunWLrl274uPjg4WFBXPmzOHo0aNMmzaNKVOmpBeKCwwMpHHjxshkMm7fvs38+fPx8vKiefPmDBs2jB07dvDixQsuXLjA9OnT00eo69WrR+HChenUqROLFy8mLCyMbFlZGBgInTtDmTLw44+wbh1s3Qpr1oCnJ5oSJbD47jtmdO3Kl19+afjzG1iKSsP9NAVyHWcfyIALL5ING9R73L59m5YtW1KmTBn27t2bpxKqKlWqYGFhQUhIiLFDyR6G6GyTpKxV8c+Fnj9/Lkb1hY+WSPYFg7CxsXlvsg9Qv359+vfvz8SJE9OnTAlCZtUvbkGdIlkfDWpqb0mNQubZEJEgZJ+KFSty6NAh/P39OXLkCB06dODVq1eoVCq2bt3K8OHDATh06BCbN2+mRYsWpKam0rlzZx4+fEiZMmUAKFWqFGXKlMHW1pazZ8+mt//pp5+SnJyMQqGgR48eqN5ysV60aFFWrVrF2bNnsbOz4+zZs7Rt2xY3NzcmTpwIQEpKCsHBwenbB3p6emJnZ/fGnukmJibUqVOHMWPGcODAAaKjozlx4gSenp7ExMQwZswYatSogZ2dHT179mT16tXcu3dPvxdRkmDWLGjSBPbuBY1Gm9yoVNq///VTrlTSU6Nh4s6dsGmTfufMAVeiUlHr0SciAdej00hS6V4HJbMePXpEixYtsLGx4dChQ3luqrdCocDR0ZELFy4YO5TsUaQI6FsgUSaDQoUME4+RiGRf+JiJZF8wiMwk+wBz5sxBLpe/cSEoCB8ik8moYZJA4Jqf0ahV75zWL0kaJElCIYPPSxfAtbjuMwIEwZhUKhWnT58mNjYWc3NzUlJSKF26dPoWp0lJSQwdOpQmTZoQGBhInz59uHLlCiYmJlhbW1OoUCEsLCwoXbo0VlZWGZL9GjVqIEkSM2bM4NSpU/z444/vjMPJyYkLFy5gYmJCmbpulGrXG59j1/jlehRrrzzls8HjcG7cjP3797N3717mzZuHhcX7a2SYmprSsGFDJk+ezLFjx4iOjubw4cP07duXO3fuMHjwYMqXL0+5cuXo378/mzdvJjIyMmsvoLc3/NUp8aGRRwUgU6uhd2/YvDlr58lh16P1r3ugAe7EpukfzHs8f/6cFi1aIJPJCAgIyLPJVJ06dT7eZL95c22nmD6USmjWzDDxGMmLFy8oWrSoscMQhGwhkn3BIDKb7BcpUoTZs2ezfv16Tp48mQORCR8LbQGtAYRsX8u3pRQ0tbfEKt+bH2FWcg27Zo2l2LX/UbOwGNEX8qaXL1/SunVrli5dSrFixbCysmLDhg1YW1vj6urKd999x4QJE4iIiKB58+Y8f/6csWPHEhAQgKurKy9fvuSTTz4BSB/lv3TpEsnJ2unb1apVA7TLsLy9vZkzZw779+9/aywaSWLxH38yevdZ+i3dxqctOyErZMfzFA2xigI0/vY7ArFj/zM1nfsNoUuXLll+vpaWlrRs2ZI5c+Zw9uxZXr16xa5du+jYsSPBwcF888032NvbU716dTw8PNi1a9d768Rw4IB2yr4u+vSBv7YVzI0SDDAiL4NsHdmPiYmhdevWxMXFERAQQMmSJbPtXNmtbt263Lp1i/j4eGOHYni9eoG5nt+TZcpAq1aGicdIxMi+8DETyb5gEJlN9gH69++Ps7Mzw4YNe+vUUUF4m9WrV7N//35Wr15NyeJFcCluyXfVbRlU1ZZvHQrSx6EgQ6rZMqxWcWziI1m8YH72rP8VhGx26dIlnJ2dCQ0NpWDBghQoUIDTp0/Tu3dvzp49y8KFC9mwYQO+vr60b9+edevW0bVrV8qXL8/Ro0dp0aIFjx8/zpDsx8XFoVKpCA0NBaBAgQKULVuWq1evMnbsWD7//HN69+7No0ePMsSSppZYcfYeiupu2NhpC9fJ/jXtV26iLfFlV8OZesOnczlK/5FnGxsbvvjiC3x9fbl69SpPnz5ly5YtNGjQgP3799O5c2cKFy6Mk5MT48aN49ChQyQm/qPK/Ny5oE9F/UWL9H4O2UVjgI81Gei1FOB9EhMTadeuHQ8ePODw4cNUrFgxe06UQ+rWrYskSem/Ox8VKytwdwddd0aQy8HDQ/+lAEYmkn3hY5a3fzuFXMPW1jbTyb6JiQnLli3jypUrLFmyJJsjEz4G4eHheHp60r9/f9q3b59+u0wmo5C5Cfb582GXPx82ZibIZDJGjBjB+fPnOX36tBGjFoSs27p1K/Xr1ydfvnyoVCpKly7NqVOnqFChAqBdQzx8+HAqV66MlZUVO3bsIDw8nJ49e3Lx4kWio6Np0aIFT548SR9NLV26NNHR0ZiZmb0xlf/q1avI5XI2bNhA/vz56datW/oWexpJwv/GC2JM8iOTy5F9oPK7iUIByDjwMIGwqBSDvi7Fixene/furFq1irt373Lv3j1Wr15NlSpV2LBhA23atMHW1pbGjRuzZNgwOH5c9+JjKhVs3AiZ/E7LaeYm+hcb1RionX97XTfi8uXLHDx4kE8//dTg58hp1apVw9zc/OOdyj9uHFhbZ71zTKGAChW0u1vkcc+fPxfT+IWPlkj2BYPIysg+aNeADhkyhMmTJ2d9Habwn6JWq+nbty+FCxdm/vz5mTqmTZs2VKpUCV9f32yOThAMQ61WM378eLp3746TkxMPHjzA2dmZY8eOUbx48QyPXbFiBSEhIezbt49y5cphbm5O9+7d8fLyokCBAri4uLwxsg/apCU4ODi9ndfJviRJFCpUiG3btnHu3DnGjx8PwKnIRJ6kkvWq75LEvgcJxKRm37Z6ZcuWpV+/fmzatImIiAiuXbvG/PnzKVKkCNKaNei9sczpfr8AACAASURBVFxqaq5du1/WKp9eW5G+VsLAu9+pVCp69OhBYGAge/bsoV69eoY9gZEoFApq1qz58Sb7pUvDoUNgaZn5hF+hgKJF4fBhbUdBHpaSkkJ8fLwY2Rc+WiLZFwwiq8k+aPdqNjMzY8yYMdkUlfAxWLhwISdPnmT9+vVYZ/KiQi6X4+HhwY4dO3j8+HE2RygI+omJiaFDhw74+PjQtWtXTp48SadOndi/f/8b7/mIiAjGjx/PwIEDSUhI4N69e+zcuRNPT0+OHj2KJEkcPXqUZ8+eZRjZB22CfPbsWSRJ4l5cGsXb9Kbfr8eYG/qKn0JfcS5/Jby3B7Bu2052/7GHEw+jkMl0uEyQyVCp1RwMu6/vS5PJ08moWrUqw4cP5/fff2d48+b67x3+f/bOOyyKq23j92yjVzUIggVFVCwgYsOChqAYe8WGvYsllhh7TKyJJZZEjd2osUQlBBXF6GdvMTZsIXYsKFhB6tzfHyv7ioAs7MICmd917ZW4O3POc7YMc5+nKRTAjRv6ME/veBQ3hi4R+GJqKu5ePIuaLmUxYcIEREZG6myTKIro27cvQkJCsGPHDvj4+Og8ZkHC09Oz6LbfA4BatYCTJwEndaqOmFVYflq4f/XqwLlzwLtioYWZp0+fAoAk9iWKLJLYl9ALuRH7tra2mDdvHjZv3oxDhw7lkWUShZmIiAhMnDgRo0ePRuPGjXN0bu/evWFmZoYff/wxj6yTkNCdq1evonbt2jh58iS6d++OHTt2YNiwYdiyZQuMjDK6XkeMGAETExPMnTsXc+bMQZ06ddCsWTNMmTIFSqUSdnZ2aN68OUjC1FTdicLJyQmCIKB48eIwKeeGZZdjsPXfV0i0LAFjc/VmggggLoVgaTeMDT6Nw4nWEIxy38lCJpfj2htg0JChmpvp/EJ4+VJ3zzcJvHqlD3P0TjFjBUqb5967L5PL0bamCwICArBixQq4uLjA19cX27dvR1JSziv0k8SIESPwyy+/YOPGjelSrYoKnp6euH79evq6EEUNNzcgMhL4/XdEfBBNBEDt9W/XDjh8WC30HRzy3cS8IK0VtBTGL1FUkcS+hM4ki4RZKWc4uNfFP88T8Cg+GaKWhdF69eqF+vXrY9iwYbm6yZAouiQlJaFnz54oX748Zs6cmePzLSws0LdvX6xcuVJTgVxCoiARHByMunXrQqVS4fPPP8fGjRvx7bffYvHixZBl4lkLCQnBb7/9hkWLFuHatWs4cuQIJkyYAEEQcPz4cSQlJWH37t2Y9K7d3ODBg7F8+XIoFArY29ujWK0m6D5vNd6kqK/PzEQupl25P3F21bnApYmFFS4+eo6KFStiyZIl+VeQVR9hxYKgLl5WQGlkb5orsS8AsDORw7dqefzwww94+PAhNmzYgMTERHTu3BmOjo748ssv8c8//2g95uTJk7Fs2TIsX74cAQEBubCq4OPp6QlRFItmkb73kcshfv45fFNTMWvIEODYMWDfPuDECeDhQ2DbNqBxY/Xvo4ggefYlijqS2JfINbEJqTj44A2WXI7BC9eG6LVoE3678wbrb7zEjxHPcfJxPOKSP97aRyaTYdmyZbhx44aUXy2Rjm+//RaXL1/Gxo0bYZzL1kBBQUGIjY3Fpk2b9GydhETuEUURM2bMQNu2bdG0aVNUqFABW7Zswc8//4xJkyZlWgjvzZs3GDZsGJo3b44uXbpgzpw5qFy5Mlq3bg0ACA8Ph52dHapWrQp3d3cAQOvWrTFkyBDUr18ftdv3hJXXZ+rBtLhR16YgX7ZjAJi1YDE6d+6MkSNHwsPDI3+iuCpUyH118TRSUwFnZ/3Ykwc4mivRsmzONiPE1FRYKGXoXN4Kcpn6szUxMUHPnj1x9OhRREREoHv37vj5559RsWJFfPrpp9i6dSsSE7PurjBv3jzMmjUL3333HQYOHKjTmgoyVapUgUqlKrp5++9x8eJFREdHo16nToC3N9CsGVCvHlBExbDk2Zco6khiXyLHiCTC7r3GymvPce5pApIy0fNvkkUceRSPZVdi8dfTj3tV3d3dMXz4cHz99ddSfrUEAODMmTOYNWsWJk+eDE9Pz1yP4+zsjFatWuGHH36Q2vBJFAhev36Njh07Ytq0aZg0aRJevnyJsLAw7Nq1C/3798/yvClTpuDZs2f48ccfERERgZCQEHz55ZeaCIDw8HD4+vpCEARERUXB2NgYGzduxJEjR5AsKFCr58h8/w0IAFQmZlixYgXOnj0LCwsLNG3aFJ07d8a9e/fybuK+fdUV9XVBLlf3IC/AVLExQkdnSyizuZNL27J5EPE3XuxbB7MsTqhSpQoWLlyIqKgobNy4EcnJyQgICICjoyPGjRuHmzdvpjt++fLl+PLLLzF58uQiX3tHpVKhevXqRTtv/x1hYWEwMzODt7e3oU3JF6Kjo2FhYZFrp4KEREFHEvsSOUIksfPWK/wdo97p/9itI6HOAz3wIA5HH308z23GjBkwNzfH6NGj9WarROEkPj4egYGB8PDwwMSJE3Ueb8SIEbhy5YpUF0LC4ERGRqJu3boIDw/HunXrEBoaigsXLuDAgQMaD31m/PXXX1i8eDG+/vprlCtXDnPnzoWTkxO6du0KAIiJicH58+fh6+sLAHjw4AEcHR0hCAIaNmyIRTv2QiaX6+ypzykEYPSuvZunpyeOHz+ODRs24OjRo6hUqRK+/fZbJCTot0UfAMDdHahTJ/e9vxUKoEsXoHhx/dqVB1SwUmFYVVt85mgGG6OM6xUAuFipEFDBEjY3j2LqhPE4derUR8c0MTFBjx49cOTIEVy9ehU9e/bEmjVr4OrqiiZNmmDLli1Yv349hg4diqCgIMyYMSOPVlew8PT0/E949vft24emTZtCpVIZ2pR84enTp1IIv0SRRhL7Ejki/MEbRL7KeVOj44/f4lJM1jd1VlZW+P7777Fjxw7s379fFxMlCjlfffUV7t69iw0bNkCpVOo8XtOmTVG1alUsXrxYD9ZJSOSOsLAweHl5ITk5Gdu2bcOMGTMQHR2No0ePokGDBlmel5KSggEDBqBatWoYNWoU7ty5gy1btmDs2LGam/FDhw6BJD799FMAQFRUlKbtnkjiQmxSvgt9QC32ixv/r5WXIAjo2bMnbt68ieHDh2PGjBmoUqUKgoOD9R91MG4cIH48jSxLUlOBkSP1a08eYiyXwbOECQZWtkFvV2uc/ukbPNy3CZ3LW2JoVRu0d7ZEWQsVpk+fDi8vL3Tr1g0vX77UauzKlStjwYIFiIqKwqZNm0AS3bp1Q+/evVGlShUMHjzYIN8tQ1CzZk1cvXoV8fHxhjYlz3j9+jWOHz+OZs2aGdqUfCM6OloK4Zco0khiX0Jrniem4vyzrHP3suNQVBxSxaxv6Lp3747GjRtj+PDhH80RlCi6/Pnnn1i8eDFmz56NypUr62VMQRAwYsQI/P7777h165ZexpSQ0BaS+O6779CiRQvUq1cPP//8M3r16gWlUokTJ06gatWqHz1/yZIluHDhAlauXAmlUonvv/8e1tbW6Nevn+aY8PBwuLq6wuld26wHDx5oxH5UXAriUpjvBbUoinjx+AGmDR+AEydOpBPzFhYWmDdvHi5fvgxXV1e0bdsWzZs3x/Xr1/VnQIcOuNWuXe5a1C1dqm5FVsgQBAElTRW4dfow+DASzpYqWCj/t9miVCqxefNmxMTEYOjQoTnaYDE2Nka3bt00XR9cXFzw+PFjuLm5oXHjxti0aVPeRGkUINKK9F26dMnQpuQZf/75J1JSUtC8eXNDm5JvREdHS559iSKNJPYltObvZwk6tTN6m0rcfJl1xX1BELBs2TLcunUL33//vQ4zSRRGXr58id69e8PHxwcjRozQ69jdu3eHjY0Nli5dqtdxJSQ+Rnx8PLp3747x48fjyy+/xMiRI9GyZUuUK1cOx44dQ5kyZT56/r179zBlyhQMHz4ctWvXRnR0NFavXo2RI0fCzMxMc1xavn4aUVFRcHR0xPPnz3HinGFyjAWZAOuXUTh27Ci8vb1RvXp1LFu2LJ1H2dXVFXv27EFwcDAiIyNRrVo1jB07Fq/00PLu0aNHqHf0KHaWK6d+Qi7/6PFUKEAAY5VKnK9bV+f5DUlcXJym7eKHlCtXDsuXL8fmzZuxcePGHI176tQptGnTBk2bNsXly5cRFRWFLVu2QC6Xo0ePHihVqhRGjx6Nq1ev6mMZBY6qVatCqVQW6VD+sLAwlC9fHuXLlze0KfmGFMYvUdSRxL6EVqSIxMVnCbnzkrxDAHAum2J9bm5uGDVqFGbOnIk7d+7oMJtEYWPkyJF48eIF1q1bl2nbMV0wNTXFwIEDsXr1arx+/VqvY0tIZMbdu3fRoEEDBAcHY+vWrahRowZatWqFhg0b4uDBgyieTT44SQwbNgzW1tb49ttvAQCLFy+GXC7HsGHDNMfdvn0b//77L3x8fHD58mWsXLkSd+7cwfr162Fra4tZs+fk6TozQ4A6tHxkR39ERkYiLCwMLi4uGDlyJBwcHNC/f3+cO3dOfawgoHXr1oiIiMDXX3+Nn376CRUrVsT69esh5jIMXxRFBAYGQqZQoOGpU8Du3UD9+uoXFYr/RTkIgnoTQBAgNG+OpP37ccTdHa1bt8ajR4/08E4Yhvj4+HSbQR/StWtX9OrVC8OGDUNkZKRWY166dAn+/v7w8PDAzp07YWRkBCMjIwQEBODPP//EjRs30K9fP/zyyy9wc3NDw4YNsXHjxiLV9tTIyAjVqlUrsmKfJPbt2/efCuEHpDB+iaKPJPYltOLp2xQkfiQEXxsIdUipmE3o4LRp02BjY4NRo0bpNJ9E4WH37t1Yv349fvjhh2y9nbll6NChiIuLw/r16/NkfIkiyt27wMSJ6jZsFhaAqSng4AD07AmcOgVkcj07fPgwatWqpfasnziBJ0+eoGvXrggICEBwcPBHhVgav/32G/744w8sWbIElpaWePXqFZYuXYpBgwbB1tYWMTExCA0NRVBQEACgT58+qF69OoYMGQJRFFGsWDE0adIE9iXyt8icAEAmAJ3LW8JEIYNMJoOfnx927tyJe/fuYcKECdi/fz+8vLzg6emJn3/+GW/evIGxsTEmTpyI69evw8fHB71794a3t7dmUyAnzJ8/H+Hh4diwYYPaY9emDXDkCHDlCjBiBNCuHeDrC3TooP5sb98GQkJg9Nln2L17NwCgTZs2hVaoxsXFZfsdW7JkCUqWLImuXbsiKSnriDsA+Oeff+Dn5wdnZ2f88ccfmUYNVKxYEfPmzcODBw+wdetWqFQqBAYGolSpUhg1ahQiIiJ0WlNBoWbNmkVW7EdGRuL27dv/qRB+QArjlyj6SGJfQivepuqveFJCNmNZWFhg4cKFCA4ORmhoqN7mlSiYREdHY+DAgWjdujV69+6dZ/M4OTmhffv2WLx4ca49hhL/IW7dAlq2BMqVA+bNUwvCN2+At2+BR4+AX39V956uUQN4V1SUJJYuXQpfX19Ur14dZ86cwbZt2zBixAiMHTsW69at06ro5MuXLzFixAi0adMG7dq1Q0pKCqZNm4bXr1/j3r17qFixIooXL46WLVti//79MDY2hrOzM5ycnDR52Ddu3MDTp09R0kQOiqk6vRVpvxcxm3Z2YmoqlALQzcUKDmYZ1+ng4IApU6bg9u3bCAkJgYODAwYNGgQHBwcMHToUFy9ehJOTE3799VccPnwYcXFxqF27NgYMGKDphZ0dZ8+excSJEzF+/Hh89tlnQHLy/zZk3NyA+fOB334DDhwAtm8HZswA3ttgdHBwQHBwMK5cuYK+ffsWypad8fHxWYbxp2FhYYEtW7bg4sWLmDx5cpbH3bt3D76+vrCxscG+fftgZWX10XGNjIzQuXNnHDx4EDdv3sSAAQOwefNmVK1aFQ0aNMCGDRsK7SYKoM7bj4iIKJL1CcLCwqBUKtGkSRNDm5JvxMXF4e3bt5LYlyjSSGJfQitkeqztpM1YnTp1gq+vL4KCggr1jYHExyGJwYMHgyRWrlyZ51WdR44ciX/++QdhYWF5Oo9EIefcOXWBtn371EIxNROxnCZ8IyIAf38k//QT+vfvj6CgIAQFBSE0NBQTJkzArFmz8P3332PevHlap6eMHDkSz58/R6lSpdCkSRNYW1tj0aJFIIljx44hMTERlpaWAIDk5GSIoggrKyu0bdtW4+m/ePEiJkyYgMhrV3Bh785shfrHkMlksHh0HRGH9gAgxNRUpCQnAaKouYkwlgEnfvkR97YsQKlMhP77yOVytGzZEiEhIbhz5w5GjRqF3bt3w93dHfXq1cO6devg5eWF8+fPY8mSJfjtt99QsWJFLF68GCkfWcfr168RGBCAcaVLY/bRo4CxMaBSqUP37eyA8ePVmzjZ4OnpiQ0bNuDXX3/VpFAUFpKSkpCSkqJV9EitWrUwc+ZMfPfddzhw4ECG1588eQJfX1/IZDKEh4fnONTZxcUFc+fOxYMHD7Bt2zaYmJigV69ecHBwwIgRI3D58uUcjacVZO67MGiBp6cnUlNTi2SRvn379qFBgwYwNzc3tCn5RtomohTGL1GUkcS+hFaYKvTzVZEBMNJC7QuCgKVLl+LBgweYO3euXuaWKHhs3LgRu3btwvLly2FnZ5fn89WvXx+enp744Ycf8nwuiUJKZCTg5we8epW5yP8QUQRFEYqhQxG3YQPWr1+PmTNnonPnztiwYQM2btyIMWPGZHl6cnIyzp07h6VLl6J79+5wcHDA+vXrkZCQgHXr1uHixYuaDU+SUKlUqFGjBkaOHIn58+cDAPbs2YMjR45g8eLFmloAjRs3Ro8ePWBsbAyvkmaQKRS5ejtIwkwhYOmYgXhzPBh+qhjsXTQdNw7swrngTSgvj0PbshYIqlYMDUqaYNmC7/DPP/9oPX7p0qUxY8YM3L17Fzt37oSlpSX69OmDUqVKYcyYMWjSpAlu3ryJgIAAjBo1Cu7u7jh06FBmhmLXp5/i2K1bmHXrFmRnzgBpXV1EEYiOBhYsACpUAD7/HHjw4KN2dezYETNmzMDUqVOxffv2nLxlBiWtLVx2nv00xowZg88++wyBgYF4+vSp5vnnz5/Dz88Pb968QXh4uKa7Q25QqVTo1KkTDhw4gMjISAwePBhbt25F9erVUb9+faxbt063dnYXLwKDBgHFiqk3dhQKwNIS6NxZnb6hx+iMatWqQaFQFLlQ/sTERBw6dOg/ma8PQPLsSxRpJLEvoRUljOWwUun2dREAVLRWae29dXV1xdixYzFnzhz8+++/Os0tUfC4f/8+goKC0KNHD3To0CFf5hQEASNHjkRYWJh+23xJFB369NFe6L9DgLomySa5HK0aNYKfnx/+/PNPhISEoEePHumOffToEXbu3Ilx48ahTp06MDc3h5eXF0aMGIGdO3dqCsPJ5XKUL18eLVu2hI2NDRo1aoSYmBjcvXsXv//+O2bMmAGSMDExQe3atbFz50589tlnmDp1KgRBQK9evXDlyhX4+Phg4tD+uH/+OJgLj6cgCDCLisD169cwadIkHPgjGMc2LUenak649tsqTO3aAk6qFMhl6t+Wvb09vvrqqxzPo1Qq0a5dO4SFhSEyMhKDBg3Cli1b4Obmhvbt26NRo0Y4efIkrK2t0bRpU3Tu3Bn37t1Tn0ziup8fAs+eRbG0ATP7/FJT1cJv/3515EY2VeMnT56MgIAA9OrVK1e1AwxBXFwcAGjl2QfUURvr169Hamoq+vTpA5J48+YNWrRogQcPHuDAgQN6rcxevnx5zJ49G/fv38eOHTtgYWGBPn36wMHBAcOHD8+Zx/z8eaBuXcDdHVizBoiNVW/skMDr18CuXUDjxkDlyuooHT1gbGwMNze3Iif2jx8/jvj4+P+c2E/b4JLEvkRRRmBhTEiTMAhnot/iz6g4ncbo7mIFJ/Psc1bTiIuLQ5UqVeDm5obQ0NA8D/OWyB9EUYSfnx+uX7+OK1euwNraOt/mTkxMRJkyZdC+fXv8+OOP+TavRCHgyhWgWrVcn05BwCw7OyxMTsaePXtQo0YNXLhwAceOHUN4eDjOnj2LmJgYAGqRlZYLb2Zmhpo1ayI1NRUnT57E5s2b0a5dOxgZGWHbtm3o0qULzp49i1of9H738fHB/fv38fbtWzx69Aj169eHQqFAXFwcVq9ejT59+uDSpUsYP348WrfvgB13E2BbpgJk2bShex9vOxMM968POzs77N+/Hy1btkRoaCgSExMRGRkJLy8vdOrUCevWrQMAbNiwAb169cLx48dRP60Cfi5JTEzE7t27sXz5chw+fBjFihVD7969UbJkSSxYsAAvXrzAhAkTMPjhQ3yyYkXOBpfLgU8+UadsODhkedjbt2/h4+ODBw8e4MyZMzp5uPODmzdvwtXVFYcPH0bjxo21Pm/Pnj34/PPP8f3332Pv3r04c+YMDh48CC8vrzy0Vs2tW7ewevVqrFmzBo8fP0adOnUwcOBAdOnSJetNi/371YUXk5Oz35gTBPVj5UqgXz+d7e3Xrx/+/vtvnD9vmLaWecH48eOxceNGPHz48D91n7VmzRr069cPSUlJWtVTkZAojEiefQmtqW5rBHlu/waQsDWSw9EsZ6GkZmZmWLRoEfbu3Yvg4OBcTi5R0Fi2bBkOHjyItWvX5qvQB9QFpIYMGYL169fj+fPn+Tq3RAHnp5/UIcC5hCQCoqNR28sLAQEBMDMzQ926dTF27Fjs27cPMTExKF68OPz8/DBlyhTs2rULt2/fxuvXr7F27VqcP38eY8aMQUBAAIyMjEASs2fPhq+vr0boi6KIvXv3olWrVvi///s/PHjwAG3btsWFCxdw/PhxGBkZIS4uDrVq1UJycjIOHDiAN2/eoEHdOtg1sR9uHD/4ztisvfziOw+4bykzvPjrT1y6dElTxC0iIgLm5uZQqVSoUqUKli9fjvXr12Pt2rUAgB49esDd3R1jx47VubidkZERunTpgkOHDuHatWsIDAzEmjVrMG7cOLi6usLPzw+7ZszIudAH1AIxOhr4SIoFAJiYmGD37t2QyWRo27atbuHm+UCafdp69tNo0aIFgoKCMH78eBw9ehQhISH5IvQBwNnZGTNnzsS9e/ewc+dO2NjYoH///prCjRcuXEh/wrlzaqGfmKhdBE5aHv+AAWpvv454enriypUrSExLEykChIWFwc/P7z8l9AF1GL+NjY0k9CWKNJJnXyJHXIxJwN57b3J0DikiNTkFZlcPYXSf7jmekyQ+//xzRERE4OrVqzm+iZEoWNy4cQMeHh7o27cvli5dahAbHj9+jNKlS2PWrFkYO3asQWyQKIBYWalD+HXEHcAlQYCDgwM8PDzg4+ODWrVqoXr16rCxsclwPEk0a9YMN2/eREREhOYaFxYWhubNm+PgwYNwc3PD2rVrsWLFCty5cwfly5fHv//+i6NHj6JBgwYAgL/++gve3t5ISkrCpEmT4ODggKlTpyIhIQHTpk1D1apV4e/vjwHjJqPiZ22RaF0K8g82N+Kex6CU+ArdGtWEhVKGevXqQalU4ujRowDUYczly5dP10qtf//+2LRpE86cOYNq1arh4MGD8PX1xY4dO/SeovP27Vvs2LEDy5cvx4kTJ7BSLkfv1FTk+lZdoVDn72dTM+Tvv/9GgwYN8Pnnn+PXX3/VuthifnP8+HE0aNAAERERqFKlitbniaKIHj16YMuWLXB0dMT169cN+rf2zp07WLVqFdasWYNHjx7By8sLAwcORECXLjD38lLX1shBqg0AtXffzAx4/Fj931xy6tQp1KtXL9Nom8LIw4cPUapUKWzevBldu3Y1tDn5ypgxYxAaGiql9UkUbSghkUNOPo7j7PNPtXrMOf+U8/5+yokLfyIAjhw5kikpKTmeMzIykkZGRvzqq6/yYEUS+UVycjJr165NFxcXvnnzxqC29OzZk2XKlGFycrJB7ZAoICQkkGofoM6Pf5ctY2JiotZT//LLLwTAPXv2pHu+UaNGdHV1ZZcuXahUKmlsbMzevXvz1KlTnDRpEosVK8bU1FQmJCTwq6++olwup1wuZ6dOnejp6UkADAwM5MOHD5mamsr69esTABcuXMgWLVrQzqksq3/aknXadWfLASPp7NWAU6dN18x/4MABAuC+fftIkrGxsQTArl27prMzPj6e1apVo6urK1+9ekWS9Pf3Z/ny5XP0PuSU1QsXMl7Xz0smI2fO1Gq+3377jQA4bdq0PFuTruzfv58AeOfOHa3PEUWRQ4YMoSAInD9/Pk1MTDhgwIA8tFJ7kpKSuGvXLvr7+1MQBDYzMdH9N/rzzzrZFB8fT7lczhUrVuhplYZl7dq1FASBT58+NbQp+U6PHj3YoEEDQ5shIZGnSGJfIldExCZw8aVnGkGfmcifff4pV16NZdSbJJLksmXLKJPJ2K5dO8bFxeV4zqlTp1KpVPL69ev6Xo5EPvHtt99SJpPx5MmThjaF586dIwDu3LnT0KZIFARevdKb2Ofu3VpPGxMTwxIlSrBLly6a52JjYzly5EhCXfePrq6uXLhwIWNjYzXH1K1bl507d+apU6dYuXJlKpXKdOfUrFmTx48f1xy/cuVKAmDJkiU5evRoKpVKGhkZUS6X09vbm3K5nB07dmRqaqrmHB8fH3p6elIURZL/25RYuXJlhnVcv36d5ubm7NatG0VR5OXLlymTyfjDDz/k6GPQlidPnnCAlZV+Pi83N63nnTlzJgHw119/zZN16cquXbsIgNHR0VqfM2HCBALgz+9EcNp3Zfv27XllZq64c+cOL1euzGRdN3eqViXffadzS7Vq1Thw4EA9rcywBAQEsFatWoY2wyD4+fmxffv2hjZDQiJPkcS+RK5JFUXeeJ7AzTdfpBP88/5+yuDbL3n/dZLmJjGNkJAQmpqask6dOnzy5EmO5ouPj2e5cuXoVj6lIwAAIABJREFU6+ubYVyJgs/58+epUCg4ceJEQ5uiwdvbm40bNza0GRIFAVFUCwF9iMfDh7Wetm/fvrSysuLDhw95+vRp9u7dm8bGxhQEgRYWFjx48GCG692LFy8ok8no5+dHmUxGDw8PfvHFFzQzMyMAfvHFF+kiqJ48eUIbGxv26tWLPj4+rFmzJgHQzs6OAGhsbEwLC4t00TbHjh0jAO7atUvzXO/evQmAUVFRma5ly5YtBMDly5eTJPv168dixYrx+fPnWr8f2pCamkp/f39+aW5OURB0/7xKlNB6blEU2b17dxobG/PMmTN6XZc+2LRpEwFovaE+e/ZsAuD8+fM1z4miyA4dOtDa2pp3797NK1NzTlISKZfr5zd686ZOpvTq1Yuenp56WpjhSElJoa2tLSdPnmxoUwyCh4cHBw8ebGgzJCTyFEnsS+gFURSZkJLKpFQxWyF+7tw5lixZkuXKlcuxl/6PP/4gAG7dulUXcyXymbdv39LNzY01atTI07DenLJt2zYC4N9//21oUyQKArVr6y74VSryPQ/8xzh8+DABsHv37vTw8CAAlilTRuOhX7NmTabnzZkzhwCoVCrZp08furq6aqKmAPDmB0KmR48etLW15dOnT9mmTRsKgkCVSsXTp09rxqlbt266c/z9/enm5pbO01+jRg0qlcqPrmnw4ME0MjLi+fPnGRUVRVNTU3755ZdavR/asnDhQgJgRP/++tmgsbbO0fxv375lnTp1aG9vz/v37+t1bbqS5pV//3PLimXLlhEAp06dmuG12NhYOjk5sWHDhrlKvcsTnjzRj9AHyGPHdDJl8eLFVKlUBervWW5IuwYcPXrU0KYYhFKlSnHKlCmGNkNCIk+RxL6EQbhz5w6rVKlCGxsbHjlyJEfntm7dmg4ODprcUImCz7hx46hSqXjx4kVDm5KO5ORkOjo6sk+fPoY2RaIgsHGjbgJCoSC1/C6dO3eO1tbWlMvllMlkbNWqFUNDQ5mSksLAwEA6OjpmEBJxcXEcNWoUAVClUrFp06YEwMaNG/PSpUvcuHFjBq9ueHg4AXD16tW8fPmyxvs/ZMgQBgYGEgCdnZ3p7e2dzjYA3Lx5c7r5LS0tWapUqY+u6+3bt/Tw8GCFChX48uVLTp06lUZGRnrzEJ8/f55KpZKjR48m167Vj/ArWzbHdjx69IhOTk6sWbOmweuPvM+iRYtoamqa7XFp35WRI0dmuUF/5MgRymQyfv311/o2M3c8eKA/sf/nnzqZcvz4cQLg+fPn9bQ4wzBjxgxaWVn9J2vXiKJIpVLJJUuWGNoUCYk8RRL7Egbj+fPnbNKkCVUqFbds2aL1ebdv36aJiQnHjh2bh9ZJ6IsjR45QEATOnTvX0KZkyuzZs2lkZJSjHFeJIsrbt2ovry4i4ty5jwz/lhs3btQUygPAQYMGpRPCd+7coUKh4MKFC9Ode/jwYZYvX55GRkY0NTWlTCajo6Mjt27dqhFrs2fPpo2NTbr5XFxc2LBhQ164cIHFixfnJ598QgAcOHAgAbBWrVq0t7dn7dq1Nee1b9+eLi4u6Ty6SUlJBEBfX99s38bIyEhaWlqyU6dOfPXqFe3s7NizZ8/s3/9seP36NStWrEgPDw8mJCSQ//yju+hTKMi+fXNlz4ULF2hmZpah1oEhmTlzJktkk5awa9cuyuVy9unTJ1u7p02bRplMxmM6esL1wps3+hP7OkZzvXnzhjKZTFPnoLBSv379/2zO+osXLyhFikr8F5DEvoRBSUxMZM+ePQmAs2fP1joX/9tvv6VCoeCVK1fy2EIJXXj16hXLlStHb2/vghMK+gHPnj2jiYkJv/nmG0ObIlEQ+OGH3IkHuZxs2TLTIW/evMkxY8bQ1taWAFivXj0qFApOmDAhw7FBQUG0tbXl69evSaoF7rBhwwiAlSpV0oj19u3bZ/AoDx8+nFWrVtX8e9q0aVQqldyxYwdtbW1Zs2ZNtm/fngAoCAInTpzI2bNnU6lU0sPDgyR55coVTSTA+6Tl8GcW8p0ZO3bsIAAuWbKEy5cvJwD+9ddfWp2bFX379qWpqWn69C9fX93zuHWwK60gXkEJBZ40aRLLlCmT5esHDhygSqVix44dtbomJycn09vbm6VLl9Z77YVcUbUqqWudBisr9caejlSpUqVQ53vHxsZSJpMVma4COeXmzZsEwD91jPKQkCjoSGJfwuCIoshp06YRAAcMGKBVOFlCQgJdXFzYuHFjqVhfAWbgwIE0MzNjZGSkoU35KAMGDKC9vT2TkpIMbYqEoRFFctiwnAv9mjXJdwKdVHvCd+zYQV9fXwKgra0tx4wZw+vXr7NRo0asUKEC4+Pj000dHR1NExMTTp8+naQ6BL9s2bI0MjKii4sLAdDd3T3LNllt27Zls2bNSKqr46tUKvbp04c2Njb08vJibGwsy5QpQwD09vZmamoqDx48SAB0cXEhSXbr1o2lS5fOkELw1VdfEQBPnTql9VsZFBREpVLJkydPsnLlymzatGmur9e//vorM61jsHt3rkVfCsDLxsY8nIOCipmRVuTuw7QHQzBq1ChWqVIl09dOnDhBU1NTNm/ePEe55nfu3KGVlRU7depk+L+3K1fqJPRTBYEpX3yhF1N69uyZLiKmsLF9+3bmtE1jUSJtA1NyGkkUdSSxL1FgWLt2LRUKBZs3b65VPn5YWBgB8JdffskH6yRyyp49ewiAP/30k6FNyZbLly8XmJt1iQKAKJJTp5LAx9t8KRTq/zZrpm7dR/Lu3bucMmUK7e3tCYD169fnxo0b+fadJ3HVqlUEwPDw8AzTTp48mWZmZrx9+zYHDRpEACxVqhTlcjkrVqzIvXv3skePHqxZs2amZnt5ebFfv34URZFNmzalg4MDraysWLduXb548UKTi//+7/Lly5cEQHt7e/7zzz+UyWRcunRphrF9fHwoCEKOcnsTEhLo5eXFcuXKcfPmzQTA0NBQrc9P49atW7S0tGSXLl0yis2UFLJ+/Vx590WZjCPc3AiAvXr1ynUqjyiK7NmzJ42MjHK0GZIXDBgwINM2ahcuXKC1tTUbNmyYq9a3acVMV61apQ8zc8+bN6SZWe7FPsCmZcpw586dOm9cLFq0iEZGRoV2k7h///6sVKmSoc0wGLlpUykhURiRxL5EgeLAgQO0tLSku7s7Hzx4kO3xHTt2pJ2dHV+8eJEP1kloy7Nnz2hvb89mzZoZ3hOkJZ9++inr1KljaDMk8pqEBPLly2z7bB8+fJhe5ubcXKIEU01N/ycY0kKIZTKybVsyPJwpyckMDQ1lq1atKJPJaGFhwaFDh2YoSJnWAi8wMDDDfK9evaK1tTXbtWtHR0dHqlQqmpub09zcnPPmzWNiYiJFUWTJkiU5bty4TG12cHDg1KlTuWHDBgKgqakp69evz5cvXzIxMZHly5fXRBm8X3StWLFitLS0ZL9+/ViyZMkMEQckaW9vT+scVq0n1TVWrK2t2bZtWzZq1Ihubm452jBISkpi3bp1WbZs2azDyGNiyIoVtRf8gqB+rF7N1NRUrlq1ira2trS1teWqVatylX//9u1b1qtXjyVLluS9e/dyfL6+6N69e4Z2ojdu3OAnn3xCT09Pvnz5Mtdj9+vXj6amprx27ZqOVurI99/nTuwLAmM6daK/vz8BsFGjRjz3kRob2XHkyBEC4IULF/S4uPxBFEU6OTlx1KhRhjbFYKxYsYKCIBTYFEMJCX0hiX2JAselS5fo5ORER0fHbKu3379/n2ZmZhw5cmQ+WSehDV26dKGNjY1WGzYFheDg4ByHKUsUEi5fJocOJS0t/3fjL5ORXl7qCvwf5O/u3LmTRkZG/PTTT9VRRq9fq8PFf/6Z/Okn8tdfyfv3+fjxY86aNYtly5bVhNivXbCAb/76i7x4kbx3T+15fkf37t1ZrFixTEPwv/nmG8pkMgKgpaUlAbBnz57petqn5dOHhYVlOD85OZkymYwLFy6ktbU1FQoFGzZsyFevXlEURfbt25eCINDLy4teXl7s+15RuurVq1OpVFKpVPK7777LMLYoipTL5VlGFGTH7t27CYCjR48mgBwVNZs0aRLlcjlPnDjx8QNjY8lGjdJHXGQl8o2Nye3b050eHR3NXr16aVIcLl++nON1Pn78mKVLl6a7u7vBKvS3bduW/v7+mn/fvXuXTk5OrFKlSqbfu5zw5s0burq60t3dXV0g0VCIIjlkSM6EvkymjsB554Xft28fq1atSgAMDAzMVQvF169fUxCEDPUtCgMREREEwL179xralPzl2jVy/HiyQwdGli/PYJWKnDyZvHXL0JZJSOQZktiXKJBERUXRw8ODFhYWmd7Yvs/cuXMpk8kK5e56UWTLli2FMiQ+JSWFzs7O7Nq1q6FNkdAXN2+S3t5ZC8C0Hu3W1uSiRaQocvny5ZTJZOzSpUumgkYURR46dIidO3emUqmksbEx+/bqxRvffUfR1zfjHA4O5MyZPLx1KwFw3bp1GcbctWsXZTIZBUEgAHp4eGRa/XzRokVUqVSZhmHfv3+fAOjl5aURrGmCc8GCBQRAuVzOJUuWsEOHDumq6rdo0YIAaGNjoykM+D63b99mWk2V3DJmzBgqFAr6+fmxZMmSfP3yJbl3LzlggDpColUrMjCQXLdOs/ly6NAhCoLAmTNnajeJKJKHD5OdOmXu5S9XjlywQB0JkAWHDh1ipUqVqFAoOH78+ByL9osXL9LMzIzt2rUzSIV+Pz8/duzYkaR688HFxYXlypVLt2mkC+fPn6dKpVK3PjQkokhOm6bevPlYREfa7753b/KDOgXJyclcuXIlP/nkE5qYmHDKlCmZfv8/RqVKlThs2DA9Lix/WLBgAY2MjHKV0lEo+eMPsnHj/30n3kVopQLq748gkP7+OrdklJAoiEhiX6LA8vr1a7Zo0YIKheKjO+eJiYmsXLky69evX2DaH/1XiYqKoo2NDTt37lxowvffZ+HChVQoFIUqIkEiC86eVYv4HORyn34nlIOCgjJcS2JjY7lw4UK6uroyrTL+okWL+Co0lCxVSj1GFnOJMhmTAf7q5ETxvRD2mJgYduvWjWl59JaWllyxYkWWYaWtWrVikyZNMn3t1KlTmnEqVaqkuYnfs2cPZTIZW7duzbRiXF988YWmIB9JBgYGEgD79++f6dhLly6lri2qkpKSWK9ePTrb23O8TMbnVlYZbrw175+VFeOGD2cNOzv6+PjkLsz20SP1ZsKWLeSuXeTp06SWfx8SExM5c+ZMGhsbs0yZMgwJCcnR1MHBwRQEgZMmTcq53Tri7e3NwMBAxsbGsnr16nRwcOC///6r1znSNo8KhFf433/Vntq079P7D2NjctAgMhtHwMuXLzlx4kQaGRmxZMmSXL16tdbfue7du7Nu3br6WEm+0qxZM/r5+RnajLxHFMmJEz96fU63MSQI5Pz5hrZaQkKvSGJfokCTnJysKVQ1efLkLAXkn3/+SQBcu3Zt/hoooUEURfr7+7NkyZJ89uyZoc3JFS9evKC5uTknT55saFMkdCEykrSxyVXRtqNNmmiuM6Io8tSpU+zduzeNjY2pVCrZpUsXHj58WH1McLD6BjEtQiCbhwiQ7dqRycnctWsXbWxsNN58Z2dnxsbGZrmkpKQkWlhYZOnlTquWb2lpqfFGR0RE0NLSki1btmT37t1ZrVo1kv8rLJa2zgYNGhAAZ82alenYHTt2JADGfMQjrg0P/v6b5+VypqR51D7ySBEEPhYEPt6/X6c5deHff/9l8+bNCYDt2rXLUS7+3LlzaYgCsh4eHuzXrx/r1KnDYsWKMSIiQu9zpKam0t/fn5988gkfP36s9/Fzxdu35IED6hSbTZvUGz05rOVz584dzeZbjRo1ePDgwWzPmT9/Pk1MTHJUh8LQxMfH09jYmPP/C6I2Tejn9LFwoaEtl5DQG5LYlyjwiKKouXHq0aNHlrmCXbt2ZYkSJT56wyyRd6xYsYIA+McffxjaFJ0ICgpiiRIlNNXTJQohn3+uU+/1N2fPcvny5XR3dycAli1blrNnz04vbE6dIlWqHPf8FgWBoaVLa7zwFStWJACeOXPmo0s6fvw4AfD06dMZXtu7d68m3z+t5sSzZ89Yvnx5Vq1albGxsSxWrJjG05xWhfrx48d89uwZVSoVBUHIMoWlYsWKNDIyyuWH8Y6XL0k3N6ZquTFCQH2slRV544Zuc+uAKIrctm0b7e3taWZmxvnz52sl7ERRZK9evWhkZMSTJ0/mg6VqXFxc6OTkRAsLC52Kz2XHkydPaGdnx2bNmhW5iLqTJ0+yXr16BMBWrVrx+vXrWR57+PBhAshVjQdDsW/fPgLIk42gAkVISK7/BlAQyOzqhEhIFBIksS9RaNi6dSuNjIzo4+OTqaB/+PAhLSwsOGTIEANY998mMjKSZmZmOuX0FhRu3rzJTPt5SxQObt/OsQD/0KP8o1KpCX3fs2dP5mKmbl2dNhQaWlpy8+bNrFmzJj/99NNsl/X111/TysoqQ3hxaGioRqxbWlqSVIeh+/j4sHjx4rx165amanjaRsBff/2l2TiYOnUqlUol5XI5y5cvn+ncJiYmdHZ2ztnn8CFdu+bu/ZLLyQoV0hU6NAQvX77kiBEjKJPJWKNGDa0EfEJCAr29vWlnZ8e7d+/muY1JSUk0NjamXC7n//3f/+X5fGntb4uih1gURW7dupVly5alQqFgUFBQphFraa0rM6vFUVAZNWoUHR0dC2WqXY5o3Dj312iFguzSxdArkJDQC5LYlyhUHD16lLa2tqxcuTJv376d4fWFCxdSEASePXs2/437j5KSksIGDRqwXLly6srlRYAWLVqwRo0aRf9mqCjy1Vc6iXACTFQqef8j3jxeuKDT+CmCwKQ+fbh//34C4IEDB7JdVsOGDdmuXbt0zwUHB1OpVNLOzo4mJib09vamKIocOHAglUoljxw5QpIcN24c7ezsNJsWz549IwCuX7+e1tbWbNKkCeVyOQFkqNj+4sULjYcz19y/r3WqQ5aPAhIxdO7cOdaqVYuCIHDQoEHZRpI9efKEZcqUYY0aNXJc/C0npKamakLQ+/Tpk2fzfMiYMWOoVCrzNIrAkLx9+5bz5s2jpaUlra2tOX/+/AzRhS4uLgwKCjKQhTmncuXK7Nevn6HNyFuuXtXtepMm+B89MvRKJCR0RhL7EoWOGzdu0NnZmXZ2dhlEfXJyMqtVq0YvL68iF1pYUJk3bx4FQcgXT1J+keaxOnz4sKFNkcgp5crpfpMHqFvtZcWgQVm3d9P2YWzMlg0b0tPTM9tNpdevX1OhUHDZsmWa53bu3EmFQsE6deoQAN3c3Ni1a1cuXryYALhq1SrNsZUqVUp3cy+KIs3MzNiiRQuqVCrOmTOHaWkFe/bsSTf377//TgCZtuTTmqlTdduAkcvVbdMKCCkpKVyyZAktLCz4ySef8JdffvnoZ3jp0iWam5uzTZs2efJ3SRRFDh48mDKZjEqlkkuWLNH7HFmRmJjImjVr0sXFJU83MwxNdHQ0hw4dqomA+e233zSfeUBAAOvXr29gC7Xj7t27BMDtH7SeLHKMHav7NVomI+fNM/RKJCR0RhL7EoWS6Oho1q1bl6ampvz999/TvXb06FEC4IoVKwxk3X+Hy5cvU6VSccyYMYY2Ra+IosjKlStn8KRKFALMzfUj9j/WC97OTi9ztAK4Y8eObJcUGhpKALzxLnd927ZtlMvlbN++PUuWLMm2bduyfPny7NixI2UyWbq2aGlpKbs/2LyoVKkSTUxMOHjwYK5Zs4YAWKxYMU6fPj3dccOGDaPOOcmffKL7+yUI6giBAkRUVBS7dOlCAGzatOlHc7tDQkIoCAInTJigVxtEUeT48eMJgD///DMB5Hvf9xs3btDMzCxfIwoMRUREhKZVZcOGDXn27Fl+9913NDU1zV3XiHxm5cqVlMlkRb+2Ubt2OqVzESCVSvXGroREIUcS+xKFlvj4eHbo0IEymSyDJ6NXr160tbXNEJIqoT8SExPp7u7OKlWqFMlidj/99BNlMlmm6SISBRgTE/2I/Z9+ynoOIyO9zDHBzk4rgTB69Gg6OTlRFEVu2bKFcrmc3bp149ChQ2lubs67d+9SpVLR2NiY/v7+6cacP38+jYyMMvSLr1SpEgHw1q1b3LBhAwGwWbNm9Pf3T3dc7dq1KQhC7oVMfLx+Pg+AfJeWUNDYt28fnZ2dqVKpOHXq1Cyvh99//z0BcMOGDXqbe+bMmQTAhQsXavLHf/31V72Nry1pG0aGmNsQhIWFsWrVqgRAX19fFpaCdx06dCg0UQg68emnul9v5HKyWzdDr0RCQmcksS9RqElNTeUXX3xBAPziiy80IZKPHz+mlZVVln2jJXRn0qRJVCgU/OuvvwxtSp7w5s0bWltbc+zYsYY2RSIn2NvrR1h+TLToSewf0dITWq1aNfbp04e//PILZTIZAwMDeeLECQqCwAULFjAyMpIA6OjoyBcftBvz8fHh559/nu65hIQEmpqa0tbWliS5ZcsWAuBXX33FYsWKpQtJt7W1ZfHixbV88zMhOlp/Yj80NPd25DHx8fGcPHkylUolK1SowP2ZtAwURZF9+vShSqXi8ePHdZ5zyZIlBKCJxnj06BEBMCQkROexc4ooiuzSpQstLS3/MxukKSkpXLlyJYsXL04AbNOmTYFOZUhOTqaVlRW//vprQ5uS97RvT1Efnv3Bgw29EgkJnZHEvkSRYMmSJZTJZOzQoQPj4+NJkkuXLiUAnjp6lNyxg2zShLS2VudxmZuTrq7qfCzJ+59jTp48SZlMxhkzZhjalDxl3LhxtLa2zuAVlSjA9Oypn1zNBw+ynkNPYfxJWuTNpgm4QYMGURAE9u3blwkJCXR3d6e7uzvj4+M1efsf5uHGxsZSLpdz+fLl6Z5Pa5NpZWVFkty+fTsBcOvWrQTAf//9l6S6ursgCKxXr14OP4T3ePtWf2K/gHr23+fatWv08fEhAHbt2pWPPijwlZCQwIYNG7JEiRK8c+dOrudZv349AXD06NGazZm0TR9t+sPnBc+fP2fZsmVZr169QtV3XldevXpFGxsbyuVylixZkqtXry6QIf3Hjh3j+105iiKJiYncv38/wzw9mazr9UYmIxcsMPSSJCR0RhL7EkWG4OBgmpqasm7duoyOjmZKcjLnODryWdqNf2YFomQy9e5t797kBx4xicyJi4tjxYoVWbt27SJ/Q3fnzh3KZDL++OOPhjZFQltOndLtBk+hUOd7foyBA3XeUEhWKMjnz7NdzqZNmwiAgiBwwIABTE1N5YIFCygIAk+fPs1hw4ZpKunfu3cv03MfvLdxkZyczHLlymk2CF6/fs3du3cTAK9evUoA3Lx5M8n/tegbOXJkzj+H99FHtIUgkFFRutmRT4iiyA0bNrBEiRK0srLismXL0om/6OholitXjtWqVdN0MEkRRV6LTeDWyBdceTWWP16J4eprsQy984qP4tJfZ3fu3EmZTMZ+/fqli8K4dOmSwcXciRMnKJfLOWXKFIPZYAg6d+7M2rVrazoiVK9eneHh4YY2Kx1Tpkyhra1tgdyI0IWnT59y/fr17NixIy0sLAiADeztKep6zVEqyUzaLUpIFDYksS9RpDh79izt7OxYwdmZzzt31v6iLpeTlSoVmptJQxIUFERjY2Neu3bN0KbkC+3bt2elSpWk7g6FBVEkq1fXrThTdp7Rv//W6SYyCWBS795aLad+/foEwCFDhjA1NZX37t2jmZkZhw0bxh9//JEA2KNHD8pkMiYlJaU7NyAggJ6enumeS8vPT8uxjoiI4B9//EEAjIqKYq0yZbiiTRvyl1+4MyCAjQDu/aAIao6ZMUO31nsKBflBKkJhICYmhgMGDCAA1q5dm+fPn9e8duXKFVpYWLBNu3Y8EvWaiy4+4+zzTznn/FPOfu+R9u8112J580UC9+/fT5VKxc6dO2cQbSdPniQAXrp0Kb+Xmo5vvvmGgiD8p7qZzJ07l+bm5kxNTeWpU6c0v9uWLVsWmL+VXl5e7FIEeseLosiIiAjOmTOH3t7elMlkmt/YN998wwsXLqg3wZo1y30XEIWCDAw09FIlJPSCJPYlihy3b9/malvbnO/qKhSkmxv58qWhl1BgCQ8PJwD+8MMPhjYl3/i///s/AuC+ffsMbYqEtuzfnztxmdbiLZtWeCTJOnV0E7B//53tFGmpSO7u7hoPbtu2bWlvb8/g4GDK5XIGBQVx2rRptLe3T3duUlISrays0lXXT01NZaVKldiqVStNC649e/YwbN8+1gP4uk0bJmeySZJaogQ5fXruN0MfPtSt9R5AFuLf3/Hjx1mtWjXKZDKOGjVK483/fc9eDlixi7P+epJO4Gf2SBP9vgPH0N/fn4mJiRnmOXjwIN9PwzAUKSkpbNy4MR0dHRkTE2NQW/KLAwcOEIBG2IuiyO3bt7NcuXKUy+UcPny4QQsGP336lIIgcO3atQazQRcSExN54MABjhgxgs7OzgRAU1NTtmnThqtWrcqQLkOSDA/P/fVGJiOLaD0iif8ektiXKHocP577C7xcThaxNnL64vnz53R0dGSTJk3+U15uURTp7u7OFi1aGNoUiZywapXau6+th18uJ2vWJN8JsWw5dYpUqXIcQZAKMF4Lj9EPP/xAAATAP/74g6Q6VQkAFy1aRBsbG/r5+TE5OZn9+/enl5dXuvPThN/7BTTTcvNPnTrF5ORkyuVy/rxwIaPr1iUBih8T5DKZ+j1atkz7z+B9AgNztzmiUJCVK5OF/JqTlJTEefPm0dTUlKVKleL2Hb/xl5vPOVsLof/h4/iDzFPOfv/9dwLIXPjkM/fu3aONjQ3btWuXLtWgqBITE0MA3LRpU7rn3759y3nz5tHS0pJWVlb8/vvvmZCQkO/2pRXhjCpE0YvPnj3jhg3olBk4AAAgAElEQVQb2KlTJ1paWjKtCOmQIUMYGhqqXRegOXNydy+Yz+0rJSTyEoEkISFRlOjeHdi2DUhJyd35lpbA48eAiYl+7SospKYCcnmGp3v16oXdu3fj8uXLKF26tAEMMxzr1q1Dnz59cOPGDVSsWNHQ5khoy2+/AYGBwNu36n9n9udOoVBfK1q3BjZtAszNtR//99+BDh0AUVQ/skEEcMXZGdVv3FDPmwULFizAmDFj4Ovri0OHDuHFixcAgCpVqsDV1RX37t0DAJw+fRrW1tbw9/eHsbExdu3apRlj9OjR2L59O+7fvw9BEEASHh4eKFGiBA4cOAAAqOzkhAMpKSgVHQ1BC/s1fPMNMHmy9scDQFwc0KgRcPGi+hqjDXI5YGUFnDsHlCuXs/kKKHfv3sWIESPw5pMK8B38JQSZLFfj9KtkjRIm6b9DW7duRUBAAF69egULCwt9mKsTu3btQvv27bF8+XIMGjTI0ObkOc7OzmjXrh3mz5+f4bWnT59i+vTpWLFiBcqUKYN58+ahffv2EAQhX2zr3bs3zp8/j0uXLuXLfLmBJK5fv46QkBCEhITgxIkTEEURXl5eaNWqFVq1aoUaNWrk7D0jgfnzgXHj/netzwqFQn0d//lnoG9f3RckIVFAyN1fGQmJgkp0tG5CHwBevQK2btWfTQWduDhg1SrAw0O9waFQACoV4OICfPcd8OwZdu3ahQ0bNmDx4sX/OaEPAAEBAShRogSWLFliaFMkckKHDsDDh8DixUCFChlfV6mAnj3VYjI4OGdCH1BvEPz5J1CypPrfmWySAQBkMogyGRYJAqzDwzMX+vHxwIYNONOoESzGjMHxWrXQ7dEjtPT0hLm5OaZPn45nz54hMTER0dHRCAkJgbW1NQAgKioKpUqV0gxFEr///jtatWqluTEODQ3FxYsXMWnSpLSDsCouDvZPnuRM6APAlCnA5s05O8fMDAgPB+rWBQRB/fgYcjlgbw8cP15khD4AlClTBjt370bzQWNyLfRlAM4/S8jwfFxcHADA1NRUFxP1Rrt27TBo0CCMHj0aV69eNbQ5eU7NmjXx119/ZfpaiRIlsGzZMly+fBmVK1dGx44d0ahRI5w9ezbP7SKJsLAwNG/ePM/nyinJyck4ePAgRo0ahQoVKqBKlSqYPn06bG1tsWLFCjx8+BBnzpzBlClT4O7unvPNEUEAxo4Fjh4F2rQBZDL1tUWhUP//+//t0gU4c0YS+hJFDsmzL1G0WLECGDIkcw+etshkQNOmwDvvV5ElNRWYPh1YtAh480a97g9v+mUyUC7HJpkMf/j6YktISL55IgoaU6ZMwaJFi/DgwQNYWVkZ2hyJnEKqvcpPngCJiWqPcfXqgI2N7mOnpAB79gBLlqgF7fvY2yNl0CB4/vQTavr7Y+3atelfv30bWLoUWLUKfPUKyQDkMhlkcjnE5GQIgoBXvr5oc/AgUurWxenTp7Fv3z74+vpqhrC1tcX48eMxYcIEAMDVq1fh5uaG0NBQtGjRAiRRr149KBQKHD16VP0bPnkSqF8/92t2clLbntUGR1YkJgKrV6s3YNIiHNKCZ2Uy9XtZogQwdCgwfDhQvHjubSygXH+eiN13Xus0hkIAgqrZwkj+vw2DpUuXYuzYsUhIyLgRYCji4+Ph5eUFuVyOM2fOwNjY2NAm5RmzZ8/G7Nmz8eLFC8iy2cg5cOAAxowZg8uXL6NHjx6YNWsWnJyc8sSuixcvwt3dHeHh4fj000/zZI6cEBMTg7179yIkJAT79u3Dq1evUKpUKbRs2RKtWrVC06ZNYZJXkZVRUf/P3n3H13j9ARz/3HuzESOJyLDFSO2UqCq1asVoaW1qS62atX5FqZpVexZVEmq0JSRm1aoitNSsxErEDpLIvPf8/ngapYLcnXHer1derdz7nOd748p9vs/5nu+BNWsgMhLi4pRKznLllAowNzfznFOSrOzldYSSlB3duqVcPKamGj6GTqfMBuZkycnQrh1s3/7vjZGMZvd0OlQ6HR2A9leuoLp3L9d+IAYGBjJt2jRWrlzJ0KFDrR2OpC+VCqpWNc/YNjbKLH+rVnD/Pty9CykpUKAAeHmx5rvvOH37NutHjXr+uJ074f33ledqtagAO3i6LEADIAR5d+/mV2D8kSN0mj//uUQ/MTGR2NjY52b2t23bhpOTEw0aNABg3759/P7774SGhv57s27hQrRqNRp9Z/XT3bihxN+8uX7H2dsriXxgoDLbtmUL3LunJPmFCkH9+tCmDdjaGhZXNnDmQRIqlIYMhkoTcOlhCpVc/k2eExISssysfjonJyeCg4OpWbMmo0aNYt68edYOyWz8/PyIi4sjIiICHx+fVz63cePGnDp1ilWrVjF+/Hg2bdrEiBEjGDVqlMmXYOzcuRMnJyfq1Klj0nEzSwjBxYsXn5bnHz58GJ1Ox5tvvsnw4cMJCAigWrVqlplI8PKCMWPMfx5JykLkzL6Us4wbp5SeG5PsA5QqBRERpokpq9HpoFMn2LgxU+uMn9JolFL/X3+FLHZBaSmdO3fmt99+4++//0aj74ymlCtptVp8fX3x9fV9bk09u3bBP7PuepXRjx+vrJn/x+XLl/Hx8WHv3r1Pk/u3336bwoULPz1fgwYNePz4McePH1cuqO/eBU9P45Y7aTTQuDGEhho+Rjan0+nQarWkpaXp9fWb2pMnanujzq0G6ng4UbvIv7+LP//8c1atWsWNGzeMfGWmt2DBAgYNGvR0eUlOdO/ePdzc3AgODqZDhw6ZPi4uLo7p06cze/Zs8ufPz5QpU+jRo4fJPmMaNmyIo6MjISEhJhkvM1JTUzl48CAhISFs27aNy5cv4+joSKNGjWjZsiUtWrTA09PTYvFIUm4mZ/alnKVAAf0S2JcpVMj4MbKqH380rCeBVgsnT8KcOcpNlVxoyJAhBAUFERISQuvWra0djpQN/PTTT1y6dIk1a9b8+80bN+D99/VP9AGmTFFuun3wAQBRUVEAeHt7A0ojsN9++40VK1YAcOTIEX755Re2bNny78zZiRPGJfoAWi3i4EFSU1L0Tnaz69d/E3udgZ81I7edoJBXceN+/ipI1T0/V/PkyZMsN7OfbsCAAezatYsePXpw+vTpHJnoubq6UqxYMcLDw/VK9vPly8eUKVPo27cvY8eOpU+fPsyfP5/Zs2c/V8VjiPj4eA4ePJhh00BTe/DgwXPl+Y8ePcLT05OAgADmzJlDgwYNsuz7U5JyMpnsSzlL7dqZ7/T8MhqN0jU6p5o/X3mNhvycdDplffFnn72ym3hOVbNmTWrVqsW8efNksi+9lhCCadOmUb9+ffz9/f99YMkSRHKy/ok+KOvav/rqabIfHR0N8LSMf8eOHQC0aNECgC+//JI33njj+fdrbKwBr+ZFqoQEHO3tMcHt1VeytbXFxsbGJF8ODg4Zfl+j0ZjsHK/7OiwK89jImkohwF7zfNlzQkICefLkMW5gM1GpVKxcuZLKlSvTrVs3du3a9dp17dmRn58fJ0+eNOjYYsWKsXbtWgYPHsywYcNo3LgxLVq0YObMmVSoUOG1x99LSuPUvST+fphCklZ5g4mUJN4b/Dlvv6fncptM+m95vlarxc/Pj6FDhxIQEED16tVzbZ8fScoqct/VupSz1a4Nvr5w/rzhTfq0WrR9+pAji7TPn1fK8I1x6xaEhCjranOhwYMH06lTJ86cOUOlSpWsHY6Uhe3du5cTJ06wc+fOf7+ZnIxYsgSVoTcldTplZj48HPz8iI6OpkCBAk+TvK1bt+Lv74+7uzsnT55kx44drFu37vnEykTr4XUqFatWrcLGhMn4f79yYkJ483ocZ+4nG3WTRADu/9l678mTJ1k22Qdl5vv777+ncePGzJw5k88++8zaIZmcn58fs2bNUqp2DExya9asycGDB9m8eTOjRo2iUqVK9O/fn4kTJ+KaQcPKW0/S2BsVz42EtBd7QdjYU7tDb3Y9seHC349o6JUHdyfDL/1TU1M5dOgQ27ZtIyQkhL///hsHBwcaNWrEokWLaNGixXP9QyRJsj65Zl/KeYzoyK8F9gHDK1Vi2rRpNGvWLGfdlZ48GSZNMq76QaOBDz+E4GDTxZWNpKamUqJECZo3b87y5cutHY6UhTVq1IjY2FhOnDjx9PeI2LABlR4lvhmysVG2h1q6lMGDB7Nv3z7++usvkpOTcXV1ZcyYMYwdO5Z27drxxx9/cOHCBWyercQ5cADq1TMuBlCadd65Y/w4ucytJ2msvvjQqDGc7dQE+hZ87vOpXbt2xMXFPX9zKQsaPXo0s2fP5vDhw9SsWdPa4ZhUaGgozZs35/Lly5QuXdro8ZKTk5k/fz6TJ09GpVIxfvx4Bg0ahL290vMh4lEKW648Ride3/BRBWhU0LaUMyWd7TIdQ2xs7HPl+Q8fPsTDw+Np9/yGDRvK8nxJysJy3i1zSerSRWmwZ0CZucbGBo8lSyhYsCAtWrTg3Xff5ejRo2YI0kpu31bKgI2h1Srj5FK2trZ88sknrF27lnv37lk7HCmLOn78OHv37mX06NFPEzKdTseOWbNIMXbwtDQ4cwZQyvjTZ9L2799PfHw8rVq14uzZs2zevJkxY8Y8n+gDWn9/kozdPtLGBjp3Nm6MXKqIkw1FHDUYcxvZz9XhhRvRWX1mP93kyZOpVq0anTp1Ii7OuC0Isxo/Pz8AwsPDTTKevb09I0aM4PLly3Tp0oXRo0dToUIFNm3axI14JdHXZiLRB+U5aQI2RT4mJuHVTYwvXbrE7Nmzeffdd3Fzc6Nz585cunSJwYMHc/z4caKioli2bBktW7aUib4kZXEy2Zdynjx5YPdudAUKkOkWVCqV8rVqFRX79WP//v1s376d2NhY3nrrLdq2bcuFCxfMGbVlpKYavrzhWVloH2dr6Nu3L0IIfpg+XemO/v778O67ytZrgwfDH39YO0TJ0v6z/n7atGn4+PjwwT9r63U6Hf379+fSiROm6bL9UJkZjoqKetqcb+vWrZQoUYI33niDr776iqJFi9K1a9dnDnnI7NmzKVO+PFMfPcKo7iZpadC/vzEj5GpvezgZtPWeCnDUqKjs8uJ+9Vlx672M2NraEhwczO3btxkwYIC1wzGpwoUL4+3tbfC6/Zdxc3NjwYIFnDlzBl9fXz5q354VxyPR6vR/F+kE/HQ1jmcLe9PS0ti/fz8jRoygXLlylCtXjvHjx5M3b14WLlxIVFQU4eHhTJo0iTfffDNHLq+RpJxK/muVciRd8eL0rlyZyPQPpFddXKvVyt7PW7YoVQEozYSaN2/OqVOnWLNmDSdOnKBixYr07dv3aUOsbKlgQeWmhrEyWDeYm7idO8cxNzf6z5qFmDYNfv5Z6YWwbRssXqx0S69ZU9n1QK6Uypni42HZMqhaFRwdld8xjo7g68vtsWPZt2ULo0aNQqPRoNVq6d27NytWrKBhq1ZoTHGh/M9e3Okz+0IItm3bRsuWLYmMjCQ4OJhRo0ZhZ2fHpUuXGDhwIN7e3owZM4Z33nmHtmFhaDQaw/Z612igfn0oV87415FL+eS3p56Hfol5ehl2+zL5cbR58T2UXWb2AUqXLs2iRYv4/vvvWbt2rbXDMSk/Pz+Tzez/V4UKFQgJCWHDviM4FnA16PNcAI9SdJyJiSU4OJhOnTrh5uZG/fr1WbduHXXr1uXnn3/m3r17hISE0K9fP7kOX5KyMZnsSznS7NmzWbVvHxE//qjsJ//22xk/0dtb6Wx9/XqGDec0Gg1du3bl4sWLzJw5ky1btuDj48OYMWN4+NC4NZdWUaeOMrtvDLVaGSe3mjcP6tenUkwMalAarT2b0KdvaRYeDh06wIABxu8QIWUdqakwZgwUKaLMbJ8+/W+lS1ISXLhA4a++4hbQ48QJtPHx9OzZk++++47vv/+eyq1bG7/tnY0NlCpFWloat27dwtvbm9OnT3Pjxg1atWrFtGnTcHV1pXjx4jRv3pxy5cqxceNGhg8fzrVr11izZg1VmjSBBQv0LyXXaJQbDcuWGfcaJN4q4kQjLyU5z8zFmINGRZeyBSjykgZr2WVmP13Xrl3p0qULgYGBREREWDsck6levTrh4eGYsyWW1qu8UctAdFotX28Mo1OnTpw/f55BgwZx7NgxoqOjWb58Oa1atco2N44kSXo12aBPynEOHz5MvXr1GDFiBNOmTfv3gQsXlAvzR4/AyUlJ9OvUefWs/388evSImTNn8vXXX+Pg4MC4ceMYMGAADg4vllRmSVotFC8OxlQn2NrCzZu5c3Z/0SIledeHSgX9+inH5qRmj7lRYqJyU3D37kxVbAi1moiCBakVG8vCoCDat28Pjx8rNwoSE42LZc8eosuXx9vbm5CQEE6ePMmsWbM4dOgQVatWxdXVlTt37lC1alU+/fRT2rdvn+HvqTOdO1MpKAgBr08eNBpwdoawMKVyRTKJu4lpnLyXxJn7SaQJ0GmVm0EajQ0CcLZV4+fmQGUXhwxn9NOVKFGCLl26MGXKFAtFbrzHjx9TrVo1XF1dOXToELbpO0WkpMCVK8o2kfb24O4Onp7WDTaTtm/fTkBAAFeuXKFEiRImH/9Jmo55Zx4YP5AQfOiSROniRY0fS5KkLEvO7Es5yr1792jfvj21atV68YKnfHn46CPo00dpLFWvnl6JPkD+/PmZMmUKERERtG/fns8++4yyZcuyevVqtNlh9lajgYEDDW/SZ2OjzFbnxkT/5EnlZ6cvIWDJEggKMn1MkuVotdCxI+zZk+mlGSqdjhL373O+bFnap1cOOTvDxx8b1EBUGVQFpUtDgwZPlxR5eXmxadMmPDw8qFGjBjqdjlq1avHrr79y8uRJunfv/tIbkkmffkoH4Eb6y8zohlT678l69eDYMZnom5ibow1NiuZlUKVCtCiWl4vbg4k9+Sv1PJ34qLQzgW8UxN/d6ZWJPmS/mX0AZ2dngoODOXnyJJ9//rlSZTd+PHh4KJ/Zb70F1auDl5dyc37DBuVGQBZm6iZ9/5WQasymjc9QqShUJHvcQJEkyXAy2ZdyDJ1OR7du3UhOTmb9+vUvdKA2JQ8PDxYvXsy5c+eoVasWPXr0oEqVKoSEhJi1dM8k+vZVZkj0bRKmVoOdHYwda564srr58/X/maVTq2HWLNPGI1nW+vVKbwadfhfaNoDbpUuwcOG/3xwwQO9xnhIChg0DlYobN5QUfdSoUZw+fZrr16+TlpbGp59+ys8//0zdunVfu3VosWLF2ACU0WjY2r8/xwsWJDH9fa7RQOHCStPJixdh714oU8awuKXXsteoqeTiwKnNq0j+6zC13J0o5WyX6e1fExISsmXpdc2aNfly4kSKTpuGKFECpk2DBxnMXB89qtxs9vJSbrplUUWKFMHDw8MkyX5SUhJXrlzhyJEjbN68mQULFjB3/gITRKlIM6DBnyRJ2Yv5siFJsrAZM2YQGhpKaGjo0+7U5la2bFl++OEHjh07xujRo2nZsiV16tRh+vTp1K5d2yIx6K1QIdi1S+lj8Phx5taTq9XKhf9PPymzLbnN/fvKzLyha611OqVD//HjUKOGaWOTLGPePOXfgSFJuhDKzaJPP1XGeOMNWLpUqTLSh1oN7duT0rMnG77/nnHjxgFw+vRpVCoV3bp1IygoSJkhzaTChQvj4OCATqcjomxZuut0jJg0iXGjRyvnk0tPLC4+Pp68efPqdYxOpyMxMTHbzewDkJLCyIMHlaUkQrz8Myn9+w8eQNOmEBwMH35osTD18bomfQkJCcTExDz9unnzZoZ/jo2Nfe44Ozs7ylZ9k86Nu5gkTgeN/PctSTmdTPalHOHgwYOMHz+esWPH0rRpU4ufv2bNmuzdu5ddu3bx2Wef8fbbb9OmTRumTp1KhQoVLB7Pa1WooJTjNm0KEREItRpVRklMenJToIDSaT6r3sAwt/XrjW9saGMDK1bIZD87OnVK+fdiKCHg6lVlNvK995Tv9e6tlCOnL6t51U03lQqEIKlNG2aVKcO3JUqQevs2Jb28cCxcmLJvvsn9Bw9Yt24dAwcOpGDBgpmLKzYW1erVhKnV5E1OpvDMmZR8+JCS9+4psTk6Gv6aJYMZMkOf+E8PiOw4s0+fPqh27858wzmdTvk30amTUu6fRRrGCiGIi4sjJiYGFxcXtmzZwqxZs7h169YLCf3jx4+fO9bR0RFPT088PDzw8PDA19f3uT+n/3/BggXRAQvOPCBRa9ysfB4bFXlsZYGvJOV0skGflO3duXOHatWq4ePjw549e8xavp8ZOp2O4OBgxo8fz/Xr1+nRowcTJ060WLWBXlJTYetWro4YQYmrV198vGJFGDJEWaucHS8iTWX4cGVm1tiEv2HDLF1+Kr3EmDHKMgxjuujb2EC3bvDtt89//9dflbLlnTtfTPptbCAtjcRSpVjv7s6WY8f4RAia6HTPrcE7p1Kxu3x5ply5wtlr1yhcuPCrY4mMhMmTlWqV1FSEEE8TLS3K+j6Vs7NSeTBmDLi4GP66Jb3lyZOHqVOnMmTIkEwfc/fuXQoXLsyPP/5Imwx2lsmyjh83vAeEWq1sc3rihGlj+g8hBA8fPsxwFv6/M/IJCQnPHevk5IS3t/fTpP3ZxP3Z/3d2ds70cg2AgzEJHLmVaNjWmSjNON/xcKJ2kWxYCSJJkl7kzL6Urel0Orp27UpqaipBQUFWT/QB1Go1nTt3pl27dixdupTJkyezbt06Bg8ezOjRozM/62YJtrbQti2dv/6aamXLsmDAAGW3grx5oUQJZQ9xWcar7KluCv+ZzZGyiTt3jB8jLQ1u337x+/XqKV+RkbB8Ofz5Jzx4gMiXj6vArLt3OfPnnwRdu0YPrRah0bwwA1pOCCqcP09/Gxvs16xRbk697N/tb79B8+bKe/qfmxfPPvNpV4rHj+Gbb+DHH5XdB0qVMurlS5mj0+l48uSJ3jP06UlmtpvZX7To6U0tvel0yhan4eHwT1M8fQghuH///ivL6NO/ktK31/xH/vz5nybqxYoVw9/f/7kkXq1WU7duXdauXcv777+v/2t7jSouDhy5ZdyOHlVcsskuQpIkGcX6mZEkGWHq1Kns3r2bnTt34pnFtuWxt7dn8ODBfPzxx8yePZvZs2ezbNkyxo4dy8CBA3HMIiWysbGxHD16lB5Ll0KrVtYOJ2tydjbNOFnpRo+UeSkpme7A/0rJyS9/rFQp+OorHj58yLfffsuCBQu4evUqY8qXZ79Go6xlBlQZlPunJ+j2aWkwcqSyZGD+/BcT/j//hEaNICkpc70HtFqlO/q77yozsO7umXqZkuGePHkCoPea/fTjstWafWN7oYByo2DRoucqZnQ6HXfv3n3tLHxMTAyp/6nWKlSo0NOkvUyZMrzzzjsvzMQXKVLktT9nIQTu7u6cPHnSLMm+s52Gaq72nLz3it8pr+Dn5iBL+CUpl5DJvpRt7d+/nwkTJjB+/HgaN25s7XBeytnZmUmTJhEYGMjkyZMZO3Ys8+bNY9KkSXTr1s3q1Qi7d+9Gp9NZpddBdiHKlYPU1MyvKc1oDI0GVW5sbpgTFCjw+nX1r6NWv7Ic/uLFi8ybN4/vvvuOlJQUOnToQOj48ZQPDFQSc31uNixcqCTm//vfv99LS4OWLZUbDvo0GUxLg5gY6NpVaewpmVX8P1VE+ib72XJm/+BB47fRS0vjcXAwXZ5J7m/fvv3CVrhubm5Pk3ZfX18aNWr0Qml9kSJFsLe3Ny6ef6hUqtc26TNWQ++8xCbruBKnx/IyISiT344GXtnofSJJklFksi9lS7dv36Zjx47Uq1ePCRMmWDucTClSpAgLFy5k6NChjB8/nl69ejF79mymTp1Kq1at9FqvZ0phYWFUrFgxa/YUsLKbN2+yZs0aNnz7LYcAYy6PVFotnfbvp9HKlbRv3z57XZTndnXqwAIjt7sS4oVGYkIIdu3axdy5cwkNDaVw4cIMHz6cwMBAiri7Q6VKyg0GQ6oKJkyA7t2hWDHlzyEh8M9WfXpLS1NK+S9ehHLlDBtDyhRDk/b0mf1s9Xslo+31DOCQlIROp6Nq1ao0b978hSTe3d0dW1tbk5xLH9WrV2fZsmVKTwwzfL5rVCralXJmx/U4zsamoAZedhsv/bFTIRto0uod1KoqJo9HkqSsSdbwSNmOVqulc+fOCCEICgpCY+je51ZSpkwZ1q9fz4kTJ/Dw8KBNmzbUqVOHQ4cOWTwWIQRhYWFyVv8ZycnJbNq0iebNm1O0aFEmTZrEG/7+PGjdGmFgFYbQaLhXvjwPPDzo3bs3Hh4e9O/fn5MnT5o4esks3n/f+CZ19vbK7DhKQrdkyRJ8fX1p2rQpt27dYvXq1Vy/fp1JkyZRpEgRZW392bOGbfUHSiXBsmX//nn+fGX7TEPZ2MCSJYYfL2WKsTP72aqM30QJsJ29PSEhISxfvpxJkybRv39/WrduTc2aNfH29rZKog/K9nt37twhOjrabOfQqFUEFM9H17L5qVDQLsOL+rTUFLzUSXQo4ciFzcvp1LHDC40EJUnKuWSyL2U7U6ZM4ZdffiEoKEi5KM6m/Pz82LNnD7t27SIxMZF33nmHVq1a8ddff1kshjNnzhATEyOTfeDUqVMMHjwYT09PPvzwQx48eMCiRYuIiYlh7dq1FJ0+XZmdMeACVaXV4jprFmFhYURGRvLpp5+ybds2/Pz88PPzY8mSJS9sxSRlIXZ2EBhoeLJsYwPdu3P90SNGjRqFt7c3AwYMwNfXl19//ZXw8HC6d+/+fAnxwoXKcYbSamHxYqVsPyoK9u0zbhlCWpqyLtrQmw9Sphg6s58ty/hNtctDFu2F4vdP00Bz39RVqVR45bGlZQlnBlYsROsS+XjPOw9Niuahmac9c1q9yc1dwZQomIf169dz/fp1vXZ6kCQpmxOSlI3s2bNHqFQqMWnSJGuHYlJarVYEB/PJjpoAACAASURBVAeLUqVKCbVaLT7++GNx7do1s593+vTpwsnJSSQlJZn9XFnR3bt3xdy5c0WVKlUEINzd3cWIESPE2bNnMz5g0yYhVCrlSymuztxXBu/X1NRUsXXrVtGyZUuhVquFk5OT6NGjh/jtt9+ETqcz8yuX9HbrlhCFCwuh0ej1d69Tq0Wqk5MY0LSpUKvVIn/+/GLEiBHiypUrrz5fnjz6vcde9nXggBCHD5tmLBDi4UOL/Lhzq507dwpA79//q1evFoBITk42U2Rm8OiREA4Oxr0fbWyEGDDA2q8kQzqdTri5uYnPP//cqnEEBASIunXrPv3zihUrBCDWr19vxagkSbIUObMvZRsxMTF06tSJhg0bMm7cOGuHY1JqtZoOHTpw/vx55s6dy/bt2ylbtiwjR47kgYnWNWYkNDSUBg0amKwpUXaQlpbG9u3badeuHZ6engwfPpxSpUqxdetWbty4wcyZM/H19c344LZtYcMGZcb1dbOu6Y9Pnfp8o7SnD9vQsmVLtm7dyvXr1xkzZgz79u3jrbfeonLlysybN8+sf/eSntzdlQZ1Tk6ZnuHXqdWkCkHDJ0/Yc+UK8+fPJyoqipkzZ1KiRImXH5iaCqYqs33wwHRjgWnHkl5gTBm/jY0NdnZ25gjLPJyd4eOPjatgSUtTqm6yIJVKRfXq1c3apC8zAgICOHz4MLGxsQD07NmT9u3b07dvX65cuWLV2CRJMj+Z7EvZQlpaGp06dUKtVrN27dpst04/s+zs7Bg4cCARERGMGTOGJUuWUKpUKaZNm/a0AZOpxMXFcejQIZo1a2bScbOqixcvMnr0aIoVK0ZAQACXLl1i+vTpREdHs2XLFlq2bJm5tZ0ffgh//AG9eoGDg1LWb2urJIC2tspaaY0G2rSBAwdgzJjXlv57eXkxfvx4IiIiCAsLo1y5cgwfPhxPT0+6du3KgQMHEKbY+k0yTpUq8PvvkL7N50t+D+lUKgRwX6djRM2ajAkN5dy5c3zyySeZS+JMWSqv05lu60gw7VjSC4xp0Jet1uun++QTw7fe02jg7bfhjTdMG5MJ+fn5Wb03S4sWLdBqtezcuRNQbkIsXboUFxcXOnbs+ML2g5Ik5Swy2ZeyhS+++IIDBw6wfv163HPBXs/58uVjwoQJRERE0K1bNz7//HN8fHxYvnw5acbsSfyMffv2kZaWlqPX6z9+/JgVK1ZQu3Ztypcvz9KlS/nggw84ceIEf/75J0OHDqVw4cL6D+zrqzQru3VLWVvdrx907gy9eysz+devw8aN8M47eg2r0Who0qQJmzZtIioqikmTJnH06FHq1atHhQoVmDVrFnfv3tU/Xsl0KlSAv/9W9gevWTPDp/wFrH33Xe6HhzPv6FGaNm2KWq3Hx629vXIjyRQKFgQfH+NmT9N5eUF2WhOeDcXHxxs0Q5+QkJC91uunq1QJhgzRvxdK+k3W+fPNE5eJ+Pn5ERMTQ0xMjNVi8Pb2pmrVqoSEhDz9Xv78+QkODiY8PJzPP//carFJkmQB1l5HIEmvs3PnTqFSqcSUKVOsHYrVXL58WXTs2FEAoly5cmLLli1Gr+vu37+/8PHxMVGEWYdWqxX79u0TXbt2FY6OjkKlUokmTZqI9evXi8TERGuHp7f019OxY0dhZ2cnbG1txUcffSR2794ttFqttcPL1VJTU8XOOXPEmAoVRFcQfV1dxepPPxUP7t83fvDWrZX1yMasZ86bV4iEBGW8Tp2MG0+tFmLqVONfl/RKM2fOFPnz59f7uFGjRonSpUubISILSEsTokOHTL8XU0Ho7OyECAuzduSvdfXqVQGIbdu2WTWO8ePHi0KFConU1NTnvj9t2jShUqnE7t27rRSZJEnmJmf2pSzt5s2bdOnShffee48xY8ZYOxyrKV26NEFBQYSHh1O8eHE++OADateuzYEDBwwaT+TALfeuXbvGF198QZkyZWjQoAG//fYb48aN49q1a4SFhdG+fXscTDVbakFqtZr69esTFBREdHQ006dP58yZMzRu3BgfHx+mTp1q1Vmj3Cg2NpZZs2ZRpkwZmgwdykEXF1pv2sTCmBi6z5lDwUKFjD/JwIGGlzeDMpPfu7fSYwBgwADjxlOrlaUrklnFx8frvV4fsvHMPijl+OvWKb1N7O1BpUJkNNP/T3XKdbWaLxo3hiZNLByo/ooVK0ahQoWyxLr9Bw8ecPTo0ee+P3LkSBo2bEjXrl25c+eOlaKTJMmcZLIvZVlpaWl06NABOzs7vv/+e/3KYHOo6tWrs3PnTnbv3k1qair16tUjICCAM2fO6DXOxYsXuXr1arZP9hMTE1m3bh2NGjWiZMmSzJgxg3fffZcDBw5w6dIlxo0bR9GiRa0dpsm4uroydOhQzp49y6FDh3jnnXeYMmUKRYsW5f3332fHjh1ojdleTXqlCxcu8Mknn+Dt7c24ceOoV68e4eHhHDx4kLZt22JjilL5dA0aQKlShu9F/t/GZW+9paxvNiTG9ETfkCUvkl4MTfaz7Zr9dGo1fPEFxMTA11+j++/vbbUaAgJgzx5+Xb6cidu3s337duvEqgeVSpUl1u3XqFEDNze3F35marWaNWvWoNVq6d69Ozq5taYk5TzWLi2QpJcZM2aM0Gg04uDBg9YOJUvSarViw4YNonTp0kKlUolu3bqJq1evZurYOXPmCHt7e5GQXuKbjeh0OnH06FHRr18/kT9/fgGId955R6xcuVLExcVZOzyLi42NFQsWLHi6fWDRokXFxIkTxfXr160dWo6g0+lEWFiYaNq0qQBE4cKFxYQJE0RMTIz5T759u/7bPIJyzMCBL453544QxYvrV86v0QhRp44QuXR7Tkvr37+/qF69ut7HffTRR6Jhw4ZmiMg6fj96VLiA+Ounn4S4dk2I+Pinj+l0OtG0aVPh6ekpYmNjrRhl5owePVp4eXlZOwzRvXt3UbFixQwfCw0NFYCYNWuWhaOSJMncZLIvZUk7duwQgJg2bZq1Q8nyUlJSxMKFC4W7u7uws7MTQ4cOFXfv3n3lMU2aNBHvvfeehSI0jZiYGDFz5kzh6+srAOHl5SXGjRsn/v77b2uHliXodDpx7Ngx0adPH5EnTx6hVqtF8+bNxY8//ihSUlKsHV62Ex8fLxYtWiTKly8vAFGtWjXx3XffiSRLJ73LlinJe2aTfpVKiLZtlXXQGYmOFqJixdePqdEo/23e/LlESzKvLl26PLcnemYFBASIli1bmiEi6wgKChKAePjwYYaPX79+XTg7O4sePXpYODL9/fDDDwIQt27dsmocGzduFIC4cuVKho8PHz5c2NraiuPHj1s2MEmSzEom+1KWc+PGDeHi4iKaN28uG5DpIS4uTnzxxRcib968wtnZWXz55ZciPoOL9CdPnggHBwfx9ddfWyFK/SQnJ4stW7aIli1bCo1GI+zt7UX79u1FWFiYSHtZMiOJx48fi2XLlokaNWoIQHh4eIixY8eKiIgIa4eW5V29elWMHDlSFChQQKjVatG2bVtx4MABoxtiGmXzZiGcnf9tlPeyBnpqtRDDh7880U+XkCDE4sVClC+vHGtjI4StrfKVnuS//bYQ69e/fizJpNq0aSOaNWum93H169cXHTp0MENE1jF58mTh4uLyyuesWLFCAGLHjh0WisowERERWSLOR48eCRsbG7FgwYIMH09OThZvvvmmKF26tHj06JGFo5MkyVxUQsjNm6WsIzU1lfr163Pt2jVOnTqFq6urtUPKdu7evcuXX37JokWLcHFxYeLEifTs2fPpHvJhYWE0a9aMc+fOUaFCBStHm7EzZ86watUq1q5dy927d/Hz86NHjx507NiRQqZofpaL/Pnnnyxfvpy1a9fy6NEjGjVqRJ8+fWjTpo3e23vlVEIIDh8+zDfffMOPP/6Is7MzvXv3ZsCAAZQoUcLa4SkSE2HDBpg3D06dev6xwoWV/cp791a2x8ssIeDQIdizB2JjlUZprq7QujVUrGja+KVMee+99yhQoAA//PCDXsf5+/tTqVIlVqxYYabILKtHjx6cO3eO33///aXPEULQtGlTzp49y9mzZ8mfP78FI8w8IQQuLi4MGzaM8ePHWzWWRo0aYWtrS2hoaIaPX758mWrVqtG6dWu+//57VIb2DJEkKeuw6q0GSfqPUaNGCRsbG3H48GFrh5LtRUZGii5dugiVSiXKli0rNm3aJHQ6nRg8eLAoVqyYdWcqM/DgwQOxcOFC4efnJwDh6uoqhg4dKk6fPm3t0HKEhIQEsXr1avH2228LQLi5uYkRI0aICxcuWDs0q0lKShLfffedqF69+tNtLRctWpT1ez9cuSLEsWNCHD4sxLlzQshlGjnGW2+9ZVBpesWKFcWgQYPMEJF11K1bV3Ts2PG1z7t27ZrIly+f6NWrlwWiMlzDhg1FmzZtrB3G0349GVX9pVu7dq0AxOrVqy0YmSRJ5iLbm0tZRkhICDNmzOCrr76idu3a1g4n2ytZsiTff/89J0+epFSpUrRr145atWrx448/0qxZs0zfsb+XmMb+mwlsuxrHj1ces+NaHCfuJpKUZnzXXq1Wy86dO+nQoQMeHh4MHjwYT09PtmzZQnR0NF9//TWVKlUy+jwSODk50b17dw4dOsTZs2fp3LkzK1eupHz58tSrV49169aRlJRk7TAt4vbt20yaNInixYvTvXt3ChcuTGhoKOfOnSMwMNCgbugWVaIE1KgBtWtDhQrwT9WOlP0ZuoVett56LwMRERGULl36tc8rVqwYs2fP5ttvv2Xnzp0WiMww1atXt/r2ewAtWrQgOTmZvXv3vvQ5nTt3pnv37gwYMIBLly5ZMDpJksxBJvtSlnD9+nW6d+9Oy5YtGT58uLXDyVGqVq1KaGgo+/btIzExkRs3bnD8+HH+/PPPlx4jhODiw2TWXnrIigsP+f12Iudik7n4MIW/HiSzJyqB+X89IPR6HPeT9N+7+/Lly4wfP54SJUrQtGlTTp8+zZQpU4iKimLr1q28//77ssTcjHx9fZkzZw7R0dEEBQWh0Wjo0qULnp6eDBkyhL/++svaIZrFyZMn6d69O8WKFWPGjBl88MEHnD9/ntDQUJo2bSq395SsLtduvfeMxMREoqOjM5XsA/Tu3ZtGjRrRu3dvHj16ZOboDOPn50fyjRs8+OUXOHYMLl6ElBSLx+Hj40PZsmUJCQl55fMWLFiAp6cnHTp0IDk52ULRSZJkDvLKRrK6lJQU2rdvT968eVm9erVcI2Ym9evXp3///mg0Gh49ekS1atXo2rUrV69efe55OiHYeSOeH6/EEZ2gJPLiny+A9Pl8rYAz95NZeeEhfz96/cVAfHw8q1atom7duvj4+DB//nxatGjB0aNHOXv2LCNGjKBIkSIme73S6zk4ONCxY0f27dvHpUuX6NOnD+vXr6dSpUrUrl2bVatWkZCQYO0wjZKWlsbmzZupW7cufn5+7N+/ny+//JKoqCgWLVpE+fLlrR2iJD0VHx+f62f2r1y5AkCpUqUy9XyVSsWKFSt4+PAhI0eONGdo+ktLgy1baDlnDreBQg0agL8/lC8PHh4wbhxcu2bRkAICAggJCUG8omVX3rx5Wb9+PX/99RejR4+2YHSSJJmaTPYlqxs7diwnTpxgw4YNsvmame3cuZM6depw/vx5Fi9ezJ49eyhXrhyffvopd+/eRQhB2PV4/rivJO+v696pQ0n6t0TGEfn4xVkKIQQHDx6kZ8+eFClShJ49e2JnZ8fatWuJiYlhyZIl+Pv7yxs8WYCPjw/Tp0/nxo0bbNq0CWdnZ3r16oWnpyeBgYGcPHnS2iHqJTY2llmzZlG6dGnatWsHwKZNm4iIiGDEiBEULFjQyhFK0osSEhL0ntkXQuSomf2IiAiATM/sAxQvXpxZs2axfPlydu3aZa7Q9HPoEBQrBm3b4njixIuPP3gA06dDyZLQp4/FZvoDAgKIiYnh1H8bff5H9erVmTFjBt988w3bt2+3SGySJJmeTPYlq9q6dSuzZ89mxowZ1KpVy9rh5Gjp6/SaNm2Kra0t/fr14/Lly0yYMIFVq1ZRunRppn6/hdMP9C/ZE8CWyMfEpWgBiIqKYurUqZQtW5a6devyyy+/MGrUKK5evcqePXvo3LlzjrkwzWns7Oxo27YtYWFhREZGMnjwYLZu3Yqfnx9vvvkmS5cu5fHjxyY51/2kNM7cT+LEnURO3Uvk70fJpOqM2yDmwoULfPLJJ3h7ezNu3DjeffddwsPDOXDgAG3btsXGxsYksUuSqel0OoOS/eTkZHQ6XY6Z2Y+IiMDBwQEPDw+9juvbty8NGjSgT58+JvsdZbCQEGjQAG7fBkCl1Wb8PK1W2RVj5Upo2hQs0DelTp06ODs7v7aUH2DIkCG0aNGCjz/+mJs3b5o9NkmSTE9uvSdZzdWrV6lWrRrvvvsuW7ZskbO7ZrZv3z4aNmzIH3/8QZUqVZ577N69e0ydOhWbBp0p6FEUlQFrl1VA/vuR/DTrc3bv3o29vT3t2rWjR48e1KtXT66HzsbS0tIIDQ1l+fLlbN++HQcHBzp06EDfvn2pWbOmXv92tULw96MUwu8mciP+xX4P9moVVVwdqObqQEF7TabG1Ol07Nq1i7lz5xIWFoa7uzuBgYH0798fd3f3TMcmSdaUnugHBQXRsWPHTB/34MEDXFxc2LRpE23btjVjhJYxePBg9u7dy9mzZ/U+9urVq1SsWJEuXbqwZMkSM0SXCSdOQJ06yky9PpfYajV8+CEEB4OZr4c++ugjrl69yrFjx1773Lt371KlShXKly/P7t270Wgy93tZkqSsQV59S1aRvk6/QIECrFy5Uib6FhAWFkaRIkWoXLnyC4+5uroyeOI0CnkVNyjRB2V2P1rtTFx8AkuWLOHWrVusWbOG+vXry0Q/m7OxsaFly5Zs3bqVa9euMXr0aPbu3UutWrWoUqUK8+fPJzY29rXjxKfq+O7iQ366EkdUBok+QLJOcPxOIkvPxXLibuKrx4uPZ9GiRfj6+tKsWTPu3LnDd999x7Vr15gwYYJM9KVsJT4+HkDvmf30vho5aWZfnxL+Z5UoUYKZM2eydOlS9uzZY+LIMmn4cGWtvr5zaTodbNgAhw+bJ65nBAQEcPz4cW7/U3nwKm5ubqxbt479+/czbdo0s8cmSZJpyStwySpGjRrFqVOn+OGHH+TaWQsJCwujadOmL72xcup+EsbecslT0JWVIXvo06cPzs7ORo4mZUXe3t7873//IyIigrCwMMqWLcuwYcPw9PSka9euHDx4MMPGT/GpOtZcfMjdRKWc9VWXwemP7YlK4PCtJy88fu3aNUaOHEnRokUZNGgQFStW5ODBg5w4cYJu3bphb29vglcqSZaVnuxnOmnXauG331Bv28YHgOf58/DwofkCtJCIiIhMN+fLSL9+/ahfvz69e/cmLi7OhJFlwrlzcOCA8ndjCBsbWLjQtDFlIH373R07dmTq+fXr12fs2LFMmDCBI0eOmDk6SZJMSSb7ksVt2bKFuXPnMnv2bGrUqGHtcHKF6Ohozpw5Q9OmTV/6nPtJ2tc25HsdFRCbbOBFjpStaDQamjRpwqZNm4iKimLixIkcPXqUunXr4uvry+zZs7l37x6g7PDwQ8Qj4lJ1er/HDsY84Xxs8tNmj23btqVUqVKsWLGCPn36EBkZyaZNm6hTp46sEJKytfQZ+tfO7N+5A1OnKs3fatfGa8AANgOVhw2DIkWgd294TfO1rEqr1XLlyhWDZ/YB1Go13377Lffu3eOzzz4zYXSZsHixkrAbKi0NNm16utbfXNzc3KhVq1am1u2nmzhxIv7+/nTs2DFTlVySJGUNMtmXLCoyMpKePXvStm1bBg4caO1wco2wsDDUajWNGjV66XNStMa371CpTDOOlL24u7vz2WefcfHiRfbt20e1atUYO3bs032atxw8wZ1Ew28mhVy8hZ+fH3Xr1uXcuXMsWLCAqKgoZsyYQfHixU36WiTJWjJVxr9sGXh7w//+Bxk1TEtOhu++g+rV4aOPIPHVS2GymujoaFJSUoxK9gFKlizJ9OnTWbx4Mfv27TNRdJmwbZuSsBsjLQ0sEHNAQAC7du0iOTlzTXltbGwICgri8ePH9OnT55Vb90mSlHXIZF+ymOTkZD766CNcXFz49ttv5SycBYWFhVGzZk1cXFxe+hxbjfF/H0KAnQnGkbIntVpN/fr1CQoKIjo6munTp3P69Gl2no9CpzX8Alhrn4fytesTFhbG2bNnCQwMzDHrkyUp3WvX3k+bBv36QWqqsr77ZdKTzc2boXHjbJXwG7Lt3ssEBgZSr149evXq9fRGitmZYsZbpVK25TOzgIAA4uPjOXDgQKaPKV68OMuXL2fz5s0sX77cjNFJkmQqMtmXLGbEiBGcOXOGjRs3kj9/fmuHk2ukpaWxe/dumjVr9srnudprjF6zL4ACmeygLuVsrq6uDB06lIPhpyld8x3UGsNLW1UI2g2bQJMmTWSzRynHeuXM/vr1MGaMfgPqdPDbb9C9uwmis4zIyEhUKhUlSpQweqz0cv47d+4wevRo44PLDFNNYlhgMqRSpUp4e3vrVcoP0K5dO/r27cuQIUMM2jFBkiTLkldNkkVs3LiRBQsWMGfOHKpXr27tcHKV33//nUePHr1yvT5AFVcHo9fsO2hU+DjbGTmKlJPcSjSypBUQqIhOSDVBNJKUdb20QZ9WCyNHGjaoTgcbN0J4uJHRWUZERARFixY1WZPN0qVLM23aNBYuXMj+/ftNMuYrFSpk/BhCwCuq8ExFpVIREBBASEiI3iX5c+bMoXTp0rRv357EbFQ5Ikm5kUz2JbO7fPkyvXr1on379gQGBlo7nFwnLCwMFxcX/Pz8Xvm8kvlscbYz/FeCCqju6oBGLcv4pX8lmaiHQ7LsBSHlcAkJCWg0mhcT3bAwiIoyfGAbG1i0yLjgLMTYTvwZGTBgAO+88w49e/Z8ulTCbN5/H4zdh97WFl7RX8eUAgICiIyM5OLFi3od5+TkxPr164mIiGDYsGFmik6SJFOQyb5kVklJSXz44Ye4u7uzbNkyuU7fCkJDQ3nvvffQvOYCRKVS4V/Y0eDzqFVQ1dXB4OOlnMnGRP/m5U0kKaeLj48nb968L35OLlhgXAKZlgbr1plmPbmZRUREmGS9/rPUajUrV67k1q1bjNF3KYS+AgMN33YPlBszHTtaZGYfoEGDBjg6Oupdyg9QsWJF5syZw5IlS9i8ebMZopMkyRRksi+Z1bBhwzh//jwbN26U+65bwZ07dwgPD39tCX+66q4OvFHQsPLJNiXz4Wwn1+tLz8tja5qPmbw28uNKytkSEhIybs63f79xCSQoXfqPHzduDAswR7IPUKZMGb766ivmz5/Pr7/+avLxnzmRMitv6M2ZtDT45BPTxvQKjo6ONGzY0KBkH6Bfv360bduW3r17c+3aNRNHJ0mSKcirJ8lsNmzYwOLFi5k7dy5Vq1a1dji50q5duwBo0qRJpp6vUqloXjwvlQopCf/r5lLVgEYF75fMh09+06yxlHKWEvlssTdyhwYVULGQfH9JOVv6zP5zUlIgKck0J8jiM/uxsbE8fPjQLMk+wKBBg6hTpw69evUybzn/nDng4AD6NhNVqaBXL/D3N09cLxEQEMChQ4eINeD9oVKpWL58Oc7OznTu3Jk0Y7cdlCTJ5GSyL5nFpUuX6N27Nx07dqRv377WDifXCgsLo3r16ri7u2f6GI1KRfNieWlVIh8eTkoHdTX/Jv7p/1WrwLegPd3LFaBcAZmISRmzUauo5upg1E4PKqCyi1wiIuVsGSb7Go3pOrPbZe3mqabcdi8j6eX80dHRjBs3ziznAKBiRdi2Tfl5Z3aGX6WCVq1g8WLzxfUSzZs3R6vVPp0c0FfBggUJCgri6NGjTJo0ycTRSZJkLJnsSyaXmJjIhx9+iKenJ0uXLpXr9K1Ep9Oxc+fOTJfwP0ulUuFb0J5u5QrQo1wB3izsSPkCdpRxtsW3oD0NvPIwqGIhAkrko7Cj4VuqSblDVSMSdRVQoaCdyZYDSFJWlWEZv0YDBQqY5gRubqYZx0zSk31TN+h7lo+PD1OnTmXevHkcPHjQbOehfn04fBjSX4vNi5+TApTZfxsbGD4cNm9WmvNZWNGiRalSpYrBpfwAb7/9NhMnTuTLL7/kl19+MWF0kiQZS149SSY3ZMgQLl26xMaNG8mXL5+1w8m1wsPDuXfvnkHJ/rPcnWxo4JWH1iWdaVc6Py1L5KNmYUcc5RpqKZMK2Gt4r2gGa5FfQwU426lp6JXBvuOSlMNkOLMP0KFDhsmiXtzdoVYt48Yws4iICAoWLEjBggXNep7Bgwfz1ltv0bNnT548eWK+E1WvDhcvwt690LLlC2X9t21t4auvICYGZs40vou/EQICAtixYwdaI3pDjBkzhnr16tGlSxfu3btnwugkSTKGvFqXMk2rE1yITebXmwnsuhHPvugETtxJJCFV9/Q569atY/ny5SxYsIDKlStbMVopLCwMZ2dnamXxCzwpd6jm6si7nk6Zfn56ot+xTH6c5Ky+lAu8tEFfYKDSuM1QajUMGGD8DQMzM1dzvv/SaDSsXLmSqKgoxo8fb96TqVTQoAFs2QKPH8PVq3DhAqunT6eYTseTgQPB1dW8MWRCQEAADx484OjRowaPodFoWLt2LcnJyfTs2RMh5HapkpQVyCso6bXiUrUcuJnAgr8e8NPVOH6/ncgf95I4cTeRvdHK93+++pgjZy/Tr18/unTpQs+ePa0ddq4XFhZG48aNsbVCWaAkZaSWuxPvl8xHIXtlBiujBT4qlA+mN/7pB1HAXu7wIOUOL53Zr1QJatc2fOZXpYLevY0LzgIslewDlCtXjilTpvDNN99w+PBhi5yTPHmgeHEoV44qjRuTqtVy8uRJy5z7NWrUWnY6AgAAIABJREFUqIGbm5tRpfwAXl5erFq1im3btjF//nwTRSdJkjFksi+90o34VJafe8hvtxNJ1Cp3aXXpX0JZcyaAC7EpHEgpQItB41i0aJFcp29lsbGxHD161OgSfkkytXIF7OlToQCdfPJTroAdeW3V2KnBQaPC1UFDPU8nBlZS+kE4yaUiUi7y0mQfYPlycHTUv8M7wNy54OFhXHAWEBkZabFkH+DTTz/F39+fHj16kJiYaLHzAlSqVAlHR0d+//13i573ZTQaDc2bNzc62Qdo2bIlgwcPZuTIkZw6dcoE0UmSZAx5JSW9VFR8KusvPyJVJ3hdMVb649U+6sOpOPm2srY9e/ag0+kyveWeJFmSSqWiWF5b2pR0ZmDFQgyr4sqnlV3oXaEgtdydZJIv5UovLeMH8PWF0FBwcsrUDH/6Z7Ju4kSlhD+LS05OJioqyqzN+f5Lo9GwatUqrl+/zv/+9z+LnRfAxsYGPz+/LJPsA7Ro0YK//vqLa9euGT3WjBkz8PX1pUOHDsTHx5sgOkmSDCWvqKQMJaTq2Bjx+OnsvT6O3E7kQmyyWeKSMic0NJQ33niDokWLWjsUSZIkKRNeObMPUKcOHD0KNWsqf85oDf4/NwJSChWiGzDbKfN9MqzpypUrCCEsOrMPUL58eSZPnszXX3/NkSNHLHruWrVqGbVG3tTee+89bGxs2L59u9Fj2dvbs379eqKjoxk0aJAJopMkyVAy2Zcy9Of9JFIyMaP/ModvPZHNWaxECEFYWJgs4ZckScpGXjmzn+6NN+DIEfjzT2Udfv78/z5mZ6ds+fbTT9jfvo3HqFGMGzcuy6wLf5X0bfcsnewDDBs2jJo1a9KzZ0+LlvP7+/tz48YNYmJiLHbOV8mfPz9169Y1SSk/KH0RFixYwOrVqwkKCjLJmJIk6U8m+9ILdEIQfjfR4EQf4G6SlpgnRnQPlgx25swZYmJiaNasmbVDkSRJkjJBp9ORkJDw6pn9Z1WuDIsXw8OHkJoKiYmQnAy7d0Pr1mBjw+TJk6lUqRKdOnUiISHBvC/ASBEREdjb2+Pl5WXxc6eX81+9epUJEyZY7Lz+/v4AWaqUPyAggH379pns/dK9e3c6depE//79n97QkSTJsmSyL70g8nEqCWnGzcqrgJP3kkwTkKSXsLAwnJycqFOnjrVDkSRJkjIhMTERIUTmk/1n2diAg8ML37azs2PdunVcv36d4cOHmyBK84mMjKRkyZKoDWlAaAIVKlRg0qRJzJ4922Kl9d7e3nh6emapUv6AgACSk5PZu3evScZTqVQsXrwYNzc3OnToQEpKivLAw4ewaBEMGgTduyt9JWbNgtu3TXJeSZL+JZN96QV3E9My3BJLHwK4kyhn9q0hLCyMBg0aYG9vb+1QJEmSpExIn0l9bRm/nsqXL88333zD0qVL+fnnn006tilFRERYtDlfRoYPH46fnx89evQgKcn8kxUqlQp/f/8sNbPv4+ODj4+PyUr5AZydnQkODuaPP/5gfr9+0KePsjvEwIGwdCmsW6fsNvHZZ+DtDR06wG+/mez8kpTbyWRfekGKTmCKnfOStXLNvqXFxcVx6NAhuV5fkiQpG0nvWG7QzP5r9OnTh9atW9OrVy9u3rxp8vFNISIiwirr9Z9lY2PD6tWriYyMZOLEiRY5p7+/P8ePH0er1VrkfJkREBDA9u3bTdp3qWbNmvz44YcMXr0a3apVkJQEQihLULRa5b86HaSlwebNULs2zJ6tPEeSJKPIZF96gY1apX8L/gzYqU1wx0DSy759+0hNTZXJviRJUjZirpl9UGaQV6xYga2tLR9//DE6nc7k5zCGTqcjMjLS6sk+gK+vL5MmTWLmzJkcO3bM7OerVasWCQkJnD171uznyqyAgABu3rzJH3/8YbpBg4MJCA5GA6hfd2Mj7Z+q0BEjYOZM08UgSbmUTPalF+S3U2PspYAKKGD/+r2AJdMKCwvDx8cnS1w0SZIkSZljzpl9AFdXV9asWcPu3buZO3euWc5hqJs3b5KcnJxlPrdGjBhB9erVLVLO7+fnh1qtzlKl/HXq1MHZ2dl0pfxnz0K3bqBS6Z90fPaZ0nRSkiSDyWRfek5CQgJHf15PWpJx288IoLKLXDNuSXLLPUmSpOzJ3Mk+QOPGjRk2bBijR4827aytkay57V5GbGxsWLVqFZcvX+aLL74w67ny5s1LxYoVs1Syb2dnR5MmTUyX7KffXDKkJF+jgRkzTBOHJOVSMtmXADh//jxDhgzBy8uLvr16cvvkQaPWSuW1VVPa2c6EEUqvc+nSJa5evSqTfUmSpGzGnGX8z5o6dSrly5enU6dOPHnyxKznyqzIyEgASpYsaeVI/lWxYkUmTJjA9OnTOX78uFnPVatWrSzVkR+UUv5jx45x29ju+I8ewfff/1uary+tFvbsgb//Ni4OScrFZLKfi6WkpPDDDz9Qv359fH19CQ4OJjAwkIiICCb2+giVEV36arg5oDZFlz8p08LCwrC3t6devXrWDkWSJEnSgyVm9gHs7e0JDg7mypUrjBo1yqznyqyIiAi8vLxwyGD7QGsaNWoU1apVo0ePHiQnJ5vtPP7+/pw7d47Hjx+b7Rz6atasGSqVih07dhg3UFAQGPuz02hgxQrjxpCkXEwm+7nQ9evXGT9+PMWKFaN9+/ZotVqCgoK4ceMGX331FSVLlsTFwYamxfS/6FABpZ1tqVHY0fSBS68UGhpK3bp1zT4zJEmSJJlWfHw8arXaIlum+vr6Mnv2bBYuXGjSLdYMlRU68WckvZz/0qVLTJ482Wzn8ff3RwjBiRMnzHYOfbm5ueHv78/27duNG+j8ebCxMW4MrRYuXDBuDEnKxWSyn0vodDpCQ0Np1aoVJUuWZN68ebRt25YzZ85w4MABOnbs+MJFRhUXBxp7K4ljZufoSzvb0qaks5zVt7DExER+/fVXmjVrZu1QJEmSJD0lJCSQN29eoyrq9BEYGEiLFi3o2bMnt27dssg5XyarJvsAlSpV4vPPP2fatGmEh4eb5RwVKlTA2dk5S5by79y5k5SUFMMHefzYNNvnPXhg/BiSlEvJZD+Hu3v3LtOnT6dMmTI0b96c69evs2jRIm7evMnChQupWLHiK4/3c3OkYxlniuVV7swK3fNbpqRfluS3U9PQKw8flHLGVm65Z3G//vorSUlJcr2+JElSNhQfH2/2Ev5nqVQqVq5ciVqtpkePHibdU11fWTnZB/jss8+oXLkyH3/8sXGJ70uo1Wpq1KiRpZr0gZLsx8fHc+DAAb2PTUtL4/Tp05y/cYM0U2z1mD+/8WNIUi4lk/0cSAjBoUOH6Ny5M97e3kyYMIE6depw5MgRTp06Rb9+/fS6qCiezw7vW2eY1dofr7SHFM9rS2FHDd55bPAtaE/70s709y1IjcKOckbfSsLCwihWrBjly5e3diiSJEmSnhISEiy+BKtw4cKsXr2asLAwFixYYNFzp3v48CEPHjzI0sm+ra0tq1ev5sKFC0yZMsUs5/D39+f333+36k2X/6pcuTLe3t6vXeqRnJzMyZMnWb58OYGBgfj7+5MvXz6qVKnCin37UBmb7NvYQKlSxo0hSbmYkQtppKwkLi6OtWvXsnjxYs6cOUPp0qX58ssv6dGjBy4uLkaNvW7dOvKo0uhSwwe1Wt4jymrSt9yzVAmoJEmSZDqWntlP17Rp0/+3d+fxUVZ338c/18xkBRIgYQlrAFlkT5BMFBQVVEREgggKrUWxWCtVW7tYvVvr/bjXu7WPVtSiVmmoATSAIFBEvNUEwhIgAoqQsC9CCJCELDOZuZ4/hvCwk8xMMpnJ9/16pZZk5ly/YUnme53fOYdHHnmE3/zmN1x//fX069evXq9fvRN/1wYe5vr3788f/vAH/vu//5uxY8eSnJzs1/FTU1N5/vnn2b17N4mJiX4d21uGYTB69Gg++eQT/vrXv2IYBuXl5eTl5ZGbm8v69evJzc1l8+bNOJ1OLBYLV155JYMGDWLSpEkkJyeT1K4d1l69vN+NHzzPvf9+/70wkUZGYT8E5OXlMWPGDP71r39RVlbGmDFjeOWVVxgxYoRfgrnD4WDu3LlMmzZNQb8B2rlzJ9u2beOFF14IdCkiIuKF0tLSgG2u+tJLL/H5558zadIk1q5dW6+74ufn5wM06Jn9ar///e/JzMzkvvvuY+3atYSH++94YbvdDkBOTk6DCfulpaUkJiZSUFDAuHHjyM/PZ+vWrbhcLmw2G3379iU5OZkHHniA5ORk+vfvT3R09PkDjR8P8+Z5F/gtFhg8GAYO9P0FiTRSCvtBqqKignnz5jFjxgyys7NJSEjgV7/6FT/96U/p0KGDX6+1dOlSioqKmDRpkl/HFf9YunQpNpuN4cOHB7oUERHxQvUGfYEQGRnJ7NmzGTx4ME888QSvvvpqvV07Pz+f2NhYWrZsWW/X9FZYWBjvvfcegwcP5vnnn+dPf/qT38Zu3bo1iYmJ5OTkMHHiRL+NW1PHjx9n48aNp2frc3Nz2bZt2+llBevXr2fUqFFMnz6dQYMG0bdv35qfHPHoo5CR4V1hbjc8/rh3zxURQGE/6OTn5/PWW2/x7rvvcvToUYYPH868efMYM2YMYWFhdXLN9PR0+vXrV+/tfVIzS5cuZciQIcTExAS6FBER8UJpaWlAv4f369ePl19+mUcffZSRI0fW22av1ZvzBcsStIEDB/LUU0/x3HPPMXbsWAYOHIjLbZJf7OC4w43TbRJuMYiPtNK5WVit9jFKTU2tlx35jx49ejrQV4f76g6LqKgoBg4cyIgRI/jtb39LcnIyTz75JGVlZbz55pveXTA1Ff7yF/jlL2v3PMPw3Ci46y7vrisigMJ+UKiqqmLx4sXMmDGDZcuW0aJFC6ZMmcKDDz5Iz5496/TaxcXFLFy40K93sMV/HA4HK1as4L/+678CXYqIiHjp5MmTJCQkBLSGX/ziFyxZsoQpU6aQl5dH69at6/yaDX0n/gt58sknyczM5Oe/+g3Pf/Axm4oclLtMDDwnFJmnPpqFWRjUKpL+cZFE2y6/BNJut5OZmYnD4fDbEoFDhw6dDvbV4X7Pnj0ANGvWjKSkJG6//XYGDRpEcnIyPXv2xGq1njXG7bffzvTp0zl+/DjNmzf3rpDHHvO08f/mN2C1gst18cdaLJ4Z/UcfhVde8e56InKawn4DdvDgQWbOnMnbb7/Nvn37SElJ4b333mPixIlERUXVSw2ZmZlUVFRwzz331Mv1pHaysrI4efKkjtwTEQligdqg70yGYfDee+/Rv39/pk6dysKFC+t8xr2goICUlJQ6vYa/hYeH89I/M1jnaMaqH8oxTu1lVB3yq5U43fzvgTJWHSpnfLcYOja9dPel3W6nsrKSvLw8rrrqqlrVZJom+/fvP6sNPzc3lwMHDgDQokULkpOTmThxIsnJyQwaNIhu3brVaB+m2267jYceeohly5b5tsTg17+GpCR4+WX4z3/OD/02m+eGQEqKp3V//HjvryUipynsNzCmafLFF1/wxhtvMH/+fMLCwpg8eTI/+9nPGDRoUL3Xk56eznXXXUenTp3q/dpyeUuWLKFt27YMGDAg0KWIiIiXArlB35natm3Lu+++y+23386bb77JQw89VGfXcjgc7N27N+hm9rceq2Qj8VjD3BjGpcOyCTjcJv/ecYK7u8XSqdnFA39SUhJhYWGsXr36kmHfNE127dp1Vht+bm4uR44cAaBVq1YMGjSIKVOmkJycTHJyMomJiV7fuOnYsSMDBgxg0aJFvu8nMHy452PHDpg5E777Do4dg9hY6NLFs+u+3s+I+JXCfm0dPAjz58MPP4DTCc2bw9ChnjVJPtwBP378OO+//z5vvvkm3333Hb169eJ//ud/uPfee71vm/LRoUOHWLFiBTNmzAjI9eXydOSeiEjwC+QGfecaPXo0P//5z/nVr37FsGHD6N27d51cZ9euXbjd7qAK+4fKqli0qwTgskG/mnnqf+YVnGDqlS2IDbde8HGRkZEMHDiQnJwcpk+fDoDb7WbHjh3nrbE/fvw4AO3atSM5OZmf//znp4N9+/bt/f6e4LbbbuOtt97C5XKd1+bvlSuugBdf9H0cEbkshf2aME346it4/XX4+GPPWiLbqd86t9vThtS3LzzyCEyeDBc6euQi1q1bx4wZM/j3v/+N0+lk3LhxzJgxg2HDhgU8wGVkZGC1WhmvVqoGaf/+/XzzzTc89dRTgS5FRER80BDa+M/05z//mZUrVzJp0iRycnJqvvN6LQTTsXvVVv1Qdlarfk2ZgNMN649UcGP7C3dwuFwuunfvzvLly/nlL39Jbm4uGzZsoKTEc3Ohc+fOJCcn8/jjjzNo0CCSkpJo27at9y+mFkaPHs3zzz9PTk4O11xzTb1cU0T8Q2H/clwuzyYhf/+7J+BXry9yOs9+3JYtMG2aZzOR5cvhEm3vZWVlfPjhh8yYMYN169bRqVMnnnrqKaZOnVpv37hrIj09nVGjRgXFkTiN0bJly7BYLIwYMSLQpYiIiJdM0+TkyZMNoo2/WnR0NLNnz8Zut/PUU0/xSh1slJafn09YWJjfjwuuKyVOF98fd3gV9sET+DcVVnBtQjS4qti6detZs/WbNm2irKwMgPnz55OSksJTTz1FcnIySUlJxMfH++211FZKSgrx8fEsWrRIYV8kyCjsX4ppwn33wb/+5fl1VdWlHwtQUAB2O6xdC+f8APvuu+948803ef/99zlx4gQjR45k4cKFjBo1yj9tUX60fft21q5dy5w5cwJdilzE0qVLSUlJIS4uLtCliIiIl8rLyzFNs0HN7IPnmLkXXniBxx9/nJEjR/r9xnJ+fj6JiYkN7v3PxeQdrfR5jEq3yd2P/p7F/3iVyspKDMOgZ8+eJCcnM378eNq0acOPfvQj3njjDW699VY/VO0fVquVUaNGsWjRIp5//vlAlyMitaCwfymvvAKzZtXuOVVVUFgIt94KGzfidLuZP38+M2bMYOXKlcTHx/Pggw8ybdo0unbtWjd1+0F6ejrNmjVj9OjRgS5FLqCqqorly5fz2GOPBboUERHxQWlpKUCDmtmv9thjj7F06VLuvfde8vLy/Dq7XFBQEFQt/IfKqrye1a/mqnLSLSmFl19+meTkZAYOHHjWTR7TNHn00UfJyclpUGEfPK38H3zwAbt376Zz586BLkdEaqhmu4s0RpWV8MIL3j23qgo2b2bW5Ml06tSJCRMm4HQ6SU9PZ9++fbz44osNOuibpkl6ejp33nlnvR3xJ7WTk5PD8ePHG9ybARERqZ2TJ08CNLiZfQCLxcI///lPHA4HDzzwAKbpa9z9//Lz84Mq7FdUuX0eI8wWxnXDb+KRRx5h6NCh5/2ZG4aB3W5n9erVPl/L326++WZsNhuLFy8OdCkiUgsK+xfz0Uee40C8VAW0nTePcePGkZeXx1dffcWkSZPqZJMbf1u7di07duxg8uTJgS5FTnG4TAorqjhw0klheRVLP/ucuLi4gBzHKCIi/lM9s98Qwz54dnyfOXMmCxYsYObMmX4Z0zTNoJvZD7P4vmmyy+2iYPv3bNq0CYfDccHH2O121qxZ49cbK/4QGxvLtddeq7AvEmTUxn8xr78OFotnt30v2IARbjc3/frXnrNDg0h6ejoJCQnccMMNgS6l0TtUVkXukXK2HKvEdcbP/ajbfsrUKwZzsNxN+yaWgJ/cICIi3qme2W+IbfzVxo4dy7Rp03jssce47rrr6Nmzp0/jHTx4kPLy8qAK+83CLVgAX+b3TRPmfzibR9/5CzabjSuvvJL+/fszYMCA0/9NSUnh2LFjbN++nR49evirfL8Yc+utrHnySZz33UfYiROe98nx8TBmDNxyCwTJ/gsijYlhNrRbhw1FkyZwaldUnyxY4PkmGCSqqqpo3749kydP5i9/+Uugy2m0ypxuMncVs7e06uJvLkw3GBbaRlkZ1zWGmIuc3SsiIg3XZ599xk033cTOnTtJTEwMdDkXdfLkSQYNGkSTJk1YtWoV4eHhXo/11Vdfcd1117F582b69Onjxyrrzp5SJ7O3n/B5nMmdwti7bQubNm0iLy/v9Ed1h0d8fDyFhYWMHDmSu+++mwEDBnDllVcGtjP06FH4v/+Xqtdew3bsGG6rFUv1ZJjV6lm+2rEjTJ8ODz/seQ8tIg2CZvYvxO32T9AHOOH7D4b6tGLFCg4fPqwW/gAqdrj41/YTlDg8P0gvOotgeFbh/FDu4p/bjvOj7s1pGanALyISTBp6G3+1Jk2aMHv2bFJTU/njH//Iiy++6PVYBQUFAHQJos7Hjk1stIywUlTp8ur5BpDYLIyOcbF0vOaas46wc7vd7Nq16/QNgFdeeYXs7GyWLl0KgM1mo1evXmd1AfTv35+EhIS67+zbvh1uugn27cN26vhpi+uM34Pqk6r27oXf/x5mz4YlSyAhoW7rEpEaUdi/EIsFwsLA6fR9rCDb4C49Pf30MTBS/xwukzn5xZQ43DXe9dcEyqtMPtxxgim9mhNt01YcIiLBIhja+KslJyfz7LPP8sQTT3DLLbd4vdwvPz+fhIQEoqOj/Vxh3TEMg8GtI1m296RXzzeBq1pd+D2hxWKha9eudO3albS0NAoKCtiyZQsrV65k8+bNp28CbNq0iYULF57VBXDuMoArr7ySyMhIb1/m2fbuhaFDoagIXDW4yeF2w5YtMGwY5ORAixb+qUNEvKawfzHt2sHu3b6P07Gj72PUk7KyMjIzM/ntb3+rNeABsqGwnKMVrlof72MCJU43aw+XM6xdw3/DKCIiHqWlpVgsFv8FtDr261//mqVLl/LjH/+YvLw8WrZsWesxgm0n/moD4iIpKHay44Sj1j+nr2oVSbfYmi19SE1NZfbs2dhsNq6++mquvvrq019zu93s3r37rBsAn3zyCX/9618BsFqtp7sAzrwR0K5du9q9tzNNuOMOT9Cvnr2viaoqKCiAe++FTz6p+fNEpE4o7F/MAw/A0097vUEfhgFdu0JKin/rqkPVd4snTZoU6FIaJdM0WV9Y4fU5viawobCCIW2jsflh12AREal7J0+epEmTJkFzk91isfDBBx/Qv39/pk2bxty5c2tde35+Pr169aqjCuuOxTAYk9iMBTuL2VFc8+7PAXER3Ni+5jfi7XY7VVVV5ObmMmTIkLNrsFjo0qULXbp0YezYsac/X1pael4XwKJFiygpKQEgLi7uvC6A3r17X/wm09dfw4YNNa75LC4XLFoEO3bAFVd4N4aI+IXC/sU88AD86U++jfHII57QHyTS09NJTU0NyrvtoWBniZNih2/n+Fa4TLYdr6RPy+CYIRIRaexKS0sb/Hr9c3Xo0IF//OMfjB8/nn/+85/cd999tXp+fn4+t912Wx1VV7fCLAbjusaw5nA5aw+Xc7LKxICzbtRX/zo23MLVbaIZEBdRqxsi/fr1IyoqipycnPPC/sU0bdqU1NRUUlNTT3/ONE127dp1ehPATZs2sXjxYv72t79hmiZWq5UePXqcdQOgf//+tG/fHuPvfwebrXaz+meyWuHNN+GVV7x7voj4hcL+xbRtCxMmwJw5NVundCbDgOhoTwtTkCgsLGTp0qWn28Ck/hUUO3w+1scACoqdCvsiIkEiGMM+wJ133sn999/PL37xC4YOHUr37t1r9Lzi4mIKCwvp2rVrHVdYdyyGQWqbaFJaR7H9hINNhRUUVbpwuk3CrQatIm0kx0fSuVmYVx0bYWFhDBo0iNWrV/tUp2EYp7sA7rjjjtOfLy0tZcuWLWd1AXz66acUFxcD0LV5c7adOIHNlwO7XC74xz/gxRc9Nw1EJCD0r+9SXn8d1q6FXbtqfmfTMDwfc+dC8+Z1Wp4/zZ07F9M0mTBhQqBLabTKq0yvW/ireTbr8607QERE6kF5OezcSev8fJINA374Adq0CXRVtfK3v/2NL7/8ksmTJ5OVlUVYWNhln1O9E38odBFaDIOezSPo2dz/x+LZ7Xbmzp3r93HB0wVgt9ux2+2nP2eaJrt37yYvL49DS5dimzHD9wsVF8OxY9Cqle9jiYhXtG33pbRsCZ9/Dt26edqRLsdq9dy9/PBDuPXWuq/Pj9LT07npppto3bp1oEsRXwXPyhERkcZn2zZ47DFo3Rr69OHXH3/Mh99/7+kovPlmz6Zmte0oDJCmTZsye/ZsNmzYwDPPPFOj5+Tn5wOhEfbrUmpqKnv27OHgwYP1cj3DMEhMTGTMmDFMu+ce/w18qltARAJDYf9yOnaE1avhF7/AFRWFCZjntmRZrZ7Z/Jtugq++grvuCkip3tq1axdZWVlMnjw50KU0atE2w+ecbgBRVv2zFhFpcE6e9CwP7NXL0zl46vi0s3z+OYwZA126wPr19V+jFwYPHswzzzzD888/z5dffnnZx+fn59OsWTPi4+ProbrgVT3rnpOTU/8Xb9bMf2PFxPhvLBGpNaWCmmjeHP76V56YMoVfx8bCDTdA796eGf/Bg+FXv/LsOLpkCZzREhUsZs+eTXR09Fm7ukr96xYb7tN6ffC08Xev4dE+IiJST4qL4brr4KOPPL++2Mx99ecPHPCcb75yZf3U56Pf/e53XHvttfz4xz/m+PHjl3xs9bF7wXL6QKB06NCBhISEwIT9zp39s84+NhZatPB9HBHxmsJ+DblcLtLnz6fqJz/BWLECtmzxBPw1a+Dllz3H7AUh0zRJT0/njjvuCMoNgkJJ56ZhNA/37Z9klNWge3OFfRGRBsPlgjvvhE2ban6cr8sFDodnln/r1rqtzw+sViuzZs3ixIkT/OxnP8O8xMZu+fn5Qb05X30xDIPU1NTAhP0WLWD8eN8Cv9UKP/2pNucTCTCF/Rr6+uuvOXjwIBMnTgx0KX6Vl5fH1q1b1cLfABiGwVWtorx/PpDUKhKrZktERBqg0mZfAAAfwklEQVSORYvgs89qvw7f7fZs4vfUU3VTl5916tSJt956i4yMDP71r39d9HEFBQVar19DdrudtWvX4grEHg4PP+z9sXvg+fv+s5/5rx4R8YrCfg1lZGTQsWPHs84vDQXp6enEx8dz8803B7oUAQbER9ImylrrtfsG0DzCQooPNwtERKQOvPZazTb5vRCXCxYuhH37/FtTHZk4cSL33nsvDz/8MAUFBZimSf4JBx8VFPP21iJe/+Yoaf8zmzYjJ5N/wnHJDgDxhP3S0lK2BqK7Y8gQSE72bmbeavV0peimjkjAKezXQFVVFfPmzWPChAlYLKHzW+Z2u/n3v//NhAkTanRcjtS9MIvBhG6xtIioeeA3gKZhFiZ2iyXSFjp/P0VEgt727bBihW+76xsGvP22/2qqY6+99hqtWrXiv96ezRtbiphbUMyOEw6KKt2UVpm0SrwCZ/N2zC0o5o0tx1h/pFyh/yKuuuoqLBZLYFr5DQMWLIC4uNoFfpvNE/Lff7/uahORGlMyqIEvvviCI0eOhFwL/5dffsm+ffvUwt/ANAmzcG+PWLrGeG7AXCz0V3++Q1MbU3o2p3mElzNHIiJSN5Yv94QmX7hcsHixf+qpB02aNeOpjOX0n/gzih2ePQrOi/Knfk9KnG6W7zvJot0luBT4z9O0aVP69u3L6tWrA1NAhw6QleU5maomk10WC/TtC//7v57NrUUk4LRrRg1kZGTQtWtXrrrqqkCX4lfp6el06dKFq6++OtClyDkibRbu6hbL0YoqNhRWsOloBc4z9nWyGdAvLpKk+EhaR+mfsYhIg3T0qKel2Ze1zwCFhf6pp46ZpsnSPaUctnqOW6vpjvtbjjmwGKWM6tRUu/Sfw263s2rVqsAV0K0brFvnOS7y73+Hw4c9s/cul+emjcXi+fvduTNMnw4PPQRNmgSuXhE5i1LCZTidTj7++GOmTZsWUj+AKisrmTdvHg8//HBIva5QExdpY0SHptzQrgknq9w4XCbhVoNomwWbRX9uIiINmr+W/gXJz+nvjjv4pqjSq+d+U1RJ15hwrmwR4eeqgltqaiozZ86kpKSEZs2aBaaIli3hj3+E3/8ePvkEli2DoiLP3++4OLjjDrjpJv/9fRcRv1HYv4zPPvuMoqKikGvh//TTTzl+/Lha+IOE1WIQE642fRGRoBIX59t6/WqtWvk+Rj1Ye7gcgwu07deAcer5Cvtns9vtmKbJ2rVrufHGGwNbTFgYjBvn+RCRoKBbcJeRkZFBz549GTBgQKBL8av09HSSkpK48sorA12KiIhIaLr1Vt/HsFggLc33cerY4fIqDpRVeRX0wXOD4EBZFYfLfVzyEGJ69epFs2bNArNJn4gEPYX9S6ioqCAzM5OJEyeGVKv7iRMnWLRokWb1RURE6lLnznDbbd4dX1bNYoEHHvBfTXVkS1Glz28qLcBmL5cBhCqr1UpKSorCvoh4RWH/EpYtW0ZxcXHItfB/9NFHOBwO7r777kCXIiIiEtqmT/d+gz6bDcaPh9at/VtTHShxur2e1a9mAqVn7kYrgKeVf/Xq1TqiUERqTWH/EjIyMujbty+9e/cOdCl+lZ6ezg033ED79u0DXYqIiEhou/lmT2Cv7eZlVivExMALL9RNXX7mdJt+CftOtwLtuex2Oz/88AN79uwJdCkiEmQU9i+irKyMhQsXhtys/v79+1m5cqVa+EVEROqDYcCsWXDDDTXfVd9mg2bNPLueJybWaXn+EmE18HXBo3FqHDmb3W4HUCu/iNSawv5FfPrpp5w8eTLkwv6HH35IeHg4d955Z6BLERERaRwiI2HJEs8Z5DYbWCwXnAU/3ezfpw/k5MBVV9Vjkb5pG2Xzy8x+2ygdFHWuNm3akJiYyOrVqwNdiogEGYX9i8jIyCApKYnu3bsHuhS/Sk9PZ/To0cTGxga6FBERkcYjLAz+/nfYuxfX009z6Jwvu61W/g0c/Phj2LABevQIRJVe69syAl8n5a2GZxw5n91u18y+iNSawv4FlJaWsnjx4pCb1f/222/ZsGEDkyZNCnQpIiIijVPbtqwfOZL2wLpPP4Xvv4e9eyk9cIAHwsPJ2L275u3+DUikzUKfFhFev7G0AH1aRBBp01vTC0lNTSU3NxeHwxHoUkQkiOg76gV88sknlJeXM2HChECX4lfp6enExsYyatSoQJciIiLSaGVnZxMeEUH/4cOhe3fo0IGY1q0ZMWIEmZmZgS7Payltory+T2EYkNI6yr8FhRC73U5FRQV5eXmBLkVEgojC/gVkZGSQkpJCly5dAl2K35imyezZsxk/fjyRkZGBLkdERKTRysrKYvDgwYSHh5/1+bS0NL7++muOHDkSoMp8Ex9pY2yXZrXeqM8AxnZpRrzW619UUlISYWFhauUXkVpR2D/HiRMnWLJkScidQb9q1Sp27typXfhFREQCyDRNsrOzGTJkyHlfGzNmDAALFy6s77L8pntsBHd1i8FmcNnQbwA2A8Z3jaF7rNbqX0pkZCQDBw5U2BeRWlHYP8f8+fNxOBzcddddgS7Fr9LT02nfvj3Dhg0LdCkiIiKN1u7duzlw4ADXXHPNeV9r3bo1Q4YM4eOPPw5AZf7TNSacB/u0YEjbaKJtnshv4HnTWX0DINpmMKRtNA/2aUG32PCLDSVnsNvt2pFfRGpF/VLnyMjIYOjQoXTo0CHQpfiN0+lkzpw5TJkyBYtF93dEREQCJTs7G+CCYR9g3Lhx/O53v6O4uJiYmJj6LM2vmoVZGZoQzdVtoygodnCs0k2ly02E1UKLCAtdY8KxBuFGhIFkt9t5/fXXKSoqomXLloEuR0SCgJLfGY4ePcry5ctDbhf+5cuXU1hYqBZ+ERGRAMvKyqJHjx7Ex8df8Otjx47F4XCwZMmSeq6sblgNg+6xEaS0juLahCaktI6ie2yEgr4XUlNTAVizZk2AKxGRYKGwf4bMzEzcbjfjx48PdCl+lZ6eTu/evRkwYECgSxEREWnULrZev1piYiJJSUlBvSu/1I1u3boRFxenVn4RqTGF/TNkZGQwbNgw2rZtG+hS/Ka0tJT58+czefJkDN1FFxERCZiSkhLy8vIuGfbBsyv/p59+SmVlZT1VJsHAMAxSUlK0SZ+I1JjC/imHDx/m888/D7kW/gULFlBWVsakSZMCXYqIiEijlpOTg9vtvuh6/WppaWmUlJSwYsWKeqpMgkVqaio5OTmYphnoUkQkCCjsn/LRRx9hGAZ33nlnoEvxq/T0dIYMGUJiYmKgSxEREWnUsrKyaNmyJT179rzk4/r06cMVV1yhVn45j91u59ixY2zfvj3QpYhIEFDYPyUjI4Phw4dfdMOcYHT48GH+85//aGM+ERGRBiA7O5urr776sifjGIZBWloaCxYswOVy1VN1EgxSUlIA1MovIjWisA8cOHCAL7/8Mnhb+IuL4Y03YOhQ6NYNOnWC/v05OGECvYC77ror0BWKiIg0ai6Xi1WrVl12vX61cePGceTIEbKysuq4MgkmLVq0oGfPngr7IlIjtkAX0BDMmzcPm81GWlpaoEupnaIi+MMf4L33oKLC87nqNVx799IH2Awwfjw8+6znZoCIiIjUuy1btlBSUnLZ9frVUlJSSEhIIDMzk+uuu66Oq5NgYrfbtSO/iNSIZvaBDz/8kFtuuYUWLVoEupSa27ULUlLgrbegvNwT8s/ZrOX0nZyvv4YbboD09PquUkRERPCs17fZbAwePLhGj7dYLIwdO5bMzExtxiZnsdvtbNq0ifLy8kCXIiINXKMP+3v27GHVqlXB1cJfWAg33gi7d0NN1vK5XFBVBT/+MSxcWPf1iYiIyFmys7NJSkoiOjq6xs9JS0tj9+7dbNy4sQ4rk2CTmppKVVUVubm5gS5FRBq4Rh/258yZQ0REBGPGjAl0KTU3fTrs2eMJ8LV1992e9n8RERGpN1lZWTVer1/t+uuvp3nz5tqVX87Sr18/IiMjtW5fRC6r0Yf9jIwMRo0aRUxMTKBLqZmDB2HevJrN6J/LND1r+99/3/91iYiIyAUdPHiQnTt31ni9frWwsDBGjx6tsC9nCQsLY9CgQQr7InJZjTrs5+fns27duuBq4f/HP85bm19rr70Gbrd/6hEREZFLys7OBqj1zD54Wvk3b96sc9XlLKmpqdqkT0Quq1GH/Tlz5hAdHc3o0aMDXUrNvfuub0HdNGHnTtDdYBERkXqRnZ1N586dadeuXa2fe8sttxAVFaXZfTmL3W5nz549HDp0KNCliEgD1qjDfkZGBqNHj6ZJkyaBLqXmDh70zzj79vlnHBEREbkkb9brV2vSpAm33HKLwr6cxW63A6iVX0QuqdGG/W3btrFp06bgauE3TXA4/DOWjmsRERGpc+Xl5eTm5tZ6vf6Z0tLSWL16NQcOHPBjZRLMOnbsSEJCglr5ReSSGm3Yz8jIoGnTptx6662BLqXmDAP81YXQvLl/xhEREZGLWrduHU6n0+uZfYDRo0djtVpZsGCBHyuTYGYYBqlDhrK96CTfHqtka1ElO4sdVLq0J5OI/H+Gafq621tw6tOnD8nJycyaNSvQpdSKMzUV65o1WHz5YzMMKCiAxES/1SUiIiLne+mll3j22Wc5duwYNpvN63FGjBiBxWLhP//5jx+rk2B0rNLFhsIK1hw4Abbws75mM6BfXCTJ8ZG0ivL+75uIhIZGObO/efNmtm7dGjQt/G63mxUrVnDPPfcwZd0634K+1QojRyroi4iI1IOsrCxSU1N9CvrgaeVfuXIlx44d81NlEmxM0+TLAyd5a+sx1h4uPy/oA1SZsLGwgne+O87SPSW4G+ecnoic0ijD/ocffkjz5s25+eabA13KJe3fv5/nnnuOK664ghEjRrBx40aueu453C1aeD+oywUPP+y/IkVEROSCTNMkOzvbp/X61caOHUtVVRWLFy/2Q2USbEzTZMmeUrJ/8Oy5dKkIX/21jUcr+bigWIFfpBFrdGHfNE0yMjJIS0sjPPz8O6KB5nQ6mT9/PqNHj6ZTp048//zzXH/99WRlZbF161Z++bvfYfnjH70b3GaDAQM8M/siIiJSp77//nuOHj3q03r9au3bt8dut2tX/kZq9Q/l5BVV1vp5O4qdrNh3sg4qEpFg0OjC/oYNG9ixY0eDa+Hfvn07TzzxBB07diQtLY3Dhw8zY8YMDh48yLvvvss111yDYRieBz/6KDzwQO0uYLNBmzawZImnlV9ERETqVHZ2NoZhnD4mzVdpaWksWbKEsrIyv4wnwaHS5SbrkPd/5rmFFRQ7XH6sSESCRaML+xkZGcTFxXHjjTcGuhTKysqYNWsWw4YNo0ePHrz99ttMnDiRTZs2sWbNGqZNm0ZMTMz5TzQMeOstePxxz68vtQ7QcuqPuGdPyMmBhAT/vxARERE5T1ZWFv369SM2NtYv46WlpVFeXq5N+hqZzUWVVPnYib/xaIV/ihGRoNKowr5pmsyZM4c777yTsLCwgNWxYcMGHn74Ydq1a8e9996LzWZj9uzZHDhwgL/97W/079//8oNYLPDKK7B6NdxzD1S/HpvN81Ed8pOS4P33Yd06aN++7l6UiIiInMVf6/Wr9ejRg969e6uVvxExTZP1R3wL6iaw4UgFLq3dF2l0GtWZHGvWrGHXrl0BaeE/fvw4s2fP5p133iE3N5eEhAQefvhh7r//frp16+b9wHa75+Mvf4GFC+GHH8DhgBYtYMgQGDTIfy9CREREaqSoqIhvv/2WJ5980q/jpqWl8cYbb+B0OgM6cSH1o9JlUlTpewt+ucvkeKWLuMhG9dZfpNFrVP/iMzIyaNOmDcOGDauX65mmyVdffcXMmTOZO3cuTqeT0aNH88wzzzBy5Eifj+E5S3w83H+//8YTERERr61atQrArzP74An7zz33HF9++SXDhw/369jS8FS4/Dcb78+xRCQ4NJqw73a7mTNnDnfddRfWOt6g7tChQ3zwwQfMnDmT7du3061bN55++ml+8pOfkKA18yIiIiEvKyuLtm3b0qVLF7+Om5ycTKdOncjMzFTYbwQshv/Gshp+HExEgkKjWbOfnZ3N/v3766yFv/rs27S0NDp27MjTTz+N3W5n5cqVp3faV9AXERFpHKrX6xt+DliGYTB27Fjmz5+P2+3269jS8ETZ/PdWPcqmsC/S2DSasJ+RkUH79u393k63c+dO/vCHP5CYmMjo0aPZuXMnr776KgcOHGDWrFlcf/31fv9BLyIiIg2X0+lkzZo1DBkypE7GHzduHPv372ft2rV1Mr40HGEWgytiwvDlnaQBtI2yEhuuo5dFGptG0cbvcrmYO3cukyZNwmLx/f5GRUUF8+fP55133uGzzz4jJiaGyZMnM3XqVJKTkxXuRUREGrGNGzdSXl7u9wmGakOHDiU+Pp7MzEzsdnudXEMajuRWUewodnr9fBO4qnWU/woSkaARUmHfNE32n6wi72gFRZUuHG6TCItB5dFDWGJb+dzC/8033/DOO+8wa9YsioqKuPbaa3n//fcZP3480dHRfnoVIiIiEsyysrKIiIggOTm5Tsa3Wq2MGTOGzMxMXnjhBU0yhLguzcKIDbdQ7HDjzRZ7kVaDXs0j/F6XiDR8hmkG/6GbpmmyuaiSnMPlFFa4MOCsb4am24VhsZIQZSW1bTQ9a/ENr6SkhIyMDGbOnElOTg6tW7fmJz/5CVOnTqVnz55+fy0iIiIS3CZMmMDBgwf56quv6uwaixYt4vbbb2fLli307t27zq4jDcO+Uiezd5zA7cW79vFdY7giNtz/RYlIgxf0a/bdpsnSvaUs3lNKYYXnHNJzvw8aFs8apUPlLjJ3lvC/B05yqXscpmmyatUqpk6dSkJCAg8++CBxcXF8/PHH7Nu3j5dffllBX0RERM5jmiZZWVl1tl6/2ogRI2jatCmZmZl1eh1pGDo0DWNclxisBjVav2+c+ritU1MFfZFGLKhn9k3TZNneUjYeraz1c4e2jWZowtmt94WFhcyaNYuZM2eydetWOnfuzNSpU5kyZQodO3b0V9kiIiISonbv3k1iYiILFixgzJgxdXqtCRMmUFBQwLp16+r0OtJwHDjpZNneUn4od2EBzj2PofpzcRFWburQhMQYBX2Rxiyo1+x/d9zhVdAH+PpQGR2b2ujYxMZnn33GzJkzmT9/PoZhkJaWxquvvsrw4cP9sqGfiIiINA5ZWVkAdbY535nS0tKYNGkSe/bsoVOnTnV+PQm8dk3CuK9XCw6WOck9UsH3JxxUujzzduEWg64xYQxqFUWHJjbt5SAiwT2z//624xwqq/JqsxIDE9fBnbz98wns3r2bPn368MADD/CjH/2I+Ph4v9cqIiIioW/69OksX76cbdu21fm1iouLadWqFX/+85955JFH6vx60jCZpokJWBTuReQcQRv2D5VV8c9tx30aw3S72T3rJabcfRd2u113QEVERMQnSUlJJCUl8e6779bL9UaNGkVZWRlffPFFvVxPRESCR9D2qH9TVOFz8RaLhZ888X9ITU1V0BcRERGflJSUkJeXVy8t/NXS0tL46quvOHLkSL1dU0REgkPQhv0Tla7zNiWpLQM44fB1FBERERHIycnB7XbX+U78ZxozZgymafLJJ5/U2zVFRCQ4BG3Yd/oho5uA05sDS0VERETOkZ2dTYsWLer1eN42bdowZMgQHcEnIiLnCdqwH2H1ve3e8NM4IiIiIllZWVxzzTX1fpJPWloay5cvp6SkpF6vKyIiDVvQhv34KCu+xnQ3EB9p9Uc5IiIi0oi5XC5Wr15dr+v1q6WlpVFZWcnSpUvr/doiItJwBW3YHxAX6dWRe2eyGdC7ZYRf6hEREZHGa8uWLRQXF9frev1qXbp0YeDAgWrlFxGRswRt2I8Nt3JFTJjXs/sG0LdlJJHWoP0tEBERkQYiOzsbm83G4MGDA3L9tLQ0Fi1aRGVlZUCuLyIiDU9QJ93UNtFez+5bDLiqdaRf6xEREZHGKSsri6SkJKKjowNy/bS0NEpKSvj8888Dcn0REWl4gjrsd2gaxi0dm3j13DGJzYiPtPm5IhEREWmMsrOzA7Jev1rfvn3p1q2bWvlFROS0oA77AEnxUdzaqSkGXLal3wCsBozr0oyezbVWX0RERHx36NAhCgoKArJev5phGKSlpbFgwQJcLlfA6hARkYYj6MM+eDbru69XcwbERVJ9kp7F8Lw4y6lfh1lgUKtIHriyBT0U9EVERMRPsrOzAQI6sw+eVv7Dhw+zatWqgNYhIiINQ8j0sbeOsjGyU1Oubx/Nd8ccHK904XCbhFsN4iKs9GweQbjV18P6RERERM6WlZVF586dad++fUDrSE1NpW3btmRmZjJ06NCA1iIiIoFnmKbp6wl2IiIiIo3W1VdfTZcuXZg9e3agS+Ghhx5i2bJl5OfnYxia5BARacxCoo1fREREJBDKy8tZv359QNfrnyktLY2dO3eSl5cX6FJERCTAQqaNX0RERKS+rV+/HqfTGfD1+tWGXDeMa++eyuKjNlZsOorTbWKzQPNwK0nxkfRpGUGEVXM9IiKNgdr4RURERLz00ksv8eyzz3Ls2DFstsDNobhNk68PlrHuSDmVLhPTdGOxWM97nM0CSXGRDGvXBJtFbf4iIqFMM/siIiIiXsrOzsZutwc06DvdJpkFxRSUOAHPMXyGcX7QB6hyw7ojFRwsq+KubjGa5RcRCWH6Di8iIiLiBdM0yc7ODuh6fdM0+WRXCTtPBf0aPQfYf7KKjwtKcKnBU0QkZCnsi4iIiHhh+/btFBYWBnS9/tZjlXx/wkFtI7sJ7C51srGwoi7KEhGRBkBhX0RERMQLWVlZGIZBampqwGpYd6QCX1berztSjrZvEhEJTQr7IiIiIl7Izs6mb9++xMbGBuT6h8qqOFhWVetZ/TMdq3Szp7TmSwBERCR4KOyLiIiIeCErKyug6/W/O1bp8xs5C/DtMYc/yhERkQZGYV9ERESkloqKivj2228Dul6/tMrt06w+gBs46XT5oxwREWlgFPZFREREamnVqlUAAZ3Zd/tpqb1LS/ZFREKSwr6IiIhILWVnZ9O2bVu6dOkSsBoirYZPm/MBGECkTW8HRURCkS3QBYiIiIg0ZG7TJL/Ywe4SJ+VVJhYDjrTowk13TQ5oXe2b2Mgt9G0M89Q4IiISegxT562IiIiInKeiyk1uYQW5RyoorXJjMaD6XVNVlROrLYxWkVauahVF37gIrIav8+y1U+U2eW1zEZU+9OHbDJjeryWRVs3ui4iEGoV9ERERkXMcq3Tx4Y4TFDtqtglep6ZhjOvarN5D8xcHTpLzQ7lXG/UZwIC4SEZ2aurvskREpAHQbVwRERGRM5xwuJj1/fEaB32AvaVOMnYU4/TXrnk1NKhVJBFerN03AJsF7G2i6qIsERFpABT2RURERE4xTZO5+cWUV5m1mi03gUNlVSzfW1pXpV1QszArE7vFYLNQ48BvABYDxneNoUWEtS7LExGRAFLYFxERETllV4mTwgqXV23xJvBNUSUnnW5/l3VJCU3C+FH35kTbPHH/cqE/wmowqXssnZuF131xIiISMFqzLyIiInLKvIIT5J9wehX2wRO0r02I5pq20f4sq0acbpNvj1Wy/kg5P5S7zvt6XKSVwa2i6N0ignBr/W4mKCIi9U9hX0RERAQodbp5fXORz+M0DbMwvW9LP1TkvR/KqiiqdOFwmYRbDZpHWGgbZcOo5xMDREQkcHSwqoiIiAieHfj9odTppsptYrMELli3ibbRJlpv80REGjOt2RcREREBHD6cV3+uSj+OJSIi4g2FfREREREgzI/r2LUmXkREAk1hX0RERARoHu6ft0VRVoOwALbwi4iIgMK+iIiICAAx4VY6Nw2r8Xn1F2IASfGR/ipJRETEawr7IiIiIqcMahXp9bF7ACYwQGFfREQaAIV9ERERkVOuiA0nNtzi1ey+AfSMDSc23OrvskRERGpNYV9ERETkFIthcFe3GMIs1CrwG0DLCCu3dm5aV6WJiIjUisK+iIiIyBniI21M6t6cSKtRo8BvAK0irdzTPZZIq95aiYhIw2CYpqmDYEVERETOUexwseZwOZuOVuB0e0J99Zum6v/fxGYwqFUUV7WK0nF7IiLSoCjsi4iIiFyCw2Wy9Vglu0sclLtMLAZE2yz0iA3nithwLIZCvoiINDwK+yIiIiIiIiIhRgvLREREREREREKMwr6IiIiIiIhIiFHYFxEREREREQkxCvsiIiIiIiIiIUZhX0RERERERCTEKOyLiIiIiIiIhBiFfREREREREZEQo7AvIiIiIiIiEmIU9kVERERERERCjMK+iIiIiIiISIhR2BcREREREREJMQr7IiIiIiIiIiFGYV9EREREREQkxCjsi4iIiIiIiIQYhX0RERERERGREKOwLyIiIiIiIhJiFPZFREREREREQozCvoiIiIiIiEiIUdgXERERERERCTEK+yIiIiIiIiIhRmFfREREREREJMQo7IuIiIiIiIiEGIV9ERERERERkRCjsC8iIiIiIiISYhT2RUREREREREKMwr6IiIiIiIhIiFHYFxEREREREQkxCvsiIiIiIiIiIUZhX0RERERERCTEKOyLiIiIiIiIhBiFfREREREREZEQo7AvIiIiIiIiEmIU9kVERERERERCjMK+iIiIiIiISIhR2BcREREREREJMQr7IiIiIiIiIiFGYV9EREREREQkxCjsi4iIiIiIiIQYhX0RERERERGREKOwLyIiIiIiIhJiFPZFREREREREQozCvoiIiIiIiEiIUdgXERERERERCTEK+yIiIiIiIiIhRmFfREREREREJMT8P3bWu1YQWipjAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs8AAALPCAYAAACdci23AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3yTVfvH8c+dpntDESp7o2WU1TKVn4gKaouIMnwQB4pQRNyAiIBMUR6UoQ9TRKaCIEtkKCCC7CJL9l61m+4m5/dHBEVWm9zp3TbX+/XqC0ibc38LNLlycp1zNKWUQgghhBBCCHFHJqMDCCGEEEIIUVRI8SyEEEIIIUQeSfEshBBCCCFEHknxLIQQQgghRB5J8SyEEEIIIUQeSfEshBBCCCFEHknxLIQQQgghRB5J8SyEEEIIIUQeSfEshBBCCCFEHknxLIQQQgghRB5J8SyEEEIIIUQeSfEshBBCCCFEHknxLIQQQgghRB5J8SyEEEIIIUQeSfEshBBCCCFEHknxLIQQQgghRB5J8SyEEEIIIUQeSfEshBBCCCFEHknxLIQQQgghRB5J8SyEEEIIIUQeSfEshBBCCCFEHknxLIQQQgghRB5J8SyEEEIIIUQeSfEshBBCCCFEHknxLIQQQgghRB5J8SyEEEIIIUQeSfEshBBCCCFEHknxLIQQQgghRB5J8SyEEEIIIUQeSfEshBBCCCFEHpmNDiCEcI6kLAuXM3LJsijcTRr+Hibu9jGjaZrR0YQQQogiS4pnIYoRq1IcS8lmZ1wmJ1Nzbvh8kIeJhqW8qVPCEy+zvPEkhBBC5JemlFJGhxBCOC4128LCYynEZVrQgNv9YLuboH2lAKoGehRUPCGEEKJYkOJZiGIgOdvC7D+SSMtVty2a/0kDoir5c0+wpzOjCSGEEMWKvG8rRBGXY1UsPJqSr8IZbDPTy06mci7txvYOIYQQQtycFM9CFHEHErKIz7Lkq3C+SgGbLqTrHUkIIYQotqR4FqIIU0qxPS7D/vsDJ1NzSMyy6BdKCCGEKMakeBaiCDufnsufmY4Vvhqw+89MfQIJIYQQxZwUz0IUYWev5ODors0KOJ2arUccIYQQotiT4lmIIizLohwungEyLbLpjhBCCJEXUjwLUYSZdDot0E1OHRRCCCHyRIpnIYowX3cNqy7jyEOBEEIIkRfyjClEEVY90FOXto175aAUIYQQIk+keBaiCPNzN1EzyMOhAtrdJMWzEEIIkVdSPAtRxDUs5W3XASlg26auXkkvPNyk51kIIYTICymehSjiyvu507CUV77vpwHBnm60KOOjfyghhBCimJLiWYhioHVZX2qXyHvrhQYEeZroXC0AL7M8DAghhBB5pSmlZINXIYoBpRTbLmew5VIGmX/t/6z+9fmrW9vVCvbgoXJ+eEvhLIQQQuSLFM9CFDMWq+KP5Gx2xmVwOSOXHCtoShF//jSNyvjTrl41/GRrOiGEEMIuZqMDCCH05WbSuDfY89oOGkopsrOzCWjajI8//hi/RjUMTiiEEEIUXTL9JEQxp2kanp6ehIeHs23bNqPjCCGEEEWaFM9CuIiIiAgpnoUQQggHSfEshIuIjIzk8OHDJCYmGh1FCCGEKLKkeBbCRURERACwfft2g5MIIYQQRZcUz0K4iGrVqhEUFCStG0IIIYQDpHgWwkWYTCYaN24sxbMQQgjhACmehXAhVxcNyvbuQgghhH2keBbChURGRnLp0iVOnz5tdBQhhBCiSJLiWQgX0rhxYwBp3RBCCCHsJMWzEC6kTJkyVKhQQYpnIYQQwk5SPAvhYuSwFCGEEMJ+UjwL4WIiIyPZsWMHubm5RkcRQgghihwpnoVwMREREaSnp3PgwAGjowghhBBFjhTPQriYBg0aYDKZpHVDCCGEsIMUz0K4GD8/P8LCwqR4FkIIIexgNjqAuN6VHCvpuVasCrzcNAI8TJg0zehYopiJjIyU4lkIIYSwgxTPhUCuVXE4KZsdcRmcT79+EZef2USDUl7UK+mFr7u8USD0ERERwYwZM0hLS8PX19foOEIIIUSRoSk5p9dQx5KzWXYqlUyLQgNu9o9xdd45srQ394f6oMlMtHBQbGws4eHhbNy4kZYtWxodRwghhCgyZCrTQPsSMvnmeAqZFlvJfKtXMeqvj62XMlh6MhWrvN4RDgoLC8PHx0daN4QQQoh8kuLZICdTsllx6kq+73coKZv159KckEi4ErPZTMOGDaV4FkIIIfJJimcDKKX48az9BfCOuEwSMi06JhKuKCIigt9++83oGAUm16o4lpzN3vhM9vyZycHELJKz5edICCFE/siCQQOcuZJLQpb9T9oasPvPDFqX89MvlHA5ERERfPLJJ1y6dInSpUsbHcdpkrIs7Pkzk93xmWRZbmx5qhbgTsNS3lTyd5f1BEIIIe5IZp4NsPPPDIf+4hUQG59JjlV6n4X9IiIiANi+fbvBSZxn++UMvjiQyG+XM25aOAMcS8lhwbEU5hxJJjPXWsAJhRBCFDVSPBvgeEo2jj5FZ1vhfFqOLnmEa6pYsSJ33XVXse173nQhjXV/rQ+43cvMq587l5bL7MNSQAshhLg9KZ4LmFUpcnR6bs7IlZlnYT9N04pt3/O+hEw2X8zI130UkJBlYdHxFGQHTyGEELcixXNRJu2ZwkERERFs27atWBWLVqXYcD7drvsq4ExaLqeuyLs6Qgghbk6K5wJm0jT0OijQ202qZ+GYiIgIkpKSOHr0qNFRdHM8JYdUB97eMQG74jL1CySEEKJYkeLZANUDPRyeNPY0aZT1ddclj3BdjRs3BihWfc874zIc+vmyAkeSs0mVbeyEEELchBTPBmgQ4n3bBUx3ogHhIV6YTTLzLBxTokQJqlevXqz6ns+l5Tr08wW29o0L6bl6xBFCCFHMSPFsgLK+ZkK83OyeHVPYimch9HC177k4UEqRrdMWjrfa2k4IIYRrk+LZAJqm8XB5P7uL56alvQn2dNM1k3BdERER7N69m+zsbKOjOEzTNPRaCuAm7+wIIYS4CSmeDVLez52oSv5o5G/TjHsD3Lgv1MdZsYQLioyMJDs7m7179xodRRc+Zn0e1nzNUjwLIYS4kRTPBqoV7EnnagH4/rX9xu2eqk0ofpoylmWj35EjhIWu6tWrh7u7e7Hoe1ZK4ZN8HmV1bLGfj1mjvJ8syBVCCHEjKZ4NVtHfg95hwTxZxZ+K/jc+WQd5mGhd1pe+dUrSOaIW06ZNY+7cuQYkFcWVl5cX9erVK9J9z6mpqUyaNIl77rmHN55qB5r9D23KaqWGVy4meZEqhBDiJjRVnE5HKAYyLVYychVWpfByM+Fj1q7NNCulePbZZ1myZAk7d+6kRo0aBqcVxUVMTAzr16/n4MGDRkfJl8OHDzNp0iRmzpxJeno6TzzxBH379uXi3XU5npKT/103lMJqsTCpU0veea0PMTExmM1mZ0QXQghRRMnMcyHj5WYi2NONkl5mfN1N17VoaJrG5MmTufvuu+nUqROZmXKQg9BHZGQkhw4dIjk52egod2S1Wlm5ciVt27alZs2azJ07l1dffZUTJ07wzTff0LJlSx4u74e3Wcv/olxNo9Vd7kQ/0obXX3+dBg0asGnTJmd8G0IIIYooKZ6LGH9/fxYuXMjBgwd56623jI4jiomIiAgAtm/fbnCSW0tOTmb8+PHUrFmTRx99lLi4OL788kvOnDnDiBEjKF++/LWvDfBwo0u1wHwX0P93tw/NKpZk8uTJbNu2DW9vb+677z66d+/OpUuX9P+mhBBCFDlSPBdB9erVY/z48UyaNIlFixYZHUcUAzVq1CAgIKBQ9j0fOHCA3r17U7ZsWd5++20aN27Mr7/+yvbt2+nevTteXjff87yUt5nnagZRLdADuPmC3Ku3BXuaeKKyP5Gl/97JplGjRmzZsoWpU6eyYsUKatSowYQJE8jNlcNThBDClUnPcxGllKJTp078+OOP7N69m8qVKxsdSRRxDz74IH5+fixZssToKFgsFpYvX86ECRNYt24dpUuX5pVXXqFnz56Ehobme7yUbAux8ZnsS8giPdeKVYGnm21HjQYhXlTwc7/tLjbx8fG89957TJkyhTp16jB58mSaN2/uyLcohBCiiJLiuQhLTk6mfv36hISE8Msvv+Dh4WF0JFGEDRw4kJkzZ3L+/HnDtkNMSEhg+vTpTJ48mZMnT9KkSRNeffVVOnbsWCj+f+/YsYPevXtfm/UeM2YMpUuXNjqWEEKIAiRtG0VYYGAgCxYsYM+ePQwYMMDoOKKIi4yM5OLFi5w9e7bAr713715eeuklypUrx6BBg7jvvvvYvn07W7ZsoWvXroWicAZbK8fWrVuZMmUKy5Yto2bNmkycOFFaOYQQwoVI8VzENW7cmI8++ohx48axbNkyo+OIIuzqosGC6nvOzc3l22+/5f7776devXqsXLmSgQMHcubMGWbNmkWjRo0KJEd+mUwmXnrpJQ4fPkynTp3o27fvtT5sIYQQxZ8Uz8XAa6+9RlRUFM899xxnzpwxOo4ookJDQylXrpzTi+e4uDhGjhxJ5cqVeeqpp7BarSxYsICTJ08yaNAg7rrrLqdeXy8lS5bkf//7H1u3bsVsNtO8eXOef/55Ll++bHQ0IYQQTiQ9z8VEQkIC4eHhVKhQgZ9//lkOdhB2efLJJ0lISOCnn37Sfexdu3YxYcIE5s2bh6ZpdO3alT59+lC/fn3dr1XQLBYL06ZNY8CAASilGD58OK+88gpubm5GRxNCCKEzmXkuJkqUKMH8+fPZunUrH3zwgdFxRFF05gxvJiXxvw0bUCVKQGAgVKoEPXtCbKxdQ+bk5DB//nyaN29Ow4YNWb9+PUOHDuXs2bNMnz69WBTOAG5ubvTs2ZPDhw/TsWNH+vTpQ+PGjdmyZYvR0YQQQuhMiudipFmzZowYMYJRo0bx448/Gh1HFBXHj0N0NFSsSNOff6aGUmiJiZCSAqdOwYwZEB4OTZpAHk/bu3TpEsOGDaNixYp06dIFT09PFi9ezLFjx3j33XcpWbKkk78pY4SEhDB16lS2bt2KyWSiWbNmvPjii8TFxRkdTQghhE6kbaOYsVqttGvXjl27dhEbG2vXnrjChezYAQ89ZCuULZbbf63JZPv46ivo0uWmX/Lbb78xYcIEFi5ciLu7O926daNPnz7Url3bCeELN4vFwtSpUxk4cCBKKUaOHMnLL78srRxCCFHESfFcDF2+fJnw8HBq1arFmjVr5Mla3NyRIxARAampdy6c/8lkguXLoW1bALKysli4cCETJkxg+/btVK5cmZiYGF544QWCg4OdFL7oiIuLY8CAAUyfPp0GDRowefJkIiMjjY4lhBDCTtK2UQzdddddzJ07lw0bNjBixAij44jCqnt3uHIlf4UzgFLQqRMXjh5l8ODBVKhQgWeffZagoCC+//57jhw5wptvvimF819KlSrFtGnT2LJlC0opmjRpQo8ePaSVQwghiiiZeS7Ghg0bxtChQ1m3bh2tWrUyOo4oTPbsAQcW6yngFZOJuT4+dO/enT59+lCrVi398hVTFouFKVOmMHDgQDRNY+TIkbz00kvy7pAQQhQhUjwXYxaLhTZt2nDo0CFiY2MpVaqU0ZFEYdGzp20hoJ0n41mAxNBQPA4eJCAwUN9sLiAuLo7+/fszY8YMGjVqxKRJk64dUnNHFgts2wYXL0JODgQFQYMGEBLi3NBCCCEAKZ6LvQsXLlCvXj0aNGjAypUrMZmkU8flKQW+vpCR4fhYBw7APfc4Po6L2rJlC7179yY2NpYePXowcuRIQm5VBMfFwfTpMHEinDt3/efc3aFTJ4iJgchI0DTnhxdCCBcllVQxFxoaytdff83q1asZO3as0XFEYXDlij6FM8CFC/qM46KaNm3Kjh07ru1QUrNmTaZMmYLl333os2ZB2bLw3ns3Fs5gm4GePx+aNoWoKNu/sRBCCKeQ4tkFPPTQQwwYMID33nuPX3/91eg4wmhZWfqNlZmp31guys3NjZiYGA4fPkxUVBQ9e/akadOmbN++3fYF48fDc8/ZCmSr9dYDXW3BWbUK7r9fCmghhHASadtwEbm5ubRq1YrTp0+zZ88eSpQoYXQkYZScHPDw0GesX3+1zXYK3WzevJmYmBj27t3LxDZt6G3PgUdubrb9u1eskBYOIYTQmRTPLuTMmTOEh4fTokULlixZgiZPqq6rbl3Yv//2M5l34uVlW7QmCwZ1l5ubyxeff067fv2oZLXa/xbhxo3QsqWe0YQQwuVJ24YLKV++PF9++SXff/89n332mdFxhJFefdWxwtlshm7dpHB2ErPZTJ+wMKo4UjibzTBpkp6xhBBCIDPPLunNN99kwoQJbN68mcaNGxsdRxghLQ1Kl7b9aq/duyE8XL9M4nodOsCyZXZvJwjYCugzZ6BMGf1yCSGEi5OZZxc0atQowsPD6dSpE8nJyUbHEUbw9bXt3GAPNzeIjpbC2dl+/tmxwhls99+6VZc4QgghbKR4dkEeHh4sWLCAhIQEevTogbz54KL694fu3cnXv76bG9SrB3PmOCuVuColRZ9xEhP1GUcIIQQgxbPLqly5MtOnT+fbb7/lf//7n9FxhBE0DWbMYF29egCo2x0RbTbbfm3d2jYj6uvr/Hyu7urfuaP02llFCCEEIMWzS3vyySeJiYmhX79+xMbGGh1HGGD9zz/TJjaW+e++i/bii7YdNMBWWF89jVLToG1b+PFH2x7C/v7GBXYlJUvqM85dd+kzjhBCCEAWDLq8zMxMmjZtSnp6Ojt37sTPz8+2wGjaNNuCsIQE8PODChXg2WeheXPZN7aYSE1NpU6dOlSuXJl169bZjm5PSrIVyX/+CRYLBAfDfffZ/v1FwXr7bfjvf23/DvYKDradAunpqV8uIYRwcVI8Cw4fPkzDhg15q3lzBnt6oi1bZpt1/OeTttlsW3x0zz3w+uvw4ot/z0yKIqlXr17Mnj2bvXv3UqVKFaPjiH87dgyqVbP//m5u8M47MHKkfpmEEEJI8SxstvTsSeMpUzCZTJhut/+vpoFS8NRT8NVXf7/NL4qUtWvX0qZNGyZNmkTv3r2NjiNu5eGHYd06+2afTSZbAV6pku6xhBDClUnxLGDuXHjmGRSQ54YMkwnat4dvvpEZ6CImJSWFOnXqULVqVdauXWtr1xCF07Fj0LixbeeN/BbQH38Mb77pnFxCCOHC5FnT1R07Bt27A/konMF2Ot3ixfDpp06JJZzn7bffJiEhgRkzZkjhXNhVrWrrQQ8IsLVh3MG1mZCBA+GNN5waTQghXJU8c7q6yZNtbRj2cnRBkyhQP/74I1OmTGHs2LFUkrfzi4ZGjWDbNmjRwvbnm21h91dhfcXXl5dMJvY89ZQs7BVCCCeRtg1Xlp4OoaGOH8awYgW0a6dPJuE0ycnJ1KlThxo1arBmzRo0Ka6KnoMH4Ysv4OuvbYefKGVbd9C0Kbz6KtkPP0yjJk0wmUxs27YND9njWQghdCfFsyubNw+6dnVsDDc3ePxx+O47fTIJp3nppZeYP38++/bto2LFikbHEY6yWm074PyrQN61axeRkZEMHDiQoUOHGhSuiMjIgD/+sL0Q8fCAMmVsrTJCCHEb0rbhyk6ccPwUM4sFjh7VJ49wmh9++IFp06bxySefSOFcXJhMNz09sEGDBgwcOJCRI0eya9cuA4IVAUeP2hZTlikD9evDAw/Y2mKqVbP9eeZM2ztzQghxEzLz7Mreew/GjoWcHMfGqVgRTp7UJZLQX3JyMrVr1+aee+5h9erV0q7hArKzs4mIiMBqtbJjxw5p37gqOxt69YIZM2zvmt1svYbJZJvVDwyEOXPg0UcLPqcQolCTmWdX5u/v2GLBq4KCHB9DOM0bb7xBcnIy06ZNk8LZRXh4ePDll19y8OBBPvzwQ6PjFA5ZWbZj5r/80vbnWy10vrrPfUqKrSVt9uwCiSeEKDqkeHZl99xj65l0hNkMtWvrk0fobuXKlcyYMYNx48ZRQY7Ydinh4eG8//77jBo1ih07dhgdx1hKwXPPwc8//10c5+U+SsHzz8P69c5MJ4QoYqRtw5Xl5kLZsnD5smPjbNr09zZaotBISkoiLCyMOnXqsGrVKpl1dkE5OTlERkaSnZ3Nzp078fT0NDqSMbZtg8hI++5rMkFYGMTGyvZ/QghAZp5dm9kMMTH2nxCoabbZ6+bN9c0ldPH6669z5coVpk6dKoWzi3J3d+fLL7/k8OHDrr3zxqRJ9i+Otlrh999tBbgQQiDFs3j5ZfDxsa+AVsp2kpkUZoXOihUr+PLLL/nvf/9L+fLljY4jDFS3bl0GDx7MmDFj2L59u9FxCl58vG1bTkda1MxmmDhRv0xCiCJN2jYE/PQTPPSQbYYlr/2AAK+/DuPGOS+XsEtiYiJhYWGEh4ezYsUKmXUW5OTk0LRpU9LT09m1axdeXl5GRyo4S5dC+/aOjxMSAnFxjo8jhCjyZOZZwP/9H/zwA3h7Xzvm91aubWo3YAB8/LHTo4n869evH+np6UyZMkUKZwH83b5x7NgxhgwZYnScgpWQoM84ycn6jOMk6blWdv+ZwaYLafx0Lo0tF9M5mZKNzI8JoT8HT8gQxUbr1rBvn603cMoU2zZN7u621gxNA6sVZbWyJTiYr4OD+WL4cEz29koLp1m2bBlfffUVM2fOpFy5ckbHEYVI7dq1GTJkCIMGDaJ9+/Y0adLE6EgFQ6fHKQtw6vhxKlWqVKge+86n5bAzLoODidlY+WtGTPtrsxAg0MNEw1Le1C3hiZe58OQWoiiTtg1xo4wM+OYb2LPHNtvi7Q3lysEzz7D59GlatGjBnDlz6Oro0d5CVwkJCYSFhdGwYUOWLVsms87iBrm5uTRr1ozU1FR27dqFt7e30ZGcb8UKeOwxh4e5ANwN+Pj4cO+99xIWFkZYWBi1a9cmLCyM8uXLF+jPnFKKXy6ms/liBibgTg13fu4mOlcNIMRb5syEcJQUzyLf2rdvT2xsLIcOHXLdra8KoW7durF8+XL27dtH2bJljY4jCqkDBw5Qv359+vbty9ixY42O43xpaVC6tO1XOymzmbRu3djcqRP79+9n//797Nu3jwMHDnDlyhUA/P39byiow8LCCA0NdUpRvf5cGtsuZ+T56zXA3aTxbM1AQrykgBbCEVI8i3w7ePAgtWvXZty4cbz22mtGxxHA0qVLad++PbNmzeLZZ581Oo4o5MaMGcOAAQP45ZdfaNasmdFxnO+112DyZMd23DhwwLY15z9YrVbOnDnDvn37rhXU+/fv5+DBg2Rk2Arb4ODgG4rq2rVrU6pUKbuj/B6fyYrTV/J9Pw3bDPRL9wTj4SbvTAlhLymehV1eeuklvvvuO44dO0ZgYKDRcVxafHw8YWFhNG7cmO+//17aNcQd5ebm0qJFCxITE9mzZ0/xb984dOiGwjfP3NygWTPYuDHPd7FYLJw4ceK6Wer9+/dz6NAhsrOzAShVqtQNs9RhYWGUKFHitmMrpfjiQCLJ2fnYGelf2pb3o16IC+24IoTOpHgWdjl37hzVqlXjzTffZPjw4UbHcWnPPPMMq1atYt++fdx9991GxxFFxKFDhwgPDycmJoZPPvnE6DhOdfDgQTY0a0bPpCTy9dLSZAIvL9i6FerUcThHbm4uR48eva6g3r9/P4cPHyb3r1nx0NDQmxbVAQEBAJxIyWbBsRSHcoR4ufFirSB5oe0sly/DrFm2dytSUsDXFypXhu7doUoVo9MJHUjxLOw2YMAAPv30U44dO0ZoaKjRcVzSd999R4cOHZg9ezb/+c9/jI4jipiPP/6Yd955h40bN9KiRQuj4zjFqlWr6Ny5MxXKlePXsDD8v/kmb3d0cwMPD1i+HB54wKkZs7OzOXz48A1F9dGjR7H+tfd++fLlqV27NpGvDMKzXDXQHNs549kagdzt665HfHHVrl3wySewcKHtzASTCSyWv3d8sVrh4YdtZyQ89JCxWYVDpHgWdktKSqJq1ao89dRTfPHFF0bHcTl//vknYWFhNGnShCVLlsgsksg3i8VCy5YtiYuLIzY2Fh8fH6Mj6UYpxX//+1/efvtt2rVrx5w5cwjw94cxY+DDD227Ctm+8Po7ms223uh77oE5c6B+/YIP/5fMzEwOHTp0XVFdJ2YE/nc5PlnxSHk/wqV1Qz+zZsGLL9q2dr1db72bm62gHjQIhg2TE3qLKCmehUPGjRvHO++8w/79+6lZs6bRcVxKly5d+PHHH9m/fz9lypQxOo4oov744w/Cw8Pp2bMn48ePNzqOLrKysujVqxczZ87k3XffZcSIEbj98wCo1FSYOxc++8z21vpVZjN07AgxMdC8eaEsbMbvjSfT4tjTtga0utuHyNLF58WSoWbPBnsWag8cCCNG6J9HOJ0Uz8IhmZmZ1KxZk0aNGrFo0SKj47iMRYsW0bFjR9lvW+hi3LhxvPXWW2zYsIGWLVsaHcchly9fpkOHDmzfvp1p06bRrVu329/hyhVISrK1aAQH2w6HKsQm/h7PlVzHn7YfKudLg1LFfKFoQdi3z/buhL07uXz3nT7Hx4sCJcWzcNjs2bN59tln2bJli+ucWmaguLg4wsLCaN68OYsXL5Z2DeEwi8XC/fffz8WLF4mNjcXX19foSHbZu3cvjz/+OFlZWXz33Xc0bdrU6Ei6++qPJM6nO7Dl3l+erOJP9UDZp99hPXvCjBn2Fc8mEzRpAps3659LOJWc1Skc1rVrV+rWrcs777yDvBZzvj59+mC1Wvniiy+kcBa6cHNzY+bMmZw/f54BAwYYHccuS5YsoVmzZpQoUYJt27YVy8IZoF5Jx/uUvd00qvh76JDGxSUnw1df2T/rbLXCr7/C77/rm0s4nRTPwmFubm6MHj2aTZs2sWLFCqPjFGvffPMNCxcuZOLEiZQuXdroOKIYqV69OqNGjWLChAls2LDB6Dh5ppRi5MiRPPHEEzzyyCP88ssvVKhQwehYTnNPsCfuDjxza0D9EC/cTPLC22Hz5kFWlmNjmM0wdao+eUSBkbYNoQulFK1bt+by5cvExsZevzhH6OLy5cuEhYVx33338e2338qss9E7ZJIAACAASURBVNCd1WqlVatWnD17lr179+Ln52d0pNvKyMigR48ezJ07l8GDB/PBBx9gMhX/OaH159LYfjkDe568TcArYcEEeMhjtMPeeAMmToScHMfGefhh+OEHfTKJAlH8H2VEgdA0jTFjxrB//35mz55tdJxiRylF7969Afj888+lcBZOYTKZmDFjBpcuXaJ///5Gx7mtCxcu0KpVKxYvXsz8+fMZOnSoSxTOAC1DfSjt45a/A1/+8mhFPymc9ZKaeuNWh/ZITHR8DFGgXOORRhSIxo0b89RTT/H++++TcXUPVaGLhQsXsmjRIiZNmsRdd91ldBxRjFWrVo3Ro0czadIk1q9fb3Scm9q5cyeNGzfm7NmzbNq0iU6dOhkdqUC5mzQ6VQ0k1MecpwJa++vjkfJ+hJWQvZ114+enz3aGQUGOjyEKlBTPQlcjRozg4sWLTJw40egoxcalS5eIiYmhY8eOPP3000bHES4gJiaG+++/nxdffJHU1FSj41xn4cKFtGzZkrvvvpvt27fTqFEjoyMZwttsokv1QJqW8cbbzVbA/buMs/y1kE0lXKBztQA5FEVv1avbv1jwKrPZNo4oUqTnWeguJiaGuXPncvz4cYKDg42OU6QppejYsSObNm1i//79lCpVyuhIwkUcP36cunXr0q1bNz7//HOj42C1Whk6dCjDhg2ja9euTJs2DW9v2acYwGJVHE7OZl9CJinZVnKVwsvNxG+rv2fjnP+RcuEMx48fx2w2G5IvI9fKidQcMnKtKAXeZo0K/u74uxfx9pHERAgNdXzR4O7dEB6uTyZRIKR4Frq7dOkSVatWJSYmhjFjxhgdp0ibP38+Xbp04ZtvvqFjx45GxxEuZvLkycTExLBmzRoefPBBw3KkpaXRvXt3Fi1axMiRI+nfv7/0/efBhAkTeOONN8jNzWXhwoU89dRTBXr982k57IrL5EBSFtZ/VRoaUCPQgwalvKjg5150/z1ffNH+7epMJmjcGLZu1T+XcCopnoVTDBkyhNGjR3PkyBHKly9vdJwi6eLFi4SFhfHggw+yYMECo+MIF2S1WnnwwQc5duwYv//+OwEBAQWe4cyZM0RFRXHkyBG+/vpr2stpbHl26tQpKlWqxL333ktwcDC//PJLgVzXqhSrz1whNj4LE2C9xddpgAKqB3oQVckf96K4fd7evdCgAcpisWsBJ99+C08+qXcq4WTS8yyc4s033yQgIIAPPvjA6ChFklKKXr16YTabmTRpktFxhIu6uvtGQkICb7/9doFff8uWLTRu3JiEhAQ2b94shXM+VaxYkXr16lGyZEk2b97M9u3bnX5Nq1IsOZFKbLytleFWhTNwbau9o8nZLDiaTO6/p6eLgrp1YcqUay8E8uWtt6RwLqKkeBZO4e/vz+DBg5k1axb79u0zOk6RM2/ePJYsWcLnn39OSEiI0XGEC6tUqRJjx45lypQp/PjjjwV23dmzZ9OqVSuqVavG9u3bqVevXoFduziJjo5m7969VK5cmU8//dTp19t4IZ3Dydn5uo8CzqXl8sPpK84J5WRTLRZ6AErTbAsAb+fqGQjvvgvS1lhkSfEsnObll1+mcuXKRfa4X2fLsSrSc61Y/jXbcuHCBfr06UPnzp3p0KGDQemE+FvPnj158MEH6dGjB8nJyU69lsVioX///jz77LM888wzrFu3TrZndEB0dDTJyck88sgjLFiwgPPnzzvtWhm5VrZftm+bUgXsS8wiMcuibygnW716Nb169cK7Tx+0X3+FJ55AmUxYAHV133GT6e+i+v77YflyGD3adrsokqTnWTjVggUL6Ny5Mxs2bOC+++4zOo7hErMs7Pkzk9j4TDItf//oBXmYaFDKmzrBHnTu2IHffvuN/fv3U7JkSQPTCvG3U6dOUadOHZ5++mmmTZvmlGukpqbyzDPPsGLFCsaOHcvrr79edBeSFRJKKSpWrEi7du2YO3cuffv2Zfjw4U651m+X0vnpfLrd99eAxnd580BZX/1COVFsbCwtW7akVatWfPfdd9dO1h3Rpw/arFkMiI5GS0627QddqRI8/zzUqGFsaKELKZ6FU1mtViIiInB3d+fXX3912SfCtBwrK0+nciwl5/a9cVYrv8ybwost6vBE++gCTCjEnU2dOpWXX36ZVatW8cgjj+g69okTJ4iKiuL06dPMmzePdu3a6Tq+K+vTpw/Lly8nKiqKuXPncubMGd23+VNK8fmBRFKyb9flfGeeJo1X65TAXMgXD547d47IyEhKly7Nhg0brjvKvlGjRtSqVYuvv/7awITCmeQ9A+FUJpOJMWPGsHXrVpYsWWJ0HEMkZVmY9UcSx1NygDssKjGZaN71ZTLDWpFTFBfPiGKtR48ePPTQQ/To0YOkpCTdxt24cSONGzcmIyODLVu2SOGss6ioKE6dOkWbNm1ISEhgzpw5ul8j06IcLpwBsqyq0LdupKam8uijj2IymVi+fPl1hXN8fDy7du0ydGtH4XxSPAuna926NQ8//DADBgwg19HTmIqYjFwr848mk5pjzfNKbE0zcfpKDstOpiJvDInCRNM0pk2bRmpqKm+88YYuY06bNo3WrVtTt25dfvvtN+69915dxhV/a9WqFQEBAezevZvHH3+cTz/9VPfHliyLfuPpOZbecnNzefrppzlx4gQrV64kNDT0us+vX78epRStW7c2KKEoCFI8iwIxevRo/vjjD2bMmGF0lAK15VIGydl5L5yvUsDh5Ox8r1oXwtnKly/PuHHjmDlzJitWrLjuc0opsixWcqzqjsVZbm4u/fr146WXXqJHjx6sXr1aevydxMPDg7Zt27J06VL69evHvn37WL9+va7XcNOxy6KwtmwopXj11VdZu3YtixYtonbt2jd8zdq1a6lZs6acb1DMSc+zKDD/+c9/WL9+PUeOHMHXt2gsCHFEjlUx4fcEsu1sv9CACn7udKkeqG8wIRyklKJdu3bs3buXvb//TrzJl51xmZy+knPthaKbBjWDPGgQ4k1ZX/N16x2SkpLo1KkT69at47PPPqN3797GfCMuZN68eXTt2pVTp07x+OOPU6FCBZYtW6bb+LlWxbjY+Nvu65xXMWHB+HsUvqO7x44dyzvvvMOMGTN4/vnnb/o1VatWpW3btkycOLGA04mCJDPPosAMHz6c+Ph4xo8fb3SUAnEwMcvuwhlss8+nruSQkFm4+/+E69E0jalTp1IhohWTDySx+ETqdYUzgEXBwcRsvj6SzPRDSZxPs/X8Hz58mCZNmrBt2zZ++OEHKZwLSNu2bTGbzSxbtox+/fqxfPlyjhw5otv4ZpNGjSAP+07Z+4sGlPM1F8rC+ZtvvuGdd95h0KBBtyycjx8/zvHjx2nTpk0BpxMFTYpnUWAqVapE7969GTNmDH/++afRcZzuj6Qsh55IwPZkcjg5S484QujqnHsJogd/itnHH7j5Qtirt8VnWphzJJlvN2wjMjISgG3btsmiqgIUFBREq1at+P777+nSpQulSpXis88+0/UaDUt55/+UvX9QQKNS+u4Coodff/2Vbt260bVrV4YNG3bLr1u3bh0mk4lWrVoVXDhhCCmeRYF677330DSNESNGGB3F6dLysUjwVjQN0nOls0oULrHxmdf2883L9pMKsFgVh7zK0aZjV7Zu3Ur16tWdnFL8W1RUFD/99BNZWVm88sorzJw5U9ddU8r5minp5WbXpIEG+Jg1qgd56JZHD0ePHiUqKorIyEhmzJhx2//va9euJSIigsBAabUr7qR4FgUqJCSEd999l0mTJnHixAmj4ziVHr1/KLDKsgRRiGTmWvnxjB3HKGsabmYzD77+oRQXBomKiiInJ4cffviBXr16kZ2dzfTp03UbX9M0oiv5YzaR7wJaA9pXDsCtEJ0FEB8fT7t27QgJCeG7777D09Pzll9rtVpZt26dvJviIqR4FgXutddeIyQkhPfff9/oKE7l7eb4j5cCvHQYRwi9/J6Qhb07iWkmEwlZVs6mudaWlYVFxYoVCQ8PZ+nSpYSGhtK5c2cmTJig6xaid3mbebpqIO55LKA1bItLn6jiTwU/d91yOCozM5P27duTlJTEypUrKVGixG2/PjY2lvj4eCmeXYQ8K4sC5+vry5AhQ5gzZw67d+82Oo7TVPJ3d7jnWQEV/QvPE4pwbUopdsRlODSGCdjl4BjCftHR0axcuZKcnBxee+01Tp06xffff6/rNcr7udO9ZhCV/3rsslpuLM6vPjaW8zXzn+qBVA+89axuQbNarTz//PPs2LGDZcuWUaVKlTveZ82aNfj4+NCkSZMCSCiMJsWzMMQLL7xAzZo1GTBggNFRnKZuSS+Hi+eSXm6U8zXrkkcIR8VlWkh28BQ5K/BHUrYcAGSQ6OhokpOT2bhxIw0bNqRly5ZO2QGppJeZp6sFUi/5IBu/mowPOVgy08lOv0Kgh4kGpbzoUSuIZ2oEEepbuCYIBg0axIIFC5gzZ861Ba53snbtWu67777btnaI4kOKZ2EIs9nMqFGjWL16NevWrTM6jlP4upuoFezY1k2NSnnlaUGWEAUhPVeXTn6s2I5hFgUvPDyc8uXLs3TpUgD69evHpk2b2Llzp1Out+b77/h90XReDS/DqZnDWdbvKXqFlaBNOT9CvAvfxMDUqVMZNWoUH3/8MR06dMjTfTIzM9m0aZNsUedCpHgWhmnfvj1NmjTh3XffxWrV50m5sGlexsfuxTMhXm7ULuHljFhC2EXPeldqZ2NomkZUVBRLly5FKUV0dDSVKlXi008/dcr1VqxYwaOPPoqmaZhMpkL9jsPq1avp1asXMTExvP7663m+36+//kpmZqb0O7sQKZ6FYTRN46OPPmLnzp188803KKU4n5bD7/GZ7IzLYG98JqdTcwr1g+2dlPQy07FKACYt7wW0Bvi5m3i6agDuhfSYWuGavHQ8g1nPsUT+REdHc/r0aWJjY3Fzc6NPnz7Mnz+fCxcu6HqdI0eOcPjwYR577DHA9phfWCdK9u7dy1NPPUXbtm0ZP358vt7xW7t2LXfddddNj+sWxZMUz8JQLVu2JPrJjnz10zamHUzkq8PJrDh9hTVn01h5+gpzjybzxYFEtl3OIEOnt4wLWkV/D/5TIxCz+mvRzC1eDFz9YSzjY+a5mkEEFMJTtoRrK+VtxtPBF3QaUNbXjEnakQxz//33ExAQcK1148UXX8TDw4MvvvhC1+usWLECT09PWrduDdiK58I4GXLu3DkeffRRqlevzrx58zCb89dOsnbtWlq3bo3JJCWVq5B/aWGoi+m53PfeRFq83J/4WxxDnZxtZf25NCbvT+BkanYBJ9RHqI87q/o/yy+ThlH2JotjNKBGkAddqwfybI1AfN3lR1MUPu4mjXohji2ELaynyLkSDw8P2rVrd614DgoK4vnnn+fzzz8nMzNTt+ssX76c//u//8PX1xco+OI5x6o4cyWHI8lZHE3O5lxazg375qempvLYY4+haRrLly/Hz88vX9dITExkx44d0rLhYgpft75wGRfScphzJBkLbuRlEirXCguOptCxSgBVAwvXKVR3sn79etatWcOSJTFE1wwiMctCSraFHCt4ummU8HSTglkUCfVDvNh22f6t5rzdNGoUsZ/f4ig6OpouXbpw5swZypcvT9++fZk4cSLz5s3j+eefd3j8lJQUNm7cyLhx467dVlA9z4lZFnb/mUnsn5k3LEz1MWs0CPGmXogn3pqiU6dOHD9+nF9++YXQ0NB8X2v9+vUopZxXPCsFJ09CXBzk5kKJElCtGuRzdlzoS56thSGu5FhZcCwFiyLPR1irvz4Wn0ghLqPoHLKglGLQoEE0atSIqKgoAII93ajo70G1QA/K+7lL4SyKjGBPN+qH2L8dV6uyvrhJL7/hHnnkEcxm87U9nqtXr85jjz3G+PHjdSlw16xZQ05ODo8++ui125zd82xVirVnr/C/A4lsv5xx0x1d0nMVmy+mM3lfIu9NW8CaNWtYtGgRderUseuaa9eupUaNGlSoUMHR+NdLS4OpU6FuXahSBSIjoXlzuOceKF8ehg+Hixf1vabIM3nGFobYGZdBlkXluXD+J6uCrZfSdc/kLKtWrWLLli0MHz5ctp0TxUKbcn5UDcj/3rzNy3hTr6TsIFMYBAUF0apVq2utG2Dbtm7v3r38/PPPDo+/YsUK7r33XipXrnztNme2bViVYunJVHbE2dpObneVqxMxwZEP8/GyTQ7NGq9du1b/Wef586FMGXj5Zdi//8bPX7wIH3wA5crBoEFQSBdhFmdSPIsCl2tV7P4z067CGWwPegcTs3Xbc9aZrs46t2jRgoceesjoOELowqRpPFklgPolbTPQt3pJqJRCw/ZE82A5X1qG+hZURJEH0dHR/PzzzyQnJwPwwAMPULt2bYcPTbFaraxYseLaLhtXObNt4+fz6fyRlP81MRmlq9l9aubJkyc5evSovsXzhAnQpYtt5hluucAcqxUsFhgxArp3lwK6gEnxLArc4eRsMi2OPYAqYG+8fgtbnGXx4sXs3r2bESNGyKyzKFZMmsbDFfx56Z4gGpby4madR6lxFwlJPElM7RKySLAQioqKIicnh1WrVgG2meHXXnuNZcuWcezYMbvH3blzJ5cvX76uZePq+M5o20jJtrDdgT78jefTyLFj4/F169ZhMplo1aqV3de+zuLF0Lev7ff5eZHx9dfw3nv6ZBB5IsWzKHDn03Ic/o+ngPNphbvv2WKxMHjwYNq0acN9991ndBwhnKKkl5kHy/nRt05J/lM9kCer+PNUlQC61whk2VvPsOHLz6Snv5CqUKEC9evXv65145lnnqFEiRJMmDDB7nGXL19OUFAQzZo1u+52Z7VtxDo4kZJthQOJWfm+39q1a2nUqBHBwcEOXR+wzSL36WP//ceMgVOnHM8h8kQe0USBy7Sz1/nGcQr321Tz58/nwIEDDB8+3OgoQjidu0mjnJ871QM9qRroQaivO0880Z5ly5aRnV00t5h0BdHR0axaterav5G3tzevvPIKM2bMICUlxa4xV6xYcW1B4j85o3i2KMWuOPvbAK/amc+Za6vVyrp16/Rr2VixAhw5pMZkgilT9Mki7kiKZ1HgzJrm0D6x/xynsMrJyeGDDz4gKiqKiIgIo+MIYYgOHTqQlJSkywI04RxRUVEkJyezcePGa7f17t2bjIwMZsyYke/xLly4wM6dO2/odwbn9DwnZFrIcLANEOBypoWsfEzI/P7778TFxelXPE+YAG4OHIxlscAXX0BW/mfQRf7JRoGiwPm6aw7PEmhQqN8KnjVrFseOHWPRokVGRxHCMPXq1aNKlSosXrxYFswWUuHh4VSoUIGlS5deKwTvvvtuOnXqxGeffcarr76KWz6KupUrV2IymXjkkUdu+Jwzep4dXT/zT33feBstKw0PDw88PDxwd3e/4fdXf123bh3u7u5cvHiRpUuX5uk+/77N3d3dthbGaoX16x1f9JeQALGxIBM2TifFsyhw9wZ7svmi/Ys7wNbzHBZs/16zzpSVlcWwYcN4+umnqVevntFxhDCMpml06NCB2bNnM2nSpHwVYaJgaJpGVFQUS5cu5bPPPru2sLlfv37MmTOHZcuW0b59+zyPt3z5cpo2bUrJkiVvei29Z5713DL88B+HSP3zEtnZ2WRnZ5OTk3Pdr//8/VVdu3Z16Jru7u6UMps5p9eLioQEfcYRtyXFsyhwJb3MlPczc/ZKrt0z0EEeJir653+f2YIwZcoUzp07x9ChQ42OIoThOnTowMcff8yWLVto0aKF0XHETURHRzNx4kT27NlD/fr1AWjUqBHNmzdn/PjxeS6es7KyWLNmDe/dYucHZxTPPmb93oFcs3I55jxU45mZmQQHB/P+++/Tu3fvOxbadyzEk5Nh4EB9vglT4X1HtjiR4lkYolEpb85cSbX7/g1LeRfKrd/S09MZMWIE3bp1o1atWkbHEcJwkZGRhIaGsnjxYimeC6n777+fwMBAli5deq14Bnjttdd4+umn2bNnD+Hh4XccZ8OGDaSlpd203xn073nOyclh4+pVpHtWxCukDCaTfe9saEDVAPc8Fc4AW7duJTMzk3bt2hEUFGTXNa9jtcLgwbbjtx11kxl/oT95iSIMUSPQg9ol8t92oQGV/N1pUKpwnlI2adIk4uPjGTx4sNFRhCgUTCYTTzzxBIsXL3baARnCMe7u7rRt2/baUd1XPfHEE5QvX55PP/00T+OsWLGC8uXLU7t27Zt+Xq+e53379vHWW29Rrlw52kdHc2DVN5g0+8sZBTTIxz7ka9euJSQkhLp169p9zeuYTPDoo2B2cD4zNBSkVbBASPFcEM6dszXx794NJ0/mb/PzYkrTNNpW8KNmkEe+7lfO18wTlf1xK4SzzikpKYwePZoePXpQpUoVo+MIUWh06NCBU6dOsXv3bqOjiFuIjo5m9+7dnD59+tptZrOZV199lblz53Lp0qXb3l8pxfLly3nsscdu+a6gI20biYmJTJ48mcaNG1OnTh1mzZpFly5d2LNnD3M/+RB3N/ueEzQgwMNE5Xy0Aa5du5bWrVtj0rNFok8fh2aercCV7t0dL8BFnkjx7Czp6TBzJtSvbzt/PjwcGjSAypWhWjUYPx4SE41OaSg3TaN9JX9a3e2D918PfP9++NOwPShnp6cRUcqTztUC8XQrnP9tx48fT1pa2i37/YRwVffddx8lSpSQ3WcKsbZt2+Lu7n7D7HOPHj0wm8188cUXt73/H3/8wfHjx284VfCf8ls8WywWVq9eTefOnQkNDaVv376EhoayaNEizp07x/jx46lXrx4ebhrtKvjnedzrMgGPVfDPcxtgUlIS27dv1/dIboAHHoAqVezuWbYC9SdO5OOPP5Z91QtA4axCirp582xvn7zwAuzde+PnT5yAN96wfc3YsS49E61pGk1K+9CndgmiK/lT3s8dH7OGWQNvN40yPmbqaIkMf/AeLv+yAjc9l1brKCEhgU8++YRevXpRrlw5o+MIUai4u7sTFRXF4sWLjY4ibiEwMJBWrVpdd9ogQHBwMM899xyTJ08m6zZ7CC9fvhxvb28eeOCBW35NXnueDx8+zMCBA6lYsSKPPPIIv//+O8OHD+fs2bN8//33dOjQAQ+P69+1vCfYkzblfP/6052voWErgKIr+1MhH7POP/30E1arlTZt2uT5PnliMsHUqViVwp7GlqwhQ3jkuefo378/YWFhfP/999Im5URSPOvt00+ha1e4ejLTzfq7lLJ9ZGXBO+/Aa6+5dAEN4GbSuCfYk67VA+lbpyRvhYfwWt2SdK8ZxGP1a9CqZQs++uijQvtgMHbsWHJzcxkwYIDRUYQolDp06MChQ4c4ePCg0VHELURHR/Pzzz+TlJR03e19+/blz8uX2fzuu/D441CzJpQtC7VqQYcO8OOPrFy+nAceeABv71v3Dt+u5zk1NZXp06fTokULatasyeeff05UVBS//fbbtR7nMmXK3DZ/w1LedKjsjzXdthj9ZlMtV4ueEp5udKkeSM2g/K29Wbt2LdWqVaNixYr5ul9ejPrtN55RCjQtfzPQb7+N7+DBTJgwgdjYWKpUqUJ0dDQPPfQQ+/bt0z2nAJTQz4IFV8vi/H+MHm10+kJtzZo1ClBr1qwxOsoNLl68qHx8fNSAAQOMjiJEoZWRkaF8fX3V8OHDjY4ibuH06dMKUPPmzfv7RotFqU8+UX96eioFyurmdv1z119/Pg7q565dlbJabzn+0KFDVZkyZf4xtEWtX79edevWTfn4+ChN09RDDz2k5s2bpzIyMuz6HhISEpR/QIAaOG6yWnAkSY3ZFadG/fXx0e44teR4sjqdmq2st8l5OzVq1FCvvPKKXfe9nREjRihADRkyRKk1a5QqW/a6v9/rPkwm269+fkpNmHDDWFarVS1btkxVr15dmUwm1bt3bxUXF6d7ZlcmxbNesrOVCgmxv3g2m5W6dMno76LQslqtqn79+qpNmzZGR7lBv379VEBAgIqPjzc6ihCF2tNPP60aNGhgdAxxG/Xr11edO3e2/SEzU6knn7QVzXd4DrNc/f2LLyqVm3vTsYcNG6ZKly6tTpw4oYYMGaIqV66sAFWtWjU1YsQIdfr0aYfzDxs2THl5eakLFy4opWzPHVm5VpVtsa9Y/qdTp04pQH377bcOj/VPH374oQLU0KFD/74xN1epZcuUevhhpTTt+r/vOnWUmjZNqStXbjtuVlaW+vjjj1VAQIAKCgpS48ePV9nZ2bpmd1VSPOtl4UL7C+erryRHjTL6uyjU5s2bpwC1a9cuo6Ncc+bMGeXp6amGDRtmdBQhCr358+crQJ04ccLoKOIWhgwZogICAlRWRoZSnTv/PcuZ1w9NU6p37xtmoNPS0lTHjh2Vu7u7ApSfn5964YUX1KZNm+yeBf631NRUVaJECdWnTx9dxvu3GTNmKE3TdJ0oGTp0qALUhx9+eOsvunJFqdOnlTp+XKnExHxf49KlS+rll19WJpNJ1apVS61cudKBxEIpKZ7107Llzd9eyc9H2bK3fMUulMrJyVGVKlVSXbp0MTrKNT179lQlS5ZUycnJRkcRotBLSUlRHh4eaty4cUZHEbewe/duBajf33rLseezpUuV1WpVmzdvVj169FD+/v4KUO7u7mrWrFnqyh1mTe0xduxY5e7urk6dOqX72Eop1bVrV9WoUSPdxhsyZIgC1IgRI3Qb83b27NmjWrVqpQDVtm1bdfDgwQK5bnEkxbMeMjIce5D558e+fUZ/N4XahAkTlJubW6GYuTp27Jgym83qo48+MjqKEEXGY489plq0aGF0DHELVqtVVaxQQZ0tWTL/s85/fVjd3NSJKlVUjRo1FKAqVqyoBg8erN566y1VsmRJp+ROT09XpUuXVj169HDK+FarVd11112qf//+/42jUwAAIABJREFUuow1ePBgBaiRI0fqkC5/1160aJGqXLmyMpvNql+/fiohIaFAMxQHstuGHhIS9BsrPl6/sYqh559/nqCgIP773/8aHYVhw4YREhJCTEyM0VGEKDI6dOjA5s2buXjxotFRxE1omsarkZGUjY+/+W5ReRnDYqHS8eNE1arFunXrOH78OEOHDqVkyZIopXRObDN9+nTi4uLo37+/U8bft28fly9fdniLOqUUH3zwAcOGDWP06NEFvkOTpml06NCBAwcO8OGHHzJt2jSqV6/O559/Tq4ex4O7CCmeC5tCeHJeYeLr60tMTAzTpk0j3sAXGgcPHmT27Nm89957+Pj4GJZDiKLm8ccfx2Qy3bCfsCg8ns7OJsfBMZSbG2Pr1eOBBx64dhJfXvd5zq/s7GzGjBlDly5dqFq1qu7jA6xZswYvLy+aNWtm9xhKKd5//30+/PBDPvroI959910dE+aPl5cX/fv35/Dhw0RFRRETE0P9+vVZt26dYZmKEime9VCihH5jlSyp31jFVJ8+fbBarUyePNmwDEOGDKFcuXK89NJLhmUQoigKCQnh/vvvlwNTCrGyVituDo6haRqcO3fDbbfa59kRs2fP5uzZswwcOFD3sa9au3YtLVu2xMvLy677K6UYNGgQI0aMYOzYsbz99ts6J7RPaGgoM2bMYPv27QQGBvLggw/Svn17jh49anS0Qk2KZz14ecH//R/KzcGHmwoVbJvOi9sqVaoUL7zwAp999hkZGRkFfv3Y2FgWLlzI4MGD8fTM3wb7Qghb68b69etJTEw0Ooq4CVNWluPFgVLwr8fn/B7PnRe5ubmMGjWKJ598knvvvVfXsa/Kzs5mw4YNdh/JrZRi4MCBjBw5kk8++YS33npL54SOa9iwIZs2bWL+/Pns2rWLe++9l3feeYeUqwe+ietI8ayD+Ph45pQogWax2D+IyQSvvmr3ufau5o033iAhIYEvv/yywK/9/vvvU61aNZ599tkCv7YQxUH79u3Jzc1l+fLl+b5vjlWxNz6TeUeS+d+BBCbvS2D6wUR+PHOFyxnSs6mLoCCsjrYQmkwQFHTdTc4onhcsWMCxY8d47733dB33n7Zu3Up6erpdxbNSiv79+zN69GjGjRvHG2+84YSE+tA0jU6dOnHo0CEGDRrEpEmTqF69OtOmTcOSh/om16rYl2D72ZxyIIHJ+xOYcSiR1cXwZ1MqNQfEx8czaNAgKleuTK+VK0n18UHZ+4Dj5gbPP69vwGKsatWqdOzYkU8++SRPP9R6+e2331i2bBlDhgzB3d29wK4rRHFStmxZmjRpkq/WjWyL4qdzaUz4PYGVp69w+koOiVlWUnKsxGVa2PNnJjMOJTH7cBInU7KdmN4F1K9va7twgMrJgfr1r7vNZDLp2rZhtVoZOXIk7dq1o/6/rqWn/2fvPMOiuNowfO8uXcSKorFgNzHGrrGjEXss2GvUGE1siSWxl9h7LDHW2I3GKHZUVFRsETWxK4qKxIYC0vvO+X6M8Fmouwu7wNzXNRewM3PmWXZn5plz3vO+x48fp0CBAlStWjVd+wkhGDt2LPPnz2fJkiWMHDkygxQaFhsbG6ZMmYK3tzfOzs5888031KpVC09PzyS3j5MEp55FsPxmEAcfy+dmUIxEaKzEyygt196cm5u9g3mUTc5NxTzrwNum+ZdffuHbb7/Fx9eX3H/8gc6Xm/nzlXjndPLjjz/y4MED9uzZk2nHnDx5MpUqVaJ79+6ZdkwFheyIi4sLR44cISIiItVtI+Iktt4PxutlFLGS3HP5fv9lgiV7FhHPjgeh/PMq80O6sg0DBqDScxQ0Auh39Chnz55N7G02dM/z3r17uX37NpMmTTJYm0lx/Phxvvjii8SJj2lBCMGPP/7IggULWLZsGd9//30GKswYihUrxtatW7lw4QLm5uY0btyYLl264Ovrm7hNZLzEtvvBXPSPIkab8rn5PDKePx+EciUbnJuKeU4HSZnmR48eMX/+fAoVKgTt28PKlXLGjHQ8tS+2sOBKw4YZqDx7UrNmTZo0acL8+fMzLP3R25w+fZpjx44xffp0NPrGtyso5HBcXFyIjo7myJEjKW4XqxX86RPCqyjtBzflpEjYxv1JBDeDovXWmSMpVAi6dEHS0UALjYb7DRty/vp1GjZsSNWqVVm7di2xsbEGu1YLIZg5cyZNmzalbt26BmkzKUJCQvDy8kpXyIYQgtGjR7No0SKWL1/O8OHDM0xfZvD5559z4cIFNm/ezPnz56lYsSITJ07kdWgYf/qE4B+ZvnPz2JMIrgdm7XNTJTLDdWRxAgMDWbx4McuWLUOSJIYOHcqYMWNkw5wUe/bAN9/IOZs1Gng/rCDBWNvYED1tGk67duHj44Onp2eGTXjIrhw5coRWrVpx8uRJnJycMuw4QggaNWpEREQEV65c0XtIU0FBAapWrUqlSpXYtm1bstu4/xfOvwHRabo5v48a+LZSPuwslIfddHP1KqJ2bURcXPp62dRqeRL99etIpUpx/Phxfv31Vw4ePIilpSVxcXHcuXOHcuXK6SXPzc2NNm3a4OHhQZMmTfRqKyX2799P+/btefjwIaVKlUp1eyEEI0eOZOnSpfz666/Zrg5AeHg48+bNY+HChbT7cRbVOvTRKcWuChj8ST7yWmbNc1MxzymQbtP8NrGxsolevhzOnXt33SefwPffQ8+eYGtLUFAQjRs3JigoiLNnz6bpBFWQEUJQpUoVihUrhpubW4Yd5+jRo7Rs2ZJDhw7RunXrDDuOgkJOYvr06SxatIiXL18mmbkmRiux/EYQ8TrepVRA3cLWNCqaSz+hOZW//kLq2hVI4zC1Wi0vbm7wXjERX19fvvnmG44fPw5AixYtGDZsGK1atUr3SJ4Qgnr16qFWqzl79myGdmYMHz4cNzc3Hjx4kCZdP/zwA8uWLeO3337ju+++yzBdxuaB72N2+JuhsdAt45QKqFPIGqePsua5qYRtJEFgYCATJ07E0dGRJUuWMGTIkHfDM9KChQV06wZnz8o90PfuwZ074O8PN2/CoEFgawtA/vz5cXd3x9rammbNmvH8+fMMfHfZC5VKxU8//cThw4e5fv16hhwjIT9nvXr1aNWqVYYcQ0EhJ+Li4kJoaCgeHh5Jrr8VFKOzcQZ5mPjfgGi0ktJHlG6E4G5YGGcgbXN51GqwsQF39w+MM4CjoyMdOnTA3NycjRs3EhgYyJdffknZsmWZP39+uopenTx5kr///puJEydm+Cjg8ePH0xSyIYRgxIgRLFu2jFWrVmVr4wwQZltYZ+MMb87NwGjis+i5qZjnt0jKNPv6+jJv3ry0m+akyJ8fypWTczgXKpTkEEeRIkU4fvw4MTExODs7G7V6XlajW7duFC9enIULF2ZI+/v27ePy5cvMnDlTCddQUDAglSpVoly5cuzevTvJ9YaIi4zSCh6F6VsvL4cRFkZMs2ZU/Ppr6pO0eX7H8uTJA9Ong48PpBBCkTBh8KuvvuLSpUtcvHiRRo0aMXnyZIoVK0b//v25fPlyqvJmzZpFtWrVMrwz48mTJ9y9ezdV8yyEYPjw4fz666+sXr2awYMHZ6guU8AQ52aMVvAwi2bfUMwzKZtme3v7TNPh6OjIsWPH8Pf3p3Xr1oSFhWXasbMy5ubmjBo1iu3bt/Pff/8ZtG1Jkpg8eTJNmzbN0Lg6BYWciEqlwsXFhX379hEf/2Ee2NA4w6Q1C4vLvHSWWZ6wMESjRpi9GQ0wS2azdwx1SAhYW0Phwik2/X557tq1a7Np0yaePHnC1KlT8fDwoFatWnz++eds2bKFmJiYD9o4f/48Hh4eTJo0KcM7M06cOIFKpaJp06bJbpMQ0rlixQrWrl3LoEGDMlSTqWC4c9PwFSczgxxtnk3FNL/Nxx9/zNGjR7l79y7t2rUzSgW9rMjAgQOxtbVlyZIlBm13586d3Lx5k5kzZxq0XQUFBRkXFxcCAgI4e/bsB+viDXBfVQFZ9P6c+QgBXbsirl1Lf3nu0aMhlbzdyZXntre3Z9y4cTx8+JC9e/diZ2dH3759KV68OBMmTMDPzy9x21mzZvHJJ5/QoUOH9CpMN8ePH6d69eoUSCaNbIJxXrVqFevWrWPgwIEZrslUMES4hXxuKmEbWQZTNM1vU716dQ4ePMjFixfp1q0bcXHKkGNq2NraMmTIENasWWOwkr/x8fFMnTqVNm3aZGgqJAWFnEzNmjUpVqxYkgVTLDX69ywKwMoA7eQIzpyBI0dQ65JHQKWCn36SDXiym6Sc51mj0dC+fXvc3d25e/cuPXr0YMWKFZQqVYqOHTuycuVK3NzcmDBhQrpyLuuCECLFeGdJkvjuu+9YvXo169at4+uvv85QPaaG4c7NrGlDs6ZqHTF10/w2DRs2xNXVlSNHjtCvXz+DVmXKrgwfPpy4uDhWrVplkPa2bNnCvXv3mDFjhkHaU1BQ+BC1Wk3Hjh1xdXX94DrnYGOme+GptyhknVzwgcLbvJ45E527aoSABw/g5MlkN0lPmEWFChVYunQpT58+5bfffsPHx4chQ4Zgbm7Oq1evCAkJ0VVpmrh9+zYvXrxI0jxLksS3337L2rVrWb9+PQMGDMhQLaaI4c7NrJmqzmTNsyQED0JiOf0sgqP/hXPsSTjnX0QSFJ3+2LWAgAAmTJiAo6MjS5cuZejQoSZrmt+mZcuWbNu2jR07djB06NBMKQSSlXFwcOCrr75i6dKlREfrN5khNjaWn3/+mc6dO2do2VcFBQU5dOPp06cfTBarXtBKp/zOCaiAwtYaHGwU85wagbduYXfsGOb6NGJmJqdnTYaE3uL03MtsbW0ZPHgw27dvB6BKlSqMGTOGjz76iO+++46bN2/qozgRIQSxWkForJbIeAn3Y8extLSkfv3672wnSRKDBg1i3bp1bNiwgX79+hnk+FkNfc9NAHsrDUWy6Llpcqqj4yWuBkZz5VU0YXHS/929Sn6w9XweSUlbc2rYW1Euj0WKT7IBAQEsXryY5cuXI4Rg2LBhjB492qQN8/t06dKF0NBQBg4cSN68eZkzZ46xJZk0o0ePZu3atWzZsoVvvvlG53bWrVuHn59fhuaOVlBQkGnQoAEFCxbE1dWV2rVrJ77umNucPBZqQmJ1G3kTQE17awOpzL7Ex8eztGdPpuvfEJw+nezqhPu1JEnpzu08d+5cihcvzrlz5wgICGDNmjWsXr2aVatW0bhxY4YNG0b79u0xN0+f/Y+Ol7gZFMOVV1G8fut7JtXvyqDlxXgtmWElRGK89sCBA9m4cSObNm2iT58+6TpWdqKErTn5LNW8jtF9VLymvXWWzWBlUj3PgdHx/H43mNPPIhNnYEoJi/h/ahy/8DhcH4Vx8HFYkvk7E3qaS5UqxbJlyxg6dCiPHj1i7ty5Wco4J/D111+zePFi5s6dy9y5c40tx6QpX748HTt2ZOHChTqHukRFRTFz5kx69eqlVHxUUMgEzMzMaN++Pbt3736nV1KlUtHAwUanNtVAHgs1FfPpnos2pzB+/Hie3LhhmMZCQ5NdlWCU0juK6uPjw/bt2xk7diwWFhYULVqUadOm8fjxY3bs2IFWq6VLly44Ojoyffp0Xrx4kWqbQgg8n0Ww/GYQx59GvGOcAdRm5hSt3pDN90LY6B3My4hYvv76azZt2sTmzZtztHEG/c5NFZDbXM3HWfjcNBnz/DpGy5Z7IYTHSakOBSSsv/U6lr2+YUhvTsTsZprfZuTIkUyZMoXx48ezcuVKY8sxaX788Ufu3bvH/v37ddp/5cqVvHz5kmnTphlWmIKCQrK4uLjg4+PDrVu33nm9cgEr6hRKX++xCrDQqOheNg/m6qzZs5VZ7Nixg4ULF9KlVy+DtBcrSfTt25cpU6awYcMGTp48ia+vL/Hx8Tqb54R7+PuxxRYWFnTr1o0zZ85w9epV2rZty7x58yhRogQ9evTg7NmzSR5LEoK9vmGc949Cm5KUN2EmL6O0rL3xEo8rN9myZQu9e/dOl/7sSqX8VnwU8ypd+6gAC7WK7mXtsMjCE3lNojy3VgjW3n5NSGzqxjkpqtvBqd+zdnhGWkgo/bl8+XK2bNlCLwNd7LIjjRo1Ii4ujvPnz6drWCgsLIzSpUvTsWNH1qxZk4EKFRQU3iYmJgZ7e3vGjBnDlClT3lknhOC8fxRnnkeiglTvE3YWarqXyUN+q6w5GSmzuHbtGnXr1sXFxYUtffuiatFC7zaDrK1pV706jx494tmzZ4mvazQa8uXLR0BAAH379qVs2bI4OjpSqlQpHB0dKVq0aJIZNPz8/ChbtiyzZ89mzJgxqR4/ODiYjRs38ttvv3H//n2qVKnC0KFD6dmzJ7lyyaWgj/iFcTXwwxzSKSFptWiQGFS5EPksle8VwL179/jss8+o13sIzYdOQI0cKZASuc3VdC9rRwErk4saThcmYZ7vvo5hr6/uBUFiIsL4pV1Nvh30TbY0zW8jSRJff/01W7ZswdXVlXbt2hlbkkly8OBBvvzyS86cOUODBg3SvN+sWbOYPn069+/fp0SJEhmoUEFB4X169uzJ7du3uXr1apLrX0TG88+rKG69jkErQNLGowLUGjMEUMBSQ81CVlTKZ5Wle7Uyg8DAQGrVqkXevHk5e/YsNhoNFC0KQUG6N6rRyPme580DIDo6Gj8/P3x9fXn06BEHDhzg0KFD1KxZEz8/P16+fJm4q4WFBSVKlEg00wk/XV1dOXHiBI8fPyZ37txpliJJEseOHWPFihUcPHiQPHny0L9/f7oPHo5HZNrbeRsVUCaPOZ1L59Fp/+yEv78/FStWJDg4mPXr19O6Wx/+CYjiZpB8bqohca6aAPJbaqhhb8Wn+S2xzKLp6d7GJMzztnvBPImI13nmphCCRvmhvmP2Nc1vEx8fT7du3Th06BBubm4pVj/KqUiSROXKlSlTpkyawzdev35NqVKlEjN2KCgoZC67du2iS5cu+Pj4UKZMmWS3i46XuBcSy5zFSylVpiwd2ramiI0ZxXKZZdkJSJmJVqulVatW/PPPP1y+fBlHR0d5xcSJsvHV6liRUaWSS3SXLp3k6q1bt9KnTx8iIyOxtrYmIiKCx48f8+jRo0SD/fbvb+fst7a2xtHR8R1j/fbP/PnzJ/vZP3r0iFWrVvH777/TZMQ0qrXugjqdExbfZkilfNhZ5Nze57CwMKpUqcKjR48YPXo0CxcuTFyXcG6Gx0nESwJLjYoiNuYUt81e56bRzXNQtJY1d/QrapGQjqhfxXyGEZUFiImJoV27dpw7d44TJ05Qp04dY0syOTZu3Ej//v25detWmib+TZo0icWLF/Pw4UMcHBwyQaGCgsLbhIeHY29vz4wZM9I0RF+uXDlcXFyY96anUyFtjBs3jgULFuDu7s4XX3zx/xV+flCqFOgy2VqjAWdnOHw42U22bdtG7969iYiIwMYm9clmI0aMYMOGDaxatYpXr14lmuqEn2Fh/x+xtrW1TdJUJ/zMkycPQeGRrPEOT4xl1gUVUNfBmkZFcuncRlYmLi6Ohg0bcvHiRdq0acOBAweylSlOK0YPOgmIjte7DQEE6JD/OStjaWmJq6srzZs3p1WrVnh6evLpp58aW5ZJ0bNnTyZOnMiiRYv4/fffU9z21atXLFmyhOHDhyvGWUHBSNja2tKiRQtcXV3TZJ7TasIU/s/OnTuZN28eCxcufNc4A5QowbmOHam/e3f6GtVowM4Ofv01xc3Sk+c5MDCQ9evX8/333yc5v0cIwevXrz/orfb19eXYsWP4+voSFRWVuH3evHlp3H0Anw8an7739v5xkUNNc6J5FkLQo0cPLl68SKVKldi1a1eONM5gAuY5JsWprmknXsgfbE76IHPlysWhQ4do0qQJzs7OnDlzhrJlyxpblslgYWHByJEjmTBhAjNmzKBo0aLJbjtv3jzUajU//fRTJipUUFB4HxcXF7766iuePXuW4jkLEBkZmTgJTCF1bty4Qf/+/enRowejRo16Z50QghkzZjB1926O1K5NCy+vtDVqZga5c8OxY5BCqA28m+c5NZYuXZo4ST65tvLnz0/+/PmpUaPGB+uFELx8+fKdcJAg2yIISUKlZ2nvqHijR7sahTFjxrB7924KFiyIh4cHVlZWxpZkNIwetW1uoEkdGlX6Sn9mF/LmzcvRo0exs7OjWbNmPHnyxNiSTIpBgwZhbW0txzDfvg2LF8OkSfLyyy/g7c2zZ89YsWIFo0aNokCBAsaWrKCQo2nbti1mZmbs3bs31W2Vnue0ExQURIcOHShXrhzr1q17534pSRIjRoxg6tSpzJw5k+Z//w0bNkCRIvIGScUHm73pe2vYEC5dgiQM7PukNVVdSEgIy5Yt49tvv9U5AYBKpaJw4cLUqVOH7t27M378eLp265ZkRo/0khOt8/Lly1m8eDEWFhZ4eHhQqFAhY0syKkY3z3kNEHQvJInIoFfs2LGDIH1mCmdRChUqxLFjx5AkCWdnZ169Sl/exeyMnY0NK5o0od2iRVCpEvz4I8yfLy9jxkDFioTVqkUXjYaRI0YYW66CQo4nf/78NGnSBFdX1xS3i4uLIz4+XjHPaUCr1dKrVy+Cg4PZs2fPO/+z2NhYevfuzYoVK1i1ahUTJ06UTW6/fnIM9N694OQE1m9ybavVULAgDBsGd++Ch0eqPc4JpNU8r1ixgujoaEaPHq3L200WK43KIMbXKodlctm9ezcj3twfXV1dqVy5spEVGR+jm+fC1hoK6JszUaXitrsrPXr0wN7envr16zNr1iz++ecfnavMpZvXr8HLSx66OndOvuhkIiVKlOD48eMEBQXRsmVLQkJCMvX4JkloKLRsSe99+6iTMHtckiAuTl7efDfKPHvG5ogI8vTsCeHhRhSsoKAAcujGqVOnCAwMTHabiIgIACVsIw1MnjwZd3d3duzYQalSpRJfj4iIoF27duzevZudO3cyePDgd3c0M4P27eH4cYiMhNhY+dr56pU8clehQrp0JPT6pnRfjoiIYPHixQwYMCDVsJ30UjJ3+kp3J4kQlLaz0L+dLMKZM2fo3r07AAsXLqRNmzZGVmQaGN08q1QqahbSL25Go1axceZ4njx5wpo1a3BwcGDevHnUqFGDjz76iAEDBrBr1y7DG0oh4OJF6NsXCheGOnWgeXNo0ABKlpSf1nfvli82mUD58uVxd3fnwYMHfPnll0RGRmbKcU2SiAho0gROnQJSDu5PXHf8ODRrBm9NMlFQUMh8OnTogCRJHDhwINltEq5vSs9zyuzatYs5c+Ywd+5cnJ2dE18PCgqiWbNmnDt3Djc3Nzp37px6Y+bm+mWqSEPP85o1awgJCcmQ+Sd2FhryxIQgafVIVKBSMfu73mzbto24TLq3G4tbt27RunVrtFotAwYM+CBOPidjdPMM8Ek+SyzVKnQZCFEBn+azxNpMzUcffcTXX3/N7t27CQgI4OTJk/Tp0wcvLy+6dOlCgQIFaNy4MfPmzeP69evpLhH6DoGB0LQpfP45bN+etEE+exY6dwZHR7hyRfdjpYMqVarg5ubGlStX6Ny5M7GxsZlyXJNjwAC4ejV9+Uq1Wjl2b9CgjNOloKCQKg4ODtSvXz/F0A2l5zl1bt26Rb9+/ejates72UuePHlCw4YN8fHx4eTJkx9m3cggUjPP0dHRLFiwgD59+vw/97SB+Oeff3B2duaXkQNRa3TLlaACcsWGYRkXRe/evSlVqhRz587NluGiT548oVmzZkRFRdGgQQNWrVqVI+eVJYdJmGdLjZpOZezSbZ6FJGFvpaFZMdsP1llYWODk5MT8+fO5efMmjx8/ZsWKFeTNm5fp06dTpUoVihcvzqBBg9izZ887+SJTxd9f7mU+c0b+Oz6Zp9gE4+bvL/dGnz6dzneoG/Xq1WPv3r2cOHGC3r17o9U14X1W5f592LlTt1ylkgTbtoGvr8FlKSgopB0XFxfc3d2TvTYrPc8pExwcTIcOHShdujTr169PND7e3t7Ur1+fsLAwzpw5Q82aNTNNU2qp6jZs2IC/vz/jxo0z2DEfPnxIz549qVGjBk+ePGHe2O8pnds83X5DDjURdPq0GEePHuXGjRu0bNmSadOmUbx4cYYNG8b9+/cNptuYBAcH06JFCwICAihRogR79+7F3NwAIS/ZCJMwzwAlbM3pXMYOMxVp+1ILiad3rqG56p6mMqwlSpRg8ODB7Nu3j6CgII4dO0bXrl3x9PTExcWFAgUK8MUXX7Bw4UJu376dfK90dDS0bi2bq7SaUq1WjhX78kvw9k7bPnri7OzMjh072L17N4MHD9avlz2rsWpV0rPD04paDWvWGE6PgoJCuunYsSMxMTG4ubkluV7peU6ehAmCgYGB7NmzJ/F/dPnyZRo0aECuXLk4f/48FStWzFRdKaWqi4uLY968eXTt2pXy5cvrfaxXr17x/fffU7FiRU6fPs3atWu5ceMGHTt0oEMpOxxszNJnoIXE3mkjCH4sG+RPP/2UdevW8fjxY3788Ud27txJhQoVaN++PadPn86y99zo6Gjat2/PvXv3sLa25siRI+TPn9/YskwOkzHPAKXtLPiqQl4q5rNAxYcmOuFvGzMVDYrkIuLUTgb3/4pLly6l6ziWlpY0a9aMxYsXc/fuXR48eMAvv/yClZUVkydPplKlSpQqVYrvvvuOAwcOJF6kAdixA/75J/3lSyVJjqWdPj19++lBx44dWb9+Pb///jtjxozJsidzuoiJgXXrdC8vC/K+q1ZlWqy6goLChzg6OlK9evVkQzeUnufkmTZtGocPH2b79u2JZc5PnDhBkyZNKFOmDGfOnKFYsWKZriulsI1t27bx+PFjJkyYoNcxIiIimDFjBmXKlGHjxo38/PPP3L9/n4EDB2L2Jr2ehUZFz3J5qJBXnviXnIlOeN1Ko6KtgxkRj27RtGl1Y2oKAAAgAElEQVRT7ty5k7hN4cKFmTZtGn5+fqxduxYfHx+cnJyoUaMGW7duzVKhk5Ik0bdvX86dO4ckSezZs8cgDzLZEmGihMdqxfnnEeJPn2Cx8e5rscX7tdjzMETceR0t4iVJCCFEVFSUqFOnjihatKh49uyZQY4bGRkpDh8+LIYPHy5Kly4tAGFhYSGcnZ3FL7/8IqI++URIarUQ8nTB9C9mZkL4+xtEa1pZtmyZAMT06dMz9bhG4f593T+b9xc/P2O/GwWFHM3MmTNFrly5RFRU1Afr9u3bJwDhn8nXU1PH1dVVAGLOnDmJr/3111/CwsJCNG/eXISFhRlN2/79+wUgnj9//s7r8fHxoly5cqJDhw46tx0bGytWrlwpHBwchIWFhRg5cqQICAhIdb9XkXHiqF+YWHD1lZjzz7vLxruvxc3AKBGnlT3Hy5cvxaeffiocHBzE3bt3k2xPkiRx9OhR0aJFCwGIokWLitmzZ4vAwECd31tmIEmSGDFihFCpVAIQq1atMrYkk8ZkzXNaefbsmShatKj4/PPPk7zA6oMkScLb21ssWbJENG/eXNQ1M9PfkKnVQsyebVCdaWHGjBkCEEuXLn3n9cg4rfj7RYT4yydYbLr7Wmz1fi32vveQkqW4fNlw5vnGDWO/GwWFHM3t27cFIPbv3//Buj/++EMARjWDpsbt27eFra2t6Ny5s5DeXL9Xr14tVCqV6N69u4iJiTGqvoMHDwrgg86u7du3C0BcunQp3W1KkiR27dolypcvL1QqlejTp4949OhRutuJiZfE84g44RsaI56Ex4rX0fFJbufv7y8++eQTUaRIEeHt7Z1imzdv3hQDBw4UlpaWwsbGRgwZMiTVfYzF/PnzBSBUKpX4/vvvjS3H5Mny5lkIIby8vISlpaXo169f4gUjI4j5+Weh1afXOWFp1CjDNCaHJEli9OjRAhAbN24UAVFx4sCjUDHv3w+ftue++bn0eoA48yxCxMSbromOiooSN2/eFLt37xZz5swR4zt0MJx5fvDA2G9PQSHHU7FiRdGvX78PXl+3bp0AhFarNYIq0yM4OFiUL19eVKpUSYSFhQlJksSsWbMEIIYOHWoS/6dDhw4JQDx58iTxNa1WKz799FPRsmXLdLd3+vRpUadOHQGIli1biqtXrxpSbrK8ePFCfPzxx6Jo0aLi3r17qW7v7+8vpk2bJgoVKiRUKpX48ssvhYeHR4b6lfSwZcsWAQhLS0vRqlUrER+f9IODwv/RLV+LiVGrVi3WrVtHnz59qFKlCj/88EOGHMciPFyeiKZv4ZUUEv9nFCqVigULFhASEsLM39bz4tOWoNYkWW0p4bXIeMG5F5HcD4mha5k85DI3Toi8JEk8ffoUb29v7t27987Px48fJ04+yZMnDzXKlEHCAMH8ZmaQw8uPKiiYAi4uLqxatYq4uLh3ZvxHRERgZWVlkHLLWR1JkujduzcvX77k0qVL2NjYMGrUKJYsWcK0adOYMmWKSaQZSyrm+cCBA9y8eZOVK1emuZ0bN24wfvx4Dh06RI0aNThx4gRNmzY1uN7kKFy4MB4eHjRp0oQmTZpw+vTpxNjypChUqBBTp05l7Nix/PHHH/zyyy80bdqUqlWrMmrUKLp164aFhXEKrxw7doz+/fuTO3duihcvzo4dO9DoM+E+h5Btrjq9e/dmzJgxjB49mmPHjmXMQQx0kX7q78/y5ctxc3PD29ubmJgYg7SbGiqViimLfqX/r3+iFaSpTKkAXkZp2e4TQow2Y6s1hoSE4OXlxdatW5k8eTLdunWjatWq5M6dmxIlSuDs7MwPP/yAu7s7lpaWdO7cmTVr1uDp6Ym/vz+vX7/mxJUrqDt0kM2vrpiZyfm5bT9MgaigoJC5uLi4EBQUhKen5zuvR0ZGKpk23jB9+nQOHTrEtm3bKFmyJF999RVLly5lxYoVTJ061SSMM7duUejiRboDlseOwb17CCGYOXMmjRs3pkGDBqk24efnR//+/alSpQp3797lzz//xMvLK1ONcwIODg54eHiQK1cumjRpwsOHD1Pdx8rKigEDBnD9+nXc3d1xcHCgb9++ODo6Mnv27BQramYE//77Ly4uLuTOnRsLCwsOHjyInZ1dpmrIqqjE24+AWRytVkvbtm25ePEiXl5elC1b1rAHWLQIfvpJr55nCbhgY0PT+PjEWbgqlYoSJUpQpkyZxKVs2bKJv+fOndsg8uMkwW83g4jWijQZ57dRAZXyWdLWUT8tsbGxPHz48IMeZG9vb16+fJm4XdGiRSlfvjwVKlSgQoUKib87OjomzphOlhMn5EqB+nDmjJybW0FBwagIIXB0dKRt27asWLEi8fXJkyezadMm/Pz8jKjO+Ozfv5/27dszc+ZMRo4cSdeuXXF3d2fLli1069bNuOKio+Gvv2D5crkA1XsEffopg2/e5NvDh/miZctkmwkKCmLOnDksX74cOzs7pk6dyjfffGO03tq3efbsGU5OTsTExHD69Ol0F3e5ffs2S5YsYfPmzajVavr168cPP/yQ4VkuHj16RN26ddFqtYSEhHDy5Enq16+focfMTmQr8wxycu86deqg0Wj4+++/DfsUdf8+6PuFVqlg5Uqkb77h6dOn+Pj48ODBg8Ql4e/Q0NDEXezt7d8x02+ba3t7+zT3KlwPjMbNL1x36cCwT/OnGr4hhOD58+dJGuRHjx4lFm2xtbVN0iCXK1dOvwcGIaBiRXjwIP0p6zQa+PhjuH5d/qwUFBSMzsiRI/nzzz958uRJYpjG6NGjcXNzeydtWE7j7t271K5dm2bNmrF27VratWvHtWvXcHV1pXnz5sYV988/ck0Ef3951DaJTictoAFEyZKojhyRr9tvERUVxfLly5kzZw5xcXGJo8uG6lAyFE+fPqVx48bEx8dz+vRpSpYsme42Xr16xapVq/j11195+fIlbdu2ZdSoUTg5OaV/5MDfX07Zuns3BATI//t8+aBtWxg8mABbW+rVq0dQUBCBgYFs3ryZPn36pFtzTibbmWeQKyjVrl2bxo0bs3fvXsPGxDk7w8mTuucRtrGRv9gphAQIIQgMDPzAUCcsL168SNzW1tb2g57qhL+LFSv2TuzShruveRmlTXevcwIqoFERG+o6yHlVw8LCuH///gcG+d69e4SHyyZdo9FQqlSpd8xxwu9FihTJuOHE27flKpCRkWkfKdBo5M/Fy0v/hyQFBQWDcebMGRo1asT58+epW7cuAN9++y2XLl3iypUrRlZnHEJDQ6lduzZqtZq9e/fSqVMnnj17hpubG3Xq1DGuuAsX4Isv5OJgablXajSQKxecPQuVK6PVatm8eTNTpkzhxYsXDB48mMmTJ1O4cOGM164j//33H05OTkiSxOnTpylRooRO7URHR7N9+3Z++eUXbty4QZUqVRg1ahTdu3dPvafd1xfGjZNNsyR9eO/TaBCSxHk7O37SajkfHs748eOZPXu2TlpzMtnSPAO4ubnRtm1bxo8fz6xZswzX8L590KGDbvtqNPDtt/Drr3pJCA8P5+HDh0ma67cn0Jmbm1OqVCnKlClDxZp1KdTxO72OixDEhwfjMW0w3t7ePHv2LHFVoUKF3jHICT9Lly5tvKG1ixehVSsIC0u+hPobhEaDKm9eOHoUatTIJIEKCgppQavVUrRoUfr27cuCBQsA6Nu3L76+vh/EQmcnhBBJdjBIkoSLiwsnT57kr7/+YvDgwcTHx+Pu7s7HH39sBKVv4esL1apBaGj6Qhw1GkTBgrjPn8/o+fO5desWXbt2ZebMmZQrVy7D5BoSPz+/xJ7iU6dOUbx4cZ3bEkJw4sQJFi9ezOHDh3FwcGDYsGF8++23FChQ4MMdrlyB5s3l/3sq97t4IBZYVL8+Ez09lUm3OpBtzTPA/PnzGTt2LDt27DBc7JckyZPJ9u1L94WBjz6S474yMItDbGwsjx8//iAUJMauME1Gz9G7fSFp+Xfe8A+Mct68eQ2gPgN4+BCmTpUrQybxJC5UKuKEwLt6dSq7uoIOw20KCgoZz+DBgzl+/Dg+Pj6oVCo6depEREQER44cMbY0gxEdL3EjKIarAdEEx2rRCtCoIL+lhmoFraiU3xJLjZoZM2YwZcoUlixZwuzZs8mXLx/u7u4693YalKFDYc2aVA1cUmiBWcCpJk2YN28etWrVMri8jObx48c4OTmh0Wg4ffo0H330kd5t3rlzJzEuWqVS0bdvX3744Yf/l1e/d08eaQ0LS/OouBZQW1igOnUK3ozmKKSdbG2ehRD06dMHV1dXzp49S/Xq1Q3TcFSUHDt08qQcX5saZmZgbw+nThktHOD26xj2+4YZpK0xVQpgps5i8cCvXsGGDXDggPy7SiV/Ju3bM+r6dbYdOYKvry/W1tbGVqqgoJAER48epWXLlly9epUqVarQqlUrbGxs2L17t7Gl6U28JPB4GsG1wGi0KdxSzFSQN/QZ3zWrRe9ePdm9ezcVKlTAzc0Ne3v7zBOcHGFhULiwfI/UkVg7O8xfvkRlaWlAYZmLr68vjRs3xtLSklOnTlG0aFGDtBsQEJAYF+3v70+bNm0YOXIkTX/6CdW1a7rN8bG3Bz8/eCsNpELqZGvzDPKEg0aNGuHv78+lS5cMFzMVGwujR8Pq1fIXNqleaDMz+em7aVPYsgUMdALpwoOQWP56GJr6hqmgBn6sWsA0Uh8ZiAcPHlC+fHmWL1/OkCFDjC1HQUEhCWKjoviqYEGmFylCuehowl+8IN7cnLzVq8M330C3bpAFH36jtRI7fUJ5HhmftvShkkTAvRus/rYTn9eqyZ49e0xnAt3KlXLPs762YscO+fPMwjx8+BAnJyesra05deoURYoUMVjbMTExiXHRFtev82Eek3Syaxd06mQIaTmGbG+eAZ48eULNmjUpW7YsHh4eho3BDQiQezSXL4f//vv/67lywYAB8N13cvYGIxMco2XV7dd6t1PQSsPAj/MZQJFp0aNHDy5cuMD9+/ffKcSgYOJotXD4MGzeDI8fyz1e+fJBzZoweLAy8TM7IIQ8T2TuXHj2jHjgnWSVCZkc7Oxk4zZtGphACrO0oJUEfz4I4b/wtBnnBCStltCHt5nari7WVlYZpi/d9OwJf/6pXyExc3MYNEjvuUGmwIMHD3ByciJXrlycOnUKBwcHg7YvhOB5y5YUOnYMM12tnEYD9evD6dMG1ZbdyRHmGeDChQs4OTnx1VdfsXr1asP3nAohZ3YICZGNc+7cBiuqYii23AngSaSESg9dLYrnolrBrNe7kxrXrl2jatWqSsqerEJcHCxZAkuXwtOn8g3g7SHLhL+/+AImToQmTYynVUF3tFoYOBA2bkzb9mq1nJ/9wAHZTJs4l19FcfxJhM77ty5hy2cFjG+ehRBERESgbt0amzNn9GtMo5F7nbdtM4w4I+Pj40Pjxo3JkycPJ0+eNGzGkLg4OUPUm5oRevHff1CsmP7t5BByjHkG2LBhAwMGDODXX39l6NChxpaTaYSHh7Ns2TL2nPuHTjNX6dyOmRqGf5ofS41pPRQYijZt2uDr68uNGzeU2cemTFgYuLjIxXBSu3xpNHIv2G+/yZluFLIOQsCwYXIoQHpuUxoNODnJIxImPIokhGD17dcEx+rWS6sCCllr6F/R8COBQghCQkJ49epVmpfo6Gj2AV++0aYzZmbQu7c8optNuHfvHk5OTuTPnx8PDw8KGSppgL8/GKo328sLsuAETWOhRw3jrEf//v25du0a33//PZ988glNsnlvVExMDKtXr2bWrFkEBwfz7XffYacRhGtV6HK5rmlvnW2NM8D48eNp2LAhBw4coH379saWo5AUcXHQsaM8+TYthiqhN/q77+R42K++ylB5CgbE3V1+6EkvWi14eMihdKNGGV6XgXgcHqezcQYQgH+UlucRcRTJlfJDglarJSgoiICAgDQZ4YCAAOLi4j5oJ3/+/Njb2ycuNWvWfOfvGlu2wLFjutdBSCADM1IZg/Lly3Py5EmcnJz44osv8PDwMMwEz+ho/dtIQI9JnjmRHNXzDBAfH0+rVq34999/uXTpEqVKlTK2JIMTHx/P5s2bmTZtGk+fPqVfv35MmTKFkiVLEhyjZZN3cLpKdKsAx9zmdCljhzobTRRMioYNGxIXF8eFCxey1aTIbMOMGXJMqy4xlRoN3L0LZcsaXJZCBtCmjZx3XVcjVrKknKrSREeRjviFcz0wWqeOjARUCApFvcLa73qKZjgoKCgx/38CGo2GggULJhrft39PailQoABmZqn0t7m7Q4sWeryjN1y+nC3z7d+5c4cmTZpQuHBhTpw4QcGCBfVrMDhYnuNhCK5ehSpVDNNWDiDHmWeAoKAgateujY2NDefPn8c2hWp/WQlJkti1axeTJ0/m3r17dO3alZ9//vn/uSDfEBStZYdPCGFxUooGWoXcu1EhrwVflsyd9dLT6YCbmxtt2rTBw8Mj249MZDliY+Vc6QEBuu2v0cAPP8DChYbVpWB4fH2hdGn9szYcOWIYM6cnWq2WqKioxCUyMpLzUTa8FNZy2kxd242P59rh3fw1dRgWFhYpmt/3l7x58xo+PE2S5M/t8WPd9leroWpVueBHNuX27ds0adKEIkWKcOLEiaQLnqQVIcDRUU41pw82NvDypTxfSyFN5EjzDHDr1i0+//xznJ2d2bVrV5aOcRVCcPjwYSZOnMjVq1dp3bo1M2fOpFq1asnuEx0vcS0wmsuvogmLk0h89yr5fBRA8Vxm1LC3pkJeixzTCyuEoFq1ahQqVAh3d3djy1F4m5079U9fZWcHL15kyZRmOYq5c2HSJP2G/zUaOfvD5s1Jro6LiyMyMvIdQ5vS7/qsj01iQtdXS/+gQoNm+l1bhaC4eRxflrQld+7cpnGdXrwYfvxR94wbGzZAv34GlWRq3Lx5k6ZNm1KsWDGOHz9O/vz5dW9swQK5JLeu/28zMzkzUTbIbpKZ5FjzDLB//346dOjAlClTmDZtmrHl6ISnpycTJkzg3LlzNGzYkNmzZ9OgQYM07y8JwaPQOP4LjyNaK1CrIJe5mgp5LChonaNC4hP5888/6d69O5cvX6ZGNhw6zLK0bAnHj+sfT/nnn9C1q2E0KWQMI0bAqlVyjLseXLGzY1DZskkaWm06vkeWlpZYW1tjY2Pzzs/kfk/Leh+bYrxQ5UKf6XVqoEpBK1oUN6HR05gYOcvN33+n71zVaORzfO9e2dBlc27cuEHTpk0pWbIkx44dI5+u4RcBAXINCX3OlVu34JNPdN8/B5L9v6Ep0K5dO2bMmMGkSZOoXLkynbJQkvArV64wceJEjh49SvXq1Tly5AjNmzdPd8+DWqWiTB4LyuTJGnlRM4POnTtTtmxZ5syZw65du4wtRyGBhw/1N84ajf5DnAoZT0yM/iEbQB4LC2rXrq2X4bW2ts6QkclcAVG8+E/3NHUAElAsl4ndxi0tYf9+OVzmn3/S1iOqVkPDhvKDbQ4wzgCVK1fm+PHjfPHFFzRv3pxjx46RN2/edzfSauX475cv5YJr+fJB9ervpmEsWJB/6ten6qlTpPdbGg94ly/PxxUrpnvfnE7O+JamwIQJE7h+/Tp9+/alXLlyfPbZZ8aWlCK3b99mypQp7N69m4oVK7Jr1y5cXFxMY7gum6DRaPjpp58YPHgwd+/e/SBmXMFIREbq34ZaDeHh+rejkLHkyaNXLHACZWvXZuXKlQYQZHg+yWfJiacRxOsxY9BKo6JCXhMsY50/v1x0Y+RIOUd3fPyHJjrh87W0hCFDYM6cLFPcxlBUqVIl0UC3aNECd3d38uTJI5vl33+HFSvkPPZvY2Ulh7UMGQKVK7Nz5056nTrF9VKl+Pjx4zSHbwiNhoDChalz7x5NO3Rg69at2GWB3OimQo5/2FCpVKxfv57y5cvTvn17AnSdjJTBPHr0iH79+lG5cmUuX77Mxo0buXnzJp06dVKMcwbQt29fihQpwvz5840tRSEBQ1zYtVp4v3dHwfSoXVvvkA00GqhTxzB6MgBLjZrP8lvpHLShAqoVtDLdidw2NrB6NTx7BvPny1luEvJum5vLlXeXL5dzFS9alOOMcwJVq1bl2LFj3Lt3j5YtWxK1ZIlcrGTSpA+NM8jp6datg88+w9/Zma9796Zrz55UuH0bevSQt0mp916jAUDl5ITDnTvsPHSI06dPU7duXXx8fDLgHWZPcnTM89v4+flRs2ZNKlWqhLu7u8mUaH7+/DmzZs1izZo15M+fn8mTJzNw4EAsLU2wtyGbsWjRIsaNG8eDBw8oUaKEseUo9OwJf/0l92Lpw7Fj0KyZYTQpZAxxcXJmlVevdG8jIUSnaFHD6TIwwTFaNtwNJlZKe+pQkI2zlUbF1x/nw9Y8C/WBCSF/tjnUKKfElStXcGvQgMnR0QjSFgmvBW7kzcsnfn5Y5M4t/39PnZJ7rPfskXuhE4y0Viuvd3aG4cOhdetEI3337l3atWtHQEAAO3fupJlyfUwVxTy/xZkzZ/jiiy/45ptvWLFihVG1BAUFMX/+fJYtW4aVlRVjx45l2LBh5FJSyWQaYWFhlCxZkj59+rB06VJjy1E4cwYaNdKvDUdHePDAZHP/KrzFtGkwc6Zuce5mZtChg/ywZeI8CY9jh08I2jdZjlJDhVzttVe5vDjY5PjIy+zDH39Ar17p3k2o1ah69ICtW99d8ewZuLlBYKBsovPnlydyJpPn/vXr1/To0YPjx4+zaNEiRowYoYxqp4Bint9jzZo1DB48mNWrVzNo0KBMP35YWBhLly5lwYIFaLVaRo4cyejRoz+cSKCQKUydOpUFCxbw+PFjw1SEUtAdIeQZ4d7euk0mU6vltE4mXHVO4S1evIBPP5ULQaTHQKtUsnn++295clUW4EVkPDsfhBAZLxLz679Pwuu25mq6lbHDPodmQ8qWaLVQvDg8f657G9eugZ5ztrRaLWPHjmXRokX079+flStXKqPcyaCY5yQYOnQoa9aswcPDg4YNG2bKMaOjo1m5ciWzZ88mNDSUIUOGMH78eAplszKlWY3AwEBKlCjBqFGjmDFjhrHlKGzfLodvpBeNRp6Edv++3AOjkDW4fFkebYiNTZuBTugp27kTOnfOWG0GJk4S3H0dw+VXUfhHffhei9qYUdPemvJ5LUw3zllBN/bvh/btdd/fzAwGDgQDTY7dvHkzgwYNonr16ri6uuLg4GCQdrMTinlOgri4OJo3b86tW7e4dOkSJUuWzNBjbdy4kenTp/P8+XP69+/P5MmTlRhbE2LUqFFs2LCBx48fK7ORTYFx42DevDRvHg+ozM3RnD8PNWtmnC6FjOHff9E2b44qIAAVKcSCqtVy5oadO6Ft20wUaHheRsUTHKMlVhJYqFXkt9Tk2Lz7OQJnZzh5Ur9UnFZW8uRLA92jLl68SMeOHdFoNOzZs4eayrXzHZTAvyQwNzfnr7/+IleuXHTo0IGIiPdycV69Cjt2wNq1ck+Yl1e6h5ElSWLHjh1UqlSJQYMG0aBBA+7cucPatWsV42xijBo1ioiICFavXm1sKQogp7T6+Wf591Rywgq1migLC5qo1VzNIfljsx3VqjG8ZUvG2doilSv3/9ffTHYCoEgRmDEDHj3K8sYZoJC1GeXzWvJpfivK57VUjHN2x9NT/xz20dEGLWtep04dLl++TNGiRWnYsCF//PGHwdrOFgiFZLl27ZrIlSuX6NKli5DCw4VYv16IqlWFeFPB+p2lYkUhfvtNiNDQFNuUJEkcOHBAfPbZZwIQbdu2FVevXs2kd6SgK19//bVwcHAQUVFRxpaikMD580L07Cm0Go2IByGZmwuRsIAQDg5CzJghIh4+FDVq1BDFixcXL168MLZqhXRy69YtoVarxbJly4SQJCHOnRNi7VohFi0SYvVqIY4cESIuztgyFRR0IzIyaU+hy7J7t8HlRUVFiT59+ghAjB07VsTHxxv8GFkRJWwjFVxdXfm5UyfO2tqSOzxcHhpMKgl5Qqxd3rxw8CDUq/fBJqdOnWLChAlcuHCBxo0bM3v2bOolsZ2C6XHv3j0qVqzIypUrGTx4sLHlKLzFyF69KHTqFOP79oWoKDm2uVo1uQfyTW/z06dPqVWrFo6Ojnh4eGBlZWVk1QpppUOHDly/fp27d+9ioaQ4U8huGDJ137590K6dYdp6CyEEixcv5qeffqJly5b88ccfcjGXnIyRzbvpc+mSiDE3F3FpffJTq+WerxMnEpvw8vISzs7OAhA1a9YU7u7uQpIkI74pBV3o0qWLKF26tIhTerlMinLlyolhw4alup2Xl5ewsrISffr0Uc6/LMK5c+cEILZu3WpsKQoKGUfu3IbpeT5/PkNlHjlyROTJk0dUrFhReHt7Z+ixTB0l5jklnj2Dli0xl6S01zGXJDl2qX177ru54eLiQu3atXn69Cmurq54eXnh7Oys5E/MgowfP56HDx/yVxbIHZtTeP78Offv36dRGvI/16pViw0bNrBlyxalcmQWQAjBuHHjqFKlCj0SKqcpKGRHunZNdf5GqhQtKlfmzEBatGiBl5cXQgjq1KnD0aNHM/R4poxinlNi+XIIDkaV3kB+SUIbEcGpNm24evUqmzdv5vr163Ts2FExzVmYatWq0aJFC+bMmYNQop1MgjNnzgCkOaVk9+7dmTRpEuPHj2f//v0ZKU1BT9zc3Dhz5gxz585FrRS1UcjODBmiX+VUtRqGDn13Em0GUb58eS5evEi9evVo3bo1ixcvzpH3QyXmOTliYsDBQU7QryPxZmZIT59ioeRqzjacPn0aJycnDhw4QNtsMKs/qzNs2DDc3d25d+9emveRJImuXbty5MgRzp8/z2d6FhZQMDxarZZq1apRoEABPDw8lE4HhexP7drwzz+6V9R88gQKFza8rmTQarVMnDiRefPm0bdvX1avXp2j5pIoj+o165cAACAASURBVPPJsWuXXsYZwEyrxWLHDgMJUjAFGjVqRL169ZTeZxPB09MzTSEbb6NWq9m0aRPly5fnyy+/5OXLlxmkTkFXtm3bxo0bN5g7d65inBVyBuvWyXnKdRllWbYsU40zgEajYe7cuWzdupWdO3fi5OTEs2fPMlWDMVHMc3JcuADm5vq1oVLB+fOG0aNgEqhUKsaPH8/58+cTQwYUjENQUBA3btxIt3kGyJUrF/v27SMmJgYXFxdiYmIyQKGCLsTExDBlyhRcXFyoU6eOseUoKGQOn30Ghw7JxU7SE34xYwZ8913G6UqFXr16cebMGZ48eULNmjXx8vIympbMRDHPyfH6ddIp6dKDJMntKGQr2rRpQ+XKlZkzZ46xpeRozp07B6CTeQYoXrw4+/bt4/LlywwePFgZSTARVq5cyX///cesWbOMLUVBIXNxcpI77qpXl/9OahJhgrEuUgS2bIFJkzJNXnLUrFkzsRpzo0aN2LJli7ElZTiKeU4OS8v/527WhxwUA5RTUKlUjBs3jiNHjvDvv/8aW06OxdPTk+LFi1OyZEmd26hTpw7r169n06ZNLFy40IDqFHQhNDSUWbNmMWDAACpWrGhsOQoKmc9nn8lVi69cga++Alvb/68zN4dGjWDPHvDzg969jafzPYoUKcKpU6fo2bMnffv2ZcyYMWj1rZpowijmOTkcHPRvw8ws0+OQFDKHrl27Urp0aebOnWtsKTmWhHhnfWNie/bsyYQJExg7diwHDhwwkDoFXVi4cCHh4eFMmzbN2FIUFIxL9epyHHRYmJzAICJC/unhAR066J/aLgOwtLTk999/Z8mSJfzyyy+0bduWYD3njpkqinlOjq5d9UsdA/L+3bsbRo+CSWFmZsaPP/7Irl27uH//vrHl5DjCw8O5cuWKziEb7zNjxgw6dOhAz549uXHjhkHaVEgf/v7+LF68mBEjRvDRRx8ZW46CgulgYQE2NoYZDc9gVCoV33//PUeOHOHixYvUqVOHu3fvGluWwVHMc3JUrQp16ug28xXkL3mZMtCkiWF1KZgM/fr1o1ChQkrBDSNw4cIFtFqtwcyzWq1m8+bNlClThnbt2vHq1SuDtKuQdmbMmIG5uTnjxo0zthQFBQU9cXZ2xsvLC41GQ506dXBzczO2JIOimOeUGDFCv0mDI0ZkiSdFBd2wsrJi5MiRbNq0iadPnxpbTo7C09MTe3t7KlSoYLA2bW1t2b9/P1FRUUoGjkzmwYMHrF69mnHjxpEvXz5jy1FQUDAAZcuW5e+//6Zx48a0bduW+fPnJzkxO04SXAuMZsf9ENbeec3q20Fs8g7m5NMIgmNMM25aKZKSEpIE3bqBq2v6TLRGI8+aPXxY/3R3CiZNaGgoJUuWpH///ixevNjYcnIMjRs3xt7enl27dhm87QsXLuDk5ESvXr34/ffflTzDmUDPnj05ffo09+/fx8bGxthyFBQUDIgkSUyePJnZs2fTq1cv1q5di7W1NdFaiXPPI7kWGE1sEhZLBQigVG5zGhaxoWgu0/FTSs9zSqjVciqYli3T3oOsVkPdurLhVoxztsfOzo5hw4axZs0aAgMDjS0nRxAdHc3FixcNFrLxPnXr1uX3339nw4YNygNRJvDvv/+yfft2pk2bphhnBYVsiFqtZtasWezYsQNXV1caNWqE9+MnbPEO4fKrpI0zyMYZwDcsjq33Q7j72nRGAxXznBpWVrBvH0yeDHZ28mvvx0GrVPJiYwM//ADHj/9/W4Vsz4gRI5AkieXLlxtbSo7g0qVLxMTEZJh5Bujduzfjxo3jxx9/5NChQxl2HAUYP348FSpUoH///saWoqCgkIF069aNs2fPEhweyfob/gRGx5OW0AcBSAL2+YbxMDQ2o2WmCSVsIz1ERcGff8Jvv4G3t5w6xsYGSpeGb7+FXr0gd25jq1QwAt9//z1btmzBz88P27fzcioYnFmzZrFgwQICAwPRpKcSVzqRJAkXFxc8PDy4cOEClSpVyrBj5VROnjxJ06ZN2bVrF506dTK2HAUFhUxg552X+EQI1Dpcv83VMPTT/FhpjNv3q5hnBQUD4OfnR5kyZZg3bx6jRo0ytpxsTYsWLTA3N+fgwYMZfqzw8HDq169PWFgYXl5eFCxYMMOPmVMQQvD5558D8Pfffyux5QoKOYDwOIkVN4PS1OOcHM2K5aKmvbXBNOmCErahoGAASpQoQe/evVm0aJGSpSEDiY+P59y5cxkasvE2CRk4IiIi6NSpE7GxpjFkmB1wdXXFy8uLuXPnKsZZQSGHcD0wWu82rryMSjJrR2aimGcFBQMxduxYnj9/zpYtW4wtJdvy77//EhERkWnmGaBkyZLs2bOHv//+myFDhhj9op0diI+PZ+LEibRs2ZImSi58BYUcw7XAaL16nQFex0o8j9SziJ2eKOZZQcFAVKxYkY4dOzJ//ny0WtPMTZnV8fT0xMbGhurVq2fqcevVq8fatWsTS88q6MeGDRvw9vZmzpw5xpaioKCQiYTH6VE74y1CDdSOrijmWUHBgIwfP5779++ze/duY0vJlnh6elK3bl0sLCwy/dh9+/blp59+YsyYMRw+fDjTj59diIyMZOrUqfTs2ZOqVasaW46CgkImIYRAa6CBu3hJCdtQUMg21KxZk2bNmjFnzhyEEETESTyNiONRaCxPI+KIMPLTclZGkiTOnDmTqSEb7zN79mzatGlD9+7duX37ttF0ZGWWLVtGQEAAM2bMMLYUBQWFTESlUmFmoOkNlhrjzpMwM+rRFRSyIeMnTGDw+J9Z+bcPoVYflhoum8ecmgWtKZnbXJkolQ5u3brF69evjWqeNRoN27Zto379+rRr146LFy9SoEABo+nJagQFBTF37lwGDx5M6dKljS1HQUEhkylkbcbzyLTld04Jeyvj2lel51lBwYAEx2h5ULgqX6/cRbB50jm/H4TEseNBKOvuBhMco8RGpxVPT0/Mzc2pU6eOUXXkzp2b/fv3ExoaSufOnZUMHOlg7ty5xMfHM2nSJGNLUVBQMAI17K30Ms4qwDG3OXktMy7Hf1pQzLOCgoEIiI5no3cwr98YYrUm6SfjhAtHULSWTd7BBEYbd9ZwVsHT05PatWtjbW3c/J4Ajo6OuLq6cu7cOYYPH65k4EgDT548Yfny5YwePZrChQsbW46CgoIRqJDXUq+QC4FswI2NYp4VFAxAZJzEDp9QYrSCtEY1CyBaK9jhE0pkvBILnRJCCDw9PY0asvE+DRo0YM2aNaxZs0YpzZ4Gpk2bhq2tLaNHjza2FAUFBSNhplZRt7BuHSAqoKCVhjJ2mT9h/H0U86ygYAAuv4oiIk5K93CUQE7dc+VVVEbIyjb4+Pjw4sULkzLPAP369WP06NGMHDmSo0ePGluOyXLnzh02bNjApEmTsLOzM7YcBQWF/7F33+FRVF8Dx7+zu6lAQiD0XkR6M7RIR9DwUqUFBARRUDoqAj+EUKQpiFQp0oWAFOmEEppKUUCQIkhCL6GTQkjbnfePMYGQuiVkg+fzPHkkOzN3zsSHcPbuuedmolp5Xajg4WTWNQrgalDoWMoNnR2sFZLkWQgrGU0qf963vPG7Cpy4F4VRPvpP0cGDB9HpdHh7e2d2KElMmTIFHx8fOnXqxPnz5zM7HLs0cuRIihYtyscff5zZoQghMpmiKPxfsexU99QS6PQkoh5Oerq/nhM3x8ytdY6nqFKsJ4RV/n4UzaYr4VaP07p4DsqZ+W78v+L999/n7NmzHDt2LLNDSVZYWBje3t5ER0dz9OhRcuXKBWifKpx5GMWDKCMxJhVHnYKHk56KuZzs5h+BjHbkyBHq1KnD8uXL6datW2aHI4SwE6qqci0ilhP3o/jncQwq/ybSCqiqNrGU21lPjTwulPdwwjGT29M9T5JnIay0/Vo4Zx5Ep7vWOTk6oFJuJ3yKJt+h47+uRIkStG3blm+//TazQ0nRpUuXqFmzJlWqVGHJhq2ceBjLhcdaJw4FknwyUdrdkRp5XSia3eGlx/qyqKpKo0aNePjwIX/++Sd6/X/jDYMQwjzhsUb+eRxDZJwJowrOeoXC2RwolM1gly1dpc+zEFaKikv/IsGUmNAWD4qkrl27xpUrV+yu3vlFJUuWZMOGDQyfs4yVweHoFF1Cwpzc/9ng0BguhsbQqKArNfO62OU/ENYKCAjgwIEDbN26VRJnIUSKcjjoeSNP5ndSSi9JnoWwki1yHuXfL5HUL7/8AmjdLexdjvI1aDW8PJB8wvy8+Ddc+25FogK187lmZGgvnclkYsSIEdSrV4/mzZtndjhCCGEzkjwLYSVXgw4dWDX7rPw7jnjGqKro0BYLVqhQAU9Pz8wOKVW3nsSy8/oTi67dfyuS/K4GiufI/BZMtuLv78+pU6c4dOjQKzmrLoT475KaZyGsdDkshjXBYVaP41vKjeJ20L8ys5hUlYuhMRy/F8XNJ7HEV7FEhT0i5so5Pu/UglzO9vvR/6bLYVx4HGPRmygFKJHDgY6l3W0dVqaIiYmhbNmyVK5cmY0bN2Z2OEIIYVMy8yyElYrncMDdUUdojOVzzzkddRTL8eouHEvLyftRHLz9hMg4NcniOmc3D5wr1WHB348onsOBd4pkz/StWV/0JNbE+X9Xi1tCBS6Fx/I42mh3z2aJ+fPnc/XqVbZu3ZrZoQghhM3J58RCWElRFKsXOlTP82ouGEuLqqrsu/mEgOsRRMZpqWeyCaii/aq6Gh7LsguPuRNpX1uan34YZfUYCvDXA+vHyWzh4eGMHz+eHj16UL58+cwORwghbE6SZyFsoJqnM/ld9eYv+lNN5HfVU83TOSPCsntH7jzl6N307674bEvzUB5HGzMuMDM9jDbaZMHnQzt6prQ8jjZyIyKWq+ExhETGEWvS3vZ8++23hIWFMWbMmMwNUAghMoiUbQhhAw46hY4l3VkVFMqDKGO6Pr5XTUbuXr5IzXw6HF63v53zMtqjaCMHbkeafV18Ar3nRgTtS9lHjXCsUbW4ZCOeCkTbebvCOJPK+cfRHLv7lJCniRN9Bx285qKy5KcNDBgwgCJFimRSlEIIkbEkeRbCRlwddHQr486OaxGcfxyT7MYYoH08bzKZCD4cyKVNy1h2/A8OHTpE2bJlX3LEmevP+1Ep/ozSogJBYbGExhhxt4Od+hz0isXPEk8BnOxoB60XXQ6LYdOVcKKMarKz7LEmOBtu4uMfAynlqiXaBp39Po8QQlhKyjaEsCEnvY42Jdz4pIIHdfK54PJCMuSiV6iTz4W3XR6z/NMe1PKqTsGCBfHx8SEkJCSTon75Yk0qJ+9HWZ1snrpvHzXCHo56q2eeATzsdLHg+UfR/BQcljAzntKzKjot/kuR4B8UmlDKIYQQrxJpVSdEBlJVlRiT9uWoU3DUKQkLA0eMGMH06dPZvXs3vr6+FChQgP3795M9e/ZMjjrjBYXGsO6S9e393B11fFIhlw0isk54rJG5Zx5ZnUD3Ke9hdwn0jYhYVl0MNbsFnwKUcnOgXUm3/+RiWCHEq0tmnoXIQIqi4KTXkcNBj5NelyiJ+PLLL8mXLx+TJ09m69atXLhwgU6dOhEXZ1+dJDLCkzhrNzTXPLXRONbK4aCnTE5HixcNKmgtD+0tcQbYe/OJVaU11yJibR2SEEJkKkmehcgk2bJl47vvvmP79u1cvXqV9evXs2vXLvr168er/oGQrR7PntbX1cjjYlWf55p5rWt3mBHuRMZxKzLO4ufSASfspLRGCCFsRZJnITJRmzZteOeddxg0aBB169ZlwYIFLFiwgEmTJmV2aBnKVgvj7GmBXeHsDjQulM2ia+vmd6WkHe4uGb+o01Im4J/HMUTE2scnBEIIYQuSPAuRiRRFYdasWdy5c4cJEybQs2dP/Pz8GDlyJD/++GNmh5dhCmUzWN0XWQcUzW5fuzLWzOuSkEAb0yi/iX/+uvldeTO//c06AwSHWb5rYjwVpHRDCPFKkeRZiExWunRphg0bxjfffMOFCxfw8/OjZ8+efPDBB+zduzezw8sQbo56SrtbXiMM2qymtTs7ZgTPiNss7dsB050r2guqismo9UQ2GZ9tplIshwMdS7lRt4Cr3S6os1Xf6Sg7qU0XQghbkORZCDswfPhwChcuTP/+/QGYP38+jRo1om3btpw5cyaTo8sYb3g6WzyraTKZcIyNpHA2+2tVP3jwYJ7cCGJIw4p8UsEDxxtnORO4hexRjzi9ZzPlXWLpU94D39Ludlmq8TxbpfR2+t5ACCEsIsmzEHbAxcWFmTNnsmfPHtatW4eDgwNr166lRIkS+Pj4cPPmzcwO0eaK5XAgF1GYjOZ3F1EUhYVDP6J3795ERERkQHSW2bJlC1u2bOG7774je/bsuDvqubF/M8cXf0P9bE9ZPaI3eR5ftcuuGslxMdgm63XRyz81QohXh/xGE8JOtGjRglatWjFkyBDCw8Nxc3Nj+/btKIpC8+bNCQuzvi+yPTl48CBfNK3OnUsXUE3mfazftHA2PuvWAX9/f6pUqcLhw4czKMr0e/r0KQMHDqRZs2a8++67Ca8HBQVRqlQpChQoAMDt27czK0SzvZ7TyerZZ72iteETQohXhSTPQtiRGTNm8PDhQ8aNGwdAwYIF2bFjB1evXqV9+/bExr4aC682bdrEW2+9ReiDe0TuXUMJdycglTIBVcVkMqKoJloUy45XXlc+/PBDTp48Sb58+ahbty6jRo3K1J/P5MmTuXnzJrNmzUpUwxwcHEypUqXInTs3BoMhSyXP1aworQHtH5iKuZxwNsg/NUKIV4f8RhPCjhQvXpyRI0fy3XffcfbsWQAqVKjAzz//zP79++ndu3eW7wG9ePFi2rZtS1xcHN27d2f+3Nl0KuVG19fccYu8jzEuaQKcw1HP3xuXsW1oVyp4OCW8Xrp0aQ4ePMi4ceOYPHkyderU4fz58y/zcQBtdnnKlCkMHTqUMmXKJLxuMpm4dOkSpUuXRqfTUaBAAW7duvXS47OUu6MOh9A7aXYOSYkJqOZpf4s6hRDCGpI8C2FnPv/8c0qUKJFos5RGjRqxZMkSli5dytixYzM5QsuoqsrXX39Nr169AOjSpQuLFy9Gp9N2Xiyc3YGz/rP58cPmdCiZgwMz/Qg7sJ5uZdzpW8GD7vWr8cve3ezYsSPRuAaDgZEjR3L48GEiIiKoVq0as2fPfmlvMlRVZeDAgeTLl4+RI0cmOnbr1i2ioqIoVaoUAAUKFMgyM8+PHj2iY8eOTO7RGoxxFpVvvJHHmfyu9reoUwghrCHJsxB2xsnJidmzZ3PgwAFWrVqV8Pp7773HxIkTGTt2LIsXL87ECM1nMpkYOnQow4YNQ6fT0b59e5YtW4Zen3jhXEBAAA29a1PK3Ylrv+8n6toFCmVzQFEU3nrrLerWrYufn1+yibGXlxcnTpzgww8/ZMCAAbzzzjsvZZZ306ZN7NixgxkzZuDq6proWHBwMKDNkINWhpMVZp4PHDhA5cqVCQwMZN60KbxfMR8GnXndN8p7ONLEwk1jhBDCnknyLIQdatasGe3bt+ezzz4jNDQ04fXhw4fTp08fevfuzc6dOzMxwvSLjY2lZ8+eTJs2DYPBQKtWrVi5ciUGQ+IZyaCgIIKDg/Hx8QFAp9Nhem4hoaIojBs3jmPHjrF169Zk7+Xq6sqsWbMICAjg9OnTVKpUiXXr1mXYs0VGRjJo0CB8fHxo3bp1kuNBQUEoikKJEiUA+595jo2NZeTIkTRq1IhSpUpx6tQp2rVrR+HsDnQvkxNPZ+3NTmr/cBgUbeOXlsVyoJMedUKIV5Akz0LYqenTpxMREcHo0aMTXlMUhdmzZ+Pj40P79u35888/MzHCtEVGRvLuu+/y448/4uDgwNtvv83q1atxcEjafSEgIAAHBwcaNWoEJE2eQStfadCgAaNHj061LOPtt9/m9OnTNG7cmA4dOtC9e/dEb0JsZeLEidy5c4eZM2cmu9FJcHAwhQsXxslJq9O255nnoKAg6taty9dff82ECRMIDAykSJEiCcfzuBj4oGxOupVxp5yHI7oXHjeXk56mhbMxoFIuu974RQghrKYKIezWlClTVJ1Op548eTLR6xEREaqXl5daoEAB9erVq5kUXeoePnyovvnmm6qTk5Pq5OSkNmvWTH369GmK5//f//2f2qhRo4Tvq1atqvbr1y/Jefv371cBdcOGDWnGYDKZ1OXLl6tubm5q0aJF1f3791v2MMm4cOGC6ujoqI4ePTrFczp27JjomX744QcVUGNiYmwWh7VMJpO6dOlSNXv27GqpUqXUo0ePpuu6OJNJfRJrVEOj49ToOJNqMpkyOFIhhLAPMvMshB0bPHgwr7/+On379k00C5stWza2bt2Ks7MzPj4+PH78OBOjTOrWrVvUr1+f06dPo9fr8fb25ueff8bZ2TnZ86Oioti3bx/vvPNOwmvJzTwDNGjQgCZNmuDn55fs8ecpikK3bt3466+/KFGiBI0aNeKLL74gOjraqudTVZUBAwZQsGBBhg8fnuJ58T2e4xUsWBCAkJAQq+5vK48fP6Zz58706NEj4ZOMmjVrputavaLgatDh5qjHUa/ITLMQ4j9Dkmch7JijoyNz587l0KFDLFu2LNGxfPnysWPHDkJCQmjbtq3VCaGtXLx4EW9vb+7evYuqqlSvXp3NmzcnWUz3vF9//ZXIyMh0Jc8AY8eO5fTp02zYsCFdMRUrVozAwEC+/vprZsyYQY0aNTh9+rR5D/acDRs2sGvXLmbOnImLS/Kt2FRVTejxHM+eNkr55ZdfqFKlCgEBAaxevZolS5aQI0eOzA5LCCHsniTPQti5hg0b0qVLF7744gsePXqU6Njrr7/Opk2bOHz4MB988EGaM7EZ7cSJE7z55psoikJ0dDTly5dn27ZtZM+ePdXrAgICKFCgAJUqVUp4LbXk+c033+Ttt9/Gz88Po9GYrtj0ej2ff/45f/zxB6qq4uXlxbRp08z+mT158oTBgwfTsmVLWrZsmeJ5Dx48IDQ0NKHTBjybec7MuufY2FhGjRpFw4YNKVq0KKdOnaJTp06ZFo8QQmQ1kjwLkQVMnTqV6OjoJH2EAerWrcuKFSvw9/dP9vjLsnfvXho2bEi+fPkIDw+ndOnSBAQE4Obmlua1AQEBvPPOO4k++k8teQZt9vncuXOsXbvWrDgrV67MH3/8wYABAxg6dChNmjTh2rVr6b5+/Pjx3L9/nxkzZqR6Xnybuudnnj09PTN1l8FLly5Rv359Jk2axNixY9m/fz/FihXLlFiEECKrkuRZiCygQIECjBs3jnnz5nHs2LEkxzt06MDUqVOZPHky8+bNe+nxrV+/Hh8fHypXrszdu3cpXLgwu3btImfOnGlee/36dc6ePZuoZAPSTp5r1apF8+bNGTt2bLpnn+M5OzszdepUAgMDCQ4OpnLlyqxcuTLNjVX+/vtvpk2bxogRIxLaz6UkueRZp9ORP3/+TJl5/vHHH6latSp37tzh119/5csvv0zSZ1sIIUTaJHkWIovo378/FStWpG/fvskmi0OGDGHgwIH069ePLVu2vLS4FixYQMeOHWnatCmXL18mT5487N69m1y5cqXr+oCAAHQ6HU2bNk30elrJM2izz+fPn2f16tUWxd6oUSP++usvWrZsSdeuXfH19eXhw4fJnhu/SLBYsWJ88cUXaY4dFBREnjx5ksy8v+xez6Ghobz33nt069aNNm3acPLkSWrXrv3S7i+EEK8aSZ6FyCIMBgNz587ljz/+YNGiRUmOK4rCt99+S+vWrfH19eWPP/7I0HhUVWXChAn06dOHrl278tdff5EjRw727NlDnjx50j1OQEAAtWvXxsPDI9Hr6Umevby8aNWqFWPHjiUuLs6i58iZMycrVqxgzZo17N69m0qVKrF79+4k561du5bAwEBmzZqVYteQ5724WDDey0yeDx06RNWqVdm6dSurVq1i+fLl6SqjEUIIkTJJnoXIQurWrcv777/PiBEjuH//fpLjer2elStXUqVKFVq0aMGlS5cyJA6TycTgwYP58ssv+eyzzzh48CCOjo4EBgaSP3/+dI8TGxvLnj17kpRsQPqSZ4AxY8Zw8eJFVq5cadYzvKhjx46cPn2aChUq0KxZMwYOHMjTp08BCA8PZ8iQIbRp0yZhB8S0BAcHJ1osGO9lbJQSFxfHmDFjqFevHgULFuTUqVN07tw5Q+8phBD/FZI8C5HFfP3115hMphT7C7u4uLB582bc3Nzw8fHhwYMHNr1/TEwM3bp1Y9asWUyaNImNGzcC2oLBQoUKmTXWkSNHCAsLsyp5rlatGm3btmXcuHHExsaadf8XFSpUiICAAGbOnMnChQupXr06J06cYNy4cTx69Ijp06ene6wXezzHy+iZ5ytXrtCgQQPGjx/P6NGjOXDgAMWLF8+w+wkhxH+NJM9CZDF58+ZlwoQJLFq0iMOHDyd7jqenJzt27ODhw4e0bt06YQbVWk+ePKF169asXbuW+fPns2zZMqKjo9m7dy9FixY1e7yAgAA8PT154403khxLb/IM2uzzpUuXWLFihdkxJHffAQMGcPz4cVxcXKhVqxbffvstI0aMSHcSGhERwZ07d5JNngsWLMjdu3ctLjNJzapVq6hSpQo3b97k4MGD+Pn5YTAYbH4fIYT4L5PkWYgsqE+fPlSvXj3FxYMApUuXZuvWrZw4cYLu3btb3QP6wYMHNGnShF9//ZVVq1YxY8YMQkND2bdvX5qdJ1ISEBBAs2bN0OmS/ioyJ3muXLkyHTp0YPz48cTExFgUy4vKly/P4cOHKViwICaTie3bt6e7DCa+00ZyZRsFChRAVVXu3LljkzgBwsLC6N69O++99x4tWrTg1KlTvPnmmzYbXwghxDOSPAuRBen1eubOncupU6f4/vvvUzyvVq1a+Pv7s2HDBj7/p80W9wAAIABJREFU/PNnB0wm2LkTOnaE6tXh9dehZk348ENIphXejRs3qFevHsHBwWzcuJGvvvqKe/fusXfv3mQTxPS4c+cOJ06cSLZkA8xLngH8/Py4evUqS5cutSie5GzYsIFr164xbdo07t69S5UqVVi0aFGaLe2Sa1MXz9YbpRw5coRq1aqxceNGVqxYwcqVK3F3d7fJ2EIIIZKhCiGyrI8++kh1d3dXQ0JCUj1v9uzZKqB+9+23qjpjhqoWK6aqoKp6vfbf+C+DQftvtWqqum6dqqqq+vfff6tFihRRixUrph47dkz18vJSc+fOrZ4+fdqq2JcvX64C6p07d5I93rx5c7Vt27Zmjenr66sWKVJEjYqKsio2VVXV0NBQtUCBAmq7du1UVVXVsLAwtVevXiqgtm7dOsW4VVVVv/76azVHjhyqyWRKcuz27dsqoG7atMmq+OLi4tTx48erer1erV27thocHGzVeEIIIdJHkmchsrD79++ruXLlUrt165bmuSOGDFHXgmp6PllO6UunU1VQb/TsqebOlUutUKGCev78ebV27dqqh4eH+ueff1ode+fOndU33ngjxeMtWrRQW7dubdaYf//9t6rT6dS5c+daG546ZMgQ1dXVVb127Vqi13/++WfV09NTzZs3r7ply5Zkr+3du7datWrVZI/FxcWper1e/f777y2O7erVq2q9evVUnU6njho1So2JibF4LCGEEOaRsg0hsrDcuXMzefJkVqxYwcGDB1M+0WRiwvXrvAsoKZ+V6HyAQkuWMDFbNnbs2MGHH37IuXPn2LVrF1WrVrUqbqPRyK5du1Is2QDzyzYAypYtS5cuXZgwYQJRUVEWx3f69GlmzpzJ6NGjKVKkSKJjbdq04cyZM9SoUYOWLVvSp08fIiIiEp2TUo9n0Epu8uXLZ3HHjTVr1lC5cmWuXr3K/v37GTduHA4ODhaNJYQQwnySPAuRxfXq1YtatWrRr1+/lFu1LViAsm6dRX/he1+/ztdt23Ly5El27tyJl5eXVfECHD9+nAcPHtg8eQYYNWoUt2/fZuHChRbFpqoq/fr1o3Tp0gwZMiTZc/Lly8eWLVuYP38+P/74I9WqVePIkSMJx4OCglKtBbek13N4eDg9e/bE19eXt99+m1OnTlGvXj2zxhBCCGE9SZ6FyOJ0Oh1z587l3LlzzJo1K+kJqgrffgtKuuack4hTFOqfPMn27dtttq1zQEAA7u7uqY6n0+lS7CSSmjJlytCtWzcmTpxoUYu+H3/8kV9++YU5c+bg6OiY4nmKotC7d29OnjxJ7ty5qVu3Ln5+fjx58oTr168nP/N85gz068emc+eYumwZ5M8PlSrBV19BKt03fv/9d6pVq8batWtZsmQJq1evJmfOnGY/mxBCCBvI7LoRIYRt9OvXT82ePbt648aNxAf27Uu7xjmNL6Ner6q3b9ss1jp16iQsxEtJhw4d1GbNmlk0flBQkKrX69Xp06ebdd2jR4/UvHnzqp06dTLrutjYWHXcuHGqXq9XK1asqAJqYGDgsxN+/VVV33wz8aLMF2vMDQZV7dRJVZ+rsY6Li1MnTpyoGgwGtUaNGurFixfNiksIIYTtycyzEK+I8ePH4+LikrglHcCyZWDlRhk6VQV/f6vGiPfw4UOOHj2aaskGWF62AVqLuB49ejBp0iSePHmS7uviZ46nTZtm1v0MBgOjRo3i8OHDPHr0CIBDhw5pLe1Wr4aGDSF+Q5vkNkcxmbTX168HLy/46y+uX79OkyZNGDlyJEOHDuW3336zuC2gEEII25HkWYhXhIeHB9988w2rV68mMDDw2YErV5JP2Myh18P169aN8a89e/ZgMpkyNHkG+PLLL3n48GGqfbCfd+rUKWbPns2YMWPM3mY8Xo0aNRgyZAg6nY5Ro0YxukYN1Pfe037+6XmWuDh48IDounVpUbEiwcHB7N27l4kTJ8qiQCGEsBOSPAvxCunevTt169alf//+z3bae6EThMUiI20yTEBAABUrVqRw4cKpnmdt8ly8eHE++OADpkyZkqQbxotMJhN9+/albNmyDBo0yOJ7Aly7do0yZcqwc/16vjhxwvxnMBrRhYezytGRU6dO0bBhQ6viEUIIYVuSPAvxClEUhTlz5nDx4kWmT5+uvejhYZvBbbBrnaqqBAQEpDnrDNYnzwAjR44kNDSUxV9/DV9/DdWqQcGCkDevtqtiv35w5gzLly/n0KFDzJkzx+oZ3vg2dc3u3SO7qqK3YAwHoML9++Sy4RbeQgghbMO6QkghhN2pXLkyAwYMYO7YsfR+/BiP+Fpba8TGQuXKVg/z119/cfv27ZeWPBd1cOCXEiWoPn48qk6H8vx49+7BpUswdy7lDAbGvPWWTWZ5g4ODada0KcyciaIo2pJASxgM8P33MHOm1TEJIYSwHZl5FuIVNKFKFf55+hT3yZMx2aJsw90d2rWzepiAgABcXV2pW7dumudanTz//Td4eVEzOBgHSJw4x/u3FvyNuDhG79sHq1ZZfj+0zV8uXbpEzWzZ4Nw5yxPn+NiWLbMqHiGEELYnybMQr5jb48fj2rMnDmh/wa3+S67XQ58+4OxsdWwBAQE0btwYJyenNM+1Knm+cQMaNYI7d1DS0SvaANp5XbvC1q2W3RO4efMmMTExvJYtm8VjJBIWBlbslCiEEML2JHkW4hUQHR2Nv78/QypXJu/o0ajY6C+3TqclzX37Wj1UeHg4v/76a7pKNrRbW5E89+oFDx6ABZus4OurJa0WCA4OBqBg7twWXZ8sSZ6FEMKuSPIsRBYWHBzMsGHDKFy4MF26dKH3lSsoioJlewkmZgRURYFNm6BYMavH27t3L3FxcRmfPAcFwa5dlrXnU1Wtq8iKFeZfi7Ytt06nI+9rr1l0fRKKAm5uthlLCCGETUjyLEQWExsby4YNG2jWrBmlS5dmwYIFdO3aleB16ygXHq5taGIlVafjKTChQQPUxo2tDxqtZKN06dLJb1udDIuT5/nztVITa8yaZVG9cnBwMEWKFMGxenWwti+zTqct0tTJr2khhLAn8ltZiCzi2rVrjB49mmLFitGuXTsiIiJYunQpt27dYvr06ZTcudPqnQQByJkT5csv2TNnDqP27uWHH36wesj4FnU+Pj5pn3ziBAwbRvd9+xh/+bLWTm7VKoiOTt/Nli61rFzjWbBw4QKcPGn2pUFBQdougLlyaeUf1vz/MJlg4EDLrxdCCJEhFFW1wTSVECJDGI1GAgICmDdvHtu3b8fV1ZVu3brRp08fqlSpkvjkMmXg4kXrbzp3LnzyCQCffPIJS5Ys4ejRo0nvZ4YLFy5QtmxZtm3bRvPmzZOeYDRqCfKMGXD8OBgMGI1GUFX0Dg5aqzwPD/j4YxgwAAoUSP5GRqNt3kCAtnDw//7PrEuqVatGzZo1mT9/Phw9CrVrW37/HDkgJARcXS0fQwghhM3JzLMQFlJVladxJh5GGXkcbSTaaF1P4ufdvn2bCRMmULJkSVq0aMHNmzf5/vvvuXXrFnPnzk0+kX382Pob6/UQHp7w7fTp0ylbtiwdOnQg/LnXzRUQEICTkxMNGjRIejAyEt59F7p3hz//1F6Li0Mfv8FIbKz22qNH2kYnlStrs9PJSe/sdHqYuVBPVdWEDVIAqFkTmjZFtbSE5H//k8RZCCHskGySIoSZYowqZx9FcexeFA+iEpcHFM3ugFceZ0q7O6JTzFu2ZzKZ2Lt3L/Pnz2fjxo04ODjQuXNnPv74Y7y8vLQNN1KhGgzWLxRUVXB0TPjW2dmZtWvX8sYbb9C7d29WrVqVZhzJCQgIoH79+mR7sYVbbCy0aQOBgdr3adU4G41aEl2/Phw5AhUrJj7u4qK9AbCmbCNezpxmnX7v3j3Cw8O1sg0ARcG4ejU3S5SgYFhY+n/ZKor2RmLYMLPuL4QQ4uWQmWch0klVVf64+5RZZx6w8/qTJIkzwPWIWDZcDmfOmYdcCotJ17j3799n6tSpvP766zRt2pRz587x7bffcuvWLRYtWkSNGjWSJKyqqnL16lXWrFnDp59+ire3N3+GhGD13LfJpG1d/ZzXXnuNhQsXsnr1ahYsWGD2kE+fPmX//v3Jd9kYPRr27Ek7aX6e0ajNCr/9dtKZZkXRtuC2dpGdwZA0MU9DfJu6+JlnVVXp97//UT0igtAKFbSTUpuFji83GTwYFi3SnkUIIYTdkZlnIdJBVVUCbz7h2L3UP8qPX0DwJE5lbXAY/1csOxVzJd1cRFVVfv31V+bPn8/atWsB6NChA0uWLOHNN99MkixHRERw7Ngxjhw5wpEjRzh69CghISEAlChRgtq1axORNy/K5s3W7Wrn7JxsnW+nTp04cOAAgwYNolatWlStWjXdQx44cICoqKikyfOTJxZ3tcBohFu3YN06eO+9xMcGDID33zd/zHgGg7abYr58Zl0WFBQEQMmSJQEYN24c8+fP54cffiB3jx6wfbv2vLt3axfo9dqzm0zabP9772n9tL28LI9dCCFEhpMFg0Kkw5E7key/FWn2dQrQsZQbJdy0UojHjx+zYsUK5s2bx7lz5yhdujR9+vShR48eeHp6Alr5xvnz5zl69GhCsnzmzBlMJhPZs2enZs2a1K5dm1q1alGrVi3yxSd5Dx9qC+li0jfjnYTBoG0uMm9esoejoqLw9vYmPDyc48eP45bO/sODBw9mw4YNXL16NfGbgoULtZ0LLf0VpNNBjRpa+UbiQCF/fggNtWxcgIMHoV49sy4ZM2YM8+bNIyQkhPnz5/Pxxx8zYcIE/ve//yU+MTgYDhzQyk8MBsiTB3x8tAWRQggh7J4kz0KkISLWxJwzD7H0L4q7o443IoOZP28e/v7+xMbG0qZNGz7++GMaNWrEw4cPExLlo0ePcvToUcLCwlAUhQoVKlCrVi1q165N7dq1KVeuHPrUPvr/4ANtgw9LNggBrT1bKl01goKCqF69Os2bN8ff3z9d9c9ly5alfv36SUs+qlWDU6esmykHOHMG4ssi4k2dCkOHmj+WXg9vvgn795tdNtGtWzcuXbrE559/Tvv27enbty8zZ860qEZcCCGE/ZLkWYg0/BYSya+3Iy1OngEWfdKe2JAr9OzZk1q1ahEUFJSQLMd/3J8nT56EJLlWrVrUqFEj3bO7Ce7d02Zjb9wwe9Hc1e7dKbZsWZrnrV27lo4dOzJ37lw++belXUouX75MyZIl2bBhA23btk18MFs2rdOGtdav17p1PE9VtVn0JUvSP45eD6VKaTPZFswC16lTBzc3Nw4cOECrVq3w9/dP/Y2OEEKILEmSZyFSYVJV5px5yJM4y/+amIxxhAad4ZeZozlx4gTR0dE4ODhQvXr1RLPKxYsXt80sZVAQNG6s1QSnM4HeULgwXe/fZ+OmTTRr1izN8/v378/ChQs5cuQI1apVS/G8efPmMWDAAO7fv4+7u/uzA6pqu53zliyBHj2Svm4yaR0rpk7VyiNSmo2P785Ru7bW2zl3bovCyJUrF0+fPsXb25vt27fj5ORk0ThCCCHsmyTPQqQiJDKOpRes759sMho5PW0ItWvXSlhw5+ycdCGhzdy5oy0+27jx3wBe6GYRnzDmzQtjxhDVowftO3Rg9+7drFu3jpYtW6Y6fHR0NN7e3oSGhnLixIkUZ8jbtGnDo0ePOHDgQNKDrq7w9KklT5fYunXaAr+UHDtG2OTJOK1fjxM863gR/8aiYUNtkWGrVhZvsHLmzBkqVapEsWLF+Ouvv8z/xEAIIUSWId02hEjF0zjbbHyi0+tZ8uOPOOtfUnfIfPm0coabN7WFeUuWaAl1TIxWLlGjBvTvDy1bgoMDzsCGDRvo0qUL7777LqtWraJDhw4pDu/k5MRPP/1E9erV+fDDD1mzZk2SWfOYmBgCAwOTLpiLV7IknDtnfc1z/KYkKfHyYmGdOkzdsoXLc+bgHBb2bMfC+vWhbFnL7nvhAqxaRdTly1zYsIEZQP327XF7rk+2EEKIV4/MPAuRikthMfwUHGaTsQZXyoWzIZNbq6tqqgvh4uLieP/991m9ejVLly6lW7duqQ63fv162rdvz7KvvqJ7VBRs3gwPHgAQ4ezMtOBg2u3YQcXkejzPng0DB1rXbaNSJW1XwjTKXerXr4+7uztbtmyx7F7xVBU2bdK2Ed+/H1WvJ85kQlFVTIAjgLu71kVkwAAoXNi6+wkhhLA7kjwLkYrbT2JZ9o8VLc/+pQBfVM2dJTovGI1G+vTpw+LFi5k3bx69e/dO+eTz5/mreXMqXr6MotOhvFAeYgR0Oh1Kq1YwZQqUKfPsYGio1lLOzG2wE1m0SOswkop79+6RP39+5s+fz4cffmj5vWJj4ZNPtHumtYuhXg85csC2beDtbfk9hRBC2B3ZYVCIVOR1MeCity7hVYDiORyyROIMoNfrWbBgAf369aNPnz7MnDkz+RMPHoSaNal07Ro6SJI4A+jjX9+yBWrWhN9+e3bQ3R1697Zs4aBeD56e4Oub5qlbt25FVdU067hTparQsycsXqx9n9ZCTKMRwsK0hZu//275fYUQQtgdSZ6FSIVep1DN0xlr0l4VeCOPi61Ceil0Oh0zZ85k6NChDBo0iClTpiQ+4eRJeOcdePIEJT0dPYxGCA/XttQ+ffrZ61OmQK1aqW9bnTQ4bWHftm3aosM0bNq0iTp16jzbTMYS330HK1eaV2JiMmkdPnx8rNuwRQghhF2R5FmINFT1dLaqx3N2Bx0l3RxsFs/LoigKU6ZMwc/Pj+HDh+Pn54cav510u3ba4sNkZptTZDJpJRrt2z9LQp2dYccObTc/RUl7YxKDAbJnh127tJnsNERGRrJr1y7atGmT/jhfFBcHX39t2bVGo7aT4IoVlt9fCCGEXZHkWYg0uDnqqZPPwpljVaVZ4WzoskjJxosURWHMmDFMnjyZcePGMWzYMNRdu+DSJbM3YQG0a/75B/bte/aauzvs3KnN7pYsqb32XMu4OEBVFHBxgY8+0hYI1q+frtvt3r2bp0+f0rp1a/Njjbd1K4SEWH49wMyZ1ncVEUIIYRdkwaAQ6aCqKtuvRXD6YbRZ122a9AXv1a9O//79Myiyl2fmzJkMGjSIv4oXp+L16+kr10iOwaD1VF6/PukxVdUS69Wr4e5dosPCWL9vH+U/+oiqU6eCmf2Te/bsydGjRzl37pxlsYJWahIYaNmbhecdPKjNsAshhMjSpM+zEOmgKArNi2bHzVHH4ZCnqJBsKYfy7+uOOoV3imTjXhEPBgwYgMlkYuDAgS83aBsbOHAgbkYjFT791KoacOLitM1bwsKSJsOKoi2ya9wYAEdVpV+uXAwtXpyqZibOcXFxbNmyhY8++siaaOHsWesTZ4Dz5yV5FkKIV4Akz0Kkk6Io1CuQjTc8XTj1IIrj96OIiE1c85vHRY9XHhfKeTjhoFOYOnUqer2eQYMGYTQaGTJkSCZFbxs93nkHPv3U+oFMJrh7N82ZZEVRKFeuHH///bfZtzh06BAPHjywrt4ZMIaFYcZyxuTp9dqbBSGEEFmeJM9CmMnVQUed/K7UyudCaIyJqDgTiqLgYlBwd0ycZsUvutPpdHz66aeYTCY+++yzTIrcBqzpyfyidG7NXa5cOU6dOmX28Js2baJAgQLUqFHD7GvjhYSEoIuMJK/FI/zLaNT6PgshhMjyJHkWwkI6RcHDSQ9Oqc9LKorCpEmT0Ov1fP755xiNRr744ouXFKWNubvbbqycOdN1WtmyZVmzZg2qqqa7V7aqqmzcuJGWLVuis6SPNBAWFoaPjw/f6/XkUdVk+1ibpUQJ664XQghhF6TbhhAvgaIofPXVV4waNYphw4YxefLkzA7JMoULg4eH9eN4ekKBAuk6tVy5cjx58oQbN26ke/izZ89y6dIli0s2oqOjadu2LZcvX6bQmDHWJ86FCiXUcQshhMjaJHkW4iVRFIVx48bh5+fHiBEjmDBhQmaHZD5HR+jTx7xNTV6k12vbXBvS98FXuXLlAMyqe964cSPZs2ensQUJq9FopFu3bvz2229s3ryZIkOGpHuWPFk6HfTvb93PTAghhN2Q5FmIl2zMmDGMHTuWL7/8knHjxmV2OObr08e8zVFepKrattzpVLx4cZycnDh//ny6r9m0aRM+Pj44OTmZGZrK4MGDWb9+PatWraJ+/frg7Iw6YIBlG+XodNpGMB98YMnVQggh7JAkz0JkgtGjR/PVV1/h5+fHmDFjMjsc8xQvDt27a4mhmUxA9HvvaeUf6aTX6ylTpky6Z55v3LjBsWPHLNoYZdKkScyePZu5c+fy7rvvAlrLuwF37rAbMJmz2U38uRs2QF6rlxwKIYSwE7JgUIhMMnLkSHQ6Hf/73/8wmUyMHTs23QviMt28eRAUBIcPp3sW2ggc0uuZ8fgxa81Y/AeY1a5u8+bNGAwGmjdvnu7xARYtWsTIkSMZM2YMffr0AeDJkyf4+vqyY8cOasyZg27bNm07cUh9x0CDQSvTWLNG22RFCCHEK0NmnoXIRCNGjGDKlCmMHz+eUaNGkWU2/HR2hl27oEUL7fvU6nn/PbbL2Zm+xYuzfssWZsyYYdbtzEmeN27cSIMGDfAwY2Hjli1b6N27N3369GH06NGA1qauYcOG7N+/n23btvF+376waRPMng2vvaZd+HzdtqJos/EGA3TqBH/8AdZsCy6EEMIuyfbcQtiBadOm8fnnnzN8+HAmTpyYdWagTSYtiZ49G7Zv12ZjDQbtTYDRiAo8bdKEbF98wfFcuahXvz7Fixfnn3/+4bfffqNWrVrpus3q1avp3LkzDx48IFeuXCme9/jxY/LkycP06dPTvSX6oUOHaNKkCT4+Pqxduxa9Xs/ff/9N8+bNiYmJYdu2bVStWjXxRaqqbbe9ciXcvKn1rM6VC2rU0Oqb8+RJ172FEEJkPZI8C2Enpk+fzqeffsrQoUOZMmVK1kmg4125oiXSDx8C8Eino+28eVyMjiYwMDChX7Ovry9FihRBp9Nx4sSJVJPheKdOnaJq1ar89ttveHt7p3iev78/Xbp04erVqxQtWjTNcc+dO0fdunWpVKkSO3fuxNnZmYMHD9K6dWsKFy7M9u3bKVKkSLp/BEIIIV59kjwLYUdmzJjB4MGD+eyzz/jmm2+yXgL9gpCQEN566y3u3bvHnj17qFSpEqNGjWLChAm4urrSpEkTNm7cmOZzPn36lGzZsrFw4UJ69eqV4nm+vr5cvHiR48ePpxnb9evX8fb2xsPDg4MHD5IzZ078/f3p0aMHdevWZf369eS0pkWdEEKIV5LUPAthRwYNGsSsWbOYNm0an376adapgU5B/vz52b9/P4UKFaJhw4YcP36csWPH0qZNG0wmE5s3b2b69OlpjuPi4kLx4sVTbVcXHR3N9u3b09Vl4+HDh7zzzjvo9XoCAgJwd3dnypQpdOnSJWGBoCTOQgghkiPJsxB2pn///syZM4fvvvuOwYMHZ/kE2tPTk71791KmTBkaN27MkSNHWL58Oa+99hru7u588cUXHDlyJM1x0lo0uH//fsLDw9PcVTAyMpKWLVty584ddu7cSd68eenbty/Dhw9n9OjRLF26FEdHR7OfUwghxH+DJM9C2KG+ffsyb948Zs6cyYABA7J8Ap0zZ0527dpF1apVadasGceOHWPTpk04ODiQLVs2OnbsyMN/a6VTklbyvHHjRooXL06lSpVSPCcuLg5fX19OnjzJtm3bKFSoEG3atGHhwoUsWrQoa7ULFEIIkSkkeRbCTvXp04cFCxYwZ84c+vXrh8maXf3sQI4cOdixYwfe3t74+Phw4cIF1q9fT2RkJHfv3uX9999P9U1C2bJluXz5Mk+fPk1yLL4EpE2bNikmv6qq8vHHH7N9+3bWrVtHsWLFaNCgAQcOHGDbtm18ILsACiGESAdJnoWwYx999BE//PAD8+bN45NPPsnyCbSrqyubN2/mrbfeolWrVjx69Ii5c+cSHR3N1q1bmTZtWorXlitXDlVVuXjxYpJjx48f59atW6nWO48aNYpFixaxePFiihcvTu3atQkJCeGXX37hbdnIRAghRDpJ8iyEnevVqxeLFy9m4cKF9OnTJ8sn0M7Ozqxfv55WrVrRvn173NzcGDBgADqdjmHDhnHo0KFkrytbtixAsqUbGzduJFeuXNStWzfZa2fPns2ECROYMmUKxYoVw9vbGzc3N44cOZK0h7MQQgiRCkmehcgCevTowdKlS1m0aBEfffRRlk+gHR0d8ff3x9fXly5dulC1alUaNWqETqejffv2PHjwIMk1uXPnJk+ePMkmz5s2baJFixYYnt/x719r165l4MCBDBkyhEKFCtGsWTO8vLz45ZdfpIezEEIIs0nyLEQW0b17d5YvX87SpUvp1asXRqMxs0OyisFgYNmyZfTq1YtevXrRvHlzChcuzN27d3nvvfeSfYOQ3KLBoKAgzp49m2yXjX379tG1a1c6d+6Mp6dnwp+3bduGu7t7hj2bEEKIV5ckz0JkIV27dmXFihUsX76cnj17ZvkEWqfTMX/+fAYOHMhnn32Gr68vTk5O7Ny5k2+++SbJ+eXKlUvS63nTpk04OzvTrFmzRK//+eeftG7dmvr16+Pq6srIkSPx8/NjyZIl0opOCCGExSR5FiKL6dKlCytXrmTVqlW8//77xMXFpXyyyQSRkWDHre4UReG7775j2LBhTJ48mQ4dOgAwYsQIfvvtt0TnlitXjgsXLiR607Bx40aaNm1KtmzZEl67dOkSPj4+lC5dGp1Ox9KlS1m8eDFjxoyRVnRCCCGskrRAUAhh93x9fdHr9XTu3BmTycTy5cuf1fvevg0//AALFsCtW1oCrdfD669Dv37QtSu4uWXuA7xAURQmTZqEq6srfn5+NG7cmL1799KqVSsuXLiAp6cncSaVvFW8aT50EqvO3cUtezaU2GgiS5rMAAAgAElEQVRuPTXxfo9nXTbu3r3L22+/jaurK3FxcRw+fJjt27fTtGnTTHxCIYQQrwpFzeq7LwjxH7Z+/Xp8fX1p164dP86Zg2HAAPjpJ22m+cWa4fgZV2dnGDgQvvoKkllgl9m++eYbvvjiC1577TUuXrxIo7ebM2rRGk4+iCbaqGKMjUVvMKAoCqrJBDod7gaVWvmzU9IplqZNmnD58mWcnJxQFIXt27dTuXLlzH4sIYQQrwhJnoXI4n7++WcGdujAYVdXCkVGoqSnDlpRoFkz2LhRS6btzOzZsxkwYACvVa9NhymLyO7hiaJLu8rs0aW/Wdi3I7GREZQoUYLt27dTuHDhlxCxEEKI/wpJnoXI6iIiCK1UCdcrV3Aw5zqdDt59F9as0f5sZ+b/uIbbxWrg6OKKTp++GXJTXBw3z/9F0Krv+Gm1v3TUEEIIYXOSPAuR1Y0eDRMngqWdN9atg3btbBuTlUyqyvxzjwiNjgPFvMReNZmoktuJ5sUlcRZCCGF79jfdJIRIv5gY+P57yxNnvR5mzbJtTDZwMTSG0BiT2YkzgKLTceZxLJFxWXsjGSGEEPZJkmchsrKNG+H+fcuvNxrhwAFIZte+zHT8XhTWNJRTVTj9IMpm8QghhBDxJHkWIitbt06bPbaGXg/r19smHht4HG3kWkQs1tSTqcCJ+5I8CyGEsD3761MlhEi/27ctL9n4l1FVObZtG3sUBUVR0Ol0CV/Pf5/aMXPOTWucUIcckL2E1T+a0BgTqqrKpihCCCFsSpJnIbKymBirhzCZTJw/dYqZly5hMmkJp8lkSvXPz39vaxUat6Dr1CU2GSvGpOKkl+RZCCGE7UjyLERW5ulp9RAOBgPvDx7M+xMnWnS9qqrpSrLTe+xWjI5fIq1+LAAcdZI4CyGEsC1JnoXIyho2hICApLsJmiMuDho0sPhy5blyD1vIGW3kl3OPrBpDVU3ooiO5f18lT548NolLCCGEAFkwKETW1rOn9QsGixeHpk1tEo4teDjpKZLNYGW3DZXt878lX7581KhRg7lz5xISEmKzGIUQQvx3SfIsRFbm6Qm+vmCw8EMknQ4GDLC7HQbfyONiVbcNvU5H9XzZcXd359ixY/Tr14+CBQtSp04dZs2axc2bN20WqxBCiP8W2WFQiKzuwgXw8oLISPPKN/R6KFoU/vwT7Gwba+O/OwyGx5jMTqIVoHJuJ3yK5sBoNLJnzx7mzZvH1q1biYuLQ1EUVFWlTp06dOjQgXbt2lG0aNGMeAwhhBCvIEmehXgV7NsHPj5a/XJ6WtcZDODhAYcPQ6lSGR+fBe5HxbH8wmNiTaQ7gVaAfC563iuTE4cXFgs+evQIf39/Fi5cyMmTJ3F0dMRoNGI0GqlZsybt27enXbt2lCxZ0ubPIoQQ4tUhybMQr4qjR6FlS7h3TyvDSG4WWq/Xkuty5WDHDihW7OXHaYaQyDh+Cg7laZyaagJtMpnQKQqFszvQvqQbzobUy1DOnDnD0qVLWbZsGffv38fd3Z3IyEhiY2OpXr067du3p3379rz22mu2faDwcFi1Ck6cgNBQcHaGwoWha1coW9a29xJCCJEhJHkW4lXy9CmsXQszZ8Lx44mPKQq8/Tb07w/vvGP9QsOXJDzWyLG7UZy8/5RoExjj4hI2VzEZjegMBkJvX+fesf3M+3IwBjPa08XGxrJjxw6WLFnCli1bUBSF/Pnzc+/ePaKjo6lcuXJCIl2uXDnLHyIoCL77DpYs0f4f6fXam5v4WvP4jieDBkGbNtr/KyGEEHZJkmchXlXnzsGVKxARodU0ly1r9zPNqTn8+x/0GzeVSg2aYtQZ8K5dhxuXL3L451X06diazr6+HDp0iDp16lg0/t27d1m5ciVLlizh9OnTeHh4kD9/fq5du8aTJ08oX758QiJdsWLF9O9cuGsXtG2rbWgTF5fyefGfCvTuDXPmWL4IVAghRIaS5FkIkSVMmjSJiRMnotPpCAsLY/fu3dy/f5/OnTtz69YtmjVrRoECBdi1a5dV91FVlRMnTrBkyRJWrVrFo0ePeP311/Hw8ODcuXOEhYVRpkyZhES6atWqKSfSe/dqs/0mU/oXcyoKdO+uzVLLDLQQQtgdSZ6FEFlC06ZN0el0CcnxwYMHKV26NAULFmT16tU4ODjQrl07Dh48SL169Wxyz6ioKDZv3sySJUvYtWsXjo6O1K5dG2dnZ37//XcePnxIyZIlExJpLy+vZ4n0nTtQurT5XVDizZkDffva5DmEEELYjiTPQgi7FxUVhYeHB4MGDWLKlCkA/P7779SoUYNy5crRsGFD5syZwxtvvIGHhwd79+61eQw3b95kxYoVLFmyhH/++YeiRYtSr149TCZTwix4sWLFaNeuHe3bt6dWYCA6Pz/Ld38sWhQuX7a7HtxCCPFfJ7+VhRB27/Dhw0RFRSVqI+fk5ARAw4YN2b9/PzqdjrFjx7Jv3z727dtn8xgKFSrE8OHDOX/+PL/99hvNmjVj8+bN+Pv7U758eYYPH06zZs1YuXIl9by9uefnh2rNtunXrmn10kIIIeyKJM9CCLsXGBiIp6cnDg4OCa85OzsDWvJ8/vx5bt++TcuWLfHy8mL06NFk1IdqiqLg7e3NwoULuX37NsuXL0ev1zN58mRWr15N8+bN2fjJJ+QzmazaYhyDAfz8oH17qFULKlfWOnIMGwbBwbZ6HCGEEGaSsg0hhN2rU6cORYsWpXLlynzzzTeEhoZy5coVihUrRkhICAUKFMDf3x9fX1927NhB8+bN2bVrF02bNn1pMV6+fJlly5axdOlS2l69ylTAJs0A47twPP+9yQRNm8KoUVC3ri3uIoQQIp0keRZC2LWwsDBy5crF3LlzOXHiBLt27eLy5cuEhISQL18+AMqXL0/9+vWZN28eqqri7e2NqqocPnw4/S3lbMRkMnHlgw8ounw5hoz89Rrfp/uHH6BHj4y7jxBCiESkbEMIYdcOHDiA0WikcePG3LhxAw8PD+BZzTM8q3sGraxi3LhxHD16lB07drz0eHU6HSUrV8aQ0Um70ah99ewJa9Zk7L2EEEIkkORZCGHXAgMDKVq0KKVKlUqUPMfXPIOWPF+4cIFbt24B8NZbb1G3bt0MrX1OVenSlnfZMJeiQLducP36y7mfEEL8x0nyLISwa4GBgTRp0gRFUbhx4wY5cuQAwNHRMeGchg0bAtosNWizz+PHj+f48eNs2bLlpceMjw94er6ce6mqlqgvWPBy7ieEEP9xkjwLIezWnTt3OHPmDE2aNOHp06c8ePCAHDly4OjoiO65/sd58+alfPnyCaUboCXUjRo1YvTo0Zhe1ixwPAcHbYOTl9Wj2WiE77/XtgAXQgiRoSR5FkLYrfjNTho3bszNmzcBcHV1TVTvHK9hw4ZJ+juPHTuWU6dO8fPPP2d8sC/q3RucnF7eFtsPHkBAwMu5lxBC/IdJ8iyEsFt79+6lfPnyFChQgBs3bgBa8vx8vXO8hg0bcvHixYQkG6BevXo0bdoUPz+/lz/7XKgQrF2r/fllJNCKom2sIoQQIkNJ8iyEsFvx9c5AQvLs6OiY7MxzgwYNgGd1z/HGjRvH2bNn+emnnzI42mT83//B+vVaGYfBkLH30ushIiJj7yGEEEKSZyGEfbp8+TKXL19OlDx7eHigqmqyM8958+alQoUKSUo3ateuTfPmzRkzZgzG5zcbeVnatoVjx6BzZy2J1ulQ/62FVsF2SbXRCDlz2mYsIYQQKZLkWQhhlwIDA9HpdAkzyjdu3KBw4cJER0cnO/MMifs9P2/s2LFcuHABf3//jAw5ZZUqwfLlcOsWTJkCHTuyA7havTp88om27ba1SbSqQsWKNglXCCFEyiR5FkLYpcDAQLy8vMj572xqfPIcFRWV7MwzQKNGjQgKCkoo8Yjn5eVF69atGTt2LHFxcRkee4o8PeHzz1FXrqQ5sLdfP5g5E0aOBGviUhR4/XV4802bhSqEECJ5kjwLIeyOqqrs3bs3oWQD0jfzXL9+fYBkZ5/HjBlDUFAQK1asyJCYrdKkCZQoYd3CwoEDX15nDyGE+A+T5FkIYXfOnDnD3bt3ady4ccJr6Zl5zpMnDxUrVkw2ea5atSrt2rVj3LhxxMbGZlToltHp4MsvtdILc+n1kDcvdO1q+7iEEEIkIcmzEMLuBAYG4uTkxJv/liHExMRw586dNGeeIeW6Z9Bmn69evcrSpUszIGor9eypzR6bQ6/Xeknv3AlubhkTlxBCiEQkeRZC2J3AwEC8vb1xcXEB4NatWwBpzjyDVvccHBzM9evXkxyrWLEinTp1Yvz48URHR2dM8JZSFJg+HUaM0L5PawGhTge5csGvv0KVKhkfnxBCCECSZyGEnYmLi+PAgQNJ6p0BihQpkubMc2p1zwB+fn7cvHmTRYsW2S5oM6kplWfodDBxIhw8CO++i6rXYwSMen3iXtEFC8L48XD2LFSr9tLiFkIIIcmzEMLO/PHHH4SHhydKnuNnkdMz8+zp6UmlSpVSTJ7Lli1Lly5dmDBhAlFRUTaN3VxKSgv86tWDNWu4dOAAQ4D/Z+++46ou2weOf85giAwVFAfuPbEwyJUrxZX6RFmaAzXLMmePmvMpy5yZSpYj1NQ0y1+u1DRxj9QQ3IKi5l4IIpvDuX9/HDmKgDIOAnq9Xy9eT3zH/b2/5/GFF5fXfd2X33rL1NJuzBhYv960k+CYMVC8+DOdrxBCCAmehRD5zPbt23F0dKRBgwbmY1euXMHR0REHB4enZp7BVLqRUfAMMGHCBG7evMn8+fMtNe1c8c+VK/gBhf38YPZs+OILeOMNU62zEEKIPCHBsxAiXwkICKBZs2boH6n5Tem0ATw18wymRYPnz5/n0qVL6Z6vWrUqvXr1YvLkycTGxlpu8hYWHBxMmTJlKC4ZZiGEyDckeBZC5BtxcXHs378/VckGpA6eM5N5flrdM8C4ceMIDw/nhx9+yNmkc1FwcDD169fP62kIIYR4hATPQoh8Y9++fSQkJDwxeM5M5tnZ2Zl69eo9MXiuVKkSffr0YcqUKURHR+d47rkhKCiIl2RBoBBC5CsSPAsh8o2AgABcXV2pXbt2quNZzTyDqe55x44dT7xm7Nix3Lt3j++++y77k84lN27c4ObNm5J5FkKIfEaCZyFEvhEQEEDLli1TdaFISkri+vXrqTLPmQmemzdvzsWLF7l48WKG15QvX57+/fszffp0oqKicjx/SwoODgaQ4FkIIfIZCZ6FEPlCZGQkgYGBqbbkBlMGVilFeRcXCAujWlwcxaOj4Slt5l577TU0Gg27du164nWjR48mJiaGOXPm5PgdMivDPs+PCA4OxtHRkYoVKz6DGQkhhMgsCZ6FEPnCzp07MRqNaeqdI7ZuZRHw+jvvQJUq/GMw0Ovzz8HZGQYNglOn0h2vWLFiuLu7P7V0w83NjQ8//JBvvvmGyMjIhyeMRjAYcvhWT5Zhn2dM9c7u7u5otfJjWggh8hP5qSyEyBcCAgKoWLHiw0zrlSvw6qvUe/99egDapKTUN8TGwrx5ULs2tGsHERFpxmzerBmRW7bA8uWma3/+GQ4fhscyv6NHjyYhIYGfP/sMPv7YtO21Xm/a1a9wYejQATZvNgXUz4h02hBCiPxJ//RLhBAi9wUEBDzMOp89a9plLzwcAKuMbkrJDP/1F3h5wZ494OoK9+/D8uVMXL0ahxs3oGfP1PfVrg2DB0P37mBvT8nwcE4WLUrF+fNROh2a5OSH18bGwpYtsGkTlCsHM2bA229b9N0fFx0dzdmzZ/nss89y9TlCCCGyTjLPQog8d+3aNU6fPm0Knu/cgddfN/1vZssmkpPhwgVTBnrHDqhQAQYOxP7atfSvP3UKBgyAihVhwQJ49VUq3LwJkDpwfnR8MG2L3bWrKYDORceOHUMpJZlnIYTIhyTzLITIcyl1yS1btjQFplevPgxYM8tggKAgaN3a9L1SZFhRnFK2cfcufPghaDRoMrGIz2zECFNpR9++WZtjJgUHB6PX66lVq1aujC+EECL7JPMshMhzAQEB1K1blxKOjjB/ftYD50clJ2f+/pQa5qwEzikGDDBlx3NBcHAwtWvXzlRLPiGEEM+WBM9CiDyllHpY77x6NTza8SI/S06GxYuzdevTWtUFBQVJyYYQQuRTEjwLIfJUWFgYly5dMgXPGzeCTpfXU8ocoxH8/HLUgSO9VnUGg4Hjx49L8CyEEPmUBM9CiDwVEBCATqfjtddeM5VB5KRk41m7fBkCAy06ZEhICAkJCbz00ksWHVcIIYRlSPAshMhTAQEBeHp64ujomNdTyZ5btyw6XFBQEADu7u4WHVcIIYRlSPAshMgzRqOR7du3P9yS28Wl4JRtpEhMtOhwwcHBVKhQgSJFilh0XCGEEJYhwbMQIs8cO3aM8PDwh5ujdOhQsMo2AIoWtehwsrOgEELkbxI8CyHyTEBAALa2tjRs2NB04K23oCBlXG1twYK1yUopgoKCpN5ZCCHyMQmehRB5JiAggCZNmmBra2s6YGtr2rSkIJRu6PXQuzc4OVlsyCtXrnD37l3JPAshRD4mwbMQIk8kJSWxe/fuhyUbKf77XyhTJssBtHrw9cwYDPDRR9m6NaM+z8HBwQASPAshRD4mwbMQIk8cOnSImJiYtMGziwv89Re4uGDI5FgG4E46PZNzjVYL774LOeyI8Xif5+DgYIoVK0bZsmVzNK4QQojcI8GzECJPBAQEUKRIEV5++eW0J6tVw3joEEdSgku9Pv1BHhxPbtGCtm5u7LK3R2mz9mMtq1ucKI0GGjfO9u6CT5Kys2B6m6cIIYTIHyR4FkLkiYCAAJo3b44ug/KMO7a2eCnFrunToUcPDI9fZ2cHAwbAiRPYbN/Oz1u30kOv54iTkynAzQSl0XC5Zk0+xZS9flKfD/UgUP+jUCGiVq821WdbmHTaEEKI/E+CZyHEMxcTE8OBAwfSlmw84sqVKwDYt2gBixfTs317fBs3hqAgCAsz7Ubo5we1awNQo0YNVqxbx2vR0WyoXZtkOzsU6WSWH2Sm7wF7mzWj/LFjnGrblvLAr9WqoYoXTzOXJK0WTa9eXFu/nu5aLcPHjMn5h/CYyMhILly4IJ02hBAin5PgWQjxzO3du5ekpKRMBc9ubm4AHD9/HoeXXoL69aFSJShUKM09r732Gj/+9BOdT5zgtWrVGFGsGJpXXsHg4EAiEAHcrlgRfvqJSZ98QofAQP7+5x8CAgJo+s479L5wgTc9PUn46y9YvRp++YVZ7drRokYN8Pen9BtvMHPmTPz9/dm0aZNFP5OjR48CslhQCCHyOwmehRDPXEBAAKVKlaJGjRoZXnPlyhWsrKwoXrw4ycnJnDt3jmrVqj117G7duvH555+zPziYs02aoDl0CH1UFPH37jG4Rw9KhIXRY+tWBgwbhkaj4d1336VMmTIsXryY9evXs2X7dtpPnky0tze88w72b77JgTNniImJAeD999+nbdu29O/fn4iICIt9JsHBwdjY2FC9enWLjSmEEMLyJHgWQuS+EydgzRpYtgzWruX8H3/QsmXLJy6Mu3LlCmXKlEGr1XLp0iUSEhIyFTwDVKhQAYCNGzeybds2ABwdHVm2bBnLly9n/fr1tGrVisaNG/Pvv/8yYsQIChUqRNu2bdmyZQuHDx+mdevWRERE4OnpidFo5MiRI4CpQ8bChQuJiYlh8ODBOftcHhEcHEzdunWxsrKy2JhCCCEsT4JnIUTuiIuDn34CDw+oWxfefBN69YL//IfVp08z88AB+PlnSEhI9/YrV66YSzZCQ0MBMp2VXbx4MS1atOD111/Hx8eH48ePm8+99957HD16FFdXVzZv3oxOp2Pnzp3m802bNmX79u2cPXuW5s2b4+zsjJ2dHQcPHjRf4+bmxpw5c1i+fDlr167N6ieTbp/nlE4bQggh8jcJnoUQlnfkCFSsCL6+8GDjj8cVv3gRevSAypVNmenHPB4829jYZKr/8blz59i1axf9+vXjt99+o2LFinTo0IFr166Zr6lYsSJdunRBo9GQnJzMb7/9xrp168znGzRowK5du7h9+zYtW7akTp06HDp0KNVzevbsSadOnfjwww+5c+dOJj6UtFIy74mJiZw6dUqCZyGEKAAkeBZCWNaBA9CkiakbBoAx/U7KmpTjN27Aq69CYGCq85cvXzYHzyEhIVSpUiXDtnaPWrJkCU5OTrz55ps4ODiwceNGlFJ06NCB+/fvA3D9+nUmTZrEoEGD2LlzJ1ZWVvj4+LBy5UrzOLVr12bPnj0kJiZy+vRp9u/fn3r+Gg3z58/HYDDw8ccfZ+qjycipU6dISkqS4FkIIQoACZ6FEJbz77/Qvj0kJkLyk7omPyI52VTi0aoVvP02VKyIKlaMvefOMWLlSpg5k+snT2aq3jk5OZklS5bQvXt3Cj3oxlGmTBk2btxIWFgY7777LgaDgc8++wxbW1s+//xzmjVrxrJly0hOTqZ79+707t3bHGRXrlyZPXv24ODgwNWrV1OVdwCULFmS77//nt9++41Vq1Zl6aN6VFBQEBqNhnr16mV7DCGEEM+IEkIISxk8WCm9XinI3pdGk+p7Iyil1aoEUIfq1lXq9u0nPn7Tpk0KUIcPH05zbsuWLUqn06kuXbooQM2fP998zmg0qubNmys3NzdVuHBhValSJfX333+bzx8+fFgBqnDhwurgwYNpxu7atasqVqyYun79eqY+pvj4eAWopUuXPvjYBquqVatm6l4hhBB5SzLPQgjLiIkBf38wGLI/xmML6TQARiPWgMfJk+DpCRcuZHj7okWLqFu3Lh4eHmnOtWnThnnz5rF27VpKly5Nv379Hj5Ho2HatGlcuXKF8ePHU7x4cRo3bsykSZNITk7Gw8MDFxcXihQpQqtWrdi1a1eqsefOnYter+fDDz9MdzHg08jOgkIIUXBI8CyEsIwVK0wBdC7RGo1w+bKpvCOdBXp37txh3bp19O3bN8MWeCk109euXWP16tWpzr3yyit07doVPz8/tm7dymeffcb48eNp2bIlly9fxsvLi5o1a+Ll5UXbtm1TbZLi4uLCggULWL9+PcuWLcvSeymlCA4Olp0FhRCigJDgWQhhGXv3QiYW9OWIwWAKoIcOTXPq559/Bkyt6NJz7949PvvsM7p160aPHj3o1asXe/fuTXXN119/za1bt/j+++/56quv2LlzJxcuXMDd3Z3ChQsTGBjIhg0b8Pb2pnPnzvz222/mezt37kzPnj0ZPHiweXfEjDyanb5w4QJRUVGSeRZCiAJCgmchhGVERGR+kWBOGAywahXcumU+pJTC39+fTp06Ubx48XRv+/LLL4mOjmbatGn8+OOPNGrUiM6dOxMSEmK+pnLlygwYMIDJkydz584dXnvtNY4ePUrr1q359ddfiYiIIDQ0lN9++42uXbvy7rvvsmjRIvP9s2fPpnDhwvTr1y9T5RsajYbgB638JHgWQoiCQYJnIYRlWFnBE3YMtCijER4JWo8cOcLx48dT1TE/6syZM8yePZuxY8fi5uaGjY0Nv//+O66urrRv357bt2+brx0/fjxKKSZNmgRA0aJFWbVqFXPmzAHA29ubo0ePsmzZMvr370+/fv2YPXu2+Vp/f3+2bt3KwoULM/UqwcHBuLq6UqpUqWx9FEIIIZ4tCZ6FEJbh6pr7ZRspjEZYssT8rb+/P2XKlKFNmzZpLlVKMXToUMqVK8fw4cPNx4sWLcqmTZuIiYmhU6dOxMXFAVC8eHFGjRrF3LlzufBgcaJGo2HQoEGUL18epRQNGzZk2rRpfPfdd4wYMYKhQ4fy1VdfoZSibdu2vP/++3z66adcvHjxqa8iOwsKIUTBIsGzEMIyunbNWaeNrLp+HYC4uDhWrFhB7969091E5Y8//mDLli3MnDkTW1vbVOcqVKjAH3/8wbFjx+jRowfJD8pOhg4diouLC+PGjUt1fePGjalUqRL//e9/GTNmDG3atGHQoEF89dVXjB8/npEjR6KU4ptvvqFYsWL06dMHYwabxKSQThtCCFGwSPAshLCMZs2gatVnVroRHxWFj48Pffv25d69e7z11ltprklISGDYsGG0bt2aTp06pTtOgwYNWLlyJWvXrmXEiBEAFC5cmIkTJ7JixQoCH9n50NPTk6CgIL744gsCAgIIDQ3F3d2dmjVrMnv2bGbMmMFHH31E4cKFWbx4MTt37mTu3LkZvsP9+/e5cuWKdNoQQogCRIJnIYRlaDQwePAze1y0RsP+/fvNO/t5eHhQu3Zt+vTpww8//EBgYCAzZszg33//Zfbs2Rm2rwPo1KkTs2fP5ttvv8XPzw8AX19fatasyahRo8yL/zw9PUlISOD48eO0aNGCo0eP0qJFC3x8fDhx4gQ//PADCxcupFevXjRt2pSBAwcyatQozp49a35WklERnmCkXL0GXL4XS+EizpJ5FkKIAkSjstPRXwgh0pOYCN7esGdPrnbeSAIOODryYenSnDlzxnzc0dERrVZLVFSUuVyiZMmSvP3223h6euLp6UmVKlXQatPPG3z66afMmjWLNWvW0KlTJ9avX0/nzp35888/8fb2Ji4uDkdHR+bMmcNHH30EPOz0MWTIEMqWLUufPn0YN24cHTp0wN/fHy8vL1xdXVmzdQdHIxI5Fh5P0iOVHMpopJKTNQ2K21HJ0eqJQb4QQoi8J8GzEMKy7t2Ddu3g4EHTwr5c4g1sBbRaLZ999hlVq1bl+PHjBAUFERQURGRkJADW1tbo9XpiY2MBU4Dt6emJl5cXnp6evPLKK+ZOF0ajkbfffpvNmzeza9cuGjRoQLNmzbh37x5HjhxBp9Ph4eFBvXr1WLx4car5hISE0L17d44fP07Pnj1ZsWIFTZo04dORn/HzsSvUbtkBDZDeD9yU407WWt6s6IirnT63Pmc26/MAACAASURBVDYhhBA5JMGzEMLy4uNh5EhYuBASElCA5pEfNUZyVjOmypfnpwkT+GDAAJKSkgDQ6/U0bNiQMWPGYG9vby6bKFGiBMHBwQQGBnLp0iXAFHBrtVoMDxY4urq64uXlRaNGjXB3d2fChAn8+++//P3339y8eZOGDRvy008/0atXLz766CN2797NyZMn08wrMTGRcePGMX36dDw8PLhw5RofLFyLY+kKaDLIdj9KA+i08E5lJ8raW+XgExJCCJFbJHgWQuSeyEhYupRbEyfiFB6ODZCo1XLZ2prKzs5w40b2yjuWLmVbqVK0bt2aHTt2cPDgQRYuXEhYWBhgai3n5OTEtm3b8PDweGQ6kRw9epTg4GCCgoI4fPgwISEh5i4bGo3GXN+s1+spVKgQEyZMYPPmzZw9e5bQ0FBWrlxJv379uBsRgZ29I1Za0pRabNu2jd6+feg08QfK1muAVpf5TLIGsNJq8K1ehGK2z6j1nxBCiEyT4FkIket8fHyIiorirz//ZPrMmXzxxRdEhYSgffVVUwCdlRZ3Y8fCV1/RrVs3jh49ysmTJ83B6507d+jWrRvbtm0zX16sWDF8fHwYP348ZcuWTTNcYmIip0+fNmenDxw4wMmTJ819nx9VoUYd2n0wjKJ1vHBwcQVMwa6zrQ6P4rbUKmqDjc6UYT506Q7bw7PwIT1CA1QvYk2Xio7ZG0AIIUSukW4bQohcFxISQrVq1UCnw93dnZiYGMJiY0110TVrAqCeVNag15u6eUybBl9+yd27d1mzZg19+/ZNlfXV6/UcPXqUHj16EBoaynvvvYfBYGDhwoWUK1eOcuXKMW7cOO7fv2++x9raGnd3d3r37s2cOXM4fPgwMTExXLhwgUmTJqHT6ShbqQo9Ziyh//IA3Jq2NwfOYKpVvh2XxJZL0cw5Fs7uazEYlSI0Xk92l/4pICQykeik3KsZF0IIkT0SPAshclVycjLnzp2jevXqALi7uwNw7NgxKF0a/vkHVq3iUpky5nsMgHoQFBvt7GDgQDh1CkaMAI2GlStXYjAY6NmzZ6pnTZw4kdjYWKZOnUrVqlVZvnw59+7dY+/evbRt25Zbt24xadIknJycqFWrFnPnzjXXTD9Ko9FQoUIFxowZw0+rVvPurJXUat7OVCudTgmGRqMFjYZkNOy7EcvwFX9xJcaQ7uLArDgWHp/DEYQQQliaBM9CiFx16dIlEhISTJlnTIvzXF1dOXr0qOkCa2vo2pXOxYoxsmNHlr72Gn5ubuz28eFdnQ51/TrMmgU1apjHXLRoER07dsTV9WEG+PTp0/j5+TFu3DhKly6dag6NGzdm8+bNxMXFsXr1ary8vAgNDeWTTz6hUKFCNGzYkDVr1vB4FVu8wUhMzWYUK10uUwv+wBR4u9asj8phpxEFnLuXmKMxhBBCWJ4Ez0KIXBUaGgpgzjwD1KtX72HwDFy4cIGjR4/ySq9erC9enD9r1eL/SpXiWLVq6BxT1/0GBwdz5MgR+vbtaz6mlGLo0KGUL1+eYcOGZTgXjUaDj48PBw4cIC4uDj8/P6pVq8bBgwd58803sbOzo0OHDhw8eBCAfTdiiUhIhkwGzg+fo810sP0kcclStiGEEPmNBM9CiFwVGhqKjY0N5cqVMx9zd3dPFTyvX78ea2tr2rZtS3h4OMWKFSMkJCRVwJ1i8eLFuLq60q5du1T3b926lW+//RYbG5tMzcvKyopPPvmEU6dOce/ePcaMGYOLiwubNm3i1VdfxcW1JH9ficxx6YUQQojniwTPQohcFRISQpUqVdDpHrZdc3d3599//zVvZLJu3TpatWqFg4MD4eHhODs7Exoaai71SJGQkMDy5cvp3bs3VlamPsjx8fEMHz4cb29vOnbsmK05Ojg4MGnSJC5fvszly5d5//33qd3qDbTWmQvEc0thvfyIFkKI/Ea2sRJC5Kr0guCURYPHjx+ndu3a7N69m7lz5wJw9+5dnJyc+Pfff9Pct27dOu7evUufPn3Mx2bOnMmlS5fYuHGjRba2dnNzY+HChfwado/zUXlbc1zVyTpPny+EECItSWsIIXKVuU3dI2rUqIG1tTVHjx5l48aNJCcn06lTJwDCw8NJTk5GKZWmbGPRokU0atSIGg8WD165coVJkyYxePBg8zFLMbWJy3kwnl1aDdRzts2z5wshhEifZJ6FELkmLi6OS5cupQmCraysqFWrFkePHiUiIgIvLy9KlSpFbGws8fHx5g1KHg26L1++zNatW1m4cKH52KhRo7C3t2fChAkWn7sxD4udNUCtIjYUkrINIYTIdyR4FkLkmrNnzwKkyTyDqeNGUFAQZ86cYezYsYCpZAMgKioKJycnihcvbr7+p59+olChQnTt2hWAffv2sWLFCvz9/XFycrL43Avp8ybrrHnw7NdK2+XJ84UQQjyZpDWEELkmvTZ1Kdzd3Tl+/DgxMTF07twZMJVsANy+fZvq1auba5iNRiOLFy+ma9euODg4kJyczKBBg2jQoAG+vr65Mvfy9tYWKdooYavL9DgawFqn4Z3KTjha6556vRBCiGdPgmchRK4JCQmhaNGiODs7pznn7u5OYmIi5cuXp+aDLbpTgudr166lylbv3r2b8+fPm3s7L1q0iKCgIPz8/NBaoJ9yetxdct5pw9lGR89qTtRztkHDEyqoH2yo4qhJwrd6EVzt5B8FhRAiv5LgWQiRa0JDQ1NlkB9Vt25dwFS+kXI+JXh+vNPGokWLqFq1Kk2aNCEiIoIxY8bQq1cvXn311Vybu4OVjmpOOcs+Nyhhi5VOS7tyDnxcpyiNS9ph91g5iFYDNYta8+vw9zgwcxRFbSTjLIQQ+ZmkN4QQuSajjU4AwsLCAChSpIj52N27d9Fqtdy9e9d8371791i9ejUTJkxAo9HwxRdfEB8fz5QpU3J9/k1K2REWlYghi4sHNUAxGx21iz7sluFgpaNJKTsalSxEnEGRkKzQa8FOr0Wv1XDZ5w2GDBnChAkTqFKlimVfRAghhMVI5lkIkSuUUk8MntetW4e1tbU52wymzLODgwPwcJHhL7/8QkJCAr169eLkyZN89913jB8/nlKlSuX6OxQvpOfNSo5oyXzTOg1Q2ErLO1UcsdalvUur0VDYSksxWx2O1jr0WtM177//Pq6urnz99dcWm78QQgjLk+BZCJEr7ty5Q2RkZLqdNgDWrl1L9erVOXbsmPlYeHg4hQoVAjBnXxctWkS7du0oVaoUQ4YMoWLFigwZMiT3X+CBSo7WdKvqhM2DQDijIDrleIlCOnyrF8nygj9bW1tGjhzJ0qVLuXDhQvYnLIQQIldJ8CyEyBVP6rQREhJCSEgIbdq04cqVK+YWdXfv3kWn01GmTBns7e05ceIEhw4dom/fvqxdu5aAgABmzZqFjc2z3Ta7rL0VA+sUo305e4oXSj8oruxoxTuVHfGtXgR7q+z9aP3ggw9wdnZm8uTJOZmuEEKIXCQ1z0KIXBESEoJGo0m3fnfdunXY2dnRvXt3vvnmG44dO0bz5s0JDw/HaDSau28sXrwYFxcXWrVqRf369WnXrh0dOnR41q8CgJVWQz1nW+o523I7zkBUopEkpbDVanC21eFggdZydnZ2/Pe//2Xs2LGMHTuW8uXLW2DmQgghLEkyz0KIXBEaGkq5cuXMZRiPWrduHW3atKFevXrY2Nhw9OhRwFS2ER8fT7Vq1UhMTGTZsmX07NkTPz8/rl69yrfffvusXyNdxQvpqexkTY0iNlRwtLZI4Jzio48+wtHRkalTp1psTCGEEJYjwbMQIleEhISkW+988+ZNDhw4QOfOndHr9dSpUydV8BwVFUW1atXYuHEjt2/fpn379kyePJkhQ4ZkuPjweWJvb8+nn36Kv78/V69ezevpCCGEeIwEz0KIXJHS4/lxGzZsQKPR0LFjR8DU5zkleL5z5w7JyclUr14df39/PD098ff3x8HBgfHjxz/T+eelgQMHUrhwYaZNm5bXUxFCCPEYCZ6FEBaXnJzMuXPn0s08r1u3jiZNmuDi4gKYdhq8eO0GN+7Ho3dywb5YcRydnNi8eTNNmzbll19+YcqUKTg6Oj7r18gzjo6ODBs2jAULFnD9+vW8no4QQohHaJRSWWz/L4QQT3b+/HkqV67Mli1baNOmjfl4dHQ0Li4ufP311wwaOozTEQnsvHCbWF3qumgVFc6GuVOIDTuBjV7LgQMHcm0b7vwqMjKSChUq0K9fP7755pu8no4QQogHpNuGEMLiQkJCANJknrdu3UpCQgL1272F3/G7JBoV6NIuKFT2RXjjs2kkxsZQzyb2hQucwbTz4pAhQ5g+fTqjRo2iRIkSeT0lIYQQSNmGECIXhIaGYmNjQ7ly5VIdX7duHW+P/JJD8XamwDkDWq0OjUaDtV1hQvQl2HcjNrennC8NGTIEvV4vmWchhMhHJHgWQlhcSEgIVatWTZUxNhgMnI/X8fK7AzI9jkZj2rdvz/VYgu/EW3ye+V2xYsUYNGgQc+fO5c6dO3k9HSGEEEjwLITIBel12ti9dx8tB46DbC6zCLgaTWLyi7dEY9iwYQD5pse1EEK86CR4FkJYXGhoaJp6579OnKeQgyM8yCZnVZIRTka8eNlnFxcXBg4ciJ+fn3kbcyGEEHlHgmchhEXFxMRw+fLlVMGzUorEklVRRmOOxv7ndjwvYoOgTz/9FIPBwOzZs/N6KkII8cKT4FkIYVHnzp0DSFW2EXjsJMUr10CTw64Z4fHJ3E/KWQBeEJUoUYIBAwYwe/ZsIiMj83o6QgjxQpPgWQhhUem1qdscsMNi48cZXrzMM8CIESOIj4/Hz88vr6cihBAvNAmehRAWFRoairOzM87OzuZj27Zty8MZPR9KlSrFBx98wLfffktUVFReT0cIIV5YEjwLISwqJCQkVdb58uXLBB7YZ7HxC+mzt+DweTBy5EhiYmKYO3duXk9FCCFeWBI8CyEs6vE2devXrych+h7O1pDTsNfZRoeD1Yv7Y8vNzY1+/foxc+ZMoqOj83o6QgjxQnpx/xYSQlicUipN5nnt2rW0aNECr5L25LRa2aO4rXnjlBfVZ599xr1795g3b15eT0UIIV5IEjwLISzm9u3b3Lt3z5x5joyMZOfOnXTu3JmaRW2w1mogmyG0XgO1i9lYcLYFU7ly5fD19WX69OnExr6Y25YLIURekuBZCGExj3fa2Lx5MwaDgU6dOmGl1VA56RbZLd5oWaYwNjr5kQUwevRowsPDWbBgQV5PRQghXjjyN5EQwmJCQ0PRaDRUqVIFMJVseHh4ULZsWbZs2cJ7zV/h1Lqfsjzukd/8KWWQ/sYpKlasSK9evZg6dSpxcXF5PR0hhHihSPAshLCYkJAQypcvj62tLQkJCWzevJnOnTuzfPlyOnbsSIsWLZg38iPalbPniev+UnYRTDawZtJ/2b5gOt7e3kRERDyT9ygIxowZw61bt/D398/rqQghxAtFgmchhMU82mlj586d3L9/n8jISHr27EmvXr1Ys2YNdnZ2uDvbMqiOM+3K2uNik/bHkCYuCu+yhRlavwSlDJEYDAYuX75Mx44diYmJedavlS9VqVKF9957jylTppCQkJDX0xFCiBeGBM9CCIt5tNPG2rVrcXR0ZObMmYwdO5Yff/wRvV5vvtZap8HdxZYm2tt83aYOdaNC6VujCH+MeI/TC7/kJZdC2Oq1+Pv7Y29vT6VKlTh69ChvvfUWiYmJefWK+crYsWO5du0aixcvzuupCCHEC0OCZyGERRgMBsLCwqhevTrx8fH89NNPREVF4efnx1dffZVhi7nQ0BDu37nJS1UrUKKQntqVKxAYGGg+7+zszPLlywkKCuLtt99m+/bt+Pr6YjQan9Wr5VvVq1fnnXfeYfLkyfILhRBCPCMSPAuRU5cuwfjx0Lo1vPwyNGoE774L69dDcnJez+6ZuXjxIklJSbi5udG8eXPi4uL43//+xyeffPLE+86cOYODgwOlSpUCoEGDBpw6dSpVG7bmzZszduxYli1bxv/+9z9WrVrF4MGDUSqnnaMLvnHjxnHp0iWWLl2a11MRQogXgkbJ3z5CZM/hw/Dll/DHH6DVpg6UdTrT96VLw6BBMHw4WFvn3VyfgU2bNtGhQwfq1q1LaGgo1tbW3L17N1WpRnr69evHsWPHOHz4MABHjhzBw8ODffv20ahRI/N1BoOB1157jWvXrjF8+HCGDBnChAkT+OKLL3L1vQqCt99+m8DAQEJCQrCyssrr6QghxHNNMs9CZMcvv5gyzJs2mTpDPJ5hTvn+2jUYO9aUlY58vlut7du3D41Gw+3bt3Fzc+M///nPUwNnMGWea9SoYf6+Tp06WFtbpyrdANDr9axYsYKIiAj279/P5MmTmThxInPmzLH4uxQ048aN48KFC/z88895PRUhhHjuSfAsRFatWwfdu5sC5MyUZRiNsG8fdOwIz2lXhCNHjvDtt99iZWXFL7/8QlhYGJ07d87UvSEhIeYOHQDW1tbUrVs3TfAMUKFCBRYsWMCqVasoUaIEI0aMYMiQISxfvtxi71IQubu706VLF77++msMBkNeT0cIIZ5rEjwLkRU3bpjqmeFhL+LMSE6GAwdMtdHPmW3bttGsWTP0ej3e3t4EBgZiY2NDmzZtnnrvnTt3CA8PT5V5BvDw8Eg3eAZ455136Nu3L4MGDaJv37707dsXX19fNm7caJH3KajGjx/P2bNnWbVqVV5PRQghnmsSPAuRFf7+kJiYtcA5hdEI8+bBIwvhCrqVK1fSvn17mjZtir29PfXq1WPt2rW0bt0ae3v7p96fsp33o5lnSH/R4KPmzJlD2bJl6datG3PmzKFTp0689dZb7NmzJ+cvVUC9/PLLdOzYka+++orkF2ihqhBCPGsSPAuRWQYDzJ1rCoKz6/59U730c+Dbb7+le/fudO/enZ9//pnr169TqlQp9u3bl6WSDY1GQ9WqVVMd9/DwwGg0EhwcnO59hQsXZuXKlZw6dYpx48axYsUKGjVqRMeOHTO850Uwfvx4zpw5w+rVq/N6KkII8dyS4FmIzNq+Ha5fz9kYWi0sWGCZ+eQRo9HIyJEjGT58OKNGjWLx4sVcvHgRgBs3bqCU4o033sjUWGfOnKFChQrY2tqmOp7RosFHvfTSS0ydOpVZs2axfft21q5dS7Vq1fD29ubs2bPZfr+CzNPTk7Zt2/Lll19KH2whhMglEjwLkVkPAsQcMRotM04eSUpKwtfXl+nTpzNr1iymTJmCRqMhNDQUgMDAQBo2bIirq2umxgsJCUlT7wxPXjT4qCFDhtC+fXt8fX2Jjo5m06ZNFC1alDZt2nD16tWsv+BzYMKECZw8eZI1a9bk9VSEEOK5JMGzEJkVE2PKHOeQKqA1z9HR0bzxxhv88ssvrFy5ksGDBxObZORufDIhl65SsowbO3fuzHTJBpgyz4/XO6d40qLBFBqNhsWLF6PT6ejduzfOzs789ddfJCcn4+3tzd27d7P0js+Dhg0b8vrrrzNx4kTJPgshRC6Q4FmIzHJ0zFm98wM3oqNp3Lgx77//PjNmzOCPP/4gLCwsXy/yun37Ni1btmT//v1s+HMrFVt04odTEcw5cZcFpyOwfr0Xg9cF8tak+TTs+Famdv5LSkri/Pnz6Wae4emLBlOUKFGCpUuX8tdff/HNN99QtmxZtm7dys2bN+nQoQMxMTHZeueCbMKECRw7dowNGzbk9VSEEOK5IzsMCpFZBw/Cq6/maAijVsv5SpX43MuL06dPc+bMGXNwaGNjQ7Vq1ahRowY1a9akRo0a1KhRg+rVq2NnZ2eJN8iWCxcu4O3tTdT9+8zetI9LGkeSM/ipYUw2oNXpKWKtpXMFB0oVzni3uzNnzlCzZk127NhB8+bN05zPaKfBjIwaNYqZM2eyf/9+XnnlFf755x9atGhBo0aN2LBhA9bP+Q6Pj2vRogVRUVH8888/aDSavJ6OEEI8NyR4FiKzlIK6deHUqey1qkuxfj08WFBnNBq5cuUKZ86c4cyZM+aA+vTp09y8edN8S/ny5c0B9aOBdfHixXM1MAoODqZdu3Y4ODoxYfUOrhgyt/WzBtBq4K1KjlR0TD9oXbduHV26dOH69euULFkyzfnExEQcHByYMWMGgwYNeuozExMTadKkCXfv3iUoKAgHBwd27NhB27Zt6dKlCytWrECn02Vq/s+D7du306pVK/744w86dOiQ19MRQojnhgTPQmTFggUwYED2g+fSpeHSJchEEBcREUFISEiqgPrMmTOEhYWZa1mLFSuWJqCuWbMmFSpUyHGguH37drp06UK1atUY9/NmzsRmPUjXa6BntSK42qXdpnvq1Kl8/fXXREZGZvgLQIMGDahTpw5LlizJ1PPCwsKoX78+//nPf1i6dCkAa9euxcfHh/79+/PDDz+8MFlYpRRNmzYlKSmJv//++4V5byGEyG0SPAuRFdHRUK0a3LqVua25H/fddzBwYI6mkJCQwLlz51IF1ClfKfW9OS0B+fXXX+nZsyfNmzdn3orfWHUpMVtz1QBuhfW8V61ImnN9+/blxIkTHDp0KMP7P/zwQ/bv38/x48cz/czly5fTs2dPli1bRo8ePQBYvHgxffv2ZezYsXz11VdZfo+CauvWrXh7e/Pnn3/i7e2d19MRQojnggTPQmTV8ePQsCHEx2c+gNZooF8/U+Y6lzKARqORq1evpgqoU/77xo0b5uueVgLi5+fHkCFD6N69O4sWLWL7jUSOhseTkx8U79csgott6uxzo0aNqFKlijlDnJ6FCxcyYMAA7t+/n6W67549e7J27VqCg4OpXLkyADNmzGDEiBHMnDmTYcOGZe9FChilFA0bNkSn07F3717JPgshhAVI8CxEdgQHg7c33Lnz5A4cer1pZ8KhQ2HGjEyVa+SGlBKQx+uqz58/b+7yUbRoUezs7Lh69SqvvfYan376KdVq1WZDtFOGCwQzQwO8XNyW1m4Pt+tWSuHs7Mynn37K2LFjM7w3q4sGU0RFRfHyyy9TrFgx9u7da14sOHr0aKZMmcKSJUvo3bt3tt+pINm0aRMdOnQgICCAli1b5vV0hBCiwJPgWYjsun3blEmeOxeuXycJ0FtZoQFTRlop08LAQYPg9dfzeLLpS0hIICwsjBMnTjB16lSOHDmCm5sbERERxMTEUKt5O3rOzDgznFn2Vlo+qVPM/P3t27cpUaIEq1evxsfHJ8P7srpo8FGHDx+mUaNGDB8+nKlTp0JkJGrJEs5NmYK6eZMyJUtSuFw5aNsWPvgAypTJ9vvlZ0opXnnlFezt7dm5c2deT0cIIQo8CZ6FyCmDgclNmlDu5k3ea98ebG2hVCl45x0oWzavZ/dUsbGxdO3alS1btrBkyRLee+89lFJcuXKFvRdu8a9D+Rw/Q6+B/9Z3MX+/d+9emjZtyvHjx6lTp84T783qosFHTZs2jW9HjeJw27a47dgBiYkopUhVvKDTmX7R6dQJvvwSnjKfgmj9+vV07tyZnTt30qxZs7yejhBCFGgSPAthARUrVsTHx4cZM2bk9VSyJDw8nI4dO3L8+HF+//132rRpk+p88J14/rwcnePnaJSRHq5JlC5dGo1Gw48//siHH35ITEwMtra2T7w3O4sGUxhPnuTuyy9TJDGRtP0+HqPTgY0NrF0LrVtn+Vn5mVKKl156CRcXF7Zt25bX0xFCiAJNdhgUIociIyO5ePEiL730Ul5PJUv+/fdfGjduTFhYGDt37kwTOAMU0ltmgdm9O7dwc3OjSJEieHl5MWvWLIoUKcJff/3FuXPnnri7YmZ3Gkzj8mW0LVvinJz89MAZTKU28fHQsSP8/XfWnpXPaTQaJkyYQEBAAMfnzoV33zX9q4ijI7i4QL16ppr88PC8nqoQQuR7mfo7RQiRseDgYADq16+fxzPJvOPHj9O2bVtsbW3Zv38/VapUSfe6cvZWaIGcbEqukpO5cGgXAPfv3ycsLIzo6GiSkpLo1KkTYGqtV716dWrWrEmtWrWoWbMmNWvWpGrVqnh4eGA0GgkODs7SokF69oS7d9FkpaWg0WgKort0MfXjfo52JexiNBJmbU2lTz55uJA1RXg4jBoFY8ZA9+6mQNrFJePBhBDiBSZlG0Lk0KxZsxg9ejT3799Hr8//v4/u3r2bTp06UalSJTZt2pTu7n5gKumYO3cuZ21LU6NFB3T6zO0umB7fak5EXb3Arl272LlzJ7/++isGgwGNRkPlypUpU6YMtra23L9/n7Nnz3L79m0AdDodlSpV4ty5c7Rq1YqePXtSq1YtatSogb29fcYPPHHCtBtkTqxaBV275myM/GLqVPjsMxTw1H9L0OmgXDkICICKFZ/B5IQQomCR4FmIHPL19eXUqVNP3OwjV927Z+r8kZQERYqAqyto06/I+v333+nevTtNmjTh999/x9HRMc0158+fZ+bMmSxatAiAD0eOw7XzB9mamgYoaaend/WHm6QkJiZSqFAhJk6cSKlSpdi5cye7du3i0qVLaDQa6tWrh6enJ+XKlcPOzo5Lly6xePFikpOTzZvAAJQtWzZVljola+3s7GzaiGbBgtTZ1azQ6Uy9vPfsyd79+ckPP8DHH2ftHr3eVNZx6JBkoIUQ4jESPAuRQ/Xr18fT05MFCxY8u4cmJ8Off4KfH2zdmnq78PLl4ZNPoE8fcHY2H/7hhx8YOHAg77zzDkuWLMHGxibVkIcPH2b69On83//9H8WKFeOTTz5h4MCBODo68sXvOylctT7aDILy9CijEZ1Wy3vVnChT+GHW+vTp09SqVStN54eLFy+aA+ldu3Zx4cIFAOrUqYPRaOT+/fvs3LmT8PBwTp8+bf46depUqi3LS7i4cPHuXQo9qf92Zl24ABUqmH4xCQgwlXLExoKTE7i7w8sv5/wZueniRahc+cm9yDOi08F7KWJ6iwAAIABJREFU78FPP1l8WkIIUZBJ8CxEDiQkJGBvb8/s2bP5OKvZvezau9dUl3r5sinASa+mV6s1nRs1CvX55/zviy/48ssvGTp0KN988405CDYajWzevJnp06eza9cuKleuzKeffkrv3r2xs7Pj3r17dO3alV279/D1n/+QYO+CJhMBtDE5GaUUZ3+bx8JJY7Gyehg8r1mzhjfffJMbN27g6uqa4RiXLl0yB9IbNmzg1q1bANSsWZNmzZqZv0qVKkVCQgJnz57l1KlTnD9yhM+mTs3ih5qBtWtNG+J8/71pS3YwfbYpwWj9+jB4sGkBXqFClnmmJY0eDdOnZ28reQArK7h2TbLPQgjxCAmehciBoKAgXn75Zfbv30/Dhg1z/4EbNoCPjykYykQ2UQGHK1emYVgYk6dOZcSIEWg0GhISElixYgUzZszg1KlTeHp6MnLkSLp06YLuwS6Ily5dokOHDly+fJnff/+dvfv2ExRvi5dPb4xGI9p0dks0Ggxo9XoS7t9j3cTBHN+1lW7durFkyRJzwD5lyhSmTJlCREREpreLTtlp8H//+x/Xr19n165dhISEAFCtWrVUwbSbTgelS2fyA33K56fXo1Eq4+AzJZAuV870LwDVq1vkuRaRkAAlS0JkZPbH0GphyhQYMcJy8xJCiAJOWtUJkQPBwcFoNBrq5nRxWmYcPAhvvWWq483kP8NrgAZhYRz39mbkyJFERUUxbdo0KlWqRN++falUqRK7du3i77//xsfHxxw4BwYG4uXlRXR0NAcOHMDa2povPv8f7lbROB37k12LZ2OtSft7d8SFM5xYPhvfCtZcCNyPh4cHy5YtY/jw4aT8nn7mzBlq1KiR6cAZTKUb1tbWODs7M3/+fM6cOcP169dZtWoVrVq1Yt++ffTo0YOyZctSp3HjTI/7VAbDk7O2Kf8/XL0KXl5w+rTlnp1Tf/2Vs8AZTO+Xjc1phBDiuaaEENk2aNAgVa1atWfzsAYNlNJqlTJVOGf5a5qvr3JwcFDW1taqb9++6uTJk+k+Zv369crOzk55enqqGzduqLt376py5cqpJk2aqMTERPXSSy+pN954QxmSjar3x4NVp5791I2YJHU/MVn9+OOPSqPRqEuXLqlff/1VAapnz54KUBMnTlRKKfXqq6+qXr16Zfn1PTw8VO/evTM8f+vWLbV69Wr1ycCB6oqVlUrO5ueU8mXM6j16vVJlyigVEZHld8sVCxbk6P3NX0WL5vWbCCFEviKZZyFyIDg4+NlsjhIYCP/8k72FX0AS4LRiBQMHDuTixYv4+/tTq1atNNf5+fnRpUsX2rZty44dOyhRogT9+/cnKiqKn3/+meDgYIKCghgwYAA6rYbr585gFRuJq50eeystXbt2pVChQixdupS3334bX19f1qxZw9ChQ5kwYQJz584lJCSEGjVqZPkdPDw8CAwMzPB88eLF8fHxwe+77ygzeXKWMtvpyfLdBoOpPji/ZGoTEjLsupIliYk5H0MIIZ4jEjwLkU0pG3c8k81Rvv/e1D4sm6yA/no9k8eOpVSpUmnOJycnM3ToUAYPHsywYcP47bffsLOz48cff+T//u//WLhwIeXKlWPevHmUL18eb29vAO7cuYPLI4vJHBwc8PHxYcmSJSilmDNnDq6uruzfv59BgwYxaNAgIiIiqJ6N2uAs7TTYpw8aq+z3pc6ROXOy/UuORTk5WWYeTk45H0MIIZ4jEjwLkU0XLlzg/v37zyZ4Xr8++z2LH9DExqbbtzgmJoY333wTPz8/vv/+e2bMmIFWq+X06dMMGTKE/v3789ZbbxEZGcnKlSvp37+/uTb6zp07pr7Kj+jTpw/nzp1j3759ODg48PPPPxMYGIijo6M56E7pnJEVj+40+FTFipna9WUj+5yjFdRKmdrbbd+ek1Esw9Mz52Po9aZ+10IIIcwkeBYim1KCuFwv21AKIiIsM1Z4eKpvb9y4QbNmzdi+fTsbNmzgo48+AiA+Pp53332XChUqMGvWLACWL19OUlISffv2fWS48FSZZ4BmzZpRoUIFFi9eDICXlxeff/45kydPNpeKDB8+nL1792Zp6imLBp9UupHK1KnQtm2WShcytQPf0+j1ps1F8lr16tCsmallYXYZDKYNZ4QQQphJ8CxENgUHB1OyZMkn9irOdx7pTHnixAm8vLy4fv06e/bsoX379uZzo0aNIiQkhJUrV2JnZ4dSinnz5tGlSxdz2UdcXBwxMTFpgmetVouvry+//vqreUfA0aNH06hRIxYuXEj58uXx9PSkY8eOHD16NNNTt7a2pm7dupkPnvV6WLPm4RbbTwoiHwTYGlvbTM8nQxqN5X7ZyalBg7Lf41mjgSpVoHlzi05JCCEKOgmehcimoKCgZ1OyodGYtt22hAclFn/99ReNGzemaNGiHDx4MNV7bNiwgTlz5jB9+nTc3d0B2LdvHydPnuTDDz80Xxf+IIv9eNkGQO/evYmOjmb16tUA6HQ6li9fTlxcHElJSaxbt47KlSvj7e3NuXPnMj39py0aTMPGBlasMO3G2K6d6bPUak2bf1hZPcxKe3mZrqtaNfNjP4klgnBL6NQJ6tXLXr28UvDVV9kqfRFCiOeZBM9CZNOzWiyYnJzMZXd3DDkNYmxtoUkT/P39ad++PY0bN2bPnj24ubmZL7l27Rp9+vShY8eOfPLJJ+bj8+fPp0qVKrRs2dJ8LCV4fjzzDFChQgVatGhhLt0AKF++PM7Ozly7do0NGzawefNmnJycaN26NdeuXcvUK2Rp0WAKjQa8vU0bzFy4ALNnw5gxMGqUafe9o0dh/37o1s202UlOO1QYDJDOosw8YWVl+sWhZMmsB9ATJ8I77+TOvIQQoiDL6155QhREt27dUoBatWpVrj3j4sWLasKECcrNzU29ktNevTqdMn74oRo9erQC1IABA1RSUlKq5xkMBtWyZUtVqlQpdfv2bfPx27dvKxsbGzVt2rRU12/btk0BKiwsLN35L126NNX5+Ph4pdVqlZeXl3JwcFBhYWHq33//VW5ubqp27doqPDz8qZ9JYGCgAtS+ffuy+nFmzsqVOe+LrNcrdfNm7swvu65dU6pePfOfhSf9OVFarVKzZ+f1jIUQIt+SzLMQ2ZCyWNDSmeekpCR+//132rVrR8WKFfn222/p0KEDPxw+DO7u2c+KJicz6uJFpkyZwowZM/j+++/RP5aJnD59Ojt27GDZsmWpssk//fQTSil8fX1TXf+ksg0An//8hzcLFSLSxwc6dCCpZUt+Nhrx9/CgQrFi9OjRg9KlS7N161Zu3LhBhw4dzDXSGcnyosGsevNNU6eO7NLr4e23oUQJy83JEkqVMvUJ/+03eHQHxkf/PDk6wrBhEBICgwc/+zkKIURBkdfRuxAF0bRp01ThwoVVcnKyRcY7e/asGjVqlHJ1dVWAevXVV5W/v7+6f//+w4v27FFGvT7LO+cZNRr1u6ursrW1VatXr073+X///bfS6/Vq9OjRqY4bjUZVtWpV1b179zT3zJ07V+n1emU0GlOfiItTavp0pcqVUwpU4iO79SU9mI/BxkZ9D2rWkCFKKaUOHz6s7O3tVZs2bVRCQsITP6un7TSYY+PG5WgnR7V3b+7NzULerFlT/di0qVKzZin1ww9KrV2rVGxsXk9LCCEKBAmehciG7t27q0aNGuVojPj4eLVy5UrVsmVLBagiRYqoQYMGqWPHjqV7/eXLl9XHxYsrAyhjJoM7I6gthQurki4u6u+//0533MjISFWxYkXl5eWlEhMTU50LCAhQgNq1a1ea+7744gtVsmTJ1Afv3FHq1VczFXwaNBoVAerYvHnmZ1lbW6uuXbsqg8GQ4ef2wQcfqDp16jzpo82Z2FilXnnlyeUNGX099stHfhQXF6f0er2aO3duXk9FCCEKJCnbECIbcrJY8PTp0wwfPpwyZcrQrVs3kpKSWLZsGdeuXWPOnDnUrVs3zT03b96kVatWbLSzI3zFCjQppRIZtF9LBpRWy/c2Ngxzc2P/oUN4eXmluU4pxccff8ydO3dYsWIFVo/tyjdv3jxq1qxJ06ZN09wbHh6eumQjJgZat4bDhzO1s51OKRyAqh99RPTu3bRs2ZJVq1axevVqBg4ciHqkrd6jsrVoMCsKFYJNm6B+/az1SB440NSdIp87fvw4BoMBDw+PvJ6KEEIUSBI8C5FFsbGxnDlzJkvBc2xsLEuXLqVp06bUqlWLZcuW4evry+nTp9m9ezc9evSgUKFC6d4bHh5O69atiY6OJiAggBLdusHVq/Drr9CoUZrrE4sW5XOgnEbD/zVqxN4DB6hYsWK6Yy9btowVK1Ywb948KlWqlOrczZs3WbNmDQMGDECTTqePx7fmZuhQU+eKLPQV1gF6pTB4e0NCAl26dOHHH39k/vz5jBs3Lt17srTTYHa5uMDu3aZdCu3sTB07Hv8MUgLrsmVh/nzw88t5p45nIDAwEL1eT7169fJ6KkIIUTDldepbiILm4MGDClCHDx9+6rXBwcFq4MCBysnJSQHq9ddfV6tWrVLx8fGZelZkZKRq0KCBKl68uDp16lT6F924odSxY0r9848ynjunvvr8cwWoihUrPrF+ODQ0VBUuXDjD+uGvv/5a2draqrt376Z7vk2bNsrHx8f0ze3bSllZ5ahLxb6PPzaPPWPGDAWob775Js1zExISlLW1tZozZ06G72ZRUVGmumAPD6WKF1fK3l6p0qWV6tBBqY0blXpCiUl+1K9fP+Xu7p7X0xBCiAJLgmchsmj+/PlKp9Op2AwWWN2/f18tXLhQvfLKKwpQJUuWVKNHj1bnzp3L0nOio6NV48aNVZEiRVRwcPBTr09ISFB9+vQxB+k2NjYZBr4JCQnKw8NDVa1aVUVFRaU5n5ycrCpUqKB8fX0zfJ6Hh4f64IMPTN9MnZqjRXYGUId1OnXx4kXz+Clt9RYtWpT6wdevq7mlS6vD5cop1ayZUu3aKdW/v1K7din1+OJFkUb9+vVV375983oaQghRYEnwLEQWDRgwQNWuXTvVMaPRqA4dOqT69++v7O3tlUajUe3bt1dr1qxJswgvM+Li4lSrVq2Uvb19hgv9HhUREaFatmyprKys1LJly9T169eVTqdTfn5+6V7/3//+V1lZWal//vkn3fObN29WgDpw4ECGzyxfvrwaM2aM6ZtKlf6/vfuOr/H8/zj+OudkmjFrU9SOVYqqrVZR1NaaqbZ+1WoprQ7VQYfSgdp7tvo1WjFrlaISiT1qbzWCRPY59++Pu0lF1skwEu/n4+GBe15JK965fK7Plfb+yGD0qF49drGgw+Ew+vfvb1itVmPp0qWG4e9vGJ07G4bNZtgtlrhdR1xczJ/LljVniTPYbPD9ErNYcOLEiQ96KCIiGVYq9mwVyViiHAbHb0YSHOUg2mHgbrNQIIsLBbO4JFjLm5zAwECqVasGwI0bN5g/fz5Tp05lz549FClShMGDB9O3b1+KFSuWqvFGhoczvEkT8vn58dfQoZS/ehXOnYM7dgK806lTp3juuee4ePEi69ato0GDBgC0adOGqVOn8n//939xPs41a9YwZswYxowZk+iisUmTJlGlSpUEFxnGiK15Ngw4dSpVH+vdbgYE8MUXX/D+++9jsViYOHEiQUFBLO7Uibb8u0jDbo+/WCM62vz56FF47TVYs8bcbjuROvJH1d69e7VYUEQkjSyGkciSdpEM7nq4nd1Xw9h7LZxIB1gwf8T0gcjnYaNGfk8q5HLH1epciLbb7WTPnp2+ffsSEhLCTz/9RGRkJG3atOHll1+mefPm2FLSoeFOQUHYZ8zgyogRFLh7sxCLBdq0MRewNWkSuzBt165dtGnThqxZs+Lr60vZsmVjb1m5ciWtW7dm165d1KhRAzAXAVapUoUqVaqwatUqrAkscDt37hzFixdnwoQJvPrqqwkONTw8HE9PT2bPnk3PLl3Mrb/TwU/t29N9xQq2bdsWG9yjlizBpVMnDFKwwtlqhZYtYfnylHXMyOR+/PFH3njjDYKDg/FIp/9mIiKPmod/abhIKvhfCWPKoSD8r5jBGcDgv+AMcCXczqozIUw9FMT18OQ7RFy7do3333+fsLAwJkyYwJYtW/jggw84e/YsS5cupVWrVqkPzsuXYxQujGXIEPIntMueYZjt05o1MztsXLnCsmXLaNCgAY8//jg7duyIE5wBmjdvTuHChZk2bRoADoeD3r17YxgGs2fPTjA4A0yfPh1PT0+6d++e5OcCMGee3dzMnfXSQYfevXnyySfp0aMHwcHBcP48ri++CBZLyr5YORzm5+urr9JlXJmFv78/lSpVUnAWEUkDhWfJdHZcDmXdOTOAOvPPKsGRDuYcvZFggDYMg40bN9K9e3cKFSrEmDFjAPjll184duwYw4cPp2DBgmkb8Ny5GO3bY4SFYSWJP5T/liYYfn7cLFeOV9u3p3Xr1mzYsIF8+fLFu9zFxYU+ffqwYMECbt++zXfffcfq1auZPXs2BQoUSOQV0UydOpUePXqQI0eORId89epV4N/wbLFA6dLxW7mlgkuFCsyfP5/Lly/z5ptvwpQpEB2NJTX/QGYY8O23EBWV5nFlFn5+firZEBFJI4VnyVSO3ohg04WUbZ5hABF2g0XHbxJpN0Pa5cuX+fLLLylTpgyNGzfG39+fUaNGMWDAAIoWLUqHDh0SnblNkS1bMPr0AcNw+g+jxW4ny/Xr+D/2GIvmzEm0PzRA3759CQ4O5uuvv2bYsGG8/fbbtGjRItHrfX19OX/+fKLlGjFiZp5jN0kZMMDJ0SfCZoMGDaB0aUqXLs0PP/zA3JkzCR83LkV9o+P55x9YsSJtY8skwsPDOXDggMKziEgaKTxLpmEYBlsvpm7XOQO4Feng563+vPDCCxQpUoQRI0ZQu3ZtNm/ezOHDhxk8eDBHjhxJ9c6CCRo+HMPhIKVztq5A4cuXsS5bluR1jz/+OI0aNeLLL7/E29ubUaNGJXn9pEmTqFmzZuyCyMTEmXkG6NkT3N2dHn88djsMHBj72169evFZ3bp4BAen/plghvIpU9L2jEwiZrFgTP27iIikjsKzZBoXQ6P5x4na5cQ4HHZ2XQ7l6NGjjB07losXLzJ37lzq16+PxWLBMAwCAgKSDZZO278ftm3Dmto1uzabuatdMhwOB+Hh4Xz22We4JxFwT506xerVq5OddQYzPLu4uPxX2pEzp9nlIjWz8S4u8Pjj0LZt7CGLxcLAVq1Iw5yzyW6Hv/9O61MyhZidBRPa/l1ERJyn8CyZxu4r4Wn6H9pqtVHgiQqs2u7PwIEDyZUrV5zzly5d4sqVK+k287z3tddIUzWu3Q5//gn79iV6yaJFi9i8eTNZs2bl999/T/JxU6dOJUeOHHTp0iXZV1+7do08efLEbfX3xRdQv37KulvYbJA1K6xeDa6ucU5lMQws6dEpI6EFmI8gPz8/LRYUEUkHCs+SaVwIjYrTTSO1LoclPN8ZGBgIkC7hefr06bhs3Ypr8pcmzWKBrVsTPHXy5EleeeUVunbtio+PD7NnzyYyMjLBayMjI5k+fTovvfQSWbNmTfa1sT2e7+TmBr/9Bs2bm79PZhbaYbFA/vzm+MuUiX9B9uypn5W/6zlizjyrZENEJO20SYpkGhH2tActe3QU7304gm1zJ8TOqlosFiwWS2zwrFq1auxiwZhzKfl1WFgYN27c4GKaR4s5cxsUFO9wVFQU3bt3J3fu3EyaNIlz587x3XffsWLFCjp27Bjv+uXLl3P58mVeeeUVp1577dq1+OEZzFnk5cvNDUq+/x78/bH/W/LiYrOZgToqimBPTyZZLAzy88O1UKGEX1K+vNlyLi1cXKBSpbQ9IxMICwvjwIEDTpXkiIhI0hSeJdOwWS0415wuiWfYbDR/tinPlS9MzP5BhrmNPbNnzyYkJITXXnst3rk7f53UuYMHD/LTTz9RtWpVPE+cgFu30jReDMOc8b3Lxx9/zK5du9i6dSs5c+YkZ86c1KlTh2nTpiUYnidPnkzdunWp5GTQvHr16n+dNu7m4mIuIOzZE/z9WdyhAwVsNhrXrQu5ckH9+px8/HGG1qjBE3/9Rbt27RJ+TpMmULQonD3r1JgSFB1t1mI/4rSzoIhI+lF4lkwjh6uVW5FpnKm0WGnZuAEVcjWLd2rSpEm0adOGIUOGpOrRq1ev5rPPPqNTp04sWLAAW506sGtX2sZrt5ulD3fYuHEjo0eP5rPPPqN27dqxx318fPDx8eH06dMUL1489vjRo0f5/fffmTt3rtOvvXr1apxnJOrJJxlusdCtSxcajx4de7gyUL16dWbOnJl4eLZazQ4c776b+hno4sXh2WdTd28m4u/vj6urK5UrV37QQxERyfBU8yyZhnfutC+EigwL5fsPBvPnn39y5871wcHB/P3336nutLFp0ybat29PixYtmDdvnrkTYbduad9YxM0NWreO/e3Vq1d58cUXadiwIcOGDYtzaefOncmaNSszZ86Mc3zKlCnkzp07wRnpxCRatnGXyMhIzp49y+OPPx7vXJ8+fVi5ciWXL19O/AF9+5o1y6ntqf3uu6m/NxOJ2VkwqW4rIiLiHP2tIplG+VzuuKbh/2gLBpbzR/H9dQV169albNmyfP7555w5c4a9e/cCqVssuGPHDlq3bk29evX46aefcI3pKtG7d4IlF05zcYHu3SF3bsAsDenXrx8RERHMnTs33lbh2bJlo1u3bsyYMQP7vxuPhIeHM2vWLHr37p2iLgxJlm3c4cyZMzgcDkqWLBnvXPfu3bHZbMyfPz/xB+TJAytXmrXdKQnBFgv06wdO1nBndtpZUEQk/Sg8S6bhZrNQNY9HijcciWFg4bU2DTl16hS///47tWvXZtSoUZQoUYJ+/fphs9koVqxYip4ZEBBAixYtqFatGkuXLo0TUA0vL47WrEl0KsdLdDT83//F/nbixImsWLGCGTNmULhw4QRv8fHx4ezZs6xbtw4wtxm/du0a/fv3d/q1ERERhISEODXzfOLECYAEw3Pu3Ll5/vnnmTlzZpxZ/njq1oV16yBrVuzJzdTHfMMwYABMnpwuW4ZndDGLBdVpQ0QkfSg8S6ZSr2BW8nnaUhWgmxTOSl4PF6xWK40bN2bOnDlcunSJGTNmcPPmTex2O8WKFaNfv35s2bIl6cAHHDx4kGbNmlGmTBlWrlwZpwXcjRs36Nq1K3W3buVm1qwYqelnPHQo/BuI9u7dy+DBg3n99ddpe8dmI3erWbMm3t7eTJs2DTDruBs3bkzZsmWdfm3M1tzOhOeTJ09is9koWrRogud79+7N/v378ff3T/pBDRpw6tdf+RaI+PcbkEgwP2+urv+F5iZNzHZ5P/yQsn7TmdjevXux2+2aeRYRSScKz5KpuNksdCmVM8UBun7BLNTM7xnvePbs2enduzeFCxemY8eODBkyhI0bN9KgQQNKlSrFyJEjOXnyZLz7jh07RtOmTSlUqBCrV6/+byc+4M8//6Rq1aqsWbOGCYsXkycgAEvBgmYZhpPCXnoJ/l2AFxoaSrdu3ShTpgxff/11kvdZLBZ8fHxYvnw5W7ZsYevWrU63p4sRszW3M2UbJ06coFixYv+VqtylWbNmFCxYMF4ddkJGzprFNwUK4Dh/nqipU1mSNy/Ls2YlqmdP+OgjOHYM1qyB557TjPMd/Pz8cHV11c6CIiLpROFZMp2srlZefMKLJ/N5JFoDHROt8nrYaPd4dp4ukCXR50VFRbF//37q1avHiBEjOHbsGJs3b6ZRo0aMGTOGkiVL0rBhQ2bOnElwcDCnT5+mSZMm5MiRg3Xr1pH735pku93OZ599Rv369SlUqBCBgYF07twZnnjC7LoRE/oSmjH995jDy4sPs2Wjwz//xG4I8/bbb3Py5EkWLVrkVN3yiy++iM1mY/jw4eTPnz/xbheJiAnPzpZtJFSyEcPFxYWePXuycOFCwsPDE73u2LFjzJ07l3fffRfP3Llx9fGh2pYtdI+K4k03NzM8lyqVoo/jUeHv74+3t7cWC4qIpBdDJBOLiHYYgVfCjDlHgowJ+64Z3+29akzaf81YcfKmcS4k0nA4HMk+Y+/evQZgbNmyJd65kJAQY+7cuUaTJk0Mi8VieHp6GtmyZTMKFChgnDlzJva6s2fPGg0aNDCsVqvx4YcfGlFRUQm/7PRpw/jgA8MoVMgwrFbDMDs5m7+22Qwjd27jUq1axrNgjB0zxvjll18MwJg0aVKKPi+dOnUyrFarMWzYsBTdZxiG8dNPPxmAcePGjWSvrV69uvHyyy8nec3hw4cNwFi8eHGi1/Tq1csoWLCgERoaGuf4jz/+aADG8uXLnRv8I6hy5crJ/jcQERHnKTyLJGPOnDlOhcXdu3cb+fLlM1xcXAzAKFasmPHBBx8YEydONHLnzm0UKVLE2LRpU/IvPH/eMDp0+C8wxwTomB8uLoYBxkkw+nh4GB06dHDqm4A7vfPOO8kG1sRMnDjRcHFxceqdXl5exujRo5O9rk6dOkaLFi0SPHf06FHDarUa33//fbxzDofDaNu2rZE3b17jwoULyQ/+ERMaGmrYbLYUf3MlIiKJU9mGSDICAwMpWbIkOXPmTPSaoKAg+vbti9VqZf/+/Wzbto2mTZvy1VdfMWDAAAAGDx6cfKu7w4fNRYArVpgbg/zbUi6OaLM/RzFgRng400uUiN3+21mbNm3C09MTX1/fFN0H/7WpS+6dQUFB3LhxI8Eez3fr3bs3a9eu5fz58/HOffbZZxQoUICXX3453jmLxcK0adNwcXGhd+/eONK6nXcms2fPHux2uzptiIikI4VnkWQEBAQkuTlKcHAwLVu25MyZM6xfv56yZcuSI0cOdu7cicVioV+/fjz11FMMHjyYAgUK0L17d9asWRPbaznWhQvQuDH8809sQE5KzB/JBFw3AAAgAElEQVRer7Fjze4SKfh4du3aRYcOHfjpp5+4efOm0/eC8xukJNWm7m5dunTB3d2dOXPmxDl+9OhR5s2bx3vvvZdoPXe+fPmYNWsWa9eu5fvvv3fiI3h0xOws6Oy26yIikjyFZ5EkGIZBYGBgojPGoaGhtGnThkOHDrF27VoqVqzIhAkTqFGjBlarFX9/f6ZNm8aqVas4e/YsI0eOJDAwkBYtWlC8eHHeffddDh06ZD5s0CC4ciXh2ebkxvnmm5BA14+ETJ48mUKFCjFq1CgiIiJYuHBhit7l7AYpKQnPOXPmpEOHDsyaNStOC8BPP/2UggUL4uPjk+T9zZs3Z9CgQQwbNix2QxsxO21osaCISPpSeBZJwtmzZwkKCkowPEdERNChQwd27dqFr68vJUqUoF27drz++uv4+Piwc+dOKlasGHt9oUKFGDp0KAcOHOCvv/7i+eefZ8qUKVSoUIHnqlXDsWSJUzPOCbEbBje++irZ64KDg5k/fz4vv/wyxYoV47nnnovt+ewsZ2eeT548SY4cOWK7jSSnT58+HD16lO3btwNw5MgRFixYkOSs851Gjx5NuXLl6N69O2FhYU69M7Pz9/dXyYaISDpTeBa5Q3CUna0XQ1ly/CZzj95g+blIXvj4ewpUrB5nRjQqKoquXbuyadMmVqxYQWRkJJUrV2br1q0sW7aM8ePH4+kZv280mHW6NWvWZMKECVy8eJGff/6Z7qGhyW66khQXwDp1KlEhIUlet2DBAkJDQ2Nncn18fPD39ycgIMDpd129ejVFbeqcrcdu1KgRxYoVi+357OyscwwPDw8WLFjA8ePHGTZsmFP3ZGZhYWEcPHhQm6OIiKQzhWcR4FJoNEtP3GLi/iC2XQrl2K0ozt+O5ranF9VadWL9DTcmHwzC70oYUdHR9OrVi5UrV7J48WI2bNhAkyZNKFu2LHv37uX55593+r3u7u507NiRHg4Had0PL4fdzoJ+/RI9bxgGP/74I61bt6ZIkSIAtGrVioIFCzJ9+vTEHxwUBOPGQa1aULw4vwUE8Mn//gdvvmkucExEcj2e72a1WunVqxeLFy9m9+7dLFy4kOHDh6eo5KBixYp8/fXX/PDDD6laDJmZxCwWVHgWEUlfFiMt010imcChoAh+PRWMATjzh+H2qcN8/WJLvvnqC+bNm8euXbv45JNPGDZsGLbUbgmdIwcEB6fu3jv0BV7asIFGjRrFO7dz505q167NypUradWqVezx4cOHM3HiRC5evBh3tvzyZRg+HObPh8hIs1HenVxczDKTBg1g1Ch4+uk4p0uXLk379u2T3fXwTidOnKBUqVLUqVOHc+fO8ffff6e4XtcwDFq3bo2fnx979+7lscceS9H9mcX48eMZPHgwt27dUs2ziEg60syzPNKO3ohg+algHDgXnAE8i5Zm2KJ1vP/hh1y+fJmtW7cyfPjw1AdnwIiKSvW9sc8AvMuU4cUXX4zdBfBOkydPpnjx4jRv3jzO8b59+3Lz5k1++eWX/w4ePQo1a8Ls2RARET84w3/12X/8YQboRYvuOBXN6dOnUzTzDObiwpo1a7J9+/YUzzrHsFgszJgxI/Zje1TnB7SzoIjIvaHwLI+s4Cg7y0+lfLbXanPBo1BJeo/8loCAAGrXrp2i+y9fvsz69esZN24cffv2pWbNmlxJYmtqZ1mAXm++SURERLzQGBQUxKJFi+jfv3+8kF+6dGkaNWr038LBixehUSOzdZ4znT9i+lH36AH/lkqcO3eO6OjoFIdnMMs3gARnz5312GOPMXPmTHx9fZkwYYJ5MCQEpkyBTp3MloBNm0K3bmboj4xM9bseVv7+/irZEBG5B1we9ABEHpTAq+E4UjkpabFaebzBc2TLniPRa0JCQjhw4AD79u2L/bF//36uXLkCmAvcKlasiLe3NzciIsh74ADWtGzyYbGQu2VLZhYtStu2bZk4cSL/93//B8DcuXOJioqib9++Cd7q4+NDjx49OHr0KGUGDzZLNlLSMi8mqHfuDBcuxLapc2aDlDsdPHiQnTt34u7uzqJFixgxYkSK7r9Tq1atGDhwIGMHD6bbjh3kWbYMbt8Gq9UM/AA2mxme8+SB116DwYPByyvV73xYhIaGcuDAAQYOHPighyIikumo5lkeSXbDYML+64RGp+1//+dLZKd0NitHjx5l//79cYLyyX/7LlutVkqXLo23t3ecHyVLlvxvFnjjRnM2NLVsNnj2WVi1CoCBAwcydepU/vrrL7y9valUqRIVKlTg559/TvD28PBwChUqxLAuXRg2eXLCZRrOsFhg/HimubnRv39/wsLCUlQ20K1bN/78808aNWrE5s2bOX78eOxMdGqE79zJ7bp1yWm3Jz9TYLNBqVKwbh0UK5bqdz4Mtm/fztNPP42/vz/Vq1d/0MMREclUFJ7lkXTsZiRLTtxK0zMMh4PLhwP5sW8bIv/9Z/9ChQpRqVKlOCG5fPnyibat++9hBpQpA8ePpz64/vYbPPccYIbhp556iujoaL777juaNWvG+vXradKkSaK3v/HGG5SePp2BERFYUrFRC2CG5zJleL9DB+bOm8eZM2ecvvXAgQN4e3szadIkypcvT/369dmQyOJHpxw9Ck89hREcjMXZGX0XFyhcGHbtgnz5Uvfeh0DMYsHg4GDc3Nwe9HBERDIVhWd5JPldCWP9udtpfk5UcBC59q6Jnd11Zue9RC1ZYtbjppDDasX61FOwdas5e/qvgwcPUqNGDQoXLgyYm44kNYu7d+9e8lepQoGUjzye95o1Y3tEBJs2bXL6nq5du7Jjxw6OHj2Kq6srZcqU4emnn2b27NkpH4DDAeXLw4kTKd94xmYz66FXr075ex8SvXv35sCBA+zatetBD0VEJNPRgkF5JEXZDZzbuiNpObxy8/rrr9OgQYO0BWeAjh3hiy9SdIvdYuGEw8G2F1+EDz4wyw08PcHNjQr16rGnVCmKHTtGndq1ky1/qFypEvnTMv47RJw8maLFggcOHOCnn37i/fffx83NDYvFQu/evVmyZAnBwcFmAL56FW7c+K9eOSnr15szz6nZsdFuhzVr4MiRlN/7kNBiQRGRe0fhWR5JbjaL063pknLz+lW+++47tmzZws2bN9P+wGHDYNIkc/YzqdZ3LmYFr6VKFW7lzUud11/H+OorOHsWwsMhKgquX6fkwYP8Dnw8fz5XJk9O+t2Rken2BeHmpUspCs+ffPIJxYsXp1evXrHHenbtSuvQUG5Xrw6urmYZRa5c4O5uztBv3px4icv48bGfo1RxcTH/O2RAoaGh2llQROQeUniWR1Iej7Tu5weGw86Vk0cZOnQoDRo0wMvLi5IlS/LCCy/w6aef8ttvv3Hu3LmU9xl+5RU4eRLee8/sAnE3iwWaN4fx47GePUu1oCCskGBdr+3fYyUMg3yvvoo9qQ1L3N0x0hI473A2ONjp8Lx//35+/vnn2FlnAObMoWjt2iwG8h07FveG6GhYtgwaNoRy5eDPP+Oe/+cfs/47NbPOd75j2rSUdRx5SAQGBuJwOKhRo8aDHoqISKakmmd5JBmGwaSDQdyMTENrOKBzqRwU9bRw+PBhAgMDCQwMJCAggMDAQIKCggDImzcvVatWjf1RrVo1ypQpg4szQTUyEjZtgkuXzM1KvLzMzUsMA2rUgJs3Ux7wpk2DxLbxrlkTh59fmr6rNqxWCjkcLN2+3ake2J06dcLPzy+21plPP4WPPnLuZVarOUP/888Qsy26n5/5OUoPV68m/A3MQ+yHH35gyJAhWiwoInKPKDzLI+uvf8LYcD71iwZzuFp5rWIuLJb41dOGYXD27NnYIB0Tqk+fPg2YPZ69vb2pVq1abKiuXLkyWbNmde7lzZvDhg0pnl01AMNmw3ruHBRIYGngnDlwR+lEirm4cL5GDYrs2MGlS5eS3Rp73759VK5cmWnTptGvXz+zVOK111L2TovFLLPYtMncInzTJnOTl/Rw6hQUL54+z7pPtFhQROTeUniWR1Z4tINJB4OIsBupqn9uViQr1fMl04LuLkFBQezZsyc2VAcEBHDw4EHsdjsWi4UyZcrEzk7H/Jw//13L+I4fh9KlUzFikx2IfP99PD/7LP7J8HCMAgWwpKF+e/Grr9J3zhxCQkIS/MbiTh07diQgIIDDhw/jeusWFCqUut3+rFZ44gk4dAgCAiC96n2vXzfrrDOQSpUqUa9ePX788ccHPRQRkUxJOwzKI8vDxUrnUjmY//dNHAYpCtBV8rhTLa9Hit+ZK1cuGjZsSMOGDWOPhYeHc/DgwTiz1CtXriQkJASAggULxgnUTdeswctmS3UvZisQPmYMHiNGYHF1jXvSwwPL8OHmwsWUstmgVi22WCyULFky2eC8d+9efvnlF2bMmGGWa8yYkfo6ZYfD7I7xxx/g7W3ORKel5hkgb17ImTNtz7jPbt++zaFDhxg0aNCDHoqISKalmWd55J0LieLnE7eITGYG2oIZsJ/M50GTwlmxJhMO08LhcHDixIl4ZR8XL17kAlAwHd6xYvBg2o4ZE/+EYRDerRtuixc7X/tss5nlDTt30qpnT1xdXVm+fHmSt7zwwgsEBgaas842G5QoYXYLSS0XF+jQARYvhhdfNH9ObYC22WD4cPjkk9SP5wH4888/qVu3Lrt376ZatWoPejgiIpmSwrMIEBxpZ/fVcAKuhhNuN7DGJOV/fzKAktldqZHfk5I5HtwirMuXLpGvSBGs6dAFooebG+8HBFChQoX4J+12VpYvz3N//43h4oIlsRBqs5kLFp98Enx9IX9+ypUrR8uWLRk3blyi796zZw9Vq1Zl5syZ9O7dGwIDIT3CnqurubByxw6z/jm1rFY4fRqKFEn7mO6j77//nqFDh3Lr1i0tFhQRuUfUqk4EyO5mo0GhrLxeKTdtimfjybweVMrtTtW8HtQrmIVXK+Sic+mcDzQ4AzyWP3+6BGeAwvny0bVrV8LDw+OftNlwHT+eWsDVpk3NUPrvcYfNRmyPktq1YdEis11c/vw4HA5OOrFBysiRIylVqhQvvviieeDKlXT5mIiK4vrp03T77ju2Y24ik2JWK3TrluGCM5ibo1SuXFnBWUTkHlJ4FrmDi9VCxdweNCmSjVbFs9OsaDaeLpAFL/e094VOF1YrZMuWLo8a8N57HD16lHfeeSfB802bNuVy8eK8V7gwXLhg1iSPGsXNt97ideCPCRPMLcG7dIF/w9qFCxeIjIxMMjwHBgaydOlSPvzww//a9aVjP+W6tWqxZu1aLk2ciLVw4ZRtlmKzQdWqkNyGMg8p7SwoInLvKTyLZDRPP5307oPOcHGhxAsv8M033zB+/HhWrFgR7xKr1Urfvn1ZtGgRwe7u0KcPDB1Kzi+/ZJanJ/4JdMU4ceIEQJLheeTIkZQuXZoePXr8dzB37rR9PP9yACWrVWP//v20f+01LNu2QalSZju7pGahY7Yuf/ppc2tvZ1sGPkRiFgtqcxQRkXtL4Vkko3n99TTN1EYDUc8/DwUKMGDAANq2bUvfvn05f/58vGv79OlDaGgoixcvjj1mtVopW7Yshw8fjnd9THguUaJEgu8OCAhg2bJlcWedASpXTnNni2jg0hNP8NuqVRQqVMg8WKwY7NoF33zzX79mF5e4PwAqVoSpU83gnMFa08WI2VlQM88iIveWwrNIRtOqldkPOZVcgCEnThAWFobFYmHGjBl4eHjw0ksvYb8rlBctWpQWLVowbdq0OMeTCs8FCxbE0zPh/tcjR47kiSeeoHv37nFPeHhA//5pmlF3AQqNHh2/RV727PDWW2Z/7DVrzF/36mXOpL/zjrm4cM8e8PGJLT/JiPz9/XF3d6dixYoPeigiIpmawrNIRmOzwejRqbo1GrhYqRLTDh+mQ4cOREREkCdPHubNm8emTZv48ssv493j4+PDzp072bdvX+yxcuXKJRqeEyvZ2L17N8uXL48/6xzjlVfMfs2pYADkywdt2yZ+kdUKzZrBV1+ZW5RPmQKjRkGtWkmXdGQQ/v7+VKlSxeyZLSIi94zCs0hG1LMnfPhhim4xrFaOu7tT5/x5vvzqKzZu3EiXLl2IioqiYcOGDB8+nI8++ojt27fHua9169bkz5+f6dOnxx4rV64cly9fJigoKM61SXXaGDlyJGXKlKFbt24JD7BUKewDBqRqt0cLwNix/3UFeQT5+fmpZENE5D5QeBbJqD75BMaNM2dUkyp3+HeW19KwIfmPHKFIhQoMGzaM4cOH4+vrG1uuMWLECJ566im6d+/OzTu253Zzc6NXr17MnTs3tq1duXLlADhy5EicVyU28+zv78+KFSsSn3UGIiIi6HzuHMsslpQH6M8/NzdGeUTdvn2bw4cPKzyLiNwHCs8iGdmgQWYt79ChCS90s1rNUobff4f168lVvDhr166lcePGfPrppwwYMIAlS5bQr18/bDYbCxYs4Pr167zyyivcuX9Sv379uH79OsuWLQOgTJkyAHFKN0JDQ7l06VKC4fnjjz+mbNmyic46h4WF0b59e1auXo378uVYBg40SykS+6YgpnuGm5tZfjF8uLOfsUwpZrGgOm2IiNwHhohkDuHhhrF6tWHMmWMY06YZxi+/GMa5cwleGhUVZfTp08cAjB49ehgWi8V49dVXDYfDYSxatMgAjBkzZsS5p169ekaTJk1if1+8eHHj3Xffjf39/v37DcD4448/4ty3a9cuAzDmz5+f4FhCQkKMpk2bGp6ensa6dev+O3H8uHHt5ZeNWzabYUDcHyVKGMY33xjGtWsp/SxlSt9++63h7u5uREZGPuihiIhkeinYPUBEHmru7tC8uVOXuri4MH36dB577DG++OILWrZsyaRJk/Dw8GDs2LGsXbuWgQMH8vTTT1O2bFnAXDjYq1ev2NKMuxcNJtbj+eOPP6ZcuXJ06dIl3jiCg4Np3bo1u3fvZvXq1dSvXx8Ah8PBRF9fhs6bR4lixVg4fDhVihY1S1Dy5gVv7/96M4sWC4qI3Ef620fkEWWxWBg9ejTjxo1j1apV1KpVi2+//ZYPPviA77//niJFitCtWzciIiIA6NixIzly5GDGjBlA/I4bJ06cwMPDgwIFCsQe27VrFytXruSjjz7CdlcJxo0bN2jWrBmBgYGsXbs2NjifOXOGZs2aMXDgQPr06cOuffuo4uNjfmPQpAlUqaLgfBd/f3+VbIiI3Cf6G0jkETdo0CDmzZuHv78/5cuXZ9SoUYwbN46FCxdy4MAB3nvvPQCyZMlCjx49mDlzJtHR0ZQtW5Zjx44RFRUFmOG5RIkSWO8Ith9//DHly5enc+fOcd55/fp1mjZtypEjR/j999+pU6cOhmEwa9YsvL29OXLkCGvXrmXChAlkzYC7/d1PISEhHDp0SIsFRUTuE4VnEaFHjx78+uuvnD59mmLFivHhhx+yYcMGvvzyy9iZaTBLNy5cuMDq1aspV64c0dHRseUad3fa+Ouvv/D19Y0363zlyhUaNWrE6dOn2bhxIzVq1ODy5cu0a9eOPn360K5dO/bt28ezzz57fz8JGVRgYCCGYSg8i4jcJwrPIgJAixYt2LBhAyEhIeTNm5chQ4bg6upKq1at6NWrF5cuXaJ69epUq1aNadOmxbariynduDs8x8w6d+rUKfbYxYsXadiwIf/88w+bN2+mSpUq/PLLL1SqVInt27ezdOlSZs+ejZeX1/394DMwf39/PDw8qFChwoMeiojII0HhWURi1apVi23btuHp6Un27Nl5/fXXefbZZ7HZbPTs2ROHw4GPjw+//fYbhmGQI0cODh8+jGEYcTZI2bFjB6tWrWLEiBGxs85nz56lQYMG3Lp1i82bN1OwYEF69OhBx44dqV+/PgcOHKBdu3YP8sPPkPz8/LRYUETkPlJ4FpE4ypUrx/bt2ylatCju7u68/fbb9OnTh3Xr1jF27Fi6d++Oq6src+bMoVbTVpyLtLH91D8Ue/IZij5RHjB3E6xQoULsrPPJkyepX78+UVFRbNmyhePHj1OpUiV8fX2ZN28eS5YsIV++fA/yw86w/P39VbIhInIfWQzDSM1uuCKSyQUFBdG6dWt27tyJYRi0bduW3377jS1/bmfhpl14ln2SXEXv3hDFIJc9lHFvvczIgT506dyZv//+myZNmuDu7s7y5cv57rvvmDJlCs2bN2fatGkUKVLkgXx8GdHl0GgCroZz/FYkEXYHABfPnKKoaxQ9Gz2Fl3sSO02KiEi6UHgWkUSFhobSuXNnfH19sVqtPN2mI00Gj8Y9SzYchgOrNX5Yc9jtWG028npYqW5coXXTRuTMmZPPP/+cIUOG8M8///DNN9/Qv39/LBbLA/ioMp6zIVFsOH+bi6HRWAHHXectGBhYKJndlSZFspLHQy38RUTuFYVnEUlSdHQ0Pj4+7Dh+gZfGzsFisWBNbNvsO1gwCLl+jbWfvk718k8wefJk6taty6xZsyhVqtR9GHnmcCgogl9PBWMAyX2xtgCuVgudS+WgSDbVQIuI3AsKzyKSrMuhUcw4eA3DYo3Txzk5Dns0wf9cZEKPJoz44H0GDRoUb7MUSdyJW5H8fPxWsqH5TmaAhp5lvMjrqRloEZH0pvAsIsn634lb/H0zMkUhLoZhGFR2Cea5ynfXR0tSohwG4/dfJ8Ke8s+6BcjnaaNPWS+VxoiIpDN12xCRJAVH2lMdnMHcBvy8Sy70fXrKHA6KSFVwBrO8458wOxdDo9N3UCIiovAsIkkLvBae5mdcj7BzNkRBLiX8roSRljljK7D7Str/24mISFwKzyKSpDMhUamedY5hBc7ejkqP4TwSgiLsXA6zp+nz7gAO3ojAoRl/EZF0pfAsIkkKi06H8GWB8Oi7G6xJYkKi0udz5TBIdemHiIgkTOFZRJJkTaf1Zrb0etAjwJ6Os8XRmnkWEUlXCs8ikqTsrtY01d4CGAZkcdGXG2d52NLvc5WezxIREYVnEUlGOS/3NNc8G0BZL7f0GM4jIbe7Ddd0+OpsPkcz/iIi6UnhWUSSVD6XO+5pCGAWoFQOV3K6aXMUZ7nZLFTO45HmGf8a+TzSZTwiIvIfhWcRSZKL1ULVvKkPcgbwZD7P9BzSI6FaXo80zfi7WKBibvd0G4+IiJgUnkUkWXUKeJLb3ZbiAG0YDvyWL2DiJ8OJjlaf55Rw3LrOBf8/cNjtqbq/ToEsuKveWUQk3ekrq4gky8NmpUvpHHi5O7940DAMyuR045nc8O2339KiRQuuXbt2T8eZWezatYvq1asz/e3enDsQYK64TIGKudx5+jHN9ouI3AsKzyLilBxuNnqV8aJcLjcskGCIjjlmM+z8Pvlr/l4ymUFvvMG6devYs2cPNWrUIDAw8D6OOuOZMWMG9erV4+bNmxjRUbQv6k7pnOZiy6S+YMecq5nPg+eKZ8Ni0UJBEZF7wWIYagIqIikTEuVgz7Vw9lwNJzjKgQHYLJDXw8aT+Twpn8udD957l2+//ZZdu3ZRuXJlTp8+TYcOHTh06BDTp0+nW7duD/rDeKhERkby5ptvMmnSJPLkyYPdbmf16tXUqlULwzA4GxKN/9Uwjt6IjFcL7WKBSrk9qJbXg8eyuDyQ8YuIPCoUnkUkTQzDwGHE3wQlIiKCGjVqYLPZ+Ouvv3BzcyMsLIz+/fszb948Bg8ezBdffIGLi8LehQsX6NixI/7+/uTKlQuAdevW4e3tHe/akCgHZ0KiCI92YLGAp4uVEtld1c9ZROQ+UXgWkXsmMDCQp556infeeYfPP/8cMMP2999/z+DBg2nYsCGLFy8mT548D3ikD87WrVvp1KkTMV+KPTw8WL9+PaVLl37AIxMRkYRoqkJE7pmqVasyYsQIvvjiC7Zv3w6AxWLhzTffjFMHvWfPngc80vvPMAwmTpxIo0aNKFSoEHa7nVy5crF161YFZxGRh5hmnkXknoqOjuaZZ57h+vXrBAQEkDVr1thzp0+fpn379hw+fJgZM2bQtWvXBzjS+ycsLIwBAwYwa9YsOnfuzJo1ayhZsiRr1qwhX758D3p4IiKSBM08i8g95eLiwpw5czh37hzvvvtunHPFixdn27ZtvPDCC3Tr1o133nkn0/eDPn36NPXq1WPRokUMGzaMlStX4u3tzcaNGxWcRUQyAIVnEbnnypQpw1dffcX48eNZv359nHOenp7MmTOHcePGMW7cOFq2bJlp+0Fv2LCBGjVqcPXqVT7//HPGjRvHM888w5o1a8iZM+eDHp6IiDhBZRsicl84HA6aNWvGkSNH2LdvH15eXvGu2bhxI507dyZbtmwsW7aMKlWqPICRpj/DMBg7dixDhw6lcePGdOjQgYEDB9KuXTvmz5+Pu7u20RYRySg08ywi94XVamXmzJncunWLN954I8FrGjVqhJ+fH7ly5aJOnTosWrToPo8y/d2+fZvu3bszZMgQhgwZQtu2bRkwYAA9e/Zk0aJFCs4iIhmMwrOI3DdFixblhx9+YO7cufzvf/9L8Jq766CHDh2aYeugjx8/Tp06dfj1119ZvHgxXl5evPHGG7z55ptMmzZNPa5FRDIghWcRua9eeukl2rVrxyuvvMLly5cTvCamDnrs2LGMHTs2Q9ZBr1q1iho1ahAWFsb27dvZvXs3w4cPZ8SIEYwbNw6rVV9+RUQyIn31FpH7ymKxMHnyZCwWC6+88gqJLbuwWCy89dZbrF27loCAAGrWrJkh+kE7HA4+//xznnvuOerWrcvOnTuZOHEiX375JWPHjuXjjz/GYrEk/yAREXkoKTyLyH2XP39+pkyZwvLly5kzZ06S1zZu3Bh/f3+8vLyoU6cOixcvvk+jTLlbt27xwgsv8MEHH/Dhhx/yyy+/MHDgQKZMmcL06dN56623HvQQRUQkjdRtQ0QemN69e7N06VL27dtHsWLFkrw2NDSU/v37M3/+fN555x1Gj8THlQ8AAAk4SURBVB6NzWa7TyNN3uHDh2nfvj0XLlxg7ty5NGvWjM6dO7N69Wrmz59Pp06dHvQQRUQkHSg8i8gDc/PmTby9vXniiSdYt25dsnXAhmHw7bff8s4779C4cWMWLVpE7ty579NoE7ds2TJ69uxJkSJFWLp0KYUKFeL5559nx44d/O9//6NFixYPeogiIpJOVLYhIg9Mzpw5mTlzJhs2bGD8+PHJXn9nHfTu3bupUaMGe/fuvQ8jTZjdbueDDz6gffv2PPvss+zcuZN8+fLRtGlT/P39WbNmjYKziEgmo/AsIg9UkyZNGDhwIMOGDePw4cNO3dO4cWP8/PzImTPnA6uDDgoKok2bNowaNYrRo0ezZMkSQkJCaNCgASdOnGDjxo3Uq1fvvo9LRETuLZVtiMgDFxoaSrVq1fDy8mLbtm1O9z8ODQ3l5ZdfZsGCBfe1Dnrfvn20b9+e69evs3DhQpo3b86pU6do2rQp4eHhrFu3jvLly9/zcYiIyP2nmWcReeCyZMnCnDlz8PPz44svvkjRffPmzeObb77hm2++oWXLlly/fv0ejhQWLVpE7dq1yZYtG35+fjRv3pxDhw7xzDPPALB161YFZxGRTEzhWUQeCrVq1eK9995j5MiRBAQEOH2fxWLh7bffZt26dezevZuaNWvekzro6OhohgwZQrdu3WjXrh1//vknJUuWZPfu3dSvX59cuXLxxx9/UKJEiXR/t4iIPDxUtiEiD43IyEhq1apFVFQUfn5+eHh4pOj+U6dO0b59e44ePcrMmTPp3LlzuozrypUrdO3alc2bNzNmzBjefPNNLBYLf/zxB61bt6ZcuXKsWrXqoej8ISIi95ZmnkXkoeHm5sbcuXP5+++/+eijj1J8f4kSJdi2bRvt2rWjS5cuDBs2DLvdnqYx+fv7U6NGDfbt28f69esZNGgQFouF1atX07x5c5588knWr1+v4Cwi8ohQeBaRh0qlSpX49NNPGTNmDH/88UeK77+zDnrMmDG0atUq1XXQs2fPpm7dujz22GP4+/vTsGFDAH7++Wfatm1L06ZN8fX1JXv27Kl6voiIZDwq2xCRh47dbqdBgwZcuHCBPXv2pDqc/v7773Tp0oWcOXOybNkyvL29E3oZ+PrCL7/AP/9AVBT23Ln56Z9/eHnTJrr07cuECRNiS0hmzJjByy+/TNeuXZk1axaurq5p+VBFRCSDUXgWkYfS8ePHqVKlCj169GDy5Mmpfk6iddC3b8P338P48XDhAri4QHQ0AHbAAtjd3HDp3x/L0KFQtCjffvstb731Fq+++ioTJkxIdkdEERHJfBSeReShNXnyZF599VV8fX1p2bJlqp8TGhqKj48PCxcuZNiwYXz+xhvYWreGPXvA4Uj6ZhcXjBw5mNqhA69Mm8awYcMYPXo0Fosl1eMREZGMS+FZRB5ahmHQqlUr9uzZw/79+9O0KM8wDMaNG8enQ4YQmCULxcLDsTi5mNBhsXDbMFg8aBA+48alegwiIpLxKTyLyEPt/PnzeHt707x5cxYuXJjm511q1Ii8mzbh3B6G/3FYrViLFIFjx0B1ziIijywV7InIQ61w4cJMmDCBRYsWsXjx4rQ97Nw5CmzZkuLgDGB1OODMGfj117SNQUREMjSFZxF56HXt2pVOnToxYMAALl68mPoHTZ2atoHYbPDDD2l7hoiIZGgq2xCRDOHq1at4e3tTvXp1fvvtt/gL9hwOSK77RYECcPly2gdz8iRoG24RkUeSZp5FJEPImzcv06ZNw9fXl2nTpsGtWzBhAnh7g6enOSvs6Wn+fsIE8/ydIiPTJziDGZ5FROSRpJlnEclQXuvbl4rz5jHAasUaGWkevPPLWMyMtLs7vPYajB4N7u6cDgigePXq6TOI5cuhbdv0eZaIiGQomnkWkYwjOJgfjhxhQFQU1ogIMzTf/f1/zLHwcPjuO3j2WX5ftoyajRun3zhy5Ei/Z4mISIai8CwiGUNUFHTsiMvOnc5/4XI4cGzdSnT79jz11FPYixRJ+zgsFnjiibQ/R0REMiSFZxHJGGbOhHXrwMmNTWJYDYNmwIp27bC9/nryiwqT4uICrVpB4cKpf4aIiGRoqnkWkYefYUClSnDoUPwyDWdYLFC+PGzcaAbf6OjUj2XVKmjRIvX3i4hIhqaZZxF5+P35Jxw8mLrgDOZ9Bw/C0aPQt2/qZp9dXMwA3qxZ6sYgIiKZgsKziDz8fvrJDK9p4eICixebiwhr1TJb26XkXi8v8PVNW9mHiIhkePpbQEQefpcvm5ugpIXDAVeugIcHrF4NjRqZx5MLw1YrFCoE27ZpYxQREVF4FpEMICoq9SUbMQzD3CgFzFZzvr4wfbq5qQqYs8suLuaMtKureaxgQfj0UwgIgDJl0vZ+ERHJFNL476AiIveBl5cZatOy0M9mM58Tw9XVrH/u2xd27YIlS+DqVTOo58oFjRtD69YpK+8QEZFMT+FZRB5+zzwDM2ak7RnR0eZzElKzpvlDREQkGWpVJyIPv9BQs4Ti1q3UPyN7drh0CbJkSb9xiYjII0c1zyLy8MuSBXx8Ul9CYbOZ9ys4i4hIGmnmWUQyhrNnoUoVc/Y5JbsM2mzmAsE9e6Bo0Xs3PhEReSRo5llEMoaiRc0Wc25uzs9A22zm9atWKTiLiEi6UHgWkYzjqafM3Qbz5TN/n1iP5pjj+fKZ19eqdX/GJyIimZ7Cs4hkLFWrwsmTMGcOPPlkwtdUr26eP3nSvF5ERCSdqOZZRDK2/fvh778hONjsqPHEE1Cp0oMelYiIZFIKzyIiIiIiTlLZhoiIiIiIkxSeRUREREScpPAsIiIiIuIkhWcREREREScpPIuIiIiIOEnhWURERETESQrPIiIiIiJOUngWEREREXGSwrOIiIiIiJMUnkVEREREnKTwLCIiIiLiJIVnEREREREnKTyLiIiIiDhJ4VlERERExEkKzyIiIiIiTlJ4FhERERFxksKziIiIiIiTFJ5FRERERJyk8CwiIiIi4iSFZxERERERJyk8i4iIiIg4SeFZRERERMRJCs8iIiIiIk5SeBYRERERcZLCs4iIiIiIkxSeRUREREScpPAsIiIiIuIkhWcREREREScpPIuIiIiIOEnhWURERETESQrPIiIiIiJO+n8YBFz7T/jf8QAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -2939,7 +2826,7 @@ } ], "source": [ - "plt.figure(figsize=(10,10))\n", + "plt.figure(figsize=(7,7))\n", "\n", "pos = nx.kamada_kawai_layout(smallGrap) # k regulates the distance between nodes\n", "\n", @@ -2953,6 +2840,204 @@ "# plt.savefig(os.path.join(\".\", \"BipartiteCloseUp.png\"), dpi=300, format=\"png\")" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Analysis of the relation between Turkey and Greece" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
clean_textlabellanguageparsedtripletskeywords
id
training/10539NATO CALLS ON GREECE AND TURKEY TO AVOID FORCE...[crude, ship]en(NATO, CALLS, ON, GREECE, AND, TURKEY, TO, AVO...[(CALLS, (AVOID, False), Greece), (CALLS, (AVO...[(situation, 0.2472109039575448), (carrington,...
training/10395PAPANDREOU SAYS GREEKS READY FOR AGGRESSORS G...[crude, ship]en(PAPANDREOU, SAYS, GREEKS, READY, FOR, AGGRESS...[(PAPANDREOU, (SAYS, False), READY), (Papandre...[(greek, 0.3887438310146141), (papandreou, 0.2...
training/10621PAPANDREOU SHOWS \"RESTRICTED OPTIMISM\" OVER CR...[crude, ship]en(PAPANDREOU, SHOWS, \", RESTRICTED, OPTIMISM, \"...[(Papandreou, (expressed, False), optimism), (...[(greek, 0.38800525497567984), (leader, 0.2340...
training/10797GREECE SCRAPS U.S. BASE CLOSURE REQUEST Prime...[crude, ship]en(GREECE, SCRAPS, U.S., BASE, CLOSURE, REQUEST,...[(Papandreou, (withdrawn, False), request), (r...[(papandreou, 0.25551082676438086), (aegean, 0...
training/10627TURKISH-GREEK AEGEAN TENSION ABATES Turkey\"s ...[crude, ship]en(TURKISH, -, GREEK, AEGEAN, TENSION, ABATES, ...[(TENSION, (ABATES, False), standoff), (Turkey...[(aegean, 0.2606324396779156), (said, 0.245027...
training/10641TURKEY LIFTS SURVEY SHIP ESCORT AS TENSION ABA...[crude, ship]en(TURKEY, LIFTS, SURVEY, SHIP, ESCORT, AS, TENS...[(ESCORT, (pulled, False), warships), (Turkey,...[(turkish waters, 0.2064748955978376), (rights...
test/15200TURKEY CALLS FOR DIALOGUE TO SOLVE DISPUTE Tu...[crude]en(TURKEY, CALLS, FOR, DIALOGUE, TO, SOLVE, DISP...[(agreement, (effect, False), security), (coun...[(said, 0.2734395997182076), (turkey, 0.231337...
training/835GREECE SAYS IT HAS RIGHT ON AEGEAN OIL DRILLIN...[crude]en(GREECE, SAYS, IT, HAS, RIGHT, ON, AEGEAN, OIL...[(warning, (conducting, False), activities), (...[(greek, 0.32157298143397534), (aegean, 0.2623...
\n", + "
" + ], + "text/plain": [ + " clean_text \\\n", + "id \n", + "training/10539 NATO CALLS ON GREECE AND TURKEY TO AVOID FORCE... \n", + "training/10395 PAPANDREOU SAYS GREEKS READY FOR AGGRESSORS G... \n", + "training/10621 PAPANDREOU SHOWS \"RESTRICTED OPTIMISM\" OVER CR... \n", + "training/10797 GREECE SCRAPS U.S. BASE CLOSURE REQUEST Prime... \n", + "training/10627 TURKISH-GREEK AEGEAN TENSION ABATES Turkey\"s ... \n", + "training/10641 TURKEY LIFTS SURVEY SHIP ESCORT AS TENSION ABA... \n", + "test/15200 TURKEY CALLS FOR DIALOGUE TO SOLVE DISPUTE Tu... \n", + "training/835 GREECE SAYS IT HAS RIGHT ON AEGEAN OIL DRILLIN... \n", + "\n", + " label language \\\n", + "id \n", + "training/10539 [crude, ship] en \n", + "training/10395 [crude, ship] en \n", + "training/10621 [crude, ship] en \n", + "training/10797 [crude, ship] en \n", + "training/10627 [crude, ship] en \n", + "training/10641 [crude, ship] en \n", + "test/15200 [crude] en \n", + "training/835 [crude] en \n", + "\n", + " parsed \\\n", + "id \n", + "training/10539 (NATO, CALLS, ON, GREECE, AND, TURKEY, TO, AVO... \n", + "training/10395 (PAPANDREOU, SAYS, GREEKS, READY, FOR, AGGRESS... \n", + "training/10621 (PAPANDREOU, SHOWS, \", RESTRICTED, OPTIMISM, \"... \n", + "training/10797 (GREECE, SCRAPS, U.S., BASE, CLOSURE, REQUEST,... \n", + "training/10627 (TURKISH, -, GREEK, AEGEAN, TENSION, ABATES, ... \n", + "training/10641 (TURKEY, LIFTS, SURVEY, SHIP, ESCORT, AS, TENS... \n", + "test/15200 (TURKEY, CALLS, FOR, DIALOGUE, TO, SOLVE, DISP... \n", + "training/835 (GREECE, SAYS, IT, HAS, RIGHT, ON, AEGEAN, OIL... \n", + "\n", + " triplets \\\n", + "id \n", + "training/10539 [(CALLS, (AVOID, False), Greece), (CALLS, (AVO... \n", + "training/10395 [(PAPANDREOU, (SAYS, False), READY), (Papandre... \n", + "training/10621 [(Papandreou, (expressed, False), optimism), (... \n", + "training/10797 [(Papandreou, (withdrawn, False), request), (r... \n", + "training/10627 [(TENSION, (ABATES, False), standoff), (Turkey... \n", + "training/10641 [(ESCORT, (pulled, False), warships), (Turkey,... \n", + "test/15200 [(agreement, (effect, False), security), (coun... \n", + "training/835 [(warning, (conducting, False), activities), (... \n", + "\n", + " keywords \n", + "id \n", + "training/10539 [(situation, 0.2472109039575448), (carrington,... \n", + "training/10395 [(greek, 0.3887438310146141), (papandreou, 0.2... \n", + "training/10621 [(greek, 0.38800525497567984), (leader, 0.2340... \n", + "training/10797 [(papandreou, 0.25551082676438086), (aegean, 0... \n", + "training/10627 [(aegean, 0.2606324396779156), (said, 0.245027... \n", + "training/10641 [(turkish waters, 0.2064748955978376), (rights... \n", + "test/15200 [(said, 0.2734395997182076), (turkey, 0.231337... \n", + "training/835 [(greek, 0.32157298143397534), (aegean, 0.2623... " + ] + }, + "execution_count": 101, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "doc_ids_turkey=list(nx.neighbors(smallGrap, \"turkey\"))\n", + "doc_ids_greece=list(nx.neighbors(smallGrap, \"greece\"))\n", + "\n", + "doc_ids=set(doc_ids_turkey).intersection(doc_ids_greece)\n", + "\n", + "corpus.loc[list(doc_ids)]" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -2969,29 +3054,29 @@ }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 103, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Computing transition probabilities: 100%|██████████████████████████| 2267/2267 [00:01<00:00, 1299.13it/s]\n", - "Generating walks (CPU: 1): 100%|█████████████████████████████████████████| 10/10 [00:36<00:00, 3.62s/it]\n" + "Computing transition probabilities: 100%|██████████████████████████| 2267/2267 [00:02<00:00, 1029.14it/s]\n", + "Generating walks (CPU: 1): 100%|███████████████████████████████████████| 500/500 [40:26<00:00, 4.85s/it]\n" ] } ], "source": [ "from node2vec import Node2Vec\n", "\n", - "node2vec = Node2Vec(filteredEntityGraph, dimensions=5) \n", + "node2vec = Node2Vec(filteredEntityGraph, dimensions=5, num_walks=200, workers=4, quiet=True) \n", "model = node2vec.fit(window=10) \n", "embeddings = model.wv " ] }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 104, "metadata": {}, "outputs": [], "source": [ @@ -3002,22 +3087,22 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 105, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 95, + "execution_count": 105, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGfCAYAAACX9jKsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOyde3hTVbr/v0mbpk2hadMiCQi0QBFq5VIUW6ucsZYBQVFEHVTm/EQGFamDzDgDKIw4oOhcHuScCowM4IwIzIzCgIL1tOAolFaUgqUWpZQWERq0txRSekvy+yPskMu+rH3LBdbneXweSZO9V7L3Xutd7+X7alwulwsUCoVCoVAoEYI21AOgUCgUCoVCEQM1XigUCoVCoUQU1HihUCgUCoUSUVDjhUKhUCgUSkRBjRcKhUKhUCgRBTVeKBQKhUKhRBTUeKFQKBQKhRJRUOOFQqFQKBRKREGNFwqFQqFQKBEFNV4oFAqFQqFEFNFqn+Ds2bNYuHAhPvroI7S3t2Po0KHYtGkTbr75ZgCAy+XCSy+9hPXr16O1tRW5ublYu3Yt0tPTiY7vdDpx7tw59O7dGxqNRs2vQqFQKBQKRSFcLhcuXLiAfv36QasV50tR1XhpaWlBbm4u7rzzTnz00Ufo06cPampqkJSU5HnPH/7wB/zP//wP/va3vyEtLQ1Lly7FxIkTUV1djdjYWMFznDt3DgMGDFDza1AoFAqFQlGJM2fO4Prrrxf1GY2ajRkXLVqE0tJS7N+/n/XvLpcL/fr1w69//Ws8//zzAACbzYa+ffvi7bffxowZMwTPYbPZkJiYiDNnziAhIUHR8VMoFAqFQlGHtrY2DBgwAK2trTAajaI+q6rnZdeuXZg4cSIeeughfPrpp+jfvz+eeeYZzJkzBwBQV1cHq9WK/Px8z2eMRiNuvfVWlJWVsRovnZ2d6Ozs9Pz7woULAICEhARqvFAoFAqFEmFISflQNWH31KlTnvyVjz/+GHPnzsUvf/lL/O1vfwMAWK1WAEDfvn19Pte3b1/P3/xZuXIljEaj5z8aMqJQKBQK5dpCVePF6XQiKysLr776KsaMGYMnn3wSc+bMwbp16yQfc/HixbDZbJ7/zpw5o+CIKRQKhUKhhDuqGi8WiwUZGRk+r40YMQLfffcdAMBsNgMAzp8/7/Oe8+fPe/7mj16v94SIaKiIQqFQKJRrD1WNl9zcXHz77bc+r504cQKDBg0CAKSlpcFsNmPv3r2ev7e1teHzzz9HTk6OmkOjUCgUCoUSoaiasLtgwQLcdtttePXVV/Hwww/j0KFDeOutt/DWW28BcCfpPPfcc1ixYgXS09M9pdL9+vXD/fffr+bQKBQKhUKhRCiqGi+33HILduzYgcWLF+P3v/890tLS8MYbb+Cxxx7zvOe3v/0t7HY7nnzySbS2tuL2229HUVERkcYLhUKhUCiUaw9VdV6CQVtbG4xGI2w2G81/oVAoFAolQpCzftPeRhQKhUKhUCIK1XsbUSgUij8OpwuH6prxw4UOXNc7FuPSTIjS0t5kFAqFDGq8UCiUoFJU1YCXP6hGg63D85rFGIuX7s3ApExLCEdGoVAiBRo2olAoquNwulBW24SXd1Xh6c0VPoYLADTYOvD05goUVTWEaIQUCiWSoJ4XCoWiKmyeFi4WbT+GCRlmGkKiUCi8UM8LhUJRjaKqBsxl8bRw0drejcJ9Jz3/Zjw2O4+eRVltExzOiC6OpFAoCkE9LxTKNUBXjxPvlNXjdHM7BpkM+HlOKmKi1d27OJwuvPxBNcSaG5sO1qEgbyg+rmrAkp1VaLZ3e/5Gc2MoFApAdV4olKuelXuqsX5/HbydFloNMOeONCyenMH9QZmU1TbhkfXlkj57z0gLPqzkzn95IjcVEzLMtEqJQolg5Kzf1PNCoVzFrNxTjb98VhfwutMFz+tqGTDF1VbJn+UzXABgY2k9NpbWU08MhXKNQnNeKJSrlK4eJ9bvDzRcvFm/vw5dPU7Fz+1wurDjyFnFj+uP1daBubRKiUK55qDGC4VylfJOWT2E8ludLvf7lOZQXTNa2ruF3ygT5uu9/EE1TealUK4hqPFCoVyl1DXZFX2fGP66v1bxY3Lhglsn5lBdc9DOSaFQQgvNeaFQrlJI01iVTnfdU9mAvd/8qPBRhSmutiJnSHLA6w6nC+WnmlBW2wTAhZzBKcgekkwTfSmUCIYaLxTKVUqUhmxxHnV9IspqmxTpM+RwurBkZ5Wkz8plY2k9xqWZfJJ3i6oasGj7MbR6hbAKP6lFokGH1x64iTXRlxo7FEr4Q0ulKZSrkKKqBjy9uYLovab4GDTbuzz/llPBI6c8Wi4aAGZjLA4szEOUVkP0G6ybmSVo7ADgNXYoFIo05KzfNOeFQrnKcDhdWLarmvj93oYLIK+C54cLZEq6auCd+0L6Gyzb9bUn0ZcxdvwNF8Ct/Et7L1Eo4QM1XiiUqwBvGf2F730Fa5t0I0JOBc91vWOJ3pdk0CHJoBM5MjJ+uOA2YEh+A2tbp2Rjh0KhhA6a80KhRDhiGh+S4u3FYEuC5WJcmgkWY6zgWF65PxOHT7dgQ2m9vIGyUN/YLur9UowdMb8JhUJRHup5oVBChBJNB8U2PhSL2DBQlFaDl+7N4K1gemp8GiaP7If8DLO8wXHw1me1+KGtk/j91/WOFfU9Qxkao1AobqjnhUJRCIfThUN1zfjhQgdSeukBl3uha7Z3wdRLD3PClUoeNm+J2ERZqY0PxUAaBvJmUqYFa2dmBXy/Xvpo/OL2NDx7VzqAK14aq61D0e9g73LglT3HodVAUKTPnKDHuDSTKI0YKb8JhUJRFmq8UCgKQBq6McXrMGZAIqsOSoOtA09vrsCaR7MweaSwAXOorlk1jwvgHuu4NJOozzAGXGePE396cBS+qG/CptJ62Dp6cLGzB2/srcG2L77Dsqk3YlKmBS/dm4G5myugARQ3wkgcWcum3ogorQbj0kwwJ8QKho4YY4dCoYQWarxQKDJhQjcki2+zvVtQwK1gawUKMQaTR/bjfZ/a4Ytpo/uL0jYhNeCsbZ14enOFp0yZzUujNhoN8OQdaR4vV5RWg2VTMwRLqxljh0KhhBaa80KhyECN0I3TBTyz5YhgWa7a4QsxOSlMmbEYA2TR9mNwOF2YlGnBgYV52DonG6tnjMaLk4dLGa44XMBbn9X5/MaTMi1YNzMLiSxVUIkGXYAmDIVCCR3U80KhyEDN0M3LH1RjQoaZc6evVs4IACTGkYeMunqc+PW/vhJ9jtb2bpTXNiE3PQVRWo2ngsfhdGHDgXpZ5d5CuOAWtfP/jSdlWjAhw0wVdimUMId6XigUGai5wAo1G2Qqe9RgVm4q52LtXSW1uuQExvz+/2DvdEg6z+bP6wNei9Jq8Mi4gZKOJwauho5RWg1yh6bg+Yk34PmJwz3GFYVCCR+o54VCkUHzRfKSXCn8cKHDp4qJrfeQ0aALUIVNMujw+G1psF3qwj+//B4XO3uIz5lk0KEgL531b0pryuyvaYTD6QowDlJTDIocnwRa+kyhRB7UeKFQZGCKj1H1+PWN7bj99X2sJdUAOBOFW9q7cYO5FyZlWvDilAwU7juJTaV1aL0UKH3vjwvuDs3++R1iEpNJudjpYBV9C2Y5stLnYiuZb7R3ym56SaFQrkCNFwpFBmZjnGrHTjTo8EbJiQBjgSmpToyL5jQk/PM55uenoyBvqGdRrW9sx6aDdbx9fLxLttXUlGHzfJCWLsuBaeQ4Ls2kmMEh5JkyJ8Ri2VRpTS8pFMoVqPFCociAVA5fKnzGQusl7lAQm7y/f1Ls1kOnec/tXbKtZmIym+eDyXtZVXJClXMypshL92aguNrKa3CQigeSeKasbW7D84ncVEzIMFNPDIUiEZqwS6HIQK2k2cmZfVm9ImLhyudw9/Lhz9dhSraXf/A1Sk/ya9NIQQO3YcBW1eRwunDcalPkPPH6KJgT9D6vmY2xWDszCwAE2yuQdNkW65naWFqPR9aX45ZXSvD7D76W3B6CQrlWoZ4XCkUmjD7Iou3HFDE4AMDF2x2InMYLndh59GxA+ENMkqoazRO9PR/+noeiqgb86p9fob1LWgWTP39+aBQmZJgDkp4B4PbX9wkaHFxl1d5I9Uw127uwsbQeG0vrRbeHoFCuZajxQqEoAKMPIiYxlo+Pqqyyx6TVAMt3H/f82xSvw7TR/ZE3oi9+UDGXhKGXPhp/emgkAASEZcwcCzUjdqcU/zWsDyZlWli9GmIMDqEu20pULDVc9vCspWJ4FIog1HihUBTCPzG29GQjCj85Kfl4JI0F+fD/bLO9GxtK61XxpPjTSx+FiqUTEBPtjkwzwm8HaxtxtuUS+iXGorde51Mm7XC6sGj7MUXHMT49hbMJ5t2Z4rtacxkpSlYsCYkTUigUarxQKIrDJMaOSzPh/YrvJSvgRnIKxJ8eGuUxXAB36fXC9yth80oyXvOfU0g06PDaAzdhUqYFhftqRIXdSJo5nmlu9/E+MVhtHdgowYjjMlKUUjsW8vBQKBQ3NGGXQlEJ72ReqXvoSTf2VSj7JThYjLEBPYCYUJCNpTqKKcveU3kOm0QaE1MIOm+/XcZeUcXksYhxbvC1TFDiWntDhfMoFH6o8UKhqAjTNbmvX7ULKUVfn4eRpVFgOJEcH4NVD4/C1jnZOLAwz8dwcThdWPS+cCjoxX9XicoTSo6PweoZY/DU+DTJxoIL4rxbfC0TgCvX2myUH0IKpkgfhRKJUOOFQlGZSZkW/Pnh0ZI/b7scSmHrdhwONNm7YDbGIYeleWF5bRORUdIiskpr+X2ZiNJq8NtJI9A3Qd5C//9yBgl6YPxbJnj3d/Iuc/bukD07NxVJIq8ZX/k4hUK5As15oVCCgJzqHibEEaeLwpuzs7D3m/P499FzaLZ3KTY+uXAp4ZadalT8XE+NT/Mo/7r1auSFWD6oPIfZt6di/f561r9rAKx84CZEaTVwOF0o3FeDTaX1PkaZd5kzk/OUMyQZL0zJwKriE6ISt9nKxykUii/U80KhBAG5hgaTyKnVavC7e2/EFy/mY+ucbDyRm4pe+ihlBikD7gaV5IswSZ+owhljsHiyO7fE4XThnbI64uNz0Wzvxvr99ZhzRxosfiEfy2Uxu0mZFhRVNWDsimKsKqkJ8CZ5C9l5e2XEJN6a4nW0TJpCIYR6XiiUIGDqJS3nxR+r7RLKapsu9yeyS6qYEUO8Tgt7t1PwfVyGR86QZCKvQ3yMFg+M7o+/lnIbI3PuSMM9o/sBcCcBKykKCAAbDtThf342Bsm99QEdvIWk/xnv2KLtx7BsV7WPN8icoEeiQQdbezfn55PjY1C2+C6fCi0KhcINNV4olCBglpmXwbB89/GghovGpprwWY1w6IerQWX24GQkGnSCRoa9y4kNB/m9KB9WNmDR3SNQXG1VvLs14E7eLdh2BOtmZuG+0f09r5NK/7uAy9/T97ueb+v0fNa/vJvxS70yLZMaLhSKCOjTQqEEAUYHRC7BznMhMVz4EkyjtBq89sBNROdyCVgHDbYOHDzZqFp3a4aXP6j2UeSV25SS8cokGnQBycVmr7AUhUIhh3peKNcUDqfLk+TZfLETpvgYd1mqBmi82BnQA0gpGB2QuZel74OpP2eIiVKsT5A/GggnmE7IMOPekWZ8UCm/5cHTmw/DrtJ3YfAXiVNCc4Xxyrwzawyio7WesNTYQUk4fLrFp/8UgIA+TDSBl0LxhRovlGsGNpl4NtRqkMfogJCMQSlenDwCT9yehuJqK17YUaWo50arAQofGcP7OxVVNQTkgMhBbcOFwdtgUVJz5dltR/DqtExc1zsWxdVWzNtS4XNNmHJ47zAbbdhIoQSicbmEnLXhTVtbG4xGI2w2GxISEkI9HEqYIpRw6Q2zx30ufxhSUwyK7367epy49dVitLQHKs4qhQbukMSBhXmecXf1OJG9sgTNduWSXLfOyeasphHzm4cb3t/L4XRh7IpiRZODxcDcdTS8RLnakLN+U88LJWJhQkB87nWH04Xy2iYsev8Y8SLKvG9VyQnPa0ruftf+p1Z1wwUIDOfERGvx6rSbFA1dcYVUSJNcwxFTPHcbAC40ABLiollbIMiFyZkhbdhI8lxQKJEONV4oEQlXp2BvA4M0TERCg60DT2+uCOjbI2Xc3kaRGph5DC2lQ1dcIRW5Sa6hZNro/j6L/aG6ZkGviwvACEsCyk81qzIm/4aNXAYKyXNBoVwNUOOFEnFwhSMYobC1M7MAQJWQxcL3K4l2v2ww3gi1eWHyCN6FalKmBRMyzKKVX71hwlJcHopIbiyYn2H2+Tfpd1HLcPHmhwsdnAbK1FEWvPVZXcA9zxjeC/LTUZCXTr0wlKsCWipNiSgcTheW7fqa1ShhXlu262ss26VOyMJ2qQfztx2R9NlgeSOW7frap9SXjSitBrlDUyQdnyss5Y2UJFdDDLlSMN/6K7ZbtPfn2Mq+w6lJYn1jO+Zurgi4j6y2DvyFxXDxZlVJDXJf24eiqgZ1B0mhBAFqvFAiiv/dWwNrG5cUvduAsbZ1KlbdwsaHlQ3YUyl+AQiWN6LJ3oVDdcJeAEZ7Rmid9/87iTYJ6bHjY6Jwd2ZfvDv7VhxbNhHrZmbx6uFoLv835440z/+zjZX5uxhcAJZOCTTISL+L2pgT9Nh66Dtew10Ia9uVNgYAd4NJCiXcCZrx8tprr0Gj0eC5557zvNbR0YF58+YhOTkZvXr1wvTp03H+/PlgDYkSYazcU4039taEehgAgKU7q0RP9MHcwZMYSoz2DMDdgWhB/jB8u+JubJ2TjdUzRmPrnGwcWJgnmD9BeuzKZROxdubNyE1PQZRW49OV+Ync1IC2A4zhtHhyBtbOzILZyC76xvydyxDi8sy8sOMYVpec8Lm2JN8lGNySmqSIUe6C2zu3p/Icbn99Hx5ZX475247ikfXluP116pmhRAZBKZX+4osv8PDDDyMhIQF33nkn3njjDQDA3LlzsXv3brz99tswGo0oKCiAVqtFaWkp8bFpqfS1wZ7Kc3hmi7RwjVrwlQmz4XC6cPvr+2C1dahehSNmbGomeco9tlDlDOnfrbZLaLZ3wdRLD3NCLJoudKBg21HO8yYadHjtgZt8xqhkArgU1BQb9GdB/jAU5A2l+TEUVZGzfqtuvFy8eBFZWVlYs2YNVqxYgdGjR+ONN96AzWZDnz59sGXLFjz44IMAgG+++QYjRoxAWVkZsrOziY5PjZerH4fThVteKVZUn0QJVs8Y7dMDhwQm2RgI7HGj1INo8dN3IUHN8tpwK91ljEghI0SDQG0Vh9OFt0vrsHz3cZVHGXrMCXosm3ojrVKiqIac9Vv1sNG8efMwZcoU5Ofn+7x++PBhdHd3+7w+fPhwDBw4EGVlZZzH6+zsRFtbm89/lKubQ3XNYWe4ANLCQEypMlu4Q0zCKh9Ccv1sRGk1yBmSjPtG90fOkGRFjQs1jy0F0sRpF9xdoktrGj1hpCitBo/npoVFDozaWNs6ffJjKJRwQtVS6W3btqGiogJffPFFwN+sVitiYmKQmJjo83rfvn1htXL3QFm5ciVefvllxcdKCV/CseyWrxmhEEypsrc34vNTTWGTz3O1I+Z+am3vxmMbPvcJdXn3qVLSYxaukIrjUSjBRDXPy5kzZzB//ny8++67iI1VLlFx8eLFsNlsnv/OnDmj2LEp4UlKvD7UQ/CBpBmhEN7eiHFpJrx9sF6xsfl3Rab4IsVjxmgIFVU1wOF0wRgXg1m5qUjySyi+2vAWxwNodRIlfFDN83L48GH88MMPyMrK8rzmcDjw2WefobCwEB9//DG6urrQ2trq4305f/48zGYz2yEBAHq9Hnp9eC1mFJUJ0oaPEV5bOiUDy3ezJ2aqoVZ6qK4ZrZeUCYv5K7FSAmFKn8Uk3jIS/Yu2HwtoNGmK12Ha6P5IiNNhy+encf6Ccs0vvUk06GBr7w6Jp+ejqgZ8fqoJfyurRwttGkkJA1QzXu666y4cO3bM57VZs2Zh+PDhWLhwIQYMGACdToe9e/di+vTpAIBvv/0W3333HXJyctQaFiUC2XjglOrn8BZem5RpwcRMM2uVihrJpmLCGEbC/jnhGGoLF5iwz9OXE6dJcYHp9uxraLbYu7GxtB5rZ2bh4OJ8xRN6mcRZACELVf297DTr6w1eqtbUgKEEE9WMl969eyMzM9Pntfj4eCQnJ3tenz17Nn71q1/BZDIhISEBzz77LHJycogrjShXP3sqz2HvNz8qdrw5d6Sil16HTaX1Pt4O/35ATFjHH8ZtrmTlDGkY48Gs6zEtqz8e++vnih3zWoOpfOrsceLekWZ8UMmdX0cKY0gwuSEpvZX1DP/54dEeNeS1M7Pwwo4qNNvV8e5IwQWaF0MJPiHtbbRq1SpotVpMnz4dnZ2dmDhxItasWRPKIVHCCIfThSU7qyR9Nl6nhb3b6fm3KV6HFfdlYvLIfgCAgrz0gPJdALyGiVp6KEwYg0//Jcmgw+sPjvSck+u9Qj2HrmXU1mlhwnX1jXZFj/vx11ZoNRqMSzNhUqYFn59qwqaD7J6QUEFDlZRgExSROjWhOi9XL6U1jXhsg7CXgY15dw7B7UP7sBoibLojxdXWgIWNyWXIG94XX9Q381YDrXk0C5NHyus2zab/AgTqjfBpxQCB2iThhP9vP3ZQEg6fblFdA4armafSzLptkGqGhcUYi6VTRmDJzq/DyvPCIEX3iHJtE9YidWpDjZerk6KqBix6/5jkRNaCO4fg+YnDWY/rb6QkGnSXcxmko9UAhY+M8Xh2pCDGs6OmKq5asI3ZP39Dje9AKkqnBL1jo3ChQx0V3HAvyxarOE2hUOOFGi9XFUrskt+dfSty0327Jgdj971OptdDjBptuCnX8iH2t5+dm4r8DLMi36mstgmPrC+XdQwKP8nxMTj0Yn7Y3n+U8ETO+h3SnBcKxZ+uHide2FEly8CI10ch+/IO0NPbpq0Dyz/8WvWdq9zERa5EYbnvDSUOpwsvf1At6rffUFqPDaX1inhiSqrlJ+VS+Fl+XyY1XChBhRovlLChqKoBL+w4JrsVwIybBwAAVpfUYFNpnWIaKiTQxMVASOX42WiwdeDpzRWSGwU6nC5sP3JW0rlDgT5ai84ep/Abw4inxqfJyveiUKRAjRdKWKBkSCchLgZjVxTLzmORCtVY8UWJ32NVyQlsPXRadKPAwn0nfUTVwhkNAF1U5BgvSQYdXrk/U1aeF4UiFdUbM1IoQkgJK3CRaNBhVcmJkBkuANVYYWA0cWrOX1DkeGIbBRZVNWBVyQlFzq02SQYdnssfhoudwgKEpngd1jyaBXNC6O6zBfnD8OWSCdRwoYQM6nmhhBw5YYVwgmqsXEFNTRWSvCLGIBYDXzWP2EofQ0wU2rvIq45euT8T3YR9gqaN7o/JI90q0IX7arCqRH5DzydyUzEhw4zGi514dusRzvclGnR47YGbwraijXLtQD0vlJCjRFghyaDDgvx0SR4XZglMNOgkn9+7vcC1nrjIhADVMFz8GwVyIcUgNvJcf7MxFgvyhxEfSx9NPrVqACzffRwpvciUefMz3L3forQazM8fhnUzs2Ax+npheumjPMfmw2KMxbqZWfjdvTciZ0gy7h3Vj/V4iQYdFuQPw+ElE6jhQgkLqOeFEnLkhllenDwCT9yehg8rz0n6PNMaYEKGu5/R38vq8FHVeUnHuNYndiVDgHwIGbxiKoxiojXo6nFxGr73jLRg9YwxAICth07D2tbJezxTfIwoETnGIINLmnrypEyL594VEl40xkVjwggzctNTOHt1cR3vWjfKKeEFNV4oQcHhdKG8tgllpxoBuEt8swcnI0qrwdhBSdBqAEKveQDXJegRpdWIMoKS42OwZMoImI1xPhNzzpBkjEszIfe1fT6dg/lYOmUEHs9No5M7pHk8kuNjMGqAEftE9LDiu9YOpws7jpJXGHX18N94H1Y2YHKmGZNH9sOyqTcKNnS8f3Q/bCytJz4/Q6O9E/eMtGD9/jrO93B59tjK5uUYIZFShk+5dqHGC0V1iqoasGj7MZ+dbeEnJz3xc2NcjGTDBbiykJH0CAIuu+nvy4QxTofSkz+i9GSjjzEVpdVg2VTyrsMpvfXUcLmMmBDgrNtS8dMbrwjRFVU1YNmual6jkSSv6FBds+xye39e/HcV8jPMMMbFYHZuKrZ9eQb2Tt+cliSDDisv389SjJeSaitvo8j8jOtEe/aoEUK5WqHGC0VViqoaOI2A1vZuPL25ArNuGyTp2P4LWZRWg5fu5Tc6eumjcWtaEn7z3leweyVUehtTkzItmJRpwYL8dKJkyMYLnXA4XdSAgbgQ4K6vzmHJPVc8CYyngCsJlTSvSI1S9Zb2bmQtL/apBjLFx+DWtCQM6dPbx/h1OF1ERrQ3+miNYIfr4uofsKeygWqqUCigCbsUFXE4XVi262vB970toZGd1ATZi5092PvNjz6GCwNjTDGluAV56UTlqMt3H8ftr+8jLuG9mhmXZkJiHFnic5O9C+W1TSg92Yg/ffwt/vTxNyivbUJBXjpr0qjZGEvUdFKtUnX/MuYWexeKqs4js38Ccoe6W1GU1Tbhw8pzmHHLAFF5P50CoSuGpTur4JDjpqRQrhJobyOKaqjZU4ZNNl6pBnwWYywOLMzzhDK4uj3749/9+VpldckJ4vLd+JioAEOS8YBJzddg7gMxng85MN2el+8+7tt0UgOoMbvSBoiUqwU56zf1vFBUQy2l2aVTRuDAwrwAI0EpvRjvUtxJmRasnZkFs1F4N++CW4PkWt8ZF+SlI/5yqa4QfB6w4morcoYk477R/ZEzJJnYw8aEDwHhUmElaLB14JktRwLuPbW2hVTBmUKhxgtFRdRy33MlyCo5qXsfa1KmBZ/+5k70jhVekEk0SMIZRhV359GzKKttkmSIRWk1+OP0kbLHsmzX13A4XZ4x7aj4Hhv2n8KOI8JjE2N0RhpUwZlCoQm7FBXw7uScZNAp3luGa/JWclL3P9bh0y240EGmmFpy2WPAwPwe4a6ZwaaKK7Wr8+SR/fDU9634y2fcZb9CWNs6UbjvJLZ98R2rR01obP6lwnXQgQgAACAASURBVKd+tGP1XvlqtKHEQhWcKRQA1HihKIxcWfjEuGi0XmLv7yJUJktaKi2EKT4m4BxivDo7jp7FC1MyvMp/v/YRNjMn6EU3GFQTh9PFWeHDdHVedzmXR4whtnhyBkZdn4QlO6t8RNsS43TEnb75ehM12Dowd3MFb56Rf6nwCEvvgLL9SEEDquBMoTBQ44WiGEp0huZrqOsC/+TN5DrM3VwhuheNNyvuyww4hxivTrO9G4fqmmG71MVatm1t6/QxCEIJibYKACx6vxJOJ7B8t7Bnxt/AKV98Fw6fbvH82+ly4bG/fq7YdyDpdcQwIcOMZbuqAUSW8SLVA0ahXK1Q44WiCErJwpN01eWDyXWQ6v15anwaq44G49UhPaa1rQMvf8BfJr5o+zHiRVcNxBibrZd68MyWQEOM8cwUzhiD5N56lFRbsePoWR+ROGbhvW90fwDue8WcEEusYMyHd68jkgocJpwZKcy6bRB+eqMlbEONFEqooMYLRRGC1Rl6McGCzyaL3mLvDChl9SbJoMMr92di8sh+rH8nEcDz5nB9k2BoorW9GwdPNuKOYX2IjqkkSvcgKtjG3YnY6hfeEatgTAJpWC/SKnWKvj6PJffcSA0XCsUParxQFCFYi0JLezcK99VgvkCHXzZZ9ImZFo9Bk9JLD7jc/WRIkmgdTheMcTGYddsgvF12mrcMVqsBNn9+huj7PL35S/z54dFBDwcEy9gEroTvXthxDHnD+yImWotJmRasm5nFmn+SaNBh1m2pxFoxAJASz96R2T+ExfW+cKXB1oG3S+uQ0lsf1sneaiEmx8rhdKH8VBPKapsAuJAzOAXZIkrsKZEFFamjKIKagnT+JMbpcHjphKBNSnKTkEkIdv7LzqNnMX/b0aCdj8EUH4NXp2V6vivXggNAlOCgd2sHBrbrZk6IRUePA7b27qAI2CnNtZT7Iqb6ja1/GsB+X1DCBypSRwk5TE5IMGi91B00LRUmL0RtL8Wi7ceCKm4XKq2QZrs7iXl1yQlPP6jswcnIHZqC9L69ob1skDJhOlLztLW9G3O9WjvsqTyHp1mu2/m2DrReNlwicT/OhOD8W1Eooc8TTnA9d8z331PZ4NH+ef6fR/H05grWMK1/yw/K1QMNG1EUQWxOiFystkuqn0PpvBA+Wtu7UV7bhNz0lCCcTXwCstKsKqnB1kNncN9oC3Z91cC5u35yfBqxVgyjcNzT48Iv/8Geg8MYLYkGHfTRWp8SdosxFjNuGYiBpjgs333cp7w7XGDG711hxeahMMXrMG10f+RnmCMu1MT33DGvFWytENWJfvH2Sk/IknJ1QMNGFEUR09dGDqb4GPy/nFSkphhUywUIZigMAAruHILnJw4P2vn4On6HEuYqvvnoGN4ka7m8+4tbodVoWPMpwvW38WbrnGzYLnUJVoz1jo3G9Kz+mBjiqiXS/BW1nrte+ij8YfpIzqR8SvCRs35TzwtFUQry0rH10BnVy1Gb7V0+AmZKCr8xk+xHQXc1B3dR4UuaDSWMd8EtbqfeuBovdnrKt/2ZlGnB7NxUbCitV+38crHaLuEPH38r6Bm80NGDtw+extsHT6uaM8NnnJDkr6j93F3sdOCZLUfw1PetWDw5Q5VzUIIHNV4oisKUwcoVqxOLEsJvjNLsptJ6YgVYJQlFp2CmrLxw30m8+Z+T6OJTCQwiLkBVwwUQzvvJzzCHtfHSbO8S7ZUiUSWWAptxkhinw6zcNKRf1wvztgTOB94l9ABUT4pn+MtndRh1fRKrnhMlcqABQIriMLkKciFphOiP1MTXoqoGjF1RjFUlNSExXJIMOmQPDr7xArgNzvn56dj0/24JyflDAUmPICYvSGl/WJJBh6fGp0EDbl8b3zk1cI/f1Eta2bfS3c+5kmtbL3VjVckJVsOFGQfgfmaDkRTvzZKdVRGf1HytQ40XiuI4nC7s+kq665eZnF++N1P0Z5nEV76x+VdlMJNvKEMnKx+4KeRJldlDkoNWMUaKKT6GyHgQ+8uR9AhiktCVZPHdw/HlkglYPDmDtet1okGHBfnD8OajY1iNG+bfL92bAXOC9GulVPdzh9OFRduP8XpZhf7WGoKy9WZ7V0R3f6fQsFHIuJoFlZQQQHvp3gwY42IkfbbsVCNr1Q57VUYMOrodIdP8CCfdDu/eUID03lBKkRinw4r7MjGPpS2BP2ZjLO4ZacH6/fyVSVoNUPjIGOLfm/EivrW/jleYkJTM/kbPM86mBO2dJ7JWqwnUqfG6XxxOl6xGpEoISxbuqwmrfCkxRJraMsUXaryEADZBpcJPaq8aQSU5k4JFkcnZ1wB057KcZO1QHKpy2P/OGYS7M8OvZw1Xbyjv0tsWexdrnyOlmZWbiskjLXjy+zSs31/HWRprio/BC5NH4NU9xwWPuXrGGFHVJkVVDcSl2iQ0Xuz0+TebEjSDkHHjb2yKRa7Wj8PpwqYwzgkSIlRaRxRloMZLkOErwWQElcKh27AcpEwK8TFReOvnN/t4n6R2ic4ZkuypXCiutmLHkbNoCbPd4d2ZFsEEXTHS6EoitGgCwDptFpbt+tpHJ0VJkgw6FOSlo6iqAW99Vsd77VvsXXh2K3dvJW9SROSJOJyuyx2olUPss8Fn3ADSG5GS5PwIcaiuOST5YXyQzhNKfH9KaKHGSxAhnQyX7fo6pN2G5cIkOpJ6TDQA/vzwKNZQj9jJOcmgg629S5S0fDDRwO36F5o4xUijqwHJoult4NQ3tuONkhOKhZpWPnATABCJBIo5Z0m1lbiqS+kO1GotmN7XYv3+Wuz75kfe92tAlvMjhFJhF320Fp0SqtySDNFYMuVGtLZ3wdRLD3NCLMYOSsLa/9Syelm9UeL7U0ILTdgNIqSTobWtE2+X1kVsNrx3oqPQ9GAxxgqWbU7KtODAwjxsnZON2bmpvMd7+ObrMW/LkbA1XADhiVNIGj1cpM4ZA+e+0f0xPz8da2dmyU741WqANY+6c1LUaB75z8NniMvBlc6JWDpFvQWTuRYbHx+HNY9mwRTPni9G8ryRolTYpcshrTz/8dvSMH3s9Zh9x2BMG9MfOUOSEROtxfz8dKybmYXEOF3AZ5IMuoj3bFPcUIXdILKj4nss+OdXxO83xevw+3tvRHLv2KCHDpSAvTGeHo+MG4jUlHjJ36eoqgHLdlX7GIIWYyyWTsnA8t3B0YoQIlanRWx0lI9bncRz4nC6eL1GjOfmwMK8sLwPvMN1G0vrRYX7AGDNo1ke/Q21mkf6N4fkQmml12B6zpjrYG3rQPPFTpjiY2A2xik6fzD3qtSEYbmsnjGaU2QQuFwUUduEslONANzGXfbgq6Mo4mpBzvpNjZcgsmH/KSzfLZxUyEc4Vaf4w5ajAUCVvA22cx2qaw6qnD8bbmGuVBTkpQMQ/91JF8ytc7IDwh+hypHhgiv0NXUUfz8jBrXbMyzIT0dBXjrnb+RwupD72j5RoaNe+ijckpqET75tDPibd9uDpHh92FwnOTBewlAsIu/OvhVarUZVA42iLtR4iRDjZceRs1jwD3k7SeaRVFIhU+qi5/25+kY7th76LqDRnRhDS+w4/N9vtV0S5dlSkkSDDm8+kiW73J3U27DqZ6NhTrjikWuxdwV4ncLB0OW6piTXOhg7e3NCLJZNvVLd5j+m4morUY8jxmid+5Oh+K8/fsLr/dNq4FM5xXadws0Q5WNP5TkUbD0iqlGiXDQAjAYda5l2ONz3FDKo8RIhxotSO0klQwd8st4FeUM5j8/2ObZxAtyGlhzjh0uzJRSlzxooZ0yWnmzEY3/9XPB98foo2DsdguOCgmMLBczOHlBXd+au4X1w5IzN5/5h7j8ArP2feumj8fDN12OCV+dmKc/4FY9MFpLiY1BcbcW/j57zGYu3kRVuyJ3X/I05JVDymaSoBzVeIsR4EcpnEAtb6EAMQi7fXvoo/OzmAcj3mpxJPucNl6Elx/jhOr/Y/AolUHKXV1TVgIXvV8J2qUeBkbkJ9xwZEthynILJgvxhmPuTIfiivllQVFJOng7JIu6fbBoOHhq5uUmTM/tiT9V5xZ9fS4Tf99cCtKt0hMBU4ZC4oUmQUw3hcLoEy1AvdjqwobQeG0rrPYv0hAwzUfkqgwtXpMgZQ4vU+GH+/sKOY8gb3hcx0VpeOfJgGS7J8TG4b3Q/nx23XPj0f+TA9vtHGpMyLeit1+GxDcIeKTVYVXICWw+dxrKpN+L5iTfwvldOBQ6J92Hx9mMeGYVQl9MzhlPN+YuyjrOn6jziY6Kgi9b6eLfidFpc6pbeKDTS73sKP9R4CTITMsyIidYq0r23vrFd8mfFlqEyZbrP5adL8hwxhhaJ0eRPs70b2Sv34tVpmfjWeoFIjtwUr1OlK7FQkqcUmN9ETcTom4QjjXZ1xPBIsbZ1EnVjZjSO1Kp4a2nvRvmpJlzo6GbdAHh3albTgCHxnIrB3uUAuhzopY/GxU6351GO4cJAWwBIIxjVanKhxkuQKa9tUsRwAYBtX3zHm5fCh9iH2gV3CEKqHDizI5Wq3dFs78LTmysQE0X2XZfec6MnobW+sR2bSutkq4FqAGz74oynkkgp1NAz8WdDaT3GDkoSJY0fToSLlPvLH1TzCkhGaTVYOmUEntlCpvgrhdKaRuw4epbX+yg0TjmoWWHEGC5KES73TTjjHXpM6aXHobom/O3gadb5MpySoanxEmTcmgPKwOcWFYqFi5FJZ3ABkgyARIPOUzYtdyfU5SCbMs0JsT6/S0HeUBTuOynLiFErBBOs3WHB1iMohMajoxJJiFVtVgPS658UL/7ZEsO+b84LGrtqhUykeE5DBZeicTjkCYULYj1oDUHy7JFAjZego+xD4r/wMU0I/Rdpf4vZSWgEKIH3Nw7GTsjbWGKI0mowPz8dBXlD3e5Q2yUs330cLfYu0ROxWGNDaLIM1u7Q6QKe2VKBddrQTzxikduEUEmErr/axuipRrIck2IVQoXB8BIqAVcLhD2VDViys8qnksu76ei1ZMhI9aC5oK5njxRqvASZaIUbMngvfGzdqhm8Y+EAsOj9Y8oOhIeW9m7PLjAYO+hZt6XxuvWZCT0uJkrSYsj85iQ7OPaSbt/JMthehXCYeKTA9Ll6YUdVyLqBA8LGptrGaBd/hbyHnUfP4UWFWxKESw5JosEt/S9G52XlnmrWDuHN9u6AwoRIM+7FIteDFg7J0NR4CSIOpwvbvjij2PG83aJC1SpMzsqi7cdga++WdNNqACRJTIRlJj21d9CJBh0K8oYSvVfKYsj85tz6OKmehF6unQ3bZCmle7ZUwmHikcqkTAvyhvdF9soS3vswyRCNlnZl8ycAdq+eP+PSTCHTHPKmyd6l+HUOZQ7J0ikjkNJb7w55u9xzSrO9C0mGGLS0d/Emle6pPMdquPgTrITnUKOEB81qu6TQaKRBGzMGEXf2tnJVE4xblLRaxQX3TkWq4QIAK+7LhMUYKzr45T3pMUaDKT6wcZpcXnvgJlE7zUmZFpQvvgvx+ijB9zKu6OJqK2vjxNZL3VhVUoOxK4qxp/Ic0c6GmSwBt56N2a+xYXxMFNHYxBIuO2gpxERr8eq0m6BBYBCWee2V+2+SdJ8K0drejeJqK+97orQa3D86PBKjlb7OjGEWbCzGWDyemwZ9tBbP/+srPLbhcyz451dYvvs4/vh/36J/UhymZV2PHBbtHYfThSU7q4jO453wHKmNcUlQ4r4ItXFOjZcgotRE4t15FwhOHDrRoMPamVmYPLIfccdo5j1siXOTMi1Yes+Nio3PYoyV3C02JlqLPz80ivc9SZe/P4nOTWt7N54h7GztXx3CdM9ePWM0ts7JRuWyiah8aSKWThlB/oUIiPQqDMYA9jf2zJe7Jou9T0nRgGxhm5BhVvCs0pGSmM9HqAyzGbcM5Nw0CHVbP1TXLMpb7J2YfTXhcLpQerIRfyz6Bv9UIAJgUvjeEgsNGwURpRaMwkeyfCpGgrGLdrlcngmZWThIFXLZEucAd0WQXOL1UVj36FjcOiQZh0+3YOfRs5IqCCZlWrBuZlaAkqt/KKistklxQ9G/ioXNzZ/SW5mJglHcFQp9RAKTMi2YkGHmzDviuk81GkCqrjhzrcpPNSF3aArn+9TWeyFGBefBhAwzNkqUTJDKQFMc56aBCYlz5XJJnR8j2TvpD18+pFSUmL/loKrxsnLlSmzfvh3ffPMN4uLicNttt+H111/HDTdcUans6OjAr3/9a2zbtg2dnZ2YOHEi1qxZg759+6o5tJAgNzGTK5ksGLvo1ks9PhO2/8LB1pvILJD8pkSiqr3TgafePQytRuOjESEl8U5oMQTUndD4jk16jRNio/HQzQOw4UBgfF/ImIxEvBOw2fC+psXVVmwsrZdsuHgz790KvDb9Js77yz+3i/SUjHE56UYzNh2slz1ONcT9QmGYNdu7eM/HGJWrir9F7tA+Ps+t1Pkx0r2TDGqod3OVoQcTVcNGn376KebNm4fy8nIUFxeju7sbP/3pT2G32z3vWbBgAT744AP861//wqeffopz587hgQceUHNYsnE4XSirbcLOo2dRVttEHBtlJjRAnCt7dm4qts7JxoGFeayTJTOZkByTydKXgruvyxWYheO+0f0xP38YShfd5RPy4Bqv9+eZ30MO7V2OAHGrBgFXMt+YmO/EFj9Xc0LjOzbJNU6Oj8GXSyZg6T0ZWDczCxaOkMrVnIjIRpRWg3FpJnxUxZ+rIobWS92C9xdXaCvp8jPIlq8DuI3Ln96oTNhJjfuVeW7Zco6Uhgk7k4YoCj+pxSPry3H76/s814Z5dsSg1QBjByWJHW7Y4XC6sGyX8urd4bABCmpjxh9//BHXXXcdPv30U4wfPx42mw19+vTBli1b8OCDDwIAvvnmG4wYMQJlZWXIzs4WPGawGzOK6SfCVUq7ck811u+v8+llogFgiIlyy2QLHJdrXHy7vCSDDisfuAkAJFvhBXcOwfMTh0v6LB9FVQ2qlb8mGXT4cskESQ8a2/UDoGhzTYbk+BiULb4LMTy19FzXmKuBJRXjuoJSHd29IW16yXYdiqutvPOIw+lC7mv7JDejDEZDTqVbBPhzpdv2GDTYOrB893HRx2Daefyh6DhRtZE3chvfhgNK3/daDVD4yBjFlLojpjGjzWYDAJhM7kXg8OHD6O7uRn5+vuc9w4cPx8CBAzmNl87OTnR2XnGFtrW1qTJWf8lkuIC935xnjfWylddxGTn3jDRj/f7AY7jg7u+xID8dqSnxohcbrvi+f84G4H6gV5XUkP8Yl8kZzB3jl4PT6c6pUYOW9m4U7qvB/Pxhoj7HZ6Qq2VyTocnehf/64ye8xirXNeYKzwmFVIJNKI0pNcJ9pIq7bNdBKEQZpdVg2VSy+8y/vD5Y4UHmO7xdWifJsBDCbIzF1FEWLN99XLKBtKqkBptK6yWpal8NOS9Kfwf/fMtQEjTjxel04rnnnkNubi4yMzMBAFarFTExMUhMTPR5b9++fWG1srt4V65ciZdfflnVsbKpMPLBTByLth9Db70OLfYuFGwL7G3SYOtgNVy82XSwHoclegpIcjYAoCAvHVsPnRG9q7PJ7A3EBpdwlJJsKq0X1UyRS5/F20hdNzOLMwFOqlYLicYE6TUOBXzGCZdY34r7MoPSb0nNcJ/UBYIkX4frPks06PDaZU8qqTGrBlFaDR7PTcNfD9QpJrLYSx+NtY9l4UJHD+Ztkd9DSWo7kKsh50Wp7xCO4n1BCxvNnTsXH330EQ4cOIDrr78eALBlyxbMmjXLx5MCAOPGjcOdd96J119/PeA4bJ6XAQMGKBY2CsZiKsSC/GE+MvbN9i6YeulhTlBuoZKSxKVBYGhCDnsqz6nawM4bUheww+niDQt5u+MBcLZimHHLAEnerWC4+9WAy1O1dEoGan64iFUlJzg/+9T4NCyeLD/3CeA2oJjrqoaKsRLhBT7Dz+F0ofxU0+WcMxdyBqcg2ysfKxzCg0o3a0wy6Dy6VKHAEoHPIBtyw493Z/bFf+ekqXZPhX3YqKCgAB9++CE+++wzj+ECAGazGV1dXWhtbfXxvpw/fx5mM3vCml6vh16vTn05qQqj2qz79OTlyp3AG04pC3hSpgVrHh2DeVuPiKq+UEpaXoxwlBKw7Y7ZJn0hzRz/UIF3vyT/3Bgp7mq1mj+qCdfC1WDrwDNbhA3kv3xWh1HXJwm6o4UWaaF8NDVUjJWouhAad5RWg9yhKZyl2aEODzqcLhjjYjArNxX/PnpOkdy1lhAZLQB3X6RIREz40R+LMRaFj44N299BVePF5XLh2WefxY4dO/Cf//wHaWlpPn8fO3YsdDod9u7di+nTpwMAvv32W3z33XfIyclRc2gBBHsx5eNStxOXutkX0AZbB57eXOFJRBObKOj9/skj++Hx+mZsOniaaFxKLqxihaPk4u8+ZVswzAl6ZA1M9P8oK97GENfiMSs3jdfjQHr8cEapLsNLd1ZhYqavUex9/7KW4ifo8ci4gUhNiUd9o53V08U8L2sedScZsuq+QLoxM3WURXByZ8ufa7R34rresWixd2LeliOshp/7OXd7YcN1AeEKB44ZkIgjZ2whV2EVSziGR5Qg0aAj9mJFiqSCqsbLvHnzsGXLFuzcuRO9e/f25LEYjUbExcXBaDRi9uzZ+NWvfgWTyYSEhAQ8++yzyMnJIao0UpJgL6ZyWVVSg62HzuB392QgKT4mwEAhrYr66Y0WYuOFQYmFNViLM5soG2dOS1sn9lSdJzouWyzZ31ic+5Mh2Fh6CrZL4nvsREq8XSl1Z/8+PCSVLNa2TuLQXMHWIyiEBpNH+uYMNV7olJVsuuurBvx20gjOSV7oewgZTqtKTmDrodNYNvXGsFtQuZ6jFns39n3zI958dAyS4vWwtnWg8UIHPq9rRsnxH0IyVj700VqsuD8T1ycZghJyC0aYjzlHSbUVG3gEBe+5yYwvT7eI0ucKF1Q1XtauXQsA+MlPfuLz+qZNm/D4448DAFatWgWtVovp06f7iNQFm0jZ6XpjbQt0y1suZ+i/9Vkd627OPyFUiuCUEgtrMBZnth2EEp4CtlABl7E4Pj0FH1SS64tEmgKuks8Ncyyl8ycAwOkCntlSgXVa973PGEk7j56VdVw+TyTJ9yD5jta2zrBrFsj3HDGKt8t3H8eBhXkeccCQqw1z8NitA/HQzQNUPUdXjxPvlNVjf82POPxdCy50SJPEYMPfGGqxdxJVaGkAHP6uFZ/9Ng+HT7eEXQGAEKqHjYSIjY3Fm2++iTfffFPNoQgSKTtdIRpsHbx5Oy745q14K4EKXS0lF1a5Kp3Mo/XLu9LhcDpR+6Md5aeafGLlbDsIJTwFM24Z6EkC5dvdWG0dogwXBjXctWrt9pR8bq7rHatYGIoL/5wtJcZferKRNUFY6e+hVL6ZEpDmhhXuO4k3Sk6o3ildDmr3oWLT9fJGTidrOVo7zDU6fLolYvLrvKG9jS4TNr1IgkCDrQNvl9Yhpbce1/WOxYQMs2CvIqXjoCRGkyEmCu1eon3eMBoQ//zyjM+Ye+mjcEd6H8zMHoTswYEKuUp4ClJTDESThpQJ+8nxaYrvrouqGrBs19cB+SJKhCKUaPEAuGPyJAnTcvH3lCgx/sJPTnr+n9lFG+NiFP0e4ZbILdRZm2FTaaAHOJxQW+aepHpVqDcTF0p5KCMx6gBQ48WDGA/E1YB3nJ+ZcA8szPP0gPGvGlAjDsolusbof0zMtFxJdIzXAxqg8SKT6NjFqgFxsdOBj6qsKDvVhNceCOw9o8ROu76xXbXd5L8Of49hfRPQ2q5MeTxXSby1rRNPb66Q3Imbwfu5kZP4Ous2dzJ/6clGyWMhxT/ZWskqJGYX/URuqswjsRMOC43D6cKOI2ThNqkaK8Fi6RTufCW5dPU4sX4/WfWqWONUSc9epEYdqPHiBWm35KsN/4qMnCHJeHFKRlC0I4RE19geZEazg+/BbW3vZl2c5XjYNAD6Juix9dB3qhm4zfZu/PpfX/m8JjUm7nC6sGj7Md73LNp+THYoQu5zk2jQIf26eFXaLrDhP1lzqlMbdOjucfq07BCC2UXvkJlLw0U4LDSH6ppDWsqsJEnx6shuAMA7ZfWcoSIuSI1TJTyUkZZf5w81XvzwX0xTeumxYFsFfrh4dTysfHhXZARTO0LsucQ8uP6uWGanLVXe/5FxAyWJz8mBLdGahPLaJsHyyNb2bpTXNiE3XV7rBzYjlDRx8JbUJNZyYaXhm6y5jGgAKNwnTmLeBbcRqo/WoLNHmW8VTgtNOHh/lELN73K6uV30Z0iNU6XGHe7l0HxQ44UF78V0dUnNNWG4AIEVGeGKmAeXzRU7KdOC7MEmlJ9qJj6OKV6HaaP7o9vhFDVWpfBPtCbhYC1ZCOZgbaNs4wVgN0LzM8zIXrmXV+9j7/EfgmK4APyTNZcRPT9/GAry0j2GTc35Cyj8pFbwnEoaLkD4LDRivD+m+BhZWi+meJ2qEhZqerIGmQzE7xVrnCox7l/ckRrW87wQ3C1sKSiqapAsMhbJvPxBNRxi/Z1BROyD62/sFFU1iDJcAPdOekNpPdGipRYNtg4UbDmMstomoutzrvUS0XFJ3yeFw6dbBBevYNxqZmOsKM+Vw+lCWW0Tdhw5iw37T2HX5TDQPSP7IXdoHzWHCn/7ROzY1WZcmgnmBOFwS6JBh//OHiT6+PH6KMzOTcXWOdkoX5wPizEWSptsGqifrPvznNSAa8mHGOOUCX/L+V3erzgb1vO8ENTzwgGTEHUtEk5VDWyIzVvxNnYi/bp+VHUeH1WdJ8qDudRNlqvRLylOqeEFoJR7u+DOIciwJIjuMBwfE4W3fn6zTy8gPhxOF2+YiOnXpESFFRerZ4xBSi992OpuRGk1+N09GYJ9ybp7nOhykOcLMax7bCzuGHbFQORKqOZLsPb+W6i6PzZ6nAAAIABJREFUbsdEazHnjjTBaiMpOW1KJJo327vDep4XgnpeOFC6ZFMDIDk+BqseHoWlU0Yodly1COe4NvPgCk07bLsrtUtxgwWTB1NU1cD6d4fThc/rmoiOddtg4ZAR44nYefQssecHUM4tnzu0DyaP7IcDC/OwdU42Vs8Yja1zsrHm0Szez/354VHITU8hWqSKqhowdkUxVpXUcOa3NNg6MG9LBaaOUs8LsnRnFcalmXDf6P7IITS6gg1Joqu9y4E1/zkl+ti/ee8rn/uaSag2G33vJaNBh0SDjvUYZmMs1l3u/u7/uWB6shZPzsBT49MCPDBaDZA3vA+2zsnGgYV5ksbC9buIIZzneSGo54UDJS8qc9++Mi0TkzItcDhd+OuBOlmL6Py7huJvB0+LKkVMjItGK6FUfThUNfDBPLiLth9jTUrl2l1F8sPKBlcejLsiRPha99JHI1tg50XaaoKNcWkmWXkL/rkAbHkp67RZWLar2qeRqdjdrBjNDBfcbQF+cUcacSmsGJRKolYTq029UON5FkVh/4RqIbmCpVOuXHu+akY28UYAilZaLp6cgV//dDjeKavH6eZ2DDIZ8POcVMREy/cdML/L26V1ktpchPs8zwc1XjhQ8qL6a6TI0ZTxnpRHWBIw93LVDN9xmMfutekj4XS6ULD1CGeeAbNYjB2UhLLaprB1XQNXHlw2N7//b85MUjXnL4RquIrDpw1BaqSNHZSEQ3XNnNeXsw8UYQVUlFaDaaP78/ZX4YLUvS9Ubi8EU1Iu5llssHVg2xdnRHxCHGWnlEmiVoOiqgZZ/aCE4BJtYwxXEqmEF/59DMY4nSdcyDwfQs0+GU+O94ZIjlRB+akmlNU2AXAhZ3AKHs9N470vmTYC/kYOW3PPHy50oNnu1oOSUrquds6P2mhcJBr+YUxbWxuMRiNsNhsSEhIUOy7zgMiNay+dMoLzhhUj7awB8PcnxuG2ob4ucLZjaDW+SZDe3Xev6x2LxoudeHZrYLyaOeqT49Ow66sGSTvtUMEnfy9HQjsSWD1jNO4b3d/ntbLaJjyyvpz4GGzXl3kG+H43izEWBxbm8U7IpGPxr0wJ1j23uuRE0MvfhSi4cyien3hDqIcRgBp9p/jYOic7wDAXc29730NS5wHmzhYTaiqqamD1CicadKzimQB7GwGtBrhrxHWoOtumeBpDOCSBy1m/qeeFA2/viBQYDwafpc3sGJftqsI75d/xHs8F4MT5Cz6JbN7H8F64xw5K8jTaqm9sx9ZD3/lMzhZjLJ5iMVAYyX22po5y+m8EA64y12BPtiTE6aKIk2lJYPMSipW9Z4QKH8zqj9z0PjAnxMLpdAlOmCTJ3UJjYZ6VT39zZ9AbxDmcLmyS4BVSm3BMopTioZILmwdRTOiXmbeeHJ/GOq+RIFa+n0vVGvAVz/Set4urz+PDysD8NacLKK5WthN3uG9ESaHGCw9CyqGJBh1a27tlZ7OfbyN7GLlEj9gW7pwhySiqamCNCzPNG1f/bDQaL3Z6XJQ/u2Ugxv+R3R0rtf9GKBEroa3RuA0Lrn5KUrlvlAUDTAYA7ut0S6oJ//XHT2R79fi0IaRWI7xXcRbvVbjLghPj2JMh/SmutvIutnxj8X5WYqK1QV+0D9U1h52EfZJBh+zB4WO8MF7Nv5fVCYoekiDmfmQzzMWE9JnzrN8vr8eSkHw/8xtZ2zrw+w++Fjzer//5FaKjjsEWxHsvb3gfzLljSFimAEiBGi8CeHs2rG0daL7YCVN8DMzGOIxLM6G42hpg3JD2AWJrmMcHl+gRW8jE4XThhR1VvA/s/H8c9fn3it3Hed9P+gCHS56M2Moilwu41OXAgvxhSE0xeHooLd8tL+Q0wBQfEAIQMizuGWnBl/UtPkmo3pAYyHJl+0kX9X98cQYvThHOS2Ebixo9s8QQjgnc08b0581DCiZqhFzFGBEt9sC5UUozTaXkTNjuFym/kbvlhLKbJD6McdF4+OYBYenRkwrNeVEAKYs2n2uRDa0G+Gb53QEZ6mwPTqJBh26HE/ZOdR4OthwLORUparHz6FnM33ZU+I1++Odx+Cf5bSytg42wagsA3v3FrcgdGph8KfSbMectqbZix9GzPhU7Yn5b5jgfVTXg72WniccthufuSsdzE4YRjyVcDFyxuUHBJNTPTziEXONjolC5bGLAPSJ2/lQK/xycPZUNeGZL8MchFmaTtCA/3ZP7GOpnD5C3flPjJQQ4nC6MXVEsygX71Pg0LJ6c4fNaqCYX/weYaxxSEt2URM7CxLcYM0JmG0vrBd2+SQYdvlwygXOSIF3MlVj0S2sa8diGz0V9RgxyO1SHAqUS89UglM8PSbJ2sBgzIBG/nTQ84J7//QdfY2OQ8pWYEK33pmZP5Tneys1wx5wQi2VTQ5v7Imf9piJ1IYCkYR6DVsNuuCjZEp0UNtE3vnEwr3G1G5AqfEaKHAntN/bWYOUeXyVeZrwfVp7DuLRkfPFiPhbkp/MeZ+UDN/EaGUy+kpAgGen7uCiqagjoVq004d5Wgg0mHyccEXp+1CScxByPnGnFI+vLkfvaPqwuqfHMF3cN7xuU87OFaIuqGvDMlsg1XADA2uZO0ucSugx3aM5LCCg7RdYwL3dIMjbNGscqZhSqycU/x0JoHFx5MmwhE1N8DFbcl4nJI5XZCcitGPvLZ3UYdX0iJo/sxxviWTdTvkiamgTLQ6d2Wwm1Qk5yc4PURCjPTC3CMRfI2tbh02vOnBALQ4yyCfZsOi9smlGR3GLEn8Xbj0VMEYY31HgJCWQ3yZiBSZwqjMGeXEzxOrw6LVCfgHQc3u/jWkyb7V14ZksFnvo+0NMklUmZFjw5Xri/CBdLdlYB0GDeFn6httJFeWGVy8EQbA+dWvel2jlV3on5xdVW/PvoOR/NmSSDDu1dDnT2hKareLCf90hQXuVKZhdDkkGHx29L8yTokyjsBnPjqJbOizct7d0oP9XEmpcXzlDjJQTkDElG4Scnid7HRTAnl4TYaJQvzg9QeryudyxMhhiiY6T0cvdCIVlMvT0ecnE4Xdj1lXS3aLO9G0t2sldtMa+9uKMKecP7hmUmf7A9dGrcl3JVfklhQnM5Q5Lx4pQMn/u8xd4p2IhQTYJtTIxLMyExThd2ZeRKo4/WoiBvaMBGg+9ZVtuQfDDrehj0UcQKu9+3XsJ7h7/HhQ7yIgJ/ymqp8UIhIHtwskcjhgshrQcp5YJSmXVZaI+1simO7BZyOtyjJF1Ml+yswsRMi2zvhRKLt/cOnI0mexeyV5aweqZCTbB27HyaM3JwOF1Ytos7p0ot7SF/SfnbX9+n2LHFEgoZ9yitBrNyU8NOeVhprG2dokNyahmSSQYdVnKo77K1ONBqNcjoZ8TjuWnI7GeUmdMWeck71HgJAVFaDV574CbeUj+SRE+5LdFJWb23Bn8rq2c1tkgbPX5e34Q7buhDvJg227uxbFcVsgaZYE6QHoYJ1uLdbO8OSwXiYO7YSUUZxVC4r4Y3PBCMnJBQJ6+q8buSUJCXjk0H2Z/7qwmxc4TSG8f4mCg8OX4wCvLSiSQ22MKnuUPkeU2itJFXuxN5I75KmJRpcbdrT/BdXCyXW7mTLIBcLdGTeFrFS0X+BOZ+KMUspu+Uf4cF/ziKR9aX4/bX90nKig+2uz3cKm7kVFyRYjHGqmK0FVU1EO/8i6utip7bG6UNYFI7RKsB1jw6JmTGMLPJUuveCYOUMADi5wjvCjUlvsLrD9yE+fnDiAyXuZsrAgxpq60D71V8L2sM/7O3JuKqjqjnJYTI7YbLdwwAXsJq/O3jgwGzKx6XZkLv2GjR8dkGifkNbAqdahGqyhA+1PbQPXdXOp69S3jHKBaxFR0bS+sxLs2kykKvpAG8dMoI/DwnFYdPt+D/vm7ApoPcooGFj2QpVnknFWaD5F9NJ4UkQzQevXUQNF5tMrx7WY0ekIgtn5/GZzWN+PTEj6p7lAG38TF2UJLozylZofbLfxyFVqvlvdYkkhRycCGyWr8A1HgJOVwNBZU4hvdrN5h74YUdx3xUWoOFISYKcLkfwCitBg+OvV5yMzwxD5jD6cLy3ccF3zc5sy8O1jai9ZIyJZdK7tSVKA9WsxT4llR1qqrEhmrU7Ls1Ls0EU7xOkWcnpbfe08MpZ0gybh2cHHbK1P5MyrSgt14nW+Cwpb0Hb35SCwB4v+J71u84+47BmH3H4KB1gncBWPufWswX0Gtig23j+G75aXx4TJwHw+kCntlSgXXawI0Z8/yXnmxU/bcIt42XENR4uUaYlGlB3vC+yF65VzABVWnauxx4bMPnsBhjsXTKCFyfGCfpOGI9G6QL4M9z0vBYdioe+6sy6rNyd+pKtQXwxn+iZbqN+2vT3DPSgg0H6ojFt8pONSI3XfkqBbEGoJperyitBtNG98cGBdRc6xvtPv9WwvsaDBoV9mByVYox935njxN/enAUvqhvxht71U0aXlVyAjeYe0kyFv0TaeduPix5HP7Gd7AMOG/CUd+HC2q8XEPERGvx6rRMj2hbsMNIDbYORcpNpWjLKPE+EhLjomVVhghNWHLKg/09dAV5Q1kXzTEDkkT0a1FnkZVqAKo1+eZnmBUxXjaW1gUkZirhfVW7Z5S/0SUXtkoxtns/WDacEl47uR3KvY3vULV+iQR9HwZqvFxjMCGEF3ZUBd0DoxSkD1hx9Xmi99U32jEuTZndeuulHhRXWyXt4kgmLG/JeLmTLdeiOXmkBc+dH4o39srTIpJDi8R7U63JV6kKE9ulHpTXNinqrWLrTm+Mi8YTuWlEFSwkx1ejZNrbW2a71MV67wcr910Jr50ShvMPFzoUFZbspY9CfEw0frjQKXi8UJTky4FWG12DTMq0YOmUEaEehmjYeitxsafyHD6sJIs9ryqpQYu9M6DySypSKo7ETlgNtg4U7lPPnf7sXcMEK9aSDDrckmpSvD+VO1dJvPx6kkHHem8o0UOLpMJEH0VmJJC2ByGB6a7sbbgAbiNpVUkNspb/n6wqEkZnR02sbR1B79PGhlzjQwnD+bresYqW5l/sdOB6k3CYXoPQleRLhXperlHMRml5J6GG5AFzOF2XZf3J0ABYvvs4fndPhiLt7aXs4qRMWKtKanCDubcqiZ0kWkRjBiYG5FApkWwqdfJmW/zEthXgC79wJT4nGnSYdVsaOnscWPOfWoKRKrNAOJwuLNp+jPc9tks9eHpzBZ67ayievUu4HNefQ3XNisjw89F8sTMsekqRGh9c94gc75y3yOOHledEj52Pw6dbMeeONHxY2cD6O4dbgjgp1Hi5RgmmQq8SiHnADtU1i6oMYdzXSfExWPNoFmsfI7GI3cVJ3fUt3l6JS91OXNfbLRneaO9ULOeB0SLyL5PVatzu/H3f/BjwGSUk+6X+Fq3t3SjcV4P5+cMAiG8rQGLo8CXYlp5sJDJelAq1ielO/8bek3i77DRe41Bw5ULMtUiM08F2qZv42WEWbFM8WYsRNWE8ukK5Q3sqz2HJzirOJHopsgT+XavVCH1urziLssV34fDpFljbOtB8sROm+BiYjXFhmSBOAjVerlHkdlwOJtNG98OfHh5N/IBJXfw+qmrA3ZkWrH54FH75TzlS2+JcyA6nC/tPBBoCJLS092DBP44GvE5i7JEkeXov1iXVVmworefNQ1BCsl/O5M14oyZkmHl1MdiSRUkNHa5cISXafohBbPiptb0bT2+uIBbBBMRdi1m5aXij5ATRwu29YBvjQm+8vHRvBoqrrZzG64QMM+ZvO8IaivbXoGLzzmk0gIvjR/HvWu0uzY9RNCexyd6Fw6dbIqYMmgRqvFzDKClApSYP3jxA1CIodfH7e9lp/L3sNCzGWEzIuA7F1T+IPoaYHj8OpwuF+07iL5/Vor1LGY0ZBiEPCJuXwZwQi0fGDcTAZEPAzmxcmgkL/kFWKSa3bJnxCkoNJbz8QTV663W8n2fGuPHAKbRe6sbbB+tl909Sou2HOKQdR4xhOS7N3Z5DaH4wJ+hRkDcUN5h7sYbVAF+Vbu8F2+F0hcwL3EsfjT89NBIAOI3XpzdXwBATxfuMeou8BcoS2HkTnpdOGeHzjEZpNbh/dD9sVKC6zZtIKoMmgRov1zjMg1a4ryYsm7D10keL3qnKXfystg5YbR2Yc0catn1xhlgNmNlxzrhlAD6sPBfgzfD2dNQ3tmNTaZ1qXXv5qpI4vQxtHVhVciLgWBZjLMYOSgpIChVC6mTp7RWUspg12DqIvRKv7PlG8D1ijDGuUJsaeQWk3en9EWNYRmk1WDY1g9cgA4BlU29ElFZDpPjt/1wEs0+bN730UahYOgFRWg1uf30fr3otyebC+3dlvHNCTT2ZfDv/JrQTMsyKGy+RVAZNAjVernGYBdWm0iJacOdQpPfthZR4Pb6ob8bbB+tFLdh/mD5S9E41SqvB1FEW/OWzOrHDBXBlt/1hZQN+N2UEfvM+f1Ikg/HyDtPbCGQWLQBBF5wC3BPqwve+wh3D+uC63m4jRGxlR4Otg7hyyxs5kyXjFVy0/ZjEvlrKx/BLT/5IlB8QLOE5kjAVF2IMS8YgY7sWiQZdQB4NieI32znUUoHm4k8PjUJMtBZltU2KndP/dxVKPucyjN0eL73oDQMXkVYGTQI1Xq5hgqHgmDs0BbZLXXj+va98XclxOtyenoLdlQ2cC+lT49Mk9XYpqmrAWxINFwZmUvk9QXsBANBFaVgXEcbtHEreqziL9yrOAoDisXQ2xITO+GCMgP/dewKr954UZXDlDEnG+xXfKxqKKPykFu8dPotlU4U9KEoIzwlBEqbiQqxhyVyL8lNNKKttAuBCzuAUZF/2MigBc45VxSckeZS48Pfm+HvBlAyn+P+uUoUy3R6vGxWZOzQAlk7JCHsVZ7FQ4+UaRW0FR2YBa7F3Yt6WIwHnsV3qxu7KBjw5Pg27vvIt4TPF67DivkxMHtlP9HmF9FI0cCdNdvQ4iVzBpCGjbgf7GcOtkisYhgsgXjOiq8eJd8rqcbq5HYNMBvw8JxUx0VpEaTW4dXAKXASCeQwmgw5ZA5Pws5uvJxLaE4O1rUN00quaeLwi7x8j9mhK3YVHaTXIHZqC3KFXBPYYDR2uEFFKvB7QAI0XyargorQa5AyWFg4T4oncVEzIMAeMQalwiik+UGeI9Nhs7+PzeLGRdNnz29LuWwk1dZQFy3eHd/8sKVDj5RpEqoLjTzP64v8IVWtdAF68ewSW7z7Omwi566sGfPqbO326y8rZFZQLuIBdAJolhSEoJPhXTpCwck811u/37af0yp7jmHNHGhZPzhC9M25u78aI3xWJ+oxYFm8/FjYdeK/krZElf/MZlmLaDLB5btmSc70hWTSdXGU5EmGO9lGVFS9OCfzucnPkGKZn9ec8NpcHUAOgb4IeTpcLO4+eZdUWmpBhRnltEzZ/Xo+PqgLnX+aMKx+4KSBc2WLvZG3JooSkQajRuFwK3ylBpq2tDUajETabDQkJCaEeTkghnXjKapvwyPpy0cd/9xe34ql3DuNiJ5k3Ij4mCnYC78bWOdmKuNiLqhpE7UApyjE5sy9+npMm2vBcuaeaNzfp3pFm9DhdrJN2qHn3F7f6eCHCAb4KtiSDDit5dF5IBf3c55CW4M/cGXxVcGo+w1xzDaNULAeLMRYHFuYhSqvxS85nrzZiwln+eUum+BjcP7ofq5dIjOiiw+nC2BXFnIYk4x1nxhwK5Kzf1POiImo3S/NGzE0tdifL3OS29i5iwwUAkeEiZTxshKqRGcV9n/3vo2NF39tdPU6s38+fm/RBpVXO0FSlrLYp7IyXKK0G8/PTUZA3FOW1TZerrtz5N9mDufNTSHVu3H2UpEsr8JWeB+MZLq62shovkzItmJ2bKqv5ZoOtA2+X1uFs6yX8++g5nxAtm86LPlqLjh5ngHHRbO/CxtJ6bCytFyWS6E/hvpO84SYmr+/gyUacOH8hIGQb7lDjRSXEypLLPRfbQ99wOVl0Qf4wFOQN9dzgYmK8zCOxdEqGpH4zJMiNOTP9V6jhElyk5rcwvFPGL3gX/oTv4KO0GuSmpxA1gOQLI3sbG06nizV/TSxsFTZKNiPkY+fRc6yhI0CZzuHLORL82eIbHT1OweN5z+GpKQaPsTIuzeQxYA7VNQcYMA6nC5tKyYoW/nvjIZ/f3TtkG85Q40UFxMqSy4HkoV9VcgJbD53Gsqk3YlKmRVRrACaHwRgXo3hVklJVKYX7ahQV2dPAXfZsayeXOleCxDgd7khPDmtvgzdS8lu8Od3crvCIgkvO4PDyukiFtJx3yc4qRZ8Hb4+rks0I+Wiyd3Fq3IRzyxRv/SVjXDR6nC7YO694tv03xofqmolDb2ydvJlQbjgbMOHvG4owhHYxLgDLdn2tSPddgPyht7Z1Yu7mChRVNRB1yJ2dm4qtc7JxYGEeJmVaFFdnlLtrB9y/9eqSE4qK61mMsVg7MwuvPXCTYsfko5c+GqseHoWtc7JxeOkE/O+jY7FuZhYS4/g7OocDTqcL31ovSu7WPMhkUGlkZBjjojH/rqGYnNlX9GcTDTpkXyVS66TPtph+YSSk9NKLHoMS7DnWgA37T2FHxfc+9y3JvBgO2C71+BguwBUPzZ7LTR2V+D3X/3/2zj0uqjr//6+ZYWaAUe7qoKag4AVREU0h0l8iKmlpt91Vq13LpZu0rbVrmlm2Ztpum7mLfa023d1Karcs3SQ3kLYLYpaoiGgigqUyKhdBQW4z8/tjPMNczuVzrjPAeT4ePXaFw5lzznzO5/P+vC+v99dVaCfwDvkK1fMiMSTGhKWpzSkcFtVHXEM9voPUVcKaThSKKbQltTqj2F272Ni7J2HBemxemOymW7F5UTKyc0tkDW1cbeuEOTTIbSeYmRiNvoF63Pu3b4nOQTVKVJoLV9rcdoR8w6L3p8ZgXd5xn4WOXl800RlWcYynY8SiYBsklfn3Lb5SXn3svYN4MC0W2enxil7DO/vPuP07wmS4Ls3gyCf5bcYIbC2qkk24U06ycw8hB9I0d7TZHaHdJVOHib8wGVCNF4khNSZchcNc4bsA8BmknrFmPslfUpUTLr1lOG6O7ycqeVmOxL7LLR3QajVu1xRuMiiysNKNmZRhkUQu7L6BAfj5pBuw9RuHm9f1WCWl1gH+YVFDgBZZU2MFKyGLIcKkx8WrbSiurMPk2Ajad6GhuR1/+NTdoDGHGJ3hV7lQMtEfICvnjTAZUCexRlDjtU5sLKjAtn3VWJwag7AgvU8qBeub2/HY9hLMPNwfZeeaFFfBlhKbHXhsewleX5QsSQjMn0O7qvEiMWItXsr9tyQtBhk0pXKe1AlwD7oulqRKoJRLVWw54UclZzF2cKioUJFciX1Fp2rdnrdSrmy6MUPa7+VKayfe/qYKMxO8J95QDs0NqRHSUXrlnATY7Ha89XW13JfnRn1zh7Mbt+uGwfNdmJ0ov8y/K3ml5/HszjK3EI3cgmJsY42607XzE7H8oyO42iZtA1HAMT5f2+v7vmpCGrH6K6s+OYp1dyRi6fZDojYxvg7tsqHmvEgMtYsRy9tF1Vj41n7c/HIh9pTR95XJK63Bb65PwHwQamBRio+UEJUQLrjk3ghBzsS+nC9OYeLafGwqqIDVZpfdla0Bu9opFdobEGKk/b0r+eUXserWUcjNSsGmBUlYljECjS0dihkuFK7ePVLSR5nluyACaq57jOjGJGXcz08a5Gy4Jxfr88rx2PZDXrkl1IZmU8FJwflFXFBjzewxd5mv54BptZDFcJELMXNUT6ChpQPHaprw24x4r/mDdAhrNY7Qrr+iel4kRioPBQWdK54SoqLrAMyGFNU9lHv96Q+P0Ia9uBCyO3dFbm/I5Wsd2FhwEtv2VeGlOxJlrz7gSljmk//y3H+O4btVMwGAsUuuUvD5npRM1mTCDuFjUgrySms4w2d0DT/5eGO4wlFsHaHZOiP7G1lTY7Hi1tE4UFWPz8pq8M/iM9x/JDO+yEvb/EUlAMAcEohlGSNwuaUN2/adIb6OrKmxfq33ohovEmO12REaZMCtiQMkUQX1XOzzyy28EgsppKjuodBpNXj5nvH4uuISLlzhHwdn6qRKglKJfZdbOvDY9kN4eFos3vyqSpb8kd9mjKBVxfRcPGqvkn3X9c0dTo+Hr+P2fL4nXyWMeiJ0TIrFarPj2Z1lvP6mhmd+EanuFF0YWcquy0rwUclZrLh1tPM+fGm8zBjVD7+eOhwTh4bj4JkG5JdbsFWklgxfLjS1YmPBSeIKKq0Gqs5Lb0OuLs3UYi9UkhsQX93jCuX5uSLSjSxkxz1xaLiiu5hdR2qweVGyV2MzKYiJco8nMy0wC24cQnxOS+M1VF5qluwahWAOMfLy7k2OjYA5JFBSrR6h+MILdKCqXlDDTFJvEZP0PRWOen1RMmv3dn/wjPGBMuJTh0f6TLsl0mTA2usVTIBjzrTZ7djB4q3WADAZdZKH5+we/8vGtPgo/O1XN/q1x4VCNV4kQglpa8oNyIewID0235vMKg3Ohz1lNcRdTrkQsuM+eKZBUfdrTWMrwk0GfPN0Og5U1aOg3CJahZPC9f7ZVJI3FpyEMUCLNgLNhbW7j8veOZqLhZOH8BprOq0Ga+ZJF2oVg5JeIMrLlnf0vOBzcHmLrDY7Vuw4ynqOpbkl2IwJjF3c/cUzxgfK4HJNRlaK1XNHY3FarLPHUU7hKWwrquKspLLDkVcUHqx36wztiZybt9Kzjd1GAsAvzKvNmzcjJiYGgYGBmDJlCg4cOODrS+KFUtLW7Vb+gkEv3ZmItLgoyQyXR94tkcRwCQv2bh9Pgi92gRevtDrd6atvH4NlGSNEn9PVO0EyfkgMFwDEhouc01NMlIn337Alg4cF6/H6oglYlhHvJd4Xfv14qe6nQSHDb09ZDW5+uRAL39qPd/b/KOpcbO8EV38bwCFd/9jmDkvcAAAgAElEQVT2Q4xJ9JT3QuklTSPiA10NLioZWYpCChKi+hqh02qwp6wGE1/Mx8aCk7xKwO+cMAgaeI9p6mc5C5OxLCNewivu4vK1Dl7J9r7E556XDz74AE8++SS2bNmCKVOm4LXXXsPs2bPxww8/oH///r6+PCKUkrYWwtrdx6HVakSHi6gFViout3Qgv9zC+7p8sQv0/Mzs9DjkHjjDO+/IlTXzxjgNSiXHD5W7I6ehLaaabWaCGftP16G4sg6AHanDotyEA7PT471ygvLLLV7htj4C3e9rd5djdqK8SbtSe2mZnjef/jYAcwjKF94LDYC/LJiA53eV8Vb2pavgc01G/vxYDT4sOYsrrfJUT/XvGyiqSzXVTdpzTLuH/h3zppTq4hTdJUzoc+Pl1VdfRVZWFh544AEAwJYtW7B7925s3boVK1as8PHVkeHPX7ZU/ZTkWGCFVHfwiWFHhwZi3vhovPmVt4AbCUzVWY4wxxjnZE6ni/HQtFh88P1Zr11vWLAeG+4a6/ZdiB0/ESY98QRvDg3ErYlm2ZIG2Uq/SdBpNUiLi6Lt1my12Z2Gjc1uw8WmNliaWmEOCcSXv5+Og2canEbNxKHhmPCHz4k7m1PInbQrtZc2wuTuwXRN+K690sZrx89275mJ0bg7eZCgCkO+hAfrsf76O6LXaWjfMyY0YC5KoLynqcMj8extY7D/dB0e+uf3vMcI22cPCDGi02rDio/YQ3VMmAw62Ox2zEwwcwqICvFwktBdwoQ+NV7a29tx8OBBrFy50vkzrVaLjIwMFBcX0/5NW1sb2tq6drxNTU2yXycX/vxliy1NppDDQKNayC9OiwUAIjEwLkEtO4AH02KcuxedVoMJQ8JpE2HnjY+mNTCocwHMEyFTewXX3dHyzNGsXgQKoeMne/pwpA6Lwr7TtUT5UNnTh2PZzJE4UFUvi/HCtnCIhSvXiqqcmZ80yHm80EVJirHOVJYs9Sbg/pQYfFp63qkILDaxnO3eg43SLheeuRthQXo8kBaD7PR45xhies9ImhOyQRnJC268QZIcNmruae204f6twtMemtutuPdv3xLdi9TrjlSNcpXCp8ZLbW0trFYrBgxwb4w2YMAAnDhxgvZv1q9fjxdeeEGJyyPGn7uRAuJKkymqa+WRiV67+zj++sUpAO5KsGwvL4nh4Hk80y5meeZo5BRWYFtRtdsulaQ6i6u9ApsXwZWGZmHhp6PnGrH9wE/EeS5pcf2g02oka/Xgiuf3JaXEPYkL3rV0eGaCWVSIU8ii4Hq/1bUtyD3wo1v1FPV8pMwn0Os02CSxMi3bvZOqrfYN1LGGZKhRkLMwGeEmA+cYYdOfETvGMhLMgowXjcaRK0QRZNChpd0qmSgkVQm2LGMEstPjWFu2cK07YUEBuHytk1XuQUopDaXQ2O12n62358+fx6BBg7Bv3z6kpqY6f758+XJ8+eWX+PZbb2EuOs/LDTfcgMbGRoSEhChy3XRQcWxA2X4yfNi0IMm5M+WDEpVUnlCvD1u4S8oFUul+Mq6fe/PLhYrkvOQsmIDbkhwVJXxj8p67ZKqEOyYq2Ot5kWqKkGC12ZG2oZCojJraOb7ys/HETS3p/v6bp9N5ffckEgnUwtHHGICrbZ3E5w5TsMVDNMe9t3faMGr1Z6yVLloNcOyFTBz+6TKnISdnfyhSqPeP78bTHGLEghuHYNu+atkbOLL10+Jadyjjhy4vzBVffSdNTU0IDQ0VtH771PMSFRUFnU6HCxfcxdwuXLgAs5leMtxoNMJo5JZLVxrKGyBVGbEc8N1RWm127K+sw4qPjipukJGEu0j7MtFBZ6woLU4GKJusm/3+IQQEOJK3MxOjsSwjnjjhL2fhBISbjJzGHZOhKzT36kBVPbH+C+VhdITp+CF050lq2FO/JzFc+gbq8If5Y2EO6fIw/Pb9Evyn1EJ8XULguneSRppZU2MRZNC5vUvZ6XE+2RiQQNpDzBNLU5ti/Zgs11uq0L07TF5oT2PE03sV1ccI2IHa5ja/+05I8anxYjAYMHHiROzduxd33HEHAMBms2Hv3r3Izs725aUJYmaCGWt2HfP1ZXghJJYpVnBPA4cIW5WIcJMU4S466O4twmTAHUkD3XJllEDpZG9XY/DRW+KwaW8FkWaElsBQZEtGFZp7Jez58De1hYg4yiWRcE/yYNw5octD2t5pw+6j8houD0+LJbp3SnX1ra+r3MYNmyqrmE2GEjAZAP6EHcDKHUdp3x2u8DWFv38PfPF5tdGTTz6JX/3qV5g0aRImT56M1157Dc3Nzc7qo+6EY5covHxWTvjsKKUIE/16agy2f/uTiDN04bqAiQ3vMN1bfXM7thZVY2tRtaz5G54oneztagzyEfwjMTq4vEhCjFEhzyd1WBQ+KjnHGAqgqkL+/PMk1F4VvvOUy2s2MMw9t+Sd4mrZhRn/9f1ZLM8cTdwJ/KlZo/BOcTXO1LdgaEQw7k+N6RaqrEy4GgBFp2qRcz0Pz59oaOlATmEFnqDRmaIzTHwVClcKnxsvv/jFL3Dp0iU899xzsFgsSEpKwp49e7ySeLsD/loynZk4AKFBBlhtds7BK8VuUgPgo5JzkpUgUgsYvcdEjxfnJzKqg7pCem+uyZ8AJMvfoMMXyd7UOOUzXkmMDtLz8flcvq0D+hgDkDI8krUiDXDo7HAlUjNBLQqfCeyMzsXlFvcE7K8qLsnyOa6wLYx0GAK0WDJ1mMxXpSyUATA5NgIflZz1ywKMbUXVbtVYTEiZd+av+IWpnJ2djTNnzqCtrQ3ffvstpkyZ4utLEoS/lkx/VnYBC9/aj5tfLmRU0aSQYjdpB3gLS9GhQZduCOUx8by2+mZHA8Xs7SXYefgciivrYGXYpvK9t6c/KsUjNJ9JVQJsKjjJ+FmkUDF3JSdJapzyHa/55eyhC9Lz1V5pI35uVOsAUqbGO0rRqVCA2UNV1RwaKErzyFUZV66Gf67KslabHd8qpHj6xlenRY/nngD1TgL0Kre+hEQBl0rG95y3qLwzrjWgu+AXxktPgdpF+yskg9ffvEfUJMLlMfm0tAZPvH+Y1Ujjc292AI3X2JMrNxZUIG0Dt0HIBZU8qwSubRn4jtetRdWs90oqI79293EiQ5oiMzEav51B9nzumxLj9nffPJ2O3KwUbFqQhNysFHzzdLoow4XOgJaa1GFdHqH9p+vQ2sG/LYgQWtqtyCn0v3CJL2Azfp8gHItywTaPWW12RoE8av584T/lPcJIVY0XCXG12P0RksErpfcowmQQvFMxhxidO2S+HhMmI00Oz5ilyfFZeaU1KK6s8/L+WG12t5+3d9q8jrPa7OgQ0LdKCKnDInGgqt4ZQuQzXqmEW6axw7Zj9YTvLvDxGfEIDWKPcocF65HiEdaiQgHzkwYhlUYgkBSl+pd53oOQyikxbNtX1SMWNilgMn5/MyOetgeXUrDNY0+8f4hVVdk176y74/Ocl55GZmI0Xl+UjOzcEkW7H5PClTQpZQ7GL1OGYtPeCl4liBTP3dYVm+XrDWKqbJGr6Z4d8Pq+TQYdbhnZDwfPXHbL1/BSFZVAxyPCpMf88YOw88g5znDdZ2UWfFZmcca/ZyaYERasJ/p8koRb0soNvtVHOq0GL989jlWbZsNdY2VLSNxfWadIJYr3PSg7iVxu6ZC1PUJ3g6lCZ8NdY1nH4sMM7UHEwFU1mld6Hp+Wkm0G/M3DLgTV8yIDc8ZFY+n0OF9fBitMg5fP7pmLoVEmetdriBHBBh3j32ngCC1QO0AhHhPPHYbVZsfa3dI1lvTE01Btbrdi91GLV6Kp53GXWzoET3BhwXq8t2QKvls1E8/PG4OX7hxL242WDsrzkVNYwfvzuSY+ase6eu5o1uP47gKpztPmEHedJ3OIEVtE9u5iI6+0Bg+/+70s56ZgugfXEJJSyLWwtXfa8PbXp/HczjK8/fVptBN2SvdHuMbi8szRCJSw+spVhwgArfd21SdlxOfz1/xMPqieFxnYU1aDd2RK5pMKtsErle5B/dU2LJk6zEuDwGa3syqgeu7wJ8dG8Go+6EpBuQWpwyP9uvO3UC63dECr1XD2gaGDsqHe+PI078/t3zeQswxTp9Ugqi+ZmCSfxZJU00Iq1ueVs4qySUEfYwC+Wp5OW2qcMjyS2DMmFXIsbOvzyr20YdblHWfUhlEaIWXFbGOxuLJOUtkMSocIgJciN6V23UA4RvoYdd2mfxEbqvEiMXJJ6Xv20og0GXB/ylDeKo+kgnVS6B5EmAy0P794heylphY1nVaDF+cn4rHth3hfw8eHz+GZuQk9wk1Kh+d9uX9vl5DD0bCxpYNfOXt0aCAamttoJ9DVc0e7qfBGmciMF76LpdxiW9RC9vmxGmzbJ/8m5GpbJw6eaaC9J51WwxmikAq5GvMxGYA2O5w/96UBI6asmGksSjnfLMuIR3Z6PPLLLYzq1RsLThKfb2p8VI/Qe1GNFwmx2uxYsUMeKX27HVg9dzSi+hrdGpN98P1PxPkpfCXQXXUPth84w9vzYQ4NYtRmIcF1UZszbiAePnuZ9y64vtkRw+8JblI66O6L+t7kMNjqmttpjciaxlavn5tDAhEWrEdjSwejWJy/dbEVqywtFLbvigpRrNl1zG0375k/JQa5GvO1d9rw1tfs7+xbX1fhqVmjnF23lRRVk7qdBYWU88373/2ER2+JY1Wv5oNrRV53RjVeJERI/gAfovoavRor8unLIUQCHRDm+XDs0NuxdDudmi33MzKHGGGz27Hz8DnnRDZhSDgA/i78/HILVs1NkLyTsq+J5lj45TDY+OQpXGjqMqqZxOJ80cW2vdNGqw7riwakFFzfFV2Igun9coUyEFfdOgrP/ecY47sndG4A2EMuJOrANjvwzI5SFHkkRcstqsbVzgIAnvn4KK512Jx9pkjHqpSFDzWNrXinuFqSuYuuIq+7ohovEmG12bFNQGt1PtDlGsxMMDM25lo9N4Go5TwJfDwfGji8RGt3Cy8tbe20ueXFmEOMaBWY4Le1qBqTYyPw/O0JirjfleIXk25g/f3k2AjF8yVcoSqKwoL1MAZo3bwGYhZLIVDvzd++rkThiUtu43Jd3nEsuTkGn5ZafGK4cBmhFHQhiv/TMjeDdTUQMxOjceu4gV2N+UxGQANR7REAek+VOcSIhZOHICbKhF1HzhOd58OSc14/o8QgX180gUhBmy8keXD1zR1Y9sFhAOxzKp0BJ6ThIxNn6oX3iHNFzoo8pdHY7XZfvK+SIaaltpQUV9Zh4Vv7ZTu/VgMsuTkWn5bW0O5OlEpizCutwbM7y1DPUHZMXU9okEHW58EHavf5zdPpyCk8xSs+7O+w7U4ppU1/4L1fT4FWo/FJnxVfhYJIEVspZbXZkVNYgW1F1W4aH3J7LpTyVGkAbF6UjDnjpPUK7Tx8Dk+8f1jUtUWHBmLe+GjsOkI/LwPe7UWE4NgMHuc8bllGPLbtq/YyZsOCArDh7nF+1xpAzPqtGi8SIcWLIARq+hcjec4X1wmBqbW6r54HG7lZKZgcG4G0DXsFVwIIrXqikFrnhen7t9rsXkm1vmTTgiSvkKcS+DIURMKyjHjifkJcWG127K+sQ/HpWgAOL03KMOHCfFyfpfT44mvk0W20XA26TQUVsm9klmWMwEPThmH1J0dpvUtcUBuvL38/Hf/vT1+wNhulNmgAFBsHYhGzfqthI4nwVUIoX7EvKSCp9vDHBNmLV1qv98oZg0eveyT4LGqr547G/akxrJMIyd8fPNPgthMEHJPN0u0lrOqYdHTF5stg0geg/lq7sxzdXwwXwDfjQSlVXKFEhwYiO12c1LzrRqK6thm5B350GuY5X5ySzfviC+mBNbuOEc9xTBVOVNPVzYuSkXvgRzku042NBSfxWsFJQWPQNexnCNByNht1zR9Li49CWrzyGkFKohovEuGL7sAUJMqnJEjZQt2Xz4MJagGl9FDW7Con7lYMOBKm2SYRJqhd0eK0WEbDT6vV8DZcXKlvbsf92w44/21iEQFUmpDAAEwcGq745/qzto8G4pOVScJhYqtmmPCF9IClqY1ojssrPc+am2cHsHpnGepkUtym+zwSPL26nnlhTDpOSueP+Quq8SIRlDLtoz7MMeAzoXgaKg3NbVi7+7hk2f7+8Dwo6EpyMxOj0deox71vM4vleeJp/JDEskmravgYUSQ0t/PTb5GTptZO/L8/faH4BOuv2j5hwXpsuGusqGdBGg6TyzPrK88q13dqtdnx+49KOc+jlOHCh9W3jYE5JJB186i0SKM/oxovEiKVMq1QSCcU0gRGsbu2Lg/HMUnUJjUAQoP1CAzQuS32VNLcm9d3W6QlubXN5NfkWRHCVLq6drewXVH9VenUOP2RrsoRYYmXQvDH0CUAbF6YLMqlzzccJpVn1hVfeVa5vtP9lXVobvMfw50P5pBAou9HbpHG7oJqvEgMtaj9vaiKKDtcCviIffFJYKSO4RNr9oR6HlJV+Wy4ayzjzmPCkHBeLlU+ixud8UM3icxOFLYrYlIj9gcmDQ3D92cuS3Ku7NwS5ECe0ldP/DF0GRIYgBtFivIJDYdJ6YnyhWdVq+FurupIUiUjwqRHQzO9gKKS+KNYY3dAbcwoAzqtBovTYr2adskBaVjCarOj6FQtVnzEXwHY0tSGnEL+7QEodFoNstPjRLWR12oc5ZKZidFOo2F+0iCkDu/KomdqYc/k9aAWNzbTQqsBXl9E7nliujYuzKFBRMcpTdbUWJy7LN2iZ7MDj20/hD1lZN1vxUDaZFSrAdJH9ZP9egBHCG3yugJsKqhwNh7li1AjRGpPFOVZVcrwttmBpdtLsKeshqXJI9n71scYgBfnJ/rccKHwhVhjd0f1vMiETqvBwslDsLGAX+8hvpCEJaTQudhYcBIjzX14hY9c82pqr7SJEkuz2YFwgkmSj0vVdffIlHybs3CCImGOiUPDJZV7l4qPSs6KKg1nQqnqOKZQbkhgACYMCce0+ChnBVjhiUuyXgvF5Wsd2FhwEtv2VQnKfRFihPQx6pxJ01Im5mcmRiN91ABMeSkfDS2dgs7Bl6f+fQQtbVYvocGsqbGYNqI/UR+2B9NioPUDY0GrAXIWKidz0ZNQjRcZiYkyyXJezx5HbBOPlDoXfBYcOYTB5EjAZFrc5Bb48uTgmQa/M1wAslYOQpA6B4MNkiRHygunZK7a5ZYOPPJuCW/9EkeXdQOjUCQdV9usmPbHQkyKicA3FbWSitkZArRYf9c4RQQR7QBtTgvV5PHkhSswGXWceS8ffPcj2qy+f+FIN2Uq3qjGi4zIkTAY7VJyy4XUOhc1ja3Yf7oOaXHsyYZyCYPJlYDpDxn8/loZIydK3jOXR87VC6f0ksbXC9XVa4yfsWBpasOnpd7hOqbEfD4empkJZizLiMcbX51Giw8r3b74gSzn5cIV/6k2sjRe8/UldEtU40VG5NjN8YmNyqFzsfS9Emy4m9nVLYcwmBIJbb7O4PfXyhg58bd79lW1oBAv1Jxx0Xj4bCzvLut0UO/qqo/LkD5qAHRaDXIKT2FbURWRh4bOyxqo12JafBRujInE2YYW/LP4jN/kl/gbfDxoKl2oxouMSLmbY4qNsu2O5NjZXr7WwVo+LbXB5Mvuw0oitDImIliP1bcloH9IIMrPN2FdnjIVbmLRaiCZcJ3UORyUF87SeA21V9uQ80UlGkUICJIg5F1dOScBQXodXtsrPJnelbrmdox74b/QaoCWdu8mqHQeGiYva2uHDZ+XX8Tn5RclubaeTEQf+Qs7eiKq8SIz1G7umY+ZmxmS8NrPxiPcZMDOw+ecE3R+uYU1V0POnS2Tq1uMwTQncQD2Vda77fZ6i3okSfKwK9RTf8kl4bNWQq0YKTrhsmGzO/J8xHq76Hb9YnM4XL1wxZV1shsuAD8vlKuxdmNMJMwhZyUTOWztYO7c7il4h+v/X/WoiMMc4l8eyO6CarwoAJWRn7K+QHAC5Jrdx92Mn7BgPW31juvuaGaCmfE4MbCJXokxmO5PjcVfF03steqRTGGL8GA97HBv3khn1ElprJpDA7HgxhtkrZYTauhSi3dBuQVvF1V7/V5KSXy583L4hkTpjDUxEgR8cX33cf3/K0VYsB6NLb7XZZEST/FLFXJU40UhDAFavHTnWEENAQHvuCiTQeK6Ozpec0Vyw8UVuoldaMlvWLDeaaj0ZvVIKmzh2RX2xpgIr4aOnkZdAw/FYNrPHjMAt46NdmsYmXvgJ8lbF1AIMbZIqtiklMSX03vJNyTKFKJplPEdZ+LilVbFquOCArR45JbhyE6Pxx/3HJckz0cqjDqNqKqlnh4OlxPVeFEQpRICqd3Rpr3yasxEmbxjtUJLfh+4iayCqjfgGQ507Q48P2kQ7d/sKavB0u2HRH3ud9UN2HzvRLfvYc28BFlKYNl2nJ45LBOHhuPgmQbkl1uwlcbTQodUkvhyqvTyCYmyJcL7whPRv28gys83KvJZT84aiaxpw2C12XHLyAE4dfEqCk9c8gsPjBjD5cG0mB4fDpcT1XhRGM+y3CiTEU/9+wguNPmPhDkxNLaGEDe7BsCjtwwXfz09AKbdNVsoRKoKr7rmdq/FPjMxGlvuS8aKHUcl9eIx7TjpPCtixPvEhn345iKREBasx+aFyUjhocDsTx2yKcNTqRLfyy3tyCut8eobFqjXsubo+DtU3pCKMFTjxQd4hkbk2t3KDV2CqBA3ux3SJG92d0h213ShECkXNrrF3hnKOl2H4so62O12bD/wIy4LyD9g66jMZLiJCU9IEfaR2mO64a6xvBsz+osOkAZdhqdSLS02/6+S9ufd1XBRexlJg2q8+AFyJdbKDd3CINTN7i+Tsy8hMULoQiFSPjumxV6n1SAtLsopUDh2cCitN4L6t+d4DgvW44GbYpGdHkfrbbDa7Fiz65hk3kepFwg6jyk0DgO+urYZ2789wyl8JkYK3h80ccKD9VjvYnj6QpW4u9NbpB+UQDVe/IADVfXdznAxhxhpFwahbnZ/mJx9DWlirOdxUjw7vos9kzeCyuPwVCym8lY+LT1Pm3CcU3gKliZpSr2ps66eO1rSyjW2ZPLs9HjOzuli+mRJkXujARB6vWIH4BcCyxwzAPenxKC2uQ3FlXXOZ/n87d3Ta+wrzKGBWD13NEKDDPj40DnUX21DhMkAc2hQr6qslALVePED/MXrwKcU8bnbxjC+aHzc7KoLtYt6Qp0Wz+O4FjbqGT8zZzQez/VO6hW6G+Rqq5A6PBJWmx05hRV49N2Dbvo9YUF6PJAWg+z0eOSXW1gXfb6YQwMxb3w0/vBpuZtBZA4xYs28MbIkSeq0GjyREY+R5j6y9Mli2xRQ39hD02LxwfdnaTdC1DEb7hoLALxDYAeqG7Dn2AXnv6l76m5Emgy4Z+IgxSuWNACemBGPEQP6euXuUESY9HhxfiLmjBuo6LV1VzR2u73b5Ym60tTUhNDQUDQ2NiIkJMTXlyOI4so6LHxrv2Kf5zn5uU5EpLuo9349hbPHEVU1QlWJME26Uuhx9AQ+LjmLZf86wnncxp+Px53Jg91+RuWLAOzPWA5RNyb2lNVwJvqGBgVAo9GI8jxS4+rBtBjMTDCjobmdte8P30aIfJFS8dcTru/PYSxyS/tT12hpasUf/nMMDTyfP/XMTQYdmn3Yy4gPESY9ip6egfQ//8+vQ10PT4vFyjndzzAUgpj1WzVe/ACrzY6bXy6UpRyTjsWpQzE7MZp2cn303YP4rMzCeY7s6XH43eyRbj9jm7SVXDS7K6RGbG5WCm34gvQZy7m4ul6LUk0OPRfviS/msxpDYcF6HHx2Zrd10ZN8f3y+YybDt6fx8LRY3DJygKIbRaG8vihZcIixOyFm/VbDRn6AHOWYbPy9+AxShkfSaoYM72ciPIv7VXItnP7QudnfIUmAZNNHIX3GcgsBytGck4lIkwFf/n46DAFaAMD+yjpOL87llg7sq6hFQIC2W45Fku+Pz3fMFOaNMOkFK4L7I7uO1GBUdKgs5w4PDkCHFbja1inJ+VbvLMPsRHECiz0d1XjxE5TuaMukPpo6LAo5X9CXJnoeR0GqTeIr9Vyni7zxGuqb2xHRxwhziP8tWFyNPF3LVNnO4euScyU1Seqa293K7B2qxNw8sv0gmtu6wh293QtIZ/hamlqx7IPDvr40yahpbCXOK+PLgslD8H//Oy3Z+eg0l1TcUY0XP8J1AmHq2yIVTOqjKcMjOcu2w4L1SLn+d1zaJFLJtAuFTU7eHxcsJiPWn66VKyShdAK6++eRjTFXwwWQth+SUrjmrUhRteJp+BZX1kl5uX5BWJBelOghEzWXpR/z/lLI4a+oxoufQU0gqcMjcWNshKyeGLqXQ6fVYMNdY1kTdzfcNdY5OXLtsqWSaRcCV95FTWMrHnm3xO/iy/4cYiPJq1G67N3181KHRyLni1O8z+EPhjYflDDK5WyNwEWAFuiUQYPu8rUOIsOFb/h+ULj0gn2qfAQ7Wl9fgAozmYnR+ObpdORmpWDTgiQ8MSMeUs6pTC8HJQlvDnHvXWQOMXpVapDuDpTeRfDJu8jOLUFe6XnZr4kPlBE7P2kQUnnIyMuF1WbHpoIKPPJuideCSRmBa/9zDMWVdZg4NByhQfLvizTwzgFKGRYpuMuyZ8dkV6w2O4or67Dz8DkUV9bBqlRXQhooo5xp01Bz3Yu0p6xG1OfotBqsnpugqOESHRqI1xclw2SUfvxEhwYioo93PzY6/nTPOESYyMeRXuL3U+02zY3qefFzPF25Iwf0ZS0DJYXq4swE6e6fdHeg9C6CT96FzQ48tv0Qtmg13SZkoCR7ymqwZtcxThG5t4uq8XZRNcKD9V5hGalh0qYh8Rxy4Wlo+1OlXHunDc98fJTToLBDvBfp08PnsPKTo7S/i76upSOlXsrquaOxOC0WB6rq0eUqR/wAACAASURBVHiNO/F17tho7KusJS7zXnDjEJhDyOahQeHBeOlOsnEUHRqIbfuqOY/LmhqLiUPDOb3pJLltKqrnpdsxZ5zDKxIdKs4YuNzSgfxy9pJokt0/5Vpmes3odsdKIMTT88J/yn26o/ZHqF0+H/XbhpYOdMr8HCNMBsb8FMpzGBokzAPjamgzeTksEnk3+LCnrAYp6/cSVwAxeZFIyPrnd8h+/zCutNIboavnjsbKOQlYkhYj6PyuUHPE4jRHZ3nSd3fWmAH4/tmZuDVxANHxMVHBqCM4t1YDTBwa7hxHTJ48zfX/fjHpBiJj65YR/d286Q/cFIO+ge7+g+jQwG6Vd+VLVM9LN8TTK1Jd23K9twr5AiNVfJ9E+dMXuwghnh7P3Bwl9FD8GSVLnvny7NzRTl0XukqymQlm9A3U496/fcvrvNTCBVD9lvwjGV2obo4QI37d7nLkl19kPWbt7uOYnRiNjASzqMICujmCjzdXp9Xgl6mx+KzsAufxUSYjHn+f25Nis3c1iqXmWjrhP6oVRtm5RqLrLT5di7T4KLe8xmdvS+jVc4wYVOOlm+IZTpoUE85ropYykZarz40vdhGTYyNgDjHy7pdDTfb+FCoQiljjS8mSZ76YQ4M4k1ZX3TqKd2WJzQ78ZW8F0uKisP90LWu/KaWS0cUYkXyN+PZOG/72DXcoiLpvoe8ZBd0cQdrugvLmcukjUcdDA2KvlavRR7V+yE6Po32fys41Ed6t97vnD9IG3RXVeOkh1ArULyBtBsiFv1XI6LQaLJw8BBsLKnj9Xf++gcS6Nf5MXul5PLuzzG2y5mt8+WOpJrUQNTS3Yen2Q6yVZNnvC9MoyfniFK+KJbmfkxgjMumGMF7Hv1NcDVLN9YtXWqHTarBm3hjeOUZhQXpsvjcZKcOu6/NU1rnNG3y8ua7eX7Acz2eOrK5t9voZk6FBWuGmGinSoua89BCEJsSu/fSYZHF7X1TIsFWBxESRqgV3xd2phDqmUAHg/7kx6/PK8dj2Q167TL5VKP5WqtnVLToBa3cf95twltzPSYxxtP3bM7yOP1PfQnwsdd+ZidF4eFos0d9QeSIb7h6LtLgo5JdbkLahEAvf2o8n3j+MhW/tR9qGQgCOflxmj9w+M0NOCOX9ZTuez/eUe+BH4necpMItPFjvNNRUpEH1vPQQSKTl6ahv7riudTKh23Uz5fIuRBGWRQIOw+T52xNw8EyDz3RrpMixySutYa0A4VOFInRMicUcYsT8pIHYdaSGNgwZGmTwm3BWdGggbDY7dh4+J5u3UYxxxMcYAYChEcFEx/UN1DnDNlabHR98f5bo71zDRHvKamg9NpYmR+n9lvuS8c3T6cTvBJf3l894tjS1Eb/jJBVu6120sVSkQTVeegiU61RoiWh27iHkQONXYm1srM8rp12kKe/Cr6fG4N/f/8T7vHLp1nAZJmJybFyVVp/bWcZ5LaTGl9gxxRfXUIJOq8HyzNG0z2zn4XOKXA8JLe2duPftrlwzOfKixIjFkRojFPenxmBd3nHOPKH1d3QtxvtPc/eTAoAVmSORNW04dFoNrDY7nuLooP7Uv4+g9Hkzr00CWw4J3/HM5x2nKpPW7Cp3C8V3tzy57oRqvPQgMhOj8fqiZGTnlvCWv3ZonZRgi7Y75HNwexfe+rqa1zmpypFX7hlPdDy1GybxlnAZJmJybNiSVtkgnZgzE6OxJC1G1lYVgHsogYJaiKhn/GnpefTvG4goE7lHTW48S2TlyIsS2rhVq3EYI3wwBGiRNTWW9f2amdAft7k0dSVtI7Bhzw9oaGnHyjkJ2HeqFs3t7FpAzW1W7DtVi6kj+pFdPAGZidFYljECGwtOch7L1+Plb3l/PR3VeOlhzBkXjRxMwGPbDwn6+zW7jvm1PLrVZsezBN4FvlDhoO+q61krVFwrHUi8JVyGyeZFyVi7W1g5rtDyWYDfxCy2HJYL12fmaQw2NLdj7W6PKraQQM7+W0DXd7V6bgKe+eQokXdALHKVUAtp3Jo1NdbZbZsPK+ckAADe+rrK7T3QaoAlN8di1dwEj78gH4GUUXSRsDppR8lZSY0XAMhOj0PugTOcFVINze28z61WDymHxm4nzS33T5qamhAaGorGxkaEhIT4+nL8BqE7cgBYljECT2TEy3BV4imurMPCt/b77PM1cCQSAqA1HKil6v/uS8bMBDNufrmQtYQzwmRAHcEkmZuVgsmxEc6FPaqPEU/967CgEtUIkx7frZpJvLBabXbc/HKh5D1ugg06vPXLSc4wEemYJfU+UN8VZRRt/aYK6/KOS3HpRORmpRAvZKT5Tp7HFZ6w4O1vqr2MjKypsU4jRCjtnTa8U1yNM/UtGBoRjPtTY2iNoaKKWrfQGRdaDTB9ZD/sPXGJ89hZCQPw5i8n8blsIvJKz3Nu8KJDA/HN0+l+u5HrCYhZv1XPSw/F1YVpaWrF2k+PEWscbCw4iZHmPoqGj5jExnzdsdgVrQbIWTjBaZSwVSSt2HEUP9Vf40z+JTFcACC/3IIn/3VYkkTVF+cnAvAuT2WapIWGLbh49efjnWEiPl4k6pjwYD2MAVpaA87TA6bTavDgzbHYWlSlWLIv6VjlU9buubNPHR6J388eTWRk8MUQoMWSqcM4jyPpRO+KzQ5oCO2BG2PCyQ7kSThB6NFXDWVVyJDFeKmursbatWtRWFgIi8WCgQMH4r777sOqVatgMBicx5WWlmLp0qX47rvv0K9fPzz++ONYvny5HJfUK3Gd6IL0Wl6Jlyt3HEVfox61zW2yx27ZdtwRJgNenJ/oTCT2ZfmuzQ5UXLyKcALdjcstHZLu8rdKFLZ5eFostFqNl0fI8zl7IiRswYTnwixUhK2hpQOr5oxGwsAQXGxqRX1zO8KCDbjc4jB+Q4MMznJXylux4MYbeGv/CIVkrHIlnpPkzpAaGXIhpJ/UAML3+L6UGIFXxY6/NpRVIUcW4+XEiROw2Wx44403EBcXh7KyMmRlZaG5uRmvvPIKAIe7aNasWcjIyMCWLVtw9OhRPPjggwgLC8NDDz0kx2X1ahzJvBOQnXuIKJm3oaVD9ioKgHvHXd/cjse2l+Dhsw43uBzlu3y8CRsLKrAkTdrcCZNBi+Z2m6Tn9CTSZMDa+YnQaunDXZ7PmQ66hMS6K61YvesYcXO87OlxWDZzhJshLEaEbV3ecefYHGQI8jKuKP0NV69AWLAe7Z02tHAkjArFUwGWCSnL2n0Nn0RYANAS3s/hny7L4vnw14ayKuTIIlKXmZmJbdu2YdasWRg2bBjmzZuH3/3ud9ixY4fzmPfeew/t7e3YunUrxowZgwULFuA3v/kNXn31VTkuSQXAnHEDkbMwWdDf8hU4I4HPjvuNr6qQV3reGcKQcirnEpjy5GOJS3XlNFyC9Vq89+spOLAqA7MTzZzPm3rOTHgKEd6WNAjfPzsT9yQPYvwbV9LiorwWYrG725pGhy7IIzQNFC+3dHiFMxpbOnCt3YrbxkUjTGDzRi64+nmRJp6Laa6oNNnpcejfx8B5nFYDJA0mU/4tOnXJ6T1jE6Tki782lFUhRzGF3cbGRkREdA2E4uJiTJs2zS2MNHv2bPzwww9oaGhgPE9bWxuamprc/lMhZ864aCwTmIxL7QSlUpflu+N+ekcpPj50DqFBBmxeJLyztgYOT8TGn4/He7+eAiPP/ID65g5EmAySGlBy0dJhw/fV9dBpNcTP+9mdZby+Y51Wg5fvGc9qBLItBkrvbqk7O3imAQdWZSA3KwWbFiQhe3qc6HP3DdQRhXoOVNWjnjDfSaoWHnKj02rwhzsSOY/LmhqLgeFk+jM5X1Ti5pcLsT6vHDe/7K7Ee/PLhYI3U9QmCPDuOOTLhrIq5ChivJw6dQp//etf8fDDDzt/ZrFYMGCAeytz6t8Wi4XxXOvXr0doaKjzvxtuuEGei+7BZKfHI1TgjlPKnSDfHfeVViuWfeCYuNbuLsfquaORm5WCJWkxxOegpqJ1dybizuTB0Go0gip27kga6HY+f2ZbUTWsNjvx865v7uD9HVN5D3TPg2sx4NoFywFVGk91D56fNMhNY0YodyQNJgqt8hn79QL7lvkCSqwt2KDz+p1G48i5cg3/knznNY2teOMr70Rri0hvMElLARX/hZfxsmLFCmg0Gtb/Tpw44fY3586dQ2ZmJn72s58hKytL9AWvXLkSjY2Nzv9++om/impvR6fV4ME0sl4kdEiVxCZmx21pbMXS7YfQeK0dq28fgy33eXti+hgDvCZRz4lJ6L3MTDDTTnz+yOVrDmOEz/MW8lyoxcDze+BaDNh2wXLjep9SGFExkWQeBT7fxdkGfhL/viYzMRpH18zGOw9Oxh1JAzEroT9WzRmNH9be6syn0mk1WD13tKjKNSl6jWUmRuObp9Od3rfcrBR883S6arh0A3gl7D711FNYvHgx6zHDhnVlvZ8/fx7Tp0/HTTfdhDfffNPtOLPZjAsXLrj9jPq32WxmPL/RaITR6D8Km92V7PQ4bCs6jcseCqEkSOXmF5N86ykGxqRuCYBVP4PvvbgmY+q0GsxMMGP/6To89M73aG6TJwFUCi5eacVt4wYiwmQgClcI/Y5nJpjR16hH8elaAI78GErHhQ0pq5n44HqfbCXhJEndfBRt6660EieK7zxyHs/eNqZbhTB0Wg2mjujHKDC3p6wGa3eLr8aToteYKizXPeFlvPTr1w/9+pGpHZ47dw7Tp0/HxIkTsW3bNmi17k6e1NRUrFq1Ch0dHdDrHSGM/Px8jBw5EuHh8tT2q3Sh02rwQFos77LRSJNBsiQ2x+4rAY9tF9Y7h5q4/l5Uhai+RsaSbraJaXJsBLFGBV34Q6fVIC0uCgsm3SC7hL4Y+vcNhE6rwYvzEzmfN59ERVfRtOraFuQe+NEtR+OjkrPEVWqeBmhEsAGPvPu9LAnNTBVBTEaUOTQQiYNCkF9+kfGcJIq2VpsdT7x/CJ+Wkoc6qDBeT1lgxShDM6GWNPc+ZCmVPnfuHG655RYMHToUr7zyCi5d6lJSpLwqixYtwgsvvIAlS5bg6aefRllZGTZt2oSNGzfKcUkqNMREmXj/zdr5iZLtAB27r3LR53HdwYUF6fFAWgyy0+OdDeC4lEtJRabNLOXickvoC8VzkZ4zLhoPn2XuXaMBWaKi1WZHTmEFthVV4/I1ZsOPb68fahe8p6wGyz8qlc1wAZjvk61Hzfq8clrZfBJF27zS8/j9h0cE3VNPWJytNjv2n67Dio+OSmq4AGpJc29EFuMlPz8fp06dwqlTpzB48GC331ELRWhoKD7//HMsXboUEydORFRUFJ577jlV40VB+L7wD0+LlazrtBy7L8CR37GxoALb9lXjF5MGY9eRGsbeQ1abHU9/eMSruR4dq+eOxuK0WMZFXUznX7lgWqRXzknA+MFhxKqurlhtdvx1bwW2fFmJ1k7uRVhIrx8px0Z4sB52uOu8sBmhFEyhhJVzEvDUrFG8FW3X7XYYPULp7ouzmHYlbJBq6sgJaWsHFWlRexv1Ykh71oQHB2DdHWMxZ9xAST9XydwGT2aM6of9VfXEeSqbFiRhfhK7lokUi26ESY/Vt41B/75GwA7UNrc5uihrgItX2ni1eeAyRvhOunvKavDkv44IFncj6fVjtdmRtqGQtTy4jzEAV9vYDU6TQYeHpg1Hdrqj/NmXi4sYw4VanLtzjx25NiqufcR8lWBL0pxVhRm1t5GKYBbcOIRVFXNZxghkp8dJOnGKUVSVCpKmcK5U13JXfFD5Emt2lQvS5tAAeOnOsayTXpBey7oQpMRE4BeTb4A5NMhtkWYyVEjzKPaU1fCSf6eDJPSRU1jB+eyutnViWcYIbNtXxZir1NJuxWsuPbp8lS+SV3pelOECdG+9EaGtHzyZPrIfTliueOUh+dJI4OoYr5Zby4tqvPRSuNy40aGBWHDjEMREBeNAVb2ku9XuGL//R3EVHr1lOGd4gMqXyCms4JUMHRakx4a72Q0XwFHNM3dcNGPC5/7qepy4eAUb7hrrzPnJKTyFbUVVbrkpfHaHVpsda3YdI74XJrhCH3vKaoifWUxUMIpXzMDklwpwpdXbCyMkXEXaRZkUq82O339UKvjv+SzOfL1oSoU6pNqo3BwXhb/96kbJr9nzOUwcGo6DZxqIunszGWVCxp4Kf1TjpRfC5cY1BmjR0t7p5pER6wp1nSRqr3Qf0S2K+uYOpKzfi5fuTOR8BjqtBk9kjMBIc1888/FRojDP5nuTOUXS9pTVYM2uY5yiepdbOvDouyV4aFosPvj+LK13gs/u0NGZXPh3xpWXYLXZsb/SkchJSnVtC9Je3ktruFDwKaOlS8Rdl3ecKBGXif2n6wSVzz9w01DMGhNNvDjTbUQiTAbckTQQMxPMXudhCnWsnpuAcJNBUuNAqo1KhMkgeUkz3XPQauA2BpjmPS6jTIoSbhV2VOOll9HeacMzH7Nn+7d12tDmkYwpxhUqV7Ke0tQ3t/N6BpmJ0UgfNQAp6/cyaqtQC3vKMPYJjm/egB3gbPoHcO8OrTY7ik7xC7G5whb6aO+04ZkdR5F3tAYtHeSLfFiwHq8VnCR+FlwLKFNnZ5u96xkKMWCKK+t4/w2lQEsK07iob27H1qJqbC2qdluAmY6vaWz1KqGXIndDqkRjc2iQ6HNQGyhL4zUUnarDhyVnvY7x1LpjmvfUrtS+RzVeehF7ymrwzMdlxAmfrgh1hcqVrOdLSBZ8V1f0i/PHYOn2QwC8hc8AsiZ+UuQN0FHT2Ir9lXVIi/f2+khhdDKFPtbnlePNr6sgtFyAz5/RLaBWmx37TtXi3wd/wq4j7Jorb31dhadmjRIQQiK/SpNBhz/dM55XNR/puKAaV/4qdQj+U2ohviopcjcmx0YgLEjPWk7PhRQNEoWOZaZ5T+1K7XtU46WXIIURwdcVKuei6yu4ngGTS/6habFeZdukOQ1yJzhnvfM9Xv35eLfrEDpeQgMD8ODNsYiJMjGGHpg8HSTckzyYdsdMB1O4ak9ZDZ761xE0E1ZN2ezAO8XVWDJ1GOexrqQOi0LOF5Wcx6XEhuO9rFTeIRq+4+IfxT/yOr8UuRsOMcwY3mKYFKS6Q2yInfvo3nkuaQR/KOHu6ajGSy9AaiOC1BXqD1VFckH3DNiqD978qgqbFyULyimQ2/Xc0m7FI++WYMv1HbbQ8TJ3bDQWTRmC2qttjPfX3mkTXH1jDjEiLT6K2HgBvBc+oVVTZ+r59xdKGR7Jqd4cbNAJMlwAZUISUuRuZKfHY9u+asbnoIEjFGgM0LrlVkkRtpJy7rM0XnP+f65WEkD3rhLrDqjGSy9AaiOC1BVaUM7cHVxKNAAGhBix5OZhWJcnvl8KCZ7PgKT6YO3uckF6HUq5np/5+CjSRw3AwTMNvMZLH6MOCyffgE9LLdh9tCsEQ7f4vFNc7ZVXwAX1tNbMG4PQIAPR30SaDFjnkVxttdl5JQW7MjSCrOGiK1SnbTZj6dWfjxe8wCkZkhBjKFHPgcn7YQew+KZYPHrLcMZKH6HVUVLOfc/tOgZjgM4Z2mNrJaHqvMiParz0AqTcoZHGn/eU1Sgql79m3hh8V1Uv+jzmECOutlkZRdCY3MFyVh8opd5LVVTdkUQmRmgM0OJvv5yExpYOZL9/yOv3njkTVpsd3wr4jsweqshczyLCpEfxyhleOSr7T9cJyr3g03DRk8zEaGy5L9mrSswcYsSaeWNELXBKqjqLNZS4Gm9uLDiJbUVVWHzTUNwYE4mLV1qdEg355RYv7SRzSCDWzOM2EKSc+660duKx7SV4+GxXUjVbKwkVeVGNl16AlDs00r43L/xHfM8iUh6aFgsAgoyldx6cjACd1m3iyS+34NHru2VSd7Cc1QdsLmqpoapUSGjrtOHgmQb8pZA+n8E1Z8Jmc3ie+OyCw4L02HxvsltXahJ3/Ut3jqVNrhVS/QOQNVxkQ64FTolxIWXuBvUc/rr3JF7be8rr95evdVz/edfvmMJulqZWt1AnE3J4p974qgrjB4c5FcfVrtS+QfgbqdJtoHZoYqZKrQZ4fRFZ1YHSuS67jtQIElELD9bjprgopA6PxPykQUgd7lgkqV2iOdR94jOHBjJWXshdfcB0Tb7mtb0VrGEgyuP02PYS3mNiw91jkRYX5bXIC/l+uq6GHK2Gf+kyE9QC5zrOpEDOcSFH7sZ/yyz4S6G34cIEV7f3lTuOwsoyAKm5T2p+/2Epvj55CUUVtdh5+ByKK+tYr0NFelTPSy9Aih1azsIJmJ1oRnFlHefuUWltA6GGEttz4LtbVqL6wPWa8sstxB6S7obJoMOfPaqfPBHizSCt/gGAZ24dhcVp4jwuSpGZGA2bzY7HtnuH7tig+miZQwLR0NyGtbuPy5q7saesxktLRiwNLR3Yf7qOUeDRde4jmfeC9Fpc6+BuONrcbsX9Ww+4/cxk0OHXU2Pxmxkj1LCRAqiNGXsRQrQOqKRLAMQNyIor67Dwrf3SXLTMkDQL9IQpeZCqNgLowxl89DJIEhTzSs8jO/cQUQLswyxqu/6CBsDccdHYtGCCLJO/1WbHxBfzOZ9B1tRYrJor3tsiBCGJqUIanWrgPR7lbBkgZzPW7Olx+N3skazH0Ckoy0WwQeclPaBCj9qYUYUIare6/3QdHvz7d14qunS8cs94XGnr4NWATMlEQrHkl1t4GS9cXWRJqw/YFgrSTrVzxg1EDjSsu1mTUYc//8wxkS7PHI2cwgq8+dVpYo0TpQjSa1GyehaCDDrZPoOk+mdmQn+fGS5MMv8vzk9kFa/jG6aNCNbjjgmDEBpkgNVmd8snkit3Q95QMvsss6esBm9+VaXYXOQpPaAiD6rnpRditdkxds1/0UKwgG38RRL+uOcE48RDhUM8S4Cl6ELMh8AADVo7hQ1l0kmGS+xqWUY8stPjAYB1B8tmnACg/Qw27w3d+foYdfj1zcPw+Ix4Wq0VtpYFXESY9GjrtAnq28OGEC+YEOh6RPUxarHhznG4LWmQ7J/vCmXEcoUB2bxBOw+fwxPvHxb0+REmPe5MGoQMmh5IUiLmGrl4b8kUWoVoQF6PDxfmECOKVsxQQ0gsqJ4XFV4cqKonMlwAoP5qm6AS4EM/Noi9TF4INVxIFURJxK42FlRg+7c/YtGUIYwKs2y9ZR55twR9jAG8O9Xyzf8wBGjx0p2Jgo3LhTcOweb/keWOAA43Osl4cy2FlRN/KW/lE8Z96+sqnLp4BQ9Ni/O61uraZsHXUN/cgbeLqvG2Rw8kqaCMs/+WsbdgEEpYsB4pDAav1WbH34uqfCaUaWlqUxszyohqvPRCSBNqgw061DWTdRN2PacYFVWlIdVfIXV7X7jS5iaFHu2hUcJlADHpy3BdK1+Xf2ZiNJZljHDrHE6Khucaf2NMOL48Wct5XP1V5bqN+7q8VYhk/Rc/1OKLH2q9Gi0Kld73RIpeRq4o0ZB1w11jaY1Of2kGqzZmlA//T6VXkRzSct2Wdite/99p3ucUoqJKMY3B/Ss335y6hFf++wNe+e8JFFXUepU9Cp2Eaq4vCHvKaiSL+xeduiRJeWZ8fxPv8vno0ECkDiP/jqJDAzFvPFkoJsJEpp7b3RErWU8ZGXmlNZLqKbl2Ghdb9ptXeh6PvMu/PJ4PS9JiaI0syjD0teECqI0Z5UT1vPRCqIRaKV5uuhJgIX1gAEf8fWikCajg3qVLzWaXEtqcLyoRFqzHhrvGOidHMZOQHY4FYTlHRQQpruW+Ql39e8pqsHT7Id4L6PO3JyBleCRRQjbVVI9U0t8cGsTzaronYo1YKoS4emcZ6gTmLbGdm8QTyZZwnldag+xcfmXbAPDL1KGYPcaM8vNNRG0+MhLMtNflL81gzSFGtTGjjKjGSy9Ep9Vg9dwE0ZoLTCJWQvrAAI74+zv7z4i6Jqm43NLhVjEwcWg4tBoI9ijVNLYKTpBlw3I9V+bBtBjMJEy6FDrBp4/q5zSSuHSDwoP1WH/d+KMk/dkWbNK2Ez0BKUIJdkByw8UVz2t0NVaqa5uRe+BH2iaKAATPK7cmRiN1eCRShkVia1GVIM0kf2oGu2beGDVZV0ZU46WXEi6Bi55JxOr+1BisyzuuiKaC3KzZdQwzE8w4eKZB9P1E9DFKXkJOnWdrUTW2FlUjwqS/XlrL3J9I6ARfeOIS9pTVIDMxGpmJ0fjrgglY+clRXGntytMJC9LjgbQYZKfHu5XgsgmFUR6a3jLRd4dQgus1kuSPUKGs0GA978/yNEbEdGyWoxlshMmAX6XGICYqGFWXrtK2NnDF02urIg9qzksvRezu7+7kQSh86haEBhm88i8MAVpkTY1l/fvbxkVj48/H+32eA1UxIMVu2RzStTuVi/rmDjy2/RDW57nnQlhtdhRX1mHn4XP4Z3G1oHNT1U5Wmx3r88rxmw8OuRkuGg3ws0mD8USGt8IopYHjKdUezSnp3/OQol2HXGjg7gUjzR+xX/+PrwgikzEipAVEXul5yZvBRpj02L9yBp7IiMf8pEH47cyR2EIzjvsYdbg1cQDeWzIFB5+d2avGs69QPS+9FLG7v49KzmFHyTm3XZFr/gXVD8ZT1VKrcWhWrJyTgOLKOllCKVz8MnUoQgIDiKXiqbi+GCJNBmdI5//uS/bqkis1b3xVhcRBYbh9/EDJKi+ofIgn3j+ET0u9S1/tdsf3rdWAth+QUySxsg7Fp2sBaJxhgt6Eko02Jw0Nw9mGVqKx5mlIWG12rNklb/4IWwsCPiXtQvJsXJ89nyaf/lJq39tRRep6KZR4k5QhDDohtfZOG94prsaZ+hYMjQjG/akxzslATuEqNnKzUgCAuIVBblYKJg4Nx4S1nwsWZnt9UTJmJ3ZNeFF9jDhQVYdNHC5oMWgATB8ZhcIfpE2A5lpwtRrgxNpbafsCkaoHdyeEyuorUc4bHRqIL38/QP/xEgAAIABJREFUHQfPNDjHHezA3hMX8Mnh826bh+jQQCy4cQhiooLRv28gvj1dh9f2SlOG7QmfHC0uhApiCml9oiItYtZv1XjpxTD14hEDk+IuHUr3QHK9NgBI21DIuSM1hxix4MYhePPr08TCfp7MTOiPu5MH006Q88ZH+33PISGsnjsaS6YOc/sZm7YJXa+d7oBYY8xVYdfTmJAKJuViriRcuXjgpqF4fl6iJOci7VdFcWuiGZmJZi8jU86+TirMiFm/1ZyXXgxTXJmvCJkrrqWWXMjVrh6AVz6Bp0tcp9VgzTzu/JOm1k68trdCsOECAPnlF2k1LyyNrXjzqyq8dMdYLMuIR7CMfX2kwhhANjg8y+W5KpzsAFbuOCpaX0RJmPJBLC7aPmx4tgaQK4TKlK9FCfUZA7R4raBCEcMFAGaNYTbqXHOzSHSMfvt+CS/D/5epMZifNAipwyPdjBPqWdD9TsU/UXNeejl08dv2dit+9Y/vRJ2XJMGViv1L1QOJ8qysnpuAtbu5myNmJkZjy33JWLHjqNcEaDLo0NxuFWW0cEHpdazdXY7VcxNwzc+aJdIxfnAYDlRzt364Idy9XJ6kwqmhpQM5hRV4ImOEqGtUgvZOG575+ChjKwcAeObjo0gfNYA4fCYXbPlaSuuihAXpYbPb3RpCUuSVnsezO8tQ39z1LrJ5sfJKa/CfUvLqot5Ujt8bUMNGKl5IkYvCp8nepoIKQTL1rnjm2/BxA1ttduw/XYfiyjoAdkyJjcTvPzyi2E4UcJRj+iJ5mS/vPDgZv9p2gLNsfEBfI56/fQzCTQZYGq/hq5OX8PHh85znDwvS4+DqmZLvfKUIC7h6Sv598KxbpRUTESYDXroz0bn4Wm125BRWSCbpz8WAvgbsW5nBeK9Kh24pzCGBWDi5K7+m8MQFxpYidCFFq82OG9cV8Hpn1C7P/ofamFFFUsRW1vDd4WSnxyH3wBlexkJYsN7NW+LpWeHTu0an1SAtLgppcQ7Z++LKOkUNFwDdwnCJDg3ETXFRWHJzLGfvqgtX2gSJlV2+1iF5MzspkoTzSmuuewX4fU/1ze3OfkEAZK8y8+RquxX55RbG+/RV7x1LUyvxhoVSqHZtSHqgqp74u9AA2Lxogmq49DBU40XFCyoXRWglEl/BMUf+yRii5GFq0ZGzVFFtpkbPvPHRyC+30JZJS4mUz58pSZhPE8L1eeV44yvhjUbtAFbsOIrGlg7FZeub26ys99kdBPMA75YFfMbIEzPiWUUbVbonqvGi4oUYHYplGSME7XCo5GG6HbJr+aarkSJXV2AlJ3QNgHCT3i3O76/86/uzohZxUvr3DZQszMOUz0HlG3nu6F3/9kBVPT4/VoNt+8S3rPB1NRnTfU6OjUBYkB6Xr/n/+CsotzjfedJ3tI9Rh8dnxMt5WSo+QjVeVGhhMibYMIcYkZ0eR/s7ksXIX8SfpGxcyQZ1V/dOGYq/Fsqn9yIVDQoswNGhgWhobvcqYw8P1mPdHextDzzhShJmakKoZDItG9T4CA3Wi/LasDVb1Gk1eCAtRrEcHDF8fPgcnpnr8OqSvqN/vHucWjnUQ1GNFxVGPI2J6tpmbCyooFWjtANYOHkIPi0972V08Mk54JOrIhdSV0ExQeXplJ1rlPVzAIfCr5yN/KRi3vho2lyZhhZH24OHz16mVe+lgzS0QB3nSKY9JTp5XCrMLiJqUoxFpueRnR6Pbfuqfe4d4qK+uQN/L6rC4rRYzn5ZAPDwtFg1XNSDUY0XFVY8jYmR5r5ehgjVjM119+aqXik258AXZCZG4/VFE5Cde0jSBpPZ04cjfkBfNwOv7FyTdB9A+5lx+M2MePy/P30hqaKylGg1wF9+kYRndx1jPe6Nr6owfnA45ozjHjOkoYX+fQOxp6wGz+8sw4UrvjfwlqTFIMNFfdZqsyPYoBNdts/0PHRaDTbcNVZ2Y10K1u4+js3/O+VsPrp5UbJXInWkyYC18xOJxohK90U1XlR44e2NacFrBSe9FsSaxlY88m4JTEYdqxYGUyzeH5gzbiByoBFUNcNEWlw/L89S6vBI5HwhX9goLS4KhgCtYv10hJCzMBmhHhVkTDy7swyzE7nHDFfiOaUL1NDcLul3TEcYQejHHGLEmnljvIz5/afrRBkunl2b5SIkMADzkwbinf0/yvo5VPPRsV9W4tzla275YhEmPdbOH6MaLr0AVWFXhTeUN+a2cQORe+BH1gmZqxdQTWMrcgr9N96ulfANCQsKoF1AUoZFIuy690pKPDsEMykqk54rLFgveSfk6NBAbLkvGXPGRV/X2eGmvrkdG/N/QNGpWhRV1DKqsVKhBer6XaH+vXruaDzzyVGRd8EMdX8b7hpLex0UyzJGoGjFDFovJOlzoTt/130m4EBVPe2zohKbxXJ38iDMGatcmObouSavRPeG5g4s3X6IU91Ypfujel5UBPOXvScl0azYWFCBkea+fhc+kmpSp7h8rRN/3HPcK2dDDre9ZzsEClfPWdGpWmKPz28zRmCkuQ+R5ybSZMBdyYPwaWkNbUJlhEmPO5MGuYVGHJD7g3K+qPTqCk6XR8WUeE7lk/Q1knl7SAkL0mPp9OGI6mOEOTTI7f6Yqum49WbInsvsMQPwXXWDWwjFfL1/lqfitOvnkqgfk/BhyVlMHBIuSmZBLFxVZCo9B1VhV0UQYrUvPIkmbOaoJHKpj76+aAJtIuGeshrBImYmo87Ny0WyKFptdkxcm09UJrtpQRLmJw2iTb42hxivq6Wa3HJ5qAozS+M11De3I6KPEeYQ5gqyoopa3Pv2tzzv3Bs6JVWmarc//fcENnsYQWJhU5cWUgJO+lw8VZojTHrcnTwIf/u62suQcFWkbuu0SdrdfWZCfxSUXwRAn9ivFHxUvlV8g6qwq6IoeaU1kut9MJVy+hK5xOocORvRjKXiQuTjm9usMBl0mDaiH+5LGYqUYdzN5RxlsrFE1TVUsiefcna2yjHXRTzKZAQ0wMWrbTAZtGhutxHcMTMrdhz12nVT5bXUZx6oqsfk2Aicb7gm6rPoYBs3QqrpUoZHeilK0+GpOFvf3IG3vq6mPdbVQ/HKPeN5XQ8X+eUXkTU11svzZg4NxLV2q2KaMqrYZM9GNV5UeGG12fHszjJZzu1vk41cYnX1zcwS+DqtBk9kjEB8/z68K52a2634rMyC4so6PJAWSyvs50l2ehy27atiXBjpkj09F2CqEzCpN0FuHZXLLR3IKTyFJzK6xMno5P2jQwMxfnCo5J8v9biRqxqI0n+x2e2IkFgocUfJORSvnIGDZxqc48Jms0viWSOlu6gHqwhDNV5UeMGnpwhf/G2yEdsmgQ0uQ23OuIHYZAcezz3E+9yXr3W4eVPYQkhsCyNT3owrfDR8lGxKuG1fFbLT46DTahhDnDWNrZIaUHJW9VAd0NfsOubWdys8WC9aPPDx3EOSe0Pqmttx8EyDm5G78/A5ST+DjUiTQe0g3cNRq41UeCGXd8Qf29WzVauI5aTlCm2FDMWeshq8lHdcks+iNHWYKjCohTHaowrJHBrIqsND9Q3yNADoPm9PWQ3SNhTyMlwigvWYcIOwPLbLLQ7vVl7peUVaGpAYemLJTIxG0YoZyM1KwaYFScjNSsFzt48RfV65wjiec4WSm5Ph/UyM75ZKz0D1vKjwQq4JSOpJX4reOAB7z6V546Ox6wh9RQ0Xm/9Xic3/q6T1Uuwpq5E0REBSgcG3NQOfvkH55RZWJVQm6ls6UC/Cq2BpvIa1u6WrFnOFq6u5XHiG7PiUUSuN51yhVNsNADhQ3YBRqz9D1tRYYkVmle6Faryo8ELqCcjRrl5alV0+oQwS2Bb25Zmjsf90HR577yAar3XyPneNh9Kw1WbHih3S646w9beh4JNMSto3aH9lHaORIzf1ze2yNLxcljEC2elxivfgojPI5QxtioHOk6pU2w0Kmx1Or5tqwPQ8VONFhRckPUX48JsZcZKqYVKhDKnbETAt7DqtBlqNRpDh4grlpcgpPCVrjxmpwn6k5yk+Xat4g0Mq9ySij1GW88dEBRMbelJ5ANkMcqUMggiTHhNuCMPeE5dYj9OA2ZMqV9sNNt76ugpPzRoFQ4CaJdGTUI0XFd4I6ThNR3iwHr+ZMUKy6+ITypBylyzWIHB6KU7XYVuRvPkZUoX9yM/jG92e529PQGiQQZZzn77UTHQcXYWTOSQQa+bx8wCSGOS3JprxWZmF+Jyk3J8yBJNiItwML7ZqMRIPpxxtN9iw2YF3iquxZOowRT5PRRlU40VFEK6hlIJyCz4+fI6Xi14DYP1dYyU1IkhDGa6daaVAKoOguLJOtuRJqSthSPsGyd23yRPXxdNqs8uSY/HO/mosnR7nVgbs6VFhqnCyNDl6ftEJ6dFBapDfOUEeWf7kIeGYnzTI7Weu7z6pAKEnc8ZFY8mZGLxdVC3LdXtypr5Fkc9RUQ7VeFERDOU6Tx0eiWeu904pKLdwTkhi8k/oaO+04Z3iavzvJLs7m2Lt7uP42zdVkl3D5NgImEOMbiWswpDHjy5HJYxr+NBTOdX181KGRQrOydBqQBRaiDQZMD9pIGZ6tBuQOsRJUd/cgZT1BW7GuuuYJqlwWkkjpEcHqUEeHixPiMwcGkT7cyFie55kJJgVM16GRgQr8jkqyqEGAVUkgZrMVt8+hrbsNtJkwINpMcjNSsE3T6dLZriszyvHqNWfYe3u4/i6opb477jKh/mg02qwZp64ktXo0ECkDosSfS10cJU8C4Wp0aPr57mWm/NBAyBraixr0GnGqH7IzUrBgVUZeO72MUgd7q0qTF2j53iMMOlhDBBuyHl6GanxlFd6Hqs+4RZxbGjpwP7T3JVCpCHJqL5GmAw6omNJkVu+gPLeKRFYHNBXHuNOxXeovY1UZEGqREU2xPZXokIbUvVU2lNWg6f+fYSzkzYdW+5LxswEM25+uVB05Yg5xIg//ywJtc1tilTCkHzXfPo2mUOMWDNvDDITo2nzKyJNBqydn8gr0ZvuGl/aXS7pzl8DIJyHUm329Dj8bvZI1mNI+2vlZqXgn8VV+KzsAtFnk7AkLYameaa0MOXzSI0/9k5T8fPeRm1tbZgyZQqOHDmCQ4cOISkpyfm70tJSLF26FN999x369euHxx9/HMuXL5f7klQUQAq3MhvtnTa89bW45Fau8mG+BlhmYjTSRw1Ayvq9vFSIl2WMcHpFmEIxfFg4eQjS4uXx4tBB8l2T9m2iypCp5+yWX9HUivqrbYgwGRBuMqC908aad8J0jdT3GiSxp8IOb48M9190hT3P1LdgaEQw7k+NcVbGkOYWTY6NwDcVlwCIN16ocN3bRdV4u6ha8jCvK5RnTGhDUlL8sXeaijhkN16WL1+OgQMH4siRI24/b2pqwqxZs5CRkYEtW7bg6NGjePDBBxEWFoaHHnpI7stS6ea8U1wtWamlp2uekrHfVlTtlkBLMokbArR46c5E4t2kOcSI7PQ457+lqOSKiTIJ+ju5ofo2jTT39VqsuFoYNF5rxx/3nHB7Jp45MdGhgVg9dzTCTUZHw8c+RsAONw9UfrlF1r5KfEgdFoX1eeV46+sqt/tYl3fcKa5GmluUX27B9gM/irqe9FH9UHjiktd7JVZmgAsxDUn54G+901TEIavx8tlnn+Hzzz/HRx99hM8++8ztd++99x7a29uxdetWGAwGjBkzBocPH8arr76qGi8qnEhZPeBaLbSnrAYrdhyl1VohncRJDBBq4Vkzbwxjd2nK63OxqQ3reLQK8LceUfS4r5AtbZ34wXKFNomVKbTgucjWNLbise3MvaBIOjOzEWkyoE6ivl5hQQH438kLtF2fPcXVmMYTpeoLQJTOiznEiOduS8Da3fRjTE6ZAYquhqR9kZ1bIosGTPd4L1RIkc14uXDhArKysvDJJ58gONg707u4uBjTpk2DwdClxTB79my8/PLLaGhoQHh4OO1529ra0NbWVdXR1NQk/cWr+D1SVQ+4JiVyxd/5TOKuBkh+uQWfHD7vrvfB4cXxDHNsLari9BaQlEMzhcKonwstfSWF6Rk3tnZiY0EFtu2rxoa7xrqFitZ+ekySnAg+hotWA2xaMAERwQYUn64FoMGU2Aj8/sMjuNDUJvp61t4xFk+8z95001VcjUnlGQAmvpgv+DqWZcQjOz2euKpJ7tDLnHHRyMEEViOUL3I2zFTxHbIYL3a7HYsXL8YjjzyCSZMmobq62usYi8WC2NhYt58NGDDA+Tsm42X9+vV44YUXJL9mle7F/akxWJd3XPQOjSofZtPTcIXPJO5aSr7qeim5kARmPiW/QjpAs/VokjLfgeQZX27pwCPvlqCPMQBX28SpFovBZneI0b303XHnc8n5wuG9oYxYIUMvNCgAL989DucarnGOXU9xNbrcoqJTtURGmUYD2D1CbK7fK2lIRYnQy5xxA7FFq/Eaq6Sl83TI2TBTxTfwMl5WrFiBl19+mfWY48eP4/PPP8eVK1ewcuVKURdHx8qVK/Hkk086/93U1IQbbrhB8s9R8W8MAVpkTY0VVW10T/JgtHXaUFxZB5vNzisPgu8kTi08lIfj09LzvIwYrlAUl5HB5PGoaWxlfYaevZfEwLW7d8WXhgvFxoKTXj+jDIUggxYt7TZe51s1ZxQevHkYdFoNntvJXU4NcIdHSRszzhrdH4vThjEaz6QhFaVCL3SepolDw3HwTAMsjdfwUclZfHOK+95NRh3+/LPxsjfMVFEeXsbLU089hcWLF7MeM2zYMBQWFqK4uBhGo3tt/aRJk3DvvffiH//4B8xmMy5ccM+Mp/5tNpsZz280Gr3Oq9I7oZqteSY8ajWAMUCLax3Mi4tWA3xYchYflpwFAIQF6Xl9tpBJXGzDSKHKpqReJTakyHfoSQmTlOESGqTHyAF9cKC6gfNv+ocEOp8fadiT+ziyb/WbU3V4/b5JjN8fn6ompaDzNFH/rrx0lch4WXxTjGq49FB4GS/9+vVDv379OI/7y1/+ghdffNH57/Pnz2P27Nn44IMPMGXKFABAamoqVq1ahY6ODuj1joUjPz8fI0eOZAwZqah4snJOAp6aNcqr1LTwxAXWJEZP9zMfWf4Ik573JC5Fw0jXfBVzaBDmJQ0iMib4eDzoEJLvQJdb0xMTJhuvdRAZLgAQZTI6n0t4sIEz9KTVOMKjbKQOi0LOF5Wcn93cbuXsKE5S1eQvoRfS+75JJuFHFd8jS87LkCFD3P7dp08fAMDw4cMxePBgAMCiRYvwwgsvYMmSJXj66adRVlaGTZs2YePGjXJckkoPxhCgpW26RlddIkY/heJOQqOBQoqGkWK8Nkp3kma61tVzEyRqo9A92XHoLJ769xFiPZMZo/tzdkJOGR6JYIMOLe3cwoj/v717j4qy3PcA/p3hMjAoFyEc8AYKpaaIRijipRTFpXtl2Xat3Oo57tPBG5y0Wiezs1P3aRdsreXaaYV69jGPmXTUdZZppFmWego0IUNETbfgFgU8GDdvoMxz/qCZGOb2vjPDzLzj97MWa8W87zAPD8T8fJ7f8/vZ+/nZO9XkTSsYYwZF2j09Fq4NwBjWdfFZHuttFBYWhi+++ALZ2dl47LHHEBUVhVWrVvGYNDnN1qkhV5xayRhqfVvTEmdPcji7auPOTtK2cmuyPy7Fb5J02Ffm+u7HSrCn9Kqs+w9VXMeB8hqbP1s/tQqLJgyymJ/TlZSfn7VTTd6y4mLgp1Yhb9Zwm6ureS5u/ErexS3BS1xcHCx1IUhKSsKxY8fcMQR6QLgiv8OWHhp/6PUCe09dlfyHXeq/tDv/y7jz0eU3Pjvr1KqNvXwGe6TmO9ibewHg8DlpzTO7W86TCUjs3QOX/u8m/qvoMhqcqP/SnV6V0MAxZ1ICtn5XaXUVQm6+SndXx3aVacNikD9vFNZ8esZkNa9zewnyXewqTT7F2fwOe2623sfcvx43fi7llM8b+89I+tr1La3Ye+oqqupvYeeJv0vaXpGSj2Irn0EqKfkOUub+loTtDXdIT4hCw61W/OWri54eik2Nt++h+G83bLZ7sLUK4Y35Kq6klJUicj12lSaf4u4TLba6Uxu2UKT0u1GrgDc+O4tlBaew/ssLsvNCvr1Yj3YbRTCsdYCOCQvCognxZl2XO1+XekxaCaeJVOj4nupvtiJnp+sKoXWnjiJ5thlWIbr+HLuro7g3MawUzUzuY7GzOPkmrryQT3H3iRbD1s2aT8+gZ1AA6m929NFJ7heO1/7ntORVDmeL7W38+iL2lFbbXAWy9a/UV6YNcbrCrrefJjJ8F0+NiMG/KCRw6SBt/rkKQQ8SBi/kUxputZpVE+1uAkBtcyvm/sev20nuHgMgLYHXWj6DK/IcUuN7ITw4QNaxc3fS/dK40VoPH28l5+eilHwVImdx24h8RmFZDZZ+/IPbgwZLPDEGw0v+cV+FzS2k7uKnVuH36fH2b/SA12cMwf+umISIEI1XdJSWKkIbgDEDGYwQdcXghXxCYdk15Ox0vLOur+icwOsJOZMSEK6VV624u/UKCcCC9Hj4qVU4VKGsY9q5PO5LZBGDF1K8A+UdKy4eWGzwWp5KnjWcfPEmhqKC7XqB/z5ZLeu53R02qABsmDMSulDzROp8H0+0JXIGc15I0Qy1RciUtyfPupOhqGDxpRuSGj6qALz3u5FQW+hs7GoCQFQPDb59dRITbYlkYPBCitbddV2UquGW9KPWXfsQGbr3OvJG6k3BZNfibFI7MGc+qsP0pFgAwJShOhRfuoHsHaXdlohc23yXibZEMjF4IUVz9/ZITFgQ3v7tCNTfakVUiAYv7/oRdc2OVa7tTv++vwKZw2LsBh2W+hB1JafztSuDyR4aP/j7qU0qx4ZrA9B0557khGjT4mzSnpQQHWL8bz+1CukJUch7djiW/FIErmvTQmEY1+17Dv0e/Hzzwez1ROQM5ryQorlze0SFjjfD9MQozEzug/TEKKx5aqjxmr3nAnBbMmttcys2HrZdPdZQRM9esFFjoxCf+eu6Lph84+nhKPnDFOzMGoO/PJeMnVlj8N6cUZICl8iQQLMj42kSOwxbus9akT/dL7kphjwfRzZ6eoUEOvAsogcbV15I0Zzt2yNVhDYAubOGm60+WOvEq1aZFp4zdOY1FBH74kwtPvyuqlvHvP7Ln5AY3QPTk8xXTOT2gBKw30MJcO0qgi40yGw7Ze8pac0N/zBjiNnPytlOxPaKwFn6PZBCFxYs634iYvBCCielb8/kwQ/hKwcbAmoD/LBo4kDkTEq0+qZt6U3NVt5I2qBIpA2KxONxEVj6cfdWes3eWYoFVQMw9dEYkzE4sr1jr4cS4LpVhHBtgMVGglJX2iwFBK7oRGwrN6Xz78G3F+ux8Wv7fZN6hVj+PonINm4bkeLZ6tuTNT7e4cAFALb8YwqWZTxsN3eka3+VQH+13X4r05NiLfajcSUhgK3fXcacLcUY9+fDxq0fR3OF7D3PVasIvx8bb3HODCtt1n4aht5F1gICQw8gXajG5HFdqMYlR5MNvwcvTnlY0s/1TzOH8VQRkQO48kI+wdLqx42Wu3jhk1MOfT3DSZXurm5qadwNt9rwxmfWtx8cLcHfuX2Ao7lC9p5nCC6cSdoN1wYgZ1KCxWu2VtqkdlB2Rw+gzuO0tjW3aEK88VQTEcmjEsIbiqk7rrm5GWFhYWhqakJoaKinh0Ne4kB5jc3tAVsMb2Ge7Mbb+fhyVIgGUMHY9FGvF5j71+P2v4gFhqDsyL8+idQ3v5QVBPUM8sOpVZmSTjDZetPOGh+HLceqrD5fygqIpVNSck5FuYulcUaGBOKNmcMs5iIRPUicef9m8EI+p10vMO7Phx3+139okD/W/jbJq94EO2vXC6TnfYXaZseTY3dmjcGJyp+x/sufJD9n43PJ+E1yH0n32gsuXBF8dK1P462F3ZQyTiJ3c+b9m9tG5HOcrTXyVHKs1wYuQMeWxJqnHnV4ZQnoyF3JmZSArd9V2jx9YzBlaLTkwAUw3ZqpbbqD+putaLxzD+VXm9EzKABThuqc3rpRSmE3pYyTSEkYvJDPcbbWSHxkiP2bFC66Z5Ck0zcqAP88Ph7/NmOo7NfwU6vQdKcNf9xfYRIgbfz6IsK1AcizcPSciEgKBi/kc5ypNaJWAfPT4lw3mG7gbAn+zqdxDKdvum7haAP8MH24Dm/NSkKgv/RDiZ23SKrqb1vdlmq8fQ+LPypl80EicgiDF/I5ztQayRofL+vN2hOc2RYzVAnuvD0zbVgMJj4cjbcKK1B14zbiIrV4bfpQBAf6yfraUloNdCWl8B0RUVcMXsjnOFJrRK3qCFxWTpe/PeJujtZo6aHxx9uzzRORcwsrsOVYpbEi8LELwI7jf5c1H4VlNVj6sfwcHCmF74iIumLwQj4nNb4XdKEaSadxJj4chQmJD2F+WpzXr7gYOFKjJUTjh9LXp5h9j7mFFdh0tNLsfr2A8XF7AUxh2TXk7HS8UrC7m2sSkfIp4681kQyG0zj2LJoQj23/NBrPjx+omMAFsF9l1pJ3Zo8w+x7b7uux5Zh54NLZlmOVaLuvt3r9QHkNln78g0kfJ7nc2VyTiHyDcv5iE8lgSES11MW5h8YP7/9upCK2iCwxVG8F7Hcxjvml67GlpNjtRVV2gw696LjPEmcThw3jY28fIpKL20bkswy1Ror/dgNFl+oBdNTbGDPQcq8hJbHWzTo8OAAZQ6KRnhAFXViwzdopl3++Lem1rN3nbD0dwH4pfyIiSxi8kE/zU6uQnhiF9MQoTw/F5Zzt0TOgl9ap+w5V1Eoea1cR2gDkss4LETmIwQuRgjlTvXV+WhzeLDxrc+vIWt2bA+U1+M9vq2S9XojGDwvS4jA2IconVr+IyHMYvBA9oAL91cgaH2/xtJGBpbo3juS6qNCRNMyVFiJyBQYvRA8wQ9Jy5zqoF9lvAAAJxUlEQVQvgO26N8WXbsjKdfHGbs9EpGzsKk1EaLuvx/aiKlz++TYG9NJarXtzoLwGK/acRtMd+80cn3g4CosmJrCLMhFZxK7SROSUQH81nh8/0OK1tvt6bPuuEvvLavBjdZPkr7loYgIr5xJRt2DwQkRW5RZWYPPRSshZnlUB0LF+CxF1IwYvRGSRtdYBUrB+CxF1J1bYJSIzbff12OxA4NJD448PrFT0JSJyFQYvRGRme1GVrK0ig39I68/AhYi6HYMXIjIjtXVAV+mDHnLxSIiIzDF4ISIzUlsHdBauDcAYni4iIjdg8EJEZuanxdntWN1V3qzhTNIlIrdg8EJEZgL91Vg4IV7SvbpQDfKZpEtEbsSj0kRkkaE1gKU6L0EBasxN7Y+MoTpW0CUit2N7ACKyyVBh9/uqBoQE+mHWqL4YmxDFgIWInOLM+zeDFyIiInI7Z96/mfNCREREisLghYiIiBSFwQsREREpCoMXIiIiUhQGL0RERKQoDF6IiIhIURi8EBERkaIweCEiIiJFYfBCREREiqL43kaGAsHNzc0eHgkRERFJZXjfdqTQv+KDl5aWFgBAv379PDwSIiIikqulpQVhYWGynqP43kZ6vR7Xrl1Dz549oVKxUVxXzc3N6NevH65cucLeTy7A+XQtzqdrcT5di/PpWl3nUwiBlpYWxMbGQq2Wl8Wi+JUXtVqNvn37enoYXi80NJT/87kQ59O1OJ+uxfl0Lc6na3WeT7krLgZM2CUiIiJFYfBCREREiuK3Zs2aNZ4eBHUvPz8/PPHEE/D3V/wuoVfgfLoW59O1OJ+uxfl0LVfNp+ITdomIiOjBwm0jIiIiUhQGL0RERKQoDF6IiIhIURi8EBERkaIweCEiIiJFYfDi41pbW5GcnAyVSoVTp06ZXCsrK8P48eMRFBSEfv36Ye3atR4apXerqqrC888/j/j4eAQHB2PQoEFYvXo12traTO7jfMrz3nvvIS4uDkFBQRg9ejROnDjh6SEpQm5uLh5//HH07NkT0dHRePrpp3H+/HmTe+7evYvs7GxERkaiR48eePbZZ1FXV+ehEStLXl4eVCoVli9fbnyM8ynP1atXMW/ePERGRiI4OBjDhw/HyZMnjdeFEFi1ahViYmIQHByMjIwMXLhwQdZrMHjxca+88gpiY2PNHm9ubsbUqVMxYMAAlJSUYN26dVizZg02b97sgVF6t3PnzkGv12PTpk04c+YM1q9fj/z8fLz22mvGezif8nzyySd46aWXsHr1apSWlmLEiBHIzMzE9evXPT00r3fkyBFkZ2ejuLgYhw4dwr179zB16lTcunXLeM+LL76Iffv2YdeuXThy5AiuXbuGWbNmeXDUyvD9999j06ZNSEpKMnmc8yldQ0MD0tPTERAQgM8//xwVFRV45513EBERYbxn7dq1ePfdd5Gfn4/jx48jJCQEmZmZuHv3rvQXEuSzCgsLxeDBg8WZM2cEAPHDDz8Yr73//vsiIiJCtLa2Gh9bsWKFeOSRRzwxVMVZu3atiI+PN37O+ZQnNTVVZGdnGz9vb28XsbGxIjc314OjUqbr168LAOLIkSNCCCEaGxtFQECA2LVrl/Ges2fPCgCiqKjIU8P0ei0tLSIxMVEcOnRITJw4USxbtkwIwfmUa8WKFWLcuHFWr+v1eqHT6cS6deuMjzU2NgqNRiN27twp+XW48uKj6urqkJWVhe3bt0Or1ZpdLyoqwoQJExAYGGh8LDMzE+fPn0dDQ4M7h6pITU1N6NWrl/Fzzqd0bW1tKCkpQUZGhvExtVqNjIwMFBUVeXBkytTU1AQAxt/HkpIS3Lt3z2R+Bw8ejP79+3N+bcjOzsaMGTNM5g3gfMr16aefIiUlBbNnz0Z0dDRGjhyJLVu2GK9XVlaitrbWZD7DwsIwevRoWfPJ4MUHCSGwYMECLF68GCkpKRbvqa2tRe/evU0eM3xeW1vb7WNUsosXL2LDhg1YtGiR8THOp3T19fVob2+3OF+cK3n0ej2WL1+O9PR0DBs2DEDH71tgYCDCw8NN7uX8WldQUIDS0lLk5uaaXeN8ynPp0iV88MEHSExMxMGDB7FkyRK88MIL2LZtG4Bf/x46+/8/gxcFefXVV6FSqWx+nDt3Dhs2bEBLSwtWrlzp6SF7Nanz2dnVq1cxbdo0zJ49G1lZWR4aOVGH7OxslJeXo6CgwNNDUawrV65g2bJl2LFjB4KCgjw9HMXT6/UYNWoU3nrrLYwcORILFy5EVlYW8vPzXfo67DSlIC+//DIWLFhg856BAwfi8OHDKCoqgkajMbmWkpKCuXPnYtu2bdDpdGbZ8obPdTqdS8ftraTOp8G1a9fw5JNPYuzYsWaJuJxP6aKiouDn52dxvjhX0uXk5GD//v04evQo+vbta3xcp9Ohra0NjY2NJqsFnF/LSkpKcP36dYwaNcr4WHt7O44ePYqNGzfi4MGDnE8ZYmJiMHToUJPHhgwZgj179gD49e9hXV0dYmJijPfU1dUhOTlZ+gs5k5hD3uny5cvi9OnTxo+DBw8KAGL37t3iypUrQohfE0zb2tqMz1u5ciUTTK2orq4WiYmJ4rnnnhP37983u875lCc1NVXk5OQYP29vbxd9+vRhwq4Eer1eZGdni9jYWPHTTz+ZXTckmO7evdv42Llz55hgakVzc7PJ38vTp0+LlJQUMW/ePHH69GnOp0xz5swxS9hdvny5SEtLE0L8mrD79ttvG683NTXJTthl8PIAqKysNDtt1NjYKHr37i3mz58vysvLRUFBgdBqtWLTpk0eHKl3qq6uFgkJCWLy5Mmiurpa1NTUGD8MOJ/yFBQUCI1GIz788ENRUVEhFi5cKMLDw0Vtba2nh+b1lixZIsLCwsQ333xj8rt4+/Zt4z2LFy8W/fv3F4cPHxYnT54UaWlpxjcPsq/zaSMhOJ9ynDhxQvj7+4s333xTXLhwQezYsUNotVrx0UcfGe/Jy8sT4eHhYu/evaKsrEzMnDlTxMfHizt37kh+HQYvDwBLwYsQQvz4449i3LhxQqPRiD59+oi8vDwPjdC7bd26VQCw+NEZ51OeDRs2iP79+4vAwECRmpoqiouLPT0kRbD2u7h161bjPXfu3BFLly4VERERQqvVimeeecYk2CbbugYvnE959u3bJ4YNGyY0Go0YPHiw2Lx5s8l1vV4vXn/9ddG7d2+h0WjE5MmTxfnz52W9hkoIIWRvahERERF5CE8bERERkaIweCEiIiJFYfBCREREisLghYiIiBSFwQsREREpCoMXIiIiUhQGL0RERKQoDF6IiIhIURi8EBERkaIweCEiIiJFYfBCREREivL/LiDbIUvkoU4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOyde3xT9f3/X0lILwk0bdpJghdaoExquRXF1qqbtUgHKkM3v6C475hjXui+WN13gJMJX1BwN3QrwkTU/WTFTUVBqThKmUJtxVGglIqU0gJCA9IrtPSW5PdHOSFJT5LPuSUn7fv5ePB4aHtyzmmScz6v87683hqn0+kEQRAEQRCEitGG+gQIgiAIgiACQYKFIAiCIAjVQ4KFIAiCIAjVQ4KFIAiCIAjVQ4KFIAiCIAjVQ4KFIAiCIAjVQ4KFIAiCIAjVQ4KFIAiCIAjVMyjUJyAVh8OBM2fOYMiQIdBoNKE+HYIgCIIgGHA6nbhw4QKGDRsGrTZw/CTsBcuZM2dw7bXXhvo0CIIgCIIQwalTp3DNNdcE3C7sBcuQIUMA9P7BMTExIT4bgiAIgiBYaG1txbXXXutaxwMR9oKFSwPFxMSQYCEIgiCIMIO1nIOKbgmCIAiCUD2KC5bTp09jzpw5iI+PR3R0NMaOHYv//Oc/rt87nU789re/hdVqRXR0NLKzs1FdXa30aREEQRAEEUYoKliampqQmZkJvV6Pjz/+GFVVVfjjH/+IuLg41za/+93v8Oc//xnr1q3DF198AaPRiKlTp6Kjo0PJUyMIgiAIIozQOJ1Op1I7X7RoEUpKSrB7927e3zudTgwbNgxPP/00fvWrXwEAWlpaMHToULz55puYNWtWwGO0trbCZDKhpaWFalgIgiAIIkwQun4rGmHZunUrbrzxRvz4xz/GVVddhYkTJ2L9+vWu39fW1sJmsyE7O9v1M5PJhJtvvhmlpaW8++zs7ERra6vHP4IgCIIg+jeKCpbjx49j7dq1SE5OxieffILHH38c//M//4O//e1vAACbzQYAGDp0qMfrhg4d6vqdNytXroTJZHL9Iw8WgiAIguj/KCpYHA4H0tLS8MILL2DixIn4xS9+gXnz5mHdunWi97l48WK0tLS4/p06dUrGMyYIgiAIQo0oKlisVitSUlI8fjZmzBicPHkSAGCxWAAAZ8+e9djm7Nmzrt95ExkZ6fJcIe8VgiAIghgYKCpYMjMz8fXXX3v87OjRoxg+fDgAICkpCRaLBTt37nT9vrW1FV988QUyMjKUPDWCIAjB2B1OlNY0YMuB0yitaYDdoVjPAkEQXijqdJuXl4dbbrkFL7zwAh544AHs3bsXr776Kl599VUAve52Tz75JFasWIHk5GQkJSVhyZIlGDZsGH74wx8qeWoEQRCCKKw4g2e3VKKxrdv1M6spCs/dk4KcVGsIz4wgBgaKtjUDwEcffYTFixejuroaSUlJeOqppzBv3jzX751OJ5577jm8+uqraG5uxq233opXXnkFo0ePZto/tTUTBKE0z287jPW763h/pwGwdk4aiRaCEIjQ9VtxwaI0JFgIglCS57dVYf3uWr/bWE1R2LMwCzot20wUgiBU5sNCEAQRzhRW1AcUKwBQ39KBvbWNQTgjghi4kGAhCILgwe5w4tktlczb/+twvYJnQxAECRaCIAge9tY2orGti3n7Nz4/ge2VJFoIQilIsBAEQfBw7oLwAazLPqyiVmeCUAgSLARBEDzUnW8T/BqqZSEI5SDBQhAE4YXd4cSmvSdFvVZMZIYgiMCQYCEIgvBib20jbK2dol5b+63wyAxBEIEhwUIQBOGFlCjJ30rrqI6FIBSABAtBEIQXVw2JEv3apvZu5Bcfk/FsCIIASLAQBEH0YXKSGWajXvTrVxcdpRZngpAZEiwEQRBe6LQazJxwtaR9/Ob9Srxf/g1NdSYImVB0WjNBEOrB7nBib20jzl3owFVDojBpeBz2nWhy/f/kJLPHLBzv7b1/z21TdrwBpTUNAJzIGJGA9JHx/WKmTtaYodhQUif69Q1tXcj750EANNWZIOSABAtBDAC2V9Zj2YdVqG+5Ukyq0QDuo0/dF1W+7b0X3e2V9Vi0+RCa27td2+TvqkGsQY9V940N/8VZxqCIraUDj28sp6nOBCEBmtZMEP2c7ZX1eHxjecD1l4uJ/OL2JPz1s74D/7jfr3lwIqrPtWF10VG/+1sX5ovzlgOnseDtA7LtTwPAQlOdCcKF0PWbIiwE0Y+xO5xYtPkQU7CA24ZPrLj/fn7Bfqb9Ld16GFnXD/WZdmJJOYUSKZ1CfDhxxQk3Y2S8rPsmiIEACRaC6MfkF1d7pGzkgDUka2vtRPrKIjS2XTk+l1ZyXJ6E7P672Gg95mYmIjcrWRXCZXKSGVZTFGwtHXJmh8gJlyBEQl1CBNFPsTuceENC0agcuAsSoLeW47GN5XiiYH+f3zVf6sbqomqMXfoJXi46GvLOGp1Wg+fuSZF9v3JHbghioECChSD6KXtrG9F8Sd7oilRYJEh7lx2ri6oxacWOkHuZ5KRasXZOGmKjxXuycGjQG2GanGSWfmIEMQAhwUIQ/ZRwTz00t3fj8Y3lqhAtf5k9UdI+uATXc/ekqCLdRRDhCAkWguin9IfUgxPAsg+rQp4e0mqkiQyLKYpamglCIlR0SxD9ELvDCYfDidhoverSQkJRQ2fN+TZxk5t/kjEcP0i1qq4DiiDCERIsBNHP4DN9C3dCnd5KMEaKet0PUq3UwkwQMkGChSD6AZynyY4qG15XsDPIGKHDIJ0GLZd6FDsGH6FMb22vrMfSrVWCX0cFtgQhLyRYCCJM4URKUZUN7x843adNWAnauux48s5kvLSzWvFjcWgANIlMyUiF1SWYDyqwJQh5IcFCEGFIqNI+GgD/+M8pDB0SibMXgiMinOh1112r1QS1aNXucGLZh1WCxUq/maVEECqDBAtBhBF2hxN/2Vkd1AiHO5y9fOSg4DcYLvuwClNSLEGLWuytbRQkCGMNesy9JQm5WaMoskIQCkCChSDCBL7pyKGis8ch+DVxBj2aRJ57KObwsBb6UicQQQQH8mEhiDBge2U9HttYrgqxIoa87NH47T03SN5PMLuFWAt9uU4gEisEoSwUYSEIFcIV1NpaO3D+Qgfyd9WE+pREk5edjAXZySitaZC8r2B2C7EMP4w3RmDS8LignZMv1D75miDkgAQLQaiM/uSjYjVFITcrGYC06cca9LrFBrNNmBt++PjGcmjAPwepoa0L3/v9Ljx3T0rIimz5vi9mYwRWzEjFtHF9z4nEDRGuaJxOZ2g9ryXS2toKk8mElpYWxMTEhPp0CEISUtpo1YYG6GNHL+bv45bSUFnbBxKQoTy/wop6PFFQ7vP3j96ehMXTrkyc5vtbrKaokAouYuAidP2mGhaCUAl2hxOLNh/qF2LF6mN2Djf92Gxkn35sNkZgbmYiTNERIZkplJNqxaf/e4fPc+bOKNgzjworziB3k2+xAgB//awWhRVnAFwRi97Cy9bSoYohkwQRCBIsBKES8ourw7ao1p17xlmwZ2GWzyf2nFQryhZnw2yM8LsfY4QOcYZBaGjrwusldZi9vgy3vljMu7DaHU6U1jRgy4HTKK1pkF047DvR5NeYz72LKRhsr6zHEwX7wfJn/u97FbjUZccz7/OL4VAJLoIQCtWwEIQKsDuceENBS31WJg2PRfmJZgD8NRss/Ofy6/0RMUiLF2am+k0PtXXZ0dbl+bP6lg48trEcP0i1YOR3jMgYkYCWS91Yvk3ZNAdrd1Iwupg4QztW2jrtuOn5HbjYafe5DWvbONW/EKGEBAtBqIC9tY2qmKpcc64Nax6ciGUfHsbZC12BX8ADq19KTqoVv7g9Ca/uroXQSrqPK20A4LN7iktzyFVXwtqdJEcXk93hRNnxhstdVU5kjEhAulvbtFBDOwB+xYo7/gQX1b8QoYYEC0GogFBPI+ZovtSNOGMkfn7bSDxf+JXo/bD8Pdsr6/HqZ7WK1Ow40VsMK5c7bqAOJ7m6mPjMAfN31XjY/Sv5Xak73+7zvPiiYXILQ4LwB9WwEIQKCOU0Ym/OXejAqSb+hYuVQH+P2Dk9QpCzroRrcQaudAVxcP8vddihP3PA5vZuPHa5MFbJ70rBF3UoOXbeoxbI32dF9S9EMKEIC0GogMlJZpiN+qBMXA7EVUOiMNxsEPVa1kiDmLSGWOSKSHAdTt5pEYsMaRG7w4mlWwPXpSzdehif/ToLVlOUIu/f2QtdeOi1L1z/bzVF4b9uvMbvsUIxNoEYmJBgIQgVoNNqsGJGKp4o2B+yc3AXG5OGx+H5wq+YulDcXw+wRRrUaLHPQk6qFVNSLLIXnnKuxoGwtXZi34km3Dveir9+VivpmCzUt3TgpZ3HmLZ1/0ypOJdQAhIsBKESpo0bhke/aQ7KQuSNt9jQaTWYd1uS33MxROjQ3nWlmFNIpCEYKTCl3HF1Wo3skQQhAm5HlU0VHWXeVJ+9iNKaBjS1dSnetUUMTMjpliBURmFFPZ7dUolGt55eqykKs266FquLqiXtWwMg1qBH5CAtbK2dHvvnW1BWFlZh/e5aj0iLVgPMuy0Jv84ZI/opuqvHgeuXfCwogiMUPqddtVJa04DZ68uYtjUbIzy+G+FAqN2KCXUidP0mwUIQKoQvpA4AY5d+4hHVEIL7oiEkrdHV48BbpXU40diO4WYDHs5IRMQgafX6QhZosXjb0qsZu8OJzFXFAdNCcQY9msLUXJCLeO1ZmEXpIQKA8PWbUkIEoUK4tAMnXD6qOIOEwZHQSOir8U7ZsKY1IgZp8chtI0Qfl49g1LBsPViPX+eMCYvFUafVYOm9KXhso3+r/fsmXo0NKkwHsUDFuYRUSLAQhEqRY2qz2ajHkrtvgCVGXYWPwahhCbfFMSfVinVz0vr4sADA4MhB+N394xBnjAhbwcJRcuy8qr6LRPhAPiwEoTLsDideLqrGYzyD6ljRXP73wsyxmDnxamS4OaWqAc6ITWnUYsjHSk6qFfuenYIn7xwFY6TO9fOLnT1Yvq0KTW2dsJqi+njBhBP5u475nAnFh9JzoojwgSIsBKEitlfWY+nWwx4FsWLw1bGjlnZTnVYTlNZcNRnysbKjyoaXdx7jdZWdX7C/d5zBZ7XQQPy8p1BTz+iQS+MACHdIsBCESvBlfy4EY4QOr/7kRqSP6BtRUdPN3+5wYutBtidsPiwxkejocQScbl18xBY2KSHAvwMwN25g68F6rHkwrU/rcLjhhO/RCXaHE/nFx7C66Gif19E4gIELpYQIQgXIZVV/U2IctJq+ERNODHkvcNzNnzU8LxdSnG5jogbhs19nYfmM1IDbbthTh64eh6jjhIJA7wtXuGqK1mPPwixsmpeOl2dNwBPfl7coOljwjU7YXlmPzFU7ecUKQOMABjIkWAhCBchlVf/vo+cxe32ZR41AqGfB8NUgSKktae3owb4TTTjH4AzrcAJvldaJPlawYX1f5heUY0dVb/RoxoSrETkofIPl7n8zJ6wDpUTlnBNFhA/h+y0niH6E3MWh7jUCpuiIkM2C8ZWGmnXTtZL2+9ruGlwdxzbv6ESjtEGOwYS15qb5Urfr8wWAl3xEI5REq4Esxn/c3ywmyhhuRdWENCjCQhAqQIniUCd6h+XZWi4xbS/3zd9fGmp1UTVM0eKfl4qPfItrYqOZthU7yDEUTBoeByE10M9tqcQz71eGpPh2bmYSzMYISfswG/UuU0QxUcZwLKomxEMRFoJQAZOTzLDEREruDvLG1tqJkmPnmbaV8+bPkoZq7egRvX/n5X+BnvK1GuDhjETe81NDt5Q3+040MUctnOidrhwqNuyR3uE1c8LVrvddqGC2KjAnilA3JFgIQgXotBrMnnyd5FlBfLxbfhqxBj1a2rt5BYTcQwLtDide31Mb8GlZ6lCQ082XAg5onHdbUp8xAmrqlvKGZWJzfyI7xeL67wRjpKDXLpkeHi7GhHyQYCEIlZCYYFRs35xnh7d3h/eUZqlsr6zndWpVguFmg2tkgK8Bjd6zhHy1jte3dOCxjeXIyx6N3KxRIVsIGy/KG2FTK7wiWeBbXlV/AXHGBtVExwjlCVoNy6pVq6DRaPDkk0+6ftbR0YH58+cjPj4egwcPxv3334+zZ88G65QIQlUomY9vau9GXnYyLF7ushZTlGx+Ftsr6/HYxvKgiBX3VM/iaSk4svwHWDJ9DH6SMRxLpo/BkeU/6CNWWIo6VxcdReaqnR5t3nxdTkq5r0qtCWHFaorCvNuSgnIsX3iL5PMCxVr+rmN9OuKI/k1QIixffvkl/vrXv2LcuHEeP8/Ly8O2bdvwzjvvwGQyITc3F/fddx9KSkqCcVoEoSo4u3pbS4ciRZSJCUbsWZilSO2G3eHE0q2HZTjLXtKuNaH8VIvP33unelgGNLIWddpaOz06cLzTR7EGPQB4CDO5UkoWE1shsRTyspORm5UMnVaDScPjJM+rEoqv90qsYCcjuYGD4oLl4sWLeOihh7B+/XqsWLHC9fOWlhZs2LABBQUFyMrKAgC88cYbGDNmDMrKypCenq70qRGEqtBpNXjunhQ8vrFcEdv1q4ZEuaZAy83e2kZZC4b/N2cM/v31WeZUDwtCizoXbT7EW/fDF0FiXTQDFftyolUOAaHReNYJ8QmFnFQrpqRYUHa8AfP/Xo7mS/JEx7yLoeONEZgxYRimpFh8imSxgp1LdfpyzSX6D4oLlvnz52P69OnIzs72ECz79u1Dd3c3srOzXT+7/vrrcd1116G0tJQECzEgyUm1Yu2cNFmfeuUuquVDzpboeGMEJieZkTEyHk/fdT3eKq3DicZ2DDcb8HBGYp8iWlaEPME7wS9M/G0faNEsrDiDZ7dUorHNd2SGE62PbSxnPjYfZqMeJQvvxIFTzQGjaTqtBpmjErDq/rGSjwsAD6dfhwnXxqG5vQvmwZHMk8LdBbtQlPQSItSDooLl7bffRnl5Ob788ss+v7PZbIiIiEBsbKzHz4cOHQqbzeZzn52dnejsvPIk19raKt8JE4QK4J56uSfxuvNt2LT3pKgIhtxFtb6Qs/5mxoRhrnNlSfWwonTKzd+iubKwirebiW8IYE6qFa88OBHzN+0X3Un1wsyxiI7QhWTxfqvsJN4qOwkAsMREYfbk65hTkJxgf+b9SjS2CW/ZJiO5/o1iguXUqVNYsGABduzYgago+W5mK1euxLJly2TbH0GoEe/UTW5Wcm/apeUSSo6dx46vzqLl0hUfE6spCveOt2LrwXqPyIyvqc1yI6ePzNWx0dhy4LTs/ihSnuCF4L1oFlbU+2295hsCOG3cMKyBBk8UCD/XvOxkwZ83V5AsN7bWDo+ZQKZoPaaMGYrMUfGwmKJ5P9+cVCuyrh+K9JVFHtEoFshIrn+jcTqluiHw88EHH2DmzJnQ6XSun9ntdmg0Gmi1WnzyySfIzs5GU1OTR5Rl+PDhePLJJ5GXl8e7X74Iy7XXXouWlhbExMQo8acQhOrwVQsRSkM0rktICt61D0r4o2yvrMfSrVWKeZ5smpfuEpt2hxM3PV/EFC1wfx1HYcUZ5G7az2wmZzVFYc/CLMGfeWlNA2avLxP0Gjnw9/kK/T6J/duJ0NHa2gqTycS8fivW1nznnXfi0KFDOHDggOvfjTfeiIceesj133q9Hjt37nS95uuvv8bJkyeRkZHhc7+RkZGIiYnx+EcQAw0uAjNjwtXIGBnvukn7+nkwyEm1Yt2cNFcXjRi8F2alpkk7nfJPcNagr/vq3tpG5tRGfXPfEQrTxg1D/uw0pmNrID71F6pUSr2fz7c3NZbGNKpAyt9OhA+KpYSGDBmC1FTP8e9GoxHx8fGunz/yyCN46qmnYDabERMTg1/+8pfIyMiggluCCFNcXSc1DSg9fh5OAAVlJ9B0SZwNv9wdIL6M4+TAid5FE+iNWJy70IHqsxeZX//UOwdR/PU5vDxrosffOW2cFeu0/guxpab+QplK4UuJcUwbZ0U+JuKJgv0+Xx9n0GPlfWOppXkAEFKn29WrV0Or1eL+++9HZ2cnpk6dildeeSWUp0QQhER0Wg0ykxOQmZwAABh7tclVNyJGKMjVASJmGrBQ9p9sktTh9VFFPYqPnMOfHhjP237MpfsSjJGAptdsTWrqz+5wwuF0IjZaL1tbs1D8fb7Txg3DOq2mrx9OtB5zMxNdnjJE/0exGpZgITQHRhBE8OGb3yOUl2dNwIwJV4t+vdQ6jT/8aBye+/Aw2jrtovchhHUKGKF51zg1tXVi+bavgmoc54tAn69aB1YS4hG6ftMsIYIgJMGykOSkWuFwQFTXC0fd+TZJ5ym1TqPseGPQxAogvxFaYUX9ZR8YYe3CgSZiy0XCYP/DD5UyPSTCBxIsBEGIhnXysd3hxPJt0tpmN+09KSn8L7VO48OK05JeLxQxaTBf4tGXD4w/Yg16zP/+KDxf+JXQUxeFw+501f5QBIXggwQLQRCi8FXAymdTzzrHxx+21k5JdSxSjeM6e4KfPRcSFeITj7HRemSOise2Q77NOH3R3N6NliDWtDy6cR/au69EsJRoaSfCm6BNayYIov/gr4CV+9myD6tcU4zlapu1tXi2/nJTk98v/wYbdh/H+/v7Tk/mtvmo4gxm3XStq/MoHGCNCnHi0VsUNl/qFiVWrhA8keYuVgDlWtqJ8IUiLARBCCZQxMS7s0eutln3+gt/hbwGvQ7Txlrw/dHfwfMfHwk4bVlteM9/8lcnpGT3k06rRaxB7/e9MkRoMSRKj7NuLseWmCgsvbe3xXvx5kNoEvFeh3KoIRX4qhMSLARB9CHQDZs1YsJtNznJDEOEDu1d0opWv2lqBxDYT6W92453y0/j3fK+dSctlxfPvOzRSEwwXO6W6cIzHxxShYjxnv8UqE5IjnSbL/75n1MINNCovcsBDbx9dnpfk5NqRXunHU+9c1DU8TnhW3a8AZmjEkTtQyh8TsicAKP0VGghwUIQhAcshbSsERNuux1VNsliBQDeLf8GY6+OxYpC8REF7sn97S9Peli5T0214C87q7H202MhqVfhcDeBC1QntObBiaiqV24ALKsQavP6bG2tna46pqZ24UMMvZn/93Ksul95czhf4wBsrR14bGO5Iq3mBDvkw0IQhAtfCyT31M8V0todTtz6YrHfAlazUY+yxdnQaTW49cViVXh9eOM+v0dJF1x//GX2RCQMjuwTzerqcQQcABislmOxWE1R+NWU0Xj63QrJ+9IAHoXccmN3ODFpxQ6/UbY4gx7/eXYKpYdkQjWzhAiCCC+EFNJyk48B3wWsjW3dSF9ZhNyCvsWgaoFLWQXDBZePR29Pwj3jh2FykhlXDYnCuQu9dT+FFWeQvnJnwGnFahYrQG+EplGGCAtwxcLfrtAfXXa8IWBKsKm9G2XHGxQ5PhEYSgkRBAFAeCFtTqoVa+f4n3HT2NaNjyuldKkoC5eyUrIOJC87GW9/ecpj/2ajHitmpGLauGGyuACrGTnt/uUY0eCL0ho2IVJaE7x6GsITEiwEMUDxLqw9wzMtmI+iKptrwchJtSLr+qGXowHyPEkHA+8uHKWmFccbI5CblYzcrGTeIuZQpaHCGe/Wdvlg/RTo0woVJFgIYgDBiZQdVTZ8cOCMh8jQMKblN5TU4aYks6uWYN+JprATK8CVLhxAmAuu1RSFZ6aNwXNbDwf8u5fPSHUdwzsqEKo0VDAZHDkIBV+clHWfSn3XMkYkIH9XDdN2RGggwUIQA4RAqQch5ffu3hhKRSeUwsLjoMrightr0GPN7DSkj4yHTquBXqfxGx159PYkTBvnu0BUyTSUWrjY6d3uLB1zgJlDYkkfGR/QcybWoEc6zTMKGVR0SxADAF9OqGLhagkA6TN6gsGS6WPw8qwJ2DQvHXsWZvXpNPFXRKy5/G/VfWORmZzgiphwNTxWk+ffbzbq8cqDE7F4Worfcwq20OP+LtZImlQMETpF9tt4sVORwludVoNV9431u82q+8ZSh1AIoQgLQfRzlEo9uJvCSZnRIxZu2TAZ9Ghp7/Z5bKspCj/NTAq40PgqIuaLyLi/ZkqKRZQrarCFHvd3sEzN5iINGgiv2DAb9Xg4PREv76xm2j5ikBZdPQ7m/S/f9hVe21OryJyhnFQr1s1Jw9Kth2HzcO6NxNJ7byAPlhBDgoUg+jlKpR64BZeLTvAZbikJtwADwOMby/ssrny1KoEQI0B0Wo2orpVgCr0l08d4iLZ12r7CLN4YgRkThmFKigWTk8zYUWUT1L30k4zh+EGqFZOTzPio4gzzuQ2OHISXH56AxktdqDvfjpeKjgLwL5T4BmzKhRQRSigLGccRRD9ny4HTWPD2AVn3OThSh4PPTfW4ib9cdBSri9ieqqXivQCzuPOqES5VByjTe8J1Q7k7+nKwzMuxO5x4s6QWy7d9FfBY7iZ8JcfO46HXvmA+T7NRjxdmjnW5+7IIJX9/GxEeCF2/KcJCEP0cJVIPfI85iQlG2Y/jDbdIead4wvWp2FcaKtagR3ePo4/lvRACRZhYIkM6rQY/zUzCa3tqfUaCvFvEAQhWX41t3XhsYznyskcjN2sUpqRYAgolb18gov9DgoUg+jmTk8yIjdbLauDV1mXvs1AoXZMhxwKsRrzFFpcWERpx8R4u6a/2Rghcyo8l7cZFbT6pEmcWuLroKDbtPYGl996AhCFs3UDh1qVGiIcEC0H0c3RaDeZmJsqervFeKLiaDKVadeVagNUIJ7bsDicyVxULFit3fPc7eO2/b1IswsRSkCyXY6+ttROPbSzHj9KuYdq+7ny7pON5w5Iq49ve1tqBxoudMBsjYDFFh0WEL9wgwUIQA4DcrGS88XldwFkpQvCOqMhZfMs9yedlJyMxwRg2KR6p5BdXw9YqfMH/xe0jFY8w+Uu7KeHY+275N0zbrS46CsCJ3Kxkyd8PobVQ/kQadRbJDxXdEsQAYXtlvWydPLEGPfb5mFq7vbIeizYfkiSOwqFgVm7EfD5qKDzlJneH2gTPEhOFpfeK/86wTioHev/m/OJjl8WSf9YpOGE63BG6fpNgIYgBhBxigoMrkORbKLkb+usltYg0EAkAACAASURBVGgRWDvjb7/9FSmLvtwLotCUSGlNA2avL5Pt+FLQAKJanblUnL/oVrwxAs9OH4OTje0o+OIEzl5gGxHgT9wPdEiwEAThF5eY2HMcLR3SrNMDhb25xa+oyob3D5xGY5t/8aKGiEGwEdI67E2sQY9V942VTbDwpThio/WYm5noM+Xyszf3ovjItwH3/ZOM4Yg3RooqKGZF7PdH6Zb8vz9yMzKTaQaRN0LXb7LmJ4gBhk6rwYLsZJT/9i7kZY+WtC9bayce31iO7ZX1Po+VMTIeS+65AV/+ZgqWTB/jd3/uraoDge2V9chctVOUWAGAlvZuv++/0HPhG9/QfKkbq4uqMWnFjj7HKaw4wyRWAOAHqVYsyE7G2jlpsMQo01Em5vuzvbJecf+g0uPnFd3/QIEEC0EMUDjhso5nHo5Qln1YFXC+i06roVZVN7iaFXcLeKE4L/9jef/9wTK+obm91yvl5aKjsDucsDuceHZLJdP+zUa9y6clJ9WKkkVZyMtOFn2+gWD9/nB/t/IMjGih0lCXEEEMcLy7P861duL5QvYnfiEGXqxeLeEwUFEKdocTizYfkm1/Ug3UhIxvWF1UjU17T2H25OsCpvg4Zk642iNF0yuWR8PpBF5inDkkBNbvT7AmZoejP5AaIcFCEIRHS6zd4cSGPbWC22tZnmoDzc/hdU3th5TVNMjaYg5AVDs00Pt5lxxjS+u4H4ulQ4YjO8XC+/MemacuC/3+BCOSF2fQI30ECRY5IMFCEIQHOq0GS+8V7qfC8lQrxDW1P6NETUPjxcCppa4eB/72eR2+rGuEIUKHa83ReOc/30hKSwUi3hjhR0DIX37L8v3hisGrz16U/fjerLxvbL//PgcLEiwEQfQhJ9WKdXPSmFqghT7Vsrim9neU6M00GyP8/n5lYRVe3V2ryLH9sXxGqs8FO2NEAvJ31chynMGROvzu/vEe3x++Fm2hU6jFQsZx8kOChSAIXrjalrLjDdhYdgIfV/adDyM2KhKuwwrlYHtlPQr2npR9vxZTtM/frSyswl8/q5X9mIF49PYkTBvne8FOHxmPWINelvTYxU47lm+rglYLn6MC5DpWIAail1AwIB8WgiCYEGpbTvRFCQt7oPdz8OU90tXjwPVLPobM5SIu8rKT8faXpzy+F2ajHitmpGLauGEBXy+nAzPHo7cn4dXPahXze/HH3FsS8dy9N4TgyOGH0PWbIiwEQTAhJipidzhRdrwBpTUNAJzIGJGA9JHxA/LJk6V1WAwa+I9w/e3zOsXESqxBj9ysZORmJYuOlnHpx6VbD3vU0lhiIvHbu29AnDECO6pseL2krk/dky9CJVYA4K4b+AuMCemQYCEIghkhA/b4xgDk76qR3Z01XJDSQms1RWHJ9BQs3yYswrW9sh5/2sHezSOU5vZu7KiyISfVKql1N5AYzhgZj8lJZubak1CJldhofb/vcAslJFgIgpAdf2F+zoAsmEPhunoceKu0Dica2zHcbMDDGYmIGBRc30wpLbScKJmayh7hUir95M2yD6swJcUiOWrmSwxzhbOdPQ787v5xeG/fKXxwULqzrxLMzUwckNHDYEGChSAIWbE7nFi6NbB76DObD+FSlx0WUzQmDY/DvhNNihTgriyswvrdtR5pkRXbvsLd4yx4aVZa0BYYsWZ4d4+zuoQda4RLqfQTH1JN6/wNW+Srm1Irxggdbhxuht3hJNGiECRYCIKQlb21jUwmZo3t3cj750EAgFYDD0EhVzGvr+4YJ4APK2woPvIJ/vjA+KBEeiYNj+vzd7Kw59h5wYtgsBxcOcRGj/wVcgMISoRILtq67HhowxewxERh6b1UiK4ENEuIIAhZEbN4eS/i9S0dkof6dfU4sH63/1beti67bMMDA7HvRJOo4tfm9m7BwyCDPYtJTPTI17BFW0sHHttYjqf+eTBkYsUSE4mX/2sCNCICJbbW3vMPxndqoEGChSAIWZFrDpATwOLNh0QP9XurlK07Ro7hgSxIERFCbfeDOYspziC80NRfyor7WXuXXfK5iWXGhGFY9tFhSSZ7T//zIEouR8cIeSDBQhAqxO5worSmAVsOnEZpTUNY3fQmJ5lhiZFnwWxq70Z+sbjheCca25m35eowlESKiGCx3XeHm9kUjEqKpsudQkIIdsqKjyieoutYg97l4cI62NEXbV12PPTaF7j1xWKKtsgE1bAQhMpQyqDNX3GjnIidReSLN0rqkJuVLPhch5sNgra3tVwStL1Qmtq6RL82kO2+N/5mNvlCA2BoTCQAjeCIjtBOoWCnrLyJNeix95lsfFnX6OERdFOSGd/7/S5ZU1H1l1NcednJor7HxBVIsBBEiOGEhK3lEkqOnce75af7bGO7XNOxVmQrcGFFPZ7dUolGt0VTSZfanFRr75OqDLNrmi91i+pCeTgjEcu3fcW8faMEQREIu8OJ5dsCd075Qkx0xtfMJj64JXTpZYfWxy+LTdaPTminUMLgSMY9K8OPJ12NiEFaZI5KQOaoBNfPS2saFIv8rC6qxt9KT1x2AKaCXDGQYCGIEMLatsktHEKeZDkh9NruGuw88m2f39dLFEH+2F5ZL6vbqJgn8ohBWmSMiEPp8Sam7c0KLqJSUyBPv3NQVOcJnyFbU1snlm/7yu/gSVah446QqIzDHtoU54Y9dZh4rbmPcFA68tPY1oUnCsrx6DdJWDwtRdFj9UdIsBBEiCisqMcTBcLSJqxPsnwRFT64glM5jL84lPAAEVv/8befpWP0sx8zbVtz7iJKaxpkTZVxovFjiTUMZ1vFi0s+75apqVa/6UF3ofOPL0/igwNnAh5HSJ3NF3UN7H+AAjicwBMF5Vin9Xw/g1Ws/NfPajH+mlimWUvEFUiwEEQIKKw4g/mb9ot67bpPjwGAz4VV6GReqcZf3shZUKlB79O/WLvziEFazLstEet31wXcNn/XMeTvOobYaD3mZiZJnrYrp+mZE73vhdKusnzb2FouMQkWYXU2ytRxPPH9EXh9Tx06ehxM2//m/UqXeeHkJLOrWNnW0qF4S/WzWyoxNdVKNS0CoC4hgggy2yvr8UTBftG1HZ8ePY/Z68tw0/M7UFjhuZAUVpwRJFY45AyFy7kvJ/wP9mPhN9NvwJSUq5i3b77UjdVFRzFpxQ7R3R2+PEak4ERwupm8sZiiZd0OgGzi2BuNRsMsVgCgoa0Lef88iNnry3Dri8XYUWVzmdYpLSMa24T76wx0SLAQRBDpta0/LMu+Gtu68UTBfqwsrHLt+9ktlaL2JWcoXM59xRn0mJIiffrt+p/chL/MnoghUexBZW7mkVDRorQtfrA7bLiogz+sAqNg6SPiEWvQM20rRKueaRLf6cUVtgO9NTwWr7/ZGKHD4Eh5kxKh7pYKN0iwEEQQ6bWtF+apEYi/flaLjw6cwZsl4rwj4o0Rsk6YldMDpEmEy6sv7hk/DAd+exc2zUtH7h0jmV8n1FROaY+RYJrCAVdapH19nhoIj4LptBqsum+s321+lpmITfPScWT5DzB9rH/RqkGvaBoWyx7l8ca7sH3PwizkZScjNrpXWLV12XGxswfGSB2mpQ7F3x+5Ga88OLGPmBPyvQ/2ZxnukGAhiCCi1BPV//xjv6AWXneW3XOD7Hn0WTddG9IOIV9wdRlV9a3MrxGahpFyvlqN7wWPW5TlFJescC3S3ouz1RQlusssJ9WKdXPS+pgMWk1RWDcnDb+95wZkjIzHH/91BNsOBTame+6eFNwyMiHgdv5wT7vtqLLhpaJqNF/yfAho67SjsPIs5m8qh1arwZ6FWdg0Lx0vz5qATfPS8fWKH+DJO5MDHitUn2U4Q0W3BBFElHqikmKEGz9Eejsv1w1TVGXD+wdOS3YJdUfu96yrx4FdX/dt8/aHEBEi5XzvHHMViqrO9TF740SM1HoeKfC1SEvtqAq0T5Z5UADw59kTkZNqhd3hRKxBj+Z2ad8/W8sl/O6Tr/2K7ub2bp+dW09OGY1L3T0+68nERKUIEiyED4LlijrQmJxkRlz0IDRd6gn1qbiQGsGQsxvGHakdQoCbKV9rBxovdsJsjED5ySbBBc9CREhTWxezu6w3ladbsebBNCzfVuXXJyVUsHQXyblP1nlQn359DveMH+ZKNUl1WW5s62L6PvuzBVg8LQXjr4m9bC9wRUApadjY3yHBQvRBKWt4ovfmnD4yAR9XCpu9oiRSIgJcN4zcBaZyRBTkEFJCRVNvB5j4xbK+pQNxxgjsWZhFDwxgnwdVWGnDiz9yQqfVuFJNS7ce9qgXizPo8cMJw7Dl4BmfEUDu8xZiIujPFmDauGEBPW8IdkiwDED8RU+2V9bzPp1ItYYnrjDyO8ZQnwIA6REMubph4gx6OAGPML7UiIKcQopVNNkdTizafEjy8c5d6FAkkhGOsM6Dau+ye4gGf6mmm0fE844ecBfJpmhhs5v8RSnps5QPEiwDDL6nToNeh2ljLVj+w7E+b7hyG1cNZDJGJCB/V01Iz0GOCIYc3TDGSB2e/2EqslMseKu0Dica2zHcbMDDGYmI4Jmmy4JcQmrokAgsm5HKLJrKjjdIrp0AlKlzcp9X1djWBfPgSFhi1P+0/3BGIlZs+4rps/QWDb6Egq8ZS+4i2e5wwmqKYv5+U7dPcCDBMoDw9dTZ3m3Hu+WneYfuueNeQU9PDOJJHxkvS2GgFMzGCCyfkYopKRaU1jSIClfL0b3T1mnHEwX7+7wf63fXYvbk65CYYBB8XnIIqbvHWfHyrImCFvONZSckHRMAzEa9bJ0jLIXQak/1RgzS4u5xFnxYETiFKkQ0BCr25Vq5WWthzgsYS0CIR1HBsnLlSmzevBlHjhxBdHQ0brnlFrz44ov47ne/69qmo6MDTz/9NN5++210dnZi6tSpeOWVVzB06FAlT23AIaeZFZkdSUOuwkApNLR14dfvHcQzHxzyEAr+FjDvVKKcE3e9xZuttQOri44ynZc3UtuK590mfDCd3eHEZ0eFdR7xMXPC1cwiKVBql6V+p76lA49tLMfPMhMxJcUiOeKiRLH+S7PSUHzkE7R12Xl/Lza1GShVw9XCLHyvAi0BiuQXvL0fOg1oNpDCaJxOqcPffZOTk4NZs2bhpptuQk9PD5555hlUVlaiqqoKRmNvHv/xxx/Htm3b8Oabb8JkMiE3NxdarRYlJSVMx2htbYXJZEJLSwtiYmKU+lPCntKaBsxeXybLvjbNS6cIiwxsr6zvUxgYarilxbtWiW8BHDokEk3t3eiys1uhS2UdQw2V0O/6w+nXQaPRSEpFyXV9sV5b/grjAYiu35EScVGyWN9XdNjX91VOSo6dx0OvfcG0Lcv3k7iC0PVbUcHizbfffourrroKn376KW6//Xa0tLTgO9/5DgoKCvCjH/0IAHDkyBGMGTMGpaWlSE9PD7hPEixsbDlwGgvePiB5P7HReuxbMkXVee9wwv2JtPbbNvy/shMeE5a1Gk+PFaspCveOt+LVz2oVs37nnlj3LMyCTqtRrBNIDLEGPfY96//7Z3c4MWnFDqaUm9Xt75SC1OvL+z0HfEcr/C3eTkCWdOMjmYnI9hNx8T63prYuzC9QVlCEqntRyGcr1/dpoCB0/Q5qDUtLSwsAwGzuDd3t27cP3d3dyM7Odm1z/fXX47rrrvMpWDo7O9HZeeWJtLWV3bFyICNXUdjczES6GGXEOyz9yzuTPRaCScPjsO9EU59Fa+J1cYp4nwCetUqTk8yKzsURSnN7N/KLj2FBtm8n0R1VNqYFO5B5l5D0hpTri68A2tfivGT6GDzzQSXv58H9TI7aqA0lddhQUscrCPjOTavh953xtrtX0mROKYR8tvUtHSiraUBmsjTHXYKfoAkWh8OBJ598EpmZmUhNTQUA2Gw2REREIDY21mPboUOHwmbjL7JauXIlli1bpvj59jcmJ5klP3nFGfTIzQpsOU2Ihy+v7qvTgbt5c6ZosdF6PP/xETS1dckiMP512IaqMy2KzsURwxuf1yI3a5TPJ/9lH1YF3IclJhJL773BZ61OfnE13iip87Bl9/c0z81PEvNeebdw+4qg2Fo68ETBfsH7l0K9l52Br3MLZO4mV7F+KFqEhX628wvKser+sZQaUoCgzRKaP38+Kisr8fbbb0vaz+LFi9HS0uL6d+rUKZnOsP8jJfunAbDyvrEUXVER3M175sSr8chtI3D/jdfihZm9DwNyfEpvfF4nej6RkjT7GYjI2iH0xwcm8C4ohRX1GL/sX1jNM0OG8yLim94caECgPxyOKzVA/orjQxXl4txcu3ockqJtO6rUY5YoBO6zZaX5UrfP7wkhjaAIltzcXHz00UfYtWsXrrnmGtfPLRYLurq60Nzc7LH92bNnYbHwT+eMjIxETEyMxz8iMHtrGwNWuvtCyoAzIrhwHhMWkzp9IeSSu746gVg7hPjaUFcWVuGJgnJc7OS/TtzTG3zTm7n3PtagZzoHjrMXuvDY5QVO6UnPYqlv6cDyjw5LOrd3932Drp7gFWjLSU6qFa88mAYhz2tCp3wTgVFUsDidTuTm5uL9999HcXExkpKSPH4/adIk6PV67Ny50/Wzr7/+GidPnkRGRoaSp9Zv6epxYMPu4/jtlkps2H3cdYMoEvl0k3vHKOxZmKVasWJ3OFFa04AtB06j5Nh5lFSfx5YDp1Fa0zBgbxY5qVZ8+r93YEiUemyWNJf/rXkwDUumj5G8P191Baz1Bt7bFVac8Tmozh33+h4+clKt2PfsFORlJyM22lO4BFrrFm0+BFur+sQKx1tlJyW9vrWjB+kri8I28jBtnBX5sycybRvoe0KIQ9E72vz581FQUIAtW7ZgyJAhrroUk8mE6OhomEwmPPLII3jqqadgNpsRExODX/7yl8jIyGDqECI8WVlYhfW7az3yyc8XfoU7x1yFHVXnRO0zc1SCatNAgbwm1G6KpST7TjThQod6Bix6u4iu331cdDu31Y/nBldvYGvp4E1d8Hl22B1O/OaDSkHnwEVyfBXmLsgejdysKwXU51o78HzhEb/7bG7vxvkL6mlxV4LGNt8TjsOBaeOGYZ1Wg0XvHeqTMuSjqMpGFhAyoqhgWbt2LQDg+9//vsfP33jjDfz0pz8FAKxevRparRb333+/h3EcIYyVhVW8T4gOJ0SJFTkm5SoJS6vtQJ5/pBZzv9w7RiJz1Hf6uIguvfcG0cZ5/jp7uHqDxzeW95mY7GscQX5xNZoEFqNfNSQqYJute4Ho77az1QI1tXf6FVxy4O7X8vQ7B9HWyW/IpiThPOIjJ9UKY8QgPPz63oDbbiipw01J5gF3/1EKRQULS5FnVFQU1qxZgzVr1ih5Kv2arh4H1u8OHM4WipQ5M0rC6to7kOcfsaZG4gyD0Nzeo8i0ZYspCnlTvuvhK1JW04DS4+cBaPDknaPw+p7jaO1kr2vIy04OePNnmRXDsb2yHquLqgX9bVZTFJraOjG/YD9vJ8/jG8ux5sGJiDNG4tyFDtSdb8ffStls+7UaLZZMHyN7N1DuHSORPHRIHz+XUIiV/jDiQ6thv5cMxPuPUqgnyU2I5q3SuoBthUKIN0bg+ZnsQ9+CjZDCxP5wcxQDa2pkyfQxmC/z4ujLV2TR5kN92uqj9OxldFZTFHNbPYtnB2sLtDf/deO1+L+P/Hfy5G7aL+qaHKTVKNKZ9UVtAwCNa5yC2L9dTkIZBZQ6QqD4yFnmbQfi/UcpSLD0A040tsu2Lw2APQuzEB2hk22fciOmgFgtKZJgwZoayUm1Yq1Wg6Vbq5gLPr39fLzdePl8RXylfzq62aMrQiN+gTw7xHbkvLQzcERGjFgxRujw8s5qRVJBX9Y148u6ZuTvOoZYgx5zb0kKeTdSqCYcS3XM3V5Zjw0ldYKOOdDuP0pBgqUfMNxskG1fTgAHTjXL/jRgdzjx+bHzeK/8G7R39eCmxHj89y3C57bYHU68f8D/VGk+BuL4d9bUCBeNyC+u9pseiTXoseq+sX0iF77ceIHez2vp1sOS/5a87NGyR/xsLZdk3Z9U9IO0cPoY8Ccnze3dHoMlQ4G/wmkl8WfKx1LvJjYyNRDvP0pAgqUf8HBGIp4v/Eq2tJDcTwPbK+vx1D8Pot3tZvyvqnN44eOv8AuBk3H31jaisU1YgaQxUqfa4mGlYbUz5zpbvmsZ0kfgcE/k7u6yLG68AC478UrrfLHERCI3a5SkffDhPrMplBgidHj09hGCa2lCCRe1mzw8DntPNAl+fSjq4wKZ8nH1blnXD/UpwMVG5ZpU8l0Ld0iw9AMiBmkx77YkJh8JFuR8GvCXDnA64TpnVtEiRkx9L1m9rdnBQIidudzzWuQQv0vvvUGRz898uZ4j1LR32dHK0CKrJrgo3ZBIPR7awDbJGOhNH+bPDk3XXiCxwdW7pa8s8ngock8Xif0+L99WhampVHgrFRIs/YTF01Jw/HybaL8VjnhjhGzRCLvDiee2BE4HrN9di6fvup43PeRdHJdgFL7IPHRzouDXDGTknNciVfwqkQrisMSoJ0wvJs0pF941Tv4wROiw/ic3In1EPHRaDbYIPO/82RMxbVxoivlZxYZ3BNc9XZQgUuT6K7yVWgA8kCDB0k+wO5yoPC19cvWMCcNku1j21jbiLIMRlsPZ2+n0yG0jPH7OVxxniYnC4MhBPu3TvYk16JFO1fkhY3KSGZaYSFFpIdZUkNgb/uQkM2Kj9UwGYErT2NYNszEi6GmqvOxkvP3lKeY0x58eGI/MUVcmEbMKUrNRjxdmhnYgoFjx7J4uWvXDsaKPzyeYtlfWY+nWwx7Xh7/BnAMdEiz9BLlmkExJ4Z/hJAYh4VPvTidfxXFnW4UZaq2igY0hRYxJHPdpsaSCCivO4NktlT5D+IHObW5mUsgLUDluTjLj48rgDQi0mqLw+PdHwekEXttzHBfdPFn6dH75WEQDtc8DvVHb0sV3Ci6wlxuWc/UFly569O/7RB/fWzD5SpfbWjvx2MZy/CDVgqQEA+IMkUgYEglLDEVfSLD0E+SoFZC7cl/IE417p1NvZ4n0ibU5NwyFKToCdodzQF/koSYn1Yp1c9J4fViMkTrodVqPn/MZvPHhy925XoDDcW7WKLzxeW2f8woFwRQrAHDveCsmv1DE+7dznp8/y0zElBSLz4VSp9Xg3vFWn/VzGgDPz0wNuVgB/Lf6s9Ihcnij973V7nBi0eZDfl/D930YyONGABIsYUuf2g4ZCgjlrtyfnGSGKWoQWhhm2lzlVk+QX1wtyxC47YfPYvvhszDodZg21oIX7hunihvnQIQr5nV3us0YGY/0Eb3pOqEpncKKer9F5k4AizcfCugwqtNqsOq+saLHBIQjcQY9HrjxmoDvnwa9i+Zvpvu+L2yvrMerfvbzi9uTQrK4+koT+mr1jzdGoEGhdJwGfe+tZTUNokSyEDHeH9E4WfzzVUxraytMJhNaWloQExMT6tMJCny1HXEGPTq67bgkwIjLnbzsZCzIHi3XKQLw3yHkjQbA2jlpAKDY4qHRQHAbNRFaunoceKu0Dica2zHcbMDDGYnQaTW46fkipnoP1u813zVljNChLQi+KMHCGKHFujk34uYR8fje73cxp5A3zUv3WSx664vFfvdjNUVhz8KsoEY4WdKE3oJm0vA4fO/3u2Sf4RRn0GPlfX1rd/7wyRHk76oRvd9QvK9KIHT9pghLmOGrtkPo8DZvros3Snq9NywhT3ec6C1qU1I/i2mjpgr+0OFr+vj0sRbm4tQ3SuqQm5Uc8DPz1c79SWV9n8UvXGnrcuDo2Qv4QmC9m690M0vdXH1LB94sqUXCkMigXD+saUK+TjguXSQHsdF6zM1M9PPdk/YeDFS7fxIsYQTr0D8xNF6Ud6x9fnG14JBnsKzC/bVRc9gdTuQXV+ONkjqPLpKBnkMWi1Dh52/6+IcV7LUezZe6mW/sfIvYtHHDMDXVir21jTjT1I5fvVeBcI5Ji5lT5KsWjbVuzv2YSl4/LGlCf4MIc1KtWPNgGnI3lYs24YyN1mPNQ2mutm9f3JxkRv4uccfgkCNtHm6QYAkj5OoE4iM2Wi/bvuwOJ94QOGsjmPhqo+YW1aIqG97+zyneSbasFt7e+7S1dqDxYifMxghYTNEDKlIjdHaL3NPHpRakc0Jmw+4W1YgVraY3Yqj06fgrxBfTJqxUDUZXjwMLN1cwHf/Nklr8NDOJ9/qLM0ZIcgxfdf9Yj7ZvPnpbmaUPnpT7ITMcIMESRig5QOv5j4/AGDVI0k2EW5xLjp1XhbeFP/jaqL0XVT7cPRkCFXT62+dAidSImd0i9/RxuZyb5RwyKpU7x1yFoqpzortdWOArFnVHbJtwoEiHULZX1uOZ9w/hAkNxP9Ab8XltTy3v9Sf2Hjs4Uoc//Hh8wOvZ1/UgBrMxQoa9hBfUMhFGKDlAq6mtC49vLMf2ynpRr99eWY9bXyzG7PVlyN91TOazkx/3NmruJsIaveI8GfbWNvrcJtA+61s68NjGcrxcdBRbDpxGaU0D7HKu0iog0OwWJ4BF7x1CybHzHn+7nMJAzlZ9OYeMSqXydCvWPJgGi0mZe0KcQR8wCsK1CQPCKzICXT+scNeZ0BojTjB73+/E3GMHRw5C+ZK7AooVuVP6FlO0THsKHyjCEkZMGh6n2BOVkMiBN3I+NQQDraZ3YCQg7Sbia9qvkH26D7yzxERh9uTrkJhg6BcFviwpzOZL3XjotS88Ik5yCgM5W/XlHjIqhfqWDsQZI7BnYZarNmhH1Vl8VCHugYPDGKnDL24bwVSoDFyZCO7t1sqC1IixlGvX1/1OTNToDz9ms0uQM6UfqmnXoYYiLGHEvhNNiooClsiBN0oWAoshLzsZhgid323m3ZbkusFIuYks3/YVb0RK7D5trR1YXXQUC94+gNnry3Dri8WiI15qQMiC5P7E+3BGIqRqDK0GeOXBujupfQAAIABJREFUibKm3Lgho2rh3IUOV33N3eOGYZ+IqcnerPjhWCzIHi1I5OWkWvHHByYIPpbUiLFUAcB3vxMSNYoz6LFOQC3Ojip5jAEDper6MyRYwggla1jEHkfJQmChWE1RyM1KxqGlU3H3OGufG45WAzx6u6cPy78Oi7+JNPpIo8n1OfkKW4cLQhYkTvAu+7AKOq1GsjB4edZExBkjZU+3LZ6WgkdvT+ojqMQuHbl3jMSS6WNEvdb9/ZXrOhQ7EPK8wALQwZE6yRECua6zz45+6/E94aJG3um2OMMgTEsditw7RuHvP78Z/3l2CrNYsTuc+ODAGcnnajVFDVjTOIBSQmGFkjUsYo8TLBHFgvtTR/6DafjTA31Nx9xDt3aHE++WfyPpmHwFhHJ9TlLSdGpAaHjd/Yn36buux8GTzSirEx41uHucFS8UfsXclSSUxdNS8PRd13t8tx68eTiy/vhvwQWoyUOHQK8V9tyoQe/4AvcFX67rsPiITZS3h9Dv/M9vHSH5+yzXdbb20ysGbu7fEz5fHn/n7K91f29to+TBlkumj/HZ3TRQIMESRnALAOuT1HCzQVABI9+NMBDBElGB+FHaNX0Wo4hB2j6ty+7srW1k7izwh7eJ06ThcbJN3nVfxMPNJErs7JbnC6tQdaZVdK0IXx2H3O20fN8tMX9rgjESv3r3oKBjO9E3JSDXdbh+dx0mXmvGtHHC3iMh4tQQocMv70wWfY7uVgFmo15WUz8uqvlk9mhXLdnd4wJPsA/Uui9FUHL35YEuVgBKCYUV3AIQ6CvLfafFdFsIzY1OTjKror0uc5TwxVzO6BC3r+2V9fje73fJIlb49h9u+Aqv+6PytHix4g8uGqZUN5aQv1WD3gUNGuGGiVnXf8fn1GQ5lrNfv1ch+D1yr/0IxJ8eGC964XXvRsz7xwHZHYi57jUhtWTcCBLvz9E9pStWUHLv0kCtWfGGBEuYwd0UrX5uimLuxxqIG1Sm02qwYkaq8APKjJgWPzmjQ1cNiRLcHi10/+FKTqoVexZm4e+P3CyrQaEY5Gqn9QX3t26al45HMhN5t3FfhITWfgDAf+qa0OU1NViIYAjExc4e5BcLtyYIdG+yxEQKKlL1Rsnryx/+asn8jSBxb93vsTtE1QdZBnjNijc0/DBM4cKiO6pseF0mV1luAKGYi8OXlXowsMREomTRnYKfQFiGt7EQb4xA6eI7BQ2UEwKr3Xc4IGQgplKsfmA8ZqZdE5RjBUoVlNY0YPb6MsH7NRsj8MLM1D7XKqsBYiBiDXrse3aKqO+bEu7Ocl2rYuHSMt4DB18uqsbqoqNM+4jQadBlZ19uB0LNCg0/HCDotBpMTjLjqX8ekG2fUhwoF09LwfhrYnmnpF7qtosapc7K7MnXibqo3WsspKj25TNSse9Ek2I3Uz6vknAlJ9WKn94yHG9+fiJk5yB3us4fgYo3uZSq0HPiOtS8HzDcj+cuGE42tqPgixM4e4HtOM3t7DOYvOGbySSVUHcj8tWS9Y4gYX9IEyJWrFSzwgsJljBGiYtYSoGn+6A495vzjiqbawqqEuG8xATxk6a5MPaizYdEiapHb0/CtHFWbDlwWvQ5sCJ0jpHa4J68lRSvLJgHRwb1eP4WcJ1Wgx9OGCY6Ssr3gOHreLlZyfjzzmq8vLO6z+/4UFPdlFrOxf089tY2KjaChGpW+KEaljBGqYtYyhRQ7mY5Y8LVyBjZm8IQU3gpBKn1HVNSLIhicKp0x2zU45UHJ+LXOWNQcuw8/n3knKRzYMHdqyTcbPzdiyXl8KOQglivEaWYkmIR9TqhRo86rQZ5U0bjnnFsx1NT3ZRazsX9PJS4//YaHobnA0kwoAiLDPjrv1eSuvNtiuyXZQqo0L/ZOzSeYIzEl3WNeInxaY8PMW3YfPSGz9mLH7nc8o4qGyat2BHUiEE4tjmraXRDnEGvOktzoXYF3ghdOF+alYbdx3x/b+W6ruRE7KBFOdFqemeucSghovJnTxTcUj6QIMEiEb4iN7NRjxUzUjFt3DDFjmt3OLFp70lF9v3p0W+RMszkU4QEKiT0hXuo2u5wCvafcEfOdj8hN3yzUe8SK6EsHlVLiDwQahvd0NTejR1VNlU9wbrXUgHC06ZCF06dVoNV943lFZFqbaMV6+kjJw4n8ERBOdZpeyMgYuuP+OgP9WnBgFJCEvDVZtfY1o0nCvZjZWGV7Me0O5worWnA6h1HBQ8bY+Wz6vN9/Ae44y7/8HBAzwEWhNTfxBr0iDV4tsPK2e4n5IY/c8LVAIClW+X/bIWglhB5IEJdLMmHGlNqvtKm/jQD5+UiJhLiqwVZzW20vi3ze+8NwZJXizYfgt3hlM3SYcn0MdizMEuV77naoAiLSOwOJ5ZuPexX6f/1s1qMvyaOOcQXKM0iV8siK5wI+fltSXiv/LTfJwmhNvKsEYLcO0Yhb8poAJCUdvP33vY+KbE5Zma7dWCEAjWG6/2hxkiQWlNqfB1FTW1dmF/QN/IiRyREjP18KPC+dj/93zuw70RTn8L+YN0bm9u7kV98DAuykzFtnBWPfpMkytKBHGyFQ4JFJPnFx5giHEu2VGJqauAFPFCaJRR1ANyx1u9muxiF1FewRggyRyW43juxC4yv93bJ9DGIM0bi3IUO/CR9OF7a6d8si3ua/agitEWjagvX+0OtkSA1CimAv8NnrTatz/fXIlMKQYkWZDnxd1+ccTnaCfSKL4fDiScK9gflvN74vBa5WaOg02p8WjqwEE7XshogwSKCwoozzGZBDW1drgXc11O+LzFS39KBxzaWY8Gdo/CPL79RTR1AIFgWg0BFdFIiCe7vc935Nqwu6lvYW9/S0efmZozQoa3LzrtP95HuoVqEzQY9ls1IhSk6AlsOnMZVQ6IwaXhcn6dNNd0A1VAsyYdahRQf4RIJkRtf90W+9n67w4nl274K2rl5+9TwWTqcv9iJ57Ye5o1MU82KOEiwCKSwoh65m4Sp+JJj32JHlQ0fHDjj8eXtfcpPwfJt/osSXw7w5K82WBYDf0V0UsLdUtJmnFgZHDkIFzuvDEX0vrlMTjLDEhMlKC0kR6FgY3s3Fry932P0glbjOYohGAXfQvAuKFUDYus+QonaIyFS4HuQA+CzWJtLP//m/Upc6rLDYoqGw+EMeq2U94MZ32c0bWyviLG1XEJjWxfMgyNhiRkYglMJyJpfAHLbioeq2l0pfNlX+0Nsx5GvfcmRNos16LFmdhrOt3X6fJpl/S5wM5re2ee/Bkhusq7/DubdNlI1N8aVhVVYv7tW1JwroZbmgZAyz4aQF1/X/6ybruWNjPoiNlqvmImbLzbNS++3IjJYCF2/SbAw0tXjQPrKnUFddKQQbDHELYliOgzk8LGR+/PJyx6NBdnJfs+zqa0Lz3zg2yHXXXi9X/4N8v4pvo1bLGoIPavJhyUvOxkLskeH+jQIqOt74Y2/+6f7gxkgrRlgoEOzhGSg78LUKaqgKpSYjRFoCKK4klIEKDXcvb2yHs+8f0jWz2f97uO4JjYKzZe6YR4ciZMN7di096RHGshqisILP0yFyRCB0poGOOFEbLQeCYMj+wx7EzNNWg7qQ2znL5cPi0YDSH20spqikJuVHHhDQnHU5s/jzU8zE/FmSZ1fnxq+ziQ1PCD0Z0iweBHs1mElWDJ9DMzGiKA80c/NTMRdKZaQPVko9ZR2sbMHT79b4XcbW0sH5hfsx9o5afjV1O/63TbUxadih1pKRS4fFk6siIkcqtUMbSCjRn8ed+5KseDmJLPP7iwAzAXBhHyQYHFDzSFKVjQAHs5IxL4TTYof69Hbk7B4Worix/FFqJ/ShHjPhNKpM5R2/nK2D0cM0sJsiBDsgSNXCzAhH2ptK3fvTtRpNbzdWQBw64vFfguCQ/WA0N8hp9vLhHrxkwsngH0nmlxP9EpcLtzgv1CKFUAdT2lCBtD5cuqMDZJTZygWCTnbh7t6HPjvW65DpgDRNZBcRDk36i0HTqO0pkF1br7uqLmt3D0SxzfMNdB9R+hQSoIdirBcRg2Ln1ycu9AhazspFxH4WWYipoQw/eONmp7SWM/F3VPD1tqBxoudMBsjcLLxEjbtPaHYuAUgNItEk8x1VC9uZ/M/AgBjpA7mwZHYW9uomu+sWMS4YKu5nmJyklnxzp6H06/DycZL+PTot0xRTdb3i/VaV9P9qb9AguUy/enLxS1M3BP9ovcOSboxqDWkrqanNCHnotNq0HKpC7/bfiSgSPY2s/P2XWEhVHb+vWZeoZu51NZpR94/DgDoLULv9adR13eYhUBipLDiDK/Dq5rrKXRaDeZmJgpqXRbKjYlmLP/h1bzvX7wxAveOt+KaOIMgbxS7w4nPvj7HdPwEY6Sk8yf6QoLlMmpa/ADxbcmWmEiPhSkn1YohUXo89NoXgvYxe/J1SEwwqrpVj0t7hTIyxiIG+LrO5hfsZ/p8vZ13B0fqcFeKBUOiBmHLwTMBO6NCWXCqpqhlY1sXnigoxz2VFrw0K02V32c+Arm9/vy2JGzYwz86g3vNovcOYUiUHukj4pn/bjmsBgKRm5WMNz6v82kLIBX3Bzc5nIK3V9Zj6dbD7FFQiW9XV48Db5XW4URjO4abDXg4IxERgwZ2FQcJlsuoYfFzx2KKwqVuu+CL+bd339DnwkwfER+wQ8Vs1GPJ3TeElQuje9orlNl6f2JA8E0uAK0ddrxbfpp5+1BGx9QYtfywwobdx3Zg1X1jVRd18MZfXZ2QOV/Nl7rx0GtfMKc8gpVe0mk1WHXfWN7r1/2BTczDm9mo93iIkGKdYHc4kV98jHkcC8f5i+KveT6jxecLv8K820Lb6BBqyDjODbmdbIXQ6+54HRITDLhqSBQcDice2sAeFYk16PFfN16DrQfreW80AFz1LHw2+GoMG7NSWHEGuZv2i3JRlUJstB6r7ve98IXi+6RBb/rj2elj+njBBJvSmgbMXl8WkmMHQgP1f+eVev/yske7Bvd5E6hTUgmXYH8Caf/JJlEOya88OFGW8RRSHjjEOuGuLKzyO/051N2ZckLGcRLISbVi3Zw0LNrs271UKf7wo/HITE5w/f//fXiY6XV3pQzFf2ckouVSV8A89to5yk19DSVxxsigixUAWPNQGjJHJfD+zu5wYtHmQ0E+o14x2tDWBYspOuS24b0zlyIVLSQWixPqbz1VKkK1uugoNu09gaX33uBx3bN0Sv7qnQrX/B65xLCvlM2OKhte/axWVPRU6+e8WFMtUmwuYqIGwdZyCaU1DYLep64eR8Co2auf1eLJ7O8iOkIn4szCGxIsXnAXT37xMbz6WY3P6b1yc77tyk3d7nDigwNnmF43NzMJk5PMmLRiB+/v3X0B9izM6pdTX4OdeuDqVtJH+BYEZTUNQRe97qghHaPTajB78nWiCytz7xiFmKhBeOHjIzKfWS+h8qZhRcm6OltrZ5+CXJaao4udPS5DSu9aNymTw71TNlJtJhZvPsQrRllTLVKP39px5X0Skk57q7Qu4MOXE8DkF4rw+x+NC+sHTTGQYOFBp9VgQXYycrNGIb+4Gm+U1Ck+WMv95rS3tpFpJg6Xp80vPuZ3cfQ2DlPrDZoFvmLAYBZMsxaxlh4/H5wT8oFaisgTE4yiXmc1RSHFGoNn3hcWpRLaRaUGYeeLYLgju0eZhL4XttZODzHq/d5LqXuRWrDd1N6N/OJqj7lRvlItDidcP+dEi5wF40K6tU40tjPt80JHj2o7wJRkYJccB6BXuIzGviVT8Pef3wyjQiE4Y6QOe6q/Rcmx8+jqcaDkGNtiN3PC1QCAN0oCF94B6r45s7C9sh63vliM2evLsODtA5i9vgy3vliMprZOxUzyDF6fucUUxXiTCF3USqsBJg2PC9nx3REjnDQA7h1vxfyCckEPChoAj9yaJOhYahF2fHBF5UrhbXAm9b3wFor1LR14bGM5tlfWC96XHPeqN0rqXOZ5LKmW9btr0dXjAADsqLJJPj4H97Ys+7AqoJnfcLNB0L5Z9tmfIMHCgE6rQeaoBPz+R+Mk7cfXEtbWaceaf9fgode+wHeXfIz8XceY9pc1ZijeLKllvqnXnWdT72qEyyd7P/XUX57nc+/4XgEhl0wwG/VYNycNh5ZOxaZ56Xh51gRsmpfO7JoayiiWw4mgjGZgQajjstUUhTUPTsTWg/WCogqWmEisnZOG30xPwaO3BxYtmsvHCrY3jVByUq34BcPfIwVOHHBmbnLzq3cqXEKAFTmEZPOlbpTVNAAAntlcETDy5nD2pmS2V9bj9ZI6QcdKsQ7x+3tW99uHMxKZr5WB6KhLgkUA08YNY7oZ8nHn9d/pY8nOB0vPlgZAnEGPp/95AMu3fcV8Dm9+XhuWajxQPtkJYOvBeqx5sK/tvViW3N1bkMhnzc1C+oh4GCNCd3mpJZrmHiXw9c7lZY/2EIRxxkhB4fi87NEoWXSnS0gunpaCVx6ciMGR/BHRcBqGaHc4sfWg8AiFEDhxwJm5yc3Fzh6kLf+XoEjLpOFxGBIlvWJhfkE5VhZWMVsB1DW0Y9mH7GaHcQY9YqJ0qKq/wLR9oOuy+MhZwek/tVzrwYAEi0B6b4ZpiDMIexL5+W0jsWdhFv7+85thknghOtGboxXafdHU3o2y4w2Sjh0KymoaAi5g9S0diDNGYM/CLDx5Z7LkY1pipAkfnVaDWTddJ/k8xKKmVIevGUpWUxTWzUlDbtYoJAyORMmx81i942vsrmZzEo019EbBFmQn9xEe08YNw8HnpiIve3SfqAF7Wi/0KG2+5x1lys1KxuBI+UsbL3bamdND2yvr8b3f78KFjh7Jx22+1O23RbgvTub3+55xFjS1d6O1g70xw991yT2YCUXKtR5O86cAKroVxbRxVpgM7O6xWg3Q1NYJnVYDrUaDFokXopRpv6U1DT5bcdXI9sp6LHyPrfDys+pzmDQ8Dv+v7ISkYw6OHCRLqiA7xYINAkPLcuBtmqUG/LWuTlqxQ1RH1ZrZaR5WAN64F8+Ha2ec0k/P3lEmnVaDB268RnBKhJVAreRSWomlogHgYFyw596SiPcPsBs4Ar2+Tf6uSzHiVEpas7CiHs9uqfRo8FDz/CmABItohLgYOpzA/IL9WKvVoFNgLpcPaRezuhW0O0JvXmv/fRz/+PJUQLv6QFzs7MGOKpvkizZUPiQzJ1wteEEOhhW7d+uqWGM9V1s5Y52QFJfTUKNkpCwvO5n3Oz4lxaKYYKlv6ejTvcMhtZVYKk4Af997imnbYbFRgkX23MxEv9eUGHEqNq3pq2OqXsXzpwASLKIReiNxAvj1uxX4y6yJypwQIxkjwiO6IvbmJVWscMhhKqbTanBjohkfVQivQdBqgHm3JSFSp8Wfd9UIem12ioVpO06k7Kiy4YMDZzyetCwxUZc9NgyKCBi7w4mlW4WHv8Op/kQOlGpttpqikJvFnzpVekzJ6qJqfNcypM+CqKbZU4EQWtQeZ9D7fL85hK4pYlN3hRVn/KbJ1GyqqIoaljVr1iAxMRFRUVG4+eabsXfv3lCfUkCEdj8AvWZC//3mlzDoQ/O2xxr0zE+loSbUNy85qu/tDif2VLO1qMdE6fCjtKvxk4zh+M20Mfjb3MnosTux4fM65uMJ6XxxbxF/vaSuj++PrbUDq4uOerSPi2lP9cXe2kbYWoV/vuFUfyIHcrc2ay7/8yf4lG6nBvjbccOpeHQPo/UE0Pt+r7xvbMDFf9LwOJiN7LWRFzt7vViEXJd2hxPPbqkMuJ1au49CLlj+8Y9/4KmnnsJzzz2H8vJyjB8/HlOnTsW5c2yFd6FCykXd3i0tLSRW865iuGjUghpuXlLPYW9tI3PL+do5N+IPD0zALSPjsWHPcTz8+l5sKKlDW6cwp2WWyIOvFnF/cOZXcokWIe/tzAnDBLeV9ydyUq1Y82AaNCIuXe+vAqvgy0m1Ii9bevG6L/gWRDUVigfiIuN1aTbqmd5vrtBYaITYCWDp1sPMxbJlNQ3Mx1DDPdibkKeE/vSnP2HevHmYO3cuAGDdunXYtm0bXn/9dSxatCjEZ+cfrvvhqX8cRHt3cCz8AeFVKFoNkD97ouI3ejnrIJS8eSUlGFDL4Ekj9RxYL/jYaD3SR8RLGpZoNkbghZmpAT9jsak29xEPcoSKhby3V8dFY8Zlk8SBSvW5i0yWBxy5d4xC5qgESXb5yVf59xaRivf1EQxnXzkxRuj8jm4ZHDkIZYuzeecUuSO10NjW2on84mNY4EdgchOn//oZe3pZjQIypIKlq6sL+/btw+LFi10/02q1yM7ORmlpKe9rOjs70dl5pYixtbVV8fP0R06qFacaL+H5QnY/lGCTPzsN08bJK1Y4cWJr7UDjxU5809SOLQfPeKj32Gg95mYmIjerb9tpIJS8ea2YMRZPv3PQZ0qCK+qU2mnDesFz3hdShiUumT7m/7N35vFRlff+/8xMZiaZ7CHAhM0MEIQQQgyKgQi3xkRisOJWWxB7UYpr+rNor4CKxaKiXq9Li4qiclsVrHXDJeaagC0QE7GEEEKgkpCAQAbIQhIme2Z+f0xOODNzludsMxN43q+Xt5fkzDlPzpzzPN/nu3y+RAapklCbd4sHJcy0xSEu3ETUgmKo5F1pRb/TRaxmDbh39RNGRPj83Ol0oexIExrPdYsaL/1OF9Z+JT3HSAre7wfjtfZ3h3O53D13Al4q/pH39y/8IlXUWFEr0fil4h9xqTWCcw4orGqQ3NB3WLgp6CoNgQAbLI2Njejv78fIkSM9fj5y5EgcOsTd8GzdunV48skn/TE8Yv5zdiLWfX1Qk47BceEm9Pc7BUuhY8KMuGbKCBQfPI1WVghCqxI1rnbwXJzt7MVLxYex6bt6PHvzNEnjYCav+94rV1TG7U3CQHXJmhvc54bXudVM6iQxuphkPKXNEq3RYUTHFasgOa6Gq9ig1+GpBSm4f7Pw4hRMeVf+qKTiQkpoEXAnni//WwUA4d5KQvODljlkYhuCGIsxoI1DSZkQb8Hy7El4p6RO9ryr5n3m8n7K9dquXZASlOkDAc9hkcqqVavQ2to6+N9PP5GVoWmJKUSPZXO0kc/+z1mJorotZzt7ceuMsShfnSNLRl4KcvIfznb0ysp/EBIcu2euTXIuDzvZkO/caiZ1iqm86gAsmW3Dl5Un8co2/p2aGKS7oX6nS7J2BBdquYrzUhNElaODJe+Kr4+VmonIfCgxEIU2UUyvn7VfHPARDbO3dsq+phBCGwJmbgmEsSLnCcv/oAIvFf/oYawAgEtC7E7NPBHvvCC5QnQ5ySNU98irRUA9LPHx8TAYDDh16pTHz0+dOgWrlbs002w2w2w2+2N4kmC6fHq3LlfC8uwkJMaTNcM63d6lud6EEvel3FI5PsExg16Hy8bFYs3n1UTVJly7HqFzqwVjGHl7pGItRrgAQZcyKQvSRhGN2d0FXPli0EIQxiFlVV4ypo+JwWOfVaGFtVBZo8xYc8NUXsOxs6cfzxRUo76pA4nDLHg0LxlhGjUn5csxkNKFVwla5xK8XVKPt0vqB98RAJJafnARazHitsvH4PN9DR7PvZXH++Aucz8QkNyVyy+JwYmzXep1Z27rJnou+p0uNLarq9HENoDkem+Kq0+jsKohKJPbA2qwmEwmzJgxA9u2bcONN94IAHA6ndi2bRvy8/MDOTRZrMpLxsPXTsYjH+3DZxUnFZ2L0UkgLS3zR4IUiUS+EHLzH/gMMcbgWL/9sEebe2+WZyfx5tH4Q1TM2zCqb3QIjlcqOYS6K2rt5tZ+VY15KeppNOSljsK8lARiw3HZX39AUfX5KsKdh4F3y44hJ3kENv76ClXGxCBkpKudiMyHO9/HqJrGEB/2AY+LEswGHa6ZMgK3X5mIjAnD8EjuFKLvdf32GskCizeljUJ3Xz8Kqk6JHyxAzRkHdj+ajT9t+xHrJWoe8SG2QSMNq0uFvQ4oed+pDgsPDz30EDZu3Ii//OUvOHjwIO677z44HI7BqqGhhilEj1/MGKvoHOzQBaney/ZD6rVD56KwqgEPiOQbkKB2qZxbfn0SNixORwJPr5oHsycF/MVjDKPrU0fhgx/UC2NKkeZWy6jVQqOBtMmkt7HCpqj6NJb99QdVx1V2RNhI90fHXINeh5v8UCWlhneju9+FgqpTuP3t73HVc9tRVG0X/V4LqxokeRoZvaEXbkvDa4sv53z3R0aaEEqod3W2oxd7jrYgc+Jw4jGQwPdcyAmrk6DXubVcGOLD5UUigrkLdMDLmn/5y1/izJkzeOKJJ2C325GWlobCwkKfRNwhhcK18e65tkF3HDv5VIiNO+sB6PDYfPUFn9Ts73G6rQv9TpfqBoQ/wjtqoFaSnZzkYDUrrwKh0dDZ089rrDAUVZ9GZ0+/ovAQWwH4b/8iMy6F7ocaybqB6kulBJKQWb/TJas6jv3c8737/1fVgPs37yU63+n2LlyfOkr1ysSvB3KcmO9cy/YDTpdbgXfQY6xw6qM6LDzk5+cPyRAQH1L6DHHx4b+O45HcKR4v5J8WXobfbhF++TburMP00dG4XsXdmNov2NMFh/Dqt7Wyy52FGAo9Y+ROAuYQvUcfKr5cAIBVct7aiWZHD+IizLBGuSdxtSqvAqHR8EwBWQLhMwXVWHvjNFnXkOuqb2zvxtaKEz4GSWFVA9Z8fsAj3CGWn8PFUNMoAchCZlKr4/juHde7n5c6Cj+vasAXleLe5xGRocSbQyn8tfQo/lp6FHHhJtyYNgqjY8I0VfBmzy9K1yGqw3KRoPSLbuno9WkQdppQxjz/gwqEhOhVS5jSorxRSbnzUEfus/HWHZcjJEQvuksXWnCZpEquJGApuLuPq5d4S0p9k7jYn5TjvJHrSdTrPJNU2cmrXDkh9rZu3PteOTZISNYVKvNn/1tNCQA1ENPu+e4IucT98uxJyM+aKGmT8/Kv0rGzhr/GExZAAAAgAElEQVQbOFeJdVRYCFo7hSszpdLs6NGsoSSbw6fOobS2CTNtcbJDQoBbFM/e2jl4rmDxVAc8h+VCRE6fIW82ldR7lBkebSafhLn6dMhFS7eg3HLnoYycZyPGYsTspHiiXACh2DjTiRUAdq3IGiyBfyxviqS/wd193P/fW+Iwsoo50uPYKPEker9qTCjkoQ/3CX5u5Sf7Jb2nQqX4GxanYwPH74IFrnmkoPIk3t51hOjz16VY8WC2dI+sQa/DszdP45UVAM6Hl5j3R21jxZ+s/7ZmsOT+h/om2edx9PRj+Yf7/Fq+TwI1WDRATH+DhLOdvYNJT/1Ol6TafqUJU/1OF0prm7C14oTqZXfeMNn0ahlYwY6cZ4NEi0TKgstoM8y0xaG+sQPrt8urWGK+N/bz4q3nIYaUzz6aR5afRXocGzU9ia6B/zoEZNsBt8FeNvA3k96D3JQED2OTrbeUm5KAf/7X1YgM1aa8Wwn1jQ6Pf68rqMb9m/eiq5fsWVmccYnsazOGnndiLltzScvckkBgb+3Cy9tqVDtXsGwsaUhII/j0N6xRZrR19YlOZgBQVG1Ha2ePLPe9XM8IV8xdp4OkPiZSaWjtQlltEzKTLg4Jdr5nw9udLyXXgXTBZVz067fXYNN3dbJFupjz/HnbYfy17KiHxD6p0qf7WfPU0bFGhWLNDdyfDTMZkJM8QjDxNid5hKyE20AlGL73fT1+/9E+j+9O7P4J5WrtOdqC9i5t+potm5OICLMJm0rqPJR3hdR0GbbsPjaYs1ZQ2YA3dpC3Goi1uHttKUEsKT/Q3eHVRs3p2l/l+yToXFK27kFIW1sboqOj0draiqioqEAPxweuCoH122uIyvgizCFwdPfJevi2LMuQnICqpPmeUmLCjHj2FuX5LEIJp8ESh2XwfjaUNKrbWnECD35QofGIpbE0MxHZyVbOv0PsWRPK7+ArbVaiw1Ja24SFG8tkfVZtmDslR5BOy+cgIToUu1ZkAYDHc1t2pAmvbBP30m1ZloGZtjhc8XQxUQ8pBim5Pnz0D/RRKq1tAuDCrPHxyGCFVqXeNx2AOROHYUeN/LDLUETOuiKE1PWbelg0hms3lJ81ERt31oq2KD/XLT2WKrdxn9zyQrU429mrWDWUJOE0mBJ8uZ4NuZNBMGb0eyuoMve+p8+J3/+9UvCzqz7Zz7ub2/jrK1RXumVyi4Jhl61kR6vlc9DQ2oX/LalDfKQZIyJDcV1KAvYcbUFLB5nxcbq9a0Btmex4tTYxXM3/1n9bixiLcTDpX+p9e3VROmLDTRedwRLoUmdqsAQAg16HX14+VnVdBSWN+5Q231MLuW5HsQqPBgJNiKFMMC243rD1OAC3MSJmjLd09KLsSBMyJ3KHCcNMBtmly2x6+px4t7QedU0OTBoZETT3T25nbK2fA3Y1FEkoiE3tqXOSrvXqonTFYWIhT97Zjt7Baq2cZCtR2Tjb+O53uog7jgeSCHOIrM0vF4HeGNGk2wCRTSinLgUljfu+qyUvL9QKuQqLUhNOL8QEXyaZN7iCXm6Yu73qk/24971yj55BQrjd99qxrqAak1d/jbVfHcR7Zcfwzx8D/w5489ZOaVLx/nwOpL5Gf/q2BkXVZDL6ceHKu3S7+xOJa/es+fwAAIgmwy/PTvJoKGvQ63Bj2ihFY9QaHeR56rmIMId4KOkGAmqwBAg1Sp8BYPX8Kap0Zz55VpvurHIgdTsy1RUvFf1bUsJpMEpOqwFfNQRDTJgRt1wWmAnWBRAbKp6f0oZ1BdV4Y4d6jUq1YtuhMyiolNfl3Ps5iAs3Yv2vLhusMFqenQRrlH8byX5Z2YBogiqmP/58quKcs911zUSNUe1t3dhd1yzYHZ6vxQdpHy8+8q+eiC3LMrBsTiK0SLFT8/E+192HtD9+E9BqIRoSChBCQlAkMLkqSzJtANwv55eVJ2VLf4+KDZM4AnGsUWa0d/XBQVARxYbtdmQnpsZHmAEX0OjoRn2jA1t2H5PcMA0IfBxWS9jVEPbWTpTUNKLo4Gm0dvbibGcvPt6rrCmnP5k1XpuqsZ4+JzbuJKtSiTAbRHPNtGb11irJzSZJW1UwDVbdTTk78PJAMYCWdlwrQRXT018fUiyAKeU9Z46V2uJDbgiOmb+X50wazGV7KGcyZj5TpFmVlxp09PRLFj1UE2qwBBC+8lYx2LkqRdV2n8/LSTCdPT4er6rUqXRmYiyW51yK7480StIC8E4Y9kdH0wsRZgIsrGrAx+UnhqS2RIxFeUiAj3dL64k9K+e6+/G7a5J8Srf9SZOjR9Uu50LHXGqN0OSdkwpJHyIxpLzn7GOltPgw6HVYPT8Z98toDMuEoEprm3C6vQuN7d1BbaywWfP5gYCUOFODJcAwFv197/0L34g0dmOwsqS/uRJNGwbaxAuVlXqTMWEYws0GOFTYTVadaMWMS2Jx33t7iD/Dpzqp5mIrt4JKTdRohEd6naEshEUilicXKarRALCppA7/OfsSvLmjDl2sfk7+xF9eQW8PQ2N7t0eirb9QQ/tjpi0O1qhQ0bCQNcose04orGrAH788IOkzzIbS6YTkEu9ggQmj+bt3GzVYggCDXocrEocRGSxzk+Kx6c6ZAICrntsuuCDxlZXyjeG/b0kl7m4qREevE3/5zlNcSgyrV/a9VoutnAoqNeh3utxibV6iW1qVWw9VIayRkSY8uSBFU3fzJXHSpPtbu/rwp+3SvY/RoSFwAmjvUp706E+vINvD0O904a1ddQFpuii3UorBoNdhzQ3JotpSa27wzZfh21iwf17f6MBLxdJUopdnJyE/KwnPFx6UJJ4XjAQitE4NliBhsjWS6LgdhxtRVG1HdJiJeEEida/mpY7CPcfPqvIiffDDT8THPpY3BXddZdNUdVIrw4DEY8KlA8Gghuubi6GYp3Nr+mg8d+t0zQ3KO2Yl4umCg5om3OoAPHdrKpxOl+JNQEIAvYJScu20arxYXG2XvZPPTUnAhsXpnO8fW4fF0xDpGMiP8wyzX5+agI/LT8j2iCzNTMSD2ZNQUHlS1hzLeIhfuHU6th06hc8qTgbUOxOI0Do1WIKEZkLxJcDtJn1k3qXEx0txr67KS8b0MbF4fGuVopeh9oxD/KABRkSZPcakxmIbYTbgwWuSEB8ZqpnSLVeOTUyYEXdmJnrIkAvFt7WSvR6KeTpzJg33i/fLFKLHsjk2zXa4cRYjnmF1IRfaBOgAZAu0G9AhcF5BBr5cO28dlhiLUUYlmDifVpzAo/Pl3wMmzMWndFtQ2SA63zW0dhEnavORnWxFv9OFx7dWyfq8C0DmhHicbu9CTrIV/zVvMjKf24Zmh//1s5SE0ZRADZYgQcoC09DaJdmYkOJezUtNwLwUdxz7r6V1+LqKTDtBLt6N0dRYbM919yNldIxmMVY+Q+RsZy9eKj6MTd/V4xczxuDtXeKTnFLXNxdKqhfMIfqA5Gr408haNdAgceNO9UubV1/v6cnj2wSwvX5ci2YwqTNzVc+wW0nER5jx8IfatARodvQqfjcMeh0yJ8b7CBEy5e1aws6dcyv9yjcwPio/jo/KjwPAgGhdYMQ+ucJo/oAaLEGC1AUmLsJMpMzoDan3goljz7TFIfPZbbLKh0lhN0YDzt8LpXFzrcIiBZUnkb9F2M1/tqNX8o6MZLykSbuMK19qbygXEBBjJRA7tlV5yXj42sl4t7QepUeaUHyQLOldDGu0r0QAexPA9d2J/T4YEGolUVrbpOkcocW7/GXFCb/lkTBeMil/x63pYwaNEy4CEQ5ih9ECATVYggSpC8yISDN+dcU4oiaKnp+Ttot1J65NxX0D49IiRu2dcW7Q63DD9ATFk4kWO/bCqgZVEpO5EBsvVwjKWyrc2+392qLL8OhnVUHRdkGIhTPHqb44kxh3phA9ls4ZjztmJeLS1V8r6kouVoUmVi4rpZw22NA6Z0rtd7mgsgG/9UOzUOb9zEm2orS2CYcJ2xPEhZuwq+aMxqOTxv0/m4CHr700oEY0NVgCiPeE6iTc2EaYDXjob3txql2ahR0VGoK0sTGDdf+kuzi5ejFSON3eNXg/iqrteEdBnyWtypeZ6iUtiLUYBcfLV+bNlLBfn5qAnYfPoLXzfEUK0+DtmRun4fDpcz4VSsFEYny4qufjMu6sUWYsnDkO4+IsPp289xxtUWysAIHPNwkUWobz4kTeDamI5ZWpBVMRVFRtx1XPbZc0d/464xK8TNAB25/MSfJPjpkQ1GAJEFwTKumzcK67X5b6ZltXH5KfKPRY9Ng7AC5FWcaoYcewS2rOYL1KInMM9Y0dkl9qLrRcOLQsFW7p6EVRtZ3T1UpS5v0lj3z72Y5e3L/ZrUy5Z3UOyo404YH3y4POcFFzweMz7uxt3ZxlqAnRochLUSaxHmMxYl0AXeWBRq0wLhdXjuffVEnVNSIJ5yqF7fWUoyd1z1wbbMPVNeCVEAz6VQzUYAkAfA+xP/qa+EziAzv0GIuRN2zAfgGZvJaPy0+osnjrAERbjHi5+EdVJjqrhomKWrq9hSqF1DCUGGXKzInxePaWaZwhPqYsVc3uriSIeZek0O90YeUn+yU9Sw2tXYo7p5sMOsV9ZYYyQuXPzNMcbTGitaNX8ns+YTi35INYiJTreK3Cubekj8bcScN9NFuk6EnFhRvx1IIU5KWO0rzxJynB5jmkzQ/9TLApkDLjEMpxYLRCmKZXanaEdXn9rxyiQkPw0m3TFTeAFENLt7dQY0Y1DCUmTwg4H+LzbvJmHWjy9vwtqYqvJwU134X12w/LztdRMh+fau/Bio8qL8hO4KQIPVevL07HszdPA8DfDZkPrrweZtPnbch7z1UMWoZzLSYDnr91OhakjcasgVJpgHyjkX/1BGxZloEfHstBXqq7OWmLo1vVZohyT8V8d8HiOaQeFj8zFBVIubRC1Mhr0emA+dMSeMMZpDx7cyryUrV/oeSWCkuhpKbRx62tlqHEFsISa/J2z3HtdEq8OduhvGwVcC9KmxR4SpTaGh+VH0fhATtuu3wMcghbYlxoiD1XUueMWIsRGeM9nwuhTR+frpGW8+6Lt3GLHZJuNJJGRno8+4VVDXhg815VDfmRUWY8cX0yHt96gKi6KP/qicicGB90zzA1WPzMUFQgBbi1Qrw7A6/96qCkUjuXiz/3gpR75tr8YqwA8kuFpbD+2xp8XH7cw62tVn7A2i8PIMx4vgOuUFWKWzskZkAbxLOVwPBIEyqPtykYiS9qvBe765oV5+bclZmIr6vsHotbVGgI2gjl9c919+Gdknq8U1KPuHAjbkobTdzP60JB6LnyNmjqGzsEKx3XcfSUEjM+uOYqLeZdsTYSpBsN7+70Wnjg/+e2NGROjMe/jrYQFTQkjYwIyoo1arD4mfgIc6CHoAh7a6dPlRHzYIeZDKo3LOSDHe/1J7kpCVienSS5h4gUmLyi5dlJSIwPx4jIUKyePwUPKIy/Nzt6JbUByEsdhXkpCR675e2HTilW/OSivlFaQ0Iu1FiUcpKteGx+ske/mM3fHyM2WNg0O3ol9fNSCzkNNtmfiQ83Azqg8Vy3JnowXB2i13xe7SOFz3e/SL9n9nFqh3NvTR+NZ25OhSmEP6tCbKPBlcyqlSeo8ZxbIycn2UpksASrUjY1WPxIYVUDnvhMnixzsODtRWFPLFqXP3vvWAFILtFWg/ysJGzZ/ZNoF1i5MJMb2yhKiA7F3XNt2FrRoOi6LgArP96PyFC3q13sfrEXl54+J25/q0z2tYV4ufhHXGqNULSgK5lkdXBrX9hbO7G7rhkzbXEoqrbj5eLDqhjgWvWM8qag8iSnV4xr8WfLCAj1pdHa2BILI3kjx3Ohdjj3o/ITKKltErwvJInI3smsWnngmXshdh+CqSKIC53LpUR9IPC0tbUhOjoara2tiIqKCvRweCmsatA0lBBIdIDHRMxMhN8caMCWH35CVy+ZwAxf87SlmYk+bvXCqgafXVl0mBF3sfr4aAmT9AeeMasN89e8uigdh0+3q+LhkboQvb3zCNZ+dVDxdblgJspdK7Jkf3f9TpcqpfGAW7Olq8+pquCeGn+jEEIy897vKFeFDR/MSIMl+ZL5nsU8F973We05mPS+SKlmKq1twsKN6m4KErzuBd/cFYjvWer6TQ0Wjel3ulBW24Rl7/4LHT3StVMA+V1QU0ZHob7RIajZEm4ywNHTr7jTaqzFiH89nuMzEZfUNOL2t74X/fzy7CR88MNPRC+12MQTYQ7xS+Ij30TU2duvibIsMxH/87+uxsxnihVfg/nO78pMJLpXT2ytwl9Lj0q6RkxYCO7MtOFgQxsKD4j3pNqyLENR7FyO7oW/Ufo3ckEihsYsXEXVdsn3SImxJSdEJYbcRZfRYVGrmIv0vpDeAzFjTM74uO6F1JJwraAGSxAhZRfjzdykeOh0wD9/bFQ8jghzCJwul4fBFGMx4s7ZNuRnTURRtV1wnOFmAxwEQnXLs5PwYPYkj5/1O12CvYjYLzwA0Ze63+nCjKeKiBdrrXNduCai/9NQ7wEAVs+foomnQ2zCkuJhYXetLqq2Y+XH+4kSYl/5VRoWpI2WNG5v1F6U1OalX6bBGhUqeQHnW/T6nS5MfaKQqAfU+7+5Er//+z7ZXigSY4s9zvpGB7bsPubx/pMujB55NRxillzzFsm5Xy76UXUVWTWNUCFjzAX4aGYlRIfi+lQrPi4/QRQKZNDCkJSK1PWb5rBohNKd3o7Dyg0VBkd3H1yARxIn++H0jiGzJ4f4cPPAzk3cYNlUUu8Rjul3urB++2HehEWuOO6sCcMGX6QvK0/6jLXsSJMkz0Kzoxf3b96Le46fHezQqyZcFRGx4domVh9tVp6gyoVYnsUdsxLxdMFBQUNApwP+umQmZifFw6DXSX4P1Ej2iw03B62xArirtcQWFu/FpMXRg7VfcS/OBxvaiBtWltY2KQqZieVYkGzSxJ4z97xRI9hKIjLUgBnjYnFXpg2TR0aiubOHeNHVQkVWzdwTvlxARhSTL99n5XXJkgyQodi7ihosGhCM4nA6AB/88BOv65Lv4S2tbUIrYano2c7zehqFVQ1Y+cl+QeMimqPzZ0Flw0DSIHdir1wFyDd21GH6mFi/lEBrXbo+NtaiyXn5NCwYTCF6LJsjrM+SPWUE5lw6HID09yBBpWQ/f0oHhBr1xDlaDGxjBfBdwEk9s8znhCpVfFE2KwkZlKTGqdBzRjJvAEB7Vz/+8WMj/vFjI/Q6YNkcGxbkkXnmtKiAUfucYonIXHP1UDRApEKVbjUgGMXhhJRUhZA6+Z9u7xqcuMQmnTCjATnJVvQ7XSitbcJd/7sb928u96lWYBr8FVQ2QMmEu/KTSnxafhyltU2aKpJqXRI4eWQkEqK1uYbYc7IqLxk5ySN4P19cfXpQZVTqe/CrK9Tp2OxP6YBrp/DfC1JcA/899mkVvqw4wangKvS5bkLvSrjZgFnj42WPk8+g7He6UHK4ESs/Jm+JwPWcMblpUnOznC73hmRdwXklW2ZO2Vpxwud9n2mLgzVKnfdHB/UMbW8YA8RbQfdihnpYNCCYxeGkjk3q4nu6rQtv76onmrgaWruwfvthn2RbPvK3lOOBqydKGg+btq4+LP9wHwD1Esy44sAzbXGItRjRokHiLQA0d/bghukJmirRej8nzN9pb+vCnqMtgp9lds5Sn7XEeJU8R350bZKGYkhocvTgtx9UaDb8ZVfZkDFhGGLCjJIF9nTg7iejJE8POP+cqSGdv3FnHR6+djK2HzolmNti0OuwIE35+xNsfXYuBqjBogHBKroDSB/bTFsc4sJNxAq2TxccknR+KeW5Thfw5+01sJgMsiuuGLji6EJJjd4/B9x9azaV1HtM/szEmDF+GL6usisaIx/1jQ68qbFsPvs5kbIosXfOUp81Nd6bfqcLpUfUy/8S44rEYfim+rRq59PKWAk16vHbaybBoNfhzsxESe9dLE8najXKhJnvXA2vtNMFPPpJJT4uP+FzHxtY7zsAVd4fLRutUrihBosGzLTFEVfW+Au5gkAGvQ5PLUgRLZn0J+YQvWKDxTuOzldxcMP0BHy+r8Hj5zEWI3r6nJxjYAyh61JGKhofHwnRodiy+5hmC5sO7r4jTpcLWytOoL7RIUvz5XR7F65PHUXcUkANtzqXaJrWxFqMiAs3+vWacnjxF2mDXoD8rCRs+q5eNPQSHRaCuzJtnLpGTFdsuXjPR2p5pQv223mfNReAVZ/shzlEL/v9mXFJDH49KzFgVTUXO9Rg0QCDXodlV41XvXROCS4A16VYB1U8AXfFjTuJ1YVZ4+ORwRMnzUtN8GszPDFaOnqxPDvJp1xSKow3YP32Grxc/CPnrozrbxaa6BlDqPSINu3hf3XFOMHeK0pgyia7+pxE2jlCxEeYPZQ+xa6r1K0uJJqmJb//qNLv15TKNZOHeySbG/Q6PHvzNMEE2eXZk5CfNZH3O1m/vUaxDhD7O1fLK93RK7yRURKmzUkegY2/vkL25ynKoQaLRvz2miRs3HkEDoWeADVhmrLFWIzo7XN6jG39t7WI4ajaYeBrhhcoEuPDUbLymsHGi82OHnxcfhzVDe2Sz7WppE5Vj4ULQEtHn6wKEiGyLo1Hb786z9Py7En44IdjHp6j6AF9B1VE7wZuqFi7BjVyiQoqG4LGmA5GfjNngs/P+L4Xku/D3RVb2f2OthgHz8XkRinN+9Lp3A1V1eCFW1Ox7/hZ1Dd1IHGYBY/mJSPMZFDn5BTZUOE4DRmqcvwbBKSZmQnm66oGyaqnarJlWQZm2uI8ckvKjjThlSDyat05+xJs+k69e6TWhJzAIdQXH27Gw3/fp1p/JG8BOPbC1HyuG3HhJlijwxS71fudLlzxdLGkLuFaotMBoSF6dKpoqCpBrwMOrb2Ot/RZjniYGvLxfCJoSrg+NUFx93cGLdSIKb5Q4bggIjclARsWpxPpCgQTaz4/wKnDAXjW+gfKYIkLN6HF0e3TN0bquqeDu/+Q1IoJUrKnWHH8bCeKVErKVGtr4S3UB7gXITWbOXq7+LXSiNhd1xw0xgrg/o6CxVgB3Imoe4628N57Od+LGvkmzKOs1rxoMRnw4m1p2HW4UfH7HGMxBm3zv4sdqsOiMbkpCdjzeA6WZychJswY6OEQYW/rFtVrYbp+BgLbMAse2LzXJ8QgRVqFsW3uzExUbVzefF/XhGIVK0iUogPw2qLLOL1napbix4X7b8IPVgmBWIsRMWHBsR9U+x4FYxVkR08/9hxtwZ2ZNsXnOtvRi6JqbSr8KMqgBosfMOh1eDB7EvaszsGWZRl45VdpeH/plXgsb0qgh8aL2CTHJFQGgj3HzirOObFGh+L1xenIz0pCQnQotMj1//P2mqBROwbcu1rvtgGMwNbhU9Jzf/h4akGK36on5Cye/hhZS0cv7v+ZfM0gNVHbwGA2K8FWH3O6vQv5WRMRY1G2MWSqB7UUl6TIgxosfoStXJiZFI8RUf5T5JQKySTHhLykThAxFmNAJ7vV86dg14qsQREpxvBSe0zBON2xDdHCqgZc9dx2LNxYhvXf1qpy/utTEzRtNFla24RPy4/j7Z1H8OneE3A6XYiW6Lm0RodiuVeTTi0okdlGQi20UmEN5GZFiBGRoYMVUEqQqwpO0Z7g8FlepASjaxUArFFm4kmO6XnB1axMr/MM0zAVCABw33vlg4l3/sQaZcaSTJuHB0CoYoJLhyV2IFEwGA0SMeLDzSitbUJxtR1vl9Sreu7QED1+OWMs+p0u1T0sXD2mGCLMZNNY/tUTkTkxfvDZ3rjzCM51czfmVIO9x4QVgbXGBXcZPAOfAKKcjr3MO0PahVtLvDVdmI2UEgVeACiuttPE2yCDVgkFkH6nC1c9t51IWMufCFUJCeE9Ic64JBZ7jrZwToZKJb3lQlIBRaJ0+39V9qAS0xNDB3cpaWiIQdXkWi6EyuNJYN/v+Agztnxfjy/3n5I9HmZBYzf+lFLBd13KSOSmJOB0WzeeLjgo6dqkonIheh36NApB8BneoUY9zCF6tHb2eRwrpcy85HAjbn9bmWaPUnQAXl2Ujthwk48xVlbbhAc2l8s2quTOhRQypK7f1GAJMEyjQMB/3gYd3Fn13hoxShcaqfQ7XSg70oS7//ovv+jV/DzVij8vmqHa+QqrGoJihylGIDxZgLzJXm1DlvEVeLdg8K4wE2LLsgy0OLrx2GdVknVCrpk8HNsOnZH0mUDCdb+ECIZNV/aU4Sg/dtbDMLRGhWLhzHFIjLegvrGDUxiShAQvQxeQVwpO4YaWNQ8xxIS1tMAF4M07Lgd0IFK61QqDXge9Tuc3cb0f6ltUDVfkpiQg0mwM+A5TjJFRZnT1OVUtrScxgoTK47lgjHclC5+3R4Or34uUvjV6HfDGP2vwjx/l9Sfa+9NZ4mMDZViy8W5ZIfbdsdWMAzX+4oO+BqG9rctDEdpiMgyUnEuba5hcFiY0xGVQq9VIlSIONViCACYP5H9L6rD2K2kuZ7k0Orrdyb8T5bebVwN/lqUy5dpqxqUzJgwj7pfjTyJDDbhtxlhkJ1vhdLkUS+17Q/K3SrnfTLdepfdw9fVTYY0KFdz9FksoWXW6IMtY0cGtF9QkQSMmWJ4fdtIpyXcXiE2XVJT0HmPmKD6DmquRKkUbqMESJBj0OizJtOHVf9T6RQgrWBJ+48P9Wymldv5GMOwwvYkwG7Dn8WsH1U23VpwI2FhIDVI1uvUC7lAA1yLLhB/fKzuqWRdtNi64y3/9cS2tkLKZYDZd3srJp9qCy5CXw4jIUEGDWqpXiiIfWtYcRBj0OtyYpk1JKJuYsCBScvTzu732ywMorFJHvpuB2WFaAySk582yOeM9pNgDaZySXlsNT5tOBzS1+zbDLKxqwIyninD7W9/71YAYysYKIP258ZZtWHODNnIBaqAjGBS7LFzMoEbmpQsAACAASURBVKal0P6BGixBRk6yVfNr3OlV1utvGD2NrRUnUFIjLzdALs2OXtz3XrkmRsuuFVmDwoD5V/s2nFODCHOI4AIQazEiPyvJ42eBEvoiLY/vd7rQyGFoSMXlAvI/2It1BdWDP2OqgbRujXFr+hhNz+9P1NJvkWPI63VAdJjwM64GLhfwWN4U5KWM5Pw9c32mjQWpQf3WTnX0jCjcUIMlyNBa8j7GYkR+VuAUONliZQ9+UIHX/uH/F9wF4NFP96OnT92eLx47zInDiT+XNiaK2MC57XL3wsg3oT99o6/KLBO28rdrfs0NUzkNY7bB+krxYWQ+u13V3K03dtShoPIk+p0urPm8WvwDCom1GLHLD4a3DtL7Zcm5BuDZb0oJbEOe5Bl3uoC7BuT1tTZaRkSZ8driy7FhcbrPnMsoYTM5KaTepm2HzngYzBR1oTksQQY7JwJQPyfi2ZunBcS70u90Yf32Go/M/UDS7OhFxrpteOamFE0S5Wba4hDOUTrORcXxNlw9mXun501OshUzbXG8CY5//PIg9HqdRz7BiMhQ5CRbcV3KSHxdJV/PxJvl2UnY9F29j/cixmLEMzemIDrMhK0VJzx0MbgEBrXg8a1ViLaYNNecAYBfz7oEr2yr0fw6LpxvgOmdL8X8OzkhEtUN8tsscFVVKYUx5EmTnRPjwzmTeL2FKJXCGCHe+TdcydrMRpIkuX7jzjo8fO1k3g7ZFPlQgyUI0SLrPpCld4VVDVjz+QHY25S7/dWk2dGjWXa/Qa/Db+bYiBeyLbuPwRoVypukyFbzNOh1cDrBKVxnb+vCve+VI2ZAjZchIToUaWNjZP413GPJz0pCflYSyo40eZTHt3b2Yu1Xns9ujMWInj6nomoNADCH6NFN4BlrdvQOjElb7plrw/jhEZpfh83SzEQUVNk97i9jaESHmbBwYxnxufQ6IG9aAnKSR0rWFGH0SOxtXWg+1424cBOs0WGc5yisaiBWVh4R6U6c9jYiGCHKkpozilpJeCvjAu73lclVOd3uzkVh/x3MRpJEbNDpAt4trcfSOeNlj5HCDTVYghS1Sp2XZiYie2BXHgjPihraGlqjVXb//7tmEjburCNapO1t3ViePQkvF//IuXsGzrvp+50uPPrZfsHzeXs97K1d+LpVeRIoM5bV86d4LCbLcybBoNehsKoBD2z2/b7l5pDckj4K2w+dRkuHW42VxFg5j7ZP3e+uScLvcib5xTBik51sxaPzk3lVmcU8AZGhBtyYNgaJwyy4Y1aiLE+AkMAfszliDA57ayfRHOZtSDCeGTazJgxTnKDtAnDD9ASP951EXyU3JQH/MWk4/vmjuBDg0eYORWOkcKOJz6q+vh5Lly6FzWZDWFgYJkyYgD/84Q/o6fEs162srMScOXMQGhqKsWPH4vnnn9diOEMWptRZLGEyOiwE1ijPGGtCdCg2LE7H6p9PxSw/C8IxqKWtoSVaZvcb9Dq8eNt04uPHxYVxJil6x9PLjjRJNgCY0kuS6giGEI5nJsZixN1zbVj71cHBPKSFG8tw1XPbUVDZoPr3/XH5yUFjRSqzxsf7vBd8xIS5926kt8caZcZvr3EnN8+0xSFGYgNGObCTYdn5Uuz3W6iZp27gv/++dTrW3piCpV7VZKQwmxA+729Dq9vLN+OpIizcWIblH+4jkmpwgSx3Ro2qtzd31A0m3jOJ2d5/D6Ovwk7Qn5tEplt1SZxF8RgpvmjiYTl06BCcTifeeOMNTJw4EVVVVVi2bBkcDgdeeOEFAG5J3muvvRbZ2dnYsGED9u/fj7vuugsxMTG4++67tRjWkERI54N5rZ+7JVU0BhsI1NLW8AdaCdjlpiTg1vQx+Kj8uOixzY4eLE0fL/pdyt3Ruwb/DxlcvW1aOnrxxo46n5/bW7uCqrdSQnQoMiYMw5obxN34y7MnIT9rIoqq7aJhWOZbYCcUG/Q63JmZiJeKD6s1fN7rkizofCFlNfJTpGxCpBrVd2UmEo2NJJ9ErwOiQkNwtpPf2H3yi2pkTR6JlZ9weyu59FXumJWIp746KPj363XAHbMSRf8OinQ0MVhyc3ORm5s7+O/x48fj3//+N15//fVBg+X9999HT08P3nnnHZhMJkydOhUVFRV48cUXqcHiBekEFGydRf2lYquGYJuUXZtYLxHv38+eMIzIYImLcIvocbnCPVH215pC9Ojtc6rqCQkmL5oO5xd2pnPvyk/2cyYHs3tneSdf1jd2YMvuYx6Ju3yLfn4WdwKyHIRyVEiNDZJEUikwz3RJzRnNNiFckg5875qYWONvs5LwyjZ+A5LxrK76pFLwO/NW/d1+6BRnHzY2y+bYaMKtRvgth6W1tRVxceeTnEpLSzF37lyYTKbBn82bNw/PPfccWlpaEBsby3me7u5udHefT95sa2vTbtBBhNoTkD/wl2CZ0sUy1sIvpOc9YbY4enwSStmxbq5YeFw4WbjAO3zBN1nPGh+vKOlQ7XLuYCLWYsQ6rwaezLvjnRzM1TvL21jMz5pI9M4Z9Do8e/M0VfK1hHJUpCBu+J5HyAh3J81Xa1ZxxZUEy3dda1Qo1tyQzLuJY95F0lynT8rJVKBLas6guNoumDisA3D3XBtW5SUTnZMiHb8YLDU1Nfjzn/886F0BALvdDpvN5nHcyJEjB3/HZ7CsW7cOTz75pHaDDWKkTEDBgJRSwEDCNzbSzsENA7Huu+fa8OaOOp/zsZvx8eEt1CWUBJiTbPWpAqK4MYfoOXfqBr0OmRPjJffOkvLOqVHd552johZiBgnfswaAqDJGLnyhLiavxBumCo7pBM63iSMNm5LOSyQbBGt0KB7JnUJ4RoocJBksK1euxHPPPSd4zMGDBzF58uTBf584cQK5ubn4xS9+gWXLlskbJYtVq1bhoYceGvx3W1sbxo4dq/i8FPXx1pQJVs529Po0epNa3eQC8OZOX2OFFHbVAt+1GcPo9cXpePbmaZouJEMVLRpcSsE3rOTAS8WHicOW3tUraiBmkPA19Lv3vXKEmwyqjsWbGA6PWL/TxZtXwrDqk/2DeSVc33UgNktSGkZS5CHJYHn44YexZMkSwWPGjz9fe37y5ElcffXVmD17Nt58802P46xWK06d8hSxYv5ttfLL05vNZpjN/m2YRyHHeyeXk2zF64vTZeuw/O6aJPxp+2FewSim8kWpoBQ730ZudZNLwRje3FGHy8bFIifZKnhtF9yT9b8ez8GGxelY8VElWrvkVdEEA7lTR+L7uma0qOgtKqk5IxpC6elz4i/f1eOH+iZYTCG4JX0MZk+MV8VY8F5EL7VGEntdPt/XgEdypygeB/Me8oUxmEqecLOBt6EfACLhQyVwecRIquBaOnpRdqSJ12MWqM2SP7vPX4xIMliGDx+O4cPJJMdPnDiBq6++GjNmzMCmTZug13smIc2aNQuPPfYYent7YTS6Y/xFRUW49NJLecNBlOCGL3/jqQUpKFl5jSSlWyau/dtrkjBpZATu37yX8xjAneT25kDlilybgZ1vE6jqpie/qEZkqFH02i0dvVi//TAezJ6EyFAjbn/rez+NUH3+c7YNo2LC8A6hqBgJ67+txcflJ3iTVNcVVLu9YayH5bOKk7CYDHjxtumqiwhK0VRSY5dOGsoEAEe3+gZJrMVIbIByecRIwzkf/esnZIwXlmyI9nPoNJCNRi8GNEllPnHiBH72s59h3LhxeOGFF3DmzBnY7XbY7eeFqxYtWgSTyYSlS5fiwIED+Nvf/oZXXnnFI9xDGTrwaTM0O3px/+a9eL7wIC61RiDGIp6A6h3XzksdJdjvY1VesqJuyd7dqwOxS2KqEUgn6zd3HEG/04WM8cMC0tiQjxiLkWgsbE0RLRp+cmloAG5j5Y0ddZzesI6eftyrQWNMwL3jZ6rAxCjYfxKltU3ol+E2FNNI0YKcKSOwev4UvHTbdGxZljHo/SPVpvF938j+7k8rTuKq57Zzfl/MffCnsaJGw0iKMJok3RYVFaGmpgY1NTUYM8azi6lrYKaIjo7GN998gwceeAAzZsxAfHw8nnjiCVrSPAQhCaG4tTt89Tu44CrhFKuS8v59fLgZ1Q1teLpAXGHzqiTPUEBgd0lkk7Wjpx/f1TRizqThoiWe/oIRJnNBuNTc2yBl8g3UXGSZaz/2aRWyJo+EKUSPnj4nNu4UfwbXfH5AE+Xj5nNkIdF3y47h3bJjg97JvNRRRJ8LlFDjktk2ZHoJquWmJCDSbMTtb4t7/7zftyttw4ir4OysvC5mvgjUfejs7UdRtT0g7U8uFjTxsCxZsgQul4vzPzapqanYuXMnurq6cPz4caxYsUKL4VA0puxIkyqLzdWXDseWZRnYtSKL86XnU/fk+n1mUjzuusoGa5T4rnbP0RaP3SyzgAbCazFrfDwizGSJjve+vweFVQ2D1SlyPUxq4YI7XLU8O0lwLGzlXibXIncqWfNHqTQ5epCxrhiFVQ14t7SeKNeJCVOoTVy4SfwgFox3krT7byBCmTEWIzJ4wlcZE4S9f2wvG+A2NF4pPox8CQKEzNf55BfVg+9woEK6rR29nF49inrQXkIURRRWNWDlx8IZ/aR8++8z+MWMsbw7WzHBNm8Meh0WzhwnqkDqnTcQqIQ9Rp11TlI8UVdlR3c/b4lnY3u3oh5USkiMD8euFVke3i7ogMZz3R7fm5RcCyU0O9wLydxJZPl3gDZhQWt0mKzPvbGjDtPHxCIvVXjnHohQ5jM3pvC+gyQq3YyXrbCqgVPcjwRvcbdAJb5yKeNS1IUaLBTZaNHYcOUnlchOHumjFEnSnIyLxPhwout6T3JadMwWgq3OuvjKRCKDhYGrxLPf6cJbu+oCooEzIjJUVEckEE0x9x5rIT5Wi7CgktDX6q1VmJcivAjGE+bIqElsuPA1+d6juHAT1i5IGRRbVKNEn3mHAxnS9TaeKOpC9YMpstAqTtzW1TfowmfgSyTkS6xkQzp5cR2Xm5KAXSuysGVZBq5L0SZkAQARZoNHDD5jwjBYJOhfMCWebISa4GmFt4ufj0DkGLjgfrZIsEaZNUmeZH8nUmly9AiGqQqrGvDwhxVyhyYbEm9GbkoCVs+f4qH43DSgGP1lxQk8/Pd9qoyFeYdn2uKI1aW1gpY3awM1WCiy0DJOzLjwC6saBBc3rvi1N2L5KEKLLDsEtfjKRElGhBTW3jjNx0sktRcJV3URX25LQnQocTWPVEia8wV7U0x2Y0O1cTqldcxmw7cIMga9HJ0jpZBsCAqrGvDA5r0+is8NrV3I/6BCldLqCHMI7K2dg+/BUwtSFJ9TCbS8WRtoSIgiC3/sIJ78ohqRZmFdEjEXrJQ4Ohs5+RVy5fK9ewjtrmuWcR5ug42vuqqo2q5qZRFJeI4hWHef4SYD/kcDHRaGwqoGRR2tuRZBLb1VceEmtDh6OM/N1//Hn+Njc667D8s/dHtqmGdx2RwbUVWY2tDyZu2gBgtFFlrvIAZ1SY40Eh3Ptwj2O12IDjPhzsxEfFZxEs2OnsHf8XXAlZtf8c/fX43qhjYUVdvxTkm9qDHAN+nLWdBnjefvkcOVT8KXWxBhNsDpdKGj93zzOGuUGQvSRuHzfQ0exw4LN2FB2ijkJFslNecLtt1nmFGPDbfPwFWThmvmWWEWbrnwLYJaeKuY53L1/GQ8sFmaoe+P8YnBhIp/l53k1+sykNwXijyowUKRhb96dZxo6SQ6jmsR5FPevSltNLJ5FlklO8Lpf/wG98y14YmfT8VMW5ygh0Zo0pe6oAuVlgrB530BwFmN9UjuFFW6hQdbU8zOXidMRoOmi4yShZudkO2N2t4q9nOZm5KA1/W+Ri2foc9FoEQYdQA2qaieTAkOqMFCkYVQqEVNPq04Kfh7odb0XJUHLY5evFNSjyt4FlulO8I3BloErMpLHjQGiqvt+LTihEcMX2jSl7qgP3vzNNmLLV81D194TY3KBzWfnd9dMxHtXX34cM9PaO+Snwuh9cIq9/xioTZS4/bW9DH4qPy46HHez6WYYKMYgfKmuQCc7fR/N3Na1qwt1GChyMbfpb/e8HkphLq9imklqLFwbdxZh4evnQxTiB6zJgzDrAnD8Oj8ZOJJn1nQxUo9w016/Pet0z0E2JR6P/yBUJhOKv9belQV+XWtF1Yp51+enYTE+HCi71HMuGUM+uduTUV28ghfb0mUGQtnjhO8nhJDNdDetJgwI1o7e/12bVrWrC3UYKEogr0De2tnLbYdOuO3a/N5KdZvrxFcxIQmFTUWLqcLeLe0HkvnnO9cLnXSz0m2iibxOnqc+OOX1dh3/KxPfomUJFh/whWmizAb4HLJ6wys1FghTR5VCsnCrdcB6xdeRizFz/CrK8ZyiiN6G/RKvSVy8Jcnlo8lsxPxyrbDnHk4LgB3ZSYiJ9mKFodbaFGtjVewJpYPdajBQlEMsxjPmjAMBZUNeHxrlceuOdxsUL0r7Or5U7Ak08aZg7KphKwygGtSUWtHeLS5Q/Jn2F6SxvZuosXY3tY9GIby+DlHj5VAU1B5krPr9jkNOgaTICV5VCkkC/f6hemiarZsxCrZuAx6tcJ6UgikJ/YKWxzntbnuzbyUBOyuax5MmldCsCWWXyhQg4WiKnmpCZiX4rmL6+t34o53dqt6nfhIM28OCmnsmmtSUUuW/5I4i6Tj1ZapDzaZ8ILKBuRv8TVWAsnIKDPW3DDVbwYd38ItxxsmVskWYQ7B6vnc5wxE+JDLu9MyIB6npRHTeK4bC9JGE3mWmEacDykQ4POXx+5ihRosFNXx3sX1O12yNUr44NvBkLpidQBaHNxCW8zC8uinVbLyK/Q64I5ZicTHayVTHyzxdKX6I1rxP7elIXMifzm4FqgRliGpZDvX3YcHNpfjdb2nh01uiws14PLuMJubXYfP4NV/kHVolgIzT5B6lpRWcwG0rFlLqNItRXMMeh2evXmaaucTEmYidcW6ADyweS+vrH9uSgLKVl0jS+J72RwbsVKtP4S1AhlPV6o/oiWN5/yvDAuIdx0Xg3RRdcFTBZqvxUVDaxfufa8cBZX+7zJs0OvQ2tmD978/pup5SdtEeFNUbSc6bu6keJ/u2+wu5BRtoB4Wil/ITUnAhsXpWPN5NextyhZQoR2M1BwUoZCJKUSPZ26aRuz90OvcxsqqPPJ+Mf4Q1gpUPL3f6cL/ltQFrQz/UM0zkGKAMh42RhdI6Dl+YHM5/uxMw/VpowXPqWZISa3Gh2zkejr6nS58JiKjwHDff0zETFvckKnMu1CgBgvFb3DHscmz82MsRjx7s2/fHTakJcEAWchEKO/g0bwpON3WhaPNHbgkzoI7ZiVK7gGktfcjUDLhaufkqMlQzzOQ2pX5dHsXymqbRL8LF4D8Dyqw/2Qrr9FdWNWANZ8f8OhbZJWZCyQkP6CEuHATnr4pRXA8XEbX7rpmohBwXLhx0Dihpcv+hRosFL/CHcd2Z+fbWztRUtOIooOn0cpKnI2xGHHnbBvysyYS7WBISoLZiBkNWpaDar3L7+ztR1G13a9uaq1yckh5LG8yHN39eHmbeKnvUIMxGKRQ3+jAH7aSf+aNHXWYPibWp2KJzxtib+vGve+VY4PEcIiY/IBcHp8/xWcc/U4XymqbUHqkEbVnHPjeyzhJiA5FXoqV6Pw3pY0eks/OhQA1WCgBh23E3JQ+RrHLWWrzQBKjQavdlNbCWmc7enHve+V4bZG0klm5+KvZnRAjokKxIG00DjS0oqj6tMfvXABykkcMyTwDqYagDm5jn0ujRYzHt1YhOsyIRkc3RkSGYsYlsXhooLkgHys/2U9ckdbvdOHNHeon2QJA7RkHSmubBueNwqoGrPxkv+CcYG/twtuEpczZyWSGDUV9qMFCCTqUGgdSwywtCpRWlaJWGbUY+VvK8SdnGoZFhmoacw9EsztvRkSGYl1BtY+xwlBUfRrrCqol5RoFGqmGIPOtyjUcmx09uP3t7wf/HW7So6PHKfAJt3FcVtuEzCTxyqv12w/LEgokYf23NVj/bQ1iwoyYkzQMX1SKJ9Iy90mnA1w8N22ohxIvBGiVEOWCod/pQmltEw6fapf0ubVfna+kCARMnoyciiTArbkhhtPlzk9YuLEMDw7871XPbeetkpJLICuSmMqQtLEx2LhTWDxw48469PQJL8DBhFRDMDrMiFvSx6gWcnGIGCsMJN3V3eKO9QpHJM7Zzl4iY4WNkLECDN1Q4oUCNVgoFwSFVQ246rntWLixDOu/leZqZhJvA4m7jDrbp1RSiMvGxuD931yJX8wQrurgg1HDVdNo8VfljfeSwV5QNn9/FGL2J9M+YahAaghaTAYA7sWapNmh+ogv5lLEHYMFWrIcHNCQEGXIo0aS51s7a2WFodQs8XSXUacMhofE/p6Kn85ix4+nsem7o7Kux1bDzZo8EnuOtsDe1oXmc92IDjNi3/GzcAGwDQsnroBicnK0CgslRIdi9fxkH4VUttT6E1uriM4lp32CP2Enip5o6ST6TIdGYRZSSN6hodRnJybMiFdvT0fGeOl6ORT1oQYLZUijVpLn9kNn0NPnlFSWrIVqqJS+Ky4Ab4qEPsRgSrsz1m0TLOl8uuAgkcYMOydHiyBbk6MHej2wa0UWr6FI2hZBavsEf0KSKBpsRJhDkDFe3GAZSvo3Zzt7odfpqLESJNCQEGVIo1aSpwvSQgQFle4ST+9rqxFmyU1JwK4VWVg9f4rosXwxd6mI6U84Xe5y13UF4qq1jNGVEM2/MFlMBsRYpOfs9PQ5ce975SiqtvOqxd4xKxFi64vU9glaw+Rfba04gVeKf8S975UPKWMFAJ6/JZVoYWe8cEPFBBhKHqELHephoQxp1JxMSEMEBZUneRv5MfaD0qaDBr0O8ZHSBML8wcaddXj42sminii2do29tRON53pwtrMHOgCzxscjYyB0sLuuGbtqzuBViXlHaz4/IKhQvGyOjbOLNYOU9glawYQTi6rt+KzipKy+VcHCPXNtxGXzJJ2rhZDzGSUMJY/QhQ41WChDGjUnE5IQgbuRn3jX4YbWLvxp24+YmThsoHLCXaotJRYejBMlk6y6dM540WNJytNnTRiGmbY4vP/9MUkeBXtbt6BCMRO62rizziMBV077BC0IhBLwHRnj8G6Zuj174sKNeGpBCvJSR0n6HOOF81bNFSNjfByONnV43LdYixEtGnmjAqUUTeGGGiyUIY1awmskIQKpjfxe2VYDoGbw3+u/rSFqL8Aw0xaHmDBj0FVUqJ2syjTHlNpTRsy7tiovGQ9fOxnvltYrap+gNv5WAmb0Q9LHxapqsKyePwVLMm2yvYi5KQmIDDXi9re+Fz94gLIjzXht0WWIDTd75C8VVdux4uNKtHb2CX4+wmzAVRPjUXjgFNH1Vs+nZczBBM1hoQxZGJf6dSnWwYoXuZCECNTIl2GUZ0lyXAx6He7MtMm6DnMvriOUG5eCFsmqTHPMyFDyPRSJB8oUosfSOePxxwUpWDpnfMCNlUApAf/h58mwRoepes6RkaGKF3M5HbPXfnUQM21xHvlLuSkJKF99La4XCEvpADx/y3TsO95KfK3Dp89JHh9FO6jBQhmSsHVX3hkQodLJmDv1Onf8nSREoLTLNJsnvyATq8vPmiiYnMrIr1ujPBdva3QoNixOx/pFwsmvUtFBu2TV3JQE7H40m8jwtEaZh6Sr3t9KwOEmw6B+iNrJrn/44oBiwUU5YU8+3SSDXof1i9Lx2qJ0Hz2jhAEdldhwk6T7v+m7uoCKSlI8oSEhypCjoLIB92/2DR9ImVemjY7CjWmjJYUImmXsBvkQ6xLNIBQuYRaeZ2+eJtickbR7NQlZk4dr6qUIMxlw91zhhFkAWHPD1KBy1ZPq8fi74oQtf692G4gmRw/RMyyE3JBu8UCVGBd5qQmYl8L9PmytOCFpfGc7ehX/jRT1oB4WypCioPIkHtiifML9j0nDJYcIpKjQkkC6eDHhEm9PCVt9k0lw5SrzzU1JwNLMRFXG/Js5E1Q5jxCr8pJxz1wbp8cs3GSQ3BVYa9jePqbtwRVPF6Gg8qTPsf5OpGaEAXv6nCitbUJ3nxO/y05CrIySci6KqqVJ33vDGFFS+bTihKDng+99kHP/1fSsUpRBPSyUIQNphQ4Js8aLN2jzZkSUuouNlMmTXSYsRVWX2fmfbCVTSuXD343fmITZv3xXjx/qm2AxheCW9DGYPTE+qDwrfAm0zY5e3L95L66vsiMneeTg96W1ErA3jDBg+tpvcK77vLclOkwdg+WdknrMtMUpMiCZiqFHP92PZgdZgnmz47zng60ILFaNJ8ej88cvDiDMqA8qI/liRedyqSU9FRja2toQHR2N1tZWREVFBXo4FI3od7qQ+ex2VXY7MRYj9jyeI2nhK6xqkFyCKURCdCh2rcjSdPFVq3SWGSHtpeJJv9OFq57bTnx/GRVkAIpCdAnRoXA6XTjVrl6IUi6MIavGs/zp3hNY/rcK4uPv/9l4pIyKxqOfVfmUxAtV4zFGJiBNzyXYPHsXAlLXbxoSogwJdtc1q+aaffbmaZKNlfveK1fNWAGA9q4+/F8VvzudrXxaWtskOfGPGbMcYyXGa/dNG7+58f5OymqbJN1fRgUZAF5blC6qxsuFDu6cpCcXTA0KpVjGg6NG81DvxHExXvvHEdy/eS+nfo9QNR7j0bFKTEZf9cl+moAbYGhIiDIkUCNZ0RplxpobphItvEwoxd7WhbVfHlC9DPVcdx/u31yOe46fr1ASUj6V0qNIaenszy4dDh2AUTFhmD3BrUobTGEYKchtTun9uRZHj0/DRaYzMinsZpO7VmRh/cLLBEOc4SaDR9Ks9zMgR3hNK9jvp9x7rkW4jE9xmh1i/eaAHR/8cAydvU7Bc7V09KLsSBMyJ0oPJ1PUgRoslCGB3GTF1fOnID7SLGni9KcK6Rs76jBtVAxqJi/gtgAAHidJREFUG89hU0k9r0gcszsn8XQoLZ39rOJ8suj7u48RC90FG3KbU5J+/3I6I7M9Enmpo7BBr/O51rBwE9YuSMG8FCvKjjShtLYJgMujpQHgXnSzJo9E+toinOsWFkwTwtswkkN9owOAsoagTAKuWhVtgHA1nkGvQ2tnD76usosaKwyltdRgCSTUYKEMCWba4mCNCpUUFkqIDpWsxOlvFVIAyP9APJGY2Z2v+fwAIkONON3WhWZHD+IizLBGeRpjapbOMq517/j9oAeqtdNnHABk7bClILSL73e6sH57DV4q/tHnc2KGn7++f+Y7Ekqm9l78139bi7hwI25KG43sZCtm2uKw52iLImMFAJbMTsSr/5DWy8mbzd8fhcsFvLztsM/vpBjbuSkJeG1ROvK3lEuSKRCC730orGqQYRzRkFAgoQYLZUhg0Ouw5gZpu68//FyarHagVEhJccHdQ4dLyjwu3IQb00YhJ9mK+Aj1myayXetCHghG5I6dVyAlnMWGHZZrPteNuHATrNFhnOEZa5QZC2eOw9mOXvx9z08eFTFs2GEZ71CBP79/xiMBcPdcEqo+erukHm+X1CMhOhR5CpWME6JDMXtivGKD5VR7D6exAgjfcy7yUhOwHsLhMilweWf7nS48+AF5gi+DnOpCinpQg4UyZGD0SFZ+sl+wUV6sxYh1MsIY/lYhVZNmRw/eKanHOyX1sEaZYTEZiEIWEeYQoh0641pv7ewR9EBwfS9SdtgMUsNy9rZuvFTMvWB6ww7LsA0Ff37/m78/ivysJM7Fm9Rwsrd24e0BlWe5/OHnycgYPwxx4SZNu0Xz3XM++MJlUuFrXvjglnJ095GFgRhiLEaPkBzF/1CDhTKkYFzoTGzf6XIiOsyEtq5e6GR0RGbjbxVSrSBJwlyamYjsZCvsrZ1Y/uE+ovOebOnAC0U/SvZASN1h+zssw/dvLTnV3oNHPto3IAbo+dySGk5K70+MxTj4fdyYNmqwxYWWSLnH7Hf9gffLZTUB5fKy9vQ58dV+6YJ3UqsLKepDDRbKkMOg1yFzYrzi5DfvPIj4cPVDKcFIrMWIRwe60LoTOsko/6lF9m6XdIftz7CMd6jA3yq0H5efl4lnd/KWuvOXC1t2PifZ6heDReo9Zt71Z2+ZJkk7RcjL+m5pvaTnS67HlqI+1GChXDSwDZT6Rge27D7m4Y2wRoUiOjQErV3ykxhnJsZid30LdAje9Dx2eeZMWxyiw0LQ2in+N3+611dqXipfD+hi8CXi+iMsw6faO9MWJyk0ovZ3zCQ4L8+epOJZhWE8Hu6/3UisNCsVpUrJjHYKVwXS6vnJiA4zEindAsDR5g5J137i52RSCBTtoQYL5aKAJCdCDWG6mbY43HWVzW9l0XK5//1yrLspBbHhZsyeEI+vBUTsGOSU8Xrz19Kj+GvpUd5EXH+FZbhCBQa9Dr/OuIQ3edSbGIsRvf0uxVU63nzwwzFYo8w41datudEbZ3H3xzLodbgpbbTinBg+XJCeBO+NWHuKzCQyj+slcRZJ15UqaEfRDqp0S7ngUaL6KhWD3t1zZNeKLORfPVHz68mltdPd62bhxjIiY0VtmERcbyVSrcMyCSKqvbbh4UTnMerdniq1jRXAHTpbOHOc6ufl4o53dmNdQTUAIDtZWcWREOYQPXJUOL9Qk09S7piVSKwyzJe0SwkM1GChXND4u1T5lW2HUVDZMBh7p3DDfB9PflHtIXfOqJ1qkdr4u2uSsGtFlqB7n9RgItQZk824YeF4dVE6IszaO8Hf2FGHp786gO+PNGom99/d51RFvl8NTCF6LJtjEz2OaYNAE22DB2qwUC5oAlGqnL+lHAWVJxUtvrEWdbrpBjNcfWgYtVO1uWeuDb/LmSS6+GhpMEnh8c/2Y9WnlZp4cLjYuLMeL2+r0dSwD6YqvFV5ybhnro3X0yLmiaMEBtqtmXJBs7XihCyBKDXYsDgdAIhKdHVwi789Pn8KrNFhmGmLQ1G1PehzYdTgrsxEPPHzqR4/E8o5cidaTkFsuHkggbpjIIHa99i4cCOeWpCCvNRRxOMJhNrxxcCWZRlEGiz+pKfPiXdL61Hf5BbySxsbi1ExYZqoM1N8kbp+U4OFckHhXarc1+/EHe/sDshYhg0YIMeaO3kXVACDu3muHZ23BH6sxYSnCqoFqzksJj06e5xDasH1lv4H+JVuuRYTKceSUFjVgJUf75el/cEQotehj3b3BeA2MnetyKJGAMUDarBQLlr82bRQKox0fGtnr6JOzABZD5R75tqwteJkUHTyFYMpeQ22Ba3kcCNuf9u3DQIJw8JNePm2NNyxKTDGcjChA7cxTqFIXb9pWTPlgiDY3fin2rrxcvFhvL44HY/NT1bUHDAn2YoYi5G3PYEOwOf7GrDjkSy8/o9aziaA/kJonAxSZdv9RcaEYbK1SZ6+KQWzk+JhjTIPCaNRDt46NLEWI3r7nR59nOT2kaJQuKAGC2XIE+xNC4HzE/ujn+5H1uSRihbm3XXNgkYAYwDsOdqCB7OTcKk1Av/1USXaFQjikcAsYMuzk5AYH44RkaGYcUks0v74DZGGS0lNo6ARJ9ShWQsMeh2eWpAiuQmfxWQY/PzCmeOIexwNNVwAVs+fgvhI8+D3AWjfqZty8UINFsqQR41KIH8p0zY7epGxbhueuSlF9q6TtNqCOS43JQGOrj48/FGlrOuRYuXYTZfWNhELzq3/tmbw/48JM+LOTBvysybydojWavfubRgtm5OIjTvriT/f0dOPe98rx4bF6UiMJ9N1GarER5qxIG20x8+CyUtGubCgBgtlyKNGuWQ4YddiNWh29EjuXsyGVCuEfdyoWGnqnqSEmwx46qZpsEZx76blfjdnO3vxUvGP2PRdHX55+Ri8uaPOx6CU0wXaG2/jpMXRg7Vf+RpGv8m04e3v6iAl4+/JL6rxwq3TZY3LX9yVmaioh5C/+y9RLm6owUIZ8iiZNG9KG4VbZ4zF/ZuFk1i1gLR7sTeMVoi9tYvTK8TVt4X5jNoJyXfPHY+bLhvN+3ulC9rZjl68saOO83ds8Tk595E0Sdve2oW3S+rwmzk2bNzJPRYuGlq7AB0Evys+dDogKpSsx5MSPvzXT7I/a40yUxVYil+hwnGUIQ/TtE4Ocy8dAb1eh1YF5asMuSkjEWsh2wNwiaaRwhZX816imX97K3Qyn1EzmyDWYkR+VpLgMYyhpCUNrV1Yv11anoiUdg2MofH3PcclK8+W1jZh9fwpAHy/KyFeXZiO8tXXYsuyDLzyqzTN2jywE2SlsuaGqTQ/heJXNDdYuru7kZaWBp1Oh4oKTwGvyspKzJkzB6GhoRg7diyef/55rYdDuQAx6HW4MY1cGIyNNSpUlZCSXgf86VfpWDJbXPKbjdxrM91rrV7GgFVAoTM3JQHZySNkXY+Lp29MEV2wDHodbpiufYXIS8WHffoS8SEnSdsFt7dHathw/bc1WPvVQdw91+bzXcVYjIjxUjROiA7FhsXpyEtN8OibE0xtHmIsRk7dHApFazQPCT3yyCMYNWoU9u3b5/HztrY2XHvttcjOzsaGDRuwf/9+3HXXXYiJicHdd9+t9bAoFxg5yVbJsfi4cCNmXBKL1/9RI36wCE4XsOdoi+QkSyUhE7Hutd6sK6hGUfVp2dfzJjbcLFq5U1jVgDd5Qjpqs/KT/UShIX+3a7C3duHNHXV4dVE6YsNNHveKGY/Y9zfTFhcUJdKP5U3GXVeNp54VSkDQ1GD5+uuv8c033+Djjz/G119/7fG7999/Hz09PXjnnXdgMpkwdepUVFRU4MUXX6QGC0UycnI0mh29uOLpYvT1y3eLsymutkvqeKtGJ1hmFy5GT59TUv4FCcXVdjz0YQVv5Y6/y83PdvSirLYJmUnC3gh/97RxwR0OWvtVNac4Hsn3Z9DrsOaGqaKCgVqSEB1KjRVKQNEsJHTq1CksW7YM7777LiwW3wqF0tJSzJ07FybT+dyDefPm4d///jdaWlp4z9vd3Y22tjaP/ygUdo6GlOm0tbMXjh51Wu++XVKPpvYu4uZ5/uwE+25pPdRWiX+7pN7HQGQqdwqrGgLSePK72kbRYwJR2aIkZ4khNyUBGxan+4SRAHe1FtfP1YR2LqYEGk08LC6XC0uWLMG9996Lyy+/HPX19T7H2O122Gye8f6RI0cO/i42Npbz3OvWrcOTTz6p+pgpQx8mryOQ8vz/728VyJo8QvD6MRYjnr15ml9zAI42d6h2Lh3cVSxcBhDjTXjyi2o8Mu9S1a5JysmznaLHiFVZaYlS7w4TBiyrbULpkUYAbg9bxni3l6bsSBMeeL9cUQ8kLn53TRLNWaEEHEkelpUrV0Kn0wn+d+jQIfz5z39Ge3s7Vq1apfqAV61ahdbW1sH/fvpJflke5cIjNyUBu1ZkYcuyDORfPcHv13e6gOKD/Hki16cmYM/jOX6f/C+JU0eHhRHYE/LWMN6E8mP8nlKtcLncHbpLa5vQzzNIoSorLqxRZsRYjKpUWPF5d/qdLpTWNomOHXCPPzMpHr+fNxm/n3cpMifGw6DXuX8+MR7P3jJNsqdRjCsSafkyJfBI8rA8/PDDWLJkieAx48ePx/bt21FaWgqz2ezxu8svvxy33347/vKXv8BqteLUqVMev2f+bbXy5wGYzWaf81IobJi8DrVzFUwhevT0KQsfldSIhyy04I5ZiXi64KDisJA1OhTXpZAlOL9bdkzZxWTw2b6T+GzfSQBAXLgJTy1IQV4qd8UUlzcuIToUq+dPQWy42SMRtqjajvveK1ekiMzOWWInK9c3Oga6eXd7HCtXxVcLT2Oj48Lsh0QZWmjSrfnYsWMeuSUnT57EvHnz8NFHH+HKK6/EmDFj8Prrr+Oxxx7DqVOnYDS6Y6+PPvooPvnkExw6dIj4WrRbM4WP0tomLNxYptr5lmdPUqWR4Pu/uTIgZarrCqp5RdhIiAs3omxVNvYcbVH1vmrNPXNtWJWXzPk7Kf2JuITmokJD0EbYo4npsVTf2DFgoPAbE8wI1FLxJbmmEFuWZVDJfYrqBEW35nHjxnn8OyIiAgAwYcIEjBkzBgCwaNEiPPnkk1i6dClWrFiBqqoqvPLKK3jppZe0GBLlIkStXAVmt5uTbMUHPxxTvGstrW0KiMHCLNpcMvckNDt6sedoi2qqueYQPboVeqxIeGNHHaaPiUFeqq9WD2mVFcBdRn7ybCce/vs+0c9aTAZJTRDZuUByVHwB378tP2vi4Njjw82ADjjd3o21Xx7g7UjNpZpMoQSKgCndRkdH45tvvkFdXR1mzJiBhx9+GE888QQtaaaoBjtXQQ53ZIzDlmUZ2LUiC7kpCYrPd57A9ZVelZeMfz91HW5NHz3YVVgKp9u7YNDrBtVbldDd58SD1yTBGsVftcPkYtwz16ZIMffxrVWCeSGksMXcZk0YhlExYUSfI20AyUaNyiI2HkJ0SfHInBiPmy4bjWdu4s554VNNplAChV96CSUmJoIr8pSamoqdO3f6YwiUixQl8fy8aaN8dt+5KQl4bdFlyN+yV3Y+iF7VdEjpmEL0eOG2NDx3qwv/W1KHtV8dJP4skzQaG65OHlm/04mSlVnYXdeM4mo7Pq044bHbZ3eAfiR3CnbXNcPe1oXmc92ICzeh9sw5rP+2VvQ6zY5e7K5rVj2soVWPJjZa68bwvSNc3bcplEBCmx9SLnjYpaD3by4n6hskJOqWlzoK66GT3TDxvd3H8GDOpIDvWg16HZZk2vDWrjqisBn7nqi3iOoGd/6zJgzDo/OTeXNKuMI3pbVNRAaLumM+D+N1u29A0E0L35k/dGOkqiZTKIGANj+kXBQwpaB3ZZL1+vnVFeMEJ+u8VLeIl5wwRbOjRzU3v1JIw1w6eIYG1FpEvQ0Q75CL2IIppfGlVgs/X18npUJuOqijhkyK1HtPofgb6mGhXFQkxpPpkZAc570rbWzvJg6v+FseXgixsBlXia0aoZBYi3FQ8EwuBr0OTy1IEfV2ab3wc3konE4Xbn/7e0XnpfkjFMp5qMFCuagg3WWTHscOU/Q7XXj1HzW8FRdyzu8v2AsuO0fEGh3GGRpgh0LkhkHW3TxNlcU4LzUB9xy38ZZse3uHtMI7ZNXvdCky6u6ea6P5IxQKCxoSolxUMJ4BvqVLiRue2e2L4U83vxSYBfemy0Zj6ZzxuCl9jGBogPHMyAmLLc+epOpivCovGa8tugxx4Z5hmIToUEVaJkpQWlX2+b4GVSqbKJQLBephoVxUsD0D3qqlapRx5qWOwj3HzwZ8t+8vvEMhdWcceGXbYUGvizXKjPysiaqPJS91FOalJARV4uheBe0JmJJmKthGobihBgvlokPrMs5VecmYPiYWj2+tQrOjZ/DnSuTWgxnvUMikkRG4f/Nen+MYs2HNDVM1MyKkCMFpTUFlgyJlYQAorrYHzd9DoQQaTaT5/QmV5qfIRYosezCeP5jhkrG/UA02LvqdLlzxdLGHwSqHuHAjfngs56J5bigXF0EhzU+hDAW03o0H027f31zsuh6765oVGyuAdoJ3FMpQhBosFApFEy5mg03NsvVgKoGnUAIJrRKiUCgUlVGzbD3YSuAplEBBDRYKhUJRGaZ8Xgn+VrqlUIIdarBQKBSKyjDl83IzdminZArFF2qwUCgUigaQCOvFWIy4PjUB1ijP7tfWAAreUSjBCk26pVAoFI3wrpaKjzADLqDR0e1ROXUxl8BTKKRQg4VCoVA0hKRa6mKuqKJQSKEhIQqFQqFQKEEPNVgoFAqFQqEEPdRgoVAoFAqFEvRQg4VCoVAoFErQQw0WCoVCoVAoQQ81WCgUCoVCoQQ91GChUCgUCoUS9FCDhUKhUCgUStBDDRYKhUKhUChBz5BXunW5XACAtra2AI+EQqFQKBQKKcy6zazjYgx5g6W9vR0AMHbs2ACPhEKhUCgUilTa29sRHR0tepzORWraBClOpxMnT55EZGQkdLrgaBbW1taGsWPH4qeffkJUVFSghxPU0HslDXq/yKH3ihx6r6RB7xc5QvfK5XKhvb0do0aNgl4vnqEy5D0ser0eY8aMCfQwOImKiqIPMyH0XkmD3i9y/n979x8Tdf3HAfwJGMfdUrik45AksVjUsIkRpFnZvEXkVjbnVtM2Nodh54SNNWP94p+CWf9RkdYiV85r0pZl1K3lyn+uGCjKUZCGppCcawTaUg+45/cPv3zO+6J9j0V8Psnzsd0fn/f7zT4vnjvuXrt7v4eyip+ymhzlFb+rZRXPJyvjtOlWRERELE8Ni4iIiFheUm1tba3ZRVyLkpKSsGLFCsya9a//1u0fp6wmR3nFT1nFT1lNjvKK31Rl9a/fdCsiIiLXPn0lJCIiIpanhkVEREQsTw2LiIiIWJ4aFhEREbE8NSz/gM8//xzFxcWw2+1wOp1YvXp1zPzJkyexatUqOBwOuFwuPPvssxgdHTWpWvNdvHgRixcvRkJCAjo6OmLmjhw5gvvuuw8pKSmYP38+tm3bZlKV5jlx4gQ2bNiAnJwc2O123HLLLXj55ZcRDodj1imrqDfffBMLFixASkoKiouL0draanZJllBXV4e7774bs2fPhsvlwurVq9HT0xOz5sKFC/B6vZg7dy6uv/56rFmzBqFQyKSKraO+vh4JCQmoqqoyxpRVVH9/P9avX4+5c+fCbrdj0aJFaGtrM+ZJ4qWXXkJmZibsdjs8Hg+OHj06uZtQplRzczOdTicbGxvZ09PDrq4ufvTRR8b86Ogo8/Pz6fF4eOjQIba0tDA9PZ01NTUmVm2uLVu2sLS0lAB46NAhY3x4eJgZGRlct24dg8Egd+/eTbvdzu3bt5tY7fT74osvWFZWRr/fz59//pl79+6ly+VidXW1sUZZRfl8PiYnJ/O9995jV1cXy8vLmZaWxlAoZHZppispKWFTUxODwSA7Ojr4yCOPMDs7m3/88YexpqKigvPnz+fXX3/NtrY23nPPPVy2bJmJVZuvtbWVCxYs4J133snKykpjXFldMjg4yJtvvpllZWX8/vvv2dvbS7/fz2PHjhlr6uvrmZqayk8++YSHDx/mo48+ypycHJ4/fz7u+6hhmUIjIyPMysriu+++e9U1LS0tTExM5MDAgDHW2NjIOXPm8OLFi9NRpqW0tLQwLy+PXV1dExqWt956i06nMyaXrVu38rbbbjOjVEvZtm0bc3JyjGtlFVVUVESv12tcj42Ncd68eayrqzOxKms6c+YMAfDbb78lSQ4NDfG6667jnj17jDU//vgjATAQCJhVpqnOnTvH3NxcfvXVV3zggQeMhkVZRW3dupXLly+/6nwkEqHb7eZrr71mjA0NDdFms3H37t1x30dfCU2hgwcPor+/H4mJiSgoKEBmZiZKS0sRDAaNNYFAAIsWLUJGRoYxVlJSgrNnz6Krq8uMsk0TCoVQXl6ODz74AA6HY8J8IBDA/fffj+TkZGOspKQEPT09+P3336ezVMsZHh7GDTfcYFwrq0vC4TDa29vh8XiMscTERHg8HgQCARMrs6bh4WEAMJ5L7e3tGBkZickvLy8P2dnZMzY/r9eLVatWxWQCKKvLffrppygsLMTatWvhcrlQUFCAd955x5g/fvw4BgYGYrJKTU1FcXHxpLJSwzKFent7AQC1tbV44YUXsG/fPjidTqxYsQKDg4MAgIGBgZhmBYBxPTAwML0Fm4gkysrKUFFRgcLCwiuuUVZXduzYMTQ0NODpp582xpTVJb/99hvGxsaumMVMyiEekUgEVVVVuPfee5Gfnw/g0nMlOTkZaWlpMWtnan4+nw8HDx5EXV3dhDllFdXb24vGxkbk5ubC7/dj06ZN2LJlC3bu3Akg+hr0d/8u1bDE4bnnnkNCQsJfPrq7uxGJRAAAzz//PNasWYO77roLTU1NSEhIwJ49e0z+LaZHvFk1NDTg3LlzqKmpMbtk08Sb1eX6+/vx8MMPY+3atSgvLzepcrkWeL1eBINB+Hw+s0uxpFOnTqGyshK7du1CSkqK2eVYWiQSwZIlS/Dqq6+ioKAAGzduRHl5Od5+++0pvY/+CUIcqqurUVZW9pdrFi5ciNOnTwMA7rjjDmPcZrNh4cKFOHnyJADA7XZPOLEwvqvc7XZPYdXmiDer/fv3IxAIwGazxcwVFhZi3bp12LlzJ9xu94Qd9zMxq3G//vorHnzwQSxbtgw7duyIWXetZxWv9PR0JCUlXTGLmZTD/7N582bs27cPBw4cwE033WSMu91uhMNhDA0NxXxyMBPza29vx5kzZ7BkyRJjbGxsDAcOHMAbb7wBv9+vrP4rMzMz5n0PAG6//XZ8/PHHAKKvQaFQCJmZmcaaUCiExYsXx3+jv7PRRmINDw/TZrPFbLoNh8N0uVzGaY3xTbeXn1jYvn0758yZwwsXLkx7zWb55Zdf2NnZaTz8fj8BsLm5madOnSIZ3UgaDoeNn6upqZmRG0n7+vqYm5vLJ554gqOjoxPmlVVUUVERN2/ebFyPjY0xKytLm255afOj1+vlvHnz+NNPP02YH99I2tzcbIx1d3fPyI2kZ8+ejXmN6uzsZGFhIdevX8/Ozk5ldZknn3xywqbbqqoqLl26lGR00+3rr79uzI+/X05m060alilWWVnJrKws+v1+dnd3c8OGDXS5XBwcHCQZPdb80EMPsaOjg19++SVvvPHGGX2smSSPHz8+4ZTQ0NAQMzIy+NRTTzEYDNLn89HhcMy4o7p9fX289dZbuXLlSvb19fH06dPGY5yyivL5fLTZbHz//ff5ww8/cOPGjUxLS4s5mTdTbdq0iampqfzmm29inkd//vmnsaaiooLZ2dncv38/29rauHTpUuONZ6a7/JQQqazGtba2ctasWXzllVd49OhR7tq1iw6Hgx9++KGxpr6+nmlpady7dy+PHDnCxx57TMeazRYOh1ldXU2Xy8XZs2fT4/EwGAzGrDlx4gRLS0tpt9uZnp7O6upqjoyMmFSxNVypYSHJw4cPc/ny5bTZbMzKymJ9fb1JFZqnqamJAK74uJyyimpoaGB2djaTk5NZVFTE7777zuySLOFqz6OmpiZjzfnz5/nMM8/Q6XTS4XDw8ccfj2mOZ7L/bViUVdRnn33G/Px82mw25uXlcceOHTHzkUiEL774IjMyMmiz2bhy5Ur29PRM6h4JJDnpL6xEREREppFOCYmIiIjlqWERERERy1PDIiIiIpanhkVEREQsTw2LiIiIWJ4aFhEREbE8NSwiIiJieWpYRERExPLUsIiIiIjlqWERERERy1PDIiIiIpanhkVEREQs7z/XNuXmfcU2WgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -3046,25 +3131,25 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 106, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[('greek', 0.9903611540794373),\n", - " ('rules', 0.9876847267150879),\n", - " ('bags', 0.9872868657112122),\n", - " ('tonight', 0.9868422150611877),\n", - " ('turkish', 0.986126184463501),\n", - " ('greece', 0.9801620244979858),\n", - " ('beef', 0.9790815114974976),\n", - " ('cocoa', 0.9776081442832947),\n", - " ('cumulative', 0.9734506607055664),\n", - " ('lira', 0.9693236351013184)]" + "[('adjustments', 0.9959986805915833),\n", + " ('governments', 0.9918233752250671),\n", + " ('greece', 0.9860679507255554),\n", + " ('agreed', 0.9789270162582397),\n", + " ('greek', 0.9773082733154297),\n", + " ('franc', 0.9757379293441772),\n", + " ('inch', 0.9734088182449341),\n", + " ('problems', 0.9733425974845886),\n", + " ('damage', 0.9668214917182922),\n", + " ('athens', 0.9657086730003357)]" ] }, - "execution_count": 96, + "execution_count": 106, "metadata": {}, "output_type": "execute_result" } @@ -3082,7 +3167,7 @@ }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 107, "metadata": {}, "outputs": [], "source": [ @@ -3091,162 +3176,80 @@ }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 108, "metadata": {}, "outputs": [], "source": [ "documentGraph = overlap_weighted_projected_graph(\n", " G, \n", " {n for n, d in G.nodes(data=True) if d[\"bipartite\"] == 0}\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 99, - "metadata": {}, - "outputs": [], - "source": [ - "comps = list(nx.connected_components(documentGraph))" - ] - }, - { - "cell_type": "code", - "execution_count": 100, - "metadata": {}, - "outputs": [], - "source": [ - "from matplotlib import pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 101, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Name: \n", - "Type: Graph\n", - "Number of nodes: 10788\n", - "Number of edges: 13061229\n", - "Average degree: 2421.4366\n" - ] - } - ], - "source": [ - "print(nx.info(documentGraph))" - ] - }, - { - "cell_type": "code", - "execution_count": 102, - "metadata": {}, - "outputs": [], - "source": [ - "degrees = pd.Series({k: v for k, v in nx.degree(documentGraph)})" - ] - }, - { - "cell_type": "code", - "execution_count": 103, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", - " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGhCAYAAAC6URSFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAfLElEQVR4nO3dfWiVZ5o/8CuJGsmMccaGxqpxhGWmbMZWQZMgzIIWrXSLxbqFgjCTWpiB2Siz5DczKMs6yv7RsjsDgfVA2c4f3RlWEAs6MGX6MqFFaLv4slgoYncFO7h1zVaKpkY2puec3x8ds6OJMSc5L/eT8/lAkec5z7mf6+TKOfn2eblPQ7FYLAYAQCIaa10AAMCfEk4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRlXq0LKFWhUIjLly/HokWLoqGhodblAADTUCwW4/PPP49ly5ZFY+PUx0YyF04uX74cHR0dtS4DAJiBS5cuxYoVK6bcJnPhZNGiRRHx5YtrbW0t69hjY2Px5ptvxuOPPx7z588v69hUnv5lnx5mnx5mWyX7Nzw8HB0dHeN/x6eSuXBy+1ROa2trRcJJS0tLtLa2elNlkP5lnx5mnx5mWzX6N51LMlwQCwAkRTgBAJIinAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkperh5Nq1a7F+/fpYu3ZtrF69Ol5++eVqlwAAJKzq09cvWrQoTpw4ES0tLTEyMhKrV6+OHTt2xAMPPFDtUgCABFX9yElTU1O0tLRERMTo6GgUi8UoFovVLgMASFTJ4eTEiROxbdu2WLZsWTQ0NMTx48cnbJPL5WLVqlWxcOHC6OnpiZMnT97x+LVr12LNmjWxYsWK+MlPfhJtbW0zfwUAwJxS8mmdkZGRWLNmTTz//POxY8eOCY8fOXIk+vv746WXXoqenp4YGBiIrVu3xkcffRQPPvhgRER87Wtfiw8++CCGhoZix44d8cwzz0R7e/uk+xsdHY3R0dHx5eHh4Yj48psTx8bGSi1/SrfHK/e4VIf+ZZ8eZp8eZlsl+1fKmA3FWZxTaWhoiGPHjsX27dvH1/X09ERXV1ccOnQoIiIKhUJ0dHTEnj17Yu/evRPG+Ou//ut47LHH4plnnpl0HwcOHIiDBw9OWH/48OHx00MAQNpu3rwZO3fujOvXr0dra+uU25b1gthbt27FmTNnYt++fePrGhsbY/PmzfH+++9HRMTQ0FC0tLTEokWL4vr163HixIn44Q9/eM8x9+3bF/39/ePLw8PD0dHREY8//vh9X1ypxsbG4q233ootW7bE/Pnzyzo2lad/2aeH2TdXerj6wBt3LH94YOuMtsmaSvbv9pmP6ShrOLl69Wrk8/kJp2ja29vj/PnzERHxhz/8IX7wgx+MXwi7Z8+eeOSRR+45ZnNzczQ3N09YP3/+/Ir94ldybCpP/7JPD7Mv6z0czTfcsTzZa5nONllVif6VMl7VbyXu7u6Os2fPVnu3AFBRq/a+NmHdxy8+WYNKsq+stxK3tbVFU1NTDA0N3bF+aGgoli5dWs5dAQBzVFnDyYIFC2LdunUxODg4vq5QKMTg4GBs2LBhVmPncrno7OyMrq6u2ZYJACSs5NM6N27ciAsXLowvX7x4Mc6ePRtLliyJlStXRn9/f/T29sb69euju7s7BgYGYmRkJHbt2jWrQvv6+qKvry+Gh4dj8eLFsxoLAEox2SkbKqfkcHL69OnYtGnT+PLtO2l6e3vjlVdeiWeffTY+/fTT2L9/f1y5ciXWrl0br7/++j3nMQGAueruUOMalOkpOZxs3LjxvtPN7969O3bv3j3jogCA+lX179YBAJiKcAIAJCUz4cTdOgBQHzITTvr6+uLcuXNx6tSpWpcCAFRQZsIJAFAfhBMAICnCCQCQFOEEAEhKZsKJu3UAoD5kJpy4WwcA6kNmwgkAUB+EEwAgKcIJAJAU4QQASIpwAgAkRTgBAJKSmXBinhMAqA+ZCSfmOQGA+pCZcAIA1AfhBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUjITTkzCBgD1ITPhxCRsAFAfMhNOAID6IJwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJGVerQuYrlwuF7lcLvL5fK1LAYAZWbX3tQnrPn7xyRpUkrbMHDkxQywA1IfMhBMAoD5k5rQOAFTCZKdaqC1HTgCApAgnAEBSnNYBoK44jZM+R04AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkpKZcJLL5aKzszO6urpqXQoAUEGZCSe+lRgA6kNmwgkAUB+EEwAgKcIJAJAU4QQASIpwAgAkZV6tCwCAu63a+9odyx+/+GSNKqEWHDkBAJIinAAASXFaB4CKufv0zGScsuFujpwAAElx5ASA5E12BMYRl7nLkRMAICmOnABQNqsPvBH/0P3lv6P5hmk9ZzrXpVBfHDkBAJIinAAASRFOAICkCCcAQFJcEAtAJs2V799xm/REmQknuVwucrlc5PP5WpcCMKf440hqMhNO+vr6oq+vL4aHh2Px4sW1LgegrggwVFNmwgkA5VGueUUmG6e5qSxDl405VLJJOAFgAn/UqSXhBGAOEzLIIrcSAwBJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkmISNgDmBBPOzR3CCUBG+TI+5iqndQCApDhyAjCHOLXBXODICQCQFOEEAEiKcAIAJEU4AQCS4oJYAEjM3Rc219st4o6cAABJEU4AgKQIJwBAUoQTACApLogFqDLfiQNTE04AMsLU9NQL4QQgAfV+6yj8qapfc3Lp0qXYuHFjdHZ2xqOPPhpHjx6tdgkAQMKqfuRk3rx5MTAwEGvXro0rV67EunXr4i//8i/jK1/5SrVLAQASVPVw8tBDD8VDDz0UERFLly6Ntra2+Oyzz4QTgD/h+hLqWcmndU6cOBHbtm2LZcuWRUNDQxw/fnzCNrlcLlatWhULFy6Mnp6eOHny5KRjnTlzJvL5fHR0dJReOQAwJ5V85GRkZCTWrFkTzz//fOzYsWPC40eOHIn+/v546aWXoqenJwYGBmLr1q3x0UcfxYMPPji+3WeffRbf+9734uWXX55yf6OjozE6Ojq+PDw8HBERY2NjMTY2Vmr5U7o9XrnHpTr0L/vqpYfNTcVal1AxzY3FO/6lPKr1nqjke7CUMRuKxeKMf4MaGhri2LFjsX379vF1PT090dXVFYcOHYqIiEKhEB0dHbFnz57Yu3dvRHwZOLZs2RLf//7347vf/e6U+zhw4EAcPHhwwvrDhw9HS0vLTEsHAKro5s2bsXPnzrh+/Xq0trZOuW1Zrzm5detWnDlzJvbt2ze+rrGxMTZv3hzvv/9+REQUi8V47rnn4rHHHrtvMImI2LdvX/T3948vDw8PR0dHRzz++OP3fXGlGhsbi7feeiu2bNkS8+fPL+vYVJ7+ZV+99HD1gTdqXULFNDcW4+/XF+LvTjfGaKGh1uXMGR8e2FqV/VTyPXj7zMd0lDWcXL16NfL5fLS3t9+xvr29Pc6fPx8REe+++24cOXIkHn300fHrVX7961/HI488MumYzc3N0dzcPGH9/PnzK/bhVcmxqTz9y7653sPR/Nz/oz1aaKiL11kt1X4/VOI9WMp4Vb9b5zvf+U4UCoVq7xYAyIiyTsLW1tYWTU1NMTQ0dMf6oaGhWLp0aTl3BQDMUWUNJwsWLIh169bF4ODg+LpCoRCDg4OxYcOGWY2dy+Wis7Mzurq6ZlsmAJCwkk/r3LhxIy5cuDC+fPHixTh79mwsWbIkVq5cGf39/dHb2xvr16+P7u7uGBgYiJGRkdi1a9esCu3r64u+vr4YHh6OxYsXz2osACBdJYeT06dPx6ZNm8aXb99J09vbG6+88ko8++yz8emnn8b+/fvjypUrsXbt2nj99dcnXCQLADCZksPJxo0b435To+zevTt2794946IAgPpV9W8lBgCYinACACSl6vOczFQul4tcLhf5fL7WpQDc093fJvzxi0/WqBLIrswcOenr64tz587FqVOnal0KAFBBmTlyApBFdx9JAe4vM0dOAID6IJwAAElxWgdgmlzsCtWRmSMnvlsHAOpDZsKJu3UAoD5kJpwAAPVBOAEAkiKcAABJEU4AgKS4lRhghsz+CpXhyAkAkJTMhBPznABAfchMODHPCQDUh8yEEwCgPggnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSkpnp63O5XORyucjn87UuBQCqarKvSvj4xSdrUEl1ZObIiUnYAKA+ZCacAAD1ITOndQCqyTcOQ+04cgIAJMWRE4BwpARS4sgJAJAU4QQASIpwAgAkRTgBAJKSmXCSy+Wis7Mzurq6al0KAFBBmQknZogFgPqQmXACANQH85wAdcecJpA2R04AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkmKeE8i4u+fs+PjFJ2tUCUB5OHICACRFOAEAkpKZcOJbiQGgPmQmnPhWYgCoD5kJJwBAfRBOAICkCCcAQFKEEwAgKcIJAJAUM8QCmXX37LgRZsiFucCREwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFJMwgbMKSZmg+xz5AQASIpwAiRh1d7XYvWBNyIixv8F6pNwAgAkJTPhJJfLRWdnZ3R1ddW6FACggjITTvr6+uLcuXNx6tSpWpcCAFRQZsIJAFAfhBMAICnCCQCQFJOwwSzdPemXCb8AZseREwAgKcIJAJAUp3WAOW+y79sB0uXICQCQFOEEAEiK0zpA1TnNAkzFkRMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAIClmiAWSZBZZqF+OnAAASRFOAICkCCcAQFJccwLMyt3Xhnz84pM1qgSYKxw5AQCSIpwAAEkRTgCApNQknDz99NPx9a9/PZ555pla7B4ASFhNwsmPfvSj+NWvflWLXQMAiatJONm4cWMsWrSoFrsGABJXcjg5ceJEbNu2LZYtWxYNDQ1x/PjxCdvkcrlYtWpVLFy4MHp6euLkyZNlKRYAmPtKnudkZGQk1qxZE88//3zs2LFjwuNHjhyJ/v7+eOmll6KnpycGBgZi69at8dFHH8WDDz5YcoGjo6MxOjo6vjw8PBwREWNjYzE2NlbyeFO5PV65x6U6atW/5qbipHXY//SfM76+sXjHv2SPHlZPJd7rlfwcLWXMhmKxOOPfoIaGhjh27Fhs3759fF1PT090dXXFoUOHIiKiUChER0dH7NmzJ/bu3Tu+3TvvvBOHDh2KV199dcp9HDhwIA4ePDhh/eHDh6OlpWWmpQMAVXTz5s3YuXNnXL9+PVpbW6fctqwzxN66dSvOnDkT+/btG1/X2NgYmzdvjvfff39GY+7bty/6+/vHl4eHh6OjoyMef/zx+764Uo2NjcVbb70VW7Zsifnz55d1bCqvVv1bfeCNO5Y/PLC1avvO6v7vfs5tzY3F+Pv1hfi7040xWmgoS31Ulx5WTyXe65X8HL195mM6yhpOrl69Gvl8Ptrb2+9Y397eHufPnx9f3rx5c3zwwQcxMjISK1asiKNHj8aGDRsmHbO5uTmam5snrJ8/f37F/gBVcmwqr9r9G83f+QFc7d+dLO7/7udMeLzQcN9tSJseVl4l3+uV+BwtZbyafLfO73//+1rsFgDIgLLeStzW1hZNTU0xNDR0x/qhoaFYunRpOXcFAMxRZQ0nCxYsiHXr1sXg4OD4ukKhEIODg/c8bTNduVwuOjs7o6ura7ZlAgAJK/m0zo0bN+LChQvjyxcvXoyzZ8/GkiVLYuXKldHf3x+9vb2xfv366O7ujoGBgRgZGYldu3bNqtC+vr7o6+uL4eHhWLx48azGAgDSVXI4OX36dGzatGl8+fadNL29vfHKK6/Es88+G59++mns378/rly5EmvXro3XX399wkWyAACTKTmcbNy4Me43Ncru3btj9+7dMy4KAKhfNfluHQCAexFOAICk1GSek5nI5XKRy+Uin8/XuhSomlV7X7tj+eMXn6zZvqu9f6B+ZebISV9fX5w7dy5OnTpV61IAgArKTDgBAOqDcAIAJEU4AQCSIpwAAElxtw5QVu7yAWYrM0dO3K0DAPUhM+EEAKgPwgkAkBThBABIinACACRFOAEAkiKcAABJMc8J/JH5OSpnsp8twL1k5siJeU4AoD5kJpwAAPVBOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBSTsAERMb2J0kymBlRDZo6cmIQNAOpDZsIJAFAfhBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApGQmnORyuejs7Iyurq5alwIAVFBmwokZYgGgPmQmnAAA9UE4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApMyrdQHTlcvlIpfLRT6fr/i+Vh94I0bzDRER8fGLT1Z8fzBdq/a+VusSgETc/Xkwl/5eZebIiW8lBoD6kJlwAgDUB+EEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEjKvFoXMF25XC5yuVzk8/mIiFj9szeisbmlrPtobirGP3SXdUgybtXe1+5Y/vjFJ8syTiVNtq+Z1g1QC5k5ctLX1xfnzp2LU6dO1boUAKCCMhNOAID6IJwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApNQknPz2t7+Nhx9+OL75zW/GL3/5y1qUAAAkal61d/jFF19Ef39/vP3227F48eJYt25dPP300/HAAw9UuxQAIEFVP3Jy8uTJ+Pa3vx3Lly+Pr371q/HEE0/Em2++We0yAIBElRxOTpw4Edu2bYtly5ZFQ0NDHD9+fMI2uVwuVq1aFQsXLoyenp44efLk+GOXL1+O5cuXjy8vX748PvnkkxmWDwDMNSWf1hkZGYk1a9bE888/Hzt27Jjw+JEjR6K/vz9eeuml6OnpiYGBgdi6dWt89NFH8eCDD5Zc4OjoaIyOjo4vDw8PR0TEgqZiNDUVSx5vKs2NxTv+jYgYGxsr6z6onNu9mmnPmqfx+zTZ2Hc/bzrbVNt0fia1rjFi8vcg2aKHtVOOv1ez/RydztjT0VAsFmf8G9TQ0BDHjh2L7du3j6/r6emJrq6uOHToUEREFAqF6OjoiD179sTevXvjvffei3/8x3+MY8eORUTE3/zN30R3d3fs3Llz0n0cOHAgDh48OGH94cOHo6WlZaalAwBVdPPmzdi5c2dcv349Wltbp9y2rOHk1q1b0dLSEq+++uodgaW3tzeuXbsWv/nNb+KLL76IP//zP4933nln/ILY9957754XxE525KSjoyP+7P8diabm8oaT5sZi/P36Qvzd6cYYLTRERMSHB7aWdR9TWX3gjQnr5vL+797fTPd1e5zJ+lfK2JO9/rlqsp9HCq9/qh6SDXpYO+X4vB4bG4u33nortmzZEvPnzy9DVf9neHg42traphVOynq3ztWrVyOfz0d7e/sd69vb2+P8+fNf7nDevPjFL34RmzZtikKhED/96U+nvFOnubk5mpubJ6y/lW+IxnxlfvFHCw0x+sexy92cKfc7yeuZy/u/e38z3dfd4/xp/0oZe7LXP1dN9vNI6fVP1kOyRQ+rr5yf1/Pnzy/7538p41X9VuKIiKeeeiqeeuqpWuwaAEhcWW8lbmtri6amphgaGrpj/dDQUCxdurScuwIA5qiyhpMFCxbEunXrYnBwcHxdoVCIwcHB2LBhw6zGzuVy0dnZGV1dXbMtEwBIWMmndW7cuBEXLlwYX7548WKcPXs2lixZEitXroz+/v7o7e2N9evXR3d3dwwMDMTIyEjs2rVrVoX29fVFX19fDA8Px+LFi2c1FgCQrpLDyenTp2PTpk3jy/39/RHx5R05r7zySjz77LPx6aefxv79++PKlSuxdu3aeP311ydcJAsAMJmSw8nGjRvjfncf7969O3bv3j3jogCA+lWTbyUGALgX4QQASEpmwom7dQCgPmQmnPT19cW5c+fi1KlTtS4FAKigzIQTAKA+CCcAQFKEEwAgKTX54r/ZuD3HSmH0ZtnHzjcV4+bNfORHm6Lwx2/THB4eLvt+7mWy1zSX93/3/ma6r9vjTNa/UsauxO9Uqib7eaTw+qfqIdmgh7VTjs/rsbGxuHnzZgwPD5f9W4lv13e/udIiIhqK09kqIf/1X/8VHR0dtS4DAJiBS5cuxYoVK6bcJnPhpFAoxOXLl2PRokXR0PB/qbyrq+ued/JM9thk64aHh6OjoyMuXboUra2t5S9+mqZ6LdUcr5TnTWfb+21zr8enuz6V/kXo4UzX6+HsnjfbHs7kMT0s7/Nm+h6bzuPT+VtYyf4Vi8X4/PPPY9myZdHYOPVVJZk7rdPY2Dhp4mpqarrnD3Kyx6bavrW1taZvqqlqq+Z4pTxvOtveb5t7PV7q+lr3L0IPZ7teD2f2vNn2cCaP6WF5nzfT99h0Hi/lb2Gl+jfdL+5tOnDgwIGy771Guru7S3rs7nWjo6Px4osvxr59+6K5ubns9ZViqtdSzfFKed50tr3fNvd6fDrrU+pfhB7OZL0ezv55s+3hTB7Tw/I+b6bvsek8fr+/han0L3OndSppeHg4Fi9eHNevX6954qd0+pd9eph9ephtqfRvTh05KYempqbYuHFjzJuXuTNehP7NBXqYfXqYbSn0z5ETACApJmEDAJIinAAASRFOAICkCCcAQFKEEwAgKcLJNP32t7+Nhx9+OL75zW/GL3/5y1qXwww8/fTT8fWvfz2eeeaZWpfCDFy6dCk2btwYnZ2d8eijj8bRo0drXRIluHbtWqxfvz7Wrl0bq1evjpdffrnWJTFDN2/ejG984xvx4x//uGL7cCvxNHzxxRfR2dkZb7/9dixevDjWrVsX7733XjzwwAO1Lo0SvPPOO/H555/Hv/zLv8Srr75a63Io0X//93/H0NBQrF27Nq5cuRLr1q2L//iP/4ivfOUrtS6Nacjn8zE6OhotLS0xMjISq1evjtOnT/sczaC//du/jQsXLkRHR0f8/Oc/r8g+HDmZhpMnT8a3v/3tWL58eXz1q1+NJ554It58881al0WJNm7cGIsWLap1GczQQw89FGvXro2IiKVLl0ZbW1t89tlnNa6K6WpqaoqWlpaI+HKK9GKxGP7fOHv+8z//M86fPx9PPPFERfdTF+HkxIkTsW3btli2bFk0NDTE8ePHJ2yTy+Vi1apVsXDhwujp6YmTJ0+OP3b58uVYvnz5+PLy5cvjk08+qUrtfGm2PaT2ytnDM2fORD6fj46OjkqXzR+Vo3/Xrl2LNWvWxIoVK+InP/lJtLW1Vat8ojw9/PGPfxwvvPBCxWuti3AyMjISa9asiVwuN+njR44cif7+/vjZz34W//7v/x5r1qyJrVu3xv/8z/9UuVLuRQ+zr1w9/Oyzz+J73/te/PM//3M1yuaPytG/r33ta/HBBx/ExYsX4/DhwzE0NFSt8onZ9/A3v/lNfOtb34pvfetblS+2WGcionjs2LE71nV3dxf7+vrGl/P5fHHZsmXFF154oVgsFovvvvtucfv27eOP/+hHPyr+67/+a3UKZoKZ9PC2t99+u/hXf/VXVamTe5tpD//3f/+3+Bd/8RfFX/3qV1WrlYlm8x687Yc//GHx6NGjFa2Te5tJD/fu3VtcsWJF8Rvf+EbxgQceKLa2thYPHjxYkfrq4sjJVG7duhVnzpyJzZs3j69rbGyMzZs3x/vvvx8RX36d9IcffhiffPJJ3LhxI373u9/F1q1ba1Uyd5lOD0nbdHpYLBbjueeei8ceeyy++93v1qpUJjGd/g0NDcXnn38eERHXr1+PEydOxMMPP1yTeploOj184YUX4tKlS/Hxxx/Hz3/+8/j+978f+/fvr0g9df+VkVevXo18Ph/t7e13rG9vb4/z589HRMS8efPiF7/4RWzatCkKhUL89Kc/dYV5QqbTw4iIzZs3xwcffBAjIyOxYsWKOHr0aGzYsKHa5TKJ6fTw3XffjSNHjsSjjz46fq7817/+dTzyyCNVr5c7Tad/f/jDH+IHP/jB+IWwe/bs0buETPdztFrqPpxM11NPPRVPPfVUrctgFn7/+9/XugRm4Tvf+U4UCoVal8EMdXd3x9mzZ2tdBmXy3HPPVXT8uj+t09bWFk1NTRMuzBoaGoqlS5fWqCpKoYfZp4fZpn/Zl1oP6z6cLFiwINatWxeDg4Pj6wqFQgwODjrknxF6mH16mG36l32p9bAuTuvcuHEjLly4ML588eLFOHv2bCxZsiRWrlwZ/f390dvbG+vXr4/u7u4YGBiIkZGR2LVrVw2r5k/pYfbpYbbpX/ZlqocVuQcoMW+//XYxIib819vbO77NP/3TPxVXrlxZXLBgQbG7u7v4b//2b7UrmAn0MPv0MNv0L/uy1EPfrQMAJKXurzkBANIinAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFL+PxadxA0L2OpPAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plotDistribution(degrees, 100, minValue=1E0)\n", - "plt.yscale(\"log\")" + ")" ] }, { "cell_type": "code", - "execution_count": 104, + "execution_count": 109, "metadata": {}, "outputs": [], "source": [ - "allEdgesWeights = pd.Series({(d[0], d[1]): d[2][\"weight\"] for d in documentGraph.edges(data=True)})" + "from matplotlib import pyplot as plt" ] }, { "cell_type": "code", - "execution_count": 105, - "metadata": { - "scrolled": true - }, + "execution_count": 110, + "metadata": {}, "outputs": [ { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", - " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" + "Name: \n", + "Type: Graph\n", + "Number of nodes: 10788\n", + "Number of edges: 13061229\n", + "Average degree: 2421.4366\n" ] - }, - { - "data": { - "text/plain": [ - "(0.01, 1)" - ] - }, - "execution_count": 105, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGhCAYAAACUFDUXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df2wcd53/8dfaWW9kGvvqWLHrdH0GVBBuWvt79novEgW7cjGBc5WGQqRIsEmkcuLWUU97FNl/EBzxU19+yBIZKbpDKICIzmoluxI90oJJZWiDHAe5IkQJhDNc1dTb/Lh667XYbHb3+weX/Z67k8a7O7uzn/XzIUXRfLz7mfdOZryvfOYzM55MJpMRAACAoWrcLgAAAKAYhBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKNtcruAfKXTaV2+fFlbtmyRx+NxuxwAALAOmUxGb731ltra2lRT4+xYinFh5vLly/L7/W6XAQAACvDqq6/q3nvvdbRP48LMli1bJEmLi4tqampyuRoATkomk3rhhRf0kY98RF6v1+1yADjo+vXreve73539HneScWHm1qmlLVu2qKGhweVqADgpmUyqvr5eDQ0NhBmgyiSTSUkqyRQRJgADAACjGRNmLMtSZ2enAoGA26UAAIAKYkyYCYfDOn/+vM6cOeN2KQAAoIIYE2YAAADsEGYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYzJsxwB2AAAGDHmDDDHYABAIAdY8IMAACAnU1uFwBsdB2jz+W0/ekbH3ehEgAwEyMzAADAaIzMAIZgBAcA7DEyAwAAjMbIDFBGdqMrAIDiMDIDAACMRpgBAABGI8wAAACjuRJmFhcXNTAwoM7OTj3wwAOKx+NulAEAAKqAKxOA9+/fr6985St66KGHdP36dfl8PjfKAAAAVaDsYeZ3v/udvF6vHnroIUlSU1NTuUsAAABVJO/TTLOzsxoeHlZbW5s8Ho+mp6dzXmNZljo6OrR582YFg0HNzc1lf/aHP/xBd911l4aHh/V3f/d3+trXvlbcJwA2sI7R53L+AMBGk/fITDweV1dXlw4ePKg9e/bk/HxyclKRSETHjh1TMBjUxMSEhoaGdPHiRW3btk03b97UL3/5Sy0sLGjbtm366Ec/qkAgoEceecR2fYlEQolEIrsci8UkSclkUslkMt/yAVf5ajPrep3dvl3Me01xq3aTPwMAe6U8rj2ZTGZ9vyHt3uzxaGpqSrt37862BYNBBQIBHT16VJKUTqfl9/t16NAhjY6O6vTp0xofH9fzzz8vSfrmN78pSXrqqads1zE+Pq4jR47ktJ84cUL19fWFlg4AAMpodXVV+/bt0/LyshoaGhzt29E5Mzdu3NDZs2c1NjaWbaupqdHg4KBOnz4tSQoEAnrjjTf03//932psbNTs7Kz+8R//8bZ9jo2NKRKJZJdjsZj8fr8GBga0detWJ8sHHLVj/PmC33tufKjg/uzea4pkMqmf/exneuSRR+T1et0uB4CDrl27VrK+HQ0zV69eVSqVUktLy5r2lpYWXbhw4a8r3LRJX/va1/ShD31ImUxGH/nIR/QP//APt+3T5/PZXu3k9Xr5ZYeKlkh5Cn6v3b693v6q4bjg+AaqTymPaVcuzd61a5d27dqV13ssy5JlWUqlUiWqCgAAmMjRm+Y1NzertrZW0Wh0TXs0GlVra2tRfYfDYZ0/f15nzpwpqh8AAFBdHA0zdXV16unp0czMTLYtnU5rZmZGO3fuLKpvy7LU2dmpQCBQbJkAAKCK5H2aaWVlRZcuXcouLy4uamFhQU1NTWpvb1ckElEoFFJvb6/6+vo0MTGheDyuAwcOFFVoOBxWOBxWLBZTY2NjUX0BAIDqkXeYmZ+f18DAQHb51pVGoVBIx48f1969e3XlyhUdPnxYS0tL6u7u1smTJ3MmBQMAADgh7zDT39+vO92aZmRkRCMjIwUXZYcJwAAAwI4rVzMVgtNMqGQ8RgAA3OPoBGAAAIByI8wAAACjGRNmuDQbAADYYc4MUGXs5u/86Rsfd6ESACgPY0ZmAAAA7BBmAACA0YwJM8yZAQAAdowJMzxoEgAA2DEmzAAAANgx5momoFJwt18AqCyMzAAAAKMZE2aYAAwAAOwYc5qJm+YBKBY3FASqkzEjMwAAAHYIMwAAwGjGnGYCgNvh9BGwsTEyAwAAjMbIDIANjVEdwHzGjMxwaTYAALBjTJjh2UwAAMAOp5mAd8CjCwCg8hFmgA2M+SIAqoExp5kAAADsEGYAAIDRCDMAAMBozJkBAMMw1wlYi5EZAABgNEZmABiFy+UBvJ0xIzPcARgAANgxJsxwB2AAAGCH00wAsA5MugUqlzEjMwAAAHYYmQH+BxNLUYnWu18ycoSNjJEZAABgNMIMAAAwGmEGAAAYjTADAACMxgRgAGswkRSAaRiZAQAARnNlZKajo0MNDQ2qqanR3XffrVOnTrlRBgAAqAKunWZ6+eWXddddd7m1egAG4N4/ANaD00wAAMBoeYeZ2dlZDQ8Pq62tTR6PR9PT0zmvsSxLHR0d2rx5s4LBoObm5tb83OPx6MMf/rACgYB+/OMfF149AADY8PI+zRSPx9XV1aWDBw9qz549OT+fnJxUJBLRsWPHFAwGNTExoaGhIV28eFHbtm2TJP3qV7/S9u3b9frrr2twcFAPPPCAHnzwQdv1JRIJJRKJ7HIsFpMkJZNJJZPJfMsHbstXm3G7hCy7fbuY+m53rKy3z3Ida7fWc+tvpz9zMZ/X7r3l2C6l+HcvtR3jz+e0nRsfcqESVJJS7o+eTCZT8JHi8Xg0NTWl3bt3Z9uCwaACgYCOHj0qSUqn0/L7/Tp06JBGR0dz+njqqad0//33a//+/bbrGB8f15EjR3LaT5w4ofr6+kJLBwAAZbS6uqp9+/ZpeXlZDQ0Njvbt6ATgGzdu6OzZsxobG8u21dTUaHBwUKdPn5b015GddDqtLVu2aGVlRb/4xS/0qU996rZ9jo2NKRKJZJdjsZj8fr8GBga0detWJ8tHlbL7X2Kls/tfbDGf43b/K15vn+X6X3UymdTPfvYzPfLII/J6vY5/5mI+r1ujDaX4dy81RmZg59q1ayXr29Ewc/XqVaVSKbW0tKxpb2lp0YULFyRJ0WhUjz32mCQplUrpiSeeUCAQuG2fPp9PPp9PlmXJsiylUilJktfrldfrdbJ8VKlEyuN2CXmz27eL+Ry3O1bW22c5jrWO0efkq83o//ZJ/+erv/if2pz9zMV8Xrv33vfFF3LanL7BYCn+3UvNrmZ+X6OU+0DZL81+z3veo1deeSXv94XDYYXDYcViMTU2NpagMgCoftzhGdXI0TDT3Nys2tpaRaPRNe3RaFStra1OrgoAUGYEIVQqR+8zU1dXp56eHs3MzGTb0um0ZmZmtHPnzqL6tixLnZ2d73hKCgAAbDx5j8ysrKzo0qVL2eXFxUUtLCyoqalJ7e3tikQiCoVC6u3tVV9fnyYmJhSPx3XgwIGiCuU0EwAAsJN3mJmfn9fAwEB2+daVRqFQSMePH9fevXt15coVHT58WEtLS+ru7tbJkydzJgUDMBunHJAP9heUUt5hpr+/X3e6Nc3IyIhGRkYKLsrO269mAgCUDs/Fgklce9BkvjjNBJiJ/5EDKDVjwgyA6sH/+gE4iadmAwAAoxkzMsOcGQDVhNNvgHOMGZkJh8M6f/68zpw543YpAACgghgTZgAAAOwYc5oJAFD9OP2GQhgTZpgzA8BUXL0FlJYxp5mYMwMAAOwYE2YAAADsEGYAAIDRCDMAAMBoxoQZy7LU2dmpQCDgdikAAKCCGBNmmAAMAADsGHNpNgAA74R71GxcxozMAAAA2GFkBoBjuDkcADcwMgMAAIzGyAwAoKIxFwZ3YszIDJdmAwAAO8aMzITDYYXDYcViMTU2NrpdDgDAUIz0VB9jRmYAAADsEGYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxmTJjhpnkAAMAON80DAMAGN9czhzEjMwAAAHYIMwAAwGjGnGYCAFQeu1MxQLkRZlBV+MUKk7H/AoUhzAC4I75kUWkqaZ9korD7mDMDAACMRpgBAABGI8wAAACjEWYAAIDRXAszq6ur+tu//Vt9/vOfd6sEAABQBVwLM1/96lf193//926tHgAAVAlXwswf/vAHXbhwQbt27XJj9QAAoIrkHWZmZ2c1PDystrY2eTweTU9P57zGsix1dHRo8+bNCgaDmpubW/Pzz3/+8/r6179eeNUAAAD/I+8wE4/H1dXVJcuybH8+OTmpSCSiL33pS/rNb36jrq4uDQ0N6Y033pAkPfvss3rf+96n973vfcVVDgAAoALuALxr1653PD30ne98R0888YQOHDggSTp27Jiee+45ff/739fo6Kh+/etf69///d/19NNPa2VlRclkUg0NDTp8+LBtf4lEQolEIrsci8UkSclkUslkMt/yUeV8tRm3S3CE3b5dzGe73bFSadvLV5NZ83cxitmGbr3Xaeutxa2ay7Fep7dBMa/b6Eq5TTyZTKbgPcfj8Whqakq7d++WJN24cUP19fV65plnsm2SFAqF9Oabb+rZZ59d8/7jx4/r3Llz+ta3vnXbdYyPj+vIkSM57SdOnFB9fX2hpQMAgDJaXV3Vvn37tLy8rIaGBkf7dvTZTFevXlUqlVJLS8ua9paWFl24cKGgPsfGxhSJRLLLsVhMfr9fAwMD2rp1a1H1ovrsGH/e7RIccW58KKetmM9m11+xfZaCryajL/em9cX5GiXSnqL6KmYbOr393bLez+HW5y3Hep3eBsW8bqO7du1ayfp29UGT+/fvv+NrfD6ffD6fLMuSZVlKpVKSJK/XK6/XW+IKYZpEqrgvwEpht28X89lud6xU6vZKpD1F11bMNnR6+7tlvZ/Drc9bjvU6vQ2Ked1GV8pt4uil2c3NzaqtrVU0Gl3THo1G1draWlTf4XBY58+f15kzZ4rqBwAAVBdHR2bq6urU09OjmZmZ7JyZdDqtmZkZjYyMOLkqAAAqVsfoczltf/rGx12oZGPIO8ysrKzo0qVL2eXFxUUtLCyoqalJ7e3tikQiCoVC6u3tVV9fnyYmJhSPx7NXNxXq7aeZALtfFgCAjSfvMDM/P6+BgYHs8q3JuaFQSMePH9fevXt15coVHT58WEtLS+ru7tbJkydzJgXnKxwOKxwOKxaLqbGxsai+AABA9cg7zPT39+tOV3OPjIxwWgkAAJSFq1cz5YPTTBsbp5QAALfj2lOz88XVTAAAwI4xYQYAAMCOMaeZAKBcOK0JmMWYkRnLstTZ2alAIOB2KQAAoIIYMzLDpdkAgHwxyrYxGDMyAwAAYIcwAwAAjGZMmGHODAAAsGNMmOE+MwAAwI4xYQYAAMAOYQYAABiNMAMAAIxmTJhhAjAAALBjTJhhAjAAALBjTJgBAACwY8zjDAAA+eFW/tgoGJkBAABGI8wAAACjcZoJAIAKYnd68E/f+LgLlZjDmJEZLs0GAAB2jAkzXJoNAADsGBNmAAAA7BBmAACA0QgzAADAaFzNBKAqccM4YONgZAYAABiNMAMAAIzGaSYAACocN9J7Z8aEGcuyZFmWUqmU26UAxmH+CIBqZsxpJm6aBwAA7BgzMgMAQKkwemk2Y0ZmAAAA7BBmAACA0QgzAADAaMyZAQCgDJiXUzqMzAAAAKMxMgMAQJXYqDfXY2QGAAAYjZEZAAAMxByc/6/sYebNN9/U4OCgbt68qZs3b+rJJ5/UE088Ue4yUME4QAEA+Sh7mNmyZYtmZ2dVX1+veDyuHTt2aM+ePdq6dWu5SwEAAFWg7HNmamtrVV9fL0lKJBLKZDLKZDLlLgMAAFSJvMPM7OyshoeH1dbWJo/Ho+np6ZzXWJaljo4Obd68WcFgUHNzc2t+/uabb6qrq0v33nuvnnrqKTU3Nxf+CQAAwIaW92mmeDyurq4uHTx4UHv27Mn5+eTkpCKRiI4dO6ZgMKiJiQkNDQ3p4sWL2rZtmyTpb/7mb/TKK68oGo1qz549evzxx9XS0mK7vkQioUQikV2OxWKSpGQyqWQymW/5MICvlpE6u317I2wXX01mzd8oD7f2NxP382qp2Q2lrMOTKeIcj8fj0dTUlHbv3p1tCwaDCgQCOnr0qCQpnU7L7/fr0KFDGh0dzenjn/7pn/Twww/r8ccft13H+Pi4jhw5ktN+4sSJ7OkqAABQ2VZXV7Vv3z4tLy+roaHB0b4dnQB848YNnT17VmNjY9m2mpoaDQ4O6vTp05KkaDSq+vp6bdmyRcvLy5qdndXnPve52/Y5NjamSCSSXY7FYvL7/RoYGGDScJXaMf682yW47tz4UE7bRtguvpqMvtyb1hfna5RIe9wuZ8Nwa38zcT+vlprdcO3atZL17WiYuXr1qlKpVM4po5aWFl24cEGS9Oc//1mf/exnsxN/Dx06pAceeOC2ffp8Pvl8vpx2r9crr9frZPmoEIkUX2J2+/ZG2i6JtGdDfV63ubW/mbifV0vNbihlHWW/NLuvr08LCwt5v8+yLFmWpVQqVYKqAACAqRy9NLu5uVm1tbWKRqNr2qPRqFpbW4vqOxwO6/z58zpz5kxR/QAAgOriaJipq6tTT0+PZmZmsm3pdFozMzPauXOnk6sCAACQVMBpppWVFV26dCm7vLi4qIWFBTU1Nam9vV2RSEShUEi9vb3q6+vTxMSE4vG4Dhw4UFShnGYCAAB28g4z8/PzGhgYyC7futIoFArp+PHj2rt3r65cuaLDhw9raWlJ3d3dOnny5G3vI7Ne4XBY4XBYsVhMjY2NRfWFysFzmAAAxco7zPT399/x8QMjIyMaGRkpuCgAAID1KvuzmQplWZY6OzsVCATcLgUAAFQQY8IMVzMBAAA7xoQZAAAAO8aEGU4zAQAAO8aEGU4zAQAAO8aEGQAAADuEGQAAYLSyP2gSAAC4y+6GpX/6xsddqMQZxoQZHmcAAED+NsKd1o05zcQEYAAAYMeYMAMAAGCHMAMAAIxGmAEAAEYzJsxwB2AAAGDHmDDDBGAAAGDHmDADAABghzADAACMRpgBAABGI8wAAACjGfM4AwAAUDomP6/JmDDDs5kAoDQ2wrN7UN2MOc3EpdkAAMCOMWEGAADAjjGnmQAAgPsqcW4NIzMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxmTJixLEudnZ0KBAJulwIAACqIMWGGm+YBAAA7xoQZAAAAO4QZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBoZQ8zr776qvr7+9XZ2akHH3xQTz/9dLlLAAAAVWRT2Ve4aZMmJibU3d2tpaUl9fT06GMf+5je9a53lbsUAABQBcoeZu655x7dc889kqTW1lY1Nzfr+vXrhBkAAFCQvE8zzc7Oanh4WG1tbfJ4PJqens55jWVZ6ujo0ObNmxUMBjU3N2fb19mzZ5VKpeT3+/OvHAAAQAWMzMTjcXV1dengwYPas2dPzs8nJycViUR07NgxBYNBTUxMaGhoSBcvXtS2bduyr7t+/bo+85nP6N/+7d/ecX2JREKJRCK7HIvFJEnJZFLJZDLf8lFhfLUZt0uoSHb79kbYVr6azJq/Ud1M3M9NrLkY6/286/k+LuV3tieTyRT8r+DxeDQ1NaXdu3dn24LBoAKBgI4ePSpJSqfT8vv9OnTokEZHRyX9NaA88sgjeuKJJ/TpT3/6HdcxPj6uI0eO5LSfOHFC9fX1hZYOAADKaHV1Vfv27dPy8rIaGhoc7dvROTM3btzQ2bNnNTY2lm2rqanR4OCgTp8+LUnKZDLav3+/Hn744TsGGUkaGxtTJBLJLsdiMfn9fg0MDGjr1q1Olo8S2zH+vNslGOPc+FBO20bYfr6ajL7cm9YX52uUSHvcLgclZuJ+bmLN5WC3Xd7u2rVrJVu/o2Hm6tWrSqVSamlpWdPe0tKiCxcuSJJeeuklTU5O6sEHH8zOt/nRj36kBx54wLZPn88nn8+X0+71euX1ep0sHyWWSPHltF52+/ZG2n6JtGdDfd6NysT93MSay2E938el/M4u+9VMH/zgB5VOp/N+n2VZsixLqVSqBFUBAABTOXrTvObmZtXW1ioaja5pj0ajam1tLarvcDis8+fP68yZM0X1AwAAqoujYaaurk49PT2amZnJtqXTac3MzGjnzp1F9W1Zljo7OxUIBIotEwAAVJG8TzOtrKzo0qVL2eXFxUUtLCyoqalJ7e3tikQiCoVC6u3tVV9fnyYmJhSPx3XgwIGiCg2HwwqHw4rFYmpsbCyqLwAAUD3yDjPz8/MaGBjILt+60igUCun48ePau3evrly5osOHD2tpaUnd3d06efJkzqRgAAAAJ+QdZvr7+3WnW9OMjIxoZGSk4KIAAADWq+xPzS4Uc2YAAIAdY8IMVzMBAAA7Zb/PDDaGjtHn3C4BALBBGDMyw2kmAABgx5iRGS7NBoDqwggunGLMyAwAAIAdwgwAADCaMWGGOTMAAMCOMWGGS7MBAIAdY8IMAACAHcIMAAAwGmEGAAAYjTADAACMZkyY4WomAABgx5gww9VMAADAjjGPMwA2Em7zDgDrZ8zIDAAAgB3CDAAAMBphBgAAGM2YMMPVTAAAwI4xYYarmQAAgB1jwgwAAIAdwgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGjGhBnuAAwAAOwYE2a4AzAAALBjTJgBAACwQ5gBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIzmSph57LHHdPfdd+vxxx93Y/UAAKCKbHJjpU8++aQOHjyoH/zgB26sHg7rGH3O7RIAABuYKyMz/f392rJlixurBgAAVSbvMDM7O6vh4WG1tbXJ4/Foeno65zWWZamjo0ObN29WMBjU3NycI8UCAAC8Xd6nmeLxuLq6unTw4EHt2bMn5+eTk5OKRCI6duyYgsGgJiYmNDQ0pIsXL2rbtm15F5hIJJRIJLLLsVhMkpRMJpVMJvPuD87z1WbcLgFVwleTWfM3UGnsvnf4HWi/XQp5TaE8mUym4H8Fj8ejqakp7d69O9sWDAYVCAR09OhRSVI6nZbf79ehQ4c0Ojqafd2LL76oo0eP6plnnnnHdYyPj+vIkSM57SdOnFB9fX2hpQMAgDJaXV3Vvn37tLy8rIaGBkf7dnQC8I0bN3T27FmNjY1l22pqajQ4OKjTp08X1OfY2JgikUh2ORaLye/3a2BgQFu3bi26ZhRvx/jzbpeAKuGryejLvWl9cb5GibTH7XKAHOfGh3La+B1ov13e7tq1ayVbv6Nh5urVq0qlUmppaVnT3tLSogsXLmSXBwcH9corrygej+vee+/V008/rZ07d9r26fP55PP5ctq9Xq+8Xq+T5aNAiRRfOnBWIu1hv0JFsvveYV+13y6FvKZQrlya/fOf/zzv91iWJcuylEqlSlARAAAwlaOXZjc3N6u2tlbRaHRNezQaVWtra1F9h8NhnT9/XmfOnCmqHwAAUF0cDTN1dXXq6enRzMxMti2dTmtmZua2p5HWy7IsdXZ2KhAIFFsmAACoInmfZlpZWdGlS5eyy4uLi1pYWFBTU5Pa29sViUQUCoXU29urvr4+TUxMKB6P68CBA0UVGg6HFQ6HFYvF1NjYWFRfAACgeuQdZubn5zUwMJBdvnWlUSgU0vHjx7V3715duXJFhw8f1tLSkrq7u3Xy5MmcScEAAABOyDvM9Pf36063phkZGdHIyEjBRdlhAjAAALDjyrOZCsEEYAAAYMeYMAMAAGCHMAMAAIxmTJjh0mwAAGDHmDDDnBkAAGDHmDADAABghzADAACMZkyYYc4MAACwY0yYYc4MAACwY0yYAQAAsEOYAQAARiPMAAAAoxkTZpgADAAA7BgTZpgADAAA7BgTZgAAAOwQZgAAgNEIMwAAwGiEGQAAYDTCDAAAMNomtwtYL8uyZFmWUqmU26UAAID/pWP0uZy2P33j42VbvzEjM1yaDQAA7BgTZgAAAOwQZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARjMmzFiWpc7OTgUCAbdLAQAAFcSYMMMdgAEAgB1jwgwAAIAdwgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDRXwsxPfvITvf/979d9992n733ve26UAAAAqsSmcq/w5s2bikQiOnXqlBobG9XT06PHHntMW7duLXcpAACgCpR9ZGZubk7333+/tm/frrvuuku7du3SCy+8UO4yAABAlcg7zMzOzmp4eFhtbW3yeDyanp7OeY1lWero6NDmzZsVDAY1NzeX/dnly5e1ffv27PL27dv12muvFVg+AADY6PI+zRSPx9XV1aWDBw9qz549OT+fnJxUJBLRsWPHFAwGNTExoaGhIV28eFHbtm3Lu8BEIqFEIpFdjsVikqRkMqlkMpl3f3CerzbjdgmoEr6azJq/gUpj973D70B7b99WpfzO9mQymYL/FTwej6amprR79+5sWzAYVCAQ0NGjRyVJ6XRafr9fhw4d0ujoqF5++WV985vf1NTUlCTpn//5n9XX16d9+/bZrmN8fFxHjhzJaT9x4oTq6+sLLR0AAJTR6uqq9u3bp+XlZTU0NDjat6Nh5saNG6qvr9czzzyzJuCEQiG9+eabevbZZ3Xz5k194AMf0IsvvpidAPzyyy/fdgKw3ciM3+/X66+/zqThEtsx/nxO27nxoXW9DiiEryajL/em9cX5GiXSHrfLAXLwO3D93r6trl27pnvuuackYcbRq5muXr2qVCqllpaWNe0tLS26cOHCX1e4aZO+/e1va2BgQOl0Wl/4whfeMZT4fD75fD5ZliXLspRKpSRJXq9XXq/XyfLxNolU7peJ3Ta3ex1QjETaw36FisTvwPV7+7Yq5Xd22S/NlqRHH31Ujz76aF7vCYfDCofDisViamxsLFFlAC65qhMAAAZQSURBVADANI5emt3c3Kza2lpFo9E17dFoVK2trU6uCgAAQJLDYaaurk49PT2amZnJtqXTac3MzGjnzp1F9W1Zljo7OxUIBIotEwAAVJG8TzOtrKzo0qVL2eXFxUUtLCyoqalJ7e3tikQiCoVC6u3tVV9fnyYmJhSPx3XgwIGiCuU0EwAAsJN3mJmfn9fAwEB2ORKJSPrrFUvHjx/X3r17deXKFR0+fFhLS0vq7u7WyZMncyYFAwAAOCHvMNPf3687Xc09MjKikZGRgouy8/armQAAACSXnppdiHA4rPPnz+vMmTNulwIAACqIMWEGAADADmEGAAAYzZgww6XZAADAjjFhhjkzAADAjjFhBgAAwA5hBgAAGM2VB00W4tZ9Zm7evClJeuutt3hqdomlE6s5bbFYbF2vAwqRqs1odTWlVKJWaZ5EjArE78D1e/u2euuttyTpjveqK4QnU4peS+g///M/9d73vtftMgAAQAH++Mc/6j3veY+jfRozMnNLU1OTJOm//uu/eEbTOgQCAWMmTbtZa6nX7XT/TvRXaB+FvG+974nFYvL7/Xr11VfV0NCQd20bDcd3Zayb43t971leXlZ7e3v2e9xJxoWZmpq/TvNpbGzkl9061NbWGrOd3Ky11Ot2un8n+iu0j0Lel+97GhoajNlv3cTxXRnr5vjO7z23vsedxATgKhcOh90uYd3crLXU63a6fyf6K7SPQt5n0n5oEpO2K8d3efvbaMe3cXNmYrGYGhsbtby8bMz/SACsD8c3UL1KeXzXjo+PjzvaYxnU1taqv79fmzYZd5YMwB1wfAPVq1THt3EjMwAAAP8bc2YAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABitqsPMq6++qv7+fnV2durBBx/U008/7XZJABzy2GOP6e6779bjjz/udikAivSTn/xE73//+3Xffffpe9/7Xt7vr+pLs19//XVFo1F1d3draWlJPT09+v3vf693vetdbpcGoEgvvvii3nrrLf3gBz/QM88843Y5AAp08+ZNdXZ26tSpU2psbFRPT49efvllbd26dd19VPXIzD333KPu7m5JUmtrq5qbm3X9+nWXqwLghP7+fm3ZssXtMgAUaW5uTvfff7+2b9+uu+66S7t27dILL7yQVx+uhpnZ2VkNDw+rra1NHo9H09PTOa+xLEsdHR3avHmzgsGg5ubmClrX2bNnlUql5Pf7iy0bwB2U89gG4K5ij/fLly9r+/bt2eXt27frtddey6sGV8NMPB5XV1eXLMuy/fnk5KQikYi+9KUv6Te/+Y26uro0NDSkN954I/ua7u5u7dixI+fP5cuXs6+5fv26PvOZz+hf//VfS/6ZAJTv2AbgPieO96JlKoSkzNTU1Jq2vr6+TDgczi6nUqlMW1tb5utf//q6+/3LX/6SeeihhzI//OEPHasVwPqV6tjOZDKZU6dOZT7xiU84UieA4hVyvL/00kuZ3bt3Z3/+5JNPZn784x/ntd6KnTNz48YNnT17VoODg9m2mpoaDQ4O6vTp0+vqI5PJaP/+/Xr44Yf16U9/ulSlAsiDE8c2ADOs53jv6+vTuXPn9Nprr2llZUU//elPNTQ0lNd6KjbMXL16ValUSi0tLWvaW1patLS0tK4+XnrpJU1OTmp6elrd3d3q7u7Wb3/721KUC2CdnDi2JWlwcFCf/OQn9R//8R+69957CUJABVrP8b5p0yZ9+9vf1sDAgLq7u/Uv//IveV3JJEnOPoO7wnzwgx9UOp12uwwAJfDzn//c7RIAOOTRRx/Vo48+WvD7K3Zkprm5WbW1tYpGo2vao9GoWltbXaoKQLE4toGNo1zHe8WGmbq6OvX09GhmZibblk6nNTMzo507d7pYGYBicGwDG0e5jndXTzOtrKzo0qVL2eXFxUUtLCyoqalJ7e3tikQiCoVC6u3tVV9fnyYmJhSPx3XgwAEXqwZwJxzbwMZREcd74RdgFe/UqVMZSTl/QqFQ9jXf/e53M+3t7Zm6urpMX19f5te//rV7BQNYF45tYOOohOO9qp/NBAAAql/FzpkBAABYD8IMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIz2/wBYf3vgMGYOzAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ - "plotDistribution(allEdgesWeights, 100)\n", - "plt.yscale(\"log\")\n", - "plt.xlim([1E-2, 1])" + "print(nx.info(documentGraph))" ] }, { "cell_type": "code", - "execution_count": 106, + "execution_count": 111, + "metadata": {}, + "outputs": [], + "source": [ + "degrees = pd.Series({k: v for k, v in nx.degree(documentGraph)}, name=\"degree\")" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "metadata": {}, + "outputs": [], + "source": [ + "allEdgesWeights = pd.Series({(d[0], d[1]): d[2][\"weight\"] for d in documentGraph.edges(data=True)}, name=\"edge_weight\")" + ] + }, + { + "cell_type": "code", + "execution_count": 113, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'Edge Weight Distribution')" - ] - }, - "execution_count": 106, - "metadata": {}, - "output_type": "execute_result" + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/deusebio/.pyenv/versions/graph-machine-learning/lib/python3.8/site-packages/matplotlib/axes/_axes.py:6703: RuntimeWarning: invalid value encountered in multiply\n", + " boffset = -0.5 * dr * totwidth * (1 - 1 / nx)\n" + ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAAHHCAYAAADZOPmeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXhU9b3H8c8kJBPCEpaUhEAgCrY1EpI2CxdESdhiWKwihWutBKxI7cSlaW0Te2WRVixYGpepES1y3a4UWtHbIBAjGkG8hmiwNoULFahFCJsQEnQSJuf+0SdzHbKQZZIzy/v1PDx6fnPmnO+cTHLO55zz+x2LYRiGAAAAAABAtwsyuwAAAAAAAAIVoRwAAAAAAJMQygEAAAAAMAmhHAAAAAAAkxDKAQAAAAAwCaEcAAAAAACTEMoBAAAAADAJoRwAAAAAAJMQygEAAAAAMAmhHAhQ8+fPV1xcXLesKy4uTvPnz3dNr1u3ThaLRbt37+6W9aenpys9Pb1b1gUA6JhDhw7JYrFo3bp1ZpfSZTqzP0pPT9eoUaM8W1AHLV26VBaLpVvWdfE2e+utt2SxWLRx48ZuWX93Hi8hcBHK4dMaw13jv7CwMMXExCgzM1OPPfaYzp07Z3aJ3aJx59j4Lzw8XMOGDdPMmTP17LPPyuFweGQ9lZWVWrp0qQ4dOuSR5XmSN9cGAIHg4n3yxf/ee+89s0ts1sqVK2WxWPThhx+6tRuGof79+8tisejgwYNur3355ZeyWq363ve+152ltslnn32mpUuXqqKiok3zd9exVHvr6k7eXBsCQw+zCwA84cEHH9Rll12m+vp6HTt2TG+99ZbuvfderV69Wq+99ppGjx5tdond4sknn1Tv3r3lcDh05MgRbd26VbfddpsKCgr05z//WbGxsa55n376aTU0NLRr+ZWVlVq2bJnS09PbddZ43759Cgrq2nOArdW2bdu2Ll03AOD/Ne6TLzZy5EgTqrm08ePHS5J27Nihb33rW672v/71rzpz5ox69OihnTt3un2msrIy1dXVud7bVt2xP/rss8+0bNkyxcXFKSkpqc3va8+x1H/8x38oLy+vW+oye5t15HgJaC9COfxCVlaWUlJSXNP5+fl68803NWPGDF1//fX629/+pp49e3ZbPYZh6Msvv+zWdUrS7NmzFRkZ6ZpevHixXnzxRc2bN0/f/e533a5ShISEdGktX90GVqu1S9d1KaGhoaauHwACycX7ZG+XkpKisLAw7dixQ3fddZerfefOnRo4cKBSUlK0Y8cOff/733e9tmPHDklqdyj35v1Re46levTooR49ujZGnD9/XuHh4aZvs64+XgIkbl+HH5s4caIeeOABHT58WC+88ILba3v37tXs2bM1YMAAhYWFKSUlRa+99lqTZXz00UeaMGGCevbsqaFDh+qXv/ylnn32WVksFrfbpOPi4jRjxgxt3bpVKSkp6tmzp5566ilJ0pkzZ3TvvfcqNjZWVqtVI0eO1K9//esmZ10bGhpUUFCgq666SmFhYYqKitKiRYv0+eefd2o73HLLLbr99tv1P//zPyouLna1N9dH6uWXX1ZycrL69Omjvn37KiEhQY8++qikf93e9t3vfleSlJGR4brN7a233rrkNri4T3mj8+fPa9GiRRo4cKD69u2refPmNfm8FotFS5cubfLery7zUrU114fv+PHj+sEPfqCoqCiFhYUpMTFR//mf/+k2T2P/xkceeURr1qzRiBEjZLValZqaqrKysma3NwDg0s6cOaP58+crIiJC/fr1U3Z2ts6cOdPsvBs2bFB8fLzCwsI0atQovfLKK83uwzq6Hw0NDVVqaqp27tzp1r5z506NHTtWV199dbOv9evXz9XHu63rbm5/dPjwYV1//fXq1auXBg0apB//+MfaunWr237sqyorK5WRkaHw8HANGTJEK1eudL321ltvKTU1VZK0YMEC1/6wo/30WzqWaq5PeXFxscaPH69+/fqpd+/e+sY3vqH777+/TXU19pcvLy/Xtddeq/DwcNd7W+qH73Q6df/99ys6Olq9evXS9ddfr08//dRtnpaOP766zEvV1tx3rba2Vj/5yU9cx3bf+MY39Mgjj8gwDLf5LBaLcnJytGnTJo0aNUpWq1VXXXWVtmzZ0vwGR8DiSjn82q233qr7779f27Zt08KFCyX963a0q6++WkOGDFFeXp569eqlP/zhD7rhhhv0xz/+UTfeeKMk6ciRI66Al5+fr169eumZZ55p8arvvn37dPPNN2vRokVauHChvvGNb+j8+fOaMGGCjhw5okWLFmnYsGF69913lZ+fr6NHj6qgoMD1/kWLFmndunVasGCB7r77bh08eFBPPPGEPvzwQ+3cubNTZ2pvvfVWrVmzRtu2bdOUKVOanae4uFg333yzJk2apF//+teSpL/97W/auXOn7rnnHl177bW6++679dhjj+n+++/XlVdeKUmu/7a0DVqTk5Ojfv36aenSpdq3b5+efPJJHT582DWIS1u1pbav+uKLL5Senq4DBw4oJydHl112mTZs2KD58+frzJkzuueee9zmf+mll3Tu3DktWrRIFotFK1eu1KxZs/TJJ59wBh0ALnL27FmdPHnSrc1isWjgwIGS/nUn1Xe+8x3t2LFDP/zhD3XllVfqlVdeUXZ2dpNlFRUVae7cuUpISNCKFSv0+eef6wc/+IGGDBnSZN7O7EfHjx+vd955R4cOHXIFsJ07d+r2229XWlqalixZojNnzqhfv34yDEPvvvuuxo4d6+qa1dF119bWauLEiTp69KjuueceRUdH66WXXtL27dubnf/zzz/Xddddp1mzZmnOnDnauHGjfv7znyshIUFZWVm68sor9eCDD2rx4sW64447dM0110iSxo0b1+Jnv5TmjqUu9te//lUzZszQ6NGj9eCDD8pqterAgQOukxltqevUqVPKysrSv//7v+v73/++oqKiWq3rV7/6lSwWi37+85/r+PHjKigo0OTJk1VRUdGuOxXbu80Mw9D111+v7du36wc/+IGSkpK0detW3XfffTpy5Ih++9vfus2/Y8cO/elPf9KPfvQj9enTR4899phuuukm/eMf/3D9TgAyAB/27LPPGpKMsrKyFueJiIgwvvWtb7mmJ02aZCQkJBhffvmlq62hocEYN26cccUVV7ja7rrrLsNisRgffvihq+3UqVPGgAEDDEnGwYMHXe3Dhw83JBlbtmxxW/fy5cuNXr16Gf/7v//r1p6Xl2cEBwcb//jHPwzDMIx33nnHkGS8+OKLbvNt2bKl2faLLVmyxJBknDhxotnXP//8c0OSceONN7rasrOzjeHDh7um77nnHqNv377GhQsXWlzPhg0bDEnG9u3bm7zW0jZofC07O9s13fhzS05ONurq6lztK1euNCQZr776qqtNkrFkyZJLLrO12iZMmGBMmDDBNV1QUGBIMl544QVXW11dnTF27Fijd+/eRnV1tWEYhnHw4EFDkjFw4EDj9OnTrnlfffVVQ5Lx3//9303WBQCBqvFve3P/rFara75NmzYZkoyVK1e62i5cuGBcc801hiTj2WefdbUnJCQYQ4cONc6dO+dqe+uttwxJbvuwzu5Hi4qKDEnG888/bxiGYRw9etSQZLz99tvGuXPnjODgYKOoqMgwDMP4+OOPDUnGr371q3av++L90W9+8xtDkrFp0yZX2xdffGF885vfbLJPmzBhgiHJeO6551xtDofDiI6ONm666SZXW1lZWZPt2JqOHEs1Hnc0+u1vf9vqccil6mr8bIWFhc2+9tVttn37dkOSMWTIENf+2jAM4w9/+IMhyXj00UddbRcfK7S0zNZqu/h4qfH7+8tf/tJtvtmzZxsWi8U4cOCAq02SERoa6ta2Z88eQ5Lx+OOPN1kXAhe3r8Pv9e7d2zVy6OnTp/Xmm29qzpw5OnfunE6ePKmTJ0/q1KlTyszM1P79+3XkyBFJ0pYtWzR27Fi3AT8GDBigW265pdn1XHbZZcrMzHRr27Bhg6655hr179/fta6TJ09q8uTJcjqdKi0tdc0XERGhKVOmuM2XnJys3r17t3jGvD3bQFKrI6j269dPtbW1bre4t1dz26A1d9xxh9vVgzvvvFM9evTQ5s2bO1xDW2zevFnR0dG6+eabXW0hISG6++67VVNTo7fffttt/rlz56p///6u6caz6J988kmX1gkAvshut6u4uNjt3+uvv+56ffPmzerRo4fuvPNOV1twcLBbf27pX4Nv/eUvf9G8efNc+zFJmjBhghISEtzm7ex+dNy4cQoKCnL1FW+8up2amqrevXtr9OjRrqu+jf9t7E/emXVv2bJFQ4YM0fXXX+9qCwsLa/GKdO/evd36toeGhiotLa3L90dfPZZqTr9+/SRJr776aocHRbNarVqwYEGb5583b5769Onjmp49e7YGDx7cLccQwcHBuvvuu93af/KTn8gwDLfvuiRNnjxZI0aMcE2PHj1affv25RgCbrh9HX6vpqZGgwYNkiQdOHBAhmHogQce0AMPPNDs/MePH9eQIUN0+PBhjR07tsnrLY0e29xIs/v379dHH32kr33tay2uq3G+s2fPuupsab6OqqmpkSS3ndfFfvSjH+kPf/iDsrKyNGTIEE2dOlVz5szRdddd1+b1NLcNWnPFFVe4Tffu3VuDBw/u8seaHT58WFdccUWTEeEbb3c/fPiwW/uwYcPcphsDemf7+wOAP0pLS2t1oLfDhw9r8ODBbkFbUpMuT41/i5vb744cOVIffPCBa7qz+9F+/frpqquucgve3/rWt1y3QY8bN87ttcYw3Nl1Hz58WCNGjGjSZaulY42hQ4c2mbd///766KOPWv18nfXVY6nmzJ07V88884xuv/125eXladKkSZo1a5Zmz57d5qevDBkypF2Dul18DGGxWDRy5MhuOYaIiYlpckzV1mMI6V8/M44h8FWEcvi1f/7znzp79qxr59Z49vanP/1pi1d0O/rIlub6LzU0NGjKlCn62c9+1ux7vv71r7vmGzRokF588cVm52sp1LfVxx9/LKn1zzZo0CBVVFRo69atev311/X666/r2Wef1bx585oMgNaS7hxt3ul0dtu6goODm203LhrQBQBgDk/sR8ePH6/CwkKdOXNGO3fudOtTPG7cOK1du1b19fXasWOHkpOTFRYW5rF1t5UZ+6OLj6Wa07NnT5WWlmr79u0qKirSli1btH79ek2cOFHbtm1rse6Ll+FpLY1P43Q621STJ3AMgbYglMOvPf/885LkCuCXX365pH/dqjx58uRW3zt8+HAdOHCgSXtzbS0ZMWKEampqLrmuESNG6I033tDVV1/dJTuli7dDS0JDQzVz5kzNnDlTDQ0N+tGPfqSnnnpKDzzwgEaOHNmuwdfaYv/+/crIyHBN19TU6OjRo5o2bZqrrX///k1G5K2rq9PRo0fd2tpT2/Dhw/XRRx+poaHB7Qz+3r17Xa8DALrG8OHDVVJSopqaGrer5fv27Wsyn9T8fvfiNk/sR8ePH68nn3xSb7zxhj788EPdd999rtfGjRunL774QkVFRfrkk0900003eWTdw4cPV2VlpQzDcNuPtedY42Ke3le39RgiKChIkyZN0qRJk7R69Wo99NBD+sUvfqHt27dr8uTJXXIM8VWGYejAgQNuz1Nv7hhC+tfV7MZjQqn9xxBvvPGGzp0753a1nGMIdAZ9yuG33nzzTS1fvlyXXXaZqx/4oEGDlJ6erqeeeqpJqJOkEydOuP4/MzNTu3btUkVFhavt9OnTLZ4Jb86cOXO0a9cubd26tclrZ86c0YULF1zzOZ1OLV++vMl8Fy5caPExMW3x0ksv6ZlnntHYsWM1adKkFuc7deqU23RQUJBrx+ZwOCRJvXr1ctXuCWvWrFF9fb1r+sknn9SFCxeUlZXlahsxYoSr7/1X33fxlfL21DZt2jQdO3ZM69evd7VduHBBjz/+uHr37q0JEyZ06PMAAC5t2rRpunDhgp588klXm9Pp1OOPP+42X0xMjEaNGqXnnnvO1Q1Lkt5++2395S9/cZvXE/vRxj7iq1evVn19vduV8ri4OA0ePNj1+LGvPp+8M+vOzMzUkSNH3B7L+uWXX+rpp5++ZL0t8eS+urljqeacPn26SVvjmDxddQzx3HPPufVz37hxo44ePdrkGOK9995TXV2dq+3Pf/5zk0entfcYwul06oknnnBr/+1vfyuLxeK2fqCtuFIOv/D6669r7969unDhgqqqqvTmm2+quLhYw4cP12uvvea6xUz61wA048ePV0JCghYuXKjLL79cVVVV2rVrl/75z39qz549kqSf/exneuGFFzRlyhTdddddrkeiDRs2TKdPn27TWdX77rtPr732mmbMmKH58+crOTlZtbW1+stf/qKNGzfq0KFDioyM1IQJE7Ro0SKtWLFCFRUVmjp1qkJCQrR//35t2LBBjz76qGbPnn3J9W3cuFG9e/dWXV2djhw5oq1bt2rnzp1KTEzUhg0bWn3v7bffrtOnT2vixIkaOnSoDh8+rMcff1xJSUmuflJJSUkKDg7Wr3/9a509e1ZWq1UTJ05stZ9Za+rq6jRp0iTNmTNH+/bt0+9+9zuNHz/ebcCb22+/XT/84Q910003acqUKdqzZ4+2bt2qyMhIt2W1p7Y77rhDTz31lObPn6/y8nLFxcVp48aN2rlzpwoKClrtew8AaF3jPvli48aN0+WXX66ZM2fq6quvVl5eng4dOqT4+Hj96U9/0tmzZ5u856GHHtJ3vvMdXX311VqwYIE+//xzPfHEExo1apRbUPfEfnTYsGGKjY3Vrl27FBcXp5iYmCb1//GPf5TFYtHVV1/tkXUvWrRITzzxhG6++Wbdc889Gjx4sF588UXXcUtHri6PGDFC/fr1U2Fhofr06aNevXppzJgxlxz3pT3HUhd78MEHVVpaqunTp2v48OE6fvy4fve732no0KGuExgdraslAwYM0Pjx47VgwQJVVVWpoKBAI0eOdBsk7/bbb9fGjRt13XXXac6cOfr73/+uF154wW3gtfbWNnPmTGVkZOgXv/iFDh06pMTERG3btk2vvvqq7r333ibLBtrExJHfgU67+PEroaGhRnR0tDFlyhTj0UcfdXtUxlf9/e9/N+bNm2dER0cbISEhxpAhQ4wZM2YYGzdudJvvww8/NK655hrDarUaQ4cONVasWGE89thjhiTj2LFjrvmGDx9uTJ8+vdl1nTt3zsjPzzdGjhxphIaGGpGRkca4ceOMRx55xO1xYIZhGGvWrDGSk5ONnj17Gn369DESEhKMn/3sZ8Znn33W6nZofDRJ47+wsDBj6NChxowZM4y1a9e6Pf6t0cWP+Ni4caMxdepUY9CgQUZoaKgxbNgwY9GiRcbRo0fd3vf0008bl19+uREcHOz2uJbWtkFLj0R7++23jTvuuMPo37+/0bt3b+OWW24xTp065fZep9Np/PznPzciIyON8PBwIzMz0zhw4ECzjzlpqbaLH31iGIZRVVVlLFiwwIiMjDRCQ0ONhISEJo9CaXwk2qpVq5p8JrXwqDYACFStPRJNFz1u6tSpU8att95q9O3b14iIiDBuvfVW48MPP2z2sVQvv/yy8c1vftOwWq3GqFGjjNdee8246aabjG9+85tNaujofrTRzTffbEgyvve97zV5bfXq1YYk48orr2z2vW1Zd3P7o08++cSYPn260bNnT+NrX/ua8ZOf/MT44x//aEgy3nvvPbf3XnXVVU3We/H+3DD+9ejO+Ph4o0ePHpd8PFpHjqUufiRaSUmJ8Z3vfMeIiYkxQkNDjZiYGOPmm29u8kjYlupq6bM1t80aH4n2X//1X0Z+fr4xaNAgo2fPnsb06dONw4cPN3n/b37zG2PIkCGG1Wo1rr76amP37t3N/hxaqq257Xvu3Dnjxz/+sRETE2OEhIQYV1xxhbFq1SqjoaHBbT5Jhs1ma1JTS49qQ+CyGAajDADtce+99+qpp55STU1Ntw0SAgAA/l9SUpK+9rWvdeoxnt6soKBAP/7xj/XPf/5TQ4YMMbscAF2MPuVAK7744gu36VOnTun555/X+PHjCeQAAHSx+vp61/grjd566y3t2bNH6enp5hTlYRcfa3z55Zd66qmndMUVVxDIgQBBn3KgFWPHjlV6erquvPJKVVVV6fe//72qq6tbfMY5AADwnCNHjmjy5Mn6/ve/r5iYGO3du1eFhYWKjo7WD3/4Q7PL84hZs2Zp2LBhSkpK0tmzZ/XCCy9o79697RpYFoBvI5QDrZg2bZo2btyoNWvWyGKx6Nvf/rZ+//vf69prrzW7NAAA/F7//v2VnJysZ555RidOnFCvXr00ffp0Pfzwwxo4cKDZ5XlEZmamnnnmGb344otyOp2Kj4/Xyy+/rLlz55pdGoBuQp9yAAAAAABMQp9yAAAAAABMQigHAAAAAMAkPtenvKGhQZ999pn69Okji8VidjkAAMgwDJ07d04xMTEKCuJ8d2exrwcAeJuu3Nf7TCi32+2y2+2qq6vT3//+d7PLAQCgiU8//VRDhw41uwyf99lnnyk2NtbsMgAAaKIr9vU+N9Db2bNn1a9fP3366afq27dvp5ZVX1+vbdu2aerUqQoJCfFQhWgrtr+52P7mYvubz5M/g+rqasXGxurMmTOKiIjwUIWBp/EE/IULF7R//34dPHhQAwYMMLss+AD+pqK9+M6gvU6fPq3LLrusS/b1PnOlvFHjbWx9+/b1SCgPDw9X3759+WU0AdvfXGx/c7H9zdcVPwNute4cm80mm82m6upqRUREqE+fPp3e1yMw8DcV7cV3Bu1VX18vqWv29XR8AwAAAADAJIRyAADgFex2u+Lj45Wammp2KQAAdBufCeXsqAEA8G82m02VlZUqKyszuxQAALqNz4RydtQAAAAAAH/jM6EcAAAAAAB/QygHAABega5qAIBARCgHAABega5qAIBA5DOhnLPnAAAAAAB/4zOhnLPnAAAAAAB/4zOhHAAA+DfuigMABCJCOQAA8ArcFQcACESEcgAAAAAATEIoBwAAAADAJD4TyulnBgAAAADwNz3MLqCtbDabbDabqqurFRERYXY5AODz4vKKzC5Bhx6ebnYJ8CJ2u112u11Op9PsUnAJnfn7we89ALjzmSvlAADAvzHQGwAgEBHKAQAAAAAwCaEcAAAAAACTEMoBAAAAADAJoRwAAAAAAJMQygEAgFfg8acAgEDkM49E4zEpAAD4Nx5/2r284bGIAAAfulLOY1IAAAAAAP7GZ0I5AAAAAAD+hlAOAAAAAIBJCOUAAAAAAJiEUA4AAAAAgEkI5QAAAAAAmIRQDgAAvALPKQcABCJCOQAA8Ao8/hQAEIh8JpRz9hwAAAAA4G98JpRz9hwAAAAA4G98JpQDAAAAAOBvCOUAAAAAAJiEUA4AAAAAgEkI5QAAAAAAmIRQDgAAAACASQjlAAAAAACYhFAOAAAAAIBJCOUAAMAr2O12xcfHKzU11exSAADoNoRyAADgFWw2myorK1VWVmZ2KQAAdBufCeWcPQcAAAAA+BufCeWcPQcAAAAA+BufCeUAAAAAAPgbQjkAAAAAACYhlAMAAAAAYBJCOQAAAAAAJiGUAwAAAABgEkI5AAAAAAAmIZQDAAAAAGASQjkAAAAAACYhlAMAAAAAYJIeZhcAAAAAdLW4vKIOve/Qw9M9XAkAuONKOQAA8LiDBw8qIyND8fHxSkhIUG1trdklAQDglbhSDgAAPG7+/Pn65S9/qWuuuUanT5+W1Wo1uyQAALwSoRwAAHjUX//6V4WEhOiaa66RJA0YMMDkigAA8F7cvg4AANyUlpZq5syZiomJkcVi0aZNm5rMY7fbFRcXp7CwMI0ZM0bvv/++67X9+/erd+/emjlzpr797W/roYce6s7yAQDwKVwpBwAAbmpra5WYmKjbbrtNs2bNavL6+vXrlZubq8LCQo0ZM0YFBQXKzMzUvn37NGjQIF24cEHvvPOOKioqNGjQIF133XVKTU3VlClTml2fw+GQw+FwTVdXV0uS6uvrVV9f3zUfErIGG6astyt+po3LbG3ZHf28fAf9U1u+M8BXdeV3xWdCud1ul91ul9PpNLsUAAD8WlZWlrKyslp8ffXq1Vq4cKEWLFggSSosLFRRUZHWrl2rvLw8DRkyRCkpKYqNjZUkTZs2TRUVFS2G8hUrVmjZsmVN2rdv367w8HAPfCI0Z2WaOevdvHlzly27uLi4xdc6+nm7sl6Yr7XvDPBV58+f77Jl+0wot9lsstlsqq6uVkREhNnlAAAQkOrq6lReXq78/HxXW1BQkCZPnqxdu3ZJklJTU3X8+HF9/vnnioiIUGlpqRYtWtTiMvPz85Wbm+uarq6uVmxsrDIyMjRw4MCu+zABbtTSraas9+OlmR5fZn19vYqLizVlyhSFhIQ0O09HP29X1AvzteU7A3zVqVOnumzZPhPKAQCA+U6ePCmn06moqCi39qioKO3du1eS1KNHDz300EO69tprZRiGpk6dqhkzZrS4TKvV2uzo7CEhIRwsdyGH02LKervyZ9rad6ajn5fvoH/j7wzaqiu/J4RyAADgcZe6Bb45dFUDAAQiQjkAmGjU0q2mXa0COiIyMlLBwcGqqqpya6+qqlJ0dHSnlk1XNQBAIOKRaAAAoM1CQ0OVnJyskpISV1tDQ4NKSko0duxYEysDAMA3caUcAAC4qamp0YEDB1zTBw8eVEVFhQYMGKBhw4YpNzdX2dnZSklJUVpamgoKClRbW+sajb2juH0dABCICOUAAMDN7t27lZGR4ZpuHBk9Oztb69at09y5c3XixAktXrxYx44dU1JSkrZs2dJk8Lf24vZ1AEAgIpQDAAA36enpMgyj1XlycnKUk5PTTRUBAOC/6FMOAAAAAIBJCOUAAMAr2O12xcfHKzU11exSAADoNty+DiBgxeUVmbZua7ChlWmmrR7wSvQpBwAEIkI5AAAA0AU6c/L30MPTPVgJAG/G7esAAAAAAJiEUA4AALwCfcoBAIGIUA4AALyCzWZTZWWlysrKzC4FAIBuQ59yAAAA+ISW+sD8ibkAACAASURBVGg3Dp45aulWOZyWbq4KADqHK+UAAAAAAJiEK+UAAADoNmY+jhIAvBFXygEAgFdgoDcAQCAilAMAAK/AQG8AgEBEKAcAAAAAwCTdHsrPnDmjlJQUJSUladSoUXr66ae7uwQAAAAAALxCtw/01qdPH5WWlio8PFy1tbUaNWqUZs2apYEDB3Z3KQAAAAAAmKrbr5QHBwcrPDxckuRwOGQYhgzD6O4yAAAAAAAwXbtDeWlpqWbOnKmYmBhZLBZt2rSpyTx2u11xcXEKCwvTmDFj9P7777u9fubMGSUmJmro0KG67777FBkZ2fFPAAAA/AKjrwMAAlG7b1+vra1VYmKibrvtNs2aNavJ6+vXr1dubq4KCws1ZswYFRQUKDMzU/v27dOgQYMkSf369dOePXtUVVWlWbNmafbs2YqKiur8pwEAAD7LZrPJZrOpurpaERERZpfjE3jmNwD4vnaH8qysLGVlZbX4+urVq7Vw4UItWLBAklRYWKiioiKtXbtWeXl5bvNGRUUpMTFR77zzjmbPnt3s8hwOhxwOh2u6urpaklRfX6/6+vr2lu+m8f2dXQ46hu1vLra/ZA02r+uMNchw+2+gMvP758nfgUD+PQIAAJ3j0YHe6urqVF5ervz8fFdbUFCQJk+erF27dkmSqqqqFB4erj59+ujs2bMqLS3VnXfe2eIyV6xYoWXLljVp37Ztm6tvemcVFxd7ZDnoGLa/uQJ5+69MM7sCaXlKg9klmGrz5s1ml+CR34Hz5897oBIAABCIPBrKT548KafT2eRW9KioKO3du1eSdPjwYd1xxx2uAd7uuusuJSQktLjM/Px85ebmuqarq6sVGxurqVOnqm/fvp2qt76+XsXFxZoyZYpCQkI6tSy0H9vfXGx/adTSraat2xpkaHlKgx7YHSRHg8W0Osz28dJM09btyd+Bxru4AAAA2qvbH4mWlpamioqKNs9vtVpltVqbtIeEhHgsSHhyWWg/tr+5Ann7O5zmh2FHg8Ur6jCLN3z3PPE74A2fAwAA+CaPPhItMjJSwcHBqqqqcmuvqqpSdHS0J1cFAAAAAIDP82goDw0NVXJyskpKSlxtDQ0NKikp0dixYzu1bB6TAgAAAADwN+2+fb2mpkYHDhxwTR88eFAVFRUaMGCAhg0bptzcXGVnZyslJUVpaWkqKChQbW2tazT2juIxKQAA+De73S673S6n02l2KQAAdJt2h/Ldu3crIyPDNd04CFt2drbWrVunuXPn6sSJE1q8eLGOHTumpKQkbdmyheeQAwCAVnECHgAQiNodytPT02UYrT9XNycnRzk5OR0uCgAAAAhkcXlFHX7voYene7ASAF3No33KAQAAAABA2/lMKGegNwAAAACAv/GZUG6z2VRZWamysjKzSwEAAAAAwCPa3accADylM/3lAAAAAH9AKAcAAABawAlkAF3NZ25fBwAAAADA3/hMKGegNwAAAACAv/GZUM5AbwAAAAAAf+MzoRwAAPg37ooDAAQiQjkAAPAK3BUHAAhEhHIAAAAAAExCKAcAAAAAwCQ+85xyu90uu90up9NpdikAAACA1+rMs9UPPTzdg5UAaAufuVJOPzMAAAAAgL/xmVAOAAAAAIC/IZQDAAAAAGASQjkAAAAAACYhlAMAAAAAYBJCOQAAAAAAJiGUAwAAAABgEp8J5Xa7XfHx8UpNTTW7FAAAAAAAPKKH2QW0lc1mk81mU3V1tSIiIswuBwAAtCIuLk59+/ZVUFCQ+vfvr+3bt5tdEgAAXslnQjkAAPAt7777rnr37m12GQAAeDWfuX0dAAAAAAB/w5VyAIBp4vKKTFu3NdjQyjTTVu/VSktLtWrVKpWXl+vo0aN65ZVXdMMNN7jNY7fbtWrVKh07dkyJiYl6/PHHlZb2/xvUYrFowoQJCgoK0r333qtbbrmluz8GAAA+gSvlAADATW1trRITE2W325t9ff369crNzdWSJUv0wQcfKDExUZmZmTp+/Lhrnh07dqi8vFyvvfaaHnroIX300UfdVT4AAD6FK+UAAMBNVlaWsrKyWnx99erVWrhwoRYsWCBJKiwsVFFRkdauXau8vDxJ0pAhQyRJgwcP1rRp0/TBBx9o9OjRzS7P4XDI4XC4pqurqyVJ9fX1qq+v98hn8lfWYMPsEryCNchw+y86LlB+5xo/Z6B8XnReV35XCOUAAKDN6urqVF5ervz8fFdbUFCQJk+erF27dkn615X2hoYG9enTRzU1NXrzzTc1Z86cFpe5YsUKLVu2rEn79u3bFR4e7vkP4UfoguFueUqD2SX4vM2bN5tdQrcqLi42uwT4iPPnz3fZsgnlAACgzU6ePCmn06moqCi39qioKO3du1eSVFVVpRtvvFGS5HQ6tXDhQqWmpra4zPz8fOXm5rqmq6urFRsbq4yMDA0cOLALPoX/GLV0q9kleAVrkKHlKQ16YHeQHA0Ws8vxaR8vzTS7hG5RX1+v4uJiTZkyRSEhIWaXAx9w6tSpLlu2z4Ryu90uu90up9NpdikAAKAVl19+ufbs2dPm+a1Wq6xWa5P2kJAQDpYvweEkgH6Vo8HCNumkKx7Y1uH3Hnp4ugcr6R78nUFbdeX3xGcGerPZbKqsrFRZWZnZpQAAELAiIyMVHBysqqoqt/aqqipFR0d3atl2u13x8fGtXlUHAMDf+EwoBwAA5gsNDVVycrJKSkpcbQ0NDSopKdHYsWM7tWxOwAMAApHP3L4OAAC6R01NjQ4cOOCaPnjwoCoqKjRgwAANGzZMubm5ys7OVkpKitLS0lRQUKDa2lrXaOwAAKDtCOUAAMDN7t27lZGR4ZpuHIQtOztb69at09y5c3XixAktXrxYx44dU1JSkrZs2dJk8Lf2YvwYAEAgIpQDAAA36enpMozWn/eck5OjnJwcj67XZrPJZrOpurpaERERHl02AADeij7lAAAAAACYhFAOAAC8AqOvAwACEaEcAAB4BUZfBwAEIkI5AAAAAAAmIZQDAAAAAGASnwnl9DMDAAAAAPgbnwnl9DMDAMC/cQIeABCIfCaUAwAA/8YJeABAICKUAwAAAABgEkI5AAAAAAAmIZQDAAAAAGASQjkAAPAKDPQGAAhEhHIAAOAVGOgNABCICOUAAAAAAJiEUA4AAAAAgEkI5QAAAAAAmIRQDgAAAACASXqYXQAAc41aulUOp8XsMgBAdrtddrtdTqfT7FIAAOg2XCkHAABegdHXAQCBiFAOAAAAAIBJCOUAAAAAAJiEUA4AAAAAgEl8JpTb7XbFx8crNTXV7FIAAAAAAPAInwnlDP4CAAAAAPA3PBINAAB4BR6JBvi2uLyiDr3v0MPTPVwJ4Ft85ko5AADwb9wVBwAIRIRyAAAAAABMQigHAAAAAMAkhHIAAAAAAExCKAcAAAAAwCSEcgAAAAAATEIoBwAAAADAJIRyAAAAAABMQigHAAAAAMAkhHIAAAAAAExCKAcAAAAAwCSEcgAA4BXsdrvi4+OVmppqdikAAHQbQjkAAPAKNptNlZWVKisrM7sUAAC6DaEcAAAAAACTEMoBAAAAADAJoRwAAAAAAJMQygEAAAAAMAmhHAAAAAAAkxDKAQAAAAAwSbeH8k8//VTp6emKj4/X6NGjtWHDhu4uAQAAAAAAr9Cj21fYo4cKCgqUlJSkY8eOKTk5WdOmTVOvXr26uxQAAAAAAEzV7aF88ODBGjx4sCQpOjpakZGROn36NKEcAAAAABBw2n37emlpqWbOnKmYmBhZLBZt2rSpyTx2u11xcXEKCwvTmDFj9P777ze7rPLycjmdTsXGxra/cgAAAAAAfFy7Q3ltba0SExNlt9ubfX39+vXKzc3VkiVL9MEHHygxMVGZmZk6fvy423ynT5/WvHnztGbNmo5VDgAAAACAj2v37etZWVnKyspq8fXVq1dr4cKFWrBggSSpsLBQRUVFWrt2rfLy8iRJDodDN9xwg/Ly8jRu3LhW1+dwOORwOFzT1dXVkqT6+nrV19e3t3w3je/v7HLQMWx/czVud2uQYXIlgalxu7P9zdO47T3xN4i/Y807f/68rrzySn33u9/VI488YnY5AAB4JY/2Ka+rq1N5ebny8/NdbUFBQZo8ebJ27dolSTIMQ/Pnz9fEiRN16623XnKZK1as0LJly5q0b9u2TeHh4R6pu7i42CPLQcew/c21PKXB7BICGtvffJ74G3T+/HkPVOJ/fvWrX+nf/u3fzC4DAACv5tFQfvLkSTmdTkVFRbm1R0VFae/evZKknTt3av369Ro9erSrP/rzzz+vhISEZpeZn5+v3Nxc13R1dbViY2M1depU9e3bt1P11tfXq7i4WFOmTFFISEinloX2Y/ubq3H7P7A7SI4Gi9nlBBxrkKHlKQ1sfxM1/gw88Teo8S4u/L/9+/dr7969mjlzpj7++GOzywEAwGt1++jr48ePV0ND268MWa1WWa3WJu0hISEeC3KeXBbaj+1vLkeDRQ4nodAsbH/zeeJvkL/9DSstLdWqVatUXl6uo0eP6pVXXtENN9zgNo/dbteqVat07NgxJSYm6vHHH1daWprr9Z/+9KdatWqV3n333e4uHwAAn+LRUB4ZGang4GBVVVW5tVdVVSk6OtqTqwIAAF2kcVDX2267TbNmzWryeuOgroWFhRozZowKCgqUmZmpffv2adCgQXr11Vf19a9/XV//+tfbFMq7cvwYf2cNZlwKiXE6fJ0Zv+eMbYT26srvikdDeWhoqJKTk1VSUuI6o97Q0KCSkhLl5OR0atl2u112u11Op9MTpQIAgBZ0dlDX9957Ty+//LI2bNigmpoa1dfXq2/fvlq8eHGzy2tp/Jjt27d7bPwYf7Uy7dLzBBLG6fBNmzdvNm3djG2EturK8WPaHcpramp04MAB1/TBgwdVUVGhAQMGaNiwYcrNzVV2drZSUlKUlpamgoIC1dbWunbcHWWz2WSz2VRdXa2IiIhOLQsAAHRMWwZ1XbFihVasWCFJWrdunT7++OMWA7nU8vgxGRkZGjhwYBd9Ev8waulWs0vwCozT4ds+XprZ7etkbCO016lTp7ps2e0O5bt371ZGRoZrunEnmp2drXXr1mnu3Lk6ceKEFi9erGPHjikpKUlbtmxpMvgbAADwPW0Z1LW9umP8GH/FmBTuGKfDN5n5e87fGbRVV35P2h3K09PTZRit99fJycnp9O3qAADA982fP7/N8wZyV7W4vCKzSwAAmCTI7AIAAIDv6MpBXW02myorK1VWVtap5QAA4Et8JpTb7XbFx8crNTXV7FIAAAhYXx3UtVHjoK5jx441sTIAAHxTtz+nvKMY6A0AgO5h1qCugXz7OgAgcPlMKAcAAN3DrEFdOQEPAAhEhHIAAOCGQV0BAOg+PtOnHAAAAAAAf+MzoZyB3gAA8G/s6wEAgchnQjmPSQEAwL+xrwcABCL6lAMmissrMm3d1mBDK9NMWz0AAAAAEcoBAAAAmKgzFykOPTzdg5UA5vCZ29cBAIB/o085ACAQEcoBAIBXoE85ACAQ+Uwo5+w5AAAAAMDf+Ewo5+w5AAAAAMDf+EwoBwAAAADA3xDKAQCAV6CrGgAgEBHKAQCAV6CrGgAgEBHKAQAAAAAwSQ+zCwDMFJdXZHYJAAAAAAKYz1wpp58ZAAAAAMDf+Ewop58ZAAAAAMDf+EwoBwAA/o274gAAgYhQDgAAvAJ3xQEAAhGhHAAAAAAAkxDKAQAAAAAwCaEcAAAAAACTEMoBAAAAADAJoRwAAAAAAJP4TCjnMSkAAAAAAH/jM6Gcx6QAAODfOAEPAAhEPhPKAQCAf+MEPAAgEBHKAQAAAAAwCaEcAAAAAACTEMoBAAAAADAJoRwAAAAAAJMQygEAAAAAMAmhHAAAAAAAkxDKAQAAAAAwCaEcAAAAAACTEMoBAAAAADBJD7MLaCu73S673S6n02l2KfCwUUu3yuG0mF0GAMBk7OsBAIHIZ66U22w2VVZWqqyszOxSAABAF2BfDwAIRD4TygEAAAAA8DeEcgAAAAAATEIoBwAAAADAJIRyAAAAAABMQigHAAAAAMAkhHIAAAAAAExCKAcAAAAAwCSEcgAAAAAATEIoBwAAAADAJIRyAAAAAABMQigHAAAAAMAkhHIAAOBRZ86cUUpKipKSkjRq1Cg9/fTTZpcEAIDX6mF2AQAAwL/06dNHpaWlCg8PV21trUaNGqVZs2Zp4MCBZpcGAIDX4Uo5AADwqODgYIWHh0uSHA6HDMOQYRgmVwUAgHfymVBut9sVHx+v1NRUs0sBAMCvlZaWaubMmYqJiZHFYtGmTZuazGO32xUXF6ewsDCNGTNG77//vtvrZ86cUWJiooYOHar77rtPkZGR3VU+AAA+xWdCuc1mU2VlpcrKyswuBQAAv1ZbW6vExETZ7fZmX1+/fr1yc3O1ZMkSffDBB0pMTFRmZqaOHz/umqdfv37as2ePDh48qJdeeklVVVXdVT4AAD6FPuUAAMBNVlaWsrKyWnx99erVWrhwoRYsWCBJKiwsVFFRkdauXau8vDy3eaOiopSYmKh33nlHs2fPbnZ5DodDDofDNV1dXS1Jqq+vV319fWc/jk+wBnN7f2dYgwy3/yJwdPRvROP7AuVvDDqvK78rhHIAANBmdXV1Ki8vV35+vqstKChIkydP1q5duyRJVVVVCg8PV58+fXT27FmVlpbqzjvvbHGZK1as0LJly5q0b9++3dU33d+tTDO7Av+wPKXB7BLQzTZv3typ9xcXF3uoEvi78+fPd9myCeUAAKDNTp48KafTqaioKLf2qKgo7d27V5J0+PBh3XHHHa4B3u666y4lJCS0uMz8/Hzl5ua6pqurqxUbG6uMjIyAGbF91NKtZpfg06xBhpanNOiB3UFyNFjMLgfd6OOlmR16X319vYqLizVlyhSFhIR4uCr4o1OnTnXZsgnlAADAo9LS0lRRUdHm+a1Wq6xWa5P2kJCQgDlYdjgJkp7gaLCwLQNMZ/9GBNLfGXROV35PfGagNwAAYL7IyEgFBwc3GbitqqpK0dHRnVo2T1oBAAQiQjkAAGiz0NBQJScnq6SkxNXW0NCgkpISjR07tlPL5kkrAIBAxO3rAADATU1NjQ4cOOCaPnjwoCoqKjRgwAANGzZMubm5ys7OVkpKitLS0lRQUKDa2lrXaOwAAKDtCOUAAMDN7t27lZGR4ZpuHIQtOztb69at09y5c3XixAktXrxYx44dU1JSkrZs2dJk8Lf2stvtstvtcjqdnVoOAAC+hFAOAADcpKenyzBaf95zTk6OcnJyPLpem80mm82m6upqRUREeHTZAAB4K/qUAwAAAABgEkI5AAAAAAAmIZQDAACvwCPRAACBiD7lAADAK9CnHEB7xeUVdeh91mBDK9M8XAzQQVwpBwAAAADAJIRyAAAAAABMQigHAABegT7lAIBARCgHAABewWazqbKyUmVlZWaXAgBAtyGUAwAAAABgEkI5AAAAAAAmIZQDAAAAAGASQjkAAPAKDPQGAAhEpoTyG2+8Uf3799fs2bPNWD0AAPBCDPQGAAhEpoTye+65R88995wZqwYAAAAAwGuYEsrT09PVp08fM1YNAAAAAIDXaHcoLy0t1cyZMxUTEyOLxaJNmzY1mcdutysuLk5hYWEaM2aM3n//fY8UCwAAAACAP+nR3jfU1tYqMTFRt912m2bNmtXk9fXr1ys3N1eFhYUaM2aMCgoKlJmZqX379mnQoEHtLtDhcMjhcLimq6urJUn19fWqr69v9/K+qvH9nV0OOqZxu1uDDJMrCUyN253tbw62v/kat70n9gHsRwAAQEe1O5RnZWUpKyurxddXr16thQsXasGCBZKkwsJCFRUVae3atcrLy2t3gStWrNCyZcuatG/btk3h4eHtXl5ziouLPbIcdMzylAazSwhobH9zsf3N54l9wPnz5z1QCex2u+x2u5xOp9mlAADQbdodyltTV1en8vJy5efnu9qCgoI0efJk7dq1q0PLzM/PV25urmu6urpasbGxmjp1qvr27dupeuvr61VcXKwpU6YoJCSkU8tC+zVu/wd2B8nRYDG7nIBjDTK0PKWB7W8Str/5Gn8GntgHNN7Fhc6x2Wyy2Wyqrq5WRESE2eUAANAtPBrKT548KafTqaioKLf2qKgo7d271zU9efJk7dmzR7W1tRo6dKg2bNigsWPHNrtMq9Uqq9XapD0kJMRjQdqTy0L7ORoscjgJJWZh+5uL7W8+T+wD2IcAAICO8mgob6s33njDjNUCAAAAAOBVPPpItMjISAUHB6uqqsqtvaqqStHR0Z5cFQAAAAAAPs+joTw0NFTJyckqKSlxtTU0NKikpKTF29Pbym63Kz4+XqmpqZ0tEwAAAAAAr9Du29dramp04MAB1/TBgwdVUVGhAQMGaNiwYcrNzVV2drZSUlKUlpamgoIC1dbWukZj7ygGfwEAAAAA+Jt2h/Ldu3crIyPDNd04Mnp2drbWrVunuXPn6sSJE1q8eLGOHTumpKQkbdmypcngbwAAAAAABLp2h/L09HQZhtHqPDk5OcrJyelwUQAAIPDwnHIAQCDyaJ/yrkSfcgAA/JvNZlNlZaXKysrMLgUAgG7jM6GcHTUAAAAAwN/4TCgHAAAAAMDfEMoBAAAAADAJoRwAAAAAAJMQygEAAAAAMInPhHJGXwcAAAAA+BufCeWMvg4AAAAA8Dc+E8oBAAAAAPA3hHIAAAAAAExCKAcAAF6B8WMAAIGIUA4AALwC48cAAAKRz4Ryzp4DAAAAAPyNz4Ryzp4DAAAAAPyNz4RyAAAAAAD8DaEcAAAAAACTEMoBAAAAADAJoRwAAAAAAJMQygEAAAAAMInPhHIeiQYAAAAA8Dc+E8p5JBoAAAAAwN/4TCgHAAAAAMDfEMoBAAAAADAJoRwAAHjcp59+qvT0dMXHx2v06NHasGGD2SUBAOCVephdAAAA8D89evRQQUGBkpKSdOzYMSUnJ2vatGnq1auX2aUBAOBVCOUAAMDjBg8erMGDB0uSoqOjFRkZqdOnTxPKAQC4CLevAwCAJkpLSzVz5kzFxMTIYrFo06ZNTeax2+2Ki4tTWFiYxowZo/fff7/ZZZWXl8vpdCo2NrarywYAwOcQygEAQBO1tbVKTEyU3W5v9vX169crNzdXS5Ys0QcffKDExERlZmbq+PHjbvOdPn1a8+bN05o1a7qjbAAAfI7P3L5ut9tlt9vldDo9vuxRS7fK4bR4fLltcejh6aasFwCA1mRlZSkrK6vF11evXq2FCxdqwYIFkqTCwkIVFRVp7dq1ysvLkyQ5HA7dcMMNysvL07hx41pclsPhkMPhcE1XV1dLkurr61VfX++Jj+P1rMGG2SX4NGuQ4fZf4FIavyuB8jcGndeV3xWfCeU2m002m03V1dWKiIgwuxwAAAJWXV2dysvLlZ+f72oLCgrS5MmTtWvXLkmSYRiaP3++Jk6cqFtvvbXV5a1YsULLli1r0r59+3aFh4d7tngvtTLN7Ar8w/KUBrNLgI8pLi42uwT4iPPnz3fZsn0mlAMAAO9w8uRJOZ1ORUVFubVHRUVp7969kqSdO3dq/fr1Gj16tKs/+vPPP6+EhIQmy8vPz1dubq5rurq6WrGxscrIyNDAgQO78JN4j1FLt5pdgk+zBhlantKgB3YHydFgzt2P8C2N35kpU6YoJCTE7HLgA06dOtVlyyaUAwAAjxs/frwaGtp21dJqtcpqtTZpDwkJCZiDZbO60fkbR4OFbYl2CaS/M+icrvyeMNAbAABol8jISAUHB6uqqsqtvaqqStHR0R1ert1uV3x8vFJTUztbIgAAPoNQDgAA2iU0NFTJyckqKSlxtTU0NKikpERjx47t8HJtNpsqKytVVlbmiTIBAPAJ3L4OAACaqKmp0YEDB1zTBw8eVEVFhQYMGKBhw4YpNzdX2dnZSklJUVpamgoKClRbW+sajR0AALQNoRwAADSxe/duZWRkuKYbB2LLzs7WunXrNHfuXJ04cUKLFy/WsWPHlJSUpC1btjQZ/K09uvLxpwAAeCtCOQAAaCI9PV2G0fozn3NycpSTk+OxdfL4UwBAIKJPOQAAAAAAJiGUAwAAr8Do6wCAQEQoBwAAXoHR1wEAgchnQjlnzwEAAAAA/sZnQjlnzwEAAAAA/sZnQjkAAAAAAP6GUA4AALwCXdUAAIGIUA4AALwCXdUAAIGIUA4AAAAAgEkI5QAAAAAAmIRQDgAAAACASQjlAADAKzDQGwAgEBHKAQCAV2CgNwBAICKUAwAAAABgEkI5AAAAAAAmIZQDAAAAwP+1d/+hVdV/HMdf252bLHU1R7P9UgodTGsXtt0hNNhqIfvDkf2gv2oaGMQMYVkooSn9sQiNQVyQkiihQBQyMO1rjsnAjOlikojZatWauTLRzY2uene+f8Qu2X7dc++553PvPc8HSNxzPvvcd+/zuZ973vfcez6AIRTlAAAAAAAYQlEOAACSAndfBwB4EUU5AABICtx9HQDgRVmmA4hWMBhUMBhUOByWJK1683/KzMmNq88cn6V3Ak5EBwAAAACAfSlzpZxPzwEAAAAA6SZlinIAAAAAANINRTkAAAAAAIZQlAMAAAAAYAhFOQAASAosiQYA8CKKcgAAkBS4qSsAwIsoygEAAAAAMISiHAAAAAAAQyjKAQAAAAAwhKIcAAAAAABDKMoBAAAAADCEohwAAAAAAEMoygEAAAAAMISiHAAAAAAAQyjKAQAAAAAwhKIcAAAkhWAwqIqKCtXU1JgOBQAA11CUAwCApNDa2qoLFy7ozJkzpkMBAMA1FOUAAAAAABhCUQ4AAAAAgCEU5QAAAAAAGEJRDgAAAACAIRTlAAAAAAAYYqQoP3LkiMrLy7V8+XLt27fPRAgAAAAAABiX5fYT3rlzR21tberq6lJeXp6qqqq0bt06LV682O1QgWUAcgAADS1JREFUAAAAAAAwyvUr5T09PVq5cqWKi4u1YMECNTU16fjx426HAQAAAACAcbaL8u7ubq1du1ZFRUXKyMjQ4cOHp7QJBoNatmyZ5s+fr9raWvX09ET2Xb58WcXFxZHHxcXFGhoaijF8AAAAAABSl+2vr4+NjamyslIvvviinnrqqSn7Dxw4oLa2Nu3du1e1tbXq6OjQmjVr9P333+v++++3HWAoFFIoFIo8HhkZkSRl+yz5fJbt/v4tJ9O6678m3L5929hzmzb5/24y/16WDOPfy8i/eZO5d2Ie9vJcDgAA4mO7KG9qalJTU9OM+999911t3LhRGzZskCTt3btXX3zxhT788ENt3bpVRUVFd10ZHxoaUiAQmLG/9vZ27dq1a8r2t6rCys0N2w1/Wm9VTzjSTyyOHj1q7LmThcn8g/ybRv7N++qrr+LuY3x83IFIkOqWbf3CdAgAgBTk6I3ebt26pd7eXm3bti2yLTMzU42NjTp9+rQkKRAI6Pz58xoaGlJeXp6OHTum7du3z9jntm3b1NbWFnk8MjKi0tJSbe/1yZfjiyvenExLb1VPaPvZTIUmMuLqC/aRf7PIv1nk37zJY/DEE09o3rx5cfU1+S0uAAAAuxwtyq9evapwOKzCwsK7thcWFurixYv/PGFWlvbs2aOGhgZNTEzo9ddfn/XO6zk5OcrJyZmy/VY4Q5lhZ05kQxMZCjnUF+wj/2aRf7PIv3nz5s2LuyiP9+/T1bp163Ty5Ek9/vjjOnTokOlwAABISkbWKW9ubtalS5fU39+vl156yUQIAAAgwTZv3qz9+/ebDgMAgKTmaFFeUFAgn8+n4eHhu7YPDw9ryZIlcfUdDAZVUVGhmpqauPoBAADuqK+v18KFC02HAQBAUnO0KM/OzlZVVZU6Ozsj2yYmJtTZ2anVq1fH1Xdra6suXLigM2fOxBsmAACYQ7xLoAIAgOjY/k35zZs31d/fH3k8MDCgvr4+5efnq6ysTG1tbWppaVF1dbUCgYA6Ojo0NjYWuRs7AABIfm4ugTrT8qe3b99OqeXmcuJcqhWxY5lJ2OXkspjwhkSOFdtF+dmzZ9XQ0BB5PHln9JaWFn300Ud67rnn9Oeff2rHjh26cuWK/H6/vvzyyyk3fwMAAMkr3iVQ7Zhp+dOuri7l5ubaC9ygd2Ze4RUuYZlJ2OXEspjwhkQuf2q7KK+vr5dlzf4p5KZNm7Rp06aYgwIAAMkrmiVQ7Zhp+dOGhoZZV2hJNqt2/s90CJ7FMpOwy8llMeENf/31V8L6dnRJtEQKBoMKBoMKh8OmQwEAwNOiWQJVkhobG3Xu3DmNjY2ppKREBw8enPYeMzMtf+rEcnVuYnlD81hmEnal2jwDcxI5TlKmKG9tbVVra6tGRkaUl5dnOhwAADCHEydO2GrPB/AAAC8ysk45AABIXYlaApWVVgAAXkRRDgAAbEnkEqgAAHhNynx9HQAAuMfEEqh8fR0A4EUU5QAAYAoTS6By/xgAgBelTFHOp+cAALiHJVABAHBHyvymnJu/AAAAAADSTcpcKZ80+an9RGg87r7CPkvj42GFQz5NsKal68i/WeTfLPJv3uQxGBkZiXvt0ZGREUma88oyZjf5rbg7d+5IkkZHR1Nq/WAnzk0QG+ZU2OXkewC8YXR0VFJi3uszrBQ7g/jtt99UWlpqOgwAAKYYHBxUSUmJ6TBS3k8//aSHHnrIdBgAAEzx448/6sEHH3S0z5S7Ul5UVKTBwUEtXLhQGRn/fBJaU1Mz7dfap9v+720jIyMqLS3V4OCgFi1alPjgZ4kr0X1E036uNnbyPNN28h97G/Ifex/Rtp+tnd195N9+ezfzLzl7DCzL0ujoqIqKiuLqB//Iz8+XJP36668pccM3J15XbjxHrH3Y+Tsn3u/majPdPlNzaqwSPWac6j9Vxkws+xkziek/ncfMjRs3VFZWFnmPclLKFeWZmZlTrkL4fL5pX0zTbZ9u26JFi1x9Mc4UbyL7iKb9XG3s5Hmm7eQ/9jbkP/Y+om0/Wzu7+8i//fYm8i85dwxSoXhMFZmZ/9zyJi8vLyVOlp14XbnxHLH2YefvnHi/m6vNbPvcnlNjlegx41T/qTJm4tnPmHG2fy+Mmcn3KCf5du7cudPxXg0IBAJRb5/cFgqF9Pbbb2vbtm3KyclJaHzRxJXoPqJpP1cbO3meaTv5j70N+Y+9j2jbz9bO7j7yb7+9W/mXzB4DzC4Vj40Trys3niPWPuz8nRPvd3O1+e8+xkzi+k+VMWN3P2Mmcf0zZuxLud+UO2lyHdQbN26kxCdk6Yb8m0X+zSL/5nEMkhfHBnYxZmAXYwZ2JXLMpM2V8lj5fD7V19crKyvlvsmfFsi/WeTfLPJvHscgeXFsYBdjBnYxZmBXosaMp6+UAwAAAABgkvO/UgcAAAAAAFGhKAcAAAAAwBCKcgAAAAAADKEoBwAAAADAEIpyAAAAAAAMoSifxZEjR1ReXq7ly5dr3759psPxnHXr1um+++7TM888YzoUzxkcHFR9fb0qKir0yCOP6ODBg6ZD8pTr16+rurpafr9fq1at0gcffGA6JE8aHx/X0qVLtWXLFtOhYBbMV4gF5xiYDTUA7Ip3TmFJtBncuXNHFRUV6urqUl5enqqqqvT1119r8eLFpkPzjJMnT2p0dFQff/yxDh06ZDocT/n99981PDwsv9+vK1euqKqqSpcuXdI999xjOjRPCIfDCoVCys3N1djYmFatWqWzZ88y/7jsjTfeUH9/v0pLS7V7927T4WAGzFeIBecYmAk1AGIR75zClfIZ9PT0aOXKlSouLtaCBQvU1NSk48ePmw7LU+rr67Vw4ULTYXjSAw88IL/fL0lasmSJCgoKdO3aNcNReYfP51Nubq4kKRQKybIs8fmpu3744QddvHhRTU1NpkPBHJivEAvOMTATagDEIt45JW2L8u7ubq1du1ZFRUXKyMjQ4cOHp7QJBoNatmyZ5s+fr9raWvX09ET2Xb58WcXFxZHHxcXFGhoaciX2dBBv/hEfJ/Pf29urcDis0tLSRIedNpzI//Xr11VZWamSkhK99tprKigocCv8lOdE/rds2aL29na3Qk5rbr4fMF+lB84hEA9qANiVDHNO2hblY2NjqqysVDAYnHb/gQMH1NbWpjfffFPffvutKisrtWbNGv3xxx8uR5qeyL9ZTuX/2rVreuGFF/T++++7EXbacCL/9957r86dO6eBgQF9+umnGh4ediv8lBdv/j///HOtWLFCK1ascDPstOXE62Hy/gr//Xf58uVIG+ar9OHWmEF64hwUdiXFmLE8QJL12Wef3bUtEAhYra2tkcfhcNgqKiqy2tvbLcuyrFOnTllPPvlkZP/mzZutTz75xJ2A00ws+Z/U1dVlPf30067Ema5izf/ff/9t1dXVWfv373ct1nQUz/if9PLLL1sHDx5MaJzpKpb8b9261SopKbGWLl1qLV682Fq0aJG1a9cuV+NOV068HqbDfJW+EjVmLItzDC+gBoBdpuqWtL1SPptbt26pt7dXjY2NkW2ZmZlqbGzU6dOnJUmBQEDnz5/X0NCQbt68qWPHjmnNmjWmQk4r0eQfiRNN/i3L0vr16/XYY4/p+eefNxVqWoom/8PDwxodHZUk3bhxQ93d3SovLzcSb7qJJv/t7e0aHBzUzz//rN27d2vjxo3asWOHqZDTmhPvB8xX3sI5BOJBDQC73JpzPFmUX716VeFwWIWFhXdtLyws1JUrVyRJWVlZ2rNnjxoaGuT3+/Xqq69y10WHRJN/SWpsbNSzzz6ro0ePqqSkhDdbh0ST/1OnTunAgQM6fPiw/H6//H6/vvvuOxPhpp1o8v/LL7+orq5OlZWVqqur0yuvvKKHH37YRLhpJ9r5B+5w4ngwX3mLU69hzjG8iRoAdrlVt2Q5Em2aam5uVnNzs+kwPOvEiROmQ/CsRx99VBMTE6bD8KxAIKC+vj7TYUDS+vXrTYeAOTBfIRacY2A21ACwK945xZNXygsKCuTz+abcOGl4eFhLliwxFJV3kH+zyL9Z5N8s8p9cOB6wizGDeDB+YJdbY8aTRXl2draqqqrU2dkZ2TYxMaHOzk6tXr3aYGTeQP7NIv9mkX+zyH9y4XjALsYM4sH4gV1ujZm0/fr6zZs31d/fH3k8MDCgvr4+5efnq6ysTG1tbWppaVF1dbUCgYA6Ojo0NjamDRs2GIw6fZB/s8i/WeTfLPKfXDgesIsxg3gwfmBXUoyZmO7ZngK6urosSVP+tbS0RNq89957VllZmZWdnW0FAgHrm2++MRdwmiH/ZpF/s8i/WeQ/uXA8YBdjBvFg/MCuZBgzGZZlWc6V+AAAAAAAIFqe/E05AAAAAADJgKIcAAAAAABDKMoBAAAAADCEohwAAAAAAEMoygEAAAAAMISiHAAAAAAAQyjKAQAAAAAwhKIcAAAAAABDKMoBAAAAADCEohwAAAAAAEMoygEAAAAAMISiHAAAAAAAQ/4Pa8G7pHocMVwAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/kAAAHFCAYAAACpYjnzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdf3AU933/8Zd+HpEtZINqCYGw8sO4owhLE/2gpKaVbGEiXBxDnZK6sQX2kNQ9ubQXkpEmY34MaeTYMaM03VRjJxg7TRpKmpBOwBhZUUaOTQYJIlKiYhsH29iA+BV8SIyP8919//DovlHED+lu7z53u8/HDMPs3upz7/totZ973e1+NiMSiUQEAAAAAADSXqbpAgAAAAAAgD0I+QAAAAAAOAQhHwAAAAAAhyDkAwAAAADgEIR8AAAAAAAcgpAPAAAAAIBDEPIBAAAAAHAIQj4AAAAAAA6RbboA08LhsI4dO6b8/HxlZGSYLgcA4HKRSETnz59XSUmJMjP5LN4OjPUAgFSTyPHetSHfsixZlqWLFy/q9ddfN10OAABjHD16VLNmzTJdhiMcO3ZMpaWlpssAAGCcRIz3GZFIJGJri2nm3Xff1XXXXaejR49q6tSpcbUVDAa1e/du3XHHHcrJybGpQkwU/W8W/W8W/W+Wnf3v9/tVWlqqc+fOqaCgwKYK3W10rD9y5IimTZtmuhykAY6pmCz2GUzW2bNn9eEPfzgh471rv8kfNXra3tSpU20J+Xl5eZo6dSp/3AbQ/2bR/2bR/2Ylov85rTx+o2fthUIhSVJ+fn7cYz3cgWMqJot9BpMVDAYlJWa852I/AADgSF6vV4ODg+rr6zNdCgAASUPIBwAAAADAIVwb8i3LUnl5uWpra02XAgAAEoCxHgDgRq4N+ZzCBwCAszHWAwDcyLUhHwAAAAAApyHkAwAAR+J0fQCAGxHyAQCAI3G6PgDAjQj5AAAAAAA4hGtDPqfwAQAAAACcxrUhn1P4AAAAAABO49qQDwAAnI2z9gAAbkTIBwAAjsRZewAANyLkAwAAAADgEIR8AAAAAAAcItt0AaZYliXLshQKhUyXAgCOUNa6w+jzv/HonUafH0Ds4jl+8LcPAGO59pt8rtMDAMDZmHgPAOBGrg35AADA2fhAHwDgRoR8AAAAAAAcgpAPAAAAAIBDEPIBAAAAAHAIQj4AAAAAAA7BLfS4hR4AAI7EWJ9cpm+jCQD4gGu/yWfGXQAAnI2xHgDgRq4N+QAAAAAAOA0hHwAAAAAAhyDkAwAAAADgEIR8AAAAAAAcgpAPAAAAAIBDEPIBAIAjWZal8vJy1dbWmi4FAICkIeQDAABH4hZ6AAA3cm3I59N9AAAAAIDTuDbk8+k+AAAAAMBpXBvyAQAAAABwGkI+AAAAAAAOQcgHAAAAAMAhCPkAAAAAADgEIR8AAAAAAIcg5AMAAAAA4BCEfAAAAAAAHIKQDwAAAACAQxDyAQCAI1mWpfLyctXW1pouBQCApCHkAwAAR/J6vRocHFRfX5/pUgAASBrXhnw+3QcAAAAAOI1rQz6f7gMAAAAAnMa1IR8AAAAAAKch5AMAAAAA4BCEfAAAAAAAHIKQDwAAAACAQxDyAQAAAABwCEI+AAAAAAAOQcgHAAAAAMAhCPkAAAAAADgEIR8AAKS8I0eOqKGhQeXl5Zo7d65GRkZMlwQAQErKNl0AAADA1axYsUJf/epXtWDBAp09e1Yej8d0SXCxstYdMf/sG4/eaWMlADAeIR8AAKS03/72t8rJydGCBQskSdOmTTNcEQAAqYvT9QEAQEL19vZqyZIlKikpUUZGhrZv3z5uG8uyVFZWpilTpmjevHnau3dv9LHXXntN1157rZYsWaJPfOIT+trXvpbM8gEASCuEfAAAkFAjIyOqrKyUZVmXfHzr1q3y+Xxat26d9u/fr8rKSi1atEgnT56UJL3//vt68cUX9e1vf1t79uxRV1eXurq6kvkSAABIG5yuDwAAEqqpqUlNTU2XfXzTpk1atWqVVq5cKUnq7OzUjh07tHnzZrW2tmrmzJmqqalRaWmpJGnx4sUaGBjQwoULL9leIBBQIBCILvv9fklSMBhUMBi062Xhj3iyIkaeNxG/09E2L9d2PK+VfdCZrrbPAH8skfuKa0O+ZVmyLEuhUMh0KQAAuNbFixe1b98+tbW1RddlZmaqsbFRe/bskSTV1tbq5MmT+v3vf6+CggL19vbqC1/4wmXbbG9v14YNG8at7+npUV5env0vApKkx+rMPO/OnTsT1vblzhiJ57Umsl6Yx1lGmKgLFy4krG3Xhnyv1yuv1yu/36+CggLT5QAA4EqnT59WKBRSUVHRmPVFRUU6dOiQJCk7O1tf+9rX9Bd/8ReKRCK644479Fd/9VeXbbOtrU0+ny+67Pf7VVpaqoaGBk2fPj0xLwSqWP+8kec9uH6R7W0Gg0F1dXVp4cKFysnJGfd4PK81EfXCvKvtM8AfO3PmTMLadm3IBwAA6eNqp/z/IY/Hc8lb7OXk5PDmO4ECoQwjz5vI3+nl9pl4Xiv7oLNxnMFEJXI/YeI9AABgTGFhobKysjQ0NDRm/dDQkIqLi+Nq27IslZeXq7a2Nq52AABIJ3yTDwAOUrH+eWPfpgGxyM3NVXV1tbq7u3X33XdLksLhsLq7u9XS0hJX21yaBwBwI0I+AABIqOHhYR0+fDi6fOTIEQ0MDGjatGmaPXu2fD6fmpubVVNTo7q6OnV0dGhkZCQ62z4AAJg4Qj4AAEio/v5+NTQ0RJdHJ8Vrbm7Wli1btHz5cp06dUpr167ViRMnVFVVpV27do2bjG+yuJMOAMCNCPkAACCh6uvrFYlc+b7iLS0tcZ+e/8c4XR8A4EZMvAcAAAAAgEMQ8gEAAAAAcAhCPgAAcCRuoQcAcCOuyQcAm5S17jD23J6siB6rM/b0QErimnwAgBvxTT4AAAAAAA7BN/kAAABAGojnjLE3Hr3TxkoApDK+yQcAAI7ENfkAADci5AMAAEfyer0aHBxUX1+f6VIAAEgaQj4AAAAAAA7BNfkAAABwnStd3z56x5KK9c8rEMpIYlUAED9CPgAAANKWyduXAkAq4nR9AADgSEy8BwBwI0I+AABwJCbeAwC4ESEfAAAAAACHSPuQf+7cOdXU1KiqqkoVFRV66qmnTJcEAAAAAIARaT/xXn5+vnp7e5WXl6eRkRFVVFRo2bJlmj59uunSAAAAAABIqrT/Jj8rK0t5eXmSpEAgoEgkokgkYrgqAAAAAACSz3jI7+3t1ZIlS1RSUqKMjAxt37593DaWZamsrExTpkzRvHnztHfv3jGPnzt3TpWVlZo1a5a+9KUvqbCwMFnlAwCAFMXs+gAANzJ+uv7IyIgqKyv1wAMPaNmyZeMe37p1q3w+nzo7OzVv3jx1dHRo0aJFeuWVV3TDDTdIkq677jodOHBAQ0NDWrZsme655x4VFRUl+6UAAIAU4vV65fV65ff7VVBQYLqctMA95wEg/RkP+U1NTWpqarrs45s2bdKqVau0cuVKSVJnZ6d27NihzZs3q7W1dcy2RUVFqqys1Isvvqh77rnnku0FAgEFAoHost/vlyQFg0EFg8G4Xsvoz8fbDmJD/5tF/0ueLHOXCnkyI2P+dyOT+56d+7+b/4YAAED8jIf8K7l48aL27duntra26LrMzEw1NjZqz549kqShoSHl5eUpPz9f7777rnp7e/XQQw9dts329nZt2LBh3Prdu3dHr+2PV1dXly3tIDb0v1lu7v/H6kxXIG2sCZsuwZidO3eaLsGW/f/ChQs2VAIAANwqpUP+6dOnFQqFxp16X1RUpEOHDkmS3nzzTX3+85+PTrj38MMPa+7cuZdts62tTT6fL7rs9/tVWlqqO+64Q1OnTo2r3mAwqK6uLi1cuFA5OTlxtYXJo//Nov+livXPG3tuT2ZEG2vCeqQ/U4FwhrE6TDq4fpGx57Zz/x89wwwAACAWKR3yJ6Kurk4DAwMT3t7j8cjj8Yxbn5OTY1swsbMtTB79b5ab+z8QMh+uA+GMlKjDhFTY7+zY/1PhdQAAgPRlfHb9KyksLFRWVpaGhobGrB8aGlJxcbGhqgAAAAAASE0pHfJzc3NVXV2t7u7u6LpwOKzu7m7Nnz8/rra5rQ4AAAAAwGmMn64/PDysw4cPR5ePHDmigYEBTZs2TbNnz5bP51Nzc7NqampUV1enjo4OjYyMRGfbjxW31QEAwNksy5JlWQqFQqZLAQAgaYyH/P7+fjU0NESXRyfFa25u1pYtW7R8+XKdOnVKa9eu1YkTJ1RVVaVdu3aNm4wPAADgD/GBPgDAjYyH/Pr6ekUiV76vc0tLi1paWpJUEQAAAAAA6cl4yAcAAACQWGWtO2L+2TcevdPGSgAkWkpPvJdITLwHAAAAAHAa14Z8r9erwcFB9fX1mS4FAAAAAABbuDbkAwAAAADgNFyTD8Ax4rneEAAAAHACQj4AAACQJHwgDSDRXHu6PhPvAQAAAACcxrUhn4n3AAAAAABO49qQDwAAnI2z9gAAbkTIBwAAjsRZewAANyLkAwAAAADgEIR8AAAAAAAcglvoAQAAALisWG/798ajd9pcCYCJcO03+UzGAwAAAABwGteGfCbjAQAAAAA4jWtDPgAAAAAATkPIBwAAAADAIQj5AAAAAAA4BCEfAAAAAACHIOQDAAAAAOAQrg353EIPAAAAAOA02aYLMMXr9crr9crv96ugoMB0OQAA4ArKyso0depUZWZm6vrrr1dPT4/pkgAASEmuDfkAACC9vPzyy7r22mtNlwEAQEpz7en6AAAAAAA4DSEfAAAkVG9vr5YsWaKSkhJlZGRo+/bt47axLEtlZWWaMmWK5s2bp7179455PCMjQ3/5l3+p2tpaff/7309W6QAApB1O1wcAOEJZ6w5jz+3JiuixOmNPn/JGRkZUWVmpBx54QMuWLRv3+NatW+Xz+dTZ2al58+apo6NDixYt0iuvvKIbbrhBkvTLX/5SM2fO1PHjx9XY2Ki5c+fqlltuSfZLAQAg5RHyAQBAQjU1Nampqemyj2/atEmrVq3SypUrJUmdnZ3asWOHNm/erNbWVknSzJkzJUkzZszQ4sWLtX///suG/EAgoEAgEF32+/2SpGAwqGAwaMtrcipPVsR0CSnBkxkZ8z9i46a/t9HX6qbXjPgkcl8h5AMAAGMuXryoffv2qa2tLbouMzNTjY2N2rNnj6QPzgQIh8PKz8/X8PCwfv7zn+tv/uZvLttme3u7NmzYMG59T0+P8vLy7H8RDsIZKWNtrAmbLiGt7dy503QJSdfV1WW6BKSJCxcuJKxtQj4AADDm9OnTCoVCKioqGrO+qKhIhw4dkiQNDQ1p6dKlkqRQKKRVq1aptrb2sm22tbXJ5/NFl/1+v0pLS9XQ0KDp06cn4FU4R8X6502XkBI8mRFtrAnrkf5MBcIZpstJWwfXLzJdQtIEg0F1dXVp4cKFysnJMV0O0sCZM2cS1rZrQ75lWbIsS6FQyHQpAADgCj7ykY/owIEDE97e4/HI4/GMW5+Tk8Ob76sIhAi0fygQzqBP4nDTI7tj/tk3Hr3TxkqSh+MMJiqR+4lrZ9f3er0aHBxUX1+f6VIAAHCtwsJCZWVlaWhoaMz6oaEhFRcXx9W2ZVkqLy+/4rf+AAA4jWtDPgAAMC83N1fV1dXq7u6OrguHw+ru7tb8+fPjapsP9AEAbuTa0/UBAEByDA8P6/Dhw9HlI0eOaGBgQNOmTdPs2bPl8/nU3Nysmpoa1dXVqaOjQyMjI9HZ9gEAwMQR8gEAQEL19/eroaEhujw6KV5zc7O2bNmi5cuX69SpU1q7dq1OnDihqqoq7dq1a9xkfJPF/DsAADci5AMAgISqr69XJHLl+423tLSopaXF1uf1er3yer3y+/0qKCiwtW0AAFIV1+QDAAAAAOAQhHwAAAAAAByCkA8AAByJW+gBANyIkA8AAByJW+gBANyIkA8AAAAAgEMQ8gEAAAAAcAjXhnyu0wMAwNkY6wEAbuTakM91egAAOBtjPQDAjVwb8gEAAAAAcBpCPgAAAAAADkHIBwAAAADAIQj5AADAkZh4DwDgRoR8AADgSEy8BwBwI0I+AAAAAAAOQcgHAAAAAMAhCPkAAAAAADgEIR8AAAAAAIfINl0AAGepWP+8AqEM02UAgCzLkmVZCoVCpksBACBp+CYfAAA4ErPrAwDciJAPAAAAAIBDEPIBAAAAAHAIQj4AAAAAAA7h2pBvWZbKy8tVW1truhQAAAAAAGzh2pDPZDwAAAAAAKdxbcgHAAAAAMBpsk0XAAAAkAiWZcmyLIVCIdOlAJikstYdMf/sG4/eaWMlQPrhm3wAAOBIXJoHAHCjmEL+7373O7vrAAAAKYbxHgCA9BNTyP/Yxz6mhoYG/cd//Ifee+89u2sCAAApgPEeAID0E1PI379/v2655Rb5fD4VFxfrC1/4gvbu3Wt3bQAAwCDGewAA0k9MIb+qqkrf/OY3dezYMW3evFnHjx/XrbfeqoqKCm3atEmnTp2yu04AAJBkjPcAAKSfuCbey87O1rJly7Rt2zZ9/etf1+HDh7VmzRqVlpbq/vvv1/Hjx+2qEwAAGMJ4DwBA+ogr5Pf39+sf/uEfNGPGDG3atElr1qzR66+/rq6uLh07dkyf/vSn7aoTAAAYwngPAED6yI7lhzZt2qSnn35ar7zyihYvXqxnn31WixcvVmbmB58ZfPjDH9aWLVtUVlZmZ60AACCJGO8BAEg/MYX8f//3f9cDDzygFStWaMaMGZfc5oYbbtB3v/vduIoDAADmMN4DAJB+Ygr5r7322lW3yc3NVXNzcyzNAwCAFMB4DwBA+onpmvynn35a27ZtG7d+27ZteuaZZ+IuCgAAmJfu471lWSovL1dtba3pUgAASJqYQn57e7sKCwvHrb/hhhv0ta99Le6iAACAeek+3nu9Xg0ODqqvr890KQAAJE1MIf+tt97Shz/84XHrb7zxRr311ltxFwUAAMxjvAcAIP3EFPJvuOEG/eY3vxm3/sCBA5o+fXrcRQEAAPMY7wEASD8xhfy//du/1T/+4z+qp6dHoVBIoVBIP//5z7V69Wp99rOftbtGAABgAOM9AADpJ6bZ9Tdu3Kg33nhDt99+u7KzP2giHA7r/vvvT4tr9AAAwNUx3gMAkH5iCvm5ubnaunWrNm7cqAMHDuhDH/qQ5s6dqxtvvNHu+gAAgCGM9wAApJ+YQv6oOXPmaM6cOXbVAgAAUhDjPQAA6SOmkB8KhbRlyxZ1d3fr5MmTCofDYx7/+c9/bktxE3H06FHdd999OnnypLKzs/XII4/oM5/5TNKeHwAAp0ql8R4AAExMTCF/9erV2rJli+68805VVFQoIyPD7romLDs7Wx0dHaqqqtKJEydUXV2txYsX65prrjFWEwAATpBK4z0AAJiYmEL+D3/4Q/3Xf/2XFi9ebHc9kzZjxgzNmDFDklRcXKzCwkKdPXuWkA8AQJxSabwHAAATE9Mt9HJzc/Wxj33MlgJ6e3u1ZMkSlZSUKCMjQ9u3bx+3jWVZKisr05QpUzRv3jzt3bv3km3t27dPoVBIpaWlttQGAICb2TneAwCA5Igp5H/xi1/UN7/5TUUikbgLGBkZUWVlpSzLuuTjW7dulc/n07p167R//35VVlZq0aJFOnny5Jjtzp49q/vvv19PPvlk3DUBAAB7x3s7XLhwQTfeeKPWrFljuhQAAFJWTKfr//KXv1RPT4+ee+45ffzjH1dOTs6Yx3/84x9PuK2mpiY1NTVd9vFNmzZp1apVWrlypSSps7NTO3bs0ObNm9Xa2ipJCgQCuvvuu9Xa2qpPfvKTV3y+QCCgQCAQXfb7/ZKkYDCoYDA44bovZfTn420HsaH/zRrtd09maoQBtxntd/rfjNF+t+P4k0rHMDvHezv8y7/8i/7sz/4sqc8JAEC6iSnkX3fddVq6dKndtYxz8eJF7du3T21tbdF1mZmZamxs1J49eyRJkUhEK1as0G233ab77rvvqm22t7drw4YN49bv3r1beXl5ttTd1dVlSzuIDf1v1saa8NU3QsLQ/2bZcfy5cOGCDZXYI1nj/US89tprOnTokJYsWaKDBw+aLgcAgJQVU8h/+umn7a7jkk6fPq1QKKSioqIx64uKinTo0CFJ0ksvvaStW7fqlltuiV7P/73vfU9z5869ZJttbW3y+XzRZb/fr9LSUt1xxx2aOnVqXPUGg0F1dXVp4cKF477tQOLR/2aN9v8j/ZkKhJmBO9k8mRFtrAnT/4aM9r8dx5/RM8xSgV3jfW9vrx5//HHt27dPx48f109+8hPdfffdY7axLEuPP/64Tpw4ocrKSn3rW99SXV1d9PE1a9bo8ccf18svv2xLTQAAOFVMIV+S3n//ff3iF7/Q66+/rnvvvVf5+fk6duyYpk6dqmuvvdbOGq/o1ltvHXff3ivxeDzyeDzj1ufk5NgWDO1sC5NH/5sVCGcoECJkmkL/m2XH8SfVjl92jPej8+888MADWrZs2bjHR+ff6ezs1Lx589TR0aFFixbplVde0Q033KCf/vSnmjNnjubMmUPIBwDgKmIK+W+++aY+9alP6a233lIgENDChQuVn5+vr3/96woEAurs7LSluMLCQmVlZWloaGjM+qGhIRUXF9vyHAAA4NLsGu/jnX/nV7/6lX74wx9q27ZtGh4eVjAY1NSpU7V27VpbXicAAE4SU8hfvXq1ampqdODAAU2fPj26funSpVq1apVtxeXm5qq6ulrd3d3R0/rC4bC6u7vV0tISV9uWZcmyLIVCITtKBQDAcZIx3k9k/p329na1t7dLkrZs2aKDBw9eMeAncpJdp/NkMXmnxGSm6c7E3zkTQGOyErmvxBTyX3zxRb388svKzc0ds76srEzvvPPOpNoaHh7W4cOHo8tHjhzRwMCApk2bptmzZ8vn86m5uVk1NTWqq6tTR0eHRkZGop/2x8rr9crr9crv96ugoCCutgAAcCI7x/vLmcj8O5N1uUl2e3p6bJtk16keq7v6Nm7CZKbpaefOncaemwmgMVGJnGg3ppAfDocv+Q3422+/rfz8/Em11d/fr4aGhujy6KR4zc3N2rJli5YvX65Tp05p7dq1OnHihKqqqrRr165xbwYAAIC97Bzv7bJixYqrbnO5SXYbGhrGnJGA8SrWP2+6hJTAZKbp7eD6RUl/TiaAxmSdOXMmYW3HFPLvuOMOdXR06Mknn5QkZWRkaHh4WOvWrdPixYsn1VZ9fb0ikSufCtXS0hL36fkAAGBy7BzvLycR8+8kY5LdVFbWuiOOnybQ/iEmM01PJv/O3XKcQfwSuZ9kxvJDTzzxhF566SWVl5frvffe07333hs9de/rX/+63TUCAAADkjHe/+H8O6NG59+ZP39+XG1blqXy8nLV1tbGWyYAAGkjpm/yZ82apQMHDuiHP/yhfvOb32h4eFgPPvig/u7v/k4f+tCH7K4xIZh4DwCAK7NrvGf+HQAAkiemkC9J2dnZ+tznPmdnLUnFwA8AwNXZMd4z/w4AAMkTU8h/9tlnr/j4/fffH1MxAAAgddg13puaf4ez9gAAbhRTyF+9evWY5WAwqAsXLig3N1d5eXmEfAAAHCDdx3vO2gMAuFFME+/9/ve/H/NveHhYr7zyim699Vb953/+p901AgAAAxjvAQBIPzGF/Eu56aab9Oijj4771D9VMeMuAACTl07jPWM9AMCNbAv50geT8xw7dszOJhPG6/VqcHBQfX19pksBACCtpMt4z1gPAHCjmK7J/5//+Z8xy5FIRMePH9e//du/6c///M9tKQzA5JW17jD23J6siB6rM/b0ABKA8R4AgPQTU8i/++67xyxnZGToT/7kT3TbbbfpiSeesKUwAABgFuM9gHQUz5cebzx6p42VAGbEFPLD4bDddQAAgBTDeA8AQPqx9Zp8AACAVMHEewAAN4rpm3yfzzfhbTdt2hTLUyScZVmyLEuhUMh0KQAApKR0H++9Xq+8Xq/8fr8KCgpMlwMAQFLEFPJ//etf69e//rWCwaBuvvlmSdKrr76qrKwsfeITn4hul5GRYU+VCcDADwDAlTlhvAcAwG1iCvlLlixRfn6+nnnmGV1//fWSpN///vdauXKlFixYoC9+8Yu2FgkAAJKP8R4AgPQT0zX5TzzxhNrb26MDviRdf/31+upXv8psuwAAOATjPQAA6SemkO/3+3Xq1Klx60+dOqXz58/HXRQAADAv3cd7Jt4DALhRTCF/6dKlWrlypX784x/r7bff1ttvv63//u//1oMPPqhly5bZXSMAADAg3cd7r9erwcFB9fX1mS4FAICkiema/M7OTq1Zs0b33nuvgsHgBw1lZ+vBBx/U448/bmuBQDopa91hugQAsA3jPQAA6SemkJ+Xl6dvf/vbevzxx/X6669Lkj760Y/qmmuusbU4AABgDuM9AADpJ6bT9UcdP35cx48f10033aRrrrlGkUjErroSjuv0AACYmHQe7wEAcJuYQv6ZM2d0++23a86cOVq8eLGOHz8uSXrwwQfT5nY6XKcHAMCVOWG8BwDAbWIK+f/8z/+snJwcvfXWW8rLy4uuX758uXbt2mVbcQAAwJx0H+85aw8A4EYxXZO/e/duPf/885o1a9aY9TfddJPefPNNWwoDAABmpft47/V65fV65ff7VVBQYLocAACSIqZv8kdGRsZ8oj/q7Nmz8ng8cRcFAADMY7wHACD9xBTyFyxYoGeffTa6nJGRoXA4rMcee0wNDQ22FQcAAMxhvAcAIP3EdLr+Y489pttvv139/f26ePGivvzlL+u3v/2tzp49q5deesnuGgEAgAGM9wAApJ+YvsmvqKjQq6++qltvvVWf/vSnNTIyomXLlunXv/61PvrRj9pdIwAAMIDxHgCA9DPpb/KDwaA+9alPqbOzU1/5ylcSURMAADCM8R4AgPQ06W/yc3Jy9Jvf/CYRtSQVt9UBAODynDDeM9YDANwoptP1P/e5z+m73/2u3bUkldfr1eDgoPr6+kyXAgBASkr38Z6xHgDgRjFNvPf+++9r8+bNeuGFF1RdXa1rrrlmzKMtx5IAACAASURBVOObNm2ypTgAAGAO4z0AAOlnUiH/d7/7ncrKynTw4EF94hOfkCS9+uqrY7bJyMiwrzoAAJB0jPcAAKSvSYX8m266ScePH1dPT48kafny5frXf/1XFRUVJaQ4AACQfIz3AACkr0ldkx+JRMYsP/fccxoZGbG1IAAAYBbjPQAA6SumifdG/fGbAAAA4DyM9wAApI9JhfyMjIxx1+BxTR4AAM7CeA8AQPqa1DX5kUhEK1askMfjkSS99957+vu///txs+3++Mc/tq9CAACQVIz3AACkr0mF/Obm5jHLn/vc52wtBgAAmMd4DwBA+ppUyH/66acTVQcAAEgRjPcAAKSvSYV8J7EsS5ZlKRQKmS4FNqtY/7wCIa4dBQC3Y6wHALhRXLPrpzOv16vBwUH19fWZLgUAACQAYz0AwI1cG/IBAAAAAHAaQj4AAAAAAA5ByAcAAAAAwCEI+QAAAAAAOAQhHwAAAAAAhyDkAwAAAADgEIR8AAAAAAAcgpAPAAAAAIBDEPIBAAAAAHAIQj4AAAAAAA5ByAcAAAAAwCEI+QAAIKWdO3dONTU1qqqqUkVFhZ566inTJQEAkLKyTRcAAABwJfn5+ert7VVeXp5GRkZUUVGhZcuWafr06aZLAwAg5fBNPgAASGlZWVnKy8uTJAUCAUUiEUUiEcNVAQCQmgj5AAAgoXp7e7VkyRKVlJQoIyND27dvH7eNZVkqKyvTlClTNG/ePO3du3fM4+fOnVNlZaVmzZqlL33pSyosLExW+QAApBXXhnzLslReXq7a2lrTpQAA4GgjIyOqrKyUZVmXfHzr1q3y+Xxat26d9u/fr8rKSi1atEgnT56MbnPdddfpwIEDOnLkiH7wgx9oaGgoWeUDAJBWXHtNvtfrldfrld/vV0FBgelyAABwrKamJjU1NV328U2bNmnVqlVauXKlJKmzs1M7duzQ5s2b1draOmbboqIiVVZW6sUXX9Q999xzyfYCgYACgUB02e/3S5KCwaCCwWC8LyflebK4lCFenszImP/hHrEeI0Z/zg3HGNgjkfuKa0M+AAAw7+LFi9q3b5/a2tqi6zIzM9XY2Kg9e/ZIkoaGhpSXl6f8/Hy9++676u3t1UMPPXTZNtvb27Vhw4Zx63t6eqLX9jvZY3WmK3COjTVh0yUgyXbu3BnXz3d1ddlUCZzuwoULCWubkA8AAIw5ffq0QqGQioqKxqwvKirSoUOHJElvvvmmPv/5z0cn3Hv44Yc1d+7cy7bZ1tYmn88XXfb7/SotLVVDQ4MrZuSvWP+86RLSniczoo01YT3Sn6lAOMN0OUiig+sXxfRzwWBQXV1dWrhwoXJycmyuCk505syZhLVNyAcAACmtrq5OAwMDE97e4/HI4/GMW5+Tk+OKN9+BEKHULoFwBv3pMvEeI9xynEH8ErmfuHbiPQAAYF5hYaGysrLGTaQ3NDSk4uLiuNpmkl0AgBsR8gEAgDG5ubmqrq5Wd3d3dF04HFZ3d7fmz58fV9ter1eDg4Pq6+uLt0wAANIGp+sDAICEGh4e1uHDh6PLR44c0cDAgKZNm6bZs2fL5/OpublZNTU1qqurU0dHh0ZGRqKz7QMAgIkj5AMAgITq7+9XQ0NDdHl0Urzm5mZt2bJFy5cv16lTp7R27VqdOHFCVVVV2rVr17jJ+CbLsixZlqVQKBRXOwAApBNCPgAASKj6+npFIle+33hLS4taWlpsfV6v1yuv1yu/36+CggJb2wYAIFVxTT4AAAAAAA5ByAcAAAAAwCEI+QAAwJG4hR4AwI24Jh8AADgS1+QDmKyy1h0x/ZwnK6LH6mwuBogR3+QDAAAAAOAQhHwAAAAAAByCkA8AAByJa/IBAG5EyAcAAI7k9Xo1ODiovr4+06UAAJA0hHwAAAAAAByCkA8AAAAAgEMQ8gEAAAAAcAhHhPylS5fq+uuv1z333GO6FAAAkCKYeA8A4EaOCPmrV6/Ws88+a7oMAACQQph4DwDgRo4I+fX19crPzzddBgAAAAAARhkP+b29vVqyZIlKSkqUkZGh7du3j9vGsiyVlZVpypQpmjdvnvbu3WugUgAAAAAAUpvxkD8yMqLKykpZlnXJx7du3Sqfz6d169Zp//79qqys1KJFi3Ty5MkkVwoAAAAAQGozHvKbmpr01a9+VUuXLr3k45s2bdKqVau0cuVKlZeXq7OzU3l5edq8eXOSKwUAAAAAILVlmy7gSi5evKh9+/apra0tui4zM1ONjY3as2dPTG0GAgEFAoHost/vlyQFg0EFg8G46h39+XjbQWxG+92TGTFciTuN9jv9bwb9b9Zov9tx/GcMsY9lWbIsS6FQyHQpAAAkTUqH/NOnTysUCqmoqGjM+qKiIh06dCi63NjYqAMHDmhkZESzZs3Stm3bNH/+/Eu22d7erg0bNoxbv3v3buXl5dlSd1dXly3tIDYba8KmS3A1+t8s+t8sO47/Fy5csKESSB/Mru/1euX3+1VQUGC6HAAAkiKlQ/5EvfDCCxPetq2tTT6fL7rs9/tVWlqqO+64Q1OnTo2rjmAwqK6uLi1cuFA5OTlxtYXJG+3/R/ozFQhnmC7HdTyZEW2sCdP/htD/Zo32vx3H/9EzzAAAAGKR0iG/sLBQWVlZGhoaGrN+aGhIxcXFMbXp8Xjk8XjGrc/JybEtmNvZFiYvEM5QIETIMYX+N4v+N8uO4z/jBwAAiIfxifeuJDc3V9XV1eru7o6uC4fD6u7uvuzp+AAAAAAAuJXxb/KHh4d1+PDh6PKRI0c0MDCgadOmafbs2fL5fGpublZNTY3q6urU0dGhkZERrVy5Mq7nZTIeAAAAAIDTGA/5/f39amhoiC6PXi/f3NysLVu2aPny5Tp16pTWrl2rEydOqKqqSrt27Ro3Gd9kMRkPAAAAAMBpjIf8+vp6RSJXvuVTS0uLWlpaklQRAAAAAADpKaWvyQcAAIiVZVkqLy9XbW2t6VIAAEgaQj4AAHAkr9erwcFB9fX1mS4FAICkcW3I59N9AAAAAIDTuDbk8+k+AAAAAMBpXBvyAQAAAABwGkI+AAAAAAAOQcgHAAAAAMAhXBvymXgPAAAAAOA0rg35TLwHAAAAAHAa14Z8AAAAAACchpAPAAAAAIBDEPIBAIAjMf8OAMCNCPkAAMCRmH8HAOBGrg35fLoPAAAAAHAa14Z8Pt0HAAAAADiNa0M+AAAAAABOQ8gHAAAAAMAhCPkAAAAAADgEIR8AAAAAAIcg5AMAAAAA4BCEfAAAAAAAHMK1Id+yLJWXl6u2ttZ0KQAAAAAA2MK1Id/r9WpwcFB9fX2mSwEAAAAAwBauDfkAAAAAADgNIR8AAKS0o0ePqr6+XuXl5brlllu0bds20yUBAJCysk0XAAAAcCXZ2dnq6OhQVVWVTpw4oerqai1evFjXXHON6dIAAEg5hHwAAJDSZsyYoRkzZkiSiouLVVhYqLNnzxLyAQC4BE7XBwAACdXb26slS5aopKREGRkZ2r59+7htLMtSWVmZpkyZonnz5mnv3r2XbGvfvn0KhUIqLS1NdNkAAKQlQj4AAEiokZERVVZWyrKsSz6+detW+Xw+rVu3Tvv371dlZaUWLVqkkydPjtnu7Nmzuv/++/Xkk08mo2wAANISp+sDAICEampqUlNT02Uf37Rpk1atWqWVK1dKkjo7O7Vjxw5t3rxZra2tkqRAIKC7775bra2t+uQnP3nF5wsEAgoEAtFlv98vSQoGgwoGg/G+nJTnyYqYLiHteTIjY/4HrmZ0X3HDMQb2SOS+4tqQb1mWLMtSKBSyve2K9c8rEMqwvd2JeOPRO408LwAAsbh48aL27duntra26LrMzEw1NjZqz549kqRIJKIVK1botttu03333XfVNtvb27Vhw4Zx63t6epSXl2df8SnqsTrTFTjHxpqw6RKQZrq6ukyXgDRx4cKFhLXt2pDv9Xrl9Xrl9/tVUFBguhwAAFzp9OnTCoVCKioqGrO+qKhIhw4dkiS99NJL2rp1q2655Zbo9fzf+973NHfu3Eu22dbWJp/PF132+/0qLS1VQ0ODpk+fnqBXkjoq1j9vuoS058mMaGNNWI/0ZyoQNvPFDdLL6D6zcOFC5eTkmC4HaeDMmTMJa9u1IR8AAKSHW2+9VeHwxL9R9Xg88ng849bn5OS44s23qbMJnSgQzqA/MSluOc4gfoncT5h4DwAAGFNYWKisrCwNDQ2NWT80NKTi4uK42rYsS+Xl5aqtrY2rHQAA0gkhHwAAGJObm6vq6mp1d3dH14XDYXV3d2v+/Plxte31ejU4OKi+vr54ywQAIG1wuj4AAEio4eFhHT58OLp85MgRDQwMaNq0aZo9e7Z8Pp+am5tVU1Ojuro6dXR0aGRkJDrbPgAAmDhCPgAASKj+/n41NDREl0cnxWtubtaWLVu0fPlynTp1SmvXrtWJEydUVVWlXbt2jZuMb7ISeScdAABSFSEfAAAkVH19vSKRK99vvKWlRS0tLbY+L3fSAQC4EdfkAwAAAADgEIR8AAAAAAAcgpAPAAAciVvoAQDcyLUhn4EfAABn4xZ6AAA3cm3IZ+AHAAAAADiNa0M+AAAAAABOQ8gHAACOxKV5AAA3IuQDAABH4tI8AIAbEfIBAAAAAHAIQj4AAAAAAA5ByAcAAAAAwCEI+QAAwJGYeA8A4EaEfAAA4EhMvAcAcCNCPgAAAAAADkHIBwAAAADAIQj5AAAAAAA4BCEfAAAAAACHIOQDAABHYnZ9AIAbEfIBAIAjMbs+AMCNCPkAAAAAADhEtukCTLEsS5ZlKRQKSZIq1j2vTE9eXG16siJ6rM6O6gAAAAAAmDzXfpPPKXwAAAAAAKdxbcgHAAAAAMBpCPkAAAAAADgEIR8AAAAAAIcg5AMAAEeyLEvl5eWqra01XQoAAElDyAcAAI7EJLsAADci5AMAAAAA4BCEfAAAAAAAHIKQDwAAAACAQxDyAQAAAABwCEI+AAAAAAAOQcgHAAAAAMAhCPkAAAAAADgEIR8AAAAAAIcg5AMAAAAA4BCEfAAA4EiWZam8vFy1tbWmSwEAIGkI+QAAwJG8Xq8GBwfV19dnuhQAAJKGkA8AAAAAgEMQ8gEAAAAAcAhCPgAAAAAADuGIkP+zn/1MN998s2666SZ95zvfMV0OAAAAAABGZJsuIF7vv/++fD6fenp6VFBQoOrqai1dulTTp083XRoAAAAAAEmV9t/k7927Vx//+Mc1c+ZMXXvttWpqatLu3btNlwUAAAAAQNIZD/m9vb1asmSJSkpKlJGRoe3bt4/bxrIslZWVacqUKZo3b5727t0bfezYsWOaOXNmdHnmzJl65513klI7AAAAAACpxHjIHxkZUWVlpSzLuuTjW7dulc/n07p167R//35VVlZq0aJFOnnyZJIrBQAAAAAgtRm/Jr+pqUlNTU2XfXzTpk1atWqVVq5cKUnq7OzUjh07tHnzZrW2tqqkpGTMN/fvvPOO6urqLtteIBBQIBCILvv9fklSblZEWVmRuF6LJzMy5n8TgsGgsec2bfS1m+x/N0uF/d/N6H+zRvvdjmOwm4/jAAAgfsZD/pVcvHhR+/btU1tbW3RdZmamGhsbtWfPHklSXV2dDh48qHfeeUcFBQV67rnn9Mgjj1y2zfb2dm3YsGHc+o3VIeXlhWype2NN2JZ2YrFz505jz50qTPY/6H/T6H+zurq64m7jwoULNlSCdFfWusN0CQCANJXSIf/06dMKhUIqKioas76oqEiHDh2SJGVnZ+uJJ55QQ0ODwuGwvvzlL19xZv22tjb5fL7ost/vV2lpqR7Zl6UsT1Zc9XoyI9pYE9Yj/ZkKhDPiaguTR/+bRf+bRf+bNdr/CxcuVE5OTlxtjZ5hhrGWLl2qX/ziF7r99tv1ox/9yHQ5AACkrJQO+RN111136a677prQth6PRx6PZ9z6i6EMZYbseWMcCGcoYFNbmDz63yz63yz636ycnJy4Q368P+9Uq1ev1gMPPKBnnnnGdCkAAKQ04xPvXUlhYaGysrI0NDQ0Zv3Q0JCKi4sNVQUAAJKtvr5e+fn5pssAACDlpXTIz83NVXV1tbq7u6PrwuGwuru7NX/+fIOVAQCAiYr3drkAAGDijIf84eFhDQwMaGBgQJJ05MgRDQwM6K233pIk+Xw+PfXUU3rmmWf0f//3f3rooYc0MjISnW0/VpZlqby8XLW1tXG/BgAAcHncLhcAgOQxfk1+f3+/Ghoaosujk+I1Nzdry5YtWr58uU6dOqW1a9fqxIkTqqqq0q5du8ZNxjdZXq9XXq9Xfr9fBQUFcbUFAAAuL97b5QIAgIkzHvLr6+sViVz5vs4tLS1qaWlJUkUAACBZJnK73MkKBAIKBALR5dE7FgSDQQWDwfgKThJP1pXfGyGxPJmRMf8DVzO6r6TLMQbmJXJfMR7yAQCAe03kdrmS1NjYqAMHDmhkZESzZs3Stm3bLjs/T3t7uzZs2DBufU9Pj/Ly8ux9AQnyWJ3pCiBJG2vCpktAmunq6jJdAtLEhQsXEta2a0O+ZVmyLEuhUMh0KQAA4CpeeOGFCW/b1tYWvfxP+uCb/NLSUjU0NGj69OmJKM92FeufN12Cq3kyI9pYE9Yj/ZkKhLktKa5udJ9ZuHAht0LFhJw5cyZhbbs25HNNPgAA5iXidrkej0cej2fcB/o5OTlp8+Y7ECJYpoJAOIPfBSYlnY4zMCuR+4nx2fUBAIB7JfJ2uV6vV4ODg+rr64u3TAAA0oZrv8kHAADJMTw8rMOHD0eXR2+XO23aNM2ePVs+n0/Nzc2qqalRXV2dOjo6bLldLgAAbkTIBwAACWXqdrkAALgRIR8AACSUqdvlMskuAMCNXHtNvmVZKi8vV21trelSAABAAnBNPgDAjVwb8hn4AQAAAABO4/rT9UdPHwwHLsTdVigrogsXQgoFshTmditJR/+bRf+bRf+bNdr/fr8/7lvi+P1+Sbrq6e24utHT9d9//31J0vnz59Pm1lZ2vC9B7DimYrLsHAfgDufPn5eUmPE+I+LydxFvv/22SktLTZcBAMAYR48e1axZs0yX4Qi/+93v9NGPftR0GQAAjPP666/rIx/5iK1tuv6b/JKSEh09elT5+fnKyPjgk9ra2tpxp/FPZJ3f71dpaamOHj2qqVOnJr74K9SW6DYmsv3Vtrnc4xNdT/+b7f8/Xkf/T24b+j/2Npze/5FIROfPn1dJSUlc7eD/mzZtmiTprbfeUkFBgeFqrsyOv6lkPUcs7UzmZya6bax/71d6zNQxNRbsM5Pfln0mPfaZWNtIl33m3Xff1ezZs6NjlJ1cH/IzMzPHfVOSlZU17o9zouskaerUqUn9475cHYlsYyLbX22byz0+0fX0v9n+v9w6+n9i29D/sbfhhv5P9SCabjIzP5iCqKCgIOXffNvxN5Ws54ilncn8zES3jfXvfSI/m+xjaizYZya/LftMeuwzsbaRbvvM6Bhlp6z169evt71VB6irq5v0ukAgoEcffVRtbW3yeDwJre9KdSSrjYlsf7VtLvf4RNfT//FtE2///+E6+n/y29D/sbdB/2My0u33Y8ffVLKeI5Z2JvMzE9021r/3yz3GPpO452CfSQ3pss/E2obb9xnXX5NvJ7/fr4KCAr377rsp/wmeE9H/ZtH/ZtH/ZtH/qY3fDyaLfQaTxT6DyUrkPsM3+TbLyspSfX29srNdfyWEEfS/WfS/WfS/WfR/auP3g8lin8Fksc9gshK1z/BNPgAAAAAADmH/Vf4AAAAAAMAIQj4AAAAAAA5ByAcAAAAAwCEI+QAAAAAAOAQhP0l+9rOf6eabb9ZNN92k73znO6bLcZ2lS5fq+uuv1z333GO6FNc5evSo6uvrVV5erltuuUXbtm0zXZKrnDt3TjU1NaqqqlJFRYWeeuop0yW50oULF3TjjTdqzZo1pkvBFXC8Qix4j4GrIQdgsuI9rjC7fhK8//77Ki8vV09PjwoKClRdXa2XX35Z06dPN12aa/ziF7/Q+fPn9cwzz+hHP/qR6XJc5fjx4xoaGlJVVZVOnDih6upqvfrqq7rmmmtMl+YKoVBIgUBAeXl5GhkZUUVFhfr7+zn+JNlXvvIVHT58WKWlpfrGN75huhxcBscrxIL3GLgScgBiEe9xhW/yk2Dv3r36+Mc/rpkzZ+raa69VU1OTdu/ebbosV6mvr1d+fr7pMlxpxowZqqqqkiQVFxersLBQZ8+eNVyVe2RlZSkvL0+SFAgEFIlExGe7yfXaa6/p0KFDampqMl0KroLjFWLBewxcCTkAsYj3uELIn4De3l4tWbJEJSUlysjI0Pbt28dtY1mWysrKNGXKFM2bN0979+6NPnbs2DHNnDkzujxz5ky98847SandCeLtf8THzv7ft2+fQqGQSktLE122Y9jR/+fOnVNlZaVmzZqlL33pSyosLExW+WnPjv5fs2aN2tvbk1WyoyVzPOB45Qy8h0C8yAGYrFQ47hDyJ2BkZESVlZWyLOuSj2/dulU+n0/r1q3T/v37VVlZqUWLFunkyZNJrtSZ6H+z7Or/s2fP6v7779eTTz6ZjLIdw47+v+6663TgwAEdOXJEP/jBDzQ0NJSs8tNevP3/05/+VHPmzNGcOXOSWbZj2fH3MDo/xR//O3bsWHQbjlfOkax9Bs7F+1BMVkrsMxFMiqTIT37ykzHr6urqIl6vN7ocCoUiJSUlkfb29kgkEom89NJLkbvvvjv6+OrVqyPf//73k1Oww8TS/6N6enoif/3Xf52UOp0q1v5/7733IgsWLIg8++yzSavVieLZ/0c99NBDkW3btiW0TqeKpf9bW1sjs2bNitx4442R6dOnR6ZOnRrZsGFDUut2Kjv+Hi6F45VzJWqfiUR4j+EW5ABMlqnswjf5cbp48aL27dunxsbG6LrMzEw1NjZqz549kqS6ujodPHhQ77zzjoaHh/Xcc89p0aJFpkp2lIn0PxJnIv0fiUS0YsUK3XbbbbrvvvtMlepIE+n/oaEhnT9/XpL07rvvqre3VzfffLORep1mIv3f3t6uo0eP6o033tA3vvENrVq1SmvXrjVVsqPZMR5wvHIX3kMgXuQATFayjjuE/DidPn1aoVBIRUVFY9YXFRXpxIkTkqTs7Gw98cQTamhoUFVVlb74xS8yo6ZNJtL/ktTY2KjPfOYz2rlzp2bNmsXgbZOJ9P9LL72krVu3avv27aqqqlJVVZX+93//10S5jjOR/n/zzTe1YMECVVZWasGCBXr44Yc1d+5cE+U6zkSPP0gOO34fHK/cxa6/Yd5juBc5AJOVrOySbUu1uKq77rpLd911l+kyXOuFF14wXYJr3XrrrQqHw6bLcK26ujoNDAyYLgOSVqxYYboEXAXHK8SC9xi4GnIAJive4wrf5MepsLBQWVlZ4yayGhoaUnFxsaGq3IP+N4v+N4v+N4v+Ty38PjBZ7DOIF/sQJitZ+wwhP065ubmqrq5Wd3d3dF04HFZ3d7fmz59vsDJ3oP/Nov/Nov/Nov9TC78PTBb7DOLFPoTJStY+w+n6EzA8PKzDhw9Hl48cOaKBgQFNmzZNs2fPls/nU3Nzs2pqalRXV6eOjg6NjIxo5cqVBqt2DvrfLPrfLPrfLPo/tfD7wGSxzyBe7EOYrJTYZ2Kak99lenp6IpLG/Wtubo5u861vfSsye/bsSG5ubqSuri7yq1/9ylzBDkP/m0X/m0X/m0X/pxZ+H5gs9hnEi30Ik5UK+0xGJBKJ2PeRAQAAAAAAMIVr8gEAAAAAcAhCPgAAAAAADkHIBwAAAADAIQj5AAAAAAA4BCEfAAAAAACHIOQDAAAAAOAQhHwAAAAAAByCkA8AAAAAgEMQ8gEAAAAAcAhCPmBQfX29/umf/sl0GZP2yiuvqLi4WOfPn7/sNlu2bNF1112XxKri09raqocffth0GQCAFODk8XkiysrK1NHRYVNVyRfL7y8jI0Pbt2+f9HN99rOf1RNPPDHpnwMSiZAPuMTx48d17733as6cOcrMzLzs4Ldt2zb96Z/+qaZMmaK5/6+9O42J6mrjAP4fyjYsIoqCIkJBHJQqipYGQdAKAhIC2ARLqGhDERMFTKxdUmqKgI2JG61ioW0QWqyQKpFaAZcyZkQKaFhKGRhAUYwEl0EjLgj6vB8IN14HdPqKiPj8EhLuOeeeZebDc85dzsyahWPHjmmU+fLLLxEbGwtTU9OX3e1h8+mnnyIrKwsXLlx41V1hjDH2BuH4PPQOHz6MpKSkIa1TLpdDIpHg1q1bovSEhASkpKTg9u3bQ9oeYy+CF/mMvSG6u7sxYcIEJCQkwMXFZcAyZ8+eRXh4OKKiolBVVYWQkBCEhISgrq5OKHP58mUcPXoUq1evHqaeP1tPT8+Q1GNhYQE/Pz/s27dvSOpjjDHGtDFa4/OrNG7cuGG70PHOO+/AwcEBv/7667C0x5g2eJHP2AjR2dmJyMhImJubw8jICAEBAWhqahKV+fHHH2FjYwMjIyOEhoZi586dWj8Sb2dnh9TUVERGRsLMzGzAMqmpqfD398emTZswY8YMJCUlwdXVFXv27BHK5OXlwcXFBdbW1qJz9+/fj6lTpwp9u3nzpkb9R44cgaurKwwNDWFvb4/ExET09vYK+Q0NDfD09IShoSFmzpyJkydPih6fa21thUQiQW5uLry9vWFoaIicnBwAwE8//YQZM2bA0NAQTk5OSEtLE7Xd1taGsLAwjB07FuPGjUNwcDBaW1tFZYKCgnDw4EGtPk/GGGNvhtc9Pp85cwYLFy6EVCqFjY0N4uLicPfuXSH/2rVrCAoKglQqxdtvvy3E1Sc9Lz4D2sXZgdTV1UFHRwfXr18HAKjVaujo6ODDDz8UyiQnJ8PT01N0TkBAAExMTGBpaYmVK1fixo0bQv7Tj+u3t7cjMDBQGOOBAwcGfCXhxo0bCA0NhZGRERwdZS4KqwAAC29JREFUHVFQUACgb/6xePFiAIC5uTkkEonoYgrPH9hIw4t8xkaI1atX49y5cygoKEBZWRmICMuWLRPuVJeWlmLt2rWIj49HdXU1fH19kZKSMqR9KCsrg4+PjyjNz88PZWVlwrFCocD8+fNFZcrLyxEVFYX169ejuroaixcvRnJysqiMQqFAZGQk4uPjUV9fj/T0dOzfv18Yw6NHjxASEgIjIyOUl5cjIyMDX3311YD9/OKLLxAfHw+lUgk/Pz/k5ORg8+bNSElJgVKpxNatW/H1118jKysLQN/dfj8/P5iamkKhUKC0tBQmJibw9/fHw4cPhXrd3Nxw5coVrSYljDHG3gyvc3xuaWmBv78/PvjgA9TW1iI3NxdnzpzB+vXrReNra2tDSUkJfv/9d6SlpeHatWtCvjbxWds4OxBnZ2eMHz8ep0+fFsbx5DEAnD59GosWLQIA3Lp1C++//z7mzp2Lc+fOoaioCB0dHQgLCxu0jcjISFy9ehVyuRyHDh1CRkaGaIz9EhMTERYWhtraWixbtgwRERFQq9WwsbHBoUOHAPTte9De3o7U1FThPDc3N1RUVKC7u/uZY2Vs2BBj7JXx9vam+Ph4UqlUBIBKS0uFvBs3bpBUKqW8vDwiIlqxYgUFBgaKzo+IiCAzM7P/u92n6enp0YEDB0Rpe/fupYkTJwrHLi4utGXLFlGZ8PBwWrZsmShtxYoVor4tWbKEtm7dKirzyy+/0KRJk4iIqLCwkHR1dam9vV3IP3HiBAGg/Px8IiK6ePEiAaDdu3eL6nFwcNDod1JSErm7uwvtyGQyevz4sZDf3d1NUqmUiouLhbTbt28TAJLL5RqfDWOMsTfHaInPUVFRtGbNGlGaQqEgHR0dun//PjU2NhIAqqioEPKVSiUBoF27dhGRdvFZ2zg7mOXLl9O6deuIiGjDhg20adMmMjc3J6VSSQ8fPiQjIyM6fvw4EfXF96VLl4rOb2trIwDU2NhIROLPsX88lZWVQvmmpibRGImIAFBCQoJw3NXVRQCosLCQiIhKSkoIAHV2dmr0v6amhgBQa2vrc8fK2HDQfQXXFRhjT1EqldDV1cV7770npI0fPx4ymQxKpRJA35Xj0NBQ0Xlubm44evTosPb1/v37MDQ0FKUplUqNvrm7u6OoqEg4rqmpQWlpqejuxqNHj/DgwQPcu3cPjY2NsLGxgZWVlZDv5uY2YB+evFNx9+5dtLS0ICoqCtHR0UJ6b2+v8NhjTU0NmpubNd7Pe/DgAVpaWoRjqVQKALh3796zPwTGGGNvhNc9PtfU1KC2tlb0CD4R4fHjx7h48SJUKhV0dXUxb948Id/JyUn0qoE28VnbODsYb29vZGRkAOi7a79161aoVCrI5XKo1Wr09PTAw8NDaKukpAQmJiYa9bS0tGD69OmitMbGRujq6sLV1VVImzZtGszNzTXOnz17tvC/sbExxowZM+Ad/6fx/IGNNLzIZ4wJrKys0NHRIUrr6OgQBXYLCwt0dnb+57q7urqQmJiI5cuXa+Q9PSl5HmNjY1G9QN/7kE9OwgDgrbfeEsrMmzdvwPcMJ0yYIPyvVqs10hhjjLFX7f+Nz11dXYiJiUFcXJxGnVOnToVKpRqS/mkbZwfT/w59U1MT6uvr4enpiYaGBsjlcnR2dmL+/PkwMjIS2goKCsK2bds06pk0adILjUNPT090LJFI8Pjx4+eex/MHNtLwIp+xEWDGjBno7e1FeXk5FixYAAC4efMmGhsbMXPmTACATCZDZWWl6Lynj1+Uu7s7Tp06Jdqs5sSJE3B3dxeO586di/r6eo3+l5eXi9L+/vtv0bGrqysaGxsxbdq0AduWyWRoa2tDR0cHLC0tAWg3PktLS0yePBkXLlxARETEgGVcXV2Rm5uLiRMnYsyYMYPWVVdXBz09PTg7Oz+3XcYYY6Pf6x6fXV1dUV9fP2jsdXJyQm9vL86fP493330XQN+d7yd/Jk6b+KxtnB3MrFmzYG5ujuTkZMyZMwcmJiZYtGgRtm3bhs7OTuF9/P62Dh06BDs7O+jqPn8pI5PJ0Nvbi6qqKuGJhebm5v98w0JfXx9A31OIT6urq8OUKVNgYWHxn+pk7GXhjfcYGwEcHR0RHByM6OhonDlzBjU1Nfjoo49gbW2N4OBgAEBsbCyOHTuGnTt3oqmpCenp6SgsLIREItG6nerqalRXV6OrqwvXr19HdXW1aEIQHx+PoqIi7NixAw0NDfjmm29w7tw50QY9/Rv9PBnk4uLiUFRUhO3bt6OpqQl79uwRPaoPAJs3b0Z2djYSExPx77//QqlU4uDBg0hISAAA+Pr6wsHBAatWrUJtbS1KS0uFvOeNMTExEd9++y2+++47qFQq/PPPP8jMzMTOnTsBABEREbCwsEBwcDAUCgUuXrwIuVyOuLg4XLlyRahHoVAIOxAzxhhjr3t8/vzzz3H27FlhY9ympiYcOXJEOE8mk8Hf3x8xMTEoLy/H+fPn8cknn4jioDbxWds4OxiJRAIvLy/k5OQIC/rZs2eju7sbp06dgre3t1B23bp1UKvVCA8PR2VlJVpaWlBcXIyPP/54wAW4k5MTfHx8sGbNGlRUVKCqqgpr1qyBVCr9T9+Rra0tJBIJjh49iuvXrwtPEgJ984elS5dqXRdjL92r3hSAsTfZkxvDqNVqWrlyJZmZmZFUKiU/Pz9SqVSi8hkZGWRtbU1SqZRCQkIoOTmZrKystG4PgMafra2tqExeXh5Nnz6d9PX1ydnZmf78809Rfk9PD02ePJmKiopE6T///DNNmTKFpFIpBQUF0fbt2zU2HSoqKqIFCxaQVCqlMWPGkJubG2VkZAj5SqWSPDw8SF9fn5ycnOiPP/4gAEJb/RvvVVVVaYwtJyeH5syZQ/r6+mRubk5eXl50+PBhIb+9vZ0iIyPJwsKCDAwMyN7enqKjo+n27dtCGZlMRr/99pvWnydjjLHRaTTF54qKCvL19SUTExMyNjam2bNnU0pKipDf3t5OgYGBZGBgQFOnTqXs7GyytbUVbUr3vPjcX8/z4uyz7Nq1S7TRHRFRcHAw6erq0p07d0RlVSoVhYaG0tixY0kqlZKTkxNt2LBB2Pjv6Q0Mr169SgEBAWRgYEC2trZ04MABmjhxIv3www+i76B/I8F+ZmZmlJmZKRxv2bKFrKysSCKR0KpVq4iI6P79+2RmZkZlZWVajZOx4SAhInoF1xYYY0MgOjoaDQ0NUCgUw9ru3r17UVBQgOLi4pfaTmlpKTw9PdHc3AwHB4eX2lZhYSE2btyI2tparR7/Y4wxxgbD8Xlku3LlCmxsbHDy5EksWbLkherat28f8vPzcfz48SHqHWMvjmeyjL1Gtm/fDl9fXxgbG6OwsBBZWVlIS0sb9n7ExMTg1q1buHPnjsZOui8iPz8fJiYmcHR0RHNzM+Lj4+Hh4TEsE4i7d+8iMzOTF/iMMcb+M47PI9tff/2Frq4uzJo1C+3t7fjss89gZ2cHLy+vF65bT08P33///RD0krGhw3fyGXuNhIWFQS6X486dO7C3t0dsbCzWrl0LAHB2dsalS5cGPC89PX3QTelGkuzsbCQnJ+Py5cuwsLCAj48PduzYgfHjx7/qrjHGGGOD4vj8bAP93F2/wsJCLFy4cKi6OqDi4mJs3LgRFy5cgKmpKRYsWIDdu3fD1tb2pbbL2KvCi3zGRolLly6hp6dnwDxLS8shvaLPGGOMMe1wfO7bzX4w1tbWvOEtY0OMF/mMMcYYY4wxxtgowT+hxxhjjDHGGGOMjRK8yGeMMcYYY4wxxkYJXuQzxhhjjDHGGGOjBC/yGWOMMcYYY4yxUYIX+YwxxhhjjDHG2CjBi3zGGGOMMcYYY2yU4EU+Y4wxxhhjjDE2SvAinzHGGGOMMcYYGyX+Bz2y67R//EGZAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -3261,18 +3264,16 @@ "plt.subplot(1,2,1)\n", "plotDistribution(degrees, 13, minValue=1E0)\n", "plt.yscale(\"log\")\n", - "plt.title(\"Degree Distribution\")\n", "\n", "plt.subplot(1,2,2)\n", "plotDistribution(allEdgesWeights, 20)\n", "plt.xlim([1E-2, 10])\n", - "plt.yscale(\"log\")\n", - "plt.title(\"Edge Weight Distribution\")" + "plt.yscale(\"log\")" ] }, { "cell_type": "code", - "execution_count": 107, + "execution_count": 114, "metadata": {}, "outputs": [], "source": [ @@ -3283,7 +3284,7 @@ }, { "cell_type": "code", - "execution_count": 108, + "execution_count": 115, "metadata": {}, "outputs": [ { @@ -3311,49 +3312,26 @@ }, { "cell_type": "code", - "execution_count": 109, + "execution_count": 116, "metadata": {}, "outputs": [], "source": [ - "degrees = pd.Series({k: v for k, v in nx.degree(filteredDocumentGraph)})" - ] - }, - { - "cell_type": "code", - "execution_count": 110, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGmCAYAAACnVCQ9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAdqklEQVR4nO3df2jV970/8FcSNW029c7KYtWI/4yyzDWBmIhjlxuL1etKi+16KQh3mYMNtmMZZDD0j9mU+8ct37IhrAfK7hjdxgrSgg7Wu/5YaBG6DqPFcUfoNsEOV2daKTU1smN6cu4fuznfaqLJSc6P98l5PKCUz/t8Pu/363OSd/rs52dToVAoBABAIpprXQAAwMcJJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApVQ8nH3zwQWzdujW6u7tjy5Yt8V//9V/VLgEASFhTtV/8l8/nI5fLRVtbW0xMTMSWLVvi1KlTcccdd8xr+6mpqbhw4UKsXLkympqaKlwtAFAOhUIhPvzww1i/fn00N9/62MiyKtVU1NLSEm1tbRERkcvlolAoRCn56MKFC9HR0VGp8gCACjp//nxs3LjxluuUHE5OnDgRTz75ZJw+fTr+9re/xbFjx2Lv3r3XrZPNZuPJJ5+MixcvRldXV/zwhz+Mvr6+4ucffPBB/Mu//Ev8+c9/jieffDLWrl077/FXrlwZEf/YuVWrVpVa/i1NTk7Gyy+/HLt27Yrly5eXtW9gbuYg1FYl5+D4+Hh0dHQU/zt+KyWHk4mJiejq6oqvfe1r8dBDD834/OjRozE4OBhPP/10bNu2LY4cORK7d++OP/7xj/HpT386IiL+6Z/+KX7/+9/H2NhYPPTQQ/Hwww9He3v7rOPlcrnI5XLF5Q8//DAiIm6//fa4/fbbSy3/lpYtWxZtbW1x++23+8MINWAOQm1Vcg5OTk5GRMzrkoxFXXPS1NQ048jJtm3bore3N5566qmI+Mc1Ih0dHfHoo4/GwYMHZ/TxrW99K+655554+OGHZx1jaGgoHn/88Rntzz77bPH0EACQtqtXr8a+ffvi8uXLc575KOs1J9euXYvTp0/HoUOHim3Nzc2xc+fOeOONNyIiYmxsLNra2mLlypVx+fLlOHHiRHzzm9+8aZ+HDh2KwcHB4vL0YaFdu3ZV5LTOK6+8Evfee6//a4MaMAehtio5B8fHx+e9blnDyaVLlyKfz884RdPe3h5vvfVWRET85S9/iW984xvFC2EfffTR+PznP3/TPltbW6O1tXVG+/Llyyv2x6uSfQNzMwehtioxB0vpr+p36/T19cWZM2eqPSwAUCfK+hC2tWvXRktLS4yNjV3XPjY2FuvWrSvnUADAElXWcLJixYro6emJ4eHhYtvU1FQMDw/H9u3byzkUALBElXxa58qVK3H27Nni8rlz5+LMmTOxZs2a2LRpUwwODsbAwEBs3bo1+vr64siRIzExMRH79+9fVKHZbDay2Wzk8/lF9QMApK3kcHLq1KnYsWNHcXn6TpqBgYF45pln4pFHHon33nsvDh8+HBcvXozu7u548cUXb/ock/nKZDKRyWRifHw8Vq9evai+AIB0lRxO+vv753zc/IEDB+LAgQMLLgoAaFxVfysxAMCtCCcAQFLqJpxks9no7OyM3t7eWpcCAFRQ3YSTTCYTo6OjMTIyUutSAIAKqptwAgA0hqo/vr4ebBl6KXL5f7zS+e0n7qtxNQDQWBw5AQCSIpwAAEkRTgCApNRNOHErMQA0hroJJ24lBoDGUDfhBABoDMIJAJAU4QQASIpwAgAkRTgBAJIinAAASambcOI5JwDQGOomnHjOCQA0hroJJwBAYxBOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkpW7CiYewAUBjqJtw4iFsANAY6iacAACNQTgBAJIinAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJJSN+HEu3UAoDHUTTjxbh0AaAx1E04AgMYgnAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFLqJpx4KzEANIa6CSfeSgwAjaFuwgkA0BiEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASVlW6wJIx+aDL8xoe/uJ+2pQCQCNzJETACApwgkAkBThBABISt2Ek2w2G52dndHb21vrUgCACqqbcJLJZGJ0dDRGRkZqXQoAUEF1E04AgMYgnAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkVD2cnD9/Pvr7+6OzszPuvvvueO6556pdAgCQsGVVH3DZsjhy5Eh0d3fHxYsXo6enJ770pS/FJz7xiWqXAgAkqOrh5M4774w777wzIiLWrVsXa9eujffff184YV42H3xhRtvbT9xXg0oAqJSST+ucOHEi7r///li/fn00NTXF8ePHZ6yTzWZj8+bNcdttt8W2bdvi5MmTs/Z1+vTpyOfz0dHRUXrlAMCSVHI4mZiYiK6urshms7N+fvTo0RgcHIzHHnss3nzzzejq6ordu3fHu+++e91677//fnzlK1+JH/3oRwurHKpg88EXrvsHgMor+bTOnj17Ys+ePTf9/Ac/+EF8/etfj/3790dExNNPPx0vvPBC/OQnP4mDBw9GREQul4u9e/fGwYMH4wtf+MItx8vlcpHL5YrL4+PjERExOTkZk5OTpZZ/S9P9tTYXZrQ1gtaWwoy21Pa/2jXeOF5q38dSM/39+p6hNio5B0vps6lQKMz8az/fjZua4tixY7F3796IiLh27Vq0tbXF888/X2yLiBgYGIgPPvggfvnLX0ahUIh9+/bFXXfdFUNDQ3OOMTQ0FI8//viM9meffTba2toWWjoAUEVXr16Nffv2xeXLl2PVqlW3XLesF8ReunQp8vl8tLe3X9fe3t4eb731VkREvP7663H06NG4++67i9er/PznP4/Pf/7zs/Z56NChGBwcLC6Pj49HR0dH7Nq1a86dK9Xk5GS88sor8b1TzZGbaoqIiD8M7S7rGCnbMvTSjLbU9r/aNd44Xmrfx1IzPQfvvffeWL58ea3LgYZTyTk4feZjPqp+t84Xv/jFmJqamvf6ra2t0draOqN9+fLlFfvjlZtqily+qThOo5je549Lbf+rXeON46X2fSxVlZzfwNwqMQdL6a+sD2Fbu3ZttLS0xNjY2HXtY2NjsW7dunIOBQAsUWUNJytWrIienp4YHh4utk1NTcXw8HBs3769nEMBAEtUyad1rly5EmfPni0unzt3Ls6cORNr1qyJTZs2xeDgYAwMDMTWrVujr68vjhw5EhMTE8W7dxYqm81GNpuNfD6/qH4AD7MD0lZyODl16lTs2LGjuDx9serAwEA888wz8cgjj8R7770Xhw8fjosXL0Z3d3e8+OKLMy6SLVUmk4lMJhPj4+OxevXqRfUFAKSr5HDS398fc919fODAgThw4MCCiwIAGlfV30oMAHArwgkAkBThBABISt2Ek2w2G52dndHb21vrUgCACqqbcJLJZGJ0dDRGRkZqXQoAUEF1E04AgMYgnAAASRFOAICkCCcAQFJKfkIssHjebQNwc3Vz5MStxADQGOomnLiVGAAaQ92EEwCgMQgnAEBShBMAICnCCQCQFOEEAEiKcAIAJKVuwonnnABAY6ibJ8RmMpnIZDIxPj4eq1evrnU5kIwbnzbrSbNAvaubIycAQGMQTgCApAgnAEBShBMAICl1c0EsgIt/oTE4cgIAJEU4AQCSUjfhxEPYAKAx1E04yWQyMTo6GiMjI7UuBQCooLoJJwBAYxBOAICkuJUYmLcbb+WNcDsvUH7CCVBxnk8ClMJpHQAgKcIJAJAU4QQASIpwAgAkRTgBAJJSN+HE4+sBoDHUTTjx+HoAaAx1E04AgMYgnAAASRFOAICkeHw9ADN45QC15MgJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFKEEwAgKcIJAJCUugkn2Ww2Ojs7o7e3t9alAAAVVDfhJJPJxOjoaIyMjNS6FKACNh98IbYMvRQRUfw30JjqJpwAAI3Bi/8AFujGl+NFeEEelIMjJwBAUoQTACApwgkAkBThBABIinACACTF3ToADW62u46glhw5AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEmpm3CSzWajs7Mzent7a10KAFBBdRNOMplMjI6OxsjISK1LAQAqqG7CCQDQGLyVGGg4s72F9+0n7qtBJcBsHDkBAJIinAAASRFOAICkCCcAQFJcEAssKS52hfrnyAkAkBThBABIinACACTFNScALIjre6gUR04AgKQIJwBAUpzWAYiZpyicnoDaceQEAEiKcAIAJMVpHYB5mu3uFG7NHT0shCMnAEBShBMAICnCCQCQFNecADQY186QOkdOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJJSk3Dy4IMPxqc+9al4+OGHazE8AJCwmoSTb3/72/Gzn/2sFkMDAImrSTjp7++PlStX1mJoACBxJYeTEydOxP333x/r16+PpqamOH78+Ix1stlsbN68OW677bbYtm1bnDx5sizFAgBLX8nv1pmYmIiurq742te+Fg899NCMz48ePRqDg4Px9NNPx7Zt2+LIkSOxe/fu+OMf/xif/vSnSy4wl8tFLpcrLo+Pj0dExOTkZExOTpbc361M99faXJjR1ghaWwoz2lLb/2rXeON45RqrnPuxkBoXOn65tpttm9aWQnHutTYXbrrOfPqZq8bZ1plrm8Vsl5r57MeNyvld18N31KimfzaV+BmV0mdToVAo/bd0euOmpjh27Fjs3bu32LZt27bo7e2Np556KiIipqamoqOjIx599NE4ePBgcb3XXnstnnrqqXj++edvOcbQ0FA8/vjjM9qfffbZaGtrW2jpAEAVXb16Nfbt2xeXL1+OVatW3XLdsr6V+Nq1a3H69Ok4dOhQsa25uTl27twZb7zxxoL6PHToUAwODhaXx8fHo6OjI3bt2jXnzpVqcnIyXnnllfjeqebITTVFRMQfhnaXdYyUbRl6aUZbavtf7RpvHK9cY5VzPxZS40LHL9d2s22zZeilaG0uxH9snYrvnWqO04f/dcH9zFXjbOvMtc1itptPPwv5+Zfz51gu8/muU/u7Uk2pfx/T/x289957Y/ny5WXte/rMx3yUNZxcunQp8vl8tLe3X9fe3t4eb731VnF5586d8fvf/z4mJiZi48aN8dxzz8X27dtn7bO1tTVaW1tntC9fvrzsX9y03FRT5PJNxXEaxfQ+f1xq+1/tGm8cr1xjlXM/FlLjQscv13azbfPxdXJTTXOuM59+brbebOvMtc1itptPPwv5+Zfz51gu8/muU/u7Uk318n1U4r+xpfRX1nAyX7/5zW9qMSwAUAfKeivx2rVro6WlJcbGxq5rHxsbi3Xr1pVzKABgiSprOFmxYkX09PTE8PBwsW1qaiqGh4dvetoGAODjSj6tc+XKlTh79mxx+dy5c3HmzJlYs2ZNbNq0KQYHB2NgYCC2bt0afX19ceTIkZiYmIj9+/cvqtBsNhvZbDby+fyi+gGoB5sPvjCj7e0n7qtBJaSg0X4fSg4np06dih07dhSXp++kGRgYiGeeeSYeeeSReO+99+Lw4cNx8eLF6O7ujhdffHHGRbKlymQykclkYnx8PFavXr2ovgCAdJUcTvr7+2OuR6McOHAgDhw4sOCiAIDGVZN36wAA3IxwAgAkRTgBAJJSk4ewLYS7dYClbLa7McrRTz3c0VHrO1HKNX6t92MpqZsjJ5lMJkZHR2NkZKTWpQAAFVQ34QQAaAzCCQCQFOEEAEiKcAIAJMXdOgBlVI93y9QDd8I0lro5cuJuHQBoDHUTTgCAxiCcAABJEU4AgKQIJwBAUoQTACApwgkAkBTPOQGAG3heTW3VzZETzzkBgMZQN+EEAGgMwgkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKR4CBsAybnxIWg0lro5cuIhbADQGOomnAAAjUE4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCS4t06AHViqbxvppr7MdtYbz9xX836YX7q5siJd+sAQGOom3ACADQG4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJLircQAS9hSeZMxlfPx35HWlkL8v74aFvN/6ubIibcSA0BjqJtwAgA0BuEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJGVZrQuYr2w2G9lsNvL5fK1LAeAmNh98Ifmxq1njfMYqVz2z9fP2E/eVpe9qq5sjJ5lMJkZHR2NkZKTWpQAAFVQ34QQAaAzCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEhKTcLJr371q7jrrrviM5/5TPz4xz+uRQkAQKKWVXvAjz76KAYHB+PVV1+N1atXR09PTzz44INxxx13VLsUACBBVT9ycvLkyfjc5z4XGzZsiE9+8pOxZ8+eePnll6tdBgCQqJLDyYkTJ+L++++P9evXR1NTUxw/fnzGOtlsNjZv3hy33XZbbNu2LU6ePFn87MKFC7Fhw4bi8oYNG+Kdd95ZYPkAwFJTcjiZmJiIrq6uyGazs35+9OjRGBwcjMceeyzefPPN6Orqit27d8e777676GIBgKWv5GtO9uzZE3v27Lnp5z/4wQ/i61//euzfvz8iIp5++ul44YUX4ic/+UkcPHgw1q9ff92RknfeeSf6+vpu2l8ul4tcLldcHh8fj4iIycnJmJycLLX8W5rur7W5MKOtEbS2FGa0pbb/1a7xxvHKNVY592MhNS50/HJtN9s2rS2F4txrbS7cdJ359DNXjbOtM9c2892uUv0w00J+ro02fqnzc3oOVuLvail9NhUKhQV/m01NTXHs2LHYu3dvRERcu3Yt2tra4vnnny+2RUQMDAzEBx98EL/85S/jo48+is9+9rPx2muvFS+I/e1vf3vTC2KHhobi8ccfn9H+7LPPRltb20JLBwCq6OrVq7Fv3764fPlyrFq16pbrlvVunUuXLkU+n4/29vbr2tvb2+Ott976x4DLlsX3v//92LFjR0xNTcV3v/vdW96pc+jQoRgcHCwuj4+PR0dHR+zatWvOnSvV5ORkvPLKK/G9U82Rm2qKiIg/DO0u6xgp2zL00oy21Pa/2jXeOF65xirnfiykxoWOX67tZttmy9BL0dpciP/YOhXfO9Ucpw//64L7mavG2daZa5v5blepfkjPQn6vam2u38fpOXjvvffG8uXLyzr29JmP+aj6rcQREQ888EA88MAD81q3tbU1WltbZ7QvX7687F/ctNxUU+TyTcVxGsX0Pn9cavtf7RpvHK9cY5VzPxZS40LHL9d2s23z8XVyU01zrjOffm623mzrzLXNfLerVD+kZyG/V7VWypwp99/WUvor663Ea9eujZaWlhgbG7uufWxsLNatW1fOoQCAJaqs4WTFihXR09MTw8PDxbapqakYHh6O7du3l3MoAGCJKvm0zpUrV+Ls2bPF5XPnzsWZM2dizZo1sWnTphgcHIyBgYHYunVr9PX1xZEjR2JiYqJ4985CZbPZyGazkc/nF9UPAJC2ksPJqVOnYseOHcXl6YtVBwYG4plnnolHHnkk3nvvvTh8+HBcvHgxuru748UXX5xxkWypMplMZDKZGB8fj9WrVy+qLwAgXSWHk/7+/pjr7uMDBw7EgQMHFlwUANC4avJWYgCAmxFOAICkCCcAQFLqJpxks9no7OyM3t7eWpcCAFRQ3YSTTCYTo6OjMTIyUutSAIAKqptwAgA0BuEEAEiKcAIAJKUmbyVejOkHwJXy6uX5mpycjKtXr0Y+1xJT//eWxkqMk6qp3NUZbantf7VrvHG8co1Vzv1YSI0LHb9c2822zVTuauRbCnH1aj7yuZabrjOffuaqcbZ15tpmvttVqh/Ss5Dfq1qb6/dxeg6Oj4+X/a3E02PP9SDXiIimwnzWSshf//rX6OjoqHUZAMACnD9/PjZu3HjLdeounExNTcWFCxfinnvuiVOnTs1rm97e3nnd5TM+Ph4dHR1x/vz5WLVq1WJLrXvz/d5qpdr1VWq8cvW7mH4Wsm2p28xnfXNwJvOwOuOVo9/F9lHpeVjrOVgoFOLDDz+M9evXR3Pzra8qqbvTOs3NzbFx48ZYtmzZvL+4lpaWkr7kVatW+cMYpX9v1Vbt+io1Xrn6XUw/C9m21G1KWd8c/P/Mw+qMV45+F9tHpedhCnNwvi/ubRkaGhoq++hV0tfXV9Z1c7lcPPHEE3Ho0KFobW1dTGlLRinfcS1Uu75KjVeufhfTz0K2LXWbudY3B2dnHlZnvHL0u9g+Kj0P62UO1t1pnUoaHx+P1atXx+XLl5P+PxVYqsxBqK1U5mBdHzmphJaWlujv749ly+rujBcsCeYg1FYKc9CREwAgKR7CBgAkRTgBAJIinAAASRFOAICkCCcAQFKEk3n61a9+FXfddVd85jOfiR//+Me1LgcazoMPPhif+tSn4uGHH651KdCQzp8/H/39/dHZ2Rl33313PPfccxUby63E8/DRRx9FZ2dnvPrqq7F69ero6emJ3/72t3HHHXfUujRoGK+99lp8+OGH8dOf/jSef/75WpcDDedvf/tbjI2NRXd3d1y8eDF6enriT3/6U3ziE58o+1iOnMzDyZMn43Of+1xs2LAhPvnJT8aePXvi5ZdfrnVZ0FD6+/tj5cqVtS4DGtadd94Z3d3dERGxbt26WLt2bbz//vsVGashwsmJEyfi/vvvj/Xr10dTU1McP358xjrZbDY2b94ct912W2zbti1OnjxZ/OzChQuxYcOG4vKGDRvinXfeqUrtsBQsdg4Ci1fOeXj69OnI5/PR0dFRkVobIpxMTExEV1dXZLPZWT8/evRoDA4OxmOPPRZvvvlmdHV1xe7du+Pdd9+tcqWwNJmDUHvlmofvv/9+fOUrX4kf/ehHlSu20GAionDs2LHr2vr6+gqZTKa4nM/nC+vXry/853/+Z6FQKBRef/31wt69e4uff/vb3y784he/qE7BsMQsZA5Oe/XVVwtf/vKXq1InLGULnYd///vfC//8z/9c+NnPflbR+hriyMmtXLt2LU6fPh07d+4stjU3N8fOnTvjjTfeiIh/vGL6D3/4Q7zzzjtx5cqV+PWvfx27d++uVcmwpMxnDgKVNZ95WCgU4qtf/Wrcc8898e///u8Vrafhw8mlS5cin89He3v7de3t7e1x8eLFiIhYtmxZfP/7348dO3ZEd3d3fOc733GnDpTJfOZgRMTOnTvj3/7t3+K///u/Y+PGjYILlNF85uHrr78eR48ejePHj0d3d3d0d3fH//zP/1SkHu8kn6cHHnggHnjggVqXAQ3rN7/5Ta1LgIb2xS9+MaampqoyVsMfOVm7dm20tLTE2NjYde1jY2Oxbt26GlUFjcMchNpLbR42fDhZsWJF9PT0xPDwcLFtamoqhoeHY/v27TWsDBqDOQi1l9o8bIjTOleuXImzZ88Wl8+dOxdnzpyJNWvWxKZNm2JwcDAGBgZi69at0dfXF0eOHImJiYnYv39/DauGpcMchNqrq3lY0XuBEvHqq68WImLGPwMDA8V1fvjDHxY2bdpUWLFiRaGvr6/wu9/9rnYFwxJjDkLt1dM89G4dACApDX/NCQCQFuEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCS8r/xTSWLb4HDfQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plotDistribution(degrees, 100, minValue=1E0)\n", - "plt.yscale(\"log\")" + "degrees = pd.Series({k: v for k, v in nx.degree(filteredDocumentGraph)}, name=\"degree\")" ] }, { "cell_type": "code", - "execution_count": 111, + "execution_count": 117, "metadata": {}, "outputs": [], "source": [ - "allEdgesWeights = pd.Series({(d[0], d[1]): d[2][\"weight\"] for d in filteredDocumentGraph.edges(data=True)})" + "allEdgesWeights = pd.Series({(d[0], d[1]): d[2][\"weight\"] for d in filteredDocumentGraph.edges(data=True)}, name=\"edge_weight\")" ] }, { "cell_type": "code", - "execution_count": 112, - "metadata": { - "scrolled": true - }, + "execution_count": 118, + "metadata": {}, "outputs": [ { "name": "stderr", @@ -3366,48 +3344,16 @@ { "data": { "text/plain": [ - "(0.1, 1)" - ] - }, - "execution_count": 112, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGhCAYAAACUFDUXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAcy0lEQVR4nO3df2xddf348VfXbp3TrbJNOsZW5q+oddDp1i4LJm4wXWBOJ2JI/EGFRBJzS6b1V/eH/PhDmRrJVG4E8ceigk6MEHWAQMVNEV03NhWbodOBCK4w0HV0ptTb8/3DL/04exltd9vb993jkfDHPT33nNc5LLnPnHvuvVVZlmUBAJCoKeUeAADgRIgZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEhaTbkHGK3BwcF4/PHHY+bMmVFVVVXucQCAEciyLI4cORLz58+PKVNKey0luZh5/PHHY+HCheUeAwAYg0cffTQWLFhQ0m0mFzMzZ86MiIgDBw7E7NmzyzwNADASTz/9dLz85S8feh0vpeRi5rm3lmbOnBmzZs0q8zQAwEgMDAxERIzLLSJuAAYAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICk1ZR7AAAYL4s6tg1b9vCmtWWYhPHkygwAkDQxAwAkLZmYyefz0djYGM3NzeUeBQCYRJKJmVwuF93d3dHV1VXuUQCASSSZmAEAKEbMAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASasp9wAAUG6LOrYNW/bwprVjXo+J5coMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkLQJj5l//vOfsWzZsliyZEksXrw4brzxxokeAQCoIBP+cwYzZ86MHTt2xIwZM6Kvry8WL14cF1xwQcyZM2eiRwEAKsCEX5mprq6OGTNmREREf39/ZFkWWZZN9BgAQIUYdczs2LEj1q1bF/Pnz4+qqqq47bbbhq2Tz+dj0aJFMX369Fi+fHns3LnzmL//85//jKampliwYEF8/OMfj7lz5479CACAk9qoY6avry+ampoin88X/fvWrVujvb09rrzyynjggQeiqakp1qxZE0888cTQOi996Uvjt7/9bRw4cCBuvvnm6OnpGfsRAAAntVHfM3PeeefFeeed97x/v/baa+ODH/xgXHLJJRERcf3118e2bdviG9/4RnR0dByzbn19fTQ1NcUvfvGLuPDCC4tur7+/P/r7+4ce9/b2RkTEwMBADAwMjHZ8AE4itdXDb2Mo9tpR6vUYbjzPU0lvAH722Wdj9+7dsXHjxqFlU6ZMidWrV8f9998fERE9PT0xY8aMmDlzZhw+fDh27NgRH/rQh553m9dcc01cffXVw5bfe++9Q/feAEAxn2sZvuz2228f9/UY7ujRo+O27ZLGzKFDh6JQKER9ff0xy+vr62Pfvn0REfHII4/EZZddNnTj7+WXXx5nnnnm825z48aN0d7ePvS4t7c3Fi5cGKtWrfIJKACOa/FVPx227MGr1oz7egz31FNPjdu2J/yj2S0tLbF3794Rr19bWxu1tbXDlk+dOjWmTp1aytEAqDD9haphy4q9dpR6PYYbz/NU0o9mz507N6qrq4fd0NvT0xPz5s0r5a4AACKixDEzbdq0WLp0aXR2dg4tGxwcjM7OzlixYkUpdwUAEBFjeJvpmWeeif379w89PnDgQOzduzdmz54dDQ0N0d7eHq2trbFs2bJoaWmJzZs3R19f39Cnm8Yqn89HPp+PQqFwQtsBACrLqGNm165dsWrVqqHHz92c29raGlu2bImLLroonnzyybjiiivi4MGDsWTJkrjzzjuH3RQ8WrlcLnK5XPT29kZdXd0JbQsAqByjjpmVK1e+4M8PtLW1RVtb25iHAgAYqQn/bSYAgFISMwBA0sQMAJC0ZGImn89HY2NjNDc3l3sUAGASSSZmcrlcdHd3R1dXV7lHAQAmkWRiBgCgGDEDACRNzAAASRMzAEDSxAwAkLRkYsZHswGAYpKJGR/NBgCKSSZmAACKETMAQNLEDACQNDEDACRNzAAASRMzAEDSkokZ3zMDABSTTMz4nhkAoJhkYgYAoBgxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJK2m3AMAAP9nUce2Ycse3rS2DJOkI5krM740DwAoJpmY8aV5AEAxycQMAEAxYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGnJxIyfMwAAikkmZvycAQBQTDIxAwBQjJgBAJJWU+4BAKAUFnVsK/cIlIkrMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNB/NBoAJUOyj4w9vWluGSSqPKzMAQNLEDACQNDEDACQtmZjJ5/PR2NgYzc3N5R4FAJhEkomZXC4X3d3d0dXVVe5RAIBJJJmYAQAoRswAAEkTMwBA0sQMAJA0MQMAJE3MAABJ89tMAHCSqbTfiRIzADDJVVp8lJq3mQCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBIWjIxk8/no7GxMZqbm8s9CgAwiSQTM7lcLrq7u6Orq6vcowAAk0gyMQMAUIyYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGk15R4AACrNoo5t5R7hpOLKDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEmb8Jh59NFHY+XKldHY2BhnnXVW3HLLLRM9AgBQQWomfIc1NbF58+ZYsmRJHDx4MJYuXRrnn39+vPjFL57oUQCACjDhMXPaaafFaaedFhER8+bNi7lz58bTTz8tZgCAMRn120w7duyIdevWxfz586Oqqipuu+22Yevk8/lYtGhRTJ8+PZYvXx47d+4suq3du3dHoVCIhQsXjn5yAIAYw5WZvr6+aGpqiksvvTQuuOCCYX/funVrtLe3x/XXXx/Lly+PzZs3x5o1a+Khhx6KU089dWi9p59+Oi6++OK48cYbj7u//v7+6O/vH3rc29sbEREDAwMxMDAw2vEBqFC11dmI1iv22lHsuaVe70RmGelzR2qkx1FK47n9qizLRnbWij25qipuvfXWWL9+/dCy5cuXR3Nzc1x33XURETE4OBgLFy6Myy+/PDo6OiLiP4Hylre8JT74wQ/G+9///uPu46qrroqrr7562PKbb745ZsyYMdbRAYAJdPTo0XjPe94Thw8fjlmzZpV02yW9Z+bZZ5+N3bt3x8aNG4eWTZkyJVavXh33339/RERkWRYf+MAH4pxzznnBkImI2LhxY7S3tw897u3tjYULF8aqVatizpw5pRwfgIQtvuqnI1rvwavWjOi5pV7vRGYZ6XNHaqTHUUpPPfXUuG27pDFz6NChKBQKUV9ff8zy+vr62LdvX0RE3HfffbF169Y466yzhu63+fa3vx1nnnlm0W3W1tZGbW3tsOVTp06NqVOnlnJ8ABLWX6ga0XrFXjuKPbfU653ILCN97kiN9DhKaTy3P+GfZnrTm94Ug4ODE71bAKBClfRL8+bOnRvV1dXR09NzzPKenp6YN29eKXcFABARJY6ZadOmxdKlS6Ozs3No2eDgYHR2dsaKFStKuSsAgIgYw9tMzzzzTOzfv3/o8YEDB2Lv3r0xe/bsaGhoiPb29mhtbY1ly5ZFS0tLbN68Ofr6+uKSSy45oUHz+Xzk8/koFAontB0AoLKMOmZ27doVq1atGnr83CeNWltbY8uWLXHRRRfFk08+GVdccUUcPHgwlixZEnfeeeewm4JHK5fLRS6Xi97e3qirqzuhbQEAlWPUMbNy5cp4oa+maWtri7a2tjEPBQAwUhP+q9kAAKUkZgCApIkZACBpE/6leWPl00wATEaLOraVe4STXjJXZnK5XHR3d0dXV1e5RwEAJpFkYgYAoBgxAwAkTcwAAEkTMwBA0sQMAJC0ZGImn89HY2NjNDc3l3sUAGASSSZmfDQbACgmmZgBAChGzAAASRMzAEDSxAwAkDQxAwAkTcwAAElLJmZ8zwwAUEwyMeN7ZgCAYpKJGQCAYsQMAJA0MQMAJE3MAABJqyn3AADA+FnUsa3cI4w7V2YAgKS5MgMACSp2xeXhTWvLMEn5JXNlxpfmAQDFJBMzvjQPACjG20wAUCFOhpt9i0nmygwAQDFiBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKQlEzN+zgAAKCaZmPFzBgBAMcnEDABAMWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgacnETD6fj8bGxmhubi73KADAJJJMzORyueju7o6urq5yjwIATCLJxAwAQDFiBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSlkzM5PP5aGxsjObm5nKPAgBMIsnETC6Xi+7u7ujq6ir3KADAJJJMzAAAFCNmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBIWlli5p3vfGeccsopceGFF5Zj9wBABSlLzGzYsCG+9a1vlWPXAECFKUvMrFy5MmbOnFmOXQMAFWbUMbNjx45Yt25dzJ8/P6qqquK2224btk4+n49FixbF9OnTY/ny5bFz586SDAsA8L9qRvuEvr6+aGpqiksvvTQuuOCCYX/funVrtLe3x/XXXx/Lly+PzZs3x5o1a+Khhx6KU089ddQD9vf3R39//9Dj3t7eiIgYGBiIgYGBUW8PgMpUW52NaL1irx3FnjvS9U7EROxjpMb7NXU8t1+VZdmYz1pVVVXceuutsX79+qFly5cvj+bm5rjuuusiImJwcDAWLlwYl19+eXR0dAyt9/Of/zyuu+66+MEPfnDcfVx11VVx9dVXD1t+8803x4wZM8Y6OgAwgY4ePRrvec974vDhwzFr1qySbnvUV2aO59lnn43du3fHxo0bh5ZNmTIlVq9eHffff/+Ytrlx48Zob28fetzb2xsLFy6MVatWxZw5c054ZgAqw+Krfjqi9R68as2InjvS9U7EROxjpIrNUkpPPfXUuG27pDFz6NChKBQKUV9ff8zy+vr62Ldv39Dj1atXx29/+9vo6+uLBQsWxC233BIrVqwous3a2tqora0dtnzq1KkxderUUo4PQML6C1UjWq/Ya0ex5450vRMxEfsYqfF+TR3P7Zc0ZkbqnnvuKcduAYAKVNKPZs+dOzeqq6ujp6fnmOU9PT0xb968Uu4KACAiShwz06ZNi6VLl0ZnZ+fQssHBwejs7Hzet5EAAE7EqN9meuaZZ2L//v1Djw8cOBB79+6N2bNnR0NDQ7S3t0dra2ssW7YsWlpaYvPmzdHX1xeXXHLJCQ2az+cjn89HoVA4oe0AAJVl1DGza9euWLVq1dDj5z5p1NraGlu2bImLLroonnzyybjiiivi4MGDsWTJkrjzzjuH3RQ8WrlcLnK5XPT29kZdXd0JbQsAqByjjpmVK1fGC301TVtbW7S1tY15KACAkSrLbzMBAJSKmAEAkiZmAICkleVL88bCp5kAqDSLOraVe4SKkMyVmVwuF93d3dHV1VXuUQCASSSZmAEAKEbMAABJEzMAQNLEDACQNDEDACQtmZjJ5/PR2NgYzc3N5R4FAJhEkokZH80GAIpJJmYAAIoRMwBA0sQMAJA0MQMAJE3MAABJSyZmfDQbACgmmZjx0WwAoJhkYgYAoBgxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNKSiRnfAAwAFJNMzPgGYACgmGRiBgCgGDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJC0mnIPMFL5fD7y+XwUCoVyjwIAFWdRx7Zhyx7etLYMk4xeMldm/JwBAFBMMjEDAFCMmAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEhaTbkHGKl8Ph/5fD4KhUK5RwEgYYs6tpV7hGQUO1cPb1pbhkmOL5krM7lcLrq7u6Orq6vcowAAk0gyMQMAUIyYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSVlPuAUYry7KIiDhy5EhMnTq1zNMAMFkM9h8t6fZ6e3vHfR8pKnZeRuLIkSMR8X+v46VUlY3HVsfRX/7yl3jlK19Z7jEAgDH485//HK94xStKus3krszMnj07IiL++te/Rl1dXZmnoVI0NzdHV1dXuceoWCfr+U39uCfz/JNhtnLMMBH7HK99HD58OBoaGoZex0spuZiZMuU/t/nU1dXFrFmzyjwNlaK6utq/p3F0sp7f1I97Ms8/GWYrxwwTsc/x3sdzr+Ml3WbJtwgJyuVy5R6hop2s5zf1457M80+G2coxw0TsczKc29FK7p6Z3t7eqKuri8OHD5e9ygGAkRnP1+/krszU1tbGlVdeGbW1teUeBQAYofF8/U7uygwAwH9L7soMAMB/EzMAQNLEDACQNDEDE+Cd73xnnHLKKXHhhReWe5SKc7Ke25P1uCeCc5seMQMTYMOGDfGtb32r3GNUpJP13J6sxz0RnNv0VHTMqGsmi5UrV8bMmTPLPUZFOlnP7cl63BPBuZ14P/nJT+I1r3lNvPrVr46vfe1ro35+RceMuk7bNddcE83NzTFz5sw49dRTY/369fHQQw+VdB87duyIdevWxfz586Oqqipuu+22ouvl8/lYtGhRTJ8+PZYvXx47d+4s6RwT7Stf+UqcddZZMWvWrJg1a1asWLEi7rjjjpLuY7Kf202bNkVVVVV8+MMfLul2J/txj6fHHnss3ve+98WcOXPiRS96UZx55pmxa9eukm3/ZD63lezf//53tLe3x89+9rPYs2dPfP7zn4+nnnpqVNuo6JhR12nbvn175HK5+PWvfx133313DAwMxFvf+tbo6+sruv59990XAwMDw5Z3d3dHT09P0ef09fVFU1NT5PP5551j69at0d7eHldeeWU88MAD0dTUFGvWrIknnnhiaJ0lS5bE4sWLh/33+OOPj/KoJ8aCBQti06ZNsXv37ti1a1ecc8458Y53vCP+8Ic/FF2/0s5tV1dX3HDDDXHWWWcdd71KO+7x9I9//CPOPvvsmDp1atxxxx3R3d0dX/jCF+KUU04pur5zy3N27twZr3/96+P000+Pl7zkJXHeeefFXXfdNbqNZGWyffv27G1ve1t22mmnZRGR3XrrrcPWue6667Izzjgjq62tzVpaWrLf/OY3o97Pvffem73rXe8qxciU2RNPPJFFRLZ9+/ZhfysUCllTU1N24YUXZv/+97+Hlu/bty+rr6/PPvvZz77g9p/v32FLS0uWy+WO2df8+fOza665ZlTzT/Z/i6ecckr2ta99bdjySju3R44cyV796ldnd999d/bmN78527BhQ9H1Ku24x9snP/nJ7E1vetOI1nVuK8uJvp7fcsstx/w/+9znPpd9/vOfH9UMZbsy80KFra75X4cPH46IKPrz8VOmTInbb7899uzZExdffHEMDg7Gn//85zjnnHNi/fr18YlPfGJM+3z22Wdj9+7dsXr16mP2tXr16rj//vvHdiCTTKFQiO9973vR19cXK1asGPb3Sju3uVwu1q5de8x+i6m04x5vP/rRj2LZsmXx7ne/O0499dR4wxveEDfeeGPRdZ3bylKK1/MTNvYWK50oUnLqmv9WKBSytWvXZmefffZx13vkkUeyhoaG7KKLLsoaGhqyiy++OBscHBzRPor9O3zssceyiMh+9atfHbP84x//eNbS0jLi+c8999xs7ty52Yte9KLs9NNPH7a9cvjd736XvfjFL86qq6uzurq6bNu2bcddvxLO7Xe/+91s8eLF2b/+9a8sy7LjXpl5TiUc90Sora3Namtrs40bN2YPPPBAdsMNN2TTp0/PtmzZ8rzPcW4rz1hez++7775s/fr1Q3/fsGFDdtNNN41qvzWly6LSea6uN27cOLRMXZ/ccrlcPPjgg/HLX/7yuOs1NDTEt7/97Xjzm98cr3jFK+LrX/96VFVVTdCUz++ee+4p9wjDvOY1r4m9e/fG4cOH4wc/+EG0trbG9u3bo7Gxsej6qZ/bRx99NDZs2BB33313TJ8+fcTbT/24J8rg4GAsW7YsPvOZz0RExBve8IZ48MEH4/rrr4/W1taiz3FuK99IXs9bWlriwQcfjMceeyzq6urijjvuiE996lOj2s+kvAH40KFDUSgUor6+/pjl9fX1cfDgwRFvZ/Xq1fHud787br/99liwYIEQSlRbW1v85Cc/iXvvvTcWLFhw3HV7enrisssui3Xr1sXRo0fjIx/5yAnte+7cuVFdXT3shsSenp6YN2/eCW273KZNmxavetWrYunSpXHNNddEU1NTfPGLX3ze9VM/t7t3744nnngi3vjGN0ZNTU3U1NTE9u3b40tf+lLU1NREoVAo+rzUj3uinHbaacNC+HWve1389a9/fd7nOLeVbySv5zU1NfGFL3whVq1aFUuWLImPfvSjMWfOnFHtZ1LGTKncc8898eSTT8bRo0fjb3/7W9H7AZi8siyLtra2uPXWW+NnP/tZvPzlLz/u+ocOHYpzzz03Xve618UPf/jD6OzsjK1bt8bHPvaxMc8wbdq0WLp0aXR2dg4tGxwcjM7Ozor79zQ4OBj9/f1F/1YJ5/bcc8+N3//+97F3796h/5YtWxbvfe97Y+/evVFdXT3sOZVw3BPl7LPPHvbVCX/84x/jjDPOKLq+c8t/e/vb3x5//OMfY//+/XHZZZeNfgNjf2esdOJ/3mPr7+/Pqqurh73vdvHFF2dvf/vbJ3o8yuRDH/pQVldXl/385z/P/v73vw/9d/To0WHrFgqFbNmyZdn555+f9ff3Dy3fu3dvNnv27Ozaa68tuo8jR45ke/bsyfbs2ZNFRHbttddme/bsyR555JGhdb73ve9ltbW12ZYtW7Lu7u7ssssuy1760pdmBw8eLP1BT5COjo5s+/bt2YEDB7Lf/e53WUdHR1ZVVZXdddddw9at5HP7Qp9mqtTjHg87d+7Mampqsk9/+tPZn/70p+ymm27KZsyYkX3nO98Ztq5zW7nK9Xo+KWMmy/5zw1BbW9vQ40KhkJ1++umjvgGYdEVE0f+++c1vFl3/rrvuGrqx87898MAD2aOPPlr0Offee2/RfbS2th6z3pe//OWsoaEhmzZtWtbS0pL9+te/PtHDK6tLL700O+OMM7Jp06ZlL3vZy7Jzzz23aMg8p1LP7QvdAFypxz1efvzjH2eLFy/Oamtrs9e+9rXZV7/61edd17mtTOV6Pa/6/zufcM8880zs378/Iv5zo9i1114bq1atitmzZ0dDQ0Ns3bo1Wltb44YbboiWlpbYvHlzfP/73499+/YNe+8NACiPSfF6XrIsGqWRFLa6BoDJbTK8npftygwAQClU9KeZAIDKJ2YAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASNr/Ax8brY5BQFz8AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plotDistribution(allEdgesWeights, 100)\n", - "plt.yscale(\"log\")\n", - "plt.xlim([1E-1, 1])" - ] - }, - { - "cell_type": "code", - "execution_count": 113, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'Edge Weight Distribution')" + "(0.1, 2)" ] }, - "execution_count": 113, + "execution_count": 118, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAAHHCAYAAADZOPmeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5yVdb0v8O9wG+QuEvebqbscuUwHBl8gJihIeMuU9FjJpVSqoSw6FbRPXmrvrVkZZWuLl63u1E4E7cwTChJhJNlpJLHas3XHDsgQUEHkYnIZnvNHr1nbYQacYYb5zeX9fr146fqtZz2/76z1W+v3fNaznucpyLIsCwAAAKDRtUldAAAAALRWQjkAAAAkIpQDAABAIkI5AAAAJCKUAwAAQCJCOQAAACQilAMAAEAiQjkAAAAkIpQDAABAIkI5tFIzZ86MoUOHNkpfQ4cOjZkzZ+ZvP/DAA1FQUBDPPPNMo/Q/YcKEmDBhQqP0BcCx2bhxYxQUFMQDDzyQupTjpj7z0YQJE2LYsGENW9Axuummm6KgoKBR+jr8OXvyySejoKAglixZ0ij9N+b2Eq2XUE6zVhnuKv917Ngx+vfvH1OmTInvfOc7sXv37tQlNorKybHyX6dOnWLw4MFx8cUXx/333x/79u1rkH7Ky8vjpptuio0bNzbI+hpSU64NoDU4fE4+/N+vf/3r1CXW6LbbbouCgoJ49tlnq7RnWRYnnnhiFBQUxIYNG6rc9+abb0ZhYWF86EMfasxSa+Wll16Km266KdatW1er5RtrW6qudTWmplwbrUO71AVAQ/jKV74SJ598chw4cCC2bt0aTz75ZHzmM5+J22+/PR599NEYMWJE6hIbxZ133hldunSJffv2xebNm2P58uXx0Y9+NBYsWBA//elPY9CgQfll77nnnjh06FCd1l9eXh4333xzTJgwoU7fGr/wwgvRps3x/Q7waLU98cQTx7VvAP5b5Zx8uFNPPTVBNW9v/PjxERHx1FNPxXve8558+7//+7/Hzp07o127drFmzZoqf1NZWVns378//9jaaoz56KWXXoqbb745hg4dGsXFxbV+XF22pf73//7fMW/evEapK/VzdizbS1BXQjktwtSpU2P06NH52/Pnz4+f//zncdFFF8Ull1wS//Ef/xEnnHBCo9WTZVm8+eabjdpnRMS0adOiV69e+ds33HBDPPzwwzF9+vT44Ac/WGUvRfv27Y9rLW99DgoLC49rX2+nQ4cOSfsHaE0On5ObutGjR0fHjh3jqaeeik996lP59jVr1sRJJ50Uo0ePjqeeeio+8pGP5O976qmnIiLqHMqb8nxUl22pdu3aRbt2xzdGvPHGG9GpU6fkz9nx3l6CCD9fpwU799xz48tf/nJs2rQpHnrooSr3Pf/88zFt2rTo2bNndOzYMUaPHh2PPvpotXX87ne/i3POOSdOOOGEGDhwYPzDP/xD3H///VFQUFDlZ9JDhw6Niy66KJYvXx6jR4+OE044Ie66666IiNi5c2d85jOfiUGDBkVhYWGceuqp8bWvfa3at66HDh2KBQsWxBlnnBEdO3aMPn36xOzZs+O1116r1/Pw4Q9/OK655pr4f//v/8WKFSvy7TUdI/WDH/wgRo0aFV27do1u3brF8OHD49vf/nZE/O3nbR/84AcjImLixIn5n7k9+eSTb/scHH5MeaU33ngjZs+eHSeddFJ069Ytpk+fXu3vLSgoiJtuuqnaY9+6zrerraZj+F5++eX42Mc+Fn369ImOHTvGyJEj41//9V+rLFN5fOM3vvGNuPvuu+OUU06JwsLCKCkpibKyshqfbwDe3s6dO2PmzJnRvXv36NGjR8yYMSN27txZ47KLFy+OoqKi6NixYwwbNix+/OMf1ziHHes82qFDhygpKYk1a9ZUaV+zZk2MHTs2zjrrrBrv69GjR/4Y79r2XdN8tGnTprjkkkuic+fO0bt37/jsZz8by5cvrzKPvVV5eXlMnDgxOnXqFAMGDIjbbrstf9+TTz4ZJSUlERExa9as/Hx4rMfpH2lbqqZjylesWBHjx4+PHj16RJcuXeJd73pXfOlLX6pVXZXHy69duzbe+973RqdOnfKPPdJx+BUVFfGlL30p+vbtG507d45LLrkkXnzxxSrLHGn7463rfLvaahpre/fujc997nP5bbt3vetd8Y1vfCOyLKuyXEFBQcyZMyceeeSRGDZsWBQWFsYZZ5wRy5Ytq/kJp9Wyp5wW7eqrr44vfelL8cQTT8S1114bEX/7OdpZZ50VAwYMiHnz5kXnzp3jhz/8YVx66aXxox/9KD7wgQ9ERMTmzZvzAW/+/PnRuXPnuPfee4+41/eFF16Iq666KmbPnh3XXnttvOtd74o33ngjzjnnnNi8eXPMnj07Bg8eHL/61a9i/vz5sWXLlliwYEH+8bNnz44HHnggZs2aFZ/+9Kdjw4YN8d3vfjeeffbZWLNmTb2+qb366qvj7rvvjieeeCImT55c4zIrVqyIq666Ks4777z42te+FhER//Ef/xFr1qyJ66+/Pt773vfGpz/96fjOd74TX/rSl+L000+PiMj/90jPwdHMmTMnevToETfddFO88MILceedd8amTZvyJ3GprdrU9lZ//etfY8KECbF+/fqYM2dOnHzyybF48eKYOXNm7Ny5M66//voqy3//+9+P3bt3x+zZs6OgoCBuu+22uOyyy+JPf/qTb9ABDvP666/Hq6++WqWtoKAgTjrppIj42y+p3v/+98dTTz0VH//4x+P000+PH//4xzFjxoxq61q6dGlceeWVMXz48Ljlllvitddei4997GMxYMCAasvWZx4dP358/PKXv4yNGzfmA9iaNWvimmuuiTFjxsSNN94YO3fujB49ekSWZfGrX/0qxo4dmz8061j73rt3b5x77rmxZcuWuP7666Nv377x/e9/P1atWlXj8q+99lq8733vi8suuyyuuOKKWLJkSXzxi1+M4cOHx9SpU+P000+Pr3zlK3HDDTfEddddF2effXZERIwbN+6If/vbqWlb6nD//u//HhdddFGMGDEivvKVr0RhYWGsX78+/2VGberavn17TJ06Nf7n//yf8ZGPfCT69Olz1Lr+8R//MQoKCuKLX/xivPzyy7FgwYKYNGlSrFu3rk6/VKzrc5ZlWVxyySWxatWq+NjHPhbFxcWxfPny+PznPx+bN2+Ob33rW1WWf+qpp+Lf/u3f4pOf/GR07do1vvOd78Tll18ef/7zn/PvCYgMmrH7778/i4isrKzsiMt07949e8973pO/fd5552XDhw/P3nzzzXzboUOHsnHjxmWnnXZavu1Tn/pUVlBQkD377LP5tu3bt2c9e/bMIiLbsGFDvn3IkCFZRGTLli2r0vdXv/rVrHPnztl//ud/VmmfN29e1rZt2+zPf/5zlmVZ9stf/jKLiOzhhx+ustyyZctqbD/cjTfemEVE9sorr9R4/2uvvZZFRPaBD3wg3zZjxoxsyJAh+dvXX3991q1bt+zgwYNH7Gfx4sVZRGSrVq2qdt+RnoPK+2bMmJG/Xfm6jRo1Ktu/f3++/bbbbssiIvvJT36Sb4uI7MYbb3zbdR6ttnPOOSc755xz8rcXLFiQRUT20EMP5dv279+fjR07NuvSpUu2a9euLMuybMOGDVlEZCeddFK2Y8eO/LI/+clPsojI/u///b/V+gJorSo/22v6V1hYmF/ukUceySIiu+222/JtBw8ezM4+++wsIrL7778/3z58+PBs4MCB2e7du/NtTz75ZBYRVeaw+s6jS5cuzSIie/DBB7Msy7ItW7ZkEZH94he/yHbv3p21bds2W7p0aZZlWfaHP/whi4jsH//xH+vc9+Hz0Te/+c0sIrJHHnkk3/bXv/41e/e7311tTjvnnHOyiMi+973v5dv27duX9e3bN7v88svzbWVlZdWex6M5lm2pyu2OSt/61reOuh3ydnVV/m0LFy6s8b63PmerVq3KIiIbMGBAfr7Osiz74Q9/mEVE9u1vfzvfdvi2wpHWebTaDt9eqhy///AP/1BluWnTpmUFBQXZ+vXr820RkXXo0KFK23PPPZdFRHbHHXdU64vWy8/XafG6dOmSP3Pojh074uc//3lcccUVsXv37nj11Vfj1Vdfje3bt8eUKVPij3/8Y2zevDkiIpYtWxZjx46tcsKPnj17xoc//OEa+zn55JNjypQpVdoWL14cZ599dpx44on5vl599dWYNGlSVFRUxOrVq/PLde/ePSZPnlxluVGjRkWXLl2O+I15XZ6DiDjqGVR79OgRe/furfIT97qq6Tk4muuuu67K3oNPfOIT0a5du3jssceOuYbaeOyxx6Jv375x1VVX5dvat28fn/70p2PPnj3xi1/8osryV155ZZx44on525Xfov/pT386rnUCNEe5XC5WrFhR5d/jjz+ev/+xxx6Ldu3axSc+8Yl8W9u2basczx3xt5Nv/f73v4/p06fn57GIiHPOOSeGDx9eZdn6zqPjxo2LNm3a5I8Vr9y7XVJSEl26dIkRI0bk9/pW/rfyePL69L1s2bIYMGBAXHLJJfm2jh07HnGPdJcuXaoc296hQ4cYM2bMcZ+P3rotVZMePXpERMRPfvKTYz4pWmFhYcyaNavWy0+fPj26du2avz1t2rTo169fo2xDtG3bNj796U9Xaf/c5z4XWZZVGesREZMmTYpTTjklf3vEiBHRrVs32xBU4efrtHh79uyJ3r17R0TE+vXrI8uy+PKXvxxf/vKXa1z+5ZdfjgEDBsSmTZti7Nix1e4/0tljazrT7B//+Mf43e9+F+94xzuO2Fflcq+//nq+ziMtd6z27NkTEVFl8jrcJz/5yfjhD38YU6dOjQEDBsT5558fV1xxRbzvfe+rdT81PQdHc9ppp1W53aVLl+jXr99xv6zZpk2b4rTTTqt2RvjKn7tv2rSpSvvgwYOr3K4M6PU93h+gJRozZsxRT/S2adOm6NevX5WgHRHVDnmq/Cyuad499dRT47e//W3+dn3n0R49esQZZ5xRJXi/5z3vyf8Mety4cVXuqwzD9e1706ZNccopp1Q7ZOtI2xoDBw6stuyJJ54Yv/vd747699XXW7elanLllVfGvffeG9dcc03MmzcvzjvvvLjsssti2rRptb76yoABA+p0UrfDtyEKCgri1FNPbZRtiP79+1fbpqrtNkTE314z2xC8lVBOi/aXv/wlXn/99fzkVvnt7f/6X//riHt0j/WSLTUdv3To0KGYPHlyfOELX6jxMX/3d3+XX653797x8MMP17jckUJ9bf3hD3+IiKP/bb17945169bF8uXL4/HHH4/HH3887r///pg+fXq1E6AdSWOebb6ioqLR+mrbtm2N7dlhJ3QBII2GmEfHjx8fCxcujJ07d8aaNWuqHFM8bty4uO++++LAgQPx1FNPxahRo6Jjx44N1ndtpZiPDt+WqskJJ5wQq1evjlWrVsXSpUtj2bJlsWjRojj33HPjiSeeOGLdh6+joR3p/DQVFRW1qqkh2IagNoRyWrQHH3wwIiIfwN/5zndGxN9+qjxp0qSjPnbIkCGxfv36au01tR3JKaecEnv27Hnbvk455ZT42c9+FmedddZxmZQOfx6OpEOHDnHxxRfHxRdfHIcOHYpPfvKTcdddd8WXv/zlOPXUU+t08rXa+OMf/xgTJ07M396zZ09s2bIlLrjggnzbiSeeWO2MvPv3748tW7ZUaatLbUOGDInf/e53cejQoSrf4D///PP5+wE4PoYMGRIrV66MPXv2VNlb/sILL1RbLqLmeffwtoaYR8ePHx933nln/OxnP4tnn302Pv/5z+fvGzduXPz1r3+NpUuXxp/+9Ke4/PLLG6TvIUOGRHl5eWRZVmUeq8u2xuEaeq6u7TZEmzZt4rzzzovzzjsvbr/99vinf/qn+Pu///tYtWpVTJo06bhsQ7xVlmWxfv36KtdTr2kbIuJve7Mrtwkj6r4N8bOf/Sx2795dZW+5bQjqwzHltFg///nP46tf/WqcfPLJ+ePAe/fuHRMmTIi77rqrWqiLiHjllVfy/z9lypR4+umnY926dfm2HTt2HPGb8JpcccUV8fTTT8fy5cur3bdz5844ePBgfrmKior46le/Wm25gwcPHvEyMbXx/e9/P+69994YO3ZsnHfeeUdcbvv27VVut2nTJj+x7du3LyIiOnfunK+9Idx9991x4MCB/O0777wzDh48GFOnTs23nXLKKflj79/6uMP3lNeltgsuuCC2bt0aixYtyrcdPHgw7rjjjujSpUucc845x/T3APD2Lrjggjh48GDceeed+baKioq44447qizXv3//GDZsWHzve9/LH4YVEfGLX/wifv/731dZtiHm0cpjxG+//fY4cOBAlT3lQ4cOjX79+uUvP/bW65PXp+8pU6bE5s2bq1yW9c0334x77rnnbes9koacq2valqrJjh07qrVVnpPneG1DfO9736tynPuSJUtiy5Yt1bYhfv3rX8f+/fvzbT/96U+rXTqtrtsQFRUV8d3vfrdK+7e+9a0oKCio0j/Ulj3ltAiPP/54PP/883Hw4MHYtm1b/PznP48VK1bEkCFD4tFHH83/xCzibyegGT9+fAwfPjyuvfbaeOc73xnbtm2Lp59+Ov7yl7/Ec889FxERX/jCF+Khhx6KyZMnx6c+9an8JdEGDx4cO3bsqNW3qp///Ofj0UcfjYsuuihmzpwZo0aNir1798bvf//7WLJkSWzcuDF69eoV55xzTsyePTtuueWWWLduXZx//vnRvn37+OMf/xiLFy+Ob3/72zFt2rS37W/JkiXRpUuX2L9/f2zevDmWL18ea9asiZEjR8bixYuP+thrrrkmduzYEeeee24MHDgwNm3aFHfccUcUFxfnj5MqLi6Otm3bxte+9rV4/fXXo7CwMM4999yjHmd2NPv374/zzjsvrrjiinjhhRfin//5n2P8+PFVTnhzzTXXxMc//vG4/PLLY/LkyfHcc8/F8uXLo1evXlXWVZfarrvuurjrrrti5syZsXbt2hg6dGgsWbIk1qxZEwsWLDjqsfcAHF3lnHy4cePGxTvf+c64+OKL46yzzop58+bFxo0bo6ioKP7t3/4tXn/99WqP+ad/+qd4//vfH2eddVbMmjUrXnvttfjud78bw4YNqxLUG2IeHTx4cAwaNCiefvrpGDp0aPTv379a/T/60Y+ioKAgzjrrrAbpe/bs2fHd7343rrrqqrj++uujX79+8fDDD+e3W45l7/Ipp5wSPXr0iIULF0bXrl2jc+fOceaZZ77teV/qsi11uK985SuxevXquPDCC2PIkCHx8ssvxz//8z/HwIED819gHGtdR9KzZ88YP358zJo1K7Zt2xYLFiyIU089tcpJ8q655ppYsmRJvO9974srrrgi/uu//iseeuihKideq2ttF198cUycODH+/u//PjZu3BgjR46MJ554In7yk5/EZz7zmWrrhlpJeOZ3qLfDL7/SoUOHrG/fvtnkyZOzb3/721UulfFW//Vf/5VNnz4969u3b9a+fftswIAB2UUXXZQtWbKkynLPPvtsdvbZZ2eFhYXZwIEDs1tuuSX7zne+k0VEtnXr1vxyQ4YMyS688MIa+9q9e3c2f/787NRTT806dOiQ9erVKxs3blz2jW98o8rlwLIsy+6+++5s1KhR2QknnJB17do1Gz58ePaFL3whe+mll476PFRemqTyX8eOHbOBAwdmF110UXbfffdVufxbpcMv8bFkyZLs/PPPz3r37p116NAhGzx4cDZ79uxsy5YtVR53zz33ZO985zuztm3bVrlcy9GegyNdEu0Xv/hFdt1112Unnnhi1qVLl+zDH/5wtn379iqPraioyL74xS9mvXr1yjp16pRNmTIlW79+fY2XOTlSbYdf+iTLsmzbtm3ZrFmzsl69emUdOnTIhg8fXu1SKJWXRPv6179e7W+KI1yqDaC1Otol0eKwy01t3749u/rqq7Nu3bpl3bt3z66++urs2WefrfGyVD/4wQ+yd7/73VlhYWE2bNiw7NFHH80uv/zy7N3vfne1Go51Hq101VVXZRGRfehDH6p23+23355FRHb66afX+Nja9F3TfPSnP/0pu/DCC7MTTjghe8c73pF97nOfy370ox9lEZH9+te/rvLYM844o1q/h8/nWfa3S3cWFRVl7dq1e9vLox3LttThl0RbuXJl9v73vz/r379/1qFDh6x///7ZVVddVe2SsEeq60h/W03PWeUl0f7P//k/2fz587PevXtnJ5xwQnbhhRdmmzZtqvb4b37zm9mAAQOywsLC7KyzzsqeeeaZGl+HI9VW0/O7e/fu7LOf/WzWv3//rH379tlpp52Wff3rX88OHTpUZbmIyEpLS6vVdKRLtdF6FWSZswxAXXzmM5+Ju+66K/bs2dNoJwkBAP5bcXFxvOMd76jXZTybsgULFsRnP/vZ+Mtf/hIDBgxIXQ5wnDmmHI7ir3/9a5Xb27dvjwcffDDGjx8vkAPAcXbgwIH8+VcqPfnkk/Hcc8/FhAkT0hTVwA7f1njzzTfjrrvuitNOO00gh1bCMeVwFGPHjo0JEybE6aefHtu2bYt/+Zd/iV27dh3xGucAQMPZvHlzTJo0KT7ykY9E//794/nnn4+FCxdG37594+Mf/3jq8hrEZZddFoMHD47i4uJ4/fXX46GHHornn3++TieWBZo3oRyO4oILLoglS5bE3XffHQUFBfE//sf/iH/5l3+J9773valLA4AW78QTT4xRo0bFvffeG6+88kp07tw5Lrzwwrj11lvjpJNOSl1eg5gyZUrce++98fDDD0dFRUUUFRXFD37wg7jyyitTlwY0EseUAwAAQCKOKQcAAIBEhHIAAABIpNkdU37o0KF46aWXomvXrlFQUJC6HABauSzLYvfu3dG/f/9o08Z33Q3BXA9AU3M85/tmF8pfeumlGDRoUOoyAKCKF198MQYOHJi6jBbBXA9AU3U85vtmE8pzuVzkcrn8tSpffPHF6NatW73WeeDAgXjiiSfi/PPPj/bt2zdEmdBsGP+0Zg05/nft2hWDBg2Krl27NlB1VD6XGzZsiJ49eyauhubAnEZdGTPU1Y4dO+Lkk08+LvN9swnlpaWlUVpaGrt27Yru3btHt27dGiSUd+rUKbp16+bNSKtj/NOaHY/x72fWDafyuezatWu953paB3MadWXMUFcHDhyIiOMz3zv4DQAAABIRygEAACARoRwAAAASEcoBAAAgEaEcAAAAEhHKAQAAIBGhHAAAABIRygEAACARoRwAAAASEcoBAAAgkWYTynO5XBQVFUVJSUnqUgAAAKBBNJtQXlpaGuXl5VFWVpa6FAAAAGgQzSaUAwAtm1/FAdAaCeUAQJPgV3EAtEbtUhfQFAy7aXnsqyhI0vfGWy9M0i8AADQFQ+ctPer9tpdp6ewpBwAAgESEcgAAAEhEKAcAAIBEhHIAAABIRCgHAACARIRyAAAASEQoBwAAgESaTSjP5XJRVFQUJSUlqUsBAACABtFsQnlpaWmUl5dHWVlZ6lIAAACgQTSbUA4AAAAtjVAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOADQJuVwuioqKoqSkJHUpANBohHIAoEkoLS2N8vLyKCsrS10KADQaoRwAAAASEcoBAAAgEaEcAAAAEhHKAQAAIJFmE8qdkRUAAICWptmEcmdkBQAAoKVpNqEcAAAAWhqhHAAAABIRygEAACARoRwAAAASEcoBAAAgEaEcAAAAEhHKAQAAIBGhHAAAABJpl7oAAACAIxk6b+kR79t464WNWAkcH/aUAwAAQCJCOQAAACQilAMAAEAiQjkAAAAkIpQDAABAIkI5AAAAJCKUAwAAQCLNJpTncrkoKiqKkpKS1KUAAABAg2g2oby0tDTKy8ujrKwsdSkAAADQIJpNKAcAAICWRigHAACARIRyAKBJcP4YAFojoRwAaBKcPwaA1kgoBwAAgESEcgAAAEhEKAcAAIBEhHIAAABIRCgHAACARIRyAAAASEQoBwAAgESEcgAAAEhEKAcAAIBEhHIAAABIRCgHAACARIRyAAAASEQoBwAAgESEcgAAAEhEKAcAAIBEmk0oz+VyUVRUFCUlJalLAQAAgAbRbEJ5aWlplJeXR1lZWepSAAAAoEE0m1AOAAAALY1QDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOADSonTt3xujRo6O4uDiGDRsW99xzT+qSAKDJape6AACgZenatWusXr06OnXqFHv37o1hw4bFZZddFieddFLq0gCgybGnHABoUG3bto1OnTpFRMS+ffsiy7LIsixxVQDQNDWbUJ7L5aKoqChKSkpSlwIALdrq1avj4osvjv79+0dBQUE88sgj1ZbJ5XIxdOjQ6NixY5x55pnxm9/8psr9O3fujJEjR8bAgQPj85//fPTq1auxygeAZqXZ/Hy9tLQ0SktLY9euXdG9e/fU5QBAi7V3794YOXJkfPSjH43LLrus2v2LFi2KuXPnxsKFC+PMM8+MBQsWxJQpU+KFF16I3r17R0REjx494rnnnott27bFZZddFtOmTYs+ffrU2N++ffti3759+du7du2KiIgDBw7EgQMHjsNfSEtTOU6Ml+apsO2x/5LmWF9zY4a6Op5jpdmEcgCgcUydOjWmTp16xPtvv/32uPbaa2PWrFkREbFw4cJYunRp3HfffTFv3rwqy/bp0ydGjhwZv/zlL2PatGk1ru+WW26Jm2++uVr7qlWr8j+Dh9pYsWJF6hI4BreNOfbHPvbYY/Xq25ihtt54443jtm6hHACotf3798fatWtj/vz5+bY2bdrEpEmT4umnn46IiG3btkWnTp2ia9eu8frrr8fq1avjE5/4xBRfUJUAABkOSURBVBHXOX/+/Jg7d27+9q5du2LQoEExceJEJ4ejVg4cOBArVqyIyZMnR/v27VOXQx0Nu2n5MT/2DzdNOabHGTPU1fbt24/buoVyAKDWXn311aioqKj2U/Q+ffrE888/HxERmzZtiuuuuy5/grdPfepTMXz48COus7CwMAoLC6u1t2/f3sYydWLMNE/7KgqO+bH1fb2NGWrreI4ToRwAaFBjxoyJdevWpS4DAJqFZnP2dQAgvV69ekXbtm1j27ZtVdq3bdsWffv2TVQVADRfQjkAUGsdOnSIUaNGxcqVK/Nthw4dipUrV8bYsWMTVgYAzZOfrwMAVezZsyfWr1+fv71hw4ZYt25d9OzZMwYPHhxz586NGTNmxOjRo2PMmDGxYMGC2Lt3b/5s7ABA7QnlAEAVzzzzTEycODF/u/LM6DNmzIgHHnggrrzyynjllVfihhtuiK1bt0ZxcXEsW7bsiNchBwCOTCgHAKqYMGFCZFl21GXmzJkTc+bMadB+c7lc5HK5qKioaND1AkBT5phyAKBJKC0tjfLy8igrK0tdCgA0GqEcAAAAEhHKAQAAIBGhHAAAABIRygEAACARoRwAAAASEcoBAAAgEaEcAGgScrlcFBUVRUlJSepSAKDRCOUAQJPgOuUAtEZCOQAAACQilAMAAEAiQjkAAAAkIpQDAABAIkI5AAAAJCKUAwAAQCJCOQAAACQilAMATUIul4uioqIoKSlJXQoANBqhHABoEkpLS6O8vDzKyspSlwIAjUYoBwAAgESEcgAAAEikXeoCWruh85Ym7X/jrRcm7R8AAKA1s6ccAAAAEhHKAQAAIBGhHAAAABIRygEAACARoRwAAAASEcoBgCYhl8tFUVFRlJSUpC4FABqNUA4ANAmlpaVRXl4eZWVlqUsBgEbTbEK5b88BAABoaZpNKPftOQAAAC1NswnlAAAA0NII5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkIhQDgAAAIm0S10AtGZD5y1N1ndh2yxuG5OsewCAejvattTGWy9sxErg2NlTDgAAAIkI5QBAk5DL5aKoqChKSkpSlwIAjUYoBwCahNLS0igvL4+ysrLUpQBAoxHKAQAAIBGhHAAAABIRygEAACARoRwAAAASEcoBAAAgEaEcAAAAEhHKAQAAIBGhHAAAABIRygEAACARoRwAAAASEcoBAAAgEaEcAAAAEhHKAQAAIBGhHABoEnK5XBQVFUVJSUnqUgCg0QjlAECTUFpaGuXl5VFWVpa6FABoNEI5AAAAJCKUAwAAQCJCOQAAACQilAMAAEAiQjkAAAAkIpQDAABAIkI5AAAAJCKUAwAAQCJCOQAAACQilAMAAEAiQjkAAAAk0i51AUBaw25aHvsqCpL0vfHWC5P0CwAATYU95QAAAJCIUA4AAACJ+Pk6rdrQeUtTlwAAALRi9pQDAABAIkI5AAAAJCKUAwAAQCJCOQDQJORyuSgqKoqSkpLUpQBAoxHKAYAmobS0NMrLy6OsrCx1KQDQaJx9HWi1Up99f+OtFybtHwCA9OwpBwAAgESEcgAAAEhEKAcAAIBEhHIAAABIRCgHAACARIRyAAAASEQoBwAAgESEcgAAAEhEKAcAAIBEhHIAAABIpF3qAkhr6LylSfvfeOuFSfsHAABIyZ5yAAAASKTRQ/mLL74YEyZMiKKiohgxYkQsXry4sUsAAACAJqHRf77erl27WLBgQRQXF8fWrVtj1KhRccEFF0Tnzp0buxQAAABIqtFDeb9+/aJfv34REdG3b9/o1atX7NixQygHAACg1alzKF+9enV8/etfj7Vr18aWLVvixz/+cVx66aVVlsnlcvH1r389tm7dGiNHjow77rgjxowZU21da9eujYqKihg0aNCx/wU0a6lPNAcAAJBSnUP53r17Y+TIkfHRj340Lrvssmr3L1q0KObOnRsLFy6MM888MxYsWBBTpkyJF154IXr37p1fbseOHTF9+vS45557jtrfvn37Yt++ffnbu3btioiIAwcOxIEDB+pafhWVjy9sk9VrPdAcVY77lOO/vu/h+ipsm/a9n/rvb80qn/uGeA28jgBAfdQ5lE+dOjWmTp16xPtvv/32uPbaa2PWrFkREbFw4cJYunRp3HfffTFv3ryI+FvQvvTSS2PevHkxbty4o/Z3yy23xM0331yt/YknnohOnTrVtfwafXX0oQZZDzRHKcf/Y489lqzviIjbqv+Ap1Gl/vuJWLFiRb3X8cYbbzRAJQBAa9Wgx5Tv378/1q5dG/Pnz8+3tWnTJiZNmhRPP/10RERkWRYzZ86Mc889N66++uq3Xef8+fNj7ty5+du7du2KQYMGxfnnnx/dunWrV70HDhyIFStWxJefaRP7DhXUa13Q3BS2yeKrow8lHf9/uGlKkn4rDbtpedL+U//9rVnl5//kyZOjffv29VpX5S+4AACORYOG8ldffTUqKiqiT58+Vdr79OkTzz//fERErFmzJhYtWhQjRoyIRx55JCIiHnzwwRg+fHiN6ywsLIzCwsJq7e3bt6/3hlSlfYcKYl+FUE7rlHL8N9R7+Filft+n/vtpmLnE6wgA1Eejn319/PjxceiQn4sDAABAm4ZcWa9evaJt27axbdu2Ku3btm2Lvn37NmRXAAAA0Ow1aCjv0KFDjBo1KlauXJlvO3ToUKxcuTLGjh3bkF0BAABAs1fnn6/v2bMn1q9fn7+9YcOGWLduXfTs2TMGDx4cc+fOjRkzZsTo0aNjzJgxsWDBgti7d2/+bOwAAADA39Q5lD/zzDMxceLE/O3KM6PPmDEjHnjggbjyyivjlVdeiRtuuCG2bt0axcXFsWzZsmonfwMAeKtcLhe5XC4qKipSlwIAjabOoXzChAmRZdlRl5kzZ07MmTPnmIsCAFqf0tLSKC0tjV27dkX37t1TlwMAjaJBjykHAAAAak8oBwAAgESaTSjP5XJRVFQUJSUlqUsBAACABtFsQnlpaWmUl5dHWVlZ6lIAAACgQTSbUA4AAAAtjVAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkEi71AXUVi6Xi1wuFxUVFalLARrI0HlLU5cAAABJNZs95aWlpVFeXh5lZWWpSwEAAIAG0Wz2lAMAANTW0X6RV9g2i9vGNGIxcBTNZk85AAAAtDRCOQAAACQilAMAAEAiQjkAAAAkIpQDAABAIkI5AAAAJCKUAwAAQCJCOQAAACQilAMAAEAiQjkAAAAk0mxCeS6Xi6KioigpKUldCgAAADSIZhPKS0tLo7y8PMrKylKXAgAAAA2i2YRyAAAAaGmEcgAAAEhEKAcAAIBEhHIAAABIRCgHAACARIRyAAAASEQoBwAAgESEcgAAAEhEKAcAAIBEhHIAAABIRCgHAACARIRyAAAASEQoBwAa1IsvvhgTJkyIoqKiGDFiRCxevDh1SQDQZLVLXUBt5XK5yOVyUVFRkboUAOAo2rVrFwsWLIji4uLYunVrjBo1Ki644ILo3Llz6tIAoMlpNnvKS0tLo7y8PMrKylKXAgAcRb9+/aK4uDgiIvr27Ru9evWKHTt2JK4KAJqmZhPKAYDGsXr16rj44oujf//+UVBQEI888ki1ZXK5XAwdOjQ6duwYZ555ZvzmN7+pcV1r166NioqKGDRo0PEuGwCaJaEcAKhi7969MXLkyMjlcjXev2jRopg7d27ceOON8dvf/jZGjhwZU6ZMiZdffrnKcjt27Ijp06fH3Xff3RhlA0Cz1GyOKQcAGsfUqVNj6tSpR7z/9ttvj2uvvTZmzZoVERELFy6MpUuXxn333Rfz5s2LiIh9+/bFpZdeGvPmzYtx48Ydtb99+/bFvn378rd37doVEREHDhyIAwcO1PfPoRWoHCfGS/NU2DZr/D7b/K1PY4baOp5jRSgHAGpt//79sXbt2pg/f36+rU2bNjFp0qR4+umnIyIiy7KYOXNmnHvuuXH11Ve/7TpvueWWuPnmm6u1r1q1Kjp16tRwxdPirVixInUJHIPbxqTr25ihtt54443jtm6hHACotVdffTUqKiqiT58+Vdr79OkTzz//fERErFmzJhYtWhQjRozIH4/+4IMPxvDhw2tc5/z582Pu3Ln527t27YpBgwbFxIkT46STTjpOfwktyYEDB2LFihUxefLkaN++fepyqKNhNy1v9D4L22Tx1dGHjBlqbfv27cdt3UI5ANCgxo8fH4cOHar18oWFhVFYWFitvX379jaWqRNjpnnaV1GQrG9jhto6nuPEid4AgFrr1atXtG3bNrZt21alfdu2bdG3b99EVQFA8yWUAwC11qFDhxg1alSsXLky33bo0KFYuXJljB07NmFlANA8+fk6AFDFnj17Yv369fnbGzZsiHXr1kXPnj1j8ODBMXfu3JgxY0aMHj06xowZEwsWLIi9e/fmz8YOANSeUA4AVPHMM8/ExIkT87crT8I2Y8aMeOCBB+LKK6+MV155JW644YbYunVrFBcXx7Jly6qd/A0AeHtCOQBQxYQJEyLLjn7d4Dlz5sScOXMatN9cLhe5XC4qKioadL0A0JQ5phwAaBJKS0ujvLw8ysrKUpcCAI1GKAcAAIBEhHIAAABIRCgHAACARJpNKM/lclFUVBQlJSWpSwEAAIAG0WxCuZO/AAAA0NI0m1AOAAAALY1QDgA0CQ5VA6A1EsoBgCbBoWoAtEZCOQAAACTSLnUBAK3V0HlLk/a/8dYLk/YPAIA95QAAAJCMUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkIhQDgA0CblcLoqKiqKkpCR1KQDQaIRyAKBJKC0tjfLy8igrK0tdCgA0GqEcAAAAEhHKAQAAIBGhHAAAABIRygEAACARoRwAAAASEcoBAAAgEaEcAAAAEhHKAQAAIJF2qQuorVwuF7lcLioqKlKXAtAiDJ23NGn/G2+9MGn/AABNQbPZU15aWhrl5eVRVlaWuhQA4DjI5XJRVFQUJSUlqUsBgEbTbEI5ANCy+QIegNZIKAcAAIBEhHIAAABIRCgHAACARIRyAAAASEQoBwAAgESEcgAAAEhEKAcAAIBEhHIAAABIRCgHAACARIRyAAAASEQoBwCahFwuF0VFRVFSUpK6FABoNEI5ANAklJaWRnl5eZSVlaUuBQAajVAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQSLMJ5blcLoqKiqKkpCR1KQAAANAgmk0oLy0tjfLy8igrK0tdCgBwHPgCHoDWqNmEcgCgZfMFPACtkVAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOADQJuVwuioqKoqSkJHUpANBohHIAoEkoLS2N8vLyKCsrS10KADQaoRwAAAASEcoBAAAgEaEcAAAAEhHKAQAAIBGhHAAAABIRygEAACARoRwAAAASEcoBAAAgEaEcAAAAEhHKAQAAIBGhHAAAABIRygEAACARoRwAAAASEcoBAAAgEaEcAAAAEhHKAQAAIJF2qQuorVwuF7lcLioqKlKXAkADGDpvabK+C9tmcduYZN0DtDopP/OhqWs2e8pLS0ujvLw8ysrKUpcCAAAADaLZhHIAAABoaYRyAAAASEQoBwAAgESEcgAAAEhEKAcAAIBEhHIAAABIRCgHAACARIRyAAAASEQoBwCahFwuF0VFRVFSUpK6FABoNEI5ANAklJaWRnl5eZSVlaUuBQAajVAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJtEtdQF1lWRYREbt27ar3ug4cOBBvvPFGVOxrG4cqCuq9PmhOKtpm8cYbFcY/rVLl+N+1a1e0b9++XuuqnI8q5yfqr/K53L17d71fH1qHym26hnhPc3wc2vdG6hKqaMh5gNZh9+7dEXF85vtmF8orn4xBgwYlrgSavw+lLgASaujxv3v37ujevXsDr7V12r59e0REnHzyyYkrAVoy20Eci+3btzf4fN/sQnn//v3jlFNOibVr10ZBwdH37pWUlBz1Wqe7du2KQYMGxYsvvhjdunVr6FKblLd7LlpKHQ21/vqs51geW5fH1HZZ4/+/Gf+Nu566Pv54LN+Y4z/Lsti9e3f079+/Xuvhv/Xs2TMiIv785z83+S86GuPzJfV7u6HnqLdb5mj3H+m+5jSntfQxk+Iz3ZhpOn00l+3gYxkzr7/+egwePDg/RzWkZhfK27RpEx06dKjVJN22bdtavcm6devW5N+M9VXb56K519FQ66/Peo7lsXV5TG2XNf7/m/HfuOup6+OPx/KNPf6benBsbtq0+dspb7p3794k3rtH0xifL6nf2w09R73dMke7/+0e2xzmtJY+ZlJ8phszTaeP5rIdXJ8xUzlHNaS2N910000NvtZGMGbMmHovt2/fvrj11ltj/vz5UVhY2FClNVm1fc6Ot+NdR0Otvz7rOZbH1uUxxn/dGf+Nu566Pv54LG/8N1/N7fVpjM+X1O/thp6j3m6Zo91f033GzPHr43hv09R2eWPGmKnrss1pzBRkrfjMNLt27Yru3bvH66+/3uS/IYOGZvzTmhn/TZvXh7oyZqgrY4a6Op5jptnuKW8obdu2jQkTJkS7ds3ul/xQb8Y/rZnx37R5fagrY4a6Mmaoq+M1Zlr1nnIAAABIqeGPUgcAAABqRSgHAACARIRyAAAASEQoBwAAgESEcgAAAEhEKD+Cn/70p/Gud70rTjvttLj33ntTlwON7gMf+ECceOKJMW3atNSlQKN68cUXY8KECVFUVBQjRoyIxYsXpy6JI/BacSzMb7wdOYC6qu/nikui1eDgwYNRVFQUq1atiu7du8eoUaPiV7/6VZx00kmpS4NG8+STT8bu3bvjX//1X2PJkiWpy4FGs2XLlti2bVsUFxfH1q1bY9SoUfGf//mf0blz59SlcRivFcfC/MbRyAEci/p+rthTXoPf/OY3ccYZZ8SAAQOiS5cuMXXq1HjiiSdSlwWNasKECdG1a9fUZUCj69evXxQXF0dERN++faNXr16xY8eOxFVRE68Vx8L8xtHIARyL+n6utMhQvnr16rj44oujf//+UVBQEI888ki1ZXK5XAwdOjQ6duwYZ555ZvzmN7/J3/fSSy/FgAED8rcHDBgQmzdvbpTaoSHU9z0AzVlDjv+1a9dGRUVFDBo06HiX3SI15meR16plMH9RX3IAddUUPndaZCjfu3dvjBw5MnK5XI33L1q0KObOnRs33nhj/Pa3v42RI0fGlClT4uWXX27kSuH48B6gNWuo8b9jx46YPn163H333Y1RdovUEK9FcXFxDBs2rNq/l156Kb+M16rlaKwxQ8tlG4i6ahJjJmvhIiL78Y9/XKVtzJgxWWlpaf52RUVF1r9//+yWW27JsizL1qxZk1166aX5+6+//vrs4YcfbpyCoYEdy3ug0qpVq7LLL7+8UeqE4+FYx/+bb76ZnX322dn3vve9Rqu1pavPZ9HReK1aruM1ZrLM/NZayAHUVart5ha5p/xo9u/fH2vXro1Jkybl29q0aROTJk2Kp59+OiIixowZE3/4wx9i8+bNsWfPnnj88cdjypQpqUqGBlWb9wC0VLUZ/1mWxcyZM+Pcc8+Nq6++OlWpLV5DfBZ5rVoX8xf1JQdQV431udPqQvmrr74aFRUV0adPnyrtffr0ia1bt0ZERLt27eKb3/xmTJw4MYqLi+Nzn/ucMy7SYtTmPRARMWnSpPjgBz8Yjz32WAwcONAGDy1Cbcb/mjVrYtGiRfHII49EcXFxFBcXx+9///sU5bZotf0sOhqvVevSEGMmwvzWmskB1FVjbTe3a5BqW6BLLrkkLrnkktRlQDI/+9nPUpcASYwfPz4OHTqUugxqwWvFsTC/8XbkAOqqvp8rrW5Pea9evaJt27axbdu2Ku3btm2Lvn37JqoKGo/3AK2Z8d90eC2oK2OG+jKGqKvGGjOtLpR36NAhRo0aFStXrsy3HTp0KFauXBljx45NWBk0Du8BWjPjv+nwWlBXxgz1ZQxRV401Zlrkz9f37NkT69evz9/esGFDrFu3Lnr27BmDBw+OuXPnxowZM2L06NExZsyYWLBgQezduzdmzZqVsGpoON4DtGbGf9PhtaCujBnqyxiirprEmDmmc7Y3catWrcoiotq/GTNm5Je54447ssGDB2cdOnTIxowZk/36179OVzA0MO8BWjPjv+nwWlBXxgz1ZQxRV01hzBRkWZY1XMQHAAAAaqvVHVMOAAAATYVQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAiQjlAAAAkIhQDgAAAIkI5QAAAJCIUA4AAACJCOUAAACQiFAOAAAAifx/HkZb9ztPUhYAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+wAAAHFCAYAAABo5XNfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df5RVdb0//tfA8FMBURJEUcwf2IhAwuBSsUBRBJeJ1s3KBL1erXuPSherD67b9UdqpiZhdcysFC0rstS6KfiDMAlNBhTMBkEUFQMRReWHOY4z+/uHi/NtAnQ4c5i9mfN4rOVa7h/nvV/nzOa8znP22e+pSJIkCQAAACBT2qVdAAAAALAlgR0AAAAySGAHAACADBLYAQAAIIMEdgAAAMgggR0AAAAySGAHAACADBLYAQAAIIMq0y4gTY2NjbFq1aro1q1bVFRUpF0OAESSJLFhw4bo27dvtGvn9+qloN8DkCXb0+vLOrCvWrUq+vXrl3YZALCFlStXxj777JN2GW2Cfg9AFjWn15d1YO/WrVtEvP9Cde/evcXj1dfXxwMPPBAnnHBCdOjQocXjwc7E+U85K+X5v379+ujXr1+hR9Fym1/LFStWxO67755yNQDp8XktG7an15dlYM/n85HP56OhoSEiIrp3716ywN61a9fo3r27fwCUHec/5WxHnP++ul06m1/Lbt26laTfA+ysfF7Llub0+rK8OS6Xy0VtbW3U1NSkXQoAAABsVVkGdgAAAMg6gR0AAAAySGAHAACADBLYAQAAIIMEdgAAAMgggR0AAAAySGAHAACADBLYAQAAIIMEdgAAAMigsgzs+Xw+qqqqorq6Ou1SAAAAYKvKMrDncrmora2NmpqatEsBAACArSrLwA4AtH2+UQfAzk5gBwDaJN+oA2BnV5l2AW3RwMvuj7qGilSO/cK3T0rluAAAkEX9p9zb4jF8xiYtrrADAABABgnsAAAAkEECOwAAAGSQwA4AAAAZJLADAABABgnsAAAAkEECOwAAAGSQwA4AAAAZVJaBPZ/PR1VVVVRXV6ddCgAAAGxVWQb2XC4XtbW1UVNTk3YpAAAAsFVlGdgBAAAg6wR2AAAAyCCBHQAAADJIYAcAAIAMEtgBAAAggwR2AAAAyCCBHQAAADJIYAcA2qR8Ph9VVVVRXV2ddikAUBSBHQBok3K5XNTW1kZNTU3apQBAUQR2AAAAyCCBHQAAADJIYAcAAIAMEtgBAAAgg8oysJs1FgAAgKwry8Bu1lgAAACyriwDOwAAAGSdwA4AAAAZJLADAABABgnsAAAAkEECOwAAAGSQwA4AAAAZJLADAABABlWmXQAAAECW9Z9yb4vHeOHbJ5WgEsqNK+wAAACQQQI7AAAAZJDADgAAABkksAMAAEAGCewAAACQQQI7AAAAZJDADgAAABlUloE9n89HVVVVVFdXp10KAAAAbFVZBvZcLhe1tbVRU1OTdikAAACwVWUZ2AEAACDrBHYAAADIIIEdAGiTzFkDwM5OYAcA2iRz1gCwsxPYAQAAIIMEdgAAAMgggR0AAAAySGAHAACADBLYAQAAIIMEdgAAAMgggR0AAAAySGAHAACADBLYAQAAIIMEdgAAAMgggR0AAAAySGAHAACADBLYAQAAIIMEdgAAAMgggR0AAAAySGAHAACADCrLwJ7P56Oqqiqqq6vTLgUAAAC2qiwDey6Xi9ra2qipqUm7FAAAANiqsgzsAAAAkHUCOwAAAGSQwA4AAAAZJLADAABABgnsAAAAkEECOwAAAGSQwA4AAAAZJLADAABABgnsAAAAkEECOwAAAGSQwA4AAAAZJLADAABABgnsAAAAkEECOwAAAGSQwA4AAAAZJLADAABABgnsAAAAkEECOwAAAGSQwA4AAAAZJLADAABABgnsAAAAkEECOwAAAGSQwA4AZNqbb74Zw4YNiyFDhsTAgQPjxz/+cdolAUCrqEy7AACAD9KtW7d45JFHomvXrrFp06YYOHBgnHbaabHHHnukXRoA7FCusAMAmda+ffvo2rVrRETU1dVFkiSRJEnKVQHAjleWgT2fz0dVVVVUV1enXQoAtHmPPPJInHzyydG3b9+oqKiIe+65Z4t98vl89O/fPzp37hxHHHFEzJ8/v8n2N998MwYPHhz77LNPfO1rX4tevXq1VvkAkJqyDOy5XC5qa2ujpqYm7VIAoM3btGlTDB48OPL5/Fa3z5gxIyZPnhyXXnppPPHEEzF48OAYM2ZMvPrqq4V9dtttt1i8eHGsWLEifvGLX8SaNWtaq3wASI172AGAHWrs2LExduzYbW6fOnVqnHvuuXH22WdHRMRNN90U9957b9xyyy0xZcqUJvv27t07Bg8eHHPnzo3PfOYzWx2vrq4u6urqCsvr16+PiIj6+vqor69v6dMBdjKd2mfjFposvP9sriELtZSz7Xn9BXYAIDXvvvtuLFy4MC6++OLCunbt2sXo0aPjsccei4iINWvWRNeuXaNbt27x1ltvxSOPPBL/+Z//uc0xr7766rj88su3WD9nzpzCvfBA+bh2eNoVvO++++5Lu4SCBx98MO0Sytrbb7/d7H0FdgAgNa+99lo0NDRE7969m6zv3bt3PPPMMxER8eKLL8Z5551XmGzuggsuiMMOO2ybY1588cUxefLkwvL69eujX79+MWrUKDPLQxkaeNn9aZcQERFPXzYm7RKivr4+HnzwwTj++OOjQ4cOaZdTtjZ/86s5BHYAINOGDx8eixYtavb+nTp1ik6dOm2xvkOHDj6gQhmqa6hIu4SIiEy9/3g/TNf2vPZlOekcAJANvXr1ivbt228xidyaNWuiT58+KVUFANkgsAMAqenYsWMMHTo0Zs+eXVjX2NgYs2fPjiOPPDLFygAgfb4SDwDsUBs3bozly5cXllesWBGLFi2K3XffPfbdd9+YPHlyTJw4MYYNGxbDhw+PadOmxaZNmwqzxgNAuRLYAYAdasGCBTFq1KjC8uYJ4SZOnBjTp0+P008/PdauXRuXXHJJvPLKKzFkyJCYNWvWFhPRAUC5EdgBgB1q5MiRkSQf/HeQzz///Dj//PNLetx8Ph/5fD4aGhpKOi4AtBb3sAMAbVIul4va2tqoqalJuxQAKIrADgAAABkksAMAAEAGCewAAACQQQI7AAAAZJDADgAAABkksAMAAEAGCewAQJuUz+ejqqoqqqur0y4FAIoisAMAbZK/ww7Azk5gBwAAgAwS2AEAACCDBHYAAADIIIEdAAAAMkhgBwAAgAwS2AEAACCDBHYAAADIIIEdAGiT8vl8VFVVRXV1ddqlAEBRBHYAoE3K5XJRW1sbNTU1aZcCAEUR2AEAACCDBHYAAADIIIEdAAAAMqgy7QIorf5T7k31+C98+6RUjw8AANBWuMIOAAAAGSSwAwAAQAYJ7AAAAJBBAjsAAABkkMAOAAAAGSSwAwBtUj6fj6qqqqiurk67FAAoSlkGdg0cANq+XC4XtbW1UVNTk3YpAFCUsgzsGjgAAABZV5aBHQAAALJOYAcAAIAMEtgBAAAggwR2AAAAyCCBHQAAADJIYAcAAIAMEtgBAAAggyrTLgAonf5T7k3t2J3aJ3Ht8NQODwCQaaX4nPbCt08qQSXsTFxhBwAAgAwS2AGANimfz0dVVVVUV1enXQoAFEVgBwDapFwuF7W1tVFTU5N2KQBQlKIC+/PPP1/qOgCADNHrASB9RQX2Aw88MEaNGhU///nP45133il1TQBAyvR6AEhfUYH9iSeeiEGDBsXkyZOjT58+8aUvfSnmz59f6toAgJTo9QCQvqIC+5AhQ+KGG26IVatWxS233BKrV6+OESNGxMCBA2Pq1Kmxdu3aUtcJALQivR4A0teiSecqKyvjtNNOizvvvDOuueaaWL58eXz1q1+Nfv36xYQJE2L16tWlqhMASIFeDwDpaVFgX7BgQfzXf/1X7LXXXjF16tT46le/Gs8991w8+OCDsWrVqjjllFNKVScAkAK9HgDSU1nMg6ZOnRq33nprLF26NMaNGxe33357jBs3Ltq1ez//77///jF9+vTo379/KWsFAFqJXg8A6SsqsP/whz+Mf//3f4+zzjor9tprr63us+eee8ZPf/rTFhUHAKRDrweA9BUV2J999tkP3adjx44xceLEYoYHAFKm1wNA+oq6h/3WW2+NO++8c4v1d955Z9x2220tLgoASJdeDwDpKyqwX3311dGrV68t1u+5557xrW99q8VFAQDp0usBIH1FBfaXXnop9t9//y3W77fffvHSSy+1uCgAIF16PQCkr6jAvueee8ZTTz21xfrFixfHHnvs0eKiAIB06fUAkL6iAvvnP//5uPDCC2POnDnR0NAQDQ0N8cc//jEmTZoUn/vc50pdIwDQytpCr8/n81FVVRXV1dVplwIARSlqlvgrrrgiXnjhhTjuuOOisvL9IRobG2PChAnuawOANqAt9PpcLhe5XC7Wr18fPXr0SLscANhuRQX2jh07xowZM+KKK66IxYsXR5cuXeKwww6L/fbbr9T1AQAp0OsBIH1FBfbNDj744Dj44INLVQsAkDF6PQCkp6jA3tDQENOnT4/Zs2fHq6++Go2NjU22//GPfyxJcQBAOvR6AEhfUYF90qRJMX369DjppJNi4MCBUVFRUeq6AIAU6fUAkL6iAvuvfvWr+PWvfx3jxo0rdT0AQAbo9QCQvqL+rFvHjh3jwAMPLHUtAEBG6PUAkL6iAvtFF10UN9xwQyRJUup6AIAM0OsBIH1FfSX+z3/+c8yZMydmzpwZhx56aHTo0KHJ9rvuuqskxQEA6dDrASB9RQX23XbbLU499dRS1wIAZIReDwDpKyqw33rrraWuAwDIEL0eANJX1D3sERHvvfdePPTQQ/GjH/0oNmzYEBERq1atio0bN5asOAAgPXo9AKSrqCvsL774Ypx44onx0ksvRV1dXRx//PHRrVu3uOaaa6Kuri5uuummUtcJ7CQGXnZ/1DWk8/eaX/j2SakcF9oivR4A0lfUFfZJkybFsGHD4o033oguXboU1p966qkxe/bskhUHAKRDrweA9BV1hX3u3Lnx6KOPRseOHZus79+/f/z9738vSWEAQHr0egBIX1GBvbGxMRoaGrZY//LLL0e3bt1aXBTsrPpPuTftEgBKQq8HgPQV9ZX4E044IaZNm1ZYrqioiI0bN8all14a48aNK1lxAEA69HoASF9RV9ivv/76GDNmTFRVVcU777wTX/jCF+LZZ5+NXr16xS9/+ctS1wgAtDK9HgDSV1Rg32effWLx4sXxq1/9Kp566qnYuHFjnHPOOXHGGWc0mZgGANg56fUAkL6iAntERGVlZXzxi18sZS0AQIbs7L0+n89HPp/f6r34ALAzKCqw33777R+4fcKECUUVAwBkQ1vo9blcLnK5XKxfvz569OiRdjkAsN2KCuyTJk1qslxfXx9vv/12dOzYMbp27bpTNHGAUkv7rwS88O2TUj0+bYteDwDpK2qW+DfeeKPJfxs3boylS5fGiBEjTEQDAG2AXg8A6SsqsG/NQQcdFN/+9re3+I08ANA26PUA0LpKFtgj3p+cZtWqVaUcEgDIEL0eAFpPUfew//73v2+ynCRJrF69On7wgx/E0UcfXZLCAID06PUAkL6iAvv48eObLFdUVMRHPvKROPbYY+P6668vSWEAQHr0egBIX1GBvbGxsdR1AAAZotcDQPpKeg87AAAAUBpFXWGfPHlys/edOnVqMYcAAFKk1wNA+ooK7E8++WQ8+eSTUV9fHwMGDIiIiGXLlkX79u3j8MMPL+xXUVFRmioBgFal1wNA+ooK7CeffHJ069YtbrvttujZs2dERLzxxhtx9tlnxzHHHBMXXXRRSYsEAFqXXg8A6SsqsF9//fXxwAMPFBp4RETPnj3jyiuvjBNOOEETL2P9p9yb6vFf+PZJqR4foK3Q6wEgfUVNOrd+/fpYu3btFuvXrl0bGzZsaHFRAEC69HoASF9Rgf3UU0+Ns88+O+666654+eWX4+WXX47f/va3cc4558Rpp51W6ho/0MqVK2PkyJFRVVUVgwYNijvvvLNVjw8AbVGWej0AlKuivhJ/0003xVe/+tX4whe+EPX19e8PVFkZ55xzTlx33XUlLfDDVFZWxrRp02LIkCHxyiuvxNChQ2PcuHGxyy67tGodANCWZKnXA0C5Kiqwd+3aNW688ca47rrr4rnnnouIiAMOOCCVkLzXXnvFXnvtFRERffr0iV69esW6desEdgBogSz1egAoV0UF9s1Wr14dq1evjk984hPRpUuXSJJku/+8yyOPPBLXXXddLFy4MFavXh133313jB8/vsk++Xw+rrvuunjllVdi8ODB8f3vfz+GDx++xVgLFy6MhoaG6NevX0ueFjuxtCe9A2hrStHrAYDiFHUP++uvvx7HHXdcHHzwwTFu3LhYvXp1REScc8452z1r7KZNm2Lw4MGRz+e3un3GjBkxefLkuPTSS+OJJ56IwYMHx5gxY+LVV19tst+6detiwoQJcfPNNxfzlACAf1LKXg8AFKeoK+z//d//HR06dIiXXnopPvaxjxXWn3766TF58uS4/vrrmz3W2LFjY+zYsdvcPnXq1Dj33HPj7LPPjoj376m7995745ZbbokpU6ZERERdXV2MHz8+pkyZEkcdddQ2x6qrq4u6urrC8vr16yMior6+vnB/XktsHqNTu6TFY8HOZvN5n+b5X4p/xy3RqX26//bTfv7lbPNrX8pekrZS9noAoDhFBfYHHngg7r///thnn32arD/ooIPixRdfLElhERHvvvtuLFy4MC6++OLCunbt2sXo0aPjsccei4iIJEnirLPOimOPPTbOPPPMDxzv6quvjssvv3yL9Q888EB07dq1ZHVfMayxZGPBzibN8/++++5L7dgREddueadOq0r7+RPx4IMPtniMt99+uwSVtFxr9XoAYNuKCuybNm3aasBdt25ddOrUqcVFbfbaa69FQ0ND9O7du8n63r17xzPPPBMREfPmzYsZM2bEoEGD4p577omIiJ/97Gdx2GGHbTHexRdfHJMnTy4sr1+/Pvr16xcnnHBCdO/evcX11tfXx4MPPhj/u6Bd1DW6v4/y0qldElcMa0z1/H/6sjGpHHezgZfdn+rx037+5Wzz+//xxx8fHTp0aNFYm7/9lbbW6vUAwLYVFdiPOeaYuP322+OKK66IiIiKiopobGyMa6+9NkaNGlXSAj/MiBEjorGxeVf0OnXqtNUPGR06dGjxB6x/VtdYEXUNAjvlKc3zv5T/jouR9r/7tJ8/peknWfk5ZqnXA0C5KiqwX3vttXHcccfFggUL4t13342vf/3r8be//S3WrVsX8+bNK1lxvXr1ivbt28eaNWuarF+zZk306dOnZMcBAJpqrV4PAGxbUbPEDxw4MJYtWxYjRoyIU045JTZt2hSnnXZaPPnkk3HAAQeUrLiOHTvG0KFDY/bs2YV1jY2NMXv27DjyyCNLdhwAoKnW6vUAwLZt9xX2+vr6OPHEE+Omm26K//mf/2lxARs3bozly5cXllesWBGLFi2K3XffPfbdd9+YPHlyTJw4MYYNGxbDhw+PadOmxaZNmwqzxgMApVXqXg8AFGe7A3uHDh3iqaeeKlkBCxYsaHIv3OZJ4SZOnBjTp0+P008/PdauXRuXXHJJvPLKKzFkyJCYNWvWFhPRAQClUepeDwAUp6ivxH/xi1+Mn/70pyUpYOTIkZEkyRb/TZ8+vbDP+eefHy+++GLU1dXF448/HkcccURJjg0AbF0pe31a8vl8VFVVRXV1ddqlAEBRipp07r333otbbrklHnrooRg6dGjssssuTbZPnTq1JMUBAOloC70+l8tFLpeL9evXR48ePdIuBwC223YF9ueffz769+8fTz/9dBx++OEREbFs2bIm+1RU+HNmALCz0usBIDu2K7AfdNBBsXr16pgzZ05ERJx++unxve99b6e7nzyfz0c+n4+Ghoa0SwGATGkrvR4A2oLtuoc9SZImyzNnzoxNmzaVtKDWkMvlora2NmpqatIuBQAypa30egBoC4qadG6zf23qAEDbotcDQHq2K7BXVFRscd+a+9gAoO3Q6wEgO7brHvYkSeKss86KTp06RUTEO++8E1/+8pe3mDn2rrvuKl2FAECr0esBIDu2K7BPnDixyfIXv/jFkhYDAKRLrweA7NiuwH7rrbfuqDoAgAzQ6wEgO1o06RwAAACwYwjsAAAAkEECOwAAAGSQwA4AAAAZtF2TzrUV+Xw+8vl8NDQ0pF0KUEL9p9ybdgkAAFAyZXmFPZfLRW1tbdTU1KRdCgAAAGxVWQZ2AAAAyLqy/Eo8AADAzqalt/91ap/EtcNLVAytwhV2AAAAyCCBHQAAADJIYAcAAIAMEtgBAAAggwR2AAAAyCCBHQAAADJIYAcAAIAMEtgBAAAggwR2AAAAyKCyDOz5fD6qqqqiuro67VIAAABgq8oysOdyuaitrY2ampq0SwEAAICtKsvADgAAAFknsAMAAEAGCewAAACQQQI7AAAAZJDADgAAABkksAMAAEAGCewAAACQQQI7AAAAZJDADgAAABkksAMAAEAGCewAAACQQQI7AAAAZJDADgBk2sqVK2PkyJFRVVUVgwYNijvvvDPtkgCgVVSmXUAa8vl85PP5aGhoSLsUAOBDVFZWxrRp02LIkCHxyiuvxNChQ2PcuHGxyy67pF0aAOxQZXmFPZfLRW1tbdTU1KRdCgDwIfbaa68YMmRIRET06dMnevXqFevWrUu5KgDY8coysAMAreeRRx6Jk08+Ofr27RsVFRVxzz33bLFPPp+P/v37R+fOneOII46I+fPnb3WshQsXRkNDQ/Tr129Hlw0AqRPYAYAdatOmTTF48ODI5/Nb3T5jxoyYPHlyXHrppfHEE0/E4MGDY8yYMfHqq6822W/dunUxYcKEuPnmm1ujbABIXVneww4AtJ6xY8fG2LFjt7l96tSpce6558bZZ58dERE33XRT3HvvvXHLLbfElClTIiKirq4uxo8fH1OmTImjjjrqA49XV1cXdXV1heX169dHRER9fX3U19e39OkAO5lO7ZO0S8iMTu3efy28F6Zre15/gR0ASM27774bCxcujIsvvriwrl27djF69Oh47LHHIiIiSZI466yz4thjj40zzzzzQ8e8+uqr4/LLL99i/Zw5c6Jr166lKx7YKVw7PO0KsufBBx9Mu4Sy9vbbbzd7X4EdAEjNa6+9Fg0NDdG7d+8m63v37h3PPPNMRETMmzcvZsyYEYMGDSrc//6zn/0sDjvssK2OefHFF8fkyZMLy+vXr49+/frFqFGjYo899thBzwTIqoGX3Z92CZnRqV0SVwxrjOOPPz46dOiQdjlla/M3v5pDYAcAMm3EiBHR2NjY7P07deoUnTp12mJ9hw4dfECFMlTXUJF2CZnj/TBd2/Pam3QOAEhNr169on379rFmzZom69esWRN9+vRJqSoAyAaBHQBITceOHWPo0KExe/bswrrGxsaYPXt2HHnkkSlWBgDp85V4AGCH2rhxYyxfvrywvGLFili0aFHsvvvuse+++8bkyZNj4sSJMWzYsBg+fHhMmzYtNm3aVJg1HgDKlcAOAOxQCxYsiFGjRhWWN08IN3HixJg+fXqcfvrpsXbt2rjkkkvilVdeiSFDhsSsWbO2mIgOAMqNwA4A7FAjR46MJPngv4N8/vnnx/nnn1/S4+bz+cjn89HQ0FDScQGgtbiHHQBok3K5XNTW1kZNTU3apQBAUQR2AAAAyCCBHQAAADJIYAcAAIAMKsvAns/no6qqKqqrq9MuBQAAALaqLAO7SWgAAADIurIM7AAAAJB1AjsA0Ca5BQ6AnZ3ADgC0SW6BA2BnJ7ADAABABlWmXQAApdF/yr2pHv+Fb5+U6vEBANoaV9gBAAAggwR2AAAAyCCBHQAAADJIYAcAAIAMEtgBAAAggwR2AKBNyufzUVVVFdXV1WmXAgBFEdgBgDYpl8tFbW1t1NTUpF0KABRFYAcAAIAMEtgBAAAggwR2AAAAyCCBHQAAADJIYAcAAIAMEtgBAAAggwR2AAAAyCCBHQAAADKoMu0C0pDP5yOfz0dDQ0PapQC0Gf2n3Jvq8V/49kmpHh8AoNTK8gp7LpeL2traqKmpSbsUAGAHyefzUVVVFdXV1WmXAgBFKcvADgC0fX5BD8DOTmAHAACADBLYAQAAIIMEdgAAAMgggR0AAAAySGAHAACADBLYAQAAIIMEdgAAAMgggR0AAAAySGAHAACADBLYAQAAIIMEdgCgTcrn81FVVRXV1dVplwIARRHYAYA2KZfLRW1tbdTU1KRdCgAURWAHAACADBLYAQAAIIMEdgAAAMgggR0AAAAySGAHAACADBLYAQAAIIMEdgAAAMgggR0AAAAySGAHAACADBLYAQAAIIMEdgAAAMgggR0AAAAySGAHAACADCrLwJ7P56Oqqiqqq6vTLgUAAAC2qiwDey6Xi9ra2qipqUm7FABgB/ELegB2dmUZ2AGAts8v6AHY2QnsAAAAkEECOwAAAGSQwA4AAAAZJLADAABABgnsAAAAkEECOwAAAGSQwA4AAAAZJLADAABABgnsAAAAkEECOwAAAGSQwA4AAAAZJLADAABABgnsAAAAkEECOwAAAGSQwA4AAAAZJLADAABABgnsAAAAkEECOwDQJuXz+aiqqorq6uq0SwGAogjsAECblMvlora2NmpqatIuBQCKIrADAABABgnsAAAAkEECOwAAAGSQwA4AAAAZJLADAABABgnsAAAAkEECOwAAAGSQwA4AAAAZJLADAABABgnsAAAAkEECOwAAAGSQwA4AAAAZJLADAABABgnsAAAAkEECOwAAAGSQwA4AAAAZVJl2AWnI5/ORz+ejoaEh7VIAKJH+U+5N7did2idx7fDUDg/QZqX53g5ZUJZX2HO5XNTW1kZNTU3apQAAAMBWlWVgBwAAgKwT2AEAACCDBHYAAADIIIEdAAAAMkhgBwAAgAwS2AEAACCDBHYAAADIIIEdAAAAMkhgBwDapHw+H1VVVVFdXZ12KQBQFIEdAGiTcml81boAABajSURBVLlc1NbWRk1NTdqlAEBRBHYAAADIIIEdAAAAMkhgBwAAgAwS2AEAACCDBHYAAADIoMq0C0hTkiQREbF+/fqSjFdfXx9vv/12NNS1j8aGipKMCTuLhvZJvP12g/OfsrT5/F+/fn106NChRWNt7kmbexQtt/m13LBhQ4t/PkDraqx7O+0S2pRS9iuKtz29vqwD+4YNGyIiol+/filXAm3DF9IuAFJU6vN/w4YN0aNHjxKPWp5ef/31iIjYf//9U64EIH0+r2VHc3p9WQf2vn37xsqVK+PYY4+NBQsWfOj+1dXVH/i3XNevXx/9+vWLlStXRvfu3UtZaqZ82OvQVuoo5fgtGauYx27PY5q7r/P/fc7/1h2rHM//JEliw4YN0bdv3xaNw/9v9913j4iIl156yS9BUpSV988dLevPM+36WuP4O+oYWemNLRmjXD6vZV2SJDF06NBm9fqyDuzt2rWLffbZJyorK5t1wrZv375Z+3Xv3r1N/wNo7uuws9dRyvFbMlYxj92exzR3X+f/+5z/rTtWuZ7/QmVptWv3/pQ9PXr0yMS/33KVlffPHS3rzzPt+lrj+DvqGFnpjaUYo61/XtsZdOzYsdCfPohJ5yIil8uVdL+2Liuvw46uo5Tjt2SsYh67PY9x/m+frLwOzv/SPMb5D62nXP4dZf15pl1faxx/Rx0jK72xlGOQnub+/CoSs9qUzPr166NHjx7x1ltv+Y0VZcf5Tzlz/mebnw/A+7wf7nzaX3bZZZelXURb0r59+xg5cmRUVpb13QaUKec/5cz5n21+PgDv8364c3GFHQAAADLIPewAAACQQQI7AAAAZJDADgAAABkksAMAAEAGCeyt5A9/+EMMGDAgDjrooPjJT36SdjnQqk499dTo2bNnfOYzn0m7FGhVK1eujJEjR0ZVVVUMGjQo7rzzzrRL4kN4vwLKmcySPWaJbwXvvfdeVFVVxZw5c6JHjx4xdOjQePTRR2OPPfZIuzRoFQ8//HBs2LAhbrvttvjNb36TdjnQalavXh1r1qyJIUOGxCuvvBJDhw6NZcuWxS677JJ2aWyD9yugXMks2eQKeyuYP39+HHroobH33nvHrrvuGmPHjo0HHngg7bKg1YwcOTK6deuWdhnQ6vbaa68YMmRIRET06dMnevXqFevWrUu5Kj6I9yugXMks2SSwN8MjjzwSJ598cvTt2zcqKirinnvu2WKffD4f/fv3j86dO8cRRxwR8+fPL2xbtWpV7L333oXlvffeO/7+97+3Su3QUi09/2FnVsrzf+HChdHQ0BD9+vXb0WW3Wd6PALZNZmmbBPZm2LRpUwwePDjy+fxWt8+YMSMmT54cl156aTzxxBMxePDgGDNmTLz66qutXCmUnvOfclaq83/dunUxYcKEuPnmm1uj7DarFD+PIUOGxMCBA7f4b9WqVa31NAB2CJ/Z2qiE7RIRyd13391k3fDhw5NcLldYbmhoSPr27ZtcffXVSZIkybx585Lx48cXtk+aNCm54447WqdgKKFizv/N5syZk3z6059ulTphRyj2/H/nnXeSY445Jrn99ttbrdZy0JL3ow/j/QrY2cksbYcr7C307rvvxsKFC2P06NGFde3atYvRo0fHY489FhERw4cPj6effjr+/ve/x8aNG2PmzJkxZsyYtEqGkmnO+Q9tVXPO/yRJ4qyzzopjjz02zjzzzLRKLQvejwC2TWbZeQnsLfTaa69FQ0ND9O7du8n63r17xyuvvBIREZWVlXH99dfHqFGjYsiQIXHRRReZbZE2oTnnf0TE6NGj49/+7d/ivvvui3322ceHZ9qE5pz/8+bNixkzZsQ999wTQ4YMiSFDhsRf//rXNMpt85r7fvRhvF8BbZHMsvOqTLuAcvGpT30qPvWpT6VdBqTioYceSrsESMWIESOisbEx7TLYDt6vgHIms2SPK+wt1KtXr2jfvn2sWbOmyfo1a9ZEnz59UqoKWofzn3Lm/M8WPw+AbfMeufMS2FuoY8eOMXTo0Jg9e3ZhXWNjY8yePTuOPPLIFCuDHc/5Tzlz/meLnwfAtnmP3Hn5SnwzbNy4MZYvX15YXrFiRSxatCh233332HfffWPy5MkxceLEGDZsWAwfPjymTZsWmzZtirPPPjvFqqE0nP+UM+d/tvh5AGyb98g2Ku1p6ncGc+bMSSJii/8mTpxY2Of73/9+su+++yYdO3ZMhg8fnvzlL39Jr2AoIec/5cz5ny1+HgDb5j2ybapIkiRptd8OAAAAAM3iHnYAAADIIIEdAAAAMkhgBwAAgAwS2AEAACCDBHYAAADIIIEdAAAAMkhgBwAAgAwS2AEAACCDBHYAAADIIIEdUjRy5Mj4yle+knYZ223p0qXRp0+f2LBhwzb3mT59euy2226tWFXLTJkyJS644IK0ywAgZW25NzdH//79Y9q0aSWqqvUV8/OrqKiIe+65Z7uP9bnPfS6uv/767X4cbA+BHcrE6tWr4wtf+EIcfPDB0a5du202szvvvDMOOeSQ6Ny5cxx22GFx3333bbHPxRdfHBdccEF069ZtR5fdar761a/GbbfdFs8//3zapQBQJvTm0rvrrrviiiuuKOmYDz/8cFRUVMSbb77ZZP03vvGNuOqqq+Ktt94q6fHgnwnsUCbq6uriIx/5SHzjG9+IwYMHb3WfRx99ND7/+c/HOeecE08++WSMHz8+xo8fH08//XRhn5deein+8Ic/xFlnndVKlX+w+vr6kozTq1evGDNmTPzwhz8syXgA8GHaam9O0+67795qv7QYOHBgHHDAAfHzn/+8VY5HeRLYISPeeOONmDBhQvTs2TO6du0aY8eOjWeffbbJPj/+8Y+jX79+0bVr1zj11FNj6tSpzf7aef/+/eOGG26ICRMmRI8ePba6zw033BAnnnhifO1rX4uPfexjccUVV8Thhx8eP/jBDwr7/PrXv47BgwfH3nvv3eSx06dPj3333bdQ2+uvv77F+L/73e/i8MMPj86dO8dHP/rRuPzyy+O9994rbH/mmWdixIgR0blz56iqqoqHHnqoydfUXnjhhaioqIgZM2bEJz/5yejcuXPccccdERHxk5/8JD72sY9F586d45BDDokbb7yxybFXrlwZn/3sZ2O33XaL3XffPU455ZR44YUXmuxz8sknx69+9atmvZ4AtH07e2/+85//HMccc0x06dIl+vXrFxdeeGFs2rSpsP3VV1+Nk08+Obp06RL7779/oaf+sw/rzRHN67Fb8/TTT0e7du1i7dq1ERGxbt26aNeuXXzuc58r7HPllVfGiBEjmjxm7Nixseuuu0bv3r3jzDPPjNdee62w/V+/Er969eo46aSTCs/xF7/4xVa/9v/aa6/FqaeeGl27do2DDjoofv/730fE+589Ro0aFRERPXv2jIqKiia/GPHZgR1NYIeMOOuss2LBggXx+9//Ph577LFIkiTGjRtXuII8b968+PKXvxyTJk2KRYsWxfHHHx9XXXVVSWt47LHHYvTo0U3WjRkzJh577LHC8ty5c2PYsGFN9nn88cfjnHPOifPPPz8WLVoUo0aNiiuvvLLJPnPnzo0JEybEpEmTora2Nn70ox/F9OnTC8+hoaEhxo8fH127do3HH388br755vif//mfrdY5ZcqUmDRpUixZsiTGjBkTd9xxR1xyySVx1VVXxZIlS+Jb3/pW/O///m/cdtttEfH+VfgxY8ZEt27dYu7cuTFv3rzYdddd48QTT4x33323MO7w4cPj5ZdfbtaHDADavp25Nz/33HNx4oknxqc//el46qmnYsaMGfHnP/85zj///CbPb+XKlTFnzpz4zW9+EzfeeGO8+uqrhe3N6c3N7bFbc+ihh8Yee+wRf/rTnwrP45+XIyL+9Kc/xciRIyMi4s0334xjjz02Pv7xj8eCBQti1qxZsWbNmvjsZz+7zWNMmDAhVq1aFQ8//HD89re/jZtvvrnJc9zs8ssvj89+9rPx1FNPxbhx4+KMM86IdevWRb9+/eK3v/1tRLw/T8Dq1avjhhtuKDxu+PDhMX/+/Kirq/vA5wpFS4DUfPKTn0wmTZqULFu2LImIZN68eYVtr732WtKlS5fk17/+dZIkSXL66acnJ510UpPHn3HGGUmPHj2KPu6/6tChQ/KLX/yiybp8Pp/sueeeheXBgwcn3/zmN5vs8/nPfz4ZN25ck3Wnn356k9qOO+645Fvf+laTfX72s58le+21V5IkSTJz5syksrIyWb16dWH7gw8+mEREcvfddydJkiQrVqxIIiKZNm1ak3EOOOCALeq+4oorkiOPPLJwnAEDBiSNjY2F7XV1dUmXLl2S+++/v7DurbfeSiIiefjhh7d4bQAoD22lN59zzjnJeeed12Td3Llzk3bt2iX/+Mc/kqVLlyYRkcyfP7+wfcmSJUlEJN/97neTJGleb25uj92W0047LcnlckmSJMlXvvKV5Gtf+1rSs2fPZMmSJcm7776bdO3aNXnggQeSJHm/t59wwglNHr9y5cokIpKlS5cmSdL0ddz8fGpqagr7P/vss02eY5IkSUQk3/jGNwrLGzduTCIimTlzZpIkSTJnzpwkIpI33nhji/oXL16cRETywgsvfOhzhWJUpvA7AuBfLFmyJCorK+OII44orNtjjz1iwIABsWTJkoh4/7e6p556apPHDR8+PP7whz+0aq3/+Mc/onPnzk3WLVmyZIvajjzyyJg1a1ZhefHixTFv3rwmVx4aGhrinXfeibfffjuWLl0a/fr1iz59+hS2Dx8+fKs1/PNVhE2bNsVzzz0X55xzTpx77rmF9e+9917h64WLFy+O5cuXb3FP2zvvvBPPPfdcYblLly4REfH2229/8IsAQJu3s/fmxYsXx1NPPdXka+5JkkRjY2OsWLEili1bFpWVlTF06NDC9kMOOaTJ1/mb05ub22O35ZOf/GTcfPPNEfH+1fRvfetbsWzZsnj44Ydj3bp1UV9fH0cffXThWHPmzIldd911i3Gee+65OPjgg5usW7p0aVRWVsbhhx9eWHfggQdGz549t3j8oEGDCv+/yy67RPfu3bd6Jf5f+ezAjiawAwV9+vSJNWvWNFm3Zs2aJo26V69e8cYbb2z32Bs3bozLL788TjvttC22/euHjA+zyy67NBk34v17CP/5Q1VERPv27Qv7DB06dKv35n3kIx8p/P+6deu2WAcAaSq2N2/cuDG+9KUvxYUXXrjFmPvuu28sW7asJPU1t8duy+Z7zp999tmora2NESNGxDPPPBMPP/xwvPHGGzFs2LDo2rVr4Vgnn3xyXHPNNVuMs9dee7XoeXTo0KHJckVFRTQ2Nn7o43x2YEcT2CEDPvaxj8V7770Xjz/+eBx11FEREfH666/H0qVLo6qqKiIiBgwYEDU1NU0e96/LLXXkkUfG7Nmzm0zW8uCDD8aRRx5ZWP74xz8etbW1W9T/+OOPN1n3l7/8pcny4YcfHkuXLo0DDzxwq8ceMGBArFy5MtasWRO9e/eOiOY9v969e0ffvn3j+eefjzPOOGOr+xx++OExY8aM2HPPPaN79+7bHOvpp5+ODh06xKGHHvqhxwWgbdvZe/Phhx8etbW12+y7hxxySLz33nuxcOHCqK6ujoj3r0j/858ua05vbm6P3ZbDDjssevbsGVdeeWUMGTIkdt111xg5cmRcc8018cYbbxTuX998rN/+9rfRv3//qKz88BgzYMCAeO+99+LJJ58sfJNg+fLl233hoWPHjhHx/jcD/9XTTz8d++yzT/Tq1Wu7xoTmMukcZMBBBx0Up5xySpx77rnx5z//ORYvXhxf/OIXY++9945TTjklIiIuuOCCuO+++2Lq1Knx7LPPxo9+9KOYOXNmVFRUNPs4ixYtikWLFsXGjRtj7dq1sWjRoiYNftKkSTFr1qy4/vrr45lnnonLLrssFixY0GSCms0T3fxz07rwwgtj1qxZ8Z3vfCeeffbZ+MEPftDk6/AREZdcckncfvvtcfnll8ff/va3WLJkSfzqV7+Kb3zjGxERcfzxx8cBBxwQEydOjKeeeirmzZtX2PZhz/Hyyy+Pq6++Or73ve/FsmXL4q9//WvceuutMXXq1IiIOOOMM6JXr15xyimnxNy5c2PFihXx8MMPx4UXXhgvv/xyYZy5c+cWZtMFoLzt7L35//2//xePPvpoYULYZ599Nn73u98VHjdgwIA48cQT40tf+lI8/vjjsXDhwviP//iPJj2wOb25uT12WyoqKuITn/hE3HHHHYVwPmjQoKirq4vZs2fHJz/5ycK+uVwu1q1bF5///OejpqYmnnvuubj//vvj7LPP3mqYPuSQQ2L06NFx3nnnxfz58+PJJ5+M8847L7p06bJdP6P99tsvKioq4g9/+EOsXbu28O2+iPc/O5xwwgnNHgu2W9o30UM5++eJUdatW5eceeaZSY8ePZIuXbokY8aMSZYtW9Zk/5tvvjnZe++9ky5duiTjx49PrrzyyqRPnz7NPl5EbPHffvvt12SfX//618nBBx+cdOzYMTn00EOTe++9t8n2+vr6pG/fvsmsWbOarP/pT3+a7LPPPkmXLl2Sk08+OfnOd76zxaQ7s2bNSo466qikS5cuSffu3ZPhw4cnN998c2H7kiVLkqOPPjrp2LFjcsghhyT/93//l0RE4VibJ5178sknt3hud9xxRzJkyJCkY8eOSc+ePZNPfOITyV133VXYvnr16mTChAlJr169kk6dOiUf/ehHk3PPPTd56623CvsMGDAg+eUvf9ns1xOAtqct9eb58+cnxx9/fLLrrrsmu+yySzJo0KDkqquuKmxfvXp1ctJJJyWdOnVK9t133+T2229P9ttvvyYTsn1Yb948zof12A/y3e9+t8kkb0mSJKecckpSWVmZbNiwocm+y5YtS0499dRkt912S7p06ZIccsghyVe+8pXCpHf/OnnfqlWrkrFjxyadOnVK9ttvv+QXv/hFsueeeyY33XRTk5/B5kn0NuvRo0dy6623Fpa/+c1vJn369EkqKiqSiRMnJkmSJP/4xz+SHj16JI899liznicUoyJJkiSF3xMAJXDuuefGM888E3Pnzm3V4+bz+fj9738f999//w49zrx582LEiBGxfPnyOOCAA3bosWbOnBkXXXRRPPXUU836mh0AbI3enG0vv/xy9OvXLx566KE47rjjWjTWD3/4w7j77rvjgQceKFF1sCWfSmEn8p3vfCeOP/742GWXXWLmzJlx2223xY033tjqdXzpS1+KN998MzZs2LDFrLAtcffdd8euu+4aBx10UCxfvjwmTZoURx99dKt8INi0aVPceuutwjoA20VvzrY//vGPsXHjxjjssMNi9erV8fWvfz369+8fn/jEJ1o8docOHeL73/9+CaqEbXOFHXYin/3sZ+Phhx+ODRs2xEc/+tG44IIL4stf/nJERBx66KHx4osvbvVxP/rRj7Y5IVuW3H777XHllVfGSy+9FL169YrRo0fH9ddfH3vssUfapQHAVunNH2xrf4Jts5kzZ8YxxxxTqlK36v7774+LLroonn/++ejWrVscddRRMW3atNhvv/126HGhVAR2aCNefPHFqK+v3+q23r17l/S37QDAh9Ob35+VfVv23ntvE73ChxDYAQAAIIP8WTcAAADIIIEdAAAAMkhgBwAAgAwS2AEAACCDBHYAAADIIIEdAAAAMkhgBwAAgAwS2AEAACCD/j82nbj6fKjVCAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -3422,13 +3368,12 @@ "plt.subplot(1,2,1)\n", "plotDistribution(degrees, 13, minValue=1E0)\n", "plt.yscale(\"log\")\n", - "plt.title(\"Degree Distribution\")\n", "\n", "plt.subplot(1,2,2)\n", "plotDistribution(allEdgesWeights, 20)\n", "plt.xlim([1E-2, 10])\n", "plt.yscale(\"log\")\n", - "plt.title(\"Edge Weight Distribution\")" + "plt.xlim([0.1, 2])" ] }, { @@ -3440,7 +3385,7 @@ }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 119, "metadata": {}, "outputs": [], "source": [ @@ -3450,7 +3395,7 @@ }, { "cell_type": "code", - "execution_count": 115, + "execution_count": 120, "metadata": {}, "outputs": [], "source": [ @@ -3462,12 +3407,12 @@ }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 121, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9e5gc1Xnn/63unmtPz4xA0kg90rQZjRgNQhgZEM9CiIVtEiQRcLCxNw/yzzH4Jj0LSOv8rFwWG9bezZokIMwG2YRLFOH9ESfeWDEgUIwhyVpYN4R3DMNII0FLmhEjtaTp6bn1dHfV74+a011ddU5d+lrd/X6eJ8Hq6a6q7jp1znvey/eVFEVRQBAEQRBEzeIp9wUQBEEQBFFeyBggCIIgiBqHjAGCIAiCqHHIGCAIgiCIGoeMAYIgCIKoccgYIAiCIIgah4wBgiAIgqhxyBggCIIgiBqHjAGCIAiCqHHIGCAIgiCIGoeMAYIgCIKoccgYIAiCIIgah4wBgiAIgqhxyBggCIIgiBqHjAGCIAiCqHHIGCAIgiCIGoeMAYIgCIKoccgYIAiCIIgah4wBgiAIgqhxyBggCIIgiBqHjAGCIAiCqHHIGCAIgiCIGsdX7gsgCKL09IdjeP6NEZwYnUJ3RzM2rg1iVShQ7ssiCKJMSIqiKOW+CIIgSkd/OIatzw5AUQBZATwSIEnAY/f0kUFAEDUKhQkIosZ4/o2RtCEAqP9VFPV1giBqEzIGCKLGODE6lTYEGLKivk4QRG1COQMEUWMsaKtHJJbgvm4FyzUYHJkEFABQ0NvZQjkHBFHhkDFAEGWm5Ml8oiwhi+whlmvAwgqMg0NRHD4RpZwDgqhgyBggiDKiT+a7MFH8hfXc+Kyj1xks10Cfcqwgk3PwvS/2FugqiwtVUxBENmQMEEQZef6NkaydtqwAEvJbWK0Wuu6OZlyYiGblDXgk9XUzeLkGDKucAzctvuUwwAjC7VACIUGUkcGRSeNOW1FfzwW20B06HkUklsCh41FsfXYA/eFY+j0b1wYhSaoBAGRKC79wc9D02N0dzenP6DEzJuxcUynZ8cpJpGSqpiAILWQMEEQ5yTF+L8JO2eCqUACP3dOHa5e1YX6gDtcua8P2e/twZZdxV9wfjmHbzkHc9cgRxGaSAFTDQYsEc2PCTaWM/eEYBk4bDS2qpiBqHQoTEERZEaz6Um7WgN2ywVWhgGUYwuhOVysQVgT9GLkYVy9dUtAbbMEXbg5yjQkn12RFIUINZgaIVZiEIKoZMgYIooz0drbg4FA0yySQAPQGW3I6Xq75ADx4O3qPBASafPjp11c6uqbzMeN3dHJNhYrzmxkgVmESgqhmKExAEGVk49ogPJ7s+L3Hk/vCtHEt+1z2VjyX4xVqR3/Diva5q8kcTAFwY1+77WMUKtQgynvo6/QLPRvFQBt+2bZzsGz5EwTBIM8AQZQBrcv78qAfUNTSvu6OZlOXe67k0oGkUF6Gfe+NQZIARcmswpIEvHIkgl8OjNkSMLJjmNgJI2xcG8ThE1F4kN2XYfP6LkffKR+omoFwI2QMEESJ6Q/HsOWZgfTiFokl4JGA7ffmvxhkdsqS4XWnpYob1wZx6HgUc8kB6dedehlOjE5xKyYGTk/OGQmZ10UCRlaGid0FliVPao2GYhhfZuzYo1YzMGRFddFWkk4DUX2QMUCUDTfVnpeSHa+c5O5yd7xyEk9+zTwWb/WblaLvgFMvA28hFx1LJGB0w4p2HBjKGCb6CgZufgP4C6yd5Mli0R+OYWCYqhkI90E5A0RZcFvteSkZOsOf9EWvM+z8ZryYeD4JhCpGL4MTeLoGZvDc/0+8HIak8VAoAO7fEErv6Cul+RJVMxBuhYwBoiy4qfZci5sTu+yI5eQqKMSjUAvsqlAA960PoanOC0C95sY6D0Q2gd54Scsgaz7hkYBfDowBUO9ZIqlAnzSZqxFUTKiagXArFCYgyoIbd3KlSuzqWdTMdRX3LBIvXHbFcpzGxM3CDoVKIOwPx/D9l8Lp4ygAZhIy9708ASOzsaJtnqT1YFgJIZULUcikb0lpqxkIQg8ZA0RZEE2K0akktu0cLEv+gJO4cz5sWteVlUAIqIusWUa7E/ey3Zi43viJxKI4MBRFX6cfm9Z1CTPvnS6wrP8Cj7Ymn7pymwgYmRklouZJzfVedC1sxMMvDOWVj1LovBZhNcO60lUzEAQPSVFyKToiiPzQL0QZF6+UniBLXWp11yNHEIklDK/PD9ThH7652vLzThaO3ftH8dxrw4jNJBFo9OFLn+rEHWs6HF8bADzxFb6UsBXbdg7i0HF+Yp/Xo/7+APLOvDe7dju/rX6ssPGx/d4+PPzCkPDYjFzHk3GMqjBjaVUokJOxoP9MqasZCIKH96GHHnqo3BdB1B4d7Q1Y3d2KyHgCZ6OzkJXs5DAJQGQ8gVuunl+yazo8NI4zF+MGgeA6rwcru1rQ0d4g/CxbOEYuxDEZl3HmYhyvvh3B6u5Ww+f6wzH81x8PIZ6UIStAIiXjwLEo971W19bX6ceXPrlEeE2P7v4AT+09hcND41g0ryHr+E/tPYXJuNhdHxlP4O6PB3HL1fPxuRsX45ar52Nhm/g3EHF4aBzDF+Lcv13ZFbC8x9qxEk/IWLk0gG13duPKroDwd9FiNp7MfqNHd3+AkQtxg7EUiSWw9+0I2pp9+K8/HrJ1z/Xfx+lvanUvCSJfyBggygabFP/5wFlMzWYvSgqAeELG525cXLLrWTSvAa++HdFdhYTZpIy9JpN8fziGB390DNMJOb0omS1A+kVG/17exH/VRwJ49e1I2qPOlAof/HwPdzGxY5yYLaSF/P0XzWvAq0cihvN4JGDbZ7ptLYaiBZTdM/a7iOB9n937R/HtF4YwfCGOqVkZIxfiWffZylh699Rk2qBj5yiGEevE0CSIXKFqAqLsFLIcToSdKgGWfNfayFJpMp4KUaUDm6ij00nD30QJkaKEuMHhCWH5IADbnQYBfv5DSlYrEhis8oBHIX//VaEAtt/bh75OP+q8Euq8EvqW+PH4l3MLb+iPzX4Xs5JF/ffpD8ew/cVw1nsUALKcuc9mLZtlBYjNJEuSBOvWyhuiuqAEQqLsFCpRTYSTKoFVoQDqfMYVQDTJs4laRCKpoD8cM6jp6Rv3AEB0OqUKEsmZXa6sqA0MWRKj3URGnsEBqKp/7HrYQrrjlZNZlQqF/v0B9Xd9ktPcqBAJeixh0iwHQv99RAupgsx9ZuOS53LwSECg0Yfx6YSh5LG7o7mgiYdurLwhqg/yDBBlR7u7s7PrdYrTnZUTT4Vo0WWMzyQNwkAb1wa5Lm1JAo6OTBr+pgA4fCLqSPPAbFev/d6rQgE8+bWV+P6X+7Cmpzi/v4hCC0/pNRYY/nov7tMIFAHmCyn77di47Fviz/q7BKRzPdTQgHrHmBF1Q197wb5XfziG2aSMStBQICobyhkgXEEuSVV24cV+zWLii+Y14BVdjFsSxLcPD41jRJAcl/4ssuPIHe0N+On+UcR5tfYCw0JRYJq3wPsOe96KcP82MZ3Ef7wpe9dfzN9fxMN/P4Sz0URWngUUYN/AGH7y5oeOE+VYouH7Z6cRGc9UGCRSCn51NIoDx8bQtaAJHe0N6n27yL9vf6y5zx3tDdhw7UJcs6wV58cTmJhOYiapQJLU46pIaGv24aqQmtj40sFzpjkhdmHG0kwik1wLIG3wbLvTXr4FQdiBPANE1SOK/TIXvl144QDRLl8Lz6XbG/RzvQ9ek8C3kzjxqlAA/nqv4K8WesAlQCSipACITicRiSVwYCiKLc8421GvCgUQaPRx7/fA6cn0Dn3j2mB6J69l6+0hrkeEhSJ6O1vgyWqupJbC9gb9+N4Xe3FlV6Bgbn1RCKq10VcSzw1RW5AxQBSMUkr5OjkXcx9nJn51hh2fNrrwAf6CyxoJ6VkVCqCt2Tr1ZkFbPfea9LLBy4PNwqQ+pwuKj5P7AMANtoBto0b0u5thFrphBhULAVw3F5pa09OGJ77Sh9uvE2s9iI6tvS+FlEYWfY86n0SGAFFwKIGQyCLXxKdiSfnyrgeAo3Oxif/BHx2by/o3VgloE/PsJN9p6Q36hYlraXR/E8kGK4r63VKcY5ktKLzfqTfox8Hj0azdpTS3iy03TowaqwZODPYbRKeMlR0M7cKdS/dCMzXEtDSyDGhkFXOSRs4YFUZ4SakEkS9kDBBp8lnQiyHlK7qey4N+w7mgqH3ieRnrgLMqge6OZkRiUeH31H8ffTUEj3Pjs9xr4v022Rn+2fFi3oIi+p3uWx/C4RNq1UIxqjTywaytcS6I1AL15Jt4x+61pGRXfNzY165pqMRQ71trkw/f3bjc9m4+26gwwjxapVboJKobChMQafKpZxa5Tw8dj+YcMhBdz9AZwc59eNL0PHarBJj3gQdvR6uthqjzGg0OpwvQqlAAv8tJNJMV4Dhnl7xjD7+b4b73xnDf+lA6hh5o9Bmy6suFKPOfh1kDJ4Z+rPAohDHEOjDqT/PYz8J452SsIG59o1GRjdajRRCFgjwDRJp8Ep9EOz1mEOQSMhBdjygtDjD3RNjVM1gVCqCv02/oLChBvKizXb5IR9+pizgjiJO9Wm5/MYzuRc3p37E/HON2QJQVYHBkUvUMKBmRnCdeCqO7oznrPjgNDfWHY9ix5ySGPlTHRc/iZmy6tcvRvdWHSaJTSU12fjZmDZwYg8MT3IW4rcmL3s6WgvYB2PfeGFfxcHJWNrxeyFwBLfnqDLB7Pjg8AUAC5sJH5WgQRrgD8gwQaURZ96yToJ0kvcznM7NZroppop282U7RbIJ0omfwu6uNO3MFqjvYjEJoJlj9Ttq/m75XURX1tB4DrcIe4LzWvz8cw5ZnBjAwPIlESkEipWDg9CQeeNp5HT0zoP7hm6uF97Sv07q1b384huh0yvC6BKC3syV9Dpbtny8nRqdMd+36pFCnnogll/gA6GMEhdMZYPf84FAU0ekUotNJRKeSOJinzgNR2ZBngEhjjH2rE1AiZb271+701GS67FU8l50M73pkBRi5OAN/g8egHWBngrSbNLbvvTFIkrGc8JUjEdxu0l3QyTlEWP1O2r+bvTcpy4ZFSwHmdoMqTnM9RO2IFZjnbJjRH45hcMSYH2HV1ll7Tbx7paA4+RFmOSVtzT70Bv0GT4SV90X7dyU+BkA/jrN/F72R4cS7IwpDsNcK3bKbqAzIGCDSaBf0I++PI6HZbNlJCDSThRUt1GaTmPZ6BkcmEZ1KAFAQnUqlp0a2CBQ6Oe7E6BS3xltUUVBIzBYb9nft/+aFZ/qW+HHy3DT380nNm3nudTPDzcz4YGEDp2Q8FdkGZK8NrwC7Jt69amv2mX4+18qZjWuDODBkvD+sUkP/fOzeP5rVB+G8LjHXmPzYBFH9p0cCrl3WlhXu0CYcKgAisaiq0XBbCHdcbzRczcIQJHNcu1CYgMiCLei82nm7E4Wohl6/UNtxUafFXoJ+eCQJbMiyPWRro68oErp25XyLgVkCI6DK3Wrfq/+tvR5g87ouxBP8GZ+9nnGvG9+3oLXe8BpQHAlc0eJ0LmqswOAhCieZlVDmI4W8KhTAlttCWa+xe8Ab44aGSHOLPhtHxuRH/rTMDAF9uOP5N0ay+lkwtr8Y5n4fswZMJHNcu5AxQHDJp5Og3bi5k+oF3oKhQM3UziUebCVaZLYga93sxYC32GjZNzCW9V7Rby0SL2Kvi3bkopcA4IYVzBAxrt49i3NbRPLtWmnX+NQiqsCwa+jdcX1HVj+H60zGOA9FY1ib7dTtfCezHAbe+dMiXLrXJRu/G1G9UJigiBSyc1mpybeToJ24uaha4Mj749xOfyKxF8DZb21HT0FUUQCo3QWLHSq44/oOPPeLYa6Ajt47I/qtexY1c6+fJeuZeXlEu/J97zFDxGgtbF5nHd/nUYixxhNwEhmHZhUYTlzkdse4CDZ2RWO7N+hHoMln+Z3MwkpmpbC8aoJCVFsQlQkZA0WiWIp8pcLpBJsLonh3IqUYRFXMFgynvzXPI8ETLdq0rgv3Pz1g+LwklSbJiqds6GTHvGldFx54egCKJjFPQiYpz2wREZ1DtLi1NXsNY8OugVaIsSZamHnXYLb7L7SLXNSuGsgYO6KxvXl9l63fwCyHwaoUliAYZAwUiWIo8tmhkN6IYk8YZv3i9TLBZgvGtp2Djn5rodzwcHZyIOs7oN+dKw53kLmS744ZgCHLXvvvjWuDXBllXuybId7FtmS9j5UgsvdFYlEcOh7F9nvF1SiFHmsiI7GlUTztFdpFzu6hPqavbYiUrzHEwkra3ARRDgNBiKAWxkXCadvcQsAmv5ELcUzGZZy5GMerDtreOjnPo7s/wFN7TzluM6uFtZz9+a/Pc/MB9L+VqM2u09/68NA4hgVth8/r2sweOTGOMxfjBnulzuvByq6Wgv6uetjvExlPIJ6QsXKp2iLX7iLx6O4PMHIxDkXX/pa10u1ob8DHulvxweg0olNJeD0Sejv9+Nbne4TnWDSvAa++HUmL6zADRd9O9+EXhnBO00YYc+//YHQaG65d6PSnyIlHd3/AbSXc4PMgkTKWXfYt8eNLn1xS0Gtg9/D83D28siuAP/5MN2664hLD+/JpIb1iSUu6zXI8IeNKh2OFIMgzUCR4OygJCpZeWle0c5bCG1Ho8MeqUACrL2vNyx0uCjcwsSS9d0TkVgWMO/60Fj3YjlpdUkqlD5/PjtmOouSqUMCRNoDdXayozDDX8sNcEH1/QFF3ztC55XPMebCiVC55cv0T+UCegSLB20EBQGj2AOS6Vjz1WiTvnbUe0Q75bHQW/3zgbEHOJdptRXQ7aifofyt23NYmH7oWNFler/Hz6v+XFXC9Ix3tDThwbAwR3c7VIwErlwayvgfb2e0bGEM8KUObOJfv99ZTKI8L4/CQ0avB+45OsbOL3SUQJ/J6JHxhbWfO57ZLfziGn//6/Nw9y+CRgKtCrfjm73fn7HFxcg2FvJ+lpJKvncgNMgaKBM/Fu2VDJ86ePYvnDtVh5EIcU7OFdeXzJn+m2leoc4kMjjMX43j35EROkwb7rd4/O521QEdiCbx6JIKPWVyv9rc+G52dW4Sk9LXxFu2uBU3Ya8PdzY7/kzc/xNRs8cI+LMZ+em5cDF+IY89bEUzHk7huubkEsgi7Lv1i8Oag0dgCVCGhYocJmPdqJsHulzoKWBx9253dWBUK5OWWt3sN+YTs+sMxPPzCEB5/MYxdb4zgzcExW8axG66dqDzIGCgi+h1U8NJm/PQ3HoxcyMRxFcx1mBsYyzsGzdthq5gvjE7gGxwZgyDXSaOjvQEvHT5nWEAUAB+ctY4zs9/6nw+c5S7aIxfiePdUxlixisezndFfvxzGC//+IWLTKW6iXb67bAYvxg4A75yazNkgyDfnIB+6FjTh1SMRg1fiW5/v4S68hVz4mPcqc251/Lc1+fDIHxamP4Hda8jVg8aMw3PjCbWnhKJ+1o5xXO5rJyoTyhkoMe+PTmcldDGiuhh0LlUB/E5w2e/JV26U379ASh87nxyFIU57XrPXefBLuRQokHBQ11+BF2PtD8ew45WTGDhtrEPXIyvZaoD5cPSM+Hw/3jeK37rikpxzMsoRR14VCmD7vfYy5PWVB4Aq+/zAMwN4XFB9YIaoWsSqlXAhK3Hy6QAKiHtAMOXCYt7TfK+dqExIgbDEmEmBsnK6fKVSWZe21Ze15qXsJjo+U7xTj51/Q6JCsnFtkFOpOOcZsVCZY7+7HUOAHfWJl/iSr06R9U3qdFRi73rtWDRTiBQ2P1KAHa+cdHzeXBQN83nm9MfZtnNwrhw1+0s5efbMnqFiPF9aRc7J6Tj0XRNJprj6IWOgxDApUB5sIXUi02vnXPm2VNXDJvmMQZDB6aShnYTqvfzhaNaymHdtvL4KDDNjhf3udmEhnkIs1F6RhThHNe/KTJsfOfAKMXIZ94V45rQGRSJlNAScPHtmz1ChF2W9ITSdlABIaTO/0E3ACHdCxkCJYTvrtibjgsUW0kK56ez2CMiVfI0N/SQ0NWvsSW+3ja0WtakR/29mxoqZRryIQnlClgfNJ/hq3pUV+rvlMu4L8cwZGw6pg7DOKzl+9jauDXLHcDGEhHjXLUkSWpuK0wSMcCeUM5AHucYYV4UC+M7dy7Pq9bUL6a7XRzh18zL8dWrdvNM8Aqv4opNe69q/56ucpp+E2Nf1eQB/oy9nrfS0NoCS7ai1asQi0ivIkMmP0H8uXzbdyqSDjUio7l2Zme6DE6+QFie5Ev3hGBJJBfr769TLJTIm25p9jmP8LOdix56TaW2GnsXN2LzOnkSxE7hNwJRMEzA9ldxzhRAjKYoTxyjB0IvvMJnXtiYvejtbbD0g+oeKLXz6Y3skQFGUuTQ4CQqktPGQr+iNvte6BMDjgbDXeqHOCwB3PXIEkZgxgx5QzyOSrrUD+22dNGIx9pW3xxNfKcyuqT8cw1/tfh8nz82kjYLQgkb80acvq/pdmX4cAuoYePzLxd2RsnvOwgLpMkSozwFvRyxaDLftHOSKZ7G2w27FyXXzkj3zfVYJd0DGQI7wHiBGIRZM/YQzPp3A4PBkViVCvhNNfzjGb8QD4Loe9bjFnOC27RzEwSF+ExcA6Ov0p9XxSrUbYec58v64Ie5rdY1EfoiM42Iieo7bmnz47sblXENAZBwD4P6tFC72fJ4P0XfiXffmH7zD7fhIz0HlQ2GCHDGLLxdCBljv5rzrkSOGksR849XCXusw77XO2gzf9ciRvBbmG1a0C93DgCpdyyv1K2YHSPa7izw/egEfp/kMhJhylEE6KUPsD8fwJ393FClNor3+WS92p08e+UqEOwn3uUFmmigOZAzkiFV8udAldqJucfnEq3PttQ4oSKRUhcB8FuZ9740ZuuplnUVRd1opXdldKTpA8ibIG/rasW9grKQTPVFc7D5XPPc4Q/usl8OgKURPEuprQJAxkCNG8Z1sCl2XW4h2tnpy6bWuJ5+F+cTolGkpX0OdhOlZ/htKoWfAmyDvWNNR1HMSpcXucyXSQmAsaK0v7oWaUEqRoJ7FzVwdjp7F7qt2SecNjUzOZRIrtvO5ahEyBnJEu3McHJlEdCppcCE7XajN4n75Zu7zELnpP3djh7DXeiFVDc28Kx4J8Hkl4QRMIijuolIzzO0+V5bj21wmIi9EybDsN76sownnY7OGfKJcng+r+7jp1i5uAqFZx8dyjA1jYqjKwaHihRgrHUogLBBmyU92HoZiZu2L4CXwaZMHRZ8pVEKhKHu/b4kfm9d1YdfrI8IkTa8g05soLryxDPAT56ppwt22c9A0v2V+oI5bhpcv6UVN1usZqrQ1++D3zmAk5oEET9ZmxOnzYXcOspvo2R+OYceek1kJh6UaG1YJ3m6v8CgH5BkoEKKYm75k6rwgxs6L+0EBvvHce1h9WWtRrOkTo1PchkNmu6BChiusdmWiEEVfpx+b1xe+3poQw5vYI7EoDh2PYun8RtOkumpg49qgcHGRiuilYvOCaMcWnUoiCg8kSFjR6ce58dmcvYZ2cw/sapcUOt/HiYfBKsG7mhU9c4WMgSLSH44ZaqcVRVX91j8MosGbSCk4dLw4ri2Rmz6RVISVAoUOV5hNLMUIjRDOEU3sgDqxhs/NcF8fHLHX46ESYCJAf/XT9xGOZL4vU+AsliiUPVVMDyQJCDT5ci7v6w/HcOT98YLlHphJe+dyTKcVE1YhSAoxGiFjoIgIS/c4D4PZ4C3WTovfgRAYn05AgSR84EqZeUxZzuXHac8GRnQqif5wrGpCBatCAfztA1eVVA/BWhVTJZ/drpmxl+vCaWbE5HJMpxUTaRVSZOcMSKA+CyLIGCgidkr3GHay9p087HZcavqddyKppA0Bds5qc/cSzsmlZwOgTrzVOHZKaaCKpLX15LPbNTP2cl04zYwYp8dMpVJ49+RFyEp2Kx2zOVGf4K0KSyroDbaQd1EAGQNFxE7pHkM7eHnqd04edicuNe3EVgxhI6Lysbs71WOVf0JYk7WozVUTJGUFk/FUWqMj3zJjofCSV8Kj96zIaeEU5vvMJQebHVO7kVlyiQ/zp/8v6hPtkDDfUcUEeRWdQcZAEWEPhD4TeOvtIe7DIFK/c/qw73jlZE4JXcUQNiIqHzaOM4NYgZ1aOho7hYG3qBUyVCF67ldf1ppXLlAu+T76uS8Si0NCD7540zzs+uWY5ZxYqSWuboBKC4tMrg9tPp/j9RsArMufnGiU271uehirg/5wDA/+6Bii0wlkGwJ8w6CUuvyViJueE1H54tbfC+F2jshWMa/drHR549qgafl2ucoYqwUyBqoMs3roNSb6AYx8dhy8znMAsOW2EO64npT7Kh2zLpNa2ORNsVk+IkGccj4nhu6lc1USPI2BYmpKfPrP30J0Kml43WwjY5UASZoC9qAwQZVhFqNlLjUrpcNcHhxeGSVj+4thdC9qJuu8wrGTO0CTrzVM2li/DSvnc7LvvTF4pEx8n2kb6EOLheiDIKI/HOMaAlY6DoUuY6xVPNZvISqJ7o5meDjh3L5OP67sCmD3/lHc//QADgxFEYklcPB4FFufHUB/OJbXeUVllIwde07mdXyi/GxcG0zvGIFMcECa+x+F6JdRC5j15LB6joqBlcZAfziGbTsHcdcjRwqqRaDn+TdGuJkoimI+pgpdxlirkGegyhApBG5e3yUUQUopwJ/sGsSff6E3512J1WQwMDxZVTXntQgvKezGvnb8kjo5OqK7oxmRGD+Ux3uO8m24w+LprM1wz+JmbLq1C6tCAUsX+4K2ep1kOFt18++DoP1urO8JX3LZazqmClnGWMtQzkAVIor7W+mrSwAe/3Jusb9tOwdx8HjUVJzGTs4CQVQ7oiRfXl8QUX6BBMDjsY7V94djeODpAe4iu+W2EPa9N2ba/+PyxX4Mjkya7rxzTRQ19ibhGxpWYSerHidknNqDwgRVCIv7/8M3V+N7X+xNPwxWu3cFalliLmxcG1QnBpP3UOyOINTnc8ttoazX2OLOa52scPILFKivWYbnXjkpFCva/mIYg8MTQo2B7ff24dz4rPDv8wN1uHZZW84VI2zZgbkAACAASURBVPr8gzl9wPTf7YadmMfq2mVtmB+ow5qeNjzxlT48+bWVZAg4gMIEFUS+JT1mIkiMoTO5LdhaF/JbJ8aR1M0gFLsjiAx3XN+B7kXNtlon59Nw56hlfwgpK3EQyNYYMNMgyNfLZyZ21NbscxR2KoXAkJvKQYsBGQOojJvcH45l9RGPxKI4MBRF3xJ/Ov5nBcsn4MUHC0GhRJMIohaws4Dl23BHtnrW555NURdSnpKgrACx6fz7ThTT0Cg0ThslVSLehx566KFyX0Q5YTd55EIck3EZZy7G8erbEazubkVHe0O5Ly/Nwy8M4dy4scY7Mp7AXpvX29HegNXdrfhgdFpYL94b9GPDtQvzulZ2nsh4AvGEjJVLA9h2Zze57AjCIYvmNeDVtyOG11lYYdud3VjYZnzu+8MxPLr7AwxfiAuPLUnAVaEAvvn73cJnlT3L75+dRkQz/0RiCex5K4J5fh9WLGnJ67tJUMMezBARfady8ujuDzByIZ4pvYR6DyLjCdxy9fxyXlrBqPkEQjPFKzdZp7/z0EFDvwItfZ1+R+1LeQJBHklNIKRFmyDcg6GawKLhDj8xz5jN4/XYT/zbtnMQB4f4Icbv55h0zK7VjS3K9dc1cDqG2IzRzWKl6lpJ1HyYgBe30tbXuj18wHBaumc3ZkkQRHlxGg/nJ+Zl4zTT/sTolDDXKB/BoVI3E7Izp+uNqfOxMc13L0xJpRupeWOAH5OT4U1NYMszavmPG2JEPYubMXDaPBnI6UNJXb0IovoQJeblIxPtVBvBjEJtspwex27cX29MKZCyQhnVmgdV86WFelU1jwR4JA/i8ThkRc5KmrFTylMsNt3aZfkeKt0jCIKnQqoNfebakpiHlVSwHrYgHzyuKqAeGIri/qcHsHv/qKPrYcc5NHecQyZKqkxB8RvPvYeUDMs5nWdMKQDamn3p8sV8SirdSs17BkStNh96YQjQJdk5ld00U/6y81m91bvltpBQ/5/nsqqkMIeIavgOBFFKRCqk+eximTYCr5mRk+Pq26sznPZlsNsjQSRIxODN6aIqh96gv6o9qTWfQCgi38RCfSmg9hjb7zUPNRg6iCGjNgZA2KpTa6kKVbk6/di0zp5BUg76wzHseOUkjg5PQp8vaVd1jSBqnWIl5uVyXG0CJK8REcNMoVR/3ndPRTHBKZTQJ/Tx5nEtvDm9EK3cKxEyBgTkOyBybSUskioFgLYmH75z9/K0prjZQ2n2EHhduqCKDCg9JGtMEJWB3coGQJyZrz+GBEWY0Kdf2M3abpvN6W6tcigmNR8mECEKHzjJvs3lb2Y5CdHpJLY+O5BeyM0WRDPlMhYnc9uCylq7WvHOqYniXwxBEHljp7KBvSrKPcgnoU8k2lTnlbD6slbhnF6LydVkDJiQz4Awy741S7ix7B9gcyE3Uy5za49vu9cUT6SKfCUEQWjZvX8Uf7P3NCZnU5AAdC1oxDfuuMzSu2i2KdHC68tgdgyW0Ncb9Jtu1kT5E4/es6Lqd/pOIWOgSGxcG+S66a0Sbro7mnF+Qtz9z+5Czh4CXnGwW+tjzQwoLcWSUyYIwog+h0kBED43gweeHrDscmq2KWH0dfqxeb1Y8yCfhL58Pby1RM0bA4XOVtcer7fTj6mZFEYuqpkuPYubcevq+dj1uvh8bBGXYexUBthfyNlDsOOVk1n6BG6uj924NmjaYpnR2lTzw5YgSkJ/OIbvv8SvYGJdTp/8mlj5VL8zlyR1Xmtr9pqqKJodw+kcVosu/1yo6QRCUZJgrsl1Vsezez599q1eu9tpVmslJcPs2BPGj/eZ1xxvvT2E26/rKNEVEURtwuYrM09cnVfC3oeuE37++TdGMDg8AbUjkrqbN5t/WDUR657as6gZm9apGiuVModVKjVtDJiVD25cG+R6DMw8CaLj9Qb9CDT5cOT9cUN/AatyxUpayAvF7v2j+MGrpzCTyJ6F/PVefPXWJWQIEEQJsCrLA8TGQC4bLbNqoi23hXDH9dbPfT7aLrVOTRsDorKTRm8Ks7IXQPZAvm99CE+8HBYOcKsyFtFDdWmgDt/+fA+J6xAE4RrM5jOGtkGaduOSSCoYn05mpSyZbXz6wzE8+KNjiE6LdQisGiLlo+1C1HjOAC8xRYKCVCoFWZW4AZBRt3rutWGh6tXGtUEkkrzVXpl7L7+kBpAhT19wVR8EgiAIq+Q/CcDm9aoL346egCj52U44AuCrC2o3UNGpWcgK/7xuLKV2GzVtDPATUyQ0NzYblLJkBYjNJLkdDn994jwOHTdWAKjJMiIjgPVD8KCurg5yUobe+Nix5yQCTT7yFhAEUXL08yPD6wEuX5xdAWBHT0CU/Mw+a4XWkDB2FozOSRHx51s3llK7jZo2BkRlJ7teH+HG/gONPoNBoC7oCmQls5gzWht9CF7agMHhSVPRi4dfGAJg7IOglRw+T94CgiBKiJOyPCs9AbMKADtaBHpRIqMQEYNvELixlNpt1LQxAPDLTkSlLF/6VCeeeClseL2xsRHxKaMQTp1PwqZbu7D12QFT0Qu+O479Qx3YigLIKK67i5oCEQShxW5ZHj/kqpYB1/kkU0PCTjhCL0rENyD4XgGnzZRqlaoyBrQleZiLW/V2tjhe1Mws4u6OZtuehO6OZlvWtcgdpx/cShGVA/XCIpFYFAeGorazeAmCqF1EG6jvblyek44AoFZhnRuf5c6ZZkJEANLVBMFLGtBc78XDLwzRBseCqqkmYDEk1qOaUYpOd4XocqXdlUenkoYSREYxmvSYNUcCrLN4CYIg8imDdvpZO3NuoXVkqp2qMQbMamKdtB7OlULqAWz+wTtZ+QJatvxeCHesKexO3ex8AOBv8ODPv9BLDxBBEK5BP+fe2NeOXw6Mpf89Pp3A0ZEpg/eg2GtBpVI1xoBVTayoPabbsGrjW+j2w1ZegWKdlyAIolCI2xwb8wgqZS0oNR7rt1QG3R3N6ViTHrc25uFh1sIYyNTMlup8DKXA5yUIgjCjPxzDtp2DuOuRI9i2cxD94Zjwvbw2xzwqaS0oNVWTQMiSUCQYcwbsNLXIJZO+GNn3VmU2hU4itHsst7Y9JgiiehD1ZbESYjOrLmDqr25u0uYGqsYY0Gbtp6sJJMVWZyy9i8mOAmA6YVFWT1Wo7Hs7LT8LadnaOR9AFjVBEMXFqGKYKbDWqr3y4v2ieczrAVoafGCVZbXQ2yVXqsYYAHJvVal3Mellhnm7/+ffGEkbAlq2vxhG96LmtBHh1HvAPByGA2sopGUrLmvMQBY1QRDFxqhimI2Zd3Lj2iAOHTe2P0/JwPhMEh5JfQ8ZAmK8Dz300EPlvohy89TeU5iMZwtjKwAuxmbw4uEIRi7GMRmXceZiHK++HcHq7lb8dP8opmb5YtrnxxO45er5aUt35ILx8x3tDdzPdrQ3YHV3Kz44O43IuDEhcuvtIdx0xSV5f2f9+SLjCcQTMq7sCuCPP9ONdR9bgPNzr61cGsC2O7vpQSIIomjw5mEtHglYuTSAW66eb/hbR3sD9h8d486ZgBowiMzNywSfqqkmyAdeWaIEBV4kkIQP2jxLVpoCAAeGjJYokMlWNWuRbMeDUYvtiwmCqE2sysOttFusKsramn3oDfpJYVVAVYUJckXYsKihCePT2TLDzFX1rc/3cI0BSRNb5yW1yApwfHTKVvgg17AHQRBEpaGfh9VGb0Bbs9dW7pdZ/pMkAdGpZNrYoM6wRmoyTNAfjuHR3R/gqb2ncHhoHFd9JIBbVy9Iu8qZW3zkfBxnLsYNPblXLg3g7o8HMc/vw6+OZgwCSVL/vu3Obixsa8DhoXHD5wEZdYkx7H5L/Zvd8AFBEEQ1YwhZLlVDlvff9hHccvV8LGxrMMzdi+Y1pOfMRfMa8OrbEWG+FatMADLtjCh0kKHmwgROJCrtSl6KXPm8zwPA4pYUhmMeaAUxSBmLIAhCjJ25uz8cw45XTmLgtFZRNbvpmxa7AkS10MSt5owBURy/t9OPQKPPcLMNzY/myhXtDgaesfDwC0Pc2BYpYxFaamECIggR+vEfm0ka2sHzNlH83ANja2O7G7Ba6XFQczkDojj+wOnJtDiFPp60cW0wazAcOm4/3sSL+4s6blEdP8HIRfuCINxAIYxY3viXFeOCzis3zEeAiHftZqXn1eTJrTljgJ9kov5DVqS5/2bfbNFg2LHnJAJNRm+CFaJ2n8Ws49+9fxTPvTaM8ZkkvBLQ4PNgZVeAdpsupVYmIKK6KFQrdN74V8k2CHibKFEiob/ei66FjTgX5bdF5hkgh45H0eCVISvZyv3VqMhac8YAbyFmRoAW7c0WehOGJ+CRJMc7N61aYinKBvUPaFIBkrMyDgypg337vbTbdBuiMVeuCYhCFoQV/eFY1jyjRS/GZkUuu3ttSJdXUTCVSOHoyKRwjuYbIDKSySQk1GX1O6hGT27NGQO8hXg0Gkf43EzW+7Q329ybgPR/nezcSlk2+Nxrw8K/yQrwJ7sG4fN65r6SKttJk315cVMoiUIWhBlsET7y/rjp+5x4tUTjvzfoz/LGsk2UoWuhxHrUZDwJiqL+S3QdfAPEg+amJkzEU4acgWpTZK05YwDIXohZy2AeN/S1Y9vOQQwOT2QNMDveBDcRm0ma/l1V/coofx0cosm+3JQjlCSCQhaECF4/ARFO5kbR+N+8vovrQTV0LdQZAgyzOVpogMxtjqpdAK4mjQEtora8nZfW44mXwpr+2EwAQ1WxEmW2utF1FGj0ITptbhBoUZBpWUyTfXlgHqxdbwzj18cj8Hi9aKhvwK7XR4rmtekPx7Bjz0kMfahOlj2Lm7Hp1i5bIQsKI9QmVv0EtDiZG52GUs3CClrM5mgzA/zKruoXgKt5Y0DUMvh0ZBqAJx0nUpBxU33vi71pi9gNOzcrvvTJTmEsT4RbvRy1xKpQAF9Y24nDx6OQk8BMMumoksUJzEOmfRYGTk9iyzMD6O3048JEQmj4UhihdrFqua7F6dxoFkrVG5/+Bq9QithuC2OnBki1GcA1bwyIXEMeyYukrmeGdoEsdRJgPrAs3r/ZexqTsymLd6u41ctRa6ieq8wOp1gu+uffGOFO6rICYC5EJikKFEiGSZXCCLWL3RboW28PFWxu5Jcd8t8bWtCIjrYG23O0VS6XNkkxOpVMqxpWgwFc9caAlfUmcg0tX+znZqUmkgr6wzGsCgUqqnfAHdd34I7rO7J+jwWt9RgcmUyHBRgS3OvlqDVKVVVgdrxz47O4b30IP9hzAvGUB4HGOtzzqc70pOq2ygeidPDmT0AVcROV8OULP+vfmB8AAJMzKXzv/sLM0cb8CCXtOa4GA7iqjQFR3ah2oG5cG+Tu8BUF2PrsACQlW+o6Op3E/U8PoK/Tj03ruirOCtQbMCKFRbd6OWqNUlUVdHc0IxLjd+Fc0FqPJ14OQ5bVsFlsJonvvxTGZR1qqZibKh+I0lIOD2kh8gNywZgfYT85sRKoamNAJFzBdKu1rh2eNffYPX148EfHuMl3A8OT2PrsQEW7hQDqjOh2DJ3coECSpIJ7bTauDXLbx3okABIry+Lvgthn1YoUj6vzZ4jCU+o5hGd8Zld6FSeHyyo/otINYI/1WyoXq5snK5mseR6rQgHU+YwWJ8PsswRRCNjO69plbfDXJbGwPorH7llR8J3XqlAA2+/tQ1+nHx7IkJDC0nYFj3+5D+eis9wwwIGhKDb/8B0AwGd7z6OjfhzzA3W4dlmbad95gsiHjWuD6Q6xAMvxArb8XgjXLmsr2hjs7mhOn1NPNRjAVd3CmN9COBsFQDwh43M3LnZ8DKvPEkQh6GhvwC1Xz8f1S2Zx5tcv44ZrVqK1tbUo59lw7ULM81zAe++PYiLViDMXk/B5JZyf4GdqR8YT2PNWBEcjPsxvrce2u/pw98eDWNhGrbiJ4qBvdbxyaQB33bAI+wbGiprZz1oks6RBac4waGv24qpQK7bd2V3RBnBVdC0UJQnaEcSw6lzFjpGSjX+jtsNEKVEUBd/6y2dxCssxqQSKMullxnvG5Z9JMOUnaTEkAB5P9XVzI9wNryzWM9dqvtDj0KxlfaVT8caAqL3kfetD2PfeWCYxDgqClzSq/0b2e63cSbwe2XY/SxCFQp303p2b9DIlfoVcfPntX+0jAbiuhwxkonRs/uE7WXMzo2+JH09+bWXJriOrUqutHlDUSpxK0SCo+ARCXpKgpKiNMfTJJJvWdQEAdrxyEkNn5lTWFjXDyhxaFQrgya+trGqrkHA/pdAccCIiw0NBZWdUE5UHm8v1vHd6Enc9cqQki7F+U6oVQKoUDYKKNwZ4k5cy9/95LYk3rg3i6Mhk+qYNjmRU1rTlhrybRpn3RDkpRT2/XREZq2MQRCnoD8eQTPEHqwJ1US7FYmwmy1wpGgQVX00gzvDk14DyPAmyopYbRmIJHDoexdZnB9AfjhX92gnCCbyxXuhyJn2mNqConjUAmWZWc7KEAio5o5qoHNK7cYv3WVWN8Y67becg7nrkCLbtHLS1FtipXHO7x6ziPQM8BazsFpYqbNK0c9MqwYojao9SaA5oRWSOjoxDmjqHT//WcvzinShOXlCgQAEgY15DCtHZeshKdlJhIWVnCcIMtrEzYkx0FS3G+tDvDSva8cTLYdt9Ntjno1PmjeDMjHa39Dio+ARCQKOiNzwBQEJSVjAZT2UJUbBkv12vj9hKkJofqMM/fHN10a+53AOAqCzSY/10FJ6Zc9j62VW46aNdRTmXLMv4s+/9DfZPXZ0WHGITrVpepSCAMdS1zEfPIlKtJErLXY8cETQnUiBByvIY8Cq/eMnn6Q61Fp8FgN37R201gDNLNi9lJYQVFe8ZANTdzMa1wawby1oO+xu88M35OXe9PoIbVrRn7a54iKw4pwu43ZLH87EoDgxF0+2RyTAgRLC8lVQqhccffxwXPkgCRTIGPB4PwtKVOjdsposnAHi9Xvxk2zVFOT9BmCGSwe4NtuDomUlDhZnegybqcaDY8Cr0h2NCQ6DOK6FncXNWNYHIUN7xykluHtCOV06WtBICqBJjADDeWOYomoyn0hYfa//Kyg61zXoA84HDFnAWf4rMLeBbbguluwLy3m/oixD0Y+jDqSzdAjYWolNJHBhS31cOy5CoHLxeL9asWYM33ngDn/zkJ9HS0lKU85ydrjP5q4SxVAC7949ynwGCKAbafiranTybuzev70rnCJhVfuXT48As/6Ct2Wd7IRdVQoheLyZVYww4qSrY994Yt1mP2cBhLV71QZXtL4bRvajZsHAL+yIMG+th9cgKsGPPSTz59dJahkRlcc011+Df/u3fcODAAXziE58oyjlkjthWNpLwGSCIfLGK6bNQcFuTF72d2aEqq5wvbo8DZAwLs80h20CKjluJVI0xwC+JspdIYqdk8MTolFCPgJdsmG+99tCH7s48JcpPU1MTFiy7Djv+LY4nDx3BsiLknngkQFC5lUUpE24p36Y24HlXDwxFIWlc+SwnrLezxfH4E7Wvv39DCL/USBtzXfwmz4SThN6eRc3cDWLPotIbFFVjDPCrCvjSqWOTCWzbOehoEjFr8crLUi1EvTZBmNEfjuGFd9ogKzIQS+Ciw3pqO4tqY70Hk3FL90DJyqZ4C0QlCLoQzsknpm8Hs/bLt6+xCnvxJ/ZGn4Rdr9s3VDet6+ImEG5eX5w8IDMqXmeAoe3uxrpWhRY0ct+blOFYT2DjWr61J4HvFjLWazujZ3FlupqI0pGJW6qPsZN6araoHjoeNdXX8NkYwFIJW7fyFgjqHlqd5BPTtwvzCv/DN1fje1/stV0N09vZwu3SMZNUcGDI/JnSn3/7vX1Y06OuW2t62vD4l8sjcV/W0sJiu/vEpScqThsN6UtJWGMWUX8CvVb14LAxUfG+DSF8/8WwwTIs14AgKgfR+K7zSmhr9pk+U6IeBG1NPnzn7uXpz2zbOYgDQ3qPGPuQlDZ4S9Wj47OPHMF5zncudikwAHzn74/hF7+5mPWa16P2QaEEymxYP5djI1NIyQo8HuDyxX5sWtdle47njVFRTP++DaGidy3UYqcJHlBZzezK1sKY/ZgjF+KYjMs4czGOV9+OYHV3K85GZ/Ho7g/w1N5TODw0jkXzGtDR7rwlqlULYwXOWhCvWNKCa5a14vxc68wruwKmbStZ69nP3bgYG65diI/p2m5uu7Mbv33FJfhYt+6Yn6nsVpi1Sn84VpBxaxfR+JYVYGo2+5nSX8dTe09x3f/xpIy9ms8smteAvW9HoKTFhdSzLWwBmhrqceVS82egkKRSKby87yjGZ73Q7hA9ErByaQC3XD2/aOfmGQKA6pX41dEo5vl9WLGkOBUdlUZ/OIYHnhnAufFEprpLUaWBX3krgo8tM45HHvqWwR5J3XxtuS2EVArpefSzNyzCEy+FuWtJoZ4//bN91UcCuHX1AkTGEzgbnRUaBE7XmHJSNs8A3+pT0NkGjIxrsv/z6MxmZb2JhChy8VZQUlNtI+qeWcxYtnF8GxNmRTsTs+6E+s/s3j+K//niUSRRjzok8BHPUfz5/Xfg0ksvLcr30sKeq+OjU2iSo/DPfIBj8hUAnHUezZebHzxg+nefF/iXh9YU7fyVQn84hj/ZNWiaZ9LX6bddKZXlXW2tByQYesj8v3/7Ht46MW7wruazI9efl1d+zp5tMw90JXkGypZAyC8FlDAcTc0liGTioLnKA2sTRAZHJhGdShpqUrWZn2bJSQCEi31ag0BmzTHMNQiI6oMXyy62rLU+AerChHGHIkquYgm3PLeZ9jP94RieeDmMFOoASEiiDkPySozE6lBMW4DXNhxohEe6AvdvyOiEuKV7aDJV1tO7AjYPpizyTZ1USrGYvkGobSKKg0Nj+FTHEPpHl0JGdn5YPr0AzDoQsmNrn22zZHFeWaJbKZsxIFKP8np8SOhqmXK9sVrrrjfoxw0r2k0nEdGE/uSeMI6dmRJmMD//xkjaENDC6q/ZsclrUL2IOgq+d2oMs7OzqK+vL8p5tWWx//mZ3+DIBxPQ5gWLkquYIfHgj44hOp2tq679TEb/XT0mE3p9/l/P4HsfaS3KdxLLvKrXoNcJIdyBuFdA4Y6tDTtIAAanlyK0oBFDERjWklyTCs06EDK0a5K+ko3R1+nH5vVdZTdU7VI2Y0BU49mzqDmtLMXI5cbqJxS2W+9b4se3Pt/DXYxFE/rgcAyAJ13SorcMT4xOCfISFPzV/34Ppy4q6c9RKVR1whcwUeCbjeDRRx/FNddcgzVr1uDkmKdohuGXPhXC20+/O9dMSILaZdAj3JmsCgXwnbuXz3m1WMmWKtJ16HgUn3jwAHdcK5CKVkpoJvMKVEb3t1rFrrZKLpVSIk/ylBLAH93Rg63PDhjWklx35Ha+h3ZNMitRrCTKVlrIKwXcfm8fNq3ryirJy+XGmk0oA6cnheUeohaxHo/XtLZVbKhIOHkhCVmRqRSqytGXkqrjRsI3/+M1uOaaa3D48GE8/NhOPPD0u5blfLmyKhTA/7j7MlziOY9AvYyuQBzXNR5GV7t4ZmPP4VVdzfCCuUMVdZwKPlPotsla7DwXC9qK42Uxo95nXmL5yavmlehK3Iu4nXw2m9c5r6E3a98tWktyXYytvgdvTcq1RNFNlK2aAMjOtr/l6vlY2KZmX6/mZN07+XEf3f0Bhi/EhX+XAETGE4bsY172qiSpJTEXJhKGTlYsg3nRvAbseSvCPY9HkqDobK5KyjAl7CEatx/ruRTLli3Dddddh39+14fzU8iop0E8FnOlc74fl6bCkM78H/zpl9fh2G8OYWRkBKtWrYIk8We4jvYGdM5vxstvnZ97hfe+TDWBJEnY9pluLGwrfKXEU3tPYWrWPOi8IFCPDdcuLPi5zbj6slbuMw4AXfMb8Ng9V5T0etyIfv7ksfX2EG664pK8j83m5m13dqfXDf1aUqjvwc61YokfUJDTmlQJVEULYz1W+gKAuC6Z16dAUcDNFNdanwYNgrld4uWL/dywR6VkmBKFQzQu/b4ktt+9EN3d3fB47DvrWJLd0ZFJyDLg9UhYHmzGPTd34Of/+2l89KMfxbJly/CD/7UHU5f+B5yfrhOGJvh6AjwUeCSpaI20vvjoAZy8aKyK0FIKTQEe/eEY/ts/Hsfo2CwA9Tm+68YOfP13QyW/Frei11ax07kvl2MX2xVfynO5hao0BrbtHMTB41FhMksui7GdwZGrIUHUBrxxKUHBwoZx9KX2IRAIYF5oNX59YT6GLyZNcwp4fdC1dLam0DI5CHnBx3Dsw+n02Rj6Shc7BjSjWMbsP7/+azz2i+m56xQbA2t6yJAm7GHWRp6SurOpaGPA7EZr2w1rKcdiXItWJmFElCW/5bYuXLdUxov/9hu88E7rnIvVoy6Jc2MVyK5Iic0kdWV3PDJKgTz6lvix6VZVEc7KgObh9QCXBzPHYDiZaNPtaIfHMTk9gyTqhdfLeOIrZEgT1oi0P+5bH8rqfFgKTZBKoGKNAf2NZvEdf4MXPo+EZEqGz+sBJCB4SUNO7iqyHolCsm3nIA4ORbPiqRKA6+Z2unwhIBkdTQmcm1FjoJkmXHbOaO5uB9QFnelo2KkR58HkiLWGuL40S2t4MIxGu/X1drTX488+u4yewxrHztwsErark5KYVbzQl+A68XaljdiRyTmbW0FvZ0tFrxEV27XQUHc69/pkPKP+IUGGxwNsunW5oxvUH45hx56TWa0lqSSQyBdeCaoC4PhcVQq/pMmDc9N1kOfKBAG7hgBgtbACQEoGvvHce+hZ1IwllzZi+HwcSVmBnYWZISuZMltRjTar4tE+Pzv2nERK1p6HmfTi846OzWLLMwNFy1kg3M+OPWH8eN9o+t+sbDw0vxHf+PRl6XEhKkdMKD7YaW0vQuR5PjhU2WtExXYttFMLqsB5GR+70foe01QSWB30h2PY3X/MtAAAIABJREFUtnMQdz1yBNt2DhasrM8O/JIlGZ7ps3jhpTcxm+Rty+W5KoDiPaqJlIKB4UmEz80gKSvIFB3YdxqyifS4yXMpK8CDPzqGux45gq/v6MfA8ASMC7+1ASLTc1iz7N4/mmUIaAlHZrDlmUyprqgcsbWpTlimaAdm8Op96rmsN26iYo0BuzWtTkVKzFS0SPCksrHbtrdYcLUIJA+WXOLFD3/lwbhOCVBFQoMyAYnrU2D/JyK3CGD2+Fc0/xUfb3o2hVu+fRDnY7PC9ykKEJ1OIhJLYHBE/By1NflwSYsPXkl8PnoOa5PnXhs2/bvWUOQ9b5IE3POpzry0bMw2opW8RrjeGBDt5PQ3WoRTgRSzG11MsRWi+PDkpktpyfPEUR64LYQjZ1thzKBXL1KSJMxIgbl/qZ4DKf3/eZ/RLt723Px8RK57/sMxGZfnwgvmlQDZx+e/78ZLhnDVzM/QqkSE56PnsDaJzfAM5mzYYiwSI7p9TUdeIkVmG9FKXiNcnTNg1jhoVSiA+9aH8NxrwxifTmokUTKwbGx9MyKzhkOJpHg3IivADX3tRfmuRPERyU2X0pLX9hIA1CQnPnPCRHPX2xtsBpLTOHE2joQw416CByn4kIAML5IwxkadIXH+6yyfIIOdz6hf9t+H2zArfQIL2xswFuVXBFVK8xeisAQafYZeGnq0i7H+ebN63Q5MSl8CdGXCldWYSE9ZFQiteHT3Bxi5EDckCZ78cAxNnhn8xc9GMJuUswwBf4MXzfVeNNZLuCrUmqUUxYwLXt/rs9FZbH12ADPcuG0Gbe/yUvevJ/Lj8NA4zlyMC5Uky4EdxT0AmIhN4D90nEN4sh2JFMBfWGV0z1Pw7TvaceD4FKaSImMgH6+B3kDI9fPiv82iCSn4MBFXX+la0IipeApej4TeoNpbhEoLa5Omeg9+dVQsjuWRUDR1TAZTGz0/nsDETAqNPg93vak0XF1aKBJCqccM/IjhIi6Fk/IQUanJ4qZJ+HxenIo16noQiCfNLbdRrWqlYSx7UwdCoMmHvjKVBfHr+/XjTka7dwLRFAsXiBZUBc2YwIrWC/i/EyFY2LUmmOsT5I5zI4TUOgk93/n7Y/jFby4aXu9or8d/uWtZxS7G5cbVngHRTm7VR1oxlmjEjM5OUGCu+f/U3lOYjOtnSAmy5MHUrAcJxWv4Gx8Fh46eRUrJNDBi01whdeaJwqLtHzAxk0I8oY6s2aSC4Qtx7HkrggPHxtC1oAlno7Ml8fosmteAvW/rNe8lzf9SR1idMo04GmCe5iMhgQacibfNGTv57N4LbQiw4zozCKyeaaL2+PiVl2Ke34eBU5NIpGS0Nvmwef1S/Nlne4rqEah2XO0ZEClIbb+3D7teHzHs8nPxDLDPAOAIvpjBn9TKpZtOOIMv8KPCyz3xeIrn9dHnsdzQ1459A2NZipXf/l9HcWEyZX0w1+PMGNCKMhGEHUgsLjdcnUBo1ieaJXE46WFt9hlFgeFvZoZBW1MdYjNJg2FRqZmktYZZ1QiviE+WM8I6hYaXzHTHmo6sf/csbnEsF+xOnHkHFFRuQhZRevSS3+cFYnFWBkMtGhSuDhMA/DbH7HWnrY7NPsP72+duXIT9x4zJKh4J2HTrUhw4FhW21CTcCUv6PHF2yvHCWk539VQ8ZZo4VVnYNwgkCYhEE+kwjZOkXUrwrS36wzF8+4Uh7t/Oa8K3ZonkbIyZ/b1acXWYoJDwLD0AltYfaxM7dEYtP+tZ1IzN67twZZex8xU1IHI3okZBdilntzxeX4MMxUr4KzeqwSBBVUX8g+ub8f/tVzswWiXt8ro6ansoENWHWRtubfhWlEi+pGUaNy98H6+e7sTobBu0z1M+iaxW5exu8UDUhDHAyz3QQtUAlYvdh6k/HMP9Tw/keBZ1USpntzwnLYarA2NFhQ8JJFGH7CRKBR31Udy6dAQtLS1obW1FS0sLfvCmD6fGjEft6/Tjya+vLO6lE2XB7BnRGvKi9zV7E/jyR8/i2d8sxsSsMVE3l3wwUd6btjmYWyrSXJ0zUCh4ynP6yUZW1CmmWHFhorAwj422jS9rWLLlthDuuD475r5jz8m8zteASTz385M4GZktiwXf3dGMCxNOElwrEa2HQ+/l8CAlNXAECSVcnG1EOJzt8Tmd/B0A+uogYOjDypSKJazp7mjG+Rjfe6bNO+E9Sx4JuPKy+fj9378RvxrnJ5rnkg/GW3skRcF3d+6DLMtIyfOgbUBWzjWoqowB0S6RnyxmdKlWsq50LcGsbVG73e0vhvHqkUi6ZfXGtUEcOzPJf7MtJMTRjCPvT0CBVJYOlvrkV2vylSMuNeahDo+kqs/xknY/umwh/uizf4SLFy+m/+/ff+5BqqoNJ0IPe0ZkOdtm3Hp7KMujZ5V8rv+7NJdM/s6pGD79398CJKA36Le1IRB1TpyS2iD5JCCVPd7LuQa5PoHQDv3hGB5+YQi7/nUEwxfimJrNTvo4FZkx6BXwKLcaHWEPpkwpvp8KIrFE1jiQTQV4rBbO7IWqHJoSLMH1/bPTiIw7CRe4xSCw+o3NtQ08HuDrJkm7SxaoIYKOjg6EQiH86miU+zv1dvqx4dqFeX4Xwo1olQHjCRlXdgXwx5/pxk1XXMJ9nyj5XK9HMpNQJ49ESkE8KSOekDFyMY69gqRCbeJqIqkYupF6JOCjl7VjQVujqxRRK94zINolal0uPEvQ8F4bpYmEO7BuX50d/smUDYikec3gf7YcFvyqUACBRt4jy7tGvVpCucndKGlr8uG7G5fjyq4ALutotpW0u+nWLm4C4eZ1XTlfB+F+tGW6/eEYdr3Ozyey6k3A/i7SI1EU9enSu/T1ScrauhmtASsqZy/nGlTxxoCdlsMivQLWsY6qASqL7o5mRGJOyuwkeKBANuxOFaidAI2xZTssaKvP6XP5MDg8wXlVtNA6V/xzGx4JaUMAsN9gZlUogO338jVKiOqCFx4+8eFUtt5ALLfQnpN2xf3hmKFaiT19rU0+1PkkwzgU6eiUg4o3Buy2HBZNIpQsWHlsXBsUlhDx8EhAb2cLBocndTtFCb3BVgyOTJp4GsSS1LJ57KFImHk3xNdaiQaBBODxL+dewZFPZzqiMuB1tuXu5JGbcJhZ4q4+qVDUCl0BUOeTuJUIbhqjFW8MmN0srcvFTfWcerTXtqC1HlOzKYxciANQdQ02retyzbW6gVWhAPo6/RgYFicFMgVJ5nrbvK6L6wlSFLW8x35iHkPCqdFxJJNJ+HwlfIy4a7pVSKDyDAFA/Ua0kyfMEFeKAfpxr8B5aC/drljRSZRzXPpmx64EZdqKTyBcNK8Br74dMUyHfUv8ePBzaqvT3ftH8e0XhtLJhWbJH6WGiaOcnru2SCyB6JSaMS0rQCSWwJ63Ipjn9+G514YNamq1qrLWtaAJrx6JGJZAjwRs+b0QUilwVSb1apZZyULTScSTqsCNinmuQQAX0RB9BytWrIAklWbBPXJiHCMX41mvSZLaujvBTZ+vTEMAUK/8i5/oLPdlEC5G1HxONO6v7HKWnJfVrng6icY6LxrrPbgqZFS8PTw0nt7E6fnjIrdVLgRVITpkpgQoEpuRJOA6F7RG3fyDd0x3uCrqLZIkCYomAfKrn+zAU6+NAnCHaEWp6Q/HsGPPyXTteM/iZmxe15XXblI7lpq8CZwak5GZXDKpQBIUrPYeQKt0ETfddBM+8YlPFOAb2bs+nlDJfRtC2P6z3NUV3QhTfbOrFkqUnt37R/E3/5JZkL0e4PKgH5tuLY0306zhGI9iCoexZ5NX2nj7dR3Cz7mFqjAGzLArUZnlqm+rBxRk1akXa2D/zkMHBTs6PfYU2aj/e2H5n3/3In5xTMK07xJ4JA9mE7O4MtSOlYEPMfzevvT7brvtNlxzzTUluSaR8cvLZPZ4gCWXNiJ8bqYk11YYMh4Zj6RmbjPHSy0avW7FSt67r9Nf9BAnzzgWGQahBY342/uvKtq1sOtxS0KgU6reGLAjUakfUFqKPfHYNwaMSBK4lRTURrlwKIqCv/7rv8b58+exYcMGvP766+jr68Ntt92Gd955Bz/5yU/AHqE/+IM/wOWXX17W6+VNRg+/MFThUsbGcI0kAa2NmQxt8hSUntu+e4jjojfCUwQtJPoxf2NfOx5/MWwoK80nGbVQ16hWA0mOhItKhauMAVGSXz7Jf2YNXpjLyMrVVMzd9uYfvpMlqWsXM0U28gwUlpmZGTz22GNIJBK49tpr8dZbb+GBBx5AIBBAJBLBc889h6mpKUSVeUgFP46RMdkVCxR7bo68P56zwVkJkKegPNz84AHb7/3+l0t7bwqxQy9U0rkofCBJ6th1y7h1jTEgjIWuD+GJl8M5N3OwE8ex0wSmWLttXnc1HpJqTGb9BvdvCOH7Lxl/m+33ls8CrjbYhHDsTAzS1CgW+s7jXGo+4r5LcEXXPGxcG8SKYCP+8ql/xL98eNncGPOUfYEyjiur8kM3wyuNzH6NjODS84kHD9iWtSpkx0+RrsBzrw1jfCYJrwQ0+DxY2RXIaQHn9T3J53k222y6ady6ppqAScyyH0ytEFHw6xNjSKTUlC32uhMpWDsSlYeHxk3liospEdnR3oCP6bJVPR4AigJFUdXXNq9fij+4KWiQz7zpiktMZTWJ/NBWocwkFEzDj4h8KaaVZsymPGmp42t75uHASMtcJrGav1EOyWItD//9EM5lyfFKuv9WErxrNpaNxRMyPnfj4pJcEQG8/pvziE4lbb23UPeGbe5GLsQxGVflxvccieBXR6OIz8n+yooqHTx8wXnVGDv+2Wj25jCf55lf8ZA5rlvGrWt0BkQNHaaTxl2BUylYJuzALMqHXxjKcvuYNYEphUSkXeEJ3nvcJFpRTfDUxDKo41EreX1idCptsDLK2XRk6AzvvJVoCNgj165yRO58447LbLcFL9S9caIrACCtLWJ3jrSjaOsUJ8JF5cQ1xoCorWSgsY4bF7f6AfXVAVMzKYQjmYxqfec5rSykvpqgkjJCicIgUhMTGaa88SvBPQ+6OcUKIRRX+ZCn906UjlWhAPqW+C1znjwFvDd2O9AynC7gdhVtneBEuKicuMYYELWVvOdTnfj+S2FHzRz0+Qe8fAB972jaYRNaxBOIfoFTEJ1KIjajuktZaZMEBYCC311ZV+Qr5dOzqFmgX5HRSjD+txjkahBYf04B0NbkRW9nCxnsZWLTrV3CSiyfR8LyYP7aH1rMdtk8nC7gdhVtnaDdbOqrCdw0bl1jDIiaCTnpVMbQu5JElNONS7ib7o5mnI/pq1DYv2SopqT670RKweDcwtsb9OPc+CwuW9iESyaP4Nf//iau7/sq/H5/ya69PxzTrKP6RVW/wBY7l0B8XCaexX6zBa31gASMXIhjZlZVgzQ7hgS15wQZ8eXDbN4uBrxNowJ+iTXgfAEXhYz7Ov3YvN5o1NgtGayEzaZrqgkKiZ3qAMBdmZyEuxBVoXzuhg68G76Ad4fjkHWyp/rxND4+jh/+8IdYtGgR7r77bng8HhQbo2ZGcV31uVLnlbD6slbThWPHnjB+vG8UZt+BNDVqD17Z4PEzumqCOg9WLg0UpKRQdIxKKRm0S1UaA3YlKr0eKsMjxJhNCiKDU784nThxArt27cJv//Zv4+abby76NTuVZy0HTp67/nAM33juPaFOQiFL1giCh2j3H5tJGjqhMipxo+maMEEhMasOYPQt8Rc0lkVUH2auPX5sUcb85uxSq+7ubtx88814/fXXsWTJEixfvrx4FwzzBKgMhfUW6DMOJADavk1Z7laHz92qUACrL2vFweNRrivYLclXRHUi2v2LxiOjEkPQVWUMaHdylwf96YqABW31mIrr2gLfSoYAkTtGg1MNGjRF9uEn/+LBgZGWjCjKx6/G8uWn8U//9E/46le/ivb29qJdF7eqYU66d2o2NbfDLpwhoG2UtG9gzNAeuhCxZPZby8iODW+9PUTPMJGF3pt3w4p27HtvLGcVQZZ/pl/3rfzpbioZtEvVhAlECoaP3dMHAMK/2R0YlaAtTZQWNib63z+HJmUcy3zvI5lK4u3U9QA8WWVv/+Pubvxyz4/Q3NyML33pS/D5imOHi56D7ff2CXsU+DzA8qBf6PIU4fUA13S3lSQjupIbwBClQT/2We8WfQmqk3nfTv6ZwTM2lzNQaSHoqjEGeLFSCQqWXapAURScuODJEoXRtkcV6U+zCeidUxOYjKe452U3nQyC2uXNN9/Ez3/+c8iyjH55Dc7L88DrJPnALQE8++yzWL16NTZs2FC06xEtnLxnRPscOEk8LHfjF4LQw8+XyU+22kpKuDfoR6DJZ9gk3tDXnuUpq4RNY9WECUQKhqcuzM5ZbtlylLICDA5PZE2ATIjor/6wF8lkEt/cdVxTtsKfHGUF2LHnJJ78+soifTPC7VxxxRXYu3cvFixYgMkPW6A1BIBM/DAY7MW6devw4osvYunSpbjqquK0UxXlOmTETxQokLJET67sUkvE/u7103jr+BjkdOlkRotgnt8Hr0einTnhSuwIEjmN5VsJBonKDXnriturC4pf61Qiujua03XLDI8EfHTZQly1bCH3b4BkkLZMyTIefvb/4L/93a8gK7ImNiTeJQ19WFmJIkRhaWtrQ92ly7EvugJxxQeegE90KoltOwdRf+lyfPSjH8XPfvYznD17tqTXyWrCVwbrUY8ZfKRtNsuVuSoUwF/8YR/qPPr6fvW/sekkvvX5Hnzvi71kCBCug7cG6HEay2fPzHU9bWhr8qKtyYe2Zh+uW9YmDAM8/8YIZDl7XZFlM1VTd1A1ngGRgiFLZOL9DRKv2sADuXGB+obpqoigEEWmPxzDz0eXzZkAbCedreyXSAEHhtQdwl/+Px/HmTNn8OMf/xhf+cpX0NBgr4lKIVgVCuC/3BnED37wAyydtxRXdv2W4T2zshc84zcpq7k3bt/hELWJfg1gOQNaZAUYHJnEtp2Dtl33TgWDBocnjAmHUNeg/nDMtc+Oa7oW5gvrThgZT2BiJoUGnwf1dRKGz8dx1UcCuHX1AsPfoEiYTWV3k/JIwFUfacP81gbTToZaejv92HDtwuJ8MaLk9IdjeHT3B3hq7ykcHhrHonkN3K5n/eEYHn5hCLv+dQTIEiDSK/5l/q0owMWJFL76+9fhzTffxLlz53DFFVdAkiy2NAVkYHga//i2grejQfSfnDF8v7//5RkkBVUHEsrXiZEgzNCuAfGEjND8JpyfMCb/xRNyuuOok46Gdnnh3z9Md1DUoihw3EWxlFRNAiHDSVVBOho6Z0FqM68VRX2vrJiXkVAiVXVhNn60Fv3u/aMmXQ2doKC9EVh8aUu6MVYxk43Y90vJ2Yv9lttCuOP6DvSHY3jg6QEopPpHuBB9cqzZs2IlwFUsYaBP//lbwtbObhYjcm2YwMlN18JrcSkpCr67cx9kWUZKk+nNprvWRh/qfMbEqHRziZHJuTcrCM5rBCTgXJQ6GlYjvPHjAfB3r5/GX/xhH/rDMezYc1LQBCgXJIzNKBibO16xk42ef2Nk7rtlL/TbXwyje5HaA0Q1jvmGQCXWTxPVAS8x79DxaLq3hX6dsBLgKpYwUG/QLxQlcrMYkSuNgXyyMUVVBVNSGySfBKQk3d+AOp/E3elUQnMJIn+0hmd0KmkYP7ICHD4+hv/03efxbny5JjegUGSOpe+mWWhOjE4JPV3sNzDbSbmp5SpRW/AMdQBpw1y/Tlh1OGSGba4bTxEsd4GnoO1mY9qV1QRs95KVjanYy8YUVRVc0TUPfUvbuX9z680his/u/aO4/+kBHBiKIhJLCDXwFXjxTlEMASPF3D2YjXU2GfIysuu8Eq41yaAmiGJjZ6evaNaJjWuDaQEgPcywvaGvHVufHcCh4+rzf+h4FFufHcDu/aPYtnMQdz1yBNt2DqqdQG3CKhD6lmR3KnW7Me1Kz8DgyKRh96LMZYFakUtVgVtvDlFc+sOxHOL+xU/0kwAkkgrueuRIwXMINq4N4sBQlHtOdi7eM/LoPSvICCDKitVOH8g2pPXtlRe01acl6lmId9frHG+DoobNPFLuOgGrQgE8+bWVFaWc6coEwk//97cQnTYmYLQ1+fDTP/2Y5efT0sGaWH9vsAUb16qL/o49J9PaAD2L1T4Fbi33IIrH5h++g4HTIgPTXIGveMgAJEiSlJXUWsgcAn3yowTAo+kkWEkTGFE7GNtzG3GaoCeWG85PubAScakxcBjRaaP8b1uzFz/9k2tsHUOUFX7f+hCeeDmcV58Cojr4nYcOCsMC5UGBagx4oJ2IJADXFbhVLy34RCWiHbcL2uoxOJcvoO/DoW+SJfKuOWn5Xe1VNK4ME/R2tuDgUNTQFrU32GL7GKKqgidfGkJK8YFNtsVO2CLci2xqB5fLM5BtCLArUbXPCwclxxKViH7c8oxaVhZuJwGdFxbjCRbVQm6ZK40BdoP0u3cnsX1RVUFCYwgw7CRsFbo1JlF+Gus8mIwbxUFUSm0IWBkf5TBMCMLd8IzazT98B1otObMNnz6voLujGTf2teP7L4VVP10O64/ee6HNU3DzOuFKY4B3g5y6MXnJJh4JCDTWITaTNLxuZvXpY6yRWDQrCatSGlEQ2fi8HqhueacU2mtg43hkCxCEJf3hGDcPyGzDpzUo2ELe0jAnyT3XhdDu+qMPT2vzEdy+TrjSGAByd2Nq2w5ntzNWrbt7PtWJ778Utl1RIM44z0zgFGqoTHqDfm5mvTWFXpmtj9cb9Fu+hyBqHbPycys3vyjPbOPaIDexlrfL14entbh9nXCtMZAL7GbyJIQVAPdvCOH2NR24rKPZttdhxysnBWdzHmog3MXGtUHbyUPlhspfCcIasznY6hkSqY/uemMYX1jbaSsPoVyqh4Wg7MYAz9oC7GWC6mE3k5cX5pGAXw6M4fY1HY68DkNn7N24WkgwqTZWhQLYfm8f/mr3+zh5bsZWU6riow8ZKPBLk5hfP4nd+6fw3GvDiM0kEWj04Uuf7MQd13eU60IJwnWItAj6Ov2Wbn7eQi4rwK+HziIcDkOW26FYeIPtqh66kbIaAyKtaUYhpIi1xyqWRUbiRZXN6fMzmuxhO/kAxaw0MB5XURR8a8fLOCavTP89Op1Mh6/IICAIFebt0+KRgM3ruyw/K8oz+8j8RpyJ1qcNAQZvTdFXJ+ivw83rRFnliHluGVlR5v4v85pWYtIMkZQqkLtF1rPI/DNtzV6Saa1gjDE+1svSDDvvKRQSptCCEzLfk/Xca8Mlug6CqFyOn5mylBfWyxentWk+3Ye+rnm2pOxZ8vu1y9owP1CHviV+9HX6MT9Q5/p1oqyeAf5O3riai3b1vHI/vVWoJReLbNO6rrmWrka23h7C7dfRrqySsTsGjTCDoDRp/ikYS2IBYJyj1EkQtQpv06goii15YbMqNjOZez2VquFRVgVCu+pPPClIXuYnAHQEPDgzbiwX6+v048mvr8zpOvvDMex45WQ6f6BnUTM2r+9yrYVH2Ic3Bj0S0Nvpx9CZKZsKhaUyCoz5BABQ5/VAURQ0+LzweVXRLjfXMxNEsSimvLBI4KiQHQ/LSVk9AzxrS4uZBcZvZynjw/EUAK/hXOfGZ3O+TtZ0gqg+RBb/5nVd2PX6iM1qg1KJAOjPo3onmMGSnFUlvA8OubuemSCKhTiBL//qL576oajCAKg8I6HsvQnsWFu80j+RBVjnlZCSFcNOr9qbTBC5I9Lpt9MYxTl2vQj5JTIWo58BQbgNXqhY33tGVoxZPpIEtDb6kH6G5sSFnCzaIq/iZQvq8X5kFtDpFbjdOC+7MZArZu7do3MtkPXNK7QGhR0BiUJS6vMRhUHbATM6ldRMKuXqXcCwPn9bkxc//VN7jb0IotIwa0anlYq/oa8dT7yUMRD0fQcYLHnQatFmc4LIayghNVd5kMnPr4QNadl1BnLFzL17/Ex2PfY9n+qEoqgGxInRKSxorVfbGyP3ftVWpBeR4QkkZSVLA9/tspREBuYaNBqfuSQQFsaAaGv2IplSMBlPWRyPNIyJ6uX5N0ayBOaYB2Dfe2OGRbdbIzSXSCoYn04aksIVRX1CzRQCzYTtAHUd8kheJHVpa24WG2KUtbQwH1jmZ2+nH3VeCV6PhMsX+3H8zBSeeDmc7j8Qm0ni8RfD2PLMAP7/9s49yK3qzvPfq1a/JKvbZtq03TatuGnTbnCnbJ5Thuw6m2WDCQGSLGRq4pmEGHZi7wbsmhTOVC1JWKZmEmrCGqjCEwImDpDyDDVb41mIgRkmzIYwAQxmp5eINt3Ysuk2jdsPtVrdrZZad/+4OtJ9nHNfupKupN+nKgHU0r1HV/ee8zu/x/d3eCyBqWQGsfFUvoxROZaT8kU7sBvmrdEEEnOLhmY4Xp+PKD+iqgMJdpdcuw448/ft+mIUf/9nV6C3q93yzNPzWWEZFUHUOiN5D7AaWUZho6eGGfXP3bsRzUFJ+JRZLdp6A0SNlN+Qrl0ZtlWG6Ddq1hhgHJ1IYTGnJFG9P57CnuePa3IG2KKvXvx5eGm5FZQQTd5TC5YiUYSnYRGQlLj8Vf2d3L9Fu9pUr9g1G8TvkfIqmoCdhFgZsgwcHktg174YGQRE/SGaYC3sbjM9GkkCMllZqEfw4eQs1xAAlByEPdsGsX1LL1evwK9iQ4yaNgb0FQXF38i5e9RLy81Kn9rr8xHlRyRI8kef7RH+LdTWJJx0rJA4n5NVBqT1vVOUTSUvFFGfCCZZyXzyZc8rtzZHVrQ7ppIZgyE9HE8ikxUfuzkoYX1vxCA85HexIUbN5gwApQjGaFFP7F4k+lnpUwO1YSkSRazaavP+dv+BUddVCB1tQdNW206aLJEXiqhHBlYtwVujCW2VAICBniWmn1M/yyPjM2DVBMgbAux4OVmxK558+Ti2XR/FrqfeR07Q8VyC1kAkV+YAAAAgAElEQVSvReGhmq0mAPgVBSyti5WUiLQLAKXy4HRiAcs7WwAZmDg7j8TcYiHb1G1JSCHJJMe3XQdXhUm0qAHg3p+CTOYiSpLhri9G8cgLcdOqGJ4YFiRgJJ8Tw6iFTGai9ql0xdTBNyY17eWZd87tLlxUrt6CeXQ0pXBm8QJDfwI10eVtCLU04fT0Qk1WjNW0MSAqLbn7C1H8JnbelnaBVS2524lUXU2grmM1a5dM1Bei+3P1BW2IT81zPqHcgF8aknD37VcL9Q/cnLMW3JRE7aK/79imrDMUxEBPGJvWLcVLR6Yw+nHecF0ZwvYbel0vlqIN184vRnHL1d2uDBNRufqlPc2ITy0gmbbvda4VbQE1NW0MAGLBGLvYkUTuijTjuXs3ejBaotEQiWrd88Tv8pNYsUSxIzgPOTuHbCCMob7lrncWpT4TBOEUu9LyaiQJeHibu8WS7xWWMdjTjDs+14vvPvuhwSC2ox8gMqTtq5EWqTWPXM0YA+oJjrn1vXDHiLWsFWrtByX8zXA8ib2HTiA2PpN/RVL9vwxZCXLV5M6CaFys5lGRxsbg6rArqXczl34YSZxHl8alz+bxrZt7TD0GdtVIWRjailraSNZEAqH+h1DfBKUK+Jgl+9VKSQhRG7D7eDEH6CfGopegWAUgyeYCKAThF6yTpvkudpbv4sX5AhJwWfQCfPhxG2RdFC4nA/927Cx25rvaisTmRIl/vATi5HzWkJ+jptYqxmqitNDYc75IqaVThTIT3b0abmuqmZIQojZg97FdZCCfc0IQ/kZfXlvp87GN2zevj2JgtVH3Q4IMWc4hJ+c8E5v7/IYu4XeuxY1kTXgGrOr2nZZO6V1BX/n9bvzt65OFv0sA5hcWsXVzbcZaRcmLtZbdWm/Y0Z/QwnetEoTf0JfrJeYWbX2uf4W7nbNZqS9fql5CW1s70rNZzXHsrB2saif2UVHZkHkV1H0Q9OHrWsvVqYmcAavkFCdxfWPWq8wVK6qVXAFR1y59lq3dJhxE+XCVZAVF5ZAMOaKW0Jf9iXj0rvJ4Xnmx/8cOaRd0Rrg1gPaWJmEOQTG0p6VW1gi71IRnQG/pqXHqjjGqFhazudX4TaiFVyoDwNBP+83RBHjfx04TDqK8iO7jwVVhzC4sIn56DtrfTYYMCYfHqLEVUVvcck03AJgaBNHlbWXbOXNj/wIjPJXOIZXOcXMIzEJ7flsjSqUmjAG9S6gUd4xd1UI/JX8Mx5PY+WSsMO6pZAJvjSZwYSiNXK6lkDWr/F3sWq63m7fWELk2lVLDGOcTxd81ADLkiNrilmu60bciZHCxA8r8+p1b11R0PFb9PHjPmVloz09rhBfUhDEAeCfvyMtCVfsG1FKU1w4uLfl8XrD30AnDDSlDxuRsEHyFbT71dvPWIrz7ePf+EVU1AR8y5IhaZCgawWN/cpkvtC/syMTrnzOzz9RagqAVNWMMeAXPVSsD6F7agsnzRctRkoBHXohjTXeo6q5ZptqlRQLQZKh3ZXK3asOGvV5vN2+9YGeRJ0OOqGX8oNVvFm5m6J8zs9CeSFK+0rLMXtH0gx/84AfVHkQl6V7aio19HTg2OafRK0jNG7NfJQBT0xlcv6HL9fmG40k8dPA4Hn/5JN4encaKZa3oXtrq6BhP53to6wkGJHWPDQTySYL33BRFLgfMzGXR1tyEtpYAPh2NYPeX+2oqu7VReHt0GuNn0ybvkCFJEnZ/pQ8Xdjq7d4jaxYu5gyiinvvPpzLC3b76OWOfmZrOIJ3JYX1vBN/9Sh/u+Nxq7rPIEg4nzqaRSudw6lwaL707hY19Hb7/7RrOMwAoVmqkPWipIuXGNatRSuxowchEqnAstwJJ/StD3CzYtT2KvjfP/XbL1d2Oxk1UD6sOhAFJxnWd7+HS1VdWdmBERdGrrI6Mlz53EEaOnkpxqwMApQRbv2Fy4tXQJ6jnZACyEup97FvOlRYrSUMaA4C9mm+nrlkzpUTAfSLY9ht6NQmEbGw7tihuqmq734jSGIpGsGfbIP7s50eRWtB6qAISsH51CIFTJ/Hee+9haGioSqMkygl/7igmAzNFyvue/QDNQamm3M9+wkr4yyrJ0ArRuhIbT2E4nvT171UTCoTloK87ZKqWxUoWNw0uxe79I7jtwSPYvX8Ew/Gk8DNmSokMN94Gtlhc3d+Jrkgzru7vxMN3kjJiPTEUjeAv//gSNAWMqmp33bAG/f39eO2111ADsiCEQ4bjSdz37AdYzOnnDqNkdWIug6lkBofHEti1L2Y6HxFGyl0dYPZ5t0qHlaJhPQM8lSoAGFgVxumEUrK4aXApHlX1lLdy1ZXD28Bwk4BTq4ksjYqZqlrkuuvws5/9DEePHsXAAHmC6gUzURsjWk9BvZeblmP+Knd1wNbNPXmtFyN+rwZqWGNAqF2QKHZC3P/PJwv61YD1A2hVulJJvWp9v++ppCJI1N3ZggsizZrvSQaCfxAZfdFoFBdddBF+/etf45JLLoGkb6ZB1CTO+lX4WxjNS/QKhmeS3uRMuKkOcMJQNILB1WGuroLfq4Ea1hgAihOvPl53Jnkeb42eRxMWIEObAWr2ANrxNlSqvvaZVycMksQAMJlYwGRCiYtRUlJt8ZnPfAa/+MUvcPz4caxZU1nBFqI8mHkTJQlY1xPG6ekFZLIypuezGsPBDwvMwTcm8dN/PIlUWnFtNEnAJT1hbN/S63pOGY4nDcqFMoBcrnRPiJn3zS16D8bnN3Th6ERK0+64Fsq6G9oYYPAkiiXIaGlpRS4DQ+Ke6AF0e6N57Q4bjidx5Ni0SH2zQCO4Gu1QK+GU/v5+dHd347XXXiNjoE7o6w5hKsl3K6/rCRcy0AsbFvhngeH1H1iUlWS5u5+IYedN0YIssRNEsXUZ3nhCvNQ80G8k1Q2MXjoyVdCI6V8ZctSxtBo0bAKhGp51LkNCczDIbZMpegB5i4odQ2DXvhjeGk1gKpnBm6MJ3P1EDAffmDT9nNXxMov27rx6djXagV2vw2MJ3ydmSZKE6667DkfGzuKex/+vraRWwt+wHiM81JntbKNx5cVKErEf2qs/9cq46d/3PB93dW+azUfV9oTo4ZUS5nIy/uGNiXwJo4zMooyR8ZRv5xUGeQbAj/UHVG1/7ez0RRailQte5M7f83wcfSucqx86i0Eq+O0BKweFts4TqfzFlrG2J4TJM0nkcrKmv4Mky3j8xTH81TcG0draqvl8tb0HuSUX4d3F3wdOzkOGRKGeGmcoGsHgqjBi49YxZj+o+KlJzmct3+PG69jXHcKZmQR3HvObq120kTx2eh4yAqilhM+GNgbUC0RO1ir5MQ8Ar46ftzDwLEQ7P/6Hk7NCd76bG8dORYMevz1gXlNIpiwkgypZ2YfHElB+dX0Jl4SjH03jhz/8Ibq6uoCOT+F/fdAFQKq6AMyz//IxlMbbCrUwyRDmbN/Sq9lI+CEEYIdIWxCJOXODwI3XkeVe5QCNQbDr5qjvyqlFG8mA1ISsrkLE717YhjMGCgbA+AwSc4tFLf/8PzvbmzCwaokjD8DhsQTam2XkZOfZvmYxQzc3jp1mHGoGVxsVt+oNZqgVJxb2OwXA62sakIDBi5bi5itvxqlTp/DMkRbkZGNZ14///hjOp7JIzmcRaQvijs+twi3XdJfVi8AzHv0+yRDmlCOprRLc8blVpi2KAfdl1Hauhx+8dbykcUkC1vaEMTKesp1v5gcayhjQL+RAcYGQ8z/kwKolpjssrtwkckgvZCCh2E4YsPfji+pSJZc3jp1mHOpz7NjS6/gctYa5t0T5vZg0NXuY7/z8GqzvjWDjxo146v8dAeaNapLxqbnCMRJzWex5Po6Js/P4u99OOg4X2UW0E/HzJENY47cQgB1uuaYbE2fn8bev8/ObSvFuWF0PO2HZShgLZm3Jd+2LGYwEP3t7GqpR0UMHj2PibFq4MMgA0pkcbr92pfAYj79cLKMpImFJeyuyOdkQatj9ZfPmMt1LW7EsHMRvjxYNApa0aPVZ0fHUjTWiy9uxvLMFc+kcFnNyQbYkurwND/zhWt/vPrzg7dFpnDqX5oZjAhKwbnUYay4MIZ3J4bKLjA2d+J9n/yVpXvvdyaQSjsi/zq53qQ2vGCuWteLFI1OQkQMLbMmQcPu1KzCwaknJxycIJ1y1dimuuLgDvzs5g8SsEjKoxPyin8tlKBu645Nz+MKVF3IbBr14ZApvHD2Pn/3zuKeNn7qXtuL6DV24/dqVuH5DFy7sbDXMw7x5xW9IcgPpm9724BFDvwA1AQm48uJOU4t09/4RQ1MZ9jm7yYY8/NDvu14x5gwoSAACAVhmZfM8Smo1OC3818PNi/iLW8O4+OKLEQ6HC8d1s3PZc/AoDh4+p/oWCm5LuQii1jCbyx+5U9mpmzf/UjZdeo+dH0IP1aKhjIEdP3mP2/0PKN4cThcGu58jqouhmkCSMdAjzg3hfX7voROGrG8jRo+BBBndrdNYt/g6AKCnpwctv7cWP39Xce2r7yOrcMJwPIm7n4hBZHQ8cidVFRD1z+79I0LZ36v7O/Hh5Kzpxg8wbv5Ec3ujVOrUtTGgbwn6/kcprqu4MxTEQE/Y0cJgdxffyJZmvcAMgffH+fePGWpj8VMXSBgdHcXY2BgODIcwtbgMaqkPu54p0SQIAJ3tQTzwtbV0jxF1TdEoNtIVaUZfd8jUM6B+73P3bgQg9vpe0hNCR3tz3c/hdZtAaNVOmDG4Kuy4z7TdZB+32gOEfxiOJw3to+3Q3CShMxQ0GIsbNmzAhg0bcGDsCMBpcW1VFWD198RcFrv2xegeI+oaqx4AdhKp9Ym3vETjnAy8P57KZ+fUt65H3SoQ2mknDJTev5oxHE8aWh3zKg9k2f+tLIkiz7w64dgQCEjAxjUdeO7ejfjR1we4XqO+7hB4vYamkhns+Ml7QqWyvu4QN1NBDd1jhJrheBLfePjf8Nn73iz87xuP/Juv1fDssP2GXm7L7z/6bI9BsXFwVThf/298L8Osrb1alKxen6+69Qx40U6Y5+IHwH2Npz3QLGWRk7WXmGrCaws7v5UEZWJxUkK0ad1Sobs/9lEKO5+MYc824+6D7XjMWt7SPUYwRO70+On5kvoH+AErPQK9B5eF+0T9AniaAcoa0hjdIuvWGCi1nbAxzJAoTN6sfJC5jC7pCXO1ByAVxYzU56Wa8NrBTBQKUPJNHvjDtY4rQV5//7zp33MyX1VQPQGOTKSQms8alM7oHiMYew+dMP07Ew2qJYOglDyso6eK3QRZvwDm8ucZF8n5bM2JB7mlbo0BYTvhfEtQq0nbLMygl4IdPcXzQgTQ1tqMbHrRV53GCGds3dwjTESS8v0r3AjG2NlZiN6jPp+x7FFRwhyZmMHu/SN1m+xE2IPtgs2w6oPipyToUvKwRJLxe188gUhbkPv92Pn04kHXDi7F7v0jvrgmXlG3okNc0Yev9OGOz63WiEOI4IsLGZEBNAWKAjOMgAR8OtqBe7/UV1PCE4SW7qWtuLyvA787URRVAUoThgIUIaPxs2nT96zvjVgKFbH7/MPJWZxJpsFcmumMjFPn0njp3Sls7OvwRFyFqD2etpnzckYgisUWw/Ezacwu5DB+No1D70xhWTiIdasrL3LFExuyK+rFm9Pl/GdPnSuKE6mfGd46ctumFXjkhbhR0GjEe0GjSlK3ngGgNIlPuxr/AQnoXxHC0VMprvQkr9ERUVsMRSP42T2f9lQYyszjACj3kBMP0genZvNJTsX4JjUxIvpXhoTaKmpEXii3XVV58fntN/SWvHsWZfx/ODlr6cHgz+ly/hji7oL6dWT3/hFOWBgFDZJarTio22qCUtm6uYeb7a2GLfo7buz1Xa9xwnvYpGBWJeDkWHu2DWJwVRjBQHEJbwoozaMevtP+/VNsW228Yes12Ymwx/YbrHuPmPVBseqqyoOV48bGU8gsysgsyoWk2FIrGPgZ/znk5s9h55MxHB5LYCqZweGxBHbt056PzenqigJe11KrZ8YqOb1WKw7q2jNQCiyZRK86V+huGGoyKNiVc/dlJ27np9geYc1QNILHvnUZ93dzYmiYTU71muxE2GMoGsHOm6LC7oISzL1QbrqqispxRUmxVujF4wBtYzEggGAwiFwmB7a/Fe3wDQmCc9lCC3uG1TNjx2tci0Y4GQMmiCZrt0qFbhdnux26SOCo9jj4xqRmomZVK5esbMdPdgzZOobZ5EQJq8Qt13Sjb0UIe188gdFTs5BlGa3BJgSDkqXyqpuuqla7aicY5zVFqEufCH7/gVEA1iJevHJDp90F3Qga1QJ1LUdcDQoa+OMzSMwtFjwJTnWu1YZEJitjei5rSFAcWBUuZMFmsjKm57OGMkYreVuiephJqgLA5Wsi+PE3B20dx9hISVHX3HFjL4WriJLQG6zM1S4KhVr1DXAyH4kkgtVzn9kO387852azp/dWjOS9x7Xcr4aMAQ/hlXmp41FObk7e5M6jKIzBR629TfgLqz4DAPCrB662dSzqekmUE6f9WHgS3gEJjnJhAPPuhNpQQZFqLMj18PxRmMAjhuNJ3PfsBzplOHfKVXyNA61hoT6m6D216KpqJLyMKZZSOUM0NnbCmU7uL5Ycq68m2LHFuZfKdgUAx1tQyQW5Hp4/MgY8gO3kzSRiAfuLMz8hTLvI870B2vdUOl5MCYzOsFI3JIhyow8BnPEo14jlW5UKXyKYvyk6nVjAY39S+jkbFTIGHMLXt5aRy/F37gz14uymHlaSgI62IJqDkjBGJgHoaC++p5KWsWFSSVICoxWi5CxGk1VHIoIogeF40lBlIMtADv7RpvCqAoCwhnIGHMCPhbH/EM/cnaEgei5oBWRg4lwaidlsob8BL7FQnzPAi3/ZeU8lOPjGJP76pZOYzxjdIhKAqxwmDDUaf7ovhneO8Wuvd90cxc1X1Y5mPFFbmOWsVCPXyK5n0S9zX71Rt3LE5eChg8fxkUFCVhL8O9DZHsRf3TGAzw79Hn7xfyYwlcwYFk2enCZXSlknY2znPeVm76E4nnxlHFmTDMZ0Jofbr11ZsTHVGp/fuBwnT8/i2CfzhdeCAeCeL5IhQJSXx18+idkFfmzTjhS2l7AFXi3xK5LS9sPcV4+QZ8ABZpmtgDa7VW2p8spj9NRa1r9VWRzDaSkRQRCVYff+Ebw1muAqDD56V2V32bw5Uh8apRyk8kJyxA4wi0kNrg4L5Yit5CtrMd5lV2qTBG8Iwp9s3dyDQMAY4Nx1c7Tiu2zeHCnLQGIuK5QXJryFEggdIGouE5BgWjZjphDnJut/OJ4sqIkBSqOk7VtKbwLiBDtlcdWYVAiCsAcvOa9a9fHiEkJxAyHCWyhM4BBeNYFV/aw+4cWsv4Gd84sEPfZsq1zmvpVgDiW/EURj4qbE2K7QWq2FU2sJMgYqhP4BuXZwKX4TO++4Jt9Lqc9SEGkrdC9twX+/7WLyCBCEBfWoy2GQLgYQCNiTYbcjwU7y6uWDjIEKwzwL6k6ITvoWmCUxVtpqrgcJToKoBsyYzuXA7Tmy/YbKhv28QJRU7KbEmMoHKw/lDHiA0/pY/W7aSTzMTLWu0kmI9SDBSRDV4McHj3EVS3MyEPsohZ1Pxioa9vMCUVKxDPMcI9H86Zd8hkaBjIEScdI6mPUc4GG3b4FZEqPTJMRquyj9MAaCqDQH35hE/PS86XtycvmT5bx+/szmL9FGxUq5lDYblYOMAZewB+nIsWmNhW+2yzcrMbRbXlhoAqKrJnDSqtaJAVMu/DAGgqgGT70ybut9vMXVqwW8HM9fX3cIZ2YS3A0Pb6PClUMGkMtR1UA1IGPABVaZr6JdvlmJoZPywqFoxFVDDjcGjNf4YQwEUU2S81lb79NvDrxcwPWdUdnzt/fQCUTag66MDdZUKAdoDAJRibHbsIIa8i56BxkDLuC3GC4i2uXrO3Axwq0B3PWfLjI8MF7e6G4NGC8pJE3J4O4eKjEGgqg2kbYgEnPWBoF+cyBawN0Y0DwvZU6GJrF5KpnA4bGE7dwFp3F+N2EFNfoya6fjJbRQbwIXPP7ySaTSfE1vlvW6+8t9uLCTr6l97JM5TE0XKwIyizLe/CCBy1U63AffmMT3D4xi/Gwasws5TJxN42WBVrcdHjp4HBNn06YGzGUXudcjH44n8dDB43j85ZN4e3QaK5a1Gsb50MHjGD+bFuZNlDoGgqgF2lsC+O1R89bVu26O4jOXXqB5jTfvyAA+SSzgH978RPjc8Xh7dBqnzqV1UsTGpmsygOOfzOELV15oeUxAmeOu39CF269diRXLWvHMqxPCOeHt0WlMnNP3elGYmV/EkQ/Nv8/9B0ZxelpbWSUDOD5pf7w87Mxl9UhDyhEPx5PYvX8Etz14BLv3jziWuOzrDiHAaVLY3CQZpIj1DEUj4ImB52TFRcfGZxZLc4NVvoJTFUQ1bMd/eCxhKh364eSs0BAAShsDQdQKt1zTjds38QW5ol1tePSuQa5gF3/ekZFZlB1L9m7d3ANJQuF4yj8l8LqvstwkJ9iZE7Zu7inMPXoSs1nL78OE3+y+7tW465WGCxPoXdVTyQTeHE1g501R3HKNPcU8vbuf3dAPfXOdrSQ+q5vYi1iaHlG+QnOThI1rOlyV7TiN/5uVRTY3SbavnxcwSeejEynN2Jsk4JIarfMmaoftW6K47tILHJXOicKMDCdhA55L/50PE8jyHZ6O4YU0IAN/+tT72Limg1s+qBcaEn2mnJQjl6JWaDhj4JlXJ7gx6z3Px9G3IlSW2JhTSo2l8SjVgNHjJgdh6+YernqiBGDjmo6yGwLMeBkZn0FibpH7nsV8nfc9T8Tw8J0UeyTKh9PSOf28k5jNIqO7jZ3k3ejPv+Ov39PkDDD6Vzifc0SeyMyijMNj/PLB2x48wu2gyPsMoEjBxz7ijHelcbx286/McilYV9p6rXxquDCBmavaiQue3cTP3bsRP/r6gKOFjHezql/v6w5xXWeAezc6m0hEnRWd8syrE8jlnCVRDkUj2HlTVPMakystd3hA7f4TGQJqZBTDNgThF9TzzsY1HYawQSkdULdv6eUeb8eNvY6PJQqlAihsxvTzrdPPbL9BMN4t2vE6cf2LQjGArPEW8MZf6zScMWD2oFQqk93qJhbF0px2AdTnRgBwbcDoGRmf4VrxgHkOwi3XdOOROwdxdb9ilFzVX5pRYherChAepcQeCaLc8OL+peTdMA0T9mxe3d+Jh+9092zqx6ZH5Dl08hm74+W5/kWLud1cinqsfGq43gRe6meXOg6zMEOpuv8ibW+vXFu3/sU7wvKo5iapKm2VzTDr6SCiuUnCyz+4qkwjIojSEc0Tfqi/V+cUZRa1y4yo6ZCbz1ghevYjbQEMro4YrpH+2iXnsxgZT2k2EvXYNKnhjAFA3Fmr2k0wvHyAd+8fMcgWe3EDszG+NZoQegbYufTGRzUnKN71sGJwddiVuBNBVBNRPs/g6uokxrppOuRloyL+s6/8hwRAhmS6WWqUpkkNqTOwbvUSXHFxB85MZ5DO5LC+N4LdX+6ruiGwa18ME2fTSKVzGD+bxqF3pvDm0fPoXd5uq85VXR97/PScoRGKDCCdyeH2a1eWPEa5cES1+6z43+zfpqYzuH5DlyffrxRWLGvFS+9O5R9+ayQJ+N5X+w1aEQThd0SaIlPTmZK0StzC9FWm8vPtZRdZz7duPiNC/+wHJMUAYIYAYJyvyjUWP9OQngE/YrZzbbLRD9y4GzAKiOg9A0536ua7a71hoMDaKpf6/bxA/X2Xd7TgXCqDj88vGN4XXd6G79y6pu4edqIxMAuJleId9EPowS36sY9MpJCYNYY5K90G3k80XGmhXzETBWLJLmYPsDFBTrsw65OL9P3U7egtmI2RZwiwzObheBJHjk07+n7lmHh4pVyl5mYQ9UutLn5mPVDcJr5ZdRf0O/pnXxRGrXQbeD9BxoBPKPUBFi3UzU0SOkNBw0LHSgP1HzHTWzAbox5mfHyqu42bsKlG//0ME08Z63qpTWrj4GRx96opUDUMCqYpwouHuVnw6rG7oEh3pZEVUBsyZ8CPsLgWL2hjR7OfpzUekIAr+jrx+H9dj+s3dGni34+/fBKzC3y5sTOcuJl6jKK4uyQBne1BRNqbcNlFEfznTSvw5D9Zt2tVf7/heBLfPzDqaFwEYYU+Z+XUuTReMomf6+PuMhQPlhPde9E5O0NBPPXKeNm071mM+/jknCZcYNY3xQzWU4RHKTlI1aRR8gCcQJ4Bn8BEgfa+eEKjqmXXYnVq6ZpJA4u8EGoFNKbiJ0nKJMnO9+db1xZKm+579gPL760fp1CKuQ7reonK4bTjn8jTFhtPYTie5O7ueSVpPEnePc/HCwZ1udTshqIRPPaty7hhMFlW3OR2vRXlUEQVUUlPCnkFtZAxUGHMbvahaASP/Qn/AbayWJ1KJAulgS3ciOoHyKzGede+mKGaQU1nexDNQckwzkpOPETjIJKZFd1vZsYyz4DQhxXOJM1Lb/X6+3c/EVNamV9/ke0eKXbQL3huYv/LO1uECYleutW9Cs0Q7iBjoILYvdndWqxOPsekgTV6C3nlLbsPuOh8bBdmBvMg6OnrDgkn0kaO5xGlwct3MYufi4xlgG9A6D0Pbkq0Uulc4Xn00iBguI79C75MW3MA9x8Y9WwH79R7Q3hLw8kRVxMnspiVwCANXGK/AoZ51YG5rPLWzT0IBIy1CU6lmAlCjVHqVgZMDN+haASDq8OG10UGhNU974Sf/uNJW+9z2ordbTfU09PG8lsAmM/kPG3z69R7Q3gLeQbKjNqVnpjNenKzexlXK0fcTFR10NkeFHoE1OMpZ0dIov6w8zyo76vRj1PIpKYQCS8x3dluv6GXqzzHMyCcVNpYkUpb9xF241K3E4LjXUv+dyvqini1g+edR4KMZeGAoxwHwh0kOlRG3AgBOfMMScoAABqQSURBVD2m1z0HvKBR5DuJ6uPmeRiOJ7Hzyd8hJ8sAApZStHYMU6uW3k6QAPzzA1ebvseN3Pju/SN4ayzBDeE9etcgZBnca/ntG6N49Jdxy+9WqmAP77fM5QcrSZImUdlP8129QKWFZcQoC6rtfuWm1IdX8iSS0awWTst21DLK5Si1alQa4boKSwA/EZcAPnTwOCbOpW1L0V6/oQu3X7vSUJ6rfx+752fmskhnZWEbciuiy9twq0XOwOMvnzR4EGSYl/rNphfx26PGPIhdN0fxmUsvEM4tizng3i/1FZ7n5qYAFnTZwXbKn63gzRtL2gI4m8zY+q2I0qAwQRlxKgRkRqFBEMey92NczW74gTKIvefgG5N47MUTWMgWb5SpZAKHxxLYs62+rquwBPAjcQmgKDZ9eCyB3ftHXLuheZU2vO57ZkgAvnPrGsv3iVz3C9kcbnvwiMGdPhxP4tFfxg0aITu/GMXNVymGh+i6HDk2XfCMfO+r/QDyHgR4L9ijnzdue/BIwRBQj8lv8109QAmEZaSvO2TozR2QgI1rOvDcvRvxo68P2DYEdu2L4XDBENA+sbUso7n30Aks5vyTVFnrsNIxtSHAyMnK9a4nzO570T3Eey4B5fq8NepNMhxb1H58xzo0BXSJi7rnN9zShM5QEFf3d+KRu+yF0rgJkQCSc1luUh9LXtbfFU/903jhPfzrIiOzKGuOCShu+isvVhKPr/Qo8ZiHaA6t1fnOz1CYoIzwumW5VQAzhhsU3B6zFLxyPw/Hk3j6X4wTtt7dWY/u7nJ9p+/+/CjSWXEC2vlUBn/82VUln8cvrFjWikPvTHH/JnKZs+eySDEZDlCMUa/ULtWu708SC/lnWPv8bljTgSf/25BpGMLsuAXXfVYWutN5YQUASGdzhU6Gn/5URKAwajzm1/59j63wSal4NYcS1pAxUEa8krwUPcgsYaiSMppOZV3NMJM5Xd8b4bY+Fp2vlgwGL6+hnp/+40lzsRsZ+Pp/qB9joHtpK948ep4ritPcFMBlvUsM15Q9l6/HzucNJ6ObYGYuiz/4jLXb2859x/IO/uHNTwwS4FZxfjPU+QwHXjuF+Yz42Dy5coZ6gVfPV5lF2RA2KGW8biDZ4MpBOQNlxovSPZFgittWpCLslGh5KQxiFvdTyxNbna/W8g7KKa4SaQsiMWdszcpoKkNgcDiexN5DJzD6sfJ79q8MYfsNvRW79tu3KCWALMTE9rDTc1ns2hfj3gdD0Qiag2YZftbZf07vO6fCR3YZjie57XjVaqJmzYvUMXj1fOWXzn4kG1wZKGegBmDxQXV2ck4GNg0u9ewc6rwEXsyRCZzoJwc2FjcJPaLY7eDqcEHWmNf6WH8+v4k5WVFOcZU7Pme+61+70iikUwpKmV4MsfEUMotKfDn2UQp3PxHDwTcmPT2XCKYh0NHG9jZFt7bZfWC6qNmoBHB63+nj/F4l3j3z6gR3uLJcPDa7Rp3txv2faIEv13gJf0LGQA0wFI3g2zdGNVUEEoBHX4iXnOjEMJvY1IaCVi9BgTeZ2FFH4002TQFgx5bewjl5mdjq81kZDE5V2ipBOZOibrmmG7dv4pelSQB23Nhb8jnUPPPqhLD2fM/z3t2fVoh2+mZG1tbN4kVtoMfaaLKqStB/d7Yge5149+HkrND9//SvJgrjGIpG8MDX1moSGs0W+HKNl/AnlDNQIzz1yrgh5udlve1PXjohjGeenJp3lMBoNyZuFg9kSZO8SS4QUM43eX4Bu/bFwMuXC0hAb1c7fvHribLE5kthxbJWvHhkCjKUeLXXSVFXrV2KKy7uwPFP5pBIZdEUkDDQE8b3/qDf0URuJx5u1gobqGzbaVEbb1H9e/fSViwLBzW19xIUg9TObyGKw8uA6T3vdeIdfxxKqEQ/Dqcx+HKMl/AnlDPgY9Qx/POpjOeuZXb80Y9TmEnNQbkdtAt9X3dIWMvN8hb0WglOYuKieKCZRsND31yH9b0R7N4/ImyIJOX1nfzW+IRd85bAImQ5h7bWZgysWuK55DLrgFnKOO3Ew826+wGVrQfXt/EGZORkCcn5rFBz4JZrutG3IuRK/pp3Pq8leu1gHAdMx0ExeIIHhQl8ij6Gn2W9TlWU4lpWH//sTBYLsmIISBz3ocitzRIY9ROnFzFxM40GdbtjkcFw9xeiGD3lr8Yn6ms+v9iEhVwQM+lFbN3sv94LduPhWzf3cPM+AGU5qmSyGXNr6138VjkMbHF0ov2hPt+VF3fmr0F1xHGM49BCIj2EHcgY8Cn6yVgkZew2mYd3fAlAR1vQEB+0m0jE4vPnUxmUarjYOafIYOhfEcIjL8Qt8w0qjbHNreTbREeRQTcykdK8NhSNYM+2QUS72jSvS1DCOZVONhuKRhBpD+aNWu3NUY4cBmZI8BbiSt5rfhkHUbtQmMCneCllbPf4MoDmoGRoNmKnk6BZoxY3houdc+rdo+w8LDzAo9Rs6FI6RtZSi9a+7hDOzBilrxOzRpf7UDSCn93zaW5TH1lGxTvOfTg5K/z9y+W2F92LlTaG/DIOovagroU+xU1XsmoeX1R22NwkYeOajrK1IeYtQPcfGBWI0BTzDdzApH4ZzHNhV8+g3L+plwzHk7j7iZjhdQnAVf32xlutDpu794/gzVF+HoMXnfVExqDdDoflxi/jIGoL8gz4lHJb+Oz4Eoq76FK0C0SejM5Q0PVCZ7dPvf74Zr3ln/7VhKvd6XA8qTEEgHxyIuzvNjetW5pfpJREM8nHu7ahaASd7U1IzC1qXpdh35Ox90Wl7wSDpb3c9+wHeOBra23/Bk69MVs39wiNgcRs1lYzIt45AZgmVVYyMc/smtgZRykeLqI+odJCn1JuGc5PEgt478QMzqeKymUSlEYtbkrvnJZ1WVGKZK9ez5yRk8UlX1bc/zejmJo2ehsAe/Ksw/Ek/sffjkJxxBWDuvfcFMW/u/QC2+OoJEc+TLr+TYfjSTwtyIVQ6+Fb/QbsPhg/k8bsQg7jZ9M49M4UloWDWLd6CfczvJJBdifYuQcOvjGJ7x8YxfhZ5ZwTZ9N4+d0pHJucw9R0RpXzoS3vHY4ncf/fjOLh5+N4+tUJ/Ov759G7vN3WfeZETrtUOetyymETtQsZAz6mXDW+bDI4l+JImMKddoHXDUXuPzCKT6YzhYVIP/GawQypY5/M4YxuAXdyHDUPPx8XiuuwPgpmFHUTtEmgi4vwbV/2Un5Ts74TgP3f4KGDxzF+xljL/9ujCVxxsXjxWrd6Ca64uANnCg2CikaY2T0wHE/i+wdGjQeUgfOprMbTwY6VzuQwuHoJdj4Zw+m8sZCTgalkBi8dmcLSUBBPvTIuXOidLs76xmVO72ne52UZOD45hy9ceaHl54n6hKoJGhCW1c7DbUKbXbUyO4qAw/EkYuMpw+tOx3Z0IsUVLfI6ac+Om98sebASKoluzlGKAp3V9bX7G4jU9QDrKgzmLu8MafUzzM4vOiYbA69073wqg/ue/YBrLOZkpYpBJPPNzulE1lh0Lx05Nm3rdxWF9GLjKV8odBLVgXIGGhDRZACUVoZkFau0K2RjNsnbHZuZwWPnO+pjqj3LWhGfmje8L9rVZmtxFDWpWd7ZUnKTJav4bymNnNzGwa3EiCSb95nZcewadE4aBJkds39FyFBaCQDZHEybQwHmwldOq0xEOTGZRRk7n4xhYFUYpxMLwlwAs2taTUEuorqQZ6ABETUIAsqb0GZ3B2Snm6EVZgYPACTns8JdMq9p08kz84ZmMAEJ+M6X1tgaj0g3AbJRJdGJ9oBVgymgOo2czMSIAG0THavj8FAbE1ZeDycNd/q6Q5qGYGp23Nhrq2eBFfr+BfznUUY6s8j9Tuz7iI4d+yiFqWQGb44muGJLZj0Z/FjmSlQGMgYaEP3kyBhcFS5rI5Ixmzsgq26GeniLgegY4Vbllh8ZTzlaPAFg3eowru5XXOZX93fi4TvtXyuRy/309ILlNTFb7FijIPVYc7qFvhr6BkyMKCiwCDpDTcJrp/6+z7w6YWi8xO7dTYNLseMn7+HuJ2J4c1RsDDkJdzAjRr/Y7ro5ivW9EZyeXnB4JYzHAooGwa59MWxat1TzPLK3J+cXud+JfZ/mJhNrS4VebGkoGsHgaqNRQ+JEjQ2FCeoUq9IjK0GfcowjNTsPxf7UJtHpJyBRWeWOLcaOeyIX+LdvjBqOAQCQJc3C6MRtezqxUJLev5MyyExWLkzgO5+MFf4+lUzg8FgCe7YpLv6RiZQhHCLLWqVA0TmWd7a4/i7sdx0ZnwEgAZLS6U9/n13e18HVVhjo4VcCiH7PnTdF8fr75wv366bBpXj0hbghoU/UE4B37UXPiNmzYVa2KklAqCWAhazyx/4VIdxweRceeSEOGeL+Ba+/f15zzkxWxvR8VlPyy+svsHGN8dqK0F+P7Tf0cjUg/FjmSlQGMgbqEDsx4krURBtVCRV5QCmvECiagJwYK9xdvAy8dGRKc4zlnS0YGU8htbBoOIZ6lzwcTyKTNc6uZrsmuzXbvPfptQcY03NZ7NoXw+rfa+MaJntfPKEYJqKFQPX61s09ODxmjBGP5BPG3Ggu7NoXQy6nPf1bY8b7zKlehqjJ1evvn9fcr2ZNqnielb0vnsDoKeW1/hUhfH5jFx79ZVz4jIiejYI+h6z97mxn/8M/NvY2WNOtNEJSFm5+IqP6nLc9eMTw3XieHH6DIj76z1ZyQ0DUBmQM1BnD8STue/YDg9hLNbr1GfsfBAr9D5qDkukEZNdYMcuMBlA4xu79I8JjsIVevcgpKAu0BKbLP2MQrNGrEp5J8pPzeAZacYHWGgLsFVkGTpw2Ji0CKCxsQmtAKr4+FI1goCdsqNDIycCfPvU+Nq7pcCQ6w35X/ZnZa/od7LdvjOKnL3+E1MIiZBm4qKtNuJDbDWnYTYIdjic1nhVAuTdi46mCUcrOYecZUS+ieq+I1b0sUqBk9x4zWLI2e2roF/TlHS3cKhxRsiZ1LyTUkDFQR7AFR+86Baqjge+k/4Fb7GZGmy0ebKf69K/0i5y2Lj0xu4jDqt0vAKMqIYBczrioiPIQ1OfRY7bby8kydu8fwUza6OmQYHTDi2LdmUVZ853sGARm15K3K3/khaJGgwwgfnoeO5+MFUIdauxm/ovd9fm2xXPZgidGNFY7u28ebhdRkZfk2sGlBoNFjZk3RT8WkWQ2uf8JKyiBsI4otZzOa0RdBXnjcFtrbzczWpRQ2NkeLCSTmS1y7OWcXFzs9754Qvhe/aIyMpGyFdtVE5CAcEsT92+LOUUtkmf48RYOswoSp9UFZscCipK/ZouxPsmRwZJbJd17r9XJZPOTYIsnGplIYde+GLcU0Ax1robXiBIZfxM7L7w3mpskR/oOt1zTjUfuHCwkul7l4LNEY0OegTrCzu63ktiNF7upg1fH38OtAaTS2lVRb3SIxvLnW9faSg5TIwMYGZ/B7AJnJc6jPvdwPInErHkduvboUmF8/+Xzq7nqh2oXt56BVcaqC6v4shPPkShuzlB7G5a0iacY3kLNwgrK7jYfppGAR16IY013SJgEm8nKmJ7Laoy2ACDOqTCgnIvlapSrmRLPq2B23d309iD3P+EGkiOuI3j9AQBl9/vgN4yJTeXGbn8Fp/KqevlWFmNlJVw82Vw7Y+HJ74rWkrbmJmQWZaHh8N2vFM/Nvh8PNlb1YZoCEgZWhXHf7f34zKUX4PI+RVY3nclhfW8EM/OLmM+IDRHIMPRKUH9/RZ5X+xFJAtZfFMGKZa2WGvnsWGemM5iZy6KtuQmLOe21YL9hazCAdJY/1nQmx5UUfuqV8fx9XNz28+4HtVz33/3rxwbjTAbQ1iwhsyjbsAnMz1VO3h6dFko325G6JggvIM9AHWFn91tp7OxSnNbBP/PqhCaTnf3TKjHRaiy8DOv3PppBat4Yl4ekZKXzEraYKiHzXhweS3AXo85QEx74w0uw98UTiH3EjiNBlvNSyjJ/3Lv3j+CtUf4xzZT92HGKceVi4qIsA5+6sM22h0Y/ptsePGJoG10spRPDS9hzo4sgyjUYWLUEWzf3aKoJcrLMDa/YPZfXsGoP/XemWD9RScgYqCNqrVyILZaKC12bUW+W4zAyPiNYYmQ8d+/lJY2Ju/COJTQueUlVU69P/GKqhMaySi2s1n4oGkGkLYiAZC5Zq8asRa8dZb/X3z+f935od8MvHTmjMbJyslKUwBuHvkxyeUcLzs5kuIvxyPiMoRUyg7foOpEPZpiFpNb3RjT6ELysfjWVzq9hAk368scdN/b69tkl6g8yBuqMWokXmi2W1gIoouw1e4psTmCLjAz+IrNnG9/4YnXwIkNA/f2c7oSHohF0hoLcPITOUBNkWVnwRLoHvOY/MqCJuatfV0roivByPBgsxMK+A0v8ExkvvEXXqTYBUMw1eOqVcSTns4i0BfHN/7hKqDIoyp/wUnzHrv4EGz9P0MrJMQiiFMgYIKqCUYNAWcibmyRsXNNh7tGonC1g6W0RGV+iZM6ABFx5caelqp3V7nSgJ8z1WPRcYO3qF50vIClNd4xoLyyrEFDX6EsS0NvVhvjpeegT/759Y9SRG9yNh2s4nsSjv4wXPBuJuSz+5/9WRIVuuUYrZ2yoz+9sAWSl/NIrb1opzaG8PAZB2IWMAaIqiBZLO9nTooXQiyYyPNx4W8JtTYYYOqBk+uuP5WYnzFMulGVgdn6Rq+CndvWLztfa3IQsR7dAb2SJJJDHz8znwx3F8chQwhJ7tg1i76ETGP047wZfGcKOLWI3OLvmbGd8/4FR052xPo+Esef5OPpWhCxzHniUsisXKSk6Ef4SqWve9+wHeOBra8kgIDyFjAGiKrjZDTPMXPd+YDiezO+QOXAMIDc7YVHc/6Oz88KQg3pxu6QnbNgNP/2rCXtGliDWvshZjNVyu499y1lfByc7Y17og+FGebPUXbkXzaFEBnOizOWPRGNCxgBRFdzshhl+T5Q0E+8RKQE69T6I4v5cESIAyztadItbBpIEbh8BayOLv+w2BYpdExmlJOM52V2bKVG6qQzghkIE5+Z5EESaFUyQyY6XwUz3golE1UJ+EFEbkDFAVIVSF3Q/J0palcB5gV2BJCC/dOdFiswWVru/ycCqJYbSRgnA2pVhHD2VcmXg8RDtrnliRaIKC7NSSzPsdIMEjB6EqWQCb44mEF3eBgCqKhHlYJlF2JZ/ZsYZz/aqhrw4Ud+QMUBUDT8v6KXQ1x3CmZmEYTEBvAtl8DwrIsOgMxTEaY7QEG9BsfObFDwIsq7F9I29hR2rFx4b0XVMzGYN3RaHohHsvClq6BUhweU1FxlZuteNibAK8dPz+fLRMEY/nkVGlYrhtCnSfc9+gMSctnKkGvLiRH1DvQkIwmO2bu4pLJBqdt0c9SyUwdO5H1wd5vaCGOgJo687ZCi2kOBuQRFp7K/vjRSMiefu3Ygffb001cutm3u4BhVz1+vpW8HvmSCSbTZH8CFJ+7qZBDgARNqD6AwZ91xOmiI98LW1aAoU+zD4LUeGqA/IM0AQHlOpnAb9Lp65rHlu+rFTs8bqAxgbAFmhj49/76v9ZUtiG4pG0NneZBAsksFfSEW5Gm5i66JQiL4bpFm4hi34pSTLAv7PkSHqAzIGiIamXKIu1QiBmC0aT/9qIt/cSFV9IAG/iZ3HzVd3mxy1SDXq3gdWLTFoFIgWUic5BlaIQiH63bhZXJ+Ns5RkWUa9htQI/0CNioiGRd/w6NS5NF56dwob+4zNc0Sft2rq43Zcbo+rbt5z/YauQrOkx18+idm0sdQgnckZmhqJeOjgcYyfTRfc7mz9O1PGpj685lH6JlSMt0enMXHO2PBH1BDJDLtNttj7jk/OaXQl1OMcikZsHYsgqokky+4iagRR6/A06plCoB1BGl5fgj3bStsl63ffbFEpdfddyndl3PqX7wgkkIP4+z8rrSeEGXrvjchFPhxP4u4nYobXJQBX9dv/nuUeJ0H4EUogJBqWUoRh9h46wf3s3kMnShoTr7aeZeiXwtbNPZCkEpPQbGbYew1zkX/vq/0AgPsPjGL3/hEMx5OG93W2N3GHV4kyPC+TJwmi0pAxQDQkw/EkMlnjKmY3sYvJ6tp93S5eKNfxMKsAsI+9DPtywDwmh8cSmEpmcHgsgV37YgaDYGDVEm5FBZXhEYQ5lEBINBxsYckVQuhKhr3kg5KtUjPPzSg1Cc1uhn05sKtG6EWyHkE0IuQZIBoOtrAUFzVlK9nRFrS9W+5fyV+cRa/bZdO6pRrFOgn+Wcy2bu5BQFfvHghUZmx2PSbeeEAIovEgzwDRcIiEYpqDku1FY/sNvdwEwh1bel2Pi7XhVZcAygDu/oJ3YkWllFKKShdlWUlQHBmfASABeaEjr8o0AXE9//KOFu44qQyPIJxBxgDRcHjhih+KRrBnm7dCMAWPhW5cTrQAzPBCJ0AkdKRvH/yWTf19u2zd3IPDY8beAyMTKYM0MUEQzqEwAdFweJJZD++zx8uVPMgoR6WCMeSiIHtwbDVD0QgGVoW5f/PqHATRyJAxQDQcfo0r93UbtfW9zIQvh7Fhps3vdWe90wlj+2fq3kcQ3kBhAqIh8WNcudyZ8LwugG5b/KqPKdLm97qkr5yVFgTR6JBngCB8Qrk9FpvWLTV08JNlYJPDZkVqWMjF0BGxDCV9XoV3CIIwQnLEBNEg7N4/wtUJKFWql1Uo6KsJyiHHS5K/BFEeyBggiAbhtgePaJrpMLoizXju3o1VGBFBEH6BwgQE0SCUO0GRIIjahYwBgmgQKOZOEIQIChMQRANBMXeCIHiQMUAQBEEQDQ6FCQiCIAiiwSFjgCAIgiAaHDIGCIIgCKLBIWOAIAiCIBocMgYIgiAIosEhY4AgCIIgGhwyBgiCIAiiwSFjgCAIgiAaHDIGCIIgCKLBIWOAIAiCIBocMgYIgiAIosEhY4AgCIIgGhwyBgiCIAiiwSFjgCAIgiAaHDIGCIIgCKLBIWOAIAiCIBocMgYIgiAIosEhY4AgCIIgGhwyBgiCIAiiwSFjgCAIgiAaHDIGCIIgCKLBIWOAIAiCIBqc/w+E+SLL7Q+S+wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9f3wb5Z3v+xnJPyXLdoITO3awiHFwTJJews+eBE7T7aYlgUIPXWhf27Btobst6ULD6d5md8+BZtvu9pS9hRTuJS1LoWnpXlra3WYvEMiWktJLKPlBKG5wDE6InNjBie1YlmVbljRz/hg98vx4npmRNLIk+/t+vUiINJoZjWae5/t8f3y+kqIoCgiCIAiCmLd4Cn0CBEEQBEEUFjIGCIIgCGKeQ8YAQRAEQcxzyBggCIIgiHkOGQMEQRAEMc8hY4AgCIIg5jlkDBAEQRDEPIeMAYIgCIKY55AxQBAEQRDzHDIGCIIgCGKeQ8YAQRAEQcxzyBggCIIgiHkOGQMEQRAEMc8hY4AgCIIg5jlkDBAEQRDEPIeMAYIgCIKY55AxQBAEQRDzHDIGCIIgCGKeQ8YAQRAEQcxzyBggCIIgiHkOGQMEQRAEMc8hY4AgCIIg5jllhT4BgiDcpSsUwVP7BnBicAJtjT5sXt+M1cFAoU+LIIgiRlIURSn0SRDEXKAYJuGuUAT3PtENRQFkBfBIgCQBD93RSQYBQRBCyBggCBcolkl4264eHDoehqx5qj0ScOXFdfjOZzu4511oA4YgiMJDYQKCcIGn9g2kDQEgZRCkXudNwvnixOCEzhBg53JicMK0rdGAGYqEcaA3jM6lftx1fWvORgEZGgRROpAxQBAukMkk7IRsJ9K2Rh9Gxs2egbZGn2lbowHD6D4dxb1PdOfk1TAaGiPjYRw+EaZwBUEUKVRNQBAu0Nbog0fSvyaahO1gE+mh42EMReI40BvGPY93Y8v3j6IrFLH87Ob1zZAkQIKSPgdJAm7/cLNpW54Bw1AU1VjIFp6nJNd9EgSRP8gYIAgXYJPwjEGgQFaAyFTCdgI3Ilyx96srdqv9rQ4GcPemICq9MgAFgaoy3HNDEKtazatxngHDyMWrAbjvKSEIIr+QMUAQLrA6GMBDd3Sio9kPYGYW7HEwgRvJZcXeFYrgkedDiCU9ACREphJ4+LkQ9/jMgOGRrVeDsai2IqPX5xJdoQi27erBrQ8cwbZdPRkbgwRRCChngCBcYnUwgEB1GTySpHOPSwpw30/fRXmZ5Cj+z4v7M+xW18yroEBKby9KZGQGzM49fejuj6ZftwotOEZgZAhfF1BqSYiUK0GUKuQZIAgX4a3qFQDhyQSGInEcPB629RTksmLP1D2/OhjAo19aiYe/0Imr2+vQECjHlRfXYcedndzQglPOhaczep2HMXfikINrV2goV4IoVcgzQBAuYrWqB9SJQYZ1yWF6xf5CH7pPZ7Ziz6SawHjMTEsgrVbtmZyHaD+zXa6ZqxeiKxTBkffGKFeCKEnIGCAIF9m8vhmHT4ThgTkBkKE4mBxWBwN49IsrTRPU7R9u5q7Y2XZHT43rjiu54fLnYOcON14HkSFjtZ/ZTELM1b3PPp+Uze/lmn9BELMBGQME4SJsVf/UvgGTEqAWp5ODkxX77tcHsePZEPc9RQHuvpFfTZALT+0bSLvAgVRuBGZW7drrYGXIWK3+F9VWYCgS121vnFjdyinY+UKfbiLP1AvBvgePfBhjBOE2ZAwQBIdcJhk2gW/b1YODvWHw5gi3JoeuUERoCADq5Lm/exQ3X93oyvEYPQNR0+SnKOrrDCeGjGj139M/jshUkvsZdu3cStbrCkV04RjteTj1QogqQMq9Eh68Y4XrxhhBuA0lEBKEATbJHOzVi/7sfn0wo/1sXt8Mj0ebQK8AUBBcVCVcRWaKXWJa3uLVovPP8HvxSg1V7QN+BmVHiz89sTpN1rMr9bO6hk49OCLRqTXLaskQIEoCMgYIwsBT+wYgy+Z5bcez/Hp9EcxVvqLFr3lVwqmhKdey4p1M9PmJV4t84s6tga5QROdJ0O+Hn3OhrUbo6R+3zSlwUpFgdQ3tPDjM0OgZiKZDJYBL5ZkEMYtQmICY1/DCAScGJ4QL3Ewz2We0BwBZsa/9z5S2Rh+GI/xQBMPJhCYKiYjea15YhXC/eSJvXlDl+NxFK/KOFj8CVWXc7ovMsOkKRRCeNIcRJOiNHycVCaIKkE6NF4KHMUwhSapnoq7ai46WGmGyJ0EUI2QMEPMWUcz5kiV+U+IaIxuXuygufuh4GNt29eQkpMOy9nlZ7ADgr/RYhiSMyYfDkZm4OwBhTN4NUSFRnP1ceBp3Xd9qWY3w1L6B9OSrRYE+p8BJqZ+o8mHLplbL8zcaGkrqsx0tNbPaqZIg3ICMAWLO4TT5T7RqFE1oUpYlYqKVp6wAB3rVtsFbbwzi5msyT/JjoYjv7n4PoXNTpvcnYrKwAyEv+VABIMszq3bRqtqpqFC2WgR21QgnBie4Rk6drwyrWgMZlfo5rXwwQv0XiLkEGQNEUeGG8IvTDHPRYH4uPI2tNwZ1EyVrQpRNDNiJ9sCOZ0Noa/Jl5SFYHQygsa4SfeemTOECBTNJdcbVqshNr2BmQhNNdk5EhXLVIrCqRhAdX+0NkXmpX6aiS12hCOIJNSFUaz2SpgBRqlACIVE0uCE/y+rftatZWSAHa9V2+OZrGnUSvVflINHLVp5XXlwn7BLIzj1brPIcRKtVqxVsW6MPbY0+kywy844YuzTyEuassv2Z0VdT6UWgqgx1vrKMZJDtjm9V6mc8RqaNhdh9OjaZgGoIKOlrQ0mDRKlCngEiL2STlOaG/KyT+neGecWuQFakdNthNyV6tdoDB3rD3M/m4l62kkEWrVbbGn0YHg9zV9C3f7gZx89MpM51ZvWrKMDaznpHrnWhhsBAVOcxYBP55vXNpkladA/ZHV/kOTCW+mWjVTDTDIqhXpvaqjJ8a/NyShokShLv9u3btxf6JIi5BRtgB0ZiiMZknDkfw4tvDmFNWy3OhqeF7/3q9UFEY/ogrwLgbHgaly2rRWN9pe2xn/7dGcQS5kBxVZkHn75uie61xvpKrGmrxXuDk5qEQQkjkXj6nJwc08n3ZvtpWlCJPW8McT9f7vVgZWtNRsdkNC2oxItvDpkq/tjqedstbVhcV2n6zN43zedy701BXHfpQjz5Uj8GRmLQusElqDkFGy5rQGN9JZoWVOLU0BRODE7g1LkpNC2oTJ//4d4xnDkf052SRwIqyzyYisvp11N2GIbH4thwWQMAZ9eysb4SGy5rwG3rlmDDZQ2678euB1u3M4PDeB0e3H0SAyOxmSTA1Hcc0pyLkcf2njLdpwAQqPbirzcF0//uCkXwDz/rxfeeDeEn+wbw2rFRtC6qzur3JYh8Q8YA4TpWA+xbJyPC9xbUlJsmD0Bdse11ODk//bsBxBLmpW5VhYRPX2d23zbWV+KVo+dTx5VM5ySaEETfu384ZjnJNdZXYoG/DL9/x+wdmE7Ijr8n73usaavF8Fgc45MJVJV7UVXhwQeCAWy7pY27WtV+JhaXsao1gL/9ZBuuu3QhAHXSm5g2T3qxuIzb1i2xnbCbFlTihSNDUDSeBUkCvBIwnTT/RuOTifRv9ODuk+gfiaW9FmzrYYe/CftuQ6nvtvJC/nXgTeyK5jvyEBk5Ky8M6IyZrT/sxrmxeDpUNRSJ48UjQ7g8i9+3KxTBg7tP4rG9p3C4d0xndOXjc8T8g8IEc5R89YF3sl+7LGvRe/d/qh2HT4S5ejaiJDgjHS01JglgCUBHc43wM25lhff0j3MT+Hr6x3Wv3XxNI9qafLjvp+8iPJnQbev0e/JwEtbg/X6ZJumxkEP2YR37usRMwj0inFyPbLo8OmnCxHJXjMhZ/L7M6GJCWEMRZxUobsk1E/MDMgbmIKLB47a1jTh5dirvmfq8AVZblmeObSuIJxR842e9uKTZj3cGoqaSMKeTMxuojfHofLT9NeO8+H51MIDyMvPr+SxNy3RysJv07IyomYRI/feMJfg9B3SbibIhRa9nQVcogshkIp0vAkiO7hen+RIiMv19rRQxrSpQZrsFNFHaUDXBHEQ0ePx8/yAO5pip70QL3pjpLUGBoig4H5lMS8gas9THJhMYisTR068aAsZp0unkrM3cbwiUO8pQd5IZ74gMhXh4uvxWr+eK09+PYXctraoNALGxIEkS93OsLFBFVBfojjXADCOjp6GjxZ9V1YjRi2F1r2ZqZNopYlp9jnQQCKeQZ2AOYjV4KBarBLsQgGhwOfLeWDr7HjCvnC4IlKFnYAK9g2pcXkqdR52vDIqiYGwykT5frayrR3K+uteSaRVAtqIzRjqa/Th4XJ+db57kNLig4sdwI3zDw+parl1Rz602GByNoSsUEXpc2pf48M5AVBU4Evy+2YR7RPCujdEwYl6BQFWZ7e/uxMOyeX0zt4V1NloVbY0+DEUyr0BprvdgKCJDu+YjHQRCBBkDcxCrwUOLdiJwMsCJytfiScWkcqedRLbt6oFHmtQlDTKBGPX4+tlPUYAyj7p69AJob/Jhy6bWvJZsZVNGaCQdosDMJAcAkakEbn3giGmSdqrip4U3sQFi2WCtQbCoroIrs7yoLjtPxP5jo6lsff3vF0o1Yrp7U5Av87uxNe2REBlf2YR7eLBEPnbvDUXCOHQ8jECVN+tVsxP3++pgADvu7MTOF/rQe0bdp/E+dprXs3l9M7cclaeIyfbZ+34U8uQIJAQgZWlUE/MLMgbmIKLBw4gkAfGEglsfOIJ4QtGFFngDHBugM03ws1qRigyMROoFjwS8c8acTFaMGD0Mi2or0DMQRU9/lDtJW+UqZDLpX7LE7yw27HIc3s4Dtf/YqKXHxcr4cstbs/OFPu69l5CVtOeJ4XTV7NTDsjoYwKNfXMndRyb5G6uDAZMiJjCj+SDaJxCABAkdLX6cC09nfQ2J+QEZA3MQ0eABzLjgAQWKAp2L3ois6DPh2QD91SePIW4oDbNaVVlNenZSvaWW9GT0iADiSdr43SUokCQJ6zrruavZjhb+pN/7vrPJ6dyYwBMheN0OK6EjdvxcPC5ueGvYqtxILK6oeSLIfNXsRsLpzhf6dEmydvc5qxrQSWQDeOS5ULqXAy/0AQkYGI6lk1VLwagmCgMlEM5RjHK6V7fX4d6PB3FVKhksUOUFYL8oDE8mdUmGq4MBrFlWK5Tx5WGVoGdMUiv3zm6GfS7YydjarSC1373Km0CFJ4maqjI8tvcU93PvDvD3B8DR72Elv5wN7HflUeyxaUlCxommQKoCYSoBWVHAnp5M3e9doQi6T5tLJO3u8/3HRnW/nwJ9AijvflMUIJxKzs0maZiYP5BnYA7DW1nddLW6wrj1gSOITAn63mqQJPNqxUmdtfE8rFy+xtW0VR/7YqArFMHOPX3o7p8Z0DPKsUgo6YRL1rBn6/EwZEVGbCIBEUmOaxsAmhdW4vTwFCRFgWJRHpfp72aHuWOimkgooThi012hCCq8HsST5lLG9lRJXjb1/urqmmkbqrkvVjktxpBPZEr8G1vd53bGpZWnhm1bSl42YnYhz8A8hbdK5KEIYqHZrKqM++Vh9CIAclrP3kkTmVyxW+2zCUFrCAD8Mj32XWYus/qlx6YSuhXazGesH0eP4O1TQ1O4e1MQrQs9kJCE1yPhkma/6Rq78bvxOD08xfQFAajf8p4bggWNTbPfaWKaGQIzF8MjAVs2tWa8T2EFQrW4AoHXfIvnFWBYGVAXLa6CZPDlaQ1l87Njpli9bEThITnieQpPu11d1+kxyqwyrHThjTjRmdful8nIRiYTaWnhWFyx/JwbODlPJrXMs2UU6GVs2XfZ3z2aEtqZuboSZuSORVr3RlY0+9EQMFcESBIwGk3gxLnpVCWDuL+C6HfLVkdfdD3CEwnccOVi2++UKU7ldc3npV77uuoy/PPnOrIyVLKRLuZJc4vobPHj8x9ZqntN+30j4VGMJzzwSBK330JjfSXqfGV4+1QU8aSs5gdBhvGpjicV/DE0TtLEhA7yDMxTeKvErR8PwuNxQXzHAK8UKykD9/30Xe5Kn7lvV7TUwCNJYIOZnUhOrjgR5RG1xgX44YwZpUH9gGx079p5adhqlpfsJytqEmFqS+G5i2Dld92no4gnFcSTCrr7o9j6Q/v4MhORMtJ9Ouq6F2f364O45/FuHOhVV9kHesO45/Fu7H590LStsIVxmZS1xyLTnIuuUARH3huzvF/Y316P2Vth9CoMTpZDkjzoaPZzPTtdoQgeeT6UymlAKq9BMhn48aSiyhkbft9MWzkTcwsyBuYxbNJ95mtr8J3PduDmqxvz4kYWDczhyYRlQpMoRnroeDgvg5WTkjGriVtkONlNIrwES4+krhRZ8uf3vqD+DqJ9sXO1OncRdjr6IrpCEYQnBdLCcNdo6wpFuNUxgJphb7wX3E6WBDJTqmQTubHqhn2us8Vv+5yZwxIeSFDDEuyZ1X6GF8aQJAm11WXwckZ6WQF27unTne+hHBRKidKGEggJHW6UcxmxSmyy0icQfY4ZBJk0XWFJXD0D0XQ7wY6WGp3Qi5OSMVEpZOdSP7Zs5CeR2SXuZVJTL9pX+xJfWs9AdO4istXRf2rfgCaNLrPPZsrOF/os3881ydUJmfxObGLmIaW8PHZGdqaKkaJqgvIyCZ5pCUnOL8U8StTHgCBjgMg7VmJFVoOblQaB08GKl/nPONirNyjMx1MgK8AbJ8L46PaDaF/iw13Xt2YshuNkEnFqhIn2pSiqIFG2dfMixUq77HarGLibFSAivQDtuWhxS7TIiNPfSRim8Ep48I4Vjs4jUz0Dq+2PvDdmeazj1Mdg3kPGAOE6PPW8h+7oNLXsBawHN+2AztN5txusmOvT2AGRoa3T/s5nO3TH6xmIIjyhJuolZHXr7tNR3PN4N7beGMx4teSmx0W0r2wnv2x19EXyxozZLC3k3UNOr3ku7b5FnxVNzGuW1To2SDL1blhtH5lKcKsYFEXB3zz5NhALA6iGNrel2Ep6ifxC1QSEq7AJuH8khomYjP6RGPa8MYSOZj8+ubYJew0VDNpsaB4s+/3tvnGcOa/PWhdVOjCsMv8ZvAqADZc14JWjI6mJzpwg8Pt3wrji4vxUNORCJhUejK5QBDtf6MP58UR64irzqLXz93+q3XLieu7QOaEx0LnUnBmfC68dG7U0PP72k+J7yIpMKl0y+ewHLgqYqnXs7nUj2sqaWFzGygsD2HZLm/A3sdq+dVE1XjwyZHoWZAV4/3wME8lySKlSyWzPlyhtyBggXOXB3SfRPxIzxUt//04YGy9fhOvXLHI8uGkxlkICChQAkckE3jwR4ZZJOSnZExkU33s2JMwCB4DhVFlgKcOqCM6NxU3f9b7b2m1Xxz/6TT8mpvnX9+ufand1EmldVI09bwxx38vF8OCV/mnLPq34h5/14mw4np5gtZ/9zIeaM5rIRWRq4Im2b6yvxOVttRgei+NseNrwe0vwSBJWLPVj2WJfTudLlC4UJiBc5cTghDBxirnjs3GXm134CQAKxiaTwmRCO0W2XJTyegbEwjGlgl0Vgd3vJLq+nS1+1ycRXr8Nltm/ZWPmAkKMbNo6A84khXMNDeUSvuDBzufWB46YvCyyonbLFDVWIuY+VFpIuIpdwpkbTMRYOZu1/oBIkc1f6UGdz4ur2sWlk+1LbGKlVrGHEiHbKgIGr9SOVy/vFsZ+G1flWPraFYpgOiHD+GM6iZVblU26EWdnIYiDx+01FTIlH2WXROlDnoF5hNsrDR7C3uvIbbAxt2fVI2oha5dUx4RWjNfkrutbdZ0DzV+o9K2BbKsIGPnK2Lc7phuJmOx+kmVApwzpsArDylhyI3GSeW2MXrYdz4bQluqrkC35KLskSh8yBuYJmfRPzwWuOxeqrn4ug41ZUEWPBCXjjHK7a7LjTn4FhASgo7km6+9SLGxe34yDx8NQFBbtnmFtZ72jfeRDl2I2YPeT8XaqrSrDtzYvtzVorEIkigKugWnEyjh3Em7LlkIYcUTxQ8aAi8zGyjtbeKIiUFRJ4G9+Zrmr53nzNY1oa/K5OthYyQCryYQKhscmcOsDR9LXHoDl7yG6Jjv39OHRL63E6mAA3/zMcp3BMJdWUauDAaxo9ps0GCQA+7tHcXOqw2WupAWf+sfVvUtqtUIhn49c5YpFq+vrL29wZHTbGaJWXhutVyLba1tII66Yx8n5jKQoIvuTyATjw80GB7dX3tnCSxpieD2Zn+dsP9DbdvVwww+AmgPA8ghYC18tot/D6po8/IWZ7YzfdS6tokTXoCFQjme+tibn/VtpPXgkYMedhXk+RK2yO5r9CFSXWSpVMnj3xU9eNmtieCTgyovrdJOv6Phsu65QBPc83m06bwnAVe0z27BQh3YQZ3kc+R57nKh6Gtn9+iDXa1gs4+R8hhIIXcJJk5tCYqWpn+l5FkLHnK30eUwnFEiSBEWTUKj9j71m/J5WcXHtdsYeDnPFEADyn0z21L4BoeiTrNjLDOcLXvIjoFaJHDweRngigfBkAuHJZDp5b8sPjurucd594bQ6oWcgarkdC7dpMYbbRKEOZRbGHm2Co/ZaHewVjwW8/hIKAFkunnFyPkPGgEuIBoGe/vGi6ATGBj8emcqOFsLwWR0MoHOp3/S6qEkPD2OTIysDo9RlWJ12oJu5L9QZ2+0wiF0Jpp3McL7gde3saFHvL5GvtPt01HKi27arJ6VaKa5O6ApFsOUHR9OlsVokgxF28zWN2HpjEP4Kb/q1pRdUpc/PKnSWbynhtCFiOL5W1ZP3GR4KSv95mwuQMeAS/JW3jPBkoig6gbHBr67anCaS6Uow390Eu0IRbPn+UXx0+0F8dPvB9Irsrutb4eW0WG5vsm8BbDzPe59QXbAiA6OUy6yYmJCTVr/svljoGUFtpeJap8o0RRyENK7sz5nEeMzwJjqtpyxuaOKoNa7YdjP6BPqbVlH0RlhXKIKHnwshOs1CYEDo3FS69bCVt8/JPZxLy+JsDBGrCb+Un7e5AhkDLsF3O864rdnfbqyg2UP8iX86jE/80xv4xLffcPQws4Q43oSayUqQPwgpuonWavVkNfiwiay7P4p4UkE8qfYE+EoqfsprsXzXxlZuC2CP5jXtrKT9HUQGRiknCO7c08cdqHc8GxLWqXs9nhklPRcn8IQoRpCival4JgGryZXBm+h4rYMBtSmR1riy6mQIAHU+r6klsZUoFBtzjKcspbZhDbaM4Q0g91Cf3bVaVFvB/YzIO1nKz9tcgeSIXYKnCz4+lUQsrn+aFei18DMlrf0/HMNUQkEsISMWlzFwPoa9DjTVM9U752GWBgbYkMSK1Ixyrk414B/cfRKnR2Lc454cnMQdf7rUJLfK/U6fbEtLH6s9DQyrMKi/w1/fEHRFNraY2PH/nRSu2ox9FdjvEk1WIZaUMtLmd8LPX30fsQTfIJAA3P9pd2WLc4Hd11bw5KtFstcLa8rx2JdXpb+flTy2RwI+EKzFhssa0BWK4MHdJ3HwOD9hFtDfu8NjcYxPJlBV7kVZmYTphPrjs5yZobE4XjwyhMs1v2kuMszAzLUSGTeL6ipww5WLTZ/Zy7m+994UxHWXLrQ9JpFfqLTQRYzlOqKM4VxcYpZJQ3BWg5xrWVE23QSd9ku3ciWy3uuic+J9p+98tsP2dyjVWnkRNovxdOkkoL2fZrxYrvaxF6wEvRKw4wsuhiNSsJbV75yJQpYBr0fC8ma19bRdtrpR8jqRUNIuekDsNXLaathKHtsYSpiJx7NpWo/o3hVV3Wi9CU/tG0jpS5i3sesCqq2euHtTEP/38yHwbL1z4WnTa6RvUNyQMZBH8qH0VcikIS1sEHJq8DjNsraqr86W+aa4Zufl1xpV2WrzO6Wj2W+aeCQJuOLiurwYAkbVyIQ803r6trWNuGtjULwDmCdXJ2WlTu8v43aMzhY/tmxqxarWALbt6uGGHLRYtZa2+t16BqKWhobVQsVYIjoUCeNA7ygqMYkkqnWeN7u25HPJ8J5LkDGQR/JhCVutLtxKfMtEQ8DpQMg7bwkKphOyTihIJGcMOOgXIGC+rUi8HnvvAMPpqjZb2P2hIP+GmCjGzvj5/kE0L6zCzdc4F1NyMnk5vb+cbGdl7Jd7JbQv8WHLxlbhvWtpTKeMAJGhISti5UlRiWgM1ZAkad4Y2nMZEh0qMeyERnLNBM9GPMnJ6sm4XzXfgH0DSXecE+9PmOqRPRLwvTy4leciW35wlNtRj9G51J/uTif6vd2sKJgt0SYrESlGXXUZfvX3l7t+bDfoCkXwP57qQWQqCeOK3ShaJDLYed4Rto9AtRfhCUO5A4etNwZNBpPVtfVXeLGytWZeGNpzGTIGXGS2VPlEEqRuPIR2ymhunPeJwQnEE4pJ89+owDZfVvJu0xWK4Cs/7OYmd0kAHv7LTlOzprlwrT/3vbcQGpqy3MYjAS994+pZOiNndIUi2PlCX8qA07vueUa+ncHO8iZYOIh5E3jqiCK0CpyAtQJoNteUJImLDzIGXKLY5Yidkm952tk+znyFTTDvDkwgKSvweIBLlszEpuciN37rkDBbn1FsngEruWZAPV9j46RsDXa7zp9arm43eyJ48sjsHDO5pnNlrJxrUM6AS4ia3nz1yWNYs6y2ZCxfUU5CeCKBbbt6XPse+Y5Vz3dWBwPpUMB8YXLaPlHijg0ts3AmzrHTHmCNk7Qr6fBEIqukT2POAs87x+C1A79tbSN+vt+sU+Hkmhq9gtowp+sVLERWkDHgEqLEn3hSwaHj+WkXnA/MGc/ql4on4er3mG8Z/kT+CVSVCSc3f4UXf3X9Utx0lTudGN3CKmGQGcfmFf1Mro1xWzu0CZHCZkiCfd21MYjmhVV48qV+RKYSCFSV4Y4NLbbXlH/+5uRFkiQuLKRA6BJWilzF1rTICq1me7lXgvrQztSgu/U9eNrwrsrgEvOKrlAE9TVlSKnj696796Ygnr3viqIzBADrcYMZx3yFQ70hkI0hzW2GJFmXLt58TSN+9feX46VvXI1f/f3ljq6pSKFRC3kFCw95BlxCVEPMKCXLl1JJJwsAACAASURBVK0eeHF9N78H1RwTbqBdeUKji1ms3gAtTrQHRN6Dcq+EOl9ZTkmfN1/TiLYmn6sJpMYERkVRLHMUyCtYHJAx4BLaeNyR98YQT+rv/lK0fCmuT5QCvJWnRwJWttYUtSEAONMeED2Ha5bVumJMu2mUi0objUgSUFtVhvIyqaQrWOYSZAy4CHuoRNmy2Vi+hSzBobg+UQrkW0Ux39hNxvl8Dt0eX+yEn4CZ8zdWSRCFhUoL84TxIVvXWY9Xu0czeuh2vz6oE9+RAHg8s1uCM1dq0Im5Sz61MYqFfDyH+SjxsxInciOsQeQPMgZmgWxV/biZvgCuap87gxxB5MpsqCjONbpCEdz303cthb+c7MPoVXhq34BQnMioXWC1n2KvupqLUJhgFnDasc/4GR4KSsf9SRCzwXzrPZErVkJHTsIresVElZFxtez47k1BrsqhqELBaMix/ZRCGfZcg4yBDMjWghXFNI+8N6Zr0qPdl9UDSQl8BKGHKlOcYyV0ZJcgLDIk2AJn/7FR7LizkyuHzDPOslkoEfmBjAGH5GLB8lX9FMSTCoYice6+2hp9GB439xwHKIGPIIjssRI6sktMtEoQZF6F1cEAHv0SX/1Su6Ba1liNo31jJZ38OZcg0SGH8CzYpKzKDW/b1YOuUET42c3rm9NiHnrEYj6b1zenY59a7r0pSO5PgiCyRiR0VFddZptncWJwwlI+2YlX4dDxMIYicRzqDWNi2iwSReXLhYE8Aw7JRW7YGNMMTyQQN3QSNVrDFAclCMIttCvyRXUVANRJV5tw6aTUr63Rh6EIP0EQsPcqaBdUCqS0RJTxXMj7OfuQMeAQUQMfwFmcSxvTFJVCGa3hUoqDdoUi+O7u99B3bgoKAH+lB3+54UJTX3SCIGYXtiJnHkhW+hdsqEI0lsxoobF5fbOwWqBzqd/Wq2AcPxUAdb4ydDT7adFTYMgYcIibcsNzRcyHZRW/0x+FQXAR0Zic1kggg4AgCgeL8xvd+6GhKTz8hcyy9lk/A57+yZaNrZafFSkpdjT7S2bRM5fxbt++fXuhT6IUaKyvxJq2WgyNxXE2PM0tnVl5YQAbLmvIaF+xuIyVFwaw7ZY2W2u4KxTBg7tP4rG9p3C4dwxNCyrRWF+Zy9fKGiY7em4sDosQIrpCEfz5fy0tI4cg5hKP7T2FiRi/vfPwWNx2zDKOOx9atRAbL1+E4dT4tarV2fjVtKASL745pAsNSBKw7ZY2LK4rzDhGzECeAYdoY27tS3zo6VdrbLNd2WcaAnCzHtdYIrl2RT32H8tMHdGJ7CigeggIgigcVnF+J5oC2nFnKBLGgd4wOlv8uGtja8ZeBcqDKl5IgdABPIUzQHVvnRubnpWbmpdnAKgZwN/8zHLHD6Xxu0iS6j40Wut2RoaV7KiRl795taPtCIJwn1zUTEXjDgB4Z1kancgvVFroAF5ZIaOt0YcTgxP4ycsDluWFuSKqZghPJnDvE92Oj23K6E1n9qrwyhx5ZFL6k8/rQhCENSzOr4XF+e28mVaaBE7GiUzoCkWwbVcPbn3giG25NuE+lDPggMf2njK5uxUAQ5FpnDkfQzQm48z5GF58cwhr2mrzEsc/3DuGM+dj3Pi8BGDIQewP4H8XIwqAs+Fp/MeBs8LchKYFlXjxyJBlvgDDSVySIIj8sWJpDa64uDbjOL/VuKMAiMVl3LZuSc7nxzyWAyPqeNo/EsOeN4Zw4J1RtC6qLlhu1HyCPAMOEIl0AHpvQSaWcqZWMBMuEp2D00oG/ncxPuoz6oiHjoe5nofVwQB23NmJzqV+22OSmhhBFB6Wp/TM19bgO5/tcFxKKBp33BQHMnosGd390Yw8n0T2kDHgAKOC4Mxkqn9KnE7KJiUuwYSrhSXf1FWbcz4zeSjFaoh8rIyc1cEAHv3iSjz8hU7h5yVSEyOIkqMrFMGWHxzFV588BglAVbl+wOAlTefi5p/NcATBh4wBB7CJ+MqL69AQKEdHix/+SvOlczopi6SN7/vpu7YGwTc/sxxej94wyaSSwfhdyr0SjEZNpkbO6mAAD3+hE8GGKv1eJHG3MoIgihNWNtx9Oop4UkFCBqbiCiQAnS1+NATKceXFdTrp4mwWOFrsvK/kXcw/VE2QIWk1L1nvXGcTn5Me6laZ+E4ydI2lgblUMlhlCzNy6XFOpUMEUTp0hSK476fvIjyZ4L5/taH6gD3vR94bQ9ygPJbpuCFqqwwA5V4Ja5bVOu4US2QOGQMZIpo8yzyAv0qV1bS7Ya0m4EweIDdwWmroxMghCKJ0sZuQAaAhUI5nvrZGtz0v1s/b3snxd77Qh+7TUe77TsueieygaoIMEWXjy4qaWeukqoApcfHMMDczdJ1gVENcdWEAt65rgiwjI3VEgiBmj3yokT64+yQGRviVA4xVrTMqq2x7YTtkqJP3j37Tj5/sG8Brx6wrAxrrK3HDlYvTVQ9GpVcFziqnikmptZQgBcIM4TcsYrep86ZFD93RyXXHFaJ9J08N8earqZ8AQRQju18f1PUGYKqAW28M5tQHxCqJDzDn/1htzzyL2oVTd38UW3/YjR13mlf2xvDi5g8twTv9Yxid1O/XLn/ATaXW+QYZAxnCb1jkPOFOe9M3L6xEZCCR/kypNiwiCGJ22LknhJ/vH+S+t+PZENqafFlPeqLOrBKAFS1+bNnUqvMQWnVy9XqABCfcICvmhRJvAj/YO4oajEJCPRTN+CpaLGlzF7RhDieLM0KFjAEHsButZyAKKEBVuRdlHmb7ShibSuhc/lY3rP6mV5MIO1r8OBfmyxqbLGZKoCGIecnu1weFhgBj554+PPqllVntX9RNVZQvZNXJNSHPeEuNGBdKvOoqCUBDQwMmRpI6GXjeYskud4GqEZxBxoANxl7gDCbnefemIB55PgQF9qt73k3vkYBAVRke/aL5ASaXF0EQjCdf6rfdpvf97Ce9TBsJabc3VxPMLJaMGBdKvHCDAgmRmAcP3XEJ93y0i6R4QjFVd2kpROi1FCFjwAY2gRuT/RSor+0/Nur4AeLd9LICdPePY9uuHtPqn2sxK6oeQXmZxPUU7NwTwi9fGwR7Llm/8Ew7jBEEUVxEpvjlfm6SaTdVtj2/XNpsCPB0R3jhBjaB887HSRWDdj8UenUGGQM2WCXJMPeT0wdIlHwYmUzgYO8oFEi61T/fYkY66dDoKeDFE1VjI4qvPN6N732BPAoEUaoEqsqE9f+M9iWFWQHzxjYJgK/Sg+mE+mJ7k8+UdwCIwxOiCVwkXWyEaROQ1okzyBiwwSpJJlP3E++mlxUJEpR0kow24SXTyoV/+704nqgA2PlCHzccQRBE8fP5j7ToqgiMSBKwZWPrLJ7RDKIJ/X/9Bb8HglUeVkdLjeUEblf1AKgJjA/esYKMgAwoGWOgUIl07CaXYM4ZyNT9xIvJ9QxEEZ7QW/vM43D/p9ozqlzgZe9q6T1DSTQEUaqwssEnX+rH2FQCHqhGvtcjoX2JD1s2mlfds0Um+QZ2eVib11uv5K0WaIDqESBDIHNKQoHQpJIH9SGo8zlT/HPj+ForFpKCjmZr69UpPDVCrQqhMVGGV7nAtt3w9QOWBkG5V8Le7VfldL4EQRC5kKsCq5VS4mwruM4lSsIzYIwRsXsoPJHAoeP5z7DPNKnGDu0Ev6iuAgALGZjjZdpjp40i8Le95YONlqVH7U2UUUsQRGFxkodlBfNC7NzTh+7+GeliShbMjZKQIxZJAAPOJSqLhd2vD+LrT/eifySGiWkZw5E4JAAXNlRhIpYEAFSVe7Dvj+dx5IReStMoHWyUCr5qeT26To7hzOg099hf/3Q7FteRLCdBEIXjcO8Yzpznyx57JGDlhQHbsdwoXSySTidpYueURJjASWe9TBpiFIquUAT3PN5tel1bkaur1E11QszU67H79UH8y97TiE4nIQFoXVSFv/nEMoqhEQRhC2sY9M5AFLKs5iQsb/bhruvdKU+2yxnItimaMa9s7Yp6VQPGIFpEOi18SsIYsKsrLZU40bZdPTjQG87oM6Xy3QiCKG2cdA3k9RXI9liZ5GHZJZAb5wgWdtVWarHvQOMpH0+hT8AJLEZ05cV1qKv2AlAtPKC04kTZSGKSlCZBEPmGTaYiQwCY6SvgBiwX6pt/vhwdLX6Ue9WpiLc0Zed26HgYQ5E4Dh0P494nutEViqS34Qm0wWAIsNdpPOVTEgmEgDmRzqlkZjHR1ujDcCTMjZUZQwQMktIkCCLfPLVvwLZ2H3BnItV6BcITifTYJ5JbZ+emaCZ6CfrmQ/ykRL4CIo2nfErGGNDiRna/yU2VErvIZ5ki0yww6mjftq4Rv3xt0PS6VEJeD4IgZo/0+NU/DkACUrLjTscv44KqZyDKXZUbyXUi5eULsMOKOgzyzk1R1Ne158VTQFQgrtQi9JSkMcAjE1EiUQLLwd78lilaCXNc27mQ+3CXiteDIIjZIT1+GRYPB3rDOHQ8bBvX5zVAk9MDIb/TICPXidS4yjfCdeOLjBTN6yIFxHtuCOLV7tGS8yIXgjlhDGTa3c+u+VA+e1+LvBpuaxkQBDE3SY9fnPdkxb6NsSi+bmcI3HtTMOeJ9MTghKUHgu/GF3xAmnndaqF109WNOZ3zfGFOGAPc1sCp1zevbzZ5DJyKXuQigZwv+eRChDcIgig87Nm3K7M+1h/FrQ8cEY47/PHPA3+FB9Fps55L51K/a1LHbY0+DEXEFVU8N35HSw0O9upzrSQAHc01uu1oQZUbJVFaaAe/fSZQW+1FNJY01ZlessSPnoGoZZni5vXN3FDC1huDaY1wEbwyFzfqW+3qc6l+liDmJubyavuVPMAvB7SSQDcuntx2q4u0VgCgrroM39q83HQ80XiarR4BwackSgvtaGv0wWN6LmRMTE5AlhWdx0BJPUMsOU+LtvmQKLa149mQrqSFB89TwcIPueAkvEHMsHNPCH96/wF8+D71v4/cfwBbvn/U9vcjiGLD3LZXVH+kh4UNtGxe35wWNAP0iXVsdf3M19bgO5/ldxzMhdXBALbeGNS9JkHtMsgzBNhnHrqjEx3NfpR7JXg9Ei5p9jtKeCScUxJyxHY0LajEi28O6bJHJUlCZbkXcVk/4zOj+tu3d2B4LI7xqSSqyjyoqpDwgWBtWs7ysb2nMCGQQB62kT7myScrACank7j0wpqs5THtZJljcRm3rVviaF9znZ17Qvj5/kHdcKkAGIrEseeNIUzGErhqeX2hTq9oIfnW4oT/7BtXQHxvQXgigdvXt6T/bSdrnm9WLK3RyQivarU//tnwNP71dwNIykBSUeXn97wxhAX+MqxYWiP8HOGcOZEzIEoe+cnL5vgaS1Cxiy9Zxbbsam35LTZlJMaH8JXH45AkyVGio7P96r8XofKL18QNmwDg5/sH0bywyjbkM5/INBGXmD34zz6b/J1VAmgpdHzd6vi8fKuf7Os3VU8Aqqe2rcnHvT8L1fa+VCn5MEFXKIJtu3rwjZ/1AgDu/1R72r1l5Q6z259a4mdGgv2kyzuuR/Kgtr4OQPbhA7Zfq/AGoeJEQOXJl/rzfyIlBC+8lZSBv/tJD4VWCoxxTFGRDH/zb/r2JaWzSOCpDW79YTf+cHxYGBThjZ9OVAsJPSXtGdj9+iB2PBtK/3s4ol/JWJWb8LDrgcAS9USTrtYSvWSJH5CAc+Hp9HH/4eleKNAnOmYij6n9Pk41vQkxkalEoU+hqBBV2URjMrb+sDudiEYrrtlH++zzqwn4XgEJwJaNrfk+Pdfglz3KkCFDFAY5MThhuicjkwlhhRlVHPApWWOgKxTRGQKAeqvIsv4Hz8QdZk7SUW89X4UX00k1Xte+xGepnz3jYo2bKgh4rr5M3fuFdu+VChVeCdNJa/dAoKpkb/+8YBUaY7r0rMqGQgmzD3v2RdUAHS1+AEDvGXVx0d7kw5ZN7pQEuonImIzH4+jpH+OWPVZVVmE8Zn6eJQlYVFuhuyeHI6MpLwL1JciEkh0NRa51Bdn/4LyVkQIgOp2AJxXn7+mP4t4nurPSz+apZAFAZDKBT3z7DdINcJEtG1tNxqKROza0WL4/39i8vtmyq+aJwQlLTQ8yUmcHkdqeW1oA+YSXl3LoeBifvGQI4VN/gGfyA5DQYOo0eOmFtVi7ol73TKfDJhJ096QiqLRgC6/Z9myViietZKsJHtt7ChMcgQwAWNUasMz2F3G4dwxnzscMt5GS+lNK/0uCms2qPcb/s6cPU3Hz+YxPJfHp69QMf2MWb+uiagxH4hiKxDEVlxFLyIglFAyMxLD3zSGsaaulTO4sWbG0Bl0nx3BmdNr0ngRVTe2mqyh5UEtjfSUOvDOKocg0eO7YVa0BnBic4FbKUCXL7FHoaoBceHD3SQyMxDQTN6BAxnAkjv+27iJce9Wl+G33uKEyDNh2Sxv+68qF+iqE1Pd+/vA5YaWFR9Lv59a1TfjGz3sxMBJDNCbjzPkYXnxzCHW+Mjz5Un/OVTTGapyJWJJ7vGIc20vWM9DW6MPweJjrss82kY5nccuKeVDMVj8b0Lv5t+3qUTex0A2g1Vb2fPeOTuzcE8K//X4QCRko8wCfXNuIL30saP/hAlOo1cTH1jSgu38cxvisJ5Wg+uOX+zEcmTat3KiSZXYp1XChSP0wWbkI69evAQA8VFsnzPPifW9ukyIJ8FV4MJ1Q4IUaMvnix1rw2J7jkOWZ1sayao3oc8+yDH3xvB4HesM6P0Uxe9JK1hhIdwCEfjLNRT97dTCAuzcF8eRL/YhMJRCoKkN9TRlODU05iPMLrAFJZCWIE7YAim+5xV0bg7hrY/FP/loKVeLXFYrgkefZoMiGMAmN9RX4n7dejFWtAaxrncKhXiUdNqNOcEQmOMmbytTQMS7ipFTYYCImp70Cx/rH8dOf/it6Y6ugoMpyf4oCyMh8whb1fFBKJHehZI2BTCsFnMAGQ/aDhicTCE+qGefsBhMNfnb62byVHukGEDwKFZd/at8AZBkwlqwNjk7j//zRMSyuq8DZkXE0VCXRcEEDzo1Nu/LcEfMHUb5DLsakcS6IJxSMTSZ0q3EJwIh/DS5tqsFbfZO2pcdKFhM2f3Fn9iwX69hessYA4L6rjFdNwFAUoM5XJmwrzG5yo3727R9uFq707t4UxOETKTeSoYKBVlvzF96gMhuriZ6BqDDaNRVX0DcUA1CB6RgwciZKFQRExuRjEcf2y+aCWx84YrqPFUgIx6vwlQ0X4d4nutPGiBWZTtjccAVmchaK3ZNW0saA21i57T0S0NHsFxofVjf5tl093JXei28O4ZIlfvS+r7b1rCyXUOaVSDdgnsMfVBRctLg6b8fsCkUQnnCmu1DMcU+i+Ml3voNVKILnRWDeXyOZTtgir8c9NwTxavdo3po/uQUZAxqs3PZOVmaim1y00us+HdVZjFNxBQ/dTqut+Q5vUFEUBW3lJ6AoHZCMEpQu8NS+AYetb1SKNe5JEHahCO04ne4Ea5A6zib3zGpBeNPVxV+5NCdaGFvhJCubbdMzEBWujliLz2wsWp5ICE9PPJdjEHML43279sJJ/PaV32J8wTU4H6vk3stdoQh27ulD7/sp0ZklPtx1fasj41LUBlwE3atELrhVLaMdu7U6LWtX1GP/MWerceO5FOvKPd/MaWNA1AdbG+s0bsNbHeXaP5t3HqJwREOgHM98bU3GxyDmNl2hCLb+8G3IigLAY7qX1fe7TfcVr589D77BKsbroX7yRHY4GZcz2Y+x1TyTjaeclswo+UZFVvCysln9PmtI9NUnjyEpa9WrzHQ0+3Ma+Jj76MqL69AQKMeVF9ehs8VvaDpSvFmmROFRFTclsEfW2OSKKWAakRVnjbDSTbDSQq6pAmzOE1FXXUaGAJE1ooZY//2Jbnzinw5j2y5njbHYfqx0WgjnzOmcAVGs/q33RrD1eDj9bys8EhCoLst64DO6oO7/VHt6JafNai3mLFOi8NhVGFjF753E9pnB+o//+gecnfACkOCFjCS8YHoD7B791ublZAgQWdMzEOWOuwkZCE8mcaBXlSi282iRTou7zGnPQFujz7T6lqBAUWTIiuzIJZrLTWVso3mgN4x7Hu/Glh8cBQCTt4BWW4QI3r0MKGiu96bft/qsE068P4HBiXIo8ECBJ2UIzBy0oyU3DxlBOK1akRVg554+y234z4QKeVkzpyg9A5kml6STSPrHAUhAqgxw7Yp6TlaphKqqKsQmko7OJZebSqRb0H16ptkRJWARTuBXGAC+4f0YHGzE5vXNqZi/uopneBx6m/RdQCXT3x5J7fJIhgCRC5lUrbBEWBHsmXCq01IqDYMKRdElEBqTSxidS/342GUNugzRzevVH5tXGsI6Wt29KWjKKv3Jy/ye4GUeCQlZ0QlF5JI4aJWhTdnYRKYYB7NPrWvAod/8EuFwGJ/73OfQcyaGB545inHUosxbhvYlPsed7Lbt6rHsWAhQciuRO5lUrZR7JezdfpXlNqZqAknh6rS4lbQoOn666sdQxVBKBkfReQasVtPdp6PpiZqp+F3S7FeTSAz7Ya/tPzZqmnBFdagP3bkinXjiRplJrroFBKGFp2OxonkzfvzjH+PHP/4xPvKRj+CKst8jGAzic5/7XEb7Pnpq3HabRbUVGe2TIIxYjYlG2pc498iWeyXLyZfbNyAVinj0SysdH0c7+S+qq0BPfzS9v+FIqjFRyms3Wz1F3KLojAGrpBBt0wemgtZ7JvMkEjtJTLdW68zo4PnEKKZFuIHP58Ptt9+O7/7LL/H1fzuHiPJReE54cOAHRx1rDABALO4gbOa+1hExz7AaE7VIErBlYyv3PaMujHGByJt8RfNKd38UXaEI9znhrfq1vWuMHg4l9aei6OeoUlHq9G7fvn17oU9Cy+HeMZw5HxPcK/rRSAHgTWWQ8Lb3SMDKCwNoWlCp6zHdtKASq4MBbLisAZ1La/DWyQh+9fpgTn2sebC+4ycHJ3U3jrZH9+K64uppTZQePWdi+P6rQAyVADxQIGFoLI4Xjwzhcod903/0m377AynAbeuW5H7CxLwlPSaencTQGD9cEFxUhW/+Ob9ihbn7B0ZimIrLuvdYtszQWBwbLmvQvXe4dwz9IzHu8YY522uPE43JOHM+htfeUY0YazvGPEfF4nJJPDdF5xlwajkC6qTa3uTDO2eikBRzzoAkAWs763XCFEMpV87WG4Noa/IJGwjlGvcxWpVbbzTnLlAyFuEGT+0bSKsDaGEaA05WJbXVZUKNdgZ5sgg3WB0M4NEvruQqZtrluFg1kwPE3uDN65uFOTG87Z22I7bDiQe4WBIbi84YYC78nXv60J2KxwAzLYSNyX1bNrWm4/zGagKWLGhUqAKAHc+G0NniN/3gkqK+x1QCs4n77H59UJOZPWOAdC71p3UGCMItctUYAIDPf6Qldc/qqxEYTqsSCMIpq4OBjOL1gF0YWTz5rg4G0LnUj+7TUUfbO21HbHxXgX27e6u8g0LmGRSdMQDM3CSmmE1nPfYLuj+JVj8nBidMhgCj933zD87iPnKWcR99iZae7tNR3PN4N+qqvWheWAVIwLnwdMllnRLFxbLGagxFpmEerBRctLjK0T5uvqYRb7zxBl4dqEVSMyx4PRIuafY7rkogiHxilYBoJ9x21/Wt3IoC3vZO2xED6sLz3Jg6jq/rrLfsUGisajDmHRQyz6AojQEGL3v65gy7P7U1+jAUEZdM8fsEmN2tTldYTiQww5NJhDVej1LLOiWKA2Ys/zHE7m/zqr450Y1k8hJ4vV7uZ9mg9ZkPNcE39hauK5tKb3P55Zfj4x//eJ6/BUE4x1gJxlbhdT6vbet3u8Rxq+Nk0o7YqkOhXZgDKFylWVEbA24gihVJUGNU7wxEdT+49gZjZJL5n82PWGpZp0ThYHHWd89EkUjnT83IuJR5VGGt9iU+3PwBLw78ei9+9SsFt9xyS7r1sXF1MjKuyr/+H54qAFU4mWxHFAGcf78eFwkyrZ2cZzHEQYm5hdMJXXT/idrMZ3KcXNoR24U5gMJVmhWd6FA+MMbwWVerHXd2mnQF1nXW4+HnQiZXklPhoW27enDweFgYmrCCRF0IK0SdCRk8Iau3334bv/jFL3DFFVdg06ZNkCSJ26FQgoIajGIc9VBUZ6ilMIvVZJ8vgReCcIJpvE8J0BXD/WfXHTRXobtcKLrSwnywYmkNrri4FsNjccTiMla1BrDtljasag2gsb4SGy5rwG3rlmDDZQ3oaKnBmrZaDKW2XXnhzLZOaFpQib1vDmV8jqwM0ljiQhCMB3efxGlBeRTAL2NatGgRampqsG/fPiiKgmXLluGxvacQjcmGT0uIowLazoiiUi1mlJweiWFiWkb/SExXxvjg7pMYGInpOoEqCnBycBI3XLnYhStBEHy6QhF8/ele7nu8EsLZpmlBJV58c8iUCL+ixQ8AGc83blLQMEE+XYm8fTt1wTt1JYk+q3UvLaqtACRgYCSmE8jQQh0LCSfYhaBE7sUrrrgCU1NT+PWvf43q6mq0NS7gJGEpUOCBKF+mKxTBd3/1HvqGprhVv6yxzKNfWpmVwEuhobDG3ECUs6UUieJrJnkLs03BjAFzVuVM+V0mymmifWvdqUMRZy0x3UJkTOhKSlJGAqsmKJYbgihe7JJhrQzKdevWYWJiAj9/4XUM1/4XkyEwk3egT0L0SMCiugrc83i37fmxenH1PEdhrm4ozrwYXg4FJfSWJlYTvigOP9uGYC6LzXxSMGPASUe/bH+QnXv6uL3fM9WhZrh1sxTrTUCUBvzOhOqNvqLFjy9vCloalE3Lr8Gbr9RCOS9jpnu5dl+S7jXmsZqYctbhk/Ffl8VxgO+pLYrVmRGewAwl9OaPfE6+bY0+DEfCXO/V7R9utpUYns+GYMGMAausSpbUl+2DKGp9adcSk4dx1TA8rnow6qq96Gipj3+nVgAAIABJREFUIXciMWusDgaw485OfPvpt/D+uDqZB6QI/uzyKtz+iWssP9sViuC+f+1NKahpV+w8IRUZF9RU4uImVbjrvz9xzNH5VZRJ+LPvvAHP1FnUV/gxOs1yEFQK2Y+DNwG1Ly7DiRMncDQ0BlnRl15SI7H8YBpPUx7hOl8ZOpr9OY+nrCTQ2MX23puCUBRwxvLR1Bal2U/ATQpmDOSjox974ONJ9wokjKsGViUQnkzi0HGzFcmT2Mw17EEQjNXBALZ+uBx79uxJv7bpur+2/AwbgJPGnEEBXiTR1uRDz0AU//Opdy2eJ31IYWJaTiUmLgDrGCJB0iVKZZIX49YK0jwBjeJg7ygu876OOuk8At61mECtTmqWGom5S1cogp0v9OHY6ahukmb/H55IcMfTTLGKyW/b1cMdy3PRlZlLFMwYcLujn/aBF1FRJuHWB45kNLBYeTCMViSv9Kv7dBRbf9g9a/kKxNxn4cKF6f9fvHgxLrjgAsvtmUHrlCTKcej4mOEzRkEj9d8VXgnlZRKiMVk3uKrpiBIC1WU6eXCneTHCnKIWP+7aqBrXdsZCLBZDf38/vrd7ELLsSU/2zESZuOCD+PpfdKBv1ONYmY7IHLuSWIZbq3JRONapxPB8NQQLZgyIehBk+yDycxD4KxdeXEg0sNj139ZakU/tGxB6Ouaj24lwl7TiYN8YJhIfBeCB7xzQ/Pogbr5GLIRi1xbcPMmbe3lolNc1/1Yxlymq78sAIlMJSJJq/GeSICvMKepXc4ru3hQ0xXoPHQ/jng9XoHxyAKdOncLg4CAURcHp5J9Agb5zowIJw5PlqKurw+o6FG2G91xANC7yyOeq3KnEcLaGYKlXpBS0tFDUg8Dpg6j9XHgiIbD6FJQhjgTKhX2mrfICmheq2u582WK9FelGwxiC4GF29atlgBNxpAVWRAaByKAV3dPihizm16dtQnLZrvbeGYhY5hQ98dJpTlc5Gbt+048PLz6B1tZWXHnllWhtbUX0+WEcPj6m259x9UfJvfmjZyBqv1GKfK7Kc5EYtmMuVKQUhRxxNg8iu/i8joQMVZGtHicGJ7gNIbQrelFeQCR1I3e0+E1aAUYr0qr0az66nQj3MLv69RPzky/1C40B4yAIyPBIEirLJEzGjRO80QOQO6LVHm8ldfEiL1544QVIE5UALsBM1YN+f2OTCc45euCpWYK7775B9+rt66vwxokx0yRAYYBZwqFXYDZ+l0ua/eg9MwEvgPYmH7Zsas1ZYhgQtDxWgK8+eQztS3yAgnQzo2L1GBSFMWAHb9BgricrQ4DdWD95ecC0MjKu6C3zAiQgUFWGX/2dtRdjpvTLfC408BC5YKdpHplKCN8zJlXVeMbhnwrhaGx5agtzmMBNg4C32jMa82pOwCgu8b6NZqkPF3nrMZpsSEkj689DggJfhYTJOEzP9MVNftPxi1noZX5gbw0wKe18/S7GlTughpwefb4vnYOS6f6091NP/zj3+YwnFV3b5GL2GBS9MZAeNFKlIiyRyF/pFRoC5V4Ja5bVpm8skXtIu6J3mhdg5cVgpV/GagJq/0rkivU9qqCmyvpR1t63o6Oj+IvvspU6zzPgLrzVnsiYfyd5KfzeMSwsi+BPG3rRNX4R3o+Wp99Xn10Jf/WxIB5+LuR4tU9hgMLR0VKDg7382n+A31PDjkzj81Y5KPc83p0ubVy7oh77j41a7pcXEsgkJ6JYSxeL3hh4at+AqWYUAKIxsRBKna9Md6HtVgZmN6qeTOJYLA+CIDLBbnAzV9+wFbP6wtLkURw75ke8usV2kKyvr0cUdcjHxG8kuKgKf/OJZVjVGsDU1BROnz6Nvr4+/PG9SihKuWFr9XySzR/G3925Mt12WeSNW9boo9V+CcDuXd5knG3JaabxeTvPWngigYPH1YUme6pE++WGBHQzlPVzVayli0VvDJwYnHAacgKg/gxOJm7tikRrLPQMRC3zAgjCbZwMbtp79HDvMJJQJ0qvR8Jli6OoHT6Jx54+jzeTH4QkScJyvDSS5DiWmwvVnhhOvvVb/O65Uzh79iwAwOfzoa58DSaSZeANnAOjybQhAIhX9bTaLw1M/VrqKnQx9EyNOOMCkcXn7/vpuygvk7hGsJ33F5iZE7T75a3iRSWKakGtvYFdrKWLRW8MWCXl+Su9Og+BBLU1sXHidtKrQDuwZFvdQBDZ4FQOd3UwgD/74EIc7D0PSZKgpNzsb57141uf+ks88qu3oUwq6aoZBnOF+is9KPN60NHsBxQmSZxf78CJwUm8kRjBe4lVOF9WiZaFZWjFO2gaPIoz+KBpe6fGPFFauGm49fSPc+3Y8KSaN8OM4K03BtNJtVa6NlbwVvE8w0LNKytHZIpX1abfrlgXl0VvDGxe34wDvWZjQJKAlRfWpJMJrSbunS8IehW80IdHv2h26dOKg5hNeCsNWQHe6R+DoiiQpJkJ+8lfh6D1SjLD4d8PjmG6bCEAfdWMFlUPQE49T24aAuJkw/raGrxyfkXa2AkPTKMby/C1jZdhebgaP98/qNtea8zvfn0QT77Uj8hUAoGqMnz+Iy2WegrE/CDBnW3N9+COZ0Noa/JhdTAwo2vzQp8uoc8O3ipelIP2+T9twSOaPBZGcFEVfBXerD0hs0XRGwOrgwFsvTGYrqUG1AvPMvRXtdpP3L1nBL0KBK8TxGzCF0NRIE2eww9+8ANce+21uPTSS+HxeHBqOA6Ar6PvxBWqPYJ7iPd1diwB/UDtgSQB/9GVxDsDg6aW3nffoDZb2v36oO6ZD08mbPUUiPlBLM67wfn3oNa7tjoYwKNfXJmWRhYZBXYhYqsctLYSzmMpemMAUB/+tib3L3I8qWDbrp6irfsk5gf8lYaELTdcgj+8OYn7fxbCpGcUwYYKSHIMQDWM5YDV3jg2f2gJDnK8aIXHrP3+7kAUsqyPsXokYH/3KDZetgD/sjcE3mrPSk+BKH3YRM0Wau1NPlO+i5SBHctL1FsdDAjDBY31FQg2VNvOM3Mxj0VSlExUy0uTLd8/qpM81sKsv7s3BW1LSggiX/DyVIxd1gAZPDlgNrJVeJKYlkvBvmdDjnlU95cl8EHvb/BSbAP3fY8EvPSNq/N7ekRB6ApFcM/j3dz3blvbiLs2BgFYj+dGrm7nlyx+dPtBbgOucq+EvduvyuCs5w6lMHLkzF0bW4WNMmQFkBQ1vsTkWYtZGIKYm/BWFMYua2qcnxefV/+tGgLuqge6j9X5yahInEcSSZQjjjjKTdsGbPQUiNLlH39xXPjez/cP4rnDQ1h5YQ0+tqYBPQNR23AYib1lhlnrcw7CxICubq+DhzMOKak/tdnciqLGmwiiUDjtspbZ+4VGdH5qL8E/v24xvvzlL+PLN7Zzt71jQ0tez44oHIOj05bvR2NJHDwexiPPh3DPDUFc3V6HhkA5rm6vw70fD6KzxY9yr4Ryr4TOpX587wudwlBy+xJ+xYro9flASZnZWleqsVbVTjmKrby27erhSgZTT2ui2OAnBBbzyt/JufG3Kfd68OAdK9KD980NACDpqgnu2NCCm66ifIH5jKKowbL9x0ZNnrRM+gvcdb3ZW+yRgC0bW10609KjZIwBs1bATAnVcKqulMHTEWDwkrVkBaas5mIVhiDmD2tX1BvKapk2gB2FMhicGAJ82pt8plXczdc0UrIgYUJxYaHGvMWlmvmfD0rGGNi5x6wVwFDSf84MRrKifsYoDcwrC1nbWY9HnpvpjV7MwhDE/KArFMHDz4U0rzid4IspH9h4zpLJ6Gb0DETRFYpQjs48prG+wjZUwHBjoVbKmf/5oGSMAdb4R4x5oBR9hncTlHJ9KFE6OG2w8t3d7xmMXzaN2hkFxRJC4BslIlNFgWq8B6rLqKJnnvI//uxiYTWBEVqouU/JlBaKSkGsyKVMhA3aPf3jACQkZAVlHnVA7mipoYGKyBhjDwLmgTJWrViVWJUWPMNFXFaoRXRtiLlNVyiC7+5+D33npoSG4703BV3NHdGO9QlZQSyuQJL4GgdzmZIxBrb84GhGMpIA0LnUz5UbtsPYNtkI64FAAxWRCbzkVY8ErL6wCv/8uU6Ul5ent+NJcKsUcwKhE0Tnb349m9a2xNwi331ijLloPB7+wvwY50vGGBD9aHU+L5oXVOHYQFTXidAjwbK0xApxxYF+/zRQEZlw6wNHdImvjApMYW3Zy6itrcUFF1yAZ04ux3jcy9mDVZvUUjcS+DQEyvHM19YU+jSIOYoTAaNgQxV+9JUPzNIZFY6SyRmwy/5004K0630NUOlhMeA0/l4siLqddbTU4uZrbsbw8DBGRkZQ4xnHOGohXkHzKgrmniEAAPGEQomFRN6wz0UD+oamZuFMCk/JeAbyjXZiiScUjE0lYHVlyDNQWIyNbAD1N+GVkxYLopyBHXd2pkWumIaGKCTmlRSoqTNzZfK3ziGgkByRT5zmor38zbkvgT0vFAjtYCGIA71hDEXiCE9aGwIS3Ck97ApFsG1XD2594Ai27epBVyiS0/7mCzxDAJhpS12ssLLWKy9WldOuvLgubQjc+0Q3Dh1X778eC7fl0guMTYpKGYXz/4rudQWkBkrkDyeKg/7K+TFNlkyYIJ+INAz8lZ5UBYGEhKKgTJIASUFHc03OiSzGVSLrh0ANk6zpCkW4hgCj2NtSO+lBoP7NWzErGBk6A6Ce814xkk0ZpPk1CskR+YKnRGjkrz524eydUAGZE8ZArrFjUdxoOqHg2e1XunWaOp7aN2CaAKhhkj1zcYXovAeBhEn4LN4vNjI7R4+kNiKKTCVMeRWkBkrkA2Mumr/Si6HINCan5XkngV3yxoBZplgsRVxM8CaAmYZJ6iAqpzymX33yGNYsqyUvAexWiAoWVsbQdXIMT/32TMl4V/g9CPgkUIniUhl0DznlSJAk6OTCSQ2UyCergwFsXt+cNghWXhjQjRmllqicLSUfDOG5+JkUsVMK0cGqrdHH7aDIW03FkwoOHQ/j3ie6531egXiFqN4EtVPv4is/nIm/l8J127y+WZ0AHS2k56YhAKQqK5r93LwKUgMl8gUL2RrHjD+8F0bXyTHue8U8nmRL0VYTGK0xUVdCUTZoJuqDPA2DXHQKnB5TmzPgBKpgsBYJuaIuhBNhH87jAmjt3FK4btr7fTohIzKZgGKRYV+UD20OaCsraOInAEOX2toKQALOhaddX53zdWVkLMAwAJTkeJINRWkMGCdKSVIzitkgqJUq/eqTx3I2BtgxZ7s3QVcogp17+mxFL7SQCMvMdWO5Hu1LfNiysRWrWgO45X8dxvlo0vSZ2b5u2boWFUXBv/zsP/H00dqUMaA3COaKIcBKBqvK1STdjpbck3KJuYPVYsltqWqRGFhdlfqsjXFkBubiOFyUOQPG5DpmrrB7QlZUO+2pfQNoX+Lj1mRn6uIvRAer1cEAAtVl6YTBGcS115RIpV43YzdKxvIlNVzJ39m8bqJKESeD1yuvvIIzPa9hy3U34N/fnMZAhCkRSmmj2BnFqkjIMmMkJGUgGpPhkdRQCRkCBMM4B2jRjv9ujNlCMbCldQBQ8PFktihKYyATBcD7P9XOdfFv2dia1bHTTSsGooCCvDcocp5JrkKJVNZsXt+MwyfC6QQ0CQoURcGltWcgy8vh8eQ/TYZXKeJk8Dp48CD27duHP/mTP8F1112J8snd+P3b76NPbkfUswDhiUQGZ1G8hoDx3GTFvYGdmBvYzQFulpsaxwxt0qqiQPjeXKMojQEn2dXMOrOTKRahi0fVVQAKMDAyhfBkUuiKPdDrfqlfJpnknS1+Wj3ZwIR92G+7rLEaly0cxrtv/BZPTw7glltuQVVVVV7PgTeQyQrw7plxKIoCSVInQ9096E+i6tx+fPSD1+Daa68FAESjUbQE4lg4+QaGFt+Eg8fDGXgGjBTaU2CtNEg6AoQWu3HRzdW5ccwwziFW780lSjpnINtko2yS9xgSgKva3Use4UnUajHK1s7Fm3A26O3txS9/+Uv4fD58+tOfxqJFi/J2LH5CkoIFGMJ1C9/B8uXL4V1wMb67N6K5B2VIkPC9Ozux+qJaAMBjjz2GyspKnDx5El1VH8fwuLVnoMwjwV/pxdhk3JB8qJ6IBCntpEfqFe3/V5V7MBWXc/vyXBTUYhQR1EERFDBd7eIzRZQ+TnIGaDx0F+/27du3F/okjDTWV2JNWy2GxuKIxWWsujCAW9c1QZaBWFzGygsD2HZLW9Y3woO7T2JgJJaxIcCIxWXctm5Jdh82YPyuKy8MYNsn23D9mkX613L4vgSwcOFCXHrppXj77bfx2muvYdGiRWhoaMjLsZoWVOLFN4d0xqvHI+ErG5vREChDb28v/u0tCRNKtWbSluCRJAyNxbHhMvW8XnnlFSxZsgTvv/8+hpMLEZWrIFpZeyTgnhuDGBydxrnIdHqfDEmSsKLFDwBoXVSFam8ck1NxyJjJSZAVxeXkRHVv9950Ef5ibQD73nofMaWS+x3+9pNtWFxX6erRidLFOC4GF1WnPbg0HuaHovQM5BtR9qhTaBVTPGSatf9G7wh2/PItDI57cOHCcnzlv61Mr8TzeV5a16KiKPjkd96wrHqIx+P49re/jcrKSkxNTaFsYTt+fXY5eO7+uuoy3PGnLXj4uZDQ22Ush+oKRfC3u97GRBym/blBnc+LBeUTuMh7Al+/97MAgNeOnsHfP830PzSGCtQy3rko5EJkz2yJ/YiOk4/jOy2ZLwTz0hjgu3Gd88hfknuqGBB1ATTmdLAH8OipcURj2glYdc3/X59djsvbF87qufPuQY8EXN4WwJ91juHVV19FJBLB0qVLce7cOaxbtw4jFZdgx7MnU1tL6fK8HXd24icvD9je08zQYNctKZsNC5Vc8gsUdDT78P27VuOtt97Cv//7v+NrX/saqqurAQB37fwjjg1Edfufq3XbRGYY87iOnY6aPFVbbwzi5mvckwcWjSF3bwri4edCpuczF2VbU/gbqSctFQZ3u2QyU4pCgdCqe18+OvtZKb6xl6or+Jfm3puCZAgUCbysfUUBfvRSH5iNyx7Ag8fDBkMAADxQADzw/x7C8PDwrJ772hX1ppwCRVFQ/v7v8OKLL6K5Wc1W3rBhAy644AL8sW8czx8eTEf9vR5gRYs/HTe1y77WJlyx68ab8NXcRmMKbSZWs4STZ0bxxhtvICItxB8SV+LPH/pj+tlVPXLmagJKIJzfGFUAuzmGAKD2bnFT/e+pfQOQZf0YIsvAv/znqZyVbXnH0pXMp/5UDONXofqvFLyawKomG0DW9dpWGLNHWSzq3Ni0zqWbLjPsH4cqmg68+vYoli32ZexG4m0LYFbcYHMVUdb+H98bxre//W0sWLAA+8OdkOVqiNT8AAmD03X44sMHcMeGIDZde2nez7srFMEjz4c0U676Z7vnj/gvK5fg2mtvxejoKHp6enAq7MFL51ZgcLICwBSY/Z6UgZ6BaHogscq+NpZDWRkOHgm4+8YgXjwylOoAqZbWTsadeQskKGgMKHjqP36HN5MfhIIGYFKV0z58IoxLmv0YGY/Pi7ptwjlWugK8bd3yIvX0j5uMDgWq/gUPUVM7JzgpIy+kYVxwY4DfvU/BPz99GLKsQJZ96YHcTbEJo8iQdrL+ycsD6Yl57Yp6HOgNp7c7eHym1fAjz4ccGSo8g+fQ8Zl9UofC7BCJhbQ3+bH+svX4Y984Bs5UWRgCAHOJD8sL8c8vRvBq96uIV1yA9wYn82agsXt+5rTVPP8huQlXXXUFFixYgP7+foSVetz/iwHIcgVErX3Zs2CslWbfq85Xho5mvy5nQWQ41FWX4Vubl2NVawA3Xz3jiu0KRXDP490OvpkMBRJG436MlK2FkpTT582eXSjUiIgw40RbRrute8xeuW0mJfOFoODVBI/tPcWxwiQkkkBMLsO07NW9owAYn0zgyIkIHtt7Cod7x9C0oBKN9Womclcoggd3n+S+J4JN1gMjMURjMs6cj+HFN4dQ5yvDjmdD5g8oCt48MYJEUkpPNGzdpM0GZxirFxQACpTU3/afJ/jwsvYlCbjv0ytQEWjEg/85nu4AKUbS/X0q7MHASAwT0zP3wZq2Wtt7yCmDg4N47D9PIW64rwEJ8JSjNvImVq9ejRMnTuD5d32YUnyWxkz/SAwH3hnFVcvr0hUok9NJVMfP4vPX+vHNz12JDZc16DL1+dUOwAOf6+CGwBrrK3Hg3VEMjVkl3SbBvBaxhILpZOo7aVAAxBMyvvPZFVQpQ+g43DuGM+djjgJSq1oDro2RT///ZxDjlNN6PXy1z44WP264cnFWxzI+d+mRJ/U/bPzadkthKmsKbgzwbgKPBFzWthCL632m9yQAUwkFZ87rJ+41bbU4G57mTup2gzlvsoai4A8nziMhs6NqkZCQzbrxCvhlhyKDx+nnCT7csszUxMJ+08xyRPWGgQJ1QNjfPYqVrTVZGwSKoqCvrw/PPPMMXn75ZQwnL0AMPmh/f48EtDeWI3b691i2bBnef/99vNLnQ1yxd94NReJ48cgQrr98ET7zoWZ86tolGAwdw97uBH72+pjJKLa6biJaF1Vj75tDptclqANnx5IaDHPyAYzEEgo2ps7ztnVLTIYKMT8xTpRWuFmGeuTEGAbOx3SvSZI66Y9E4qZ56f5PtWd9bFPJfGsAt61rQjLpTsl8rhS8mkCUzbnjzk4oCkzvaUWIGJIEtDcokJNJnBjx6lZSTjKVxaWG4jhpTZWEiZhiclHzjuW0eoGyqt2hKxQRNrDKDgUeCXjojhX4wEV1llvufn0QT77Uj8hUAjVVXmxa5YXc/xrOnj0LAFi8eDFWXH09/vE/znGqIFbgtRefhtfrxQUXXIBnjgbwfizg2H3KSl5nOjvKADyuZSkbpbohKehoVhsM/cPTvY7KdSUJuIrucYKDk2qCe28K4qar8l9NwOaf+aA8yCi4MQBY12Qb3+sZiHI12isxBUmSMKWYrTa7DlOiMq9AVRnGJhNcS/Xejwd1dd1WqlikMjh7WLU4zg0ZC6URbF4Tw4YNG/C/23v36DiuOt/3W92tZ7v1SKxIlmw1lpXIwhFjx44zk8A5HhhDnHhimNwk9x7MAAkZsM+QsS/n4px1BzADd1jkXoInWRMPgQRMknNyYM4MvhPGiedwYi5g8CNxQDiyEsl225ESRbKtVluPVj/q/lGq7nrsXbWru7q7Wv37rMXCaVVXV1fv2vu3f4/vb8mSJaYjDh4bM4SVlIu43nca722ewtatW9Hd3Z25TtaYHx4ext8/8wLeqVqDK4kg5lJ+iJb6qeOcN54LaWjyVBdZ170YO74R7uNWJ1m7RO9SdKz1Ip4wBpxgNdEB7A5TdpMgt9b0zjAe/2kE6bTedaVap04GEevYSrM8i8HOfzjNaQmt/oKS4d/i1Ehz+CP/ywCA9vZ2fPCDH0RXV1em18BH//ZVRGeNhqqM+moJ//J/bhBqktR/fgp/9dTAQkaJb8ELJqOuSkZfuBmxuSSzSyeQ9QzwPF2FXITN8rF8AyZY48M3PtFDibJEwRHVIjG+pxIrv8rOGHAaVhDdbfMWdrIay4sP7z3BCQ/ICGEScdQhgSrIMCbwmY/Xq+TJaMIENtT9FoFAALOzswCA+vp6/OEf/iFuueUWbPn6a9zSvp/9zUah62fvsNPobQvgif+4gev58EmKit+NnaGSeAaA7DMkKujltoAMQRhhbQ6sngUnXtzFVvlV8gRCp1glP+WSGKU97+a1S3VJTVYylU4rFoji8MyRUeZCFPBJePR/uw53/+F1OHdJxljUvINXMKYwZXN/V7Q2Y83KFiSujiMej6Oqqgrz8/M4d+4cjh49ilGsRFI27/79PghXJPCSTVOyhPve347Wphrc1NWA8+/OIjqdhN8noac9iC/f150Z57wqi0JnKavP0OsXrgplhv/mjSjWr3KvUoMgtPRHYnjm52YBH6tEbX7ll5QZz4u18qvsPANWuKklbYz/qoqFRn2BxWollis7v3Oa6UbvXR7EE59dAyBr/RvDP60hIDabRG3qCq6VxjAmL8eUrCYMStnf+tOrEcJl/Pa3v8Xp06eRSCQgSRLeSi3Hm+k1meOh+ZfPJzZGeJ6B9V0N+H8+LS6IVEqPVtZ7YZ/rQH0+iEKx58CgTiNGizbZViQnjQUr7FasfgqFoOyMAavdutPYkNVnsERWJMio8acRT/kcVywQxYHlRte60LXH8RbL6elpnD59Gt8+HMU78RC0qt3G3zqRSGBwcBCvvfYahoeHMZTqwVvyyoWjnY+RbN+A9MLnpiEBeOzBNWUVnuLnbuihZEKiUFg1pHv8wWxYWZUBVhEpb2Q9z26uQaWg5AqETrCSLv7hy2+ZlAy1aoVOLDaeNrQMCXMpH7wkIUno6QuHsO+BXttdsVGBUkswGMTGjRuRPHIKiOsnk7QMDGt+66qqKtx444248cYbcfzMu3j4uXMLfzGPkcGRKfzufBTP/fwd7jjsC4fwtXtX4P9+/lVMI4Rra+fRljiN6rlrAHh/QlEZn5q3PwgkQ7wY8crumKf417s8mMmtMRoCgLl5kBYr1UyWmi5kYP+LFzJeSS9TVsYAT7r4b77/S0ylgkijVnd8WlaqC3Z+5zQGF3YpItK/Vgt7qNaP6XiatNU9jNVC7wT2ZJJGID6O119/Hb29vZlKAgD4wc/HLdQC00jPRrHrqQEoPiaJOw7fcw3wB4GTiMrNGJPWYCB9E774XAStrXO4fDVVFu7HrtZ6TMTYLlotJEO8uNh/KIIfHR3L/PdELIrjQ1GEW2rxhW0rXdG5UI2M91xXi5dOXUJsLolQbQCf/lCHLiHVKNGtLuI7t3QCUOZ5nl+8oTaAqoDkqPKLJ6k88NY0+iMxTz+vQJmFCXhun1CNjI4mH954V7bIYtbHL63ctnsODOLEUJTpKtr1p0pc8xB7AAAgAElEQVS5oYhIhdcnbMIaXmbxnSsuIjb6e6xYsQKbN2/GihUrAFhXMkiQsQRRxNAIY7PQYI0P80nlfd3L6rGiMYWfnY4hlbHV9eWQ5eB+FOln4LaATD4cPDZmalkLAAE/8JdbqOpBhK/9tzfxP39/hft3CUq4Lpcxay5dZXPvra3YsSWsex9vEbfKKcglfCWSo+BlyqqagCdd/AfvacIDH1lpI2cpLv3b1lyjSK8aTrT7rjC2bWxlViwMvz2Drzw/hJEFXfvRy3EcdlnXniguzOqUu7uw7YNr0dnZiTfeeAO//OUvMT4+jmi6Cf/j91Pcc61vfAuReAvAKGlMpBRPU1pWMpSHx5OQoYajtBLJWZlkr2cztzbV4Icvj3D//viDvfjAe68p4hXxUZOFWfNGWlaqHpqDAaxebhaaIhQOHhvDf/3lO7bHvX7hKn49OOm4EsuY5a9gTlA9fXFaV6HCqhJTaWuuwaFX2RLbufQ/4J0PKA+Z+bIyBqxKpvrCoczELVLW5JOANSvYP7i6CFzSaEg/fHdXZvIyDrCxyXl85fkh84fIwCUPT9iEPbzJpLm5GTfddBOam5tx8Ng7+K+/1e7i9Vy7xI9zVxsWQgjGv7My7u2z8K2MWa/wz78ZQzxpbgLTWBfAQ1vfU/wL4vDwD99gXqeWk8NR/PmmjiJdUfkhcg8BIDqTwOiVOGYc9I4BrPq7mBGdc1ubatAcDOA3b2R382rlTy5luK1NNTj+xqTJe2211niJssoZ6AuH8O37+clhaqzYrheASNtUVtyZlxjDTzjM5h94JamGcA+fzwd/8yr0z86Dv4DLuHQ1tfB3lgIh6z32yogSZKxsrXNyuUXn0x/qYMgzS7h/s7cW1dicfSlZMlWECyljRO6hihqYdtKSXqT9r4qTZO5tt7Siq61e6bkxchWABEjQtbF3wo4tncyKgnLIjSkrYwAQSw5jJY4AQE97EKOX55DLD25VyWA1+BJJGQePjem0CewSGInyIWsI8hbwjB/LxU9V0pR76t+CLPfokhi9hBpn//7PRjA1l4RfTmBLr+SZPAGVUG2AISNNOEH8HuZWiWWc061wksytbb4VnU1lntaTw8oc/fk7wjh6ZlJ4E2e3YfUyZZVA6IT+SAz7X7yAobeVgdbdVo+PrFuas2AQz9vQ2xFEqC6AE8NRZmaqWqJi7LRI2gSLg4/+7SuIzopsG+1d/074WB9wZeAQ1q9fjzvvvDNjEOw/FME//nosM06r/RJ2bun0RALc3z/zU/zifBVSNS2e8o6ZG0yxeflrYpLSlYjoPcxnHjR2NWSJi7E0RXjn2n/ogqUWhrSgPKh2yy2HxN18KBtjwKmbnZUJnpbNghKig9FKwGLXVkWVkFWzqsBeCEhwpbzhZ8zzQwbuGAQyrqmaxtKmJTg/PodlDcDGGzvxT795FylO2PamlSF86/5eFz47NwrVVtktPvaNVzA5wzfqPvS+Zvz1PdcX8YrKj4PHxvDdw29hel5/HwM+4PplQdx+01LhTq8iqAv60DsLG75l9di5pVPIEFCEvUQ+RbwKrdzxrDGgswIbqpUe6hC30Jy2VP3yfd2WxoZd2cj2Te2OmrQs5kFVKbBLULX/xTMItH/L1UDQnicNMJMT9Syp8eFf/npDDp+VP6VqnuSEP9/3Gi5eMoslkSHgHl5o/GaXU2bHYt3EeTJnwLirV3bk2UlTJPGELQBhnix9EtDSWM3NB1ANgu2b2rnGwNmxGcvkRW31Q7kllRB8zo7NMKpWlF9bWmhCbB5zrP/WGgQixoHxGB/sBVSBq/E0/nzfa/jhrrW2x7oN63n0mnJnKe5LpeGWIFg+8MSBtFh5kherwJybWU2uYVQaVHCWeNLVWm+SkjQiQVmUU6mUSdlQFRBS6QuH0Ls8aDqHcXBs39SeaWqk/t3nA3b/aRgbVjViaagKG1Y15uwaI7wDf1LQDjyR7YdTz0BuFQgAmDvfYsB6HhfzxEp4h/5IDHsODOKeR05hz4FBtDRWW64NjfV+bFjViF1/GobPp5/LF/MmzpM6A+yaUj12tZtGTQKtdIuCMkmvqR3C8JUaJA1OElYdd2dLHQ7btIbltVH+wHuvwea1S9G7fAl+dz6Gnxwbo/bHZc5MPKWrUc6ijjjtjGO1WLNGqLsJh1oGLl4t+rgrVVtlorJRvcyjl+OYXtA2uBRLME303uVBfOW+bjy09T3YvHYpVncsYc7li3UT58mcAVGdALvdtTY+lUjKmJpLGrpTyehqTqGmtgZn3kkJxTNziXllyldGrirlK1K2CYaXkqgIZ7DzSIw5AUbcyhnIn11biyuz64V4MVFZMMO2hooGQJmL9z1Q2fOwJ40BniZ8T0cQ49H5nCYSXjWAmjzIEopww5Vvp6nttSQqQhyrChM+MvxIIwVz98tS8FiOWvEEUQ7wn9HKqRIQxZMJhLkKN1iVH7IUrNSYZSGFItj5D1m8lkRFiONEFS2LhBSjP0Gp+M/PDOIbn+ghg4BYlLCfUbM3juZhjxoDgHjWKc8Fb6wI4LWzVJNBCpXlape5SklU5QtP6VIl19KlYjIdT2PXUwMV7yIlSgdLnyBY7ceDH14uHMbibQRZz2haliqqSkAUTyYQiqJNDplLmKu9JWQ7u/ES+wods2R1WlShJKryhtfV8IZlQbx+cRrzTFUT0RyB4uUSyKCGWkRpUJULja2/EylZuFskK0lQbYAEAOfemcXkdBJ+n4Qb2oPY/u/bcWIoSsmsBjyZMyCKiHhEqQUijDkD6gBsrA+gpz1ISVSLDHaOSD7CQsUxCEr9nBCVyUf/9lXLnga1VRIOfflmy3PwBK1WLK1FZHwu85oEpcz72wtKnJTMqsezYQIRysEFX86NKwjniGhk8KjyS1i3sgG39jbhH168gDmnuYk5I8OPJPYcGKSumkRRset2aPT4suAJWkXGZxf+S3n+ZADpdFasrpKTBVmUtTFglcCVr0CEmy2HvaC6RRQHEXUzFj4JePT+1ZBlONBNd4+xWBpjsUkAEnXVJIqGGx0j+UmCgNEQl0GJgjw8qUAoilHtT/3ZG+sDGZU/WYZOfao/ErM9r+rqPTkcxUQsgZPDUex+ekDovURlI6J8aSRY7c90Wnv2yKiNIVCIqJ5e8IilwEkQheDTH+qw/Httlf0SxVJ9terVUWpvsVcp65wBwFrIhKVXICLys/M7p03tMd2qQz14bAzf/beswqJfAm7oCGLH7Z20C1sEsMacLFsv4b0dQYxPzWNlax36z0/BxnMqgJprkF/OAeUREMVg/6EIfnR0jPm33XeFcdfN9hUFxnUgNpvEmdFpZhfZxx8kKXgWZW8MAGyX/poVQez+3u/Rf3EWsgNxCX5bWsXj8JP/fFPO1/h//eMwxibZ2vCkgLV4YBmow2/PCPR7t+t4KII7hgCJsBDFpD8Sw7cOnsOF8TnIULxlf3H7ciFDgHe+3U8PmNrK84wLN8PC5UrZGwPmbH3l62yoeQW/jd+IedSa3mPc8Rhli61iWLkotmV7uVsft7Hb2kip9MFa7hh/w7HJOCITc4aj8lnE9e+VFmwC0QfcWGpFzbSIciCjNTM6vTDYZfR0LMGtq5tw9MykbeI2V/G2XfHYVcp8W/bGALtlsIxV16ZRV1eH0yPzlj0H7OSCtUgAbrZYsK2ukdf+WIvWSNEuHC0N1cpAh7NwB+FtPrz3hKm+2m0CPgmptGwdplgexEfWLcXRAfuJkyC8BM8DoC0jtJsjRXvhLPb5tqyrCQB29rYMCZPztXjoY6uw++kBruogwCsFY+/Ocs1EFX2PmthiNFCM2tppWcn8VEtkCIJHMi1n8hZY3Pf+VnzuI2EAwLaNxWtaRBBuoM7fxvEtI5sEazdH2lUAVcp8W9bVBIB1n3S1xn/DqkYsDVVlKgy0Ox72QOC7aVsaqnO6RhFUI8WunwFAWtqLge5lhc9qlqA0+NrY3YhgjR8BH6CYy2kEa/w4984cVckQZYvVQi46R4pUAFXCfFv2xgCrrITVc+DHX1yHb36yx+T6ZA0ECUBtgH1rzoxOO548t29qtx1su+8KZ65NpFbdC4JKRH7suL2z4J8hAxiPzuObn+zBC3+9Ho/e3wufpGTWTMdTVDZLlDV2C3kiKduObeMawqIS5tuyNwZEdv9WsIwJnw9Y2VbHPD6X+uu+cAj7HuhFuMWczAiYM1ztBni+gkqEN+gLh7Bra7ign2GcxLJjV3n0SVOAKGfU+VvizJdTs0lbY1ddQ3rag6jyS/AbVkWpQubbsm5UpNLaVIPNa5fi3tuWYfPapY6aTfAaGP3rK+OYmWerv8QTadx72zLH1/jRW1qxflUDLi181o2dITx8dxc+8N5rdMe2NdfgpdcmTNndq5cHARlFa7JEFJ7Vy5dg/aoGnB+bxeWrCQeSQvYlhKwGLE8ezmpcaM+Uy5gmCLfpj8Tw6MHzePLwRbwyNIW25hq0NvHnc3X+vjSVwOR0kpuQa9eI693oPP7LL0aR4oRn/2prGP/OME8vNsq+mqBQWFUAWJUAuoWVmBKxeDl4bAzf/9kIYnNJhGoDuH9zB+Q0OBoFhlJCKIt/T0cQ49F55rjhNXUhTQGi1ORb4mc1Z9sJaFlVFFTK8+H5aoJS1ddv39TOHBy+IrmLqJ9BZbLtllZmD/eutnqdFsbUXBKyrPcINNQF8PXt11sajaz+7pXgAiUKg5vzszFxWv3/gRGlrNquZ4ZVgp9dvN+NRMRyx9PGgLnELorjQ1H0dgSxY0th5XvVOP/+Qxcw9I4yELqX1WPnlk7LyZYngFEJohVE4dAah/c8copZKlgVkGy9R9RFk3CLTI1/Wpnq1Pl519Yw06C1I98Sv67WelyKRZmhNjtj167p3WJPHgQ8bgzwSuwGRqax++mBgotA9IVDeOJza2yP0xoA0RmzeuHxoQUjZjn1ICDyhzVxOZmwyOtEuMGzR0YzhoCWfS9E0NVW73ies1qQVax26arXy3hN2kotHup7JZjFiyrFc+bpBEJWspOKBGDCJimkGKjW8ejlOOYSaVgldE1MJXD4tQms62qwTIohCCt4CabaREGCKDRPHr7ITbK2S9hjYRzXLHySkkDNOrc2mdAqQZuVpNgXDmXee3UuhdqAD7XVEt4XbqiYZG1PewasLEWvxHHM3gtrQQFRVSyC4EGufsILdLXWYyLGTthzOjer3tUlNX4AEiAB7dfUYHDELMNutUu383oZQ8+Xripe28Y6f8WHcz1tDKiuG5aZ6JU4johAkBavGDFEeUOufqLUbN/UzszelxzOzQePjemqZdS+Ajtuvx4AXDV6jZs3NSQQnVUEuKwSFBc7nhYdUndAvcuDute9lAEtImWpxStGDEEQhB39kRj2HBjEPY+cwp4DgzrxHpZolirgJjo390diprJZGUA6rSzcdgqyTrGrGqhkAS5PewaAhSS+z67xbN29lfeChVeMGIIgCCtEqrm23dKqK3t1OjfzFt5cm8LZYZekWMmeWxIdcoH+SAxfeu5NRGfNlQRagjU+BPwSetorOzZFEIT3sRLi8Qu2B7bjnkdOmbqyqvDE3fLRNrBrWV8pAkMsyBhwCeMg0wrF1tf4MBNPQ5L0iTCljk0ZH6r3XFeLl05dyqjfffpDHSarn4wYgqgMrBZqq0XTyWK958AgTgxHmboZjz9o7jFjmmcX2nM31vnRfk0tIAGjl+OWGi/GUnBjVY6T3jaLCTIGXIQ3yFgUywLlPZgZwRBGL3Atap2tl4wYgiAKj5VnAGBL/LIkha3mDN48ZGzeJnpNPHgaL14NP5cCMgYEYS2qAJgL7f/xgwG8ejZmO2Dt9LLzvc6WhmpFCRF6re9PrY/jhdMy3p2tgb4U0qiRoH6B7GuV7EYjiEpCXahTDCkB3jzAWqwlCWioDaAqIDE9BU4WZCtvhR1uhTYWK2QMCMBroKGifW1reAQvnb8WcbDbFasUYlE1lugoGBf4NILSDKblIOw0EXgUwoghCMJ79Edi2P/iBQy8NZ15zcqdbrdY5+tdzNUzoH42bWT4eL6aoBQYLdXYXJLRQEO/a1ZeS+PkWCM6l1Zj+BI7QQVwpzTSeI23rm7idLYzLvg+TMtLBD+F7Rmg0kiCqAycVnOxs/WzGxKr/gIiuQbGRltOqORKARHIGDBgLqeZXPiLcVFl7ap9mA804+GPdmP30wO6znCAvhVnPrEp4zVeXlDRch/1O+of5tt6mwrwWQRBeBVRkSv2Yq2fK1mLMmtOOzkc1bXjVo0DVX1TJDdLC21krCFjwABbXpg11Mw9CNTBlqtcrGgW7rNHRnUJN6IWsk9ybk0Ha/yYjqegfl9JAh77aQQrW503IiEIYnFjnPsSSRlTs0ndDMpalLntixfCE5cM7YtVw8SYIwUJuDA+tzBnmSGNFz6UM2BANEFFmzegzZrNtSzFSRbuR7/xKrM7Io/e5VnrOjaX1MX/rPBJQKg2gNhc0tQhj2JvBEHYwZvXjPOkyLwrScDNAvMOL69AFUuiUmk25BkwINJGs8ov4dH7V2ekK90oS2FZxtze3ValgJJ1iU5/JIZdTw1wBTfUz1bLCVlCShR7IwhCBFEvqci8KwvOOzzJ4fNjytwny8oUqioq7toaxrZbzGWMlQYZAwbsElR8ErBuZUNmMOe6O9a6t1ZeV4fXL06ZPo+/6LKfmGCNH2tWLLF86PrCIex7oBf7X7yAobeVc3e31WPnHZ0Z40aNxfGg2BtBEKKI5BuIJgaKzDtswyKNRDKBNKpgbMmz74UIutoo7ElhAgYZ8aCRq4jOpjK7bbcUqsySmNqfwL6mf8+BQZwYipredTNHvtMpO79z2jKU4PdVrkoXQRCFQZ13T52bQiLFXpZYqoSs87BCE7UBYHqe/R6e9HElQZ4BBrwEFbcUqlhJilqDw653t2pFGwe7W8kxqseAhQQyBAiC4JNr7wB13s2oEqb126Tdd4WF5h1eaOKZl0e5VVcU9iTPQEngJcsEa/wI+KRMb4D7/6QDd21kx7IKKaP54b0nuJZ5lV/C4b03u/I5BEF4h3waAGnP4USOWPRa3Jjf+iMxPPS9AdProomJix0yBkoAU7IT2WYZpe4DsPMfTmNghB0m6F0exBOfXVPU6yEIorDwuvlp2xWLkIscsd11uZn9b1RplSRlriVvpzGTgigK2ze1ZwYhoPy/+uxoqwnUhL5is2NLJ1NSSZKAnVs6i349BEEUFnPoUmFgZBq7nx5AfyQmdB5WJr+8UJU0EUvg5HBU+HyqgXJyOOr4vTy23dKKxz7Ti43djVgaqsLNqxrJEFjAv3fv3r2lvohKo7WpBuu6GjAxlUA8kUZnSx0mpsxhAxlAPJHGvbctK/r13bSqAefHZhGdScLvk9DTEcSX7+umh4YgFiFPHr6I6TijIxEUr+XEVAKb1y61Pc8rQ1N4+0rcUO+UFWhT/yVyvkcPnsfo5XjGuJChGBb/47eX8PvIVbQ116C1qcb2moy0NtVg89qluPe2Zdi8dimua3R+jsVIRSQQuu1qcgNtkuKeA4Pc40pRwqfer9ErcdRX+wHICNUGLFsdEwRRvljV+TvRFclVjpgFTy8gkZJxclivSEjkz6I3Blia16KDqFhGhNWDUWz5THbnQ+D4ED18BFHOWLVhHxy5atlYTXRTkoscMW+etTNQuKJsRE4semPAkbKfhnyMCKtzOhn0vR3Borrl+yMxTudDhXQ694fPi94ZgqgUjOV6qvqeFlYXllzKlo2l2azqAvV8VvOsnRARKaG6y6IxBoyLzX23tUCOnkP/uVmk5WrdsSKDKB8jgrXoORn06gOz847iJuvtP3TB8u8ycnv4CmFYEQQhzrNHRk11+0bUaqae9iBCdQFXyvrs5IiZDYpk4AvfP4N1Kxvw+TvCOHpmkilEREqo7rIojAHjYnMpNokTQ1ew1n8c19b2YXSm2tRoh+emWtlahw9eD/z+/GWkZf3tsTMirBY948OYlgFJzhoXuXQ5dJuhd+wX+lwePlaXRQnk4iOIYnF2bEaozW9aBsan5vHE59wrH+4Lh7B9U3tmfnvm5dHMJkk0L2D7pnZLDwORP4vCGDBalzIkJWVlxQfxxT8JY/fTA6ZdN89NdSk2j5NDMpqr4piV9ElzdpboM0dGuN6EwZGrpodRBjA4chWAtX63l1zsuTx8g6PTpuRDWVZeJwii8LQ0VAt3Y3V7t221SXKSF+Bkw+SlObNcWBTGALO2FRIuXko4dlPJkOCTJFx3XQuibyvWNM+I0HoT3h+ex+/PTlmEJFiV+7B4XfmM/S9e0PUJKKSLvXtZvWVPAlE5UBO8LQlVJxBEceBPM/rDBHbbThdaVihAAvCl594EpOx/s6YDrTdWpOGRen3azqwTsShODkex7wEKS1qxKIwBlnWptXCtBhHLkEjLSh0sz4jgeROurUkiPs8OSXB3wZyHVP2MlKH0t5BZtDtu72S2Nw4vrcV/+tjKPMIWnFVfImuAIIrBeJTToUdDb0cQO+/otHzORfJ/jMbC4Og0V4gIyLZd9/tgmu+ceCrUz331LLsD7P5DF7jhD/IkLBJjgJeAJ+LStjIkeEYEz5vQ0tKCK6PTzOt44l8vmNoCSwvJOizUz2BRqCxatb2x27kLPR1LmF0We9qX5HVegiDE6Gqtx6WrUe6cUlslCeUJ8BL+vvTcm/jax68HAJOxkJazC34WGRkhooW58ob2IN5YCCk6ncd5cspa3nibvSGjBGeFRWEM2IUCrMjFkOB5E8aj88zr4MXHJfA/h5dYAxQ2i1bUFeeEQndZJAjCGvUZ5PQfw/vCDULn4c1L0dkkdj89gBuWBZkhAW1HVgWzEBFv/hSZx3lyyrrPYAssWlaOaRMfF7vHYFEYA0Dui1guhoSIN0F1O331+SEkkjLTUd5joSNglVhTbgtpPsYaQRD5oz6Dxhwkp4a51bwky0pFkjl/CwhW+xDw+xCbS8InAUlOOCDXedxq86Ti97FjsrzN3e/OXcKu4Wjmvxe7x2DRGAP54HQA2nkTRFxWgHUcjye4IRLX8yKF8DgQBCFOXziEJz67Jq/2wOq8xNrdpGXAD6MHAADSmJ6X4ZPSSonxwqvaTq35bnCsjBSV69vZ3lTWeyUJSKdlpOU01H5+i131kFoY54jVA8Vq46mNkQHKA7DBpod2IXp6EwRB5EN/JIYvPfdmJgFQxScp3k5j3D8ta5f/hX8Z2hrnO7fZbcB8EvB3n2F3J+SpJC6p9SM6kzIdvzRUhR9/cV3O1+pVyBgoAPc8csqyplcdbNQ6kyAIr2KVYc9bQPc90Jtpva6tJjAmTwPuL6ra621pqAYkxfsqYmywNl7PvDxq2tSJbOLKFTIGCgDLMyABaKgTs4SpzIUgiFKS6WUg66sAdm0NY9strZljRDyXrPmwHBZVK4NnMW7iyBiwINdFOZ9BxHuvl7osEgThLdx+9vccGMSJYXYp4mOfcZZAV86LaiWFaskY4JDPoqy+XzuIbuttwq8GJm0fVna+AdC7PIgnPsuvA873egmCKE8K8exbhTo3djfqKqZEDBD12MHR6YX0KRk97Utow+Ih/Hv37t1b6ovwAv2RGB49eB5PHr6IV4am8KuBK5iIJTTCQoqrf2Iqgc1rl9qer7WpBpvXLsW9ty1DW3MN/uZHQxi9HMd0PI23r8Tx0msTWNfVgNamGt37njx8EdNxc0HsxFQC61eZj1d59OB5jF6O53y9BEGUFuMc1NZcw33etRTi2X9laAojl+PMv8UTafQuX4LdTw8IzWmAMh/OxFP4+ekriCfTiCdkjF6J47DFe4jiQqWFYCtQKRmwZmEMUeU/rdWcSMqmrn28EpWu1npMxKLmE3KOV+HVylK/b3sovEKUmnxU8HjP/qlzU7jnkVPM5D+78b59UzuOD5nnIQnKHOW0xXt/JIZ9L0R0r8kykLZ4D1FcyBgAR2ITAKscUET5T0RngLdQ8x5CQH+89oFecW0VMB8FUAu1JtbJ9VYyJEVKeAGni6sWdo29jEQKmIgldGMagFATn75wCLu2hnULuATA51P0AL76/JCjzcezR0aZr8u0YfEMZAyAp16lGAGqgIYTYQy2NKaYYdEXDqG3I4iBEb18sfZ44wI2EZsHUAcJkiKWQZK/wuQzCROEW+Ti2cvE4UeucvT/s+dRx3RsNincxGfbLa3oaqtnJtDxDJCGWiXvyeh1sPoetGHxBmQMgC8v3NMRRKg24DiT1Mq4UM9ttVDv2NLJTAhSjzcbG1Je11up9EdiOHWO3eGMditEMelqrcelWNQk7BedSWLPgUGTKz9T+pfOKvrJMhCs8WM+mUbCoJWjjmlWvT+gyAizYMmrd7XW49bVTSYV1rQMnB2fx7nxeciQdB4J3vcDaMPiFcgYAF9eeOeW3GR/mfKWENcZsNLyt1rAxqPzlhUH+bCY4ur9kRi+9ZNziEzMMf9O4RXCDZw8M7eubjKEB5UHPJECTg6bQ1fPHhnVGQIq0/EUejuCprbB6pg+dW7K8Xcw9jNQF/nP3xHG0TPZCqmp2QQGR6YhL2x8jA1/XjkbNV3z7rvCjsSAynne8TpkDMD9Rjo84+Lr268XPidLy1/dDRh7fqu0NFbndL1WWE0G5RhX74/E8ND3BiyPofAKkS9Oc1GOnpk0uPmznkRW6Ors2Axzlw0AFyZmAbBDnLG5pO5ZVuleZjZ+efONej1Hz0zq5qh7HjmVMQS0x54dm8lpjqV8nuJCxsACbjbScTrwRa1fNTzAxWXFiIPHxkwZwEB5x9W/9ZNztseUgxgK4W2YSckysP/FC0zv3dmxGctnOy3r26BbVR1Nx9NK2LA9iPEpvRzvjts7dQmEgGIs7NzSyf0OvOsxhtKsurkCzudY3j38wvfPYN3KBvISuAwZAwVCdOA7sX7t2nSOT/G7IDqFZwiolGtc/QInNKCFDAEiX3jP6sBb00MZ8jAAAB85SURBVOiPxEzPtkjXvehMMvNeq6ojlVBdwJQU2BcOYd8DYhsVq/mGFUqz6+bqFN7nJ1IyM3RC5IfP/hCikLCsX7XRh5Gu1npwWnIDyCYb9UdieV0TqybYiNO4en8khj0HBnHPI6dcucZccdl5QhBMrJ4N1rO9fVM7JAmG51s/WiXNe9XSPx5Wxrq6UfnxF9fhm5/s4Rq/VvMNa5FXPaIbVjViaagKG1Y15uVls/p8q3mSyA3yDJQINTTAkh620iB45WxU6QNeQItZ5AFzYvF7KfYXrPExFR5Vwi21RbwaYrEiqheiYgwtXplOIJXWr4Sy4b1q6R+vnXC+SbDGnb5Kb0cQO+/ozCQ0G0OcboUOeZ+vUq7eSa9CnoESoC6OWUNAP9KtNAi+fX8vbl7ViMb6ABrrAvAbfkE3LGa7B6y3I+jI4nfi/Sg0D25eYfn3//TRlUW6EmIxo+qFGLFapLU79vVdjaZdMeu9feEQvvbx6+H3Zb0KbmmMGHf6G7sb8fiDvXjic2syhoA6j03EEjg5HMXupwdc8/ppP7/Kb3YRUNWPu1CjohLAa0YEOO/oxWsokk+v8D0HBnFiiF0TvPuuMO66uVX4XP2RGL7w/TNIpMxnc7ufuSgHj43hu/+W7QHhl4Ab2rO7HYJwA1YDIUCf2MdLgnPa6a8U3fWYrdoloKE2W0LtVpJfOXc+LBfIGCgBvAVc7fEtWnmw8ro6jLx7GaMxH4wyxFa9wu2qF1iCJkBuhgCvFLIc+pkTRL5on7WWxmoMLiiLinQX9Hr7XKvOhoD7nVO9fj/KHTIGSgDLohZZHI3WsQQZMuQFGWLJFNfbsaXT9BCKtjt148Gz8oD4fWTVE5VFrs+9V2E/32bZ9XL9fpUGJRCWgFxLcIyxdxkSfJKEnvYgIEEnJjI4Oo3dTw+YFnlRLX6r0khRXQReaVCVX8Kj96/O2xAgdTKinOD1Hzg+FMWH955Ad1s904BX8dp4Zyf45d7plSgt/r179+4t9UVUGq1NNVjX1YCJqQTiiTTWrAhhz5912S6OTx6+aMqEV5/BtqYavH0lntUph76nudornbVTl6H0KL/3tmW611n91d+Nzgv3MX9laEp3TYBi+KzvasTH/31+yU0Hj43hK88PYeRyHDPzaeqNTnge1vOgPqlKw7EEXnx1Ajet0o/h/kgMX/1vQ3jmyGhmvFs9d8XCOI9V+X2YT+rnJ58ErFkRQltzjWkuoefUW1CYoIywcjOeHZvhJhJ++b5uQ0tle1ceL/mprtpcmsdzBVol/ajVBLnscniSwpIE3EwuScKjmFub659DlWCND3XV/kxDoMf/NcKVIG+sC+BrH7++4B4CEa8E73l/6M4wHvtpxDY0SZQW8gyUEW3NNXjptQlFZ2DhNRlAqM6P+dkYriYkGBf5NStC+N35GEYvx5muPPXB3PNnXbiuMWupP3rwvO49C0qgzKoAnmeB5wGRZQh7F1g8evA8Ri7HmX9jXQdRObC8WV7ZgWqfB8VDwFbUSaTkzO7/129YqwzGk+mcPWKi90pd5O2eV97z/sKJcdNcovVaEt6APANlRn8khv2HLmBgJJsfkEkklHyQYN6Ff/X5IcfVC3aZwqzziO7I802ksrq2jd3kGVgM5BIfF02O9QJ7DgzaygmLkkuSnpN7xUsE7u0ImuSOWdhVT5U694FQoATCMqMvHEKoLpDpSAboEwlDdQFTBQCvgQgrNKBOwDPxBHhuTCNOBU54iVSiiUbF6I3utWStSiJXxUrR5Nh8rsutMSHSW0CUXJL0nNwrbp+FEXafBSPsvgsy0rJEPQY8BIUJyhCrRMIn/+ONuPe2Zdi8dmnG7W8ML7BCA0ZXYCKVBhZKFq1orAvgkU/x9c21qG7J8+MzSMvmvIU1K0JCbsO25hocfm3C1Ghg911hfOC91whfB889KuoWJQoDK0Ql4lbmPRejl+P459+8g1NnYzmHDdweE61NNWgOBvAbmzCAqEFe5ffhv//6HeHQCO9escJsrwxNccNylwRc/azwpvqdKGTgHcgYKEN4Wfq8xVSkesE4AUNRL0BDXQChOj/CLXW4fNXs6tu5ZYXwAqxOptlkKClz7ay8BeP71QX84sQc/pc/akM6rUxeN3aG8PDdXY6vgzepf/X5Ibw7leBWZhivx2uxaa/h9F45Wai0sLP1FeJJGaOXc684ydVAAfjff/XyJVi/qgGXFp7L8HV1uBxLQJLURdNsCARrfEilZcMxwHxSdlRlwKtsCPgl/NOvx3TX2dZcg0OvTjDPI5KjY86V0CPy2xKFh4wBD2I3eYrs9I20NtVg89qlJq+BCmsCBpTkxB9/cR3u3HAdmur1OxlJAo6/GRWaXFnGBqBoDqzvarQsrWQt4MeHovjix7rwl3eGmd9H9DpYJZjP/NzcM0E7YZHnQOHgsTE8/MM38N1/u4h//vUY6qp9WL18ie6YXO4Vb1GXJCVMxntfW3MNXjw1YdmZMtddKM9AGZuct/wudt9f+1zeueE63GSTYNhYH8A3PtGTMewDfgnzyXTmWFEjxTiHqJ8UT6ZNRkVfOITjb05iYkq/GXDizVO/5+sXrjrayBDFgxoVeQyR5h9utwoF2O1CjY1Ajp6Z1B0jy0AqDex/8YLt+Xlxx8b6gGUbVcC9Rkf9kRhOnZuyzFewOqd6L7zUeMltRFtNHzw2hn0vRBCdTSItA9HZJPa9EMH+Q/rW17ncq+2b2Hkf0/E0/up7/EY4feEQehjNgbTkKoLT1VoPVsQsmZax6yn+NbG+fyoNfOm5N5nvUcW+NqziNyrSNjSqDvhMRoPIdzTOIQ11AUjIViMZf6cdt3e60gzJ2KrZraZKRP6QMeAR1En4C98/g1TafvIU7Uku+tmxuaQpwdD4kHITid6atu1UJmJs8K7NbgEXQTWyWKWR2uuwOqd6L/JNgPQqTrrQffffLjLP8aOjY7rjc7lXfeGQoqrJQAaw/xDf+ByPznP/ppJLp7vtm9qZbcMB5fvwjBveMxOdTVp2+BNdNHN9rgD9HFIVkEweFe3v5NYGpBAbGcIdqJrAA5jFSPQUcqHRfraWHkYXv67WekzE2AlPdhnbuUgw2zU6cjKpqzs0FtrrYGc+A73Lg5l70dJQbSqVWgztVJ1kmLNCSirfOngOP3jofQDY91PkXo1P8Rf1oXf4z4JVpYmKccyJVAn0hUNorPMjOptinpP3fPLGE5A18lnPjbpoZpocNVQDkpLPor3GXKXNRa7T+DtZSZSriN5LKv/1HmQMeADjJGykkAvN/hcvmBZbnwSE6gIma92qHGpw5Cr2HBjkTgLGyU2k+ZHoAi6CaJ8E4+QqScqkPXp5DnsODOLW1U0YHJ2GMbkrLQOx2aRQqZUXYE3abnk8LozPZf5tup+QIUmS7W9nZXhaoX4eT7EvWO3XjSljh86JWBTHh6LYtTWMbbfoO3T2dCzhjn/e86leD8s6EfGQfPOTPballk6fK6vrzMeoMF6nei97lwex43Z+zwXCG1ACoQfgJe8BYsmBudIfieEZhnuTl93b2lSD429MmnbFEoC5pIzRK3HMxNMYuRzHoVcn0BwM6BLK7JIYjfDuS5VfwrcduhaP/P4yMwHK2CdBm/l8dS6FuURa+X4JOasIJ6nfWs/lq4mySCTkJbV1ttThkvG3lYAbGcldzx4Zsdx9f+qDHQD093NyahottbP4+if/wPa3s8pg7+kI4s4N1zH/pn7e+XdnDb+3YrwlU7KuouDRg+cxcsmcrPibN6JYb+gR0NZcg5cYCYo+CdhzN/v5VK/n6MAk4hzdfrvEObukV6fPFYtc+6VYXafKxFSC+oaUAZQz4AFYcT9AWfQKGVMTSZYzsmOLOZFInZyMu/h9L0Rscwms4MVD161sYN4PXvJbfySW6SNvhLXzUd2v0Ey+gEbkySJ2XA6JhLykvpl4auG7Zb+gLAPvaa01neMGTkwfUHbfWtQd7n1rU4jH4/jq80OWyYnqe+69tZX5t4+ss148+8IhPPHZNXjsM71orFOdn9lse+1vdHZshmvUsPJ09j3Qi96OIKr8Eqr8EnqXB/F3n7F+PvvCIXzt49fbJuDxxi/PY3NyOGp7H52Qbx4Sz/sGlMdzUelQmMAD8Fx0brT5tUIkWc4Iyy05ODqN6EySeTwrJiqq5GbnutSep6WxOrPgG12pvEmopz3INSp4uQp2lEMiIW9xGc0Iy+gtsB/9agzv771G9xvt2NLJbBYFAH9x+3LTa/2RGH7wSg3SchUQSwipCp5/d84gVKNc2dGBSWzbyDYUtPSFQ6gKmK1s7W9kFY5g/Y594ZCQBC/rfVbufKtwRbko+FnlR5TDc1HpkDHgAdyK+zmFmyzXwV4ktderXeCtdNbPjs2YFu0zb01nJviJWBQnh6PY94B5MrO6L+b4pN69rU1+4+1YeElqlrkKyGo78DpAej2RsKWRnQBphdGo6wuH8NhnevGtn5zDhYk5yFAEcf7iIytw183mhTprkCnOSBGpYNauXQZw6tyUcG6GXWIcLw9GKsDvaJU49+yR0YwhoGXfCxHs2hrWGcULVwjAfcnlfLDKjyiH56LSIWPAI5Qiw5a38955R6fj8zAnVCiZ91aLNhY+e/+LF/DEZ807Lt59sUu6VM+rGhHGDHOrycnK3enzAXf/USteevUSpmaTOqU4CcWvmXaql98fieHMW+YESBlAd1u9rgGWFt4u+Qd/9T6h6xRJTjR+l5bGaly+mjC9L5GSsfvpAaHdsJ13qS8cwq6tYex7IauPoJb0FfN3tApXHD0zmTGKWQ2DvLLrVo13YyM10hIoDyhnoIJxs3Z419aw7jUJysKJhWx8q0UbAIbedjaZWS3YKuqC/x/+XRuUdk5y5nWryYmXw9FYF8BDd4bx3389pjEEAG08+qE7w0Wpme6PxPCpx36Hh743gONDii7A8aGopQAOoNToy5prVpFlfizejV2yXT38wWNjpu8y8NY010MjGoMWGePbbmnFY5/pxcZu5ZibS1D7bnV/z47NCIkReQE1jKK9n6QlUB6QZ6DCccsjse2WVnS11Zvqos+M8Cd0HiK73ZWtdbgUm+f2hFeJzSXxlf8yiCWYRGtrKyZnZGa8Vvt5t65uYu4mv779ejzzsuKRMBoCgHLcrwYmcZdAPDsf+iMx7HpqgBub5XlZAOsa/aNnJgu2S1Z36JIsL3TZzBpk/ZGY7jO1yAACPglJw5d1shu2GuPG3/7L93ULx96L0cXQaIi5pStQaEhLoPwgY4BwDVZddDY73XrR7m5TJjy7mmp1An79wpRlaVvAJyEtyxgcmV6ob2/CzPi8ybXMq40Ot9SivsaP8ei8zniw8kikZSxoEGTP7dSFL3L8s0dGLb0iTr0sKmfHZvDNT/bojDq38lfUHfoT/6JoUfStXIpPfWgFbuwMYc+BQcv3Bmv8TIXMfHfDmaS9hXFqpTHAe6/TNsvGc2jv8723tuJHR8cyf2cZYqXKLyIWP2QMEK5jjudnDQFVxEeLT5OnYKWCt31Tu24CNmaaa89nXEBkSEzFN17uQWR8Dn4fTJO7VcY0AERnkhk3vZPFwrjbt0qszCc+3L2sHgNvsfMC1MW1ULu6vnAI/+EDrfj2P/4Ow+/U45mXRzNiR9YoXfrc3g2rRhWrJLarrd5yUXei1siCZ0zs2hrG0TOTlgs97bqJQkA5A4Tr8HbPPgm4eVUjdv1pOBNP3NjdqKvTtko0M07A8kLSnnpu9f8lCYAkCyVaOa2NVjXjeX4OCcp7VGVH0QY9+w9dYF4vS4ffbkesellY7Li9k9lwpxgJc/2RGL76T2/jCq7F5Ew60/ugpaHa8n09HUsycf/GOj9CtQEsqQ3gmZdH86qxPzs2ww1h2eUj5KvWyNN6OHpm0rWeIwThBDIGCNfhJYttWNWIb36yB9s2tuomPFlGRmxlenYegLnAPzqTZDYskgE01vl1CWIP3RkGZPOKx3It85IFAfbkrrppb+5uZBoEMpRQAWv3bbVYvPk2e7fOivHzuvqpWFWD9IVD+LsHetG7XCOc02EvnOMG2ZLNbHmhbB9Bwif+OKvDfzWeQmwuiehM0rKRkgh2SXtGtKJAiaTMNKqiM0khIaBiCQkRhCgUJiBcx0mSE7tJk2QKAbC6DQLKuXs6lmTcpto4sIJ12V8utdHqwjQ4Mo3obNL0HqtkBtb5+iMxJDkCR2nG1lVV59PGl1Xue3+r7aKuKvQVG94COB6dNyUuquy+K1udIeqadyJqxSuJNf5OxnGq/szZsJdyUYkUhISAeOEm1SDwipAQUTmQZ4BwHScli6z8AkmS0FAXQJXfesvIMjLU88ma8wFAQ12AeQ3qtfZ26OV1RQyYqYwhsFCspwlR8GCdz8olXVvFfkR3bAlj19YwGusC8ElK2ePuu8L43EfCzOPdhCeba4dVeaGxvG9jdyMef7BXJ2AkqlUg2obZqiTW+DuZQ1TKsQ216jhV/ycmS21sUay1IMtF1ppYXJBngCgIoklOrAleloGqgITGQIApUlTll9BYH2AmWHG7EwYk7o5ZrY027ih5WdoZgyPzyoLBURvIlB+yxGEkAP/702fQ3VaPHVuyXdys4swBP99e33ZLq23Wu9vk05kuW16o7/dwW28TAPsxI9Jm12lin7Eklve7M8cp+ONUpCOhXkhIbyV5RUiIqBzIGCBKCmuClyQgkZQxM58CS+533coG7qIhsmDwyMeAAbIGhzFMoiJDCXcMjExj11MDmUoBK338HouGQKK4WQ/Pk80deGvaVhWwLxzC5+9QwwEL4RsJeOynEaxstc7eB8zhJ1WfPzaXbR2dS2KfyO/Oc+snkjLar60xKSWKjDn1c/ccGDQZj14SEiIqAwoTECXF6C5VY7BTs0lTnoBISZnxfIUQZbFT09OGSXihjrTGDbx9UzszidGNDH8nbnMRBkeuclMiRFzbR89MLnxXKfMep2qCioGUvYrBkenMd7L7bQDlnuz8zml8eO8JfHjvCez8h9O298NcRaJ8/tRcMtMgK9cxV4wxSxB2+Pfu3bu31BdBVC7GPupVPh/mk2mTC77KL2F9V2Omx3p/JIZHD57Hk4cv4pWhKbQ116C1qcaVvux2tDXX4KXXJnRNiyQJ2PNn2Z72ao/5//f4u5iZZ2cHxhNp3HvbMrQ21eCmrgacH5tFdCYJv09CT0cQX76v2/a6efdBxdhjXvWzTEwlsHntUtv3G3n+F+8gzsl2lDXficeThy9iOq5/v8j7VFqbavD/nb6Ct6/EM+qT2u+0fVO77rcBFMXDhvoAOlvq8G50HrueGsD4lLKTV/tlvHRqAjd1NXC/uzqujg5MLnx/vXZGT3sQK6+rFxpzxnv+vveEcPu6loKOWYKwg8IERMnRumnveeQUc+fZWB8wVQzwBH0KLcoiqgLXH4khkeQnE2p3q7m0xhVRwbNym+ekomeR0yni2s4njKNi9Z14zXJU78EN7UGujLOdYJBVS+TxqXmh38/qnpOQEFFKKExQweSaFV5IRNy8PMGWYmZfqwYHTxzGXHGgRyQEYPf7iNwHq/uZy33saQ8y6+sBMde2Gy5xkTBNaKHKwpjhbyXVLJKwJzI+rWDd81Qa+NJzb3ri+SMqFzIGKhS3Y8luIbJY5Kv+Vgx4iXYSICTyI/L7iNyHrECR/sBP/HF7TvdRzW8wLoi9HUGhznRudMrMZ4xYIbKg52vM8JJPo7NJTzx/ROVCxkCF4oXdNQuRxSLf3Vkx4CXaNdT58cTn1tgufqoxof190mn979PSaJbxZd0HluSuLCvHGTf5LMEdLcbfR9UDEPlO2nPkI7mbzxjpbmMrTooma+ZrzFgpXnrh+SMqF8oZqFC8vLu2azk7NZvQKPNJQrszN8vrxOAF1/Wv866LZUzIUIwM9X2DI2wJY6MIk1Khof/cZ4+M4tbVTQsKfNnyTRnZun8ext9HDWew7q3b91205XD2uymoCpQ77+iELCttntWQQXdbPXbe0enYmBG9Ru13tlK89MrzR1QmZAxUGOpEFZ1JglXD76XdtRG91HD2unvag5aTuRvtZh0jYAtYXZfdCXg7yJ72oK0Ik3bRMRoKkgT8amASd20UEzOy/g7OOjfm81na8x08NmaSNpYBPHRnVtq4UHLMIsmt376/F1967k2mlLWXnz9icUNhggpCG4fOpYa/1JilhpXrDtUFLHd1pQiJsBLt1BI0oeuyMSZ4sefxqXndf1uFVFhd+2SHu1Or7+D2fRc5X38kxuxxIEExcgqNyDX2hUP42sevh99H2gKEdyBjoIJg9QEAlBr+XBK5ik2uoY3BkatFD4kYE+3Uf4smQtoZE6J5E1YJb27kXlh9B7dDUSLn4xkaMorjghf9zm4kUhKEm1CYoILg7Sa1NfxeJpca9f5IDNHZlOl1u0S5fBHRIrD6PmpsWQa786NoZ0ir63DSXZJHS0M1s39ES0M1QnUBpoSvNvHRSU6BlSSwVo6YRzFc8E7GaKH1MAjCCaRAWEG8MjS1oNyWxScBa1aEsHnt0pJdlygiyn9GHj14HqNX4sy/PXw3/31uoKoQ3nvbMmxeu9T0WTPxFH79RjaBT4LSMW/Pn3WhLxyyVFJ0orTIuw71HOfenUV0OgmfJOH6ZUFcs6QK3//ZCP7+0AU8/4u38fwvRnHqbIypTvjTV8YxMcUwBhqr8cCfLMeLpyZMuXKXYwnc1NWAd6Pz2P30AEYuxzETT2PkchyHXp1AczCA1cuXmM6p/v5ZlPs2n0zj8GsTWNfVgIsTcyX7vbXXmFVAVNQ0r86lcOqsvcIjQZQK8gxUEG7sBEuJqPKfFlZcHFC8IaV0yfZHYnj8XyO6BD5jkpvdztGtneUbo9OZ8NGZ0Wmdcp/KiSF2st7opTnmOUcvzaEvHEJPe5B5PtWdr8bUtex7IYKuNnbjohuWBXEmc77sfVPj8uoYT0N/3t13hYvye2vH6ODIVURnlYuIziRxcrgIiasEkSPkGaggiqHbX2jsdttGeN6Q94VDaGuucaTL7yZqzwBjMmQqhaJ6aYy9C6zQ9jRQ4fUqqK3y43/9wDL84H+OmHozyFB6EVyZTmAmzu5zcMnwOWry60QswdRvUM/5l3eGsa6rAZcWxviNnSE8fHcXPvDea+y/oEuoY/TU2Ri3h0I5eOKIyoI8AxVGpcUped6QW3ubil9uqMErOg+8PBIWzOuzqXqwi6HzWjcbP8ec/KrHKEfshTHuld+YIESgagJiUcPL2j46MFlSBcZcMvkL0UvCShHPCOv67KoerKoZslLJhvfD/DlWRovk0XBXOShlEoQKeQaIRQ9rp1jqXZvT/I1CCSep1yHJSqtfJYfBfJyq4Ge8PruqB7s8j11bwzpdADWJ0vg5LY3sqgVAud7Pby1OToATyj1Hh6gsKGeAqEhKXVnhNH/DGNt3K/6sXsfr5y9hajaFgN+PFUtr0d5cg0RKRm3Ah9pqCe8LNzCvT+R7WOV5rF6+BOtX6WP8rM/56clxrjFQilwLERZDjg5ROZBngKg4+iMxxGaTjvsbuI2T2LYbngyrmv6LVxTPQCIl4+LEHCQJwl6HfGP0Iu83Kitq8XIc3iv5CwRhBxkDREWhdbdDUw3e0xHEzi3izWqKDctN7iT+bBVmyOZJKClEaVn517NHRvNeyNxqVMQTHAIoDk8QbkAJhERFwZJk9klAqLa0ugNWZDsUmldCUU+GlWZ+ofIn+iMx7HpqAMeHopiIJXB8KIpdTw3klPioJiKakhVBcXiCcAMyBoiKotSJg7mQ3bnrV0Jth0K7SgOr793VWm+qEHRDrnn/ixeYn7n/xQuOz6UmIt68qhGN9QE01gXQWO/Hzd2k6U8QbkBhAqKiyKW/Qamx61AoUmlg9b1vXd2E40NZWWQs/Ou23qa8rnvobbaBxXvdDoq/E0ThIM8AUVFY1b17Fbt69WePjCKd1ocA0mm9ZgKvpv8Tf9yOo2cmF9zv2Q+RpOK0/CUIwhuQMUBUFOXYOtbOgBkcuWrKJpAXXrdDltn9G2QXQifdbWxvC+91giBKB4UJiIqj3NzN9g2abDSBwVdWfPbIaMFCJzu2dGLXUwOm8+68ozOv8xIE4T5kDBBEAXGrtM7SgLG3BSwTCL98X3dBlPL6wiHse8BZl0mCIEoDGQMEUSAKJSFspKc9iBPDUZ2rX9sfALBOIMylNbQo5eaFIYhKhYwBgigQ+w9dQErToddNMR8tdv0BtMfwdv+0aBNEZSPJMqstCUEQ+dAfieGh7w0w/7Y0VIUff3Gd659nt7MXOYYgiMqEjAGCKAB7Dgwu1O6b2djdSLtwgiA8BZUWEkQBsCrL87KmAUEQlQkZAwRRAFhCQQDQuzxIrnmCIDwHGQMEUQBYQkF+H7BzC9XYEwThPShngCAKBCXsEQRRLpAxQBAEQRAVDoUJCIIgCKLCIWOAIAiCICocMgYIgiAIosIhY4AgCIIgKhwyBgiCIAiiwiFjgCAIgiAqHDIGCIIgCKLCIWOAIAiCICocMgYIgiAIosIhY4AgCIIgKhwyBgiCIAiiwiFjgCAIgiAqHDIGCIIgCKLCIWOAIAiCICocMgYIgiAIosIhY4AgCIIgKhwyBgiCIAiiwiFjgCAIgiAqHDIGCIIgCKLCIWOAIAiCICocMgYIgiAIosIhY4AgCIIgKpz/H0Wo9l4mKlC2AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -3484,7 +3429,7 @@ }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 122, "metadata": {}, "outputs": [], "source": [ @@ -3494,7 +3439,17 @@ }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 123, + "metadata": {}, + "outputs": [], + "source": [ + "components_size = components.apply(len)\n", + "components_size.name = \"size\"" + ] + }, + { + "cell_type": "code", + "execution_count": 124, "metadata": {}, "outputs": [ { @@ -3507,7 +3462,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGhCAYAAAC6URSFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAZfUlEQVR4nO3db2iV5x3w8V+MGklrXG1orBrxTZGlrQnEJDg6iMNW3FBsVygIa2Zhg3EsHYEVffG0Kc+LlWd0COuB0pXRtUwQBS20rGsbLELbYbRYKMEOwQ1XZ1oRjUYW05PzvBgJFW1MYu6c6+R8PjDGuc/xun8JV5Jvz9+qYrFYDACARMwr9QAAAN8mTgCApIgTACAp4gQASIo4AQCSIk4AgKSIEwAgKfNLPcBUjY6OxtmzZ2Px4sVRVVVV6nEAgEkoFotx+fLlWL58ecybN/F9I2UXJ2fPno3GxsZSjwEATMOZM2di5cqVE96m7OJk8eLFEfG/L66urm5G1x4ZGYn33nsvHnnkkViwYMGMrk3lsq/Ign1FFrLcV4ODg9HY2Dj+d3wiZRcnYw/l1NXVZRIntbW1UVdX54edGWNfkQX7iizMxr6azFMyPCEWAEiKOAEAkiJOAICkiBMAICniBABIijgBAJIiTgCApIgTACAp4gQASIo4AQCSIk4AgKSIEwAgKeIEAEiKOAEAkjK/1ANMVj6fj3w+H4VCodSjTNvqXe9kuv4/X/xJpusDwGwom3tOcrlc9Pf3R19fX6lHAQAyVDZxAgBUBnECACRFnAAASREnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJAUcQIAJEWcAABJEScAQFLECQCQFHECACRFnAAASREnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJAUcQIAJKVs4iSfz0dTU1O0tbWVehQAIENlEye5XC76+/ujr6+v1KMAABkqmzgBACqDOAEAkiJOAICkiBMAICniBABIijgBAJIiTgCApIgTACAp4gQASIo4AQCSIk4AgKSIEwAgKeIEAEiKOAEAkiJOAICkiBMAICniBABIijgBAJIiTgCApIgTACAp4gQASIo4AQCSIk4AgKSIEwAgKeIEAEiKOAEAkiJOAICkiBMAICniBABIijgBAJIiTgCApIgTACAp4gQASMqsx8mZM2eis7MzmpqaYu3atbF///7ZHgEASNj8WT/h/PmxZ8+eaGlpiXPnzkVra2v8+Mc/jjvuuGO2RwEAEjTrcXLvvffGvffeGxERy5Yti/r6+rhw4YI4AQAiYhoP6xw5ciS2bNkSy5cvj6qqqjh06NANt8nn87F69epYtGhRdHR0xNGjR2+61vHjx6NQKERjY+PUJwcA5qQpx8nQ0FA0NzdHPp+/6fX79u2L7u7ueP755+PTTz+N5ubm2LRpU3z11VfX3e7ChQvx5JNPxquvvjq9yQGAOWnKD+ts3rw5Nm/e/J3X//73v49f/OIXsWPHjoiIeOWVV+Kdd96JP/3pT7Fr166IiBgeHo5t27bFrl274gc/+MGE5xseHo7h4eHxy4ODgxERMTIyEiMjI1Mdf0Jj6830umNqqouZrDsmq7m5PVnvKyqTfUUWstxXU1mzqlgsTvsvZlVVVRw8eDC2bdsWERHXrl2L2traOHDgwPixiIiurq64ePFivPXWW1EsFmP79u2xZs2a6OnpueU5enp64oUXXrjh+N69e6O2tna6owMAs+jq1auxffv2uHTpUtTV1U142xl9Quz58+ejUChEQ0PDdccbGhri5MmTERHx0Ucfxb59+2Lt2rXjz1d5880348EHH7zpmrt3747u7u7xy4ODg9HY2BiPPPLILb+4qRoZGYn3338/Hn744ViwYMGMrh0R8UDP32Z8zW/7vGdTpuszPVnvKyqTfUUWstxXY498TMasv1rnoYceitHR0UnfvqamJmpqam44vmDBgsx+ILNae7hQNeNrfptfUGnLcs9SuewrspDFvprKejP6Jmz19fVRXV0dAwMD1x0fGBiIZcuWzeSpAIA5akbjZOHChdHa2hq9vb3jx0ZHR6O3tzfWr18/k6cCAOaoKT+sc+XKlTh16tT45dOnT8eJEydi6dKlsWrVquju7o6urq5Yt25dtLe3x549e2JoaGj81TsAABOZcpwcO3YsNmzYMH557MmqXV1d8frrr8cTTzwRX3/9dTz33HNx7ty5aGlpiXffffeGJ8lOVT6fj3w+H4VC4bbWAQDSNuU46ezsjFu9+njnzp2xc+fOaQ91M7lcLnK5XAwODsaSJUtmdG0AIB2z/qnEAAATEScAQFLECQCQFHECACRFnAAASSmbOMnn89HU1BRtbW2lHgUAyFDZxEkul4v+/v7o6+sr9SgAQIbKJk4AgMogTgCApIgTACAp4gQASIo4AQCSIk4AgKSUTZx4nxMAqAxlEyfe5wQAKkPZxAkAUBnECQCQFHECACRFnAAASREnAEBSxAkAkBRxAgAkpWzixJuwAUBlKJs48SZsAFAZyiZOAIDKIE4AgKSIEwAgKeIEAEiKOAEAkiJOAICkiBMAICniBABIStnEiXeIBYDKUDZx4h1iAaAylE2cAACVQZwAAEkRJwBAUsQJAJAUcQIAJEWcAABJmV/qASgfq3e9k9na/3zxJ5mtDUB5cc8JAJAUcQIAJEWcAABJEScAQFLECQCQlLKJE59KDACVoWzixKcSA0BlKJs4AQAqgzgBAJIiTgCApIgTACAp4gQASIo4AQCSIk4AgKSIEwAgKeIEAEiKOAEAkiJOAICkiBMAICniBABIijgBAJIiTgCApJRNnOTz+Whqaoq2trZSjwIAZKhs4iSXy0V/f3/09fWVehQAIENlEycAQGUQJwBAUsQJAJAUcQIAJEWcAABJEScAQFLECQCQFHECACRFnAAASREnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJAUcQIAJEWcAABJEScAQFLECQCQFHECACRFnAAASSmbOMnn89HU1BRtbW2lHgUAyFDZxEkul4v+/v7o6+sr9SgAQIbKJk4AgMogTgCApIgTACAp4gQASIo4AQCSIk4AgKSIEwAgKeIEAEiKOAEAkiJOAICkiBMAICniBABIyvxSDwAREat3vZPp+v988SeZrg/AzHHPCQCQFHECACRFnAAASREnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJAUcQIAJEWcAABJEScAQFLECQCQFHECACRFnAAASREnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJCUksTJo48+GnfddVc8/vjjpTg9AJCwksTJM888E2+88UYpTg0AJK4kcdLZ2RmLFy8uxakBgMRNOU6OHDkSW7ZsieXLl0dVVVUcOnTohtvk8/lYvXp1LFq0KDo6OuLo0aMzMiwAMPfNn+o/GBoaiubm5njqqafiscceu+H6ffv2RXd3d7zyyivR0dERe/bsiU2bNsUXX3wR99xzz5QHHB4ejuHh4fHLg4ODERExMjISIyMjU15vImPrzfS6Y2qqi5msOyarucdkPX+Wsv7eTObcpZyBuce+IgtZ7quprFlVLBan/RenqqoqDh48GNu2bRs/1tHREW1tbfHyyy9HRMTo6Gg0NjbG008/Hbt27Rq/3Ycffhgvv/xyHDhwYMJz9PT0xAsvvHDD8b1790Ztbe10RwcAZtHVq1dj+/btcenSpairq5vwtlO+52Qi165di+PHj8fu3bvHj82bNy82btwYn3zyybTW3L17d3R3d49fHhwcjMbGxnjkkUdu+cVN1cjISLz//vvx8MMPx4IFC2Z07YiIB3r+NuNrftvnPZsyXT/r+bOU9fdmIlnvKyqTfUUWstxXY498TMaMxsn58+ejUChEQ0PDdccbGhri5MmT45c3btwYn332WQwNDcXKlStj//79sX79+puuWVNTEzU1NTccX7BgQWY/kFmtPVyomvE1vy3rX1BZz5+lFH55Z7lnqVz2FVnIYl9NZb0ZjZPJ+uCDD0pxWgCgDMzoS4nr6+ujuro6BgYGrjs+MDAQy5Ytm8lTAQBz1IzGycKFC6O1tTV6e3vHj42OjkZvb+93PmwDAPBtU35Y58qVK3Hq1Knxy6dPn44TJ07E0qVLY9WqVdHd3R1dXV2xbt26aG9vjz179sTQ0FDs2LHjtgbN5/ORz+ejUCjc1joAQNqmHCfHjh2LDRs2jF8eeyVNV1dXvP766/HEE0/E119/Hc8991ycO3cuWlpa4t13373hSbJTlcvlIpfLxeDgYCxZsuS21gIA0jXlOOns7IxbvTXKzp07Y+fOndMeCgCoXCX5bB0AgO8iTgCApIgTACAp4gQASErZxEk+n4+mpqZoa2sr9SgAQIbKJk5yuVz09/dHX19fqUcBADJUNnECAFQGcQIAJEWcAABJEScAQFLECQCQFHECACRlyh/8Vyr5fD7y+XwUCoVSj0IZWr3rnUzX/+eLP8l0fYBKUjb3nHifEwCoDGUTJwBAZRAnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJCUsomTfD4fTU1N0dbWVupRAIAMlU2ceBM2AKgMZRMnAEBlECcAQFLECQCQFHECACRFnAAASREnAEBSxAkAkBRxAgAkRZwAAEmZX+oBJiufz0c+n49CoVDqUeAGq3e9853X1VQX4/+1RzzQ87cYLlTN4lST888Xf1LqEQCuUzb3nHj7egCoDGUTJwBAZRAnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJAUcQIAJEWcAABJEScAQFLECQCQlLKJk3w+H01NTdHW1lbqUQCADJVNnPjgPwCoDGUTJwBAZRAnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJAUcQIAJEWcAABJEScAQFLECQCQFHECACRFnAAASREnAEBSxAkAkJSyiZN8Ph9NTU3R1tZW6lEAgAyVTZzkcrno7++Pvr6+Uo8CAGSobOIEAKgM4gQASIo4AQCSIk4AgKSIEwAgKeIEAEiKOAEAkiJOAICkiBMAICniBABIijgBAJIiTgCApIgTACAp4gQASIo4AQCSIk4AgKSIEwAgKeIEAEiKOAEAkiJOAICkiBMAICniBABIStnEST6fj6ampmhrayv1KABAhsomTnK5XPT390dfX1+pRwEAMlQ2cQIAVAZxAgAkRZwAAEkRJwBAUsQJAJAUcQIAJEWcAABJEScAQFLECQCQFHECACRFnAAASREnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJAUcQIAJEWcAABJEScAQFLECQCQFHECACRFnAAASREnAEBSxAkAkBRxAgAkRZwAAEkRJwBAUsQJAJAUcQIAJEWcAABJEScAQFLECQCQFHECACSlJHHy9ttvx5o1a+K+++6L1157rRQjAACJmj/bJ/zmm2+iu7s7Dh8+HEuWLInW1tZ49NFH4+67757tUQCABM36PSdHjx6N+++/P1asWBF33nlnbN68Od57773ZHgMASNSU4+TIkSOxZcuWWL58eVRVVcWhQ4duuE0+n4/Vq1fHokWLoqOjI44ePTp+3dmzZ2PFihXjl1esWBFffvnlNMcHAOaaKT+sMzQ0FM3NzfHUU0/FY489dsP1+/bti+7u7njllVeio6Mj9uzZE5s2bYovvvgi7rnnnikPODw8HMPDw+OXBwcHIyJiZGQkRkZGprzeRMbWm+l1x9RUFzNZd0xWc4/Jev65qmZe8br/T03W+4ZsZP37isqU5b6ayppVxWJx2r8xq6qq4uDBg7Ft27bxYx0dHdHW1hYvv/xyRESMjo5GY2NjPP3007Fr1674+OOP43e/+10cPHgwIiJ+/etfR3t7e2zfvv2m5+jp6YkXXnjhhuN79+6N2tra6Y4OAMyiq1evxvbt2+PSpUtRV1c34W1nNE6uXbsWtbW1ceDAgeuCpaurKy5evBhvvfVWfPPNN/H9738/Pvzww/EnxH788cff+YTYm91z0tjYGOfPn7/lFzdVIyMj8f7778fDDz8cCxYsmNG1IyIe6PnbjK/5bZ/3bMp0/aznn6tq5hXj/64bjf9zbF4Mj1aVepwblPu+yXr+VGX9+yoFWe4d+/7mstxXg4ODUV9fP6k4mdFX65w/fz4KhUI0NDRcd7yhoSFOnjz5vxPOnx8vvfRSbNiwIUZHR+PZZ5+d8JU6NTU1UVNTc8PxBQsWZPYDmdXaw4Vs/zBl/Qsq6/nnuuHRqiS/h+W+b+bqH+bJyvJ3YalluXfs+1uvP9PnmMp6s/5S4oiIrVu3xtatW0txagAgcTP6UuL6+vqorq6OgYGB644PDAzEsmXLZvJUAMAcNaNxsnDhwmhtbY3e3t7xY6Ojo9Hb2xvr16+fyVMBAHPUlB/WuXLlSpw6dWr88unTp+PEiROxdOnSWLVqVXR3d0dXV1esW7cu2tvbY8+ePTE0NBQ7duy4rUHz+Xzk8/koFAq3tQ4AkLYpx8mxY8diw4YN45e7u7sj4n+vyHn99dfjiSeeiK+//jqee+65OHfuXLS0tMS77757w5NkpyqXy0Uul4vBwcFYsmTJba0FAKRrynHS2dkZt3r18c6dO2Pnzp3THgoAqFwl+VRiAIDvIk4AgKSIEwAgKeIEAEhK2cRJPp+PpqamaGtrK/UoAECGyiZOcrlc9Pf3R19fX6lHAQAyVDZxAgBUhpJ88N/tGHuPlcHBwRlfe2RkJK5evRqDg4OZfOLj6PDVGV/z27L4nnxb1vPPVYXqYly9WojCcHWMJvipxOW+b7KeP1VZ/75KQZZ7x76/uSz31djMt3qvtIiIquJkbpWQf//739HY2FjqMQCAaThz5kysXLlywtuUXZyMjo7G2bNnY/HixVFVdfP/Cm1ra5vwuSnfdf3g4GA0NjbGmTNnoq6ubsZmztqtvt4Uz3M7a03130729tPdN7e63r6avXOV47661W3sqzTONd21Ut1X33V9lvuqWCzG5cuXY/ny5TFv3sTPKim7h3XmzZt3y+Kqrq6e8Jt6q+vr6urK6of9Vl9Piue5nbWm+m8ne/vb3Tf2VenPVY776la3sa/SONd010p1X93q+qz21WQ/G6+6p6enZ8bPnoD29vYpXz88PBwvvvhi7N69O2pqarIaLRO3+npTPM/trDXVfzvZ209n39zqevtqds9VjvvqVrexr9I413TXSnVf3ez6VPZV2T2sk6WxTzy+dOlSWf2XCGmzr8iCfUUWUtlXc/aek+mqrq6Ozs7OmD+/7B7xImH2FVmwr8hCCvvKPScAQFK8CRsAkBRxAgAkRZwAAEkRJwBAUsQJAJAUcTJJb7/9dqxZsybuu+++eO2110o9DnPEo48+GnfddVc8/vjjpR6FOeTMmTPR2dkZTU1NsXbt2ti/f3+pR2IOuHjxYqxbty5aWlrigQceiD/+8Y+ZnctLiSfhm2++iaampjh8+HAsWbIkWltb4+OPP46777671KNR5j788MO4fPly/PnPf44DBw6UehzmiP/85z8xMDAQLS0tce7cuWhtbY1//OMfcccdd5R6NMpYoVCI4eHhqK2tjaGhoXjggQfi2LFjmfwtdM/JJBw9ejTuv//+WLFiRdx5552xefPmeO+990o9FnNAZ2dnLF68uNRjMMfce++90dLSEhERy5Yti/r6+rhw4UKJp6LcVVdXR21tbUT8723ui8ViZHX/RkXEyZEjR2LLli2xfPnyqKqqikOHDt1wm3w+H6tXr45FixZFR0dHHD16dPy6s2fPxooVK8Yvr1ixIr788stZmZ103e6+gu8yk3vr+PHjUSgUorGxMeuxSdxM7KuLFy9Gc3NzrFy5Mn7zm99EfX19JrNWRJwMDQ1Fc3Nz5PP5m16/b9++6O7ujueffz4+/fTTaG5ujk2bNsVXX301y5NSTuwrsjJTe+vChQvx5JNPxquvvjobY5O4mdhX3/ve9+Kzzz6L06dPx969e2NgYCCbYYsVJiKKBw8evO5Ye3t7MZfLjV8uFArF5cuXF3/7298Wi8Vi8aOPPipu27Zt/Ppnnnmm+Je//GV2BqYsTGdfjTl8+HDxpz/96azMSfmZ7t7673//W/zhD39YfOONN2ZtVsrH7fzOGvOrX/2quH///kzmq4h7TiZy7dq1OH78eGzcuHH82Lx582Ljxo3xySefRMT/PlL6888/jy+//DKuXLkSf/3rX2PTpk2lGpkyMJl9BdMxmb1VLBbj5z//efzoRz+Kn/3sZ6UalTIymX01MDAQly9fjoiIS5cuxZEjR2LNmjWZzFPxH2V5/vz5KBQK0dDQcN3xhoaGOHnyZEREzJ8/P1566aXYsGFDjI6OxrPPPuuVOkxoMvsqImLjxo3x2WefxdDQUKxcuTL2798f69evn+1xKSOT2VsfffRR7Nu3L9auXTv+vII333wzHnzwwVmfl/IwmX31r3/9K375y1+OPxH26aefzmxPVXycTNbWrVtj69atpR6DOeaDDz4o9QjMQQ899FCMjo6WegzmmPb29jhx4sSsnKviH9apr6+P6urqG57UMzAwEMuWLSvRVJQ7+4qs2FtkIbV9VfFxsnDhwmhtbY3e3t7xY6Ojo9Hb2+vudabNviIr9hZZSG1fVcTDOleuXIlTp06NXz59+nScOHEili5dGqtWrYru7u7o6uqKdevWRXt7e+zZsyeGhoZix44dJZya1NlXZMXeIgtlta8yeQ1QYg4fPlyMiBv+19XVNX6bP/zhD8VVq1YVFy5cWGxvby/+/e9/L93AlAX7iqzYW2ShnPaVz9YBAJJS8c85AQDSIk4AgKSIEwAgKeIEAEiKOAEAkiJOAICkiBMAICniBABIijgBAJIiTgCApIgTACAp4gQASMr/BwiFEjtUqrueAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG1CAYAAADwRl5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3DV9Z3/8dchNwgmCAQSCMFUBdZwCSUkDBZng1wiOGjA7doiEpDauhtobLQOTPencbQLSsli9XRRW0W6dYthgTIiN2MYFNiSgIlrU26Wm+YCNGAulBDO+f7+cDjTEC7Jyfebk3zO8zGTqd/L+XzfJ3178vL7/XzP12VZliUAAAADdQt0AQAAAE4h6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGCs00AUEmtfrVUVFhaKiouRyuQJdDgAAaAXLslRXV6eBAweqW7frn7cJ+qBTUVGhhISEQJcBAAD8cOrUKQ0aNOi624M+6ERFRUn65hcVHR1t27hNTU3avn27pk6dqrCwMNvGRXCjr+AUegtOcLKvamtrlZCQ4Ps7fj1BH3SuXK6Kjo62PehERkYqOjqaDw3Yhr6CU+gtOKEj+upm006YjAwAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgrNBAFxAobrdbbrdbHo8n0KX4LXHxZkfHP77sfkfHBwDAaUF7Ric7O1vl5eUqLi4OdCkAAMAhQRt0AACA+Qg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjBW0QcftdispKUmpqamBLgUAADgkaINOdna2ysvLVVxcHOhSAACAQ4I26AAAAPMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAY3X5oHPq1Cmlp6crKSlJo0aNUkFBQaBLAgAAnURooAtor9DQUK1cuVKjR49WVVWVUlJSNH36dPXs2TPQpQEAgADr8kFnwIABGjBggCQpLi5OMTExqqmpIegAAIDAX7ratWuXZsyYoYEDB8rlcmnjxo0t9nG73UpMTFT37t01btw47du375pj7d+/Xx6PRwkJCU6XDQAAuoCAB52GhgYlJyfL7XZfc/vatWuVm5ur5557TgcOHFBycrIyMjJ0+vTpZvvV1NRo7ty5euONNzqibAAA0AUE/NLVtGnTNG3atOtuz8/P1+OPP6758+dLklatWqXNmzfrrbfe0uLFiyVJjY2NyszM1OLFi3X33Xff8HiNjY1qbGz0LdfW1kqSmpqa1NTU1N6343NlLDvHvFpEiOXY2JKztcM/HdFXCE70FpzgZF+1dkyXZVnO/rVsA5fLpQ0bNigzM1OSdOnSJUVGRmrdunW+dZKUlZWl8+fP6w9/+IMsy9Ls2bM1bNgw5eXl3fQYeXl5ev7551usf/fddxUZGWnbewEAAM65cOGCZs+era+//lrR0dHX3S/gZ3Ru5OzZs/J4PIqNjW22PjY2VgcPHpQk7d69W2vXrtWoUaN883t++9vfauTIkdccc8mSJcrNzfUt19bWKiEhQVOnTr3hL6qtmpqatGPHDk2ZMkVhYWG2jfv3RuRtc2TcKz7Py3B0fLRdR/QVghO9BSc42VdXrsjcTKcOOq0xYcIEeb3eVu8fERGhiIiIFuvDwsIc+ZfbqXElqdHjcmTcK/iw67yc7CsEN3oLTnCir1o7XsAnI99ITEyMQkJCVF1d3Wx9dXW14uLiAlQVAADoKjp10AkPD1dKSooKCwt967xerwoLCzV+/PgAVgYAALqCgF+6qq+v19GjR33Lx44dU2lpqfr06aPBgwcrNzdXWVlZGjt2rNLS0rRy5Uo1NDT47sICAAC4noAHnZKSEk2cONG3fGWicFZWllavXq2HH35YZ86c0bPPPquqqiqNHj1aW7dubTFBua3cbrfcbrc8Hk+7xgEAAJ1XwINOenq6bnaH+8KFC7Vw4UJbj5udna3s7GzV1taqV69eto4NAAA6h049RwcAAKA9CDoAAMBYBB0AAGAsgg4AADAWQQcAABgraIOO2+1WUlKSUlNTA10KAABwSNAGnezsbJWXl6u4uDjQpQAAAIcEbdABAADmI+gAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADBW0AYdvkcHAADzBW3Q4Xt0AAAwX9AGHQAAYD6CDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsYI26PCFgQAAmC9ogw5fGAgAgPmCNugAAADzEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMFbdDhERAAAJgvaIMOj4AAAMB8QRt0AACA+Qg6AADAWAQdAABgLIIOAAAwFkEHAAAYKzTQBSA4JS7e7Oj4x5fd7+j4AICugTM6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMFbRBh4d6AgBgvqANOjzUEwAA8wVt0AEAAOYj6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYy6+g85e//MXuOjqc2+1WUlKSUlNTA10KAABwiF9B584779TEiRP1X//1X7p48aLdNXWI7OxslZeXq7i4ONClAAAAh/gVdA4cOKBRo0YpNzdXcXFx+tGPfqR9+/bZXRsAAEC7+BV0Ro8erVdeeUUVFRV66623VFlZqQkTJmjEiBHKz8/XmTNn7K4TAACgzdo1GTk0NFSzZs1SQUGBXnrpJR09elRPP/20EhISNHfuXFVWVtpVJwAAQJu1K+iUlJToX//1XzVgwADl5+fr6aef1hdffKEdO3aooqJCDz74oF11AgAAtFmoPy/Kz8/X22+/rUOHDmn69Olas2aNpk+frm7dvslN3/rWt7R69WolJibaWSsAAECb+BV0/vM//1OPPfaY5s2bpwEDBlxzn/79++s3v/lNu4oDAABoD7+CzpEjR266T3h4uLKysvwZHgAAwBZ+zdF5++23VVBQ0GJ9QUGB3nnnnXYXBQAAYAe/gs7SpUsVExPTYn3//v317//+7+0uCgAAwA5+BZ2TJ0/qW9/6Vov1t912m06ePNnuogAAAOzgV9Dp37+/Pvvssxbry8rK1Ldv33YXBQAAYAe/gs73v/99/fjHP1ZRUZE8Ho88Ho8++ugj5eTk6Hvf+57dNQIAAPjFr7uuXnjhBR0/flyTJk1SaOg3Q3i9Xs2dO5c5OgAAoNPwK+iEh4dr7dq1euGFF1RWVqYePXpo5MiRuu222+yuDwAAwG9+BZ0rhg4dqqFDh9pVCwAAgK38Cjoej0erV69WYWGhTp8+La/X22z7Rx99ZEtxAAAA7eFX0MnJydHq1at1//33a8SIEXK5XHbXBQAA0G5+BZ3f//73eu+99zR9+nS76wEAALCNX7eXh4eH684777S7FgAAAFv5FXSeeuopvfLKK7Isy+56AAAAbOPXpatPPvlERUVF2rJli4YPH66wsLBm29evX29LcQAAAO3hV9C59dZbNXPmTLtrAQAAsJVfQeftt9+2u44O53a75Xa75fF4Al0KAABwiF9zdCTp8uXL+vDDD/X666+rrq5OklRRUaH6+nrbinNSdna2ysvLVVxcHOhSAACAQ/w6o3PixAndd999OnnypBobGzVlyhRFRUXppZdeUmNjo1atWmV3nQAAAG3m1xmdnJwcjR07VufOnVOPHj1862fOnKnCwkLbigMAAGgPv87ofPzxx9qzZ4/Cw8ObrU9MTNRXX31lS2EAAADt5dcZHa/Xe81JvF9++aWioqLaXRQAAIAd/Ao6U6dO1cqVK33LLpdL9fX1eu6553gsBAAA6DT8unS1YsUKZWRkKCkpSRcvXtTs2bN15MgRxcTE6L//+7/trhEAAMAvfgWdQYMGqaysTL///e/12Wefqb6+XgsWLNAjjzzSbHIyAABAIPkVdCQpNDRUc+bMsbMWAAAAW/kVdNasWXPD7XPnzvWrGAAAADv5FXRycnKaLTc1NenChQsKDw9XZGQkQQcAAHQKft11de7cuWY/9fX1OnTokCZMmMBkZAAA0Gn4PUfnakOGDNGyZcs0Z84cHTx40K5hAb8kLt7s6PjHl93v6PgAAHv4/VDPawkNDVVFRYWdQwIAAPjNrzM6mzZtarZsWZYqKyv12muv6Tvf+Y4thQEAALSXX0EnMzOz2bLL5VK/fv107733asWKFbYUBgAA0F5+BR2v12t3HQAAALazdY4OAABAZ+LXGZ3c3NxW75ufn+/PIQAAANrNr6Dz6aef6tNPP1VTU5OGDRsmSTp8+LBCQkI0ZswY334ul8ueKgEAAPzgV9CZMWOGoqKi9M4776h3796SvvkSwfnz5+uee+7RU089ZWuRAAAA/vBrjs6KFSu0dOlSX8iRpN69e+vFF1/krisAANBp+BV0amtrdebMmRbrz5w5o7q6unYXBQAAYAe/gs7MmTM1f/58rV+/Xl9++aW+/PJL/c///I8WLFigWbNm2V0jAACAX/yao7Nq1So9/fTTmj17tpqamr4ZKDRUCxYs0PLly20tEAAAwF9+BZ3IyEj96le/0vLly/XFF19Iku644w717NnT1uIAAADao11fGFhZWanKykoNGTJEPXv2lGVZdtUFAADQbn4Fnb/+9a+aNGmShg4dqunTp6uyslKStGDBAm4tBwAAnYZfQecnP/mJwsLCdPLkSUVGRvrWP/zww9q6dattxQEAALSHX3N0tm/frm3btmnQoEHN1g8ZMkQnTpywpTAAAID28uuMTkNDQ7MzOVfU1NQoIiKi3UUBAADYwa+gc88992jNmjW+ZZfLJa/Xq5dfflkTJ060rTgAAID28OvS1csvv6xJkyappKREly5d0jPPPKM//elPqqmp0e7du+2uEQAAwC9+ndEZMWKEDh8+rAkTJujBBx9UQ0ODZs2apU8//VR33HGH3TUCAAD4pc1ndJqamnTfffdp1apV+tnPfuZETW02c+ZM7dy5U5MmTdK6desCXQ4AAOgk2nxGJywsTJ999pkTtfgtJyen2ZwhAAAAyc9LV3PmzNFvfvMbu2vxW3p6uqKiogJdBgAA6GT8mox8+fJlvfXWW/rwww+VkpLS4hlX+fn5rR5r165dWr58ufbv36/Kykpt2LBBmZmZzfZxu91avny5qqqqlJycrFdffVVpaWn+lA4AAIJIm4LOX/7yFyUmJurzzz/XmDFjJEmHDx9uto/L5WpTAQ0NDUpOTtZjjz2mWbNmtdi+du1a5ebmatWqVRo3bpxWrlypjIwMHTp0SP3792/TsQAAQHBpU9AZMmSIKisrVVRUJOmbRz788pe/VGxsrN8FTJs2TdOmTbvu9vz8fD3++OOaP3++JGnVqlXavHmz3nrrLS1evLjNx2tsbFRjY6Nvuba2VtI3k6ybmpraPN71XBnLzjGvFhHi7ENUu3LtTnPyd9Oa4wbq+DAXvQUnONlXrR2zTUHn6qeTb9myRQ0NDW0Zok0uXbqk/fv3a8mSJb513bp10+TJk7V3716/xly6dKmef/75Fuu3b99+zW97bq8dO3bYPuYVLzt89e6DDz5wbGyna3eak7+b1nCyrxDc6C04wYm+unDhQqv282uOzhVXBx+7nT17Vh6Pp8UZo9jYWB08eNC3PHnyZJWVlamhoUGDBg1SQUGBxo8ff80xlyxZotzcXN9ybW2tEhISNHXqVEVHR9tWe1NTk3bs2KEpU6YoLCzMtnH/3oi8bY6Me8XneRmOje107U5z8ndzIx3RVwhO9Bac4GRfXbkiczNtCjoul6vFHJy2zslxwocfftjqfSMiIq75PK6wsDBH/uV2alxJavQ4+7t38sPO6dqdFug/BE72FYIbvQUnONFXrR2vzZeu5s2b5wsKFy9e1BNPPNHirqv169e3ZdjriomJUUhIiKqrq5utr66uVlxcnC3HAAAA5mpT0MnKymq2PGfOHFuLuVp4eLhSUlJUWFjou+Xc6/WqsLBQCxcudPTYAACg62tT0Hn77bdtL6C+vl5Hjx71LR87dkylpaXq06ePBg8erNzcXGVlZWns2LFKS0vTypUr1dDQ4LsLCwAA4HraNRnZDiUlJZo4caJv+cpE4aysLK1evVoPP/ywzpw5o2effVZVVVUaPXq0tm7d2q5b2qVvvoTQ7XbL4/G0axwAANB5BTzopKen3/TurYULF9p+qSo7O1vZ2dmqra1Vr169bB0bAAB0Dn496woAAKArIOgAAABjEXQAAICxCDoAAMBYBB0AAGCsoA06brdbSUlJSk1NDXQpAADAIUEbdLKzs1VeXq7i4uJAlwIAABwStEEHAACYj6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYAX96eaC43W653W55PJ5Al4IuKHHxZkfHP77sfkfHB4BgEbRndPgeHQAAzBe0QQcAAJiPoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYKygDTput1tJSUlKTU0NdCkAAMAhQRt0+MJAAADMF7RBBwAAmI+gAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwVmigCwgUt9stt9stj8cT6FKAFhIXb77m+ogQSy+nSSPytqnR4+rgqlrn+LL7A10CAPgE7RkdvhkZAADzBW3QAQAA5iPoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYQRt03G63kpKSlJqaGuhSAACAQ4I26PD0cgAAzBe0QQcAAJiPoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWEEbdNxut5KSkpSamhroUgAAgEOCNuhkZ2ervLxcxcXFgS4FAAA4JGiDDgAAMB9BBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLGCNui43W4lJSUpNTU10KUAAACHBG3Qyc7OVnl5uYqLiwNdCgAAcEjQBh0AAGA+gg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMJYRQef999/XsGHDNGTIEP36178OdDkAAKCTCA10Ae11+fJl5ebmqqioSL169VJKSopmzpypvn37Bro0AAAQYF3+jM6+ffs0fPhwxcfH65ZbbtG0adO0ffv2QJcFAAA6gYAHnV27dmnGjBkaOHCgXC6XNm7c2GIft9utxMREde/eXePGjdO+fft82yoqKhQfH+9bjo+P11dffdUhtQMAgM4t4JeuGhoalJycrMcee0yzZs1qsX3t2rXKzc3VqlWrNG7cOK1cuVIZGRk6dOiQ+vfv3+bjNTY2qrGx0bdcW1srSWpqalJTU5P/b+QqV8ayc8yrRYRYjo0tde3aTRXRzWr2v52Rk30D53TEZxaCj5N91doxXZZldZpPTJfLpQ0bNigzM9O3bty4cUpNTdVrr70mSfJ6vUpISNCiRYu0ePFi7dmzR8uXL9eGDRskSU8++aTS0tI0e/bsax4jLy9Pzz//fIv17777riIjIx14VwAAwG4XLlzQ7Nmz9fXXXys6Ovq6+3XqoHPp0iVFRkZq3bp1zcJPVlaWzp8/rz/84Q+6fPmy7rrrLu3cudM3GXnPnj3XnYx8rTM6CQkJOnv27A1/UW3V1NSkHTt2aMqUKQoLC7Nt3L83Im+bI+Ne8XlehmNjO127qSK6WXphrFf/r6SbGr2uQJdzTU72jeRs7zhde2fWEZ9ZgdSVPy+lrtv3TvZVbW2tYmJibhp0An7p6kbOnj0rj8ej2NjYZutjY2N18OBBSVJoaKhWrFihiRMnyuv16plnnrnhHVcRERGKiIhosT4sLMyRf7mdGleSGj3O/qFz8sPO6dpN1+h1ddrfodN/JJ183yb+gW8rJz+zAqkrf15KXb/vneir1o7XqYNOaz3wwAN64IEHAl0GAADoZAJ+19WNxMTEKCQkRNXV1c3WV1dXKy4uLkBVAQCArqJTB53w8HClpKSosLDQt87r9aqwsFDjx48PYGUAAKArCPilq/r6eh09etS3fOzYMZWWlqpPnz4aPHiwcnNzlZWVpbFjxyotLU0rV65UQ0OD5s+f367jut1uud1ueTye9r4FAADQSQU86JSUlGjixIm+5dzcXEnf3Fm1evVqPfzwwzpz5oyeffZZVVVVafTo0dq6dWuLCcptlZ2drezsbNXW1qpXr17tGgsAAHROAQ866enputkd7gsXLtTChQs7qCIAAGCKTj1HBwAAoD0IOgAAwFgEHQAAYCyCDgAAMFbQBh23262kpCSlpqYGuhQAAOCQoA062dnZKi8vV3FxcaBLAQAADgnaoAMAAMwX8O/RCbQr3+FTW1tr67hNTU26cOGCamtrHXsyrLfxgiPjXmH37+TvOV27qTwhli5c8MjTGCJvJ316uZN9IznbO07X3pl1xGdWIHXlz0up6/a9k311pe6bfRefy7rZHob78ssvlZCQEOgyAACAH06dOqVBgwZdd3vQBx2v16uKigpFRUXJ5br2fyGnpqZedy7P9bbV1tYqISFBp06dUnR0tK01O+lG77UzH8vfsdr6utbu35r9brbPtbZ31b6SOq636Ku295XUdXsrmPrKn9fa1Vudsa8sy1JdXZ0GDhyobt2uPxMn6C9ddevW7YZJUJJCQkKu+3/QjbZJUnR0dJf60LjZ++msx/J3rLa+rrX7t2a/m+1zo+1dra+kjust+sr/vpK6Xm8FU1/581q7equz9lVrnlUZkpeXl2f7kQ2UlpbWpm2NjY1atmyZlixZooiICCdLs92N3mtnPpa/Y7X1da3dvzX73Wyfq7d35b6SOq636Ku29ZXUtXsrmPrKn9fa1Vtdta+C/tKVU648Ff3rr7/uUv91hM6NvoJT6C04oTP0FWd0HBQSEqL09HSFhgb9FULYiL6CU+gtOCHQfcUZHQAAYCy+MBAAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgHw/vvva9iwYRoyZIh+/etfB7ocGGTmzJnq3bu3/umf/inQpcAQp06dUnp6upKSkjRq1CgVFBQEuiQY4Pz58xo7dqxGjx6tESNG6M0333TsWNxe3sEuX76spKQkFRUVqVevXkpJSdGePXvUt2/fQJcGA+zcuVN1dXV65513tG7dukCXAwNUVlaqurpao0ePVlVVlVJSUnT48GH17Nkz0KWhC/N4PGpsbFRkZKQaGho0YsQIlZSUOPK3kDM6HWzfvn0aPny44uPjdcstt2jatGnavn17oMuCIdLT0xUVFRXoMmCQAQMGaPTo0ZKkuLg4xcTEqKamJsBVoasLCQlRZGSkpG8eE2FZlpw670LQaaNdu3ZpxowZGjhwoFwulzZu3NhiH7fbrcTERHXv3l3jxo3Tvn37fNsqKioUHx/vW46Pj9dXX33VIbWjc2tvbwHXYmdf7d+/Xx6PRwkJCU6XjU7Ojr46f/68kpOTNWjQIP30pz9VTEyMI7USdNqooaFBycnJcrvd19y+du1a5ebm6rnnntOBAweUnJysjIwMnT59uoMrRVdDb8EJdvVVTU2N5s6dqzfeeKMjykYnZ0df3XrrrSorK9OxY8f07rvvqrq62pliLfhNkrVhw4Zm69LS0qzs7GzfssfjsQYOHGgtXbrUsizL2r17t5WZmenbnpOTY/3ud7/rmILRZfjTW1cUFRVZDz30UIfUia7F3766ePGidc8991hr1qzpsFrRdbTn8+qKf/mXf7EKCgocqY8zOja6dOmS9u/fr8mTJ/vWdevWTZMnT9bevXslffMY+88//1xfffWV6uvrtWXLFmVkZASqZHQRrektoK1a01eWZWnevHm699579eijjwaqVHQhremr6upq1dXVSZK+/vpr7dq1S8OGDXOkHh5Ra6OzZ8/K4/EoNja22frY2FgdPHhQkhQaGqoVK1Zo4sSJ8nq9euaZZ7jjCjfVmt6SpMmTJ6usrEwNDQ0aNGiQCgoKNH78+I4uF11Ea/pq9+7dWrt2rUaNGuWbh/Hb3/5WI0eO7PB60TW0pq9OnDihH/7wh75JyIsWLXKspwg6AfDAAw/ogQceCHQZMNCHH34Y6BJgmAkTJsjr9Qa6DBgmLS1NpaWlHXIsLl3ZKCYmRiEhIS0mVFVXVysuLi5AVcEE9BacQF/BCZ2trwg6NgoPD1dKSooKCwt967xerwoLC7l8gHaht+AE+gpO6Gx9xaWrNqqvr9fRo0d9y8eOHVNpaQNOFJ0AAAe+SURBVKn69OmjwYMHKzc3V1lZWRo7dqzS0tK0cuVKNTQ0aP78+QGsGl0BvQUn0FdwQpfqK0fu5TJYUVGRJanFT1ZWlm+fV1991Ro8eLAVHh5upaWlWf/7v/8buILRZdBbcAJ9BSd0pb7iWVcAAMBYzNEBAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6ADwW3p6up588slAl9Fmhw4dUlxcnOrq6m66786dO+VyuXT+/Hlbjr1q1SrNmDHDlrEA3BxBB0CXUFlZqdmzZ2vo0KHq1q3bdQNWQUGB/uEf/kHdu3fXyJEj9cEHH7TYZ8mSJVq0aJGioqJuety7775blZWV6tWrV7vfgyQ99thjOnDggD7++GNbxgNwYwQdAF1CY2Oj+vXrp3/7t39TcnLyNffZs2ePvv/972vBggX69NNPlZmZqczMTH3++ee+fU6ePKn3339f8+bNa9Vxw8PDFRcXJ5fLZcfbUHh4uGbPnq1f/vKXtowH4MYIOgBsce7cOc2dO1e9e/dWZGSkpk2bpiNHjjTb580331RCQoIiIyM1c+ZM5efn69Zbb23V+ImJiXrllVc0d+7c655deeWVV3Tffffppz/9qe666y698MILGjNmjF577TXfPu+9956Sk5MVHx/vW3fixAnNmDFDvXv3Vs+ePTV8+HDfmaCrL12lp6fL5XK1+Dl+/Lgk6fz58/rBD36gfv36KTo6Wvfee6/Kysqa1Tljxgxt2rRJf/vb31r13gH4j6ADwBbz5s1TSUmJNm3apL1798qyLE2fPl1NTU2SpN27d+uJJ55QTk6OSktLNWXKFP385z+3tYa9e/dq8uTJzdZlZGRo7969vuWPP/5YY8eObbZPdna2GhsbtWvXLv3f//2fXnrpJd1yyy3XPMb69etVWVnp+5k1a5aGDRum2NhYSdJ3v/tdnT59Wlu2bNH+/fs1ZswYTZo0STU1Nb4xxo4dq8uXL+uPf/yjXW8dwHWEBroAAF3fkSNHtGnTJu3evVt33323JOl3v/udEhIStHHjRn33u9/Vq6++qmnTpunpp5+WJA0dOlR79uzR+++/b1sdVVVVvsBxRWxsrKqqqnzLJ06caBF0Tp48qYceekgjR46UJN1+++3XPUafPn18//wf//Ef+uijj/THP/5RPXr00CeffKJ9+/bp9OnTioiIkCT94he/0MaNG7Vu3Tr98Ic/lCRFRkaqV69eOnHiRPveMICb4owOgHb785//rNDQUI0bN863rm/fvho2bJj+/Oc/S/rmTqe0tLRmr7t6uSP87W9/U/fu3Zut+/GPf6wXX3xR3/nOd/Tcc8/ps88+u+k4W7Zs0eLFi7V27VoNHTpUklRWVqb6+nr17dtXt9xyi+/n2LFj+uKLL5q9vkePHrpw4YJ9bwzANXFGB4Ax4uLiVF1d3WxddXW14uLifMsxMTE6d+5cs31+8IMfKCMjQ5s3b9b27du1dOlSrVixQosWLbrmccrLy/W9731Py5Yt09SpU33r6+vrNWDAAO3cubPFa66ei1RTU6N+/fq19S0CaCPO6ABot7vuuqvFnJO//vWvOnTokJKSkiRJw4YNU3FxcbPXXb3cXuPHj1dhYWGzdTt27ND48eN9y9/+9rdVXl7e4rUJCQl64okntH79ej311FN68803r3mMs2fPasaMGXrooYf0k5/8pNm2MWPGqKqqSqGhobrzzjub/cTExPj2++KLL3Tx4kV9+9vfbs/bBdAKBB0A7TZkyBA9+OCDevzxx/XJJ5+orKxMc+bMUXx8vB588EFJ0qJFi/TBBx8oPz9fR44c0euvv64tW7a06bbt0tJSlZaWqr6+XmfOnFFpaWmz0JKTk6OtW7dqxYoVOnjwoPLy8lRSUqKFCxf69rkyOdnj8fjWPfnkk9q2bZuOHTumAwcOqKioSHfdddc1a3jooYcUGRmpvLw8VVVV+X48Ho8mT56s8ePHKzMzU9u3b9fx48e1Z88e/exnP1NJSYlvjI8//li333677rjjjla/dwB+sgDAT//4j/9o5eTkWJZlWTU1Ndajjz5q9erVy+rRo4eVkZFhHT58uNn+b7zxhhUfH2/16NHDyszMtF588UUrLi6u1ceT1OLntttua7bPe++9Zw0dOtQKDw+3hg8fbm3evLnZ9qamJmvgwIHW1q1bfesWLlxo3XHHHVZERITVr18/69FHH7XOnj1rWZZlFRUVWZKsc+fOXbcGSdaxY8csy7Ks2tpaa9GiRdbAgQOtsLAwKyEhwXrkkUeskydP+o43depUa+nSpa1+3wD857IsywpMxAIQ7B5//HEdPHiww78l2O12a9OmTdq2bVuHHleS/vSnP+nee+/V4cOHbfu2ZQDXx2RkAB3mF7/4haZMmaKePXtqy5Yteuedd/SrX/2qw+v40Y9+pPPnz6uurq5Vj4GwU2VlpdasWUPIAToIZ3QAdJh//ud/1s6dO1VXV6fbb79dixYt0hNPPCFJGj58+HW/V+b111/XI4880pGlAjAEQQdAp3DixAnftyhfLTY2tsPPvAAwA0EHAAAYi9vLAQCAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADG+v90bHRyDdVoAwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -3517,13 +3472,13 @@ } ], "source": [ - "plotDistribution(components.apply(len), nbins=20)\n", + "plotDistribution(components_size, nbins=20)\n", "plt.yscale(\"log\")" ] }, { "cell_type": "code", - "execution_count": 119, + "execution_count": 125, "metadata": {}, "outputs": [], "source": [ @@ -3543,7 +3498,7 @@ }, { "cell_type": "code", - "execution_count": 120, + "execution_count": 126, "metadata": {}, "outputs": [ { @@ -3564,7 +3519,7 @@ }, { "cell_type": "code", - "execution_count": 121, + "execution_count": 127, "metadata": {}, "outputs": [], "source": [ @@ -3573,7 +3528,7 @@ }, { "cell_type": "code", - "execution_count": 122, + "execution_count": 128, "metadata": {}, "outputs": [ { @@ -3586,7 +3541,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGhCAYAAAC6URSFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAae0lEQVR4nO3db2jV590/8E/+aMTWSK00Vo34pIylXQ3EJAgdxKL17opiu46C0KYW9iiWjgyGPliXcj9Y+Y1CYB4oWx90HStICzpod/dfsAhth9HhWAntECy4OrOKzNTIYjzn3A96J7/WpOaP5+R7nZzXC8Y4V77XdX2+J+eK737P909NsVgsBgBAImqzLgAA4OuEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASanPuoC5KhQKce7cuVixYkXU1NRkXQ4AMAvFYjG+/PLLWLt2bdTW3vjYSMWFk3PnzkVzc3PWZQAA83D27NlYv379DbepuHCyYsWKiPhq5xobG0s69vj4eLzzzjvxwAMPxJIlS0o6NjAzaxCyVc41ODIyEs3NzZP/jt9IxYWTia9yGhsbyxJOli9fHo2Njf4wQgasQcjWQqzB2ZyS4YRYACApwgkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkiKcAABJqc+6gBTd0/d2jOW/eqTzZ88/lHE1C2fj/jentFXT/gOQBkdOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkZcHDydmzZ6OrqytaWlri3nvvjddee22hSwAAErbg9zmpr6+P/v7+aG1tjfPnz0dbW1v84Ac/iFtuuWWhSwEAErTg4eTOO++MO++8MyIi1qxZE6tXr46LFy8KJwBARMzja51jx47Fzp07Y+3atVFTUxNHjhyZsk0ul4uNGzfGsmXLorOzM44fPz7tWCdPnox8Ph/Nzc1zrxwAWJTmfORkdHQ0Nm3aFE899VQ88sgjU35+6NCh6O3tjRdffDE6Ozujv78/duzYEZ9++mnccccdk9tdvHgxnnjiifjtb397w/nGxsZibGxs8vXIyEhERIyPj8f4+Phcy7+hifEaaotT2qpBQ11xSls17T/Zm/i8+dxBNsq5BucyZk2xWJz6L9JsO9fUxOHDh2P37t2TbZ2dndHe3h4HDx6MiIhCoRDNzc3x9NNPx/79+yPiq8Cxffv2+PGPfxyPP/74Defo6+uL5557bkr7q6++GsuXL59v6QDAArpy5Urs2bMnLl26FI2NjTfctqTnnFy9ejVOnjwZBw4cmGyrra2Nbdu2xUcffRQREcViMZ588sm4//77ZwwmEREHDhyI3t7eydcjIyPR3NwcDzzwwIw7N1fj4+Px7rvvxs9P1MZY4asH/33ct6Okc6Tsnr63p7RV0/6TvYk1uH379liyZEnW5UDVKecanPjmYzZKGk4uXLgQ+Xw+mpqavtHe1NQUn3zySUREfPDBB3Ho0KG49957J89X+f3vfx/f+973ph2zoaEhGhoaprQvWbKkbH+8xgo1k08lrqY/kBP7/HXVtP+ko5zrG5hZOdbgXMZb8Kt17rvvvigUCgs9LQBQIUp6E7bVq1dHXV1dDA8Pf6N9eHg41qxZU8qpAIBFqqThZOnSpdHW1hYDAwOTbYVCIQYGBmLLli2lnAoAWKTm/LXO5cuX4/Tp05Ovz5w5E6dOnYpVq1bFhg0bore3N7q7u2Pz5s3R0dER/f39MTo6Gnv37i1p4QDA4jTncHLixInYunXr5OuJK2m6u7vj5Zdfjsceeyy++OKLePbZZ+P8+fPR2toab7311pSTZAEApjPncNLV1RUz3Rpl3759sW/fvnkXNZ1cLhe5XC7y+XxJxwUA0rLgTyWer56enhgaGorBwcGsSwEAyqhiwgkAUB2EEwAgKcIJAJAU4QQASIpwAgAkRTgBAJJSMeEkl8tFS0tLtLe3Z10KAFBGFRNO3OcEAKpDxYQTAKA6CCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJJSn3UBs5XL5SKXy0U+n8+6FKrIxv1vfuP1Z88/lFElANWjYo6cuAkbAFSHigknAEB1EE4AgKQIJwBAUoQTACApFXO1DkRMvXomwhU0AIuNIycAQFKEEwAgKcIJAJAU4QQASErFhJNcLhctLS3R3t6edSkAQBlVzNU6PT090dPTEyMjI7Fy5cqsy4GK5qonIGUVc+QEAKgOwgkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKRUzH1OAK6/P4t7s8Di5MgJAJAU4QQASIpwAgAkpWLCiQf/AUB1qJgTYj34D6bnJFFgsamYIycAQHUQTgCApAgnAEBShBMAICkVc0IskL3rT76NcAIuUHrCCVB2rigC5sLXOgBAUoQTACApwgkAkBThBABIihNiIQOuegH4do6cAABJEU4AgKQIJwBAUiomnORyuWhpaYn29vasSwEAyqhiwklPT08MDQ3F4OBg1qUAAGVUMeEEAKgOwgkAkBThBABIinACACRFOAEAkuL29QBMcf0jFjxegYXkyAkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAklIx4SSXy0VLS0u0t7dnXQoAUEYVE056enpiaGgoBgcHsy4FACijigknwOK2cf+bcU/f2xERk/8PVCfhBABIinACACSlPusCACrVxv1vTmn77PmHMqgEFhdHTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCS4j4nAFVuuvu1QJYcOQEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkJSKCSe5XC5aWlqivb0961IAgDKqmHDS09MTQ0NDMTg4mHUpAEAZVUw4AQCqg3ACACSlPusCABbaxv1vTmn77PmHMqgEmI4jJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkiKcAABJcZ8TYFFxDxOofI6cAABJEU4AgKQIJwBAUpxzAsC8OL+HcnHkBABIinACACRFOAEAkuKcE4CYev6EcycgO46cAABJEU4AgKQIJwBAUoQTACApTogFmKXpbjrGjblRG/PhyAkAkBThBABIinACACRFOAEAkiKcAABJcbUOQJVx1RGpc+QEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEnJJJw8/PDDcdttt8Wjjz6axfQAQMIyCSfPPPNMvPLKK1lMDQAkLpNw0tXVFStWrMhiagAgcXMOJ8eOHYudO3fG2rVro6amJo4cOTJlm1wuFxs3boxly5ZFZ2dnHD9+vCTFAgCLX/1cO4yOjsamTZviqaeeikceeWTKzw8dOhS9vb3x4osvRmdnZ/T398eOHTvi008/jTvuuGPOBY6NjcXY2Njk65GRkYiIGB8fj/Hx8TmPdyMT4zXUFqe0VYOGuuKUttT2f6FrvH6+Us1Vyv2YT43znb9U/abr01BXnFx7DbXFb91mNuPMVON028zU52b6pWY2+3G9Ur7XlfAeVauJ3005fkdzGbOmWCzO/VM60bmmJg4fPhy7d++ebOvs7Iz29vY4ePBgREQUCoVobm6Op59+Ovbv3z+53fvvvx8HDx6M119//YZz9PX1xXPPPTel/dVXX43ly5fPt3QAYAFduXIl9uzZE5cuXYrGxsYbbjvnIyc3cvXq1Th58mQcOHBgsq22tja2bdsWH3300bzGPHDgQPT29k6+HhkZiebm5njggQdm3Lm5Gh8fj3fffTd+fqI2xgo1ERHxcd+Oks6Rsnv63p7Sltr+L3SN189XqrlKuR/zqXG+85eq33R97ul7Oxpqi/Hfmwvx8xO1cfLZ/5r3ODPVON02M/W5mX6zGWc+v/9S/h5LZTbvdWp/VxZS6u/HxL+D27dvjyVLlpR07IlvPmajpOHkwoULkc/no6mp6RvtTU1N8cknn0y+3rZtW/z1r3+N0dHRWL9+fbz22muxZcuWacdsaGiIhoaGKe1Lliwp+Rs3YaxQE2P5msl5qsXEPn9davu/0DVeP1+p5irlfsynxvnOX6p+0/X5+jZjhZoZt5nNON+23XTbzNTnZvrNZpz5/P5L+Xssldm816n9XVlIlfJ+lOPf2LmMV9JwMlvvvfdeFtMCABWgpJcSr169Ourq6mJ4ePgb7cPDw7FmzZpSTgUALFIlDSdLly6Ntra2GBgYmGwrFAoxMDDwrV/bAAB83Zy/1rl8+XKcPn168vWZM2fi1KlTsWrVqtiwYUP09vZGd3d3bN68OTo6OqK/vz9GR0dj7969JS0cAFic5hxOTpw4EVu3bp18PXElTXd3d7z88svx2GOPxRdffBHPPvtsnD9/PlpbW+Ott96acpLsXOVyucjlcpHP529qHIBKsHH/m1PaPnv+oQwqIQXV9nmYczjp6uqKmW6Nsm/fvti3b9+8i5pOT09P9PT0xMjISKxcubKkYwMA6cjk2ToAAN9GOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkJRMHvw3H27CBixm091kqxTjVMKNurK+wVip5s96PxaTijly0tPTE0NDQzE4OJh1KQBAGVVMOAEAqoNwAgAkRTgBAJIinAAASRFOAICkCCcAQFKEEwAgKW7CBlBClXgTtErgBmfVpWKOnLgJGwBUh4oJJwBAdRBOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASXH7egC4jscQZKtijpy4fT0AVIeKCScAQHUQTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBSPPgPgORc/+A9qkvFHDnx4D8AqA4VE04AgOognAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFKEEwAgKfVZFzBbuVwucrlc5PP5rEsByMTG/W9mXUJJLOR+TDfXZ88/lNk4zE7FHDnp6emJoaGhGBwczLoUAKCMKiacAADVQTgBAJIinAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASRFOAICkCCcAQFKEEwAgKcIJAJAU4QQASIpwAgAkRTgBAJIinAAASanPuoDZyuVykcvlIp/PZ10KQMXYuP/NrEsgcV//jDTUFeP/dWRYzP+pmCMnPT09MTQ0FIODg1mXAgCUUcWEEwCgOggnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBShBMAICnCCQCQFOEEAEiKcAIAJEU4AQCSIpwAAEkRTgCApAgnAEBS6rMuYLZyuVzkcrnI5/NZlwLAt9i4/83k517IGmczV6nqmW6cz55/qCRjL7SKOXLS09MTQ0NDMTg4mHUpAEAZVUw4AQCqg3ACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACQlk3DyxhtvxHe+852466674qWXXsqiBAAgUfULPeG1a9eit7c3jh49GitXroy2trZ4+OGH4/bbb1/oUgCABC34kZPjx4/H3XffHevWrYtbb701HnzwwXjnnXcWugwAIFFzDifHjh2LnTt3xtq1a6OmpiaOHDkyZZtcLhcbN26MZcuWRWdnZxw/fnzyZ+fOnYt169ZNvl63bl18/vnn8ywfAFhs5vy1zujoaGzatCmeeuqpeOSRR6b8/NChQ9Hb2xsvvvhidHZ2Rn9/f+zYsSM+/fTTuOOOO+Zc4NjYWIyNjU2+HhkZiYiI8fHxGB8fn/N4NzIxXkNtcUpbNWioK05pS23/F7rG6+cr1Vyl3I/51Djf+UvVb7o+DXXFybXXUFv81m1mM85MNU63zUx9ZtuvXOMw1Xx+r9U2/1zX58QaLMff1bmMWVMsFuf9btbU1MThw4dj9+7dk22dnZ3R3t4eBw8ejIiIQqEQzc3N8fTTT8f+/fvjww8/jF/96ldx+PDhiIj4yU9+Eh0dHbFnz55p5+jr64vnnntuSvurr74ay5cvn2/pAMACunLlSuzZsycuXboUjY2NN9y2pOHk6tWrsXz58nj99de/EVi6u7vj3//+d/zxj3+Ma9euxXe/+914//33J0+I/fDDD7/1hNjpjpw0NzfHhQsXZty5uRofH4933303fn6iNsYKNRER8XHfjpLOkbJ7+t6e0pba/i90jdfPV6q5Srkf86lxvvOXqt90fe7pezsaaovx35sL8fMTtXHy2f+a9zgz1TjdNjP1mW2/co1DeubzucraTJ/HiTW4ffv2WLJkSUnnHhkZidWrV88qnJT0ap0LFy5EPp+Ppqamb7Q3NTXFJ5988tWE9fXxwgsvxNatW6NQKMTPfvazG16p09DQEA0NDVPalyxZUvI3bsJYoSbG8jWT81SLiX3+utT2f6FrvH6+Us1Vyv2YT43znb9U/abr8/Vtxgo1M24zm3G+bbvptpmpz2z7lWsc0jOfz1XW5rJmSv23dS7jLfilxBERu3btil27dmUxNQCQuJJeSrx69eqoq6uL4eHhb7QPDw/HmjVrSjkVALBIlTScLF26NNra2mJgYGCyrVAoxMDAQGzZsqWUUwEAi9Scv9a5fPlynD59evL1mTNn4tSpU7Fq1arYsGFD9Pb2Rnd3d2zevDk6Ojqiv78/RkdHY+/evSUtHABYnOYcTk6cOBFbt26dfN3b2xsRX12R8/LLL8djjz0WX3zxRTz77LNx/vz5aG1tjbfeemvKSbJzlcvlIpfLRT6fv6lxAIC0zTmcdHV1xUxXH+/bty/27ds376Km09PTEz09PTEyMhIrV64s6dgAQDoyeSoxAMC3EU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACQlkwf/zcfETdiuXbsWEV89ernUxsfH48qVK5Efq4vC/z2lsRzzpKowdmVKW2r7v9A1Xj9fqeYq5X7Mp8b5zl+qftP1KYxdiXxdMa5cyUd+rO5bt5nNODPVON02M/WZbb9yjUN65vO5ytpMn8eJNTgyMlLypxJPzD3TvdIiImqKs9kqIf/4xz+iubk56zIAgHk4e/ZsrF+//obbVFw4KRQKce7cubj//vvjxIkTs+rT3t4eg4ODM243MjISzc3Ncfbs2WhsbLzZUivebN+3rCx0feWar1Tj3sw48+k71z6z2d4anMo6XJj5SjHuzY5R7nWY9RosFovx5Zdfxtq1a6O29sZnlVTM1zoTamtrY/369VFfXz/rN66urm5Ob3JjY6M/jDH3922hLXR95ZqvVOPezDjz6TvXPnPZ3hr8/6zDhZmvFOPe7BjlXocprMHZPn6mrq+vr6/ksy+Qjo6Okm47NjYWzz//fBw4cCAaGhpuprRFYy7vcRYWur5yzVeqcW9mnPn0nWufmba3BqdnHS7MfKUY92bHKPc6rJQ1WHFf65TTxEMFL126lPR/qcBiZQ1CtlJZgxV95KQc6urqoqurK+rrK+4bL1gUrEHIVgpr0JETACApbsIGACRFOAEAkiKcAABJEU4AgKQIJwBAUoSTWXrjjTfiO9/5Ttx1113x0ksvZV0OVJ2HH344brvttnj00UezLgWq0tmzZ6OrqytaWlri3nvvjddee61sc7mUeBauXbsWLS0tcfTo0Vi5cmW0tbXFhx9+GLfffnvWpUHVeP/99+PLL7+M3/3ud/H6669nXQ5UnX/+858xPDwcra2tcf78+Whra4u///3vccstt5R8LkdOZuH48eNx9913x7p16+LWW2+NBx98MN55552sy4Kq0tXVFStWrMi6DKhad955Z7S2tkZExJo1a2L16tVx8eLFssxVFeHk2LFjsXPnzli7dm3U1NTEkSNHpmyTy+Vi48aNsWzZsujs7Izjx49P/uzcuXOxbt26ydfr1q2Lzz//fEFqh8XgZtcgcPNKuQ5PnjwZ+Xw+mpuby1JrVYST0dHR2LRpU+RyuWl/fujQoejt7Y1f/OIX8Ze//CU2bdoUO3bsiH/9618LXCksTtYgZK9U6/DixYvxxBNPxG9+85vyFVusMhFRPHz48DfaOjo6ij09PZOv8/l8ce3atcVf/vKXxWKxWPzggw+Ku3fvnvz5M888U/zDH/6wMAXDIjOfNTjh6NGjxR/+8IcLUicsZvNdh//5z3+K3//+94uvvPJKWeuriiMnN3L16tU4efJkbNu2bbKttrY2tm3bFh999FFEfPWI6Y8//jg+//zzuHz5cvzP//xP7NixI6uSYVGZzRoEyms267BYLMaTTz4Z999/fzz++ONlrafqw8mFCxcin89HU1PTN9qbmpri/PnzERFRX18fL7zwQmzdujVaW1vjpz/9qSt1oERmswYjIrZt2xY/+tGP4k9/+lOsX79ecIESms06/OCDD+LQoUNx5MiRaG1tjdbW1vjb3/5Wlno8k3yWdu3aFbt27cq6DKha7733XtYlQFW77777olAoLMhcVX/kZPXq1VFXVxfDw8PfaB8eHo41a9ZkVBVUD2sQspfaOqz6cLJ06dJoa2uLgYGBybZCoRADAwOxZcuWDCuD6mANQvZSW4dV8bXO5cuX4/Tp05Ovz5w5E6dOnYpVq1bFhg0bore3N7q7u2Pz5s3R0dER/f39MTo6Gnv37s2walg8rEHIXkWtw7JeC5SIo0ePFiNiyv+6u7snt/n1r39d3LBhQ3Hp0qXFjo6O4p///OfsCoZFxhqE7FXSOvRsHQAgKVV/zgkAkBbhBABIinACACRFOAEAkiKcAABJEU4AgKQIJwBAUoQTACApwgkAkBThBABIinACACRFOAEAkvK/mzLTaKQW1OQAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG1CAYAAADwRl5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3hU9Z3H8c/kisEEEUrCJRgvwBJQgiHJUlEDAgEsctlaWkTCZd36bGDRyPaB7qrwsBbUhSeuTAu2lUufUimuUB8QBCJUC+wSqGhpFEWRa4hQlJCwhmRm9g82s80FMnNyJmfym/frefzjnDnn9/ueSX7h4+/cXD6fzycAAAADRTldAAAAQKgQdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjBXjdAFO83q9OnPmjBITE+VyuZwuBwAABMDn8+nSpUvq1q2boqKuPW8T8UHnzJkzSk1NdboMAABgwcmTJ9WjR49rfh7xQScxMVHS1S8qKSnJtnZramq0fft2jRw5UrGxsba1CyBwjEPAWaEcgxUVFUpNTfX/O34tER906k5XJSUl2R50EhISlJSUxB9YwCGMQ8BZrTEGm7vshIuRAQCAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIwV43QBMFfavC31lr9Y8qBDlQAAIhVBJ8T6L3hb1R6Xf5l/7AEAaD2cugIAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYKw2H3ROnjyp3Nxcpaen66677tKGDRucLgkAAISJNn97eUxMjIqKipSRkaGzZ88qMzNTY8aMUfv27Z0uDQAAOKzNB52uXbuqa9eukqSUlBR17txZFy5cIOgAAADnT129++67Gjt2rLp16yaXy6VNmzY12sbtdistLU3t2rVTTk6O9u/f32RbBw8elMfjUWpqaqjLBgAAbYDjMzpVVVUaMGCAZsyYoYkTJzb6fP369SosLNSKFSuUk5OjoqIi5eXl6ciRI+rSpYt/uwsXLmjq1Kn6+c9/ft3+qqurVV1d7V+uqKiQJNXU1Kimpsamo5K/rfgoX5PrI0F8dOQeO8JD3e8cv3uAM0I5BgNt0+Xz+XzNb9Y6XC6XNm7cqPHjx/vX5eTkKCsrS8uXL5ckeb1epaamavbs2Zo3b56kq+FlxIgReuyxx/Too49et48FCxZo4cKFjdavW7dOCQkJNh4NAAAIlcuXL2vy5Mm6ePGikpKSrrmd4zM613PlyhUdPHhQ8+fP96+LiorS8OHDtW/fPkmSz+fTtGnTNGzYsGZDjiTNnz9fhYWF/uWKigqlpqZq5MiR1/2iglVTU6MdO3bo6QNRqvb+/7uuDi/Is62PcNd/wdv1liPp2BEe6sbhiBEjFBsb63Q5QMQJ5RisOyPTnLAOOufPn5fH41FycnK99cnJyfr4448lSXv27NH69et11113+a/v+dWvfqU777yzyTbj4+MVHx/faH1sbGxI/hBWe131XuoZSX9s//q4pcg6doSXUI1vAIEJxRgMtL2wDjqBGDJkiLxer9NlAACAMOT4XVfX07lzZ0VHR6u8vLze+vLycqWkpDhUFQAAaCvCOujExcUpMzNTxcXF/nVer1fFxcUaPHiwg5UBAIC2wPFTV5WVlTp69Kh/+dixYzp06JBuvvlm9ezZU4WFhcrPz9egQYOUnZ2toqIiVVVVafr06Q5WDQAA2gLHg86BAwc0dOhQ/3LdHVH5+flavXq1Jk2apHPnzumZZ57R2bNnlZGRoW3btjW6QBkAAKAhx4NObm6umnuUz6xZszRr1ixb+3W73XK73fJ4PLa2CwAAwkdYX6MTSgUFBSotLVVJSYnTpQAAgBCJ2KADAADMR9ABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGCsiA06brdb6enpysrKcroUAAAQIhEbdHiODgAA5ovYoAMAAMxH0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMFaM0wU4xe12y+12y+PxOF0KIkTavC2N1n2x5EEHKgGAyBGxMzo8MBAAAPNFbNABAADmI+gAAABjEXQAAICxCDoAAMBYBB0AAGCsiL29HJAa3/LN7d4AYBZmdAAAgLEIOgAAwFgEHQAAYKyIDTput1vp6enKyspyuhQAABAiERt0eAUEAADm464rAC3G3WsAwlXEzugAAADzEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiL28sBRKSGt8RL3BYPmIgZHQAAYCyCDgAAMBZBBwAAGCtigw4v9QQAwHwRG3R4qScAAObjrisAftyJBMA0ETujAwAAzEfQAQAAxiLoAAAAY3GNDgDHNLwmiOuBANiNGR0AAGAsZnQAtCncGQYgGMzoAAAAYxF0AACAsQg6AADAWFyjAxiA61YAoGnM6AAAAGMRdAAAgLEIOgAAwFgRG3TcbrfS09OVlZXldCkAACBEIjboFBQUqLS0VCUlJU6XAgAAQiRigw4AADAfQQcAABiLoAMAAIxF0AEAAMYi6AAAAGPxCggAQEjxihI4iRkdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIwVsUHH7XYrPT1dWVlZTpcCAABCJGKDTkFBgUpLS1VSUuJ0KQAAIERinC4AAOyWNm+LJCk+2qcXsqX+C97Wkee+43BVAJwQsTM6AADAfAQdAABgLE5dAUCYqDvlVueLJQ86VAlgDmZ0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADG4jk6AABbNXweEOAkZnQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxorYoON2u5Wenq6srCynSwEAACESsUGnoKBApaWlKikpcboUAAAQIhEbdAAAgPlinC4AANq6tHlb6i1/seRBhyoB0BAzOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxrIUdD7//HO76wAAALCdpefo3HHHHbr//vs1c+ZMffe731W7du3srgsAwgLPyAHaNkszOn/84x911113qbCwUCkpKfrhD3+o/fv3210bAABAi1gKOhkZGXrppZd05swZvfrqqyorK9OQIUPUv39/LVu2TOfOnbO7TgAAgKC16GLkmJgYTZw4URs2bNDzzz+vo0ePau7cuUpNTdXUqVNVVlZmV50AAABBa9G7rg4cOKBXX31Vr732mtq3b6+5c+dq5syZOnXqlBYuXKhx48ZxSgsAEBCuh0IoWAo6y5Yt06pVq3TkyBGNGTNGa9eu1ZgxYxQVdXWC6NZbb9Xq1auVlpZmZ60AAABBsRR0fvazn2nGjBmaNm2aunbt2uQ2Xbp00S9/+csWFQcAANASloLOp59+2uw2cXFxys/Pt9I8AACALSxdjLxq1Spt2LCh0foNGzZozZo1LS4KAADADpZmdBYvXqyVK1c2Wt+lSxf9wz/8AzM5ACJaw4tqJS6sBZxiaUbnxIkTuvXWWxutv+WWW3TixIkWFwUAAGAHS0GnS5cu+vDDDxut/+CDD9SpU6cWFwUAAGAHS0HnBz/4gf7pn/5Ju3btksfjkcfj0TvvvKM5c+bo+9//vt01AgAAWGLpGp1Fixbpiy++0AMPPKCYmKtNeL1eTZ06VT/5yU9sLRAAAMAqS0EnLi5O69ev16JFi/TBBx/ohhtu0J133qlbbrnF7voAwEhNXbCM5vH0ZASrRa+A6N27t3r37m1XLQAAALayFHQ8Ho9Wr16t4uJiffnll/J6vfU+f+edd2wpDgAAoCUsBZ05c+Zo9erVevDBB9W/f3+5XC676wIAAGgxS0Hntdde029/+1uNGTPG7noAAABsY/li5DvuuMPuWgAAbQwXVSPcWXqOzlNPPaWXXnpJPp/P7noAAABsY2lG5w9/+IN27dqlrVu3ql+/foqNja33+RtvvGFLcQAAAC1hKejcdNNNmjBhgt21AAAA2MpS0Fm1apXddQAAANjO0jU6klRbW6udO3dq5cqVunTpkiTpzJkzqqystK04AACAlrA0o3P8+HGNGjVKJ06cUHV1tUaMGKHExEQ9//zzqq6u1ooVK+yuEwAAIGiWZnTmzJmjQYMG6auvvtINN9zgXz9hwgQVFxfbVhwAAEBLWJrRee+997R3717FxcXVW5+WlqbTp0/bUhgAAEBLWZrR8Xq98ng8jdafOnVKiYmJLS4KAADADpaCzsiRI1VUVORfdrlcqqys1LPPPstrIQAAQNiwdOpq6dKlysvLU3p6ur755htNnjxZn376qTp37qzf/OY3dtcIAABgiaWg06NHD33wwQd67bXX9OGHH6qyslIzZ87UI488Uu/iZAAAACdZCjqSFBMToylTpthZi2UTJkzQ7t279cADD+j11193uhwAABAmLAWdtWvXXvfzqVOnWirGqjlz5mjGjBlas2ZNq/YLAADCm6WgM2fOnHrLNTU1unz5suLi4pSQkNDqQSc3N1e7d+9u1T4BAED4s3TX1VdffVXvv8rKSh05ckRDhgwJ+mLkd999V2PHjlW3bt3kcrm0adOmRtu43W6lpaWpXbt2ysnJ0f79+62UDQAAIozla3Qa6tWrl5YsWaIpU6bo448/Dni/qqoqDRgwQDNmzNDEiRMbfb5+/XoVFhZqxYoVysnJUVFRkfLy8nTkyBF16dIl6Dqrq6tVXV3tX66oqJB0dVaqpqYm6Paupa6t+Chfk+sjQXx0+B97a9bYsC87+7OrbavtWP0erewXSI1129SNv/go3zW3aa7/QGpsqq1Aawxmn3AUyHE0xa7vui18R5Gs7ucTip9ToG26fD6ftd/SJhw6dEj33XefPzwEy+VyaePGjRo/frx/XU5OjrKysrR8+XJJVx9WmJqaqtmzZ2vevHn+7Xbv3q3ly5c3ezHyggULtHDhwkbr161bp4SEBEt1AwCA1nX58mVNnjxZFy9eVFJS0jW3szSj8+abb9Zb9vl8Kisr0/Lly3XPPfdYabJJV65c0cGDBzV//nz/uqioKA0fPlz79u2z1Ob8+fNVWFjoX66oqFBqaqpGjhx53S8qWDU1NdqxY4eePhClaq/Lv/7wgjzb+gh3/Re8XW85HI+9NWts2Jed/dnVttV2rH6PVvYLpMa6beKjfFo0yKunD0Tp4DOjgm4n0BqbaivQGoPZ51rs+j226+dhF6s/j0gSyr8rdqj7t3DEiBGKjY21te1AJ1UsBZ2/nnGRrs7EfOtb39KwYcO0dOlSK0026fz58/J4PEpOTq63Pjk5ud7pseHDh+uDDz5QVVWVevTooQ0bNmjw4MFNthkfH6/4+PhG62NjY23/IUhStdelas//B51Q9BGu/vq4pfA89tassWFfdvZnV9tW27H6PVrZL5AaG25T7XU1u821+g+kxqbaCrbGQPa5Frt+j+36edjF6s8jkoTy74qdQvFvbKDtWQo6Xq/Xym4hs3PnTqdLAAAAYcjSXVetpXPnzoqOjlZ5eXm99eXl5UpJSXGoKgAA0FZYmtH562tcmrNs2TIrXUiS4uLilJmZqeLiYv/pMq/Xq+LiYs2aNctyuwAAIDJYCjrvv/++3n//fdXU1KhPnz6SpE8++UTR0dG6++67/du5XM2fu62srNTRo0f9y8eOHdOhQ4d08803q2fPniosLFR+fr4GDRqk7OxsFRUVqaqqStOnT7dSOgAAiCCWgs7YsWOVmJioNWvWqGPHjpKuPkRw+vTpuvfee/XUU08F3NaBAwc0dOhQ/3LdbFF+fr5Wr16tSZMm6dy5c3rmmWd09uxZZWRkaNu2bY0uUAYAAGjIUtBZunSptm/f7g85ktSxY0f927/9m0aOHBlU0MnNzVVzj/KZNWuW7aeq3G633G63PB6Pre0CQDhKm7el3vIXSx50qBKEg0j6fbB0MXJFRYXOnTvXaP25c+d06dKlFhfVGgoKClRaWqqSkhKnSwEAACFiKehMmDBB06dP1xtvvKFTp07p1KlT+s///E/NnDmzydc4AAAAOMHSqasVK1Zo7ty5mjx5sv9dEzExMZo5c6ZefPFFWwsEAACwylLQSUhI0E9/+lO9+OKL+uyzzyRJt99+u9q3b29rcQAAAC3RogcGlpWVqaysTL169VL79u2bvagYAACgNVkKOn/5y1/0wAMPqHfv3hozZozKysokSTNnzgzqjisAAIBQshR0nnzyScXGxurEiRNKSEjwr580aZK2bdtmW3EAAAAtYekane3bt+vtt99Wjx496q3v1auXjh8/bkthocZzdACYquEzUuxspy08b8XpZ8TY1b/Tx2EKSzM6VVVV9WZy6ly4cEHx8fEtLqo18BwdAADMZyno3HvvvVq7dq1/2eVyyev16oUXXqj3OgcAAAAnWTp19cILL+iBBx7QgQMHdOXKFf3oRz/Sn//8Z124cEF79uyxu0YAAABLLM3o9O/fX5988omGDBmicePGqaqqShMnTtT777+v22+/3e4aAQAALAl6RqempkajRo3SihUr9C//8i+hqAkAAMAWQc/oxMbG6sMPPwxFLQAAALaydOpqypQp+uUvf2l3LQAAALaydDFybW2tXn31Ve3cuVOZmZmN3nG1bNkyW4oDAABoiaCCzueff660tDQdPnxYd999tyTpk08+qbeNy+Wyr7oQ4oGBAMJdW31gX1vAw/giR1BBp1evXiorK9OuXbskXX3lw3/8x38oOTk5JMWFUkFBgQoKClRRUaEOHTo4XQ4AAAiBoK7Rafh28q1bt6qqqsrWggAAAOxi6WLkOg2DDwAAQDgJKui4XK5G1+C0lWtyAABA5AnqGh2fz6dp06b5X9z5zTff6PHHH29019Ubb7xhX4UAAAAWBRV08vPz6y1PmTLF1mIAAADsFFTQWbVqVajqAAAAsF2LLkYGAAAIZwQdAABgLIIOAAAwlqV3XZmAV0AAAFoDr/JwVsTO6BQUFKi0tFQlJSVOlwIAAEIkYoMOAAAwH0EHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIzFSz15qScAGK2pl2oickTsjA4v9QQAwHwRG3QAAID5CDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjBXjdAFOcbvdcrvd8ng8TpcCAK0ubd4Wp0uwRWsfR8P+vljyoKPtoHkRO6NTUFCg0tJSlZSUOF0KAAAIkYgNOgAAwHwEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGCsGKcLcIrb7Zbb7ZbH43G6FABoM9LmbXG6BISxhr8f8dE+vZDtUDH/J2JndAoKClRaWqqSkhKnSwEAACESsUEHAACYj6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMFeN0AU5xu91yu93yeDxOlwIAaELavC1h339r1hhoX3bV1LCdL5Y8aEu7rS1iZ3QKCgpUWlqqkpISp0sBAAAhErFBBwAAmI+gAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxlRNDZvHmz+vTpo169eukXv/iF0+UAAIAwEeN0AS1VW1urwsJC7dq1Sx06dFBmZqYmTJigTp06OV0aAABwWJuf0dm/f7/69eun7t2768Ybb9To0aO1fft2p8sCAABhwPGg8+6772rs2LHq1q2bXC6XNm3a1Ggbt9uttLQ0tWvXTjk5Odq/f7//szNnzqh79+7+5e7du+v06dOtUjsAAAhvjp+6qqqq0oABAzRjxgxNnDix0efr169XYWGhVqxYoZycHBUVFSkvL09HjhxRly5dgu6vurpa1dXV/uWKigpJUk1NjWpqaqwfSAN1bcVH+ZpcHwnio8P/2FuzxoZ92dmfXW1bbcfq92hlv0BqrNumbvzFR/muuU1z/QdSY1NtBVpjsKz2j+tz+nttC/1bGZ91YzAUf1sDbdPl8/nCZoS4XC5t3LhR48eP96/LyclRVlaWli9fLknyer1KTU3V7NmzNW/ePO3du1cvvviiNm7cKEl64oknlJ2drcmTJzfZx4IFC7Rw4cJG69etW6eEhIQQHBUAALDb5cuXNXnyZF28eFFJSUnX3C6sg86VK1eUkJCg119/vV74yc/P19dff63f/e53qq2tVd++fbV7927/xch79+695sXITc3opKam6vz589f9ooJVU1OjHTt26OkDUar2uvzrDy/Is62PcNd/wdv1lsPx2FuzxoZ92dmfXW1bbcfq92hlv0BqrNsmPsqnRYO8evpAlA4+MyrodgKtsam2Aq0xWFb7R3hrqz/X5n6v68bgiBEjFBsba2vfFRUV6ty5c7NBx/FTV9dz/vx5eTweJScn11ufnJysjz/+WJIUExOjpUuXaujQofJ6vfrRj3503Tuu4uPjFR8f32h9bGys7T8ESar2ulTt+f+gE4o+wtVfH7cUnsfemjU27MvO/uxq22o7Vr9HK/sFUmPDbaq9rma3uVb/gdTYVFvB1hgoq/0jvLXVn2ugv9eh+Dc20PbCOugE6qGHHtJDDz3kdBkAACDMOH7X1fV07txZ0dHRKi8vr7e+vLxcKSkpDlUFAADairAOOnFxccrMzFRxcbF/ndfrVXFxsQYPHuxgZQAAoC1w/NRVZWWljh496l8+duyYDh06pJtvvlk9e/ZUYWGh8vPzNWjQIGVnZ6uoqEhVVVWaPn26g1UDAIC2wPGgc+DAAQ0dOtS/XFhYKOnqnVWrV6/WpEmTdO7cOT3zzDM6e/asMjIytG3btkYXKAMAADTkeNDJzc1Vc3e4z5o1S7NmzbK1X7fbLbfbLY/HY2u7AAAgfIT1NTqhVFBQoNLSUpWUlDhdCgAACJGIDToAAMB8BB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMZy/Dk6Tql7jk5tba2kq697t1NNTY0uX74sT3W0vH/1Nle7+wln3urL9ZbD8dhbs8aGfdnZn11tW23H6vdoZb9AaqzbxhPt0+XLHnmqo6+5TXP9B1JjU20FWmOwrPaP8NZWf67N/V7XjcGKigrb315e13dzz+Jz+ZrbwnCnTp1Samqq02UAAAALTp48qR49elzz84gPOl6vV71799bBgwflcrma30FSVlZWsw8arKioUGpqqk6ePKmkpCQ7Sm3zAvnenNTa9YWqP7vabUk7VvYNZp9At2Uc1scYbJ3+ImEMBrp9KMegz+fTpUuX1K1bN0VFXftKnIg9dVUnKipKcXFx6tChQ8D7REdHB/wDS0pK4g/s/wnme3NCa9cXqv7sarcl7VjZN5h9gm2fcXgVY7B1+ouEMRjs9qEag4H82x29YMGCBbb33AZlZ2fbun11dbWWLFmi+fPnKz4+viWlGSXY77m1tXZ9oerPrnZb0o6VfYPZJ5BtGYeNMQZbp79IGIOBbB8OYzDiT12FSkVFhTp06KCLFy+G9f9BASZjHALOCocxyIxOCEVHRys3N1cxMRF/hhBwDOMQcJbTY5AZHQAAYCweGAgAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQds3rxZffr0Ua9evfSLX/zC6XKAiDRhwgR17NhR3/3ud50uBYhIJ0+eVG5urtLT03XXXXdpw4YNIemH28tbWW1trdLT07Vr1y516NBBmZmZ2rt3rzp16uR0aUBE2b17ty5duqQ1a9bo9ddfd7ocIOKUlZWpvLxcGRkZOnv2rDIzM/XJJ5+offv2tvbDjE4r279/v/r166fu3bvrxhtv1OjRo7V9+3anywIiTm5urhITE50uA4hYXbt2VUZGhiQpJSVFnTt31oULF2zvh6ATpHfffVdjx45Vt27d5HK5tGnTpkbbuN1upaWlqV27dsrJydH+/fv9n505c0bdu3f3L3fv3l2nT59uldoBU7R0HAJoOTvH4cGDB+XxeJSammp7nQSdIFVVVWnAgAFyu91Nfr5+/XoVFhbq2Wef1R//+EcNGDBAeXl5+vLLL1u5UsBcjEPAeXaNwwsXLmjq1Kl65ZVXQlOoD5ZJ8m3cuLHeuuzsbF9BQYF/2ePx+Lp16+ZbvHixz+fz+fbs2eMbP368//M5c+b4fv3rX7dOwYCBrIzDOrt27fL93d/9XavUCZjM6jj85ptvfPfee69v7dq1IauNGR0bXblyRQcPHtTw4cP966KiojR8+HDt27dP0tVX2h8+fFinT59WZWWltm7dqry8PKdKBowTyDgEEFqBjEOfz6dp06Zp2LBhevTRR0NWC0HHRufPn5fH41FycnK99cnJyTp79qwkKSYmRkuXLtXQoUOVkZGhp556ijuuABsFMg4laS7XG7kAAAi0SURBVPjw4Xr44Yf11ltvqUePHoQgwEaBjMM9e/Zo/fr12rRpkzIyMpSRkaE//elPttfizDvTI9xDDz2khx56yOkygIi2c+dOp0sAItqQIUPk9XpD3g8zOjbq3LmzoqOjVV5eXm99eXm5UlJSHKoKiCyMQ8B54TQOCTo2iouLU2ZmpoqLi/3rvF6viouLNXjwYAcrAyIH4xBwXjiNQ05dBamyslJHjx71Lx87dkyHDh3SzTffrJ49e6qwsFD5+fkaNGiQsrOzVVRUpKqqKk2fPt3BqgGzMA4B57WZcRiy+7kMtWvXLp+kRv/l5+f7t3n55Zd9PXv29MXFxfmys7N9//Vf/+VcwYCBGIeA89rKOORdVwAAwFhcowMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQARCQ3NxcPfHEE06XEbQjR44oJSVFly5dcrqUJpWWlqpHjx6qqqpyuhTASAQdAGGnrKxMkydPVu/evRUVFXXNgLVhwwb9zd/8jdq1a6c777xTb731VqNt5s+fr9mzZysxMVGStHv3brlcLvXr108ej6fetjfddJNWr15t+/FcT3p6uv72b/9Wy5Yta9V+gUhB0AEQdqqrq/Wtb31L//qv/6oBAwY0uc3evXv1gx/8QDNnztT777+v8ePHa/z48Tp8+LB/mxMnTmjz5s2aNm1ao/0///xzrV27NlSHEJTp06frZz/7mWpra50uBTAOQQdA0L766itNnTpVHTt2VEJCgkaPHq1PP/203jY///nPlZqaqoSEBE2YMEHLli3TTTfdFFD7aWlpeumllzR16lR16NChyW1eeukljRo1Sv/8z/+svn37atGiRbr77ru1fPly/za//e1vNWDAAHXv3r3R/rNnz9azzz6r6urqa9Zx4sQJjRs3TjfeeKOSkpL0ve99T+Xl5f7PFyxYoIyMDP3qV79SWlqaOnTooO9///v1TpN5vV4tXrxYt956q2644QYNGDBAr7/+er1+RowYoQsXLuj3v/99QN8PgMARdAAEbdq0aTpw4IDefPNN7du3Tz6fT2PGjFFNTY0kac+ePXr88cc1Z84cHTp0SCNGjNBzzz1naw379u3T8OHD663Ly8vTvn37/MvvvfeeBg0a1OT+TzzxhGpra/Xyyy83+bnX69W4ceP8AWTHjh36/PPPNWnSpHrbffbZZ9q0aZM2b96szZs36/e//72WLFni/3zx4sVau3atVqxYoT//+c968sknNWXKlHqhJi4uThkZGXrvvfeC/h4AXF+M0wUAaFs+/fRTvfnmm9qzZ4++/e1vS5J+/etfKzU1VZs2bdLDDz+sl19+WaNHj9bcuXMlSb1799bevXu1efNm2+o4e/askpOT661LTk7W2bNn/cvHjx+/ZtBJSEjQs88+qx//+Md67LHHGs0cFRcX609/+pOOHTum1NRUSdLatWvVr18/lZSUKCsrS9LVQLR69Wr/NUCPPvqoiouL9dxzz6m6ulo/+clPtHPnTg0ePFiSdNttt+kPf/iDVq5cqfvvv9/fX7du3XT8+PEWfisAGmJGB0BQPvroI8XExCgnJ8e/rlOnTurTp48++ugjSVfvdMrOzq63X8Pl1vA///M/ateu3TU/nzlzpjp16qTnn3++0WcfffSRUlNT/SFHunrh8E033eQ/Tunqaba6kCNJXbt21ZdffilJOnr0qC5fvqwRI0boxhtv9P+3du1affbZZ/X6u+GGG3T58mXLxwqgaczoAGiTUlJS6l0vI0nl5eVKSUnxL3fu3FlfffXVNduIiYnRc889p2nTpmnWrFmW6oiNja237HK55PV6JUmVlZWSpC1btjS6Tig+Pr7e8oULF3T77bdbqgHAtTGjAyAoffv2VW1trf77v//bv+4vf/mLjhw5ovT0dElSnz59VFJSUm+/hsstNXjwYBUXF9dbt2PHDv8pIkkaOHCgSktLr9vOww8/rH79+mnhwoX11vft21cnT57UyZMn/etKS0v19ddf+4+zOenp6YqPj9eJEyd0xx131Pvvr2eKJOnw4cMaOHBgQO0CCBwzOgCC0qtXL40bN06PPfaYVq5cqcTERM2bN0/du3fXuHHjJF29o+m+++7TsmXLNHbsWL3zzjvaunWrXC5XwP0cOnRI0tVZkXPnzunQoUOKi4vzh4w5c+bo/vvv19KlS/Xggw/qtdde04EDB/TKK6/428jLy9Pf//3fy+PxKDo6+pp9LVmyRHl5efXWDR8+XHfeeaceeeQRFRUVqba2Vv/4j/+o+++//5rX/TSUmJiouXPn6sknn5TX69WQIUN08eJF7dmzR0lJScrPz5ckffHFFzp9+nSji6sBtBwzOgCCtmrVKmVmZuo73/mOBg8eLJ/Pp7feest/Gueee+7RihUrtGzZMg0YMEDbtm3Tk08+ed3rZRoaOHCgBg4cqIMHD2rdunUaOHCgxowZ4//829/+ttatW6dXXnnFf8v2pk2b1L9/f/82o0ePVkxMjHbu3HndvoYNG6Zhw4bVe46Ny+XS7373O3Xs2FH33Xefhg8frttuu03r168P+BgkadGiRXr66ae1ePFi9e3bV6NGjdKWLVt06623+rf5zW9+o5EjR+qWW24Jqm0AzXP5fD6f00UAMN9jjz2mjz/+uNVvoXa73XrzzTf19ttvt2q/gbpy5Yp69eqldevW6Z577nG6HMA4nLoCEBL//u//rhEjRqh9+/baunWr1qxZo5/+9KetXscPf/hDff3117p06VK9u6PCxYkTJ/TjH/+YkAOECDM6AELie9/7nnbv3q1Lly7ptttu0+zZs/X4449Lkvr163fNZ8asXLlSjzzySGuWCsBgBB0Are748eP+pyg3lJycHJYzLwDaJoIOAAAwFnddAQAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACM9b+ni/ggZ/aTSwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -3602,7 +3557,7 @@ }, { "cell_type": "code", - "execution_count": 123, + "execution_count": 129, "metadata": {}, "outputs": [], "source": [ @@ -3611,7 +3566,7 @@ }, { "cell_type": "code", - "execution_count": 124, + "execution_count": 130, "metadata": { "scrolled": true }, @@ -3630,13 +3585,13 @@ "(0.1, 1)" ] }, - "execution_count": 124, + "execution_count": 130, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGhCAYAAACUFDUXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAcyUlEQVR4nO3dbWyddf348U/Xbp3TrbJNOsZWhjdB66DTrV0mJm6wuCBOJ46QoKGBRBI9JdN61z0QxgMFNZKpnAiKuqCgE+LwZoJAwS0ium5sKjZDpxMRXGEg6+hMqe31f+Cf/pw9wOl22tPv2euV8OBc/Z7r+lwXS84757Yqy7IsAAASNancAwAAHA8xAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJqyn3AKM1NDQUTzzxREyfPj2qqqrKPQ4AUIQsy+Lw4cMxd+7cmDSptM+lJBczTzzxRMyfP7/cYwAAx+Cxxx6LefPmlXSfycXM9OnTIyJi//79MXPmzDJPAwAU45lnnonTTz99+HG8lJKLmRdeWpo+fXrMmDGjzNMAAMUYGBiIiBiTt4h4AzAAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkrabcAwDAWFnQsXXEtr9ee34ZJmEseWYGAEhaMjGTz+ejsbExmpubyz0KADCBJBMzuVwuuru7o6urq9yjAAATSDIxAwBQiJgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaTXlHgAAUrGgY+uIbX+99vwyTMJ/EzMAnPBEStq8zAQAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRv3mHn22WdjyZIlsWjRoli4cGF84xvfGO8RAIAKMu7fMzN9+vTYvn17TJs2Lfr6+mLhwoVxwQUXxKxZs8Z7FACgAoz7MzPV1dUxbdq0iIjo7++PLMsiy7LxHgMAqBCjjpnt27fH6tWrY+7cuVFVVRV33HHHiDX5fD4WLFgQU6dOjaVLl8aOHTuO+vuzzz4bTU1NMW/evPjkJz8Zs2fPPvYzAABOaKN+mamvry+amprisssuiwsuuGDE3zdv3hzt7e1xww03xNKlS2Pjxo2xatWqeOSRR+Lkk0+OiIhXv/rV8dvf/jZ6enriggsuiLVr10Z9fX3B4/X390d/f//w7d7e3oiIGBgYiIGBgdGOD8AJpLZ65DP/hR47Sr2OkcbyOlVlx/EaT1VVVWzZsiXWrFkzvG3p0qXR3Nwc119/fUREDA0Nxfz58+OKK66Ijo6OEfv4yEc+Euecc06sXbu24DE2bNgQV1999Yjtt9566/DLVQDAxHbkyJG4+OKL49ChQzFjxoyS7rukbwB+/vnnY9euXbF+/frhbZMmTYqVK1fGgw8+GBERPT09MW3atJg+fXocOnQotm/fHh/+8IdfdJ/r16+P9vb24du9vb0xf/78WLFihTcNA/CSFm74+YhtD29YNebrGOnpp58es32XNGYOHjwYg4ODI14yqq+vj71790ZExKOPPhqXX3758Bt/r7jiijjzzDNfdJ+1tbVRW1s7YvvkyZNj8uTJpRwfgArTP1g1Yluhx45Sr2OksbxO4/7R7JaWltizZ894HxYAqFAl/Wj27Nmzo7q6Onp6eo7a3tPTE3PmzCnloQAAIqLEMTNlypRYvHhxdHZ2Dm8bGhqKzs7OWLZsWSkPBQAQEcfwMtNzzz0X+/btG769f//+2LNnT8ycOTMaGhqivb09WltbY8mSJdHS0hIbN26Mvr6+uPTSS49r0Hw+H/l8PgYHB49rPwBAZRl1zOzcuTNWrFgxfPuFTxq1trbGpk2b4qKLLoqnnnoqrrzyyjhw4EAsWrQo7rrrrhf9Hpli5XK5yOVy0dvbG3V1dce1LwCgcow6ZpYvX/6yPz/Q1tYWbW1txzwUAECxxv23mQAASknMAABJEzMAQNKSiZl8Ph+NjY3R3Nxc7lEAgAkkmZjJ5XLR3d0dXV1d5R4FAJhAkokZAIBCxAwAkDQxAwAkTcwAAEkTMwBA0pKJGR/NBgAKSSZmfDQbACgkmZgBAChEzAAASRMzAEDSxAwAkDQxAwAkLZmY8dFsAKCQZGLGR7MBgEKSiRkAgELEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAElLJmZ8AzAAUEgyMeMbgAGAQmrKPQAA8H8WdGwdse2v155fhknSkcwzMwAAhYgZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkpZMzPg5AwCgkGRixs8ZAACFJBMzAACFiBkAIGliBgBImpgBAJImZgCApIkZACBpNeUeAABKYUHH1nKPQJl4ZgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkpZMzOTz+WhsbIzm5uZyjwIATCDJfM9MLpeLXC4Xvb29UVdXV+5xAGBUCn0Pzl+vPb8Mk1SeZJ6ZAQAoRMwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSkvltJgCgNCrtd6I8MwMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSkomZfD4fjY2N0dzcXO5RAIAJJJkvzcvlcpHL5aK3tzfq6urKPQ4AjJtK+5K7UkvmmRkAgELEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASasp9wAAUGkWdGwt9wgnFM/MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJC0cY+Zxx57LJYvXx6NjY1x1llnxW233TbeIwAAFWTcf2iypqYmNm7cGIsWLYoDBw7E4sWL413vele88pWvHO9RAIAKMO4xc8opp8Qpp5wSERFz5syJ2bNnxzPPPCNmAIBjMuqXmbZv3x6rV6+OuXPnRlVVVdxxxx0j1uTz+ViwYEFMnTo1li5dGjt27Ci4r127dsXg4GDMnz9/9JMDAMQxxExfX180NTVFPp8v+PfNmzdHe3t7XHXVVfHQQw9FU1NTrFq1Kp588smj1j3zzDNxySWXxNe//vVjmxwAII7hZabzzjsvzjvvvBf9+3XXXRcf+tCH4tJLL42IiBtuuCG2bt0a3/rWt6KjoyMiIvr7+2PNmjXR0dERb3vb217yeP39/dHf3z98u7e3NyIiBgYGYmBgYLTjA1ChaquzotYVeuwodN9SrzueWYq9b7GKPY9SGsv9V2VZVtxVK3TnqqrYsmVLrFmzJiIinn/++Zg2bVrcfvvtw9siIlpbW+PZZ5+NH/3oR5FlWVx88cVxxhlnxIYNG172GBs2bIirr756xPZbb701pk2bdqyjAwDj6MiRI3HxxRfHoUOHYsaMGSXdd0nfAHzw4MEYHByM+vr6o7bX19fH3r17IyLigQceiM2bN8dZZ501/H6b73znO3HmmWcW3Of69eujvb19+HZvb2/Mnz8/VqxYEbNmzSrl+AAkbOGGnxe17uENq4q6b6nXHc8sxd63WMWeRyk9/fTTY7bvcf8009vf/vYYGhoqen1tbW3U1taO2D558uSYPHlyKUcDIGH9g1VFrSv02FHovqVedzyzFHvfYhV7HqU0lvsv6ZfmzZ49O6qrq6Onp+eo7T09PTFnzpxSHgoAICJKHDNTpkyJxYsXR2dn5/C2oaGh6OzsjGXLlpXyUAAAEXEMLzM999xzsW/fvuHb+/fvjz179sTMmTOjoaEh2tvbo7W1NZYsWRItLS2xcePG6OvrG/5007HK5/ORz+djcHDwuPYDAFSWUcfMzp07Y8WKFcO3X3hzbmtra2zatCkuuuiieOqpp+LKK6+MAwcOxKJFi+Kuu+4a8abg0crlcpHL5aK3tzfq6uqOa18AQOUYdcwsX748Xu7T3G1tbdHW1nbMQwEAFGvcfzUbAKCUxAwAkDQxAwAkLZmYyefz0djYGM3NzeUeBQCYQJKJmVwuF93d3dHV1VXuUQCACSSZmAEAKETMAABJEzMAQNLEDACQNDEDACQtmZjx0WwAoJBR/zZTufihSQAmogUdW8s9wgkvmWdmAAAKETMAQNLEDACQNDEDACRNzAAASRMzAEDSkokZ3zMDABSSTMzkcrno7u6Orq6uco8CAEwgycQMAEAhYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkpZMzPjSPACgkJpyD1CsXC4XuVwuent7o66urtzjAEASFnRsLfcIYy6ZZ2YAAAoRMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSkokZv80EABSSTMzkcrno7u6Orq6uco8CAEwgycQMAEAhYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApCUTM341GwAoJJmY8avZAEAhycQMAEAhYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkpZMzOTz+WhsbIzm5uZyjwIATCDJxEwul4vu7u7o6uoq9ygAwASSTMwAABRSU+4BAIDSWNCxtdwjlIVnZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICkiRkAIGliBgBImpgBAJImZgCApIkZACBpYgYASFpNuQcAAEZvQcfWco8wYXhmBgBImpgBAJImZgCApIkZACBpYgYASJqYAQCSJmYAgKSJGQAgaWIGAEiamAEAkiZmAICklSVm3ve+98VJJ50Ua9euLcfhAYAKUpaYWbduXdx8883lODQAUGHKEjPLly+P6dOnl+PQAECFGXXMbN++PVavXh1z586NqqqquOOOO0asyefzsWDBgpg6dWosXbo0duzYUZJhAQD+V81o79DX1xdNTU1x2WWXxQUXXDDi75s3b4729va44YYbYunSpbFx48ZYtWpVPPLII3HyySePesD+/v7o7+8fvt3b2xsREQMDAzEwMDDq/QFQmWqrs6LWFXrsKHTfYtcdj/E4RrHG+jF1LPdflWXZMV+1qqqq2LJlS6xZs2Z429KlS6O5uTmuv/76iIgYGhqK+fPnxxVXXBEdHR3D637xi1/E9ddfH7fffvtLHmPDhg1x9dVXj9h+6623xrRp0451dABgHB05ciQuvvjiOHToUMyYMaOk+x71MzMv5fnnn49du3bF+vXrh7dNmjQpVq5cGQ8++OAx7XP9+vXR3t4+fLu3tzfmz58fK1asiFmzZh33zABUhoUbfl7Uuoc3rCrqvsWuOx7jcYxiFZqllJ5++ukx23dJY+bgwYMxODgY9fX1R22vr6+PvXv3Dt9euXJl/Pa3v42+vr6YN29e3HbbbbFs2bKC+6ytrY3a2toR2ydPnhyTJ08u5fgAJKx/sKqodYUeOwrdt9h1x2M8jlGssX5MHcv9lzRminXvvfeW47AAQAUq6UezZ8+eHdXV1dHT03PU9p6enpgzZ04pDwUAEBEljpkpU6bE4sWLo7Ozc3jb0NBQdHZ2vujLSMXK5/PR2NgYzc3NxzsmAFBBRv0y03PPPRf79u0bvr1///7Ys2dPzJw5MxoaGqK9vT1aW1tjyZIl0dLSEhs3boy+vr649NJLj2vQXC4XuVwuent7o66u7rj2BQBUjlHHzM6dO2PFihXDt1/4pFFra2ts2rQpLrroonjqqafiyiuvjAMHDsSiRYvirrvuGvGmYACAUhh1zCxfvjxe7qtp2traoq2t7ZiHAgAoVll+mwkAoFTEDACQtGRixqeZAIBCkomZXC4X3d3d0dXVVe5RAIAJJJmYAQAoRMwAAEkTMwBA0sQMAJA0MQMAJC2ZmPHRbACgkGRixkezAYBCkokZAIBCxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJC0ZGLG98wAAIUkEzO+ZwYAKCSZmAEAKETMAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkLRkYsY3AAMAhSQTM74BGAAoJJmYAQAoRMwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACQtmZjxcwYAQCHJxIyfMwAACkkmZgAAChEzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASasp9wDFyufzkc/nY3BwsNyjAEDFWdCxdcS2v157fhkmGb1knpnJ5XLR3d0dXV1d5R4FAJhAkokZAIBCxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJA0MQMAJE3MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkLSacg8wWlmWRUTE4cOHY/LkyWWeBoCJYqj/SFHrent7i7pvseuOx3gc43gUmu9YHT58OCL+73G8lKqysdjrGPrLX/4Sr3vd68o9BgBwDP785z/Ha1/72pLuM7lnZmbOnBkREX/729+irq6uzNNQKZqbm6Orq6vcY1SsE/X6pn7eE3n+iTBbOWYYj2OO1TEOHToUDQ0Nw4/jpZRczEya9J+3+dTV1cWMGTPKPA2Vorq62r+nMXSiXt/Uz3sizz8RZivHDONxzLE+xguP4yXdZ8n3CAnK5XLlHqGinajXN/XznsjzT4TZyjHDeBxzIlzb0UruPTO9vb1RV1cXhw4dKnuVAwDFGcvH7+SemamtrY2rrroqamtryz0KAFCksXz8Tu6ZGQCA/5bcMzMAAP9NzAAASRMzAEDSxAyMg/e9731x0kknxdq1a8s9SsU5Ua/tiXre48G1TY+YgXGwbt26uPnmm8s9RkU6Ua/tiXre48G1TU9Fx4y6ZqJYvnx5TJ8+vdxjVKQT9dqeqOc9Hlzb8ffTn/40zjjjjHjDG94QN91006jvX9Exo67Tds0110Rzc3NMnz49Tj755FizZk088sgjJT3G9u3bY/Xq1TF37tyoqqqKO+64o+C6fD4fCxYsiKlTp8bSpUtjx44dJZ1jvH3ta1+Ls846K2bMmBEzZsyIZcuWxZ133lnSY0z0a3vttddGVVVVfPSjHy3pfif6eY+lxx9/PD74wQ/GrFmz4hWveEWceeaZsXPnzpLt/0S+tpXs3//+d7S3t8d9990Xu3fvji9+8Yvx9NNPj2ofFR0z6jpt27Zti1wuF7/+9a/jnnvuiYGBgXjnO98ZfX19Bdc/8MADMTAwMGJ7d3d39PT0FLxPX19fNDU1RT6ff9E5Nm/eHO3t7XHVVVfFQw89FE1NTbFq1ap48sknh9csWrQoFi5cOOK/J554YpRnPT7mzZsX1157bezatSt27twZ55xzTrz3ve+NP/zhDwXXV9q17erqihtvvDHOOuusl1xXaec9lv75z3/G2WefHZMnT44777wzuru740tf+lKcdNJJBde7trxgx44d8eY3vzlOPfXUeNWrXhXnnXde3H333aPbSVYm27Zty9797ndnp5xyShYR2ZYtW0asuf7667PTTjstq62tzVpaWrLf/OY3oz7O/fffn73//e8vxciU2ZNPPplFRLZt27YRfxscHMyampqytWvXZv/+97+Ht+/duzerr6/PPv/5z7/s/l/s32FLS0uWy+WOOtbcuXOza665ZlTzT/R/iyeddFJ20003jdheadf28OHD2Rve8Ibsnnvuyd7xjndk69atK7iu0s57rH3605/O3v72txe11rWtLMf7eH7bbbcd9f/sC1/4QvbFL35xVDOU7ZmZlytsdc3/OnToUEREwZ+PnzRpUvzsZz+L3bt3xyWXXBJDQ0Px5z//Oc4555xYs2ZNfOpTnzqmYz7//POxa9euWLly5VHHWrlyZTz44IPHdiITzODgYHz/+9+Pvr6+WLZs2Yi/V9q1zeVycf755x913EIq7bzH2o9//ONYsmRJXHjhhXHyySfHW97ylvjGN75RcK1rW1lK8Xh+3I69xUonCpScuua/DQ4OZueff3529tlnv+S6Rx99NGtoaMguuuiirKGhIbvkkkuyoaGhoo5R6N/h448/nkVE9qtf/eqo7Z/85CezlpaWouc/99xzs9mzZ2eveMUrslNPPXXE/srhd7/7XfbKV74yq66uzurq6rKtW7e+5PpKuLbf+973soULF2b/+te/sizLXvKZmRdUwnmPh9ra2qy2tjZbv3599tBDD2U33nhjNnXq1GzTpk0veh/XtvIcy+P5Aw88kK1Zs2b47+vWrctuueWWUR23pnRZVDov1PX69euHt6nrE1sul4uHH344fvnLX77kuoaGhvjOd74T73jHO+K1r31tfPOb34yqqqpxmvLF3XvvveUeYYQzzjgj9uzZE4cOHYrbb789WltbY9u2bdHY2FhwferX9rHHHot169bFPffcE1OnTi16/6mf93gZGhqKJUuWxOc+97mIiHjLW94SDz/8cNxwww3R2tpa8D6ubeUr5vG8paUlHn744Xj88cejrq4u7rzzzvjMZz4zquNMyDcAHzx4MAYHB6O+vv6o7fX19XHgwIGi97Ny5cq48MIL42c/+1nMmzdPCCWqra0tfvrTn8b9998f8+bNe8m1PT09cfnll8fq1avjyJEj8bGPfey4jj179uyorq4e8YbEnp6emDNnznHtu9ymTJkSr3/962Px4sVxzTXXRFNTU3z5y19+0fWpX9tdu3bFk08+GW9961ujpqYmampqYtu2bfGVr3wlampqYnBwsOD9Uj/v8XLKKaeMCOE3velN8be//e1F7+PaVr5iHs9ramriS1/6UqxYsSIWLVoUH//4x2PWrFmjOs6EjJlSuffee+Opp56KI0eOxN///veC7wdg4sqyLNra2mLLli1x3333xemnn/6S6w8ePBjnnntuvOlNb4of/vCH0dnZGZs3b45PfOITxzzDlClTYvHixdHZ2Tm8bWhoKDo7Oyvu39PQ0FD09/cX/FslXNtzzz03fv/738eePXuG/1uyZEl84AMfiD179kR1dfWI+1TCeY+Xs88+e8RXJ/zxj3+M0047reB615b/9p73vCf++Mc/xr59++Lyyy8f/Q6O/ZWx0on/eY2tv78/q66uHvG62yWXXJK95z3vGe/xKJMPf/jDWV1dXfaLX/wi+8c//jH835EjR0asHRwczJYsWZK9613vyvr7+4e379mzJ5s5c2Z23XXXFTzG4cOHs927d2e7d+/OIiK77rrrst27d2ePPvro8Jrvf//7WW1tbbZp06asu7s7u/zyy7NXv/rV2YEDB0p/0uOko6Mj27ZtW7Z///7sd7/7XdbR0ZFVVVVld99994i1lXxtX+7TTJV63mNhx44dWU1NTfbZz342+9Of/pTdcsst2bRp07Lvfve7I9a6tpWrXI/nEzJmsuw/bxhqa2sbvj04OJideuqpo34DMOmKiIL/ffvb3y64/u677x5+Y+d/e+ihh7LHHnus4H3uv//+gsdobW09at1Xv/rVrKGhIZsyZUrW0tKS/frXvz7e0yuryy67LDvttNOyKVOmZK95zWuyc889t2DIvKBSr+3LvQG4Us97rPzkJz/JFi5cmNXW1mZvfOMbs69//esvuta1rUzlejyv+v8HH3fPPfdc7Nu3LyL+80ax6667LlasWBEzZ86MhoaG2Lx5c7S2tsaNN94YLS0tsXHjxvjBD34Qe/fuHfHaGwBQHhPi8bxkWTRKxRS2ugaAiW0iPJ6X7ZkZAIBSqOhPMwEAlU/MAABJEzMAQNLEDACQNDEDACRNzAAASRMzAEDSxAwAkDQxAwAkTcwAAEkTMwBA0sQMAJC0/wcvLaGB8X+/hwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAG1CAYAAADz8VB4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXwV9b3/8fchGwRD2CRsgYACJSwJkuUitBAIIljKcrG0SAnLxVpPuJGIvaH3VvBhFZRLHqCcCloLYkUQr1AuCAqRRZGWsASKkR0BWcImBEIN4WR+f3A9v4knweTkJJOc83o+HvljvvOd73xm5PGYtzPfmWMzDMMQAAAAJEl1rC4AAACgJiEcAQAAmBCOAAAATAhHAAAAJoQjAAAAE8IRAACACeEIAADAJNDqAqxUXFyss2fPKiwsTDabzepyAABAORiGoevXr6tly5aqU8f793n8OhydPXtWkZGRVpcBAAA8cPr0abVu3drr4/p1OAoLC5MknThxQo0bN7a4GgAAUB5XrlxRu3btXNdxb/PrcPTdo7SwsDA1aNDA4moAAEB5FBUVSVKVTYlhQjYAAIAJ4QgAAMCEcAQAAGBCOAIAADAhHAEAAJgQjgAAAEwIRwAAACaEIwAAABPCEQAAgAnhCAAAwIRwBAAAYEI4AgAAMCEcAQAAmBCOAAAATAKtLgAAgNogKmOdW9tXsx+xoBJUNe4cAQAAmPhlOHI4HIqOjlZ8fLzVpQAAgBrGL8OR3W5Xbm6usrOzrS4FAADUMH4ZjgAAAMpCOAIAADAhHAEAAJgQjgAAAEwIRwAAACaEIwAAABPCEQAAgAnhCAAAwIRwBAAAYEI4AgAAMCEcAQAAmBCOAAAATAhHAAAAJoQjAAAAE8IRAACACeEIAADAhHAEAABgQjgCAAAwIRwBAACYEI4AAABMAq0uAAAAfxSVsc6t7avZj1hQCb6PcAQAgBcRemo/HqsBAACYEI4AAABMCEcAAAAmhCMAAAATwhEAAIAJ4QgAAMCk1oejq1evKi4uTrGxserataveeOMNq0sCAAC1WK3/zlFYWJi2bdum0NBQFRQUqGvXrho5cqSaNGlidWkAAKAWqvV3jgICAhQaGipJKiwslGEYMgzD4qoAAEBtZXk42rZtm4YOHaqWLVvKZrNp9erVbn0cDoeioqJUt25dJSYmaufOnSXWX716VTExMWrdurWeeeYZNW3atLrKBwAAPsbyx2oFBQWKiYnRxIkTNXLkSLf1K1asUHp6uhYuXKjExETNmzdPgwYN0qFDh9SsWTNJUsOGDbVv3z7l5eVp5MiRGjVqlCIiItzGKiwsVGFhoWs5Pz9fklRUVKSioqIqOkIAgC8ICXB/KlHatcPb/eCuqs+TzahBz6BsNptWrVql4cOHu9oSExMVHx+vBQsWSJKKi4sVGRmpKVOmKCMjw22MJ598Uv3799eoUaPc1s2cOVPPPfecW/uyZctcj+YAAEDNdvPmTY0ZM0bXrl1TgwYNvD6+5XeO7ubWrVvavXu3pk+f7mqrU6eOkpOTtWPHDklSXl6eQkNDFRYWpmvXrmnbtm36zW9+U+p406dPV3p6ums5Pz9fkZGRSkpKYgI3AOCuus78yK3twMxBVd4P7i5fvlyl49focHTp0iU5nU63R2QRERE6ePCgJOnkyZN6/PHHXROxp0yZom7dupU6XkhIiEJCQtzag4KCFBQU5P0DAAD4jEKnza2ttGuHt/vBXVWfpxodjsojISFBOTk5VpcBAAB8hOVvq91N06ZNFRAQoLy8vBLteXl5at68uUVVAQAAX1ajw1FwcLB69uyprKwsV1txcbGysrLUq1cvCysDAAC+yvLHajdu3NDRo0ddyydOnFBOTo4aN26sNm3aKD09XSkpKYqLi1NCQoLmzZungoICTZgwweN9OhwOORwOOZ1ObxwCAADwIZaHo127dikpKcm1/N3bZCkpKVqyZIlGjx6tixcv6tlnn9X58+cVGxurDRs2lPodo/Ky2+2y2+3Kz89XeHh4pY8BAAD4DsvDUb9+/X7w5z5SU1OVmppaTRUBAAB/VqPnHAEAAFQ3whEAAIAJ4QgAAMDEL8ORw+FQdHS04uPjrS4FAADUMH4Zjux2u3Jzc5WdnW11KQAAoIbxy3AEAABQFsIRAACACeEIAADAhHAEAABgQjgCAAAw8ctwxKv8AACgLH4ZjniVHwAAlMUvwxEAAEBZCEcAAAAmhCMAAAATwhEAAIAJ4QgAAMCEcAQAAGDil+GI7xwBAICy+GU44jtHAACgLH4ZjgAAAMpCOAIAADAhHAEAAJgQjgAAAEwIRwAAACaEIwAAABPCEQAAgIlfhiM+AgkAAMril+GIj0ACAICyBFpdAAAAqBpRGevc2r6a/YgFldQufnnnCAAAoCyEIwAAABPCEQAAgAnhCAAAwIRwBAAAYEI4AgAAMCEcAQAAmBCOAAAATAhHAAAAJn4ZjvhtNQAAUBa/DEf8thoAACiLX4YjAACAshCOAAAATAhHAAAAJoQjAAAAE8IRAACASaDVBQAAUNNEZayzugRYiDtHAAAAJoQjAAAAE8IRAACACeEIAADAhHAEAABgQjgCAAAw8ctw5HA4FB0drfj4eKtLAQAANYxffufIbrfLbrcrPz9f4eHhVpcDAECFlPYdpq9mP2JBJb7JL+8cAQAAlIVwBAAAYEI4AgAAMCEcAQAAmBCOAAAATAhHAAAAJoQjAAAAE8IRAACACeEIAADAhHAEAABgQjgCAAAw8cvfVgMAAN7hi7/zxp0jAAAAE8IRAACACeEIAADAhHAEAABgQjgCAAAwIRwBAACYEI4AAABM/DIcORwORUdHKz4+3upSAABADeOX4chutys3N1fZ2dlWlwIAAGoYvpANAIAf8cUvWnubX945AgAAKAvhCAAAwIRwBAAAYEI4AgAAMCEcAQAAmBCOAAAATAhHAAAAJoQjAAAAE8IRAACACeEIAADAhHAEAABgQjgCAAAwIRwBAACYeBSOjh8/7u06AAAAagSPwtH999+vpKQk/eUvf9G3337r7ZoAAAAs41E42rNnj7p376709HQ1b95cv/71r7Vz505v1wYAAFDtAj3ZKDY2VvPnz9fcuXO1Zs0aLVmyRH369FHHjh01ceJE/epXv9K9997r7VoBAPA7URnrrC7B71RqQnZgYKBGjhyplStX6qWXXtLRo0c1bdo0RUZGaty4cTp37py36gQAAKgWlQpHu3bt0pNPPqkWLVooMzNT06ZN07Fjx7Rx40adPXtWw4YN81adAAAA1cKjx2qZmZlavHixDh06pCFDhmjp0qUaMmSI6tS5k7XatWunJUuWKCoqypu1AgAAVDmPwtFrr72miRMnavz48WrRokWpfZo1a6Y333yzUsUBAABUN4/C0ZEjR36wT3BwsFJSUjwZHgAAwDIezTlavHixVq5c6da+cuVKvfXWW5UuCgAAwCoehaNZs2apadOmbu3NmjXTiy++WOmiAAAArOJRODp16pTatWvn1t62bVudOnWq0kUBAABYxaNw1KxZM+3fv9+tfd++fWrSpEmliwIAALCKR+Hol7/8pf793/9dmzdvltPplNPp1CeffKK0tDT94he/8HaNAAAA1cajcPT8888rMTFRAwYMUL169VSvXj099NBD6t+/f7XPOTp9+rT69eun6Ohode/evdSJ4gAAAOXl0av8wcHBWrFihZ5//nnt27dP9erVU7du3dS2bVtv1/eDAgMDNW/ePMXGxur8+fPq2bOnhgwZovr161d7LQAAoPbzKBx9p2PHjurYsaO3avFIixYtXB+ibN68uZo2baorV64QjgAAgEc8eqzmdDr15ptvasyYMUpOTlb//v1L/FXEtm3bNHToULVs2VI2m02rV6926+NwOBQVFaW6desqMTFRO3fuLHWs3bt3y+l0KjIy0pPDAgAA8CwcpaWlKS0tTU6nU127dlVMTEyJv4ooKChQTEyMHA5HqetXrFih9PR0zZgxQ3v27FFMTIwGDRqkCxculOh35coVjRs3Tq+//ronhwQAACDJw8dqy5cv13vvvachQ4ZUuoDBgwdr8ODBZa7PzMzU5MmTNWHCBEnSwoULtW7dOv35z39WRkaGJKmwsFDDhw9XRkaGHnzwwTLHKiwsVGFhoWs5Pz9fklRUVKSioqJKHwsAwDeEBBjl6lfataO0bb3drzK1lHfb8irvcXhTVY9vMwyjfGfOpGXLltqyZYvX5xvZbDatWrVKw4cPlyTdunVLoaGhev/9911tkpSSkqKrV6/qr3/9qwzD0JgxY9SpUyfNnDnzruPPnDlTzz33nFv7smXLFBoa6tVjAQAAVePmzZsaM2aMrl27pgYNGnh9fI/uHD399NOaP3++FixYIJvN5u2aXC5duiSn06mIiIgS7RERETp48KAkafv27VqxYoW6d+/umq/09ttvq1u3bm7jTZ8+Xenp6a7l/Px8RUZGKikpiY9XAgBcus78qFz9DswcVK5tvd2vMrWUd9vyKu9xeNPly5erdHyPwtFnn32mzZs3a/369erSpYuCgoJKrP/ggw+8Ulx59OnTR8XFxeXqGxISopCQELf2oKAgt2MAAPivQmf5/se/tGtHadt6u19lainvtuVV3uPwpqoe36Nw1LBhQ40YMcLbtbhp2rSpAgIClJeXV6I9Ly9PzZs3r/L9AwAA/+NROFq8eLG36yhVcHCwevbsqaysLNeco+LiYmVlZSk1NbVaagAAAP7F449A3r59W1u2bNGxY8c0ZswYhYWF6ezZs2rQoIHuueeeco9z48YNHT161LV84sQJ5eTkqHHjxmrTpo3S09OVkpKiuLg4JSQkaN68eSooKHC9veYJh8Mhh8Mhp9Pp8RgAAMA3eRSOTp48qYcfflinTp1SYWGhBg4cqLCwML300ksqLCzUwoULyz3Wrl27lJSU5Fr+bsJ0SkqKlixZotGjR+vixYt69tlndf78ecXGxmrDhg1uk7Qrwm63y263Kz8/X+Hh4R6PAwAAfI9H4SgtLU1xcXHat29fibe8RowYocmTJ1dorH79+umHviaQmprKYzQAAFAtPApHn376qT7//HMFBweXaI+KitKZM2e8UhgAAIAVPPr5kOLi4lLn63z99dcKCwurdFEAAABW8SgcPfTQQ5o3b55r2Waz6caNG5oxY4ZXflIEAADAKh49Vps7d64GDRqk6OhoffvttxozZoyOHDmipk2b6t133/V2jV7H22oAAKAsHoWj1q1ba9++fVq+fLn279+vGzduaNKkSXrsscdUr149b9fodbytBgAAyuLxd44CAwM1duxYb9YCAABgOY/C0dKlS++6fty4cR4VAwAAYDWPv3NkVlRUpJs3byo4OFihoaGEIwAAUGt59LbaN998U+Lvxo0bOnTokPr06VMrJmQDAACUxaNwVJoOHTpo9uzZbneVAAAAahOvhSPpziTts2fPenPIKuFwOBQdHa34+HirSwEAADWMR3OO1qxZU2LZMAydO3dOCxYsUO/evb1SWFXiVX4AQE0UlbHO6hIgD8PR8OHDSyzbbDbde++96t+/v+bOneuVwgAAAKzgUTgqLi72dh0AAAA1glfnHAEAANR2Ht05Sk9PL3ffzMxMT3YBAABgCY/C0d69e7V3714VFRWpU6dOkqTDhw8rICBADzzwgKufzWbzTpUAAADVxKNwNHToUIWFhemtt95So0aNJN35MOSECRP04x//WE8//bRXiwQAAKguHs05mjt3rmbNmuUKRpLUqFEj/eEPf6gVb6vxnSMAAFAWj8JRfn6+Ll686NZ+8eJFXb9+vdJFVTW73a7c3FxlZ2dbXQoAAKhhPApHI0aM0IQJE/TBBx/o66+/1tdff63/+Z//0aRJkzRy5Ehv1wgAAFBtPJpztHDhQk2bNk1jxoxRUVHRnYECAzVp0iTNmTPHqwUCAABUJ4/CUWhoqP74xz9qzpw5OnbsmCTpvvvuU/369b1aHAAAQHWr1Ecgz507p3PnzqlDhw6qX7++DMPwVl0AAACW8CgcXb58WQMGDFDHjh01ZMgQnTt3TpI0adIkXuMHAAC1mkfhaOrUqQoKCtKpU6cUGhrqah89erQ2bNjgteIAAACqm0dzjj7++GN99NFHat26dYn2Dh066OTJk14pDAAAwAoe3TkqKCgoccfoO1euXFFISEiliwIAALCKR+Hoxz/+sZYuXepattlsKi4u1ssvv6ykpCSvFVdV+EI2AAAoi0eP1V5++WUNGDBAu3bt0q1bt/Tb3/5WX3zxha5cuaLt27d7u0avs9vtstvtys/PV3h4uNXlAABQK0RlrLO6hGrh0Z2jrl276vDhw+rTp4+GDRumgoICjRw5Unv37tV9993n7RoBAACqTYXvHBUVFenhhx/WwoUL9Z//+Z9VURMAAIBlKnznKCgoSPv376+KWgAAACzn0WO1sWPH6s033/R2LQAAAJbzaEL27du39ec//1mbNm1Sz5493X5TLTMz0yvFAQAAVLcKhaPjx48rKipKBw4c0AMPPCBJOnz4cIk+NpvNe9UBAABUswqFow4dOujcuXPavHmzpDs/F/LKK68oIiKiSooDAACobhWac2QYRonl9evXq6CgwKsFAQAAWMmjCdnf+X5YAgAAqO0qFI5sNpvbnKLaOMeInw8BAABlqdCcI8MwNH78eNePy3777bd64okn3N5W++CDD7xXYRXg50MAAEBZKhSOUlJSSiyPHTvWq8UAAABYrULhaPHixVVVBwAAQI1QqQnZAAAAvoZwBAAAYEI4AgAAMCEcAQAAmBCOAAAATAhHAAAAJoQjAAAAE8IRAACACeEIAADAhHAEAABgQjgCAAAw8ctw5HA4FB0drfj4eKtLAQAANYxfhiO73a7c3FxlZ2dbXQoAAKhh/DIcAQAAlIVwBAAAYEI4AgAAMCEcAQAAmBCOAAAATAhHAAAAJoQjAAAAE8IRAACACeEIAADAhHAEAABgQjgCAAAwIRwBAACYEI4AAABMCEcAAAAmhCMAAAATwhEAAIAJ4QgAAMCEcAQAAGBCOAIAADDxy3DkcDgUHR2t+Ph4q0sBAAA1jF+GI7vdrtzcXGVnZ1tdCgAAqGECrS4AAADUPFEZ66wuwTJ+eecIAACgLIQjAAAAE8IRAACACeEIAADAhHAEAABgQjgCAAAwIRwBAACYEI4AAABMCEcAAAAmhCMAAAATwhEAAIAJ4QgAAMCEcAQAAGBCOAIAADAhHAEAAJgEWl0AAACwVlTGOqtLqFG4cwQAAGBCOAIAADAhHAEAAJgQjgAAAEwIRwAAACaEIwAAABPCEQAAgAnhCAAAwIRwBAAAYEI4AgAAMCEcAQAAmPhEOBoxYoQaNWqkUaNGWV0KAACo5XwiHKWlpWnp0qVWlwEAAHyAT4Sjfv36KSwszOoyAACAD7A8HG3btk1Dhw5Vy5YtZbPZtHr1arc+DodDUVFRqlu3rhITE7Vz504LKgUAAP4g0OoCCgoKFBMTo4kTJ2rkyJFu61esWKH09HQtXLhQiYmJmjdvngYNGqRDhw6pWbNmFdpXYWGhCgsLXcv5+fmSpKKiIhUVFVXuQAAAPiMkwChXv9KuHaVtW95+lVEd+yivqr6mVvX4NsMwrDlzpbDZbFq1apWGDx/uaktMTFR8fLwWLFggSSouLlZkZKSmTJmijIwMV78tW7ZowYIFev/998scf+bMmXruuefc2pctW6bQ0FAvHgkAAKgqN2/e1JgxY3Tt2jU1aNDA6+Nbfufobm7duqXdu3dr+vTprrY6deooOTlZO3bsqPB406dPV3p6ums5Pz9fkZGRSkpKUpMmTbxSMwCg9us686Ny9Tswc1C5ti1vv8qojn2UV2m1eNPly5erdPwaHY4uXbokp9OpiIiIEu0RERE6ePCgazk5OVn79u1TQUGBWrdurZUrV6pXr15u44WEhCgkJMStPSgoSEFBQd4/AABArVTotJWrX2nXjtK2LW+/yqiOfZRXVV9Tq3r8Gh2OymvTpk1WlwAAAHyE5W+r3U3Tpk0VEBCgvLy8Eu15eXlq3ry5RVUBAABfVqPDUXBwsHr27KmsrCxXW3FxsbKyskp9bAYAAFBZlj9Wu3Hjho4ePepaPnHihHJyctS4cWO1adNG6enpSklJUVxcnBISEjRv3jwVFBRowoQJHu/T4XDI4XDI6XR64xAAAIAPsTwc7dq1S0lJSa7l794mS0lJ0ZIlSzR69GhdvHhRzz77rM6fP6/Y2Fht2LDBbZJ2RdjtdtntduXn5ys8PLzSxwAAAHyH5eGoX79++qFPLaWmpio1NbWaKgIAAP6sRs85AgAAqG6EIwAAABPCEQAAgIlfhiOHw6Ho6GjFx8dbXQoAAKhh/DIc2e125ebmKjs72+pSAABADeOX4QgAAKAshCMAAAATwhEAAIAJ4QgAAMCEcAQAAGDil+GIV/kBAEBZ/DIc8So/AAAoi1+GIwAAgLIQjgAAAEwIRwAAACaEIwAAABPCEQAAgAnhCAAAwMQvwxHfOQIAAGXxy3DEd44AAEBZ/DIcAQAAlIVwBAAAYEI4AgAAMCEcAQAAmBCOAAAATAhHAAAAJoQjAAAAE78MR3wEEgAAlMUvwxEfgQQAAGXxy3AEAABQFsIRAACACeEIAADAhHAEAABgQjgCAAAwIRwBAACYEI4AAABMCEcAAAAmhCMAAAATvwxH/HwIAAAoi1+GI34+BAAAlMUvwxEAAEBZCEcAAAAmhCMAAAATwhEAAIAJ4QgAAMCEcAQAAGBCOAIAADAhHAEAAJgQjgAAAEwIRwAAACaEIwAAABPCEQAAgAnhCAAAwCTQ6gKs4HA45HA45HQ6rS4FAACfE5Wxzq3tq9mPWFCJZ/zyzpHdbldubq6ys7OtLgUAANQwfhmOAAAAykI4AgAAMCEcAQAAmBCOAAAATAhHAAAAJoQjAAAAE8IRAACACeEIAADAhHAEAABgQjgCAAAwIRwBAACYEI4AAABMCEcAAAAmhCMAAACTQKsLsJJhGJKk69evKygoyOJqAAA1RXHhzXL1y8/PL9e25e1XGdWxj8oorT5PXb9+XdL/v457m82oqpFrgePHj+u+++6zugwAAOCBY8eOqX379l4f16/vHDVu3FiSdOrUKYWHh1tcDXxJfHy8srOzrS7DJ/nrua3tx12T668ptVV3HdW1v6rYz7Vr19SmTRvXddzb/Doc1alzZ8pVeHi4GjRoYHE18CUBAQH8m6oi/npua/tx1+T6a0pt1V1Hde2vKvfz3XXc6+NWyaiAn7Pb7VaX4LP89dzW9uOuyfXXlNqqu47q2l9NOb8V4ddzjvLz8xUeHq5r167ViP9rAAAAP6yqr99+fecoJCREM2bMUEhIiNWlAACAcqrq67df3zkCAAD4Pr++cwQAAPB9hCMAAAATwhEAAIAJ4QioZUaMGKFGjRpp1KhRVpfik/z1/PrrcVcHzm3tQzgCapm0tDQtXbrU6jJ8lr+eX3897urAua19CEcVQPpHTdCvXz+FhYVZXYbP8tfz66/HXR04t9Vv7dq16tSpkzp06KA//elPFd6ecFQBpP/aa9asWYqPj1dYWJiaNWum4cOH69ChQ17dx7Zt2zR06FC1bNlSNptNq1evLrWfw+FQVFSU6tatq8TERO3cudOrdVjhtddeU/fu3dWgQQM1aNBAvXr10vr16726j5p+fmfPni2bzaannnrKq+PW9OOuSmfOnNHYsWPVpEkT1atXT926ddOuXbu8Nr4/n1tfdvv2baWnp+uTTz7R3r17NWfOHF2+fLlCYxCOKoD0X3tt3bpVdrtdf/vb37Rx40YVFRXpoYceUkFBQan9t2/frqKiIrf23Nxc5eXllbpNQUGBYmJi5HA4yqxjxYoVSk9P14wZM7Rnzx7FxMRo0KBBunDhgqtPbGysunbt6vZ39uzZCh519WndurVmz56t3bt3a9euXerfv7+GDRumL774otT+vnZ+s7OztWjRInXv3v2u/XztuKvSN998o969eysoKEjr169Xbm6u5s6dq0aNGpXan3OL7+zcuVNdunRRq1atdM8992jw4MH6+OOPKzaI4SO2bt1q/PSnPzVatGhhSDJWrVrl1mfBggVG27ZtjZCQECMhIcH4+9//XuH9bN682fjXf/1Xb5QMC124cMGQZGzdutVtndPpNGJiYoxRo0YZt2/fdrUfPHjQiIiIMF566aUfHL+sf4MJCQmG3W4vsa+WLVsas2bNqlD9teHfYaNGjYw//elPbu2+dn6vX79udOjQwdi4caPRt29fIy0trdR+vnbcVe0//uM/jD59+pSrL+fWt1T2er5y5coS/81efvllY86cORWqwWfuHP3Q/wGQ/mF27do1SVLjxo3d1tWpU0cffvih9u7dq3Hjxqm4uFjHjh1T//79NXz4cP32t7/1aJ+3bt3S7t27lZycXGJfycnJ2rFjh2cHUgM5nU4tX75cBQUF6tWrl9t6Xzu/drtdjzzySIn9lsbXjruqrVmzRnFxcXr00UfVrFkz9ejRQ2+88UapfTm3vsUb1/NK8zzb1VwqJWmS/vEdp9NpPPLII0bv3r3v2u/kyZNGmzZtjNGjRxtt2rQxxo0bZxQXF5drH6X9Gzxz5owhyfj8889LtD/zzDNGQkJCuesfMGCA0bRpU6NevXpGq1at3Mazyv79+4369esbAQEBRnh4uLFu3bq79veF8/vuu+8aXbt2Nf75z38ahmHc9c7Rd3zhuKtDSEiIERISYkyfPt3Ys2ePsWjRIqNu3brGkiVLytyGc+t7PLmeb9++3Rg+fLhrfVpamvHOO+9UaL+B3otZNdd36X/69OmuNtK//7Lb7Tpw4IA+++yzu/Zr06aN3n77bfXt21ft27fXm2++KZvNVk1Vlm3Tpk1Wl1CqTp06KScnR9euXdP777+vlJQUbd26VdHR0aX2r+3n9/Tp00pLS9PGjRtVt27dco9f24+7uhQXFysuLk4vvviiJKlHjx46cOCAFi5cqJSUlFK34dz6vvJczxMSEnTgwAGdOXNG4eHhWr9+vX7/+99XaD8+81jtbi5duiSn06mIiIgS7REREbajC4IAAAr7SURBVDp//ny5x0lOTtajjz6qDz/8UK1btyZY1UKpqalau3atNm/erNatW9+1b15enh5//HENHTpUN2/e1NSpUyu176ZNmyogIMBtcmheXp6aN29eqbFrguDgYN1///3q2bOnZs2apZiYGM2fP7/M/rX9/O7evVsXLlzQAw88oMDAQAUGBmrr1q165ZVXFBgYKKfTWep2tf24q0uLFi3cgnXnzp116tSpMrfh3Pq+8lzPAwMDNXfuXCUlJSk2NlZPP/20mjRpUqH9+EU48pZNmzbp4sWLunnzpr7++utS51OgZjIMQ6mpqVq1apU++eQTtWvX7q79L126pAEDBqhz58764IMPlJWVpRUrVmjatGke1xAcHKyePXsqKyvL1VZcXKysrCyf/LdUXFyswsLCUtf5wvkdMGCA/vGPfygnJ8f1FxcXp8cee0w5OTkKCAhw28YXjru69O7d2+1zG4cPH1bbtm1L7c+5hdnPfvYzHT58WEePHtXjjz9e8QE8fxJYc+l7zygLCwuNgIAAt+eW48aNM372s59Vd3mwwG9+8xsjPDzc2LJli3Hu3DnX382bN936Op1OIy4uzhgyZIhRWFjoas/JyTEaN25sZGZmlrqP69evG3v37jX27t1rSDIyMzONvXv3GidPnnT1Wb58uRESEmIsWbLEyM3NNR5//HGjYcOGxvnz571/0NUoIyPD2Lp1q3HixAlj//79RkZGhmGz2YyPP/7Yra8vn98felvNV4+7KuzcudMIDAw0XnjhBePIkSPGO++8Y4SGhhp/+ctf3Ppybn2XVddzvwhHhnFnAldqaqpr2el0Gq1atarwhGzUTpJK/Vu8eHGp/T/++GPXJFuzPXv2GKdPny51m82bN5e6j5SUlBL9Xn31VaNNmzZGcHCwkZCQYPztb3+r7OFZbuLEiUbbtm2N4OBg49577zUGDBhQajD6jq+e3x+akO2rx11V/vd//9fo2rWrERISYvzoRz8yXn/99TL7cm59k1XXc9v/7bzWu3Hjho4ePSrpzsS9zMxMJSUlqXHjxmrTpo1WrFihlJQULVq0SAkJCZo3b57ee+89HTx40O3ZJQAAsEZNuJ77TDjasmWLkpKS3NpTUlK0ZMkSSdKCBQs0Z84cnT9/XrGxsXrllVeUmJhYzZUCAICy1ITruc+EIwAAAG/gbTUAAAATwhEAAIAJ4QgAAMCEcAQAAGBCOAIAADAhHAEAAJgQjgAAAEwIRwAAACaEIwAAABPCEYBy6devn5566imry6iwQ4cOqXnz5rp+/brVpZQqNzdXrVu3VkFBgdWlAPg/hCMANc65c+c0ZswYdezYUXXq1CkzlK1cuVI/+tGPVLduXXXr1k0ffvihW5/p06drypQpCgsLk3Tnd5tsNpu6dOkip9NZom/Dhg1dv91UXaKjo/Uv//IvyszMrNb9Aigb4QhAjVNYWKh7771X//Vf/6WYmJhS+3z++ef65S9/qUmTJmnv3r0aPny4hg8frgMHDrj6nDp1SmvXrtX48ePdtj9+/LiWLl1aVYdQIRMmTNBrr72m27dvW10KABGOAHjgm2++0bhx49SoUSOFhoZq8ODBOnLkSIk+b7zxhiIjIxUaGqoRI0YoMzNTDRs2LNf4UVFRmj9/vsaNG6fw8PBS+8yfP18PP/ywnnnmGXXu3FnPP/+8HnjgAS1YsMDV57333lNMTIxatWrltv2UKVM0Y8YMFRYWllnHqVOnNGzYMN1zzz1q0KCBfv7znysvL8+1fubMmYqNjdXbb7+tqKgohYeH6xe/+EWJR3jFxcWaNWuW2rVrp3r16ikmJkbvv/9+if0MHDhQV65c0datW8t1fgBULcIRgAobP368du3apTVr1mjHjh0yDENDhgxRUVGRJGn79u164oknlJaWppycHA0cOFAvvPCCV2vYsWOHkpOTS7QNGjRIO3bscC1/+umniouLK3X7p556Srdv39arr75a6vri4mINGzbMFVo2btyo48ePa/To0SX6HTt2TKtXr9batWu1du1abd26VbNnz3atnzVrlpYuXaqFCxfqiy++0NSpUzV27NgSQSg4OFixsbH69NNPK3weAHhfoNUFAKhdjhw5ojVr1mj79u168MEHJUnvvPOOIiMjtXr1aj366KN69dVXNXjwYE2bNk2S1LFjR33++edau3at1+o4f/68IiIiSrRFRETo/PnzruWTJ0+WGY5CQ0M1Y8YM/e53v9PkyZPd7lBlZWXpH//4h06cOKHIyEhJ0tKlS9WlSxdlZ2crPj5e0p0QtWTJEtecpl/96lfKysrSCy+8oMLCQr344ovatGmTevXqJUlq3769PvvsMy1atEh9+/Z17a9ly5Y6efJkJc8KAG/gzhGACvnyyy8VGBioxMREV1uTJk3UqVMnffnll5LuvCGWkJBQYrvvL1eHf/7zn6pbt26Z6ydNmqQmTZropZdeclv35ZdfKjIy0hWMpDuTpxs2bOg6TunOI8DvgpEktWjRQhcuXJAkHT16VDdv3tTAgQN1zz33uP6WLl2qY8eOldhfvXr1dPPmTY+PFYD3cOcIQK3UvHnzEvN/JCkvL0/Nmzd3LTdt2lTffPNNmWMEBgbqhRde0Pjx45WamupRHUFBQSWWbTabiouLJUk3btyQJK1bt85t3lNISEiJ5StXrui+++7zqAYA3sWdIwAV0rlzZ92+fVt///vfXW2XL1/WoUOHFB0dLUnq1KmTsrOzS2z3/eXK6tWrl7Kyskq0bdy40fX4SpJ69Oih3Nzcu47z6KOPqkuXLnruuedKtHfu3FmnT5/W6dOnXW25ubm6evWq6zh/SHR0tEJCQnTq1Cndf//9Jf7Md6Qk6cCBA+rRo0e5xgVQtbhzBKBCOnTooGHDhmny5MlatGiRwsLClJGRoVatWmnYsGGS7rwJ9pOf/ESZmZkaOnSoPvnkE61fv142m63c+8nJyZF05+7LxYsXlZOTo+DgYFcwSUtLU9++fTV37lw98sgjWr58uXbt2qXXX3/dNcagQYP0b//2b3I6nQoICChzX7Nnz9agQYNKtCUnJ6tbt2567LHHNG/ePN2+fVtPPvmk+vbtW+Y8pu8LCwvTtGnTNHXqVBUXF6tPnz66du2atm/frgYNGiglJUWS9NVXX+nMmTNuE8wBWIM7RwAqbPHixerZs6d++tOfqlevXjIMQx9++KHrEVPv3r21cOFCZWZmKiYmRhs2bNDUqVPvOv/n+3r06KEePXpo9+7dWrZsmXr06KEhQ4a41j/44INatmyZXn/9ddfr8atXr1bXrl1dfQYPHqzAwEBt2rTprvvq37+/+vfvX+I7QzabTX/961/VqFEj/eQnP1FycrLat2+vFStWlPsYJOn555/X73//e82aNUudO3fWww8/rHXr1qldu3auPu+++64eeughtW3btkJjA6gaNsMwDKuLAOD7Jk+erIMHD1b76+oOh0Nr1qzRRx99VK37La9bt26pQ4cOWrZsmXr37m11OQDEYzUAVeS///u/NXDgQNWvX1/r16/XW2+9pT/+8Y/VXsevf/1rXb16VdevXy/xVllNcerUKf3ud78jGAE1CHeOAFSJn//859qyZYuuX7+u9u3ba8qUKXriiSckSV26dCnzmz6LFi3SY489Vp2lAkAJhCMA1e7kyZOur2l/X0RERI28wwPAfxCOAAAATHhbDQAAwIRwBAAAYEI4AgAAMCEcAQAAmBCOAAAATAhHAAAAJoQjAAAAk/8H6q7tSDje6V0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -3653,7 +3608,7 @@ }, { "cell_type": "code", - "execution_count": 125, + "execution_count": 131, "metadata": {}, "outputs": [], "source": [ @@ -3663,7 +3618,7 @@ }, { "cell_type": "code", - "execution_count": 126, + "execution_count": 132, "metadata": {}, "outputs": [], "source": [ @@ -3675,12 +3630,12 @@ }, { "cell_type": "code", - "execution_count": 127, + "execution_count": 133, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxcV3n4/8+9s2i0jCRrsWzJlmxZXmRb3u04C4mDkxASEgqUUqhJStLSlrZAyqulC+2PrhTaH4TSL/m2LCGJIVASQkoISchiGwheY8eyLcuWZUnWYlnraKQZzXbP94/RjGa5o8WSrWWe9+uVyJq5c+fOaOae557znOdoSimFEEIIIdKWPtMHIIQQQoiZJcGAEEIIkeYkGBBCCCHSnAQDQgghRJqTYEAIIYRIcxIMCCGEEGlOggEhhBAizUkwIIQQQqQ5CQaEEEKINCfBgBBCCJHmJBgQQggh0pwEA0IIIUSak2BACCGESHMSDAghhBBpToIBIYQQIs1JMCCEEEKkOQkGhBBCiDQnwYAQQgiR5iQYEEIIIdKcBANCCCFEmpNgQAghhEhzEgwIIYQQac460wcgZkZts5u9+9pp7PRQWZLFnl2l1FQ4Z/qwhBBCzABNKaVm+iBmUmyjWJxrBw26XP5520DWNrt57KUW6lqHku6z6rBycTZ/9O7yefe6hRBCpJa2wcBYjSKAroGmwVceqp43DWNts5tHvl1HyBh7O12DRx+eP69bCCHE2NIyZyDSKKYKBAAMBSEDPvP4WT77RD21ze7reITXxt597RjjBAIQfu1797Vf+wMSQggxK6RlMLB3XzvGBPtDAiHF0QsuHvl23ZwPCOrbBploN1Bjp+eaHosQQojZIy2Dgfr2ISYzOGIoUPPialmb8JaVJVnX8DiEEELMJmkZDEz48jiGoebB1fLEYwFuqs6/dschhBBiVknPYGDcaECZbuP1h/jgl47P2RyC1aXZaBMMCL720+Y5+RqFEEJMXloGA6vLckwuklXCz2RDPoNud2DO5hDs2VUanSUxnvkxLCKEEGIi0jIY2LOrFF0PT6GDSO+5Rl6WleyMSEuZusWcqzkENRVOvvJQNdtX5GHVx44I5sWwiBBCiAlJy2Ag0ihuW5FHkdPG9qo8vvb71fz4r7aQabcxkcH1udpY1lQ4+eKDq/nyQ2uwxAREiXRNkgiFECJdpG054kijmKiyJIset2vcrIK53lhGAqK9+9qpbx/C5QmiER4kiQwlfPT20pk+TCGEENdB2lYgTCVSkMgw4rMHNC3cX2Co0cby0YerWV8+P6r0Ja5V8NHbS+fNaxNCCDE2CQZMmDWMkRwBaSyFEELMNxIMCCGEEGkuLRMIhRBCCDFKggEhhBAizUkwIIQQQqQ5CQaEEEKINCfBgBBCCJHmJBgQQggh0pwEA0IIIUSak2BACCGESHMSDAghhBBpToIBIYQQIs1JMCCEEEKkOQkGhBBCiDQnwYAQQgiR5iQYEEIIIdKcBANCCCFEmpNgQAghhEhzEgwIIYQQaU6CASGEECLNSTAghBBCpDkJBoQQQog0J8GAEEIIkeYkGBBCCCHSnAQDQgghRJqTYEAIIYRIcxIMCCGEEGlOggEhhBAizUkwIIQQQqQ5CQaEEEKINCfBgBBCCJHmJBgQQggh0pwEA0IIIUSak2BACCGESHMSDAghhBBpToIBIYQQIs1JMCCEEEKkOQkGhBBCiDQnwYAQQgiR5qwzfQBCiKmpbXazd187jZ0eKkuy2LOrlJoK50wflhBiDtGUUmqmD0IIcXVqm9088u06lAJDga6BpsFXHqqWgEAIMWEyTCDEHLZ3X3s0EIDwT6XCtwshxERJMCDEHNbY6YkGAhGGCt8uhBATJTkDQsxysTkBxXl2UNA14KeyJIviPDu9g4G4gEDXoLIka+YOWAgx50gwIMQslpgT0O0ORO/rHXTFbGkAejRn4KO3l173YxVCzF0SDAgxiyXmBMSKJAxWLrTT09mGyiphVamTj95eyvpySR4UQkycBANCzGJmOQGxwr0FQTZZj/InH/8TCgsLr9/BCSHmDUkgFGIWqyzJQtdS369rsMgZjhby8vKu01EJIeYbCQaEmMX27CpFG8kDGBVu/CP5ATct8ZKdnY3VKh19QoirI8GAELNYTYWTrzxUzcbyTOwMs7zIQr7FjTPDYNuKPB59uJpcrY/8/PyZPlQhxBwmwYAQs1xNhZMvP7yed+b8mgc3DbLdfpi/2q344oOrWV/uxOVyyRCBEGJKpF9RiDlA0zSWLFlCa2srgUAAu90OhKce/rSpBI+Wx9En6mVdAiHEVZFgQIg5oqysjEOHDgGQkZERrUEQMvIAnaMXXBxrdMm6BDFkESchJkaGCYSYI5YsWcLw8DAAdrs9WoMg8jWWdQniRYKloxdcdLsDHL3g4pFv11Hb7J7pQxNi1pFgQIg5YsmSJdF/2+126tsGZV2CMcgiTkJMnAwTCDFHnO8McEbbSX8gk0s/6cflDRGeZjg671BD1iWIkEWchJg46RkQYg6IdHl3BfLx4+DCFf/IPfEViRSyLkGEWcEmWcRJCHPSMyDEHBDp8laMUY4QyM6w8NQbM5MwN9uS9fbsKuVIQ//Ib5os4iTEGCQYEGIOGG+NAgj3EQz5Qhy94MJQ0ON2cbjBRV6WldWl2de0cU5cXbF3cOZnNiwrgK32I/TlbMUVcFBZkiWLOAmRggQDQswBlSVZ9A66TAKCcM6AroUbYU0bTZiLbOryBK/ptMNQKMQ3X27EMFS058JQ4THIvfva+eKDq6f1+SbqzTffpNA2yD/+0WYcDseMHIMQc4UEA0LMAXt2lXKs0YXOSKOPQtM0cnDhJ5MNKxZy+tIgQ76Q6eMn2ziP1eUfDAZpa2ujubmZlpYWWlpaOOu9BUV8gzuTyXpDQ0McO3aMG2+8UQIBISZAggEh5oDIGgV797Vz6mI3hZkB/uLDW3nuiUcpKirill17+OQ368bcx0QbZ7Mu/6MXXDyw2YtyXaS1tZVQKERGRgbl5eXcdtttXD6Vw+k2X1zPxUwm6/36179G0zR27tw5I88vxFwjwYAQc0RNhZMvPrian/60gZaWFtYtvY1nDQOHw8Hefe1oGiNFiCLipx1OtHE2m58PBi+87eE3qzPZvXs3y5Yto6SkBF0PT0jKXRIOICI9FzOZrOf1ejly5Ajbt28nMzPzuj+/EHORBANCzDFFRUUcP34cvz88vTAzM5PGFk9CIADhQGA0p2CijfOFy0MmuQk6ZC3iQx96t+ljYnsuIkML1ztZLzK0UdfShy24kTuWbrxuzy3EXCfBgBBzTFFREaFQiK6uLgCys7NTJBgaZGfoZNptE26cr1y5gsXXBeQz2V6FSM/FTIgf2tDRKOSvvneRrzzkkLUIhJgACQaEmGOKi4sBaG8Pl9XNzs5mz4ZSjl5wAQago43MJfjn31nFxuX5E9rv+fPneeaZZ1ift4R9PQuAme/yn6jEoQ2FFi09PFMBihBziQQDQswxTqcTm81GR0cHADk5OdRUOPnTXXaefKONIZzkWT3cXmVMOBA4dOgQL7/8MitXruT9738/v3HZP6Nd/pMlpYeFmBoJBoSYYzRNQzkr+J/TOXQHb+fKUQuZJW6W5AbZaD0a3e6unXvG3ZdhGLz00kscOXKEnTt3cuedd6LrOjUVGXPqitpsmERKDwsxcbI2gRBzTG2zm9euVNHuzcGPg7OXQzzy7TrOXfZjtYbj++zsbJYvXz7mfoaHh3n66ac5evQo9957L+9617uiswPmmj27SlFKESm1NBeGNoSYTaRnQIg5ZnQJ3vhqf6+fh0pNQ9M01q1bN2bD3tfXx9NPP83AwAB79uyhsrLy2h/4NbS+PIebnLW0W9bgDmXPiaENIWYTCQaEmGMaOz1JCxYZCtoHNPqMTQwaOXS35LGk2W2aSX/p0iW+//3vk5GRwcMPPxxNSJzL2trasHnb+LsH72DZsmUzfThCzDlzs09QiDRmtjQvKLxBnV6jED8OTrX5eOTbddQ2u+O2qq2t5YknnqCoqIjf+73fmxeBAMDp06fJzs6mvLx8pg9FiDlJegaEmGMi6xSgRqYRaqDUaIEhCFciNIDHXmrB6bDS2OkhzzZMrusw79i4jvvuuy+aXzDXKaWoq6ujurp6zuY8CDHT5JsjxBxTU+HkT++pwEYQUCO9BPGlhyEcENS1DnL0gotud4ALvRpvGzup2rx73gQCEB4icLlcrFu3bqYPRYg5S4IBIeaY2mY3X3uxmQA2QCNkJAcCYeHM+tHpdjqgsXd/x3U5zuvlzJkzMkQgxBRJMCDEHBOptjcaAESGCGKpmPtGzbdCPEopzpw5I0MEQkyRfHuEmGPMqu0lBwSR3+M3nG+FeNrb23G5XKxdu3amD0WIOU2CASHmGPPZBJA8VKARGyRo87AQz+nTp8nKyqKiomKmD0WIOU2CASHmmD27StGiSYNj0eJ+5jqsPPpw9bwpxCNDBEJMH/kGCTHH1FQ4+cpD1di18GyCibJZtXkTCNQ2u/n0N07ys54tvNxallRPQQgxORIMCDEH1VQ4uTH//MhSxZGAIHVgMJ9yBWqb3eGCSpeG8ePgTHvAtMCSEGLiJBgQYo4qsA6w2XqEQr2HDD2IhUhPQXxwMN9yBSKzKVTM2gxKxa7ZIISYrPlTeUSINBMKhSiwesgLHSU3NxeXy4XfUcrF4HK6hjOw2+zYbFZWl2bPq0V7zGZTzLcpk0JcbxIMCDFHGYaBrusEg0GGh4cBsA+3syGjh2BGkL/+67+el4l1lSVZ9Lj74xZrmk/DIELMhPl3phAiTRiGES0rHAgEorf7fD7Wrl07LwMBgD23LQYYyZcIBwLzaRhEiJkgPQNCzFGGYWC326P/BtB1HcMwuOuuu2by0K6pPL2fTZaDBBffRodLUVmSNa+GQYSYCRIMCDFHGYaBxWIhMzMTr9cbvW3x4sXk5OTM8NFdO6dOnWJJbohHPr4RTTOtviSEmKT52Y8oRBpQSmGxWMjNzY27fT73ChiGwZkzZ1i3bp0EAkJMIwkGhJijIj0D+fn50duysrJYtmzZzB3UNdbc3MzQ0BDr16+f6UMRYl6RYQIh5qhIz4DHupC3g06GcFJus1Pb7KamYn6On586dYr8/HxKSyVZcDJqm93s3ddOY6eHypIs9uwqnbefEXF1pGdAiDlKKUVPwMl3T+bQRyF+HDT26vO2Gl8oFKKuro7169fLEMEkRCo2Hr3gotsd4OgF17z9jIirJ8GAmJNqm9189ol6Pvil43z2ifq0O7HVNrt5O7iVn3csw1CKyFd5Plfja2xsxOv1sm7dupk+lDnlqX1tKEW0UNN8/oyIqyfDBGLOiVzpRE5wvYMujjW6+MpD1WnR9Rl5/SFViFk8P1+r8Z0+fZqioiJKSkpm+lDmhFAoxOnTpznVOICh7HH3zdfPiLh6EgyIOSdSmz72Skcfuf2LD66e0WO7HiKvP1XH3nysxhcMBjl79iw7d+6UIYJxeDwejh49ypEjRxgcHKTAcSsdXntcCef5+BkRUzNvgwFJmJm/0r02vdnrj7jW1fhm6nvV0NCAz+eTWQRj6Orq4uDBg5w8eRKADRs2sHPnTi57HDzy7Tp0RgJnqdgoTMzLYCDdu5Hnu8qSLHoHXXENooZKmysds9cPCptFZ/Py3GtWjW8mv1enTp2ipKSEoqKipGNKp6A/6fXetpjM4BUOHjzIhQsXyMnJ4R3veAfbtm0jKyv8fSgGvvJQddzjpGKjSDQvg4F070ae7/bsKuVYoyt6paONLNu7bZFrpg/tuoi8fpQB6NEa/V9+aM2UT/BjNa4z9b3y+/2cO3eOW2+9NelYZ3PQP92BSuLr7XG7ONIQLs28pjST973vfaxbtw6LxZL02JoKp5z7xJjm5WyCdO9Gnu9qKpx85aFqtq3Io8hpY1tVHh+pGeTMwZ9RW1s704d3zUVef4HWQ64DyrI93LesbVoCgbGmoM3U9+rcuXMEAoGkWQRmwclsyZKPvJdHRt7Lww0uPvnNOp4/1HnV+0x8vZE/RWDxbfz+7/8+GzZsMA0EhJiIedkzYN6NapBv90WXfRVzW+KVjlKr+d//HeK5557DbrezevX8vgqqqXCy0XqMe951D8eOnaOspGzK+xzvyt/se3U9EtFOnz5NWVkZCxYsiN7mcrk43dyLoeIbv9kQ9AeDQb7+k3pChgLikx0ffaGZykVZk+ohUEpx6dIlTjf1YKj4U7ZC47JLSVKlmLJ52Sru2VWKpoVPVBBJmNFw9h/iySefxOWaWHdyus9ln0s0TeO+++5jzZo1/PCHP6SpqWmmD+maUyrcCAwMDCStT3A1xrvy37MrknA2skLidUhEGx4e5vz589FeAZ/Px2uvvcZ//ud/kqVcJDaBM5klPzAwwOuvv86jjz468p6ZN9AT7bkIBoMcP36c//7v/+bxxx8nRx+cVa9XzC/zsmcg0o2amDCTY5Tw3HPP8dhjj3HvvfdSU1OTch+zfTxSJNN1nfe///08/fTTPP300zzwwAOUlU39ink2MwwDj8eD0zn1z+R4V/41FU7uLmvmRE8hfuuCa56IVtvs5us/OUuj71Z6zzhpHThCc+1+fD4fN954I+8u38RfPNUQ/Y7ORJa8Uorm5mYOHz7M2bNnsVgsLFiwAKd7iB4jA7OAYLyeC5fLxdGjR3nrrbfweDysXLmS3bt347Uu5JHHz87o6xXz17wMBiBVwoyTP/zDP+TFF1/kRz/6EefPn+eee+7B4XAkPV6SEOcmq9XKhz70Ifbu3ct3v/tdfvd3f5eFCxfO9GFNOxUuNIDP5wOYlp6B0cTEcPd2YmPT39+P5/IZ/vy972XTpk1Tfr6xRIJxw1AoHJxoGuJEk+I3V6/l4/ffEn29M5Ul7/f7OXnyJIcPH6arqwuHw4HVaiUQCBAMBrl3g4MnTyQHAhrmV/JKKVpaWjh8+DB1dXXY7XY2bdrE9u3bKSwsjG4nswLEtTJvg4FUMjMz+cAHPsDKlSt58cUXaWlp4X3vex8DFMR9yerbhyQJcY6y2+185CMf4Tvf+Q5PPfUUN77rwzx/zD0vp58NDw8DTEvPQE2Fky99tIp/euLXGJnFrC7Li2tsTpw4gc1mY+3atVN+rlQiGfhvNboIGRC5slZo6JpGc2gFubm5SZn6f/ehquvyN+3u7ubIkSMcP36cQCAQzT9yOBysW7eOdevWsWjRIjRNo2BJJ4++0Bx9rAboevyVfCAQ4NSpUxw6dIjOzk6Kioq4++672bhxIxkZGUnPL7MCxLWSdsFAxIYNGygvL+fHP/4xX338x5wwdqKhRYcEDBW+KlJpOpd9rnM4HOzZs4d//68f8rkfXELTtHk13HMtegYAyvMNNlqP8uBHHoxbClkpxdtvv826deuw2+2pdzAF0TLLhvn9kWB8tNcgnFHf7XZxuMHFp99TwXtvmHqp4sRA43duW4TN284vfvELOjo6otvl5eWxfv36uAAg1ntvKKFyUZbplbzL5eLIkSO89dZbeL1eVq1axZ133kllZaUkA4oZkbbBAEB+fj4PPPAAD375MMo1OlUnOnUnoagLKHYuGbq+BymuWk5ODgP521H9Q9G/5XwZ7okEA16vF5vNZnoVeTXc7nCSbGJPQ1NTE/39/WzevHlK+081914pxTdeajTNwI9VnGdn7772aCAQa6KZ+mPN/0+ey9/PkYY+NlkOkaf1k5WVxcaNG6mpqTENAFI9x999qIr15Tm0tLTwP//zM86ePYvdbmfz5s1s376dgoKCybyNQky7WREMXO8qYrHPV5xnp9U1kUkVGqutZzn1Zgt33rCKnJyca3Z8Yvpc6gmQ2LjMp+Ge4eFhcnNzp+1qMlUwcOLECQoKCli6dOlV79usaM7hhn7sWpBs1Y+bXGCcoEbBhctDSYFAxHhB3niJwY/9rCWuZ0KNfHZ6sjfz53tWjhkAjPUcRy+42FVYj9HfSFFREe9+97vZuHHjNetlEWKyZjwYuN5Z+4nP1+0OpNgy/gpF18C6cAPGlSb+9us/5WJwJe7hIE6HlY/tLpuW7kkx/WZqbvy1FukZGB4enpZ8gQi3201GRkZcIzU8PMyZM2e49dZbrzro6O/v56s/OoNhWKINbORP4lc2/BQS/r6N3TPQ0etB93VBdPt44wV5qRKDn3yjlRtKh6hrC5nsV8OjnCxevHjc15nqOcDgnHcpf//Rm1m+fLkMBYhZZ0aDgdpmN3/73fNxkbgR7o3nsZ+18PU/nP51yxMj/9SSryabuobJK9rGictFQPiK0+UNRpOEJCC4NqbSc5RYuhgMlNLYc9vETuyzVWwwEJttPlWDg4NJwcXp06cJhUJs3Lhxwvvp7+/nxIkTnDt3ju7ubgKBAJeCt6OSTjmR75nOaHiQKiBQaN4uKiwX6KUwaTttnCBPKUV9a2IxsvDnoraxi8ZGN1Bk+tiJBo+hUIj6tgGThaR02j1Z/NcvAuyxDM7pfBUxP81YMDBeslBd2xBvNfSypWr6xtKeP9RJXdtEx/wTT0gGtkAvhy5HErXiT1aPv9YmwcA0q21289jPWuL+ZpPtOUqsObHQqXB0/pKm2iusr3jPnL1Ci80ZmM6egXOXfRx0VbPvS8ejgdeJEyfIXryOf36ug8bOC6YBWW9vL7W1tZw7d46uri4CgXCPm6Zp5ObmYitcib05E7/PIPWVv4ZdD+E3IoFB7HYKDcUySwN5Wj/r7Oc47Y8fDlAK3N4gtc3upM/GlStXePHFF9GHi9EoivZORPa9MNugd3gBBM2P7abq/DHft/7+ft566y2OHz+O7l1j8hzhoOPohfmRwCrmH00plRTDXg+ffaKeoxeSo/RRigKthw+s6WfNmjWsWhU/Tj/Zq8XaZjef/GZdyudKdSUSvt1AQ+Oh2wr41v5e0211DV77hx0pn19MzljBoqZBrsOKzapdVY7JiRMneP7557n55pu54447pvGop1+qz7nf7+cLX/gCuq5z1113ccMNN0zLc33qm2eAcNMb6bTXCWLEXDdohP8Gv7vVx/CVs1y5coVgMBi9Pzc3l4qKCjZs2EBlZSWnLw2Fs/9VJCk38r1KHoorsvZRZpylKVTFkJY/MnffTw4DLLM0UGB1c+utt3LLLbdw+tIQj73UQl3rUNw+NI1oY+vz+di/fz+HDh0Kz7jIXcbzjSUjfRCRRZ4UmyyHaLdU0+nPw+z7vaMqLykXwTAMzp07x7Fjx2hoaCAjI4OamhpyStfzjz/ujBsqiKVrsG1F8v6EmEkz1jMw1prsYRpDKoemphOcP38egJKSEtavX4+et5y/e6ZtUnkG45cATb4SseJHR5GNmyK9k2/vTz1skWmTBUKmU2Tc1YxS4PKGG5+ryTHZtGkTXq+XV155haysLG666abpOuxpNVY+zapF4TF9wzCmbVrh3n3tI41k7Ji+igsEIrcrZfDc0QE2Wtux2Wzk5eWRlZWFruv4fD6am5tpaGggGAxybHgjIVXIaPXz2EAg/FMjXFq5zDhLntbPRutRCgsL6enpiZ6lampquP/++7FawzfUVDhxOqzoWnIOwFP72nhga5CXX34Zj8dDXl4efX192IZO8478Hk65ShhUTvJtXjYs6CI7pKC/jk52mr43sbkIkV6A145coG6wlGFLBRVFq/j4u1ewerGDpqYmPrimjzcaNNPgYj4lsIr5Y8aCAfPFhGIpMnU/oVAoektnZyednZ28HdxGiNGTS+wJ4EsPrjHdW+ovnyJH9zJkOGJOhAYaUGN5C4CmUBUNxtq4E2XiPorybGO9XDFJYweLo4Hb1U4VvPHGG/F6vfz85z8nMzNzylPmroWxqmD+/YcqottNxzBBbbOb4xcHMEueM6czRPh5A4EALpcLl8uFruvouo7VasVms5GZmcnQcC7Jy6Bo2PBRYPfSH3BgUQECKpPjxk6s+Fmun4eeSwAsXbqU3/zN30wKetra2jhlsniPoeDUxR6ebXoVi8USLdkcOdZsazfbMjvx+/2goNBWQvmKVdxRXs5/HDA43zEc/0o1WF6SydmzZ6O9AEOWYo76tobrV4SgvtPgM985zybLQfK0fgoLC/noluW82Gzl7OXQvEtgFfPPjAUDyYldyWx2GwuLFjI4OMjQ0FB0nDR8Eoo/uRgKTl64wmOPvUF+fn7SfxXFGfS4AwlTksK/rdTeRrdZuMRKXIFMsnCzKrMFvx9OhG6IdimmptE7IJH+dBo7WEy+0qpt6qO/v5/8/LHHdmPdfvvteDwefvKTn5CZmcmaNeaB5EyZyJLBLpXPl19xcam766qn5Y6Xv2NOUVmSyQP3PkBeXh65ubnRK/aIpqYmnn/+eXI0Nz5lJ/HvlpsRYp06xCWtjPNq3cjXUSOInfPGOoKWXP7p926itDS+9n57ezv79u3j/PnzZHALHhJfr4Ej1A9WohcTfr8fCK9fUVxcTHl5OeXl5SxdujSuHPmfOuN7Y8KLnSnsnb/gBz9op7S0lJtvvpnvve0AX+xywuHeDW/RTXz+gdXRwKV85L2NnOdkPQExW81YMBCb2GWeO6DRM5zBC50bKHEq7tiqkRXqor6+nhy3mz6VEZego2tQXminoqKC/v5+Ll68SH9/fzSRyVD5wA2MjHgSCQQ+vMPBO6ruoru7m+bmZpqamgiFQliVlWOhTRMIBAAMrL4e6uvr5/3SudfLnl2lHL0wsdUlQeENavzDo0+wdWURW7duZdWqVeMuVa1pGvfccw/Dw8M888wz/M7v/A7Lly8f8zHj5apMtWZG7OMDQZVUBTNyVamUwqXyORG6Aa1paErTclMPyYw1zU/jj+9fw3KTuviBQIBXX32Vw4cPU1FRwZ3LS/n+EV/S/np9Wbz34U/yV0/Wj7SqWnTfABcD5fQEnESazY6ODvbt28e5c+coLCxk063v5cAbfpNjhmWWBiC8VkV5eTnLly+nvLyc0tLSpKAl0crFWTR0eEAZZCsXq+3nWVbgwO8v5vLly7S3t9MWvD0pQVCh0e2xxvVgpFo0TdYTELPNjCUQxhovmTAygrnJcpBbNixlYdUOPv9se1z0rmnw6MPVcV8ypRQej62IV0sAACAASURBVIfDdZ388FAvzT0hDGWglCLfMsgSVY9T9Ua3dzgc5OfnY7PZCAaDPNu6Fr8aryjISO+Cfpolllb++I//eFqneqWr2mY3n/5W3Th5JbEUC6yD3LnwHFeuXMHpdLJ582a2bNlCXl7emI8MhUI8/fTTXLp0iQcffDDpSjT2mBKvGmOT1ca7fyKvOfbxoyFruKGM/ZxXFlnY84U36KOIxCS8ySanffBLx1PU20gdDGQ7LLzwN1uTbm9paeH5559nYGCA3bt3s337dvZ84XUu+3JN97WjKo8jF1wp80N2VOXx6bty2b9/P/X19RQUFGApu5mXzyoGvJGkxfhcn0K7h0feaaeqqori4uJxg8KIX5/u4HM/aBn5zIXffW0kuTBP6wfC54hly5ZxoKfKtPtfEgPFXGX5/Oc///mZPohFCzJ4+UR3zMkvmQYsXLqKR/bsorwkl82VuXQPBPAFDNYtdfLZ91cmRduaplHf4eNvftBC96DCH9IwlI5C559/dzN77r+Fbdu2UV1dzfLlyykuLsZmsxEIBGjp02gcXhTz7BGJJ8iRUEXplOjtnDhxgp07d2KxSELhVHz5+Sba+3wpPw/JNIYNK+1uOxfVarqDC+hsOcvxg2/Q3t6O3W6noKDAdCqhruusWbOGCxcucPjwYVavXk1WVvKY7pefb6K91xfTNRz+63cPBFi0IIPPffccwwGVNFu+eyDAnZvM56+PtX9GHu+wGNj0EJsrC6Kf80AgwFO/7CFEfK6KAq64/GxanktJ/vglii9evMgbJ1oZDJkttxv7jYy/L8tmYV15TvQ5AoEAr732Gj/5yU8oLCxkz549rFq1ip/+9Kfsb8lOOs4I99AwGCFCKtJjF6+9d5jXj1zAEnDx3rtvo2GwiB+fAl8wMkUx+Zizs7L5zId3kJOTM+7UUcMwOHXqFM8//zxPvjmEl0wSEx31jAV85M5q7rnnHu68807Wr19P+UJn3DkrEqh99v2VLMybntLQQlxPs6JnAOK7R12eIIFQ8mEVOW388C8mnugVKWrk8gbjbp9IBP/ZJ+o50uAyzTEwO2nZGeYm6xsAGDlLGS66eV6ukjddzLrT15fn0NnZyblz5/jX13W8ocmWah2pWBUeoUUDNlkOUWgbJBgMkpOTw9atW9myZYtpBr7X6+Xxxx/H5/Px0EMPJfUopLqCzrQaDAe1lAmmhU4bz0zgc5tq/067wW1Zv+Izn/lM9LahoSE++q/76DeZzw5g0cfukfjlyVb+68UGrgzpZFn89Iecpsc+XkVAqx5uDp26m0qtjvft3syNN97I0NAQL7zwAufOnaPW2E6PYVYxULGAbor0Ts4bkZk6ZoG3GvlbHqQ2tIUgyfkHEam+27Gft+ULM3nH8gBXGg7T1tYWzUV6M3g7fpKXM0913kn8DEv3v5jLZrwccUTs0pxmwwaTzcAdKynKUHCmpY+WlhaWLFli2o3Y2OkxuSrV0AiNnJpiH2OQTbimu0vlc6J/LfT3o9Dm3Cp512OdCLMa9Uca+tlmP0q20Q2AI7QNL7HT0cYT+Wvp0Z8Kg6ZQFXnaUSBcXW///v3s37+fiooKbr75ZlasWIGu69HX3eDeidXXxcC3f8yf/8EHoz0EHo+HEqeix60SGl+DQDCAwpbiWA00z2VeeOEFNm3aRFlZWfRqNfG9Ls610zsYSPrcly2wMNgzSCAQwGYLX2ErFS7AcyJk3uOgVPIMi9pmN995rYW6S268QQ3IBDT80aAreXrtWIEAQHDkYPuMHN5iBw+WreFHr77F93/VhdsoI5tcFtm76fUXJn2fNIgWEfKqLFrVcmIDgNgcAoXiRGgHCj3lMaVKzqttGuDT3z6LUuG/Xbfbx9ELsMkySJ6msNvDQwqdV7Ko7zQmfN6R5YTFfDJrgoFYiTMNriYDd6x56hqKTKOfxx9/mezsbNasWUN1dTXLli2Ldu+nqmm/arGT+vYhVFxBotGEpaZQVdwV4lxaJW+y60SEQiH8fj8+ny/uv/Fue7F5EYaRk1CjXtHgX8ZGazgYWGa5QH+oMOZ9NhPbcGCy3ej0N5fKDxeywUk2blxNDTQ3fw+AnMXreLG1HIh83hawvzeP4a8+RcUCRX9/Pz6fD3s0CTW+98FqsRIMmQUC4eNzqzyePDbA60efpbLIwoYNG7AXreRzP7gU915Hjzo6bz489/4DO/L51c/C89uLi4uj2+Vp/XxgVTfPNRQnBb2Jsw5ONPbzme/Uj+w3scKfPvIuKsCIvraJrBUwKtwz8vd736LX50CxANAJkIErUMyn3lPBy8e7abjswTAUqAAaBg2hNdhsNgaVFSf9eMghhNXkOTUUFkZ7f7SEe8M9ApGr86GhIRobG7lw4QLfPZGBoRYQHygq3Pk7+MuPrKC4uBhN01gjmf8ijc3KYGA6MnBTz1MPn0yWqHryF4STBc+cOcOxY8dwOBysWrWK6upqPnxLScLUR4WhNFq6PeTQT1FRMW6fRo4+iM19jg7rWk77MgiYXCHOlSIjZvPaNaX40tPH2L2oKalhj606Z8Zut0cXvcnIyIj+5wpmmXRt6/itC1izZg1KKUKhEIvcLRzuKqbHH7kyS10UKogVN3mY9dhEsu4jM0P82OkPFUYTw351KRMj2giOvv56zxIc/qPY7XYWLVrE5sWLuclh5cBFK+39BksLbTi6fsUlVtHhzTGdEQMKn2Gly8inmxvI9dVx4MAB3vK5MWK6+CONz+qybJwOK3WX+rH6unnvpmx2rFnDr34GfX190WAgMlXO4cgYCQTiG8hInX6lFKdPn+YLP2rDULHvT2ImPFjx42SAIZysKnWSF2rjV53FSfseS68vI24GTqSS4Ztn+/mX3y7ja9/5X97oWTXSsNtwYw8v84GGP7pi4VjPZX7fn96zhA0LvTTWH+SXL16gs7MzfBS6zkDoNpJ7bTT6/Q4WLlwYvUUy/0U6m5XBAEy9Cy7VPPXcTCufuaeIHOMdtLe3097ezvBwuMhIZHW2kydPYrFYeFfpahoDy2gf0BjwhgCFx6+hkc9QT5BP3Z5Be8cQ/1O3DuWD0SuuhBMziuUlmVf9Wq4XswBKodHrs5Obm2vasI91W6rkrbdSDAOtW1bIhz6UXA3w+UOd0cWgINzQ6ZrGlx5Yz+rFGQQCAWqb3fx/z4SrTI7OD9d5Z5XBGw0rE6aIhocQmtVKNlmOmdatiO1V6Ak4OdVdxUBnFqX5Br+xNYPtq4vJz8/n0qUc/vPJF2hXO9A1LUVAEHluRd1QKWtVCx6cSQGRoaCte4hn/mIzVquVL37xi7SeCZH5npuxWCz09fVFtx0cHATgYFt2zKj6KKXgXWutfOtb36KtrY1BdYfJa4x7xEhAlYuuaTgyHVy5eIVwjf3UvR6Jt42k3CW9rhONvXz1q9/n7eC2hL9FcjLuRIIPbeR/DqtiU34np159mZOGgc1mi37uMjMzWbt2LVdacznT7p9Q9790/Yt0NWuDgalKNdTwz3tWjUT6FWzZsgWAYDBIZ2dnNDhobm6mr68Pz+UzLOIMncFtEDOFS6GhlMF3Xm/FbrcRn9Uc6VodHUYAWBw8g8+3nIyM2ZtpnGpoZP2yQt7//ukr2TvZYaD33lBC5aKsMa/YbtmQx6N5eSbb7GD/l45DUmKezpDKwTAMsix+/EnZ9Io8h8JnWcxbQxtQgfBjznUZ/NtLLjb9/BXytH6cTifLCmyonoN0OTZy2ZtFMEXxHoWG4VjIJz72CVq/e4ELPcn5B5bhHv7t3/6NLVu2cMstt/Daa6/x6quvkp+fHxcMuN3hHJUrQxbTGRcOS5BfvLiXhQsXUl1dzclT/XiScjASG10LQXRQGkcvDACpym8nzpeI/FuRzYBJD43Cb+i0sTRF4JUodnjCPOiwEmC9foxCyyC5Wi4dthLODpXhCeWyyKn47dsWctfOcK2JCun+F2Jcs2Y2wbUwlWxfv99PR0cHjY2N/Ns+G14jObO9IMeKrmmmGeBWHSzKR5YaYLnlAvkWFwsWLODDH/7wrK1DkGqefGL9hsi201Vc51p3x37i/542Wa1S4cTFVuuvOaFuNsmmV2TZdSoWZnG2bSgu/0RDUaD3UKMfAYjmmYRCIX4VfCcBzAM+DcXaUht//1sVtA5Yw2P4hiJSvQ4UVfppuo1FDOEkAy8APjIpzgqyrcTFpx96HwCHDh3ipZde4krxe5Lmu0fmx1fkBSgNnSU71IWRU87rXVVomh4d9oocVWqprv4VVfoZLhtlDJI3EtAY5OmDLLZ0cDYQubJOHtZxMkDfpBJDE481Pk9kpX6afNvwaGngmM9tbK6LZP4LMbZ5HQxMl1SzG7atCE89S3XfP32kkkcffTRaF91isWCxWPjgBz9IVVXV9XwJEzaRk+ZUi+tM5vmnYzbDJ/7rdNzKdmGKPH2ArdaDvBncxbBh1oCnbjCLnDa+8fHldHR0RP87fqGPY4HtKR6TXMAmmLWEek8ZA6FslhZY2bTUzo/eDqLUaIf76L7CyYqPPlzNhmV5fOdH+/jf40MEMhYy6Escmoqfkvepd2Zw4sDz1Nz8Hg5ctNFweRiP3xi5d2K5AKMMNo+8hsRcjPgqIebTFDdbDqZ4zFjHYTCatJk42wGc9Cf1RkgBICEmR4KBCUiuDBc++e7ZOMTWrdv4zHfqk+77woeXccPaRZw6dYpnn32WjIwM/H5/dE7z7t27ufnmm8ctijIbjRUcTeXke62CjFTz9wtzrPzRtj6+fsBHr+k8eDBvrBRbK538+8fWxh375757bqQqnnmDVWU5S6FtkKqqKhwOB5qm0djYiNfrxWKxcNC9bpyr5pF9WYZxhyLz4ceaTRF+/wr1HrY63sYwDLr92SON8dUEAqNX42X6Jd4ObktxvObvGYSTFBU62sjwmR0/HnImcCyp8ghSv/a8LCurS7Ol3ocQEzArKhDOdiX5GfEVD8tzeM9qL00n9zPY08pv370Nlxd8AYPqJVmsCL3FcFc9GzduZOHChZw8eZKlS5eOLslKuPJba2sr1dXVc65a4X+/cokhX/zAuCL8+n/r5sVXvd9UFf66BvzjVvCrbXbz5eeb+O9XLnGsYYBFCzKi1fGONQzQkVTN0CBfd/HwfVuoXl7Ca7X9I7cnT2kza9SWen7N9g0rcTgc0SBmOGDWYGnkZGjssBwgAy+GYTAwMEBbWxuXL1/G7/djsVjIL9/E8Z7CFMl68cfij67Sp8XdnkpQ6azKvkxhYSEnPStHqg1Opps+9vlhQOVTrl+k0VidorJgYlLgaINtYEFhGfmps95ynCGVM1LsZ6wppGb7jvxuHgQNBww6+nwM+cI/Xz7RzebKiVVmFCLdSDAwQSX5Gdy5qYjfunkxd24qYv3KpVRWVnL8+HEu1p9gz7vW8Qf3reWuzcWsqVzML3/5S1wuF2vWrEHXdQ4dOsRHPvIRFi5cSGNjI/1GPr/uKuXJA10cuzBAWWHWnDlJmTWuugbrljonVHY3lVRBRnevi9ZD3+Ps2bN0dnbi9YYb1YyMDCwWS3Qdg9ZeHx6/QVuvj5ePd7Nl5MSfWO463OOgsTnnPG8f3s+6qjLefeNK9p3qIRgaL5Ndw0aAFdopDh06hKZp/PB4iI4+v2kiHyhWL87gsx+7i+PHjxMKhQiFQuzYsYO77rqLtrY2egI5vNS2bORaeWJz+id+Va8w0OkaziYw2ElzYClGitLAExNu0JfpDVwxFo3RiJs12ok/FT6VyWpHE+3BRaSuG2E24yA1XWMkx2M0QTOy54mWhhYi3UgwMAV5eXls3LiR1tZW9u/fj1KKiooKcnNzyc0NL66Sk5PDxo0bOXr0KIFAgFtvvRXLgkq+V5uLl0xC2Ljs8o80XnlzIiBIbFw1FLquTbkuu1mQoaHI0/opUpdwu920t7dH15X/5S9/yZEjR3jiqIXhkIXYhkIBTVe83LttYXLPzlInn/1AJb/xzs309vayf/9+MvDSHSqm251YOyExOFDk0ceaAg/Dw8M0NTVxrGchQdOJOeFX0jvg5ej5Pn7r/jvoaKrD7/fT1tZGaWkpHo+Ho/0VDAbtJrUXrlZio6ozTCaX1VIMIr1Qib0dEw8uAHqMItxEloseq/s+1f3h2304WKhayNEG6FULY7afWA9ALB0DGz6c9BHEipHwN5mO3ish5isJBqbIZrNRU1ODruscOHCAS5cuUVVVRXl5OR6PhwMHDrBy5UoyMzM5cuQImSVr+NcfdzAcjD0Bj5RbPXOR8hIn//HTVtPu7tki0rh29Hnp7XdTYHXzLx/bTE1Fcr3/yTC7gtd1jX99eCu337SF7OxsvF4vQ0OjyYDd/myagsswayj6BwPsuW0xmqYl9ewszMvAarWyZs0a8vPzefPNNznpWkRQJQ7ZjIY8Ggpd03j41lwCg13Ruf69RhHDZJHcwIZ/Gtjo9cDPT/bxznfsQBtqw+PxcP78eZp8i6h3F05TIGA+TBH/M/Hf4wUCiYmJ4ceP1vBP3dCP/hzrOTQuqyX0qcjU3at7HyKzJ/7y7iw+uKuK5n4rl/uTe2s0DZ472Dlrv1tCzBQJBqaBpmlUVFRQXl7OkSNHOHbsGGVlZWzZsoXGxkaOHTvGHXfcwWtHGnjqRNbI2HLSXhgOwisnXbT3+fHM8nHOkvwM7tpUTOuhpykMtfCOHRtwOqeWnGV6Bf/+SmoqcsnOzmbZsmVs27aNG2+8kdLSUmw2G7/qLMFjhGvsJ1IqRPMvH+fUqVOEQiGKi4uT1rLXNI1Fixaxdu1afnL48sh4fHxjaSGInQBO+llrPcXNNWXcf//9rFy5kuHhYQa7m+lUZZE9MlrKFxKL6xxtHOQ3d2/EGO6jrj+PU96quPunxqwrPvH+VMGCmfGCi/GOeSIBQez7NF7OwFhBjMbiojx2blzByvJiFi9w8NLx7qRgIBBSePyz+7slxEyQ2QTTzO128+yzz9LS0sLu3bupqanhG9/4BgUFBRzoqaLJlWrFNQMrAYIJ5YynK0v/Wiw+VNvs5l+/e5ger42yBRY+/YEN1z1bO9VMgXAdgX62Wg/G3RqpSnfTTTdRUFAQvX20ymFyo2UlQI3lKHlaP5qmoZRCz1tOb85mWnuDLC20Mdz+Fq3+EgbJHXl2ALPE0PBKfZ+6I4cvvG7DZ8QPb0S2mZ7gYCL7SR4Gufrnnq7jjt0fFOdA96AWc4s5feSp/+AmyAx08sQJJz1+80Axsr1MPxTX2vVY/G06SDBwDRiGweuvv86vfvUrVq1axfbt23n66ac5pHYzFDAfW9YIT7syK1gz2aWbY12r6XqR/UaK5oDComvXfXVG86WmARS7Cs6iuZtJ9RHXNI2SkhIWr76Rr7w2PMazhF/hKmsdV4LFDJJLADuRue+RRshQKnrbWFPeIstd7wvebXr/9LqagOBq9z/dwUDYulIrNy7xsveYznDIrNZA7O8GC+hho/VoyiWJY03luyXEeBLPvxHVZdm8a3MRb57tnzVBwrwtRzyTdF3njjvuoLy8nOeee47Ozk527tzJ8QN9eJLWn1fYCLLecpTLtnV0DCf2HBhkhPoYHBwkJydn0sditvjQ1a6iGIlw69sGGfKFRhbIicl7UNd/dcZIaWPDiL9qfOT+Zdy//QaUCq862NDQQF1dHZcuXYousKSU4vLly7zceonYctPJNBQG9cHq6O+jjT4xFf1iu85jE/hihRdWajOWRn+/tgHBeGP2jHPfZB47uSTEiR0bnG33UHzlNYzQ7ZDUuCc+dnRNiWzcI4sfpe4ZmMyy6EJM1t597RiKpBV069qGqGsbin4Dut0uDje4qF6SzR/dXT4jQYH0DFxj/f39PPPMM1y+fBk9v5JXOyuj1dciV+lf/t3V6EOX+N99b/Nq54qYgjDhqnObLIdY6PBy7733sn79+kkVKkrVjT7ZK6LRnoCxu2pn4kprsqVmh4aGaG5u5uTJkzQ2NrLfe8u4V5Bh09FwK1bqpzlvROr+T/cMgsneN9V9T35fOiGyceMliyCRMt9j5wtsthykKVRlUuQo/tg0FCuLNT5xWwatLgv//vPUq4VadPNS20KMJ1XXv2EYdHV10dbWRktLC19/ayEBleqa2/x7ZdGnp5rrZEkwcB2EQiFeeeUVDh8+jNdWQp23kkFysVgsVC3K4o/eHY4ElVK8duQCT77RSuegTo7mpkJviJavdal8ujM34iGXFYuyJ9StNF3VAs32k0xhs+hsXp47411ek/Hn36nj6AX3OFtNJOueCW0TLp+bP8a212bsfWq5ARN5fRPbT2wuR7ik8Q6UaX7FqG0rcnlgVymPPH52tNqnFr7iip19kriWRuKKlxHVS7L5xLvLJRAQk2ZekRZ2ZB4nM9AZ3c6l8jke2jny28S/NzOVyyKzCa4DXddZuXIlxcXFnKhroim0DAUYSqN3MBCX1VxZVsD7blnGvZuclGjt9Hc2oZSK1oF3+a14/WrC2dCR6XrhfiotesKcbE0As4JA8cJfCEMx5zK1Fy9w8MqJ7qSuvFFjlcKNHQ4YfxodMEahnulqcM2ed6pJgokzFK42YNEw0CnXLwLgw0GXKhmpf5B6f/6gwW3rC7l42Uv/UBCLrrGqNJs9t5ViGMTNPolt4NcsyWHrilx6RmaorC938pcfqORju5dMqSaGSF+JlVIj33tP0MYivT26XX1ovcmU4/HNVD0M6Rm4zh75Zi0nmj3EfkDGigS9Xi9Hjhzhq68O0qsKiO0i1VBsSaiRHyt2jN83si7CxsrCq1qxbeyegeRGbK5latc2u3nsZy0mqxuOJ9VVd+JtiY8ZK7iYCyYauJjNVoD1mQ00exMLF6V+/VZdI2iopF6AmehOFekt1dBrhubjrvwj0YTln7t24FOTDzhn6twpCYTXWWtv4kI24avpxk7zsc3MzExuvfVW/uPgcUj4ACo0Tl3sob6+Hr+jNG4M66Y1+XztxeaYrqxwELFn19Ut3RpJ1NNU5HRudlU8sdc0G9VUOPn6H66LGwt0eYIEQhOJlVPNxZ/o9rG3X4+AYDqeI1WCZOLzJD5f+HHm9RVSH1PQGP3UwdQSYYWYisqSLHoHk4deN65YyJ89+GfR2648Uc+RC64xehyTRYLcj95eOo1HPDESDFxnqT5I42U1ryjJom8w8crcINcyxH89/RInQjuj67n3DoYzU2NP14pwBb2rPXnWVDj5ykPVcT0NvpBGqtXv5mqmdk2FM/r+pJ62GGu6G/Dr0TNwvY411Xsz9ntmw0cOA/QR6Qkz326uBZxifohcGOnET9dObMAj26W6nqguy+YT95RHZ2FNNAH6WpFg4DpL/CCBgVLauJFg8uPCzfASVU+zsRKFQqnwSTN21b9YCm1KJ8/YhtLr9fIb/3IMfzQbPN5MRbfTKdW0xXjRa1XGqy8wMdcqb2CmTHY4ROHAwzJLA32hnWNsN3cDTjG3xV4YjdWAJ15AgQYarC7NTtp+NvRuSc7ADIiMTzdc9mAogyyjn0/et4I7dlSN+7jIB7C8yI61Yz9Zwa4JFVeBcI7B9qr8afvg3fdPRxj0xZbeBVDoGnz199bOi0zt2mY3j73UQl1rci5B+FUrajIvcMmbxxBOMvCmWMBnor0HcylvINH0TL0MV+MMjkw7TL2/VFMD50rFNyFmE+kZmCHnOoZGxvM1BsnnX37SQ1FREZsq81M+JvbKHKC/v4zHHnuM7KB75Ao9ef716FBB+P/TebVusVhIvmbWsOuheREIQPg9dzqs6BoJQzQKC35uzD1HVYmNu4t1Skpy8Pls/N2LIZNVDCc7jW8uBgSpc0gmtw8LwTHXKgCLpvhIzSCuSyd5uy+H7OxssrOzaenT+JsftERzZXoHXRxrdEmioRDjkGBgBiRWBVQjBYa+9uPTfOvPbp7QPsJXP52c1+4ipPWMnINjk/rCPxXgsGoEg34suoWn3miftiul1aXZJgkyinzr4JT3PZs0dnpMZlFoWDTICnXR3Bzg4sWL0XucbKNvzIqGY5mLQUCsyOdvrBkTpLjPbD/m+8jXeumof4vWM6G4ctNvB7cRiilMJImGQkyMBAMzwLxx0Wnt89Pe3k5p6dhX78nrDeQTvlINEMJGYuZ2eLlkG0FD53DD9JW9jIyph2smQORE7w2Ej3G+XImNlT38lw/+JRAuLOX3+wkEApxsGuBvf9ieYm8z7Xr0OsQGBLG/g04QAyvJgetY+0memnhbZYAyZzUWi4V2t42D7dn0eG14NR2UHrcXSTQUYnz6+JuI6VZZkhVd3GaUQY7m5oc//CGhUGjMx5uuN6BpKQq3RH6P/1PXtQ7xyLfrqG0er/JeapEEmdVl2cSe+F2Gc8r7nk327CpF00ZXxTPLHj7T6uHz/9PCw//3Aj85PkRJfmQho9lmOsb0x9/GST+bLQdZQDd2hnHSD6iEz+h4gYky/blSP4W38ywOh4MFFZt49nwRrYOZDAWtGCr5lCaJhkKMTyoQzoBIVcDYAioAaywnwdfPuXPnqKmpwWo177gxqwY4Ul+QcFb7BBPXFPQMBLhzU9FVv5aS/AwOnO6jo8+HiumR0IDuKe57tijJz2BzZS7dI1XsEivdRXpq2nt9DPkM2nuHGRwOMfOFhab7uSa+Pz8OFuutVFgaWao30WUsGqnGFmmszaekxtI1jU/dt4yQoRj2B1mSZ7DV2YDT30IgEKC9vZ3nT1vxqExUin1dbcVNIdKNzCaYIckZz4vpbTrOvn37APA7ShnI28alvkiVH8Xqshz27AoXFzKvBhh7BRUbGER+T5aXaeHHf711Sq8lVUUuDfjUeyp47w0lU9r/bGdenTFVZcJIgzrZRtqsu3wi1f8Sj+F6GV1KGJjwjJdRiiV5is+/r5iCggJyc3NHElZBKUVLSwsHDhxg77mKMfcraxAIMTGSM3CdmE13SkpoqrgNp9PJ3v/9BScGa1CDfmJP5EcawpnRf3pPyQUEfAAAIABJREFUBccaXSY9tuGGP5I6aCGETpAADswbDzUtHdlmY+qMPGNkkZj5HBCkSjAM/y1U9C+iobi9fIDXW/JI9fcYe/w8ef9jzde348FP1jjbpTLVXgWdfgpwqXzytP6R5YTNZ7yY07ji8vF/nnqBplAVQzjJs3rYVjLA4mwfAwMDdHd3k6MV0KcyTHsGdA2cDmtcICDTDoUwJz0D15jZPPXx6qr/wX8c4lyX+dW8hmLNIgv3bcrmy6+4CZquHTR2qeBYNvy88Lc7sNvNiwdNRKSbPJRiHaO8TCs//ustV73/2S7VypCry7KxaUHqWwfIs3qoKMrgeIdljPnzk2mAY7+2Y2Xtp7p/vP1OR/AQ3lcmbobJRsUNESQ+V3LPR4YFfKHYEHd0Se/YlTxPhG5IWQmzIMfKD/98E7qumyTejv09FCKdSDBwDY3VSGoabE+xGEWqbvcIO8PcZH2Dt4Pbxl3ffWyKLAaxaiG8+gKAuCWVJ6O22c0nv1lnep+uwWv/sGNS+5tLzBoZgIoCnfYeDwsyfOTbhznrXjjyiFRZ8hNJpoufOjp6m9m2ZveNZyrBwFjHkipp0Oy1jPX64ocfAAb1Qk4GNuNXVtNtt2QcJz8/nwOuGrqG41eMnGsLaglxrcgwwTW0d197ilX+QCmobeqjsbGRioqK6HgoQHGePWUwoKHItQyhaRrLLA30hwpRcaVwJ3cS95ATfthIAe26tiE++c26SU89rKlwkpdpxeUNJB2D0zG/P2aJ5UmLc+2cbRvkYk8QcHDZZ+eyL3dk6/hpn/GN3nhz8xO3mcyUvMT9jffY6ZJqdkvi72b1CcyOUSfkKObjD30cu91Oe3s7ra2t5Dc08dqVFSMDXzrayH7ety2XyqLbOdvupaszeelomXYoRNj8PkvPsPr2oTFWrFIEg0Geeuop7HY7lZWVVFVVsXLlyjHPxQqNj96zhfu2343H4+EL/+d7XAyuoD/gwBOMVAScaECQutGITD2cTBfqx3aX8egLTUn7fOjOsgkez/zQ1OmOzqon+tPsfU5seCfSQE/1bzuRHoiryRUwa8yvZh9j0zVYsySPxYvDa70XFhZSU1PDu4F7L/TxrVebae7ykWf1slTV03jiMo1AnX5jyn3KtEMhZJjgmqltdvNn365LMaYfZsXHrfZ9OBzhbGiPJ3yF8mboDvzKluJR4dr/D+8I4fBfpra2NnrPvuDdTHfmuFWHP7lndEbA84c6efy1NtzDQZwOKx/bXRaXHPiJf3yS8/7lBLGTl2njoTvLuH/7/E0ehORhgrGv8KeSKzCZgMCsqM+1nNY41vj/WI8Zb6hkdL+aFr730YfXUFORy3iUUvT19XHp0iU+97yHwYDFdLuv/X7y+gZCpBvpGbgGxkuoC1MssIa7+yNBQERozAZFw1AG3z/kxkoGQ9xOjuZmTXY7GZ4QPsOs8NDVCxqKR19o4mBdJx0uaO4ejt7n8gZ59IXmcMW9D60EYGVODyUDF7FYLHzurz83bccxmyUWgZp8TsBEG9DJXH0ndr/H3jbdEvd/Nb0XqV/TArsfbwAy1QDLLA28+P03OL54MYsXL6a0tJTFixezYMECNC3+8Zqm0ea28b0TDoYNn+lzVJdlSyAgBBIMXBN797WPGwhoKJbpFzDrmDGvJBhLH1kZLzw+2qvs/HqwkCI66KKU5LFoxtnfWML7OXjBm3I/r5/qo3+ojv//oWoyMzMZGBgwfV3zVeqphRGReg+R3A4z090zYLbv6eoZSOwFuJpjCj8iN9OGxQLDvgCegPlQysryhXzxwdUMDQ3R3r6Kjo4OOjo6OHXqFG+++SYADoeDxSMBQiRIaBuw8sjjZxMCtbDITIJP3FM+6eMWYj6SYOAaCK9dbSZ8Rsq3uKl2NLLA4sEw7IRC4cVWDMPAMAziG/HU+4kdk1YYdLFo5Hezq8LEx4+VqJZqbDv1Cf+ti24e+1kzOdnZ4xz7/GNWZ0EDLPjRMci1DFFs6eKsf3VMsufVmkpjPpEeiMnMaoj9OfmhAU2Df9qzkvXlTt481c7f/OCS6SMiCX7Z2dmsXLkynFczYmhoiI6ODtrb25MChFpjB4ZRgEo4VptFY/PyXNM16IVIVxIMXBOpu4Ptmp9b82oJhUKEQsbIz9BIEBCWw8DIlf94U7BijZWkNpHjM+tNGO8x8Z79dSd/ujU8lptOPQM3rcnncIMr+rs20pW/wfIWCzO9ZGRksGHDBl44cBBv0U10DOgM+UJj5pOYm8x4/Fj7SGW8WQ3j7WPyPVKRj8ml078g31JIfyg+F2C8dQWys7OpqqqiqqoqelskQPiz7/egfMnPn5dllamEQiSQYOBaSHn+U2iazqsDN1CUFeTmimGqFlpxOBxkZGTgcDhwOBzc2qfxD893YzbNykKQkOmfbbJX+6kO+uobnJCCc+6C8LOmSTBQ2+zmay82xzSB4clt1fZzLNAGKCgo4ZZbbuGZZ57hrp3bufvu7dHHjZ9XkijxPR0rOXCyQ0Th7YtpTxhqSrVtquf6f+3daXxc5Znn/d85VaWltHuTJS+yZRt5k3eDg8EYwuYQCEmAZCZmCUs6yfNkOvR0h8nMpyf0dM9CPklDkueJQ9LQgTDJBHrSMEAMDiQmZrGxjIUFloVl2fIi2dbmUmmt7cyLUkm1SiVZspb6f1/YVqmWW6ryOde57+u+rnDx7hP5nM/tbuAvrnZw5MgRvnrN7fx4d29MUaDwhlDJCAUIy+b54xaD0u4BkVjqWjgGyooTTZUbeCw7XT47p90Z/PZwPr3pRWRlZeHxeGhsbOTjjz/m/LH9zEiPt/c5QACT4V/th/6drMFmCAb3+5p0XFb+iB47GYWSBwd+W8Hf91nPdBYvXsztt9/Oyy+/TElJCTfeeGP/vUK1CZbNGc6yikHs+5woodDAhi/sPuF/Rz9+4N89Q5YvHuzzFB5QxpuhirwtYMGxc1289tprzJ8/n1u3ruLx+5exYVEeM3IcbFiUxxMPjDzTP5lukyISpK2FYyB01RcIxF6fRf6yB6qppaWl4XQ6cTqdZGVl8evahXTG2QplN4MZ/mOXGX7xCmhitb2C733ve+M9lDGXqFpkdpqfF/5mLb/85S/p7e3loYcewumMf0VaVe9mx86THDnTGfcU67AF32uvP/a7afSwuCiLI2f9UUlyAXJw4SaPgRPxULNEwW2rAWsk2wKHzzRg8QyL4rbX+NrXvtZfO2A0RfciUJ6ASHxaJhgD0RXpSgud1DR04uryRd3TxMgu4j/9+/8U0674wwT17pcUZ1FzppOAFUxECx68x/xHGpZOUudgGz950GLZ/AJefvllWltbeeCBBxIGAhD8vPz06yuoqnfz7acOE7CCu0QMLEzT4B/vX8qv/tTA/toLRDbkCZBtuHnopnL++tmjGFawKZIRE1JELwElThQNWMGr58hLhGRzUYZ6zMBtoav1go4PWLdu3ZgEAhD83So/QGRoWiYYI6GD0AvfWctj95ZRVpzVfwAMMQ1YPDsrJhCA2ClOAwvLCnBlUSuP31/G3Kwe0o1e1i7MpmTmcFrDji0DyMI93sMYc1X1bh55poaahs6wQkPB98s0DVYVNHH48GE+//nPU1iYXNGlsqJ0rnB+SEmuh9x0iwKzhR/cG8y23741OLVtREz5GxgOJza7ncfvX8aCfC/pRg/TzFY2pB2gl0xi/4sbmEMsAVkWYZ/VkUSa8ZYl+n4/+DCMYInq60rayTddXHfddSN4DREZTbZHH3300fEeRCqYXZDO65XN/ddmofXLR75Qyqy89Jj7F+ans7Y0l+Z2L73eACvmZ3NTqZu6yj9i93fwjTs20XLoRdbPN7ll6zpeP9gcdugdr2WE4Ai8pHE8cBkv7j1PZprJ0rnZ4zCWsRNaBmpo7aXHO7AV1GYY2EyDudNsXDi+j5u2XsHGjRuTft59+/ZxqraK//z1W/nsujxOVrzE+pWLmD59OtOyTD5+5yVsuXNo76/7ZNDjd7Crspmb186kyHeEeeYJCs0GLvTAeWtOTI6JAdht5qCzSXmZNlaV5OLu7CHbamHm9Gm4uvxR90p05R9c+pphnKWDHKI7FVp94+n1Bai7kMbpwEJqGj3MLkinMD/2/4GIXBoKBi6RmJP7vBwe+ULpoOuXhfnp3LBmBndtLuKGNTNYvbSEmTNn8vbbb3Pq1Ck2btzI79/+mPcbs+n1m2TYTewmeP1waQOC4JklnW78OCIO+Hs/cVGQZZ9SAcE/vnSChtbeqIqDwWv2gAUXugKcs+byhetWJX2C83g8vPDCC6xcuZLVq1fjdDr58MMPAViyZAn19fXUHNqHMaOc8y4f4VP/BtDc7qXYcQ6v10tjZzr7e9bi7y9eFflZmDcjA3e3L2EK4KoFuTx2bxmbFwRo+PBVbr/hCt460hn1PPF3neTgotT2CUcDK7H6Xz9xYqHfMmho7WVXZTNrS3MVEIiME+UMXEIjWb+sqnez47WT1DYGdxcsnu3kzpv/LQff+lde3fMxlf5NWA3BToGhKeSljhpqvcH+AGMTEMTuUlhifsTxwGV9t0W+5j+/eSaif8FkF7/iYLhgHf3n3mrksQVD19AHeP/99+np6WHLli3BZzAMlixZwtGjR7Esi+PHj+N0OvmozR+VNxAMQGrOdNB4toDm7pl4/VbffaILAwVno5xptv46/7G5ARZf2jwDgKKiIkzTJMvfRJ7THifnJTaPoJdMTvgX930qktvOavWN47ndDVrfFxknyhmYwIIJZdVUn+7E67fw+i2qz3Ty9y+eJ5A9n+qOor5d7aGDqoGFxTnvdMptHxCZLGZFfX0xIgOBdXknme9oTBh8uHuiTyKTW2mhMyb/I1qyrXGr6t38zS+r+YddFnWZWzl5YeC/5JIlS7hw4QLNzc2cOHGChQsXUlrojEkQNABXt5/THZl0+9MGDQItC5raPTx+/zI2Lsojz2knL9NOuumjOLODDWkHaK47AIDD4aCoqIhTp05RVpwV5xlj6x74jXTajRkM99CiVsIi40vBwAT23O6GuFegFvDe6UzarVxi30IzLJt/sKIxydw2lOBU8XGXE8MwcOCL+zw5GVNrAio6uTOeZIrbhHIPDhxrp9dK52R7Og8/XU1VfTABc8GCBdjtdqqrqzlz5gwLFizoTyQM9jkIvo5F3w6AODMBicYVmqV68bvrePE/ruN/fN7JZd63uW7jIvbt20draysAc+fO5fTp0/0/c+h1B/6OTBb0Wwb+pLYmxh+XiIwPBQMTWOIrJYMLVn7fFWD0yTdAFm5O+Bf333fg78EO0okKDQ0VJJi0GzPZ7bkBL6G6CJGzEV/99NQq8hLaOhoqjrNsbnCnyHCL2wwULAo+MGANTJdD8MrcOXs5O/7cyzverfzPyuB6+qeyD1FAC9Oy7Wzou7pPplqIMci4li9fTlpaGmlpaWRnZ/PGG28AMG/ePNra2lg43eCH911GAS2k00MBLSwxPyaHCwwsG410SSqAZQUoyzpNb2/vCJ9DRC7G1Lpkm2JKC500u11xvmMR6H/roku+Giyw1fKxfy3xD87he83jlYu1SBwYxGMFWy5bBgP9EYK32/Gw0PyETJcL+psoTQ3R+R8jKW4TL/cgfLq8qt7NK/Vz+mtKHDrZzbefqma12cVqewX3ffk+SkpKeCROTQrDgNwMO/3vpxGsjJloXGlpaSxfvpyqqiquu+46nvnX3ez5WSUNrgCWbwNvfXCCW7as5Mq8arq6urAsC7cxndpAXpK/seAi1nUlHbjsczja2N03NIvCLIs8VwWnPm7mBzV72bx5M1deeSVpaWlJPreIXCwFAxPY9q3FEQ1wBsTP5A7dfiywHMt09FUjShQQxN5mw0MuLjrJIYCBDweDTx7FK14THEMBzay2VwCwd+8ZrrjiCvLykj1xTD4jSQ6NV7AofLo8NEMQeg9C9fpP+Bez2l5BW1sbJSUlbN9azP7a0BW62T8zEeoImKysohW8VWHnjZc9dPg3wZlegu/nDH74RifzS9xMnz6dzs5OAOq8C5NKFDQNWL8ojyuKO6nZ/z4lubn81X1fjCg05PGs5c0332T//v289dZbvPfee1x99dVcfvnlCgpELgFtLZwgqurd/ONLJ/j5rlMcqG1ndkE65SU57PukLW652/gBQfDrXtL7SsomChri32Zho5cMnHTiw0EAR4LRBq/yjL6TT7yx+bAz3zzef8uxY8eGtec+FQxVe+Lnu07R2RvZycgCenDSaU4nN93PmmULyM+Ej995iYA9m8ys3KS2rUarqnfzt8+fotty4vFD9JZAA2hp95KfafH22ULqAmV0kQ3ElswOZxqwYVEe3793KcsXFbNs2TJqamrYs2cPDR0OfvVeJz/fdYrK451ctXEFN15zOa2trTQ1NXH8+HEqKiowTZPZs2djsw3+WiIycupNMAGEEsnCu7VZWNxQWEdTUxMH/Vf03TOyFG1kOeKh6gqET//HCw7Cnz98ySDeyT64zBCsfR/dajnIgYfN9jcBmDlzJk1NTXz2s59l/fr1g4wx9Qy2vBBv+j96GWfZnGzKs+s5f2w/X/rSl1i6dOmIxhH/tSLlZtro6PH3L1sM3esggGmY/OjByGZDPp+PZ//1LZ47lAV9YWUoEHr8/mWUl+RQX1/Pq6++SlNTEwCZmZlcffXVbNiwAYcjUZAqIiOlmYEJILqITegQ29Rpssh+jAXFMzjRHio5bBA6yH771hL8fjjT2kNye7oHWzaInuqPfkx0wRnwkh7nsUF2E+YZx4I/j2VhGAZHjx5l06ZNusILE11YKrwaZWjmIJgdGO89MGh2eznckkFRZhdfuv2mEY8j3ixEpAAOu4HXH2/XQuz7bxhQmOZieX4LH55Nj5jxKpqWyf+q8NLY5ul/rtBP1tzu5YY1M8jPz2f9+vXk5eVx6tQpent7qa2t5YMPPsA0TQoLCzl8uitmNk1Fi0RGRsHABBD/QByc7r9y+Sw6T+6j2NmJLbOArl4fpTPtPPpvl3P18mnMLkjnzYON+BO2No58zuQrEw51wE8UQABY2AyLVn8BdYEyznvyuGHLehpPVNPQ0MDq1auTeH0JVa2sOd5IW8/g768nvYg7r5oz4tc6UNtOY1tv3LTR4C4JC4cJHn/8PJXwsZkGbFyUx52bpvPbShsNrb10eQI0tvXyel+lwRf3nYu7BNLrDXDX5mAugWEYFBUVsX79evx+Pw0NDViWxSeffMIb79fy1Ps2Gtp66eyNfG4FBCLDp2BgAjhQ286Z1vhbqk6c76Y9rYST3rn4ul1cX9rJ3z14DbMLMvuXF3xW6ESRzFJByEgCgkT3iT1B+C2DHpz4cdCDk73H/TSwgGPNBvmZFovnzUji9aUwP525aU3sP3KeXpwkmtnp9HBRZZ+j8xeMvpfJcwb7FKxMr6YzkInb64gKGGKXmCzgL7cV8UplFw2tvXGv/guyHTHBh2nAink53LAm8rNht9tZtGgRK1eupK2tjZaWFmr8K+gMZCScWRCR4VEwMAF09frZ+0n8XQMeMnD70vD4TbrJoKYtm6q3X6S68j2e/8CP2+sguZN2dCAw3BmC4Yg+QQT/9ls2esjknaM9rC3NoTB/4nRbnMi6u7s5WrWXs1boyj/+e1J9qpMvXz2yVsDRvTNWzsvhP3yxlH/32QXcsGYG3RfO0na2jtOeQiwCRL63kTNE+TY3/pYjvHMqM7jtNEzo6v9bny0ZVuMuAKfTycqVK5k3bx4vVnrwWZGboaJnFkQkeQoGxllVvZv/8nztIEVjYrO603NnsXYOvNuYjy+p3aHxZgQS7UYgzm3J3Cd0W+hEEW86eeB1j9Q1cvuVJUmMXQKBAIf276HAaKHTysZDZtz7ef0B7r125EsFg+UveDwejny4l08tn8XZ1m6cWbl4/VbchEN7WgaH23L6AoHIz0Ho6v8r1xQPu3FXyLRp0zh0sovGqNk0A3DYTP73e2eVQyAyTKozMM5CVeiSZWHQ4LI40nkEp5VNL9MZupBkoqv76ATBkPBs8fD7BMIeF7pP8LYcXPSSiR1v35azwZg0uCyam5uZMUNTukMJ1WeYZnezwdzHe9bN9PjidAwcw7LP8+bNA8ByHee2RU62b7857g4E0wCbaYOI2YMB4RUQR1KbIeTurXP4oK69fwcOBLAwaO/rxtja4eJAnat/d4KIDE7liMdZog54DptBycx40+gW6XQza9YsPrcuG9MY6FY4UFnQT3IVBINVAtONHgrT21lr28u2OfWkmwHitau142WtbR9rbXvJwYWBH6Nvi+Fi2xFKzNokAoGgdLr59a9/ndR9U92Rhh4+si7nbc81fOhbzwx/Xd93It/j+28Y+azAULKzs8nPz6e1tZVZs2YB8Xo09AWLRviOgwEOm8ETDywbVv2DRKJLQocCodBvJLq0s4gMTjMD4yxRFbq1C3Nxd8fv9ldUVMQ3vhHcRrZuXeQ+9Ts/NZ3/8nwt7t6h1vqDL+g0uvEaTjy9HrJys5mR1oFpBIj9aBiYWOQZF3BZ+XSQ1/cMJm7yOejfFHHf2NeKvM3pdHKi1eJrP9pLW286pYVOtm8t1lVclFCSaCAwDQuDXmbQygzS6MK0Z9Hjs3A64C+2LeC2jWPbJrq4uJjDhw9TWBh8ndAJOfT5s3uaWTO9hRbnGg4ca4/7mR6NQCAkfGbhzu8fxN0TuTshYMHRRveovZ7IVKaZgXEWfXUV3uSmqd0T5xEGrR3+/q9CB8QXvrOWv7o5n4/efQV7bwvRbW4TcVv5dAfSuMAM3usoZ+On76Rsbh7RV52mAasXz+Kee+6hLXtdfyAQGtPA34nqGERq6zao9F/B0WZodnupOOaK6NgnQdHNjEK/Yw/BSoFrbXv5my3dYx4IAOTm5gIwffr0/tvCP3//8G9K6Tlfw1UlnoSf6bESr620gQWd5/jNb37D2bNnx+y1RaYCBQPjLHq6c8OivP6p1HgHuHitXnt6eti5cydPPvkkHR0dfPHy/L7vDLS5jRU8qQwsMBhYFjy16ziZze9hEHswv+faOSxcuBCXN5PYj85wdh1YBCwrIqDQtG58iZaRQr/vE/7Fl6zT39nOdD70beBbvzrLI8/UxARuixYtYsmSJRz/8E/84N7L4n6mx0q8oNo0De69dg7Nzc08+eSTPP/885w/f37MxiAymakc8QQWr0yxYdB/YLUsi8rKSt544w18Ph+f+tSnaGtr49ChQ2QWLqPRvozTrT5KC53UNHTi6oq/7BAu3ejl83MOs27rF/iXva0xZXJbW1v5ix/vo8U/Le66cGLxEhVjHz8jx8EL31k7jOed2oYqE5xGD9/c0MbnPve5MR1HVb2bv/ynw31VBMyY8sEhzc3N7Nixg2uvvZarrrpqTMcUb4zxSjsHAgE+/PBD/vznP3PhwgVWrlzJ1q1bI2Y4RFKdgoEJLtEB7syZMzzzr29RcS4Pj6OAOfl2pnUeJN+8wA033MDatWsxjIGTbTK15yFAcWYnT/3VZjIyYpMXu7q6eOqpp2jx5rDnwvJguuKw+iJE30bE7aGmNiPNMJ+KQgGhP06lYAOw0Uu63caKBdPHNOfikWdq2F97ISIATPR+7dy5k8rKSr71rW+RnT2yIkhjwe/3c/DgQfbs2YPb7WbVqlVcc801FBQUjPfQRMadgoFJpqurizfffJM/Haij0r8JDKPvhBzAwOB/fGUhly+dFfO46FmG8Epz4Y//4X2XsXZR7MHR5/Pxq1/9iubmZh544AHOuB387f88iitBkuNwhRYsvn/3IjZcpu2G4V7ad44nd52k2zOwXW9gjiUYaCW6Uh8td37/YNzumfFmcrq6uvjJT37C8uXLufXWW0d9LBfL5/Nx4MAB9uzZQ3d3N2vWrGHLli2cvGBGBN5KaJVUoqJDE1h4W+OKWhdtZ+t4/f/8lqamJs7nXk1btxFWo8DANAxcXVbccqwxFebm53DX5tlccLlp7+imONvL321fyZrS2EDAsixefPFF6urq2L59O7Nnz6YwP53//d5ZujyDNbeBoTvbBU8oZcUZLPDsx2o/QXl5ecSsRioLFaXy+SO362Wlm/gCAzMuY12Od29NK2cv9BI9kxOvfLDD4cBut/POO++wdOnSCTU7AGCaJnPnzmXjxo2kp6dz8OBBfv/2Yf65Io1G9TqQFKWthRNU9JV8i9tDRa3FnUtXcc/tW7jv//+EgBV5pRawgglniUQXeTlw4ACFza9y4/rV3HbbbZhm/HzSP/3pT3z00Ufccccd/cVnIP62yEhDBwJ2k/4ryxMnsnn22Wf5wx/+wE03jbwD31QS2k0QvU3P47NiilUN9f6PVFW9mwvu6M6YwU6UiXYIbNy4kYqKCp598c80ZZRz/Fz3hLvadjgcXHnllaxfv57/d8cHWC30/04DVjC19bndDVq2kpSgYGCCij4JWH1X/id8pWRlZSWsTxC90yBceP5BQXov2W37uP7yjWzbti3hlXhojfX6669nxYoVEd/bvrWYA3WuQeobDd0r4ZoV0/pvWbBgATfffDM7d+5k9uzZ6m5I/N0EAQtsBN/v4bz/IzFQ5yA878Mihwt8967yhDsEbDYbC1dfyw93uTGMYM2BiVoVMD09nQueDGB4wbXIVKKthRNUopNA6OA0WH2CeEIH9YpjLprdXo42w4eBTcxbflXCQKCuro5XXnmF9evXc+WVV8Z8P7QtMi9zJDFl8DXbu/0Rt27cuJE1a9bw8ssv09CgbYaJtpcunu28JHv5Y+scBN85Oz68LbWDPvatOhtg9H+OJ/L20WS38YpMVQoGJqihDk6D1SeIJ3a6Odj2+Lm3GuPe//z58zz//POUlpbymc98JmHAUF6Sw99/ZQm2hJ+kUInkeAwO1Ubu+zYMg1tuuYXZs2fz29/+lo6OjkRPnBISBX3f/Mz8Yb3/IxUvKLUw6CSHyspuya7GAAAYTElEQVRKBss/Pn6uO2b76US92h5ucC0y1Wg3wQQ1VI2B4UomGzy0jFB7thN7bxMr887zna/fRXr60AlUVfVuduw8SfWZzmGMyiITN9l2H1ZmYcSastvt5uc//znTpk3jnnvuwWazDeN5p5ZE20svhUTNiPKsJlbbK3jooYcoLo5/wkz02Im6fXQ8f88i403BwAQ2mgenoQ7M0cEHWJhGsLHMcNZ3w8fs6vLhjW5oHyG8wVJsIZtTp07xy1/+knXr1nHLLbcM/4eWi5YoKL0yu4oM7znWrVvHzTffPKzHjnU1QhEZPm0tnMAG6y8/XLML0nm9srl/f3rowPzIF0qZlZfOP750gobW3rBgwcAwhr9VLXzMH9V30NjWO0iXhNAUcnCNIXS/lr7XzMvLIycnh927d5OTk5PwClTGTvSW1BXzcnjkC6U4ehpob2/n/PnzbNq0Ke4yUqLHKhAQmXg0M5BCBptpGE5RmeG8XvRsQ/T2tHg7DvKcdl787rr+r1999VU++OAD7rvvvoitjTJ+Kioq+P3vf8+FQB7ewi2cdTPhtg6KSPK0tTCFRNcZCDeSrYrJvF6oxW3NmY6+aoUDFfMSBQg+X2RVw5tvvrk/ofGhhx7q754n42f+/PlcCOQFq2A2eLAwJuzWQREZmnYTCDB22dShAOTnD85jrW0vy4vs/dnvWenBrWeRDHo9vRw9erT/FpvNxp133olpmjz//PMxwYJceue6MvjIv75vr0jwPZzIWwdFZHAKBgQY/lbF4aqqqqIws4cffW01L3xnLY/dW8aKeTlxQgHINdz85je/obFxYNtjdnY2X/rSlzh37hyvvvrqoFvaZGxV1bt5+J+P4MVBdDA3UbcOisjgFAxIv9BVfOhkPVqBgGVZVFVVsXz5cuz2gZWp7VuLCVZADp7Ygz3o4Zu3XgbA008/TVtbW//9i4uLufXWW6msrGT//v2jMjYZvlDNinj5HirUIzI5KRiQMXfy5ElcLherVq2KuL28JIfHv7qUaUYzuRn0z0Z8euNi7rjjDnw+H08++SRdXQNXmqtWrWLTpk289tprnDhx4hL/JALxCxGFqFCPyOSkBEIZc4cOHSIvL4/58+fHfG/ZXCerbBV8/tbPs2rVQHLj8uXLuemmm3j99df52c9+xre+9S0cDgcAN9xwA+fOnePJ37xO76zNnGrxKpP9EkrUoCov084/bF+irYMik5BmBmRM+Xw+Pv7444RtiXt7ewHiVjnctGkTV1xxBW63m1/84hf4/cE+BqZpsnzTNvZ1raHyRCfNbi8Vx1w8/HQ1VfXusf2BJG6yqc1EgYDIJKZgQMbU0aNH6e3tjVkiCBksGIDgtsKlS5fS1NTEs88+2584+MJ7rRiGoUz2cTDWyaYiculpmUDGRKjA0ccn2si1b+ZsVwYz49xvqGAA4K677uLpp5/m5MmT/Mu//At33HHHkF0dZWwNVrNCRCYfzQzIqAtvl9zps3O2JyfuFH5VvZv/9tI53vVdy/dfbU44xW8YBvfeey/Tpk3j8OHDvP7662o5KyIyihQMyKiLbpdsYcRM4YcChsMNHjxkcOhk96Br/na7nQcffBCn08m+fftYPb0lYt0aAoAy2UVERkLBgIy6ZKbwowOGZNb8MzMzefDBB3E4HBw98Af+ny3B9eq8DCighSsyD7JiXvZY/EgiIlOaggEZdclM4Y90zb+goICvfvWrmKbJobf/D9cuCbBkTg6d5HCkay4v7z40Wj+GiEjKUDAgoy6ZPgcXs+ZfVFTEl7/8ZVxWPt/f6eKDOjceMmhjOk/8sYdDJ1yj+eOIiEx5CgZk1CWz9exiGyMtWbKErumfwoKwGQYTC4sdrxwd5JEiIhLNsNTxRcZJaPth3bkuSgud3H1t8bD2qt/5/YM0u70xt2eYvbz6vc2YpmJdEZFkKBiQSeuRZ2qoOBZdFtfCIIAzzYbdZqNsTrbKFIuIDEGXTjJpRS81hLofWtjo9Fi4uv3sr1WZYhGRoSgYkEkrPDfBYQtFBJF/W6hMsYjIUBQMyKQWKoub57QzEAhEUpliEZHBKRiQKWHwLYkWc6epDYeISCIKBmRK2L518C2JjsY/U1VVdYlGIyIyuehySaaE8pIcls3JovpMZ8z3ls7JYtOsIn73u99x8uRJ5izbzG/2nOvf0qjdBiKS6rS1UKaMUPOjgZ4HFgbw44eWs2JeNgcOHOB//X4vH3g3YhgGAWug2NHj9y9TQCAiKUvLBDJlRFc+LJtlsMa2l3zThWEYbNiwAe/sLRFVC5NpkCQiMtVpZkCmrEAgwC9+8QsMw+DBBx/ENM2EVQtn5Dh44Ttrx2GUMlX9/W+P8seP2mJuz0o3eeiGeXzuisJxGJVIfJoZkCnLNE0+85nP0NjYyMGDB4GLa5AkkoyX9p3jur99P24gANDZG+CJV+p5ad+5SzwykcQUDMiUNm/ePFavXs2bb75Jd3f3RTdIEhnMS/vO8cQr9SQz3fqz10+N+XhEkqVgQKa866+/nkAgwB//+MekOiqKjNQvdp1O+r493sAYjkRkeLS1UKa87Oxstm7dyq5du1i3bh3lJUU8dm/ZeA9LpqBOj3+8hyAyIpoZkJSwceNGZsyYwc6dO1HOrIyV+AWxRSY+BQOSEmw2G9u2bePUqVMcOnRovIcjU9T8mRlJ39emo69MIPo4SspYuHAhK1as4A9/+AO9vb3jPRyZgv795xYmPTtwWXHWmI5FZDgUDEhKufHGG/F4POzevXu8hyJTUHlJDj96cBm5mbZB72cY8M1t8y/RqESGpmBAUkpubi5btmxh3759nD9/fryHI1NQeUkOL/3H9dx1ZWFMTQu7abBsbhY/flA7WGRiUQVCSTk+n48dO3aQl5fH3XffjWEo7UtEUptmBiTl2O12tm3bxvHjxzl8+PB4D0dEZNwpGJCUtHjxYsrKyti1axcej2e8hyMiMq4UDEjKuummm+js7GTPnj3jPRQRkXGlYEBSVkFBAVdddRXvvvsuLS0t4z0cEZFxo2BAUtrmzZvJzc3ltddeU2VCEUlZCgYkpTkcDm666SZqa2v55JNPxns4IiLjQsGApLyysjIWL17Ma6+9htfrHe/hiIhccqozIAK0tLTw3/6/X+PK3YDLm0FpoZPtW4spL1FhGBGZ+tTCWARo6EjjoP9yrFYL8NLa4eJAnYvH71+mgEBEpjwtE4gAz+1uwMAg9F8iYIFlBW8XEZnqFAyIAHXnughELZgFrODtIiJTnYIBEaC00BnTVMY0greLiEx1CgZEgO1biwn2KwpNDwQAuPva4vEakojIJaNgQIRg29kf3LOEAppJo4cCWrhu5idqMysiKUG7CUT6zMrsZrW9AoDc3FzaW9s5d+4chYWF4zwyEZGxpZkBkT7nz58HwDAMFi9eDMCuXbvGc0giIpeEggGRPufPn6egoIDMzExyc3PJyMigrq6Opqam8R6aiMiYUjAg0uf8+fMEsudxoHcNP/hzGkfTrsZl5bN79+7xHpqIyJhSOWJJeVX1bp7b3UBlbRMeHH23GpgGBCyLHC7gyJrB4qJslSgWkSlJwYCktKp6Nw8/XY1l0Vd0yALCCw6E/nsEgwPDQCWKRWTK0TKBpLTndjeEBQIQGQiEvg7ephLFIjJVKRiQlBavDPFgVKJYRKYiBQOS0uKVIR6MShSLyFSkYEBSWqgMcSggCMUFeU47y+ZmYYZ9DywClkVNQwePPFNDVb17HEYsIjL6lEAoKS+0m6DuXBelhU7uvra4vwxx6Hs1DR24unwEEwpNJROKyJSiYEAkCY88U0PFMVdEfoFpwIZFeTx2b9n4DUxEZBRomUAkCfESDZVMKCJThYIBkSTESzRUMqGITBUKBkSSEEo0NPqKEBlYGAbcfW3xOI9MROTiKWdAJElV9W5+9LuPON3mJcfs5D/ft5nyBbnjPSwRkYummQGRJJWX5PDVywNck/kOK433yaF1vIckIjIq7OM9gIkienuZGtJIPGlpafh8PnJzczl8+DALFiwY7yGJiFy0lAgG4p3ogf7bZuamUdPQCQQzxFs7XByoc2kPucRwOBwEAgHKysqorq5m27ZtGMYwShiKiExAUz5nINSVLhAY6D8Xa6AzXYj2kEu0qno3P3v1E2obO5kzI4vm5mbszuksKc7RTJKITGpTMhgInwnw+ixc3b6oe8Se/OOZkePghe+sHZMxyuQS2+oYQu2OVY1QRCa7KZdAGDpo7z/motntxdXtjXOvgba0iWgPuYSLbXUMam0sIlPFlAsGntvd0H9wDjIYbIEgntCVnvaQS8hQrY5VjVBEJrMpl0BYd66L2IWP5BO8QrkC4c1qREoLnbR2uBIGBJpJEpHJbMrNDFzsATmUNKhAQMJFtzoOp5kkEZnsptzMwJVL83m/1jXix+uALvGUl+Tw+P3LBraj5qWBBU3tnpi2xyIik82U203wyDM1Iw4GHr6thNs2Fo7yiERERCa2KTczkEwSlwHMn5GBM8NGk0tXdiIiktqmXDAwWKJXaG33iQeWpdSJX6WWRWSshI4vNWc6AAMMKCvO0nFmkplyywTRxWEMI7jNMM9po6w4O+VmAKJ/HyqQIyKj5aV953jilfqY20PJtjrOTB5TLhiA2CvhVAsAwj3yTA0VxyJnSlRqWUQuVqJAIFxepp2//8oSBQSTwJQMBmTAnd8/SLM7tgqjSi2LyEhV1bv5d/9UnfT9v/3ZEj53hZKzJ7IpV2dABvh8PnLtXUAg4nYVyBGRizHc0ttPvFJPVb17jEYjo2HKJRCmoqp6Nzt2nqT2bHAnxeIiJ1++IpvDe3eS1+7B4HLAwgprqqN6CiIyUiMpvb1j50l++vUVYzAaGQ0KBiahqno3O147SW1jF5Zl4Yu88Kf6dAffO91BmlFOtuFi67x2OtLnc/xcd8rnUIjIxSstdNLS4YpT+j2x6jOdVNW7lT8wQSlnYJKpqnfz7aeqB22aExRsr2tgYZqGsnpFZNSEdilFNoUbWl6mHYfd0BbnCUg5A5NMqCvj0IJF9C0MtdcVkVEVKs+9cVEeM3IclMzMSOpxrm4fzW4vFcdcPPx0tfIIJhAtE0wyNQ2dw36M2utKMqKXn+ymiS8QwDAMFhc5+cbN83UlJ/3KS3IitieHb+nu9vjp7I1av+ybrYS+micEL1K0xXli0DLBJPPZf6iI859scKorIEOpqnfzl09VDznlqy1ikozoYmfhgUA4h83gh19dqiBzAtAywSTT4x1+IKDdAzKUHa+dTGrtV1vEJBmhZYQNfcsIORk2ggFBJK/f0nLBBKFgYJIxjdjoOhG7abBhUV7K9WKQ4TvakPwy0o6dJ8dwJDJVhJYRXvjOWv7r9jJspkG8gEA5TRODgoFJZvHs5IoFmQY8/sBSHru3TIGADMmfXFYqQH89C5FkhWYKHLbYU45ymiYGBQOTzDe2zcccYnJg2ZwsfvSgZgMkeaaOBDLGyktyWLswN+b4pYqoE4N2E0wy5SU5PPHAsmDL0IZOfP4APd4ApmGweLaTb35mvoIAGbbLirKoPpPcTpXFRTpwy8hs31rMgToXJpFdVJXTNP60m0BEhtV45icPadZJRk5dZScmBQMiAiTXkvbh20q4bePoby2MPkGoOp3IpaVgQET6RRceSrfbsNuhrDh7zK7govekh6aOVUJb5NJRMCATmq4Yp75Hnqmh4pgrosy2CmWJXFoKBmRMjMZJXFeMqeH2//4Bri5f3O85bMFSyDetmcG7Ry4oKBQZIwoGZNTFO4ljwGNfKWVpcQaBQIBAIIDf7+//d/TXfr+fx3e5qG70jcoVo2YYJqaBxMXocrXhXwc/AMEenAoKRcaCggEZdfGmfSFAAS2stlck/Tzv+q7FQ2w3tOy0AD+5ezZz5szhSENP/xo3BIsyfWNbZEMdzTBMXI88U8P7ta4k7hkZLBgGbNQygsioUZ0BGVXt7e18XN9KwLJFfcckkDmLL3/xy5imic1mwzTNQf/d/rszVJ7ojAkqHJ4WnnnmdVxWAZX+K/qvGwGqz3Tyl/9UzV/flE1xtocLFy7wy/0mgUA6ljqmTTg1ZzqSvGdkpRrLGlkHTxGJT8GAjFj41HvJzHSWZzfSUPMead61dDKd8AKXpgFlc3IpK0v+5Hvfp208/HQ1WAHAxDTAsgwW2o6Rm5vLobZFEYFAiIXFP71+vH8WotF3bX8gEBKwoOaMC6/Xi8PhGNkvQC6aL+kyyHG63mlOU2TUKBiQEYmeem92ezhANjlsZLZ5hguB6RjGxVUZC9Uzf/SpPfjSZ7B0bh7/5upZNNe5ee+99+gy8sCKV5vZoNvIDf7LMJjp9NHQTURXPgMLs7uZH/zgByxfvpzy8nIWLFiAqbq8l1SvN9kzepz32VA0IDJaFAzIiOx47ST+iG7KwYO1m3zcgTzu/lQuNU22i64yVl6SwxrHAW6+8WY2buybVSi9nvLycj78eTU9HgexJwqLaRkebrnxFpYvX86xJn8wcCE8ODH46zvX4G3J5tChQ1RWVpKTk0N5eTmrVq2isLBQSYeXwDCacEY+jmDtAxEZHQoGZNiq6t1Un060Xhs8ulectPjp1y9+Pb6q3k2ldx0VuyyWHq5h+9ZiVs7Pxm6343Rm0uKJfkRwOvm72y/vDz7KS4LJgvFLoM5hy5YtnDlzhkOHDnHw4EHeffddzPxSdrdcBhgELGjtcHGgzqWkw1G2eLYzqZ4IoeY2qmcvMja0m0CGLZkMcIfNYNejGy/qdUJLEf5AeM6Axebcj7B3neYd36fxkhbzuDynnRe/u25Er+n3+6mtreW/vtjIqY4MovMeVAhndFXVu/n2U9UMljrw8G0lLJzlVD17kTGkmQEZtkvVe/y53Q196/zBE3LACs47nDHLuOPTn2L36x3E23JWVpw14te02WyUlZXRbXQB3ojvqe/66IvownmmA1/AotdrYRjEdOFUECYydhQMyLCVFjpp7YiuIxBpNNrc1p3rinkNCwO3P4u3jtkw+r6O+L41OtPH8X5G9V0fG+UlOTrRi4wzpU7LsG3fWoxhDKzjRjMN+Oa2+Rf9OqWFzpjXCJ2Q6851xd1Zlue0jcr0cezPGMCyLL6yZfZFP7eIyERje/TRRx8d70HI5FKYn87a0lya2730egOUzMxkZl4aWLByfg6PfLF0VE7IswvSeb2yuW8GYCBx7M4rZ7Pvkwt4/QGidxKUznJyy4ZZF/3a4T9jd6+PDG8Tc83j7D0Bv9rTzIHadmYXpFOYn37RryUiMt6UQCgTWvT2vs3L8vnxq/VR2xoHLJubxU//YsWoj+O7T7zI3paivq8MDMA0VdJYRKYG5QzIhBa9nvzIMzUMFr42tPaO+hiq6t3sbSkmPFnRAgIBlTQWkalBOQMyqcRLKowwBvNcz+1u6PtXdNlj7S4QkalBwYBMKvGSCiOMQYnawU742l0gIlOBggGZVEJZ/vGMVYna0kJnwtdUFTwRmQoUDMikEmpetGxuZGEh0wgm9I3FyXn71uL+nQzhHr6tRFXwRGRK0G4CmbSidxqMZYnaS/laIiKXmoIBERGRFKdlAhERkRSnOgMiE0xoSaKmobNvq6RF2Zxstm8tVoEjERkTWiYQmUBCbZsDFhHFlVTxUETGkpYJRCaQUNvm6BDdInjbQAEkEZHRo2BAZAIZrMJiwFLFQxEZG8oZEBlH0VsWszJsNLu9ce8bat8sIjLaFAyIjJNQfoBlBa/6W9yuQVorWAQsA3ePj6p6t/IGRGRUaZlAZJyE8gNCywJW2J+J1Jzp5OGnq6mqd4/18EQkhSgYEBkn8fMDEnVhCt4e2mWgREIRGU0KBkTGyZwCGxAY9uOUSCgio005AyKXUChh8NjZTvzdbUA2pkHCHQTxKJFQREabggGRSyQ6YTAYCBiUFWfR1O5hZm4aR850Dpo1EOqeqNbJIjKaFAyIXCLRCYOhPICcTDs//foKIKwU8ZmO4PcNKC5IBwOaXB51TBSRMaFgQOQSiZcwGL3+X16Sw2P3ll3ikYlIqlMCocglUlroxIzaLKD1fxGZCBQMiFwi27cWYxj0BwRa/xeRiUJdC0Uuoejyw1r/F5GJQMGAiIhIitMygYiISIpTMCAiIpLiFAyIiIikOAUDIiIiKU7BgIiISIpTMCAiIpLiFAyIiIikOAUDIiIiKU7BgIiISIpTMCAiIpLiFAyIiIikOAUDIiIiKU7BgIiISIpTMCAiIpLiFAyIiIikOAUDIiIiKU7BgIiISIpTMCAiIpLiFAyIiIikOAUDIiIiKU7BgIiISIpTMCAiIpLi/i84dLnRem4wHQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde3zU9Z3o/9f3O5PJdTKBJAQCJpCAEBAEuWitVbAXxRZd22176tLt1svvVPfUymO79XR/PWf72HPOnl+721W7be1uL67WdrWut9UWFKuoFQ0XAQOGQBJIICEhgWQymWSu38/vj8lM5vKdC5AQMvN+Ph42ZOY73/nMNDOf9/fzeX/eH00ppRBCCCFEztKnugFCCCGEmFoSDAghhBA5ToIBIYQQIsdJMCCEEELkOAkGhBBCiBwnwYAQQgiR4yQYEEIIIXKcBANCCCFEjpNgQAghhMhxEgwIIYQQOU6CASGEECLHSTAghBBC5DgJBoQQQogcJ8GAEEIIkeMkGBBCCCFynAQDQgghRI6TYEAIIYTIcRIMCCGEEDlOggEhhBAix0kwIIQQQuQ4CQaEEEKIHCfBgBBCCJHjrFPdADH9NHW4eHJHN+29I9RVFbF5fTXLa+1T3SwhhBDnSVNKqaluhJg+mjpcbPllM4aC6L+cAqtOfp7G4rklEhwIIcQ0I9ME4pw8uaOboBEbCAB4AgbO0SC7Wp088ItmmjpcU9NAIYQQ50yCAXFOWrqG0x5jKHh0a+dFaI0QQoiJIMGAOEdaRke19oxMcjuEEEJMFAkGxDkJGJmlmBiSiiKEENOGrCYQGQmvIBjxBjM6viBP4kwhhJguJBgQaYVXECgFmV7vWy0SDFxKopeDVjpsoKBvyCdLQ4UQgAQDIgNP7uhGqVBiYCY0DRZXF09uo0TGooM5Q0G/yx+57+ywk73tTh66s0ECAiFymFy+ibTae0fOKRDQNfjyhurJbZTIWKpgLlwv4skd3Re/YUKIS4aMDIi06qqKODvsTBsQFOdbWHZZCV/eUM0VNXKVealIF8wZKnSMECJ3STAg0tq8vpq97c6kCQOOQiv/e/MiCQAuUemCOV0LHSOEyF0yTSDSWl5r56E7G2iYF5sHoGtg0ZFA4BK3eX01mhZdIUIRjux0LTS1I9M6QuQ22ZtAnJP4TYpkSmB6aOpw8cPnD3HirA+bGqWyooIhry7/HwohAAkGhMgZb7zxBo2NjSil+Na3voXFYpnqJgkhLhEyTSBEjvD5fASDQRYsWCCBgBAihiQQCpEDmjpc/PsHhZzyfIwTfQUs63BJXQEhRIRMEwiR5cJFhwxDodAiSYNSaEgIESbTBEJkuXDRITW2nkAKDQkh4kkwIESWMys6JIWGhBDRJBgQIos1dbjwBxJnAqXQkBAimgQDQmSpcK7AkCcwdst4UGAocHkCNHW4pqZxQohLigQDQmSpSK5AJAbQYu4/3OVmyy+bJSAQQkgwIES2SrdBkZJEQiHEGAkGhMhSdVVF6FrqYySRUAgBEgwIkbXCGxQl3W4SSSQUQoRIMCBElgrvNllV5CN6p8LwT012LBRCjJFyxEJkseW1dj456wiHTgzTqS7HaZRQkF+AxWJhcXWx7FgohAAkGBAi67lcLhyak2tKDuFwOLj77rvRtDTJBEKInCLTBEJkObfbHfn5kY98RAIBIUQCCQaEyGKGYRAIhIoO2e12GhoaprhFQohLkQQDQmSxkZHxZYPXXHMNFotlClsjhLhUSc6AEFmqqcPFz7a10xLYQInm4jOVi6e6SUKIS5SmlEpRo0wIMR2F9yUwDIVCQ0Oh6xoP3dnA8lpZPSCEiCXTBEJkoci+BGP7ESg0KT0shEhKggEhspDZvgRSelgIkYzkDAiRheqqijg77IwJCKT0sEimqcPFo1s7ae0JBYsL5xRx7801MqWUQ2RkQIgstHl9uMSwAYQCASk9LMy82NjL/T9vprnLjT+o8AcVzSfd3P/zZl5s7J3q5omLRIIBIbLQ8lo7d671U66fpdyex5p6Bw/f1SClh0WMpg4XD7/ckfT+h1/uoKnDdRFbJKaKTBMIkaWCA218drGVO+64ZaqbIi5BTR0uvv3EkbTHPbmjm+99RZalZjsZGRAiC/n9fjo7O6mrq5vqpohLUHjpqdsXTHtsS7f7IrRITDUJBoTIQh0dHQSDQerr66e6KeIS9OSObgwjw4OlEk1OkGBAiCzU1taG3W6noqJiqpsiLkHNJ12Z9/GaRAO5QIIBIbJQe3s79fX1skOhSDAwMIDH4yHTS/7F1SWT2yBxSZBgQIgs43K5OH36tOQLiARDQ0M88cQThGLEzAJFWY6aGyQYECLLtLe3A0gwIGK43W6eeOIJ3G43xcpJJiMDW26tleWoOUKWFgqRZdra2pg9ezbFxcVT3RQxxZo6XDy5o5u2HjdWXz/VQYPyPMXmG2bzk7eDKEVC2WqrDovmFHPfLTUSCOQQCQaEyCJKKdrb21m5cuVUN0VMsfDywfEOv5TTXM3ffXYu162Yx6JFoUChvXeEuqoivryhWjr/HCbBgBBZpLe3F7fbLVMEIrJz5fiVv46mwUv73Fy3IlSlUooJiTDJGRAii7S3t2O1WqmpqZnqpogpJjtXinMhwYAQWaStrY3a2lqsVhn0y3V1VUXocQsGZOdKkYx8Y5yncGJOeL5t8/pq2e5TTKlwCeIbb7xR/j4Fm9dXs7fdiU5oREB2rhSpaEopKS+VofAXbEu3G+dIAI3Q4pzwh+yhOxvkC1dMmba2Np588kk23PYX/N3zvZH5Yvn7zF3xQaEkCYpkJBjIQFOHi0e3dtLclXzDDk2DtfUOScgRU2b79u188MEH9FZ8mr1tQzHzxboGa+TvUwiRhEwTpBFenhNMs6mHUnDoxDAPPt4iQ7NiSrS1tVFXV8d7R0clcUwIcU4kgTCN8PKc9BRub4A9bU76XX72tDnZ8stmmjpck91EIRgeHqa3t5f6+nrqqorQ4qrLSeKYECIVCQbSMFueYy6Uths+1lCh0YInd3RPWtuECHttVysHAmv4u60BzrpGUSjCexRJ4pgQIh2ZJkijrqqIfpczgyMV8Rt/yNCsmGxNHS4e3dZJ80kvUAHDAc4Mh/4WC/N08iwai+eWSOKYECIlGRlIY/P6TK6mzIcOZGhWTKZwPkvzSTehQDQcjIb+PeIzGPYG2bxeAgEhRGoSDKSxvNZOw9x0G75EfxFH3SpDs2ISZZLPIlNVQohMSDCQgXs31mDRiczBZsKqw0N3LpErMjFpMslnkakqIUQmJBjIwPJaOw/d2cDaegeOQguQOjDQUNiNPva8/iw9PT0XqZUi15iVm40nU1VCiExI0aHzEF3Vq9Jho2WsGFF0tbdv3ezg6PuvcebMGVavXs2GDRsoKpIvZTFxmjpcPPCLZgxlEIrrwx/lUIQQ/lt8+K4GGaESQqQkwcAESFbyMxgMsnv3bnbs2IGu62zYsIH8ysv59Zs9UphoEuVSXf4f/PqPbDusCGDDio+6ogEc1ZdzrHdUys8KITImwcBF4Ha7+cMf/sCO94+xP3gNmqZJzfhJEs6wz4W6/E0dLr7x8w9RoR0yAANd03n4rux7rUKIySU5AxdBcXExt956K8Hq9YAUJppM4Qz7XHiPH3utIyoQIPIzG1+rEGJySTBwEXUPGigpTDSpzDLss/U9bjvlJv4jnK2vVQgxuSQYuIjMsr8l23ti5dJ7XKINA7E7aGXraxVCTC4JBi6izeur0TQinZXUjJ948e+xNlajP9ve48YPe3B5AoRWDoSGQuTvSQhxviSB8CJLtvJATJzwe3zw+Blm2Dz89z9bm1XvcWhJ4YcYKpwvENqLoGFuMffdUpNVr1UIcXFIMCCy1nvvvcdrr73Ggw8+SF5eXspjp9NyxAcfb2F362BM/omuwZp6B9/7yuIpbJkQYrqSXQtF1qqvr+eVV16hs7OT+vr6pMfFL0c8O+xkb7szYTlieIfA1lOhBL2Fs4u4d2PNRQ8a2nrckogqhJhQkjMgslZFRQV2u522traUx2WyHDFc7a/5pBt/UOEPKpq73Dzwi2aaOlyT+TISlBcGyDRxsKnDxYOPt/D57+/jwcdbLnpbhRDTg4wMiKylaRp1dXW0t7enPC7ZcsS2Xndk+mDfsSHTTYGMsaBh8/rqizbNsDC/g6NchiJUhjhZ4mCmIx5CCCEjAyKr1dXV0dvby/DwcPJjTDf8MQiOnOWBXzSzp82JP5g8taal282WX4aO63f52dPmZMsvJ2fEwO12M9rbzEpLIwvKAlTY81hT7zDdfyCXCjAJIS6MjAyIrFZXVwdAe3s7K1asMD1m8/pq9rY7QwV91diOlIqxstHhTYBSGOtkoztdnVCnO9EJfS0tLSilcGiD/P1frqGgoCDpsblUgEkIcWFkZEBktZKSEvSyOv7plcGk8+bhLarX1DuosOextt7B1z6q4w7kkfojokIjCpq6aJ3u+++/D8CiRYtSBgIQGvHQiG2YFCUSQpiRkQGR1Zo6XLzRf/lYl+hPOm++vNaecBX/avO7tJ2NHxmI7VwvqyigyGbBNeqOCQgmo9MdHR2lq6sLgJtuuint8Tcts7K7VY2VJdKkKJEQIikJBkRWe3JHN5qmoc5jCP8bty/j/l80Ey7qEyv0e0efB00L/aZrsTslnm+nm6zmQXhUoKKigvLy8pTnGBkZ4cDb/8knZ89moHgVx06bb2k8neorCCEmjwQDIqtdyLz58vmlLJlbzOEud9StCZmGKAVL5hVTmAcHj51h4ZwS7v30ovOqBJhqBcC7774LwM0335zyHEopXnjhBfx+P/fdeQsOh+Ocn0sCAiFyi+QMiKx2oRsX9Q/5MQsA4vU5ffzjV5dyfcHbfHmV77xLAputADAM+H+fbGG7cx1NxjpGLJUpz/HOO+9w9OhRbr/99qSBAMCvdnSFzi+rDYTIeRIMiKwW3rhIO8/NfMyXHZofp2kaZWVlDA4Onnd7zUYyFODyBPFRwFljJlseO5x02WJHRwevv/461113HYsWLUr6PKOjo3zYcZb4YuSy2kCI3CTTBCKrhVcK/Mvvj3K0e5ilNTO461PzM75yj192OJ5AGI4QQvkELd3DPPh4C7Nssy8oGKirKuLssNOkwJE29mxa5Oo9PufB7Xbz7LPPUlNTw4YNG5I+x7Fjx3jhhRcoCC5hRCuPCQhktYGIF84raekaBkIJMouriyW/JMvIyIDIestr7fzjV5dyrfUN/nx14JyG8OOXHdbO1CnEhUaQ8ZLACudIkN2tTn7XOY+jPb7zbuvm9dUoFPGrFqKZXb0bhsHzzz+PYRh87nOfQ9cTP9qBQIBXX32VJ554gpkzZ/LNL65Ely21RQovNvZy/8+b2dXqxDkaxDkawDkSYFerk/t/3syLjb1T3UQxQWRkQOSEgoICqqqq6OzsZNWqVef02Ohlh00dLn74/EGOnwkQwDZ2RPiqPeTAQCVKKTQtg/kFk+f6xKw2Wkbm4gzacY74Y54DQh12+Oo9fNXWfGIAq3cG//WWtdjticHO6dOnee655+jr6+OTn/wkH/nIR9A0jYfuLJEttYWppg4XD7/ckfKYh1/uoG52kYwQZAEJBkTOqKmpSbtpUSrj2fcWDCwkW3LoMooZHR2lqOjch9s9Hg+Bs63810/M58c7BnFSRPwAnlKhq/cXG3ujvqx1NCr4h21OPHovOw8P0t47woKqQlbPcnJ073ZmzpzJPffcw+zZsyPnMquvIATAD144ltFxj27t5CdfWzbJrRGTTYIBkTNqa2vZvXs3w8PDlJSUnPPj4zP9k60ysOJncHDwvIKBzs5OlFK89957nPGsxWwmz1FkQSnGAoHxgEShYRih28M1D864fOxpVdyx/Bq+cvsN5OXlnXObRG7q6PdkdFxrjyScZgMJBkTOqKmpAUIZ98uWxV7JpCu+09ThSrpzYTwv+QwMDFBdfe5z73v27AFCtQJsagQvNuKDjuoZBfxqRxdmIxNq7H8NNR4g6JrG0dHLJBAQQiQlwYDIGXa7nRkzZtDZ2RkTDKQrvhO+P2ikOHmUIHn8zfPDLNnTknHGtVKKHTt2cPToUVxaOXsHF+GizPTY5i43Gsk2UEoMEGS5oDgfY/t1pbVwjqw+yQYSDIicUltbS2dnZ8xtZoV+oksWh+9PZJYzEDLk1djTlryiX1OHi0e3ddJ6agRQlOV5mOf/AChjf2ANoR0FkicgqshXtRZzq1m7ZLmgOB81lQV09KWfKrhvY81FaI2YbBIMiJxSU1PD/v378Xg8kV3/0pUsNrs/JNzpRv+EcEdsjK0QfHRrJ/durIlMQ1SW2jjc7Y4JMPqC+fRxNXacY49PtxIh/Hyxz/3Jhnxeb/FFghtZLijO11/dtoD7f96c8pgtt9bK6pMsIcGAyCnhvIETJ07gsc3myR3dOEcCCcdFL98zKwSka1Ce78PrNxgKFpJYjGhcc5ebB34R+lI1FPS7/CRe1Yf+HZoayHRJooZGkHw9wOVzS7nn5jquqLGzKS7/QZYLivOxvNbOA5+pTbq8cMuttdy6tuoit0pMFgkGRE6ZOXMmxcXFvNPUxZMHBuJWB4RohIr037QslHCXWIXQQCmdfm8BShnEjgqYTx0kqyhoflvy6YdYiitrS3jo7uUxt8pyQTFRbru6irrZRVFTWrBwdhH33VIjAWaW0ZQynw0VIls988wzvHB0Jj0ee0InnWfRuHK+nfKRfeSNdnPPPfdQWloaU5LV4/XiM3RUXAJfKCTItCNPJ5PzKLZsms+t65JfnckWxUKITEgwIHJOY2Mjf/uyFy8FCfdV2PN45lurGB4e5mc/+xnFxcV89atfJS8vL2HVgblk0wXJkv1Sdfjpj9HH6sR3n/UQXzceiGlvOH9AtigWQsSTvQlEzqmpqaEIl8luhAazSkLrB0tKSvjSl75Ef38///mf/4lSyqToUCqZHJRJkqBZABHVYhXKSYiuG7+7zcmWXzbz6NbOhFUSskWxEMKM5AyIrBc/VP6RJaUENRuGGr9a1zVQSqPg9DscOGDlyiuvZPbs2fzJn/wJzzzzDJWVlbT3Jk4rJDJb8kcGv2cis8coFWrBke7hSPGhMKk5IIQwI9MEIqvFD+1rGmNL+mI77NrKAopsFjpPD2Hzn+VL183i8zetBWDHjh28+eabHHd8muNnMqw8NCkymVoYpxEcq0cwPgCoa7Cm3iEJhkKIGDJNILJa/ND+eOgbtQsg0NHnoaXbjdtvYZAKHv1jkH//3U4AbrjhBpYuXcrpM84Mn/Vc4+v445M/PvPxBEWpPoyu6bJFsRAiLQkGRFZLXjBoXPjuSMAwNlf/zHsD7NixA4CFV32cETLd3Ci+kKvCvIOPLhoU35rY42cW+Flr28NfrPZiwZ9wf/xjNeBbn1/Kw3c1sKbeQYU9jzX1Dh6+q0GWhAkhEkjOgMhqZgWDMlm2p9AI5Ffw5pvb8Hq9vHhsXpLHJDtXfEBgtrrA7HYNHT86BkFslBbm8ZkVNrr2Pkt5eTn79+8D1qRoR+i8f3nzPK69Yi6ATAkIIdKSkQGR1Tavr0bTiAyVaxqEOs3w3L/5sIGuQcNlZWzcuJFX3j1Mc9dwkmdItZ2LRuKKgPj74imKGeY66+t8/zYLD31pBr0HXgSgvd9gf/BqglhNHqtFfuqaxq7WZO0VQohEMjIgskayAjsP3dkQc/u1DWW8vOsUrb3eJGdSKKVYXeVk3bp1PLZLg95UiYMTUWQo6myhiIXf/e53MbcfD9aTyb4FsmJAiMzEf2dcu6SMnYcHc7JIlwQDIiuk24Y4fqh8Z/Mg9PqSnE3jjuUumhvfYbvFSf9IBeCf9NcQfm4vhTG3OBwOXC4XvryZKH/6wEN2KRQivfjvjH6Xk12t40nCZ4aT7zqajWSaQGQFs22IlYLHXz9henyqK2eNIDZPN9dddx07d+6kiKFzbM2FrNZVBJTOzsAGPgiuYcQ6C4/Hw4IFC7D5z2Z0blkxIER65kXExn9RCoIGPLqtM+Gx2UhGBkRWSLYNcVN7P4888ghz5sxh9uzZzJ49mzlz5lBXVUS/y2ypoKKQEQ4cc/JiawVe6yfRXcNAAelLB6fKH0j1OGLOHcRKkDzOKhu7PeVcX9ZMW1sbi4tm895IRcqz5Vk0/unOJbJiQIg0zFcamew6etJNU4cr60cHJBgQWSHZNsN1swpZsmgJPT09vPvuu3g8HgAs+XPQuHKsK479AhihhPcDoYJD+HWgNIMWJKs8mIrZioLof+soFB8MzmJdcS94e7AzmHSbY12DVQtKJRAQIgPmK43MPbmjO+tX5UgwILJC/DbD4QI7f3nr+FWyUorBwUF6enro6emhsr2b3x+fRSAmOz+6Uw/fpmNeEyDa+exWmMlIgsYAFexyL2e+pY3bVlj4TZMWao2KPkqmB0T2i949NBAEbyCIAgrydKwWPbJJV7qr+KYOFy5PYKwkOaQL5nMhIVeCAZHgxcZefrb9BG5vbAZ9QZ7G126q4bark2+ZO5Uun1NMa88IFmDhnCLu2zi+53riSoM1bNlgZ+f399Hvik8OTFU3wOwL40K2LU43ohC6b5AKDhiVfHVdA+vWha5UWrrdY3crFleX8OUN1TIqILJWOOEvaLKwJ/RdZbC7LX3SX3TiYOznGsw+i7mSkCvBgIjxv54+yusHB0zv8/gVD7/cAXBJBQTxWcG6Bke63ZEr51QrDc6tKFH8F8f5BACx5w6dMTogML9SUWhojA9XZvuQpRAQOxLg9gZNA4Fo4U26Ug3rJyYOamgoFs0pxKJbaO5yR47NpRLesppARLzY2Js0EIj201fMM/SnitlKAsNQ/PD5gxw7down3jiZdCvfP71mJqG9uqKLEKXq5JMFCZka7/BD/0pVqlh2HBS5KxzE72514hwNEshwj7B0nxOzxEGFxtnhID/52jJ+eHcD6xbmXglvGRkQET979WRGx3n8U7lzX6JkH+4TZ/088cQTfBDYgEFBzP2GgqbjA6gTf8CuLcJNKUGVLhAInTnkQgoNhcIACz4KGcGFg/G4PFQdMY8AfqzE7ziYC8OVQsB4kH8+C3VTfU6SJhuPPcasLkkukJEBEeH2Bae6CeelrqooUm44TNdgRf0s7rvvPuqqCtFMdgYcDWjs9q7GpUoJKi1ye/xxiZsHTUTFQY0A1rGVAfEfQx1d12XHQZHTMtlkLJlUn5OEEuUo+WwhwYCIMrFFdS+e+A93uOP88w1zqays5L5NS8bm5aON/z5+n1lAEL4tGPd7tGRD/akoQh+/xBUFGrCibqbsOChymlmQn4mGecUpPyfhEuVr6h2UFWqU0c+3PzMz5z9bMk0gImoqC+jo80x1M86Z2f4D8Zn1Fh2T5KNM5/81ksfN5ztaEF9bIDpZED7aMCNnhyuFgPHlwlqGUwXhC4L7NtakPTb82VJK8eMf/5gzx9ywduGFN3oa05RS5zkQI7JNU4eL+3/enPa4KoeNp7658iK06MKlWo5k3pFnelv0fRO8URGwdqFDAgGR86JXE4BGQCncnsTpzOICC8vmnd/y2t27d7N161a+/vWvM2PGjAlq+fQjwYCI8WJjb2T5YDL/fM/0Ga5+8PEW9rSZVRlL18GH7zNIv1PgxAcEFfY8nvnWqgk9pxDZIL5myIXW1/D5fDz00EOsXLmSm266aQJbOr1IMCASNHW4eHRbJy0n3URfUFeV2fjO5+unTSAA8HnTokKQLhiw4sOCwm5xc9aYiaEmtrNPRdNgbb2MDAhxsTz27Bv87gMPFFdRX2VexTDZFunZQoIBkdXMRgY0FFaLjj+Y/E/fhodrrW8A0Bi4jlFKmJwUS/NRhek0+iLEdNbU4eKBXzRjKAPQIwnI0VUMzQqbxR8z3UkCochqZnsWKKUoUoMMaQ7MQ2FFMa7Ib1YCk9jCxEDAUWSRQECIi+TJHd1j/wolCRsKNKX43m9287GZRxkdHeWPA4sJGjNijtExr3Q4XUcQJBgQWS1+pUFlqQ1DGXT0GigjeqogthzwLMvp0D2ahpdCUu8dQIr7449NfZyuweLqkgzOJYSYCEkrEnpsVFZW4nA4eOPdEvCmrwgaHkEwjNCnvd/lZFerkwc+U3tJlXA3I8GAyHrLa+1sXl/No9s6aT4ZrjtuJdyR6wQxIjsThgKCI8EGiixDOBikGBc+bMQuL1RYdY35lfm09nrJPIkw+XFSWEiIi898fxKDAsNJU1MTBbMWE1DmV/ajXoP7/uUQfU4f82cVcGZolKCR+Bl/+OUO6mYXXdIjBJIzILJeZssLIfYDbGDHiZUAwzjwY4saNwj9b0X+KMN+K5rhYRR71DkSRwt0DdbUO1Ao9rYNJVyJ5Fk0Vi0olZ0HhbjIzPIBlFKstLzHsLJz1Fg2dmT8CGL8Zz31yqN1l/hyYRkZEFkvXOPcXLIthPWxUsGhSoGaFtrcyFFoobLUSmvvKP3eAkKjBaFRBjtOfBQyv3oGR0+NArHJRl/eUI1S8H77UEwOg6bBP925RIIAIaaAWdGyO66v4u23+3j2aOXYUdFVSlXc72Hh0UXz0b9LfZMxCQZE1ktf49wsIAj/PlYVcKzjXjw3NJ+v9XqiyhjrgIGVAM/97bVYrdaUa6HTVUsUQlxcZtU+f/3WQsBJYsd+rruahlzqm4xJMCCynvmcoJlQAKBrmNYViE4YStzrQIeiKqzW0EcqVSlhKTMsxKXvWO8oE1l19FLPBZKNikTWC29klFpoFCC8KVDD3GLTnRDrqoqYN9MKGHGPViyqlqt7IbJFXVWRyfdG8isKXRv/L/5xW26tveRH/2RkQGS98JzgN37enHLDkzyLFikBHE4qCs/thzp/nc3r5/D000+jsRw1dhsodF275CN/IUTmwjVKDBjLOUpMDK6tKKCowEKf0xeZ8lOKaTkNKKsJRM64718ORS0tTNQwt5iffG1Z5Pfoef9C5eQyjrB28SwOHDiAU5VxPLgQN3ZW1M/iKzfOnRYfeCFE5sLfAfuODeEPhlcLhIRXCGXLlJ8EAyJnjJcdDd8yPvena/DI3clLADudTn70ox8RCATQNI3wx+bee+9l1qxZk994IcSUSbbHSTZtKCY5A6BDWE0AACAASURBVCJnLK+18/BdDaxb6KAkH6z4KLGF1v+mCgQAjp+F932r2BnYwH7/apyqjPXr10sgIEQOqKsqSsghAgOLt4+dO3cyMnJpLxvMhIwMiJzj9/v5yU9+QkVFBXfccQdamuzCpg4X3/j5h6ixmgNgoKHxyN1LL+mKYkKIiWFWmAjgswtPM9C5H4CGhgZWr15NbW0tBzuHM96f4FLZy0CCAZFz3nrrLd58803uvfdeKioq0h7/lz/Zy4en/EQPpGko1i4sy5r5QiFEaslqh4yMjHDgwAH27t3LmTNnUPZa3h5sALSUOxw2dbh4dGsnzV3jeUxTuRuiBAMipwwNDfGjH/2INWvW8KlPfSrt8V6vl9v+dyNeChLum1li4dkHV09GM4UQ04xSio6ODv72tx10uvKJ38tkVt4g15e3YrVaORsoZXtP3dj6hNiRyalKTJSlhSKnbN++HZvNxvXXX5/R8b/61a8oYg5ek42KitQQSqm00wxCiOynaRrz589nhAEgPtlQY9BfSH9/PwAHAvOiph1jme2GeDFIAqHIGZ2dnRw8eJCPf/zjFBQkXunHa2xspKuri/mW1pjtR0KFRTQqPR/Q3Nw8qW0WQkwvZsmGugYrF1bxne98hy1btkBxFcm633Bxs4tNggGREwzDYOvWrVRXV7Ny5cq0xzudTrZt2waAQxvkTxefZe1CR6RC4SN3N7BuSRVbt27F4/FMdvOFENNEuOJpOCCI3qjMYrFQWlrKojl2k9UJIVO1jblME4icsG/fPnp6erjzzjszGtZ//PHHI/+urKzkvs23JBxzmWMjP/7xj3n99de55ZbE+4UQucdsF8T4KoTh6objFU5DGuYVc9/GmikpYCYJhCLrjY6O8qMf/YiFCxdy++23pz1++/bt7Ny5EwCbzcY3v/lN8vLyTI999913efXVV7n77ruZO3fuhLZbCJG9Uu1sOhUkGBBZb9u2bbz//vt8/etfx25P/WHr7e3lpz/9KRBKCLr33nuprKxMerxhGPzsZz8D4J577kHXZeZNCDH9yDeXyGp9fX3s2rWL66+/Pm0gYBgGjz32WOT3z372sykDAQBd19m0aRO9vb00NjZOSJuFEOJik2BAZC2lFNu2baOsrIxrrrkm7fHPPfccXq8XgLVr13LFFVdk9DzV1dWsXbuWN954g8HBwQtqsxBCTAUJBkTWamlpob29nZtuugmrNXWubFtbG4cOHQJg9uzZ55wQeOONN1JQUMDWrVuRmTchxHQjwYDISoFAgFdeeYX6+nouv/zytMf++te/BkIJg3ffffc5P19+fj4bN27kyJEjHD58+LzaLIQQU0WCAZGV3n33XYaGhrj55pvTLiX8+c9/HrMlscViOa/nXLJkCZdffjlbt26NTDcIIcR0IMGAyDpDQ0O8/fbbrFu3Lu1GRI2NjfT29gLwxS9+kbKysvN+Xk3TuOWWW/B4PLz++uvnfR5xfpo6XDz4eAuf//4+Hny8haYO11Q3SYhpQ4oOiazz2muvYbPZuOGGG0zvD6/vbetxYwz3M99SxifWLWLJkiUX/NwOh4P169ezfft2VqxYIbUHLpL4LWbPDjvZ2+6ckt3fhJiOJBgQWaWzs5OmpiY2bdpkuv9AfKcB5QwGK/jqsqUT1oZrrrmGP+xu45uPfUjAdnpK9yjPNsn2fn9yR3fU/6dje84DT+7olm2mhciATBOIrGEYBtu2bWPOnDmsWrXK9Jj4TgN0NE3jyR3dE9aOQyfc7DizmB6vnX6Xnz1tTrb8slmGrS9QOJDb0+aMfV+PD9Fy0hlT1hWmbvc3IaYjCQZE1ti/fz+nTp1i48aNMUmDSinOnDnDu+++S1N736R3GuOBhR45v1JMaMCRi8yu/pWC//vrXRieASBxSWelw3ZxGynENCXTBGLaa+pw8fjrJzh4zE1VyXoGgw6Kz57l+PHjtLe309bWFtlZsMBYwyjlRMfBE71laHvvyKQFHMmGybNdMBhMevU/6C9gdmURrr5A4gOl5IMQGZFgQExrTR0uHvhFM4ZSQD6dLsX9v2hmleU9HNogmqahlKK8vJyrrrqKkTcOsNtTDigUWsz2ohOlrqqIs8OxHZeGuuCAIxeT5EZGRtizZw+7d+9G9yxBowLF+KiPpsGy+eUc6TKfgukb8l2spgoxrUkwIKa1R7d2jnW64Q5CAxStwSV8vOIwV155JcuXL6e8vJzHH3+cosBp1tj2Qs3HOdY7Oim7hcVvT6qhAMW66uHzOl94NGDfsSGCxvjt2Zwkd/r0aRobG/nggw8AuOKKK5gZKOJX+8MRlja2H7zC1vs2Vu/chEBhokd8hMhmEgyIaa21x2zoXWNUn8H9998fyR149913OX78OADf/m93MGPGjElrU/x+5peV56GdeJ0P33Ny/cqatJsfRUtc/RArm5LklFK0tbXx3nvv0dbWRklJCddddx1lZWW89dZbDAwM8IWGdRx2z6W9101+YIBarZV1S2q4pe5K/vY/xnMKJmPER4hsJlsYi2ntk3+7i4CReHueRePV764F4NSpU/zrv/4rENpD4GMf+9jFbCIAb7/9Nq+//jplZWXce++92GyZJbY9+HgLe9oS58rDdA0Wzy3GXmCdsjyCc8ljMDt2SXUBBw4coLGxkba+AD15yxihlJqKfOYZhxk9fZi6ujquu+462tra2L17N4ZhsGrVKj760Y/icDhMzz3V+8MLMZ1IMCCmrUAgwBf+z5sMBEqA6JLDilklMH92GW29I6jhbmr1VhZV2fja176Wtjzx+UjXIRqGwaOPPkp/fz/Lly/n9ttvz6gdn//+PvpdftP79LiHR18RX6w8gvDIRTizP6w438Kyy0pi3of4UY7QhI4iDz92zcmyORrvnKqIvBYw0ND4bzfkUeDrYd++fei6zpo1a/jIRz5CSUnJpL8+IXKFBANi2gl3vM0nBsE7yLA2g9i/4tAcvYY2NodsoAF//6Varlk6Z0Lb0N47QqXDRkuXG0jdIUePUGzatImrrroq5XnrqorodXrp6PMkHKcRZFGljsVWQku3O2bkQNdgTb3DNI8gfP6WrmFAAw0WVxebXs1ncsX/4OMt7G5zYvYtommhtoTfB/NRDkV4/j90e+j38depmKH1s674IFdffTVXX301hYWFiU8mhLgglu9+97vfnepGCJGp8NVl91kv3oCGnwI0TWPJvGJQcEWNnaI8xVl3kOikQg2NIY/GJ1em3qsgEy829vK3T7XSddbLiM+gf8g/Fn6EhLuz/iF/zPPZ7Xa8Xi9dXV20trZy+eWXx1zdRr82t9fg1ICXQbfJcjlgZt4In18ywLtdJbi9sfMkCvD6Db7w0djAJ3z+rjNePAGFN2Dg9Rt0D3h5dX8/q+pKqSrLT9qWV+KOAfiXV08w4jWZpwm3RcHO5kGW1ZTw/Hs9jPjij9UibY4PBML3+7QizuYv4kxgJr6gxmN/6OJfXz3B3tYhZs/Ij2mPEOL8SNEhMa3EF54JZ4/bC6w8861VfO8rixkYSexUFBO3zv/hlzvSHmcoONI1hGHEdn4bNmygpKQEi8XCM888E6l/AOZFdZIZDBRz6ISbuqqihOkCsyz6pg4X/+PXRwkaiUvvw88ZXRQpWYGf6GOUUtj1YdIt5neOBnjgF814R5xpjjWfNgkqjTOuALvbnDz8cge7W51S2VGICTblwYDsNCbORSYFfRZUFRLf6UzUMrNMqwhqKLTR0zzyyCPs2LGDoaEhAGw2G5/+9Kfx+XwMDQ3x0ksvRbZPNnttyRgKtvcs4NoljshwfOR547Low1f5zlHzUQYIdfQt3e7I75m8z3v27GHG8PvhM6Rpr4GPApJ1+JlQY9MI4WeSyo5CTJwpXVr4YmNvzFVWv8vJrlYnjiJrZB4TyMmKa8LcrBKDfpdBqgqCNRxlD5Vj3YY+ocvMko8ujK9/D3fI93xqAYEBg507d/LWW29x+eWXs3r1ahYtWkRDQwPt7e18+OGH7Nq1i6uvvtq0WFFyGgrFmwf7I8sYDx4/wwybh//+Z2tjsujDV/lpRR1TU2Gj3+UjuvOOfp87OjrYtm0bS+fNYfjEIY4ayxgf5jcb7tfxZRrppBR73mxaWinEVJqyYCDVcKtzJMCuVie7W52EE65zpeKaSK6vr4/iM++hsXqso0+sIPjhhx9y5vj7rLTMoK9gOR69bEKXmdVVFXHG5Yy7Dg79ZmcQv1ZEocVPIBDg4Ve8VBQW8ydXfYLLygwOHDjAb37zGxwOB0uXLsUwDGbNmsWrr76K21KByxNIqFoIij+7poSnd4/iD8Z3pjr7j4/w5I5uNq+vZrDzNO+8s4ul89bHHJXxiIM2flCN1so+qtA0LWHdvtPp5Le//S0Oh4Ouri6WOOw43LvpybuCHreFIHlj70h0x21gxU+APDIbkIxucPLRBCksJMTEmLJg4NFtnWmPUaixK5rQl4ExlqX1P359lP/1Z4skIMghHo+Hp556isoCDyuDjQza1+AKFsV09AMDAzz33HMAVOa7+e59qyktLZ3QdoSrCxoxc+8a931qNg0zinmnqYunPyyLjEp0jxo8+o7BVXl7WLu4kpUrV9LT08NrjUdp81/JcLedIouP11/sR49barh4bjGXW49w+oMWGqo/zcGTnoRMfIXGnrZQkPzgLVV4vV76+vo47SmKjKj5AgaJV+vxWfuwuDqUzPjhhx8y2LmfBz5+O+905Mes2188p4DHHnsMwzAYGBjAZrPRM1LAscB8hnxWdE1DqQBB8sbGLsZXcyzQj9JqLEURHtkxaxPk4aOEIRbN9LFnYC4wthRRC00LhMcepLCQEBNnyoKB1lOZDO2ZXxE4RwNs+WWzjBDkCKUUzz33HG53aE7boQ3yN19ZTEXFeKZ+IBDgN7/5DcFgEICbb755wgMBSKwuGD/q8Ku9eWiaE6XCf7s6CkW7fwH2w3s4fPgwbr2CPb41odeGhi8YyoaPXx5YWpjHX37pM/zjv47S2X0aQ0W/nvGONFyW+NXmIHZN4+0DJ/jpO0bMen4Y70THw5hQpxzdqY6MjPD73/+ehoYGNt2wnFvjdn98/vnn6e3txTAMNE2j31fCvsBVY53+WG8dqSAAeXgpYYj5llYsFgslPifDlALG2GNUTMuW5R/hT66Zw9VXX4/dbk9Y3nhtQxk7mwelsJAQE2walCM2m38cTxzKtprsItGOHTs4evQoV199NY2NjVRUVMQEAgC///3v6e/vR9M06uvrWbly5aS1Z3mtPenfnfmQvAbFs/nspz/LH3a38c6xirhh9MS/b0NBW+8ILae8/OH0orGNmMISPxOGgqOnRtlYVcXLB0ZQqiBqxUWITQ8QNIJjT2lBqdCVu6ZpFOTpfOfXR3FYXMwJlPC1W26JKYrU1OHin184REd/BcVcxXxLKw4G6bYsQQXMXktoRMCuDXHHlR56RxfxHy0zx9qiEwpEFHaceCmkosDPX3yihk+s2xzzvGbv9W3rqhLeLyHEhZmyYGDh7CKau9zpDwSSfflJ4lD2a25u5q233mLDhg0cOHAATdMSOvp9+/axb98+APLy8ti0adOkVBnMhHkSoIE20ser73n4/YnLSL4qP/Yx/uE+Hvw3L4bSif37TzJiNhJAW7CA3m7dNCAxjOD4fL6KGqY3GKtVYOCkgJPaVRw7o1g+VgJhfGdIgAJ82BgIVlBmcTHotSdtD+icVRX8en8/ASxRgUD4p6KkpIT/2LI2oTxzrm7VLMRUmbJg4N6NNVFfMOY0FAv1Q3SoxfhUXsx9kjiU/fr6+njhhRdoaGhg1qxZnD17FgjtYBd26tQpfve730V+37hx46RMD2Tq2iVl7Gp1Rn7XAE3T+S8freSFvS4MFbsSwlyokx5SpRA4t6BmX/9MCo1efFplQn6BgR7XIZudW8NQir/+ZVMoeVfT8AXDwUVsRz4YDAcC5qN34dsHKB+7P7Gg0KnhPFpOeVleOx4M5OJWzUJMtSmrM7C81s7DdzWwbqGD4nxL3L2hTMHVZSf4xheu5h/uvAKLPr6WWhKHsp/H4+Hpp5/G4XBw22238c4771BQUEBNTU1kY5rR0VF++9vfYrFYItMDV1555ZS1uanDxT//voPoQQkFfOMztXz+pnX4rDPJJBCw4qMIF+YdaGrH+gNU6L1RpX3HBbFm8PwAGl7DgidoxRPQMZR5R26WjRD9Osbv16NuSxRfJyCTgkdCiIk1pUWHwvOByy4riauipqFrGlrFFSxbtowV8x08dGcDa+odVNjzWFPv4OG7GiRxKEuFE9WGh4f54he/SG9vLydPnsTr9UZGBZRSvPDCC7jdbnw+H1arlVtvvXXKpgdgvBOLnt7XNXineRBINZIVndAHhXqQEZINv6daI6jwBrW4Nf9hWuSY9KIfm+n7GTrOqsf+nvj8ieKn+452u9IWPBJCTKxLIoEwWbWzY72jkd9TJW2J7LJjxw6OHDnCHXfcQXl5Oa+++iolJSW43W6WLl0KwB//+EeOHDlCXl5o+uiWW26Z0ukBSP53fKjjDO+88w4bFpWzq9XskaErawtBglhxGYUk7zxTdc6phuzTPfZ8jkuklMJCYGwUIn7Z4HhhprDo6b7h4WFee+01GMlDoyJSajr+OCHExLskggGzpCv58Oemw4cP89Zbb3HjjTeyaNEiTp8+zZEjR5g5cyazZ8+muLiY9vZ23njjDaqqqujt7WXBggVTOj0QZvZ3rKFwWEd5661d9HmLsLAmoaPUxpbhJXag5yPV41MFChMjVBfJ7HVoFOdb8PhjlzwaY2WQ/59HGilz7aXCNsyGFRt47oPoKg4yLSjEZLskgoFwIRed2C1g5cN/8U1lFndfXx/PP/88DQ0NXHfddQDs3LmTkpISzp49y/XXX4/T6eTZZ59lzpw5dHd3Y7Vauf322zOaHpio15bsPOZ/xxrf3rwOZazlgV8ejlpJELseP2Sypzgm+vyJV/rjoxOJRY2WXRZ6j8JbKDtHQ8scnSMBnCMAq7n9ygpe3HMmUmAo/Cz3f7pWpgWFmESXxBbGVWX5rKorpX/Ij9dvsOwyOw9+tk4+/BdZptvWTgaPx8OvfvUrCgsL+dKXvoTVasXpdPLSSy9RU1PD0NAQn/70p3n66acJBAJ4vV58Ph+bNm2itrb2or22ZOdxFFn53Z4+XCMBLLqGUqDrGovmFLNmoYNHt52gb8gfdaZQp1laaCHPAr7g1OU6XDjz5EJdi60UaC+ysnVvHzNK8rBYFGeH/VGPDT3mcNfo2MZNsVMEwSATsv20EMKcplRGW5iIHHDfvxyi+WRs7Qddg1ULSvjHry5N+dgLuepWSvHUU0/R0dHBPffcQ3l5OQCvvPIK+/fvx+FwUF5eTnFxMXv37mXFihXs37+f2tpavvKVr2Q0KvDg4y3saYsbwtdg8SyNe661YBhG2v+CwSBPHyzm+GBezHx2+Ao51L3HtkUfu8JN9iHTCVJm83DWV8jk5vNO9BRB9KhAYue9eG4x9gIr7b0jVJbaIjsihqYHVNQ7llk7K+x5PPOtVRPYfiFEtEtimkBMvaYOV0IgAKEv76b2fn7wgx9QWVmZ8F9RUdEFrwt/8803YxIGIbRs8P3332f58uXs3buX+fPn09jYyPr163nzzTexWq187nOfy3j1gFlyn1LQ3jvKSy+9gaZp6Lqe9r9TQysTOvzx4X7zSoLmw+lj96OPBQKhin3jNftJ+pjzM9EjD2ZTA+MbR928qiKyiqLrrCcmIFJJphLizxUm+UNCTD4JBgSQag23orzAR2FhIWfPnuXUqVN4vV7CA0o2m40DgdUYhiPSGYZr5WdSLvrw4cO8+eabbNiwgUWLFkVGGJpPDJLnu5JZozby8vIigcGhQ4dQSrFx40bs9synkZIlqV5ZN4v/+ZX/mXFQceLxFna3xu9aCOmz/FPfp6Gw4EehEcRC6B2cTlMHY69Dg7kz83nk5Y5IuePknX7yc+ma5A8JcTFJMCCA1Gu4184eoiSvBL/fT0FBAT6fD4/Hg9/vx+/3M+AvSLgqNhQcPH6G7du3U1VVRVVVFRUVFVgslkiH33pqGG30NB+bv5KPfexjcSMMGlDOkx9AqbaWNTNPMWfOHJqampg3bx6rVp3bkHGyJNU/v3HuOdUmiK8wmLnUS/4UGgFsMbddfBc6laAIGhqd/Z6x3+OLEsVPrZg/1wObamUzIiEuMgkGBJCspj40zC1hy12fTfnYb/3bYfa2DyUsqZuZ7+PQoUPs3LkTAF3XwV7LG2dCowUKDY2Z/OcxjRs7hxMqz4U7iyFVyo6zDpzbd1FmsfCFL3zhnIsLpdttEDLLe3hlX7/J2VXUz+hh/vDQf/jfCvOOEZNjpsJELWtM99qMpM+la6GNiGQzIiEuLkkgFEBiPfjwlXMmlR7TPdbj8XD69Gl6e3v5yZseOpy2uJEEgwrLAMOqBI+RLLN/rExvQT5L5jkmfMljstcQzntQShEIBLjl/+wjEEx8vIbBDP0sw0YJ+YSKZXkpJJ9RXJRFjpqcfIDpIPS6rbrGZTOt+ILQNRBIOKphbjE/+dqyi904IXKeBAMiIv7K+FyGZzN5bE9PD3c+2sqoYUt4fIHmpVgb5owxg+RZ9bFJat/bXM+S6gICgQDBYJBgMHhO/w4EAoyOjjIyMsJzLWV0uYtighQNxSybkzWFHzA6OophGLwZuAll0j4Ngw227QAYxng1gb2Ba8aCgVzq+CFZ0qSmhW65rLyAjsh0QoiuwSN3S5lxIaaCBANiwiQbZu/t7WX79u20tbVxILCGQZNSs6vrS9mwUPEP25xj98V3nvHD5wYzOMOV1j0T0vadgQ34KEi4vcRm8Nc3+CgoKKCwsJAHnx9l1B9/lMJKgL9Ycpzy8nIqKiqoqKigvLycz/3gMP6g2UdsKqcDLj0N84q5b2ONBAJCTBHJGRATwmx54Z42J5vmd+M8cQCAgoIC7rp2Pv+03Y0a28pXQ6GUosy1l+3b+ylhCS5KSdxmN77j1HET6jh0XaewsBCbzYau65Erfp/PFznaqco4qS1mWJVQWRTkY/P9VNiG6erqor+/H4d1hP5AfkKQsrRmBtdfP74iwvbSXkb98fMEGoWFBXzqU5/C6/Xi9XoZGRlhYGBgbMviZJ2+BAQQep/tBVYJBISYQhIMiAnx5I5uDCNq/z0FYPD28TxWWKCuro41a9bQPWyjouAM/aM2dB1m2LzM8++jv19jf/DqscfHr7U3oyJz84ZhMDo6isfjIRgMddQWi4Xy8nKqqqoIFl/Gz97TI+064VL8pimflZZDXFFj56abbuI6SyV//9KZSL18bez5lxR38dJLR/D5fHi9XoqpwkkJ8aMU1tE+fvKTlxNaWaw+whCOuOMVRQyTj4dBZo5NO0x0QaDpE2TIjoRCTD2ZJhDnJX5K4FCnC7fPMDlSoWFQwhCz9S5ajaVRHb6BBqy0NHI8uJABysm8Cl/oLNcU7WemdQggplpgIDCenHYgsMbk3InTDE5VxvHgQtzYKdGHWVx4kjnFXvLz8ykoKCA/P58zfjv/0VIeeWUaoXnwv77JztLLisnPz48c33LKy49+d4zWXu/YM4wnEK6yvIdDG2SwcAn7XfOj7k98jdOpY88sEEksKrSm3hGpSWE23QRM2Z4ZQuQCCQbEOTPLvDeUWccV/aWfLIteYWcQL4Wmc/axzi9vIFk+gKMAvvenjpgOPPxvi8WS9HzhzqqlazjUHg0WVxezeX01DXMLOX78OK/vaeepQ46xwrvjIx1VhT6W2zsIDrQzaDiSjIZEv2fTKRDIhHmA0zCvmHtvrgFI+NuKFr18tWFuMfdurJGgQIgJIMGAOGdmdf7P54ow+nY7g2my7s0fa8PDtdY3gLE6BsRm89tsNg5bruXkcGFC9cHoq9FzFR8QaWNtXGPbQ7HRz4faNfT5yxKWUM7Od/Fflo9QXV3Nv/wxQNtZjdgRi8kMADI998VoQ/zP0ChRCU5cOEh8TzBtk0Un47LXQojkJGdAxMik8I5Znf/MOo/kRXUChK/Eze5PHkSU5AXQNT0SABiGQV5eHkuXLmX16tXMmzePg53DbPll84RukR1fICncwgH7ar55Rx1/+W9dKH/8sgOdgK2C224LVU/8/hv7gPhjpnokILqA0mS0JT4hNPxTR2EwHJM8Gv+YREplVvZaCJGaBAMiItmGQ9/9XDXleS76+vro7+/H6rMDpZxfZ2FenW4Ue4r7IVnn5A1oGBYDXddZvHgxK1asYNGiRTHD/JlUHzxXphsfoTHoszFr1izqqgZM90KI3nCn0mGj35WwTnESnUvANhV0NE2Bit/0KcVGT5J8KMSEkGBARMRf7RoKUAb/9MwBrrTuoaCggMrKSm6oK+Lp5kzOaJYzcO5TCRbNIKjMEgs1RlUhmzZtYunSpRQUJM85WF5rn9Crx2QbH4U7+83rq9nTlriHwZc3VON2uzl48CCnT48ARUz9aEC8qZmm0DS4rKKQjj5P/D1JHyM7GgoxMSQYEBHmw/86qqiKv/r6X1FcXBzZE+CDnx6iuStxy+OQ0Pa0JfooI0YhmqYxt0zDarXS3pdYgjYk+oo0ttO4f1MdP3y5g6DJYgWLxcJVV12V6UucMMk2Pko19aAUbN/+GsPdBwEYNT7O1AUC6aYBJmOaIPXzKQUdfaPn/LznO92TyZSYELlCggER+VJ0jiR21LoGl1fbycvL4/jx43R1ddHV1cUM5xCwArMvbquu8f0/v5xV9TNibn+xsZeHX+4g3UY94Qxye4GVOz85l1vXVrFtb79p8LFw9tRcFaabejDbElphsLvHzgM33cQVV1zB3/y6lQ86RxN2fLw40gUC4Z8Xq23ppyc0LRRQxTufFOhkU2KSjChylawmyHHxX4rRwhny68sPo5zHgVB2/ty5c5k7dy5PNjk4fib2cj1Vlv43H/uQve0ufvBnBgAAIABJREFU0nUwFfY8nvlW7BbFTR0uHvhFc8Kw/KVay/7z399nmg9QYc/jt3+9kqe3NvLv7w0xpOILEoVN1bLC6Cx/0rTh4rXRpoXeS5+yxj2nosrm5IaKNnRdx2KxoOt6zL/jf+q6zgtHZyZsmHWhK0yEmM5kZCDHJW4bDOFCQTO0s1xVMcCVdeXMnbuCuXPnUlFREVnCN2uh+U5/X95QHTMEu2BWIaurnBw85gOS7UoYoqFM54CX19p5+K6JTQKcTMlyCi6rsPGDnz3L70/Mg0hlQrOOdzLn7VOdP1n552THTmRAkHzVyFyHom/Eis8Xf7+Gm1Lmz59PMBiMKTwV/j16c6rw772u8oQRGUlGFLlMgoEcl2yZYFlRHk9981Pk5eUlfWyyoXKlYgvH9Lt87G4DyCP10kEDTdOTzgFPdBLgZDLLKQCw9bxFo28+obDnXDreZFJ1xvH3KSwECEaWcU5EJ24WEJxvgJA8QLn7pgU8v8fF++1DCQHW0poZbNx4zTnlABw1qZUhyYgil8k0QY4zKyB0ocOl5kWJILHQTPg2yMNPmdXN//zqtZfs1f65CndObT1uihiiYvQAMyxD/NF3QwbVFiH9VXy6QCBsfPRhleU9AFqDS8aKPMXef+6duPnzJJ/6IM39iUsKF+kHmaufxKnK2B+8mnAgpaHQNNjyiWLOeGz829uDMWfXUxQkMquiqWnw8F2X5rSTEJPN8t3vfve7U90IMXVmz8jnlf39ka/x8Jfig5+tY5Yj9ZB+Mv/66gncXrN9CqKvhENf9BYCLNSbWWbZzx2fWMKa5QvP6zkvRQWaB3X6fdTJt5gROB76XSn61By85GPW8cUGSQoLQZONjDLpuDVi3++QPlXFaTWHIHnkM0IgMm2jkfp8yZ7T7HnSBQLRx8QGiPGPtOlBNEsBNjWMQxtkpj5AQC/CUDozrEM0WA/S3t7GtuMVic+t4MyQn0+urCBeVVk+q+pK6R/y4/UbLLvMzoOfrZNAQOQsGRkQCcOrFzoXn3xkwEyoDO0q626+/537Uu4JcKkxG5Z2DQ3x2B9OcHIgQKHhZL6lFYcWumLVHAvYPzSPAX/x2BniazAQdXvotiKGGaFk7Hez/QvOhVkp4EzPle6qPtPHJ04R6UB18SiFo+2cZQ4j+gxGA3pMgArw4C1lFAf7OHXqFN3d3QwMDADQZKzjjDHTtF1myahCiESSMyAmdC6+qcOFazQwFghkMnccKkPba7ti2gUC0asb+l2D7GodjDrChocKBoIVOPTQjo1Hzlw+lieQ+J7kaUH8ykL81XUoEIB8PHgpjLrvXMo2h2VyBZ/qseebC5Aq6NCw4uG6GS386T1/yv79+/np2wOMMmMsTBgfxv9Di+J7X/lo5JEjIyOcOnWKLf/eD17zdkkOgBCZyXS/WCHSCs/DtnQnK0aUjM6IVjopbZos//xye9ROjRDb0elRt2k4jVJaAg1jXaJ5hxgbCMTeB8QFAuGfyUcUJsf5Jhwmn4LQUBTjoqenhx//+MfMmzcPVTSb+K8ms0z/oqIi6uvrabisDC1J0y5k/wkhcomMDIgJk7hMMdPOQ7FoTskktercJctKHxkZ4dChQ+zbt4/WnuVA/EjG+S7XC2f5x6+hz/S8mRybfNle6sdduGKbhVF/MElCqeKWK2z0tloJBAI89dRTWLRr0LUZGWf6h1duGMQWINpya+15TXdJZUKRiyRnQEyYZIV2Ugv9+W3ZNJ9b11VNfKPOkVmWOShumNmCch6LHPdm4FOohGAgneQdcoXdSr8reB7nI+6c5hn5kx8IJJ9CKMpTeIMahhHegCj0vKWak3q9GYc2SGFhIQ6Hg56eHpyqjH1jqwaiz1mcr3PPJy/jtqsT/04mKu8l2SoDqUwosp1ME4gJU1dVFEn2CtO00Je4ubEMck3jh7/roKnDNdlNTMtssyZDKfafKY8c43A4qCz0c25D8iruZzQN54iRdKg79fmS36droGsadgZNuulMKwxm8hpDIxvmxytG/QYzbaNUz8hDI4iGQX2ljTUzeyjPG6a4uJjR0VF6e3uj8kYS2+X2Gjz8cgcvNvYm3Le81s7m9dXUVRXR3jvCr97oTvv3pJTC4/HQ29vLkSNH2L17Nw8/+wGGoWL+/w9vkyxENpNpAjFhkm3e8//9+eLIF2p77wj+gGJoNBApuqNUqAu5FPalT7ZZU7CgknvvuZfy8nIsFgsf73DxjV80J9TF14DLKvLp7PcSU0wJ+NRCDztPluDyJC67DATVec72my31C51p8dxi/vy6mfzytwc5aswg1dX7uPiVBtFBQ7KkRVhdcIBu70xOqgUJ51BY6PMUgMcPY8sk2/t8HNOXcHvdDM4cf5/58+dz4sQJNE2jw1jI+OqJRI/9oSthdCDZXgN/9/l5VJf4cDqdkf+GhoYi//b5fJFz6LpOd2C9VCYUOUmCATFh0m3eE+7oP//9fQkd36XyhZusjPCSeQ5mzZoVuW15rZ1H7mrg0W2dtJ4aARRzSmGl4yTuUx9SbrHTYSxkWNmZme/l23+2jhULHJFOyzDGu8pQGl2yIX9Mbjf7PfY+XQtt9FRcXEyrsXTsGbSYY5I9FmCGdZj56iDDys4xYxEBbEmPt+LF7/fTpeZHnSP+9cQ+n0IDQ7G3r4x1s2Zx/PhxLBYLgUCAYWUn1aDl0Kift956K1Jm2O/389tDJRhGfuQ1hrff/sen93GldQ8QSjh0OByUlpayYMECHA5H5L/S0lJKSkr49q+OSmVCkZMkGBATKpNliguqCul3eYn+wr9UvnDPZWviugqdu9Z4aG5u4dixYxguA3vp3P+/vXuPivK88wD+fWeG6zCCSEBRQVAjBC+gxktUikncE42XXEw2m5DmNLWnm3ZPE7fbenr29I+e7dmz7ek2abJn01xqY2Jq00uajVpyKY2kSTSKEIs6iIIBFLkKw3AZ5vK++8fMC3N558ZlGOb9fv5IEGZ43wGd9/s+z+/5PUjJyoKjrQ2rdGeRm5uLxx57DDqd85+aHJh++OZlmIbt8F0d4HlXrYEIMezahLFwdbjqBuSOfaHSCMCSRfOR7ejHu1fnua2CcD+/0SNhltCPK44Cr2WTwY8nQUCbSULnYCcAwOFw1kzoYYYV8VAOBBI0sOOjjz7CgGYOWqSlMDtmYUTUKbxG5/bb3/7Gt5GamhqwtbZsPFtTE8UChgGKuK/k2VF9BYDrbjWa3nDli/WLFS240u4cqVgyL3l0OsBsNsNoNMJoNOLcVROaxcWwaPKwIP1W3LsyEY21lRgeHoZWq8WCBQvw6KOPjgYB92PE6fytBHC/oxYhjjYaCnV430kOV00dQ2EFAcB5EbzaMQxkFUKCCYEDi4A+abYrsIRbiChilnYQ6enpGBoagsViAQAs0l5Bn2OOa7TE93smYNhZZGi93e28lM2bnYSMDN8OhP4EG90iilUMAxRxXU3VKNaaYM3agg6zEJVvuA03Bkfnny9dH8Qzv7qIbXOvYqTrEjQaDZKzCnFOLAQAiA7gcpeE5yqHcHdWJgRLC+bPn49HH33U791oflYyegZMXjUH3pMn7h0H/QcC99l5eIWrNz5qQ4/Z5DPhIHf2U+oS6R4k/NckjAUCETqFc3d/PcorGQQAC9GAgoLbcNddd8Fms6GjowOVlZVA8+c451jvqrbwPL4d8bjkWK7wvX2Pd6ltEHXN5rBWAsykDbGIJgv3JqCI6uvrw/vvv48kzQh+/PSDeKR0PrYVZ4x7H4Sp8PP/+xJtN0dGL5TOS5+EESkRX9tZjN27d+P4pUS09Y549FQQAJgswMp5DpSXlyMhwf9rmjs7ARU13V6fVWrOE3jYXSMAa5fMQkpfDURJA70hDcvd+uwPjThwqsEE7zDx8B1ZEO0W9A1YXBdz0fUaJGg0Ag48kI/WLgtu9I54Xeb91QIErmHwtiA9HmVZrRDMLWhtbUV1dTUsFguys7OxadMmzEnRobqhGxYkez1fRDIGMIhZIf2sBAHo9rM/ARGN4dJCiqiamhoIgoC8vLyQ5nAjSRRFXL58GRe+7FFcUWDRpKK4uBhJSUmKqw4kCBiUDHjssccCBgHAefeZmhRqLYB8cfM8oLy75IGdtyBb04qNsy7iD98vwU+eWDY6yvJZvbysUPD4bl92WvCtryRik+6v+NlXFyMzzoR4WDBb6MYDS7tQtDAF5WXZEARnxcHY8ZUCixL/jxUE4EafDXffvQ3bt28HANhsNnzxxRd46aWX8NJLL8FqteJrd+fAd7miBroEvc/39P1ZOUVLYSpRtOM0AUWMw+FAbW0tJEnCrbfeOt2nM+rmzZuora3FuXPnYDabYdDegSH7LI+5dvcCR6vVClhNAJLgPUydMzcVSUlJCMWy+SlhbOg0dgz3qYBNhWn499804qp9KzIdDp8hcWfNgO93aOoYgiQ5w9jynBRsy25Fb28v5syZg9bGVvz5z8COHTvw7JOF+NHrZ9FjDe01jR0hwFc9lpKug8lkwmeffYb09HTs2rULFy5cwIkTJ2C323H7nJU43ZMN95GN3hF/KxuURUNhKlG0YxigiGloaMDAwAAAYOnSpRE5pr/WslarFUajEbW1tWhubkZCQgJWrFiBkpIS9FhTsP/X9T5d6B7fmo2uri688cYbGBkpAuB9gRSgEUIfbCsvy8aZ0c2NlJbjKRGQmqTFsvkp2FSYhuePN7s6+yXi+hCw/6DRo1uev6WSzguks1ukIAjQ6/UYGBjA8PAwdu3ahaNHj6JjOAn1g9m4aU1UOK9ARY0CBIiuRyk/xv2Ofdu2bbh+/Tqam5tx8uRJlJeXQxRFGI1G/KyiF4F6DoQiGgpTiaIdwwBFzNmzZ6HX65GQkID09PQpP55SI5rqRhMeKriJ3uZaWK1W5OXl4YEHHkBBQcHotEU2oFhRLpm+xC8PvQNRFOHQGQC774Wuq9/q8zl/9I4uFGtPYTjjDrTetEFjM8OMVNdXlVcbaATniMJPnliGA4cuufoVjDVvEiXP5k3eS+WctQGa0dcDOMNAcnIyBEFAd3c3li9fjoZ2K14+CddqAqULceDOhXIccI847ryXkj788MN44YUXcO3aNbz++usoLy9HSUkJrB/WQg4t41E4Xx9VhalE0YphgCKit7cXjY2NSExMxJIlSyJyTKXWwoCIv14W8FTpBhQXF2P27NmKz3WvKLfb7aioqEBNTQ0AYN26dRjsTMfZxv5xN6ex2Ww4duwYVi5KxV13zcXBgwcBHWCS0tCbtgmtvSIcvo0KPe6oL10fUJwCuHR9wON1yMGmsX0QGGrHruJkLM8x4O9/d3UQcIUBeZ1/e3s7artmA+hD6MsFPfsjiK6PJQD6eA0Grc52y5KftfvJycnYs2cP3nrrLXR2duLQoUMoLy9XHNlwJ9dN3FGYhheON/uM5nxrR06I50+kbgwDFBFnz55FfHw8LBZLxKYI/LUWlpIysXVrSUjfo7e3F7/73e/Q0eHsh3/nnXdi8+bNWNAygJqm/nE3p/n444/R0qeBSVOCN16+Bgn/gBT0Y+2cDvz8mbUAgAOHLgXphhe4i6DMPdh88MEHqKk5BYtlA9z3KNPr9bBYLNBqtbhx4waaOuJD6E8QqHWx8/8CgKIc574BwdbuFxQUYPny5bh8+TJMJhNee+01rF6+E6evmPwcX0SGzoTvbl+EzMxM5Gclsz8A0TgxDNCUczgc+Gt1E5qldeixx2HgEzu+Ghfe2u/xCDxfHlx9fT3+9Kc/jV40d+3ahdWrVwOYWHOajo4O/PmTi6i1r4PUYYG8FbIZaTjRMxv3u4oA5SF+QfLTnCm0LOBh48aNOH36NM6cOQODwXmu8siAzWbD3Llz0d7ejvysgoB35Lm3JOKWWXGobbzp2npZ+cBysWKoa/e3b9/u7OaYkoO/tKej7y/tit9XIwCSJGC+WI9f/vJzlJaWYsuWLewPQDRODAM05Y7/7QJODa6E3Ba3pqkftVf7p3xb2HBay8qFhvLQu81mQ6K9B8uS06EXu/DQQw+hsLDQ4znjaU4jiiKOHj2KqyhSuPMWPDZsWpFrwLNfK8CPXz+JIczCbbnpHoFjWbYeZxo9GxcJgvPz/hgMBpSUlODUqVMoKytzPUdA20A8ztnX4tSN2RCvS4iLH1AMAoLg/Dn+2315kCSgurF/9NyVScjLCn0lQnJyMgrX3YP//nDAq73xmDitgJK8WSgvmwfzdQc+/PBDVFVVwWg04r777sO8efNCPh4ROTEM0JSRL7DVjUMeb+yi5CxJm+pdCkO9e1fePEiDYWTg86E5+MHOdBQWTs5SyOrqaly8NoheR4rfx7ivi89IGMRt0ik8/vjjyM/P93icHHYkhDdVsWnTJlSeacT/fDSEdvtW/MvLRtRfH4SEOYDD2fXQOuIYfbw+QQudRgBcQUP+GR44dAmBawqclQP3FIW3FPDjq3EI1M8gNVk39vcm9w7MnTsXb731Fnp6evDKK69g8+bNKC0t9WkDTUT+8V8LTQnPSn7favRINYMJ5e5dLjQcuxF2m/MWBPylXsK29RM/l/7+flRWVqI3ZTPgbxoczmkMOUgZW3qRIK2DWZjj87jxTlW0mrT4wrEekhkABBivD7q+Iv+ePPsrFC1MUfwZ+v/9SRAgIgXOUYPn3gPev2AbXdYZTKD9FJSmefLz8/HNb34TR44cQW9vLz799FMYjUbs2bMHCxYsCHo8ImIYoCniXcnvLVp2KQT8FRo6TWZoqaioQFxcHMwOPQC74mM0AnBHYZpHkBpAOr772iXFaZXxTFUcPtEGQRC89kVQFuj1B9pfYYnmIq6IRc4/jWhw+ooJp6+Y8MzOXOxZnxXwmIFWEPgb+UhPT8e+ffvw9ttvo6GhAVarFQcPHsSGDRuQufh2HPmk06fXBBGNYTtimhKBLrDRtEsh4Lz4aPyMdk9WaKmvr0d9fT22b9+OxXP1isfTx2vxi32F+MzY5xGkJDgv3IdPtE34PIDAvxtvgV5/eVn26O9yjID7lwM3kT26CbO75441o67ZHPCYchvksZ+RsyVxwfxkPPf1Qr8jHwkJCXjkkUewZcsW9Pf3IysrC29/1ob9rzXg9BUTus02nGk0Yf9BY9BzIFIbhgGaEhnJdgC+C+XjtALWLk4N+KYeaWM9+D0JkxBa6prN+N5rRuz/TReuJJRC1C/0udhpBECrAf7riVuxPMegeLGezBGKQOHHXbDXL09T3L44FRmGOKxbkooXvlGI7/zjekA/F/7eXoKFGvn7rl2cilkJEtKFbqyNP4PNhnMoyA5cjCgIAu68807s3bsXVzptuOTwLPp0b8xERGM4TUCTrrW1FUndJyFgHSRXxzv5DvLnTxZETQiQuc+9Oxv2+BbLjcdYYaIECQloG0rA/l/X49knCwPO9U90SWQwvl0Jnf0C9AkaQAJ0Wk3Ir9/fNMXirGT0mJULI0IJNfL3tdvteP7555GRkYGrV6/ij3/8I/bu3QutNvAmT0VFRbB+6gBah+Ed8yRuXkTkg2GAJlVfXx+OHDmCVGEYxdrP0ZmwAiPa2VHfBGYq9rAfK0xUXkXh73jlZdmobjQBXkFqsqZV5PDzYkWLW/EgMOzqEvjsV5dNeE69vCxbsVmQEGao0el02Lx5M9577z3s2LEDFRUVeOedd3D//fdDowk8sNnW54C/FQnRUq9CFC04TUCTxmq14re//a1zVz8AqUIffvxP+fi917a6ajHe4f4VuQbcM78Zs9GDtKSpmVZZkWuAIUnnmi4YCyuTVZuwIteAZ3bmuv401qFQgBR2qFm9ejVSUlLQ0tKCBx98EBcuXMCxY8c8Oigqyc9K9rvwMVrqVYiiBcMATQpRFPH222+jp6cHDocDgiAgISEBubm5wZ8co5Tm5kMZ7jebzRhqv4hVumoc+dcVUxakpro2Yc/6LDy/rxBZ8SbEwwID+qCX+vDDN+tx4NClkIv4dDodtmzZgvPnzyMzMxN79uxBbW0tKioqAgaC8rJsaDS+YwP7d+eqLpgSBcMwQJOisrISDQ0N0Gq1rmVrEgoKCiAIIVSqxSilQsFQhvvPnTsHQRCQmZmJxMTEgI+diPGGlXCsyDVg30YNirS1GEAqzEhF35CE6jCr+ktKSmAwGFBVVYVVq1Zh586dOHPmDCorK/0GgtECxyWeBY67bw+8tJFIjVgzQOMiN8Vp6hhCss6G3l4RDt1dSBjsw22GNsQNt2HLli3TfZrTajxNgSRJQm1tLeLi4rBo0aIpPb9w2jVPRH5+Pr6sGvFYahhuF0p5dOD48eMoLS3FmjVrYLPZ8P777+PGYALO92Uq9hGYiloQolg0Y8OA+8WIjUQiy7O7IOCcE04D7AKGkIFPzRlI0+ahbSAec3wb56lKuBejlpYW3Lx5EwCmfIplIpsthWPhwoUYwjV4D0SKEtAYxpRESUkJPvnkE1RVVWHv3r3YsGEDrnTacfCMDkAfJAi4OWDC2SbTlO97QRRrZmQY8L4Y3RwwobrRhGXZenT1WxkOpphvd0H3sWbnx30OA/YfNPJNOUw1NTXQ6/UYHBxETk7OlB8vEnfOcXFxyEi24/qQvOWxTEKv2Yo9/3kWAoBl81MC/rvVarXYsmULjh07htLSUmRmZqKu9xbIQQCI3L4XRLFmRtYMeF+MRNfHxuuD6Dbbwp6PpPCE1sFOgCiyuUs4LBYLLl68iLS0NMyZMwcpKf43M5pp7imKd+3JKDeicv4FEiGgf9gO07ADZ64E/3dbXFyM1NRUVFVVAVDexyBS+14QxZIZFwbqms2ovdof8GIkSuCFaAqF2sFOAlxNfCgU58+fh8PhwMjISERGBSJp65o8LNFchHNkQB4hGNsQCq7PBlvaqNVqUVpaiosXL6KjoyMiRZBEahCVYaCu2YwDhy7hoZ/WeixBkqcHbI7gjdV5IZo6cpV8aNS7miBcNTU1yM/PR3d3d8yFgXnz5uEm5rn+Nvj/OxHKXf2qVauQlpaGqqqqca/YICJPUVcz4F0P0GN27naWmqyDJIlw+La7x1hTE5/u8lN7siolF5798M3LMA0r7743ir+CoOqazfjVB1dxobUQcbo42O25MJ3VQTvbHDP1FhqNBoNCmt+tiWUCgt/Vy6MD7777LkpLSyNSBEkU66JuZMC7HkBy/dc0ZEf/sCPAMxXeZHghmjIrcg34j8eWQquB3ykDwdXfnvyTw++5lmHYkYBhuwAbEvBF81BM1b3UNZthcWgxFtyVSQjtrn7lypWYPXs2qqqqRosg1drpkmgyRF0YUC5Oc59bVHoz8b0a8UI09dx3l0tNcm4cI7gN12o4XBuUHH595s8nsTVwNDh8oi3oFIEsSJdhAGOjA/X19Whvb5/o6RGpXtRNE+RnJaPbz25nTu4FSJ40wtQ2TyFf7kvTvHs/cLg2uEArM2KpKt5Z9R+aUJcFrly5Eu9U1uJ7r9XDornBJcVEExB1YcDfbmeexoKAXDz0nXtz8amxjxeiacRub+FT2q5YFktV8YFep7dQA9CF1kH8zVQEURIB2NhwiGgCoi4MrMg1oHCBHsZrg34fs3+X8oV/9zr2HKeZRW4JLEieE2BCjI1uebc+9iecADQ2hTK+FsdENEaQgu0DOg3qms34zqtGxa+lJuvwzg9WR/iMiKaOPL3iXAorAK56l1gb3fKeRrqjMA0vHG/2aGutEQT8Yl9o2zU/9NNadJttPp/PMMTh998vmfwXQBTDom5kAPA/OqBhUSDFILVMryi9zvysZBw+0YbG9kEIwx24aylCDkBKUw+xNLVCFElRt5pA9tQ9OR7L1lgUSBR75IDwhwOr8f17M9Bx5TSuXbsW0nO9Gw7JrY75HkEUvqicJpCxOp1IPURRxKuvvgoA2LdvHzSa4Pcq8ntEY/sgpKF23L/GgPLd6t46m2g8ojoMEJG6tLa24uDBg7j33nuxdu3asJ579OhRNDQ04Omnn4ZOF5UzoERRK2qnCYhIfRYuXIji4mJUVlZiaCi8HgsbN27EwMAAzp8/P0VnRxS7GAaIKKrcfffdAIDKysqwnpeRkYGlS5fi5MmT4IAnUXgYBogoquj1emzduhUfnW3C0y+f89m9NJCNGzeis7MTTU1NEThTotjBMEBEUScxcxm+cGxAXasF3WYbqhtNIW3ctGjRIsydOxcnT56M0JkSxQaGASKKOm9WtUMQhNEtj8UQN24SBAEbN25EY2MjOjs7I3GqRDGBYYCIoo7SBk6hbtxUVFQEg8HA0QGiMDAMEFHUyc9Kdmsm5BRqd0GtVov169ejrq4OAwMDU3SGRLGFYYCIoo53d8FwO5CuWbMG/UjHM6/8PawCRCK1YtMhIopKE+lAWtdsxtOvXnTtBCmMhglub0ykjGGAiGLOgUOXUN3ou4nR2sWpqtgUiihcnCYgopgzkQJEIjViGCCimDORAkQiNWIYIKKY412AKEDiFuhEAbBmgIhiklyAePmGGRjswBN3zseercXTfVpEUYlhgIhi3ptvvgmTyYSnnnoKgiAEfwKRynCagIhiXmlpKbq6umA0Gqf7VIiiEsMAEcW8hQsXIi8vDx9//DG3NyZSwDBARKpQWlqKjo4ONDQ0TPepEEUd3XSfABFRJOTm5iIxcxl+9IdW2OKcXQ3Ly7LZkZAILCAkIpWoazbjmV8ZIUoiAA1bFBO54TQBEanC4RNtro+cb3uiBEiS++eJ1IthgIhUgS2KifxjGCAiVWCLYiL/GAaISBW8WxTLNQNsUUzEAkIiUhG5RXFTh3M1weNbs7E8h8WDRAwDREREKsdpAiIiIpVjGCAiIlI5hgEiIiKVYxggIiJSOYYBIiIilWMYICIiUjmGASIiIpXjFsbkl3eDFm73SkQUm9h0iBTVNZux/6ARkuTczIXbvRIRxS5OE5CiwyfaRoMAwO1eiYhiGcMAKeJ2r0RE6sGaAQLgWx+QmgR0m0VZDn0qAAAD/UlEQVS450Vu90pEFJsYBmi0PkAUAQlAt9kE50cCAGcg4HavRESxi2GA8GJFCxyi8tcStEBivBbL5qdwu1ciohjFMKBydc1mGK8PKnxFAACMOATYLA6UlzEIEBHFKhYQqtyL77UEfYwohfY4IiKamRgGVO7KjdBWB4T6OCIimnkYBoiIiFSOYUDllswNbalgqI8jIqKZh2FA5Z7angONEPxx39qRM/UnQ0RE04J7E9Bow6ELLWYMWn3XGO7fnYvdt2dNw5kREVEkMAyQB+9OhOwtQEQU+xgGiIiIVI41A0RERCrHMEBERKRyDANEREQqxzBARESkcgwDREREKscwQEREpHIMA0RERCrHMEBERKRyDANEREQqxzBARESkcgwDREREKscwQEREpHIMA0RERCrHMEBERKRyDANEREQqxzBARESkcgwDREREKscwQEREpHIMA0RERCrHMEBERKRyDANEREQqxzBARESkcgwDREREKscwQEREpHIMA0RERCrHMEBERKRyDANEREQqxzBARESkcgwDREREKscwQEREpHIMA0RERCrHMEBERKRyDANEREQqp5vuEyCimaeu2YzDJ9rQ1DGE/KxklJdlY0WuYbpPi4jGSZAkSZrukyCimaOu2Yz9B42QJECUAI0ACALw7JOFDAREMxSnCYgoLIdPtI0GAcD5f0lyfp6IZiaGASIKS1PH0GgQkIkScOn6wPScEBFNGKcJiCgkcp1A7dV+2BwiAMHtqxIAAToNsHSeHk9tz+GUAdEMwjBAREHJdQLylIDz4g94BoIxGgF47uusISCaKThNQERBHT7R5hYEAGcIUA4CgHPagDUERDMHwwARBdXUMYRwxxBZQ0A0czAMEFFQ+VnJ43iW/5EDIoouDANEFFR5WXb4T2IWIJoxGAaIKKgVuQbkZiSG9Zxl2fopOhsimmwMA0QUku/elwdNGHf7j28dx2gCEU0LLi0kopB59hrw/9axf3cudt+eFcEzI6KJYBggorDVNZvxnVeNil8rnK/H//5zUYTPiIgmgtMERBS2FbkGpCZpFb/W1W+N8NkQ0UQxDBDRuCybn+JTQ6ARxrsMkYimE8MAEY1LeVk2BAGjgUDeypiFg0QzD2sGiGjc5ILCpo4h5Gcl4/Gt2View/0IiGYahgEiIiKV4zQBERGRyjEMEBERqRzDABERkcoxDBAREakcwwAREZHKMQwQERGpHMMAERGRyjEMEBERqRzDABERkcoxDBAREakcwwAREZHKMQwQERGpHMMAERGRyjEMEBERqRzDABERkcoxDBAREakcwwAREZHKMQwQERGpHMMAERGRyjEMEBERqRzDABERkcoxDBAREanc/wO8B0FUSyz+uwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -3704,7 +3659,7 @@ }, { "cell_type": "code", - "execution_count": 128, + "execution_count": 134, "metadata": {}, "outputs": [], "source": [ @@ -3713,25 +3668,47 @@ }, { "cell_type": "code", - "execution_count": 129, + "execution_count": 135, "metadata": {}, "outputs": [], "source": [ - "communities = pd.Series(community.best_partition(coreDocumentGraph))" + "communities = pd.Series(community.best_partition(filteredDocumentGraph))" ] }, { "cell_type": "code", - "execution_count": 130, + "execution_count": 136, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "4 194\n", + "14 167\n", + "13 155\n", + "2 123\n", + "16 100\n", + " ... \n", + "348 2\n", + "350 2\n", + "373 2\n", + "374 2\n", + "262 2\n", + "Name: count, Length: 390, dtype: int64" + ] + }, + "execution_count": 136, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "communities = pd.Series(community.best_partition(filteredDocumentGraph))" + "communities.value_counts().sort_values(ascending=False)" ] }, { "cell_type": "code", - "execution_count": 131, + "execution_count": 137, "metadata": {}, "outputs": [], "source": [ @@ -3743,7 +3720,7 @@ }, { "cell_type": "code", - "execution_count": 132, + "execution_count": 138, "metadata": {}, "outputs": [], "source": [ @@ -3755,7 +3732,7 @@ }, { "cell_type": "code", - "execution_count": 133, + "execution_count": 139, "metadata": {}, "outputs": [], "source": [ @@ -3764,22 +3741,22 @@ }, { "cell_type": "code", - "execution_count": 134, + "execution_count": 140, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 134, + "execution_count": 140, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de2zV9f3H8Vcvp6cWOa1F20OlVJRpqYIQkHL2U4fQC0jw1mRDGaIhsJFCop3K6lALqDBClGmqRIfiNisO4yUyBi11wNQC0tjIbUQIDh2ckklogYbDac/398fSE48tl9Oe0++np89HchLP93z6PZ/vm1afntPSOMuyLAEAABgk3u4NAAAA/BiBAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4iXZvoCsCgYCOHj2q/v37Ky4uzu7tAACAS2BZlk6dOqWsrCzFx1/4NZJeGShHjx5Vdna23dsAAABd8O2332rQoEEXXNMrA6V///6S/neBLpcrouf2+/2qrq5WUVGRHA5HRM+NC2P29mL+9mL+9mH2Pae5uVnZ2dnB/45fSK8MlPa3dVwuV1QCJSUlRS6Xi0/UHsbs7cX87cX87cPse96lfHsG3yQLAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjJNq9AVPdVLFJvraL/zpoU3yzbIrdWwAAIGJ4BQUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABgnrEB59dVXNWLECLlcLrlcLnk8Hv39738PPn727FmVlpZqwIABuvzyy1VSUqLGxsaQcxw5ckRTpkxRSkqKMjIy9Pjjj6u1tTUyVwMAAGJCWIEyaNAgLVu2TPX19dq1a5cmTJigu+++W3v37pUkPfroo/r444+1bt06bd26VUePHtV9990X/Pi2tjZNmTJF586d0+eff6633npLa9as0dNPPx3ZqwIAAL1aYjiLp06dGnL/ueee06uvvqrt27dr0KBBWr16taqqqjRhwgRJ0ptvvqlhw4Zp+/btGjdunKqrq7Vv3z5t3rxZmZmZGjlypJYsWaIFCxaooqJCSUlJkbsyAADQa4UVKD/U1tamdevW6cyZM/J4PKqvr5ff71dBQUFwTW5urgYPHqy6ujqNGzdOdXV1Gj58uDIzM4NriouLNXfuXO3du1ejRo3q9Ll8Pp98Pl/wfnNzsyTJ7/fL7/d39RI61X4+Z7wV0fNGW6TnYIf2a4iFa+mNmL+9mL99mH3PCWfGYQfK7t275fF4dPbsWV1++eX64IMPlJeXp4aGBiUlJSktLS1kfWZmprxeryTJ6/WGxEn74+2Pnc/SpUu1aNGiDserq6uVkpIS7iVckiVjAlE5b7Rs2LDB7i1ETE1Njd1b6NOYv72Yv32YffS1tLRc8tqwA+WGG25QQ0ODmpqa9N5772nmzJnaunVruKcJS3l5ucrKyoL3m5ublZ2draKiIrlcrog+l9/vV01NjZ7aFS9fIC6i546mPRXFdm+h29pnX1hYKIfDYfd2+hzmby/mbx9m33Pa3wG5FGEHSlJSkoYOHSpJGj16tL744gv94Q9/0C9+8QudO3dOJ0+eDHkVpbGxUW63W5Lkdru1c+fOkPO1/5RP+5rOOJ1OOZ3ODscdDkfUPpl8gTj52npPoMTSF1U0/1xxcczfXszfPsw++sKZb7f/HpRAICCfz6fRo0fL4XCotrY2+NiBAwd05MgReTweSZLH49Hu3bt1/Pjx4Jqamhq5XC7l5eV1dysAACBGhPUKSnl5uSZPnqzBgwfr1KlTqqqq0pYtW7Rp0yalpqZq1qxZKisrU3p6ulwul+bPny+Px6Nx48ZJkoqKipSXl6cZM2Zo+fLl8nq9WrhwoUpLSzt9hQQAAPRNYQXK8ePH9eCDD+rYsWNKTU3ViBEjtGnTJhUWFkqSXnzxRcXHx6ukpEQ+n0/FxcV65ZVXgh+fkJCg9evXa+7cufJ4POrXr59mzpypxYsXR/aqAABArxZWoKxevfqCjycnJ6uyslKVlZXnXZOTkxNTP3ECAAAij9/FAwAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4YQXK0qVLdcstt6h///7KyMjQPffcowMHDoSsGT9+vOLi4kJuv/71r0PWHDlyRFOmTFFKSooyMjL0+OOPq7W1tftXAwAAYkJiOIu3bt2q0tJS3XLLLWptbdWTTz6poqIi7du3T/369Quumz17thYvXhy8n5KSEvzntrY2TZkyRW63W59//rmOHTumBx98UA6HQ88//3wELgkAAPR2YQXKxo0bQ+6vWbNGGRkZqq+v1+233x48npKSIrfb3ek5qqurtW/fPm3evFmZmZkaOXKklixZogULFqiiokJJSUlduAwAABBLwgqUH2tqapIkpaenhxx/++239Ze//EVut1tTp07VU089FXwVpa6uTsOHD1dmZmZwfXFxsebOnau9e/dq1KhRHZ7H5/PJ5/MF7zc3N0uS/H6//H5/dy6hg/bzOeOtiJ432iI9Bzu0X0MsXEtvxPztxfztw+x7TjgzjrMsq0v/JQ4EArrrrrt08uRJffrpp8Hjr732mnJycpSVlaWvvvpKCxYs0NixY/X+++9LkubMmaN///vf2rRpU/BjWlpa1K9fP23YsEGTJ0/u8FwVFRVatGhRh+NVVVUhbx8BAABztbS06IEHHlBTU5NcLtcF13b5FZTS0lLt2bMnJE6k/wVIu+HDh2vgwIGaOHGiDh06pOuuu65Lz1VeXq6ysrLg/ebmZmVnZ6uoqOiiFxguv9+vmpoaPbUrXr5AXETPHU17Kort3kK3tc++sLBQDofD7u30OczfXszfPsy+57S/A3IpuhQo8+bN0/r167Vt2zYNGjTogmvz8/MlSQcPHtR1110nt9utnTt3hqxpbGyUpPN+34rT6ZTT6exw3OFwRO2TyReIk6+t9wRKLH1RRfPPFRfH/O3F/O3D7KMvnPmG9WPGlmVp3rx5+uCDD/TJJ59oyJAhF/2YhoYGSdLAgQMlSR6PR7t379bx48eDa2pqauRyuZSXlxfOdgAAQIwK6xWU0tJSVVVV6aOPPlL//v3l9XolSampqbrssst06NAhVVVV6c4779SAAQP01Vdf6dFHH9Xtt9+uESNGSJKKioqUl5enGTNmaPny5fJ6vVq4cKFKS0s7fZUEAAD0PWG9gvLqq6+qqalJ48eP18CBA4O3d999V5KUlJSkzZs3q6ioSLm5ufrNb36jkpISffzxx8FzJCQkaP369UpISJDH49Evf/lLPfjggyF/bwoAAOjbwnoF5WI/8JOdna2tW7de9Dw5OTnasGFDOE8NAAD6EH4XDwAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACME1agLF26VLfccov69++vjIwM3XPPPTpw4EDImrNnz6q0tFQDBgzQ5ZdfrpKSEjU2NoasOXLkiKZMmaKUlBRlZGTo8ccfV2tra/evBgAAxISwAmXr1q0qLS3V9u3bVVNTI7/fr6KiIp05cya45tFHH9XHH3+sdevWaevWrTp69Kjuu+++4ONtbW2aMmWKzp07p88//1xvvfWW1qxZo6effjpyVwUAAHq1xHAWb9y4MeT+mjVrlJGRofr6et1+++1qamrS6tWrVVVVpQkTJkiS3nzzTQ0bNkzbt2/XuHHjVF1drX379mnz5s3KzMzUyJEjtWTJEi1YsEAVFRVKSkqK3NUBAIBeqVvfg9LU1CRJSk9PlyTV19fL7/eroKAguCY3N1eDBw9WXV2dJKmurk7Dhw9XZmZmcE1xcbGam5u1d+/e7mwHAADEiLBeQfmhQCCgRx55RP/3f/+nm266SZLk9XqVlJSktLS0kLWZmZnyer3BNT+Mk/bH2x/rjM/nk8/nC95vbm6WJPn9fvn9/q5eQqfaz+eMtyJ63miL9Bzs0H4NsXAtvRHztxfztw+z7znhzLjLgVJaWqo9e/bo008/7eopLtnSpUu1aNGiDserq6uVkpISledcMiYQlfNGy4YNG+zeQsTU1NTYvYU+jfnbi/nbh9lHX0tLyyWv7VKgzJs3T+vXr9e2bds0aNCg4HG3261z587p5MmTIa+iNDY2yu12B9fs3Lkz5HztP+XTvubHysvLVVZWFrzf3Nys7OxsFRUVyeVydeUSzsvv96umpkZP7YqXLxAX0XNH056KYru30G3tsy8sLJTD4bB7O30O87cX87cPs+857e+AXIqwAsWyLM2fP18ffPCBtmzZoiFDhoQ8Pnr0aDkcDtXW1qqkpESSdODAAR05ckQej0eS5PF49Nxzz+n48ePKyMiQ9L9qdblcysvL6/R5nU6nnE5nh+MOhyNqn0y+QJx8bb0nUGLpiyqaf664OOZvL+ZvH2YffeHMN6xAKS0tVVVVlT766CP1798/+D0jqampuuyyy5SamqpZs2aprKxM6enpcrlcmj9/vjwej8aNGydJKioqUl5enmbMmKHly5fL6/Vq4cKFKi0t7TRCAABA3xNWoLz66quSpPHjx4ccf/PNN/XQQw9Jkl588UXFx8erpKREPp9PxcXFeuWVV4JrExIStH79es2dO1cej0f9+vXTzJkztXjx4u5dCQAAiBlhv8VzMcnJyaqsrFRlZeV51+Tk5MTUN3UCAIDI4nfxAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADBO2IGybds2TZ06VVlZWYqLi9OHH34Y8vhDDz2kuLi4kNukSZNC1pw4cULTp0+Xy+VSWlqaZs2apdOnT3fvSgAAQMwIO1DOnDmjm2++WZWVleddM2nSJB07dix4e+edd0Ienz59uvbu3auamhqtX79e27Zt05w5c8LfPQAAiEmJ4X7A5MmTNXny5AuucTqdcrvdnT62f/9+bdy4UV988YXGjBkjSXr55Zd15513asWKFcrKygp3SwAAIMaEHSiXYsuWLcrIyNAVV1yhCRMm6Nlnn9WAAQMkSXV1dUpLSwvGiSQVFBQoPj5eO3bs0L333tvhfD6fTz6fL3i/ublZkuT3++X3+yO69/bzOeOtiJ432iI9Bzu0X0MsXEtvxPztxfztw+x7TjgzjnigTJo0Sffdd5+GDBmiQ4cO6cknn9TkyZNVV1enhIQEeb1eZWRkhG4iMVHp6enyer2dnnPp0qVatGhRh+PV1dVKSUmJ9CVIkpaMCUTlvNGyYcMGu7cQMTU1NXZvoU9j/vZi/vZh9tHX0tJyyWsjHijTpk0L/vPw4cM1YsQIXXfdddqyZYsmTpzYpXOWl5errKwseL+5uVnZ2dkqKiqSy+Xq9p5/yO/3q6amRk/tipcvEBfRc0fTnopiu7fQbe2zLywslMPhsHs7fQ7ztxfztw+z7znt74Bciqi8xfND1157ra688kodPHhQEydOlNvt1vHjx0PWtLa26sSJE+f9vhWn0ymn09nhuMPhiNonky8QJ19b7wmUWPqiiuafKy6O+duL+duH2UdfOPON+t+D8t133+n777/XwIEDJUkej0cnT55UfX19cM0nn3yiQCCg/Pz8aG8HAAD0AmG/gnL69GkdPHgweP/w4cNqaGhQenq60tPTtWjRIpWUlMjtduvQoUN64oknNHToUBUX/+8tiGHDhmnSpEmaPXu2Vq1aJb/fr3nz5mnatGn8BA8AAJDUhVdQdu3apVGjRmnUqFGSpLKyMo0aNUpPP/20EhIS9NVXX+muu+7S9ddfr1mzZmn06NH65z//GfIWzdtvv63c3FxNnDhRd955p2699Va99tprkbsqAADQq4X9Csr48eNlWef/EdxNmzZd9Bzp6emqqqoK96kBAEAfwe/iAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCcsANl27Ztmjp1qrKyshQXF6cPP/ww5HHLsvT0009r4MCBuuyyy1RQUKCvv/46ZM2JEyc0ffp0uVwupaWladasWTp9+nT3rgQAAMSMsAPlzJkzuvnmm1VZWdnp48uXL9dLL72kVatWaceOHerXr5+Ki4t19uzZ4Jrp06dr7969qqmp0fr167Vt2zbNmTOn61cBAABiSmK4HzB58mRNnjy508csy9LKlSu1cOFC3X333ZKkP/3pT8rMzNSHH36oadOmaf/+/dq4caO++OILjRkzRpL08ssv684779SKFSuUlZXVjcsBAACxIOxAuZDDhw/L6/WqoKAgeCw1NVX5+fmqq6vTtGnTVFdXp7S0tGCcSFJBQYHi4+O1Y8cO3XvvvR3O6/P55PP5gvebm5slSX6/X36/P5KXEDyfM96K6HmjLdJzsEP7NcTCtfRGzN9ezN8+zL7nhDPjiAaK1+uVJGVmZoYcz8zMDD7m9XqVkZERuonERKWnpwfX/NjSpUu1aNGiDserq6uVkpISia13sGRMICrnjZYNGzbYvYWIqampsXsLfRrztxfztw+zj76WlpZLXhvRQImW8vJylZWVBe83NzcrOztbRUVFcrlcEX0uv9+vmpoaPbUrXr5AXETPHU17Kort3kK3tc++sLBQDofD7u30OczfXszfPsy+57S/A3IpIhoobrdbktTY2KiBAwcGjzc2NmrkyJHBNcePHw/5uNbWVp04cSL48T/mdDrldDo7HHc4HFH7ZPIF4uRr6z2BEktfVNH8c8XFMX97MX/7MPvoC2e+Ef17UIYMGSK3263a2trgsebmZu3YsUMej0eS5PF4dPLkSdXX1wfXfPLJJwoEAsrPz4/kdgAAQC8V9isop0+f1sGDB4P3Dx8+rIaGBqWnp2vw4MF65JFH9Oyzz+onP/mJhgwZoqeeekpZWVm65557JEnDhg3TpEmTNHv2bK1atUp+v1/z5s3TtGnT+AkeAAAgqQuBsmvXLt1xxx3B++3fGzJz5kytWbNGTzzxhM6cOaM5c+bo5MmTuvXWW7Vx40YlJycHP+btt9/WvHnzNHHiRMXHx6ukpEQvvfRSBC4HAADEgrADZfz48bKs8/8IblxcnBYvXqzFixefd016erqqqqrCfWoAANBH8Lt4AACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCciAdKRUWF4uLiQm65ubnBx8+ePavS0lINGDBAl19+uUpKStTY2BjpbQAAgF4sKq+g3HjjjTp27Fjw9umnnwYfe/TRR/Xxxx9r3bp12rp1q44ePar77rsvGtsAAAC9VGJUTpqYKLfb3eF4U1OTVq9eraqqKk2YMEGS9Oabb2rYsGHavn27xo0bF43tAACAXiYqr6B8/fXXysrK0rXXXqvp06fryJEjkqT6+nr5/X4VFBQE1+bm5mrw4MGqq6uLxlYAAEAvFPFXUPLz87VmzRrdcMMNOnbsmBYtWqTbbrtNe/bskdfrVVJSktLS0kI+JjMzU16v97zn9Pl88vl8wfvNzc2SJL/fL7/fH9H9t5/PGW9F9LzRFuk52KH9GmLhWnoj5m8v5m8fZt9zwplxnGVZUf0v8cmTJ5WTk6MXXnhBl112mR5++OGQ2JCksWPH6o477tDvf//7Ts9RUVGhRYsWdTheVVWllJSUqOwbAABEVktLix544AE1NTXJ5XJdcG1Uvgflh9LS0nT99dfr4MGDKiws1Llz53Ty5MmQV1EaGxs7/Z6VduXl5SorKwveb25uVnZ2toqKii56geHy+/2qqanRU7vi5QvERfTc0bSnotjuLXRb++wLCwvlcDjs3k6fw/ztxfztw+x7Tvs7IJci6oFy+vRpHTp0SDNmzNDo0aPlcDhUW1urkpISSdKBAwd05MgReTye857D6XTK6XR2OO5wOKL2yeQLxMnX1nsCJZa+qKL554qLY/72Yv72YfbRF858Ix4ojz32mKZOnaqcnBwdPXpUzzzzjBISEnT//fcrNTVVs2bNUllZmdLT0+VyuTR//nx5PB5+ggcAAARFPFC+++473X///fr+++911VVX6dZbb9X27dt11VVXSZJefPFFxcfHq6SkRD6fT8XFxXrllVcivQ0AANCLRTxQ1q5de8HHk5OTVVlZqcrKykg/NQAAiBH8Lh4AAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCcRLs3gL7rmt/+LeS+M8HS8rHSTRWb5GuLs2lXF/bNsil2bwEA+gQCBYhxPw7B8zEpEAlBALzFAwAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6/LBAIw6X+4j0AQPfwCgoAADAOgQIAAIzDWzwxgrceAACxxNZXUCorK3XNNdcoOTlZ+fn52rlzp53bAQAAhrDtFZR3331XZWVlWrVqlfLz87Vy5UoVFxfrwIEDysjIsGtbANAl3X0V05lgaflY6aaKTfK1xUVoVxf2zbIpPfI8fV1vfYXb7s8P215BeeGFFzR79mw9/PDDysvL06pVq5SSkqI33njDri0BAABD2PIKyrlz51RfX6/y8vLgsfj4eBUUFKiurq7Dep/PJ5/PF7zf1NQkSTpx4oT8fn9E9+b3+9XS0qJEf7zaAj3zfzH4n8SApZaWALO3iUnz//777219/q5IbD3TvY+3Yf5DH/trjzxPJO0onxjxc7b/e//777+Xw+GI+Pm7+7lhl2h8HZ46dUqSZFnWxRdbNvjPf/5jSbI+//zzkOOPP/64NXbs2A7rn3nmGUsSN27cuHHjxi0Gbt9+++1FW6FX/BRPeXm5ysrKgvcDgYBOnDihAQMGKC4usv+n0dzcrOzsbH377bdyuVwRPTcujNnbi/nbi/nbh9n3HMuydOrUKWVlZV10rS2BcuWVVyohIUGNjY0hxxsbG+V2uzusdzqdcjqdIcfS0tKiukeXy8Unqk2Yvb2Yv72Yv32Yfc9ITU29pHW2fJNsUlKSRo8erdra2uCxQCCg2tpaeTweO7YEAAAMYttbPGVlZZo5c6bGjBmjsWPHauXKlTpz5owefvhhu7YEAAAMkVBRUVFhxxPfdNNNSktL03PPPacVK1ZIkt5++23dcMMNdmwnREJCgsaPH6/ExF7xLToxhdnbi/nbi/nbh9mbJ86yLuVnfQAAAHoOvywQAAAYh0ABAADGIVAAAIBxCBQAAGCcPhkolZWVuuaaa5ScnKz8/Hzt3LnzguvXrVun3NxcJScna/jw4dqwYUMP7TT2hDP7vXv3qqSkRNdcc43i4uK0cuXKHtxpbApn/q+//rpuu+02XXHFFbriiitUUFBw0a8VXFg483///fc1ZswYpaWlqV+/fho5cqT+/Oc/9+BuY0u4/95vt3btWsXFxZA8MK0AAATaSURBVOmee+6J8g7RQWR+u07vsXbtWispKcl64403rL1791qzZ8+20tLSrMbGxk7Xf/bZZ1ZCQoK1fPlya9++fdbChQsth8Nh7d69u4d33vuFO/udO3dajz32mPXOO+9YbrfbevHFF3t4x7El3Pk/8MADVmVlpfXll19a+/fvtx566CErNTXV+u6773p457Eh3Pn/4x//sN5//31r37591sGDB62VK1daCQkJ1saNG3t4571fuLNvd/jwYevqq6+2brvtNuvuu+/uod2iXZ8LlLFjx1qlpaXB+21tbVZWVpa1dOnSTtf//Oc/t6ZMmRJyLD8/3/rVr34V1X3GonBn/0M5OTkESjd1Z/6WZVmtra1W//79rbfeeitaW4xp3Z2/ZVnWqFGjrIULF0ZjezGtK7NvbW21fvrTn1p//OMfrZkzZxIoNuhTb/GcO3dO9fX1KigoCB6Lj49XQUGB6urqOv2Yurq6kPWSVFxcfN716FxXZo/IicT8W1pa5Pf7lZ6eHq1txqzuzt+yLNXW1urAgQO6/fbbo7nVmNPV2S9evFgZGRmaNWtWT2wTnehTf2Xef//7X7W1tSkzMzPkeGZmpv71r391+jFer7fT9V6vN2r7jEVdmT0iJxLzX7BggbKysjoEOy6uq/NvamrS1VdfLZ/Pp4SEBL3yyisqLCyM9nZjSldm/+mnn2r16tVqaGjoiS3iPPpUoADommXLlmnt2rXasmWLkpOT7d5On9G/f381NDTo9OnTqq2tVVlZma699lqNHz/e7q3FrFOnTmnGjBl6/fXXdeWVV9q9nT6tTwXKlVdeqYSEBDU2NoYcb2xslNvt7vRj3G53WOvRua7MHpHTnfmvWLFCy5Yt0+bNmzVixIhobjNmdXX+8fHxGjp0qCRp5MiR2r9/v5YuXUqghCHc2R86dEjffPONpk6dGjwWCAQkSYmJiTpw4ICuu+666G4akvrYjxknJSVp9OjRqq2tDR4LBAKqra2Vx+Pp9GM8Hk/Iekmqqak573p0riuzR+R0df7Lly/XkiVLtHHjRo0ZM6YnthqTIvX5HwgE5PP5orHFmBXu7HNzc7V79241NDQEb3fddZfuuOMONTQ0KDs7uye337fZ/V26PW3t2rWW0+m01qxZY+3bt8+aM2eOlZaWZnm9XsuyLGvGjBnWb3/72+D6zz77zEpMTLRWrFhh7d+/33rmmWf4MeMuCnf2Pp/P+vLLL60vv/zSGjhwoPXYY49ZX375pfX111/bdQm9WrjzX7ZsmZWUlGS999571rFjx4K3U6dO2XUJvVq483/++eet6upq69ChQ9a+ffusFStWWImJidbrr79u1yX0WuHO/sf4KR579LlAsSzLevnll63BgwdbSUlJ1tixY63t27cHH/vZz35mzZw5M2T9X//6V+v666+3kpKSrBtvvNH629/+1sM7jh3hzP7w4cOWpA63n/3sZz2/8RgRzvxzcnI6nf8zzzzT8xuPEeHM/3e/+501dOhQKzk52briiissj8djrV271oZdx4Zw/73/QwSKPeIsy7LsevUGAACgM33qe1AAAEDvQKAAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwzv8DdcWvrlNHfccAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de2xUZf7H8U8v06lFpqVgO1QKIqwCCkJAYPaniNALl+CtyS7qIhoCu6SYaFdk66IUUMsSIqymSnQR3F0rLsZLYBE61BVWLSCNjdyWCMFFhZYIoQUahmnn/P7YdGJtuUw70/N0+n4lkzhnnp55zpdW3047NMayLEsAAAAGibV7AwAAAD9HoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwTrzdG2iLQCCg48ePq3v37oqJibF7OwAA4CpYlqWzZ88qIyNDsbGXf42kUwbK8ePHlZmZafc2AABAG3z33Xfq06fPZdd0ykDp3r27pP9doMvlCuu5/X6/ysrKlJOTI4fDEdZz4/KYvb2Yv72Yv32Yfcepq6tTZmZm8L/jl9MpA6Xp2zoulysigZKUlCSXy8Unagdj9vZi/vZi/vZh9h3van48gx+SBQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAceLt3oCpbi3aKl/jlX8dtCm+XTbV7i0AABA2vIICAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjhBQor732moYNGyaXyyWXyyWPx6OPP/44+PiFCxeUn5+vnj176tprr1VeXp5qamqanePYsWOaOnWqkpKSlJaWpvnz56uhoSE8VwMAAKJCSIHSp08fLVu2TJWVldqzZ48mTJige++9V/v375ckPfnkk9q4caM2bNig7du36/jx43rggQeCH9/Y2KipU6fq4sWL+uKLL/TWW29p3bp1eu6558J7VQAAoFOLD2XxtGnTmt1/4YUX9Nprr2nnzp3q06eP1qxZo9LSUk2YMEGStHbtWg0ePFg7d+7U2LFjVVZWpgMHDmjbtm1KT0/X8OHDtXTpUi1YsEBFRUVKSEgI35UBAIBOK6RA+anGxkZt2LBB58+fl8fjUWVlpfx+v7KysoJrBg0apL59+6qiokJjx45VRUWFhg4dqvT09OCa3NxczZ07V/v379eIESNafS6fzyefzxe8X1dXJ0ny+/3y+/1tvYRWNZ3PGWuF9byRFu452KHpGqLhWjoj5m8v5m8fZt9xQplxyIGyd+9eeTweXbhwQddee60++OADDRkyRFVVVUpISFBKSkqz9enp6aqurpYkVVdXN4uTpsebHruU4uJiLV68uMXxsrIyJSUlhXoJV2XpqEBEzhspmzdvtnsLYeP1eu3eQpfG/O3F/O3D7COvvr7+qteGHCg333yzqqqqVFtbq/fee08zZ87U9u3bQz1NSAoLC1VQUBC8X1dXp8zMTOXk5MjlcoX1ufx+v7xer57dEytfICas546kfUW5dm+h3Zpmn52dLYfDYfd2uhzmby/mbx9m33GavgNyNUIOlISEBA0cOFCSNHLkSH355Zf685//rF//+te6ePGizpw50+xVlJqaGrndbkmS2+3W7t27m52v6V0+TWta43Q65XQ6Wxx3OBwR+2TyBWLka+w8gRJNX1SR/HPFlTF/ezF/+zD7yAtlvu3+e1ACgYB8Pp9Gjhwph8Oh8vLy4GOHDh3SsWPH5PF4JEkej0d79+7VyZMng2u8Xq9cLpeGDBnS3q0AAIAoEdIrKIWFhZo8ebL69u2rs2fPqrS0VJ9++qm2bt2q5ORkzZo1SwUFBUpNTZXL5dLjjz8uj8ejsWPHSpJycnI0ZMgQzZgxQ8uXL1d1dbUWLlyo/Pz8Vl8hAQAAXVNIgXLy5Ek98sgjOnHihJKTkzVs2DBt3bpV2dnZkqSVK1cqNjZWeXl58vl8ys3N1auvvhr8+Li4OG3atElz586Vx+NRt27dNHPmTC1ZsiS8VwUAADq1kAJlzZo1l308MTFRJSUlKikpueSafv36RdU7TgAAQPjxu3gAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGCekQCkuLtbtt9+u7t27Ky0tTffdd58OHTrUbM348eMVExPT7Pa73/2u2Zpjx45p6tSpSkpKUlpamubPn6+Ghob2Xw0AAIgK8aEs3r59u/Lz83X77beroaFBzzzzjHJycnTgwAF169YtuG727NlasmRJ8H5SUlLwnxsbGzV16lS53W598cUXOnHihB555BE5HA69+OKLYbgkAADQ2YUUKFu2bGl2f926dUpLS1NlZaXGjRsXPJ6UlCS3293qOcrKynTgwAFt27ZN6enpGj58uJYuXaoFCxaoqKhICQkJbbgMAAAQTUIKlJ+rra2VJKWmpjY7/vbbb+vvf/+73G63pk2bpmeffTb4KkpFRYWGDh2q9PT04Prc3FzNnTtX+/fv14gRI1o8j8/nk8/nC96vq6uTJPn9fvn9/vZcQgtN53PGWmE9b6SFew52aLqGaLiWzoj524v524fZd5xQZhxjWVab/kscCAR0zz336MyZM/rss8+Cx19//XX169dPGRkZ+vrrr7VgwQKNHj1a77//viRpzpw5+u9//6utW7cGP6a+vl7dunXT5s2bNXny5BbPVVRUpMWLF7c4Xlpa2uzbRwAAwFz19fV66KGHVFtbK5fLddm1bX4FJT8/X/v27WsWJ9L/AqTJ0KFD1bt3b02cOFFHjhzRgAED2vRchYWFKigoCN6vq6tTZmamcnJyrniBofL7/fJ6vXp2T6x8gZiwnjuS9hXl2r2FdmuafXZ2thwOh93b6XKYv72Yv32Yfcdp+g7I1WhToMybN0+bNm3Sjh071KdPn8uuHTNmjCTp8OHDGjBggNxut3bv3t1sTU1NjSRd8udWnE6nnE5ni+MOhyNin0y+QIx8jZ0nUKLpiyqSf664MuZvL+ZvH2YfeaHMN6S3GVuWpXnz5umDDz7QJ598ov79+1/xY6qqqiRJvXv3liR5PB7t3btXJ0+eDK7xer1yuVwaMmRIKNsBAABRKqRXUPLz81VaWqqPPvpI3bt3V3V1tSQpOTlZ11xzjY4cOaLS0lJNmTJFPXv21Ndff60nn3xS48aN07BhwyRJOTk5GjJkiGbMmKHly5erurpaCxcuVH5+fquvkgAAgK4npFdQXnvtNdXW1mr8+PHq3bt38Pbuu+9KkhISErRt2zbl5ORo0KBB+v3vf6+8vDxt3LgxeI64uDht2rRJcXFx8ng8+s1vfqNHHnmk2d+bAgAAuraQXkG50ht+MjMztX379iuep1+/ftq8eXMoTw0AALoQfhcPAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIwTUqAUFxfr9ttvV/fu3ZWWlqb77rtPhw4darbmwoULys/PV8+ePXXttdcqLy9PNTU1zdYcO3ZMU6dOVVJSktLS0jR//nw1NDS0/2oAAEBUCClQtm/frvz8fO3cuVNer1d+v185OTk6f/58cM2TTz6pjRs3asOGDdq+fbuOHz+uBx54IPh4Y2Ojpk6dqosXL+qLL77QW2+9pXXr1um5554L31UBAIBOLT6UxVu2bGl2f926dUpLS1NlZaXGjRun2tparVmzRqWlpZowYYIkae3atRo8eLB27typsWPHqqysTAcOHNC2bduUnp6u4cOHa+nSpVqwYIGKioqUkJAQvqsDAACdUkiB8nO1tbWSpNTUVElSZWWl/H6/srKygmsGDRqkvn37qqKiQmPHjlVFRYWGDh2q9PT04Jrc3FzNnTtX+/fv14gRI1o8j8/nk8/nC96vq6uTJPn9fvn9/vZcQgtN53PGWmE9b6SFew52aLqGaLiWzoj524v524fZd5xQZtzmQAkEAnriiSf0f//3f7r11lslSdXV1UpISFBKSkqztenp6aqurg6u+WmcND3e9FhriouLtXjx4hbHy8rKlJSU1NZLuKylowIROW+kbN682e4thI3X67V7C10a87cX87cPs4+8+vr6q17b5kDJz8/Xvn379Nlnn7X1FFetsLBQBQUFwft1dXXKzMxUTk6OXC5XWJ/L7/fL6/Xq2T2x8gViwnruSNpXlGv3FtqtafbZ2dlyOBx2b6fLYf72Yv72YfYdp+k7IFejTYEyb948bdq0STt27FCfPn2Cx91uty5evKgzZ840exWlpqZGbrc7uGb37t3Nztf0Lp+mNT/ndDrldDpbHHc4HBH7ZPIFYuRr7DyBEk1fVJH8c8WVMX97MX/7MPvIC2W+Ib2Lx7IszZs3Tx988IE++eQT9e/fv9njI0eOlMPhUHl5efDYoUOHdOzYMXk8HkmSx+PR3r17dfLkyeAar9crl8ulIUOGhLIdAAAQpUJ6BSU/P1+lpaX66KOP1L179+DPjCQnJ+uaa65RcnKyZs2apYKCAqWmpsrlcunxxx+Xx+PR2LFjJUk5OTkaMmSIZsyYoeXLl6u6uloLFy5Ufn5+q6+SAACAriekQHnttdckSePHj292fO3atXr00UclSStXrlRsbKzy8vLk8/mUm5urV199Nbg2Li5OmzZt0ty5c+XxeNStWzfNnDlTS5Ysad+VAACAqBFSoFjWld96m5iYqJKSEpWUlFxyTb9+/aLqXScAACC8+F08AADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIwTcqDs2LFD06ZNU0ZGhmJiYvThhx82e/zRRx9VTExMs9ukSZOarTl9+rQefvhhuVwupaSkaNasWTp37lz7rgQAAESNkAPl/Pnzuu2221RSUnLJNZMmTdKJEyeCt3feeafZ4w8//LD2798vr9erTZs2aceOHZozZ07ouwcAAFEpPtQPmDx5siZPnnzZNU6nU263u9XHDh48qC1btujLL7/UqFGjJEmvvPKKpkyZohUrVigjIyPULQEAgCgTcqBcjU8//VRpaWnq0aOHJkyYoOeff149e/aUJFVUVCglJSUYJ5KUlZWl2NhY7dq1S/fff3+L8/l8Pvl8vuD9uro6SZLf75ff7w/r3pvO54y1wnreSAv3HOzQdA3RcC2dEfO3F/O3D7PvOKHMOOyBMmnSJD3wwAPq37+/jhw5omeeeUaTJ09WRUWF4uLiVF1drbS0tOabiI9XamqqqqurWz1ncXGxFi9e3OJ4WVmZkpKSwn0JkqSlowIROW+kbN682e4thI3X67V7C10a87cX87cPs4+8+vr6q14b9kCZPn168J+HDh2qYcOGacCAAfr00081ceLENp2zsLBQBQUFwft1dXXKzMxUTk6OXC5Xu/f8U36/X16vV8/uiZUvEBPWc0fSvqJcu7fQbk2zz87OlsPhsHs7XQ7ztxfztw+z7zhN3wG5GhH5Fs9P3XjjjerVq5cOHz6siRMnyu126+TJk83WNDQ06PTp05f8uRWn0ymn09niuMPhiNgnky8QI19j5wmUaPqiiuSfK66M+duL+duH2UdeKPON+N+D8v333+vUqVPq3bu3JMnj8ejMmTOqrKwMrvnkk08UCAQ0ZsyYSG8HAAB0AiG/gnLu3DkdPnw4eP/o0aOqqqpSamqqUlNTtXjxYuXl5cntduvIkSN6+umnNXDgQOXm/u9bEIMHD9akSZM0e/ZsrV69Wn6/X/PmzdP06dN5Bw8AAJDUhldQ9uzZoxEjRmjEiBGSpIKCAo0YMULPPfec4uLi9PXXX+uee+7RTTfdpFmzZmnkyJH697//3exbNG+//bYGDRqkiRMnasqUKbrjjjv0+uuvh++qAABApxbyKyjjx4+XZV36Lbhbt2694jlSU1NVWloa6lMDAIAugt/FAwAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjhBwoO3bs0LRp05SRkaGYmBh9+OGHzR63LEvPPfecevfurWuuuUZZWVn65ptvmq05ffq0Hn74YblcLqWkpGjWrFk6d+5c+64EAABEjZAD5fz587rttttUUlLS6uPLly/Xyy+/rNWrV2vXrl3q1q2bcnNzdeHCheCahx9+WPv375fX69WmTZu0Y8cOzZkzp+1XAQAAokp8qB8wefJkTZ48udXHLMvSqlWrtHDhQt17772SpL/+9a9KT0/Xhx9+qOnTp+vgwYPasmWLvvzyS40aNUqS9Morr2jKlClasWKFMjIy2nE5AAAgGoQcKJdz9OhRVVdXKysrK3gsOTlZY8aMUUVFhaZPn66KigqlpKQE40SSsrKyFBsbq127dun+++9vcV6fzyefzxe8X1dXJ0ny+/3y+/3hvITg+ZyxVljPG2nhnoMdmq4hGq6lM2L+9mL+9mH2HSeUGYc1UKqrqyVJ6enpzY6np6cHH6uurlZaWlrzTcTHKzU1Nbjm54qLi7V48eIWx8vKypSUlBSOrbewdFQgIueNlM2bN9u9hbDxer12b6FLY/72Yv72YfaRV19ff9VrwxookVJYWKiCgoLg/bq6OmVmZionJ0culyusz+X3++X1evXsnlj5AjFhPXck7SvKtXsL7dY0++zsbDkcDru30+Uwf3sxf/sw+47T9B2QqxHWQHG73ZKkmpoa9e7dO3i8pqZGw4cPD645efJks49raGjQ6dOngx//c06nU06ns8Vxh8MRsU8mXyBGvsbOEyjR9EUVyT9XXBnztxfztw+zj7xQ5hvWvwelf//+crvdKi8vDx6rq6vTrl275PF4JEkej0dnzpxRZWVlcM0nn3yiQCCgMWPGhHM7AACgkwr5FZRz587p8OHDwftHjx5VVVWVUlNT1bdvXz3xxBN6/vnn9Ytf/EL9+/fXs88+q4yMDN13332SpMGDB2vSpEmaPXu2Vq9eLb/fr3nz5mn69Om8gwcAAEhqQ6Ds2bNHd999d/B+08+GzJw5U+vWrdPTTz+t8+fPa86cOTpz5ozuuOMObdmyRYmJicGPefvttzVv3jxNnDhRsbGxysvL08svvxyGywEAANEg5EAZP368LOvSb8GNiYnRkiVLtGTJkkuuSU1NVWlpaahPDQAAugh+Fw8AADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA44Q9UIqKihQTE9PsNmjQoODjFy5cUH5+vnr27Klrr71WeXl5qqmpCfc2AABAJxaRV1BuueUWnThxInj77LPPgo89+eST2rhxozZs2KDt27fr+PHjeuCBByKxDQAA0EnFR+Sk8fFyu90tjtfW1mrNmjUqLS3VhAkTJElr167V4MGDtXPnTo0dOzYS2wEAAJ1MRALlm2++UUZGhhITE+XxeFRcXKy+ffuqsrJSfr9fWVlZwbWDBg1S3759VVFRcclA8fl88vl8wft1dXWSJL/fL7/fH9a9N53PGWuF9byRFu452KHpGqLhWjoj5m8v5m8fZt9xQplxjGVZYf0v8ccff6xz587p5ptv1okTJ7R48WL98MMP2rdvnzZu3KjHHnusWWxI0ujRo3X33XfrT3/6U6vnLCoq0uLFi1scLy0tVVJSUji3DwAAIqS+vl4PPfSQamtr5XK5Lrs27IHyc2fOnFG/fv300ksv6ZprrmlToLT2CkpmZqZ+/PHHK15gqPx+v7xer57dEytfICas546kfUW5dm+h3Zpmn52dLYfDYfd2uhzmby/mbx9m33Hq6urUq1evqwqUiHyL56dSUlJ000036fDhw8rOztbFixd15swZpaSkBNfU1NS0+jMrTZxOp5xOZ4vjDocjYp9MvkCMfI2dJ1Ci6Ysqkn+uuDLmby/mbx9mH3mhzDfifw/KuXPndOTIEfXu3VsjR46Uw+FQeXl58PFDhw7p2LFj8ng8kd4KAADoJML+CspTTz2ladOmqV+/fjp+/LgWLVqkuLg4Pfjgg0pOTtasWbNUUFCg1NRUuVwuPf744/J4PLyDBwAABIU9UL7//ns9+OCDOnXqlK677jrdcccd2rlzp6677jpJ0sqVKxUbG6u8vDz5fD7l5ubq1VdfDfc2AABAJxb2QFm/fv1lH09MTFRJSYlKSkrC/dQAACBK8Lt4AACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxom3ewPoum74wz+b3XfGWVo+Wrq1aKt8jTE27eryvl021e4tAECXQKAAUe7nIXgpJgUiIQiAb/EAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMwy8LBEJwtb94DwDQPryCAgAAjEOgAAAA4/AtnijBtx4AANHE1ldQSkpKdMMNNygxMVFjxozR7t277dwOAAAwhG2voLz77rsqKCjQ6tWrNWbMGK1atUq5ubk6dOiQ0tLS7NoWALRJe1/FdMZZWj5aurVoq3yNMWHa1eV9u2xqhzxPV9dZX+G2+/PDtldQXnrpJc2ePVuPPfaYhgwZotWrVyspKUlvvvmmXVsCAACGsOUVlIsXL6qyslKFhYXBY7GxscrKylJFRUWL9T6fTz6fL3i/trZWknT69Gn5/f6w7s3v96u+vl7x/lg1Bjrm/2LwP/EBS/X1AWZvE5Pmf+rUKVufvy3iG8637+NtmP/Ap/7RIc8TTrsKJ4b9nE3/3j916pQcDkfYz9/ezw27ROLr8OzZs5Iky7KuvNiywQ8//GBJsr744otmx+fPn2+NHj26xfpFixZZkrhx48aNGzduUXD77rvvrtgKneJdPIWFhSooKAjeDwQCOn36tHr27KmYmPD+n0ZdXZ0yMzP13XffyeVyhfXcuDxmby/mby/mbx9m33Esy9LZs2eVkZFxxbW2BEqvXr0UFxenmpqaZsdramrkdrtbrHc6nXI6nc2OpaSkRHSPLpeLT1SbMHt7MX97MX/7MPuOkZycfFXrbPkh2YSEBI0cOVLl5eXBY4FAQOXl5fJ4PHZsCQAAGMS2b/EUFBRo5syZGjVqlEaPHq1Vq1bp/Pnzeuyxx+zaEgAAMERcUVFRkR1PfOuttyolJUUvvPCCVqxYIUl6++23dfPNN9uxnWbi4uI0fvx4xcd3ih/RiSrM3l7M317M3z7M3jwxlnU17/UBAADoOPyyQAAAYBwCBQAAGIdAAQAAxiFQAACAcbpkoJSUlOiGG25QYmKixowZo927d192/YYNGzRo0CAlJiZq6NCh2rx5cwftNPqEMvv9+/crLy9PN9xwg2JiYrRq1aoO3Gl0CmX+b7zxhu6880716NFDPXr0UFZW1hW/VnB5ocz//fff16hRo5SSkqJu3bpp+PDh+tvf/taBu40uof57v8n69esVExOj++67L8I7RAvh+X6UMWcAAATNSURBVO06ncf69euthIQE680337T2799vzZ4920pJSbFqampaXf/5559bcXFx1vLly60DBw5YCxcutBwOh7V3794O3nnnF+rsd+/ebT311FPWO++8Y7ndbmvlypUdvOPoEur8H3roIaukpMT66quvrIMHD1qPPvqolZycbH3//fcdvPPoEOr8//Wvf1nvv/++deDAAevw4cPWqlWrrLi4OGvLli0dvPPOL9TZNzl69Kh1/fXXW3feead17733dtBu0aTLBcro0aOt/Pz84P3GxkYrIyPDKi4ubnX9r371K2vq1KnNjo0ZM8b67W9/G9F9RqNQZ/9T/fr1I1DaqT3ztyzLamhosLp372699dZbkdpiVGvv/C3LskaMGGEtXLgwEtuLam2ZfUNDg/XLX/7S+stf/mLNnDmTQLFBl/oWz8WLF1VZWamsrKzgsdjYWGVlZamioqLVj6moqGi2XpJyc3MvuR6ta8vsET7hmH99fb38fr9SU1Mjtc2o1d75W5al8vJyHTp0SOPGjYvkVqNOW2e/ZMkSpaWladasWR2xTbSiS/2VeT/++KMaGxuVnp7e7Hh6err+85//tPox1dXVra6vrq6O2D6jUVtmj/AJx/wXLFigjIyMFsGOK2vr/Gtra3X99dfL5/MpLi5Or776qrKzsyO93ajSltl/9tlnWrNmjaqqqjpii7iELhUoANpm2bJlWr9+vT799FMlJibavZ0uo3v37qqqqtK5c+dUXl6ugoIC3XjjjRo/frzdW4taZ8+e1YwZM/TGG2+oV69edm+nS+tSgdKrVy/FxcWppqam2fGamhq53e5WP8btdoe0Hq1ry+wRPu2Z/4oVK7Rs2TJt27ZNw4YNi+Q2o1Zb5x8bG6uBAwdKkoYPH66DBw+quLiYQAlBqLM/cuSIvv32W02bNi14LBAISJLi4+N16NAhDRgwILKbhqQu9jbjhIQEjRw5UuXl5cFjgUBA5eXl8ng8rX6Mx+Nptl6SvF7vJdejdW2ZPcKnrfNfvny5li5dqi1btmjUqFEdsdWoFK7P/0AgIJ/PF4ktRq1QZz9o0CDt3btXVVVVwds999yju+++W1VVVcrMzOzI7Xdtdv+Ubkdbv3695XQ6rXXr1lkHDhyw5syZY6WkpFjV1dWWZVnWjBkzrD/84Q/B9Z9//rkVHx9vrVixwjp48KC1aNEi3mbcRqHO3ufzWV999ZX11VdfWb1797aeeuop66uvvrK++eYbuy6hUwt1/suWLbMSEhKs9957zzpx4kTwdvbsWbsuoVMLdf4vvviiVVZWZh05csQ6cOCAtWLFCis+Pt5644037LqETivU2f8c7+KxR5cLFMuyrFdeecXq27evlZCQYI0ePdrauXNn8LG77rrLmjlzZrP1//jHP6ybbrrJSkhIsG655Rbrn//8ZwfvOHqEMvujR49aklrc7rrrro7feJQIZf79+vVrdf6LFi3q+I1HiVDm/8c//tEaOHCglZiYaPXo0cPyeDzW+vXrbdh1dAj13/s/RaDYI8ayLMuuV28AAABa06V+BgUAAHQOBAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADj/D9Ul8BJasvgPAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -3794,22 +3771,42 @@ }, { "cell_type": "code", - "execution_count": 135, + "execution_count": 141, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(390, 58)" + ] + }, + "execution_count": 141, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "normalizedCommunityTopics.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 142, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Text(0.5, 0, 'Entropy')" + "Text(0, 0.5, 'Frequency')" ] }, - "execution_count": 135, + "execution_count": 142, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGwCAYAAACD0J42AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3BUZZ7/8U8n6XQI0IkBc1sCMooQBIFFAq2WBgkJl2IGZWsWh1VUBkYmsQazi4IFkoCzcSzXy1gZWUsH3B0zuq4LrohABAmrBpAAy0WWAhZFhYQdGBJDxqZJn98f/tIzTbj0Cd3pJ8n7VXVKzznPeZ7nfDkcPnX65rAsyxIAAIBBYqI9AQAAgAsRUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjBMX7Qm0hd/v1/Hjx9WzZ085HI5oTwcAAITAsix9++23yszMVEzM5Z+RdMiAcvz4cWVlZUV7GgAAoA2++uor9enT57JtOmRA6dmzp6TvT9Dtdoe1b5/Ppw0bNig/P19OpzOsfXc21Cp01Moe6hU6amUP9QpdJGrV0NCgrKyswL/jl9MhA0rLyzputzsiASUxMVFut5uL9wqoVeiolT3UK3TUyh7qFbpI1iqUt2fwJlkAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAceKiPQFTDSlZL2+zI9rTCNkXT0+O9hQAAAgbnqAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYx1ZAKSsr06hRo9SzZ0+lpqZq6tSpOnjwYFCb3NxcORyOoOXhhx8OanPs2DFNnjxZiYmJSk1N1fz583X+/PmrPxsAANApxNlpXFVVpcLCQo0aNUrnz5/XE088ofz8fH3++efq3r17oN3s2bO1dOnSwHpiYmLg/5ubmzV58mSlp6fr008/1YkTJ3T//ffL6XTqH//xH8NwSgAAoKOzFVDWrVsXtL5y5UqlpqaqpqZGd9xxR2B7YmKi0tPTL9rHhg0b9Pnnn+vDDz9UWlqahg8frmXLlunxxx9XSUmJ4uPj23AaAACgM7EVUC5UX18vSUpJSQna/sYbb+h3v/ud0tPTNWXKFC1evDjwFKW6ulpDhw5VWlpaoH1BQYHmzp2r/fv3a8SIEa3G8Xq98nq9gfWGhgZJks/nk8/nu5pTaKWlP1eMFdZ+Iy3cdbAzZjTG7miolT3UK3TUyh7qFbpI1MpOXw7Lstr0L7Hf79cPf/hDnTlzRh9//HFg+yuvvKJ+/fopMzNTe/bs0eOPP66cnBz9x3/8hyRpzpw5+vLLL7V+/frAMU1NTerevbvWrl2riRMnthqrpKREpaWlrbZXVFQEvXwEAADM1dTUpJ/85Ceqr6+X2+2+bNs2P0EpLCzUvn37gsKJ9H0AaTF06FBlZGRo3LhxOnLkiK6//vo2jbVw4UIVFxcH1hsaGpSVlaX8/PwrnqBdPp9PlZWVWrwjRl6/I6x9R9K+koJ2H7OlVuPHj5fT6Wz38TsSamUP9QodtbKHeoUuErVqeQUkFG0KKEVFRVqzZo22bNmiPn36XLbt6NGjJUmHDx/W9ddfr/T0dG3fvj2oTV1dnSRd8n0rLpdLLper1Xan0xmxC8zrd8jb3HECSjT/okXyz6GzoVb2UK/QUSt7qFfowlkrO/3Y+pixZVkqKirSqlWrtGnTJvXv3/+Kx+zevVuSlJGRIUnyeDzau3evTp48GWhTWVkpt9utwYMH25kOAADopGw9QSksLFRFRYXeffdd9ezZU7W1tZKkpKQkdevWTUeOHFFFRYUmTZqkXr16ac+ePXr00Ud1xx136Oabb5Yk5efna/Dgwbrvvvv0zDPPqLa2VosWLVJhYeFFn5IAAICux9YTlJdffln19fXKzc1VRkZGYHnrrbckSfHx8frwww+Vn5+vQYMG6e///u81bdo0vffee4E+YmNjtWbNGsXGxsrj8ejv/u7vdP/99wd9bwoAAOjabD1BudIHfrKyslRVVXXFfvr166e1a9faGRoAAHQh/BYPAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxbAWUsrIyjRo1Sj179lRqaqqmTp2qgwcPBrX57rvvVFhYqF69eqlHjx6aNm2a6urqgtocO3ZMkydPVmJiolJTUzV//nydP3/+6s8GAAB0CrYCSlVVlQoLC7V161ZVVlbK5/MpPz9fZ8+eDbR59NFH9d577+ntt99WVVWVjh8/rnvuuSewv7m5WZMnT9a5c+f06aef6vXXX9fKlSv15JNPhu+sAABAhxZnp/G6deuC1leuXKnU1FTV1NTojjvuUH19vV577TVVVFTorrvukiStWLFC2dnZ2rp1q8aMGaMNGzbo888/14cffqi0tDQNHz5cy5Yt0+OPP66SkhLFx8eH7+wAAECHZCugXKi+vl6SlJKSIkmqqamRz+dTXl5eoM2gQYPUt29fVVdXa8yYMaqurtbQoUOVlpYWaFNQUKC5c+dq//79GjFiRKtxvF6vvF5vYL2hoUGS5PP55PP5ruYUWmnpzxVjhbXfSAt3HeyMGY2xOxpqZQ/1Ch21sod6hS4StbLTV5sDit/v17x583TbbbdpyJAhkqTa2lrFx8crOTk5qG1aWppqa2sDbf4ynLTsb9l3MWVlZSotLW21fcOGDUpMTGzrKVzWslv8Eek3UtauXRu1sSsrK6M2dkdDreyhXqGjVvZQr9CFs1ZNTU0ht21zQCksLNS+ffv08ccft7WLkC1cuFDFxcWB9YaGBmVlZSk/P19utzusY/l8PlVWVmrxjhh5/Y6w9h1J+0oK2n3MllqNHz9eTqez3cfvSKiVPdQrdNTKHuoVukjUquUVkFC0KaAUFRVpzZo12rJli/r06RPYnp6ernPnzunMmTNBT1Hq6uqUnp4eaLN9+/ag/lo+5dPS5kIul0sul6vVdqfTGbELzOt3yNvccQJKNP+iRfLPobOhVvZQr9BRK3uoV+jCWSs7/dj6FI9lWSoqKtKqVau0adMm9e/fP2j/yJEj5XQ6tXHjxsC2gwcP6tixY/J4PJIkj8ejvXv36uTJk4E2lZWVcrvdGjx4sJ3pAACATsrWE5TCwkJVVFTo3XffVc+ePQPvGUlKSlK3bt2UlJSkWbNmqbi4WCkpKXK73XrkkUfk8Xg0ZswYSVJ+fr4GDx6s++67T88884xqa2u1aNEiFRYWXvQpCQAA6HpsBZSXX35ZkpSbmxu0fcWKFXrggQckSc8//7xiYmI0bdo0eb1eFRQU6De/+U2gbWxsrNasWaO5c+fK4/Goe/fumjlzppYuXXp1ZwIAADoNWwHFsq780duEhASVl5ervLz8km369esX1U+dAAAAs/FbPAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxrEdULZs2aIpU6YoMzNTDodDq1evDtr/wAMPyOFwBC0TJkwIanP69GnNmDFDbrdbycnJmjVrlhobG6/uTAAAQKdhO6CcPXtWw4YNU3l5+SXbTJgwQSdOnAgsv//974P2z5gxQ/v371dlZaXWrFmjLVu2aM6cOfZnDwAAOqU4uwdMnDhREydOvGwbl8ul9PT0i+47cOCA1q1bp88++0y33HKLJOmll17SpEmT9OyzzyozM9PulAAAQCdjO6CEYvPmzUpNTdU111yju+66S0899ZR69eolSaqurlZycnIgnEhSXl6eYmJitG3bNt19992t+vN6vfJ6vYH1hoYGSZLP55PP5wvr3Fv6c8VYYe030sJdBztjRmPsjoZa2UO9Qket7KFeoYtErez0FfaAMmHCBN1zzz3q37+/jhw5oieeeEITJ05UdXW1YmNjVVtbq9TU1OBJxMUpJSVFtbW1F+2zrKxMpaWlrbZv2LBBiYmJ4T4FSdKyW/wR6TdS1q5dG7WxKysrozZ2R0Ot7KFeoaNW9lCv0IWzVk1NTSG3DXtAmT59euD/hw4dqptvvlnXX3+9Nm/erHHjxrWpz4ULF6q4uDiw3tDQoKysLOXn58vtdl/1nP+Sz+dTZWWlFu+IkdfvCGvfkbSvpKDdx2yp1fjx4+V0Ott9/I6EWtlDvUJHreyhXqGLRK1aXgEJRURe4vlLP/jBD9S7d28dPnxY48aNU3p6uk6ePBnU5vz58zp9+vQl37ficrnkcrlabXc6nRG7wLx+h7zNHSegRPMvWiT/HDobamUP9QodtbKHeoUunLWy00/Evwfl66+/1qlTp5SRkSFJ8ng8OnPmjGpqagJtNm3aJL/fr9GjR0d6OgAAoAOw/QSlsbFRhw8fDqwfPXpUu3fvVkpKilJSUlRaWqpp06YpPT1dR44c0WOPPaYbbrhBBQXfvwSRnZ2tCRMmaPbs2Vq+fLl8Pp+Kioo0ffp0PsEDAAAkteEJyo4dOzRixAiNGDFCklRcXKwRI0boySefVGxsrPbs2aMf/vCHuvHGGzVr1iyNHDlS//Vf/xX0Es0bb7yhQYMGady4cZo0aZJuv/12vfLKK+E7KwAA0KHZfoKSm5sry7r0R3DXr19/xT5SUlJUUVFhd2gAANBF8Fs8AADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGsR1QtmzZoilTpigzM1MOh0OrV68O2m9Zlp588kllZGSoW7duysvL06FDh4LanD59WjNmzJDb7VZycrJmzZqlxsbGqzsTAADQadgOKGfPntWwYcNUXl5+0f3PPPOMfv3rX2v58uXatm2bunfvroKCAn333XeBNjNmzND+/ftVWVmpNWvWaMuWLZozZ07bzwIAAHQqcXYPmDhxoiZOnHjRfZZl6YUXXtCiRYv0ox/9SJL0L//yL0pLS9Pq1as1ffp0HThwQOvWrdNnn32mW265RZL00ksvadKkSXr22WeVmZl5FacDAAA6A9sB5XKOHj2q2tpa5eXlBbYlJSVp9OjRqq6u1vTp01VdXa3k5ORAOJGkvLw8xcTEaNu2bbr77rtb9ev1euX1egPrDQ0NkiSfzyefzxfOUwj054qxwtpvpIW7DnbGjMbYHQ21sod6hY5a2UO9QheJWtnpK6wBpba2VpKUlpYWtD0tLS2wr7a2VqmpqcGTiItTSkpKoM2FysrKVFpa2mr7hg0blJiYGI6pt7LsFn9E+o2UtWvXRm3sysrKqI3d0VAre6hX6KiVPdQrdOGsVVNTU8htwxpQImXhwoUqLi4OrDc0NCgrK0v5+flyu91hHcvn86myslKLd8TI63eEte9I2ldS0O5jttRq/Pjxcjqd7T5+R0Kt7KFeoaNW9lCv0EWiVi2vgIQirAElPT1dklRXV6eMjIzA9rq6Og0fPjzQ5uTJk0HHnT9/XqdPnw4cfyGXyyWXy9Vqu9PpjNgF5vU75G3uOAElmn/RIvnn0NlQK3uoV+iolT3UK3ThrJWdfsL6PSj9+/dXenq6Nm7cGNjW0NCgbdu2yePxSJI8Ho/OnDmjmpqaQJtNmzbJ7/dr9OjR4ZwOAADooGw/QWlsbNThw4cD60ePHtXu3buVkpKivn37at68eXrqqac0YMAA9e/fX4sXL1ZmZqamTp0qScrOztaECRM0e/ZsLV++XD6fT0VFRZo+fTqf4AEAAJLaEFB27NihsWPHBtZb3hsyc+ZMrVy5Uo899pjOnj2rOXPm6MyZM7r99tu1bt06JSQkBI554403VFRUpHHjxikmJkbTpk3Tr3/96zCcDgAA6AxsB5Tc3FxZ1qU/gutwOLR06VItXbr0km1SUlJUUVFhd2gAANBF8Fs8AADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBx4qI9AXRd1y14P9pTsO2LpydHewoA0CXwBAUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxwh5QSkpK5HA4gpZBgwYF9n/33XcqLCxUr1691KNHD02bNk11dXXhngYAAOjAIvIE5aabbtKJEycCy8cffxzY9+ijj+q9997T22+/raqqKh0/flz33HNPJKYBAAA6qLiIdBoXp/T09Fbb6+vr9dprr6miokJ33XWXJGnFihXKzs7W1q1bNWbMmEhMBwAAdDARCSiHDh1SZmamEhIS5PF4VFZWpr59+6qmpkY+n095eXmBtoMGDVLfvn1VXV19yYDi9Xrl9XoD6w0NDZIkn88nn88X1rm39OeKscLab6SFuw52xmzr2K7YjlVjqe3nerW16mqoV+iolT3UK3SRqJWdvhyWZYX1X4kPPvhAjY2NGjhwoE6cOKHS0lJ988032rdvn9577z09+OCDQWFDknJycjR27Fj96le/umifJSUlKi0tbbW9oqJCiYmJ4Zw+AACIkKamJv3kJz9RfX293G73ZduGPaBc6MyZM+rXr5+ee+45devWrU0B5WJPULKysvSHP/zhiidol8/nU2VlpRbviJHX7whr35G0r6Sg3cdsqdX48ePldDptHz+kZH0EZhVZba3z1daqq6FeoaNW9lCv0EWiVg0NDerdu3dIASUiL/H8peTkZN144406fPiwxo8fr3PnzunMmTNKTk4OtKmrq7voe1ZauFwuuVyuVtudTmfELjCv3yFvc8cJKNH8i9bWP4eOVN8WV1vnSF6znRH1Ch21sod6hS6ctbLTT8S/B6WxsVFHjhxRRkaGRo4cKafTqY0bNwb2Hzx4UMeOHZPH44n0VAAAQAcR9ico//AP/6ApU6aoX79+On78uJYsWaLY2Fjde++9SkpK0qxZs1RcXKyUlBS53W498sgj8ng8fIIHAAAEhD2gfP3117r33nt16tQpXXvttbr99tu1detWXXvttZKk559/XjExMZo2bZq8Xq8KCgr0m9/8JtzTAAAAHVjYA8qbb7552f0JCQkqLy9XeXl5uIcGAACdBL/FAwAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHHioj0BoCO5bsH7bTrOFWvpmRxpSMl6eZsdYZ7V5X3x9OR2HQ8AwoEnKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDhx0Z4AgMi6bsH70Z6CbYeW5Ud7CgCijCcoAADAOAQUAABgHF7iAWCcISXr9UzO9//1NjuiPZ2QfPH05GhPAehUeIICAACMQ0ABAADGIaAAAADjEFAAAIBxohpQysvLdd111ykhIUGjR4/W9u3bozkdAABgiKgFlLfeekvFxcVasmSJdu7cqWHDhqmgoEAnT56M1pQAAIAhovYx4+eee06zZ8/Wgw8+KElavny53n//ff32t7/VggULojUtAGiTaH1jryvWavNHsjviR6Ovts5XU6+uJtrf6ByVgHLu3DnV1NRo4cKFgW0xMTHKy8tTdXV1q/Zer1derzewXl9fL0k6ffq0fD5fWOfm8/nU1NSkOF+Mmv0d5+I9depUu4/ZUqtTp07J6XTaPj7u/NkIzMpMcX5LTU3+DnddRQv1Ct3V1Coa942rdbX3Da6t0J06deqq7vEX8+2330qSLMu6cmMrCr755htLkvXpp58GbZ8/f76Vk5PTqv2SJUssSSwsLCwsLCydYPnqq6+umBU6xDfJLly4UMXFxYF1v9+v06dPq1evXnI4wpuAGxoalJWVpa+++kputzusfXc21Cp01Moe6hU6amUP9QpdJGplWZa+/fZbZWZmXrFtVAJK7969FRsbq7q6uqDtdXV1Sk9Pb9Xe5XLJ5XIFbUtOTo7oHN1uNxdviKhV6KiVPdQrdNTKHuoVunDXKikpKaR2UfkUT3x8vEaOHKmNGzcGtvn9fm3cuFEejycaUwIAAAaJ2ks8xcXFmjlzpm655Rbl5OTohRde0NmzZwOf6gEAAF1XbElJSUk0Bh4yZIiSk5P1y1/+Us8++6wk6Y033tDAgQOjMZ0gsbGxys3NVVxch3iLTlRRq9BRK3uoV+iolT3UK3TRrJXDskL5rA8AAED74bd4AACAcQgoAADAOAQUAABgHAIKAAAwTpcMKOXl5bruuuuUkJCg0aNHa/v27Zdt//bbb2vQoEFKSEjQ0KFDtXbt2naaafTZqdXKlSvlcDiCloSEhHacbfRs2bJFU6ZMUWZmphwOh1avXn3FYzZv3qy//uu/lsvl0g033KCVK1dGfqIGsFurzZs3t7quHA6Hamtr22nG0VNWVqZRo0apZ8+eSk1N1dSpU3Xw4MErHtdV71ltqVdXvW+9/PLLuvnmmwNfwubxePTBBx9c9pj2vq66XEB56623VFxcrCVLlmjnzp0aNmyYCgoKdPLkyYu2//TTT3Xvvfdq1qxZ2rVrl6ZOnaqpU6dq37597Tzz9me3VtL33zh44sSJwPLll1+244yj5+zZsxo2bJjKy8tDan/06FFNnjxZY8eO1e7duzVv3jz99Kc/1fr16yM80+izW6sWBw8eDLq2UlNTIzRDc1RVVamwsFBbt25VZWWlfD6f8vPzdfbspX8wryvfs9pSL6lr3rf69Omjp59+WjU1NdqxY4fuuusu/ehHP9L+/fsv2j4q11V4fv6v48jJybEKCwsD683NzVZmZqZVVlZ20fY//vGPrcmTJwdtGz16tPWzn/0sovM0gd1arVixwkpKSmqv6RlLkrVq1arLtnnsscesm266KWjb3/7t31oFBQWRnJpxQqnVRx99ZEmy/vjHP7bTrMx18uRJS5JVVVV1yTZd+Z51oVDqxX3rz6655hrr1Vdfvei+aFxXXeoJyrlz51RTU6O8vLzAtpiYGOXl5am6uvqix1RXVwe1l6SCgoJLtu8s2lIrSWpsbFS/fv2UlZV12TTe1XXV6+pqDB8+XBkZGRo/frw++eSTaE8nKurr6yVJKSkpl2zDtfVnodRL4r7V3NysN998U2fPnr3kz81E47rqUgHlD3/4g5qbm5WWlha0PS0t7ZKvZ9fW1tpq31m0pVYDBw7Ub3/7W7377rv63e9+J7/fr1tvvVVff/11e0y5Q7nUddXQ0KA//elPUZqVmTIyMrR8+XK98847euedd5SVlaXc3Fzt3Lkz2lNrV36/X/PmzdNtt92mIUOGXLJdV71nXSjUenXl+9bevXvVo0cPuVwuPfzww1q1apUGDx580bbRuK74nl+EjcfjCUrft956q7Kzs/XP//zPWrZsWRRnho5s4MCBQT+Bceutt+rIkSN6/vnn9a//+q9RnFn7Kiws1KPVyJwAAAe8SURBVL59+/Txxx9HeyodQqj16sr3rYEDB2r37t2qr6/Xv//7v2vmzJmqqqq6ZEhpb13qCUrv3r0VGxururq6oO11dXVKT0+/6DHp6em22ncWbanVhZxOp0aMGKHDhw9HYood2qWuK7fbrW7dukVpVh1HTk5Ol7quioqKtGbNGn300Ufq06fPZdt21XvWX7JTrwt1pftWfHy8brjhBo0cOVJlZWUaNmyYXnzxxYu2jcZ11aUCSnx8vEaOHKmNGzcGtvn9fm3cuPGSr7t5PJ6g9pJUWVl5yfadRVtqdaHm5mbt3btXGRkZkZpmh9VVr6tw2b17d5e4rizLUlFRkVatWqVNmzapf//+VzymK19bbanXhbryfcvv98vr9V50X1Suq4i9/dZQb775puVyuayVK1dan3/+uTVnzhwrOTnZqq2ttSzLsu677z5rwYIFgfaffPKJFRcXZz377LPWgQMHrCVLllhOp9Pau3dvtE6h3ditVWlpqbV+/XrryJEjVk1NjTV9+nQrISHB2r9/f7ROod18++231q5du6xdu3ZZkqznnnvO2rVrl/Xll19almVZCxYssO67775A+//93/+1EhMTrfnz51sHDhywysvLrdjYWGvdunXROoV2Y7dWzz//vLV69Wrr0KFD1t69e61f/OIXVkxMjPXhhx9G6xTazdy5c62kpCRr8+bN1okTJwJLU1NToA33rD9rS7266n1rwYIFVlVVlXX06FFrz5491oIFCyyHw2Ft2LDBsiwzrqsuF1Asy7Jeeuklq2/fvlZ8fLyVk5Njbd26NbDvzjvvtGbOnBnU/t/+7d+sG2+80YqPj7duuukm6/3332/nGUePnVrNmzcv0DYtLc2aNGmStXPnzijMuv21fBT2wqWlPjNnzrTuvPPOVscMHz7cio+Pt37wgx9YK1asaPd5R4PdWv3qV7+yrr/+eishIcFKSUmxcnNzrU2bNkVn8u3sYnWSFHStcM/6s7bUq6vetx566CGrX79+Vnx8vHXttdda48aNC4QTyzLjunJYlmVF7vkMAACAfV3qPSgAAKBjIKAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAI2QMPPCCHw9FqmTBhQkjHb968WQ6HQ2fOnInwTAF0dHHRngCAjmXChAlasWJF0DaXyxXWMc6dO6f4+Piw9gmgY+EJCgBbXC6X0tPTg5ZrrrlGkuRwOPTqq6/q7rvvVmJiogYMGKD//M//lCR98cUXGjt2rCTpmmuukcPh0AMPPCBJys3NVVFRkebNm6fevXuroKBAklRVVaWcnBy5XC5lZGRowYIFOn/+fGAuLccVFRUpKSlJvXv31uLFi9XyE2NLly7VkCFDWp3D8OHDtXjx4ojVCMDVI6AACKvS0lL9+Mc/1p49ezRp0iTNmDFDp0+fVlZWlt555x1J0sGDB3XixAm9+OKLgeNef/11xcfH65NPPtHy5cv1zTffaNKkSRo1apT++7//Wy+//LJee+01PfXUU0Hjvf7664qLi9P27dv14osv6rnnntOrr74qSXrooYd04MABffbZZ4H2u3bt0p49e/Tggw+2QzUAtFlEfysZQKcyc+ZMKzY21urevXvQ8stf/tKyrO9/7n7RokWB9o2NjZYk64MPPrAsy7I++ugjS5L1xz/+MajfO++80xoxYkTQtieeeMIaOHCg5ff7A9vKy8utHj16WM3NzYHjsrOzg9o8/vjjVnZ2dmB94sSJ1ty5cwPrjzzyiJWbm3u1pQAQYTxBAWDL2LFjtXv37qDl4YcfDuy/+eabA//fvXt3ud1unTx58or9jhw5Mmj9wIED8ng8cjgcgW233XabGhsb9fXXXwe2jRkzJqiNx+PRoUOH1NzcLEmaPXu2fv/73+u7777TuXPnVFFRoYceesj+iQNoV7xJFoAt3bt31w033HDJ/U6nM2jd4XDI7/eH1G8kTJkyRS6XS6tWrVJ8fLx8Pp/+5m/+JiJjAQgfAgqAdtPyyZyWpxuXk52drXfeeUeWZQWekHzyySfq2bOn+vTpE2i3bdu2oOO2bt2qAQMGKDY2VpIUFxenmTNnasWKFYqPj9f06dPVrVu3cJ0SgAghoACwxev1qra2NmhbXFycevfufcVj+/XrJ4fDoTVr1mjSpEnq1q2bevTocdG2P//5z/XCCy/okUceUVFRkQ4ePKglS5aouLhYMTF/fnX62LFjKi4u1s9+9jPt3LlTL730kv7pn/4pqK+f/vSnys7OlvR9yAFgPgIKAFvWrVunjIyMoG0DBw7U//zP/1zx2L/6q79SaWmpFixYoAcffFD333+/Vq5cecm2a9eu1fz58zVs2DClpKRo1qxZWrRoUVC7+++/X3/605+Uk5Oj2NhY/eIXv9CcOXOC2gwYMEC33nqrTp8+rdGjR9s7YQBR4bCs//+FAQDQweTm5mr48OF64YUXLtvOsiwNGDBAP//5z1VcXNxOswNwNXiCAqBT+7//+z+9+eabqq2t5btPgA6EgAKgU0tNTVXv3r31yiuvBL7xFoD5eIkHAAAYhy9qAwAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACM8/8AcDSyysgPzJoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3QUZZ7/8U/n1iGQABFzWyIgIIIoKApGHQ0CCYTDEWHPDKISkBEviQtGUXBFQJxBUVF0IuweNcEdMzis4gUViFxXBJEAcpGNgBdEkuCAEBOGpknX7w9+6bUNl06nO9158n6d0+dYVU8/9e0vRfOxuqrbZlmWJQAAAEOFBbsAAACAQCLsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYLSLYBYQCl8ulgwcPKjY2VjabLdjlAAAAL1iWpV9++UUpKSkKCzv7+RvCjqSDBw8qNTU12GUAAAAf/PDDD2rfvv1ZtxN2JMXGxko63ay4uDi/zet0OrVixQplZGQoMjLSb/Oain55j155j17VD/3yHr3yXqB6VVlZqdTUVPe/42dD2JHcH13FxcX5PezExMQoLi6OvwheoF/eo1feo1f1Q7+8R6+8F+hene8SFC5QBgAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABgtItgFNAc9ZyyXo8YW7DK89t3TQ4NdAgAAfsOZHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGhBDTuzZ8/WNddco9jYWCUkJGj48OEqLS31GJOeni6bzebxuPfeez3G7N+/X0OHDlVMTIwSEhI0efJknTp1qjFfCgAACFERwdz52rVrlZOTo2uuuUanTp3SY489poyMDH311Vdq2bKle9zdd9+tJ5980r0cExPj/u+amhoNHTpUSUlJ+uyzz1RWVqYxY8YoMjJSf/7znxv19QAAgNAT1LCzbNkyj+XCwkIlJCSopKREN954o3t9TEyMkpKSzjjHihUr9NVXX+mTTz5RYmKievfurVmzZunRRx/VjBkzFBUVVec5DodDDofDvVxZWSlJcjqdcjqd/nhp7vkkyR5m+W3OxuDPHviy32DtvymhV96jV/VDv7xHr7wXqF55O5/NsqyQ+Zd479696tq1q3bs2KGePXtKOv0x1q5du2RZlpKSkjRs2DBNmzbNfXbniSee0Pvvv69t27a55/n222918cUXa8uWLbryyivr7GfGjBmaOXNmnfVFRUUeZ40AAEDoOn78uEaPHq1jx44pLi7urOOCembn11wulyZNmqTrr7/eHXQkafTo0erQoYNSUlK0fft2PfrooyotLdU777wjSSovL1diYqLHXLXL5eXlZ9zX1KlTlZeX516urKxUamqqMjIyztms+nI6nSouLta0zWFyuGx+mzfQds7IDMp+a/s1aNAgRUZGBqWGpoJeeY9e1Q/98h698l6gelX7ycz5hEzYycnJ0c6dO/Xpp596rJ8wYYL7vy+//HIlJydrwIAB2rdvnzp37uzTvux2u+x2e531kZGRATlgHS6bHDVNJ+wE+y9toP4cTESvvEev6od+eY9eec/fvfJ2rpC49Tw3N1dLly7V6tWr1b59+3OO7devn6TTH3lJUlJSkioqKjzG1C6f7TofAADQfAQ17FiWpdzcXC1ZskSrVq1Sp06dzvuc2mtzkpOTJUlpaWnasWOHDh065B5TXFysuLg49ejRIzCFAwCAJiOoH2Pl5OSoqKhI7733nmJjY93X2LRu3VotWrTQvn37VFRUpKysLF1wwQXavn27HnzwQd1444264oorJEkZGRnq0aOH7rzzTs2ZM0fl5eV6/PHHlZOTc8aPqgAAQPMS1DM78+fP17Fjx5Senq7k5GT346233pIkRUVF6ZNPPlFGRoYuvfRSPfTQQxo5cqQ++OAD9xzh4eFaunSpwsPDlZaWpjvuuENjxozx+F4eAADQfAX1zM757npPTU3V2rVrzztPhw4d9NFHH/mrLAAAYJCQuEAZAAAgUAg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYLahhZ/bs2brmmmsUGxurhIQEDR8+XKWlpR5jTpw4oZycHF1wwQVq1aqVRo4cqYqKCo8x+/fv19ChQxUTE6OEhARNnjxZp06dasyXAgAAQlRQw87atWuVk5OjjRs3qri4WE6nUxkZGaqurnaPefDBB/XBBx9o8eLFWrt2rQ4ePKgRI0a4t9fU1Gjo0KE6efKkPvvsMy1cuFCFhYV64okngvGSAABAiIkI5s6XLVvmsVxYWKiEhASVlJToxhtv1LFjx/Taa6+pqKhIN998sySpoKBA3bt318aNG3XttddqxYoV+uqrr/TJJ58oMTFRvXv31qxZs/Too49qxowZioqKCsZLAwAAISKoYee3jh07JkmKj4+XJJWUlMjpdGrgwIHuMZdeeqkuuugibdiwQddee602bNigyy+/XImJie4xmZmZuu+++7Rr1y5deeWVdfbjcDjkcDjcy5WVlZIkp9Mpp9Ppt9dTO5c9zPLbnI3Bnz3wZb/B2n9TQq+8R6/qh355j155L1C98na+kAk7LpdLkyZN0vXXX6+ePXtKksrLyxUVFaU2bdp4jE1MTFR5ebl7zK+DTu322m1nMnv2bM2cObPO+hUrVigmJqbBr+W3Zl3t8vucgfTRRx8Fdf/FxcVB3X9TQq+8R6/qh355j155z9+9On78uFfjQibs5OTkaOfOnfr0008Dvq+pU6cqLy/PvVxZWanU1FRlZGQoLi7Ob/txOp0qLi7WtM1hcrhsfps30HbOyAzKfmv7NWjQIEVGRgalhqaCXnmPXtUP/fIevfJeoHpV+8nM+YRE2MnNzdXSpUu1bt06tW/f3r0+KSlJJ0+e1NGjRz3O7lRUVCgpKck9ZtOmTR7z1d6tVTvmt+x2u+x2e531kZGRATlgHS6bHDVNJ+wE+y9toP4cTESvvEev6od+eY9eec/fvfJ2rqDejWVZlnJzc7VkyRKtWrVKnTp18tjep08fRUZGauXKle51paWl2r9/v9LS0iRJaWlp2rFjhw4dOuQeU1xcrLi4OPXo0aNxXggAAAhZQT2zk5OTo6KiIr333nuKjY11X2PTunVrtWjRQq1bt9b48eOVl5en+Ph4xcXF6YEHHlBaWpquvfZaSVJGRoZ69OihO++8U3PmzFF5ebkef/xx5eTknPHsDQAAaF6CGnbmz58vSUpPT/dYX1BQoLFjx0qSXnjhBYWFhWnkyJFyOBzKzMzUK6+84h4bHh6upUuX6r777lNaWppatmyp7OxsPfnkk431MgAAQAgLatixrPPfkh0dHa38/Hzl5+efdUyHDh2CfgcRAAAITfw2FgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACM5lPY+eabb/xdBwAAQED4FHa6dOmi/v37669//atOnDjh75oAAAD8xqews2XLFl1xxRXKy8tTUlKS7rnnHm3atMnftQEAADSYT2Gnd+/emjdvng4ePKjXX39dZWVluuGGG9SzZ0/NnTtXP/30k7/rBAAA8EmDLlCOiIjQiBEjtHjxYj3zzDPau3evHn74YaWmpmrMmDEqKyvzV50AAAA+aVDY2bx5s+6//34lJydr7ty5evjhh7Vv3z4VFxfr4MGDuuWWW/xVJwAAgE8ifHnS3LlzVVBQoNLSUmVlZemNN95QVlaWwsJOZ6dOnTqpsLBQHTt29GetAAAA9eZT2Jk/f77uuusujR07VsnJyWcck5CQoNdee61BxQEAADSUT2Fnz5495x0TFRWl7OxsX6YHAADwG5+u2SkoKNDixYvrrF+8eLEWLlzY4KIAAAD8xaewM3v2bLVr167O+oSEBP35z39ucFEAAAD+4lPY2b9/vzp16lRnfYcOHbR///4GFwUAAOAvPoWdhIQEbd++vc76L7/8UhdccEGDiwIAAPAXn8LObbfdpn/7t3/T6tWrVVNTo5qaGq1atUoTJ07UqFGj/F0jAACAz3y6G2vWrFn67rvvNGDAAEVEnJ7C5XJpzJgxXLMDAABCik9hJyoqSm+99ZZmzZqlL7/8Ui1atNDll1+uDh06+Ls+AACABvEp7NS65JJLdMkll/irFgAAAL/zKezU1NSosLBQK1eu1KFDh+RyuTy2r1q1yi/FAQAANJRPYWfixIkqLCzU0KFD1bNnT9lsNn/XBQAA4Bc+hZ1Fixbp73//u7Kyshq083Xr1unZZ59VSUmJysrKtGTJEg0fPty9fezYsXW+kTkzM1PLli1zLx85ckQPPPCAPvjgA4WFhWnkyJGaN2+eWrVq1aDaAACAGXy69TwqKkpdunRp8M6rq6vVq1cv5efnn3XM4MGDVVZW5n787W9/89h+++23a9euXSouLtbSpUu1bt06TZgwocG1AQAAM/h0Zuehhx7SvHnz9Je//KVBH2ENGTJEQ4YMOecYu92upKSkM27bvXu3li1bpi+++EJXX321JOnll19WVlaWnnvuOaWkpPhcGwAAMINPYefTTz/V6tWr9fHHH+uyyy5TZGSkx/Z33nnHL8VJ0po1a5SQkKC2bdvq5ptv1lNPPeX+luYNGzaoTZs27qAjSQMHDlRYWJg+//xz3XrrrWec0+FwyOFwuJcrKyslSU6nU06n02+1185lD7P8Nmdj8GcPfNlvsPbflNAr79Gr+qFf3qNX3gtUr7ydz6ew06ZNm7MGCX8aPHiwRowYoU6dOmnfvn167LHHNGTIEG3YsEHh4eEqLy9XQkKCx3MiIiIUHx+v8vLys847e/ZszZw5s876FStWKCYmxu+vY9bVrvMPCiEfffRRUPdfXFwc1P03JfTKe/SqfuiX9+iV9/zdq+PHj3s1zqewU1BQ4MvT6u3XPz1x+eWX64orrlDnzp21Zs0aDRgwwOd5p06dqry8PPdyZWWlUlNTlZGRobi4uAbV/GtOp1PFxcWatjlMDlfTuWNt54zMoOy3tl+DBg2qc7YQnuiV9+hV/dAv79Er7wWqV7WfzJyPz18qeOrUKa1Zs0b79u3T6NGjFRsbq4MHDyouLi5gd0JdfPHFateunfbu3asBAwYoKSlJhw4dqlPXkSNHznqdj3T6OiC73V5nfWRkZEAOWIfLJkdN0wk7wf5LG6g/BxPRK+/Rq/qhX96jV97zd6+8ncunsPP9999r8ODB2r9/vxwOhwYNGqTY2Fg988wzcjgcWrBggS/TnteBAwd0+PBhJScnS5LS0tJ09OhRlZSUqE+fPpJOf6Ghy+VSv379AlIDAABoWny69XzixIm6+uqr9fPPP6tFixbu9bfeeqtWrlzp9TxVVVXatm2btm3bJkn69ttvtW3bNu3fv19VVVWaPHmyNm7cqO+++04rV67ULbfcoi5duigz8/THLN27d9fgwYN19913a9OmTVq/fr1yc3M1atQo7sQCAACSfDyz8z//8z/67LPPFBUV5bG+Y8eO+vHHH72eZ/Pmzerfv797ufY6muzsbM2fP1/bt2/XwoULdfToUaWkpCgjI0OzZs3y+AjqzTffVG5urgYMGOD+UsGXXnrJl5cFAAAM5FPYcblcqqmpqbP+wIEDio2N9Xqe9PR0WdbZb8tevnz5eeeIj49XUVGR1/sEAADNi08fY2VkZOjFF190L9tsNlVVVWn69OkN/gkJAAAAf/LpzM7zzz+vzMxM9ejRQydOnNDo0aO1Z88etWvXrs7POQAAAASTT2Gnffv2+vLLL7Vo0SJt375dVVVVGj9+vG6//XaPC5YBAACCzefv2YmIiNAdd9zhz1oAAAD8zqew88Ybb5xz+5gxY3wqBgAAwN98CjsTJ070WHY6nTp+/LiioqIUExND2AEAACHDp7uxfv75Z49HVVWVSktLdcMNN3CBMgAACCk+hZ0z6dq1q55++uk6Z30AAACCyW9hRzp90fLBgwf9OSUAAECD+HTNzvvvv++xbFmWysrK9Je//EXXX3+9XwoDAADwB5/CzvDhwz2WbTabLrzwQt188816/vnn/VIYAACAP/j821gAAABNgV+v2QEAAAg1Pp3ZycvL83rs3LlzfdkFAACAX/gUdrZu3aqtW7fK6XSqW7dukqSvv/5a4eHhuuqqq9zjbDabf6oEAADwkU9hZ9iwYYqNjdXChQvVtm1bSae/aHDcuHH63e9+p4ceesivRQIAAPjKp2t2nn/+ec2ePdsddCSpbdu2euqpp7gbCwAAhBSfwk5lZaV++umnOut/+ukn/fLLLw0uCgAAwF98Cju33nqrxo0bp3feeUcHDhzQgQMH9Pbbb2v8+PEaMWKEv2sEAADwmU/X7CxYsEAPP/ywRo8eLafTeXqiiAiNHz9ezz77rF8LBAAAaAifwk5MTIxeeeUVPfvss9q3b58kqXPnzmrZsqVfiwMAAGioBn2pYFlZmcrKytS1a1e1bNlSlmX5qy4AAAC/8CnsHD58WAMGDNAll1yirKwslZWVSZLGjx/PbecAACCk+BR2HnzwQUVGRmr//v2KiYlxr//DH/6gZcuW+a04AACAhvLpmp0VK1Zo+fLlat++vcf6rl276vvvv/dLYQAAAP7g05md6upqjzM6tY4cOSK73d7gogAAAPzFp7Dzu9/9Tm+88YZ72WazyeVyac6cOerfv7/figMAAGgonz7GmjNnjgYMGKDNmzfr5MmTeuSRR7Rr1y4dOXJE69ev93eNAAAAPvPpzE7Pnj319ddf64YbbtAtt9yi6upqjRgxQlu3blXnzp39XSMAAIDP6n1mx+l0avDgwVqwYIH+/d//PRA1AQAA+E29z+xERkZq+/btgagFAADA73z6GOuOO+7Qa6+95u9aAAAA/M6nC5RPnTql119/XZ988on69OlT5zex5s6d65fiAAAAGqpeYeebb75Rx44dtXPnTl111VWSpK+//tpjjM1m8191AAAADVSvsNO1a1eVlZVp9erVkk7/PMRLL72kxMTEgBQHAADQUPW6Zue3v2r+8ccfq7q62q8FAQAA+JNPFyjX+m34AQAACDX1Cjs2m63ONTlcowMAAEJZva7ZsSxLY8eOdf/Y54kTJ3TvvffWuRvrnXfe8V+FAAAADVCvsJOdne2xfMcdd/i1GAAAAH+rV9gpKCgIVB0AAAAB0aALlAEAAEIdYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAowU17Kxbt07Dhg1TSkqKbDab3n33XY/tlmXpiSeeUHJyslq0aKGBAwdqz549HmOOHDmi22+/XXFxcWrTpo3Gjx+vqqqqxnwZAAAghAU17FRXV6tXr17Kz88/4/Y5c+bopZde0oIFC/T555+rZcuWyszM1IkTJ9xjbr/9du3atUvFxcVaunSp1q1bpwkTJjTWSwAAACEuIpg7HzJkiIYMGXLGbZZl6cUXX9Tjjz+uW265RZL0xhtvKDExUe+++65GjRql3bt3a9myZfriiy909dVXS5JefvllZWVl6bnnnlNKSsoZ53Y4HHI4HO7lyspKSZLT6ZTT6fTb66udyx5m+W3OxuDPHviy32DtvymhV96jV/VDv7xHr7wXqF55O5/NsqyQ+JfYZrNpyZIlGj58uCTpm2++UefOnbV161b17t3bPe6mm25S7969NW/ePL3++ut66KGH9PPPP7u3nzp1StHR0Vq8eLFuvfXWM+5rxowZmjlzZp31RUVFiomJ8fMrAwAAgXD8+HGNHj1ax44dU1xc3FnHBfXMzrmUl5dLkhITEz3WJyYmureVl5crISHBY3tERITi4+PdY85k6tSpysvLcy9XVlYqNTVVGRkZ52xWfTmdThUXF2va5jA5XDa/zRtoO2dkBmW/tf0aNGiQIiMjg1JDU0GvvEev6od+eY9eeS9Qvar9ZOZ8QjbsBJLdbpfdbq+zPjIyMiAHrMNlk6Om6YSdYP+lDdSfg4nolffoVf3QL+/RK+/5u1fezhWyt54nJSVJkioqKjzWV1RUuLclJSXp0KFDHttPnTqlI0eOuMcAAIDmLWTDTqdOnZSUlKSVK1e611VWVurzzz9XWlqaJCktLU1Hjx5VSUmJe8yqVavkcrnUr1+/Rq8ZAACEnqB+jFVVVaW9e/e6l7/99ltt27ZN8fHxuuiiizRp0iQ99dRT6tq1qzp16qRp06YpJSXFfRFz9+7dNXjwYN19991asGCBnE6ncnNzNWrUqLPeiQUAAJqXoIadzZs3q3///u7l2ouGs7OzVVhYqEceeUTV1dWaMGGCjh49qhtuuEHLli1TdHS0+zlvvvmmcnNzNWDAAIWFhWnkyJF66aWXGv21AACA0BTUsJOenq5z3flus9n05JNP6sknnzzrmPj4eBUVFQWiPAAAYICQvWYHAADAHwg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGiwh2AYA/dJzyYbBLqLfvnh4a7BIAoFngzA4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjhXTYmTFjhmw2m8fj0ksvdW8/ceKEcnJydMEFF6hVq1YaOXKkKioqglgxAAAINSEddiTpsssuU1lZmfvx6aefurc9+OCD+uCDD7R48WKtXbtWBw8e1IgRI4JYLQAACDURwS7gfCIiIpSUlFRn/bFjx/Taa6+pqKhIN998sySpoKBA3bt318aNG3Xttdc2dqkAACAEhXzY2bNnj1JSUhQdHa20tDTNnj1bF110kUpKSuR0OjVw4ED32EsvvVQXXXSRNmzYcM6w43A45HA43MuVlZWSJKfTKafT6bfaa+eyh1l+m7Mx+LMHvuzXl/3bw5tWj6WG9bkhvWpu6FX90C/v0SvvBapX3s5nsywrZP+V+Pjjj1VVVaVu3bqprKxMM2fO1I8//qidO3fqgw8+0Lhx4zxCiyT17dtX/fv31zPPPHPWeWfMmKGZM2fWWV9UVKSYmBi/vw4AAOB/x48f1+jRo3Xs2DHFxcWddVxIh53fOnr0qDp06KC5c+eqRYsWPoedM53ZSU1N1T/+8Y9zNqu+nE6niouLNW1zmBwum9/mDbSdMzKDst/afg0aNEiRkZH1em7PGcsDVFXgNKTPDelVc0Ov6od+eY9eeS9QvaqsrFS7du3OG3ZC/mOsX2vTpo0uueQS7d27V4MGDdLJkyd19OhRtWnTxj2moqLijNf4/Jrdbpfdbq+zPjIyMiAHrMNlk6Om6YSdYP+l9eXPoSn1t5Y/+hyoY9ZE9Kp+6Jf36JX3/N0rb+cK+buxfq2qqkr79u1TcnKy+vTpo8jISK1cudK9vbS0VPv371daWloQqwQAAKEkpM/sPPzwwxo2bJg6dOiggwcPavr06QoPD9dtt92m1q1ba/z48crLy1N8fLzi4uL0wAMPKC0tjTuxAACAW0iHnQMHDui2227T4cOHdeGFF+qGG27Qxo0bdeGFF0qSXnjhBYWFhWnkyJFyOBzKzMzUK6+8EuSqAQBAKAnpsLNo0aJzbo+OjlZ+fr7y8/MbqSIAANDUNKlrdgAAAOqLsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjRQS7AKC56jjlQ5+faw+3NKev1HPGcjlqbH6s6vy+e3poo+4PABqKMzsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBoETCFWlMAAA4CSURBVMEuAEDT0nHKh8EuoV7s4Zbm9A12FQCCiTM7AADAaIQdAABgND7GAtAs9JyxXI4aW7DL8Np3Tw8NdgmAMTizAwAAjEbYAQAARiPsAAAAoxF2AACA0YwJO/n5+erYsaOio6PVr18/bdq0KdglAQCAEGBE2HnrrbeUl5en6dOna8uWLerVq5cyMzN16NChYJcGAACCzIhbz+fOnau7775b48aNkyQtWLBAH374oV5//XVNmTIlyNUBQP0F65uqa79x2pdb9Zvi7fIN6XNDetXc7JmVEdT9N/mwc/LkSZWUlGjq1KnudWFhYRo4cKA2bNhwxuc4HA45HA738rFjxyRJR44ckdPp9FttTqdTx48fV4QzTDWupvMX4fDhw0HZb22/Dh8+rMjIyHo9N+JUdYCqCk0RLkvHj7ua3LEVDPSqfhrSr2C9dzREQ947OLa8d/jwYZ/f38/ll19+kSRZlnXugVYT9+OPP1qSrM8++8xj/eTJk62+ffue8TnTp0+3JPHgwYMHDx48DHj88MMP58wKTf7Mji+mTp2qvLw897LL5dKRI0d0wQUXyGbzXzqvrKxUamqqfvjhB8XFxfltXlPRL+/RK+/Rq/qhX96jV94LVK8sy9Ivv/yilJSUc45r8mGnXbt2Cg8PV0VFhcf6iooKJSUlnfE5drtddrvdY12bNm0CVmNcXBx/EeqBfnmPXnmPXtUP/fIevfJeIHrVunXr845p8ndjRUVFqU+fPlq5cqV7ncvl0sqVK5WWlhbEygAAQCho8md2JCkvL0/Z2dm6+uqr1bdvX7344ouqrq52350FAACar/AZM2bMCHYRDdWzZ0+1adNGf/rTn/Tcc89Jkt58801169YtyJVJ4eHhSk9PV0SEEbky4OiX9+iV9+hV/dAv79Er7wWzVzbLOt/9WgAAAE1Xk79mBwAA4FwIOwAAwGiEHQAAYDTCDgAAMBphp4Hy8/PVsWNHRUdHq1+/ftq0adM5xy9evFiXXnqpoqOjdfnll+ujjz5qpEpDQ336VVhYKJvN5vGIjo5uxGqDZ926dRo2bJhSUlJks9n07rvvnvc5a9as0VVXXSW73a4uXbqosLAw8IWGgPr2as2aNXWOK5vNpvLy8kaqOHhmz56ta665RrGxsUpISNDw4cNVWlp63uc1x/ctX3rVnN+z5s+fryuuuML9pYFpaWn6+OOPz/mcxjyuCDsN8NZbbykvL0/Tp0/Xli1b1KtXL2VmZurQoUNnHP/ZZ5/ptttu0/jx47V161YNHz5cw4cP186dOxu58uCob7+k09+2WVZW5n58//33jVhx8FRXV6tXr17Kz8/3avy3336roUOHqn///tq2bZsmTZqkP/7xj1q+fHmAKw2++vaqVmlpqcexlZCQEKAKQ8fatWuVk5OjjRs3qri4WE6nUxkZGaquPvuPYTbX9y1feiU13/es9u3b6+mnn1ZJSYk2b96sm2++Wbfccot27dp1xvGNflz55+c4m6e+fftaOTk57uWamhorJSXFmj179hnH//73v7eGDh3qsa5fv37WPffcE9A6Q0V9+1VQUGC1bt26scoLWZKsJUuWnHPMI488Yl122WUe6/7whz9YmZmZgSwt5HjTq9WrV1uSrJ9//rmRqgpdhw4dsiRZa9euPeuY5v6+VcubXvGe5alt27bWq6++esZtjX1ccWbHRydPnlRJSYkGDhzoXhcWFqaBAwdqw4YNZ3zOhg0bPMZLUmZm5lnHm8SXfklSVVWVOnTooNTU1HP+X0Jz15yPLV/17t1bycnJGjRokNavXx/scoLi2LFjkqT4+PizjuHYOs2bXkm8Z0lSTU2NFi1apOrq6rP+bFNjH1eEHR/94x//UE1NjRITEz3WJyYmnvWz//Ly8nqNN4kv/erWrZtef/11vffee/rrX/8ql8ul6667TgcOHGiMkpuUsx1blZWV+uc//xmkqkJTcnKyFixYoLfffltvv/22UlNTlZ6eri1btgS7tEblcrk0adIkXX/99erZs+dZxzXn961a3vaqub9n7dixQ61atZLdbte9996rJUuWqEePHmcc29jHFd9vjZCVlpbm8X8F1113nbp3767/+I//0KxZs4JYGZqybt26efyUzHXXXad9+/bphRde0H/9138FsbLGlZOTo507d+rTTz8Ndikhz9teNff3rG7dumnbtm06duyY/vu//1vZ2dlau3btWQNPY+LMjo/atWun8PBwVVRUeKyvqKhQUlLSGZ+TlJRUr/Em8aVfvxUZGakrr7xSe/fuDUSJTdrZjq24uDi1aNEiSFU1HX379m1Wx1Vubq6WLl2q1atXq3379ucc25zft6T69eq3mtt7VlRUlLp06aI+ffpo9uzZ6tWrl+bNm3fGsY19XBF2fBQVFaU+ffpo5cqV7nUul0srV64862eUaWlpHuMlqbi4+KzjTeJLv36rpqZGO3bsUHJycqDKbLKa87HlD9u2bWsWx5VlWcrNzdWSJUu0atUqderU6bzPaa7Hli+9+q3m/p7lcrnkcDjOuK3Rj6uAXPbcTCxatMiy2+1WYWGh9dVXX1kTJkyw2rRpY5WXl1uWZVl33nmnNWXKFPf49evXWxEREdZzzz1n7d6925o+fboVGRlp7dixI1gvoVHVt18zZ860li9fbu3bt88qKSmxRo0aZUVHR1u7du0K1ktoNL/88ou1detWa+vWrZYka+7cudbWrVut77//3rIsy5oyZYp15513usd/8803VkxMjDV58mRr9+7dVn5+vhUeHm4tW7YsWC+h0dS3Vy+88IL17rvvWnv27LF27NhhTZw40QoLC7M++eSTYL2ERnPfffdZrVu3ttasWWOVlZW5H8ePH3eP4X3rNF961Zzfs6ZMmWKtXbvW+vbbb63t27dbU6ZMsWw2m7VixQrLsoJ/XBF2Gujll1+2LrroIisqKsrq27evtXHjRve2m266ycrOzvYY//e//9265JJLrKioKOuyyy6zPvzww0auOLjq069Jkya5xyYmJlpZWVnWli1bglB146u9Pfq3j9r+ZGdnWzfddFOd5/Tu3duKioqyLr74YqugoKDR6w6G+vbqmWeesTp37mxFR0db8fHxVnp6urVq1argFN/IztQnSR7HCu9bp/nSq+b8nnXXXXdZHTp0sKKioqwLL7zQGjBggDvoWFbwjyubZVlWYM4ZAQAABB/X7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AATN2LFjZbPZ6jwGDx7s1fPXrFkjm82mo0ePBrhSAE1ZRLALANC8DR48WAUFBR7r7Ha7X/dx8uRJRUVF+XVOAE0HZ3YABJXdbldSUpLHo23btpIkm82mV199VbfeeqtiYmLUtWtXvf/++5Kk7777Tv3795cktW3bVjabTWPHjpUkpaenKzc3V5MmTVK7du2UmZkpSVq7dq369u0ru92u5ORkTZkyRadOnXLXUvu83NxctW7dWu3atdO0adNU+xOCTz75pHr27FnnNfTu3VvTpk0LWI8ANAxhB0BImzlzpn7/+99r+/btysrK0u23364jR44oNTVVb7/9tiSptLRUZWVlmjdvnvt5CxcuVFRUlNavX68FCxboxx9/VFZWlq655hp9+eWXmj9/vl577TU99dRTHvtbuHChIiIitGnTJs2bN09z587Vq6++Kkm66667tHv3bn3xxRfu8Vu3btX27ds1bty4RugGAJ8E7PfUAeA8srOzrfDwcKtly5Yejz/96U+WZVmWJOvxxx93j6+qqrIkWR9//LFlWZa1evVqS5L1888/e8x70003WVdeeaXHuscee8zq1q2b5XK53Ovy8/OtVq1aWTU1Ne7nde/e3WPMo48+anXv3t29PGTIEOu+++5zLz/wwANWenp6Q1sBIIA4swMgqPr3769t27Z5PO6991739iuuuML93y1btlRcXJwOHTp03nn79Onjsbx7926lpaXJZrO5111//fWqqqrSgQMH3OuuvfZajzFpaWnas2ePampqJEl33323/va3v+nEiRM6efKkioqKdNddd9X/hQNoNFygDCCoWrZsqS5dupx1e2RkpMeyzWaTy+Xyat5AGDZsmOx2u5YsWaKoqCg5nU7967/+a0D2BcA/CDsAmqzaO6xqz7qcS/fu3fX222/Lsiz3mZv169crNjZW7du3d4/7/PPPPZ63ceNGde3aVeHh4ZKkiIgIZWdnq6CgQFFRURo1apRatGjhr5cEIAAIOwCCyuFwqLy83GNdRESE2rVrd97ndujQQTabTUuXLlVWVpZatGihVq1anXHs/fffrxdffFEPPPCAcnNzVVpaqunTpysvL09hYf/3if7+/fuVl5ene+65R1u2bNHLL7+s559/3mOuP/7xj+revbuk04EJQGgj7AAIqmXLlik5OdljXbdu3fS///u/533uv/zLv2jmzJmaMmWKxo0bpzFjxqiwsPCsYz/66CNNnjxZvXr1Unx8vMaPH6/HH3/cY9yYMWP0z3/+U3379lV4eLgmTpyoCRMmeIzp2rWrrrvuOh05ckT9+vWr3wsG0OhslvX/v0ACAJq59PR09e7dWy+++OI5x1mWpa5du+r+++9XXl5eI1UHwFec2QGAevjpp5+0aNEilZeX8906QBNB2AGAekhISFC7du30n//5n+5vegYQ2vgYCwAAGI0vFQQAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjPb/AC2WVd1R6s5VAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -3820,12 +3817,13 @@ ], "source": [ "normalizedCommunityTopics.apply(lambda x: np.mean(-np.log(x)), axis=1).hist()\n", - "plt.xlabel(\"Entropy\")" + "plt.xlabel(\"Entropy\")\n", + "plt.ylabel(\"Frequency\")" ] }, { "cell_type": "code", - "execution_count": 136, + "execution_count": 143, "metadata": {}, "outputs": [], "source": [ @@ -3835,7 +3833,7 @@ }, { "cell_type": "code", - "execution_count": 137, + "execution_count": 144, "metadata": {}, "outputs": [], "source": [ @@ -3844,14 +3842,14 @@ }, { "cell_type": "code", - "execution_count": 138, + "execution_count": 145, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzMAAAMzCAYAAACSq0y2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXhTVfrA8e9Nmibdd2hLoWWXTbay74sLgsii4rgriDrjMqMzKuO4zzijzjjuIu6OuCLjj82tKJuo0LKMgCJraWlLW+iSpkmb5f7+CImEFmjapEnK+3mePtqbm3vPDWly33PO+x5FVVUVIYQQQgghhAgxmkA3QAghhBBCCCGaQ4IZIYQQQgghREiSYEYIIYQQQggRkiSYEUIIIYQQQoQkCWaEEEIIIYQQIUmCGSGEEEIIIURIkmBGCCGEEEIIEZIkmBFCCCGEEEKEJAlmhBBCCCGEECFJghkhhBBCCCFESJJgRgghhBBCCBGSJJgRQgghhBBChCQJZoQQQgghhBAhSYIZIYQQQgghREiSYEYIIYQQQggRkiSYEUIIIYQQQoSksEA3QAghhO+pqopdBZuq4nCARgNhioJWAUVRAt08IYQQwickmBFCiBCnqirH6uyU1NooqbVRXGujxGzD5mi4b5gGUiPCSIsMI/X4T6JeKwGOEEKIkKSoqqoGuhFCCCG8V1FnZ2u5he1HLdTZnR/lGqCRGKaBE/fTaxX6JxkYmGwgQa/1U2uFEEII35NgRgghQohDVdlXXU9emYWDRisK4IsPcddxsmJ0DE4x0DU2HI2M1gghhAhyEswIIUSIKKixsjLfSGW9w2dBzMlcx40P1zA1M4aO0To/nEUIIYTwDQlmhBAiyFkdKmuLTOSWWfwWxJzMdZ7sFAPj0qPQaWSURgghRPCRYEYIIYJYQY2VFflGqusdrRLEnEwBYsM1TJNRGiGEEEFIghkhhAhSuWVmcgpNrTYacyqu80/OiCI7JSKALRFCCCE8STAjhBBBRlVVNh4xs764NtBNaWBMWiQj20dIKWchhBBBQRPoBgghhPAUrIEMwPriWjYeMQe6GUIIIQQgwYwQQgSV3NLgDWRc1hfXklsmAY0QQojAk2BGCBH0VFXF5lCx2B3UWh1Y7A5sDpW2Nku2oMZKzmFToJvRJDmFJgpqrIFuhhBCiLOc5MwIIYKKqqocq7NTUmujpNZGca2NErMNWyPL2odpIDUijLTIMFKP/yTqtSGZz2F1qLz2U0XAqpZ5y1XlbF6vBCnbLIQQImAkmBFCBIWKOjtbyy1sP2qhzu78WNIAjcQwDZy4n16r0D/JwMBkAwl6rZ9a63s5hTXklVlCIpBxUXCuQzMpIzrQTRFCCHGWkmBGCBEwDlVlX3U9eWUWDhqtPitB7DpOVoyOwSkGusaGowni0ZqCGiuL91QFuhnNdlX3OFmDRgghREBIMCOECIiCGisr841U1jv8to6K67jx4RqmBumijw5VZdGuCqpCZHrZyRQgLlzD/N4JQR0wCiGEaJukAIAQolVZHSo5hTUs3lNFVb1zcpi/buJdx62qd7B4TxU5hTVYHcEVMuyrrqcyRAMZcL7GlfUO9ldLMQAhhBCtLyzQDRBCnD0KaqysyDdS7ecg5mSu8+SVWdhTVc+0IBqlySuz+G1kqrUoQF6ZmW5x4YFuihBCiLOMjMwIIVpFbpmZxXuqAlqtSwWqj4/SBMM6KRV1dg4arSEdyIDzdT1gtFJRZw90U4QQQpxlJJgRQviVqqp8W1JLTqFz/ZRA37i7zp9TaOLbktqArlWztdw5KtMWKMC2ckugmyGEEOIsI8GMEMKvNh4J3hXt1xfXsvFIYEZoVFVl+9Ezl2LOWfgkCwalYKo42irtai4V2HbU0uYWMhVCCBHcJJgRQvhNbmnwBjIu64trAzLl7Fid3b2eTjD6ecNX5Cx80qvn1NlVKuqasjKQEEII4RsSzAgh/KKgxkrOYVOgm9EkOYUmCmpatxpXSa2tVc/nrd0bcli96Cmvnxfs1yWEEKJtkWBGCOFzVofKinxjyOSDKMCKfGOrlm0uqbW1uQ9gjQIlZglmhBBCtB4pzSyE8Lm1RaaAVi3zlqvK2boiE5MyolvlnMW1NryZkGU2VrHqmYfY9c1nqKj0nTCV6fc9QXhEpHufrSs/ZsPihZQe+AWd3kD34eOZ8vuHiU/t4N7nwJbv2PjBqxTs2ELN0TKiE5PpO+liLrjtfnSGCAA+fug2tiz/EIAFg1Lcz/37lrLTttGhQpFJ1psRQgjReiSYEUL4VEGNldyy0KtqpQKbyyz0iNf7fQ0aVVW9HsF4/755JKR34oLb/0LRz/9j83/fJSoxhSl3PgjAN689zVcv/4N+513CkJlXY6o4yncfvMaiedO5/f2viYiJA+DHnGVYLWaGX3o9kXGJFOzcwncfvkZVaRFXPfkGAENnXUd12RH2fr+Gyx97yat2lphtqKqKooTKuJwQQohQJsGMEMJnHKrKyuPTy0JlVOZECrAy38j83glo/HgzblfB5mWefHrPfsx+6Fn377WVFeT+32Km3PkgFUUF5LzyJOf9dgET5v7BvU+fiVN5/sqJfP/RG+7tU+540D0CAzB09rUkdezMly/8jcriQuLTMsjsP4TkTl3Y+/0aBk69zKt22hzOERqtxDJCCCFaQVubsi2ECKB91fVUhtD0spOpQGW9g/3V/p0qZWtG+eKhl17v8XvWwOHUVh7DUmNk59crUR0O+p13CaaKo+6fmKR2JHfswv7cb93POzGQqTebMFUcJfPcIaiqStHuH5t9TSdqzvUJIYQQzSEjM0IIn8krs4TsqIyLAuSVmekWF+63cziaUb34xLwXgIhY57Qxc3Ul5QX7UVWVf80Y1uhzNWG/TpurLC7kq4X/4Ke1X2CurvTYz1JT7X3DGmF3AFqfHEoIIYQ4LQlmhBA+UVFn56Ax9JO/VeCA0UpFnZ0EvX/uyDXNGBPXaE7VFhXV4UBRFK5//gM02ob7hUdEAeCw23n9t5dirqpk3PW3k5LVnfCISKpKi1ny0O2ozYmyGqGVMX8hhBCtRIIZIYRPbC0P/VEZFwXYVm5hQocovxw/zMf5OEkZWaiqSkKHTFIyu55yv5K9uyjP38dlj77AoGlz3Nv3fL+mwb4tSeD39fUJIYQQpyL9Z0KIFlNVle1HLW0ikAFnQLbtqAW1ibkfBw8eRFEU3nrrLfe2hx9++JQBgVaBMB9++vaZOBWNVsvqRU81aLOqqpgqjwG/ju6cuI+qqnz73qIGx3SVfDYbq7xqS5jGud6MEEII0RpkZEaIIKSqqrPilaricDinJYUpClqlZT3m/nKszk6dPfhDmW9e/zftuvSkz4SLzrhvnV2los5BosH3U80URSE1IoxCk28WmEzq2JnzfruAL57/K5VFh+g9/iL0UdEcO3yInd+sZOisaxl77e9IyepOYkYWn/37YapLi9FHxbDz6xUNcmcAOvTqD8DyJ/9M9xET0Gi19L9g5hnbkhoRFpTvUSGEEG2TBDNCBJiqqhyrs1NSa6Ok1kZxrY0Ss63R0r1hGufNYlpkGKnHfxL12oDfPJbUhsaq72veeIa+ky9uUjADzutqSjCTmZmJ2WxGp2v6+jRpkWEUmbxbOPN0xt9wJ8mduvLt4oWsXvQUAHHtO9B9+Hh6jbsQAK1Ox3XPLGb5U39mzZvPogs30HvCRYyYM5fnrhjvcbw+E6cx4op5/O+LT9m26mNUVT1jMKNRID3Kv2v0CCGEECdS1KbOoxBC+FRFnZ2t5Ra2H7W4RzU00KSb2xP302sV+icZGJhs8FvC+pmsLqwhr8zisxtzf3loVCZ9J1/MZY+8cMZ9NQpkp0QwsZl5Mw8//DCPPPLIKaeq7TxmYXl+TbOOHcymZ8bQO1Ef6GYIIYQ4S0jOjBCtyKGq7Kmq44O9Vbyyq4LNpWaP6VlNDQZO3K/OrrK51Mwruyr4YG8Ve6rqcHjZR3H48GHmzp1Leno6er2ezp07c+utt1JfXw/A/v37ueyyy0hMTCQyMpLhw4ezcuVK9/OLa50jDNY6CzkLn+SfM4bxwPAMHj+/D+/efT1HCw649603m1j59IP8Y0p//jKsA/+aOZx177zY4KZ/waAU/u8f97Lzm1U8c9kY/jKsA/++dDS7v13tsd/HD93GE1MHNbimnIVPsmBQisfx6s21bFn+IQsGpbBgUAofP3TbKV8ThwpFJusZrx0az5k5k9TItjkw3lavSwghRHCSbx0hWklBjZWV+UYq6x24JoX5aljUdZx8o5WDRivx4RqmZsbQMfrMU36KiooYOnQolZWVzJ8/n3POOYfDhw+zZMkSamtrqaioYOTIkdTW1nLHHXeQlJTE22+/zfTp01myZAkzZsygxGzDYbfz9p1XsW/TOs69YCajfjOfutoa9n6/liP7fiapY2dUVeWd31/D/twNZM+4irQefdnz3Td89owzh2PaH//q0bb8bT+w8+uVDL/8BvSR0Wz84DUW/+lG7l21laj4RK9eo8sfe4mlj/2BjD4DGTrrWgASM7JO+5w9hUX88cqJp7z2mTPPnENyKol6LXqtEhK5Rk2l1yok6KWPTAghROuRYEYIP7M6VNYWmcg9vqAk+K98seu4VfUOFu+pIjvFwLj0KHSnKS+1YMECSkpK+OGHH8jOznZvf/TRR1FVlbvuuosjR46wfv16Ro8eDcBNN93Eueeey1133cXUi6djc8CWFR+yb9M6pt71GKOvvsV9nPE33Okedflp7efs27ye83+7gAnz7gJgxJy5LL7nRja+v4gRc+aS1LGz+7mlB/bwhyUb3Nu6ZI/muSvGs/3zpYy8Yp5Xr83AqZfx6eN/JDEjk4FTL2vSc1a//txpr/2SSy5B05xFY3AWAeifZGBzqblNVIFTgAFJhoDnb4mGQq2giBBCeEOCGSH8qKDGyop8I9X1zolhrXXT6jpPXpmFPVX1TDvFKI3D4eDTTz/l4osv9ghkXBRFYdWqVQwdOtR9Mw8QHR3N/PnzWbBgAT/u3Amks2P1CqLikxjRSJDhumHavSEHjVbLyN/M93h8zNW/ZUfOcnZ/u9ojSOk2bKxHcJPWow/66BiOHc735uVott3f5jBkyKmvfdeuXfTt27fZxx+YbGBTqdkXTQ04FRiQbAh0M856baGgiBBCeEOCGSH8JLfMTE6hKaALSapA9fFRmskZUWSnRHg8XlZWRnV19WlvyPPz8xk2bFiD7b169XI+fjAfOqVzrPAgyVld0Yad+mOloriAmJRU9FHRHtvbde4BQGVxocf2+NSMBseIiInH0kgp4eayWesxV1V4bItKSEaj1VJZXEi30SMaPMd97fn5LQpmEvRasmJ05ButIT06owBZMbqAFaAQzSsoYnNAocnmUVUvGAqKCCGENySYEcLHVFVl4xEz64trnb8Huj3H/5tTaKLOrjKyfYRPe1792YmrnGIKl3rCq6rQeAMcDnuTznFo+2ZenT/DY9s9K/JISO/kPL6fO6kHpxg4aLT69yR+pgKDTwqUhf85VJV91fXklVk4aLQ26DhpSUGRTaVmsmJ0DE4x0DU2HI2M1gghgpQEM0L42ImBTLBxtWtUqnN195SUFGJjY9mxY8cpn5OZmcnu3bsbbP/5558B6JyVxW67M5m+cMcW7FYr2lOst5KQ1pF9m9ZRZ6rxGJ0pPbgHgPi0hiMxZ2KIjcfSyCr1J4/yAI1GJmk9+jD35SUe26KT2rnbs+eXXxo8x3XtmZmZXrf3ZF1jw4kP11BV7wh44NscChAXrqFLrKwv05qCtaCIEEK0Nik7I4QP5ZYGbyDjsr64ltwyZ56GRqNhxowZLF++nNzc3Ab7qqrKRRddxKZNm/juu+/c200mE4sWLSIrK4t+fXoTpoG+k6ZhqjzKdx++3uhxAHqOnozDbue7D1/zePzbxQtRFIWeoyZ5fT1JGVlYaqop/mWne1t1WQk7v1nZYN/wiEgsxmqPbRGx8XQbNs7jR6d35n70Gj2Zzae59t69e3vd3pNpFIWpmTEhGciA88Z3WmaM9Ny3EqtDJaewhsV7qqjycy7eyQVFcgprsDpC9Z0qhGirZGRGCB8pqLGSc9gU6GY0SU6hifYRYXSM1vH444/z5ZdfMm7cOObPn0+vXr0oLi7m448/ZsOGDdx33328//77TJkyhTvuuIPExETefvttDhw4wCeffIJWqyU1IoxB0+awdeVHrHz6AQp2biFr4HCs5lr2/rCW4ZffSO/xUzhn7AV0yR7Nly8+TkVRAak9+rD3+zXsWvMZo6682SPZv6nOvWAmnz/3KO/+8XpGXjEPq8XM90veIrlTV4p+/p/Hvh169WfvD2tZ/+7LxKakkpDeiU79Bp/y2HN+exe/5Hx6ymtvbiWzk3WM1pGdYiCvzBJSQY0CZKcYyJAe+1YR7AVFhBAiECSYEcIHrA6VFfnGgCb7e0MBVuQbmdcrgQ4dOvDDDz/wwAMPsHjxYqqrq+nQoQNTpkwhMjKS+Ph4Nm7cyL333svzzz+PxWLh3HPPZfny5UydOhWAtMgwikw2rn/ufb55/d9s+3wpO1evIDI+gcwBw0jt5kyY12g0XPvMf/jq5Sf48ctPyVv2PvHpHZny+4cZc81vm3UtUfGJXP2vt1n59IN89uyjJHboxAW3/YWjh/Y3CGam3vUY//3rXXz10t+xWswMunjOKYMZjQK9Mjuc8dp9ZVx6FHuq6qkOkelmChAbrmFselSgm3JWCIWCIkIIEQiKevKy20IIr+UU1oRsr/qkjOgz7nsmO49ZWJ5f0/JGBZnpmTH0TtS32vkKaqws3tMw/ydYXdU9Tnro/ezkgiLBZExapM8LigghhLckZ0aIFiqosZIbYoEMOHtZN5dZKKhpeSWt1Mi2Ocjb2tfVMVrH5IzQGOmYnBElgUwrCNZABpz5dxuPtI11koQQoUuCGSFawKGqrDw+vSwUKcDKfCOOFg7QJuq16LWh+io0Tq9VSNC3/kdkdkoEY9IiW/283hiTFilTjFpBqBUUEUKIQJBgRogW2FddT2WI5Dg0RgUq6x3sr27Z6IyiOBfaayvhjAIMSDIEbPrMyPbBG9CMPT61SPhXqBUU8cUIrxBCNIcEM0K0QF6ZJeRv4BUgzwc9qwOTDSEb1J1MBQYkGwJ2fkVRGJUa6Z5yFuj3mOv8kzOiGJkaKTkSfnZiQZFQ4Coo0hplm1VVxeZQsdgd1FodWOwObA4VSf8V4uzVNie6C9EKKursIb9yOzhv3A8YrVTU2UnQa5t9nAS9lqwYHflGa0gHNQqQFaNr0WvhK9kpEbSPCHOX4w3E6+qqWibleFvP2iJTyFS1g1+rnK0rMvmkoIj7uKrKsTo7JbU2SmptFNfaKDHbsDka7humgdSIMNIiw0g9/pOo10rgLcRZQIIZIZppa7klZEoxn4kCbCu3MKFDy5LPB6cYQj7AU4HBQZQP0jFax7xeCawtMpFb1nrvOdd5slMMjE2PQqeRm8LW4CooEmpcBUV6xOtbHPRW1NnZWm5h+1ELdXbnu10DNBLDuNkcUGiyUWSyuffTa53TXwcmG4Kic0II4R9SmlmIZlBVlWd+POb+om0L9FqF3/dLbFFPpkNVWbSrgqoQ6lU+kQLEhWuY3zshKFe0L6ixsjLfSGW9w29Bjeu48eEapspoTKs6m/9+HKrKvup68sosHDRaffb+dh0nK0bH4BQDXWPDg/JvWwjRfDIyI0QzHKuzt6lABqDOrlJR5yDR0PweTI2iMDUzJqTWSjmRCkzLjAnam52O0Trm905gf7WVvDIzB/x20xdBl1hd0L4ObZWroEioOrGgSLe48CY/7+Qg3XUsX7UJIN9o5aDRKkG6EG2QBDNCNENJrS3QTfCLklpbi4IZcN5wZ6cYQnYR0Ywgv8nRKArd4sLpFhdORZ2dbeUWtp04HUeBpuRhn7ifXqswIMnAAJmOE1B5rTiN0F9cBUWaEsxYHarH9Enw37W7jltV72DxniqyUwyMk+mTQrQJEswI0QwltbYzzuEONRoFSsw2etPyFe/HpUexp6o+ZJKYXUnuY9NDY8FKlwS9lgkdohifHklFncOZKG22UWSynjFROj1KR2qEM1E6Qa+RROkAO9sKihTUWN2FLVzPa632gTNw3FNVL4UthGgDJJgRohmKa21eBzL7Nm/gtZtncvU/36LPxKkej2377BM+vP8WbnlzFZn9h1B6YA9fvfQ4+zZvwGox077rOUyc/0d6j7vQ/Zy8Ze+z5OE7uPmNFexYvYJtKz+m3mKm+4jxzPzLv4hOSPaqfQ4Viky+uZnSaRSmhdB0M9f0slDtpVUUhUSDlkSD1h2MqqqKQwWbqmJ3gFYDYYqCRkEClyB0NhUUyS0zk1NoCuj1uiqwLd5TxeSMKFkEVogQJuvMCOElVVUpMXs/zaxL9ijiUjuw7bMlDR7b9tkSEjOyyOw/hCP7fubl6y6k9MAexl1/Bxf94RHCIyJ5965r2fn1ygbPXf7kAkp+2cnE+X9k+GXX8/O6L1j2j/uadW0lZpvP1mvoGK1zr5MS7CZnRLW53llFUdBqFPRaDZE6DXqtBq1GkUAmCKmqyvajoTUt83RUYNtRS4PPElVV+baklpxCk3u/QHKdP6fQxLcltbJWjRAhSkZmhPCSXaXR6TtnoigKA6dcyobFC7EYqzHExAJQU1HOnu/XMOHGPwCw/Kn7iU/N4HfvfklYuLOXffjlN/LKjVP57LlHG4zqRMYlcuNLH7tvUh0OB9998KrHOZrK5nCO0Gh9dL+bnRJBnV1lfXGtbw7oB2PSIqVXVgTU2VJQZOMRc9B+FrjaNSo1MsAtEUJ4S0ZmhPCSrQW9dwOnzcFWX8ePq5e5t/3vi09x2GwMuOhSaqsq2L95Pf3On06dqQZTxVFMFUeprTxG9xETOXpoP1WlxR7HHDrrGo/e9s4Dh+Ow26koLmhWG1tyfY0Z2T6CMWnBeYMwNi2Ske0lkBGB1ZYLirjklgZvIOOyvriW3DJzoJshhPCSjMwI4SVHC7L+23XuTkafgWxb9QlDZlwNOPNlOvbLJrlTFwp2bEFVVb566R989dI/Gj2G6VgZce3S3L/HpWZ4PB4RGw+A2VjZrDbaHYAPC1opisKo1Ej0WiXg8+Th1xLEMk9etDZVVZ0ju6qKwwGa43lMbb2gSEGNlZzDpkA3qUlyCk20jwhrc9NOhWjLJJgRwkuaFo5nDpx6OSv+eT9VR4qw1ddR8GMu0+91Bi7q8UhpzDW/o8fICY0+P6ljF8/2aE8ReTQzYtD6abw2OyWC9hFh7gpGgQhoXFXLpIKR8DdVVTlWZ3dWmKu1UXy80lxzpqg2pqKogLVvP8++TeuoLDmMzhBB1yGjuej3D5OQ3sljX7OxitWvPMXOb1ZhLD9CVEISXYeMYepdjxKVkARA1ZEilj1xH3u+X0t4RCQDpsymx8iJvHnbHG5a9Cldskd51T5XQRGrQ2VFvjHgnRhNpQAr8o3M65UQsgVBhDjbSDAjgsqpei61QVSBKayF7eh/wUxWPf0g2z9firXOgjZMx7nnzwAgMSMTAG1YGN2GjWtxW5ujpdd3Oh2jdczrleCxtkRr3OC4zpOdYmCsrC0h/Kiizs7WcgvbT1z7B9+PuhTu2sqh7Zs49/yZxLVPp6LoED8seYtFN83gD0s2EB7hnNpZV1vDK3MvpuzALwyefiUdep2LqfIoP639gqrSIqISkrBazLx2yywqSw4z8oqbiE1pz9aVH7Nv84YWtbHEbGNtkSlkSrTDr1XO1hWZmJQRHejmCCGaQIIZETDe9Fy61sZIi3Sui5EaGUaiXhuQAEerONvT3B7WqIQkeoyaxNZVS7DVW+gxcqK7dzQ6MYUu2aP4Yek7jLhiHrEpqR7Prako97rksjfCNM7pIf6k0yhMzoimZ7zeY9Vvf9zsuI4bJ6t+Cz9yqCr7quvJK7Nw0Ght8H72x/Sxc0afR7/J0z229Rp7AS9fP4Udq1cwaNrlAKx7+0WO7P2pQUn4ifPudlfv2rT0Hcrz93HlE6/R77xLABgy8xqeu2J8i9poc0BumaVFxwgEFdhcZqFHvF4+M4QIARLMiFbXnJ5LmwMKTTaKTL+u76LXKvRPMjCwlVctVxSF1IgwCk3NT9odNO1yFv/pRgDOu9WzjPL0+57glRun8eyccQyZeTWJHbKoOVbKof/lUnWkmDs/XNOS5p9WakRYqwWIHaN1zO+dwP5qK3llZg40chPYXK7jZMXoGJwSQZdYHZogGdkTbUtBjdUjKIfWGW3UGX7N97JbrVhMRpI6dsYQE0fRz/9zBzM7v15BWo8+Daogwq+j3bs35BCT3J6+JwRH4RGRDJ11LZ89+0iL2hkq08tOpgAr843M750gnx1CBDkJZkSr8FXP5Yn71dlVNpea2VRqPn7TaqBrbHirfPGkRYZ5BFbeOmfsBUTExqM6HPQ6YSFMgPZdenLbu1+Rs+gptiz/gNrKCqISk0nv2Y9J8+9ueeNPQaNAelTr9kJqFIVuceF0iwunos7OtnIL204MchXn3PszH+fX/fRahQFJBga0cpArzi5Wh+oxXRJa96bdajGz5s1nyVv2PtWlxR5rpFhqqt3/f7TwIH0nTjvtsSpLCknq2LlBR0ZyVrcWtzMUAxlwtruy3sH+aivd4sID3RwhxGlIMCP8zp89l67j5ButHDRaiW+l6USpkWEtmjqiKBo02jB6TTgfnd7Q4PHEjCwuf/TF0x5j8PTfMHj6bxps75I9ir9vKfO6TQ7VOTITKAl6LRM6RDE+PZKKOodz+qHZRpHJesbph+lROlIjnNMPE/SaoMmvEm1TQY3VXcgCAnPDvuzJBeQte59RV95Mp3OzMUTHoigK7y+Yj6q2pbpogaMAeWVmCWaECHISzAi/ac2eS9dxq+odLN5TRXaKgXF+TPROjWzZn86uNaswVZQz8PhUkGDR0uvyBUVRSDRoSTRo6Y1z0VBVVXEcLwxhdzgrroUpCpogKgwhzg65ZeagKDG+I2c5g6bNYepdj7q3WessWIxVHvslZWRxZN9Ppz1WfGoGR/b9jKqqHn9P5Qf3+rbRIUYFDhitVNTZZZRXiCAmi2YKv4nxGVQAACAASURBVCiosfLaTxXkHU/+bK0vfdd58sosvPZTBQU1Vr+cJ1GvRa/1/ib60I95bFr6H1Y+/SDp5/Sjy2Dvyp36k16rkKAPzo8ERVHQahT0Wg2ROg16rQatRpFARrQaVVX5tqSWnELneimBnj6laLVw0gK3333wGg673WNbn4nTKP5lJzu/XtngGK6paT1HT6a6rIQdOb8u5ltvrmXT0nf80PLQogDbykOviIEQZ5PAd8OKNicYei5d5TUX76nyy+KIiuIsPrC51OzVNf6w5E22rVpCWo++XPrI8z5tU0sowIAkgwQHQpzCxiPBtYL9OWPOY+uqj9FHx9K+S08O/W8zezetIzI+0WO/sdf9jh2rl/PevXOPl2buj7m6gl1rv2Dm/U+R1qMvQ2Zew3cfvs5HD97G4Z+2E5PsLM2sM0S22vUU7NzKiqfup/iXnVgttdz+/tek9+zn03MsuslZqW3+q//X5OeowLajFsanR8rnoxBBSoIZ4TOqqnp84Qe659J1/pxCE3V2lZHtI3z6ZTQw2cCmUrNXz7nskRe47JEXfNYGX1GBAckNc3eEEJBbGlyBDMDFf3ocjUbL9s8+wVpvIbP/UOa+/Alv/M5z6qo+MpqbX19OzsIn2PnNKras+JDoxGS6Dh1DbLt0wFm5bN7CpSx7cgEbP3idcEME/afMpueoSbx52xy/X4vdauW9e+ai0+uZdvdj6AwRJKR19Pt5m6rOrlJR5yDRIFPNhAhGEswInwm2nssTudo1KtV3PY0Jei1ZMTryjdaAB24toeAsYSxzwoVoqKDGSs5hU6Cb0UBETByXPvxcg+33rtzSYFtkXALT7/0H0+/9xymPF5+WwbX//o/Htv2537a8oU1wtPAglcUFzHrgaYbMvKZVzumtklqbBDNCBKngnCAvQk4w9lyebH1xLbll3o2knMngFENIBzLgHJUZ7ONpeEK0BVaHyop8IzK5yL9Mx5zVFw0xcQFuSeM0CpSYm7+umBDCv2RkRrRYsPZcNian0ET7iDCflW7uGhtOfLiGqnpHSAY1ChAXrqFLrKxyLcTJ1haZqA7Rv+1Q8fFDt7Fl+YcAvHfPXAA6Dx7pfvzk/JaPH7qN/bkbPUagHA4HG99fxOb/vsuxwoMYomPpPX4KF97xABGx8S1uo0OFIpN/iskIIVpORmZEi4Raz6UCrMg3Ym3KSoxNoFEUpmbGhOzNjgpMy4yRFa6FOElBjZXcMkvI/m2HiqGzrmP8jb8HYORvbuLyx15iwtw/eHWMT/92N589+wiZ/Ycy7Y9/Y/D0K9j22RLe+N3l2K2+CUJKzDaPhUmFEMFDRmZEi4Raz6Wrytm6IhOTMqJ9csyO0TqyUwzkhdiNjwJkpxjI8PMCo0KEGoeqsvJ4J00o/U37WnMX4PVGZv8h2K31rHnjGbIGDqff5OkAfPP6v5v0/INbv2fzf99lzt8WMmDKbPf2LtmjefO2OfyYs8xje3PZHM4RmmZU5BdC+JmMzIhmC9WeSxXYXGbx6Ro049KjiA3XhNQIVWy4hrHpUYFuihBBZ191PZUh1ElzNvsxZxmG6Fi6DR+HqeKo+6dDr/6ER0axP3eDz85lk5EZIYKSjMyIZgn1nksFWJlvZH7vBJ9MsdJpFKZlxrB4T9WZdw4CrullOk2ohF9CtJ68MkvIfradbcoP7cdSU83fJvVq9PGaY+U+O5fdAUhBMyGCjgQzollcPZehSgUq6x3sr7bSLS7cJ8fsGK1jckaUe4XwYDY5I8pnRRCCgaqq2FVnz6nDARoNhCkKWgVZ6E54paLOzkGjJHsHmqIojeaoOOye3zuqw0F0Ygpz/vZyo8eJSkjyWZu0MpdFiKAkwYxolrbQc6kAeWVmnwUzANkpEdTZ1aAuUz0mLZLsEC7FrKoqx+rslNTaKKm1UVxro8Rsw9ZIbB2mgdSIMNIiw0g9/pOo10qAI05pa3nof7a1BREx8Rw7fLDB9sriAo/fkzKy2LdpHZn9h6Iz+PdzLUw+N4QIStLPILzm6rkM9S97FThgtFJRZ/fpcUe2j2BMmu8W5/SlsWmRjGwfmoFMRZ2drw+beObHY7z6UyXL82vIK7NQaGo8kAFn0m6hyUZemYXl+TW8+lMlz/x4jK8Pm3z+7y5Cn6qqbD8aHHmACwalkLPwyUA3w2u+mrmamJFF2cG91FT8Ok2s+Jcd5G/f5LFfv/MvwWG38/Wr/2pwDLvNhtnom6m/YRrfXZsQwrdkZEZ4rS31XCrAtnILEzr4LhFeURRGpUai1yrkFJoC/lq5zj85IyrkRmQcqsq+6nryyiwcNFobvJZNneh44n51dpXNpWY2lZrJitExOMVA19hwKU8tOFZnp87e8K81f/sm9ny3hlFX3UxEkC7sGCx8VPWe7EuuZMPil3nzd5eTfclV1BwrZ9Mnb9O+yzlYTEb3fl0Gj2Lo7OtY8+azFP2yg+7Dx6MN01F+aD87cpYx7U9/c1dIa4nUiDAZ0RUiSMnIjGiSt956C0VROHDgQND0XPqCCmw7avHL+gHZKRFc1T0uoFXOXFXLruoeF3KBTEGNlUW7Kvhkv5H84zkMvvpXch0n32jlk/1GFu2q8Gl1O+F7qqpic6hY7A5qrQ4sdgc2h+rTv92S2sZXec/fvpnVi57C4qNefnFm7br04LJHX8RSY2Tl0w/y07rPueyxF0nv1a/BvjPv/ycz//I0pmPlfPni43zxwl/Zv3kDAy66jMz+Q1vcFo0C6VFtJ8dQiLZGRmaEVyrrG++5DGV1dpWKOgeJBt+XqekYrWNerwTWFpnIbcU8I9d5slMMjE2PCqmqZVaH6vF6gf9eM9dxq+odLN5TRXaKgXEh9nq1RYHKiyqptaGh6SN+J3M4HNit9ej0hmYe4ex0qvVsBl50KQMvutRjW48RExo9xtBZ1zB01jWnPc/8V/+vWe1zqM73mBAiOMlfp2iSa665hiuuuIK9JhUOBX+1Lm+V1Nr8EsyAs2zz5IxoesbrWZlvpLLe4begxnXcuHANUzNjQq5iWUGNlRX5RqqPV8prrbDZdZ68Mgt7quqZFoKvXVtQUWdna7mF7Uct7k6TMwUXrryoIpPNvZ9eq9A/ycDAZAMJ+qb/XRfX2hqcK2fhk6xe9BQAT04b7N5+z4o8npw2mOGX30inc4ew5o1nKD+0jyufeJ0+Ey5i3TsvsvPrlZTl78VqMdOucw/G33hngylPtvo6Pn/uMbatWoK13kLX7NFcsqDxXJmq0mK+eunv7N6Qg9lYRVLHzoy5+layZ1zV5GsUzZMaKbdLQgQr+esUTaLVatFqtRwpr2lRz2Uw0ihQYrbRG71fz9MxWsf83gnsr7aSV2bmQCM5IM3lOo4zBySCLrG6kMsByS0zBzzHSAWqj4/ShGKOUSgKlrwoVVUpMTecZtZn4lTKD+1j++dLmXr3Y0TFO0v9ukr+7t+8gR+/WsaIOXOJjE8kIb0jABvfX0SvsRcwYMps7FYr27/8L+/dM5frnl3MOWPOdx//k0f/wLZVH9N/ymwyzx3Cvs3reeuOKxu0w3i0lJevuxAUheFz5hKdkMTub1fzyaO/x2IyMvqqW5r4Sglv6bUKCXqZlS9EsJJgRjTJW2+9xQ033MDTq7fjSEjniamDaN/1HMbfcAcrn36Qkj27iElJZfLNf2LQtDkezzUbq1j9ylPs/GYVxvIjRCUk0XXIGKbe9aj7hqDmWBlfPP9Xfl7/FZaaapIzuzH66lsYfPEV7uNUFB3iyWmDmfL7h9HpDax/92VqjpaSOWAYsx98hrj26Xz92tNs+uRtaqsq6D58PJc+/ByRcQke7dn9bQ5rXn+Gwz//iKJR6DxoBI77HmVihxF+fx01ikK3uHC6xYVTUWdnW7mFbSf2QitNS6A9cT+9VmFAkoEBXvZCBwtVVdl4xOwuZx3oSYyu8+cUmqizq4xsHyGJv35SUGP1GK0E/+RFHTRaiT/DaKVdpdFpbGk9+pB+zrls/3wpfSZcREJ6J4/Hy/L3cudH62jfpafH9rv/+71HqeARc+by/FWT2PDuQncwU/zLDrat+pjhl93gHo0ZMWcuH9x/CyV7dnoc78sXH8dht3PnR+uIik8EYNil1/P+gvmsfuUphs2+zu+lic9GCjAgySCfAUIEMQlmhFfKLDZij///scIDLL7nRrIvuYpB0+aQ+3/vseSh2+nQqz/tu54DQF1tDa/MvZiyA78wePqVdOh1LqbKo/y09guqSouISkjCajHz6k0zOFpwgOFz5pLYoRM/frWMJQ/djsVYxagrb/Zow7bPlmC3Whk5Zx611RWse/sF3rt3Hl2HjOZA3reMu/52jhYc4LsPXmPVvx/i0oefcz93y4qPWPLQbXQfMYEL73gAq8XMD0ve4tHfTGHO9q107ty5tV5KEvRaJnSIYnx6JBV1Dmd+gNlGkcl6xvyA9CgdqRHO/IAEvSakv2hPDGSCjatdo1KDs9R2qArGvChbMwsJdB40skEgA3gEFubqShx2O1kDh7P986Xu7bs35AAw8jfzPZ476sqb2f7ZJ79eg6qyY/UKzj3vElBVTBVH3Y/1GDGB/33xXw7//D+yBgxr1jWIU1OBAcmSAyVEMJNgRnjlxNz/soN7mf/aMjoPco5o9Dv/Ep6YMoC8Ze9z0R8eAWDd2y9yZO9PXP3Pt+gzcar7uRPn3e2uQrRp6TuUHviFy//6sjvZc9js61l00yV8+dLfyb7kKvRR0e7nVpeW8MdPf8AQ4wyrVLudNW8+i63OzO/ezUEb5nxbmyqOsu2zT5jx56cIC9dTV1vD8qf+TPaMq5n1wNPu4w26eA5PzxzB448/zquvvuqHV+30FEUh0aAl0aB1T3VTVRXH8RXt7Q7nytNhioKmja1on1savIGMy/riWvRaRaac+Uiw5kU5mjl3NrFDp0a3/7TuS7557WmKf9mBrb7Ovf3Ev9+K4kIUjYbEjCyP56ZkdvP43VRRjsVYxaal77Bp6TuNns90rLzR7aL5FJxTd0NxxFuIs4kEM6LZ2nXp6Q5kAKITkknO7Maxwnz3tp1fryCtRx+PQMbF9aW+e0MOMcnt6H/hLPdjWp2Okb+5iQ8WzGd/3kZ6jf11jnm/yRe7AxmAjv2cSbkDLrrMHcgAdOw7iO2fL6W6tJjEjCz2fr8Wi7GK/hfO8ujZ1Gi0dOw7iG/WrGnBq+FbiqKgVUCLAm30e7SgxkrO4dAoJpFTaKJ9RJgUBWihYM6L0jQzJSKskcplB7Z8x3/+cDVZg0ZwyX1PEJPSHm2Yjtxl73uMuDS5zccjrQEXXcbgi+c0uk9q995eH1ecngoMlk4MIYKeBDOi2eJTOzTYFhEbh9lY6f79aOFB+k6cdtrjVJYUktSxC5qT7ibade7ufLy4wPO8aRkevxuinYFNfPv0Rrebq51rQ5Qf2g/AazfPbLQdsbGxjW4Xvmd1qKzINwZ8QdGmUoAV+Ubm9UqQss3NEAp5UWGnGfH0djR0x+oVhOkN3PjiR4SF/1pYJHfZ+x77JaRloDocHCs8SErWr6MxZfl7PfaLSkhGHxWN6rDTbdg4r9oimkfBWRWyS6x0YAgR7CSYEc2maBofMvDHApRNOa+iPUV7jt+6qKqzd/Pyx14iJrldg/0u757QYJvwj7VFJqrrHQG/qW0qV2/+uiITkzKiz7i/8BQKeVEj20cQpmm8CEB4hDNnymysoimfEhqtFlBw2O3ubRVFh9j1zWce+/UYNYkvXvgbG99f5FGO+dv3XmlwvL4Tp7Ht86WU7P2J1G69PB6vqSgnOiG5CS0TTaUC0zJjQq4qpBBnIwlmhF8lZWRxZN9Pp90nPjWDkr27cDgcHqMzZQf2OB9P6+iztgBEJSY32rs5qX+ST84jTq+gxkpumSXQzfCaCmwus9AjXi/TzbwQSnlRqRFhFJoalmdO79UfcFYUO/f8mWh1Oo+pryc7Z/R5bHj3Zd68bQ4Dpsym5lg533/0BkkdO3tUKUvv2Y/+F87i+4/fxFJjpFP/IezbtI6jBQcbHPOCOx5gX+63vHTthQyZeTXtu/SktrqCop//x8/rv8JqMXPPirwG1dZOZ9FNl1BbeYzff7y+yc85Gyg4FxzOkL9zIUKCFE4XXtF62UnVZ+I0in/Zyc6vVzZ4zDWC03P0ZIzlpfzvy0/dj9ltNjZ++BrhkVF0GTyyRW126T5iIvroGNa88Qx2q9XjsTANHC1vuAK18C2HqrLy+PSyUKQAK/ONOPw8+thWhFpeVLRO0+iXYsc+Aznvt/dR/MtOljx8Ox8smO+Rd3eyrkPHMPvBZzAeLWXFP//C9s+XcuEdD9BnwkUN9p390LOM/M1N/PLd13z+7CM4bDauf+69BvvFJLXjd//5gsHTr2DnNytZ9sR9bHx/EbVVlfQ775KWXLo4gQLEhmsYmx4V6KYIIZpIRmaEV1IMYdSdeTe3sdf9jh2rl/PevXOPl2buj7m6gl1rv2Dm/U+R1qMvQ2ddy6ZP3mHJQ7dT9NN24tM6smP1cvK3bWLaH//qUcmsJQzRMcxY8BQfPfBbnr9qEv3Pn0FUQjKVJYXs35jDwYljeeGFF3xyLtG4fdX1VNaH7pKrKlBZ72B/tZVuceGBbk5QC8W8qHyj9ZSLdE6cdzcT593tse3vW07dAZI94yqyZ1zVYPvkW+7x+F2nN3Dxnx7n4j89fsZjRyemcMl9T3DJfU94bHfY7e6qjaJlXNPLJDdOiNAhwYzwSrsILYe92F8fGc3Nry8nZ+ET7PxmFVtWfEh0YjJdh44htp0zYV9niOCmVz/l8+ceY8vyD7GYjKRkduPSh59j8PTf+LT9A6bMJjYllTVvPsu6d17EZq0nrl0q2SNGc8MNN/j0XKKhvOPrioTCze2pKEBemVmCmTMIxbwosz1UWutJo9Uez9MRLTU5I0qmkQoRYhTV39naok3ZeczC8vyaQDfD56ZnxtA7UXo1/amizs4ruyoC3Qyfubl3gqw/cQoFNVYW76kKdDPOGnnL3mfJw3d45Mx899EbfP/RGxwtOEBkXAJ9JlzE+bfdT0RMnPt5rpyZyx55gWVPLqBo94/EJLVj3PW3M+zS6z3OsfGDV/lhydtUFB1CqwsnKSOL0VffyoAps1vzUv1qTFqkLJArRAiSnBnhldTItjmY11avK5hsLbeEbK7MyRRgW3noFTFoDaGeF9UW5Cx8kmX/uJfYlFQu+sMj9J00jU1L3+GN317WIF/QXF3JW3f8hg69zmXKnQ8S1y6NTx//E7mfLnbvs2npf1j+5J9p16UH0+7+K5NvuYe0nn0p2JHndduCdfbW2LRIRraXNWWECEVyBye8kqjXotcq1IXodIzG6LUKCXqJ6/1JVVW2H7UEZMrRopucydHzX/2/0+63P/dbXp0/g5sWfUqX7FGn3VcFth21MD490us1SNq6UM+LCnU1FeWsefNZug8fz/UvfOiuEJmS1Z1lT9zH1lUfk33Jle79q8tKuOiuRxlz9a0ADJ19HS9dewFfvPA3Bk69HK1Ox+4NX9G+6zlc9eQbLW6fQ4WBkfVsMYWBQz1lSf3W4JryeuLiqUKI0CN3cMIriqLQP8nQZnpdFWBAkkFuSP3sWJ29TQXAAHV2lYo6uWk/mSsvSgTG3h/WYbfWM+qqmz1K3Q+ZdQ366Bh2b/jKY39NWBjDZl/r/j1MF86w2ddRc6yMwz9tB8AQE0vVkSIKdm71SRsfu/kqPv3zTcSEawP2XnFVLbuqe9xZGcioqorNoWKxO6i1OrDYHdgcqt/XiRPCH2RkRnhtYLKBTaXmQDfDJ1RgQLIh0M1o80pqG67d0RaU1NpINEjejEtFnZ2DRuuZdxR+U1lcAEBKZjeP7WG6cBI7ZFJRXOixPTY5lfAIzzLEyZ26AlBRXECnc7MZd90d7P1hHS9dcz5JHTvTffh4+k+ZTdaAYc1q445dP/HlimUM7JvE2iITua1YGMR1nuwUA2PTo86KqmWqqnKszk5JrY2SWhvFtTZKzLZGF4gN00BqRBhpkWGkHv9J1Gulw08ENQlmhNcS9FqyYnTkG60hU6moMQqQFaOTJO5WUFJrQwOnLHsbijQKlJht9EYKR7i48qJC+XNBNNSuSw/u/u93/LzuS37Z+DU7vl7B9x+/ycSb/sh5t97r9fH++ugjDB06FIDJGdH0jNezMt9IZb3Db+8f13HjwjVMzYw5KyqWVdTZ2VpuYftRi3tk/EyfwzYHFJpsFJls7v30WueMjIHJBvm+FEFJghnRLINTDCHfA6sCg8/C6QWBUFxr8yqQ2Z/7Lav+/RBH9v1MbLs0xl57G8byI6xe9JR7/Q27zcaaN59ly/IPqDpSRExyewZcOItJN//pjOttVB0pYtkT97Hn+7WER0QyYMpseoyc6NU1OVQoMoX234Av+TIvKmfhkx7/1qLp4tM6AlCWv5fEjCz3dpu1norDh+g2bKzH/tXlJdSbTR6jM+WH9gGQcPxYAOERUZx7wUzOvWAmNms97959PWve+Dfjb7wTnd670e1bbrrJ4/eO0Trm905gf7WVvDIzB4xWnwU1ruNkxegYnBJBl1gdmjY8yuBQVfZV15NXZuFgI69jUz+HT9yvzq6yudTMplLz8dfRQNfY8Db9OorQIsGMaJauseHEh2uoCqF1JE6k4Oyh6xLb9nvnAk1VVUrMTZ9mVvTz/3jztjnEJLdn8i334LDb+frVfxKVkOSx39LHfs+W5R/Sd/LFjL76Vgp25LHmzWcpPbiHa/719imPb7WYee2WWVSWHGbkFTcRm9KerSs/Zt/mDV5fW4nZhqqqMgWDtpkXFYq6DRuLVhfOxvdfpcfISe73Zu6ni7HUVNNz9Hke+ztsNn745B13AQCbtZ4fPnmbqIRkOvTqD4Cp8hhR8Ynu54TpwmnfpSe/bFyNw2bDm8HJMAW0jUzt0igK3eLC6RYXTkWdnW3lFradOKKgODsQzuTE/fRahQFJBgacJSMKBTVWjxEu8N0ol+s4+UYrB41W4s+iES4R/CSYEc2iURSmZsaE7FoSrlWepWfJ/+wqjc7NPpWchU+iaLTc8uZKYlNSAeh33iX8+9JfK4wV/7KDLcs/ZMjMq5n1wL8BGHH5jUQnpLD+Py+yb/MGug4Z3ejxNy19h/L8fVz5xGv0O89Z6WzIzGt47orxXl+bzeG8cdLK28ineVET5t3FuBvu8NnxWiJCq2CxqyHTaROdkMz4G+5k9aKnePN3l9Nr3IWU5e/lh4/fJKPPQAZedJnH/rEpqax763kqig6R3KkrP375KcW7dzDzL0+j1TlvVN/47WXEJLcjs/9QopNSKDuwh+8+fJ1zRp+HPirai9appEbqzhj8J+i1TOgQxfj0SCrqHM5cD7ONIpP1jLke6VE6UiOcuR4Jes1Z0dFgdageuUfgv6meruNW1TtYvKeK7BQD486S3CMRvCSYEc3WMVpHdoqBvLLAlNxtLgVn8meG9Ci1CpsX1XEcdjt7N62j94SL3IEMQHKnLvQcOYmf1n0BwO4NOQCMvupWj+ePueZW1v/nRXZv+OqUwczuDTnEJLen7+Tp7m3hEZEMnXUtnz37SJPb6mJTVQJXkyl4+CovyjXlSRsW+K8njeKcnvRTZX2gm+KVybfcQ1RCEt99+Dor//UAEXHxDJl1LRfcdr87QHGJiI13L5q5+b/vEp2YwvR7/8HQWde49xk2+zq2fbaEDYsXUl9rIrZdGiOvuIkJ8+7yql0aRSE9qumfu4qikGjQkmjQunPTVFXFoTr/7uwO0GogTFHQKJwVgcvJCmqsrMg3Un28HHprfRe7zpNXZmFPVT3TZJRGBFDgvy1ESBuXHsWeqnqqQ2S6masc59j0qNPup6qqc0RBVXE4QHP8C1N7ln5htoTDi7vbmmNlWC1mkjI6N3gsseOv2yqKC1E0GpI6eu4Xk9weQ0wcFccrOjWmsqSQpI6dG/w7Jmd1O8UzTs/uANr+DJYz8jYvCn7Njfn9kg1889rT7P52NQnpHek9bkqjOTNbV37Mxg9e5ci+n9Hqwknt1osJ8+6ix4gJ7n12f5vDmtef4fDPP6JoFDoPGsGUOx+ifddzvL4mhwpGq4PJGVHkFJq8fn5rcTjsAGi0v36lj5gzlxFz5p72eSeuvXTrW6tOud/Q2dcy9ITyzc3lUJ2jJy2hHP8c1qKc9X93uWVmcgpNAS26oQLVx0dpZL0eESgSzIgW0WkUpoXQdDPX9LITh8SlbKV/afy5mlUQvO5aWa3L67yok713z1ySO3XhgtvuR1VVTMfKG+yT88pTrH7lSTL7D2HyLfei1eko2LGF/ZvXu4OZLSs+YslDt9F9xAQuvOMBrBYzPyx5i4U3TuOO978mIb2T120rMdu4qnscdXaV9cW1zb5GfzKWH0FRFCJi4wPdlDNKjZTbjpZSVZWNR8zu92OgOxJd588pNFFnVxnZPkK+E0Wrkk8V0WIdo3VB33PpMjkjyj0ULmUrW0eYF19q0YkphOkNHC080OCxYwW/bktIy0B1ODh6aD/tuvRwbzceLcVirPKownSy+NQMjuz7uUHifvnBvU1u54m8ub62ytu8qJOl9ejDFY+/4v49Z+GTHo+XH9rP16/+kz4TpnLlU294LAbpWuSvrraG5U/9mewZVzPrgafdjw+6eA5PzxzBN68/47G9qVx5USPbO3ucgymgMR4tZUfOcn5Y8jadzs0mPCIy0E06Lb1WIUEv0X9LnRjIBBtXu0alBvd7UbQt8qkifCI7JYIxacH94TUmLZJByQb2VNXxwd4qXtlVweZSs0cFppaUrXxlVwUf7K1iT1UdDllF2U2rOEe0mkKj1dJt6Fh2ffMZ1WUl7u3lh/aze+Nq9+89R08G4Nv3XvF4/oZ3Fx5/3LNi04l6jp5MdVkJO3KWubfVm2vZtPSdpjXyBGEaZ17F2c6bvKjGDJt93Wkf37XmM1SHg4nz7/YI6CsutAAAIABJREFUZODXaZ97v1+LxVhF/wtnYao46v7RaLR07DuI/bneV6tzsR0PfEelRjI5wzlFNRj+2csO7OGzZx8hqWNnLn3k+UA357QUYECSQXrsWyi3NHgDGZf1xbXklrWNhbVFaJCRGeEzwdhz6TI2LZKMqDAW7aqQspWtTFEUUiPCKDQ1bRrS5JvvYc/3a1h4w1SGXXo9qsPOdx++Tvuu51C8ewcAaT36MujiOWxa+g5mYxWdB4+kcOcWtiz/kN4TLjpl8j84K5d99+HrfPTgbRz+aTsxyc7SzDqD98F4akSY3JzhXV5UYxI6ZJ728WOFB1E0Gtp16XnKfcoP7QfgtZtnNvq4Pjqm2e07MS8qOyWC9hFh7qTrQHZbdMkexaMbDwWwBU2nAgOSvVuPRngqqLGSczj4Z0CAc8pZ+4gw+Q4UrUKCGeEzrp5LvVYJeFIi/LpY2oT0SIxWB+/trZaylQGSFhnmMTXvdDr07s8Nz3/Aqmce4quX/0Fc+3Qm33ovZQf2UHbCVLBZDzxDYocs8pZ/wK5vVhGd3I7xN9zJpJv/dNrjh0dEMm/hUpY9uYCNH7xOuCGC/lNm03PUJN68bU6Tr0mj4FVlpraspXlR3i662BhVdb67Ln/sJWKS2zV4/MTkeG+dnBfVMVrHvF4JHuVwZSz21BScVeFkGm7zWR0qK/KNIfNeU4AV+Ubm9Uo467//hP9JMCN8Lhh6Ll1Vy4a2i2BTqVnKVgZYamSYV5Wuug4dw+3vfe2x7T93XUtcuzT379qwMCbN/yOT5v/xtMc6sWKTS3xaBtf++z8Ntnuz4rwvKjO1Ff7OG0rMyEJ1OCjdv5v0nv0a3Sfp+Gr3UYnJdBs2zqfnb+z6dBqFyRnR9IzXeyxUGAo3mq1NBQZLlasWWVtkCvhIoDdcVc7WFZmYlOHNWkRCeE9yZoRfuHouB6c4e1xbq1/GdZ7sFAODkg18VRjYL4ATy1aezXOIva1gZLV4vlblh/axe0MOXbJHneIZgSGVmZy8yYtqjt7jp6BoNHy96F84TprT5ioA0H3ERPTRMax54xnsVmuDY9RUNKyQ1hRnyovqGK1jfu8ELu0SS1aMs8PCV593ruOEhXDHtgLEh2voEnv2dua0VEGNldwQW88NnN9/m8ssFNQ0/HsUwpfkm1j4TWv2XLqOGxeuYWqnaA6ZbHxTJGUrg0WiXoteq3gUWzidp6ZnM+jiK0jskEVlcQHfL3kLrU7H2Otu83NLm04qM/3K27wobyV36sKEuX/g61f/xaK50+gzcRpaXTiFu7YSm5LKhbc/gCE6hhkLnuKjB37L81dNov/5M4hKSKaypJCfN3xFZv+hXHLfE16fuyl5URpFoVtcON3iwqmos7Ot3MK2E6skKmB3qE04jnPED5zvrwFJBgYkG6ixOkKm/P3JXOXwNWfZZ56vOFSVlSE0vexkCrAy38j83gnyHhB+I8HMWSKQi0C6ei73V1vJKzNzwGj12Qez6zhZMToGp0TQJVbHd1K2MugoirN89eZSc5P+3XuMmMj2z/9LzdFStOHhdOqXzQW33U9yp65+b2tTSGWmhrzJi2qO8269j4T0Tnz34Wt8+eLj6AwRpHbvzaCpl7v3GTBlNrEpqax581nWvfMiNms9sSmpdB44nOzpV3p9zubkRSXotUzoEMX49Egq6hzO9avMNr74fgtxHbug0ekbPMe1flV6lI7UCOf6VQl6jfv9laDXkp1iIC/EeucVnKPkGWfxFNuW2lddT2W9v/6q/E8FKusd7K+20i0uPNDNEW2UoqpSQ7atCfZFIE/Vc+lowjvxVD2XrsTS3FJzSFR7ORtXSq6os/PKropAN8Nnbu6dIAnNJ9h5zMLy/JpAN8PnpmfG0DuxYQDird69e3PBBRfwz389jU1VsTuchQXCFAVNEzqVrA6V136qCJm8CVfeoiSAt8wHe6vIN1pD4t/8VFwFIOZ0iwt0U0QbJSMzbUioLAJ5qp7LIpP1jEHXqXouQcpWBrsEvZasGF2b+WKWQMZTW80f8tV1FRcXk5qailajoEVxl3puKp1GYVpmTMhMN3NNL5NApvkq6uwcNIZ+vokKHDBaqfh/9s47vKmy/eOfk6R7t4S2UKSUAoJsyirKrCAyZAkoIEMEfEFBeQVRkfG6AAcoKqCA8gNRAZUlIkUQAdkgUyyU0UpLW2hL90jO74+Q0HTQtE3aJH0+1+UlOTnnOU9Gc8793Pf9/eZoxO+mwCLY59WnGqGVZS7fyeV4YjZXiynfqogJ5JGErLvlW87U93Q0e72rJEn4OivxdVbSBN3KpyzLaO+Ww5Vl5VLIVtoGbdTONn9xFspMxVPWvihbwFx9UdnZ2aSkpBAQEFChceq4OxAR5EZkrPUv2kQEuVWrxRpLcDLJfmS/JeBUUjbdartV9VQEdojoXrVhYtLzWHE+mU3RaVy7e4NoCRPITdFprDifXCmKJJIkoVRIOCkVuDoocFIqUCqkUkswbFm2sjpR39MRb0eFVbinlwehzFQy+r4oW/1sC2POvqibN28CEBgYWMqepROmduGRQOvuuXsk0LXaldGaG1mW+euW5XqkIpctZFZrteHxgj6t2TDHcgIrMnDqVjais0FgCUQwY4PkaWUiY9NZF5VKqoX9UwqbQEbGppNnSnNLJSJkK20HhSTRp66HzX1WeoQy0/1pVcPZZj/bwpjTsT4+Ph6gwpkZPeH+1hvQdA50JdxfBDIV5XaOxq6ynKCr+kjOsV0xA4H1IoIZGyMmPY8vLyRzPDEbqBoTyC8vVE6WxhQKylbaInrZSm01Wq2q4+5AmNr2VvAloK1QZrov+r4oW/tsCyMB9czYFxUXFweYL5iRJIlOAa5EBOlKdqr6/dafPyLIjfAAV6HyZwbiMy0jc17V2OvrElQtIpixIY4lZrEuKlWYQBZAL1tpq6FAQdnK6kSXWm542lC5mV6ZqXMtUe9dGm3Utp+dMXdfVHx8PEqlkho1aphtTNCVnI1o4FWlf0v6v40RDbxEaZkZic/Mt7obtNysipVFKySIzxLBjMD8WNvfiqAYZFnmQHymoemzqm8UCppAHojPrNIa2OOJ2TZzQ1wSEnDcCgLDykSvzFTV32VTEcpMpiP6oooSHx+Pv78/CoX5L7l13B0Y39iHIG0qsqyFSvo91n++YWpnxjf2Ec3+ZiYu03yeTVdPHmLpyEeZ3SGIRf3bcnjj16Uec3zLema1VhN9/AA/vTuDt3o05t3HWlRoHloZbmRUr4U7QeUg1MxsgIPCBLJYhGylbSOUmewTfV+UrUgIF8YSfVHx8fFmKzErDgeFhHzhT5Z/sJQZa7ZxJx+LqWDpx/VyVNCnrof4u7AAsiybLYMRH3WeVZOH4ubtR4+Jr6DV5BO5fAHuvjVNOn7zuzNx8/Gj+3PTycuu+H1IfFY+siyLUkSBWRHBjJVzLMF6Axk9f8Rl4qSUKr3EQMhW2j5hahdyNLJVf8eFMlPZ0fdFCcd6HXqPGUty8eJFcm9eZ1JTP6Lv5HE8MYsraXloNRoUyoovkmg1+SiUSoI9HGmjdiHE00EIYVgIjUyxfmvlYdeyBciyzMSVW/EODAKgafd+LBnW2aTjXT29Gb/sB7N8h0D3urQyKMVXR2BGRJmZFWNrJpCWFAWYO3cukiSRlJQEWF62siwUlrgsD9VZtlIoM9knoi/qHpbOzIAumGnUqBEKSSLUy5FhoV4MDYT96z5Hyr/322xqpWTB/bLSUvHPSmRiE1+GhXoR6mV+3zHBPfLNdB3QajRE/bmHJl17GwIZgJohDWnQsZtJY7QdNMpsgYwec70+gUCPCGaslIImkLaA3gSysmSbhWyl/SCUmewT0Rd1j/j4eLN4zNwPfTBTkD92bueXJfMZXUfBhMY+9K/rQZjahSA3FaoSrv4qBQS5qQhTu1A/4zofDuqIdtdXPPtIs2pVBluVaM10GchITiIvO4saD4QUea5G3VCTxvCp9YB5JlMATfW7zAksjCgzs1Js2QSyR5C7xc9nTfKO3ca/TJexL5plrPjMfHydq+cNQ5jaBX8XFduupVXZd1+/Ot9X9AKYBdEXdbf/wcKZGa1WS1RUFGPGjDHavnnzZtq3b09AgD8Avs5KmuBkmJdW1q2Sa7SgVIBKklBIugWGGzdu0Gpwb5o1bcrcuXMtNndBUSygE1FuHJzNn5lWWtHrE9gH4itlhQgTyNKxJtlKpUqFg1PFzfWEbOU9ZaY2at37WVk5EaHMZDmqu2N9cnIyubm5Fg1mYmJiyMrKMsrMZGdns3PnTp544olij5EkCaVCwkmpwNVBgZNSgVIhIUkS+fn5DB8+HJVKxfr161GaucxIcH9UZsoGu/nUwMHZhaTr0UWeS7p2ySznKA/men0CgR5ruR8U3EWYQN6flJQUxowZQ/8mtXmzcwgb57xAbta95nFNfj67v/iARf3b8kb72izo05qdn7xFfm6O0TizWquJXLawyPgL+rRmw5wp98bLyyNy+SLef6IdszsEMb9bQ5aN60PUob2GfYrrmZnVWs3m92Zybs/PLH7yEd5oX5uPhjzMxQO7i5wz+tgBlo6I4PX2QTzVsSnLly839AhVRxwUEhFB7oxo4IWXo+4nylLvhH5cr7s+GT2C3IX8sgWozn1R8fHxgPkMM4vj4sWLAEbBzO7du8nMzKR///5lHu/111/n4MGDfPfdd9SsaZrqlcB8KCVKLAMsCwqlkgYdu3F+7w5S4mIN2xOi/yHqzz0VP0E5UClM79sSCExFlJlZGXoTSFuloAlkqJej2ccfOnQo9erVo9cLbxB74TRHf1yLm6+a3lPfBOCH/03jxNbvaBrRj4dHPk/M2ePsXb2EhKtRjPqgdG39wkQuX8jvq5cQNmAkdZq2IjsjnX/Pn+LG36dp0KHrfY+9duow537bToehY3Fydefgt1+y7pVxzPz5JG7evgDc+Ps0q6cMw6OGPxGTZoBWw/z581GrKyYoYA/UcXdgQhMfI2Umc6nX6ccJ9nAQykyVgL4vykkpERmbUeUqhPrzRwS5WVypTh/MWLJn5uLFizg6OhIcHGzYtmXLFkJDQ2ncuHGZxtq8eTMLFy7k/fff5+GHHzbzTAWmIEkSAS4qYjMqnqmPmDiDfw7+xvJn+9Fh6Fi0+fkc/O5LaoY8SHzUOTPMtmwEuKiq7UKdwHKIYMbK0JtA2lqJWUH0JpCWCGZatWrF8i++5P2/btEOyExJ5tjmdfSe+iZx/5zlxNbvaDtwJINmfwRAx6HjcPdR88f/fcrlo/up37ZsF+eL+3fRsFMEg2Z/WOa5JlyJ4qWN+/GrUw+AkLCH+Xh4V/765QfCh48HdFkdSaFk0urteKp1K7eLXxhD04ealPl89ohemSnUy5HkHA2nkrI5dSvbIP6gkHQyn6WPc28/J6VESz9nWtZwFg3NlUx17IvSBzP+/v4WO8fFixcJDQ01lINptVq2bt3KU089VaYbx+joaEaPHs2AAQN4+eWXLTVdgQkEuqq4kVFx48zAhg8xbul3bP/wTXZ9vgAv/1pETJxJWtLNSg9mFBLUchMlvALzI4IZK0KYQJbOpEmTjGQdg1t14Nye7WSnp3FxfyQAD4943uiYR0Y9zx//9ykX9+8qczDj7OFFQvRFkq5fpsYD9ct0bGj7zoZABnQXFSd3D27/ew3QyWZeOrKPJt0eNwQyAMH169O7d2+2bt1apvPZOz5OSrrVdqNrLVeSc7TEZ+YTn5XPjYw84rPyi/VlUCl0K4G13BwIcFER4KrCx0khVgarEH1f1O83MjhWiYs3+vOEqZ3pXMut0soJ4+LicHd3x93dcsIohZXMjh07RlxcXIn9MsWRnZ3NkCFDqFGjBqtXrxZ/I1VMgKuqwoGMnnptwpmyLrLI9ohJMwz/nrn9hNFzbfo/RZv+T5lpBjq0su73WCAwN+JbZUUIE8jSeeCBB4xkK108vQDIupNCclwskkJhFEAAeNTwx9nDi+S4mDKf79FJM1nz8jN8MKAD/qGNadixO636PElgw4dKPdY7IKjINhcPb7LvpACQfjuRvOws/IKM56vRQmioabKZ1RFJkvB1VpZJmUlgXej7ohp5O7H9WhopuVqL/fbJWi2SQoG7EvqHeFW6uENlecyMGDHC8HjLli34+voSHh5u8hhTp07l/PnzHDp0CG9vb0tMU1AGAlzt8/bMXl+XoGoRAgBWwFdffYUkSew5/U+lBjLJN64zq7WafWs+NfvYljKBVCqVJchWFjhPBW5eZa3G6HG9NuG8suUog+cswb/+gxz9aS1LR/Tg6I//V+pYUgn6mnIpn7KQrSw791NmElgv+r6oISGeBHvoggxzfWL6cYJcFXw381liv/2wSlTqzOUxI8sy+VqZbI2WzDwt2Rot+VqZjIwMYmJijDIzmzdvpk+fPqhUpt04rlmzhhUrVvDpp5/SsmXLCs9VUHF8nZQ4Ke3r98tJKeHjJC5wAvMjQmQrIlcrY37v6apDbwJpbt+UkmQdfQKDkLVabl2PpmZIQ8P2tFsJZKel4hNYx7DNxdObrLRUo+Pz83JJS7pZZFxXLx/CnniasCeeJicznRXj+xO5fBFtB46q0Otw91WjcnLmVuwVo+0qSeLSpaqTzRQIKpPK6Iu6EPYQH3/8MS9Nm1bp6lzlyczIssztHI2ulDIzn7i7JZXFlVIq0DJh5VZUDzXi3O1s8m7Fc+7cOZO9Yc6cOcOkSZMYM2YM48aNK9M8BZZDkiRa+DlzNCHLbqo1Wvo5iwUmgUUQIbLAoljC3LIk2cpGD0cAcOCb5Ubb969ddvf5Rw3bfIOCuXryT6P9jmxag1ZjnJnJSLlt9NjJ1R2/OvXQ5OaWe/56FEoloe06c37PDu4k6pqEVQqIvnyJHTt2VHh8gcDW0PdFTWvmWy7H+v51PZjQ2IdpzXzpVtvN0LM3ffp0FAoFixYtqsRXoyMuLs7kYCY5R8Nv/2aw+MxtvriQwtZr6RxPzCY2o/hABkCLguCW7bmh8mHrtXR+SXdn9t4o3Fp3JzlHU/xBd0lLS2PIkCGEhoby6aefihtNK6NVDWe7CGRAVzvRskbF/dgEguIQmRkrwt4uI3oTyLoZ+bi5mS/nVJJsZWDDprTuN4wjP6whKy2Vem3CiT13ghNbv6NJt8eNmv/bDhjJT+/8l7X/HUODDl2J++cc//y5BzdvP6MxFw95mHptwqnduAWuXt7Env+Ls5Fb6TDsWbO8loiJM4g6tJdlY/vQfsgYPFQyH327kqZNm3Lq1CmznEMgsDXM3Rfl5+fHtGnTeP/995k+fbrFe1gKUlpmRivLXL6Ty/HEbK4WIz9uShO4JElG+7l4ePFXioZTKcl35cedqe/paCQ/Lssy48ePJy4ujmPHjuHqap0+QNUZHyclwR4OXEvLRbbhOwQJnQy+UI8UWAqRmbEi9BcwUw0dj29Zz6zWaq6ePMSWhbN4q/uDzOtcnx/fmk5+Xi5Zaal8P3sy87qEMq9LKDsWzyuxh2X/2mUseLwVszvWYcX4/sRfulBkn4QrUax7ZSzzuzZgdocglo6I4Pzvvxjto59T9PED/PDODAY0DyYoqGgjfEUJdFUV++UdNHsxEZNmEnv+FNvff4PLR/fTdexUnnp3hdF+bQeNosuYF7h64hDbP5zD7X+v8exnG3BwMb6ghw8fT3JcDHtXL2Hrote5cvwgj/5nFn1emm+W11G7SQvGfvItLp5e7Pr8PQ5sWsf8+fPp0aMHzs5iFUsg0FPRvqiXXnoJR0dHFixYYOGZ3iM3N5dbt26V2DMTk57HivPJbIpO49pdJUtzrcTrx7mWlsem6DRWnE8mJv2eWubSpUv5/vvvWbVqFQ0bNix+EEGVcvPmTU5uXmfTgQzovottLOznJKjeSLK5O7QFZWb16tWMGzeOGduO41PrAWa1VtNjwitGsomgC2ZCwsJ5ct5SQBc4bJz7IoGNmuLhV5MHO/ci5sxxTm7/ns6jX+D6X0fwCgwiuGV7Lu6P5O8/fuXJ+Utp3XcYoBMAWNi3DQGhTcjJTKf9kDHk5+ZwYP0KFAolU7//HQ8/XX35zct/s2xsHzxrBtK67zAcXVw5s2szV08eYsSi1TzUvY/RnGqGNMLNx48Wj/ajvRe8+uqrZn3Pzt3OZuu1dLOOaQ30r+tBE18nBgwYwLlz54iKiqrqKQkEdsP8+fN55513iI6OplatWhY/X2xsLHXq1OHnn3+md+/ehu15WrlKpaldYs/RrfMjTJ48mY8++qgSzi4oC0lJSSxatIilS5fi4OjIjK3HULp52WTJmQR4OSqY0MRHGBMLLIYoM7MCTGluvR/uvmrGfPItkiTRceg4bsVc4Y81S2k3eDQDXtPViLcb9AwL+7bm2OZvDMGMnluxV5j+02G8aupWDxuGd+ezZ3rx+1ef0Hf6/wDYuuh1vAOCmLz2V1SOurKPDkPHsXxcH3Z8PN8QzOhx9fRm/LIfUCiVvNLCuHTLHNiTvGNedhYOzrpVqwBXFVFRUfz888+MHj26imcmENgXU6dOZfHixbz77rt88sknFj+f3jCzYJlZTHqewTQUKk+KX3+eY4nZpCY70XPYqErNUpkbWZbR3C071GpBcbfsUGnDcuwpKSl88MEHLF68GFmWmTZtGtOnTyfD0YN1UamlD2CFyEDfuh4ikBFYFPu5I7RhKuqD3XbACKMf7zpNW3P99FHCBtzzHVAoldRu0pJ/L/xV5PgmXXsbAhn98XWatuGfA5Ew/X9kpiYTffQPIp6fSU5GOjkZ9zIiDTp2J3LZAlIT4ozGaDtoFIq7btT5sozSzGlyvWylXvHIllnUP4zW/YZTs04wH2xMYtmyZTg6OjJjxozSDxYIBCbj5eXFf//7X+bNm8fMmTMtUgJbkLi4OOBeMHMsMYvI2Iwq9xPzUAfy8MvvcTpVQ5i6CidiImVRd9Mb5Qa66kxyA1xV+DoprTrASUtLY8mSJXzwwQfk5OQwefJkZsyYgVqt+3B80WXUjidm21R2RkI376AqkEQXVC9EMGMFVDQz41XInNHZ3VO33b9Woe0eZN01bCyIX52QIttq1K3PmV2bAbgVcwVZltn12Xvs+uy9YueQcTvRKJjxqfWA4d8aLWDmvj97kq1s2LE7f/3yIxm3E3BxcqJjx4688847NGjQoKqnJhDYHS+88AIffvgh77zzDp999plFzxUfH49CoUCtVnMgPpM/4jKBqjdG1i80RcZmkKORCfd3scqb/eQcDSeTsvmroFQ39xdFyNdCbEY+NzLyDfs5KXXXi1Z3pbqthYyMDD799FMWLlxIWloaEydOZNasWcX2WHWp5UZUai53ciu6/Fk5SICno4LOtezJcEJgrYhgxgpQmHgNKWzoaDheWfyPs0JRzPZytEjJWt0l4ZFRk2kY3q3YfQoHRPqyKbCcCWSrGs4cSciyzOCVyJB5unKXiU18rOpCKxDYIx4eHrzyyivMnj2bmTNnUrduXYudKz4+HrVazeGkXEMgY23o59UpwDrUzMyh7lZ4vxyNzNGELI4kZJWo7laZZGdns2zZMt577z1u3brFs88+y+uvv06dOnVKPMZBIdG3ru2Um8lAzyB33ecny1YZLAvsBxHMWAGKQiVYZTF0NAe3YqKLbEu6dhmfWrofVt8g3cVeqVIR2r5LmccvyeSyotyTrcyziZWqkhCylQJB5TJ58mQ++OAD3n77bVasWFH6AeUkPj6eR0ZOstpARs8fcZk4KSXCqlhxKiY9j+3X0kjJ1RquipZQd7ualoe3o4I+dT2oU4klULm5uaxcuZK3336buLg4Ro8ezezZs6lXr55Jx9dxdyAiyI3I2AwLz9Q8bIi+A9hm6Z/AthDSzFZA4cyMqYaO5uL83h2kJsQZHsecPUHM2eM0DO8B6AQGQsI6cfiHNQZzx4KkJyeVOLZKYXrmqTy0Udu+qZiQrRQIKhd3d3dmzpzJ6tWriY4uuphjLtJUbrR+erLFxjcnkbEZRtLNlUmeViYyNp11UamkWlgYQT9uaq6WdVGpRMamk1fRWu9SyMvLY+XKlTRs2JDJkyfTpUsXLly4wKpVq0wOZPSEqV14JNA6smimoi/9O56oUyH94kIKi8/c5rd/M0o1drUmZFkmXyuTrdGSmaclW6MlXyuXaHkhqDxEZsYKKLw6Yaqho7nwC6rH8nF9ddLMebkc+GY5rt6+dB59z9Om/6sLWD6uL0uGdaHtwJH41g4m/XYC108fI/VmHFO/21vs2AEuKouuvtT3dMTbUUGqjdQRF0YvWxniKRokBYLK5Pnnn2fRokW89dZbrFq1yuzj52ll6vYdDbIWJOvPukrAtmtpjG/sg4MlV6AKUdXqbscTs4lKzaWvBbI0Go2Gb775hnnz5nH58mWGDBnC9u3beeihhyo0bri/bvHL2jN+hbHm0r/C2LvohL0hghkrQv+1bztoFMk3rnHsp2/45+Aeglu159nPNvDlpMEWOW+rvkORFAoOfLOcjNtJBD3Uiv4z38NTfU9O1D+kEVPW7iJyxSJObP2WzJRk3HxrUKtRM3pMmF7suAoJarlZ9iZdIUn0saE64sII2UqBoGpwdXVl1qxZTJ8+nddee43Q0FCzjv/7jQxcfNVICtsogJCBO7la9t3IoEeQe6Wc0xrU3fSve11UKhFBbmYptdNqtWzcuJG5c+dy4cIF+vfvz8aNG2nZsmXFJ4xuAbRTgCtOSqnK37+KYA2lf4Wxd9EJe0WYZloJ9m4CaWkiY9NtVraysm4cBAKBMVlZWYSGhhIREcHXX39ttnFj0vNsdoEFYEQDL4veUMqyzMGbWVaZWXgk0LXc6m6yLLN582bmzJnD6dOn6dWrF/Pnz6ddu3YWmKmOgpktW7r+FUdBY9cutdwqLUNYmuhEedGPY42ZJ3vDNpaMqgH2ZAJZkMp6XV1queHpWFhKwXoRspUCQdXj4uKtzgmqAAAgAElEQVTCrFmzWLt2LRcvXjTLmFpZZvu1NJv5LSqMBGy/lobWguuc1hrIgK506+DNsqlkyrLMjh07aNu2LQMHDsTPz4/9+/fzyy+/WDSQAZ0owPjGPrRROwPY7PcOjEv/vryQXCk9XDHpeaw4n8ym6DSupeUZzaOiFMw8bYpOY8X5ynlN1RERzFgJehNIe8JJKeHjVDlfMb1spa2sTOnLyyqzNl0gEBRl/Pjx1KpVi/nz55tlvMt3ckmx4VVyGUjJ1RJ9xzI3XccSrDeQ0fNHXCbHEksPaGRZZvfu3XTq1InHH38cJycndu/ezW+//UanTp0qYaY6HBQSEUHujGjghZej7ppry1eWgqV/pnwO5cHeRSeqGyKYsRL0JpC2/ANUEAlo6edcqQ1wetlKWyAiyK1K64IFAoEOZ2dnXn/9ddavX8/58+crPN7xxGyb/x2XgOMWuImMSc8j8l/bkBUuTd3tjz/+oFu3bkRERJCXl8eOHTvYv38/3bt3r8RZGlPH3YEJTXwYEuJJsIfu+mKr30X9rX5kbAYH4jPNqhgWk57HlxeSOZ6YbXQuS1MVmafqgghmrIhWNWxfZliPDLSs4Vzp57UF2cpHAl2r3M9BIBDcY9y4cdSpU4d58+ZVaJzkHA1Xbdz3CnS/31fS8swqm5unldlmQ+V3enW3wivohw8fpmfPnnTu3JmUlBQ2b97MkSNHeOyxx6xCvUohSYR6OTIs1IuJTXxoV9PFqOrDFosBylP6VxLHErNYF5VapT1GlZF5qm6IYMaK0JtA2uBvjRESUK8KTSDD/a03oOl8t7lUIBBYD46OjsyePZvvv/+eM2fOlHuck0m2n5XRIwGnkrLNNt7vNzJsqkm9oLobwMmTJ+nXrx8dOnQgNjaWDRs2cOLECfr3728VQUxx+Dgp6VbbjWnNfJnQ2If+dT0IU7sQ5KZCZWN3f6aW/pWELMsciM80GI5W9ffQkpmn6ohQMzMDsiyjkSFfltFqQaHQud4rpaIeMqURlZrDpug0C8208hgS4kmol2OVzsEaZD/hnqKJuWQ/BQKB+cnLy6NRo0a0atWKTZs2lfl4WZZZfOa2Qc7VWpjVWk2PCa8QMWlGmY91UkpMa+Zb4Zt121Z3k7nw9SLWLFlEaGgoc+fOZfjw4SiVti23K8syWhmupefy/WXbuecor9LegfhMq+7VeiTQlU4B1rkIawvYp4SWBbG0kZIwgTQfYWoX/F1UVSpbqVcts4Qhm0AgMB8ODg68+eabjB07llOnTpXZE+R2jsbqApmKkqORSc7R4utc/hv3guputvjuaDQaavV6mpUtGvPMqFGoVPZx2yRJElpZZmdM1S/4mUp5jV1tRXTCSSmJBc9yYh9/lZVAZRkpCRNI86KXrfz9RgbH7jbmVsaPdkG9/M6VqJcvEAjKz8iRI3n77beZO3cuP/30U5mOjc/Mt9Csqpb4zPwKBTN6dTdbRalU4RUQROfwJnYTyOix5dI/U/3ZbE10wt9FJRY+y4GNVU1WLlpZJio1h28vpbL8fDJHE7KMVt5M/XkuuF+ORuZoQhbLzyfz7aVUolJziuj513F3IExte8pmEtBW7UyQlf0hVqZspX5cL0cFIxp40SPIXQQyAoGNoFKpePPNN9m8eTPHjx8v07Hxmflmu6DmZlnHzZdCgvisigVpQt3NOolJz+OYjRlNgy6gOZqYbZISmL2ITghKRwQzJVDVRkrCBNL8WFK2Uj9OsIcDQ0I8mdDER6yuCAQ2yFNPPUWjRo2YM2dOmY6Ly8wvcYErNSGOTfOm8k7PprzRvjYL+7bhp3deIT8vl+Nb1jOrtZro4wf46d0ZvNWjMe8+1gKADXOmsKBP6yLjRS5byKzWaqNt+bk5bHv/Dd7q/iBzHg5mzbSRpN68UeJ8Ns59kbcjmvBG+9p8NORhjv20rsh+WhluZJRfPlaou1kn1cXY1ZYzT4KyYV85UzOQp5WNSpKg8oyUwtTOdLlbkqQ3gbSVcjNbMYHUy1aGejmSnKPhVFI2pwqWDkq6C3jp49zbz0kp0dLPmZYllA4KBALbQaVSMWfOHJ5++mkOHz5M+/btSz1Gq9USV0KZ2Z3EeD4b1ZOstDu0GzQKdXAD7iTGcTZyK3nZ91b7N787EzcfP7o/N5287LLX92+a/xKnft5Ai96Dqdu8LZeP/sFXLz5dZL+0Wwl8PvoxkCQ6DHsWdx8/Lh7Yzab508jOSOPhEZOM9o/PykeW5XKJAOjV3WzlZvJ+6NXdutW23gU7U7H10r+Cxq4lCQ3pM0+2hj7z1NDbSSyIlgERzBQgJj3P0CwOVWOkFJWaa2gW15tA6qUErRlbNIHUy1Z2reVKco5WJ+qQlc+NjLxSRR1quTkQ4KITdfBxUlitNKdAICg7Q4cO5a233mLOnDn88ssvRs8VKwKTmU9Jvf+/fPI/0m4l8J81Owlqck9U4NHnXzWSY3X19Gb8sh9QlEMlK+6fs5z6eQMdnhzLE7MWAtBx2LN8+/ok4qPOGe3766fvoNVomPr9Pty8fQFoP2QM62dNYPfyRbQfPBoH53tNyPla3cKN0oSfuK+++oqxY8dy5coV6taty1+3bK+MqSRk4NStbLrWcrX53/vjldg/ain0pX/FBTO2LjqhzzxNaOJjNf3H1o4IZu5iDTK+BY2U9DK+YWoXcjSyVStx2LoJpCRJ+Dor8XVW0gQn4J5sZb4so9GC8q7ctqIcctsCgcC2UCqVzJ07l6FDh3Lw4EHCw8PLJQKj1Wo5v3cHjTv3Mgpk9BT8LWk7aFS5AhmAi/sjAQh/aoLR9k5PT+SvHfdkpmVZ5uzubTR/9AmQZTKSbxmea9ixG6d3/si/f58muKVxNipfllGWsSipLOpuN6MvcubXzbTpPxyfWg+U6TyVSVp6Bq/OXkLviO507dq1qqdTLvSlf7ZOwdK/whUR1SHzJDCm2gczsixz8OY92b6qjuILGinlaGTC/V0MJovWGNB0DnSlox2aQEp3fYKUSCAqxwSCasfgwYNp3rwFn3y7mes1H+JqWl6Rxa7SbpcykpPISU/Dv/6DpZ6vIjfxyXGxSAoFvkHBRtvVdUOLzCc7LZUjP6zhyA9rip/z7aQi2zRaTPodHDVqFMOHD8fJyYnzyTmmTp+E6IvsXrGIkLBOVh3M5GVnsfDt/+GiUthsMFMdSv/sPfMkKEq1D2YKBjLWhn5enQJ0ZkpOSqnKs0cgTCAFAoH982+mhme+2EqegwtX7+SCJFn0d7dgaZceqYRsiFZbvkZ0WasLv1o+/iRt+g0rdp+ABk2KbFu96kv8/XxRq9Wo1Wpq1qyJr68vCoWxhpBSqTSYSerV3apyfTw3KwNHF/P1uFh5S2ipyLJcodK/yGUL2b1iEe+eSDTLfFY89wSZKbeZtuGPch1fXOlfdcg8CYpSrYMZWzNSEiaQAoFAYFmMRGAc7gYY5SwtdfOpgZO7Bzcv/12u4509vclOKyoCkxIXa/TYJzAIWavlduxV1MH3sjGJ1y4VnY+bO7JWQ2j7LibPY/q0aeRkG0sTKxQK/Pz8qFmzpi7ACQgk6dYtftv1K/PeegePbk/y7pDu+Nd/kK5jX2T7h28SH3UeD3UAERNfoXVfXTB1fMt6Ns59EYAvJgwwjP/cip8ICesEwMUDkexduZh//z6DpJCo17ojvafOMcp4bZgzhbORW3nx271sWTiLqycPEdquM6M+XINWq+Xg+hUc/XEtt2Ov4uzuSZOuvXnsxdm4eHobxog9f4pfl77Nv3+fJjcrEw+/moSEdWLI3I9JvnGdhX3bADBv3jzmzZsHwJw5c5g7d67J72VVUh2MXatD5klQlGobzNiqkZIwgRQIBALLYG4RGIVCQZOuvTn180Ziz58q0jcjlyIt6xcUTHb6HeL+OUdgw4cAnTrauT3bjfZr2KkHO5e+zcH1KwwCAAAHvlluPB+lkqbd+3Lqlx+Iv3SBgNDGRs+nJyfh7lPDaJtKAZkZ6aSmppKQkEBCYiI3ktNJyNGSJjmR7+aDytcfhYMTx7esh12/ktGyF44uuiDhduwV1s0YR9gTI2jddxjHNn/DxjkvULtxC/zrP0i91h0Jf+o5Dq7/gq7jplGzXkMA1PUaAHBi2/dsnDOFBh278diLs8nLzuLwxq9YNq4vL67/zagsTavRsGryUIJbtefxafMM2a6f3p7O8a3f0qbfU4QPf47kG9f487uV3Lh4hkmrtqN0cCD9diKr/vMkbj5+dBnzIi4eniTfiOHcb7r32s3HjwGvLeKnd15h4MCBDBo0CIDmzZvf9zO0Juzd2LWimSdrw55EJyxNtQxmChop2cKXXm+kNL6xj0G2OSLInUbeTmy/lkZKrtZir0U/rpejgj4iGyMQCOwUS4nA9JryBpcO7WXF+CdoN2gUNes15E7STc5GbmHiqm33PbZ5r4H88vF81v53DOHDx5OXncWhjV9R44H63Pj7tGG/Wo2a0eKxQRzasJrs9DQeaNGWy0f2cSvmatH5vDiby8cO8Nkzj9F24Ej8QxqReSeZG3+f5tLhfby5N8po/wAXla6czNWTf90d+SunBjluundIRelmdYlXLzHhyy3Ua90RgGY9n2BB75Yc37Kex1+ah29QMMGtOnBw/Rc06NDVkI0ByMlMZ+ui1wgbMJJBsz80bG/dbxgfDuzInpWLjbbn5+bQ7NH+PPbCbMO2qycPcfTHtQx7exktew82bA8Je5jVU4ZxJnILLXsP5tpfR8m6k8K4zzYYBZ09J78GgKOLG0179OOnd16habNmjBw5spRXbn1YQ+mfudEbuzbBqVpkngTFUy2DGVs2UuoR5G7YrjeBjL6Tx/HELK4U06BaXvTjBHs40EbtQoing5AIFAgEdoelRWC8agbyn6938uvn73JqxyZyMtLwrBlIw/DuxfbJFMTN25eRH3zN9g/fZMeS+fjWfoBeU97g1vVoo2AGYPCcJbj5+HFqxybO7/2Z+m0fYczH3/Be7xZG+3n41WTy/+1k94r3ObdnO4c3rMbV24eaIQ/y2ItvGu0rAS4qBd9eSi2XAAJAzZBGhkAGwN2nBjXqhnI79lqpx1469DvZaam0eGyQkfKaQqGkTtPWRB/bX+SYDkPGGj0+E7kFZ3dPQjt0MRqjduMWOLq6EX1sPy17D8bFwwuAv/f9SmCDh1A6lLxwZ6sG7fczdi3M1ZOH2PbBbG5euoBnzUA6PzOlyD6zWqvpMHQcIW3CiVy2kNs3rhPYsCmD3viAgAZNOLzxa/atWcqdhDjqNGvDk/M+KVXg4Z8/97B2+mgad3mMof/7DKXq/repBY1d7T3zJCiZahfM2JuRkjCBFAgEgvJTGSIw3oFBDJ3/abHPten/FG36P1XisQ06dGXa9/uKbI+YNMPosYOTM/1eeYd+r7xjtL24Zm13XzVPvLqAJ15dcN95y0BUam6FDKS9A2oX2ebi6UVWWkqpxyZdjwbgy4kDi33eyd3D6LFCpcLTv1aRMbLT7/B2D+OSOj3pd9Xb6rUJp2mPvuxesYj93ywjpE0nmnTtTcveg1E5OhkdU0p1oFUiyzLxWabd7MdHnWfV5KG4efvRY+IraDX5RC5fgLtvzSL7Xj15mAv7dtJx6DgA9q5awtdTR9B59BQObVhNh6HjyLqTwr6vl7Jx7lSeW/Fjiee9sO9XvpkxjmY9n2DInI9NlirXG7vae+ZJUDLVKpixdyMlYQIpEAgEpmMLIjDWQEWul5Ki+BvS0vqFdPvoLlpD//cZHjWK3kgrlMa3MCoHxyIKa7JWi7uvmmFvf17sOdx8/HTzlCRGLFrN9dPHuLBvJ1F/7mHTvKnsX/s5z3+9AyfXe1URtnh51MgUew9QHLuWLUCWZSau3Ip3YBAATbv3Y8mwzkX2Tbp2iZd/OGjIuLh4ePPj29PZs/JDpv94GCc33fsmazTsXb2E5BvXi83OnN29jW9nTaB1v+EMeP39Ip/j/dAbuxaXeUpNiCPy8/e4eGA3manJeKoDaBjenb6vvI3KwZHbsVfZ8fF8Lh/5g/zcHAJCm9D9uZd58JGeRuPk5WTz++qPOfXLJlLj/8XF04sHmrWl97Q5+NWpB+jU83Z9voAzuzaTfjsJn1p1aDtwFI+M+o/RPdWxzd9wcvsGbl7+m+z0O/gFBdNx+Hg6PGmcVQTjzJOgZKpVMFNdjJSECaRAIBDcH1sSgbF3SroG+d31zXHzrVEm9bXCY1w+so+6LdqVWtYH8EDzMB5oHkavKa9zascmvnt9Eqd3/kjbgaMMUYwt6t/km5hO0mo0RP25hyZdexsCGYCaIQ1p0LGbwaBVT/12jxgFJ3WatQbgoe59DYGMbrtOCe527LUiwcypX35gw5uTaT94NP1mvFuue5I8rbZI5ulOYjyfjepJVtod2g0ahTq4AXcS4zgbuZW87Cyy7qTw+djHycvOInz4c7h6+XJi27eseWkUIxau4qHufQzvyddTR3D5yD6a9xpIp6cmkJOZzqVDv3Pz8t/41amHLMusmTaK6GP7CRswgsCGTYn6cw87Fs/lTkIcff/7lmFehzd+hX9IIxp36YVCqeLvfTvZ/O4MZK2WjsOeLfLa9Jknca9WMtUqmKnORkrCBFIgEAh02JoIjL3j4OwKQFYhGeoGHbvj5O7B3lWLqR/2cJE+luLU1wrTrOcTHNqwmt+++IBeL7xh9JwmP5/crAxcPLzIupOCs4eX0Q1jYKOmAOTn5gLgeDcYSk0pvUTO2tCauI6bkZxEXnYWNR4IKfJcjbqhRYIZ74Ago8fO7p53t9cudnvh8sLb/17n+zeep1lEf/rPfM+0SRZDrqZo5umXT/5H2q0E/rNmp5Gow6PPv4osy2z/YDbptxKZuHIrwa06ANB20EiWDOvK9g/fpHHX3igUCk5s+47LR/bR5+X/8fDISYZxuo6dasgwXvj9Fy4f/YOe/5lFt/EvA9Bx2LOsmzGOg+tX0HHYs4YMzoQvNhsF1uHDx7Nq8lD2r1tWbDCjzzwpRSxTItUmmBFGSgKBQCAA2xOBsXdqNWqKQqnk968+ITv9DipHJ+q3fRh3XzUDZi3i+9n/4ZMRPWjRcwBuPjVIiY/l7/27qNuiXal9PyFtOtFu8Gj2rl7CjX/O0qBDV5QqB5KuR3M2cgt9X3mbZhH9Ob71Ww5tWM1D3frgFxRMTmY6R3/8P5zcPWj0cASgMzatHfog33//PY0aNcLX15emTZvStGnTynibKkQZqrbKhFTCwKaWF3rUqIlnDX8uHogsVr7c9IkYj6vVajm/dweNO/cqdkxJkrh4IJKgpq0NgQyAk6s77QaNYucnb5EQfZGA0Mac3b0NN28/Og4fX+w4ABf3R6JQKgl/aoLR84+M/A9nI7dy8cBuwu8eXzCQyU67gyY/j5A24UT9uYfstDs4e3gWOU++LOsWowXFUm2CGWGkJBAIBAJbFYGxZzxq+DPgtUXsXf0xP8yfhlaj4bkVP+Huq6Zl78F4qgPYu3oJ+9Z8Sn5eLp7qAOq16kBY/6dNGn/g6+9Tu3ELjmz6ml8/fQeFUolP4AO0fPxJ6rZoB0BIm3Biz53k9M4fSb+diLO7J0EPtWLYW8vwrV0X0JWXzfzgU76eP4OXXnqJ3Nxc5syZYxPBjMrEEiU3nxo4OLsYxBcKklTIhNUcODg5M3rJN3wxcSCrpwxjwhebjcxQTUUqdKOfkZxETnrafcdKiYulWdM2RbbrvY5S4mIICG3M7dir1Aiuf19lteS4GDzUAUaldcZj3TO6vXrqMJHLFnL99DHyso179rLTiw9mNFpEVc19qBbBTEWMlDbMmUL0sYPM3H7CsG1WazU9JrxSRE2mshBGSgKBQFB2bF0ExtoprMxW8LpZkAlfbC6yre3AUbq+lGIICetk5D9THE/OW8qT85aW+Hy7QaNoN6j48QFqPdic4e8sL/F50JX69Hi4Ey8cO3bf/awRpaQT/ClNBEChVNKgYzfO791BSlysoW8mIfofov7cY5G5OXt4Mu7T71kxvj8rnx/CxJVbDSVZpqBSgIOFMk/m5lbMFVZOGow6OJQ+L8/HK6AWKgdH/t4fyYF1ywyiF4VR2sjrqyqqxdtjz0ZKAoFAIDANvQiMfV0NBJVJgKttrgFLkkSAi2lzj5ioW6hd/mw/fv/qY/Z8+SFfTBxAzZCyZ0xMxc3Hj3Gfb0Tl6MTK54eQmhBn8rEBLipUhcrd3Hxq4OTuwc3Lf5d4nHdgEInFZJsSr0bdfb4OAL5BwSRdvYwmr+RWBZ/AOqQlxpOTkW60PcEwli4ovLBvJ/m5OTzz0VraDxnNgw8/Smj7Ljg4Od/3NZqaWauuVItgpiJGSoPe+IjpP/5pxtmYD3s1iBIIBAJLoBeBEQjKg5NSwsfJdm+bAl1VJt30BTZ8iHFLv8PNx49dny/g2Jb1REycyUPdHrfo/LxqBvLs5xvJz81h1fNDjExOS0IhQS03B0PmybBdoaBJ195c2LeT2POnihwnyzKNOkUQe/YE1/46atiem5XBkR/+D59aD1AzpBEATXv0JSPlFn9+t7LYcQAaPRyBVqPhz+++NHr+wLplSJJEo049dPO6651TsHcoO+0Ox7esL/E1qhS2qaBXmUiyKWLvNs7u2HSOJ2abzUipKsrMcrMycHS51yOjkCBM7UJ30TcjEAgEpZKco2H5+eSqnobARpGAdjVdbLpX9dztbLZeSy99Rxujf10Pmvg6sfafFGIz7i3ypibE8enICLLT02k3aBQ16zXkTtJNzkZuYeKqbeTn5vDx8K7k5+QQ/tRzuHh6c2Lbd8T/c44Ri1YbSTOvfH4w0ccO0LzXQIJbdSAvK5NLh3+nw9BxNOnaG61Wy8pJg7ly/ABtB44ioOFDXDq0l/N7d9Dp6YkGaebEq5dYMqwL6rqhtBv8jCF4cnJ1I+6fc8zYdryIdHWQm4qRDb0r7w21QWx3iaEMFGekpCcnI52ti15nQZ/WvNG+Nm/1aMzK54fw74W/AF3PzII+rUsc+0zkFma1VhN9/ECR5w5v/JpZrdXEX7pg2JZwJYp1r4xlftcGzO4QxNIREZz//Rej445vWW8Y86d3Z/BWj8a8+1gLo32EkZJAIBCYjl4ERiAoDzLQssb9S4GsHVstkSsN/esqnHnyqhnIf77eSdOIvpzasYmti17j5PbvqdcmHAdnFzz8avL86p8J7dCFg99+yc6lb6N0cOSZxWsNgQzosiljPl5Pt2dfIubsCba//wb7132Ok7sHAaGNdfsoFDyz+P8If3oif//xK9vff4Ob0RfpPW0ufab/zzCWOjiUEQtXgSTx8+K5HN74Ne0GPVNEBc1w7ruZJ8H9sc9vdgFkWS5ipFSQH9/5L2cjt9Jx2LPUDGlIZkoy104dJuFKFLUbtyjxOD0PPvwojq5unPl1MyFtjBsUT//6E/71HzR82W9e/ptlY/vgWTOQLmNexNHFlTO7NrP25WeMVgH0bH53Jm4+fnR/bnoRxQsQRkoCgUBgChURgTE3C/q0JiQs/L7N6gLrQgKCPRxs3g7B10mJk1Kyqx7igqV/Aa6qIgvX3oFBDJ3/aYnH+wYF64KLUnBwdqHn5NfoOfm1kufi6k7f6f+jb4HgpTgad+lF4y69imwPe6KoOp9WxuRep+qM3b9DGvn+6h0X/9hF24Ej6fPy/AJbXzB5fAdnFxp37sXZ3dvoN+NdQz1kWtJNrpw4SI+J90rRti56He+AICav/RWVoxMAHYaOY/m4Puz4eH6RYMbV05vxy34wjFkYYaQkEAgEpWOPIjCCykMG2qhdSt3P2pEkiRZ+zhxNyLKKwL6iSEBLP2fDgq69Z54EJWP3ZWb5pbQEOXt4EXP2BHcS48t9juY9B5B+O5HoY/dKzc5EbkXWamnecwAAmanJRB/9g2Y9+5OTkU5G8i0ykm+RmXKbBh27c+t6dBH1jraDRpUYyOgp7fUJBAJBdceaxFKm//gng974qKqnITARCfB2VBDiaR+lPq1qONtFIANFS//0mSd7wtZFJyoLuw/3tKV0/fee+iYb5rzAe71bULtxCxp1iqB136H4BgWbfI6G4d1xdvfk9K8/Edq+MwBnfv2JwEZNUdetD+i0xWVZZtdn77Hrs/eKHSfjdiJeNQMNjws3gRWHMFISCASC+xOfmY8CzCYCo0er1aLJyy1VVrUg+qy8wDaQgb51PVDYSTm3j5OSYA8HrqXl2XRQU1zpn71nngQlY/fBjKKUgLZ5zwEEt+rAuT0/c+nQXvat+ZTfv/6Eke+vplGnCJPOoXJ0okm33pzf8zNPzFpI+u1Erv11hJ5TXjfsI9+Nqh4ZNZmG4d2KHcevTojRYwfn0tPawkhJIBAI7s/9RGD0RB87wM8fzeHm5b/xrBlI52emkJZ0k90rFvHuiURAp2TZYeg4Hmjelr2rFpN0/TJPL1jJQ90eZ9+aTzn323YSr10iLzuLmvUa0nXcVJpF9Dc6T+GemeNb1rNx7otMXLWNs7u3cWr7BnKzs2jQsSsD3/gAd58alnhLBCYgAWFqZ4Lc7SMro6eN2pmrabYtIFRS6V+rGs4cSciq/AlZAHsQnags7D6YMcVoyFMdQMeh4+g4dBzptxP55Oke7Fn5kcnBDOiCohNbv+PykX0kXPkHWZYNJWYAvkF1AVCqVIS271L2F1ICwkhJIBAISqY0ERiAG3+fZvWUYXjU8Cdi0gy0Gg2/ffE+bj5+RfaNPrqfM7u20HHYs7h6++JTS2esd3D9Chp37kXL3oPR5OXx168/8s2MZxm9ZB0PPtKz1HluXTgLFw9vuk/4LylxMRz4Zjlb3nPg6QVflnqswPxIgKejgs61bFeKuSTqezri7agg1UYNZCXAq4TSP3vOPAlKxu6DGb2RUnEiAFqNhtzMDJw9PA3b3H3VeKoDyM/NLdN5Qtt1wcXLh9O//kTClSiCmrbGt3Zdo3FDwjpx+Ic1dJTBwzMAACAASURBVBw+Hk91gNHx6clJZV6BE0ZKAoFAcH9KE4EBiFy2EEmhZNLq7Ybf5maPPsFHQzoV2Tfx2iWmfr8P/7uGenqm/3jIKJvecdizfDKiB/vXLjMpmHH18mXcZxsMJSVarZY/v/2C7LQ7RtcoQeWgLy9zsMOLrEKS6FPXg3VRqVU9lXJRWumfPWeeBMVj98GMJEkEuKiMjJT05GSm895jzWka0Y/ABk1xdHXj0uHfiT13kseN1M1KR+ngQNPuffhr54/kZWXS+6V5Rfbp/+oClo/ry5JhXWg7cCS+tYNJv53A9dPHSL0Zx9Tv9pbpnAEuKlFLKRAIBPehNJEUrUbDpSP7aNLtcaNFphoPhNAovAcX9u002r9e6/AigQwYlwVn3UlBq9EQ3KoDf/3yg0nzbDdolNHveb1WHTiwbhnJcTEEejxk0hjFIYFNr1BXFRFBbtSxs/KygtRxdyBM7czxROuQLDcVU0r/7DnzJCgeuw9mQGekdCOjaM20g7MLHZ4cR9ShPZz7bTuyVotfnXo8MWshHZ4cW+bzNO85gKM/rkWSJJo/+kSR5/1DGjFl7S4iVyzixNZvyUxJxs23BrUaNaPHhOllOpcwUhIIBILSKU0EJv12InnZWfgF1SvynG+dYrbVLl6Y5cK+X9nz5YfE/XOW/Nwcw3ZTF5y8AoKMHrt46hy/s9JSTDq+MPogJtjDAZVC4nJqrtkFECqT3KwMHF0qp+TrkUBXwqrBqniXWm5EpeZyx0Zu+k0t/bP3zJOgKNUimCnOSAlA5eBI72lz6M2cEo8tzthM3wxamND2XUp8To9vUPB9DZwA2vR/ijb9n7rvPsJISSAQVDdkWdaVjckyWq1O4EUlSSilkoOG0kRgyoqqGOWyKyf+5P9eGklw64488eoCPNT+KFUOHNuynr92bDJp3BJl+E24y5RlGbRapLtjKLT51Nam0cxbRUiAmh9vFF3My8lI59fP3uX83h2kJd3E2d2TwIYP8diLs6nduEWJ5p4rntMt1E34YrNhW/KNGLYunMWlI3/g6OJKy96DaRjendVThvHcip8ICetkeJ8OfvsFMWdPkH4rEXffGjTt0Y9eU143ymxtmDOFs5FbefHbvWxZOIurJw8R2q4zoz5cU/qbUUE6B7rS0d/+AxkAB4VEXxu66S9L6Z89Z54ERakWd8P2ajhkr69LIBAIZFnmdo6G+Mx84jPzicvMJz4rv9j+F5VCt7gT6Koi4O5/vk5KJEkqVSTF3VeNysmZW7FXijx3O6botuI4u3sbKidnxn36vZH08rEt6006viJocnNIjblM3N+nufrXUf4+eoBb16N1Ac5d5h24hqOLq9FxP77zX85GbqXjsGepGdKQzJRkrp06TMKVKGo3bmHy+XOzMvhy0iDSkm4S/tRzePjV5NQvPxB9bH+Rfc9EbiEvO4sOQ8bg6uVLzLkT/Pndl6Qm3Cjiwq7VaFg1eSjBrdrz+LR5Jql7lhd9FisiyK1aZGQKUsfdgYggNyJjM6p6KqVS1tI/e808CYpSLe6G9UZK9uQALYyUBAKBPZKco+FkUjZ/3co2/GaX5hGTr4XYjHyjcmInpc5zoqWfU4kiMKDLiIS268z5PTu4kxhv6JtJuh7NxYO7TZqzLqsiodVo7r2OG9c5v2eHSceXF5UEM9oGomhfG9B5nOXn53Pr1i0SEhJISEjgZmIi1wsFMgAX/9hF24Ej6WPUH/pCmedweNMabsdeZdSHa2jStTcA7QaP5pOnuhfZt/eLbxoFJe0GP4NfnXr8uvRtUuJi8Q68V2qXn5tDs0f789gLs8s8p7Kgv4HsW9fDrntk7keY2oUcjcwfcZlVPZUSKU/pnz1nngTGVItgRhgpCQQCgfWilWUu38nleGI2V9PyijStm9rrUXC/HI3M0YQsjiRk4aSA+4kzR0ycQdShvSwb24f2Q8YgazX8+d1K/Os/SNzFs6We98GHH2X/2s9ZPWUYLXsPJv12Eoe+X4VfnXrER50zcfZlJ8BVhaJQHZ1KpcLf3x9/f38AsjVaFp++XeRYZw8vYs6eMArgysM/B3/Ds2Ygjbs8Ztjm4ORM20Gj+PnDN432LRjI5GZlkJedTd3mbZFlmRsXzxgFMwAdhpS9d9VU9N+xMLUznWu5VfsbyPC7pXXWGNBUpPTPnjNPgntUi2AGhJGSQCAQWCMx6Xlsv5ZGSq4W/e2kuRad9OPklBIN1W7SgrGffMvPi+ew6/P38PKvRcTzM0m8EkXi1Uulnqd+u0cY/OZi9n71MdvefwOfWg/w2IuzSb4RY7FgxlQRmJIEEHpPfZMNc17gvd4tqN24BY06RdC671B8g4LLNI+UuBj8goKLLK75FSOekBIXy65l73Hh951k3TEWNshOv2P0WKFS4elfq0xzMQV9EOPlqKBPNc7GFEaSJDoFuOKklIiMzahyFTxzlv7Za+ZJcI9qE8wIIyWBQCCwHvK0Mr/fyOBYYrbZg5jyUL/dI7zwzW9G2/7v5WfwqhloeHw/gZewASMIGzCiyPaISTOMHs/cfsLocUmCLyFhne57PlNFYEoSQGjecwDBrTpwbs/PXDq0l31rPuX3rz9h5PuradQposTMv6zRGIQGyoJWo2Hlf4aQlZpClzEvoA5ugKOLK6kJcWyc8wJyoahL5eBYJOtUEQqqu7VRuxDi6SDUooohTO2Cv4uKbdfSqqzXxBKlf/aaeRLoqDbBDAgjJYFAILAGYtLzDDdLYB0+KHnZWUZlUEnXL3NxfySt+w2rwlndH1NEYO4ngOCpDqDj0HF0HDqO9NuJfPJ0D/as/IhGnSJw8fQiO+1OkWOS42ONDKG9A+uQEH0RWZaNAqBbhcQT4i+dJ+naZZ6cv5TWfe+9p1GH9pb6GsqDQtIFfKDrn2rp50zLGs5iIdAE6rg7ML6xj9FiQ2X8jVqy9M+eM0+CahbMCCMlgUAgqFqOJWZZxc1EYRb1D6N1v+H41g4mJS6GQxu/QungQOfRU6p6asViqgiMUqKIAIJWoyE3MwNnD0/DNndfNZ7qAPJzcwGdjcDVk4fIz8tF5eAI6Lx0UuP/NQpmGnbsxqVDe7nw+y8GAYC8nGyO/vB/RvNQKHRBREGVNVmWOfDNijK+8vujV7ar5eZAgItO2c7HSSF6TMuIg0IiIsidRt5ORmWglvibrczSP3vNPFV3qlUwI4yUBAKBoGqQZZmDN7MMZR7WFMgANOzYnb9++ZH0WwkoHR15oFkYvaa8To0H6lf11IpQFhEYSZIIcFERm3FPAiEnM533HmtO04h+BDZoiqOrG5cO/07suZM8flfdrO2AkZyN3MrqycNo3vMJbsVc5dSODUV6atoNfoY/v1vJt69N1Ekz1/Dn1I5NqJyc7k0WUAc3wDcomB0fzeVOQhxObh6c+21bkd6ZshDkpuLJ+p5otKC86zmkuI/nkKDs1HF3YEITH6Lv5HE8MYsrxQh0lJeqKv2zx8xTdadaBTMgjJQEAoGgKigYyFgjQ+Z9UtVTMJmyisAEuqqMZKsdnF3o8OQ4og7t4dxv25G1Wvzq1OOJWQvp8KROQaxheHcef3k++9d+zrb336B2kxaMXvwN2z8yVihzcnVn/PIf2LJgFgfXf4Gjixut+w7lgeZtWffKWFSOunkqHRwYvXgdWxe9xt7VS3BwdKZJt8fpOOxZPh7etczvgV4AwUmpAFE5ZlEUkkSolyOhXo4k52g4lZTNqYLS6QVK+u4/jvWU/tlr5qm6IskFc77VhDytzJcXkm3OSGl8Yx8RyQsEApvjWEIWkf9avzSqLaAXgRkW6mXyMeduZ7P1WrrlJlUM+9ctY/sHs3n1l9NGIgrmpH9dD5r4OpW+o8DsyLJMco5WZ2qblc+NjLxSTW2ttfRPK8sWzTzVE6ITFqfaZWZAGCkJBAJBZRGTnicCGTNSHhEYU4QCKkJh8YS8nGyObFqD3wMhFgtkwPKvS1AykiTh66zE11lJE3QBpSzLaGXIl2WbKv2zx8xTdaPa/hIIIyWBQCCwLHlamW3X0qyu2d9WKa8IjK+TEielZLg5Mzdr/zsG74AgAhs1JTv9Dqd+3kji1SiGvb3MIucD0wUQBJWHJEkoJVAi2Wzpn4+Tkm613ehay9VuMk/VgWobzIAwUhIIBAJL8vuNDJsp57UFyisCI0kSLfycOZqQZZHPokHHbhz7aR2ndmxEq9VSs15Dnnp3Bc17DbTA2comgCAQlAd7yjxVB6plz0xBCivsWBN6IyXxRyIQCGyNmPQ8mynltQX0IjA9gtzLdXxyjobl55PNO6kqZGITH1G+IxAIAKj2OVq9kVJEkJvucVXP5+7/I4LcCA9wFYGMQCCwamRZJl8rk63RkpmnJVujJVejNZSXCSqOXgSmcy23co/h46Qk2MPB9j8TWUs9DwcRyAgEAgPVusysIMJISSAQCO6PLMvcztHo6sgz84m7W09eXB25wHyYSwSmjdqZq2l55plUVSEpyiyAIBAI7BsRzBRAGCkJBAJBUZJzNJxMyuavggo/gIhhKgdzicDU93TE21FBqo32MWk0+fg6O5RZAEEgENg31b5npiRi0vMqzUjJWxgpCQQCK0Mry1y+k8vxxGyumtF7QVA2Hgl0pVOAq9nGs+VeJlmWGdXQW5hHCwQCI0Qwcx+EkZJAIKiOVMZijqB0LCUCExmbzvHEbJv6XGWtlvgju1ny/FNVPRWBQGBlVHsBgPuhN1IaFurFxCY+tKvpgpNSKvC8qePc+7eTUqJdTRcmNvFhWKgXoV6OIpARCARWQZ5WJjI2nXVRqaTm6orIynvDG7lsIbNaq8lIvmW+CZbAgj6t2TBnisXPUxnIWt37bkkRmC613PB0VNiMGIAEpCXE4RJ7rqqnIhAIrBDRM2MiwkhJIBDYMzHpeQYBFBDZmKpAq9XgkJfN8Ka1LFp27KCQ6FvXw2bKzWTgm9cmMnfqpKqeikAgsEKqdTAjyzKauwZIWi0o7hogKe9jgCSMlAQCgb1xLDGLyNgMUVJWRUjc9Tz7ZgVvjx1UKf2TddwdiAhyIzI2w+LnqiiNpRSunTpMo0YfVfVUBAKBFVJtgpmySIrqMyqBrrpsSoCrCl8n5X0DHKUESiQQ0vf/z959xzV1vQ8c/9yEEfYSBQRBxEVdjFpH3aOuqrXOWm1t1S7tHj9r7R5W+62zrVVr1dZaW7V1L9wbUHHWCSKICMjehNzfHzGRCCogI4Hzfr36qiQ3555Qm9znnuc8jyAIJuLupsGmFMjIsow6LxdzlemW6dUFjw4WClIPrGfPz9/SYsaHVXb+YFcr8gplo2wardPJ3ZrYvTsBaNq0aTXPRhAEY1Tjg5nylBRVayA2S01cllp/nKVSorWLioA6KtGsSxCEGqFoIFNZslKTWTf9fS4e2oXCzJyAfkPp8/rHmFuqAAhf9wcnNv3NzSvnyc1Mx8XTh/Yjx9Nu2DiDcb7tH0i9Rs3oMHI823/4mptXzvPE5I94fHTJqUc5GWmELJjB2V0byUxOwqGeB22HjKHT2EkoFApkWWbGgCDcmzzC2Fm/Gby2IC+Xr3r507r3Uzw19TsszRTkFcoVXgTGp0gRmOGfbCQoKAilsmq/XzrU0waDxhjQ6AogfHHhAq6urjg7O1f3lARBMEI1Mph5UEnR0vZGKHpcXqFMWEIOoQk5t7+AVDSyF5v3BUEwTeEJlR/IAKz8YDxOHl48Mekjrp0+xqGVi8hJT2P4Fz8AcHT1Uur5NqV5lydQKM04v28b6755H1mjof2IFw3GSoq+zJ8fvkTbp8fy6FNjcPXxK/Gc+TnZLBw/iPTEG7QdMhZHN0+iT4Wybd6XpCfe5Mn3vkKSJAL6DWXfsvlkp6Vg7eCkf/35fdvIy8ygTb+hIEkUyjITmzty8lYeEUVvjEmgKUV0U/Q4S6VEGxcVbe66MRYeHs7QoUPL8qutEJIk0dHNGkulZBSphrrzd3G3JsBVRaEM58+fp1mzZtU4K0EQjFmNC2buLikKFffBrBsnOqOAqxkFoj+MIAgmKSazgJDrVbNXwql+A/3KR/sRL6KyseXI37/SacyruDd5hImL1hmkinUYOZ4lrw3nwIoFxYKZWzFRjJu/iiYdut/3nAdW/ERybBSTV+6iToNGADw29DnsXd3Yv/wHOo15FUe3+gQMGMHuX2Zxesc6Hhv6vP71JzavxsmjAT4B7QDtar2DReUVgUlMTCQ6OppHH3201L/XihbsakU9KzN9EYjqCmh05917I5u9t4Nt/9dn0PjWDXbGZpYq9VsQhNqlxgQzBRqZvXFZhCfmVngQczfduGn5GlZcSiPYVUUXDxvMS1urWRAEoZoUaGQ2RmdU2R34dsNfMPi5/cgJHPn7Vy4cDMG9ySMGgUxuRjqF6gJ8gzpw6fBucjPSUdnZ6593qu/9wEAG4PSODfgEtMPKztGgNLRf2y7s/XUuUccPE9BvKK7ejfBqEUTE5tX6YCY7LYWLB3fS+blJBhfLallGiVSqIjBtHw2iT+9ezPz221JdcIeFhQFUazAD2qIA45s7GXyXGsM+KjNLFWbuPhxLzBWp34IgFFMjgpnqKimqO8+xxFwupeUzQKzSCIJg5PbGZVXpnfc6DXwNfnbx9EFSKEiJiwHgasRRQhbM4NqpcApyDdPecjMNgxlnjwalOuetmEjiL53lyx4lpyZlJSfp/xwwYDgbvv0/UuJicPLw4vSO9RSqCwjoP9zgNYUa7lng5e4iMNYW5qSlpJR65SAsLAwXFxcaNmxYquMrk7lCoqenLU0dLY2rcaokidRvQRBKZPLBjDGUFJWB9NurND09bQh2Nd3qOoIg1FwxmQWEJ+ZW7ySKXGzeionil5efxtXHj/5vf46Dmwdm5hacPxDCwRULkGXD3C2z20UDHkTWaPBr15Uuz5XcSFOXegbQ+omn2PS/aURsWU23F98iYvPf1PdvU2w/jrIMLaYdHBxISyt9D5ewsDCCg4ONKm3Ky9acif5ORKYXcCwxh6gS9p9WN5H6LQgCmHAwY2wlRXXnD4nNIq9QpkM9K6P6YhIEoXbTyDKbqjC9TCfpWiTO9b31P9+KiULWaHDy8OK/fdtQ5+cxdtbvOLp76o+5Enbgoc7p7OlDfnYWfo91eeCx1g5ONHu8FxFb1tCm71CiT4bS/90vix1nVobP87IEM7IsExYWxsSJE0s9flVRSBJ+Dhb4OViQkldIRFJuuQogVDaR+i0ItVsZ7jUZl6ooKVpe+29kc+hmTnVPQxAEQe9Kej6p1bCx+8hfSwx+PvznIgCaduyB4nYZYlm+M6vcjHSOrV/5UOds2WsQ106FcfHQrmLP5WSkUahWGzwW0H8YCZEX2DLnUySlktZPPGXwvJlCe+FeWmUJZmJiYkhISKj2/TIP4mSpLYDwZktnJjZ3YqC3HcGuVnjamGFmJFcSRVO/F/+XQkxmQbXORxCEqmGSKzNVVVL0Yey/kY2lUhIpZ4IgGIVj1bShO+X6NZa/+SyNO3Tn2qlwIjb/Teu+T+PepAVmFiqU5hYsf/NZ2j49lvycLELX/oatcx0ykm6W+5ydx77Gf3u3suzN0QQ9OZL6zVuTn5NN/OVznAnZwPsbj2Pj5KI/vmmnXlg7OnN6x3qadOyBrbOrwXhuVmZlWmkvSzBjLJv/S+tBBRCOJeayr5q/n0XqtyDULkZyP6X0qrKk6MMKic0Sd4YEQah2KXmFXM0oqJZ03FHTF6G0sGDbvC+4cGAH7Ue8yNMfzwbA1ceP0TOWgCSxefanHF29jLZDxtJh1MOlXFlYWTNx8To6j3mNyPCDbJg5lb2/zuXWtUh6vvwBKlt7g+PNzC1o1WsQQLGN/woJPGzKtgejrMFM/fr1cXd3L9M5jIkkSSgkCDeCQEanaOr3wfhsg9U/QRBqFkk2of/DCzQyi/9LqdYa+GUhAfYWCsY3dxK5u4IgVJtd17MIS8gxic/N6rLxu48IX7eCD7efxcLK2uC5gd52+Dtblnqs2bNnM3XqVLKyHnzjrUePHtjb2/PPP/+Uec7G5GB8tlFnTHRyt6ajm/WDDxQEweSY1MpMVZcUfVi6pe59caaxkiQIQs0jyzInb+WW+3Pz2/6BLH39mQqdk7EpyMslYvNqWnQfUCyQAXCzLltGtoODA9nZ2RQU3H9lXqPREB4ebjIpZvdiKqnf4YliL6sg1EQmE8zoSoqaSiCjIwNhibki3UwQhGqRnFeorz5lanb/MouzuzdX2viZyYlEbFnDqg9fJjstmQ7PFE9vs1RKOFmW7avS0dER4IGpZpcuXSI9PZ3g4OAyjW9MROq3IAjVzSSCmaIlRU2RBGyKzkBjOhl9giDUEPHZ6gcfZKT2LJnNuT2VF8wkRF5k1dSXiT4ZyoD3vsajaUuD5yWgjYuqzGX2HRwcgAcHM7rN/6YazBRoZDaa0HezBGyMzqDAGOpJC4JQYUyimpmupKipkoHUfA2R6QX4OVhU93QEQahF4rPVKADT/QStPL7BHfnmeOI9n5eBNnVK16izqLIEM40aNcLZ2bnM5zAGppz63cPTtrqnI9RgsixTeLvCn0YDCoW2V5VSQvQgrAQmEcxUV0nRiiQBxxJzRDAjCEKVupGtRgPcuHiWuSO7MmbWb/h36QPA9XMnmf9sTzyatWTyH3d6svw6aQTZ6am8tnyb/rGrJ46w6fuPib90DjtXN3q+9B6BA0YYnCsnI42QBTM4u2sjmclJONTzoO2QMXQaOwmF4k4iwL7lP3B21yYSoy9TkJtD3YZN6PrCG7TsOVB/zJRAbXnk4xtWcXzDKgACnxzBsM/mV/jvqCQS4GNnjpOlssyvLW0wY8r7ZXSp36ZGl/rdxNESL9uyVakThJLIskxyXiHx2Wris9XcyFYTn6NGXcIdJDOFttS7u7UZbrf/cbZUigDnIRl9MKMrKWrqZCAqo4CUvMJyfTkKgiCUlSzLxOdo08zq+TVHZefA1eOH9cFM1InDSAoFNy6eJTczA5WtHRqNhuhTYbR9aqx+nOTYKFa8/wLBg0YTOGAE4ev+YPUnk6nfvDX1GjUDID8nm4XjB5GeeIO2Q8bi6OZJ9KlQts37kvTEmzz53lf68Q6tXEjzzk/Qpu/TFBYUcHL7P/zx/os8N2cFzTr1BmD4Fz+y9ou38HwkgLZDtHNx9vSpil8boP3MDipnf5LSBDNqtZoTJ07w9NNPl+sc1alo6rcp3mTUpX5P9HdCIS4ihXJKySvkRFIuJ2/l6vclPmgVXK2B2Cw1cVlq/XGWSonWLioC6qjE9WE5GX0wcyLJ9FdldCQgIimXbvVtqnsqgiDUAoUy+ruDCoUC79ZtiTpxRP/81RNH8O/al//2biX6ZChNO/Yg/uIZ8jIz8Alspz8u8eplJi5eT8PA9gC07D2Ib/u24dj6lfR76zMADqz4ieTYKCav3EWdBo0AeGzoc9i7urF/+Q90GvMqjm71AXjnnyOYq+4ECu1HvMi80T048PsCfTAT0H8Y/379Ls6e3gT0H1Z5v6QSSICDhQJf+/LduS9NMHP27FlycnJMcmVGpH4LtZVGlrmSns+xxFyuZhQUuz4t7f8VRY/LK5QJS8ghNCEHHztzglxVNLK3EIF2GRh1AYCHLSlqbGQg4lauaN4lCEKVUN/1WdMwsB1x50+Rn6OtPhUdEUrTx3vi3qQFV28HOVEnjiBJEj5tHtO/rq5vU30gA2DrVIc63n4kx0brHzu9YwM+Ae2wsnMkK+WW/h+/tl3QFBYSdfyw/tiigUxOeiq5men4BLTj+vlTFfsLKCcZGOBtV+6LCQsLC1Qq1X2DmbCwMBQKBYGBgeWcZfXRpX6bMl3qtyCUVkxmAQvPpbAmMoPo2xlDFXU1pxsnOqOANZEZLDyXIirvlYFRr8xUdEnR9MR4Qtcsx79b32JVayK2rCEzOZHHR79cYecrSV6hTEqeBmeVWEoUBKFyae66TegT0A6NWs21U+E41KtPZnIiPgHtuXnlgj6YuXriCHV9m2Lt4KR/nW5FpSgrewdyMlL1P9+KiST+0lm+7NGsxLlkJSfp//zfvu3sXvw9Ny6eQZ2fp3/cGPLGJSDYVYXnQ+6ncHBwIDU19Z7Ph4WF4e/vj42Naa3Ui9RvobYp0MjsjcsivEgQX1m3pHXjpuVrWHEpjWBXFV08bETj9Qcw6mCmokuKpifGs3PhTJw8vEoMZm5eOV/pwQxo35cIZgRBqGyKu9be6/u3wcxSRdTxwzi61cfW2RVX70Y0DGjH0b9/RZ2fx9UTR3ikW3+D10mKkj+viq4yyxoNfu260uW5SSUeq0s9izp+mN/eehafwPYM+r9vsXOth9LMnPD1Kzm5Zc1DvNuHJwH2Fgo6ezx8gOHo6PjAlRlTTDETqd9CbRKTWcDG6AzSb6dVVtXfe915jiXmciktnwHedqJgxX0YfTBT00qKKiSIz1Hjj2V1T0UQhBrO7K6VDjNzC7weCeDqiSM4uNXHJ0CbSuYT0A51fh4Rm1eTeSsRnyIpZaXl7OlDfnYWfo91ue9xZ3ZuxMxSxQs//IWZxZ3PwfD1K4sfXMUrNbr0soq4C+rg4HDPYCY3N5fTp08zYcKEhz5PVaro1O+FEwaRnZrMm3/vv+9xKXHXmDEgiKGfziVo4KgKOvud1O+uHtZGsSooGJfwxBxCYrOqNXjXlRNfcSmNnp42BJezKElNZ9TBjK6kKEBawg1CfprOhYM7yU5Lwd7VjSYdujPgva8wM7cgOfYqW+Z+zpXQ/ajz83Dz86f7hLf1m0kjww+yaOJgAFZ/+jqrP30dgKGfzuXYhj+JOnYIuFMO1NHdiw82HQe0XaK3zfuS8/t3kJuZTh1vPx5/9mWCnhypn6vuw7bvm5+isrFj77J5pN2Mw62xP4OmzMDrkQAANDLEZZn+Er0gCMZPKWlLgRYtEeoT0I4DKxZwK/YqnZ59BQAbJxfqNmzC3mXzAGgYhUckOQAAIABJREFU0K6k4e6rZa9B7Px5BhcP7aJJh+4Gz+VkpGFhZYPSzAyFUglIaAoL9c+nxF3j3O4txca0sLImNyO9zHMpr56eNhV29/N+wUxERARqtdrkVmYqOvXbGIjUb+Fusixz6GYO+29ka3+u7vnc/ndIbBZ5hTId6lmJ4PsuRhvMFC0pmp4Yz49jepOTkU7bIWNw9WlMeuINzoRsoCA3h5z0VH4a14+C3Bw6jJyAtYMzxzf+yfK3xjB6xhIe6d4f14aN6fnK/xHy03TaDhmLz+0va+/Wj2Jf153czHTSb96g/ztfAGBhrV12LsjNYdGEwdyKiaLdiBdxrt+A0zvWs/qTyeRmpNHxmZcM5n1y6xrysjJpO2QskiSxb9l8Vrz7PO+tD0dprv2SjM9RI8uy+MsoCEKlkiQJNyszYrPupOz6BLRj9y+zSIu/rv8cBPAJbE/ommU4eTTAoZ5Hmc/Veexr/Ld3K8veHE3QkyOp37w1+TnZxF8+x5mQDby/8Tg2Ti40e7wXB37/iV8njaBN36fJTE7iyF9LcPFqSPylswZj1m/emstH97L/95+wd3XDyaMBDVoGlf8Xch+d3K0r9K6ng4MD6ZlZ5BZqijXNCwsLw8LCglatWlXY+apCRad+l5ajuxefH45BaVY5aTYi9VsoqmggY2x08+roZl3NMzEuRhvMFC0punXeF2TcSuDV5dvw9G+jP6bXK/+HLMts+t80Mm8l8tIvG/Rfzo8OeZY5I7qy6fuPad61L3YudWnasQchP02nQatgg1Kfzp4+HPxjITnpacVKgIauXU5C1EWGf/kTAf2GAvDY08+zcMIgtv/4DcGDRmNpc6eTcGr8dd799yhW9o4A1PHx47e3xnDx8G6ad9auEqk12hUapYhlBEGoZO7WZgY9Dbxbt0WhVGKussK9SQv9cT4B7Qhds8wgwCkLCytrJi5ex55fZnM6ZD3HN/6FysaOOt6+9Hz5A1S29gA0atuJpz+ezZ6lc9n43Uc4eTSgz+vTSImLKRbM9H/7C/758m12/PgNBbk5BD45olKCmc7u1rSvV/5ApqSmeQHvzUFhbsHsU8kGx5opIL3hYzz7xTwuZWpws1abTNO86kr9liQJc0tVpYwtUr+FosITjDeQ0dl/IxtLpSRSzoow2mBGV1JUo9Fwbs8Wmnd+wiCQ0ZEkiQsHQ/BsEWjwJWxpbUvbIWPYNu9LEiIv4ObXvFzzuHAgBLs6dWndZ4j+MaW5OR1GTeDPKROJPHZIH6QAtOo1SB/IwJ10jeTrV4u9P6XJF7cUBMHYuVmbGVx8WtrY8lVYfLHjAvoN1d+wKUqXbnu3iYvWFXvM0tqWJyZ/xBOTP7rvnIIHjyZ48Ohij/d8+X2Dn119/Ji4eP19xyovXR78w+Sh369pnsK85P4lag1YeTTEz82bDdGZgOk0zSua+l0aeVmZbP/xG87t2UJG0k1Utva4N3mEPq9Po37z1vrjbkZeYP30D4g5cxwrOwc6jJpIl+cn658vac/M359M4kzIBt5YtZd/v36PqxGhqGzteGzo83Sf8E6pg0OR+i3oxGQWEHI9q7qnUSohsVnUszITRQFuM9pgRldSNCslibzMDH2X6ZKk3oilZYvid+vqNmxy+/mYcgczqfGxuHj5orirLFDdho31Yxfl6O5p8LMusMlJN8ydLtQAxvudJQhCDeFmbbQf89VGV7WsPBWCKqJpniRJoLzzBWAKTfOKpn6X1j9fv8uZkA20H/EidX2bkJ2aQnTEURKiLumDmZz0VH6dNIJHuvWnZa9BnAnZwNa5n+PWuDlNO/a87/gajYYlk0bQoGUwfd/4mIuHdhGy4Fs0hWp6vfJ/pZ6nSP0WCjQyG6MzTKZSnwRsjM5gfHMnUbYZIw5m7i4pairuVcKUu5rXKU30/QmCYFqcLZVYKqUat3G7PHQXKsGuKjqXo3dDTGYBm6IzSM3XVHi/iaJN865mFOBooaC/EZVjLZr6XVoX9u/g0aeepf/bnxd5dLLBMemJ8Qz7/AcCBwwHtKt2M/oHEP7vigcGM+q8XJp06M7A978BoN3wF1j2xmj2Lp1Hh5ETsHFyKdU8Req3sDcui/R8jUkEMnCnytm+uCx6eNo+8PiazmgvqXUlRW2c6mBpa8fNK+fveayjuyeJ0ZeLPZ549dLt570AkO6T1nWvOzKObp7ciolEc1f3ucQow7HL6u6SqYIgCJVBkrQpTLX5E6dQrV1RcLBQMLqxAz08bcsUyBRoZEJiM1lxKY20Su43cXfTvJDYTAo01X+JpZbLPgeVnQMxZ46Tnlg8rVHHwtrGYK+qmbkFno8Eknw9ulTnaD9ivP7PkiTRfsSLFBbkczl0X5nmWp73J9QMMZkFhCdWXMnxqiIDYYm5xGSKNEmjDWZ0JUUVCgX+Xfvy375txJ6LKHacLMs07diT2DPHiT4Zpn88PyeL0LW/4eTRgLq+TQEwt9JWf8jJKF4u08LKmtzM4iVAmz7ek4ykBE5t/1f/WKFazaFVi7GwtsE3qEOZ35uZQrvpUBAEoSoE1FGZ3Bd1RZDQfkdEHTtILxeZif5OZV7piMksYPF/KRxLzAWqp2ne4v9Sqv2CRVOOXf993/iYm1fOM71va34Y05uQBTNIjr1qcIxDXY9iNxOt7B2KpWaXRFIocK7vbfCYq7e2OWtK3LUyzbWwJjW0E0pNI8tsup1eZookYFN0BppaHowbbZpZ0ZKiT0z6iMtH9rBw/CDaDhlD3YZNSE+6yZmQ9by0ZCNdxr3OyW1rWTp5JB1GTcDK3pHjG1eRcj2a0TN/1e93cfH0QWXnQOiaZVja2GJhZYNXi0Cc63tTv3lrTm3/l43/m4bnIwFYWtnQvMsTtB0yltA1y1n9yWTi/juJo7sXZ3ZuIDoilAHvfmlQyay03KzMRG6uIAhVxslSiY+dOdEZBTU6qFFI2nQh0G6qb2YLL/fvxtB+vQlq8HSZxxNN8+4oT+p3q96D8Qlox9ndm7l8ZA/7lv/A3mXzePa7X/UpZAplyanZchVfnInU79rpSno+qfmmG8nKQGq+hsj0AvwcSi46UhsYbTADd0qKOtR159Vl29j+0zdEbFlDXlYG9nXdadKhO+YqK6zsHHjl181smfs5h/5crG2a2difsbN/1zfNBG0VsmGfz2fbvC/59+v30KjVDP10Ls71vWk3fBxxF89wbP1KDq5YgKO7F827PIG5yooJi/5l69wvOL5hFblZGbh6+5W7E7FCAg8b48iBFgSh9ghyVXE1o2amIyglcFUp8bI1x93aHDdrM5wsFXz55ZckXL3Mu+9uL9N4omleceVNjbZ3daP98BdoP/wFMpMTmfdMD3b/MuuB+2FKQ9ZoSL4erV+NAUiMvgKAk0eDMo0lUr9rp2OJuSaz6f9eJOBYYo4IZoxV0ZKiju6eDP/8h3se6+zpw+gZSx44pn+XPvh36VPscQsrG0Z+taDE19g6uzL007n3HdfJowHfHE8s8bmij2tk7cqMIAhCVWpkb4GjhYI0E9rkWhoS2s3p8TmFpORrkCQJdxszMjMzmTVrFhMmTMDd3b1MY4qmecXpUr9LWwRAU1hIfnYWKjt7/WO2zq7Yu7qhzs+vsHkdXrVYXwBAlmUOr/oFpZk5jdp2KvUYIvW7dkrJK6wRN3hkICqjgJS8QqMu7V6ZjPqquqaWFK2p70sQBOOlkCT6e9ux4tKD9yKYkqKBWdESxyTFUj+gA+++9/49X1sS0TSvZEVTv0sjLzuT6X1a0aLnk7g3boGFtQ2Xj+4l9uwJ+hlUNys/M0sVFw/t4q+PX8OrRRAXD+7kwoEddH3hTWyd6pR6HJH6XTudSDL9VRkdCYhIyqVbfZvqnkq1MOosUV1J0ZrEUinhZGnUv3ZBEGooL1tzgl1rdmUz3YWJxsmN0d8tZXO6dak3z5ta07yqLgrgbm1W6osGc5UV7Ya9wI0LZwj5+Vs2/e8jkqIvM2jKDDo9+0qFzEehUPDC/FVkJiWwZfZnxJ47QY+J79Hr1SmlH0OkftdKsixz8lbpKpgdW7+SKYGuZS4q8bBCFsxgSqBrqY6VgYhbuVW+18xYGPUSga6kaFhCTo2JnNu4qMQdIEEQqk0XDxsupeXrSwzXVAql9utNV+I42FVFl/v0lhFN8+4vPz+f5KsX0diUbi+KmbkFfd/8hL58cs9jJi5aV+Ljwz6bb/Dz/dK4nT19eOHHv0s1p5KI1O/aKTmvsMb13sorlEnJ0+Csqn2pZka/RFCTSorKQJs6quqehiAItZi5QqJt3eqpiFUdSlvi2JSb5lWWqKgofvrpJwYNGoSLiwuvPju80s5VnUTqd+0Tn126dElTU1Pf14MYfTCjKylq6msZEtDQzrzWbs4SBME4aGTtvpLapmiJ4/BEw/cvmuZp5eTksHXrVt58802aNm2Kr68vkydPJjU1lQ8//JBt//yNZQ3bKS9Sv2un+Gy18V8Al5FCgvic2hnMmMTtiJpQUlQGgqqpP4AgCIKOqfdVeBgllTiWQd80z9SCGbjTNG+ivxOKMqYwy7LMhQsX2Lp1K1u3bmXv3r3k5ubi5eVF3759mT59Ot27d8fBwUH/mtTrWSL1WzB5N7LVPMyn4IWDIez5ZTbXz59GUkg0DGxP3zc+oV6jZnfOcfEsB1b8RNTxI2QkxqOys6dpx570ffNTbBydDca7euIIG/83jZuX/8O+rjudx04q85w0MsRlmfa1cnmZRDBj6iVFJcDBQoGvvdhkKAhC9aoJfRUqgq5iWV0rpUkHd2Vtmpeens6uXbv0AUx0dDQWFhZ06dKFr776ij59+tC8efN7XuAH1FFpq8VVs2GfzS+2t6asROp37STL8kOtYBzf+BerP5lE4/bd6PP6NApyczi6eikLXhjA6yt36XscXT66l+TYaIIGjsLOpS43r5wn7J/fuBl5gVeXbdX/PxZ/6RxLXhuOjaMLPV56D02hmpCfv8XWuW6Z5xafo0aW5VoXoJtEMGPqJUVlYIC3XZnvmgmCIFSkmtJXoaLsv5GNs6XC5IO7+zXNk2WZU6dO6YOXAwcOoFarady4MQMHDqRPnz506dIFG5vSlXTVpX5HZxSY/O/MR6R+10qFcun7Jd0tLzuTDTM/JHjwswyZ9r3+8cAnR/D9U+3Z/cts/ePtho2j05hXDV7foFUwf06ZyNUTR2gY2B6AHQu+RZZlXvplA47ungC06P4kc0Z0LvP81BrtCk0NKwT8QCYRzMCdkqLHTCyvWQKCXVV42opVGUEQqldN6qtQUZLzTHdVRufupnnJycns2LFDH8DEx8djbW1Njx49mDNnDk888QSNGjUq9/lE6rdgytQPUb748pG95Gak0brPELJSbukfVyiUeLUIJDL8gP4xc9Wdv18FebnkZ2fRoGUQAHHnT9EwsD2awkIuHd6Nf9e++kAGoK5vExq378aFAyFlnqNallGa/E7zsjGZYAbulBQ1lYozEmBvoaCzR+1sYiQIgvEoS18FwQTJMj+s38mm7z8hNDQUjUZDy5YtGTNmDH369KFjx45YWlpWyKlE6rdgyjQPcf8i6VokAItfeqrE5y1t7fR/zk5LYefCmZza9i+ZyYalxXMzMwDISkmiIDeHOg18i41Vx9uvXMFMoQaoZQuOJhXMmCskBphQupkuvawqegAIgiDcT03sqyDcsW/5Dxz+awmpN2Lw8vLi0KFDeHp6PviF5SBSvwVTpniIMmayrI2Ehn/xI3Z1iu9p0fW3Avjjg/FcOxVGpzGv4dG0BRbWNsgaDb9OGoH8MBHVAyhrWpm2UjCpYAa06WY9PW0IiTX+Ls09PW3wEullgiAYgdraf6A2uHh4N1vmfEabfsOY8MXn+LjXrbRARkekfgumyuwhglgXTx8AbJzr4PdYl3sel5OeypXQffR8+QN6THxX/3jStSsGx9k41cFcZaVf8SkqKfpyueb4MO/PVJlk/BbsakUnd+vqnsZ9dXK3Jljk4wqCYCSMpa9CQV4umkq8K1kbRYbtR1IoePqT2XR9ahT9+vWrkvN28bDB3kJhMtn5IvVbAO3meLNyfhg2bt8dS1s79iyZTWFB8X1jmSlJAEgKbZ6XfNf+nIMrfjb4WaFU0rh9N87t2ULqjVj94wmRF7l0eHeZ52em0PabqW1MbmVGp0M9baCgK69pTDq7W9O+nghkBEEwHmXtq5CWcIOQn6Zz4eBOstNSsHd1o0mH7gx47yvMzC1Ijr3KlrmfcyV0P+r8PNz8/Ok+4W2adeqtHyMy/CCLJg5m5DcLuXn5P46tX0lG0k2m7bnExu+mciZkA2//c4T10z/g8tG9mFtaEfjkCPq8/jEKZS1L+n4ImclJmFuqsLCwID5HjT8VszfmQUTqt2CKJEnCzcqM2Kyyr1arbO0YPGUmf017lXmje9C692BsnOqQGh/L+QM78G7dlkH/9y0qWzsaBrZn37L5aNQF2Nd159KRPaRcjy42Zs+X3ufioV38/OKTtBs+Do1azaFVi6nr24z4S2fLND83K7NaV5YZTHRlBrR/GTu6WdPTU3uHpbr/0+nO39PThg5u1rXyL5MgCMaprH0V0hPj+XFMb05u+5dWvQfz5HtfE9B/GFHHDlGQm0PGrQR+GtePS4d3027YOHq/+iHq/FyWvzWGs7s2FRtv16L/cf7ADjqNeY3ek6aiNNOm+Gg0Gn59bTjWDk70e+szGga1Z/9vPxK6dnm53mfIghlMCXQlMfoKq6a+wqedffmyezO2//gNsiyTGn+d5W+N4dNODfmqlz/7f/vR4PWZyYms+ewNvurpz7R2nswZ0ZVjG/40OCYl7hpTAl3Zt/wHQtcsZ+bAR/nosfrMf7YXMWdPFJtTQtQlVrw3js+7NmZaO0/mj+7Jub1b9c8nx15lSqArB35fUOy10SdDmRLoSsTWtfd8z1MCXTm2fiX5Odl8EOBKD09bli5dyq+//ookSSxZssTg+K+//hpJkti8eXOpfqcPokv9NgUi9VvQcbc2K/cFcJu+TzN+wVrsXd3Yt/wHNnw3lZPb/sGjSQuCBz6jP27E1z/TpH03Dv+1hG3zvkRpZsbz8/4sNp57k0d4Yf4qbJxc2PHTt4SvX0nPlz7gkW5lW2FVSOBhUzv/fkvy3WtgJigms4CN0RnVVuVMt3Q9wNtOfFAKgmB01BqZ707eevCBt/318WtEbF7Nq8u34enfxuA5WZbZ9L9pHPzjZ176ZQM+Ae0Abf+FOSO6gizz7vowFAqFfmXG2dOHN//aZ1Cq9O9PJnF8wyp6vvJ/9Jjwjv7xec90R5IUTFpR9io+IQtmsHPhTNybtqBuwyb4BLTj/P4dXDiwg/5vf0Ho2mX4PtoJN7/mRGxZTXREKBMXraNhUAcKcnOYP7ont2KiaDfiRZzrN+D0jvVcPXGEAe9+ScdnXgK0wcyMAUF4NGtJXlYmjz41BkmS2LdsPmaWlry3PhylufZ74OaV8ywY1x/7uu4EDhiBhZU1p3es4+qJI4ye+SuPdO8PwIIX+qPOyyv2ntd98z4nNv/Nh9vPYmFVcmr1iU1/E7p2ObFnTzBk2iwUCvhyRG8aNWrEk08+yf79+zl9+jReXl6cPn2a4OBgxowZw+LFi8v8+72fg/HZRpkpodPJ3ZqObsadni5UnbPJuWyIzqzuaVS4gd52+DtXzcqsMTHZlZmivGzNGd/ciSBXbSffqloT0Z0n2FXF+OZOIpARBMEolaWvgkaj4dyeLTTv/ESxQAa0q+IXDobg2SJQH8gAWFrb0nbIGFLirpEQecHgNYEDRhgEMkU9NvQ5g599AtqRXEIqRll4PRLIyK9/pt2wcYyd9RsO9TzYPOtjggaOYvCUGbQbNo7n5vyBucqK8PV/ABC6djkJURd5+tO5DHjnCzqMnMD4BWtp0OpRtv/4DXlZhhc+qfHXee237XR5fjKdn5vEkE9mk3YzjotF8tw3zJyKo5snk//YSZfnJ9N+xItMWLSOBq2C2TL38zu/n/4juP7fSRKiLukfKywo4PSO9TzSvf89AxmAgP7DcPb0RqFUEtB/GK37DsOnobbM66JFi1Aqlbz44ovk5+fz3HPP4ebmxvfff3/P8cqrQz3j3cva2d1an5ouCABu1ia7y+K+aur7epAaEcyANne3p6ctoxs74GChfVuVFdToxnWwUDC6sQM9PG1FDq4gCEarLPvts1KSyMvMoF6jZvc8JvVGLK7efsUer9uwye3nYwwed/JoUOI4ZpYqbJ3qGDxmZedITnpq6SdcguCnntX/WaFUUt+/DbIsEzxodJHzOFDHuxHJsdrA6cKBEOzq1KV1nyH6Y5Tm5nQYNYH87Cwijx0yOEerXoOwsnfU/9zwdmCXfP0qoO0xERm2n5a9B5KXlUlWyi2yUm6RnZpM4/bduXUtkrSEGwC07D0IM0sVEVtW68e7eHg3Wam3COg3rMzvXxe8urm58cMPP7Bjxw46depEREQES5Yswd7evsxjPohI/RZMibOlEktlzfo7YamUcLKsMZf1ZVLjQjgvW3Mm+jsRmV7AscQcojIKKqzjtW4cHztzglyt8LU3F3XqBUEwepFXLgPO1XZ+c5WqxMcVD9PwoQS61ZO8zHSDx1W2dphZqrBxcrnrcXuy01IASI2PxcXLt9ic6jZsrH3+rgCtaLduQB/Y5KRrN8PfiolClmV2/DidHT9OL3G+WcmJONR1x8rOgeade3Ny61p6vzoFgIgtq7Gv647vo5207yk7k/zsOy0JJKWyWCCoU7Rp3siRI/n999/ZtGkTEydOpEePHiW+pqIEu1pRz8pMpH4LRk2SJFq7qAhLyDGp0uL3IgFtXFS1NmivccEMaBt6+TlY4OdgQUpeIRFJuUTcytU3jFNIoCnF396ix1kqJdq4qGhTR4WTpaiyIwiCacjOzmb0qJGMWrK9VMfbONXB0taOm1fO3/MYR3dPEkvogZB49dLt573KN9mHlJetDWYSIi8W6wFxz8CpnNtGdaVX7zWerilepzGv0aRDtxIPdfG60/U7oP8ITu9YT/TJUNz8/Plv7zbaDRunn/f+5T+yc+FM/fGO7l58sOl4ieMWbZp369YtwsPDATh37hwajabCg8i76VK/98ZlEZ6YW2E3FB9Ed55gVxWdPWxExoRwXwF1VIQm5FT3NCqEDLSpU/JNo9qgRgYzRTlZKulW34auHtak5GmIz1YTn6MmLquA+Bw16hLSL5QS1LNS4mFjjruVGe425jhZKmptxCsIgmmSZZlXX32VyxcvoESmsBTJPwqFAv+ufYnYvJrYcxElFgBo2rEnB//4meiTYXi3fhSA/JwsQtf+hpNHA+r6Nq2U91OZHN08ib9c/GI/Map8AZqzpzcASjOz+zbX02nSoTs2TnWI2Lwar5ZBFORmE9D/TopZ4IDh+AQ8pv/ZzPLeFy5Fm+a99tprZGRk8M033zBlyhRmz57N22+/Xab3Uh661O+mjpZsis4gNV9TaUGNblwHCwX9xWqMUEpOlkp87MyJzigw6dUZCW3GUG2+0V7jgxkdSZJwVilxVilpLluQnFdIfLaaG9lq4rLUJOSoUd/+21woQ1x2IXHZhZgptHW73a3NcLv9j7OlUgQ2giAYvSVLlrBs2TKWL1+OZGNe6r4KT0z6iMtH9rBw/CDaDhlD3YZNSE+6yZmQ9by0ZCNdxr3OyW1rWTp5JB1GTcDK3pHjG1eRcj2a0TN/LfOd/7jzp9g2/yuiT4ZSkJcLwLVT4TRoFQxo95/sWTKbi4d3k3I9GkmhwLt1W/q8Pg33Ji0AbU+bsH9+A2DDzA/ZMPNDAIZ+OrdUc2j6eE8uHdnDqe3/0ub2vpnC2/0eLKxt8A3qUKb3ZOvsim9wR46uXU77keOxd3UzeD4zJckgTUxpZkbrPk9xcstaEqIu4ebnj3uTR/TPO3v64Hy7+/j9FG2at3r1alatWsXcuXOZPHkyJ0+e5KOPPmLAgAE0adKkTO+nvETqt2DMglxVXM0o3vzSlMhAUC1v0l5rghmAlLxCTiTlcrJoyhnct5GcWgOxWdqAR3ecpVKbaxkgUs4EQTBSJ0+eZNKkSUyYMIExY8awMzbT4HPsfhzquvPqsm1s/+kbIrasIS8rA/u67jTp0B1zlRVWdg688utmtsz9nEN/LtY2zWzsz9jZvxs0zSyNm1fO8/OLT2JpY0fn5yYRGX6IK6H7WDRxsLbyV8sgkq9Hc3b3Zlr2GoizhzcZyYmErlnGwvGDeGvNQexd3XBt2Bjf4I5Ehh8koP9wGrfrCoB360eJPHbwgfNoO2QsoWuWs/qTycT9dxJHdy/O7NxAdEQoA979Eksb2zK9L4CB//ctP78wgDkjuvDoU8/iXN+HzOQErp0KJ+3mDd5Ytcfg+MD+Izi0chGR4Qfo8/rHZT4f3Gmal5CQwCuvvEK3bt2YNGkSAPPnz2f37t08//zzHDhwoNLTzXRE6rdgrBrZW+BooSCtmvZ3PSwJ7Yqkr33tXo2s8cGMRpa5kp7PscRcrpZwR6i0RX6KHpdXKBOWkENoQs7tO0IqGtlbiDtCgiAYhbS0NIYOHUrz5s2ZO1e7MuFmbVbqzzvQ7osZ/vkP93ze2dOH0TOW3PN5AN/gjnxzPLHE54Z9Np9hn83nt3eeo1Ct5uUlG3H29KH7+HdIT4zn+yHt2TrnMyYuXo+bX3Pe+feowcV3YP9hfD+kA2H/rqDHhHewc6mLi5cvkeEH8fRvY5CiVRrmKismLPqXrXO/4PiGVeRmZeDq7cfQT+cSNHBUmcbSqefblEm/7yBk4UyOb/iT7NQUbJzr4NG0JT0mvlPs+Pr+ranXqBkJURdp029omc9XtGneK6+8Ql5enr55JoCLiwsLFy5k0KBBfPfdd7z//vvlel8Pozyp37oMCQ8bc9ystBkSIvVbqAgKSaK/tx0rLqVV91TKRQYGeNvV+uvPGtE0815iMguqLFcUq8H3AAAgAElEQVTXUeTqCoJgBGRZZtiwYYSEhHDs2DEaNWoEwK1cNYv+e7iSxxVNU1jIp518adapF898a9jE8Z+v3iXsn9/4eM9lVLZ2Bq/JyUgDWWbxy0/j7OnNmP8tAyD2XAQ/PNvroQKQ6jZ3VDes7Z0Y//Pacr3elJvmybKMRtaWli7UaAsZmEkSCgkRuAiVKiQ2k2OJuSa1OiOhLXbRw7Psq8Y1TY1cmSnQyAZVVKDyKqnoxk3L17DiUhrBriq6iCoqgiBUkzlz5rBmzRrWrl2rD2TgTl8FXWqPMchKSaIgNxtXn5J61jRG1mhIu3kdC+smHPpjIUf+XkJK3DU0hYX646wdnKpyypUq9lwENy6cYehn88o9hik3zZMkCaUESiR9aWlBqApdPGy4lJZfbeXEy0pXfryzh011T8UomO6n3j3EZBbo69tD1ZSDLHqeY4m5XErLF/XtBUGococPH+a9997j7bff5qmnnjJ4zpT7KuxZMosdP04neNAz9Hp1Clb2jigUCjZ+9xGyXJbkOeMUf/k/rv93kgO//YRdnXq06j24XOPU5qZ5gvAwzBUSA0wo3UyXXiZunGvVqGAmPDGHkNisKqtpXxIZSL+9StPT04bgWl5hQhCEqpGUlMTw4cNp27Yt06eX3KTR2Poq2DjVwVxlTeLVknrWXEZSKHCoV58zIRvwDX6cpz+ZY3BMTkYa1o53moFK1d53vnzOhGxg16LvqOPtx8hvfsb8PmWX76W2N80ThIflZWtOT08bQmKzHnxwNevpaSNumBdRI4IZWZY5dDOH/TeytT9X93xu/zskNou8QpkO9azEF4wgCJVGo9Hw7LPPkpuby6pVqzA3L/lLztj6KiiUShq378p/e7eSEncNJ48GAGTcSiBi6xp82jyGytbudoNKwxmf3rGO9IQbuHg11D9mbmUNaIMcU9Lz5ffp+fLDbcav7U3zBKEiBLtakVco668njVEnd2txo/wuNSKYKRrIGBvdvDq6WVfzTARBqE6yLFN4e3OzRgOK25ublRWwufnrr79m+/btbN26FU9Pz/sea2x9FXq/OoXLR/aw4IUB2o73SjNC1y6nMD+fPm98AkCzTr3Zteg7Vn8ymQat2xJ/+RwRW9YU67vi4umDys6B0DXLsLSxxcLKBq8WgTjX966Gd1Z1RNM8Qag4HeppAwVjvK7s7G5N+3oikLmbyVczC0/IIeS6aSwJikhaEGoHWZb1jXl1zXkfVHa2vI15d+7cSe/evZk2bRqffvrpA4/XyDILz6UYVV+FuPOn2DrvS6JPhiJrZLxaBNL7tQ/xbv0oAOr8PLb/8DURW9aQm5mOR7OW9HvzM7bO+wKAiYvW6cc6t3cr2+Z9SdK1K2jUapOubFYWQ33t8XOwqO5pCEKNYQxbF+BO1VxxHXlvJh3MxGQWmMxmLYDRjR1EjqMg1GDlacyrU/S40jbmjYuLIyAggFatWrF161aUytLdmTe1z07h3nRN8yb6O9X6XhOCUNGKFpWqjotlXdUyUVTq/kw2mCnQyCz+L8XkyuiNb+4kqk8IQg3yoMa85aUb516NedVqNd27d+fKlSucOHGCunXrlnrsrKwsvvh7B/Yt2qMoZQAkGK9nGzvgKS50BKFS3N3uoyquOXXnedRVRWfR7uOBTHbPzN64LJMJZOBOlbN9cVmiwZEg1BB3N+aFivui040TnVHA1YyCYo15p06dyqFDh9izZ0+ZApmIiAhGjRpF3M0Epm4+jqy0MZnPUcGQrmmeCGQEofKYKyR6etrS1NGyyhqxO4hG7GVikiszpp4iIdLNBMG0VeedumBXFZkn9vDUwCeZOXMm7777bqleL8syc+bM4YMPPsDf35+VK1di49nIpD9LazOx2i8IVU8jy0SmF3AsMYeoSliJb2hnTpCrFb725iJttAxMLpgxxs2rZSHymwXBtFV3DjXIpMbFcn3bHyyfM6NUhQISEhIYN24cmzdv5s0332T69OlYWloCdza5CqZH3BgThOqTkldIRFIuEUX3SEqgKcUXQ9HjLJUSbVxUtHnAHknh3kwumLmUlseayIzqnsZDE5VnBMH0GEt1G01hIQqlslTVbbZv387YsWPRaDQsXbqUfv36FTvmYHy2UZYhrWoS4GSpIDmvNCUbqpeobCQIxkGWZVLyNNrqlTlq4rIKHli90sPGHDcrbfVKJ0uF6EX4kExuz8yxKkzrqCwScCwxRwQzgmAijK0xr27T/v0a8+bn5zN16lS+++47evXqxfLly3FzcytxPGPuq1CVZKB7fVtu5qiN+nchmuYJgvGQJAlnlRJnlRJ/tCvesiyjud1XrFADytt9xRQV0FdMKM6kgpmUvEKjavZWXjIQlVFASl6hWFIUBBNgao15L126xKhRozh16hQzZ87k7bffRqFQ3HMMSZLo6GaNpVIyipWn6qBLAfa1N6eRvTZ1yxj/m4umeYJg/KTbDZGVSCAu8yrdvb/djNCJpFxqSjwrARFJudU9DUEQHiA8wXgDGZ39N7IJT8xBlmWWLl1KQEAA6enpHD58mHffffe+gUxRwa5WjG7sgL2FosZ81paWDAzwtkMhSfrgrqenDUC1/y505+/paUMHN2txZ1cQBKEIkwlmZFnm5K1ck7xbGLJgBlMCXQ0em94/kA9eHY+JbVkShFolJrOAkOumsTk+JDaLCe99xLhx4xg2bBjHjx8nKCiozON42ZozvrkTQa4qoPov5KuChLafw90ljo0huNNVLRvd2EGklgmCIJTAZNLMkvMK9dUiaorC25vGnFViDVIQjE2BRmZjdIbJpFxpCgup030oKx5tzTMjhj/UWFXZV6G66YKFzh42JT6vC+6qsxS3aJonCIJwbyazMhOfra7uKZRbt/Fv8/nhmBKfM+X3JQg1mak15lUolTi6e1KvY/FqZeXlZWvORH8nhvra42OnXbWoaZfUuvSy+wULuuBudGMHbG/fApQ1lVPxTDcLh9urMT08bUUgIwiCcB8mFcyYzGTvojQzw9xSVexxCYjPEcGMIBibmMwCwhNNMa1VIiwxl5jMiiuUopAk/BwsGOHnwEv+TrSta4WlUiryfIWdqlr09LQpda8WL1tzsrYuZcU7z1HfSvvGK+rt68bxsTNnqK89E/2dRA8ZQRCEUjCZ+GDd2jV8EOhK5LGDxZ47unoZUwJdib/8HwAJUZdY8d44Pu/amGntPJk/uifn9m4t9robF8+ycPxAprX34ps+rdi1+H+Er/uDKYGupMRdK9W8Tu9Yx7xnejCtvRdfdG/KqqmvkJZww+CYkvbMgPaOYFyW6VdnE4SaRCPLbLqdXmaKJGBTdAaaStiP52SppFt9G95s6czE5k4M9LYj2NUKTxszzEzm2+SOspY4VqvVzJ83l2Dvuoz1d32o4K7ocZZKibZ1rXjJ34kRfg74OViIpsqCIAilZBJ7ZmRZxv2x7lhY23B6+zp8gzoaPH9q+7/Ua9QMN7/m3LxyngXj+mNf150uz7+OhZU1p3es4/e3xzJ65q880r0/AGkJN1j00lNIkkTXcW9gYWVN2D+/Y2ZR+t4vx9avZPWnr+P5SABPTJpKZnIih1YuIvpkKJNX7sLKzuGBY8TnqJFlWVSnEQQjcSU9n9R842+aeC8ykJqvITK9oNJ6WZW2r4ISOJKQw4H4nEqZx8MoT4njNWvWEBMTw5tvvgncCe66eliLpnmCIAjVxCSCmUIZJAsrmnd+gjM7N/Lk+9/om8ZlJN0k6vgherz0PgAbZk7F0c2T137fjpmF9ku23fAX+PmF/myZ+7k+mNm7dC656alM+mMnHk1bAhA0cBTfDX6sdHMqKGDr3C+o59eciYvX69PIfNo8xrI3RnPg9wX0euWDB46j1oBGBqX4HhMEoyAa85bznPfoq/C4uw0qM4VR9K/Rnb+np025KoPNmjWL7t2707p1a8NxRdM8QRCEamMSiQHq2+kSrXoPJjM5kcjwO6lmp0M2IGs0tOo9mOy0FCLD9tOy90DysjLJSrlFVsotslOTady+O7euRepTwC4e2kWDVsH6QAbA2sGJNn2fLtWcYs9FkJmcSLth4wz2wzTr1BtXn8ZcOLCjzO9PEITqpWvMa+r/RxZtzGsMakKJ48OHD3P06FHeeuut0p1PklAqJCyVCqzNFVgqFSgVkghkBEEQKphJrMzoisY06dAdla09p7b/i99jnQE4vf1f3Ju2wNW7ETFnjiPLMjt+nM6OH6eXOFZWciIOdd1JvRFLg1bBxZ538Wpo8HNuRjoFeXdSJJTmFlg7OJEaHwuAq7dfsTFcGzYm+sTRUr+/Qg2iQ6wgGAFdY15TD2bgTmPebvVLLjlc1Uy9xPGsWbNo0qQJ/fpVXLU4QRAE4eGZRDCja15tZmGJf7e+nNu9mUFTZpCZnEj0yVB6T5oK3CmV2WnMazTp0K3EsVy8fMt07g3ffcjxDav0PzcM6sDERevK8S7uTWkS62OCULM9qDFvZPhBFk0czISF/+IbrN239/cnk4gMP8QHm45X3URLSQaebtucgb26s3Tp0uqeDlC1/Wt04zpYKOjvbfdQlcGio6NZs2YN8+bNQ6EQH9iCIAjGxCSCGbMiy/Kteg/m+IZVXAndR0LURWRZplXvwQA4e3oD2lLIfo91ue+Yju6eJMdEFXv81l2PdX5uMgH9hul/trJz1L7ezROAxOjLNGrbyeA1SVcv4+juWdq3Z/D+BEGoHjWxMa8sY5TvSde/JjK9gGOJOURlFFRYUKMbx8fOnCBXK3ztzR+6Mti8efOwt7fnueeeq4AZCoIgCBXJJIIZpaStAKPWgF/bLlg5OHFq+78kRF3Cs0UgzvW1QYytsyu+wR05unY57UeOx97VzWCczJQkbJ3qANCkfTeO/LWEuAun9ftmstNSiNiyxuA19XybUs+3abE5efq3wdbZlaOrlxE86Bl9sYELB0NIiLpI9wnvluq9mSlMv0+DINQED2pg6xPYns8Px6A0r7pN9RUhp6SSWkZA17/Gz8GClLxCIpJyibiVqw++FJK2OMqDx7lznKVSoo2LijZ1VDhZVkzubkZGBosWLeLll1/GxsY4UvYEQRCEO0wimJEkCTcrM2Kz1CjNzWnRvT8nt/1DQU42fd/6zODYgf/3LT+/MIA5I7rw6FPP4lzfh8zkBK6dCift5g3eWLUH0K64nNi8miWvDKP9yPH60syObvXJSUvhQa3QlObm9Hl9Gqs/fZ2F4wfRus9TZN5K5ODKRTh5NODxZ18u1XtzszITG0IFwQjoGvPe69JfoVCgKKH5rTGTgBwjXJm5mzGXOF66dClZWVlMmjSpQscVBEEQKoZJBDMA7tZmxGWp0aBNNQv753ckSaJVr0EGx9Xzbcqk33cQsnAmxzf8SXZqCjbOdfBo2pIeE9/RH+foVp8JC/9hw4wP2bNkNjZOLrQb/gIWVtZsmPEhZpaWD5xT0MBRmKus2Lt0LlvnfoG5lTWPdOtHnzc+LlWPGQnwsBEdngXBGBwOP85vMz8j+mQoskaDV4sger/2ob5QSEl7Zkpycts/7Fs2n6RrV5AkCUd3Lx4dPJqOz7ykPyYnI42QBTM4u2sjmclJONTzoO2QMXQaO8lgT4ZGo+HQyoWE/fM7ybFXUdna49+1L31en4aVvaP+OFmW2f3L9xxdvYyc9FS8WgQy8IPpyEC2ka7MlMTYShwXFhYyZ84chg0bhpeXV6WeSxAEQSgfSZZNoy7w2eRcNkRnVvp5NsycSuja5Xx24Kq+l01lGuhth7/zgwMnQRAqz5kzZwhq+xiWNna0Gz4OpZk5R9csJyMxngmL1tGgZVCpCgBcOrKHJa8Oo1HbzvqeVolRF8lMTuSZb38BID8nm5+e70d64g3aDhmLo5sn0adCidj0N+1HTuDJ977Sz2vtF29xbMOfBD05ivrNW5MSF83hVb9Q17cpLy/ZhNJcezNk+4/fsHvx9zR9vCdNO/Yk7vwpLh7aRWFBAc069SRs3UqxAlwO69atY/DgwRw9epS2bdtW93QEQRCEEpjMyoybdcVPtSA3B3PVnX4DWanJnNj8Nz5tHquSQAYq530JglA2H300jUK1mpeXbMTZ0weAgP7D+X5Ie7bO+YyJi9eXapzz+3dgaWvHCz/8dc/PkAMrfiI5NorJK3dRp0EjAB4b+hz2rm7sX/4Dnca8iqNbfa6eOELYP78z4qsFBv2vfIMf59dJIzgdsp42fZ8mMyWJfcvm0/TxXjw3Z4U+aNk2/yv2LJmNjGjMW16zZs2iQ4cOIpARBEEwYiZTY9LZUollBX8b//R8XzbMnMrR1cvYufA75j/Tg7ysDLqPf7tCz3MvlkoJJ0uT+U8gCDVSYWEhO3Zsx79rX30gA2Dv6kbrPk9zNeIouZkZpRrLys6BgpxsLh3Zc89jTu/YgE9AO6zsHPWNfbNSbuHXtguawkKijh/WHheyHpWtPX7tuhgcV795ayysbYgMPwDA5aP7KCzIp8PI8QarLx1H30lrE415y+7EiRPs3bu31E0yBUEQhOphMssCkiTR2kVFWEJOhfUkaNqxJ6d3biDsn98AifrNWvL0J7NpGNShgs5wbxLQxkUlUj8EoZolJiaSnZ2Nq0/xBrh1GzZG1mhIu3m9VGO1Gz6O0zvWsXTySOzrutO4XVda9hpE04499Mfciokk/tJZvuzRrMQxspKTAEi6FkluZjpf9Whe4nGZt49LvREDQJ0Ghj20bJ3q6PfViMa8ZTdr1iy8vb0ZPHhwdU9FEARBuA+TCWYAAuqoCE3IqbDxnpj8EU9M/qjCxisLGWhTx7QqIwmCcH+2zq5M/nM3lw7t5sKhnVw8uJNj61cSMGA4wz//AdA29/Vr15Uuz5VcHUuXeiZrNNg6uzLiq59KPM7GyaXU8xKNecvmxo0b/Pnnn0yfPh0zM5P6mhQEQah1TOpT2slSiY+dOdEZBZXSMbqqSGgbulVUHwRBEMrP1dUVa2trEq9eLvZc4tXLSAoFDvXqk5Vyq1TjmZlb0LzLEzTv8gQajYZ137xP6JpldB//DnUa+OLs6UN+dtYDG/u6ePpwJXQf3q3bGuztu5uju7bKVtK1SIM0ucyUJHLSU7VzEivAZfL/7N15XJTV/sDxzzMDzLBvooAQCC6JmgqoqYm5paZpi0uLWd1Ky9S8/ayblUtWt2vWzTZTW2wzNW1TyatRaWrlmqZpuSOIyCKyMwwzz++PcVAEBXWGmcHv+/XyVfPMM+ecGXgxz/c53/M977zzDjqdjgcffNDRQxFCCFELl7tflxCid+lABiyzMgkhF744EULUH61Wy0033cS+9f8jL+NY5fHC3Cx2/u9Lojt0Qe/jW6e2ik+fqvJYo9EQ2iIOAJOxHIB2/YZy7I+t7P/lx2qvLy3Mx1Rh2byz3U1DMZtM/Pjea9XOM1VUUFqYD0DzLklo3dz5Zcn7nFucctOi+YDl5olszFt3paWlzJs3jwcffBB//9pL7AshhHAsl5qZAYj18yDAQ0N+udklgxoF8PfQEOMn+8sI4SxefPFFVq/9nnn/GMz1wx9Ao3Vjy1efYCovZ8Dj0+vczlcv/JPS/DxiOvXAv0kYp0+k88uS9wlr1ZaQZi0BSBr9GPvW/4+PJ91Dwi130rR1e8pLS8g8uJc9KSt5atUOvAODiUnoTuc77mPdwjfI2L+HFtffiNbNnZxjh9mTsoLBT75Eu75D8AlsRI97x7Fu4Rt8/PjdltLMf+9m/6Yf8A4IxtPN9htJNmSffvopp06dYsKECY4eihBCiDpwuWBGoygMivJl0YF8Rw/lsqjA4ChfNHJxIYTTaNOmDXO+XMPrM6eybuEbqGaVyLbxjHhhLte0S6hzOx1vHsaWLz9h87KFlBbm4xvcmOtuupW+Y5+s3AzTw9OLMe9/y7oP5rA7ZQU7Vn2B3tuXRlEx9H3kX+h9/Crbu+3ZV2nauj1bvvyYte/8G41WS2DYNXS4eThR7c+WC+732DO46fRsXv4Rh7dtIrJtPP+Yu4yPJ96Nl5vLTcA7jKqqzJkzh6FDhxIbG+vo4QghhKgDl9k083wp6UVszy5zqdkZBUgM0dMnwsfRQxFCnKe+Nuatb7Ixb92tWbOGAQMGsH79epKSkhw9HCGEEHXgsrfseoZ74+ehwVXmNxTAz0NDUri3o4cihKhBQ93AtqG+L3t4/fXXiY+Pp0ePHo4eihBCiDpy2WDGXaMwOMrXZWZmrOll7rISVwinZI+NeR1NNuatu71797JmzRr++c9/yhojIYRwIS79LRfp407fCNeY6egb4U2kjyz6F8JZWTfmbSiXsbIx76WZM2cOYWFhjBgxwtFDEUIIcQlcOpgBSAzxpEeYl6OHcVE9wrxIlFLMQji9jo1cv/S7lWzMW3c5OTl8+umnjB8/Hg8PD0cPRwghxCVw+WAGoFsT5w1oksK86NZEAhkhXIF1Y15Xn8tQgGayMW+dzZs3D0VRGDt2rKOHIoQQ4hI1iGBGURS6h3pVppw5+kLE2n/fCG+6hXpJmocQLkQ25r26GAwG3nnnHUaPHk1wcLCjhyOEEOISuVSZG1VVMalQoaqYzaDRgJuioFUsAU1iiCdNPN1YlVpIgYM21bRWLRsc5StrZIRwQbIx79Vl6dKlZGZmMmnSJEcPRQghxGVw2n1mVFXllMFEZkkFmSUVnCipILO0ggpz9XPdNBDq6UaYlxuhXm400mvZfcrAtuwyFKiXCxJrP51C9CSFe0vVMiFcWFqR0WU35gUY1cKfCLmZUitVVYmPjycsLIzvvvvO0cMRQghxGZxuZibPYOL3nDJ25ZZhMFnCEA1QQwxTqcIM6cUVZBRXVJ6n0yq0DvAgvbiCQqPZbkGNtV1/Dw2DZDZGiAYh0sedxBC9y27MK4FM3axfv56dO3cya9YsRw9FCNHA1JZNJGzHKWZmzKrKoYJytmeXcbTQaLPAw9pOY08tCnCy1GTztpv5upMQ4kmMnzsa+eUUosEwmlXe35fnsJTVS2VNcX2odaDMDNfR0KFDOXToELt375aLCyHEZbuSbKJQLzeCdFr5G3QFHD4zk1ZkJDm1kNPl5sqF87a6cLC2k11qQgV83RUifNw5XGA8O+ujgLkOHZ57nk6r0CFYT4dGeqkWJEQDZd2Y11XSzWRj3ktz8OBBVq5cyYIFC+QiQghxWWyZTdQ+WE9Hua68LA6bmTGaVdZnFDtkXUtCIx3XNfIkt9REZmkFGcXGWiPocG93Qj0tEXSgTiNffkJcJbZll5KSXuzoYdSqb4S37Gd1CSZOnMjixYs5duwYnp7yuQkh6sbe2UTRvu4khOiJ9fOQjJ86ckgwk1ZkdLqKY6qqYj6T22gyg/ZMbqNGchuFuOptyixhw4kSRw/jgnqEedE91Dn32nJGp0+fJiIigieeeIKZM2c6ejhCCBdxfjaRPddiB8ha7Dqr92DGepezvmZjLsTav9zNFELURlVVfjlZ6pQBTVKYF12beMpNl0vw6quv8uyzz5KamkpoaKijhyOEcHKOzCZKDNHTU6rkXlS9BTPOfDHQI8yLbnIxIISohdyMcX0VFRXExsbSq1cvPvroI0cPRwjh5Jwxm0hUVW/BjKRpCCEaAvlic21ffPEFI0eOZOfOnbRv397RwxFCODG5geUa6iWY2ZZVSspxWUArhGgYHJlyIBvzXpmuXbvi6enJjz/+6OihCCGclGQTuRa7l2ZOKzK6RCADkJJeTBNPN7nbKYS4KHeNQt8IH1oF6OptMahszHvlfvvtN3777TdWrFjh6KEIIZyYswYyQOW4JJvoLLvOzMimc0KIhs6sqhwuMLI9u5QjdijTKRvz2s7IkSPZsWMHf//9NxqNxtHDEUI4Ickmcj12nZlZn1HsMoEMWC4cCsrN/JxRTJ8IH0cPRwjhAjSKQnN/D5r7e5BnMLEzp4yd526gJhvzOoVjx47x5ZdfMmfOHAlkhBA1kmwi12S3mZm0IqPL7Jxdk3ta+MsviBDisqiqSp7BTGZJhWzM6ySefPJJ3n//fdLS0vDxkZtVQoiqJJvIddklmDGrKgv25pHvIr8Q51Ow5KePiQuUtA4hhE3IxryOU1RUREREBGPGjOGVV15x9HCEEE4oJb2I7dllLnXdqmDZh+Zqzyayy1z7oYJyTrtoIAOWdLPT5WYOFxgdPRQhRAOhKApajYJOq8HLXYNOq0GrUSSQqQcfffQRRUVFTJgwwdFDEUI4obQiI9tcLJABy/Xq1uwy0oqu7utVuwQz28+UK3VlCrA9u9TRwxBCCHEFzGYzb7zxBsOGDSMyMtLRwxFCOBmzqpKcWuiy160KkJxaiLl+to10SjYvAJBnMHG00PUjRBU4Umgkz2CSBbhCCOFgqqpiOpOmZzaD5kyanraWNL1Vq1Zx8OBBPvvss3ocrRDCVViziVzVudlEzf09HD0ch7D5mpkfjxezNavU5abqaqIAnRt70qupt6OHIoQQVw1VVTllMFkKKJRUcOJMIYWLFVAI87IUTwj1ciNIp60McHr16oXBYOCXX36p53chhHAFSw7mk1podOnrVgWI9nVnZHN/Rw/FIWw6M6OqKrtyXS/n8EJUYGduGTeGe9kkr33GjBk8//zz2HFrHyGEcFl5BhO/55Sx69zS1sDF7plWmCG9uIKM4orK83RahfbBevRZh1m3bh1ffPGFvYcuhHBBkk3UMNg0mDllMFV+ATUUBpOlxGqQ/ur75RBCCHszqyqHCsrZnl3G0Ro2Ha1r8se55xlM6pkMgTDGfbCC6/r0xayqUp1SCFHF7zllNtvo2NEUYGdO2VWZTWTTAgCZJRW2bM5pNNT3JYQQjpRWZGTB3jy+PFxI6pm7o7a6qLC2E9m+C1+nFrNgb95VX/FHCHFWfWYTpcx7hSnxIRTn5dqtD2s20dWY/WPzYKah7ausUSCzVIIZIYSwFaNZJSW9iEUH8sk/s/DWbl+/Gsu3UtuKu6IAACAASURBVH65mUUH8klJL8Jovvq+7IUQVTXkbKKrTZ1jj48//rjK46NHj6IoCq+++ioLFiwgNjaWATHBvDmqH2l//l7t9VlHDrDoyQeYeWMLpl4fwdv39GXv+v9VPn8q/ShT4kPY+Nm8aq9N3bWFKfEh7PzfVxcdY/renXw4bjgv9G7F1K6RvDI4geUzJlY+f3jbJqbEh3B426Yqr8vLOMaU+BC2r1hceWzZ9PFM7x5FTtpRJt05BG9vb8LDw5k5c2aVqPfcz+H1118nKioKT09PevbsyZ49ey463p49e9K+ffsan2vVqhX9+/e/6OuFEMLVpBUZeX9fHtuzy4D6S++w9rM9u4z398ksjRBXu4aaddNQ39fF1DmYuf/++3njjTeqHf/888+ZPXs2Y8aMof9jUzidkcaiyfdjMp79ojh56C/evW8AWUcO0PP+idz8z+fx8PTisydG8+ePyQAERUQT1aEzO1cvr9bHzu+Wo/P2Ia7ngAuOr+hUNh+OG07eiTR63j+RIU/9mw4D7yBt9/a6vsVqzGYzH44fiXtAI2bNmkVCQgLTp09n+vTp1c795JNPePPNN3nssceYMmUKe/bsoXfv3pw8efKC7d9777388ccf1YKerVu3sn//fkaNGnXZYxdCCGezLbuURQfyKXDgpsoqUHBmlmab7CUmxFXrSrKJykuLbToWW7las4nq/HPs2rUrzz33HIWFhVWOHzt2jC1btvB/Tz7FDaPHc/v0OeSfzGD/rz9VnrNy9rMEhEYw4fMf6Hn/BLqOfJCH3/uWa65LZPWbMyvPix80kuP7dpF15EDlMZPRyO7vV9Cm9yA8PL0uOL7UXVspLTjNyJfmkTT6MTrddi83PfYM//xy0wVfU5sKQxktu/Vm+Mx3eHTcY6xYsYJBgwYxa9YscnJyqpx78OBBNm7cyFNPPcW0adNYvXo12dnZzJo164LtDx8+HL1eX23/g88++wxvb29uv/32yx67EEI4C1VV2ZRZQkq65QLA0Ykd1v5T0ovZlFlyVeaYC9HQFRYWMmnSJKKjo9HpdDRu3Jh+/fqxY8cOAE6UVLDr+2956+4+TO0ayQu9W7H02UfJzzpRpR1rpk5u2hEWTriT6TdEs/TZRwEwlpWy4pUpvNC7FdNviOaTSaPIzzrBlPgQUua9Um1MpYX5LJs+nueTYpmRFMPy6RMoLy2pfL6mTCGr89u0rsPJTj3E0mcfZUZSDDN7XcubL81AVVXS0tIYOnQofn5+hIaG8tprr9nkc3VGdQ5mJk6cSFFREevXr69yfOTIkQQGBlJx5sugWcfrATh1/CgAJfl5HN66gXY3DcFQXERxXi7FebmUnD5Fi669yT12uPIXp91NQ3HT6avMzuz/9SeKT+fS8ebhFx2fp6+ltvZfP6+tMit0pbqOfAiwbNSmKArjx4+nvLyclJSUKufdeuutNG3atPJx586d6dKlC999990F2/b392fo0KEsXry48svUZDKxdOlSbr31Vry9r76KFEKIhueXk6VsOFFS+4kOsOFECb+clBkaIRqaRx55hHfffZc77riDuXPnMnnyZDw9Pdm3bx+qqrJyyad8/q+H0Gi19B//LJ1uG8WfPyUz/x+DKS3Mr9KW2WTiw8dG4BPUiJsnPU+b3oMBWDZ9Ar8ueZ9W3fsyYOI03HR6Pp541wXHtPjphzAUF9F/wnNc128o21cu4YcFr17R+1z89EOoqpkBE6YS0Taeb9+1LHvo168fTZs2ZdasWTRv3pzJkyfz888/X1FfzqrOpZlbt24NQGpqapXj11xzDQDmM+uNPP0CACgtsPwi5KYdQVVVvp/7H76f+58a2y4+lY1/4zA8ff1pnXQTu/73FTeNmwLAztXL8WscRkynHgAYSoooLzk7vadotfgENqJZQjfa9hnMDwtms/HzecQkdCfuxoF0GHgHbh66ur7NKhSNhqCmUQCYzIAWWrZsCVjWypyrRYsW1V7fsmXLWvc3GD16NEuXLmXDhg0kJSWRkpLCyZMnuffeey9rzEII4Uy2ZTlvIGO14UQJOq1CYoino4cihLCR5ORkHn744SozEk899RQApYZyvnvjBZo0b82Y91fgrtMDEN2hCx8/fg8bP5tHv0f/Vfm6inID7foNYcCEqZXHju/bxe7vv6X73WMZPPlFALqO+AfLp0/gxP4/axxTeKt23DH97JKNktN5bPt2EQMfn3bZ7zOyTTy3PWd5j51vH80rg+OZPHkyL7/8Mv/6l+U93HXXXYSHh/Phhx+SlJR02X05qyveZ0artey/ojl/jufMTIN6Jsrpce9jtOzWq8Y2giNjKv+/46CR7P5+Bam7thDaPI5969dw/fAH0JzpYMMnc/lhwezK8wPCIvlX8g4UReGe2Qs59sc29v28hgO//sSXzz/Oxs/e5dGPV6Pz8rEU4a6B2WSq/X3aqUxb//79adKkCZ999hlJSUl89tlnhIaG0rdvX/t0KIQQ9SStyEjKcefMLT9fSnoxTTzdiPRxd/RQhBA2EBAQwObNm8nIyCA8PLzKc5u3bqXoVDZ9xj5ZGcgAXNvjJkKiW/D3xu+rBDMA1w97oMrj/b/8aDk+ourxrnc+xPaVS2ocU+dh91d5HN3xev78KZmyokL0Pr6X9P6sEm87u75ao9XSNK4D+SczePDBByuPBwQE0KpVKw4fPnxZfTi7Ogczf/31FwBRUVE1N3SBzciCIizna93caN6lZ639tOzWG+/ARuz8bjmR7RIwlpXQcdDZFLP4wSOI7tjlbL/n/BICXHNdItdcl0j/8c+yc/WXLH32Ef5Y8zWdbrsXT98zs0bnTR+ePpFe41hUs5lTx1MJiYqtfH/79+8HIDo6usq5Bw4cOP/l7N+/v9p559Nqtdx999189NFHzJo1i2+++YaHH364MkgUQghXZDSrrEotdJkN6RRgVWohD7UOxF0jm2sK4epeeeUV7rvvPiIjI0lISODmm29m9OjRxMTEkHrUkmUUEtW82utCmrUg9ffNVY5p3Nzwa1I1IDp9Ih1FoyEwvOp18bk36M8XENq0ymNPP8sSidKC05cdzJzfpt7HF71eT6NGjaoc9/f3JzfXfvvcOFKd5xveeustfHx86Nmz5oBEq4BbDa35BIUQk9idzV99QkF2ZrXni/KqLqTXurnRfsBt7P5+BdtXLCG0eRxhLdtUPh8UEU3zLj0r/0V3sAQ2pQWnqy3iDGvVFoCK8nIAAsMi0Wi1HNnxa5Xzflv24QXf969L38dNY6kQoaoqb7/9Nu7u7vTp06fKed988w3Hjx+vfLxlyxY2b97MwIEDL9i21b333kteXh5jx46lqKhIqpgJIVze+oxih1Ytu1TWKmc/Z7jGTJIQ4uJGjBjB4cOHeeuttwgPD2f27Nm0adOG1atXo1xito2bu0dlhtCV0GgudKPa+pey5hspF8sgqqnNC90Qb6jFTuo8M7Np0ybmzJmDr2/NkaOiKIR6upFeXL0k3JCnZzH/H4N5Y2RPOt02iqCm0RSdyuLYH9vIP3mCx5euq3J+/KCR/LL4PQ5v28iAiXXLI9y+cgm/LVtIm16DCI6IxlBSxNavP0Xn40urGywpW3pfP9r2HcKvS99HURSCIqL5a8Naik/l1Nimm07P/l9+5NsZE/Dq14PVq1eTnJzMM888Q0hISJVzmzdvzg033MCjjz6KwWBgzpw5BAcHV+ZnXkzHjh1p27Yty5Yto3Xr1sTHx9fpPQshhDNKKzKy7cw+Mq5EBbZml9EyQCfpZkI0AGFhYYwbN45x48aRlZVFfHw8L730Ei/PslQFy049SGznHlVek3P0IAFhEbW2HRAWgWo2k5eRSqNrYiuP56ZdfipX5brzahlEaZfd5tWgzmHmwoULefzxxy96TpiXW40NNolpxfjPvqfVDX3ZsXIJK/7zLzYv/xhF0dBnzP9VO79pXHuaxF6LotHQ4eZhdRpfTEI3IuI68Mear1k5+xl+/vhtgiNjeHje15WL+AGGPPUycT0HsHn5x3w/92UCQiMYPvPtGtvUaDQ8+M5SyvKyefLJJ9m6dSvTp0/nhRdeqHbu6NGjmTBhAm+//TYvvfQSbdq04ccffyQsLKxO4x89ejSALPwXQrg0s6qSfCa9zBUpQHJqIeYGegdTiKuByWQiP79qQNC4cWPCw8MxGAx06ZSIT1AIm5d/TEW5ofKcvzelkHVkP61u6FdrHy279gbgty8WVjn+65L3L3vceh9fvAOCObrjtyrHf1u28AKvqM5V//ZeiTrPzNx///1VHkdHR1ebrgr1csMMvLwju9rrgyKiGTHznToPTOPmRkxCd/wb1y0YCL/2Ou789/xaz/MODOae2dV/KWoaM0Bg02g+/iqZuKDaK6I98cQTPPHEExd8fsaMGcyYMaPG5zw8PCxFDO65p9Z+hBDCWR0qKOd0udnRw7hsKnC63MzhAiPN/T0cPRwhxGUoLCwkIiKCYcOG0b59e3x8fEhJSWHr1q289tpreHh4cNeTM3hvymMseGgo7QfcRlFuNpsWv0dg+DXcMOqRWvtoGteetn0Gs+nz+ZTk5xHZLoEj238h59ghywkXWEtem8Tb7mH9wjf5cuYkIuI6cGTHr+SkHqrz6z1rWvPRwF1xNbNzhXrZprn0vTs58fcehj3/lk3au1K2el8XoqoqH3zwAT179qwsdS2EEK5oe3aZyyz6vxAF2J5dKsGMEC7Ky8uLcePGsXbtWr766ivMZjPNmzdn7ty5PPqoZcPLkaNGU6x4sO6jN/nfmy/g7ulFm143M+DxaZV7F9Zm+Mx38AluzK41X/PnT8k079KTu/7zPv+97XrcdZe3LUifhydTnJfLnpSV7P7+W1p268P9by/hpT6ta32tRgGvqzCYUVQbrgZSVZU5u09hMF1ek5kH93F83y42fvouxadzeXLltiol8+rTsunj2ZOykv/8doxJ7YJQLhBhHz16lGbNmjF79mwmT558SX0UFxezYsUKfvrpJ9577z2+/fZbhgwZYovhCyFEvcszmJi/N8/Rw7CZsXGBBOqksqQQDdGfp8pYmVpk83Yz/t7NW3f1ZsSL79KxjkslbGlIlG+dsokaEpuGb4qi0D5Yf9n5entSVvLljImYKozc+fJ8hwUy5+oQrL9gIHOlsrOzufvuu1m2bBnPPPOMBDJCCJf2e05Zg8nXVoCdOa5XxEAIUTe2yLoxlpVWO7bp8/koGg3N4rtecfuXw97ZRM7IpjMzIHfmhBDianSlM/POSKdVLjozL4RwXbb4m5UyfzYZ+3YRk3gDGjctf2/6gf2bfqDz7aO57bnXbDjaujn3b5aqqphUqFBVzGbL5vZuioJWocH9TbN5+Bao0xLt605qodHlc6ajfd0lkBFCiDo4ZTA1qEAGwGBSyTOYCdLL94AQDY01m2hrVullX69Gte/Ewc3r+PH91ygvKcY/tCl9xj5Frwf/adOx1oUCRHi78ePxYk6UVJBZWkFFDbVY3DQQ6ulGmJcboWf+Bem0Lh3g2HxmBuBAvoEvDxfautl6NyzGTxaACiFEHdgr/9zRrsb8cyGuFg0tmwgs60fqUk/y3PN0Wktg17GR3iVv4tul5EGsnwcBHhqXzZ1WgAAPDTF+smmaEEJcTHFxMQCZJRX2+UK5BOWlJTZtT6NAZmn1jaCFEA2DNZvIVa9Xa1LXwvjnnmcwqWzNKmX+3jyWHMznQL7Bpfbasst3j0ZRGBTl67JpZiowOMoXjQtPuQkhhK3NmDEDRVHYu3cvd999N4GBgdxwww0ALF+8iDfu7sPUrpHMvLEFi59+mNOZx6u8PufYIT6bfD8v9Ytj6vURvDzgOhY//TBlhQVVzvs9eRlv1dLWgoeHMmd4D47v3cX8B29hWrdrWPP2S3w08W5euSWxxvHPvW8gb9/Tt859mVXIKDZy4MAB7rjjDkJDQ9Hr9URERHDnnXdW25RPCOF6EkL0Lnu9akvWzyC10MiXhwtZsDePtCKjQ8dUV3ZJM7NKSS9ie3aZS/2SKEBiiJ4+ET6OHooQQjiVGTNm8PzzzxMXF0eLFi3o378/qqpy6tQppk2bRrt+Q2mW0I3ivFx+XfI+Hl7eTFj8I56+/lQYy/nv7d0wlRu4fvgD+DRqTEFWJn9tWMvdsz4gMDwSgJ/e/y/fv/ufi7YFlmAmJ/UgZpOZ6/rfSmhsa3yCQygrKmTZtMcY9+laItt0rBx7XkYarwyOZ+CkGSSNfqzufZnKWTDiBgwGA+PGjSM0NJTjx4+zatUqli1bRlRUVP3/IIQQNmNWVRbszSO/3OxS16v2Zt0vLDFET89wb9w1znuD367123qGe3Mgv5wCF/kFUQA/Dw1J4d6OHooQQjit9u3b8/nnnwOQmppKbGws/cZNqbLotU3vQbx1d29+++JDej34T7IO/03e8VTufuUD2vU9W4a+z5iz+3PlZaSRMv+VWtuyKszJ4tZnXqXLsPsqj5UVFeLmoWP32m+qBDO7v/8WRVG4rt/QS+or4+DfHDlyhGXLljFs2Nk9I6ZNm3ZFn6EQwjlYs4kWHZCZ1nNZr9u3Z5dxIL+cwVG+RPo45/ILu6Y4u2sUBrtQupk1vcyZo08hhHC0Rx55pPL/rbtrt+s3lOK83Mp/vsGNaRQZw+FtmwDQ+/gBcODXny64tuXPH5NR69CWlZuHjoShd1U5pvfxpWX3Pvzx/becm3jwx9pviGyXSEBYxCX1ZR33mjVrKCmx7ZocIYRziPRxJzHk8vdJbMhUoKDczKID+WzLrr6vjjOw+846kT7u9I3wJiW92N5dXbG+Ed5OG3UKIYSzaNasWeX/HzhwAFVVee3WLjWeq3Gz/E0NahrFDaMeZeNn77Jz9ZdEd+hC654D6HjzcPS+loAhJ+1wndqy8mschpt79YqT1910K3t/+o5jf2wlqn1nctOOcHzfLgZPfrHynLr2FdQ0igmT/slbc15n0aJF9OjRgyFDhjBq1Cj8/f0v9BEJIVyMq2UT1Sfr55GSXozBpNKtiadTlXKul21CE0M8MZhUNpxw3rtaPcK8SAzxdPQwhBDC6Xl6nv1baTabURSF+99agkZbvaSnh+fZtN1BT8wk4ZY72bt+NQd+XcfK2c+wbuEbjPv4f/g3CUe9hLYA3HX6GsfXOukm3PVe/LH2W6Lad7akmGk0tDuTYgZcUl+zX32Vh//xAN9++y1r165l4sSJvPzyy/z2229ERERc5JMSQrgKazaRpJtdnPVavnuol4NHcla9BDMA3ZpYvvycMaBJCvOiaxMJZIQQ4lLFxsaiqiqBTaMIiYqt9fzQFnGEtoij90P/R+quLcx7YBCbl3/ETY89Q3BE9CW1dSEent5c26Mfe1JWMOj/XuCPtd8Q3fF6/EJCK8+5lL7cFIV27drRrl07nnvuOX755Re6d+/OvHnzePHFFy/6WiGE63ClbCJH2nCiBJ1WcZpJgHrbFkBRFLqHetE3wnK3y9GTU9b++0Z40y3Uy6mmy4QQwlXcfvvtaLVaflowm/OLY6qqSvHpU4BlYb6pouqeLaHN41A0GirKywHL4nuNVssPtbRVF9fddCsF2Zls+/ozTuz/k+tuurXK83Xtq6KkELOp6rjbtWuHRqPBYDDUeTxCCNeQGOJJjzDnmXVwVinpxU5TurneZmasEkM8aeLpxqrUQoflJVqrljlzZQYhhHAFsbGxvPjii0yZMoVTGceIu/FmdN4+nDp+jD9/Sqbz7aNJGv0Yh7ZuYMWsp2nXdwiNomIxmyr4PXkZGo2Wtn0GAxAc2Yx+46aw5q0XOX2Rtuqi1Q190Xn78N2c6Wi0Z/uwqmtfObt+odnIfzF8+HBatmxJRUUFn376KVqtljvuuMPmn6cQwvGcOZvIWSjAqtRCHmod6PDCWfUezIBlGu+h1oGszyhmW3ZZZS1rezu3ZnaSk9fMFkIIV/H0009TFhzJx3Pf4ocFswHwb9KUFtffSOueAwAIa9mGll17se/nNRRkZ+Ku9ySsRRvuf2sJ11x3dpPLGx94nEbXxLJp0bwLtlUX7jo9rZMGsHP1cpp36YlPUEi1c2rrS6NAp44dKOzfn5UrV3L8+HG8vLxo3749q1ev5vrrr7/sz0wI4bys2UQ6rUJKenG9Xae6EmuVs58zih2+N6NdN82si7QiI8mphZwuN9vtl8XaboCHhkEyGyOEEDb356kyVqYWOXoYNjckype4IJ2jhyGEcJC0IqNDs4lcwT0t/B16be3wYAYsu68eLjCyPbuUI4VGmwU11naa+bqTEOJJjJ87GlkbI4QQNpdbVsF7+047ehg2N6Z1IEH66tXOhBBXD6NZrfdsIlehAP4eGsbEBTrsGtshaWbn0ygKzf09aO7vQZ7BxM6cMnbmlmEwqWeeB3MdfnPOPU+nVegQrKdDIz2BOvkiEkIIewrSadFplcq/2w2BTqsQqKu3OjlCCCflrlHoG+FDqwCd3bOJXI0KnC43c7jASHP/6vt+1QenmJmpiaqq5BnMZJZUkFlaQUaxkczSCirM1c9100Copxvh3u6EeroR6uVGoE4jFcqEEKIe/Xi8mK1ZpQ3iC14BOjf2pFdT71rPFUJcPeyVTeTKFCDa152RzR2zkbDTBjM1UVUVswoVqorJDFqNpf6/RkECFyGEcLA8g4n5e/McPQybGRsXKDP7QogLslU2UUPhqL+ZLhXMCCGEcG5LDuaTWmh06TuVjr7LKIRwLZebTZRbVsGhAufYq+VKOXI22ynWzAghhGgYEkL0HC107S9nFUhwkp2thRDOT1EUgvRagvRa4rBUP6wtm0hVVebsrvtGwBezfcVils+YyFOrthMYfk2dX3d42ybeG3MrDy/4hpjE7lc0BhXYmVvGjeH1vxG9rGwUQghhM7F+HgR4aHDVxF8FSxn/GD8p4S+EuHyKoqDVKOi0GrzcNei0GrQapfJC/5TB1KAKpgAYTJYZqvomaWZCCCFsKq3IyKID+Y4exmUb1cKfCNmPTAhhR7bcm8tsMmGqMOLmobukWRGz2YzJWI7W3QONxjbzG47Ym0tmZoQQQthUpI87iSF6l5udUYBOIXoJZIQQdpdZUmGzi3CNVou7Tn/J6V0ajQZ3nd5mgYxGgczSCpu0dUn91nuPQgghGrye4d74uVC6mQL4eWhICpdSzEII+ztRUoGtErK2r1jMlPgQ8jKOATBrUDwfTbyb/b/+xJt33sjU6yN4/Y7u7PlhVZXXHd62iSnxIRzetskm4zCrkFFc/2smJZgRQghhc+4ahcFRvi5T1UwFBkf54q5xlfBLCOGqVFW1+wxGbtphFj/9MC2796H/+OfQaN34/F8PcuC3dXbtN7O0gvpeweKS1cxUVcV0pkKE2QyaMxUitLLfjBBCOI1IH3f6RniTkl7s6KHUqm+EN5GSXiaEqAcmlRrLNttSTuoh7pm9kLZ9BgOQeOs9/Pf2rvzvzZm0uP5Gu/VbYbbM0Gjr8XLc6YMZVVU5ZTBZaneXVHDiTA3vi9XuDvNyI/TMvyCdVgIcIYRwkMQQTwwmlQ0nShw9lAvqEeZFopRiFkLUk4p6mLnwCwmlTe9BlY/1Pr7EDx7B+o/eojDnJL6Nmtit7wpVRVuPScZOG8zkGUz8nlPGrnN3VYWL5hdWmCG9uIKM4rN5iDqtQvtgPR0b6WUnZyGEcIBuTSyBgjMGNElhXnRtIoGMEKL+mOuhenFwZLNqN/MbXRMLQF5Gml2DGZMZqMdLbqcKZsyqyqGCcrZnl3G00IgCVfKt6/qzP/c8g0lla1YpW7JKifZ1JyFET6yfBxqZrRFCiHqhKArdQ73QaRVS0our/W2v9/Gc6b9vhLfMyAgh6p2Nioc5LW09vz+nCWbSiowkpxZyutxcOTFlqy87azuphUaOFhoJ8NAwKMpX8qOFEKIeJYZ40sTTjVWphRSUmx0S0Firlg2W7wAhhIO41cMN9dy0I6iqWmV2JufYIQACwyPt2nd9vL9zOTw2NJpVUtKLWHQgn/xyy5yKvb7grO3ml5tZdCCflPQijGZXqbUjhBCuL9LHnYdaB5IQogeot6xqaz+JIXoeah0ogYwQwmG0imWdtz0VZGfy54/JlY/LigrZseoLwlq1tWuKmZvGst9MfXLozExakbHyDh3UX9qBtZ/t2WUcyC+XO3RCCFGP3DUKfSN8aBWgqzIjb4/vAGu7/jIjL4RwEoqiEOrpRnqx/cozN4qK5cuZk0jf+zs+QSFs/3YxRaeyGTbjTbv1CZZCXPVdeMthwcy27FKH506rQMGZWRrJnRZCiPoV6ePOmLhADhcY2Z5dypEa1kpeLms7lrWSnsT4uctaSSGE0wjzcqtSsMrWgiNjuOWpl1k953lyUg8SGH4Nd/3nPVp2622nHi0zMuHe9X/DSFHreWcbVVX55WSpU1a16RHmRbcmnlLKWQghHCDPYGJnThk7z61iqVj2LKjNuefptAodgvV0kCqWQggn9eepMlamFtml7VmD4mkSey33v/m5Xdq/mCFRvsQF6eq1z3qfmXHWQAbOlg3tHurl4JEIIcTVJ1CnpVdTb24M9yLPYLbsL1ZaQUaxsdb9xcK93Qn1tOwvFqjTyE0pIYRTC/VymhpcNuWI91WvPW7Lct5AxmrDiRJ0WkVSzoQQwkEURSFIryVIryUOyx0+VVUxq5bN2ExmS+lPN0VBoyCBixDC5QTptOi0SuUsdEOg0yoE6uq/tli99ZhWZCTleHF9dXdFUtKLSSsyOnoYQgghzlAUBa1GQafV4OWuQafVoNUoEsgIIVySolg2dW8of8EUoEOw3iF/k+tlzYzRrPL+vjyH7Stwqaz7EDzUOhD3+q4vJ4QQQgghGrw8g4n5e/McPQybGRsX6JB1ivUyM7M+o9hlAhk4W+Xs5wzXmEkSQgghhBCuJVCnJdrX3eVnZxSgma+7wwqu2D2YSSsysi27zGUCGSsV2JpdJulmQgghR8c4HAAAIABJREFUhBDCLhJC9C53jXw+FUhw4FpzuwYzZlUlObXQZSNOBUhOLcRcv9WrhRBCCCHEVSDWz4MAD41LXysHeGiI8XPchsR2DWYOFZRz2oXSy86nAqfLzRwukNkZIYQQQghhWxpFYVCUr0tfKw+O8nXopsR2DWa2Z5e5bKRppQDbs0sdPQwhhBBCCNEARfq4kxjiepXNFKBTiJ4IH8fNyoAdg5k8g4mjhUaXjTStVOBIoZE8g8nRQxFCCCGEEA1Qz3Bv/Fwo3cxa+Tcp3NvRQ7FfMPN7juvPylgpwM6cMkcPQwghhBBCNEDuGoXBLpRuZk0vc4YtTOwSzKiqyq5c21cwK8zNYtGTDzCzV0umxIewcdE8AHKOHeKDccOZkRTDlPgQ/vzpO5v2qwI7c8uohy15hBBCCCHEVSjSx52+EY6f6aiLvhHeRDo4vczKzR6NnjKYMJhsf+Gf/NpU9v/6E33GPIlvcGOaxnUAYNm0CeRlpHLTuGfw9PUn4sxxWzKYVPIMZoL0jqmhLYQQQgghGrbEEE8MJpUNJ0ocPZQL6hHmRaIDSzGfzy7BTGZJhT2a5dDWDcT1HEjS6McqjxnLSjn2x1Z6PfhPut35kF36tcosqZBgRgghhBBC2E23JpZAwRkDmqQwL7o2cZ5ABuyUZpZZUmGXhotP5aD39at6LC8XAL2vvx16PEujQGapfYI0IYQQQgghABRFoXuoV2XKmaNXpVj77xvhTbdQLxQHlmGuiaLaYSHIZ/tPk1589sI/P+sEKe/+h783/UBJfh5+IaG07NabwU++hJu7B6fSj7L6zZkc2rKBinIDoc3j6P3wE1zb4yYAtq9YzPIZE6v102fMk/ywYHaVYwFhkfwreUdlv9/PfZm/N6ZQWphPcGQzeox6lMRb76nymopyAz99MIedq5eTfzIDn6BGtO9/O/3GPY2bh67yvAhvN0a1DLDZ5ySEEEIIIcSFpBUZWZVaSIGD9m20Vi0bHOXrNGtkzmfzNDNVVavMYBRkZzL33psoLSyg8+33EhLdgoLsE+xJWYmxrJTSgtO8+8DNGMtK6Xbnw3j5B7Fj1RI++ee93PPKh7TpPYhm8V0Z8cJcvpg6jubX30j8oBEAhLaIQ+/rR/JrU2k/4HZade+Lh5clii3MzeLd+waAonD9yAfxCQzm700/8OXMSZQVF3LDPY8AYDab+WTSKI7u3ELn2++lcbOWZB7cy8bP55Fz7BD3/veTyveSWVqBqqpOF5EKIYQQQoiGJ9LHnYdaB7I+o5htZ/ZvrI+gxtpPYoiepHBvp6hadiE2D2ZMKlSYzz7+31svUJibxbhP1lRZmN/v0adRVZXk16ZSlJvN2A9WEt3xegA63T6KN0beSPJ/p9H6xoEERUQTFBHNF1PH0eiaGDoOGl7Zjt7Hl+TXphJ+7XVVjq9959+YTSYe/+JnvAOCAOgy7H4WTxnDD/Nn0+WO+3DXe7Jr9Zcc3PIzY977trJ/gCaxrfnm35NJ3bWFqPadAcv7Mqugdd6fpxBCCCGEaEDcNQp9I3xoFaAjObWQ0+VmuwU11nb9PTQMcuLZmHPZfGlLxTlZa2azmb3rVtM6qX+NFcYUReHvTSlEtI2vEkjovHzofPu95GUcI+vw35c8BlVV2fPDKlon9QdVpTgvt/Jfy669KCsq4PhffwCwO2UFjZu1JCS6RZXzYjvfAMDhrRsv+P6EEEIIIYSoD5E+7oyJC2RYjB/RvpYgw1b3163tRPu6MyzGjzFxgS4RyIAdZmbM58zKFOflYCgqpEnstRc8//SJdNq1Tah2vHGzlmeeTyO0eetLGkNxXg5lhfls+eoTtnz1Sc3nnMoBIPfYYbKO7OfFPjWPsSgvp8pjkxmQgmZCCCGEEKKeaRSF5v4eNPf3IM9gYmdOGTtzyyq3RNEoliyi2ts5e55Oq9AhWE+HRnoCda53kWvzYEZjl/pol0Y9E1F1uHk4CbeMrPGc0BZxlnNVM6HN4xj0fzNrPM+/SdMqj7VO8P6EEEIIIcTVLVCnpVdTb24M9yLPYCazpILM0goyio1kllZUWfZh5aaBUE83wr3dCfV0I9TLjUCdxqXXg9s8mHE758PwDmyEzseXk4f+uuD5AWERZKcerHY8++iBM89HXvIYvAMbofP2QTWbaN6l50XPDYqI5sT+P4ntnFSnH6SbC/+whRBCCCFEw6IoCkF6LUF6LXFYqvCqqopZtSyPMJktN+PdFAWNgksHLjWx+TyDVrFEfQAajYa4Gwey7+c1pO/dWe1cVVVp1b0v6Xt2kLpra+Xx8tJitnz1KYHh19A4ptUlj0Gj1dK292D2/LCKzIP7qj1/bupYu35DKcg6wdavPq12nrGslPLS4srHbhrLtJwQQgghhBDOSlEUtBoFnVaDl7sGnVaDVqM0uEAG7DAzoygKoZ5ulfvM9B//HAd/W8eCh4ZWlj4uyDnJnpQVjP1wFT0fmMiuNV/x0YQ76XbXw3j6BbBj1VLyjqdyz+yFaC4zb63/xKkc2raJuaMH0Om2UTSJaUVJQR4Zf/3Bwc0/M22dZean46AR7P7+W77592QObdtIVPvOqGYT2UcP8sf33/KPd76oLF4Q6unWIH8JhBBCCCGEcEU2D2YAwrzcyCiuwAz4Nw5j3MdrWPvuy+xc/SWG4kL8GofRsltv3PWeePr68+jC71j95kx+WfK+ZdPMFnGMnvNZ5aaZl8M3uDGPfbqGHxa8yp8/JbN52UK8AgJpHHMtAyZOqzxPo9Fw72ufsHHRPH5P/oK9P32Hu96ToKZRdL9rDI2uibWcp0C4t2tUdRBCCCGEEKIuVFW1bK2iqpjNlvXvboqC1kVS0hRVtX2t4T9PlbEytcjWzTrckChf4oJ0jh6GEEIIIYQQl0xVVU4ZTJZiASUVnDhTNOBixQLCvCyFAkK93AjSaZ0uwLHLzEyol12adbiG+r6EEEIIIUTDlWcw8XtOGbvOLeMM1BDDVKowQ3pxRWW2FVjKOLcP1tPRico42+XqPEinRadVKj+shkCnVQjUSV1mIYQQQgjh/MyqyqGCcrZnl3G00IgCnHtlfrFApko75/y/waSyNauULVmlRPu6kxCiJ9bPA40DZ2vsEswoiiVq25pVSkMIZxSgQ7De6abVhBBCCCGEOF9akZHk1EJOl5uxXr3a6prc2k5qoZGjhUYCPDQMivIl0scxa8vtNtXQsZG+QQQyYPmhdWikd/QwhBBCCCGEuCCjWSUlvYhFB/LJL7fMqdjretzabn65mUUH8klJL8Jorv+rf7stAgnUaYn2dSe10OjSQY0CRPu6O01eoBBCCCGEEOdLKzKyKrWQAjsHMeez9rM9u4wD+eUMrudZGrsuAkkIcf3ZGRVICPF09DCEEEIIIYSo0bbsUhYdyKeg3Oywa28VKDgzS7Mtu7Te+rVrMBPr50GAhwZXXWmiAAEeGmL8ZH8ZIYQQQgjhXFRVZVNmCSnpxZbHjh7Pmf+mpBezKbMEO+wAU41dgxmNojAoytfhH+zlUoHBUb4OrdAghBBCCCFETX45WcqGEyWOHkaNNpwo4ZeT9p+hsXut4UgfdxJD9C43O6MAnUL0RDioMoMQQgghhBAXsi3LeQMZqw0nSuyeclYvG6f0DPfGz4XSzRTAz0NDUri3o4cihBBCCCFEFWlFRlKOFzt6GHWSkl5MWpHRbu3XSzDjrlEY7ELpZtb0MneNq4RfQgghhBDiamA0q6xKLXSpSYJVqYV2K9tcb1vaR/q40zfCNWY6+kZ4O2zjHyGEEEIIIS5kfUaxQ6uWXSprlbOfM+wzk1RvwQxAYognPcK86rPLS9YjzItEKcUshBBCCCGcTFqRkW3ZZS4TyFipwNbsMrukm9VrMAPQrYnzBjRJYV50ayKBjBBCCCGEcC5mVSXZhdLLzqcAyamFmG1crrnegxlFUege6lWZcuboH4i1/74R3nQL9UKRMsxCCCGEEMLJHCoo57QLpZedTwVOl5s5XGDb2Zl6D2asEkM8uaeFv0OrnFmrlt3Twl9Sy4QQQgghhNPanl3m8EmAK6UA221cqtlhwQxYigI81DqQhBA9UH+zNNZ+EkP0PNQ6UBb7CyGEEEIIp5VnMHG00OiyszJWKnCk0EiewWSzNh0azIClbHPfCB/uaeGPv4dlOPYKaqzt+p+ZjekT4SPll4UQQgghhFP7Pcf1Z2WsFGBnTpnt2lNVG6/CuQJmVeVwgZHt2aUcKTSigE0iUGs7zXzdSQjxJMbPHY2sjRFCCCGEEE5OVVXm7D6FwWSfS/ZZg+KJSezG8Offtkv7NdFpFSa1C7LJWnU3G4zHZjSKQnN/D5r7e5BnMLEzp4yduWWVPzyNAnXZb+fc83RahQ7Bejo00hOo017wNaqqYlKhQlUxm0GjATdFQasgRQGEEEIIIUSlzz//nKysLCZNmmTztjMyMliwYAG33norHTp04JTBZLdAxlEMJpU8g5kg/YWvzevKqWZmaqKqljebWVJBZmkFGcVGMksrqDBXP9dNA6GeboR7uxPq6UaolxuBOk21YERVVU4ZTJY2Syo4cabti7UZ5mVpL9TLjSCdVgIcIYQQQoir1ODBg9mzZw9Hjx61edvbtm2jU6dOLFy4kPvvv58/T5WxMrXI5v1YVZQbUBQNWvf6XUM+JMqXuCDdFbfjVDMzNVEUhSC9liC9ljgsb1hVVcxnZlFMZtCemUXR1DKLkmcw8XtOGbvOne0BaohhKlWYIb24goziisrzdFqF9sF6OtYy2yOEEEIIIa5uZWVleHh4oNFc3lL1zJKKWq9Xr4Sbx5UHFJdKo0BmaUXltf0VtWWD8dQ7RVHQahR0Wg1e7hp0Wg1ajVJjIGNWVQ7kG1hyMJ/5e/PYmlVaZaqurr8Y555nMKlszSpl/t48lhzM50C+weYbAAkhhBBCCMcoLCxk0qRJREdHo9PpaNy4Mf369WPHjh3ceOONJCcnk5qaiqJYrj+jo6MBWLduHYqisGTJEp577jmaNm2Kl5cXBQUFnDp1ismTJ9OuXTt8fHzw8/Nj4MCB7Nq1q7LfdevW0alTJwAeeOABFEWhb6QvW1csrjzn2O7tfPjYCGYkxTCt2zUseGgIR3durvYeDm/bxNv39GXq9RHMHtKJzcs/JmXeK0yJD6ly3qxB8SybPr7KsdLCfFa9+hyzBsXzXJemvDzgOr6Y+hjFebkX/dy2r1jMlPgQjv7+GytemcKLva/l+aRYvn7x/6gwllNamM8XUx9jelJzbolrylNPPcX5SWJms5k5c+bQpk2b2n9QuMDMzJVIKzKSnFrI6XJzZQUIW4Uc1nZSC40cLTQS4KFhUJSvlHkWQgghhHBxjzzyCMuXL2f8+PHExcWRm5vLxo0b2bdvH88++yz5+fmkp6fz+uuvA+Dj41Pl9S+88AIeHh5MnjwZg8GAh4cHe/fu5ZtvvmH48OE0a9aMkydPMn/+fHr27MnevXsJDw+ndevWzJw5k2nTpjFmzBhuuOEGvksrIrKdJcA5tGUDCyfcSdPW7ekz5kkURWH7iiW8P/Z2xn6wksi28QBk/PUHC8ePxLdRE/o+8hRmk4kf33sV78DgWt+7oaSI+Q/eQvaR/SQMuZumra+j+HQu+9avIT8ro05trHhlCr7BjenzyFOk7d7Olq8+Qe/rz7FdW/APi6D/+GfZvymF2bNn07ZtW0aPHl352rFjx/LRRx/xwAMP1Oln5fRrZi6H0ayyPqOYbWc2F6qPN2jtJzFET89wbyn5LIQQQgjhogICAhg1ahRvv11zha8LrZlZt24dvXr1IiYmhj179uDpeXZTdoPBgLu7e5V0s6NHj3Lttdfy7LPPMnXqVKDqmplRo+/j1V2W2RBVVXnttusJahrFA28vrcxIMpaV8vrwHgRHNuPBucsA+GTSKA5u2cDkbzfjFxIKQM6xw7w+rDvmigpe3pFdOYbzq5l9/+4sfnzvVUa9+hFteg+q8v5UVb3oko7tKxazfMZEWnTtVWWM795/M2m7t9H5jvu49ZnZAJhNJt69LZHY2FjWrVsHwMaNG+nRoweLFi3i7rvvvmA/53LJNLOLSSsy8v6+PLZnW+pX11ekZu1ne3YZ7+/LI63IWE89CyGEEEIIWwoICGDz5s1kZGRc1uvvu+++KoEMgE6nqwxkTCYTubm5+Pj40KpVK3bs2FFjOxXnzDmc+Hs3uccO02HgHZScPkVxXi7FebmUl5bQvHMPju74FbPZjNlk4uCWn4nrNbAykAFodE0Mrbr1qXXsf/64irCWbaoFMlD3Cr+dbr2nyrmRbeNRVZXEW++pPKbRaolPSODw4cOVx5YtW4a/vz/9+vUjJyenTn01qDSzbdmlpKQX19tsTE1UoKDczKID+fSN8CYxxLPW1wghhBBCCOfxyiuvcN999xEZGUlCQgI333wzo0ePJiYmpk6vb9asWbVjZrOZN954g7lz53LkyBFMJlPlc8HBNadumc9ZtJ1zzHLRv2za+BrPBTAUFWA0lGEsKyU4ovoYgiKrHztfbvpR2vYefNFzCnNOVnms9/HDXX/2mtc/NKLa8wD+TcKrHPf18ycvL6/y8YEDB8jPz6dx48YA1dbT1KRBBDOqqvLLyVI2nCixPHb0eM78NyW9GINJpVsTTynlLIQQQgjhIkaMGEGPHj34+uuvWbt2LbNnz2bWrFl89dVXDBw4sNbXnz8rA/Dvf/+bqVOn8o9//IMXXniBoKAgNBoNkyZNwmyuuSTVuQXQrBf2AyfNILxV2xrP9/D0xmgoq8M7vDL/vqlq/8NmvEnCkLsqH2u0NVf71WiqHleUqgGL2WymcePGLFq0qM5jaRDBzLmBjLOxjqt7qJeDRyKEEEIIIeoqLCyMcePGMW7cOLKysoiPj+ell15i4MCBl3WTevny5fTq1YsPPvigyvHTp0/TqFGjysfntu12zv8HRUQDoPf2pXmXnhfsxycoBDedntz0I9WeO5VW/dj5giOiOXlo30XPefDd5VUeN45pVWu7NdFQ9XOMjY0lJSWF7t271xgQ1tyGi9uW5byBjNWGEyVsyy519DCEEEIIIUQtTCYT+fn5VY41btyY8PBwDAYDAN7e3tXOqY1Wq62WNrVs2TKOHz9e5Zi3tzdgCXK0imUDd4CmrdsTFBHNz5++g6Gk+iaaRXmWNSYarZbmnZPY+9NqCrIzK5/POXaYv3/5odZxtuk9mBP7/+TPH5OrPWcdf/MuPav8O3dtTl25aSwzM+caMWIEJpOJF154oe7tXHLPTiStyEjK8WJHD6NOUtKLaeLpJqWbhRBCCCGcWGFhIREREQwbNoz27dvj4+NDSkoKW7du5bXXXgMgISGBpUuX8sQTT9CpUyd8fHy45ZZbLtru4MGDmTlzJg888ADdunVj9+7dLFq0qNo6nNjYWAICApg3bx6+vr4cKQDvFh0IahrFHdPmsHDCncwZ1oOEIXfh1ziMgqwTHN62EZ23L/e9YUnP6jv2KQ78to55Dwyiy7D7Uc0mfl36AU1ir+XE33suOs6k+x5jzw8r+fxfD54pzdye0oI89q5fw23PziasZc0pbpcq1NON80fSs2dPxo4dy8svv8zOnTv57rvvam3HZYMZo1llVWqhQxf7XwoFWJVayEOtA6VssxBCCCGEk/Ly8mLcuHGsXbuWr776CrPZTPPmzZk7dy6PPvooAOPGjWPnzp0sXLiQ119/naioqFqDmWeeeYbi4mI+//xzli5dSnx8PMnJyTz99NNVznN3d+fjjz9mypQpPPLII1RUVDB8xpsENY0iJrE7j370HT++9xq/fvEB5SXF+AQ3JrJtPF3uuK+yjaZx7XngrSV8N2c637/7H/ybhNP30X+RfeQA2UcPXnScOi8fxn6wkpR5s/jzp+/YsWopPkGNiO3cA7/G4Rd9bV1pFAj3rvkG/7x580hISGD+/Pl1astl95lJSS9ie3aZSwQyVgqWfWj6RPjUeq4QQgghhBB/nipjZWr1tLLL8ekTozl56C8mf7vFJu1diSFRvsQF6a64HZdcM5NWZGSbiwUyYJlB2ppdJnvQCCGEEEKIOgn1urxEKmNZ1fXaOccO8ffGFGISu9tiWFfsct/X+VwuzcysqiS7UHrZ+RQgObWQMXGBaKRcsxBCCCGEuIggnRadVsFgurQr39lDEom/5U6CmkZz+kQavy3/CK27O0n3XXifmvqi0yoE6mwzp+JywcyhgnJOl9dci9sVqMDpcjOHC4w09/dw9HCEEEIIIYQTUxSF9sF6tmaVXtKN/JZde7Prf19TlJuF1sODa9ol0n/8szS6JtZuY60LBegQrLfZHowut2ZmycF8UguNLjkrY6UA0b7ujGzu7+ihCCGEEEIIJ5dnMDF/b56jh2EzY+MCCdTVvLHmpXKpNTN5BhNHXTyQAcvszJFCI3kGk6OHIoQQQgghnFygTku0rzuuvkBBAZr5utsskAEXC2Z+zylz+R+ilQLszClz9DCEEEIIIYQLSAjRN4gb+gkhnjZt02WCGVVV2ZXrehXMLkQFduaWVdsJVgghhBBCiPPF+nkQ4KFx2Rv7Cvw/e3ceHlV1PnD8e2fJzGRfIQkJCbugyJKAGmQVVxCsOyK2KkLVurRu5dfaWmurQm2trYpoRVGUuoKAigQXBKpAlMUNWUMiiVnIOpmZzHJ/fwwzMiQhJJkwuZP38zw8OnfOnPvekJD73nPOe4iP0NE3NrgbyGsmmTnscLe5ikNX53CrVDm0W8xACCGEEEKcHDpFYUpWjGYf7KvA1KyYoFfz1UwyU9rgCnUInSJcr0sIIYQQQgRXZrSR3BSz5kZnFGBUipmM6OCOyoDGkhnNBHuCdAqU2iSZEUIIIYQQJ2Z8ehSxGppupgCxETrGpUd1Sv+ayQ9KGly0d0LWvq0b+ffMydx/ZgYLpo3i8zdeJH/hfOaNTPG3mTcyhRWP3MfXH73L41eM5fdn9OIfl5/Nro3rAvryfa5s/25eue9GHhjbhwcnDmTlgv/D6Wjbgn6PCoesznZelRBCCCGE6G6MOoWpGppu5pteZtR1TvqliU0zVVVt9wjGoe92sPhXVxGT3JPJv7wXj9vNh8/+jaiEpCZtC7d9ztcfrubMK6/HFBnNpmXPsfSeG7jv3S+Jik8MaPvqfbNJSM/k/F/9noM7C9j06rPYamu48s9Ptim+UpsLVVWDtnGQEEIIIYQIb5nRRiZnRJFfbA11KK2anBFFZidML/PRRDLjVsHVzmGZ/IXzUXR6frl4NbEpqQAMPXc6/7h8TJO2Zft38+s3NpCU2QeAvrln88TVE9j+/lvkXT07oG1Cr95c94+XADjrqhsxR0Xz2euLGTvrFtIGnnrC8bk83hEaveQyQgghhBDiBOWmWHC4VT4taQh1KC0amxZJbpBLMR9LE9PMXO0sX+xxu9mzeT1DJl7oT2QAknv3ZVDeOU3a9z9jnD+RAUgbeCqm6BgO/1DYpO2ZV94Q8Pqsq28CYNfG/DbH2d7rE0IIIYQQ3VdeTwtj0yJDHUazxqVFktezcxMZ0MjIjKedozL1h8tx2m0kZfRp8l5iZtNj8akZTY5ZYuKx11Y3OZ7cu2/A66SMbBSdjqpDRW2O0+0BgrcRqhBCCCGE0DhVVb2zk1QVjwd0OjAoCnoF//IERVEYkxqJSa+QX2xFgZCupfGdf3JGVKePyPhoIpnRnaTxI6WFE6kn8m3RgTUvek2MjwkhhBBCiM6gqiqHHW5KG1yUNrgoaXBRanM1u8zCoINUi4G0SAOpR/7kJJvpaTGwqrCO2kZPSBIaX9WyqVkxnbpG5liaSGYM7UwUohNTMJjMVBbvb/Le4aKmx9qi4uA+Entl+V9XFu1H9XhISM9sc1/tvT4hhBBCCKFdVQ43X1bY2V5p928Or4PjVvB1eaDY6uKQ9adKvya9wrAkM5f1jWVHpZ2t5faTNkrjO09uiplx6VGdVrWsJZpIZvSKNwttaxEAnV5P/9Hj+Oaj96gtL/Wvm6k4uI9dm9a18unj++y15xl41kT/6/8texaAQWOarsU5HoPOu9+MEEIIIYQIfx5VZW9tIwXldg7UOZskHSd6u3t0O4dbZUuZjc1lNrJjjIxPt7CtwkFNo6fTkhpfv3EROqac5NGYo2kimVEUhVSLgWJr28szT557L7s/+5iF10/hjMt/gepx87///oee/U6hZNdX7Y6p6oeDLLnzWgbkTeLgjq1se/d1hl14GWkDT2tTP6kWg5RlFkIIIYToBorqnawurKP6SJIBwUs0fP0U1jk5UOckzqgwPi2Sg/VO9jeTNLWXr5/sGCM5KRb6xhrRhfBeVhPJDEBapCFgOO1E9RoyjOv/tYx3H/8ja59+hLie6Uy++T7K9++m/MCedscz45FnWbvwEdb868/o9AbOuupGLrzzgTb1oVMgPSo0WawQQgghhDg5nB6VTw5Z/dO/oPOmgPn6rXWqfFLSQG6KmUm9ovjqsINtR09nU7zbg7Tm6HYmvcLwJDPDk80kmLpG9SrNJDOpkYY2JzI+/UaP5bZXPgw49tJvriOuR5r/9cNflDf72ftWf9Hs8aiEJGbOf76dEXl5VO/IjBBCCCGECE9F9U7/wnw4edXGfOcpKLezu6aRqVkxTEiPpMrh8RYasLk4ZHW2WmggPcpIqsVbaCDBpOtyM4o0cyedGtn+UJ12G0bzT+XhKg7uZdeGfEZefFUwQuuQjlyXEEIIIYTouraW20JeMlkFahs9LN1d4y+ZnGjWMwST931VxXOkBLTb462ya1AUdEeVgO7KNHMnnWjSY9Ir/qGxtlgwLZeRF19NYq9sqkuK+OyNF9AbjYz7+a86IdITZ9IrJJikLrMQQgghRDhRVZVNP9r4tKTB+zrU8Rz5b36xFYdbJa+nJWCvGr0CehRN7nuomWRGUbwl57aU2dr8DTHwrElsf/9t6ivL0EdE0HtoLuf/6nck9+7XKbHMHjPFAAAgAElEQVSeCAUYnmTWRMYrhBBCCCFO3NGJTFfji2tMamSIIwkORVXVUCeLJ6zK4eaZb6pCHUbQzB2S0GUWTwkhhBBCiI7bWmYj/wdrqMNolW/KmdZpao5TgklPdowRrY9lKECfGKMkMkIIIYQQYaSo3qmJRAa8U86K6p2hDqPDNJXMAOSkmEM+77CjVCAnDDJhIYQQQgjh5fSorCqs08xDdwVYVViH80TqM3dhmktm+sVGEB+h08w3yrEUID5CR99Y2V9GCCGEECJcfHLISm2jRzMP3X1VztYf0sZIUks0l8zoFIUpWTGa+UY5lgpMzYppcadUVVVxeVTsbg8NTg92tweXR0VDS5uEEEIIIbqVononW8vtmrs/VYEt5XZNTzfTTDWzo2VGG8lNMVOgsW8aBchNMZMR7R2VUVWVww63d+OiBhclRzYwOt7GRWmR3k2LUiMNJJr0Ug1NCCGEECKEPKrK6iPTy7R0X+qjAKsL65gzJKHFh+1dmSaTGYDx6VHsrmnUzHCeAsRG6BiXHkWVw82XFXa2V9r9++bogGZyGD+XB4qtLg5ZXf52Jr23XPWIZLMUExBCCCGECIG9tY1UNx7vLq5rU4HqRg/7ap30j4sIdThtpqnSzMcqqneydHdNqMM4YePTLRTWuThQ5wxa9u7rJzvGSE6KmX6xEZrMqoUQQgghtGjZnhoK65yaeLjeEgXvveRV/eNCHUqbaTqZAdhabiO/uOsvXLLoFWxutdOGIH39xkfomJIVQ2a0FBgQQgghhOhMsgdi6GmuAMCxclMsjE3r+juY2o9MJ+uszNHXb02jh6W7a8gvrtd8qT0hhBBCiK7sywq7ZivsHksBtlXYQx1Gm2k+mQHI69n1E5qTlVb4zlNQbue5b6s0XZ1CCCGEEKKrUlWV7ZVtK0aVv3A+80amYK2q7LS42ksFtlXaNVdBNyySGUVRGJMayeSMKO/rEMfTFfhqhy/dXcPWcluowxFCCCGECCuHHW5/Iadw4XCrVDm0VcwgLJIZn9wUCzMHxBGr4U01g8n345VfbGVjaYPmMm0hhBBCiK6qtMEV6hA6hdauK6ySGfDuQTN7cAI5KWbg5I3SdPXk6dOSBjb9KCM0QgghhBDBUNrgCrsbaZ0CpTZtJTOa3WfmeIw6hckZ0QyKN7G6sI7qRk+nVxEzH6lW1pV9WtKASa+Qm2IJdShCCCGEEJpW0uA67h6Bx2Orq+Hdx//INx+9h4rKaROnMO23jxJh8a4Bd7tcfLz4n3yxchk1Px4iJrknwy+4lHPm3oMhwuTvx+Px8OGiv7H5rSXY62vJPG0k0377KC/cNoO+uXlc8ad/tykujwqHrNpabx1uCWWAzGgjc4YkcHnfWLJjvKWKgzWC4usnO8bI+LTILp/I+OQXW6UogBBCCCFEB6iq2qERjFd/OxuHtZ7zb/s9p587nYKVy1i36G/+99/6853kP/0I6acMZcpdf6ZPzll8vPifvDpvTkA/a/71EOsWLSBjyHAuvOOPJGX2ZfGtV+K0NbQ7tlKbS1NLE8JyZOZoOkWhf1wE/eMiqHK42VZhZ1ul3b9gS6d4s9DW+/mpnUmvMDzJzPBkM9FGHc99W9VpIz/BpgCrCuuYPTgBo66rT44TQgghhOh63Cq4OrBOPn3QUC774z/9rxuqq9i6YikX3vEHSr7/ii9W/pdRP7uWS+//BwBnXXkD0QkpfPrSk+zdsoF+o86mrrKMDUufZsjEi5j12Iv+vvKfWcC6Z+a3OzaXx3vPq9fIbWJYj8wcK8GkZ2KvKO4cmsicwQlMy4ohN8VCRpQBQwtfCYMOMqIM5KZYmJYVw5zBCdw5NJGJvaJIMOn55JCV2kaPJhIZ+KnK2fpDXX+jUSGEEEKIrsjVwZGL0Zf/IuB19ogzaag+jL2+jl0b8gE4e+bNAW3GzvK+3rVhLQB7N3+Kx+XizCuuD2iXd/XsDsUGHb++kynsR2aaoygKiWY9iWY9Q/DOO1RVFY/q/ctze0CvA4OioFO87ZtTVO9ka7n2NhdSgS3ldgbGm8iMNoY6HCGEEEIITfF0sHpxfGqvgNeW2DgAbLXVVJUUo+h0JGX2CWgTk9wTc0wcVSVFAFQf+e+x7SLjErDExncoPrcH0Heoi5OmW43MHI+iKOh1Cia9jkijDpNeh16ntJjIeFSV1YV1Xb6KWUsUYHVhHR4NZd5CCCGEEF2BroN30DpdS5nCUfdlLdyDngx6DWUIGgq1a9lb20i1hqaXHUsFqhs97KuVYgBCCCGEEG1h6MREIyEtA9XjofLgvoDjdZVl2OtqSEjLBCD+yH8ri/YHtLNWH8ZWW92hGDrz+oJNkpl2Kii3a3ZUxkcBCspl7xkhhBBCiLbQK7S43rqjBp09GYCNrzwTcHzDywuPvH8uAP1Gj0VnMPD56y8EtPvff//TofMbdN7CV1rRLdfMdFSVw82BOu2PaKjA/jonVQ43CSaNTIwUQgghhAgxRVFItRgotgZ/g8m0gacx8uKr2PzWEmx1NfTJyaP46y/4YuV/GTLxIvqNOhuAmKQejJkxh09feoold17LgLxJlH7/Nbs2rSMqPgmlnY/dUy2GFpdZdEWSzLTDlxV2zZRibo0CbKuwM7FXVKhDEUIIIYTQjLRIA4es7d8483guvf9xEntlU7ByGd989C7RyT2YcP0dnDP3noB2F9z+B4xmC1vefok9m9fTe2guNzz5Os/cOBWDydzm8+oUSI/SVnEoRdXSrjhdgKqqPL7zsH+fmmBZdNN0AOY8u6LVthUH97Likd9S9FUBjvo6rn3sRU6deFG7z23SK9w5NPGEs3BFUfjjH//IAw880O5zCiGEEEJo2deH7awsrA91GE3Y6mp4cHx/zrtlHhNn/6bNn5+WFcOQRFMnRNY5ZGSmjQ473EFPZNrq9T/cRtWhQs675f+wxMSRMWR4h/pzuFWqHB4SzTLVTAghhBDiRKRGhv422mm3YTRbAo5tXOpda9Mnd0y7+uwK19UW2oq2CyhtCP7cyLZw2m0c3LGFiTf+OiibIvmUNrgkmRFCCCGEOEGJJj0mvRLSh9w7PlhOwcplDBozmYjIKAq3fc72999iwJkTyB5+Rpv7M+kVEkzaqg8myUwblTa40EGnzI88EdaqSgDMMXFB61OnQKnN5d9AVAghhBBCHJ+iKAxLMrOlzBayddSpA4ag0xtYv+TfOOrriE5KIW/GHM67dV6b+1KA4UlmTS3+h25cmvmBBx5AURS+//57rr32WuLi4khJSeH+++9HVVWKioqYPn06sbGxpKam8thjjwFQ0uBd6OVqdLD26UdZMG0Uvz+jF49cOIz3Hv8TrkZHwHm2rniFZ+f8jIfOGczvz+jFPy4bw2evL25XzPkL5/PolBEAvPf4A8wbmcKjU0b6368pK+GNB27nL5OHeM91+dlsXb60ST/Hxv7XC4bx2B/n4XAExu5wOPj1r39NSkoKMTExTJs2jeLi4nbFLoQQQggRbkYkm0NaEKrX4GHMXvgm93+4i4c2H+K3723n4nv+gikyus19qcDw5LYXDQi1bj8yc9VVVzF48GAeeeQRVq9ezUMPPURiYiLPPPMMkyZN4tFHH2Xp0qXcfffd5ObmUhp/Kh6PhyV3XsuBbZsZfeksevQZSOmeb9jwykIqDu5l1t+X+Pv//I0X6Nl3EIPHn49Ob+C79WtY8fC9qB4PZ111Y5tiPXXSFMwxsax+7H6GXXCpf0gRvBspPf3zC0BROPOqG4lOSGLXxnW8+eCd2K11nD3zlwAtxv7+i09zVcVBli9f7j/f7Nmzefnll7nmmmvIy8vjww8/ZMqUKUH4qgshhBBCaF+CSU92jJHCOqemq9wqQHaMUZNbdXT7ZGb06NE884x3odScOXPIzs7mrrvu4uGHH+a+++4DYMaMGaSnp/Of5xcz5M6/sf29N9mzeT1znl1B9ogz/X317DeY5X+9m8Ltm8kaNtrb57MrAhZm5V09m+dvvZINSxe2OZlJG3gq5ugYVj92P+mnnM6IKVf43/vgyb/icbu547X1RMUnAnDG5b/g1XlzWPfMAs647OcYzZZWY9+0aRN5eXls376dl19+mVtuuYUnn3wSgFtvvZWZM2eyY8eONsUthBBCCBGuclLMmt9/UAVyUiyttuuKuu00M5/Zs39aRK/X68nNzUVVVW688adEIz4+nkGDBrFv3z4Adua/Q48+A0nJHoC1qtL/p99o7yZG+7Zs8H/26ETGXleLtaqSvjl5HC4+gL2uNijXoKoqX61bxeBx54OqBsQ08KyJ2Otr+eG7HScU+0cffQTAu+++C8Dtt98ecK4777wzKDELIYQQQoSDfrERxEfo2rlFZegpQHyEjr6x2tpfxqfbj8z07t074HVcXBxms5nk5OQmx8srvIvvKw/uo2z/9zx0zinN9llfVeH//wPbPid/4XwO7tiK094Q0M5eX4s5JrbZPuoqfgx4bY6ObVJ6z8daVYG9robNby1h81tLmm9zuOKEYi8rKwOgsLAQnU5Hv379At4fNGhQs58TQgghhOiOdIrClKwYlu6uCXUo7aICU7Ni0Gls4b9Pt09m9PqmcwObO+blnQ2pqh5S+w9hyl0PNtsqrmcvACqL9vOfX15GSnZ/pvzmQeJS0zEYI/huQz4bly5EVVuuifbX804LeH35A0+QM21G81F5vP0Mv+gKci6+qtk2qQOGtBr7pX1i6Jed1WJMQgghhBCiqcxoI7kpZgrK7ZpaO6MAuSlmMqK1OSoDksy0iS9fTczIpuT7r+k3etxxy9d9u34NrkYH1/3jZeLTMvzH9x41Da0lNz79RsDrHn1bHhGJSkjGFBWN6nHT/4zxx+33eLGfPywJvc57LCsrC4/Hw969ewNGY3bt2tVq7EIIIYQQ3c349Ch21zRS2+jRREKjALEROsalR4U6lA7p9mtm2sqgg6HnTqe2rIQtb73U5H2n3UajzQqA7sgIj6r+9C1tr6ul4J1XWz1P/zPGB/yJTUltsa1Or+e0SVP5at0qSvd82+T9o6e9tRS7QQcOuw2r1Rv7hRdeCMATTzwR0O7xxx9vNXYhhBBCCK1SVRWXR8Xu9tDg9GB3e3B51ID7ueYYdQpTs2I0kcjAT9PLjDptTi/zkZGZNkq1GBgx5Up2rl3B8r/ezd6tG8gaNhrV46b8wB52rF3BDU++RsaQ4Qw4cyJ6YwRL7ryW0ZddR6PNyua3XiI6MbnJmpiOOv/2+9m7dSNPXXcBo352LT37DqKhtopD3+1gz+fr+cPHuwFajL2heC8Pf7CCNWvWkJuby/Dhw5kxYwZPPfUUNTU15OXlsW7dOvbs2RPUuIUQQgghQkVVVQ473JQ2uChtcFHS4KLU5sLVzEoAg857H5gWaSD1yJ9Ekz5gpktmtJHJGVHkF1tP4lW0z+SMKDI1PL3MR5KZNkqLNHDI6mLWY0vYsHQhX65+jW8+ehej2UJiryzGzJhDcm/vovmU7P7MnP88Hzz1MO8+/gAxST044/JfEJWQxJt/uiOoccUk9eDWl9awbtHf+Pqj1Xz++mIi4xPo0fcULrj9D/52Op2u2dgzs/twxx13MHDgQH/b559/npSUFJYuXcry5cuZNGkSq1evJjMzM6ixCyGEEEKcTFUON19W2Nleacfh9o6l6ICWVzODywPFVheHrC5/O5NeYViSmRHJZv8eLbkpFhxulU9LGlruLMTGpkWSq9FSzMdS1NbGzESArw/bWVlYH+owgm5aVgxDEk2hDkMIIYQQolN4VJW9tY0UlNs5UOdEgaBMCfP1kx1jJCfFTL/YCBRg04+2LpnQjEuL5KyeluOu+9YSGZlpo9TI8PyShet1CSGEEEIU1TtZXVhHdaPHX9ApWE/zff0U1jk5UOckPkLHlKwYxqRGYtIr5Bdbg5Y4tZfv/JMzosJmRMZH7mDbKNGkx6RX/EOS4cCkV0gwSS0IIYQQQoQXp0flk0NWtpbbg57EHMvXb02jh6W7a8hNMTM+PYqeFgOrCutCVuXMV7VsalZMWKyROZZMM2uHD3+wsqXMpplqFcejAKN7WJjYS9tl+YQQQgghjlZU7+wySURqpCEgqToZ8fjOMyrFzLj0KM1XLWuJJDPtUOVw88w3VaEOI2jmDknwL1oTQgghhNC6reW2Ljm969jpbp0Rm69f33S3cByNOZokM+20bE8NhXVOTY/OKHgXq13VPy7UoQghhBBCdJiqql124f3YtEjyelpQgX21TgrKbezvhEIEfWKM5KRY6BtrRBcmi/yPR9bMtFNOipkDdc5Qh9EhKpATZovAhBBCCNF9ddVEBvDHNSY1kv5xEfSPi6DK4WZbhZ1tR5eIVsBzAtnN0e1MeoXhSWaGH1UiuruQkZl28qgqi76poiZE8zA7SgHiInTMGZLQLbJ2IYQQQoS3rWU28n/QxmaVx1YUU1WVKofHu3mnzcUhq7PVzTvTo4ykWrybdyaYdGFTarmtJJnpgKJ6J0t314Q6jHa7dkAcGWE+j1IIIYQQ4U9r92QzB8S1upZFVVU8KrhUFbcH9DowKAo6hW6buDRH6vF2QGa0kdwUM1r7dlLwVraQREYIIYQQWuf0qKwqrNPM/ZgCrCqsw9nKXDJFUdDrFEx6HZFGHSa9Dr1OkUTmGJLMdND49ChiI3Sa+gGKjdAxLl1KMQshhBBC+z45ZA1Z+eX2UIHaRg/rD3X9KXFaIMlMBxl1ClOzYjT1AzQ1KyZsa40LIYQQovsoqneytdyumfswHxXYUm6nqF7bxaS6AklmgiAz2sjkDG2MdEzOiAr7euNCCCGECH8eVWW1hqaXHUsBVhfW4ZHl6x0iyUyQ5KZYGJsWGeowjmtsWmST6hlCCCGEEFq0t7aRag1NLzuWClQ3ethXK6MzHSHJTBDl9ey6Cc24Ixs1CSGEEEKEg4Jyu2ZHZXwUoKDcFuowNE2SmSBSFIUxqZH+KWeh/gHznX9yRhR5qZFS/UIIIYQQYaHK4eZAnVOzozI+KrC/zkmVwx3qUDRLkplOkJtiYeaAuJBWOfNVLZs5IE6mlgkhhBAirHxZof1RGR8F2FZhD3UYmiXJTCfJjDYye3ACOSlm4OSN0vjOk5tiZvbgBFnsL4QQQoiwoqoq2yu1V8GsJSqwrdKO7GPfPoZQBxDOjDqFyRnRDIo3sbqwjupGDwp0yg+fr9+4CB1TsmIkiRFCCCFEWDrscONwh9eNv8OtUuXwkGjWhzoUzZFk5iTIjDYyZ0gC+2qdFJTb2F/nDFpS4+snO8ZIToqFvrFGdLI2RgghhBBhqrTBFeoQOkVpg0uSmXaQZOYk0SkK/eMi6B8XQZXDzbYKO9sq7f4nCzoFPCeQ3RzdzqRXGJ5kZniymQSTfPMLIYQQIvyVNrjQAZ5QBxJEOgUOWRvpG6liNptDHY6mKKpM0AsZVfUOKZY2uCi1uThkdVJqc+Fq5qfToINUi4H0KCOpFgOpkQYSTDqpUCaEEEKIbuXl76v5en8R+U8/wq6N62ioqSI2JZWBeZOYes9fMBgjOFx8gPeeeJC9mz/F1eggtf8QJt30G04Ze56/n31bN/LsnEuY8fAiSr7/mq3vvILDaqX/6LFM++2jxKf28rdddNN0GqoPc8Wf/s078+dxaNdOYpJ6MP4Xt3HG5b8IiM/V6OCj/zzOtvfeoObHQ0QnJjPs/Es595bfYogw+dvNG5nCmVfeQO/TR/Hx849TeXAvb7z+Opdcckmnfw3DiYzMhJCiKCSa9SSa9QzB+82tqioeFVyqitsDeh0YFAWdgiQuQgghhOjWVFVlV2ExT806D1tdLaMvnUVK9gBqy0v4Kn8lTrsNW201T19/EU67jbyrbyIyLpEvVi1jya9nMXP+85w6aUpAnx/953FQFMb//Hbqq8rZ+Moi/nPzZdz+6kcYzT9VhLXVVvPC7TMYeu40hl3wM3Z+sILlf70HvcFI7iUzAfB4PCy581oObNvM6Etn0aPPQEr3fMOGVxZScXAvs/6+JODc+7ZsYOfadzjrqhuJSUgkKyur87+IYUaSmS5GURT0CuhRQGaOCSGEEEL4uVVY/cSfqass45Yla8gYMtz/3rk3/xZVVVn92P3UV5Yz9z8ryR5xJgCjLr2Wf141gdV//wODJ1yITvdTQd+G2ip+8+YmTFHRAPQ65XReuW82m99+iTEz5vjb1ZaXctFvHmTstTcDMPqyn/PUdeez5t9/YcSUK9EbjWx/7032bF7PnGdX+M8N0LPfYJb/9W4Kt28ma9ho//Hywj3c8dp6evYdBMDpw5I64asW3qQ0sxBCCCGE0IRGt5tvPn6PwePOD0hkfBRFYdfGfDJOGxmQTJgioxl96SyqDh2kbN+ugM+MnHKlP5EBOG3yNGKSe7JrQ35AO53BwBmXXed/bTBGcMZlP6f+cDk/fLsdgJ3579Cjz0BSsgdgrar0/+k3+mzAOxJztD4j8/yJDHhn5oi2kZEZIYQQQgihCT/+WI6jvo6e/U5psU11STFDT8tpcrxHn4FH3i8itf9g//Gk3n0D2imKQlJmH6pLigKOxyanEmGJCjiW3LsfAFUlRfQ+PZfKg/so2/89D53TfHz1VRUBrxN79Q547fYgM3PaSJIZ0SaqquI+sqbH4wHdkTU9elnTI4QQQohOpuvic4pU1UNq/yFMuevBZt+P69kr4LXBFFi5TN/Fr68rkmRGtEhVVQ473N5qaw0uSo5UXTtetbW0SG+ltdRIA4kmvSQ4QgghhAiatB49MEXH8OPe71psE5+WQXnhnibHyw/sPvJ+ZsDxyoP7Al6rqkpl0X5SBwwJOF5bUUqjzRowOlNxcC8ACUf6TMzIpuT7r+k3ely77oEMct/UZpL/iSaqHG4+/MHK4zsP8+y31awsrKeg3E6xtflEBsDlgWKri4JyOysL63n222oe33mYD3+wUuVwn9wLEEIIIURYMup1nDbhQr5dv4bib7Y1eV9VVQaNmUzxV19QuH2L/3ijzcrmt14iIb03PY5aowLwxerXcFjr/a+/yn+HuoofGTTmnIB2HpeLz9/8qRqZy9nI52++SFRCMr0GDwNg6LnTqS0rYctbLzWJzWm30WiztnhtBp13vxnRNjIyIwDwqCp7axspKLdzoM6JAhy9BO1EN6Y6up3DrbKlzMbmMhvZMUZyUsz0i41AJ08dhBBCCNEOiqJw3b1/5PvPPmbR7On+8se1FT/yVf47zH1+FeOvv53ta97ihduuJm/GTVhi4/li1X+p+qGQmQsWB1QyA4iMTWDhDVPJmXY19Ye9pZmTMvsw6mezAtrFpqSy/oV/UXXoIMm9+7Hzg+WU7PqKn/3+7+iNRgBGTLmSnWtXsPyvd7N36wayho1G9bgpP7CHHWtXcMOTrzVbuAC8M1xkRkvbSTIjKKp3srqwjupGD74foWDV0vD1U1jn5ECdk/gIHVOyYsiMNgbpDEIIIYToTk7t05tbX1zDmqcfZtt7b+Kw1hHbI42BeZMwmi1YYuK4efG7vPfEg2xa9px308wBQ7ju8ZcDNs30mXDjnZR+/zWfLH4CR0M9/UaN5ZJ584mwRAa0s8TG+zfN3PL2y0QnpjDtvkcYfelPSY9Op2PWY0vYsHQhX65+jW8+ehej2UJiryzGzJjjLxhwLJ0C6VFyb9QeiqpKDbjuyulR+eSQla3l9iYjMZ3Fd57cFDPj06MwyniqEEIIIdrg68PeKe0dtW/rRp6dcwnXzP8PQydPO27bRTdNp6H6MHe+/mmHz9uSaVkxDEk0dVr/4UpGZrqpononqwrrqG30Tgw7WRmt7zwF5XZ21zQyVUZphBBCCNEGqZHhefsartfV2aQAQDe0tdzG0t011DZ6TloScywVqG30sHR3DVvLbSGKQgghhBBak2jSY9KH18wOk14hwSS35e0hX7VuRFVVNpY2kF/sraQR6vmFvvPnF1vZWNqAzHgUQgghRGsURWFYkplwSWcUYHiSWRb/t5OsmelGNpY28GlJQ6jDaNHYtEjGpEa23lAIIYQQ3VqVw80z31SFOoygmTskgQSTPtRhaJKMzHQTW8tsXTqRAfi0pEGmnAkhhBCiVQkmPdkxRs2PzihAnxijJDIdIMlMN1BU7yT/h5Y3aepK8outFNU7Qx2GEEIIIbq4nBRzyKfMd5QK5KRYQh2GpkkyE+acHpVVhXWaeXKhAKsK63B6tP7PkxBCCCE6U7/YCOIjdJq5x2lOpEEhLkKRdcMdIGtmwlx+cT0F5XZNPblQ8O5Dc05GdKhDEUIIIUQXVlTvZOnumlCH0WEmvbeowYhks0w5ayNJZsKY1n/AZw6Ikz1ohBBCCHFcWnxw2xzfxuLZMUZyUsz0i41AJxXOWiXTzMKUR1VZraHpZcdSgNWFdXgk1xZCCCHEcYxPjyJW49PN4KctKwrrnLy5r45F31TJOuITIMlMmNpb20h1CDfF7CgVqG70sK9WfoiFEEII0TKjTmFqVoxm73mO5buOmiObi+cX18ta4uOQZCZMFZTbNf+EQgEKpFSzEEIIIVqRGW1kckZUqMMIKl/6UlBu57lvZZSmJZLMhKEqh5sDdU7NP6FQgf11Tqoc7lCHIoQQQoguLjfFwti08Nt8WwVqj4zSyH58TUkyE4a+rND+qIyPAmyrsIc6DCGEEEJoQF7P8E1owLsf38bSBinlfBRJZsKMqqpsr+y8ih6PThnJ63/8VSf13pQKbKu0yw+tEEIIIVqlKApjUiP9U87C5eHu0T4taWDTjzJC4yPJTJg57HDjcHf8xr9w+2byF87HVhf60s4Ot0qVwxPqMIQQQgihEbkpFmYOiAuLKmfN+bSkQaacHSHJTJgpbXAFpZ/C7VtYt2gB9mOSmbve/h+X/v4fQTlHWwTruoQQQgjRPWRGG5k9OIGcFDMQfqM0+cVWKQqAJDNhp7TB1al/qYYIE3rjyd3IUqdAqU2SGSGEEEK0jVGnMOprD/IAACAASURBVDkjmpkD4oiL8N4hhUtSowCrCuu6fdlmRZXFCGHl5e+rKbZ27MY/f+F81i1a0OT4vasKWHTTJfTNzeOKP/0bgIJ3XuWNB25n7vOr+GrdKratfp1Gu40BZ03gZ79/jOiE5A7F4pMRZeDagfFB6UsIIYQQ3Y9HVdlX66Sg3Mb+OicKaL7yqwLkppg5JyM61KGEjCHUAYjgUVU1KCMYp06aQsXBvWx//y2m3PVnouKTAIhKSGrxMyvnz8MSE8+kOXdTXVLExlee4Z1HjFzz6HMdjge8IzOqqqIo4fI8RQghhBAnk05R6B8XQf+4CKocbrZV2NlWaQ/KWuNQUYEt5XYGxpvIjD65M2e6CklmwohbBVcQ1smnDTyV9FNOZ/v7b3HqxItISO/d6mci4xK54anX/cmGx+Phf8uexV5XizkmtsMxuTzgUUEvuYwQQgghOijBpGdirygmpEdSaXfzyu4aGjSa1CjA6sI65gxJQNcNH/rKmpkw4grhjMHRl84KGDXpM+JMPG43VSVFQTtHKK9PCCGEEOFHURSqGt2aTWTAOzpT3ehhX233LAYgyUwY8YSwenFcakbAa0usd32Lra46aOdwS3VmIYQQQgRZQbn2NxtXgIJuWqpZkpkwogvh36ZOr2/+jSA+6NDLd6sQQgghgqjK4eZAnVPzhQBUYH+dkyqHO9ShnHRyexhGDEGcJ9kVF9oH8/qEEEIIIb6s0P6ojI8CbKuwhzqMk06SmTCiV8AQpL/RCEskALZjNs0MFYPOu9+MEEIIIcTxvPDCCyiKwoEDB47bTlVVtlfaNT8q46MC2yrtnMiuK4qi8MADD3R6TCeDJDNhRFEUUi3BKVCXPngYAB88+Ve+WPUa29e8TaPNGpS+2yPVYuiSo0VCCCGE0KbDDneXKcvcaGsgf+F89m3d2KF+HG6VKkf3WmQsyUyYSYs0BOUvNfPUEZx7y28p+f5r3njgNpbNm4O1qjIIPbedToH0qO5ZO10IIYQQbTNr1ixsNhtZWVnHbVfa0PG9+YLFabexbtGCDicz0LWu62SQfWbCTGqkgWDl45Nm38Wk2XcFHLtv9RcBr3OmzSBn2owmn+2bO4aHvygPShwelaCNOAkhhBAivOn1evQtFSbCO73MbrdT2uBGB0G7b+oKdIp3o/EhmEIdykkjIzNhJjUyPG/6w/W6hBBCCBFcx66Zyc7OZurUqaxZs4bc3FwsFgvPPPMMJQ0uKooPsPTeG3hwwgD+kNebp667gO8+/SCgv31bNzJvZAo7PljOR8/9nYcvOJ37z8zgubmXUnFw3wnFVPzNNp6/5Qr+PGkQ95+VyfypObzxwO0AVB06yEPnnALAukULmDcyhXkjU8hfON//+bL9u1l6z/U8OGEA95+Zwb9nTuabT95vch5rbQ3z/+9uMjMzMZlM9O/fn0cffRRPKPfv6GRyhxhmEk16THqly8wBDQaTXiHBJHm3EEIIIdpn165dzJgxg7lz53LTTTcxcOBAPi4+xNPXX4TTbiPv6puIjEvki1XLWPLrWcyc/zynTpoS0McnLzyBougYO+sW7PV1rH/x3/z39zdz65I1xz13/eFynr/lCqISkhj/i9uxxMRSdaiIrz9cDUBUQhKX/N8Clv/1Hk6dOMV/3tQBQwD4ce93LLx+CrE90hj/i9uJsESyc+0KXv7NdcxcsNjfvtHWwKLZ06ktL+GOm+eSlZXFpk2bmDdvHiUlJTz++OPB/rJ2CZLMhBlFURiWZGZLmS0sqnMowPAksyz+F0IIIUS77dmzh/fff5/zzz8fAJdH5f5ZN1NfWc7c/6wke8SZAIy69Fr+edUEVv/9DwyecCG6ozbxczkc3LbsIwzGCAAssXGsWvA7Svd8S2r/wS2eu3D7Fmy11dzw1OtkDBnuP37erf8HQIQlitPOuZjlf72H1AFDGDHlioDPr1zwO+JTM7j15Q8wRHinj5155Q08c8MU3nviQX8ys2Hp0xwu3s9tr37Iny8ejV6nMHfuXNLT01mwYAF33XUXmZmZHf1SdjnyuDsMjUg2h0UiA94yg8OTzaEOQwghhBAa1qdPH38iA+BSVXZtzCfjtJH+RAbAFBnN6EtnUXXoIGX7dgX0kTNthj+RAehz5HOHfyg87rktMXEAfLf+A9xOZ5vibqipYt+WTxl63jQc1nqsVZVYqyppqD7MgLMmUXlwHzVlJQDsXOtNyiwx8ZSWl1NRUUFFRQWTJ0/G7Xazfv36Np1bK2RkJgwlmPRkxxgp1PiOtgqQHWMkwdTyIj4hhBBCiNb06dMn4LXHA9UlxQw9LadJ2x59BgJQXVIUMOISn9oroJ0lNh4AW201AI6GehobftrGQtHriU5Ipk9OHqedM5V1ixaw4ZWF9M0Zw5AJFzL8wsv8Iy0tqSzaj6qqrH3qEdY+9UizbayHy4nrkUZl0T5Kd3/NQ+ecwkPNtCsrKzvuubRKkpkwlZNi5kBd27L/rkYFclIsoQ5DCCGEEBpnsQTeT+jaMTdJaalC2pFNKj9d8hTrFi3wH45Py+S+1V+gKAozFyzm4I6tfLt+Dbv/9xFv/ukONrz8NDe/+B6myOgWz6keWbg/dtatDMyb2GybpMy+/rb9z5zA+J//ikv7xBChD7zIgQMHnvC1aokkM2GqX2wE8RE6aho9mhydUYC4CB19Y2V/GSGEECKYVFXFrXqnWnk83ht7g6KgV+g2a1QNikJ8WgblhXuavFd+YDfgTUbaYuTUK8keccZP5zAFTpPvfXouvU/P5fxf/Y5t773Jf3/3S3aseZtRP5sFLXzdEzO8e+XoDQb6nzH+uOdPzMimscFK/zPGc/6wJPS6bvJ3GeoAROfQKQpTsmJYursm1KG0iwpMzYpB103+URVCCCE6g6qqHHa4KW1wUdrgoqTBRanNhauZSr0GnXdft7RIA6lH/iSa9GGZ4OgVGHz2ZD5d+gyF27eQNWwUAI02K5vfeomE9N706DuoTX0mZmSTmJHd5LitthpzTFzA1zFt0GkAuBobAYgwe0eObHWB923RiSn0zR3D528t4ayrZxObkhrwfn1VBdEJyQAMPXc6656Zz97PPkQ3PLCIQHV1NdHR0RgM4XfrH35XJPwyo43kppgpKLdranRGAXJTzGREy6iMEEII0R5VDjdfVtjZXmn3b9fQ2gaRLg8UW10csrr87Ux6b5XUEcnmsFrDqigKV93yG758/y1euO1q8mbchCU2ni9W/ZeqHwqZuWBxQCWzjihYuYzPXl/MqROnkJSRjaOhni1vv4QpOoZBZ08GwGi20KPvIHauXU5yVj8i4xLo2e8UUvsPZtpvH+WZG6byz6vGM+pn15LYK5v6w2Uc3LGVmh9LuOO/HwMw7rpb+faT91l8+0z4Yi05OTlYrVZ27tzJG2+8wYEDB0hOTg7KNXUlksyEufHpUeyuaaRWI9PNFCA2Qse49KhQhyKEEEJoikdV2VvbSEG5nQN1ThQI+N1/otsmHt3O4VbZUmZjc5mN7BgjOSlm+sVGhMXMiVN6p3PL4nd594kH2bTsOVyNDlIHDOG6x1/mlLHnBe08fXPyKP76S3aseZv6w+WYo2PJOHUEVz20kMReWf52l97/D1bOn8fqx+7H7WzknDn3kNp/MD37DuJXL68lf9ECvli5jIbqKqISk0kfNJRz5tzl/3yEJZJf/mcF3776JB+/v5wlS5YQGxvLwIED+dOf/kRcXFzQrqkrUVRV1cI9ruiAonqnpqabzRwQR6aMygghhBAnrKjeyerCOqobPU2SmGDx9RsfoWNKVozmf1d/fdjOysL6UIcRdNOyYhiSePwqaeFE9pnpBjKjjUzO0MZIx+SMKM3/4yiEEEKcLE6PSn5xPUt311DT6B1T6ayn1L5+axo9LN1dQ35xPU6Pdp+Jp0aG5wSlcL2ulnSvq+3GclMsONwqn5Y0hDqUFo1NiyRXSjEfl1SgEUII4VNU72RVYR21nZzEHMt3noJyO7trGpmq0VGaRJMek17xrykKBya9QoKpe41VyDSzbkRVVTb9aOuSCc24tEjO6mmRG/KjSAUaIYQQLdlabiO/2NppU8pOlO/8kzOiNPlA8sMfrGwps2liXXFrFGB0DwsTe2ljNk6wyMhMN6IoCmNSIzHpFfkHsAuTCjRCCCFacuyDyVDfhPvOn19sxeFWydPYg8kRyWY2l9lCHUZQqMDwZHOr7cKNjMx0U0cPTYfiG8BXtUyrQ9PB1loFmvby9RNuFWiEEKK72lja0CVnWPiMTYtkTGpkqMNok2V7aiisc4Y8MewIBe/v+qv6h2fFsuORZKYbc3pUPjlkZWu5/aSN0vjOMyrFzLj0KIzdZHfa45EKNEIIIU7E1jIb+T9YQx1Gq7Q242J3jYM399WFOowOu7xvLP3jIkIdxkknyYyQm+kQCWUymZtiZrwkk0IIoRmyzULn8agqi76pokYje/IdSwHiInTMGZLQLWdfSDIjAO8P8r5aJwXlNvZ3wjSnPjFGclIs9I01dssftGPJND8hhBAnyulRee7bKs1tgD17cIJmHpppLVk81rUD4sjopr/PJZkRTVQ53GyrsLPt6AXoCpxIKfmj25n0CsOTzAyXBegBpAKNEEKItsgvrqeg3K6JRMZHwTsL4JyM6FCHcsLk66xNksyIFqmqSpXD4y0NbHNxyOpstTRwepSRVIu3NHCCSaepiiadrSuXxh6bFqm5CjRCCNEdaH3EQEvTzWQETJskmRFtoqoqniObNro9oD+yaaNONm1slVSgEUII0RayluPk01ryqKVksbN0ry1CRYcpioJep2DS64g06jDpdeh1iiQyrdha1jVHZI72aUkDW8vDo9a+EEKEg721jVRrNJEB71Tm6kYP+2qdoQ7lhGVGG5mcoY1NJydnRHX7RAYkmRGi0xXVOzVRShO8m54V1Wvnl44QQoSzgiPVLrVMAQo09qAsN8XC2LSuPVNhbFqkrHc9QpIZITqR06OyqrBOM7+MFGBVYR3OE6n2IIQQotNUOdwc0PhGjuAdndlf56TK4Q51KG2S17PrJjTjjqxzFV6SzAjRiT45ZNXMQkLw/tKpbfSw/pA2RpKEECJcfVmh/VEZHwXYVmEPdRhtoigKY1Ij/VPOQv134Tv/5Iwo8lIjZXr/USSZEaKTFNU72aqxEo/gTWi2lNtlupkQQoSIqqpsr+zY7499Wzcyb2QK+7ZuDFpc7aUC2yrtaLHmVG6KhZkD4oiN0IUsofFVLZs5IE6mljVDkhkhOoFHVVmtoellx1KA1YV1eDT4i0cIIbTusMPt3+ctXDjc3u0etCgz2sjswQnkpJiBkzdK4ztPboqZ2YMTZLF/CySZEaITSAUaIYQQ7VXa4Ap1CJ1Cy9dl1ClMzohm5oA44iK8t8+dldT4+o07MhpzTkZ0t95HpjWGUAcgRDjyVaDRajIDP1Wg6R8XEepQhBCiWyltcKEDtDmO0TydAqU2F0MwhTqUDsmMNjJnSAL7ap0UlNvYX+cM2u97Xz/ZMUZyUiz0jTVqZn+eUJJkRogg81Wg0bqjK9AkmPShDkcIIbqNkgZXi4lM1aEiPnnxX+zdvJ7q0h8wmi30G3U2F935AAnpvY/b76NTRtI3N48r/vTvgOOLbpoOwJxnVwDe9TbPzrmEGY88S9n+3Wx5awl2ax0Dz5rIZX/4JwaTiff++SDb338Lp72BoZOnccnv/oYhouVExaPCIav2fzcC6BSF/nER9I+LoMrhZluFnW2Vdv/UQJ3ivd7W+/mpnUmvMDzJzPBks/zObSNJZoQ4Qaqq4lbBpap4PKDTgUFR0CsEVBXxVaDR8qiMj68CzcRe2thATAghtE5VVUptLU/HKv7mSw5u38zp5/2MuJ7pVB06yOdvvMCimy7h129sIMISvHLCHy/+J0aThfHX305l0X7+t+w5dAYjik6Hrbaac+beQ9HOAgpWLiOhVxbnzLn7uP2V2lyoqhpWlbgSTHom9opiQnokVQ4PpQ0uSm0uDlmdlNpcuJrJSg06SLUYSI8ykmoxkBppIMGkC6uvy8kkyYwQzVBVlcMOt/cfpQYXJUf+cfp8+au88cDt3LuqgIT03iy6aToK8KdXVpMW6f0H6csKW1gkMvBTBZoJ6ZFcf/31vPHGG9TX14c6LCGECFtulWZvgH1OOftchk6eFnBs8LjzefoXF/LVulWMnHpl0GLxuN3MeXYFeqN34bm1qpIda95mQN4krv/XMgDOuvIGKov2s3XFK60mMy6PdyRCH4b37IqikGjWk2jW+6fSqaqK58hDULcH9EceguqOeQgqOkaSGSGOUuVw82WFne1HDxdz/HnLKlBsdXHI2vK0gM70475d7PxgBTnTrm51ikF7aLkCjRBCaI2rlSqSRvNPpXndTid2ax1JmX0wx8Rx6LsdQU1mRk650p/IAGSeNpLt779F7vRrAtplnjaSTcuexe1yoTcc/9bSparoNVvrs22UI7M39CggM8c6jSQzotvzqCp7axspKLdzoJmFfMe7jb/hqddPqF1nKtu3i3WLFtA3d0ynJDOg7Qo0QgihJZ5Wfpk47TY+XvxPCt55ldqykoC9W+z1tUGNJT61V8Brc3QsAHE9mx5XPR7s9bVExScet0+3B7mxF0ElyYzo1orqnawurKO60eN/TtSWKWIGY/hX+vJVoBFCCNH5dK1smvHO/HkUvPMqY66ZS+/TczFHx6IoCq/Om4OqHj8Tamlqk+p2o+ibZhjNHQPQtXCcE9ibTC+bgoggk2RGdEtOj8onh6xsPVJCGdq3YP/oCjB1lWU8csHpTJx9F5Pn3hPQrvzAHv5+6VlcfO/D5F09GwBbXQ35C+fz9YerqD9cQVzPdEZfOoux1/0K3VG/zbaveZv1L/6bioN7URSF+LRMRl0ykzHXzKXgHe8aHoBn51zi/8xNi5bTN3cMAP977Xk+e+15Kov2ExmXwKkTL+K8X/0OS0xcQIwHdxawbtECDu7YitvpJCkjm9xLrmHMNXNbrECzbds2zj33XE499VRWrVpFdHR0O76KQgghfAytrKX4Kn8lI6dexZTfPOg/5nTYsdfVtNq3JTYOe13T0Zuq0mISe2W1Pdh2aO36hGgrSWbEcZ1oBS8tKap3sqqwjtpG7xOsYC3Wj0nqQZ+Reexcu6JJMrPjg+Xo9HqGnutdtNloa2DR7OnUlpcw+tLriE/NoHDHZtb86yFqy3/k4nv+AsDuzz5m2bw59Bs9jgtu/wMA5fu/p3D7ZsZcM5c+I88ib8ZNbHr1WSbccCc9+gwEIKXPAADyF85n3aIF9D9jPGdc/gsqCvfw+RsvUPzNNn75/Gr/XOjdn33Mi3fMJCa5J2NmzCEmuQdl+7/nu0/XMuaauc2OzGzZsoXzzz+f3NxcVqxYgcViadJGCCFE2+gVb7WrlooAKHp9kxGQ/y17Do/b3WrfiRnZHPjyM1zORv/Mgm/Xf0BN6Q8nJZkx6Lyj/UIEkyQzwq+lCl7HKyvoq+CVGmkg0aTv8gnO1nIb+cXWTiudfPp5l/D2X+6idM+3pPYf7D++44Pl9BmZR0xSDwA2LH2aw8X7ue3VD0nu3Q+AMy7/ObEpqXy65EnGzrqF+NRefPfpWkzRMdzw5GvNDusnZmSTPeJMNr36LAPOnOAfjQGor6rg48X/ZMCZE/jFv//rH+1JyR7AO4/+li/ffZ3c6dfgcbt5+y93E5Pck9uXfRQwYuObi+3yBP7u3LhxIxdddBFjx47lzTffxGTS9iZoQgjRVSiKQqrFQLG1+em9p4w9ly/ffR1TdCw9+w7i4I4t7Nm8nshW1qoAjLrkWr7KX8niW6/i9POmU1l0gG3vvU5iRnaQr6J5qRZD0O8TwvGhq2gbSWZEuyp4uTxNK3iZ9ArDksyM6IIbPqmqyqYfbXxa0uB93UnnOXXSFFY8eh87PljuT2ZK93xL2b5djJkxx99u59qVZI84E0tMPNaqSv/x/qPH88niJ9j/xf8YcdHlWGLicNoa2P3Zxwwac06bYtnz+XrczkbGzJwbMG1t1KWzWPPkX9i1YS2506/h0K6dVP1QyJS7/txk6tnRvwg8R75qH330ERdffDHnnXcey5YtIyIi/NcNCSHEyZQWaWixQubF9/wVnU7P9vfexNloJ2vYaG58+k2ev7X1KmYD8yZx0W8eZMPLT7Pqb7+n15Bh/PzxV1j9jz8E/yKOoVMgPcrYesPj6A4PXUXbSTLTTXWkgldAP0f9v8OtsqXMxuYyG9kxRnJSzPSLjUDXBf7hODqR6UxRCUn0GzWWnWtXcN4t84AjU8wMBk6dNMXfrrJoH6W7v+ahc05pth/r4QoAzrzyenauXcELt11NbI80Bpw5gaHnTj+hxKa6pAiAlKz+AccNxggSe2VRVVIMwOGi/QABI0nNUVWw2+1MmTKFnJwcXnvtNQytlOAUQgjRdqmRhhZ/D1ti4rj8gSeaHL9v9RcBr/vmjuHhL8qbtBt77c2MvfbmgGNznl1xQp/NmTaDnGkzmhyf/Mt7mfzLe1uI2MujepOL9ugOD11F+8mdSDfU0Qpex+Prp7DOyYE6J/EROqZkxZAZ3bGnMR2xtezkJDI+w87/GW88cDuHdu0kfdBQdq5dQb9RY4lKSPK3UT0e+p85gfE//1WzffimnkUnpnDbso/Yvekjdm1ax/cb11HwzquMmHolVz745Em5Hh9FAZPJxEUXXcSKFSt4//33mTp16kmNQQghuoPUyPC8PWvLdXW3h66i/cLzp0U0K1gVvE6Er9+aRg9Ld9eQm2JmfHoUxpO88q+o3kn+D9aTes4hEy9C/5e72fHBcgAqCvcy4fo7AtokZmTT2GCl/xnjW+3PYIxg8PjzGTz+fDweDysevpfNb77IpNl3kdy7b4tD5vFpmQCUF+4JmA/tcjZS9cNB+p8xzhtLZh/AOx3uePHoUFAUhaVLlzJ9+nSuuOIK3nvvPSZMmNDqNQghhDhxiSY9Jr3iH4UIBya9QoLpxOoyd7eHrqJjpNp3N1FU7+S5b6soKLcDnZfEHMt3noJyO899W0VRffMlfjuD06OyqrDupO8zbImJY+BZE9m59h12rHkbvTGCIRMvCmgz9NzpHNyxhe83fdjk87a6Gtwu78JPa/XhgPd0Oh2pA4YA4HY2AmA0R/o/d7T+Z4xDb4xg06vPBmyqtnX5Uuz1tQw6+1wA0k85nYReWWx8ZVGTPnyfM+i8IzMAERERvPXWW4waNYqLL76YzZs3n/gXRwghRKsUxTsdKlzGCxRgeJK51fUqTo9KfnE9S3fXUBPkiqPHOvaha35xPU5P+CSP3YmMzHQDnV3B60SoQO2RfzAmZ0SRm9L5ZXw/OWSlttETkmseet4lfPv7m/ns9cUMPGtik4X14667lW8/eZ8X75xJzsVX02vwMBptDZTu+Yav8ldy76oviEpI4q0//xpbTRV9R40lrmca1SXFbFr2HGmDTiPlSBnm9EGnodPr+eSFf2Gvr8UQYaLfqLOJTkxhwvV3sG7RAhbfeiWDx19AeeEePn99MRmnjmDERVcA3gTpknnzWXLntTxx9URyps0gNrknZQd2U7b3O2546nVSLQa+Oip+i8XCqlWrmDRpEhdeeCGffPIJp5122sn68gohRNgbkWxmc5kt1GEEhQoMTzYft01nbZvQmqMfuu6uaWSqjNJojiQzYexkVfA64XiO/De/2IrDrZLX09JpVUWK6p1sPTIKFQpDxl+A0WzBYa1n6HmXNHk/whLJnOdW8PF/Hmdn/jt8seo1zFExJGf1ZfIv78McHfv/7N13eJPl+sDx75s0bbrpooMCZUsFgVKQPYsgICIgOEBRERVxnOP+HQfoOSqgx4GDoSAKwhEBWTIsggyZZSlLoFBGKS3QkbZpmvH+/ggJjR10JM3o87kur8skb573SWiS937GfQPQYfAo9iz7lt1L56PV5BIYVp/b7hhO0hMvWTOUBYZHMvz/ZrBl/qcsf/t5TEYjj8/5iYDQCJKefBn/kDB2/u9r1n74Br7B9eg04iEGTv6XtcYMmDPcTJizgk1zPmD7wi+QTSZCY5vQ6Z6x5WagCQoKYsOGDfTq1YsBAwawbds2mjdvXuo4QRAEoepCfJTEBapI0+id/vtdExIQF6iqcMN9XR10FexDkmXZnT8jQgV2ZBTW6sb3quoZ7Uf3KD+7t2uSZeYczSbXSbMynmhY40DiQ0UtmcoQNQ8EQbCXk7k6lqVqnN2NGhvVNIjmwaXT+P990NWV9Iz2c+igq2A/YmbGQ9V2Bq/q2HapEB+lZPfRj9N5xeQUVzbPiVAZnppZp6ZEzQNBEBypWZA39bwVbjs4JwHB3gqaBpW9bMtVAxnA2i9HDLoK9iWuUDyQMzJ4VVfyhQIifb3suj415Xq2Nnf84ndFVclAU1eImgeCINQGhSQxpHEgi07m3vxgFyQDQxsHlpn6uC4Pugr2JYIZD1Myg5c7XMxLwJo0DRNah9glbXO2zshZTe1lTPN0lc1AUxeImgeCIDhDwwAViRFqUrKK3OJ33UICEiPUxJYxWFnXB10F+xLDrR7GmRm8qsOy4W5run2+1A5cKfKYVJauoDIZaOqC8/l65hzNZlmqhrTrwbIjah4sS9Uw52jtpjAXBMH19Y7xJ8hb4Ta/bxIQ5K2gV4x/qcecVTahuiyDriJts+sSwYwHsWTwcrePmwzszSqq8QWcLMscumqf15+yajGvJUSQnX6uSs9LnjWd1xIi7NAD55OAJjfJQOPpRM0DQRBcgUohMbRxoNv8vluWl5W14qKuD7oK9ieCGQ9hkmXWutFIx99JwNo0DaYaJNe7pjN6VLVkZ5OBjnV4nXBdLDQrCILrahigIim29EyHK0qK9S9zWVZdH3QVHEMEMx7CksHL3b4gLGQgp9hEal71vygyCg3261A19Z3wT97eed7Z3agxCahXQQYaT7cvS8uik7lOBJN5KwAAIABJREFUHT0sWfNgX5ZnFM4TBKFmEiN86Rnt2tm1ekb7lblhXgy6Co4ighkPYcng5c4kIKUGF20ZhQan/0ErvbxQ+bj/HpOKMtB4MlmW2ZFRSPIF83ICZ/9klSw0uyOjEFEWTBCEbpGuG9D0ul6bpSxi0FVwFGdf+wl2YMng5a5fEBYycEajJ1tnrNbzLxUaKp1RqjpO7Ehm9qNDebNbY97qEcc3z97P5dPHbY7xhD0zEtCpnAw0ns7Vax78flnM0AhCXSdJEt2j/KxLzpw95GQ5f1KsP92i/MrNfikGXQVHEcGMB/CkDF4ScPBKUZWfJ8syGVrHLTPbv+YHFjz7AN5+/gx69g36TXiBzNS/mPXo0ConCXBlFWWg8XTuUvNALDkTBAHMS84ebBHs1Cxnlt+MB1sEV1iLRQy6Co4kghk3Z88MXq5ABg5eLapwOc0333yDJEmcPXvWep9Rpsyq6/agK8xn9Yz/I3H4WB757H90u28Cvcc/w1ML1oEss/nrjx1zYieoKAONJ3O3mgdiE6ogCGBOCjChdQgdI8zLm2vrm9tynsQINRNah9y0BosYdBUcSQQzbs4TM3jpjDLZuqpFJgYH7iU4tes3ijS5tBs0goLsq9b/FAolDdskkLpvu8POXdvKy0DjyUTNA0EQ3JlKIZEUG8CDLYIJ9jZf1jnq+8zSbvD12Zj+sQE3Hfyqi4OuQu3ycnYHhJpxhQxejpBRaCBUXfn6JiYHbpa5ci4VgK+euKfMx30CAh138lpUXgYaT+fONQ/6xwY4uzuCILiIhgEqJsaHkJqnJyVLyxmNHgn7JDKxtBMXqKJjhC9Ng1SVThDjyYOuVblOERxHBDNuzpLBy5Eb32ubQoIMrYF4fCr/HAfOMcqy+d0d/c4XBIbXL31upft/jHpF+9G1nAw0nsxS88DdWGoetKznU+dm0gRBKJ9Ckmge7E3zYG+ydUYOXini4NUiazChkKAyk7olj/NRSrQPU9M+XF2tIspi0FVwNPe/CvNgGo2GN954g59++olLly4RHBxMu3btmDZtGgkJCQD8tOxHls/6iMwzf+Ht60fLrv0Y9NybBNePBmDfyu9ZNvU5nvl+EzG33GbT/uavP+KXL9/nlZ8PWo//u+z0c0wf2pE7n5+CykfNtoVfkn81k8btb2fkmx8THBnDr1/9lz3LFlCYm02LLn0YNeVT/IJDbNo5sSOZLV9/zMXjfyApJJokdOXO594istkt1mMu/XWE7Yu+5Mz+XeRnZRAaUo/BgwczY8YMwsLCKnyvvByYQjgsNg4A/9Bwmt/e22HnqW2WkbakWP86OSNTsuaBO44ZWmoeTIwPqXMptAVBuLkQHyV9G/jTJ8aPbJ2JjEIDGVoD6QV6MrSGMveZeikgyteLGH8VUb5eRPl5EeKjKDdDWWW4yqCr0WBAlk14qbxr3FZ1Bl0FxxHBjAt78skn+fHHH5k8eTLx8fFcvXqV7du3c+zYMRISEpg/fz6fPf8osbd2YODkf5F/LYvfF88l7dAenln8K76BwbRNGsaqaa9ycN2yUsHMwXXLaNqxe7mBjO2xP2LU6+k2ZgKFedlsXfAZ378ygWadenAmZQe9xz/D1fNn2LnkK37+6C1GTfnU+tz9a37gx7cm06JrXwY9+wb6Ii27f/yGWY8O5dnFvxIS0wiAU7t/49qFNDoOu5964fWJyT3L3LlzOXLkCLt27arwy1Qpmb+EHZEEoEXXfvgEBLJl3sc0S+yBUmU7Ep6ffYWAkHD7n9iBLBlohjYOrLMj+5aaB+6qZM2D5sE1/3EWBMEzSZJEqFpJqFppvfiWZRmTbN5vajSBUmEeFFRI1ChwKUtVyibkZl7ily/e48T2ZLSaXMIaNqHn2KdIHP4gAAZ9MZu/+i/Ht/3C1QtnMBmMNLilLUlPvUqzTj2s7ZQciFUolez839dkp59j8qJkjm5ex6Y5M3jhp91s/vq/HN28DhmZNn2HMOzVaXj73ryGj0mG9AKRiMVViGDGha1du5bHH3+cDz/80Hrfyy+/DIBer+fVV18lsnlrJn61ylqoMa797Sx47kG2L5zFgKdewcc/gPg+d3Jo/XIGPfcWiuvrsdKPHyYz9QS9Hnq6Un3Jy8zgxZ92ow4MAkA2Gtky/xMMOi1PL0xG6WX+UyrIvsrBdcsY/n8z8PL2sckENuKN/1rbS7hrDP+9pyubv/7Yen+Xex+h57hJ1mNeahdG165duf/++9m+fTs9e/Yst3+SJBHl68WFAvtPZ6sDAhn+2gx+eGMSMx/sT7s7huMfEk5OxgWOb/+Fxu06c/er0+x+XkewzEIkRqjpFeNf57KWlWSpeeCOszIWlpoHIpgRBKEqJElCKYESCRy4UqoqZRM0VzP58uFBIEl0GfMYASFhnNixiWVvP09RgYYeDz6JLl/D3hULaTdoBJ1HjENXkM++lYuY//RoJn23gZhWbW3aTFm1GEOxjs4jxqFUeeMXdGPVyOJXJxAS04iBz7xO+vHD7F2xEP/QCO587s1K9TdDa0CWZbsHf0LViWDGhdWrV4/du3eTnp5OTEyMzWP79u0jMzOTux970abi/C097yAirgUntv/CgKdeAaDDkNEcWr+c1L3baX57L8A8K6NS+9Km/12V6kvbpLusgQxAw7YdAWg/+F5rIAPQsE0Ch9YvJy/zEqGxcaUygVmUlQlMpb6x1EmvKyIjK4suXboAsH///gqDGYBoPy/SCxxTOLP9nSMJiohiy/xP2Prt5xj0xQRFRNGkQxcShz3ggDPal+WiPdhbwZA6PBtjYal54O5K1jyozlp2QRAER6pK2YSNn7+LyWjkuR+24l8vFIDbR41n8WsT2TR7BrePfBjfoHq8vHa/zVKxTiPG8d8RXdm55CtGvvWJTZu5mem8uHJPmasnYlq1tTm+MCebfSsXVTqYMZjMMzRKEcs4nQhmXNj06dN5+OGHadiwIR07dmTw4ME89NBDNG3alLS0NAAiGjcv9byIJi1IO7DbertFlz4EhkdycN2PNL+9FyaTiUPrl9O69yB8/M3ZkApzszHqi63PUfn42gQv9aJjbc6hDjA/Vi8ypsz7tXm5QNUygRXmZrNpzgwOb/iJ/GtZlPw6yc3NLfP5JUX5edktkOk47H46Drvf5r6mid1pmti9wuclPfkySU++bKde1FxNMtB4MkvNA3eelbGw1Dzo26DuFToVBMG1VbZsgizL/LlpDbcNuBtk2Wbws2XXvhzesIKLxw8T1/52FErzwI3JZKJIk4tsMtGgdXsuHj9cqt02/YaWuwy886jxNrfjOnThyOa1FOVrUFcyS6lBls2zW4JTiWDGhY0ePZqePXuyYsUKNm7cyIwZM5g2bRrLly+vUjsKpZL2d45kz4rvuPu16aQd3ENeVgYdBo+yHrPwxfGcSfndejvhrjHcO/Uz621JUfaor6Qs+375+mViVTKBff/KBM4d3kvPcU8T06oN990ahZcEgwYNwlSJ3MtRfuLPueQFek0z0HgqV6t5MOfxuwGYOHdltZ5vqXnQJ8ZPLHcQBMGlVLZsQkH2FYo0uexZ/i17ln9b9jHXrgCQsnoJ27/7kqyzJzEabsywhzRoXOo5Zd1nUS+qgc1t36BgALR5OZUOZowmHLpMT6gccfXn4qKjo5k0aRKTJk0iMzOThIQE/vOf/zBjxgwAstJO0ayz7fKrK2dPlZpJ6TBkNNu++4LjWzdwYscm/EPCadG1n/XxIf94G60mx3o7MCLKLv2vbCYwbV4Op/dsJenJV+g/8UUABrULI/X0qUqfK9RHiY9S8rh89lWhkMyzMJ0ifGkcqBIXt2UQNQ8EQRBqR2XLJsjXo572g++l411jyjwmqkU8B9Yu5ce3niG+72B6PvQ0AaHhKJRKtsz7hKsXzpZ6Tsll+KX7Vt73ZeV/H5Si9LxLEMGMizIajeTn5xMcHGy9r379+sTExKDT6UhMTKR+/frsWbaAxLsfwMvbnKHkxI5kMs/8Rb/HX7RpL7rlrUS1uJW9KxZy7s8UEoaOsdnr0iC+nUNeR2UzgVlmfiwVdb0U5gvzjz/+uNLnkiSJdmFq9mZqXWbUvbYZZUjN03M6T399aZmaZkHeYmlZCa5W8+DRL5bapR1R80AQBFdT2bIJ/iHh+PgHIJuMFQ58/rlpNaGxcYz94BubwbrkWc5JwuPIshBC5YlgxkVpNBpiY2MZNWoU7dq1IyAggOTkZPbu3cuHH36ISqVi2rRpPPLII8yZcDftBt1D/tUsdiyeS0hMI3qMfbJUmwlDR/PzR28B0GHwvbXyOiqbCUwdEEiThK5sXfAZJoOeRrENGDFlO2fOnKnS+TqEq9mTqXXQq3EPlkAuTaPnrEZPPbHp34ar1DywEDUPBEHwVJUtm6BQKmnTbygH1y8n49Qxopq3tnn8xsCneSqkZBaxc3+kcO7wPoKjYku160iWQVfB+UQw46L8/PyYNGkSGzduZPny5ZhMJpo3b84XX3zBU089BcD48eM5rVUw79MPWP/pO6h8/bi172AGPfcmvoHBpdpsf+dI1n/6NqGxcTRsk1Brr6WymcDGvDub1dNeY9cP89gjweCBd7Bu3bpSmdwqEuKjJC5QRZpGX2dnZywsrz+32MSik7kkRqjpXcfTMUPVah5UJDfzEslfvs+JHZsozM0mKCKKlt36MfSl/3Bo3TJ+nPIsE+eu5OC6ZfyxaTUmg574PoO566X/4BtUz9pOTffMgKh5IAiCa6pK2YSBz77B6X07+OKhQXS6ZyyRTVtRmJdN+vHDnNq9lTe3nOSWnndw5Ne1LHzhYW7pMYBr6Wns/nEB9Zu2QldYUAuv6IYoXy+xlNtFiGDGRXl7ezN9+nSmT59e4XH3jRmNf5fBlWpTofQCSaJ9FWZlQmIa8d7+rFL3N03sXub9ZWUBsxx/s0xgwfWjGfvhNwAMaxxIfOiN4l4ljR8/nvHjx5fbTscItUek3bUXy7uXklXEydziOl0osyo1DyqSl5XBF+PuQKvJo/OIcUTEtSAv6xJ/Jq9GX3RjZnDVtNdQBwaR9MRLZJ09xe4fvyHn0nken7vS7j+CouaBIAiuqLJlEwLD6vP0dxvYNOcDjmxey+6l8/GrF0L9prcw6FlzftOOw+4n/2omu5d9y8mdm6nftCVj/v0FfySvInXf7zc5g/0oJIjxr5u/o65IBDNurioZvFJWL0E2GkkYUjtLzGqiJpnJmgV5U89bQW6xqc7PzpQkA3nXZ2mSYv1JjPC96XM8TVVqHlRk/cx30FzNZNK3G4iNb2+9f8BTr9oE30qVigmzllv3ioVEN2TdJ1M5tnUD8b0H1bwjJYiaB4IguKKqlE0ICI3g7lenlVuIWpIk+jz6PH0efd7m/lt63mFzu7yBWCi/hEJ5g7FlMcnmmRnBNYg8DG7OksGrIqf3bOP3JV+x+euPiO8zmJCYRrXUu+rxUUqE+FT/T1MhSQxpHCgCmTJY3pPkCwXsyCgsNevl6Spb86AiJpOJo1vW0brXQJtAxqLkzEjnEQ/ZJL24/d7xKLy8OLE9ucb9KIs9Xp8gCII9eWrZBE99Xe5IBDNuzpLBq6JwZtPcD/j5v28S06oNd73yXq31rTokoH2YusZLZRoGqEiMqPh9qeu2XSrk98t1K1lCZWseVKQg+wq6fA2RzW656bFhjZra3PbxCyAwPJLs9HM170gZjK6S1UAQBOG6ygy6upuaDroK9iXCSg9wswxeNdlYXNtkoH14+Xnhq6J3jD8nc4vJE8vNyrXtUiE+SqnOLDmrbM0DdyVqHgiC4Go8rWyCvQZdBfsRP30ewJLBy90/VhLQJFBlt2r1KoXEULHc7KaSLxRwPr9uJEywR00A/5BwfAICuXz6+E2PvXou1ea2rjAfzZXLDlvqKWoeCILgijqEqz3mt9ieg66CfYhgxkN0jHD/LwoZ6GjnGYKGASqSYv3t2qankYA1aRr0Jnf/C7o5S82DmlAoFMT3uZNjWzdw4ejBUo+X3Ie0Z/m3GPU3AsXdS7/BZDDQqnv/mnWiDKLmgSAIrkoMugqOJJaZeQh3z+AlAcHeCpoG2T/VYWKELzqjzLZLhXZv2xNYspxtTS+gf2yAs7vjUFWpeVCRgZNf59SuLcyZcDedR4yjfpOW5F25zJ/Jq3hi3hrrcUa9nq+eHEHbAXdzJe0Uu5bOJ6797bS2cyYzEDUPBEFwbZ5QNsERg65CzYlgxkNYMngtOpnr7K5UiwwMbRyIwkEXY90izV8+IqApmwzszSqiZT0fj69BU9maBxUJrh/NpAUb2PjlexxctwxdgYag+tG07NYPlfrGD92wV8yPJ8+ahtGgp93AEdz18rt2DzpEzQNBECoiy7I5Nb0sYzKZ9w96SRJKiVobBBGDroKjSHJdy83q4ZIv5JOSVeRWXxQSkBihrpVZgX1ZWpIvFCCBW71HtcHyRT0xPsRhQaUrOHKtiNVp+Q49R8qqxfw45VmeXvhLmembHaFkoVlBEOouWZa5pjOSUWggo9DApUIDGVpDmTW2vBTmWd1oPy+irv8X6qN0WIBzPl/vtoOuAGNbBBPr4QN+7kjMzHgYd8vgJQFB3gp6xdTOvpbECF8ifb1Yk6Zxm/eotshATrGJ1Dw9zYO9nd0dh/HU2gCe+roEQaicbJ2RA1eKOHS1CJ3R/OumgApnoQ0muFBgsJmt9lGas491CFfbfW+IpWyCuw66ikDGNYkEAB7G3TJ4WZaXqWpx53LDABUTWofQMcKcjcRz5yCqTgJSsjy79oyoeSAIgqcwyTInc3UsOZXL7KPZ7M3UWgMZqDiQsWmnxP/rjDJ7M7XMPprNklO5nMzVYbLjIp7eMf4EeSvc5re3tgddhaoTv34eyJ0yeCXF+jtlj4ZKIZEUG8CDLYIJ9jZ/DNzli9WRZOCMRk+2zujsrjhMZQrNuhNR80AQ6qbz+XrmHM1mWaqGtOsb6+0VcljaSdPoWZaqYc7RbLul8BeDroK9iT0zHmxHRqFLb3jvGe1H9yg/Z3cDkyyTmqcnJUvLGY2+zu+nkYDO9X3p28A9AuLqyNYZmX0029ndsJsn4kNEqlBBqCP0Jpnf0gvYl1VUa79XlvMkRqjpHeNvlwt7yx5WV5cU619nCku7KxHMeDBZlvn9stYlA5pe0X50jfR1udHkbJ2Rg1eKOFhyzbEEdaAEiw0fpcTzbUNd7t/HnpacyiVNo3frwFUC4gJVjGke7OyuCILDuUJGLmc7n6936p5Py5KroY0D7bKqQgy6CvYggpk6wFUyeFnO7w6jHLIsk60zmbPBaA2kF+jLzwYjgcEDP0UTW4cQqvbc0f6TuTqWpWqc3Y0aG9U0yKMTNgh1kytn5HIWT/wtF4Ougj2I9Dd1gCtk8LL3aI6jSZJEqFpJqFpJPOZ0t7IsY7o+Kmg0gfL6qOCx7CLWnHP9qfKqyig0eHQwI2oeCILrcYeMXLXt7xf8zv6+spw/+UIBOqNMtxpc8EuSRPcoP3yUkscFakLtETMzdYgz19l2ilDTy07rbF3Npuu1fWpShPHv9LoilCpvFArn5OhQSOYguJ8H75sBUfNAEFyBSZY5nVdMSlYRZ+24b9HSTlygio4RapoFebtlDa26shTL05bQCbVHBDN10Pl8PWvTNOQUmxwW1FjareetYIgHfzFcvHiRB557lQO//UJhbjZBEVG07NaPoS/9h+LCArbM+5i/dm4m+2IakkJB43adGfTsG0S3bGNtI3XfDuZOHM59783h8qljpKxajObKZd7YchLfwGDO/ZHCpjkzOHd4H0a9nrDYOBKHP0D3B54A4NJfR9i+6EvO7N+FJisDdWAQrboncefzU/CvF2o9j64gn41fvMfRLevQXLmMOiCI6Ja3MujZN2jQuh0AV86dZv2n75B2aA86TR71I8Lp0aMHs2fPJjjYM/dliEKzguA84veoYvsytSRfdP2Zf3vNZIhBV6E6xDKzOqhhgIqJ8SEOyeBlOxLmS9MglVuOhFVGeno6nTt3JutaDp1HjCMirgV5WZf4M3k1+iIt1y6mcWTzz7QdMIzQmMZormWxZ9kC5ky4m38s20FQRJRNe7/O/RClSkXPcU9j0OtQeqk4uWsLC557kMDwSLrfP5HA8PpknvmL49t+sQYzp3b/xrULaXQcdj+BYfW5fPo4e1d8x+XUE0xasN46/b/i3Rf5M3k1Xcc8Rv2mLSnMySbt4G4yz5ykQet2GPTFzHt6DMZiHd3GTCA4oj63SrmsXbuWnJwcjw1mRKFZQah9f79oBcdduFrazS02sehkrl0zcjnS+Xy9WwQyYF5yFunrVeNA0VI2oVU9n1oLcoPdMMgVbImZGaFGGbxKHuejlGgfpqa9B6xRroyHH36YhQsX8tS3G4iNb2/zmCzLGPXFKLxUNkvFstPP8d8R3ejz2D/o//gLwI2ZmdDYOJ7/YSsqtXl0y2Q08sHw25FNJp5dshnfwGCb9i1Bir5Ia32OxaENK1jy2kQmfrWKJgldAZjaqxntB4/i7lenlfl60k/8wcz7+/HA9K9pmzQMgJfahaF08R98e3C35WYPtggWP7yC2xLLiW5Ob5L56li22w2yTGgdYrcg0VFlEyztNKkDg651hZiZEQjxUdK3gT99Yvwqn8HrevaYGH8VUb7m7DEhPoo6k/XDZDLx008/MXjo0FKBDJg3NXp5+9w43mhEq8nF29ef8MbNST9+uNRzEoaOsQlK0k/8QfbFNIa88I5NIGNp36Lkc/S6IooLC2jUtqO5jeOHrcGMOjCY83/uJy8ro9SsEIA6IAiAkzs306p7Et6+fhhkGaXHlJcsn6XQrLvUPHDVCzBBuBlXyMglA3nXZ2lcdaP3b+kFbhPIwI33dGt6gd2WvyokiebB3jQP9haDrkKFRDAjWFUlg5eiDuX1L0tWVhZ5eXnEx7cp9xiTycTv389h19J5ZKefw2Q0Wh/zCw4pdXxITCOb29fOnwEgqnnrCvtSmJvNpjkzOLzhJ/KvZdk8VpR/I/Xwnc+9ydK3nuH9O9vRoHU7WnVPImHoaEJj4wAIbdCYHmOfYvvCLzm4bhlx7W/H5/6RPPrwOI9dYlZSYoQvOqPs8httXfHCSxBuxpMzctnb+Xw9+7KKnN2NKpOBvVlFtKznY/cBFzHoKlREBDNChaTrBcmUSCAGMUqp6Dtxy7yP+OWL90m8+wEGTHoN36B6KBQK1nzwOrJc+ptXpVZXqw/fvzKBc4f30nPc08S0aoO3nz+yycT8yWOQTTfOc9sdw4nr0IUjm3/m1K4tbP32c35bMJOxH8ynVfckAIb882063nUfR39bx8mdW3jxH8/x4fT32bVrF7GxsdXqnzvpFmkOFFwxoLHUPBAEd+SqtUTgxufdFYojmmSZtWkap6cori4JWJumYWJ8iEOWbolBV6EsIpgRhGqIiIggKCiIY0eO0PXeso/5M3k1TRN7MPKtT2zu12py8SuRZaw8oQ2bAJBx6hjNb+9d5jHavBxO79lK0pOv0H/ii9b7r5w7XebxQRFRdB39KF1HP0r+tSxmPtCfzV9/ZA1mAKJaxBPVIp5+E16ge8EJevXswaxZs/j3v/990z67O1HzQBDsb1+m6wYyFtsuFeKjlJz+OTudV0xOsT0T/dcuGcgpNpGap6+1Yr5i0FVwThELQXBzCoWC4cOHs2bNai4dO1jqcVmWkRRK/n4p/McvK8nLvFSpc8TcchshDRqz4/s5aDW2m9MteTvM57hx22LHotk2t01GI0WaPJv7AkIjCIqIwlBcDJiXpBkNBuvjXgpod1tbFAoFOp2uUn32FIkRvjzYIpggb4XTdgxZNtQ+2CLY6RdYglBd7paR63y+3ql9SCmR3c1dSUBKltbZ3RDqEDEzIwjV9O6777Jx40ZmTbibTveMo36TluRducyfyat4Yt4abul5B7/O/YAf33qGRu06k3HqKAfXLbPuUbkZhULB8Nem8+3zY/n0vr50HHY/QeGRZJ49Sebp4zz6xVLUAYE0SejK1gWfYTLoCaofzcldW8i+mGbTlq4wn/cH3UabpLuIbmFeinZq929cOHKAwf98G4DTe7exatqrtE0aRnjjZgQpZZI2/IhSqWTkyJH2fvtcXsMAFRNahzit5kGiqHkguDm9SWaNGy2ZkoA1aRq7ZuSqimydkbMa5wZT9iADZzR6snVGscleqBUimBGEamrQoAG7d+9mwguv8vu6ZegKNATVj6Zlt36o1L70fex59EWFHFy3jMO/rCTmlraM/+R71s98p9LnaNmtHxPmrGDTnA/YvvALZJOJ0NgmdLpnrPWYMe/OZvW019j5wzyQZVp07cP4mUt4b2Bb6zEqtS9d7n2Uk7s2c+TXtcgmE2ENm3D3a9Ppcu8jAES3vJWWXftybOsG8rIy8PX1I7FDO9atW0eXLl3s98a5EVHzQBCqT2TkqpoDV2pv0MTRJODglSL6NhD1sATHE3VmBKGGjlwrYnVavrO7YXfDGgcSH+pz8wPrCNuaB8UYDUaUXjUfDxI1DwRP5G61m/6utms5ybLMx39cs6Yd9gQ+Sonn24ZWuAl/ypQpTJ06tdRSaUGoCrFnRhBqKMrPMyc4PfV1VZel5sGY5sF47VzBriVz8VaUfLyy7dz4fx+lROf6vjwRH8KY5sE0D/YWgYzg9kpm5HJHloxcplq8wL6mM3pUIAOgM8pk69w3mYHgPsTViiDUUKiPEh+l5FE/RD5KiRAfMdZRnhWLFhAeHs4/bgsTNQ8E4W9ERq6qyyg03PwgN5RRaCBULfbNCI4lghlBqCFJkmgXpmZvptZj1jq3D1OLi+xyZGRksHPnTubNmydqHghCGVJqMWGGo1gycjkimCkoKMDf33YvSUahAQXgviFgaQoJMrQG63ejIDiKGHoVBDvoEK526x/ukmSgfXj1CnjWBStXrkShUHDXXXeV+bgkSSgVEj5KBX4qBT5Q4GsHAAAgAElEQVRKBUqFJAIZoU6wZORy9+/Dkhm5amLKlClIksTRo0d54IEHCAkJoUePHhw+fJjx48fTtGlT1Go1Izs044cpz1KQc83m+cmzpvNaQgSZZ07y/SuPMaVnE97u25LVM/4Pva6o1PkOrF3KzAf680bXhrzdpwWLX32cnIyLNsdcOXeahS+O5z8D4nmjSyzvDbqNxa8+Xip9f2XaAjj3Rwrznh7NlF5NebNbI+ZMGMbZg7sxyZBecCM72/bt2+nUqRNqtZpmzZoxe/bsUm0JQnWImRlBsIMQHyVxgSrS3PxHXALiAlUinWYFli9fTu/evQkLC3N2VwTB5YiMXGW79957adGiBe+++y6yLPPLL7+QmprKI488QmRkJN/9lsLu5d9xOfUEkxasLzX4sfiVCYTENGTg5Nc590cKvy+eizYvl9HvfG49ZvNX/+WXL9+n7YC76XTPWAqyr7JzyVfMmTCMZxb/im9gMAZ9MfOeHoOxWEe3MRMICK9PXmYGx7dtRKvJRR0YVOm2AE7v2cb8Z+6jQet29J/4EpIkkbJqCV89MYInvl6N120JyLLMn3/+yR133EFERARTpkzBYDDw1ltvERkZWeP3VhBEMCMIdtIxQu32NQJkoKMo0FiunJwcfv31Vz766CNnd0UQXI4syxy6WlSlQCZ51nQ2zZnB65uO4x/iWgMEMnDwahF9YvxqPLParl07vv/+e+ttrVbLCy+8AIDBJHOt0whi2yay5LWJnD2wiyYJXW2eH9KgEQ999B0AXcc8hto/gF1L59Nz3CSiW95Kdvp5kmdPZ8Ck1+j72D+sz7u13xBmPtCPXT/Mo+9j/yAz9QTZF9N4YPrXtE0aZj2u/8QXrf9f2bZkWWbFuy/SNLE7j3z2P+t7dPvIh/no3p5s/OI9HvtiKSYZ3nzzTWRZZtu2bTRq1AiAkSNH0rbtjRICglBdYpmZINhJsyBv6jmxYnxNSUA9bwVNg0R9k/KsXbsWg8HA8OHDnd2VOkOWZQwmmSKjiUK9iSKjCYNJFqlcXZDIyFW+J5980ua2r++NQaN8rZaC7Ks0atsRgPTjh0s9v8voR21ud73vcQBO7EgGsNYPazvgbgqyr1r/CwyrT3jDpqTu2wGAOsA883Jy52aKtYVl9rWybV068QdXz6XS/s6RFOZcsx5XrC2keeeenN2/E5PJhM5gYMOGDQwfPtwayAC0bt2agQMHVv5NFIRyiJkZQbAThSQxpHGg29ZWkIGhjQNFauAKLF++nM6dOxMbG+vsrngkWZa5pjOas8MVGrh0PUtcRdnhov3MmeGi/LwI9VGKvUlOJDJyla9JkyY2t69du8bUqVNZsmQJmZmZNo8V5WtKPT+8UVOb22GxcUgKBdnp5wG4cj4VWZb5cPjtZZ5f4WUepApt0JgeY59i+8IvObhuGXHtb6d170F0GHyvdYlZZdu6ci4VgKVvTi73devy88i4bECr1dKiRYtSj7dq1Yqff/653OcLQmWIYEYQ7KhhgIrECDUpWVVbauFsEpAYoSZWVJ0vl1arZf369bzxxhvO7orHydYZOXCliENXi6wj+zfL7GQwwYUCA+kFButxPkpzZsEO4Wqx78sJREau8pWciQEYPXo0v//+Oy+99BLxt93GxkwZ2WRi/uQxyKZKvIN/C9plkwlJkhg/cwkKZem/fW/fG/t+hvzzbTredR9Hf1vHyZ1bWD3j/9gy/xMmLVhPcGRMpduyzI7e+fwUYlq1KbOb3r7+KBXu9GsouCMRzAiCnfWO8edkbjF5xSa3CGgkIMhbQa+Ymm9y9WQbN26ksLCQe+65x9ld8QgmWeZ0XjEpWUWc1ehLbRqv7AVxyeN0Rpm9mVr2ZGqJC1TRMUJNsyBRiLS2XCo0VDuQKci5xsr3X+av339F4aWiw+BRDHr2TVQ+5syKRoOBLfM/Yf/qJeReTicwPJL2g0bQ/4mX8PK+EWhMG5JAZLNb6Hb/46z/ZCpZZ08R2qAxAya9Rpv+Q6vcr79n5LKH7OxsNm3axNSpU3nzzTcxmGTOHLrKlXOny33OlXOphDZobL199fwZZJOJkJiGgHmmRpZlQho0JqJxs5v2IapFPFEt4uk34QXSDu1h1iND2P3jN9zx9P9Vuq3Q2DgA1P6BNL+9d7nHRdevh6+vLydPniz12IkTJ27aV0G4GbFnRhDsTKWQGNo40C0CGbixvExV2RL2ddTy5cuJj4+nVatWzu6K2zufr2fO0WyWpWpIu540w16fF0s7aRo9y1I1zDmazfl8907M4Q5kWSZDW/1lZotfmYBBp2Pg5Ndp1T2J3xfPZcW/X7A+vvyd50n+8n1ibmnLkBfeoUnHrmyZ/wmLX5tYqq2r51NZ/OrjtOzen4GTX0eh9OL7Vx7j5K4t1epbhtZg1z1ayuuzHZY2lZJ52eSOReWnKt71wzyb2zuXzAWgVff+gHlzvkKpZNOcGaX6KsuyNeVzUb4Go8H23ymqeTySQoGhuLhKbTVo3Y7Q2Di2fvc5usL8Un3Oz76ClwJUXkoGDhzITz/9xLlz56yPHzt2jA0bNpT7mgWhssTMjCA4QMMAFUmx/iRfKHB2V24qKdafhmJ5WYX0ej2rV69m0qRJzu6KW9ObZH5LL2Df9aKK4LgUvpZ2c4tNLDqZS2KEmt4x/iJodxCjTJl7myqromxdILN/9f/odM9YRrxhziTYdfSjBIREsO27zzm9dzvNOvWwtnUl7TQPzphvnYlJHP4g/x3RlfWfvk2LLn2q3DeDyTxDo7TTn05QUBC9evVi+vTp6PV6GjRowJLla0k/d7bc52RfPMe3z4+lRbd+nDu8j4M/L6XdnSOJbmle3hXWsAkDJr3Ghpn/Jif9HPF9BuPjH8C1i+c4snktnUc8RK+Hnub03m2smvYqbZOGEd64GSajgQNrl6JQKK3vV2XbUigUjHzzY+Y/cx8fj+pJx2H3E1Q/mrzMS6Tu246PfyD/+sqc5Wzq1KmsX7+enj17MmnSJAwGAzNnzuTWW2/l8OHSCQ8EoSpEMCMIDpIY4YvOKLPtUtkZY1xBz2g/EkUq5pvaunUr2dnZYolZDZzP17MmTUNesfmKt7ZmLi3nSckq4mRuMUMbB4rg3QEMNZy5KCtb166l883Zuq633ePBp2yO6TnuKbZ99zkntv9iE8wERURxa78h1tvqgEASho7mt29morlymcDwqtc2McgySjvmqvz+++955pln+Pzzz5FlmXY9+/HozCX8Z2DZqYrvf38uv8x6nw0z30Gh9KLrmMe48/kpNsf0eeQ5whs1Y8eiWWyaMwOA4MgGtOjSh9a9BwEQ3fJWWnbty7GtG8jLykCl9iW6xa2Mn7mERrclVqktgKaJ3Xnqm5/5de6H7Pzha4oLCwgIq0/DNgl0GfUwMf7mz9ptt93Ghg0b+Oc//8mbb75JbGwsU6dO5dKlSyKYEWpMBDOC4EDdIs2BgisGNL2i/egaKQKZyli+fDmNGjUiISHB2V1xS/uytCRfKHBqMUUZyLs+S5MU6y+CeDurzJ71itwsW5ekUBDW0DYjWGB4JOrAYLIvnbd9bsMmpbLahTcy7/3ITj9frWDGaAKqkVNiypQpTJkypdT9DRo0YPny5dbbR64VsTotn/f2Z5XZjn9IGA9On1fmYyW16T+0wr1BoQ0aM/KtT27e8Uq0ZRHTqi1jP/imzMeifG9cZvbq1Yt9+/aVOqas90cQqkLsmREEB5Ikie5RfiTFmjfXO3uBi+X8SbH+dIuqeSG4usBkMvHTTz9xzz33iPerimRZZkdGoXW5pbP3kVnOn3yhgB0ZhaJWjR0p7H01UdZnzYmfP6WDr5ai/DxzbNlTX5fgWkQwIwi1IDHClwdbBBPkxKKalqxlD7YIFqPSVbB3717S09PFErNq+P2y1iVnJcE8W/r7Za2zu+ExvGoYaFhqlliUzNYVEh2LbDJx9W/HaK5mUqTJJSS6Yenn/i1QtWQKs2T/qqqavr6bCfVR4mOvTTkuwkcpEeIjLjMFxxN/ZYJQSxoGqJjQOoSOEeZUo7X1s2U5T2KEmgmtQ8R+gSpavnw5ERER9OjR4+YHC1b7Ml03kLHYdqmQfVkioLEHS0au6qooW1erHkkA7PjeNtvX9oWzzMf0GGBzf15WBkd+XWu9XZSvYf+aH4hu1aZaS8y8FOZ6M44kSeYaSZ4SzkhA+zC1mM0WaoWY/xOEWqRSSCTFBtCqng9r0zTkFJscto/A0m6wt4IhYtNztciyzIoVKxg2bJg1napwc+fz9SRfdP1MfmBechbp6yU+HzUkSRJRvl5cKKheeuabZetKuGsMe5Z/i1aTS5OO3bhwZD/7V/+P+L6DbTb/A4Q3bsayt5/nwtEDBIRGkLJyMfnXshg15dNq9S3K16tWLso7hKvZk2kbXCc9+TJJT77s8HPbmwy0D1c7uxtCHSGCGUFwgoYBKibGh5CapyclS8uZMooGVpelHXPRQF+aBqlE0cBqOnr0KCdPnuSjjz5ydlfcht4ksyZN49TN/lUhAWvSNExoHSLSNtdQtJ8X6QXVK5x5s2xdI974mNAGcaSsXsLRzT8TEF6fPo88R/8nXirVVljDptz18nus+3gqV9JOERLTiPvfn0vLbv2q3C/F9ddVG0J8lMQFqkjT6N3is1MeCfPvT4iPGAASaockix2QguB02TojB68UcfBqETqj+SOpkMy1DW6m5HE+Son2YWrah6vFD4kdvPPOO8yYMYPMzEzUajHKWBnJF/JJySpyq4sxCfMyzP6xAc7uiluzZORypmlDEohsdgvjP/3ebm16SZAQ4UuHWvhePZmrY1mqxqHnqA2jmgbRPNjb2d0Q6ggxMyMILiDER0nfBv70ifEjW2cio9BAhtZAeoGeDK2hzGJ0Xgrz8ocYfxVRvl5E+XkR4qMQa5TtaMWKFQwePFgEMpV0Pl/PvqwiZ3ejymRgb1YRLev5iOVmNeCpmasMMuzN1LInU3t9xltNsyBvh8x4Nwvypp63gtxik1sNCFhImJc2Nw0SnyOh9njmN48guClJkghVKwlVK4nHBzDv2zDJ5qJtRpM5RaiXJKGQEIGLA509e5YDBw7wyiuvOLsrbsEky6x1o+VlfycBa9M0TIwPEcsyq8mSkcsyu+xJLK8oTaPnrEZPPQftRVRIEkMaB7LoZK5d260tMjC0caD4DAm1SmQzEwQXJ0kSSoWEj1KBn0qBj1KBUiGJQMbBVqxYgbe3N4MHD3Z2V9zC6bxictx0NBnMF2E5xSZS8/TO7orb8rSMXGWx/H3nXi/AmnwhH31l1gNXQcMAFYkR7vc+SkCnCDWxYnZTqGViz4wgCEIZevXqRVBQEGvWrHF2V9zCklO5HrNxeUzzYGd3xW1l64zMPprt7G7UGkv9rqF2nqXRm2S+OpZNnpsMEFjeB5FIQ3AGMTMjCC5ElmUMJpkio4lCvYkiowmDSRaVymvZ5cuX2b59uyiUWUnZOiNn3TyQAfOo+xmNnmyd0dldcVuWjFx15XJWBvKuz9LYs2aRSiExtHGg23ymLMvLRCAjOIPYMyMITiLLMtd0RvNm/0IDl65v+q9os3+0n3mjf5SfF6E+SrHUzEFWrVqFJEkMGzbM2V1xCweuFLntXpm/k4CDV4ro28Df2V1xWx0j1JzV1J3lepa/++QLBeiMMt0ife3y3dwwQEVSrD/JF1y/ZlNSrL9IniE4jQhmBKGWZeuMHLhSxKGSaZihwtoMBhNcKDDY1HDwUZrXp9dGutC6ZsWKFfTs2ZOIiAhnd8XlybLMoavulYq5IjJw8GoRfWL8xGBBNbl7Rq6a2HapEIDuUX52aS8xwhedUba264p6RvuRGOHr7G4IdZgIZgShFphkmdN5xaRkFXG2jAKZlS0yV/I4nVGutXShnkCWZYzXs8KZTKC4nhVO+bescLm5uWzatInp06c7sbfu45rO6HHZq3RGmWydiVC1GCSoDnfPyFVT2y4V4qOU7HaB3y3S19quq+kV7UfXSBHICM4lghlBcLDz+XrWpmnIKTZZ15Hb69KvttKFupuaLOFL2bwFvV4v9stUUkahwdldcIiMQoMIZmrAkpHL3Qqo2kvyhQIifb3s8l0sSRLdo/zwUUokXyhw+pJOy/mTYv3FjIzgEkQ2M0FwEL1J5rf0AvZl1d5+Ast5EiPU9I7xr3ObMauzhM+i5HHFhfn0iIsQS/gqYdOFfFKyiio9u+gOFJJ5eU8/sW+mRtwtI5c9OSq71/l8PWvSNE57Tx2VvU0QakIEM4LgAOIHp/bcbAlfdVnaEUv4KrbwrxwuFFRvdiZ13w5+/ugtLp8+TlD9aHo9NBnNlctsmjOD9/ZnAbBv5fccWLuUy6ePU5SfR1hsHF3vm0CXex+xaevC0YNs/Ow/XDx+mGJtIYFh9Wma2J1RUz6tVt9i/b0Y27JetZ4r3HA+X19nl5tJmAeW+scG2LVdZw6UdYpQ06sODpQJrk0sMxMEO9uXpXX6UoCS6UI9eSmAWMLnXLIsk6GtXiCTfvww8yePITA8kqQnX8ZkNPLr3A/wDwmzOW73j98Q2bQVrXsPRKH04vjWDax872Vkk4muYx4DIP9aFvMm3Yt/SBi9xz+Lb2AQ2ennOfLr2mq/tgytAVmWRRKAGnKnjFz2JgN7s4poWc/Hrt8bKoVEUmwArer52Hz/OeL3xtJusPj+E1yYmJkRBDuRZZnfL2tdcpNmz2g/u6ULdQViCZ9rMJhkPjh0tVrP/fb5sZzas40XV+4mKCIKgCvnUvloVHdMBoN1ZkZfpEWltg3G5z09mqvnz/DSqr0AHNn8MwtfeJinF/5CbHz7GrwiWy+1C0Mp/p3tYkdGoUt+NzqahDkQmBgf4pCZXZMsk5qnJyVLyxkHzEw3CVTRMcKXpkEqMTMtuCwxMyMIduKqgQzYP12oM5Vcwge1N/tlOU9KVhEnc4vrxBK+mzFUcyzMZDRyas9W4vsOtgYyAOGNmtKqW3+Obd1gva9kIFOkycNo0NO0YzdO7txMkSYPdWAQvoHBABzfupHoFreiVNnn38UgyyjrTPlHx3LljFyOJAM5xSZS8/Q0D/a2e/sKSaJ5sDfNg73J1hk5eKWIgyX3DEpgqsTHtORxPkqJ9mFq2os9g4KbEMGMINjBvkzXDWQs7J0u1BnEEj7XYqrmrv/8a1noi7SExTYp9VhoQ9v7zh7cTfKs6Zw7vA99ke1nrCjfHMw06diNNv2HsmnODLZ/P4umHbsT3+dO2t85Ei9vn+p1EjCaAHEtZxeulpGrNklASpbWIcFMSSE+Svo28KdPjB/ZOpM5m6PWQHqB/qbZHGP8VUT5mjM6hvgoPGYWX6gbRDAjCDV0Pl9P8kX3WA9uz3ShtenvS/icfRHkqIrf7kahcGz7V8+f4esnRxIR15wh/3yb4KgYvFTeHN+ezI5Fs5Bl89WZJEk8OGM+5w7v49jWDZzcuZllU59j+8IveWrBOnz8qrcB2yCbMJhK1yISqi8xwpdIXy+nJkipbTJwRqMnW2eslZkOSZIIVSsJVSuJxxzMy7KM6XqdLaMJlNfrbCnE37bgAUQwIwg1oDfJrEnTuM0oowSsSdPYPV2oo4klfK7Jq5oXQQGhEXj5qLl64Uypx66dv3Hfsa0bMBTreOijhdSLjrXef3rv9jLbbXRbIo1uS2Tg5H9xcN0y/vevJzm8YQWd7hlXrX5+cSQHKF2LKMrPi1AfpbgIrKaGASomtA6p9X1vziQBB68U0ddJ6b6l6wWClUhitlHwOCKYEYQa+C29wK1GFy1LpLamF9g9XaijiCV8rkspmS/0y1q+UhGFUknzzr04unkdeVkZNgkATvy+yeY4MI8qWxRp8khZtdimPW1eDurAYJvgIrpVGwAMxcVV61wZDCa4UGAgvcBgrafjo5RoF6YWtYiqqTYzcrkCGTh4tYg+MX4iCBYEOxPBjCBU0/l8PfuyipzdjSpzVLpQRxBL+FybJElE+XpVq85M0hMvc3LXFmY9MoTbR41HNhnZ+b+viWx2C5dO/AlAiy59Uaq8+fb5sXQe+RDF2gL2LP+OgNBwNFcuW9tKWb2EXUvnc2vfIYTFxqErzGfviu/wCQikVY8ku73ekjGbziizN1PLnkytqEVUAw0DVEyMD3FIRi5XozPKZOtMhKpF8CsI9qScMmXKFGd3QhDcjUmWWXIq15oxxt1IwLl8PQkRapcdJdSbzO9xsZu8xxKQlq+nfbgapYu+p46QpTWQUWio8sVnUEQUjdt15uyBnRzeuJKrF87Sb+ILqP0DST/xB/0m/BP/eqFEt2zD6X3bObRhBVlnT3H7yIdp1qknx35bT/cHnsA3MBgvb2+y08/z145N/LlpNRePHSKqeTz3TplJZLNWDnndJeUWmziaXcyRazoi/bwI9hYXq1Vh2ePRJlTNraE+KCWJy4UGqplfwqU18FcR4SvGkQXBnkSdGUGohpO5OpalapzdjRob1TTI4Rl2qiv5Qj4pWUVuNULrqIrfruzItSJWp+Xbrb3v/vkQl08f58WVe+zWZm0RtYjsJ/m8hpQruip//ou1BXj7Omdfys0oJHMChH5O2jcjCJ5KDA8IQjWkeMCm1dpKF1odYgmf+4jyq/7PyN8LYl45d5oT25NJuGuMPbpW60QtIvvJ0Bq5ePwwGz77D2mH9iCbTDRs05E7nv4/Gt2WCEDKqsX8OOVZHp/7E4c3ruTP5NUYDXre+u0U2enn+W3BTE7v2UpOxkVUal+aderB4OenEBLTyHoeSxtPzFvDn5vWcHDtUoqLtLTo2od7Xv+QgJBw67Emk4lf53zAnuXfUpSfR8M2CQx7dRrfPHM/TRO7ce/Uz6zHajW5JM+azpFf15B/7QrBkTF0HjGOqKeeB0QwIwj2JIIZQaiibJ2Rsxq9s7tRY7WdLrSyTLLMWjfKEPd3ErA2TeOwit+uJtRHiY9SqtaSyxnDEkm46z5CG8SRc+k8u378BqVKRa+HJzugp7VH1CKqGVmWOfjHn8x+7C58/APp9fBklF4qdi/7lrkTh/P43JU0atvRevzK917BPySMfo+/YK1FdOHoAc4d2sNtd9xDcGQM2enn2P3jN8x5fDj/+HE73r622QdXT38N38B69Jv4IjmXzrPj+9msel/FA9O+sh6zYea/2bpgJq17DaRF175c+usI858ejUGns2mrWFvInAl3k5d1ic4jHqJeVCxph/ewYea/yb9ymXELZ7ns8l5BcEcimBGEKjpwxf1nZSycnS60LKfziskpdt/V8o6u+O1qJMmc1WtvprbKn4mWXftxaP0K8q9movT2plFbc1rl8EbNHNLX2iRqEVWfUYZ1n7+H0WDgyXlrCI2NA6DDkNH8d0RX1n8ylYlfrbIe7xdUjwmzlluz3wHc0mMAbZOG2bTbutdAvhx/J39uWkPC0NE2j/kFh/LoF0ut/0Ymk4mdS+ZSpDEXZtVczWT7oi+J7zuYcR8usD4vefYMNs2ebtPW9kVfcu3CGZ5Z/Kv1b/n2UQ8TFBHFtm8/J+3dfxHXuBGCINiHg0ueCYJnkWWZQ1ftu49j6VuTmTYkwY4tVp4lXagrbZ2zLOFzZ5YlfHVFh3B1tT4To6bO5JW1+3ln1wWmbE3l0c9/oEHrdnbvn7Ntu1TI75frzt9DTekMBk7u3EJ8nzutgQyYk0a0GzSSswd3U5R/Y89ipxHjbAIZwGb5olGvpyDnGmENm6AODCb9+OFS5+w8YpxNsNmkQxdMRiPZl84DcHrPNkwGA13ufcTmed3um1CqrT9+WU1chy74BtajIPuq9b/mnXtjMhrZsvW3qr0hgiBUSMzMCEIVXNMZ3TaDWXlcKV2oWMLnnkJ8lMQFqkjT6D1ixtIR6motouq4fDkLfVEhEXHNSz1Wv0kLZJOJ3MsXrfeV3ANjoS/SsmX+J6SsWkxe5iXbWkX5eaWOD46KtbntG1QPAK3GXDg153pQE9awic1xfsEh1mMtrp5PJePkEf7d/5ZyX58gCPYjghlBqIKMwqrX07iZEa9/hCw7d1lVRqHBJYIZsYTPfXWMUHtEIOpIdbEWUXUoqrhmpOQsjMWq6a+Rsmox3R94gka3JaIOCEKSJBa/NrHM79u/z+xYVePLSDaZaN6lD73L2fs1YmDHMu8XBKF6RDAjCFWQUWhAAXatf6BUOffCRiFBhtZAPD5O7YcjlvDVVOq+HeYNx3N+omli9yo9t65V/G4W5E09bwW5xSaX+jd0JRKwJk3DhNYhIm1zBaLr10el9iPr7KlSj2WdPYWkUBAc2YALRw6U28afyatJGDqGIf9823qfXldEkSa3Wn2qF90QgKvnzxDaoLH1/oKca2jzcmyODY2No7iwgOa39y6zraaNw6rVB0EQyiaCGUGogktVLOSWnX6O6UPLH4V7b38WS9+aTOq+33ll7X6b59z5/BTU/oH8tmAmuZfTiWoRz92vTafhrR1s2sg8c5LkWe+TuncHOm0B9aIa0Kb/XQyc/K9K9dEkQ3qB80fUxRI+96aQJIY0DmTRyepdLNYFlixnW9ML6lQtoqry9lLSsmsfjv22nuz0c9ZlZJqrmRxcv4y49rejDgissA1JqYS/7QXcueQrTEZjtfrUrHNPFF5e7F76DS269LnR5v++LnVs2wF3s2n2dP76/Vdadutn85g+PxeTMRilQszOCYK9iGBGECpJlmUytFVbZuYfEsbod76wuc9o0LP2wzdQqirOdHVo/TJ0Bfl0HvEQkiSxdcFnLHpxPC+t2medzbn01xFmT7gLpZeKzveMIySmEVcvnOX41o2VDmbAPDMjy7JTZxAcsYSvpuISuvL2zvM3/beqiKss4asNDQNUJEao3a7YaW2qi7WIqkqSJMa+8Dpv7drCrEeH0uXeR1Aovdiz/FuMxcUMeu6tm7ZxS88BHPh5KT4BQUQ2bcW5w3s5tWcrfvVCq9WnwLD6dL9/ImzCbPoAACAASURBVNu++4Jvnx9Li279yPjrCCd+34R/vTCkEmlLej30NMd+W8+C5x+k41330aB1O4q1hWScOsqRTWt4Ku0s4eHhFZxNEISqEMGMIFSSUQZDFdeXefv602HIvTb3rXzvZYq1BTxaIr1nWXIyLvLiT7utm0vD45rz3T/G8dfOzbTudQdgro2ALPPMok3Ui76xgXXQs29UqZ8Gk3mGRunElS+OWMJXUwqFAoWPuvrPd5ElfLWpd4w/J3OLyRPLzcrlzFpEsiybv8tkGZPJvD/FS5JQSrjUcshO7dry5NerWTfz32yZ/wmySaZhmwRGv/OFTY2Z8tz10rsoFEoOrVuGvriIxu0689iXy5j39OibPrc8g559E5Xal70rvuPUnq00apvIo58vZfZjQ/Eq8T3h7evHxK9WsuXrj/kjeRX71/yA2j+Q8MZNGf/CvwgODq52HwRBKE0EM4JQSQY7pC/ev+Z/7Fo6n8H/fJtmnXpUeOxtA+62yZLTpEMXAK5dPAtAfvYVzuzfSbf7J9oEMlC9ixKDLKN0YlLkqi7hA/PM1Kf39WHcR98R33sQABePHuKzsUnE3NKWZ77/1Xrs/MljKMzL4elvNzBtSAKRzW6h2/2Ps/6TqWSdPUVog8YMmPQabfoPtT6nJntmwHWW8NUmlUJiqFhuVqHaqkUkyzLXdEYyCg1kFBq4VGggQ2soc1DGSwFRvl5E+3kRdf2/UB+l0wKcKD8vom+5jUc//6HcYzoOu5+Ow+4v8zHfwGBGTfm01P2W5bw3a6NpYnfe22+bdUyhVDLgqVcZ8NSr1vu0mlwKc64RXD/a5lgfvwAGPvM6A5953eb+YY0DUTl5n6QgeBpRZ0YQKslUwymD9BN/8NO7L9Fu0Ah6jn3qpsf/PUCxpgrNM18kXruQBkBU87LTf1aV0YlTItVZwgcQ2bw16sBgzu7fab3vzIGdSAoFl/46Yq1FYTKZSDu8lyYdulqPu3o+lcWvPk7L7v0ZOPl1FEovvn/lMU7u2lLj11OSZQlfXdIwQEVSbN3I4lZdjqxFlK0z8uvFAj7+4xpzj+WwOi2flKwiLhSUHciAeXb2QoGBlKwiVqflM/dYDh//cY1fLxaQravePpOaiPJzvbFWfVHpf68di2YD0KSSgx2u+LoEwd2JT5UgVFJV04WWpM3LYdFLjxLeqCkj3vioUs+RFOWlCnXMhbHSiUMb1VnCB+ZlYI3bdebMgV3W+84e2EV8nzs59tt60g7toVX3/mT89Se6fA1xCV2sx11JO82DM+ZbZ2IShz9ori7+6ds2G3xryhWW8DlDYoQvOqPMtkuFzu6KS7J3LSKTLHM6r5iUrCLOavSlUpxX9uNV8jidUWZvppY9mVriAlV0jFDTLMi7VpbGhfoo8VFKLpUU5PDGn0hZvYRW3ZPw9vMn7eBuDq1fTosufYhrf/tNn++jlAjxEWPIgmBv4lMlCJXkVc0fcJPJxJJ/PYlWk8vYDxfw/+3deXhTZdoG8PtkaZLuaRu601BakIJ0ZZdFKAoUwQVwFBRGEZVxGxccR+dTGQfZHBxxHAZUhBFxRkBhQBQQBCt7oegAIlAohVJpS+lGl7Q53x8xoaEtbZr1tPfvurgum5ycc3JMmzx53/d+vDTeDjmfoChTPGjBqZ8csr+2Pj9HsGcKX5eU/sj/6QfUVlUCAHKz96P7LekI79YLZ38tcs4c3gtBEKw+cPjrwtBzeIblZ7WvH1LGTkL+Tz+ivOiXNp9PUxwxRVGKBoZqMDjcMa/39sjci8heeRUGLD1WgrU55cj9tdePo15x5v3klhuwNqccS4+VIK/C+VMnBUFAYrDajRNfGwuLT4BMrsCule9i08JXcPbwXgy8bwYmL1ze4mMFAEnBao9al0TUXnBkhqiV5IJpXrmtIwjf/HMBTu7ZgWmLP7XqT2AvX20IuqQMQNaGTzB4yuNW09JsTSZTyEyL1d3Fnil8+uT+MNbV4dwPBxEQGomKy4XQJw/AL6dPWIqZs4f3olNsd3gHaC2PC47u0ugahXTuCgAoyc+DX0ho20/qOvVGAB0j0MyKIAgYFOYNlVzAtvOV7aYhqqPY24vIYBSxM78SBwurLR/6nXV9zfstrTVi1clSpOnUGBrh49R+Ockhauy/5JypeG0R2SMR05esbdNjRQBJIW0PEyGi5rGYIWolQRAQplHgfGXr13YUnDyGHe+/BX3KAFReLsLhTZ9Z3X990pmt7pg1B0seGovFk0eYopkjY1CSfw4nMrfiqU+/bfV+wjQKt35jaM8UvsiEJChUapw5tAeBYZHwDdJBF9MVXZL7Y99ny1FXW4Ozh/ei560ZLe/MSdw5hc8TpOk0CNUosDG33G0pZ7lH9uPknm8xaPKj0Ph5TppUW3sR5VUYLNcTcF2RaD5OVmE1TpbWYmyMn9MiprUqOfR+SuSWGyRdBAsA9H5Kh0wnJKLGWMwQ2SDcW4H8ytanbl0tLYEoijiTtRtnsnY3ut/eYia8Wy/MXPEVtr43F3vXfIS62hpow6Nw88jxrd6HTAAifNybrmPPFDeF0gvRPZNx9vBeBIRFQp9smkqmT+6PutoaZH+5BhXFhdCnDLB6XHHemUYjWEXnTgMAtBHRbT6fJs/RRYWiJ8fuRvsqMb2H1mokwZUfUHOPHMA3SxcgddxvPKqYAWzvRXSwsMrtI13mBqCrTpYiPcoHaTqNU46TqlPjbLm0EwFFAKlOuj5ExGKGyCZh3gqb4oObive83sTX37X6WRvRudnHNHV7aNebMOWtj2w4K2tG0TQy405tncJnpk/uj8xVS1B8/qwlKc5HG4xOXbph54rFAK5FW5uVFRbg6PZNlgCA6opyHNr4H4R37+XQKWbOmsInxdhdpUxAepQvugeqsCm3HFdqjR1+6pktvYhEUcTuX6osoQruvm7m4287X4maehEDQzUOf0119fdCoJcMpRLtWyQACPCSIdafccxEzsJihsgG7TVW093Pqy1T+BrSJ/fHjg8WobTgAvQNihZ9ygDsX7sC2ojOCAiNsHpMSExXrJ39DM4fOwzfIB2y1q9GxeXCJntT2MPRU/hKaupxuKgaR4qrLUlPLTUbNcfuNhxVVMlNC6yTQ9Qun/4S7avEjAQtcsoMyCqswpkm0rccaduS+fhm6QIAwPyx1xouztqYBW1EZxze9BkyVy3BpTM/Q6lSI77/MIx+5jUEhkVatj1zaA92f7oMef87hIriQvgGhaDXiDtw+xMvQ6lu+7futvQialjIeBrzeQ0Kc2zgg0wQkCHhvkUigLExfi5vjkrUkbTPT2ZETuKJcaH28pS4UFun8DUUk9gXMrkcSrUG4d16WW7XJ/fH/rUrrAocs+DoWNwx601sfvt1FOWegjaiM+6buwzdBg6341lYc9QUvvYWuwuYPqTGBXghLsALJTX1yC6qRnbDAk0wfdB3hJ7DM1B07jSOfLUOGc/9GT6BwQBMo3c73v8rtv5jLm4eOR597pqCypJi7Pn0fSydPg5Prt5umZL247YNMFRXof+EafAOCELe0UPY8+/3UXopH5Pnf2jX+Zl7Ed2o6D14yXMLGbPvLl6FSi44fMpZtK8SaTo1sgqrJTU6IwBI06kR5aQ1RURkIogdrZsbkZ22X6jEgUtVknpTbY4AoG8nDW6NdH+Dw6OXTc36XGFeRgpCu96Eae984vRjjYvxQ0JQy1OImpNXYXD6lCzzfgO9ZMhw4oLuloiiaTF8wa9T5vIrDc1OnbPVrpV/x+a3X7OMxgCm1LqF4/sg/bEXcevDv7dsW3DqOBbfPxzpj86y3G6ormo0AvPt8r9hy7t/wayNhxo1ubXVC4nBkDczHzGvwiCpkYnJ8QEOfw0ZjCLeP17itgAJWwkA/L1kmN5D69TENyJinxkimyWHqCXxZtoanhQX6u6pbs7S1udlMIrYdr4Cq06WotTJiVXXx+5uO18Bg6OGRWwgCAKC1HIkBKkwPNIHU7oF4rnewXghMRgzewY6/HhHt2+CaDTi5pHjUVlSbPnnF9wJIdGxyDn4vWXbhoVMbVUlKkuKEdO7D0RRRP6JH+0+l+Z6ERmMIjbmlntUv5UbEQBszC13+OtHKRMwNsZPMn97zdPLWMgQOV/7/PRA5ESMC3UOTuG7piPE7raW8Gsam0Jw/HdvRXk5EEURb93ZdPd2meLac79y8Ty2LpmL4zu/RlXZFavtqivK7D6X5noR7cyvlMxoBHAt5WxXfiVGRPk6dN/RvkqkR/lg2/lKh+7XGdKjfNz+u0PUUbCYIWoDxoU6nrnjd3uawteWjt8dKXbXFvb0ImqOaDRCEARMW/wpZPLGlYSXxjT90lhfjw9mTkBV6RUMnfYkdPp4eGm8UXrpIta8+iREe7q+/qqpXkR5FQYcLKy2e9+uJgI4UFiNboEqh3+gT9NpUFMvevT6ocHh3h7xO0PUUbCYIWoDxoU6h6s6fr+46ZDTj2HrFL6OGLtrC3t79TR17sFReoiiCG1kDHQxXZt9bMGpYyjKPY2Js99Fyth7Lbef3PutXefU0PXPzyiK2PTr9DJ3vxbaQgCwKbccMxK0Dg+VGBhqKhQ8saAZEu6NAaEsZIhciWtmiNrAHBcqxQ8ZgOfGhZqn8HnWWdlOANDFxil8nh67u/sX5xeZN2LuRdRWXhpTZHBV+bWF9D2HZ0Aml+ObpQtwfRaOKIqovHIZACCTyS23Nbz/+0+Wtv2EGmiqF9HpslpckeiXJYDpb8yVWiNyyhw/gi0IAgaFeSM9yjRy5u6/F+bjp0f5YGCYt9sb1BJ1NByZIWojxoU6R0ecwteRY3dby95eRBE9EgEAW/4+B71vuwtypRI9htyGkTNfwteL38CV/HNIGDYGKh9fXL5wDkd3bELfux/EkAd/B50+HkFRemxe9BrKLl2EyscPR7dvbLR2pq2a6kWUVVgt2VEZMwFAVmEV4gK8nLL/NJ0GoRqFZX2ZO66VObXME9aXEXVULGaI7DA0wgcnS2sls0DX/MY7JML9UczN6WhT+PIqDNh2wfMXNAOmKWehGoXbPrTZ04soumcyRs78A/atWYGfd2+HaDRi1sYsDPvt0wjp3BXfr1piaawZEBqJ+P7D0GPoKACAXKnE1LdX4b8L/ohvl/8NSi81Em4dgwH3Pox3fjPMrufUVC+ikpp6yRf0gKkQO1NuQElNvdOCRqJ9lZjeQ4ud+ZU46MIC0HycNJ0aQyJ8mFpG5EbsM0NkJ/aAcDypXdPrTYkPaNXIF3tn2MaVvYhc6fpeROxl1TYdqScTEV3DNTNEdjLHhUqBVOJCzVP4pPZdpwCgjw1T+KQcu+sOHaEXkSiKOFIsramrAPDZq09gXkaK1W0vpeiwdcl8ZBdXN1qT5AzRvkrMSNBiQqw/9H6m30FH/Q0x70fvp8SEWH/MSNBK4m8pUUfQPt8ZiFyMcaGO196n8DF213YdoRfR5Zr6dvX8AKCmXkRJjRFBauf3tJIJAuICvBAX4IWSmnpkF1Uju7jack1lAtCafp4Nt1PJBSQFq5EUovaYvlxEdA2LGSIHYVyoY5k7fktlupktHb8Zu9vG43aAXkQFV9sWcOBud7+yCKLY/Gqmgqt1LilmGtKq5Lg10gfDIrxRUmNEwdU6FFTVIb/SgIKqOtQ1cboKmSmQIcJHiTCNAmHeCmhVMiaUEXkwFjNEDmKOC1XJBbc3PQSuze32lKaHbdFeO36bY3elqmHsrrOSqprjql5ErtBUL6KCq3WQAW0KOXAnubL5175MAAqq6pAAVbPbOJMgCAhSyxGkllvOQRRFGEWgThRRbzQ1LVUIAmRC0z2JiMhzcc0MkYOl6TSYHB8Afy+Z29Z8mKc8TY4PkGwhY5am02BwuLe7T+OGbJ3CZ47dlTJz7K6rtfdeRBevmtLaaior8N8FL2NeRgpe6ReJN0b0wAePT8CF40cs2/64dT0W3z8CfxoQjT8P745/v/w4Si9dtNx/cP0neClFh/yffmh0/B0fLMIf00Kttm/Onv98iEUTbsEr/SIx57ZeWP/mLKt+PUDTa2bMjCKQX+lZ6WyCIEAuE6CSy+CtlEEll0EuE1jIEEkQixkiJzDHhabqTN+6uurt0XycNJ0a03u0nwWqA0M9t6AZEu5tmWLYGubYXalPk2oYu+tqqTp1u7h+1/ciEkURBVWmaWafz3ke+9Z8hF4jxmL8S/Mw+IGZUKrUuHTmJAAga8NqfPLidMjkctz+xMvoc9cUHN2xCf98aKyl0Lg5fRyUag2yN69tdPzszWsRmzoIAZ3Cb3ie25bMx4a5L8JfF4Yxv38dvUaMxf51K/HhzImoN7S+QCmoqnNJCAARdTycZkbkJEqZgPQoX3QPVLksLjSgncaFtqcpfIeLpN8M0UwAkF1U7ZLY3Ybaay+iehGWdRwnvtuKPndNQcazsxts8aRpO4MBX73zZ4TG9cCM9zdAqTJ9aaJP6ocVT09G5sdLMPLxF6Hy8UXCsNE48tU6jHr6Vchkpu8v83/6AZdyTmDIg7+74XlWlBTh2+V/Q3z/YZj27r8tj9fp47Fh3h9w+MvPkDb+/lY95zqjaYRGzoEPInIwjswQORnjQh1H6lP4nBW7u/SR8Xh74mAH77VlIuCy2N2GZIKAjBg/SRYywLWwiOvDE+oaXEe1XwDy/ncIZYUFjR5//lg2Ki4Xov/E31oKGQC4afBt0OnjcSJzq+W25IxJKCssQM6BTMtt2ZvXQqnWoNeIO254nqf27UK9oRaDJj9qKWQAoM/dD0Dl62d1nNao48gMETkBR2aIXIBxoY4j5Y7fjN11HHMvoqxCafVkEWB6DTXVi8jYYNX/6Kf/D5+9+iTmjk5EZI9EdB+UjpSxkxAUpceVgvMAAF1MXKN96LrEI/fwPsvP8f2HwS8kFNmb1yCu3xAYjUYc+WodegwdBZWPLwDgamkJ6g21lscoVRqo/fxx5WJek8dRKL0QFBmDkovnbXru9UYAHedPFRG5CIsZIhdjXKj9pDqFT6qxuy1xR+wu0P56ETUY/EDv2+6EPrk/ju74Eqf2fotdK/+OnSsWY8rC5TYdUyaXI2n0Pdj/+b8w/qX5yM3ej7LCAiSPmWDZ5uPnp+FM1m7Lzyl33IuJr79r03FaQ865IETkBCxmiNyEcaH2M0/hyykzIKuwCmfKDQ4rasz70fspkarTINZfaXdPFanG7t6IO2N321svIsV1ry9/XRgGTHoIAyY9hIrLhVh8/wjs+GARRj/9GgCgMPcUuva1nl5YdPYUAsOjrG5LzpiE7/71Hn7a9TVOfP8NfLQhiB8w3HJ/xu9no6r8iuVnP10YACAwPNpynKAoveX+OkMtSi6cQ1y/ITY9/+ufHxGRI/B7EiIPwrhQ25mn8N0bF4BHE7To20kDVYNVxq2dDdZwO5VcQN9OGjyaoMW9cQGIC/CyqZApLy/HM888A71eD5VKhU6dOmHkyJHYcyDLUsg4I1b3wrEj+Me0MfjTgGjMH5uKfWs+avTYutoabP3HPCwY1wev9IvE3NGJ2Pz266irrbHa7uD6T7Bsxl14Y0QPvNIvEovuGYS9nzUeFXhzTAqem3I3MjMz0bdvX6jVasTGxmLlypWtvl72MPcikoKWehHJBdMorLG+HtXlZVb3+Qbp4K8LQ11tLaISkuAbpMO+NSus/r+d+H4bLp35Gd1vGWn12PBuPREW3xMHPv8Y/9u+Eb1vvxNyxbXvMiMTEhHXb6jlX2hsdwBAXL8hkCu9sHv1Mqt1UQe/WIXqirJGx7kRhaz1v4tERLbgyAwRtRueMoXvsccew5o1a/DEE08gISEBxcXFyMzMxLHjx9Fb3xNZG1ZjzWtPIapnMm5/4mVUXC7E7tXLkHtkP55cvR0avwDcnD4OG+b9Admb1yLipt5W+28qVreq7Ao+euo+3DxyHBJH3YUft6zHF3NegFyhRNqdkwEARqMRK5+ZgrPZ+9H37gfQqUs3FJw6hsxPlqDo3Gk88NdrBci+NR8hNLY7egy9HTK5Aj/t+hrr35wF0WjEgHsftjqfC2dzMGHCBDz88MOYOnUqPvzwQ0ybNg2pqano2bNnm69ja6XpNKipF/HdxatOP1ZbtaYXkSAICNMocLK0FHNH9Uav9DsQHt8LXt4+OLVvJ84fPYwxz86GXKnEqKf+hDWvPYWl08cjcdRdqCguxPerl0Eb0Rm3THms0b5Txk7Cl4teBQAkj5nYqnP21YZg2G+fxjdLF2D57yahx9BRKMw9hX2fLUdUz+RW7wcw/Y7xSxkicgYWM0TU7rh7Ct+mTZvwyCOP4K233rLc9uzzL2DhkWKnxeqWFRZgzLOzMXjK4wCAvvdMxXsP3o6v3/0LkjMmQa5U4sjmtTi1fxdmLFsPfXJ/y2NDu/bAF3OeR+6R/YhJ7AsAmLFsPZTqax++B/5mOj783SRkrlrSqJgpPHsKO77diWFDTdOOJk2ahOjoaCxfvhwLFy501GW9IXOvH08saIaEe2NAK3sRhXsrcE6tQf+JD+Hk3h04un0TRKMRwdFdMP6l+eg/8bcAgNRx90Gp1mDnR+/gq3f+DKXGGz1vHYNRT/8fNH4BjfabNPoefPXObARF6RHdq+nmlk1Jf2wWfLTB2PPvD7DprT9BExCIPnc/iNufeBlyZevWj8kEIMKn/aYsEpF7sZghog5BEATIBUAOwemJSoGBgdi3bx/y8/MREREB4FosrTlWd8SjLzQbqzvy8RcBmNY6HPlqHXIOZFrWJzQXqytTKNDvngctPyuUXuh3z1R8MecFXDh+BJ17p+HHbRvQqUs36PTxqCwptmzbte8tAICcA5mWYqZhIVNdXob6OgNiUwfi5J4dqC4vg9rP33J/p9juGHDLLZafdTodunfvjpycHDuuom3aSy+iMG8FZEovjH7mVYzGqzfctvdtd6L3bXe2ar8yuQIQBCTZMJpiNuDehxsVsNdrKjDgzUOFAEwJjGEaftwgIufgXxciIgebP38+pk6diujoaKSmpmLMmDGYeN8UAIEOj9U18w8Jg5fGeu1ISOeuAICSi3no3DsNxedycOnMz3hjxE1NnndFSZHlv89m78O2JfNx7oeDMFRbj3ZUV1gXM4FhkY1id7VaLUpKSpq/SE6SptMgVKPAxtxyt6WcmVPLxrYh/S7M2zlvy1n//RRifT1SMmwvZhzBWc+LiIh/XYiIHGzSpEkYPHgwPv/8c2zZsgULFizAvHnz8JsFjo/VtYUoGhEWl4CM52Y3eX9AaCQAoDjvDD547B7o9HHIeHY2AsIioFB64afMbfh+1RKIovXiI0EmbzJ219XNNM2k3IsoSCWHSi44rB/R6f3f4ZecE9jxwSIkDBsDbURnh+zXFiq5AK2KeUNE5BwsZoiInCA8PBwzZ87EzJkzcenSJaSkpDglVtesrKgAtVWVVqMzRedOAwC0v0bsBkXpcfHno+jad8gN1wkd3/U16mpr8OCij63O53SDLvLX87TYXan2IhIEAYnBahy4VOWQc/1m2UKcO3IAMUl9cceLbzpgj7YRACQFq7n4n4ichl+VEBE5UH19PUpLrfuedOrUCREREah3QqyumbGuDvvWXksjqzPUYt/aFfDRhiCyRyIA4OaR41F26SIOrPtXo8cbqqtQW1UJwDQiBFiPrFSXlyFrw+omn7NM8NzYXXMvogmx/tD7mYoMR52qeT96PyUmxPpjRoLWrkLGLDlE7bCia8ay9Xhjfz4eWfqFVfqdq4gAkkLULW5HRNRWHJkhInKg8vJyREVFYcKECUhMTISvry+2bduGAwcO4P4/vOG0WF1/XRh2fbQYJfnnENK5K37c8gUunvgf7nrlr5bUqeSMSfhx63p8Med5nD5oWuwvGutRePYUfti6Hg/9/T+ISkhCfP9bIVd6YeUzU9D3ngdRW1WJ/ev+Bd+gEJQX/dLo2Cq5Z/dCMvciigvwQklNPbKLqpFdXG2ZyiUTTIvUW97Pte1UcgFJwWokhaihVTk2UUKrkkPvp0RuucGtIQb2EmAq9Bx9fYiIGmIxQ0TkQN7e3pg5cya2bNmCdevWwWg0Ii4uDu+99x663fEAsgqrnRKrq/EPxMTX38WG+S/hwOcfwzdIh3EvzkXfux+wbCOTyfDAWyuRuWoJDm/6D47t+BJKtQZBkTEYdN8MS2CATh+HyfM/xJb33sSXb78Gv+BO6DdhGny0wVj7+tNWxxUAqJpaMOOhPKUXUUtSdWqcLTc4bf+uIAJItSHJjYioLQTRXSs0iYg6mKOXq/Hf3AqbH1dZUow5t/fC8Eeex4hHnnPCmdlnXIwfEoJU7j4Nu7myF1FLjKKIpcdKUOqmRDZ7CTCtIZqRoIXMg0ftiEj6pPN1GhGRxLU1ntbdsbotaS+xu4IgQC4ToJLL4K2UQSWXQS5zzxQ6mSAgI8ZPkoUMYBqVGRvjx0KGiJyufbwDERFJgK2xu54Qq9sSxu46T7SvEmk6NbIKqyVV1AgwxVNHOSAMgYioJSxmiIhcxNbYXXfH6raEsbvONzTCBydLa93WANRW5oahQyJ8WtyWiMgRuGaGiMiFSmrq8c9jJe4+DYd5NEHLtCony6swYNXJ0pY39BCT4wMcElFNRNQanBtARORC5thdqY9lCAC6MHbXJaJ9lUiPksZIR3qUDwsZInIpFjNERC6WqnNcU0R3Yeyua6XpNBgc7u3u07ihweHeSONrgohcjMUMEZGLdfX3QqCXTLKjMwKAQC8ZYv35DbwrDQz13IJmSLg3BoaykCEi12MxQ0TkYozdpbYQBAGDwrwtU87cffXNx0+P8sHAMG8GQRCRW7CYISJyA3PsrtQ+/gkA+jB2163SdBpMjg+AvxtH98ypZZPjAzi1jIjcimlmRERuYjCKeP94ieRid6f30EIpk1oZ1v4YjCJ25lfiYGE1BMAlryHzcfro1BgS4cPXARG5HYsZIiI3Yuwu2SuvwoBNueW4gpaPEAAAAglJREFUUmt0WlFj3m+glwwZMX58DRCRx2AxQ0TkZgcLq7DtfKW7T6NF6VE+nFLkoYyiiJwyA7IKq3Cm3OCwosa8ny5+SqTqNIj1V3KtFBF5FBYzREQe4PuCq/ju4lV3n0azBod7Y1CYZyZpkbWSmnpkF1Uju7gaNfWmt3iZABhb8W7fcDuVXEBSsBpJIWr2EyIij8VihojIA4iiiN2/VHlkQTMk3BsDQjVMq5IYURRRUmNEwdU6FFTVIb/SgIKqOtQZG2+rkAFhGgUifJQI0ygQ5q2AViXj/3Mi8ngsZoiIPIh5ypmrFnQ3x3x8Ti1rX0RRhFEE6kQR9UZALgMUggCZABYuRCRJLGaIiDxMXoUBG3PL3ZZyZk4tG8uF3kRE5OFYzBAReSDG7hIREbWMxQwRkQdj7C4REVHzWMwQEXk4xu4SERE1jcUMEZGEMHaXiIjoGhYzREQSxNhdIiIiFjNERO0GY3eJiKijYTFDRERERESSJHP3CRAREREREbUFixkiIiIiIpIkFjNERERERCRJLGaIiIiIiEiSWMwQEREREZEksZghIiIiIiJJYjFDRERERESSxGKGiIiIiIgkicUMERERERFJEosZIiIiIiKSJBYzREREREQkSSxmiIiIiIhIkljMEBERERGRJLGYISIiIiIiSWIxQ0REREREksRihoiIiIiIJOn/AWJA7mdMr1CKAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAJrCAYAAAC/TNTkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3iTVfvHP0m696aFIqVQRgXLKAXKkClTkK0yXFAQFyoO3lcUx6sC8hMXWxAQRRmyESlDhkqhyN4FymhLB91N2qZ5fn+EhKYDOpImKedzXb0gz3NyzsnTNLmf+3zP95ZJkiQhEAgEAoFAILBI5OaegEAgEAgEAoGgfESwJhAIBAKBQGDBiGBNIBAIBAKBwIIRwZpAIBAIBAKBBSOCNYFAIBAIBAILRgRrAoFAIBAIBBaMCNYEAoFAIBAILBgRrAkEAoFAIBBYMDbmnoBAYEwkSeJ2fhFJeWqS8tQk5qlJUqpRa0q3tZGDv6MNAU42+N/58bJXIJPJan7iAoFAIBCUg0xUMBDUBtLzi/g3VcXxNBX5Rdq3tBwoI0YrRfF29goZYd4OtPZxwNNeYaLZCgQCgUBQcUSwJrBaNJJEXFYBsSkqrmYXIgOM8WbW9RPkaktbXwcaudkhF9k2gcBoSJJEkQRqSUKjAbkcbGQyFDJEZlsgKAMRrAmskus5hWyNzyajQGO0IK0kun497OQMaOBKfRdbE4wiENRuhDRBIKg+IlgTWBWFGok/E3I5kqIyWZBWEt044b4OPFrXGVu5+OIQCO6HkCYIBMZDBGsCq+F6TiFb4rPJKtDUSJBWEhngZidnoJmzbGIJSWCpCGmCQGAaRLAmsAqOpCiJvpFbY9m08tCN3yvQmXBfR5OPJ5aQBNaCkCYIBKZDBGsCi0aSJP66pWR/Yp65p1KKLgFORNZxNEkwJJaQBNaCkCYIBKZHBGsCi+ZgUp5FBmo6ugQ40cnfySh9iSUkgbUhpAkCQc0ggjWBxXIkWUn0zVxzT+O+GGNJVCwhCayNB1WaIBCYAxGsCSyS6zmFrLqYae5pVJjRIe5VCn7EEpLA2nhQpQkCgTkRwZrA4ijUSCw5m262pZXKoluKGd/cs1KBj1hCElgjD5I0QSCwFEQhd4HF8WdCrtUEaqDNUmUVaNiXUPEl2yMpSlZdzDTr69TNe9XFTI6kKM00C9MhSRJqjYSqSENeoQZVkQa1RkLcn1adI8mWmVErzv7EvFr5fhY82IhC7gKL4npOIUdSVOaeRqWRgMMpKpp42N8zS1VyCcncYYNu/OgbueQXSVa7hCQsTkzP9ZxCq9CQgvb9XMfRRmSMBbUGsQwqsBg0ksSiM+lkWlFWrTgywN1OTlSoZ7m7LcUSknERFic1w4MiTRAILBWRWRNYDHFZBWQUVORr1jKRgIwCDZezCmnsblfqvLUsIdkrZBa9q+5+FicVfQcVb5dfJHE4WUlMslJYnJSBNUsTega6mHs6AkG1EcGawGKIrcEdkaZCBsSmKEsFa2IJyTiUtDgB471fdP3EZxdyNbvQaixOTF1+rLZLEwQCa0AsgwosgvT8IhaeSTf3NIzGxFBP/XKaWEKqPsLiREtNa/MeBGmCQGANiMyawCL4N9X6s2o6ZMCxVBXd6zkDYgmpuhS3OIGae4/oxolNUXExs8CsFidV0eapNXAjV01CrrrK2rzaLk0QCKwFkVkTmB1Jkph78rb+S6g2YK+QMaWlFzdy1VZl7luSqpr9GosH2SXfEsqPrb6USXx2odXcaJSFDO1rHdXY3dxTEQiqjMisCczO7fyiWhWogVawnqYqYmt8ttkDjaoiA7bGZ5tlCelBtzixBG1een4RV7MLjTSq+ZCAK9mFpOcXiZ2+AqtFmOIKzE5SntrcUzAJJ9LyybCi5c+SFF9CqmkstZwRaHfM/nXLNKarhRqJ6Bs5rLqYSaaJl311/WbeMUaOvpFDoebuaDppQm1AJ00QCKwVEawJzE5SnrpKb8QCpeXurpTL4FxGvtV/2el2t9Yk1mJxYmyX/Os5hSw5m07snZ2X5tDmLTmbzvWcQiRJ4niayiRzWDRhMIsmDK5Q29RrcXw/eQQzugYzrY0vp/dsq9KYEnAsTVXp6hUymYwZM2ZUaUyBwJiIZVCB2UnMU3Pj3Al2fPs/4o/HIGk01G/Rlsde+g8PPRIOQOymn1k741UmLN7AiT82cip6M0XqQj748xLpCdf5c/k3xMXsIyPpJrYOjjRq15n+U2bgWfch/Ti6PiYu3cKpXVs4tnUNBSolIR27MeS9Obh4+ujbajQadi/6gpj1K1DlZFG/RRsGvTuTH155iuDwSEZ8+K2+rTI7k+gFszi9ews5t1Nxr1OXiKFj6TLuZeRy674fquklpAfV4sQStHnFy491rONoEdKENe+/QnpCPI9N/g+Oru4Ehraqcl/5RRLp+Rq8HMRSqMD6EMGawKxIksSxk6dY+MLj2Du70vWZl1HY2HJo3QoWRz3BhMUbeahlW337jZ+9g7OnNz0mvEmhSpt9uXHmX64dj+GRx4bgXqcu6QnXOLT2BxZNeILX1x7AztHQkX/zrGk4unrQI2oqGYnXOfjTQjZ9bsvTM5fo2+z45hP2Lf+G5l37ENKxO4kXTrPspZGo8/MN+ipQ5rFo/GCyUhKJGDoOD/9A4k/EsOObT8hKucXjb/3PhFevZii5uxVM4+1VqJHYYkUaPxmwJT67WhYnlqrN+9tEy7yVoVCl5NqJw3R/4XUinxxvlD6T8tQiWBNYJSJYE5iVIgm2f/cZRWo1k5ZuwSswCIDWA0byf0M78vtXHxK1ZJO+vZObB+MXrEeuuPuB26xzb1r2GmTQb/OufZj/bD9O7dpCm4EjDc45uXvx/Lw1+qBCo9Hw9+rFqLKzcHB1IzstmQOr5hPavT9j5yzXPy964Wx2LZxl0NeBVfO5feMKr/y8G5+HGgHQfvgzuPn6s3/Fd3QZOxkP/3rVv1AVRLe8FLV44z3bXT5yUBsML9pAcHine7aVgH9Tlfg6yLmlLDKZt9eDaHFiydo8c5ObngaAg6txdnHKZZCkVBOKvVH6EwhqEuteoxFYPflqNRf/3ktot376QA3AzdefsL7DuHrsEKqcbP3xdkPHGgRqALYOd60UigoLyc24jXf9hji4upNw7kSpMSOGjjUIHhq27oCmqIj0xOsAxMXsR6NW02HEcwbPK+vu/uTOzQS17oCjqwe56Wn6n8YRj6IpKuLK0b8rd0EslAINbLmWS2yKihu5ZQdqcNfbKzZFxeb4HBafzWDuydvsvplLen5Ruf3rXPKtJVDToXPJv55T+U0YNaXNi14wi2ltfEmJj+OX/77IjK7BfNKjGX/M+wxJkshIusmK18cyo0tD/tc7lP0r5xk8X12Qz875M5k9qB3vta/H5/3C2D73Q9QFhlnmIxt/YnHUED7p2Zz32tfjy2Gd+GfNsirPeeaA1gBsnzuDaW18mTmgjf58ZnIia2e8yv96hWrHGt6ZIxtWleqn+Nz/E1GPEeFNePvtt8kvkSHPz8/n9ddfx9fXF1dXVwYNGsSNGzeqNHeBwBSIzJrArNy6lUKhKg/foMalzvk1DEHSaMi8dVN/rLgGTUehSsneZV8Ru+lnspITDUTEqpysUu3d/QMNHju6eQCgzM4AIONO0OZdv6FBOyd3T31bHWnXL5N08TSf9GxW5uvLvZ1a5nFrxRR1NzWS9MBZnJhDm/fzu+Pxa9iEvq9M59z+nexZ8n84uXkSs345we260PfV9zm2fS3bvvyAwNBWNGwbiUajYcWUMVw9FkPE0LH4NWxC0qUzHPhpAanX4hj7fyv0/R9a+wN1gpvS/NE+yBU2nNu3g42fvY2k0dBx1AuVmuvDPQbg4OrG1jnTCes7lKademHnpF2Gz05LZv4zfUEmo8OoF3Dx9Ob8wV2s+2gKqtxsOo+eBFDm3JPjzvDll19y4cIFNmzYoB9v/Pjx/Pjjjzz99NNERkaye/duBgwYYISrLhAYBxGsCcxKZfX3xbNoOjbNmkbspp/p9PREHnokHAcXN2QyGT9Pi0KSSocXJTNzeqoQKUgaDY07dOPRZ14u87xuafRB517eXg+aS765tHn1H27DkPfmABAxdByzBrZh25fv0+eV93j02VcBCOs7lM/6tOTIpp9o2DaS49vXcSlmH1GLNxLUuoO+rzqNmrPh06nEH4+hQVgEoF16L/73GfnkeJa+NJIDqxZUOlgLaPIwDi6ubJ0znbrNHqH1gBH6c3989ymaoiJe+3Ufzh5eALQf/iw/T4ti18LZtB/2DLYOjuXOfXTXcCZPfpG//vqLyMhIjh8/zo8//sjkyZP57rvvAHjppZcYPXo0J06UzswLBOZABGsCsxLg54etgxMpVy+VOpdy9RIyuRz3OvW4cfrfcvs4Fb2ZNgNHMeCNj/THCvNVqLKrVjnAI6A+AGnXr+BVr4H+eG7GbZRZGQZtvQKDKMjLpXH7R6s0Fmj1Y9u+/IBbcedw8wug67iXyU69xa5Fs/nsaAoARWo1e5d9xdHNq8m8lYCrTx1a9R1Kz4lvYWN3bw1O5q0ENs18l4v//ImdoxOt+g2jSWSPKs+3OpT09gr3dSBFWWS1WTUdOouTigRr5tLmhQ8Zo/+/XKGgXmgrMm8lED54tP64o6s7Pg0acftGPAAnozfh17AJvkEheg0ZQKOIzgBcPnxAH6wVD9RU2VkUqQsJbhvJxb/36PWg1UWSJE7t2sIjvQeDJBnMqUnH7pzY8Rs3z50gqFX7cuf+ePfuAOzZs4fIyEi2bdPagbz66qsGY02ZMoWffvqp2nMWCIyBCNYEZsXORkGTjt04++fvpCdc0y9zZqclc+z3dQS1ao+Di+s9+5ApFFDCP+nv1UvQFJWvkboXjSK6ILex4dCaHwjp0O1un798X6pty96D2bVwFhf+2l0qAFJmZ2Ln6IzCpvw/s4RzJ1j28ihcferQa9LbaIqK2L34C5w9vQ3arf94Ckc3/0KLXo/TecyLXD8Vy95lX5F89aLBJoiSFKqULJk0lIykm0Q+OQE33zr8u3UNcYcPVPBqmAbdb+tISu0wKq2oxYlOm2cOSm50cXBxxcbeodR7zcHFjbzMdADSrl0m+cqFcpf5c9LvLvNfPXaI6AWzuHbiiH6ntg5VTvnBWnbqrVLjl5VBB8hNT0WVnUnM+hXErF9Rdps70oPy5v7JnX+Tk5MBiI+PRy6X06iRYRa8adOmZfYvEJgDEawJzIpMJmPMm+/xwT97WfD8QDqMeA65woaY9SsoKiig72sf3LePZl168++2Ndi7uFEnuCnXThzmUsw+nO4skVQWV28/Oj0Vxf6V81gxZQwhkT1IunCa83/twtnDG1kxq9uu417i7J+/s3zKaNo+/iT1modRoMwj6dIZTkVv5u0tR0t9GRYnesEsZHIFk5Ztxc3XH9AGgF8Ov7tDM/HCKY5u/oV2Q8YwdPqXAHQc+Twunr7sX/kdcYcP0Khd5zL7j1m/gtT4OJ6euYSWvbU7RdsNGcvXT3ar0rURlE9ZFifFMbc2Ty4vHUSW6wN45+ZHkjT4Nw5lwJsfldnMvY42AEy7foXvJw3DN6gxA974CHf/utjY2nHuQDQHVy0oU46g49PHWhg8Hj7ja9oOeqrsaWm0/bTqP4K2j48qs41/SOg95z60oSt2Cjn169cvd04CgaUhgjWB2WkX1pJJ329m+zefsHfZV0gaifot2jDy43kGHmvl8fhbnyKXKzi+fR2FBSoahEXwwvx1LH1p5H2fWx59X30fWwdHDv+2kksx+3ioZTjPf7eGhS8MxMbeQd/OztGJqCUb2fv9XE5Gb+Loll9xcHbFp0EwvSa9g4NL+Us/mqIiLsXsI7R7f32gBuDzUDBNI3tydt8OAM4fiAag8+gXDZ7fZeyL7F/5HecP7Cw3WDt/IBpXnzq0KGZtYufoRMTQcWz/6sPKXxgrYuaANqUMjE2JziW/W12nMq1KrFGb5xUYROKF0zSK6HpP+5Wz+3agLshn3Jc/4hFwdwNPRTK4L8xfa/DYL7j8jJazpw/2zi5ImqL7Sg/Km3ufMG8UxXzxGjRogEajIS4uziCbdv78+fvOXSCoKUSwJjA7/k42BDR7hOe/+7XcNm0HPVXu3bajqzvDZ3xd6vg7W49WqI/g8E56bZgOuUJB7xffpfeL7+qPKbMzycu4jbtfgEFbeycX+rzyHn1eea/c+ZdFzu0UClVKvAMbljrnVWwnanriDWRyeandqa4+dXBwdddbjpRFRtINvOs3LPVF61PG7ltrJf54DBf/3kun0RNxNJInV1W5l0t+bIrK6rR5LXsP5vyBaA6vX0nEsHEG5wpVSiRJg52js37TjsFO7OwsYjf9fN8xKqP3lCsUtOgxkGO/ryfp0ln8Gzc3OJ+TnqqvRFLW3G3kWr81pVKJRqPB2dmZfv368Z///Ievv/5av8EAYO7cuRWel0BgakSwJjA7/k6W9zYsVClL6WYOrloIQMP7mMiajCpWBqjtxB8/zK5Fs2k76EmDYO3N3/5GJqt5K8myXPLT84u4ml15LzZz03rASE7u3MiGT6cSd0S7mUDSFJFy9RIndm7k+e9+JTC0FSEduqOwtWPFlDFEDBtHgTKXmPUrcfHyKaVJqy59Xp1O3JGDzBvXl3ZDxlAnuCl5WekknDvBpUP7eH/vxXLn7m4DkxfE8+uvv7Jjxw7Cw8Np1aoVTz31FPPmzSMzM5PIyEh27drFpUulNz0JBObC8r4lBQ8cXvYK7BUyi6hFqOPEHxuI3bxa7+8Uf+wQx39fT0iHbgS1am+UMVy8fLGxdyDtxpVS525fv3vMMyAQSaMh7dpl/IKb6I9npyWjys7EM6B87Y2HfyC34s4hSZJBdi21jN23tY377ZI1BeW55P+ban1ZNdBq2sbOWcGBVQv4d+uvnNmzDVsHR7zqNaDTU1F6axrfoMaMnrWUP+Z9xra5M3D19qP98Gdx9vRm3YevGXVOrt5+vLRyB7sWfcHpPVs5tGYZTh6e+AU3o++r799z7o6OTjRpHMxrr71GkyZ3/5aWLl2Kr68vq1atYsOGDfTo0YOtW7cKXZvAYpBJkmRtnx+CWsjum7kcTlZazJfZzbPH2f7VRyReOEV+TjYu3r483GMgj700DXunqpUWKovlr40m7vABpm48pNetpV67zJfDO6FRq/nsaAqJF07x9ZPdiRg6Tu+TBbD9q4/Yt/wbxi/8Ta9ZK1lu6uBPC9nyxXsGGwwKlHl8/WQ30q5fqVC5KUsmesEsdi2aXer421tiWTThCQPNWuymn1k741UmLt3CqV1bOLZ1DQUqJSEduzHkvTn65bPqEuhsw5gmd82TJUli7snbJr0ZqWl9nqWQnnCNWQPb3nNTQnEGNXAl1EuUmxJYHyKzZkWYoni2pdDax4GYZPMXj9ZRr3kY4xesM/k4vSa+zcV/9rLguQG0H/4skqaIv3/5njqNmpF4/hQAAU1a0ObxUcSsX4EyO5OGbSO5cfooRzf/Qmj3/uVuLgDtzs+/f/meX99/mZtnj+Pqo7XusHVwKvc51sTDPQaQei2O47+vZ8CbH+Psod15e68duJtnTcPR1YMmnXuRmXSDc/t2sOlzW56eucQoc0pSqrl58yaLFy/miSeeoH6zFhaVNbYk/v51KXYOjhUKtIyBJUouBIKKIN65FookSdzOLyIpT01SntpkxbMtBU97BUGutsRnF1pMdq0qyABXWzk5hZoKlWaqFxrGc9+sZtvcD9g5/3Pc69Sl14vvkHLlooFR8NDpc/GqF0Ts5tWc2bMNFx8/uj33Gj0nvnXP/u0cnRi/YD2bZk3jr9XfY+fgSFi/YTTt1JNlL5dtfWBNBDR5mLrNHuH47+t5uHv/MsuRlcTJ3Yvn561h+WujuX3zGh2fnMDfqxcbzbhVrYEbNxP48MMPCQoKwvahsj3KjIm59HnVRbuE6VUjwZq9QoanvfVdI4EARLBmcaTnF/FvqorjaSr93bice9dk1BXPTshV69vZK2SEeTvQ2sfhniadlkRbXwerFGEXRwKaedpXKkvYKKILr/y02+DYyjfGGew6VdjY0DNqKj2jpt6zL93yZ3E8AgIZ9+XKUsdL7oB9UIgYOtbgRqZh6w4cXLWA9MTrBLg+XOZzCvNVKGztyvclK0FRMXVJUp76vn/D1cUc+jxrQga08nawqhtYgaA4IlizADSSRFxWAbEpKq5mF5YSIpuieLYl0sjNDg87OZlmKMVjDGSAu52cll6VC9ZK7jxNvRbH+QPRtCnH9FNQMSSNhuunjjJzQBuyU29hY6stBVWgUrJowmCuxP4FwI9TnwVg6Usj+O/OM1w+cpDFUU/w5GeLuHXpLLGbfiY79RbT915E0mjYu3QuF/7eQ/rNeGRyOQ3CIuj76nQCmmjNXS8fOci0qCcAeO6554DnAEOz12snY4leMJNrJ4+gUasJDG3FYy//t9TmlYqUIoOyNWvK7Ex2LZzN6T3byE69hbOnN43adWHAGx/dc5lYr+37fjMndm7kxO+/UaQu5JHHnuDxdz6jUKVk86z/6H0AI4aMpe9r7xsEQhqNhr9+XsTh337k9o2rOLi4EdqtH31fnY6jm4d+zhl3bGemtfEFoGHbSKIWbyQvM/2+17kySEArH4f7thMILBURrJmZ6zmFbI3PJqNAo/fFN1agcq/i2ZaIXCZjQANXVl2sWk1PcyMBAxu44uNQud2tsweF0+bxJ/GqF0RG4nX+WfsDCltbupZTHF5QMfIy08lKSaTT0xPxC27Cxb/2cDJ6ExlJN+n+wuuocrLIupVIu6Fj2bt0Lh1HGhYb3714DgpbW7qMfQl1YT4KG1uSr1zg9J5ttOw9CK+6Dci+nULMuuUsGj+Y19cdxM3XH9+GIbw/40M+mvEBEyZMIDuoNRoNNAhrB0BczH6WvaKtdtEz6i1kMhmxm1azZOJQJn6/mfot2gAVL0VWFvl5OSx84XFSrlyg7aCnqdf8EXIz0jj75w4ykxMq1MemWdNw9faj56S3uX4ylpj1K3Bwdefa8RjcAwLp8/J/OX8gmn0rvqVO42a0GXj35mLD/94kdvNq2j7+FJFPTiA9IZ6/f/mehPMnmbR0KwpbWwZO/YTNs6Zh5+hM9xdeB8DFWxu03b4Zf9/rXFFkQJCrbY2vMNRmjbGg5hHBmpko1Ej8mZDLkTtGmWC6bf1lFc9+tK4ztnLL+8Co72JLuK8DsSkqq8quyYBwXwcC7wTCYd4OFd7d2qRjD47//hs5acko7Ox4qGU4fV7+r94WQXBvyvviK8xX4tugEQPe0JYbkssVnIzeRNNOPQkMbcXBnxahzMokpEM39i6dS1DrDgbPVxfk8/KPOw2ynv6Nm/PmhkMGy6FtBozg/4ZGcnjDKnpOeBNXbz+69+vHRzM+oH2HjqS0flzfVpIkfvt0KsHhnXju21/0c28/7Bm+HNGFP+Z9xgvz1gAVK0VWHvuWf8etS2cZ88UPPNxjgP54j/FvUlEDABcvX579ZjUymYyOI58n7foV9q/4lohhz/DEf7Q7cCOGjmPWwDYc2fiTPli7+u8/HP7tR0b9bwGt+g3T9xcc3pllL4/iZPQmWvUbxsPd+7Nz3mc4eXjResAIg7Ercp0rigS09S271qixeNA0xoKaRwRrZuB6TiFb4rPJulN6pqaCEt04sSkqLmYWMNBCs2yP1nXmYmYBWVayHCoD3OzkdK17tyZkZXa3Dv/wGxPN7MHAzlG7s1WZnYlnseMyuZzc9DSyUpIqlYnR0WbgqFLGyMW1YZqiIpTZmdg5OuPToDEJ505o29xxyQco+Q5OPH+StGuX6TH+DfIybhucaxzRhX+3rkGj0YAkVagUWXmc3r2FgCYPGwRqOioaFLR7YrRB2/ot2nDtxGHCnxitPyZXKKgX2oqbZ4/rj52M3oSDixuNOzxKbnqa/ni95mHYOTlz+cgBgyCuLCpynSuCTpoQ7Gaaz7kHWWMsqFlEsFbDHElREn0j16wGmRKQdSfL1ivQmXAT33VWFlu5jIFWtByqW/4snqmsLbtbS5Kdlsymz98h7shBlJnpDHjzYzqPnkTqtTg2fv4u10/Fkp+TzZg5y3m4e/8amVPd5mEA/PHdpzzy2BAUtrY07/oYjq4eKLMy+LxfGPWah+HqU6dS/Za1s1Sj0fDXT4v4Z81S0hOuoSkq0p9zcteGiv6ONsgKte8FTYlffuq1ywCseb/8Je78nCwK81UVKkVWHmk3rtKix8B7tilZWcDBxc0gOHX3Dyx1HsC9Tt0Sx11RZmXoH6deu4wqJ4v/9TQsBaUj53bqfedfketcEXR/m8bU6gqNscAciGCthpAkib9uKdmfmKd9bO753Pk3+kYu+UUSkXUcLSoNX9/Fll6BzkTfyDX3VO5Lr0DnMjOUtWF3a0m2zpnOhb/30DPqLVy9/agX2gqANe+/QnpCPI9N/g+Oru4E3jleE9R/uDW9J7/LobXLufDXbiSNhre3xGLn6ESjdp1o2LYTl/7Zy/mDuwBtLdGKzM/WobQgfe/SL9k573PCBz9N78nTcHTzQC6Xs+WL95AkDXIZ1HW2hSxt+5JKA90SZL8pM6jbtGyhvJ2jM4X5qkpcgarx6WOG45c0ltXV+yyJXF7G8WJLq5JGg4uXL6P+N7/M51dEL3e/61wRSkoTjIHQGAvMhQjWaojigZqloZtXJ3/LMkoN93Ukv0iy2OsG0CXAqdzMpLXvbi2LuMP7CX20H13HvaQ/VqhScu3EYbq/8DqRT443y7x6jH+THuMNdUzvbD2q/3/Hkc+TczuFb57uycmdG+n0VJT+5iQ4vFOFbUxORW8mOLwzwz74yuC4MjsTJw8vNJI2s6a807ccw2jNKzAIAAdn13sWMK9oKbLy8A4M4lbc2Xu2eWH+WoPHfsFN79tvRfAODCIuZh8NwiJKLSOXopwbxPtd5/tRljShOgiNscDcCIfAGuBIsuUGajr2J+ZxJMVyKgjoiKzjSJcAywoidXQNcCKyTvlfRrrdrbUlUAPIvZ1ayjhWp0tyKFZE3dxoiopQZWcZHHPx8sXN1x91QQGg1bqpcrLKenq5yOQKSn5Nn9y5kazkRP1jf5iRdbgAACAASURBVCcbnJ21QUJWZgY2xT5l6zUPwyswiH0rvyM/L6dU/znp2iVCuUJB44iunNmznayUJP351GuXOf/XrvvO8+EeA0m8cJrTu7eWOqfL7jVu/6jBT1V0fWXR8rHBd3auzil1rkitRpl9V95g5+CEKru03KEi1/lelCVNqCrXcwpZcjad2BSVvu+aoLjGeMnZdK7n1K4svaByiMyaibmeU0j0TctfygPtkmgdRxuLSrvLZDI6+Tthr5CZXesH6MevqNbPUna3ZiYnEj3/c84f3EVeZjpuvv40iezBwLf+h42tHbdvXGX71x8RF7MfdUE+/o1D6THhDZp1eQy4670F8M+vS/nn16UA9Ix6S1+bc/vcGWyfOwOPgPr6rFZmciI7533G+QPRKLMz8a7fkC5jXjQQqYN25+We7+dybPtaMm8l4OLlQ1ifofSe/G6VDF/z83L4vO8jtOj1OAEhLbBzcubSoT+5cfpf+t/ZHVqveRgn/tjAljnTCXy4NfaOzjR/tM89+23W5TF2L/6CtR+8wkNhESRdOsOx7ev0GTOdS75ro0Z4eHiwcOFCOufZkKtwoH6LNnjVa8Cw9+ey7JUnmTu8C20HPYWbXwBZyYlcPnIAe2dXnvlqFVCxUmTl0fWZlzi1azM/vfPCHeuOMJRZ6Zz5cwdD/ju7Sl5lFSW4bScihj3D3mVfkXDhFCEduqGwsSX12mVORW9i4Fv/o2WvQQDUa/4Ih9b+wO4lc/CuH4yLpw+NIrrc9zrfj/KkCZVFaIwFloII1kxIoUZiS3y22QOMiiIDtsRnM765p8Wl3MN9HanjaKPfRWuO66lbWqnsLlpz727NSkli3tjHUGZnETF0LL5BIWSlJHIqejOFKiXKrAzmP9efQpWSyCcn4OTuxdEtq1nx+lhGz1rKwz0G0LBNR0Z+PI9fp0+mcYdutBkwEgD/kFAcXN3YOmc6YX2H0rRTL+yctFml7LRk5j/TF2QyOox6ARdPb84f3MW6j6agys2m8+hJgFZMvmLKGK4eiyFi6Fj8GjYh6dIZDvy0gNRrcYz9vxWVfs22Do50GPE8F//Zw+ndW5E0GrzrN2TwtFl0GKE1qe0w8jkSLpwidtPPHFy1AI+A+vcN1rq/MIVCVR7Htq/jxM6N1G3Wkme/+onfv/kYuOuSb2try/Lly5k2bRo/zHiDIrWa4TO+xqteA4LDO/HiD9vYvXgOf//6PQV5ubh4+1G/RRvaD3tGP1ZFS5GVhb2TCxO/30z0gpmc3rONo1t+wcVLGwi5+dW953ONwZD/fkG95mHErFvOH999ilyhwDPgIVr1H0GDsAh9ux5RU0lPvMG+5d+Sn5tDw7aRNIroct/rfC/uJU2oKEJjLLA0ZFJFTXcElSb6Ro7ZMyqVRSfK7RnoYu6pGKDzMbqZqyY2RcktZdH9n2QkdMF2O18HulZRO3I9p9Bsu1t/ff8ljm1by+QVO0oJ6yVJYuuc6Rz8aSETv9+s9xrLz8vhq1HdQJKYuumw3u9qWhtfOox8nsHvztT3kZ5wjVkD29JvygwDLdu6j6Zw/kA0r/26D+diOqOfp0Vx4eAu/vPHKWwdHPl36xrWfPAyUYs3GnidHVq7nA2fTmXSsq0GX/CWzMRQz1LWC6dvq9gcX3rJs6qsfGMct+LOMXVjjNH6rC10DXCioxECmYNJeRYtXekS4GRxGmOBaRGaNRNxPaeQI1YWqIE2KDmcorIYfUR6fhG7b+Yy9+RtFp/NYNu1HFJqKFDTfdy728kZHeJOz0CXKmccdbtbaxqNRsOZvdtp3rVPmTsgZTIZ5w9GE9iijUGgZO/kQsTQsaQnXCP58vlKjytJEqd2baF51z4gSeSmp+l/mnTsjioni5t3/LJORm/Cr2ETfINCDNo1iugMwOXDB6r46msOGdCwHJd8f6eqL2AUqgx1pLpSZMHh9zfGNTU6vaa58zu68XsFOhPp71TtQE1ojAWWiFgGNQEaSWKrFS1/lkQGbI3PJirU0yw+P8byMaoquvG0fkeOBLvZGuU6mGN3a256Kvk52dRp1KzcNhmJN2jZom2p434Nm9w5fx3/xmV7Zt1rXFV2JjHrVxCzvuxlzNw7fltp1y6TfOUCn/Qse4460b0lcy+XfC/7ypUfK46lliKzV8joEuBEQzc7q5QmlIfQGAssFRGsmYC4rAIyCkwdUpgOCcgo0HA5q5DG7nY1OrYpfYzKQy67a15qr5DRytuBViZyEtdlIyz9zr26SBrt+79V/xG0LacgvX9IqLatpMG/cSgD3vyozHbudeqZZpJG4n4u+TKZrFLlx4pjiaXIZNzV5tV3sWV8c08DW4uaCNp044RXQ5pQEqExFlgyIlgzAbE1+KFlKmRAbIqyxoK1mvQxKomvg4K2Po4EutjiaS83qXC3pne3Onv6YO/iyq24c+W28QgIJCW+tGA95erFO+frV21cZxckTdE9/cRA6z2WeOE0jSK6WqVouiIu+ZUpP1YcSyxFJgGtfO4aBtvKZfQKdKGph73BjZYp3te6ft1NYBj7Z0Ku1ZS4g7u7RPcl5FqcxlhgfIRmzcik5xdxtRaUGJKAK9mFpOebXh9mLh8jHcnKIg7eyiNXramxYCHc15HRIe642ZW0TTUucrmc0G79OLtvBzfOHCt1XpIkmnbqxY1TR4k/flh/vECZS8z6lXjWfahKZqlyhYIWPQZyatcWki6VNmctvrTZsvdgspITObx+Zal2hSolBUrLXZaSod14cj+XfF35MesLRQ25lzavvostUaGeDA92I8jVVt/eWOOCVpowPNiNqFBPowZqQmMssHREZs3I/Jtq/Vk1HTLgWKqK7vVMJ4x/kH2MamoJqc/L73Hpn70sGj9Yb42RlXqLU9GbmLh0C48+9yrHd6znh1eeJPKpCTi6eXB0yy+k34xn9Oxl+p2glR731enEHTnIvHF9aTdkDHWCm5KXlU7CuRNcOrSP9/dqM3etB4zk5M6NbPh0KnFHDtAgLAJJU0TK1Uuc2LmR57/7tUbLV1WUyrrk14byY/fS5oHWCLqxux2N3e1Izy/iWKqKY8WLnMtK10stu5+akyYIjbHAGhDBmhGRJInjaZW7O4teMItdi2bz3q5zFaqZV5NIwLE0Fd3qVn+HVam+hY8RUDNLSO5+AUxevoM/5n/Gse3ryM/Nxs0vgCaRPbB1cMTR1Z0Xl21j+9cf8dfqJVpT3JBQxs39UW+KWxVcvf14aeUOdi36gtN7tnJozTKcPDzxC25G31ff17eTy+WMnbOCA6sW8O/WXzmzZxu2Do541WtAp6eizKrPuheVdcm39vJj99PmlcTDTk6XACc61HHgtkpDikpNqqqIpDw1SUo16jJkvTZybbmuus62+Dva4O9kY3JpgtAYC6wB4bNmRNJUahafzajUcyw5WNMR1dwTLwfj3tEKH6PSaCSJy1mFxKYouVLGLliBZVGVLKw5/faMwZgQ9zKXfHU+iEl5apLy1CTeJyCr46DA38kGX0cbfBwU+DgosJXLkcuocd3i6kuZxFu5dEWGdol4VGPLKfkmMC4is2ZEkvLU5p6CSUjKUxs1WLMWHyN7haxGS7uYYglJYBqq6pJvKeXHKovOLLtkoJaeX8S/qSqOF3+fcm97HbUGbuYVkZhXhIZ8QLvUGebtQGsTLXWWh05jbO0U1xjX5PUT1BwiWDMiSXnq+35QWRtyGSQp1YRS+fqMZSF8jCqGp72C7vWc6VbXifR8jX7pKCG3sEJLSHUcFfx+PYfC2vRmtBB0LvlVxdzlxypLSW2esXwQi7fLL5I4nKwkJll5x9/QgUZudibXYAmNscBaEMGaEUnMU1c5UFNmZ7Jt7gec2bMdCYkW3Qcw6N2Z2Dlql+KK1Gr2LvuKo5tXk3krAVefOrTqO5SeE98yKHSt0WjYvegLYtavQJWTRf0WbRj07kx+eOUpgsMjGfHht5Wal0aChFzj3HkKH6MqzEEmw8tBgZeDQh8wS5KERgK1JFGkAYUcbGSyUktIt5RFVfL2EpRG9541xgYUW7mMgQ1crWY5tLg2z5Q+iLp+4rMLuZpdiIcJ7DkMxquCxrgiLJowmLyM20xZs9/IPd8bU2qMBeZHWHcYCUmSSFJWfRn053fHk5+bQ59X3uOR3oOJ3byaXYu+0J9f//EUoud/Tt1mLRnw5sc0bNuRvcu+4udpUQb97PjmE3Ytmk1gaCv6vfYB3vWDWfbSSAqVVV92TFKqMYa00Zp9jCwJmUyGQi7DXiHHyVaOvUKOQi4r9QHd2sfBaq51RTDX148uszQ6xN1oy+LmKj9WFXoFOuPvZEP0jRxWXcwk844Y31TvLV2/mXd2aEffyKHQBOv6t/OLqlRVwpLJL5JIzxfp9NqIyKwZiSKJMpemKkrdpi0Z9sFX+sd5Gekc2biKfq+9T+KFUxzd/Avthoxh6PQvAeg48nlcPH3Zv/I74g4foFG7zmSnJXNg1XxCu/dn7Jzl+r6iF85m18JZVZ6bWqPNsCmq8W2p8zGyNnQ+Rk087K2urIvO26s2iKcfctGK0a3dJb845ig/Vlm6BDhRx9GGJWfTyTJxkFYS3TixKSouZhYYraSUDqExFlgTIrNmJNTVzDxFDH/W4HFQ6w7kZdxGlZPN+QPRAHQe/aJBmy5jtY/PH9gJQFzMfjRqNR1GPGfQLvLJ8dWaG1Tv9RX3MbJGdD5GGivcON3W1/qzaxLQzs+JXoEujA5xx91O+7FlqveTrl/3O9m0noEuJlsGj6zjSJeAmt11XFG6BjhhJ4dVFzPNmhEv7oNozOLlOo1xbUKnMRbUPmrbe9VsaKqZefbwN6x/6Oim3YKtzMogPfEGMrkc7/oNDdq4+tTBwdWd9MTrgLbgNlCqnZO7J45uHtWaX1E1Xp/Ox8hag4biPkbWhs7by5oDZY9i3l7W7JJf5ph3yo/plkTN/XvSjd+rnhMSsOum5fkgHkzKq5QsIzs7mylTphAUFIS9vT1+fn707t2bvw/H6jXGJ3du5JunezK9Y30+7tGUX/77IpnJifo+jmz8iWltfEk4d6JU/3u+/5L/hNcxaA9w88xx5j/bn+kd6zNrYFsOrf2h1HPVBfnsnD+T2YPa8V77enzeL4ztcz9EXZBv0O7Ixp9YHDWET3o257329fhyWCf+WbOsVH+f9W/Dm2OGcuDAASIiInBwcCA4OJgVK1ZU+HoJLBMRrBmJKpq8F3t+eWnrYh9KZhSNKqrx+mKL1fu0VnS1Uq0NuUzGgAauZv+yrSpl1d3UWZyMauzOxFBPIvwcsVcUP1+xvou3s1fIiPBzZGKoJ6Mau9PY3fQ7EYtTU+XH7kVxbV6+Botdnt2fmMdftyr+tzhp0iTmz5/PsGHDmDdvHlOnTsXR0ZEzZ7Vl0GI3/cxP74xHrlDQ5+X/0m7IGE7v2crC5weizNZuAmnZaxC2Do4c276uVP/Htq8juG0n3P0C9MeUWRn88OpT1Gv+CP1eex93vwA2fPoWRzas0rfRaDSsmDKG/Svn0bxrHwa9/Rmh3fpx4KcF/PzuBIMxDq39Ac+AQLo9/xr9X/8Q9zp12fjZ2/z9y/el5nPz6mWGDx9O7969mTNnDp6enjz77LOcPn26wtdMYHkIzZqRsDHhB7tnQCCSRkPatcv4BTfRH89OS0aVnYnnnULbuoLbadev4FWvgb5dbsZtlFmVM+stSVVfn/AxMj+1zdurONW1OKkpl/yKUFPlx0pSUpt3PFVlsYGajsr4IG7dupUJEyYwZ84c/bE3pr7FF8fTKCos5PevP6ZO4+ZELdmErb22QH1Qq/Ysf200B35cQO8X38He2YXQbv04/vt6+r72gb4EW8K5EyRfPk/XcS8ZjJmVkkT/Nz6iyxitVCVi2DPMG9eHHd/+j9YDRqKwteX49nVcitlH1OKNBLXuoH9unUbN2fDpVOKPx9AgLAKAqMUbsXW4+1ojnxzP0pdGcmDVAjqOesFg7JSrl9iz90+6PdoVgJEjR1K/fn2WLVvGF198gcA6EZk1I6GQab8ETEHTzr0AOPjTQoPjB35ccOd8bwAaRXRBbmPDoTU/GLQr6+6rMtjIK56tKInOx6g2oPMxskYerets1qxNZals3U2dxUmolz096jkzpokHbz7izVth3rz+iBevtvDi9Ue8eCvMmzcf8WZMEw961HMm1MseLweF2QM1HbryY+bS5iXlqa3KB7EiBcw9PDw4dOgQCQkJ+mM6De6NM8fIuZ1ChxHP6QM1gGZdHsM3KESvBwZtDduslCQuHz6gP3Zs+zpsHRxp0fNxgzHlNja0HzZO/9jG1o72w54h53YKN88eB+Bk9Cb8GjbBNyiE3PQ0/U+jiM4ABuMUD9RU2VnkpqcR3DaS2zeuosrOMhjbL7gpHTt31j/29fWladOmXL58+b7XSmC5iMyakZDJZPg72nAj1/jizoAmLWjz+Chi1q9AmZ1Jw7aR3Dh9lKObfyG0e38atdP+Ybp6+9HpqSj2r5zHiiljCInsQdKF05z/axfOHt7Iqvix7+9oU6UvM1P5GJkLa/YxsmZvr6oik8lQyECBDKwrGarX5pmi/JiuH635rCPBbrbIZbJa64M4a9YsnnnmGerXr0/btm3p378/I54aA3iQkXQDAN8GjUs9z7dhCPH/HtI/DunQDVefOhzbvpbG7bui0Wg4/vt6mj/aF3tnF4Pnuvn4Y+doeKOhq3Gbnnidhx4JJ+3aZZKvXOCTns3KnHdOeqr+/1ePHSJ6wSyunThCocow66nKycLB1U3/2MO/nlZjXOw97+npSXp6ernXSGD5iGDNiAQ42ZCQW3Vj3HsxdPpcvOoFEbt5NWf2bMPFx49uz71Gz4lvGbTr++r72Do4cvi3lVyK2cdDLcN5/rs1LHxhIDbF7hwrilwGdZ2rJrKuzT5G1rg1XuftFX3D8jMnvQKdrc4qxdiYovyYvUJGK28HWpVR1smafRB7BrqU227kyJF06dKF3377jT/++IPZs2czc+ZMnpxdWqB/L+QKBa36DSPmt5UMnjaL+GMxZKUk0br/8KrNX9Lg3ziUAW9+VOZ59zraTWdp16/w/aRh+AY1ZsAbH+HuXxcbWzvOHYjm4KoFSJLhN45MrihTYyzKgFs3IlgzIv5ONpUO1HpNeptek94udbztoKdoO+gp/WOFjQ09o6bSM2rqPfuTKxT0fvFder/4rv6YMjuTvIzbBgLYiqKRtJm1qiB8jCwPa/H2qsmarNaAqbV5td0HMSAggMmTJzN58mSSk5Np06YNe77/kn6vzQAgJf4SjSK6GDwn9eolPAICDY61HjCS/SvncW7fDs4f3IWzpw8hHXuUGi8rNYkCZa5Bdi31WhyAXmPsFRhE4oXTNIroes9M/dl9O1AX5DPuyx8N5hNXbJm0JKbUUAvMgwjWjIi/k/kvZ6FKaaBvADi4Sqt1axjeqUp9VvV1iVqplknknbqWlhiwVbfuZm2nOuXHyqO4D6I15l50PohRoZ6ldvAWFRWRk5ODu7u7/pifnx9169YlMbeAwNBWuHj5cmjtcsIHP60v3Xf+YDTJVy7QY4LhzXFAk4fxD3mYw7/9yLVTsbQZOAqFTenPR41azaF1K/QbDNSFBRxatxxnTx/qNQ8DoGXvwZw/EM3h9SuJKKZvA+3nuCRpsHN0Rq7Q3hgWz4ypsrOI3fRzmddDLqu6xlhguZg/uqhFeNkrsFfIzLr0d+KPDcRuXk3TTr2wc3Im/tghjv++npAO3Qhq1b7S/dkrZHjaV23nRGVrpcYdPsCSiUMY88UPPNxjgMG5Y9vX8ct/JzFp2TYahLUj+cpFds77lLjDByhUKanTqBk9oqYS+mhf/XNiN/3M2hmvMnHpFk7t2sKxrWsoUCkJ6diNIe/NwcXTp9KvyZi1Us2FztvLXiEj+kau2b+kjVl380Gkuto8nQ+itVLcB7Gxu53BuezsbAIDAxk+fDhhYWG4uLgQHR3N4cOHefrdT1DY2tL31emsnfEqi8YPJqzvEHLSUjj482I86z5E5zGTSo3XZuBItn35AQCt+48oc05uvv7s++Eb0hOu4fNQI07+sYHE86cY8t7/obDVZgBbDxjJyZ0b2fDpVOKOHKBBWASSpoiUq5c4sXMjz3/3K4GhrQjp0B2FrR0rpowhYtg4CpS5xKxfiYuXD9mpt0qNba8oXXpOYP2IYM2IyGQywrwdzFo82z8kFLnChn0rviU/JxsXb18in4risZemVbovGdDK26HKmwsq66QdHN4Jd/96HNu+toxgbS1egUE0CGvHrbhzLHhuAG5+ATz67KvYOTpxcudGfnxjHKNnLyv13M2zpuHo6kGPqKlkJF7n4E8L2fS5LU/PXFLp1wV3a6Va+wdiuK8jdRxt2BKfbTatkm7Xp7FLCQkqTmwN2oSYCp0PYslgzcnJicmTJ/PHH3+wfv16NBoNjRs3Zt68eTR5fCyxKSraDnoKWwdH/vzha37/+mNsHZ14uHt/+r72Po6u7qXGatVvGL9//RFegUHUb9GmzPk4unkw4sNv2TRrGod/+xEXL18GvfM5EUPH6tvI5XLGzlnBgVUL+Hfrr5zZsw1bB0e86jWg01NR+g0JvkGNGT1rKX/M+4xtc2fg6u1H++HP4uzpzboPXyt1HeyrY4opsFhkklAdGpX0/CIWnqk9u24mhnpWyVdMrZH44nhapZ+345tPOLBqAf/deUa/wyknPZXP+rSk+/Ov02vS2yyZNIzc26m89OMf+mULSZJY+PwActLTmLpBu4NLl1lr3P5Rnp+3Rh9cbZkznb9XL2b67gsGu6gqw1th3ihqyVpDoUYym7dXOxPV3RRUjAf58+r0bRWb43MqPUZuehqf9mlBjwlT6TnhzUo/39QMauBKqJf1yjQEZSNCcCOjK55t7V89MqChq22VDWCrWku09cBRqAvyOblrk/7YiR0b0KjVtOo/nLzMdC4f3k/LxwaRn5uj9ybKy7hNSMcepF27XKrsS8TQsQZZsIatO6ApKtKX6aoK1a0Fa0mY29tLBGrm40H2QayqFjd282qkoiLaDCh7CdTcWIJ2WmB8xG/VBLT1dbB6134JaFsN/VBVa6X6NQwh8OHWHNu2jnZPjAG0erX6LcPxeSiY66eOIkkSO+d9zs55n5fZR+7tFIOdr+7+hju6dHVSldlVr+pQ0seoNmAOby+B+aiMD6IuS/32llg86z5k8rnpiF4wi12LZvPZ0ZT7tq2sD2JlNcZxMfu5dfk8e77/ktBu/Wv0OlSU6miMBZaNCNZMgK54dqYVeRYVR4Y286Ernl0VqlMrtfWAkWz54r9k3kpAXZDP9ZNHGPSONjCT7kSBXca+RJPI7mU+37t+sOFcFOVEVdX45dRWWUhNe3sJzMeD7oNYWY3xrsVfcO34YRq0iuDxdz6r/mSNTHU0xgLLRwRrJkBXPNta3OJLUlbx7MpSHZ+fsD5D2PZ/73P89/UU5qtQ2NjyyGNPAOAVqK15qrCxoXH7R6s8RnV5EHyMalPdTUFphA8itPZxICa5YkXhoxZvrM60TI4EtPKpvPG5wDoQwZqJqM3FsyuCrlZqWV/o98PZ05smnXry77a1qAtUNInsgbOnNwAuXr4Eh3fi0PoVdHxyPG6+/gbPzUlPrZIlR2WoTq1Ua8QU3l4C8yN8EO9qjOOzC63qc7okMrQSA5G5rr2IYM2EPFrXmYuZBVZTwqWyxbPv2Vc1a6W2GTiSVW89D2BQjQFg0LszWfj8QL4a9SjthozBq14QObeTuXbiCJm3Enntl73Vnf49qWqt1NqENdfdFGiprA9iSc4fjGbv93O5ee4kMrmMhm060u+1D6jT6G6ty8QLpzmwaj5Xjv5DdkoSDq5uNO3Ui35TZuDs4WXQ39V//2HLnOncunQWN78Auo57udJzqooPotAYC6wBEayZkAexeHZxqlMrtVnXPji6eSBpNDQvZnQLUCe4KS//uJPoRbM5unk1eRnpOHv5ULdpS3pGmXYrfXVqpQoElkJVfBCLc3TLr6z94GVCOnan76vTKVQpObT2BxY8P5BXf96tF99fOvQnt2/E03bQU7h6+3Er7hyHf1vJrcvnmbz8d/1NT9LFMyx9aSTOHt70nPgWmiI10Qtn4uLlV+m5VdYHUWiMBdaACNZMzINcPLsqtVJ1yGRy5Aobmnd/DNsyCtB7BQYx8qPv7tlHyfqqOoLDO1Vod1lZVKdWqkBgKRRJVZMoAOTn5bB59n8If2IMQ6f/n/54m8dH8X9DOrLn+7n64x1GPEeXsZMNnv/QI+GsnhbF1X//oWGbjgDsXDATSZKY+P1mff3LFj0e56tRXSs9P7VG+3eqqOA9p9AYC6yBWrqnzbII93WkS4CTuadxT0xRPLs6fj9n9m4jNz2V1gNHGnFGxkH4GAmsner4BF76509U2ZmE9R2q9znMTU9DLldQv0UbLh+5W2C8eJ3iwnwVuelpPNSyLQAJ504AoCkq4uLfewjt1s+gULlfcBNCOpa94/t+VPb16TTG1hbuyNAaS1dXYyywfMS3Tg3xIBbPrkqt1GsnY0m6eIbdS+ZQt1lLgttWrfi8qRA+RoLaQFV9EAFSr10GYMnEIWWet3dx1f8/LzOdXYtmc2LHBnJuG2azVTnZAOSmp1KoUuLzkKHlDoBPg8acPxBd6TlWxQfxQdYYCywfEazVEPri2XKIvmn+gK0mimdXpVbqobXLOLZtLQFNWjD8w29MMq+qInyMBLWF6vggSpI20hv58TxcfUpryuSKu18rP70znmsnDtNl7EvUbdoCOydnJI2GZS+P0nsmmoKq+CA+6BpjgWUjgrUaIj2/iH9TVRxPq3g5FFNRk8WzK+NjBDDiw28Z8eG3JpxR1RE+RoLaQnV8Ar0DgwBw9vK5p9ehMiuDuJh99Jr0Dj2jpuqPp16LM2jn7OmDrYOjPmNXnNT4S1WaY1Vf34OsMRZYNiJY+vGn5wAAIABJREFUMyEaSSIuq4DYFBVXjVi6p6roxg+vweLZwsdIILA8quODGNKxB/YuruxdOpdG4Z1R2BoGDDqvQ5lc+7cildCPHVy10OCxXKEgpGN3zuzdTkbiDb1uLfnyBS7+vafS86uuD2K4ryP5RZJFSlZ0mEJjLLBsRLBmIq7nFLI1PpuMAo1etGquYEUXpLnbyRlQA9m0kggfI4HAsqiOD6KDiytPTJvNr9Mn883onoQ99gTOnj5kJN3g3IGdNAiLYPC7M3FwcaVhm47sW/4tGnUhbn4BXPxnL+k340v12Wvi21z4azcLX3icDiOfQ6NW89cvS/ALbkbSxdOVmp8xfBAfRI2xwLIRwZqRKdRI/JmQy5EUlcUEaeYuni18jAQCy6M6Poit+g3Dzdefvcu+Yt+K71AXFuDm60/D1h0IH/S0vt2oTxeyeeY0/v51KUgSIR278ew3q/msT0vDuTR5mOe//YWt//c+O+fPxL1OXXpNfIfs1FuVCtaM5YOo1xgrZETfyLWYVRFTaowFlo1MKpmjFlSZ6zmFbInPtojdRJZWPPt6TqHVCHfLYkyIu9geL6hVnL6tYnN8jrmnYXQGNXAl1Kti5aYqgrk/12tSYyywXERmzUgcSVFaxB2Yjs7+jrTzsxxvtwe9VqpAYGnUVr9AY7+u+i62jG/uabBiUhOfYebQGAssF2EYVU0kSeJgUp5+95ClBCK7buZxMCmvlLjXnDxa1xk3O7nVGE8KHyNBbUbng1ibMJUPoq1cRq9AF0aHuONup+3fVFdO16+7nZzRIe70DHQRgZpALINWl4NJeRYpQtXRJcCJTv6Wk2GztuXQ0SHuYulBUGvZfTO3Uj6IlowMiPBzpHs9095caSSJy1mFxKYouWLEXf66fhqaUWMsSZK2FJkkodFo/fhsZDIUMoS/pJkRwVo1OJKsJPqmdfjxWJIoVbdkbOlY2nUTCIxNen4RC8+km3saRmNiqGeNanTT84s4lqriWJpKX6lFLtPWJr0fxduZQ2MsSRK384tIylOTlKcmMU9NklJdpp2LjVy7yzbAyQb/Oz9e9goRwNUgIlirIiJDVD1ERlIgsAxWX8qsNT6Ioxq7m2V8SZJIz9doAx+lmoTcwvsGPnWdbfF31AY+nvbyGgt8ihu06wNMqNCu4OLt7BXaCjWtLWQTW21HBGtVoFAjseRsukXs+qwIOu3V+OaeFqN9kCSJv24pLTJg0/kYibtGwYPAxcx81l3ONvc0qs3wYDcau9uZexp6JElCc2dJsUijLYFlI5MhN8OSoqkM2g3toRxo5GZnFnuoB4HauR3IxPyZkGs1gRpo/5iyCjTsS8ilZ6CLuacDCB8jgcBSED6IpkF2R+ulQFbpovLGxJQG7bp+4rMLuZpdiIeZjNcfBERmrZJY2/JnSSxtORSEj5FAYG6s/XPN3D6IlijML2nQXtN2I48KuxGjIoK1SqCRJBadSbf6O9CoUE+LS1Wb84OlnfAxEgiIvpFjtT6INbliYA3CfHEDXPsQwVolENoO01MyZW+KN6euX5GyFwjuIrS498ZahPmWYtAupCXGRQRrlUDsmqoZarOPkUBgyVjbcqipZR3WJMy35E1bXQKciBSbtqqFCNYqiPAjMg/W7GMkEFgjwgdRi7Vl+YUdUu2m1gZrxhZ8Cqdv82JNPkYCgbXzIH/xW6MwXxi0135qRbBmasGnJEnMPXlbn9mpDdgrZExp6WXVAYwl+RgJBLUJS15SM6UPojUK88XS9YOBVQdrNSX4TFOpWXw2w1jTJisliZh1Kwjt3o+6TVsanDu2fR05t1PoPHqS0cYrj6jmnng5iCVBgUBQNg+SWN0aX6vYFPLgYHWmuPcTfFYkUCvZLr9I4nCykphkZZmCz6Q8tZFmryUrJYldi2bjWbd+mcHarbhzNRKsJeWpRbAmEAjKJdzXkTqONlaXbaoMJbOI5g56dONH38glv0i6pzBfGLQ/OFhVsGYuJ+akPHWFM3bWglwGSUo1odibeyoCgcCCqe9iy/jmnmbVcZnSB9FSl3sB/bzK0uddzynkSIqqpqdUbSTgcIqKJh72Yjm0EljFMqi5BZ8JuYUk5BUBkJmcSPT8zzl/cBd5mem4+frTJLIHA9/6Hza2dty+cZXtX39EXMx+1AX5+DcOpceEN2jW5TEALh85yOKoJ0qNN3zG18RuXs2V2L8MjnsE1OedrUcByLmdwo5vPuHc/p2ocrLwadCYzmMm0fbxJ/Xt0xOuMWtgW/pNmYGDsyt/Lv+GzFsJ+IeEMnjaLOo/3FrfNtDZhjFNPIx85QQCQW3F2nZI3g9rFeYLg/YHD4vPrBUXfELNpah14xR39M5KSWLe2MdQZmcRMXQsvkEhZKUkcip6M4UqJcqsDOY/159ClZLIJyfg5O7F0S2rWfH6WEbPWsrDPQbg2zCEXi++S/T8z4kYOo6g1h0AaBDWDje/AFQ5WWTdSmTAmx8DYOek3bFZqFKyeMITpF2/QodRL+BV7yFO7tzE2g9eQZWdSaenJxrM//jv68jPzSFi6DhkMhn7ln/LqqnP8tamIyhstR9+SUo1kiQJMb5AIKgQ9V1siQr1NKkPYlAN+SBezym0ikANtEuidRxt9IFrXFYBGQXWu9YjARkFGi5nFVqsQbulYdHBmiUIPouP+/s3H5OdlszkFTsIDG2lP977xXeRJImtc6aTk5bCxO8364OwdkPH8NWobmz9v/dp3q0frt5+NO3Uk+j5n/PQI+G0HjBC349XYBAHf1qEMivT4DhAzPoVJF+5wMhP5tO6/3AA2g97lkUTBvPHvM8IHzwae+e7GoCMpJtM3XAIRzdt5swnqDErXx/Lhb/30LyrNsun1mh9yBQiVhMIBBVELpPR2N2Oxu52VuuDWKiR2BKfbfbNBBVFBmyJz9YL82NrcJXJVMiA2BSlCNYqiNzcEygLSZL+n737Do+iWh84/p3dbJJNr5AGJBBAukDovUkvImABFJGiV1Gv2PhdUa8NxWtvgAKiIihFqggEQXqX3kILhCSk97bZnd8fya5ZkpBNSLI7y/k8j89jZmdnzhZ23jnnPe9hT3yOqTCjLXwhDQYDZ3ZsolnPgWaBmpEkSZzfE0lIy3amQA3AycWNjqMnkhp7jYTL56t8/vO7I3H3q0ObQaNN29QaDV0fnkpBTjaXbxk+bT1gpClQAwgrblPKjatm+xXa/ii4IAg2yttJTZ9gV55v5cO0Zt6MaOBOhL+WEFcHHMq5ujioilIwIvy1jGjgzrRm3jzfyoc+wa61VrBayYn5qfl6rip8JR0oek1XMnWk5uut3RRFsMmeNVtM+MxOTSI/K5O6je4pd5+0uBhatWxfanudsCbFj18nILxZlc6fFh+Db72GqFTmv4B1whqbjl2SV2CI2d/GwC03w7wej94AiAmhgiDcAUmS8HFW4+OsNk1astU6iEpPzM/S1Vy+YG2TgGNJeYoq0G4tNtezdjjB9gI1JZJU5URgt/SkqW3uGyAIgj2QJAm1SsJJrcJFo8JJrUKtkqwaqBlkmY3Fw59KJAFn0wpqLVCLnDeXWe38yU5NrpHjy8Cx5DwUMM/R6mzqUm3LCZ+u3n44ublz89K5cvfxCgwhMfpiqe2JV6OKH68HgHSbn4ryfsi8AkJIvn4Zg8E8qTTxivmxK8tBTC4QBOEuYUzMV2pooNR2306+vmgpQeH2bCZYK5nwaYtUKhXNew/m7M7NxJw5VupxWZZp2q0/MaeOEn38kGl7QW42B1f/iHdQfeo0bAqARltUMyc3s/QSIY5aF/KyMkptb9q9P5lJCZzYssa0TV9YyN5fvsPRxZWG7btW+jU5qIqSfAVBEO4GxsR8wbZUd+F5e2QzOWtKSPgc+MxrXNy/gwVTRtJx9ETqhDUhI+kmpyLXMX3RBno9/izHN6/m+xkP0fXhqWg9vDi64RdSb0Qz/sPFpnwz35BQnN09ObhqCU6ubjhqXanXsh0+wQ0IbtaGE1vWsOGj2YS0aIuT1pVmvQbScfSjHFz1AyvfmEHs2eN4Bdbj1Lb1RB87yLAX3zGbCWqpAK2DKNshCMJdwZiYfzcryM3GUWtb+WGiQLtlbKJnzZjwacuBGoBnnUD+tWQzLfsP49imVaz/8P/4e+OvhLXvisZZi7tvHZ5a/DvhnXuxd/l3bP7yXdQaRx799Cda9B1qOo5ao2HsW18iqdSsee8lls+aZiqG23nc47QZ/ABH1i3jl/+bzrq5swDQOGuZ+u0a7h38AEfX/8Lvn7xBbnoaY978vFSNNUuoJAhyFdWjBUG4O/ydpIxetfzsLNZ/+B8+GNqO1zoF806/Zix8agw3zh437XNy61q+eKQfs7vU4+2+TfnlP0+RnhBndpwVbzzDG90akHz9CotnPMQb3UP55T9PAUV1O9fNncXbfZvyRvdQfnh+AukJccxq50/kvLml2pSbmc6KN57hvz0b8WbPhqx8YwYFuf/klqfGXmNWO3+OrFtW6rm3HtOYB5cYfYlf/vMUr/doyKhWDZg9ezayLHP9+nVGjhyJh4cHAQEBfPTRR3f8ntoDq/eslUz4tPVgDYry0sa99VW5j/uEhDJ+7qIKj9O81yCa9xpUaruj1pWH3p1X5nPcfPwZ8+bntz2ud1B95hxNLPOxktsNclHPmiAIgr2TZZnjydXXIbDijWe4fHivaXWZ6vTbey9yKnI9XR58gjoNm5CTlkr0sQMkXIkiuFkbjqxbxso3nyWkRVsGPvMfslIS2bvsW6KPH2TGsj/RunuajmXQ61n09DhC23ZiyPP/ReOsLW7/DE5uXUvboeOo16o9V47sZcmzD5fbpmWvTsE7qD4DZ7xG7LkTHPrtJ1x9/Bn83OtVfp3LXp1CnbAmDJoxmwu7t/LOO+/g4+PD/Pnz6du3Lx988AFLly7lxRdfpEOHDvTs2bPK57IHVr9aK70Ss5IFuFj94xcEQahxKfl6U9FeW3d+11Y63D+BoS+8VWLrDAD0Oh1/fP42dcObMe27dWicnAEIvbcTS54bz+6f5jHgqVdMzyosyKfVgBEMmjHbtO3G2eOc3LqWbo9MZ9iL7wDQZdxkVr4xg7gLp8tsU1DTVjzwxmemv3PSUjm8dukdBWv1WrTj/teKes06jn6Ub+6PYObMmcyZM4dXXil6DQ8//DBBQUEsWrTorg/WrD4MKhI+rcNJLeHtZPWPXxAEocZVdwL76Nc+YeZv+6r1mEbO7p5cP3WUjMT4Uo/FnDlGVkoincc+bgrUAO7pcR/+oY05v3trqed0HvO42d8X9v5ZtH2c+fYuD00pt00dx0wy+zu0bWdy0lLIy8qs8PWUJ+L+Cab/V6nVtGvfHlmWeeKJJ0zbvby8aNq0KZcvX67yeeyFVa/W9lKJWWkk4F5fZzG5QBCEu0J8TmG1XuzUGg0OjjWTED/4ude5eekc7w9uw1cT7yNy3lxSYq4CRcXRAfwbhJd6nn9YY9LiYsy2qRwc8KgbZLYtLS4GSaXCO6iB2Xbfeg3LbZNXQLDZ31qPoqHW3Iw0y16UBcd09/DE2dkZPz8/s+2enp6kpqZW+Tz2wqrjYMaETxGs1S4ZuNfPucL9BEEQ7EFcTiGWJtukxl5j7rDSK9EYzTmaWCpnzficwc+/ibOrO38t+YL0m7EENG7OyFlzqdeirdkxEq5EETnvfS4f2kN+bjZeAcG07Decgc/8h9b3jSK0bWdOb/+di/t3sPOHr/hryRdM+N/iSr9uB41jqVVvqkJVXpF109W77Bt/g778paRuPaYkgVpd9nlE0VwrBmt3kvBZVnLnrHb+9Jv2Ev2ffLn6GmmHJCDUXVNra/AJgiBYkyzLxOdaPgzq6u3LuLe/NtumL9Sx8aPZqDW3X3T8+B+ryM/OouPoR5EkiZ1LvmTpi5N4ad1h1Jqi2fdxF04zf8pw1A4aOt4/Ee+g+iTHXOXczi0MfOY/AHj4B9Bl3GS6jJtMVkoiXzzSj+0LP2Hwc28CkBh9kUYde5idO+nqxVLLDJbFKzAE2WAgNTYav/qNTNuTr1d9qNG0nOEttUNvXQbxdlQiIeq2rBasKSnh057IQHt/rbWbIQiCUCv0MhRWYg6bo9aVtkPHmm1bO+dlCnKzmfzRkts+Ny3+Bi+uOWAKXvxCw/nx3xO5sG87zXreB8D6ubNAlpmxdJtZcDXo2dkY9HoKcrJxdvcwbXfz8cfDP4DCggJCmt+Lm48/B1YuIWLkI6ah2PN7Ikm4coG+U1+s8PU16dKXLV+9x/5fF5smGADsW/5dhc8tj7ObO65evlw9up/u4580bd+/wrLeQAdVUc+aUD6rBWt3kvA5+rVPkGUxg7SyJMDTUUVDD1FfTRCEu0PhHQ6hHd3wC/tXLGbIC2/RqEP32+7besBIU6AGENa2MwApN64CkJWaxJWj++j68LRSvWCSJJGXk8X7g1rTsv9wAhu3xNHFlYsH/iLm9N8MeeEt1BoNg56dzco3n2XBlJG0GXQ/WcmJ7Fn2Ld5B9ek+4UkqEty8DS37DWPPz/PJSU81le5IunbJ2JBKvDv/iLh/PH8t/pxVbz1PSPN7uXJ0H0nRlyx6boDWgVNVOuvdw6rBmgosziMoydidbG22WA36dmRgWAN3VOIWRhCEu4ThDu7rY8+fZM17L9Fm0Gh6THiqwv1vDcBMw4MZRcODKTHRAASE31Pm8zXOWjqPnUzU/u2c/nMjssGAb70wRs6aS+exRbM32494GI2zlr++/5w/Pn8bjdaFFn2GMOi5181qrN3O2Le+ws23Dsc3/8bp7RsJ79SLh9//jo/v74zGqWoTJ/pNfZHs1GRORa7n5Na1NOnaj0lfLufdfs1u+zxRoN0ykmylzL2fLqQRk11271p+dhZbvp7DmR2byEy6ibObB4FNWjDo2dkEN2tTYc7aych1/PzyE0z9dg0N23czO/aBlUtY896LPPfrTgLCi75ECVei2Pr1e1w6tBtdXi51G91D32kvmhWtNRYinPrtGk5sWcupyPXoC3W88VfphdttkQRE+DvTL6Tyy1IJgiAoVZ7ewKcnUir9vNyMNL6cMAAnF1eeXPw7jsVrOkPpvOmSEwx6Pvq02XFKXpuunTzCN48NYvTsj+lw/8Q7e2HVLPb8Sb54uC/j3vmGtkPG1Oq5RzRwp7mPWG7qdqzSs1ZRwmdFFZwrck/3ATi6uHJyy9pSwdqJLWuo2+geU6B289I55j0+FI86gfSa9CyOWhdObl3LTy88yvgPF5stEwWwds4ruHr70nfqTHR5OSiBBHg4qugZpJxeQEEQhOrgUIWRBIPBwPL/PEluZjpPfLPSLFC7Ez4hReUy4i+eq5bjVZUuL9e0moHRnp/nI6lUhLXrUuvtEQXaK2aVd6iihM/bVXC2hMZZS7OeAzm1bQPDX56Dqng6cGbSTa4c3Uu/6f/MGF3/4X/wCgjh6Z+2mJI1O4+bzPzJQ9n0+VulgjUXDy+mzFttOqYSGIc/NSox/CkIwt1FLRUlsFdmksG2+R8StW87k75Yjk9wg4qfYCE3bz/C2nXhyLqf6THhKbNhU1mWa6325V9LviT27HEaRnRH5aDm/J5tXNizjY6jHy1V/6ymiQLtlrFKsFZRwmfJCs4e/gFVOkfr+0Zx/I/VXD68h/BORctUnIxcj2ww0Pq+UQDkpKdy+dAu+j/1CvnZWeRnZ5me37hLXyLnfUB6QhyedQJN2zuMnqioQA2gf4gr9dxEToAgCHcfSZII0DqUm3Zzq/ioM2z/7iNC23UhOyWJvzeuMHv81pmilTX85feYN3kYX4zvV1S6I7gBqbHXOL97K88u33FHx7ZUgzYduHhgB39+9xEFOdl4BgTTb/rL9Hni37VyfiNRoN1yVgnWKkr4HPzc66x4YwbvD25DcLM2NO3Wn3bDxuETEmrxOZp07Yuzmwcntqz5J1jbsobApi3xb1BUWyb5+hVkWWbr1++z9ev3yzxOdkqiWbDmHVTf4jbYgh6BLkSIUh2CINzFAl0ciM22rDBuTnoqsixz5cherhzZW+rxOw3WApu05F9L/mDr1++zf+X3FBbk4x0YQqsBI+/ouJXRuHNvGnfuXWvnK48o0G45qwRrFRVUvl0F56bd+lt0DgdHJ5r3GcyZ7b8zctZcslISiT5+kPuKiw4CyMVRY4+JT9Oka58yj3PrEhy3jvPbsp6BLnSpq5z2CoIg1IQAFweLKw80jOjGnKOJt91n7H+/NPvbO6h+uc8pa3vdRvcw4aPvLWyRfRIF2ivHKsGaJQmf5VVwtjRYg6Kg7+j6X7h0cCcJVy4gy7JpCBT+SfZUOzgQ3qlX5V+IDTIu39U/xFX0qAmCICAS2G2RKNBeOVbJ6jMmfJbFoNeTl5lhtq1kBefKCO/YC62nNye2FJXbCGnZzixZ1M3Hn4YR3Tiw+gcyEuNLPT8rNalS57M246zP8Y09RaAmCIJQzMdJjZNa5EXZCgnwEgXaK8Uqtxu3S/jMr6CCc2WoNRpa9h3K8c2/ocvNYfC//1tqnxGvfsD8ycP47MFedLh/Aj7BoWSlJHDtxGHSb8bx3C87KnXOYFcHAl0cOJxYe4vUG88T4e9MzyBXMetTEAShBEmSaOPrzKGE3Fr5Ta5pEnCPtyNnUyvXgWErRIH2yrNa33B5CZ+WVHCujNb3jeLQbz8hSRKty0jgrNuwKc/8tJXIBR9ydP1yctJScfXxI6hpK/pNm1mpc6kkCHbV0DfYlaZeTmyMziStwFBjQZvxuJ6OKoY2cBczPgVBEMrR1s+Zgwm51m5GtZCBnoGuuDqoOJKYp6gA1FigPURcryrFaisYnE7JY310VsU7KkzJSswGWeZyho4jiblcydRVW9BmPE6Yu4b2/loaemjEHYogCEIFll9MJzpTp6jg5lbGxPwHwz3RGWS+O5tKRoFBEa/JmKozpZm3GAGqJKv1rNlrwmfJ16WSJMI9HQn3dCQ1X8+xpDyOJeeRr5eLHweDBf/CSu7npJa419eZe/2cxSwaQRCESmjv78zVTJ21m3FHSibma1QSwxq4szQq3bqNspAo0F51VouYjAmfxsDFHtyuErO3k5o+wa70DnIhNd9AfE4h8bmFxGbriM8tLLO6toMKArQOBLlqCNA6EODigLeTShQQFARBqIJGHo54OapIV0hP1K0kitJeSibm13PT0D/ElciYbOs1zEL9gl0IdHEgT2/AYCgq4+UgSaglxHWtAlYbBgX480a2XSV8dqyjpU9w5dfflGUZg1y0soPeAOriL7BKfIEFQRCq1fUsnWJ6osoyobFnmflee+Jz2BVnu+tVe2hU5OgNt+2YCHQp6pQIcHHAx0ktrn8lWHUs0t4SPqtaiVkqvrNQI4EY2RQEQagx9dw0RPg7211iftfiAui2GLBJQIau/LLEhQaIyS40m3TopC6awdtWpPwAVqqzZuTtpCbUXYPSY2eJomR/8YUSBEGwfb2CXPFwVCnm2mNMzO8ZVP7IjSRJdAtwoX+Iq+k5tsLSoLhkOJevlzmUkMv8M6ksv5hOVHo+BusNBFqd1Ze6b+/vrKi7m7KISsyCIAjKYUzMV8q1pzKJ+RH+WsY39lRUMFoe4+cTnalj1eVMFpxJ5XqWsieIVJXVgzVjwqdSv1SiErMgCILyGBPzlaB/iGul6mjWc9MwpZk37f2LUnOUen01MgZt6QUGlkalExmThc6SUgp2xKoTDIzsNeFTEARBsG22npjfI9CFbgEuVX7+9SxdjRdor23GYeFhd1ExeJsI1gAiY7IUm/DZL8TN2k0RBEEQqkCWZfbezLXJgK1noAtd6mrveFbkrQXa7YEx8Owf4npXrIVt9WFQI3tM+BQEQRBsm60l5hvP3z/Ela4BLtVSvsJYoL1rgAvuGpu57N8RY8dOZEw2e+JzsJF+pxpjMz1roLzh0PGNPe+aLlhBEAR7dz1Lx4boTKst31STw3uHE3OJjMm2m6HQW93pcLGts6lgDf75Qtm6u6XrVRAE4W6iM8j8FZvN4cS8WgtsjOfp4O9MzyDXal2OyZaHeaubPV+XbS5YA/tP+BQEQRBsW20k5huP6+WoYmgNJcvb+vW0utnriJdNBmu2fCdQXQmfgiAIgm27NTG/uoI243HC3DW099fS0EODqgauKYcTcom8YfsjVdXFOIw8pZm33S0Wb5PBmpGtjLHfbbNOBEEQBHOp+XqOJeVxLDmPfH3RFUklgSXlvkru56SWuNfXmXtreBklpeWAVxd7rdJg08Ea2HfCpyAIgqAssiyTmm8gPqeQ+NxCYrN1xOcW3naB8iBXDQHaogXKvZ1UNT4yozPIfHc21WrXTVtgb8OhNh+sgf0lfAqCIAj2Q5ZlDDIUyjJ6A6hV4CBJqCSskjKjxLql1UkCPB1VTGvuXSPDy9agiGDNyF4SPgVBEAShJtytw59lGdPQg3BPR2s3o1ooKlgD5Sd8CoIgCEJNMMgyC86kkn4XD38aSUCou4YHwz2t3ZRq4WDtBlSWsRJzuKej4hI+BUEQBKGmXMooIK2gjOS5u5AMXMnUkZqvt4vruuJ61sqihIRPQRAEQahJyy+mE52pu+t71YwkoGMdLX2Clb8spOJ61soiSRI+zmp8nNU0xwmwvYRPQRAEQagpqfl6rtrJIu3VRQaOJefRO6h61li1JrsI1soiSRJqCdRIoPweUEEQBEEo199JtVctQUny9UUjbz7Oyg4EVNZugCAIgiAIVSfLMseT795SHRWJzym0dhPumAjWBEEQBEHBUvL1pkl2gjmVBPG5yg/W7HYYVBBqmizL6IvzIg0GUBXnRapFXqQgCLWopnuO0hPiiPzmfc7v2UZOeioe/gE06dqXYS+9i4PGkZSYq2z6/C0uHdxFYUE+AeHN6Tv1Be7pcZ/ZcXT5efy1+HOO/bGK9PgbaD08qd+qA4OffwPfemEAFORms/WbDzi5dS1ZKUl4B9Wjw/0T6THxX2b2ZtJuAAAgAElEQVS/q4fX/szfG1dw89I58rIy8A0JpctDU+g89nGzcxpkiM1Wfi6fCNYEwQKyLJOSry+acZxTSFzxzOPbzTgOdCmabRzg4oCPk1oEcIIg1Ij4nEJUQHUV7dDl56HWOKJSqchIjOfrifeRm5lBx9ET8Q9tTEZiHKci16PLyyU3I41vHh+CLi+Xrg9NxcXTh6MblvPDvycyfu4iWvQdCoBBr2fJc+O5dHAnrQfeT7eHp5Gfk8XF/X9x89I5fOuFIcsyPzw/kcuHdxMxajyBTVoStW87mz59k4yEOIa9+I6pjQdWfk/dhk1p1msgKrUD53ZuZu2cl5ENBro8+IT5+5NbiCzLiv4NtpnSHaKXQrBFqfl6/k7K43jJWn5Y9qNYcj8ntUQbX2failp+giBUkxs3bvD666+zev3vZKalmPV4FeRks2PRp1zYt53UG9FIKhUN2nRk0LOzCWzS0nSMy4f38O20UTw0ZwE3L57lyLplZCbdZPaOKLTuniye8RAX9mzDycUNg8GAb0goEaMeodsj05FlmV9f+xfHNq3E3a8uuRlpOLt7EN6pN1eO7kOlUvHiukOoVCr2/bqIde+/gtbDi4LcHJzdPAhs0oJBz84m6J7WSJLE/hWLWTvnZRy1rhj0hbh4+RB6byd0BXmc+2szM9ccMPXA6fJy0Thrzd6PRU+PI/n6FV5ad6jUe/VSG1/UCl420io9a6KXQrBlBlnmUkYBRxLzuFrGKhmW3r2W3C9fL3MoIZeDCbmEumto7+9MIw9HsUqGIAhVEhsbS8eOHUlLS6P9/RPxbWDe45VyI5rT23+n1YAR+AQ1IDMlkYOrlrBgykj+vWoPHv4BZsf789uPUGs09Jj4NIW6fNQOGi7s3c6FPdvQOGnpPuEp3P3qkHDlAud2baXbI9ORJIkL+7fj6OJGp7GP4+5bh5uXznHotx9x8fQmNTaGhMvnCQhvxvaFnwDQbtiD1A2/h5y0VKKPHSDhShTBzdpQqCvgj8/eAqD7hCfxCgwhIyGec7u20Pvx5zi74w/O79lG14emAJgFanmZGegLdTRs35WofdvJy8zA2d3D7PUVynJRdQiFqtVgrSq9FIUGiMkuJDa7UPRSCDXu1vVnofqmwhuPE52p42qmTqw/KwhClc2aNYv4+Hj27NvPDk2YafuAp15FlmUCwpsxc80BVKp/5hG2GzqWj0d35dCapfSbOtPseIUF+Tzz01ZTEGTQ6/ntnRcA6DR2Ev2ffNm0b8kBufysTFrfN8rsePVbR7B81jQA0uKuExDejKykBNz96pgNZcIM0/8lXD5Pfk4WLl4+DHjqVdP2ftNeJC8zo/hYMabtV48dIHLeXK6dOIwuL8fsteRllQ7W9AYUXcarxoM10UshKIHOIPNXbDaHE/OqPUi7lfG46QUGlkalE+HvTK8gVzQK7qIXBKH2GAwG1qxZw/Dhw7m3fXt2nEgxe1ySJBwcnf7ZX68nNzMdR60rfg3CiT13otQx2w170Ky3Kvb8SdLii4IjjZNzqeOX9f+6/DwKcrKp36p9qeNLKhX52dlkJMaX6tUDcHbz+OcYuTk4al3Kff3J16+w8MkH8A8NZ+gLb+EZEISDxpFzuyPZs3Qeslw6slArvPZFjQZropdCUILrWTo2RGeSUbymXm0lcRrPcyQxj6j0AoaJ768gCBZITEwkIyODli1bYiinx8NgMLD35wXsX7GI1NhrGPR602Munt6l9vcOqm/2d8r1K0DRcOPNS+fKbYtHnUCi9m/n3f7NyUpJLPW4V2A9AOqGNyPu/EneH9yG4GZtaNqtP+2GjcMnJBQAn+AGBIQ3J/7iGd7u25Swtp1p1msQbYeMJeFqVPGxQgA4u3MzhQX5PPrJT6ZtAJcO7S63nQ4K78ypkVhTZ5CJjMliaVQ66TV8Aby1lyIyJgudJSu5CwJwODGXpVHpZBQYrFZQUgYyir+/hxNzrdQKQRCUSFXOVXzHok/Y+PFswtp1Ydw73/D4V7/yxDcrqdvonjJ7njTOzmUcBeq36cjZnZuJOXOs1GOyLKPX6chKTqRp9wFM+N/3TP56BRM/XgIU9ZbVadgUwJRr1rz3EDz8A9j5w1d8MrYH5/dEmoZVB/yraPgz9N5O6PLzWP/h//HJ2O5sX/gJkiTRtFu/otesVpvOb5SXmcGRdcvKfA0OqqJ6a0pW7T1ropdCUAJZltl7M5ddcUW5DtYO743nj4zJJl8v07WuVkyiEQShTP7+/nh4eHDq1Klye4xORa6nYUR3HnjjM7PtuZnpuHj5VHgOn+JZl6H3diTh0lkWTBlJx9ETqRPWhIykm5yKXMejny0l/eYNHLUunP5zA551A9F6eHFw9Q8ANO7Sx5Qz127Yg/y98VdO/7mB1gPvp+/UmexY/CnL/286Y//7Jc17D+aengNpGNGdSwd30uH+iYS0aMvun74hIyGObo9MN80Ebdy5D2qNIz88P4GODzxKQW42B1f/iJuPH5lJN0u9lgCtg+J/T6s1WDucmEtkTLZV1ycr2UvRP8SVCH9thc8R7j4lAzVbY2xXt4DyczYEQbh7qVQqRo0axU8//cTfRw7j4BhmVk1BlmUklZpbr8Qnt64lIyHOFPTcTtA9rfEObsCRdcuZ/NVKdv74Jcc2rSI/OxN3/wCaduuHo9YVgIhRE8hIjGPv8u8oLMjHydUNgDphTYCinLmCnGwmfb6M7Qs/4dgfqzm9bQMyMk4urgSENyMvKxONs5ZHP/2xqCjuljVkpSQBENa+K0Nnvm1qm39oOOPnLmLL13P4/dM3cfetQ6cxk3D19mXVf58zf68kCHJVfsdNtQRropdCUJLDCbYbqBntisvBSS2Jmw1BEMr03nvvsWXLFnr37k2PsY/hEhJu6vGavmgD9/S4jz+//R8r35hB/TYdib94hmObVplyxCqiUqkYNWsuPzw/gSXPj6f9iIe571+zSLgaRcKlc4x89QMAwtp14dBvP9F9/HQadehB1P4dpN6IJrs40ALIz8ni/UGtadl/OIGNW9L78ee4eOAvTm5dS58pM/EJCeX09t9Z98GrtOo/Ar8Gjej1+LP8vXEFcedPMWjG7FLX8Ga9BtKs18BS7Y4Y+YjZ3wa5qGdN6arlFYheCkEprmfpiLyRbe1mWCQyJpu6WgcxnC8IQinBwcEcOHCA2bNns27DCrIyM/GoE0iTrn3ROGvp88Tz6PJyOLZpFSe2riXonlZM+uxn/vji7YoPXqxJ175MWfAb2xb8j90/fY1sMOATEkaH+yeY9nnwvfms/2AW+35dBLJM4y69mfTFcuYMbGXaR+OspfPYyUTt387pPzciGwz41gtj5Ky5puWhApu0oEmXPpzduZmMxHg0zloCG7dg0hfLqd864o7eqwAX5Qdrd7yCweGEXEVc/MSQqKAzyHx3NtWqkwkqQwI8HFVMaeYtynoIglCu0yl5rI/OsnYzbNb4cA/quTtauxl35I5mgyqtl+J6lvIXcxWq7q/YbMUEavBP/uXOWGX8GxMEwTrsoeeoJm24pvwqEVUO1nQGmQ3RmYpZvEECNkRnKv4DE6rmepaOw4l5ignUjGTgUGKeuNEQBKFcPk5qnNRKuRrXPnu46a1ysCZ6KQSlMMgyGxV0Y3ErCdgYnYnhzjIWBEGwU5JUtASjUn/japo93PRWKVgTvRSCklzKKCBNQTcWt5KBtAIDlzPE91YQhLK19XNW7G9cbVD6TW+lgzXRSyEozZES630qlQQcEasbCIJQDm8nNaHuGsX/1tUUpd/0VjpYE70UgpKk5uu5mqlT7PfVSAauZOpIzddXuK8gCHen9v6id+12lHzTW+lgTfRSCEryd5Lyv69GEnAsKc/azRAEwUY18nDEy1FlN7951U3JN72VCtZEL4WgJLIsczy56rmVkfPmMqudf7W1Z8HUkXw6tkeVny8Dx5LzuMPSiIIg2CmVJDG0gbvir9E1Sak3vZUK1kQvhaAkKfl68vX29bOVr5dJzTdUvKMgCHelem4aIvwtnxl6ZN0yZrXzJzX2GlB0U7lg6siaa6CVlbzpnTRpEm5ubtZukkUsDtbutJfC1oheCvsXn1No7SbUCHt9XYIgVI9eQa54KHg49Obl80TOm2sKIKubEm96LQ7WRC+FoDTxOYV3tkSHDVJJEJ8rgjVBEMqnUUkMq+Jw6OSvVzD56xXV3qbKSLh8nm0LPiQ19nqNnUNpN70WX8uU9sIsZa+vS4C4nEIsDcWv/r2fLycMYHbnED4c0YEDK5eU2mdWO3/Wvv8KJ7eu5ZMHujG7Sz2+fmww8VFnADiwcgkfjujA7M4hLJg60qK7wgv7tvN61/osmzUNfWHF30WDDLHZYiazIAi3V89NQ/8Q10o/z0HjiING2etoVkSJN70WLyhm7KWwp34olQSx2QU0dJFxdna2dnOEaiTLssX/GOOjzrDo6XG4evnSb/pLGPSFRM7/ADefOqX2vfr3Ac7u3EyXcZMB2LHoM5Y8N56ejz3D/hWL6TxuMrkZaexc8iUr33yOqQt+K/e8Z3du4eeXJ9PqvpGMeeNzVGq1Ze3NLUSWZSRJqYMcgiDUhgh/Lfl6mV1xORY/x5ivNu3btWQmJ/D+oNb0mTKT/tNfMtsv8epFPh7dheEvz6HrQ1MAyM1MJ3LeXE7/uYGslCQ86wbRcfREejz6DCrVP31Dxzf/xs4lX5J07RKSJOEVWI8Oo8bT7ZHpHFm3jJVvPgvAt9NGmZ4zdcEaGkZ0A2Dfr4vY/+sikq9fwcXTmxZ9hnDfM/9B6+5p1sZrJ4+wbcGHXDtxGL1Oh29IKBGjHqHbI9PLvek9duwYAwYMoEWLFmzYsMFmctosDtbicgpJTYgj8pv3Ob9nGznpqXj4B9Cka1+GvfQuDhpHUmKusunzt7h0cBeFBfkEhDen79QXuKfHfabjXD68h2+njeLhOQuIu3Caw+t+Jj87m/COPRjx6gd4BQSb9l0wdSQ5aSmM/e+XrJs7i9jzJ3H3rUOvSTPoNGaSWfsKC/LZvvBTjm1aSfrNWNx8/GgzcDQD/vUqDo5Opv1mtfOn87jJ1G/dgR2LPiX52iVWrljBqFGjEOyHXoZCC+8sts77AFmWmb5wPV6BIQC07Duczx7sWWrfpOiLvLB6L95B9QHQunvx27sz2b7wY2b+dgAn16J/2LJez47Fn5Eae820b0mntm1g+axptBv+EKP+8z+zH7KKFBqKetjEUoCCIFSka10tQKUCNiN33zqEtevKya1rSwVrJ7asQaVW02rACAAKcnNYMGUkGYlxdBz9KF4BIUSfOMjmL94hI/Emw196F4Co/TtYPmsajTr2ZNCzrwOQeOUC0ccP0u2R6YS160LXh6eyd9m39J78PHXCmgDgH9YYKJqlv23Bh4R36kWnMZNIir7IgZXfE3PmGE8u2ohaozGdZ8lz43H3q0u3h6fh7leHhCsXOLdrK90emV7mzfyhQ4cYOHAgERERrF27Fq1WW+n3rKZYHKydj47h64n3kZuZQcfRE/EPbUxGYhynItejy8slNyONbx4fgi4vl64PTcXF04ejG5bzw78nMn7uIlr0HWp2vO0LPwVJotdjz5KVmsienxew8KkHeHbZdjTO/7xBuRlpfP/sw7QaMII2g+7n5Ja1rHnvJdQOGiJGjQfAYDDww/MTuHrsIB1HT6ROWBPiL55h98/zSLp2iYkf/2B27suHdnNy6zq6PPgE7t4+NGjQ4E7eQ8EGFVo4ccSg1xO1bzvNew82BWoAdRo2oXGXPpzfHWm2f6OOPcyCr3qt2gHQou8wU6BWtL09ACkx0aWCtWN/rGbF60/T6YHHGP7ynCr1kBXKMmrFpg8LglBbJEmiW4ALTmqJyJhsJKhULlvr+0bx27szib94loDwZqbtJ7asIaxdV9x9i0Ygdi/9hpSYK8xY9id+9RsB0GnMY3j4B7Drh6/oMfFfeAUEc27XVpzc3Jn81a9ljib4hIQS2rYze5d9S+POvU29aQBZqUnsWPwZjTv3ZtKXv5hucv1DG7Pug1f5+/cVRIx8BINez2/vvoi7X12eXb7drMfNOKmw0AAlLxN79uxhyJAh9OjRg1WrVuHk9E8njy2wOFjb+PnbZCYn8K8fNhPS/F7T9gFPvYosy2z8aDZZyYlMX7ie0LadAegwegKfPdibjR+/TrPeg816D3IyUnlh1V7TBS74ntb8/MoUDv72I90enmbaLyMxniEvvEWPCU8B0PGBx/j60YFs/vJd2g4dh1qj4fimVVw8uJNp3641nRugbqNmrHnvRaKPH6RBm46m7YnRF3nu153UbdgUgNZtfCv1pgm2z2Bhr1p2ahK6vFz86jcs9Zhfg/BSwZpXQIjZ385uHsXbg8vcnpuZZrY95cY1fn3tKVr1H8GIV963rJFl0BsAy0ZNBUEQiPDXUlfrwIboTDIqsQpRi75DWfvBK5zYssYUrMVfPEvC5fNm1+qTW4uu/Vp3L7JTk03bwzv24q/Fn3Pl6D7aDhmD1t0TXW4OUft30LRbv0q9hosHdqLXFdBt/HSzeKLD6Ils/updzu/eSsTIR4g9f5LUG9EMnfl2qaHRkjfHxndh+/btDB8+nPvuu4/ly5fj6Gh7OXsWj72c2bGJZj0HmgVqRpIkcX5PJCEt25kFS04ubnQcPZHU2GskXD5v9px2Q8eZ9US07D8Cd7+6pS6OKgcHOj3wqOlvB40jnR54jKyURG6cPQ7Aych11Alrgn9oY7JTk03/NerYHSjqSSsprF1XU6AGlvfCCMpRiVHFSpHKObCkKjtyurU0jLtfHRq07sD5PZHEnDlW5Xao7W2aqyAINa6em4Ypzbxp71+Uo21J37yrty+NOvTg5Na1pm0ntqxB5eBgNmKWfP0yF/b+yTv97jH7b+FTDwCQnZIEQOdxj+NXvxHfz3iIOYNas/LNZzm/Z5tF7U+LK5od6t8g3Gy7g8YRn+AGpMbFAJBy/QqAWU9gWWQZ8vLyGDp0KG3btuXXX3+1yUANKtGzlp+VSd1G95T7eFpcDK1ati+13TjenBZ33eyN872lJ0OSJHzrhZk+DCMPvwActeYzWoxdrKlx16nfOoLka5dJuHKBd/qV3b6s1CSzv32CzYelRC+F/XGwcGjR1dsPjbOWpGuXSz2WFH2xupuFxsmZxz77mW+n38/iZx5k2rdrb/vvqjyWvj5BEISSNCqJ/iFuNPVyYmN0pkXPaTPwfla++Syx508S1LQVJ7eupVGHHrh6/zMqJRsMhHfuTa/HninzGMbrtpuPPzOWbydq73bO793GhT3bOLJuGW2HjWPcW1/d+QusBEkCJycnhgwZwtq1a/njjz8YNmxYrbbBUhYHa7ZMlg0EhDdn6My3ynzcs675EJWDk/nMT9FLYX/UEjioKp5koFKradylD2d2bCItLsaUt5Zw+QJR+7bXSNuc3T2Y/NWvLJgygoVPjWH6wvX41guz+PkOqqKZzIIgCFVVz03DtObepPtrWVm8rbyfleZ9hqB+90VObFkDQFL0JXo//pzZPj4hoRTkZBPeqVeF53bQONKs10Ca9RqIwWBg7ZyXObhqCX2nzMSvfsNy83i9AusBRalMPiGhpu2FugJSb1wjvFPRpDCf4t/T+Itnb9seFRKSJLF06VJGjhzJ2LFj2bRpE717967wNdQ2i8MUJzd3bl46V+7jXoEhJJbRE5F4Nar48Xpm25Nv6cmQZZnk61dK7ZeRFE9BbrbZtqRrlwDwLt7XJySUnIxUGnXsSXinXqX+8w817zK9leilsD+SJBGgtexepP/0lwGY/8Rw/vr+c7Z/9zHfTh9FnYaV7/GylKu3L5O/WYmDoxMLnxpDekKcxc8N0DqIsh2CINwxlSRR16Xod/KRcE861tGa3QgaAwStuydNuvTh5NZ1nNj8G2qNI837DDE7VqsBI7l24hAX9v5Z6jy5memmOpLZaSnmbVCpCGjcHAC9rgAAjbOL6XklhXfqiVrjyN5l35qlmBxes5S8rAyadh8AQNA9rfEObsCenxeUOobxeQ6qop41AEdHR1avXk2HDh0YPnw4Bw8eLP9NsxKLg7WWvQdzdufmMvNsZFmmabf+xJw6SvTxQ6btBbnZHFz9I95B9alTIkcM4OjGX8nPzjL9fSpyHZlJN0slHBoKCzmw6p/ZnIW6Ag6sWoKrtx/BzdoARV+SjIQ4Dq3+sVTbdHm5pYK9kkQvhf0KdHGw6Ase2KQFk7/8BVdvX7Z+8wGH1y2j//RXaHHLj1F186wTyBPfrKSwIJ9FT40xS8otj0qCIFdNjbZLEIS7j6eTmj7BroS4aghycWBEA3ci6mhxLP4RbXXfKFJirrJ/xWKadOlTKnG/56NPE3RPa5Y8P57Vb/+bAyu/Z9ePX7PijWd4f1Br8oqDptVv/5sFU0YQOf9DDq35ia3fvM+Wr94jsGlL/IvTpoKatkSlVvPX919wZP1yjm/+jayURNy8/ej9+HNc2Psni58ex75fFrJu7izWz51FSIu2tB0yFigKAEfNmktmYjyfP9SHyPkfcnDVD2z4aDaLnx4HUOpmXqvVsmHDBpo2bcrgwYM5depUTb7dlSbJFi6O+fmuM7w2ug95WVmm8hgZSTc5FbmO6Ys2UFiQz+cP9aYwP5+uD09F6+HF0Q2/EH/hNOM/XGxKRDTWWQsIbw6SRPsRD5GVUlS6w7NOIM8u34GjtiiqXjB1JMnXLmPQ62l130j86jfi5JY1XD12gPtf+5iOoycCxtId47mwZxut7htFgzYdkQ16Eq9e5MTWtUz+6lfTxAhjnbWRr34AQIirAxOaeFX7GytY3+mUPNZHZ1W8o8KMaOBOcx/bmlYuCIIyff/99zz++ONcuXKF0NBQ0xDgjh07ANgWk8XhxDzysrN4d0BzdHm5jHvnG9oOGVPqWPk5WexY+CknI9eRFn8DZ1d3/Bo0pEXfYXR9aCpqjYZT29ZzcNUPxF04TW5mOu6+dWjSrR/9p7+Eu19d07EO/fYjOxZ/TlrcdQx6vXlR3F8Wsu+XhaTEXEXr6UWLvsMYWEZR3KvHDrBtwf+4fvIwssGAT0gYHe6fQPeHpxDhr+WH/zzNypUrycr65zqRnJxMz549SUlJYdeuXYSH335krrZYHKxti8ki8sRFNn8zhwt7/iQ/OxOPOoE06dqXoTPfNiuKe/HAzqKiuI2b02/qzDKL4j40ZwHxF05zeO3P5Odk0TCiO6NmzTWrdVVWUVw3H396Pvo0XR58wqx9ep2O3Uvn8ffGX0m+fgWNsxaf4AY06zWIbo9Mx9nNHTAP1lRS0XTmvsGVX5JDsH3JeYV8ezat4h0VZlozb3ycxYwYQRBqnrjptQ0WB2vV9YEZg7VH5i6kVf8Rt93XGKw9v2LXHZ+3PEr7wATLybLMpydTyNfbT2kWJ7XE8618RM6aIAi1Qtz02gaLc9YCXOxi4mgp9vq6hKJJBm18ne2mzr8E3OvrLAI1QRBqjY+TGic7W9vOSS3h7aSsMhAWt1Z8YIIStfVzrtTSKrZMBu71c65wP0EQhOoibnptg8WRivjABCXydlIT6q5R/PdWAsLcNXg7KafbXhAE+yBueq3P4pw1gNR8PfPPpNZke2rV9Obe4uJ3F4hKz2fVZcsqdduyMQ09CPe0zaVQBEGwb8svphOdqVN00CYBoe4aHgz3rHBfW1OpMUDRSyEoUSMPR7wcVYr93kqAl6OKhh6ivpogCNbR3l/5vWsy0N5fa+1mVEmlE7bs5QNr4ulYapFtwT6pJImhDdwV+72VgWEN3FGJIXtBEKxE3PRaV6WDNaV/YEabY7L59GQKf97IJjVfb+3mCDWsnpuGCH/l5VxKQAd/Z0LclPkDIwiCfRA3vdZV6WBN6R9YSfl6mUMJucw/k8ryi+lEpedjEL1tdqtXkCseCrrRkAAPRxU9g0TRZkEQrE/c9FpPlYqMGT+wI4l5ig/ajO2PztRxNVOHl6OKoQ3cqafgD1X4hyzLpOTric8pJD6nEEeVpJjvrPFOUCMWrxUEwUb0CnIlKr2AjAKDIn5L7eWmt1KzQUvSGWS+O5uqmA/MUhJFF8kIf2d6BbmKC6VCpebr+Tspj+PJeaYVDFSAwbrNqpT+Ia5EKDQZVhAE+3U9S8fSqHRrN8Ni4xt7Kr4DpsrBGijvA6sMYzQ+TPSyKYZBlrmUUcCRxDyuZupMgbcS9Qh0oVuAi7WbIQiCUKbDiblExmRbuxkVspeb3jsK1kA5H1hVGC/29vJh27PrWTo2RmeSVmBQdJAG0DPQhS51taJgsyAINm1PfA674nKs3Yxy2dNN7x0Ha2D7H1h16BHoQldxAbU5OoPMX7HZHE7MU3SQJm4MBEFQGlmW2Xsz1yav//Z201stwZotf2DVyZ6idHtwPUvHhuhMxedNiiF3QRCUzDjCZu0bZnu+6a2WYM3IVj6wmmSPXwIlsofvmrHtHfyd6SkmswiCoGDWvnm295veag3WwPofWG2wh5klSmUPvbjGIE2UiREEwZ5YIy3lbrnprfZgDewnj6gsxuh9SjNvu/1S2DIl50ca/y2EuWto76+loYdGsdW0BUEQylMbE77utpveGgnWjOxphl5JEkV12PqFuFm7KXeVwwm5RN5QzsxjlQSG4i+9k1riXl9n7vVzxttJbd2GCYIg1DCDLHM5Q8eRxFyuVGMppbv1prdGgzWouQ/MFojh0NqjtJp+/s5qwjwcCdA6EODigLeTym5mJQmCIFRGar6eY0l5HCtZpLzEzeztiJveIjUerJVU1gemVBLg6ahiWnPvuyKqtyYlrpbhKYbKBUEQzMiyTGq+oWj5v9xCYrN1xOcWUljG0jIOKgjQOhDkqhE3vdRysGYkyzLHkvLYbAfFdMc09CDc09HazbBrkTFZiluHVgyVC4IgVEyWZQwyFMoyegOoVeAgSagkaj0wk2UZfXFbDAZQFbdFbYW23PKa3j4AACAASURBVKpKC7nfKUmSOJ9eoPghUQk4kpgrgrUadD1Lx+HEPGs3o9Jk4FBiHk28nMRQuSAIQjmk4mBIjQS1OLIpyzIp+fqiXr6cQuKKe/tu18sX6FLUwxfg4oCPk7pWAzirBGup+XquZuqscepqJQNXMnWk5uvvuvHz2mCQZTZGZyo2qJeAjdGZYqhcEATBRqTm6/k7KY/jJfPngDJiNJNCA8RkFxKbXWjaz0kt0cbXmba1lD9nlWDt7yT7KekhAceS8ugT7GrtptidSxkFpBXc7p+QbZOBtAIDlzN0ovdVEATBSgyyzKWMAo4k5nG1jImOll5lSu6Xr5c5lJDLwYRcQt01tPd3ppGHY43dmKtq5KglvPnmm0iSRFJSElDU9Xg82TbyjyLnzWVWO/87OoYMHEvOwwqpf3bvSHGdPiUzDpULgiAIte96lo4FZ1JZdTmT6OIRveq6WhuPE52pY9XlTBacSeV6Vs2MGtZ4sHarlHy94meC3ipfXzTDRag+xqFypX9TSg6VC4IgCLVDZ5CJjMliaVQ66cUjNDV1PTEeN73AwNKodCJjstBZUpekEmo9WIvPKaztU5arz5QXeGvf9Wo5li29LntgHCq3B8ahckEQBKHmXc/S8d3ZVI4UT06rrZt+43mOJObx3dnq7WWzSrBW6ycth9rBAY2T8x0fRyVBfK4I1qpLTQ+V3zr8/cHQdqx445kaOpsYKhcEQagthxNzWRqVbtW6nDKQUdzLdria0mBqLW5KS0tj0qRJjGgezOs9G7LyjRkU5P6zxqO+sJBt337EhyM68FqnYD4Y2o7NX7xDYUG+2XFmtfMnct7cUse/9YKr1+mInP8h/xvZkdmdQ3irTxPmTR5K1P4dpn3Kylmb1c6fte+/wuntv/Pp2B681imYT8Z05/yebaXOefnwHr4c35//dArh4S4tmT9/vilHT6g6MVQuCIIgVIYsy+yJzyGyuH6rta8gxvNHxmSzJz7njm/Wa2026Lhx4wgLC2PgjNeIOXuCQ7/9hKuPP4Ofex2A1W8/z9H1v9Cy/3C6T3iK66eOsGPxZyRcjWLiR0sqfb7I+XP5a/FnRIyaQL2WbcnLzuLGmWPEnjtB4869b/vc6GMHOP3nRjqPexwnFzf2Lv+OpS9N5pXf/8bVyweA2HMnWPzMg7j71aX/ky+DQc9bb72Fv/+dTVgQ7HdIOT6nEB9nUeJFEAShuu29mcuuuJyKd7QCY7u6BbhU+Ri1Fqy1bduW+d9+x/+OJ9MRyElL5fDapQx+7nXiLpzi6Ppf6HD/BEbP/gSALuMm4+btz64fv+LSod006tC9Uuc7v3srTbr1Z/Tsjyvd1oQrUfx75W5864UB0DCiO58/1Jvjf6ym60NTgKJeOUml5snFG/HwDwDg0xmTaNmieaXPJ5gzDpXbUj9UQW42jtqql2cxDpU3x6kaWyUIgiAcTrDdQM1oV1wOTmqJCH9tlZ5fa8OgTz75JIUlugFD23YmJy2FvKxMzu+OBKD7+KfMntNjYtHf53dvrfT5nN09Sbh8nqRrlyr93PBOPU2BGkBgkxY4ubmTciMaAINez8WDO2neZ7ApUAMIbdSIwYMHV/p8grm4nMJqC9Su/r2fLycMYHbnED4c0YEDKyvupT2ybhmz2vlz+cge1sx5mXf6NWPOoDZ31A6DDLHZyi8ELQiCYEuuZ+mIvKGMpSsjY7KrPOmg1nrW6tevj6HEFVjr4QlAbkYaqXExSCqVWYAE4O5XF2d3T1LjKj9jc8CTr/DDC4/y0ajO1A1vRpMufWk7dCyBTVpU+FyvgJBS27TuXuRlpAGQlZKILi8X3xDz9uoNEB4eXum2Cv+QZbnaJmvER51h0dPjcPXypd/0lzDoC4mc/wFuPnUsev7aOa/g6u1L36kz0eXd+V1bfG4hsiyLnEZBEIRqoDPIbFDQKjcSsCE6kynNvNGoKncdqLVgTa1WoyqzH6/EW3wHFzHZYF7HKqx9V15ad4gzOzYRtX8Hh9b8xJ6f5zHq/z6kw/0Tb3ssqeyGIlfwdVDbyjRXBdPLlLk2W1VsnfcBsiwzfeF6vAKLAvCWfYfz2YM9LXq+i4cXU+atRqWunjyzQkNRD5taxGqCIAh37K/YbKvO+qws4yzRnbHZ9Atxq9RzazW8cCgnGPMODEE2GEi+dtlse2ZyAnmZ6XgH1jNt03p4kZuZbrZfoa6AzKSbpY7r4ulNxMhHeHjOAl7ddIyAxs2JnP/hHb8ONx9/HJycSY65YrbdQZK4ePHiHR//blZYTeUtDHo9Ufu207z3YFOgBlCnYRMad+lj0TE6jJ5YbYGaUXW9PkEQhLvZ9SwdhxNtYzWkypCBQ4l5lR4OrdVgTS0VrV5/q6bd+wOw5+f5Ztt3/zSv+PEBpm0+IaFc/Xuf2X4HV/2AQW/es5adlmL2t5OLG771wtAXFFS5/UYqtZrwjj05s30TGYnxQNHrunzpIps2bbrj49/NDNXUq5admoQuLxe/+g1LPebXwLKhau+g+tXTmBL0tjRrQhAEQYEMsszG4uFPJZKAjdGZGCpx816rC7lLkkSA1oGYbPOcpMAmLWk3/EEOrv6B3Mx0wtp3Jeb0UY6u/4XmfYaYzQTtMGoCa957kZ9enETjzr2Ju3CaC/u24+rla3bMT8d0J6x9V4KbtcHF04uYM8c5Fbmezg8+US2vpf/0l4nav4N5jw+l05hJuDvIfLJ8IS1btuTYsWPVco67UTkj0Fahca7arJ3bEUPlgiAI5mRZLkqBkWUMhqLrgIMkoZYoM8f3UkYBaQXKvfOVgbQCA5czdIR7Olr0nFoN1gACXRyIzS6dQD569qf4BIdyZP1yzmz/HTe/OvR+/Dn6TX/JbL8OoyeSGhvN4TU/c2HvdkLbduKJr1fw3ZMPmO3X9aEpnNm5maj9O9DrCvAKCGHAv2bR89HqqVQf3LwNj3+xnN8/fYOt37xP3aAQ3nrrLc6ePcu5c+eq5Rx3o/KGyivL1dsPjbOWpFuG1gGSoq03VF1dr08QBEGJZFkmJV9PfE4h8TmFxOUUEp9bWGausoMKArQOBLo4EFD8n4+TmiOJeYqZVFAeCTiSmGtxsCbJtbwGzumUPNZHZ9XmKWvFiAbuNPdxYtSoUZw+fZqoqChrN0mRZFnmoxPJ1TLJ4MeZj3Fh75/MXL3PlLeWcPkCnz3YE4Nez5yjiUDR6hcNI7oy9r9fAkWlO1a++SxP/7SVkOb33nlDijmoYGZrXzEbVBCEu05qvp6/k/I4npxnWqHG0nqaJfdzVEkUVPMi6dY0vbk33k4V50bXes9agEutn7LG6PJyTUNlAS4OREVF8fvvv/PYY49ZuWXKVd5QeVX0n/4yF/b+yfwnhtN53OMYCgvZ+8t31Gl4D/FRp6uhtZUToHUQgZogCHcNgyxzKaOAI4l5XM3UleoNs/SevOR+9hSoScCxpDz6BFdccL3WIycfJzVOasku1n78cEQE7YY/RJ16oXy0Mol58+bh6OjIyy+/bO2mKZpxqPxOO9cCm7Rg8pe/sPHj19n6zQd41g2i//RXyEy6WevBmkqCIFdNrZ5TEATBWq5n6dgYnUlagcE0EUD5V/3qJQPHkvPoHeRS4Y18rQ+DAvx5I5tDCbmK/+BWvjGDS4f3kJ2SgNbJiS5duvDee+/Rrl07azdN0ex9qFwQBMFe6Qwyf8Vmc9gO8spqy7Rm3hWuG22VMcm2fs4cTMi1xqmr1Zj/fgFYPuYsWMaehspLstfXJQiCAEW9aRuiM8konqkpAjXLxOcUVhisWaWQgLeTmlB3jWJrpBhJQJi7RgRq1cw4VG5PnNQS3k6ibocgCPbpcGIuS6PSFbWiQFXpCwsp1N15zVYoSpGxZIlFq93qt/d35mqmshe2loH2/tVfi+tuJ0kSbXyd7WKoHIqC+nt9ncXkAkEQ7I4sy+y9mcuuuKL1k23lNzs9IY6tX8/h/O5IcjPT8a0XRo8JTxExajxQtPLR9u8+5tyurSTHXMFQqCf4nlb0f+pVs9quqbHXmDusPYOffxOVWs2+XxaSGnuNZ5ZGcmb7JrYt+JCZaw6wfeHHnNm+CRmZln2GMuLVD3DUulTYToMMsdkVx0JWC9YaeTji5agiXaFRuAR4Oqpo6CGSxmuCvQyVQ9GP171+ztZuhiAIQrUrGajZiszkBL55bBBIEp0ffAI3b1/O79nGqreeJy87k+7jnyQ/K5NDv/1Em0Gj6Th6IvnZWRxeu5TFT4/jXz9uJqhpK7NjHlm3jMKCfDqOnoha44iLh7fpsWWvTsE7qD4DZ7xG7LkTHPrtJ1x9/Bn83OsWtdeme9ZUksTQBu4sjUqveGcbJAPDGrijEr0lNcI4VB6dqVNkMG8kAaFiqFwQBDt0OMH2AjWALV+9h0Gv57lfd+Lq5QNApzGTWDZrGtvmf0inBx5D6+HFyxuP4qD5pyhth9ET+Xh0F/Yt/44H3vjM7JjpCbG8uPYgbt5+pc4X1LSV2f45aakcXrvU4mDNkrqiVk2iqeemIcLfWXG5axLQwd+ZEDfRq1aT2vs7KzpQAzFULgiCfbqepSPyRra1m1GKLMuc2raBZj0HgiyTnZps+q9Jlz7kZWVw49wJVGq1KVAzGAzkpKdiKCwkuNm93Dh3otRxW/YdVmagBtBxzCSzv0PbdiYnLYW8rMxqe11Wn57WK8iVqPQCxSQlSoCHo4qeQRUXsRPujBgqFwRBsD06g8yG4oXUbe23OTs1ibzMdA6u/oGDq38oe5+UJACOrF/O7h+/IfFqFPrCf/LGvIMblHpOWduMvAKCzf7WengCkJuRhrObe6VfQ1msHqxpVBLDFDQcahz+1KiU1h+oPGKoXBAEwfb8FZttsx0ssqFoTPHeIWNpP/zBMvcJaNycvzeuYOUbM2jeZwj/z95Zhzd1/X/8laTuTguFluJFS4u7u0vH0MFggszZGGOMfdmw/SZswweMjQFDR5EBxR2K23BKS1vqbmlzf3+EhIa623k9z56Rm3PPOTdJc9/5aIdxUzGzsUOuUHBs7U9EBD7JdI6+YfZxx3J5dmEuRfcKlbpYA7U7tLuzKb6BZc+k+irdnU2pLtyfJYbGVX4pLLlMfjFkhwzwEq5ygUBQwQiIV+IXllza28gWU2s7DE3NkFTp1G7VKdtxNw/7YOPsypjv1utk6vuuWFQS28w3Zabwk5e9MR2cck9zLU06OJngJeKPSpxOVU2xMJCXm9hG4SoXCAQVEZUksfeF+7OsIlcoaNS1PzcP7yHkwZ1Mz8dHqV2gMrla/mRs4vT0xiWeXvcrmY1mQC8PSqxMWNY0tK2iFkJlMbuko5MJbaoIoVYaCFe5QCAQlD4PY1OJTi1s1+bip9eMOTz0O82ycb1pMWQMVdzqkRgbRdB/13lw/gRfHrtP/Q49uXVkL39+NJ767XsQGeTP+W2/4+BWj5TEkvXyORrnLsXKlFiTyWS0czTBUCHDNzCh1IMXNet3dzYVFrVSRrjKBQKBoHS5VE76fZrbOjD1jwMcXvUdt47u5fzWdZhYWePgVp/eM9TlNDwHjiI+IpTz2zdw/+xRHNzq4j1/GTd8d/PI70yJ7VUug6qmud8vSqWRe17I2GOsNDaocWX1dzEXN94yxOmQxDJpedXQwcmEdo5l250vEAgE+SUqJZ2Vt6NKexsVkoEu5rjbGOY4pszErL1KdTN93mxgjae9OgOjpBxKmnW87I14s4G1EGpljLZVym5sY0cnE60rXyAQCCoSV8KTy3SsWnnG0SR3J2eZFWugjlXq7mzG6DqWWBqot1pcHxbNvJYGckbXsaSbs5mIOSqDaFzl3Z3Vwful/Q5p1u/ubEpbRxPR/1MgEJQb1q9XZ0I+efIkx3GSJHEtonxl5BcVs5rb47ticbHNb6iQYW2YuxQrUzFr2VHdTJ8p7tY8ilVyKSyJx3HKIvOba+ZxNdfH094YNwt9URerHOBlb0wVYz3hKhcIBIJiJjIlnZT0siHVUpMSOfH7L7h5tcPNq11pb6dQyIBmtkZ5+pFfLsQaqAuk1rY0oLalAVEp6VwNT+ZqRLL2AySXqbvX5z7Py3GGChnNbI1oZmckejeWQzSu8uNBCfiVYOCrZh0veyM6VjUVFliBQFAuGTt2LK+99hqGhjnHS4Uk5t5ovKRQJidxeNUSgHIv1iSgmV32xXYzUm7EWkasDRV0qWZK56omRKWoCElMIyQpjaAEJSFJaVk2RdWTq9Njq5rq42ish6OJHtaGcuG2KudoXOX1rAzZ6x9HdKoKVXoackXRf7Q1Is3SQE4/YU0TCATlHIVCgUKRvaFCkiSSk5MJSUxHDpT9oh3lBxlqj15eDUXlUqxpkMlk2BgpsDFS4I76l4EkSagkSJMk0lWgkIOeTIZchhBmFRiNq/z3vYc56R9J3bZdkCETrnKBQCDIhvXr1/PGG2/w+PFjXF1dcXV1pVGjRkyfPp3Zs2dz8+ZNFi5ciF3fCYQHPmH/0q95eOEkaakpONZ2p+vkD6nfoad2vkd+p1k9ZTCjFq4m4ukjzm1bT2J0JC5NWzJ49nfY1XDLdU+Bt69y8JdvePbfdVKTEjG3dcDNqx3Dv1pKVNBTFvf3BODwqiVaC1u3KZ/Q/e2ZAIQ+vs+hZd/y8OIplMlJVKlVn65TPsa9U2+ddZLiYvBdsZhbR/YQHxmOZZWqtBw6lg7jpiGXF384vwR45qMkWLkWa1khk8lQyECBDCq4Z1OSJNJfCFOVCuQvhKmikgpTuUzGmgVzMTQ05P/eHCZc5QKBQJBP7t69y6hRo3jrrbeYPHkydevW5VhgEMvf6IsyOYm2r03GxNKGy3s2s+GDsYxevJaGXfvpzHF8/VJkMjkdxr5LcnwcJ37/hS1fvMPUDQdyXDs+Moy1747A1NqWThNmYGxuQVRQALeO7AXA1NqWwZ8vYde3n9CwSz/tuo513AF4/vA/VrzRDwsHJzpNmIGBsQk3Dv3Dnx+OY/SSddrxqUmJrHpzELFhwbQcOg4rR2f8r1/gwM/ziQ17zoBPvinql1UHGWoPjZtF3r0zFU6sVVQkSSIyJV3t8k1MI/iF6zcnl6+Tidrd62iih42hosILOD8/P86cOcPOnTuFq1wgEAgKwIMHD/j333/p1asXAGkqiTlj3yE+Ioy3fvPB1aM1AC2GjuEn787s/f5LGnTuo2ONSktJYfrmo+jpGwBgbGHJniWzCXlwB8faDbJd2//aRZJio5m4bCvO7s20x3tO/RwAA2NTGnUbwK5vP8Gxjjse/UbonO+zZDZWjs5M/fMgegZqb1vrkRNZObEf+5d+rRVrpzYuJzLwMdM3HcGuRi0AWg0fj4W9Iyc3/EqHse9i5VitUK9jTmi63OTHQyPEWhknKiWdK+HJXMtoISLn2IE0FQQmpBGUkKYdZ6iQ0dTWCI8KbCFaunQprq6uDBgwQHtMuMoFAoEg79SsWVMr1ED9PXn3tC/OjZprhRqAoYkZLYeO5cDP8wl9dFdHhHkOHKUVagA1X5wX+cw/R7FmbG4JwH8nDuJUpyEK/bxbnhJjonh08STd3/mUlIR4UhLitc/VadMV3xWLiAkNxtLBiRuH1KLT2NyKhKgI7bjaLTtxfN1SHl8+i0ff4XleOz/IUCenOecz5lmItTKISpJ4GJvKpbBknmRRpiSvQZ4Zx6WkS1wMTeJCaNKL2CsjalkYVJjYq5CQEDZv3syCBQtyDJiFyuUqFwgEgvxQs2ZNnccqFUQHB9K4kWemsQ416wIQHRygI8JetUoZW1gBkBQbDUBKYjypGfpvyhQKzKztqOnZlkbd+nN41RJO/bUCN892uHfuQ7M+w7SWsuyICHiMJEkcWraQQ8sWZjkmITIMSwcnIgIeEXL/FvO71c9mXHiOaxUUTbmnjlVN832uEGtljIB4pTarUSOjiqochWYe/zglT+KUWFWgrMZVq1ahr6/PxIkTS3srAoFAUG4xNtYNei9IrL0sux/ML7pbntywTJscAGDlVJ1P915GJpMxesk6nl73486JA9w/e5Tt897j1J/Leef3/RiamGW7pqRSmyc6jJ1K3bZdshxjW91NO7Z26850Gj8ty3Ea12hRo3F/FqTckxBrZQSlStKpFwbFVzNMM29MqoqN92PwsjeiUzmuF5aamsry5csZN24c1tbWpb0dgUAgqDDoyWRYOTkT5v8g03NhT+4DarGVH5r3H4mrR6uXaxjq1hqr0cSLGk286DVtNlf3b2fL7Le5fmAnLYaMhWy8QTbOLgAo9PSo3apTjuvbOLuSmpiQ67iipruzaYGNI2W63VRlISBeyZo7UVwKSwZKprBrxnUuhSWz5k4UAfHKElo5eyRJIk0lkZyuIlGpIjldRZpKQpKyf1W2bt1KSEgI06dPL8GdCgQCQcVHIYMG7bsTePMy/tcuao+nJiVwYccfWFetgYNbvXzNaePsSu1WnbT/uTZTC7ek2OhM3/VO9RoBkJaaCoCBkdrylxQXozPOzMYeN692nN+xgdiwkExrxke9dG027jGIp9cvcu/MkUzjkuJiSE8r+iLAHZxM8MpHqY5XEZa1UsYvLAnfwIQSq76fFRIQ+8LK1t3ZtFAfqHytW0QZrkuXLqVHjx64u7uXyL4FAoGgsiCTyfB+90Ou/LuD9dNfo+2oyRhbWHF5zxainvkzesm6IqtLdslnM+e2rqNhl37YOruSkhjPxZ1/YGhmTr323QHQNzLGwa0eNw7tws6lFiaW1lSpVR/H2g0Y+NkiVk7sz0/enWgxZAw21VyJjwzl6XU/Yp4H896WYwB0HDeVO8f/5ff3R+M54DWqNWhKalIiIQ9uc9PXh5l7LmNqbVsk1wTQ0cmENlUKd18VYq2UkCSJM8+TOBmcqH5c2vt58X/fwARS0iXaVjEutszIosxwdUiN4kFQKL/PmVMsexUIBILKTv0aVXl33T72Lf2aM5vXqIvi1nFn3I9/6hTFLSxunm0JvHWF6wd2Eh8ZhpGZBc4NPfCevwKbai7acUPn/IDP4lns/b85pCtT6TblExxrN6CKWz2m/XkI31VLuOyzmcToKExt7KharzHdpnykPd/A2IQpa/7h2G8/csN3N5f3/I2RqTl2Lm50f/tTjMwsCn0tGgNMURlAZFJO/iVBsXE6JFEr1MoiHZxMaOdoUmTz5ZbhWlAkVToyuQJXMz08HYwrVIarQCAQlAVuRSbj4x+f+0AB8DLrs38RJvAJy1op4BeaVKaFGsDJ4EQMFbIi+UVQnBmuMrk668g/Po0n8XEVKsNVIBAIygKOJkIq5AWNEcLL3oiORZy0J96BEiYgXonvs4TcB5YBfAMTqGKsV2DhIzJcBQKBoPxjY6jAUCHThq0IdNGINMtiNBYIN2gJolRJrLkTRWyqqtRj1PKCxpT7ZgPrfIuegHgle/zjSu1ai8MMLRAIBJWVI88SuBiaVC7uXSWFRqTVNNfH094YNwv9YgvDEWKtBPENjOdSWHK5+rBrWmN0c86+GOGrlIUMVyj6AE+BQCCorESlpLPydlRpb6PIMJBD6otsNbkMVHm4WWUcZ6iQ0czWiGYl1MJRuEFLiIB4JX4v6qiVJyTgYlgytSwMcDHXzzFDtDJnuAoEAkFFxtpQgau5Pv5xylL/bi8MMsDVXJ+RtSyISlGpS0clpRGUoMy1dFRVU30cjdWlo6wN5SV6PxGWtRJAJUmsuh1FTDlxf2aHnkwdaJpVrTOofBmuAoFAUJm4H5PC9kdxpb2NQjPczYLali8bzUuSRLoEaSoVShVISCDJMFCAvlyOXEap/9AXlrUS4GFsKtGpeW2/XnZJk7KuddbU1gg9GZx5nlSq+8uNosxwFQgEgspGLQsDrAzk5dbwIAMs9GVYGsi5FZlcqGLsJb53YVkrfjY/iCn3puOcKO3YtPwyuo6lSDoQCASCAhAQr2Tj/ZjcB5ZR9OWg1MSqkXMxdg0Zx2kMFB4lFKumQYi1IkJrRpUkVCqQy9UNcGNT01l1J7q0tyd4QWEyXAUCgUBQPpPlihKNgcLVXB9Pe6MSKcYuxFoByE9Py7wqd0HJUZAMV4FAIBCoKW9lqIoLjWgriWLsQqzlg4L0tMwrl3ZvYttXM5i55xLWVWvk+bxVkweRGB3J+1tPFsEuKhfCHSoQCAQFo7y7Q4uSjJ0LiqsYu7zIZ6xgqCSJ+zEpbH4Qw8rbUVwMTdKp4iysZuUTGbDXPw6V+K0iEAgE+aa6mT7dnU1LextlAs1d5FJYMmvuRBEQryzyNUQ2aA4UZ0/LV/HoN5ImvYagZ2BYTCsIMiIB0akqHsUqdVK4BQKBQJA3vOyNSUmXynTJppJEAmJftDws6mLsQqxlQUn2tNQgVyiQK0ous0Sgtq5dCksSYk0gEAgKSNsqakEiBJua4irGLsTaK2TsaQklV5Iiq5i1s3+v5dzfa4kIeIyJpTUNu/Sl57TZGJtbZjr/2e1r7F48i6C7NzC3daDThOm0Gj5BZ8yZzas5v+13ooKeotA3wNbZlfZj3qFZn2ElcYllDgl4HKckKiW9RFOwBQKBoKIgk8lo52iCoUJWJtoMliU0ArYoirGLmLUM+IUlsfF+TJnIcPFdsZjdCz/Fwt6Rvh/Mo1G3/lzYsYG1744gXanrD0+KjWb9jFFUa9CEPu99iaWDE7u+/QS/XRu1Yy7s+AOfxZ/j4FaX/h/Np/vbM3Gq14iAm5dK+tLKFDLganj5awMmEAgEZQkve2NG17HEwkCOKIr0kpPBifiFFb5gvLCsUfZ6WsZHhXNs3U/Uad2ZCb9sQS5Xa2p71zrsXvQZV/ZtxWvQ69rxsWEh9P3wazqMeQeAlsPGs2xcLw788g0e/Uai0Nfn7qlDVKlVn9GL1+ZrLwXNUi0vSMDViGQ6VzUp9XYiAoFAUJ6pbqbPmw2sdcKISvt+WhbwDUygirFeoaoPCMsa6Ai1ssCD8ydIV6bSbvRbWqEG0GLo9QNI/AAAIABJREFUWAzNzLl76pDOeLmeHq2GjdM+1tM3oNWw8cRHhvHszjUAjMwtiHkeRMCtKyVyDc8f3cV3xWKigp6WyHoFJTUpkb2/LsLn0JHS3opAIBCUe/TlMro7mzG6jiWWBur7V2X/GSwD9vjHoVQVXLpWerHmF1q2hBpAdHAAAPYutXWO6+kbYFPNhajgQJ3jFnaOGBjrplDb1agFQNSLuTqNn4GBiSnLxvbku0Et+WfBTJ5cPZ/rXjz6jeTrswFYOVXP1zWEPrrL4VVLiAoKyNd5JY0yOYnDq5Zw4PDR0t6KQCAQVBiqm+kzxd2a4W4WuJqrLUqVVbRpskRPBCUUeI5KLdYC4pX4Piv4i1eecHCry0c7zzJqwSpcm7Xi5pE9rJzYn0PLF+V4nlyhQN/QqMy4CFOTiuf9ileKinkCgUBQlMhlMmpbGuBd25K33K1p6WCMoUKW4fm8zvPy3/rlVLVIwMWw5ALXYCunl114lCqJPf5xZVLpa6xYYf4PdI6nKVOJevYUaydnneOx4SGZREz404cAWGewiBkYm9Kk1xCGz/uZT/ddpV77Hhxb+wPKlOwD7C/t3sSs5vZad+aifs1ZP+N1nlw5x69jezKntTOLB3hxec8WnXP+mjkJgNVTBjOruT2zmtvzyO+0dszd076snNifL9u6MLe9K+tnjOL5w/901t46dxpz27kQEfCYddNfY257V7bMVsflqVQqTm1cwQ/D2zOntTPfdHdn5/yPSIrV7cMaePsqa98dwf+61mNOm+os7u/Jtq9mABAV9JT53eoDsOGHBchkMmQyGV999VW2r4dAIBAI8o+1oYIu1Ux5v7ENUxpYM9DFHC97Y5xN9dDLRonoycHZVA8ve2MGupjzZn0rTPTKbwJDYYqxV9oEg+NBCWUi6zMrarfqiELfgDObVlO3bTetVctv10aS42Op176HznhVWhrnt2/QJhikKVM5v/13TK3tqNagKQAJ0ZGYWtloz9HTN6CKWz3unTmMKi0N8lGLNzLwMRtnTsRr0Gia9/fG75+/2DZ3OtUaNKVKrfrUbN6GtqMmc2bTajpPfB+HmnUBsK9ZB4DLe/5m29xp1GnThd4z5qBMTuL8tvWsmNifGZuO6CQyqNLTWTt1JK4erej7/jz0jdQ1fXZ98xGXfDbjOWAUbV+bTFSQP2e3/EbQ3Ru8vXYvCn194iPDWPvuCEytbek0YQbG5hZEBQVw68heAEytbRn8+RJ2ffsJjbr2Y+YEb2QyGU2aNMnP2yUQCASCPCKTybAxUmBjpMD9xY1HkiRUEqRJEukqUMhBTyZDLkPHq3M/JoWY1PLrBSlMMfZKKdYC4pX4hZXdcg1m1nZ0fuM9Dq9awrqpI2nQqTdh/g84v3Udzg098Og7Qme8hb0jJ9b/TFTQU+xq1OLGwV0E373JkC++R6GvjhVY++4IzO0ccGnaEjNbe8Ie3+fslt+o374Hhqb5a2ge9uQBU9bspmbzNgA07jmIRX2acWn3Jvp+MA8bZ1dcPVpzZtNq6rTujJtXO+25KYnx+Cz5HK/BYxg653vt8eYDvPl+SBuO/vajzvG01BQa9xhI7+lztMeeXDnHxZ1/4v3NCp0acW5e7Vk3zZsbvrtp1mcY/tcukhQbzcRlW3F2b6Yd13Pq54Da0tio2wB2ffsJVWq78/roMSiKoaebQCAQCLJHJpOhkIECGeRQ8vJSBcgwLWgx9kon1lSSxN4X7s+y/IZ3f3smpta2nN3yG3v/bw7Glla0GDqOXtNmawWYBmMLK0bM+4Xdi2dxceefmNnYM/DThbQcOlY7ptWw8Vzdv41TG1eQmpiAhYMTbV+bTJc3P8z33hzc6mmFGqjFpZ1LbSID/XM998G54yTHxdC091ASoiK0x+VyBdUbNeeR36lM57Qe/obO4xu+uzEys6B26046c1Rr0BQDE1Me+Z2iWZ9h2uLB/504iFOdhplet1dJkyT1l4VAIBAIyhRRKek8iSv6npslTUGLsVc6sfYwNpXoMmhGVanSAZArXr4lbbwn0cZ7Uo7nTVn9j/bf76zfl+24lsPG0TJDeY+MrJo8iMToSN7fejLHtaKCnhIdHECV2g0yPWdsYUlSXHQWZ+kS/vQRAGveGpLl84Zm5jqP5Xp6WFSpmmmO5PhYvumWeR8A8ZHhANT0bEujbv05vGoJp/5agZtnO9w796FZn2FZ9mBNV5HjrzqBQCAQlA5Xwsu/VU2Dphh7l2qmuY7VUOnEWlk1o8aFP0cmk2FsYVXaW8kVmSzraFApD0GTkqQWyiP/twxzO4dMz2cUq6COrctYaw5AUqkws7HH+5vlWa5ham37Yp8yRi9Zx9Prftw5cYD7Z4+yfd57nPpzOe/8vh9DE133r6LSptsIBAJB2UWSJK5FJOfrvu27YjGHVy3hi8P/ae8JZYWCFGOvVGKtLJpR4yJCuenrw/ltv1OjiRcGxoXvIVZcWDlVx9LRGQsHp1zHZvcBtHV2BcDUxo7arToVaB+2zq48vHACl6YttQkHOVGjiRc1mnjRa9psru7fzpbZb3P9wE5aDBkLGfapV0bKkwgEAoHgJZEp6aSklzUTS+FISZeISlFhY5Q3d06lsiVozKhlibDH99n/0zxsq9dk+LyfS3s7OaIpbZGXXwL6RmrRmRQXo3O8TpuuGJqZc2ztj5l6nIK61VZuNO45CFV6OkdW/1+m59LT0rRrJsVGZ7L2OdVrBEBaaioABi/EXkp8TJ5r/ggEAoGg5AhJTCvtLRQL+bmuSmNZK4gZtSRw82rH12eKtyVTSkI8B5ct4Pax/cSFP8fIzAKnug3pPWOOtrQHqFtE7V74KQE3L2NsbknbUVMws7HTPq+JWTMys9Ae2zp3Gjd9fXCoVZ+Ip4/4sq0LRmbmNOs7HJlczvH1P5McH4uegSG1WrTHzMaewbOW8Pecd/l5dDea9hyMqbUd0SGB/HfqEC5NWzLos5wL9bp5tqPlsPEcW/cTQfduUqd1ZxR6+oQ/fcRN3930/+QbGncfyCWfzZzbuo6GXfph6+xKSmI8F3f+gaGZOfXadwdA38gYB7d63Dj0D8uXN8XGxoZGjRrRqFGjIn4XBAKBQFAQQhLTkANlL9q84MhlEJKUpi1fkhuVRqxVRDNqXtn57cfc9PWhjfckHNzqkhgdhf/V84Q+vq8Va0mx0ayb5k3DLv1o3GMQN319+Hfp17Qb/Xau86tUKkLu38bI1Jwe73zGvTNHOLnhV+p36EHo4/vs+Pp9VOnpTF61CzMbe5r1GYaFvSPH1v3EiQ2/kqZMxcLekZoerfEa+Hqu6wEMmf0d1Ro05cL23zn467fIFQqsnWrQrO8IXJq2BMDNsy2Bt65w/cBO4iPDMDKzwLmhB97zV2BTzUU71/Avf8D3+9l88MEHpKamMnfuXCHWBAKBoIwQnJhWYKGWEB3JPwtncu/MEeR6+nj0HU7vGV+ib2gEqL0xx9b9xGWfzcQ8D8LcrgrNeg+l21uf6CSiLerXnCq16tN21GT+/WkeYU8eYFPNhR7vzqJRt/753pdKgqCEvIdlyaS8RIVXAG5FJuPjH1/a2ygV5nWsRbO+w7O1WK2aPIjHl84w4utfad5/JKAurLu4nwcuTVsyesk6QG1ZW9zfk+FfLcVz4ChAbVm77LOFNq+9ycCZCwC1FfP390bz4PxxZv17vcwFd2bFQBdz3G3yURlYIBAIBMWOJEn83/UI0vKp1jQJBo613bGuWp06bbrw9MYlru7bike/kYz836/Ay3tYo+4DcPNqT8DNS1zZ8zfuXfoy9v9+1863qF9z9AwMiI8Mp9Xw8ZhZ23Np9yaeP/qPN37ZQp3WnfN9bXpy+KiJbZ5CiyqNZa0imlHzipG5JQE3LxMbFoKFvWOWYwxMTPHo97LYrp6+Ac4NmxP5LPfaaQBtvN/U/lsmk9HGexJ3Tx3iwYUTNO2VdZmOsoSjSaX5UxAIBIJyQ7pEvoVaRqyr1WDcD38A6nJYRqZmnNu6jg5j3wUkLvtsocWQMQyd84N6zMiJmFnbc/KPX3l48RS1WrTXzhXu/5DRS9ZpLWleg0fz/dA2/Lv06wKJtTSV2sKmyEO8dKVJMCiIGTUqKIBdC2byf0NaM6dNdb7uUpeNMydq+2RmJCkuhj3ffcGifs35olU1FvRuwt9zpuoUbY15HsQfH47jy7YuzO/WgD3ffcG9M0cy9c0savq89yXPH/7Hwj5N+XVsT3xXLCYy8InOGEuHqpnUvbGFJUmxugkCWSGTy3XcigD2LrUAsnytyhqGChnWhpXmT0EgEAjKDWmFdP61HjlR53Gb1yYD6v7Ud0/5AtB+9Ds6YzqMVT++e+qQznELe0cadu2nfWxkZk7z/iMJ+u8GceHPC7S/vF5fpTAnSJJESFL+s0kCb1/h6bULNOk5BMsqVYkKesr5betZNXkwH2w7pS2zkZIYz8pJAwh7fA/Pga9TrUETEqIjuHP8ADGhQZha26JMTmLN20OJDnlG29cmY2FfhSt7t/LwYuaK/UVNk56DcfVoza2j+3hw7hgnNvzK8d9/Zsx366jXTh1oL1dknT5c0b3kMqCZrVGea90IBAKBoORQFdIdZlfDTeexrbMrMrmcqKAAQG1ssK1eU2eMuV0VjMwtiQoO0D23es1M9wq7GhrDRADmdlXyvb+8FmOvFGKtoGbU+u170Lj7QJ1jDTr2YvmEPtw8vEcb33Xi9195/uAOY75br6O6u775kVbsXNixgXD/h7y+aA2NewwCoMWQsSx9rXPBLiqfWNg70mbkRNqMnEh8ZBg/v96No7/9oBVrhUFSqYh85q+1pgGE+T8E0GnKXhaRgGZ2RqW9DYFAIBBkgbyonR5Z/TAvxR/reS3GXil8PwU1o2YsuJquVJIQHYlt9ZoYmVsS9N917XO3juzBqW5DHaGmQaPC757yxdyuCo0yiD8DYxNaDs26BVRRMKu5PYeWLSQ5LlbnuJmNPRb2jtpaY0XB2S1rtP+WJImzW35DoadPrZYdimyNokYG1DTXz1d/NoFAIBCUHIUtVq5pcaghIuAxkkqFddXqWDs5I6lURLwyJi4ilOS4GKydqmc+9xU9Ef5UY5jQHZtX8np9lcKyVlAzqjI5iWPrfuLS7k3EhgbrvEnJ8S8FUETgExp1zTl1N+zJAxR6+iTHx2objAPYudYu2ObySJoylQW9G9Oo+wCc6jTCwMSUB+ePE3jrCn0//LpI1tAzNOLemSP8/eVUqjfy5N7pw9w9dYjOE9/HzNou9wlKCQnwtM+9A4JAIBAISgeFTJ01WdAkg3N/r6Vumy7ax2c3rwagXrtuABz45RtO/7WSIV+8LLJ+6s8V6jHte+jMFRsWwq0je7UJBsnxcVze8zdO9RoVyAWqJyfPxdgrhVgrqBl19+JZXNq9iXavv0WNJl4YmVkgk8nYNGuKtsdlXlGmJJEQFUFyXIyOWCtuFHr6tB4xkfvnjnLryF4klQrb6jUZNGsxrUe8USRryOVyJv6yhV3ffsL+H+dhaGpKtymf0HXKx0Uyf3EgAywN5LhZ6Jf2VgQCgUCQDTKZDEdjPQITCtbFIOrZUza8P4Y6bbvy9LofV/dtpWmfYTjVVdfSbD7Amws7NpAUF0NNz7YE3rrMZZ8tuHfpq5MJCmDnUovtX79P4O0rmNnYc+mfTcRHhjH8q6UF2pujsZ7oDZqRgppRb/r60Ly/N/0yWKCUKckkv9JCydbZlecP7+Q4l7G5FQlREZlNqE8e6DxWqVSkK1O1BfsKi1yhoOfUufRhbrZjpqz+J8vjI+b9ovPYumoNFlwOy3KsjbMrE5dtLfhGSxgJ6O9ijrwQJnZJktTxkJKESqX+UaAnk6GQZd8bVSAQCAT5w8lEj6CEghXGHbVwNYdWLOTAz/9DrtCjjfck+rz/lfb5oXN+xKaaK5d8NnP76D7M7Bzo/MZ7dHvrk0xz2VZ3Y8DMBez/cR7h/g+wrlqDUQtXU7dt13zvSy6DqqZ5NxZUCrFWUDOqTKGAV8TV2c1rUKWn6xxr2LU/R1Z/x60jezPFrUmSxOGVS7R+7SUDvLTPfbDtFPt/mgfA/XPH+Wfhp4Q/fcjri36jYZe+nNjwK7eO7CXM/wHK5CQcatal88T3MiU9pKWm8O/S/3F13zaUqcnU8mrPoFmLs7ymmNBgDi1bwN1TviTFxWBbvSYdxryD1+DR+XtxyjEywMveCGezvP+hSJJEZEo6IYlphCSmEZyYRkhSWpafKT25+heTk4keji/+szFUCAEnEAgEBcDRRC/fQq372zPp/vZMAEYvXpvtOIWeHt2mfEy3PHqC6rbpouNWLSgqSX2fyCuVQqwV1Ixav0MPruzbiqGZBVXc6vH0+kUeXDiBiZWNzriO46dy87APf3066UXpjqYkxUZx+/gBhsxeQsOu/Qh9fJcbh3Yj19OjbpuuGJlbsGX2y9ou5/7+jfZj3sHEykYbqHhm0yoadOxFsz7DSFcquXZwJ3/NnMT4nzZSv0NP7bnbv/5Aa9p1adKChxdPsn5G5rZNcRGhLB/fG2QyWntPwszalrunD7P96/dJToijfR5aS5V3ZICFgZyOVU3zND4qJZ0r4clci0jWtivLrbhymgoCE9J0fgkaKmQ0tTXCw85IJDQIBAJBPqioRcvzc10V8xXIgoKYUQd88i1yuYJr+7ejTE3GpWlLJi3fztqpI3XGGZqY8dZvPviuWMSto/u4vGcLZjZ21GrZAQuHqpha2eDcsDk3Du3GzbMdDy+ewsDImKZ9hhF09wYA/T6ej9eLFk4aPtp5TicjtY33JH4e3Y1Tf67QirXgeze5um8rrUe8obWmtfGexObZbxNy/5bOfAd//RZVejrv/X0C0xeCs9XwCWyaNYXDK5fQath4nfUqIhr3p34OUZ0qSeJhbCqXwpJ5EqdE9uI87fN5XCvjuJR0iYuhSVwITcLVXB9PeyNqWRgUyg0rEAgElQEbQwWGClmF6u+d32LslUasFcSMamxumWXg4Kd7L2c6ZmJpzcBPFzLw04U5zjl0zvc6tcfObFoFgE0W9cgyCqek2GhU6em4erTm2r87tMc1FZjbjpqic26719/i2v7t2seSJHHz8B6a9BgEkqTTWaFumy5cP7CTZ/9dx7VZqxz3/yoj5v2SKbatLNPd2ZTqObg/A+KV7PWPIzpVhUZGFdXXg2Ye/zglT+KUWBnI6edinuN+BAKBoLIjk6k9ExdDk4rs+7g0KUgx9kol1sobd04c5Oia7wm+d5O01BTt8YxvcFRwoLrdk7Orzrn2LrolQRKiwkmOi+HCjg1c2LEhy/USIsOLbvNlkA5OJnhlU6pDqZI4HpSAX1hykYu0V9HMG5OqYuP9GLzsjehU1TRHa59AIBBUZjzsjLgQmlRq62dlpCkoBSnGXv4UTAEpb2bUx5fP8scHY3Bt3oZBny3C3L4KCj19/HZv0rGY5RXpRbG5Zn1H4DnAO8sxjnXcC7XnskxHJxPaVMlaqAXEK9njH0dsqvo1KqlPiGadS2HJ3I9Jpb+wsgkEAkGWWBsqcDXXxz9OWa6tazLAtQDF2CuNWCttM2p+MwFvHt6DnqERE3/9Gz0DQ+1xv92bdMZpKjBHBj7BPkOB3TB/3ZIgptZ2GJqaIanSqd2qUwGuoPyhiTXr7myarUXNLywJ38CETHFpJYkExL6wsuW0V4FAIKjMeNob8SROWdrbKBQFLcZeKdpNafCwMyq1G7Km6XvSKzXaAFqPnIibVzudY+rG6jKdMiFRQU+5fXS/zri6L6owa2LfNJz+a2Wm+Rp17c/Nw3sIeZC5Jlx8VMVygWqyPkfXscxS/EiSxOmQRHwDE9SPS3h/mfbz4v++gQmcDknMVI9PIBAIKju1LAywMpBTXgNGZIBVAYuxVxrLGpSuGbVqg6aAOiOzSc8hKPT1adCxZ7bj67fvwak/l7NumjfN+gwjPjKcc3+vxbZ6TZ0sz6r1GtO091DObV1HcnwcNZq24OGFE0QEPMk0Z68Zc3jod5pl43rTYsgYqrjVIzE2iqD/rvPg/Am+PHa/yK+7pNFYyLzsjeiYQxzYmedJnAxOLNG95RXNvto5mpTyTgQCgaDsIJfJ6Odizsb7mY0e5YHCFGOvVGINSs+MWr2hBz3e/Yzz237n3pkjSCoVM/dcynZ8rZYdGPbljxxbv5Q9332BddUa9J4xh6iggEwlOYbN/QlTa1uu7t/O7WP7qNWiAxOW/sXCPk11xpnbOjD1jwMcXvUdt47u5fzWdZhYWePgVp/eM74slusuKTQizTIPGZZ+oWVXqGk4GZyIoUImXKICgUCQgepm+njZG3EpLLnUPSL5oSDF2HXOlyqZv0UlSay6HUVMqqpcvdGCrNGItJrm+njaG+NmoZ/jr5aAeGW5+lU2uo6lSDoQCASCDChVEmvuRBFbTu7jmrCcNxtYFzjrv1LFrMFLM2p5eIMrKu0cjWnlYIyh4uWHNq+f34zjDBUyWjoY85a7Nd61LaltmXORWaVKYo9/XLmJd5ABe/zjUKrEp1UgEAg06Mtl9C9H9/G8FGPPjTLrBi3OJtnl1YxaEejgZKKNxerkZEzdZi2YMOMj2vYZRFCCMtd+m1VN9XE0VvfbtDaU5+uzcDwoodz8EoOXWaInghLo5mxW2tsRCASCMoFSJXE3OiX3gWWE3Iqx54UyIdZKo0l2p6qm3I9JLVc37/JOGwdjmtsZkqaSUMjg8ePHPLxxGS9nG7pWU/fqlCQJ1QuRnq4CxQuRLi+kSA+IV+IXllxUl1JiSMDFsGTqWhkKd6hAIKj0vFoXs6yTUzH2/FCqMWsFaZKtIeO4gjbJLm/xSxUJPTko4qPw3b6JL99/l9oOVgUS3XmhvMcpylAnTkxxtxa9RAUCQaWlLNTFzA+aYuxFcV8rcbGWW5PsgqKZJ79NsjVvvqDkkSQJVXoaCj21xaigojs37seksP1RXJHNV1oMd7OgtqVBaW9DIBAIShRJksp0uaWM5KUYe4HmLUmx9mqT7OJYWDNvfppknw5JLBcfgspAQUV3Tmx+EFNhWpR417Ys7a0IBAJBiVJe7tGarM/iaB1YImLt1SbZJXHTzFgcNbcm2eVJtVcWCiK6syIqJZ2Vt6OKdG+lyVvu1kVqdRQIBIKyjF9oEr7Pyof3q0UuxdgLQ7GX7giIV7LmThSXXgR3l0aT7DV3ogiIz74Qrkwmo52jCd2d1UHuIiqo9NG8fzEvemb6BsYXqITFlfDkCvN+yoCr4eUvSUIgEAgKQkC8stwINYC6VobFItSgmMWaX1gSG+/HlGrGZcYm2X5hSTmO9bI3ZnQdSyzKce+xikZ+RHemcyWJaxEVpzyLBFyNSBZ9QwUCQYVH1MXUpVjEWnlukl3dTJ83G1jjaW8ECCtbWSE/oltDZEq6Nsu4opCSLhGVUj5S1gUCgaCglOe6mMVBsYi1shz/dTI4kTPPc77Z68tldHc2Y3QdSywN1C+REG2lT35EN0BIYlrxb6oUqKjXJRAIBPCyLmZ5EWoaNHUx8+MByitFLtbKS5PsvFhnqpvpM8XdmuFuFriaqwPchWiDWc3t8V2xuFT3kBfRHZKYVu77qaUm6f5Kk8sgJEmINYFAUDFRSRJ7y5H781VkwF7/OFRFHK5SpB0MylMwoG9gAlWM9XLNMpTLZNS2NKC2pQFRKelcDU/masYivjIQrRtLh5PBiRgqZNnWsglOTMtUYDklIZ6DyxZw+9h+4sKfY2RmgVPdhvSeMYdqDZqyqF9z3LzaMmLeLzrnrZo8CIApq//RHosKCsBn8SweXDiJgbEJzfoMo27brqyb5s3kVbtw82oHwOPLZzmzeTUBNy8THxGGmY0djboNoNe02egbvdz71rnTuOnrw4zNx9i9eBZPrpyjdsuOjP1+g3aMSoKghKL/1SYQCARlgYexqUSXk+4EWSEB0akqHsUqi7QuZpGJtYzBgOVBu2iCAd9sYJ3n7A1rQwVdqpnSuaoJUSkqdXuspLQce1oKipfsRLckSVlaoHZ++zE3fX1o4z0JB7e6JEZH4X/1PKGP71OtQdM8r5ualMCat4cSF/6ctqMmY27rwNV/d/DI71SmsTd8d6NMTqL18AmYWNoQcOsyZ7esISY0iNGL1+qMVaWns3bqSFw9WtH3/Xk6Yk5DSFIakiQVS7cHgUAgKE0ulWCJr+JCBlwKSyqbYq08BwPmt0m2TCbDxkiBjZECdwzV82XoaalUSfxxN5oYZdl5NVKTEjAwNi3tbRQ52YnudIksxfPdk4doMWQM/T78OsPR6fle9/z2DUQGPmHs9xtw79wHgJbDxvPzqK6ZxvaZ8aWO6Go5bBy21Wty8JdviA4OxMrJWftcWmoKjXsMpPf0OdmunaZSW9gUQqsJBIIKRFRKOk/iyr/nQAIexymJSkkvsrqYRRLSI4IB1QJOIZdhqJATnJhW7EItJjSY7fPe49uejfiiVTUW9/dk17efkKZM5dLuTcxqbs+jS6fZtWAm87s1YEFvtdVo69xpLOrXPNN8visWM6u5vc6xtNQU9nz3BfO71mdue1c2vD+GmOdB2e5n21cz+Ka7O1+0qsYPw9vjt2tj0V/4K2SXgZOWTbyAkbklATcvExsWUqh17505goWDEw069dYe0zc0osXQsZnGZhRqqUkJJERF4NKkBZIkEXT3RqbxrYe/kev62V2fQCAQlFdEXczsKbRlLWMwYHm8fWiCAYuySXZxm3Fjw0JYNrYnSXGxtBw6FnvXOsSGBXPT1wdl8sug+38WfIqptS1dJ3+EMjn/SR/bv/6Aq/u20rTPMFyatODhxZOsn/F6pnFxEaEsH98bZDJae0/CzNqWu6cPs/3r90lOiKP96LcLdb25oRHdda0Mte5QVTYu6T7vfcnWudNZ2Kcp1Ro0pV677jTvPxIbZ9d8rRkdHICts2smV6Rt9ZpZjA3k0IqF3Dl+gKR5go9LAAAgAElEQVTYaJ3nkuNjdR7L9fSwqFI11/XTVYBoZCAQCCoA69ev54033uCLfZcxdaxeYutGBT1lcX9P+rz/FR3HTS3SuTV1MTtXNSmSkJVCizURDKhLSZhx//35f8RFhPLuhgM4uzfTHu/xzmc65SxMLKx4c8UO5Ir839WD793k6r6ttB7xBoNmqTM/23hPYvPstwm5f0tn7MFfv0WVns57f5/A1MoGgFbDJ7Bp1hQOr1xCq2Hjs4y9KkpeFd3ybGzGTXoOxtWjNbeO7uPBuWOc2PArx3//mTHfraNeu+7Z/lFJ6enICvA6qtLT+e3d4STFRNNpwnTsXetgYGyitkTOnY70iqrU0zdAnt3mM6Ao72muAoFA8AqpKomKFKyjqYtpY1T4X9aF/srXWJHKM5pgwKKguM24KpWK28f206BjLx2hpiGj2GgxdGyBhBrA3VO+ALQdNUXneLvX39J5LEkSNw/voUHHXiBJJERFaP+r26YLyfGxPPvveoH2kB8yim4AvRx+yVjYO9Jm5ETGfr+BmXv8MLG05uhvPwBgbGFJclxspnOiQgJ1Hls5VSci8EmmWm8RAY91Hoc8uE24/0P6fjiPThNm4N65D7VbdcLC3rEgl6klp+sTCAQCQdmgqOpiFsqyJoIBX5mnBNobJUSFkxIfR5Va9XMda121RoHXiQoOBJmMtdO8iQkJxLF2A2ZsPoa9S+1M+0mOi+HCjg1c2LEhy7kSIsMLvI/8kDEDRyEDPblukoEqPZ3UxASMzC20x8xs7LGwdyQtNRUAG2dXnlw5R5oyFT19taX1zomDxIQ8w6aai/a8um268ODcMe4c/1ebYKBMSebijj909iSXqz9PGUWdJEmc/mtVga9TT64uGSMQCAQViYr2taapi+mSkIapaeFshoUSaxorUnmMVXsVTTBgl2oFf0HLWnujrFyPsmz+HFSqdJ3HMc+fgSTh0qQFdd+eickL9+araNx4zfqOwHOAd5ZjHOu452fbBeZV0e1orEdgwstfNSmJ8Szs3YRG3QfgVKcRBiamPDh/nMBbV+j7Iju0xeAx3PT1Yd1Ub5r0HEREwBOu7t+aKaat5bBxnN3yG5s/f0tdusOuClf3b0fPUJ0drHmZ7V3rYOPsyv4fviI2NBhDU3NuHdmTKXYtPzga64myHQKBoMKhuXvOam5Ptymf0P3tmTrPv1oH89LuTWz7agZv/ebD9UP/cP3fnaSnKWnSczADPl2AMjkJn8Wfc+fEAQBaDhlL7/e+zPL789SfKzj910rio8Kp3tCDgZ8twrF2A50xoY/vc2jZtzy8eAplchJVatWn65SPcc+QaKbZ0+TVu7h+8B/mH/ZBoUojKiqqUK9NgcVaRW2SXZhgwJJoA2RqbYehmTnPH/5XoPONLKxIjovJdDw6WNfNl5qozq7sNHEGTrVfiq0w/weZ92NqhqRKp3arTgXaU1GSUXQ7mejxLEGJ9EI56RsZ03rERO6fO8qtI3uRVCpsq9dk0KzFtB6hzsCs27YrfT/8mlN/LmfPd19Qzb0p43/8i70/fKmzjqGJGW+u3MHuRbM4s2k1BsamNO8/khpNWrDxkzfQM1D3llXo6zP+x434LPmcY+t+Qt/ACPcufWnjPYmlr3XO9/XJZVDVNOdCzgKBQFCeyK11YG7sXjwLc1sHur09k4Abl7iwYwNG5pY8vXYBSydnek2bzd1TvpzY8AtVateneX9dw8KVPX+TkhhP65ETSUtN4fSmVax5ayjv/X0cc1sHAJ4//I8Vb/TDwsGJThNmYGBswo1D//Dnh+MYvWQdDbv205lTk+DXbcpHtLIs1OUBhRBrZc2KVBQUNhhQ096oONMt5HI57p37cHXfNgJvX80Ut5bbh97W2ZXk+FiC793CqW5DQJ1deuvoXp1xRubqT9eFreu1CQYAp/9aqbsfhYJGXftz9d8dhDy4k+mXSHxUOGbWdrleV3adA/KLBFwIimH1J1MIkozpPXOh9jk9fQP6vD+XPszNcY4OY96hw5h3dI5l7FygwaaaCxOW/qVz7NTGFQBYZsjodHCry6Tl2zKdv+BymM7jEfN+yfX6VZLasiYQCAQVhcJ2ATKzsWfCz5uRyWS0GTmRiIDHnNzwCy2HjWfw50sAaDl0HIv7N8fvn78yibWIwMd8tOs8lg5OgPpH+7JxvTi+/mf6f/Q/AHyWzMbK0Zmpfx5Ez0DtQWk9ciIrJ/Zj/9KvM4m1jAl+nzS1LdwFUogEg4raTPrV6/rqq6+QyWTcu3ePMWPGYGlpib29PXPmzEGSJAICAhg0aBAWFhYM86jF8T+W6ZwfHxnG9nnv8U13d+a0duYn785c8tmsMyYq6CmzmttzYsOvXNi+gSUDW/BFq2r8MqYHAbeuZNqj18DRKPT0+XVMDz73cmRRXw82zZrCjyM6kBwfS0KUOkbs6r7tmc61cVbHXf327nBO/7WSY2t/ZNn43tjVqKUdM6u5PXeO/wvAua3rmNXcnr+/eJefR3fj2v7Mc5rZOZCuTOXXMT3wWTKbC9s3cGzdT/z16SS+H9ImLy97kSLpGfA8LpE2DWvnPrgQZCyTAuqYtQvbN2Bbw037R18cOJoIsSYQCCoOhS2n32LwaB2PWPVGzZEkCa/Bo7XH5AoF1dybEfnMP9P57p376HxnV2/UnOqNPLl3Wp1olxgTxaOLJ2nccyApCfHaJLrE6EjqtOlKxNNHxIQG6+4pQ4JfUdTFzPe3fkJCAqampiViRcqN1KREDIxNimw+TTCgpitBRry9vWnQoAELFy5k7969zJ8/HxsbG1auXEnXrl1ZuHAhS1b/zr4f5uLs3oyanm1RJiexevJgIgIe09p7EjbVanDj0G62zZ1OclxMpszKa/9uJyUhnpZDxyGTyTjx+y9s/HgCn+z2Q6Gvdn09f/gff3w4FkvHahiamBH+9CExz59x/UAgddt2Q9/IGNMXlqx7Zw4D/9NZ478TB9E3MsLUypb9P32NTbUa9Jr2BRFPHxH0Imtz5P+WcWHHBgJuXsbNsy3+1y9y88gearfsiLG5FQ8vnNDWBwu5f5tTf66gaZ9hGJtbcuvoXs5vXYeJlTUObvXpPUPXfZgdH+08i0xWdPUofv59Mw2sDfjxRmSxWYD//HgCVo7OONVrRHJ8LFf3bSPsyX28v1lRLOsBGCpkWBuKuh0CgaDiUFjLmqWjs85jIzN1EpnlKzUrjczMs4wXtq3ulumYnUstbhxSe1QiAh4jSRKHli3k0LKFmcYCJESG6Qi+jAl+RVEXM89i7fXXX2f//v24urpy5coVtm3ayO61ywh9fA99QyPqtO5Mn/e/wsqxmvac8KcP+Xfp//C/doHkuFhMrGxwbdaKIbP/Tycj78rerZzauCLHuVZNHkRidCQj5v3Cnv/7gmd3rtFiyFgiAh4T+vgeM338Mu152fg+qNKUTNvom6e1NE2y79+/z2effcbp06cJD1dbqWJjY1m+fDmWlpZMmTIFV1dXPvroIxYsWMCnn35KmkrieaNeLOjVGL/df1HTsy0Xdmwg9PE9Rs5fjkff4QC0GjaBVZMHcXDZArwGjcbQ9GWrq+iQZ3y86zzGFlYA2LnW5o8PxnLv7FEadOwJZG2KlSSJlRP7ERH4GD19AzwHjiJdqWTnNx8R+vg+DjXrAJCuVHLj0G4a9xiUpbtNE8zp0W8EDy4cJ+i/60xctlVnTFz4c34Y0YHnj+6Spkxl69xpmNs6MHjWEozMzBn02SJUKhXpylT0DY1y/Vxp0FxLUaAV3TaGNLU14mJoUrHEVtZp0wW/XRu5un8bKpUKh5p1GbVgFU16DSmG1dTxeM1sjURygUAgqFDkNbtdeiURTnt+NiWqNNn4upPk/26gSaTrMHYqddt2yXLMq4IvY4JfUdTFzLNYS0xM5Ntvv0WSJObPn8/KL7+kcY9BtBgyhoSoCM5uXsOqNwcyfdMRjM0tSVOmsnaqN+mpKbT1fhMzOwdiQ0P47+RBkuJitGLt6JrvObR8YY5zafcQE8m66a/RpNdgPPqOwMzWnmoNmrL1y6kE3LpC9YYe2rFRQQEE3PCjz/tfaY/lZa3A2ES+HNmLlJQUpk+fzvnz5/Hx8cHIyIjo6GgsLS1RKBR4eXkRGBjIpEmTALWZ09jcEjuXWkQGqs2sd0/5Ym7nQNPeQ7V7UOjr03bUZDbPmsKjS2e0IgygSY9BWqEGUNOjNQCRz568uH61Kbb7O5+SkhBPSkK8dmydNl3xXbGImNBgLB2caNxzED7fzebq/m30fHcWAPfOHiUhOgKPviPy+rbzyO80+36Yy/OH/2Hh4ETHcdNw82rHrcN7WDlpAMF3byJJEgd+mU+NJi04tvZHwp8+5PVFv9GwS19ObPiVW0f2Eub/AGVyEg4169J54ns07j5QZ51ss3zW7uHm4T1c3buV1OQk6rTpzJAv/i/HODiN6AbwsDPiQmjR1NB7lfaj3y727gwZkYBmdnkXwAKBQFAekL9SpcDYwoqkVxLh0pSpxIU/L5b1IwIeZToW7v8Q66rqbgqa8CGFnl6BEumKoi5mnsXarl27APD396dWrVr0eHcWXSZ9oH2+Ydd+/Px6V879vZYukz4g9NFdop758/ri33RuzN2mfKz9d1RQAL4rF+c6l4a48FAGf/4drYaP1x5Ljo9Dz8CQGwd36Yi1G4f+QSaT0aTHoHytFfTgLo8fP6Zbt248ePCAJ0+eAODq6sqMGTNQKpUolUpu3LiBXC6nX79+pKWlITcyYdgvOzEysyAxRp2iGx0SiG11t0wV6TWWrujgAJ3jGRt6A1rhlhSr/tDmxxRrbG5Jg449ufbvDq1Yu7p/GxYOTri16ACoS1losj4BZAqFjghSqVSsm+aNuV0Vur89E1V6OkdWf4eptTpYMvDmZVoOHceFHRt4dPEUNw7tpo33JEysbLQf8jObVtGgYy+a9RlGulLJtYM7+WvmJMb/tJH6HV4K1ezwWTwLY3Mruk75mOjgAE7/tZLdC/V5fdGaHM8LSUpDkiSsDRW4muvjH6cs15nLMsDVXL/ImgILBAJBWeFVy5q63uVZnWMXtm9AlZ61Za2w3D62X2voAAi4eZmAm5e0oUpmNva4ebXj/I4NtHntzUxFzXNKpCuqupj5jlnbsWMHKpWKxj0GkRAVoT1ubuuAXXU3HvmdpsukD7Q+4/tnj1KvXfcsY8s05RNym0u7WQNDPAeN0pnDyMycuu26cf3QP/R5/yuti+j6wV1Ub+ylFUB5XUuz72vXrhEfH09MjFooJScnY2JigpGREebm5piYmCCXy2ncuDH6+voYmLx0ZxbEzAogy8pkm2G+/JpiPfp5c+PQbvyvXcCxtjt3jh+g9Yg3tOLx5IZlHF61RDveyqk6n+69rH2crlSiZ2DI2+v2aj+cjXsM4odh7bRjQh/dBdQlPd77+wRV3Orp7Oejned0zMFtvCfx8+hunPpzRZ7EmomlDROXbdW+ryqVirObV5McF6vjSn+VNJXawiZDwslEr9wXb5YAT/vibdklEAgEpcGroR0tBo9h17cf8+fHE6jTujPB925x7+xRTK0Kn1WZFbbONVk5sT+thk8gTZnK6b9WYmJlQ8fx07RjBn62iJUT+/OTdydaDBmDTTVX4iNDeXrdj5jnwby35ViWcxdVXcx8i7X79+8jSRL/N7hVls/L9dSB8DbVXGg/5h1O/bmcq/u349qsFQ069caj7wjtTTY84FGe5tJg4eCkrSqfkSY9B3P76D6eXr+IS9OWRAQ85tmda/T/eL52TF7XsqnmwvT3P+DnH38gISGBqlXVAYqrV6/Gze2lEJowYQLbtm1jzRq1hSdNJfHdtQidOa0cnQl5cBuVSqVjXQt7fF/9vFP+Gtbm1xRbt21XTK3tuLpvG9Ube6JMTsSj30sXaPP+I3H1ePl66GWIMZMkFZIqHfcufXR+RdjVcMPUxo64sBB6Tf+CAz+rX+OazdtmEmqg67dPio1GlZ6Oq0drrv27I0/X3HLoWJ0Pek2P1pzeuIKo4ACczBvmeK5/fCoHAxLKde9aUFvVLA3kuFmI+moCgaDiovmmbzF0LFFB/vjt+ot7Z47i6tGKScu2subtYcWyrkf/kcjkck7/tZKEyHCcG3ow8NOFOve+Km71mPbnIXxXLeGyz2YSo6MwtbGjar3GdJvyUZbzFmVdzHyLNZVKhUwmY8LPm7MM6jMwftkBoN+HX+M54DVuH9/P/bPHtIVB3/39XyyrVEXKx1xAtgHrDTr2RN/IhOsH/8GlaUu1C1Qup/ELFyiQr7WWfPcdkye+wT///MPq1asBaN++PRcuXMDZ2TnTuYC2vVFG6rXvzv1zx7h+cBfNXsStpaelcWbLGgxMTHHzbJvlXNmRX1OsQk+Ppr2HcG3/DkIf38extru2thqoTc2vVubXkJaSAqh/cWTkhu9u4sJCAOj8xnsE37vF9QM7Mba0znKeOycOcnTN9wTfu0laaor2eF5/abya5aN1Dcfl3gHg74dxFaJ9iQT0dzFHLhILBAJBBWTChAm0GPgaPv7qOGy5XE7vGV9mqiaQ0fMD4DlwFJ4Ddb1toE6We7X7AWSuZWldtYZOvctX62u+io2zKyO//jXHMRn3VJR1MfM9S61atdSxQNVcsHeplet4xzruONZxp+ubH+F/7QIr3ujH+W3r6Tn1c2ydXfM1V3YYGJtSv0MPbvrupt9H/+P6wV24erTWETP5WUtPJqNx48Y0btyYtLQ05s2bR3BwMCtWrGD+/PlZniOTyTK9KS2HjuPC9g1smzudoDvXsHKqzs3DPvhfvUD/j+frZILmlfyaYpv38+bMptU88juV5zIa2REfGcY/387EskpVYp4Hqffz6cL/Z++8w5uq3jj+SdJ0b1q6oZQWZJaWCgVklw2iTBVBGSIy3KLoT4aKA1RUZMhGRVFAlI2UvaFAWbILLVBKW1q6R9Lc3x8hoaEF0kWTcj7Pw/OQe88999wkzX3ve873+3Ji82piow8WySBePrqfX956Ef/QFvT+4Csc3D1QWCiJWvN7sX5txXHfQvRGzjSb8zo10D5phrlb42svsmoCgaDqUlX9I8vrukosKO3Tpw8KhYLt86YXccuXJIms2ymAduF/gdrQYNYzsD4yuVxfNLtBhx7IFQq2PqQvY2jc+RnSkxKIWv0rN86fpnHnZwz2G3sudXYGmoKihr9yuZy8vLwi2wtjrzR8O5XWNrwy/2+adOvL0bV/sGHGJHLSbtNv8g9FPNaMRZeKrftUBEfXLmfNl+9zcOVSZDJ5salYn/rBeNR+AplcTpM79iHGoKtxeevaZf22vz9/D7UqD7dCxdzt7tQMzbyVyO6fDZ84Tm1dh4WVNcNm/UnYM4Oo2yrCJEpSmQsywNFSThvvshUAFggEAlNGkiQkScKiik0elKcvZqkya5999hkTJkwgJT6O+u26Y2VnT8r1OE5vX0+zPkNoM2QMlw7vZs1XH9Ao4mncatZGU6Dm2PoVyOUKGnbsCUA1v1p0Gj2BzTM/4/YD+jKGuk9FYGVnz4bvJmlLIN05hw5jz5V8fB+1Br5P//79qVOnDtWqVePJJ58kOjqavn3vzpcvWbKEJUuW6F9HJeVw9nZ+kbJE9q7u9Jv8wwPHfm8qtjDFbTcmFVsYuYUFAU1blchVf8Ans8lJS+O/7RtJT0rA0d2TF79eQnJcDDP6tSrSPnzAMNq+PM7wvAoFIDNQ8KTGx/Hf9o1Gj+NxRjf9qSwPKZFAIBCYGKl5BRxLzuX4rdwqV76yvH0xS5Wf++CDD8it5sfS2TP1akInDx+CwttR7071ea86DajToj1ndm0mPSkBpbUNXkENeHnmcmo0DtP31W7oG7jVqM3eZXPv25cxKK2sqdemK9EbVxLYvC32ru5F2jzsXHIZPBnShIwuXVi7di3Xr1/H1taW4OBgNm7cSHh4eJE+JUli380cdt/INv4NfIRc+y+aG+dO0W/KzBIfG/HqeC4c2MHcoT1o3u9lJE0B+/9YiEftJ7hx7tRDj3/iqU7s+XUOi8cOpEm3vmSmJHPgz0VU86tFwoXTpbmcx4oIXzv8xPSnQCCoQmgkiUvp+RxJyuVKhgoZ5r9cpTjK2xez1JOp/fv2xTqsy333u/rUpO+k743qq2HHnkUyYfdSXCHtexk4dQ4Dp84p9bk0EoTUDWTQwoUPPZcOUw3UEi6e4fqZ4+z5ZQ4Obh5FpoWNwad+MENnLmfDd5PYMudLnDy8iXjtfZIuXyDpysWHHl+7WWv6TvyOHUt+YN3X/8PFuwZdX/+Y1PirIlh7CK29bAkTVh0CgaAKcTVTxfrYDG7na/Tir6oYqFWEL6ZMuncBl5HcylUz/8zDFXnmxsh6LrhaG/cGRyXmEHk96+ENK4HIudPYNv9r3GoG8sxH0wloWnTqsrT88vYQbl46y7v/HCq3PgV3aeNlSwsPG1FWSiAQVAlUGomd8VlEJeVW2UzavfQLcCTQqajVWGkpdWbN1UqBlUJWpeaZS7IY8GqmymQDNbi/dLmkqHJzDLzSkuMucW5PJKG9Bpa5b8FddD9gEb52IqMmEAiqDFczVayLzSD9jt9l1YkYiqeifDFLHazJZLIKLZL9qCnJYkCVRmJdbMZj8YQw/ekwQns9h6uPP7dvXOXAyiUolEoDZ2dB2dCpPnvWdBBr1AQCQZUhKimHyGtZj8W9UkdF+WKWyQCkIotkP2pKshhwZ3wW6fmax+LLV6dFB45vWk3mrUQUlpbUaBRGl7Ef4Vaj9L54Ai26H7Awd2vaeNsJ1adAIKgS3Cu8exzulVCxvpilXrOmY/nFtCpTJHtgoNND217NVLHsQlrFD0pQ5XG2lNNDZNMEAkEVY29CtkkK7yoS3QzJiHouFfLgXWZr3abu1o9NkWyNJLH+MZn+FFQsLT1seMrLVpSQEggEVYqoRNN0SKhoKtoXs8zWurUdLXG2lJttDUYZ2gyHMYsBL6Xnc/sxmf4UVBwy4Ea2WgRqAoGgSmHqwruKpKJ9McscrMllMnrUdDDbAKYkiwGP3JEdCwRlQQIuZ6hIzSt4aFuBQCAwBwoL7x43HoUvZrkUrfKzVxLmbm2WH9KTRi4GTM0r4IqZr80TmA4yIDo5t7KHIRAIBOXC4yS8K0wbL1taelS83VL5VBgF2nrb4Whm06EyIMDRONO6Y8kiqyYoPyQg+lYuZdT3CAQCQaVzNVNFVFLuYxOo6WKBCF87WnraPhID83IL1pRyGT3NbDpUAv64lE5U0oPtRyRJ4vit8vkiRs6dxoTQonVLBeZBelICkXOnEX/uZJn7yiuQSM3TlMOoBAKBoHIoLLx7HNCpPgcFOT1SA/Myq0EL42evJMLXjshr5rXAMPJaFnkFEi3vU+InJa+gSlVquJenPG0Ic7dGI8lQyLWL35dfTK/sYZkk6UkJbJ03HRdvP7zrNipzfwnZaqPLmwkEAoGpoRPeVXUq2xez3DJrOsLcbWjtZVve3VY4u29ks+9m8Rm2hGx1uZ2n/Yi3+WT/1XLrr6xE+NrxlJcd1hYKbJVyrBRy/B0sifC1q+yhVXnkMkjIKb/vlkAgEDxqqrrwTndtTneyaR197SvFwLzMprjFca97sTlRXG3GrdcyOZKUS1mfHfJzsrC0MZ0gqJ6zJb1rOd53f1UyNow/e4LNP04l9vghJI0Gv4ZN6TzmQ2o0DgMgOy2VHYu+4/z+7aRej0Uml1MzuBldX/8YrzoNAYiJ2sv8kc8U6bvf5B9o+vTzpRqXr50FL9ZxLv2FCQQCQSWRmlfAT/+lVvYwKgRdJq2Wg5Km7jYEOCor1W6pXKdBdchkMlp52mKlkJldXbDIa1l42FgY+KXcyFaXOFCLnDuNrfOm8+bKPWxf8C3n9m7FxduP+m27sXXedL44mmTQ/tj6FexbPp+bl86iUFriGViP9iPepk6L9vo25/ZGsmPhd1w/exKZXEat0BZ0e2MSHrWfKNW1ZqgefFU6hYu5B2w3L53lp+G9sLJzoM1LY1FYKDm46mfmj3yGV+b/Q41GTUm5Hsvp7Rto1OlpXL1rkpGSxKFVS5k3ojdvrdqLo7sn7rWCiHjtAyLnfEmzPkPwDwkHoGbwk6UeW0KOGkmSHskCVYFAIChPdMI7c7m/G4uVQkaTatY0cbPGxco0lqmU+zRoYcLcbRhY+/6ZG1NEBqyLzUCl0X79JEkq01TVb+OHo8rNocvYj3jy2cHFton8aTp/fjwahYUFEaPeJ2LUeJw8fYg5vFvf5ui6P1n6+gtY2trR9fWP6TDiHRJjzjN3WE9S4+NKNTZdoHA/dEF3Rx/zm9YuzL+zv6BArWbUonV0GPEObV9+nVGL1qFQKtn0/RQAPAPr8c7fB+k67mOa9R1Cx1feYdSidajz8zj89zIAHKpVp26rjgDUaBxGSI/+hPToj6uvf6nHptaApqr90gkEgipPeQrvTAULGbzyhDNvNnKlvY9dsYHa5MmTK+XhukIya4W5lJ5vVh+mBKTna9gVn0VHX3sKJO0NtbR41WnAc5//pH8dOXeawf7kuBi2zf+aBu178ML0Rcjld+NnXSCVl53J2ukfEvbMi/T5+Fv9/tBeA/n22RZsX/idwXZj0QUKiod87wIcLdl63Tyza5qCAi7s30H9dt0MgipHd0+Cu/bl8OpfyM3MwNreweCYnIw0LG3scKsZSPzZExU6RrUkoajSqz4EAkFVoyoK79SSNklhijMdFRqs6bxXzA0JOJyUSx1nK9xtypYCbd73pQfu/2/HRiSNhg4j3zEI1AD9F+bigZ3kZqQR3LUPWam39PvlcgV+DUOJidpT6vEZEyiUp8DiUZOVmowqNxt3/8Ai+6rXCkLSaEi7eR1L2zrs+20eB1YsIjU+Dk3B3eoCtk4uFTrGAg1gGpl2gUAgMApzvi88CFNV6FdYsGbuRc9lwPrYDF4McipTPy4+NR+4P+2yzeAAACAASURBVOXaFWRyOdUD6t63TXJcDAALXn222P1WhbJCJcWYQCEhW40cyiywKCuqvFwUSssiQW15sGPRDLbM/pKw3i/QafQEbBydkcvlrPv6f0hSxV65okIXIwgEAkHZyMrKws7OUBxnKveF8kSn0K+PVWUPpQgVFqyZu/eKBNzO1xCXpSpTP0or67KP5U6wMODT2Ti4VS+yX64o/cd4IiWXcI8Hr0krqcAiLfEGkXO+5NzerWSnpeLo7kmdlh3o+d5ULJSWpFy7wsYfPuHSod2o8/PwDKxPh1fe5onWnfV96JSXz30xj5sXz3Bkze9kJN/k4x0XWPf1R5yKXMvbqw+w5sv3uXhwJ0orG0J7DaTr6xORK+5Gn3YubiitbUm6crHIOJOuXEQml+Pk4cOpyLUEhD1F30nfG7TJyUjD1tlV/1pWAdOVFiaYchcIBI8nkydPZsqUKZw+fZrPPvuMjRs34u/vz9KlS/n222/ZtWsX8fHxWDs4EdiyI93enIxdod9InbjurVX7iJz7Jef3bUNuoSSkez+6vj6xyD3x2PoV7Fk2l8TL51FaWRMU3o5ub07G2dNH3yY57hKbfviU2OOHyM1Ix9bZFf8mzXn2o2+wdnAsUV8AcSePEDn3K+JORqFRq/Gt34TOYz/Cv0lz4gvd8/fs2cNbb73FyZMn8fHxYfz48eX9dhtNhQVrOu8Vc8yq6ZABJ5LzKvQcrr7+SBoNiTHn7muyWu3OWis7VzcCm7ct1/PviM/Gx05poH4tTEkFFulJCcwe3JmcjHSa9RmMu38Q6Uk3OBW5FlVuDjnpt5kztDuq3BxaPvcKtk6uHF23nJ/fGsygaYto0KGHQX/b5n+DQqmk9eAxqFV5KCy049RoNCweMwC/hqF0f2sKFw/uZPcvs3H19Se8/1D98XKFgqAW7TizcxOp8XG4eNcAIONWItGbVuHfpDnW9g7I5Aru/bae3PIP6Yk3qOZXS79NaaMNbHMy0ox+Tx6EhVz7NCcQCASmRP/+/QkKCuLzzz9HkiS2bNlCTEwMQ4cOxcPDg192HuHgX79wM+Yco5duKrLO6/f3R+Di7UeXsf8j7uQR9v0+n5z0NAZ8OkvfZvuCb9ky50saderNk8++SFbqLfYvX8C8EU8z7vdt2Dg4oVbls2jMQAry82g5cAT2btVJT0zg7O5/yclI0wdrxvQFcOnQbhaPew6fesF0HPkeMpmMI2uWs+DVPry6cC0WjUORJIlTp07RuXNn3N3dmTx5Mmq1mkmTJuHh4fHoPoRCVEiwpit6bu5IwJVMFQoZVNQ6yvrturHph0/YNu+bYgUGMpmMoBYdsLJ3YMei76gd9hQKpWFglZmajL2LW6nOr1O/jqjnUqzRX0kFFptmfkrGrURG/7wZ3/pN9Ns7vfYBkiSx/puPybyVxKsL1+qtL57s8yLfD2zH+m8nUq9dN4P3QJ2fx9hft6C0NvS+U+fl0qjzM3R85R0Amvd7mZkvdCDq72UGwRpA59ETuHhgB3OH9SS8/1DkCgsO/fUzBfn5dH1jEgBPtO7Mtvlfs3LSOGoENyPh4n9Eb1xVROlZzdcfawcnDq1aipWdPZY2dvg1DMX1IdPd98PTxsIkF7MKBILHm+DgYH777Tf965ycHN55R/t7q9ZIpDzZB99GYSyfMJIrxw5QK7SFwfEuPjUYMuMXAFoMHI61nT0HViym9eDReNVpQGr8VSJ/mkan0RNoP/wt/XENOvRg5gsdOPDnItoPf4vEmHOkXo/lhWkLaRTxtL5dx5Hv6v9vbF+SJLH683cJCGvF0B//0P/2Nu/7EjP6t+bf2V8wfPYKNBJMnDgRSZLYvXs3NWpoH/L79u1Lo0Zlr1xTGipktUxVKnouA2wsKu5q3GoE0H74W5zevp55w3uy+5fZ7Fu+gD8njmHzj58BYG3vwDMTpnPl2AFmDurI9gXfcmjVz/w763N+eL49W3+aXurzF1a/Foe6BJ7JGo2G/3ZspF6bLgaBmg6ZTMa5vZH4NgzVB2oAVrb2NOszmNT4OBJjzhkcE9pzYJFATUfzfobiDf+QcFKuxxZp51H7CV5duBaP2k+wY/H3bJ33Nc6evoz4aTU1GjUFoP3wN2k9eDTn929n3dcfEX/2BC9//xtOHt4GfSmUSvp/8iMyuYK/P3+P5RNGcvnIPuPeoHuQy8DbrviMpkAgEFQmo0aNMnhtY3P3dzgzJ4es1Fv638/iFPPhA4YZvG7x3CuA1i8U4PS29UgaDY069SYr9Zb+n0O16rj5BRATtRcAa3tt5uzC/u3k5xTvSmBsXzfOneRWXAxNuvUl+3aKvl1+TjaBzVpz5eh+NBoNeWo1mzdv5plnntEHagD16tWjS5cuxr+J5Ui5Z9aqmveKBOSopQqd0u302ge4eNdg/x8L+HfW5yitbfAMqk9ojwH6Nk269cXR3ZMdi79n18+zUKvycXT3pFZIOGFPv1Cm8xdWv947HaopQVYtKzWZvMyMB5r03r5xjUYNmxbZXr1WnTv7r+IZWE+/XTdteS8WVtZFsok2Ds7kpN8utr33E40ZNuvP+47LwtKK7m9NoftbUwy2j5z/T5G29dt2pX7brvfty1g0kjazJhAIBKZGrVq1DF6npKQwZcoUli9fTmJiosG+3MyMIse71QgweF3N1x+ZXE5qvLbcYvLVGCRJ4ptnmhd7fvmdJS+uPjV56sXX2PPrHKI3apeu1GvblZDu/fVToMb2pRPrrZg49r7XnZeZTsJNNTk5OQQFBRXZX7duXTZs2HDf4yuKcr9TlNV7Jfb4IS7s30GrQa/q55grm9JcTsSo8USMKroY8X7bw3q/QFjvBwddAWGtCAhrVfLBGIFO/TqyvotBSY0KEF6WCKV18QKNilCEVgaetiJYEwgEpkfhTBrAgAED2LdvH++99x71Gzfm30QJSaNh8diBSMY81d+z3EPSaJDJZLw8c7mBKExH4dKMPd7+hKa9nuO/nRu5sH8Ha6d/yI7F3zN66SacPLyN7kvnXdrtzcl4121Y7DAtbexQyE0v3VTud4qyeq/EHj/M1nnTafr0cyYTrD0O6NSvMekqAp0s9dtLolS0c3HDyt6Bm5fO3reNs5cvSbHFKTMv3NnvZ/ygzRwrhQwXq6oRdAoEgqpLamoqW7duZcqUKUycOBG1RuLy8Vskx1267zHJcTEGa3lvXb2MpNHg4q39ja/m648kSbj41MS9Zu2HjsEzqD6eQfXpMOIdYo8fYu7QHhxcuYTOYz40ui/dGmRrO4cHivW8qjtjY2PDhQsXiuw7d+5cMUdUPOV+p9B5r1Ql5Dzc5b8qIAOOJOUYbFPItIpFY5DL5dRv140zuzZz7b/oIvslSaJuqwiunTpK7PHD+u35OVkc+usXXLxrPNBvriohA5pUsxbiAoFAYPIo7mSrdJkp3X1h77Kf7nvMgT8XGbzev3w+gL5kX4MOPZArFGydN71I2UNJksi6nQJop1gL1IZJIM/A+sjkctT5+SXqy6deMK6+/uz6ZRZ52ZlFxpyZmoyFHJQWCrp06cLff/9NXNzdco5nzpxh8+bN973miqTcM2ulKXquQ+fPAjCt5911TePXHcHFu4ZRHiqXj+5n3/L5XD11lMxbSdi7utGwYy+6jP3ovgvVH4YGsLeQk6XSVJm1eMUhAZczVKTmFehroslkMjxtLLiWZVzGtMvY/3HxwA7mjehNsz6DqV6rDunJNzkVuYZXF62j7dDXOb75L5aMe46Wz7+CjaMzR9f9Qer1WAZNX1xlpjcfhgQ0cSu7B59AIBBUNI6OjrRp04Zp06ahUqnw8fFh+V/riY+7ct9jUq/H8fObLxLUsgNxJ6KI3rCC4G598aqjnX6s5leLTqMnsHnmZ9yOj6N+u+5Y2dmTcj2O09vX06zPENoMGcOlw7tZ89UHNIp4GreatdEUqDm2fgVyuYKGHXuWqC+5XE7fid+xeNxzfNevNU2ffh7H6l6kJ94gJmoPVnYOfLRAqxKdMmUKmzZtonXr1owePRq1Ws3MmTNp0KABJ05UbAnC4ijXYK2sRc8bdOhBctwljm/6ix7vfIqdczUA7FyqGe2hcjJyDarcHML7vYytkytXTx9l/x8LSEuMZ9C0RQ86/QPJVVftQE2HDIhOzqW9z931Al62xgdrTtW9GL10M//O+YLojavIy8rAsboXdVp2QGltg42DE68t3sDGHz5h3/IFWlPcoPoM+e5XA1PcqowM8HdQFlskWCAQCEyR3377jXHjxjFr1iwkSSK4dQeGzVzO1C7FW1k8/+V8tsz9ks0zP0WusKDFwOF0e3OyQZt2Q9/ArUZt9i6bq0/UOHn4EBTejnp3RFxedRpQp0V7zuzaTHpSAkprG7yCGvDyzOXUaBxWor5Au/b7tSUb2Db/G/b/uZD87Czsq1XHr2Eo4f1e0iv0GzduzObNm3n77beZOHEivr6+TJkyhRs3blRKsCaT7s0ZlgG1RuLr47ce3vAB7Pp5Fhu/m6zPpoHWQ+Xr3k8SMep9Aw+VhItnmPlCByJeHa/frsrNKZJB27H4e/79cSrj1x3F2cu31GOraW9BXKa6XIK2q6ePsW76R9w4fxpVbjbjft92X1Pc0jLvld5A8YrGB2GlkPFmI1f9FN2u+Cz23cx5yFGCktAvwNFgbaBAIBCYE6dTclkbW3QqUTdD9r+tZ7FzqVYJIysbT9d0oL5rFS83VRJPrpJwr4eKjsIeKrpgrXCglp+ThSo3l5qNn0SSJOLPnSxTsBbsZk1sZtEvZ0kpUKn4bfxwlFZW9HznU5TWNriY0ML6vAKJ1DwNrtYKNJLEyZSKreLwOCEDnCzlBDgKfzWBQGC+VFUlu6leV7mOqiSeXCXBWA8V0Pp4bZn7JWd2bi7iuZWbmV6mcdSwV+JsKSctv2xToreuXeH2jav0+fhbnnx2cJnGVFEkZKtxsZITnZxLhsp8a7yaGhLQs6aDgT2KQCAQmBuuVgqsFLIyWXWZGqas0C/XYK2i1oYb66GiKShg4eh+5KTdpu3L43D3D8LSxpa0xBusnDTOOC+YB6CUy+hR04FlF8pWFzIrJQkAaxO1JpEDhxJz2Hwts0r9IVY2MiDM3Rrf+9RhFQgEAnNBJpMRXM2aw4k5VWI9t6kr9Ms1WCuJJ9f9KO6NMtZDJeHifyTHXqL/Jz8S2nOgfvuFAzvKPC7QXp+fvZIwd2uOJJWuSsOKSWM5uvYPAH4bPxyAWk1b6vffu75sxaSxxETt4/31R/XbNBoN+36fx+HVv5Jy7QrW9o7Ub9eNrq9/jI2jcylGZYgGyiQUERRFBjhaymnjbffQtgKBQGAOhLhZcyjRcD3z/YzfTR1TV+iXay6sJJ5c98PSxhaAnIy72StjPVTkckMvGN3/9/42r2yDQntdujrnbb3tcLQs3YU26/MS7Ya9CUDL519hwKezDUQTxvD31HfY+P0UagY3o+e7U2n69HNEb1zJojEDKFCpSjUuQcWim/5Uyk3zqU0gEAhKiouVAn8HpdnXApcBtUxcoV+umbWSenIVh3e9YAD+nfU5jTs/i0KppF6bzkZ5qLj7B+Hq68/GGZNJT7yBlZ0Dp7etu2+9yJLgaWOhz/op5TJ6lnI6tGbwkxSo8tmx6Dv8Q8JpFPE0ANsXzjDq+CvHDnB49a8MnDqXJt366rcHhD3F4rEDORm5xmB7ZfJVj1A8aj/Byz/8VtlDqXQifO2K1F0VCAQCc6epuzVXMsw7SSABTd1L58P6qCj3VWZethZl6tSvQQidRn/AjfOnWTl5HMsnjCQr9Rbthr7BoOmLkcnkbJ03nQ0zJnFm5yYDDxWFUslL3y3Dq25Ddiz+nm3zvqaaXwD9P5lVpmuSy9B7r+jHaa+knbdtmfotDScj12Bt70hgeFuyUm/p//nUC8bS1o6YqD2PfEymyPaFMzi9/dEX2y2O1l62hJn4D4FAIBCUhtqOljhbys02uyYDnM1AoV/uGlVPW4tSVzDQ0WHEO3QY8U6R7Q079tQ7Ft+P6gF1GD5nZZHtXxxNKvV4NJI2s3YvjV2t2RGfXep+S0NyXAy5melM7Viv2P2ZKcmPdDymyo5F39EwohcN2nev1HG08bKlhYcI1AQCQdVELisf4V1lYS4K/QoJ1qoixV1XeapfZTJZkfV4AJoCw9BX0miwd3Vn4NQ5xfZjjiaEVQ0Z2h+ACF87kVETCARVnrIK7yoLc1Lol3tk9Th5r5SH+lWHjYMzKdevFNl++8ZVg9fVfP25dGgXNYOblbrWaUm5cf40PzzXjsEzfqH+nSnn6/8d58cXI/B+ohHjftumb7t47ECy028z5ue7xW6vHDvA+m8nknDhPxzcPYl49T0DtS5oBSWRc6dxets6MlOScfLwplmfwbQeMtagXuiun2dxett6kmIvosrNoXqtOrQb9oZ+7R/AhFB3AI6u/UOvvA3tNZD+U34s/zfnHnSqz541HcQaNYFA8NjQ1tuOC2n5pJfRh/RRYW4K/XJfs6bzXjHthKLxPMh7pTzUrzpcff1JunKRzNS705g3zp8i9vghg3aNOvdGU1DAtvnfFOmjQK02UNGWFx6B9bB2cOLK0f36bZeP7Ucml3Pj/GlyMzMAraVI7InD1AppoW+Xcu0yy8YPI7B5W7q/NQUbBydWThrHzUtn9W3yc7KZN6I30RtXEtJjAL3e+5yaTZqxeeZnrP/mY4Ox7Pt9Ht51G9Jp1Pt0GfMRcgsLfhs/nLO7/9W3GfDpbCwsrfAPCWfAp7MZ8OlsmvV5qdzfl8Lovh1h7taMqOciAjWBQGB2SJKEWiORW6AhW6Uht0CDWiMVO+tzLzrhnTkEamB+Cv0KmbMsznvFXHmQ90p5qF91hPV+gT3L5rB4zADCeg8iMyWZQ6uW4hHwBLlZGfp2AU1b0azvS+xY/D3x508RFN4OhYWS5LgYTkWuoed7Uw2yTOWBXC6nZnAzLh87oN925dgB6rfrxpmdm4g9foi6rTqScP4UeZkZ+IeG69slXbnIyAVrqBWqDeAade7NV92acGTN73R/awoAe5bNIeXaZcb9vg23Glofveb9XsLR3ZPdP8+i9eDROHv6APDO6gMGGcUWA4czc1BH9vw6V18IPqRHf/7+/F1cfWsS0qN/ub4X96Kb8nSylNNDZNMEAoGZIEkSKXkFJGSrSchWcyNbTUKOGnUxi84t5Np12162Fnje+edqpSiSxPCzVxLha0fktaxHdBWlx9wU+hUSrOm8V2IzVGYTZReHDPB/iPeKl60F8VnqMosqqgfUof8ns4ic+xXrv52off3pLI5vWkVM1D6Dts9+9DU+9YI5tGop/876HLlCgYtXDZp070/N4GZlHEnx1AoN59/ZX5Cfk4WljR2x0YfoPPZDbt+4xpVjB6jbqiOXjx1AJpPh3+RuWbDqAXX1gRqAvYsbbjUDSbkWq992csta/EPCsXFwNqj9GtisLTsX/8Dlo/sJ6d4PMKz9mpN+G01BAf4h4Rzf9FeFXPf90AVp/g5KmrrbEOCoNPkFqgKBQJCaV8Cx5FyO38rVL1eSwwPvYWoNXMtSG9zrrBTaWbQQN2uDe2SYuw15BRK7bzxa8V1JMEeFfoWpAR4X75XSqF8DwloVq04N6d5PH5ToqNOifbF9NOszmGZ9HlxX9N5qCGXBPyQcjVpN3IkonDx8yExJwj+kBTcvnePKnYzblWMHqB5QF1snF/1xuoxYYWwcncjJuOt9d+tqDAkXTvNZxyeKPXdWIYXrmV3/sn3Bt9w4fwp1/t0C84+6REg9Z0tae9uZtImiQCAQAGgkiUvp+RxJyuVKhkr/sKnfb2w/hf6fVyBxODGHQ4k5dx5arantaIlcJqPlHQW8KQZs5qrQr7BgTee9Utai55WFDO3U1sO8V6qq+vVefOo3wcLKmstH9+Ps6YO9qzvuNWtTKyScgysWo87P48qxAzRo38PgOJm8+GDGoMqERkNgeDvavjS22La6qdHLR/fzy1sv4h/agt4ffIWDuwcKCyVRa37n+MZV5XSlD0cG/Hc7H1ulnLbedmaz5kEgEDx+XM1UsT42g9v5Gv3a2vK6J+v6ic1QcSVDhXOh5SCtPG2xUsiIvJZVJDh81FQFhX6FRRqPi/dKVVS/FoeF0hK/BiFcOXYAJ08f/EO0U53+IeGo8/OI3rCSzFtJ+Bea8jQWV19/8rOzCGze9oHtTm1dh4WVNcNm/YmFpZV+e9Sa34s2rsBMm+6TPpKUy4W0fKH8FAgEJodKI7EzPouopNxyD9LuRddvWr6GZRfSCHO3pq23NjDysLFgXWxGpalEq4pCv9zVoIXRea+YW95BBjxppPdKVVO/Pgj/kHCunjpKTNRe/EO0IgI7l2pUr1WHnUtnAlArJPxBXRRLo069iTtxmPP7thXZl5ORRoFaK+CQKxSADE1BgX5/anwc/23fWOQ4SxtbcjPSSzyWkiAB6Xd+nKKSqoagRiAQmD9XM1UsOJPKkaRc4NFltQo/yC44k8rVTBV+9kpG1HOhqbtWqPeo7pVVTaFfocEa3C16bi7BTGm8V0LcrM1yqrek+IeEo8rNIS3huj5YA/APbUFy7CVcvGvg5OFd4n7bDBmD9xONWfrmIP769C0OrlzC7l9ms2LSWL7s2pjcO3YkTzzVCVVuNovHDuTgyiVsnfc1s4d0pZpfrSJ9+tQL5uLBnez+dQ7HN68m7uSR0l/4A9B97pHXstibkG2UxF0gEAgqiqikHJZdSKtUv7N7H2SVchkRvvYMCnLCyVIbdlR0TGCvlDMoyImOvvZVYqlKhQdrj4P3ik79av5fhwdTM7gZcoUCKzt7vOo01G/XBW7+pciqgTYLNnLBP7QZPIaYqL2snf4ROxf/wK24GCJGvY+1vSMAtZu1pu/E78i4lci6r//H8U1/0fX1j4stKdXj7U/xqRfMltlfsHzCSA6uXFyqsZWE3Tey2XdTZNgEAsGjR5Ik9iZk620zKvueW9yDrJ+9kpH1XegX4Ii/gzbTVVH3zQyVhr0J2VxIy0NTBR6iZdIjSgVEJeWYjfdKaRYgXkjLY1VMxsMbCqo85ryIVSAQmCd7E7JNUn2po7WXLa08bfWvr2aqWHMlnQxVxYUgOmGBcxXwwazwzJqOMHcbWnvZPrxhJVIW7xWd+tWUsmuRc6cxIdTdwLusoviqRygrJhWv5nzciLyWxdVM87atEQgE5kNUYo5JB2qgnXmISspBpZGIvJbJsgtpZFZgoAZFhQ+R1zJRacwzy/bIgjWAlh6mG7C18bLVe8OUBp361Ty/BoLyRAasi80w2x8FgUBgPlzNVBF53fRnrUD7IDv3dIpJCB/MjUcarMlkMlp52hLhq128X9lZKN35I3ztaOlpW2ZjVXNVvwrKF93i2l3x5vEDKhAIzBOVRmJdbIZZ3XOy1JLJCB/MiUcarOkIc7dhUJBTpapEdarPQUFO5bq+yNzUr2VBkiRUueb1hX9USMDhpFyzfIITCATmwc74rEpVfZoj5qrgr5RgDaiy3iumqH7Nup3Cb+8PZ3LrWnzSvg5rp3+IKi9Xvz/qn9+YP/JZPutYj/8192FG31YcWFFUPflVj1CWvP4C5/dt48dBEUxs4cfBVUvve96cjDTWTv+IL7sF87/mPkx/+kl2LvkBjUZbtESSJL7qEcrPbxUtm6XKy2VymwBWf/ZOObwDlYMMWB+bUSWUSAKBwLS4mqkiKinXpO415oY5KfgrtVaSznulrrOVQTmMivjy6fp1egSqED97JRG+diajfv39/RG4ePvRZez/iDt5hH2/zycnPY0Bn84C4ODKJXgE1KVe2y7IFRac3bWZf74Yj6TR0GLgcIO+kmMvsvzDV2nWdwhPPjsYd//AYs+Zn5PNvBG9SU+6QbM+Q3D29CX2xCE2z/yM9KSb9HpvKjKZjJDu/di19Eey01INaoqe3bWZvMwMmtxTK9WckIDb+Rpi0lUEOllW9nAEAkEVQSNJrL8z/SmCtbKx+0Y2VgqZySv4TaKwpc57JSZdxZGkHC4XU2i2tOj60RaatSHAUfnQElLlQZi7DXkFkkkodFx8ajBkxi8AtBg4HGs7ew6sWEzrwaPxqtOAkfP/QWl994va8rkRLBozgD3L5hYJ1m5dvczQH/+gTssODzznnmVzSLl2mXG/b9PX9mze7yUc3T3Z/fMsWg8ejbOnDyE9B7J94QxObvmH5v1e1h9/bMNKXLxrlNq7zVSQAUeSckSwJhAIyo1L6fnczje2/LrgYURey8LDxsKkrT0qbRr0XuQyGYFOlgwMdOLV+i40q26DlUJWaL+x/dz9v5VCRrPqNrxa34WBgU4EOlk+kkBNh6moX8MHDDN43eK5VwA4tzcSwCBQy81IJyv1FgFNW5Jy7UqRkk0uPjUfGqgBnNyyFv+QcGwcnMlKvaX/F9isLZqCAi4f3Q+Ae83a+DVsSvSGlfpjs9NSOb93K0269S2z6KOykYDLGSpS8woe2lYgEAiM4Uihep+CsmMOCn6TyKzdi4uVgvY+drTztiU1T0NCtpqEHDXxWSoSctSoi3mgsJCDp40F3nZKPG0s8LS1wMVKXqk3e5361UohI/JaVqWlrN1qBBi8rubrj0wuJzX+KgBXog8SOXcacSeiUOUaZgJzM9OxdnDUv3b1rmHUOW9djSHhwmk+6/hEsfuzUpL1/w/pOYC1X31AavxVXLz9OLllDQVqFSE9Bhh1LlNHBkQn59Lex/gSZgKBQFAcqXkFXMkQwqXypLCCv6OvfWUPp1hMMljTIZPJcLVW4GqtoD5WgHZRukYCtSRRoAGFHCxkMuQyTDYLE+Zug4eNBetiM0xDuVPofbp19TILR/XF3T+QHm9/gpOnNxZKS87uiWTvsrlIkmFkbGFlbdQpJI2GwPB2tH2peKNc3dQoQHCXZ1n/zcdEb1xJ++FvEb1hBT71m9x3PRxATNRe5o98hlfm/U1A3PBIDAAAIABJREFUWCsAVkwaS0zUPt5ff9SoMT4qJCD6Vi5DWzWgXbt2LFmypLKHJBAIzJRjyblirVoFoFPw13G2MsnpUJMO1opDJpOhkIECGSgqezTGo1O/7ozPIirp0f6xJcfF4OpTU//61tXLSBoNLt5+nNm1GXV+HkNm/Iqzl6++zaXDe8p0Tldff/Kzswhs3vahbW2dXHjiqU5Eb1xFk279iD1+iB7vflam85saeQXahwyBQCAoLZIkcfyW+SlAi3uQnhDqTseR7xExanwljswQnYJ/ZH2XR7pkyhhMZs3a44BO/TooyAknS+1b/yi+Dgf+XGTwev/y+QDUbdURuUIb8Rb2msnNSOfImt/LdM5GnXoTd+Iw5/dtK7IvJyONArXaYFtIj/4kxpxj4/eTkSkUBHd59oH9+4e24JP9V/EPbVGmcT5KCoSFh0AgKAMpeQXkFYjfkYqisILf1DC7zFpVoCLVr8WRej2On998kaCWHYg7EUX0hhUEd+uLV52GWFhao1Ba8vObL9Ks7xDyc7I49Ncv2Lu6kZF8s9TnbDNkDGd2bmLpm4No2us5fOoFk5+TTcLF/zgVuZbx645i51JN375u607YOrtycssa6rTqiL2r+wP7l8vlyI2ckjUF5DIQv7ECgaAsJGSrH97IBOnzvxlFltSYKqaq4K+SwZokSRTcWdem0YD8zro2hQmta9OpXwOdLEnNKyA6OZfoW7n6pya5DKOmzQq3s1LIcLGUczOnwCDwe/7L+WyZ+yWbZ36KXGFBi4HD6fbmZADc/QMZNG0R/87+gg3fTcahWnWa93sZO5dqrJryRqmvz9LGlpEL/mHHwu84GbmGo+v+xNrOAbeaAUSMeh9re0eD9hZKSxp36s2BFYsJ6TGA+LMn2PzjVGKPH0LSaPBr2JTOYz6kRuMwoPg1a8VxfPNqdi39keS4S8hkMpy9/HjymUG0euFVfZucjDQi507j9LZ1ZKYk4+ThTbM+g2k9ZCxy+d3ks0ajYd/v8zi8+ldSrl3B2t6R+u260fX1j7FxdNa3kySJ7Qu/5eDKpeSk38avYShPv/+lyKwJBIIykZCtRg6YR9hzF4XS9NaA3Y/CCn4XK9NZa2X2wZokSaTkFWgVo9lqbtxRjj5IMeplq1WLetpa4GqlqPQArjzVr/+l5rE2NhOAiFHj9esBBk1bVLSTO9Rr24V6bbsU2R7W+wWD1w9auF/cPitbe7qM+x9dxv3vvscVRqG0xMrOHje/AH4a3gsrOwfavDQWhYWSg6t+1gZn8/+hRqOmRvV34cAOlk8YSe1mbej6+kQAki6fJ/b4IX2wZox5r46/p77DkbXLadrreVo+9wqp8bHs/2Mh8edOMmrRev0P0pY5X7J9wbfUfSqCuq0iiD97gkWj+1OgNr3UukAgMB9uZKvRAHlZmfw7+wv+27GRjOSbWNs74lWnAV1f/xifesEAnNzyDzsW/0Di5fNY2thSp0UHur4xEafqXoC2cs2qKW8w7reteD/R2OA82xfOYMucL3l/Q7S+/f3Y/+ciDvy5iFtXL2Pr5EKD9t3pPPYjbByc9G1MVfx1P0xRwW+2wVpqXgHHknM5XjgbxYOfONQauJalJj5LrW9npZARXM2aEDfrSo+iy0P96mlrnh+pKi+X6A0radihJ9sXzaBArWbUonW4+voDENJjAN/2acGm76cwcsEao/o8u3sLVvYODJv1p35t3r0Ya9575dgBDq/+lYFT59KkW1/98QFhT7F47EBORq6hSbe+ZKYms2vpj9R9qhMvfb9M/xlt/nEqOxZ9h0iuCQSC0iBJEgk52mnQ1Z+/y6nItbQYOJzqAXXIvp1KbPRBEi9fwKdeMEfW/M7Kya/j2yCELmM/IjMliX2/zyf2+CHG/b4NGwcnGkU8zZqvPiB646oiwVr0xlUENG310EAtcu40ts6bTmDztjTv9zLJsRc5uHIJ1/6LNniANTd0Cv523raVnszRYVZ3do0kcSk9nyNJuVwpZp2Xsanhwu3yCiQOJ+ZwKDHnTpUDa2o7Plrz3AdRUvWrq5UCK4XMbBahZqYkcfHgLk5FriU7LYXw54Yzb3hv6rfrpg/UABzdPQnu2pfDq38hNzPDqL5tHJxQ5WRz4cAO6rbqWGybe817dQQ2a8vOxT9w+eh+Qrr342TkGqztHQkMb2vQzqdeMJa2dsRE7aFJt75cPLiLAlU+LZ8bYfBH3mrQq+xY9B0mYNwiEAjMkAIJ/SzLud1bePLZF+nx9ieFWozTtlOp2PTDp3gE1mPkgjUo76zt9W/SnKVvDGLPr3Pp9Nr7WNnZU79dN45v+ouub0zSL/mIP3uCxJhztBky5oHjyUxNZsfi7wkKb8fLP/6hP97dP4g1X33AsQ0riszOmBN5BRKpeRpcrU1jKtRsgrWrmSqD+qFQfgvydf3EZqi4kqHC+RHUD60oZDJtpvBwYo5ZhAWJMef546NR2Lu60/O9z3Fy90KVm12sx1r1WkFIGg1pN68b1Xf4gKGc3PIPS8Y9h2N1L4LC29GoU2+DwM1Y897kuBhyM9OZ2rFese0y77S7fUNrNHyvEbG9ixs2js4isyYQCEqFutCPh7WDE1dPHSU9KQFHd0+Ddtf+iyYzJYmOr76nD9QAnmjdGXf/IM7t2UKn194HtDMWxzf9RczhPQQ2bwNos2pKaxsaduz1wPHoHkxbDXrVYG3vk30Gs3nWVM7t2WLWwRpo1wiKYM1IVBrJwJsMKk41qes3LV/DsgtphLlb09bbDqWxta5MhBA3aw4l5lT2MIwiIKwVXxxN0r8uiwL1Xuxd3Rm3fDsX9m3n3L6tnN+7lSNrfiek5wAGfKItYm+sea+k0WDv6s7AqXOKbVdY2fogTCRhKxAIzAxNoSmhbm9MZMWkcXzZLRifesHUbRVBaM8BuPr6czvhGgDuNYs+8LrXCiL22EH966Dwdji4eRC9cSWBzdug0Wg4vukv6rXtipWd1sk/Oy2VAlW+/hillQ3WDo76B9N7z2OhtMTVpyapN66V27VXBnIZJOSo9UuSKhuTDtauZqr0rv/w6Exkdec5kpTLhbR8eppZls3FSoG/g5LYDJVZZNcKY+fihtLalqQrF4vsS7pyEZlcjpOHj8FU5IOwUFrqBRQajYZ/vhjPoVVL6TDiHdxqBBht3lvN159Lh3ZRM7iZQS3Ve3H28gPuGBEXmsbNTE0mJ/02clHRTyAQlIJCySsad34G/5BwTm/fwMUDO9j18yx2Lp3Ji18vLlmfCgVNuvXl0Opf6D1hGrHRh0hPSiCkez99m1/ffZnLR/bpX4f2Gkj/KT+W+Xp0xETtZcOMSdy8dBbH6l60GTKWjOSbbJ03Xf8gH/XPbxxbv4Kbl86Sm5lONV9/Wjw3gvD+Qw36uvZfNP/+OJXrZ0+Qn5ONQ7XqBIS1ot/kH0o8Lo0E8VmmIwoz2WAtKimnUutpwt16YcsupBHha0eY+/1v0qZGU3drs6wfJ1coCGrRjjM7N5EaH4fLnVqkGbcSid60Cv8mzbG2dzCqr6zbKdg5u97tWy7HM6g+gP5JsVGn3mz9aRrn920rUqA+JyMNSxs7FBYWNOqstRXZNv+bIurWArWa/JwsbBycCGzeBoWFkn3LFxDUor1+3dreZT8BIrMmEAhKh8U9Px6O7p60GDCMFgOGkZmSxMwXOrJ94Qy6vTEZgKTYi9Ru1trgmOQrFw0q1YB2KnT3L7M5u2sz5/Zuxc7FjaAWd38Le7z1CTkZt/WvHe5Mu+oeTJNiLxo8mKpV+aRej9NPqz6IjOSbLB47EAc3DyJGjUdTUMC2+V8Xmak4uHIJHgF1qde2C3KFBWd3beafL8YjaTS0GDgc0K5/XjS6P3Yu1Wj78uvYODiSGn+V09vWP3Qc9yMhR40kSSYhMjC5YE2SJPbdzGH3DW1B8crODOnOH3kti7wCiZYeNibxwT2M2o6WOFvKSTOFWqQlpPPoCVw8sIO5w3oS3n8ocoUFh/76mYL8fLq+Mcnofv769C1y0lIJeLI1Th5e3L5xjX3LF+BVtyHuteoAxpv3BjRtRbO+L7Fj8ffEnz9FUHg7FBZKkuNiOBW5hp7vTaVRxNPYu7jRevBodiz+nqVvvKC17jh3kvN7t+Jg5FSpQCAQ3ItCprVsylcVkJ+dhbXDXa9Ke1d3HN09Uefn41u/Cfau7hxcuZSw3i9gYamdxju3N5LEy+fp8Mq7Bv161WmAZ1ADDq/+lbhTRwjtORCFxd3QwKd+cLHjCWzeBoXSkn2/z6dOy476+2LU38vIzUyn7lOdHnpNMVF7kckVjFq8Xr/2rlGn3szoZ+idOXL+PwYzGi2fG8GiMQPYs2yuPliLPX6YnPTbDJu9At/6TfRtO4/58KHjuB9qjTbDpjCBW77JBWuFAzVTQzeuVp62lTyShyOXyehR04FlF9IqeyglxqP2E7y6cC2bZn7GjsXfI2kk/BqGMuDT2UZ7rAGEdO/HoVU/c3DFYnIy0nCoVp3GnZ8h4tX39AtiS2Le++xHX+NTL5hDq5by76zPkSsUuHjVoEn3/tQMbqZv12nMh1hYWXNw5RJiovbi1zCU4XNW8Nubg8rvTRIIBI8VMpkMTxsLLqSl8WXXxjSM6IVXUEMsbe24eHAn104fo/vbn6BQKun6+sesnPw680b0Jrjrs2TeSmLv7/Nx8a7BUy+OKtJ3aM8BbJihfRAO6d7fqPHYu7jRbugbbJ03ncVjBlCvbVeSYi9ycMVifBuEGNVPyvVYGnXubSCScKsRQN2WHTmza7N+W+FALTcjnQK1ioCmLbmwfzu5GelYOzjqfd3O7voXr6AG5WYbopYkrRtDJSOTJNPRp0Ul5hB5Pauyh/FQzGlKNPJaJkeSzK/wb1Xk6ZoO1Hc1jcWqAoHA/Nh6LZOD8elsnvUFFw5sJ+V6LJJGQzW/WjTr+5LBGq4T//7NziU/kBhzHqWNLXVbdjQwxS1MRvJNvuwWjKuvP++sPlCiMe3/YyH7/1hIyrUr2Dg506BDT7oYYYo7IVRbUrDDK+/q1ak61n3zMXuXzdWvWbsSfZDIudOIOxGFKtcwmfP++mM4e/kiSRK/jR/Gqa3rsLJ3IKBpK+q360aTbn312cXS8HpDV2yVlV9G3WQya1czVWYRqIF2StTDxsIsRAdtve24kJZPuplMh8oAO6WMTJU5jLZkmKthsUAgMA08bS2QKy3p9uYkuvHgJSGNOz9D487PGNWvXGEBMhlNjMyqFabFwOH6qcj7UZwgYcLmk3zRpdFD+7919TILR/XF3T+QHm9/gpOnNxZKS87uiWTvsrn6mqMymYxB0xcTdyKKM7s2c2H/dlZNeYM9v87htaUbsbK1L/G1gdaI3hQwiWGoNBLrYjNMINFoHDJgXWwGKmOKd1YySrmMnjUdzCJQA+0awadrOmBlCosEyhErhQwXK5P4cxMIBGZKRT3wHVm7HKmggNAeJQ/WSou9qzsWVtbcuna5yL6Uq3e3ndm1GXV+HkNm/Erzfi/xxFOdCGze1sBDrjA1GofRZexHjF0WycCpc7l56SwnNq8u9TjvFXZUFiZx99gZn2U2mR+4qxLdFW8emUA/eyURvqZT4+xBRPjaUcPBkuBq1mYTvD8MGdCkmrVZCFMEAoHpoqtQU15cOrSbfcsXsH3hDOq3665X3z8K5AoFgc3a8N/2jaQnJei3J8fFcG7fVoN2oBUf6sjNSOfImt8N+stJv829q7q86jYEQJ2fT2mwkGv91kyBSp+XuZqpIiopt7KHUWIk4HBSLnWcrcxiOjTM3Ya8AslkxRsArb1s9WsBzcnY92FIQBO34p8CBQKBwFjKu0LN1vlfE3f8MDWbNKPX+1+UQ48lI+LV8Vw4sIO5Q3vQvN/LSJoC9v+xEI/aT3Dj3CkAgsLbo1Ba8vObL9Ks7xDyc7I49Ncv2Lu6GZioH1m7nAMrFtOgfQ+q+fqTl53J4dW/YGXvQN2nIko1Pk8bC5N5yK5UgYFGkpj3X6pZ2kuANmPiZClnZH0Xk6kl+iDutUUxJdp42dLiHluU5RfTzNLYtzAywN9BycBAp4e2FQgEgoeRmlfAT/+lVvYwyo1Lh3az4btJ3Lx0DicPb9oNe4OkyxfY/+ciPt2vrZJwZudm/p39Bclxl3CoVp3m/V7GzqUaq6a8wfh1R3DxrkH82RPs+nkWsdGHyExJwtreEd8GIUS8Ov6+9iMPQi7TJjk6+JjGrFSlBmsX0vJYFWNcUW5Tpl+AI4FOlpU9DKMxBcNhQH/++6lrxfdDIBAIilIVHmQfxC9vD+HmpbO8+8+hSh2HKSn4K3XN2pFC9T7NFRlwJMm8puvC3G0YFOSEo2XlFT+SAY6WcgYFOd3XBkVn7Guu3xEZ4GwpJ8DR9KfJBQKB+dDU3brKBGqqXMP7Z3LcJc7tiSQgrNV9jnh0mJKCv9JGkppXYJblkO5FAi5nqEjNK8DFSlHZwzEaP3slI+q5sDM+i6g7QfOj+OPXnSfM3Zo23nYoH7B605yNfUF7nT1rOpjFFLlAIDAfzLlCzb1MfzqM0F7P4erjz+0bVzmwcgkKpZI2L42t1HGZmoK/0oK1Y8mPLkCoaGRAdHIu7U1kbttYlHIZEb721HW2Yn1sBrfzNRX2mej6dbKU06Omg9GiDD97JWHu1mZn7CtDG5D6moH4RCAQmBfm/iBbmDotOnB802oybyWisLSkRiOt9YZbjdqVNiZTVPBXypo1SZL47mQKeQXmdPt9MFYKGW82cr3vh7tkyRKGDh3K5cuX8ff3f7SDMwKNJBGTruJIUg6XM1TlFrTp+qnloKSpuw0BjsoSZ5pUGokFZ1LNxt5FN8U7op7LAzOHAoFAUBZEhZqK49X6LiY1W1YpmbWUvIIqFagB5BVIpOZpcLU2nQ+3JMhlMgKdLAl0siQ1r4Do5Fyib+XqPye5TFvQ9uH93G1npZDRpJo1Tdysy/Sl1xn7mstTpG76UwRqAoGgIjG3CjXmgE7Bb0qBGlRSsJaQra6M01Y4Cdlqsw3WCuNipaC9jx3tvG1JzdOQkK0mIUdNfJaKhBw1ak3RYyzkWk8abzslnjYWeNpa4GIlL7c0ss7YN/Ka6RsRR/jamYX3nkAgMG/M7UHWHJCApiZY+7vSgjU5UMw932yRyyAhR019TEPmWx7IZDJcrRW4Wiv01yVJEhoJ1JJEgUZbN81CJkMuo8Ln983N2FcgEAgqGnN6kDV1dN6ppqjgL3epQ0ZGBm+++Sb+/v5YWVlRvXp1OnXqxNGjR/Vt/l61ku9f6MjHLfz4tENd/vjoNdISb+j3R/3zGxNC3Yk/e6JI/9sXzuDDMA+D9veSGh/HhFB3dv08i/1/LGRarzAmtqzBwtH9uZ1wHUmS2Dr/G77o2piPW/jx81uDyU4rajJ4bm8kPw3rycSWNZn0lD9LXn+em5fOGrS5cf40KyaN5cueYXQNqIanpyfDhg3j1q1bpXn7TB6ZTIZCLsNKIcdWKcdKIUchlz2yhZgtPWxo7WX7SM5VUtp42dLSQwRqAoHg0RLmbrq/i+aEKSv4yz1YGzVqFHPmzKFv377Mnj2bd999FxsbG86cOQPA4sWL+fHNocgVCrqM/Ygnn32R09vX89OwnuRkaFO5jSKeRmltQ/TGVUX6j964ioCmrXCq7vXQsURvXMmBFYtpOXAET734GpeP7OO390fw76zPubBvK21fHkezPoM5u2szG2ZMMjj26Lo/Wfr6C1ja2tH19Y/pMOIdEmPOM3dYT1Lj4/TtLh7cScq1WJo+/Ty93/+CgQMHsnz5crp3716kTpmg7MhkMlp52uprnVb2n5Tu/BG+drT0tDUp9ZBAIHh8MOUHWXNABjxpwgr+cp8GXb9+Pa+88grffPONftv48eMBUKlUfPDBB3gE1mPkgjUorbT1Ev2bNGfpG4PY8+tcOr32PlZ29tRv143jm/6i6xuTkMu1MWX82RMkxpyjzZAxRo0lPTGBd/8+iLWDIwBSQQE7Fn+POi+HMb9GorDQXn5W6i2iN67imQ+nY2FpRV52Jmunf0jYMy/S5+Nv9f2F9hrIt8+2YPvC7/Tbw/sPpfXg0fo27wVXo0WLFjz//PPs2bOH1q1bl/atFDyAMHcbPGwsWBebUWmLa3Wqz54lsCIRCASCikD3IGulkJlEhRpzQvdb3sbbdO23yj2z5uzszMGDB4mPjy+yLyoqisTERML7D9UHagBPtO6Mu38Q5/Zs0W8L6TGA9KQEYg7v0W+L3rgKpbUNDTv2MmosjSJ66QM1AL9GTQFo0r2/PlAD8GsYSoEqn/Q7U6sXD+wkNyON4K59yEq9pf8nlyvwaxhKTNTdMSmt7057qfJySUhKIjw8HMBg6ldQ/uiMfZu6a79LjyqnpTtPmLs1I+q5iEBNIBCYDKZSocbOwnxmGcxBwV/umbVp06bx0ksv4efnR9OmTenevTtDhgwhICCA2NhYANxrBhY5zr1WELHHDupfB4W3w8HNg+iNKwls3gaNRsPxTX9Rr21XrOzsAchOS6VAla8/RmllYxCcOXv5GpzD2l67z9nDu9jtOenaadjkuBgAFrz6bLHXaGXvoP9/dloqW+dN58Tmv8lMSWJioXZpaUKhU9GYg7GvQCAQPEpMpULN8Vu5ZiF8MAcFf7kHawMGDKB169asXr2af//9l+nTp/PVV1/x119/lagfuUJBk259ObT6F3pPmEZs9CHSkxII6d5P3+bXd1/m8pF9+tehvQbSf8qP+tcyefE2GjJF8dulO19nSdLqVAd8OhsHt+rFjO3u2/bb+yOIO3GY1oPH4F23Ic818MRCBl27dkWjqUp6V9PGz17JyPouFWrs618GY1+BQCB4lJjCg6xQ8JcfFWLd4eXlxejRoxk9ejSJiYmEhoYydepUpk+fDkBS7EVqNzNcy5V85WKRTFhIjwHs/mU2Z3dt5tzerdi5uBHUooN+f4+3PiEn47b+tYO7Z7mMv5qvPwB2rm7/b+++46Oq0gaO/+5MkkkPaZBKQpfQQ6R3EEGQohQVdVERFBVdd1dFxbqvDVexrAWw4IqIgI2mGKRIh9CLdEICREJIb0wy9/1jmCGTQupkSp7v58MfuXPLmZC589xznvMcWnbvX+F++VkZnNyxkSEPPc3gqf8EYFinQE6dPFEn7RDVY8+FfYUQwhZs/SBrmiFvjwFbv1BPejrIDP46DdaKi4vJycnBz8/PvK1x48aEhYVRWFhIXFwcjRs3ZseyBcSNvgsXN2PtrqOb47l4+hiDHvynxflCW7cjpFU7dv7wNWcPJhA7cqJFrll4TKe6bL5Zq56D0Hn7sP7zObSI64PW1bJ7NCf9Et7+QeaeO9OsTxeN8Yt+zpw5VmmXqDp7LOwrREOkqirFV2szGgyguVqbUVsPtRmFkS0fZO1t4oPp+kMivByiR82kToO17OxsIiIiGDduHJ06dcLb25v4+Hh27tzJf/7zH1xdXXnzzTe57777mDtlNJ2GjSUnLZXNi+bhH9aUPnc/VOacsSMnmMtqdLllfF02t0Lu3j6MmTmb72ZN54NJg+k0dAxe/kFkpCTz56bfiOrUjdHPvIm7tw/NYnuyccGHGIr0NI0I57aXNnH69Ol6aaeonL0V9hXCmamqyuXCYuPDUV4RF64+JF3v4SjU0/hgFOLpQoBOK59BK7PVg6zM4K+dOg3WPD09mT59OmvWrOH777/HYDDQsmVLPvroIx5++GEAJk+ezMl8DZ+//za/vP8qrh6etBt4C8MefwEPH78y5+w8/HZ+ef8VAiKiiWwfW5fNva7Ow2/HNziE9V+8x8av/kuR/gq+wSE069KDuFF3mfeb+NqnLH9zJtu++5wdCtxy81BWr15NWFjYdc4ubEm5+lSvRQEZ2RSi1tILi9lzqYB9JXtruP4qNUUGSM4t4nxukXk/nVahU6A7XSTtwOps8SBrLxMf7HnWZ0UU1QaVWw9dLmB5Yk6V9s1NT+O1m9sz6MF/MvjBf1i5ZbUzKsqHmADnWW5KCCEqYlBVTmZdISG1gDNWy4Nyp4Wvm0zocUJJOfp6m/jQyAlm8NtkbdAQz6pfNmH5t6jFxcSOqJ8h0NqozvsSQghHVfqLFuruy9Z0nsRsPWey9Xb1RSv5d3XH1hMfHI1NoosAnRadVjF3l5fn5I4/+OvUUdZ99i4xA27BP6xpPbaw+nRaBX9dndcYFkIIu6E3qBZDWGC9YSzTeTOvGFh4PJO4YHf61+MQluTfWZ/M4K86mwyDAvx+LpedF/Mr/KDPfXA0Z/ftJKpzNyb8++MqrQVqKwrQrbEHA8Ptd6kKIYSojaQcfYNIDq9J/p1Jyf0k/65mVFWVGfzlsFmwll5YzKeH021xaauYFuMvH0ghhFPalZrv1GUXJP/Okr0N98oMfhsNg4Jx+nC0jyuJ2XqHXmxWwfhBlEBNCOFsVFVly1/55oKmtr5Xm64fn5xLYbFKryYetf6ybqj5dyaOMNwrM/ht2LMGcDyzkGWnsm11+TozrrkvLf3cbN0MIYSoU5tT8uyy8rxJ31BPeod41ujY0vl39V1Coj7z78ojw72OxabBmkFVmXs4nUwb5UDUloJxLbSpMf4O0bUthBBVtetiPvHnHGMR7uoOiTaU/LvSZLjXcdk0WAPjh2bh8UxbNqFW7m7lR4SNurTtLa9ACOEcHO2+PKmVX5WDHmfPv6uI1DVzbDYP1gDik3NISC1wqN41BWNX9uAI73q5niPkFQghHJ/eoDL/SLrNep2qy9RLNaWt/3WHFUvn39mTvqGedZJ/V56GPtzrLOwiWHPWm0NdkLwCIUR9ctaHZ2fOv6tIQx3udUZ2EayBc3e7V5fkFQghbMHR7sOlVXRfdub8u4o01OFeZ2U3wRpc++Oyd9b8o5O8AiGELTjrhC9HC0Br2xHQUId7nZ1drY8UF+xB39C67Qaua31DPa0SqOkNKvHJOSw8nknmFeMR5N9LAAAgAElEQVTgZX0t4xKfnIO+Kmt6CCGc1smsK2Q4aKAGxvtaxhUDp7L05m16g8qKxGwcJTRQgBWJ2bW6H9troAbwx4U8tvyVb+tmOCS7CtYAejWx34Ct39WngrqWlKNn/pF0ElILgPrrsjZdJyG1gPlH0knK0V93fyGE80oosd6no1KAhNRrwcCG87kOkwsNxnty1hUDG8/XbIRp10X7DdRM/riQx65UCdiqy+6CNUVR6B3iyZAI4zqbtr55mK4/JMKLXiGedd59uys1n4XHM216QzHdIBYez5QPkRANUHphMWccfDUZMN7LTmfrSS8sJilHzy4HmygBxvewM7Wg2g/PSTl6h8jLA+MKFNI5UD12F6yZxAV7MKmVH75uGpsFbKaZLJNa+dX50KeqqmxOyTPn6Nn6hlJyGZfNKXnYUSqjEMLK9lxy/F41EwXYcymflQ40/FmaAqxMzMZQxftwQxzubWjsNlgDiPR2ZUpbf7oGuwP118tmuk5csDtT2vpbJQFf8gqEEPZAVVX2pdW+B+rUrs3MjA3m1K7NddKumlIxBp/Oln93PQ1tuLchsutgDcBVozAkwptJrfzwczM211pBm+m8fld70wZHeFuljprkFQgh7MXlwmJzDUdnoa9KIUo7Vzr/riINbbi3obL7YM0k0tuVqTH+jGvuS7SPsaerrsIo03mifVwZ19yXqTHW6U0DySsQQtiXlLwiWzdBlKNk/l1FDKraoIZ7GzIXWzegOjSKQks/N1r6uZFeWMzeSwXsLVnZX4GqDIGX3E+nVegc6E7neqjsXzKvwBH+NE15BfWxUoMQwjZS8oqqvCqKqF8KsPdSAQPDvcp93VRuxVGVHO5t6edm6+bYNYcK1kry12kZGO7FgDBP0gsNxjUz84s4n6uvdM3MMC9XQjyMa2b66zT1VqDPkfMK6msNVCFE/bqQV3TdQC39fBIbFnzAyR0byUg5h6u7By1u7MMtT7yEf1jT6577zRGxNI/rxfiXP7TYPvfB0QBMnfcTYMx3mzd1DHe+MY+Lp4+z8/uvKMjNpnXPgdz+wnu46HSsfu8V9v3yPfqCPDoMGcWY597GxU1Xq/dubaXfZ3WpwN60AgaElV+JIKEe1/u0FtNwrwRr1+ewwZqJoigEuGsJcNcSg/GDq6oqBhWKVJViA2g14KIoaBRsVjnZlFfgaEx5Ba0b6WSlAyGcjKqqpORffxg0+fAezu7bQcehY/FrEkb6+bNsX/olcx8cw9+XbsLNo+7qYq7/4j1cdR70v28GaUmn2frtfDQurigaDflZGQye9i+SDiSQsPxb/MOjGDz1n3V2bXtVWKySXmggwN1y5MdUbsXRlRzulXWrK+bwwVp5FEVBq4AWBezg/75kXoEjPgGZ8gpKL+MihHBsxSrljkKUdEOfm+gwZJTFtrb9bubjycM5uHYFsSMn1Fl7DMXFTJ33E1pX44Nhbnoa+3/9gVa9BnHfB98C0HPC/aQlnWbXT9/YfbB2/0dL6uQ8KXlFZYI1U7kVR/xOKa2y4V7hQBMMHJkzLuMihHB8RVVI7HZ1v1ZjslivJzfjMoGRzXD38eP8n/vrtD2xIyaYAzWAyPaxqKpK3Oi7LPaLbB9L5l/nKC6y78kRLq5uuLjWbnhPo1Cm97Ouyq3YC9Nwr9T3rJhT9qzZG8krEELYI0MVctP1Bfms/+I9En5eRNbFCxZfqAU5WXXankYh4RY/u3v7AuDXpOx21WCgICcLr0YBddoGgMyLF4j/+A2Obl5LXmY6vsEhtO41iJH/+j/2rV7G0pdmMHXeT+xdvYwDa5djKNITM+AWbv3X/+Hh28h8ntrmrIFxMtz5XMsHZWcst1LRcK8wkmDNyiSvQAhhrzRVGFv5+a2ZJPy8iN53TaNpxzjcvX1RFIVFM6eiqteP9irKEVaLi1G0Ze8j5W0D0FSwHSv0xGSlpvDRPUPJz86i2233EBzdiqzUCxyMX46+4Frds5/fnIm7jy9Dpv2L1DMn2L70SzIuJPHgvJ/qPDc6Jb8IVVXN53XWcivlDfcKIwnWrEzyCoQQ9sqlCkHFwfjlxI6cyIgnXzFv0xcWUJCdWemxHr5+FGSX7X1LT0kmIDyqeo2tJ7988CrZaReZ/tWvRMR0Nm+/6eFnLHoVta6uTPnke/OwrX9oJKvfe5kjG38lpv+wOm1TkcHYw6a9+t/ljOVWTMO9pomCwpLkrFnJl19+iaIorNt/zCkCNZC8AiGcjVYxljS6HkWrLdODtfXb+RiKKy7WahIQEc3ZA7so0l8xbzuycQ2ZKedq1F5rMxgMHF6/mrb9brYI1ExK9ph1u+1ei/y67uMno3Fx4eimeKu0rWR+YWXlVipyatdmPpw0hFk9Ipg96ka2L11A/CdvMTM22LzPzNhgfnrjaQ6tW8Wc8X15vns4747rw9HNay3OZTru4unjfPP0A7zUtxmvDGzN8tnPoi+sfuWD8oZ7xTXSs2ZlVwwqztQPJXkFQjgPRVEI8XAhObfiYbUb+t7EnlVL0Hn70qR5G87u38mJHRvxrEKu2I1j7uZg/HK+eGQiHYeOJi3pDHtXLyEgIroO30XdyU2/RGFONk1a3FDpvoFNm1v8rPP0xieoCennz1qlbcUGQFu1civlOf/nfr54dCI+QU0Y8tBTGIqL+X3e23j5B5bZN3Hvdg79vpIeE+5D5+nNlm/ns/Bf9/P0qj1lcgQXPT0F/7BIbn70ec4eSGDLonnkZ2Uy4dX/VruNpYd7xTUSrFnJPffcQ8ehY/g1xfmeFCSvQAjnEerpwvncintqbv3Xa2g0WvatXob+SgFRnbrxwMfL+PyRykt2tO41iFuefIVNX3/MirefJzymE3+b8w0r332hbt9EA6C92gNalXIr5Yn/5C0UjZaHvliJb3AIAB1uGs2743qX2ffi6eP8fekmAiObAdA8rg/v3zGAfb98T687pljs6x/elHvf/R8APSc+gLuXN9uWfEHfe6YT2rpdtdpYerhXXCPBmpVotVrSDS5olZp1V9srySsQwrmEeLpc9x7l4ePHuJfeL7P96ZW7LX5uHteb13enltmv790P0/fuhy22lZ4dWdGxXUfdSddRd5bZPuShpxjy0FPXaXXNePkHofP24a+Tf1a6b9rZU7S4sY/558K8HLIv/UWb3kPqvF1wLb+wKuVWSjMUF3Nix0ZiBt5iDtQAgpo2p02vwRzZ+KvF/i279zMHagChrduh8/bh8rnEMufuMeF+i5973vEg25Z8wdHN8dUO1sD4/rQOu9qp9UjOmpV8+eWXDIn0Ie1ql/ibI2L5csZdnNmzjf/eM5RZPSJ469Y4dq9YXObY/OxMVrz9PG+OiOX57uG8Pqwj3816hNz0NPM+OZdTWfby4/zfkBhm9YjgvYkDSFj+rcV50s+fZWZsMBu/+i9bF3/GW7fG8UKvpnw2fTwZKedQVZW18/7D68M6MqtnJF/9/R7yMtPLtOfo5ng+vX8kL/SKYlbvaJ6cNJZDhw7V8W9MCGELIZ7yzG6i0WiIGTCcIxt/Jfnw3jKvl8zX3fH9VxTrr42cbF/yJYaiItr0HmyVtpnyuapSbqW0nMup6AvyCYxoVua1gMiy2xqFRJTZ5uHTiIKsjDLbg0oNBwdGRKNoNKSfT6p+Q7k63CvKkE+plZSXhH85+TQLn7qfuNGTiB05kV0/fcPSFx8jvG0nc45EYV4Onz5wK6mnj9F11F2Et+1IbkYaRzb8SubF83j5B6IvyGfeg2NISzpNj4kPEBDelAO//czSFx+jIDuT3ndNs7ju3tVLKdbr6TVxCnlZ6Wxc8CHfPD2FFjf24XTCZvpPfsy8tMuqd1+0eIreveI7lr74KK16DmTYjFnoC/LZvvRL+vTpw549e4iOjrbq71EIYV0BOi06reJ0dbtq6uZHn+fEtvXMnTKabrfdQ+Nmrcm69BcH439m2ucrzPsV6/XMf+g2Otw0mkuJJ9i25AuiO3enbR3PBDVZeCKLuGB3ejTxqHznWlIqqOmiVmW6XC3zzbTShVQuCdasxFDO33TqmRNMnf8zzWJ7AtBh6GjeHN6ZhJ8XccvfXwZg44L/8teJI9z99pe0GzTCfOygKf8wB4A7vv+Ki6ePMeHfH9PllnEAdL99MnMfHM2aj14nbvQkdF7XFl7PupjCP3/cjruPscCkWlzM+i/eo6gwn0e+jkfrYvwzyE1PY+/qZYx5djYubjoK83JYPvtZ4sbczW2z3jGfL/bWifx3XC9ee+015s6dW4e/NSFEfVMUhU6B7uy8mO80M9drw69xKNMX/Mqaj19n7+plFOZm49s4lNa9Blms5jDqaePr8Z+8SXGRnk4338atT71m1eT4hNQCjmUUVvs474BgXHTupCWfLvPa5aSy26rj0tlTFmVY0pJOoxoM+IdF1uh8VSkn0xBJsGYl5S0u1bh5G3OgBuDtH0RQVEsuJ1/LAzj0+wpCW7ezCNRMTDeBo5vi8QlqTKdht5lf07q60uvOB/l25lROJWyhbb+h5tc6DLnVHKgBRHboCkDnW8abAzUwLuGy75fvybp4gYCIaE5s20BBdiadht1mMQSr0Wi5sVs31q1bV63fiRDCPnUJcmfHxfzKd2wgGoVGMOGV689mdPXwZOzz/2Hs8/+pcJ/arFxQHhXI0lc/pNZotbTs1o/D61aTlZpizlu7dPYUR7esreTo69v23ee07jnQ/PPWb+cB1Gg42EVjzIsWZUmwZiXl9ayVXkoFjEUj87Ov5QGkJZ+h/aCR1z13RkoygZHN0ZTqqm7crJXx9QuWuQKNQi3zD0xLuDRqElbu9vwsY7HLS2dPATB/2thy2+Hr61vudiGEY/HXaYn2cSUxW+/QvWvOUoDcGoZMe4rj29bzyX0j6D5uMqqhmK2LP6NJixu4cPRgjc+bfu4sXz1xN616DeLs/l3sXbWETsNvJ7R1+2qfK8TDRcp2VECCNSsp7+lA0ZRf7sLaRWYrum5FS7uY8hJMS8lMePUjfIIaW+xzWzMfPHWyTqgQzqJrsLvDL42nYuydqUlpC2cXHtOJ+z74llVzXuS3j9/Ar0kYQx5+mtTTx0k9c6LG573zjXn89skb/PrBq2i0LvSc+ADDn3ip2ufRKBDm5Vr5jg2UBGtWoqnh1OPAiGj+Onnkuvs0Cokg5cRhDAaDRe9a6unjxtdDa5YrUF5bALwCgmjZvb/Fazd3CkQr/dVCOI0Wvm40ctOQeaW8JA77pwB+bhpa+bmxK7XAId+DtbXo1pfHvvndYtv/nrwXv8ah5p/LK6ECZUu1mHj5BzLprc9r3TaDauxZE+WTeRdWUtM4pt2gkVw4dohDv68s85qpB65NnyFkX7rI/jU/ml8rLipiy+L5uHl60bxrr5pdvJRWPQeh8/Zh/edzLKaom/IKUlPL/1ALIRyPRlEYEeXjsEGOCoyM8iE22MOq76HrqDt5fXdquctR2buSC9EDXDp7kqOb4mkeV7Ywri1IGZmKyW/GSmo67t7vb49wcO1yvnn6gaulOzqRn5XO4Q2/Mva52YS2bk+32+5lx7KvWPriY5w/so9GoZEcXLucxL07GPnPf1vMBK0Nd28fxsyczXezpvPBpMF0GjoGL/8gitPOs3DbWnr37s2HH35YJ9cSQthepLcrccHuJDhYz5QCxAW7E+FtHEZzhvw7a5g9Ko7YW+8gIDyajAtJbFv6JVpXV/r97VFbNw2dVsFfJ/1HFZFgzcqqG7LpPL2Z9tly4j95k0PrVrF7xWK8A4Jo0a0vvo2NEwJc3T14cN6P/PL+q+xevpiC3GyCo1oy7qX3y632XRudh9+Ob3AI6794j41f/Zci/RUah4QxdGA/7rvvvjq9lhDC9vqHeXE88wpZDjIcqgC+bhr6hV1bhdkZ8u+soXXPQez75Qdy0i6idXOjaYc4bn70OYKatrBpuxSgc6C7TC64DkW1dnZ7A3bocgHLE3Ns3Yw6NyrKh5gAWW5KCGeVlKNn4fFMWzejyia18iPS+1pyukFVmXs43WHz7xqiaTH++OtkzemKSJ+jFTnr+Luzvi8hhFGktytDIrwq39EODInwsgjUwPHz7xoSBWjm4yqBWiUkWLMi0zIuzkTyCoRoGOKCPegb6mnrZlxX31BP4oLLX37JlH/nXHdg56MCXSv4PxTXyLeuFZmWcXGWm4XkFQjRsPRqYr8BW79QT3pVsk5m/zAvfN1qWkhJWJsCNHLT0NxX6qtVRoI1K+sS5O40XfEq0DnI3dbNEELUE0VR6B3iaR4StXXQY7r+kAgveoV4Vvrg6KpRGCnDoXbLVG5FIx0AlZJgzcpMy7g4+p+i5BUI0XDFBXswqZWfTXupTLM+J7Xyq3DoszyOlH/XkCjAjSXKrYjrk2CtHnQNdvzeNckrEKJhi/R2ZUpbf7oGG3vX6ytoM10nLtidKW39y0wmqApHyL8r7dSuzcyMDebUrs22bkqdK6/cirg+mdZXD5xlGRfJKxCiYXPVKAyJ8KZNIx0rE7PJuGKw2uLppvP6uWkYEeVToyCtJFN+2x8X8mrfOFErpuFPV1mysMqkzlo9cbS6RaXd3cpPuquFEGYGVeVUlp6E1HxOZ+vrLGgznaeZjytdgz1o7utapzlNu1LziU/OtVqQWVcMBgPF+itoXd0s1oB2BkMivKo1lC0kWKtX8ck5DruMy+CIulnCSgjhfNILi9l7qYC9aQUUFhvvcBrFuDh3ZUrup9MqdA50p3OQu1XzY5Ny9KxIzHaYVRqcSd9QT3qHONaQtD2QYK0e6Q0q84+kO8wNwpRXMKWtv3RXCyEqpaoq6YUGUvKKSMkv4nyunpT8IooMZfd10UCIhwthXq6EeLgQ4umCv05Tb6WB9AaVDedz2ZVaUKPjLxw7xPt3DOCed/9HTP9hAJw7vI8P7x5C2A0deOyb3837fvHoRPKyMnjkq195c0QsTVrcQK87H+SX914m9cwJAsKjuGn6TNoPHmk+5tSuzcybOoYH5/5oNwut11a/UE96NvGQ8k81IDlr9cg0jdxRhkMlr0AIUR2KohDgriXAXUsMxiXpVFXFoEKRqlJsAK0GXBQFjYJNv7RN+Xet/dz45kRWtY9v0rIt7j5+nNm91Rysnd6zFUWj4cKxQxTkZOPu7YPBYCBx/066jb3XfGxa0ikWPfMg3cf9jdiRd5Dw8yK+efoB7vtwMa16DKirtwhg8+Fe0/Vl6LN2nGsg3AE40jTy8pZxEUKI6lAUBa1GQafV4OmqQafVoNUodtO7EuZVs3ucRqMhqlM3Tu/ZZt52Zs82YgYMR1EUEvftACDl2EEKc7KJju1h3u9S4kluf2EOwx6bRZ+7H2La5yvwDgjml/dfqd2bKYePq+OVWxFlSbBmA44wjfx6y7gIIYSzKKpFJlCz2B6c/3M/V/JzAUjcu4M2fYYQ2ro9Z64Gcaf3bENRFKI7dzcf5xscQrtBI8w/u3v7EDtyAuf/PED2pb9q3J7y3NvGzyHLrQhLMgxqI/Y8jdyUVyCEEM7OUE4+XVVFd+mBoaiIs/t34dcknJzLqUR36clfJ4+ag7Uze7bRuHkbPP38zccFRjYr07MY1LQFAOnnk/AJalLzRpWiwXHLrYhrJFizEdMyLjqtYhfTyCWvQAjRENWmKkZ4TGdcdO6c3r2VRiHheAcEExzVgmZderB9yRcUXSnkzJ5ttBs4ovKTWYn26vuL9HZlaoy/VcutRFup3IqQYM3m4oI9aOLhYtNp5Ka8gpHyJCSEaGBcahFUuLi6EdmuC2f2bMMvJJzoLsahzuguPSi6UsjeVUvJSUslOranxXFpSadRVdWid+3S2ZMA+IdF1rg95baxxDU0ikJLPzda+rk5XLmVhk6CNTtgWsbFNI28vnrZTNeJC3anX5iXzPrEOHOt+OrMNYPB+NTtoihobTxzTQhhHVrFWEakvPIiVRHdpQebFn5CWvIZ+t79MABe/oE0btaaDQs+AKBZlx4Wx2SlpnDo95XmUh0FOdnsXvEdoW3a1+kQqIvGGFiVx1+nZWC4FwPCPB2m3EpDJsGanXDkZVwclaqqXC4sNt6k8oq4cPVmdb2bVKin8QYV4ulCgE4rNykhHJyiKIR4uJCcW1Sj46O79GDdZ++SmXKO6BJBWXRsT3YsW4B/WFP8moRZHBMU1YJlrzxB8uE9eAcEk/DTInIupzLupfdr9V5KC/FwqfQe5UjlVhoyCdbsjOQVWF96YTF7LhWwr2T3P3C9B+siAyTnFnE+t8i8n06r0CnQnS7S/S+EQwv1dLH4bFdHVKduaLRaXN09CG3d3rw9uksPdixbYBHAmQRGNufWp15n9ZyXuZR4Av+wptz5xjxa9xpUi3dhSaPUvCyJcnU0QYsCcmuzC7KCgZ2TvIK6YVBVTmZdISG1gDNWC4DdaeHr1iADYCEc2aHLBSxPzKmXa5lWMJj8/jdWv9aoKB9iAnRWv46wPulZs3OSV1B7STl6i6FlqLvhZdN5ErP1nMnW06iBDy0LYU3WyikN8XTOr0JnfV8NkfxPOgjJK6i+kmv/1XWQVprpvJlXDCw8nklcsDv9ZdKGEDVWnzmlATotOq1iHr1wBjqtgr9O6t47CwnWHJjkFVQsKUdvLocC9VfDznSdhNQCjmdekXIoQlSTLXJKFcW4786L+Tatd1lXFKBzoLs8tDsRyVkTTmdXar4UGq4jUspE1Ad7yClNLyzm08PpdXBV+zAtxr9B5ic7K+lZE05DVVW2/JVvXsLL1k8hpuvHJ+dSWKzSq4mHXQc4UspE2IK95JT667RE+7iSmK23+b2jNhSMwakEas5FetaE09ickmeXa62a9A31pHeIp62bUUZNhp1MSu4npUxEdZTOKa3vQuDl5ZQezyxk2ansemiJdY1r7ktLPzdbN0PUIQnWhFPYdTGf+HO5tm5GpexlSNQehp1Ew1Uyp9SeltgzqCpzD6eTaaN21ZaCsdj51Bh/+dw5GQnWhMNLytGz8HimrZtRZZNa+dl00kHpYSdrrpIhpUzsl63yEe09p9TR7iel3d3Kjwj5vDkdCdaEQ9MbVOYfSbfZE3p1mZ7op7T1r/eyHvY47CTqhz3kI5bOKbUnfUM9LXJK45NzSEgtcIh7iomC8XM2OMLb1k0RViDBmnBoclOtGnsddhLWZU/5iI6UUyoPgcLeSLAmHJajD1fU13CovQ87ibplj/mIjphT6mj3F1unVwjrkmBNOCRJBK6cIw07ibphj/mIjhz0mB507J08ADk/WYtCOKSTWVfIcNBADYxfdhlXDJzK0lvtGvYaqAH8cSGPLX/l27oZTkNvUIlPzmHh8UwyrbxqR+ml1eKTc9Abyr+a3qCyIjEbRwnJFWBFYrb5/cQFe9A31P7K7ZTUN9RTArUGQII14ZASSqz36agUICHVOgHLrov2G6iZ/HEhj11Wev+2oqoqRQaVgmIDeXoDBcUGigwq1hzASMrRM/9IOgmpBcY2WO1KlkourTb/SDpJOWUfPDacz3WYvC8wvqesKwY2nr/Wm9arif0GbP2u9lAL5ycrGAiHk15YzJls6/VI1RcVOJ2tJ72wuE6LyCbl6B0iPwiMqzs08XBxyFwbe5hhaQ/5iKYAZ+HxzDI5X7uuBpCORAV2phbQupGOSG9XFEWhd4gnOq1i8981SO5nQyU5a8Lh/H4u16kWXO7W2IOB4V51cj6ZxWZ99jDD0t7zEXs0dmfekQynyymVWdXCVmQYVDgUVVXZl+ZYpTquRwX2phVUeZjszJkzKIrCl19+ad720ksvmXtonGHYyR4ZVJXjmYV8eyKTTw+ns/NivjlQg6oFaqX3KyxW2Xkxn08Pp/PtiUyOZxZiqOLfgb0GamAc3l55Nscpc0ojvV2Z0tafrsHuAPWWimG6TlywO1Pa+kug1gDJMKhwKJcLiy2+JO3Vus/epXHzNrQbeEul+xYWq6QXGghwr91QqLMMO9kbe1lo3MQR8hEPp1+x+XBhbZlySkuvsemqURgS4U2bRrp6m3nrJyuBNHgSrAmHkpJXZOsmVMn6z+fQfsitVQrWwPi+qhKsRUVFkZ+fj6tr2Zv2yquz7hzxC1LB2H57WtOw9IoPUH8zLCta8cGR8hEd8e+wpMpySiO9XZka48+pLD0JqfmctlpNOw+a+7razedC2IYEa8KhpOQVVTk/yFFoFEjJLyIGXaX7KoqCu7t7ua9lXHHc30rJYafSPRm2UDI3CWwzw/J45hWL3KSSZTAcPRByFAqw91JBhTmlGkWhpZ8bLf3cSC8sZu+lAvaWzGVUoIKqJqXOc20/nVahc6A7nWuxWoRwPpKzJurVuXPneOCBBwgLC0On09GsWTMefvhhrly5AsCpU6cYP348AQEBeHp60qNHD1auXGk+/kJeEQZAX1hA/Cdv8faY7szqEcFrQ9vx9T8mk5Z02rzvlfxcVr7zAm8M78Tz3cP5z9gebPzqv2Xyw2bGBvPTG09zaN0q5ozvy/Pdw3l3XB+Obl5rsd+SFx/lzRGxZd5T/CdvMTM22OJ8V/Lz2L18MTNjg5kZG8ySFx+t8HdiUOF8rr7S9w7l56yZOPpztzVLmVTHrtR8Fh7PtGnuX8kZlqbyJo6Wj+hoSn+OAd4YEcvT06dUKafUX6dlYLgXT3QIYGpbf0ZF+RAX7EGElwsuFXzTumggwsuFuGAPRkX5MLWtP090CGBguJcEasKC9KyJenP+/Hm6detGRkYGU6dO5YYbbuDcuXMsXbqUvLw80tPT6dWrF3l5ecyYMYPAwEAWLFjAqFGjWLp0KWPGjCElvwhDcTELHp/EyR0b6XjzWHrfOZXCvBxObNvAXyf/JDCyGaqq8tUT93Bq1ybixkwitHV7jm9dx+o5L5F18QIj//lvi7Yl7t3Ood9X0mPCfeg8vdny7XwW/ut+nl61B69GAdV6nxNe/YjvX/07Ee260O22ewEIiIi+7jHHk8/zz7sGVfjexwMmumQAACAASURBVI4dW+Gx+UX12/tjLdYqZVLl65eaYWnr36fp+vHJuVzML2J/WqFN29NQFavVyylVFIUAdy0B7lpzb7mqqhhUKFJVig2g1YCLoqBRkFU8RJVIsCbqzcyZM0lJSWH79u3ExcWZt7/yyiuoqsqTTz7JX3/9xR9//EGfPn0AePDBB+nYsSNPPvkkI24dRZEBdq9YzMkdGxnx5Kv0ufsh83kG3Pe4+Qn4yIZfOLnzD4ZOn8nAKU8C0HPiAyx86n62LJpLz4kPEBjZzHzsxdPH+fvSTeZtzeP68P4dA9j3y/f0umNKtd5nlxHj+fG1fxIQEUWXEeOrdMzaz96/7nsfPXo0Gk35j+eOksdXFZUNO1mTPc+wlEDN+gZOeZL+980o97Wq5pRWRFEUtApoUUA6zEQNyDCoqBcGg4Eff/yRW2+91SJQM1EUhVWrVtGtWzdzsALg7e3N1KlTOXPmDAcOHQLg4NoVeDUKpGc5QZTpKfXopng0Wi297pxq8Xrfu6ejqmqZIc6W3ftZBG+hrduh8/bh8rnEmr/paji6OZ4bb6z4vR8+fLjc41RVJSXfeYK16pYyqUzJsibX4wgzLIV1aV1ccNWVzQdVwKk+Y8IxSbAm6kVqaipZWVm0b9++wn0SExNp06ZNme1t27Y1vn7GGDhdTj5DUHQLtC4VdwynX0jCJzgEnZe3xfbGzVoDkHEh2WJ7o5CIMufw8GlEQVZGhdeoriL9FbIv/WXxz1BcbG5Py9atyxxjfu+J5QeNlwuLKXbceQXlMpUyqS+ONMPS3h2I/5mZscGcSthc5rXtSxcwMzaYlBNHAGNv9sJ/3ccrA1oxq0cEH04awuENv5Q57sKxQ8ydMopZPSN5fVhHfp//H3b99A0zY4NJP3+2au367Sc+uGsws3pG8uqgNix+7mEyL16w2Ke8nDUwPkCcz3X8FVOEY5NhUOEwrJnaoVQwxKiWyFxSKkjhNxiKq3SNs/t2Mm/qGIttT61IwD+sqfH8NXh/zjQEWlJth52qSmZY1q0b+tyEm6cXB9b8RPOuvS1e27/mR5q0uIGQlm356+SffHLfCHwbh9J/8gzcPDw58NtPfP3kvUya/QXtBo0AIPPiBeZNG4uiKAy473HcPDzZ+cPXuLhVfcZwws+LWPrSDCLadeHmR58j53IqWxbNI3HfDh5b9DsePn6VniMlvwhVVSW/TNiMBGuiXgQHB+Pr68vBgwcr3CcqKoqjR4+W2f7nn38C0Cw6mqPFxmT95IO7Kdbr0ZZTbwzAPzSSkzs2UpibY9G7dvHMcQAahZbtSauMu28jCrIzy2wv3UsHlBt5hbZuxwMfL7XY5h3Y2Nye48eOlTnG9N6joqLKbVNKXpHDzwItrTqlTGpLZljWLVd3D9r2u5mDa1dw61Ovo9EaA+7sS39xevcWBk97CoDls5+jUUgEj3y9Bhc34/9zjwn38+n9I1j9/ivmYG3Dl+9TkJXBo9+sJaxNBwC6jrqTt8d0r1J7ivV6fnn/VZq0bMvU+T+bhzmjO3dnweOT2PT1J9z08NOVnqfIYJy1rXW2D5twGDIMKuqFRqNhzJgxLF++nF27dpV5XVVVbrnlFnbs2MHWrVvN23Nzc5k7dy7R0dF0aBeDiwbaDx5JbkYaWxd/Vu55ANr0GYKhuJiti+dbvL554ScoikKb3oOr/R4CI6IpyMniwrFD5m1ZqSkcWmcsrzEzNpjUxJMsfu5hruTnsW/196z56HVUVSUj5RxLXnyMr/85mcXPP8yFY4do2b2/+cujRVxvdu7YQUBAAO7u7nTq1Im5c+ea33tMTAxnzpyhWTNjXt369etp0aIFw5oHsv37r8ptb2XDTJeTzzAzNphNX39S5tjEfTuYGRvM3l++v+7vJPnwXj6fPp5XB7VhVs9I3hrZlaUvXUvSPrVrs3FYbJflsFj6+bPMjA0m4edF5m1LXnyUF3tHcSnpDI9PvBUvLy9Cw8J44aWX0RcbzP+3pvIlb7/9Nu+++y5RUVF4eHjQv3//6z4MAPTv359OnToB11Z8MAVq/xnbg8+nV21CiKNJ+HlRtYYNTSr6/7uejkPHkHM51eKYA/HLUQ0GOg4dQ15mOqd2/kGHoaMozM0hNz2N3PQ08jIu06rnINLOnjIPUR7b8jtNO8aZAzUATz9/Og+/vUptST68l5zLqfQYf59FPtoNfYcSHN2Ko5t+q/L7KpJltIUNSc+aqDevvfYaa9asoX///kydOpW2bdty4cIFlixZwqZNm3jmmWdYtGgRw4cPZ8aMGQQEBLBgwQJOnz7NsmXL0Gq1hHi4EDtyIntWfsfKd2aRdGg30V16oM/P48T2DfSYcD8xA4ZzQ7+baR7XhzX/fY3080mEtG7HiW3rObx+Nb3vmmYxmaCqOt48ll/ef4Wv/zmZXndMQV+Qz7alXxLUtAXn/9wPwKJnptC4WWuaNG/DxdPHWTf/HTLOJ3F6z1ba9LmJYTNeYO/qpax690UiYjrTrGsv9AX5nLn6xZaXl8eAAQM4fvw406ZNQ1EUli1bVmYm6OrVq3nyySf5IyWfNR+/BWDR01iVYaaAiGiiOndj7+qlFrNqAfauWorOy5uY/sMq/H3kXE7l8+nj8fIPpP/kGXj4+JJ+PolDv6+s8JjKGAwGPn90Ik07xDHksRc4tuV3Xn35JTafz2b4I88Q4uGCkmbML/tiwQLycnJ45JFHKCgo4L333mPQoEEcOHCAJk2alHv+e+65hwcffJD9Bw6wRRNuHv5MOrSHS4knGfjAkzVuuzBq3WsQ7t6+7F/zIy279wPgwJofCW3TnuCoFiQd3I2qqvz20Rv89tEb5Z4j93Iqfo1DybiQTNOOZScklf78FmRnoS+8VqNP6+qGp58/GSnGXu/gqJZlzhHcrBWJe7ZX+X0VG5CZnMJmJFgT9SY8PJzt27cza9YsFi5cSFZWFuHh4QwfPhxPT08aNWrEli1bePrpp/nggw8oKCigY8eOLF++nBEjjMMioZ4unM8tYvL7i1j32bvs/eV7Dq1dgWcjf6I6dyekpTEhX6PRcO+c//Hbx29yYM2PJPy8iEZhkQx/4iX63jO9Ru33ahTA3f9ZwMp3XmD1e68QEN6Umx99nrSzp8zBWmS7WMY+/x9Sz5zg+1f/zpk929mzaglhbTsyZqYxqOo07DZev7kDu37+hmZde7Hzh6/4K/Ek77zzDlu2bCE+Pp6CggK8vb0pKipiyJAhZdrywgsvMO3h6aj70kg6sp/9v/7Asa3raNtvKFD1YabYERP54f/+wcXTx2ncrBVgDPoO/PYz7QaNwM3Ds8LfR+K+neRnZXD/R0uIiOls3j70kWdr9PsFKCosoHWvQYx66nVzmxc8PokNX35ArzsepMg/kIzLxjIWx0+cZObPO4iLaUaXIHeGDRtG9+7defPNN3nnnXfKPf/48eN57LHH+PDzr2h+77Xhr72rluDm4Un7wSNq3HZ71mXEBDrePNb8t1BV0bE9eWVrElrXqueIubjpiBk4nMPrVjF65lvkXE4lcd8Ohj76HACqwTh5pO89j9C618ByzxEY2bxa7Vz+9rPsXr7Y/HOzrr2YOu+nap2jMloZhxI2JMGaqFdNmzZlwYIFFb7evHlzlixZUuHrIZ4uGDDmxgx95NnrBgY6T29G/uNVRv7j1eu26fXdqeVuf3rl7jLbWvUYwBPfbSx3/7VzZxM39m4AgqNbMu2z5fzvH3/j8LpV3P/hd+b9PHz8CIpqweVk4wzPP/+IJ6hJCI8//jh///vfzft9++233HnnnWzYsIGRI0eat0+fPt3Ym3R1GuiYmW+x/9cfuHzuDIB5mGnIw09TmJtDYW7Otfb3HET8J2+SefECfo1D6TB0NMvffo69q5cydPpMAI5tXUduRhpdbrn+kKApMfvPjWsIbdWuwvzB6uo58VpJFkVR6DnxAY5u+o0TOzbS6eax5mHLmAHD8QgKYefFfHZczCc6oA2d4rqxatWqCoM1Pz8/Ro8ezQ/ffcs/7nkKFAVDcTH71/xIzIBbcPOo//pu9UGj1Zrzx6p1nEaDppxyFpXpOHQMu5cb6yFePH0MVVXpONQ4uSYgwph/qXVxoWX3/tc9T6PQCC6XWJXEJK3Utn5/e8zi79XDp5Hx+KuzvFMTT9CiW1+LYy6dOVGt3FUXmVwgbEieFYRDCfG07+eLRiHhFj+7e/vgonPHyz+w1HZf8q9OVshISaZVy5ZlhjorKtvRtKlx9ujVDgo8fI1fTPlZxvOlJZ02DzP9e/ANFv/iP3kTMA4zgTHgattvKPtK5KbtXb0U38ahNL/R+OVWmJdjUW4kJ/0SYOy9aD94JGvnzubVwW346u/3sOunbyi6UvMCropGQ0C45WSK4KgWAGXyrUy9L6bgLTFbj6ZJNCdPnyEpp+JSC7fdOYlL55M5vduYG3li+wZy0lKrXMDYEZXOWXtzRCxfzriLY1vX8f4dA5jVI4J3b+/NwbUrLI6rSc4aQMtu/fHw82f/mh/Zv+YnItrHmv9fvQOCaR7Xm+3ff0VWakqZY01/XwCtew7k7P5dnD96wLwtLzOdvauXWRzTpHkbWnbvb/4XHmPMS4yI6Yx3QDDbly6w+Ls8ujmei6eP0abPTVV6Py4a48QXIWzFvr/5hCglQKdFp1XMCyXbG42mbO9FRSsPcDVhWQFcqvFNoL3aQ1LmtFfPV91hpi4jJnLgt59J3LeDkJYxHNnwKz3G32du9x9ffcTaubPN+zcKjeTplbtRFIVJs7/g7P5dHNn4K8e3rmPZy4+z6euPeXjBanSe3hUuWGqqL1eXSv5FLDyeSVywO8XlJIX7d+mPd2Awe1YtpVnXXuxZtRSfoMaV9vI4m7SkUyx65kG6j/sbsSPvIOHnRXzz9APc9+FiWvUYUKtza11daT9oBPt+/QF9fh7D//6yxeujnnmTT+8fyXsT+3Pj2LsJCI8m5/JFzu7fReZfF3h88XrA2GO2Z9VSPn94PD3vmGIu3dEoJJz8zHQqWxFX6+rKsBmzWPrSDOZOGU2nYWPJSUtl86J5+Ic1LZOrWZEQDxcp2yFsSoI14VAURaFToDs7L+Y7RbkFBWgaFcXxo4cwGAwWgV1lZTsqGpapzjATGBPCvfyD2LtqKZEduqIvyLPoZYodOYHoLtdKJbiUGhZr2jGOph3juPnR59i7ehmLn3uI/b/+wI1j7zEPR+WXKnlSbrkTjIHm5XOJ5t40gNTEkwDmenQmaUmnyhx/KfEk/mGRACSkFrA7tcDy/KrKwQw9nYbdzu7l3zL88Rc4vH4VN469xzxMGP/JW6ydO5vn1/5ZpkfUmVxKPMmk2V/QfrBxiD1uzCTeua0nv7z/Sq2DNTAOhe784WsURaHjTaMtXmvSvA2Pfv0b8XNns3v5t+RlpOMVEERYmw4MnvoP836NQsJ5cO4PLH/rWdZ/Pgcv/0B6TLgfNw9Plr/1LC66ynPwuo66E1d3DzZ8+T6/vP8qrh6etBt4C8Mef6FKNdYUIMyrbob4hagpCdaEw+kS5M6Oi/mV7+gAVOC2W0fw7Ia1LF68mDvvvBOAoqIiPvjgA7y9venfv/yAS6sYh2eKShX7LznM1POOKfgGh1i8npN+CW//oGvncXGh07Cx7Fv9PRdPHyekZQyhrduZXw+IiC53Ifr8rAzcffwsehxC2xhXqCi6cgUw1rvTaLWc3r2VdgNvMe+3bcnnFf5Oti6eb55goKoqWxd/htbFtUzO0eH1q825dwBJB3eTdDCB3ndNMx4L5h7YXan5xAV7cLmwmMJildgR49m88BN++L9/cCUvly63jKuwPfXlz02/kXxwD0MeeqperucbHGKeaALGIfvYkRPY8OUHZF/6C5+g8mfUVlXL7v0rzAcF49/VhFf+W+l5wtp0YNpnyy22LZ/9nDG9oFHVgumOQ8eYc+YqMuShp8r87k15qyEe8lUpbEv+AoXD8ddpifZxJTFb7/C9a818XBk1/SH+99k8Jk+eTEJCAtHR0SxdupTNmzczZ84cfHx8yj1WURRCPFxIzi27ikFVh5lMYkdMZMuieZzatYlhM16oUtsTln/LtiVf0G7gCAIjoinMy2HnD/9D5+1Dmz7GGazuPr60HzKKrYvnoygKARHR/PnHGnIvXyr3nC46d45t+Z3vXniEyPZdObZ5LUc3/caA+5+wCDABAiOa8en9I+k+bjJF+its/uZTPBsF0O9vj5Y5b3xyLoXFKo3cjD2XYTd0pEnLthz47WcaN2tNeNtOVXrP1nR0Uzzbvvu83oK1wMhmZYb2gpqa8gOTah2s1RV9QT6u7h7mn3MzLrNn1RKiO3ev0aSJmrD3XFnh/OQvUDikrsHunMl2/PX6ugZ74OHhxvr163nmmWdYsGABWVlZtGnThi+++ILJkydf93hTKZPSqjrMZBIe04kmLW7g4uljdK5iL1Pzrr1IPrSH/b/+QM7lVNy9fYlo14WJ//7EYpLAqKdex1CkZ/vSBbi4udHhptHc8sRLzBnft8w5NRoN93+4mB9f+xer57yMzsuLwVP/xaCp/yyzb5eRE1A0GjZ/8ym5ly8R0a4Lo55+o0xPoskfF/II93JBAxiA2BETWP3ey049scAZfDx5OM269qZxs9bkXE5l148LKczNZtCU+qmJp9Mq+OtkLp6wLQnWhENq4etGIzcNmXayVFB5QygA41/+kPEvf1hm+7R5P+HnpqG5rzEXpnHjxnz+ecVDgwDR0dHmKv4mplIm5Q03VXWYyUTj4kLzrr3Nw4qVCbuhI3e89mml+3n5BzJp9hdltlc0RBYQEc39H1VcvqWkvnc/TN+7H67w9dL/L+dKBLZaV1cURaHz8PKD0/zsTFbNeZHD61ajotJ+4AhGPfOmRe25PSuXsGnhJ1w8fQxXnTutegxg+BMvWcwKPr17K1u+nUfSwd3kpKXiHRBE+8G3cvOjz5l7jJa8+Ki5TljJxcSvN4xYW6ZZwyV71y6dNeUHRlrtutXVpvcQDqxdzs4f/gcohN/QgdtfnEOzrr2sfm0F6BzoLpMLhM1JsCYckkZRGBHlw8LjZdfqdAQqMDLKB00tvwTqangm+fBeLhw9yLiXP6iT89k7VVXZ9aOxKHFFtbYWPTMF/7Cm3PzY85z/cz87f/gar4Bghj9uHCZeN/8dfvv4DTrcNJobx95NbnoaW7+dz9wpoywWCD8Q/zP6gnx6jJuMp18ASYd2s3XxfDIvnmfSW8YAvdttfyMr9S9ObFvPhFc/qpffQVZqCod+X2meYFCQk83uFd8R2qa93QyBAtz82PPc/NjzNrm2CnQOqn6dOSHqmgRrwmFFersSF+xOQon1HR2BAsQFuxPhXfsZZrUtZZJy4gjnjuxj0/8+xieoSaVJ2I7uSn4uhzf8yqmdm0g5cZh73v1fhfuGtenA7S++Z/45LyOdXT8tZPjjL5B+Pon4T9/ipukzGfjAtULG7QaN4IO7BrHtu8/N24fPeMEi56rb7fcSGNmMNR/+HxkXkmkUGkFUpxsJatqcE9vW19uwbFBUC5a98gTJh/fgHRBMwk+LyLmcyriX3q+X69s7BYj2ccVfJ2tMCduTgXjh0PqHeeHrpqmk2pL9UABfNw39wuqmUr6plElN3//B+OUse2kGxUV67nj9U4vFrp1Rbnoai5+dxoH4nxlw/xPXXfu027jJFj9Hd+lBXsZlCnKyOfT7SlSDgQ43jTYvRJ6bnoZPYGOCIptbFJEtGahdyc8lNz2NqI43oqqqRbHX+hYY2Zw735jH0U1r+fWDf1NcpOfON+bRutcgm7XJnqgYc0qFsAfSsyYcmqtGYaQDDYeahj9d67Acem1KmVSUa2cLFeX3leYf1rTGuVzVObb0ahQevsZhzfysDC4lnUJVVf4zpnt5h6JxudZrmnEhmd8+eYMjG34lPyvDYr+CnKzqNL/Guo66k66j7iyzvXXPgbTuWX7hZIDmcb2tmjdnrxSwyCkVwtYkWBMOL9LblSERXsQn59q6KZUaEuFFZB0Mf5bkTKVM7El5q1EYqagGA4qiMPmDb8stH2FaY9RQXMxn08eRn5lB/8mPERzdCjcPTzIvXmDpi4+ZV5sQ9qWuckqFqCsSrAmnEBfsQWGxyh8X8mzdlAr1DfUkzkrDKs5SysRRBEYYZ+b6h0dZrLZQWsqJw1xKPMn4Vz4kduRE8/bj29aX2VdmHNqHuswpFaKuSM6acBq9mnjQN9Sz8h1toF+oJ72aWC//xVTKRL7u60e7QSPQaLWsnTu7TDkVVVXJzbgMXOudK7mPqqps/mZumXOaSoKUXppL1J+6zikVoq5Iz5pwGoqi0DvEE51WIT45FwVsOixouv6QCC+r9aiZOHopE0cTGNmMm6bP5NcP/k3G+bPEDLgFnZc3l8+d5dC6lXS77V763fsIwdGtCIiIZvW7L5F18QI6Lx8O/b6iTO4aYF5FYflbz9Kq50A0Wi2dbh5rlfabllESlqyRUypEXZBgTTiduGAPmni4sCIxmywbFc01PaGPjPKp8xy1ijhqKRNHNeC+xwlq2oLNCz9h7dzZAPg1CadVjwG0vTrLVOvqyt/mLGT57GdZ/8V7uLq5EzPwFnpOfID37xhgcb52g0bS844p7P/1R/auWoKqqlYL1kT5rJFTKkRdUNTSffhCOAm9QWXD+Vx2pRbUWy+b6To3BrvTL8yr3p/Q9QaV+UfSbRakVlfCz4tY+tIMnlqRgH9Y0yofF//JW6ydO7tBzlR0VDH+Og6nF9q6GRXqG+pJ7xD7TKMQQnLWhNNy1SgMifBmUis//K4u4G2t0Ml0Xj83DZNa+TE4wtsmQymmUiaOEKiJhkEBGrlpGNHUq8HmlApRWzIMKpxepLcrU2P8OZWlJyE1n9PZ+jrraTOdJ9rHla7BHjT3dbX5dH9HKmVSUwOnPEn/+2bYuhmiCkx5YFqNpsHmlApRWxKsiQZBoyi09HOjpZ8b6YXF7L1UwN60AvMyTRoFDFX45ii5n06r0DnQnc5B7na3JI0jlDKpDa2LC1oXuX3Zu/LKYDTUnFIhakPudqLB8ddpGRjuxYAwT9ILDaTkFZGSX8T5XD0p+UUUlVOn1EUDIR4uhHm5EuLhQoinC/46jV3XxjIN6zhawHZ0czzrP5vDuT8PoGgUmsX2ZPjjL9KkxQ3mfSRnzf5drwxGpLcrU9r62yynNM5GOaVC1JQEa6LBUhSFAHctAe5aYtABxhpYBhWKVJViA2g14KIoaBTHK1pqb6VMqmL3iu9Y+uKjtOo5kGEzZqEvyGf70i/55P6RzFj0e7UmIQjbqqwMhimntE0jHSsTs8m4YrDa36jpvH5uGkZIb5pwQBKsCVGCoihoFdCigH2NbNaYPQw7VUVhXg7LZz9L3Ji7uW3WO+btsbdO5J2xPVn32RyL7cK+VbUMRkPLKRWiJiRYE6IBsNWwU3Wc2LaBguxMOg27jdz0NPN2jUZLZPtYTu3aZMPWieqo7tJqDS2nVIjqkmBNiAaiPoedauLS2VMAzJ9WfiFYnbdPfTbH7nUM1LE/zf7qlvUL9aRnLcpgNJScUiGqQ4I1IRoYaw471YaqGr+FJ7z6ET5Bjcu8rtHK7QquzbAcHOFNYw8Xu8hHtEYZDGfPKRWiOuTuJ0QDVFfDTnUpMCIaAK+AIFp271+/F3cQpWdY2kM+Yn2WwXDGnFIhqkKCNSEauJoMO1lDq56D0Hn7sP7zObSI64PW1fKLPyf9Et7+QfXTGDtV3gxLKYMhhPOTYE0IAVR92Om7E1mcyyuq8+u7e/swZuZsvps1nQ8mDabT0DF4+QeRkZLMn5t+I6pTN0Y/82adX9eRVDTDUspgCOHcJFgTQlSovGGnMC8XLuQVYY0Ot87Db8c3OIT1X7zHxq/+S5H+Cr7BITTr0oO4UXdZ4YpGGgVCPV04l1v3QWhdqcoMSymDIYRzUlRVtXVesRDCgRy6XMDyxBxbN6PO3drUmwy9wS5XfDDNsKxuEr2UwRDCOUjPmhCiWkI8nfO2EerlSjt3rd2s+FAXMyylDIYQzsE577pCCKsJ0BkDGlNPjTPQaRX8dRrAOWdYShkMIRybDIMKIart93O57LyYb/PabHVBAbo19mBguOWC43qDarMZljfKDEshRAkaWzdACOF4ugS5O0WgBsbgqHOQe5ntphmWk1r54edmvFVaK3QyndfPTcOkVn4MjvCWQE0IYSY9a0KIGvn2RCaJ2XqHDtoUjLMbJ7b0u+5+BlW16gzLZjLDUghxHZKzJoSoka7B7pzJ1tu6GbWiAl2rkLwvC40LIWxJetaEEDViUFXmHk4n00ZJ+LWlYBx2nBrjX6PeLFVVZYalEKJeSLAmhKixpBw9C49n2roZNXZ3Kz8i6rACv8ywFEJYg0wwEELUWKS3K3HB7lZLvLcWBeOMy7oM1ODqig8aBZ1Wg6erBp1Wg1ajSKAmhKgVCdaEELXSP8wLXzeNwwRsphpm/cK8Kt1XCCHsgQRrQohacdUojIzycZi8NRUYGeUjpTGEEA5DgjUhRK1FersyJMIxeqqGRHjVyaoAQghRXyRYE0LUibhgD/qGetq6GdfVN9SzxutsCiGErUidNSFEnenVxBgI/XEhz8YtKatfqCc9m0igJoRwPFK6QwhR53al5hOfnFtva2pWxHT9IRFe0qMmhHBYEqwJIawiKUfPisRssmxUNNc063NklI/kqAkhHJoEa0IIq9EbVDacz2VXakG99bKZrnNjsDv9wrxk1qcQwuFJsCaEsLqkHD0rE7PJuGKwWtBmOm8jNw0jpDdNCOFEJFgTQtQLg6pyKktPQmo+p7P1dRa0mc7TzMeVrsEeNPd1rdFan0IIYa8kWBNC1Lv0wmL2Xipgb1oBhcXGW5BGAUMV7kYl99NpFToHutM5yB1/ndaKLRZCCNuRYE0IYTOqqpJeaCAlr4iU/CLO5+pJyS+iyFB2XxcNhHi4NKR9BAAAAGpJREFUEOblSoiHCyGeLvjrNLLuphDC6UmwJoQQQghhx2QFAyGEEEIIOybBmhBCCCGEHZNgTQghhBDCjkmwJoQQQghhxyRYE0IIIYSwYxKsCSGEEELYMQnWhBBCCCHsmARrQgghhBB27P8Bxw1kvx23lPgAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -3859,9 +3857,9 @@ } ], "source": [ - "plt.figure(figsize=(8,8))\n", + "plt.figure(figsize=(6,6))\n", "\n", - "pos = nx.spring_layout(topicsGraph, k=0.35) # k regulates the distance between nodes\n", + "pos = nx.spring_layout(topicsGraph, k=0.3) # k regulates the distance between nodes\n", "\n", "nx.draw(topicsGraph, with_labels=True, node_color='skyblue', node_size=1500, edge_cmap=plt.cm.Blues, pos = pos)\n", "\n", @@ -3871,7 +3869,7 @@ }, { "cell_type": "code", - "execution_count": 139, + "execution_count": 146, "metadata": {}, "outputs": [], "source": [ @@ -3883,14 +3881,14 @@ }, { "cell_type": "code", - "execution_count": 140, + "execution_count": 147, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzMAAAMzCAYAAACSq0y2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVyU5d4G8OuZGZhhXwQFBcGVAffEPXPNJU3NXDLXOpp5zN4We9t3bTlZx06dcssMxWwxLTWXyDV3zC0VRVQEAQVlGWCGWZ7n/YOGVwSVZYZnZri+n48fYnjmvn+PCcw19yZIkiSBiIiIiIjIySjkLoCIiIiIiKgmGGaIiIiIiMgpMcwQEREREZFTYpghIiIiIiKnxDBDREREREROiWGGiIiIiIicEsMMERERERE5JYYZIiIiIiJySgwzRERERETklBhmiIiIiIjIKTHMEBERERGRU2KYISIiIiIip8QwQ0RERERETolhhoiIiIiInBLDDBEREREROSWGGSIiIiIickoquQsgIiKqDyRJgkUCzJIEUQQUCkAlCFAKgCAIcpdHROSUGGaIiIhsTJIk3CixIKvYjKxiMzKLzcjSm2EWK16rUgAhHiqEeqoQ8vefQLWSAYeIqAoESZIkuYsgIiJyBbklFhzNMeD4dQNKLKW/XhUAKskwFdx8nVopoEMDDToFaRCgVtqpWiIi58cwQ0REVAuiJCGlwIgj2QZc0pkgALDFL1ZrO5E+bugcrEELX3coOFpDRFQOwwwREVENpRWasClVhzyjaLMQcytru/7uCgyL8EG4t5sdeiEick4MM0RERNVkEiXsyihCYrbBbiHmVtZ+YoM16NPYC24KjtIQETHMEBERVUNaoQkbU3UoMIp1EmJuJQDwdVdgOEdpiIgYZoiIiKoqMVuPhPSiOhuNuR1r/wPDvBAb7CFjJURE8mKYISIiugtJkrDvqh57MovlLqWC3qGe6NnIg1s5E1G9pJC7ACIiIkfnqEEGAPZkFmPfVb3cZRARyYJhhoiI6A4SrzlukLHak1mMxGwGGiKqfxhmiIiIbiOt0ISEK0Vyl1ElCelFSCs0yV0GEVGdYpghIiKqhEmUsDFVB2dZiSIA2Jiqg0nkUlgiqj8YZoiIiCqxK6NItu2Xa0ICUGAUsTvDOUaSiIhsgWGGiIjoFmmFJiRmG5wmyFhJAA5nGzjdjIjqDYYZIiKim4iShE1ONL3sVgKATak6iDx5gYjqAYYZIqpAkiSYRQkGi4hikwiDRYRZlMBjqag+SCkwIs+JppfdSgKQZxRxoYCjM0Tk+lRyF0BE8pIkCTdKLMgqNiOr2IzMYjOy9GaYxYrXqhRAiIcKoZ4qhPz9J1Ct5GF95FKOZBsgAE4bZoDS0Zkj2Xq09HOXuxQiIrtimCGqp3JLLDiaY8Dx6waUWEpftikAVJJhyphFIL3IjIwic9l1aqWADg006BSkQYBaae+yiewqt8SCSzrnH9GQAFzUmZBbYuH3JRG5NEHivBGiekOUJKQUGHEk24BLOpPN3n22thPp44bOwRq08HWHgqM15IS2XynC4Wt6px6VsRIAdG3ogX5NvOQuhYjIbrhmhqieSCs0YcnpXKy9oEPq3+882+oFm7WdVJ0Jay/osOR0LndTIqcjSRKOX7/9DmYXEvfi5XuCcSFxb9ljP7z5FD4cdk/dFFhNEoCHu0Zj2rRpcpdCRGQ3nGZG5OJMooRdGUVI/HsdAGC/tQDWdvONIuKT8xEbrEGfxl5wU3CUhhzfjRJL2ZRLVyFJcLl7IiK6GcMMkQtLKzRhY6oOBcbSFS519ZLG2s+RbAOS840YHuGDcG+3OuqdqGayis13/HrkPT3wzv40KN2ca1G9vrLdPIiIXASnmRG5qMRsPeKT82U9wdx6Inl8cj4Ss/UyVUFUNVnF5jv+UlQoFHBTa6BQOM+vTgGAniMzROTCODJD5GIkScK+q3rsySwu/Vzuev7+mJBehBKLhJ6NPLiVMzmk/Yl/YuVHbyP1+CFIoojwtp0xaPYraNo+FkDpmpmlT4zCjCXr0Ty2123bOb51HXZ/8zlyLqdAEAT4h4ajy6iJ6PXozLJr9Lp8JCz6F05t34jCGznwa9QYXUdPRu8pT5ULS6IoYt+3S3B43SrcSL8EjbcvYvoOxZCnX4eHr3/ZdZIkYcdXn+Dgj99AX5CH8Lb3YMSLH0ACUMyRGSJyYQwzRC7m5iDjaKx19QrxlLkSovL++usvvPvoUKi9fHDf1KegVLnh4Nq40vCy9Gc0bde5Su0kH9iJNS8/gRZd78OQp98AAGRfPIfU44fKwoxRX4wl00eiIDsTXUdPgX9IGFJPHMLWz+ahIPsqHnxhfll76+c/jyMb1qDzgxPQ85EZyM1Ixf7vvkLG2ZN4cvkmKN1Kp2/+9uUH2LHsE0TdOxBRvQYiI+kElv9zLCwmE/RmEZIk8U0EInJJDDNELiTxmuMGGas9mcVQKwXEBnvIXQpRmddeex0WsxlPLt+IwLBIAECnYePwyege2PLp23hi2S9Vaidpz29Qe/vg8f9+D4Wy8vNd/oj/EjfSL2LOt9sR1LQFAKDbmKnwDQ7Bnrj/ovfkf8I/pAkuHT2Aw+tWYfz8Reg49OGy5zePvRdfPzUeJxN+QcehD6MwNwe7v/kcUffej6mfxpeFlq2fz8fO5QshARAlQMksQ0QuyHkm/hLRHaUVmpBwpUjuMqokIb2IWzeTw7BYLPjtt22I6Tu0LMgAgG9wCDoMeRiXjh2EoVBXpbY8fPxg0hcj+cDO215z8rcNiOzUHR4+/ijKvV72p2XXPhAtFlz8c3/pdQm/QOPti5bd+5S7rkl0B7h7euFC4h8AgPMHd8NiMqLnI9PLjb70mvj/09rMPFKOiFwUR2aIXIBJlLAxVWezQzDtTQCwMVWH6dEB3LaZZJednY3i4mIER7as8LWGzVpBEkXkX71Spba6j3sMJ3/7GSvmPALfhqFo1b0v2t0/ElG9BpRdcz3tArKST2HeAG2lbRTdyAEA5Fy+AENhAeYPiK70usK/r8vLTAMABDVtXu7r3gFBZetqLCKAygeKiIicGsMMkQvYlVEk665l1WXd5Wx3RhEGhHnLXQ6RzXgHBmPOmh1I3rcDZ/f9jnN7f8eRX75Fp+HjMO6d/wIAJFFEy+590WfqU5W2YZ16JokivAODMX7+l5Ve5xXQoMp1KTkPg4hcFMMMkZNLKzQhMdsgdxnVJgE4nG1Aa381z6AhWQUHB8PT0xPZl85X+Fr2pfMQFAr4NWqCotzrVWpP5eaO6D6DEd1nMERRxM/v/y8Orf0G/ac/j6CmzREYFgljcRFadutzx3YahEUi5dBuRHToCjfN7deY+YeGAygdybl5mlxhbg70BXmlNXHxPxG5KL5XQ+TEREnCpr+nlzkjAcCmVB1EzucnGSmVSgwaNAhndm1Bbsblssd116/h2Ja1iOzYDRpvnyq1VZR3o9znCoUCIa1iAAAWkxEA0O7+kbh84jDO7dte4fl6XT4s5tLDO9sNGgnRYsH2pR9XuM5iNkOvywcAtOx2H5QqN+xbswzSTd9Le+MXAyj9PuNsTiJyVRyZIXJiKQVG5Bmd9wwJCUCeUcSFAhNa+jnXqerkWubNm4fN237DoseHo/vYx6BQqnDopzhYjEYM+Z83q9zOT+8+C31+Lpp36Q2/RqHIy0zHvjXLEBrVFsHNWgMA7psyG2d2bcE3z0xE5wcfQZPoDjDqi5F1/jT+StiA/934J7wCGqB5517o+vBU7Pz6U2Sc+wutuveFUuWGnMsX8FfCLxj+wny0GzgC3gFB6D35n9j59af45n8eLd2a+exJnNv7O7z8G8BDpeC2zETkshhmiJzYkWyD0yz6vx0BwJFsPcMMyapNmzZYuHYr/v3O69j59aeQRAnhbe/BuHe/qPIZMwDQ6YExOLQ2Dgd/+Bp6XT58GjRE+0GjMHDmC2WHYbp7eOKJZT9j51cLcTLhF/y58XtovHwQFNEcA598ERpv37L2Hnp1AZpEd8Chtd9g23/fg0KpREBoU3R8YCwiOnQtu+7+2a9Apdbg4I8rcCFxL8Lb3oPHv/gB3zz9KDxVnIRBRK5LkCTO7yByRrklFiw+nSt3GTYzMyYAAWput0TyOXXDgA2phXKXYXMjInwQE6iWuwwiIrvg2zVETupojsFp18rcSgBwLMf5NjEg1xLi6ZqTFVz1voiIAIYZIqckSRKOXzc49fSym0kAjl03gAPFJKdAtRJqpau8RVBKrRQQoOaveiJyXfwJR+SEbpRYUGJxrRf+JRYJuSXOu5kBOT9BENChgcalRjw7NtBw8T8RuTSGGSInlFVslrsEu3DV+yLn0SlI41Ijnh2DNHKXQURkVwwzRE4oq9js9N+8Rn1Ruc8VApClZ5gheQWolYj0cXP60RkBQDMfN26qQUQuj6sCiZxQZrEZt07IKikqxLYv3sfpnZuhy7kKjbcvQlu3wZCnX0eT6A74cNg9aB7bE2Pf/rzc85bMGAkAeGLpz2WP5WakYcO/Xsb5Q3vg7uGJjkMfRuue/fH1U+MxY8l6NI/tBQC4+Od+7FuzFGl//YnC69nwDgxC2wEPYvBTr5Y7sfyHN5/CXwkb8PSanfjlXy/j0tEDaNn1Pkz+JK7sGlECMopMNv6bIqq+zsEaXNI5979FCUDnYI+7XkdE5OwYZoicjCRJlY5grHtvLv5K2IAe4/+Bhs1bozgvF6nHDuLaxWQ0ie5Q5faN+iIse3I0dDlX0XPCDPg0aIhjW37ChcQ/Klx7MuEXmAx6dB8zDZ5+gUg79Sf2f7cM+dcyMPFfy8tdK1osWD57HCI7dcMDz7xdLuxYZenNkCSJc/xJVi183eHvrkC+UXTKKWcCAD93BZr7usldChGR3THMEDkZiwSYK1knf3bPb+jy0CQMe+6dmx6dU+32D66Nw430S5j8SRxi+g4FAHR9eCo+m9C/wrVDn36jXCjp+vAUNAhvhm2fz0deZjr8Q8PKvmY2lqDd/SMwZM7rt+3bLJaO0LjYhlLkZBSCgGERPohPzpe7lBqRAAyP8IGCbwoQUT3g7NPuieod8222L9b4+CHtrz9RkJ1Vq/bP7dsO34ahiO4zpOwxN7UGXUZPrnDtzUHGqC9CUe51RLTvAkmSkHH2ZIXru4957K793+7+iOpSuLcbYoOdb2czAUCXYA3CvDkqQ0T1A0dmiJyMeJvdi4f+zxv44c05+GBoBzSJ7oCoXgNxz/BxCAyLrFb7eZlpaBAWWWGqV4PwZpVcm47fFn2AM7u2Ql+QV+5rhsKCcp8rVCr4Nmp81/4tIgCuWSYH0KexF5LzjShwkulmAgBfdwXua+wldylERHWGYYbIyShuM57aftAoRHbqjlM7fsX5AzuxO+6/2PXNZ5i04GtE9Rp423UoksUCQVn99CBaLPjqn2Ogz89Dn2lzEBzZCu4ensi/lokf35wD6ZbUpXJzh+J2xd9EyfFichBuCgHDnWi6mXV6mZvC2caTiIhqji8biJyM6g7z4H2DQ9Bj3OOY/Ekc/ndjIjz9ArDjq38DADx8/WDQFVR4Tm5WernP/UPDcT39EqRbpntdT7tY7vOs86eRk5qCB557G32mPY2YvkPRslsf+AaH1PTWANz5/ojqWri3GwaGOcdIx8AwL4RzehkR1TMMM0RORikAqlu+c0WLpUJQ8Q4Mhm9wCMxGIwAgMCwSl08mwmwyll1zZvc25GddKfe81j36oeBaJs7s2lL2mKnEgMM/rSx3nUJROppzc+iRJAl7Vy+p8b2pFKXnzRA5kthgD/QO9ZS7jDvqHeqJWG7FTET1EKeZETkZQRAQ4qFCetH/b89cUlyID4a0R9uBDyK0VVu4e3rh/MFdSD91FA/8vbtZl1GT8FfCBnw9ezzaDxqJ62mXcGzzDxXW1HR9eAr2f/cV1rwys3Rr5qBGOLZ5LVRq9d8FlH4IjmyFwLBIbP73Wyi4lgm1lw9Obd9YYe1MdYR4qLgtMzmkno1Kg8KezGKZK6novlBP9GjEIENE9RNHZoicUKinqtw3r5vGA93HPo7Ms38hYfGH2PTxa8hJPY+RL/8LvSfNAgC07tkfDzz3DnIup2Djgtdw+eRhTF24Gn63LMpXe3pj+uKf0Dz2Xuz7dil2LPs3mnXqjv7TnwcAqNw1AAClmxumLoxHaFRb7Pz6U2xfsgANwptj7Dv/rdE9KQSgsRenyJBjEgQB0e4G7PtqQelZSHLX8/fHgWFe6BniyTcBiKjeEqRbJ8YTkcM7dcOADamFddrnH/GLsOnj1/HSlhPwaxhqlz5GRPggJlBtl7aJasNsNmPo0KE4evQoft3/J44YvWXb5cy6a9nwCB+ukSGieo/TzIicUIinfb91TQZ9uTNkTCUGHFobhwZNm9styAD2vy+imnrxxRexY8cObNu2DV1bNUUnUcKujCIkZhsgAHUSaqz9xAZrcF9jL+5aRkQEhhkipxSoVkKtFFBisc9LqFVzp8E/JAyhUW1hKCzAsV9/RPalZIyfv8gu/QGAWikgQM2Zr+R4Vq5ciU8++QSffvop+vfvD6B02+aBYd6I8ldjU6oOeUbRbqHG2q6fuwLDOBpDRFQOp5kROantV4pw+JreLi+e/ohfhMT18cjNuAxRFNGwWWv0mfoU2g9+yA69lb5Y69rQA/2aOMcWuFR/HD58GL1798aECROwfPnyStemiJKECwUmHMnW40KBEZBECIran/xqDTHNfNzQOdgDzX3doODaGCKichhmiJxUbokFi0/nyl2GzcyMCUCAuvYvAIlsJSsrC7GxsWjSpAl27doFjUZzx+v/+OMPjJwwGf/+YTOuewaXjZwqBECswm/am69TKwV0bKBBxyANvy+IiO6A08yInFSAWolIHzek6kyyLEK2FQFApI8bX7CRQzEajRgzZgwsFgvWrVt31yADAHFxcfBRSpjUtTUEQUBuiYisYjOy9GZkFJmQpTfDLFZ8nkpRui15Yy83hHioEOKpQoBawR3KiIiqgGGGyIl1Dtbgks4kdxm1IgHozMP+yMHMmTMHhw8fxs6dO9G4ceO7Xm8wGPD9999jzpw5UChK134FapQI1CgRg9Id+iRJgigBZkmCRQSUCkAlCFAIYHAhIqohhhkiJ9bC1x3+7grky7RFbG0JKF3U3NyXC5rJcSxatAhLlizBsmXL0KNHjyo9Z8OGDcjPz8fkyZNve40gCFAKgBICwIFIIiKb4JoZIieXVmhCfHK+3GXU2KRWfgjj7kzkIPbs2YP+/ftj5syZ+Pzzz6v8vAcffBDZ2dk4cOCAHasjIqJbcR9UIicX7u2G2GCN7CeSV5cAoEuwhkGGHEZaWhrGjBmDXr164d///neVn3ft2jVs2bLljqMyRERkHwwzRC6gT2Mv+LornCbQWE8wv68xt2Imx6DX6zFq1ChoNBr88MMPcHOreshes2YNBEHA+PHj7VghERFVhmGGyAW4KQQMj/BxmnUzEoDhET48wZwcgiRJmDFjBs6cOYOff/4ZwcHB1Xp+XFwchg0bhqCgIDtVSEREt8MwQ+Qiwr3dMDDMOUY6BoZ58RRzchgff/wx4uPj8fXXX6Njx47Veu7p06dx5MgRTjEjIpIJwwyRC4kN9kDvUE+5y7ij3qGeiOVWzOQgtm7dihdffBEvvvhijaaJrVy5EgEBARg2bJgdqiMiorvhbmZELkaSJOy7qseezGK5S6ngvlBP9GjkwTM1yCGcP38eXbp0QY8ePbBhwwYoldXbL1kURURERODBBx/EF198YacqiYjoThhmiFxUYrYeCelFEABZ19JY+x8Y5sURGXIYOp0O3bt3h8lkwqFDh+Dv71/tNrZv344BAwZg3759VT6PhoiIbIuHZhK5qNhgDzTyUGFjqg4FMh2qad21bHiED9fIkMMQRRFTpkxBWloaDh48WKMgA5Qu/G/ZsiW6d+9u4wqJiKiquGaGyIWFe7thenQAOgdrAKDOtm629hMbrMH06AAGGXIo7777LtavX49Vq1YhOjq6Rm0UFRVh7dq1mDx5MqdNEhHJiCMzRC7OTSFgYJg3ovzV2JSqQ55RtNvUM2u7fu4KDONoDDmg9evX46233sI777yDESNG1KqdwsJCTJo0yYbVERFRdXHNDFE9IkoSLhSYcCRbj4s6k81CjbWdZj5u6Bzsgea+blDw3WpyMKdOnUL37t0xePBgfP/991Aoaj45YfDgwdDr9di9e7cNKyQioupimCGqp3JLLDiWY8Cx6waUWEp/DCgEQLzbTwRJgkIhlF2nVgro2ECDjkEaBKirtxsUUV25ceMGunbtCk9PT+zbtw/e3t41bisjIwPh4eFYtGgRZsyYYcMqiYioujjNjKieClAr0a+JF/o29kRuiYisYjOy9GZkFJmQpTfDLFZ8jsmgh6LwBrrGtESIhwohnioEqBVcM0AOzWw2Y8KECcjNzcW2bdtqFWQAYPXq1XBzc8PYsWNtVCEREdUUwwxRPScIAgI1SgRqlIiBGkDpWTWiBJglCRYRUCoAlSCgf7++CA0Nxatr1shcNVHVvfzyy0hISMDWrVvRvHnzWrcXFxeHkSNH1ngXNCIish3uZkZEFQiCAKVCgFqpgKebAmqlAkqFAK1Wi6SkJLnLI6qy+Ph4LFiwAAsWLMDAgQNr3d7x48dx8uRJTJ482QbVERFRbTHMEFGVabVanDt3DqJYyRw0Igdz5MgRTJ8+HZMnT8Yzzzxjkzbj4uIQHByMwYMH26Q9IiKqHYYZcnmSJMEsSjBYRBSbRBgsIsyiBO59UX1arRZ6vR5paWlyl0J0R9euXcNDDz2Etm3bYvHixTZZ12U2mxEfH49HH30Ubm7cdpyIyBFwzQy5FEmScKPEUrqYvdiMzL8XtVe2mF2lAEI8VAj1LF3IHuKpQqBaycXsdxAVFQUASEpKQkREhMzVEFXOaDRizJgxMBqNWLduHTw8PGzSbkJCAq5evcopZkREDoRhhlxCbokFR3MMOH7zNsMA7jQZyiwC6UVmZBSZy65TKwV0aKBBJ24zXKmIiAio1WokJSVxmg05rGeeeQYHDhzAjh07EBYWZrN24+LiEBMTg3vuucdmbRIRUe0wzJDTEiUJKQVGHMk24FIlB0BWdVXHzdeVWCQcvqbHoWt6RPq4oXOwBi183XkA5N+USiVat27NTQDIYS1duhRffvkllixZgl69etms3YKCAqxfvx5vvPEGR2+JiBwIwww5pbRCEzal6pBnFGF9WWGrFTDWdlJ1JlzSmeDvrsCwCB+Ee3OOPFC6bubs2bNyl0FUwd69ezF79mzMmjXL5odZrl27FgaDARMnTrRpu0REVDuCxFXQ5ERMooRdGUVIzDZUGImxF2s/scEa9GnsBTdF/X5X9o033sCyZcuQkZEhdylEZdLT0xEbG4vWrVsjISEB7u7uNm2/X79+UCqVSEhIsGm7RERUOxyZIaeRVmjCxlQdCoylE8PqKoVb+zmSbUByvhHD6/koTVRUFDIzM5Gfnw8/Pz+5yyGCXq/HQw89BHd3d/z44482DzKpqanYuXMnVqxYYdN2iYio9rg1MzmFxGw94pPzUWAU6yzE3EoCUGAUEZ+cj8RsvUxVyE+r1QIAp5qRQ5AkCTNnzsRff/2FdevWoWHDhjbvIz4+Hp6enhg9erTN2yYiotphmCGHJkkS9mYVIyG9qPRzuev5+2NCehH2ZhXXy7NqrNszM8yQI1i4cCFWrlyJr776Cp07d7Z5+5IkIS4uDqNHj4aPj4/N2yciotphmCGHtu+qHnsyi+Uuo1J7Moux72r9G6Hx9vZGWFgYdzQj2SUkJGDu3LmYO3cuHn30Ubv0kZiYiLNnz/JsGSIiB8UwQw4r8ZrjBhmrPZnF9XLKWVRUFMMMyerChQsYP348Bg4ciA8++MBu/cTFxSE0NBQDBgywWx9ERFRzDDPkkNIKTUi4UiR3GVWSkF6EtEKT3GXUKa1WyzBDsiksLMTIkSMRGBiINWvWQKm0zwG3RqMR3377LSZNmmS3PoiIqHYYZsjhmEQJG1N1cJYNkAUAG1N1MIn1Z/2MVqtFcnIyzGaz3KVQPSNJEqZNm4ZLly5h/fr1CAgIsFtfW7ZswfXr1znFjIjIgTHMkMPZlVEk665l1WXd5Wx3hnOMJNmCVquFyWTCpUuX5C6F6pn58+dj7dq1WLVqFdq0aWPXvuLi4tCxY0e0a9fOrv0QEVHNMcyQQ0krNCEx2+A0QcZKAnA421BvpptZt2fmVDOqS7/88gtef/11vPXWWxg5cqRd+8rNzcWGDRs4KkNE5OAYZshhiJKETU40vexWAoBNqTqI9WC75iZNmsDLy4thhurMmTNnMGnSJIwaNQqvv/663fv7/vvvYTab7bZLGhER2QbDDDmMlAIj8pxoetmtJAB5RhEXClx/dEYQBO5oRnUmLy8PI0eORNOmTREXFweFwv6/uuLi4jB48GCEhITYvS8iIqo5ldwFEFkdyTZAgPwHY9aGAOBIth4t/dzlLsXutFotD84ku7NYLJgwYQKys7Nx+PDhOjm4MiUlBfv27cPq1avt3hcREdUOR2bIIeSWWHBJZ3LqIAOUBrGLOhNySyxyl2J33J6Z6sKrr76Kbdu24bvvvkPLli3rpM+VK1fCx8fH7utyiIio9hhmyCEczTE47VqZWwkAjuUY5C7D7rRaLXJycpCTkyN3KeSi1qxZgw8//BAffvghBg0aVCd9SpKElStXYuzYsfD09KyTPomIqOYYZkh2kiTh+HXn28HsdiQAx64bILn4RgBRUVEAwKlmZBdHjx7F448/jokTJ+L555+vs3737duHCxcucBczIiInwTBDsrtRYkGJRf4X/gXZWUhY9C9knD1Z67ZKLBJyS0QbVOW4WrVqBUEQONWMbC47OxujRo1CTEwMli5dCkGou3HbuLg4NG3aFPfdd1+d9UlERDXHMEOyyyp2jFPkC7Kz8PuSj5B59i+btOco92UvHh4eiIyM5MgM2ZTJZMLYsWNhMBiwbt06eHh41FnfBoMB33//PSZNmlQnO6YREVHtcTczkl1WsRkKAK40jqEQgCy9GTFQy12KXXETALK15557Dnv37sX27Qtqu1cAACAASURBVNsRHh5ep31v3LgReXl5nGJGROREBMnVJ/aTw1t1Lg/pRTUfxchIOoGtn89H6vFDkEQR4W07Y9DsV9C0fSwAoDg/FzuXL8S5/TuQeyUVgkKBiA5dMeTp1xHaui0A4ELiXix9YlSFtse89R90HjGhRnWFeakwqbV/je/LGTz77LPYtGkTzp07J3cp5AK++uorTJ8+HV9++SWefPLJOu9/xIgRuHr1Kg4ePFjnfRMRUc1wHJ1kJUkSsvQ1DzJXU5Kw+B8PIvPcKdw39Sn0n/E8bmRcxtInRuHyySMAgBtXUnFqx6/Q9r4fw557F72nPIWs82ewZPpIFGRnAQCCm7XCwFkvAQC6jp6Cce9+gXHvfoFm9/SocW1ZerPLbwKg1Wpx4cIFlJSUyF0KObn9+/dj1qxZeOKJJ2QJMtnZ2di8eTNHZYiInAynmZGsLBJgrsX8sm1fvA+L2Ywnl29EYFgkAKDTsHH4ZHQPbPn0bTyx7BeEtIzG8+sPlpsDf8+wsfhkdE8cXh+PATOeh0+DhojqNQAJX36Apu1j0WnY2FreWel9iRKgdJU9pyuh1WphsViQkpKCmJgYucshJ3XlyhWMHj0aXbt2xWeffSZLDWvWrAEAPPLII7L0T0RENcORGZKVuRYjF6LFguT9OxHTd2hZkAEA3+AQdBjyMC4dOwhDoQ4qd3VZkBEtFhTl3YC7hxeCIloiI+lEbW/hjmpzf85Aq9UC4PbMVHMGgwGjR4+GUqnEjz/+CHd3d1nqiIuLw7BhwxAUFCRL/0REVDMcmSFZibUYlSnKzYHJUIzgyIqngjds1gqSKCL/6hW4e7bGvtVLcOCH5cjNuAzRYim7ztMvoOYFVIFFBKC0axeyatiwIfz9/bkJANWIJEmYNWsWTpw4gT179iAkJESWOs6cOYPExES89NJLsvRPREQ1xzBDsqqL3U93Lv83fvviA8SOfBT3//NlePj6Q6FQYOOC1yBJ9t1DTeniY5+CICAqKophhmrks88+w4oVK7By5UrExsbKVsfKlSvh7++P4cOHy1YDERHVDMMMyUpVi8PwvAKC4KbxRPal8xW+ln3pPASFAn6NmuCvhA1oHnsvHn7z03LX6HX58PQPLPtcgO0Xt9Tm/pyFVqvFmTNn5C6DnMz27dvx3HPP4bnnnsOkSZNkq0MURaxatQqPPPII1GrX3kqdiMgVufj7xuTolAKgquG/QoVSiVY9+uLMri3Izbhc9rju+jUc27IWkR27QePtA0GhBFB+7crJ335GwbXMco+5eXgCKA05tiCZTViz5lscP34cBoPBJm06Iq1Wi7Nnz7r8zm1kOxcvXsS4cePQv39/fPjhh7LWsmvXLqSlpXEXMyIiJ8WRGZKVIAgI8VDV+JyZQf98GecP7MSix4ej+9jHoFCqcOinOFiMRgz5nzcBANreg7B96QL8+OYcNO3QFVnnT+PY5rXlNg0AgAZhkdD4+OHQ2m+g9vKGu4cXwtveg8AmEdWuS5IkZCSdwCtTJgIAFAoFWrRogZiYGLRp06bsY1RUVJ2ecG4PWq0W+fn5uHr1qmxrHsh5FBUVYdSoUfDz88OaNWugUsn7ayguLg4tWrRAjx4134adiIjkw0MzSXa/pxfiSLYBNV29kpF0Als+m/f3oZkSwtveg0GzX0FEhy4AALOxBNv++x6ObV4LQ2EBGmvb4YFn3saWz94FADyx9Oeytk7v2oKtn81DzuUUiGZzjQ/NVAhAbLAH7vEy4cyZMzh16hROnz5d9jE9Pb30OoUCzZs3Lws31qCj1WqdJuQkJSUhOjoaO3bsQN++feUuh2pJkqTSLdMlCaJYuq5NJQhQCqVvPtS27fHjx+PXX3/FgQMH0LZtWxtVXTPFxcVo1KgR5s6dizfffFPWWoiIqGYYZkh2p24YsCG1UO4ybG5EhA9iAiufg5+fn19pyElLSwNQ+qKxefPm5UZxrCHH09OzLm/jroxGIzw9PfH555/Lctgh1ZwkSbhRYkFWsRlZxWZkFpuRpTdXevaTSgGEeKgQ6qlCyN9/AtXKagWc9957D6+++irWrl2L0aNH2/BOamb16tWYOHEiUlJS0Lx5c7nLISKiGmCYIdldN5ix9Eye3GXY3BPRAQjUVG9f5oKCgkpDzuXLpWuCBEFAs2bNKoSc6OhoWUNOVFQUhg4dioULF8pWA1VdbokFR3MMOH7dgBJL6a8ABVCl0dGbr1MrBXRooEGnIA0C1Hf+t75p0yY8+OCDeO211/DOO+/UpnybGTJkCIqKirBnzx65SyEiohpimCHZSZKEhSdvlL2ocgVqpYBn2gXWelqOlU6nqzTkpKamAigNOZGRkZWGHC8vL5vUcCcjR46E0WjE5s2b7d4X1YwoSUgpMOJItgGXdCYIuHVbjJqxthPp44bOwRq08HWH4pZ/90lJSejWrRv69u2LdevWlR1iK6fMzEyEhYXhyy+/xBNPPCF3OUREVEMMM+QQtl8pwuFrepu8uJKbAKBrQw/0a2L/EKHT6ZCUlFQh5Fy6dKnsmtuFHG9vb5vV8eKLL+L777/HxYsXbdYm2U5aoQmbUnXIM4o2CzG3srbr767AsAgfhHu7ASidUtmtWzcoFAocOHAAvr6+dui9+j7++GO8+uqryMzMRECAfQ/PJSIi+2GYIYeQW2LB4tO5cpdhMzNjAu467caeCgsLKw05N4eNiIiICiEnJiamRiFn+fLlmD59OgoLCx1uTU99ZhIl7MooQmK2wW4h5lbWfmKDNbi3kQZjHhqFvXv34tChQ2jVqlUdVFA1HTp0QFRUFL7//nu5SyEiolrg1szkEALUSkT6uCFVZ3Lq0RkBpdNt5AwyAODt7Y3Y2NgKp6oXFRVVCDlr167FggULyq5p2rRppSHHx8fntv1ptVpIkoTk5GR06NDBbvdFVZdWaMLGVB0KjKUrXOrq+8raz5FsAw5dvIrTGdfx7bffOlSQOX78OE6cOIF58+bJXQoREdUSR2bIYSTnl2DtBZ3cZdTamOa+aOnnLncZ1WINOTeP4pw6dQoXL14sOwwzPDy83PbRbdq0QXR0NHx9fXH9+nUEBQXhu+++w7hx42S+G0rM1iMhvajORmNuR7SYoVAoMTDcG7HBjrPV+Ny5c/HNN98gIyMDbm5ucpdDRES1wDBDDkOUJCw5nYt8o+iUozMCAD93BZ6ICaiwANpZFRcXVxpyLly4UC7kxMTEYPfu3bj//vvx8ssvIzo6Gn5+fjJXX/9IkoR9V/XYk1ksdykV9A71RM9GHjbbFKOmzGYzwsPDMW7cOHz66aey1kJERLXHMEMOJa3QhPjkfLnLqLFJrfwQ5u367/Tq9foKIWfr1q0wGAxl14SFhZWbqmb9yJBjP3uzih0yyFj1DvVErxB511Rt3boVQ4YMweHDhytMwyQiIufDMEMOJyG9EEeyDU41OiOgdMHzgDDb7RDmbGbMmIHDhw9jxYoVFUZyUlJSIIqlazeaNGlSacjx9/eX+Q6cW+I1PRKuFMldxl0NDPOSdcrZxIkTcfToUZw6dUr2USIiIqo9bgBADqdPYy8k5xtR4CTTzQQAvu4K3NfY/lsxOzKtVovVq1ejffv26NixY7mvGQwGnD17tlzI+fXXX/Gf//ynLOQ0bty40pDDbXPvLq3Q5BRBBgAS0ovQyENVtnVzXdLpdFi3bh1ef/11BhkiIhfBkRlySM423WxiKz9ZXpw5kk2bNmH48OG4fPkywsPDq/Qcg8GAc+fOVRjJOX/+PCwWCwAgNDS00pATGBhoz9txGiZRwrIzuU4X/qdHB8BNUbeBYsWKFXj88cdx6dIlNG3atE77JiIi+2CYIYdl3ZHJ0ck9bcZRpKSkoGXLlti2bRvuv//+WrVVUlJSLuRYg05ycnJZyAkJCak05DRo0MAWt+M0OC2z6vr37w9BEPD777/Xab9ERGQ/DDPk0Lig2XlYLBZ4enpiwYIFmDNnjl36KCkpQXJycoXDQJOTk2E2mwEAjRo1qhBw2rRp45Ihx9lGMG9VlyOaly9fRmRkJJYvX45p06bVSZ9ERGR/XDNDDq1no9IRD0cMNPeFeqJHI47IWCmVSrRq1QpJSUl260OtVqNt27Zo27ZtuceNRmOFkLN9+3YsWrSoLOQ0bNiw0pATFBRkt3rtSZQkbErVyX6WTE0JADal6upsK/P4+HhoNBo8/PDDdu+LiIjqDkdmyCk4yiGA1v45taxyY8aMQW5ursNM4zEajTh//nyFkZxz587BZDIBAIKDgysNOcHBwTJXf2c8ZLbqJElCTEwMOnfujFWrVtm1LyIiqlscmSGnEBvsgUYeKmxM1cm20Nm6cHl4hE+9X+x/O1qtFitWrJC7jDLu7u6IiYlBTExMucdNJlOFkLN7924sXbq0LOQEBQXdNuQ4wk5YR7INsof72hIAHMnW2z3MHDlyBElJSVi4cKFd+yEiorrHkRlyKiZRwq6MIiTW5Qs5SYIECR7XLmD2oG51vgOTM1m1ahUmT56MgoIC+Pj4yF1OtZlMJqSkpFQYyTl79iyMRiMAoEGDBpWGnIYNG9ZZyMktsWDx6dw66asuzIwJQIBaabf2n376afz444+4fPkyVCq+h0dE5EoYZsgppRWasClVhzyjaLdQY23X312BE6s/x7df/BtJSUlo1KiRHXpzDYmJiejSpYvLna5uNpsrDTlJSUllIScwMLDSkNOoUSObh5ztV4pw+JreqUdlrAQAXRt6oF8T+5zTZDKZ0LhxY0ydOhULFiywSx9ERCQfhhlyWqIk4UKBCUey9bioM9ks1Fjbaebjhs7BHmju64bcGzeg1WoxePBgzrm/g4KCAvj5+WHlypWYNGmS3OXYndlsxoULF8ptH33q1KkKIaeyLaRDQkJqFHIkScLCkzdQYnGdH91qpYBn2gXaZWRrw4YNGDFiBI4fP4727dvbvH0iIpIXwwy5hNwSC47lGHDsuqHsRZ5CAMQq/Ou++Tq1UkDHBhp0DNJUmPYSFxeHqVOn2uQcFVfWpEkTPP7443j33XflLkU21pBz62GgSUlJKCkpAQAEBARUGnJCQ0Pv+KL+usGMpWfy6upW6swT0QEI1Nh+qtnYsWORnJyMY8eO2bxtIiKSH8MMuRRJkpBbIiKr2IwsvRkZRSZk6c0wixWvVSmAEA8VGnu5IcRDhRBPFQLUitu+kJQkCQMGDMDly5dx8uRJeHhwN7PKDBgwAIGBgfjhhx/kLsXhWCyW24Ycg8EAAPD396805DRu3BiCIODUDQM2pBbKfCe2NyLCBzGBapu2mZubi9DQUMyfPx/PP/+8TdsmIiLHwDBDLk+SJIgSYJYkWERAqQBUggCFgGpPazl79izat2+PF154AfPmzbNTxc5t9uzZ2L17N06ePCl3KU7DYrHg4sWLFULOmTNnykKOn58fYmJicN+MF+DfvhegUMhWr6nEAKWbOxQ2qkEhlO5Y2N/G62aWLFmCWbNmIT09HaGhoTZtm4iIHAPDDFE1vf3225g/fz6OHj2KNm3ayF2Ow/nPf/6DF154AcXFxVAq7bdDVX1gsVhw6dKlciEneNjjCGrVpkpBPP9aJhK+/ABn9/6O4vxc+AaHoHXP/hj+wnyo3NxxI/0SNv/nHaQc2gOzsQQhLWPQf8Zz0PYeVNbGhcS9WPrEKDzy/hJcPX8GR375Frqcq3h9ZzI2LngVfyVswHPrDuCXD17E+YO74Kb2wD0PjseQp9+Aohr//8O8VJjU2r9Gf0+3c++998LHxwebN2+2abtEROQ4uEclUTW99NJLWL16NZ588kns2rXLZu9OuwqtVguj0YhLly6hRYsWcpfj1JRKJVq0aIEWLVrgwQcfhCRJ+PjE9UqnTd6qIDsLX0weBL2uAF1HT0ZwZCsUZGfir4QNMBn00Bfk4cvHHoDJoEfPR2bA0y8Qf25cg7hnJ2Piv5ajTf9h5drbvvRjKN3c0HvybJhNJVCqSs9aEkURX88eh/C29+CBZ9/G+YO7sGflFwgMi0T3sY9V+V6z9GZIkmSzTQBSUlKwd+9exMfH26Q9IiJyTAwzRNWkVquxePFi9OvXD8uXL8f06dPlLsmhaLVaAKVT8hhmbMsioUpBBgC2fPYudNev4Z9xWxEW07Hs8ftnvQRJkrDp49dReD0bM7/agMhO3QEAXUZPwqfj+2LTJ28guu/QckHdbCzBU6t+g5um/Foxc4kB7QaNwoAZpWtSuo2Zhs8e7Y/E9fHVCjNmsXQjDqWNNjRbtWoVvL29MWrUKNs0SEREDolvKRPVQN++fTFt2jS88MILuHr1qtzlOJSwsDB4enoiKSlJ7lJcjrmKs4JFUcTpnZsRfd/gckHGShAEnN2bgLC295QFGQBQe3qj6+jJyM24jGsXzpZ7zj3Dx1cIMlbdxkwt93lkp+64cSW1SrXerKr3dzeSJGHlypUYO3YsPD09bdImERE5JoYZohr66KOPoFQquUvSLRQKBaKiohhm7ECs4qhMUW4OSgp1aNRCe9tr8jLTERzRssLjDZu1/vvraeUeD2jctNJ2VGoNvAOCyj3m4eMPfUH1t4+2VPH+7mb//v1ISUnB5MmTbdMgERE5LIYZohoKCgrCxx9/jPj4ePz2229yl+NQGGbsQ87lWW4aTaWP23LNmNJGTcXFxSE8PBx9+vSxTYNEROSwGGaIamHKlCno27cvZs2aBb1eL3c5DkOr1eLs2bN3v5CqRVXFxfFeAUFQe/vgasrtA6V/aBiyU89XeDz7UvLfXw+vWZG1UNX7u5OSkhJ89913mDRpEjfnIHJBkiTBLEowWEQUm0QYLCLMogRuzlt/cQMAoloQBAGLFi1C+/bt8d5779XrU+9vptVqce3aNdy4cQOBgYFyl+MylELpYa932wRAoVAgpu9QHPv1R6SfPlZh3YwkSYjqNRB7Vy9G6vHDiOjQBQBg1Bfh0E8rEdC4KRo2j7LXbVRKpSg9b6a2Nm7ciLy8PE4xI3IBkiThRoml9CDsYjMy/z4Q+04HYYd6lh6CHeKpQqBaabMdEslxMcwQ1VJUVBReeeUVzJ8/HxMmTEBMTIzcJcnu5h3NevToIXM1rkMQBIR4qJBeZL7rtYOfeg3nD+zEkukj0XX0ZDRs1hoFOVfxV8IvmLl8I/o89jSOb/0JK+Y8gp4TZsDD1x9/bvwOuVdSMfGjr+t8VCPEQ2WTFx1xcXHo0qULoqOjbVAVEckht8SCozkGHL9uQImldMRFAeBO7+OYRSC9yIyMInPZdWqlgA4NNOgUpEGAmueeuSqGGSIbsJ49M3PmTJ49A6BVq1YQBAFJSUkMMzYW6qkq98v6dvwahuKf32zFti/fx7HNa1FSpINvw1C07tkfbhoPePj4YdbXv2Lzf97BvjXLSg/NbBWDKQtXlTs0sy4oBKCxl1ut28nJycGvv/6KTz75xAZVEVFdEiUJKQVGHMk24JLOBAHAzRPHqro/yM3XlVgkHL6mx6FrekT6uKFzsAYtfN2h4GiNSxEkTjIksomdO3eiX79+WLZsGf7xj3/IXY7sIiMjMX78eHz44Ydyl+JSTt0wYENqodxl2NyICB/EBKpr1cbnn3+OZ599FhkZGQgODrZRZURkb2mFJmxK1SHPKFYIMbZibdffXYFhET4I9679GyjkGOr328dENnTz2TPXrl2TuxzZcRMA+wjxdM0BdVvcV1xcHB544AEGGSInYRIlJKQXIj45H/nG0jEVe73Dbm033ygiPjkfCemFMIl8P98VMMwQ2dBHH30EhULBs2dQGma4PbPtBaqVUCtda4qEWikgQF27X0dJSUk4fPgwF/4TOYm0QhOWncnFkWwDAPuFmFtZ+zmSbcCyM7lIKzTVUc9kLwwzRDZkPXtm1apVSEhIkLscWWm1WqSkpMBk4i8KWxKE0gWtrhJnBAAdG2hqvfh/5cqV8Pf3x/Dhw21TGBHZTWK2HvHJ+SgwinUWYm4lASj4e5QmMZtHKzgzhhkiG+PZM6WioqJgNpuRkpIidykup1OQRrYXALYmAegYVPmBnFUliiJWrVqFcePGQXObwz2JSH6SJGFvVjES0otKP5e7nr8/JqQXYW9WMc+qcVIMM0Q2JggCvvzyS1y+fBnvvfee3OXIxro9M6ea2V6AWolIHzenH50RADTzcav1lqm7d+/G5cuXMWXKFNsURkR2se+qHnsyi+Uuo1J7Moux72r9fQPSmTHMENmBVqvFyy+/jA8//BCnT5+WuxxZhISEwNfXl5sA2EnnYOcfnZEAdA72qHU7cXFxaN68OXr27Fn7oojILhKvOW6QsdqTWcwpZ06IYYbITl566SU0a9YMM2fOhChWdYd81yEIAjcBsKMWvu7wd1c47eiMgNItUpv71m571OLiYvz444+YPHkyT/omclBphSYkXCmSu4wqSUgv4qYAToZhhshONBoNFi1ahD/++ANff/213OXIgmHGfhSCgGERPk47OiMBGB7hU+vD637++WfodDruYkbkoEyihI2pOqd540UAsDFVx22bnQjDDJEd9evXD1OnTq23Z89ERUUhKSmJiyrtJNzbDbHBzrezmQCgS7AGYTY4tC4uLg69evVCixYtal8YEdncrowiWXctqy7rLme7M5xjJIkYZojsbsGCBfX27BmtVou8vDxkZ2fLXYrL6tPYC75ONN1MAODrrsB9jb1q3VZWVha2bdvGURkiB5VWaEJitsFpgoyVBOBwtoHTzZwEwwyRnQUFBWHBggX18uwZ7mhmf24KAcOdaLqZdXqZm6L28Wv16tVQqVQYN25c7QsjIpsSJQmbnGh62a0EAJtSdRA5s8DhMcwQ1YGpU6eiT58+mDVrFgwGg9zl1JkWLVpAqVQyzNhZuLcbBobVfqSjLgwM80K4DaaXAaVTzEaMGIGAgACbtEdEtpNSYESeE00vu5UEIM8o4kIBR2ccHcMMUR0QBAGLFi2qd2fPqNVqNG/enGGmDsQGe6B3qKfcZdxR71BPxNpgK2YAOHHiBI4fP84pZkQO6ki2wWlHZawEAEe4VbPDY5ghqiPWs2c++OADnDlzRu5y6ox1EwCyv56NHDfQ3BfqiZ6NbBNkAGDlypUICgrCkCFDbNYmEdlGbokFl3Qmpx2VsZIAXNSZkFtikbsUugOGGaI6VB/PntFqtTw4s44IgoBeIZ5lU87kflfU2v/AMC/0DPG02TkwFosF8fHxeOSRR+Du7m6TNonIdo7mOP+ojJUA4FhO/Zke7owYZojqkPXsmT179mDFihVyl1MntFotLl68WK/WCsktNtgDE1v5wdddAci0eNW6a9nEVn42m1pm9fvvvyMzMxNTpkyxabtEVHuSJOH4defbwex2JADHrht4xIADY5ghqmPWs2fmzp1bL86e0Wq1kCQJycnJcpdSr4R7u+GhYBGJa1dAkqQ6e5dUEkVIkohW7iWYHh1gs8X+N4uLi4NWq0VsbKzN2yai2rlRYkGJxbVe+JdYJOSW1I/ZFM6IYYZIBtazZ+bOnSt3KXYXFRUFgNszy+H1V1/G71+8h+ENAT/30h/39go11nb91Eqsf2UGFj/3OFR26Eyn02HdunWYPHmyzaatEZHtZBWb5S7BLlz1vlwBwwyRDKxnz6xcuRK///673OXYVVBQEBo0aMB1M3Xs4MGDWLZsGebPn492YcF4IiYAY5r7ItKndKTEVjHA2k6kjxvGNPfFk20C8ebTM7Ft2zasXr3aRr38v59++gnFxcWYNGmSzdsmoporKioCUPqiX+4Xl0Z9sU3bUwhAlp5hxlEJEicBEslCkiT069cPV65cwcmTJ6HRaOQuyW7uvfdeREZGYtWqVXKXUi9YLBZ069YNoiji8OHDUCqV5b6eW2LBsRwDjl03lE0HUQiAWIXfBjdfp1YK6NhAg45BGgSoy/cxYcIEJCQk4MyZMwgKCrLJfQHAgAEDIEkStm/fbrM2iah63nrrLbz99ts4deoU5s2bh82bNyMyMhJHjx7FrI8W45flX+DaxXNwU2vQqntfDH3mLfiHNCl7fs7lFGz5z7tIPX4IBl0BPP0DEdmxGx569WNofHzLrju66Qf8Eb/ojm0tmTESxXk3MPbtz7Hx49dw5cxxdHloMq6nXcS1i+fwvxsSK9T/xdShEM0mPBWfUOW+wrxU6CZk46WXXsLevXuRl5eHoKAg3HvvvVi8eDH8/Pzs8VdNVaCSuwCi+sp69kz79u3x3nvv4Z133pG7JLvRarU4duyY3GXUG0uXLsWRI0ewb9++CkEGAALUSvRr4oW+jT2RWyIiq9iMLL0ZGUUmZOnNMFcyNVylAEI8VGjs5YYQDxVCPFUIUCtuO9Vr4cKFiI6Oxty5c2222UVaWhp27NiBr776yibtEVHtjB07Fq1atcJ7770HSZIwb948LH7jDbS7fyS6PDQJRbnXsX/NMiyZPgJzvt0ODx8/mE1GLJ89HhZjCXqOnw7voIYouJaFpD3boNfll4WZHcs+wW9ffnDHtqyK82/g6zmPoP3gUej0wFh4NwhGk+gO+OGN2Ug7dRThbTqVXZubkYa0k4kY+sxbZY9Vpa/0gmK8MW4wSkpKMGfOHISEhODKlSvYuHEj8vLyGGZkxDBDJCPr2TPvv/8+JkyYgOjoaLlLsgutVos1a9aULkTnOge7ysnJwSuvvILHHnsMPXr0uOO1giAgUKNEoEaJGKgBlI4YihJgliRYRECpAFSCAIWAav2/a9SoERYsWIB//OMfmDRpEgYOHFir+wKA+Ph4aDQaPPzww7Vui4hqr0OHDmXTSVNTU9GiRQvc/8+X0e8fz5Zd06b/MHz2aH8c+H45+v3jWVy7cBa5V1Lx6L++QruBI8quG/DE/68hzc1IQ8Lif921LStdzjWMemUBuo2ZWvaYoVAHlbsaJ7etLxdmTv72MwRBQPv7R1arr4zzZ3Hx4kX88MMPGDNmTNl1b7zxRq3+Dqn23+fA1wAAIABJREFU5J7WSFTvvfzyy4iMjHTps2eioqJQVFSEK1euyF2Ky3vllVcgSRI++OCDGj1fEAQoFQLUSgU83RRQKxVQKoQahdDHHnsMffv2xcyZM1FcXLs57JIkIS4uDg899BB8fX3v/gQisrsnn3yy7L9/+ukniKKIdvePRFHu9bI/Pg0aIii8OS4k7gUAaLxLv3+T9++47dqWU9s3QapCW1YqdzU6j5xQ7jGNtw9a9xqAE7/9XG5b5RPb1iO8XSz8Q8Oq1Ze17q1bt9b65xnZFkdmiGRmPXtmwIABWLFiBR5//HG5S7I5rVYLADh79izCwsJkrsZ1HTp0CMuWLcNnn32Ghg0byl0OBEHA4sWL0b59e7zzzjs1DlgA8Oeff+LMmTP45JNPbFghEdVGs2bNyv47OTkZkiTh41HdKr1WoSrdfCSwSQTunTQLf6z6Esc2r0Vkx26I7jMEnR4YWzbFLCftQpXasvJtGAqVW8UDdNsPGoXTO37F5ROHEdGhK66nXcSVM8cxfO68smuq2ldgkwjMeeZZfLbw34iPj0fv3r0xYsQITJo0iVPMZMYwQ+QA+vfvjylTpmDu3LkYPny4Q7wQtaVmzZrBzc0NSUlJGDBggNzluCSLxYLZs2ejY8eO5d4tlVvr1q3x+uuv480338SECRPQoUOHGrUTFxeHkJAQm0xXIyLb8PD4/wNxRVGEIAiY9tkaKCpZq+fu4VX238OeewedH3wEp3dtRvL+ndjw0SvY+fWn+Oc3W+DXqDGkarQFAG7qyjfQib5vENw0njix7WdEdOhaOsVMoUC7v6eYAahWXx8tWIAZjz+Gn3/+Gdu2bcPTTz+N999/HwcOHOAbdTJimCFyEAsWLMDGjRsxd+5cxMXFyV2OTalUKrRq1YpnzdjRsmXLkJiYeNtF/3J64YUXsGbNGsyYMQP79++vdn0mkwnffvstJk+eDJWKv7aIHFGLFi0gSRICmkQgOKLFXa8PaRWDkFYx6D/9eaQeP4RFjw3DwR9XYNDsV9AgLLJabd2Ou4cXtL3vx18Jv2DY8+/ixLb1iOzUHb7BIWXXVKcvlSCgXbt2aNeuHV577TXs27cPvXr1wqJFizBv3rw7Ppfsh2tmiBxEcHCwS589o9VqGWbsxLrof9q0aXdd9C8Hd3d3LF26FImJifj888+r/fytW7ciOzsbU6ZMsUN1RGQLo0ePhlKpxI4lH+HWUz8kSUJR3g0ApQvzLebyZ7aEtIyBoFDAbDQCKF18r1Aq8ftd2qqK9oNGoSA7C4nrViHz3Cm0HzSq3Ner2pe5WAfRUr7udu3aQaFQoKSkpMr1kO3xLS4iBzJt2rT/Y+++w5q63gCOfxP2ElBRZIh1Edy496izatXWVm0dHVbAWffErXXviaMqjmq19WfVatVq3Vr3xD2poih7B3J/f9BQVETAhJvA+TwPT4Hce+4bG+C+Oed9D2vXrqV3795cvnw5T+094+npyfr16+UOI08aPXo0KSkpzJgxQ+5Q3qp27dr07duXMWPG0KFDBzw8PLJ8bmBgIJUqVcrxEjVBEPSvVKlSTJkyhVGjRhH25BHlGrfGwsaWsH8ece3Qbmp+2oOGPfpy98xRfpsxkorN2lHYoxSalGQu7N6KUmlChaZtASjk/gHN+4zij0VTiMhkrKzwrN8MCxtbfp8/HqXJf9fQyuq1Xlw6wQedR/D5559TtmxZkpOTWb9+PSYmJqLDosxEMiMIBiR9wfS0adOYOHGi3CHpjEqlIjg4mJiYGGxtbeUOJ884c+YMq1atYuHChQZfazV16lS2b99O37592blzZ5Y6pEVERPDbb7+JJRyCYARGjhxJQiF31i1dxJ8rZgFgX9SVMrUb49WoFQDFypanbJ0mBB35g6jQEMwsrShWpjxfL9pM8UrV08Zq/M33FC5eiuMbl791rKwws7DEq2ErLu7ZRulajbAt6PTGMe+6llIBNbyrEN2yJTt37uSff/7B2tqaypUrs2fPHmrXrp3jfzPh/Smk1+fUBEGQ3fjx45k2bRqXL19O6wRm7P7++29q1arFuXPnqFq1qtzh5AkpKSnUrl2b5ORkzpw5YxT1JL/99hvt27dn8+bNdO7c+Z3Hr1y5Ej8/Px4/foyLi0suRCgIwvu4FpbAzocxcoehc+087ChX0ELuMIQMiJoZQTBA6feeySvvN3h6egKIuhkdWr16NWfPnmXJkiVGkcgAtGvXjo4dOzJgwADCw8PfeXxgYCDNmzcXiYwgGAlna+P4XZRdefV55QUimREEA6Tde+bIkSOsXbtW7nB0wt7enmLFiolkRkdevnzJqFGj+Prrr6lbt67c4WTLokWLSExMZNiwYZked+/ePY4dO0b37t1zKTJBEN5XQQsTLEyyv8muIbMwUeBoIW6ZDZX4PyMIBir93jOhoaFyh6MTnp6e3Lx5U+4w8gRjKPp/m2LFijFjxgxWr17NX3/99dbjNmzYgK2tLR06dHjrMYIgGBaFQkHlQpbklXRGAVQpZJmlGj9BHiKZEQQDNnv2bACGDh0qcyS6Idoz68aZM2dYuXIlkydPNvii/7fp1asX9evXx9fXl4SEhDcelySJ9evX07FjR2xsbDIYQRAEQ+Vd2JK8sUAaJKBK4bzTWTQvEsmMIBgwJycnZs2aRWBgIAcPHpQ7nPemUqm4desWKSkpcoditDQaDX379qVSpUr07t1b7nByTKlUsmLFCh48eMDUqVPfePzUqVPcuXNH7C0jCEbI0cKEEnZmRj87owA+sDPD0cKwNiIWXiWSGUEwcN988w0NGzbEz88vw3ewjYlKpSIhIYFHjx7JHYrRWr16NWfOnDGqov+38fLyYvTo0UyfPp2rV6++8lhgYCDu7u40btxYnuAEQXgv1ZyMf3ZGAqo5WckdhvAOIpkRBAOnUChYvnw5Dx48YNq0aXKH815ER7P3oy36/+qrr6hXr57c4ejEyJEjKVOmDL169UKj0QCQmJjIli1b6Nq1K0ql+DMlCMaoVAFzHMyVRjs7owAczJWULGAmdyjCO4i/EoJgBLy8vBg5ciTTpk0z6kSgePHiWFpaiiYAOTRmzBiSk5ONsuj/bSwsLFixYgWnTp1i2bJlAOzevZvw8HDRxUwQjJgCMAk6jkbSyB1KjkhAWw87lKLw3+CJZEYQjMTo0aPx8PAw6r1nlEolnp6eRp2QyeXs2bOsWLGCyZMnU7RoUbnD0SltI4BRo0YRHBxMYGAg1atXp1y5cnKHJghCDty6dYtmzZrh83k7Xpw7DEa24EwB1HCyxM1WzMoYA5HMCIKRyCt7z4iOZtmnLfqvWLGiURf9Z2b69OnY2trSq1cvfv/9dzErIwhGKDExkUmTJlGxYkXu37/P3r17md7zM+zNTYxmuZkCKGCupKGL6KJoLEQyIwhGpGnTpnTv3t2o954RyUz2/fjjj/z99995ouj/bRwcHFi0aBF79+5Fo9HQpUsXuUMSBCEbjhw5QpUqVZg8eTJDhgzh6tWrtGzZEjOlgrYedkYzN6NdXmamNJb0SxDJjCAYmTlz5gDGu/eMp6cnz549IyIiQu5QjEJYWBgjR46kR48e1K9fX+5w9OrTTz/FwcEBU1NTzM3N5Q5HEIQsePnyJT179qRRo0YULFiQCxcu8MMPP2BtbZ12jLutGc3cjGOmo5mbDe5ieZlREcmMIBiZ9HvPHDp0SO5wsk2lUgGIJgBZNGbMGNRqNTNnzpQ7FL27desWERERKBQKRo0aJXc4giBkQruxrUql4pdffiEgIICjR49SoUKFDI+v7mRFg2LWGT5mKBoUs6a6aMVsdEQyIwhGyJj3nilbtiwg2jNnxblz5wgICMiTRf8ZWb9+Pfb29kybNo3ly5dz7NgxuUMSBCED2gL/Hj160Lx5c27cuIGPj887W6nXLWq4CU3DYtbULSoSGWMkkhlBMELavWfu37/P9OnT5Q4nW2xsbChevLhIZt4hfdF/nz595A5H7zQaDRs2bKBTp07079+f2rVr4+PjQ2JiotyhCYLwr8TERCZPnkylSpXSCvw3bdqEs7Nzls5XKBTUc7ZOW3Imd1WK9vrN3Gyo62yNQrRhNkoimREEI2XMe8+IJgDvtmbNGk6fPs3ixYvzbNF/ekePHuXhw4f06NEDExMTVq5cye3bt40uWReEvEpb4D9p0iQGDx6cVuCfE9WdrOhaxp4CMm6qqe1a1rWMvVhaZuQUkrFuWCEIAgkJCVSsWBFXV1cOHTpkNO8qDRgwgAMHDnD9+nW5QzFIYWFhlC1bltatWxMYGCh3OLmiZ8+eHDp0iLt376a9jv39/Zk1axYXL17Ey8tL5ggFIX96+fIlw4cP58cff6Ru3boEBAS8tS4mu9QaicNPYjkbmoCC3NmNRnudGk6WNHSxEV3L8gAxMyMIRky798zhw4dZt26d3OFkmUql4s6dO6jVarlDMUj+/v75pugfID4+nq1bt9K9e/dXEnJ/f388PDzw8fFBozHOXcQFwVi9XuC/fPnyTAv8c8JMqaCZmy1dy9hjb556S6qv1EI7rv2/szFN3WxFIpNHiGRGEIxc+r1nXrx4IXc4WaJSqVCr1dy/f1/uUAzOuXPnWL58OZMmTcryOnRjt2PHDqKjo9/YKNPS0pIVK1Zw7NgxVq1aJVN0gpD/3L59m+bNm9OjRw+aNWvGjRs38PX1fWeBf06525rhU86Rz0oWoIRdaltkXaUZ2nFK2JnxWckC+JRzFK2X8xixzEwQ8oDnz5+jUqlo164da9eulTucd3ry5Amurq7s2LGDdu3ayR2OwdBoNNStW5e4uDjOnz+fL2plAFq3bk1kZCTHjx/P8PHvvvuObdu2ERQURLFixXI5OkHIPxITE5k5cyZTp07FxcWFpUuX0qpVq1yPIzwxhYsvErj4MoHElNTbVKUCNFm4Y01/nIWJgiqFLKlS2BJHCxM9RizISSQzgpBHrF69mu+++46DBw/SpEkTucPJlCRJFChQgLFjxzJ8+HC5wzEYP/74Iz179uTIkSM0aNBA7nByRUhICG5ubixevBg/P78MjwkLC8PLy4uGDRuydevWXI5QEPKHI0eO4Ofnx+3btxk6dChjx459ZeNLOUiSRHiihpC4ZELik3kSqyYkPpnkDFadmirB2coUFxsznK1McbY2xdFCaTS1pELOiWRGEPIIjUZD48aNefbsGZcuXcLS0lLukDJVo0YNKlWqxOrVq+UOxSCEhYXh6elJq1atWL9+vdzh5Jp58+YxcuRInj59SsGCBd963JYtW+jSpYuYzRMEHQsLC2P48OGsXr2aOnXqEBAQQMWKFeUO660kSUIjQbIkkaIBEyWYKhQoFYjEJZ8SNTOCkEcolUqj2ntGtGd+1dixY0lKSmLWrFlyh5KrAgMD+fjjjzNNZAA6depE69at6dOnD1FRUbkUnSDkXZIksWHDBlQqFdu2bWPZsmUcO3bMoBMZSE1YTJQKLEyUWJspsTBRYqJUiEQmHxPJjCDkIeXKlWPEiBFGsfeMSqUiKCgIMTkM58+fZ9myZUycODHfFP0DXLlyhYsXL75R+J8RhULB0qVLiYiIYMyYMbkQnSDkXdoC/+7du/Phhx8SFBSEn5+f3gr8BUGfxKtWyJckSSJZI5GQoiFOrSEhRUOyRsoTN9ajR4+mePHi+Pn5GfTzUalUhIeHG00HNn3RaDT07duX8uXL069fP7nDyVXr16+nUKFCfPTRR1k63sPDgylTprBkyRJOnTql5+gEIe9JSkpiypQpVKxYkbt37/L777+zefNm0VhDMGqiZkbI8yRJIiwxJbWAMC6Zp/8WEmZWQFjMOrV40NnalIIWJkY3fX3gwAGaN2/OmjVr+Prrr+UOJ0NXr16lYsWKHD16lPr168sdjmy0Rf+HDx+mYcOGcoeTa1JSUihevDiffPIJixcvztZ5tWvXJiEhgXPnzmFubq7HKAUh7zh69Ci+vr7cvn2bIUOGMG7cONkL/AVBF0QyI+RZ4YkpXHiRwKX0rR2BrGy9l/44CxMFlQtZ4m1krR27d+/Onj17uHHjBoULF5Y7nDckJCRgY2NDQEAA3333ndzhyCI8PJyyZcvSsmVLNmzYIHc4uWr//v20aNGC06dPU7NmzWyde+nSJapVq8akSZMYPXq0niIUhLwhfYF/7dq1WbFihcHXxQhCdohkRshTNJLE3agkzoUm8CBajQLQxQtcO04JOzOqOVlSqoA5SgOfrdHuPdO+fXvWrFkjdzgZKl26NB06dGD27NlyhyKLfv36ERgYyM2bN/PdMo/u3btz5swZgoKCcjTzOXLkSObPn8/ly5cpW7asHiIUBOMmSRKbNm1i0KBBJCUlMX36dHx8fERdjJDniFe0kGc8jlGz4no4v9yL5mG0GtBNIpN+nIfRan65F82K6+E8jlHraHT9KFKkCLNmzWLt2rX89ddfcoeTofzc0ezChQtpRf/5LZGJiYnh119/pXv37jlewjlu3DhcXV3x9fU16NowQZDDnTt3aNGiBd26dRMF/kKeJ17VgtFTayQOBMew8XYkkUmpi8P0dWujHTcyScPG25EcCI5BnZUtiWXyzTff0KBBA3x9fUlMTJQ7nDfk12RGW/Rfrly5fFf0D/Drr78SFxdHt27dcjyGtbU1AQEB/PXXXwY78ygIuS0pKYmpU6dSoUIF7ty5Iwr8hXxBJDOCUXsco2ZVUDjnQhMA/SUxr9Ne51xoAquCDHeWxtD3nvH09OT+/fsGmWjp07p16zh58iRLlizBzMxM7nByXWBgII0bN8bDw+O9xmnWrBk9evRg6NChPHv2TEfRCYJxOnr0KFWqVGH8+PEMHDiQa9euZblToCAYM5HMCEbrbGg8G29HEpWkybUk5nUSEPXvLM3Z0HiZosicdu+ZH374gZs3b8odzitUKhUajYY7d+7IHUquCQ8PZ8SIEXTt2jVfdS/TCg4O5uDBg1naWyYr5syZg4mJCQMHDtTJeIJgbMLCwujVqxcNGzbE3t6e8+fPM336dNGpTMg3RDIjGB1JkjgeEseB4NjUr+WO59//HgiO5XhInEGu3zfUvWdUKhVAvlpqNnbsWBISEpg1a5bcochi48aNWFhY8Nlnn+lkvMKFCzNv3jw2b97M77//rpMxBcEYSJLExo0bUalUbN26lWXLlnH8+HEqVaokd2iCkKtEMiMYnRPP4jn6NE7uMDJ09GkcJ54Z3gyNlZUVy5Yt46+//iIwMFDucNIULlyYggUL5ptk5uLFiyxbtowJEybkyzXskiQRGBhIhw4dKFCggM7G7dq1Ky1atKB3797ExMTobFxBMFTpC/ybNGkiCvyFfE286gWjcva54SYyWkefxhnkkrNmzZrRtWtXhgwZwosXL+QOBwCFQoFKpTK45W/6oC369/Lyon///nKHI4sLFy5w/fp1evToodNxFQoFy5YtIzQ0lHHjxul0bEEwJOkL/G/fvs3u3bvZsmVLvnxzRBC0RDIjGI3HMWoO/BMrdxhZciA41iCbAsydOxeNRsOwYcPkDiWNp6dnvpiZCQwM5MSJE/m26B9S/w2KFi1K8+bNdT52yZIlmTRpEgsWLODMmTM6H18Q5Hbs2DG8vb0ZP34833//PdeuXaN169ZyhyUIshPJjGAU1BqJXQ+jMextKv+jAHY9jDa4ts1FihRh5syZBrX3jLY9syHV8uhaREQEw4cP58svv6RRo0ZyhyMLtVrNTz/9xJdffompqalerjFw4EAqVapEr169UKsN780EQcgJbYF/gwYNsLOz4/z588yYMQMbGxu5QxMEgyCSGcEoHH4SK2vXsuzSdjk78sTwZpK+/fZb6tevbzB7z6hUKqKjo3n69KncoejN2LFjiY+Pz1NF/5IkkayRSEjREKfWkJCiIVkjvTUp3bdvH8+fP9f5ErP0TE1NWbVqFVeuXGHevHl6u44g5AZJkti0aRNeXl78/PPPLF26VBT4C0IGFFJefjtUyBMex6jZeDtS7jByrGsZe9xtDWtZ0fXr16lSpQpjxoxh/PjxssZy69YtPD09+fPPP/nwww9ljUUfLl68SLVq1Zg1axaDBw+WO5wckSSJsMQUQuKSCYlL5mlcMiHxySRr3jzWVAnOVqYUszbF+d+PghYmdOnShaCgIC5duoRCod851iFDhrBs2TKuXLlCqVKl9HotQdCHu3fv0rt3b/bv30+nTp2YP3++qIsRhLcQyYxg0DSSxIrr4UQa0axMegrA3lyJTzlHlHq+gcsuf39/Zs2axeXLl/H09JQtDrVajbW1NQsXLqR3796yxaEPGo2GBg0aEBkZyYULF4yuViY8MYULLxK49DKBxJTUn0AlkEEO84b0x5kr4dD65TQoUZjh/fz0FO1/YmJiqFChAmXKlGHfvn16T54EQVeSkpKYPXs2kydPpmjRoixdulTUxQjCO4hkRjBotyMT+eVetNxhvLfPShagtL253GG8Ij4+nooVK+Lu7s7BgwdlveHz8vKiRYsWLFiwQLYY9GHdunV8/fXXHDp0iMaNG8sdTpZoJIm7UUmcC03gQbQaBbrZy0mTnIzS1JQSdmZUc7KkVAFzvSb4e/bsoXXr1gQGBupsg05B0Kdjx47h6+vLzZs3GTx4MOPHjxd1MYKQBSKZEQza5juRPIxWG+WsjJYCKGFnRufS9nKH8ob9+/fTokUL1q5dy1dffSVbHJ988glxcXH88ccfssWgaxEREXh6etK0aVM2bdokdzhZ8jhGze6H0UQkaXSWxLxOO66DuZI2HnZ6XYL55Zdfsm/fPoKCgnByctLbdQThfYSHhzNixAhWrlxJrVq1CAgIoHLlynKHJQhGQzQAEAxWeGIKD4w8kYHUG7f70WrCE1PkDuUNzZs3N4i9Z7QdzfKScePGERcXx+zZs+UO5Z3UGokDwTFsvB1JZFLq4jB9/dxpx41M0rDxdiQHgmP01vVv/vz5aDQahgwZopfxBeF9aAv8VSoVW7ZsYcmSJRw/flwkMoKQTSKZEQzWhRcJRtOK+V0UwMUXCXKHkSHt3jPDhw+XLQaVSsWjR4+IjTW87m85cenSJZYsWcKECRNwcXGRO5xMPY5RsyoonHOhqa/P3HrzQHudc6EJrAoK18u+TEWKFGHOnDmsX7+effv26Xx8Qcipu3fv0rJlS7p27UqjRo0ICgqiT58+mJiYyB2aIBgdkcwIBkmSJC69TGD/8pmMqupEbPhLvV9zRpuqbB3fTy9jS8DFlwkGuZeKdu+ZNWvWyLb3jLYBwe3bt2W5vi5JkkTfvn1RqVQMGDBA7nAydTY0no23I2Vte65tY77xdiRnQ+N1Pv7XX39NkyZN8PPzIy4uTufjC0J2JCUlMW3aNCpUqMCtW7fYtWsXP//8s8G/6SEIhkwkM4JBCktMSeuelFckpkiEJ2alD1Tu0+494+fnJ8veM9pkJi8sNVu/fj3Hjx9n8eLFBtu9TJIkjofEcSA4dSZM7p807fUPBMdyPCROp0m/QqEgICCAJ0+eMGHCBJ2NKwjZdfz4capWrcrYsWPp378/165do02bNnKHJQhGTyQzgkEKiUuWOwS9MNTnpVQqCQgI4N69e8yYMSPXr+/o6EjRokWNPpmJiIhg2LBhdOnShSZNmsgdzludeBbP0aeGOUtx9GkcJ57pdoamTJkyjB8/nrlz53LhwgWdji0I7xIeHo6vry/169fHxsaGc+fOMXPmTNGpTBB0RCQzgkEKiUvOlRenJEmoE3S/tCUjSgWExBtmMgNQrlw5hg8fztSpU7l161auXz8vNAEYP368wRf9n31uuImM1tGncTpfcjZ06FDKlStHr169SEkxvGYcQt4jSRI//fQTKpWKzZs3s2TJEk6cOCEK/AVBx0QyIxikp3HJr2zMFxsRxqYRPZnQ4AMmNSnLzlmjUSf+V1B/dscmVvp8wpSmXvjXcmVex3qc2rrmjXFntKnK2gFfcuvEQRZ3bca4Ou6c/mXdW+OIj45k56wxTP+oMv61XJnVrgaH1y5Eo/m345MkMaNNVQIHvbmPhToxgQkNS7J9SmonJY0ET2J1X+SsS2PGjMHd3R0/P79cr+9RqVTcvHkzV6+pS5cuXWLx4sWMHz8eV1dXucPJ0OMYNQf+MY4mCweCY3XaFMDMzIyVK1dy/vx5Fi5cqLNxBSEjd+/epVWrVnz55ZeiwF8Q9EwkM4LBkSTpjRmMn0Z8R3JiIi37+eNZrxknflqZliQAnN62FsdibjT+9ntaD5qIfVEXdkwbzsktq98Y/8XDO2we7Uvp2o1oO3QqLp4VM4wjKT6OFd+15+KebXi36cTHw37Ao0pN/lg0hd1zxgKp6/G9W3/GreN/EhcZ/sr5N478QWJMNFVaf5b2vZD4ZINsAqBlZWXFsmXLOHToEOvXr8/Va3t6enLz5s20RNGYSJJEv3798PT05Pvvv5c7nAypNRK7HkYbTYdABbDrYbRO2zbXqlWLfv364e/vz4MHD3Q2riBopS/wv3nzpijwF4RcYCp3AILwuhQJkl+7n3V0LU6Peak313U698TSxpZTW9fQoHsfipUtj8/KHZhZWqUdX7fLd/zYtxPHNi6nTueer4z18vF9vlm8hbJ1P8w0jmMblxEWfJ/+Px2kcPFSANT67CsKODlzNHAJDbr3wcHZFe+2nTm0eh5X9u+g1mdfp51/4fdtOLoUp4R37bTvJWtSZ2hMDPiOsnnz5nz55ZcMHjyY1q1bU7hw4Vy5rkqlIj4+nsePH+Ph4ZEr19SVDRs2cOzYMf7880+DLfo//CRW1q5l2aXtcnbkSSxN3Wx1Nu7UqVPZvn07ffr0Yffu3SgUBvzDKBiV48eP4+vry40bNxg0aBATJkwQdTGCkAvEzIxgcJIzmLmo3enbV76u06UXADePHwB4JZFJiI4iNvwlJavVJSz4AQnRUa+c6+jq8c5EBuDK/p2U8K6NlZ0DseHJ2CksAAAgAElEQVQv0z5K12yEJiWF++dPAuDkUQr3CtW4+Pu2tHPjIsO5dfxPqnzU8Y2bpYyen6GZO3cuKSkpubr3jEqlAoyvo1lkZCTDhg2jc+fOfPjhu19Xcngco+ZsaILRJDJaEnAmNEGny83s7OxYunQpe/bsYcuWLTobV8i/Xi/wP3v2LLNmzRKJjCDkEjEzIxicjFYZFS5e8pWvC7mVQKFUEv7kMQAPLp7mwPKZPLp8FnXCq8XNCTFRWNoVSPu6oEvxLMXx8vE9Qm5fY0pTVYaPx4a9SPvcu20nds4YSfiTxzi6uHNl/2+kJKvxbtPpjfNu3LqNc0EHHB0dMTc3z1Isua1o0aLMnDkTHx8fevToQePGjfV+zeLFi2NpacmNGzdo2bKl3q+nK+PHjycmJoY5c+bIHUqGNJLE7n+XlxlbMgOpy812P4zGp5wjSh3Nonz88cd8/vnnfP/997Ro0YKCBQvqZFwhf5Ekic2bNzNo0CDi4uJYvHgxfn5+oi5GEHKZSGYEg6PMynxhupual4/vs9qvI04lStNm8CTsnV0wNTPnxrEDHN+4HEl6NTsytbDMUhySRkPp2o1p9FXGG2lql54BVG75CbvnjOXinm006TmIi79vxbVcFZxKlH7jvFo1qpMYGwOk1qg4Ojri6OiIg4NDhp+/7TEbGxu9LpHp2bMn69atw8/Pj0uXLmFhYaG3awGYmJhQpkwZo2oCcPnyZRYtWsT06dMNtuj/blQSEUnGV4ekJQERSRruRakpba+75H/BggV4eXkxbNgwVq9+s7ZOEDJz7949+vTpwx9//MFnn33GggULRF2MIMhEJDOCwTHN4Ab9xaN7FHT9r47i5eP7SBoNji7uBB35g+SkRHrM24BDMbe0Y+6eOfZecRR0K0FSXCylazV657HW9o6o6jfn4p5fqPLRZzy89Ddthk7J8Nh9e/cQGR5O+L8fERERr3z+4MGDV74fG5tx9ylTU9NsJ0Daz+3t7d/57qF275kqVaowY8YMxo0b9+5/tPdkTO2ZJUmib9++lC1b1mCL/gHOhSYY7ayMlgI4Fxqv02SmWLFizJo1Cx8fH7p162bQ+wIJhkOtVjNnzhwmTpxIkSJF2LlzJ23btpU7LEHI10QyIxgcEwWYKl9tAnDq5x8pW+e/m42Tm1cC4FmvaVrtSvouYQnRUZz77af3iqNi8/b8GTCTWycOvlFjEx8dibmVDSam//0Iebf5nA1Dv2bPggkoTEyo3PKTN8Y0VUKDevWyNaOSlJRERETEG0lPeAYJUWhoKLdv3077fmRkZIbd0xQKBQUKFHhn0uPo6EjHjh2ZMmUKNWrUoGrVqnpdHqdSqVi1apVexta1jRs3cuzYMQ4cOGCwywXDE1N4EG3Y7cCzQgLuR6sJT0zB0UJ3S3h69uzJ+vXr8fHx4fLly1hZWb37JCHfOnHiBL6+vgQFBYkCf0EwIEaVzEiSlNrpSpLQaFKXI5kqFJgoEB1p8hCFQoGzlSnBsf+1Zw7/5xGBA7tRpu6HPLp8lou/b6XyRx0pVrYCpuaWmJiZEziwGzU79iApPpa/f12PbcHCRL94luM4GvboS9Dhvawb2JVqH3fB1asySfFxhNy5ztUDOxm+6zw2joXSjvds0Bxrh4Jc2f8bZes1xbag0xtjOluZZvu1am5uTpEiRShSpEi2n4NGoyEqKuqts0Cvf/7PP/+88rVa/d+NcOvWrdM+19fyOJVKxdOnT4mKiqJAgQIZHmMIIiMjGTp0KJ06daJp06Zyh/NWF14Y/6yMlgK4+CKBJq66u3lUKpWsWLGCypUrM2XKFKZOnaqzsYW8Izw8nFGjRhEQEECNGjU4e/YsVapUkTssQRD+ZbDJjCRJhCWmEBKXTEhcMk/jkgmJT36jZS+kvtvtbGVKMWtTnP/9KGhhIhIcI1bM2pQn6ZKZL6avZP/y6fyxaDJKE1PqdO7JRwMnAOBUojRdZ/7IvqXT+H3+BOwKFaHWZ19j41iIXybmfPmPuZU1Pqt28Nfq+Vw58Bvnd/2MpY0dhT1K0sxvBJa2r95sm5qZU6l5e05tXZNh4b9SAS42udu2V6lU4uDggIODAx988EG2zpUkibi4OCIiIti9eze+vr4MHDgQb2/vDBMi7fI47fezujwufaKTmJgIwIwZM/D29n7juAIFChhEce2ECRMMuugfUv//XXqZ8w5mM9pUpWgpFV8v3KTTuHJKAi6+TKCxi7VOf7erVCrGjBnD5MmT6dKlCxUrZrzvlJD/SJLEli1bGDhwIHFxcSxatIjevXsbxO8gQRD+o5AMbAe/8MQULrxI4NLLBBJTUkNTAlkpX01/nIWJgsqFLPEubKnTZQlC7rgWlsDOhzFyh5Ftu2b7c3bHRkbvu4a5lfUbj7fzsKNcQf0W0utL165d2bdvHzdu3KBQoULvPF67PC6zGaGMvn7w4AEKheK9l8dl9LUuloNduXIFb29vfvjhh1xtXZ1dLxOSWRkUkePz5UxmDq2eR5GSnpRv0vqNx3y8HCloqdvf6UlJSXh7e2NnZ8fx48fFzarwSoF/x44dWbBggcE2+RCE/M4gZmY0ksTdqCTOhSbwIFr9xrKIrPbhSX9cYorEmefx/P08nhJ2ZlRzsqRUAXOdtfYU9MvZ2iBemtmiTkzg4u/bqPBh2wwTGTDO56U1d+5cVCoVw4cPz1L3p5wuj3N3d6d79+4MHz78rUnP659rl8dpP5KTkzMc+23L47KSHGnXxvft25cyZcowcODAbD2v3BYSl/G/gTH468f5VGj2cYbJTEhcss6TGXNzc1asWEH9+vVZtmwZ/fpl3MFQyPteL/D/7bff+Pjjj+UOSxCETMh+Z/U4Rs3uh9FEJGnQphm6mirSjvMwWs2DaDUO5kraeNjhbmuYO3QL/yloYYKFiSJtds6QxYSFcuf0Ea4e2ElcZBh1v/TJ8DgLEwWOFsa7T+3re880avTuLm85oVKpuHnz5nsvj8vqjND9+/e5cOFC2vfj4uIyHNfU1BQrKyuio6NRqVS0a9cuy7NDciyPC4lLzvKstrFQKiAkPply6H52s169evTu3ZtRo0bRvn173N3ddX4NwbClL/AfOHAgEyZMwNbWVu6wBEF4B9mWmak1EoefxHI2F9uGaq9T3cmSRi42mCnFLI0hO/hPLGeexxt88fK9s8dZ6dMB24JONPluMHW7fPfGMQqgZhErnRYvy0Gj0dCwYUNevnzJxYsX9bL3TP/+/Tl48CDXrl3T+dhZkX55XPqk58mTJ0yYMAEXFxcaNGiQYXL0Pt3jMnssJ8vjNtyKIDg2mae3rrGwS2O6z1tPuUatAPjn+iUWd2uGi6oi/TcdTDtnTb/OxEVF0Dfwj7RlZo2/GcDuueMIuX0dOydnmvkOo2rbzq9cKz46kgPLZ3Lt4C5iwl5gX9SFmp92p0GPfijTbRx1JHAJ1w7uJvThHdQJ8RT5oCyNv/2eis3apR0zquqbjTOqftyZzycuBsDNxpRuZR2y/e+RFZGRkZQrV45q1aqxY8cOUXeZT0RERDBq1CiWL19OjRo1CAgIwNvbW+6wBEHIIllmZh7HqNn1MJqofzdyy62bVe11zoUmcDsyibZilsageRe25O/n8XKH8U4lq9dj2vnQTI+RgCqFs7ZZpyFLv/fMzJkzGTt2rM6voVKpWLFiBcnJyZia5v6vqLctjxs8eDCSJPHnn3/i5uaW4bkpKSlERUVluUYoJ8vjsrIkzsHBkacpzoCCoqW9sLSz58H5k2nJzP0LJ1EolTy9dY2EmGgsbe3QaDQ8vHyGmp/0SLtuWPB9Ng7/lurtu1K1bWfO7tjEtvH9cfWqTNFSKgCS4uNY8V17okKfUvPTHjg4u/Hw8t/8sWgKUaHP+HjYfx3CTvy0Aq+GLanyUUdS1Gou7dvOpuE9+WrBRlQNWgDQafJSfp08CLfy3tT8NDWWgm4l0sYIiU9GkiS9JBr29vYsXryYTz/9lF9++YXPPvtM59cQDIckSfz88898//33osBfEIxYrt8pnA2N50BwrKztQiUgKknDxtuRNHOzobqT2FvAEDlamFDCzoyH0WqDn53JjAIoYWeWZxpRlC9fnuHDhzN16lQ6d+5M2bJldTq+p6cnSUlJPHjwgNKlS+t07Jy6cuUKCxcuZOrUqW9NZABMTEzSEov3WR6XlSVy9+/f5/z582mPpV8eZ2JmzpTT/wCpCahH5Zrcv3Aq7fEHF05RrvFHBB3ey8NLf+NZrykht66SGBNNiaq1044LfXAHn1W/8UHVOgBUbNGeGR9V4dxvP9F60EQAjm1cRljwffr/dJDCxUsBUOuzryjg5MzRwCU06N4HB+fUwukh209hZvnf79s6nXuyqGtTjm1YnpbMeLf5nP/9MJSCbh54t/n8jX+nZA1opNT9qPThk08+oUOHDvTv359mzZrh4KCfWSBBXvfv36dPnz7s3btXFPgLgpHLtWRGkiROPIvn6NPUP7hy35xqr38gOJbEFIm6Ra3EkgIDVM3J0ug3/ZOAanksYfb392fz5s307t2bAwcO6LxVLsCNGzcMIpmRJIl+/fpRunRpBg0apLfrKBQKbGxssLGxyTRhepv0y+NCwyM5lu6xD6rWZt/SaSTFx2JuZcPDi3/Tot9oIp4G8+DCqdTNZy+cQqFQUKJKrbTzipT0TEtkAGwdC1PYozRhwQ/Tvndl/05KeNfGys6B2PCXad8vXbMRh9cs5P75k3i3Tp3hSJ/IxEdFoElJoYR3bS7t/TVbzzVZkjBBf7+vFy9ejJeXFyNGjCAgIEBv1xFyn1qtZu7cuUycOBEnJydR4C8IeUCuJTPpExlDo42rnnPGHagE+ZQqYI6DuZLIJI3sCXBOaFJSCH/yiMETpjBzxoy0G3VjZ2VlxbJly2jZsiUbNmyge/fuOhvb1dUVGxsbbty4Qdu2bXU2bk5t2rSJI0eOsH//fp20dtaX9Mvj3NUajl0NS3ushHdtNMnJPLp8FvuirsSEhVLCuw7P7t7kwb8zNg8unKJISU+s7R3TztPOqKRnVcCe+Oj/Wj6/fHyPkNvXmNI049d2bNiLtM+Djuzj0Kq5PL11leSkxLTvZzcZTtEAepzodHV1Zfr06fTt25du3brRoEED/V1MyDUnT57Ex8eH69evM2jQIFHgLwh5RK4kM2efG24io3X0aRwWJgqx5MzAKBUK2njYsfF2pNyh5IjSxIQK0ku2Xb5MhQoV8PPzY/z48Tg5vVnkbGxatGjBF198weDBg2ndunWW9p7JCoVCgUql4saNGzoZ731ERUUxdOhQPv/8c5o1ayZ3OFmmfK1pnmu5KphaWHL//EkcnF2xLeiEk0cpPvCuzemta0hOSuTBhVOUb9LmlfMUyowzhvRNDiSNhtK1G9Poq4zbGWuXnt0/f5L1g7pRomod2o+cgZ1TUUxMzTj7209c2vNLtp6fSS40BfTz82Pjxo34+PjordmFkDu0Bf4BAQFUr16ds2fPigJ/QchD9P4n4XGMmgP/ZLwTuKE5EBzL4xjjXtKUF7nbmlHdyVKPi0r0QwHUcLLkq/atCAoKYtq0aWzYsIHSpUszc+ZMEhIS5A7xvc2dO5fk5GSdbx7p6enJzZs3dTpmTkyYMIGoqCjmzJkjdyjZYvraTIepmTnu5b15cOEU9y+cooR36lKyEt61SU5K5OLv24h5GUqJdEvKsqqgWwmS4mIpXatRhh8OxVKXzF39cxemFpZ8u+Rnqnfoime9ZpSu9Zb23u+YqXn9+emDUqlkxYoV3L17l2nTpun9eoLuSZLEli1b8PLyYuPGjSxYsICTJ0+KREYQ8hi9JjNqjcSuh9FGcxOqAHY9jEatMcYFTXlbIxcbCpgrjeq1VMBcSUOX1FbMlpaWDBs2jDt37tCjRw/GjBmDl5cXmzdvzrCVr7FwdnZmxowZ/Pjjjxw+fFhn4xrCzMzVq1dZuHAhY8eONbo9R0wUYPrab/cS3rV5fPU8984ep4R3apG/jWMhinxQlsPrFgHwgXft14d6p4rN2/Po8hlunTj4xmPx0ZGk/NuhTWliAijQpKSkPR7+5BHXD+154zxzK2sSoqMyvJ6pMnW/mdxQvnx5Ro4cyQ8//MD169dz56KCTty/f5/WrVvTpUsX6taty/Xr1+nfv7/oVCYIeZBek5nDT2KJMqJaB22XsyNPjGMmKT8xUypo62FnVK+lth52b+xlVLhwYRYtWsTVq1epVKkSX3zxBXXq1OHEiRPyBKoD3333HXXr1sXPz4/ExMR3n5AFKpWKFy9e8OLFi3cfrAfpi/4HDx4sSwzvQ6FQ4Gz16iriEt61USfEExnyT1oyA1Ciah1ePLyLo0tx7Iu6ZPtaDXv0xUVViXUDu/Lr5EGc3raWo+uXsnV8P6a3qkRCdOoSUVX95qgT4ljTrzOnt63lzxWzWdqjFYXc3+z65upVmTunD3N0wzIu/bGdR1fOpT3mbGWaq81aRo8eTcmSJfHx8UGjyUtbkOZNarWaGTNmUL58ea5du8aOHTv45ZdfctRUQxAE46C3ZOZxjJqzoQlGc/OpJQFnQhPEcjMD5G5rRjM349h0spmbTaZ7GHl6erJjxw4OHTqEWq2mXr16fP7559y9ezcXo9QN7d4zd+7cYebMmToZU9soQa6lZj/99BOHDx9m0aJFBl30n5li1qav/IL3qFwTpYkJFja2FCtbIe372sSmRA5mZSB1FsVn1Q4adu/LvbPH2TlrDIfXLOTlo3s08xuBpW0BAErVbEDHcfOJfvmcXbP9ubT3V1oNGEv5Jq3fGLPN4Mm4elVm/9JpbB7lw+lta4DUGRkXm9zdG8zS0pKAgACOHz/OihUrcvXaQvacPHmSatWqMXr0aHr37s3169dp167du08UBMGoKSQ9rHHRSBIrrocbbQcqBWBvrsSnnCNK0a7Z4BwPiTPohhINillnqzOeRqNhw4YNjB49mufPn9O/f3/8/f1xdHR898kGZPTo0cydO5fLly+/994zCQkJWFtbs2rVKr799lsdRZg1UVFRqFQq6tWrx9atW3P12rp0LSyBnQ9j5A5D59p52FGuYO4X4/fq1Yuff/6ZoKAgXFyyP4Ml6E9ERASjR49m+fLlVKtWjYCAAKpWrSp3WIIg5BK9zMzcjUoiwkgTGUidnYlI0nAvSszOGKK6Ra1oUMww22g3LGZN3aLZ64inVCrp0aMHt27dYty4cQQEBFC6dGkWLFhAUlKSniLVPX9/f1xdXendu/d71wFZWlpSokQJWepmJk6cSGRkJHPnzs31a+uSs3Wu74mcK+R6XjNnzsTKyor+/fvLcn3hTZIk8fPPP+Pl5cX69etZsGABp06dEomMIOQzeklmzoUmGE2h9tsogHOh8XKHIWRAoVBQz9k6bcmZ3K817fWbudlQ19k6x+v5ra2t8ff3586dO3Ts2JHBgwdToUIFtm/fbhRNAqytrVm6dCkHDx5k48aN7z2eHE0Arl69yoIFC4yy6P91BS1MsDCR+6dDtyxMFDha5EJf5gw4OjqycOFCfv31V/73v//JEoPwn/v379OmTRs6d+5MnTp1CAoKEgX+gpBP6fyvQnhiCg+i1UY7K6MlAfej1YQnprzzWEEe1Z2s6FrGXtYuZ9quZV3L2OtsjyJnZ2dWrFjBpUuXKFmyJJ9++imNGzfm7NmzOhlfn1q2bMkXX3zBoEGDePny5btPyERuJzPaov9SpUoZZdH/6xQKBZULGV9L87dRAFUKWeZq8f/rPv/8c9q2bUu/fv2Iisq425qgX2q1mpkzZ1K+fHmuXr3Kjh07+PXXX0WBvyDkYzpPZi68MP5ZGS0FcPGF8e8Fkpe525rxnZcj1ZwsgdybpdFep7qTJd95OWZa7J9TFSpUYO/evezdu5ewsDBq1KhBt27dePTokc6vpUvavWdGjBjxXuOoVCru3buXa0vtNm/ebPRF/6/zLmxp9G8saUlAlcKWssagUChYsmQJkZGRjB49WtZY8qNTp05RrVo1Ro0ahZ+fnyjwFwQB0HEyI0kSl17qpoPZgeUzGVVV3l3SJeDiywSjWOKTn5kpFTRzs6VrGXvszVNf0vpKarTj2v87G9PUzfaN9su61rJlSy5cuMCKFSs4cOAAnp6ejBkzhujoaL1eN6e0e8+sXr2aI0eO5HgclUpFSkpKrnR4i46OZsiQIXTs2JEWLVro/Xq5xdHChBJ2Zkb/BpMC+MDODEcL+ZcQFS9enKlTp7J06VJOnjwpdzj5QkREBH369KFu3bqYm5tz5swZ5s6di62trdyhCYJgAHSazIQlppCYkrdu/BNTJMITxd4CxsDd1gyfco58VrIAJexSZ0p0dROnHaeEnRmflSyATzn9zMa8jampKb169eL27dsMHTqUefPmUbp0aZYvX07yv5sSGhLt3jO+vr453nvG09MTIFeWmuWVov+MVHMy/tkZCaimo2WcutC3b19q1KhBr169jKpJh7F5vcB//vz5nD59WhT4C4LwCp0mMyFxurupavLdYCadfKyz8d6HLp+XoF9KhYLS9uZ0Lm2PbzlHahaxeqUIOquTKOmPszBRULOIFb7lHOlc2p7S9uaytey2s7Nj8uTJ3Lp1i1atWtG7d28qV67M77//blAziOn3npk1a1aOxihSpAgODg56T2auXbvGggUL8Pf3p3jx4nq9lhxKFTDHQca6svelABzMlZQskLv7y2TGxMSElStXcvPmTZ3trSS86sGDB7Rt2/aVAv8BAwaIAn9BEN6g031m/gyO4VxoAu87j5EUH4u5lWFsjqhUpBaaf+hqGPEI2SdJqbNrIXHJhMQn8yRWTUh8MskZvFBNlak7jLvYmOFsZYqztSmOFkpZi44zc/78eYYMGcJff/1Fs2bNmDNnDpUqVZI7rDTavWeuXLlCmTJlsn1+nTp1KFu2LOvWrdNDdKmvjQ8//JB//vmHK1euYGGR+/uX5IbHMWo23o6UO4wc61bGHrdcnAnNqlGjRqXtraSdSRTej1qtZv78+YwfP55ChQqxePFi2rdvL3dYgiAYMJ0mMxtuRRAcm71ZjAPLZ/LnilkM3HaMQ6vmcvP4nzi6uFOu0Uf8uWIW086HvnL8hd1bObF5Jc/u3sDEzBzn0l40+W4wZes0STvm5vED/LV6Pv/cuIJCqeCDqnX46PvxFC2lytHzcrMxpVtZhxydKxgmSZLQSJAsSaRowEQJpgoFSgUGm7i8jSRJ7Ny5k2HDhnH79m2+/fZbJk+eTLFixeQOjbi4OCpUqEDJkiXZv39/tv9tv/nmG4KCgjh16pRe4tu8eTNffPEFe/fupWXLlnq5hqE48O+bTYYzf/duClKbbDR1M8zaiPj4eCpWrIibmxsHDx5EqZSnbXRecerUKXx9fbl69Srff/89EydOxM7OTu6wBEEwcDr7zStJEiHxOV+OtWl4T9QJ8bTsN4Yan3TP8JgDAbP4eWwfTExNaeY3gmZ+w7F3duXemaNpx5zf9TPrBnyJubUNrQaM5cPvhvD83i2Wf9uW8Cc56wIVEp9sUEt4hPenUCgwUSqwMFFibabEwkSJiVJhdIkMpD6Xdu3acfXqVRYuXMj//vc/ypQpw6RJk4iNjZU1Nu3eM3/++WeO9p7RtmfWx8+ftuj/008/zfOJDEAjFxtZ25hnl7bteUMXw50Vt7KyIiAggMOHD7NmzRq5wzFakZGR9O3bl7p162JmZpZW4C8SGUEQskJnyUyKRIbLdrKqWNnydJ8bSO3Pv6FOp2/fePzFo3scXDmb8k3a4LN6Fw179KXeFz50mbqclv3HApAYF8POWaOp3qEb3yzeQt0u39Ho6/70XrcHJIlDq+fnKLZkDWhELiMYODMzM/r168edO3fo06cPU6dOpWzZsqxZs4aUFPn2S2rVqhVdunTJ0d4znp6eREZG8uzZM53HNWnSJMLDw5k3b57OxzZEZkoFbT3sjGZmRgLaetjpvVvg+2ratClff/01Q4cOJSQkRO5wjIokSWzduhWVSkVgYKAo8BcEIUd0lswkv+c7p7U6fpXp49f/2oOk0fChz5A3pvK176bfOXWYhOhIKrf6lNjwl2kfSqUJ7hWqcu/ssRzH977PTxByi4ODAzNnzuTGjRs0aNCAb7/9lurVq3Pw4EHZYpo3bx5qtTrbe8+oVKlLQ3XdBOD69evMnz8/zxb9v427rRnN3Ax3piO9Zm42udox8H3Mnj0bMzMzBg4cKHcoRkNb4N+pUydq167N9evXRYG/IAg5orNkRvOeVf+Orh6ZPh4W/ACFUkmRkm8vsnzx6B4Aq3w/YUpT1Ssft0/9RUz4ixzHlyK6MwtG5oMPPmDz5s2cPHkSKysrmjZtyscff5wrrY5fl9O9Z0qVKoWpqalOY5YkiX79+vHBBx8wZMgQnY1rLKo7WdGgmLXcYWSqQTFrqhtQK+Z3KVSoEPPnz2fLli3s3r1b7nAMmlqtZtasWZQvX57Lly+zfft2tm/fjru7u9yhCYJgpEx1NdD71j2aWbz/zs6SlJpxdJq8FLvCRd54XGmS86erVIiZGcE41a5dm+PHj7Nt2zZGjBhBhQoV8PX1ZcKECTg55d7GtL169WLdunX4+vpy8eLFLHUOMzMzo1SpUty8eRNJklKXs0oSGk3q7xxThQKTbDZt+Pnnnzl06BB79uzJs93L3qVu0dRE4ejTOJkjeVPDYtbUKWo8iYzWF198QWBgIL179+b69etiQ8cMnD59Gh8fH65evcqAAQOYNGmSqIsRBOG96SyZMdVz4XRBtxJIGg3P793ExbNihscUcisBgE3BwpSu1Uin1y/q5ISbSzHc3d1xd3enePHir3zu5uaGlZXx/QEW8geFQsHnn39Ou3btWLx4MZMnT2bDhg2MHj2a77//HkvL938z4V20e89UrVqVWbNm4e/v/9ZjJUkiLDGFkLhkWvQfi6VLCeZcfplpO2HOgEgAACAASURBVO1i1qmttJ2tTSloYZJhghMdHc3gwYP55JNPaNWqlS6fnlFRKBTUc7bGwkTBgeBYFCBrLY32+s3cbIxqRiY9hULBsmXLqFChAv7+/syfn7MazbwoMjKS0aNHs2zZMry9vfn777+pVq2a3GEJgpBH6Kw1syRJb73ZyIy2NbP/nzewcSz0xve1rZlfPLrH3E/rUK7RR3w568dX6mYkSUKhUJAQE8301pVx8axIz6XbMDF7db11TPgLbB0LZ/u5KTQpKA+tJ/jxYx4/fsyjR494/Pgxz58/f+W4woULZ5joaD93cXHB1FRn+aMg5NjLly+ZNGkSS5cuxdXVlWnTptGlS5dc6eY2atQo5s2bl+HeM+GJKVx4kcCllwkkpqT+apI0KaB4914/Skjb48rCREHlQpZ4F7bE0eK/NfjDhw9n8eLFBAUF4eGR+dLW/OJxjJpdD6OJStLIktBou5a19bAzmhqZzMyZM4dhw4Zx6tQpatasKXc4spIkiV9++YUBAwYQHR3NlClT6Nu3r/g7KAiCThnMPjPvSmYA9i+bzsGVc/CoXIPyH7bFxMyc4OsXKODkTKt/O5pd3PMLP4/tQ5GSnlRu0QEbx8JEhARz49h+PCrXpP3IGdl+Xm/bZyYhIYHg4GAev5bkpP88Kioq7XilUomLi8tbZ3fc3d1xcnIyyvbAgnG6desWI0aM4H//+x81a9Zk7ty51KtXT6/X1O49U6pUKfbt24cE3I1K4lxoAg+i1TqbJdCOU8LOjGpOliQF36VKlcpMmDCBMWPG6OAKeYdaI3H4SSxnQxNybZZGe50aTpY0dLEx+K5lWZWcnEytWrVITk7m7NmzmJkZf4KWEw8ePKBfv37s3r2bDh06sHDhQlEXIwiCXuj07ZFi1qY8iU1GX7XyzXuPxNGlOCe3rGLfkh8ws7TCuUw5qrbplHZMlY86UsDJmb/WLOBI4BKS1UkUcHLmA+/aVG/3ZbavqVSAi03Gf4wsLS0pXbo0pUuXfuv5UVFRb010zp8/z+PHj0lMTEw73sLCIi3BeT3h0X5doECBbD8PQchI2bJl2b59O4cPH2bw4MHUr1+fjh07MmPGDEqVKqWXa2r3nvnoo49Ys/13kjzrEJGkSdv/RFc30tpxHkareRCtJu6Fhlot2zF06FAdXSHvMFMqaOZmi6eDBbsfRqf9/9BHUqMd195cSZs8MhuTnqmpKStXrkx7cyC7HfyMnVqtZsGCBYwfP56CBQuyfft2OnToIHdYgiDkYTqdmbkWlsDOhzG6Gs5gtPOwo1xB/RQKS5JEaGhoprM7T548QZOuXVyBAgUyXc7m5uaWKzUQQt6i0WjYtGkTo0aN4tmzZ/Tr1w9/f38KFiyo82upNRIjV2+jcLVGKBXKXJkJSElJxkRpQvUiVjTKQzMBuqaRJO5FqTkXGs/96CRSklMw0cGyIG0S84GdGdWcrChZwAxlHp6FHjZsGIsXL+bKlSuZvuH1NrpqeJGbTp8+ja+vL1euXKF///5MnjxZFPgLgqB3Ok1mXiYkszIoQlfDGQwfL0cKWsrX+z45OZknT55kmPBov37x4tW200WKFMl0OVuxYsVEP38hQ/Hx8cybN49p06ZhZmbGuHHj6NOnD+bm5joZX1ujEZmUAjLsR5/XajT0acHKNewLekTTHn1J+vcvhVKRtU2E0x9nYaKgSiFLqrxWw5SXxcbGpi2n3L9/f6YJSPqGFyFxyTyNSyYkPvm9G17klsjISMaMGcPSpUvx9vYmICCA6tWryxaPIAj5i06TGUmSmH8lLK1wNy+wMFEwsGJBg30nTCs+Pp7g4OAMZ3a0n8fE/DdrZmJigqur61uXtBUvXpxChQoZ/PMW9OfZs2eMGzeOVatWUbJkSWbMmMEnn3zyXq+Js6HxonuWEalfvz4ODg7s3LmT8ERN6s12fDJPYtXvvNl2sTHD2Sr1ZtvR4t0NHPKiP/74g1atWrF27Vq++urNjaEzaniRvpFFZrLS8ELf0hf4R0VFMWXKFPr16ycK/AVByFU6TWYADv4Ty5nn8bLeqOiKAqhZxIomrsaxY3ZmJEkiMjIy0+VswcHBJCUlpZ1jaWn51rod7ediCUHed/XqVYYNG8bevXtp0KABc+bMoUaNGtkaQ5IkTjyLN8h9TRoUs6ZuUat8ebOdmUePHuHh4UFgYCDdu3d/43FJktD8uwwqRQMm/y6DUhrwMig5dOvWjT179nDjxg2cnJzQSFKuNLwoVcBcr8v40hf4t2/fnkWLFokCf0EQZKHzZCY8MYWA6+G6HFJWvuUc882yCI1Gw/PnzzNNeJ4+fUr6l4yDg0OmzQpcXV3z7caEec2+ffsYOnQoV65c4csvv+SHH37Icnvj4yFxBpnIaDUoZk09Z2u5wzAos2fPxt/fn+fPn4umI+8hNDQUlUrFRx99xLTla3KtwYKDnhosJCcnM3/+fMaPH4+joyOLFy8WBf6CIMhK58kMwOY7kTyMVhv17IyC1He4Ope2lzsUg6JWq3ny5Emmy9nCwsJeOado0aJvbVZQvHhxihYtKup3jERKSgpr167F39+f8PBwBg0axKhRozK92T37PJ4D/8TmYpQ5I5acvapGjRoUL16cX375Re5QjN7awPVsu/yQ+l/6olAocrX1dXUnS501vPj777/x8fERBf6CIBgUvSQztyMT+eVetK6HzXWflSxAaXvdFD3nJ7GxsWn777wt6YmN/e/m1tTUNK1+521JT8GChl+3lJ/ExMQwc+ZMZs+eja2tLRMnTqRXr15vrJV/HKNm4+1ImaLMvq5l7EVTAODOnTuUKVOGLVu20KlTp3efILyVtuFFREIyinSbPecWXTS8iIyMxN/fnyVLlogCf0EQDI5ekhmNJLHiejiRMu0o/b4UpO6B4FPOMU+3DpWLJEmEh4dn2p0tODiY5OT/NmC1trbOtFmBu7s7NjbGX9tkbIKDg/H39ycwMBCVSsWsWbNo3bo1CoUCtUZiVVC4bDvLZ5f2pu87L8d837b5hx9+4IcffuDZs2fi5+o9GHvDC0mS+PXXXxkwYACRkZGiwF8QBIOkl2QGjO8d2dd1K2OPm3iHVjYajYZnz55lupwtJCTklXMcHR0zbVbg6uqqs/bCwqsuXLjAkCFDOHToEE2bNmXOnDmEFirFudAEo0hktBSkLstp6mYrdyiyqlSpEuXLl+enn36SOxSjlBcaXjx8+JB+/fqxa9cu2rVrx6JFiyhevHguRSkIgpB1ektmAA4Ex4ibGUFvkpKS+OeffzJdzhYe/l8zCoVCgbOzc6Yd2ooWLYpShqUgeYEkSezatYthw4aRZO1Ir1W/Ge3SwPy83Oz69euUL1+e//3vf7Rv317ucIySMTe8SE5OZsGCBYwbN04U+AuCYBT0msyIZSaC3GJiYjJdzvb48WPi4+PTjjczM8PNzS3TDm0ODg5Ge5OeGxKTkph/7gkpZlYojbCxQ35fZjp+/HgWLFjAs2fPRCfCHDDmhhd///03vr6+XLp0Ka3AX3SyEwTB0Ol14auZUkFbDzujWW4mAW097EQik4fY2tri5eWFl5dXho9LkkRYWFiGMzsPHz7k2LFjBAcHk5KSknaOjY1Nps0K3N3dsbbOv21+H8VLSJa2GOv8lgREJGm4F6XOdw1AJEli8+bNdOjQQSQyOfA4Rm0UiQzAgeBYilqZ4m5rRlRUFGPGjGHJkiVUqVKF06dPZ3svKUEQBLnodWZGS1sEaehEa1YhIykpKYSEhGS6nO3Zs2evnFOoUKFMmxW4uLhgZpY3lzGJ1uzG68KFC1StWpU9/2fv3uNyvv8/jj+uzqGIIpJDDhvmUA5dKOecQk4pZ2OzGcbMaRvGZgwzZzPmOKYctyimMCSxnM35rCVySqXzdf3+6Fs/JhRXfbour/vtttvo+lyf9/MKV5/X9X5/Xu8dO2jbtq3ScfSKvq5EsL2wj5HDhxEbG8u3337L8OHD5QZ/IYReyZd3rHp2liSnawv8GmIpZER2jI2NcXBwwMHBAbVane0xycnJWe2o/1vo7Nu3j1u3bhEb+/8zlEZGRpQuXfqlHdrs7Oz07v6dh8npXI9LVTrGG9MC1+JSeZic/tZsmgvg7+9PiRIlaNmypdJR9M6+qAS9KWTgfzOQSWkEHjxD3bp1WbhwodzgL4TQS/kyMwMFu7tLk9KFaJiD7i5CvInHjx9ne8/O079OTk7OOt7MzIyyZcu+tENb0aJFC9Tf2z3/JvD33US9uaB7GRXQoKQlzR3ejtbEWq0WJycnWrduzc8//6x0HL2i1907tdqMhhdWb9eSSiGE4ci3YiaTvvfdFyKvaLVa7t2799LlbP/++y8ajSbrOVZWVi9dzla2bFksLfPn77dWq2Xu6QckpytfyszwdMGpXiO8pyx8o/OYG6sYWfPt2LD18OHDqNVq9uzZQ/PmzZWOozdkXzUhhFBWvi+MrWdnSSlLE7bfiFNsSl4XOyILoWsqlQo7Ozvs7OxwcXHJ9pi0tDRu376dbXe2o0eP8vvvvxMTE/PMc2xtbV/YrKBcuXKULl1aJ2vkHySnF4hCRpeS07U8TNZQ3MLwl5r5+flhb29PkyZNlI6iV648TuFRiubVBxZQb3PDCyGEYcj3mZlMqRot+6ISiIhJyrdZmsxx6ttZ0KRMYelaJgxSYmLiC+/fyfx9XFxc1vFGRkaUKVPmpR3a7OzsXjk78c+DJLbdiM/rl5cjaSnJqFRGGOugyUKn8lZUL27Ynb00Gg2Ojo5069aN+fPnKx1Hr0jDCyGEUJZiLUtMjVS0KluEd4qZE3gjjkcpmjwrajLPW9TMCE+ZjREGztLSkipVqlClSpUXHhMbG/vC5WwRERHcunWLlJSUrOMtLCyy9t950T080U+MMAJ0/Rm1RqMhPTUFU3OLHD/HxEw3xYeRCqIT06iOYRczoaGhREVF4ePjo3QUvSINL4QQQnmKzcw8TaPVcvVxKkdjErkWl6qzoibzPBWtTKlrZ4mTtamsCRYiBzQaDTExMS9tVnD79u1n7t/5ZFUQZWvWe+kMztWIgwTN+Zo7V85jXbI0TfoNI+7eHXYvncX0YxnL475wsUPdYyDlatXnrxVzuXfzCr1mLKdG8/bsX7OIf/YEEnPjMqlJiZSsWJVmA0dQs1WnZ8b57z0zRwPWs2nyp3y0Yjtndm/nROBGUpISqdKwGV0mzKaIje0LM5ctbEKfqsXe5NtZ4H3yySds376d69ev610HPSVJwwshhFBegWgmb6RSUbmoGZWLmvEwOZ0T95I4cT8pa/29kQo0Ofhp8fRx5sYq6pSwoI6thXzSJEQuGRkZUapUKUqVKkW9evWyPSY1NZWoqKiMAufWLW5WqQMvKWSizp9i5TAfrGxL0erjsWjS09mz7AcK25R47tirf4dyOjiAhj6DKFSsODZlHAEIW7+Uak3aUKddN9JTUzm5ayu/jR1E/3nreNe99Stf17aZX2BpVYwWg0fz6PYtDv72MwHfm9Jrxi8vfE50YhpardZgmwCkpaWxadMm+vfvL4VMLmi1Wk7eTzKIQgZg3+qFzNy0ike3b1GzZk1OnDihdCQhhMiRAlHMPM3G3JjmDoVpVqYQD5M1RD9JIzoxjaiEVKIT00jLZg2LiRHYW5pQprAp9pYm2BcywcbcyGAvPoQoCExNTSlfvjzly5cnTaPlh5P3X3p8yJKZqIyM+XhlINZ29gDU9PBiTvfGzx0bc+MyIzbsp5TTO898/fOt4Zha/H93toY+g1jQuyWha5fkqJgpVLQ4AxdvzHpv0Gg0HPJbRlLcYyysrLN9Tpom40MSYwN9O9m7dy8xMTGyxCyXDKnhxcVDe9kxbwp12nvz7ZTJVChdUulIQgiRYwWumMmkUqkobmFMcQvjrPXqWq0WjRbStFrSNWBsBCYqFUYqpHARQkFpr1itqklP5/KR/VRv3j6rkAGwLefEO41acm7/n88cX9Gl0XOFDPBMIZP4+BGa9HQqOKs5uXNLjnI26Nr3mfeKis5qDq5bwsPbtyhtVeOFz7v38CFWlhaYm5tjbGxYM71+fn5UqlSJunXrKh1Fr0Q/SVM6gs5c/fsAKiMjun09l2aVSxh8wwshhGEpsMVMdlQqFcYqMEYFhnU9IYRe07zirv/4BzGkJiVSomzF5x4r7pjN1xyy34n83P5d7P3lR25fPENayv9vMJrTDzOK2pd95veW1hn3wiTGPXrp8ypVrkrCo4yZJxMTEywsMgqbzP8//ev8eszU1PSNP8RJSUlhy5YtDB06VD4QyqXoJ2l50vBCCfEP7mFqboGZmdlb0fBCCGFY9KqYEUIUTLq+1cIkm85l144d4tfP+lDBpSFe42dgZVcKYxNTIgLWc3LH5pzlfNGsyitWC634ZRmpSU9ISkoiOTk56/9P/zq7x+Lj41/42NNfex0qleqNC6QbN27w6NEjUlJSWLx48WsXVoZyr83kyZOZMmUKFy5c4JtvvmHbtm2YmZnx8ccf88033xAZGcmwYcPYu3cvRuaWNO47FPe+n2Q9P/5BDH8umMr5A8EkxT/Gtnxl3Pp8TN2OvlnHPIy6ycwOdWk3cjIWha3Yt3oBsXeisK9SHa8vZuJYw/mZTHevXSJ48TSu/B1KalIipSq9S4vBo6netC0ADyKvM6tTfTxHfYtbn4+fee6Nk0dY8r4nPtN+pk7brtm+5i9c7LJ+Pc4549crV65Eq9UycOBAli9fzsCBA7OOmTZtGl999RWBgYG0b9/+Nb/TQgihO1LMCCHemMkrPtUvUtwOE3ML7kdee+6xB7ee/1p2zuzejom5BQMXbXim9XJEwPrchX0N3bp0xjiP9qXSarWkpqbmuEB6ncfi4+O5d+/ec49FR0djbGzM4sWLSU5OJi3t9ZZOmZqa5uus1IseMzEx0ckMk4+PD9WqVeP7778nMDCQqVOnUrx4cX7++WdatGjB999/z6xlqwma8zVlq9ehYt1GpCYlsuzDzty/dQ21zyCKO5TjdHAAm74eTlJcLI17ffTMGCd3biY5IZ4GXfuhUqnYv3oh60YPYExARNb+SHeunGfJ+55YlyxN0wGfYmZZiNPBf7B2VD96z1pJjRaeFC9bgfJ1GnBix6bnipkTQZswL1wkq/DJTo9vF3Nkyxoi/zlO14lzMDICd3d3KlWqxJYtWxg1ahQeHh44Ojpy+vRppkyZwqBBg6SQEUIUGFLMCCHemLEqoxFHdg06IGNGpHKDJpzdu4PHMdFZ983cu3mVC2G7czRGxqyKCk16etbXHkbd5OzeHW8a/6VMjDI6JeYVlUqFmZkZZmb5u/t6YmIiJUuWZNKkSUyaNAmA9PR0nRRPryqscvK816FSqd6oQDpy5AgAZmZmNGjQAIDOnTtz6NAhPv/8c/r370/Xrl0xs7Ck37zfmN6mJhEBv1GxbiOObFnD3WsX6TH1J5zbdwfAtdsAln7oxa7F06nn1RvzwkWysj6K/pfRvx/OWupoW6Eyv37Wl4uH9lKtSUYzi22zvqKYfVmGrt2VVcCrewzk54Ge7Jj/DTVaeALg4unD1u8+5+61S5SsmLG/VHpqKqeDA6jRwhMzy0Iv/J45e3pz+cg+os6fwtnTG4AKFTM6DC5btowaNWowaNAgtm/fTv/+/bG3t+fHH398rT8fIYTIC1LMCCHemEqlwt7ShMiEF3+y3+qjsVwK/4sl73vi2n0AWk06h/yXU6rSu9y+cOaVY7zr5kHo2p9YOcyHOu26Ef/gHuEbVlDCsSLRl/7R5ct5hr2lbj7tL2iCgoKIj49/pouZsbExhQoVolChF1/85getVktKSkqeFlZxcXHcu3fvuZkqgPPnzzNhwgSSkpJIf6p4XrVqFatWrcK8iBWT91/FtnwlHkTeAOBCaAhWtiWp/dRyLmNTUxr1/BC/LwZz9WhYVpECUMvDK6uQgYxmFAAP/r0OwJPYh1z9+wCthowjOSGe5IT4rGOrNGxByJIZxN69TdGSpanZ2ottP3zFiR2baP3JF0BGh7KER/dxbu+d6+9/mlaLMSrs7e1ZtGgRPXv2xN3dnRMnThAcHIy1dfad/4QQQglSzAghdKJ0IROiEtJeeEO0Q/XavL/Aj6C5XxP80/cULVWGVkPGEXPtEjHXL7/y/JUauNNt0lz+WjWf7T9MwKZMOdp+OpGHUbfyrJgxUkGZwqZ5cm6l+fv74+zszDvvPN81TmmZ9wOZm5vn64Vz5j0zFy9epFSpUkDGPjwDBgxg8+bNXLlyheTkZB4npbAjCSyKWPMk9iEAj6IjKeHo9Nz9Q5kzJY9u33rm68VKv6AZxeNYAO7fuoZWqyV48fcEL/4+27wJD2IoWrI0llZFqdakNSd3bskqZk7s2IR1ydI41XcHIPlJPClPErKeqzI2fuFmsekasprs+Pr6snbtWgIDAxk8eDAtW7Z88TdQCCEUIMWMEEIn7AuZvLKzU6UG7gz/bc8zX/t1VD+Kliyd9fvpx2Je+Px6nXtTr3Pv577e6uOxz/x+XOCxZ35ft1NP6nbq+dzznOo1ful4Gm3GzIyhiYuLY/v27Xz99ddKRymQnm6/bWJigomJCcbGxpQpUwaApHQNO049yDjgFW3JX0Rl9KJmFBnn0/6vRaB736FUbdQ820NLODpl/drZ04fTwQHcOHkE+8rVObfvT9Te72cVVwfWLGb30llZxxcr7fjcv5NMxk/VY/fv3yciIgKAs2fPotFoDKbhgxDCMBjeT2khhCLsC7367SQ1KfGZvWLu3bzChdAQXDoW3A0bc/K69M22bdtITEyUjTJfU3YNL4rZlyX68vMX+zHXLmU8XtoxV2MUL1seAGMTEyq7Nn3l8VUbtaCwjS0ngjbhWLMuqUlPsu6BAXDp0IMKzq7//xqy6RiY9dhTr2/o0KHExcUxffp0vvjiC+bOncuoUaNy9VqEECIvGd5PaSGEIoqbG2NurHrpruizOtXDpaMvxR0q8Oj2LcI3rcLY1JQm/YflY9KcMzdWYWNueJ9C+/v74+rqSoUKFZSOopcyG1487R23VlwK/4tTu37PaoOcnpZGmP8vmBUqjFPdRrkao0hxO5zqNebwljU09P3gmc1mAeIf3ntmmZixiQm123bh5I4t3L12CfvK1Sld9f83gi1etgLFy1Z45bhPN7zYtGkT/v7+zJ8/n+HDh3Py5EkmTJhAhw4dqFq1aq5ejxBC5BUpZoQQOqFSqahdwoK/7ya+cNuWqg1bcHLnVuLv38XYzIxyNevRZthX2JarlK9Zc0IF1ClhYXA3/z969IgdO3Ywc+ZMpaPorcyGF09r0LUfRzavYdPXw4k6d5JipR05s3sbN04cocPoqc90MsupTuNn8PPADszzaUr9Ln0o7lCB+Ad3uXkqgtg7txnh/9czx7t4+hC2fhlXI0Jp++mk13ptmQ0v7t69y5AhQ2jevDnDhmV82LBw4UL27t3LgAEDCA0NleVmQogCQYoZIYTOONtacORu4gsf7z5lQT6meTNaoI7ti5fi6Kvff/+dtLQ0vL1z3+VK/L/ShUx4usw1tbDkw2W/s3P+txzb5k9SQhx25SvTffL8bO/XyolSTu8wbG0wIUtncWybH08ePaRwcVvKvFOTloM/f+54h+q1KVXpXe5eu0id/7WHzo2nG14MGTKE5ORkVq5cmVXQlyhRgqVLl+Ll5cUPP/zA2LFjX3Y6IYTIFyqt9jXvXhRCiGz4XY7lRlzqC2dn9IEKqGBlik/lokpH0bm2bduSmJjIvn37lI6i1/55kMS2G/GvPjCfze/ZnELWNnzw85bXen6n8lZUL27+6gOFEKKAkDliIYRO1bWz0OtCBjJmZeraWb7yOH0TExNDSEgIvr6+SkfRewWxMUTk2RPcvnAG5w49XvscBfF1CSHEy8i7lhBCpypZm1HMzIjYFI1eFjUqoKiZEU7Whre/zJYtW9BqtXTr1k3pKHovJw0v8kv05XP8e+4kob/+hJVtKWq17vxa5zHUhhdCCMMm71pCCJ0yUqnwLG+ll4UMZMzKdChvhZGB3fgP4OfnR8uWLSlZsqTSUfReZsOLgvC35EzINjZP/pT0tFR8p/+M6UvaLr+IoTa8EEIYPrlnRgihc/Hx8XyzYRfFajXGyPgFmwMWQCqgnp0FLcvmvvNUQXf79m0cHBz45ZdfGDhwoNJxDMLD5HR+PvtQ6Rg6odVqaaqKppFzTaWjCCFErsjMjBBCp44dO4aLiwtLxwzGND25QHxynRMqwNrMiCZlCisdJU9s3LgRExMTunTponQUg2FjbkwFK1O9+Tv+IlqNhlvHD9HYpRbu7u5s2LCB1NRUpWMJIUSOSDEjhNAJjUbDnDlzUKvVFClShCOHwvCtUVpvlptptFo8HQtjaqTvl6bZ8/Pzo02bNtjY2CgdxaAYQsMLlZERI7p4sGnTJoyNjfHx8aFixYpMnTqVu3fvKh1PCCFeSooZIcQbu3v3Lh06dGDUqFEMHz6cQ4cOUbVqVRyLmNKqrH7MdGyf9SWjP+hLUlKS0lF07saNGxw6dEi6mOWBzIYX+loCq4BiZkZUsbGgW7du/PXXX5w8eZL27dszbdo0HB0d6du3L0eOHFE6qhBCZEuKGSHEGwkODqZWrVpEREQQFBTE7NmzMTf//30q6tlZ4l66kIIJX829dCFG92jP9u3badmyJffu3VM6kk5t2LABCwsLOnXqpHQUg2OIDS9q1arF0qVLiYyM5LvvviM0NBRXV1dcXV1Zu3YtycnJygUWQoj/kGJGCPFaUlNTGTduHK1bt6ZWrVqcOnWKdu3aZXtso1IFt6BpUroQjUpZ0qVLF/bu3culS5do2LAhly9fVjqazvj5+eHp6YmVlZXSUQySYxFT6tkVjM5muaEC6ttZULZI9m3IixcvzujRo7l8+TJ//PEH1tbW9O3bl3LlyjFp0iSioqLyN7AQQmRDihkhRK5dkZBVbQAAIABJREFUuXIFNzc3fvzxR2bOnMnOnTuxt7d/4fEqlYrG9oWylpwpfdGXOX6rsoVpZF8oqx2tq6sr4eHhGBsbo1arCQsLUy6kjly6dIljx47h4+OjdBSD1rRMYaz1aLlZbhpeGBsb06lTJ4KDgzl79ize3t7MmTOH8uXL4+vrS2hoKNIYVQihFClmhBC58ttvv+Hs7My9e/c4ePAgY8aMwcgoZ28l9ews6V2lqKIXfZkXcb2rFKWeneVzjzs5OREWFkaNGjVo0aIFGzduzP+QOuTv70/hwoXx9PRUOopBMzVS0UGPlptlLi/LbcOLatWqsXDhQiIjI5k9ezbHjh3D3d0dFxcXVqxYQWJiYt4EFkKIF5BiRgiRI/Hx8QwYMIDevXvTsWNHjh8/ToMGDXJ9HscipnxQzYa6dhkb++VXUZM5Tj07Cz6oZoPjC5bWQMbyml27dtGtWzd69OjBrFmz9PaTZ39/f7y8vChUqGAu8zMkdibpXN+xXukYOdKqbOGX/ht4laJFi/Lpp59y/vx5duzYQZkyZfjggw9wdHRk/Pjx3Lx5U4dphRDixWTTTCHEKx09epSePXsSFRXF4sWL6du3r052Cr8Vn0rgjTgepWhQQZ58qp153mJmRniWt8rVBZxWq2XSpElMnTqVjz/+mAULFmBiYpIHKfPGmTNnqFmzJn/88Yfc/J/H4uLi6Ny5M2FhYSzaGcZda0elI72Qe+lCNLbXfXF7+fJlFi9ezIoVK4iLi8PLy4vhw4fTrFkznbxfCCFEdqSYEUK8kEajYe7cuYwfP56aNWuyfv16qlatqtsxtFquPk7laEwi1+JSdVbUZJ6nopUpde0scbI2faZjU24sX76cjz76iDZt2uDv70+RIkV0kDDvTZw4kQULFnDnzp1nOswJ3bp//z7t27fn/PnzbNu2DXd3d8LuJHLg9hOloz2nSelCNCxlmafFRXx8PGvXrmXBggWcPXuW9957j2HDhtGnTx8KF9aPVu1CCP0hxYwQIlt37txhwIAB7Ny5k88//5xp06ZhZmaWp2M+TE7nxL0kTtxPIjk9463JSAWaHLxLadLSMPrfrIm5sYo6JSyoY2uBjbmxTrLt2rWL7t27U7lyZbZv306ZMmV0ct68otVqeeedd2jcuDErV65UOo7BioqKonXr1ty9e5edO3fi4uKS9VhETCIhkQl5NuuYU5njtypbONv7xPKKVqtl7969LFiwgICAAKysrBg4cCBDhw6lUqVK+ZZDCGHYpJgRQjwnODiYvn37otVqWb16NW3bts3X8bVaLQ+TNUQ/SSM6MY2ohFSiE9NI0zx/rIkR2Fua8M/BvZwO+4s1C37ExtwoTz55Pn36NO3btwcgKCiImjVr6nwMXTl27Bh169Zl586dtGnTRuk4BunKlSu0atWK9PR0goODeeedd5475lZ8KttvxPE4RaNIQZPZ8KJDLpdY6tr169f56aef+OWXX3j48CHt27dn+PDheHh45LiBiBBCZEeKGSFElpSUFCZOnMjMmTPx8PBgzZo1L225nJ+0Wi0aLaRptaRrwNgITFQqjFQZrZ9XrlzJoEGDePToEdbW1nmWIyoqCk9PT65cucLmzZvx8PDIs7HexLhx41ixYgVRUVGYmip3EWuoTp06RZs2bbC2tiY4OJhy5cq98NhUjZZ9UQlExCTl2yxN5jj17SxoUqZwrruW5ZXExER+++03FixYwMmTJ6latSrDhg2jf//+efrvVghhuOTjECEEkPu9Y/KbSqXC2EiFubERhUyNMDc2wthI9cweMVqtloiIiDzNUaZMGfbv34+bmxvt27dnxYoVeTre69Bqtfj5+dGtWzcpZPLAoUOHaNq0KaVLl+bAgQMvLWQgo21zq7JF6F2lKEXNMn7s5lVpkXneov9rP96ybJECU8gAWFpaMmjQII4fP86BAweoU6cOn332GQ4ODgwbNozz588rHVEIoWekmBFCsG7dOpydnXnw4AFhYWG52jumoHj33XextrYmPDw8z8eysrIiICCAQYMGMWjQICZOnFigWjeHh4dz8+ZNfH19lY5icHbt2kWrVq2oWbMme/fupWTJkjl+rmMRUwZXt6G7kzUVrDKKTF2VGZnnqWBlSncnawZXf3n7caWpVCrc3Nzw9/fnxo0bjBw5ko0bN1KtWjVat27Ntm3bSE9PVzqmEEIPyDIzId5icXFxDBs2jDVr1tC7d28WL16s10s9WrdujYWFBQEBAfkynlarZdasWYwbN47evXuzfPnyAtE1bOTIkWzYsIFbt25hbKybBggCNm3aRK9evfDw8GDjxo1vvHfPmzS8ePq4vGh4oYTk5GQ2bNjAggUL+Pvvv3FycuKTTz5h4MCB2NjYKB1PCFFASTEjxFvq6NGj+Pr6Eh0dnbV3jL6bOHEiS5cuJTo6Ol/3tdiwYQP9+vVDrVazdetWRS+80tPTcXR0xNvbm3nz5imWw9AsX76cwYMH4+Pjw+rVq3W6fO91Gl6UKWyKvaUJ9oVM8qzhhZKOHDnCggUL8Pf3x9TUlD59+jBs2LAC3XRDCKEMKWaEeMtoNBrmzJnDF198Qa1atVi/fj1VqlRROpZOBAYG0qFDB65evUrFihXzdeyDBw/i5eWFnZ0dQUFB+T5+pn379tGsWTPCwsJo2LChIhkMzezZsxk9ejRDhgxh4cKF+bIE81UNL94Wd+7cYenSpSxZsoSoqCiaNWvGsGHD8PLy0qsNbIUQeUe/FsULId7InTt38PT0ZPTo0YwYMYKwsDCDKWQAGjRoAMDhw4fzfezGjRtz6NAhUlNTUavVHDlyJN8zAPj5+VGuXDnUarUi4xsSrVbLV199xejRo/nqq69YtGhRvt1L9qqGF2+LUqVKMXHiRK5fv46fnx+pqal0794dJycnpk+fzr1795SOKIRQmBQzQrwldu3aRe3atTl27Bg7d+5k1qxZeb4JZn6zs7OjUqVK+dIEIDtVqlTh0KFDVKpUiWbNmvH777/n6/hpaWls2rQJHx+ft+6iV9c0Gg1Dhw5l2rRp/PDDD0ydOlW+pwoyNTXFx8eH0NBQjh07RqtWrZgyZQply5bl/fff59ixY0pHFEIoRIoZIQxcSkoKY8eOpU2bNtSuXZuTJ08a9CaKarVakZmZTHZ2duzevZsOHTrQtWvXfL1vZc+ePdy7d0+6mL2h1NRU+vTpw88//8zy5cv5/PPPlY4knuLs7MyKFSuIjIxkypQp7Nmzh7p169K4cWPWr19PSkqK0hGFEPlIihkhDNjly5dp3Lgxc+bMYdasWezYsaNA7R2TF1xdXTl27BjJycmKZbC0tMTPz4/Ro0czcuRIRowYkS9tZv38/KhcuTLOzs55PpahevLkCZ07d2bTpk34+/szcOBApSOJF7C1tWXcuHFcuXKFLVu2YG5uTq9evahQoQJTpkwhOjpa6YhCiHwgxYwQBmrt2rU4Ozvz8OFDwsLCGD16tN7tHfM61Go1KSkpnDhxQtEcRkZGzJw5k8WLF7Nw4UK6detGQkJCno2XnJzMli1b8PX1leVQryk2Npa2bdvy119/ERgYSPfu3ZWOJHLAxMSELl26sGfPHk6fPk2nTp2YOXMm5cqVo3fv3oSHhxeofaCEELpl+Fc2Qrxl4uLi6NevH3379qVLly4cP36c+vXrKx0r39SuXRtzc3NFl5o9bciQIWzbto2QkBCaN2/OnTt38mScXbt2ERsbi4+PT56c39DdvXuX5s2bc/r0aUJCQvDw8FA6kngN7733HkuWLCEyMpIZM2YQHh5Ow4YNadCgAWvWrFF0xlYIkTekmBHCgERERODi4sLWrVtZs2YNa9aswcrKSulY+crMzAwXFxfFmgBkp3379hw4cIDIyEjUajXnzp3T+Rh+fn7UqFGD9957T+fnNnQ3b97E3d2d27dvs3//fmlpbQBsbGz47LPPuHTpEtu3b6dEiRL0798fR0dHJkyYQGRkpNIRhRA6IsWMEAZAo9Ewe/ZsGjVqRLFixTh+/LhBbIL5upRuApAdZ2dnwsPDKVKkCI0aNWLv3r06O/eTJ08ICAiQG/9fw4ULF3BzcyM1NZXQ0FDZlNHAGBkZ4enpyc6dOzl//jy+vr7Mnz+fChUq4O3tzf79+2UJmhB6TooZIfTcnTt3aN++fdbeMQcPHqRy5cpKx1KUq6srV69e5e7du0pHeUa5cuUIDQ2lXr16tGnThl9//VUn5w0KCiI+Pl6WmOXSsWPHcHNzw9ramtDQUCpVqqR0JJGH3nnnHebPn8+///7L3LlzOX36NE2bNsXZ2ZlffvmFJ0+eKB1RCPEapJgRQo/9+eef1KpVi+PHjxvs3jGvI3PDyII2OwNQtGhRgoKC6NOnD/369ePbb79940+G/fz8cHFxMagNUPPa/v37adasGU5OTuzbt48yZcooHUnkEysrK4YNG8a5c+fYtWsX5cqVY/DgwZQtW5axY8dy/fp1pSMKIXJBihkh9FBKSgpjxoyhbdu2ODs7c+rUKYPeOya3ypUrR6lSpQpkMQMZGwAuX76cb7/9lkmTJjFo0CBSU1Nf61xxcXEEBgbKrEwuBAYG0qZNG+rXr09ISAglSpRQOpJQgEqlwsPDg4CAAC5fvszAgQNZtmwZTk5OeHl5ERISIkvQhNADUswIoWcuXbpEo0aNmDdvHj/88ANBQUGUKlVK6VgFikqlQq1WF6gmAP+lUqmYMGECv/76K2vXrqV9+/bExsbm+jwBAQEkJSXRo0ePPEhpeH777Tc6d+5M27ZtCQwMfOsaZIjsOTk58cMPPxAZGcmSJUu4evUqHh4e1KhRg8WLFxMfH690RCHEC0gxI4Qe+fXXX3FxcSE2NpawsDA+//zzt2LvmNfh6urKkSNH8mWzyjfRp08fgoODiYiIoHHjxty8eTNXz/f396dhw4ZUqFAhbwIakMWLF9OnTx/69OnDxo0bsbCwUDqSKGAKFy7M4MGDOXXqFHv37qVatWoMHz4cBwcHRo4cyaVLl5SOKIT4D7kKEkIPxMXF0bdvX/r160fXrl05duwY9erVUzpWgaZWq4mLi+P8+fNKR3mlpk2bEhYWRkJCAq6urhw7dixHz3v48CE7d+6UJWavoNVq+e677xg6dCgjRoxg+fLlmJiYKB1LFGAqlYpmzZqxefNmrl27xtChQ1m7di1Vq1alffv27NixA41Go3RMIQRSzAhR4EVERODs7Mzvv//Or7/+yurVq2VpTA7Uq1cPIyOjAr3U7GnVqlUjPDwcR0dHmjRpwvbt21/5nK1bt5KWloa3t3c+JNRPWq2WMWPGMGHCBL799lt+/PFHmc0UuVKuXDmmTZtGZGQkK1euzOog+e677zJv3rzXWh4qhNAdeUcXooDSaDT88MMPNGzYEBsbG44fP06fPn2UjqU3rKysqFGjRoFtApCdUqVK8ddff9GqVSu8vLxYvHjxS4/39/enadOm0onrBdLS0vjggw+YPXs2CxYsYMKECahUKqVjCT1lYWHBgAEDiIiI4ODBg9StW5fRo0fj4ODAJ598wtmzZ5WOKMRbSYoZIQqg6Oho2rVrx5gxY/jss89k75jXVNCbAGSnUKFCbN68meHDhzN06FDGjBmT7XKWmJgYdu/eLUvMXiA5ORkfHx9Wr17Nr7/+yrBhw5SOJAyESqWiUaNGrF+/nps3bzJ69Gi2bNlCjRo1aNWqFX/88UeBv1dPCEMixYwQBczOnTupXbs2J0+e5M8//2TmzJmyd8xrcnV15Z9//iEuLk7pKLlibGzM3LlzmTt3LrNnz8bHx4fExMRnjtm8eTMA3bp1UyJigRYfH0+HDh0IDAxk69atMqMp8kzp0qWZPHkyN2/eZN26dSQkJNC5c2cqV67MrFmzePDggdIRhTB4UswIUUCkpKQwevRo2rVrh4uLCydPnqR169ZKx9JrarUajUZDRESE0lFey4gRI9i6dSuBgYG0bNmSmJiYrMf8/Pxo2bIldnZ2CiYseB48eECrVq04fPgwO3fupGPHjkpHEm8BMzMzevXqxaFDh/j7779p0qQJEyZMwMHBgQ8++ICTJ08qHVEIgyXFjBAFQObeMfPnz2f27NkEBgbK3jE6UK1aNaytrfXqvpn/8vLyYt++fVy5coWGDRty8eJFoqKi2L9/P76+vkrHK1Bu375N06ZNuXz5Mnv27KFZs2ZKRxJvoXr16rF69Wpu3brFhAkT2LlzJ3Xq1KFJkyZs3LjxtTfIFUJkT4oZIRS2Zs0anJ2diY2N5dChQ4waNUq6LemIkZER9evX17v7Zv4r8zWYmZnRsGFDZsyYgYmJCV26dFE6WoFx9epV3NzcePToEQcOHJDW5UJxJUuW5KuvvuLatWts2LABlUpFjx49qFixIt999x13795VOqIQBkGumIRQyOPHj+nbty/9+/ene/fuHDt2jLp16yody+BkNgHQarVKR3kjFStW5ODBg9SsWZMFCxZQq1YtihUrpnSsAuHMmTO4ublhbGxMaGgo1apVUzqSEFlMTU3x9vZm3759nDhxgnbt2vHdd9/h6OhI//799XYZrBAFhRQzQijg77//xsXFhd9//521a9eyatUq2Tsmj7i6unLnzh1u3rypdJQ3ZmNjw88//4xWq+Xo0aPMmDFD74u0N3X48GGaNGlCqVKlOHDgAOXLl1c6khAvVLt2bZYtW0ZkZCRTp05l//791K9fH7Vazbp160hJSVE6ohB6R4oZIfKRRqNh1qxZNGrUiOLFi3PixAl69+6tdCyD5urqCqD3S80y/fHHH1hYWDB27FjGjx/Pxx9/TFpamtKxFBESEkLLli2pXr06e/fulfvMhN4oXrw4Y8aM4fLly/z+++9YWVnRp08fypUrx9dff01UVJTSEYXQG1LMCJFPoqOjadu2LWPHjmXUqFGEhoZSqVIlpWMZvJIlS1KxYkW9bgLwND8/Pzp06MCMGTNYsWIFK1asoGPHjnrXfvpNbdmyBU9PT9zd3dm1a5csuRN6ydjYGC8vL4KDgzl79izdunVj9uzZlC9fnp49exIWFvZWzb5qtVrSNFqS0jU8SdWQlK4hTaN9q74HIvdUWvkbIkSe27FjB/3798fIyIg1a9ZIy+V81qtXL65fv05YWJjSUd7IxYsXeeedd9i0aVPW/jIhISF069aNihUrEhgYiIODg8Ip897KlSv54IMP8Pb2Zs2aNbIPkzAosbGxrFq1ioULF3L58mVcXFwYNmwYPXv2xMLCQul4OqPVanmQnE70kzSin6Rx+0ka0YlppD2/RzAmRmBvaULpQibY/++/4ubGqFSq/A8uChwpZoTIQ8nJyXz55Zf8+OOPtG3bltWrV1OyZEmlY7115s+fz9ixY3n8+LFeX/h+++23zJw5k7t372JpaZn19TNnztC+fXs0Gg1BQUHUqlVLwZR5a86cOYwaNYqPPvqIRYsWYWxsrHQkIfKERqPhzz//ZMGCBezYsYMSJUrw4YcfMmTIEMqVK6d0vNf2MDmd4/eSOHk/ieT0jEtQIyCbGuY5Tx9nbqyidgkLnG0tsDGX94G3mRQzQuSRixcv0rNnT06fPs2MGTMYMWKEtFxWyOHDh1Gr1Rw5coT69esrHee11ahRA2dnZ9auXfvcY1FRUXTs2JFLly6xceNG2rRpo0DCvKPVapk0aRJTp05l/PjxTJs2TT6VFW+NS5cusWjRIlauXEl8fDydO3dm+PDhNG3aVC/+HWi0Wq48TuFoTBLX41JRAbq4+Mw8TwUrU+raWVDJ2gwjPfh+CN2SKyshdEyr1bJmzRpcXFyIi4sjPDyczz77TAoZBdWpUwczMzO9bgJw5swZzp49i4+PT7aPlylThn379uHu7o6npye//PJLPifMOxqNhk8//ZSpU6cyY8YMpk+frhcXcELoSpUqVZg7dy7//vsvCxcu5Ny5czRv3pzatWuzdOlSEhISlI74QrfiU1l69iGbr8ZxIy5jw1BdfYqeeZ4bcalsvhrH0rMPuRUvm5K+beTqSggdym7vGBcXF6VjvfXMzc1xdnbW6yYAfn5+FCtW7KX3WxUpUoQ//viDDz/8kA8//JCvvvoKjSYnizcKrtTUVPr168eiRYtYunQpY8eOVTqSEIopUqQIQ4YM4Z9//iEkJAQnJyeGDBlC2bJlGT16NFevXlU6YpZUjZaQyHjWXYolNiXjfSivlgJlnjc2RcO6S7GERMaTqpGFR28LWWYmhI4cOXKEnj17EhMTw08//SQtlwuYkSNHsn37di5fvqx0lFzTarVUrVqVJk2asHz58hwdP3v2bMaMGUPPnj1ZuXIl5ubm+ZBUtxITE+nRowd//vkn69atw9vbW+lIQhQ4169fZ/Hixfzyyy88evQIT09Phg8fjoeHh2IzmLfiU9l+I47HKZo8K2BeRgVYmxnRobwVjkVMFUgg8pPMzAjxhjQaDTNnzqRx48aUKFGC48ePSyFTAKnVaq5cucK9e/eUjpJrx44d4/Llyy9cYvZfKpWK0aNHs2HDBrZs2YKHhwcPHjzI45S69fjxY9q1a8fu3bsJCAiQQkaIF6hQoQIzZ84kMjKSZcuWcevWLdq0aUO1atVYuHBhvrdtj4hJZN2lWMUKGciYqXn8v1maiJhEhVKI/CLFjBBv4Pbt27Rp04Zx48bx+eefy94xBVjm5pn6uNTMz88PW1tbWrRokavneXt7s2fPHs6dO0ejRo0K1BKUl4mJiaF58+acOHGC4OBg2rZtq3QkIQq8QoUKMWjQII4fP87+/fupVasWI0eOxMHBgU8//ZQLFy7k6fharZaD0U8Iicy4f0fpZT+Z44dEJnAw+onsVWPApJgR4jXt2LGD2rVrc+bMGXbt2sX333+v121/DV2FChUoWbKk3jUB0Gg0bNiwAW9vb0xMTHL9/EaNGnHo0CE0Gg1qtbrAv/5bt27h7u7Ov//+y759+2jcuLHSkYTQKyqVCnd3dzZs2MD169f59NNP8fPz491336VNmzZs3749T+6lC7uTyIHbT3R+Xl04cPsJYXdkhsZQSTEjRC4lJyczatQo2rdvT7169Th58iQeHh5KxxKvoFKpcHV11buZmfDwcG7evJnjJWbZqVy5MmFhYVStWpXmzZuzZcsWHSbUnYsXL+Lm5kZSUhIHDhygdu3aSkcSQq+VLVuWqVOncvPmTVavXs2DBw/o2LEjVapU4ccff+TRo0c6GSfibsEtZDIduP1ElpwZKClmhMiFixcv0qhRIxYuXMicOXPYvn27bIKpR9RqNYcPH9arDl9+fn6UKVMGNze3NzqPra0tISEhdOrUie7duzNnzpwCtezixIkTuLu7U7hwYQ4ePEiVKlWUjiSEwbCwsKBfv34cOXKEQ4cOoVarGT9+PA4ODnz88cecOXPmtc99Kz6VkH8Lbmvop4VEJkjrZgMkxYwQOaDValm9evUze8eMHDlS9o7RM2q1msePH+f52nFdSU9PZ+PGjXh7e+tkp3sLCwvWr1/P2LFjGTVqFJ9++inp6ek6SPpmQkNDadq0KeXLl2f//v04ODgoHUkIg6RSqVCr1axbt46bN28ybtw4AgICqFmzJi1atGDr1q2kpaXl+HypGi3bb8ShL7s+qYDtN+KkbbOBkSsxIV7h8ePH9OnThwEDBuDt7S17x+ixevXqoVKpCvx9I5n2799PdHQ0vr6+OjunkZER33//PUuWLOGnn36iS5cuim64FxQUROvWralbty67d+/G1tZWsSxCvE3s7e2ZNGkS169fZ/369SQnJ9O1a1cqVarE999/n6POj/uiEhTtWpZbmV3O9kfpx0ySyBkpZoR4icOHD+Ps7My2bdtYt24dK1eupEiRIkrHEq/J2tqaGjVq6E0x4+/vT/ny5bM6senSRx99xLZt29i7dy9Nmzbl9u3bOh/jVfz8/PDy8sLDw4OgoCCsrKzyPYMQbzszMzN8fX05ePAgR48epUWLFkyePBlHR0cGDhzI8ePHs33erfhUImKS9KaQyaQF/o5JkuVmBkSKGSGyodFomDFjBm5ubtja2nLixAl69eqldCyhA/rSBCA1NZVNmzbh4+OTZxvftWvXjgMHDnD79m3UajX//PNPnoyTnSVLltCrVy969uzJ5s2bsbCwyLexhRDZc3FxYeXKlURGRvL1118TEhKCi4sLbm5u+Pv7k5qaUQBotFoC9Wh52X+pgMAbcWgK0H2D4vVJMSPEf2TuHfPFF18wevRoQkNDcXJyUjqW0BG1Ws3p06eJj49XOspL7d69m/v37+t0iVl26tSpw+HDhylWrBiNGzdmz549eTqeVqtl+vTpDBkyhGHDhrFq1arXajkthMg7tra2jB8/nqtXr7J582ZMTU3x9fWlfPnyfPPNNxy9eZdHerS87L+0wKMUDVcfy+yMIZBiRoinBAUFUatWray9Y6ZPn46pqanSsYQOubq6otFoOHr0qNJRXsrf358qVapQp06dPB+rbNmyHDhwgAYNGtC2bVvWrFmTJ+NotVrGjRvHl19+yeTJk5k3b5400RCiADMxMaFr167s3buXU6dO0bFjR2bMmMHPQQfQapRvHvImVMBRadVsEOSniBD8/94xnp6eNGjQgFOnTtGqVSulY4k8UL16dYoUKVKg75tJTk5m69at+Pr65tkSs/+ytrYmMDCQfv360b9/f6ZMmaLT1s3p6ekMHjyYWbNmMXfuXL7++ut8e21CiDdXs2ZNfv75Z/65dovK6maojN68w6KStMC1uFQeJut3USZA5vbFW+/ixYv4+vpy5swZ5syZw4gRI+Qiy4AZGxvToEGDAl3M/Pnnn8TGxub5ErP/MjU1ZdmyZTg5OfHVV19x9epVli1bhpmZ2RudNzk5mb59+7JlyxZWr15Nv379dJRYCJHfrqaaoyJRb5eYPU0FnLiXRHOHwkpHEW9AZmbEW0ur1bJq1SpcXFxISEjI2jtGChn3miHaAAAgAElEQVTD5+rqSnh4eIHaNPJpfn5+vPfee1SvXj3fx1apVHz55ZesW7cOPz8/2rZt+0a7hCckJNCpUyf++OMPNm/eLIWMEHpMq9Vy8r5uOpgt/dCLud7urzzuYdRNvnCx42jAeh2M+iwtcOJ+UoH9WSByRooZ8VaKjY2ld+/evP/++/To0YOjR4/K3jFvEbVaTXR0NLdu3VI6ynOePHlCQEBAvs/K/FevXr0IDg7mxIkTNG7cmOvXr+f6HA8fPsTDw4OwsDB27NiBl5eX7oMKIfLNg+R0ktMN68I/OV3Lw2SN0jHEG5BiRrx1MveOCQwM5LfffmPFihWyd8xbJnPfloLYojkwMJCEhAR8fHyUjkKTJk04dOgQiYmJqNVqIiIicvzc6OhomjZtyoULF9i9ezctWrTIw6RCiPwQ/SQt38csVtqRbw7dwtmzR56NocTrErojxYx4a2g0Gr7//nvc3NwoWbIkx48fp2fPnkrHEgooVaoUFSpUKJD3zfj5+VG3bl0qV66sdBQA3nnnHcLDw6lQoQJNmzZl27Ztr3zOtWvXcHNz4/79+1ld0oQQ+i/6SVq+XziqVCpMzS0wMs6bhgNGKohOlGJGn0kxI94Kt2/fpnXr1nz55ZeMGTOGAwcOyN4xbzm1Wl3gZmYeP35MUFCQ4kvM/qtkyZLs2bOHNm3a0LlzZxYtWvTCY//55x/c3NwAOHjwoCL3/Qgh8sbtJ2nkdEFWckI822Z9xQxPFya4OjC1ZTWWD+nOv+dOPnPcnasXWDa4M5MalWN6m5rsW7Xgmcezu2dm49fD+LpxeR5EXmfFJ95MalSeaa3fY/fSH3J9/4tGC1EJst+MPpNiRhi8zL1jzp49S3BwMNOmTZO9YwSurq4cPXqUlJQUpaNkCQgIICkpiR498m45xesqVKgQGzduZMSIEQwbNozPP/8cjebZy5q///6bJk2aYGtrS2hoKBUqVFAmrBBC57Raba5mMLZOG83hTat4r2UHvL6YgXvfTzA1t+DutUtZxyQ+fsTKYT7YV6lB+8+mYFehCjvnf8OFgyGvPL9Go2HFMB+KlChJuxGTcKhWm5AlMwhZMiPXry06MU2aAOgxac0sDFZycjLjx49n7ty5tG/fnlWrVmFnZ6d0LFFAqNVqkpKSOHXqFPXq1VM6DpCxxKxRo0aUK1dO6SjZMjY25scff6RixYqMHDmS69ev8+uvv1KoUCH27t1Lp06dqFWrFtu3b8fGxkbpuEIIHUrXQlou7pO/cCCY+l364Dnqm6e+OvyZYx7HROP9zSJcOmR8gFOvc29mejoT8fs63mn88r3e0pKTqNqoBZ3GTgdA3WMgq0f0Zt+qBTTy/ZDCNiVynDVNkzFDYyzNTPWSzMwIg3ThwgXUajWLFy9m7ty5bN++XQoZ8Yw6depgampaYJaaPXjwgF27dhW4JWbZGT58OFu3bmXnzp20aNGC1atX065dOxo1asSuXbukkBHCAKXlcubCwqoot84c43FM9AuPMStUGGdP76zfm5iaUbaGCw/+vZGjMRr6fJD1a5VKRUOfQaSnpnD5yP5cZYXcvz5RcEgxIwyKVqtl5cqVuLi48OTJE8LDw2UTTJEtCwsLnJ2dC0wTgK1bt5KWlkb37t2VjpIjnTp1Yt++fZw7d44BAwbQvHlzAgICKFxYNp8TwhBpctm9uN2ISdy5cp7v29VmUd/WhCyZyYPI688cU7Rkmed+PltaFyXxcewrz68yMqK4Q/lnvmZXvhKQcZ9NbqVLd2a9JcWMMBixsbH06tWLgQMH4uvry9GjR3F2dlY6lijAXF1dC8zMjJ+fH82aNaN06dJKR8mxgwcP8vjxY4oVK0Z4eHiB+V4KIXTPKJdXjLVad2ZMwN90HDsdazt79q9ZxBxv92fuh3lRhzIl7l8xlitivSV/dMIghIeHU6dOHYKCgli/fj3Lly+XvWPEK6nVai5dusT9+/cVzXH37l327NlTIPaWyQmtVsvkyZMZOXIkY8aM4erVqzg7O+Ph4cH69brfpVsIoTyT11jhYG1nT8MeA+n74xrGbo+gUFEb9i6fo5M8Wo3mueVoMTeuAGBTJvf3Hb7O6xMFgxQzQq9pNBqmT5+Om5sb9vb2nDhxQi/uORAFg1qtBpTfPHPTpk2oVCq6deumaI6c0Gg0jBgxgilTpjB9+nRmzpyJjY0NO3fuxMfHh169ejF9+nTpDCSEgTFWgUkOrxo16ekkxT1+5mtFitthbWdPmg47SB7y/yXr11qtlkP+yzE2MaVSA/dcncfEKGO/GaGfpJuZ0FtRUVH069ePPXv28MUXXzB58mRpuSxypWLFitja2nL48GHat2+vWA5/f388PDywtbVVLENOpKWlMXDgQNauXcuSJUv46KOPsh4zMzNj9erVODk58eWXX3L16lUWL14s/yaFMBAqlQp7SxMiE17dnjn5STzft63Fe606UrrKe5gVKszlw/uI/Oc47Z/pbvb6TMwtuBi2hw2ThuL4Xl0uHtzNhdBgmg0cSRGb3L2X2luayL21ekyKGaGXAgMDGTBgAKampgQHB9OyZUulIwk9pFKpUKvVijYBiIyM5MCBA6xYsUKxDDmRlJSEj49P1lLO7JbEqVQqJk+eTMWKFfnggw+4efMmGzduxNraWoHEQghdK13IhKiEV2+caWphidp7IJfC9/LPnkC0Gg0lHCvi9cVM1N7v6ySLkZERAxf68/u0MeyYOwXzwoVpOXgMLQaPzt15VFCmsHzoos9UWlkLIPRIcnIy48aNY968eXh6erJy5UppuSzeyNSpU5k9ezb379/HKLd3uOrAnDlzGD9+PHfu3KFYsWL5Pn5OxMXF4eXlRXh4OJs3b6Zdu3avfM7u3bvp1q0b5cqVIygoiLJly+ZDUiFEXvrnQRLbbsQrHYONXw/jTMg2phzMWQvnV+lU3orqxc11ci6R/+SeGaE3zp8/j1qt5qeffmLevHls27ZNChnxxtRqNY8ePeLixYuKjO/v70/btm0LbCFz7949WrRowdGjR/nzzz9zVMgAtGzZkoMHDxIbG4urqysnTpzI46RCiLxmX8gwF/QY6ut6W0gxIwo8rVbLihUrqFu3LomJiRw+fJhPP/1U1rcKnahfvz4qlUqRJgDXrl3j8OHDBbZpRWRkJE2aNOHGjRv89ddfuLvn7qbaGjVqEB4ejr29Pe7u7uzYsSOPkgoh8kNxc2PMjQ3rZ6+5sQobc7kc1mfypyeAjIIhTaMlKV3Dk1QNSeka0jRaxTsSxcbG0rNnTwYNGkTPnj05evQoderUUTSTMCxFixalWrVqitw3s2HDBiwtLenYsWO+j/0qly5dws3NjYSEBEJDQ197z6bSpUuzb98+mjVrRseOHVm6dKmOkwoh8lOx+DtoNelKx9AJFVCnhIV8OKrn5J6Zt5BWq+VBcjrRT9KIfpLG7SdpRCemkZbNHX0mRhldPkoXMsH+f/8VNzfOl3/44eHh9OzZkwcPHrB06VK92YND6J9BgwZx7Ngxjh8/nq/jOjs7U6VKFTZs2JCv477KyZMnadOmDTY2NuzatQtHR8c3Pmd6ejojRoxg0aJFjB8/nu+++06Re5SEELkXGxvL6tWrWbx4MTEJyYwJ+FvpSDrzUXUbbMyz37xT6AdZJPgWeZiczvF7SZy8n0RyekYNawQv7UqSpoHIhLRnupeYG6uoXcICZ1uLPHkDSE9PZ+bMmUycOJH69euzZ88eKlasqPNxhMjk6urK6tWrSUhIoHDhwvky5oULFzhx4gQTJ07Ml/Fy6uDBg3h6elK5cmV27Nihs/vSjI2NWbBgAU5OTowePZpr166xatUqLCwsdHJ+IYTunTp1ikWLFrF27VpSUlLo2rUrQ4cOJcrKlBtxqejzp+EqoIKVqRQyBkCKGQOn0Wq58jiFozFJXI9LRQXPvPm8qr1idsclp2v5+24iR+4mUsHKlLp2FlSyNsNIB7M1UVFR9O3bl71798reMSLfqNVq0tPTOXr0KE2aNMmXMf39/bGyssrxDfX54c8//6RLly40aNCAgIAAnbdUVqlUjBo1ivLly9OnTx9atWrFH3/8QYkSJXQ6jhDi9aWkpLBlyxYWLVpEaGgoZcqUYdy4cXz44YeULl0agEuxyVyPS1U46ZvRAnXtLJWOIXRAihkDdis+lcAbcTxK0ZBZZujqU5TM89yIS+V6XCrFzIzwLG+FY5HXLzy2b9/OgAEDMDMzIyQkhBYtWugmrBCvUKNGDQoXLszhw4fzpZjRarX4+fnh5eWFpWXB+GG6YcMG+vTpQ5s2bbLu5ckr3bp1w8HBgY4dO9KwYUOCgoKoXLlyno0nhHi1W7dusXTpUpYtW8adO3do3rw5GzduxMvL67kPFStZm1HMzIjYFI1ezs6ogKJmRjhZy4elhkAWLBugVI2WkMh41l2KJTYlY04lr95sMs8bm6Jh3aVYQiLjSdXkbrSkpCRGjBiRdWFz6tQpKWREvjI2NqZ+/fr51gTgzJkznDt3rsB0MVu2bBm+vr706NGDLVu25EuBlblZqUqlomHDhhw6dCjPxxRCPEur1bJ79266du1KxYoVmTdvHt27d+eff/5hz549dO/ePdvVEUYqFZ7lrfSykIGMa5cO5a10sqJEKE+KGQNzKz6VX8495GhMEpB3Rcx/ZY5zNCaJX8495FZ8zqafM/eOWbJkCfPnzycgIABbW9u8CyrEC2ReXOcHPz8/bGxs8PDwyJfxXmbmzJkMHjyYTz75hDVr1uTrss5KlSoRFhbGu+++S/Pmzdm0aVO+jS3E2yw2Npb58+dTrVo1WrVqxcWLF1mwYAH//vsvCxcupHr16q88h2MRU+rZWaBv5YAKqG9nQdk3WEkiChYpZgxIREwi6y7F8ljBaV8t8Ph/szQRMYkvPk6rZfny5dStW5fk5GSOHDnC8OHDpT2iUIyrqytRUVFERkbm6TiZS8y6du2KmZlZno71qhzjx49n3LhxTJw4kQULFijSXaxEiRIEBwfTpUsXvL29+eGHHxRvCS+EoTp9+jQff/wxDg4OfP7559SqVYu//vqL06dPM2TIEKysrHJ1vqZlCmNtZqQ3BY0KsDYzokmZ/Gn0IvKHFDMGQKvVcjD6CSGRCRm/VzrP//4fEpnAwegnz12YPHr0iJ49e/LBBx/Qq1cvIiIiqF27dv4HFeIprq6uAHk+O3P06FGuXr2q6BKz9PR0Pv74Y2bMmMGPP/7IN9/8H3t3HhdV+T1w/DMz7JuCIrgBriiuCe77lrnlruWaWZi7ZFa2qO2/ytxBU9NcSlwxRTPTNDWX0rQY3DcQUdxQkB3m/v4w+EqQog7cmeG8Xy9eNcOd5x5kmXvu85zzfKjqjQQ7Ozu+++47pkyZwuTJkxkzZgyZmZmqxSOEJUlPTyc0NJSWLVtSt25dtmzZwuTJk4mKimLt2rW0bt36iX//rbUaupnRcrPs5WXWWnNJv0RBSAMAC3AgLoV9V5PVDiNf2XE193QA4ODBgwwcOJD4+HjWrFlD//791QxPiBxly5bFy8uLw4cP07dv30I7T2hoKO7u7rRp06bQzvEw6enpDB06lHXr1rF06VKGDx+uShz/ptVq+fTTT6lUqRKjRo0iOjqa0NBQnJyc1A5NCLMUExPD119/nVPQ36ZNm/8s6H8aFZ2s6VDBMeeGqinrUMHxqRoVCdMkyYyZO3LddBOZbPuuJmOjUfj5mzlMnTqVhg0bsnv3bnx8fNQOTYhcCrtuxmAwsGbNGvr164eVVdH/+U1OTqZv377s2rWL9evX06tXryKP4VFeffVVvLy86Nu3L61atSI8PJxy5cqpHZYQZkFRFH755RdCQkL44YcfsLe3Z9iwYYwaNYpatWoV2nkD3O1Jy1JM+nqkZVkHAqQVs0WSZWZm7PK9DHZeMf07IQA7rySzeP0W3n77bfbu3SuJjDBJTZo04ciRI2RkFM7+CQcPHiQmJoYBAwYUyvgPc+fOHZ599ln27t3L1q1bTTKRydapUyf279/P9evXadKkCXq9Xu2QhDBpd+/eZd68efj5+dGhQwdOnTrF3LlziY2NZf78+YWayGRr5mFPy7IOhX6eJ9GqrAPNPCSRsVQaRSotzVKGQWHJyXhVi/0fhyErEzsMjGtQVtaqCpN14MABmjdvztGjR2nQoIHRxx83bhwbN27k8uXLRVpsHxcXR6dOnYiOjubHH3/MqQ8ydTExMXTt2pVLly6xYcMGOnTooHZIQpiUiIgIgoODWbVqFWlpafTq1YsxY8bQqlUr1ergjtxIYWdMUp5Nuota9vk7VHCUGRkLJzMzZurX2CSzSWQAtDorMnQ27I01j5kkUTw988wzWFtbF8pSs6ysLNatW8eAAQOKNJGJioqiRYsWXL9+nb1795pNIgNQoUIF9u3bR9OmTencuTPLli1TOyQhVJdd0N+qVSvq1q3L5s2bjVbQbwwB7vYMqlZC1S5n2V3LBlUrIYlMMSDJjBm6fC+DIzdSzSaRyaYAf9xILfAeNEIUNXt7e+rVq8fhw4eNPvavv/5KXFxckS4xO3nyJM2bN8dgMLB//35q165dZOc2FhcXF7Zs2cLw4cN5+eWXmTp1qrRuFsVSTEwMU6dOxdvbmxdffBGdTsfatWuJiopi2rRpJlVbVtHJmldquuLvbgdQZElN9nkC3O14paarFPsXE9IAwMwYFIWtUYmqT98+KQ2wNSqRQD9X2XlXmKQmTZqwY8cOo48bGhqKj48PjRo1MvrY+Tly5AjPPfccZcuWZceOHZQtW7ZIzlsYrK2t+frrr6lcuTJTpkzh4sWLfPPNN6ru0yNEUVAUhd27dxMcHJxT0D906FBGjx5dJHUwT8Naq6FDBSd8S9qyNSqRO+mGQrt2yR63hI2Wrt7OksQUMzIzY2bOJ6Rzx4yWl/2bAtxJN3AhQWZnhGlq0qQJZ86c4fbt20YbMyMjgw0bNjBgwIAiWf6xZ88e2rZtS7Vq1fj111/NOpHJptFoePvtt1m9ejVr166lU6dOxMfHqx2WEIXiwYL+9u3b5yroDw4ONvlE5kEVnawJ9HOlb2UXfJzvJxnG+iuYPY6PszV9K7sQ6CezMcWRzMyYmaM3Us12ViabBjh6I4WqJeSuqjA92TUlv//+O88995xRxty5cye3b98uko0yt2zZQr9+/WjZsiVhYWEWt0/LCy+8QPny5enZsyfNmzdn27Zt0h1RWIyIiAhCQkJYuXIlqamp9O7dmwULFqheB/O0tBoNVUvYULWEDfFpWRy/mcrxW6mkZSn/fB4MBbiwefA4W52G+qXsqF/aDldbXSFGL0yddDMzI/FpWXx9wnLuRI70c5U/QMLkKIqCu7s7Y8eOZfr06UYZ86WXXuLQoUOcPHmyUC9IVq1axUsvvUSPHj34/vvvsbW1LbRzqe306dN06dKFe/fuER4eTsOGDdUOSYgnkp6eTlhYGMHBwezbt4+yZcsSGBhIYGCgSdXBGJuiKMSnGbiWnMm1lExikzK4lpJJpiHvsVZa8LS3opyjNZ72Vng6WOFqqzXrBE8Yj8zMmJFjN81/ViabBjh+M5W25R3VDkWIXDQaDY0bNzZaE4DU1FTCwsKYOHFiob7xzp8/n3HjxjF8+HAWLVqkyqacRcnX15dDhw7x/PPP07p1a1avXk2PHj3UDkuIArty5Qpff/01ixcv5tq1a7Ru3Zq1a9fSs2dPrK0tf6mURqPBzU6Hm50OP+7feFEUBYMCmYpClgF0WrDSaNBqkMRF/CepmTETiqLw1y3T6WA2pYE7Oxd+8cSvV4Djt1KlK5EwSU2aNOHw4cNG+fncvn07CQkJhdbFTFEUPvroI8aNG8frr7/ON998Y/GJTDZ3d3d++eUXunTpQq9evZg7d67aIQnxUNkF/X379sXb25tZs2bRu3dv9Ho9e/bsoV+/fsUikfkvGo0GnVaDrU6Lg7UWW50WnVYjiYx4KElmzMTttKyctaX/FvXX7+xc+AUpiXeLOKqnk5Z1f4pZCFPTuHFj4uPjOXv27FOPtWbNGurWrYufn58RIsvNYDDw+uuvM3XqVD7++GNmzJhR7N707e3tWbt2La+//joTJkxg4sSJZGVlqR2WELkkJCQwf/58atWqRbt27Th58iRz5szhypUrZlfQL4SpkWTGTFxLzvzPz0X99Qe7Fn1JqpklM/Dwr0sItWS3T37azTOTkpLYvHlzoczKZGZmMmLECObMmUNwcDDvvvtusUtksmm1WmbMmMH8+fOZN28effv2JTk5We2whECv1zNq1CjKlSvHxIkTqVWrFrt370av1zNmzBhcXFzUDlEIsyfJjJm4lpz51N8sg8FARlqqUeIxBq0GrqVIMiNMT8mSJalZs+ZTJzNbt24lOTnZ6MlMamoq/fr1Y9WqVaxatYrRo0cbdXxzNWbMGH744Qd27NhBmzZtiIuLUzskUQylp6ezZs0aWrduTZ06dfjhhx944403iIqKYt26dbRp06bY3ngQojAUj4XVFuBqcib5LcjaufALdi36EoAvuvnnPP9m+FG+6OZPk/4v41W3IXuWzuZm9HkGfv4Ntdp2Ye+KYCJ/2cqNqHNkpKZQplJ12rw8gTodns81fmZ6GtvnfsTxbevJSE+lSkALekzJv1bm7vWr/BzyGaf37yQl8S6lKlai5eBRBPQclO/xBgVik2S/GWGajNEEIDQ0lICAAKpUqWKkqCAxMZGePXty4MABNm3aRNeuXY02tiXo1q0be/fupVu3bjRt2pRt27ZRo0YNtcMSxcCVK1dYtGgRixYtKpYF/UKoRZIZM6Aoyn/OYNRq15Wb0ef5a/tGuk76CMeSpQBwdL3/3wt/7Cfi5800HTACh5JuuJarCMCB1Yuo2aoT9Tv3ISsjg792hPH9myMYNuc7arR8Nmf8DR8GcXzbOup17oN33Yac/2Mf344fmCeOxFvXWTDsOdBoaDJgBE6upTj92y42fDiR1KREWgx6Ld/4r6VkoiiK3KUSJqdJkyasXLmS5ORkHBwcHvv1CQkJbNu2jU8++cRoMd26dYsuXbpw8uRJtm/fTuvWrY02tiXx9/fn0KFDdO3alaZNm7Jp0yb5txKFQlEU9uzZQ3BwMJs2bcLe3p4hQ4YwevRoateurXZ4QhQLksyYgSyFfPuuA5StXotyNery1/aN1GrbBddyXrk+fyPqHBPW7sWjsm+u5yeFHcLazj7ncdMBI5g3qD37Vy3MSWauntFzfNs6mvQbnjMb03TACELffY1rZyNzjbcj+FMMWVlMWLsXx5JuADTu+xKrpwSy6+svadxnWK7zZcs03J+h0UkuI0xM48aNycrK4s8//6RFixaP/foffviBtLQ0+vfvb5R4YmNjefbZZ4mLi2PPnj00aNDAKONaKm9vb/bv30+fPn3o2LEjy5YtY9Cg/GeJhXhcCQkJrFixgpCQEE6ePEnNmjWZM2cOQ4YMkToYIYqY1MyYgcynaA9bqUGzPIkMkCuxSEm4Q+q9BHyeacKVU3/nPH96/04Amr0YmOu1zQeOzPVYURT0u8Kp2aoTKApJ8bdyPqo3bUvqvYRc4/7b03x9QhSW2rVr4+DgkKtuRlEUMg0KqVkGkjMMpGYZyDQo+bZwDg0NpXnz5lSsWPGpYzl//jzNmzcnISGBffv2SSJTQCVLluTHH39k0KBBDB48mI8//ljawYun8l8F/ZGRkVLQL4RKZGbGDBieonuxW3mvfJ8/uXcHu5fM5OoZPZnpaTnPP7jcK/5qDBqtFrcKPrle6+5dNdfjpPibpCbe5feNK/h944p8z5d0++Z/xphlAHSP+EKEKGI6nY42XXpwJtHArph7XP1nl+qH7U5d1uH+ztR26ff4+eefmTlz5lPH8ffff9OpUydcXFz4+eef8fLK/3da5M/GxoalS5dSqVIl3n//fS5evMjChQulhkEUWEZGBmFhYQQHB7N37148PT2ZNGkSgYGBlC9fXu3whCj2JJkxA9qnmD+zsrXL89zFPw+yMmgwPg2a0uPtz3F290BnZc2Rzav568cNj30O5Z9sq36Xfvh3z79rk2e1/95jQyfzg8KExKdlcexmKn/dSqXlO/c3YTx6IzXfBhzZMg0Qk5RJbNL/GnVM2XkSb09n4tOycLV9smz94MGDdOnShUqVKrF9+3bKlCnzROMUdxqNhqlTp+Lj48Mrr7xCdHQ069evp0SJEmqHJkzYvwv6W7VqxZo1a+jVq5ckw0KYEElmzIDVI4rjH7d4Xr8rHCtbO14OXouVjW3O80c2r851nGvZCigGA7djLuHu87/ZmBtR53Id5+haGltHJxRDFlUbP36R7aO+PiEKm0FROJ+QztEbqVxKzEADPLgYqaCTow8eZ+9cghNJEHkiHh9na/zd7ajiYoO2gD/vO3bsoFevXvj7+7Nlyxa58DaCoUOHUqFCBXr37k2LFi3Ytm2bUZYBCsuRXdAfEhJCWFiYFPQLYQbknrgZ0GnuL2P5Lzb29zstpRRw00ytTgdoMDywS3Z8bDQndv+Y67jqzdsD9zufPei377/OM17tdt3Q7wrn2rmTec53L/6/l5hZae/vNyOEWi7fy2DRiXg2XEgkKvF+q3BjVVVkjxOVmMGGC4ksOhHP5XuPbke+fv16unXrRps2bdi+fbskMkbUrl07Dhw4QGJiIo0bN+bYsWNqhyRMQEJCAsHBwdSuXZt27doRGRnJnDlzuHLlCiEhIZLICGHCZGbGDGg0GjztrYhJyr89c7ma9YD7HcXqPtsLnbU1NVs9m++xADVadGT/qgUsGzuA+p37cO/2TQ6tXUqpipVydSkr51uHes/15tC6ZaTeS8SrXkPO/76XW5cv5Rmz0/j3OX/kN0KGPkfDXoPxqOxLckI8saf+5tzhvUzdczbfWDztraQts1BFhkHh19gkjtxIJfsnsLBKw7PHvZtu4Luzdwlwt6N1OXfbevMAACAASURBVEes88nkly5dyquvvkr//v1Zvnw5NjY2hRRV8eXn58ehQ4fo3r07LVu2ZO3atXTp0kXtsIQK9Ho9ISEhrFy5kpSUFHr27Mn8+fNlY0shzIjMzJiJsg5W//nNqljrGTqOfpurZyJZP30coVMCSYq/9Z9jVWnUkj5TZ5N46zrhM97jr+0beW78+9Rqm/fNvM+0OTR78VXOHPyF7XM+wJCZyUtzv89znHOpMoxZ+RP+z79A5O6tbP78bQ6sXkTy3Ts8N35qvnFoNVDOUdYdi6J3+V4GS07Gc/RGKlB4Scy/ZZ/n6I1UlpzMO0vz1VdfMWLECAIDA1m1apUkMoXI09OTPXv20L59e7p3787ChQvVDkkUkYyMDNauXUvr1q2pU6cOYWFhvP7660RFRbF+/Xratm0riYwQZkSjSJ9KsxB5O5UtUffUDsPonvd2xs/N9tEHCmEkR26ksDMmKU9dTFHLPn+HCo74l7bjvffe49NPP+Wdd97h448/loupIpKVlUVQUBDz5s1j8uTJ/N///R/ap+m6IkzWlStXWLx4MYsWLeLq1au0atWKMWPG0LNnT7lxIIQZk2VmZsLTwTK/VZb6dQnToygKB+JS2Hc1+f5jteP55787Y5JYv2kzn3/6KV9++SVvvPGGqnEVNzqdjrlz51K5cmVef/11Ll26xPLly7G3z7vJrzA/iqLw66+/EhwcTFhYGHZ2dgwdOpRRo0ZRp04dtcMTQhiBzMyYCUVRmB1xm7Qsy/l22eo0TKzjJnegRZH47VpyTiJjihxiTzK+a0u1wyjWNm7cyKBBg2jQoAE//PADpUuXVjsk8YQSEhJYuXIlISEhnDhxgpo1azJ69GiGDh0qG1sKYWFkLt1MaDQa6pWyw1Iu+zVA/VJ2ksiIInHkeopJJzIAyeVqcuRGitphFGu9e/dmz549nD17lqZNm3L2bP6NS4TpioyMZMyYMZQvX54JEyZQs2ZNfvnlFyIjIxk7dqwkMkJYIElmzMgzpe1UXxpjLApQv3TeDT2FMLbL9zLYeSVJ7TAKZGdMUoFaN4vC07hxYw4dOoROp6Np06b89ttvaockHiG7oL9NmzbUrl2bDRs2EBQUxKVLl6SgX4hiQJIZM+Jqq8PH2drsZ2c0QCVn6yfeFV2IgsowKIRHJZrN74wGCI9KJMNgKbctzFPlypU5cOAAtWrVon379qxdu1btkEQ+YmNjmT59Ot7e3gwYMABFUQgNDSU6OpoPP/yQChUqqB2iEKIISDJjZvzdzX92RgH83aW4VhS+X2OTSEg3mM3vjAIkpBvYG2seM0mWzM3NjR07dtCnTx8GDBjAF198gZSYqk9RFPbs2UO/fv3w8vJixowZ9OjRg7///ptff/2VAQMGSGcyIYoZaSVlZqq42FDSRstdM7pAe5AGKGGjpbKL7C8jCtflexkc+WcfGXOiAH/cSKV6SVsqOsnviZpsbW1ZtWoVlStX5q233uLixYvMmzcPK6uie+tUFIUsBTIVBYMBtFqw0mjQaShWS6cSExNzCvojIyOpUaMGs2fPZsiQIZQoUULt8IQQKpJuZmbo8r0Mvjt7V+0wntjgaiWoIBdpohAZFIVFJ+LNPukP9HNFW4wuWE3ZN998w8iRI3n22WdZs2YNzs7ORj+HoijcTsviWnIm15IzuZqcybWUTDINeY+10oKnvRVlHazw/OfDzVZncQlOZGQkISEhrFixgpSUFHr27Mno0aOlDkYIkUOSGTO1M+YeR2+kmtWFmgYIcLejfQUntUMRFu7s3TQ2XEhUO4yn1reyC1VLyJIZU7Fjxw769u1LlSpVCA8Pp3z58kYZNz4ti2M3U/nrVmpO+30tkE8Ok8eDx9nq7ne9fKa0nVnXJGZkZLBp0yZCQkLYs2cPHh4eBAYGEhgYKHUwQog8JJkxUxkGhSUn482mHkADuNhoeaWmK9ZauZsmClfoubtEJWaYxe/Gf9EAPs7WDKgqS2hMyd9//03Xrl0B2Lp1K3Xr1n2icQyKwvmEdI7eSOVSYgYajLORa/Y4Ps7W+LvbUcXFxmxm92JjY1m0aBGLFi3i6tWrtGzZkjFjxtCrVy+pgxFC/CdJZsyYuS03G1SthNQAiEIXn5bF1yfi1Q7DaEb6uZr1XXZLdOXKFbp168b58+dZv349zz777GO9/vK9DLZGJXIn3WC0JObfssctaaOlq7ezyf7tVRSFvXv3EhwcTFhYGLa2tgwZMoTRo0dTp04dtcMTQpgB6WZmxio6WdOhgqPaYRRIhwqOJvtmKizLsZupZtOK+VE0wPGb5tfEwNKVL1+evXv30qJFC7p27crSpUsL9LoMg8LOmHt8d/Yud9PvLw4rrLuJ2ePeTTfw3dm77Iy5Z1ItvxMTEwkJCaFOnTq0adOGiIgIZs6cyZUrV1iwYIEkMkKIApNkxswFuNvTsqyD2mE8VMuyDgRIK2ZRBBRF4a9bplVLNqWBOzsXfvFEr1WA47dSpSWwCXJ2dmbz5s2MGDGCESNG8N577z30+3T5XgZLTsZz9J8Oe0X1Hc0+z9EbqSw5Ga/6pqwnTpxg7NixlC9fnvHjx+Pr68uuXbs4ceIE48aNk85kQojHJq2ZLUAzj/uJwr6rySpHklersg409ZBERhSN22lZOQXUliItSyE+zYCbnSw1MzVWVlYsWLAgV+vmpUuXYmtrm+u4IzdS2BmTVGhLygoiew+j787epUMFxyK9wZSRkcEPP/xAcHBwTkH/xIkTpaBfCGEUksxYAI1GQ3NPB2x1GtXfMOF/a7WL+g1TiGvJmWqHUCiuJWdKMmOiNBoNb775Jj4+PgwdOpSYmBjCwsJwc3NDURQOxKXk3GhSO83OPv/OmCTSshSaedgXanvjq1ev5hT0x8bG0qJFC1avXk3v3r2loF8IYTSSzFiQAHd7POytCI9KVK3LWXbXsm4mXHAqLNe15MwCt7R9mPSUJGzsTaMeTauBaymZ+GH76IOFavr370+5cuXo0aMHzZo1Y9u2bVx18DTJGXP430x+c0/jLlPOr6B/8ODBjB49+ok7vwkhxMNIzYyFqehkzSs1XfF3twMoskLo7PMEuNvxSk1XSWSEKq4mZ+abyNy9fpUNH0zg02dr817j8nzRzZ9Nn04mMyOdo5tXM6WBOxeO/samz97k4/Y1+ey5egCsmzaWz7s2yDPezoVfMKWBe67nMtPTCJ/xHh+3q8G0Fj6smDiYu3Gx+cZ59/pV1k8fzycd/HivcXlm9W3BkU3f5XusQYHYJHXrHETBtGjRgkOHDpGZmcmoz+abbCKTbd/VZI7cSDHKWA8r6F+4cKEkMkKIQiMzMxbIWquhQwUnfEvaFnr7T0NWJlqdFSVMvP2nsHyKonAtJe8ys4Qb1wgZ8iwpiQk06j0Ed59qJNy4in7nFjJS/3ch98Nnb+HoWop2r04iI/XxL0I3fBjE8W3rqNe5D951G3L+j318O35gnuMSb11nwbDnQKOhyYAROLmW4vRvu9jw4URSkxJpMei1PK+5lpKJoiiy47kZqFatGmF7DhJ+Xe1ICmZnTBIe9lZP/Lf7xIkThISEsGLFCpKTk+nRowdz5syhXbt28vMqhCgSksxYsIpO1gT6uXIhIYOjN1K4aOyN2RSFc4f30raKB4M6tTKbjdmEZcpSIDOfaZnt8z4i8dZ1Rq/4iQp+9XOe7zjq7VzdpxxcSvLKwo1odY9fm3L1jJ7j29bRpN9weky537ms6YARhL77GtfORuY6dkfwpxiyspiwdi+OJd0AaNz3JVZPCWTX11/SuM8wrO1y15plGu7P0OjkV8zkZRgU9t/VodWYz4bG4VGJj7WhcX4F/RMmTGDkyJFS0C+EKHKyzMzCaTUaqpawYUDVEoz0c6VRGXtsH7giyspIhwK0fX3wPc5Wp6FRGXtG1nLjbOg8Fn/6viQyQnWZ+fwcGwwGTuz5kZqtOuVKZLI9eOe4Ye8hT5TIAJzevxOAZi8G5nq++cCRuR4rioJ+Vzg1W3UCRSEp/lbOR/WmbUm9l8CVU3/ne478vj5hen6NTVKtZvFJZHc52xub9Mhjr169yocffoiPjw/9+vUjMzOT1atXEx0dzUcffSSJjBBCFTIzU4y42upoW96RNuUciE8zsHrbz2zb/zv9A8dyI82Q711tKy142ltRztEaT3srPB2scLXV5lwEBgUF0adPH44ePYq/v38Rf0VC/I8hn5/fpPibpN1LxKNKjUe+3rWc1xOfO/5qDBqtFrcKPrmed/eumiee1MS7/L5xBb9vXJHvWEm3b+b7fJYBkIZmJu3yvQyO3DC/TU4V4I8bqVQvaZtnuVl2QX9ISAgbN27MKegfNWoU9erVUydgIYR4gCQzxZBGo8HNTse5fT9xdutWhs2ciqIoGJT7d3+zDKDTgpVGg1bDQ9c99+jRg0qVKjFr1ixWrVpVhF+FELlpn3Ke+d9LuwA0/9FCw2DIeqJzKP9kXPW79MO/+4B8j/Gs5pfv83//dYwKnh6UKVNG2tqaIIOisDUqUfXW+E9KA2yNSiTQzxWtRkNiYiKrVq0iJCQEvV6Pr68vX331FcOGDZONLYUQJkWSmWIsIiKC2rVrA/cTFp0GdGge6+6vTqdj/PjxTJ48mc8//5zy5csXUrRCPJxVPkm3o2tpbJ2ciTt/6onGtHMpSWri3TzP37kak+uxa9kKKAYDt2Mu4e7zv9mYG1Hn8sbj6IRiyKJq49aPFUuLpk3Jyrzf1axUqVJ4eHjg6emZ8/Hg4+z/L126NLonXDonHs/5hHTupD9tU3D1KMCddAN79OfZ+PVsVqxYQVJSEj169GD27NlS0C+EMFmSzBRjer2ekSNHPvrAR3j55ZeZOnUqwcHBfPrpp0aITIjHp9PcXxb54HJJrVaLX5vOHN+2npgTx/PUzSiPqEMpVcGH1HsJXD0TSdnqtYD73dEid2/NdVz15u35af4nHFi9KKcBAMBv33+d6zitTkftdt04vn0j186dxLNqzVyfvxd/EyfX0nm/NhQOHz7E9bg4rl27lvMRFxfHlStXOHr0KNeuXePu3dyJl1arpUyZMvkmOv9+7OrqKherT+HojVSznZXJZsjKYtWBP9m2fj0TJkwgMDCQihUrqh2WEEI8lCQzxdSNGzeIi4vLmZl5Gi4uLrzyyit8/fXXvPfeezg4GHcTNiEKQqPR4GlvRUxS7vbMnca+x7lDe1j0Sg8a9R5CmUrVSbgZh37nZkYuDX/omHU79WL73A9Z9cZLNHvhFTJSUzi0/ltKe1Uh9oFC/XK+daj3XG8OrVtG6r1EvOo15Pzve7l1+VKeMTuNf5/zR34jZOhzNOw1GI/KviQnxBN76m/OHd7L1D1n87ymrKM1/tXz7nfzb6mpqcT9k/DE5ZP4nD17ln379nHt2jWSk3O3n7a2tn7obM+Dj52cnCTxeUB8WhaXEs1/LyCtTkf1pm35v3OXKONkp3Y4QghRIJLMFFN6vR7AKMkMwLhx45gzZw4rVqzgtdfy7pMhRFEo62BFbFLujTNLlCnL6OU/sWPBZxz/cQNpSYm4lClL9Wbt8q2TeZBjSTcGf7WcrTOn8uOcD3Er70Wnse9xK/pCrmQGoM+0OTi6luL4jxs4sWcbVRq25KW53/N/nXMXSTuXKsOYlT+xa9EMIndv5fC6ZTiUdKVM5Ro8N35qnhi0GijnWLA9QOzs7PD29sbb2/uRx967dy9XovPv///rr79yHqenp+d6rYODQ4Fmezw8PLC3f/i/sSU4dtP8Z2WyaTQaIu9mUcZJ7UiEEKJgNMqj1lkIizRv3jzeeOMNkpKSsLIyTk7bp08fIiMjOXHiBNqnrcYW4glE3k5lS9Q9tcMwuue9nfFzs1Xl3IqicOfOnf+c7Xnw8fXr1zH8q62ci4tLgWZ7ypQpg7W16W+6++233zJ8+HAuXryIj48PiqIwO+I2aVmW81Zqq9MwsY6bzL4JIcyCzMwUUxEREdSsWdNoiQzcb9PcsmVLtm/fTpcuXYw2rhAF5elgmX/S1Py6NBoNrq6uuLq6UrNmzYcem5WVxa1btx6a+ERGRhIXF8fNm3lbUJcqVeqRTQ08PT0pVaqUyTQ2uJ2WVaBEJu7CaSJ2/ID/8y88VRvwwpaekszO5fOp0qcTzz/bXu1whBDikSzznV88kl6vN9oSs2zNmzcnICCAWbNmSTIjVOFmq8NWp7G4u+SutuYx06nT6ShTpgxlypR55LEZGRlcv379P5e5Xb58mT/++IO4uLg8jQ10Oh3u7u6PnO3x9PSkZMmSRp1hGDJkCC+88AK2tvdnyq4lZz7iFfddv3CaXYu+pHJAc5NOZjJSU9i16Et8S9pIMiOEMAuSzBRDiqKg1+vp0aOHUcfVaDQEBQUxaNCgQkmWhHgUjUZDvVJ2/HE9xTLqF4D6pewscrmPtbU15cuXL1A795SUFOLi4v5ztufMmTPs27ePq1evkpKSkuu1NjY2BarvyW5s8Cg6nS7XrNC15Ey0gFpNmdNTkrCxdzT6uPcyzLfNtBCieJGamWIoKioKHx8fwsPD6dq1q1HHzsjIoFKlSjz33HMsWbLEqGML8Sjx8fEsWL4KbesX1Q7FaEb6ueJqaxpLqkydoig5jQ3ym+359+OMjNwdyBwcHB65zG3fvn1Mnjw5p2bGvYIXpSrVoM3w8WydOZVrZ0/g7O5Jh5GTadDt/saoRzevZv308XnifXXRJioHNAfg9G872fPNbK6cikCj1VCpQVM6T5iGR5UaOcevmzYW/c4tjA/dw+YvpnDp2CGqNmrFkJkrMBgMHFi9iD/CVnE75hJ2Ti74tenMc+Pfx96lZM4YMSeOs2P+J1w59TfpKck4lypD5YDm9J0+l/jYaL7o5p8nzmnTpjF9+nRjfIuEEMLoJJkphrZu3Uq3bt24dOlSgboePa7/+7//Y/r06URHRxdouYkQT+vSpUvMmjWLb775hszMTN5cuxvHilVRMN8ZDQ3g42zNgKqy23phUBSF+Pj4AiU++TU2cHZ2ply5csTdTcLazo6UxLsE9BiEi7snR374nqunI5iwdi8eVWpwO+YSv61exIHVi2nz8kTKVKoOQNUmrXEuVYY/w9eyftpYqjVti2+LjmSkpnB4/bekJN5l/OpfcpalrZs2lr9/2oRLmbL4PNMYrzoNsbazp0G3/mz8KIijW0Lx7/4i5WvWIz42ioNrvqFMZV9eW7oVnbU1927fYGbvZji6lqJhryHYO7sQH3uZyF+2ErThN9JTkji2dR2bPp1M7XZdefOlAWg0GurWrUvdunWL/HskhBAFIcvMiiG9Xo+zszNeXoWzbjswMJCPPvqIhQsXMnVq3lazQhjL0aNH+fLLL1m3bh0lS5bk9ddfZ+zYsdy1LcGGC4lqh/dUFMDf3fLbGqtFo9Hg5uaGm5sbfn5+Dz02KyuLmzdvEhcXx4oVK/jqq68YPXo0GVkGln4Xyo1L5whcsplKDZoCUOfZHnzeuT5HN6+mS9AHuFXwweeZJhxYvZhqTdrkzMYApCXfY8uX7xDQczC935+Z83yD7gOY2aspu7+Znev5zPQ06nR8nufGvZ/z3KVjh/gjbBUDPllI/c59cp6vHNCCZWMHELFzM/U79yHqrz9ISbjDyyHrcm0g++yYdwCwsXekdvvubPp0Mh5V/Rg4aDA6rfneEBBCFA/mUVUqjCoiIoLatWsX2jp8Nzc3hg0bRkhICGlpaYVyDlF8GQwGtm3bRtu2bQkICOCPP/5g7ty5REdH8+GHH1KmTBmquNhQ0kZrtvMyGqCkjZbKLqbfqrg40Ol0eHh4ULdu3ZxawNdee41P/u//AChT2TcnkQFwci1Nae+q3I6JeuTY5w79SmriXeo915uk+Fs5H1qtjoq1G3DhyP48r2nSd3iuxxE7N2Pn5ELVJq1zjVG+Zj1sHBxzxrB3vj/Ld2rvDrIyHr3JZ6Ys3BBCmAGZmSmG9Ho9jRs3LtRzTJgwgQULFrB69WpeeumlQj2XKB7S0tL4/vvvmTFjBidOnKBRo0asW7eOXr165WnTq9Vo6OrtzHdn7/7HaKZNAbp5O6O1wMJ/S5K98qykZ94mBvYuJUhJvPPIMW5GXwBgyche+X7e1sk512OtlRUuHuXyjJF6L4FP2uffOvve7fttsCv5N6N2+27sWvQl+79fSGX/5vi16Uz9zn2wssm7j1GWAZByLSGEiZNkppjJzMzk5MmTjBgxolDP4+vrS9euXZk1axbDhg2zyG5MomjcuXOHhQsXMnfuXK5evUr37t1ZuHAhLVq0eOjPVUUnawLc7Th6I9WsOptpgAB3Oyo4yayMqcveG1ijzf+KvyAlqYpyPyPq/1EIzqXz1hhqdbnfpq2sbfJsSqwYDDi5uTPgkwX5nsPRtdT9ODUaBn25jOi/j3By70+cPbibDR9MYP+qBYxa/iO2Drm7uelk7YYQwgxIMlPMnD17lvT09CJpmzxx4kQ6duzI7t27adeuXaGfT1iWqKgoZs+ezZIlS0hPT2fo0KFMmjSJGjVqPPrF/2hdzpGzd9NJSDeYRUKjAVxstLQqZ/xWu8L4rB7jJs1/Jd6lKvgA4OhWmqqNWz9RHKUq+HD+971412uEtd2j66y86gbgVTeATmPf5fiPG1jz7mv8/VMYDXsNgQfifJyvTwgh1CL3XYoZvV4PUCTJTPv27alTpw6zZs0q9HMJy3Hs2DEGDhxIlSpVWL58ORMmTCAqKorFixc/ViIDYK3V0M3b2SwSGfjf8jJrKbo2CzoNBa7LsrZzACAlMffSx2pN22Hr5MyepbPzrWO5F3/zkWPXebYHhqwsfln8VZ7PZWVm5pwzJeFOntmisr733wsy09MBsPknGUq7dxf5MRRCmAOZmSlm9Ho9Hh4euLu7F/q5NBoNEydOZMSIEZw5c4bq1asX+jmFeVIUhZ9++okZM2awa9cufHx8mDVrFsOHDy/QRoYPU9HJmg4VHNkZk2SkaAtPhwqOVJTlZWZDo9EUeClWOd/aaHU6fv12Hqn3ErCysaVKwxY4ubnTc8qXrH1/NPMGtafesz1xdC3NnWsxnNr/M971GtHj7c8fOnZl/+Y06jOMPcvmEHtGT7UmbdBZWXMz+gL6nZvpNvkT6nR4nqNbQjm0bhm12nalVAUf0pLv8UfYSmydnPFt0QEAazt7ylT2JeLnH1iwoB5ubm7Url1bNkEWQpgsSWaKmexOZkVl4MCBTJkyhTlz5hAcHFxk5xXmIT09ndWrVzNjxgz0ej0BAQGsWbOG3r17Y2VlvD9PAe72pGUp7LuabLQxja1lWQcCpBWz2dFpNAWanXEu7UHPd75kz7K5bPxwIoasLF5dtAknN3fqd+6Di7sne5bNYe+KYDIz0nFx96TSM00IeH5ggeLo9e4Mytesx+8blrMj+FO0Oh2uZb2o36Uf3vUaAVDZvxkxkcf4+6cw7t2+gZ2TCxVqPcOAjxfiVv5/e471nTqLnTPfJSgoiPT0dKZNmybJjBDCZMmmmcVM9erVcwrzi8r06dP58ssviYmJwdXVtcjOK0zX3bt3+frrr5kzZw6xsbF07dqVyZMn06pVq0JrFqEoCgfiUkwyoWlV1oGmHvbSKMMMRd5OZUvUPbXDMLrnvZ3xc8vb4UwIIUyN1MwUI8nJyZw7d67I77CNGjWKzMxMFi9eXKTnFabn8uXLTJo0iYoVK/L+++/z3HPPERkZSXh4OK1bty7Ui3mNRkPcge1s/nwKKIrqe9Bkn79DBUeaeTpIImOmPB0sc4GDpX5dQgjLI8lMMXLy5EkURSnyZMbDw4NBgwYxb948MgqwUZuwPMePH2fIkCFUrlyZpUuXMnbsWC5dusQ333zzyN3XjeXUqVMMGzaM8ll3GFStBC4qbqqZ3bVsULUSsrTMzLnZ6rDVWVYiaqvT4GorlwdCCPMgf62KkexOZrVq1SrycwcFBRETE8OGDRuK/NxCHYqisGPHDjp27MgzzzzDvn37mDFjBpcvX+bTTz+lbNmyRRZLQkICvXr1wsvLi6VLl1LR2YZXarri724HFLwj1dPKPk+Aux2v1HSVYn8LoNFoqFfKTvWZPmPRAPVL2clMoRDCbEgyU4xERERQqVKlp+4O9STq1KlD+/btmTVrVoE2khPmKyMjg5UrV1K/fn06derE7du3Wb16NefOnWPChAlF/vOnKAovvfQSsbGxbNy4EWfn+zuqW2s1dKjgxKBqJShhc/9PYWFdvmWPW+Kf2Zj2FZyk/bIFeaa0ndm0/34UBahf2k7tMIQQosAkmSlG9Ho9derUUe38QUFB/P777xw8eFC1GEThSUhIYMaMGVSuXJmhQ4dSvnx5fvnlF44cOcILL7xg1O5kj+Pzzz8nLCyMFStW4Ovrm+fzFZ2sCfRzpW9lF3yc78+UGCvNyB7Hx9mavpVdCPST2RhL5Gqrw8fZ2uxnZzRAJWdrXG11aocihBAFJhV+xYher2fYsGGqnb9z5874+voya9YsmjVrplocwrhiYmKYM2cOixYtIiUlhUGDBjFp0iSTaOW6Y8cO3n33Xd577z169Ojxn8dpNRqqlrChagkb4tOyOH4zleO3UknLUv75PBgecetdURQUQxZa3f0/q7Y6DfVL2VG/tJ1cHBYD/u52XEo075pABfCXGi4hhJmRZKaYiI+P58qVK6peYGq1WiZMmJBT/O3j46NaLOLp/f3338yYMYPVq1fj6OjIqFGjGD9+POXKlVM7NAAuXbrEiy++yLPPPsv06dML/DpXWx1tyzvSppwD8WkGriVnci0lk9ikDK6lZJJpyPsaKy2kxl3h7327mB40Fk8HK1xttVJ3UIxUcbGhpI2Wu+kGs1xypuH+MsjKLjJzKIQwL7LPTDGxb98+WrVqVeSbZv5bUlISFStWZPjw4Xz11VeqxSGejKIo7Nq1ixkzZvDTTz9RsWJFgoKCeOWVV3JqUUxBSkoKjW54ZAAAIABJREFUzZs3586dOxw5cgQ3NzejjKsoCgYFMhWFLAPotGCl0aDVwMaNG+nbty+xsbFF2txAmI7L9zL47uxdtcN4YoOrlaCCLIMUQpgZqZkpJvR6PVZWVlSvXl3VOBwdHQkMDGTJkiUkJiaqGosouIyMDL777jsaNGhAx44diYuL47vvvuP8+fMEBQWZVCKjKAqvvfYap06dIiwszGiJDNzvXKXTarDVaXGw1mKr06LTatBoNPj7+wPw559/Gu18wrxUdLImwN38OptpgIbudpLICCHMkiQzxURERAS+vr7Y2NioHQpjx44lOTmZpUuXqh2KeITExERmzpxJlSpVGDx4MB4eHuzcuZM///yTgQMHYm1tehc/CxYsYMWKFSxatIh69eoV2Xm9vb1xc3Pj6NGjRXZOYXpal3NUdQ+jx5W951Grco5qhyKEEE9EkpliQu1OZg+qUKEC/fr1Y+7cuWRlZakdjshHbGwsb731FhUrVuStt96ibdu2/PXXX2zfvp327dubbC3IgQMHmDBhAuPHj2fw4MFFem6NRkODBg0kmSnmrLUaunk7m03djAJ083aWVuFCCLMlyUwxoCiK6rUy/xYUFMSFCxfYsmWL2qGIB+j1eoYPH46Pjw8LFy4kMDCQixcvsnz5curWrat2eA919epV+vbtS9OmTZkxY4YqMfj7+0syI6joZE2HCuYx09GhgqO0CxdCmDVJZoqB2NhY7ty5YzIzMwANGzakefPmzJo1S+1Qij1FUfjll1/o3LkzderUYefOnXz22WdcvnyZL774ggoVKqgd4iOlp6fTr18/ANauXava8jd/f3+uXLlCXFycKucXpiPA3Z6WZR3UDuOhWpZ1IEBaMQshzJwkM8WAXq8HMKmZGbg/O7N3714pmFZJZmYmq1evJiAggPbt2xMbG8vKlSu5cOECkyZNwsXFRe0QC+yNN97g999/Z8OGDXh6eqoWR3YTAJmdEQDNPEw3oWlV1oFmHpLICCHMnyQzxUBERASOjo4mt69Lz5498fHxkdmZIpaYmMjs2bOpWrUqAwcOpFSpUuzYsYPjx48zePBgkyzqf5iVK1cyb9485syZQ9OmTVWNpVKlSri6ukoyI4D7dVTNPR1ylpypXZWi4Z/26vM/pnRCjMnWvgkhxOOQZKYY0Ov11KpVC63WtL7dOp2O8ePHExoaSmxsrNrhWLyrV68yZcoUvLy8mDx5Mi1btuT48ePs2LGDjh07muWFzbFjxwgMDOSll17itddeUzscaQIg8hXgbs+gaiVU7XKW3bWsh6eWmAM/0blzZ65fv65SNEIIYTymdXUrCoVerze5JWbZRowYgb29PcHBwWqHYrFOnDjByy+/jI+PD8HBwYwYMYILFy6wcuXKIm1dbGy3b9+md+/e+Pn5ERISYjLJmDQBEPmp6GTNKzVd8Xe3A4pulib7PAHudrxS0xW/cqXYtm0bSUlJPP/88yQnJxdRJEIIUTgkmbFwWVlZREZGmmwy4+LiwogRI1i4cKG8qRqRoijs2bOHbt26UatWLXbs2MHHH3/M5cuXmTFjBhUrVlQ7xKeSlZXFwIEDSUxMZOPGjdjbm87af39/f2JiYuSut8jDWquhQwUnBlUrQQmb+2+/hZXUZI9bwkbLoGolaF/BKaf9cqVKlQgPDyciIoJBgwZJi3whhFmTZMbCXbhwgdTUVJPqZPZv48aNIz4+npUrV6oditnLzMxkzZo1NGrUiLZt2xIdHc3y5cu5cOECkydPpkSJEmqHaBTTpk3j559/JjQ0FG9vb7XDyUWaAIhHqehkTaCfK30ru+DjfL9GzVhJTfY4Ps7W9K3sQqCfa76tlwMCAlizZg2bN28mKCgIRTGXnXGEECI3SWYsnKl2MntQ5cqV6dmzJ7Nnz8ZgMKgdjlm6d+8ec+fOpVq1arzwwguUKFGC7du389dffzF06FBsbGzUDtFoNm3axCeffMJnn31Ghw4d1A4nj8qVK1OyZElJZsRDaTUaqpawYUDVEoz0c6VRGXtsdZoHPl/Qcf73/7Y6DY3K2DPSz5UBVUtQtYQN2ocsv+zWrRvBwcHMmzeP2bNnP+mXIoQQqrJSOwBRuCIiIihVqhQeHh5qh/JQQUFBtGrVip9+ul+YKgrm2rVrzJ8/n5CQEBISEhgwYAAbN27kmWeeUTu0QnH69GmGDh1Knz59mDx5strh5EuaAIjH5Wqro215R9qUcyA+zcC15EyupWQSm5TBtZRMMvO5x2OlBU97K8o5WuNpb4WngxWuttrHrh177bXXuHTpEpMmTaJixYr07dvXSF+VEEIUDY0ic8sWrX///ty4cYPdu3erHcpDKYpCw4YNKVWqFD/99JPa4Zi8kydPMnPmTFasWIGNjQ2vvvoqEydOxMvLS+3QCk1iYiKNGzcG4PDhwzg7O6sc0X978803CQ0NJTo6Wu1QhJlTFAWDApmKQpYBdFqw0mjQajBa0wuDwcCgQYMICwtj165dNG/e3CjjCiFEUZBlZhbOlDuZPUij0RAUFMSOHTuIjIxUOxyTpCgKe/fu5fnnn8fPz4+tW7fy4YcfcvnyZWbOnGnRiYyiKAwfPpyYmBjCwsJMOpGB+3Uzly9f5saNG2qHIsycRqNBp9Vgq9PiYK3FVqdFp9UYtXufVqvl22+/pUmTJjz//POcOXPGaGMLIURhk2TGgqWlpXHmzBmTLv5/UL9+/ShXrpys3f6XrKws1q1bR5MmTWjdujUXLlxg2bJlXLx4kbfeeouSJUuqHWKh++KLL9iwYQMrVqzA19dX7XAeSZoACHNja2tLWFgYHh4esgeNEMKsSDJjwU6dOkVWVpZZzMwA2NjYMHbsWFauXCl3tIGkpCTmz59P9erV6d+/P46Ojmzbto2IiAheeuklbG1t1Q6xSPz888+88847vPvuu/Ts2VPtcAqkSpUqlChRQpIZYVZcXV1z9qDp3r27tMsXQpgFSWYsWEREBAC1atVSOZKCGzlyJFqtloULF6odimri4uJ4//338fLyYuLEiTRq1IgjR47wyy+/0LlzZ5PZHLIoXLp0iRdffJGOHTvywQcfqB1OgUkTAGGufHx82Lp1K3q9noEDB8oeNEIIkyfJjAXT6/V4eXmZ1d4ibm5uDBs2jODgYNLS0tQOp0idPn2akSNH4u3tzaxZsxgyZAjnzp1j9erVOcuWipOUlBT69OmDi4sL33//PTqdTu2QHou/v78kM8Is+fv7s3btWrZs2cLEiRNlDxohhEmTZMaCmUvx/79NnDiRuLg4QkND1Q6l0CmKwv79++nZsyc1a9Zk8+bNTJs2jcuXLzN79mx8fHzUDlEViqIwatQoTpw4wcaNG3Fzc1M7pMfm7+9PdHQ0N2/eVDsUIR5b165dCQkJYf78+cyaNUvtcIQQ4j9JMmPBIiIizDKZ8fX1pUuXLsyaNcti7whmZWWxYcMGmjVrRsuWLTlz5gxLlizh0qVLTJkyBVdXV7VDVNXChQtZvnw5ixcvpn79+mqH80SkCYAwdyNHjuTtt99m0qRJrFu3Tu1whBAiX5LMWKiEhASio6PNppPZvwUFBfHXX3+xZ88etUMxquTkZEJCQvD19aVv377Y2toSHh6OXq/n5ZdfLjZF/Q9z4MABJkyYwLhx4xg8eLDa4TyxKlWq4OLiIsmMMGuffPIJL774IkOGDOG3335TOxwhhMhDNs20UAcPHqRZs2YcO3bMLO9sK4pC3bp1qVSpEps3b1Y7nKd248YNgoODCQ4O5vbt2/Tt25c33niDhg0bqh2aSbl27RoNGjSgSpUq7Nq1CxsbG7VDeipt27bFzc2NDRs2qB2KEE8sLS2NTp06ERERwcGDB6levbraIQkhRA6ZmbFQERER6HQ6atSooXYoT0Sj0TBx4kTCw8M5e/as2uE8sbNnzzJq1Ci8vLz48ssvefHFFzl37hxr1qyRROZfMjIy6NevHwBr1641+0QGpAmAsAyyB40QwpRJMmOh9Ho91apVw87OTu1QntigQYMoXbo0c+bMUTuUx3bgwAF69+6Nr68vGzdu5L333iM6Opq5c+dSqVIltcMzSW+88QaHDx9m/fr1lC1bVu1wjMLf35+oqChu3bqldihCPJXsPWiSk5Pp3r07SUlJaockhBCAJDMWy1w7mT3Izs6OUaNGsWzZMuLj49UO55GysrIICwujefPmNG/enBMnTrBo0SKioqJ49913KVWqlNohmqxVq1Yxd+5cZs+eTbNmzdQOx2ikCYCwJD4+PoSHhxMZGSl70AghTIYkMxZIURQiIiLMtvj/QaNHjyYzM5MlS5aoHcp/SklJ4euvv6ZmzZr07t0bnU7H5s2bOXHiBK+88opZz44VhePHjxMYGMiwYcMYNWqU2uEYVdWqVXF2dpZkRliM7D1owsPDmTBhgsV2nBRCmA9JZizQ9evXuXnzptnPzAB4eHgwcOBA5s2bR2Zmptrh5HLz5k0++OADvLy8GD16NPXq1ePQoUPs3buX7t27o9XKr9ej3L59m969e1OjRg0WLFiARqNROySj0mq1NGjQQJIZYVG6dOnCggULCA4OZubMmWqHI4Qo5uRqywLp9XoAi0hm4P4mmpcvXzaZjlDnzp1jzJgxeHl58fnnnzNgwADOnDnDunXraNy4sdrhmY2srCwGDhzI3bt32bhxI/b29mqHVCikCYCwRIGBgUyZMoU33nhD9qARQqhKkhkLFBERgZ2dHVWqVFE7FKOoV68e7dq1U30X6sOHD9O3b1+qV6/OunXrmDJlCpcvX2b+/PkW829dlKZPn87PP/9MaGgoPj4+aodTaPz9/bl06ZI0ARAW5+OPP2bgwIEMGTKE/fv3qx2OEKKYkmTGAun1evz8/NDpdGqHYjRBQUEcPnyYgwcPFul5DQYDmzdvpmXLljRp0oSIiAgWLlxIVFQU77//vhT1P6EffviBjz/+mE8++YSOHTuqHU6hym4C8Oeff6ociRDGpdVqWbp0KU2aNKFHjx6cPn1a7ZCEEMWQJDMWKCIiwmKWmGXr0qUL1atXL7LZmdTUVBYvXoyfnx89evRAURQ2bdrEyZMnCQwMtNglUUXh9OnTDBkyhF69evHWW2+pHU6hq1atmjQBEBbr33vQxMXFqR2SEKKYkWTGwhgMBiIjIy2ik9mDtFotEyZMYMOGDURFRRXaeW7dusXHH3+Mt7c3I0eOpFatWhw4cID9+/fTo0cPKep/SomJifTu3Zvy5cvz7bffWlzBf360Wi3PPPOMJDPCYrm6uvLjjz+SkpIie9AIIYqcXJlZmKioKJKSkixuZgZg6NChuLi4MG/ePKOPfeHCBcaNG4eXlxeffPIJffr04fTp02zYsIGmTZsa/XzFkaIovPzyy1y+fJmwsDBcXFzUDqnISBMAYem8vb0JDw/nxIkTsgeNEKJISTJjYSIiIgDL6WT2ICcnJwIDA1m8eDGJiYlGGfP333+nf//+VKtWjdDQUN58802io6MJCQmhWrVqRjmHuG/GjBmsX7+e5cuXU6NGDbXDKVL+/v5cvHiR27dvqx2KEIVG9qARQqhBkhkLo9frKVmyJOXLl1c7lEIxduxYkpKSWLZs2ROPYTAYCA8Pp3Xr1jRu3Jhjx44RHBxMVFQU06ZNw93d3YgRC4Bdu3bx9ttvM2XKFHr16qV2OEVOmgCI4uLBPWi++uortcMRQhQDksxYGL1eT+3atS22FqFixYr069ePuXPnPvYyhtTUVL755htq165N9+7dycjIYOPGjZw6dYrXXnsNBweHQoq6eIuKimLAgAG0b9+ejz76SO1wVFG9enWcnJxkqZkoFgIDA3nnnXeYPHkya9euVTscIYSFk2TGwkRERFhc8f+/BQUFcf78ecLDwwt0/O3bt/n000/x8fHh1VdfxdfXl99++40DBw7Qq1cvi2phbWpSU1Pp06cPTk5OrF69utj+W2c3AZCZGVFcPLgHzb59+9QORwhhwSSZsSDp6emcOnXKIutlHtSoUSOaNWv2yDbNFy9eZMKECXh5efHhhx/Ss2dPTp06RVhYGM2aNSuiaIsvRVEYPXo0kZGRbNy4sdjvySNNAERxotFoWLp0Kc2aNZM9aIQQhUqSGQty9uxZMjMzLT6ZgfuzM7/++ivHjh3L87mjR4/ywgsvULVqVb777jsmTZpEdHQ0CxcupHr16ipEWzwtWrSIZcuWsXDhQho0aKB2OKrz9/fn/Pnz3LlzR+1QhCgStra2bNy4kbJly8oeNEKIQiPJjAWx5E5m/9azZ0+8vb1zZmcMBgPbtm2jbdu2BAQEcOTIEebNm0d0dDQffPABZcqUUTni4uXQoUOMGzeOMWPGMGzYMLXDMQnZCZ0sNRPFiaurK9u2bZM9aIQQhUaSGQui1+spV64cbm5uaodS6KysrBg/fjyhoaHMmjWLOnXq0LVrV1JSUli/fj2nT59m9OjRUtSvgri4OPr06UPDhg2ZOXOm2uGYDF9fXxwdHWWpmSh2vL292bp1KydOnODFF1+UPWiEEEYlyYwFiYiIKBazMgDx8fEkJCSQmZnJ66+/TtWqVdm3bx8HDx6kT58+xbbQXG0ZGRn0798fg8HAunXrsLGxUTskk6HT6ahfv74kM6JYatCgAevWrWPbtm2MHz9e9qARQhiNldoBCOPR6/UWv4dHVFQUs2fPZsmSJWRkZFCrVi1iYmIIDQ3F3t5e7fCKvTfffJMDBw6we/duypUrp3Y4Jsff359t27apHYYQqujcuTMh/8/efYc3WfVvAL+fjO5BgUqBlo3IbEuK8gJlg1AKWGQpo0yRoYK+DBVU8OdGQFGZ4oSCDBHZllEURIYUBFQ2lFFoobTpSPokeX5/lPKy6UhyMu7PdXldUtLkjmCTO+c83/PFFxgxYgSqV6+O//73v6IjEZEL4MqMi8jJycGpU6dcdmXmzz//xLPPPouaNWvi22+/xdixY3H27Fn89NNPyMzMxHfffSc6ottbsmQJZs2ahZkzZ6JFixai4zgknU6HEydOIDMzU3QUIiF4Bg0RWRvLjJNRFAUmiwKD2YJc2QKD2QKTRcHhI0cAuNbF/4qiYOPGjWjXrh10Oh12796NWbNm4dy5c3j77bdRoUIF1KhRA927d8esWbO4bUGggwcPYtiwYRg4cCBGjx4tOo7D0ul0ADgEgNwbz6AhImuSFL4DdFiKouCa0YzUXBNSc024lGtCap4JJss9bmw24cyhfYhr2wKhAV4I8dGgrKcakiTZPXdp5efnIyEhAdOnT8fhw4fRpEkTjB8/HnFxcdBo7t4ZuWPHDrRq1QobNmxAp06dBCR2b9euXUNUVBQCAwOxa9cubvd7ALPZjICAAEydOpVbbMitGY1GdOrUCQcPHsSuXbvw2GOPiY5ERE6KZcYBZRjNOJBuwMGrBhjNBX88KgD36jC3UhQFakm6eTtPtYTwcl6ILO+FIE/HvyD++vXrmD9/Pj755BNcvHgRsbGxGD9+PKKjox9YyhRFQVRUFIKDg7Fx40Y7Jiaz2YzY2Fjs2bMH+/btQ/Xq1UVHcnjNmzdHlSpVkJCQIDoKkVDXr19H8+bNkZubi927d6NChQqiIxGRE+I2MwdhURQczzRi6YlMzDuagb1X8m4WGeDhRQYoOHH51tsZzQr2XsnDvKMZWHoiE8czjbA4YHdNSUnBK6+8gipVqmDKlCno3Lkzjh49ip9//hktW7Z86OqSJEkYN24cNm3ahKNHj9opNQHA1KlTsWnTJiQkJLDIFJFOp+NEMyIAZcqUwYYNG2A0GhEbG8szaIioRLgy4wBSsmWsO6vH9XwLJAC2+AMpvN8yHip0qeqPMD+tDR6leJKTkzF9+nQsW7YMfn5+GDVqFMaMGYOKFSsW+77y8/NRrVo1xMbGYv78+TZIS3das2YNunfvjnfffRevvvqq6DhO45tvvsGgQYNw/fp1BAYGio5DJNyBAwcQHR2NNm3a4Mcff7zndmIiovvhyoxAskVB4vlsLD6eicz8gjUVWzXLwvvNzLdg8fFMJJ7Phmyxf49VFAWbN29Ghw4dEBkZiZ07d+Ljjz9GSkoK3nnnnRIVGQDw8PDAmDFj8N133yE9Pd3KqelOx44dw4ABAxAXF4dJkyaJjuNUCocAHDhwQHASIscQGRmJ5cuXY8OGDTyDhoiKjWVGkJRsGQv/zsD+NAMA25WYOxU+zv40Axb+nYGUbNkuj5ufn4/vvvsOERERePLJJ5GRkYGlS5fi+PHjePHFF+Hn51fqxxgxYgQkScLcuXOtkJjuJzs7G3FxcahYsSK+/vprpxwyIdJjjz0Gb29vbjUjukXnzp0xZ84czJkzB9OnTxcdh4icCMuMAPvS8rD4eCay8i12KzF3UgBk3Vil2ZeWZ7PHycrKwvTp01GjRg0MHDgQoaGh2LZtG/bu3Ys+ffpYdTtBuXLlMHDgQHz++ecwGo1Wu1/6H0VRMGTIEJw7dw4//vgjAgICREdyOhqNBhERESwzRHcYPnw4Xn/9dUyYMAHLli0THYeInATLjB0pioKdqblIPF9wkaPohfTCx088n4OdqblWXdo/f/48xo8fj7CwMLz22mvo2LEjDh8+jHXr1qF169Y2+zR/7NixSE1N5QuhjXz88cdYvnw5vvnmG9StW1d0HKfFIQBE9/b222+jf//+GDhwIM+gIaIi4QAAO9qZmotfL+WKjnFf0RV90DzEp1T3cejQIUyfPh0JCQnw9fXFyJEj8cILL6BSpUpWSvlwMTExuHTpEv78809ugbKirVu3okOHDpgwYQLee+890XGc2tdff43BgwcjMzOTq1tEd8jPz0enTp2QnJzMM2iI6KFYZuxk35U8JF5w/LGT7UN9ERVcvEMPFUXBli1b8NFHH2Hz5s2oUqUKxo0bh6FDh8Lf399GSe/vl19+QceOHbFt2za0bt3a7o/vis6dOwedToeIiAhs3LgRarXjn1vkyP766y80atQI27dvR6tWrUTHIXI4t55B8/vvvyMkJER0JCJyUNxmZgcp2bJTFBmgYMtZUYcCyLKMxYsXo3HjxujQoQPS0tKwZMkSnDhxAmPHjhVSZACgffv2qF+/PmbOnCnk8V2NwWDA008/DV9fXyQkJLDIWEHdunU5BIDoAXgGDREVFcuMjckWBWvP6uEsm50kAGvP6h84tjkrKwszZsxAzZo10b9/f4SEhGDLli3Yv38/nnnmGWi1Ys+wkSQJY8eOxc8//4wTJ04IzeLsFEXB6NGjcfjwYaxatQrly5cXHcklaDQahIeHs8wQPUCVKlWwbt06/PPPP+jbty9MJpPoSETkgFhmbCzpYo7QqWXFVTjlbMfFuz8Fu3DhAiZOnIgqVapg0qRJaNu2LQ4dOoQNGzagbdu2DnV9Sr9+/VCuXDl8+umnoqM4tQULFmDRokWYO3cuGjduLDqOS+EQAKKHi4yMxIoVK3gGDRHdF8uMDaVky9iXZnCaIlNIAbA3zXBzu9nhw4cxaNAgVK9eHXPnzsWIESNw+vRpfP3112jYsKHYsPfh7e2NkSNHYtGiRbh+/broOE5p9+7dGDNmDEaNGoX4+HjRcVyOTqfDsWPHoNfrRUchcmidOnXC3LlzMWfOHHz00Uei4xCRg2GZsRGLomCdE20vu5MEYMU/V9A5JgYNGzbE1q1b8f777yMlJQUffPABKleuLDriQ40aNQqyLGPhwoWiozidy5cvo2fPnoiKiuK1Rzai0+mgKAoOHDggOgqRwxs2bBgmT56MiRMnYunSpaLjEJEDYZmxkZNZ+bjuRNvL7qQAMKo9IQWH4fvvv8fJkyfx8ssvO9UY2ZCQEDzzzDOYPXs291oXgyzL6NOnD0wmE1asWAEPDw/RkVxSvXr14OXlxa1mREU0bdo0DBgwAPHx8dixY4foOETkIFhmbGR/msFpV2VuUhTET/kQ/fr1E35Rf0mNGzcO586dw6pVq0RHcRoTJ07Ezp07sXz5crueD+RuOASAqHgkScLChQvRvHlzdO/eHX///bfoSETkAFhmbCDDaMYZvey0qzI3SRJO62VkGM2ik5RYeHg42rRpw61SRZSQkICZM2dixowZiI6OFh3H5XEIAFHxeHh4YNWqVahcuTJiYmKQmpoqOhIRCcYyYwMH0l1gVeYGCUByukF0jFIZN24cdu/ejd27d4uO4tAOHTqEoUOHon///hgzZozoOG5Bp9Ph33//5RAAomIoU6YM1q9fzzNoiAgAy4zVKYqCg1edb4LZ/SgAkq8anHocZpcuXVC7dm2uzjxARkYGevTogUcffRTz5s1zqDHbrqxwCEBycrLoKEROpfAMmn///Zdn0BC5OZYZK7tmNMNodt43/vdiNCvIMFpExygxlUqFl156CStXrsS5c+dEx3E4FosF/fv3x7Vr17Bq1Sr4+PiIjuQ26tWrB09PT241IyqByMhILF++HBs2bMALL7zg1B+6EVHJscxYWWqua3465OzPKz4+Hv7+/pg9e7boKA5n2rRp2LBhA5YsWYIaNWqIjuNWtFothwAQlULhGTRz587Fhx9+KDoOEQnAMmNlqbkml/uPqpKA1DznLjN+fn4YPnw4FixYgOzsbNFxHMbatWsxdepUvP322+jUqZPoOG6JQwCISqfwDJpJkyYhISFBdBwisjNJ4bqsVX1/7DrO5xTvjX/GxRQkfTMbJ/fswPXUC9B6eaNmkxaIGfsWgipVue22efpMbJn3EY5sWw99+mX4BpVDzSbR6PLyNPgGlQMAZF6+iDUfTMLx3Unw8PZBROen8WiztvhqTB8Mn78aNaKaF/t5hfpq0P/RMsX+PkeSkpKC6tWrY+bMmXjhhRdExxHu+PHjaNKkCVq3bo1Vq1ZBpXK1Gu4cvvzySwwfPhxZWVnw8/MTHYfIKSmKgvj4eCxbtgybN29Gq1atREciIjvRiA7gShRFKdEKxvmjB3Du4B406hiHwAp99BCkAAAgAElEQVSVkHHxHP5Y8TXmD38K41b8Bg/vgmsYjLnZmDe0K9JOH4Ou27OoXLcRcq5fxd9Jm5B55SJ8g8pBNuRh4fM9cD31Apr1HY6A4Ao4sG45Tu79rVTPLTXPBEVRnPrC8LCwMPTs2ROffPIJRo8e7dZv3rOzs9GjRw9UqFAB33zzjVv/txDt1iEALVq0EB2HyCkVnkFz4cIFPPXUU9i1axfq1q0rOhYR2QHLjBWZFcBUguvkH2vRAQ3bd7vta3VbPok5gzrj8Ja1aBzbGwCw45vPcfnE3+g//WvUb9vl5m3bDnvl5oWPe1Z9i/SzJ/HsBwvRsEN3AECTuAH4tG/rkj2pG0wWwKIAauftMgAKxjQ3bdoUa9euRbdu3R7+DS5IURQMGzYMp0+fxp49exAYGCg6klurX7/+zSEALDNEJVd4Bk2LFi3QuXNn7N69GyEhIaJjEZGN8eNYKzKVcMee1sv75r+bZRk516+hXFh1ePkH4uI/h27+3pGta1Hx0fq3FZlChSsm//6WCP/yFdDglnLk4e2Dx3sMLFG2W5X0+TmSJ554Av/5z3/cekzzzJkzsWzZMnz99deoV6+e6DhuT6vVolGjRrxuhsgKAgMDsX79esiyjC5duvAaSSI3wJUZK7KUcHqxbMjD9q8+wf41Cci6cum28ZKG7Kyb/371/Bk0aBv7wPu6nnoe5cKq37UdrHy1WiULdwuzBYC61Hcj3Lhx49C7d28kJycjIiJCdBy72rZtGyZMmIAJEyagZ8+eouPQDTqdDjt27BAdg8glhIWFYd26dYiOjkbfvn2xevVqaDR8u0PkqrgyY0UlvexgzYevYtuXM9GwQ3c888FCDPliOYbOWQGfMmWhKI5zvovaRf62xMXFoWrVqm63OpOSkoI+ffqgdevWeOedd0THoVvodDr8888/PMmcyEoiIiKwYsUKbNy4kWfQELk4F3l76hg0Jbw4/nDiz2gc2wddXp6Ghu27oXbT1qga8QQM+szbblcutBoun/z7gfdVJiQU186fuesHd/qZEyXKdquSPj9Ho9Fo8MILLyAhIQGXLl0SHccuDAYDnn76aXh7eyMhIYGfUjoYnU4Hi8WC5ORk0VGIXMaTTz6JefPm8QwaIhfHMmNFagnQlOC/qKRWA3eUj9+XLoTFbL7ta/XbxuLSsSM4snXdXfdRWF7qtGiPrLRUHE5cc/P38vNysWfVt8UPdguNquC8GVcxbNgweHp64osvvhAdxS5eeOEFHDp0CCtXrkRwcLDoOHSH+vXrw8PDA3/++afoKEQuZejQoZgyZQomTZqEJUuWiI5DRDbAj2etSJIkhHhrin3OzGPRHXBg/XJ4+gWgQo06OHdoL07s2QGfMmVvu13L+NE4vOVnLJk49MZo5nDkZWXgaNImxL3+ESo+2gBN4gbg92Vf4oc3xuDC3wfhX75gNLPWy6dUzy3EW+PUY5nvFBgYiCFDhmDu3Ll47bXX4O3t/fBvclILFizAwoULsWjRIkRFRYmOQ/fg4eHBIQBENjJ16lScOXMGgwcPRuXKlXkGDZGL4cqMlVX00RT7P2rX8e8isktvHNywEutmvoGs9MsYOmclPLx9b7udp48fRnz5M57oOQj/7kzEzx+9ht3Lv0JwtZoIeKQSgILJZcPmrkLtpq2xa+mX2LZwJqpGPIHOL71R4uekkoBKvtoSf7+jevHFF3H16lV8//33oqPYzB9//IExY8bg+eefx+DBg0XHoQfQ6XQsM0Q2UHgGTYsWLfDUU0/h6NGjoiMRkRVJCq+Ks6oj1wz4+azjjYI8tW8nFjz3FIbPX40aUc2L/f3dqvqjXllPGyQTKy4uDseOHcPhw4ddauUJAC5fvgydToewsDBs374dnp6u9+fnSubPn4+RI0dCr9fDx6d0K6lEdLfMzEy0aNECer0ev//+OypWrCg6EhFZAVdmrCzExzV37rnq8xo7diyOHj2KzZs3i45iVSaTCX369IHJZMKKFStYZJxA4RCAgwcPio5C5JJuPYMmNjaWZ9AQuQiWGSsr66mGp9q1PuH3VEsI8nTNvyotW7ZEZGQkZs2aJTqKVU2cOBE7d+7E8uXLUblyZdFxqAgaNGgArVbLrWZENhQWFob169fj+PHjNz/wISLn5prvUAWSJAnh5bzgKnVGAhBRzsvltmAVkiQJ48aNw8aNG/H33w8ee+0sli5dihkzZuDjjz9GdHS06DhURJ6enmjYsCHLDJGNhYeHY8WKFdi0aRNGjx7NM2iInByvmbGBDKMZ845miI5hNSPqBSHIUy06hs3k5+ejWrVq6Nq1K+bNmyc6Tqn89ddfaNq0KeLi4vDdd9+5bAl1Vc899xx2796NQ4cOiY5C5PIWLVqEoUOH4r333sOkSZNExyGiEuLKjA0EeapRzV/r/KszFguq+qpdusgABWNxR48ejW+//Rbp6emi45TY9evXERcXh9q1a2P+/PksMk5Ip9Ph6NGjyMvLEx2FyOUNGTIEb7zxBl599VWeQUPkxFhmbEQX7AWnX/JSqfD5xNGYN28e8vPzRaexqREjRgCA067MWCwW9O/fH1evXsWqVas4DctJ6XQ6mM1mDgEgspO33noLAwcOxODBg5GUlCQ6DhGVAMuMjdQM8EAZD5XTrs5IAHwkM6r4SBg5ciTq1KmDRYsWQZZl0dFsonz58hg4cCA+//xzpyxub7/9NtavX48lS5agRo0aouNQCTVs2JBDAIjsSJIkLFiwANHR0TyDhshJsczYiEqS0KWqv9OuzigAetQqiyWLF+Ovv/5CVFQUhg4dirp16+Lbb7+F2WwWHdHqxo4di0uXLmHZsmWioxTL2rVr8dZbb2HatGno3Lmz6DhUCp6enmjQoAHLDJEdeXh4YOXKlQgNDUXnzp1x6dIl0ZGIqBhYZmwozE+LqGDnm2wmAWgS7IVQPy0AoH79+li+fDmSk5PRoEEDxMfHo379+khISHCpUlO3bl106tQJM2fOdJrpNidOnED//v3RrVs3vPbaa6LjkBXodDqWGSI7KzyDxmQyoUuXLjyDhsiJsMzYWKtKvghwou1mEoAADxVaVvK96/fCw8OxevVq7Nu3D7Vq1cKzzz57c8SlxWKxf1gbGDduHA4cOIAdO3aIjvJQOTk5iIuLwyOPPIJvv/0WKhX/d3YFOp0OR44c4RAAIjsrPIPmxIkT6N27N8+gIXISfPdjY1qVhFgn2m6mAIit6g+t6v71S6fTYe3atfj9999RuXJl9OrVC40bN8ZPP/3kNCsa99OhQwfUq1cPM2fOFB3lgRRFwbBhw3D69Gn8+OOPCAwMFB2JrKRwCADHMxPZX+EHdJs3b8aoUaOc/jWNyB2wzNhBmJ8W7UPvXulwRO1DfRF2Y3vZwzRt2hSbNm3Cr7/+irJly+Kpp55CkyZNsH79eqd9AZAkCWPHjsWaNWtw4sQJ0XHua9asWVi6dCm++uor1K9fX3QcsqKGDRtCo9FwqxmRIB07dsSCBQuwYMECvP/++6LjENFDsMzYSVSwN6IrOva43OiKPogK9i7297Vo0QJbt27F1q1b4e3tjS5duqBZs2b45ZdfnLLU9O/fH+XKlcPs2bNFR7mn7du3Y/z48Rg/fjx69eolOg5ZmZeXF4cAEAk2ePBgvPnmm3jttdewePFi0XGI6AFYZuyoWQXHLTQtK/qgWYXiF5lbtWnTBjt27MDmzZuhKAo6duyIli1bYtu2bVZKaR/e3t54/vnnsWjRImRmZoqOc5vz58+jd+/eaNWqFd59913RcchGOASASLw333wT8fHxGDx4sNO9jhG5E5YZO5IkCc1DfG5uORM9FKDw8duH+qJZiI9VToyXJAkdOnTA77//jnXr1iEvLw9t27ZF27Zt8dtvv5X6/u1l1KhRMBqNWLhwoegoNxmNRjz99NPw8vLC0qVLodFoREciGykcAmAwGERHIXJbkiRh/vz5aNWqFeLi4nDkyBHRkYjoHlhmBIgK9ka/2oFCp5wVTi3rVzuwRFvLHnr/koSYmBjs3bsXq1evxtWrVxEdHY0nn3wSf/zxh9Ufz9oqVqyIZ555Bp9++qnDTLR58cUXcfDgQaxatQrBwcGi45AN6XQ6mEwmDgEgEszDwwMrVqxAlSpVEBMTwzNoiBwQy4wgYX5aDKsbBF2wFwD7rdIUPk5UsBeG1Q0q8sX+JX48SUL37t1x4MABLF++HOfPn0fTpk0RGxvr8Ntoxo0bh3PnzuHHH38UHQULFy7E/Pnz8cUXXyAqKkp0HLKxRo0acQgAkYMoPIPGbDbzDBoiByQpzniFtotJyZax7qwe1/MtkACbjHEuvN8yHip0qepv8xJzP2azGT/88APeeustHDt2DN27d8fUqVMRHh4uJM/DtGnTBkajEbt27Xrg7RRFgVkBTIoCiwVQqQCNJEEtodTb9/bs2YPo6GgMHjwYc+fOLdV9kfOIiIhAVFSUQ211JHJnBw8eRHR0NFq0aIE1a9Zwqy+Rg2CZcRAWRcGpLBn70/JwWi9brdQU3k91fy10wd6oEaCFygrXxpSWyWRCQkICpk6dipMnT6Jnz5546623HG7M8Jo1a9C9e3fs3r0bTzzxBICC4nLNaEZqrgmpuSZcyjUhNc8E0z3ODdWogBBvDSr6aBBy45+ynuoiF5wrV65Ap9OhcuXKSEpKgqenpzWfHjmwoUOH4s8//8SBAwdERyGiGzZv3owuXbpg0KBBmD9/vlWuNSWi0mGZcUAZRjOS0w1IvmqA0Vzwx6OSAEsR/qRuvZ2nWkJEOS9ElPdCkKfaholLTpZlfPfdd5g2bRrOnTuHvn374s0330SdOnVERwMAWCwW1KlTBzqdDnO+WYwD6QYcvPXPBcA9Osxdbr2dp1pCeDkvRD7kz8VkMqFjx444cuQI9u/fj9DQ0NI+HXIiX3zxBV566SXo9Xp4eXmJjkNEN3z11VcYMmQI3nnnHbz22mui4xC5PfVbb731lugQdDtvjQrVAzzQ9BFv1A/yQmVfLQI81JAA5Jot9yw1GhVQyUeDOmU8oSvvjVaVfNGmkg+qB3jAW+O4l0ap1WpERkZi1KhRqFy5Mr7//nu8//77OHXqFBo2bIiyZcsKzacAUMqFIqNiXZz2DMHFHBNMyu2/X9T7KWRWgIs5JuxLM+B8jgxPtYSge6zWTJw4EcuWLcPatWvRqFGj0j4VcjIWiwXz589H9+7dUblyZdFxiOiGyMhIAMAbb7yBWrVq8eczkWBcmXEyiqLAcuPaDLMFUN+4NkNlhWszHIHRaMSCBQvw7rvv4sqVKxg0aBAmT56MatWq2T3LrdcyWUwmqGywP/p+1zL98MMP6NOnD2bOnImxY8da/XHJ8eXl5cHf3x+fffYZnn/+edFxiOgWiqJg8ODBWLJkCTZt2oQ2bdqIjkTktlhmyCHl5eVh7ty5eP/993Ht2jUMHToUr7/+OsLCwmz+2LJFQdLFHOxLM9hsIMOdCh8nKtgLwRln0Pw/TdGtWzcsXrzYJUoqlUx4eDgef/xxLFiwQHQUIrpDfn4+unTpgr1792Lnzp0Od80nkbtgmSGHlpOTg88//xwffvgh9Ho9nnvuObz66quoVKmSTR4vJVvG2rN6ZOVb7FJi7iQByLx8AX8s+ABrvl0AX19fASnIUQwZMgTJycn4888/RUchonvIyspCdHQ0MjIysHv3bpu9NhHR/bHMkFPQ6/WYPXs2pk+fjry8PIwcORITJ05EhQoVrPYY+9LykHg+x26rMfdjMZuhUqvQPtTPJgeakvP4/PPPMW7cOOj1ek6yI3JQheenPfLII0hKSoK/v7/oSERuxXGvDCe6hb+/P1577TWcPn0akyZNwpdffokaNWpg4sSJSE9PL9V9K4qCnam5SDyfU/BrawQuBZVaDUBC4vkc7EzNBT9vcF86nQ6yLOOvv/4SHYWI7iM0NBTr16/HiRMn0Lt3b5hMJtGRiNwKyww5lcDAQLz55ps4ffo0xo0bhy+++ALVq1fH5MmTce3atRLd567Lefj1Uq6Vk1rHr5dysetynugYJEh4eDjUajX2798vOgoRPUCjRo2wcuVKJCYmYuTIkfwQisiOOJqZnJK3tzfatm2L5557DrIs49NPP8Xs2bORn5+PyMjIIp/Lse9KHrZfdMwiU+hctgwvjYRKvlrRUcjOtFotVqxYAbVaja5du4qOQ0QPULNmTVSpUgVvvvkmPDw8EB0dLToSkVtgmSGn5uPjgw4dOmDYsGHIzc3FrFmz8Nlnn8FsNiMyMvKB1xmkZMv46YzejmlL7lSWjKr+WgR6OObhp2Q7e/bsQXJyMkaMGCE6ChE9REREBCRJ4hk0RHbEbWbkEipUqIAZM2bg5MmT6N+/P6ZNm4bq1avjww8/RE5Ozl23ly0K1p7Vw1mGHksA1p7VQ77Xiank0nQ6Hf766y8YjUbRUYioCN544w0MGjQIQ4YMwdatW0XHIXJ5LDPkUipVqoTZs2fjxIkT6NWrFyZPnowaNWpg5syZyMv737UnSRdzhI1fLgkFQFa+BTsu3l3MyLUVDgE4fPiw6ChEVASSJGH+/Plo3bo1evTowf93iWyMZYZcUlhYGObMmYNjx46ha9euGD9+PGrWrInPPvsMJ68VHIjpLEWmkAJgb5oBKdmy6ChkR+Hh4VCpVBwCQORECq93q1q1KmJiYnDx4kXRkYhcFssMubRq1aph4cKF+Pfff9GhQweMHTcOC3cfAxSL6GglIgFYd1YPCyfluA0fHx/Uq1ePZYbIyQQEBGDdunWwWCzo0qUL9HrnuEaTyNmwzJBbqFmzJr755hskJv+LwIphgOScf/UVANfzLTiVxdUZd6LT6VhmiJxQ4Rk0p06dQq9evSDL/NlNZG3O+Y6OqIRSPcs5zUX/9yMB2J/Gs2fcSeEQgPz8fNFRiKiYCs+g2bJlC0aNGsUzaIisjGWG3EaG0YwzetnprpW5kwLgtF5GhtEsOgrZiU6nQ35+Po4cOSI6ChGVQPv27bFw4UIsXLgQ7777rug4RC6FZYbcxoF0g9OvyhSSACSnG0THIDvhEAAi5xcfH4+pU6di8uTJ+P7770XHIXIZLDPkFhRFwcGrRZ9gtn9NAl5tHIyMi+eK9Tjzh3fHrF62P/VZAZB81cDtCm7C19cXjz32GMsMkZObMmUKBg8ezDNoiKyIZYbcwjWjGUaza73xN5oVZBidcyobFR+HABA5P0mSMG/ePJ5BQ2RFLDPkFlJzTcW6fWSX3pj2ewrKVAyzUSLrKO7zIuel0+lw6NAhTkMicnI8g4bIulhmyC2k5pqK9ZddpVZD6+kFSXLcq2xUEpCaxzLjLnQ6HYxGI4cAELmAgIAArF+/HoqiICYmhmfQEJUCywy5hUu5JhRnQ9a9rpn5/YdFmNmzBSY/URnvdmyAn96bgDx95j2//8LRg5gzKAZT/hOGD2N1+GPF13fdZtfSBZjZswXeaFYFU1vVwmf92iN5w8oiZ7QowMUcfkrvLiIiIiBJEreaEbmIypUrY/369Th9+jTPoCEqBZYZcnmKopR6BSNx7odY8/5EBASHIGbcVDRoF4s9q77FolG9YL7jBSgv6zq+fvEZVK7bCJ1fegOBj1TE6nfHY9/qxTdvs2fVd/j5w9fwSI1HEfvK/6H98xNQsU4DpBwu3hvV1DwThwC4CT8/Pw4BIHIxDRs2vHkGzciRI63+81xRFJgsCgxmC3JlCwxmC0wWha8b5FI0ogMQ2ZpZAUyluE4+OyMd27/6BLWbtsagz5ZBpSr4DCC4Wm2s+WASDqxfjqjuz968fVZaKmJenobo/iMBAI8/HY8vBj6JTZ+9g8guvaHWavHvb7+gQs3H0O/DRaV6biZLwQqN2nF3w5EVcQgAkespPINm0KBBqFatGiZPnlyi+1EUBdeMZqTmmpCaa8KlXBNS80z3fP3TqIAQbw0q+mgQcuOfsp5qh95aTXQ/LDPk8kyl/ATqxB87YJbz0bzfiJtFBgCa9BiATZ+/g39/++W2MqPSaPDE0wNv/lqj9cATT8dj9bvjceHvg6jSKApe/gHIvHwRKUcOIKx+ZKnymRQFapc5QYceRKfTYfny5ZBlGVqtVnQcIrKS+Ph4nD17FlOmTEGVKlUwcODAh3/TDRlGMw6kG3DwquHm1E4V8MCt1SYLcD7HhIs5/9uC7amWEF7OC5HlvRDkqS7xcyGyN5YZcnmWUk4vvn4pBQAQXLXWbV/XaD1QtnJVZFw6f9vXA8qHwMPb97avla9SEwCQcSkFVRpFoVX8izjxxw58MaAjyoVVR+2mrRHe+WlUi3ii2PnMFgB83XELhUMAjh49ivDwcNFxiMiKpkyZgrNnz2Lo0KGoXLky2rVrd9/bWhQFJ7PysT/NgDN6GRJw2zlqRX3Zu/V2RrOCvVfysOdKHqr5a6EL9kLNAA+ouFpDDo7XzJDLUzng3/JHajyKV378Hc+8Nx/VIp7A4a1rMW9ILH6Z80Gx70vtgM+PbCMyMpJDAIhclCRJmDt3Ltq2bfvAM2hSsmXMP5qBlaf0OKsvuGbTWlfAFN7PWb2Mlaf0mH80AynZHExAjo1vg8jlaUr5qVLhWTNpZ0/c9nWTnI+MC+cQVDH0tq9npaciPy/ntq+lnzsJAAi65dwaD29fNHoyDj2nzsbE9cmo06IDti+aCdloKFa+0j4/ch5+fn6oU6cOywyRi9JqtVi+fDmqV6+Ozp0748KFCzd/T7YoSDyfjcXHM5GZX7CmYqvL+AvvNzPfgsXHM5F4PhuyhUMDyDGxzJDLU0sFFzuWVK0nWkKt9cCuhAW3TYDZt3oxDNlZqNOiw223t5hM+GPltzd/bZLz8cfKb+AbVB6V6xZsDcq5fu2279FoPVChRh0oigKLqeiT1zSqgvNmyH1wCACRawsICMC6desAAF26dIFer0dKtoyFf2dgf1rBh132qhWFj7M/zYCFf3OVhhwTr5khlydJEkK8NTifU7LxzH5B5dF68EvYMv8jfDW6N+q26oS0syfwx/KvEFo/EpExvW67fUBwCHZ8PRsZF8+hfJWa+Gvzalz69zDiJs+A+sZF24tG9YJ/+UdQNfxx+JULRtrp4/h92Zd4rEUHePr6FTlbiLeG02fcjE6nw8qVK2EymaDR8Ec4kSsqPIOmRYsWeGnGfDzaLf6u62LsSQGQdWOVpn2oL6KCvQUlIbobXwnJLVT00dw2taW42j8/Ab5B5fD7si+x7uMp8A4sgyY9BuLJMa/fLCiFvAPKoNfUz7Dmw1ex98fv4Vc2GN0mvo/Hewy4eZsnno5H8oYV+G3xXOTn5iDgkYpo1nc42gx7uciZVBJQyZcTrdyNTqeDwWDA0aNH0ahRI9FxiMhGGjRogM/W/4YLPhUBiCsyhQofP/F8DoxmBc0qePPDNHIIksKTk8gNHLlmwM9ns4t8+72rv8eqaeMwacNBBFaoZMNkpdOtqj/qlfUUHYPsSK/XIzAwEF9++SUGDx4sOg4R2cjO1Fz8eilXdIz7iq7og+YhPqJjEPGaGXIPIT7FW4TUp1+GJEnwDihjo0TWUdznRc7P398fjz76KK+bIXJh+67kOXSRAYBfL+ViX1qe6BhE3GZG7qGspxqeaunmgWL3o796BYcTf8YfK75BlUZR8PB23E+dPNUSgjz5eYQ74hAAIteVki0j8ULOw2/oABLP56CCtwZhftzyTOLwnRC5BUkqONn4Ybt7004fx4ZPpqJcWHX0nDrbLtlKQgIQUc6L+5XdlE6nw8GDB2EqxuQ7InJ8skXB2rP6h75WOQoJwNqzeo5tJqG4MkNuI7K8F/ZcefCSeI2o5pi265ydEpWcAiCivJfoGCSITqdDXl4e/v77bzRs2FB0HCKykqSLOcjKtwi/2L+oCqec7biYg3ahRZ/ESWRNXJkhtxHkqUY1f63TfOJ1PxKA6v5aBHmqRUchQSIjIwGAW82IXEhKtox9aQanKTKFFAB70ww8g4aEYZkht6IL9nK6F4o7KQB0nPHv1gICAjgEgMiFWBQF65xoe9mdJADrzuph4YBcEoBlhtxKzQAPlPFQOfULRhkPFWoE8GJLd8chAESu42RWPq470fayOykArudbcCqLqzNkfywz5FZUkoQuVf2d+gUjtqo/VLzw3+3pdDokJydzCACRC9ifZnDaD9kKSQD2c1QzCcAyQ24nzE+LqOCHTzZzNBKAJsFeCOUITML/hgD8888/oqMQUSlkGM04o5ed9kO2QgqA03oZGUaz6CjkZlhmyC21quSLACfabiYBCPBQoWUlX9FRyEFwCACRaziQ7vyrMoUkAMnpBtExyM2wzJBb0qokxDrRdrPC7WValau85FFpBQYGonbt2iwzRE5MURQcvGqbCWaJcz/Eq42Db/76gy6NsfzNMTZ4pP9RACRfNUDhIACyI5YZclthflq0D3WOlY72ob48YZnuwiEARM7tmtEMo9m13vgbzQoyjBbRMciNsMyQW4sK9kZ0RR/RMR4ouqIPojiKme6hcAiA2cw96kTOKDXXNQd4uOrzIsfEMkNur1kFxy00LSv6oFkFFhm6N51Oh9zcXA4BIHJSqbkmh3ojlp+XU+r7UElAah7LDNmPI/0/RCSEJEloHuJzc8uZ6KtSCh+/fagvmoX4QOIYZrqPxo0bA+AQACJndSnXBGtsyDpzYDc+698BU5qG4qNuTfDHim8e+j371yTg1cbBOLV/J1a/NwH/164u3usUXuosFgW4mMPzZsh+NKIDEDmKqGBvVPDWYO1ZPbIEHV5WOLUstqo/r5GhhwoMDEStWrWwf/9+DBw4UHQcIioGRVGssoKRevwoFo3uDd8y5dBuxHhYzCYkzvsAfmUfKdL3//TeRPgGlUPb4a9ANuSWOg9QsDKjKAo/jCO7YJkhukWYnxbD6gYh6WIO9t04xMwepabwcaKCvdCyki+nllGR3TkEQFEUmBXApCiwWDhiV5MAACAASURBVACVCtBIEtQS+MaCyIGYFcBkhWWZX+Z+AEVRMOLLn1GmYigAoEHbrvikT8sifb9PQBkMm7sKKrW69GFuMFkKVmjU/JFDdsAyQ3QHrUpC+1A/1CnjiXVn9bieb7FZqSm830APFbpwNYaKSVEUNI5ug9O/JCExRY/UPDNS80z3fIOkUQEh3hpU9NEg5MY/ZT3VLDhEgpisML7YYjbj+O/bUK9155tFBgAeqfEoav+nDf79LfGh99GkxwCrFplCJkWBWvjGbXIHLDNE9xHmp8Vz9YJwKkvG/rQ8nNbLVis1hfdTzV8LXbA3agRooeKbSiqiDKMZB9INOHjVAEuzpxHX7GnsTzdAecAbB5MFOJ9jwsWc/+3R91RLCC/nhcjyXgjytP6bGSK6P4sVVmVyMtIhG/JQvkqNu36vfNVaRSozQZWqlD7IPZgtAPhjheyAZYboAVSShFqBHqgV6IEMoxnJ6QYkXzXcPBdAJRUspT/8fv53O0+1hIhyXojgG0gqBoui4GRWPvanGXDmHsX6QUXmtvu55d+NZgV7r+Rhz5W8G8XaCzUDPFisiexA5SAjmLRetpmYqXaQ50euj2WGqIiCPNVoU9kXrSv5IMNoQWquCal5JlzMkR+6taeSrxYh3gVbe4I8VdzaQ8WSki3ftuURsN62x8L7OauXcUYvowy3PBLZhcYKrwO+QeWh9fJG+rlTd/1e+tkTpb7/0rDG8yMqCpYZomKSJAllvdQo66VGPXgCKLh2wXLjomuzpeATKY0kQcWLrqkUZIty2zAKwHYDKQrvNzPfgsXHMxEV7IVWHEZBZDNqqeADr9IMAVCp1aj9nzY4un0Drl86f/O6mSunjuH479uslLT4NKqCHQlE9sAyQ2QF0o1pUWpI3CNMVpGSLd8cEw7YZ6rerY+zP82A45n5HBNOZCOSJCHEW4PzOaUbz9x+xAQc27UV84Z2RdPeg2ExmbBr2UI8UuMxpB4/YqW0xRPireEHeWQ33NFIRORg9qXlYfHxTGHnHQEFpSbrxirNvrQ8QSmIXFtFH02p34hVfLQ+hny2DL5B5fDLnA+wb00C2o+YiPptYqySsbhUElDJlx+AkP1IimKF2YBERFRqiqJg1+U8/HrJOgfXWVN0RR80q+DNT1uJrOjINQN+PpstOobVdavqj3plPUXHIDfBlRkiIgfhqEUGAH69lItdl7lCQ2RNIT6uudvfVZ8XOSaWGSIiB7DviuMWmUK/XsrlljMiKyrrqYan2rVWOz3VEoI8+faS7Id/24iIBEvJlpF4IUd0jCJJPJ+DlGxZdAwilyBJBQfXukqdkQBElPPidlSyK5YZIiKBZIuCtWf1TvNmRgKw9qweclFOiyWih4os7yVs0Ie1KQAiynuJjkFuhmWGiEigpIs5QqeWFVfhlLMdF51jJYnI0QV5qlHNX+s0H2jcjwSgur8WQZ48n4Dsi2WGiEiQlGwZ+9IMTlNkCikA9qYZuN2MyEp0wc6/OqMA0AV7i45BbohlhohIAIuiYJ0TbS+7kwRg3Vk9LJzuT1RqNQM8UMZD5dQ/D8p4qFAjgOfLkP2xzBARCXAyKx/XnWh72Z0UANfzLTiVxdUZotJSSRK6VPV36p8HsVX9oeKF/yQAywwRkQD70wxO+ylsIQnAfo5qJrKKMD8tooKdb7KZBKBJsBdC/bgqQ2KwzBAR2VmG0YwzetlpP4UtpAA4rZeRYTSLjkLkElpV8kWAE203kwAEeKjQspKv6CjkxlhmiIjs7EC686/KFJIAJKcbRMcgcglalYRYJ9puVri9TKtylZ9o5IxYZoiI7EhRFBy8WrwJZilHDmDOoBi80awqXm0cjIv//mX1XPOHd8f84d2L/X0KgOSrBigcBEBkFWF+WrQPdY6Vjvahvgjj9jISTCM6ABGRO7lmNMNoLvobf7MsY8mEodB6eiL2lbeh9fJGUMUwGyYsPqNZQYbRgrJePF+CyBqigr1hNCv49VKu6Cj3FRUoIYqjmMkBsMwQEdlRaq6pWLe/ev4Mrl9KQY8pM9AkboCNUpVeaq6JZYbIippVKCgKjlhofv1qJlbs2oTExESUKVNGdBxyc9xmRkRkR6m5pmL94M25lgYA8PIPtE0gK1BJQGpe8UoaET2YJEloHuJzc8uZ6KtSCh+/fagv3hnSC6dOnUKnTp2QlZUlNBcRV2aIiOzoUq4JliLedvmbY/Dnz8sAAEsmDAUAVNc1u/n7zy346a7bn9q3CxPX/XnzaxaLBbsS5mPvj9/j2vkz8PILQL3WndHpxSnwDrDOJ6oWBbiYw/NmiGwhKtgbFbw1WHtWjyxBZ1MVTi2LrepfcI1McAR++eUXtGvXDp07d8bGjRvh7+8vIBkRV2aIiOxGUZRirWA83iMerYeMBQA0e2Y4er/9BdoMHVesx1z9zivY8MlUVA1/HLH/fQe6bn2RvGEFFo3uDbNsvQKSmmfiEAAiGwnz02JY3SDogr0A2G+VpvBxooK9MKxu0G0X++t0OmzevBmHDx9Gly5dkJOTY6dURLdjmSEishOzApiKuiwDoGp4E9Ru2hoAUC2yKSK79Lr566I4c2A39v74PXpN/Qw9pszAEz3j0enFN9Dvo69w/sgB/JW4pnhP4AFMloIVGiKyDa1KQvtQP/SrHYhAj4K3b7YqNYX3G+ihQr/agWgX6nfP8cuPP/44Nm7ciAMHDqBr167IzXW863vI9bHMEBHZicnOKxd/Ja6Bl18AajVthZyMqzf/qVw3HB4+vji17zerPp69nx+ROwrz0+K5ekHoWSMA1fwLVkqsVWoK76eavxY9awTguXpBDx29/J///Afr16/HH3/8gaeeegoGA8+dIvviNTNERHZiKcaqjDWknzsFQ3YW3mlX956/n30t3aqPZ7YA4EAzIptTSRJqBXqgVqAHMoxmJKcbkHzVcHPsu0oq2krprbfzVEuIKOeFiPJeCPIs3v/I0dHRWLduHWJiYhAXF4fVq1fD09OzuE+LqERYZoiI7ERlpbVwSZLueX2KxXx7W1IsFviVDUafd+bc8358g8pZJ9ANaq71E9ldkKcabSr7onUlH2QYLUjNNSE1z4SLOTJS80z33NqqUQEh3hpU8tUixFuDEB8NgjxVkKSSr/G0bt0aa9asQWxsLHr16oUVK1bAw8OjFM+MqGhYZoiI7ERTijcKt/L2L4NrF87c9fXrl1Ju+3W50Go4uWcHqoY/Dq2X7Q+3s9bzI6LikyQJZb3UKOulRj0UrIooigKLUrAF1Gwp+MBBI0lQSShVcbmf9u3bY/Xq1ejevTv69u2LZcuWQat98DY1otLi52hERHailgo+ES2tsqHVkHbmBLIz/rdN7NKxwzh7cM9tt2vYsTssZjO2Lvj4rvswm0zI02eWPswNGlXBlhUichySJEGtkuCpVsFHq4KnWgW1SrJJkSnUqVMnrFy5EmvXrkW/fv1gMvEMKrItrswQEdmJJEkI8dbgfE7pXtyjuj+L3xbPwVejeyOqez9kX0vHnpXfoEKNx2DI0d+8XQ1dczz+dDy2f/UJLh47jNpNW0Ot0SL93CkcTlyD2PHvoGH7bqV9WgAKtqzY8g0SETmP2NhY/PDDD+jVqxfi4+Px7bffQq3mBXVkG1yZISKyo4o+mlL/4H2kxqPoNe1zGLL1WDfjDfy9YyN6vf05KtVteNdt416fjrjJM5BzLR2bP38Xmz77P5za+xsiYnqhavjjpUxSQCUBlXy5lYSI/uepp55CQkICli1bhiFDhsBsNouORC5KUnjKGRGR3Ry5ZsDPZ7NFx7C6blX9Ua8spxcR0e2WLl2Kfv36YdCgQViwYAFU1pqEQnQDt5kREdlRiI9r/th11edFRKXTt29fmEwmDBw4EFqtFnPmzOGWVLIqvvoQEdlRWU81PNXSzfMgXIGnWkKQJz9tJaJ769+/P2RZxpAhQ6DRaDB79mwWGrIalhkiIjuSJAnh5byw90oeXKHOSAAiynnxjQkRPdDgwYNhMpnw3HPPQavVYsaMGfy5QVbBMkNEZGeR5b2w50qe6BhWoQCIKO8lOgYROYHhw4dDlmWMHj0aWq0WH3zwAQsNlRrLDBGRnQV5qlHNX4uzetmpV2ckANX8tQjy5MhVIiqaUaNGwWQy4aWXXoJWq8X//d//sdBQqbDMEBEJoAv2whm9LDpGqSgAdMHeomMQkZN58cUXIcsy/vvf/0Kr1eKtt94SHYmcGMsMEZEANQM8UMZDhcx8i1OuzkgAAj1UqBHA82WIqPheeeUVyLKMV199FVqtFq+//rroSOSkWGaIiARQSRK6VPXH4uOZoqOUiAIgtqo/VNweQkQlNGnSJMiyjMmTJ0Or1WLChAmiI5ETYpkhIhIkzE+LqGAv7E8zONXqjAQgKtgLoX5clSGi0pkyZQry8/MxceJEaLVajBs3TnQkcjIsM0REArWq5IvjmfnIcpLtZhKAAA8VWlbyFR2FiFzEtGnTIMsyXn75ZWi1WowZM0Z0JHIiLDNERAJpVRJinWi7WeH2Mq2K28uIyDokScJ7770HWZbxwgsvQKvVYsSIEaJjkZNgmSEiEizMT4v2ob5IPJ8jOspDtQ/1RRi3lxGRlUmShOnTp8NkMuH555+HRqPB0KFDRcciJ8AyQ0TkAKKCvWE0K/j1Uq7oKPcVXdEHURzFTEQ2IkkSZs2aBVmWMXz4cGg0GsTHx4uORQ6OZYaIyEE0q1BQFByx0LSs6IP/VGCRISLbkiQJn332GWRZxuDBg6HVavHss8+KjkUOjGWGiMhBSJKE5iE+8FRLSDyfAwkQOhSg8PHbh/pyRYaI7EalUmHevHkwmUwYMGAANBoNevfuLToWOSiWGSIiBxMV7I0K3hqsPasXNuWscGpZbFV/XiNDRHanUqmwcOFCmEwmPPvss9BoNOjRo4foWOSAJEVRnGEaKBGR25EtCpIu5mBfmsFuqzSFj9Mk2AstK/lyahkRCVW4OrNixQqsXLkS3bp1Ex2JHAzLDBGRg0vJlrHurB7X8y02KzWF91vGQ4UuXI0hIgdiMpnQt29frFmzBqtXr0ZMTIzoSORAWGaIiJyARVFwKkvG/rQ8nNbLVis1hfdT3V8LXbA3agRooZK4GkNEjkWWZfTq1QsbN27EmjVr0LFjR9GRyEGwzBAROZkMoxnJ6QYkXzXAaC74Ea6SAEsRfprfejtPtYSIcl6IKO+FIE+1DRMTEZWe0WjE008/jS1btmDt2rVo166d6EjkAFhmiIiclKIoyDBakJprQmqeCRdzZKTmmWCy3H1bjQoI8dagkq8WId4ahPhoEOSpgsRVGCJyIgaDAU899RR27NiBDRs2oFWrVqIjkWAsM0RELkRRFFgUwKQoMFsAtQrQSBJUElhciMgl5OXloWvXrti9ezc2bdqE5s2bi45EArHMEBEREZFTyc3NRUxMDP78809s3rwZTZs2FR2JBGGZISIiIiKnk52djc6dO+PQoUPYsmULoqKiREciAVhmiIiIiMgp6fV6dOzYEf/88w+2bt2KyMhI0ZHIzlhmiIiIiMhpZWZmokOHDjh58iS2bduGRo0aiY5EdsQyQ0REREROLSMjA+3bt8e5c+ewfft21K9fX3QkshOWGSIiIiJyelevXkW7du2QmpqK7du347HHHhMdieyAZYaIiIiIXEJaWhratGmDa9euISkpCbVr1xYdiWyMZYaIiIiIXMbly5fRunVr6PV6JCUloWbNmqIjkQ2xzBARERGRS7l06RJat24Ng8GApKQkVKtWTXQkshGWGSIiIiJyORcuXECrVq1gNpuRlJSEKlWqiI5ENqASHYCIiIiIyNoqV66MrVu3AgDatm2LCxcuCE5EtsAyQ0REREQuqUqVKti2bRtkWUabNm1w6dIl0ZHIylhmiIiIiMhlVatWDVu3bkVubi7atm2Ly5cvi45EVsQyQ0REREQurWbNmti6dSsyMzPRrl07pKWliY5EVsIyQ0REREQu79FHH8XWrVuRlpaGDh064Nq1a6IjkRWwzBARERGRW3jsscewdetWXLhwAR06dEBGRoboSFRKLDNERERE5Dbq16+PxMREnDlzBk8++SQyMzNFR6JSYJkhIiIiIrcSHh6OX375BcePH0fnzp2h1+tFR6ISYpkhIiIiIrfTuHFjbN68GUeOHEFMTAyys7NFR6ISYJkhIiIiIrfUpEkTbNq0CQcPHkTXrl2Rm5srOhIVE8sMEREREbmtpk2bYsOGDdi7dy+6deuGvLw80ZGoGFhmiIiIiMitNW/eHOvWrcOuXbsQFxcHg8EgOhIVEcsMEREREbm9Vq1aYe3atUhKSkLPnj1hNBpFR6IiYJkhIiIiIgLQtm1b/PTTT0hMTESfPn0gy7LoSPQQLDNERERERDd07NgRq1atwoYNG/DMM8+w0Dg4lhkiIiIiolvExMRgxYoV+OmnnzBgwACYTCbRkeg+WGaIiIiIiO7QtWtXLFu2DCtWrMCgQYNgNptFR6J7YJkhIiIiIrqHHj16YPHixUhISMCwYcNgsVhER6I7aEQHICIiIiJyVH369IHJZMKAAQOg1Woxd+5cqFRcD3AULDNERERERA/Qr18/mEwmDB48GBqNBp9//jkkSRIdi8AyQ0RERET0UPHx8TCZTBg2bBi0Wi1mzZrFQuMAWGaIiIiIiIpg6NChkGUZI0eOhFarxUcffcRCIxjLDBERERFRET3//PMwmUx44YUXoNVq8e6777LQCMQyQ0RERERUDGPGjIEsy3j55Zeh1Woxbdo00ZHcFssMEREREVExjRs3DrIsY+LEidBqtZgyZYroSG6JZYaIiIiIqAQmTJgAWZYxefJkaLVaTJo0SXQkt8MyQ0RERERUQq+//jpkWcarr74KrVaLV155RXQkt8IyQ0RERERUCm+++SZkWcZ///tfaDQavPTSS6IjuQ2WGSIiIiKiUpAkCf/3f/8HWZYxduxYaLVajBo1SnQst8AyQ0RERERUSpIk4YMPPoAsyxg9ejQ0Gg2ee+450bFcHssMEREREZEVSJKEGTNmQJZljBgxAlqtFoMHDxYdy6WxzBARERERWYkkSfj0008hyzKGDh0KrVaL/v37i47lslhmiIiIiIisSKVSYc6cOTCZTIiPj4dGo0Hfvn1Fx3JJLDNERERERFamUqkwf/58yLKM/v37Q6PRoGfPnqJjuRyWGSIiIiIiG1Cr1fjqq69gMpnwzDPPQKvVonv37qJjuRRJURRFdAgiIiIiIldlMpnw7LPPYvXq1Vi1ahViY2NFR3IZLDNERERERDYmyzL69OmDdevW4aeffkKnTp1ER3IJLDNERERERHaQn5+Pnj17YvPmzVi7di3at28vOpLTY5khIiIiIrITo9GIuLg4bN++HevXr0fr1q1FR3JqLDNERERERHZkMBjQrVs37Ny5Exs3bkR0dLToSE6LZYaIiIiIyM5yc3MRGxuLvXv3YtOmTWjWrJnoSE6JZYaIiIiISICcnBzExMTgwIEDSExMxOOPPy46ktNhmSEiIiIiEkSv16NTp044cuQItmzZAp1OJzqSU2GZISIiIiISKCsrCx07dsSxY8ewdetWREREiI7kNFhmiIiIiIgEu379Otq3b48zZ85g+/btaNCggehIToFlhoiIiIjIAVy7dg3t2rXDxYsXsX37dtStW1d0JIfHMkNERERE5CDS09PRtm1bpKWlYfv27ahTp47oSA6NZYaIiIiIyIFcuXIFbdq0wfXr15GUlIRatWqJjuSwWGaIiIiIiBxMamoqWrdujdzcXCQlJaF69eo2eRxFUWBWAJOiwGIBVCpAI0lQS4AkSTZ5TGtimSEiIiIickAXL15Eq1atIMsykpKSULVq1VLdn6IouGY0IzXXhNT/b+/eYuMozzCOPzO769312saOvWbt2BhCQRWBEnJABJSsoWklSghUpFCpFUhBIYpAQioqKC20vakEpaUNooXSBpobaGkEoiTqAQfHQS1EdZSgpqYhicnGwXGxE7s+rr2H6YXZiHgTsnFmvDPm/5N84dmZ9/vmbh6933wzmtax0bR6xtJKZ/PP9ZtSLOxXXalfsU/+5gR9rgs4hBkAAADApbq6uhSPx2UYhtra2tTQ0HDONfrHM9rTl9R7x5Maz0w++puSTpNh8nz6vKDP0NXVIV1TE1JV0HfO83ACYQYAAABwsUQioXg8rkAgoLa2NtXX15/1mqxl6dDghHb3JnV4KCVDkh0P/bk6F5cHtCga0qUVJTKL2K0hzAAAAAAu19nZqXg8rkgkoh07digWi53x3K7hlLYlhjQwkbUtxEyVq1tZYuqWpnI1lgUcGKWAeRBmAAAAAPc7ePCg4vG4Kisr1draqtra2lN+T2UttXWPqL036ViImSo3zuJoSPH6iALmzHZpCDMAAACAR+zfv1/Nzc2KRqN66623VFNTI2myG7M1MaTBieyMhJipDEkVJaZWznCXhjADAAAAeEhHR4eam5s1d+5cbd++XZ2ZsFqOjsxYN+ZMcuOvaIhocTQ8M2MSZgAAAABv2bdvn5qbm3Xz/d/T/NvvLvZ08iyrK9X1F4Yd38qZMAMAAAB40JY9h3RQFxR7Gme0rK5UN8RKHR3DdLQ6AAAAANu1fzzm6iAjSW8fG1V775ijYxBmAAAAAA/pGk6p5aORYk+jIC1HR9Q1nHKsPmEGAAAA8IhU1tLWxJCK95nKc2NI2poYUirrzJsthBkAAADAI9q6R4q2/fJ0WJIGJ7La2e1MJ4kwAwAAAHhA13BK7b1JzwSZHEvSP3uTjiw3I8wAAAAALpe1LG3z0PKyqQxJ2xJDytq8kTJhBgAAAHC5Q4MTGvDQ8rKpLEkDE1l1DtrbnSHMAAAAAC63uzfp2a5MjiFpt81bNRNmAAAAABfrH8/o8FDKs12ZHEvSh0Mp9Y9nbKtJmAEAAABcbE+f97syOYakvX1J2+oRZgAAAACXsixL7x2f/g5mLc/9RBsWRm2bz/Nrb9MvvrFs2tdbkvYeT8qyaSMAwgwAAADgUifGMxrPeH2B2anGM5b6x7O21CLMAAAAAC7VM5ou9hQcYdd9EWYAAAAAl+oZTc+6B3bTkHrGCDMAAADArHZsNK1CF2Qd3vOunvn2V/TYdQ16ctUS7dqyOe+cDQujev3xR/SvN1/Xz++4QY8tbdSv7rlZPQc6JEm7tmzWk6uW6LHrGvT82tvU333krON+8E6rfnD9RXp5w33KpM8eUrKW1D1iz/dm/LZUAQAAAGAry7IK7mD0HOjQC/ffqUhltb687rvKZtJq+fUTKptTm3fu4T279P7Ov2rpnWskSTte2KjND35Ly+95QO/+8UVdd+cajQ0OaOfmZ7TlRw9q7fOvnXHc93f+TS89vEZXffU2rf7h0zJ9vsLmO5aWZVkyjPPbp40wAwAAALhQxpLSBbZl3nzuCVmWpXWb3lBlXYMk6cqbbtXGu5bnnduXOKjvvPoPVdVfJEkKl1fqtR8/pNZNT+mh13YpGCmTJFmZjHa8uFH93UdOnvtp+7Zv1e833KeFt35Tt3//pzLNwhd9pbOTHRrfee45zTIzAAAAwIXSBW5fnM1kdOCdVl3RfPPJICNJtfMu12VLb8w7/9Jrl50SThqvWihJmn/TypNBZvL4IknSiaOJvBp7//KqXt6wVtfecbe+/ujPzinI5BR6f5+FMAMAAAC4ULbArsxIf59SyTHVXDQv77eapi/kHauMNZzyf6is4pPjc097fGxo4JTjJz46olceXa8rb1qpVY88Pu2lYhkbdmcmzAAAAAAuNI1mR0GMMxQ2zNO/7zL1A5flNbVq+tIS7f97i4527J32PHw23B9hBgAAAHAhf4Edj0hVjQKhsPqOdOb91pc4aPe0FAiGdM/Gl1TdOE8vPnCX/nvoP9OqU+j9fRbCDAAAAOBCPkPyF/C0bvp8umzpjerY8WcNHDt68vjHnR/owDutjswtVF6hNb98RWVVNdq0frWOd314Ttf7zcnvzZwvwgwAAADgQoZhKBYubPPhFeseliT9+t5b1fa7p9X626f0m3W3q3beFx2bX6SqWmue3SJ/SVCb1q/W/z4+VvC1sbD/vLdllggzAAAAgGvVlfoLemCvu3y+1jzzB0WqqvXms0+o/U8va8W6RzT/xq85Or8Laut077NblJ4Y1wvrV2uk//hZrzENqT4SsGV8w5r6Rg8AAAAAV/j3iaTeSAwXexq2W9VUrivmBM+7Dp0ZAAAAwKVipbPzG/d23RdhBgAAAHCpOUGfgj4b3pR3kaDPUFXQnhhCmAEAAABcyjAMXV0d0myJM4akBdUhW17+lwgzAAAAgKtdUxPSbHnJ3ZK0oCZkWz3CDAAAAOBiVUGfLi4PeL47Y0i6pDygqqDPtpqEGQAAAMDlFkW9352xJC2Khm2tSZgBAAAAXO7SihJVlpie7c4YkipLTM2rsOf7MjmEGQAAAMDlTMPQLU3lnu3OWJJWNpXLtOnF/xzCDAAAAOABjWUBLY56b2czQ9KSaEgNZfZ2ZSTCDAAAAOAZ8fqIKjy03MyQVFFianl9xJH6hBkAAADAIwKmoZUeWm6WW14WMJ2JX4QZAAAAwEMaywJa0eBMp8NuKxoianRgeVkOYQYAAADwmMXRsJbVlRZ7Gp9pWV2pFtu8FfNUfkerAwAAAHDE9RdOBoW3j40WeSb5lteVaumFzgYZSTIsy/LKkjsAAAAAU7T3jqnl6IgMqajv0uTGX9EQcbwjc3JMwgwAAADgbV3DKW1NDGlwIluUQJPbtWxlU7mj78jkjUuYAQAAALwvlbXU1j2i9t7kjHVpcuMsiYa0vD7i2K5lZxyfMAMAAADMHl3DKW1LDGlgIutYqMnVrSwxdcsMd2NOmQdhBgAAAJhdspalzsGUdveO6cOhlG2hJlfnkvKAFkXDmlcRkGkU7xOehBkAAABgFusfz2hvX1J7jyc1zX+CQQAAAPhJREFUnpl89DcNKVtACvj0eUGfoQXVIS2oCakq6HNwxoUjzAAAAACfA5ZlqX88q57RtHrG0uoeSalnLK10Nv9cvynFwn7VRwKKhf2KlfpVFTRlFLELczqEGQAAAOBzyrIsZS0pbVnKZCWfKfkNQ6Yh1wWX0yHMAAAAAPAks9gTAAAAAIDpIMwAAAAA8CTCDAAAAABPIswAAAAA8CTCDAAAAABPIswAAAAA8CTCDAAAAABPIswAAAAA8CTCDAAAAABPIswAAAAA8CTCDAAAAABPIswAAAAA8CTCDAAAAABPIswAAAAA8CTCDAAAAABPIswAAAAA8KT/A2+O9H+YAr7fAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAJrCAYAAAC/TNTkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde1iUdf7/8ec9B4YzgqCAoEge8pQgRGipWdpJS7NMy61222r7tdbutt+22s7Zaddtt3ar7eDW2q6t22Gt1KyN2kbTPCCDh7TyiKCgIAgDzMAc7t8fOCSKCjIz99z4flyXVzFz87nfI8i8+BwVVVVVhBBCCCFESDJoXYAQQgghhDgxCWtCCCGEECFMwpoQQgghRAiTsCaEEEIIEcIkrAkhhBBChDAJa0IIIYQQIUzCmhBCCCFECJOwJoQQQggRwkxaFyCEEJ2lqirVTR4qGt1UNLopb3RT4XDj9h5/rckAyREmUiJNJB/5k2AxoihK8AsXQojToMgJBkIIvahp8mCrcrLxkJMmT8uPLgPQTkY7ztHXWYwKI3uGk50YTrzFGKBqhRDCPySsCSFCmldV2VnXzIZKJ3vsLhTAHz+0fO1kxJjJSQrnrNgwDNLbJoQIQRLWhBAhq7TexbISO4ebvX4LacfytdsjzMDkfjGkR5sDcBchhDh9EtaEECHH5VWx7m+gsNIZsJB2LN99cpPCGZ8ahdkgvWxCiNAgYU0IEVJK610sLbFT1+wNSkg7lgLEhhmYIr1sQogQIWFNCBEyCisdFJQ1BK037UR895+YFkVuUoSGlQghhIQ1IUQIUFWV1QccrCxv1LqU44xNiWRM7wjZ6kMIoRnZFFcIoblQDWoAK8sbWX3AoXUZQogzmIQ1IYSmCg+GblDzWVneSGGlBDYhhDYkrAkhNFNa76JgX4PWZXRIQVkDpfUurcsQQpyBJKwJITTh8qosLbGjl5lgCrC0xI7LK9N8hRDBJWFNCKEJ6/4GzbbnOB0qUNfsZcV+ffQECiG6DwlrQoigK613UVjp1E1Q81GB9ZVOGQ4VQgSVhDUhRFB5VZVlOhr+PJYCLCux45Vdj4QQQSJhTQgRVDvrmjmso+HPY6nA4WYvu+qkd00IERwS1oQQQbXhyHmfeqYAG2QrDyFEkEhYE0IETU2Thz12l2571XxUYLfdRU2TR+tShBBnAAlrQoigsVXpv1fNRwGKq5xalyGEOANIWBNCBIWqqmw8dOIVoLsKV/HAqCR2Fa5qfezdR+fwu8mjglNgJ6nANXlD+PGPf6x1KUKIbk7CmhAiKKqbPDR59D4A2paq0u1ekxAi9Ji0LkAIcWaoaHSf9PmMUaN54utSjOawIFXkHw63V+sShBDdnIQ1IURQVDS6MQAnijYGgwGDJTyYJXWZAjikZ00IEWAS1oQQQfF1YRH/mPc4JRvXoXq9pA/P4ZKf/5a+5+QCLXPWXr99Gre99gGZueefsJ2Nny5mxYIXqdq7E0VR6JGSzrnTZnP+DT9rvcZhr6Xgld/zzRdLqa+uIq53KnnTb2TsTXMwGH6Y/eH1eln9r9dYv/ifVJftITw6lqEXXs5ldz9MRGyP1utUVeV/f/sja99bgKPuMOnDR3HVfc+iAo3SsyaCQFVVPCq4VRWvFwwGMCkKRgUUpbss2xEnImFNCBFwW7ZsYe4Nl2OJimHczXMwmsysff+tlnD2+of0HZHToXa2r/mSRQ/czll547js7kcAqNz9PSUb17WGtWZHI6/dOpW6ynLypt9Ej+Q0Sjat49O/PEld5QGuvPep1vY+eOrXbFiyiJwrr2fMrNuo2V/C1//+G/u/28wdbyzDaDYD8Nlfn+V/8//I4AsmMvj8iez/dhNv3DkDj8uFw+1FVVV5wxR+o6oq1U0eKhrdVDS6KW90U+Fw097vBSYDJEeYSIk0kXzkT4LFKN+P3YyENSFEwD300MN43G7ueGMpCWkZAGRPvo4/Th/NJy88zu3zP+pQO9+u/AxLdAy3vPQOBqOx3Wu+WvhXqst2c9e/viCx71kAnHftzcQmJbPyrZcYe+Od9Ejuwx7bGtYv/iczn3qFrMuvaf38zNwLeHPOTDYXfETW5ddQX1PFigUvMviCSdz8wsLWN8FPX3yKL994HhXwqmCU90bRRTVNHmxVTjYecrYuXDnZ1AEAtxfKGtzsb3C3XmcxKozsGU52Yjjxlvb/nQh9kdWgQoiA8ng8fPbZfxl64eWtQQ0gNimZkZddw57itTjr7R1qKyImDpejke1rvjzhNZs/W0JGdj4RMT1oqDnU+mdA3ni8Hg+7i75uua7gI8KjYxmQP77NdX2GjCQsMopdhV8BsGPtCjyuZsbMurVNb8X5s38YdnXLOaHiNHlVle21TSzaUcurW2tYf9DRZoVxRwfZj76uyaOy/qCDV7fWsGhHLdtrm+QsW52TnjUhREBVVlbS2NhIUsaA457r1X8gqtdL7YF9HWor/7qfsPmzD/n7XbOI7ZXCwPwLGTFpKoPPv7j1mkOlu6jY/g1PXnx2u200VFcBULV3F876Op66eEi719Ufue5weSkAiX0z2zwfHZ/YOq/N4wWkA0N0Umm9i2Uldg43e1s3i/ZXpPK1U2J3scfuokeYgcn9YkiPNvvpDiKYJKwJIXQjOiGJuxb9j+2r/8d3qz/n+1Wfs+Gjf5E95Tque+IlAFSvlwH5FzL+5jnttuEbGlW9XqITkpj51F/bvS4qvmeH6zLKGIXoBJdXxbq/gcKjzskNVL+Xr93aZi8Lt9eSmxTO+NQozAYZt9cTCWtCiIBKSkoiMjKSyj07jnuucs8OFIOBuN59aKg51KH2TOYwhoy/lCHjL8Xr9fLhM79h3fsLuOjWX5PYN5OEtAyaGxsYcN74k7bTMy2DnetW0G9kHubwiBNe1yMlHWjpiTt6GLe+pgpH3eGWmmQyt+ig0noXS0vs1DW3DFwGa3DSd58NlU621zYzRXrZdEV+HxRCBJTRaOSSSy5hm/UTavbvbX3cfuggxZ+8T0bWeYRHx3SorYbD1W0+NhgMJA8cCoDH1QzAiElT2btpPd+v/uK4z3fYa/G4WzbnHXHJVLweD1+8/txx13ncbhz2WgAGnDcOo8nM6kXzUY+a97Nq4atAy15r0kkhOqKw0sHC7bXUNXuDFtKOpQJ1R3rZCisdGlUhOkt61oQQAffkk0+y/L+f8cotU8if8RMMRhPr/vMWnuZmLvvFox1u5z9zf4WjtobMc8cS1zuFw+VlrF40n5TBw0nqPwiAcTf9nG3WT1jwy9nkXDmLPkNG0uxopGLHVrYULOE3S4uIiu9JZs755F1zM1+++QL7v9/CwPwLMZrMVO3dxZaCj5hy71OMmHgV0fGJjL3xTr588wUW/OKGlq07vtvM96s+J6pHTyJMBtkmQZyUqqqsPuBgZXljy8da13PkvwVlDTR5VMb0jpDv4RAnYU0IEXDDhg3j+fc/5U9PPMyXb76A6lVJHz6K6+a+3OE91gCyr7iWde+/xdp338RhryWmZy/OuWQaE392b+tmt2ERkdw+/0O+/NvzbC74iKKl7xAeFUNiv0wm3nEf4dGxre1d/eAf6DNkJOveX8B/X3oag9FIfEpfsq6YQb+Rea3XTfr5bzFZwln73t/ZVbiK9OGjuOXld1lw9w1EmmSAQpzc0UEt1PjqOj85UuNKxMkoqirreYUQgfdNtZMlJfVal+F3V/WLYWiCResyRIgqPOigYF+D1mWc0sS0KHKTTjx3U2hLfiUUQgRFcmT37Mjvrq9LdF1pvUsXQQ1ahkRL611alyFOQMKaECIoEixGLN1sm3+LUSHeIj9GxfFcXpWlJXb08h2vAEtL7Li8MtgWiuSnjBAiKBSl5Qgcvbx5nYoCZPUMl4nZol3W/Q2arvrsLN8q0RX79dETeKaRsCaECJrsxHDdvHmdigpkJYZrXYYIQaX1Lgornbr7XleB9ZVOGQ4NQRLWhBBBE28xkhFj1n3vmgL0jzHLIdniOF5VZZmOhj+PpQDLSuxylmiIkbAmhAiqnCT9966pQI6snBPt2FnXzGEdDX8eSwUON3vZVSe9a6FEwpoQIqjOig2jR5hB1z0PPcIMZMbKUT3ieBuOOu9TrxRgg5xuEFIkrAkhgsqgKEzuF6Prnocp/WIwyMICcYyaJg977C7dfm/7qMBuu4uaJo/WpYgjJKwJIYIuPdpMbpL+VoYqwLlJ4aTJAdiiHbYq/feq+ShAcZVT6zLEERLWhBCaGJ8aRayuhkNVYsMMjEuN0roQEYJUVWXjIf+sAC145fc8MCrJDy2dPhUoPuREDjkKDRLWhBCaMBsUpuhoOFRVVaJ2rsds0E+8FMFT3eShyaOX7+aOafKo1DR5tS5DIGFNCKGh9GgzE9P00VNV/r/F3Dz1Mu6//348HpnLI9qqaHT7ra0Jt97DE1+X+q29rvDn6xKnTw61E0JoKjcpgiaPysryRq1LOaGxKZGMued2MpQG7r33XoqLi3n77bdJSEjQujQRIioa3RiArvZDNTsaCIuIwmjS/u3ZoECFw81QLFqXcsZTVBmQFkJoTFVVVh9whGRgG5cSyejeEa3HShUUFDBz5kx69OjBBx98wIgRIzSuUISCf35/mLKGzvVCFbzyez5/bR6/fO8r/jf/j3y36nPiU9MZOv5yPn9tHs8UVba53rbsXVYvep0DO7/FaA4jecAQJtx6D4NGT2i95rtVBXz5t+fZ9+1mFINC/1GjufwXj9L7rLNP63WlRZn40aAep/W5wn9kGFQIoTlFUTg/ObJ1SFTrWWG++09Mi2JMcmSb8z8nTpxIYWEhMTExjB49mvfee0+bIkXIUFWVCsfpDxe+/Zuf4nI6uHTOg5x79Y3tXlPw6jzeefhOjCYTE++4j4l3/Ia45D7sWr+y9Zqipe+w4O4bCIuM4rK7H+aiW3/NwV3f88otU6jZv/e0aqtwuGWRQQjQvp9VCCGOyE2KoHeEiaUlds0OwVaA2DADU/rFkH6CLTr69+/P6tWr+elPf8qMGTN44IEHmDt3LkajHD91JvKo4O7C+GfKoGHMevrV1o8LXvl9m+er9u7ii9f/wLAJk7lh3hsYDD/0s/iCVFNjPUvm/ZbcaT9i+sN/bH1+1JUz+ePVo/nf355v83hHub3gVcGo9W9QZzgJa0KIkJIebebWIfFY9zdQeGQ3+GCENt99cpPCGZcadcpVn5GRkbz99tvk5ORw3333UVxczMKFC4mPjw9CtSKUuLvY83TeNTef9PmtXy5H9Xq56PZftwlqQGuv7441Vpz2WkZeNp2GmkOtzxsMRtKHj2JX4VenXZ9bVTFq3t99ZpOwJoQIOWaDwsS0aAb3sLCsxM7hZm/AQpuv3bgwA5NP0pvW7ucqCv/3f//HyJEjmTlzJnl5eXzwwQcMGzYsAJWKUOXt4qqC+D79Tvp8ddkeFIOBXpmDT3hN1d5dAMz/2dXtPm+Jjjnt+jxeQDqNNSVhTQgRstKjzdw+NJ5ddS42VDrYbXf5LbT52smIMZOTFEFmrPm0j5CaNGkShYWFTJs2jfz8fBYsWMD06dP9UKXQA0MXZ3+bLeFdrkFVWxLjdXNfJiax13HPG4yn/3ZvlNntmpOwJoQIaQZFYUBcGAPiwqhp8lBc5aT4kPOHDUi93g69WxqUlrk3ABajQlbPcLISw4m3+KfLIDMzk6+//pqf/OQnXHPNNTz00EM8/vjjxw1bie7HFOBzYhPSMlC9Xg7u+o7Uwe2vPu6ZlgFAVEIiA84b79f7B/r1iVOTnyJCCN2ItxiZ0CeKX45IILt+B4seuJ1Mk4O0KBOmE/w0Mxlath/ITYrgqn4x3D4knl+OSGBCnyi/BTWfqKgo/v3vf/Pss8/y1FNPMXXqVGpra/16DxF6jAon/P7zh6EXXo5iMPDFa8/hPWbM1bfAYODoi7BEx/DlG8/jcbmOa6O+puq07m0ytPyiI7QlPWtCCN1RFIVtG9bwnXU504e9g8lkQlVVvGrLZGiPt2XoxqQoGBTabL0RjNruu+8+Ro4cyfXXX986j23IkCFBq0EEl6IoJEeYOr3PWkcl9s1kwk9/xRevP8drP53CsIumYDSHUbbVRmxSMpfd9TDh0TFMe6Ble4+/zL6YkZdMIyo+kcMVZXz71Wf0G5nH1Pt/1+l7J0eYgvrvR7RPwpoQQpdsNhsjRozAdGSnd0VRMCq0rFoLgcnQl112GevXr2fatGmcd955/OMf/2Dq1KlalyUCJCXSxP4Gd5dPMDiRSf/vfuJT+/L1v+fz35eexhweQfLAoYyafF3rNVmXX0NsUjJfvvkCK956CbermdikZPpn55N71Q2dvqdBgdSoji+4EYEjJxgIIXTpnHPOYcyYMbzyyital3JSdrudH//4x/znP//h0Ucf5ZFHHpF5bN3QN9VOlpTUa12G313VL4ahCXLclNbkJ4YQQnccDgdbt24lOztb61JOKSYmhvfee4+nnnqKJ554gquvvpq6ujqtyxJ+lhzZPQequuvr0hsJa0II3dmyZQsej0cXYQ1ahmh/+9vfsnTpUqxWK+eddx7fffed1mUJP0qwGLF0s23+LUaFeIvEhFAgXwUhhO7YbDaMRqPuDlG/4oorWL9+PYqikJeXx5IlS7QuSfiJoiiM7Bnebfb5V4CsnuGyuCBESFgTQuhOUVERQ4YMISIiQutSOm3gwIGsXbuWiy66iKuuuoq5c+cetx2D0KfsxHBNzrMNBBXISuz6Zr3CPySsCSF0x2az6WYItD0xMTG8//77PPHEEzzyyCNcc8012O12rcsSXRRvMZIRY9Z975oC9I8x+30fQnH6JKwJIXTF7XazadMmXYc1AIPBwMMPP8xHH33EF198QX5+Ptu3b9e6LNFFOUn6711TgZwk/fVad2cS1oQQuvLtt9/idDoZNWqU1qX4xZVXXsm6devweDyce+65fPzxx1qXJLrgrNgweoQZdNu7pgA9wgxkxsr+aqFEwpoQQldsNhsAWVlZGlfiP4MHD2bt2rWMGzeOKVOm8PTTTyNbYOqTQVGY3C9Gt71rKjClXwwGWVgQUiSsCSF0xWazkZmZSVxcnNal+FVcXBwffPABjzzyCA8++CAzZsygvr77bbJ6JkiPNpObpL+VoQpwblI4adHSqxZqJKwJIXSlqKio2wyBHstgMPDYY4+xePFiPv30U/Lz89mxY4fWZYnTMD41ilgdDYcqQGyYgXGpUVqXItohYU0IoRuqqlJcXKz7xQWnMm3aNNatW4fL5eLcc8/lk08+0bok0Ulmg8IUHQ2H+oY/zQa9xMszi4Q1IYRu7N69m9ra2m4f1gCGDBnCunXrOP/887niiit49tlnZR6bzqRHm5mYpo+eqolpUaTL8GfIkrAmhNCNoqIigG47DHqsuLg4PvroIx588EEeeOABZs2aRUNDg9ZliU7ITYpgbEqk1mWc1NiUSHJlq46QJmFNCKEbNpuNlJQUevfurXUpQWMwGJg7dy7vv/8+H3/8MaNHj2bXrl1alyU6YUzv0A1s41IiGdNbglqok7AmhNANvZ9c0BXTp09nzZo1OBwOcnNz+eyzz7QuSXSQoiicnxzZOiSq9aww3/0npkUxJjlSzv/UAQlrQgjd6M4rQTti2LBhrFu3jvz8fC677DL+8Ic/yDw2HclNimD2wDhNV4n6Vn3OHhgnQ586ImFNCKEL5eXlHDhw4IztWfOJj49nyZIl3Hfffdx7773Mnj2bxsZGrcsSHZQebebWIfHkJLUckh6s0Oa7T25SOLcOiZfFBDojYU0IoQu+kwvO9LAGYDQaefrpp3nnnXf48MMPGTNmDLt379a6LNFBZoPCxLRoZg+MIy6s5W04UKHN127ckd60i9OiZXsOHZKwJoTQBZvNRo8ePcjIyNC6lJAxY8YM1qxZg91uJzc3l88//1zrkkQnpEebuX1oPNdmxpIR09LT5a8Y5WsnI8bMtZmx3D5UetP0TFFlwoMQQgeuueYaampq+OKLL7QuJeRUV1dz/fXXU1BQwLx58/jVr34lk8Z1qKbJQ3GVkzX7DqOYLQAYFPB24F366OssRoWsnuFkJYYTbzEGsGIRLBLWhBC6kJmZydVXX81zzz2ndSkhyePx8OCDD/K73/2O2bNn89prrxEZGfztIlRVxaOCW1XxesFgAJOiYFSQANlBF118MYl9M3nsuRepcLjZ3+CiwuHG7T3+WpMBkiNMpEaZSY4wkRxpIt5ikL/rbsakdQFCCHEqNTU17N69+4xeCXoqRqORZ599luzsbG655Ra2bt3K4sWL6devX8Duqaoq1U0eKhrdVDS6KW90nzJUpES2BIrkSBMJFqOEimM0NTXx9erVPHnFFQxNsDCUlh42VVXxHgnBHi8Yj4Rgg4TgM4KENSFEyCsuLgZkcUFHzJw5k7PPPptp06aRm5vLO++8w4QJE/x6j5omD7YqJxsPOWnytAzOGIB2MlortxfKGtzsb3C3XmcxKozsGU62DNe1Wr9+PU6nk/Hjx7d5XDnSO2lEAfmrOuPIAgMhRMiz2WxEREQwePBgrUvRhZEjR1JYWEhWVhaTJk3ihRde6PJ+bF5VZXttE4t21PLq1hrWH3S0BjU4eVBr085R/9/kUVl/0MGrW2tYtKOW7bVNeM/wmTkrVqwgJiaGrKwsrUsRIUR61oQQIc9mszFy5EiMRulS6KiePXuyfPlyHnjgAX75y19SVFTEK6+8QkRE5zdCLa13sazEzuFmb+sqQ39FKl87JXYXe+wueoQZmNwv5oxduWi1WrngggswmeTtWfxAetaEECGvqKhIhkBPg8lkYt68eSxcuJB3332XsWPHUlpa2uHPd3lVCsrqWbi9ltrmlj6xQPV7+dqtbfaycHstBWX1uDqyDLIbcblcrFq16rghUCEkrAkhQlpjYyPffvuthLUuuOGGG1i1ahVVVVXk5ORgtVpP+Tml9S7mb6thQ6UTCFxIO5bvPhsqnczfVkNpvStId9ZeUVERDQ0NEtbEcSSsCSFC2ubNm/F6vbIStIuys7MpLCxk+PDhTJw4kRdffPGE89gKKx0s3F5LXbM3aCHtWCpQd6SXrbDSoVEVwWW1WomMjCQnJ0frUkSIkbAmhAhpRUVFmEwmhg8frnUpupeYmMh///tf5syZw1133cUtt9yC0+lsfV5VVVZVNFJQ1tDysVaF+uo58t+CsgZWVTR2+0PrrVYrY8aMwWw+M+friROTsCaECGk2m42hQ4disVi0LqVbMJlM/OlPf+Ktt95i0aJFjBs3jrKyMgBWH3Cwsjw0D4VfWd7I6gPdt4fN4/Hw1VdfyRCoaJeENSFESLPZbDJfLQBuvPFGVq1aRUVFBTk5Obyz5puQDWo+K8sbu+2QaHFxMXV1dRLWRLskrAkhQpbL5WLTpk0yXy1ARo0aRWFhIaOvuJqd5iSty+mQgrKGbrnowGq1Eh4eTl5entaliBAkYU0IEbK2bdtGc3Oz9KwFUHxiEpf8+imty+gwBVhaYu9223qsWLGC/Px8Ge4X7ZKwJoQIWTabDWjZkV8EhnV/A3aXimLQx9uBb5Xoiv0NWpfiN16vl5UrV8oQqDghffzrFEKckYqKihg4cCCxsbFal9Itlda7KKx0ar7qs7NUYH2ls9sMh27ZsoXq6moJa+KEJKwJIUKWLC4IHK+qsqzE3np8lN4owLISe7c4S9RqtWI2m8nPz9e6FBGiJKwJIUKS1+uluLhYwlqA7Kxr5rCGm952lQocbvayq07/vWtWq5W8vLzTOrdVnBkkrAkhQtLOnTux2+2yEjRANlQ6ddur5qMAG3S+lYeqqqxYsUKGQMVJSVgTQoQk3+IC6Vnzv5omD3vsLt32qvmowG67i5omj9alnLZt27ZRWVkpYU2clIQ1IURIstls9OnTh6Qkfez/pSe2Kv33qvkoQHGV85TXhSqr1YrRaGTMmDFalyJCmIQ1IURIKioqkiHQAFBVlY2H9LcC9ERUoPiQU7fnhlqtVnJzc4mOjta6FBHCJKwJIUKOqqqyEjRAqps8NHn0GWxOpMmjUtPk1bqMTpP5aqKjJKwJIULO/v37qayslLAWABWNbq1LCAg9vq4dO3ZQXl4ecmFNVVXcXhWnx0ujy4vT48XtVXXbe9kdmLQuQAghjlVUVAQgw6ABUNHoxgBo3Q/lanJiNIdh8MPJCQYFKhxuhqKvo5qsVisGg4ELLrhAsxpUVaW6yUNFo5uKRjfljW4qHG7c7XyDmAyQHGEiJdJE8pE/CRYjitJdZkCGLglrQoiQY7PZSEhIID09XetSup3yRnenglrtwXIK/vos3636nMbaGmKTkhk05iKm3PsUJnMY1WV7WP7nJ9i5biXu5iaSBwzlotvu4eyxl7S2satwFa/fPo1Zz7zGgR3b2PDRv7BXHeDhL7ez9A8PsqVgCfcsXsNHz97HjrVWzJYIRl05k8vufgSD0XjKGr0q7G/Q335rVquV7OxsTU7oqGnyYKtysvGQs3VY/FQh3u2FsgY3+xt++B6yGBVG9gwnOzGceMupv1bi9EhYE0KEHN98NfmN3b9UVaXC0fHhwrrKCl6+8RIc9jrypt9IUsZA6irL2VKwBJfTgaPuMH/9yRW4nA7GzLqNyLgEipYu4q1f3cjs37/BsIsmt2nvi9efw2g2M/bGn+N2NWE0mYGWDZDf/Pl1pA8fxRW/epwda62s/MfLJKRlkD/jJx2qtcLhRlVV3XzPqKqK1Wrl2muvDdo9varKzrpmNlQ62WN3oUCbhSYdDfFHX9fkUVl/0MG6gw4yYszkJIVzVmwYBp18HfRCwpoQIuQUFRUxc+ZMrcvodjwq7Q5vncgnf5mL/dBB7nzrU9KGZrU+Pun/3Y+qqix77mHqD1Xys78tISO75aikc6f/iBdmXsiyPz7CkAsvbzPM6W5uYs4/P8Mc3nanfneTkxGXTOPi234NwHnX/pi/3HARhR8s7HBYc3tbetiMOskIe/bsobS0NGjz1UrrXSwrsXO42du6bYu/ZqD52imxu9hjd9EjzMDkfjGkR5v9dAchCwyEECHl0KFD7N27VxYXBIC7ExPEvV4vW79czpBxl7YJaj6KovDdqgLSho9qDWoAlsho8qbfSNVCziwAACAASURBVM3+vRzc9V2bzxk1ZeZxQc3nvGtvbvNxRnY+1ftKOlwvdO71ac1qtaIoCmPHjg3ofVxelYKyehZur6W2uSWpB+pvyddubbOXhdtrKSirx+XVz9cklElYE0KElOLiYkBOLggEbyd61Rpqqmiqt9P7rLNPeM3h8jKS+g047vFe/Qcdeb60zePxqX3bbcdkCSc6PrHNYxExPXDUHe54wYBH61UTnWC1WhkxYgQJCQkBu0dpvYv522rYUNmyaXCwYpPvPhsqnczfVkNpvf7mE4YaCWtCiJBSVFREVFQUAwcO1LqUbscPCy+7xBwe3u7j/lgRCmDU0TtaoPdXK6x0sHB7LXXNXs02QFaBuiO9bIU6P8NVazJnTQgRUmw2GyNHjsTYgVWAonNMnZj0HRWfiCU6hgM7vz3hNT1S0qgs2XHc45V7th95PrireTvz+rRUVlbGrl27AhLWVFVl9QEHK8sbWz72+x06Wc+R/xaUNdDkURnTO0I3i0BCiY5+DxFCnAnk5ILAMSote2V1hMFgYOiFl7NtxaeUbS0+7nlVVRl8/kTKthRRsnF96+PNjgbW/ecfxKf2pVfmYH+VfkomQ8t+a3pgtVoBGDdunN/bPjqohZqV5Y2sPiA9bKdDetaEECGjvr6e7777jnvvvVfrUrolRVFIjjBR1tCx7TsunfMQO9Z8yWu3TiVv+o306j+IuqoDbCn4iJ+9sZTxP7mbjZ/+h7/fNYsx199GRGwPipb+m5p9Jcye96bfhjdPSVWxOOuprPTSq1ev4NyzC6xWK0OHDiUpKcmv7RYeDN2g5rOyvBGLUSE3qf2FJqJ9EtaEECFj06ZNqKoqPWsBlBJparOp6cnE9UrhzgWf8t+/PkPx8vdparAT2yuFQWMuwhweQURMHP/vzY9Z/ucnWL1ofsumuAOHctPz/2yzKW6gedxuli96i7uff4zU1FSysrLIzs5u/dO/f/+QGnqzWq1cfPHFfm2ztN5Fwb4Gv7YZKAVlDfSOMMnWHp2gqHLYlxAiRLz00kv86le/or6+nrCwMK3L6Za+qXaypKRe6zL8Li+8gUNb1lFcXIzNZsNms1FRUQFAXFwcWVlZbULckCFDMJuDHxbKy8tJTU1l0aJFfttL0OVVmb+tRtPFBJ2hALFhBm4dEo9ZL2PXGpOeNSFEyCgqKmLYsGES1AIoObJ7/tjP6p9GwpB+zJgxo/WxioqK1uBWXFzMsmXLeOGFFwCwWCwMHz68NbxlZWUxcuRIoqKiAlrnihUrAP/OV7Pub9BNUIMfVomu2N/AxWnRWpejC93zX60QQpdsNpsc3h5gCRYjFqPSeh5kd2AxKsRbjp8fl5yczOWXX87ll1/e+lhdXR0bN25sDXGFhYUsWLAAl8uFoigMGjSozRBqVlaWX+eWWa1WBg4cSEpKil/aK613UXhkHzU9UYH1lU4G9bDIcGgHSFgTQoSE5uZmtmzZwi233KJ1Kd2aorQcvL3+oEM3PTEnowBZPcM7PCctNjaWsWPHtjk5oKmpia1bt7YGOJvNxtKlS6mvbxku7tOnT5sAl52dTb9+/U5rHpzVavXblh1eVWVZif24Mz71QgGWldi5fWi8nCV6ChLWhBAhYevWrbhcLllcEATZieGsO9g9tlBQgazE9jfb7SiLxdIawny8Xi87d+5sE+BeffVVDh48CECPHj2OW8hw9tlnYzKd+G21srKSrVu38sADD3SpXp+ddc0cbtbRsQ3HUIHDzV521bkYECdTH05GwpoQIiQUFRW19PqMHKl1Kd1evMVIRoyZErtLlz0yPgqQEWMm3uL/DZQNBgMDBw5k4MCBXHfddUDL3nLl5eWtc+BsNhsffvghf/rTn4CW0DdixIg2Ae6cc84hMjISgJUrVwL4rWdtQ6VTt71qPgqwodIhYe0UJKwJIUKCzWZj0KBBREfLhONgyEkKZ49d32c2qkBOEPfrUhSF1NRUUlNTmTx5cuvjtbW1bVahrl27ljfffBO3243BYGDw4MFkZWWxd+9ekpOTW8NbV9Q0eXT/9YOWr+Fuu4uaJk9AQnd3IWFNCBES5OSC4DorNoweYQZqdbSK8GgKEBdmIDNW+8npcXFxjB8/vk2PmdPp5JtvvmkzjLpmzRpUVSUxMZH09PTWBQy+Xri+fft2eB6crUr/vWo+ClBc5WRCn8CuxNUzCWtCCM15PB6Ki4uZOnWq1qWcMQyKwuR+MSzcXqt1KadFBab0iwnZienh4eHk5OSQk5MDQE1NDT179uTpp5+mf//+rQHu5ZdfpqqqCoCEhITW8Ob77+DBg4+bB6eqKhsPObtFUIOWr2XxIScXpkaG1ObFoUTCmhBCczt27KChoUF61oIsPdpMblI4Gyr19cavALlJ4aTpaMuHlStXoqoqs2bNon///syaNQtoCV779u1rM4z6/vvv89xzzwEtoe+cc85ps5VI+uDhIbP1Sl1lBevef4uhEy4ndfCI026nyaNS0+QlIVyGQtsjYU0IoTmbzQYgYU0D41Oj2F7brJtNVX27349L1deQmdVqJS0tjYyMjDaPK4pCWloaaWlpTJkypfXxmpoaiouLW0PcqlWrmD9/Ph6Ph6zLr2XmU38N8itoX11lBZ+/No/41PQuhTWAika3hLUTkLAmhNBcUVERffv2pWfPnlqXcsYxGxSm6Gg41Df8qbdjinz7q3V0mC8+Pp4JEyYwYcKE1sccDgdbtmxhVZUbh8eDYuw+wcagQIXDzVAsWpcSkuRsUCGE5iZNmkRUVBQffPCB1qWcsQorHRSUhf5B4BPTosgN4gpQf6itrSUhIYFXXnmF2267rcvt/fP7w5Q1uLvUxv5vN/Hpi09RsnEdqtdL+vAcLvn5b+l7Ti4AjbU1fPnG83z/9f+o2VeCYjDQb2Qel939MCmDhgOwq3AVr98+7bi2r33sz+RcdX2na0qLMvGjQT269Lq6q+PP5xBCiCBSVVVWgoaA3KQIxqZ0fUuJQBqbEqm7oAawevVqvF6vX/ZXU1WVCkfXgtqBnd/y6k+vpPz7bxh38xwuuu3XVO/fy+u3T2Pv5g0AVO8r4Zv/fczZYycx+Z65jL1pDhU7tvHarVOpq6wAIKn/QCb+v/sByJt+E9fNfZnr5r5M/1GjT6uuCocb6T9qnwyDCiE0VVpayqFDh+RM0BAwpndLEFpZ3qhxJccblxLJ6N76C2rQMgSanJzMwIEDu9yWRwV3Fw8t+O/Lz+Bxu7njjaUkpGUAkD35Ov44fTSfvPA4t8//iOQBQ/j1B2sxGH7o0xk1eQZ/nD6G9R8s5OLbfk1Mz14MPv9iCv76LH3PySV78owu1eX2glcFo75GuINCetaEEJqSxQWhQ1EUzk+OZGJay+R9rd8zffefmBbFmGT9buvQ2flqJ+PuYs+T1+Nh+9dfMvTCy1uDGkBsUjIjL7uGPcVrcdbbMYVZWoOa1+Oh4XA1YRFRJPYbwP5vN3WphpPp6uvrrqRnTQihKZvNRmJiIn369NG6FHFEblIEvSNMLC2xa7ZK1Lfqc0q/GNJ1tEXHsRoaGigsLOSmm27yS3veLvaqNdRU4XI2kpQx4LjnevUfiOr1UntgH2GRg1j99musefcNavbvxevxtF4XGRfftSJOwuMFus+6Cb+RsCaE0FRRURGjRo3Sba9Jd5UebebWIfFY9zdQGMQzKH33yU0KZ1xqlO5WfR5r9erVuN1uv50HagjSeNiXb/yJz15+ltypNzDpzgeIiO2BwWBg6R8eQlUDd3i8Ucb72iVhTQihKZvNxuzZs7UuI6hUVW2Ze6SqeL0tb8AmRcGoEFKh1WxQmJgWzeAeFpaV2Dnc7A1YaPO1GxdmYLLOe9OOZrVaSUxMZMiQIX5pz9TF74+o+ETM4ZFU7tlx3HOVe3agGAzE9e7DloIlZOZewDWPvtDmGoe9lsgeCa0fK34eLO/q6+uuJKwJITRTWVlJWVlZt56vpqoq1U0eKhrdVDS6KW90U+FwtztJ3GSA5AgTKZEmko/8SbAYNQ9w6dFmbh8az646FxsqHey2u/wW2nztZMSYyUmKIDPWHLJHSJ0Oq9XKuHHj/PY1NCot3yenu8jAYDQycPSFbLN+Qs3+vcSn9gXAfuggxZ+8T0bWeYRHx6AYjBz7Fd782YfUHSynZ3r/1sfMES0riB32ru/TZzK07LcmjidhTQihGd/igu64ErSmyYOtysnGQ87Wo4EMwMneY91eKGtws7/B3Xqdxagwsmc42YnhxFu0m8xjUBQGxIUxIC6MmiYPxVVOio9+bQp4vOopQ4nH7cJoauk1sxgVsnqGk6XxawsUh8PBunXrmDdvnt/aVBSF5AhTl/ZZu+TOB9ix5kteuWUK+TN+gsFoYt1/3sLT3Mxlv3gUgLPHXsIXr/+B9x69i74j86jYsZXi5e+3WZQA0DMtg/CYONa9vwBLVDRhEVGkDx9FQp9+na4rOcKk+S8moUrCmhBCMzabjZiYGM466yytS/ELr6qys66ZDZVO9rTT+9TRzpCjr2vyqKw/6GDdQceR3qdwzooN07T3Kd5iZEKfKC5MjaSmydvSa+hw85/PV9Jn6EgU4/FDmL5ew00rrXy3fhVvPj+PeIuhW785r1mzhubmZr/NV/NJiTS1CfSd1fuss/nZ35bwyV+e5Ms3X0D1qqQPH8V1c1+m74iWg+cn/PSXuJyNFC9/n02ffUjq2SP48Qtv88lf5rZpy2g2M+OJF/n0L0/ywdP34nW7ufaxP3c6rBkUSI3qHkPfgSAnGAghNDNr1iz27dvHypUrtS6ly0rrXUGb19UjBOd12e12YmNj+efChcyadT1uVcXjbZkwblIUDEfm47366qv8/Oc/p7a2lqgofZ3v2VmPP/44L7zwAlVVVW32K+uqb6qdLCmp91t7oeKqfjEMTZDjptoj6y6EEJrxrQTVM5dXpaCsnoXba6ltbunrCNRvwL52a5u9LNxeS0FZPS5vaPy+XVJSAkD/jAyMBgWL0UCk2YDFaMBoUFp70EaPHo3H46GwsFDLcoPCarUyduxYvwY1gOTI7jko1l1flz9IWBNCaMJut7N9+3ZdLy4orXcxf1sNGyqdQHC2tjj6PhsqnczfVkNpvStIdz4xX1jr1+/kw1/Dhg0jKiqKNWvWBKMszTQ1NfH111/7fQgUIMFixNLNtvm3GBXiLRJJTkT+ZoQQmti4cSOg35MLCisdLNxeq9mmsdAS2uqO9LIVVjo0qqJFSUkJZrOZlJSUk15nNBrJy8vr9mFt/fr1OJ3OgIQ1RWlZdNJd4poCZPUM79bzF7tKwpoQQhNFRUWEhYUxdOhQrUvpFFVVWVXRSEFZQ8vHWtdz5L8FZQ2sqmjU7CDsPXv2kJ6e3qEhv/z8fNasWdOtD+22Wq3ExsaSlZUVkPazE8M1/97zFxXISgzXuoyQJmFNCKEJm83GiBEjMJtDZ5J8R6w+4AjJg86h5QD21Qe06WErKSkhIyOjQ9fm5+dTUVHB3r17A1uUhqxWKxdccAFGY2C2JIm3GMmIMeu+d00B+seYu+XWLf4kYU0IoQmbzaa7IdDCg6Eb1HxWljdqMiRaUlJyyvlqPvn5+QB8/fXXgSxJMy6Xi9WrVzNu3LiA3icnSf+9ayqQkxShdRkhT8KaECLompqa+Oabb3QV1krrXRTsa9C6jA4pKGsI+qKDzoS1Xr16kZmZ2W3nrW3YsIGGhoaAzFc72lmxYfQIM+i2d02hZRuazFh99a5rQcKaECLotmzZgtvt1s22HS6vytISu27eFBVgaYk9aNt6OJ1OKioqOhzW4Id5a93RihUriIqKIicnJ6D3MSgKk/vF6LZ3TQWm9IvpVseLBYqENSFE0NlsNgwGA+ecc47WpXSIdX+Dpqs+O8u3SnTF/uD0BPrmnnU2rNlsNpqamgJVlmasVitjxowJynzM9GgzuUn6WxmqAOcmhZMWQhs7hzIJa0KIoCsqKmLw4MFERkZqXcoplda7KKx06iao+ajA+kpnUIZDfXusdXSBAbRsjtvc3Nx6Pmx34fF4+OqrrwI+BHq08alRxOpoOFQBYsMMjEvt3idY+JOENSFE0NlsNl0MgXpVlWU6Gv48lgIsK7HjDfAWGSUlJRgMBtLS0jr8Oeeccw7h4eHdbpFBcXExdXV1QQ1rZoPCFB0Nh/qGP80Gvf7LCj4Ja0KIoPJ4PGzcuFEXiwt21jVzWEfDn8dSgcPNXnbVBbZ3raSkhNTU1E4N+4WFhZGTk9Pt5q1ZrVbCw8M599xzg3rf9GgzE9P00VM1MS0qpM611QMJa0KIoPruu+9wOBy6CGsbKp267VXzUYANAd7KozMrQY/WHRcZWK1WRo8ejcUS/APJc5MiGJsS2lMLxqZEkitbdXSahDUhRFD55iiFelirafKwx+7Sba+ajwrstruoafIE7B579uw57bC2d+9e9u/fH4Cqgs/r9bJy5cqgDoEea0zv0A1s41IiGdNbgtrpkLAmhAgqm81GRkYG8fHxWpdyUrYq/feq+ShAcZUzYO135vSCo40ePRqAtWvX+rkibWzevJmampqAb4Z7MoqicH5yZOuQqNbfw777T0yLYkxypJz/eZokrAkhgqqoqCjke9VUVWXjISefvfJ7HhiVREPNoYDf83eTR/Huo3MC0rYKFB9yBuQsTrfbzb59+06rZ61Pnz6kpaV1m0UGVquVsLCw1hMatJSbFMHsgXGarhL1rfqcPTBOhj67SMKaECJoVFXVxUrQ6iYPTR69D4C21eRRqWny+r3dffv24fF4TiusQfeat7ZixQry8vKIiAiNYJIebebWIfE0bS9CVb0oQRrU94XD3KRwbh0SL4sJ/EDCmhAiaEpKSjh8+HDI96xVNLq1LiEgAvG69uzZA3RuQ9yj5efnU1hYiMsV3OOx/E1VVVasWKHpfLX27Nm5g6duvJLmlf8hLqzlsPRA9bT52o070pt2cVq0bM/hJyatCxBCnDmKioqA0F9cUNHoDspvsqqq4m5yYg4PfE+MQYEKh5uh+HeVom9D3L59+57W5+fn5+NwONi8eXPI97iezLZt26isrAypsKaqKr/4xS9ISUnh3ttuIjwigl11LjZUOthtd6GAX/rafO1kxJjJSYogM9YsR0j5mYQ1IUTQ2Gw2evfuTUpKitalnFR5o5ujBwwbDlfz4bO/4fvVX2Awmcm+4louu/sRzJZwAAo/fBvbsnc5sPNbnPV19EzLYPSsW8mf8ZM27f5u8ih6n3U2Y2bdyn9fepoDO7/l0rse4oLZd7Rbh8NeS8Erv+ebL5ZSX11FXO9U8qbfyNib5mAwGFBVld9PySFl0DBu+tM/2nyuq8nJU5OGMvKSq7n6oefwqrC/wf+9VyUlJfTq1eu0T6MYNWoUZrOZNWvW6DqsWa1WTCYTY8aM0bqUVkuXLmX58uUsXry49eszIC6MAXFh1DR5KK5yUnzI2Trkb1CgI8fJHn2dxaiQ1TOcrMRw4i3GQL2UM56ENSFE0NhsNrKzs0N6RZiqqlQ42g4X/uu+W4lPTefSOQ+xd/MGVv/rdRx1tVw39yUA1r73d3pnDmbI+EsxGE18u+JTPnzmN6heL6Nn/rRNW1UlO1j025+Rd81NnHv1jSRlDGi3jmZHI6/dOpW6ynLypt9Ej+Q0Sjat49O/PEld5QGuvPcpFEUh+4prWbHgRRpra4iM+2GF7bcrPqWp3k7WFde2PlbhcKOqql///k93jzWfiIgIsrKy+Prrr7nzzjv9VlewWa1WcnNziYoKjY1pnU4nv/jFL7j00kuZOnXqcc/HW4xM6BPFhamR1DR5qWh0U+Fws7/BRYXDjbud6Y0mAyRHmEiNMpMcYSI50kS8xRDS/567CwlrQoigsdls3HzzzVqXcVIelePeqOL79G3tuRo986eER0Wz5t03GXvjnaQMGsbtr3/YZihzzKxbeePn1/HVwleOC2uHSnfzkxf/zaAxF520jq8W/pXqst3c9a8vSOx7FgDnXXszsUnJrHzrJcbeeCc9kvuQPWUm//vbn9j82Yecd+2PWz/f9vF7xKf2JSP7h5WJbm9Lj4jRj++tXQ1r0DIUunz5cj9VFHyqqmK1WkPqe3vevHmUlZWxfPnyk4YpRVFICDeSEG5sHSJXVRWvCm5VxeMFowFMioJBQYKZRmSBgRAiKA4cOMD+/ftDfqjL3c72FvnX3dLm49GzbgPgu1UFAG2CmtNeR0PNITJzxlBdtgenva7N58b36XfKoAaw+bMlZGTnExHTg4aaQ61/BuSNx+vxsLuoZbuLpH5nkT48h+KP32v93MbaGr5f9TlZl19z3Jtre6+vK053Q9yj5efns2PHDqqqqvxUVXBt376dioqKkJmvtmfPHp5++mnuueceBg8e3OnPVxQFo0HBYjQQaTZgMRowGhQJahqSnjUhRFDo5eQCbzvDP4l9M9t83DMtA8VgoGZ/KQB7itdS8Mrv2bupEJezsc21zvo6wmNiWz9OSO3YRPxDpbuo2P4NT158drvPN1T/EGyyp1zHkt/dT83+UuJT09n82Ud43C6yJ1933Od5vICfphZ5vV727t3rl7AGLZvjTp482R+lBZXVasVgMHD++edrXQoA99xzDz179uShhx7SuhThJxLWhBBBYbPZiI2NpX///lqXclKGjow3HNXDcKh0N3+74xqSMgYw+Z4niEtOxWQO49uvCli18BVUtW36Mx1ZlHAqqtfLgPwLGX9z+xvl+oZGAUZeejXLnnuY4uXvMeGnv6L443fpMzSr3flwRj+Opxw4cIDm5ubTOr3gaP3796dXr16sWbNGt2EtOzub2NjYU18cYJ9++imLFy9m0aJFREdHa12O8BMJa0KIoPCdXGDoUBrSjqmdoZ6qvbtI6PND79Gh0t2oXi/xqelsW/Ep7uYmbvrTP+mRktZ6zc71X3WpjoS0DJobGxhw3qmH1iLj4jn7gkkUL3+frMuvpWTjOib/35PtXtve6ztdvm07utqzpigK+fn5ujzJwDdf7brrju/FDLbm5mbuvvtuLrzwwpCoR/hPaP/UFEJ0G76VoKHOqLSsejvamnfeaPPx14teB2Dw+RdjMLaMKR59lJPTXseGj/7VpTpGTJrK3k3r+X71F8c957DX4nG3XbGaPXkGB3d9x/IXHkMxGhl56dXHfZ7J0LLtgr/4K6xBy1DounXr8HgCd+B8IOzZs4eysrKQmK/2/PPPs3PnTv7yl7/I/LJuRnrWhBABV1tby86dO3UR1hRFITnCRFnDD2GoZt9e3vrljxg45iL2biqk+ON3GXn5NaQMGo4pLByjOYy3fvkj8q65iWZHA+v+8w+iExKxVx047TrG3fRztlk/YcEvZ5Nz5Sz6DBlJs6ORih1b2VKwhN8sLSIqvmfr9YPHTiKyRwKbP/uIQedfTHRC0nFtJkeY/PomvmfPHuLi4oiLi+tyW/n5+djtdrZt28bw4cP9UF1wWK1WFEVh7NixmtZRVlbGE088wV133aWrvz/RMdKzJoQIuOLiYiD0Fxf4pESa2vxwvP7Z1zGGhfHpX+by3VefMXrmT7nmkecBSMoYwOzfvwGKwsfPP8ba9xaQN/0mxlx/e5dqCIuI5Pb5HzLuxp+zq3AVS+Y9iPXNP3No7y4m3nEf4dFt50eZzGGcM6llP632FhYYFEiN8u8ZjSUlJV2er+Zz7rnnYjAYdHdOqNVq5ZxzziE+Pv7UFwfQvffeS3R0NI899pimdYjAUFTVz+u4hRDiGM8//zwPPPAAdrsdkyn0O/S/qXaypKRe6zI6bekfHqLww4X89r/fEBZx/IkCV/WLYWiC/46bmjx5MiaTiQ8//NAv7WVlZZGbm8v8+fP90l4wZGZmcuWVV/LCCy9oVsOXX37JhAkTWLBgATfddJNmdYjAkZ41IUTA2Ww2RowYoYugBpAcqY86j+ZqclL88XsMv2hKu0EN/P+6/LEh7tH0tsigtLSU3bt3azpfzeVycddddzFmzBh+9KMfaVaHCCz9/UQSQuhOUVFRSJ2ZeCoJFiMWo9J6ZmIoq6+uZMfaFWwpWEJjbTVjbmh/+NViVIi3+O/3c1VV/bIh7tHy8/N59dVXOXz4MD169PBbu4FitVoBGDdunGY1vPzyy3zzzTds2LAh5Fdai9MnX1khREA5HA62bdsW8icXHE1RFEb2DEcP6+kO7vqefz94ByUb1zHl3qdJHTziuGsUIKtnuF8XF1RXV9PQ0OD3sAawfv16v7UZSFarlWHDhpGYmKjJ/SsqKnjkkUe44447dDMfVJwe6VkTQgTUli1b8Hg8unszyU4MZ91Bh9ZlnFJm7vk8U1R50mtUICuxY5vxdpRv2w5/LTAAGDRoEPHx8axZs4ZJkyb5rd1AsVqtTJw4UbP733///ZjNZp58sv099UT3IT1rQoiAKioqwmg0MmLE8T0+oSzeYiQjxqyL3rWTUYD+MWbiLX46Y+oIf+6x5mMwGDjvvPN0sSK0vLyc7du3azZfbfXq1SxYsIBnnnmGhIQETWroTlRVxe1VcXq8NLq8OD1e3F6VUFmDKT1rQoiAstlsDBkyhIiIiFNfHGJyksLZY3dpXUaXqEBOkv//7ktKSoiIiPD7EGB+fj5//vOfUVU1pDd2XbFiBYAmYc3j8TBnzhxyc3O55ZZbgn5/vVNVleomDxWNbioa3ZQ3uqlwuHG3cy6wydCyP2FKpInkI38SLMagf29KWBNCBJReTi5oz1mxYfQIM1Db7CU0fr/uHAWICzOQGevf/dWA1sUF/n7Tys/P57HHHmP79u0MGjTIr237k9VqZdCgQSQnJwf93q+//jo2m401a9ZgNPq3x7Q7q2nyYKtysvGQs3XxkAFoJ6O1cnuhrMHN/gZ363UWY8uc1uzEcL/3WJ+IDIMKIQLG7XazadMm3YY1g6IwuV+MLoMatPSqTekXgyEAvQD+3rbDJy8vDyDkh0KtVqsmeLLiBAAAIABJREFUvWpVVVX89re/5ZZbbuG8884L+v31xquqbK9tYtGOWl7dWsP6g442q7xPFtTatHPU/zd5VNYfdPDq1hoW7ahle20T3gAPl0pYE0IEzLfffovT6dTVStBjpUebyU3Sx8rQoynAuUnhpEX7v1cN/Ht6wdHi4+MZMmRISIe1yspKtm7dqklYe/DBB1FVlWeeeSbo99ab0noXr22t4f1ddkqOTGfwV6TytVNid/H+Ljuvba2htD5wUyYkrAkhAsZmswEtO9Pr2fjUKCIUD16dHDKuALFhBsalRgXsHoHqWYOWodBQDmtazVcrLCzk9ddfZ+7cufTq1Suo99YTl1eloKyehdtrqW1u6RMLVL+Xr93aZi8Lt9dSUFaPy+v/u0lYE0IETFFREZmZmX456FtLBZ9+wqtzrkfRyaajvuFPsyEw/YF2u53q6uqAhrVNmzbR0NAQkPa7ymq1kpmZSVpaWtDu6fV6mTNnDiNGjOCOO+4I2n31prTexfxtNWyodAKBC2nH8t1nQ6WT+dv838umj588Qghdstlsuh4CVVWVP/7xj0yZMoWzEqIZm6SPNVkT06JID9DwJwRm246j5efn4/F4KCwsDEj7XaXFfLW///3vrF27lhdffFE3x7YFW2Glg4Xba6nTcEGQCtQd6WUrrPTfPo0S1oQQAeH1enW9ErSpqYlbbrmFX//61/zmN79h8eLFXJAez9iU9s/dDBVjUyLJDcBWHUcLdFgbNmwY0dHRITkUWl1dzebNm4N6xFRNTQ33338/s2fPZuzYsUG7r16oqsqqikYKylp6YrVeEOS7f0FZA6sqGv2yV5vEcyFEQOzevZu6ujpdhrUDBw4wffp0NmzYwD/+8Y82B2SP6d0ShFaWN2pV3gmNS4lkdO/A72dXUlKC2WwmJSUlIO0bjUby8vJCMqx99dVXqKoa1J61Rx99FIfDwbx584J2Tz1ZfcARkv8e4YefE+cnd+2XPOlZE0IEhG9xgd6GQW02G+eeey67du3CarW2CWrQcm7o+cmRTExrmbyv9SpRhZaehY9+9wD7Vi4LymadJSUlpKenB3SPL98ig1DZQd7HarWSnp4ekJWw7dm0aRMvvfQSjz32WMDCsZ4VHgzdoOazsryxy0OiEtaEEAFhs9lISUmhd+/eWpfSYe+99x4XXHABvXr1Yv369Sfdxyo3KYLZA+OIDTNoFth8qz5nD4glw9DAjTfeyOrVqwN+X9+GuIGUn59PRUVF65BrqPDNVwtGKFZVlTlz5jB48GDuvvvugN9Pb0rrXRTsC81FKMcqKGvo0qIDCWtCiIAoKirSzRCo1+vl8ccfZ8aMGVx11VWsXLmyQyv90qPN3DoknpyklkPSgxXafPfJTQrn1iHx9I218Oabb5KXl8fUqVPZuXNnQO8fyG07fHxBOZSGQmtra7HZbEEbAn377bdZuXIlf/7znzGbA7dgRI9cXpWlJXbNe7Y7SgGWlthPe1sPCWtCiIDQy0rQhoYGZs6cyWOPPcaTTz7J22+/3alzTM0GhYlp0cweGEdcWMuP1EC9gfjajQszMHtgHBenRbduz2GxWFi8eDEJCQlcccUVHDp0KEBVBCes9erVi7POOiukwtqqVavwer1BCWt1dXX83//9H9deey0TJ04M+P30xrq/QdNVn53lWyW6Yv/p9QRKWBNC+F15eTkHDhwI+Z61vXv3csEFF7B8+XIWL17Mgw8+eNrDW+nRZm4fGs+1mbFkxLT0gvgrtPnayYgxc21mLLcPjW93a46ePXvy8ccfU11dzbRp03A6nX6q4AdOp5OKioqgzNkKtc1xrVYrKSkpDBgwIOD3mjt3LnV1dTz33HMBv5felNa7KKx06iao+ajA+krnaQ2HSlgT4v+zd+bxMV3vH3/fmUky2RMSshKJNdZYIrFUW6Qaa4NStLXV8itKtUV926qqtUWpVne60FKpLaooQhHEVkprSUSIEJKQPZOZ+/sjMkSCSTLJZOS8Xy8vk5lzz3lujHs/9znPIjA6R48eBajUYm3//v20adOGlJQU9u/fT58+fco8p0KSqOtoyYC6joz2dyawhjVWSumezw2d5+5rK6VEYA1rRvs7M6CuI3UdLR/a69PPz4+NGzdy+PBhhg0bhk5naPdDw4iPjwfKr2zHvQQFBXHs2DFycnLKfS1DqKh4tTNnzrB48WKmT59OrVq1ynUtc0Mny0SY0fbn/UhARFxaiXuJitIdAoHA6Bw7dgwnJ6cKy5grKStWrGD06NG0bduWdevW4erqavQ1nK2UPOVpy5MeNqTk6EjMzCMxK4+EDA2JWXnkFaOhVApws1bhYWuBm7UKNxsVzlaKEouD4OBgfvzxR/r374+vry8ffvihkc4qP7kAKk6s5ebmcvToUYKDg8t9vYeRnp5OdHQ0Q4cOLdd1ZFlmwoQJ+Pj4MHny5HJdyxy5cDuX1FzjPoBUJDKQmqsj5raGuo6WBh8nxJpAIDA6BcVwKyJjriRotVqmTJnCxx9/zMiRI1m2bBmWloZfMEuDJElUUyupplbijxWQf0PWyZAny2h1oFSASpJQSBjtd9avXz8WLFjAm2++SZ06dRg5cqRR5o2Li0OSpApptdSsWTPUajVRUVEmF2sHDhxAq9WWezHcdevWsWPHDiIiIrCysirXtcyRI0nZ+eVqTG1IGZCAI0lZQqwJBALTcvToUcLCwkxtRiFu3brFCy+8wB9//MEnn3zC+PHjTSYmJUlCKYESCcqvVBmTJ0/mwoULjBkzhlq1ahESElLmOePi4vDw8Ch3kQtgaWlJ69atK0XcWmRkJK6urjRq1Kjc1sjIyOD111+nZ8+ehIaGlts65kpKjpaLacbtuWkKZCA2TUNKjhZnK8MuACJmTSAQGJWUlBQuXrxYqeLVzp07R1BQEAcOHGDr1q1MmDCh0nn9ygNJkli6dCkhISH069ePkydPlnnOuLi4Ct3erixJBpGRkTzxxBPl+r2ZM2cO169fZ/HixeW2hjlz7Ea22caq3Y8EHL9heAKQEGsCgcCoHD9+HKg8nQt27NhB27ZtkWWZgwcP0rVrV1ObVKGoVCp++eUX/Pz8CA0NJSEhoUzzVUTZjnsJCgri0qVLZba7LGRlZXHo0KFyLdlx/vx5FixYwJQpU/D19S23dcwVWZY5cdP8MkAfhAwcv5ltcIcOIdYEAoFROXr0KNbW1jRo0MCkdsiyzKeffkq3bt30fSbr169vUptMhb29PZs3bwagR48epKenl3quiuhecC9BQUGAaYvjRkVFkZubW65ibeLEibi7uzNlypRyW8OcSc7RkqN9XKRaPjlamZQcw5IlhFgTCARG5dixYzRr1qxc+0Y+itzcXMaMGcP48eOZMGECmzdvxsnJyWT2VAY8PT2JiIjg/PnzDBw4kLy8vBLPkZeXx5UrVypUrHl6euLl5WVSsRYZGUm1atVo0qRJucy/adMmIiIiWLRoETY2ZWv4/biSmFny76s5YOh5CbEmEAiMiqk7F9y4cYOuXbvy3Xff8c0337Bw4UJUKpFLBfnZlb/++qs+bq+kTdKvXLmCVqut8JIswcHBJhdrHTt2RKEw/i0zOzub1157jZCQEKPU+nvcyMjIr/ifmJlncsGSm2XchvEKCRKzhFgTCAQVTGZmJv/++6/JkgtOnjxJmzZt+Pfff9m1axfDhw83iR2VmZCQED7//HM+//xzFi5cWKJjC5qqV6RnDfK3QqOjo9FoKj4TMCcnh6ioqHLbAl2wYAGXL19myZIlVSLp5WHMmDEDSZI4ffo0gwYNwtnZmQ4dOgDw6+qf+GRQZ94J9mbmk/VYPfUVUhOvFDr+xqUL/PjGUD7s6s87QV7M6daM1VNfITvtdqFxxyLWsvQRc335Sm8W9+/IldMn+GJET95tV4s/Pv2QFRMGMb9n62Lt/+zlZ/l0cOHWYA9bSydDQoZh32kh1gQCgdH4+++/0el0JhFrGzdupF27djg6OnLo0CHat29f4TaYC6+88grTpk3jjTfeYN26dQYfV1AQt6Kr6gcFBZGVlWWUbNaScujQIbKzs8tFrF28eJHZs2fz+uuvmzzGszLRv39/MjMzmT17Nq+88gqzZs3iiyljcanlS/fXZ9J+0GguHNrLlyN7kZV2C4A8TS7fvjqA+JNHaDdgJL2mziUw7CWSr8TpxwDs+noha9999aFzFZB5K5nvxg/EvUETekyehV+bDjQL6UPKlTji/zlWaGxKQjzxJ6Np9sxzJVrr8u1MgzzcYm9AIBAYjWPHjqFSqcottqc4ZFlm7ty5TJ8+neeee46VK1diZ2dXYeubK7NmzSI2NpYhQ4bg6empD+R/GHFxcbi6ulZ4XFVAQAAWFhYcOHCgwrfY9+zZg4ODA82bNzf63JMnT6ZatWr873//M/rc5kzz5s1ZtWoVkP+d8/Pzo+v/TeOpEZP0Yxo/3Z2lg54mas23PDViEtdj/iPlShyD5n9D0y699OM6j3pD/zolIZ4dX8x/5FwFpN24Tp+3P6Jtv5f172Wnp6GytOLktvV4N777UHpy+wYkSaJZ194lWivh/H/oWrqjfIRTVXjWBAKB0Th27Bj+/v6o1eoKWS8rK4shQ4bw9ttv884777B27Voh1AxEoVDw3Xff0apVK3r16sWFCxceeUxFl+0owNramhYtWpgkbi0yMpIOHToYPWFm27ZthIeH8/HHH4vv7H2MGTNG/zo8PBydTkfTrr3JSLmp/2NfvQYu3r7ERO8DQG3nAMC5A7seGFv2z84IZAPmKkBlaUWr3i8Uek9tZ0/99p35e/uGQh6xv7etx7tpa5zcvUq0ltrOgTzhWRMIBMZGlmW0d1ol6XSguNMqSSnll+2oqC3QhIQE+vTpw6lTp1izZg39+/evkHUfJ9RqNevXr6ddu3aEhoZy4MABqlWr9sDxFV0Q916Cg4PZsmVLha6p0WjYv38/7777rlHnzc3NZfz48XTq1IkBAwYYde7HgTp16uhfnzt3DlmW+bhP22LHKlQWAFTzrE2HIWP568fPOf77OnxatKVRp24EhPZHbZ8v5G7Exxg0VwEONdxRWRTt1NEspA+nd23h0t+Hqd08kJvxsVw5c4Ieb8zSjzF0rWqetdHqeGQnEyHWBALBA5FlmeQcbX4T8sw8rt5pRl5sE3IJ2rz6Pn4uDvyTnI2bjYpqVspyCZo+fPgwffr0QaFQ8Ndff1WaArzmiIuLC1u2bCEoKIg+ffqwffv2B/akjIuLK5ftQEMICgpiyZIl3LhxAxcXlwpZ88iRI2RkZBg9Xm3x4sVcuHCBdevWVfmkguKwtrbWv9bpdEiSxNClP6MoxrtpaW2rf9399Zm06jmQ05G/c+7AbjYteJvd333C/63cimNND+QSzAVgYVX8DkGjJ0KwUNvw97YN1G4emL8FqlDQ9M4WKFCitZQG7HEKsSYQCIqQkqPl2I1sTtzM1heiVAAPK9+YJ0Ot5oFogU1x+UVXrZQSzaurCXBRG9wD71GsWrWK4cOHExAQwG+//Yabm5tR5q3K1K1bl40bN/L0008zfPhwfvzxxyIiQqfTmWwbFO4Wxz148CDdu3evkDUjIyOxtbU16sPAlStXmDlzJuPHj6/Q2E5zxc/PD1mWcfasjWttv0eOd6vnj1s9f54eOZm4E4dYPqw7B39dQcirb1Pdy6dEcz0IS2tbGnbsyqkdG+k++QP+3rYen4AgHFzvXotKspbKAMEuYtYEAgEAOlnm3K0cfj5/iy9Op3D4elahiuGG1NmWJAn5ngtPjlbm8PUsvjidws/nb3HuVg66Etb20q+v0/H2228zePBgBgwYwK5du4RQMyLt2rXjhx9+YNWqVcVu+127do3c3FyTiTUfHx9q1KjBgQMHKmzNyMhI2rdvj4WFxaMHG8ibb76Jra0tM2bMMNqcjzNhYWEolUp2fbmgSNakLMtkpCYD+YH/2vsKPbvV9UdSKMjLzQXyg/sVSiV/PmIuQ2gW0ofbSYlE//YjV8/+Q7OQwjXyDF0rLzMNhQHOVeFZEwgExKdriIhLIzVXp2+UbKzGLgXzxKVpuJimwclSQffa9njbGX4DTEtLY8iQIWzatIkFCxYwefJksX1UDvTv35958+YxZcoU6tSpU6hOnalqrBUgSVKFFsfNy8vjr7/+YurUqUabc/fu3axevZoVK1bg6OhotHkfZ/z8/Jg1axbTpk0jOeES/k+GYmVrR/KVS/yzK4LAsJd44qVXuXB4LxvnTaVpl1641PZDp83jWMRaFAolTTr3AKC6dx26/t80/lg6i9SHzGUIDTp0wcrWji2L30OhvLtGAYaudePEfqT2dR6wyl2EWBMIqjAanUxkQgbRSdlGF2n3UzDvrVwdP527RWtXNZ08bLF4xGNlbGwsvXr14tKlS2zevJnQ0NByslAA+Z6fmJgYRo8ejbe3t77xvanFGuRvhc6ePRutVlvu7cyOHz9OWlqa0eLVNBoN48ePJzg4mBdffNEoc1YVpk6dSnZ1b1Z+tpQ/v1wAgGNNT+oFPUmjTt0AcK/fmPrBT3Fmzx/cTkrEQm2Ne73GDF36M7Wa3S1i++Sw13Cp5ce+n5Y/cC5DsLBS0+iJbhz//Vfqtu2EXTXXImMetZZCgjYBLQxaT5JL2m9EIBA8FsSna9gcl8btXF25CbSHIQEOlgp6PMTLFhkZSd++fXFycmLjxo34+/tXrJFVlLy8PHr27Mn+/fvZt28fTZo0Yf78+cyePZvU1FST2bV7926eeuopTp48We7xXgsXLuR///sfqampWFoWzQgsKZ988gmTJk3iyJEjJuvwYc78k5ytj4V9nOhV2x7/asUn9NyLiFkTCKog0UlZ/HTulsmEGuR72m7f8bJFJ2UV+fzLL7+kS5cuNG/enIMHDwqhVoGoVCrWrFlDnTp1CA0NJSEhgYsXL5rUqwbQunVrFApFhWyFRkZGEhwcbBShdu3aNd59913GjBkjhFopuHTpEtt+XWVqM8oFNxvDNjiFWBMIqhCyLLMvMZMdl/ObI5varV6w/o7LGexLzG+7kpeXx/jx4xk9ejSjR49m69atVK9e3aR2VkXs7e2JiIhAp9PRs2dPLly4YHKxZmdnR9OmTcs9yUCn07F3716eeOIJo8w3depULCwsmDVr1qMHCwD477//mDNnDm3atKF27dpMm/B/5GVlmNoso2KllHC2MkyGCbEmEFQh9l/LYu/V4qt7m5q9VzP5MzaZbt26sXz5cpYvX86nn35q1Ew8Qcnw9PQkIiKCs2fPsn//fry9vU1tUoUkGZw8eZKUlBSjxKsdOHCAFStWMHv27IcWHK7qyLLM8ePHeffdd2ncuDENGzZk1qxZ+Pj4sGrVKq5du0a72i48LmlFEtCiutrgRCmRYCAQVBGir1deoVZA9C0ZqXYTtm//H08++aSpzRGQ36dxzZo1hIaGcvz4cWRZNmkmblBQEMuXLyc1NRUnJ6dyWSMyMhJLS0vati2++ryhaLVaXn31VVq1asWIESOMZN3jg06nIyoqivDwcMLDw4mNjcXJyYlevXoxe/ZsQkJCChXIDVBrOXS9aMiEOSIDLVwMb8snxJpAUAWIT9ew44p5bCF0Hjcdv3rlcxMWlI7AwEAA9u/fz+LFi5k0adIjjig/CorjHj58WJ+pamwiIyNp27ZtIaFQGr766iuOHTtGVFRUuWevmgsajYbIyEjCw8NZv349V69epWbNmvTp04e+ffvy5JNPPtCb7mylxMfegrg0jclDOMqCBPjYW5SoULjYBhUIHnM0OpnNcWlms30gIbE5Lg2Nzpwvx48XBWU7Xn75ZSZPnkx4eLjJbKlXrx7Ozs7lthUqyzJ79uwp8xbozZs3mT59OsOHDy+zh87cyc7OZtOmTQwbNgw3Nze6du3Kli1bGDhwIHv37uXKlSssX76crl27PjLsoZWr2qyFGuR71Vq5luxBQHjWBILHnMiEDJNmfZaUgizRPQkZdPayM7U5Au6Ktblz55Kdnc3gwYPZvXu3SUSIQqGgbdu25ZZkcPr0aW7cuFFmsTZ9+nS0Wi1z5swxkmXmRVpaGlu2bCE8PJwtW7aQnp5Oo0aNGDt2LGFhYQQEBJRqO93PwRInSwW3zOiadi8S4GipwNehZLG4wrMmEDzGxKdriE7KNruLmgwcTsomPl1jalME5Is1a2tratasyYoVK2jZsiU9e/YkJibGJPYUJBmUR5nQyMhIVCoVwcHBpZ4jOjqaL7/8kg8++IAaNWoY0brKzc2bN1mxYgU9e/bE1dWVgQMHcv78eaZNm8bp06c5ffo0s2bNomXLlqWOe1RIEt1r25vdNa0AGehR2x5FCc9fiDWBoJyRZZk8nUy2VkemRke2VkeeTi6XG8296GSZCDPa/rwfCYiISyt1L1GB8Sho4C5JEmq1mg0bNuDo6EhoaCjJyYb3UzQWQUFBpKSkcO7cOaPPvWfPHtq0aYOtrW2pjtfpdIwbN46mTZsyduxYI1tX+UhISOCzzz6jS5cu1KxZk+HDh5OamsqcOXOIjY3lyJEjvP322zRq1Mhoa3rbWdDaVW121zYJaOOqxqsErfYKENugAoERkWWZ5BwtiZl5JGbmcTUzj8SsPPKK6YKuUoCbtQp3GxVud/5Us1IaLdPuwu1cUnMNab9eOZGB1FwdMbc11HUse2FSQem5vyCui4sLW7ZsITg4mLCwMP744w+srB5dhd1YFCQ8REVFUb9+faPNK8sykZGRDB06tNRzrFy5koMHD7Jnzx5UqsfzFhsTE6PP4Dxw4AAqlYqnn36aZcuW0bt3b9zc3Mrdhk4etpy7lWs2IR4FHVue8CjdQ8Dj+U0SCCqYlBwtx25kc+JmNjna/EuHAniYVMrTweWMPBIy8vTjrJQSzaurCXBRlyhTqDiO3On3aQ4XsgchAUeSsoRYMzFxcXG0adOm0Hv16tVjw4YNdO7cmREjRvDDDz9UWEkPJycnGjVqxIEDB3jppZeMNu+5c+dITEwsdTHc1NRUpkyZwuDBg+nYsaPR7DI1sixz+vRpvUA7fvw4arWaZ555hpUrV9KzZ0+cnZ0r1CYLhUSP2vb8dO5Wha5bWgq2Px/VC/lBCLEmEJQSnSxz4XYuR5KyuZimKSKMDPVp3TsuRytz+HoWh65n4WNvQStXNX4OliWOb0jJ0XIxzfzjvWQgNk1DSo62zOJVUHri4uLo169fkffbt2/PypUrGThwIL6+vsycObPCbAoKCjJ6RmhkZCQKhYL27duX6vj33nuPrKws5s+fb1S7TIEsy0RHR+sF2tmzZ7G3t6dHjx5Mnz6dbt26YWdn2gQgbzsLunjZ6juyVGa6eNk+sAeyIQixJhCUgvh0DRFxaaTm6vRxE8byYBXME5em4WKaBidLBd0f0uy8OI7dMH+vWgEScPxGNk95lm77QFA20tPTSU5OfmCrqQEDBnDx4kWmTp1KnTp1GDZsWIXYFRwczMqVK8nIyCh1fNn9REZG0rJlSxwcHEp87N9//82nn37KvHnz8PDwMIo9FY1Wq+Wvv/4iPDyc3377jfj4eKpXr06fPn1YtGgRnTt3rtDtbkNo7WpNjlau1AW/O7rb0LqEpTruR4g1gaAEaHQykQkZRN/ZYoTyE0QF89660+y8tauaTh62j3Sjy7LMiZulzwCd170lNf0aMnRJ5WicLAPHb2bzpIeNSSvnV1UKynb4+Pg8cMxbb71FTEwMo0aNolatWnTu3Lnc7QoKCkKn0xEdHW2UtlAF8WoDBgwo1bHjxo2jfv36TJgwocy2VCS5ubns3LmTdevWsWHDBpKSkvD09OS5554jLCyMjh07VvrYu3Y184VQZRRsT7jbEFyzbEINhFgTCAwmPl3D5rg0bt8J2q8or1XBOkeSsjl3K5cej/CyJedo9XFz5saubxZRw7cBjZ8KLfR+jlYmJUdHNbXYCq1oLl68CPDQJu6SJLFs2TIuXbpEWFgY+/bto0mTJuVql7+/P3Z2dkRFRRlFrMXGxnL58uVSzbV69Wr27t3L9u3bsbSs/PGVGRkZ/PHHH4SHh7Np0yZu376Nn58fw4YNIywsjDZt2qBQmE+xCEmSaO9mg5VSYsflDJPvKhSs38XLtswetQKEWBMIDCA6KcvkF4GCYrE/nbv10ItAYmZexRpmRHZ/u5gmXXoWEWuQf15CrFU8cXFxqFQq3N3dHzpOpVLxyy+/0LFjR7p3705UVNQjjykLSqWSwMBAoxXHjYyMRJKkEicGpKWl8cYbb9CvXz+6dOliFFvKg9TUVDZv3kx4eDhbt24lKyuLpk2bMmnSJPr27UuTJk3M3nPd2tWamtYq/UO1Ka7VBVmfj3qoLinmI50FAhMgyzL7EjP1Aaym9lcVrL/jcgb7EjOLrdWWmJn32P3HVkiQmGW+ItSciYuLw9vb26Delg4ODkRERJCXl0fPnj3JyCjfwG9jFseNjIykefPmJW4O/8EHH5CamsrHH39cZhuMzfXr1/nqq6949tlnqVGjBi+++CIJCQnMmDGDs2fP8vfffzNjxgyaNm1q9kKtAG87C0Y2cqaVa36T9Io6q4J1WruqGdnI2ahCDYRYEwgeyv5rWZUyDgLy4zP2X8sq8v7VzPxSIFfP/sO0lq6cjtyq/+zK6RNMa+nK0kFPFzrmu3EDWPbSM4Xeu3gsimUvhvBOkBfze7bm6OZfiqyVlXaLTQumM/fZ5vyvrScLerUhcsUSdLrCubB7vl/G50NDmflUfd4J9mbpoM6c3LGx0JhpLV3Jzcrk6KZfmNbSlWktXVn73jgAdDIkZJh/dqs5EhcX99B4tfvx8vIiIiKC//77jxdeeAGtVltutgUFBXHt2jV9XF1ZKE0/0DNnzrBo0SKmT59OrVq1ymyDMbh06RKffPIJnTp1wt3dnTFjxpCTk8PChQuJj48nKiqKt956i3r16pna1HLDQiHRxcuOwfXXbuGbAAAgAElEQVQccbTMlznlJdoK5nW0VDC4niOdvexKXZ7jYYhtUIHgAURfr7xCrYC9VzOxUkr6LVFZlvUeqJp1G6G2d+Ti0QP4d+oGQOyxA0gKBVfP/kN2ehpqO3t0Oh1xfx8m8Lm79aqSL8fy01vDad17MC17DCB6wyp+fW88no2aU9OvIQC5WZl8ObI3t5OuEhj2Ek5uXsT9fYg/ls7idtI1er75oX6+/au/pNETz9Di2b5oNRpObPuNVW+N4OVPfqJhxxAAnv/gM8I/mIRX4wACw/Jtqeblo58jMSsPWZYfGw+AuXDx4sUSV59v0aIFa9asoWfPnkycOJElS5aUy79bQW/SqKioEgnK+4mPjyc2NrZEYk2WZSZMmEDt2rWZPHlyqdc2BmfPnmXdunWEh4cTHR2NpaUlXbp04csvv6RXr164urqa1D5T4W1nwSh/Z2JuaziSlEVsMSWWSkvBPPkllqzxdbAocYmlkiDEmkBQDPHpGnZcqfy1eyB/S7SmtQpvOwu0MvpuCQqFgtrNA4k9drcW1cVjUfg/+SxnIrcSd+IQDdp3JvHsKXLS0/BpGaQfl3TxPKO+3kidlvn9EZuG9Gbesy04snE1oZPeB+Cvnz4n+XIs41fvxKWWHwBt+72Mg6sbe79fRscX/w8nN08AJv8WhYX6boxd8IARLB3cmb9+XK4XawHd+7N+9htU86pNQPf+Rc4zT5fvYVMKrVahxMXF0a1btxIf9+yzz7Js2TLGjBmDn58fEydONLptrq6u+Pn5ERUVxcCBA0s9T2RkJECJ4tXCw8PZsWMHERERqNXqUq9dGmRZ5sSJE/oaaP/88w82NjaEhoby+uuvExoaiqOjY4XaVFlRSBJ1HS2p62hJSo6W4zeyOX5v8XIp/7ry6HnujrNSSrSorqaFEYqXG4oQawLBfWh0Mpvv9NQ0dYyaIUjA5rg0RjZyRntf7E6dlkFs+2wOuVkZWFrbEnf8ECHj3ib16mUuHouiQfvOxB6LQpIkfFq01R9Xw7eBXqgB2Dm74FK7LsmX7243ndy+CZ+AIKztnchIual/v25gJyK/W0Ls0QMEhOYXUr1XqGXdTkWn1eITEMSJreElOtc8WUZpdh0BzZfs7GwSExMfmgn6MEaPHk1MTAyvv/46tWvX5rnnnjOyhflboWVNMoiMjKRx48a4uLgYND4zM5NJkybRs2dPQkOLJsOUBzqdjqioKL1Ai42NxcnJiV69evHhhx8SEhKCtbVxMg8fV5ytlDzlacuTHjak5Ojy2wJm5ZGQoXlkW0APWwvcrPPbAjpbKSrcwy/EmkBwH5EJGWbTbw7uZonuScgguKZNoc98AoLQ5eVx6e9oHGt6kp6chE9AMNcu/MfFOx63i8eiqOHbABvHu+1iCjxi92Lt4EhWWqr+55vxMSSe+4dZnRsWa1dG8g396zN7trHr64VcPXuKvNwc/fslveBpdYBICK0w4uPjgYeX7XgUBQ29Bw8ezO7du/V9PY1FcHAwa9asITs7u9QersjISLp27Wrw+Dlz5nD9+nUWLVpUqvUMRaPRsGfPHn2R2qtXr1KzZk369OlD3759efLJJ7GwMG4ge1VAkiSqqZVUUyvxJ7/IryzL6OT8B0KtDpQKUEkSCqnk16nyQIg1geAe4tM1RCdlm9qMEiMDh5Oy8XEofOH29G+BykpN7NEDOLl5YlfNFdfaftQJCOLg2u/Iy83h4rEoGj/VvdBxkqJ4RXRv1p2s01E36Ek6vTyu2LEFW6OxRw/ww6Qh+LQMpvfUedi71kSpsiB642pO/L6uROepFClRFYohBXEfhUKhYOXKlXTp0oWePXsSFRVFnTp1jGRhvmdNo9Fw7NgxgoODH33AfVy9epVz584xa9Ysg8afP3+e+fPnM2XKFPz8/Eq83qPIzs5m+/bthIeHs3HjRn33iIEDBxIWFkZwcLBBmbmCkiFJEkqJfM99Jfz1CrEmENxBJ8tEmNH25/1IwLb4wnF2KgtLvBsHcPFYFI5unvgE5G91+gQEkZebw/Etv5J+MwmfliW/yVXz8iE3M4O6bR8elH3qz82orNQMX7YGleXdVjXRG1cXcxIPf4JVVYIn3KrExYsXkSQJLy+vMs1jbW3Nhg0bCA4OJjQ0lP379xut8XezZs1Qq9VERUWVSqwVxKsZ2rx94sSJuLu7M3Xq1BKv9SDS0tLYsmUL4eHhbNmyhfT0dBo2bMjYsWMJCwsjICCgUnh3BKZDPKcKBHe4cDuXVDPa/rwfmfzWVPdnjfsEBBF/6igx0fvwCchPIrB1rk6NOvWJXLkUgDoBQZSUpl17c+nvw5zdv7PIZ1lpt9Dm5WelKpRKQEJ3TwmHlIRLnN71e5HjLK1tyE67Xex6KgVFzk1QvsTFxeHh4WGUqvwuLi5s2bKF69evExYWRk5OzqMPMgALCwtat25d6qbukZGRNGjQADc3t0eO3bx5MxERESxatAgbG5tHjn8YN2/eZMWKFfpszYEDB3L+/HmmTp3K6dOnOXPmDLNmzaJly5ZCqAmEZ00gKOBIkvk3P5cACwly7jkJn4Agdn2ziFuJV/RiDcCnZTCH1q3E2aMWjjVL3nj6iZde5UzkVlZOHEyrngPxbNSc3KxMEs+f5tSOTby1+Si2ztVp2KErf/34Od+NG0CLZ/uSnnyDqDXfUt27Donn/ik0p2ej5pw/GMneHz/HwdUNZ49a1GraCsgP8hU3rYolLi6uTPFq91OvXj02bNhA586deeWVV1i5cqVR/k2DgoL45ZeidQANITIy0qCSHdnZ2bz22muEhITQp0+fUq2VkJDA+vXrCQ8PZ/fu3eh0Otq3b8+cOXN47rnnyrTdLHi8EZ41gQBIydFyMU1j1kIN8oVmjq5wAcjazQNRKJVY2drhXv9uv8YC4eZTCq8a5HvBRn29gSdefJWY6H1sWjCdyO+WcPNSDF3GTEFt5wCAX2BH+r67mLSb19n80f84sTWcbhPeKbalVPfXP8CzUXO2fzaHn6eN4uCv3wH5HjUPWxFIXdEYW6wBdOjQgZUrV/LDDz/w/vvvG2XO4OBg4uPjuXLlSomOu379OmfOnDFIrH300UfEx8eXuGZcTEwMH3/8Me3atcPT05PXXnsNhULBp59+SkJCAnv37mXSpElCqAkeiiQbo0+HQGDm7LySweHrWWYv1gCz9w4+iF617fGvZvXogYJSIctyfp0+WUanA4UC/Bs0YODz/Zk9e7bR15s7dy7Tpk1jxYoVvPzyy2WaKyEhAU9PT9atW0dYWJjBx61bt45+/foRHx//0Li8uLg4GjVqxPjx45k3b95D55RlmdOnT+tLbBw/fhy1Ws0zzzxDWFgYPXr0oFq1agbbKBCAEGsCAbIss/hksr5IYln58pXeZKYmM3Ht3oeOS0m4xPwereg3Ywmter1glLUfZ0Y1chaN3I2ELMsk52jz60xl5nH1Tr2p4upMoc3Dy0GNu01+jSk3GxXVrJRl3r6UZZlRo0axYsUKtm7dSufOncs0X61atRg4cCDz5883+JgJEyYQERHBhQsXHjqub9++REVF8e+//2Jvb1/kc1mWiY6O1gu0s2fPYm9vT48ePQgLC6Nbt27Y2dmV+JwEggJEzJqgypOcozWaUBOUD1ZKCWcrEbVRVlJytBy7kc2Jeyu4A8VpND1KFZcz8kjIyNOPs1JKNK+uJqAMFdwlSeKzzz7j0qVL9O3bl/379+Pv71+quSA/bu3eJIPiPIWqO+UZCoSmIfFq27ZtIzw8nNWrVxcSalqtln379ukFWnx8PNWrV6d3794sXLiQzp07V3hnA8HjixBrgipPYmaeSdZ1cvdm5oF4lCoRi/UwJKBFdbVILiglOlnmwu1cjiRlc7GY3ogPFWoPGJejlTl8PYtD17Pu9EZU4+dgWeLeiBYWFqxdu5YOHToQGhpKVFSUQVmZ9yPLMm2fCuGXrX+y/dJtrmXrHlmR3lmRh8KzHu1DQh/YczY3N5cJEybQqVMnBgwYQG5uLjt37iQ8PJz169eTlJSEp6cnzz33HGFhYXTs2BGVStxWBcZHbIMKqjx/Xk7nSFK2wTetR2HoNmh58khviZkx2t+5wnrwPU7Ep2uIiEsjNVdXbrGMBfM6WSroXtseb7uSP3zEx8cTFBSEh4cHu3fvxtbW1qDjivMUSrKMbIholHUg5XtrH+QpXLBgAdOmTeOjjz4iOjqazZs3c+vWLfz8/Ojbty9hYWG0adMGhUJ4fQXlixBrgirPj2dTuZxhuHctJyOdbZ/N4fTu30m7cQ21nQPu9RvTbcI7eDZqrhdrL8z7mo1zpxB/6ijW9o60e2EUnYaO189TXMza2vfGcWrHJl77JZL1s9/k4vFDqO3sadtvKE+/MrlE3iUrpUSuVjbrZAMJ8LG3YEBd0ZS6JGh0MpEJGURXYDmagnVau6rp5GGLRQmL4h0/fpyOHTvy9NNPEx4e/sAq/Y/yFJaWgnl87C1oaKNlz7pVvD4pv/m8VquladOmhIWF0bdvX5o0aSI8vYIKRfhrBVUaWZZJzCrZNuhvs9/g1I5NBA8YQQ3f+mSmphB3/CDXY8/h2ag5kN+s/LtxA2j8VHeadu3NqR2b2LpkJm71GtGgfZeHzq/T6fh23ABqNW3Ns6+9y9n9O9mxfB46bR5dxxpeNT1PZ95CDfJvnq1cRXPqkhCfrmFzXBq3c/N9qxX1HShY50hSNudu5dKjhF62Fi1a8Msvv9CzZ09ef/11PvnkkyJj7vcU3rtuWSmYJyY1m4tpSm7WbkvtFm15qWcIgwYNol69ekZaSSAoOUKsCao0WpniM+Aewn97t9PmuSF0f33mPe+OLzTmdlIi/Wcuo2WP5wFo3Wcw87sHEL3+p0eKtbycbOq3e5peb80BIOj54ax8bTCRK5bSbuAr2DpXN8hOrQyOFhK3NeYp2iTA0VKBr4OI6TOU6KQsdlzOMGn5Fhm4navjp3O36OJlS+sSiO3Q0FCWLVvG2LFj8fX15bXXXgOKegoL1ikPFHc8ek4e3rzy5Xpa17DGx8OwbVmBoLwQG+2CKk1eKaIA1PaOxJ86yu2kxAeOsbSxJaB7f/3PKgtLvBq3JPlKnEFrBA8YqX8tSRLBA0ag1eRy/tCeEtn6jLe9WQo1yL8Z96htX+Kg9aqILMvsS8xkx+X83rCm/jcvWH/H5Qz2JWZSkmibMWPG8OabbzJp0iQ2bNhAfLqGr8+kcCQpu9Dc5Y1SqQJJ4khSNl+fSSE+XVNBKwsERRFiTVCl0ZUiCv/Z197l2oV/mftsc5a9GMKO5fNJvnyx0BjHGh5FYlqsHRzJun3rkfNLCgXVPAtXjXet7Qfkx7mVBDcbFa1d1Zib3JGANq5qvEoRrF4V2X8ti71XM01tRrHsvZrJ/mtZJTpm7ty59O3bl4Xr/uCns6ncNmHP3ns9hdFJJTsPgcBYCLEmqNKUJomrWUgf3tx4mJ5vzcHB1Y093y9jUf+O/Ldvx915HxAcXdH5PEoFdPKwxcFSYTaCTQIcLBU8IbaeDCL6euUVagXsvZpZIqEjSRKvLvyaZyfNBEkya0+hQGAMhFgTVGlUpdxic3B1I/j54by48Hve2hyNjaMzu75ZZBSbZJ2uyHZpUlx+hXVnj1olmsvb05M2LQPY+9ksdGZygynY/ixpNmFVJD5dw44rGaY2wyB2XM4weCtx/7Usom5Uzm3H0ngKBYKyIsSaoEqjlPKLZBqKTqslO+12offsqrni4OpGXm6u0ew68MvX+teyLHPgl29QqizwC+xo8BySLo/Xxo8jODiY23FnOfLTp0azrzzp4mVbqlpdVQ2NTmZzXJpZeUw3x6Wh0T38oeFx9BQKBGVFZIMKqjSSJOFmrTK4zlpOZjpzuzWjSZeeuNdrgqWNLecPRnL5n2OEFsoOLT0qKzVn9+9kzbuv4t2kFWf3/cl/f23nyeETsXN2MXgeT3s1Q6ZPL/TevsTMSn0j7OhuU6LswapMZEKGSWO5SkpB7NeehAw6exXfJ9PcPIU1rVXiwUJQIQjPmqDK426jMvg/goXamqD+w7n63yl2fDGPiI//x4248/SeNp+OQ8YaxR6FQsHwT38h/cZ1fl/8PpdPH6PzqDfp+n/TDJ9DAg/bojeRdjWt6ehuYxQ7jc0T7ja0qymEmiHEp2uITso2G6FWgAwcTsoudjv0cfUUCgTGQHQwEFR5/knOZlNcuqnNAO52MHh/n2ElPh5Gr9r2+FezKvazylCPC8hPx5UkfDXXCXK3x8PDQ/RWfAQ6WebL0yncMiOv2r0U1M8b5e9cqCzLjjtt38zpnCTyOzY8yFMoEBgLcVUUVHncbB7P/wYPO6/WrtbUtFbpK92b4gYp63SkJl7ml//9H3HHDwL5XkU3Nze8vb3x8vLC29u70GsvLy/c3d2rtKC7cDuX1Fzz7fwqA6m5OmJua6jraAnc9RSaGwWewvpOVmI7VFCuVN0rnkBwh2pWSqyUkr4R9OOAlVLC2erhm7vedhaMbORc4T0k0emQJahFGpO7tWBa+61cvnyZ+Ph4/d8Fr0+dOkV8fDyZmXfj7BQKBR4eHoUE3P2izs3N7YG9Jc2dIxX5b1VOSMCRpCz8HCw4ffoMG1OskNV2Dyx5U5mRgIi4tCKeQoHAmAixJqjySJJE8+pqDl/PMusbYAES0KK62qBG0xYKiS5edjRwsirUc7E8fg8F8zqqVfz2/mtc++9vno+OxsnJCScnJ5o0aVLscbIsk5qaWqyYi4+P58SJE8THx5OVdTc7T6lU4uHhUcQrd6+oq1mzptkJupQcLRfTKmdJi5IgAzG3cwns1Jl0yYKXF/9kNrFq91Ocp1AgMDYiZk0gIP8m+MXpFFObYTRG+zvjbFUyIaKTZWJuaziSlEVsmsZooq1gnjr2FrRytcbXwYJjR48SGBjIhx9+yNSphjenfxCyLJOcnPxAD13B39nZd7faVCqVXtA9yENXo0YNFKWpnFxO7LyS8dg8VOi0eaSe+Ita/i3IUDuZ9TlJgI+9BQPqOpraFMFjihBrAsEdfj5/i7g0jbhpkC9ej9/I5vjNbP32sEICQxLf7h1npZRoUV1NCxd1EfH4xhtvsGzZMk6ePEndunXLZK8hyLLMzZs3iwi4e0Xd5cuXycnJ0R9jYWGBp6fnQz10rq6uFSLoZFlm8cnkx2a7fs/KTzn46wpSrsbjVrcRE37ebWqTykxpHpIEAkMQYk0guMO5Wzmsi0kztRllpp+vg9G2Y2RZJiVHR2JmHolZeSRkaEjMyiOvmPh2lQLcrFV42FrgZq3CzUaFs5XigduxGRkZNGnSBF9fX3bs2GHQtm15I8syN27cKOKVu1/gaTR3tyItLS31gu5Bos7FxaXM53czO4+vzqSW9RQrBWcP7OK7V5+nRWh/6gV1wsapGg07dDW1WWVCAgJrWPOUp2iTJjA+ImZNILiDn4MlTpYKsy+J4OtgvKw0SZKoplZSTa3En/wyILIso5MhT5bR6vL7j6okCYVEiQSJra0tX3zxBc888wwrVqxg2LBhRrO7tEiShKurK66urrRs2bLYMTqdjqSkpGI9dHFxcezbt48rV64UEnRWVlZ4eXk9MMPV29ub6tWrP/T3l5hpWOFmcyDm8F4khYK+7y1GZWH6OK953Vvi27od/d8vfZcPGTh+M5snPWwqxYOH4PFCiDWB4A4KSaJ7bXt+OnfL1KaUioKemuWdkSZJEkoJlEhQxh2fkJAQhgwZwuTJkwkNDaVmzZrGMbIcUSgU1KxZk5o1a9K6detix+h0Oq5fv16sVy42NpY9e/aQkJBAXt5dAaZWqx8q5i7beqIAzLdox13Sk29gYaWuFELNmORo8z3R1dRiK1RgXMQ2qEBwH6I4Z8WSlJREo0aN6Nq1K6tXrza1ORWGVqvlrbfeYuHChSxZsoSVK1dy8uRJvXcPICEhAZ0uX55ZOzjx5PCJPPHSq/o50pOT+GPpLP7du53s9Nu41K5LhyFjaNVzoH5MSsIl5vdoxbMTZ6C2tSdy5VJuXUvArZ4/vafNx7txQCG7rseeY/tns7lw+C802VnU9GvI06PewL9TNwCSL19kQa82dH/9AzoMGVPo2LgTh1g+rDsDZn9Bi25hxZ73tJauRd7rN2MJsiyz7v3X6PvuYlr3Gaz/bNc3i9i2bDYvL1lVblulebk5SJICpUXZvdIPK0YtEJQW5YwZM2aY2giBoDLhbWfBPyk55JpJILcEOFgqeM7XAaUZbr/Y2tri7u7OBx98QGBgIPXq1TO1SRWCQqHgwIEDREZGcvXqVRo2bMjo0aPRarUcOXKEGTNmEBsbS/fu3ekaEkJccjrRG37Cr3UHnD280WRnsXxoKDHR+2jdZzDNQnqTfPki+1d/hbW9I7Wa5nv9stNusW/Vl2Sm3iQm+i8Cw16ibmBH/vtrB//s3EzwgJH6+mbXLvzL8qGh5GlyCX5+BA07hnDzUgx7Vi7FrZ4/NerUx9rBifMHI0n49ySBfV8qdE6R331CUtx5wt5Z9EDhU92rDhmpN0lPTqLfjKU0fro7PgFt8QvsyJXTJzj82w+0eLYfajsHEs+d5pfpY2nVayBPvPhqsfPdj06nIy83B2UJCicrlCqj1HhTSOBgqaSOw+PlMRSYnsqTky4QVBIsFBI9atubjWetYPvTQmF+Qq2AIUOG0LVrV8aOHUt6euVo/VWRBAYGsmrVKsaOHcuGDRvw8vJi8uTJDBs2jJUrVzJn7jxeXrIKC7U10RtXAXAo/Huux56l74wl9Jj8Ae0GvsLI5eHUataGbZ/NISej8O8xNfEKr/6wjU5Dx/PEy+MIe28xt64lcPbALv2YTQum4+TmxfhVf9Jp6HiCB4zgla82UKtZa35fMlM/rmX3AVw5c4Lrsef072k1Gk5u30jjp7tjaf3g/rMB3ftTzas2CqWSgO797/zsA0DYOwuRlErWzZxIniaXH98YCrLMsS1rWdCrDQd/XcmO5fMLeeemtXRlw9wpHNvyK4v6deCdIE/O7t8JwJ7vl/H50FBmPlWfd4K9WTqoMyd3bCxi07zuLVn73jj9z0c2rmZaS1cuHj/I5o/fYdbTDXm3XW1+mPwy6Sk3HnhuOhkSMsy/Dp6g8iHEmkBQDN52FnTxMo+sri5etmbf6kaSJJYvX05SUhLvvPOOqc2pcEaOHKl/rVQqad26NbIsM2LECCA/mcPa3hGX2n4kX87vG/vfXzuwd6lB83u2G5UWFrR74RVyMzOIObK/0BrNuvbG2sFJ/3OdgCAAkq9cBCDzVgoxh/fSNKQXORnpZKTcJCPlJpmpydQLfpqbl2K4df0qAE1DeqOyUnP891/18509sIuM1JsEhPYv9e/B3qUmvafO43zUbpYO6szN+FisHZ3pOmYKrXsPYudXH3F695Yix8Uc/ouIj9+hWUgferzxIc4e3gDsX/0lHg2a0HXMFJ55dToKlYpVb43g373bDLJn0/xpJJ79h6dHvUFQ/6H8u+cPNs59eF3AxKw8RHSRwNiIBAOB4AG0drUmRyuz92rmowebiI7uNrR2tTa1GUbB19eXmTNnMmXKFAYNGkSbNm1MbVKFUatWrUI/Ozo6olarcXFxAfL73QOo7RzIvJVfvDk18TLVvX2L1HirUSd/Gzn1anyh953cvQr9XCDcsm7nJ9TcjI9FlmW2fzaX7Z/NLdbOjOQkHGu4Y23vSKMnQjixNZyQ/5sGwPHff8Whhju+bToCkJOZTm5mhv5YSanEztnlkb+L5s88x7GItfz313YUShXjV/2Jg6sbAE279mZRv/ZFjkmKO89ra/ZQ07dBofcn/xaFhfru/4/gASNYOrgzf/24nIYdQx5pi41jNYZ/tlaf3anT6Tjw81dkp91Gbe9Q7DF5unwPm9J8Hd2CSogQawLBQ2hXM/9CXxkF2xPuNgTXfDyEWgETJ05k9erVjBw5kujoaCyMEPBtDhTX9ure9wrpsVJ6bSTFA2Ky7swn31GEHV98lfrtnip2aHVvX/3rgO4DOLl9I3EnDuFW158zkX8Q1H+YXjzu/f4z/vxygX68k7s3UyKOPtLOjNRkLp8+BoC1gyN21WvoP3Op5UuDdp05s+ePQsfUadmuiFADCgm1rNup6LRafAKCOLE1/JF2AASGvVioDEedgCD2/bSclKvxuNs3fuBxebKcny0tEBgJIdYEgocgSRLt3WywUkrsuJxh8gbaBet38bJ9bDxq96JSqfjqq68IDAzk448/NkorqscBVTGJI05uXiSeP41OpyvkXUu6E0fm5O5dojWqedUGQKlSUbdtp0eOr9/uaWydXTi+5Ve8m7ZCk51JQPe7W6AtezyPT0Dbu+dgpTbIjo1zp5CTke+Ry0i5yb5VX9BxyNi7dnrXKWq7Z60i7wGc2bONXV8v5OrZU+Tl3u1MYWgdNEe3B3gj0x5enFiro8xlbQSCexExawKBAbR2tWZwPUccLBUme14uyPocXM/xsRRqBbRs2ZJJkybx/vvvc/78eVObUylQSvkdIu6lQYcupN24zt/b1uvf0+blsf+Xr7G0scW3VbsSrWFXzRXf1u05GP49t5MSi3x+f2C9UqWiebfnOLl9I0c2/oxbXX/c69/1NlXz8qFu2076Pz4t2t4/ZRFO7tjI39vW89SI1wCo4deQ7Z/NISnuwkOPK04Ixh49wA+ThqCysqL31HkMXbqaEZ//SvNn+xocU/bADNFHHK4Ud1aBkRFfKYHAQLztLBjZyJlWrvk3hooSbQXrtHZVM7KRs9knExjCjBkzcHd3Z/To0SJYm3xPkJt14Y2QwLCXqFGnPr++N54ti95j/89f883YvsQdP0TI/03DyrbkNfd6TZ0HsswnAzqxdekHHAr/gZ1ff8yKCS/wzZh+Rca37D6AjDslQVqEFv28JKQnJ7Fh9lv4tu5Ap6GvobJS4+pTFytbO359b7y+3lxyfKxB8536c6ci4foAACAASURBVDMqKzXDl62hdZ/BNGjfxSCPoTEozhMqEJQFIdYEghJgoZDo4mXH4HqOOFrm//cpt8vyHZGizM1kcD1HOnvZmXV5jpJga2vL8uXL2blzJytWrDC1OZUCdxtVoe+ahdqaV75aT4tn+3J00y9sWfQeWbdS6TdjCe0HjS7VGjV9GzDux+006NCFo5t+ZuPcKRz8dSWSpKDzqMlFxnv6N6emX0MkhaLMYm397DfJ0+TQb8aS/K3YwCc4u28nz4x/h0t/H2bv98u4cSmG//b/adB8+V4xCZ1Wq38vJeESp3f9XiY7H4VKkV9vTSAwJqKDgUBQSnSyTMxtDUeSsohN0xgtnq1gnjr2FmxaNo8jW9dz8uTfqEpQ5PNx4cUXXyQiIoIzZ86YRSuq8uSf5Gw2xVW+GnRLXngKGwdnRn5hWNC+oVw5fYLPh4Xi4OpG235DkXVaDvzyDbbVXLj63ynmHE0C8uusBT0/nN5T5xU6/sKhvXw9JgyfgCBaPNuX9OQbRK35FrvqNUg894/+eCjaG/TIxtX8OmMCr/64HS//FvpxMdH7+GpUH175cj2+rYtmpQJ42aoYUt+p2M8EgtIiPGsCQSlRSBJ1HS0ZUNeR0f7OBNawxuqefH1Dn67vHWellAisYc1of2cG1HVk4uAw/v33TJVqw3QvCxcuRKFQMHHiRFObYnLcbCqfWL98+jhX/ztFQI/njT63p39zhi39GWsHR7Z/PpfD63+iy9gp1A18wqBkBb/AjvR9dzFpN6+z+aP/cWJrON0mvEPjp0KNbmsBCgk8bB//MAVBxSM8awKBEZHl/EbOiZl5JGblkZChITErj7xium+rFOBmrcLD1gI3axVuNiqcrRRFMtX69OnDqVOnOHPmTJUpZXEvP/zwAy+99BIRERGEhpbfjbayI8syi08mk1MJ2qAlnj/DlTMn+OuHz8lIvcmbm6KxMDDbs6z88PpLXLvwL29sOFQh65UU0RtUUB4IsSYQlDOyLKOT82svaXX5mWIqSUIhGVZC4MSJE7Ro0YKvv/5aX9G+KiHLMs888wz//fcf//zzD3Z25tes3ljsvJLB4etZJm+FtmP5fHZ+9REutevSZ/oCfFsVvyVYVjTZWYVqpd24dIHF/TrSsucAwt5ZVC5rlpVRjZypphZ1OwTGRYg1gcAM6N+/P4cPH+bs2bNYWla9JtExMTE0adKEUaNGsXjxYlObYzJScrR8cTrF1GYYDUuFRK7uwbeg2SGNadlzINU8fUi9Gk/UryvQ5uYwfvVOXGr5VaClhpGbkYZ2+wqef/55Gjd+cNFcgaCkiJg1gcAMmDFjBpcuXeLbb781tSkmoaAV1ZIlSzh0qHJuf1UEzlZKfOwtzL42vkR+Ak0LF/VDz6V+8NOc2Pobm+ZPY/8vX+Pl34JRX2+slEINWeb2mcMsXryYJk2a4O/vz3vvvcepU6dE+RlBmRGeNYHATBg8eDCRkZGcP38etbpi4oMqE3l5ebRt2xaNRsORI0eqZPwewLlbOayLSTO1GWWmn68D1dXKx8pTONrfGRvy2LZtG2vXrmXDhg3cvn2bhg0b0r9/f73HzdAOCgJBAcKzJhCYCe+++y5Xr17lq6++MrUpJqGgFdXp06f5+OOPTW2OyfBzsMTJhJ00yooEOFkq8HWweOw8hc5WSqysrOjZsyfff/89169fZ9OmTQQGBrJkyRKaNm2Kv78/7777LidPnhQeN4HBCM+aQGBGDB06lD/++IMLFy5gY2NjanNMwptvvsmnn37KyZMnqVu3rqnNMQnx6Rp+OnfL1GaUmiH1HPG604njcfIU1nV8cDxpTk4OO3bsYM2aNWzYsIFbt27RoEED+vfvT//+/WnatKnwuAkeiBBrAoEZERMTQ/369Zk3bx6TJxetKF8VyMzMpEmTJtSpU4cdO3ZU2RvcjsvpHEnKNnlmaEmQyG+b1tnrbkavTpb58nQKt3J1ZnUuBUiAo6WCUf7OKAz8LhYIt7Vr17J+/Xpu3bpF/fr1ef7554VwExSLEGsCgZnxyiuvsGHDBmJiYqpsGYvt27cTEhLCt99+y7Bhw0xtjknQ6GS+PpPCbTMRORLgYKlgZCPnIm3THidPYUnJzc0t5HFLTU2lfv36eo9bs2bNhHATCLEmEJgbcXFx1KtXj5kzZzJ16lRTm2MyXnrpJTZv3lylW1GZm8gZXM8R72JEjSzLLP49iqyavigU5lOjrDhPYVkoEG4FHrfU1FTq1aunT04Qwq3qIsSaQGCGvPrqq/z888/Exsbi4OBganNMwo0bN2jUqBFdunSpsu24AKKTsthxOcPUZjySLl62tHa1LvL+zZs3GTlyJBFb/+CdrSewdHA2e0+hMcjNzeXPP//UC7eUlBS9cOvfvz/NmzcXwq0KIbJBBQIz5O233yYjI6NKF4h1cXFh0aJF/Pzzz2zZssXU5piM1q7WdHSv3MkmHd1tihVqu3fvpnnz5uzZs4c1q1cxtJWPWQg1ABnoUdu+XIQagKWlJc8++yzffvstiYmJ/P7773To0IHPP/+cgIAA6tevz9tvv83x48dFVmkVQHjWBAIzZeLEiaxYsYLY2FicnZ1NbY5JkGWZbt268e+//1bpVlSyLLP/WhZ7r2aa2pQiPOFuQ3BN60JeII1Gw4wZM5gzZw6dOnXihx9+wMvLCzB/T2F5k5uby86dO1m7di2//fYbKSkp1K1bV+9xa9GihfC4PYYIsSYQmCmJiYn4+voyefJkPvjgA1ObYzJEK6q7FAgdCUzqoSpYvzhBExMTw+DBgzl8+DAzZ85kypQpKJWF49T2JWZWSuFZQEd3G9q7md6bqdFo2LlzJ2vWrGH9+vUkJyfj5+enj3ETwq1kyLKM9k4fZ50OFHf6OCsN7ONcngixJhCYMW+++SbLly8nNjYWFxcXU5tjMj766CPeeustoqKiCAwMNLU5JiU+XcPmuDSTZYkWxHL1qG1fJJlg1apVjBkzBhcXF1atWkVQUFCxc5ibp7AyUCDcCjxu9wq3/v37ExAQUOlsNiWyLJOcoyUxM4/EzDyuZuaRmJVHnq7oWJUC3KxVuNuocLvzp5qVskJ/n0KsCQRmTFJSEnXq1GHcuHHMnTvX1OaYDNGKqjAanUxkQgbRSdkV5mUrWKeNq5onPGwLxXKlpaUxbtw4vv/+ewYNGsRnn32Go6PjI+c0B09hZUSj0bBr1y7Wrl1LeHg4ycnJ+Pr66oVby5Ytq6xwS8nRcuxGNiduZpOjzf9WKYBiNFoR7h1npZRoXl1NgIsaZ6vyz2AWYk0gMHOmT5/O4sWLiYmJqbIlLACOHj1KYGAgH3zwAdOmTTO1OZWC+HQNEXFppObqyk3wFMzrZKmgezHetMOHDzNo0CASExNZtmwZL774YomEQmX2FJoD9wq33377jZs3b1Y54aaTZS7czuVIUjYX0zRG+79QMI+PvQWtXNX4OVgaXBi5xGsJsSYQmDfJycnUqVOHESNGsHDhQlObY1LefPNNli5dysmTJ6lXr56pzakU6GSZmNsajiRlEVsON6o69ha0crXG18Gi0I1Kp9Px0UcfMX36dAICAli1alWp24NVNk+huaLRaNi9e7fe41Yg3Pr160f//v1p1arVYyfcKsMDi1HWEGJNIDB/ZsyYwbx587hw4QIeHh6mNsdkFLSi8vHx4c8//3zsbjxlJSVHy/Eb2Ry/dwtIAp0Bd4F7x1kpJVpUV9PiAVtACQkJvPTSS+zcuZO33nqLmTNnYmn54L6ZhnLvjVenzUOhVJV5zvvRabUolMpyvfFWBv6fvfsOa/LsHjj+TcIeIirWgYKzdS9cuFpH696tVbRDBUQt1vmre71tHVXbKoqj2rrqrK1gtYri1rr3Qq0DFUVE2SPJ8/uDhoqgrCRPAvfnurzel/jkuU+okJN7nKNWq9m/fz+bNm1KT9wqVKhA7969+eijj8w+cZMzwfdwsaGVnhN8kawJQgHw4sULKlSogJeXFwsXLpQ7HFnpWlH99NNPDBw4UO5wTJIkSUQna9M2VyeqeRifyoPYZKQsugfoNleXsbeklG3a5mpna+Vr38iDgoIYOHAglpaWrFmzhjZt2ug1dq0k8fvh0wRfuE3Vpu+hUCj0N1MoSdw4Fkr/lvV4t2Zlgy1pmRpd4qabcXv69Cnu7u7pS6UeHh5mlbgVxKVzkawJQgHxzTffMH36dMLCwihfvrzc4chKtKLKvRU//cSQIX7ExCeAQonq37IFyhyWLUhKSmLs2LEsWrSILl268NNPP+Hi4mKQWHv37s2VK1c4fOYC56OS9TZTWMNJRb23K9GxY0eWL19ukNhNnVqt5sCBA+kzbrrETTfjZuqJW0E9lCKSNUEoIGJjY9OXMQIDA+UOR1aiFVXuLVy4kLFjx5KUlJTr516+fJm+ffty48YNvvvuO4YNG2awN/Tw8HDc3d35/vvvGT58OJD1TGF2ZRheN1M4a9Yspk2bxr179yhZsqRBXoO50CVuuhm3yMjI9MTtww8/pGHDhiaTuJlyuZcWpe3wzGe5F5GsCUIBMnfuXCZMmMCNGzeoUKGC3OHIau3atQwYMIAdO3bQsWNHucMxebNmzWLu3LlERUXl+DmSJLF06VJGjhxJxYoV+fXXX6ldu7YBo4QpU6awYMECHjx48Ma+uJIkof23wKlGS45nCp89e0a5cuUYN24cU6dONcRLMEtqtZqDBw+yefNmtm7dSmRkJG5ubukzbnInbgW9kLJI1gShAElISKBixYp07NiRlStXyh2OrCRJokOHDly9erVQt6LKqcmTJ/PLL79w7969HF2va8D++++/4+fnx7x587C1NWwNspSUFMqXL0/Pnj1ZvHixwcYZPnw4mzZt4t69e9jY2BhsHHP1cuL222+/8eTJk/TE7cMPP6RRo0ZGTdxOPUkk5EHBblEmGrkLQgFiZ2fHV199xerVqwkLC5M7HFkpFAqWLFnC06dPmTRpktzhmLyEhATs7HL2yf/lBuzbtm1j8eLFBk/UAH777TceP37MsGHDDDrOiBEjePr0KevWrTPoOObKwsKC1q1bs2TJEh4+fMi+ffvo2LEja9asoUmTJri7uzN69Gj+/vtvgzeZvx+XahaJGkBIeDz341Lz9FwxsyYIBUxSUhKVKlWidevWrFmzRu5wZDdv3jzGjh0rWlFlY8iQIZw8eZLTp0+/9po3NWA3hhYtWqBSqdi/f7/Bx+revTthYWFcunTJZPZlmTqNRsOhQ4fSDyc8fvyY8uXLp8+4NW7cWK/fy1StxIqr0bKd+swt3SnRwdWcc13WQ8ysCUIBY2Njw8SJE1m3bh1Xr16VOxzZjRgxgvr16zN48GBSU/P2qbYwiI+Px97e/rV/f/v2bVq0aMHs2bP53//+R0hIiFETtQsXLnD48GGDz6rpjBw5kitXrrB7926jjFcQqFQq3n33XRYvXsyDBw8IDQ2lc+fOrFu3jqZNm+Lm5saoUaM4duwYWm1OGjy92YGH8WaTqEHa6dCYFC0HH+Z+JlDMrAlCAZScnEyVKlXw9PRkw4YNcocju7Nnz9KwYUPRiuoNevbsSWJiIjt37sz0dzltwG5Ivr6+BAcHc+fOHaP0fpUkCQ8PD0qUKMFff/1l8PEKMo1Gw+HDh9m0aRNbt27l8ePHuLq6ptdxa9y4MUpl7uaO7selsi7shYEiNjyvKk65qsEmZtYEoQCytrZm8uTJbNy4kYsXL8odjuzq1avHqFGj0uvQCZlltWctNjaWTz/9FC8vL7p06cLZs2dlSdSeP3/O2rVr8fHxMUqiBml7HkeNGsXu3bu5dOmSUcYsqFQqFa1atSIgIIAHDx6wf/9+unXrxq+//oqnpydubm6MHDmSo0eP5mjGTStJ7Lgbi7kuTiuAHXdj0eZirkzMrAlCAZWamsrbb79N3bp1+e233+QOR3aiFdWbtWjRggoVKrB69WogrQF73759efz4MYsXL2bAgAGyxfbDDz8wZswY7t27R+nSpY02bkpKChUrVqR9+/asWLHCaOMWFhqNhiNHjrB582a2bNlCREQErq6u9OrVi48++ogmTZpkOeMW9iKZrbdjZYhYv3pXLEJlp5y1YRMza4JQQFlaWjJlyhS2bdvGmTNn5A5HdnZ2dixdupTQ0FBWrVoldzgmR7dnTavVMnv2bDw9PSlWrBhnz56VNVHTarUsXryYnj17GjVRA7CysuKLL75g7dq1PH782KhjFwYqlYqWLVuycOFCwsPDOXDgAN27d2fTpk00a9aM8uXL8+WXX3LkyJEMM26n/+33ac4UwOnIxJxfL2bWBKHgUqvV1KhRg6pVqxIUFCR3OCZBtKLK2jvvvEOrVq24deuW3huw54eu1+uBAwdo2bKl0cePjo7G1dWVsWPHMm3aNKOPXxhptdoMM26PHj2ibNmy9OrViy59vDhlW1HuEPXGt7ozztaZe/K+SiRrglDArV+/Hi8vL44fP07jxo3lDkd2ulZUbdq0EYcvXuLi4kJ8fDxFixY1SAP2vOrevTu3bt3iwoULsi1df/HFF2zcuJG7d+8apZ6c8B+tVsvRo0fTDyfU+cib5l5DUKos5A4t3xRAo5K2vFf29aew068VyZogFGwajYbatWtTrlw5du3aJXc4JkHXiio4OJhOnTrJHY6sEhMTGTduHIsWLaJatWocPHiQEiVKyB0WAPfu3aNChQosXrwYX19f2eK4efMmVatWZdmyZQwePFi2OAo7jUbD/PNP0Siyn4kyF9YqBV/WKpbtBxGxZ00QCjiVSsW0adP466+/OHLkiNzhmAQvLy8++OAD/Pz8iI01/43KeXX58mUaNWrE8uXLsbCwwM/Pz2QSNYDAwEAcHBzw8vKSNY7KlSvTrVs35s+fb/CK/MLrPU+VClSiBpCskYhOzv4ErEjWBKEQ6NWrF7Vr12by5Mlyh2ISdK2ooqKiCmUrKkmSWLJkCR4eHkiSxLFjx1Cr1W8simtsycnJrFixgs8++8wk+rqOHDmSq1evipprMopIUMsdgkHk5HWJZE0QCgGlUsmMGTMIDQ0lNDRU7nBMQoUKFZgxYwYLFy7k77//ljsco4mKiqJnz54MHTqUzz//nJMnT1KpUiUAk0rWNm/eTGRkJEOHDpU7FCCttEmDBg2YP3++3KEUWhEJarNPWlISM3YvUCogIjH7ZE3sWROEQkKSJBo2bIitrS0HDx4UdcZIOy3bpEkTUlJSOH36tNEKrsolNDSUAQMGkJiYyMqVK+nWrRsAjx49okyZMgQFBdG5c2eZo0zTtGlTHBwc2LNnj9yhpNMd1rl48SI1a9aUO5xCZ+2N54THZ0xskuPj2L34W67s30ns08fYOBShdNUatPefTNlqdZjdqT4VPTz5cPqiDM9b5p32b99n+R/pj0U/vE/QnPHcPHEIK1s76nboRVXP1qwa3gfvZb9T0aMZAP+cOcbRDcu5f+kMcVGROBQrQc02Xfhg+EQsbf47gLJ56nAuhQThv2E/2+eM587Z41Ru1JIB81dniMXV3oL+VYu+8bWbe5IqCEIOKRQKZsyYweHDh03qDVBOFhYWLF++nCtXrvDdd9/JHY7BpKamMnHiRNq0aUPVqlW5cOFCeqIGaTXWgEwdDORy5swZjh8/brQ+oDn14YcfUrZsWRYsWCB3KIWOJElZzkBt+2YMf2/5mZptOtNt/GxaDBiKpbUNT/7JXaeSlMR4Vgzpyc0TB/HsO5j3Bn3J3Qsn2fXjjEzXXgzZTmpSIk16f0bXcd9Spel7HNu4gk1TMv971Wo0rBz2EQ7FStDxy+nUaJ35w1BOZtbM/+yrIAg51qFDB5o0acLkyZNp166dmF0jYyuq3r17U6VKFblD0qvbt2/Tr18/Tp06xddff824ceNQqTJu0k5ISABMZxk0ICCAcuXKmcwsn46lpSX+/v5MnjyZb775RtTpMyKNBOos9uFfP7SHhj3602nUy0nVF7m+/99bV/Ms/A4D5q+m+rsdAGjU61MW9m2d6doO/lMyzKA16vUJxctVYPeir3n+KJyipV3T/06dkkytdl1p/8Xr9wtn9bpeJWbWBKEQ0c2unThxgj///FPucEzGtGnTKFu2LL6+vgXqtN+6deuoW7cuT5484ciRI4wfPz5Togb/zayZQrL27Nmz9MbxFhamN5/g7e2NpaUlixcvljuUQkX9mp9LG0cn7l86Q0xkRL7uf+PoPoqULE21Vu3TH7O0tqFhz8zdO15O1FIS44mPjsKtdkMkSeLh9cy9mJv0/jxfsYFI1gSh0Gnbti0tWrRgypQpBSoxyQ87OzsCAwMLTCuq2NhYPvnkE/r370/Xrl05d+7cGwsim1KytmrVKrRarcnWM3N2dmbgwIEsXryYxMSctwsS8ud1/d07jJjC41vXmNWhDgED3ickcA7Pwu/k+v7PH92nuKt7ptWG4uUqZHFtOJunDmfGu1WY2syd/7V5J30PXFJcTIZrlRYWFHmrTK7jeZVI1gShkFEoFMycOZMzZ87w+++/yx2OyWjXrh2ffPIJY8aMMes+kCdOnKBevXps27aN1atXs3btWooUKfLG5+iWQeXes6bValmyZAkffvghJUuWlDWWNxkxYgRRUVGsXbtW7lAKjSz6uQNQ+/3ujN1+ki7jvqWISykOrg5gwYctuH4kBOC1Wz0kjSZPcWg1Gn4a2pvrh0Jo9dkXDJi/mkFLttB7+sK0+76SVVpYWmXZjD63RLImCIVQq1ataN26NVOnTs3QILmwmzdvHiqVihEjRsgdSq5ptVpmzZpFs2bNKF68OOfOnctxA3ZTmVn766+/uHXrlskdLHhVpUqV6N69OwsWLBA/P0Zi8Yb9tUVcStH0o4EMmL+accGnsHNyJvSntEMgtkWcSIqNyfSc6IjwDF8XLV2OqPA7mVYbou7/k+HriJtXeHr3Fh1HTafVZ/5Uf7cDlRu3oohLqby+tBwRyZogFFIzZ87k4sWLbNmyRe5QTEaJEiX4/vvv2bhxIzt27JA7nBx7+PAh7dq1Y8KECYwZM4bDhw+n107LCVM5DRoQEEC9evVo0qSJrHHkhCiSa1wqBVi8krFoNZpMiZhDMReKuJRCnZICQDFXd+5dPIU6NSX9mqsHd/Mi4kGG51Vt+h4xTx5x9cB/LflSk5M4+duaDNcplWl7Pl9O6iRJ4sj6ZXl+ba++riyvyfPdBUEwa56enrRv355p06bRq1evLDeeF0b9+vVjzZo1+Pn5cfnyZRwdHeUO6Y2CgoL4/PPPsbKyYs+ePXlqwB4fH4+tra1elmvy6p9//uHPP/9k+fLlZnFKuXnz5nh4eLBgwQI6dOggdzgFnkKhoJStRYY6a8kJccxqX5uabbtQukpNrOzsufn3AcIvn6Xjv6dDG3bvz6WQIFYN60Pt97sRdf8O53Zuppire4b7N+r1Ccc2/sSGCb549vXGscRbnNu5FQtr638DSPsfF/cqFHN1Z+eCacQ8eYS1vSOX9wWTGPM8z6+tlG32qZiYWROEQmz69OlcvXqVDRs2yB2KyTCXVlSJiYkMHz6crl274unpyYULF/KUqEHanjW5Z9WWLFlC0aJF6du3r6xx5JRCoWDUqFHs2bOHixcznwAU9K+0nUWGpMXSxpYmHw7k0fVLhCydzY55k3h69ybdxs+hRX8/AKp6tqbjqBk8vXeL4O8mce/iST79fj1Or2z6t7ZzYPDS36jo0Zyjvy4ndMUCKtRrQuvBowGwsLIBQGVpyaffr6P02zXZv+oH9i37juLlKvLhjIA8vSalAsrYZ1+MW3QwEIRCrmvXrly7do0rV66YZKkEucybN4+xY8dy7NixN56klMPly5f5+OOPCQsLY968eQwdOjRfs1GTJk1izZo13L17V49R5lxiYiKurq589tlnzJs3T5YY8iI1NZWKFSvSrl07Vq5cKXc4Bd7lZ0kE3Y0z6piH1wWyY95kvtp1AaeSpQ0yRlc3R6oXs37jNWJmTRAKuRkzZhAWFsaaNWuyv7gQGTFiBPXr18fb25vU1FS5wwEyN2A/efIkw4YNy/eyYXx8vKyHCzZu3MizZ8/w8/OTLYa80BXJXbduHRER+avzJWSvlJ1hP0ymJmUsxZKanMSJraspXr6iwRI1yNnrEsmaIBRydevWpVevXsyYMcNkkhJT8HIrqrlz58odDlFRUfTo0YOhQ4cycOBATp48Sa1atfRybzmXQSVJYtGiRbRv357KlSvLEkN+iCK5xlPMWoW1ynD7GdeO+Yxt/xvN8c2r2L/qBwL6tyPyThhtfccZbExrlQJn6+xTMZGsCYLAtGnTuHv3boEoCKtPulZUM2bM4MaNG7LFERoaSu3atTl06BC///47AQEB2NraZv/EHJJzZu3EiROcPn3a5Mt1vE7RokUZNGiQKJJrBAqFgjrFbTBUulal6XvcPX+Cnd9PY++y71BZWtH322XU7dDLIOMpgLrFbXI0My72rAmCAEDfvn05cuQIYWFhWFu/ef9EYZKQkECtWrUoX748+/btM+pJxdTUVKZOncqsWbN49913WbNmDWXLltX7OD169CA5OVmWFmSffPIJhw4d4ubNm2Z7Ivn27dtUrlyZwMBAfHx85A6nQItO1rD0SrTcYeiNb3VnnK2z/3cvZtYEQQBg6tSpPHjwgBUrVsgdiknRtaLav3+/UTeR3759mxYtWjBnzhy+/vpr9uzZY5BEDeSbWYuMjGTjxo34+fmZbaIGULFiRXr06CGK5BqBs7UKd0dLg82uGYsCqOBomaNEDUSyJgjCv9555x28vLz4+uuvxXLOK4zdikrXgD0yMvKNDdj1Ra49az/99BMKhYKBAwcafWx9GzlyJNeuXWPXrl3ZXyzkSwMXG8x9SVACGrjkfCuDSNYEQUg3ZcoUnjx5QmBgoNyhmJx58+ZhYWFh0FZUMTEx6Q3Yu3XrxtmzZ41SNkSOmTWNRkNgqzQLWgAAIABJREFUYCAff/wxJUqUMOrYhtCsWTMaNmzIggUL5A6lwKtUxIqiVkqznV1TAEWtlFQskn19NR2RrAmCkK5y5cp89tlnzJo1K70FkZDG0K2oXm7AvmbNGtasWZNtA3Z9kSNZ27FjB3fv3jXbgwWv0hXJDQkJ4cKFC3KHU6ApFQo6uTma7eyaBHR2c0SZi/2vIlkTBCGDSZMmER0dTUBA3ipyF2T9+vXjgw8+wM/Pj9jYWL3c8+UG7CVKlODcuXP0799fL/fOqYSEBKMnawEBATRs2JCGDRsadVxD6tWrF+XKlROza0ZQzsESDxfDnQw1FAXQ0MUGV4ecz6qBSNYEQXiFu7s7gwYNYs6cOXpLSAoKhUJBYGCg3lpR5bcBu77Ex8cbdc/ajRs32L17d4GZVdN5uUjuo0eP5A6nwGtVxp4iZrQcqgCKWClpWSb3H4xEsiYIQiYTJ04kNjaWH3/8Ue5QTI67uzszZ85k4cKF/P3333m+z/bt26lduzZXr14lJCSEb7/9FkvL3H3a1hdjL4MuWbKE4sWL06dPH6ONaSyDBw/G2tpaFMk1Akulgs5mtByqW/60VOY+vRTJmiAImbi6uuLr68t3333H8+fP5Q7H5Pj7++e5FZWuAXu3bt1o1qwZFy5coHXr1gaKNHupqamkpqYaLVmLj49n1apVDBo0CBsbG6OMaUy6IrlLliwhISFB7nAKvHIOlrR1la9VWm60dbWnXC6XP3VEsiYIQpbGjx9PUlKS2H+Thby2orp06RKNGjVixYoVBAQE8Pvvv8t+ElKXUBhrGXT9+vXExMQwZMgQo4wnB39/f6Kjo0W/XSPxcLGlRWl52qXlVIvSdnjkolTHq0SyJghClkqXLs2wYcNYsGABUVFRcodjcnLTikqSJBYvXkzDhg2RJIlTp04xdOhQo3ZDeB3dqV9jzKxJkkRAQACdOnWiQoUKBh9PLqJIrvF5vmW6CVvL0nZ4vpW/9nAiWRME4bXGjRuHVqtl3rx5codikqZNm0bZsmXx9fXldZ37nj59So8ePRg2bFh6A/aaNWsaOdLXM2aydvToUc6fP1/gDhZkZeTIkVy/fp2dO3fKHUqhoFAoaFbKLn1JVO6PQbrx27ra41nKLt8fzESyJgjCa5UsWZIvvviCH3/8kcjISLnDMTnZtaIKDQ2lTp06BmvArg+6ZVBjJGsBAQFUrlyZ999/3+Bjyc3T05NGjRqJbQRG5uFii1cVJ1lPiepOfXpVccrX0ufLRLImCMIbjRkzBqVSyezZs+UOxSS93IoqIiICSNu0P2HCBNq0acM777zDhQsX6Natm8yRZk03s2boPWuPHz9my5Yt+Pn5oVQW/LceXZHcvXv3cv78ebnDKVTKOVgyuJozDVzSDrAYK2nTjePhYsPgas55PkyQlYL/EyMIQr4UL16ckSNHEhAQIGpHvcbLrahu3bpF8+bNmTt3Lt988w27d+82WAN2fTDWMujy5cuxsLDg888/N+g4pqRXr16UL19ezK7JwFKpoK2rA15VnHCySkt1DJW06e7r9O9sWhtXhzyV53gTkawJgpCtkSNHYmNjw6xZs+QOxSTpWlFt2rSJWrVq8fTpU44cOcJXX31l0Abs+mCMZE2tVrN06VK8vLxwdnY22DimxsLCAn9/f9avXy8+6MiknIMlPtWd6V2xCO6OaTNd+kqjdPdxd7Skd8Ui+FTX72zay0SyJghCtooWLcro0aMJDAwkPDxc7nBMTkxMTPpGcoVCwcGDB2nUqJHMUeWMMfasbd++nfDw8EJxsOBVuiK5on2bfJQKBZWdrOhT2Qnf6s40KmmLtUrx0t/n9D7//X9rlYJGJW3xre5Mn8pOVHayylWvz9xSSK87wiQIgvCS2NhY3N3d6dOnj6jO/pITJ07Qt29fIiMjmT59OpMmTWLQoEFm0/1h+fLl+Pj4oNFoDLaXrE2bNiQlJXHkyBGD3N/UjRw5ktWrV3P//n2jtvUSXk+SJKKTtUQkqIlIVPMwPpWIRDXqLCqtWCihlK0FZewtKWVrQSk7C5ytlUYtvWNhtJEEQTBrjo6OjBs3jsmTJ/N///d/uLm5yR2SrLRaLXPmzGHy5MnUr1+f3bt3U6lSJSRJYsyYMXh5edG4cWO5w8yWri+ooRK1q1evsm/fPtatW2eQ+5sDf39/fvzxR1avXl2giwGbE4VCQTEbFcVsVFTHGkhL4LQSqCUJjRZUSrBQKFAqkL0molgGFQQhx4YPH46zszMzZ86UOxRZPXjwIL0B+9ixYzM0YM9PKyo5GLov6OLFiylZsiS9evUy2BimrkKFCqJIrhlQKBSolAqsVUrsLJVYq5SolArZEzUQyZogCLlgb2/PV199xc8//8ytW7fkDkcW27dvp06dOly7do2QkBC++eabDA3YLSwsWLFiRa5bUcklISHBYEtzsbGx/PLLL3h7e2NtbW2QMczFqFGjuHHjBn/++afcoQhmSCRrgiDkypAhQyhZsiQzZsyQOxSjSkxMZNiwYekN2M+fP//aBux169Zl9OjROWpFJTdDzqytXbuW+Ph4fH19DXJ/c9K0aVMaN24syngIeSKSNUEQcsXW1pYJEyawdu1arl27Jnc4RqFrwL5y5cocN2CfOnVqtq2oTIGhkjVdH9Bu3bpRrlw5vd/f3OiK5O7bt49z587JHY5gZkSyJghCrnl7e1OmTJkCP7v2cgN2gJMnT+a4AbudnR1Lly59bSsqU5GQkGCQZO3gwYNcvny5UJbreJ2ePXuKIrlCnohkTRCEXLO2tmbSpEls2LCBS5cuyR2OQTx9+pTu3bszbNgwBg0axIkTJ3LdgL1t27Z8+umnGVpRmRrdaVB9CwgI4J133nntUnFhpOty8euvv/Lw4UO5wxHMiEjWBEHIk88//xw3NzemTZsmdyh6t2/fPurUqcORI0f4448/WLRoUZ4bsL/cisoUGWIZ9OHDh2zbti3Hs5CFyaBBg7CxsRFFcoVcEcmaIAh5YmVlxZQpU9i6dWuB2YOTmprK+PHjadu2Le+88w7nz5+na9eu+bpn8eLF01tRBQcH6ylS/TFEsrZs2TKsra355JNP9HrfgsDJyYnBgwcTGBiY3upLELIjkjVBEPJswIABVK5cmalTp+b4OZIkodZKJGm0JKRqSdJoUWsl2Tfh6xqwf/fdd3pvwN6vXz8++OAD/Pz8iI2N1cs99UXfe9ZSU1NZtmwZAwYMwMnJSW/3LUj8/f15/vw5q1evljsUwUyIDgaCIOSZhYUFU6dOZcCAAZw8eTJ9I76OJEk8S9aktXRJUPPo39Yub2rpUtourZ1LKTsLilmrjLKMtnbtWoYOHYqLiwtHjhzRe19PhUJBYGAgNWrUYOLEiSbVikrfe9a2bdvGo0ePxMGCN3B3d6dnz54sWLAAX19fg3WPEAoO0RtUEIR80Wg01KpVC3d39/SCn9HJGs4+TeJ8VBLJmrRfMUogJ7XbX77OWqWgTnEb6pWwwdlapffYY2JiGDZsGGvXrmXAgAEsWrSIIkWK6H0cnfnz5zNmzBiOHj1KkyZNDDZObpQpUwZfX99czY6+SatWrQA4cOCAXu5XUB07dgxPT0+2b99Oly5d5A5HMHEiWRMEId82bdrEx3378sfRs8QXd+NObCoKQB+/XHT3cXe0pIGLDZWKWKHUw2zb33//Tb9+/YiMjGTJkiV4eXnl+57ZUavVNGnShOTkZE6fPo2VlZXBx8xO0aJFmTRpEmPGjMn3vS5evEjt2rXZuHEjH330kR6iK9iaNm2Kra0t+/btkzsUwcSJuVdBEPKtSftujP/zLJetynA3Nq0fpr4+Beruczc2la23Y1l2JZr7cXnvuanRaPj2229p3rw5JUqU4OzZs0ZJ1OC/VlRXr141mVZU+lwGXbx4MaVLl6ZHjx56uV9BN2rUKEJDQzl79qzcoQgmTiRrgiDkWapWIiQ8jvW3YnF0KQ3oL0l7le6+L1K0rAt7QUh4HKna3I2ma8A+ceLETA3YjUXXimrmzJmyt6JKSUlBrVbr5YDBixcvWLNmDT4+Phl6pQqv16NHD9zc3ESRXCFbIlkTBCFP7selsuJqNKcjk9IeMFI9LV16djoyiRVXcz7L9scff1CnTh2uX7+eZQN2Y9K1ovLx8UGrzclOPsPQlY7QR7K2evVqkpOT8fHxyfe9CouXi+Q+ePBA7nAEEyaSNUEQcu1UZCLrwl4Qk6I12ExadiQg5t9ZtlORia+9TteAvXv37jRv3pwLFy7IXlVf14rqwIEDrFq1SrY4EhISgPwna7o+oD169KBMmTL6CK3QGDRoELa2tqJIrvBGIlkTBCHHJEniSEQCIeFpMzJyn07SjR8SHs+RiIRMtdpebsC+ePFitm3bRvHixY0faBZMoRWVbmYtv3vW9u7dy/Xr10W5jjwoUqQI3t7eokiu8EYiWRMEIceOPk7k0KMEucPI0qFHCRx9nDbDppvp8fDwANIasPv5+Zlc66N58+ZhaWkpWysqfS2DBgQEUKNGDVq2bKmPsAodf39/Xrx4wS+//CJ3KIKJEsmaIAg5cuqJ6SZqOoceJXDgn7QG7MOHD2fw4MF5asBuLHK3otLHMui9e/fYvn07w4YNM7lk2Fy4ubnRq1cvvv/+e1n3MAqmSyRrgiBk635cKiEPzGOJ5mi0ljvPE/PdgN1Y+vbtS/v27WVpRaWPZdClS5dib29P//799RVWoTRq1CjCwsLYsWOH3KEIJkgka4IgvFGqViL4bizmMmciaSUG/7iWDp3Noyq8QqFgyZIlPHv2jIkTJxp17PwugyYnJ7N8+XI+/fRTHB0d9RlaodOkSROaNm3K/Pnz5Q5FMEEiWRME4Y0OPIyX9dRnbilVKhK0Sg4+NI+ZQEjrFfm///2PRYsWcfz4caONm99kbcuWLURGRjJ06FB9hlVojRo1iv3793PmzBm5QxFMjGg3JQjCa92PS2Vd2Au5w8gzrypOlHMwjwKtcrSiWrZsGUOGDEGj0eRpv5mnpye2trbs3bvXANEVPmq1mipVqtC8eXPWrFkjdziCCREza4IgZEkrSewwo+XPVymAHXdj0ZrJ51E5WlHpWk3lJVE7e/Ysx44dE+U69EhXJHfDhg2iSK6QgUjWBEHI0q2YFJ6b0fLnqyTgeYqW2zF57yNqbMZuRRUfH5/nJdCAgABcXV3p2rWrnqMq3AYOHIidnR2LFi2SOxTBhIhkTRCELJ2OTDLbWTUdBXD6Dd0NTJExW1ElJCTkKVmLjo5m/fr1+Pr6YmFhYYDICq+Xi+TGxcXJHY5gIkSyJghCJtHJGu7EpprtrJqOBPwTm0p0skbuUHLs5VZUK1euNOhYeZ1ZW7VqFWq1Gm9vbwNEJXzxxRfExsaKIrlCOpGsCYKQydmn5j+rpqMAzj1NkjuMXNG1oho7dqxBW1Hp9qzlhlarZfHixfTu3Zu33nrLQJEVbqJIrvAqkawJQiH3888/o1AouHPnDpDWqul8VJLZz6rpSMC5qKRMfUNNna4Vlb+/v8HGyMvM2u7du7l16xbDhw83UFQCpJXxuHnzpiydLQTTI5I1QRAyeJasIVmTfWLz+PZ1QgLnEP3wnhGiyruUxAR2BMwmaM8+uUPJFV0rqs2bNxMUFGSQMfKyZy0gIIC6devStGlTg8QkpGncuDGenp6iSK4AiGRNEAq9AQMGkJiYiJubGwARCeocPe/J7evsXTaX6If3DRlevqUmJbJ32Vz+2hsqdyi5pmtFNXToUIO0osrtMug///zDjh07RB9QIxk1ahQHDhzg9OnTcociyEwka4JQyKlUKmxsbNLffCMS1LL+YkhJNEzngbhU89v7Y+hWVLldBg0MDMTJyYl+/frpPRYhs+7du1OhQgUWLFggdyiCzESyJgiF3Kt71j5uUp2V/v24c/Y4AQPeZ3ITV+Z08eBM8Mb055ze/ivrxw0CYLlPd8bXd2F8fRdunzqSfs31IyEsHdiZKZ5uTG3uzs/+fXl861qGsTdPHc7UZm5E3f+HVV98zNTm7myc6AekbWQ/vC6QBb2bM7mJK1+3rc62/40mMeZ5hnuEXznHyqEfMrP120xuWo45nRuwZVraPq/oh/f4X5t3AFi94FsUCgUKhYJp06bp9XtoSIZsRZWbZC0pKYmffvqJzz//PF+N34WcU6lUjBgxgo0bNxIeHi53OIKMRLImCEI6SZLQaOFZ+D+sGzeQyo1b0XHkdGwdndgy9Yv0ZKtC/aZ49k0r2/DuwC/5aOZiPpq5GJcKVQA4E7yJX/z7YWVnT3v/ybQePJont28QOLBzpj1uWo2GlcM+wqFYCTp+OZ0arTsD8PvXo9n5w3Tc6jSi85ivadD1Y87t3MLKYR+hSU0rdBv3LJKVQz8k+tF9Wn3mT9dx31C3Qy/uX0xbNrJ3Lk73CWndAGq27sTq1atZs2YNPXv2NPw3U4/8/f1p0KAB3t7epKSk6O2+udmztnHjRqKiovDz89Pb+EL2RJFcAUBUMxQEIZ1GSjs9GXnnJj4rtlOhftom8lrvd2N2h7qc3v4rHUdOp5irO+71mnD01+VUafIuFT2apd8jOSGOoLkT8Ojen56T/9scXb9LH+b3aEroT99neFydkkytdl1p/8Xk9MfunD3OyW1r6fN1IHU79Ep/vKJHc1YN78PFkO3U7dCLu+dPkhjznIGLN+NavW76de8PmwCAla09Ndt04fdvxvJW5er08+qPSml+e61UKhUrVqygQYMGzJ07V29LornZsxYQEMAHH3xAlSpV9DK2kDOOjo74+PiwdOlSJk2ahIODg9whCTIQM2uCIKRT/1veomTFt9MTNQAH5xKUcKvMs/C72d7j5vEDJMW+oE77nsRHR6X/USpVlKtZn9unDmd6TpPen2f4+mLIdmwcilC5SasM9yhbrQ5Wdvbp97B1dALg2sHd6bNtOXl95qhOnTqMGTNGr62ocroMevLkSU6ePCn6gMpEVyT3559/ljsUQSZiZk0QhHS6+ptFS5XN9He2RZxIjH2e6fFXPb13G4AVvj2y/HtrB8cMXystLCjyVplM90iKi+HrNtWyvEfcs6cAVGjgSc02ndm7bC6H1wdSsUEzqr/bgbodemFhZZ3peRotoMr2JZisqVOnsmXLFnx8fNi3bx9KZe4/b0uShEYCtVYLVrbYFXFCrZVQKXjtCc+AgADc3Nzo2LFjfl+CkAfly5end+/efP/99/j5+aFSmfE/YiFPRLImCEI63Xu/Qpn1m0FOCstKUlrG99HMxTiWKJl5DFXGXzsWllaZkg5Jq8WhmAt9vl6S5Rj2zsXT4lQo8Jq7insXTnH14F+EHQtl6/QRHF67BL9fdmJtl3HJSGXmawm2trYsXbqUtm3bsnLlSgYPHvzG6yVJ4lmyhogENREJah4lqIlIVKP+NymfsOcyL4DvzkdhoYRSthaUtrOg1L9/ilmriIqKYsOGDUyfPl0kCTIaNWoUjRs3Jjg4mG7duskdjmBkIlkTBCGdRS5qZ71uFqa4qzsA9sVKULlxqzzFUdzVnVsnDuJWpxGWNrbZXl++tgfla3vwwfCJnNu5lY0Th3Dhr2007DEAXoozN6/PVLVp0ya9FVXnzp0pVapUpmuikzWcfZrE+aik9ALHSuBNxUvUWgiPV/MwXp1+nbVKQfKtiziXdWPQoEF6fy1CzjVq1IhmzZoxf/58kawVQmb+OVMQBH1SKchxT1BLm7SN6YmxLzI8XqVpa6wdHNm/8vss95HFRT/N9t613u+GVqNh3/J5mf5Oo1anj5kY8zzTbF/pt2sCoP731KTVv8lectwLzPBsQZayakWllSTCXiSz4eYLll6J5uSTxAydKHJaZe7l65I1Etpy1Rmx5Qghzy0Je5GM1oz3/Zm7UaNGcfDgQU6dOiV3KIKRiZk1QRDSKRSKHC8Vlnm7JkqVigM/LyQpLgYLK2sqNWyOQzEXuo+fy6bJQ1no1YY673fH3rkEzyPCuXZ4D251GtHtq9lvvHfFBs1o1OtT9q/6gYc3LlGlybuoLCx5eu82l0K203ns19Rq25XTQRs4vnkVNd7rRHFXd5IT4ji5bQ3WDo683bwtAJY2tpSs+DYX9/zBkiV1KFasGDVr1qRmzZr5/XbJRteKysvLi6CgIOq+154dd2N5nqJNT7b1lVIp/136vBubyp3YVIpaKenk5kg5B0s9jSDkVLdu3dKL5K5bt07ucAQjEsmaIAgZqBSKHM2uOZZ4i+4T5rJ/1Y/8NuNLtBoN3st+x6GYC3U79KKISyn2r/qBg6sDUKemUMSlFBXqNcGja86q3/eY+B1lq9XhxNZf2B3wDUqVCufS5anb8UPc6jQCoGIDT8Ivn+XCX9uIexaJjUMRXGvUo8//AilW1i39Xr2nLCBk/kRGjhxJSkoKU6dONetkDdJaUa3bsJF1p29x2fWF3pO0V+nu+yJFy7qwF3i42NCqjD2WBWW60gyoVCq+/PJLRo8ezaxZsyhXrpzcIQlGopBysmNYEIRC4/KzJILuxskdht51dXOkerHMJ0TN1f24VH6/FU2sWkL5mgMhhqQAilgp6Sxm2YwqNjaWcuXK4evry+zZb56hFgoOsWdNEIQMStkVzAn3T3t2YvTo0YSGhpKag5pspuxUZCLrwl6QoFXKkqhB2kxbzL+zbKciE2WJoTB6uUhuXFzB+1AlZE0ka4IgZFDMWoW1qmAtbSm1aupWqcj69etp3bo1Li4ufPzxx6xbt46oqCi5w8sxSZI4EpFASHhas3u5l0V044eEx3MkIiFHpV2E/Pviiy+Ii4tj1apVcociGIlYBhUEIZN9D+I5+SRR9mRAHxRAo5K2vFfWHq1Wy9mzZwkKCiI4OJjTp0+jVCrx9PSkS5cudO7cmWrVqr22LIncjkQkcOhRgtxhvFaL0nY0KyWavBtD3759OXHiBDdu3BD17woBkawJgpBJdLKGpVei5Q5Db3yrO+NsnfkN7eHDh+zYsYPg4GD27NlDYmIiFStWpHPnznTp0oWWLVtiZWUlQ8SZnXqSSMiDeLnDyFZbV3s8XLKvjSfkz4kTJ2jcuDHbtm2je/fucocjGJhI1gRByNKGmy+4G5tq1rNrCsDd0ZI+lZ2yvTYxMZHQ0ND0Wbfw8HAcHR15//336dKlCx06dKBkycwdGYzhflwq68JeZH+hifCq4iQOHRhBixYtUCgUHDx4UO5QBAMTyZogCFkKe5HM1tuxcoeRb70rFqGyU+5mxyRJ4sKFC+mJ24kTJwBo3Lhx+nJprVq1jLJcmqqVWHE1mpgUrVkkzrpTooOrOYuyHga2bds2evbsyYkTJ2jYsKHc4QgGJJI1QRCypJUkFp1/Qpz6v8Ko5kQBOFkp8anujDKfSdXjx4/5888/CQ4OZvfu3cTFxVG+fPn05dJ3330XGxsb/QT+ipDwOE5HJplFoqajADxcbGjj6pDttULeaTQaqlatSuPGjVm/fv0br5UkCY0EaklCq03rA2yhUKR1LTHRPZrCf0SyJghCJqmpqcybN4+Vv+3g88DfzPaXef8qTrjqeTkuOTmZAwcOEBwcTFBQEHfu3MHOzo527drRpUsXOnbsSOnSpfUylrktf75KLIca3sKFCxk5ciT//PNPepFcSZJ4lqwhIkFNRIKaRwlqIhLVqLPoOWahhFK2FpS2s6DUv3+KWavM9me+oBLJmiAIGZw7d46BAwdy/vx5Ro8eTeuhEzgfrRYzO1mQJIkrV66kL5ceO3YMrVZLw4YN6dy5M507d6ZevXp5euPTShLLrkTzwkyWP1+lz5lN4fXi4uJwdXXFx8eH8TO/5ezTJM5HJaX3hVWSs76wL19nrVJQp7gN9UrYZHkwRzA+kawJggBAUlISM2fOZPbs2VSvXp2VK1fi4eEh9kzlwtOnT9m5cyfBwcHs2rWLmJgYypQpk75c2rp1a+zsclbaojDvGRRyTitJTPlxOZG2LlRo2AIF+qm/p7uPu6MlDVxsqFTESiTdMhLJmiAIHD16lEGDBnHr1i0mTZrEV199laFkhbktx5nC8ltKSgqHDx8mKCiIoKAgbt26hY2NDW3atKFLly506tQJV1fX1z6/sJ3GFXLvflwqO+7G8jxFi0atRmWh/+4juqStqJWSTqK1mGxEsiYIhVhcXBwTJ05k4cKFNGrUiJ9++okaNWpkee2pyMT0yvmmzBTrfEmSxI0bN9KXSw8fPoxGo6Fu3brpp0s9PDxQKtOayhSWOndC3qRqJQ48jOdUZJLeZtKyoxvHw8WGVmXsxUlfIxPJmiAUUnv27MHHx4fHjx/z9ddf4+/vn20ldFFBXz+ePXvGX3/9RXBwMDt37iQ6Opq33nqLTp060aVLF2zrtOLcc41Zz6rpvNxBQsi/+3GpBN+NlW1bgm6bQWcxy2ZUIlkThEImOjqa0aNHs2rVKlq3bs3y5cupWLFijp4rSRJHHyeaZMLWsrQdTd+yNbtTbGq1mqNHj6bPul2/fp3J+8OwdTSdpcPx9V1o4zOWtkPG5en51ioFX9YqZnb/bUyNbnbbWLNpr6Mb3xRnsQsq0chdEAqRbdu2Ub16dbZu3cry5csJCQnJcaIGafWYmpWyo61r2iyJ3G+9uvHbutrjWcrOLJMBCwsLWrZsydy5c7l69Sqnr900qURNH5I1EtHJOTmTKGRFkiSORCSkb0OQe4ZFN35IeDxHIhIQcz6GJ5I1QSgEHj9+zEcffUTPnj1p2LAhV65cYfDgwXlObjxcbPGq4kQRK6VsCZtuOcarilOB+nRvVaKM3CEYRESCWu4QzJapzmYDHHqUwNHHiXKHUeCJZE0QCjBJkli9ejXVqlUjNDSUX3/9lT/++IOyZcvm+97lHCwZXM2ZBi5plfuNlbTpxvFwsWFwNecCt28mIkGtl1/MKYmmcxhEqYCIRJGs5cWpJ6abqOkcepTAqUiRsBmS/s/5CoJgEu7du4fNHFknAAAgAElEQVSvry+7du2iX79+/PDDD5QoUUKvY1gqFbR1deDtotbpJQQMtZ9Gd1+nAl5C4FGCOssipi+ePCJkySyuH9lLwotoiriUoqpnazqP/ZrzO7eyZZo/3st/58LuP7gUEoRGncrUAzfZPHU4t08d5f92nMlwv5DAOexdNpdvz0SmP6ZOSWbXjzM59+cWUlOSqOTRnG7j52QZ54snj9iz+FuuHw4hMfYFxctVoEV/Pzy6e2W6VivBw/jUfH1fCqP7camEPDCdpPtNQsLjecvWosD+XMpNJGuCUMBotVoCAwP5v//7P5ycnAgKCqJz584GHbOcgyU+1Z25HZPK6chE/olNNVBxTlsqFrEssMU5JUnKcgYqJjKCxQPeJzE2hkY9B+DiXoWYyEdcCgkiNem/GY0/vv0/7J2L09p7NKlJuZ+N2TpjJOf+3EydDr1wq92QWycP8bN/v0zXxUY9Ycmn7UGhoEmfQTg4F+f6kb1snfElSfGxNPcakuk5EYlqJEkyy32FckjVSgTfjZX9MEFOKYDgu7GyFKMuDESyJggFyI0bNxg8eDCHDh3C19eX2bNn4+RknM3qSoWCyk5WVHayIjpZw7mnSZx7ue2NIm2GJfv7/HedtUpB3eI21C0kbW80Eln2b9y1cCaxUU8YuvovXKvXTX+8nd9XGTZ32xUpyuDA31BmU4IlK49uXOLcn5tp8uHn6bNpTfsMYsPEIUSEXc5w7e6Ab9BqNIzYdBD7osUAaNz7M34d78PepXNp3OtTLG0y7iNUa9P+u6rE+3iOHHgYbzZdQyAtoYxJ0XLwYbzB27wVRiJZE4QCQK1WM2/ePKZOnYqrqyuhoaG8++67ssXjbK3ivbL2vFvGjuhkbVpD6UQ1D+NTs20oXcbeklK2aQ2lna2VhWomRp3FqTqtVsuV/Tup1vKDDImazsvfn4Y9B+QpUQO4fjgEAM++Phkeb9bPl/M7t6Z/LUkSl/YGU7tdN5Ak4qOj0v+uatP3uPDXNh5cu4B73caZxlBLEirZzxCbvvtxqZyKTJI7jFyTgJORSVQtai2WQ/VMJGuCYObOnz/PwIEDOXfuHKNGjWL69Ok57j9paAqFgmI2KorZqKiONZD2Zq+V0t64NVpQKcFCoUCpoFAlZlnRZpHExkc/JTkulrcqvZPt853LlM/z2NGPwlEolRRzdc/wuItb5UzxJMW+4MRvqznx2+os7xX/7GmWj2u0QMGfIM0XrSSxw4yWP1+lAHbcjcWnunOB3a4gB5GsCYKZSk5O5n//+x+zZs3inXfe4dixYzRq1EjusLKlUChQKUibYRFv3Bko83kM9NWlRwDFa2aytFpNnsaQ/s0o63b8kAZd+mR5Takq1bN8XCXqD2TrVkwKz1PMtyadBDxP0XI7JpXKTlbZXi/kjEjWBMEMHTt2jEGDBnHz5k0mTZrE+PHjMzReF8yTRRYzEfbOJbB2cOTxrWt5uqdNkaIkxb7I9PjzR+EZvnYu7Yqk1fIs/A4u7v/NpkXevZk5HnsHJK2Gyo1b5SqWrF6fkNFpI/b7NBQFcDoyUSRreiQ+5wiCGYmPj+fLL7+kWbNmODo6cubMGaZOnSoStQJCpUjbu/cypVJJ9Xc7cPXgX4RfOZfpOdlVjy/u6k5SXAyPbvx3SCAmMoLLoTsyXFe1WRsAjv66LMPjR9YvzRiPSkXN1p25tDeYiJtXM40XF531EqiFMu3wiPB60cka7sSmmnWiBmmJ5j+xqUQn5232VshMzKwJgpkICQnB29ubx48f89133zFixIhsG68L5kWhUFDK1oLw+IzlOz4YPombx/ezbHA3GvUcQMkKVYl5+phLIdvxXRn8xnvW/qAHu36cwdoxn+H58WBSkxI5vuVnSpSvxMNrF9KvK/N2Leq078nxzatIioulfJ2G3DpxkKj7dzLd8wP/ydw6dYTFn7SnYY/+vFXxbRJionl47QI3/z7IlP1hmZ5Tytai0O9JzM7Zp+Y/q6ajAM49TeK9svZyh1IgiJk1QTBxz58/Z9CgQbRr1w53d3cuXLjAqFGjRKJWQJW2s8j0i9mpZGmG/vIXNdt25tzOrQTNncDZHZuo0MAzy31qL7MvWoz+837B0saWnT/M4EzwRj4YPolqLT/IdG2vqT/g2debG8f2seuH6WjVaj77cX2m6xyLl2TYmr9o0PVjLofuYPvsrzj66zISXjynvf+UTNcrFVDGXpwOfBNJkjgflWQSidr4+i6EBGZdDDmnJOBcVJLoG6onCkl8JwXBZP3+++8MHTqU+Ph45s6dy+DBg1Hmdxe6YNIuP0si6G6c3GHoXVc3R6oXs5Y7DJMVlaRm+dXnmR6/e/4EYcf208zLF1tH49RMHF/fhTY+Y2k7ZFy+7+VTzZliNuKDZX6J3/qCYIIeP35Mnz596NGjBw0aNODy5cv4+PiIRK0QKGVXMHenFNTXpS+va3R/9/xJ9i6bm+UhEXPwutcl5I74zS8IJkSSJNauXUv16tXZt28f69evZ/v27bi6usodmmAkxaxVWBewMv/WKgXO1uLt5k0iEtT5ekPWarWkJptWIV2lgizbpwm5Jz7qCIKJuHfvHkOGDGHnzp307duXH374ARcXF7nDEoxMoVBQp7gNJ58kmsT+pfxSAHWL24jDBdl4lKDm1epqIYFz2LtsLgBzOjdIf3xc8GnmdG5Ak48GUr52Q/av/J6n927Rb/ZP1HivIwdXB3B53w4i794kNSmRkhWq8u7AEdRq2zXD/dUpyez6cSbn/txCakoSlTyap7cae9WLJ4/Ys/hbrh8OITH2BcXLVaBFfz88unu99jVpJXgYn5q3b4iQgUjWBEFmWq2WpUuXMm7cOJycnNi+fTtdunSROyxBRvVK2HDiSWL2F5oBCahbwkbuMEyaJElZzkDVaN2Jp/ducX7Xb3QaPRP7osUBsHdO+9/bJw9zcc92mvYZhF3RYjiXKQeklV+p1vID6nbohSY1lfO7t7F+3CA+/WEd77R4P/3+W2eM5Nyfm6nToRdutRty6+QhfvbvlymO2KgnLPm0PSgUNOkzCAfn4lw/spetM74kKT6W5l5DXvvaIhLVSJIkkvV8EsmaIMgoLCyMwYMHc/DgQXx8fJgzZ47RGq8LpsvZWoW7oyV3zbzmlgJwd7TE2VpsMH8TjUSW/XJLV61BmXdqc37Xb9R4r2OmdmKRd28yYtNB3qr4dobHR287nuGUcNM+g1jo1YbDawPTk7VHNy5x7s/NNPnw8/TZtKZ9BrFh4hAiwi5nuN/ugG/QajSM2HQQ+6LFAGjc+zN+He/D3qVzadzr09eeSlZr02bYCtjKvtGJTQSCIAO1Ws2cOXOoXbs24eHh7Nu3j6VLl4pETUjXwMXGrBM1SJtVa+Dy5tIiQlqf3LyoUN8zU6IGGduOJcY8JykuBvd6TXjwUl2964dDAPDs65Phuc36+Wb4WpIkLu0NTiv1IknER0el/6na9D2S4mIy3DcreX19wn/EzJogGNmFCxcYOHAgZ8+e5csvv2TmzJkm03hdMB2VilhR1ErJixStWSZtCsDJSknFIqK+Wna0eWwFWqxs+Swfv3pwN6Er5vPoxiXUKcnpj7+8FBn9KByFUkkxV/cMz3Vxq5zh6/jopyTFvuDEb6s58dvqLMeLf5Z11wodjRbRBzifRLImCEaSnJzM119/zbfffsvbb7/N0aNHady4sdxhCSZKqVDQyc2RdWHmWbJBAjq7OaIUe5WyldeKPBbWmfcC/nPmGGtG9se9flO6fTUbR5e3UFlYcmr7r5zfuTXXY0j/ZpJ1O35Igy59srymVJXqb7yHSqzh5ZtI1gTBCI4fP86gQYO4ceMGEydOZMKECaKfp5Ctcg6WeLjYcDrSNCrb55QC8HCxwdVBzKrlxJsa3Od2Y/6lvcFYWNswMGATFlb/FSE+tf3XDNc5l3ZF0mp5Fn4HF/f/ZtMi797McJ29cwms7R2QtBoqN26Vq1h03vT6hJwR+a4gGFB8fDwjR47E09MTOzs7zpw5w7Rp00SiJuRYqzL2FLFSYi5vdwqgiJWSlmVET8icUinSGt1nxco2bYtEYg6L4ipVKkCBVvNfE/Xoh/e4Erozw3VVm7UB0k6OvuzI+qWZ7lezdWcu7Q0m4ubVTOPFRb95CdRCmVZvTcgfMbMmCAayd+9evL29efToEXPnzmXEiBFYWIgfOSF3LJUKOpvRcqhu+dNSvEPnmEKhoJStBeHxmct3lKlWB0g7kVn7/R6oLC2p1vL9TNfpvNO8HYfXLmHV8D7U7dCLuGdPOb5pJcXLVchwyrPM27Wo074nxzevIikulvJ1GnLrxEGi7t/JdM8P/Cdz69QRFn/SnoY9+vNWxbdJiInm4bUL3Pz7IFP2h702nlK2FqJshx6ImTVB0LPnz5/j7e1N27ZtKV++PBcvXmT06NEiURPyrJyDJW1dzWOmqq2rPeXE8meulbazyPINuVyNerQb+hWPblxmy7Qv2DDeh/joqNfep1KjFvSa8j2xUU8I/m4S53f9Rnv/ydR4r2Oma3tN/QHPvt7cOLaPXT9MR6tW89mP6zNd51i8JMPW/EWDrh9zOXQH22d/xdFfl5Hw4jnt/ae8NhalAsrYi38L+iAauQuCHv3xxx/4+fkRFxfH3Llz8fb2Fv08Bb05EpHAoUcJcofxWi1K29GslDjZnBeXnyURdDdO7jD0rqubI9WLWWd/ofBG4l1EEPTgyZMnfPzxx3Tv3p369etz5coVfH19RaIm6JXnW7a0KG2ayVDL0nZ4viVqquVVQW10X1Bfl7GJdxJByAdJkli3bh3Vq1cnJCSEdevWERQUJBqvCwahUChoVsoufUlU9p1AkhZJq0V98RCepezE3qR8KGatwrqAlfm3VilwthZphj6I76Ig5NH9+/fp0qUL/fv3p127dly5coV+/fqJNyzB4DxcbPGq4iTrKVEF4GRtgfbvICZ/2pMNGzbIFEnBoFAoqFPcRv4EXE8UQN3iNuL3oZ6I+UlByCWtVsuyZcsYN24cjo6O/PHHH3Tt2lXusIRCppyDJYOrOXPgYTynIpNQgFFqsenG8XCxoWUZeyyqD+T68QN89tlnuLm50bRpUyNEUTDVK2HDiSeJcoehFxJQt0Tmor1C3ogDBoKQC2FhYXh7e3PgwAG8vb2ZM2cORYsWlTssoZC7H5fKjruxPE/RgqQFhf4XTXRJWlErJZ3cHDOc+ExOTqZt27bcuHGDv//+G3d3d72PX1hsuPmCu7GpZlUE+VUKwN3Rkj6VRa9jfRHLoIKQA2q1mu+++47atWtz79499u7dy7Jly0SiJpiEcg6W+FR3pnfFIkReO48kSXpbTtPdx93Rkt4Vi+BT3TlTaQ5ra2u2bduGg4MDXbp0ISYmRk+jFz4NXGzMOlGDtKS+gYs4bKJPIlkThGxcvHiRpk2bMm7cOPz8/Lh48SKtW7eWOyxByECpUKB4ep/5Xu9TOuwgjUraZtiwntMatS9fZ61S0KikLb7VnelT2YnKTlav7fVZokQJgoODuX//Ph9//DFqdeYCr0L2KhWxoqgZdax4lYK02deKRUR9NX0SyZogvEZycjJTp06lfv36JCQkcPToUebPn4+9vXkUJxUKn19++QVHR0c+6tKB98ra82WtYvhUc6armyMeLra42lu8tq2RhRJc7S3wcLEl4fgOVg7sgH+NorxX1h5na1WOxq9WrRqbN29m9+7djBo1So+vrPBQKhR0cnM029k1XQeL1yX1Qt6IAwaCUUiShEYCtSSh1YJSmdbcV6XIfaNiY/j7778ZNGgQ169fZ8KECUyYMAFra1HYUTBdWq2WX375hT59+mBnl1aLTaFQUMxGRTEbFdVJ+/crSRLaf38WNVpQ/fuzqHzpZ1FV3Z2Z505x/vx56tevn6s42rVrx6JFi/Dz8+Ptt99m2LBh+n2hhUA5B0s8XGw4HZlkVkmbgrSDJ66ig4XeiWRN0DtJkniWrCEiQU1EgppHCWoiEtWotZmvtVCm9Y4rbWdBqX//FLNWyZbAxcfHM3nyZL7//nvq16/P6dOnqV27tiyxCEJuhIaGcu/ePT7//PM3Xqf490OSCgW8ZsKsadOmODo6smvXrlwnawBDhgzh+vXr+Pv7U6lSJdq3b5/rexR2rcrYE/YihZgUrVkkbAqgiJWSlmXEyoMhiNOggt5EJ2s4+zSJ81FJJGvS/lkpgSxytExevs5alVZvqF4Jmxwvv+jDvn378Pb25uHDh8yYMYORI0eKfp6C2ejfvz8nT57k2rVrevmw06NHD6Kiojh48GCenq/RaOjWrRuHDh3i6NGj1KhRI98xFTb341JZF/ZC7jByzKuKk+gLayBiz5qQL1pJIuz/27v3uKbr7w/gr8/GGPc7CoiiXLxgecX7XdDNvGUmmnj7pqb+Kq1MzbyVlyzNLmZploGmKWrlBfNG3vOK15RUFEFRkCF32GCXz++POZJA3ca2zz7jPB+PHhWM9/sMJzu8L+cUlGHLrQJ8n5yHc9nyikQN0C9R++/jytQszmXL8X1yHrbcKkBKQRk0ZvydoqCgAG+88QYiIyMRGBiIK1euYMaMGZSoEd4oKCjAr7/+inHjxplsVVoikeDUqVMoKDAuWRAKhdi8eTMaNmyIAQMGIDs72yRx1Sb1XUQV3SqsXVSgMyVqZkTJGjHavWIl1ibn4dfUIqQXKQGYriinbpz0IiV+TS3C2uQ83CtWmmj0f+3evRvh4eHYsmULVq9ejcOHDyMsLMzk8xBiTlu3bkV5eTnGjBljsjElEglUKhUOHTpk9Biurq7YvXs35HI5Xn75ZSgUCpPFV1tE+FpvP1idbv5OiKBSHWZFyRoxmFLDIjGjGJtSClBQrl0TM9e6l27cgnINNqUUIDGjGEpNzWeTyWR47bXXMGjQILRs2RLXrl3D5MmTqfE64aXY2Fj07dsX9erVM9mYjRo1QuPGjbFv374ajdOgQQPs2rULFy9exOuvvw46eWO4znWtN2Hr7u+EznUpUTM32uchBrlXrERCehEKzZyk/ZdunvMyBVIKyjHgPxXU9R6HZbF582ZMnToVALBx40bq50l47fr16zh16pRZenNKpVLs3LlTW2S3Bn9H2rdvjw0bNiA6OhpNmzbF/PnzTRil7WMYBl38nCAWMkjMKLFYa7GnxvN4/qhAZ1pRsxBaRiB6S5LJsSmlgNPbSSyAwserbEkyw3roZWRkYNCgQYiJiUFkZCSSk5MRExNDiRrhtfXr18PDwwODBw82+dhSqRTp6em4ceNGjccaNmwYFi9ejAULFlDTdyNF+DoiJswdbhwWzdXd+owJc6dEzYIoWSPPxbIs/soqRWJGifb/uY7n8b8TM0rwV1bpc7dVdI3XmzdvjvPnz+P3339HfHw86tSpY/5gCTEjtVqNDRs2YOTIkXBwMH3T7B49ekAsFtd4K1Tnww8/xOjRozFu3DicPn3aJGPWNvVdRJjQzBNtfMTamnlqtUXm1SWHEb4OmNCsassxYl6UrJHnOvlQjuOZpVyHUa3jmaU4+fDpK2y3bt1CZGQkJk2ahGHDhiE5ORkvv/yyBSMkxHwOHDiABw8eYNy4cWYZ38nJCd27d8f+/ftNMh7DMPjhhx8QERGBwYMHIy0tzSTj1jYiAYPsY7vw/fiBcGK0yZq5Vtp047o/Xk2LDHSBSN/eZcRkKFkjz5SUbb2Jms7xzNIqW6JqtRorVqxAixYtkJ6ejsTERPz444/UeJ3YlLi4ODRv3hwRERFmm0MqleLIkSOQyw07dvA01PS95hQKBebMmYM2jQIwtY0/Xg12Q0NX7UqXqdIo3TgNXUV4NdgNb4TTahqXKFkjT3WvWInE+yVch6GXxIySitIeV69eRadOnTBjxgxMmjQJf//9NyIjIzmOkBDTys3NxY4dO/C///3PrOcuJRIJFAqF0cVxq+Pr60tN32vg22+/RUZGBpYuXQoBwyDU3R7DQ90xKdwT7es4Qiz89/Wg7yLYk48TCxm0r+OISeGeGB7qjlB3e+r1yTHqYECqpdSw+PGfPF61OnEVMZDtWIMlCz9GaGgo1q1bh06dOnEdGiFm8e2332LatGnIyMiAn5+f2eZhWRYNGjTAsGHD8MUXX5h07IMHD6Jfv374v//7P6xcudKkY9uq3NxchISE4LXXXsN3331X7WNYlkVemUbb8k+uwr1CBdLzSmDvWLX8h67lX4CzCH6O2pZ/nmIBXbyyMpSskWolZhTzrokwq9Hg5JYf0NqxDHPmzKHG68SmtWvXDv7+/ti1a5fZ55o4cSL++usvJCcnm3zsNWvWYMqUKVi1ahU1fdfDjBkzsHr1aty+fRt169bV62vu3LmD4OBg7D+YiB69ekGtAYQCwI5hIGBAiRkPUJ01UsW9YiWSZPyrNM4IBOgy8g3EhHlALKazFcR2Xb16FUlJSfjtt98sMp9EIsGPP/6Iu3fvokGDBiYdW9f0fdq0aQgNDYVEIjHp+LYkLS0NK1euxJw5c/RO1ABUtPqq6+sDsVAAWK7lMjEROrNGKtGwLPakF3FWw6emGDDYk15k1l6ihHAtNjYWPj4+6N+/v0Xmi4qKglAoNNmt0P/6/PPPIZVKER0djWvXrpllDlswb948eHl54b333jPo62QyGQBQuSIeo2SNVHK7sBz5PDmnVh0WQH65BqmFpu8jSog1UCqV2LhxI2JiYmBvb2+ROT08PNChQweT1Vv7L2r6/nwXL17Exo0b8fHHH8PFxcWgr9V9P318fMwRGrEAStZIJedlCt6uqukwAM4b2N2AEL7Yu3cvsrOz8b///c+i80qlUiQmJkKpNM8vQtT0/elYlsWMGTPQtGlTvP766wZ/vUwmg6enJ0QiOh7CV5SskQp5ZWqkFSl5u6qmwwK4U6REXpllKnsTYkmxsbFo1aoVWrZsadF5pVIpCgsLcebMGbPN8WTT9/Hjx1PT98cOHDiAP//8E5999hns7Aw/ap6dnQ1fX18zREYshZI1UuFiDv9X1XQYAJdy6DdzYltkMhkSEhIsvqoGAG3atIG3t7fZtkJ12rdvj/Xr1+OXX37BokWLzDoXH6jVasycORPdunXDwIEDjRpDJpPReTWeo2SNANAus19+ZL5SHYlrlmF2m39/s/usfxtsW/CWmWbTrq5deqSg38yJTdm0aRMYhsHIkSMtPrdQKETfvn3NdsngSdHR0Vi0aBE1fQewceNGXLlyBcuXLze6xEZ2djYlazxHyRoBAOSWqVGmtq3EpkytLQxJiC1gWRaxsbEYNGgQZwfFpVIpkpKSLHIBYM6cObW+6btcLsfcuXMxbNgwdOjQwehxZDIZbYPyHCVrBACQVWqb7V5s9XmR2ufSpUu4cuWK2Zq266Nv374AtJ0HzI2avgMrV65EVlYWPvnkkxqNQytr/EfJGgGgTWqs7cVQLq9ZX1IBA2TJKVkjtiE2NhZ+fn6QSqWcxeDn54dWrVpZZCsUqN1N33NycvDJJ59gypQpCA0NNXoclmVpZc0GWNv7M+FIZqkKptowTLt4GqtG9cG8joFYPqgdzmxf/9yvOb9rM2a38UXq+b+wY+lMLI5shqXSmt1207DAgxKqt0b4r6ysDJs2bcLo0aONug1oSlKpFPv374dGY5kjBrW16fuSJUvAsizmzZtXo3GKiopQVlZGK2s8R8kaAcuyJluBykpJxk9vRqMkNweRk2ag7aARSPz+M1w7/IdeX79z6Sxkp95A74nT0fN/U2sej1xFlwwI7yUkJCA3N5fTLVAdiUSC7OxsXL582WJzNmvWDNu2bcOBAwcMrt7PR6mpqfj222/xwQcf1HhFTNe9gFbW+I16gxKoWUBlol+SD675DCzLYtK63fDwDwQAvNB7IL4e3l2vr3dy88CENb9BIDRN8zqVRrvCJrSVmiSkVoqNjUX79u0RHh7OdSjo3LkzXFxcsG/fPrRu3dpi8/bp0werVq3ClClT0KRJE5tu+j5nzhz4+vrinXfeqfFYussgtLLGb7SyRqAy0cqTRq1GyqnDCO/ZryJRA4A6wY0R1qmXXmO0e2W0yRI1HVM9P0K4kJmZib1793JSW6069vb2iIyMNHu9tepMnjwZ77zzDqZNm2axc3OWdu7cOWzZsgWLFi2Ck5NTjcfTJWu0ssZvlKwRmOroSUleDpQKOXwaBFf5nE+QfgdkPQMamCaYJ6ipegfhsY0bN0IkEmH48OFch1JBIpHg5MmTnBz4t+Wm77q2Us2bN8fYsWNNMqZMJgPDMPD29jbJeIQblKwRCKzoVSBycDT5mEIren6EGEJXW23IkCHw9PTkOpwKEokEKpUKhw4dsvjcuqbvQUFBNtf0/Y8//sDRo0exbNkyCE20w5CdnQ0vLy/OL6aQmqG3MQI7I6ti/5ezpw9EDo7IuZta5XM56bdMMocxTPX8CLG0s2fP4p9//rGaLVCd4OBghIWFcbIVCmibvickJNhU03eVSoWZM2eiV69e6Nevn8nGpVZTtoGSNQIhA9iZ4JUgEAoR1qkXko/sRX5mRsXHs1NvIuXU4ZpPYAQ7gbbeGiF8FBcXh8DAQERGRnIdShW6Eh5c3ba2tabv69evR3JyMpYtW2Z0W6nqUBN320DJGgHDMPBzNM0SedSkmQCA78cPxNG4lTj84xf4YdLLqBPc1CTjG8rP0c6kP/gIsRS5XI7NmzdjzJgxJtsSMyWpVIq0tDTcvHmTsxhspel7SUkJ5s+fj9deew0REREmHZtW1mwDJWsEAODvZGeSF4N/4+Z4fVU8nD29cXD1Z0jatRlRk2ahea+XTDC6YQQMEOAssvi8hJjCjh07UFBQYBW11arTo0cP2Nvbc7YVqmMLTd+/+uoryGQyLFmyxORj08qabWBYvq8dE5O4lqvA7vRirsMwuUFBrgj3EnMdBiEGk0gkKCkpwYkTJ7gO5an69OkDkUiEP/7Qr+i1ue6Lp3QAACAASURBVLAsizFjxmDbtm04cuQIOnbsyGk8hsjOzkZoaCgmTJiAL774wuTj16tXDxMnTsRHH31k8rGJ5dDKGgEA+DnZ5k0hW31exLbdu3cPBw8etLqLBf8llUpx5MgRyOVyTuNgGAY//vgjL5u+L1q0CAKBAHPmzDH52NQX1HZQskYAAF5iIcQ2VuZfLGTgKaaXOOGfDRs2wNHREdHR0VyH8kwSiQRyuRzHjx/nOhReNn1PSUnBmjVr8OGHH5qlDlpBQQGUSiWdWbMB9E5GAGh/M23p7QBbSdcYAK28HehyAeEdlmURFxeHoUOHwtXVletwnql58+aoV6+e1XQT4FvT9w8//BD+/v54++23zTI+dS+wHZSskQqtfRxgKwcYWQCtfBy4DoMQg/3111+4deuW1W+BAtpf8qRSKeeXDJ70ZNP36dOncx3OU50+fRrbt2/H4sWL4eho+mLgwL9N3Glljf8oWSMVPMVCNHQVgeF5ysYAaOQqgqfY+sodEPI8sbGxaNiwIXr06MF1KHqRSCRITk7GvXv3uA6lgq7p+8qVK/Hdd99xHU4VurZSLVu2RExMjNnmoSbutoOSNVIhMzMT53//GSzPN0NZAG19zfObKiHmVFJSgq1bt2Ls2LEQWFMfuGeIioqCQCCwmq1QncmTJ2PatGmYOnWq1cW2a9cunDhxwqRtpaqTnZ0NgUAALy8vs81BLIMfPw2IWeXk5GDGjBkICQnBuk8XgC0p5G26xgDwsBcg2I3qqxH++fXXX1FcXGyyJt6W4OnpiY4dO1rVVqjOihUrrK7pu0qlwqxZs9CnTx/07dvXrHPJZDL4+PjwJvEnT0d/grVYfn4+5s2bh0aNGmHNmjV4//33kXr7Nka1qs/bjVAWwIAgVwjoYgHhodjYWPTq1QuNGjXiOhSDSCQSJCYmWt2Bfmts+r5u3TrcvHkTn332mdnnooK4toOStVqoqKgIS5YsQaNGjbBixQpMmTIFd+7cwcKFC+Hh4YH6LiJE+PLvZigDoJ2vAwJdaFWN8E9qaiqOHDlitR0LnkUqlaKgoABnzpzhOpQqnmz6PmTIEE6bvhcXF2PBggUYNWoUWrdubfb5qNWU7aBkrRaRy+VYsWIFgoODsXDhQowePRq3b9/GsmXL4OPjU+mxPQKc4WYv4E3CxgBwsxege4Az16EQYpQNGzbA1dUVQ4cO5ToUg7Vt2xZeXl5WuRUKaJu+79y5ExcuXOC06fuKFSuQn59vsT6mtLJmOyhZqwXKysrw7bffIiQkBB988AGGDBmClJQUrFy5Ev7+/tV+jUjAYECQK2+2Q3XbnyIBX9JLQv6l0WgQFxeH6OhoODvz7xcOoVCIvn37Wt1B/id16NCB06bvWVlZWL58OaZOnYqgoCCLzEkra7aDkjUbplQqsW7dOjRu3BhTp05Fnz59cP36daxduxYNGjR47tfXdxEhKpAfbxxRgc6oT9ufhKeOHDmC9PR0Xm6B6kilUiQlJVXU9rJGXDZ9//jjj2Fvb4/Zs2dbbE5aWbMdlKzZILVajU2bNiE8PBwTJkxAx44dcfXqVaxfvx4hISEGjRXh64hu/k5mitQ0uvk7IYJKdRAei4uLQ1hYGLp06cJ1KEbr27cvWJbFwYMHuQ7lmebMmYNRo0Zh3LhxOH36tEXmvH79On744QfMnTsXnp6eFplTo9EgJyeHVtZsBCVrNkSj0eDXX39FixYtMGrUKISHh+PixYuIj49Hs2bNjB63c13rTdi6+zuhc11K1Ah/FRYWYvv27Rg3bhyv26P5+/ujZcuWVr0VClRt+p6enm72OWfPno369evjzTffNPtcOnl5eVCr1bSyZiMoWbMBLMtiz549iIiIwKuvvorAwECcOXMGO3fuRKtWrWo8PsMw6OLnVLElyvXbiW7+qEBndPZz4vUbHCFbt26FQqHA6NGjuQ6lxqRSKfbv3w+NRsN1KM+ka/ru7OyMAQMGmLXp+4kTJ7Bjxw4sWbIEYrHYbPP8F7Wasi2UrPEYy7JITExE586dMWDAALi4uODo0aPYv38/2rdvb/L5InwdERPmzuktUd2tz5gwd9r6JDYhLi4Offr0Qf369bkOpcYkEgkePnyIy5cvcx3Kc+mavt+9e9dsTd91baXatGmDESNGmHz8Z6Em7raFkjWeOnHiBHr16oU+ffpAo9HgwIEDOHr0KLp3727Weeu7iDChmSfa+mqbpFsqadPNE+HrgAnNPOkyAbEJN2/exF9//cWLpu366NKlC5ydna1+K1QnPDwc27dvN1vT999++w2nT5/G8uXLLd5FgFbWbAslazyTlJSEfv36oVu3bsjPz8euXbtw+vRp9OnTx2LbgSIBg6hAF8SEucPdXvsSMtfMunHdH6+mRQa6UHkOYjPi4uLg7u6OwYMHcx2KSdjb2yMyMtJq661Vx1xN35VKJT744AP069cPvXv3Ntm4+srOzoZQKISHh4fF5yamZ8d1AEQ/V65cwfz587Fz5040bdoUW7duxdChQznt+VbfRYQ3wj2RWqjEeZkcd4qUYACT1GbTjdPQVYS2vo4IdhNRCyliU9RqNTZs2IDXXnsNjo62s6UvkUgwbdo0FBUVwdXVletw9DJ58mRcv34dU6dORUhICCQSSY3HXLt2LW7fvo3ffvvNBBEaTiaTwdfXl/qC2ghK1qzc9evX8dFHHyE+Ph7BwcHYsGEDRo4cCaFQyHVoAAABwyDU3R6h7vbIK1PjUo4Clx4pUKZmH38e0OiRvT35OLGQQStvB7TycYCn2DqeJyGmlpiYiPv379vMFqiOVCqFSqXCoUOHeLViuGLFCty6dQvR0dE4efIkmjdvbvRYhYWF+PjjjzFu3Di8+OKLJoxSf1RjzbYwLFd9N8gzpaamYuHChfj5559Rr149zJs3D+PGjYNIZP1ntViWRV6ZBlmlKmTJVXhQokSWXAVVNRfE7ASAn6MdApxF8HO0g5+THTzFArrhSWzeiBEjcOXKFVy7ds3mXu9hYWGIiorC6tWruQ7FIEVFRejSpQuKiopw5swZo897zZs3D59//jlSUlIQGBho4ij1Ex0djdzcXCQmJnIyPzEtWlmzMhkZGVi8eDHWrVsHHx8ffP3115g4caJFr3zXFMMw8HIQwstBiHBo42ZZFhoWULEs1BpAKADsGAYCBjb3RkXI8+Tl5WHHjh1YtGiRTb7+pVIpEhISwLIsr56frul7+/btMWTIEPz5559wcHAwaIwHDx5gxYoVePfddzlL1ADtNujT2gkS/qHNbCvx8OFDvPPOOwgNDcX27duxdOlS3L59G2+99RavErWnYRgGQgEDsVAAJ5EAYqEAQgHDqx/khJjKli1boFKpMGrUKK5DMQupVIq0tDSkpKRwHYrBatr0/aOPPoKTkxNmzZplpgj1Q9ugtoWSNY49evQIH3zwAYKDgxEXF4e5c+fizp07eP/99+HkZJ1dAwghNRMbGwupVGqzKx89e/aEvb09r26FPunJpu+LFy/W++uSk5Oxbt06zJ8/H+7u7maM8PmoibttoW1QjhQUFODLL7/EF198AY1Gg3fffRfTp0+3WN84Qgg3rl27hnPnzmH79u1ch2I2zs7O6NatG/bv34+pU6dyHY5RoqOjcfPmTcybNw+NGzfG8OHDn/s1H3zwARo2bIjJkydbIMKnU6vVyMnJoZU1G0LJmoWVlJTgm2++wbJlyyCXy/Hmm29i1qxZ9JeKkFoiLi4O3t7eGDhwINehmJVUKsX8+fOhUCgMPvdlLebMmYMbN25g7NixCAoKQseOHZ/62KNHj2L37t3YsmUL7O3tLRhlVbm5uWBZllbWbAhtg1qIQqHAV199heDgYMyfPx8jR47E7du38fnnn1OiRkgtoVQq8fPPP2PkyJGcv6Gbm0QigVwux/Hjx7kOxWj6Nn3XtZVq164dhg0bZuEoq6JWU7bHapI1lmWh0rBQqDUoVWqgUGug0rAGH+60NuXl5Vi9ejVCQ0Px/vvvY+DAgUhJScGqVasQEBDAdXiEEAvav38/Hj58aHO11arzwgsvICAggDetp55Gn6bv27Ztw7lz57Bs2TKrKEJLraZsDyd11liWRW6ZWluHq1SFzMf1uJ5Vh8vfSVuDy8/JDl5iodXfIlSpVPj555+xcOFCpKenY+TIkViwYAHCwsK4Do0QwpGhQ4fi9u3buHTpEtehWMT48eNx5swZXL16letQaiw5ORmdOnVCly5dsGvXLtjZaU8RlZeXo1mzZggPD8fu3bs5jlJr69atGD58OPLy8qjdlI2w6Jm1vDI1LuYocPnJCvcAqsnRKqg0QEaJCg9KVBWPEwsZtPR2QGsrrHCv0WgQHx+Pjz76CDdv3sTQoUORkJBQo2rYhBD+y8nJwe7du7Fs2TKuQ7EYiUSCn376CRkZGZzWHDOF8PBwbNu2DS+99BKmT5+Or7/+GgCwZs0apKWlYdeuXRxH+C+ZTAaRSMT5jVRiOmZfr9WwLFIKyrDlVgG+T87DuWx5RaIGPDtRqzTOE/9dpmZxLluO75PzsOVWAVIKyqDheLuUZVn8/vvvaNmyJUaOHImwsDCcP38e27dvp0SNEIJffvkFLMsiJiaG61AsJioqCgKBgPdboTp9+/bFN998U9H0vaCgAAsXLsTrr79uVT/ndTXWrH0HiujPrCtr94qV2JNehPxyDXQvGVOlVLpx0ouUSCtSwsNegP5BrqjvYtl2TCzLYt++fZg3bx7Onz+PyMhIrF27Fp06dbJoHIQQ6xYbG4uBAwfWqkPfXl5e6NChA/bt24fx48dzHY5JTJkyBTdu3MDUqVNx7NgxlJaW4uOPP+Y6rEqoxprtMcvKmlLDIjGjGJtSClBQrl0TM9e6l27cgnINNqUUIDGjGEp9OoebwOHDh9G1a1e89NJLcHBwwOHDh5GYmEiJGiGkkkuXLuHSpUsYN24c16FYnEQiQWJiIlQqFdehmMyKFSvQo0cPxMfHY8yYMVZ3WYy6F9gekydr94qV+PGfPJyXKQCYL0n7L90852UK/PhPHu4VK80218mTJxEZGYnevXujvLwc+/btw/Hjx9GzZ0+zzUkI4a+4uDjUqVMH/fr14zoUi5NKpcjPz8fZs2e5DsVkhEIhAgICIBQKsXfv3orbl9YiOzubVtZsjEmTtSSZHJtSClBYrrFYkvZfLIDCx6tsSTK5Sce+cOEC+vfvjy5dukAmk2HHjh04e/YsJBIJnQ0ghFSrvLwcmzZtwujRoyESWfaYhjWIiIiAl5cXb1tPVefvv//Gpk2bsGDBApSVleHll1+GQqHgOqwKMpmMVtZsjEmSNZZl8VdWKRIzSrT/b4pBaxLP438nZpTgr6zSGtdqu3r1KoYOHYq2bdvi9u3b2LJlCy5duoTBgwdTkkYIeaaEhATk5OTUyi1QQLsK1adPH5u5ZAAAs2bNQmhoKD744IMaNX03F1pZsz0mSdZOPpTjeGapKYYyueOZpTj50LgVtps3byImJgYtWrTAhQsXEBcXh6tXr2L48OFWUfiQEGL94uLiEBERgRdeeIHrUDgjlUpx7tw55OTkcB1Kjf3555/Yu3cvli5dCpFIZHTTd3NRqVTIzc2llTUbU+OMIynbehM1neOZpQZtiaalpWH8+PEIDw/H0aNHsXr16or+cLpCiIQQ8jxZWVn4448/akXHgmfp27cvWJbFwYMHuQ6lRjQaDWbOnImOHTvilVdeqfh4dHQ0Fi1ahPnz5yM+Pp7DCFGRENPKmm2pUbJ2r1iJxPslporFrBIzSp576eD+/ft488030bhxYyQkJGDFihW4desWJk2aZPN9/Aghprdx40YIhUKMGDGC61A4FRAQgBYtWvB+K3TLli24cOECli9fXuUIzJw5czBq1CiMHTsWp0+f5ijCf1tN0cqabTE6WVNqWCSkF4EvJ7YYAAnpRdWW9cjOzsZ7772HkJAQbN68GYsWLUJqaiqmTZsGBwcHywdLCOE9lmURFxeHl19+GV5eXlyHwzmpVIp9+/ZBo9G3FLp1KSsrw4cffoiXX34ZXbt2rfJ5fZu+m5uuiTutrNkWo5O1ow9KOL31aSjdLdFjD/5dCczNzcWHH36I4OBgrFu3DrNnz8adO3cwa9YsODs7cxcsIYT3kpKScO3atVq/BaojkUjw8OFDXLlyhetQjPLtt98iIyMDS5cufepj9Gn6bm7UxN02GZWs3StWIkmm4E2ipsMCOCdT4MbDfCxcuBCNGjXC119/jbfffhupqalYsGAB9VIjhJhEbGwsAgIC0KdPH65DsQpdunSBs7MzL7dC8/LysHjxYkycOBFNmzZ95mN9fX2RkJCAu3fvYsSIERYvBpydnQ2xWAwXFxeLzkvMy+BkTcOy2MOj7c8qNBrEJqVi6aef4vXXX0dqaiqWLl0Kb29vriMjhNgIhUKBzZs3Y8yYMRAKhVyHYxXEYjF69+7Ny3prS5cuRXl5ORYsWKDX43VN3w8cOIDp06ebObrKdK2mqKyUbTE4WbtdWI58Hm1/ViEQwCOgAQ7/fQtffvkl6taty3VEhBAbs3PnTuTn59fa2mpPI5FI8Ndff6GoqIjrUPSWnp6OlStXYsaMGfDz89P76/7b9N1SqNWUbTI4WTsvU/B3Ve0xBkA6S2fSCCHmERsbi06dOqFJkyZch2JVpFIplEolDh8+zHUoeps3bx48PDyMWiGbMmUKpk2bhqlTp1ps+5eauNsmg5K1vDI10oqU/F1Ve4wFcKdIibwyNdehEEJszP3793Hw4EG6WFCNkJAQhIaG8mYr9OLFi9i4cSM+/vhjo8+ArVixAhKJBNHR0bh27ZqJI6yKVtZsk0HJ2sUc/q+q6TAALuVYTy83Qoht2LBhA8RiMaKjo7kOxSpJJBLs27fPalozPcusWbPQuHFjjB8/3ugxhEIhtmzZgqCgIAwYMMDkTd9ZloVKw0Kh1qBUqUF+cSnq+Pnz4vtL9Mewev6JsiyLr/7ORZna+BdA4ppl+HPtciy9YJoX69qJg1Gan4t3th036uvFQgbvvOhFBzEJISbBsiyaNGmC9u3bY+PGjVyHY5USEhIwcOBA3Lx5E2FhYVyH81QHDhyARCLBjh07MHjw4BqPl56ejg4dOiAkJAR//vmnUTU8WZZFbpkaWaUqZJWqkFmqQpZcBVU1pevsBICfox38nezg9/gfL7GQ3u94Su/eSbll6holataoTM0ir0wDLwe6rUUIqblTp04hJSUFq1ev5joUq9WzZ0+IRCLs27fPapM1tVqNmTNnomvXrhg0aJBJxgwKCsLOnTvRs2dPTJgwAT///LPeiVNemRoXcxS4/EhR8T4sAPCs8sIqDZBRosKDElXF48RCBi29HdDaxwGeYnrf4xO9k7WsUsvWirGUrFIVJWuEEJOIjY1FUFAQevXqxXUoVsvFxQXdunXD/v378fbbb3MdTrU2bdqEy5cv49SpUyZdidI1fR8+fDiaNGmCefPmPfWxGpbF7cJynJcpkFakBANUOi+ubx+IJx9XpmZxLluOs9lyNHQVoa2vA0Lc7CGg1TarZ1Cy9rxMnm8EDJAlVyEcYq5DIYTwXElJCeLj4/Huu+9CIKhR22WbJ5VK8dFHH0GhUFhdSz+5XI65c+fi1VdfRceOHU0+fnR0NG7cuIH58+ejcePGGD58eJXH3CtWYk96EfLLNRXnxE21r6UbJ71IibQiJTzsBegf5Ir6LiITzUDMQe+fKJmlKoMStbSLp7FqVB/M6xiI5YPa4cz29VUeM7uNL3Z+Ogt/H9yJL4d2wbxO9fHd2H7ISkkGAJzZvh7LB7XDvI6BWDtxMPIe3H3uvDdPHcb8zg2wefYbUD+ncrSGBR6UPLu5OyGE6OP3339HUVERxo4dy3UoVk8ikaC0tBQnTpzgOpQqvvnmG2RmZuKTTz4x2xxz586ttum7UsMiMaMYm1IKUFCufcc11+Ej3bgF5RpsSilAYkZxtb2ziXXQf2VNrv82aFZKMn56MxrOHt6InDQDGrUKid9/BhevqrVf0i6ewT/H9qNT9OsAgCM/fY3102LQfexbOL0tFh2jX4e8MB/H1q/C9o+mYeLa35867z/HDuCXma/jxb6D8eqClRDoUTk8S64Cy7J06JIQUiOxsbHo0aMHgoODuQ7F6r344ovw9/fH/v37ERUVxXU4FR49eoRPPvkEkydPNut5Ol3T9zt37mDw4ME4e/YsBN4BSEgvQqGZk7T/0s1zXqZASkE5BtAqm1XSO1mr7rbJ0xxc8xlYlsWkdbvh4R8IAHih90B8Pbx7lcfmpN/Ce7+dhGdAAwCAo6sHfl8yHYfXfYHpv5+B2Flb24ZVq3Ek9mvkPbhb8dgnXf0zAVtmv4E2A0fg5Tmf670NodJoV9iElKsRQoyUlpaGQ4cOIS4ujutQeIFhGEilUuzbtw/Lly/nOpwKS5YsgUajeeZZMlPRNX3v0KED3vt6HdqNnlrlXJolsQAKH6+yRQU6I8LXkaNISHVMfrBCo1Yj5dRhhPfsV5GoAUCd4MYI61T10G1I+26Vkq/6L7YBADTvPaAiUdN+vC0AIDcjvcoYl/b9hs2zJ6L90DEYMneFwedFVFSPhhBSAxs2bICzszOGDh3KdSi8IZFIcPXqVWRkZHAdCgDgzp07WLVqFWbNmmWxDgA+Pj5YseMQ2o2eCoC7RE1HN39iRgn+yiqlWm1WxOTJWkleDpQKOXwaVN0K8AkKrfIxD7/ASv/v4OL2+OP1qv24vCi/0sdz79/F1rlT8ELvARg061OjtjPVtnRrghBiURqNBnFxcYiOjja6yn1tFBUVBYFAgAMHDnAdCgBgzpw58PX1xbvvvmuxOU8+lOOG2jpfM8czS3HyoZzrMMhjnF9ZYp6yCsYIqj9v9t9M39WnDoJatMONvxKRkXzJqBiEnH8XCCF8dezYMdy5c4faSxnI29sb7du3t4rWU0lJSdi8eTMWLlwIJycny8yZLcfxzFKLzGWs45mlSJJRwmYNTJ6mOHv6QOTgiJy7qVU+l5N+y9TTQSR2wNivf4F3/WDEvjUcD29fN3gMO7pcQAgxUlxcHEJCQtC1a1euQ+EdiUSCxMREqJ5zc9+cWJbFjBkz0Lx5c4vd5L1XrETi/RKLzFVTiRkluFdMVRO4pneyZqfnIwVCIcI69ULykb3Iz/z3LEJ26k2knDpscID6cHB1w+vfboWLpw/WTXkVj+7d0ftr7QTaemuEEGKooqIibNu2DePGjaMb5UaQSqXIy8vDuXPnOIth7969OHLkCD777DPY2el9585oSg2LhPQi3vTZZgAkpBdRWQ+O6Z2s+Tnq/yKOmjQTAPD9+IE4GrcSh3/8Aj9Mehl1gpsaHqGenD298frq7bCzF2PdlFdRkJ2p19f5OdrRD1lCiFG2bdsGuVyOMWPGcB0KL7Vr1w6enp6cbYXq2kr17NkTL730kkXmPPqgBIXlGs4vE+hLd0v02AN+rATaKr2TNX8nO70f7N+4OV5fFQ9nT28cXP0ZknZtRtSkWWjey7x/Gdzr+GP86u1QlZfhpymvoiTv0TMfL2CAAGeqJ0MIMU5cXBwiIyPRoEHVckLk+YRCIfr06YP9+/dzMv/69etx7do1LFu2zCK/tN8rViJJpuBNoqbDAjgnU9B2KIcYVs+7uddyFdidXmzueCxuUJArwr2o3RQhxDC3bt1CWFgYNm3ahJEjR3IdDm/FxsZi/PjxkMlk8Pb2tti8paWlCAsLQ/fu3bF582azz6dhWaxNzkMBj1bVnsQAcLcX4I1wT+olygH9t0GdzL+XzwVbfV6EEPOKi4uDm5sbhgwZwnUovNa3b1+wLIuDBw9adN6vvvoKMpkMS5Yssch8twvLkc/TRA3Qrq7ll2uQWkira1zQO1nzEgshtrEy/2IhA08x1e0ghBhGrVZj/fr1GDFiBBwdqdJ7TdSrVw8vvviiRbdCZTIZPv30U7z55psWaw92XqbgzaWCp2EAnKdSHpzQO1NhGAYtvR14/2LTYQC08nagywWEEIMdOnQIGRkZVFvNRHStpyxVMX/RokUQCASYO3euRebLK1MjrUjJ21U1HRbAnSIl8srUXIdS6xi0rNTax4H3LzYdFkArHweuwyCE8FBsbCyaNm2KDh06cB2KTZBIJMjKysKVK1fMPtetW7ewevVqzJ4922Jn5C7m8H9VTYcBcClHwXUYtY5ByZqnWIiGriLev+gYAI1cRfAUV98lgRBCniY/Px+///471VYzoa5du8LJyckiW6Effvgh/Pz8MHXqVLPPBWiL7l5+xL8boE/DArj0SEF9Qy3M4ANbbX35v7rGAmjrS+dMCCGGi4+PR3l5OUaPHs11KDZDLBajd+/eZq+3dubMGWzbtg2LFy+22FnD3DI1ytR8f9esrEzNIq+MmmpbksHJWoibPTzsBbxdXWMAeNgLEOxG9dUIIYaLjY2FVCpFQEAA16HYFIlEghMnTqC42DwlonRtpVq0aIFRo0aZZY7qZJVy10rLnGz1eVkrg5M1AcOgf5Arb1fXWAADglypTgwhxGD//PMPzpw5g3HjxnEdis2RSqVQKpU4fNg8bQl3796N48ePY9myZRAKLXcEJqtUZfom3BwTMECWnJI1SzKqyFh9FxEifB1wnmeVmBkAEb4OCHShVTVCiOHi4uLg5eWFQYMGcR2KzQkNDUVISAj27duHgQMHVvocy7JQs4CKZaHRAAIBYMcwEDLQ69ygSqXCrFmzEBUVhb59+5rrKVQrs1QFQzcM8x7cw9H13+D22WPIz7oPkYMjQtp1xUvvfATPgMrdMuRFBfjz++W4dvgPFOU8hLOnN0LadUP/9xbC2VN7gaLg4QPs+uwDpJw+CntHJ7TqNxSNO/dG7FvDMXHtDgRHdDEoPg0LPCihemuWZHRF2B4BzkgpKOdNjzMGgJu9AN0DnLkOhRDCQyqVChs2bMDIkSMhFlPXJXDpdgAAFsxJREFUE3OQSCTYf+AAHilUyCrV/pNZqkKWXAVVNRmPnUDb39nfyQ5+j//xEgurJHCxsbG4fv06fvnlF4teCmFZ1qgVqIzki7h7+Sxa9B0C97oByHtwF2e2x2HtxJfx7vYTsHd0AgCUlRbj+/EDIbtzE20HjUS9Zi1Qkv8I/xzdj4LsB3D29IZSIcePk19BftZ9dB4xEW6+dXFxzzbcPneiRs8tS64Cy7J0ycZCjE7WRAIGA4JcsSmlwJTxmI1u+1MkoBcWIcRw+/fvR1ZWFm2BmklemRqthk+Cz/D38MM/+QC053SetSql0gAZJSo8KPl39Uos1NYEbe3jAE+xECUlJZg/fz5iYmLQunVrcz+NStQsqk0yn6dp1z54Mary6m2z7hKsHtcPV/9MQJsB0QCAY+u/xcNb/2DU53Fo3rt/xWN7T5hecVvz7G8bkJN+GyM/+xEv9hkMAGg3ZDRWjuhp3JN6TKXRrrDZWK18q1WjrfT6LiJEBfJjpSoq0Bn1afuTEGKkuLg4vPjii2jTpg3XodgMDcsipaAMW24V4PvkPOS6BsDR1f3fz+s7zhP/XaZmcS5bju+T87DlVgG+3Pgr8vLzsXjxYpPGrg+VkeUtRA7/3lRVK5Uoyc+Fd/1GcHB1x4Pr/9aiu3YoAf6Nm1dK1HR0K143TiTC1acuXngi+bN3dEL7V8YYFduTjH1+xHA1bowZ4euIMjWL45mlpojHLLr5OyGCSnUQQoz06NEj7Nq1C59++ilt+5jIvWIl9qQXIb9cU1FdwFRv/bpx0ovKYdf+JczbfwVCn3omGl1/GiOrWygVchyJ/Rrnd21GYXZmpZpmiuLCiv9+lJGGF3oPeOZY+VkZ8K7fqMrr1qdhqHHBPUGtAUDlSi3CJF3MO9fVJkLWmLB193dCp7qUqBFCjPfLL79Ao9EgJiaG61B4T6lhcfRBCZKe6JVprvUZ9vEMdq6e2JRSgAhfB/QIcLbYcRiBkXtXu5bNxvldm9Fl5CQ0aBEBBxc3MAyDzbPfAMtaT30zoa1dc7ViJknWGIZBFz8niIUMEjNKwMB8f/n0iufx/FGBzrSiRgipsbi4OPTv3x916tThOhReu1esREJ6EQrLtQmHpd4ndPOclymQUlCOAUGuFjkWY2fkKuzVxN1oM2A4+r+3sOJjyjIFFEWVz4h7BzbEw9v/PHMsD79APLx9vcplgJy0W0bF9iRjnx8xnEnz4ghfR8SEucONw6K5ulufMWHulKgRQmrsypUruHDhAjVtr6EkmRybUgo4rSDAAigs12BTSgGSZHKzzydktDdWDcUIhcB/zoOd2vIjNOrKDdSb9x6AzJvXcO3Qnipj6LZOm3SNQqEsC1cTd1V8rlxeirO/bTA8sCfYCbT11ohlmGRl7Un1XUSY0Myz0jK3Jf5i6uaJ8HVAdwsucxNCbFtsbCx8fX3x0ksvcR0KL7Esi5MP5RXHZLg+kq6bPzGjBGVqFp3rOprtHCLDMPBztENGiWHlO5p264OLf2yD2MUNdYOb4O6Vc7h19hicPLwqPa772Ddx9c/d+GXW+MelO1pCXpiH5KP7MWTOcvg3fgHthozGqfh12Dr/Ldz/5zJcfbSlO0QOTjV6bn6OdnR+04JMnqwB2rIeUYEuaOIhrnSA1Bx/SXXjutsL0N9CS9uEkNqhvLwcGzduxOjRoyES0c8WYzyZqFkbXVxd/GqWuDyLv5NdpdIi+hg44xMIBEJc3vsrlOUKBLVsj/Grf8VPb0ZXepzYyQWT1u1G4prPcO3wH7iQEA8XLx+EtO8Gtzradmj2jk6YsOY37Fo2Gye3rIO9gyNa9huKJl0iEfvWcKOek4ABApzp74MlMSxr3ru3GpZFaqES52Vy3ClSmixp043TyFWEtr6OCHYTUQspQohJ7dixA0OGDMHly5fRokULrsPhnaRsORLvl3AdxnOZ83zztVwFdqebp99pTaQm/YUf3njZqA4GADAoyBXhXlQc2lLMsrL2JAHDINTdHqHu9sgrU+NSjgKXHilQpmYff15bWO/54/z7OLGQQStvB7R6XPSQEEL0YWjbotjYWLRp04YSNSPcK1byIlEDtFuidR3tzLIz4+dk9rdZTtjq87JWFv1ue4qF6FXPGT0DnJBXptG2E5Gr8KBE+dx2IgHOIvg5atuJeIoFtFdOCHkmlmWRW6Y2um2RMv8R9uzZg6+++srywfOcUsMiIb2I88oA+mIAJKQXYUIzT5Odd1apVDh8+DDi47cicOxsOLi4mWRcayAWMvAUU90OS+IkNWYYBl4OQng5CBEO7TIqy7LQPP6NV63R1m+xYxgI9GzUSwghgLZt0cUcBS4/uYIPw9sWQalGv2kL0P/VEWaO2PYcfVDCm77RwL+3RI89KEFkoIvR46jVapw4cQLx8fHYvn07ZDIZQkJCMCZqKJgmbSvqvvEZA6CVtwO9L1uY2c+sEUKIuWlYFrcLy3FepkCaCc/Gsho1GIEQDV1FaOvrgBA3ezob+xz3ipW86RldnZgwd4O2Q1mWxenTpxEfH4+tW7ciMzMTDRo0QHR0NEaMGIE2bdogv1yD75PzzBi1ZU0K96QjSBZGm86EEF4zZ9siRqB9Q0ovUiKtSAkPunX+TBqWxR4ebX/+FwNgT3oR3gj3fGZSzrIsLly4gPj4eMTHx+Pu3bvw9/fHsGHDMGLECHTo0AGCJ9oXeIq1CX96kZKX3xcdBkBDVxElahygZI0QwkuWbVukVfC4oKql2xbxxe3CcuSXW087JEOxAPLLNUgtVCLU3b7y51gWV69erUjQbt26BR8fH7z66qsYMWIEunbtCqHw6UlMW18HpBUpzfwMzIsF0JaKzXOCkjVCCO/UtrZFfHHegoXQzYUBcF4mr0jWbty4UZGgJScnw8PDA6+88gq+++479OrVC3Z2+r2NhrjZw8NegAIeneV7EgNtPdNgN3q9c4HOrBFCeCVJJqcexFYor0xtQ+eyWODYVsTH/YhLly7B1dUVgwcPxvDhw9G3b1/Y29s/f4hq8P0836gwdwTSLyecoJU1Qggv1Oa2RXxwMYf/q2o6apUaZ+7loXHjxpg3bx769esHR8eaJ+T1XUSI8HXAeZmCV98nBtpWjpSocYcKpRBCeMHa2xadfGj+xuDWimVZXH6kXwJyftdmzG7ji7wHdw2aY+3EwfhqWDfjAjSQ0M4OPUdPxpYtW/DKK6+YJFHT6RHgDDd7AW+KeDAA3OwF6B7gzHUotRola4QQq5eUbb2Jms7xzFIkyWpnwpZbpq6oaWcryjVAXpnpL0uIBAwGBLnyZmWNBTAgyJUu03CMkjVCiFXjW9uie8X8vvFnjKxSld6Pbd0/GgtP3YOHf30zRmQahjwvQ9R3ESEqkB8rVVGBznSJxgpQskYIsVpPti3iA13bIqU+DY9tSFapSu83E4FQCJHY+ivgCxggS26eZA0AInwd0c3fyWzjm0I3fye6PGMlKFkjhFgtPrctqk0yS1XPbOf1pOrOrJ3a+hO+fLUr5naoh0/6voCdS2dCXlT9rcn7yZexetxLmNepPpYNaIsz2+OqPObklh/w5atdMb9zA3zcIxSrYqJwae+vBj0nDQs8KDHvKmnnutabsHX3d0LnupSoWQtK1gghVulesRJJPLs1B2gTtnMyRa3ZDmVZtkYrUIlrlmHXp7Pg5uuHl979GC9EDsDZ3zbgp/8bBrWy8vdQXpiPuKmvoV6zFug3bT7c6/hjxyczkLRjU8Vjzv72M3Yv+xB1ghtjwPTFiJo8E/5NXsC9q+cNji1LroI5q1sxDIMufk4VW6JcrzXq5o8KdEZnPyerX/2sTah0ByHE6tSWtkW2QM0CKiPP4Rfn5eBI7NcI69gT41bFV7Ro8m0Yhl2ffYCLf2xDxOCRFY8vlGXhpfcWotuoKQCA9kPH4rsxEuxftQSt+0dDKBLhxomDqBvSFDHLfqrxc1NptCtsQjP/EUb4OqKuo11FoWcuXvO6W59U6Nk60coaIcTq6NoW8TFRAyq3LbJ1qhqsPN06cwxqZTm6xEyq1Euz3SujIXZxxY0TBys9XmBnhw5Dx1T8v53IHh2GjkVxrgz3/7kMAHBwdUPBwwe4d+2i0XE9qSbPzxD1XUSY0MwTbX0dAFhulU03T4SvAyY086REzUpRskYIsTrnn+j3yVe6tkW2TlOD6hb5mfcAAL5BoZU+bieyh1e9IORlZlT6uJuPH+wdK9+i9GkQAgDIezxWj7FTYe/kjO9G98Xng9tj59KZSLt0xugY1RZsdSoSMIgKdEFMmDvc7bVvz+b6e6Ab191egJgwd0QGulB5DitG26CEEKuSV6bmfcNrQLu6dqdIibwyNTzFT2/wzXcCK/uVv05wY0z//RSuHzuAmycP4eqhBJzeFoveE99HnymzDB5PyMHzq+8iwhvhnkgtVOK8TI47RUqTHQnQjdPQVYS2vo4IdhPZ/Fa9LaBkjRBiVWypbRED4FKOAr3q8aOmljHsavBGr6u1Jku/Ba/AhhUfVynLkXf/LkI7dK/0+MKcLJTLSyqtruXcvQ0A8Hyibpu9ozNaSIaghWQIVMpybJw+Dkd++hI9X58GkdjBoBhr8vxqQsAwCHW3R6i7PfLK1LiUo8ClR4qK4sMCRnue7vnj/Ps4sZBBK28HtPJxsOlfIGwRJWuEEKthSNuiJ927dhEJy+cg8+Y1KBWleHvzIQQ0edGksa2dOBgA8MYPO/X+GhbApUcK9Ayw3Zt1QgawExh3ySC0Q3cIRfY4ufkHNO4cWfE9StqxCYriQjTp2qfS4zUqFc78uqHigoFKWY4zv66Hs6cP6jVrCQAoyc+Fs4dXxdfYiexRN7gJbp78ExqVChDrH5+dQJvscM1TLESves7oGeCEvDINskpVyJKr8KBEiSy5qtrvvZ0A8HO0Q4CzCH6OdvBzsoOnWGCzr0NbR8kaIcRqGNO2SK1U4peZ4yESizFg+iKIHBwrrbJwrUzNIq9MAy8H21zJYBgGfo52yCgxvHyHi6cPev5vGv5cuxyxb0ajWQ8pZOm3cGZbLAKbt0brl4ZVerybrx+OxX2DvAd34dMgBH8f2IHMG1cxZO4XEIq0B+N/+r9hcPWpg6CW7eHi7QvZnRScil+Hpl37QOzsYlB8fo52VpXcMAwDLwchvByECH+cdbIsCw2rvQih1mi3be0YBgIGVhU7qRlK1gghVsOY9j6PMtKQn3kPr8z7Au2GjDZDVDWXVaqy2WQNAPyd7PCgRP/CuE+KmjwTzp7eOBW/DntWzIOjuwfavTIGkrfmVCRgOo5uHhj28SrsWjYb537fCBcvXwya9Snav/Lvn3uHoWNxae92nNi0BuWlJXCr44/OIyai14T3DIpLwAABztZ/M5JhGAgZQAgGsN2XWK1HyRohxGro2hYZ8qZfkisDADi4upslpprStS0KN2T/jWf8nOz0/jPTaNQAAIHw37efTsPHo9Pw8c/8uie3n6fE/fHUx7UfOgbtnyjvYSwNq11ZI8Qa0CuREGI1DGlbBADbFryFC7vjAQC/zNS+2Tdq27ni8/89X7ZtwVtITTqJWXsuVHxMo9Hg5Oa1OPf7RuRmpMHBxQ3hPftBOnUeHN08jH8yuvEt0LaIa35O+r+VFOU8BMMwJvnempshz4sQc6JXIiHEKhjTtqj9K2Ph5uuPIz99hc6vTURgeGu4ePvi8Lov9R5jx5LpOL97C9oOfA2dR0xE3oN0nIpfhwc3/sbkn/ZU2Yozhq5tka2eIfISCyEWMs88b1j0KBtXE3fjzPb1aNAiAvaO1tkTU0csZOAptrK6JKTWomSNEGIVjGlbFNSyHdTKchz56Ss0bN0RL0YNAgC9k7W0i6dx7veNGL5kDVr1G1rx8eCIroh9azj+TtxV6ePGslTbIq4wDIOW3g44ly1/6k1e2Z0U7P36YwQ2b41X5n1h0fgMxQBo5e1gs8k14R9K1gghVsFSbX2e9HfiLji4uCG0Yw+U5D2q+Hi9Zi1h7+SM1KQTJknWAO3zE/K+L8PTtfZxwNnsp3dsCI7ogoUn71owIuOxAFr5GFaPjRBzomSNEGIVatK2yFg5d1OhKC7Ekshm1X6+ODfHZHOpNbDp23qeYiEauoqQXqTkdUFjBtrq/lQ0llgTStYIIVbBlG2LGIYBW81KneY/jR5ZjQYuXr4YvmR1teM4e3qbLCYu2hZZWltfB963CmMBtPV15DoMQiqhZI0QYhVM2dbH0dUDuffTqnxc1zhcxzuwIW6fPYaglu0hcjDvGzRXbYssKcTNHh72AhSUa3i5usZA29g82M3666uR2qUW/K5HCOEDXdsiU/AKbAhZ2i0U5/27jZl58yrSL5+t9LgX+w6GRq3GoR9WVBlDrVJBXlRgknispW2RuQkYBv2DXHmZqAHaVbUBQa7U2JxYHVpZI4RYhZq0LfqviMEjcWLTasS+GY2IwTEozs3B2V/Xo25wUyhKiioeF9y2C9oPHYsjsV/jwc2rCOvYE0I7EXLupuJq4i4MmLGk4oZpTVhb2yJzqu8iQoSvA87LDO/xyiUGQISvAwJdaFWNWB9aWSOEWA1/JzuT/FCqE9wYwxZ+C0VxEfZ8MR//HNuHYYu+RUCzqs3dh8z5HEPmfoGS3Bwc+PYT7F+1GKnnTqDVS8MQ1LJ9jWPhS9siU+oR4Aw3ewFv7r4yANzsBege4Mx1KIRUi2GrO4VLCCEcuJarwO70Yq7DMLlBQa4I97LddlPVuVesxKYU02wjW0JMmDvq06oasVK0skYIsRq22t7HVp/Xs9R3ESEqkB8rVVGBzpSoEatGyRohxGro2hbZktrctijC1xHd/K27rVQ3fydEUKkOYuVq508QQohV0rUtspV0jdoWAZ3rWm/C1t3fCZ3rUqJGrB8la4QQq9Lax4FXtwifhdoWaRPwLn5OFVuiXKetuvmjAp3R2c+pVifShD8oWSOEWBVd2yK+v4UyABpR26IKEb6OiAlz5/SWqO7WZ0yYO219El6hZI0QYnXa+vJ/dY3aFlVV30WECc080dZXu9poqaRNN0+ErwMmNPOkywSEd2rfFSVCiNWjtkW2SyRgEBXogiYeYuxJL0J+uQYMYJY/Z9247vYC9A9ypSSN8BbVWSOEWCW+1en6r1Fh7lQN/zk0LIvUQiXOy+S4U6Q0WdKmG6eRqwhtfR0R7CaiFlKE1yhZI4RYrcSMYt62LYoMdOE6FF7JK1PjUo4Clx4pUKbW/okLGECjxx/+k48TCxm08nZAKx8HOi9IbAYla4QQq6XUsPjxnzwU8mQ7VHeAfUIzT4hqQ+d2M2BZFnllGmSVqpAlV+FBiRJZchVUmqqPtRNo+64GOIvg52gHPyc7eIoFdMOT2BxK1gghVo1v26HUtsj0WJaFhgVULAu1BhAKADuGgYABJWakVqDboIQQq0ZtiwjDMBAKGIiFAjiJBBALBRAKGErUSK1ByRohxOpR2yJCSG1GpTsIIbygawt0PLOU40iq6u7vhE7UtogQYiZ0Zo0QwitJMjkSM0rMVptLX7r5owKdaUWNEGJWlKwRQnjnXrESCelFnN0S1d36HECFVgkhFkDJGiGEl5QaFkcflCBJprDYKptunna+Duge4EzlOQghFkHJGiGE1+4VKy3WtsiD2hYRQjhAyRohhPeobREhxJZRskYIsSnUtogQYmsoWSOE2CRqW0QIsRWUrBFCCCGEWDHqYEAIIYQQYsUoWSOEEEIIsWKUrBFCCCGEWDFK1gghhBBCrBgla4QQQgghVoySNUIIIYQQK0bJGiGEEEKIFaNkjRBCCCHEiv0/4SpZWgQj7kUAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -3898,14 +3896,14 @@ } ], "source": [ - "plt.figure(figsize=(8,8))\n", + "plt.figure(figsize=(6,6))\n", "\n", "pos = nx.kamada_kawai_layout(filteredTopicsGraph) # k regulates the distance between nodes\n", "\n", "nx.draw(filteredTopicsGraph, with_labels=True, node_color='skyblue', node_size=1500, \n", " edge_cmap=plt.cm.Blues, pos = pos)\n", "\n", - "# plt.show()\n", + "# plt.show()\n", "# plt.savefig(os.path.join(\".\", \"TopicsCore.png\"), dpi=300, format=\"png\")" ] }, @@ -3926,15 +3924,15 @@ }, { "cell_type": "code", - "execution_count": 141, + "execution_count": 148, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Computing transition probabilities: 100%|████████████████████████████| 1053/1053 [00:17<00:00, 61.76it/s]\n", - "Generating walks (CPU: 1): 100%|█████████████████████████████████████████| 10/10 [00:18<00:00, 1.87s/it]\n" + "Computing transition probabilities: 100%|████████████████████████████| 1053/1053 [00:24<00:00, 43.65it/s]\n", + "Generating walks (CPU: 1): 100%|█████████████████████████████████████████| 10/10 [00:20<00:00, 2.09s/it]\n" ] } ], @@ -3948,7 +3946,7 @@ }, { "cell_type": "code", - "execution_count": 142, + "execution_count": 149, "metadata": {}, "outputs": [], "source": [ @@ -3959,7 +3957,7 @@ }, { "cell_type": "code", - "execution_count": 143, + "execution_count": 150, "metadata": {}, "outputs": [], "source": [ @@ -3968,22 +3966,22 @@ }, { "cell_type": "code", - "execution_count": 144, + "execution_count": 151, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 144, + "execution_count": 151, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGdCAYAAAAMm0nCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOyde3xU1bn3fzOTTC5D7hEmIJBwM8RwCwoJAdrGoAgqVc5pBaGnluIVX0Xft4qK4kEbbE+LnqJiU8QqIq0VBSWkh4uVAIlwCLcYEAgJKCRAEkggIZlkZt4/hj3MZV/W2rNnMpM838+Hz4fM7Nl7zd579nrWc/k9OrvdbgdBEARBEEQIoe/qARAEQRAEQfBCBgxBEARBECEHGTAEQRAEQYQcZMAQBEEQBBFykAFDEARBEETIQQYMQRAEQRAhBxkwBEEQBEGEHGTAEARBEAQRcoR19QB8xWaz4ezZs4iJiYFOp+vq4RAEQRAEwYDdbsfly5fRt29f6PX8/pSQN2DOnj2L/v37d/UwCIIgCIJQwffff48bb7yR+3Mhb8DExMQAcJyA2NjYLh4NQRAEQRAsNDc3o3///s55nJeQN2CEsFFsbCwZMARBEAQRYqhN/6AkXoIgCIIgQg4yYAiCIAiCCDnIgCEIgiAIIuQgA4YgCIIgiJCDDBiCIAiCIEIOMmAIgiAIggg5yIAhCIIgCCLkIAOGIAiCIIiQI+SF7AgiVLDa7NhT3Yjzl9vQOyYS49ISYdBT/y6CIAg1kAFDEAGguKIWr3xRidqmNudrKXGRePnuDEzNTOnCkREEQYQmAQshLVu2DDqdDk899ZTztba2Njz++ONISkpCr169MHPmTJw7dy5QQyKIgFBcUYtH15S7GS8AUNfUhkfXlKO4oraLRkYQBBG6BMSA2bt3L959912MHDnS7fWFCxfiiy++wCeffIKvv/4aZ8+exX333ReIIRFEQLDa7Hjli0rYRd6zX/v3yheVsNrEtiAIgiCk8LsBc+XKFTzwwAMoLCxEQkKC8/WmpiasWrUKf/zjH5GXl4exY8di9erV2L17N8rKyvw9LIIICHuqG708L57UNrVhT3VjgEZEEATRPfC7AfP4449j+vTpyM/Pd3t937596OjocHs9PT0dAwYMQGlpqeT+2tvb0dzc7PaPIIKV85fljReBLZV1fh4JQRBE98KvBsy6detQXl6OgoICr/fq6upgNBoRHx/v9nqfPn1QVyf9MC8oKEBcXJzzX//+/TUfN0FoRe+YSKbtNhw4S2EkgiAIDvxmwHz//fd48skn8dFHHyEyku0hzsKiRYvQ1NTk/Pf9999rtm+CkMPSacOqkpN4aUMFVpWchKXTpviZcWmJSDSFK27X0GKhMBJBEAQHfiuj3rdvH86fP4+srCzna1arFTt27MCKFSvwz3/+ExaLBZcuXXLzwpw7dw5ms1lyvxEREYiIiPDXsAlClIKiShSWVMPVSfJa0RHMn5SGRdMyJD9n0Otw7+h+WLWrRvEYrOEmgiAIwo8emNtuuw2HDx/GgQMHnP9uueUWPPDAA87/h4eHY9u2bc7PfPfddzh9+jRycnL8NSyC4KagqBLv7nA3XgDAZgfe3VGNgqJK2c/nZ0gb5K6whpsIgiAIP3pgYmJikJmZ6faayWRCUlKS8/V58+bh6aefRmJiImJjY/HEE08gJycH2dnZ/hoWQXBh6bShsKRadpvCkmo8c3s6jGGO9YCn4u7YgQlIiYtEXVObaDk1ACSawlHX3IbSqgZS6CUIgmCgS5V4ly9fDr1ej5kzZ6K9vR133HEH3n777a4cEkG48WFpjZfnxROb3bHdvEmDJBV3M/vFypZTN7Z0YOHfDgAAYiINGDsgAZOG3oC5OalOw4ggCIK4js5ut4d06UNzczPi4uLQ1NSE2NjYrh4O0c14aUMFPig9pbjdL3IGYsLgJDy6plzSy6IGvQ6KeTYEQRChiK/zNy3tCEKGgYnRTNv1T4iSVNz1BdY8G4IgiJ4GGTAEIUPvWOXEWp0OSDfLh4h8pbCkmqlsmyAIoqdABgxBiGDptKFwRxWe/fSQ4raRYXrUt1j8Oh4hz4YgCIJw0KVJvAQRjIhpvshxtcOGxivt/h0UgFONrX4/BkEQRKhAHhiCcEFK80WJRJMRKXGR8GfxM2s+DkEQRE+ADBiCuAaL5osU5rgovHy3o1LIH0aMXgfMzUn1w54JgiBCEwohEUGJpxhcIMTdWDRfxDDHRjjH986cLC8dGC2YPylNUiiPhO8IguiJkAFDBB1SYnAv352BqZkpzgm8rukqGlssSOwVAXOs90Ru6bThw9IanGpsxcDEaEVROLU5Jkvuudl53KmZKZiSYXaOb+mmI2j0McF33sTrOjBK54YgCKKnQEJ2RFBRXFErKgYnmCUPTU7DxoO1oh4Oc2wEltxzM6ZmpqCgqBJ/3lHtth/dtc9LicKtKjmJpZuOMI81Pjocy+4bIWo4CMbTjuP1+PrYBeZ9ejJv4kAsvsvRekPq3AisuH807hrdT/WxCIIgAomv8zcZMETQYLXZMfH17T6HX6Zk9MaWyvOS7z8sYcRYOm1IX7xZNoykA/DI5EGYOPQGZA9OEg3d8FYxieGpwMt6buZPSsML00m1lyCI4MfX+ZtCSETQsKe6UZPcETnjBQD+vMO9+aKAMUyP+ZPS8O4O6UTehyan4dlpwyXfF6qYeEiJi8QLd6bj3OV2yXAX67kpLKmGXgdqPUAQRLeHDBgiaDh/2X9Ktq7YAfx1dzXmTx7s9Z4w8Xt6UFh6EvFWMc3LTUV+hpkpCZfn3Hh2xyYIguiOkAFDBA29Y5Rl+7Vib81FzJ8s/t6iaRl45vZ0rwRgg16H0qoGyeofniomHYCiijo8Pz3DbR9SFUY858ZmB579x0H87NYBVKFEEES3hQwYImgYl5aIlLhI1DW1ad4U0ROT0SD7vjFMj3mTBjn/ZqmM+qa6kfn4dgC1TW3YU92InMFJiseYkmFGSlwkc4jtswNn8dmBs26fL6tqQOnJegA65AxOQvYg8RwegiCIUICSeImgQqi0AeBXI+axHw3GpGE3MHkofKmMUmL5z0bBHBeFrZV1WLWrxut94RjvzMkCADxy7dywooPjPEYbDWi1WN3ek6uiIgiC8DdUhUQGTLdDyhNx10gzCktqND2WkoaKVpVRUiSajIo6MToA5rhI7Hw2D5sPncWCdQc0HcPKOVlkxBAEEXCoConodriKwXnmguh1OsUqn4cny1cSuVLb1IZH15TjHYlJXKvKKClYRO5cw013je6Hg2eaVLc8EOOVLyoxJcNM4SSCIEIKKlMgghKD3pGnMWN0P+S46K0smpaBt2dnoVeEt+0dHx2OlXOysGhaBlbOyYI5li3x1Q7HJG4VycANVGUUC8JYXpiegYcnp2nWc0kwjgiCIEIJ8sAQIce0kSm4I9OMspMNKK1qAGBHzqBkN2E5Vy/OrhMXsOKrKtl9eibUCmhRGRUZrkdbh835d6IpHI0tHdz7EcZitdkRbQzTNEcomAw1giAIFsiAIUISg16H3CHJyB2SLLtNzuAknL3I1uPIsZ27AaNFZdSqX9wKvV7nDIfVNbdh4d/Y81iEHJhxaYkorqjFyxu+xbnL7SpHI04gS9hDEWqgSRDBBxkwRLfnwA+XmLebeUt/t9cMeh1evjuDu/oHuG54eLYccHiN2PcBAC/fnYEtlXWqxqFEyjXjiBCHGmgSRHBCOTBED4B1pSy+nc1mhynCWzcmPjrcmYvi+UlXw8NzpS54dVhGZY6LxDtzsjAlw4zn1h9m+IT3GJW4Z1QKeRMkEEroPRO5a5va8Miacjy6Zh/+659Hset4vWgOFUEQ/oMMGKLbk5oUrXq7gqJKPLZ2P1rarV7vNbV2YMyABLw1ewwSTO6GgmB4iK3QBa8OC3eNTMHUzBSUVTXgUitf3szi6cOx5/l8RSPmk30/wNJpk92mJ2K12fHKF5WyocPNFXVY8VUVHlj1Dca+ugXFFbUBGx9B9HTIgCG6PXNzUqHkYNDrHNu5UnSoVrYc2w7g6b8fxIsbvnVLyk00GbF4unx4YWpmCv50/2jFsa/aWQ1Lp+2agi4bOjhCHL/MTcO+UxcVDZ/Glg5kF2yjyRcOo6W0qgEbDpzB+7uquUroL7V24JE15XQeCSJAUA4M0e1h6TL9YO5At95Hs8cPxIsbKhT33WqxeincXmyx4PG15XhHLy8Qx5KIa7M7eiyxh8EcCKEr1uqixhaLrB5OT0As10UN/++Tg/jRsN6IUmhXQRCEb5ABQ/QI5LpMZ/aNxXu7TsFVk/rVoiNQq1Fth8PcUBKIO9XIVh11qrEVd9xsxoqvTihumxAdjgKX9gA81UWCHk5PFLWTahehhsvtVmS8VIyHJst3LycIwjfIgCF6DGJdpndXNWDb0fNe2/raYEOsWaMnAxPZcnMGJkYje1AS4qPDZcNBkWF6fPN8Poxh1yPD49ISERNpwOU27xweMZTG3B1hyXXhxQ44PX5kxBCEf6AcGCKksHTasKrkJF7aUIFVJSe5k0+FLtP/OSMTfWIiRI0XLZEL4fDk5hj0Oiy7b4Tstm2dNmw/es7tNYNeh7EDEpjHC/Q8UTt/tosoLKmmBGmC8BPkgSFChoKiSq8Q0GtFRzB/Epur3mqzO9V7bXYbVot0f9YauRAOS27O/ElpTo+KjaFMVywElNwrgmPEPU/Uzp8Gm5DDNG/SIL8dgyB6KmTAECFBQVGl6ERvs7O56osravHc+sPcpchqEUTsbDY7Nhw4I6neKpeb42qYWW12pqRizxCQ1WbHzhPswnk9UdTO3wYba64TQRB8kAFDBD2WTpti9+XCkmo8c3u6W/6HQHFFrU8Ktr0iDLgiogMjhQ6OHIirHVY8sOob5+tS6q1iuTlzc1Ldvsue6kbm/kmuHoU91Y2oa2bzMOggLrzX3dGiXYQcrLlOBEHwQTkwRNDzYWkNlKIn18uN3bHa7FiysVL1sfU64K1ZWVyfEYTjPL09dU1teFRCJ8Q1N2fepEFehhhPmMPVo7Clso5tzFHhPbaE2lVYUEpRWS1i+kIEQWgDGTBE0MNTbuwJjwdCjHkT07Dj+AWmbX88LBkf/Xo8IkS8QACcq/tXvqh0k523dNpQuKMKD33wv1i4bj9Kjl3wkqVnDXMkmYzOEJDVZsfnB84yfe6tB3qm8SIwNTMF78zJgjnO/Tyb4yKxck4W3p6dhUST0e29lLhITMnoLbtf1xwmgiC0hUJIRNDDU27siS8JmlMyeuO5O4fj1te2MG3/8I+GAADqmqUF6jzLqwuKKvHnHdVuoYvPDpyFyWjAH342ymlUCGEOpWqZpTMynSEgR9jJojjuRFM4sgf1nLJpKaZmpmBKhlmy6/QdmeLviSWXe+YwEQShPWTAEEHP3JxULN10RHYbKVe9mgTNmEgDCn46AneN7ofSqgam3BPB8/HlITaPx/nLbZKJyQDQYrHikTXlWHktrCOEOeTE1h6enIZpI697UViNt3tH9+txeS9SGPQ6SQ0cqfdYcpgIgtAeMmCIoOcP/3NUcRspV/24tESYYyMVw0gJ0eF46e6bYY51X3WzGgEzRveFQa9jNpgSo4z4s0z5tIBrWbQQ5vCUu080hePVGZmYNrKv22dZx5KfYWbajpBGyGEiCCJwkAFDBDWWThv+rFCBBADP3J4u+rpBr8OSezIUq5Bc5fddYTUCplwzAsYOTIBeB9mkY70OOFLXzFTx4lkWrRTmcEWpukYo9R47MAGlVQ2K+yMIgggmyMdJBDV/3V3DJOv/1901ku9NzUzByjlZzuogV+Kjw51hGjEEI0BuOnfVTtl36iJTxdTeGnZtFk8vkBDKuOuax+XLQ2dRWtXglfjLUl1zz6gU/Oj3X2FWYRmeXHcAswrLMPH17dRRmRPXLtZi14IgCO0hDwwR1OytaWTebv5kaRe+4LkQlHgBO3IGJSN7cJKst8E190TQdxEQPuWqncIacvrXsXqm7QBxL1DRobN4cUOFW36OmM6MVNjJHBeJe0aleCUQA9fLvXtqWTUvYl2sxa6F1WZn8pwRBMEGGTBEUBNtNGi2nUGvQ+6QZOQOSeYag5wR4DlJsYacOqxsK3QxZVyp5N9aCcNDLOw0dmACfvT7r0RDS6zdtAnpLtaCEfjfs8bgfHMbdhyvR/npi7jc1uncRkrYkCAINsiAIYIKz1XqvaP7MWmZzBxzo1/HxZp7MnYgX+NEJTyVcYsO1cr2TrJD3PDwrKAprWqQLclm6abd05HrYi289sTH+yU/T54ugvANMmCIoEHMFW+OjYAxTC/b0TfaaMCEoXxeFTXIldgKfFPFntsihynCgD/8+yivEISafkhisIa6elpnah587WItGDkvfFaBvPQ+VHZNEJyQAUMEBVKu+HPN7YrVOn/82aigCXN8uv8Hnz4/cXASHv7RYEwYkuz1nViF6QBlw4On3Lun4ekFHDswAftOXfTyvLG2aVCiocWC7IKt+O294pVwBEGIQwYM0eUoueJ1AOKiw2HU63D+yvUJvE+MEa/MyAyqh36rhb3poxjDzDGYNOwG0ffU9kMSg7WB4X+8v6dHKcqKeQE9y+JTriVAv7erRrPjNrZ0UDiJIDghA4bocpRc8XY4GiN+NG889HpdUFdxxET69pN6b1cNxqUl+qRJk2gK90r89USuusoVmx3OnJvuZsR4eloutrTj8bX7vc6FZ0V0bVObbB6SL1DiNEGwQwYM0eWwehbqW9oxY3Q/P49GPcUVtVhffsbn/Ty3/rDoJHaRMXz0qks/JDmE6qqXN1Tg3GX5fReWVOOZ29O7TZ6GlKelK9VbKHGaIPjoHk8jIqRh9Syo6WsUKOTCYLxcau3Aiu0nvPb//OeHFT87f1KqV0sBOaZmpuDXkwYrbmezA0u//DakBNqkxOWEfCtPr1+wfDVKnCYINsgDQ3Q5rJL3SmGRroS1IiU5xoh6BW8HAKzeXY0FeUOcnpQV20/gUqtyU8m8dP6+Rt9fbGXa7sOy09h65HxIaJeIV7RF4v5b++P93TVd6mlRIpgNdYIIJsgDQ3Q5LJL3nnoowQbrqvn+W/ozbXeptQN7qh0qxFabHat3seVcqFm9D0yMZt5WEMtT02ogUHL7Uh6WuuY2vLHtOC5dVTYEuwIdxIULCYIQhwwYIigQ8jHMce6rT3NcZEhUZrCumnMGJSM+yrsnkxiCMbKnupF50lWzep+bkwoe21AQy+MxQIorapG7bLtbz6XcZdr3XNIylMeCViZ1qBjqBBFMUAiJCBp4Oi0HG6xhsOzBSXgwNxXLtx5X3KdgjLB6VeKjlKuPxDCG6TF/UhpXZQ1PsmlxRa1oN/C65jY8sqZctpkmL76Ky7Eg3I0PTU7DxoO1mhxPrC0FQRDykAFDBBUsarfBCE/Tx0d/PARvbDsu22Vbr7veloDVq/JgbqpqY2/RtAycOH8F245eYP4Mi2Fltdnx3Hr55ONFElVXatAiAdZT98Xzb1dj4zdTh2NPdSMKS6rw1dEL3J6fX+WmYkqGOWQMdYIIJsiAIQiNYG36uO/URVnjBXBMmPtOXUTO4CQm0bmE6HAsyBvq0/h/NXEQlwHDYliVnWxQTD6+2NqBspMN3E021Y5JCsF8WDErCwkmo6ISL+AwXP/13Tls5zhvrhQdrsVtw/vgy0NnQ8rjSBDBABkwBKEhLGEw3j5ESqJzOgAF943wfeLjcB+wJpuWMvaGKq3SxoAZOzDBy2PCilwYR/AKeorfje4fj8IS9aJ2dc3teOAv3zj/1rJDtetYk3tFAHbg/JV2NF5pR6LJCHNcFBlMREhDBgxBaIxSGEyN7o2Ud0fLCa++pZ15W/ZkU1ZLwve0W6vNjg9La7iNl2ijHoVzb0X24CTZ7yRWmh0TGaapfoxYh2pPo0nJ6LDa7Fix/QRW76pWTP7W8v4hiEBDBgxBBBi1ujf+TnJmNawW5g91TniWThs+LK3BqcZWDEyMxtycVDe13pxByVjxVZXiPnMG+eZ9ETMuWNFBh8vtHZLn0dJpw/PrD+EfIirLl9s6uY8nh3A/PPfpYcREhqOptQNLN7EbrcUVtXhu/WEmzSDgell8KFT6EYQnOrtdKRof3DQ3NyMuLg5NTU2IjY3t6uEQBBOCVgkgnvDbFROK1WbHxNe3y+bapMRFYuezeTDodSgoqkRhSbVXwqtr80erzY6xr26RnVDjo8Ox78Upqg0xqU7mPOggfs7FvmNXI3WPSFV7seB6XQkiUPg6f5MODEF0AcGoe6MkKKjD9dBRQVEl3t3hPbELzR8Liiqd+1x23wjZ4y7zIX9HK90XO4DnPzsMS6fN+ZrUd+xqhOG4avEI50EtQlk8QYQSZMAQRBcxNTMFO5/Nw8fzs/Hm/aPx8fxs7Hw2r0td+SyGlaXTppi4WlhS7TQGpmamYOWcLJhjI9z3GRvhswaMlrovjS0dyC7YhuKKWqbvyMqUjN5IidO2PYBr40dAm/NAPZiIUINyYAiiCwlG3RulXBuWRFmb3bHdvEmDmPapFq0n3cYWCx5ZU46ZY/pye148K8Rcw2luFUGmCDzzyUGca5YO1bEifH8tzgP1YCJCDTJgCCIACBPY2YutOPDDJQA6pCZ5J70GYhxlJxuulTfbkTMo2a36xrPi5a6Rfb2MjFONbM0fPbfzh7Hmr0l3/f6zzNsKSdfbn/kx1n5zSjSh2fO7L7lHuiyeB+H7+3oeqAcTEYqQAUMQfkauQua1oiNuSa+e8JbQKo3Ds0JlxVdViI8Od+apsJRpszZ/5GkSqRYWkT818O7r5bszEGU0OD1OSkiVxbPiWanmy3lwzW0iiFCCqpAIwo+wVsg8PNndiJHS8lCr26G2QkWs4sXSaUP64s2yIRa9Dji69M6AeJekKroEFuYPQ2pyNE5euII3t53Q9Nh9Yox4ZUam6jweq82OsqoG/OK9b2BlfBLLVSHJnQcxSAeG6EqoCokgghSeChkh6dVqs+PNrccxYsk/sXzrMS8hMkHojKeLs9Vmx5KN6ipUxCpehOaPcsyflBaw0JjgzYiL9u7yHR8djpvMvTBjdD9k+6g148n0EWb88edj0N5pQ2lVA1d3bgGDXoemqx3MxgsgXakmlYDt6VeJjQzDgxMGBkXSOEH4AoWQCMJP8FSG2OzA8+sPYevR87KaKXY4JqRXvqhkboC4p7oRdc3qkzxdK16EPA7BW6SkAxNIxM7bpdYOZ8frdpcSaR7EknNvG94b5acvYdPhOufr8VHheDA3DQvyhjCHY6w2O17cUME8lrnZA7DknkzJ/YslS8v1ciKIUIYMGMJvaJm/EYr8z7d1yhu5IKb0KoaYQSGHVpU6nvtZNC0Dz9yeLqvEGwhYO16vmJWlav8f/Gocjp277PyOvWMj8X8+3u/lWbt0tQPLtx7D6t3VWHbfCCbPxp7qRjS2WJjGoQOw+K6bFX9DYsnSwVbpRhBaQAYM4RfEElf9GW+32uzYfaIen5b/gFZLJ25NTcJ/TLg+mQbamCo6dBbv767x2/4BdsNEq0odsf0Yw/TMiav+grXjtc1u50p0FRJlJwxJxqRhNwC4rlYs93lXr4/Svc5jXN410hxw45AgghkyYAjNkUpcrW1qwyNryjEuNQFP/GQoJgxN1sSIKK6oxdN/P4hWi9X52v9UnsdvNx/BQ5PSMGZAgs/GlFLPH8/xPLZ2v0/fiQVWw2RcWiLMsZGqw0hSvZmCBdaO199UN8p29XZFuCs9q3N4woIsYT7WaxgZrscb96vzIBFEd4XMeUJTWBJX99RcxNzVezBiyT9Fk1EtnTasKjmJlzZUYFXJSTd5d0+E6hpX40XAfk3W/pE15V6TDk8ybEFRJdIXb8bSTUfwQekpLN10BOmLNzvl8l3xVdKdFR7dDoNehyX3sOWkiLUQAIK9zJa947VUoqvnV5NKlOXxmLDI8wvlz0rcf2t/7KluVJUoTBDdFb96YAoKCrB+/XocPXoUUVFRmDBhAl5//XXcdNNNzm3a2trwzDPPYN26dWhvb8cdd9yBt99+G3369PHn0Ag/wbNCbbVYvVztYs3zpLRSrDY7Xt7wrapxsibDCv1wPBF6/gBwG5eW0vZSqNHtEOT8xToVy+nAmEOgzJa347Uvia684Tglg0foP6VUav/+7lN4f/cpKnsmCBf8asB8/fXXePzxx3Hrrbeis7MTzz//PG6//XZUVlbCZDIBABYuXIhNmzbhk08+QVxcHBYsWID77rsPu3bt8ufQCD+hJmH05Q0VmJJhxu+Kj3AbC+cut6seq1IyLGvPn2duT3eGk9QmzMZHhaPpaoeiLyEhOhwFjAminggTt5wSrz/k/v1N9uAkxEeHK3a8zna5xmoTXQWPCauRymLw8IjaCZ7Drmr4SRDBhF8NmOLiYre/33//ffTu3Rv79u3D5MmT0dTUhFWrVmHt2rXIy8sDAKxevRrDhw9HWVkZsrOz/Tk8wg+oSRg9d9mC3cfrA2YseCK1HzU9f9QmzD6Ym4Y3th6TzM0wGQ14aPIgLMgbym1QiOXv5A4R10QJxt5MSggdr+WE+nzpeO15LBaPCW/ekKtXqK65DUu//BaNLd4GmZoyeoLorgQ0B6apqQkAkJjo+FHv27cPHR0dyM/Pd26Tnp6OAQMGoLS0VHQf7e3taG5udvtHBA/CCpX3sfrp/h+YjQXAET4674O2iStSRoeanj+8318HRz7LgrwhorkZ8VHhWJg/FIeW3IEn84dxT1g8+TuhjD87Xosd6505WYgXEc4TsAO4Z1QK1/USjEdzbKSo8eK6b5b8GsLxnCitasCGA2dUiw0SwUvAqpBsNhueeuop5ObmIjMzEwBQV1cHo9GI+Ph4t2379OmDujpxDY2CggK88sorfh8voQ7XFSoPYkm4YpxqbEVxRS2e/fQQmq52qhmiE6VVspqeP67fn7fSReuOzbz5O6GOvzpeizXAnJJhxpQMM55aV44vDok/q/68oxpjBiRwG0+snkWtO3F3FwTJhC2Vdfj8wFk3nR01YoNE8BIwA+bxxx9HRUUFdu7c6dN+Fi1ahKefftr5d3NzM/r37+/r8AiViOmrCCvUJRsrmUp3+yJZ/s8AACAASURBVMQYcWtqIv6n8pzitq3tnap6+njCUl0zNycVrxUdUez5Mzcn1e01qZwGvQ5u+xJLkNUqhKMmf6c7oHUITKoBZlxUGH45IRUlx+VLuNWEeljDkP7qxB3KyDVOBdSJDRLBS0AMmAULFuDLL7/Ejh07cOONNzpfN5vNsFgsuHTpkpsX5ty5czCbzaL7ioiIQEREhOh7ROBwNBs8jtW7aiSbDSqtUAVemZGJvPQ+KNgsbyzoAGxhMHJYYKmuEXr+iHkxBKR6/nS1pLua/B3CHbkGmE1XOxUbQ/IqJgsodZYOdl2erqLo0Flm/SVBbPDt2WMwbWRfP4+M8Bd+XXrZ7XYsWLAAn332GbZv3460NPcGcGPHjkV4eDi2bdvmfO27777D6dOnkZOT48+hET5QXFGLsa9uwfKtx2WbDRr0Ovxp9lg8PDkNOpF5OtpocOYnsDQInD6iD5rafAsbxUWF4YVpw/GbqemIizIqxsQXTcvAw5PTvHRC9DrvDtKeCN6AGaP7IWdwEoxhere//enCVpO/Q1zHlwaYnvCGeoQwJBCqujyBp+hQLRZ8zC8eueDj/Sg6xN4YlQgu/OqBefzxx7F27Vps2LABMTExzryWuLg4REVFIS4uDvPmzcPTTz+NxMRExMbG4oknnkBOTg5VIAUpUiq7AsLrSzZ+iykZDi/a5KG9YdDpcfCHS2jrsOLGhCj8W1Z/jB+chH2nLmLDgTPoHROJ30wdDkC6QWC4QQ/ANw9M09VOvFZ0xPk3i65GsPT84UFN/o4aeBSKQwlfG2C6UlPPbyRKhSFDQZcn0DiUr9WFlW124LG15Vipp7L0UERnt9v9lpatE1t2w1Eq/ctf/hLAdSG7jz/+2E3ITiqE5ElzczPi4uLQ1NSE2NhYrYZOiCD0gWHVwLhrZAp2nqj30ucwRRgwe9wAfHmoVlTePy+9j+ik+F///A4rvpJ32/Mi3KHdTVfD0mlD+uLNivk7R5feqdrgKCiqxJ93VLsZszoADyl4pkKBDQfO4Ml1BzTZV3x0OPa9OEWVx6SnN0RVgveZJEVKXCR2PptH5zbA+Dp/+9WACQRkwASO0qoGzCos89v+lYyJXSfq8cBfvvHLcc3d8AEmVYUk8OvcNLx4tzpD47VN36KwpEbyfaXwWrCj9b2+MH8Ynswfqtn+CAdaXqeP52eHnAZSqOPr/B36vl4iYPi7bFOwpF/5olI0NyV7UJKs9oYvxxXT1Qg2DQne8Ujl7wi8t7talR7MFwfPyhovgKOEWK6HVbAjNMDUitW7q7v8/umOaPlMorL00IO6URPMBKJsU65yw6DX4ee33CjrVfAF1weYWDlmV/ahUTueRdMy0GmzY9XOGq/31OjBFFfU4gmGZEk7gL/ursb8yYOZ9htsCA0wtSjZBxxVL7zVSIQyySbtKlKpLD30IA8MwYxalV01iK2GrDY7Nh70X8WA8AATEpV96WCtJb6Mx9Jpw+pdNbL7Lyxh85bwdtreW3ORedtgRFD31crrRyt8P6DRwyg+OpzK0kMQMmAIZlzLO/2N2GrIX52eBTn/cWmJsHTa8Pxnh0WrrJRCXP5AMBrUjodHD0YJ3vNvMhqYtw1WpmamYN+LU/DRr8djwU+GYMFPBuOp24aqCi/RCl976q+ob+bqyoMT0rpV/ltPgUJIBBe8Kru8yIl0+WsFa4dDV2PzobP4f58ewtUOaW+EWnEytSgZDUrj0VIPhvf835d1o/JGEmhVnq1FFY9Br0PukGS3BphP3DbUud+TF1rw39uOS0oLkPCc/9DCKIyPDseCvCEajIYINGTAENwIKrMrth/H8q3HNduvkkiXv1awC/OH4tPyH7Cl8jzzZwIVDvC1L46WejA8598UYcAEiY7XShQUVXppAb1WdATzJ6XhN1OHOzVaGq+0I9FkhDkuStQwEcsbSjSF497R/ZCfYfapJNmzZcFNfWJEtUhIeM6/CGFtXzyzWnUqJwIPGTCEKgx6HZ7MH4abzDFevWLUoiTSpSSxrpYDP1zCV0cvcH2GZTLXYvWfGGX0aTu1/ZzE4Dn/f/j3UaomBaUGlB+WnUKrxdtD5pnQLCW42NjSgVW7arBqV42mSdnTRqZgpT5wwnOkD+NACGurSbbW64AVs8Z0K/2nngbpwBA+Y+m0YcSSYrR3+nYrvT07C9NGyj9MhIkJkO/0zINS12hPWESvtKpievfrKhRsPqq43aI70/Hwj8QrfpT0YHg0W5SUmKONBvzxZ6NUTQqWThtuWrwZap9IOjg0hKZkmJnEzfwhYhgIw0Lcs2TET0f3xRQfPUuhStGhs1jw8X7FfC9XWJ43hH8hHRiiy9lb3eiz8aIDsHSTcnKskINjjnP3gEiIPisSE2ngNoSUwgFCE0Atqpj+t6ZReSOF7Xzp5+TJ1MwUPDRZumfVVYuVeV+ePL/+kGrjBXAYoa98UYmyqgamkII/krI9+1/5w3gRq0hrbLHgvV01mFVYhomvbw94pVxXM21kX6yYlcW0bUpcJFbOIeOlO0AhJMJnSk/W+7wPIRl1+ZZjyB2SLLuKFOv0fLHFoqofyo3x0ThSd5l5+3m5qbKrdavNjufWHxZ9zw6HofbKF5WYkmFmmtxYDQKl7Xzp5+SaUNs/IQobDshPjjzfT8Bqs6PosHzXchZqm9q47sdAJ2X7glxFmiu1TW14ZE05fjTsBkwemtxt+lMpIRXGS4mLxP23DkBqcnSPDrd1R8iAITRAu4fBiq9OYMVXJxTDLZ5JlACwUu9dHRUfHQ5Lpw2tHhO8TgfY7eAyXgAgP0O+R9eK7Sdk84F4J8yRN8ZjZ1UD03ZKGMP0mDdpkOJ2rogl1Mqh1iDYU92I1g713ht3+O/HUNBo4S1j//rYBXx97IIzATqUWzuwIra4IYOl+0IGDOEzOYOTNG+yKIRbePITpB5eAFBW1YDSk/WoutCCzRV1qkIVKQqlsFabHat3sakEs06YuUOT8fbXVUzbaY1S7owcvAaBlgZEmF7HnewdChotas+RGsXlUEZscUN0T7q/X5HwO/7oUaQ2P0EsB8Gg1yF3aDIWTrkJB76/pGo8OijnvuypbsSlq2zVWKwTJsu5TYgOR/YgbR/Ylk4bCkvUt2zgNQi0NCDW7T2NxdOHM23rKmIY7Ph6jlgVlwkiVCADhlCN0Fzwy0Nn8eCEVM33L9VkUW4sco0O1Sr5psRFMnmCtlay5XDER7HLlhv0Oiy7b4TsNgV+0LFgUfAVQ61BoGWbirrmdiSYIvDOnCykxElP+lpptFg6bVhVchIvbajAqpKTfjMSfD1HrIrLBBEqUAiJUIVYKWd8dDhgh5sXwhwbgbZOG5paO1SXPSu5zllLlpnDNkOSMCjZhDH9E5ASLy6S5onVZsdnB84w7f/B3FSuCVPoyeOZ3+PP5pKsCr6u+GIQCHoej64p5y5rF+P85TbMGN3PGVLcUlmHzw+cRWOLxbmNFhotcqJ7WodrtDhHaq4rQQQrZMAQ3EhpgTRdS15dmD/MLeN/S2WdTw9dOde51FjEcmhYXfAJ0UYs/am818OTPdWNaGxRDh/1igjDgryhXPsGAp+cyKrg64qvBoFQIu9pjKpBuNZCSDFncBJemJ6h6flTEt0DtM05sdrsiIsy4sHcVC9jjBU115UgghUyYAgulJoL6uDIQXAVehMmJjWKvUkmI8YOTFA9FteS3nFpiegTY8S5y/IP/qLDtbB02hRLT13Li5sZc19+dsuNmsnX+xMWBV8dgA9+NQ6NrRbNDCpPQy25VwRsNjse+WgfWtrZqpSkQlhanj+WHKE/l1Rj4uAbMGFosvO8qO3xJOZl5IVVcZkgQgUyYAgu1DYXnJJhxpKNlQD4DJiGFgt+9PuvRFf2vGMx6HWYNPQG/KNcPtQj5ArIlRzzlhcLTFEoww4WjGF6zJ+UJluF9NDkNEwadoPmx/Y0NEqrGpiNF5ZkazV4KuxWnLmkeO3tdmDu6j3OUN/+0xdVhZuU1I9ZmTexZ+jBED0HMmAILtQ2FxQa8KlBqqRazVgijQamz1Q3tEi+p7a8OFSqXQSESdVz0tXr4HddEVeD4fg5Nq0ek9GAP6hsYyBHcUUtlmz8FnXN7c7XosLZDYG6a8JyYiiFm1jF61jISw8N45kgWCEDhuCCNY/EcztfdD6kFGzVjIV1XS61nZry4lDuSOyLgq/avkBqwyV/nnuL5no4QlsIT652sFcasRgfhSXVeOb2dK/zqrZyToxQEOsjCB7IgCG4YOlIrNMBFz0SDH3VsBALTSmNRQdHYqmr12NM/wR8WHZa8Xhj+ovn3agpL/ZXR2JP1OZXKKGk4CtmqGyprPPyWphjI7Dknptlz4PacElKXCSyNc4PkmsLoTVSYUstjY5QEOsjCB7IgCG4YGlfb7cDj60tx0r99ZAPi+HDgusDXa6sVMrrkRIfxXQcqe1Yy1Bvz+iN6SP7BkzKPJDlvK5IldOLJWvXNbfjkTXlWCmhqaMmXOJ6nQFHvoxWVUZlVQ3cSee+IHZvaWF0iBnyBNEdoIwugpspGWZEM+QAuKroCsYG4FvnpJp694e8VHdqs4T4nGBIKeHpQRJgLUMdn+a/jsSeCDk5np4hIb+ioKjSL8eV6oysNOk/t/6wZkKDwnUGgImvb8eswjI8ue6AJl2ZtWhSyoPYveWreF0ohy8JQgkyYLopnsq0lk6bolItK2UnG9DKkAPgqaIrZWzwsG7vaa+xT81Mwc5n8/Dx/Gy8ef9ofDw/GzufzRNd5Rv0OiaZ+aWbxFsYzM1JhdI8EMhyVZacHH9IyPuSXHqptQNlIg0qWcMlC34yxO06AxA1pITkbzVGjKXThv2n2dpOPPajwXhh2nBEh7MliIshdc/4avhLGfIE0R2gEFI3RMytr9fBbYXui4prKUN3ZIG/7T2NsQMTnLkYgs7H8i3HVDWAlOp0zKPxkWCKUH0clvLi+ZPSAlauypKTw1IW7opnTsvYgQnYd+qiW2jG1+TS0pP1Xgm3rOGS3CHJzuvCqwXEAm+JfO7QZOQOSUb/xCg8ei20ymvYyd0zagX+5owfgFdmZJLnhei2kAETwkglT4olQXo+jNV0e74O++P58wNnsfHgWbdcDINeh9whyao7WG++tqJWm+OgthRcoCvLiz1hzclh2c5qs2PF9hNYvavarR2EmPE7PCWGe6zueF83NUnZanWJpOAtkXdtpCllaHieP09MEQb8Zqq8V9BV4K/o8FmmRPSxqf7PvSKIroQMmBBFzMsi9B1iMS/Urk4BIGdQMlZ8VcW8vavWxW+mDndowjRdRaLJqEoO/YPSU/ig9BTio8LxYG4qFuQN5Rq/2lJwV3wpL9YS1pwcpe2KK2ollZLFjF9fS3vFjAnepGxLpw1/26s8kQNsRquaEnnPRpqeSsL1l9uxdNMR2X20tFuZDCxXLyOLAWOOpaojontDBkwIItn/x6VklQXe1alA9uAkyUoTOf5cUo3P959RlPJn5dLVDizfehyrd9dg2X0jmD1Jalb6YiiVFwcCFsl/pZwcKa0TKXwVVYuPCnN6LTyR8mJ4lqLzhnlYjFaeEnm5EKxgaFhtdizf8h3T/njKpYX7V86IDDXRRIJQAxkwIYaWypwCvFoTBr0Oy+4bwTXpAY7yaq2MF1cutXZwhcN4VvpqxdgCha85OcL9FEgezE2TPYdKjSt5wjw8JcTsJfJ98M6csbLfgVeMj6dc2vX+BdjkAwiiO0IGTIihpTKngBqtiamZKVg5J8tLrEwtiaZwvDAtA5daLfjh0lVs4Oy2awdfOIxlpS82CfmS/OwvfMnJ8cf9pERqsklxG6mkbJ4wD+9kzl4iL2/E8orxxUeFcXtLWD1VBNGdIQMmxNBSmdNXgSvXlfLf9p7G5wfOqh5LY0sH+sZHYebYGwEAL07PwJ7qRmyuqMUHpaeY9sEbDpNb6UuG6XxKftYOT9XdZ25PV5WT0xXy8r6Is/GEeXgncy3CcWo8pJeudmJLZR33/aTkqSKI7g4ZMCGG1nLgvrqahZXy2IEJ2HjwLLfMviueKruCIcJqwHjugwWxlb4/SnO1REvV3UDLy/uam6FlmMcTteE41zBj/eV2VR4ttfcTj3wAQXQ3yIAJMcalJapKoPXEFGHAH/5du869LA9/JcQmU5aERaV98KJ1aa6WSOV/KHU1lkKrFg8s6OC7wdwvnu36jh0Yr+o4vOE4tY0nPemq+4kgQhkyYHooc8cP1DwEIvXwZ0FqZc7SewnQtt+Lrzox/oJVdVesq7EUcgnNWqJV7pCOUY+WdTsxWEvk1TaelEKL+ynYk84JQkvIgAkyrDY7yk42XFO7tSNnUDKyXfrp7Klu1KTB3ModJ2G12/DC9JuZx8XyYPR8+PeLj8Trxd8pGjTTM6Xd50LCsJROidaVF1roxPgDVtXdv+6uxvzJg5n3K5UQKujsZA1IwNz39nCNNT4qHPnDeyN3SDLMcVGaTaQ/XLqq6XZSsHTg1roaULif1BohoZJ03t0go7HrIAMmiBATE1vxVRXio8OdOidarvoLS2pQ09CKwl/cqjgungejMUyPX+amOZN7Wbwxf9/3AxZNlzZAhIRFMaVYrSsvtNKJ0RrW/I/lW4+jf2I01/mQSwi12uxM5+O//m0U6lvauR7ivA9/rYT7fEXr6q1EUzjGpSWqNkKCPem8O+JQrj6O1btq3J5HZDQGDp3dbvd36NuvNDc3Iy4uDk1NTYiNje3q4TBjtdmx+0Q9Pi3/Aa2WTsREhuPT8jOyn1k5JwtxUUbMKizTdCx/mjUGd4/qK/qe1INRmGJcH4zCZLSlsg6fc5ZBA8DH87OZcgACseIRvjcgrrPRFRPCqpKTiqquAjpoO0Z/nA81k7Wl04b0xZsVK4WOLr1TMYzmy330WfkPWPj3g0zbsvD27DHQ63XMvzVXrDY7Jr6+XdKgEgzMnc/mkWdAAwTD5d0dJ9FqsUpu9/bsMZg2Uvy5Sjjwdf4mD0wXUFxRi6f/flD25hdjycZvseM3eZonXb7w2WFMG5Hi9XDjqcbZUlnnczIjq3cpEJUXwaizwVLmK2AH8Pxnh5GX3keT9gZy52Px9OGIizJiw4EzzIaAWo+BVs00fQ23qGmBIcX8Sam4IzMFE1/frqryLZiTzrsDroZuTX0L3ttVjaarnYqfW/DxfqyADtNGkifGX5ABE2B4ZdtdqWtux75TFzVPumxu63R7uAk/2F0nLjA9GFdsP4E3th7zeSyBzilRIth0NngrvRpbOpBdsA2/vTdTE4NL7Hw0XG7HC59X4KJL2NMcG4El99wseUy1ZerCfZnRNw53jzTjy0N1bvtgEe4TVs/Ltx73eo8n3JLYS7mjOQvzJ6XhhekZKK1qUG2EBGvSeXfAlyozmx14bG05VuopfOcvyIAJIFabHS9v+NanfZy/3IYZo/uJroZ93S+g7ge7ele1z8ZLsPZuCTadjUXTMmCzg1mNtrHFomkOhOv5kCrprmtuxyNryrFS4phqPAbizUsjMXFIEqIjwpiE+4orarFkYyXqmsWPzaPx42ujxF4RYfjdzJHO1bkvRkiwJp2HOlpVmS1af7jLNKO6O4FtndvD2VPdiHOXfZPdFx5CUzNTsPPZPHz06/GIjwr3eWy9YyKdP1heo8g1gU0NWuiD9CTy0vtwf+aVLyph9UVl0IOiQ7WKnqDn1h8WPWZhCVsnc1ejWuy+PNfchk/Lz2DC4CTMmzRI0Xh5dE25pPEi4Go8ySEkevNiijBgYf4wHHz5drfQAqtxUX+5HRsOnEFpVYPz3Apjkfr16BC8C4RgRcsqs4utHVix3dvjR/gOGTABxFcXrmfPFINeh9whyVg2cwR0gGrliySTEWMHJnD/YHWAz8ZTSlwkVUhwwnsfCZPy8i3H3CY+tVhtdry4oUJxu0utHSiranB7zdJpw1ffXWA6Tu+YSMVwE6BsnKmZjJTOsaCfw8urPx2BJ/OHehnrSkYI4AiRLd10BE+uO4BZhWWY+Pp2FFfUuo3F8/PU3FEdWleZrd5Vo+kCgnBABkwA8dWFK/RM8URIsDR7rAjjo9mMixmj+2LfqYtcP1jhUfhgbirXZ8yxEfjo1+Px5v2j8fH8bOx8No+MF07U3kcrvjrhNvGpZU91I3MSa+nJere/PyytAUvdY0ykAePSErnCTXLj5Z2MWM7x1MwUzOO4/wHp0JOcESLgOf8JOTvFFbWSzwAzLRBUoXW+0KWrHYpePYIfyoEJIOPSEtEnJsKnMJJUfF4swdJms+OBVd8o7rNffJSia90ToRpnSoYZ6/Z+r1gVJYx2yT03I3dIMtexCHd8lf/3VRuE7+Hufp+yatmMHZAAg14narDzjol3MoqPCmcOt+RnmLFqVw3TtkphHKlKL6lkfc+cnWBLOg9l/JEvREnU2kMGTAAx6HV4ZcbNqquQAPlySM+EUyUBMoGlm44g0cTmrVnwkyHIHZLs9mBkqYrqyvLj7oJrB+rcwUn4R/kZVZVovjak5Hm4e96nrAJzk4beAKvNztzhvP5yO6w2u/O7eDZY5OHB3FTmc8JjTL5wZzre31Ut257A0wgpOXYB/5DRh/JMeHZ9Blg6bYrHI8TxR48wSqLWHhKyCzBiaru8/Co3FS/dzdYCQEqAjBclMSyxKpFEUzjuHd0P+RnmHrcS1FpsT6wDtU4HRIUbuPWEXGEVD3TFarMjd9l2Ra9dfFQY9i2+3e178wjR7Tt1kUu0UdBxAeDtxdCBKXSVEB2O/31xCte1UvqNxUeH49bUBGw7cp6pQaTrflkXO3dm9sHUzBTnvfa74iPMDSkJcQL17OzJkJBdCKFVWd6GA2fxgozsvitSbmk5pFb1comA5L6+jtY9aaTKle12oNVixV0jUzAlow9q6lvx8Z7TXOFANW5tg16HJfcoN9hcNnOk1/XnEaLjHVtdU5vkmFiXaT+75Ubue1ayl1R0OB6ckIYr7R2iZe9yHcSFxGNWNlecw+aKcwCAyDA92jptXMcjvFHz7JSCkqj9A3lgAoSS3DcvvCtnq82O93dVM0nR94oIw5V2d6XJ+KgwLJs5kkJACvC0XmCBVzrfarPjT9uO441tbGWbH80bj9yh6nKSpLyJrr27pBDzKHl6CEqrGjRvm8GClH6NEmJeN6vNrqr1gT+/O2urBcKBWiVegPoiKUEemBBB67I83tWpQa9Dcgybeqin8QI4KqDkxMm6I1abHWVVDdcqaRy5BdmDkiRXUlabHUs28ivMysHagfrD0hrMmzQI/6yoxX/zaE74sCgUvG5y3dOl8OxaLpajMS4tEYkmo6ay/Sws2fitqtwgMdHD93dVc10/AX8mfIodj5DG87ouyBsq2sRRIMlkxIzRfTGlB4bOAw0ZMAFC6weSmoQwLZLInushqpLincFPwBRhwO9njsS0kX29VtzfnGyQDd+o6UnDWrVzqrEVxRW1eGztfqbtBeqv+CasKGgRqaksM4bpZSdRg16HV2dk4rG16pPe1VDX3K5Z3yDW6/evYxeQ0TfOOeH5O+GTdVyENwa9Dk/mD8OCvKHYU92IuuY2NF5pR6LJCHNcFBktAYQMmACh5QNJ0MjgRYvMekGcTG3YIRSQS55sabfisbX7MeXAGVScaVblVeMxZlmrdvonRHPlTAh0dWXEVYsVvy2qRE1DK1KTovH8tAxEGQ3O96eNTMHDP7D3f9IKrRYcrNev5Hg9So7XO0MOUzLMmlfBqBkXIU2wtRnpiVAQNECwKG2yUvDTEaosfBbFThY8xcm6E44wkHK/qi2V51WHBHmMhrk5qVC61HodkG6O4R5PV8vLz/9gL4a/VIwPy06j5Hg9Piw7jeEvFWP+B3vdtls0LQMr7h+NmEiDxJ60R0yyXw0s188VQaNnS2WdorCdWvQ6x7gIItQhAyZAsChtsjAlozfuGt1P9eflFDvvzDQz7qX7ukcdLmHfwipy8BoNQtWOHPMnpaGxlS9PpKv7T83/YC+2VJ4XfW9L5Xk3I6a4ohavbT6Ky23qy8V50EFcsh9wGLilVQ3Mxg3L9XPFfu2fkCsl9lv1FaHKiyBCHQoh+RHPHAnhgeRZlqfXucuERxsNuNphdSv91OuAeRPT8MJ07/JHXs0RqZLnspMN2FyhrHzand2m/lbLvP/W/tyfEapy5Kp2Sj16Dsmh0wFvzWJLxtZazwZwhI2kjBeBLZXncdVixdfHzmsiPcCD57EEr8hDk9Ow8WAtd3m81PWTQ8iV8vyt1tS3YOW/qnBVpExaCdKBIQT88bvuCqiM2k/IaYF4Gg9jByZg36mLXuWXUhUaVpsdZScbsOtEPfbVNKLibBNaLDav4/BWC1ltdox9dYusyJ4aoa9QIhClu2qvj6sSr9g9wVOmz1I+rbWejcDizw/jw7LTits9ML4/th+94HP1ninCgJb2696b+OhwdHTa0OIhAKhG1ZinPF64fv86dgElx5XDsFKClYU7TuK1ImU5BIFoowEL84fiPyaQ54UQ/12bYyMxa9wApCZHB9Sg8XX+JgPGDygJ1j152xCMS0tC/ZV27puFRclXreaIsH85gbLuXkbtUJnd5tcwki/XRw4e5db4qHAsmymt1aJGz4Z1VTd31TdME/iIfrE4fKaZ5evI8tGvx0Ov07mNC4Bb+XdcVDheKzqqav+8Sqtvbj2O5VuPKW6XZDJizwv5Xvtk0QZyHVuoN3MUFmy8pfqEO1abHSu2n2C69wKlX0MGTBcbMJ6r4tnjByLvD//iWjWaYyOx5B7lm4VngvJFvrq4ohZLNla6lQT3JEEmnvPsC4mmcJQtytd0Vfzm1mNYvpVdB0bMIGXx5niOncdb88Jnh/DRN98rji3d3AtH664wfxcxUhh/AxsOnMGT6w74dCwWcUleNW6pfUqpM7vSHX6zRYfO4v99esjNgwY4xDZ/dsuNpLWigLCo2FJZh8/2n8FFzhY283JT/doKWwY0RgAAIABJREFUhgyYLjRgRPvTQH3fDDnvBmv/GU/U9LoRjtcdYqRqKa6oxdN/P+hTnyEWEk1G/PbeTM0mGd77JD46HPs8QoKsYTRh7ACYvTUO4/hbv3q4XGH1GGoROnzz/tGYIZNgr0aNW2qfVpsdT60rx5eH6tzOu14H/PimGzB/0uCQ/82yGGkA+wKwpyG2qFCLv4xhX+dvCoiqRPhxebpxfbEGn/n7QcmqBkEwiRe1SamCxsGM0f2cXW57ElMzU3B4yR146rah6BXhXr6bEheJhyenIT6arYO3HI0tFjy6ptxZ5SIHSwWM0KeI9Wpdau3Aiu0n3F5jvWcaWyx4ZE05nlt/WFJ9GHBU1Fhtdqf3gcd4UXvb6XTAivvHIC7KyFQxpIXMgVJ5vBo1bs9ybqvNjje3HsPYpVvwhYvxEm004N+y+uHo0jvx3i/HhfxvtuhQLbP2T12zowcWy2+opyD81rRSfxcS2YPtHFMVkgosnTbR5my+0mKx4k/bjuOpKcO83jt7UZ1yZlcLlXUFQlivqv4KLjS3o09sJNKSTV5S9UoY9Do8NWUYnrhtqKg36jdTh8tKivOg1GKAJ0QjlMo/9+lhpnG9u6MKC/KGOI/Ne8/I5WMJ6sNlJxvwyhfibRbkEGwOXs/mryem4bXNR5gTkAWZg0dVhA6FcK1SeTzvYkIo5xaIjw6HpdOKVot3BdJVixWflp9BfkafkPdEWG12/ObTQ9yfW9RDVMKVELSstAytuC5GgukckweGE6vNjqVffstcDsnLX3ZWe60UC4oq8X9V/KC7WqisKygoqkT64s1YuukI1n7zPbYcOY8135zG0k1HkL54MwqK+NVqpbxRgqT4vsVT8NG88YiPUueRcW0xIIbUakpuVTQ1MwVvPZDFdPxWixW7j9c7vTs2ux3m2AhN1X52n6hXvRoc0z8efWLd+3glmsIxpn88TB7esUSTEXnpN6CwpNrreLXXulUXHTorehzB8IuJ5FvX2cGmqcNrGHo+Yi61dogaL67bCt6uUKasqkG0H5sSF1s7UHaSXU6gu7Ji+wm/hWhrm9qwgqfXmp8hA4aD4opaTHx9O1MJqFqutHc6JzKrzY4Fa8vx7o5qqMlU6mkt3KXCegI2O/DujmpVRowcBr0OuUOTsWzmCJ8mfbEVuqXThuc/YwvReJI9KAkmI5t67SMf7cOswjI8ue4AHvjLN2jrtGm6gnt/d43qz+7//hLsdmBh/jD8KjcVvSLC0NjSgf3fX3ImdxoNOpgiDGhssWD70Quy+1vw8X4UHRJ3hU/NTMGe5/Oh47yQ+06JG5+uXGyxqA6JsaBkCIcKvih98+ghdUeKK2qZqox8YfnW40ETSiIDhhGtY4pynL/chuKKWkwo2IovJR60csRHh3f7cmdPeMJ6hSXVsKgQAlNiamYK3po9RvUk1Tsm0i3P5c2tx5FdsA2NLcohGrFJy6DXYfKwG5iO7amJ0nQtLOSZ/6MWz/3zcu5yO5ZvPYb3dtWIrs4tVrtXpYoUNjvw2FrpeH6U0YCHONRzAeAvJTWy91RxRS0eX1vuN8+tK/4WY/Q/vlh5oe198gWrza6qH5oagsXTRwYMA8KNEajLVVPfikfXlOPcZT55eJPRgIX5w7DvxSk9yngBgA9La5gnB5vdsb0/SDBFqJ6kth+tw8TXtzs9Icu3HkNjC9s9IDVpzckeqGosdjimkTCD+kdEsPv+5B7Ci6Zl4OHJaczfwQ7peyrQz49Qz3vzRek7Z1D3bTKrhJokcbUEi6ePDBgGAnljmGMj8PGe09wPu5lZ/XBoyR14Mn9ojwobCZxq5Ety5t2eFV9Wv4UlNZo3iMwelKS6WsoO+QRdJRJNRtWfDQRKD+FF0zLwwYPjmPcndU8F8vnRHfLe1N6zvSLCkN2N25woEWjPWzB4+siAYYDnQul1wN0jWZsiuqMDMGvcAFXl0p+Wn8GWSuU+Rt2VgYnRft2elUCvfnWQn7QMeh2W3TcioGMCgDsz++DF6cMDflxelH7bE4YmMyf1St1TgXzQd4e8N7X37O9mjgz57+4LgX72JJsilDfyM2TAMMB6Y8zNHoCjS+/EH37GnwdhijDgnTlZSE02qRihg0XrDwdFXLIrmJuTynzO9TrH9izwdh/WQk+EF6VJa2pmClbOyYI5NnAPuD3VF0MilKE0RoNeh9/eqzyZyt1TgTgPOh3w9uwx3SZ0LNyzrJ6YhyenYdrI7vHd1TJ2YIJfk8S9CAJbkXRgGBAmpbqmNtHQjqADseSeTBj0OpRWNXDnQbS0W7H/9EX8+KY+qscplBHmDukZcWBPteB5E1NRWFKj+Ln5k9ia2olpr/SJMWLS0BsQHRHm1VARcNcT8UWVmYVEUzh+e690PyNXXLsa1zW3YemX38omB/tKQ4sF0EH2d9OVsGq3AMDdo/pi48Ezsh205e4ppeeHFrw1K6vbTeDCPSuntZRoCserMzIxbWTfLhhhcLHv1MWAJIkL1F8JjJq2HGTAiCAmoy81KQlGqOsqWK3LuLCkGk/l3+TTw+6T//0e2YNCW4VTCUdTMu+HWkpcJKZk9Ma2I+dFf8h6nWOiWTQtQ/EYUj1rzl224B/lZ5x/v7rpCB6a7L5PQU/E0/jR0qBJMhlRuug2bmG+nMFJKK1q8KvxIlB/pT1gxhwPYr9ZJQp/cSte2/Qt/lJS4yXdr3RPqTVqdQCevG0o0m4woXdMJC62tOM/vzzSo3qUCVpLC/KGOo3vxivtSDQZYY6LCvl2CVoS6JyUYPCwBkUvpLfeegu///3vUVdXh1GjRuFPf/oTxo1jS57TuheSnOIpACY1VF/6qiyePhz9EqKciqBqLo7nmLpTXyO5btzCN/rvWWNwvrlNtRKvmp41D0/2nsSE8761sg7rVTRSE0OLTtZaNC5k4a6RKVgxO0uTniwJ0eEouJYXIXb9TUYDwsP0bq+nxEXinlEp2HiwllmRVwnP5q086s685+Ht2WO8PAvd6bdMaIsW/bxYYW2SqkTIN3P829/+hl/84hdYuXIlxo8fjzfeeAOffPIJvvvuO/Tu3Vvx81oaMEqdYsenJuCxHw9BmEGP+pZ2yQeImglQYNLQZDz24yG42GLB0k3qHvqukxzAZnQFM64dVd/bVSO7rS9duAXUPAh0AL579U6vyYy3+7ASWly7QD7o3p7tCG0I1/Dtf51AyXF2obL4qHA8mJuKBXnXq+usNjvKTjZcEy2zI2dQsrP6RGxyD6ZJ33MsF1vasXQTe8sDgpDCl3mHl4X5w/Bk/lCf9xPyBsz48eNx6623YsWKFQAAm82G/v3744knnsBzzz2n+HmtDBieix9tNOCPPxsl+4CZ/8Fe2Zi5EokmI/7z7puR0MuIxz8q5+61owMQFx2OptYOpi7BwYhUqIgFtV24AfUeihempWP+5MHOv7V4oJhjIzBr3ACkJpu4J1+piVsYl5ow5YKfDEbukBvwzckGvLFNWVI8yWTEnhfyATiMi7/tPY3PD4hL+bvy09F98fNbB0guEHw1SILZqCGvCqGW4opaPKKinxcvSp3XWfF1/u7SHBiLxYJ9+/Zh0aJFztf0ej3y8/NRWloq+pn29na0t19PHmpubtZkLDxaDa0WKx5ZUy6pdltQVOmT8QI4Ov0uWLcfD09Ow7KZI7hX8XIaHoJIWbA15nJFLlTEgi/xYLWx3b01FzF/8vW/1ep/LMwfqspgEXAYfiewele1V46QsLJXm5sytE8McgYnMZ/fhhYL/rTtOD4oO8UsygcAM7NuFDVAeZpaSiG2D4enJ82tqWWgEHKTCMJXpmamYGH+ML+3EwiG/Begi8uo6+vrYbVa0aePe+VNnz59UFcnrmlSUFCAuLg457/+/ftrMhY1E97LGyq8ymq17lT97o5q2Gx2vDMnCylx2t00wdw3RQi7+CKiVlPfovqzakuhPfsO8d5Tep0j5PJk/jCvxpGsFFfUYuyrW7B86zEvr5Vr80ch0djMeU8JD67kXuwaEG9sO85lvABAY6v39rxNLT1L4C2dNry59RgeEdnHpasdWL71GMa+uiVo+rwQhBoW5A2BOdY/Gi1KulOBJuSqkBYtWoSnn37a+Xdzc7MmRowai/LcZQv2VDe6rZ54JO1ZeXFDBfa+MMWtDLb8VKMmTSW7Sk3R0mnDX3fXYG9NA6KNYZiZdSMmXCv/1kJ2ffWuare8CR7UVo3cl3Wj29+899SKWWN8KoVVch97et7cSqubrmLppiO42GKRlQoYl5aI4opaLNn4repxsuB57qw2O5ZsFL8vhNf+7yeHYDKGYcKQZGyprFNVBXaptUPWu0oQwY5Br8OSe27WNPfOlWASS+xSAyY5ORkGgwHnzp1ze/3cuXMwm8XVbCMiIhARob11qVarwdMAYJWoDzfoMD4tETtPKHdPbWzpwPu7qvHL3DSnsXTPqL7YeuS8zwlbrhNFoGLxBUWV+HOJe4ftzw+cRbTRgIcnD9IkCe3S1U6fNHEED8WSjd8ytaY3RRicBpgA6z3FEwIRrlFd01U0tlgQH23EpVYLYqPC8Z9fKjdyc/W8CR4e4Z6KMhoUpQK2VNb57cEooNc5RLlcWbH9uKJC9ZX2Tsx9bw9MRoNo80ieMQdzeJUglOB9frEQjMnlXWrAGI1GjB07Ftu2bcNPf/pTAI4k3m3btmHBggUBHYvrqpsHz5Uiq0R9h9WOn9zUm8mAAYClm47grX9VXRNtSoFBr8M9o1Lw7g7pcJXJaECrxSr54I6PDse4tESmnAmtKCiqlBxzq8WK5VuVE0NZKa3SQtSPbQL7w7+P8prsWDw5C/OHMnuKtChHFhDzvEnp15iv3QdTMsyY+Pp2v+u52OwOUS7BsCquqOW6L3ztfA24G3kEEYpcFwI84XNODM9zKpB0eQjp6aefxn/8x3/glltuwbhx4/DGG2+gpaUFDz74YMDHIjzAX95QwdQJuk+M0SsWODcnFa9uOsL0kE/sFYFEk5E5P6CxxYLH1pbj4R/S8Jupw7HxoHysPjxMD7vMw/xSawd+V3wEf9v7g2iVj5BboKZaSUwvA4Cm+UHKqJ9qWcuflYw8KaNATeKplp4PqfDW1MwU5KX3EdU6Ka1qCFhTQsHAcoSO/BuuUhoDQYQqDiHAobjJ3EvV4icYvS6udLkB8/Of/xwXLlzASy+9hLq6OowePRrFxcVeib2BQrBan1y3H18ekjcQXpmR6WWRGsP0mD4yRfGzAGCOjcSrMzLx2Fo+r8+7O6oRFW5QvBlZkmDlPDhqq5UKiipRWFLtlgv0WtERjE9NDKjUdc4gdd4Xq82umIcTHxWOtx7IYlI9ds01UROeYxkPD2JJeK6ie58dOOOm1PuXndV4+e4MtHfaNBqBMoKB5cj56hrJ8mCptCAIX/F8BtXUt+LjPae9VJ0XT89AgskYMiX9XW7AAMCCBQsCHjKSw6DXYcXsLPSL987VAJR1YN68fwy2Hz2PVgnvh2tCpEGvw8M/pMkaEmK883UV1/Zq8cyZUEIqRGSzA6WcFU9SYZf46HBYOm2S51fYJlul+5+l/PnS1Q7odTrmH7cvpbJqy7HF0ME7CU8pNCV44v7Pbb4LV7GMz7VHUVd5QZJM3t5VgghlPJ9BC/KGhLz+UFAYMMHKomkZeOb29GvVMo2INhowc8yNmDA0WfZCG/Q6/PFno0QrQsT6sCyaloERfeOxYN1+5rG1dwZWf5BlItGyhHxh/jCs23vaXasjOhwPTnBodWyprJOtuFl23wjVP0bWSTNQk6tWxxHk+F0Nb5bQlOCJ+7CshvlYOjiuF0/7BLHfRld5QWaM7htyD3OC4KE76A+RAaOAMUyP+ZMHYf7kQVyfE9rBSyVEenpvkmL8U7evFSy6H1qVkJtjI7Agb4jsCkE4v55Z9ubYCCy552afYrask2ZNPVvFma/4Oon3ijBg/qRBXkl4PKEpO8DVANIOSIacdDrgtvQb8O3Zy4q/jXFpiTDHRgQ8jDQlQ7wKkiCI4IEMGD/Ck/sQ7AmDj320D6/PHClrGLCWkCux5J6bnedIboXga26JFEL5s1LYZvnWY7jJ3MvvCW7j0hKRaApX1UE60RSOskX5og0HtQxNuSKE/qRCfHY7sO3IBbw1O0sx3i5oWgRCHl0gmIS6CIKQpkuVeHsCgptOSVk12BMGm6524hERtVNXWEvIcwYlQCdyGkxGA7eAGOv55cGg12Hx9OFM277yRaWXGrMYlk4bVpWcxEsbKrCq5CQsHAmxBr0O96roO6ID8Nt7R0h2S1ZjNCeajIqF5axOuKWbKjEuLVHx2gnetvjocK/3xD6REB2OlXOy8PbsLCSajG7vJZmMuC39BtHj6CCeI0QQRHBCHpgggXXVL6CkKqrXwS8VP0s2fitZkTQ3JxWvFR2RPa5eB/z1V9kAIKrEGywTR4KJLaQnluDsKQi4/eg5rNrpXZU1f1IaFk3LYDpOfoYZqxQ6cbvCUv7IYzQLybWLp2fg8bX8PZQ84U0OF7xtZVUNKD1ZD8BhuN6amoi91Y1ur7lWht2RKe6hE0tclgrvEgQRnJABEyS4ip6x5iRIoQMwb2KaXzRX6prbJScdY5ge8yfJV1TNn5Tm9AioyS0KFDzeCddtWcXmbPbrJewsRgxrLkhcVBjefmAsU3k3r/r0y3dnIC+9D2Zm9UNRRZ1biEhtiIvnPBv0OuQOTUbuUPfyeLHXXD8jdq/6K/xIEETgoBBSECGInom5ylnR64C3Zo9BXjqbjs5dI1O4G3/JTTqLpmXg4clp8JwH9Drg4cnsHoeuhsc7IWwr1WxQjsKSaqZwkpALosTrM0cil9GTJRjNgLzecEpcJN6Zk4X9py8iffFm/KP8jNN40QG4e6QZi+9SHpsYXRk69Uf4MdTwbHjJEg4liGCBPDBBxnX55+NYvavGTSGXZZVrszvCH6wr2ykZffDm/WPw/q5qLN10hOkzSpOOUH4upuYaKrB6PISET7Vicza7o3pr3iRlT5SQC/Lc+sNeIoViJdIsTM1MwVuzs/Dihgo3RegkkxEzRvfFlAwzxqUl4nfFR0Q9a3YAXxwS7xwvh6feS3dFTJHa378D1p5mYt7C+KhwPJjrkCroiQYdEVro7HZPmbbQorm5GXFxcWhqakJsbGxXD0dTPB9EtZeu4ulPDip+bvnPR8McG4lZhWWK2348Pxs5g5NgtdmRu2y7YsM8c2wEdj13W494uCl1dwbgTDourWpgOt9izMkegOkj+jKHMqw2u1cuCEvIyHMfUsq7iabwaz23+gJwTMLpizfL5jbpAPSJjcS5ZrZwlA5QbFFhtdlRdrIBpVUNAOzIGZSMbBlPCY+xoGXjUqlx/q74iJcitU4H/HpiGl6Y7h9PpJhRIpYPpaT/Ex8VjmUz+Q1iguDB1/mbDJgQYlXJSSYvyeLpw/HL3DRMfH27ZH6DsALe+Wye88HNM2H3FIorapk8HhsOnMGT6w6oOkZMZBgut3U6//Z3/5GiQ7VeHhdXhGlcMDBY77t/y+qHT8vPAJDP0WL5flLnPT46HMtEPE1i7Sv0OogmSrNO8ixIjTMiTC/bemFKRm8U/uJWrmOxjEXMKPG8nlabHRNf384U6uxpv3cisPg6f1MIKYTwLAmV206uE7KY4ikgH6JwnTi0XL0GO1LVL54eD19yOVyNF8C3JppKyHUDF/DsgcWq7xMdESbauLJXhAF33GzGxKE3wByrfL/IGdKXWjvwyJpyjEtNwC2picgdkox/fXcOhSU1XtuKJUpLTfJqzrncOJX6Rm2pPI8vD5zFXaP7Mh1LCbkQpuf15NH/WbT+MFcfNIIIJGTAhBDmuCiu7aQ6IcuVizonbAnXvdjq1TPk0N2Qqn4Broci6pquItFkxMUWi89NF9U20VSi6NBZ5p5brmXOrPo+AxOjMTUzBTab/ZqHx2EEX2m3YndVA6Zk9FEsmXZ0n65UPNaemovYU3MRb/9LuSdYYUk1nrk9HQDw/GeHmSZ5pXPOOk45nv/8MO4cmaLJ9VUySlyvJ0/l18XWDpSdbEDuEHWNUQnCn5ABE0KwaMV4qoiqKRc16HXIHZLs9dCSWr02tnTgsbX78fAPl0KmyogXMa/Tlso6VS3qWeDVSVHCes2o4OX85TZmfZ+5OakorqjF42v3q/ZwOLpPa3s+bXbg+fWHsP27C7JJ8DznXItxNrd1anZ9efp38XoLS6vIgCGCEzJgQgglrRgpFVEtmnaxVNm8u6Mao25MwLSR3StmLuZ1Mhn1aLGwq+mqRasWE3uqG1XptPSOiWTW9zHodcxhDCkD2l8tNf5xLTeHBZYxaDVO3v1IhW8ToxnDy9FGbtFM3yQLCcJ/kAETYkiFhfyd+MkaN1+8oQJ3ZHafmLmU1ykQxgugnU4K70TpWeYseNbkEmVLqxqYwxhSBnUwtNRgGYNW4+TZj3j41oifju6L9k7xvlOeVNY2Y9KwG/Dy3RnM/aVyBpH3hQhOyIAJQbpCRZR1AmxosWjmFu9q1Gq7aIHWOilqJlxPb56Svg/rPVLXdFXyPYf+TqTmYSQWeM65FuPkaRopHb614D2OFhNvbD2OgUmOXKW3Z2fh8bXyyt/RRgOyu8FvmeiekAETomgRFuKBZwIM9s7arPirW7MSUlVivsATNpDz5hnD9JKie6z3yOIN3yLKaBDdv0NxmN07oDWs59zXcfI0jdTSkL7aYcUja8qxck4WALviPiNCSHyS6HnQ3UkwMS4tEYkmthYHwRAGkIJHOt3fhpjuWvglJc79fJmvSfdrGQ4U8qfkpsvb0m/Ax/OzsfPZPFXHFowkpSn5Srt8Z3O57tP+5KHJaVzfW26c8dc6Yq+4fwxiIt3XiSmc19cfhvQznxzEY2v3K253sbUDe6obNT02QWgFCdkRzBQdOqv40EvxEMcLJqRKwO8d3Q/51yTzXcfti7ouC2/PzsK0kYHV1fF3GbySwuv/b+/ew6Oo7/2Bv3dDNjcgF4LshmuAKMQQQ0AkIrRiuDS0UPXYUyj2QTkRlbReOL9KVBSLCl5aakEEqVIrAh4vFdCAkmKFYihKjBACckuoQBaFkARDbmTn90eYZXczuzszO7O3vF/Pw/OYzezuZBIzn3y/n4sjbz8rYofbtbtPYEu593EFy6YPx3f1TThRcxGCIODN3f9RdO5qf3a9dQz29fvrS5NELbz0yyxMy+odsPen8MVOvAxg/MpTIzQ57eEDRc6N1XXrpM0m4Ppntqmq3vFE74Rrb+TcUJW28Xf0UvERLC0+LOtcxFEW3rjreAtIz4FSe9OXez7+pHcg7U0wXhMKD+zES35VmJeO6/okdmhFH+ibsidycwhce5VEGA14elqGrKV2b36aacGE9F5B0bnYW/6UVLCw/NNjiIuKwC9H9kVuuhkj+idi74nzkkHQgGR5je8AoLjCKuvm6Nhg8fOjZ3GqthEpCTEYMzhZcg6U2m3MYMzfUl72rJ3E2MiwH7gpJRBDOEk5BjCkWF6mBZMy/FsF5Qu5OQRSvUryMlMw52St7A62CbGRTjd+PbsU67H15Kk9fkNzG17bVYXXdlXBaIBTObVjAKskePh72Sk8OkV+4qxUg0Up4k3f3Swwd4Ixf0vMXwpEYnOwLs/rue0qNVfrmaKDknO1KLAYwJAq/q6C8oWSv6rFXiW7j52zjw5wt+rkSLyB+6u8XSqXxdw9CtNH9cOA5DhV762kPb5r7rPj6tWEdDPM3aNgrW/2+jo1Da26lN07Nn2UQ+uyda2JZc8F60s9dkTWWu1Ffb4/vtByGKejNpuABzZ8hQ/3dUwul5qrRYHHHBgKey8VH8bS4iOKnpMQE4kltzvnVTj+1ZccFwUYgLM/NPt9BUpuoqzSX+q+5lo4TjjfVmGVvWKw9L+zcOtwfZJEpW52rlynNQczOYn0WgumJF65E7fVvO6TG8tx5oL0HyiO7/PN0z/hdpJGmAND5EGbTcD6PcqqUQCgtrG1w+yeYFh1UtITpFrhhGVf8z8cO+1OzrDgv7J7y2rhv+vI97oFMI5NH6trG/FB2Sl8UVmDRodp0Z6GmwabvMwUrLw8ssFfOTHBsq2mZOK2pz8mXLefzje0eG3o5/g+f91ViXt+NEjdF0GaYgBDYa196J73rQx3tJ4I7SulPUEEyP8atB5bMGZwsqwAZlvFGbTZBMXbXXK36hwDz9tG9PFr2boeHIOyTw5U493Sk7jQdGWUgCU+GgumDMWijw4qzgFypaRbsN7kTtz+665KzBqTan+OtwGsRoOyXJ9PKqwMYIIEAxgKa76sKmg9EVoLar4ed1+D6418RP/EDknIaoiBkDk+RtbxdQqnMm8tr8bCTRVObfzN3aOxcKq8VZRgWEnzlfg15Azqgcd/eq1kQGY0GnDf2lIYoD4ZV8tu0L6S+7O/6KODWPbpUUAQUNt4yf54QkwXp49FynOKguN6EAMYCnNarCoEU2mtVuXBUrkhCTGRqG30LXjpEWey/8U+KjVJ9mvKvcbuqqSs9U32FvmhsBWkJXcBmbvBr64VZFISYiOxxKW3TqAp+dmXCsKlghc1JqRfpcnrkO8YwFBYU1tO6yhYcgCA9q8nLioCDc3ypg+LHL8Gd4mQvgYvADAtK8X+F3uE0YC7xqTKamon5xq32QTMf3+/x2Pm/d/XQbXlF2hSg1/FHj7FFVb8veyUU6PGhNhI3HVjKgrGDw66a6jF/8tauGuM9Cww8j8GMBTWHMtplS6lB2Np7bYKq+LgxWgARvRPBKD/hO0J6WanjwvGD8aazyvdbkspuca7j5/zur3V0NKGl4oP4+GJ18g+53AntUIjbj89OiU9ZPKBfPl/WStzxqWyAimI8DtBYU9cSjfHy19J0WMitK/E4EMpmwDsPXEegL4TtqUSPiOMBiy5bZjk8d6usevgzc+PnZV1Hsu2H0WRRC8P6kgMbqZl9UaOzFERgaTm/2WtzBnHRna9f1uBAAAgAElEQVTBhisw1Cm4LqVXnb2It3ZX4bsfpPs+BGNprS/Bh5hjokc+j7dARJza3KHxnodrvPnr03j07/txoelK3kKcKULW+QgA7l9XihVoH5ZJ4UX8f3ne/5Xhg7LTmr2ua25Qt+gIjOiXiLFpPTlKIEgxgKFOw3UpvWD84KBoTCeXL8GHmGPiSz5PQkwkZt04ABu++I9TabqcYE8qF8PdNc7/2xfYVvFdh8cbWpRtnRWsL8VyDNdljAMFhmPl3LUp3TUJYMSfwOXThyMxLiokttOoHQMY6rRCrZxWbfDhuLUzKjUJSXGRqiZs5w69Cqk94/CHO7JUBXtyrvczHx2QDF7UsAnA/eu+wkqjIahW0kgdOV2V1QjG1VaShwEMUYhQUpbsyHFrJ8JowK1ZvfHarirF7/9u6Sl7YzpxTIGWAWDLJRv+slP5eXnz2N/LMX5IL24BhKjGljbMefNL7DgiLwdKiQVThmLWmFSutIQo/h9NFCLay5IHyD7eaABWzOjYFyXXpVJIDXF449Zy7ZJl3yyp0qWy5FxDC254thgvFR+xJwS3+XMiIqmW/7cvMPSJrboELwCQ3C2KwUsIYwBDFEIKxqchITZS1rHLpw+XTGJt30Yy+XQe4u3/qc0VmgUDJ2ouyj72t+MHw6DgvnP+YiuWFh/GAxvKMH31btz03HZNgy/SnrtcKHdiIpXfzoKpxxMpxwCGKISIZcme7t2JsZFYOTPbbfJqhNGAp6dl+HwujqMWtNA/KVbWcd2ju+CB3Kvx8vRs1e+lxwqSN65l4VwFcq+xpU1xLtSztw7DQ7lpSIjxHuAbEFxznkgd5sAQhRh3LeITYiJx15gBKBif5nVZPC/TgjknU7FqR6XP56NVafadOQPw9EcHvW4jPXPrMEQYDcjLtGAFslGwvlTxPBsl04u1ULTvNB7fWO7c9VbB96uzebZIeb8jc3wMbs3ug4LxadhTWYPiCqtkrlcw9ngidRjAEAUhbxOTlZQlu3v9H1/TC4fPXMCn3/iWX6DVMvwfPjnkNXiZkH4VfnbdlZWlvEwLfnMmDS/944ji9/PXsM5nPqrA6p0dA8XaxlYsLT6CNZ9XBd3coUCrOid/O9G1m7PjoMvrU5MU9R+i0MIAhijISJWLWiR+6aotA9eqHFXLUQstl2ySN3lXL88Y0eGxgT3jfHpvPYd1ugteHNVebMV9a0vxSiccROnOgB6x2KkgJvXURNGXQJ+CG3NgiIJI0b72acuuwYVWORviIEctghdAu2X4N0uqZG0DvVlS1eExX1eAzl5o1iUfpWjfaVlBGdC+GqRlQnSoe1Rmy/6rukZ6DfxCbVwCyccAhihIFO07jYL1pZKf06Lqp80mYOEmdYMck+KcEyPN8dGarhjIrUCSOk6cUqz2trToo4O4/pliTecntdkEPL6xXNFztEyIDnUxpghMSL/K4zEj+ieg5NEJXLXqxLiFRBQEtpZX4/51X3k8xtecjeXbj8Bar27lZfr1/S6XLbf/NTt6oLZ/yV5svuT9IEhXKjlOKVarpqEF968rRf63qXhsiu8D+/ZU1qjqdqz2+xOOVv/6erel1BPSr8LqX18fgLOiYMIAhijAlE6ZVpOzsbW8GkuLlSe6il7+5zH7f79XelLTJMg2m4CdR773epzR0F6p1HLJhjdLqnCi5iL6J8XizpwBmJxhwYO5V2Np8WGfzqV9y0fAY1Ou9el11ObV1PzQ7P2gTmT1r69HY0sbni2qQNW5ixjQIxaP5qUjRuZgTwpvDGCIAkzplGmlOR9KAyRvxHwcrbaQ9lTW4MwF6angjvKGWfCHTw5h9c5Kp3yZZ4oOIn9sKtJT4n0+FwBYvbMKcaZI/OYW9eXNavNyfG0wGI5iTBFY9PNhgT4NCkLMgSEKMCV/rfeIMyGrb4KihmhKAyRvtO7CK/frv9hyCat2VHZI9rUJwKodldhWccbncxH96R9HMGbJP1QnTYtzq5Qyx8eoej+izogrMEQBpuSv9XMNLbj2ya1ON/GkuEg8PS3DbeddPfIqtOyhIvfr//Qbz9tMRfur0aubCd9daNFkppK1vln1SpM4t0rJtl1SXCQ7wxIpwBUYogARW8tb6xrRNUr+3xKuKxA1Da24f91XKFhX2mFVZmt5NRZ9eED2ayfFRWLpf2eh4OZBso7XooeKtyoiA4Bu0REQvEQlNgEYm9bT5/Nx5Et5s5K5VQDw9LQMlvgSKcAVGKIA0KqZnKMP91Xjw8ulwJb4aEy9zoJXd1TKXo0woH2ezOQMC0qOncPyT495fY4WXXgdq4gMgNP5irfzEf0S8c/D3jsGx0Z1wcsz1I0XcEftSpM4t+q+taVevwdzxqW6XUFTw1snZ6JwwACGyM/EZnJ6tiyrrmtSNOcoMTYSix3a2YurIta6Jsnz1LILL+B+vpPY9v3U+UZZAUz/pFgkxpk0C15Earfh3H1doh5xJiyaliE5NVwtqeC4fe5SKgrGD7YHMgxyKNQxgCHyI7EiKFj6rXaNikD+2IEdBgrKWRXRehiep7bvLZdseKbooMfARCyz3qLDhGlfypsdvy5rXSNqGlqQ1DUK5u7tX1+bTcBrO487lYWbuqjb3XcXHLfPXTqMNbsqcdeYVNQ3tuDvZaecetVIjasg3zkGisldowABONvQzKBRAwxgiPxI64ogXy2aloFbs/tIfs7bqogeNzp3851MXYzIH+t5enb+2FSYuhg1Gy7pyNfyZndf1+KiCrdl4YUy2+mL5ATHYiAjxVrXhHvXluLuMQMwId3Mm6sGvG0VJ8VF4tas3sjl9VaFAQyRH+k5OFANb2W7vgzD03qLQryhu97wjQY43fC9bX+poUd58+KiCsmATCwLB6AoiPE1OBav1eu7qvD6riquyPigzSZg+fajXhsr1jS04rVdVXiN11sVgyB4y+0PbvX19YiPj0ddXR26d+8e6NMh8qjk2DlMX7070Kdhz2H51yPjdfmrT+5EbTWkOvG6brlomWdk0eE6tVyyYciCLV63xA4t+ons7aSNZafwwIYyjc6wnQHglGyFtpZXY+GmA7DWK9t2FH+6OtP19vX+zTJqIj/ydfCgFvTKYRG5m3hdfXmL4qXiIz41wDN1MWL22IH4/bQMzB47UPIGPznDgpdnZMPXL88Afa6TnOnbNkF6+rY7emydCQAK39/PKdkyiT/7SoMXoP1aCwAWbjrA6y0TAxgiPxKTYwH4LYhxvfdqPUnakZw8jKXFh33qciuXr9VIFh2vky/Tt90Rg2Otnb/YiuXb1c/R6iy0StC31jdj+fajmpxTuGMAQ+RnYnKs2eVmY4mPxpxxqZrfhGwCsGDKULz0yyyszx+Nfz0yXrclarl5GNb6Zk1WYzxRm29UcPNg3a+T1FRtX44DrgTHegTGr+44zlUBL7RM0F9afFj3AD8cMImXSCeecjU8Jcf+bvJQ++NVZy9i/Z7/+DwOILlbFKZl9dbgq/JMadCwtPgw1u85gYVTr9U8WFC7pdLYcsnn8Qje3JkzQHZZuBJicDz//f2ovdjq/QkyNbS0Yfn2I3gg92rNXjPcbKuwavp6T22uwIR0MyuTPGAAQ6QDOeWx7kprXR8vGD/Y3kPk7A8tqL3YAgECztQ3473SU7LOR4/8CK3ex5eZQ56orUb6e9kpPDpFn/wgkZKycKXE4Hj59iNY9dlxXGxt8+VU7dbsqurQL4jatdkEfFB2WtPX1GrWWDjjFhKRxsTyWHdTkxcXVSh6PTGgiTFF4PVdlXj5n8ew4p/HZQUvBrRvTflrSOCo1CRVPVP0SBZVm29U09CKPZU1mp2HO4V56ZgzLrVDjpLR0D5aQGkfGEcRRgMeyL0aq3890sezvKK20T/XJRTtqaxBTUOL5q8bbG0Xgg0DGCINtVyyYfVOzy38V++sRMslm6LXdVfZ440A/aqNpEQYDfh5lrqZPnoki7rLN/LGXzeOwrx0HFr0EyyYMhS/zumPBVOG4tCin/gUvDgaPaiHpjlVvKFK0+u6+GvlNFQxgCHSkB7lsb5UN9wypKffe0pMSDerfq4eyaKTMyz41yPjsT5/NApuHizrOf68ccgpC1fLcRVKC7yhStPjuiTERPpt5TRUMYAh0pAe5bG+VDf849D3fq9mULuNBFxJFtWauA330ISrPa5I+HvLzR8mZ1iwQoOeOOF2XbSkRwn7XWMGMN/ICwYwRBrSozzW1+XppzZX+LUE1pdtJKA9WVSv83UsNXa9Nejd4C+Q8jItWD59uOrn69XQL1xovdKVGBuJgvFpmr1euGIAQ6ShO3MGeP1LV2l5bNXZBp/OSaxm8CdftpH0ThZ1lxejZ4O/YJCXmYKVM7MVrxTo2dAvnEzOsOAhjcrMF982jMGiDCyjJtKQ1uWxbTYB6/f8x+fz8nfyZfs2UiRqGtT1ItH7fH0ZUhnKXL/uqrMNl/sMXWl9nxATidyhvTBmcA+Y42M6xXXRSsH4wVi/54SqUQJA+x83y6czWJSLAQyRxuROTZZjT2WN6l+GjvydfBlhNODpaRm4f91Xqp7vj/N114cn3HXsM5TW6QI5vUQYDVg49VrVg0SXTx+OvEwGL3IxgCHSQWFeOuZNHOK2E6+cicqA7ysR4tTpQCRf5mWmYM7JWo+rUa4Ceb6dVWcN5PSiphuyuPLC4EUZXXJgqqqqMHv2bKSmpiImJgaDBg3Ck08+iZYW50Y/+/btw9ixYxEdHY2+ffvi+eef1+N0iALCXXns4qIKDFmwBYs+Ooi/lZzAoo8OYsiCLZIN7pSsRARjUmphXjpWzMhG1yjvfysFw/lS8GuzCSg5dg4by06h5Ni5oJzRNDnDgr2PT8BDuWlIiIn0ejxXXtTRZQXm0KFDsNlsWLVqFQYPHozy8nLk5+ejoaEBL774IgCgvr4eEydORG5uLlauXIn9+/fj7rvvRkJCAu655x49Toso4MQuva7ELr02AXhsypUtJjnt8JPiIvHU1Aw8W3TQqdzaHB+NJ3+WHvD99LxMCyZltLe2X7OrCrWN0n+VBsv5UnBqswmSP0MJMZG4a0wqCsYPDqrAV+yGLG7Rbauw4oOy004dey38mfeJQRAEv4SvL7zwAl555RUcP34cAPDKK6/gscceg9VqhcnU3jNi/vz5+OCDD3Do0CHZr1tfX4/4+HjU1dWhe/fuupw7kRZaLtlwzYIt8PZ/3PJfZuGnDoMXxS68ANwGMZb4aCyYMhSJcVFOuQwAgiq/oc0m2M8nuWsUIABnG5qD4twoOImBy6odx3Gxxf1cp4TYSCy5bVhQBwOOP//8mff9/u23HJi6ujokJV3Z1y4pKcG4cePswQsATJo0Cc899xzOnz+PxMREf50akV+88XmV1+AFAAo2lKFLF6P9F7G4p/7U5gq3De2sdU2Yu+4rvDIz2z51umhfNR7fWB5Uf/Ex34KU2FpeLTuXpPZiK+5dW4qVQVzyzZ9/bfmlD8zRo0exbNkyzJkzx/6Y1WpFr169nI4TP7Za3Y8lb25uRn19vdM/olDwRdU52ce6Np+bnGHBZ//vZrcdbgWX5y0uqsD960o7DJirrmvCfWtL/d6dl0gpceVRbiKsaL7GQ0EpeCkKYObPnw+DweDxn+v2z6lTpzB58mTccccdyM/P9/mEFy9ejPj4ePu/vn37+vyaRP4Qa5K/4CnVfG7vifMeJ94Kl5/3538c8Vj5I8D/3XmJlPBl/lftxVY8sEFd+T6FFkVbSPPmzcOsWbM8HjNw4ED7f58+fRo333wzbrzxRrz66qtOx5nNZpw5c8bpMfFjs9l9F8/CwkI8/PDD9o/r6+sZxFBIuD27Dz4oOy37eNcSarkl1X/ZedzrMWKAxOVsCka+zP8CgA/3VSMv4zTyMtWPtKDgpyiA6dmzJ3r27Cnr2FOnTuHmm2/GiBEjsGbNGhiNzos9OTk5eOyxx9Da2orIyPYys23btuGaa67xmP8SFRWFqKgoJadNFBRuHJyMWFOEx0RER64l1HJLqhtkvr6/u/MSyaXFz+bjG8sxKcPSqZNkw50uOTCnTp3Cj3/8Y/Tr1w8vvvgivv/+e1itVqfclhkzZsBkMmH27Nk4cOAA3n77bbz00ktOqytE4STCaMAff3Gd1+PcTUQelZqEOFOEx+dGdZH/y1oqIAqFHhuuWi7Z8NrO43hiYzle23kcLZdsgT4l8pEWnZhrGvSdqUWBp0sV0rZt23D06FEcPXoUffr0cfqcWLUdHx+PTz75BHPnzsWIESOQnJyMJ554gj1gKOD0LHWcnGHBypnZeOS9fahrvNTh856aubXZBK+rN82X5AUcPeJMHQKkreXVHSqdAl215M3ioooOIxueLjqI/7kp1amfDoUWsf+RL9tIAFcZw53f+sDohX1gSEtby6uxcFMFrPUODeG6R2PhVG1v4u6acnkKGF7beRyLPjqoyfuvmNHetlwM1rZVWPH6rqoOx4khVDBOI3bXFFA0If0qrP719X48I9LS1vJq3Hu5/5Fa6/NHM88riPl6/2YAQ3SZt1+YevSXULLa88TGcvyt5ITP7/nTTAuWz8iWXHGRIs4n+tcj44Mmn6Dlkg1DFmyBtx0u16aAFFqK9lVj7vpSWf2TXFmC7GeWOvL1/u2XPjBEwa7NJmD++/s9HlOoQ38JsbHVtKzeyBnUw+Mv2/5JsZq854T0XvYeG3KW6MXybCX5BHrn0rxZUuU1eAGAwg/YEySU5WVasOy/h6t6LmdqhT9OoyYCsPv4Oa8Ns85fbMXu4+cwZnCyn87K2Z05A/BM0UFZN25PkuOi2v+qVfg8ufkE/sil2Xnke1nHXWhqY7l4iPtpVgr2n5Y/1bx9svPwoNvyJO1xBYYIwOfHzmp6nB5MXYzIH5vq8Zg4U0SHqdQisbpp3Z4TirubAvIqQ9yt7Fg17ADcZhOw9z/nZR/PRM7Q1z7VfDiS4uRMds5m/5dOggEMEYBT5xs1PU4vhXnpmDMuFa4r40YDMGdcKv5wuUzbNYgRP/5pphkf7Xc/qkOKu7JuV566p7qOOvDFnsoaXGiS1+sG0KYklwIvLzMFXzw2AevzR2P2mAEdghlLfDRWzmxPTqfOgVtIRGj/5aflcXoqzEvHvIlD8GZJFU7UXET/pFjcmTMApi7tf49IDX40X55W/fjGclXvKSefwFv3VMdcGl+2dJSsqMgJvCh0iDljOYN64NEp6Zzs3MkxgCEC3A5JVHuc3kxdjJg9dqDk5yZnWDAh3dzhl/ueyhrUNCjbOuoRZ8Izt2bIyifYViFvZcfXLZ3K73+QfWwoJXKKFWnWukac/aEFtY0tMADIGZiM0V4SvDsjTnYmBjBEAJJlbjPIPS7QpH65Kw0ckuIiUVJ4i31lx5M2myB7zpMvWzpF+6rxp38clXXsg7ekhUwiZ3v/oQOw1jd3+NzyT48hITYSS24bFjJfD5E/MAeGCO3N6rQ8LhgpCRwMAJ69dZis4AXA5dUd95OyRV2jIlRv6RTtO42C9fIbm6X2jFP1Pv4m9h+SCl5EtRdbca9GSdBE4YIBDBGutC73JNTzKeR8jQCQGBupuPOuY+diT35obpO91eRoa3k17l/3laIS8uSu/h/6qnQuk5z+Q44WbjrAvjZElzGAIUL7lsuTP0uHAdIVPAaEVj6FFMev0Z2fZZrx5eMTFG9V1PzgfvXAldKbsNKbvJ2f7/OLiyowZMEWLProIP5WcgKLPjqIIQu2YHFRhdvn7D7mvf+QI2t9MwcUEl3GAIbosskZFrwyMxtml1UKc3x0UM4CUkP8Gl1XYpLiIrFixnAsmzFCVZCmJLnZWt+M5dvl5bEAym/yorMN8oMqX4lzmVzjMpsArNpR6TaIKTmuvK8Q+9oQtWMSL5ED1wqe5LgowACc/aEZJcfOhUWpprsqJV++LnN8jKLjlxYfxjXmrrKCQjU3ecB//V9aLtnw6k7PXWJf3VmJeROHSOQUKb/m7GtD1I4BDJELsYJna3k1/vfdr3Vtia9Wm03A7uPnUHLsHABBcamt1iWoYn6NnNlKoqc2V2BCulnGOSu/yfszX+mNz6u8DhsUhPbj8sc5l77nDOqB5Z/KX40yd48K6TwsIi0xgCGSILbEd70viS3xtdpSUhKIiH1Ciius2PDlt2hovtKNNtCltmJ+jadp3q7kNrVTepMH/Juv9EXVOdnHuQYwowf2QFxUhNP30pNpWSkhvwJIpBXmwBC58FdL/K3l1che9Al+9Zd/Y/mnR7H802P41Wv/xnVPfYKifdUdjr3pue2Yvno3XttVJXnDC3Sp7eQMC1bOzEZCrPd5NSI5+RyjB/aQ/ZpGA7Bihn/zlWJN8v4OlDouwmjAC7dnyn6vTV9XswqJ6DIGMEQulLTEV0vs/VHXeKnD535ovoT715XaEz/dDUh0J5CltpMzLNj7+AT8V3YfWcfLyeeIMBqw5LZhsl5v+fThfp+Fc7vMr9XdcXmZKZgzzvOQTpGvP3dE4YQBDJELuVUeaqtB2mwC5r/nvSx41Y5KfFh2yu1qkDuBKrVtswkoOXYOH+47jWnXpXQYOCnl3IUm+/M2lp1CybFzksGXuLrjrpHglUF+/p9CfOPgZMSaIjweE2eKwI2Dk91+fni/RMRGyvt1zCokonbMgSFyIbfKQ201yO5j51DbKK8suPCD/YomL4v8fZPbWl7dYYCkHAUbypCw6YBTmXS36C7I7peIcWnJTkMqHaunrPVNqPmhGUlxJpjjY3SrDhPzjjxVa0UYDfjjL67zmP/zh19cZ3+e62ueb2jG3HVfyQ5SWYVE1I4BDJELuRU1xQetqip5lJQFqwleAP/e5NwlPMvl2uPlQtMlfHb4e3x2+Hs8U3QQ+WNTUZiXDsD36ik5AYmofT5RhVOXYXP3aCyc2rEKTVwhenLjAZy50OxwfBQWTr3WfrxUoGc0yOu5Z0B7TyJWIRG1YwBD5CLCaMCjeUPxm/VfeTzutX9VYXifBPw0q7fCd9C3isSfpbaeEp61IDaCA4DfTR7qU+8aqeDBXVm8mKPkylrfhHvXlmKlRBWat/467gI9JelKod4NmkhLDGCIJHwnc7ZPwYYydOliVFT1orQsOCnOhPMNLbKDhIVTr/XbTc5bwrNWXt1RiY1l1U6rId568jiutlSdvYg/FR+WVRYvZ3RB4fv7JXvYuFsh8jXQ4zRqoo6YxEsk4f2vTso+VmlJtZKyYEt8NJ6elgHA+7pNQmyk5MqAnvyVayOg48BIMfiQKht3LDt/YEMZlkoEL+LrAs7fw93HvY8uOH+xFbuPy+v/Avge6L08PTxGWRBpiSswRC5aLtlw4PQF2cfLbcgmEsuC5TR9u9DUXmb9yszsDtsfSXEm3JCahEE94xR34tVKIBNKBbQHda4dfZXm5DiWxecM6nG5qaB3O498j0PV9ThRcxH9k2KdEo5dqQ30xLyX0Rp2TSYKFwxgiFy8WVKl+DlKb1Bi0qdrkqgrsSfMnHGp+Ncj4zWdX6QFMeHZWtckGTAYAHSP6SLZ70YLrsGHL1s1V76H8p696rPjTke6Jhw7UhPoid9Z5r0QSeMWEpGLEzUXFT9HzQ1qcoYFu+aPx4O3DPZ67Kodlfi4vBo5g3pgWlZv5ARgtUWKOEIA6LjFJX783O2ZWCkxATtRQcdeb8TgY/exc6q3asTvYc5A9/1aHEkl47qbPC0GekqE0xR0Ij1wBYbIRf+kWNnHalHa+rfdJ2Qd9/jGckzKsARF4OJocoZFcovL7JJk61ihU3W2Aev+Le/rluOqbtHYWl4tq0GglITYSPv3cPSg9hwlb3kw7qyWmDytdFbUnaP7YeHUjIB/r30dGkqkJwYwRC7uzBmAZ4oOei1v1WKJf09lDWoa5N0oaxpaFeXa+JO3EmLAecr3n4qPKNrmMUB6Y0cMIJU2g3N1142p9nNVkqMkxSa0b0POHus8uHFCuhnx0RGo89Lbx2gAFvzUf5Vk7mwtr8b89/c7BXKBHhpK5IhbSEQuTF2MyB/rfTaNFkv8SnNngrmNvBigeNriUpOjMn5ITwDut6gWTEnHoo8Oqg5eukZ1QcF45228K6MLolS9ptQ25J7KGq/BCwDkDbO4TQb2F7EPjtQqVKCHhhKJuAJDJKEwLx02AfjLvyohONwZDWi/of7P2EGaJNEqzZ0J9TbyasqJ88cOwi9G9nW7RRUfY/KpRPn52zMlv4/iqtJfd1Vi0UcHFb2m1Dak3OBzQnovRe+ltTabgIWbOubxuFq46QDGD+mFvSfOB1ViOXUeDGCIJGwtr8Y7e086BS8A0C06AneM7KvZNs6o1CQkxUXK2kZKiosM+TbySleQLPFXborutqg2lp1SfT5zxqV6nF4dYTQguZuyVRijoX0b0pXeM7a0Is6a8sZa34zhv/8EDS1XVpWS4kz4eVYKJqSbGcyQ7riFROTC0/J5fVObpsvnEUaDvVGdN09PC3xSp6+U3px/eX0/+3+726JSc8OPM0VgxYzhkiXPrpS+fv7YVMktILESyd130IArAVsgKQkyHYMXAKhpaMHru6owffVu3PTcdm4zka4YwBA5ULJ8rqT7rid5mSmYM85zzk37SkGKJu8XSN5u4q6WFh/GmCX/8HgjVPqaAPBgbprs6yn39Y2G9u+Tu6BITsl5MPR80WoFqLqufW5U0T4GMaQPBjBEDpQsn++prNHsfQvz0rFiRjaS4kxOj/eIM2HFjGxZKwWhwNNN3B1rfbPHVS/H15Qruav8bSHx9T2Fq/+V3RuHFv3E6/dJLDk3u/SECaaeL6NSk2Durt02VsH6UhTtO63Z6xGJmAND5EDJ8rnWFUF5mRZMyvBcihwO3PWNcVcqLZrvZoCi42s++vdy1DS0eD0Hc3yMijN3Lze9l+zKITkl54EUYTRg4VT5PWu8sQnA/eu+wkqjISgCNAofDGCIHChZPtcj2dLdNONw43oT/66+Cc8UHfL4nNqLrdh97MuSLt0AABWfSURBVBzGpEl3yp2cYcH4Ib0wenGxx6RopXkm3qZTS81j8ibYv89iGblrHxhfKL1GRN5wC4nIgdzlc3P3qIAnW4Y6x6TcukZ5N8mS42c9ft7UxYhnbx3mMVHWXZ5Jm01AybFz2Fh2CiXHztlznJZvP+LxJu44jymcTM6wYO/jE/Dm3aMQFxXh8+uF4zWiwOIKDJEDucvnC6cGvlNqeJF7Lb0fNyHdjAdzr8aaXZWodQiMLC6jDRxtLa+WmPYdid//7Fqs2VUl68yCucmgWhFGA7pEGNHQ7L0BnxzWukZNXocIYABD1IGn5XO2UddHzqAeWP7pUVnHeSIViCTEROKuMQNQMD5NMujcWl6N+9aWdsi/qWloRcGGMlnnDwS+f4tetAzM5OQnEcnFAIZIgpijwUF2/jF6oPcBiomxkRg90H0A4y4QqW1sxdLiI0i7qluHpnVqRhtIMQA439Ds46sEJy0DsyQF1V9E3jAHhsiNCKMBYwYn438nXYP/nTQEY9KSGbzoRByg6Mni24a5vf5yAhGpcl41ow2kCADmrvsqLBu3iX1wtKBleTYRAxginTgmhe46cha7jp7tkCBKV1wZoOh8k7PER2Ollx4pcgIRsZzXMcjQOm/lqc0VYfe9VdNnR0owdBmm8MItJCIdbC2vxsJNB2Ctl95W8JRQ2pmp7ZGiJBBx7CdTdbbB11O2c6xGCuYSaTUmZ1iwYsZwzF33lerttmDoMkzhhSswRBoTZym5C14AwFrXhPs0nKkUTtzNPPJESZ6G2E+mzSZg/Z7/+HKqksKxGgloH3nxwC1pqp77UG4ag3XSHAMYIg15a3omEv+KDccth0BQmkD7zt5vsfvYOY9BplrhWo0EAL+5JQ0JsZGKnmOJj0bBeHWBD5EnDGCINLT72DnZnUvDtQGav7XZBCz66KCi53xQdhr3v7VX0/MIlmnSepKTbC0ywHPjQCJfMYAh0pC3TrFSwnXLwV/UVhLVNV3S7ByCaZq03sRka9fKJNcvO5gGVFJ4YhIvkaaU37zCecvBH4IhADR3sqRsqWTrEf0TsffE+aAcUEnhiQEMkYbkdpQVhfuWgz8EOgBcMGUoZo1J7XQ3a6mBlOFWfUXBjVtIRBoaPbCHosF3nWHLQW9aNlpTQsx56YzBC1EwYABDpKEIowEv3J4p69j8samdZstBTxFGAxZM8b3RmhKdKeeFKFgxgCHS2KQMC+JM3ldhVu+sZB8YjSTGmfz6fr26RzFBlSjAGMAQaWxPZQ0aWtpkHTv//f3sA6MBvRN5Oy6ycNWFKNAYwBBpTMnNVOwKS77RI5G3R5wJ44f0BNA+R8nRmXp2UiYKNFYhEcnQZhNkz+dRejMtOX4WY9KStTjNTktM5LXWName1QO0VxQld4uylwX/6IVPJY8T0L4G89TmCvtcJSLyLwYwRG6IQcu2Cis+KDuNmoYW++eS4kz4eVYKJqSbOwQzo1KTkBQXiZoGeR15uR3hO3Fi8n1rS2EAnIIY14/dca0oKjl2zmODvHAe3kgUCriFRCRha3k1bnpuO6av3o3Xd1U5BS8AUNPQgtd3VWH66t0YsWgbXio+Ys9liTAacGtWb9nvxZufNiZnWPDKzGyYXUqqzfHRWDkzG3PGpbp9rlTLe7lbgcHQSI+oM+IKDJGLreXVuG9tqeytiNrGViwtPow1n1diyW3DMDnDgtx0M17bVeX1uV2jIjB6IAMYrUh1iBVXyCZnWHBdn0Q8vrHcKSC1uOmiK3crMNCN9Ig6KwYwRA7abAKe2lyhKo+i9mIr7l1bipUzszEh3QxLfLTXGT3/c5P7VQFSR6pDrCgv04JJGdIBjitveTUGtK/usJMyUWBwC4nIgdrBgI6e2lwBoH1Lwlt2y5/+cRQ3PbfdqZqlzSZg19GzePHjb/Dix4ew68hZ1aXWLZdseG3ncTyxsRyv7TyOlks2Va8TTsQAZ1pWb+QM6uE2AVfMqwE6ZimxkR1R4BkEQQjpJhT19fWIj49HXV0dunfvHujToRD3+80H8LqMrR9v1uePRs6gHthaXo357+9H7UX3Cb3i7e+VmdkAIHl8QmykfXtKrsVFFVi9s9KpBNhoaO8AXJjn3861oWxreTWe2lzhFNi623YiIvl8vX9zC4nosjabgA/KTmvyWo6JnXUeghfgSoXM/76zDz80X5I8xnF7Suqm6VrmXXzwDF77V2WH42wCsGpH++MMYuTxlFdDRIHDAIbosj2VNR2qjdRK7hqlOJ/GXfDiaOGmAx36jkitEHjz6s5KzJs4BKYu3EWWw1NeDREFBn97EV2maTmsoE0+jStrfTP2VNbYPxYrppS+jyAAb3xepem5ERH5EwMYosu0LIc929CsW38Q8XV9qZgCgC+qarwfREQUpLiFRHRZewddkybbSHr2BhFf29cVnlgZE7OJiIIVV2CILoswGvDzrBSfX8dyuTeI2EdES+buUfa+I76u8Nw+vI8Wp0REFBAMYIgcTEg3+/waYm+QCKMBU6/Ttsx24dRr7Qm8vqzyxJoicCMHSBJRCGMAQ+TAl1UTowFYMWO4vcy5zSZg09fVXp4lT0JsZIcSavFc1RTz/vEX17EMmIhCGgMYIgdi91UDlM+IXj49G3mZV7agtKhCysvohbdm34C9j0/o0P/FU6dYd+KjI9z2kiEiCiW6BzDNzc3IysqCwWBAWVmZ0+f27duHsWPHIjo6Gn379sXzzz+v9+kQeeVuqrE74upIXqZzUGCta1R9DpbLE5RXzByJMWnJbldL3J2r6+EJMZF4KDcNpU9MYvBCRGFB9yqk3/3ud0hJScHXX3/t9Hh9fT0mTpyI3NxcrFy5Evv378fdd9+NhIQE3HPPPXqfFpFHrt1Xq85exPo9/4G1/sqKSkJsJO66MRUF4wdLBhhqq5nuHN0PC6dmyN7ikeoUO6J/IvaeOM/OsUQUtnQNYLZs2YJPPvkE7733HrZs2eL0ubfeegstLS14/fXXYTKZcO2116KsrAx//OMfGcBQUHDtvlowfrCidvJJXaNUvW92f+XBhlSnWHaOJaJwplsAc+bMGeTn5+ODDz5AbGxsh8+XlJRg3LhxMJlM9scmTZqE5557DufPn0diYqLk6zY3N6O5udn+cX19vfYnT2HDdUaQGHS4Pi5nxUJpO3lzd3XJwGqfR0TUmegSwAiCgFmzZuHee+/FyJEjUVVV1eEYq9WK1NRUp8d69epl/5y7AGbx4sV46qmnND9nCj/upghPvc6CTV9XOz1uNMBparMW04bVNMbrEWey93khIiL3FCXxzp8/HwaDweO/Q4cOYdmyZbhw4QIKCws1P+HCwkLU1dXZ/3377beavweFPnczgqrrmrBqR2WHx20u/fir65pw79pSvFR8GG2un5QpwmjA09MyFD3ntuzezFUhIpJB0QrMvHnzMGvWLI/HDBw4ENu3b0dJSQmiopxzAEaOHIlf/epXeOONN2A2m3HmzBmnz4sfm83um4lFRUV1eF0iR77OCHK0tPgI1u/5FgunqluNycu0YM7JVKzaUSnr+A/3VWP+T4YyiCEi8kJRANOzZ0/07NnT63F//vOf8fTTT9s/Pn36NCZNmoS3334bN9xwAwAgJycHjz32GFpbWxEZGQkA2LZtG6655hq320dEcmg9Bdpa34T71pbiFZX9Uwrz0nFdnwQ88v5+XGi65PHY6rom7KmsYQIuEZEXuvSB6devHzIyMuz/rr76agDAoEGD0KdP+/yVGTNmwGQyYfbs2Thw4ADefvttvPTSS3j44Yf1OCXqRPSaAv3U5grV20l5mSn4/dRrZR2r1/kTEYWTgHXijY+PxyeffILKykqMGDEC8+bNwxNPPMESavKZHpOgBVxZHVHLHB8j6zg9J1kTEYUL3RvZAcCAAQMgCB3/cs3MzMTOnTv9cQrUiYgzgqx1TZrkwTgqrrCq3t7xdl4GAObLk6yJiMgzzkKisOM4I0hrfy875VNVkrvZReLH4iRrIiLyjAEMhSVxRlBSXKSmr1vT0OrTNpK72UXm+GjVScJERJ2RX7aQiAJhcoYFja02PPR2mfeDFfA1yVZqdhFnFRERKcMAhsKaHm35k1XOOHKkdCwBERE54xYShTUxcVZTWmcGExGRYgxgKKzpkdB7tqHZ+0FERKQrBjAU9iZnWPBQ7tWavR77tBARBR4DGOoUCsYPRny07ylfFvZpISIKCgxgqFOIMBpw902pPr8O+7QQEQUHBjDUaRSMT0NCrLq+MEYDsGLGcPZpISIKEgxgqNOIMBqw5LZhHbrgyrF8ejbyMlM0PyciIlKHAQx1KmInXLml1Zb4aKycmY28TK68EBEFEzayo07HtRNuctcoQGgvj06OiwIMwNkfmtkhl4goiDGAoU6JnXCJiEIbt5CIiIgo5DCAISIiopDDAIaIiIhCDgMYIiIiCjkMYIiIiCjkMIAhIiKikMMAhoiIiEIOAxgiIiIKOQxgiIiIKOSEfCdeQRAAAPX19QE+EyIiIpJLvG+L93GlQj6AuXDhAgCgb9++AT4TIiIiUurChQuIj49X/DyDoDb0CRI2mw2nT59Gt27dYDCE9tC9+vp69O3bF99++y26d+8e6NMJO7y++uL11R+vsb54ffXneI27deuGCxcuICUlBUaj8oyWkF+BMRqN6NOnT6BPQ1Pdu3fn/zw64vXVF6+v/niN9cXrqz/xGqtZeRExiZeIiIhCDgMYIiIiCjkRCxcuXBjok6ArIiIi8OMf/xhduoT87l5Q4vXVF6+v/niN9cXrqz+trnHIJ/ESERFR58MtJCIiIgo5DGCIiIgo5DCAISIiopDDAIaIiIhCDgOYINLc3IysrCwYDAaUlZU5fW7fvn0YO3YsoqOj0bdvXzz//PMBOsvQU1VVhdmzZyM1NRUxMTEYNGgQnnzySbS0tDgdx2vsm5dffhkDBgxAdHQ0brjhBuzZsyfQpxSSFi9ejOuvvx7dunXDVVddhZ///Of45ptvnI5pamrC3Llz0aNHD3Tt2hW33347zpw5E6AzDm1LliyBwWDAgw8+aH+M19d3p06dwsyZM9GjRw/ExMRg2LBh+PLLL+2fFwQBTzzxBCwWC2JiYpCbm4sjR44oeg8GMEHkd7/7HVJSUjo8Xl9fj4kTJ6J///7Yu3cvXnjhBSxcuBCvvvpqAM4y9Bw6dAg2mw2rVq3CgQMHsHTpUqxcuRKPPvqo/RheY9+8/fbbePjhh/Hkk0+itLQU1113HSZNmoTvvvsu0KcWcj777DPMnTsXu3fvxrZt29Da2oqJEyeioaHBfsxDDz2EzZs345133sFnn32G06dP47bbbgvgWYemL774AqtWrUJmZqbT47y+vjl//jzGjBmDyMhIbNmyBRUVFfjDH/6AxMRE+zHPP/88/vznP2PlypX497//jbi4OEyaNAlNTU3y30igoFBUVCQMGTJEOHDggABA+Oqrr+yfW7FihZCYmCg0NzfbH3vkkUeEa665JhCnGhaef/55ITU11f4xr7FvRo0aJcydO9f+cVtbm5CSkiIsXrw4gGcVHr777jsBgPDZZ58JgiAItbW1QmRkpPDOO+/Yjzl48KAAQCgpKQnUaYacCxcuCGlpacK2bduEH/3oR8IDDzwgCAKvrxYeeeQR4aabbnL7eZvNJpjNZuGFF16wP1ZbWytERUUJ69evl/0+XIEJAmfOnEF+fj7efPNNxMbGdvh8SUkJxo0bB5PJZH9s0qRJ+Oabb3D+/Hl/nmrYqKurQ1JSkv1jXmP1WlpasHfvXuTm5tofMxqNyM3NRUlJSQDPLDzU1dUBgP3nde/evWhtbXW63kOGDEG/fv14vRWYO3cupkyZ4nQdAV5fLWzatAkjR47EHXfcgauuugrDhw/H6tWr7Z+vrKyE1Wp1usbx8fG44YYbFF1jBjABJggCZs2ahXvvvRcjR46UPMZqtaJXr15Oj4kfW61W3c8x3Bw9ehTLli3DnDlz7I/xGqt39uxZtLW1SV4/Xjvf2Gw2PPjggxgzZgwyMjIAtP88mkwmJCQkOB3L6y3fhg0bUFpaisWLF3f4HK+v744fP45XXnkFaWlp+Pjjj3Hffffht7/9Ld544w0AV36n+vo7gwGMTubPnw+DweDx36FDh7Bs2TJcuHABhYWFgT7lkCP3Gjs6deoUJk+ejDvuuAP5+fkBOnMieebOnYvy8nJs2LAh0KcSNr799ls88MADeOuttxAdHR3o0wlLNpsN2dnZePbZZzF8+HDcc889yM/Px8qVKzV9Hw570Mm8efMwa9Ysj8cMHDgQ27dvR0lJCaKiopw+N3LkSPzqV7/CG2+8AbPZ3CEDXvzYbDZret6hRO41Fp0+fRo333wzbrzxxg7JubzG6iUnJyMiIkLy+vHaqVdQUIAPP/wQO3bsQJ8+feyPm81mtLS0oLa21mmVgNdbnr179+K7775Ddna2/bG2tjbs2LEDy5cvx8cff8zr6yOLxYL09HSnx4YOHYr33nsPwJXfqWfOnIHFYrEfc+bMGWRlZcl/I18Sdch3J06cEPbv32//9/HHHwsAhHfffVf49ttvBUG4kmDa0tJif15hYSETTBU4efKkkJaWJvzyl78ULl261OHzvMa+GTVqlFBQUGD/uK2tTejduzeTeFWw2WzC3LlzhZSUFOHw4cMdPi8mmb777rv2xw4dOsQkU5nq6+udfufu379fGDlypDBz5kxh//79vL4amD59eock3gcffFDIyckRBOFKEu+LL75o/3xdXZ3iJF4GMEGmsrKyQxVSbW2t0KtXL+HOO+8UysvLhQ0bNgixsbHCqlWrAnimoePkyZPC4MGDhVtuuUU4efKkUF1dbf8n4jX2zYYNG4SoqCjhr3/9q1BRUSHcc889QkJCgmC1WgN9aiHnvvvuE+Lj44V//vOfTj+rFy9etB9z7733Cv369RO2b98ufPnll0JOTo795kDKOVYhCQKvr6/27NkjdOnSRXjmmWeEI0eOCG+99ZYQGxsrrF271n7MkiVLhISEBGHjxo3Cvn37hGnTpgmpqalCY2Oj7PdhABNkpAIYQRCEr7/+WrjpppuEqKgooXfv3sKSJUsCdIahZ82aNQIAyX+OeI19s2zZMqFfv36CyWQSRo0aJezevTvQpxSS3P2srlmzxn5MY2OjcP/99wuJiYlCbGyscOuttzoF5KSMawDD6+u7zZs3CxkZGUJUVJQwZMgQ4dVXX3X6vM1mExYsWCD06tVLiIqKEm655Rbhm2++UfQeBkEQBMUbXEREREQBxCokIiIiCjkMYIiIiCjkMIAhIiKikMMAhoiIiEIOAxgiIiIKOQxgiIiIKOQwgCEiIqKQwwCGiIiIQg4DGCIiIgo5DGCIiIgo5DCAISIiopDDAIaIiIhCzv8Hj3u6XzLnyX0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOyde3hU5dX275nJTJIJyYQkwoSTCSchhlMomBilLQbFYEGhnxWVVupLtUI/BN+3QpUKRQu2b6t+BUUp4oECrS0WlDQ2HCwQkkI5hwBCSEQhAZOQBHKaZGa+P4Yd5rAPzz7NTJL1u65elcmePXtm9uxn7bXudS+D2+12gyAIgiAIIgwxhvoACIIgCIIghKBAhSAIgiCIsIUCFYIgCIIgwhYKVAiCIAiCCFsoUCEIgiAIImyhQIUgCIIgiLCFAhWCIAiCIMIWClQIgiAIgghbIkJ9AGpxuVy4dOkSYmNjYTAYQn04BEEQBEEw4Ha7ce3aNfTp0wdGo3DepNMHKpcuXUL//v1DfRgEQRAEQSjgq6++Qr9+/QT/3ukDldjYWACeNxoXFxfioyEIgiAIgoWGhgb079+/Yx0XotMHKly5Jy4ujgIVgiAIguhkSMk2SExLEARBEETYQoEKQRAEQRBhCwUqBEEQBEGELRSoEARBEAQRtlCgQhAEQRBE2EKBCkEQBEEQYQsFKgRBEARBhC0UqBAEQRAEEbZ0esM3gggWTpcbB8prceVaC3rFRmF8agJMRpovRRAEoScUqBAEA/kllVj2SSkq61s6Hku2ReGl76VhcnpyCI+MIAiia0OlH4KQIL+kEj/dcNgnSAGAqvoW/HTDYeSXVIboyAiCILo+FKgQhAjXW9qx4M9H4eb5G/fYsk9K4XTxbUEQBEGohUo/BCHAnA8OoqD0iug2bgCV9S04UF6LrEGJwTkwgiCIbgRlVAiCB5YgxZsr11qkNyIIgiBkQxkVolvB0rnT7HDKClIAoFdslJaHSRAEQdyAAhWi28DaufPrvFLmfRoA2G2egIcgCILQHir9EN0COZ07FTVNsvb90vfSyE+FIAhCJyhQIbo8Tpcbyz4pZe7cSUm0Mu032mzEW49nkI8KQRCEjlCgQnRpHO0uLN1WEpBJ8ca7c8fpcmPi0F5M+z74wiQKUgiCIHSGNCpEl2VFXinW7i0Hq8XJjtIq/PRPh1DX1Ca57aS0XugRRT8fgiAIvaErLdElWZFXirf3lMt6zrrCCqbtJqX1wtofjlNwVARBEIRcKFAhuhyOdhfW7mUPUgwADAZIZl6izEb854VJlEkhCIIIIqRRIcIGp8uNorIabD16EUVlNYpt6T8sqmAu9xjg0aiwbN/S5sKJi/WKjokgCIJQBt0aEmGBltOJv6xlby+226Jwf7od7zKWfVgcaJ0uN4rP16CorAaAG1kDk5A5KJFamAmCIBRAgQoRMjiX2B2lVbz6EM7jRG4L8K0JbO3FszIHYOnUdBwor2UPVBpa8L+fnQZgQNagRGQO9A1A8ksqsWjLCR9B7qrdZYi3mrFy+gjqEiIIgpAJBSpESODLoPjjhqc0s+yTUkxKszNnJHrFsdnZj0/1DBF0ud2wRZtR3yze7WMA8Ere6Y5/r9p9zicAyS+pxNMbDvM+t66pDU9vOIw15LtCEAQhC4Pb7e7U8+kbGhpgs9lQX1+PuLi4UB8OwYDYgi7EpjmZTNOJOQda1pM63mpmakeW4s1Hx+BXn55CVYN4acgeF4nCRfdQGYggiG4P6/pNYlpCN/jEsU6XG4u2nJC9L1ZtiJADrRBaBCkA8OLWEskgBQCqGlpxoLxWk9ckCILoDlDph9CF/JJKLN1W6rN4J8RYcOfAREXBAct04gPltaKlJD2pbWR/TyxBF0EQBOGBAhVCc4RKO7WNDnx6opLnGeJYLSam6cQ7Sqtk7zsUsARdBEEQhAcq/RCaorS0I0aTw4nf5J8S3Sa/pJLZWVYvYhmM4OxxkUxBF0EQBOGBAhVCU4rP12im+/DmnT3lcLS7eP/GaVNCzfcz+kpus3Tq7SSkJQiCkAEFKoSmeEzOtMcNj+MsH6HUpnhz7+3JWPN4BuKt5oC/xVvN1JpMEAShANKoED5wJmxXrrWgV2wUxqcmwGQ0CD4eiH7d7kKOs3qLU+1xkWhoaUeTwym4TbLt5mcyKc1OzrQEQRAaQYEK0QGfCVtCjBlj+sfjyFd1Pp0tQvb2WQOTsGp3mS7HJ+Q4q6U4NSHGjF99Lx2JsZE+QVlBaZWg94sBwEvfS+sIRExGA7IHJyF7cJJmx0UQBNFdodIPAeCmUZp/CaW2sQ07T38T0H7L2dvnl/h28WQOSkR8tPbxrwHArKwU3r+NT01Ask15sNIj8ubx1ja24ZV/nEJ9swPTRvdF1o1MyOT0ZExK68X7/Jy0XlTSIQiC0AkKVAhFRmnctss+KfWZcmwyGrByxkhNjw8AfjIhFZYI4dN17K09RZ8/Ka0X7HGRPo/FWDz7u97a7vM4XxC2Iq8UBaVXePddUHoFK/JCL+YlCILoilCg0s1xutx4r7BckRjVDaCyvgXF530FtJPTPaJSmwaZFQOApyakYnFuGu/f80sqkb1yJz49Lu7Psv9cDV6YkoaEGEvHY40O/i4i/yDM0e7C2r3lovtfu7cce8984+PCSxAEQaiHZv10Y1gGA7IQH23GyhmBk4GdLjeKy2rw0aGv8Pejl5j29YvJw3CqqgGNDifGpfTEj+4UzqTIneujhE1zMlF6qR7Lt4v7uPgTH23G7OwUzJs4hES0BEEQPLCu3xSodFO0XuQNAN4SaL91utzIXrkTVQ2tovtItkVh3/MTmRZ2p8uNu17dpXtb8pPZKWhzufFB0ZeKnm+LjsCrM0aShoUgCMIPGkpICKJEk8KCv16Fw2Q0YOnU2yWf7905I0WwvFM2/+cr9O8Zrfj59c3teJpHdEwQBEGwEbRAZeXKlTAYDHj22Wc7HmtpacHcuXORmJiIHj16YMaMGbh8+XKwDqnbosciz+lVhCYDc7oVPjO0ngrM0II12K+x1YmhvWKhtnqzaMsJ0q0QBEEoICg+KgcPHsTbb7+NkSN9u0EWLFiA7du346OPPoLNZsO8efMwffp0FBYWBuOwui16LvLcvvkM4jwtvnYUl9Wg6Hw1AAOyBiUic6B8M7RgDvY7+GUt5tydirf3iAtqxahrakNxWQ2yh5C3CkEQhBx0D1SuX7+Oxx57DGvXrsXLL7/c8Xh9fT3WrVuHjRs3YuLEiQCA9evXY/jw4SguLkZmZqbeh9Zt0XOR7xUbxSvS9TaIyx6SpHrB5rxTqupbdBXTejB0dB2t3VsOpYmRovPVFKgQBEHIRPfSz9y5czFlyhTk5OT4PH7o0CG0tbX5PD5s2DAMGDAARUVFgvtrbW1FQ0ODz/8IeXCLvNa9KEYDsOv0ZV7jOCGDOKWYjAa89D1P8CD2PowGYM7dKegRaVL8WlmDEgEAi3PTcHr5/VgyZTjuTestez9U+SEIgpCProHK5s2bcfjwYaxYsSLgb1VVVbBYLIiPj/d5vHfv3qiqqhLc54oVK2Cz2Tr+179/f82Pu6vjvchricvtyTjwrcdCBnFqmJyejLcez4Ddz5U2NsqE7wxNwpIpw3F6+f14Ycrt+I1CE7oekRHIHJjY8W+T0YC0PjbcPyIZsVHyEpKbD35FolqCIAiZ6Fb6+eqrrzB//nwUFBQgKkq7UsPixYuxcOHCjn83NDRQsKIAbpHXwkeFFW/BLZelUAune5EamJg7sg+e+rpOts7k4W/169hXfkkllm4rRVWDss+rttGBpzccxpuPZiB3JLUrEwRBsKBboHLo0CFcuXIFGRkZHY85nU7s2bMHq1atwmeffQaHw4G6ujqfrMrly5dht9sF9xsZGYnIyEjBvxPseC/yVQ0tqL3eiq+vNmH9fmWeIawoXeiFMBkNTIHP4tw0jOrXEy9uLUFto4Np35PSPOdifkml4FBCuczbdBirMAa5I/tosj+CIIiujG6Byj333IMTJ074PDZ79mwMGzYMzz//PPr37w+z2YydO3dixowZAIAzZ87gwoULyMrK0uuwCD/4Fvk7BiZi0ZYTqGtqE3iWOpZ/ehLRZmNITNByRybjvnQ7is/XYO6fDqOuWfg9Jts82Rmny41FW04Ibgd4dDKsBS2XG3hm4xGsuTHskCAIghBGN41KbGws0tPTff4XExODxMREpKenw2az4cknn8TChQuxe/duHDp0CLNnz0ZWVhZ1/ISYyenJOPTiJCzIGYIos/anSG1jm6bCWrmYjAZkD07CyhkjYECgGJd7jDOgKz5fIxm0uQG8kDscszIHMB+HlnodgiCIrkpInWlfe+01PPDAA5gxYwYmTJgAu92OLVu2hPKQiBuYjAbMzxmKI0vuVdQdxPKcUC/UQmJcuy3KZxxAUVkN39MDqG9uQ+4I9nKOmEEeQRAE4SEohm8cn3/+uc+/o6KisHr1aqxevTqYh0HIINpiwk8myDM7e2pCKj46dFFUB6KHsFYJbGJc1mDKjbG39kRCjBm1jWxls2A57BIEQXRWaNYPIcni3DQ8wNilsiBnKBbnpmHJlOFM24fDQs3pdKaN7ousQYEuuVkD2Uzazl1pROaKHcxBCgAkxZAwnCAIQgwKVAgm3nhkDHrHWkS3scdFYt7EwZ7/trEN8gumFb5SMgcl8s4o8if/ZJWsIAUAnvvoGHmrEARBiECBCsGEyWjAsmnpouLTpVNv78hGSLnfGnCzqybcMRkNWDl9hC77vtygrWMvQRBEV4MCFYIZVvEpIG5xz/2b66rpDHDTn+1x2pZq9HDsJQiC6EoY3G53p746NjQ0wGazob6+HnFxcaE+nG4B32RkoYBDakBhZ8LpcqP4fA0Kz1Xj2Fd1KGTsBmJl05zMkAqLCYIgggnr+h3Urh+ia8DqBAuwW9yHO3wBl9aEg7CYIAgi3KBAhdAdOYFNsJCbFfrphsPMTcpK6QzCYoIgiGBDgQrR7ZBTjnK63Fj2SamuQYoBHp1PZxAWEwRBBBsS0xLdCi474l/Cqarn7745UF6rabmnKwiLOwtOlxtFZTXYevQiispqSKxMEJ0UyqgQ3Qax7IgbnqBh2SelmJRm7wgatNaN2Kxmn7lB9k4qLFYCJ0b2jCRwI2tgEjJ5DPa0oCuJuAmiu0OBCtFtkMqO8Nn6a60biYow4k9P3oHqxtZOKyxWQn5JZcBE7lW7yxBvNWPl9BGaBg9CmiIua+bfSs+HHA0TQRD6QoEK0W1gzY54b8cZ12lV/qlqaIXRaMC00X19Hne0u/BhUQW+rG3CrQlWzMpKgSWia1Rm80sq8fSGw7x/q2tqw9MbDmMNQ/DAgtPlxtJt8rJmfMfrn41JiDHj5WnpyB3JPnSSIAhtoECF6DawZkd6xUb53FE/Mm4AXt/xhWaCWv+AaUVeKdbuLYe3hOKVvFOYc3cqFuemafSqoYELHKRYuu2kaPDAyrObD6OqQV7WzBuhbExtYxue2XgET31d1+m/E4LobFCgQnRpvAOOpJhI2OOicLmhhTfo4Lpvrja24q5Xd/ncUXOzfrxLF0rxDphW5JXyTqZ2udHxeGdeGA+U14oGDhxVDa2qJ2mvyCvFJ8ermLbly66xdHi9vacco/r1RC7jkE6CINRDgQrRZckvqcRLW0/i8rXWjsdsUREdJQDvBYm7j586KhlzNx4JWKzqm9rgBrAgZwgGJFhReK4aBaeuoL75ZuBiNABSjSX2uMiONmRHuwtr9wYGKd6s3VuO5+4d1mnLQHLEyGqEy452F97hCfiE4MuusXZ4LdlagvvS1Wd/CIJggwIVoksipIuob2kHwN99s2RKGpZvF9c3bD74FfY9PxEPZfQLEFxebWzFMxuPiB6X9+DGD4sqJAMbl9uz3ZN3DxTfMEyRI0ZWI1z+sKiCuTSXGGPh9axhDZRqGh2qsz8EQbBDgQrR5XC63Fj4l2Oi2zjanPjTf92B6us3u2/kdgXxOe6uMRoCulsA8Ha3fFnbxPR+WLcLR8anJsAeFyVZ/vHONClBzmc0bXQf3mxIRTX7PmjcAUEEDwpUiC7H/nPVaHI4RbdpanPB5XL7dN8o6Qryh5ttxOIXcmuClen1WLcLR0xGA5ZOTRPs+uHwzjTx4XS5UVxWg6Lz1QA8AWLmwJufqZzPaFKanXf/G//9JfM+aNwBQQQPClQIVYST3wR3LG/s/IJp+78d/hp3D72l499yuoLEMBkNyB6chOzBSaLbzcpKwSt5p0TLP0aDZ7vOCPd9tLa7sCBnKNbvL2fKNPnD78Fyzue5s7JS8PL2U5Lln+Qbowoc7S68v78cByuuIsZiwnB7nI+WSQyh0hFBEPpAgQqhmHBy/1Qy3bjJ0e7zb84zpapevCtIq0XKEmHEnLtTebt+OObcndophbR8QuZePSx49p7BaHcBrM60cjxYfjJB/LMEgCVThuM3+afwzp5yn+/4Y1xifm9CpSOCIPSh810BibBA7sycUByLFONSfPUlJqMBL33P0wocrJk8i3PT8NSEVPjv0mgAnpoQvj4qYnN0uODCP0Nx5boDr+88h/S+cfjv+4Yhe0iSZLln6baTksey7JNSOF3ujs9S7Nv5n78ex9t+QYpc+EpHBEHoh8HtdnfqSV0NDQ2w2Wyor69HXFxcqA+nS8G5pVbUNAFwY3S/ePTpacXYW3vi27/dLRgYcJmHfc9P1P3O0+lyB3iesGAwAGeW38+brQhFpqgzOdOKfT6T0uwYsfQzUY1QjMWE40vvkzw3ispqMHNtMdMxbZqT2SFsdrS7sHjLcfzt8EWm58ohPtqMQ0smUUaFIDSAdf2m0g/BC59b6oe4AABIiLGgttEh+Fwp908tUTrd+CciJRVOEBtM7Y0lwtgpWpCl5uj8bOJgSSFzo8OJ/eeqffRBfCj1YDEZDdhfVsP8XDnUNbfh6Q3/wdofjtNl/wRBBEKBChGAkFsqh1iQ4k0wWjhZXE+9MRrAZE3P13rcFZGTyWGZPr1273mm1+WEzM0OJ36dV4qKmiakJFrxi9w0RFtMAJR7sCgNXlkpKL2CV7afxAtTbtftNQiCuAkFKoQPjnYX3pFwS2UlGC2ctdfZOjW+dWs87r/RHRKuJZVgI3fGEIvPTHObi+m1mxztmPPBQRSUXul4bO9Z4MPiC5iU1gtrfzjuhgdLJKoaxL/jZD+BczAC5D/urcD/3DecziWCCAL0KyN8eH9/BdSqlgwIXDz0IiHGwrTdY3fciifvHkgLyw24rJl/azQ3Y+iV7aUBYlktA4CK6iafIMWbgtIrmPPBwRseLNJZC3+BczACZDc8brgEQegPZVQIHw5WqKvt69UdI4TdFq3pdt0B1hlD3tsk26LwyLgBmh3DF1eui/69oPQKmh1OTE5PxprHM3jdfntazVjB48Ei1WauFZ3ZMZggOhMUqBA+WC3yTomEGDNqG31n5gTTR4VblMRKEsHK7nQWWGYM+VNV34LXd3yBeKu5Y0CjPwZ4Zii1tbvQKCKo7Rcfha/rpLMzv84rxfIHR9x0+xVxpvWGazP/6YbDvMMntQpexNxww8kIkSA6OxSoED7MyOiHvx9lM79KtkXhX//zXRz68mrILsjei5LQ4hms7E5nQUkmgBPLGrz+my8A8M968MESpAC40RbvwWQ0IHtIErKHiLv9ckxOT8Zbj2cEtFH3jotEc5sT9c3tIs9m49E7buV9PJyMEAmiK0CBCuHDnYOTYLWYJFtMAU8AYIkwhrw7RmhRosWBH6Wzg9wArja1YUHOEGw++FVAANDS7mIKVFhJSVQ344ivzdzlduOxP/5bk+M7+lVdwLkv1b791g0XXYIg2KFAhfDBM6cmUVDoyPHUhNSwuuCGwvuks8IyY0iMlKQY7Ht+om4BAMe3UtSX67zbzJ0uN14rOKN6nxz+4mKW9u1ln5RiUpqdzkuCkAEFKoQPjnYXdp4SD1IA4O9HLmLC0F6ovt4aNkFBd/E+UQvLjCExesVGBXzWW49q7wL77OajiIwwahIQK5kFJYV/dxFL+3awjBAJoitBgQrhA6vQ8vI1h88dtNVsQu4IO349faTsFmCny43i8zUoKqsB67A6Qh2cT4q/j4oU8dFmuNxuOF3uoLQEa5GBECrHKEVoOCVr+/bavWUUqBCEDGjWD+HDL7eW4IOiLxU/32Dw2NOzDtPLL6nkbT2Nt5qxkqf1lNAWf2faS/VNWLdP+vv31/84XW6MfblAU40Kh/ccH7konQUlBBcu8WlNCs9W47F1bOWvcB44SRDBgnX9JvcrwgelQksO9w3DsBV5pZLbclN2+Ra3uqY2PB3kKczdEW7G0K+mpaNvz2i8yxCkAJ4SxtMbDuP1gjMdk5P1uudRYzSntZ1+XFQEns0Zwj9BWUbSZ+3ecjja2Vx8CaK7Q4EK4cOsrBRoUXGRuhA7XW4s3SYdzCzddrJjIST0Q0wIKsbrO89h7MsFWLXrnCYtv3yoKStpbadf39KO13acxV2v7goIoqsZxzkAHgdgcrYlCDYoUCF84ISWapG6EB8or2UaKFjV0IoD5bWqj0dvnC53gOV8Z0JN5qGuqQ2v7fhC4yPSZhSDXtqZyhvtxt7BitzXImdbgmCDxLREAFzt/J295arm/ghdiB3tLmw+wK6DCcaQOTV0BYOvcPuMtRrFoKedvhu+Yl8Wl2Rv1JZZCaK7QBmVboij3YV1e8/jl1tLsG7ved4SzeLcNJxZfj9eyB2Oe9N64cHRffD+E+Ngj2O/a+S7EK/IK8VtS/6BrcfYtSfBGDInhlC2xOly440dX+DpDYcDFqcqnjvucCbUn7E/dluUJuZonHMxECgh0aKnjGs39n4tlv0aDZ4yK0EQ0lDXTzdjRV5pQEuq0QDMYezU4QSwUhgNwOnl9/u0KnMTe+Vgj4tE4aJ7QtaqnF9SiaXbTqKq4ab+oKfVjO+P7YtPjlVJlq9CffyscN0xeg/yE+OBkcmYlNZbF18eoazXI+MGqC5bvfHIaEwb3dfntZ77yzHReUfU9UMQ7Os3lX66EUKBgutGpw4AyYsnN8124V+Oidrsz7k71SdIYZnYy8fSqbeHNEjhC8quNrVh7d4Kpn1UNbRi1a5zmJ8zRNExBGu4ndggPzk8MDIZ+85Vy2pTlhMoK0XIuRgANh+8oCpA889GTU5PhssFPLNROKAfM6CnwlcjiO4HZVS6CY52F4Yt+YeouRdfFkQIp8uN+ZuPYPvxSp8LvPei473I/qeiFh8WX2A+3lD7qGjtC7JGQRkjFNoXtQ6u3KDKg+W1+OjQV0wDLj+cPR5333aLotfTAjWGcMm2KOx7fqJP8Mhy7sRbzTj04qSwz7QRhJ5QRoXw4f390g6kXKfOk3cPlNyfyWjAqkcz8PuHfQ3DZmWlwBJhRN7xSry4tQS1jQ7Zxzr3O4Ow8N7bZF3Etc48FJfVaGpeJtdhNVTD7fgyD1cbHaLZAW8q61tw6MuryB6ShOrGVqZApbZZ/jmiJdxQS/8SnxRCk7lZzp26pjYUl9UwT4MmiO4MBSrdgPySSry24yzTtnJbJjnDMG+UaFG8uWvILbKCDD0yD0XnqxU9Twg5M15CMdxOKtBbY8zA/918lMmkjOsgYhXohoOQlwvQVu06x6RZETu/WM+dovPVFKgQBAMUqHQxnC43istqblwsDYgwGvDGzrPMaW21LZN5xy+pClJsURFod7pQeLYa1Y3SAw/1yzxon5JnbQEuLqvRZbid0EylgtIqpkCP1UmVCzykWoOFZuaECpPRgPk5Q3CbvUfA5xEfbUbO8F7IHpwEuy1aImPHdu5cvNqMrUcvhs1QT4IIVyhQ6UIIzc1hRU7LJN8dOAC8uLVE0Wtz1Le0Y9a7B3weE7p71TPzkDUoEat2n5N38BKwZA7ySyrx/F+PM+1PjvcJ37mxancZrBYTryjaO9CblGbHoi0nmF7H26BNTKCrlU+KHggJb1mPk/Xc+fjoJXx8ozTW2Xx3CCKYUKDSRWBtGxbDv1NH7LX4Wz37o7ZR+6F0QtkRKTdVpZkHAMgcmAhbdIRmtvDxVrNk5kDud8haMhHbr1DnFhdU/OLjE4g2mZiDX//Ag9N/+J8v9jBfmE1Gg+JBiJ+fuSL7OXprjwiiM0OBShfAMzfnpKp9TErrxeyjIlRqYdXBeGM2Am0SFQWh7AhrRkGJ66rJaMCrM0aqDv446praUFBaJbgIOV1u5qyFnJIJ60wlIWob2/DUxkNM295/ey/e96c2Q9GZyDteqagNXy/tEUF0BShQ6QJ45uawdyvwUXKxAU6XW/QCKVVqUYJUkOK9f//siN5iTc4zZtHfTqCu2Tej0NNqxisPjkDPGAuuXGtBUkwk5m7inwTNIbYIye0yYi2ZsM5UEqOF8UuKNAtfTtRkKDoLTpcbP/8bW9mODzUZQILoylCg0gXQYk4LywVSzeA6rfB+r8EQa3LZAG+BctagRGQOTPQJFIoYAg2xz5i1UyTGYsLvHh7FXB4I5gyfvj2jddt3sIzv1LD/XDWut6ovFYbb3CWCCDUUqHQBtGrvlLpAhsMF1Pu9BkusaTIakD0kSbSVtKq+mWlfwtuxHeMT2SmyNAzBbP29c5A+rbadYehjfkklnvvomCb7Cod2bYIIJ2goYRdgfGoC7HGRqvcjdYFkvYB+P6Of6mPxx4CbHSXeQwJjI82Yf89g2KLNPttrNdSOlcJzbBkRIQM81lS/3GDAc27ov/D1tJqROVD7cgWnifLP5FWGeOij9zn4xo6z+OmGw2hsFR4pwYL3OU4QxE0oo9IFMBkNWDr1dlXCT5YLJLfoCWkeuFLLnYMS8dfDXzO9brzVjPobJRMhnYt3doTP88Nnf9FmzM5OxbyJgwMyKXqVD5wuNwpOsXV6JPTgDygzByYi3moWLR8pCQY850aa5LkRE2lStdCumD5C81KMmCYK8JwvoRCfqh0zAKBTtWsTRKihjEoXgRN+xlvNAX/raTVjUlov0edPHZUseYH8rKRKsAbPPXPqqGS8nMfeZbJy+gi89XgG7Dbhu34uOwKA9+7am/rmNry+4wsUlFb5PJ5fUom7Xt2FmWuLMX/zUcxcW4y7Xt2lyR35gfJa1PbdnMQAACAASURBVDezCWGFshsmowErp48Qfa7SYEDs3Ii3mrHm8QwcWXIvEmIssvedEGNWNMeIBRZNFKf7CRZCGR5WrBYT3nx0TMD5HuwMIEF0Jiij0oUQEn6OS0nAt3+7W/S5245V4ueThwsuhFK2+LboCPxgXH+8s6ecqQPIaABWzfRcmJ0uN2IjzR3HfEdqAowGg48zLQDc9eouyX3ztXnqPTeHVbsTHy3upcIFFEu3lfpkrbTQY3ScGzzOtNx3/uuH0vHTG5kXlu8wMcaCosX3MHnvKEG97kdbpDI8LPz+hhD6vvTksBcHE0S4QIFKJ0aolOEv/CySsGQHxDtSWGzxG1ra8eeDXzNfxFfNHIPckcm8afS/HfYszNNG9+14n+8VljPfxXq3eY5PTdB9bg6rdmd2dorka+jpOWIyGpA9OAnZg/l1LkLmbP5wR/LKQ+m6BSmAsJ5H6XZqUdP1Fh8dgZUzRnYEm92hXZsgtIIClU4K3wLv0WekYN7EIT4LG+sdf0FpVcDF0+lyM9niu9wI8BrhIzHGglceSsfk9GSmTAcAxXqAK9dadHWv5ZBqkwY85bd5E4cw7S+Ui5h/oFRR3YhNBy74+PQEy1VWSM+jdDu1qOl6+8PMDNw99BYNj4Ygug+6alRWrFiBcePGITY2Fr169cKDDz6IM2fO+GzT0tKCuXPnIjExET169MCMGTNw+fJlPQ+r0yNUJ69rbsNrO85i7MsFPtoL1jv+dwsrAjQbB8prNbXFf3HK8I5yj5R53KItJ1TpARKiLSg89w3Ttv6aFjlwbdIAf5OxAfqITfWCC5Smje6L+TlDUbjoHmyak4k3HhmNTXMyse/5iUHRUrB2K318+GvmgYlqUNM2XNsUnKwPQXRFdA1U/vWvf2Hu3LkoLi5GQUEB2tracO+996KxsbFjmwULFuCTTz7BRx99hH/961+4dOkSpk+frudhdWpY6uR1TW0+rZtXZaTGF205Aafr5t619k6x2zymYCyZjrqmNlV6gPl/OYpVu8uYtuUL0uTAlU38RZLJXUAk6R24ZA1KDFrAxdpavedsNW578R9YIUPErfR4km1RiuZqkzcKQShH19JPfn6+z7/fe+899OrVC4cOHcKECRNQX1+PdevWYePGjZg4cSIAYP369Rg+fDiKi4uRmZmp5+F1Sljr5Fzr5sRhvbF8O/sFvK6pDat2ncP8HE+ZQqsLrL9LbDDM4+RoF7TQqgRrpk1ncGnVApPRgB+M6483dkrPkHIDHToqlplVSo9HyGBQCC3ckQmiuxNUjUp9fT0AICHB86M9dOgQ2trakJOT07HNsGHDMGDAABQVFfEGKq2trWhtvVkvb2ho0Pmowws5C3xlfQs+LKqQXTpZv7+8w4eEu4tU6xkB+HpEhNsdplZzVvTQl3gHJhXVTTc0I+Hr0qolTpe8ks7aveV47t5huol8WQXHAHmjEIRWBC1QcblcePbZZ5GdnY309HQAQFVVFSwWC+Lj43227d27N6qq+DUDK1aswLJly3Q/3nBF7gL/ZW2T7Neoa2rrWLC97yKVlmH4xJcsAtRQEA5jAjicLjdW7TqL9YUVokJlrdqsw5HCczWytne5gQ+LKvDk3QP1OSDwZ86uNjqwfLtv8BIs0TFBdHWCFqjMnTsXJSUl2Ldvn6r9LF68GAsXLuz4d0NDA/r376/28DoNcjMctyZYFb2O94LN3UUu3XZS1pTmed8dhOzBt/CWJqTm9Lhx07U2mIFMuGR68ksqsWjLCaaJylq1WYdbScnR7sLRr+tkP09JcC4XvszZfen6l/0IojsSlEBl3rx5+PTTT7Fnzx7063dzDozdbofD4UBdXZ1PVuXy5cuw2+28+4qMjERkZHDaEcMRboGXskTnauOzslKw+vNzsjt3+BdseRfdIb1jRcsgQml07k4UgCw9AAD0iDThugIr+FBrCZwud4cZ2/lvriGvRF7nm9rSVX5JJV7aWoLL127qenrHWrBsWnrIMgIfFlXArSBKVRqcq4W8UQhCH3QNVNxuN372s5/h448/xueff47U1FSfv48dOxZmsxk7d+7EjBkzAABnzpzBhQsXkJWVpeehdWo4B1OhO27v2rglwogZGf2wdq+4YZs38VZfB1UhvxMpWLITUgLUtx7PwEtbT+LyNbZMTozFhB6RZsF5RHyEWksgJ3sihZLSVX5JJW/ge/maA09vOKybRb4QjnYXPiyqwF8Osc2L8sZoAGZlpWh+TARBhA5dA5W5c+di48aN2Lp1K2JjYzt0JzabDdHR0bDZbHjyySexcOFCJCQkIC4uDj/72c+QlZVFHT8ScAv8ql3nsL6w3EfD4F0bzy+pxB9lBCmAb95EiW243OyE2J3o5PRkfFXbjFfyTjHt6/I1BxbkDMVrO75gPdyQagmEggSlyC1dOV1uLPzLMdFtFv7lWNAG/63IK8XaveVwKaz3zbk7VVe3XIIggo+ugcpbb70FAPjOd77j8/j69evxxBNPAABee+01GI1GzJgxA62trbjvvvvw5ptv6nlYXQaT0YD5OUMwb+Jg3oyE0tkkV73EtHJtw72zE5z1/Ze1Tbg1wYpZWSmKFpGvrsrTHKQkWUUzThxPZqcgJ80eMi2B0+XG0m3aeH8oLV3tP1uNJod4qazJ4cT+s9W4+zZ9nVWl5kmJYTR4ghS9WpMJgggdupd+pIiKisLq1auxevVqPQ+lSyOUkVAzm4QrIcgtJSTEWDBtdB98erwSz/zpsM+d8St5pxQtJnI1B71io5A1KFEw4xQu7bwHymtllaiEUFO6+tsRtvLK3458rWug4mh3ySpPcqQlx2FGRl/FQTBBEOEPzfrpwqhpteVKCKylhPvT7fh3eQ1qGh14t7CCdxuXW9iUS6zjZFZWCl7JOyVZDvDPKkhlnIKF0HvTqhVaTelKKpsidzulfFhUIavcQxkUgug+UKDShVHaapvstdhfbWyF0QDBRcQAwGY1I7+kirnE5G3K5fEKEc96WCKMmHN3KlNZgC+rEIpuDC442VFahY+PXvTpuuLem9LvJz46ArOzU5GSFMMceHECVf8yXGwU2yVgXIq+3VCsLcW32WPx8Nh+lEEhiG4EBSpdGKWustxin19Sibkbj4gGIG6//2eBM+Xq2zNaUEfib2LG3TkLCS3DpZwDAJ8evYjFfz+Bay38WQjuva1+dAzscVHM5Z94qxmz70ztcA1mhU+g+kreKdwzvBd2lF6RfL7BAPzozhTm11MCa3nv4bH9NDVzCzfvGIIgAjG4WYQkYUxDQwNsNhvq6+sRFxcX6sMJO+R0lRgArH50DHJH9oHT5cZdr+6SDHJizEY0tsmfXPvtobfgX1+ITzbmSjn7np/YsXhwmYHymkYYAIzp3xPJ8dFhs8DM+eAgClgWf3je25IpaXhmo/j38+PsFExSKPpVI1DleGqC/iUWR7sLw5b8Q7T8YzQAp5ffr1kmJb+kMsDDJ5wCXoLo6rCu35RR6eJIea54s/rRDOSO9FygWYW4SoIUADhYUSu5DZ+JmSXCKHhHHeq741e2lzIFKcDN99YzxiL4/cRbzVg5fYTiRVOpQNWb7420B0UHwlLe07L1WMgbqCuPIyCIzgoFKt0Ab8+Vt/eUBQgj+RZEvWfeyBFnCh2Lt+6iqdWJvWe/8TGGs8dFYub4AbK0HEpRGhRcudaCaaP7YlKavcOZFnAja2ASMm/MWlKKXIEqH7doNFKATyNjMhp8AsufTx4OILC8p7Vw1tMWfpK3XKnVOAKCILSDApVugncHDMuCGC4zbwD+Y2ExBqtqaMVrO852/FvPtP77+5VlLrj3ZjIakDkwEUaDpxvIqMECqcXMm61HL+GFKeoce1fkleKdPeU+gcHy7adgtZh8Albu+zm9fBiv8FcrVu06Jzqzyj+TJ5apC3UWjyC6AxSodDNMRgOyByche3CS6HbhMt04mcfETKnuQs+0/sGKq7K292+l1kMvocXMm5pGh+L5QYD4d+WfVfP+fvSafpxfUsnsWnzlWgvySyqxdFupj+DZHheFpVM92R3SuBCE/lB/XzfD0e7Cur3n8cutJVi39zwc7fwaE274oRx6RJp8/t071oIJQ8QDIjEMCGw3VqO74AKuZZ+Uwqm2JuJHjMUkvZEf3t1VP91wOEATxC3c+SWVio5pVlYKtLi5V1oGdLS78I6MgFLP7we4OQ6ClYrqJjy94XBAV1ZVQwue3nAYT+vwnREEEQhlVLoRQm2qQvV/brrx4i0ncJVhYN5bj41FhMnokwb/9Pgl7DlbLftYe1rNWMEjJFWru1A7ZViI6Rn98PHRS0zbet91i405UKuXkOM/I4bSMuD7+8tlZ+P0+n4AeU7N9rhIrFdQziONC0FoDwUq3QShFLyYWywATEqzI8YSgf/64D9oFci+AJ7A4s7BSaq1LvHRZszOTsG8iUN4L/Ja6C4A7cXCdw5OQozFhEYRkbDZZMB7T4z30QRJLZ5qF24p/xkp+EpvrMgth3mjh5hbzj4fGdcfr+88p+h19Ay2CKI7QoFKN4ClXOLtFsvBp5sQYsX0EbyBBYvWJSHGjCUP3A57nLQYUQvdBaC9WNhkNOB3D48S9az5w8wxyPYrhbEunmoW7sW5aXju3psCVbfbjQ+LLzA9V8n8IA4l5TAOPcTcrPtckDMEbU71pSe9O+cIortAGpVuAEu5hHOL5RDSTfgTG2XCd4Ym4eLVZkG9yyPj+vMGKdzy9yMZWgotdBdqsgRicJ419jjfBTHZFoU1AgJe1sVT7cLN+c/8alo6osxsP3urRd3lYXpGP9nPMUC/74cLmsVOn3irGfMmDoE8r2V+kmIiVe+DIAjKqHQLWMsl3HZiugkOS4QRbU4XrrU48fkX1fj8i+oAvYtURiYm0oQIk9GnhTghxoyHRvdFjoATqxa6i2ZHOwpKq3TpzOA8a1hbVqUyTv7dQWpxtLuwbl8F07ZNDhee3nBYMMiSgqUc5o2aKdAscAJxsaxXXVMbPiupRNbAJKzaXabuBUmeQhCaQBmVbgBruYTbjkV06Gh3wX/4Aqd3WZFXypSRud7qDHBjrW1sw7rCCsxcW4y7Xt3F2z2xODcNT01IDcisGA3AAyOT8cYjo7EgZyjirWbe161rbsfTOnZmcEMQp43uiywJ0zbv7ir/rfRYuJWIkZduO8nUheN0uVFUVoOtRy/e8OkBfvfwKObXsduidHeEnZRmFzwvOOZtOoLaJofkdlJUXxf2aiEIgh3KqHQDZmWl4JW8U5JzVGZlpQBQX1t/Z085esdVqk6e8/mecA6nzW0uLJo8DG4AF+uaA4zBnC433i08L7r/RVtOhEVnBtdd5Z99suvgyaFEjFzV0CopDBXzgVnzeEaAF0nyjTlHPWMsiszSlBqtHSivlRwl4XIDP9t0BE9NUJe5CyfTRILozFCg0g2QO0dF7QXWDTBPBJbaj3er52/yTwnaq/sbhBWX1aC+uV10/3VNbSguqwkQuIYCuSUjpSgVI4sFr0JzcyrrWzpKR4WLJmr23tSY4xWUVjG/zrZjlXjz0TH41aelok62fOilsyGI7giVfroJYuUS/+m4LKLDYMG1es7ffARv7wlssfUuN3lTdJ7Nu4V1u2Agp2SkFKViZKHglUXPtGjLCQDQ5L2pMcdzutz4O6PXDcANjYxE4aJ7sGlOJuZ9dxDzc/XS2RBEd4QClW7E4tw0nF5+P5ZMGY4fZt2KJVOG4/Ty+wP8U8R0E6Fi+3FxPcnaveV+XUesRx4u7zA4cNk1OdjjIgWzAyx6prqmNqzapcyTxBspczzgpqutv17G0e7Ce4XlqG10yHrNK9daOgLIBZNukwzgDQbgzUfHkIU+QWgIlX66GVybqhRCuonesRZcue4IENJ6YwDQOy4Klxu0mxMktR+uvZp7b1mDErFqt/Ti2B0NueSawC2dertgdoBVz7R+fznmTRysKsvAao73/F+PYd+5Gp/yowHKGo69M0lcAP/TDYcF97d6ZgZyR1KQQhBaQoEKIYiQbuI3+adE9S4/mZCKMQN6il7QWTEAiDab0NQm3eLqLRTNHJiIeKtZVDjZ02pG5sDuE6hwQmRuKvHxl+7Dnw9ewJ6z1ThQXoPmNl8fnHirGSt5xhh4w6pnqmtqU+3UyhoU/fXwxYDH5J6DQm3hQgE8DSMkCP2gQIUQhUt7eyN0R84JW7m/813Q5cDde+eOsPMuPv54C0VNRgNWTh8h6pkh5KarF/6BgneXkt7wzXl6efspPDDSjnefGAcAKD5fc6Ot2I2sgUk+Vv9CjE9NQHy0GXXN0rOg1HaTJURbVD1fLkI6k2AJnwmC8GBwu8WS+OFPQ0MDbDYb6uvrERcXF+rD6VawLLxcG+navWXYdfobwX2N6BuHi3UtPhoC7i514rDeGLbkH5Lt1aeX3x/w+vkllbytscG+++ULFPwDOz1fWywDFmMx4XcPj+oYksi6AHPbvr+/HPknL0sex5+evENxh1V+SSXzcEy1JMSY8euHxDNJBEGoh3X9powKoRgWvQuXkckalCi5WIstknLaq70Jh7tfpQMhtYBlzlOjw4mnNxzGPcNuwZGv6nmDRf9FW84cqA4UfuRC7c96kBhjQdHie4KW6SKIYKPUgyiUUEaFCCpqyh+hzEooxdHuUpwN0oJ1e89j+fZTip/PXb68TfeUBg5vPDIa00b3lfUcp8uNu17dpbh8yArf+ySIroYaDyI9oIwKEZawdh3x4T8FONg6DyXIGQip9HMRQ4kTrTf+pnu48d9KO2jk3s2xtD9rgR4uwAQRTgjdYPA5gIcbFKgQnQqpQEcrwarT5UZxWc0NQzhP+SpzoHyjMtZAYc/ZbwTfl5r3pNSJ1huu7fdAeS1w47/l4GlXj8S/z1fjpxsO+Qhvpe7m1ApwpYixmPDOrG8xCYcJorPC4kH0i49PoLnNBXtc+JWDqPRDdBm0Kg3ll1Ri0ZYTAa3NLO26/sgpvfBNKVb7nlhKT6w8ceet6BEZoWiqcKTJgFZn4EFIlVyKymowc22x7NdjRelkaILoTMj9HSXEWLBs6u1I6hGpq5aFdf2mQIXoEkh1ttwz7Bb8192DJH9s+SWVoi3NgLzFTU6gkGyLwr7nJ3Ycn9R78h99IITUfvTEYICoOSBw07PE+71zcBqVqnrtzAMB8j3pTnRG8ajWbD16EfM3H1W1Dz1+M6RRIboNLJ0tO09/g52nv0FCjBkPje6LnDR7wAXL6XJj6baTkq/H6TVYLnYsAyE5uPJK1qBEpve0dm85nrt3mGQZiAtm3tlTHpTOGW9YboO8S0v+nj1ibrByzQQX5AxBSlJMt12suiN84tH4aDNmZ6eqdkruTGgxydt7yGiwA/zwVSESBCMsglWO2sY2rCuswMy1xbjr1V0+Q+yKy2qYpuR66zVYWJybhom3sfmHVNU3A5AnwmU9hjMv34/vZ/SF1WJiek6wEdKjcG6wdpvvxdZui8KCnCFM+16QMwTzc4bqOvAxnHG0u7Bu73n8cmsJ1u097zcXq2siNMCyrrkNr+34AqOW/RN5EjPEWOgMn23NNXnTv8VYtOUEnFrUkmVAGRWi06O0s8Vb7Q4Ai/52gvm5ckWe2YNvwa4z0pOaaxsdcLrc+DdjICTnvVsijPjfh0fj1e+7sWrXOby24wvm5wYDsbs+IT8cANh88CtRgW+yLQrzJrIFNF0RPp3TK3mnwrqtXy0sU72vt7bjmY2H8dTXyj+HzvDZ5pdUYt7mI5rtjxsyOp/xJkELKFAhOj1KO1u41ttFW06gvqlNVhlBbio1oUck03Zf1zXL8g1R+t43H7yg6Hl6kcwzV8cfvnEOADpKQ0BgaYj7e3fLoHCE0mwwlMhpa397TzlG9YtH7sg+sl6jM3y2XMCmNVoMGZUDlX4IUZwuN4rKarD16EUUldUwpfyUPEcNs7JSoPT34obnDkHOEbIsqv5cqGHLfKwvrGC+wBoNnvcul2B5k8hBTTAhVhoKZ28IvWHVOYVjqUItl67Ky7K+uLVE1nWqs3y2ev3WuSGjwYIyKoQgSlwMQ+F8KEewqgVyF9X8kkq8zlBmMRogq41YaGyAFHp7k8gRuSpp+eYjHEYl6ImSzpVQmw2GkqNf18navrZR3nTvzvLZcpq3zrZvfyhQIXhR4mIYSudDoYnOWtLTasYKmYsqS62cg/W4WecjCaFFB4A3/i3IdlsUpo5Kxjs3Ake+t2W1mPDUhEGapo+FSkPhjtR3qDT4Z9UvqXUvDk/kn1NyAvhgfbZqW6u953ZpjZ779ocCFSIAp8uNRVtOiLoYLvrbCcRGmTvcWqWcD71t2PW6y/W22N9zthr/+kJ4WrNcXsgdjh/flSr72LVOvT40ug9e/f4oWCKMihew8akJSLZFMXmT5Kb3Rl6J+GRktxtYMmU4kmIjfS6mYwb0DGwNtZox+87u1RoqBt93aI+LwszxA5CSZEVFdSNe23E24HkswT+rfkkL9+JwIyVR/nuSE8Dr9dl6ByYV1Y3YdOCCTydiQowFD47ug0k89gp8sGrjlKDnvv0hwzcigDd2fMF7ceSDWxht0RYm58NNczKDdtcrNeGXK1HEW82CYloxMzIWtDBa8ub7Gf1w99AkwQWMdbgel/0C+DMeXEmmtd3FdPxCAwfJbIsfp8uNVbvOMv/O+JA6N0M9EDOUyHVkjreacejFScznptafLXc+rC+s8BkxIQbLTYmezs5aXMvJ8I1QhNPlxvrCCubtuTu7H2enMG2vtT5CbCaPt26hoLQKHx+5iKtetvi94yKxdOrtACBoKAaoE3pqXWb56+Gv8dfDXwv+nTV7xQlQpTIeRWU1TMdVUd3I+3hnLcfoSX5JJZZuK0VVg7rfgphRHsCm3eJ0Ts0OJ36dV4qKmiakJFrxi9w0RIep3w4LcnVrcn/dcj5bKYRGdkhRyZBVG5+agPhoM3Pww4qShgI1UKBC+HCgvFbWSc0tjB8fvci0vZYLd97xSvz8b8dxvbW947FVu8/BFh2BH2en+riQ1jc7kHeiCoD3e/NcnoQWbS0m6sops2iF1ALGwSJAZT3+13acxW322G7bYcOKkI5LDWLBv5B2y1vnNOeDgygovdLxt71ngQ+LL2DsrfH4y1N3dtoMmBxH5qtNbVi16yzm5wyVvX81s7jUng9uiN+UmIwGzM5O1dwzKdgt/1T6IXxQU6pIiLHgaqNDlxKKP3Lm18Rbzbx3K/5lEr3KFHosTiwIlWPkwnr8XPocQJcp9widE0rOFW5ukdbtoiwpeKEJ3P5Bij+WCCP+3yOjO3UAuuXQ11j40TGmbZXYwyudbq7l+SB2Djhdbox9uUB2xoYPowFYNTMDuSO1OR+o9EMoQk3G48HRfXjLRlxJ5f50z9272oUr7/glWa3IQj9QvjIJ92N3tLvwXmG57IsPH1zGZum2k0wW/VpRUHpZMFBxutwoPl9zo7TjRtbAJGQKWMtPTk/GszlDJe/K6praMH/zERz68mpQ29P1QkisPHVUMrYdq5T9HrUWVnPBP0sK3hJhDGiTbXY4RYMUwPM7CNV8F61Ijo9m3laJ4J/vs2VBy/NBrFXYZDRg5fQRksNWWVg1c4xmQYocKFAhfFBTqmhobke0xYQmh5P37+8WVuDdwgrY46KwdKqyhcvpcuPFrSWynycEX5lEri02y901V2YJpnV93olKONpdAQEWX0181e4yUU+TlCS27oVPeWan6N2ernUmTEzoWlnfwhskc+/x2ZyhSEmy8h6HlvosLfRTv85jdyzVu2NPT7hrGktQwFIy1QotfUgKz9XgoYx+gn+fnJ6MNTzlbSH89XqhvtmgQIXwQWxarRgGAwRFngG+Kg3Kp3AeKK9FbaO2wjDg5iIi1xZbTouwyWjA/JwhuM3eg/mCoQY+w6n8kkrBO6u6pjbB70VNpk3L9nTvoCQpJhIHK2rw3v4vfXRVai6q+SWVeGnrSVyWOcSNO8e9g1D/49BSn6WFfqqC0S0ZCO4CrjXcNY01o/DW5+cAQPeSpZY+JDtOXYbT5RY9Xm9N2o7SKqwTaZpY/WgGesZYwqZ8S4EKEYCQuFQMJUqn5z46Jnvh0stVtVdsFLMt9nP3DuvwMeHTbnDj0J+9Zwh+ds8QwexKx4LbIxIHy2vx3n721kRWvA2nnC430+DFpdtOBnwvarsHWAW+Yki1m3MozeCIBXFK8D8OrYTV38/oi1e/P0r1wpGSaMVeGd3Rejsa68nk9GQsYChfAsCes9XYc7Za9yyClj4kdc1szrpceTtrUCLGpSYE3UVcKRSoELzwdYRcbXRg+XbfE1uu7bs3ja1O/GHnWTw7iV1pr7mrKm7W+d8rlHa15bIUT2SnSjrOvr7zLNbvL8erM0byZleyBiUiv6QS//3RMd8W4WgznrjzVowdkIB/V9Sg7JtG/KOkStH78zacWrXrHFOgUdXQGnDRMxkNGNQrBoe+lGdNHrDv+mYUldXIvlOTI0hWksHhTA61hO84lGQr/SkUaRn3L4ONvbUnDn15lffz/kVuGj4sZh9OqfVvL9jMmzgYmw58yawTY2n/VYM9TtvPU24g2ZnGTlCgQgjC54FxX/rNE7v6WiuWbz+l6jX+uO88b9ZBCDn1Zin86/xybLFZhXD1ze0B5RRuMRFKv9Y3t+H1necCupXkBoXeQws9/jjsAmT/i96KvFLVQQoALN9+yiflzXIHJ2cMAYfcDE5xWY0mXRFSxyGUrZQTuAi9L76Mk/854/15R1tMmJTWS1JQK0e0G86YjAYsnXq7rKyZVPuvGn2UltcyQFkg2Vl8jrqWHSGhO9yJPW10XyTFqk9dXm91yprCyd2Vyon5uW3jrWafx/2n68qxxZZ797Lsk1I4XW7kl1Tirld3YebaYsEaMbeu+C+cXHntx9kp2DQnE3PuThV9TW/DKbn+OEkxN79blpIYK/51ea48kl8SKMLlUNMd8S56DQAAIABJREFUwfo9eQwD9cP7OCanJ2Pf8xOxaU4mXvvBaMzKHCA7u1JQ6pth4zJO/p+Tf2Dr/3mv/eE4TErrJfg6Woh2w4nJ6cl4ktGckoMLDP3x/i3P33wUM9cW465Xd4mey95w1zK1GBB8A7ZgQ4EKoRitUsFKUpZvPZ6BZJvv68dEmvDACHtAStVui8KaxzNw6MVJ2DQnE288Mhqb5mRi3/MTfe7kZ2WlQOpazGUp5L73yvoWrNp1lncxYYUrJfyjpArjUxPwwpQ0PDUhNeCYjQbgqQm+HUpyP+PnPjrWccFlmRQLAFmpCTBAnssnt1sukONDjTaC/XvSdxH2Pw6T0YD6Zgd+k39aVvmFY+vRSx2fl5yME9/nvfaH43DqV5MxYUgSLCbfz8E/mNcLp8uNwnPV+N/PzuB/PzuNwrPVgueDWnLS7LKf438OCgWGLIG3N5PTk/Hmo2MkrztCdLVAUggq/RCK0UocqCTgEauviqVjxdKccmyxlaRt1xdWqDZ98y8l/HzycNw5MAnv7D2PhpY2jOoXjxemBNqfJ8kU7l1uuFmfZy2JDbHHYmR/G9buLfcRV0uVNfjKNN7fYbXMDhwOOXeZWYMSsWr3OUWvI4ZQ2UStCWBNo6Pj85KbceL7vKMtJnzw5B0hmc2kpF1eDeNTE5AQY5bVPeh9jWIdwDpxWO8OfVBSj0jADVQ3tgZ8rrkj+2AVDHhmo3wht90WhSVThsMWbcHWoxc9mVADUH098HU6MxSoEIrxFgcqRU3KUqi+qqbuymqLLbflEYCmHT1XrrXwXuBPXGzApycqfS7wntkyJ2Xt3/uCyzrHqam1HR8WXQy4gLMuxpzQdkdpFT4+etFnIVEi2pZzl5k5MFHQwZgV1llRSjQ3fOworULWoETFGSe+5wVbs6CkXV5tMGUyGvDytHQ8s/EI0/b+1yipwJALBDOW/xPXW/k9pfy1Wbkjk7HGyN5p+ePsFNwzrDcOVtTiFx+XCF5bwrWLRy5koU+oJr+kEv/z1+O41tIuvbEXBkhP+Q0VrLbYeccrMW/TYclFVOvBYAtyhkhO3l3zeAYAqLbv//DH4/Gj9Qck36M9LkrVoL2eVrPP0EilKL0TV9KezL0WAOZWT60m2ibEmPGHRzJQdL5GUTYomJPM+WC1drfHRaJw0T0wGQ3IO34JL/y9xOc8SYix4OVp6bIdU1nGcPBdo5Z/clLUg4QVvn17D1kt+6YRxedrfN4rd04BYB5kGM7XWdb1mwIVQhOaHU6kvZTP7KcSLpG+FqnuvOOXJO/OWD0cpOBKCS6XC5eviRtG2eMi0drmxNVmeQGkP288Mhqll+pljS3QC7HMiv/kZyXwTTa2WkwwGgw+wy/5XovlXHK63Hit4AxW7S5TdHxaoPXcLX9Yf1OF56rx2B//zbTPTXMy8fmZy6LnoL8ui4W845V4cWsJr/ka3zVKa6+dZL/vga9zKyHGggdH98GkNDvGpyagoLRK9jH4v064QLN+iKASbTHhJxL6ju+NtCMnzR42tVO+i4I9LhIzxw/wmbwsdZy5I/tgjdHAe4fT02rGiukjMCnNjrf/VYamNv5UsDcWkwEOp1uwlPDIuAFMQY9Wc4Wqr7XiuXuH4cPiC4LjEYKFyw0smTIcSbGRquvxfAvqpDQ7YiPNN7qAPGWQzIGJcLrckhk2qbIJq2GdnugtvuRfaM14aHRf5NxYaLnX3V/G3mn1z5NVWL+/QnSbt/eUY1S/eOSO7MO839yRyR2WC1UNLai93oqEGAvstuiA84kr2WmJt1ZISLdU2+jA+sKKjvKTEr+fyvoWvFZwBtmDbwmLa69cKKNCaArfnBw5Y8+DBauYUU7mxztt673IcReF//7LUfz18EXJ/byQOxz9E6IFSwmt7S7FE66VIld8KESU2YiWNlfHv3taI3C1SV7GR4up0HwLKte+XueXalcyhNA/CLra2Iq5G48EfYK2mI+K1rD8phJizDfKNH3w7OYj+PvRS0z7jo2KYCot97Sa8Z8XJ+myEGtVsvPnjUdG44GRfSQnKcdHR+APMzMw690Dql4vXLLZAJV+iBCidOx5sJA79lyrGq+j3YXblvxDtDxmNACnl98PS4RRMIWuxwVTjVOqHOKjzVj9aEZH98O+c99gtcwyiFJtBfd5FpRW4V2VGgNuGXzr8QweB2ePEaJWDs5KmPfdQcgefIuoM62WOF1uyYXWm6cmpMJkNODNz89LbhsZYUBrO/uHp5f2ZuvRi7rcIGyakwkATL/pwbfE4Nw3japez/vcDXWwQqUfImQoHXuuBCUak1W7zsrq7pByp2TFEmGULI95m7TxlRKcLjfanS7EWExo1KAMk2yLwpIpafjVpyc1KxWJUdfcBqPR0JERKTzHnv5X45Cad/zSDS2CNoJmbtl87i/HYIk4LpkVCmaQAgBDesd2nDvBEMzKbZF+e085/u93BzNt+93bbkH+SXH3XG/0nAemNQkxZoxPTcCnx9kyS2qDFEDbIaHBIiwCldWrV+O3v/0tqqqqMGrUKPzhD3/A+PHjQ31YRJgjNLl4yZTh6BkT6RO8OF1uvL+/HAfKa/H5F9/Ifi2tpseytj/zwdeOrJabzpjqL1asWRluIXG63LBFmyW29kWJtoKlu0MpjQ4nNByCqxnBnsujJDjYcOACbNERqBcRe1stJszKTJUVqOj13rXyjfLm5WnpMBkNQf++tBgSGkxCHqj8+c9/xsKFC7FmzRrccccdeP3113HffffhzJkz6NVL2NqZ6N6ITS7278CxWkyaiEC1ulNbnJvmEacWsZfHtO42AIAekRE4cuEq3tlTrurCy4UNGbfGM80D6hUbJVtYGh8dgZU8wx2lyDteGRbdSiwkxJhxtbFN8LuIt5rxh0fG4H/+egyXG1p5twvVXB4lC21to0Oyzf73D49C5qBE5tZ3e1ykbu9dq6GSHE9NSO0Q/qqdTq6UzjIRO+TCgd///veYM2cOZs+ejbS0NKxZswZWqxXvvvtuqA+NCFPkGmZp1ami5V0PVx771bR0PHn3QNEgxelyY+k26W4Dq8WI958YxzyV9XprO95WGaQAnoXxJxNSJYMUbibJ1cZW2aMEoswmTJJpfe50ufHi1hJZzwkF3Ofy8rT0jn/7/90AYOX0Ebh76C1YOvV2we0AtqyTlpb1jnYXSi7Ww2o2SW/sR0pSDNY8ngF7nK9zsj0ussPozTNMkE2Iv3Tq7bqWMrjxHXa/8R1Wiwnfz+iHP8wcEzDaw/9oEmMsePPRDJ/sqclowF1DkvQ6bEE6y0TskGZUHA4HDh06hMWLF3c8ZjQakZOTg6KiIt7ntLa2orX1Zi29oaFB9+Mkwgs1Q+qUwtWSQwHXOilFk8MFi9mEpVPlOeaqYUHOUPz0O4Pw7d/uZtp+yZQ0LN8u35W1qqFVdpr6QHktrz9GOOEdXExOT8ZbRkNgy7xfl8akNDuezRmC9YUVPnfg/tsJoaVlPV+Xnxx6xUYha1Ci4DgMjsnpyVjzeIZg6VMvu30+xMZ3AEDuiGSfv7EImvNLKvHpcbb5QFrQ2SZihzRQqa6uhtPpRO/evX0e7927N06fPs37nBUrVmDZsmXBODwiTAlFupKrJYeCHX6TcsUoKK3CL793u+hFXUs+KKpAxoB4psDx2Zyh6BljURxkbj/hERyydq7I+dyChX/3j39wMTk9GROH9RYsC/KJguOjzZidLW1053S5sWrXWcFSi5BlvRBqtT/e1vQs1v1cgFB8vgb7y6px8Woz+sRHIXvQLcgclBjU36fY8fL9Tey9OV1uRd4os++8Fev3fyn497E3SrGsox3CmZBrVOSyePFiLFy4sOPfDQ0N6N+/fwiPiAg2wU5XeteSg43T5cbHR6W9VzjevWEMxV3U//efp/EWQwuoUmoaHXj6T4eYtk1JsqoKMjcUX8CG4gtMPhD5JZWa2JxrBbccrJqZgZ4xFsG7az7tzh/3leOl76XhyIWrvIFBXXMbXt/xBW6z9xD8TPgcd4VYuu2kZDeIo92FtXuVBykGKFsoTUYDsgcnIXtw8MskelF8vkbRDcW9tyfjjoGJAedLYowFy2+MFOA1tQwjHxVWQhqoJCUlwWQy4fLlyz6PX758GXY7fz06MjISkZHyJsF2R0IxBTVY6KG+BwLvdr1/8Czo8Zl7yhfyLmKLtpzoWGiSYvT/rTQKDF7zR6sAs7L+5mRnvoutHg6iamFZHIQE4lX1LZKlPLEWermTmlnKbB8WVTCVe2Zk9MXuM9/4lODCyXAsHCgqq5G1vXfZxmQ0iJahpMpUnYWQBioWiwVjx47Fzp078eCDDwIAXC4Xdu7ciXnz5oXy0CQJ50BAqG23q1wctFbfx0ebsfqxDIxLSVBsjqXlZ+59bn1x+Zqs5wKeFP6qXecwP2cIEnqER1DvnebXIsgUW5hDoWESIt5qxuqZGZKlCTGBOOvnxNduqnRSs1Tm68vaJqb9xERG4OALOWF7rQwP2L8dvrKNVNks2BOx9SDkpZ+FCxfiRz/6Eb71rW9h/PjxeP3119HY2IjZs2eH+tAECddAwFODPsc7B6ZK4i5U7evqeSHi2z+nvtdidsrKGSM6UslKftBid8JyP3Ot5sGs31+OeRMHM3cA6c2SKTcvrFoFmUI+EHpomOKiIjB9TF9sO36JKcPFnf0rp49ANkM3h1bBlf97V7pfqezXrQlWpv3cmmDtEgulnmQNTGIeUtkZyzZaEPJA5Qc/+AG++eYb/PKXv0RVVRVGjx6N/Pz8AIFtOBCqQIDvOPwX7oLSKry0tURwoq4eboScOM+/+0DLoE0qKPROaybFRGLupsPM9d6YSBN+939GqTpOqTthvs9cKLCTm6IXo66pDQfKazvKZKHOMPSMsXT8NxdksmomxOALSrQoMXFB1Jj+Nnxx5ToaWtrxXpGwcNEfuQuKVsGV/3tXsl8WL5JZWSl4Je+UaPnHaPBsR4iTOSgR8Vaz6HXLajFh7axvBV00HC6EPFABgHnz5oV9qSfveCVe+PsJXBU4mYJlSyw0TI1lcebcCN8rLMesrBRVM0DEXFK1CtpYMxXed2srp48QXexH9YvDwKQemJ7RD3cOTtJEQyIWBPg7QAq76Spr2xXjyrUWnzIZdzyhwH/BnJyejNhIMx5b929V++ULSpRomPz1STarGW3tLhz5ql72MSXEmLFkynBZ574WwRVfC31FtXzLdRYvEkuEEXNkjIMghDEZDVg5fYSoDun3D49iysx1VcIiUAl3WNvw9LYlFlq45SrGl28/FXA3JCcLInXnr0XQpiRTAUCwJKRXaY71jvXKtRbRwOuZjdr7nnCLn5ZlMrXH4k11o7rZQskCPhBKNEwuN7BkynAkxUaioroJr+/4QvR5Bnj0F9dbA+3frza2Ye7GI3jLaGA+37QQiPu30Dtdbmw6cIH5+XK9SNSMgyB84Xxilm7znbllj4vE0qm3d7tSjz8UqEjw6dFLsr0C9KiRKxXFCeGfsmXNgrAeh9qgTU6mYnxqgk8p5dtDe+HH2c04WFELq8WEGWP64c4h6rMnfLDeCcdHmjHvz0dUiSXlYLWYfBZxrkz2XmE5lm8/pcMr8iNmLKUmiyDV3qokOEuKjcQDI/vgrld3MZ3ffEEK9ze5gbpYcMUSbPG10HuMAqWDwfEpPTH/nqGKygpKxkEQ/Ah16ACezqDuLEamQEWEvOOX8LPNR6Q39EOrNkxvLUP1tVZd74ZZL65yxXlKgzbW5/3zZCXmbjws6kC67dgl3e7wpO6EDQCiLSY88f7BoJZdmhxO/Cb/VIBN9xPZqVi7t1yWNmRGRl8UnqsWnC8jhJSxlNIsAmt2TG5w1is2SjNRq5JAXSi44vQuAEQ9M/xh/Q09lnmrqrJCMKeld3X8hcfh2rgRbChQESC/pDJguJ0UWtkSC4lU9Ybl4io38FAatLE+T8yZkcPlRkdWTG6wItXRJFVmcEO7WUNyeWdvOZ67d5jP3S03N0WOxf6EobdgUlrvDp0LK1KCUpYswoKcIRiQGIPa661IiLHAbouWdUfJBWd/3FcuGkxyv9tPj1+S9R6lkPt7kfK9kOOJcf4bNn1KZ5n30p0QcxEOZuNGuECBCg9qDKPU2hKLiVSDhdjFVc5FTUhDwML41ATmiamsrOVZuMXgu5tJiDHj5WnpPml27k441N+bP2438P7+CsyZ4Hu3y9XDn/voGJNZGzeP5a3HM7DobyeYguf70+1Y9WgGAPG0tVQWQYsLsVRABNz83Wq9aCvZn1x7dj5YdXVqfqOEtjjaXXh/fwU+PX4JZ6quoaXdxbtdsBo3wgkKVHhQmv59NmeoLl0uwUbs4ionXa8maDMZDZg5fgBvK7hSXG6PoyZLmlrou6htbMMzG4/gqa/rArIz9WEUpHAcrKgNCFSAmzNlMlfsFCyb+WcIJ6cnI8YSgVnvHpB83eLzNfispAq/+tS3BdkeF4WlU30DkGC4Z7IGRHLO73irGfVNbZJZmmCTd7ySWVe3ZMrwbrHQhTsr8krxzt5yuBkv/no3boQbFKjwoFRXkZLEZoLEh9ZiWSWwXFxZOiq0mmSq5vMUgsVRk+W7eHtPOUb164nckclh8d0JYbWYBP9miTDi1w+l87Yu8+lLnC43TlexTSu/2tTG28lU1dDCO/guGKZgLAGRnPMbAFOWJpg4XW68uLWEefueQRixQIijZrhjKAa0hgKSZvOgt66CDzUiPrHFSC4sF1fu7tRu832/8VYzFuQMxaEXJ6kOUpwuN6qvqWtf5YPFUZP1u1iytaRDwxJqQzUhZozpJ/p3oe/SbovqqIE7XW68seMsxi4vwCt5/FPN5bJ4ywk4WYbFaAwXEE0b3RdZAl0urOc3y2cXbDyzoYSF5f50l4UuXFE73LG76Isoo8LD+NQExFhMaGQUQWqR5pV7weA8H+IjzXjig4OKX5dDrpJcz3S9Vjby/rA6ZbJ+FzWNjo73H45YLSbcydDNIfZd6qWZutrUhuLzNWE7BZf1/A63oW/BErsT2sA63NGfUJYWQwEFKjw4XW7mTg3/NK/SuTdyRapPZKeioLQK8/58mLmuKUSPyAgsmSJfuKhHul5PnQ6rU2aSjEF+nHV/OPL7h0fJ6o7x/y7zSypldQfJpagsfAMVgP38DqdZNnKuI1azsdssdOEK63BHPkJRWgwVFKjw8GFRBfNC6S3GE+p5/0XucFxpaBE1RJIrUi0ordJsQW9sbcfcjYfxljG07W5ytB6sYwMAeU6Z+SWVWLrtJNN+Ac/C4FIbKTKQEGORldJ/81F136Wazjd2wlHVw084T0v3ZnxqAvO50tTmQkFpVbdpcQ1HWIc7etMd3WopUOGBNcq9N6033np8rOhAucr6Fvxsk68fyyt5pwIWTpPRgCVThot6t3Aivklpdib3TFbCpd2NWRsyZXhHRomvfXjplDR80+iQ7ZQpN5uTLNN748HRfRAbZYbb7ca2oxfRwNAazLFkynDYbdEoPFeNVbvPSW7vPQRQCUp1N/FWM36UlYI3dgb6P/iTNTB8synedCbTLZPRgJenpTOPZAj1b767wzLc0ZsFOUMxb+Lgbvd9UaDCA2uUe8eNuyq5XR98BmT5JZWC7pnxVjNm35nacYIWldVort8Idbub0+VG4blqpm2TYiNhujFHRSt9gJLOnamjkmV5b/xg3ICOz/auIUmyyip2WzSyBiXKmi2kBrnPf3B0H/yfsf0xLjUBB8trYYkwwiHgAwEAMRYTMsOkXCIG62DMcCJ3ZDKe+lp8YCBHd2pxDUdYhjsC2nVSdlYoUOFB7ghzpXefnAHZrtOXRe/kf/3gCB+LbD3Fm6EQhsoVz3oHBlrpA5R8h9uOVeLnk4cz2ej7C98mpydjQc5QJp+YxBhLx3NZgyLv7ZSULeRqpn738GgUlFbh27/dzfQ5moM4C4bv/QOQ/EyUDsYMBxbnpqG13YX3GJybw1UM3l3gblb5fFQsEUbM/c7gbplF8YYCFR7kjjBX+kN3uYH395dj3T5hTYwBwPLtpchJ642D5bUoOl+Nr682M+2fdXKsN8HuApBTbtFT6a7kO/S+G2V1PvVm3sTB2HTgS8nBccu9puLKCYqERjGwlC1YNVPccEC5mqm6prag3MlzmiPvz9hqNsJoNOC6V+mN7zORMxgzHDMS992ezBSoUOdP6OGGO76/vyIow1Q7G+SjIsDi3DQ8NSEV/ueI0eCZVOqtL1HzQ99QfEHUJp67GGYsL8Bj6/6NVbvL8Pej0pqI2CgTTiy9D/Y4to4UA4Jvpy233OLGzXIL4PEgWLf3PH65tQTr9p4XLTVIofQ75AIcJZ4anrk7t0PsMuSZiutrjMYNqPN/nndQ9FlJFUYt+yde23E2wPKeK1vkl1QKvq7Y63D0tJrx1uMZmJRmV2R4p+V4BH883i9f4OkNhwMCwaY2l0+QAnh+Y/6fSbDKbHrBBZtC318ofvOEMJYII+ZMGIh3fvgtvP7IGNx92y0UpNyAMioisI4w5y4ISso/rMJdoZHy/nCn9W+/Pwo9oiJu2NBLCxvdCG67m6PdheWfnpT9mb2zpxxjBvTEkQtXsXZvuU957uXtp/DASDty0uyy9SpKv0PvAIezpZcz8l7I2p1vppDUc7gOtCMXropmA1nLFkKvEx9txuzsFMybOESVZkoPQz+Ay6KUyg6E3AB+8fEJTBzWG5YII3Pb+dnL11FUVhN2nUByZhwRRDhjcLuD0FupIw0NDbDZbKivr0dcXFzIjkONDbKW+Kewtx69iPmbj0o+zxJhxP97ZHRQxFor8koDggxWDACiLSYmnxuWEoe3fqGiupEpqOOOw26Lwr7nJ3Zc6NV0hyjRkfA95zOZU783zcmULFtIHdvyT05iXWEF82tyPPOdQfj55GGynyeGFj48Pa1mPPytfth6tPL/t3fv4U2Uaf/Av0lpeoKmLQWScmqhRSilnA8FYaEUqEVl1fUVWQ8oL3LqrqefAqICq77FwyUvigLiir6rlnXXA7JWliKuILaitFhqBTm0ILQFofRgS5s2eX5/hAlJmsPMZCaZJPfnurgu2kySmSTN3PM893PfgoIdR32MlEDI59JoYig+dQlFJy8BYMgYEI8JTir4imE0MRSfvISiUxcBmPPLJgyQ7vGJf+F7/qZARQJGE8P1z+/1aRn13GnJmJQc3+kkUnTyEu7cWszrMVSA7KsYvBnQca+Cs2Ny9AUeExkKQ4fJbSBk/VqZc0FOOEyMdbcP1gwdJkGjMfaMJoaxzxWirpl/FdkNc0dgzojevLe350lRuNxpA/H/ZkkXqCjh7xBApz5GSsAnEHZWhViqFSfOHj9SE4KcNB0mpfSALlq5NWqI9Piev2nqRwJK6PWS0qurwytjIQWgGORdxeBpXwuhXE1xOLvy5r5Ek3tEobr+ClraO+e96O2K/Nkna/LdB2uORpkc1dtxxdznRVipe0/yqzwtCid1HRUl/B0C5j5GSlsJ5G51nKuAs76l3WEjSSFcPX6LwYh/lpzDP0vOAVBujRriOxSoSEAJyXTOTjghahV+PyIBb/EcmpdzFYPYvhae4JKR3z5QifhuYejZLRyj+8e6Tf488WszAHN7gdtH90af2EjEdQ2zueLjO83gbnWIs1EmR/V2XBH6OYyLCvUokdKTwCAmMlTyOipK+DsElN/HyJ7RxLDmU/cB55pPfxQVgJkfn3+1Zy6x+bV5oxAbpTG3qegaBpOR4duqS6Apo+BDgYoEfL28z13m/oxUHe9ABZDvC9+Tvhaesi6mFxcVynvk4be2Dmz75nSnq0kxBeIcva6GDhPecDPKxNXbcTcNJPRzeMuI3h590XvyOVl36zDJTzK+/ju0pvQ+RtYOVtbxysWpbWwTdRFjfnxhidMMQG5+idMLm41fngj6ImjBhJYnS8DdMkCOXLG/u8x9bv/4kusLX0xfC0dUHr6QQqdHAPPVpNHqW1PMaIKj1/WJj8rcNpU0MfNolDvcNB9fWak63ts6IuZzoosOky2HQ+jnXF7+k/onJOAUE5x6UmfKFW5KytUyexIYKFCRgLvaFiqY62HY19jQa8MxfXAP0c8bGxnK60vfev9ckbuuwt0ZiZ3q0gi1aEoSHpicJM0OCcBdTXKEfPk6e12NJoaCI7W8HoPPaBTX54WP2EjPpn0AfnU6dNFheO+/x2PD3BHIXzgBB1ZMl+0KmO/n3Bv8pY8RICzgFBOcyj3StfKjIzYXESTw0NSPRNzVtshO0+Px7CGdMu8PVtbhi6O/8nqOuCgN5o7tA7VKLXiONjtNj813jXKYdQ94p64C374WzqhgLlv/9fJMABC9xFks6+BE6Jevo9f1YGUdWtr5NSbkOxo1K02HSI0aLQbXxe+keNn41OlYc/NQr06BZKfp8fq8kViWX+p2pEou2oguftHHiDMuKQ666HC30z+66DBRwa358cMET//wdbmlHRv3HseDWYNkeXziexSoSMhdkzxHmfdCCo3VNRswOaWn6ERXbv827j2BbQcqbSqW6ryUac8lhdoHGSoAYaFqtDpYZcOxTkq1L8bX0taBr09ckrXaqXVwwrfEvKsVDHxHZVRWfaXcOVhZ5zZIAaQrYc8nQPe2nPQEvMLQqWu5t9w/KcmvkjzNFZJT3S4zX3PzUNHHdee4/rz6Wom17UCVpQAhCTwUqEhMaJM87qqUby0KTxNdQ9QqPJiVgtzMZEm6DovhrOLvZ2XVePiDH9zen3sNNF3UWDB5gOX31rUiLja1Oe1GLYb91aSr0QTOw1kpLr88+Y7KzB6m511PRUigJlXStJRdrKVy0/AElJ+r90kRxsT4KNke29NaO864GnH1JGlVaMNRseqveKd3FPENClRcEFMtVAxzJ90UXlVRHZ3cxOynVF2HxbIPMgBAp43gdV9XS7G5YzKaGN78utLtiAdfjq4mnY0m8K0DwWdUJlITgg21GBl6AAAgAElEQVRzR/LeTyFl6aXMHfD158mRlTmpGN4nBo99WIbmNn5TbFKQKydDilo7rnABp1SVad0t3w/rokJbR+dbVSqImrZTyvJ0Ij0KVJwoKKvBkzvKbQqlyVmIKDczBfkHf3F6RWzfFfda2fcW5B+0bWwYExGKeyf2x5j+cfi2sg5ylMKWg5DOwO7wGfHgw93VpCejCXz28eX/Gs77PdtVXoOXC4/x2jYmwvNkWn+Qk56AWWl6h12kYyNDcbml3aPPhzU5u3tLVWvHnRC1CpOS4z3OK+KzfD9S0wWPzBiIXy63QAVgZN9Y6GMi8O8fa3h1fbanpOXpRFpUQt8BV2Xe5Swzz12BAI4TEzfdNQoARA+lKrHugP1Qds/ocPz5am6Bs9dAyP6LHXoe1CsKq29M80pw50mPIOvHEFLK/uGsQXgwK0XwvvozRyOPhRW1nV57tcr90lhH5PpuMHSYcN1Tn7scZVCpgGPP3CDJNJAUhLTu4HC9krQRGsH31dv13SL+gXr9iFRQVu22qZucfxSuTloAPG64BiinF4mjoWy1Cpg+pCfKzzV6dOK2Zn2C+lvRaXx/+rLb+8xM7YU37hkj+LnE8mSaUWiPm/Auavz4l2z6Ur/K/rW/3NyGZe93DpZdkXO0deu+U3iuwH2+1aqcIVg4ZYDb7byBbzNUR16fNwrPfCbs4kIp32lEGOr1I4LRxPDkjnK323El2efLkN3vbCoBAK5/fq80+RYiS2FLydVQdmHFBSycnIjMwTpJ8oOs8ycuNLbyClTGJsaKei6xyY6e5HgILT6npgDFhqPXfpNa5XakpXuUBnNGJGBGqk7W5OHvqi7x3k4pgYon0zCP/OMw5o7ty2v6R4mjxER6FKhYEdLU7ZnPfsKbX1fKchXl6Iuz6OQlyTLnxZbClgqf5oR//boKj80a4vYkL7Rt/L0Tk/A/BUddBnyqq9sJJXeyozNCkwhbDEa/WCHhrWR2RxxdMIzuH4tDpy97fX8iNfy+pvlu5w18l+870tpusgQpzqbhYiJDcd/EJORmJtPIYBBQzidbAQor+FUJ5dRebZ4lV86KNakz2n2ZIc+nOSFXNt5+ZZA1R23j3fUA0XRR44EprovOPTAlSfBcv7eSHR0Rc/Wq9BUSjqZAu4V3Qd7vh+HGEQle2QdHFwxSBnd8R99uG9UHnxyudvt4t43qI9m+eco6UdwT3PfEfRP7O2wMSoIDBSpXGU2M15eBNe5cu3ZnhexTKVJntPsyQ55vc0JX23nSlp4LGN7YV9kpYfeBKcJHP/iMEPFtLCiGmKtXJa+QcLastam1A7nbS7Gj7Bxemzdalnoi3uJu9M16NOnUr7+5fbwoTQgmSlgBWIrRLG75/hMfHxHVX8varh/PU7JsEKNA5SrztI/B/YYOcNVS5RxKF1LB1h2xpbClwrccvLPt+LaNdxVAOis6J+ZkJ9UIkVhClmLLuYRWCnyWtRZWXMB1T35us403ptik4m707dTF5k7J5O68+Af+y9jdkWIVGic7TY/Mwb0wIe8L0d+vgPk7lsrkBy//uQSRmadD4TX1VyTaE8ekbLjmSSlsKfBpTqh2UTaeb9t4LoB0his695c5aVgweYDoK3K+I0TfVtZhx+FzKDp5qVMTNaOJoejkJae3u8Ndvdo3vrTmjX5OnuKbGGz/6nAn+byCCnl2TCJ8Rt8KKy4IviDRRoZ6slsW3GiW/fNz09xiOhVruqjxP7ekWRq0irV+z3HqlBykKFC5ytOh8NU7y2X/I+LKXMeI/FKK4dltWU5GE8Oh05cx9TrXXaMXTnaeJyJ3W3qh+I4Q7a44jwe3H8adW4tx/fN7LZ+XXeU1uP75vbhza7HD2/nKTtPj6+WZyF84AQsmJSIuyvZzotOGeyWfyhOevl9b91fC0OG+15Gv8Bl9E8NcSdYzrkazrKe5xXQq5hNI8yH2+Yl/o6mfqzzJUgeAplajVxJrs9P0MJmApe87T1JbMCkRmYN7wcSYoirT8im+plbB7RC+3G3phZo3vr/gvkLcFeoDU5I65cpY3y7088QlgGYM7I4nZqd6bdWMVCt0PH2/5JxikwLf0Tfh3H9ruXuP3I1mWTcFFTPNbb2S6s39J3l3jbfmjWl2ojwUqFwlVcl1uRNrjSaGZz5zPbxdUF6LJ2abh/cnD3I9ciElV6sY3PX9mDooHpNTevDKExHSNn7v0VrJvtScfdEf/qVe8GMxmIfBt+7vHKRY3+7J58lb/Xd2lddgzacVNm0c4qI0eHZOGnLShQXt45Li0C28C5paO0Tvj3zBgOf4jr4JlTHAdSKto4sE+/eIb0NLT0a9rAPpgrLqq21KhCXaKn3FGpEeBSpWnDWZ48vTKw4++Mzh++Kqw9Uqhsezh7hMkFQBOHb+N/x1/jjePXLW3DyUV8n4rfurMLJvLHLSPVvS6irBsE3kVAOD6+Zr3vg8ecrZ6qu6ZgOWvl+CRWeFJbiGqFXI+/0w5G53XR3alZY28UGO3O7OSMRzBT9JOv0TExmKCS4+H84uErj36MZyPXp1C8MHh37h9XxSjVJyfZge2l6CnWX8S0MoecUakQflqNixnuffMHcEVuUMFvwYckb8tQ38knZ3/+i9pDNuFYP9ly+X4Pjg9lLeQ8p8mTtO81sB8OSOclHz2lyC6192/ojFLhIMqy42C35sIZR6BWk0Maz46IjLbbbsq0RBmbBl/zeOSMCM1J6i92v/8V9h6DB5lJwsF00XNRZOFl5M0JV1tw5zGuDzWUX1r7Ia/PVAFZpaXXeYVsEcnEu5YsxoYvjsCL8gRY7nJ/6BRlQcsB4yN5oY3jpQJWiERc6I/4Pvz/Da7sOSc3jyRvlX9/BZxfCvMn5Bk9ATcmI8v2H0uuZ2waMSfPJpuOmZ/INnoIsOx/lGcflN7ij1CrL41CWbYnvOrPqkHLPS9II+i1vvGYvnPqvAm06mxlw532TAhLw9NlMKcvbiEWpkv1hEak6jxWA7EqdSAVlDemJPxQUA7qefddFhWHPzUJfHJLS9gjNyrRgTmlys5BVrRD40ouIGl7vC509D7oi/oKwaRafc96kBgMbWDkEjFGJJuYpB6AlZyPZCgiBnSzQdYTC3JLhzXD8AwpdfqlzcQelXkHxXmlxuaRf1WVw1OxUv/SFd8P0AdMp7qGloxeJ3S1DAM2iWCzdVZh+kAOZpwNtG9XG4OkavDcfr80ZZRnrzF07AgRXT3QZeUo3GhYeqkZ3WC93CQiUdneKbTxSpCVH8ijUiHxpR4YFP7orcNSr4Nky05o0pA6kSF8WckMclxSEuSsOrkBTfoIbPULkjifGRovKbIkJDcMVgHnK3r5ILKP0Kkv+rJPazmBArbfJpbn4JNmKkxzlLYvCZKlvx0REcenKGw8akvlhFxbnSbsLn5efxefl5SRsB8k0ufjhrEAUpQYxGVHiyzl25f1Ii4qI0NrfLXaNCSMNEjjemDKRaxSDmhByiVuHZOWlut3MVBBk6TPjr/lN4ekc5/rr/FL45flHUUHnPbuGWz8iD01N436/FYMRDWYM6XUH7Q80TdytNrO0R2EeLw5UNkIqJAUvfL/VJ4bDik+6nyupb2lF88pJl+nnOiN7I8KCsABfMS4lrUSHFa8i3+OO9ExM9fi7iv2hERQDrpXWrvFijAhB+ReqtKQMpVjHcN7G/6BNyTroei846bzKogvMgyNFKJTHvoPVrXVhRi1e+OC7o/onxkfh6eabPOgWLNWFgd8REhKL+ivsAemdZLRJiKgSXuOemXvms8BLCG/257Jk7fPPbblKKNH17uGDeVd0lsVZ8WObxa8glF7tqEuqq+CMJDvTuiyTVFQ9fQkZHXJ2cpSbFKoYPDp3Fhj0/i577XpmTitfnjexUiVXvYlTC2UolMXvw1NWaNWKnjXp2C/f650kKIWoV1t02jPf2W/dXWqa5hBCywosv61VmnrYv4Ivvo5okLqybk66XfKURANRf6cDGvcKCckdW5qRi0ZSkTiMrahWwSESTUBJ4VIy5quSgfI2NjdBqtWhoaEB0dLSvd0c2RhPD9c/vdTstERsZijyJ5o/57hdXaXLv0V87fRkLKZ7n6dw33+qohg4TBj/1uWRJwDem67Fx3igUnbyEO7cWC7pvXFQovls1wy8CE2d2ldfgoe2laO1w/4J2Cw/Bi38YLvg9NpoYJq37gleRP742zB2BsC5qyRrwubN13yk8V+C+gnFYFxU2zB0p6PndffbFfDb5iIkIxaGnpPn8uioYSQIT3/M3Tf34CevKuc5OBzel6/C/c0d57aTnaAlvt/AuGNUvFj26avDPknOCRhfqW9o9akPAtxKr1P1W/lVWg94xFUhN0Aq+722jevt1kAKYRzz+MOYi3i12v3RebKsJrsifq8+/UFUXm/G/e45L1r7Anfiu/HJF2joYFr9b4rIvl3VgUnWxGfkHz9gEcfbBllyJ9fVXhC/9d4ZrEkqIPQpX/Qi3+sg+uTAuKhSvzxuJV+eN9mqQ4mgJ72+tHfjq51/xebm45EkG+RuPyVFifev+SsRFCk9a/Oehc4opRuaJpO5RgrYX8x5zn39Pk0O5Zd/5B8/I0oDPGZ02QtD2zp6/oKwGY5/bY2liuX7P8U4jTfbdjuVMrFdqQUISOChQ8TP2lXPzF07Ad6tmeHW5JZ8uq80ichE4QqvUCiVHvxUTA47WNkKvDReUkHu5pR3FpzzvfOtrfFZvcMRUIuZkp+nx1Owhgu9n//xzx/ZzOY3kyT46My4pDjER/DufO3r+vIIKLH2/xO2SfPtgi+uPJQe5KzMTQoGKH/J14qVU1S5d+by8RrbERiEnVSF+uXwFq28SnvjHt3CakolJqhZ7JS50ZMKRsrP8CidKOVoQolbhvkniX6OCsmqXq2PsWQdb3NSZHNbvOe6T5d4keFCgQgTzxlDv/xWdxp1bizH2uULBvWLckaPfCmAeqclO0+MhwStU/H/qB7i2esNVtV1rYqcjzKMDnk1lfHH0V17bST1lkpuZjEhNCO/tuecXU/CRw/29ZqfpsfmuUYiJ5D+qw5fc07UkuFGgQgTzZu+ZuuZ2LH2/FHkFFZI+7uPZQwSdMNxRq8wjNQD/HkQcIYXTlG5lTioq1majW7jz19bT1gDm0QH5l6zKUYsoRK3CoikDeW3bPUpjeX4xBR851n+v2Wl6HHpyBt6ZPxbhodJ9/cs9XUuCGwUqRDCuWqirC2epZ1bMXXilG14+WFmHFg/yaOwtuP7aUkohgVxMZCgmSLBiQkkiNOYlyCp0/hxI1RqAGx3oGibfwsWbhwtrpMhXbmYyr1GNZ+akWZ5fzCims4CwsKIWKz4+gtZ2aQu2UFItkQsFKkQwbqk04PhEpALwwBTpp1ae2lEu2fCy1F+qmYN1lv/zCeQ4624d5vfLkx3hVujI2RogO02PkqdmoGuYdCNj1j79oUaW6YwQtQrrbnVdKG/RlCTkpF97jYSOYjoLCIU03BRKqV2+if+TJVCpqqrCggULkJSUhIiICAwcOBCrV6+GwWCbqV5WVobJkycjPDwcffv2xQsvvCDH7hAZuDsRrcxJxea7Rkm60uBSs0Gy4WW+X6pRPE+C1oGPq0COExPRxWWdjEDgaIXa18szJT1mTRc1/mtMX8kez5qc0xnciJCzUgP21ViF9jxyFBCKrZzM1+Vm6YrxEWJNlnHTo0ePwmQyYcuWLUhOTkZ5eTkWLlyI5uZmvPTSSwDMFelmzpyJrKwsbN68GUeOHMH999+PmJgYPPDAA3LsFpFYdpreZZdX69sPnPgVG7886fFzSjUSwn3x1za0OvziVsH8ZX/HmL74Xx69e+wDH2cdt2MiQnHfpETkZqYE5EiKPb5F+DwxI1WHtw5UyfLYck5nuPv7scan4OON6XrMSO3l9HHkXq33zGc/YVaaPNNlJLjJEqhkZ2cjOzvb8vOAAQNw7NgxbNq0yRKovPfeezAYDHjrrbeg0WgwdOhQHD58GC+//DIFKn7E3YmIu12qL3yphpetv/jty/xbD5vPSNXh7aIqp11vuYDGUdKlkBMREY8LOvmchNUqYMH1Sdi6n98yX7mnM4QEcs6C37ioUDw7J81tLSW5c0i4ESi5A1MSfLxWQr+hoQFxcde+zIuKijBlyhRoNNeqTM6aNQvPP/88Ll++jNjYWIeP09bWhra2a0OMjY2N8u00kYwUX/hSr8Jw9sWvsys/vu7WYQ6vZPkkhnpjRMFT1uXY47uGAQy42NzmN4EVn9EGzsY7RyInPQEj+8YiN7/EaSsFVwGoL3kS/Hojh4QSaokcvBKonDhxAq+++qplNAUAamtrkZRkm3DZq1cvy23OApW8vDysXbtWvp0lshBy1euIXB2h+Xzx8w1o/NGu8hqs+bQCtY2O3xdddDjW3Kz8Y3T2HnHse9/kpOuxESOx9P3STttKtTJJLmKDX3fTnVKghFoiB0Hdk1esWIHnn3/e5TY//fQTBg8ebPn53Llz+N3vfoepU6fizTfftPx+5syZSEpKwpYtWyy/q6iowNChQ1FRUYEhQxyXyXY0otK3b9+A754cCLgVB+4+cF3DuuC3tg7Lz3J1sxWKb3dmf7GrvAaL3y3hta2/JP5y71FtwxXUNRsQ1zUMumjn75WjxppK+bzJge/foFDcCNTXyzP9+m+CeBff7smCApVff/0Vly65Lvc9YMAAy3ROdXU1pk6digkTJuDtt9+GWn1tkdE999yDxsZGfPLJJ5bfffnll8jMzERdXZ3TERV7fA+UKIOjEwOHO0FQXof8jCaG0c8WOs29sRcbGYrvn5wRkO9DoAWg7uQVVGDr/krJOohzr5TU3aZJ4ON7/hY09dOjRw/06NGD17bnzp3DtGnTMHr0aGzbts0mSAGAjIwMrFq1Cu3t7QgNNRc/KiwsxHXXXcc7SCH+x3qqxdVVr9LzOvxd8alLvIMU4FrzxEnJgVNFl+MPeURSMJoYNu49LqhfkDUu6TwmMtTmsxMIU6BE2WTJUTl37hymTp2K/v3746WXXsKvv17rq6HTmQtjzZs3D2vXrsWCBQuwfPlylJeXY8OGDVi/fr0cu0QUJFhODEomphFi0cnADFSCQUFZDZ7cUe6y67IKQFyUBk/OHoIzdVeQf/CMTe6SjkY8iY/IEqgUFhbixIkTOHHiBPr06WNzGzfTpNVqsXv3bixbtgyjR49GfHw8nn76aVqaTIgXMBFZCmLuQ3wvr6CC1ygKg7mook4bgVtG9UFuZrLTgIQuNIg3yRKozJ8/H/Pnz3e7XXp6Ovbv3y/HLhBCXIiJEN5BV8x9iG8VlFULnurhlhjTyCdRCur1Q0gQiosS3tpAzH2I7xhNDI99WCb4frTEmCiN1wq+EUKUo77Fea6ClPchvrNx7wk0t/HvEK7UIneEUKBCSBCKi9K430iC+xDhLLVgGltxsakNl1sMUKuAjAHxmDCwu8PEVfsl1qP7x2LbAeGre5Ra5I4ENwpUCAlCOm2EV+5DhHFVZ2jjlycRExmKdbcOs1kK7Og+cVGhqL/Cf/m5LjoMa24eSkuMiSJRoEJIEBLa0kDqPkukMz5VY+tb2rH43RI8nDUIifGRqLrYjPV7Onf3rmvmH6Q8ND0Ff5oeHN28iX+iQIWQICSkkZ9cfZbINUYTw9qdFbwXgK/f87Mkz3tjuh4PzRgkyWMRIhda9UOIDxlNDEUnL2HH4XMoOnkJRqnqmvPANfLTa52v8tBrw6k0uhccrKwT3bBTrJiILtgwd6RXn5MQMWhEhRAfMJczP4FtByptcgniokLx7Jw05KQneGU/7LtHx0eFASrg4m9tVHXUi7jaJd6iArDutnR6b4lfoECFEC8rKKvG4x+W4TcHS0frmtux9P1SLDpbj5U5qV7ZH18W9gq2hoDOyFm7JC5KY1M6P5C7Q5PARIEKIV7Et5z5ln2VGN4nFjnpgXsycbRaJVhPouOS4hATIWyljjtcXZSvHpuGQ6cvB30wSPwX5agQ4iUFZTWCypk/taPcqzkr3sStcLHPy6htaMWSd0uwq7zGR3vmGyFqFe6blCjZ43FhyOqbUqHpokbGwO6YM6I3MpzUYSFEyShQIcQLjCaGxwWWM7/UbMDByjqZ9sh3jCaGNZ86XuHC/W7tzoqADdKcyc1MQUykNP2UdJQETQIITf0Q4gXFpy7ht7YOwferbfRukqU3bNx73OVxMQA1Da04WFkXVE3xQtQqrLt1GBa/WyLoftz4yENXa6vQ9A4JNDSiQogXFJ28JOp+db+1SbwnvlVQVuOwQJkju3+slXlvlCc7TY/Nd41yOLISExmKRVOSOi0n50ZPHsxKoekdEpBoRIUQrxA3jRFI/XUKyqqRm1/Ke/u3v6nC2MRYry3VVgpuyXjxqUtXA1xm0+fn8ewhtFKKBBUKVAjxgowB8dj45UnB9wuU/jq7ymuw9H3+QQpgDu2Wvl+KzWpV0OVahKhVmJQcj0nJ8Q5vC6YpMUJo6ocQL5gwsLvgRMlA6a/DlYcXKxgTawkh11CgQogXcImSfAVSfx1Py8NzibWEkOBEgQohXsIlSmojXM+4xkaGBtTSUinKwwfi6idCCD+Uo0KIF3GJkhv3Hse2A1U2lUhjIkJx36RE5GamBMRICkeK8vCBtvqJEMIfBSqEeIGhw4S/FVXhdF0L+sdFYsnUZORmpgTF6o1xSXGd+s0IpbTVT/bv590ZidB0oQFqQuRAgQohMssrqMDW/ZWwzgd9ruAnLJyc5LXGg74Uolbh2TlpWPq+sEJm1pS0+inY309CvI0uAQiREdeE0H7RiomZGw/mFYhfDeNPctL1uFFkg0UlrX6i95MQ76NAhRCZGDpM2LrfdRPCrfsrYegweWmPfGvD3JFuE4ntKWn1k6HDhDfcvJ9vBNH7SYi3UKBCiEz+VlTV6crbnomZtwsGIWoVnr8tnff2Slv99M43VWBu3k/GzNsRQqRDgQohMjld1yLpdoGAW6Jt36/GWkxEKB7OSsH3T85QTJACAN9V8avlwnc7Qgg/lEyrcEYTC4qVIYGof1ykpNsFCm6JNve5ju8aBjDgYnOboj/jkZoQSbcjhPBDgYrCWAcmVRdbkH/wjE2xK3OtjSTkZiYr8sucXHN3RiKeK/jJ5fSPWmXeLtj4Y7+aW0b0xieHq3ltRwiRDgUqCrKrvAZrd1a4LDdef6Ud6/f8jG3fVGLdrcMUNTRObGm6qLFwchK27HOegLlwchLV3/ATXUL4vU98tyOE8EN/UQpRUFaDxe+W8O6JUt/SjsXvlmBXeY3Me0Y8sTInFYumJMF+8EutAhZNobob/uRiM7/quHy3I4TwQyMqClBQVo3c/FJR9127swIzUnU0DaRgK3NS8ejMwVTJ1M9VXWzmtd2b+0/h+6o6PJGTigjKVyHEYyrG3C24U7bGxkZotVo0NDQgOjra17sj2K5y80iKJ/IXTvC7+X5C/InYv9MZqT2x9Z6xMuwRIf6P7/mbLul8yGhiWPHREY8fZ09FrQR7QwhxxJO/08KKC1j4f99JvEeEBBea+vGh4pOXUN/S7n5DNz4+fA5PzFZG9U5/FIxLwIPxmIWwfn0uNLZ59HdaWHEBVwxGmgYiRCQKVHyo6NRFSR6nrrkdByvraPpHBEcrrfTacKy+KTVgV1TtKq/Bmk8rbJa966LDsebmwD1mIfisvhPqfwoq8Mzvh0n2eIQEE5r68SnprmAvNEn3pRosnK20qm1oxZIAXVHF5VpYBykAUNvYSqvIYH59lghYfcdX1aXgqT5MiNQoUPEhKUdAenZzXpKcdFZQVo1l+Y6TI7ns8rU7K2B016zHj/DJtVj50ZGAOmYhjCaGtTsrIMfRJ3YPrurDhEiJpn58aMKA7uga1gW/tXV49DgxkaEYlxQn0V4FNqOJYePeE1i/52eX2zEANQ2tATWlVnzKfU7U5ZZ2FJ+6hEnJ8V7aK+8ydJhslonPG98fh3+px4WmVlxsapN8JIXzBNXLIUQ0ClR8KEStwn+N6YO3DlR59Dj3TUyiREg3uADlra9PoaGVf2AYSFNqRScv8d4uEAOVvIIKbN1fadPS4JnPfpL9eWek9qREWkI8QIGKj81I1XkUqMREhiI3M1m6HQpAu8prsOLDI6i/InzlRmBNqfGd1Ai8qZ+8ggqXrQzkQnVUCPEcBSo+Ni4pDnptuOgh53W3DqPRFBc8KagXaFNqGQPisfHLk7y2CySGDhO27vdekDJE1w1jEmOpMi0hEqFAxcdC1CqsvikVS66eTPleywb6ElopeFpQL9Cm1MYmxbnNiYqJDMWEAMnJ4fytqMplB2upBNrfJNXaIUpBgYoCZKfpsemuUbxrNzyclYLczBT60nCDT/KoM4E0pWbOzzmObQeq3CZu3zcxyUt75T2n6zxfGqzXhuPm4Xp8+kONzd9oXFQobhnRG1mpuoA6kQdjfSGiXBSoKER2mh4zUnWWK5iqiy3IP3jGpt4FfVEIwzd51JFAGU3ZVV6DFR8d4R2wrd/zM7Z/dyagPmf948QtDX5q9hDEdwuzGU14PHtIwI8ycLVk7AehahrMtXZenzcKOemB8dkg/oECFQUJUatslsLmZiYH/JeivMSP9yfG+3/dC7H5OTVXC95tumtUQAQrd2ckClrdowKg04Zj/qTOwar932ig4VNLJje/BH86n4IBPaLoe4l4BQUqChboX4py45s86oi/r/bxND+HwVzwbkaqzu9PQpouaiy4PhF//bqK931W3xScvbMOVta5nX42MWDDF8ctP8dEhOK+SUnIzUwOyteMyI8q05KANWFgd0SKWHURF+X/q3027j3hccNLruBdIHjqxqFI7+O8jTxHrw0PmJEkMcTUDaq/0o71e37G6GcLg74FA5EHBSokYIWoVVg0ZaDg+z07J82vrwyNJoZtB6RZjlvbcEWSx1GCT3Mn478nJXXqsKVWAZmDeyB/4QR8vS2prQ4AABS3SURBVDwzaIMUwLORxPqWduoXRWRBUz8koOVmJmPbN5W8RxcWTUlCTnqCzHslr4OVdaKK2zlS12yQ5HGU4smbUvH4DYNtyujfnZEITRe6ZgM8r+sEBM6UIVEO+uskAS1ErcK6W4e53a57lAavzxuFlQHQk0XKsv9xXcMkeyyl0HRRY8HkAfjLnDQsmDyAghQrIWoVnprt2d9ATUMrik+JX3FHiD36CyUBLztNj813jYJeazusHRcVigWTEpG/cAIOrsoKmCWXUiYC66L9O6mYCBcbpfH4MZa+d4imgIhkaOqHBAX7OjWBvKxyXFIcYiJCPZ7+6R6l8fukYiKcFCNyDVc6AmqJO/EtGlEhQYNb7j1nRG9kDOwekEEKYD7O+yZ5XmH2GT9PKibiSDUixy1xN3qjfwEJaBSoEBKAcjOTERMZKvr+CycnBcxUGBGGS6iVQiAtcSe+Q4EKIQGIbxKxIwsnJ2KVhwmVxH9xjVKlYt0GhBAxKFAhJEBxScR8R1biokLx+ryRWDV7qMx7RpQuO02Ph7MGSfJYdb+1SfI4JHhRMi0hAYxLIua6J1sn2Oq14Zg7th8S4yMDOrmYiJObmYz8g6dR2+hZoBEnwSoiEtxkD1Ta2towfvx4/PDDDygtLcWIESMst5WVlWHZsmX47rvv0KNHD/zpT3/C448/LvcuERJUQtQqPJg1CLmZKUGx6olII0Stwpqbh4pqbGlNp42QaI9IsJJ96ufxxx9HQkLnSp+NjY2YOXMm+vfvj0OHDuHFF1/EmjVr8MYbb8i9S4QEpWBZ9USk4+kUkF4bTkvcicdkDVQ+//xz7N69Gy+99FKn29577z0YDAa89dZbGDp0KObOnYs///nPePnll+XcJUIIIQLkZiZDFy28QrEKwduFmkhLtkDl/PnzWLhwIf72t78hMjKy0+1FRUWYMmUKNJpr85ezZs3CsWPHcPnyZaeP29bWhsbGRpt/hBBC5MFNAamATg0dnQn2LtREWrIEKowxzJ8/H4sXL8aYMWMcblNbW4tevXrZ/I77uba21ulj5+XlQavVWv717dtXuh0nhBDSSXaaHpvuGgWdi/oq1i0pgr0LNZGWoGTaFStW4Pnnn3e5zU8//YTdu3ejqakJK1eu9GjnHFm5ciUeeeQRy8+NjY0UrBBCiMzs21DEdw0DGHCxuY2Ss4msBAUqjz76KObPn+9ymwEDBmDv3r0oKipCWJjtvOaYMWPwxz/+Ee+88w50Oh3Onz9vczv3s06nc/r4YWFhnR6XEEKI/LiEbEK8SVCg0qNHD/To0cPtdq+88gqeffZZy8/V1dWYNWsW/v73v2P8+PEAgIyMDKxatQrt7e0IDTUXpCosLMR1112H2NhYIbtFCCGEkAAlSx2Vfv362fzctWtXAMDAgQPRp08fAMC8efOwdu1aLFiwAMuXL0d5eTk2bNiA9evXy7FLhBBCCPFDPqtMq9VqsXv3bixbtgyjR49GfHw8nn76aTzwwAO+2iVCCCGEKIyKMebXPbgbGxuh1WrR0NCA6OhoX+8OIYQQQnjge/6mpoSEEEIIUSwKVAghhBCiWBSoEEIIIUSxKFAhhBBCiGL5bNUPCU5GE7NUtuSqWQKw+d3o/rE4dPqyzTZU8ZIQQoITBSrEa3aV12DtzgrUNLRafhcTaS72V9/SbvmdWgWYrNai6bXhWH1TKvUOIYSQIESBCpEVN4Kyp6IWfz1Q1el26wCFY7JbMF/T0IrF75bg4axByM1MptEVQggJIhSoENk4GkHxxPo9PyP/4GmsuXkoja4Q3qynG+OjwgAVcPG3NppmJMRPUKBCZLGrvAZL3i2B1NUEaxvbsOTdEmy6axQFK8Qtd8EyTTMSony06odIzmhiWPPpj5IHKRwGYNXH5TB0mGR6BhIICspqsPjdEpcjes6mGQvKamTeO0IIXxSoEMlt3HsCtY1tsj7HpWYDJuTtwa5yOqGQzgrKqpGbXyL6/rn5JSgoq5ZwjwghYlGgQiS1q7wG6/f87JXnqmtux5J3SyhYITYKyqqx9P3STqMlQpgYsPT9UvpsEaIAFKgQyRhNDGt3Vnj9edfurIDRk7MSCRgFZTXIzS+V7PHos0WI71GgQiRzsLJOshU+fDGY8woOVtZ59XmJ8uwqr8HS90s8GkmxR58tQnyPAhUimdpG7wYp1i40+e65ie/JOZpXWFEry+MSQvihQIVIpu43eRNoXYmPCvPZcxPfk3M0b8fhapr+IcSHqI4KkUxclMZ3Tx5ENbrs+yXZFy0LxiJmco6oXWo24GBlHTIGdpftOQghzlGgQiSj00b47Lkv+nA0x5sKymrw5I5y1DUbLL+zL1oWjEXMenYLl/XxaWqREN+hqR8imXFJcYiLCvXJc8t9olKCvIIKLH2/xCZIAToXLbP/ubahNeCXcY9LioNeK99nIBg+X4QoFQUqRDIhahVuGdHb68+r15qnNwJZQVk1tuyrFHVfLm4J5KW2IWoVVt+UKstjB8PnixAlo0CFSCorVef151x9U2pA52AYTQyPfVjm0WMEwzLu7DQ9Xp83ClJ/FAL980WI0lGgQiTFDcF762v94ayUgM69AMwtCZrbjJI8VqDnWuSk67HxzpGSPJZaBbw+b2TAf74IUToKVIikrIfg5Q5W9Npw5GamyPwsvmU0MWw7IG7Kx5FgyLXISU+QZGRl452jkJOeIM1OEUJEo0CFSC47TY9Nd42CTqbkRtXVf8EwJH+wsg71V9oleayYyNCgybXwZGRFrw3H5rtGISedRlIIUQJankxkkZ2mx4xUHQ5W1qGwohZvHaiCCtcSOz2hC4Llthwpp2rum5gU8IGdtZz0BGxWq7B2Z4VNMTj75du66DDcOa4fEuOjgqbuDCH+hAIVIpsQtQoZA7sjY2B3jEuK63TC4IsLcO6flIgZqbqgOpFINVUTExmK3MxkSR7Ln1gHzMFcEI8Qf0aBCvEKRyeMy80GPPOZbfASE2muw1Lfcm26I5hGUOxxycmelodfd+uwoD0ZcwGzNaoyS4j/UDHG/LqwQmNjI7RaLRoaGhAdHe3r3SEC2ZeD53Io7H8XrCdZwNwVeMm7JaKmzdQqLik0+II8Qoiy8T1/U6BCiB/YVV6DFR8dsRlp4uP1eSNp5QohRJH4nr9p1Q8hfiA7TY9DT87Aw1kpiIlw36bg2soVClIIIf6NRlQI8TPcdFltYyvqfmtDXJTGnHSrMjdnpOkyQog/4Hv+pmRaQvyMo+RQQggJVDT1QwghhBDFokCFEEIIIYpFgQohhBBCFIsCFUIIIYQoFgUqhBBCCFEsClQIIYQQolgUqBBCCCFEsShQIYQQQohiUaBCCCGEEMXy+8q0XAeAxsZGH+8JIYQQQvjiztvuOvn4faDS1NQEAOjbt6+P94QQQgghQjU1NUGr1Tq93e+bEppMJlRXV6Nbt25QqZTdhK2xsRF9+/bFL7/8EpANFAP5+OjY/BMdm/8K5OOjYzNjjKGpqQkJCQlQq51novj9iIparUafPn18vRuCREdHB9yH01ogHx8dm3+iY/NfgXx8dGxwOZLCoWRaQgghhCgWBSqEEEIIUayQNWvWrPH1TgSTkJAQTJ06FV26+P2sm0OBfHx0bP6Jjs1/BfLx0bHx5/fJtIQQQggJXDT1QwghhBDFokCFEEIIIYpFgQohhBBCFIsCFUIIIYQoFgUqXnLzzTejX79+CA8Ph16vx913343q6mqbbcrKyjB58mSEh4ejb9++eOGFF3y0t8JUVVVhwYIFSEpKQkREBAYOHIjVq1fDYDDYbOevx/fcc89h4sSJiIyMRExMjMNtzpw5g9mzZyMyMhI9e/bEY489ho6ODi/vqTivvfYaEhMTER4ejvHjx+PgwYO+3iXB9u3bh5tuugkJCQlQqVT45JNPbG5njOHpp5+GXq9HREQEsrKycPz4cR/trTB5eXkYO3YsunXrhp49e+L3v/89jh07ZrNNa2srli1bhu7du6Nr16647bbbcP78eR/tMX+bNm1Cenq6pThYRkYGPv/8c8vt/npcjqxbtw4qlQoPPfSQ5Xf+enxr1qyBSqWy+Td48GDL7VIfFwUqXjJt2jR88MEHOHbsGD788EOcPHkSf/jDHyy3NzY2YubMmejfvz8OHTqEF198EWvWrMEbb7zhw73m5+jRozCZTNiyZQt+/PFHrF+/Hps3b8YTTzxh2cafj89gMOD222/HkiVLHN5uNBoxe/ZsGAwGfPPNN3jnnXfw9ttv4+mnn/byngr397//HY888ghWr16NkpISDB8+HLNmzcKFCxd8vWuCNDc3Y/jw4Xjttdcc3v7CCy/glVdewebNm/Htt98iKioKs2bNQmtrq5f3VLivvvoKy5YtQ3FxMQoLC9He3o6ZM2eiubnZss3DDz+MnTt34h//+Ae++uorVFdX49Zbb/XhXvPTp08frFu3DocOHcL333+PzMxMzJkzBz/++CMA/z0ue9999x22bNmC9PR0m9/78/ENHToUNTU1ln9ff/215TbJj4sRn9ixYwdTqVTMYDAwxhh7/fXXWWxsLGtra7Nss3z5cnbdddf5ahc98sILL7CkpCTLz4FwfNu2bWNarbbT7wsKCpharWa1tbWW323atIlFR0fbHK8SjRs3ji1btszys9FoZAkJCSwvL8+He+UZAOzjjz+2/GwymZhOp2Mvvvii5Xf19fUsLCyM5efn+2IXPXLhwgUGgH311VeMMfOxhIaGsn/84x+WbX766ScGgBUVFflqN0WLjY1lb775ZsAcV1NTE0tJSWGFhYXsd7/7HXvwwQcZY/79vq1evZoNHz7c4W1yHBeNqPhAXV0d3nvvPUycOBGhoaEAgKKiIkyZMgUajcay3axZs3Ds2DFcvnzZV7sqWkNDA+Li4iw/B9rxWSsqKsKwYcPQq1cvy+9mzZqFxsZGy5WhEhkMBhw6dAhZWVmW36nVamRlZaGoqMiHeyatyspK1NbW2hynVqvF+PHj/fI4GxoaAMDy93Xo0CG0t7fbHN/gwYPRr18/vzo+o9GI7du3o7m5GRkZGQFzXMuWLcPs2bNtjgPw//ft+PHjSEhIwIABA/DHP/4RZ86cASDPcVGg4kXLly9HVFQUunfvjjNnzmDHjh2W22pra21OdAAsP9fW1np1Pz114sQJvPrqq1i0aJHld4F0fPb89dguXrwIo9HocN+VvN9CcccSCMdpMpnw0EMPYdKkSUhLSwNgPj6NRtMpf8pfju/IkSPo2rUrwsLCsHjxYnz88cdITU31++MCgO3bt6OkpAR5eXmdbvPn4xs/fjzefvtt7Nq1C5s2bUJlZSUmT56MpqYmWY6LAhUPrFixolNCkf2/o0ePWrZ/7LHHUFpait27dyMkJAT33HMPmIILAws9PgA4d+4csrOzcfvtt2PhwoU+2nP3xBwbIb62bNkylJeXY/v27b7eFclcd911OHz4ML799lssWbIE9957LyoqKny9Wx775Zdf8OCDD+K9995DeHi4r3dHUjfccANuv/12pKenY9asWSgoKEB9fT0++OADWZ4v8JoMeNGjjz6K+fPnu9xmwIABlv/Hx8cjPj4egwYNwpAhQ9C3b18UFxcjIyMDOp2uU1Y097NOp5N83/kQenzV1dWYNm0aJk6c2ClJVmnHJ/TYXNHpdJ1Wyvj6veMjPj4eISEhDt8XJe+3UNyxnD9/Hnq93vL78+fPY8SIEb7aLcFyc3Pxr3/9C/v27UOfPn0sv9fpdDAYDKivr7e5ivWX91Gj0SA5ORkAMHr0aHz33XfYsGED7rjjDr8+rkOHDuHChQsYNWqU5XdGoxH79u3Dxo0b8e9//9uvj89aTEwMBg0ahBMnTmDGjBnSH5eozBbisdOnTzMA7Msvv2SMXUs25ZJrGWNs5cqVfpNsevbsWZaSksLmzp3LOjo6Ot3u78fHmPtk2vPnz1t+t2XLFhYdHc1aW1u9uYuCjRs3juXm5lp+NhqNrHfv3gGZTPvSSy9ZftfQ0OA3ybQmk4ktW7aMJSQksJ9//rnT7Vzy4j//+U/L744ePeoXSZmOTJs2jd17771+f1yNjY3syJEjNv/GjBnD7rrrLnbkyBG/Pz5rTU1NLDY2lm3YsEGW46JAxQuKi4vZq6++ykpLS1lVVRX74osv2MSJE9nAgQMtJ7L6+nrWq1cvdvfdd7Py8nK2fft2FhkZybZs2eLjvXfv7NmzLDk5mU2fPp2dPXuW1dTUWP5x/Pn4Tp8+zUpLS9natWtZ165dWWlpKSstLWVNTU2MMcY6OjpYWloamzlzJjt8+DDbtWsX69GjB1u5cqWP99y97du3s7CwMPb222+ziooK9sADD7CYmBibFUz+oKmpyfK+AGAvv/wyKy0tZadPn2aMMbZu3ToWExPDduzYwcrKyticOXNYUlISu3Llio/33L0lS5YwrVbL/vOf/9j8bbW0tFi2Wbx4MevXrx/bu3cv+/7771lGRgbLyMjw4V7zs2LFCvbVV1+xyspKVlZWxlasWMFUKhXbvXs3Y8x/j8sZ61U/jPnv8T366KPsP//5D6usrGQHDhxgWVlZLD4+nl24cIExJv1xUaDiBWVlZWzatGksLi6OhYWFscTERLZ48WJ29uxZm+1++OEHdv3117OwsDDWu3dvtm7dOh/tsTDbtm1jABz+s+avx3fvvfc6PDZuNIwxxqqqqtgNN9zAIiIiWHx8PHv00UdZe3u773ZagFdffZX169ePaTQaNm7cOFZcXOzrXRLsyy+/dPge3XvvvYwx86jEU089xXr16sXCwsLY9OnT2bFjx3y70zw5+9vatm2bZZsrV66wpUuXstjYWBYZGcluueUWmwsFpbr//vtZ//79mUajYT169GDTp0+3BCmM+e9xOWMfqPjr8d1xxx1Mr9czjUbDevfuze644w524sQJy+1SH5eKMQVncxJCCCEkqNGqH0IIIYQoFgUqhBBCCFEsClQIIYQQolgUqBBCCCFEsShQIYQQQohiUaBCCCGEEMWiQIUQQgghikWBCiGEEEIUiwIVQgghhCgWBSqEEEIIUSwKVAghhBCiWBSoEEIIIUSx/j/N6xfdTS/ragAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -3998,7 +3996,7 @@ }, { "cell_type": "code", - "execution_count": 145, + "execution_count": 152, "metadata": {}, "outputs": [ { @@ -4047,118 +4045,118 @@ " \n", " \n", " 0\n", - " 0.691481\n", - " 2.209414\n", - " -0.028238\n", - " -3.102651\n", - " -6.051851\n", - " -4.399188\n", - " 1.494551\n", - " 3.911412\n", - " 1.233372\n", - " -1.093439\n", - " -2.843520\n", - " 4.784419\n", - " 3.531888\n", - " 1.781903\n", - " -1.022948\n", - " 2.940790\n", - " 0.113284\n", - " -2.272277\n", - " 2.151206\n", - " -1.033226\n", + " -6.737473\n", + " 3.506645\n", + " 1.100792\n", + " 5.476943\n", + " -3.338335\n", + " 0.276633\n", + " -1.078069\n", + " 2.903708\n", + " 1.336813\n", + " -3.476732\n", + " 1.427167\n", + " -0.266681\n", + " -0.471343\n", + " 0.184137\n", + " -2.069631\n", + " -0.574260\n", + " -0.738087\n", + " 3.788915\n", + " -1.683529\n", + " -4.035486\n", " \n", " \n", " 1\n", - " 1.133341\n", - " 2.010200\n", - " 0.034295\n", - " -3.511348\n", - " -6.168634\n", - " -4.438835\n", - " 1.501480\n", - " 3.788925\n", - " 1.539473\n", - " -1.206030\n", - " -2.927973\n", - " 5.059699\n", - " 3.198847\n", - " 2.033874\n", - " -0.791365\n", - " 2.995087\n", - " 0.466563\n", - " -2.738615\n", - " 1.885887\n", - " -1.118297\n", + " -6.560338\n", + " 3.352505\n", + " 0.892895\n", + " 4.764644\n", + " -3.183715\n", + " 0.292796\n", + " -1.101001\n", + " 3.044708\n", + " 2.059587\n", + " -3.483480\n", + " 1.353684\n", + " -0.584850\n", + " -0.158013\n", + " 0.018590\n", + " -1.647612\n", + " -0.788695\n", + " -0.325296\n", + " 3.511575\n", + " -1.597107\n", + " -3.987545\n", " \n", " \n", " 2\n", - " 0.889183\n", - " 1.994394\n", - " 0.298426\n", - " -3.311967\n", - " -6.078265\n", - " -4.414866\n", - " 1.892591\n", - " 3.692539\n", - " 1.490572\n", - " -0.934464\n", - " -2.777043\n", - " 4.707861\n", - " 3.570221\n", - " 1.604899\n", - " -0.718914\n", - " 2.540431\n", - " 0.189408\n", - " -2.243979\n", - " 1.923425\n", - " -1.102676\n", + " -6.648391\n", + " 3.095893\n", + " 0.785576\n", + " 5.412939\n", + " -3.564779\n", + " -0.057957\n", + " -0.688464\n", + " 2.905470\n", + " 1.557411\n", + " -3.210068\n", + " 0.827968\n", + " -0.532490\n", + " 0.003652\n", + " -0.121509\n", + " -1.665959\n", + " -0.950425\n", + " -0.382220\n", + " 4.117815\n", + " -1.906440\n", + " -3.899600\n", " \n", " \n", " 3\n", - " -0.646802\n", - " 0.181007\n", - " 3.715522\n", - " -2.697770\n", - " -3.893324\n", - " -2.743762\n", - " 3.565471\n", - " 0.644597\n", - " 1.519284\n", - " -2.263462\n", - " -6.164203\n", - " -0.487320\n", - " -0.520860\n", - " 1.543796\n", - " -2.588697\n", - " 5.150163\n", - " -2.530453\n", - " -4.829188\n", - " -2.231499\n", - " -0.524451\n", + " -6.391430\n", + " 1.779750\n", + " 0.462306\n", + " 2.715431\n", + " -2.103771\n", + " -1.989185\n", + " -1.984643\n", + " 0.105770\n", + " 4.286595\n", + " -3.886077\n", + " -0.450857\n", + " 0.282356\n", + " -1.321213\n", + " 3.158543\n", + " 0.123383\n", + " -0.627238\n", + " 1.957629\n", + " 3.836007\n", + " -2.467475\n", + " -0.543244\n", " \n", " \n", " 4\n", - " -1.035309\n", - " 2.155994\n", - " 2.598428\n", - " -2.220484\n", - " -3.731646\n", - " -5.091130\n", - " 0.684202\n", - " 3.040052\n", - " -0.834740\n", - " -0.962661\n", - " -2.506616\n", - " 0.919390\n", - " 1.237634\n", - " 2.343424\n", - " -2.708177\n", - " 2.688421\n", - " -3.461588\n", - " -3.509613\n", - " 1.979434\n", - " -0.196468\n", + " -5.361574\n", + " 0.622695\n", + " 0.208257\n", + " -3.572732\n", + " 0.091671\n", + " -1.721061\n", + " 1.046673\n", + " 2.048406\n", + " 4.613693\n", + " -1.404773\n", + " 2.801529\n", + " 2.242345\n", + " 1.547014\n", + " 6.425769\n", + " -2.543316\n", + " -0.761218\n", + " 2.574573\n", + " 5.359656\n", + " -1.035850\n", + " -3.710101\n", " \n", " \n", " ...\n", @@ -4185,118 +4183,118 @@ " \n", " \n", " 1048\n", - " 0.982386\n", - " 0.199625\n", - " 0.242164\n", - " 0.701167\n", - " 0.086144\n", - " 0.239413\n", - " -0.610572\n", - " 0.003339\n", - " -0.191435\n", - " 0.340636\n", - " 1.121649\n", - " -0.151060\n", - " 0.603027\n", - " 0.298779\n", - " 0.463613\n", - " 0.059714\n", - " -0.116532\n", - " -0.401311\n", - " 0.606212\n", - " -0.117687\n", + " 0.129688\n", + " 0.868474\n", + " 0.158408\n", + " 0.148159\n", + " 0.302053\n", + " 0.617617\n", + " -1.176051\n", + " -0.358285\n", + " -0.874892\n", + " -0.830270\n", + " -1.113515\n", + " -0.046454\n", + " 0.627627\n", + " -1.529335\n", + " -0.654220\n", + " -0.372447\n", + " 0.006526\n", + " -0.608662\n", + " 0.442872\n", + " -0.374222\n", " \n", " \n", " 1049\n", - " -0.476996\n", - " 0.232066\n", - " 0.222565\n", - " 0.665518\n", - " 0.754919\n", - " 0.228781\n", - " -0.198005\n", - " 0.019199\n", - " 0.066273\n", - " 0.677850\n", - " 0.649621\n", - " -0.102975\n", - " -0.216284\n", - " -0.052017\n", - " -0.199819\n", - " -0.479769\n", - " 0.478262\n", - " 0.752321\n", - " -0.099475\n", - " 0.694736\n", + " 0.207729\n", + " -0.256361\n", + " -0.847864\n", + " 0.055823\n", + " -0.062639\n", + " -0.489831\n", + " 0.296728\n", + " 0.145687\n", + " -1.076312\n", + " -0.194407\n", + " -0.076653\n", + " 0.206450\n", + " -0.603945\n", + " 0.863203\n", + " 0.882457\n", + " 0.478035\n", + " -0.592900\n", + " -1.803185\n", + " 0.490716\n", + " 1.043012\n", " \n", " \n", " 1050\n", - " 0.593625\n", - " 0.780458\n", - " -0.585766\n", - " 0.862500\n", - " 0.254637\n", - " 0.434878\n", - " 0.584161\n", - " 0.377837\n", - " 0.176423\n", - " 0.112464\n", - " 0.538818\n", - " -0.277135\n", - " -0.932592\n", - " 0.744540\n", - " 0.473525\n", - " -0.962508\n", - " 0.862409\n", - " -0.226568\n", - " 0.046969\n", - " 0.055784\n", + " 0.989873\n", + " 0.660073\n", + " 0.298057\n", + " 0.014688\n", + " 0.094849\n", + " 0.229320\n", + " 0.049907\n", + " 0.450760\n", + " -0.672756\n", + " -0.095832\n", + " 0.664670\n", + " 0.030931\n", + " 0.212077\n", + " 0.508668\n", + " -0.015358\n", + " -0.273089\n", + " -0.043678\n", + " -0.976209\n", + " 0.072014\n", + " 0.067489\n", " \n", " \n", " 1051\n", - " -0.290302\n", - " 0.441311\n", - " -0.392705\n", - " 0.700237\n", - " 0.249166\n", - " 0.561223\n", - " 0.262957\n", - " 0.390204\n", - " 0.032661\n", - " 0.709470\n", - " 1.001394\n", - " 0.263612\n", - " -0.283346\n", - " -0.086741\n", - " 0.408808\n", - " -0.817566\n", - " 0.490443\n", - " -0.158993\n", - " 0.112197\n", - " -0.007195\n", + " 0.597600\n", + " -0.274929\n", + " -0.519920\n", + " 0.653873\n", + " 0.242664\n", + " 0.253243\n", + " -0.371124\n", + " 0.603747\n", + " -0.012600\n", + " 0.302335\n", + " -0.660933\n", + " -0.391477\n", + " 0.386280\n", + " 0.251975\n", + " 0.099648\n", + " 0.507324\n", + " 0.229800\n", + " -1.581192\n", + " -0.340255\n", + " -0.109365\n", " \n", " \n", " 1052\n", - " -0.044227\n", - " -0.720416\n", - " 0.137092\n", - " 0.647637\n", - " 0.314959\n", - " 0.352890\n", - " -0.740561\n", - " 0.243173\n", - " 0.200584\n", - " -0.077415\n", - " 0.502856\n", - " -1.054903\n", - " -0.640993\n", - " 0.487138\n", - " 0.657265\n", - " -0.037375\n", - " -0.695303\n", - " 0.191161\n", - " -1.090055\n", - " -0.068124\n", + " 0.296712\n", + " 0.237102\n", + " 0.165965\n", + " 0.044456\n", + " 0.055577\n", + " -0.053818\n", + " 0.435192\n", + " 0.170955\n", + " -0.636491\n", + " 0.638219\n", + " 0.501777\n", + " -0.471974\n", + " -0.257314\n", + " 0.102539\n", + " -0.315415\n", + " 0.122501\n", + " 0.329387\n", + " -0.484986\n", + " 0.351573\n", + " 0.432368\n", " \n", " \n", "\n", @@ -4305,48 +4303,48 @@ ], "text/plain": [ " 0 1 2 3 4 5 6 \\\n", - "0 0.691481 2.209414 -0.028238 -3.102651 -6.051851 -4.399188 1.494551 \n", - "1 1.133341 2.010200 0.034295 -3.511348 -6.168634 -4.438835 1.501480 \n", - "2 0.889183 1.994394 0.298426 -3.311967 -6.078265 -4.414866 1.892591 \n", - "3 -0.646802 0.181007 3.715522 -2.697770 -3.893324 -2.743762 3.565471 \n", - "4 -1.035309 2.155994 2.598428 -2.220484 -3.731646 -5.091130 0.684202 \n", + "0 -6.737473 3.506645 1.100792 5.476943 -3.338335 0.276633 -1.078069 \n", + "1 -6.560338 3.352505 0.892895 4.764644 -3.183715 0.292796 -1.101001 \n", + "2 -6.648391 3.095893 0.785576 5.412939 -3.564779 -0.057957 -0.688464 \n", + "3 -6.391430 1.779750 0.462306 2.715431 -2.103771 -1.989185 -1.984643 \n", + "4 -5.361574 0.622695 0.208257 -3.572732 0.091671 -1.721061 1.046673 \n", "... ... ... ... ... ... ... ... \n", - "1048 0.982386 0.199625 0.242164 0.701167 0.086144 0.239413 -0.610572 \n", - "1049 -0.476996 0.232066 0.222565 0.665518 0.754919 0.228781 -0.198005 \n", - "1050 0.593625 0.780458 -0.585766 0.862500 0.254637 0.434878 0.584161 \n", - "1051 -0.290302 0.441311 -0.392705 0.700237 0.249166 0.561223 0.262957 \n", - "1052 -0.044227 -0.720416 0.137092 0.647637 0.314959 0.352890 -0.740561 \n", + "1048 0.129688 0.868474 0.158408 0.148159 0.302053 0.617617 -1.176051 \n", + "1049 0.207729 -0.256361 -0.847864 0.055823 -0.062639 -0.489831 0.296728 \n", + "1050 0.989873 0.660073 0.298057 0.014688 0.094849 0.229320 0.049907 \n", + "1051 0.597600 -0.274929 -0.519920 0.653873 0.242664 0.253243 -0.371124 \n", + "1052 0.296712 0.237102 0.165965 0.044456 0.055577 -0.053818 0.435192 \n", "\n", " 7 8 9 10 11 12 13 \\\n", - "0 3.911412 1.233372 -1.093439 -2.843520 4.784419 3.531888 1.781903 \n", - "1 3.788925 1.539473 -1.206030 -2.927973 5.059699 3.198847 2.033874 \n", - "2 3.692539 1.490572 -0.934464 -2.777043 4.707861 3.570221 1.604899 \n", - "3 0.644597 1.519284 -2.263462 -6.164203 -0.487320 -0.520860 1.543796 \n", - "4 3.040052 -0.834740 -0.962661 -2.506616 0.919390 1.237634 2.343424 \n", + "0 2.903708 1.336813 -3.476732 1.427167 -0.266681 -0.471343 0.184137 \n", + "1 3.044708 2.059587 -3.483480 1.353684 -0.584850 -0.158013 0.018590 \n", + "2 2.905470 1.557411 -3.210068 0.827968 -0.532490 0.003652 -0.121509 \n", + "3 0.105770 4.286595 -3.886077 -0.450857 0.282356 -1.321213 3.158543 \n", + "4 2.048406 4.613693 -1.404773 2.801529 2.242345 1.547014 6.425769 \n", "... ... ... ... ... ... ... ... \n", - "1048 0.003339 -0.191435 0.340636 1.121649 -0.151060 0.603027 0.298779 \n", - "1049 0.019199 0.066273 0.677850 0.649621 -0.102975 -0.216284 -0.052017 \n", - "1050 0.377837 0.176423 0.112464 0.538818 -0.277135 -0.932592 0.744540 \n", - "1051 0.390204 0.032661 0.709470 1.001394 0.263612 -0.283346 -0.086741 \n", - "1052 0.243173 0.200584 -0.077415 0.502856 -1.054903 -0.640993 0.487138 \n", + "1048 -0.358285 -0.874892 -0.830270 -1.113515 -0.046454 0.627627 -1.529335 \n", + "1049 0.145687 -1.076312 -0.194407 -0.076653 0.206450 -0.603945 0.863203 \n", + "1050 0.450760 -0.672756 -0.095832 0.664670 0.030931 0.212077 0.508668 \n", + "1051 0.603747 -0.012600 0.302335 -0.660933 -0.391477 0.386280 0.251975 \n", + "1052 0.170955 -0.636491 0.638219 0.501777 -0.471974 -0.257314 0.102539 \n", "\n", " 14 15 16 17 18 19 \n", - "0 -1.022948 2.940790 0.113284 -2.272277 2.151206 -1.033226 \n", - "1 -0.791365 2.995087 0.466563 -2.738615 1.885887 -1.118297 \n", - "2 -0.718914 2.540431 0.189408 -2.243979 1.923425 -1.102676 \n", - "3 -2.588697 5.150163 -2.530453 -4.829188 -2.231499 -0.524451 \n", - "4 -2.708177 2.688421 -3.461588 -3.509613 1.979434 -0.196468 \n", + "0 -2.069631 -0.574260 -0.738087 3.788915 -1.683529 -4.035486 \n", + "1 -1.647612 -0.788695 -0.325296 3.511575 -1.597107 -3.987545 \n", + "2 -1.665959 -0.950425 -0.382220 4.117815 -1.906440 -3.899600 \n", + "3 0.123383 -0.627238 1.957629 3.836007 -2.467475 -0.543244 \n", + "4 -2.543316 -0.761218 2.574573 5.359656 -1.035850 -3.710101 \n", "... ... ... ... ... ... ... \n", - "1048 0.463613 0.059714 -0.116532 -0.401311 0.606212 -0.117687 \n", - "1049 -0.199819 -0.479769 0.478262 0.752321 -0.099475 0.694736 \n", - "1050 0.473525 -0.962508 0.862409 -0.226568 0.046969 0.055784 \n", - "1051 0.408808 -0.817566 0.490443 -0.158993 0.112197 -0.007195 \n", - "1052 0.657265 -0.037375 -0.695303 0.191161 -1.090055 -0.068124 \n", + "1048 -0.654220 -0.372447 0.006526 -0.608662 0.442872 -0.374222 \n", + "1049 0.882457 0.478035 -0.592900 -1.803185 0.490716 1.043012 \n", + "1050 -0.015358 -0.273089 -0.043678 -0.976209 0.072014 0.067489 \n", + "1051 0.099648 0.507324 0.229800 -1.581192 -0.340255 -0.109365 \n", + "1052 -0.315415 0.122501 0.329387 -0.484986 0.351573 0.432368 \n", "\n", "[1053 rows x 20 columns]" ] }, - "execution_count": 145, + "execution_count": 152, "metadata": {}, "output_type": "execute_result" } @@ -4357,7 +4355,7 @@ }, { "cell_type": "code", - "execution_count": 146, + "execution_count": 153, "metadata": {}, "outputs": [ { @@ -4405,119 +4403,119 @@ " \n", " \n", " \n", - " test/20442\n", - " 0.691481\n", - " 2.209414\n", - " -0.028238\n", - " -3.102651\n", - " -6.051851\n", - " -4.399188\n", - " 1.494551\n", - " 3.911412\n", - " 1.233372\n", - " -1.093439\n", - " -2.843520\n", - " 4.784419\n", - " 3.531888\n", - " 1.781903\n", - " -1.022948\n", - " 2.940790\n", - " 0.113284\n", - " -2.272277\n", - " 2.151206\n", - " -1.033226\n", + " test/20368\n", + " -6.737473\n", + " 3.506645\n", + " 1.100792\n", + " 5.476943\n", + " -3.338335\n", + " 0.276633\n", + " -1.078069\n", + " 2.903708\n", + " 1.336813\n", + " -3.476732\n", + " 1.427167\n", + " -0.266681\n", + " -0.471343\n", + " 0.184137\n", + " -2.069631\n", + " -0.574260\n", + " -0.738087\n", + " 3.788915\n", + " -1.683529\n", + " -4.035486\n", " \n", " \n", " test/20221\n", - " 1.133341\n", - " 2.010200\n", - " 0.034295\n", - " -3.511348\n", - " -6.168634\n", - " -4.438835\n", - " 1.501480\n", - " 3.788925\n", - " 1.539473\n", - " -1.206030\n", - " -2.927973\n", - " 5.059699\n", - " 3.198847\n", - " 2.033874\n", - " -0.791365\n", - " 2.995087\n", - " 0.466563\n", - " -2.738615\n", - " 1.885887\n", - " -1.118297\n", + " -6.560338\n", + " 3.352505\n", + " 0.892895\n", + " 4.764644\n", + " -3.183715\n", + " 0.292796\n", + " -1.101001\n", + " 3.044708\n", + " 2.059587\n", + " -3.483480\n", + " 1.353684\n", + " -0.584850\n", + " -0.158013\n", + " 0.018590\n", + " -1.647612\n", + " -0.788695\n", + " -0.325296\n", + " 3.511575\n", + " -1.597107\n", + " -3.987545\n", " \n", " \n", - " test/20368\n", - " 0.889183\n", - " 1.994394\n", - " 0.298426\n", - " -3.311967\n", - " -6.078265\n", - " -4.414866\n", - " 1.892591\n", - " 3.692539\n", - " 1.490572\n", - " -0.934464\n", - " -2.777043\n", - " 4.707861\n", - " 3.570221\n", - " 1.604899\n", - " -0.718914\n", - " 2.540431\n", - " 0.189408\n", - " -2.243979\n", - " 1.923425\n", - " -1.102676\n", + " test/20442\n", + " -6.648391\n", + " 3.095893\n", + " 0.785576\n", + " 5.412939\n", + " -3.564779\n", + " -0.057957\n", + " -0.688464\n", + " 2.905470\n", + " 1.557411\n", + " -3.210068\n", + " 0.827968\n", + " -0.532490\n", + " 0.003652\n", + " -0.121509\n", + " -1.665959\n", + " -0.950425\n", + " -0.382220\n", + " 4.117815\n", + " -1.906440\n", + " -3.899600\n", " \n", " \n", - " test/16715\n", - " -0.646802\n", - " 0.181007\n", - " 3.715522\n", - " -2.697770\n", - " -3.893324\n", - " -2.743762\n", - " 3.565471\n", - " 0.644597\n", - " 1.519284\n", - " -2.263462\n", - " -6.164203\n", - " -0.487320\n", - " -0.520860\n", - " 1.543796\n", - " -2.588697\n", - " 5.150163\n", - " -2.530453\n", - " -4.829188\n", - " -2.231499\n", - " -0.524451\n", + " test/20800\n", + " -6.391430\n", + " 1.779750\n", + " 0.462306\n", + " 2.715431\n", + " -2.103771\n", + " -1.989185\n", + " -1.984643\n", + " 0.105770\n", + " 4.286595\n", + " -3.886077\n", + " -0.450857\n", + " 0.282356\n", + " -1.321213\n", + " 3.158543\n", + " 0.123383\n", + " -0.627238\n", + " 1.957629\n", + " 3.836007\n", + " -2.467475\n", + " -0.543244\n", " \n", " \n", - " test/21227\n", - " -1.035309\n", - " 2.155994\n", - " 2.598428\n", - " -2.220484\n", - " -3.731646\n", - " -5.091130\n", - " 0.684202\n", - " 3.040052\n", - " -0.834740\n", - " -0.962661\n", - " -2.506616\n", - " 0.919390\n", - " 1.237634\n", - " 2.343424\n", - " -2.708177\n", - " 2.688421\n", - " -3.461588\n", - " -3.509613\n", - " 1.979434\n", - " -0.196468\n", + " training/3971\n", + " -5.361574\n", + " 0.622695\n", + " 0.208257\n", + " -3.572732\n", + " 0.091671\n", + " -1.721061\n", + " 1.046673\n", + " 2.048406\n", + " 4.613693\n", + " -1.404773\n", + " 2.801529\n", + " 2.242345\n", + " 1.547014\n", + " 6.425769\n", + " -2.543316\n", + " -0.761218\n", + " 2.574573\n", + " 5.359656\n", + " -1.035850\n", + " -3.710101\n", " \n", " \n", " ...\n", @@ -4543,119 +4541,119 @@ " ...\n", " \n", " \n", - " training/1467\n", - " 0.982386\n", - " 0.199625\n", - " 0.242164\n", - " 0.701167\n", - " 0.086144\n", - " 0.239413\n", - " -0.610572\n", - " 0.003339\n", - " -0.191435\n", - " 0.340636\n", - " 1.121649\n", - " -0.151060\n", - " 0.603027\n", - " 0.298779\n", - " 0.463613\n", - " 0.059714\n", - " -0.116532\n", - " -0.401311\n", - " 0.606212\n", - " -0.117687\n", + " training/1134\n", + " 0.129688\n", + " 0.868474\n", + " 0.158408\n", + " 0.148159\n", + " 0.302053\n", + " 0.617617\n", + " -1.176051\n", + " -0.358285\n", + " -0.874892\n", + " -0.830270\n", + " -1.113515\n", + " -0.046454\n", + " 0.627627\n", + " -1.529335\n", + " -0.654220\n", + " -0.372447\n", + " 0.006526\n", + " -0.608662\n", + " 0.442872\n", + " -0.374222\n", " \n", " \n", - " test/16584\n", - " -0.476996\n", - " 0.232066\n", - " 0.222565\n", - " 0.665518\n", - " 0.754919\n", - " 0.228781\n", - " -0.198005\n", - " 0.019199\n", - " 0.066273\n", - " 0.677850\n", - " 0.649621\n", - " -0.102975\n", - " -0.216284\n", - " -0.052017\n", - " -0.199819\n", - " -0.479769\n", - " 0.478262\n", - " 0.752321\n", - " -0.099475\n", - " 0.694736\n", + " training/4956\n", + " 0.207729\n", + " -0.256361\n", + " -0.847864\n", + " 0.055823\n", + " -0.062639\n", + " -0.489831\n", + " 0.296728\n", + " 0.145687\n", + " -1.076312\n", + " -0.194407\n", + " -0.076653\n", + " 0.206450\n", + " -0.603945\n", + " 0.863203\n", + " 0.882457\n", + " 0.478035\n", + " -0.592900\n", + " -1.803185\n", + " 0.490716\n", + " 1.043012\n", " \n", " \n", - " training/9306\n", - " 0.593625\n", - " 0.780458\n", - " -0.585766\n", - " 0.862500\n", - " 0.254637\n", - " 0.434878\n", - " 0.584161\n", - " 0.377837\n", - " 0.176423\n", - " 0.112464\n", - " 0.538818\n", - " -0.277135\n", - " -0.932592\n", - " 0.744540\n", - " 0.473525\n", - " -0.962508\n", - " 0.862409\n", - " -0.226568\n", - " 0.046969\n", - " 0.055784\n", + " training/11154\n", + " 0.989873\n", + " 0.660073\n", + " 0.298057\n", + " 0.014688\n", + " 0.094849\n", + " 0.229320\n", + " 0.049907\n", + " 0.450760\n", + " -0.672756\n", + " -0.095832\n", + " 0.664670\n", + " 0.030931\n", + " 0.212077\n", + " 0.508668\n", + " -0.015358\n", + " -0.273089\n", + " -0.043678\n", + " -0.976209\n", + " 0.072014\n", + " 0.067489\n", " \n", " \n", - " training/9588\n", - " -0.290302\n", - " 0.441311\n", - " -0.392705\n", - " 0.700237\n", - " 0.249166\n", - " 0.561223\n", - " 0.262957\n", - " 0.390204\n", - " 0.032661\n", - " 0.709470\n", - " 1.001394\n", - " 0.263612\n", - " -0.283346\n", - " -0.086741\n", - " 0.408808\n", - " -0.817566\n", - " 0.490443\n", - " -0.158993\n", - " 0.112197\n", - " -0.007195\n", + " training/5914\n", + " 0.597600\n", + " -0.274929\n", + " -0.519920\n", + " 0.653873\n", + " 0.242664\n", + " 0.253243\n", + " -0.371124\n", + " 0.603747\n", + " -0.012600\n", + " 0.302335\n", + " -0.660933\n", + " -0.391477\n", + " 0.386280\n", + " 0.251975\n", + " 0.099648\n", + " 0.507324\n", + " 0.229800\n", + " -1.581192\n", + " -0.340255\n", + " -0.109365\n", " \n", " \n", - " training/1532\n", - " -0.044227\n", - " -0.720416\n", - " 0.137092\n", - " 0.647637\n", - " 0.314959\n", - " 0.352890\n", - " -0.740561\n", - " 0.243173\n", - " 0.200584\n", - " -0.077415\n", - " 0.502856\n", - " -1.054903\n", - " -0.640993\n", - " 0.487138\n", - " 0.657265\n", - " -0.037375\n", - " -0.695303\n", - " 0.191161\n", - " -1.090055\n", - " -0.068124\n", + " training/554\n", + " 0.296712\n", + " 0.237102\n", + " 0.165965\n", + " 0.044456\n", + " 0.055577\n", + " -0.053818\n", + " 0.435192\n", + " 0.170955\n", + " -0.636491\n", + " 0.638219\n", + " 0.501777\n", + " -0.471974\n", + " -0.257314\n", + " 0.102539\n", + " -0.315415\n", + " 0.122501\n", + " 0.329387\n", + " -0.484986\n", + " 0.351573\n", + " 0.432368\n", " \n", " \n", "\n", @@ -4663,62 +4661,62 @@ "" ], "text/plain": [ - " 0 1 2 3 4 5 \\\n", - "test/20442 0.691481 2.209414 -0.028238 -3.102651 -6.051851 -4.399188 \n", - "test/20221 1.133341 2.010200 0.034295 -3.511348 -6.168634 -4.438835 \n", - "test/20368 0.889183 1.994394 0.298426 -3.311967 -6.078265 -4.414866 \n", - "test/16715 -0.646802 0.181007 3.715522 -2.697770 -3.893324 -2.743762 \n", - "test/21227 -1.035309 2.155994 2.598428 -2.220484 -3.731646 -5.091130 \n", - "... ... ... ... ... ... ... \n", - "training/1467 0.982386 0.199625 0.242164 0.701167 0.086144 0.239413 \n", - "test/16584 -0.476996 0.232066 0.222565 0.665518 0.754919 0.228781 \n", - "training/9306 0.593625 0.780458 -0.585766 0.862500 0.254637 0.434878 \n", - "training/9588 -0.290302 0.441311 -0.392705 0.700237 0.249166 0.561223 \n", - "training/1532 -0.044227 -0.720416 0.137092 0.647637 0.314959 0.352890 \n", + " 0 1 2 3 4 5 \\\n", + "test/20368 -6.737473 3.506645 1.100792 5.476943 -3.338335 0.276633 \n", + "test/20221 -6.560338 3.352505 0.892895 4.764644 -3.183715 0.292796 \n", + "test/20442 -6.648391 3.095893 0.785576 5.412939 -3.564779 -0.057957 \n", + "test/20800 -6.391430 1.779750 0.462306 2.715431 -2.103771 -1.989185 \n", + "training/3971 -5.361574 0.622695 0.208257 -3.572732 0.091671 -1.721061 \n", + "... ... ... ... ... ... ... \n", + "training/1134 0.129688 0.868474 0.158408 0.148159 0.302053 0.617617 \n", + "training/4956 0.207729 -0.256361 -0.847864 0.055823 -0.062639 -0.489831 \n", + "training/11154 0.989873 0.660073 0.298057 0.014688 0.094849 0.229320 \n", + "training/5914 0.597600 -0.274929 -0.519920 0.653873 0.242664 0.253243 \n", + "training/554 0.296712 0.237102 0.165965 0.044456 0.055577 -0.053818 \n", "\n", - " 6 7 8 9 10 11 \\\n", - "test/20442 1.494551 3.911412 1.233372 -1.093439 -2.843520 4.784419 \n", - "test/20221 1.501480 3.788925 1.539473 -1.206030 -2.927973 5.059699 \n", - "test/20368 1.892591 3.692539 1.490572 -0.934464 -2.777043 4.707861 \n", - "test/16715 3.565471 0.644597 1.519284 -2.263462 -6.164203 -0.487320 \n", - "test/21227 0.684202 3.040052 -0.834740 -0.962661 -2.506616 0.919390 \n", - "... ... ... ... ... ... ... \n", - "training/1467 -0.610572 0.003339 -0.191435 0.340636 1.121649 -0.151060 \n", - "test/16584 -0.198005 0.019199 0.066273 0.677850 0.649621 -0.102975 \n", - "training/9306 0.584161 0.377837 0.176423 0.112464 0.538818 -0.277135 \n", - "training/9588 0.262957 0.390204 0.032661 0.709470 1.001394 0.263612 \n", - "training/1532 -0.740561 0.243173 0.200584 -0.077415 0.502856 -1.054903 \n", + " 6 7 8 9 10 11 \\\n", + "test/20368 -1.078069 2.903708 1.336813 -3.476732 1.427167 -0.266681 \n", + "test/20221 -1.101001 3.044708 2.059587 -3.483480 1.353684 -0.584850 \n", + "test/20442 -0.688464 2.905470 1.557411 -3.210068 0.827968 -0.532490 \n", + "test/20800 -1.984643 0.105770 4.286595 -3.886077 -0.450857 0.282356 \n", + "training/3971 1.046673 2.048406 4.613693 -1.404773 2.801529 2.242345 \n", + "... ... ... ... ... ... ... \n", + "training/1134 -1.176051 -0.358285 -0.874892 -0.830270 -1.113515 -0.046454 \n", + "training/4956 0.296728 0.145687 -1.076312 -0.194407 -0.076653 0.206450 \n", + "training/11154 0.049907 0.450760 -0.672756 -0.095832 0.664670 0.030931 \n", + "training/5914 -0.371124 0.603747 -0.012600 0.302335 -0.660933 -0.391477 \n", + "training/554 0.435192 0.170955 -0.636491 0.638219 0.501777 -0.471974 \n", "\n", - " 12 13 14 15 16 17 \\\n", - "test/20442 3.531888 1.781903 -1.022948 2.940790 0.113284 -2.272277 \n", - "test/20221 3.198847 2.033874 -0.791365 2.995087 0.466563 -2.738615 \n", - "test/20368 3.570221 1.604899 -0.718914 2.540431 0.189408 -2.243979 \n", - "test/16715 -0.520860 1.543796 -2.588697 5.150163 -2.530453 -4.829188 \n", - "test/21227 1.237634 2.343424 -2.708177 2.688421 -3.461588 -3.509613 \n", - "... ... ... ... ... ... ... \n", - "training/1467 0.603027 0.298779 0.463613 0.059714 -0.116532 -0.401311 \n", - "test/16584 -0.216284 -0.052017 -0.199819 -0.479769 0.478262 0.752321 \n", - "training/9306 -0.932592 0.744540 0.473525 -0.962508 0.862409 -0.226568 \n", - "training/9588 -0.283346 -0.086741 0.408808 -0.817566 0.490443 -0.158993 \n", - "training/1532 -0.640993 0.487138 0.657265 -0.037375 -0.695303 0.191161 \n", + " 12 13 14 15 16 17 \\\n", + "test/20368 -0.471343 0.184137 -2.069631 -0.574260 -0.738087 3.788915 \n", + "test/20221 -0.158013 0.018590 -1.647612 -0.788695 -0.325296 3.511575 \n", + "test/20442 0.003652 -0.121509 -1.665959 -0.950425 -0.382220 4.117815 \n", + "test/20800 -1.321213 3.158543 0.123383 -0.627238 1.957629 3.836007 \n", + "training/3971 1.547014 6.425769 -2.543316 -0.761218 2.574573 5.359656 \n", + "... ... ... ... ... ... ... \n", + "training/1134 0.627627 -1.529335 -0.654220 -0.372447 0.006526 -0.608662 \n", + "training/4956 -0.603945 0.863203 0.882457 0.478035 -0.592900 -1.803185 \n", + "training/11154 0.212077 0.508668 -0.015358 -0.273089 -0.043678 -0.976209 \n", + "training/5914 0.386280 0.251975 0.099648 0.507324 0.229800 -1.581192 \n", + "training/554 -0.257314 0.102539 -0.315415 0.122501 0.329387 -0.484986 \n", "\n", - " 18 19 \n", - "test/20442 2.151206 -1.033226 \n", - "test/20221 1.885887 -1.118297 \n", - "test/20368 1.923425 -1.102676 \n", - "test/16715 -2.231499 -0.524451 \n", - "test/21227 1.979434 -0.196468 \n", - "... ... ... \n", - "training/1467 0.606212 -0.117687 \n", - "test/16584 -0.099475 0.694736 \n", - "training/9306 0.046969 0.055784 \n", - "training/9588 0.112197 -0.007195 \n", - "training/1532 -1.090055 -0.068124 \n", + " 18 19 \n", + "test/20368 -1.683529 -4.035486 \n", + "test/20221 -1.597107 -3.987545 \n", + "test/20442 -1.906440 -3.899600 \n", + "test/20800 -2.467475 -0.543244 \n", + "training/3971 -1.035850 -3.710101 \n", + "... ... ... \n", + "training/1134 0.442872 -0.374222 \n", + "training/4956 0.490716 1.043012 \n", + "training/11154 0.072014 0.067489 \n", + "training/5914 -0.340255 -0.109365 \n", + "training/554 0.351573 0.432368 \n", "\n", "[1053 rows x 20 columns]" ] }, - "execution_count": 146, + "execution_count": 153, "metadata": {}, "output_type": "execute_result" } @@ -4729,7 +4727,7 @@ }, { "cell_type": "code", - "execution_count": 147, + "execution_count": 154, "metadata": {}, "outputs": [ { @@ -4757,7 +4755,7 @@ }, { "cell_type": "code", - "execution_count": 148, + "execution_count": 155, "metadata": {}, "outputs": [], "source": [ @@ -4767,25 +4765,16 @@ }, { "cell_type": "code", - "execution_count": 149, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Computing transition probabilities: 100%|█████████████████████████| 25931/25931 [01:42<00:00, 254.10it/s]\n", - "Generating walks (CPU: 1): 100%|████████████████████████████████████████| 10/10 [16:49<00:00, 100.92s/it]\n" - ] - } - ], + "outputs": [], "source": [ "from node2vec import Node2Vec\n", "\n", "dimensions = 10\n", "window = 20\n", "\n", - "node2vec = Node2Vec(G, dimensions=dimensions) \n", + "node2vec = Node2Vec(G, dimensions=dimensions, num_walks=10, workers=4, quiet=True) \n", "model = node2vec.fit(window=window) \n", "embeddings = model.wv \n", "\n", From 9d6dd0822af197e28ac05ba23f6f90e853c425df Mon Sep 17 00:00:00 2001 From: deusebio Date: Sat, 18 Jan 2025 11:09:05 +0100 Subject: [PATCH 26/31] [2nd Edition][Chapter 10] Introduce Poetry (#33) --- .github/workflows/ci.yaml | 22 +- Chapter10/01_Neo4j_bindings.ipynb | 44 +- Chapter10/movieCreationQuery.txt | 508 +++++++++++ Chapter10/poetry.lock | 1422 +++++++++++++++++++++++++++++ Chapter10/pyproject.toml | 18 + Chapter10/requirements.txt | 51 ++ docker/Dockerfile | 6 + 7 files changed, 2043 insertions(+), 28 deletions(-) create mode 100644 Chapter10/movieCreationQuery.txt create mode 100644 Chapter10/poetry.lock create mode 100644 Chapter10/pyproject.toml create mode 100644 Chapter10/requirements.txt diff --git a/.github/workflows/ci.yaml b/.github/workflows/ci.yaml index 3af677e..d59a85c 100644 --- a/.github/workflows/ci.yaml +++ b/.github/workflows/ci.yaml @@ -33,6 +33,8 @@ jobs: folder: Chapter08 - name: chap9 folder: Chapter09 + - name: chap10 + folder: Chapter10 runs-on: ubuntu-latest name: Image ${{ matrix.chapter.name }} steps: @@ -58,7 +60,21 @@ jobs: KAGGLE_USERNAME: ${{ secrets.KAGGLE_USERNAME }} KAGGLE_TOKEN: ${{ secrets.KAGGLE_TOKEN }} run: | - + + docker network create my-network + + # Start Neo4j if we are testing chapter 10 + if [ "${{ matrix.chapter.name }}" == "chap10" ]; + then + docker run --rm --detach --name neo4j \ + --publish=7474:7474 --publish=7687:7687 \ + --user="$(id -u):$(id -g)" \ + --env NEO4J_AUTH=none \ + --env NEO4J_PLUGINS='["graph-data-science"]' \ + neo4j:5.26.0 + docker network connect my-network neo4j + fi + mkdir -p data chmod -R 777 data docker run \ @@ -66,8 +82,10 @@ jobs: --name graph-machine-learning-box \ --env KAGGLE_USERNAME=${KAGGLE_USERNAME} \ --env KAGGLE_KEY=${KAGGLE_TOKEN} \ + --env NEO4J_HOST=neo4j \ graph-machine-learning:latest - + docker network connect my-network graph-machine-learning-box + # Run tests cd docker diff --git a/Chapter10/01_Neo4j_bindings.ipynb b/Chapter10/01_Neo4j_bindings.ipynb index 9d52408..70cd536 100644 --- a/Chapter10/01_Neo4j_bindings.ipynb +++ b/Chapter10/01_Neo4j_bindings.ipynb @@ -20,17 +20,17 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "with open(\"./dataset/movieCreationQuery.txt\", \"rb\") as fid:\n", + "with open(\"movieCreationQuery.txt\", \"rb\") as fid:\n", " lines = fid.readlines()" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -39,7 +39,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -48,17 +48,20 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "uri = \"neo4j://localhost:7687\"\n", + "import os\n", + "host = os.environ.get(\"NEO4J_HOST\", \"localhost\")\n", + "\n", + "uri = f\"neo4j://{host}:7687\"\n", "driver = GraphDatabase.driver(uri, auth=(\"neo4j\", \"neo5j\"))" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -68,7 +71,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -85,7 +88,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -94,20 +97,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "with driver.session() as session:\n", " result = session.read_transaction(run_query, query)\n", @@ -123,7 +115,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -134,9 +126,9 @@ ], "metadata": { "kernelspec": { - "display_name": "ml-book-9", + "display_name": "chap10", "language": "python", - "name": "ml-book-9" + "name": "chap10" }, "language_info": { "codemirror_mode": { @@ -148,7 +140,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.6" + "version": "3.10.6" } }, "nbformat": 4, diff --git a/Chapter10/movieCreationQuery.txt b/Chapter10/movieCreationQuery.txt new file mode 100644 index 0000000..9617449 --- /dev/null +++ b/Chapter10/movieCreationQuery.txt @@ -0,0 +1,508 @@ +CREATE (TheMatrix:Movie {title:'The Matrix', released:1999, tagline:'Welcome to the Real World'}) +CREATE (Keanu:Person {name:'Keanu Reeves', born:1964}) +CREATE (Carrie:Person {name:'Carrie-Anne Moss', born:1967}) +CREATE (Laurence:Person {name:'Laurence Fishburne', born:1961}) +CREATE (Hugo:Person {name:'Hugo Weaving', born:1960}) +CREATE (LillyW:Person {name:'Lilly Wachowski', born:1967}) +CREATE (LanaW:Person {name:'Lana Wachowski', born:1965}) +CREATE (JoelS:Person {name:'Joel Silver', born:1952}) +CREATE +(Keanu)-[:ACTED_IN {roles:['Neo']}]->(TheMatrix), +(Carrie)-[:ACTED_IN {roles:['Trinity']}]->(TheMatrix), +(Laurence)-[:ACTED_IN {roles:['Morpheus']}]->(TheMatrix), +(Hugo)-[:ACTED_IN {roles:['Agent Smith']}]->(TheMatrix), +(LillyW)-[:DIRECTED]->(TheMatrix), +(LanaW)-[:DIRECTED]->(TheMatrix), +(JoelS)-[:PRODUCED]->(TheMatrix) + +CREATE (Emil:Person {name:"Emil Eifrem", born:1978}) +CREATE (Emil)-[:ACTED_IN {roles:["Emil"]}]->(TheMatrix) + +CREATE (TheMatrixReloaded:Movie {title:'The Matrix Reloaded', released:2003, tagline:'Free your mind'}) +CREATE +(Keanu)-[:ACTED_IN {roles:['Neo']}]->(TheMatrixReloaded), +(Carrie)-[:ACTED_IN {roles:['Trinity']}]->(TheMatrixReloaded), +(Laurence)-[:ACTED_IN {roles:['Morpheus']}]->(TheMatrixReloaded), +(Hugo)-[:ACTED_IN {roles:['Agent Smith']}]->(TheMatrixReloaded), +(LillyW)-[:DIRECTED]->(TheMatrixReloaded), +(LanaW)-[:DIRECTED]->(TheMatrixReloaded), +(JoelS)-[:PRODUCED]->(TheMatrixReloaded) + +CREATE (TheMatrixRevolutions:Movie {title:'The Matrix Revolutions', released:2003, tagline:'Everything that has a beginning has an end'}) +CREATE +(Keanu)-[:ACTED_IN {roles:['Neo']}]->(TheMatrixRevolutions), +(Carrie)-[:ACTED_IN {roles:['Trinity']}]->(TheMatrixRevolutions), +(Laurence)-[:ACTED_IN {roles:['Morpheus']}]->(TheMatrixRevolutions), +(Hugo)-[:ACTED_IN {roles:['Agent Smith']}]->(TheMatrixRevolutions), +(LillyW)-[:DIRECTED]->(TheMatrixRevolutions), +(LanaW)-[:DIRECTED]->(TheMatrixRevolutions), +(JoelS)-[:PRODUCED]->(TheMatrixRevolutions) + +CREATE (TheDevilsAdvocate:Movie {title:"The Devil's Advocate", released:1997, tagline:'Evil has its winning ways'}) +CREATE (Charlize:Person {name:'Charlize Theron', born:1975}) +CREATE (Al:Person {name:'Al Pacino', born:1940}) +CREATE (Taylor:Person {name:'Taylor Hackford', born:1944}) +CREATE +(Keanu)-[:ACTED_IN {roles:['Kevin Lomax']}]->(TheDevilsAdvocate), +(Charlize)-[:ACTED_IN {roles:['Mary Ann Lomax']}]->(TheDevilsAdvocate), +(Al)-[:ACTED_IN {roles:['John Milton']}]->(TheDevilsAdvocate), +(Taylor)-[:DIRECTED]->(TheDevilsAdvocate) + +CREATE (AFewGoodMen:Movie {title:"A Few Good Men", released:1992, tagline:"In the heart of the nation's capital, in a courthouse of the U.S. government, one man will stop at nothing to keep his honor, and one will stop at nothing to find the truth."}) +CREATE (TomC:Person {name:'Tom Cruise', born:1962}) +CREATE (JackN:Person {name:'Jack Nicholson', born:1937}) +CREATE (DemiM:Person {name:'Demi Moore', born:1962}) +CREATE (KevinB:Person {name:'Kevin Bacon', born:1958}) +CREATE (KieferS:Person {name:'Kiefer Sutherland', born:1966}) +CREATE (NoahW:Person {name:'Noah Wyle', born:1971}) +CREATE (CubaG:Person {name:'Cuba Gooding Jr.', born:1968}) +CREATE (KevinP:Person {name:'Kevin Pollak', born:1957}) +CREATE (JTW:Person {name:'J.T. Walsh', born:1943}) +CREATE (JamesM:Person {name:'James Marshall', born:1967}) +CREATE (ChristopherG:Person {name:'Christopher Guest', born:1948}) +CREATE (RobR:Person {name:'Rob Reiner', born:1947}) +CREATE (AaronS:Person {name:'Aaron Sorkin', born:1961}) +CREATE +(TomC)-[:ACTED_IN {roles:['Lt. Daniel Kaffee']}]->(AFewGoodMen), +(JackN)-[:ACTED_IN {roles:['Col. Nathan R. Jessup']}]->(AFewGoodMen), +(DemiM)-[:ACTED_IN {roles:['Lt. Cdr. JoAnne Galloway']}]->(AFewGoodMen), +(KevinB)-[:ACTED_IN {roles:['Capt. Jack Ross']}]->(AFewGoodMen), +(KieferS)-[:ACTED_IN {roles:['Lt. Jonathan Kendrick']}]->(AFewGoodMen), +(NoahW)-[:ACTED_IN {roles:['Cpl. Jeffrey Barnes']}]->(AFewGoodMen), +(CubaG)-[:ACTED_IN {roles:['Cpl. Carl Hammaker']}]->(AFewGoodMen), +(KevinP)-[:ACTED_IN {roles:['Lt. Sam Weinberg']}]->(AFewGoodMen), +(JTW)-[:ACTED_IN {roles:['Lt. Col. Matthew Andrew Markinson']}]->(AFewGoodMen), +(JamesM)-[:ACTED_IN {roles:['Pfc. Louden Downey']}]->(AFewGoodMen), +(ChristopherG)-[:ACTED_IN {roles:['Dr. Stone']}]->(AFewGoodMen), +(AaronS)-[:ACTED_IN {roles:['Man in Bar']}]->(AFewGoodMen), +(RobR)-[:DIRECTED]->(AFewGoodMen), +(AaronS)-[:WROTE]->(AFewGoodMen) + +CREATE (TopGun:Movie {title:"Top Gun", released:1986, tagline:'I feel the need, the need for speed.'}) +CREATE (KellyM:Person {name:'Kelly McGillis', born:1957}) +CREATE (ValK:Person {name:'Val Kilmer', born:1959}) +CREATE (AnthonyE:Person {name:'Anthony Edwards', born:1962}) +CREATE (TomS:Person {name:'Tom Skerritt', born:1933}) +CREATE (MegR:Person {name:'Meg Ryan', born:1961}) +CREATE (TonyS:Person {name:'Tony Scott', born:1944}) +CREATE (JimC:Person {name:'Jim Cash', born:1941}) +CREATE +(TomC)-[:ACTED_IN {roles:['Maverick']}]->(TopGun), +(KellyM)-[:ACTED_IN {roles:['Charlie']}]->(TopGun), +(ValK)-[:ACTED_IN {roles:['Iceman']}]->(TopGun), +(AnthonyE)-[:ACTED_IN {roles:['Goose']}]->(TopGun), +(TomS)-[:ACTED_IN {roles:['Viper']}]->(TopGun), +(MegR)-[:ACTED_IN {roles:['Carole']}]->(TopGun), +(TonyS)-[:DIRECTED]->(TopGun), +(JimC)-[:WROTE]->(TopGun) + +CREATE (JerryMaguire:Movie {title:'Jerry Maguire', released:2000, tagline:'The rest of his life begins now.'}) +CREATE (ReneeZ:Person {name:'Renee Zellweger', born:1969}) +CREATE (KellyP:Person {name:'Kelly Preston', born:1962}) +CREATE (JerryO:Person {name:"Jerry O'Connell", born:1974}) +CREATE (JayM:Person {name:'Jay Mohr', born:1970}) +CREATE (BonnieH:Person {name:'Bonnie Hunt', born:1961}) +CREATE (ReginaK:Person {name:'Regina King', born:1971}) +CREATE (JonathanL:Person {name:'Jonathan Lipnicki', born:1996}) +CREATE (CameronC:Person {name:'Cameron Crowe', born:1957}) +CREATE +(TomC)-[:ACTED_IN {roles:['Jerry Maguire']}]->(JerryMaguire), +(CubaG)-[:ACTED_IN {roles:['Rod Tidwell']}]->(JerryMaguire), +(ReneeZ)-[:ACTED_IN {roles:['Dorothy Boyd']}]->(JerryMaguire), +(KellyP)-[:ACTED_IN {roles:['Avery Bishop']}]->(JerryMaguire), +(JerryO)-[:ACTED_IN {roles:['Frank Cushman']}]->(JerryMaguire), +(JayM)-[:ACTED_IN {roles:['Bob Sugar']}]->(JerryMaguire), +(BonnieH)-[:ACTED_IN {roles:['Laurel Boyd']}]->(JerryMaguire), +(ReginaK)-[:ACTED_IN {roles:['Marcee Tidwell']}]->(JerryMaguire), +(JonathanL)-[:ACTED_IN {roles:['Ray Boyd']}]->(JerryMaguire), +(CameronC)-[:DIRECTED]->(JerryMaguire), +(CameronC)-[:PRODUCED]->(JerryMaguire), +(CameronC)-[:WROTE]->(JerryMaguire) + +CREATE (StandByMe:Movie {title:"Stand By Me", released:1986, tagline:"For some, it's the last real taste of innocence, and the first real taste of life. But for everyone, it's the time that memories are made of."}) +CREATE (RiverP:Person {name:'River Phoenix', born:1970}) +CREATE (CoreyF:Person {name:'Corey Feldman', born:1971}) +CREATE (WilW:Person {name:'Wil Wheaton', born:1972}) +CREATE (JohnC:Person {name:'John Cusack', born:1966}) +CREATE (MarshallB:Person {name:'Marshall Bell', born:1942}) +CREATE +(WilW)-[:ACTED_IN {roles:['Gordie Lachance']}]->(StandByMe), +(RiverP)-[:ACTED_IN {roles:['Chris Chambers']}]->(StandByMe), +(JerryO)-[:ACTED_IN {roles:['Vern Tessio']}]->(StandByMe), +(CoreyF)-[:ACTED_IN {roles:['Teddy Duchamp']}]->(StandByMe), +(JohnC)-[:ACTED_IN {roles:['Denny Lachance']}]->(StandByMe), +(KieferS)-[:ACTED_IN {roles:['Ace Merrill']}]->(StandByMe), +(MarshallB)-[:ACTED_IN {roles:['Mr. Lachance']}]->(StandByMe), +(RobR)-[:DIRECTED]->(StandByMe) + +CREATE (AsGoodAsItGets:Movie {title:'As Good as It Gets', released:1997, tagline:'A comedy from the heart that goes for the throat.'}) +CREATE (HelenH:Person {name:'Helen Hunt', born:1963}) +CREATE (GregK:Person {name:'Greg Kinnear', born:1963}) +CREATE (JamesB:Person {name:'James L. Brooks', born:1940}) +CREATE +(JackN)-[:ACTED_IN {roles:['Melvin Udall']}]->(AsGoodAsItGets), +(HelenH)-[:ACTED_IN {roles:['Carol Connelly']}]->(AsGoodAsItGets), +(GregK)-[:ACTED_IN {roles:['Simon Bishop']}]->(AsGoodAsItGets), +(CubaG)-[:ACTED_IN {roles:['Frank Sachs']}]->(AsGoodAsItGets), +(JamesB)-[:DIRECTED]->(AsGoodAsItGets) + +CREATE (WhatDreamsMayCome:Movie {title:'What Dreams May Come', released:1998, tagline:'After life there is more. The end is just the beginning.'}) +CREATE (AnnabellaS:Person {name:'Annabella Sciorra', born:1960}) +CREATE (MaxS:Person {name:'Max von Sydow', born:1929}) +CREATE (WernerH:Person {name:'Werner Herzog', born:1942}) +CREATE (Robin:Person {name:'Robin Williams', born:1951}) +CREATE (VincentW:Person {name:'Vincent Ward', born:1956}) +CREATE +(Robin)-[:ACTED_IN {roles:['Chris Nielsen']}]->(WhatDreamsMayCome), +(CubaG)-[:ACTED_IN {roles:['Albert Lewis']}]->(WhatDreamsMayCome), +(AnnabellaS)-[:ACTED_IN {roles:['Annie Collins-Nielsen']}]->(WhatDreamsMayCome), +(MaxS)-[:ACTED_IN {roles:['The Tracker']}]->(WhatDreamsMayCome), +(WernerH)-[:ACTED_IN {roles:['The Face']}]->(WhatDreamsMayCome), +(VincentW)-[:DIRECTED]->(WhatDreamsMayCome) + +CREATE (SnowFallingonCedars:Movie {title:'Snow Falling on Cedars', released:1999, tagline:'First loves last. Forever.'}) +CREATE (EthanH:Person {name:'Ethan Hawke', born:1970}) +CREATE (RickY:Person {name:'Rick Yune', born:1971}) +CREATE (JamesC:Person {name:'James Cromwell', born:1940}) +CREATE (ScottH:Person {name:'Scott Hicks', born:1953}) +CREATE +(EthanH)-[:ACTED_IN {roles:['Ishmael Chambers']}]->(SnowFallingonCedars), +(RickY)-[:ACTED_IN {roles:['Kazuo Miyamoto']}]->(SnowFallingonCedars), +(MaxS)-[:ACTED_IN {roles:['Nels Gudmundsson']}]->(SnowFallingonCedars), +(JamesC)-[:ACTED_IN {roles:['Judge Fielding']}]->(SnowFallingonCedars), +(ScottH)-[:DIRECTED]->(SnowFallingonCedars) + +CREATE (YouveGotMail:Movie {title:"You've Got Mail", released:1998, tagline:'At odds in life... in love on-line.'}) +CREATE (ParkerP:Person {name:'Parker Posey', born:1968}) +CREATE (DaveC:Person {name:'Dave Chappelle', born:1973}) +CREATE (SteveZ:Person {name:'Steve Zahn', born:1967}) +CREATE (TomH:Person {name:'Tom Hanks', born:1956}) +CREATE (NoraE:Person {name:'Nora Ephron', born:1941}) +CREATE +(TomH)-[:ACTED_IN {roles:['Joe Fox']}]->(YouveGotMail), +(MegR)-[:ACTED_IN {roles:['Kathleen Kelly']}]->(YouveGotMail), +(GregK)-[:ACTED_IN {roles:['Frank Navasky']}]->(YouveGotMail), +(ParkerP)-[:ACTED_IN {roles:['Patricia Eden']}]->(YouveGotMail), +(DaveC)-[:ACTED_IN {roles:['Kevin Jackson']}]->(YouveGotMail), +(SteveZ)-[:ACTED_IN {roles:['George Pappas']}]->(YouveGotMail), +(NoraE)-[:DIRECTED]->(YouveGotMail) + +CREATE (SleeplessInSeattle:Movie {title:'Sleepless in Seattle', released:1993, tagline:'What if someone you never met, someone you never saw, someone you never knew was the only someone for you?'}) +CREATE (RitaW:Person {name:'Rita Wilson', born:1956}) +CREATE (BillPull:Person {name:'Bill Pullman', born:1953}) +CREATE (VictorG:Person {name:'Victor Garber', born:1949}) +CREATE (RosieO:Person {name:"Rosie O'Donnell", born:1962}) +CREATE +(TomH)-[:ACTED_IN {roles:['Sam Baldwin']}]->(SleeplessInSeattle), +(MegR)-[:ACTED_IN {roles:['Annie Reed']}]->(SleeplessInSeattle), +(RitaW)-[:ACTED_IN {roles:['Suzy']}]->(SleeplessInSeattle), +(BillPull)-[:ACTED_IN {roles:['Walter']}]->(SleeplessInSeattle), +(VictorG)-[:ACTED_IN {roles:['Greg']}]->(SleeplessInSeattle), +(RosieO)-[:ACTED_IN {roles:['Becky']}]->(SleeplessInSeattle), +(NoraE)-[:DIRECTED]->(SleeplessInSeattle) + +CREATE (JoeVersustheVolcano:Movie {title:'Joe Versus the Volcano', released:1990, tagline:'A story of love, lava and burning desire.'}) +CREATE (JohnS:Person {name:'John Patrick Stanley', born:1950}) +CREATE (Nathan:Person {name:'Nathan Lane', born:1956}) +CREATE +(TomH)-[:ACTED_IN {roles:['Joe Banks']}]->(JoeVersustheVolcano), +(MegR)-[:ACTED_IN {roles:['DeDe', 'Angelica Graynamore', 'Patricia Graynamore']}]->(JoeVersustheVolcano), +(Nathan)-[:ACTED_IN {roles:['Baw']}]->(JoeVersustheVolcano), +(JohnS)-[:DIRECTED]->(JoeVersustheVolcano) + +CREATE (WhenHarryMetSally:Movie {title:'When Harry Met Sally', released:1998, tagline:'Can two friends sleep together and still love each other in the morning?'}) +CREATE (BillyC:Person {name:'Billy Crystal', born:1948}) +CREATE (CarrieF:Person {name:'Carrie Fisher', born:1956}) +CREATE (BrunoK:Person {name:'Bruno Kirby', born:1949}) +CREATE +(BillyC)-[:ACTED_IN {roles:['Harry Burns']}]->(WhenHarryMetSally), +(MegR)-[:ACTED_IN {roles:['Sally Albright']}]->(WhenHarryMetSally), +(CarrieF)-[:ACTED_IN {roles:['Marie']}]->(WhenHarryMetSally), +(BrunoK)-[:ACTED_IN {roles:['Jess']}]->(WhenHarryMetSally), +(RobR)-[:DIRECTED]->(WhenHarryMetSally), +(RobR)-[:PRODUCED]->(WhenHarryMetSally), +(NoraE)-[:PRODUCED]->(WhenHarryMetSally), +(NoraE)-[:WROTE]->(WhenHarryMetSally) + +CREATE (ThatThingYouDo:Movie {title:'That Thing You Do', released:1996, tagline:'In every life there comes a time when that thing you dream becomes that thing you do'}) +CREATE (LivT:Person {name:'Liv Tyler', born:1977}) +CREATE +(TomH)-[:ACTED_IN {roles:['Mr. White']}]->(ThatThingYouDo), +(LivT)-[:ACTED_IN {roles:['Faye Dolan']}]->(ThatThingYouDo), +(Charlize)-[:ACTED_IN {roles:['Tina']}]->(ThatThingYouDo), +(TomH)-[:DIRECTED]->(ThatThingYouDo) + +CREATE (TheReplacements:Movie {title:'The Replacements', released:2000, tagline:'Pain heals, Chicks dig scars... Glory lasts forever'}) +CREATE (Brooke:Person {name:'Brooke Langton', born:1970}) +CREATE (Gene:Person {name:'Gene Hackman', born:1930}) +CREATE (Orlando:Person {name:'Orlando Jones', born:1968}) +CREATE (Howard:Person {name:'Howard Deutch', born:1950}) +CREATE +(Keanu)-[:ACTED_IN {roles:['Shane Falco']}]->(TheReplacements), +(Brooke)-[:ACTED_IN {roles:['Annabelle Farrell']}]->(TheReplacements), +(Gene)-[:ACTED_IN {roles:['Jimmy McGinty']}]->(TheReplacements), +(Orlando)-[:ACTED_IN {roles:['Clifford Franklin']}]->(TheReplacements), +(Howard)-[:DIRECTED]->(TheReplacements) + +CREATE (RescueDawn:Movie {title:'RescueDawn', released:2006, tagline:"Based on the extraordinary true story of one man's fight for freedom"}) +CREATE (ChristianB:Person {name:'Christian Bale', born:1974}) +CREATE (ZachG:Person {name:'Zach Grenier', born:1954}) +CREATE +(MarshallB)-[:ACTED_IN {roles:['Admiral']}]->(RescueDawn), +(ChristianB)-[:ACTED_IN {roles:['Dieter Dengler']}]->(RescueDawn), +(ZachG)-[:ACTED_IN {roles:['Squad Leader']}]->(RescueDawn), +(SteveZ)-[:ACTED_IN {roles:['Duane']}]->(RescueDawn), +(WernerH)-[:DIRECTED]->(RescueDawn) + +CREATE (TheBirdcage:Movie {title:'The Birdcage', released:1996, tagline:'Come as you are'}) +CREATE (MikeN:Person {name:'Mike Nichols', born:1931}) +CREATE +(Robin)-[:ACTED_IN {roles:['Armand Goldman']}]->(TheBirdcage), +(Nathan)-[:ACTED_IN {roles:['Albert Goldman']}]->(TheBirdcage), +(Gene)-[:ACTED_IN {roles:['Sen. Kevin Keeley']}]->(TheBirdcage), +(MikeN)-[:DIRECTED]->(TheBirdcage) + +CREATE (Unforgiven:Movie {title:'Unforgiven', released:1992, tagline:"It's a hell of a thing, killing a man"}) +CREATE (RichardH:Person {name:'Richard Harris', born:1930}) +CREATE (ClintE:Person {name:'Clint Eastwood', born:1930}) +CREATE +(RichardH)-[:ACTED_IN {roles:['English Bob']}]->(Unforgiven), +(ClintE)-[:ACTED_IN {roles:['Bill Munny']}]->(Unforgiven), +(Gene)-[:ACTED_IN {roles:['Little Bill Daggett']}]->(Unforgiven), +(ClintE)-[:DIRECTED]->(Unforgiven) + +CREATE (JohnnyMnemonic:Movie {title:'Johnny Mnemonic', released:1995, tagline:'The hottest data on earth. In the coolest head in town'}) +CREATE (Takeshi:Person {name:'Takeshi Kitano', born:1947}) +CREATE (Dina:Person {name:'Dina Meyer', born:1968}) +CREATE (IceT:Person {name:'Ice-T', born:1958}) +CREATE (RobertL:Person {name:'Robert Longo', born:1953}) +CREATE +(Keanu)-[:ACTED_IN {roles:['Johnny Mnemonic']}]->(JohnnyMnemonic), +(Takeshi)-[:ACTED_IN {roles:['Takahashi']}]->(JohnnyMnemonic), +(Dina)-[:ACTED_IN {roles:['Jane']}]->(JohnnyMnemonic), +(IceT)-[:ACTED_IN {roles:['J-Bone']}]->(JohnnyMnemonic), +(RobertL)-[:DIRECTED]->(JohnnyMnemonic) + +CREATE (CloudAtlas:Movie {title:'Cloud Atlas', released:2012, tagline:'Everything is connected'}) +CREATE (HalleB:Person {name:'Halle Berry', born:1966}) +CREATE (JimB:Person {name:'Jim Broadbent', born:1949}) +CREATE (TomT:Person {name:'Tom Tykwer', born:1965}) +CREATE (DavidMitchell:Person {name:'David Mitchell', born:1969}) +CREATE (StefanArndt:Person {name:'Stefan Arndt', born:1961}) +CREATE +(TomH)-[:ACTED_IN {roles:['Zachry', 'Dr. Henry Goose', 'Isaac Sachs', 'Dermot Hoggins']}]->(CloudAtlas), +(Hugo)-[:ACTED_IN {roles:['Bill Smoke', 'Haskell Moore', 'Tadeusz Kesselring', 'Nurse Noakes', 'Boardman Mephi', 'Old Georgie']}]->(CloudAtlas), +(HalleB)-[:ACTED_IN {roles:['Luisa Rey', 'Jocasta Ayrs', 'Ovid', 'Meronym']}]->(CloudAtlas), +(JimB)-[:ACTED_IN {roles:['Vyvyan Ayrs', 'Captain Molyneux', 'Timothy Cavendish']}]->(CloudAtlas), +(TomT)-[:DIRECTED]->(CloudAtlas), +(LillyW)-[:DIRECTED]->(CloudAtlas), +(LanaW)-[:DIRECTED]->(CloudAtlas), +(DavidMitchell)-[:WROTE]->(CloudAtlas), +(StefanArndt)-[:PRODUCED]->(CloudAtlas) + +CREATE (TheDaVinciCode:Movie {title:'The Da Vinci Code', released:2006, tagline:'Break The Codes'}) +CREATE (IanM:Person {name:'Ian McKellen', born:1939}) +CREATE (AudreyT:Person {name:'Audrey Tautou', born:1976}) +CREATE (PaulB:Person {name:'Paul Bettany', born:1971}) +CREATE (RonH:Person {name:'Ron Howard', born:1954}) +CREATE +(TomH)-[:ACTED_IN {roles:['Dr. Robert Langdon']}]->(TheDaVinciCode), +(IanM)-[:ACTED_IN {roles:['Sir Leight Teabing']}]->(TheDaVinciCode), +(AudreyT)-[:ACTED_IN {roles:['Sophie Neveu']}]->(TheDaVinciCode), +(PaulB)-[:ACTED_IN {roles:['Silas']}]->(TheDaVinciCode), +(RonH)-[:DIRECTED]->(TheDaVinciCode) + +CREATE (VforVendetta:Movie {title:'V for Vendetta', released:2006, tagline:'Freedom! Forever!'}) +CREATE (NatalieP:Person {name:'Natalie Portman', born:1981}) +CREATE (StephenR:Person {name:'Stephen Rea', born:1946}) +CREATE (JohnH:Person {name:'John Hurt', born:1940}) +CREATE (BenM:Person {name: 'Ben Miles', born:1967}) +CREATE +(Hugo)-[:ACTED_IN {roles:['V']}]->(VforVendetta), +(NatalieP)-[:ACTED_IN {roles:['Evey Hammond']}]->(VforVendetta), +(StephenR)-[:ACTED_IN {roles:['Eric Finch']}]->(VforVendetta), +(JohnH)-[:ACTED_IN {roles:['High Chancellor Adam Sutler']}]->(VforVendetta), +(BenM)-[:ACTED_IN {roles:['Dascomb']}]->(VforVendetta), +(JamesM)-[:DIRECTED]->(VforVendetta), +(LillyW)-[:PRODUCED]->(VforVendetta), +(LanaW)-[:PRODUCED]->(VforVendetta), +(JoelS)-[:PRODUCED]->(VforVendetta), +(LillyW)-[:WROTE]->(VforVendetta), +(LanaW)-[:WROTE]->(VforVendetta) + +CREATE (SpeedRacer:Movie {title:'Speed Racer', released:2008, tagline:'Speed has no limits'}) +CREATE (EmileH:Person {name:'Emile Hirsch', born:1985}) +CREATE (JohnG:Person {name:'John Goodman', born:1960}) +CREATE (SusanS:Person {name:'Susan Sarandon', born:1946}) +CREATE (MatthewF:Person {name:'Matthew Fox', born:1966}) +CREATE (ChristinaR:Person {name:'Christina Ricci', born:1980}) +CREATE (Rain:Person {name:'Rain', born:1982}) +CREATE +(EmileH)-[:ACTED_IN {roles:['Speed Racer']}]->(SpeedRacer), +(JohnG)-[:ACTED_IN {roles:['Pops']}]->(SpeedRacer), +(SusanS)-[:ACTED_IN {roles:['Mom']}]->(SpeedRacer), +(MatthewF)-[:ACTED_IN {roles:['Racer X']}]->(SpeedRacer), +(ChristinaR)-[:ACTED_IN {roles:['Trixie']}]->(SpeedRacer), +(Rain)-[:ACTED_IN {roles:['Taejo Togokahn']}]->(SpeedRacer), +(BenM)-[:ACTED_IN {roles:['Cass Jones']}]->(SpeedRacer), +(LillyW)-[:DIRECTED]->(SpeedRacer), +(LanaW)-[:DIRECTED]->(SpeedRacer), +(LillyW)-[:WROTE]->(SpeedRacer), +(LanaW)-[:WROTE]->(SpeedRacer), +(JoelS)-[:PRODUCED]->(SpeedRacer) + +CREATE (NinjaAssassin:Movie {title:'Ninja Assassin', released:2009, tagline:'Prepare to enter a secret world of assassins'}) +CREATE (NaomieH:Person {name:'Naomie Harris'}) +CREATE +(Rain)-[:ACTED_IN {roles:['Raizo']}]->(NinjaAssassin), +(NaomieH)-[:ACTED_IN {roles:['Mika Coretti']}]->(NinjaAssassin), +(RickY)-[:ACTED_IN {roles:['Takeshi']}]->(NinjaAssassin), +(BenM)-[:ACTED_IN {roles:['Ryan Maslow']}]->(NinjaAssassin), +(JamesM)-[:DIRECTED]->(NinjaAssassin), +(LillyW)-[:PRODUCED]->(NinjaAssassin), +(LanaW)-[:PRODUCED]->(NinjaAssassin), +(JoelS)-[:PRODUCED]->(NinjaAssassin) + +CREATE (TheGreenMile:Movie {title:'The Green Mile', released:1999, tagline:"Walk a mile you'll never forget."}) +CREATE (MichaelD:Person {name:'Michael Clarke Duncan', born:1957}) +CREATE (DavidM:Person {name:'David Morse', born:1953}) +CREATE (SamR:Person {name:'Sam Rockwell', born:1968}) +CREATE (GaryS:Person {name:'Gary Sinise', born:1955}) +CREATE (PatriciaC:Person {name:'Patricia Clarkson', born:1959}) +CREATE (FrankD:Person {name:'Frank Darabont', born:1959}) +CREATE +(TomH)-[:ACTED_IN {roles:['Paul Edgecomb']}]->(TheGreenMile), +(MichaelD)-[:ACTED_IN {roles:['John Coffey']}]->(TheGreenMile), +(DavidM)-[:ACTED_IN {roles:['Brutus "Brutal" Howell']}]->(TheGreenMile), +(BonnieH)-[:ACTED_IN {roles:['Jan Edgecomb']}]->(TheGreenMile), +(JamesC)-[:ACTED_IN {roles:['Warden Hal Moores']}]->(TheGreenMile), +(SamR)-[:ACTED_IN {roles:['"Wild Bill" Wharton']}]->(TheGreenMile), +(GaryS)-[:ACTED_IN {roles:['Burt Hammersmith']}]->(TheGreenMile), +(PatriciaC)-[:ACTED_IN {roles:['Melinda Moores']}]->(TheGreenMile), +(FrankD)-[:DIRECTED]->(TheGreenMile) + +CREATE (FrostNixon:Movie {title:'Frost/Nixon', released:2008, tagline:'400 million people were waiting for the truth.'}) +CREATE (FrankL:Person {name:'Frank Langella', born:1938}) +CREATE (MichaelS:Person {name:'Michael Sheen', born:1969}) +CREATE (OliverP:Person {name:'Oliver Platt', born:1960}) +CREATE +(FrankL)-[:ACTED_IN {roles:['Richard Nixon']}]->(FrostNixon), +(MichaelS)-[:ACTED_IN {roles:['David Frost']}]->(FrostNixon), +(KevinB)-[:ACTED_IN {roles:['Jack Brennan']}]->(FrostNixon), +(OliverP)-[:ACTED_IN {roles:['Bob Zelnick']}]->(FrostNixon), +(SamR)-[:ACTED_IN {roles:['James Reston, Jr.']}]->(FrostNixon), +(RonH)-[:DIRECTED]->(FrostNixon) + +CREATE (Hoffa:Movie {title:'Hoffa', released:1992, tagline:"He didn't want law. He wanted justice."}) +CREATE (DannyD:Person {name:'Danny DeVito', born:1944}) +CREATE (JohnR:Person {name:'John C. Reilly', born:1965}) +CREATE +(JackN)-[:ACTED_IN {roles:['Hoffa']}]->(Hoffa), +(DannyD)-[:ACTED_IN {roles:['Robert "Bobby" Ciaro']}]->(Hoffa), +(JTW)-[:ACTED_IN {roles:['Frank Fitzsimmons']}]->(Hoffa), +(JohnR)-[:ACTED_IN {roles:['Peter "Pete" Connelly']}]->(Hoffa), +(DannyD)-[:DIRECTED]->(Hoffa) + +CREATE (Apollo13:Movie {title:'Apollo 13', released:1995, tagline:'Houston, we have a problem.'}) +CREATE (EdH:Person {name:'Ed Harris', born:1950}) +CREATE (BillPax:Person {name:'Bill Paxton', born:1955}) +CREATE +(TomH)-[:ACTED_IN {roles:['Jim Lovell']}]->(Apollo13), +(KevinB)-[:ACTED_IN {roles:['Jack Swigert']}]->(Apollo13), +(EdH)-[:ACTED_IN {roles:['Gene Kranz']}]->(Apollo13), +(BillPax)-[:ACTED_IN {roles:['Fred Haise']}]->(Apollo13), +(GaryS)-[:ACTED_IN {roles:['Ken Mattingly']}]->(Apollo13), +(RonH)-[:DIRECTED]->(Apollo13) + +CREATE (Twister:Movie {title:'Twister', released:1996, tagline:"Don't Breathe. Don't Look Back."}) +CREATE (PhilipH:Person {name:'Philip Seymour Hoffman', born:1967}) +CREATE (JanB:Person {name:'Jan de Bont', born:1943}) +CREATE +(BillPax)-[:ACTED_IN {roles:['Bill Harding']}]->(Twister), +(HelenH)-[:ACTED_IN {roles:['Dr. Jo Harding']}]->(Twister), +(ZachG)-[:ACTED_IN {roles:['Eddie']}]->(Twister), +(PhilipH)-[:ACTED_IN {roles:['Dustin "Dusty" Davis']}]->(Twister), +(JanB)-[:DIRECTED]->(Twister) + +CREATE (CastAway:Movie {title:'Cast Away', released:2000, tagline:'At the edge of the world, his journey begins.'}) +CREATE (RobertZ:Person {name:'Robert Zemeckis', born:1951}) +CREATE +(TomH)-[:ACTED_IN {roles:['Chuck Noland']}]->(CastAway), +(HelenH)-[:ACTED_IN {roles:['Kelly Frears']}]->(CastAway), +(RobertZ)-[:DIRECTED]->(CastAway) + +CREATE (OneFlewOvertheCuckoosNest:Movie {title:"One Flew Over the Cuckoo's Nest", released:1975, tagline:"If he's crazy, what does that make you?"}) +CREATE (MilosF:Person {name:'Milos Forman', born:1932}) +CREATE +(JackN)-[:ACTED_IN {roles:['Randle McMurphy']}]->(OneFlewOvertheCuckoosNest), +(DannyD)-[:ACTED_IN {roles:['Martini']}]->(OneFlewOvertheCuckoosNest), +(MilosF)-[:DIRECTED]->(OneFlewOvertheCuckoosNest) + +CREATE (SomethingsGottaGive:Movie {title:"Something's Gotta Give", released:2003}) +CREATE (DianeK:Person {name:'Diane Keaton', born:1946}) +CREATE (NancyM:Person {name:'Nancy Meyers', born:1949}) +CREATE +(JackN)-[:ACTED_IN {roles:['Harry Sanborn']}]->(SomethingsGottaGive), +(DianeK)-[:ACTED_IN {roles:['Erica Barry']}]->(SomethingsGottaGive), +(Keanu)-[:ACTED_IN {roles:['Julian Mercer']}]->(SomethingsGottaGive), +(NancyM)-[:DIRECTED]->(SomethingsGottaGive), +(NancyM)-[:PRODUCED]->(SomethingsGottaGive), +(NancyM)-[:WROTE]->(SomethingsGottaGive) + +CREATE (BicentennialMan:Movie {title:'Bicentennial Man', released:1999, tagline:"One robot's 200 year journey to become an ordinary man."}) +CREATE (ChrisC:Person {name:'Chris Columbus', born:1958}) +CREATE +(Robin)-[:ACTED_IN {roles:['Andrew Marin']}]->(BicentennialMan), +(OliverP)-[:ACTED_IN {roles:['Rupert Burns']}]->(BicentennialMan), +(ChrisC)-[:DIRECTED]->(BicentennialMan) + +CREATE (CharlieWilsonsWar:Movie {title:"Charlie Wilson's War", released:2007, tagline:"A stiff drink. A little mascara. A lot of nerve. Who said they couldn't bring down the Soviet empire."}) +CREATE (JuliaR:Person {name:'Julia Roberts', born:1967}) +CREATE +(TomH)-[:ACTED_IN {roles:['Rep. Charlie Wilson']}]->(CharlieWilsonsWar), +(JuliaR)-[:ACTED_IN {roles:['Joanne Herring']}]->(CharlieWilsonsWar), +(PhilipH)-[:ACTED_IN {roles:['Gust Avrakotos']}]->(CharlieWilsonsWar), +(MikeN)-[:DIRECTED]->(CharlieWilsonsWar) + +CREATE (ThePolarExpress:Movie {title:'The Polar Express', released:2004, tagline:'This Holiday Season... Believe'}) +CREATE +(TomH)-[:ACTED_IN {roles:['Hero Boy', 'Father', 'Conductor', 'Hobo', 'Scrooge', 'Santa Claus']}]->(ThePolarExpress), +(RobertZ)-[:DIRECTED]->(ThePolarExpress) + +CREATE (ALeagueofTheirOwn:Movie {title:'A League of Their Own', released:1992, tagline:'Once in a lifetime you get a chance to do something different.'}) +CREATE (Madonna:Person {name:'Madonna', born:1954}) +CREATE (GeenaD:Person {name:'Geena Davis', born:1956}) +CREATE (LoriP:Person {name:'Lori Petty', born:1963}) +CREATE (PennyM:Person {name:'Penny Marshall', born:1943}) +CREATE +(TomH)-[:ACTED_IN {roles:['Jimmy Dugan']}]->(ALeagueofTheirOwn), +(GeenaD)-[:ACTED_IN {roles:['Dottie Hinson']}]->(ALeagueofTheirOwn), +(LoriP)-[:ACTED_IN {roles:['Kit Keller']}]->(ALeagueofTheirOwn), +(RosieO)-[:ACTED_IN {roles:['Doris Murphy']}]->(ALeagueofTheirOwn), +(Madonna)-[:ACTED_IN {roles:['"All the Way" Mae Mordabito']}]->(ALeagueofTheirOwn), +(BillPax)-[:ACTED_IN {roles:['Bob Hinson']}]->(ALeagueofTheirOwn), +(PennyM)-[:DIRECTED]->(ALeagueofTheirOwn) + +CREATE (PaulBlythe:Person {name:'Paul Blythe'}) +CREATE (AngelaScope:Person {name:'Angela Scope'}) +CREATE (JessicaThompson:Person {name:'Jessica Thompson'}) +CREATE (JamesThompson:Person {name:'James Thompson'}) + +CREATE +(JamesThompson)-[:FOLLOWS]->(JessicaThompson), +(AngelaScope)-[:FOLLOWS]->(JessicaThompson), +(PaulBlythe)-[:FOLLOWS]->(AngelaScope) + +CREATE +(JessicaThompson)-[:REVIEWED {summary:'An amazing journey', rating:95}]->(CloudAtlas), +(JessicaThompson)-[:REVIEWED {summary:'Silly, but fun', rating:65}]->(TheReplacements), +(JamesThompson)-[:REVIEWED {summary:'The coolest football movie ever', rating:100}]->(TheReplacements), +(AngelaScope)-[:REVIEWED {summary:'Pretty funny at times', rating:62}]->(TheReplacements), +(JessicaThompson)-[:REVIEWED {summary:'Dark, but compelling', rating:85}]->(Unforgiven), +(JessicaThompson)-[:REVIEWED {summary:"Slapstick redeemed only by the Robin Williams and Gene Hackman's stellar performances", rating:45}]->(TheBirdcage), +(JessicaThompson)-[:REVIEWED {summary:'A solid romp', rating:68}]->(TheDaVinciCode), +(JamesThompson)-[:REVIEWED {summary:'Fun, but a little far fetched', rating:65}]->(TheDaVinciCode), +(JessicaThompson)-[:REVIEWED {summary:'You had me at Jerry', rating:92}]->(JerryMaguire) + +WITH TomH as a +MATCH (a)-[:ACTED_IN]->(m)<-[:DIRECTED]-(d) RETURN a,m,d LIMIT 10; diff --git a/Chapter10/poetry.lock b/Chapter10/poetry.lock new file mode 100644 index 0000000..cb9b50b --- /dev/null +++ b/Chapter10/poetry.lock @@ -0,0 +1,1422 @@ +# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. + +[[package]] +name = "aenum" +version = "3.1.15" +description = "Advanced Enumerations (compatible with Python's stdlib Enum), NamedTuples, and NamedConstants" +optional = false +python-versions = "*" +files = [ + {file = "aenum-3.1.15-py2-none-any.whl", hash = "sha256:27b1710b9d084de6e2e695dab78fe9f269de924b51ae2850170ee7e1ca6288a5"}, + {file = "aenum-3.1.15-py3-none-any.whl", hash = "sha256:e0dfaeea4c2bd362144b87377e2c61d91958c5ed0b4daf89cb6f45ae23af6288"}, + {file = "aenum-3.1.15.tar.gz", hash = "sha256:8cbd76cd18c4f870ff39b24284d3ea028fbe8731a58df3aa581e434c575b9559"}, +] + +[[package]] +name = "aiohappyeyeballs" +version = "2.4.4" +description = "Happy Eyeballs for asyncio" +optional = false +python-versions = ">=3.8" +files = [ + {file = "aiohappyeyeballs-2.4.4-py3-none-any.whl", hash = "sha256:a980909d50efcd44795c4afeca523296716d50cd756ddca6af8c65b996e27de8"}, + {file = "aiohappyeyeballs-2.4.4.tar.gz", hash = "sha256:5fdd7d87889c63183afc18ce9271f9b0a7d32c2303e394468dd45d514a757745"}, +] + +[[package]] +name = "aiohttp" +version = "3.11.11" +description = "Async http client/server framework (asyncio)" +optional = false +python-versions = ">=3.9" +files = [ + {file = "aiohttp-3.11.11-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a60804bff28662cbcf340a4d61598891f12eea3a66af48ecfdc975ceec21e3c8"}, + {file = "aiohttp-3.11.11-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4b4fa1cb5f270fb3eab079536b764ad740bb749ce69a94d4ec30ceee1b5940d5"}, + {file = "aiohttp-3.11.11-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:731468f555656767cda219ab42e033355fe48c85fbe3ba83a349631541715ba2"}, + {file = "aiohttp-3.11.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb23d8bb86282b342481cad4370ea0853a39e4a32a0042bb52ca6bdde132df43"}, + {file = "aiohttp-3.11.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f047569d655f81cb70ea5be942ee5d4421b6219c3f05d131f64088c73bb0917f"}, + {file = "aiohttp-3.11.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dd7659baae9ccf94ae5fe8bfaa2c7bc2e94d24611528395ce88d009107e00c6d"}, + {file = "aiohttp-3.11.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af01e42ad87ae24932138f154105e88da13ce7d202a6de93fafdafb2883a00ef"}, + {file = "aiohttp-3.11.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5854be2f3e5a729800bac57a8d76af464e160f19676ab6aea74bde18ad19d438"}, + {file = "aiohttp-3.11.11-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:6526e5fb4e14f4bbf30411216780c9967c20c5a55f2f51d3abd6de68320cc2f3"}, + {file = "aiohttp-3.11.11-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:85992ee30a31835fc482468637b3e5bd085fa8fe9392ba0bdcbdc1ef5e9e3c55"}, + {file = "aiohttp-3.11.11-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:88a12ad8ccf325a8a5ed80e6d7c3bdc247d66175afedbe104ee2aaca72960d8e"}, + {file = "aiohttp-3.11.11-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:0a6d3fbf2232e3a08c41eca81ae4f1dff3d8f1a30bae415ebe0af2d2458b8a33"}, + {file = "aiohttp-3.11.11-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84a585799c58b795573c7fa9b84c455adf3e1d72f19a2bf498b54a95ae0d194c"}, + {file = "aiohttp-3.11.11-cp310-cp310-win32.whl", hash = "sha256:bfde76a8f430cf5c5584553adf9926534352251d379dcb266ad2b93c54a29745"}, + {file = "aiohttp-3.11.11-cp310-cp310-win_amd64.whl", hash = "sha256:0fd82b8e9c383af11d2b26f27a478640b6b83d669440c0a71481f7c865a51da9"}, + {file = "aiohttp-3.11.11-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ba74ec819177af1ef7f59063c6d35a214a8fde6f987f7661f4f0eecc468a8f76"}, + {file = "aiohttp-3.11.11-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4af57160800b7a815f3fe0eba9b46bf28aafc195555f1824555fa2cfab6c1538"}, + {file = "aiohttp-3.11.11-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ffa336210cf9cd8ed117011085817d00abe4c08f99968deef0013ea283547204"}, + {file = "aiohttp-3.11.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81b8fe282183e4a3c7a1b72f5ade1094ed1c6345a8f153506d114af5bf8accd9"}, + {file = "aiohttp-3.11.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3af41686ccec6a0f2bdc66686dc0f403c41ac2089f80e2214a0f82d001052c03"}, + {file = "aiohttp-3.11.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70d1f9dde0e5dd9e292a6d4d00058737052b01f3532f69c0c65818dac26dc287"}, + {file = "aiohttp-3.11.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:249cc6912405917344192b9f9ea5cd5b139d49e0d2f5c7f70bdfaf6b4dbf3a2e"}, + {file = "aiohttp-3.11.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0eb98d90b6690827dcc84c246811feeb4e1eea683c0eac6caed7549be9c84665"}, + {file = "aiohttp-3.11.11-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:ec82bf1fda6cecce7f7b915f9196601a1bd1a3079796b76d16ae4cce6d0ef89b"}, + {file = "aiohttp-3.11.11-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:9fd46ce0845cfe28f108888b3ab17abff84ff695e01e73657eec3f96d72eef34"}, + {file = "aiohttp-3.11.11-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:bd176afcf8f5d2aed50c3647d4925d0db0579d96f75a31e77cbaf67d8a87742d"}, + {file = "aiohttp-3.11.11-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:ec2aa89305006fba9ffb98970db6c8221541be7bee4c1d027421d6f6df7d1ce2"}, + {file = "aiohttp-3.11.11-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:92cde43018a2e17d48bb09c79e4d4cb0e236de5063ce897a5e40ac7cb4878773"}, + {file = "aiohttp-3.11.11-cp311-cp311-win32.whl", hash = "sha256:aba807f9569455cba566882c8938f1a549f205ee43c27b126e5450dc9f83cc62"}, + {file = "aiohttp-3.11.11-cp311-cp311-win_amd64.whl", hash = "sha256:ae545f31489548c87b0cced5755cfe5a5308d00407000e72c4fa30b19c3220ac"}, + {file = "aiohttp-3.11.11-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:e595c591a48bbc295ebf47cb91aebf9bd32f3ff76749ecf282ea7f9f6bb73886"}, + {file = "aiohttp-3.11.11-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:3ea1b59dc06396b0b424740a10a0a63974c725b1c64736ff788a3689d36c02d2"}, + {file = "aiohttp-3.11.11-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8811f3f098a78ffa16e0ea36dffd577eb031aea797cbdba81be039a4169e242c"}, + {file = "aiohttp-3.11.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd7227b87a355ce1f4bf83bfae4399b1f5bb42e0259cb9405824bd03d2f4336a"}, + {file = "aiohttp-3.11.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d40f9da8cabbf295d3a9dae1295c69975b86d941bc20f0a087f0477fa0a66231"}, + {file = "aiohttp-3.11.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ffb3dc385f6bb1568aa974fe65da84723210e5d9707e360e9ecb51f59406cd2e"}, + {file = "aiohttp-3.11.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8f5f7515f3552d899c61202d99dcb17d6e3b0de777900405611cd747cecd1b8"}, + {file = "aiohttp-3.11.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3499c7ffbfd9c6a3d8d6a2b01c26639da7e43d47c7b4f788016226b1e711caa8"}, + {file = "aiohttp-3.11.11-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8e2bf8029dbf0810c7bfbc3e594b51c4cc9101fbffb583a3923aea184724203c"}, + {file = "aiohttp-3.11.11-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b6212a60e5c482ef90f2d788835387070a88d52cf6241d3916733c9176d39eab"}, + {file = "aiohttp-3.11.11-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:d119fafe7b634dbfa25a8c597718e69a930e4847f0b88e172744be24515140da"}, + {file = "aiohttp-3.11.11-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:6fba278063559acc730abf49845d0e9a9e1ba74f85f0ee6efd5803f08b285853"}, + {file = "aiohttp-3.11.11-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:92fc484e34b733704ad77210c7957679c5c3877bd1e6b6d74b185e9320cc716e"}, + {file = "aiohttp-3.11.11-cp312-cp312-win32.whl", hash = "sha256:9f5b3c1ed63c8fa937a920b6c1bec78b74ee09593b3f5b979ab2ae5ef60d7600"}, + {file = "aiohttp-3.11.11-cp312-cp312-win_amd64.whl", hash = "sha256:1e69966ea6ef0c14ee53ef7a3d68b564cc408121ea56c0caa2dc918c1b2f553d"}, + {file = "aiohttp-3.11.11-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:541d823548ab69d13d23730a06f97460f4238ad2e5ed966aaf850d7c369782d9"}, + {file = "aiohttp-3.11.11-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:929f3ed33743a49ab127c58c3e0a827de0664bfcda566108989a14068f820194"}, + {file = "aiohttp-3.11.11-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0882c2820fd0132240edbb4a51eb8ceb6eef8181db9ad5291ab3332e0d71df5f"}, + {file = "aiohttp-3.11.11-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b63de12e44935d5aca7ed7ed98a255a11e5cb47f83a9fded7a5e41c40277d104"}, + {file = "aiohttp-3.11.11-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa54f8ef31d23c506910c21163f22b124facb573bff73930735cf9fe38bf7dff"}, + {file = "aiohttp-3.11.11-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a344d5dc18074e3872777b62f5f7d584ae4344cd6006c17ba12103759d407af3"}, + {file = "aiohttp-3.11.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b7fb429ab1aafa1f48578eb315ca45bd46e9c37de11fe45c7f5f4138091e2f1"}, + {file = "aiohttp-3.11.11-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c341c7d868750e31961d6d8e60ff040fb9d3d3a46d77fd85e1ab8e76c3e9a5c4"}, + {file = "aiohttp-3.11.11-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:ed9ee95614a71e87f1a70bc81603f6c6760128b140bc4030abe6abaa988f1c3d"}, + {file = "aiohttp-3.11.11-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:de8d38f1c2810fa2a4f1d995a2e9c70bb8737b18da04ac2afbf3971f65781d87"}, + {file = "aiohttp-3.11.11-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:a9b7371665d4f00deb8f32208c7c5e652059b0fda41cf6dbcac6114a041f1cc2"}, + {file = "aiohttp-3.11.11-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:620598717fce1b3bd14dd09947ea53e1ad510317c85dda2c9c65b622edc96b12"}, + {file = "aiohttp-3.11.11-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:bf8d9bfee991d8acc72d060d53860f356e07a50f0e0d09a8dfedea1c554dd0d5"}, + {file = "aiohttp-3.11.11-cp313-cp313-win32.whl", hash = "sha256:9d73ee3725b7a737ad86c2eac5c57a4a97793d9f442599bea5ec67ac9f4bdc3d"}, + {file = "aiohttp-3.11.11-cp313-cp313-win_amd64.whl", hash = "sha256:c7a06301c2fb096bdb0bd25fe2011531c1453b9f2c163c8031600ec73af1cc99"}, + {file = "aiohttp-3.11.11-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3e23419d832d969f659c208557de4a123e30a10d26e1e14b73431d3c13444c2e"}, + {file = "aiohttp-3.11.11-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:21fef42317cf02e05d3b09c028712e1d73a9606f02467fd803f7c1f39cc59add"}, + {file = "aiohttp-3.11.11-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1f21bb8d0235fc10c09ce1d11ffbd40fc50d3f08a89e4cf3a0c503dc2562247a"}, + {file = "aiohttp-3.11.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1642eceeaa5ab6c9b6dfeaaa626ae314d808188ab23ae196a34c9d97efb68350"}, + {file = "aiohttp-3.11.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2170816e34e10f2fd120f603e951630f8a112e1be3b60963a1f159f5699059a6"}, + {file = "aiohttp-3.11.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8be8508d110d93061197fd2d6a74f7401f73b6d12f8822bbcd6d74f2b55d71b1"}, + {file = "aiohttp-3.11.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4eed954b161e6b9b65f6be446ed448ed3921763cc432053ceb606f89d793927e"}, + {file = "aiohttp-3.11.11-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d6c9af134da4bc9b3bd3e6a70072509f295d10ee60c697826225b60b9959acdd"}, + {file = "aiohttp-3.11.11-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:44167fc6a763d534a6908bdb2592269b4bf30a03239bcb1654781adf5e49caf1"}, + {file = "aiohttp-3.11.11-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:479b8c6ebd12aedfe64563b85920525d05d394b85f166b7873c8bde6da612f9c"}, + {file = "aiohttp-3.11.11-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:10b4ff0ad793d98605958089fabfa350e8e62bd5d40aa65cdc69d6785859f94e"}, + {file = "aiohttp-3.11.11-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:b540bd67cfb54e6f0865ceccd9979687210d7ed1a1cc8c01f8e67e2f1e883d28"}, + {file = "aiohttp-3.11.11-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:1dac54e8ce2ed83b1f6b1a54005c87dfed139cf3f777fdc8afc76e7841101226"}, + {file = "aiohttp-3.11.11-cp39-cp39-win32.whl", hash = "sha256:568c1236b2fde93b7720f95a890741854c1200fba4a3471ff48b2934d2d93fd3"}, + {file = "aiohttp-3.11.11-cp39-cp39-win_amd64.whl", hash = "sha256:943a8b052e54dfd6439fd7989f67fc6a7f2138d0a2cf0a7de5f18aa4fe7eb3b1"}, + {file = "aiohttp-3.11.11.tar.gz", hash = "sha256:bb49c7f1e6ebf3821a42d81d494f538107610c3a705987f53068546b0e90303e"}, +] + +[package.dependencies] +aiohappyeyeballs = ">=2.3.0" +aiosignal = ">=1.1.2" +async-timeout = {version = ">=4.0,<6.0", markers = "python_version < \"3.11\""} +attrs = ">=17.3.0" +frozenlist = ">=1.1.1" +multidict = ">=4.5,<7.0" +propcache = ">=0.2.0" +yarl = ">=1.17.0,<2.0" + +[package.extras] +speedups = ["Brotli", "aiodns (>=3.2.0)", "brotlicffi"] + +[[package]] +name = "aiosignal" +version = "1.3.2" +description = "aiosignal: a list of registered asynchronous callbacks" +optional = false +python-versions = ">=3.9" +files = [ + {file = "aiosignal-1.3.2-py2.py3-none-any.whl", hash = "sha256:45cde58e409a301715980c2b01d0c28bdde3770d8290b5eb2173759d9acb31a5"}, + {file = "aiosignal-1.3.2.tar.gz", hash = "sha256:a8c255c66fafb1e499c9351d0bf32ff2d8a0321595ebac3b93713656d2436f54"}, +] + +[package.dependencies] +frozenlist = ">=1.1.0" + +[[package]] +name = "appnope" +version = "0.1.4" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = ">=3.6" +files = [ + {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, + {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, +] + +[[package]] +name = "asttokens" +version = "3.0.0" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = ">=3.8" +files = [ + {file = "asttokens-3.0.0-py3-none-any.whl", hash = "sha256:e3078351a059199dd5138cb1c706e6430c05eff2ff136af5eb4790f9d28932e2"}, + {file = "asttokens-3.0.0.tar.gz", hash = "sha256:0dcd8baa8d62b0c1d118b399b2ddba3c4aff271d0d7a9e0d4c1681c79035bbc7"}, +] + +[package.extras] +astroid = ["astroid (>=2,<4)"] +test = ["astroid (>=2,<4)", "pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "async-timeout" +version = "4.0.3" +description = "Timeout context manager for asyncio programs" +optional = false +python-versions = ">=3.7" +files = [ + {file = "async-timeout-4.0.3.tar.gz", hash = "sha256:4640d96be84d82d02ed59ea2b7105a0f7b33abe8703703cd0ab0bf87c427522f"}, + {file = "async_timeout-4.0.3-py3-none-any.whl", hash = "sha256:7405140ff1230c310e51dc27b3145b9092d659ce68ff733fb0cefe3ee42be028"}, +] + +[[package]] +name = "attrs" +version = "24.3.0" +description = "Classes Without Boilerplate" +optional = false +python-versions = ">=3.8" +files = [ + {file = "attrs-24.3.0-py3-none-any.whl", hash = "sha256:ac96cd038792094f438ad1f6ff80837353805ac950cd2aa0e0625ef19850c308"}, + {file = "attrs-24.3.0.tar.gz", hash = "sha256:8f5c07333d543103541ba7be0e2ce16eeee8130cb0b3f9238ab904ce1e85baff"}, +] + +[package.extras] +benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit-uv", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] + +[[package]] +name = "cffi" +version = "1.17.1" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, +] + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "comm" +version = "0.2.2" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +files = [ + {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, + {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "debugpy" +version = "1.8.11" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "debugpy-1.8.11-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:2b26fefc4e31ff85593d68b9022e35e8925714a10ab4858fb1b577a8a48cb8cd"}, + {file = "debugpy-1.8.11-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:61bc8b3b265e6949855300e84dc93d02d7a3a637f2aec6d382afd4ceb9120c9f"}, + {file = "debugpy-1.8.11-cp310-cp310-win32.whl", hash = "sha256:c928bbf47f65288574b78518449edaa46c82572d340e2750889bbf8cd92f3737"}, + {file = "debugpy-1.8.11-cp310-cp310-win_amd64.whl", hash = "sha256:8da1db4ca4f22583e834dcabdc7832e56fe16275253ee53ba66627b86e304da1"}, + {file = "debugpy-1.8.11-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:85de8474ad53ad546ff1c7c7c89230db215b9b8a02754d41cb5a76f70d0be296"}, + {file = "debugpy-1.8.11-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ffc382e4afa4aee367bf413f55ed17bd91b191dcaf979890af239dda435f2a1"}, + {file = "debugpy-1.8.11-cp311-cp311-win32.whl", hash = "sha256:40499a9979c55f72f4eb2fc38695419546b62594f8af194b879d2a18439c97a9"}, + {file = "debugpy-1.8.11-cp311-cp311-win_amd64.whl", hash = "sha256:987bce16e86efa86f747d5151c54e91b3c1e36acc03ce1ddb50f9d09d16ded0e"}, + {file = "debugpy-1.8.11-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:84e511a7545d11683d32cdb8f809ef63fc17ea2a00455cc62d0a4dbb4ed1c308"}, + {file = "debugpy-1.8.11-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce291a5aca4985d82875d6779f61375e959208cdf09fcec40001e65fb0a54768"}, + {file = "debugpy-1.8.11-cp312-cp312-win32.whl", hash = "sha256:28e45b3f827d3bf2592f3cf7ae63282e859f3259db44ed2b129093ca0ac7940b"}, + {file = "debugpy-1.8.11-cp312-cp312-win_amd64.whl", hash = "sha256:44b1b8e6253bceada11f714acf4309ffb98bfa9ac55e4fce14f9e5d4484287a1"}, + {file = "debugpy-1.8.11-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:8988f7163e4381b0da7696f37eec7aca19deb02e500245df68a7159739bbd0d3"}, + {file = "debugpy-1.8.11-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c1f6a173d1140e557347419767d2b14ac1c9cd847e0b4c5444c7f3144697e4e"}, + {file = "debugpy-1.8.11-cp313-cp313-win32.whl", hash = "sha256:bb3b15e25891f38da3ca0740271e63ab9db61f41d4d8541745cfc1824252cb28"}, + {file = "debugpy-1.8.11-cp313-cp313-win_amd64.whl", hash = "sha256:d8768edcbeb34da9e11bcb8b5c2e0958d25218df7a6e56adf415ef262cd7b6d1"}, + {file = "debugpy-1.8.11-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:ad7efe588c8f5cf940f40c3de0cd683cc5b76819446abaa50dc0829a30c094db"}, + {file = "debugpy-1.8.11-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:189058d03a40103a57144752652b3ab08ff02b7595d0ce1f651b9acc3a3a35a0"}, + {file = "debugpy-1.8.11-cp38-cp38-win32.whl", hash = "sha256:32db46ba45849daed7ccf3f2e26f7a386867b077f39b2a974bb5c4c2c3b0a280"}, + {file = "debugpy-1.8.11-cp38-cp38-win_amd64.whl", hash = "sha256:116bf8342062246ca749013df4f6ea106f23bc159305843491f64672a55af2e5"}, + {file = "debugpy-1.8.11-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:654130ca6ad5de73d978057eaf9e582244ff72d4574b3e106fb8d3d2a0d32458"}, + {file = "debugpy-1.8.11-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23dc34c5e03b0212fa3c49a874df2b8b1b8fda95160bd79c01eb3ab51ea8d851"}, + {file = "debugpy-1.8.11-cp39-cp39-win32.whl", hash = "sha256:52d8a3166c9f2815bfae05f386114b0b2d274456980d41f320299a8d9a5615a7"}, + {file = "debugpy-1.8.11-cp39-cp39-win_amd64.whl", hash = "sha256:52c3cf9ecda273a19cc092961ee34eb9ba8687d67ba34cc7b79a521c1c64c4c0"}, + {file = "debugpy-1.8.11-py2.py3-none-any.whl", hash = "sha256:0e22f846f4211383e6a416d04b4c13ed174d24cc5d43f5fd52e7821d0ebc8920"}, + {file = "debugpy-1.8.11.tar.gz", hash = "sha256:6ad2688b69235c43b020e04fecccdf6a96c8943ca9c2fb340b8adc103c655e57"}, +] + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +optional = false +python-versions = ">=3.5" +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] + +[[package]] +name = "exceptiongroup" +version = "1.2.2" +description = "Backport of PEP 654 (exception groups)" +optional = false +python-versions = ">=3.7" +files = [ + {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"}, + {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"}, +] + +[package.extras] +test = ["pytest (>=6)"] + +[[package]] +name = "executing" +version = "2.1.0" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.8" +files = [ + {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, + {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + +[[package]] +name = "frozenlist" +version = "1.5.0" +description = "A list-like structure which implements collections.abc.MutableSequence" +optional = false +python-versions = ">=3.8" +files = [ + {file = "frozenlist-1.5.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:5b6a66c18b5b9dd261ca98dffcb826a525334b2f29e7caa54e182255c5f6a65a"}, + {file = "frozenlist-1.5.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d1b3eb7b05ea246510b43a7e53ed1653e55c2121019a97e60cad7efb881a97bb"}, + {file = "frozenlist-1.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:15538c0cbf0e4fa11d1e3a71f823524b0c46299aed6e10ebb4c2089abd8c3bec"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e79225373c317ff1e35f210dd5f1344ff31066ba8067c307ab60254cd3a78ad5"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9272fa73ca71266702c4c3e2d4a28553ea03418e591e377a03b8e3659d94fa76"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:498524025a5b8ba81695761d78c8dd7382ac0b052f34e66939c42df860b8ff17"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:92b5278ed9d50fe610185ecd23c55d8b307d75ca18e94c0e7de328089ac5dcba"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f3c8c1dacd037df16e85227bac13cca58c30da836c6f936ba1df0c05d046d8d"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f2ac49a9bedb996086057b75bf93538240538c6d9b38e57c82d51f75a73409d2"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:e66cc454f97053b79c2ab09c17fbe3c825ea6b4de20baf1be28919460dd7877f"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:5a3ba5f9a0dfed20337d3e966dc359784c9f96503674c2faf015f7fe8e96798c"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:6321899477db90bdeb9299ac3627a6a53c7399c8cd58d25da094007402b039ab"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:76e4753701248476e6286f2ef492af900ea67d9706a0155335a40ea21bf3b2f5"}, + {file = "frozenlist-1.5.0-cp310-cp310-win32.whl", hash = "sha256:977701c081c0241d0955c9586ffdd9ce44f7a7795df39b9151cd9a6fd0ce4cfb"}, + {file = "frozenlist-1.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:189f03b53e64144f90990d29a27ec4f7997d91ed3d01b51fa39d2dbe77540fd4"}, + {file = "frozenlist-1.5.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:fd74520371c3c4175142d02a976aee0b4cb4a7cc912a60586ffd8d5929979b30"}, + {file = "frozenlist-1.5.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2f3f7a0fbc219fb4455264cae4d9f01ad41ae6ee8524500f381de64ffaa077d5"}, + {file = "frozenlist-1.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f47c9c9028f55a04ac254346e92977bf0f166c483c74b4232bee19a6697e4778"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0996c66760924da6e88922756d99b47512a71cfd45215f3570bf1e0b694c206a"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a2fe128eb4edeabe11896cb6af88fca5346059f6c8d807e3b910069f39157869"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1a8ea951bbb6cacd492e3948b8da8c502a3f814f5d20935aae74b5df2b19cf3d"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:de537c11e4aa01d37db0d403b57bd6f0546e71a82347a97c6a9f0dcc532b3a45"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c2623347b933fcb9095841f1cc5d4ff0b278addd743e0e966cb3d460278840d"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:cee6798eaf8b1416ef6909b06f7dc04b60755206bddc599f52232606e18179d3"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:f5f9da7f5dbc00a604fe74aa02ae7c98bcede8a3b8b9666f9f86fc13993bc71a"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:90646abbc7a5d5c7c19461d2e3eeb76eb0b204919e6ece342feb6032c9325ae9"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:bdac3c7d9b705d253b2ce370fde941836a5f8b3c5c2b8fd70940a3ea3af7f4f2"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:03d33c2ddbc1816237a67f66336616416e2bbb6beb306e5f890f2eb22b959cdf"}, + {file = "frozenlist-1.5.0-cp311-cp311-win32.whl", hash = "sha256:237f6b23ee0f44066219dae14c70ae38a63f0440ce6750f868ee08775073f942"}, + {file = "frozenlist-1.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:0cc974cc93d32c42e7b0f6cf242a6bd941c57c61b618e78b6c0a96cb72788c1d"}, + {file = "frozenlist-1.5.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:31115ba75889723431aa9a4e77d5f398f5cf976eea3bdf61749731f62d4a4a21"}, + {file = "frozenlist-1.5.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7437601c4d89d070eac8323f121fcf25f88674627505334654fd027b091db09d"}, + {file = "frozenlist-1.5.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7948140d9f8ece1745be806f2bfdf390127cf1a763b925c4a805c603df5e697e"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:feeb64bc9bcc6b45c6311c9e9b99406660a9c05ca8a5b30d14a78555088b0b3a"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:683173d371daad49cffb8309779e886e59c2f369430ad28fe715f66d08d4ab1a"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7d57d8f702221405a9d9b40f9da8ac2e4a1a8b5285aac6100f3393675f0a85ee"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:30c72000fbcc35b129cb09956836c7d7abf78ab5416595e4857d1cae8d6251a6"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:000a77d6034fbad9b6bb880f7ec073027908f1b40254b5d6f26210d2dab1240e"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:5d7f5a50342475962eb18b740f3beecc685a15b52c91f7d975257e13e029eca9"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:87f724d055eb4785d9be84e9ebf0f24e392ddfad00b3fe036e43f489fafc9039"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:6e9080bb2fb195a046e5177f10d9d82b8a204c0736a97a153c2466127de87784"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:9b93d7aaa36c966fa42efcaf716e6b3900438632a626fb09c049f6a2f09fc631"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:52ef692a4bc60a6dd57f507429636c2af8b6046db8b31b18dac02cbc8f507f7f"}, + {file = "frozenlist-1.5.0-cp312-cp312-win32.whl", hash = "sha256:29d94c256679247b33a3dc96cce0f93cbc69c23bf75ff715919332fdbb6a32b8"}, + {file = "frozenlist-1.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:8969190d709e7c48ea386db202d708eb94bdb29207a1f269bab1196ce0dcca1f"}, + {file = "frozenlist-1.5.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:7a1a048f9215c90973402e26c01d1cff8a209e1f1b53f72b95c13db61b00f953"}, + {file = "frozenlist-1.5.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:dd47a5181ce5fcb463b5d9e17ecfdb02b678cca31280639255ce9d0e5aa67af0"}, + {file = "frozenlist-1.5.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1431d60b36d15cda188ea222033eec8e0eab488f39a272461f2e6d9e1a8e63c2"}, + {file = "frozenlist-1.5.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6482a5851f5d72767fbd0e507e80737f9c8646ae7fd303def99bfe813f76cf7f"}, + {file = "frozenlist-1.5.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:44c49271a937625619e862baacbd037a7ef86dd1ee215afc298a417ff3270608"}, + {file = "frozenlist-1.5.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:12f78f98c2f1c2429d42e6a485f433722b0061d5c0b0139efa64f396efb5886b"}, + {file = "frozenlist-1.5.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ce3aa154c452d2467487765e3adc730a8c153af77ad84096bc19ce19a2400840"}, + {file = "frozenlist-1.5.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9b7dc0c4338e6b8b091e8faf0db3168a37101943e687f373dce00959583f7439"}, + {file = "frozenlist-1.5.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:45e0896250900b5aa25180f9aec243e84e92ac84bd4a74d9ad4138ef3f5c97de"}, + {file = "frozenlist-1.5.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:561eb1c9579d495fddb6da8959fd2a1fca2c6d060d4113f5844b433fc02f2641"}, + {file = "frozenlist-1.5.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:df6e2f325bfee1f49f81aaac97d2aa757c7646534a06f8f577ce184afe2f0a9e"}, + {file = "frozenlist-1.5.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:140228863501b44b809fb39ec56b5d4071f4d0aa6d216c19cbb08b8c5a7eadb9"}, + {file = "frozenlist-1.5.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:7707a25d6a77f5d27ea7dc7d1fc608aa0a478193823f88511ef5e6b8a48f9d03"}, + {file = "frozenlist-1.5.0-cp313-cp313-win32.whl", hash = "sha256:31a9ac2b38ab9b5a8933b693db4939764ad3f299fcaa931a3e605bc3460e693c"}, + {file = "frozenlist-1.5.0-cp313-cp313-win_amd64.whl", hash = "sha256:11aabdd62b8b9c4b84081a3c246506d1cddd2dd93ff0ad53ede5defec7886b28"}, + {file = "frozenlist-1.5.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:dd94994fc91a6177bfaafd7d9fd951bc8689b0a98168aa26b5f543868548d3ca"}, + {file = "frozenlist-1.5.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2d0da8bbec082bf6bf18345b180958775363588678f64998c2b7609e34719b10"}, + {file = "frozenlist-1.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:73f2e31ea8dd7df61a359b731716018c2be196e5bb3b74ddba107f694fbd7604"}, + {file = "frozenlist-1.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:828afae9f17e6de596825cf4228ff28fbdf6065974e5ac1410cecc22f699d2b3"}, + {file = "frozenlist-1.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1577515d35ed5649d52ab4319db757bb881ce3b2b796d7283e6634d99ace307"}, + {file = "frozenlist-1.5.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2150cc6305a2c2ab33299453e2968611dacb970d2283a14955923062c8d00b10"}, + {file = "frozenlist-1.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a72b7a6e3cd2725eff67cd64c8f13335ee18fc3c7befc05aed043d24c7b9ccb9"}, + {file = "frozenlist-1.5.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c16d2fa63e0800723139137d667e1056bee1a1cf7965153d2d104b62855e9b99"}, + {file = "frozenlist-1.5.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:17dcc32fc7bda7ce5875435003220a457bcfa34ab7924a49a1c19f55b6ee185c"}, + {file = "frozenlist-1.5.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:97160e245ea33d8609cd2b8fd997c850b56db147a304a262abc2b3be021a9171"}, + {file = "frozenlist-1.5.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:f1e6540b7fa044eee0bb5111ada694cf3dc15f2b0347ca125ee9ca984d5e9e6e"}, + {file = "frozenlist-1.5.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:91d6c171862df0a6c61479d9724f22efb6109111017c87567cfeb7b5d1449fdf"}, + {file = "frozenlist-1.5.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c1fac3e2ace2eb1052e9f7c7db480818371134410e1f5c55d65e8f3ac6d1407e"}, + {file = "frozenlist-1.5.0-cp38-cp38-win32.whl", hash = "sha256:b97f7b575ab4a8af9b7bc1d2ef7f29d3afee2226bd03ca3875c16451ad5a7723"}, + {file = "frozenlist-1.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:374ca2dabdccad8e2a76d40b1d037f5bd16824933bf7bcea3e59c891fd4a0923"}, + {file = "frozenlist-1.5.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9bbcdfaf4af7ce002694a4e10a0159d5a8d20056a12b05b45cea944a4953f972"}, + {file = "frozenlist-1.5.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1893f948bf6681733aaccf36c5232c231e3b5166d607c5fa77773611df6dc336"}, + {file = "frozenlist-1.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2b5e23253bb709ef57a8e95e6ae48daa9ac5f265637529e4ce6b003a37b2621f"}, + {file = "frozenlist-1.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f253985bb515ecd89629db13cb58d702035ecd8cfbca7d7a7e29a0e6d39af5f"}, + {file = "frozenlist-1.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:04a5c6babd5e8fb7d3c871dc8b321166b80e41b637c31a995ed844a6139942b6"}, + {file = "frozenlist-1.5.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a9fe0f1c29ba24ba6ff6abf688cb0b7cf1efab6b6aa6adc55441773c252f7411"}, + {file = "frozenlist-1.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:226d72559fa19babe2ccd920273e767c96a49b9d3d38badd7c91a0fdeda8ea08"}, + {file = "frozenlist-1.5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15b731db116ab3aedec558573c1a5eec78822b32292fe4f2f0345b7f697745c2"}, + {file = "frozenlist-1.5.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:366d8f93e3edfe5a918c874702f78faac300209a4d5bf38352b2c1bdc07a766d"}, + {file = "frozenlist-1.5.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:1b96af8c582b94d381a1c1f51ffaedeb77c821c690ea5f01da3d70a487dd0a9b"}, + {file = "frozenlist-1.5.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:c03eff4a41bd4e38415cbed054bbaff4a075b093e2394b6915dca34a40d1e38b"}, + {file = "frozenlist-1.5.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:50cf5e7ee9b98f22bdecbabf3800ae78ddcc26e4a435515fc72d97903e8488e0"}, + {file = "frozenlist-1.5.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:1e76bfbc72353269c44e0bc2cfe171900fbf7f722ad74c9a7b638052afe6a00c"}, + {file = "frozenlist-1.5.0-cp39-cp39-win32.whl", hash = "sha256:666534d15ba8f0fda3f53969117383d5dc021266b3c1a42c9ec4855e4b58b9d3"}, + {file = "frozenlist-1.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:5c28f4b5dbef8a0d8aad0d4de24d1e9e981728628afaf4ea0792f5d0939372f0"}, + {file = "frozenlist-1.5.0-py3-none-any.whl", hash = "sha256:d994863bba198a4a518b467bb971c56e1db3f180a25c6cf7bb1949c267f748c3"}, + {file = "frozenlist-1.5.0.tar.gz", hash = "sha256:81d5af29e61b9c8348e876d442253723928dce6433e0e76cd925cd83f1b4b817"}, +] + +[[package]] +name = "gremlinpython" +version = "3.7.3" +description = "Gremlin-Python for Apache TinkerPop" +optional = false +python-versions = ">=3.9" +files = [ + {file = "gremlinpython-3.7.3-py3-none-any.whl", hash = "sha256:56e0da437be3336971761dfeaab8532f0c583aaab760d8783c4a0bb389cfd341"}, + {file = "gremlinpython-3.7.3.tar.gz", hash = "sha256:c8144bd1099fdcf072deff9a15e260efa9a1a065220495f799f6fc1ff6b83ef4"}, +] + +[package.dependencies] +aenum = ">=1.4.5,<4.0.0" +aiohttp = ">=3.8.0,<4.0.0" +async-timeout = ">=4.0.3,<5.0.0" +isodate = ">=0.6.0,<1.0.0" +nest-asyncio = "*" + +[package.extras] +kerberos = ["kerberos (>=1.3.0,<2.0.0)"] +ujson = ["ujson (>=2.0.0)"] + +[[package]] +name = "idna" +version = "3.10" +description = "Internationalized Domain Names in Applications (IDNA)" +optional = false +python-versions = ">=3.6" +files = [ + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, +] + +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + +[[package]] +name = "ipykernel" +version = "6.29.5" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, + {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=24" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.31.0" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.10" +files = [ + {file = "ipython-8.31.0-py3-none-any.whl", hash = "sha256:46ec58f8d3d076a61d128fe517a51eb730e3aaf0c184ea8c17d16e366660c6a6"}, + {file = "ipython-8.31.0.tar.gz", hash = "sha256:b6a2274606bec6166405ff05e54932ed6e5cfecaca1fc05f2cacde7bb074d70b"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\" and sys_platform != \"emscripten\""} +prompt_toolkit = ">=3.0.41,<3.1.0" +pygments = ">=2.4.0" +stack_data = "*" +traitlets = ">=5.13.0" +typing_extensions = {version = ">=4.6", markers = "python_version < \"3.12\""} + +[package.extras] +all = ["ipython[black,doc,kernel,matplotlib,nbconvert,nbformat,notebook,parallel,qtconsole]", "ipython[test,test-extra]"] +black = ["black"] +doc = ["docrepr", "exceptiongroup", "intersphinx_registry", "ipykernel", "ipython[test]", "matplotlib", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "sphinxcontrib-jquery", "tomli", "typing_extensions"] +kernel = ["ipykernel"] +matplotlib = ["matplotlib"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["packaging", "pickleshare", "pytest", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "ipython[test]", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.23)", "pandas", "trio"] + +[[package]] +name = "isodate" +version = "0.7.2" +description = "An ISO 8601 date/time/duration parser and formatter" +optional = false +python-versions = ">=3.7" +files = [ + {file = "isodate-0.7.2-py3-none-any.whl", hash = "sha256:28009937d8031054830160fce6d409ed342816b543597cece116d966c6d99e15"}, + {file = "isodate-0.7.2.tar.gz", hash = "sha256:4cd1aa0f43ca76f4a6c6c0292a85f40b35ec2e43e315b59f06e6d32171a953e6"}, +] + +[[package]] +name = "jedi" +version = "0.19.2" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +files = [ + {file = "jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9"}, + {file = "jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0"}, +] + +[package.dependencies] +parso = ">=0.8.4,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<9.0.0)"] + +[[package]] +name = "jupyter-client" +version = "8.6.3" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, +] + +[package.dependencies] +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-core" +version = "5.7.2" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, + {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "multidict" +version = "6.1.0" +description = "multidict implementation" +optional = false +python-versions = ">=3.8" +files = [ + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + +[[package]] +name = "neo4j" +version = "5.27.0" +description = "Neo4j Bolt driver for Python" +optional = false +python-versions = ">=3.7" +files = [ + {file = "neo4j-5.27.0-py3-none-any.whl", hash = "sha256:929c14b9e5341267324eca170b39d1798b032bffacc26a0529eacaf678ae483f"}, + {file = "neo4j-5.27.0.tar.gz", hash = "sha256:f82ee807cd15b178898d83f41a66372e11719a25dd487fd7bea48fd4b7323765"}, +] + +[package.dependencies] +pytz = "*" + +[package.extras] +numpy = ["numpy (>=1.7.0,<3.0.0)"] +pandas = ["numpy (>=1.7.0,<3.0.0)", "pandas (>=1.1.0,<3.0.0)"] +pyarrow = ["pyarrow (>=1.0.0)"] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +files = [ + {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, + {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, +] + +[[package]] +name = "networkx" +version = "3.4.2" +description = "Python package for creating and manipulating graphs and networks" +optional = false +python-versions = ">=3.10" +files = [ + {file = "networkx-3.4.2-py3-none-any.whl", hash = "sha256:df5d4365b724cf81b8c6a7312509d0c22386097011ad1abe274afd5e9d3bbc5f"}, + {file = "networkx-3.4.2.tar.gz", hash = "sha256:307c3669428c5362aab27c8a1260aa8f47c4e91d3891f48be0141738d8d053e1"}, +] + +[package.extras] +default = ["matplotlib (>=3.7)", "numpy (>=1.24)", "pandas (>=2.0)", "scipy (>=1.10,!=1.11.0,!=1.11.1)"] +developer = ["changelist (==0.5)", "mypy (>=1.1)", "pre-commit (>=3.2)", "rtoml"] +doc = ["intersphinx-registry", "myst-nb (>=1.1)", "numpydoc (>=1.8.0)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.15)", "sphinx (>=7.3)", "sphinx-gallery (>=0.16)", "texext (>=0.6.7)"] +example = ["cairocffi (>=1.7)", "contextily (>=1.6)", "igraph (>=0.11)", "momepy (>=0.7.2)", "osmnx (>=1.9)", "scikit-learn (>=1.5)", "seaborn (>=0.13)"] +extra = ["lxml (>=4.6)", "pydot (>=3.0.1)", "pygraphviz (>=1.14)", "sympy (>=1.10)"] +test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"] + +[[package]] +name = "packaging" +version = "24.2" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "packaging-24.2-py3-none-any.whl", hash = "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759"}, + {file = "packaging-24.2.tar.gz", hash = "sha256:c228a6dc5e932d346bc5739379109d49e8853dd8223571c7c5b55260edc0b97f"}, +] + +[[package]] +name = "parso" +version = "0.8.4" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +files = [ + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, +] + +[package.extras] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["docopt", "pytest"] + +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "platformdirs" +version = "4.3.6" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." +optional = false +python-versions = ">=3.8" +files = [ + {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, + {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, +] + +[package.extras] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.48" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, + {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "propcache" +version = "0.2.1" +description = "Accelerated property cache" +optional = false +python-versions = ">=3.9" +files = [ + {file = "propcache-0.2.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:6b3f39a85d671436ee3d12c017f8fdea38509e4f25b28eb25877293c98c243f6"}, + {file = "propcache-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:39d51fbe4285d5db5d92a929e3e21536ea3dd43732c5b177c7ef03f918dff9f2"}, + {file = "propcache-0.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6445804cf4ec763dc70de65a3b0d9954e868609e83850a47ca4f0cb64bd79fea"}, + {file = "propcache-0.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9479aa06a793c5aeba49ce5c5692ffb51fcd9a7016e017d555d5e2b0045d212"}, + {file = "propcache-0.2.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d9631c5e8b5b3a0fda99cb0d29c18133bca1e18aea9effe55adb3da1adef80d3"}, + {file = "propcache-0.2.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3156628250f46a0895f1f36e1d4fbe062a1af8718ec3ebeb746f1d23f0c5dc4d"}, + {file = "propcache-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b6fb63ae352e13748289f04f37868099e69dba4c2b3e271c46061e82c745634"}, + {file = "propcache-0.2.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:887d9b0a65404929641a9fabb6452b07fe4572b269d901d622d8a34a4e9043b2"}, + {file = "propcache-0.2.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:a96dc1fa45bd8c407a0af03b2d5218392729e1822b0c32e62c5bf7eeb5fb3958"}, + {file = "propcache-0.2.1-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:a7e65eb5c003a303b94aa2c3852ef130230ec79e349632d030e9571b87c4698c"}, + {file = "propcache-0.2.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:999779addc413181912e984b942fbcc951be1f5b3663cd80b2687758f434c583"}, + {file = "propcache-0.2.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:19a0f89a7bb9d8048d9c4370c9c543c396e894c76be5525f5e1ad287f1750ddf"}, + {file = "propcache-0.2.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:1ac2f5fe02fa75f56e1ad473f1175e11f475606ec9bd0be2e78e4734ad575034"}, + {file = "propcache-0.2.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:574faa3b79e8ebac7cb1d7930f51184ba1ccf69adfdec53a12f319a06030a68b"}, + {file = "propcache-0.2.1-cp310-cp310-win32.whl", hash = "sha256:03ff9d3f665769b2a85e6157ac8b439644f2d7fd17615a82fa55739bc97863f4"}, + {file = "propcache-0.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:2d3af2e79991102678f53e0dbf4c35de99b6b8b58f29a27ca0325816364caaba"}, + {file = "propcache-0.2.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:1ffc3cca89bb438fb9c95c13fc874012f7b9466b89328c3c8b1aa93cdcfadd16"}, + {file = "propcache-0.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f174bbd484294ed9fdf09437f889f95807e5f229d5d93588d34e92106fbf6717"}, + {file = "propcache-0.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:70693319e0b8fd35dd863e3e29513875eb15c51945bf32519ef52927ca883bc3"}, + {file = "propcache-0.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b480c6a4e1138e1aa137c0079b9b6305ec6dcc1098a8ca5196283e8a49df95a9"}, + {file = "propcache-0.2.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d27b84d5880f6d8aa9ae3edb253c59d9f6642ffbb2c889b78b60361eed449787"}, + {file = "propcache-0.2.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:857112b22acd417c40fa4595db2fe28ab900c8c5fe4670c7989b1c0230955465"}, + {file = "propcache-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cf6c4150f8c0e32d241436526f3c3f9cbd34429492abddbada2ffcff506c51af"}, + {file = "propcache-0.2.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:66d4cfda1d8ed687daa4bc0274fcfd5267873db9a5bc0418c2da19273040eeb7"}, + {file = "propcache-0.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c2f992c07c0fca81655066705beae35fc95a2fa7366467366db627d9f2ee097f"}, + {file = "propcache-0.2.1-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:4a571d97dbe66ef38e472703067021b1467025ec85707d57e78711c085984e54"}, + {file = "propcache-0.2.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:bb6178c241278d5fe853b3de743087be7f5f4c6f7d6d22a3b524d323eecec505"}, + {file = "propcache-0.2.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:ad1af54a62ffe39cf34db1aa6ed1a1873bd548f6401db39d8e7cd060b9211f82"}, + {file = "propcache-0.2.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:e7048abd75fe40712005bcfc06bb44b9dfcd8e101dda2ecf2f5aa46115ad07ca"}, + {file = "propcache-0.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:160291c60081f23ee43d44b08a7e5fb76681221a8e10b3139618c5a9a291b84e"}, + {file = "propcache-0.2.1-cp311-cp311-win32.whl", hash = "sha256:819ce3b883b7576ca28da3861c7e1a88afd08cc8c96908e08a3f4dd64a228034"}, + {file = "propcache-0.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:edc9fc7051e3350643ad929df55c451899bb9ae6d24998a949d2e4c87fb596d3"}, + {file = "propcache-0.2.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:081a430aa8d5e8876c6909b67bd2d937bfd531b0382d3fdedb82612c618bc41a"}, + {file = "propcache-0.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:d2ccec9ac47cf4e04897619c0e0c1a48c54a71bdf045117d3a26f80d38ab1fb0"}, + {file = "propcache-0.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:14d86fe14b7e04fa306e0c43cdbeebe6b2c2156a0c9ce56b815faacc193e320d"}, + {file = "propcache-0.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:049324ee97bb67285b49632132db351b41e77833678432be52bdd0289c0e05e4"}, + {file = "propcache-0.2.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1cd9a1d071158de1cc1c71a26014dcdfa7dd3d5f4f88c298c7f90ad6f27bb46d"}, + {file = "propcache-0.2.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98110aa363f1bb4c073e8dcfaefd3a5cea0f0834c2aab23dda657e4dab2f53b5"}, + {file = "propcache-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:647894f5ae99c4cf6bb82a1bb3a796f6e06af3caa3d32e26d2350d0e3e3faf24"}, + {file = "propcache-0.2.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bfd3223c15bebe26518d58ccf9a39b93948d3dcb3e57a20480dfdd315356baff"}, + {file = "propcache-0.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d71264a80f3fcf512eb4f18f59423fe82d6e346ee97b90625f283df56aee103f"}, + {file = "propcache-0.2.1-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:e73091191e4280403bde6c9a52a6999d69cdfde498f1fdf629105247599b57ec"}, + {file = "propcache-0.2.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:3935bfa5fede35fb202c4b569bb9c042f337ca4ff7bd540a0aa5e37131659348"}, + {file = "propcache-0.2.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:f508b0491767bb1f2b87fdfacaba5f7eddc2f867740ec69ece6d1946d29029a6"}, + {file = "propcache-0.2.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:1672137af7c46662a1c2be1e8dc78cb6d224319aaa40271c9257d886be4363a6"}, + {file = "propcache-0.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b74c261802d3d2b85c9df2dfb2fa81b6f90deeef63c2db9f0e029a3cac50b518"}, + {file = "propcache-0.2.1-cp312-cp312-win32.whl", hash = "sha256:d09c333d36c1409d56a9d29b3a1b800a42c76a57a5a8907eacdbce3f18768246"}, + {file = "propcache-0.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:c214999039d4f2a5b2073ac506bba279945233da8c786e490d411dfc30f855c1"}, + {file = "propcache-0.2.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:aca405706e0b0a44cc6bfd41fbe89919a6a56999157f6de7e182a990c36e37bc"}, + {file = "propcache-0.2.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:12d1083f001ace206fe34b6bdc2cb94be66d57a850866f0b908972f90996b3e9"}, + {file = "propcache-0.2.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d93f3307ad32a27bda2e88ec81134b823c240aa3abb55821a8da553eed8d9439"}, + {file = "propcache-0.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ba278acf14471d36316159c94a802933d10b6a1e117b8554fe0d0d9b75c9d536"}, + {file = "propcache-0.2.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4e6281aedfca15301c41f74d7005e6e3f4ca143584ba696ac69df4f02f40d629"}, + {file = "propcache-0.2.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5b750a8e5a1262434fb1517ddf64b5de58327f1adc3524a5e44c2ca43305eb0b"}, + {file = "propcache-0.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf72af5e0fb40e9babf594308911436c8efde3cb5e75b6f206c34ad18be5c052"}, + {file = "propcache-0.2.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b2d0a12018b04f4cb820781ec0dffb5f7c7c1d2a5cd22bff7fb055a2cb19ebce"}, + {file = "propcache-0.2.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:e800776a79a5aabdb17dcc2346a7d66d0777e942e4cd251defeb084762ecd17d"}, + {file = "propcache-0.2.1-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:4160d9283bd382fa6c0c2b5e017acc95bc183570cd70968b9202ad6d8fc48dce"}, + {file = "propcache-0.2.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:30b43e74f1359353341a7adb783c8f1b1c676367b011709f466f42fda2045e95"}, + {file = "propcache-0.2.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:58791550b27d5488b1bb52bc96328456095d96206a250d28d874fafe11b3dfaf"}, + {file = "propcache-0.2.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:0f022d381747f0dfe27e99d928e31bc51a18b65bb9e481ae0af1380a6725dd1f"}, + {file = "propcache-0.2.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:297878dc9d0a334358f9b608b56d02e72899f3b8499fc6044133f0d319e2ec30"}, + {file = "propcache-0.2.1-cp313-cp313-win32.whl", hash = "sha256:ddfab44e4489bd79bda09d84c430677fc7f0a4939a73d2bba3073036f487a0a6"}, + {file = "propcache-0.2.1-cp313-cp313-win_amd64.whl", hash = "sha256:556fc6c10989f19a179e4321e5d678db8eb2924131e64652a51fe83e4c3db0e1"}, + {file = "propcache-0.2.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:6a9a8c34fb7bb609419a211e59da8887eeca40d300b5ea8e56af98f6fbbb1541"}, + {file = "propcache-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ae1aa1cd222c6d205853b3013c69cd04515f9d6ab6de4b0603e2e1c33221303e"}, + {file = "propcache-0.2.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:accb6150ce61c9c4b7738d45550806aa2b71c7668c6942f17b0ac182b6142fd4"}, + {file = "propcache-0.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5eee736daafa7af6d0a2dc15cc75e05c64f37fc37bafef2e00d77c14171c2097"}, + {file = "propcache-0.2.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7a31fc1e1bd362874863fdeed71aed92d348f5336fd84f2197ba40c59f061bd"}, + {file = "propcache-0.2.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cba4cfa1052819d16699e1d55d18c92b6e094d4517c41dd231a8b9f87b6fa681"}, + {file = "propcache-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f089118d584e859c62b3da0892b88a83d611c2033ac410e929cb6754eec0ed16"}, + {file = "propcache-0.2.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:781e65134efaf88feb447e8c97a51772aa75e48b794352f94cb7ea717dedda0d"}, + {file = "propcache-0.2.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:31f5af773530fd3c658b32b6bdc2d0838543de70eb9a2156c03e410f7b0d3aae"}, + {file = "propcache-0.2.1-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:a7a078f5d37bee6690959c813977da5291b24286e7b962e62a94cec31aa5188b"}, + {file = "propcache-0.2.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:cea7daf9fc7ae6687cf1e2c049752f19f146fdc37c2cc376e7d0032cf4f25347"}, + {file = "propcache-0.2.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:8b3489ff1ed1e8315674d0775dc7d2195fb13ca17b3808721b54dbe9fd020faf"}, + {file = "propcache-0.2.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9403db39be1393618dd80c746cb22ccda168efce239c73af13c3763ef56ffc04"}, + {file = "propcache-0.2.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5d97151bc92d2b2578ff7ce779cdb9174337390a535953cbb9452fb65164c587"}, + {file = "propcache-0.2.1-cp39-cp39-win32.whl", hash = "sha256:9caac6b54914bdf41bcc91e7eb9147d331d29235a7c967c150ef5df6464fd1bb"}, + {file = "propcache-0.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:92fc4500fcb33899b05ba73276dfb684a20d31caa567b7cb5252d48f896a91b1"}, + {file = "propcache-0.2.1-py3-none-any.whl", hash = "sha256:52277518d6aae65536e9cea52d4e7fd2f7a66f4aa2d30ed3f2fcea620ace3c54"}, + {file = "propcache-0.2.1.tar.gz", hash = "sha256:3f77ce728b19cb537714499928fe800c3dda29e8d9428778fc7c186da4c09a64"}, +] + +[[package]] +name = "psutil" +version = "6.1.1" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "psutil-6.1.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:9ccc4316f24409159897799b83004cb1e24f9819b0dcf9c0b68bdcb6cefee6a8"}, + {file = "psutil-6.1.1-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:ca9609c77ea3b8481ab005da74ed894035936223422dc591d6772b147421f777"}, + {file = "psutil-6.1.1-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:8df0178ba8a9e5bc84fed9cfa61d54601b371fbec5c8eebad27575f1e105c0d4"}, + {file = "psutil-6.1.1-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:1924e659d6c19c647e763e78670a05dbb7feaf44a0e9c94bf9e14dfc6ba50468"}, + {file = "psutil-6.1.1-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:018aeae2af92d943fdf1da6b58665124897cfc94faa2ca92098838f83e1b1bca"}, + {file = "psutil-6.1.1-cp27-none-win32.whl", hash = "sha256:6d4281f5bbca041e2292be3380ec56a9413b790579b8e593b1784499d0005dac"}, + {file = "psutil-6.1.1-cp27-none-win_amd64.whl", hash = "sha256:c777eb75bb33c47377c9af68f30e9f11bc78e0f07fbf907be4a5d70b2fe5f030"}, + {file = "psutil-6.1.1-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:fc0ed7fe2231a444fc219b9c42d0376e0a9a1a72f16c5cfa0f68d19f1a0663e8"}, + {file = "psutil-6.1.1-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:0bdd4eab935276290ad3cb718e9809412895ca6b5b334f5a9111ee6d9aff9377"}, + {file = "psutil-6.1.1-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b6e06c20c05fe95a3d7302d74e7097756d4ba1247975ad6905441ae1b5b66003"}, + {file = "psutil-6.1.1-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97f7cb9921fbec4904f522d972f0c0e1f4fabbdd4e0287813b21215074a0f160"}, + {file = "psutil-6.1.1-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:33431e84fee02bc84ea36d9e2c4a6d395d479c9dd9bba2376c1f6ee8f3a4e0b3"}, + {file = "psutil-6.1.1-cp36-cp36m-win32.whl", hash = "sha256:384636b1a64b47814437d1173be1427a7c83681b17a450bfc309a1953e329603"}, + {file = "psutil-6.1.1-cp36-cp36m-win_amd64.whl", hash = "sha256:8be07491f6ebe1a693f17d4f11e69d0dc1811fa082736500f649f79df7735303"}, + {file = "psutil-6.1.1-cp37-abi3-win32.whl", hash = "sha256:eaa912e0b11848c4d9279a93d7e2783df352b082f40111e078388701fd479e53"}, + {file = "psutil-6.1.1-cp37-abi3-win_amd64.whl", hash = "sha256:f35cfccb065fff93529d2afb4a2e89e363fe63ca1e4a5da22b603a85833c2649"}, + {file = "psutil-6.1.1.tar.gz", hash = "sha256:cf8496728c18f2d0b45198f06895be52f36611711746b7f30c464b422b50e2f5"}, +] + +[package.extras] +dev = ["abi3audit", "black", "check-manifest", "coverage", "packaging", "pylint", "pyperf", "pypinfo", "pytest-cov", "requests", "rstcheck", "ruff", "sphinx", "sphinx_rtd_theme", "toml-sort", "twine", "virtualenv", "vulture", "wheel"] +test = ["pytest", "pytest-xdist", "setuptools"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +files = [ + {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, + {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "pycparser" +version = "2.22" +description = "C parser in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, +] + +[[package]] +name = "pygments" +version = "2.19.0" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pygments-2.19.0-py3-none-any.whl", hash = "sha256:4755e6e64d22161d5b61432c0600c923c5927214e7c956e31c23923c89251a9b"}, + {file = "pygments-2.19.0.tar.gz", hash = "sha256:afc4146269910d4bdfabcd27c24923137a74d562a23a320a41a55ad303e19783"}, +] + +[package.extras] +windows-terminal = ["colorama (>=0.4.6)"] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, + {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "pytz" +version = "2024.2" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ + {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, + {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, +] + +[[package]] +name = "pywin32" +version = "308" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ + {file = "pywin32-308-cp310-cp310-win32.whl", hash = "sha256:796ff4426437896550d2981b9c2ac0ffd75238ad9ea2d3bfa67a1abd546d262e"}, + {file = "pywin32-308-cp310-cp310-win_amd64.whl", hash = "sha256:4fc888c59b3c0bef905ce7eb7e2106a07712015ea1c8234b703a088d46110e8e"}, + {file = "pywin32-308-cp310-cp310-win_arm64.whl", hash = "sha256:a5ab5381813b40f264fa3495b98af850098f814a25a63589a8e9eb12560f450c"}, + {file = "pywin32-308-cp311-cp311-win32.whl", hash = "sha256:5d8c8015b24a7d6855b1550d8e660d8daa09983c80e5daf89a273e5c6fb5095a"}, + {file = "pywin32-308-cp311-cp311-win_amd64.whl", hash = "sha256:575621b90f0dc2695fec346b2d6302faebd4f0f45c05ea29404cefe35d89442b"}, + {file = "pywin32-308-cp311-cp311-win_arm64.whl", hash = "sha256:100a5442b7332070983c4cd03f2e906a5648a5104b8a7f50175f7906efd16bb6"}, + {file = "pywin32-308-cp312-cp312-win32.whl", hash = "sha256:587f3e19696f4bf96fde9d8a57cec74a57021ad5f204c9e627e15c33ff568897"}, + {file = "pywin32-308-cp312-cp312-win_amd64.whl", hash = "sha256:00b3e11ef09ede56c6a43c71f2d31857cf7c54b0ab6e78ac659497abd2834f47"}, + {file = "pywin32-308-cp312-cp312-win_arm64.whl", hash = "sha256:9b4de86c8d909aed15b7011182c8cab38c8850de36e6afb1f0db22b8959e3091"}, + {file = "pywin32-308-cp313-cp313-win32.whl", hash = "sha256:1c44539a37a5b7b21d02ab34e6a4d314e0788f1690d65b48e9b0b89f31abbbed"}, + {file = "pywin32-308-cp313-cp313-win_amd64.whl", hash = "sha256:fd380990e792eaf6827fcb7e187b2b4b1cede0585e3d0c9e84201ec27b9905e4"}, + {file = "pywin32-308-cp313-cp313-win_arm64.whl", hash = "sha256:ef313c46d4c18dfb82a2431e3051ac8f112ccee1a34f29c263c583c568db63cd"}, + {file = "pywin32-308-cp37-cp37m-win32.whl", hash = "sha256:1f696ab352a2ddd63bd07430080dd598e6369152ea13a25ebcdd2f503a38f1ff"}, + {file = "pywin32-308-cp37-cp37m-win_amd64.whl", hash = "sha256:13dcb914ed4347019fbec6697a01a0aec61019c1046c2b905410d197856326a6"}, + {file = "pywin32-308-cp38-cp38-win32.whl", hash = "sha256:5794e764ebcabf4ff08c555b31bd348c9025929371763b2183172ff4708152f0"}, + {file = "pywin32-308-cp38-cp38-win_amd64.whl", hash = "sha256:3b92622e29d651c6b783e368ba7d6722b1634b8e70bd376fd7610fe1992e19de"}, + {file = "pywin32-308-cp39-cp39-win32.whl", hash = "sha256:7873ca4dc60ab3287919881a7d4f88baee4a6e639aa6962de25a98ba6b193341"}, + {file = "pywin32-308-cp39-cp39-win_amd64.whl", hash = "sha256:71b3322d949b4cc20776436a9c9ba0eeedcbc9c650daa536df63f0ff111bb920"}, +] + +[[package]] +name = "pyzmq" +version = "26.2.0" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea"}, + {file = "pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6"}, + {file = "pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b"}, + {file = "pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e"}, + {file = "pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0"}, + {file = "pyzmq-26.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3b55a4229ce5da9497dd0452b914556ae58e96a4381bb6f59f1305dfd7e53fc8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cb3a6460cdea8fe8194a76de8895707e61ded10ad0be97188cc8463ffa7e3a8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ab5cad923cc95c87bffee098a27856c859bd5d0af31bd346035aa816b081fe1"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ed69074a610fad1c2fda66180e7b2edd4d31c53f2d1872bc2d1211563904cd9"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cccba051221b916a4f5e538997c45d7d136a5646442b1231b916d0164067ea27"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0eaa83fc4c1e271c24eaf8fb083cbccef8fde77ec8cd45f3c35a9a123e6da097"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9edda2df81daa129b25a39b86cb57dfdfe16f7ec15b42b19bfac503360d27a93"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win32.whl", hash = "sha256:ea0eb6af8a17fa272f7b98d7bebfab7836a0d62738e16ba380f440fceca2d951"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:4ff9dc6bc1664bb9eec25cd17506ef6672d506115095411e237d571e92a58231"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2eb7735ee73ca1b0d71e0e67c3739c689067f055c764f73aac4cc8ecf958ee3f"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a534f43bc738181aa7cbbaf48e3eca62c76453a40a746ab95d4b27b1111a7d2"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:aedd5dd8692635813368e558a05266b995d3d020b23e49581ddd5bbe197a8ab6"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8be4700cd8bb02cc454f630dcdf7cfa99de96788b80c51b60fe2fe1dac480289"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fcc03fa4997c447dce58264e93b5aa2d57714fbe0f06c07b7785ae131512732"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:402b190912935d3db15b03e8f7485812db350d271b284ded2b80d2e5704be780"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8685fa9c25ff00f550c1fec650430c4b71e4e48e8d852f7ddcf2e48308038640"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:76589c020680778f06b7e0b193f4b6dd66d470234a16e1df90329f5e14a171cd"}, + {file = "pyzmq-26.2.0-cp38-cp38-win32.whl", hash = "sha256:8423c1877d72c041f2c263b1ec6e34360448decfb323fa8b94e85883043ef988"}, + {file = "pyzmq-26.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:76589f2cd6b77b5bdea4fca5992dc1c23389d68b18ccc26a53680ba2dc80ff2f"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b1d464cb8d72bfc1a3adc53305a63a8e0cac6bc8c5a07e8ca190ab8d3faa43c2"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4da04c48873a6abdd71811c5e163bd656ee1b957971db7f35140a2d573f6949c"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d049df610ac811dcffdc147153b414147428567fbbc8be43bb8885f04db39d98"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c811cfcd6a9bf680236c40c6f617187515269ab2912f3d7e8c0174898e2519db"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6835dd60355593de10350394242b5757fbbd88b25287314316f266e24c61d073"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc6bee759a6bddea5db78d7dcd609397449cb2d2d6587f48f3ca613b19410cfc"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c530e1eecd036ecc83c3407f77bb86feb79916d4a33d11394b8234f3bd35b940"}, + {file = "pyzmq-26.2.0-cp39-cp39-win32.whl", hash = "sha256:367b4f689786fca726ef7a6c5ba606958b145b9340a5e4808132cc65759abd44"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e6fa2e3e683f34aea77de8112f6483803c96a44fd726d7358b9888ae5bb394ec"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:7445be39143a8aa4faec43b076e06944b8f9d0701b669df4af200531b21e40bb"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2ea4ad4e6a12e454de05f2949d4beddb52460f3de7c8b9d5c46fbb7d7222e02c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fc4f7a173a5609631bb0c42c23d12c49df3966f89f496a51d3eb0ec81f4519d6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:878206a45202247781472a2d99df12a176fef806ca175799e1c6ad263510d57c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17c412bad2eb9468e876f556eb4ee910e62d721d2c7a53c7fa31e643d35352e6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0d987a3ae5a71c6226b203cfd298720e0086c7fe7c74f35fa8edddfbd6597eed"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:39887ac397ff35b7b775db7201095fc6310a35fdbae85bac4523f7eb3b840e20"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fdb5b3e311d4d4b0eb8b3e8b4d1b0a512713ad7e6a68791d0923d1aec433d919"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:226af7dcb51fdb0109f0016449b357e182ea0ceb6b47dfb5999d569e5db161d5"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bed0e799e6120b9c32756203fb9dfe8ca2fb8467fed830c34c877e25638c3fc"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:29c7947c594e105cb9e6c466bace8532dc1ca02d498684128b339799f5248277"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cdeabcff45d1c219636ee2e54d852262e5c2e085d6cb476d938aee8d921356b3"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35cffef589bcdc587d06f9149f8d5e9e8859920a071df5a2671de2213bef592a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18c8dc3b7468d8b4bdf60ce9d7141897da103c7a4690157b32b60acb45e333e6"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7133d0a1677aec369d67dd78520d3fa96dd7f3dcec99d66c1762870e5ea1a50a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a96179a24b14fa6428cbfc08641c779a53f8fcec43644030328f44034c7f1f4"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4f78c88905461a9203eac9faac157a2a0dbba84a0fd09fd29315db27be40af9f"}, + {file = "pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "six" +version = "1.17.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274"}, + {file = "six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81"}, +] + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "tornado" +version = "6.4.2" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">=3.8" +files = [ + {file = "tornado-6.4.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e828cce1123e9e44ae2a50a9de3055497ab1d0aeb440c5ac23064d9e44880da1"}, + {file = "tornado-6.4.2-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:072ce12ada169c5b00b7d92a99ba089447ccc993ea2143c9ede887e0937aa803"}, + {file = "tornado-6.4.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a017d239bd1bb0919f72af256a970624241f070496635784d9bf0db640d3fec"}, + {file = "tornado-6.4.2-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c36e62ce8f63409301537222faffcef7dfc5284f27eec227389f2ad11b09d946"}, + {file = "tornado-6.4.2-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bca9eb02196e789c9cb5c3c7c0f04fb447dc2adffd95265b2c7223a8a615ccbf"}, + {file = "tornado-6.4.2-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:304463bd0772442ff4d0f5149c6f1c2135a1fae045adf070821c6cdc76980634"}, + {file = "tornado-6.4.2-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:c82c46813ba483a385ab2a99caeaedf92585a1f90defb5693351fa7e4ea0bf73"}, + {file = "tornado-6.4.2-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:932d195ca9015956fa502c6b56af9eb06106140d844a335590c1ec7f5277d10c"}, + {file = "tornado-6.4.2-cp38-abi3-win32.whl", hash = "sha256:2876cef82e6c5978fde1e0d5b1f919d756968d5b4282418f3146b79b58556482"}, + {file = "tornado-6.4.2-cp38-abi3-win_amd64.whl", hash = "sha256:908b71bf3ff37d81073356a5fadcc660eb10c1476ee6e2725588626ce7e5ca38"}, + {file = "tornado-6.4.2.tar.gz", hash = "sha256:92bad5b4746e9879fd7bf1eb21dce4e3fc5128d71601f80005afa39237ad620b"}, +] + +[[package]] +name = "traitlets" +version = "5.14.3" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +files = [ + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "typing-extensions" +version = "4.12.2" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, +] + +[[package]] +name = "wcwidth" +version = "0.2.13" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +files = [ + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, +] + +[[package]] +name = "yarl" +version = "1.18.3" +description = "Yet another URL library" +optional = false +python-versions = ">=3.9" +files = [ + {file = "yarl-1.18.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7df647e8edd71f000a5208fe6ff8c382a1de8edfbccdbbfe649d263de07d8c34"}, + {file = "yarl-1.18.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c69697d3adff5aa4f874b19c0e4ed65180ceed6318ec856ebc423aa5850d84f7"}, + {file = "yarl-1.18.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:602d98f2c2d929f8e697ed274fbadc09902c4025c5a9963bf4e9edfc3ab6f7ed"}, + {file = "yarl-1.18.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c654d5207c78e0bd6d749f6dae1dcbbfde3403ad3a4b11f3c5544d9906969dde"}, + {file = "yarl-1.18.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5094d9206c64181d0f6e76ebd8fb2f8fe274950a63890ee9e0ebfd58bf9d787b"}, + {file = "yarl-1.18.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:35098b24e0327fc4ebdc8ffe336cee0a87a700c24ffed13161af80124b7dc8e5"}, + {file = "yarl-1.18.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3236da9272872443f81fedc389bace88408f64f89f75d1bdb2256069a8730ccc"}, + {file = "yarl-1.18.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e2c08cc9b16f4f4bc522771d96734c7901e7ebef70c6c5c35dd0f10845270bcd"}, + {file = "yarl-1.18.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:80316a8bd5109320d38eef8833ccf5f89608c9107d02d2a7f985f98ed6876990"}, + {file = "yarl-1.18.3-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:c1e1cc06da1491e6734f0ea1e6294ce00792193c463350626571c287c9a704db"}, + {file = "yarl-1.18.3-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:fea09ca13323376a2fdfb353a5fa2e59f90cd18d7ca4eaa1fd31f0a8b4f91e62"}, + {file = "yarl-1.18.3-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:e3b9fd71836999aad54084906f8663dffcd2a7fb5cdafd6c37713b2e72be1760"}, + {file = "yarl-1.18.3-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:757e81cae69244257d125ff31663249b3013b5dc0a8520d73694aed497fb195b"}, + {file = "yarl-1.18.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b1771de9944d875f1b98a745bc547e684b863abf8f8287da8466cf470ef52690"}, + {file = "yarl-1.18.3-cp310-cp310-win32.whl", hash = "sha256:8874027a53e3aea659a6d62751800cf6e63314c160fd607489ba5c2edd753cf6"}, + {file = "yarl-1.18.3-cp310-cp310-win_amd64.whl", hash = "sha256:93b2e109287f93db79210f86deb6b9bbb81ac32fc97236b16f7433db7fc437d8"}, + {file = "yarl-1.18.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8503ad47387b8ebd39cbbbdf0bf113e17330ffd339ba1144074da24c545f0069"}, + {file = "yarl-1.18.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:02ddb6756f8f4517a2d5e99d8b2f272488e18dd0bfbc802f31c16c6c20f22193"}, + {file = "yarl-1.18.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:67a283dd2882ac98cc6318384f565bffc751ab564605959df4752d42483ad889"}, + {file = "yarl-1.18.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d980e0325b6eddc81331d3f4551e2a333999fb176fd153e075c6d1c2530aa8a8"}, + {file = "yarl-1.18.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b643562c12680b01e17239be267bc306bbc6aac1f34f6444d1bded0c5ce438ca"}, + {file = "yarl-1.18.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c017a3b6df3a1bd45b9fa49a0f54005e53fbcad16633870104b66fa1a30a29d8"}, + {file = "yarl-1.18.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75674776d96d7b851b6498f17824ba17849d790a44d282929c42dbb77d4f17ae"}, + {file = "yarl-1.18.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ccaa3a4b521b780a7e771cc336a2dba389a0861592bbce09a476190bb0c8b4b3"}, + {file = "yarl-1.18.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:2d06d3005e668744e11ed80812e61efd77d70bb7f03e33c1598c301eea20efbb"}, + {file = "yarl-1.18.3-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:9d41beda9dc97ca9ab0b9888cb71f7539124bc05df02c0cff6e5acc5a19dcc6e"}, + {file = "yarl-1.18.3-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:ba23302c0c61a9999784e73809427c9dbedd79f66a13d84ad1b1943802eaaf59"}, + {file = "yarl-1.18.3-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:6748dbf9bfa5ba1afcc7556b71cda0d7ce5f24768043a02a58846e4a443d808d"}, + {file = "yarl-1.18.3-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:0b0cad37311123211dc91eadcb322ef4d4a66008d3e1bdc404808992260e1a0e"}, + {file = "yarl-1.18.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0fb2171a4486bb075316ee754c6d8382ea6eb8b399d4ec62fde2b591f879778a"}, + {file = "yarl-1.18.3-cp311-cp311-win32.whl", hash = "sha256:61b1a825a13bef4a5f10b1885245377d3cd0bf87cba068e1d9a88c2ae36880e1"}, + {file = "yarl-1.18.3-cp311-cp311-win_amd64.whl", hash = "sha256:b9d60031cf568c627d028239693fd718025719c02c9f55df0a53e587aab951b5"}, + {file = "yarl-1.18.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:1dd4bdd05407ced96fed3d7f25dbbf88d2ffb045a0db60dbc247f5b3c5c25d50"}, + {file = "yarl-1.18.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7c33dd1931a95e5d9a772d0ac5e44cac8957eaf58e3c8da8c1414de7dd27c576"}, + {file = "yarl-1.18.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:25b411eddcfd56a2f0cd6a384e9f4f7aa3efee14b188de13048c25b5e91f1640"}, + {file = "yarl-1.18.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:436c4fc0a4d66b2badc6c5fc5ef4e47bb10e4fd9bf0c79524ac719a01f3607c2"}, + {file = "yarl-1.18.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e35ef8683211db69ffe129a25d5634319a677570ab6b2eba4afa860f54eeaf75"}, + {file = "yarl-1.18.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:84b2deecba4a3f1a398df819151eb72d29bfeb3b69abb145a00ddc8d30094512"}, + {file = "yarl-1.18.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:00e5a1fea0fd4f5bfa7440a47eff01d9822a65b4488f7cff83155a0f31a2ecba"}, + {file = "yarl-1.18.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d0e883008013c0e4aef84dcfe2a0b172c4d23c2669412cf5b3371003941f72bb"}, + {file = "yarl-1.18.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:5a3f356548e34a70b0172d8890006c37be92995f62d95a07b4a42e90fba54272"}, + {file = "yarl-1.18.3-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:ccd17349166b1bee6e529b4add61727d3f55edb7babbe4069b5764c9587a8cc6"}, + {file = "yarl-1.18.3-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b958ddd075ddba5b09bb0be8a6d9906d2ce933aee81100db289badbeb966f54e"}, + {file = "yarl-1.18.3-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:c7d79f7d9aabd6011004e33b22bc13056a3e3fb54794d138af57f5ee9d9032cb"}, + {file = "yarl-1.18.3-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:4891ed92157e5430874dad17b15eb1fda57627710756c27422200c52d8a4e393"}, + {file = "yarl-1.18.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ce1af883b94304f493698b00d0f006d56aea98aeb49d75ec7d98cd4a777e9285"}, + {file = "yarl-1.18.3-cp312-cp312-win32.whl", hash = "sha256:f91c4803173928a25e1a55b943c81f55b8872f0018be83e3ad4938adffb77dd2"}, + {file = "yarl-1.18.3-cp312-cp312-win_amd64.whl", hash = "sha256:7e2ee16578af3b52ac2f334c3b1f92262f47e02cc6193c598502bd46f5cd1477"}, + {file = "yarl-1.18.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:90adb47ad432332d4f0bc28f83a5963f426ce9a1a8809f5e584e704b82685dcb"}, + {file = "yarl-1.18.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:913829534200eb0f789d45349e55203a091f45c37a2674678744ae52fae23efa"}, + {file = "yarl-1.18.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:ef9f7768395923c3039055c14334ba4d926f3baf7b776c923c93d80195624782"}, + {file = "yarl-1.18.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88a19f62ff30117e706ebc9090b8ecc79aeb77d0b1f5ec10d2d27a12bc9f66d0"}, + {file = "yarl-1.18.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e17c9361d46a4d5addf777c6dd5eab0715a7684c2f11b88c67ac37edfba6c482"}, + {file = "yarl-1.18.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1a74a13a4c857a84a845505fd2d68e54826a2cd01935a96efb1e9d86c728e186"}, + {file = "yarl-1.18.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:41f7ce59d6ee7741af71d82020346af364949314ed3d87553763a2df1829cc58"}, + {file = "yarl-1.18.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f52a265001d830bc425f82ca9eabda94a64a4d753b07d623a9f2863fde532b53"}, + {file = "yarl-1.18.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:82123d0c954dc58db301f5021a01854a85bf1f3bb7d12ae0c01afc414a882ca2"}, + {file = "yarl-1.18.3-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:2ec9bbba33b2d00999af4631a3397d1fd78290c48e2a3e52d8dd72db3a067ac8"}, + {file = "yarl-1.18.3-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:fbd6748e8ab9b41171bb95c6142faf068f5ef1511935a0aa07025438dd9a9bc1"}, + {file = "yarl-1.18.3-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:877d209b6aebeb5b16c42cbb377f5f94d9e556626b1bfff66d7b0d115be88d0a"}, + {file = "yarl-1.18.3-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:b464c4ab4bfcb41e3bfd3f1c26600d038376c2de3297760dfe064d2cb7ea8e10"}, + {file = "yarl-1.18.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:8d39d351e7faf01483cc7ff7c0213c412e38e5a340238826be7e0e4da450fdc8"}, + {file = "yarl-1.18.3-cp313-cp313-win32.whl", hash = "sha256:61ee62ead9b68b9123ec24bc866cbef297dd266175d53296e2db5e7f797f902d"}, + {file = "yarl-1.18.3-cp313-cp313-win_amd64.whl", hash = "sha256:578e281c393af575879990861823ef19d66e2b1d0098414855dd367e234f5b3c"}, + {file = "yarl-1.18.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:61e5e68cb65ac8f547f6b5ef933f510134a6bf31bb178be428994b0cb46c2a04"}, + {file = "yarl-1.18.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fe57328fbc1bfd0bd0514470ac692630f3901c0ee39052ae47acd1d90a436719"}, + {file = "yarl-1.18.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a440a2a624683108a1b454705ecd7afc1c3438a08e890a1513d468671d90a04e"}, + {file = "yarl-1.18.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09c7907c8548bcd6ab860e5f513e727c53b4a714f459b084f6580b49fa1b9cee"}, + {file = "yarl-1.18.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b4f6450109834af88cb4cc5ecddfc5380ebb9c228695afc11915a0bf82116789"}, + {file = "yarl-1.18.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a9ca04806f3be0ac6d558fffc2fdf8fcef767e0489d2684a21912cc4ed0cd1b8"}, + {file = "yarl-1.18.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77a6e85b90a7641d2e07184df5557132a337f136250caafc9ccaa4a2a998ca2c"}, + {file = "yarl-1.18.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6333c5a377c8e2f5fae35e7b8f145c617b02c939d04110c76f29ee3676b5f9a5"}, + {file = "yarl-1.18.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0b3c92fa08759dbf12b3a59579a4096ba9af8dd344d9a813fc7f5070d86bbab1"}, + {file = "yarl-1.18.3-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:4ac515b860c36becb81bb84b667466885096b5fc85596948548b667da3bf9f24"}, + {file = "yarl-1.18.3-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:045b8482ce9483ada4f3f23b3774f4e1bf4f23a2d5c912ed5170f68efb053318"}, + {file = "yarl-1.18.3-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:a4bb030cf46a434ec0225bddbebd4b89e6471814ca851abb8696170adb163985"}, + {file = "yarl-1.18.3-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:54d6921f07555713b9300bee9c50fb46e57e2e639027089b1d795ecd9f7fa910"}, + {file = "yarl-1.18.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:1d407181cfa6e70077df3377938c08012d18893f9f20e92f7d2f314a437c30b1"}, + {file = "yarl-1.18.3-cp39-cp39-win32.whl", hash = "sha256:ac36703a585e0929b032fbaab0707b75dc12703766d0b53486eabd5139ebadd5"}, + {file = "yarl-1.18.3-cp39-cp39-win_amd64.whl", hash = "sha256:ba87babd629f8af77f557b61e49e7c7cac36f22f871156b91e10a6e9d4f829e9"}, + {file = "yarl-1.18.3-py3-none-any.whl", hash = "sha256:b57f4f58099328dfb26c6a771d09fb20dbbae81d20cfb66141251ea063bd101b"}, + {file = "yarl-1.18.3.tar.gz", hash = "sha256:ac1801c45cbf77b6c99242eeff4fffb5e4e73a800b5c4ad4fc0be5def634d2e1"}, +] + +[package.dependencies] +idna = ">=2.0" +multidict = ">=4.0" +propcache = ">=0.2.0" + +[metadata] +lock-version = "2.0" +python-versions = "~3.10" +content-hash = "480e9e936e17d5ad8ba3d0cb6daf3cd55bb9477d6813fbf138c1c9283e3cd8cd" diff --git a/Chapter10/pyproject.toml b/Chapter10/pyproject.toml new file mode 100644 index 0000000..07cd04d --- /dev/null +++ b/Chapter10/pyproject.toml @@ -0,0 +1,18 @@ +[tool.poetry] +name = "Graph Machine Learning - Chapter 10" +version = "1.0.0" +description = "" +authors = ["Enrico Deusebio "] +packages = [] +package-mode = false + +[tool.poetry.dependencies] +python = "~3.10" +ipykernel = ">=6.0.0" +networkx = ">=3.2.0" +neo4j = ">=4.2.0" +gremlinpython = ">=3.4.6" + +[build-system] +requires = ["poetry-core"] +build-backend = "poetry.core.masonry.api" \ No newline at end of file diff --git a/Chapter10/requirements.txt b/Chapter10/requirements.txt new file mode 100644 index 0000000..71e8f7a --- /dev/null +++ b/Chapter10/requirements.txt @@ -0,0 +1,51 @@ +aenum==3.1.15 ; python_version >= "3.10" and python_version < "3.11" +aiohappyeyeballs==2.4.4 ; python_version >= "3.10" and python_version < "3.11" +aiohttp==3.11.11 ; python_version >= "3.10" and python_version < "3.11" +aiosignal==1.3.2 ; python_version >= "3.10" and python_version < "3.11" +appnope==0.1.4 ; python_version >= "3.10" and python_version < "3.11" and platform_system == "Darwin" +asttokens==3.0.0 ; python_version >= "3.10" and python_version < "3.11" +async-timeout==4.0.3 ; python_version >= "3.10" and python_version < "3.11" +attrs==24.3.0 ; python_version >= "3.10" and python_version < "3.11" +cffi==1.17.1 ; python_version >= "3.10" and python_version < "3.11" and implementation_name == "pypy" +colorama==0.4.6 ; python_version >= "3.10" and python_version < "3.11" and sys_platform == "win32" +comm==0.2.2 ; python_version >= "3.10" and python_version < "3.11" +debugpy==1.8.11 ; python_version >= "3.10" and python_version < "3.11" +decorator==5.1.1 ; python_version >= "3.10" and python_version < "3.11" +exceptiongroup==1.2.2 ; python_version >= "3.10" and python_version < "3.11" +executing==2.1.0 ; python_version >= "3.10" and python_version < "3.11" +frozenlist==1.5.0 ; python_version >= "3.10" and python_version < "3.11" +gremlinpython==3.7.3 ; python_version >= "3.10" and python_version < "3.11" +idna==3.10 ; python_version >= "3.10" and python_version < "3.11" +ipykernel==6.29.5 ; python_version >= "3.10" and python_version < "3.11" +ipython==8.31.0 ; python_version >= "3.10" and python_version < "3.11" +isodate==0.7.2 ; python_version >= "3.10" and python_version < "3.11" +jedi==0.19.2 ; python_version >= "3.10" and python_version < "3.11" +jupyter-client==8.6.3 ; python_version >= "3.10" and python_version < "3.11" +jupyter-core==5.7.2 ; python_version >= "3.10" and python_version < "3.11" +matplotlib-inline==0.1.7 ; python_version >= "3.10" and python_version < "3.11" +multidict==6.1.0 ; python_version >= "3.10" and python_version < "3.11" +neo4j==5.27.0 ; python_version >= "3.10" and python_version < "3.11" +nest-asyncio==1.6.0 ; python_version >= "3.10" and python_version < "3.11" +networkx==3.4.2 ; python_version >= "3.10" and python_version < "3.11" +packaging==24.2 ; python_version >= "3.10" and python_version < "3.11" +parso==0.8.4 ; python_version >= "3.10" and python_version < "3.11" +pexpect==4.9.0 ; python_version >= "3.10" and python_version < "3.11" and (sys_platform != "win32" and sys_platform != "emscripten") +platformdirs==4.3.6 ; python_version >= "3.10" and python_version < "3.11" +prompt-toolkit==3.0.48 ; python_version >= "3.10" and python_version < "3.11" +propcache==0.2.1 ; python_version >= "3.10" and python_version < "3.11" +psutil==6.1.1 ; python_version >= "3.10" and python_version < "3.11" +ptyprocess==0.7.0 ; python_version >= "3.10" and python_version < "3.11" and (sys_platform != "win32" and sys_platform != "emscripten") +pure-eval==0.2.3 ; python_version >= "3.10" and python_version < "3.11" +pycparser==2.22 ; python_version >= "3.10" and python_version < "3.11" and implementation_name == "pypy" +pygments==2.19.0 ; python_version >= "3.10" and python_version < "3.11" +python-dateutil==2.9.0.post0 ; python_version >= "3.10" and python_version < "3.11" +pytz==2024.2 ; python_version >= "3.10" and python_version < "3.11" +pywin32==308 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.10" and python_version < "3.11" +pyzmq==26.2.0 ; python_version >= "3.10" and python_version < "3.11" +six==1.17.0 ; python_version >= "3.10" and python_version < "3.11" +stack-data==0.6.3 ; python_version >= "3.10" and python_version < "3.11" +tornado==6.4.2 ; python_version >= "3.10" and python_version < "3.11" +traitlets==5.14.3 ; python_version >= "3.10" and python_version < "3.11" +typing-extensions==4.12.2 ; python_version >= "3.10" and python_version < "3.11" +wcwidth==0.2.13 ; python_version >= "3.10" and python_version < "3.11" +yarl==1.18.3 ; python_version >= "3.10" and python_version < "3.11" diff --git a/docker/Dockerfile b/docker/Dockerfile index 23175ad..3530d5e 100644 --- a/docker/Dockerfile +++ b/docker/Dockerfile @@ -79,3 +79,9 @@ RUN ls -d -1 */ | grep -v -e Chapter09 | xargs rm -rf RUN conda create -n chap9 python=3.8 RUN conda run -n chap9 pip install -r Chapter09/requirements.txt RUN conda run -n chap9 python -m ipykernel install --name chap9 --user + +FROM base as chap10 +RUN ls -d -1 */ | grep -v -e Chapter10 | xargs rm -rf +RUN conda create -n chap10 python=3.10 +RUN conda run -n chap10 pip install -r Chapter10/requirements.txt +RUN conda run -n chap10 python -m ipykernel install --name chap10 --user From 19ddaec0949cad8e39620da4957e2d5ccbda9303 Mon Sep 17 00:00:00 2001 From: deusebio Date: Sat, 5 Apr 2025 09:32:20 +0200 Subject: [PATCH 27/31] [Chapter9] Code review (#34) --- .../01_Credit_card_edges_classification.ipynb | 628 ++++++++++++------ 1 file changed, 431 insertions(+), 197 deletions(-) diff --git a/Chapter09/01_Credit_card_edges_classification.ipynb b/Chapter09/01_Credit_card_edges_classification.ipynb index e819b54..d02b03e 100644 --- a/Chapter09/01_Credit_card_edges_classification.ipynb +++ b/Chapter09/01_Credit_card_edges_classification.ipynb @@ -41,7 +41,9 @@ "\n", "sys.path.append(f\"{os.getcwd()}/..\")\n", "\n", - "from utils import DATA_DIR" + "from utils import DATA_DIR\n", + "\n", + "np.set_printoptions(formatter={'float': lambda x: \"{0:0.2f}\".format(x)})" ] }, { @@ -63,7 +65,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -72,7 +74,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -85,7 +87,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -104,7 +106,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -113,7 +115,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -122,7 +124,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -131,7 +133,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -140,7 +142,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -359,7 +361,7 @@ "[5 rows x 23 columns]" ] }, - "execution_count": 11, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -373,7 +375,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -384,7 +386,7 @@ "Name: is_fraud, dtype: int64" ] }, - "execution_count": 12, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -395,7 +397,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -406,8 +408,12 @@ " df[\"to\"] = df[\"merchant\"].apply(lambda x: mapping[x])\n", " df = df[['from', 'to', \"amt\", \"is_fraud\"]].groupby(['from', 'to']).agg({\"is_fraud\": \"sum\", \"amt\": \"sum\"}).reset_index()\n", " df[\"is_fraud\"] = df[\"is_fraud\"].apply(lambda x: 1 if x>0 else 0)\n", + "\n", + " name = graph_type.name\n", " \n", " G = nx.from_edgelist(df[[\"from\", \"to\"]].values, create_using=graph_type)\n", + "\n", + " G.name = name\n", " \n", " nx.set_node_attributes(G,{x:1 for x in df[\"from\"].unique()}, \"bipartite\")\n", " nx.set_node_attributes(G,{x:2 for x in df[\"to\"].unique()}, \"bipartite\")\n", @@ -424,7 +430,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -436,10 +442,14 @@ " df[\"in_node\"] = df[\"cc_num\"].apply(lambda x: mapping[x])\n", " df[\"out_node\"] = df[\"merchant\"].apply(lambda x: mapping[x])\n", "\n", + " name = graph_type.name\n", + " \n", " G = nx.from_edgelist([(x[\"in_node\"], mapping[idx]) for idx, x in df.iterrows()] +\n", " [(x[\"out_node\"], mapping[idx]) for idx, x in df.iterrows()], \n", " create_using=graph_type)\n", "\n", + " G.name = name\n", + "\n", " nx.set_node_attributes(G,{x[\"in_node\"]:1 for idx,x in df.iterrows()}, \"bipartite\")\n", " nx.set_node_attributes(G,{x[\"out_node\"]:2 for idx,x in df.iterrows()}, \"bipartite\")\n", " nx.set_node_attributes(G,{mapping[idx]:3 for idx, x in df.iterrows()}, \"bipartite\")\n", @@ -454,16 +464,20 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ - "G = build_graph_bipartite(df, nx.Graph())" + "G_bu = build_graph_bipartite(df, nx.Graph(name=\"Bipartite Undirect\"))\n", + "G_bd = build_graph_bipartite(df, nx.DiGraph(name=\"Bipartite Direct\"))\n", + "\n", + "G_tu = build_graph_tripartite(df, nx.Graph(name=\"Tripartite Undirect\"))\n", + "G_td = build_graph_tripartite(df, nx.DiGraph(name=\"Tripartite Direct\")) " ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -472,14 +486,14 @@ "True" ] }, - "execution_count": 16, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from networkx.algorithms import bipartite\n", - "bipartite.is_bipartite(G)" + "all([bipartite.is_bipartite(G) for G in [G_bu,G_tu]])" ] }, { @@ -493,35 +507,41 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Name: \n", + "Name: Bipartite Undirect\n", "Type: Graph\n", "Number of nodes: 1676\n", "Number of edges: 201725\n", - "Average degree: 240.7220\n" + "Average degree: 240.7220\n", + "Name: Tripartite Undirect\n", + "Type: Graph\n", + "Number of nodes: 267016\n", + "Number of edges: 530680\n", + "Average degree: 3.9749\n" ] } ], "source": [ - "print(nx.info(G))" + "for G in [G_bu, G_tu]:\n", + " print(nx.info(G))" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 17, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1EAAAMtCAYAAAB+ZfsQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdf5BV9X34/9fCCv5iQSWCCIqNaGY1QsWFodGpP6iojFFsZ6zRitQxTbuZkqw2g9OpJhOnEDMyansr6SSKTmeioVXbarUqGq3G6ILir60/o4LyS2NkYVNBd8/nD8f9freo5XVZOHf3Ph4zd8Z7zsnd183bnfE558c2FEVRBAAAADtkSNkDAAAADCQiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAEBCY9kDlK2npyfWrl0bI0aMiIaGhrLHAQAASlIURWzevDnGjRsXQ4Z89vmmuo+otWvXxoQJE8oeAwAAqBFr1qyJ8ePHf+b+uo+oESNGRMTH/0c1NTWVPA0AAFCWzs7OmDBhQm8jfJa6j6hPLuFramoSUQAAwP95m48HSwAAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIqNuIqlQq0dzcHC0tLWWPAgAADCANRVEUZQ9Rps7Ozhg5cmRs2rQpmpqayh4HAAAoyY62Qd2eiQIAAKiGiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASGsseAABqwcQFd5c9Qs16Y9HsskcAqCnORAEAACQ4EwVQZ5xxAYCd40wUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEvyxXQDgc/kDzZ/ujUWzyx4BKIkzUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQULcRValUorm5OVpaWsoeBQAAGEDqNqJaW1ujo6Mj2tvbyx4FAAAYQOo2ogAAAKohogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASGgsewDYERMX3F32CDXrjUWzyx4BAKCuOBMFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQ0Fj2AGWpVCpRqVSiu7u77FGAXWDigrvLHgEAGKTq9kxUa2trdHR0RHt7e9mjAAAAA0jdRhQAAEA1RBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAEBCY9kDADtn4oK7yx4BAKCuOBMFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQMOAjas2aNXHiiSdGc3NzHHPMMbFs2bKyRwIAAAaxxrIH2FmNjY1x7bXXxpQpU2L9+vUxderUOOOMM2KfffYpezQAAGAQGvARddBBB8VBBx0UERFjx46N0aNHx3vvvSeiAACAXaL0y/keeeSROPPMM2PcuHHR0NAQd95553bHVCqVmDhxYuy5554xffr0ePLJJz/1s1auXBnd3d0xYcKEXT02AABQp0qPqK6urpg8eXJUKpVP3X/bbbdFW1tbXHnllfHUU0/F5MmTY9asWbFx48Y+x7333ntx4YUXxj/+4z9+7s/bunVrdHZ29nkBAADsqNIj6vTTT4+rrroq5syZ86n7Fy9eHJdccknMmzcvmpubY8mSJbH33nvHjTfe2HvM1q1b4+yzz44FCxbE7/3e733uz1u4cGGMHDmy9+WsFQAAkFF6RH2ebdu2xcqVK2PmzJm924YMGRIzZ86Mxx9/PCIiiqKIiy66KE4++eT4kz/5k//zMy+//PLYtGlT72vNmjW7bH4AAGDwqemIevfdd6O7uzvGjBnTZ/uYMWNi/fr1ERHx2GOPxW233RZ33nlnTJkyJaZMmRLPPffcZ37m8OHDo6mpqc8LAABgRw34p/Mdf/zx0dPTU/YYAABAnajpM1GjR4+OoUOHxoYNG/ps37BhQ4wdO7akqQAAgHpW0xE1bNiwmDp1aixfvrx3W09PTyxfvjxmzJhR4mQAAEC9Kv1yvi1btsSrr77a+/7111+PVatWxf777x+HHHJItLW1xdy5c+O4446LadOmxbXXXhtdXV0xb968EqcGAADqVekRtWLFijjppJN637e1tUVExNy5c2Pp0qVx7rnnxjvvvBNXXHFFrF+/PqZMmRL33nvvdg+bAAAA2B0aiqIoyh6iTJ2dnTFy5MjYtGmTJ/XVsIkL7i57BADo441Fs8seAehnO9oGNX1PFAAAQK0RUQAAAAkiCgAAIEFEAQAAJNRtRFUqlWhubo6WlpayRwEAAAaQuo2o1tbW6OjoiPb29rJHAQAABpC6jSgAAIBqiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABLqNqIqlUo0NzdHS0tL2aMAAAADSN1GVGtra3R0dER7e3vZowAAAANI3UYUAABANUQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACQ0lj0AfU1ccHfZIwAAAJ/DmSgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgoW4jqlKpRHNzc7S0tJQ9CgAAMIDUbUS1trZGR0dHtLe3lz0KAAAwgNRtRAEAAFRDRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACChbiOqUqlEc3NztLS0lD0KAAAwgNRtRLW2tkZHR0e0t7eXPQoAADCA1G1EAQAAVENEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACAhLqNqEqlEs3NzdHS0lL2KAAAwABStxHV2toaHR0d0d7eXvYoAADAAFK3EQUAAFANEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAICEuo2oSqUSzc3N0dLSUvYoAADAAFK3EdXa2hodHR3R3t5e9igAAMAAUrcRBQAAUA0RBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgIS6jahKpRLNzc3R0tJS9igAAMAAUrcR1draGh0dHdHe3l72KAAAwABStxEFAABQDREFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIKGqiPrVr37V33MAAAAMCFVF1OGHHx4nnXRS/NM//VN88MEH/T0TAABAzaoqop566qk45phjoq2tLcaOHRt/9md/Fk8++WR/zwYAAFBzqoqoKVOmxHXXXRdr166NG2+8MdatWxfHH398HH300bF48eJ45513+ntOAACAmrBTD5ZobGyMc845J5YtWxY/+MEP4tVXX43LLrssJkyYEBdeeGGsW7euv+YEAACoCTsVUStWrIi/+Iu/iIMOOigWL14cl112Wbz22mtx//33x9q1a+Oss87qrzkBAABqQmM1/6PFixfHTTfdFC+99FKcccYZccstt8QZZ5wRQ4Z83GSHHXZYLF26NCZOnNifswIAAJSuqoi64YYb4k//9E/joosuioMOOuhTjznwwAPjJz/5yU4NBwAAUGuqiqhXXnnl/zxm2LBhMXfu3Go+HgAAoGZVdU/UTTfdFMuWLdtu+7Jly+Lmm2/e6aEAAABqVVURtXDhwhg9evR22w888MD427/9250eCgAAoFZVFVGrV6+Oww47bLvthx56aKxevXqnhwIAAKhVVd0TdeCBB8azzz673dP3nnnmmTjggAP6Yy4AgJo2ccHdZY9Qk95YNLvsEWCXq+pM1HnnnRd/+Zd/GQ899FB0d3dHd3d3PPjggzF//vz44z/+4/6eEQAAoGZUdSbq+9//frzxxhtxyimnRGPjxx/R09MTF154oXuiAACAQa2qiBo2bFjcdttt8f3vfz+eeeaZ2GuvveLLX/5yHHroof09HwAAQE2pKqI+ccQRR8QRRxzRX7MAAADUvKoiqru7O5YuXRrLly+PjRs3Rk9PT5/9Dz74YL8MBwAAUGuqiqj58+fH0qVLY/bs2XH00UdHQ0NDf88FAABQk6qKqFtvvTV+9rOfxRlnnNHf8wAAANS0qh5xPmzYsDj88MP7exYAAICaV1VEXXrppXHddddFURT9PQ8AAEBNq+pyvkcffTQeeuihuOeee+Koo46KPfbYo8/+22+/vV+GAwAAqDVVRdSoUaNizpw5/T3LblWpVKJSqUR3d3fZowAAAANIQ1Hn1+R1dnbGyJEjY9OmTdHU1FT2ODFxwd1ljwAAULU3Fs0uewSo2o62QVX3REVEfPTRR/HAAw/Ej370o9i8eXNERKxduza2bNlS7UcCAADUvKou53vzzTfjtNNOi9WrV8fWrVvjD/7gD2LEiBHxgx/8ILZu3RpLlizp7zkBAABqQlVnoubPnx/HHXdc/OY3v4m99tqrd/ucOXNi+fLl/TYcAABAranqTNR//dd/xS9+8YsYNmxYn+0TJ06Mt99+u18GAwAAqEVVnYnq6en51KfavfXWWzFixIidHgoAAKBWVRVRp556alx77bW97xsaGmLLli1x5ZVXxhlnnNFvwwEAANSaqi7nu+aaa2LWrFnR3NwcH3zwQXzta1+LV155JUaPHh0//elP+3tGAACAmlFVRI0fPz6eeeaZuPXWW+PZZ5+NLVu2xMUXXxznn39+nwdNAAAADDZVRVRERGNjY1xwwQX9OQsAAEDNqyqibrnlls/df+GFF1Y1DAAAQK2rKqLmz5/f5/2HH34Yv/3tb2PYsGGx9957iygAAGDQqurpfL/5zW/6vLZs2RIvvfRSHH/88R4sAQAADGpVRdSnmTRpUixatGi7s1QAAACDSb9FVMTHD5tYu3Ztf34kAABATanqnqh/+7d/6/O+KIpYt25d/P3f/3185Stf6ZfBAAAAalFVEXX22Wf3ed/Q0BBf+MIX4uSTT45rrrmmXwYDAACoRVVFVE9PT3/PAQAAMCD06z1RAAAAg11VZ6La2tp2+NjFixdX8yMAAABqUlUR9fTTT8fTTz8dH374YRx55JEREfHyyy/H0KFD49hjj+09rqGhoX+mBAAAqBFVRdSZZ54ZI0aMiJtvvjn222+/iPj4D/DOmzcvTjjhhLj00kv7dUgAAIBaUdU9Uddcc00sXLiwN6AiIvbbb7+46qqrPJ0PAAAY1KqKqM7OznjnnXe22/7OO+/E5s2bd3ooAACAWlVVRM2ZMyfmzZsXt99+e7z11lvx1ltvxb/8y7/ExRdfHOecc05/zwgAAFAzqronasmSJXHZZZfF1772tfjwww8//qDGxrj44ovjhz/8Yb8OCAAAUEuqiqi99947/uEf/iF++MMfxmuvvRYREV/84hdjn3326dfhAAAAas1O/bHddevWxbp162LSpEmxzz77RFEU/TUXAABATaoqon7961/HKaecEkcccUScccYZsW7duoiIuPjiiz3eHAAAGNSqiqhvf/vbsccee8Tq1atj77337t1+7rnnxr333ttvwwEAANSaqu6Juu++++I///M/Y/z48X22T5o0Kd58881+GQwAAKAWVXUmqqurq88ZqE+89957MXz48J0eCgAAoFZVFVEnnHBC3HLLLb3vGxoaoqenJ66++uo46aST+m04AACAWlPV5XxXX311nHLKKbFixYrYtm1bfOc734kXXngh3nvvvXjsscf6e0YAAICaUdWZqKOPPjpefvnlOP744+Oss86Krq6uOOecc+Lpp5+OL37xi/09IwAAQM1In4n68MMP47TTToslS5bEX//1X++KmQAAAGpW+kzUHnvsEc8+++yumAUAAKDmVXU53wUXXBA/+clP+nsWAACAmlfVgyU++uijuPHGG+OBBx6IqVOnxj777NNn/+LFi/tlOAAAgFqTiqhf/epXMXHixHj++efj2GOPjYiIl19+uc8xDQ0N/TcdAABAjUlF1KRJk2LdunXx0EMPRUTEueeeG9dff32MGTNmlwwHAABQa1L3RBVF0ef9PffcE11dXf06EAAAQC2r6sESn/jfUQUAADDYpSKqoaFhu3ue3AMFAADUk9Q9UUVRxEUXXRTDhw+PiIgPPvggvvGNb2z3dL7bb7+9/yYEAACoIamImjt3bp/3F1xwQb8OAwAAUOtSEXXTTTftqjkAAAAGhJ16sAQAAEC9EVEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkDAoImrOnDmx3377xR/90R+VPQoAADDIDYqImj9/ftxyyy1ljwEAANSBQRFRJ554YowYMaLsMQAAgDpQekQ98sgjceaZZ8a4ceOioaEh7rzzzu2OqVQqMXHixNhzzz1j+vTp8eSTT5YwKQAAQA1EVFdXV0yePDkqlcqn7r/tttuira0trrzyynjqqadi8uTJMWvWrNi4cWNVP2/r1q3R2dnZ5wUAALCjSo+o008/Pa666qqYM2fOp+5fvHhxXHLJJTFv3rxobm6OJUuWxN577x033nhjVT9v4cKFMXLkyN7XhAkTdmZ8AACgzpQeUZ9n27ZtsXLlypg5c2bvtiFDhsTMmTPj8ccfr+ozL7/88ti0aVPva82aNf01LgAAUAcayx7g87z77rvR3d0dY8aM6bN9zJgx8eKLL/a+nzlzZjzzzDPR1dUV48ePj2XLlsWMGTM+9TOHDx8ew4cP36VzAwAAg1dNR9SOeuCBB8oeAQAAqBM1fTnf6NGjY+jQobFhw4Y+2zds2BBjx44taSoAAKCe1XREDRs2LKZOnRrLly/v3dbT0xPLly//zMv1AAAAdqXSL+fbsmVLvPrqq73vX3/99Vi1alXsv//+ccghh0RbW1vMnTs3jjvuuJg2bVpce+210dXVFfPmzStxagAAoF6VHlErVqyIk046qfd9W1tbRETMnTs3li5dGueee2688847ccUVV8T69etjypQpce+99273sAkAAIDdoaEoiqLsIcrU2dkZI0eOjE2bNkVTU1PZ48TEBXeXPQIAQNXeWDS77BGgajvaBjV9TxQAAECtEVEAAAAJIgoAACBBRAEAACTUbURVKpVobm6OlpaWskcBAAAGkLqNqNbW1ujo6Ij29vayRwEAAAaQuo0oAACAaogoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAAS6jaiKpVKNDc3R0tLS9mjAAAAA0jdRlRra2t0dHREe3t72aMAAAADSN1GFAAAQDVEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAk1G1EVSqVaG5ujpaWlrJHAQAABpC6jajW1tbo6OiI9vb2skcBAAAGkLqNKAAAgGqIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACTUbURVKpVobm6OlpaWskcBAAAGkLqNqNbW1ujo6Ij29vayRwEAAAaQuo0oAACAaogoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQ0Fj2AGWpVCpRqVSiu7u77FEAAAaNiQvuLnuEmvXGotllj0A/qdszUa2trdHR0RHt7e1ljwIAAAwgdRtRAAAA1RBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASKjbiKpUKtHc3BwtLS1ljwIAAAwgdRtRra2t0dHREe3t7WWPAgAADCB1G1EAAADVEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIqNuIqlQq0dzcHC0tLWWPAgAADCB1G1Gtra3R0dER7e3tZY8CAAAMIHUbUQAAANUQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQULcRValUorm5OVpaWsoeBQAAGEDqNqJaW1ujo6Mj2tvbyx4FAAAYQOo2ogAAAKohogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBgUEXXXXXfFkUceGZMmTYof//jHZY8DAAAMYo1lD7CzPvroo2hra4uHHnooRo4cGVOnTo05c+bEAQccUPZoAADAIDTgz0Q9+eSTcdRRR8XBBx8c++67b5x++ulx3333lT0WAAAwSJUeUY888kiceeaZMW7cuGhoaIg777xzu2MqlUpMnDgx9txzz5g+fXo8+eSTvfvWrl0bB8KetFYAAAzESURBVB98cO/7gw8+ON5+++3dMjsAAFB/So+orq6umDx5clQqlU/df9ttt0VbW1tceeWV8dRTT8XkyZNj1qxZsXHjxqp+3tatW6Ozs7PPCwAAYEeVfk/U6aefHqeffvpn7l+8eHFccsklMW/evIiIWLJkSdx9991x4403xoIFC2LcuHF9zjy9/fbbMW3atM/8vIULF8b3vve9/vsCAACwAyYuuLvsEWrSG4tmlz1CWulnoj7Ptm3bYuXKlTFz5szebUOGDImZM2fG448/HhER06ZNi+effz7efvvt2LJlS9xzzz0xa9asz/zMyy+/PDZt2tT7WrNmzS7/HgAAwOBR+pmoz/Puu+9Gd3d3jBkzps/2MWPGxIsvvhgREY2NjXHNNdfESSedFD09PfGd73znc5/MN3z48Bg+fPgunRsAABi8ajqidtRXv/rV+OpXv1r2GAAAQB2o6cv5Ro8eHUOHDo0NGzb02b5hw4YYO3ZsSVMBAAD1rKYjatiwYTF16tRYvnx577aenp5Yvnx5zJgxo8TJAACAelX65XxbtmyJV199tff966+/HqtWrYr9998/DjnkkGhra4u5c+fGcccdF9OmTYtrr702urq6ep/WBwAAsDuVHlErVqyIk046qfd9W1tbRETMnTs3li5dGueee2688847ccUVV8T69etjypQpce+99273sAkAAIDdoaEoiqLsIcrU2dkZI0eOjE2bNkVTU1PZ4/j7AQAA1JVa+jtRO9oGNX1PFAAAQK0RUQAAAAkiCgAAIEFEAQAAJNRtRFUqlWhubo6WlpayRwEAAAaQuo2o1tbW6OjoiPb29rJHAQAABpC6jSgAAIBqiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABLqNqIqlUo0NzdHS0tL2aMAAAADSN1GVGtra3R0dER7e3vZowAAAANI3UYUAABANUQUAABAgogCAABIEFEAAAAJIgoAACChsewBylYURUREdHZ2ljzJx3q2/rbsEQAAYLeplf8Oj/j/ZvmkET5L3UfU5s2bIyJiwoQJJU8CAAD1Z+S1ZU+wvc2bN8fIkSM/c39D8X9l1iDX09MTa9eujREjRkRDQ8Mu/VmdnZ0xYcKEWLNmTTQ1Ne3Sn0Vtsfb1y9rXJ+tev6x9/bL2g0NRFLF58+YYN25cDBny2Xc+1f2ZqCFDhsT48eN3689samryy1WnrH39svb1ybrXL2tfv6z9wPd5Z6A+4cESAAAACSIKAAAgYeh3v/vd75Y9RD0ZOnRonHjiidHYWPdXUtYda1+/rH19su71y9rXL2tfP+r+wRIAAAAZLucDAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRtRtVKpWYOHFi7LnnnjF9+vR48sknyx6JnfDII4/EmWeeGePGjYuGhoa48847++wviiKuuOKKOOigg2KvvfaKmTNnxiuvvNLnmPfeey/OP//8aGpqilGjRsXFF18cW7Zs2Z1fgyosXLgwWlpaYsSIEXHggQfG2WefHS+99FKfYz744INobW2NAw44IPbdd9/4wz/8w9iwYUOfY1avXh2zZ8+OvffeOw488MD4q7/6q/joo49251ch4YYbbohjjjkmmpqaoqmpKWbMmBH33HNP735rXj8WLVoUDQ0N8a1vfat3m/UfnL773e9GQ0NDn9eXvvSl3v3WvX6JqN3ktttui7a2trjyyivjqaeeismTJ8esWbNi48aNZY9Glbq6umLy5MlRqVQ+df/VV18d119/fSxZsiSeeOKJ2GeffWLWrFnxwQcf9B5z/vnnxwsvvBD3339/3HXXXfHII4/E17/+9d31FajSww8/HK2trfHLX/4y7r///vjwww/j1FNPja6urt5jvv3tb8e///u/x7Jly+Lhhx+OtWvXxjnnnNO7v7u7O2bPnh3btm2LX/ziF3HzzTfH0qVL44orrijjK7EDxo8fH4sWLYqVK1fGihUr4uSTT46zzjorXnjhhYiw5vWivb09fvSjH8UxxxzTZ7v1H7yOOuqoWLduXe/r0Ucf7d1n3etYwW4xbdq0orW1tfd9d3d3MW7cuGLhwoUlTkV/iYjijjvu6H3f09NTjB07tvjhD3/Yu+39998vhg8fXvz0pz8tiqIoOjo6iogo2tvbe4+55557ioaGhuLtt9/efcOz0zZu3FhERPHwww8XRfHxWu+xxx7FsmXLeo/57//+7yIiiscff7woiqL4j//4j2LIkCHF+vXre4+54YYbiqampmLr1q279wtQtf3226/48Y9/bM3rxObNm4tJkyYV999/f/H7v//7xfz584ui8Ds/mF155ZXF5MmTP3Wfda9vzkTtBtu2bYuVK1fGzJkze7cNGTIkZs6cGY8//niJk7GrvP7667F+/fo+az5y5MiYPn1675o//vjjMWrUqDjuuON6j5k5c2YMGTIknnjiid0+M9XbtGlTRETsv//+ERGxcuXK+PDDD/us/5e+9KU45JBD+qz/l7/85RgzZkzvMbNmzYrOzs7eMxvUru7u7rj11lujq6srZsyYYc3rRGtra8yePbvPOkf4nR/sXnnllRg3blz8zu/8Tpx//vmxevXqiLDu9a6x7AHqwbvvvhvd3d19foEiIsaMGRMvvvhiSVOxK61fvz4i4lPX/JN969evjwMPPLDP/sbGxth///17j6H29fT0xLe+9a34yle+EkcffXREfLy2w4YNi1GjRvU59n+v/6f9+/HJPmrTc889FzNmzIgPPvgg9t1337jjjjuiubk5Vq1aZc0HuVtvvTWeeuqpaG9v326f3/nBa/r06bF06dI48sgjY926dfG9730vTjjhhHj++eete50TUQA7obW1NZ5//vk+18gzeB155JGxatWq2LRpU/zzP/9zzJ07Nx5++OGyx2IXW7NmTcyfPz/uv//+2HPPPcseh93o9NNP7/3nY445JqZPnx6HHnpo/OxnP4u99tqrxMkom8v5doPRo0fH0KFDt3tay4YNG2Ls2LElTcWu9Mm6ft6ajx07drsHi3z00Ufx3nvv+fdigPjmN78Zd911Vzz00EMxfvz43u1jx46Nbdu2xfvvv9/n+P+9/p/278cn+6hNw4YNi8MPPzymTp0aCxcujMmTJ8d1111nzQe5lStXxsaNG+PYY4+NxsbGaGxsjIcffjiuv/76aGxsjDFjxlj/OjFq1Kg44ogj4tVXX/V7X+dE1G4wbNiwmDp1aixfvrx3W09PTyxfvjxmzJhR4mTsKocddliMHTu2z5p3dnbGE0880bvmM2bMiPfffz9WrlzZe8yDDz4YPT09MX369N0+MzuuKIr45je/GXfccUc8+OCDcdhhh/XZP3Xq1Nhjjz36rP9LL70Uq1ev7rP+zz33XJ+Qvv/++6OpqSmam5t3zxdhp/X09MTWrVut+SB3yimnxHPPPRerVq3qfR133HFx/vnn9/6z9a8PW7Zsiddeey0OOuggv/f1ruwnW9SLW2+9tRg+fHixdOnSoqOjo/j6179ejBo1qs/TWhhYNm/eXDz99NPF008/XUREsXjx4uLpp58u3nzzzaIoimLRokXFqFGjin/9138tnn322eKss84qDjvssOJ//ud/ej/jtNNOK373d3+3eOKJJ4pHH320mDRpUnHeeeeV9ZXYQX/+539ejBw5svj5z39erFu3rvf129/+tveYb3zjG8UhhxxSPPjgg8WKFSuKGTNmFDNmzOjd/9FHHxVHH310ceqppxarVq0q7r333uILX/hCcfnll5fxldgBCxYsKB5++OHi9ddfL5599tliwYIFRUNDQ3HfffcVRWHN683//+l8RWH9B6tLL720+PnPf168/vrrxWOPPVbMnDmzGD16dLFx48aiKKx7PRNRu9Hf/d3fFYccckgxbNiwYtq0acUvf/nLskdiJzz00ENFRGz3mjt3blEUHz/m/G/+5m+KMWPGFMOHDy9OOeWU4qWXXurzGb/+9a+L8847r9h3332Lpv/Xvh3iKAyEYRhmTRMQJE1aQSo4DApZVU0llgNxMQSuB6hAIL51JEtW7JgluzyPnckkk1+9mcx6ncPhkHmeX3AbSnw398VikfP5/Nhzu91yPB5T13VWq1X6vs80TV/OuV6v2e/3WS6XaZomp9Mp9/v9l2/DT43jmO12m6qq0rZtdrvdI6ASM383zxFl/v/TMAzZbDapqipd12UYhlwul8e6ub+vjyR5zRsYAADA3+NPFAAAQAERBQAAUEBEAQAAFBBRAAAABUQUAABAAREFAABQQEQBAAAUEFEAAAAFRBQAAEABEQUAAFBARAEAABT4BCYR6XN1qB3dAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2AAAAFzCAYAAABYT2q4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df3QU9b3/8dcmIYFIEsBIQvhh8BcawaQGkkbRgqTGwKUCV0tblBAtvbabW2zUNqlfQU7F0HrMwfZuTWsL0ZYK5R6lXhEqBhS11IRAQIqiIAgVEqAUQqIEyH6+f3hYXQiQbDYzm53n45w9x50ZZt6fFfa9r53Zz7iMMUYAAAAAgC4XYXcBAAAAAOAUBDAAAAAAsAgBDAAAAAAsQgADAAAAAIsQwAAAAADAIgQwAAAAALAIAQwAAAAALEIAAwAAAACLRNldgN28Xq/27dunuLg4uVwuu8sBAMcwxujYsWNKSUlRRATfB55GXwIA+1jRmxwfwPbt26fBgwfbXQYAONbevXs1aNAgu8sIGfQlALBfV/YmxwewuLg4SZ+/yPHx8TZXAwDO0djYqMGDB/veh/E5+hIA2MeK3uT4AHb68o74+HgaHQDYgMvs/NGXAMB+XdmbuOgeAAAAACxCAAMAAAAAixDAAAAIAR6PR2lpaRo1apTdpQAAupBjAxiNDgAQStxut7Zt26aamhq7SwEAdCHHBjAaHQAAAACrOTaAAQAAAIDVCGAAAAAAYBECGAAAAABYhAAGAEAIYHIoAHAGAhgAACGAyaEAwBkIYAAAAABgkSi7CwC6u9SSFXaXYKvd8yfYXQKAM9j9vsT7AgCcG2fAAAAAAMAiBDAAAAAAsAgBDAAAAAAswm/AAHQKvzUBAABoP86AAQAAAIBFHBvAuOElACCU0JcAwBkcG8C44SUAIJTQlwDAGRwbwAAAAADAagQwAAAAALAIAQwAAAAALEIAAwAAAACLEMAAAAAAwCIEMAAAAACwCAEMAAAAACxCAAMAAAAAi0TZXQAAAOEmNTVV8fHxioiIUN++fbV27Vq7SwIAhAgCGAAAXeBvf/ubevfubXcZAIAQwyWIAAAAAGARAhgAAF+ybt06TZw4USkpKXK5XFq+fPlZ23g8HqWmpqpnz57Kzs5WdXW133qXy6Wvfe1rGjVqlBYvXmxV6QCAboAABgDAlzQ3Nys9PV0ej6fN9UuXLlVxcbHmzJmjjRs3Kj09XXl5eTpw4IBvm7feeku1tbV66aWX9Pjjj2vLli1WlQ8ACHEEMAAAviQ/P1+PPfaYJk+e3Ob68vJyzZw5U4WFhUpLS1NFRYViY2O1cOFC3zYDBw6UJA0YMEDjx4/Xxo0bz3m8lpYWNTY2+j0AAOGLSTjCQGrJCluPv3v+BFuPDwBWOXHihGpra1VaWupbFhERodzcXK1fv17S52fQvF6v4uLi1NTUpDVr1uib3/zmOfdZVlamuXPndnntAIDQwBkwAADa6dChQ2ptbVVSUpLf8qSkJNXX10uSGhoaNHr0aKWnp+urX/2qpk+frlGjRp1zn6WlpTp69KjvsXfv3i4dAwDAXpwBAwAgiC677DJt3ry53dvHxMQoJiZGHo9HHo9Hra2tXVgdAMBunAEDAKCdEhMTFRkZqYaGBr/lDQ0NSk5O7tS+3W63tm3bppqamk7tBwAQ2hx7BoxvGsOH3b+BA+Ac0dHRyszMVFVVlSZNmiRJ8nq9qqqqUlFRkc3VAQC6A8cGMLfbLbfbrcbGRiUkJNhdDgAgRDQ1NWnHjh2+57t27VJdXZ369eunIUOGqLi4WAUFBRo5cqSysrK0YMECNTc3q7CwsFPH5YtBAHAGxwYwAADasmHDBo0dO9b3vLi4WJJUUFCgyspKTZ06VQcPHtTs2bNVX1+vjIwMrVq16qyJOTqKLwYBwBkIYAAAfMmYMWNkjDnvNkVFRVxyCAAICJNwAAAQAjwej9LS0s47ZT0AoPsjgAEAEAKYBREAnIEABgAAAAAWIYABABACuAQRAJyBAAYAQAjgEkQAcAYCGAAAAABYhAAGAAAAABbhPmDotNSSFXaXAADdnsfjkcfjUWtrq92lAAC6EGfAAAAIAfwGDACcgQAGAAAAABYhgAEAAACARQhgAAAAAGARAhgAACGAGzEDgDMQwAAACAFMwgEAzkAAAwAAAACLEMAAAAAAwCIEMAAAAACwCAEMAAAAACxCAAMAAAAAixDAAAAIAUxDDwDOQAADACAEMA09ADgDAQwAAAAALEIAAwAAAACLdPsAtnfvXo0ZM0ZpaWm67rrrtGzZMrtLAgAAAIA2RdldQGdFRUVpwYIFysjIUH19vTIzMzV+/HhddNFFdpcGAAAAAH66fQAbMGCABgwYIElKTk5WYmKiDh8+TAADAAAAEHJsvwRx3bp1mjhxolJSUuRyubR8+fKztvF4PEpNTVXPnj2VnZ2t6urqNvdVW1ur1tZWDR48uKvLBgAAAIAOsz2ANTc3Kz09XR6Pp831S5cuVXFxsebMmaONGzcqPT1deXl5OnDggN92hw8f1vTp0/Xb3/7WirIBAAAAoMNsvwQxPz9f+fn551xfXl6umTNnqrCwUJJUUVGhFStWaOHChSopKZEktbS0aNKkSSopKdENN9xw3uO1tLSopaXF97yxsTEIowAAoHM8Ho88Ho9aW1vtLgUA0IVsPwN2PidOnFBtba1yc3N9yyIiIpSbm6v169dLkowxmjFjhm655RbdfffdF9xnWVmZEhISfA8uVwQAhAJuxAwAzhDSAezQoUNqbW1VUlKS3/KkpCTV19dLkt5++20tXbpUy5cvV0ZGhjIyMvTuu++ec5+lpaU6evSo77F3794uHQMAAAAAnGb7JYidNXr0aHm93nZvHxMTo5iYmC6sCAAAAADaFtJnwBITExUZGamGhga/5Q0NDUpOTrapKgAAAAAITEgHsOjoaGVmZqqqqsq3zOv1qqqqSjk5OTZWBgAAAAAdZ/sliE1NTdqxY4fv+a5du1RXV6d+/fppyJAhKi4uVkFBgUaOHKmsrCwtWLBAzc3NvlkRA8VsUwAAAACsZnsA27Bhg8aOHet7XlxcLEkqKChQZWWlpk6dqoMHD2r27Nmqr69XRkaGVq1addbEHB3ldrvldrvV2NiohISETu0LAAAAANrD9gA2ZswYGWPOu01RUZGKioosqggAAAAAukZI/wYMAIDu6tNPP9Wll16qBx980O5SAAAhhAAGAEAXmDdvnr761a/aXQYAIMQQwAAACLIPP/xQ77//vvLz8+0uBQAQYhwbwDwej9LS0jRq1Ci7SwEAhJB169Zp4sSJSklJkcvl0vLly8/axuPxKDU1VT179lR2draqq6v91j/44IMqKyuzqmQAQDfi2ADmdru1bds21dTU2F0KACCENDc3Kz09XR6Pp831S5cuVXFxsebMmaONGzcqPT1deXl5OnDggCTpL3/5i6666ipdddVVVpYNAOgmbJ8FEQCAUJKfn3/eSwfLy8s1c+ZM3/0oKyoqtGLFCi1cuFAlJSX6+9//riVLlmjZsmVqamrSyZMnFR8fr9mzZ7e5v5aWFrW0tPieNzY2BndAAICQQgALgtSSFXaXAACwwIkTJ1RbW6vS0lLfsoiICOXm5mr9+vWSpLKyMt/lh5WVldq6des5w9fp7efOndu1hQMAQoZjL0EEAKCjDh06pNbWViUlJfktT0pKUn19fUD7LC0t1dGjR32PvXv3BqNUAECI4gwYAABdZMaMGRfcJiYmRjExMV1fDAAgJDj2DBizIAIAOioxMVGRkZFqaGjwW97Q0KDk5ORO7Zu+BADO4NgAxiyIAICOio6OVmZmpqqqqnzLvF6vqqqqlJOT06l905cAwBm4BBEAgC9pamrSjh07fM937dqluro69evXT0OGDFFxcbEKCgo0cuRIZWVlacGCBWpubvbNihgoj8cjj8ej1tbWzg4BABDCCGAAAHzJhg0bNHbsWN/z4uJiSVJBQYEqKys1depUHTx4ULNnz1Z9fb0yMjK0atWqsybm6Ci32y23263GxkYlJCR0al8AgNBFAAMA4EvGjBkjY8x5tykqKlJRUZFFFQEAwoljfwMGAEAoYRIOAHAGAhgAACGASTgAwBkcG8D4phEAAACA1RwbwPimEQAAAIDVHBvAAAAIJVyZAQDOQAADACAEcGUGADgDAQwAAAAALEIAAwAAAACLEMAAAAgB/AYMAJyBAAYAQAjgN2AA4AwEMAAAAACwiGMDGJd6AAAAALCaYwMYl3oAAAAAsJpjAxgAAKGEKzMAwBkIYAAAhACuzAAAZyCAAQAAAIBFCGAAAAAAYBECGAAAAABYhAAGAAAAABYhgAEAEAKYBREAnIEABgBACGAWRABwBgIYAAAAAFjEsQGMSz0AAAAAWM2xAYxLPQAAAABYzbEBDAAAAACsRgADAAAAAIsEFMA++uijYNcBAECn0JsAAN1BQAHsiiuu0NixY/XHP/5Rx48fD3ZNAAB0GL0JANAdBBTANm7cqOuuu07FxcVKTk7Wf/3Xf6m6ujrYtQEA0G7dvTcxOy8AOENAASwjI0NPPfWU9u3bp4ULF2r//v0aPXq0hg8frvLych08eDDYdQIAcF7dvTcxOy8AOEOnJuGIiorSlClTtGzZMv385z/Xjh079OCDD2rw4MGaPn269u/fH6w6AQBoF3oTACCUdSqAbdiwQT/4wQ80YMAAlZeX68EHH9TOnTu1evVq7du3T7fffnuw6gQAoF3oTQCAUBYVyB8qLy/XokWLtH37do0fP17PPfecxo8fr4iIz/Pc0KFDVVlZqdTU1GDWCgDAOdGbAADdQUAB7Omnn9Y999yjGTNmaMCAAW1u079/f/3+97/vVHEAALQXvQkA0B0EFMA+/PDDC24THR2tgoKCQHYPAECH0ZsAAN1BQL8BW7RokZYtW3bW8mXLlunZZ5/tdFEAAHQUvQkA0B0EFMDKysqUmJh41vL+/fvr8ccf73RRVuB+KwAQXsKhNwEAwl9AAWzPnj0aOnToWcsvvfRS7dmzp9NFWYH7rQBAeAmH3gQACH8BBbD+/ftry5YtZy3fvHmzLr744k4XBQBAR4VKbzpy5IhGjhypjIwMDR8+XM8884xlxwYAhL6AJuH49re/rR/+8IeKi4vTzTffLEl64403NGvWLH3rW98KaoEAALRHqPSmuLg4rVu3TrGxsWpubtbw4cM1ZcoUvqAEAEgKMID97Gc/0+7duzVu3DhFRX2+C6/Xq+nTp3OdPQDAFqHSmyIjIxUbGytJamlpkTFGxhjLjg8ACG0BXYIYHR2tpUuX6v3339fixYv1wgsvaOfOnVq4cKGio6ODXSMAABcUrN60bt06TZw4USkpKXK5XFq+fPlZ23g8HqWmpqpnz57Kzs5WdXW13/ojR44oPT1dgwYN0kMPPdTm5CAAAGcK6AzYaVdddZWuuuqqYNUCAECndbY3NTc3Kz09Xffcc4+mTJly1vqlS5equLhYFRUVys7O1oIFC5SXl6ft27erf//+kqQ+ffpo8+bNamho0JQpU3THHXcoKSkp4JoAAOEjoADW2tqqyspKVVVV6cCBA/J6vX7r16xZE5TiAABor2D1pvz8fOXn559zfXl5uWbOnKnCwkJJUkVFhVasWKGFCxeqpKTEb9ukpCSlp6frzTff1B133NHm/lpaWtTS0uJ73tjY2K46AQDdU0ABbNasWaqsrNSECRM0fPhwuVyuYNcFAECHWNGbTpw4odraWpWWlvqWRUREKDc3V+vXr5ckNTQ0KDY2VnFxcTp69KjWrVun73//++fcZ1lZmebOnRv0WgEAoSmgALZkyRL9+c9/1vjx44NdDwAAAbGiNx06dEitra1nXU6YlJSk999/X5L08ccf63vf+55v8o3//u//1ogRI865z9LSUhUXF/ueNzY2avDgwV0zAACA7QIKYNHR0briiiuCXQsAAAELld6UlZWlurq6dm8fExOjmJgYeTweeTwetba2dmF1AAC7BTQL4gMPPKCnnnqKaXUBACHDit6UmJioyMhINTQ0+C1vaGhQcnJyp/btdru1bds21dTUdGo/AIDQFtAZsLfeektr167VypUrde2116pHjx5+61944YWgFAcAQHtZ0Zuio6OVmZmpqqoqTZo0SdLn9xqrqqpSUVFRp/cPAAh/AQWwPn36aPLkycGuBQCAgAWrNzU1NWnHjh2+57t27VJdXZ369eunIUOGqLi4WAUFBRo5cqSysrK0YMECNTc3+2ZFDBSXIAKAMwQUwBYtWhTsOgAA6JRg9aYNGzZo7NixvuenJ8goKChQZWWlpk6dqoMHD2r27Nmqr69XRkaGVq1a1en7fLndbrndbjU2NiohIaFT+wIAhK6Ab8R86tQpvf7669q5c6e+853vKC4uTvv27VN8fLx69+4dzBoB4JxSS1bYevzd8yfYenz4C0ZvGjNmzAV/R1ZUVMQlhwCAgAQUwD7++GPddttt2rNnj1paWvT1r39dcXFx+vnPf66WlhZVVFQEu04AAM6ru/cmLkEEAGcIaBbEWbNmaeTIkfr3v/+tXr16+ZZPnjxZVVVVQSsOAID26u69iVkQAcAZAjoD9uabb+pvf/uboqOj/Zanpqbqk08+CUphAAB0BL0JANAdBHQGzOv1tnmJxD//+U/FxcV1uigreDwepaWladSoUXaXAgAIgu7em+hLAOAMAQWwW2+9VQsWLPA9d7lcampq0pw5czR+/PigFdeVuNQDAMJLd+9N9CUAcIaALkF88sknlZeXp7S0NB0/flzf+c539OGHHyoxMVHPP/98sGsEAOCC6E0AgO4goAA2aNAgbd68WUuWLNGWLVvU1NSke++9V9OmTfP74TMAAFahNwEAuoOA7wMWFRWlu+66K5i1AADQKd25NzENPQA4Q0AB7Lnnnjvv+unTpwdUDAAAgeruvcntdsvtdquxsVEJCQl2lwMA6CIBBbBZs2b5PT958qQ+/fRTRUdHKzY2NuSbHAAg/NCbAADdQUCzIP773//2ezQ1NWn79u0aPXo0P3QGANiC3gQA6A4CCmBtufLKKzV//vyzvoEEAMAu9CYAQKgJeBKONncWFaV9+/YFc5cAAHRKd+lNTMIRPlJLVth6/N3zJ9h6fADnF1AAe+mll/yeG2O0f/9+/c///I9uvPHGoBQGAEBHdPfexCQcAOAMAQWwSZMm+T13uVy65JJLdMstt+jJJ58MSmEAAHQEvQkA0B0EFMC8Xm+w6wAAoFPoTQCA7iBok3AAAAAAAM4voDNgxcXF7d62vLw8kEMAANAh9CYAQHcQUADbtGmTNm3apJMnT2rYsGGSpA8++ECRkZG6/vrrfdu5XK7gVAkAwAXQm4DPMQsjENoCCmATJ05UXFycnn32WfXt21fS5zfALCws1E033aQHHnggqEUCAHAh3b03MQ09ADiDyxhjOvqHBg4cqFdffVXXXnut3/KtW7fq1ltv7Rb3Wznt9HS/R48eVXx8fED7sPubJgD24ZvewAXj/ffLwqU30Zc6z+5/l7z+vC+i+wp2b2pLQJNwNDY26uDBg2ctP3jwoI4dO9bpogAA6Ch6EwCgOwjoEsTJkyersLBQTz75pLKysiRJ77zzjh566CFNmTIlqAUCANAe9Cac5vQzUABCW0ABrKKiQg8++KC+853v6OTJk5/vKCpK9957r5544omgFggAQHvQmwAA3UFAASw2Nla//vWv9cQTT2jnzp2SpMsvv1wXXXRRUIsDAKC96E0AgO4goAB22v79+7V//37dfPPN6tWrl4wxTO8LALAVvQmwl92XgDIJCEJdQJNw/Otf/9K4ceN01VVXafz48dq/f78k6d577w35aX4BAOGJ3gQA6A4CCmA/+tGP1KNHD+3Zs0exsbG+5VOnTtWqVauCVhwAAO1FbwIAdAcBXYL46quv6q9//asGDRrkt/zKK6/Uxx9/HJTCAADoiO7em7gRMwA4Q0BnwJqbm/2+XTzt8OHDiomJ6XRRAAB0VHfvTW63W9u2bVNNTY3dpQAAulBAAeymm27Sc88953vucrnk9Xr1i1/8QmPHjg1ace01efJk9e3bV3fccYflxwYAhIZQ600AALQloEsQf/GLX2jcuHHasGGDTpw4oR//+Mf6xz/+ocOHD+vtt98Odo0XNGvWLN1zzz169tlnLT82ACA0hFpvAgCgLQGdARs+fLg++OADjR49Wrfffruam5s1ZcoUbdq0SZdffnmwa7ygMWPGKC4uzvLjAgBCR6j1JgAA2tLhM2AnT57UbbfdpoqKCj388MOdLmDdunV64oknVFtbq/379+vFF1/UpEmT/LbxeDx64oknVF9fr/T0dP3qV79SVlZWp48NAAgPwe5NAAB0lQ6fAevRo4e2bNkStAKam5uVnp4uj8fT5vqlS5equLhYc+bM0caNG5Wenq68vDwdOHAgaDUAALq3YPcmAAC6SkCXIN511136/e9/H5QC8vPz9dhjj2ny5Mltri8vL9fMmTNVWFiotLQ0VVRUKDY2VgsXLgzoeC0tLWpsbPR7AAC6v2D2JgAAukpAk3CcOnVKCxcu1GuvvabMzExddNFFfuvLy8uDUtyJEydUW1ur0tJS37KIiAjl5uZq/fr1Ae2zrKxMc+fODUp9AIDQYVVvAgCgMzoUwD766COlpqZq69atuv766yVJH3zwgd82LpcraMUdOnRIra2tSkpK8luelJSk999/3/c8NzdXmzdvVnNzswYNGqRly5YpJyenzX2WlpaquLjY97yxsVGDBw8OWs0AAGtZ3ZsAAOiMDgWwK6+8Uvv379fatWslSVOnTtUvf/nLswKS1V577bV2bxsTE9MtbsgJAGifUOxNe/fu1d13360DBw4oKipKjzzyiO68807b6gEAhI4OBTBjjN/zlStXqrm5OagFfVliYqIiIyPV0NDgt7yhoUHJyclddlwAQPdhdW9qj6ioKC1YsEAZGRmqr69XZmamxo8ff9ZlkQAA5wloEo7Tzmx6wRYdHa3MzExVVVX5lnm9XlVVVZ3zEkMAgLN1dW9qjwEDBigjI0OSlJycrMTERB0+fNjmqgAAoaBDAczlcp11HX1nr6tvampSXV2d6urqJEm7du1SXV2d9uzZI0kqLi7WM888o2effVbvvfeevv/976u5uVmFhYWdOq7H41FaWppGjRrVqf0AAOzVFb1p3bp1mjhxolJSUuRyubR8+fKztvF4PEpNTVXPnj2VnZ2t6urqNvdVW1ur1tZWfm8MAJAUwCWIM2bM8P2G6vjx47rvvvvOuqTihRdeaPc+N2zYoLFjx/qen54go6CgQJWVlZo6daoOHjyo2bNnq76+XhkZGVq1alWnr+13u91yu91qbGxUQkJCp/YFALBPV/Sm0/eovOeeezRlypSz1p++R2VFRYWys7O1YMEC5eXlafv27erfv79vu8OHD2v69Ol65plnznmslpYWtbS0+J5zexQACG8dCmAFBQV+z++6665OFzBmzJgLXi5SVFSkoqKiTh8LABB+uqI35efnKz8//5zrv3yPSkmqqKjQihUrtHDhQpWUlEj6PFhNmjRJJSUluuGGG865L26PAgDO0qEAtmjRoq6qAwCAgFjdm9pzj8rTZ+VuueUW3X333efdH7dHAQBn6dQkHAAAOM357lFZX18vSXr77be1dOlSLV++XBkZGcrIyNC7777b5v5iYmIUHx/v9wAAhK8OnQEDAAAXNnr0aHm93g79GY/HI4/Ho9bW1i6qCgAQChx7BoxZEAEAgeiqe1S63W5t27ZNNTU1nS0RABDCHBvAaHQAgEB01T0q+WIQAJyBSxABADhDU1OTduzY4Xt++h6V/fr105AhQ1RcXKyCggKNHDlSWVlZWrBgQafvUcntUQDAGQhgAACcwa57VAIAwh8BDACAM9hxj0om4QAAZ3Dsb8AAAAgl/DYZAJzBsQGMHzsDAAAAsJpjAxjfNAIAAACwmmMDGAAAoYQrMwDAGQhgAACEAK7MAABnYBZEAAAAhI3UkhW2Hn/3/Am2Hh+hjzNgAAAAAGARAhgAACGA34ABgDMQwAAACAH8BgwAnMGxAYxvGgEAAABYzbEBjG8aAQAAAFjNsQEMAAAAAKxGAAMAIARwaTwAOAMBDACAEMCl8QDgDAQwAAAAALAIAQwAAAAALEIAAwAAAACLEMAAAAAAwCJRdhdgF4/HI4/Ho9bWVrtLAdCNpZassPX4u+dPsPX4CB76EgA4g2PPgDHbFAAglNCXAMAZHBvAAAAAAMBqBDAAAAAAsAgBDAAAAAAsQgADAAAAAIsQwAAAAADAIgQwAAAAALAIAQwAAAAALEIAAwAAAACLODaAeTwepaWladSoUXaXAgAAfQkAHMKxAcztdmvbtm2qqamxuxQAAOhLAOAQjg1gAAAAAGA1AhgAAAAAWIQABgAAAAAWIYABAAAAgEUIYAAAAABgEQIYAAAAAFiEAAYAAAAAFiGAAQDQBSZPnqy+ffvqjjvusLsUAEAIIYABANAFZs2apeeee87uMgAAIYYABgBAFxgzZozi4uLsLgMAEGIIYAAAnGHdunWaOHGiUlJS5HK5tHz58rO28Xg8Sk1NVc+ePZWdna3q6mobKgUAdDcEMAAAztDc3Kz09HR5PJ421y9dulTFxcWaM2eONm7cqPT0dOXl5enAgQMWVwoA6G6i7C7ALh6PRx6PR62trXaXAgAIMfn5+crPzz/n+vLycs2cOVOFhYWSpIqKCq1YsUILFy5USUlJh47V0tKilpYW3/PGxsbAigYAdAuOPQPmdru1bds21dTU2F0KAKAbOXHihGpra5Wbm+tbFhERodzcXK1fv77D+ysrK1NCQoLvMXjw4GCWCwAIMY4NYAAABOLQoUNqbW1VUlKS3/KkpCTV19f7nufm5urOO+/UK6+8okGDBp0znJWWluro0aO+x969e7u0fgCAvRx7CSIAAF3ptddea9d2MTExiomJ4dJ4AHAIzoABANABiYmJioyMVENDg9/yhoYGJScnB7xfLo0HAGcggAEA0AHR0dHKzMxUVVWVb5nX61VVVZVycnJsrAwA0B1wCSIAAGdoagPbiS4AABelSURBVGrSjh07fM937dqluro69evXT0OGDFFxcbEKCgo0cuRIZWVlacGCBWpubvbNihgILkEEAGcggAEAcIYNGzZo7NixvufFxcWSpIKCAlVWVmrq1Kk6ePCgZs+erfr6emVkZGjVqlVnTczREW63W263W42NjUpISOj0GAAAoYkABgDAGcaMGSNjzHm3KSoqUlFRkUUVAQDCBb8BAwAgBHg8HqWlpWnUqFF2lwIA6EIEMAAAQgCzIAKAMxDAAAAAAMAiBDAAAAAAsAgBDACAEMBvwADAGQhgAACEAH4DBgDOQAADAAAAAIsQwAAAAADAItyIGQCAEODxeOTxeNTa2mp3KQA6IbVkhd0laPf8CXaXgPPgDBgAACGA34ABgDM4NoAx2xQAAAAAqzk2gPFNIwAAAACrOTaAAQAAAIDVCGAAAIQALo0HAGcggAEAEAK4NB4AnIEABgAAAAAWIYABAAAAgEUIYAAAAABgEQIYAAAAAFiEAAYAQAhgFkQAcAYCGAAAIYBZEAHAGQhgAAAAAGARAhgAAAAAWIQABgAAAAAWIYABAAAAgEUIYAAAAABgEQIYAAAAAFiEAAYAAAAAFiGAAQAQArgRMwA4AwEMAIAQwI2YAcAZCGAAAAAAYBECGAAAAABYhAAGAAAAABYhgAEAAACARQhgAAAAAGARAhgAAAAAWIQABgAAAAAWIYABAAAAgEXCIoC9/PLLGjZsmK688kr97ne/s7scAIDD0ZcAAOcSZXcBnXXq1CkVFxdr7dq1SkhIUGZmpiZPnqyLL77Y7tIAAA5EXwIAnE+3PwNWXV2ta6+9VgMHDlTv3r2Vn5+vV1991e6yAAAORV8CAJyP7QFs3bp1mjhxolJSUuRyubR8+fKztvF4PEpNTVXPnj2VnZ2t6upq37p9+/Zp4MCBvucDBw7UJ598YkntAIDwQ18CAHQl2wNYc3Oz0tPT5fF42ly/dOlSFRcXa86cOdq4caPS09OVl5enAwcOWFwpAMAJ6EsAgK5kewDLz8/XY489psmTJ7e5vry8XDNnzlRhYaHS0tJUUVGh2NhYLVy4UJKUkpLi983iJ598opSUlHMer6WlRY2NjX4PAABOoy8BALpSSE/CceLECdXW1qq0tNS3LCIiQrm5uVq/fr0kKSsrS1u3btUnn3yihIQErVy5Uo888sg591lWVqa5c+d2ee0AYIXUkhW2Hn/3/Am2Ht9q9CUAuDB60/nZfgbsfA4dOqTW1lYlJSX5LU9KSlJ9fb0kKSoqSk8++aTGjh2rjIwMPfDAA+edaaq0tFRHjx71Pfbu3dulYwAAhA/6EgCgs0L6DFh7feMb39A3vvGNdm0bExOjmJiYLq4IAOBkgfQlj8cjj8ej1tbWLq4OAGCnkD4DlpiYqMjISDU0NPgtb2hoUHJysk1VAQCcqiv7ktvt1rZt21RTU9Op/QAAQltIB7Do6GhlZmaqqqrKt8zr9aqqqko5OTk2VgYAcCL6EgCgs2y/BLGpqUk7duzwPd+1a5fq6urUr18/DRkyRMXFxSooKNDIkSOVlZWlBQsWqLm5WYWFhZ06Lpd6AADaQl8CAHQl2wPYhg0bNHbsWN/z4uJiSVJBQYEqKys1depUHTx4ULNnz1Z9fb0yMjK0atWqs34A3VFut1tut1uNjY1KSEjo1L4AAOGDvgQA6Eq2B7AxY8bIGHPebYqKilRUVGRRRQAAJ6MvAQC6Ukj/BgwAAKfweDxKS0vTqFGj7C4FANCFCGAAAIQAZkEEAGdwbADjm0YAAAAAVnNsAOObRgBAKOGLQQBwBscGMAAAQglfDAKAM9g+C6LdTs901djYGPA+vC2fBqscAOhWOvPeefrPXmjGQaehLwHorM68fwSD3e9Bod6bXMbhne+f//ynBg8ebHcZAOBYe/fu1aBBg+wuI2TQlwDAfl3ZmxwfwLxer/bt26e4uDi5XK4Lbt/Y2KjBgwdr7969io+Pt6BCezhhnE4Yo8Q4w0m4jdEYo2PHjiklJUUREVwRf1pH+9KZwu3vSWfwWnyO1+ELvBZf4LX4wpdfi7i4uC7vTY6/BDEiIiKgdBsfH++Iv6xOGKcTxigxznASTmNMSEiwu4SQE2hfOlM4/T3pLF6Lz/E6fIHX4gu8Fl84/Vp0dW/iK0cAAAAAsAgBDAAAAAAsEvnoo48+ancR3U1kZKTGjBmjqKjwvoLTCeN0whglxhlOnDBGdB5/T77Aa/E5Xocv8Fp8gdfiC1a+Fo6fhAMAAAAArMIliAAAAABgEQIYAAAAAFiEAAYAAAAAFiGAAQAAAIBFCGAd5PF4lJqaqp49eyo7O1vV1dV2l9Ru69at08SJE5WSkiKXy6Xly5f7rTfGaPbs2RowYIB69eql3Nxcffjhh37bHD58WNOmTVN8fLz69Omje++9V01NTVYO47zKyso0atQoxcXFqX///po0aZK2b9/ut83x48fldrt18cUXq3fv3vrP//xPNTQ0+G2zZ88eTZgwQbGxserfv78eeughnTp1ysqhnNfTTz+t6667znfDwJycHK1cudK3PhzGeKb58+fL5XLp/vvv9y0Lh3E++uijcrlcfo+rr77atz4cxgjrdOce1R5OeY8PRLi+R7bXJ598orvuuksXX3yxevXqpREjRmjDhg2+9eHwGac9Wltb9cgjj2jo0KHq1auXLr/8cv3sZz/Tl+fcC9fXwqrPuVu2bNFNN92knj17avDgwfrFL37R8WIN2m3JkiUmOjraLFy40PzjH/8wM2fONH369DENDQ12l9Yur7zyinn44YfNCy+8YCSZF1980W/9/PnzTUJCglm+fLnZvHmz+cY3vmGGDh1qPvvsM982t912m0lPTzd///vfzZtvvmmuuOIK8+1vf9vqoZxTXl6eWbRokdm6daupq6sz48ePN0OGDDFNTU2+be677z4zePBgU1VVZTZs2GC++tWvmhtuuMG3/tSpU2b48OEmNzfXbNq0ybzyyismMTHRlJaW2jGkNr300ktmxYoV5oMPPjDbt283P/3pT02PHj3M1q1bjTHhMcYvq66uNqmpqea6664zs2bN8i0Ph3HOmTPHXHvttWb//v2+x8GDB33rw2GMsEZ371Ht4ZT3+I4K5/fI9jh8+LC59NJLzYwZM8w777xjPvroI/PXv/7V7Nixw7dNOHzGaY958+aZiy++2Lz88stm165dZtmyZaZ3797mqaee8m0Trq+FFZ9zjx49apKSksy0adPM1q1bzfPPP2969eplfvOb33SoVgJYB2RlZRm32+173traalJSUkxZWZmNVQXmzL+YXq/XJCcnmyeeeMK37MiRIyYmJsY8//zzxhhjtm3bZiSZmpoa3zYrV640LpfLfPLJJ9YV3wEHDhwwkswbb7xhjPl8TD169DDLli3zbfPee+8ZSWb9+vXGmM//AUdERJj6+nrfNk8//bSJj483LS0t1g6gA/r27Wt+97vfhd0Yjx07Zq688kqzevVq87Wvfc334SJcxjlnzhyTnp7e5rpwGSOsEU49qr2c9B5/LuH+HtkeP/nJT8zo0aPPuT5cP+O0ZcKECeaee+7xWzZlyhQzbdo0Y4xzXouu+pz761//2vTt29fv38dPfvITM2zYsA7VxyWI7XTixAnV1tYqNzfXtywiIkK5ublav369jZUFx65du1RfX+83voSEBGVnZ/vGt379evXp00cjR470bZObm6uIiAi98847ltfcHkePHpUk9evXT5JUW1urkydP+o3z6quv1pAhQ/zGOWLECCUlJfm2ycvLU2Njo/7xj39YWH37tLa2asmSJWpublZOTk7YjdHtdmvChAl+45HC6//lhx9+qJSUFF122WWaNm2a9uzZIym8xoiuFe496lyc8B5/IU54j7yQl156SSNHjtSdd96p/v376ytf+YqeeeYZ3/pw/YzTlhtuuEFVVVX64IMPJEmbN2/WW2+9pfz8fEnOei2+LFjjXr9+vW6++WZFR0f7tsnLy9P27dv173//u931cNvrdjp06JBaW1v93qQkKSkpSe+//75NVQVPfX29JLU5vtPr6uvr1b9/f7/1UVFR6tevn2+bUOL1enX//ffrxhtv1PDhwyV9Pobo6Gj16dPHb9szx9nW63B6Xah49913lZOTo+PHj6t379568cUXlZaWprq6urAZ45IlS7Rx40bV1NSctS5c/l9mZ2ersrJSw4YN0/79+zV37lzddNNN2rp1a9iMEV0v3HtUW8L9Pb49nPAe2R4fffSRnn76aRUXF+unP/2pampq9MMf/lDR0dEqKCgIy88451JSUqLGxkZdffXVioyMVGtrq+bNm6dp06ZJCs/Pe+0RrHHX19dr6NChZ+3j9Lq+ffu2qx4CGMKW2+3W1q1b9dZbb9ldSpcYNmyY6urqdPToUf3v//6vCgoK9MYbb9hdVtDs3btXs2bN0urVq9WzZ0+7y+kyp7+VlKTrrrtO2dnZuvTSS/XnP/9ZvXr1srEyILSF+3v8hTjlPbI9vF6vRo4cqccff1yS9JWvfEVbt25VRUWFCgoKbK7OWn/+85+1ePFi/elPf9K1116ruro63X///UpJSXHcaxHKuASxnRITExUZGXnW7EENDQ1KTk62qargOT2G840vOTlZBw4c8Ft/6tQpHT58OOReg6KiIr388stau3atBg0a5FuenJysEydO6MiRI37bnznOtl6H0+tCRXR0tK644gplZmaqrKxM6enpeuqpp8JmjLW1tTpw4ICuv/56RUVFKSoqSm+88YZ++ctfKioqSklJSWExzjP16dNHV111lXbs2BE2/y/R9cK9R53JCe/xF+LU98i2DBgwQGlpaX7LrrnmGt/l3OH2Ged8HnroIZWUlOhb3/qWRowYobvvvls/+tGPVFZWJslZr8WXBWvcwfo3QwBrp+joaGVmZqqqqsq3zOv1qqqqSjk5OTZWFhxDhw5VcnKy3/gaGxv1zjvv+MaXk5OjI0eOqLa21rfNmjVr5PV6lZ2dbXnNbTHGqKioSC+++KLWrFlz1mnizMxM9ejRw2+c27dv1549e/zG+e677/r9I1y9erXi4+PPeoMPJV6vVy0tLWEzxnHjxundd99VXV2d7zFy5EhNmzbN99/hMM4zNTU1aefOnRowYEDY/L9E1wv3HnWak9/jz+TU98i23HjjjWfdjuCDDz7QpZdeKil8PuO0x6effqqICP+P95GRkfJ6vZKc9Vp8WbDGnZOTo3Xr1unkyZO+bVavXq1hw4a1+/JDSUxD3xFLliwxMTExprKy0mzbts1873vfM3369PGbPSiUHTt2zGzatMls2rTJSDLl5eVm06ZN5uOPPzbGfD49Z58+fcxf/vIXs2XLFnP77be3OT3nV77yFfPOO++Yt956y1x55ZUhNS3p97//fZOQkGBef/11v2m9P/30U9829913nxkyZIhZs2aN2bBhg8nJyTE5OTm+9aen5b311ltNXV2dWbVqlbnkkktCalrekpIS88Ybb5hdu3aZLVu2mJKSEuNyucyrr75qjAmPMbblyzN8GRMe43zggQfM66+/bnbt2mXefvttk5ubaxITE82BAweMMeExRliju/eo9nDKe3ygwvE9sj2qq6tNVFSUmTdvnvnwww/N4sWLTWxsrPnjH//o2yYcPuO0R0FBgRk4cKBvGvoXXnjBJCYmmh//+Me+bcL1tbDic+6RI0dMUlKSufvuu83WrVvNkiVLTGxsLNPQd7Vf/epXZsiQISY6OtpkZWWZv//973aX1G5r1641ks56FBQUGGM+n6LzkUceMUlJSSYmJsaMGzfObN++3W8f//rXv8y3v/1t07t3bxMfH28KCwvNsWPHbBhN29oanySzaNEi3zafffaZ+cEPfmD69u1rYmNjzeTJk83+/fv99rN7926Tn59vevXqZRITE80DDzxgTp48afFozu2ee+4xl156qYmOjjaXXHKJGTdunC98GRMeY2zLmR8uwmGcU6dONQMGDDDR0dFm4MCBZurUqX73rgmHMcI63blHtYdT3uMDFY7vke31f//3f2b48OEmJibGXH311ea3v/2t3/pw+IzTHo2NjWbWrFlmyJAhpmfPnuayyy4zDz/8sN+06eH6Wlj1OXfz5s1m9OjRJiYmxgwcONDMnz+/w7W6jPnSrbEBAAAAAF2G34ABAAAAgEUIYAAAAABgEQIYAAAAAFiEAAYAAAAAFiGAAQAAAIBFCGAAAAAAYBECGAAAAABYhAAGAAAAABYhgAFdbMaMGXK5XHK5XOrRo4eSkpL09a9/XQsXLpTX67W7PACAw9CXAHsRwAAL3Hbbbdq/f792796tlStXauzYsZo1a5b+4z/+Q6dOneqy4544caLL9g0A6L7oS4B9CGCABWJiYpScnKyBAwfq+uuv109/+lP95S9/0cqVK1VZWSlJOnLkiL773e/qkksuUXx8vG655RZt3rzZbz+PPfaY+vfvr7i4OH33u99VSUmJMjIyfOtnzJihSZMmad68eUpJSdGwYcMkSXv37tU3v/lN9enTR/369dPtt9+u3bt3++37d7/7na655hr17NlTV199tX7961936WsCALAPfQmwDwEMsMktt9yi9PR0vfDCC5KkO++8UwcOHNDKlStVW1ur66+/XuPGjdPhw4clSYsXL9a8efP085//XLW1tRoyZIiefvrps/ZbVVWl7du3a/Xq1Xr55Zd18uRJ5eXlKS4uTm+++abefvtt9e7dW7fddpvvm8jFixdr9uzZmjdvnt577z09/vjjeuSRR/Tss89a94IAAGxFXwIsYgB0qYKCAnP77be3uW7q1KnmmmuuMW+++aaJj483x48f91t/+eWXm9/85jfGGGOys7ON2+32W3/jjTea9PR0v2MlJSWZlpYW37I//OEPZtiwYcbr9fqWtbS0mF69epm//vWvvuP86U9/8tv3z372M5OTkxPAiAEAoYy+BNgryu4ACDiZMUYul0ubN29WU1OTLr74Yr/1n332mXbu3ClJ2r59u37wgx/4rc/KytKaNWv8lo0YMULR0dG+55s3b9aOHTsUFxfnt93x48e1c+dONTc3a+fOnbr33ns1c+ZM3/pTp04pISEhKOMEAHQP9CWg6xHAABu99957Gjp0qJqamjRgwAC9/vrrZ23Tp0+fDu3zoosu8nve1NSkzMxMLV68+KxtL7nkEjU1NUmSnnnmGWVnZ/utj4yM7NCxAQDdG30J6HoEMMAma9as0bvvvqsf/ehHGjRokOrr6xUVFaXU1NQ2tx82bJhqamo0ffp037KampoLHuf666/X0qVL1b9/f8XHx5+1PiEhQSkpKfroo480bdq0gMcDAOje6EuANSIfffTRR+0uAghny5cv19GjR5Wbm6ujR49qx44dWrRokdxut2699VaVlZXp8ssv12uvvabnnntOl112mSIjI7Vt2zZVVFT4GlGvXr00d+5cDRo0SBdddJGefvppvfjii+rXr5/uu+8+37GOHz+ub33rW77jX3PNNXruuee0YsUKXX755fJ6vdq8ebPKy8s1YsQIxcfHKyEhQQ8//LDi4uLUt29f7du3T6+88orWrl2rnJwcu146AEAXoC8B9uIMGGCBVatWacCAAYqKilLfvn2Vnp6uX/7ylyooKFBExOeTkb7yyit6+OGHVVhYqIMHDyo5OVk333yzkpKSJEnTpk3TRx99pAcffFDHjx/XN7/5Tc2YMUPV1dXnPXZsbKzWrVunn/zkJ5oyZYqOHTumgQMHaty4cb5vHr/73e8qNjZWTzzxhB566CFddNFFGjFihO6///6ufWEAALagLwH2cRljjN1FAAjM17/+dSUnJ+sPf/iD3aUAAEBfAtqBM2BAN/Hpp5+qoqJCeXl5ioyM1PPPP6/XXntNq1evtrs0AIAD0ZeAwHAGDOgmPvvsM02cOFGbNm3S8ePHNWzYMP2///f/NGXKFLtLAwA4EH0JCAwBDAAAAAAsEmF3AQAAAADgFAQwAAAAALAIAQwAAAAALEIAAwAAAACLEMAAAAAAwCIEMAAAAACwCAEMAAAAACxCAAMAAAAAixDAAAAAAMAi/x9f6HHQ6E9eqAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -529,75 +549,92 @@ } ], "source": [ - "plt.figure(figsize=(10,10))\n", - "degrees = pd.Series({k: v for k, v in nx.degree(G)})\n", - "degrees.plot.hist()\n", - "plt.yscale(\"log\")" + "plt.figure(figsize=(10,4))\n", + "for ith, G in enumerate([G_bu, G_tu]):\n", + " plt.subplot(1,2,ith+1)\n", + " degrees = pd.Series({k: v for k, v in nx.degree(G)})\n", + " degrees.plot.hist()\n", + " plt.yscale(\"log\")\n", + " plt.xlabel(\"Degree\")" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 18, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "array([5.030000e+00, 5.825000e+01, 9.844000e+01, 2.156560e+02,\n", - " 1.530595e+04])" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "[5.03 58.25 98.44 215.66 15305.95]\n", + "[4.21 48.51 76.40 147.10 15305.95]\n" + ] } ], "source": [ - "allEdgesWeights = pd.Series({(d[0], d[1]): d[2][\"weight\"] for d in G.edges(data=True)})\n", - "np.quantile(allEdgesWeights.values,[0.10,0.50,0.70,0.9,1.0])" + "quant_dist = {}\n", + "\n", + "for ith, G in enumerate([G_bu, G_tu]):\n", + " allEdgesWeights = pd.Series({(d[0], d[1]): d[2][\"weight\"] for d in G.edges(data=True)})\n", + "\n", + " quant_dist[G.name] = np.quantile(allEdgesWeights.values,[0.10,0.50,0.70,0.9,1.0]) \n", + " print(quant_dist[G.name])" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAFzCAYAAADWlSPEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3RU5b3/8c8kIYEACUIgISUQRIOmQBBIIgpKJOWii6r0KKIeA0WonkmljXiQ4xG01oJQkaqzpPYIqcsLlFWB03rEQgRRQQyXwMEoAoaLkoBoyQ0JIXl+f/hjjmO4JLMns+fyfq01a2X23tnz3TuT+eYzzzM7DmOMEQAAAADAKxF2FwAAAAAAwYxQBQAAAAAWEKoAAAAAwAJCFQAAAABYQKgCAAAAAAsIVQAAAABgAaEKAAAAACwgVAEAAACABVF2F2C3xsZGHTlyRB07dpTD4bC7HAAIG8YYVVdXKzk5WRERvMd3Fn0JAOzjbW8K+1B15MgRpaSk2F0GAIStw4cPq0ePHnaXYTuXyyWXy6XTp09r//79dpcDAGGtpb3JYYwxrVhPwKusrFSnTp10+PBhxcXF2V0OAISNqqoqpaSk6MSJE4qPj7e7nIBBXwIA+3jbm8J+pOrs1Iq4uDiaFwDYgClunuhLAGC/lvamsJ3E7nK5lJ6erszMTLtLAQAAABDEwjZUOZ1OlZaWqri42O5SAAAAAASxsA1VAAAAAOALhCoAAAAAsIBQBQAAAAAWEKoAAAAAwAJCFQAAAABYQKgCAAAAAAsIVQAAAABgAaEKAAAAACwgVAEAEABcLpfS09OVmZlpdykAgBZyGGOM3UXYqaqqSvHx8aqsrFRcXJxX+0h9+M0Lrj8w7yav9gsAocwXr7+hiL4EAPbx9jWYkSoAAAAAsIBQBQAAAAAWEKoAAAAAwAJCFQAAAABYQKgCAAAAAAsIVQAAAABgAaEKAAAAACwgVAEAAACABYQqAAAAALCAUAUAAAAAFhCqAAAAAMCCKLsLAAAA/pX68JsXXH9g3k1+qgQAQgMjVQAAAABgAaEKAAAAACwgVAEAEABcLpfS09OVmZlpdykAgBYiVAEAEACcTqdKS0tVXFxsdykAgBYiVAEAAACABYQqAAAAALCAUAUAAAAAFhCqAAAAAMCCsA1VXGUJAAAAgC9E2V2AXZxOp5xOp6qqqhQfH9+qj8V/rgcAAABCV9iOVAEAAACALxCqAAAAAMACQhUAAAAAWECoAgAAAAALCFUAAAAAYAGhCgAAAAAsIFQBAAAAgAWEKgAAAACwgFAFAAAAABYQqgAAAADAAkIVAAAAAFhAqAIAIAC4XC6lp6crMzPT7lIAAC1EqAIAIAA4nU6VlpaquLjY7lIAAC1EqAIAAAAACwhVAAAAAGABoQoAAAAALCBUAQAAAIAFhCoAAAAAsIBQBQAAAAAWEKoAAAAAwAJCFQAAAABYQKgCAAAAAAsIVQAAAABgAaEKAAAAACwgVAEAAACABYQqAAAAALCAUAUAAAAAFhCqAAAAAMACQhUAAAAAWECoAgAAAAALCFUAAAAAYAGhCgAAAAAsiLK7AAAAEFhSH37zgusPzLvJT5UAQHBgpAoAAAAALCBUAQAAAIAFhCoAAAKAy+VSenq6MjMz7S4FANBChCoAAAKA0+lUaWmpiouL7S4FANBChCoAAAAAsIBQBQAAAAAWEKoAAAAAwAJCFQAAAABYQKgCAAAAAAsIVQAAAABgAaEKAAAAACwgVAEAAACABYQqAAAAALCAUAUAAAAAFhCqAAAAAMCCkAlVJ0+eVK9evTRjxgy7SwEAAAAQRkImVD355JO6+uqr7S4DAAAAQJgJiVC1d+9effrppxo7dqzdpQAAAAAIM7aHqo0bN2rcuHFKTk6Ww+HQqlWrmmzjcrmUmpqqtm3bKjs7Wx999JHH+hkzZmju3Ln+KhkAAAAA3GwPVbW1tcrIyJDL5Trn+uXLl6ugoEBz5szR9u3blZGRodGjR+vYsWOSpNWrVystLU1paWn+LBsAAAAAJElRdhcwduzYC07bW7hwoaZOnarJkydLkhYvXqw333xTS5Ys0cMPP6wPP/xQy5Yt04oVK1RTU6P6+nrFxcVp9uzZ59xfXV2d6urq3Perqqp8e0AAAAAAwortI1UXcvr0aW3btk25ubnuZREREcrNzdXmzZslSXPnztXhw4d14MAB/f73v9fUqVPPG6jObh8fH+++paSktPpxAAAAAAhdAR2qjh8/roaGBiUmJnosT0xMVEVFhVf7nDVrliorK923w4cP+6JUAAAAAGHK9ul/vjRp0qSLbhMTE6OYmJjWLwYAAABAWAjokaqEhARFRkbq6NGjHsuPHj2qpKQkm6oCAAAAgP8T0KEqOjpagwcPVlFRkXtZY2OjioqKNHToUBsrAwAAAIDv2D79r6amRvv27XPfLysrU0lJiTp37qyePXuqoKBAeXl5GjJkiLKysrRo0SLV1ta6rwYIAAAAAHayPVRt3bpVOTk57vsFBQWSpLy8PBUWFmrChAn66quvNHv2bFVUVGjgwIFas2ZNk4tXAAAAAIAdbA9VI0aMkDHmgtvk5+crPz/fTxUBAAAAQPMF9GeqWpPL5VJ6eroyMzPtLgUAAABAEAvbUOV0OlVaWqri4mK7SwEAAAAQxMI2VAEAAACALxCqAAAAAMACQhUAAAAAWECoAgAAAAALCFUAAAAAYAGhCgAAAAAsIFQBABAA+P+JABC8ouwuAFLqw29ecP2BeTf5qRIAgF2cTqecTqeqqqoUHx9vdzkAgBYI25Eq3hEEAAAA4AthG6qcTqdKS0tVXFxsdykAAAAAgljYhioAAAAA8AVCFQAAAABYQKgCAAAAAAsIVQAAAABgAaEKAAAAACwgVAEAAACABYQqAAAAALCAUAUAAAAAFhCqAAAAAMCCsA1VLpdL6enpyszMtLsUAAAAAEEsyptv+vzzz3XppZf6uha/cjqdcjqdqqqqUnx8vN3loBWlPvzmBdcfmHeTnyoB0JpCoTcBAIKTVyNVl112mXJycvTKK6/o1KlTvq4JAIAWozcBAOzi1UjV9u3btXTpUhUUFCg/P18TJkzQlClTlJWV5ev6EAIYKQLgD/QmAIBdvBqpGjhwoP7whz/oyJEjWrJkicrLyzVs2DD169dPCxcu1FdffeXrOgEAuCB6EwDALpYuVBEVFaXx48drxYoVeuqpp7Rv3z7NmDFDKSkpuueee1ReXu6rOgEAaBZ6EwDA37ya/nfW1q1btWTJEi1btkzt27fXjBkzNGXKFH3xxRd6/PHHdfPNN+ujjz7yVa1hi+lzANB89CYAgL95FaoWLlyopUuXas+ePbrxxhv18ssv68Ybb1RExHcDX71791ZhYaFSU1N9WStCFKERgC/QmwAAdvEqVL3wwgv6+c9/rkmTJql79+7n3KZbt2566aWXLBWH4HCxUAQA/kBvAgDYxatQtXfv3otuEx0drby8PG92DwBAi9GbAAB28SpULV26VB06dNBtt93msXzFihU6efIkDQt+xUgZAIneBACwj1ehau7cufrjH//YZHm3bt00bdo0Ghd8itAEoDnoTQAAu3h1SfVDhw6pd+/eTZb36tVLhw4dslyUP7hcLqWnpyszM9PuUgAAPhAKvQkAEJy8Gqnq1q2bdu3a1eQKSjt37lSXLl18UVerczqdcjqdqqqqUnx8vN3lAAAsCoXehPDAVW+B0OPVSNXEiRP1wAMPaP369WpoaFBDQ4PeeecdTZ8+XXfccYevawQA4KLoTQAAu3g1UvXEE0/owIEDGjlypKKivttFY2Oj7rnnHv3ud7/zaYG4ON7xsobzB4QGehMQGJrzWWh6K0KNV6EqOjpay5cv1xNPPKGdO3eqXbt26t+/v3r16uXr+uADVi/0wAsfgGBAb0KoCPQ3+7iAFNCUV6HqrLS0NKWlpfmqFgQoXjwBBBN6EwDA37wKVQ0NDSosLFRRUZGOHTumxsZGj/XvvPOOT4oDAKC56E0IFK39ZmSgj2QB4cirUDV9+nQVFhbqpptuUr9+/eRwOHxdFwAALUJvAr5D6AL8z6tQtWzZMv3lL3/RjTfe6Ot6AADwCr3Jf/ijHQA8eXVJ9ejoaF122WW+rgUAAK/RmwAAdvFqpOrBBx/UH/7wBz3//PNMrwAABAR6E9A8jDQCvudVqHr//fe1fv16vfXWW/rxj3+sNm3aeKx/4403fFIcAADNRW8CfIOr/gIt51Wo6tSpk2699VZf1wIAgNfoTQAAu3gVqpYuXerrOgAAsITeFDiYXgYg3Hh1oQpJOnPmjNatW6c//vGPqq6uliQdOXJENTU1PisOAICWoDcBAOzg1UjVwYMHNWbMGB06dEh1dXX6yU9+oo4dO+qpp55SXV2dFi9e7Os6fc7lcsnlcqmhocHuUgAAPhAKvQnBgc8cAfghr0aqpk+friFDhuif//yn2rVr515+6623qqioyGfFtSan06nS0lIVFxfbXQoAwAdCoTcBAIKTVyNV7733njZt2qTo6GiP5ampqfryyy99UhgAAC1BbwoefOYKQKjxaqSqsbHxnNPmvvjiC3Xs2NFyUQAAtBS9CQBgF69GqkaNGqVFixbpxRdflCQ5HA7V1NRozpw5uvHGG31aIAAAzUFvQnPxmSgAvuZVqHr66ac1evRopaen69SpU7rzzju1d+9eJSQk6PXXX/d1jYCtmKYCBAd6E84iNAHwN69CVY8ePbRz504tW7ZMu3btUk1NjaZMmaK77rrL48PBAAD4C70JAGAXr0KVJEVFRenuu+/2ZS0AAFhCbwoNzBAAEGy8ClUvv/zyBdffc889XhUDAIC36E3hg+l9wY/gjFDjVaiaPn26x/36+nqdPHlS0dHRio2NpXEBAPyO3gQAsItXl1T/5z//6XGrqanRnj17NGzYMD4MDACwBb0JAGAXr0LVuVx++eWaN29ek3cKAQCwC70JAOAPPgtV0ncfED5y5IgvdwkAgCV29aaTJ0+qV69emjFjht8fGwDgX159puq///u/Pe4bY1ReXq7nn39e1157rU8KAwCgJQKtNz355JO6+uqr/f64AAD/8ypU3XLLLR73HQ6HunbtqhtuuEFPP/20TwoDggVXMAICQyD1pr179+rTTz/VuHHjtHv3br8+NgDA/7ya/tfY2Ohxa2hoUEVFhV577TV1797d1zUCAHBRvupNGzdu1Lhx45ScnCyHw6FVq1Y12cblcik1NVVt27ZVdna2PvroI4/1M2bM0Ny5cy0fEwAgOPj0M1UAAAS72tpaZWRkyOVynXP98uXLVVBQoDlz5mj79u3KyMjQ6NGjdezYMUnS6tWrlZaWprS0NH+WDQCwkVfT/woKCpq97cKFC715CAAAWsRXvWns2LEaO3bsBb936tSpmjx5siRp8eLFevPNN7VkyRI9/PDD+vDDD7Vs2TKtWLFCNTU1qq+vV1xcnGbPnn3O/dXV1amurs59v6qqqtnHAQAIDF6Fqh07dmjHjh2qr69X3759JUmfffaZIiMjNWjQIPd2DofDN1W2ApfLJZfLpYaGBrtLAQD4gD960+nTp7Vt2zbNmjXLvSwiIkK5ubnavHmzJGnu3LnuqX+FhYXavXv3eQPV2e0ff/xxr2sCANjPq1A1btw4dezYUX/+8591ySWXSPruny5OnjxZw4cP14MPPujTIluD0+mU0+lUVVWV4uPj7S4HAGCRP3rT8ePH1dDQoMTERI/liYmJ+vTTT73a56xZszxG2aqqqpSSkmKpTgCAf3kVqp5++mn94x//cDctSbrkkkv029/+VqNGjQqKUAX4C1cHBPwjEHvTpEmTLrpNTEyMYmJiWr8YAECr8SpUVVVV6auvvmqy/KuvvlJ1dbXlogAAaCl/9KaEhARFRkbq6NGjHsuPHj2qpKQknzwGAN6QRPDx6up/t956qyZPnqw33nhDX3zxhb744gv99a9/1ZQpUzR+/Hhf1wgAwEX5ozdFR0dr8ODBKioqci9rbGxUUVGRhg4d6pPHAAAEH69GqhYvXqwZM2bozjvvVH19/Xc7iorSlClTtGDBAp8WCABAc/iqN9XU1Gjfvn3u+2VlZSopKVHnzp3Vs2dPFRQUKC8vT0OGDFFWVpYWLVqk2tpa99UAAQDhx2GMMd5+c21trfbv3y9J6tOnj9q3b++zwvzl7IUqKisrFRcX59U+LjZEDVjBFAeEKl+8/p6L1d60YcMG5eTkNFmel5enwsJCSdLzzz+vBQsWqKKiQgMHDtSzzz6r7Oxsy7VL9CWgOeiNaC3evgZ7NVJ1Vnl5ucrLy3XdddepXbt2MsYE9GXUAQChz2pvGjFihC72fmN+fr7y8/OtlgoACBFefabq66+/1siRI5WWlqYbb7xR5eXlkqQpU6Zw5T8AgC3oTQAAu3gVqn7961+rTZs2OnTokGJjY93LJ0yYoDVr1visOAAAmivYe5PL5VJ6eroyMzPtLgUA0EJeTf/7xz/+obfffls9evTwWH755Zfr4MGDPikMAICWCPbexD+lB4Dg5dVIVW1trce7gGd98803/ANDAIAt6E0AALt4FaqGDx+ul19+2X3f4XCosbFR8+fPP+cVkwAAaG30JgCAXbya/jd//nyNHDlSW7du1enTp/Xv//7v+vjjj/XNN9/ogw8+8HWNAABcFL0JCB8X+7cBXHId/ubVSFW/fv302WefadiwYbr55ptVW1ur8ePHa8eOHerTp4+vawQA4KLoTQAAu7R4pKq+vl5jxozR4sWL9cgjj7RGTQC+h3fjgIujNwEA7NTikao2bdpo165drVELAABeoTcBAOzk1fS/u+++Wy+99JKvawEAwGv0JgCAXby6UMWZM2e0ZMkSrVu3ToMHD1b79u091i9cuNAnxQEA0Fz0JgCAXVoUqj7//HOlpqZq9+7dGjRokCTps88+89jG4XD4rjoAF8VnrhDuQqU3uVwuuVwuNTQ02F0KAKCFHMYY09yNIyMjVV5erm7dukmSJkyYoGeffVaJiYmtVmBrO/uf6ysrKxUXF+fVPi72Ry1gJ0IVApUvXn+l0OtN9CWg9dEbcT7evga36DNVP8xfb731lmpra1uyCwAAfIreBACwm1cXqjirBYNcAAD4Bb0JAOBvLQpVDoejybz0YJinfi4ul0vp6enKzMy0uxQAgAWh1JsAAMGpRReqMMZo0qRJiomJkSSdOnVK9913X5MrLL3xxhu+q7CVOJ1OOZ1O97xJAEBwCqXeBAAITi0KVXl5eR737777bp8WAwBAS9GbAAB2a1GoWrp0aWvVAQCAV+hNAAC7efXPfwEAAIBgxf94hK8RqoAQR+MAAABoXZYuqQ4AAAAA4Y5QBQBAAOBffQBA8CJUAQAQAJxOp0pLS1VcXGx3KQCAFuIzVUCY4zNXAAAA1jBSBQAAAAAWMFIFAAAAfA+zONBShCoAF0RjAQAAuDCm/wEAAACABYQqAAAAALCAUAUAAAAAFhCqAAAAAMACQhUAAAAAWMDV/wBYwtUBAQBAuCNUAQAAAC3AG4r4Iab/AQAAAIAFhCoAAAKAy+VSenq6MjMz7S4FANBChCoAAAKA0+lUaWmpiouL7S4FANBChCoAAAAAsIBQBQAAAAAWcPU/AK2KKyQBAIBQx0gVAAAAAFhAqAIAAAAACwhVAAAAAGABn6kCAAAAfIjPE4cfQhWAgEZjAgAAgY7pfwAAAABgQdiOVLlcLrlcLjU0NNhdChDWLjYSBQAAEOjCdqTK6XSqtLRUxcXFdpcCAAAAIIiF7UgVAAAAYAc+Lxx6wnakCgAAAAB8gVAFAEAAcLlcSk9PV2Zmpt2lAABaiFAFAEAA4LO+ABC8CFUAAAAAYAGhCgAAAAAsIFQBAAAAgAWEKgAAAACwgFAFAAAAABbwz38BBDX+gSIAALAbI1UAAAAAYAGhCgAAAAAsYPofAAAAEECY2h58GKkCAAAAAAsIVQAAAABgAaEKAAAAACwgVAEAAACABYQqAAAAALCAq/8BCGlcQQkAALQ2QhUAAAAQRHjDMPAw/Q8AAAAALCBUAQAQAFwul9LT05WZmWl3KQCAFmL6HwAAAcDpdMrpdKqqqkrx8fF2lwMgiDE90P8YqQIAAAAACwhVAAAAAGABoQoAAAAALCBUAQAAAIAFXKgCQFjjw7wAAMAqRqoAAAAAwAJGqgAAAIAwwiwN32OkCgAAAAAsYKQKAAAAgBsjWS3HSBUAAAAAWECoAgAAAAALmP4HABfAFAgAAHAxjFQBAAAAgAWMVAEAAABoNmZxNMVIFQAAAABYQKgCAAAAAAsIVQAAAABgAZ+pAoBWxLxzAABCHyNVAAAAAGABI1UAYCNGsgAACH6EKgCw4GKhCACAcBOObxgy/Q8AAAAALCBUAQAQAFwul9LT05WZmWl3KQCAFiJUAQAQAJxOp0pLS1VcXGx3KQCAFiJUAQAAAIAFQR+qTpw4oSFDhmjgwIHq16+f/vSnP9ldEgAAAIAwEvRX/+vYsaM2btyo2NhY1dbWql+/fho/fry6dOlid2kAYFk4XkEJAIBgE/QjVZGRkYqNjZUk1dXVyRgjY4zNVQEAAAAIF7aPVG3cuFELFizQtm3bVF5erpUrV+qWW27x2MblcmnBggWqqKhQRkaGnnvuOWVlZbnXnzhxQtdff7327t2rBQsWKCEhwd+HAQAAAKAZQnEWhu0jVbW1tcrIyJDL5Trn+uXLl6ugoEBz5szR9u3blZGRodGjR+vYsWPubTp16qSdO3eqrKxMr732mo4ePeqv8gEAAACEOdtHqsaOHauxY8eed/3ChQs1depUTZ48WZK0ePFivfnmm1qyZIkefvhhj20TExOVkZGh9957T//yL/9yzv3V1dWprq7Ofb+qqsoHRwEA9gjFd/sAAAg2to9UXcjp06e1bds25ebmupdFREQoNzdXmzdvliQdPXpU1dXVkqTKykpt3LhRffv2Pe8+586dq/j4ePctJSWldQ8CAAAAQEgL6FB1/PhxNTQ0KDEx0WN5YmKiKioqJEkHDx7U8OHDlZGRoeHDh+uXv/yl+vfvf959zpo1S5WVle7b4cOHW/UYAAAAAIQ226f/WZWVlaWSkpJmbx8TE6OYmJhWrAgAAABAOAnoUJWQkKDIyMgmF544evSokpKSbKoKAIIHn7kCAKD1BfT0v+joaA0ePFhFRUXuZY2NjSoqKtLQoUNtrAwAAAAAvmP7SFVNTY327dvnvl9WVqaSkhJ17txZPXv2VEFBgfLy8jRkyBBlZWVp0aJFqq2tdV8NEAAAAADsZHuo2rp1q3Jyctz3CwoKJEl5eXkqLCzUhAkT9NVXX2n27NmqqKjQwIEDtWbNmiYXrwAAAAAAO9geqkaMGCFjzAW3yc/PV35+vp8qAgAAAIDmsz1U2cXlcsnlcqmhocHuUgAAAAD8f8F4kaWAvlBFa3I6nSotLVVxcbHdpQAAAAAIYmEbqgAAAADAFwhVAAAAAGBB2H6mCgAQnPPWAQAINIxUAQAAAIAFhCoAAAAAsIBQBQAAAAAWEKoAAAAAwAJCFQAAAABYELZX/3O5XHK5XGpoaLC7FAAIWFwdEAAQaAKxN4XtSJXT6VRpaamKi4vtLgUAAABAEAvbUAUAAAAAvkCoAgAAAAALCFUAAAAAYAGhCgAAAAAsIFQBAAAAgAWEKgAAAACwgFAFAEAAcLlcSk9PV2Zmpt2lAABaiFAFAEAA4P8nAkDwCttQxTuCAAAAAHwhbEMV7wgCAAAA8IWwDVUAAAAA4AtRdhdgN2OMJKmqqsrrfTTWnfRVOQAQVKy8dp793rOvw/gOfQkArLGjN4V9qKqurpYkpaSk2FwJAASf+EXW91FdXa34+HjrOwoR9CUAsMaO3uQwYf4WYWNjo44cOaKOHTvK4XA0+/uqqqqUkpKiw4cPKy4urhUrDH6cq+bhPDUf56r5AvlcGWNUXV2t5ORkRUQwG/0s+lJTHFtwCtVjC9Xjkjg2yfveFPYjVREREerRo4fX3x8XFxdyT7rWwrlqHs5T83Gumi9QzxUjVE3Rl86PYwtOoXpsoXpcEsfmTW/irUEAAAAAsIBQBQAAAAAWRD722GOP2V1EsIqMjNSIESMUFRX2sygvinPVPJyn5uNcNR/nKnyE8s+aYwtOoXpsoXpcEsfmrbC/UAUAAAAAWMH0PwAAAACwgFAFAAAAABYQqgAAAADAAkIVAAAAAFhAqPKSy+VSamqq2rZtq+zsbH300Ud2l2Srxx57TA6Hw+N2xRVXuNefOnVKTqdTXbp0UYcOHfSzn/1MR48etbFi/9m4caPGjRun5ORkORwOrVq1ymO9MUazZ89W9+7d1a5dO+Xm5mrv3r0e23zzzTe66667FBcXp06dOmnKlCmqqanx52G0uoudp0mTJjV5jo0ZM8Zjm3A4T3PnzlVmZqY6duyobt266ZZbbtGePXs8tmnO79uhQ4d00003KTY2Vt26ddNDDz2kM2fO+PNQ4GPB3pea89weMWJEk9eB++67z6aKmy+Ue2RqamqTY3M4HHI6nZKC62cWyv36QsdWX1+vmTNnqn///mrfvr2Sk5N1zz336MiRIx77ONfPet68ef4+FA+B9LcDocoLy5cvV0FBgebMmaPt27crIyNDo0eP1rFjx+wuzVY//vGPVV5e7r69//777nW//vWv9be//U0rVqzQu+++qyNHjmj8+PE2Vus/tbW1ysjIkMvlOuf6+fPn69lnn9XixYu1ZcsWtW/fXqNHj9apU6fc29x11136+OOPtXbtWv3973/Xxo0bNW3aNH8dgl9c7DxJ0pgxYzyeY6+//rrH+nA4T++++66cTqc+/PBDrV27VvX19Ro1apRqa2vd21zs962hoUE33XSTTp8+rU2bNunPf/6zCgsLNXv2bDsOCT4QCn2pOc9tSZo6darH68D8+fNtqrhlQrVHFhcXexzX2rVrJUm33Xabe5tg+ZmFcr++0LGdPHlS27dv16OPPqrt27frjTfe0J49e/TTn/60yba/+c1vPH6Wv/zlL/1R/nkF1N8OBi2WlZVlnE6n+35DQ4NJTk42c+fOtbEqe82ZM8dkZGScc92JEydMm8BXlxAAABAsSURBVDZtzIoVK9zLPvnkEyPJbN682V8lBgRJZuXKle77jY2NJikpySxYsMC97MSJEyYmJsa8/vrrxhhjSktLjSRTXFzs3uatt94yDofDfPnll/4r3o9+eJ6MMSYvL8/cfPPN5/2ecDxPxhhz7NgxI8m8++67xpjm/b79z//8j4mIiDAVFRXubV544QUTFxdn6urq/HsA8IlQ7Es/fG4bY8z1119vpk+fbmNV3gmnHjl9+nTTp08f09jYaIwJ3p9ZKPfrc/XYH/roo4+MJHPw4EH3sl69eplnnnmmtcvzmt1/OzBS1UKnT5/Wtm3blJub614WERGh3Nxcbd682cbK7Ld3714lJyfr0ksv1V133aVDhw5JkrZt26b6+nqPc3bFFVeoZ8+eYX/OysrKVFFR4XFu4uPjlZ2d7T43mzdvVqdOnTRkyBD3Nrm5uYqIiNCWLVv8XrOdNmzYoG7duqlv3766//779fXXX7vXhet5qqyslCR17txZUvN+3zZv3qz+/fsrMTHRvc3o0aNVVVWljz/+2I/VwxdCtS/98Ll91quvvqqEhAT169dPs2bN0smTJ+0or8XCoUeePn1ar7zyin7+85/L4XC4lwfrz+z7wq1fV1ZWyuFwqFOnTh7L582bpy5duuiqq67SggULgmLauL/+dgi9f5Xcyo4fP66GhgaPP0YkKTExUZ9++qlNVdkvOztbhYWF6tu3r8rLy/X4449r+PDh2r17tyoqKhQdHd3kFzMxMVEVFRU2VRwYzh7/uZ5PZ9dVVFSoW7duHuujoqLUuXPnsDp/Y8aM0fjx49W7d2/t379f//Ef/6GxY8dq8+bNioyMDMvz1NjYqF/96le69tpr1a9fP0lq1u9bRUXFOZ9zZ9chuIRiXzrXc1uS7rzzTvXq1UvJycnatWuXZs6cqT179uiNN96wsdqLC5ceuWrVKp04cUKTJk1yLwvWn9kPhVO/PnXqlGbOnKmJEycqLi7OvfyBBx7QoEGD1LlzZ23atEmzZs1SeXm5Fi5caGO1F+bPvx0IVfCJsWPHur8eMGCAsrOz1atXL/3lL39Ru3btbKwMoeKOO+5wf92/f38NGDBAffr00YYNGzRy5EgbK7OP0+nU7t27PT6bAYSC8z23v/85h/79+6t79+4aOXKk9u/frz59+vi7zGYLlx750ksvaezYsUpOTnYvC9afWbiqr6/X7bffLmOMXnjhBY91BQUF7q8HDBig6Oho/eIXv9DcuXMVExPj71KbxZ9/OzD9r4USEhIUGRnZ5Ko8R48eVVJSkk1VBZ5OnTopLS1N+/btU1JSkk6fPq0TJ054bMM5k/v4L/R8SkpKavJh8zNnzuibb74J6/N36aWXKiEhQfv27ZMUfucpPz9ff//737V+/Xr16NHDvbw5v29JSUnnfM6dXYfgEmp96XzP7XPJzs6WJPfrQLAIxR558OBBrVu3Tvfee+8FtwvWn1k49OuzgergwYNau3atxyjVuWRnZ+vMmTM6cOCAfwr0gdb824FQ1ULR0dEaPHiwioqK3MsaGxtVVFSkoUOH2lhZYKmpqdH+/fvVvXt3DR48WG3atPE4Z3v27NGhQ4fC/pz17t1bSUlJHuemqqpKW7ZscZ+boUOH6sSJE9q2bZt7m3feeUeNjY3u5hSOvvjiC3399dfq3r27pPA5T8YY5efna+XKlXrnnXfUu3dvj/XN+X0bOnSo/vd//9ejkZxtoOnp6f45EPhMqPSliz23z6WkpESS3K8DwSIUe+TSpUvVrVs33XTTTRfcLlh/ZqHer88Gqr1792rdunXq0qXLRb+npKREERERTabPBbJW/duhRZe1gDHGmGXLlpmYmBhTWFhoSktLzbRp00ynTp08rqQVbh588EGzYcMGU1ZWZj744AOTm5trEhISzLFjx4wxxtx3332mZ8+e5p133jFbt241Q4cONUOHDrW5av+orq42O3bsMDt27DCSzMKFC82OHTvcV9SZN2+e6dSpk1m9erXZtWuXufnmm03v3r3Nt99+697HmDFjzFVXXWW2bNli3n//fXP55ZebiRMn2nVIreJC56m6utrMmDHDbN682ZSVlZl169aZQYMGmcsvv9ycOnXKvY9wOE/333+/iY+PNxs2bDDl5eXu28mTJ93bXOz37cyZM6Zfv35m1KhRpqSkxKxZs8Z07drVzJo1y45Dgg+EQl+62HN737595je/+Y3ZunWrKSsrM6tXrzaXXnqpue6662yu/OJCvUc2NDSYnj17mpkzZ3osD7afWSj36wsd2+nTp81Pf/pT06NHD1NSUuLx+3f2irCbNm0yzzzzjCkpKTH79+83r7zyiunatau55557Ava4/P23A6HKS88995zp2bOniY6ONllZWebDDz+0uyRbTZgwwXTv3t1ER0ebH/3oR2bChAlm37597vXffvut+bd/+zdzySWXmNjYWHPrrbea8vJyGyv2n/Xr1xtJTW55eXnGmO8u0/roo4+axMREExMTY0aOHGn27NnjsY+vv/7aTJw40XTo0MHExcWZyZMnm+rqahuOpvVc6DydPHnSjBo1ynTt2tW0adPG9OrVy0ydOrXJH4zhcJ7OdY4kmaVLl7q3ac7v24EDB8zYsWNNu3btTEJCgnnwwQdNfX29n48GvhTsfeliz+1Dhw6Z6667znTu3NnExMSYyy67zDz00EOmsrLS3sKbIdR75Ntvv20kNeldwfYzC+V+faFjKysrO+/v3/r1640xxmzbts1kZ2eb+Ph407ZtW3PllVea3/3udx7hJNCOy99/OziMMaZlY1sAAAAAgLP4TBUAAAAAWECoAgAAAAALCFUAAAAAYAGhCgAAAAAsIFQBAAAAgAWEKgAAAACwgFAFAAAAABYQqgAfcjgcWrVqld1leCU1NVWLFi1q9vYHDhyQw+FQSUlJK1YFALCK3gS0PkIVcA6TJk2Sw+FochszZoytddXU1KhNmzZatmyZx/I77rhDDodDBw4c8FiempqqRx99tFn7Li4u1rRp03xVqiSpsLBQnTp18uk+ASBc0Zt8g96E1kCoAs5jzJgxKi8v97i9/vrrttbUoUMHDRkyRBs2bPBYvmHDBqWkpHgsLysr08GDB3XDDTc0a99du3ZVbGysD6sFAPgavQkITIQq4DxiYmKUlJTkcbvkkkvc6/fu3avrrrtObdu2VXp6utauXdtkH5s2bdLAgQPVtm1bDRkyRKtWrWoyLWH37t0aO3asOnTooMTERP3rv/6rjh8/ft66cnJyPBrUJ598olOnTun+++/3WL5hwwbFxMRo6NChkqT3339fw4cPV7t27ZSSkqIHHnhAtbW17u1/OMXi008/1bBhw9zHt27dunNOIfn888+Vk5Oj2NhYZWRkaPPmze7Hnzx5siorK93vpj722GMXPukAgAuiN9GbEJgIVYAXGhsbNX78eEVHR2vLli1avHixZs6c6bFNVVWVxo0bp/79+2v79u164oknmmxz4sQJ3XDDDbrqqqu0detWrVmzRkePHtXtt99+3sfOycnRnj17VF5eLklav369hg0bphtuuMGjca1fv15Dhw5V27ZttX//fo0ZM0Y/+9nPtGvXLi1fvlzvv/++8vPzz/kYDQ0NuuWWWxQbG6stW7boxRdf1COPPHLObR955BHNmDFDJSUlSktL08SJE3XmzBldc801WrRokeLi4tzvps6YMaM5pxcA4AV60/+hN8HvDIAm8vLyTGRkpGnfvr3H7cknnzTGGPP222+bqKgo8+WXX7q/56233jKSzMqVK40xxrzwwgumS5cu5ttvv3Vv86c//clIMjt27DDGGPPEE0+YUaNGeTz24cOHjSSzZ8+ec9ZWW1troqOjzWuvvWaMMea2224z8+fPN/X19aZ9+/bm888/N8YY07NnT/P4448bY4yZMmWKmTZtmsd+3nvvPRMREeGur1evXuaZZ55xH0tUVJQpLy93b7927VqP4ysrKzOSzH/913+5t/n444+NJPPJJ58YY4xZunSpiY+Pv8jZBgA0B72J3oTAFWVPlAMCX05Ojl544QWPZZ07d5b03bSGlJQUJScnu9edncpw1p49ezRgwAC1bdvWvSwrK8tjm507d2r9+vXq0KFDk8ffv3+/0tLSmiyPjY1VZmamNmzYoIkTJ+rdd9/VQw89pKioKF1zzTXasGGDjDE6dOiQcnJy3I+za9cuvfrqq+79GGPU2NiosrIyXXnllU1qT0lJUVJS0nlrP2vAgAHur7t37y5JOnbsmK644opzbg8A8B69id6EwESoAs6jffv2uuyyy1r1MWpqajRu3Dg99dRTTdadbQLnkpOTo+XLl+vjjz/Wt99+q0GDBkmSrr/+eq1fv16NjY2KjY1Vdna2+3F+8Ytf6IEHHmiyr549e1o6hjZt2ri/djgckr6bggIA8D16U/PQm+BvhCrAC1deeaUOHz6s8vJyd4P58MMPPbbp27evXnnlFdXV1SkmJkbSd5eG/b5Bgwbpr3/9q1JTUxUV1fxfx5ycHP32t7/Va6+9pmHDhikyMlKSdN111+nFF1+UMUbXXnutoqOj3Y9TWlra7Ebct29fHT58WEePHlViYuI5a2+O6OhoNTQ0tPj7AAAtR29qHnoTWgMXqgDOo66uThUVFR63s1c+ys3NVVpamvLy8rRz50699957TT4se+edd6qxsVHTpk3TJ598orffflu///3vJf3fu2ZOp1PffPONJk6cqOLiYu3fv19vv/22Jk+efMEX/GuuuUYxMTF67rnndP3117uXZ2Vl6dixY1q9erV7eoUkzZw5U5s2bVJ+fr5KSkq0d+9erV69+rwfBv7JT36iPn36KC8vT7t27dIHH3yg//zP//SovTlSU1NVU1OjoqIiHT9+XCdPnmz29wIAmqI30ZsQmAhVwHmsWbNG3bt397gNGzZMkhQREaGVK1fq22+/VVZWlu699149+eSTHt8fFxenv/3tbyopKdHAgQP1yCOPaPbs2ZLknsuenJysDz74QA0NDRo1apT69++vX/3qV+rUqZMiIs7/69m2bVtdffXVqq6u1ogRI9zLY2Ji3Mu/37gGDBigd999V5999pmGDx+uq666SrNnz/aYd/99kZGRWrVqlWpqapSZmal7773X3Zi/Pw//Yq655hrdd999mjBhgrp27ar58+c3+3sBAE3Rm+hNCEwOY4yxuwggXLz66qvu/4/Rrl07u8tpkQ8++EDDhg3Tvn371KdPH7vLAQD4CL0JsI7PVAGt6OWXX9all16qH/3oR9q5c6dmzpyp22+/PSia1sqVK9WhQwddfvnl2rdvn6ZPn65rr72WpgUAQY7eBPgeoQpoRRUVFZo9e7YqKirUvXt33XbbbU2mYgSq6upqzZw5U4cOHVJCQoJyc3P19NNP210WAMAiehPge0z/AwAAAAALuFAFAAAAAFhAqAIAAAAACwhVAAAAAGABoQoAAAAALCBUAQAAAIAFhCoAAAAAsIBQBQAAAAAWEKoAAAAAwAJCFQAAAABY8P8AnmMaRAvkRqoAAAAASUVORK5CYII=", "text/plain": [ - "array([ 5.03 , 58.25 , 98.44 , 215.656])" + "
" ] }, - "execution_count": 20, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], "source": [ - "quant_dist = np.quantile(allEdgesWeights.values,[0.10,0.50,0.70,0.9])\n", - "quant_dist" + "plt.figure(figsize=(10,4))\n", + "\n", + "for ith, G in enumerate([G_bu, G_tu]):\n", + " plt.subplot(1,2,ith+1)\n", + " allEdgesWeightsFiltered = pd.Series({(d[0], d[1]): d[2][\"weight\"] for d in G.edges(data=True) \n", + " if d[2][\"weight\"] < quant_dist[G.name][-2]})\n", + " allEdgesWeightsFiltered.plot.hist(bins=40)\n", + " plt.yscale(\"log\")\n", + " plt.xlabel(\"Edge Weight\")" ] }, { - "cell_type": "code", - "execution_count": 21, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "allEdgesWeightsFiltered = pd.Series({(d[0], d[1]): d[2][\"weight\"] for d in G.edges(data=True) \n", - " if d[2][\"weight\"] < quant_dist[-1]})" + "#### Betweeness centrality" ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 20, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Bipartite Undirect: 0.0007220813495247776\n", + "Tripartite Undirect: 1.3751972752978146e-05\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1EAAAMtCAYAAAB+ZfsQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df5BV9X34/9fCAoKyoCK/Krpq1MwGxUaROtFprVRExvFH/yCJjkgZo80msUHaIZNRnEkaMFbGxOxIpqOi01YNjaZtqLaKRpIGFfFX4zYKxhUNv/wRWBYr4O75/pFxv58t/uB1uXDu7j4eMzvjPedweF3nuJtn3vecrSuKoggAAAD2yoCyBwAAAOhNRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACAhPqyByhbV1dXbNiwIYYPHx51dXVljwMAAJSkKIrYvn17jB8/PgYM+Oj1pn4fURs2bIgJEyaUPQYAAFAjXn/99TjyyCM/cn+/j6jhw4dHxO//RTU0NJQ8DQAAUJb29vaYMGFCdyN8lH4fUR98hK+hoUFEAQAAn3ibjwdLAAAAJIgoAACABBEFAACQIKIAAAASRBQAAEBCv42olpaWaGpqismTJ5c9CgAA0IvUFUVRlD1Emdrb22PEiBGxbds2jzgHAIB+bG/boN+uRAEAAFRCRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACChvuwB6Klx/vJ9PkfbohlVmAQAAPgwVqIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJPTbiGppaYmmpqaYPHly2aMAAAC9SF1RFEXZQ5Spvb09RowYEdu2bYuGhoayx4nG+cvLHqFb26IZZY8AAAAHzN62Qb9diQIAAKiEiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAl9JqLefffdOProo2PevHlljwIAAPRhfSai/vZv/zb+6I/+qOwxAACAPq5PRNTatWvj17/+dUyfPr3sUQAAgD6u9IhauXJlXHDBBTF+/Pioq6uLn/zkJ3sc09LSEo2NjXHQQQfFlClT4qmnnuqxf968ebFw4cIDNTIAANCPlR5RO3bsiEmTJkVLS8uH7r/vvvti7ty5sWDBgnjmmWdi0qRJMW3atNiyZUtERPzLv/xLnHDCCXHCCSccyLEBAIB+qr7sAaZPn/6xH8NbvHhxXHnllTF79uyIiFiyZEksX7487rjjjpg/f3488cQTce+998ayZcuio6Mjdu/eHQ0NDXH99dd/6Pl27twZO3fu7H7d3t5e3TcEAAD0aaWvRH2cXbt2xZo1a2Lq1Knd2wYMGBBTp06NVatWRUTEwoUL4/XXX4+2trb4u7/7u7jyyis/MqA+OH7EiBHdXxMmTNjv7wMAAOg7ajqi3nrrrejs7IwxY8b02D5mzJjYtGlTRef8xje+Edu2bev+ev3116sxKgAA0E+U/nG+arriiis+8ZghQ4bEkCFD9v8wAABAn1TTK1GjRo2KgQMHxubNm3ts37x5c4wdO7akqQAAgP6spiNq8ODBceqpp8aKFSu6t3V1dcWKFSvijDPOKHEyAACgvyr943wdHR2xbt267tevvvpqPPfcc3HYYYfFUUcdFXPnzo1Zs2bFaaedFqeffnrccsstsWPHju6n9QEAABxIpUfU008/HWeffXb367lz50ZExKxZs2Lp0qUxc+bMePPNN+P666+PTZs2xSmnnBIPPfTQHg+bAAAAOBDqiqIoyh6iTO3t7TFixIjYtm1bNDQ0lD1ONM5fXvYI3doWzSh7BAAAOGD2tg1q+p4oAACAWiOiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJ/TaiWlpaoqmpKSZPnlz2KAAAQC/SbyOqubk5WltbY/Xq1WWPAgAA9CL9NqIAAAAqIaIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAEBCfdkDULsa5y+vynnaFs2oynkAAKAWWIkCAABI6LcR1dLSEk1NTTF58uSyRwEAAHqRfhtRzc3N0draGqtXry57FAAAoBfptxEFAABQCREFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACAhH4bUS0tLdHU1BSTJ08uexQAAKAX6bcR1dzcHK2trbF69eqyRwEAAHqR+rIHAKhljfOX7/M52hbNqMIkAECt6LcrUQAAAJUQUQAAAAkiCgAAIEFEAQAAJIgoAACABE/nA6ryBLoIT6EDAPoHK1EAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgt8TxX5Xjd9B5PcPAQBQK6xEAQAAJIgoAACABBEFAACQ4J4ooGqqcf9bhHvgAIDaJqKgl6tWuAAAsHd8nA8AACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEjydD+iTPLUQANhfRBRQcwQQAFDLfJwPAAAgQUQBAAAk9NuIamlpiaamppg8eXLZowAAAL1Iv42o5ubmaG1tjdWrV5c9CgAA0Iv024gCAACohIgCAABIEFEAAAAJIgoAACBBRAEAACTUlz0A7I3G+curcp62RTOqch7IcP0CQN9iJQoAACDBShRUoBorC1YVAAB6JxFFv1Ktj1UBANB/+TgfAABAgogCAABI8HE+KImPFgIA9E5WogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJBQUUT95je/qfYcAAAAvUJFEfWpT30qzj777PiHf/iHeO+996o9EwAAQM2qKKKeeeaZOPnkk2Pu3LkxduzYuOqqq+Kpp56q9mwAAAA1p6KIOuWUU+J73/tebNiwIe64447YuHFjnHnmmTFx4sRYvHhxvPnmm9WeEwAAoCbs04Ml6uvr45JLLolly5bFjTfeGOvWrYt58+bFhAkT4vLLL4+NGzdWa04AAICasE8R9fTTT8eXv/zlGDduXCxevDjmzZsXr7zySjz88MOxYcOGuPDCC6s1JwAAQE2or+QPLV68OO6888546aWX4vzzz4+77747zj///Bgw4PdNdswxx8TSpUujsbGxmrMCAACUrqKIuu222+Iv/uIv4oorrohx48Z96DGjR4+O22+/fZ+GAwAAqDUVRdTatWs/8ZjBgwfHrFmzKjk9AABAzaronqg777wzli1btsf2ZcuWxV133bXPQwEAANSqiiJq4cKFMWrUqD22jx49Or7zne/s81AAAAC1qqKIWr9+fRxzzDF7bD/66KNj/fr1+zwUAABAraoookaPHh0vvPDCHtuff/75OPzww/d5KAAAgFpVUUR94QtfiK997Wvx2GOPRWdnZ3R2dsajjz4a11xzTXz+85+v9owAAAA1o6Kn833rW9+Ktra2OOecc6K+/ven6Orqissvv9w9UQAAQJ9WUUQNHjw47rvvvvjWt74Vzz//fAwdOjROOumkOProo6s9337T0tISLS0t0dnZWfYoAABAL1JXFEVR9hBlam9vjxEjRsS2bduioaGh7HGicf7yskcAalTbohlljwAAfdretkFFK1GdnZ2xdOnSWLFiRWzZsiW6urp67H/00UcrOS0AAEDNqyiirrnmmli6dGnMmDEjJk6cGHV1ddWeCwAAoCZVFFH33ntv/OhHP4rzzz+/2vMAAADUtIoecT548OD41Kc+Ve1ZAAAAal5FEXXttdfG9773vejnz6QAAAD6oYo+zveLX/wiHnvssXjwwQfjM5/5TAwaNKjH/vvvv78qwwEAANSaiiJq5MiRcfHFF1d7FgAAgJpXUUTdeeed1Z4DAACgV6jonqiIiPfffz8eeeSR+OEPfxjbt2+PiIgNGzZER0dH1YYDAACoNRWtRL322mtx3nnnxfr162Pnzp3xZ3/2ZzF8+PC48cYbY+fOnbFkyZJqzwkAAFATKlqJuuaaa+K0006L3/3udzF06NDu7RdffHGsWLGiasMBAADUmopWon7+85/HL3/5yxg8eHCP7Y2NjfHb3/62KoMB0FPj/OVVOU/bohlVOQ8A9FcVrUR1dXVFZ2fnHtvfeOONGD58+D4PBQAAUKsqiqhzzz03brnllu7XdXV10dHREQsWLIjzzz+/asMBAADUmoo+znfzzTfHtGnToqmpKd5777344he/GGvXro1Ro0bFPffcU+0ZAQAAakZFEXXkkUfG888/H/fee2+88MIL0dHREXPmzIlLL720x4MmAAAA+pqKIioior6+Pi677LJqzgIAAFDzKoqou++++2P3X3755RUNAwAAUOsqiqhrrrmmx+vdu3fHu+++G4MHD45hw4aJKAAAoM+q6Ol8v/vd73p8dXR0xEsvvRRnnnmmB0sAAAB9WkUR9WGOP/74WLRo0R6rVAAAAH1J1SIq4vcPm9iwYUM1TwkAAFBTKron6l//9V97vC6KIjZu3Bg/+MEP4nOf+1xVBgMAAKhFFUXURRdd1ON1XV1dHHHEEfGnf/qncfPNN1dlMAAAgFpUUUR1dXVVew4AAIBeoar3RAEAAPR1Fa1EzZ07d6+PXbx4cSV/BQAAQE2qKKKeffbZePbZZ2P37t1x4oknRkTEyy+/HAMHDozPfvaz3cfV1dVVZ0oAAIAaUVFEXXDBBTF8+PC466674tBDD42I3/8C3tmzZ8dZZ50V1157bVWHBAAAqBUV3RN18803x8KFC7sDKiLi0EMPjW9/+9uezgcAAPRpFUVUe3t7vPnmm3tsf/PNN2P79u37PBQAAECtqiiiLr744pg9e3bcf//98cYbb8Qbb7wRP/7xj2POnDlxySWXVHtGAACAmlHRPVFLliyJefPmxRe/+MXYvXv3709UXx9z5syJm266qaoDAgAA1JK6oiiKSv/wjh074pVXXomIiOOOOy4OPvjgqg12oLS3t8eIESNi27Zt0dDQUPY40Th/edkjAHyitkUzyh4BAKpub9tgn37Z7saNG2Pjxo1x/PHHx8EHHxz70GMAAAC9QkUR9fbbb8c555wTJ5xwQpx//vmxcePGiIiYM2eOx5sDAAB9WkUR9fWvfz0GDRoU69evj2HDhnVvnzlzZjz00ENVGw4AAKDWVPRgif/8z/+M//iP/4gjjzyyx/bjjz8+XnvttaoMBgAAUIsqWonasWNHjxWoD7zzzjsxZMiQfR4KAACgVlUUUWeddVbcfffd3a/r6uqiq6srvvvd78bZZ59dteEAAABqTUUf5/vud78b55xzTjz99NOxa9eu+Ju/+Zt48cUX45133on/+q//qvaMAAAANaOilaiJEyfGyy+/HGeeeWZceOGFsWPHjrjkkkvi2WefjeOOO67aMwIAANSM9ErU7t2747zzzoslS5bEN7/5zf0x0wHR0tISLS0t0dnZWfYoAABAL5JeiRo0aFC88MIL+2OWA6q5uTlaW1tj9erVZY8CAAD0IhV9nO+yyy6L22+/vdqzAAAA1LyKHizx/vvvxx133BGPPPJInHrqqXHwwQf32L948eKqDAcAAFBrUhH1m9/8JhobG+NXv/pVfPazn42IiJdffrnHMXV1ddWbDgAAoMakIur444+PjRs3xmOPPRYRETNnzozvf//7MWbMmP0yHAC1qXH+8qqcp23RjKqcBwAOpNQ9UUVR9Hj94IMPxo4dO6o6EAAAQC2r6MESH/i/UQUAANDXpSKqrq5uj3ue3AMFAAD0J6l7ooqiiCuuuCKGDBkSERHvvfdeXH311Xs8ne/++++v3oQAAAA1JBVRs2bN6vH6sssuq+owAAAAtS4VUXfeeef+mgMAAKBX2KcHSwAAAPQ3IgoAACBBRAEAACSIKAAAgAQRBQAAkJB6Oh8AVFPj/OVVOU/bohlVOQ8A7A0rUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACAhPqyBwCAfdU4f/k+n6Nt0YwqTAJAf2AlCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACAhPqyBwCAWtA4f3lVztO2aEZVzgNA7bISBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACT024hqaWmJpqammDx5ctmjAAAAvUi/jajm5uZobW2N1atXlz0KAADQi/TbiAIAAKiEiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIKG+7AEAoC9pnL98n8/RtmhGFSYBYH+xEgUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEv2wXAGpMNX5hb4Rf2guwv1iJAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJDgEecA0Ed5VDrA/mElCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAEBCfdkDAAC1rXH+8n0+R9uiGVWYBKA2WIkCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJ9WUPAAD0fY3zl1flPG2LZlTlPAD7wkoUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACChvuwBAAAOpMb5y6tynrZFM6pyHqD3sRIFAACQIKIAAAASRBQAAEBCv42olpaWaGpqismTJ5c9CgAA0IvUFUVRlD1Emdrb22PEiBGxbdu2aGhoKHucqt3sCgDsXx4sAX3P3rZBv12JAgAAqISIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQEJ92QMAAPRGjfOXV+U8bYtmVOU8wIFjJQoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAQn3ZAwAA9GeN85fv8znaFs2owiTA3rISBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACChvuwBAADYN43zl1flPG2LZlTlPNDXWYkCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEurLHgAAgNrQOH/5Pp+jbdGMKkwCtc1KFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABLqyx4AAAD+r8b5y6tynrZFM6pyHvh/WYkCAABIEFEAAAAJIgoAACDBPVEAAPRZ1bi3yn1V/F9WogAAABJEFAAAQIKIAgAASHBPFAAAVVOt3+8EtcxKFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAk1Jc9AAAA1LLG+curcp62RTOqch7KZyUKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJ6fURt3bo1TjvttDjllFNi4sSJ8fd///dljwQAAPRhvf4R58OHD4+VK1fGsGHDYseOHTFx4sS45JJL4vDDDy97NAAAoA/q9StRAwcOjGHDhkVExM6dO6MoiiiKouSpAACAvqr0laiVK1fGTTfdFGvWrImNGzfGAw88EBdddFGPY1paWuKmm26KTZs2xaRJk+LWW2+N008/vXv/1q1b44//+I9j7dq1cdNNN8WoUaMO9NsAAICP5Zf29h2lr0Tt2LEjJk2aFC0tLR+6/7777ou5c+fGggUL4plnnolJkybFtGnTYsuWLd3HjBw5Mp5//vl49dVX45/+6Z9i8+bNH/n37dy5M9rb23t8AQAA7K3SI2r69Onx7W9/Oy6++OIP3b948eK48sorY/bs2dHU1BRLliyJYcOGxR133LHHsWPGjIlJkybFz3/+84/8+xYuXBgjRozo/powYULV3gsAAND3lR5RH2fXrl2xZs2amDp1ave2AQMGxNSpU2PVqlUREbF58+bYvn17RERs27YtVq5cGSeeeOJHnvMb3/hGbNu2rfvr9ddf379vAgAA6FNKvyfq47z11lvR2dkZY8aM6bF9zJgx8etf/zoiIl577bX40pe+1P1Aia9+9atx0kknfeQ5hwwZEkOGDNmvcwMAAH1XTUfU3jj99NPjueeeK3sMAACgn6jpj/ONGjUqBg4cuMeDIjZv3hxjx44taSoAAKA/q+mIGjx4cJx66qmxYsWK7m1dXV2xYsWKOOOMM0qcDAAA6K9K/zhfR0dHrFu3rvv1q6++Gs8991wcdthhcdRRR8XcuXNj1qxZcdppp8Xpp58et9xyS+zYsSNmz55d4tQAAEB/VXpEPf3003H22Wd3v547d25ERMyaNSuWLl0aM2fOjDfffDOuv/762LRpU5xyyinx0EMP7fGwCQAAgAOhriiKouwhytTe3h4jRoyIbdu2RUNDQ9njVO03WQMA0De1LZpR9gh91t62QekrUQAAwN6rxv/pLsT2TU0/WAIAAKDWiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJDQbyOqpaUlmpqaYvLkyWWPAgAA9CL9NqKam5ujtbU1Vq9eXfYoAABAL9JvIwoAAKASIgoAACBBRAEAACSIKAAAgAQRBQAAkP33XL0AAArCSURBVCCiAAAAEkQUAABAgogCAABIEFEAAAAJ9WUPAAAAHFiN85dX5Txti2ZU5Ty9jZUoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAEBCfdkDlKWlpSVaWlqis7Oz7FEAAKBXapy/fJ/P0bZoRhUmObD67UpUc3NztLa2xurVq8seBQAA6EX6bUQBAABUQkQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgod9GVEtLSzQ1NcXkyZPLHgUAAOhF+m1ENTc3R2tra6xevbrsUQAAgF6k30YUAABAJUQUAABAgogCAABIEFEAAAAJIgoAACChvuwBylYURUREtLe3lzzJ73XtfLfsEQAA4ICplf8dHvH/z/JBI3yUfh9R27dvj4iICRMmlDwJAAD0PyNuKXuCPW3fvj1GjBjxkfvrik/KrD6uq6srNmzYEMOHD4+6uroD/ve3t7fHhAkT4vXXX4+GhoYD/vfD/8v1SC1xPVJLXI/UEtfj/lMURWzfvj3Gjx8fAwZ89J1P/X4lasCAAXHkkUeWPUY0NDT4j4Ca4XqklrgeqSWuR2qJ63H/+LgVqA94sAQAAECCiAIAAEgYeMMNN9xQ9hD93cCBA+NP/uRPor6+33+6khrgeqSWuB6pJa5HaonrsVz9/sESAAAAGT7OBwAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIqpELS0t0djYGAcddFBMmTIlnnrqqbJHoh+44YYboq6ursfXpz/96e797733XjQ3N8fhhx8ehxxySPz5n/95bN68ucSJ6UtWrlwZF1xwQYwfPz7q6uriJz/5SY/9RVHE9ddfH+PGjYuhQ4fG1KlTY+3atT2Oeeedd+LSSy+NhoaGGDlyZMyZMyc6OjoO5Nugj/ik6/GKK67Y4/vleeed1+MY1yPVsnDhwpg8eXIMHz48Ro8eHRdddFG89NJLPY7Zm5/R69evjxkzZsSwYcNi9OjR8dd//dfx/vvvH8i30i+IqJLcd999MXfu3FiwYEE888wzMWnSpJg2bVps2bKl7NHoBz7zmc/Exo0bu79+8YtfdO/7+te/Hv/2b/8Wy5Yti8cffzw2bNgQl1xySYnT0pfs2LEjJk2aFC0tLR+6/7vf/W58//vfjyVLlsSTTz4ZBx98cEybNi3ee++97mMuvfTSePHFF+Phhx+On/70p7Fy5cr40pe+dKDeAn3IJ12PERHnnXdej++X99xzT4/9rkeq5fHHH4/m5uZ44okn4uGHH47du3fHueeeGzt27Og+5pN+Rnd2dsaMGTNi165d8ctf/jLuuuuuWLp0aVx//fVlvKW+raAUp59+etHc3Nz9urOzsxg/fnyxcOHCEqeiP1iwYEExadKkD923devWYtCgQcWyZcu6t/3P//xPERHFqlWrDtSI9BMRUTzwwAPdr7u6uoqxY8cWN910U/e2rVu3FkOGDCnuueeeoiiKorW1tYiIYvXq1d3HPPjgg0VdXV3x29/+9sANT5/zf6/HoiiKWbNmFRdeeOFH/hnXI/vTli1biogoHn/88aIo9u5n9L//+78XAwYMKDZt2tR9zG233VY0NDQUO3fuPLBvoI+zElWCXbt2xZo1a2Lq1Knd2wYMGBBTp06NVatWlTgZ/cXatWtj/Pjxceyxx8all14a69evj4iINWvWxO7du3tcm5/+9KfjqKOOcm2y37366quxadOmHtffiBEjYsqUKd3X36pVq2LkyJFx2mmndR8zderUGDBgQDz55JMHfGb6vp/97GcxevToOPHEE+Mv//Iv4+233+7e53pkf9q2bVtERBx22GERsXc/o1etWhUnnXRSjBkzpvuYadOmRXt7e7z44osHcPq+T0SV4K233orOzs4eF3hExJgxY2LTpk0lTUV/MWXKlFi6dGk89NBDcdttt8Wrr74aZ511Vmzfvj02bdoUgwcPjpEjR/b4M65NDoQPrrGP+964adOmGD16dI/99fX1cdhhh7lGqbrzzjsv7r777lixYkXceOON8fjjj8f06dOjs7MzIlyP7D9dXV3xV3/1V/G5z30uJk6cGBGxVz+jN23a9KHfQz/YR/XUlz0AcGBNnz69+59PPvnkmDJlShx99NHxox/9KIYOHVriZAC15fOf/3z3P5900klx8sknx3HHHRc/+9nP4pxzzilxMvq65ubm+NWvftXjnmVqi5WoEowaNSoGDhy4x9NUNm/eHGPHji1pKvqrkSNHxgknnBDr1q2LsWPHxq5du2Lr1q09jnFtciB8cI193PfGsWPH7vEAnvfffz/eeecd1yj73bHHHhujRo2KdevWRYTrkf3jK1/5Svz0pz+Nxx57LI488sju7XvzM3rs2LEf+j30g31Uj4gqweDBg+PUU0+NFStWdG/r6uqKFStWxBlnnFHiZPRHHR0d8corr8S4cePi1FNPjUGDBvW4Nl966aVYv369a5P97phjjomxY8f2uP7a29vjySef7L7+zjjjjNi6dWusWbOm+5hHH300urq6YsqUKQd8ZvqXN954I95+++0YN25cRLgeqa6iKOIrX/lKPPDAA/Hoo4/GMccc02P/3vyMPuOMM+K///u/e8T9ww8/HA0NDdHU1HRg3kg/MfCGG264oewh+qOGhoa47rrrYsKECTFkyJC47rrr4rnnnovbb789DjnkkLLHow+bN29eDBkyJCIiWltb4+qrr44tW7bEkiVL4rDDDosNGzbED37wgzjllFPinXfeiauuuiomTJgQCxYsKHly+oKOjo5obW2NTZs2xQ9/+MOYMmVKDB06NHbt2hUjR46Mzs7O+M53vhNNTU2xa9eu+NrXvhbvvvtu3HrrrVFfXx9HHHFEPPnkk3HPPffEH/7hH0ZbW1tcddVVce6558YVV1xR9tujl/m463HgwIHxzW9+MxoaGuL999+PNWvWxJw5c+KQQw6Jm2++2fVI1TU3N8c//uM/xj//8z/H+PHjo6OjIzo6OmLgwIExaNCgOOiggz7xZ/Sxxx4bP/7xj+ORRx6Jk08+OZ5//vn46le/GldffXVMmzat5HfYx5T9eMD+7NZbby2OOuqoYvDgwcXpp59ePPHEE2WPRD8wc+bMYty4ccXgwYOLP/iDPyhmzpxZrFu3rnv///7v/xZf/vKXi0MPPbQYNmxYcfHFFxcbN24scWL6kscee6yIiD2+Zs2aVRTF7x9zft111xVjxowphgwZUpxzzjnFSy+91OMcb7/9dvGFL3yhOOSQQ4qGhoZi9uzZxfbt20t4N/R2H3c9vvvuu8W5555bHHHEEcWgQYOKo48+urjyyit7PDq6KFyPVM+HXYsRUdx5553dx+zNz+i2trZi+vTpxdChQ4tRo0YV1157bbF79+4D/G76vrqiKIoDn24AAAC9k3uiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABI+P8ACOqVlhUuyIcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1EAAAFzCAYAAADffoO+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de1iUdf7/8dcAMooCHkgQD2GptWSBoZJmGxal2JriVm4HRTJ33aDcyN3Va7+pbbZ29HK37+y62Xra7Zvmbmtda5mFx8wSELSiLF3NEyBGQlCCwuf3h5fzizwxwzD3DPN8XBfX7tz3zX2/P7fMvHvdp7EZY4wAAAAAAE0SZHUBAAAAAOBPCFEAAAAA4AJCFAAAAAC4gBAFAAAAAC4gRAEAAACACwhRAAAAAOACQhQAAAAAuIAQBQAAAAAuCLG6AKs1NDToyJEjCg8Pl81ms7ocAAgYxhh98803io2NVVAQx/TOoC8BgHWa2psCPkQdOXJEPXv2tLoMAAhYBw8eVI8ePawuw2fQlwDAehfrTQEbohwOhxwOh06dOiXp9I6KiIiwuCoACBxVVVXq2bOnwsPDrS7Fp5zZH/QlAPC+pvYmmzHGeKkmn1RVVaXIyEhVVlbSrADAi/j8PTf2CwBYp6mfwVyEDgAAAAAuIEQBAAAAgAsIUQAA+ACHw6H4+HgNGjTI6lIAABdBiAIAwAdkZWWpuLhYeXl5VpcCALiIgA1RHPEDAAAA4I6ADVEc8QMAAADgjoANUQAAAADgDkIUAAAAALiAEAUAgA/gXl0A8B+EKAAAfAD36gKA/wjYEMURPwAAAADusBljjNVFWKmqqkqRkZGqrKxURESEW+uIm7HGw1W5Zv9Tt1m6fQBwhyc+f1sj+hIAWKepn8EBeyYKAAAAANxBiAIAAAAAFxCiAAAAAMAFhCgAAAAAcAEhCgAAAABcQIgCAMAH8NUbAOA/AjZE0awAAL6EL9sFAP8RsCGKZgUAAADAHQEbogAAAADAHYQoAAAAAHABIQoAAAAAXECIAgAAAAAXhFhdAJovbsYaS7e//6nbLN0+AAAA4E2ciQIAAAAAFxCiAAAAAMAFXM4HAICHxcXFKSIiQkFBQerUqZM2bNhgdUkAAA8K2BDlcDjkcDhUX19vdSkAgFbo/fffV4cOHawuAwDQAgL2cr6srCwVFxcrLy/P6lIAAAAA+JGADVEAAJzL5s2bNXr0aMXGxspms2n16tVnLeNwOBQXF6e2bdsqOTlZ27dvbzTfZrPpxhtv1KBBg/Tyyy97q3QAgJcQogAA+J6amholJCTI4XCcc/7KlSuVk5Oj2bNna8eOHUpISNCIESN09OhR5zLvvfeeCgoK9MYbb+gPf/iDdu3a5a3yAQBeQIgCAOB70tLSNHfuXKWnp59z/vz58zVlyhRlZmYqPj5eCxcuVFhYmBYvXuxcpnv37pKkbt26adSoUdqxY8d5t1dbW6uqqqpGPwAA3xawD5aA5/BlvwACRV1dnQoKCjRz5kzntKCgIKWmpmrbtm2STp/JamhoUHh4uKqrq7V+/Xrddddd513nvHnz9Pjjj7d47QAAz+FMFAAATXTs2DHV19crOjq60fTo6GiVlpZKksrKyjRs2DAlJCTouuuu08SJEzVo0KDzrnPmzJmqrKx0/hw8eLBFxwAAaD7ORAEA4EGXXXaZdu7c2eTl7Xa77HY7X70BAH6EM1EAADRRVFSUgoODVVZW1mh6WVmZYmJimrVuvnoDAPwHIQoAgCYKDQ1VUlKScnNzndMaGhqUm5urIUOGWFgZAMCbuJwPAIDvqa6u1p49e5yv9+3bp6KiInXu3Fm9evVSTk6OMjIyNHDgQA0ePFgLFixQTU2NMjMzm7VdLucDAP9BiAIA4Hvy8/M1fPhw5+ucnBxJUkZGhpYuXarx48ervLxcs2bNUmlpqRITE7V27dqzHjbhqqysLGVlZamqqkqRkZHNWhcAoGURogAA+J6UlBQZYy64THZ2trKzs71UEQDA1wTsPVEOh0Px8fEXfOwsAADeQl8CAP8RsCGKpyABAHwJfQkA/EfAhigAAAAAcAchCgAAH8DlfADgPwhRAAD4AC7nAwD/QYgCAAAAABcQogAAAADABYQoAAB8APdEAYD/IEQBAOADuCcKAPwHIQoAAAAAXECIAgAAAAAXEKIAAAAAwAWEKAAAfAAPlgAA/0GIAgDAB/BgCQDwH4QoAAAAAHABIQoAAAAAXBBidQFAc8XNWGPp9vc/dZul2wcAAIB3cSYKAAAAAFwQsCGKpyABAAAAcEfAhiieggQA8CUc3AMA/xGwIQoAAF/CwT0A8B+EKAAAAABwASEKAAAAAFxAiAIAAAAAFxCiAAAAAMAFhCgAAAAAcAEhCgAAAABcQIgCAAAAABcQogAA8AF82S4A+A9CFAAAPoAv2wUA/0GIAgAAAAAXEKIAAAAAwAWEKAAAAABwASEKAAAAAFxAiAIAAAAAFxCiAAAAAMAFhCgAAAAAcAEhCgCAFvDtt9/q0ksv1fTp060uBQDgYYQoAABawJNPPqnrrrvO6jIAAC2AEAUAgId98cUX+uyzz5SWlmZ1KQCAFkCIAgDgezZv3qzRo0crNjZWNptNq1evPmsZh8OhuLg4tW3bVsnJydq+fXuj+dOnT9e8efO8VTIAwMsIUQAAfE9NTY0SEhLkcDjOOX/lypXKycnR7NmztWPHDiUkJGjEiBE6evSoJOn1119Xv3791K9fP2+WDQDwohCrC2iugwcPasKECTp69KhCQkL02GOP6c4777S6LACAn0pLS7vgZXjz58/XlClTlJmZKUlauHCh1qxZo8WLF2vGjBn64IMPtGLFCq1atUrV1dU6efKkIiIiNGvWrHOur7a2VrW1tc7XVVVVnh0QAMDj/P5MVEhIiBYsWKDi4mKtW7dOv/rVr1RTU2N1WQCAVqiurk4FBQVKTU11TgsKClJqaqq2bdsmSZo3b54OHjyo/fv367nnntOUKVPOG6DOLB8ZGen86dmzZ4uPAwDQPH4forp166bExERJUkxMjKKiolRRUWFxVQCA1ujYsWOqr69XdHR0o+nR0dEqLS11a50zZ85UZWWl8+fgwYOeKBUA0IIsD1GeuIH3jIKCAtXX13MUDwDgEyZNmqTnnnvugsvY7XZFREQ0+gEA+DbLQ1Rzb+A9o6KiQhMnTtSLL77ojbIBAAEoKipKwcHBKisrazS9rKxMMTExzVq3w+FQfHy8Bg0a1Kz1AABanuUhKi0tTXPnzlV6evo553//Bt74+HgtXLhQYWFhWrx4sXOZ2tpajR07VjNmzNDQoUMvuL3a2lpVVVU1+gEAoClCQ0OVlJSk3Nxc57SGhgbl5uZqyJAhzVp3VlaWiouLlZeX19wyAQAtzPIQdSFNuYHXGKNJkybppptu0oQJEy66Tm7gBQBcSHV1tYqKilRUVCRJ2rdvn4qKinTgwAFJUk5OjhYtWqRly5bp008/1S9/+UvV1NQ4n9bnLs5EAYD/8OkQ1ZQbeLdu3aqVK1dq9erVSkxMVGJioj766KPzrpMbeAEAF5Kfn68BAwZowIABkk6HpgEDBjifsDd+/Hg999xzmjVrlhITE1VUVKS1a9ee1atcxZkoAPAffv89UcOGDVNDQ0OTl7fb7bLb7S1YEQDAn6WkpMgYc8FlsrOzlZ2d7aWKAAC+xqfPRLXkDbwAAPgSLucDAP/h0yGqJW/gBQDAl3A5HwD4D8sv56uurtaePXucr8/cwNu5c2f16tVLOTk5ysjI0MCBAzV48GAtWLDAYzfwOhwO1dfXN3cIAAAAAAKI5SEqPz9fw4cPd77OycmRJGVkZGjp0qUaP368ysvLNWvWLJWWlioxMdFjN/BmZWWpqqpKkZGRzVoXAAAAgMBheYjiBl4AALhCAgD8iU/fEwUAQKDgnigA8B+EKAAAAABwQcCGKB4lCwAAAMAdARuiuGwCAOBLOLgHAP4jYEMUAAC+hIN7AOA/CFEAAAAA4AJCFAAAAAC4gBAFAAAAAC4I2BDFDbwAAF9CXwIA/xGwIYobeAEAvoS+BAD+I2BDFAAAAAC4gxAFAAAAAC4gRAEAAACACwhRAAAAAOCCgA1RPAUJAOBL6EsA4D8CNkTxFCQAgC+hLwGA/wjYEAUAAAAA7iBEAQAAAIALCFEAAAAA4AJCFAAAAAC4gBAFAAAAAC5wK0T997//9XQdAAA0C70JAOAtboWoPn36aPjw4frHP/6hEydOeLomr+D7OACgdWkNvQkA4B/cClE7duzQNddco5ycHMXExOgXv/iFtm/f7unaWhTfxwEArYu/9yYO7gGA/3ArRCUmJuqPf/yjjhw5osWLF6ukpETDhg1T//79NX/+fJWXl3u6TgAALsjfexMH9wDAfzTrwRIhISEaN26cVq1apaefflp79uzR9OnT1bNnT02cOFElJSWeqhMAgCahNwEAWlqzQlR+fr4efPBBdevWTfPnz9f06dO1d+9evfPOOzpy5IjGjBnjqToBAGgSehMAoKWFuPNL8+fP15IlS7R7926NGjVKy5cv16hRoxQUdDqT9e7dW0uXLlVcXJwnawUA4LzoTQAAb3ErRP3lL3/R/fffr0mTJqlbt27nXKZr167629/+1qziAABoKnoTAMBb3ApRX3zxxUWXCQ0NVUZGhjurBwDAZfQmAIC3uHVP1JIlS7Rq1aqzpq9atUrLli1rdlEAALiK3gQA8Ba3QtS8efMUFRV11vSuXbvqD3/4Q7OLAgDAVfQmAIC3uBWiDhw4oN69e581/dJLL9WBAweaXZQ38KWGANC6tIbeBADwD27dE9W1a1ft2rXrrCcc7dy5U126dPFEXS0uKytLWVlZqqqqUmRkpNXlwI/FzVhj6fb3P3WbpdsHfIWv9Kbjx48rNTVVp06d0qlTpzRt2jRNmTLFa9sHALQ8t0LU3XffrYcffljh4eH68Y9/LEnatGmTpk2bpp/97GceLRAAgKbwld4UHh6uzZs3KywsTDU1Nerfv7/GjRvnNwcZAQAX51aIeuKJJ7R//37dfPPNCgk5vYqGhgZNnDiR684BAJbwld4UHByssLAwSVJtba2MMTLGeG37AICW59Y9UaGhoVq5cqU+++wzvfzyy3rttde0d+9eLV68WKGhoZ6uEQCAi/JUb9q8ebNGjx6t2NhY2Ww2rV69+qxlHA6H4uLi1LZtWyUnJ2v79u2N5h8/flwJCQnq0aOHfv3rX5/zgRcAAP/l1pmoM/r166d+/fp5qhYAAJqtub2ppqZGCQkJuv/++zVu3Liz5q9cuVI5OTlauHChkpOTtWDBAo0YMUK7d+9W165dJUkdO3bUzp07VVZWpnHjxumOO+5QdHS02zUBAHyLWyGqvr5eS5cuVW5uro4ePaqGhoZG89evX++R4gAAaCpP9aa0tDSlpaWdd/78+fM1ZcoUZWZmSpIWLlyoNWvWaPHixZoxY0ajZaOjo5WQkKAtW7bojjvuOOf6amtrVVtb63xdVVXVpDoBANZxK0RNmzZNS5cu1W233ab+/fvLZrN5ui4AAFzijd5UV1engoICzZw50zktKChIqamp2rZtmySprKxMYWFhCg8PV2VlpTZv3qxf/vKX513nvHnz9Pjjj3u8VgBAy3ErRK1YsUKvvvqqRo0a5el6AABwizd607Fjx1RfX3/WpXnR0dH67LPPJElffvmlfv7znzsfKPHQQw/p6quvPu86Z86cqZycHOfrqqoq9ezZs2UGAADwCLdCVGhoqPr06ePpWgAAcJuv9KbBgwerqKioycvb7XbZ7XY5HA45HA7V19e3YHUAAE9w6+l8jz76qP74xz/yyFYAgM/wRm+KiopScHCwysrKGk0vKytTTExMs9adlZWl4uJi5eXlNWs9AICW59aZqPfee08bNmzQW2+9pauuukpt2rRpNP+1117zSHEAADSVN3pTaGiokpKSlJubq7Fjx0o6/V1Uubm5ys7Obvb6AQD+wa0Q1bFjR6Wnp3u6FgAA3Oap3lRdXa09e/Y4X+/bt09FRUXq3LmzevXqpZycHGVkZGjgwIEaPHiwFixYoJqaGufT+tzF5XwA4D/cClFLlizxdB1eR7MCgNbFU70pPz9fw4cPd74+89CHjIwMLV26VOPHj1d5eblmzZql0tJSJSYmau3atc3+HqisrCxlZWWpqqpKkZGRzVoXAKBluf1lu6dOndLGjRu1d+9e3XPPPQoPD9eRI0cUERGhDh06eLLGFkGzAoDWxxO9KSUl5aL3VWVnZ3P5HgAEMLdC1JdffqmRI0fqwIEDqq2t1S233KLw8HA9/fTTqq2t1cKFCz1dJwAAF+TvvYkrJADAf7j1dL5p06Zp4MCB+vrrr9WuXTvn9PT0dOXm5nqsOAAAmsrfexNP5wMA/+HWmagtW7bo/fffV2hoaKPpcXFxOnz4sEcKAwDAFfQmAIC3uHUmqqGh4ZyXGxw6dEjh4eHNLgoAAFf5e29yOByKj4/XoEGDrC4FAHARboWoW2+9VQsWLHC+ttlsqq6u1uzZszVq1CiPFQcAQFP5e2/icj4A8B9uXc73/PPPa8SIEYqPj9eJEyd0zz336IsvvlBUVJReeeUVT9cIAMBF0ZsAAN7iVojq0aOHdu7cqRUrVmjXrl2qrq7W5MmTde+99za6mRcAAG+hNwEAvMXt74kKCQnRfffd58laAABoFn/uTTziHAD8h1shavny5RecP3HiRLeKAQDAXf7em/gSeADwH26FqGnTpjV6ffLkSX377bcKDQ1VWFiYzzcqAEDrQ28CAHiLW0/n+/rrrxv9VFdXa/fu3Ro2bBg37wIALEFvAgB4i1sh6lz69u2rp5566qwjgQAAWIXeBABoCR4LUdLpG3qPHDniyVUCANAs/tKb+LJdAPAfbt0T9cYbbzR6bYxRSUmJ/vd//1fXX3+9RwoDAMAV/t6beLAEAPgPt0LU2LFjG7222Wy65JJLdNNNN+n555/3SGEAALiC3gQA8Ba3QlRDQ4On6/A6vo8DAFqX1tCbAAD+waP3RPmTrKwsFRcXKy8vz+pSAAAAAPgRt85E5eTkNHnZ+fPnu7MJAABcQm8CAHiLWyGqsLBQhYWFOnnypK644gpJ0ueff67g4GBde+21zuVsNptnqgRwXnEz1li6/f1P3Wbp9oEz6E0AAG9xK0SNHj1a4eHhWrZsmTp16iTp9JccZmZm6oYbbtCjjz7q0SIBALgYf+9N3KsLAP7DZowxrv5S9+7dtW7dOl111VWNpn/88ce69dZb/eL7OM448yjZyspKRUREuLUOq88EAFbiTBTc5YnP3+9rLb2JvtR8fC4BcFdTP4PderBEVVWVysvLz5peXl6ub775xp1VAgDQLPQmAIC3uBWi0tPTlZmZqddee02HDh3SoUOH9K9//UuTJ0/WuHHjPF0jAAAXRW8CAHiLW/dELVy4UNOnT9c999yjkydPnl5RSIgmT56sZ5991qMFAgDQFPQmAIC3uBWiwsLC9Oc//1nPPvus9u7dK0m6/PLL1b59e48WBwBAU9GbAADe0qwv2y0pKVFJSYn69u2r9u3by41nVAAA4FH0JgBAS3MrRH311Ve6+eab1a9fP40aNUolJSWSpMmTJ/v8I2QBAK0TvQkA4C1uhahHHnlEbdq00YEDBxQWFuacPn78eK1du9ZjxQEA0FT0JgCAt7h1T9S6dev09ttvq0ePHo2m9+3bV19++aVHCgMAwBX+3pv4sl0A8B9unYmqqalpdJTvjIqKCtnt9mYXBQCAq/y9N2VlZam4uFh5eXlWlwIAuAi3QtQNN9yg5cuXO1/bbDY1NDTomWee0fDhwz1WHAAATUVvAgB4i1uX8z3zzDO6+eablZ+fr7q6Ov3mN7/RJ598ooqKCm3dutXTNQIAcFH0JgCAt7h1Jqp///76/PPPNWzYMI0ZM0Y1NTUaN26cCgsLdfnll3u6RgAALoreBADwFpfPRJ08eVIjR47UwoUL9bvf/a4lagIAwCX0JgCAN7l8JqpNmzbatWtXS9QCAIBb6E0AAG9y63K+++67T3/72988XQsAAG6jNwEAvMWtB0ucOnVKixcv1rvvvqukpCS1b9++0fz58+d7pDgAAJqK3gQA8BaXQtR///tfxcXF6eOPP9a1114rSfr8888bLWOz2TxXHQAAF0FvAgB4m0shqm/fviopKdGGDRskSePHj9ef/vQnRUdHt0hxAABcjC/2poMHD2rChAk6evSoQkJC9Nhjj+nOO++0rJ5AEzdjjaXb3//UbZZuH0DLcylEGWMavX7rrbdUU1Pj0YIAAHCFL/amkJAQLViwQImJiSotLVVSUpJGjRp11iWGAAD/5NaDJc74YeOySnp6ujp16qQ77rjD6lIAABbzhd7UrVs3JSYmSpJiYmIUFRWliooKi6sCAHiKSyHKZrOddV25L1xnPm3aNC1fvtzqMgAAFmiJ3rR582aNHj1asbGxstlsWr169VnLOBwOxcXFqW3btkpOTtb27dvPua6CggLV19erZ8+ezaoJAOA7XL6cb9KkSbLb7ZKkEydOaOrUqWddnvDaa695rsImSElJ0caNG726TQCnce8BrNYSvammpkYJCQm6//77NW7cuLPmr1y5Ujk5OVq4cKGSk5O1YMECjRgxQrt371bXrl2dy1VUVGjixIlatGiRm6MDAPgil85EZWRkqGvXroqMjFRkZKTuu+8+xcbGOl+f+XGFJ4/2AQACT0v0prS0NM2dO1fp6ennnD9//nxNmTJFmZmZio+P18KFCxUWFqbFixc7l6mtrdXYsWM1Y8YMDR069Lzbqq2tVVVVVaMfAIBvc+lM1JIlSzxegKeO9gEAAlNL9KYLqaurU0FBgWbOnOmcFhQUpNTUVG3btk3S/z87dtNNN2nChAkXXN+8efP0+OOPt2jNAADPataDJTzBE0f7XMERPwBAcxw7dkz19fVnPUI9OjpapaWlkqStW7dq5cqVWr16tRITE5WYmKiPPvronOubOXOmKisrnT8HDx5s8TEAAJrHpTNR3taUo32u4ogfAKClDRs2TA0NDU1a1m63y263y+FwyOFwqL6+voWrAwA0l0+HqAsd7fvss8+cr1NTU7Vz507V1NSoR48eWrVqlYYMGXLOdc6cOVM5OTnO11VVVTwxCQDQZFFRUQoODlZZWVmj6WVlZYqJiXF7vVlZWcrKylJVVZXL93DBt/DAHaD18+kQ1VTvvvtuk5c9c8QPAAB3hIaGKikpSbm5uRo7dqwkqaGhQbm5ucrOzra4OgCAN/h0iGqpo30AAFxIdXW19uzZ43y9b98+FRUVqXPnzurVq5dycnKUkZGhgQMHavDgwVqwYIFqamqUmZnp9ja5nA8A/IflD5a4kO8f7TvjzNG+812u11QOh0Px8fEaNGhQc8sEALQy+fn5GjBggAYMGCBJysnJ0YABAzRr1ixJ0vjx4/Xcc89p1qxZSkxMVFFRkdauXXvW5eeuyMrKUnFxsfLy8jwyBgBAy7H8TJQVR/skrj0HAJxfSkqKjDEXXCY7O5vL9wAgQFkeovLz8zV8+HDn6zMPfcjIyNDSpUs1fvx4lZeXa9asWSotLVViYmKzj/YBAOBruJwPAPyH5SGKo30AAHCFBAD4E5++JwoAAAAAfA0hCgAAH8ADjwDAfwRsiKJZAQB8CU/nAwD/EbAhimYFAAAAwB0BG6IAAAAAwB2EKAAAfACXmQOA/yBEAQDgA7jMHAD8R8CGKI74AQAAAHBHwIYojvgBAAAAcEfAhigAAAAAcAchCgAAH8Bl5gDgPwhRAAD4AC4zBwD/EWJ1AQAAAPCcuBlrLN3+/qdus3T7gDdwJgoAAAAAXBCwIYprzwEAAAC4I2BDFNeeAwAAAHBHwIYoAAB8CVdIAID/IEQBAOADuEICAPwHIQoAAAAAXECIAgAAAAAXEKIAAAAAwAWEKAAAAABwQcCGKJ6CBAAAAMAdARuieAoSAAAAAHcEbIgCAAAAAHcQogAAAADABYQoAAB8APfqAoD/IEQBAOADuFcXAPwHIQoAAAAAXECIAgAAAAAXEKIAAAAAwAWEKAAAAABwQYjVBVjF4XDI4XCovr7e6lIAAABajbgZayzd/v6nbrN0+wgMAXsmiqcgAQAAAHBHwIYoAAAAAHAHIQoAgBaQnp6uTp066Y477rC6FACAhxGiAABoAdOmTdPy5cutLgMA0AIC9sESAAC0pJSUFG3cuNHqMoCAw4Mt4A2ciQIA4Ac2b96s0aNHKzY2VjabTatXrz5rGYfDobi4OLVt21bJycnavn27BZUCAKxAiAIA4AdqamqUkJAgh8NxzvkrV65UTk6OZs+erR07dighIUEjRozQ0aNHvVwpAMAKXM4HAMAPpKWlKS0t7bzz58+frylTpigzM1OStHDhQq1Zs0aLFy/WjBkzXNpWbW2tamtrna+rqqrcKxoA4DWciQIAwAV1dXUqKChQamqqc1pQUJBSU1O1bds2l9c3b948RUZGOn969uzpyXIBAC2AEAUAgAuOHTum+vp6RUdHN5oeHR2t0tJS5+vU1FTdeeedevPNN9WjR4/zBqyZM2eqsrLS+XPw4MEWrR8A0HxczgcAQAt49913m7Sc3W6X3W6Xw+GQw+FQfX19C1cGAGguzkQBAOCCqKgoBQcHq6ysrNH0srIyxcTEuL3erKwsFRcXKy8vr7klAgBaWMCeieKIH9A6BPr3gQT6+K0QGhqqpKQk5ebmauzYsZKkhoYG5ebmKjs72+LqAADeELAhKisrS1lZWaqqqlJkZKTV5QAAfEh1dbX27NnjfL1v3z4VFRWpc+fO6tWrl3JycpSRkaGBAwdq8ODBWrBggWpqapxP63MHB/cAwH8EbIgCAOB88vPzNXz4cOfrnJwcSVJGRoaWLl2q8ePHq7y8XLNmzVJpaakSExO1du3asx424QoO7gGA/yBEAQDwAykpKTLGXHCZ7OxsLt8DgADFgyUAAPABDodD8fHxGjRokNWlAAAughAFAIAP4Ol8AOA/CFEAAAAA4AJCFAAAAAC4gBAFAIAP4J4oAPAfhCgAAHwA90QBgP8gRAEAAACACwhRAAAAAOACQsw/3JgAABy3SURBVBQAAD6Ae6IAwH8QogAA8AHcEwUA/oMQBQAAAAAuIEQBAAAAgAsIUQAAAADggoANUdzACwDwJfQlAPAfARuiuIEXAOBL6EsA4D8CNkQBAAAAgDsIUQAAAADgAkIUAAAAALiAEAUAAAAALiBEAQDgA3g6HwD4D0IUAAA+gKfzAYD/IEQBAAAAgAsIUQAAAADgAkIUAAAAALiAEAUAAAAALiBEAQAAAIALCFEAAAAA4AJCFAAAAAC4IMTqAgAAwOkv23U4HKqvr7e6FADNEDdjjdUlaP9Tt1ldQqvHmSgAAHwAX7YLAP6DEAUAAAAALiBEAQAAAIALCFEAAAAA4AJCFAAAAAC4gBAFAAAAAC4gRAEAAACACwhRAAAAAOACQhQAAAAAuKBVhKj//Oc/uuKKK9S3b1+99NJLVpcDAAhw9CUAaN1CrC6guU6dOqWcnBxt2LBBkZGRSkpKUnp6urp06WJ1aQCAAERfAoDWz+/PRG3fvl1XXXWVunfvrg4dOigtLU3r1q2zuiwAQICiLwFA62d5iNq8ebNGjx6t2NhY2Ww2rV69+qxlHA6H4uLi1LZtWyUnJ2v79u3OeUeOHFH37t2dr7t3767Dhw97pXYAQOtDXwIAXIzlIaqmpkYJCQlyOBznnL9y5Url5ORo9uzZ2rFjhxISEjRixAgdPXrUy5UCAAIBfQkAcDGWh6i0tDTNnTtX6enp55w/f/58TZkyRZmZmYqPj9fChQsVFhamxYsXS5JiY2MbHeE7fPiwYmNjz7u92tpaVVVVNfoBAOAM+hIA4GJ8+sESdXV1Kigo0MyZM53TgoKClJqaqm3btkmSBg8erI8//liHDx9WZGSk3nrrLT322GPnXee8efP0+OOPt3jtAAJD3Iw1VpcAL6IvAcDFWd0b9z91W4tvw/IzURdy7Ngx1dfXKzo6utH06OholZaWSpJCQkL0/PPPa/jw4UpMTNSjjz56wScgzZw5U5WVlc6fgwcPtugYAACtB30JACD5+Jmoprr99tt1++23N2lZu90uu93ewhUBAAKZO33J4XDI4XCovr6+hasDADSXT5+JioqKUnBwsMrKyhpNLysrU0xMjEVVAQACVUv2paysLBUXFysvL69Z6wEAtDyfDlGhoaFKSkpSbm6uc1pDQ4Nyc3M1ZMiQZq3b4XAoPj5egwYNam6ZAIAA0ZJ9CQDgPyy/nK+6ulp79uxxvt63b5+KiorUuXNn9erVSzk5OcrIyNDAgQM1ePBgLViwQDU1NcrMzGzWdrOyspSVlaWqqipFRkY2dxgAgFbCqr7E5XwA4D8sD1H5+fkaPny483VOTo4kKSMjQ0uXLtX48eNVXl6uWbNmqbS0VImJiVq7du1ZN/UCAOAJVvUlDu4BgP+wPESlpKTIGHPBZbKzs5Wdne2ligAAgYy+BAC4GJ++JwoAgEDBvboA4D8IUQAA+ACezgcA/iNgQxRH/AAAAAC4I2BDFEf8AAC+hIN7AOA/AjZEAQDgSzi4BwD+w/Kn81ntzBOYqqqq3F5HQ+23nioHAPxKcz47z/zuxZ6EF2joSwCaqzmfH55g9WeQN3qTzQR49zp06JB69uxpdRkAELAOHjyoHj16WF2Gz6AvAYD1LtabAj5ENTQ06MiRIwoPD5fNZnP596uqqtSzZ08dPHhQERERLVBh68M+cx37zD3sN9d5c58ZY/TNN98oNjZWQUFcXX4Gfek0xuE7WsMYJMbhS3x5DE3tTQF/OV9QUJBHjoBGRET43B+Br2OfuY595h72m+u8tc8iIyNbfBv+hr7UGOPwHa1hDBLj8CW+Ooam9CYO/QEAAACACwhRAAAAAOCC4Dlz5syxugh/FxwcrJSUFIWEBPzVkU3GPnMd+8w97DfXsc/8X2v5N2QcvqM1jEFiHL7E38cQ8A+WAAAAAABXcDkfAAAAALiAEAUAAAAALiBEAQAAAIALCFEAAAAA4IKAD1EOh0NxcXFq27atkpOTtX379gsuv2rVKl155ZVq27atrr76ar355puN5htjNGvWLHXr1k3t2rVTamqqvvjii0bLVFRU6N5771VERIQ6duyoyZMnq7q62uNjaylW7LMnn3xSQ4cOVVhYmDp27OjxMXmDt/fb/v37NXnyZPXu3Vvt2rXT5ZdfrtmzZ6uurq5FxtcSrPhbu/3229WrVy+1bdtW3bp104QJE3TkyBGPj60lWbHfzqitrVViYqJsNpuKioo8NqZA0lr6Umv5zGsN7yerxrBmzRolJyerXbt26tSpk8aOHev2GKwax+eff64xY8YoKipKERERGjZsmDZs2OBT43jttdd06623qkuXLuf9Wzlx4oSysrLUpUsXdejQQT/96U9VVlbmN2OoqKjQQw89pCuuuELt2rVTr1699PDDD6uystLtMTSbCWArVqwwoaGhZvHixeaTTz4xU6ZMMR07djRlZWXnXH7r1q0mODjYPPPMM6a4uNj8z//8j2nTpo356KOPnMs89dRTJjIy0qxevdrs3LnT3H777aZ3797mu+++cy4zcuRIk5CQYD744AOzZcsW06dPH3P33Xe3+Hg9wap9NmvWLDN//nyTk5NjIiMjW3ycnmbFfnvrrbfMpEmTzNtvv2327t1rXn/9ddO1a1fz6KOPemXMzWXV39r8+fPNtm3bzP79+83WrVvNkCFDzJAhQ1p8vJ5i1X474+GHHzZpaWlGkiksLGyxcbZWraUvtZbPvNbwfrJqDP/85z9Np06dzF/+8heze/du88knn5iVK1e6NQYrx9G3b18zatQos3PnTvP555+bBx980ISFhZmSkhKfGcfy5cvN448/bhYtWnTev5WpU6eanj17mtzcXJOfn2+uu+46M3ToUL8Zw0cffWTGjRtn3njjDbNnzx6Tm5tr+vbta37605+6NQZPCOgQNXjwYJOVleV8XV9fb2JjY828efPOufxdd91lbrvttkbTkpOTzS9+8QtjjDENDQ0mJibGPPvss875x48fN3a73bzyyivGGGOKi4uNJJOXl+dc5q233jI2m80cPnzYY2NrKVbss+9bsmSJX4Yoq/fbGc8884zp3bt3c4biNb6yz15//XVjs9lMXV1dc4bjNVbutzfffNNceeWV5pNPPiFEuam19CVfef829zOvNbyfrBjDyZMnTffu3c1LL73kVs2+Mo7y8nIjyWzevNm5TFVVlZFk3nnnHZ8Yx/ft27fvnH8rx48fN23atDGrVq1yTvv000+NJLNt2za/GMO5vPrqqyY0NNScPHnSxRF4RsBezldXV6eCggKlpqY6pwUFBSk1NVXbtm075+9s27at0fKSNGLECOfy+/btU2lpaaNlIiMjlZyc7Fxm27Zt6tixowYOHOhcJjU1VUFBQfrwww89Nr6WYNU+83e+tN8qKyvVuXPn5gzHK3xln1VUVOjll1/W0KFD1aZNm+YOq8VZud/Kyso0ZcoU/f3vf1dYWJgnhxUwWktf8pX3r9S8z7zW8H6yagw7duzQ4cOHFRQUpAEDBqhbt25KS0vTxx9/7Ffj6NKli6644gotX75cNTU1OnXqlP7617+qa9euSkpK8olxNEVBQYFOnjzZaD1XXnmlevXq5fJ/a1k1hnOprKxURESEZV/WG7Ah6tixY6qvr1d0dHSj6dHR0SotLT3n75SWll5w+TP/e7Flunbt2mh+SEiIOnfufN7t+gqr9pm/85X9tmfPHr3wwgv6xS9+4dY4vMnqffbb3/5W7du3V5cuXXTgwAG9/vrrzRqPt1i134wxmjRpkqZOndroP8ThmtbSl6x+/57R3M+81vB+smoM//3vfyVJc+bM0f/8z//oP//5jzp16qSUlBRVVFT4zThsNpveffddFRYWKjw8XG3bttX8+fO1du1aderUySfG0RSlpaUKDQ09655yd/5by6oxnKuOJ554Qj//+c/dXkdzBWyIAgLJ4cOHNXLkSN15552aMmWK1eX4vF//+tcqLCzUunXrFBwcrIkTJ8oYY3VZPuuFF17QN998o5kzZ1pdCiDJvz/zWsP7qaGhQZL0u9/9Tj/96U+VlJSkJUuWyGazadWqVRZX13TGGGVlZalr167asmWLtm/frrFjx2r06NEqKSmxuryAVVVVpdtuu03x8fGaM2eOZXUEbIiKiopScHDwWU8mKSsrU0xMzDl/JyYm5oLLn/nfiy1z9OjRRvNPnTqlioqK827XV1i1z/yd1fvtyJEjGj58uIYOHaoXX3yxWWPxFqv3WVRUlPr166dbbrlFK1as0JtvvqkPPvigWWPyBqv22/r167Vt2zbZ7XaFhISoT58+kqSBAwcqIyOj+QMLEK2lL1n9/vXUZ15reD9ZNYZu3bpJkuLj453z7Xa7LrvsMh04cMClMVg5jvXr1+s///mPVqxYoeuvv17XXnut/vznP6tdu3ZatmyZT4yjKWJiYlRXV6fjx483az2SdWM445tvvtHIkSMVHh6uf//735Zeah+wISo0NFRJSUnKzc11TmtoaFBubq6GDBlyzt8ZMmRIo+Ul6Z133nEu37t3b8XExDRapqqqSh9++KFzmSFDhuj48eMqKChwLrN+/Xo1NDQoOTnZY+NrCVbtM39n5X47fPiwUlJSnEcBg4L84y3vS39rZ46o1tbWuj0eb7Fqv/3pT3/Szp07VVRUpKKiIueja1euXKknn3zSo2NszVpLX2otn3mt4f1k1RiSkpJkt9u1e/du5zInT57U/v37demll7o0BivH8e2330rSWX9HQUFBzt5g9TiaIikpSW3atGm0nt27d+vAgQMu/7eWVWOQTv/73HrrrQoNDdUbb7yhtm3buvT7HmfJ4yx8xIoVK4zdbjdLly41xcXF5uc//7np2LGjKS0tNcYYM2HCBDNjxgzn8lu3bjUhISHmueeeM59++qmZPXv2OR+X2bFjR/P666+bXbt2mTFjxpzzUbIDBgwwH374oXnvvfdM3759/eoR51bssy+//NIUFhaaxx9/3HTo0MEUFhaawsJC880333hv8M1gxX47dOiQ6dOnj7n55pvNoUOHTElJifPHH1ixzz744APzwgsvmMLCQrN//36Tm5trhg4dai6//HJz4sQJ7+4AN1n1Hv0+V56uhMZaS19qLZ95reH9ZNUYpk2bZrp3727efvtt89lnn5nJkyebrl27moqKCr8ZR3l5uenSpYsZN26cKSoqMrt37zbTp083bdq0MUVFRT4zjq+++soUFhaaNWvWGElmxYoVprCwsNHf/tSpU02vXr3M+vXrTX5+frO+vsOKMVRWVprk5GRz9dVXmz179jR6f586dcqtcTRXQIcoY4x54YUXTK9evUxoaKgZPHiw+eCDD5zzbrzxRpORkdFo+VdffdX069fPhIaGmquuusqsWbOm0fyGhgbz2GOPmejoaGO3283NN99sdu/e3WiZr776ytx9992mQ4cOJiIiwmRmZvpNGDDGmn2WkZFhJJ31s2HDhpYapsd5e78tWbLknPvMn46deHuf7dq1ywwfPtx07tzZ2O12ExcXZ6ZOnWoOHTrUouP0NCveo99HiGqe1tKXWstnXmt4P1kxhrq6OvPoo4+arl27mvDwcJOammo+/vhjt8dg1Tjy8vLMrbfeajp37mzCw8PNddddZ958802fGsf5/vZnz57tXOa7774zDz74oOnUqZMJCwsz6enpzTrA4O0xbNiw4bzv73379rk9juawGcPd0gAAAADQVP5xgwQAAAAA+AhCFAAAAAC4gBAFAAAAAC4gRAEAAACACwhRAAAAAOACQhQAAAAAuIAQBQAAAAAuIEQB8Gn79++XzWZTUVGRJGnjxo2y2Ww6fvy4xZUBAAIRfQkSIQo+aNKkSbLZbM6fLl26aOTIkdq1a5fL6xk7dmwLVYkLsdlsWr16dYuse+jQoSopKVFkZKQkaenSperYsWOLbAsAJPpSa0BfgqcRouCTRo4cqZKSEpWUlCg3N1chISH6yU9+YnVZ8KC6ujq3fi80NFQxMTGy2WwerggAzo++1PrRl+AKQhR8kt1uV0xMjGJiYpSYmKgZM2bo4MGDKi8vdy5z8OBB3XXXXerYsaM6d+6sMWPGaP/+/ZKkOXPmaNmyZXr99dedRw43btyoO+64Q9nZ2c51/OpXv5LNZtNnn30m6fQHaPv27fXuu+9KkhoaGjRv3jz17t1b7dq1U0JCgv75z382qvXjjz9WWlqaOnTooOjoaE2YMEHHjh1zzk9JSdHDDz+s3/zmN+rcubNiYmI0Z86cRus4fvy4HnjgAV1yySWKiIjQTTfdpJ07dzrn79y5U8OHD1d4eLgiIiKUlJSk/Px8SdKXX36p0aNHq1OnTmrfvr2uuuoqvfnmm+fdt7W1tfrtb3+rnj17ym63q0+fPvrb3/7msfHExcVJktLT02Wz2Zyv58yZo8TERL300kvq3bu32rZtK0lau3athg0bpo4dO6pLly76yU9+or179563/u9fNrFx40ZlZmaqsrLS+e88Z84c/f73v1f//v3P+t3ExEQ99thj5103AJwPfYm+dD70pcBEiILPq66u1j/+8Q/16dNHXbp0kSSdPHlSI0aMUHh4uLZs2aKtW7eqQ4cOGjlypOrq6jR9+nTdddddjY4cDh06VDfeeKM2btzoXPemTZsUFRXlnJaXl6eTJ09q6NChkqR58+Zp+fLlWrhwoT755BM98sgjuu+++7Rp0yZJp5vMTTfdpAEDBig/P19r165VWVmZ7rrrrkZjWLZsmdq3b68PP/xQzzzzjH7/+9/rnXfecc6/8847dfToUb311lsqKCjQtddeq5tvvlkVFRWSpHvvvVc9evRQXl6eCgoKNGPGDLVp00aSlJWVpdraWm3evFkfffSRnn76aXXo0OG8+3PixIl65ZVX9Kc//Umffvqp/vrXvzqX98R48vLyJElLlixRSUmJ87Uk7dmzR//617/02muvOa8lr6mpUU5OjvLz85Wbm6ugoCClp6eroaHhYn8aGjp0qBYsWKCIiAjnv/P06dN1//3369NPP2207cLCQu3atUuZmZkXXS8AXAh9ib50PvSlAGIAH5ORkWGCg4NN+/btTfv27Y0k061bN1NQUOBc5u9//7u54oorTENDg3NabW2tadeunXn77bed6xkzZkyjde/atcvYbDZz9OhRU1FRYUJDQ80TTzxhxo8fb4wxZu7cuWbo0KHGGGNOnDhhwsLCzPvvv99oHZMnTzZ33323McaYJ554wtx6662N5h88eNBIMrt37zbGGHPjjTeaYcOGNVpm0KBB5re//a0xxpgtW7aYiIgIc+LEiUbLXH755eavf/2rMcaY8PBws3Tp0nPur6uvvtrMmTPnnPN+aPfu3UaSeeedd8453xPjMcYYSebf//53o2Vmz55t2rRpY44ePXrBGsvLy40k89FHHxljjNm3b5+RZAoLC40xxmzYsMFIMl9//bUxxpglS5aYyMjIs9aTlpZmfvnLXzpfP/TQQyYlJeWC2waAc6EvnUZfoi/h/+NMFHzS8OHDVVRUpKKiIm3fvl0jRoxQWlqavvzyS0mnLyPYs2ePwsPD1aFDB3Xo0EGdO3fWiRMnLnjKvX///urcubM2bdqkLVu2aMCAAfrJT37iPIK3adMmpaSkSDp9dOrbb7/VLbfc4txGhw4dtHz5cuc2du7cqQ0bNjSaf+WVV0pSozquueaaRnV069ZNR48eda6jurpaXbp0abSeffv2OdeRk5OjBx54QKmpqXrqqacarfvhhx/W3Llzdf3112v27NkXvNG5qKhIwcHBuvHGG8853xPjuZBLL71Ul1xySaNpX3zxhe6++25ddtllioiIcF5mceDAgYuu70KmTJmiV155RSdOnFBdXZ3+7//+T/fff3+z1gkgcNGX6Ev0JXxfiNUFAOfSvn179enTx/n6pZdeUmRkpBYtWqS5c+equrpaSUlJevnll8/63R9+GH6fzWbTj3/8Y23cuFF2u10pKSm65pprVFtbq48//ljvv/++pk+fLun05RqStGbNGnXv3r3Reux2u3OZ0aNH6+mnnz5rW926dXP+/zOXOHy/jjOXBVRXV6tbt26NLuc448zTfebMmaN77rlHa9as0VtvvaXZs2drxYoVSk9P1wMPPKARI0ZozZo1WrdunebNm6fnn39eDz300Fnra9eu3Xn3jafGcyHt27c/a9ro0aN16aWXatGiRYqNjVVDQ4P69+/v9g2+31+v3W7Xv//9b4WGhurkyZO64447mrVOAIGLvnQafcl99KXWhRAFv2Cz2RQUFKTvvvtOknTttddq5cqV6tq1qyIiIs75O6Ghoaqvrz9r+o033qhFixbJbrfrySefVFBQkH784x/r2WefVW1tra6//npJUnx8vOx2uw4cOHDeI2TXXnut/vWvfykuLk4hIe69na699lqVlpYqJCTEebTrXPr166d+/frpkUce0d13360lS5YoPT1dktSzZ09NnTpVU6dO1cyZM7Vo0aJzNqurr75aDQ0N2rRpk1JTU1tkPNLpZnauff9DX331lXbv3q1FixbphhtukCS99957Lm3rfP/OISEhysjI0JIlSxQaGqqf/exnF23WANBU9CX60vnQlwIDl/PBJ9XW1qq0tFSlpaX69NNP9dBDDzmPRkmnb2iNiorSmDFjtGXLFu3bt08bN27Uww8/rEOHDkk6/TSeXbt2affu3Tp27JhOnjwp6fRTfIqLi/XJJ59o2LBhzmkvv/yyBg4c6DwqFR4erunTp+uRRx7RsmXLtHfvXu3YsUMvvPCCli1bJun0zbMVFRW6++67lZeXp7179+rtt99WZmZmkz6sJSk1NVVDhgzR2LFjtW7dOu3fv1/vv/++fve73yk/P1/fffedsrOztXHjRn355ZfaunWr8vLy9KMf/UjS6Sc5vf3229q3b5927NihDRs2OOf9UFxcnDIyMnT//fdr9erVzv326quvemw8Z7aTm5ur0tJSff311+ddrlOnTurSpYtefPFF7dmzR+vXr1dOTk6Tt3NmW9XV1crNzdWxY8f07bffOuc98MADWr9+vdauXcslEwCahb5EX3JlW/SlAGD1TVnAD2VkZBhJzp/w8HAzaNAg889//rPRciUlJWbixIkmKirK2O12c9lll5kpU6aYyspKY4wxR48eNbfccovp0KGDkWQ2bNhgjDGmvr7edOrUySQnJzvXVVhYaCSZGTNmNNpGQ0ODWbBggbniiitMmzZtzCWXXGJGjBhhNm3a5Fzm888/N+np6aZjx46mXbt25sorrzS/+tWvnDcX33jjjWbatGmN1jtmzBiTkZHhfF1VVWUeeughExsba9q0aWN69uxp7r33XnPgwAFTW1trfvazn5mePXua0NBQExsba7Kzs813331njDEmOzvbXH755cZut5tLLrnETJgwwRw7duy8+/e7774zjzzyiOnWrZsJDQ01ffr0MYsXL/boeN544w3Tp08fExISYi699FJjzOkbeBMSEs6q55133jE/+tGPjN1uN9dcc43ZuHFjoxuAL3YDrzHGTJ061XTp0sVIMrNnz260/htuuMFcddVV590fAHAx9CX6En0JP2QzxhhvBzcA8AZjjPr27asHH3zQ5SOJAAB4Gn2p9eCeKACtUnl5uVasWKHS0lK+gwMAYDn6UutCiALQKnXt2lVRUVF68cUX1alTJ6vLAQAEOPpS68LlfAAAAADgAp7OBwAAAAAuIEQBAAAAgAsIUQAAAADgAkIUAAAAALiAEAUAAAAALiBEAQAAAIALCFEAAAAA4AJCFAAAAAC4gBAFAAAAAC74f1rujV/XLt83AAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -605,21 +642,42 @@ } ], "source": [ - "plt.figure(figsize=(10,10))\n", - "allEdgesWeightsFiltered.plot.hist(bins=40)\n", - "plt.yscale(\"log\")" + "plt.figure(figsize=(10,4))\n", + "\n", + "for ith, G in enumerate([G_bu, G_tu]):\n", + " plt.subplot(1,2,ith+1)\n", + "\n", + " bC = nx.betweenness_centrality(G, k=200)\n", + " bc_distr = pd.Series(bC)\n", + " print(f\"{G.name}: {bc_distr.mean()}\")\n", + " bc_distr.plot.hist()\n", + " plt.yscale(\"log\")\n", + " plt.xlabel(\"Betweeness centrality\")" ] }, { - "cell_type": "code", - "execution_count": 23, + "cell_type": "markdown", "metadata": {}, + "source": [ + "#### Degree centrality" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "94viGU4vserg", + "outputId": "ea65df57-df57-4e51-f396-9c808f274766" + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1EAAAMtCAYAAAB+ZfsQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdf5DcdX348dclRxKCyQGm+QXBMPxyVjSp4ZIJhQ6RWAgZ0Ngf1F8EmmF03BmZHqhh2kKttiAMGSxdRacmSNsRzNSiYwCFwAyWRjl+KzvySyIhv4AGc0laErj7fP9wuHLfBMxrc5fP3u3jMXMD+9nP7ee171nXPPnsftJWFEURAAAA7JdRZQ8AAAAwnIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAntZQ9Qtr6+vti0aVNMmDAh2trayh4HAAAoSVEUsWPHjpg+fXqMGvXW55taPqI2bdoUM2bMKHsMAACgSWzYsCGOPvrot7y/5SNqwoQJEfHbhZo4cWLJ0wAAAGXp6emJGTNm9DfCW2n5iHrjI3wTJ04UUQAAwO/8mk/LXliiVqtFpVKJzs7OskcBAACGkbaiKIqyhyhTT09PdHR0xPbt252JAgCAFra/bdCyZ6IAAAAaIaIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAktG1G1Wi0qlUp0dnaWPQoAADCMtBVFUZQ9RJl6enqio6Mjtm/fHhMnTix7HAAAoCT72wYteyYKAACgESIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQEJ72QOUpVarRa1Wi97e3rJHGWDm8jVlj9CU1l+9uOwRAAAgIlr4TFS1Wo16vR7d3d1ljwIAAAwjLRtRAAAAjRBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACS0bUbVaLSqVSnR2dpY9CgAAMIy0bERVq9Wo1+vR3d1d9igAAMAw0rIRBQAA0AgRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAQnvZA8D+mLl8TdkjNK31Vy8uewQAgJbiTBQAAEBCy0ZUrVaLSqUSnZ2dZY8CAAAMIy0bUdVqNer1enR3d5c9CgAAMIy0bEQBAAA0QkQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAktJc9AHBgZi5fU/YITWn91YvLHgEAGKGciQIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAktG1G1Wi0qlUp0dnaWPQoAADCMtGxEVavVqNfr0d3dXfYoAADAMNKyEQUAANAIEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAICE9rIHABgKM5evKXuEprX+6sVljwAAw5ozUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAktG1G1Wi0qlUp0dnaWPQoAADCMtGxEVavVqNfr0d3dXfYoAADAMNKyEQUAANAIEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQMKwj6gNGzbEGWecEZVKJd73vvfF6tWryx4JAAAYwdrLHuBAtbe3x/XXXx+zZ8+OLVu2xJw5c+Kcc86Jww47rOzRAACAEWjYR9S0adNi2rRpERExderUmDRpUmzbtk1EAQAAQ6L0j/Pdd999ce6558b06dOjra0tbrvttr32qdVqMXPmzBg3blzMmzcvHnjggX0+1kMPPRS9vb0xY8aMoR4bAABoUaVH1K5du2LWrFlRq9X2ef+tt94aXV1dceWVV8bDDz8cs2bNirPOOitefPHFAftt27YtLrjggvjmN795MMYGAABaVOkf51u0aFEsWrToLe9fsWJFXHzxxXHRRRdFRMSNN94Ya9asiZUrV8by5csjImL37t3x4Q9/OJYvXx6nnnrq2x5v9+7dsXv37v7bPT09g/AsAACAVlH6mai3s2fPnnjooYdi4cKF/dtGjRoVCxcujHXr1kVERFEUceGFF8YHPvCB+OQnP/k7H/Oqq66Kjo6O/h8f/QMAADKaOqJefvnl6O3tjSlTpgzYPmXKlNiyZUtERNx///1x6623xm233RazZ8+O2bNnx89//vO3fMzLL788tm/f3v+zYcOGIX0OAADAyFL6x/kO1GmnnRZ9fX37vf/YsWNj7NixQzgRAAAwkjX1mahJkybF6NGjY+vWrQO2b926NaZOnVrSVAAAQCtr6ogaM2ZMzJkzJ9auXdu/ra+vL9auXRvz588vcTIAAKBVlf5xvp07d8YzzzzTf/u5556LRx99NI488sg45phjoqurK5YuXRqnnHJKzJ07N66//vrYtWtX/9X6AAAADqbSI+rBBx+MBQsW9N/u6uqKiIilS5fGTTfdFOeff3689NJLccUVV8SWLVti9uzZceedd+51sQkAAICDoa0oiqLsIcrU09MTHR0dsX379pg4cWLZ48TM5WvKHgEY4dZfvbjsEQCgKe1vGzT1d6IAAACajYgCAABIEFEAAAAJLRtRtVotKpVKdHZ2lj0KAAAwjLRsRFWr1ajX69Hd3V32KAAAwDDSshEFAADQCBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASWjaiarVaVCqV6OzsLHsUAABgGGnZiKpWq1Gv16O7u7vsUQAAgGGkZSMKAACgESIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJDQshFVq9WiUqlEZ2dn2aMAAADDSMtGVLVajXq9Ht3d3WWPAgAADCMtG1EAAACNEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAElo2omq1WlQqlejs7Cx7FAAAYBhp2YiqVqtRr9eju7u77FEAAIBhpGUjCgAAoBEiCgAAIEFEAQAAJLSXPQAAB9fM5WvKHqEprb96cdkjADBMOBMFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIKFlI6pWq0WlUonOzs6yRwEAAIaRlo2oarUa9Xo9uru7yx4FAAAYRlo2ogAAABohogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgoWUjqlarRaVSic7OzrJHAQAAhpGWjahqtRr1ej26u7vLHgUAABhGWjaiAAAAGiGiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIaCiifvWrXw32HAAAAMNCQxF1/PHHx4IFC+Jf//Vf49VXXx3smQAAAJpWQxH18MMPx/ve977o6uqKqVOnxqc+9al44IEHBns2AACAptNQRM2ePTu++tWvxqZNm2LlypWxefPmOO200+Lkk0+OFStWxEsvvTTYcwIAADSFA7qwRHt7e3zkIx+J1atXx1e+8pV45pln4rLLLosZM2bEBRdcEJs3bx6sOQEAAJrCAUXUgw8+GJ/5zGdi2rRpsWLFirjsssvi2Wefjbvuuis2bdoUH/rQhwZrTgAAgKbQ3sgvrVixIlatWhVPPvlknHPOOXHzzTfHOeecE6NG/bbJjj322Ljpppti5syZgzkrAABA6RqKqK9//evxF3/xF3HhhRfGtGnT9rnP5MmT41vf+tYBDQcAANBsGoqop59++nfuM2bMmFi6dGkjDw8AANC0GvpO1KpVq2L16tV7bV+9enV8+9vfPuChAAAAmlVDEXXVVVfFpEmT9to+efLk+Id/+IcDHupgqNVqUalUorOzs+xRAACAYaShiHr++efj2GOP3Wv7u971rnj++ecPeKiDoVqtRr1ej+7u7rJHAQAAhpGGImry5Mnx+OOP77X9sccei3e+850HPBQAAECzaiiiPvrRj8ZnP/vZuPfee6O3tzd6e3vjnnvuiUsuuST+/M//fLBnBAAAaBoNXZ3vS1/6Uqxfvz7OPPPMaG//7UP09fXFBRdcMGy+EwUAANCIhiJqzJgxceutt8aXvvSleOyxx+LQQw+N9773vfGud71rsOcDAABoKg1F1BtOPPHEOPHEEwdrFgAAgKbXUET19vbGTTfdFGvXro0XX3wx+vr6Btx/zz33DMpwAAAAzaahiLrkkkvipptuisWLF8fJJ58cbW1tgz0XAABAU2ooom655Zb47ne/G+ecc85gzwMAANDUGrrE+ZgxY+L4448f7FkAAACaXkMRdemll8ZXv/rVKIpisOcBAABoag19nO8///M/495774077rgj3vOe98Qhhxwy4P7vfe97gzIcAABAs2koog4//PBYsmTJYM8CAADQ9BqKqFWrVg32HAAAAMNCQ9+Jioh4/fXX4+67745vfOMbsWPHjoiI2LRpU+zcuXPQhgMAAGg2DZ2J+vWvfx1nn312PP/887F79+744Ac/GBMmTIivfOUrsXv37rjxxhsHe04AAICm0NCZqEsuuSROOeWUeOWVV+LQQw/t375kyZJYu3btoA0HAADQbBo6E/WTn/wk/uu//ivGjBkzYPvMmTNj48aNgzIYAABAM2roTFRfX1/09vbutf2FF16ICRMmHPBQAAAAzaqhiPqjP/qjuP766/tvt7W1xc6dO+PKK6+Mc845Z9CGAwAAaDYNfZzvuuuui7POOisqlUq8+uqr8bGPfSyefvrpmDRpUnznO98Z7BkBAACaRkMRdfTRR8djjz0Wt9xySzz++OOxc+fOWLZsWXz84x8fcKEJAACAkaahiIqIaG9vj0984hODOQsAAEDTayiibr755re9/4ILLmhoGAAAgGbXUERdcsklA26/9tpr8T//8z8xZsyYGD9+vIgCAABGrIauzvfKK68M+Nm5c2c8+eSTcdppp7mwBAAAMKI1FFH7csIJJ8TVV1+911kqAACAkWTQIiritxeb2LRp02A+JAAAQFNp6DtRP/jBDwbcLooiNm/eHP/0T/8Uf/AHfzAogwEAADSjhiLqwx/+8IDbbW1t8Xu/93vxgQ98IK677rpBGQwAAKAZNRRRfX19gz0HAADAsDCo34kCAAAY6Ro6E9XV1bXf+65YsaKRQwAAADSlhiLqkUceiUceeSRee+21OOmkkyIi4qmnnorRo0fH+9///v792traBmdKAACAJtFQRJ177rkxYcKE+Pa3vx1HHHFERPz2L+C96KKL4vTTT49LL710UIcEAABoFg19J+q6666Lq666qj+gIiKOOOKI+PKXv+zqfAAAwIjWUET19PTESy+9tNf2l156KXbs2HHAQwEAADSrhiJqyZIlcdFFF8X3vve9eOGFF+KFF16If//3f49ly5bFRz7ykcGeEQAAoGk09J2oG2+8MS677LL42Mc+Fq+99tpvH6i9PZYtWxbXXnvtoA4IAAfDzOVryh6haa2/enHZIwA0lYYiavz48fG1r30trr322nj22WcjIuK4446Lww47bFCHAwAAaDYH9Jftbt68OTZv3hwnnHBCHHbYYVEUxWDNBQAA0JQaiqj//u//jjPPPDNOPPHEOOecc2Lz5s0REbFs2TKXNwcAAEa0hiLqL//yL+OQQw6J559/PsaPH9+//fzzz48777xz0IYDAABoNg19J+rHP/5x/OhHP4qjjz56wPYTTjghfv3rXw/KYEOtVqtFrVaL3t7eskcBAACGkYbORO3atWvAGag3bNu2LcaOHXvAQx0M1Wo16vV6dHd3lz0KAAAwjDQUUaeffnrcfPPN/bfb2tqir68vrrnmmliwYMGgDQcAANBsGvo43zXXXBNnnnlmPPjgg7Fnz574/Oc/H0888URs27Yt7r///sGeEQAAoGk0dCbq5JNPjqeeeipOO+20+NCHPhS7du2Kj3zkI/HII4/EcccdN9gzAgAANI30majXXnstzj777Ljxxhvjr/7qr4ZiJgAAgKaVPhN1yCGHxOOPPz4UswAAADS9hj7O94lPfCK+9a1vDfYsAAAATa+hC0u8/vrrsXLlyrj77rtjzpw5cdhhhw24f8WKFYMyHAAAQLNJRdSvfvWrmDlzZvziF7+I97///RER8dRTTw3Yp62tbfCmAwAAaDKpiDrhhBNi8+bNce+990ZExPnnnx//+I//GFOmTBmS4QAAAJpN6jtRRVEMuH3HHXfErl27BnUgAACAZtbQhSXe8P9HFQAAwEiXiqi2tra9vvPkO1AAAEArSX0nqiiKuPDCC2Ps2LEREfHqq6/Gpz/96b2uzve9731v8CYEAABoIqmIWrp06YDbn/jEJwZ1GAAAgGaXiqhVq1YN1RwAAADDwgFdWAIAAKDViCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBgREbVkyZI44ogj4k/+5E/KHgUAABjhRkREXXLJJXHzzTeXPQYAANACRkREnXHGGTFhwoSyxwAAAFpA6RF13333xbnnnhvTp0+Ptra2uO222/bap1arxcyZM2PcuHExb968eOCBB0qYFAAAoAkiateuXTFr1qyo1Wr7vP/WW2+Nrq6uuPLKK+Phhx+OWbNmxVlnnRUvvvhiQ8fbvXt39PT0DPgBAADYX6VH1KJFi+LLX/5yLFmyZJ/3r1ixIi6++OK46KKLolKpxI033hjjx4+PlStXNnS8q666Kjo6Ovp/ZsyYcSDjAwAALab0iHo7e/bsiYceeigWLlzYv23UqFGxcOHCWLduXUOPefnll8f27dv7fzZs2DBY4wIAAC2gvewB3s7LL78cvb29MWXKlAHbp0yZEr/85S/7by9cuDAee+yx2LVrVxx99NGxevXqmD9//j4fc+zYsTF27NghnRsAABi5mjqi9tfdd99d9ggAAECLaOqP802aNClGjx4dW7duHbB969atMXXq1JKmAgAAWllTR9SYMWNizpw5sXbt2v5tfX19sXbt2rf8uB4AAMBQKv3jfDt37oxnnnmm//Zzzz0Xjz76aBx55JFxzDHHRFdXVyxdujROOeWUmDt3blx//fWxa9euuOiii0qcGgAAaFWlR9SDDz4YCxYs6L/d1dUVERFLly6Nm266Kc4///x46aWX4oorrogtW7bE7Nmz484779zrYhMAAAAHQ1tRFEXZQ5Spp6cnOjo6Yvv27TFx4sSyx4mZy9eUPQIADLD+6sVljwBwUOxvGzT1d6IAAACajYgCAABIEFEAAAAJLRtRtVotKpVKdHZ2lj0KAAAwjLRsRFWr1ajX69Hd3V32KAAAwDDSshEFAADQCBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQ0LIRVavVolKpRGdnZ9mjAAAAw0jLRlS1Wo16vR7d3d1ljwIAAAwjLRtRAAAAjRBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAICElo2oWq0WlUolOjs7yx4FAAAYRlo2oqrVatTr9eju7i57FAAAYBhp2YgCAABohIgCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkNCyEVWr1aJSqURnZ2fZowAAAMNIy0ZUtVqNer0e3d3dZY8CAAAMIy0bUQAAAI0QUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAntZQ9QllqtFrVaLXp7e8seBQCa2szla8oeoSmtv3px2SMAJWnZM1HVajXq9Xp0d3eXPQoAADCMtGxEAQAANEJEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAECCiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQIKIAAAASRBQAAEBCy0ZUrVaLSqUSnZ2dZY8CAAAMIy0bUdVqNer1enR3d5c9CgAAMIy0bEQBAAA0QkQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQIKIAgAASBBRAAAACSIKAAAgQUQBAAAkiCgAAIAEEQUAAJAgogAAABJEFAAAQELLRlStVotKpRKdnZ1ljwIAAAwjLRtR1Wo16vV6dHd3lz0KAAAwjLRsRAEAADRCRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACS0lz1AWWq1WtRqtejt7S17FAAAWsDM5WvKHqEprb96cdkjpLXsmahqtRr1ej26u7vLHgUAABhGWjaiAAAAGiGiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIyKifvjDH8ZJJ50UJ/+4vYAAAA/pSURBVJxwQvzzP/9z2eMAAAAjWHvZAxyo119/Pbq6uuLee++Njo6OmDNnTixZsiTe+c53lj0aAAAwAg37M1EPPPBAvOc974mjjjoq3vGOd8SiRYvixz/+cdljAQAAI1TpEXXffffFueeeG9OnT4+2tra47bbb9tqnVqvFzJkzY9y4cTFv3rx44IEH+u/btGlTHHXUUf23jzrqqNi4ceNBmR0AAGg9pUfUrl27YtasWVGr1fZ5/6233hpdXV1x5ZVXxsMPPxyzZs2Ks846K1588cWGjrd79+7o6ekZ8AMAALC/Sv9O1KJFi2LRokVvef+KFSvi4osvjosuuigiIm688cZYs2ZNrFy5MpYvXx7Tp08fcOZp48aNMXfu3Ld8vKuuuiq++MUvDt4TAABa0szla8oeAShJ6Wei3s6ePXvioYceioULF/ZvGzVqVCxcuDDWrVsXERFz586NX/ziF7Fx48bYuXNn3HHHHXHWWWe95WNefvnlsX379v6fDRs2DPnzAAAARo7Sz0S9nZdffjl6e3tjypQpA7ZPmTIlfvnLX0ZERHt7e1x33XWxYMGC6Ovri89//vNve2W+sWPHxtixY4d0bgAAYORq6ojaX+edd16cd955ZY8BAAC0gKb+ON+kSZNi9OjRsXXr1gHbt27dGlOnTi1pKgAAoJU1dUSNGTMm5syZE2vXru3f1tfXF2vXro358+eXOBkAANCqSv84386dO+OZZ57pv/3cc8/Fo48+GkceeWQcc8wx0dXVFUuXLo1TTjkl5s6dG9dff33s2rWr/2p9AAAAB1PpEfXggw/GggUL+m93dXVFRMTSpUvjpptuivPPPz9eeumluOKKK2LLli0xe/bsuPPOO/e62AQAAMDB0FYURVH2EGXq6emJjo6O2L59e0ycOLHscfydEwAAtJT1Vy8ue4R++9sGTf2dKAAAgGYjogAAABJEFAAAQELLRlStVotKpRKdnZ1ljwIAAAwjLRtR1Wo16vV6dHd3lz0KAAAwjLRsRAEAADRCRAEAACSIKAAAgAQRBQAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIgoAACBBRAEAACSIKAAAgISWjaharRaVSiU6OzvLHgUAABhGWjaiqtVq1Ov16O7uLnsUAABgGGnZiAIAAGiEiAIAAEgQUQAAAAkiCgAAIEFEAQAAJIgoAACABBEFAACQ0F72AGUriiIiInp6ekqe5Lf6dv9P2SMAAMBB0yx/Do/4v1neaIS30vIRtWPHjoiImDFjRsmTAABA6+m4vuwJ9rZjx47o6Oh4y/vbit+VWSNcX19fbNq0KSZMmBBtbW2lztLT0xMzZsyIDRs2xMSJE0udZSSyvkPH2g4t6zu0rO/Qsr5Dy/oOLes7tJpxfYuiiB07dsT06dNj1Ki3/uZTy5+JGjVqVBx99NFljzHAxIkTm+aFNBJZ36FjbYeW9R1a1ndoWd+hZX2HlvUdWs22vm93BuoNLiwBAACQIKIAAAASRv/t3/7t35Y9BP9n9OjRccYZZ0R7e8t/0nJIWN+hY22HlvUdWtZ3aFnfoWV9h5b1HVrDdX1b/sISAAAAGT7OBwAAkCCiAAAAEkQUAABAgogCAABIEFEAAAAJIuoA1Gq1mDlzZowbNy7mzZsXDzzwwNvuv3r16nj3u98d48aNi/e+971x++23D7i/KIq44oorYtq0aXHooYfGwoUL4+mnnx6wz7Zt2+LjH/94TJw4MQ4//PBYtmxZ7Ny5c8A+jz/+eJx++ukxbty4mDFjRlxzzTWD84QPomZc2/Xr10dbW9tePz/96U8H74kfJGWs79///d/HqaeeGuPHj4/DDz98n8d5/vnnY/HixTF+/PiYPHlyfO5zn4vXX3/9wJ5sCZp1fff1+r3lllsO7MmW4GCv7/r162PZsmVx7LHHxqGHHhrHHXdcXHnllbFnz54BjzMS3nsjmnN9vf8e2PvDeeedF8ccc0yMGzcupk2bFp/85Cdj06ZNA/bx+h269R0pr98y1vYNu3fvjtmzZ0dbW1s8+uijA+4r7bVb0JBbbrmlGDNmTLFy5criiSeeKC6++OLi8MMPL7Zu3brP/e+///5i9OjRxTXXXFPU6/Xir//6r4tDDjmk+PnPf96/z9VXX110dHQUt912W/HYY48V5513XnHssccW//u//9u/z9lnn13MmjWr+OlPf1r85Cc/KY4//vjiox/9aP/927dvL6ZMmVJ8/OMfL37xi18U3/nOd4pDDz20+MY3vjF0izHImnVtn3vuuSIiirvvvrvYvHlz/8+ePXuGbjGGQFnre8UVVxQrVqwourq6io6Ojr2O8/rrrxcnn3xysXDhwuKRRx4pbr/99mLSpEnF5ZdfPviLMISadX2Loigioli1atWA1++bH2M4KGN977jjjuLCCy8sfvSjHxXPPvts8f3vf7+YPHlycemll/Y/xkh47y2K5l1f778H9v6wYsWKYt26dcX69euL+++/v5g/f34xf/78/vu9fod2fUfC67estX3DZz/72WLRokVFRBSPPPJI//YyX7siqkFz584tqtVq/+3e3t5i+vTpxVVXXbXP/f/sz/6sWLx48YBt8+bNKz71qU8VRVEUfX19xdSpU4trr722//7f/OY3xdixY4vvfOc7RVEURb1eLyKi6O7u7t/njjvuKNra2oqNGzcWRVEUX/va14ojjjii2L17d/8+X/jCF4qTTjrpAJ/xwdOsa/vGm+Cb/8c7HJWxvm+2atWqff4h//bbby9GjRpVbNmypX/b17/+9WLixIkDXs/NrlnXtyh+G1H/8R//kX5OzaTs9X3DNddcUxx77LH9t0fCe29RNO/6ev/9P4Oxvt///veLtra2/j/Ee/3+n6FY35Hw+i1zbW+//fbi3e9+d/HEE0/stY5lvnZ9nK8Be/bsiYceeigWLlzYv23UqFGxcOHCWLdu3T5/Z926dQP2j4g466yz+vd/7rnnYsuWLQP26ejoiHnz5vXvs27dujj88MPjlFNO6d9n4cKFMWrUqPjZz37Wv88f/uEfxpgxYwYc58knn4xXXnnlAJ/50GvmtX3DeeedF5MnT47TTjstfvCDHxzYEz7Iylrf/bFu3bp473vfG1OmTBlwnJ6ennjiiSf2+3HK1Mzr+4ZqtRqTJk2KuXPnxsqVK6MYRn/fejOt7/bt2+PII48ccJzh/N4b0dzr+wbvvwe+vtu2bYt/+7d/i1NPPTUOOeSQ/uN4/f7WUKzvG4br67fMtd26dWtcfPHF8S//8i8xfvz4fR6nrNeuiGrAyy+/HL29vQP+sBcRMWXKlNiyZcs+f2fLli1vu/8b//xd+0yePHnA/e3t7XHkkUcO2Gdfj/HmYzSzZl7bd7zjHXHdddfF6tWrY82aNXHaaafFhz/84WH1RljW+u6P4f7ajWju9Y2I+Lu/+7v47ne/G3fddVf88R//cXzmM5+JG264IfUYZWqW9X3mmWfihhtuiE996lO/8zhvPkaza+b19f677/0z6/uFL3whDjvssHjnO98Zzz//fHz/+9//ncd58zGaXTOv73B//Za1tkVRxIUXXhif/vSnB/xH7v05zpuPMVTah/TRYQSZNGlSdHV19d/u7OyMTZs2xbXXXhvnnXdeiZPB/vmbv/mb/n///d///di1a1dce+218dnPfrbEqYaXjRs3xtlnnx1/+qd/GhdffHHZ44w4b7W+3n8P3Oc+97lYtmxZ/PrXv44vfvGLccEFF8QPf/jDaGtrK3u0EeHt1tfrtzE33HBD7NixIy6//PKyR9knZ6IaMGnSpBg9enRs3bp1wPatW7fG1KlT9/k7U6dOfdv93/jn79rnxRdfHHD/66+/Htu2bRuwz74e483HaGbNvLb7Mm/evHjmmWf245k1h7LWd38M99duRHOv777MmzcvXnjhhdi9e/cBPc7BUvb6btq0KRYsWBCnnnpqfPOb39yv47z5GM2umdd3X7z/5tZ30qRJceKJJ8YHP/jBuOWWW+L222/vvzqc1+++9x+s9d2X4fT6LWtt77nnnli3bl2MHTs22tvb4/jjj4+IiFNOOSWWLl36tsd58zGGiohqwJgxY2LOnDmxdu3a/m19fX2xdu3amD9//j5/Z/78+QP2j4i46667+vc/9thjY+rUqQP26enpiZ/97Gf9+8yfPz9+85vfxEMPPdS/zz333BN9fX0xb968/n3uu+++eO211wYc56STToojjjjiAJ/50Gvmtd2XRx99NKZNm5Z/oiUpa333x/z58+PnP//5gJi96667YuLEiVGpVPb7ccrUzOu7L48++mgcccQRMXbs2AN6nIOlzPXduHFjnHHGGTFnzpxYtWpVjBo18P8+h/t7b0Rzr+++eP/9f+3cP0hybRjH8fNEeMhEJAqHIIL+QDRUi0MEEULQ1Nwg0hLtLS0VDUJDU0IEQZ0prKaCqCVaCmw6apFEi8FZg6AliPw9Uz6P7+s7nF71mHw/4HRujtw/Lu7jdcDr++dDsVg0DMMovUChfv+oRb6V/KT69Srbra0tI5vNGplMxshkMqUR6YeHh0YikSh9j2e1W/PRFU0qlUrJNE1ZlqWHhwctLCwoFAqVJovFYjEtLy+X1t/c3Ki1tVWbm5vK5/NaW1urOOoxFArp5OREuVxOs7OzFcdwj42N6fb2VtfX1xoYGCgbw/36+qpwOKxYLKb7+3ulUin5/f4fNaa0UbO1LEsHBwfK5/PK5/NKJBJqaWnR3t5eHVKpHq/yfX5+lm3bWl9fVyAQkG3bsm1bb29vkv6MOJ+enlYmk9HFxYW6urp+5IjzRsz39PRUu7u7uru709PTk7a3t+X3+7W6ulqnZKrDi3wdx1F/f7+i0agcxykbUfylGc5eqXHz5fz9fr7pdFrJZFK2batQKOjy8lLj4+Pq6+vT+/u7JOq31vk2Q/169Wz7W6Uph17WLk3U/5BMJtXT0yOfz6dIJKJ0Ol26Njk5qXg8Xrb+6OhIg4OD8vl8Gh4e1tnZWdn1YrGolZUVhcNhmaapaDSqx8fHsjUvLy+am5tTIBBQMBjU/Px86UfSl2w2q4mJCZmmqe7ubm1sbFR343XQiNlalqWhoSH5/X4Fg0FFIhEdHx9Xf/N14EW+8XhchmH863N1dVVaUygUNDMzo7a2NnV2dmppaUkfHx9V33+tNWK+5+fnGh0dVSAQUHt7u0ZGRrSzs6PPz8+aZFBL9c53f3+/Yrb/fA/ZDGev1Jj5cv5+P99cLqepqSl1dHTINE319vZqcXFRjuOU3Yf6rV2+zVK/Xjzb/vZfo+K9qt1f0g+abwsAAAAAHuM/UQAAAADgAk0UAAAAALhAEwUAAAAALtBEAQAAAIALNFEAAAAA4AJNFAAAAAC4QBMFAAAAAC7QRAEAAACACzRRAAAAAOACTRQAAAAAuEATBQAAAAAu/AYM+Dpzp+RKtAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAFzCAYAAAA0STi9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde1SVdd7//xcHAU8bQuW0xENZKol6Rw3uyVweCFRyZTJza1qaw+itN3QnlBqNYx5qKEtTJ8R7ZkxsJZN53+UUFoqoOCVqUuShZNJs0Fs2OhpspQQEfn/04/q6PSB7C242Ph9rXWu59/Xe1/W+9tL9WS+vw8etrq6uTgAAAACARnN3dgMAAAAA4GoIUgAAAABgJ4IUAAAAANiJIAUAAAAAdiJIAQAAAICdCFIAAAAAYCeCFAAAAADYiSAFAAAAAHbydHYDLUFtba1OnTqljh07ys3NzdntAMBto66uTufPn1dISIjc3fm/vXqMSwDgPI0dmwhSkk6dOqXQ0FBntwEAt60TJ06oa9euzm6jxWBcAgDnu9HYRJCS1LFjR0k/f1kmk8nJ3QDA7cNqtSo0NNT4HcbPGJcAwHkaOzYRpCTjsgmTycSABQBOwOVrthiXAMD5bjQ2cUE6AAAAANiJIAUAAAAAdnJqkEpPT1f//v2NSxfMZrM++eQTY/3QoUPl5uZms8yYMcNmG8XFxYqNjVW7du0UEBCg2bNn69KlS7f6UAAAAADcRpx6j1TXrl31yiuv6O6771ZdXZ3WrVunRx99VF9++aXuvfdeSdK0adO0aNEi4zPt2rUz/lxTU6PY2FgFBQVp9+7dKikp0eTJk9WmTRv94Q9/uOXHAwAAAOD24NQgNWbMGJvXL7/8stLT07Vnzx4jSLVr105BQUHX/PzWrVv19ddfa9u2bQoMDNTAgQO1ePFizZ07VwsWLJCXl1ezHwMAAACA20+LuUeqpqZG7777rioqKmQ2m433169fr86dO6tfv35KSUnRjz/+aKzLz89XeHi4AgMDjfdiYmJktVp1+PDh6+6rsrJSVqvVZgEAAACAxnL6488PHjwos9msixcvqkOHDvrggw8UFhYmSZo4caK6d++ukJAQHThwQHPnzlVRUZHef/99SZLFYrEJUZKM1xaL5br7TE1N1cKFC5vpiAAAAAC0dk4PUr1791ZhYaHKy8v1P//zP5oyZYry8vIUFham6dOnG3Xh4eEKDg7WiBEjdOzYMd11110O7zMlJUXJycnG6/pJtwAAAACgMZx+aZ+Xl5d69eqliIgIpaamasCAAVqxYsU1ayMjIyVJR48elSQFBQWptLTUpqb+9fXuq5Ikb29v40mBTHYIAAAAwF5OD1JXqq2tVWVl5TXXFRYWSpKCg4MlSWazWQcPHtTp06eNmpycHJlMJuPyQAAAAABoak69tC8lJUWjRo1St27ddP78eWVmZmrnzp3asmWLjh07pszMTI0ePVqdOnXSgQMHlJSUpCFDhqh///6SpOjoaIWFhenJJ5/UkiVLZLFYNG/ePCUkJMjb29uZhwYAAACgFXNqkDp9+rQmT56skpIS+fr6qn///tqyZYsefvhhnThxQtu2bdPy5ctVUVGh0NBQxcXFad68ecbnPTw8lJWVpZkzZ8psNqt9+/aaMmWKzbxTwO2gx/Obnbr/71+Jder+AVyN3wUAaF5ODVJr1qy57rrQ0FDl5eXdcBvdu3fXxx9/3JRtAQAAAECDWtw9UgAAAADQ0hGkAAAAAMBOBCkAAAAAsJPTJ+QFWgNn39QNAACAW4szUgAAAABgJ4IUAAAAANiJIAUAAAAAdiJIAQAAAICdCFIAAAAAYCeCFAAAAADYiSAFAAAAAHYiSAEAWrzU1FQ98MAD6tixowICAjR27FgVFRXZ1AwdOlRubm42y4wZM2xqiouLFRsbq3bt2ikgIECzZ8/WpUuXbGp27typ++67T97e3urVq5cyMjKu6ictLU09evSQj4+PIiMjtW/fPpv1Fy9eVEJCgjp16qQOHTooLi5OpaWlTfNlAABaBIIUAKDFy8vLU0JCgvbs2aOcnBxVV1crOjpaFRUVNnXTpk1TSUmJsSxZssRYV1NTo9jYWFVVVWn37t1at26dMjIyNH/+fKPm+PHjio2N1bBhw1RYWKhZs2bpt7/9rbZs2WLUbNiwQcnJyXrxxRf1xRdfaMCAAYqJidHp06eNmqSkJH300UfauHGj8vLydOrUKY0bN64ZvyEAwK3mVldXV+fsJpzNarXK19dX5eXlMplMzm4HLqjH85ud3YJTff9KrLNbgIty9Pf3zJkzCggIUF5enoYMGSLp5zNSAwcO1PLly6/5mU8++USPPPKITp06pcDAQEnS6tWrNXfuXJ05c0ZeXl6aO3euNm/erEOHDhmfmzBhgsrKypSdnS1JioyM1AMPPKA333xTklRbW6vQ0FA9/fTTev7551VeXq4uXbooMzNTv/rVryRJR44cUd++fZWfn69BgwY12/dyOWf/LvG7AMBVNfY3mDNSAACXU15eLkny9/e3eX/9+vXq3Lmz+vXrp5SUFP3444/Guvz8fIWHhxshSpJiYmJktVp1+PBhoyYqKspmmzExMcrPz5ckVVVVqaCgwKbG3d1dUVFRRk1BQYGqq6ttavr06aNu3boZNVeqrKyU1Wq1WQAALZunsxsAAMAetbW1mjVrlh588EH169fPeH/ixInq3r27QkJCdODAAc2dO1dFRUV6//33JUkWi8UmREkyXlsslgZrrFarfvrpJ/3www+qqam5Zs2RI0eMbXh5ecnPz++qmvr9XCk1NVULFy6096sAADgRQQoA4FISEhJ06NAhffrppzbvT58+3fhzeHi4goODNWLECB07dkx33XXXrW7TLikpKUpOTjZeW61WhYaGOrEjAMCNcGkfAMBlJCYmKisrSzt27FDXrl0brI2MjJQkHT16VJIUFBR01ZPz6l8HBQU1WGMymdS2bVt17txZHh4e16y5fBtVVVUqKyu7bs2VvL29ZTKZbBYAQMtGkAIAtHh1dXVKTEzUBx98oO3bt6tnz543/ExhYaEkKTg4WJJkNpt18OBBm6fr5eTkyGQyKSwszKjJzc212U5OTo7MZrMkycvLSxERETY1tbW1ys3NNWoiIiLUpk0bm5qioiIVFxcbNQAA18elfQCAFi8hIUGZmZn629/+po4dOxr3Gvn6+qpt27Y6duyYMjMzNXr0aHXq1EkHDhxQUlKShgwZov79+0uSoqOjFRYWpieffFJLliyRxWLRvHnzlJCQIG9vb0nSjBkz9Oabb2rOnDn6zW9+o+3bt+u9997T5s3/7wl4ycnJmjJliu6//3794he/0PLly1VRUaGpU6caPcXHxys5OVn+/v4ymUx6+umnZTabG/XEPgCAayBIAQBavPT0dEk/P+L8cmvXrtVTTz0lLy8vbdu2zQg1oaGhiouL07x584xaDw8PZWVlaebMmTKbzWrfvr2mTJmiRYsWGTU9e/bU5s2blZSUpBUrVqhr1676y1/+opiYGKNm/PjxOnPmjObPny+LxaKBAwcqOzvb5gEUb7zxhtzd3RUXF6fKykrFxMRo1apVzfTtAACcgXmkxDxSuHnOnq/F2ZgvBo7i9/famEcKAJyHeaQAAAAAoJkQpAAAAADATtwjBeCmcQkRAAC43XBGCgAAAADsRJACAAAAADsRpAAAAADATgQpAAAAALATQQoAAAAA7ESQAgAAAAA7EaQAAAAAwE5ODVLp6enq37+/TCaTTCaTzGazPvnkE2P9xYsXlZCQoE6dOqlDhw6Ki4tTaWmpzTaKi4sVGxurdu3aKSAgQLNnz9alS5du9aEAAAAAuI04NUh17dpVr7zyigoKCrR//34NHz5cjz76qA4fPixJSkpK0kcffaSNGzcqLy9Pp06d0rhx44zP19TUKDY2VlVVVdq9e7fWrVunjIwMzZ8/31mHBAAAAOA24OnMnY8ZM8bm9csvv6z09HTt2bNHXbt21Zo1a5SZmanhw4dLktauXau+fftqz549GjRokLZu3aqvv/5a27ZtU2BgoAYOHKjFixdr7ty5WrBggby8vJxxWAAAAABauRZzj1RNTY3effddVVRUyGw2q6CgQNXV1YqKijJq+vTpo27duik/P1+SlJ+fr/DwcAUGBho1MTExslqtxlmta6msrJTVarVZAAAAAKCxnB6kDh48qA4dOsjb21szZszQBx98oLCwMFksFnl5ecnPz8+mPjAwUBaLRZJksVhsQlT9+vp115OamipfX19jCQ0NbeKjAgAAANCaOT1I9e7dW4WFhdq7d69mzpypKVOm6Ouvv27WfaakpKi8vNxYTpw40az7AwAAANC6OPUeKUny8vJSr169JEkRERH6/PPPtWLFCo0fP15VVVUqKyuzOStVWlqqoKAgSVJQUJD27dtns736p/rV11yLt7e3vL29m/pQAAAAANwmnH5G6kq1tbWqrKxURESE2rRpo9zcXGNdUVGRiouLZTabJUlms1kHDx7U6dOnjZqcnByZTCaFhYXd8t4BAAAA3B6cekYqJSVFo0aNUrdu3XT+/HllZmZq586d2rJli3x9fRUfH6/k5GT5+/vLZDLp6aefltls1qBBgyRJ0dHRCgsL05NPPqklS5bIYrFo3rx5SkhI4IwTAAAAgGbj1CB1+vRpTZ48WSUlJfL19VX//v21ZcsWPfzww5KkN954Q+7u7oqLi1NlZaViYmK0atUq4/MeHh7KysrSzJkzZTab1b59e02ZMkWLFi1y1iEBAAAAuA04NUitWbOmwfU+Pj5KS0tTWlradWu6d++ujz/+uKlbAwAAAIDranH3SAEAAABAS0eQAgAAAAA7EaQAAAAAwE4EKQAAAACwE0EKAAAAAOxEkAIAAAAAOxGkAAAAAMBOBCkAAAAAsBNBCgAAAADsRJACAAAAADsRpAAAAADATgQpAAAAALATQQoAAAAA7ESQAgAAAAA7EaQAAAAAwE4EKQAAAACwE0EKAAAAAOxEkAIAAAAAOxGkAAAAAMBOBCkAAAAAsBNBCgAAAADsRJACAAAAADsRpAAAAADATgQpAECLl5qaqgceeEAdO3ZUQECAxo4dq6KiIpuaixcvKiEhQZ06dVKHDh0UFxen0tJSm5ri4mLFxsaqXbt2CggI0OzZs3Xp0iWbmp07d+q+++6Tt7e3evXqpYyMjKv6SUtLU48ePeTj46PIyEjt27fP7l4AAK6NIAUAaPHy8vKUkJCgPXv2KCcnR9XV1YqOjlZFRYVRk5SUpI8++kgbN25UXl6eTp06pXHjxhnra2pqFBsbq6qqKu3evVvr1q1TRkaG5s+fb9QcP35csbGxGjZsmAoLCzVr1iz99re/1ZYtW4yaDRs2KDk5WS+++KK++OILDRgwQDExMTp9+nSjewEAuD63urq6Omc34WxWq1W+vr4qLy+XyWRydjtwQT2e3+zsFm5r378S6+wW4CBHf3/PnDmjgIAA5eXlaciQISovL1eXLl2UmZmpX/3qV5KkI0eOqG/fvsrPz9egQYP0ySef6JFHHtGpU6cUGBgoSVq9erXmzp2rM2fOyMvLS3PnztXmzZt16NAhY18TJkxQWVmZsrOzJUmRkZF64IEH9Oabb0qSamtrFRoaqqefflrPP/98o3ppru/lcs7+XeLfJQBX1djfYM5IAQBcTnl5uSTJ399fklRQUKDq6mpFRUUZNX369FG3bt2Un58vScrPz1d4eLgRoiQpJiZGVqtVhw8fNmou30Z9Tf02qqqqVFBQYFPj7u6uqKgoo6YxvQAAXJ+nsxsAAMAetbW1mjVrlh588EH169dPkmSxWOTl5SU/Pz+b2sDAQFksFqPm8hBVv75+XUM1VqtVP/30k3744QfV1NRcs+bIkSON7uVKlZWVqqysNF5brdYbfxEAAKfijBQAwKUkJCTo0KFDevfdd53dSpNJTU2Vr6+vsYSGhjq7JQDADRCkAAAuIzExUVlZWdqxY4e6du1qvB8UFKSqqiqVlZXZ1JeWliooKMioufLJefWvb1RjMpnUtm1bde7cWR4eHtesuXwbN+rlSikpKSovLzeWEydONOr7AAA4D0EKANDi1dXVKTExUR988IG2b9+unj172qyPiIhQmzZtlJuba7xXVFSk4uJimc1mSZLZbNbBgwdtnq6Xk5Mjk8mksLAwo+bybdTX1G/Dy8tLERERNjW1tbXKzc01ahrTy5W8vb1lMplsFgBAy+bUINWYeUGGDh0qNzc3m2XGjBk2NY2ZFwQA4LoSEhL0zjvvKDMzUx07dpTFYpHFYtFPP/0kSfL19VV8fLySk5O1Y8cOFRQUaOrUqTKbzcZT8qKjoxUWFqYnn3xSX331lbZs2aJ58+YpISFB3t7ekqQZM2bou+++05w5c3TkyBGtWrVK7733npKSkoxekpOT9ec//1nr1q3TN998o5kzZ6qiokJTp05tdC8AANfn1IdN1M8L8sADD+jSpUt64YUXFB0dra+//lrt27c36qZNm6ZFixYZr9u1a2f8uX5ekKCgIO3evVslJSWaPHmy2rRpoz/84Q+39HgAAM0jPT1d0s//uXa5tWvX6qmnnpIkvfHGG3J3d1dcXJwqKysVExOjVatWGbUeHh7KysrSzJkzZTab1b59e02ZMsVmfOnZs6c2b96spKQkrVixQl27dtVf/vIXxcTEGDXjx4/XmTNnNH/+fFksFg0cOFDZ2dk2D6C4US8AANfXouaRunJeEOnnQXPgwIFavnz5NT/TmHlBboR5pHCznD1fy+2O+WpcF7+/18Y8UgDgPC45j9SV84LUW79+vTp37qx+/fopJSVFP/74o7GuMfOCAAAAAEBTajHzSF1rXhBJmjhxorp3766QkBAdOHBAc+fOVVFRkd5//31JjZsX5ErM1wEAAADgZrSYIFU/L8inn35q8/706dONP4eHhys4OFgjRozQsWPHdNdddzm0r9TUVC1cuPCm+gUAAABw+2oRl/Zdb16Qa4mMjJQkHT16VFLj5gW5EvN1AAAAALgZTg1SN5oX5FoKCwslScHBwZIaNy/IlZivAwAAAMDNcOqlfQkJCcrMzNTf/vY3Y14Q6ec5ONq2batjx44pMzNTo0ePVqdOnXTgwAElJSVpyJAh6t+/vyTbeUGWLFkii8Vy1bwgAAAAANCUnHpGKj09XeXl5Ro6dKiCg4ONZcOGDZJ+nkF+27Ztio6OVp8+ffTss88qLi5OH330kbGN+nlBPDw8ZDab9cQTT2jy5Mk284IAAAAAQFNy6hmpG01hFRoaqry8vBtup3v37vr444+bqi0AAAAAaFCLeNgEAAAAALgSghQAAAAA2IkgBQAAAAB2IkgBAAAAgJ0IUgAAAABgJ4IUAAAAANiJIAUAAAAAdiJIAQAAAICdCFIAAAAAYCeCFAAAAADYiSAFAAAAAHYiSAEAAACAnQhSAAAAAGAnghQAAAAA2IkgBQAAAAB2IkgBAAAAgJ0IUgAAAABgJ4IUAAAAANiJIAUAAAAAdiJIAQAAAICdHApS3333XVP3AQBopRgzAACtkUNBqlevXho2bJjeeecdXbx4sal7AgC0IowZAIDWyNORD33xxRdau3atkpOTlZiYqPHjxys+Pl6/+MUvmro/NFKP5zc7df/fvxLr1P0DaLkYMwAArZFDZ6QGDhyoFStW6NSpU3rrrbdUUlKiwYMHq1+/flq2bJnOnDnT1H0CAFxUQ2PGm2++6ez2AABwyE09bMLT01Pjxo3Txo0b9eqrr+ro0aN67rnnFBoaqsmTJ6ukpKSp+gQAuLhrjRnz5s2TJP3Hf/wHYwYAwKXcVJDav3+//vM//1PBwcFatmyZnnvuOR07dkw5OTk6deqUHn300abqEwDg4q41ZhQWFkqSSkpKGDMAAC7FoXukli1bprVr16qoqEijR4/W22+/rdGjR8vd/edc1rNnT2VkZKhHjx5N2SsAwAU1NGZYrVZJUnp6usLDw53cKQAAjedQkEpPT9dvfvMbPfXUUwoODr5mTUBAgNasWXNTzQEAXF9jxowuXbowZgAAXIpDQerbb7+9YY2Xl5emTJniyOYBAK0IYwYAoDVyKEitXbtWHTp00K9//Wub9zdu3Kgff/yRwRAAYGhozDh79qyTugIA4OY49LCJ1NRUde7c+ar3AwIC9Ic//OGmmwIAtB4NjRlLly51QkcAANw8h4JUcXGxevbsedX73bt3V3Fx8U03BQBoPRoaM06ePOmEjgAAuHkOBamAgAAdOHDgqve/+uorderUqdHbSU1N1QMPPKCOHTsqICBAY8eOVVFRkU3NxYsXlZCQoE6dOqlDhw6Ki4tTaWmpTU1xcbFiY2PVrl07BQQEaPbs2bp06ZIjhwYAaGINjRn+/v5O6AgAgJvnUJB6/PHH9V//9V/asWOHampqVFNTo+3bt+uZZ57RhAkTGr2dvLw8JSQkaM+ePcrJyVF1dbWio6NVUVFh1CQlJemjjz7Sxo0blZeXp1OnTmncuHHG+pqaGsXGxqqqqkq7d+/WunXrlJGRofnz5ztyaACAJtbQmHH57zkAAK7EoYdNLF68WN9//71GjBghT8+fN1FbW6vJkyfbdY9Udna2zeuMjAwFBASooKBAQ4YMUXl5udasWaPMzEwNHz5c0s83Lfft21d79uzRoEGDtHXrVn399dfatm2bAgMDNXDgQC1evFhz587VggUL5OXl5cghAgCaSENjxosvvqg333zTyR0CAGA/h4KUl5eXNmzYoMWLF+urr75S27ZtFR4eru7du99UM+Xl5ZJkXOpRUFCg6upqRUVFGTV9+vRRt27dlJ+fr0GDBik/P1/h4eEKDAw0amJiYjRz5kwdPnxY//Zv/3bVfiorK1VZWWm8rp8QEgDQ9BoaM/j9BQC4KoeCVL177rlH99xzT5M0Ultbq1mzZunBBx9Uv379JEkWi0VeXl7y8/OzqQ0MDJTFYjFqLg9R9evr111LamqqFi5c2CR9o2Xo8fxmZ7cA4AaacswAAMDZHLpHqqamRmvWrNHEiRMVFRWl4cOH2yyOSEhI0KFDh/Tuu+869Hl7pKSkqLy83FhOnDjR7PsEgNtVQ2PGI4880ujt7Nq1S2PGjFFISIjc3Ny0adMmm/VPPfWU3NzcbJaRI0fa1Jw7d06TJk2SyWSSn5+f4uPjdeHCBZuaAwcO6KGHHpKPj49CQ0O1ZMmSq3rZuHGj+vTpIx8fH4WHh+vjjz+2WV9XV6f58+crODhYbdu2VVRUVKMmJgYAuA6HgtQzzzyjZ555RjU1NerXr58GDBhgs9grMTFRWVlZ2rFjh7p27Wq8HxQUpKqqKpWVldnUl5aWKigoyKi58il+9a/ra67k7e0tk8lkswAAmkdDY0Z4eHijt1NRUaEBAwYoLS3tujUjR45USUmJsfz1r3+1WT9p0iQdPnxYOTk5ysrK0q5duzR9+nRjvdVqVXR0tLp3766CggK99tprWrBggf70pz8ZNbt379bjjz+u+Ph4ffnllxo7dqzGjh2rQ4cOGTVLlizRypUrtXr1au3du1ft27dXTEyMLl682OjjBQC0bA5d2vfuu+/qvffe0+jRo29q53V1dXr66af1wQcfaOfOnVfNMxIREaE2bdooNzdXcXFxkqSioiIVFxfLbDZLksxms15++WWdPn1aAQEBkqScnByZTCaFhYXdVH8AgJvX0JhhtVq1atWqRm1n1KhRGjVqVIM13t7e1/1PtG+++UbZ2dn6/PPPdf/990uS/vjHP2r06NF6/fXXFRISovXr16uqqkpvvfWWvLy8dO+996qwsFDLli0zAteKFSs0cuRIzZ49W9LPD9PIycnRm2++qdWrV6uurk7Lly/XvHnz9Oijj0qS3n77bQUGBmrTpk12Pd0WANByOXRGysvLS7169brpnSckJOidd95RZmamOnbsKIvFIovFop9++kmS5Ovrq/j4eCUnJ2vHjh0qKCjQ1KlTZTabNWjQIElSdHS0wsLC9OSTT+qrr77Sli1bNG/ePCUkJMjb2/umewQA3JymGjMaY+fOnQoICFDv3r01c+ZMnT171liXn58vPz8/I0RJUlRUlNzd3bV3716jZsiQITZPfI2JiVFRUZF++OEHo+byhyDV1+Tn50uSjh8/LovFYlPj6+uryMhIo+ZKlZWVslqtNgsAoGVzKEg9++yzWrFiherq6m5q5+np6SovL9fQoUMVHBxsLBs2bDBq3njjDT3yyCOKi4vTkCFDFBQUpPfff99Y7+HhoaysLHl4eMhsNuuJJ57Q5MmTtWjRopvqDQDQNJpqzLiRkSNH6u2331Zubq5effVV5eXladSoUaqpqZH08wOI6q9cqOfp6Sl/f3+7HmB0vZrL11/+uWvVXCk1NVW+vr7GEhoaavfxAwBuLYcu7fv000+1Y8cOffLJJ7r33nvVpk0bm/WXB52GNGZQ9fHxUVpaWoPXxHfv3v2qG30BAC1DQ2NGdXV1k+3n8kvmwsPD1b9/f911113auXOnRowY0WT7aQ4pKSlKTk42XlutVsIUALRwDgUpPz8/PfbYY03dCwCgFWpozGjKIHWlO++8U507d9bRo0c1YsQIBQUF6fTp0zY1ly5d0rlz5+x6gNH1ai5fX/9ecHCwTc3AgQOv2au3tzeXowOAi3EoSK1du7ap+wAAtFINjRlWq1Xr169vlv2ePHlSZ8+eNcKM2WxWWVmZCgoKFBERIUnavn27amtrFRkZadT87ne/U3V1tXHmLCcnR71799Ydd9xh1OTm5mrWrFnGvnJycoyHIPXs2VNBQUHKzc01gpPVatXevXs1c+bMZjlWAMCt59A9UtLP/4u3bds2/fd//7fOnz8vSTp16tRV83EAANAUY8aFCxdUWFiowsJCST8/1KGwsFDFxcW6cOGCZs+erT179uj7779Xbm6uHn30UfXq1UsxMTGSpL59+2rkyJGaNm2a9u3bp88++0yJiYmaMGGCQkJCJEkTJ06Ul5eX4uPjdfjwYW3YsEErVqywuezumWeeUXZ2tpYuXaojR45owYIF2r9/vxITEyVJbm5umjVrll566SV9+OGHOnjwoCZPnqyQkArek1QAACAASURBVBCNHTu2Sb5PAIDzOXRG6p///KdGjhyp4uJiVVZW6uGHH1bHjh316quvqrKyUqtXr27qPgEALqqhMaM+VDXG/v37NWzYMON1fbiZMmWK0tPTdeDAAa1bt05lZWUKCQlRdHS0Fi9ebHPJ3Pr165WYmKgRI0bI3d1dcXFxWrlypbHe19dXW7duVUJCgiIiItS5c2fNnz/fZq6pX/7yl8rMzNS8efP0wgsv6O6779amTZvUr18/o2bOnDmqqKjQ9OnTVVZWpsGDBys7O1s+Pj4OfYcAgJbHoSD1zDPP6P7779dXX32lTp06Ge8/9thjmjZtWpM1BwBwfQ2NGfHx8Y3eztChQxt8SNGWLVtuuA1/f39lZmY2WNO/f3/9/e9/b7Dm17/+tX79619fd72bm5sWLVrEE2QBoBVzKEj9/e9/1+7du23m2ZCkHj166P/+7/+apDEAQOvQ0JhRUlLipK4AALg5Dt0jVVtba8zLcbmTJ0+qY8eON90UAKD1aGjM6NChgxM6AgDg5jkUpKKjo7V8+XLjtZubmy5cuKAXX3xRo0ePbrLmAACur6ExIzo62omdAQDgOIeC1NKlS/XZZ58pLCxMFy9e1MSJE43L+l599dWm7hEA4MIaGjMWLlzo7PYAAHCIQ/dIde3aVV999ZXeffddHThwQBcuXFB8fLwmTZqktm3bNnWPAAAX1tCY0ZwT8gIA0JwcClKS5OnpqSeeeKIpewEAtFLXGzMIUgAAV+VQkHr77bcbXD958mSHmgEAtD4NjRk//fTTLewEAICm4/A8Uperrq7Wjz/+KC8vL7Vr144gBQAwNDRmcDk4AMBVOfSwiR9++MFmuXDhgoqKijR48GD99a9/beoeAQAurKExY82aNc5uDwAAhzh8j9SV7r77br3yyit64okndOTIkabaLACgFaofMyZOnOjsVgAAcIhDZ6Sux9PTU6dOnWrKTQIAWilPT09ZLBZntwEAgEMcOiP14Ycf2ryuq6tTSUmJ3nzzTT344INN0hgAoHVoaMyIjIzUtm3bnNQZAACOcyhIjR071ua1m5ubunTpouHDh2vp0qVN0hgAoHVoaMxYsGCBevfu7aTOAABwnENBqra2tqn7AAC0Ug2NGVar9RZ2AgBA02nSe6QAAAAA4Hbg0Bmp5OTkRtcuW7bMkV0AAFqJhsaMqqoqSdILL7wgLy8vxgwAgMtwKEh9+eWX+vLLL1VdXW1c2/6Pf/xDHh4euu+++4w6Nze3pukSAOCyGhozBgwYIEk6cOCAPD2bbEYOAACanUOj1pgxY9SxY0etW7dOd9xxh6SfJ1ycOnWqHnroIT377LNN2iQAwHU1NGY88MAD+vvf/66srCyZTCYndwoAQOM5FKSWLl2qrVu3GgOiJN1xxx166aWXFB0dTZACABgaGjMefvhhJ3YGAIDjHHrYhNVq1ZkzZ656/8yZMzp//vxNNwUAaD0aGjMuXLjghI4AALh5DgWpxx57TFOnTtX777+vkydP6uTJk/rf//1fxcfHa9y4cU3dIwDAhTU0ZowZM8bZ7QEA4BCHLu1bvXq1nnvuOU2cOFHV1dU/b8jTU/Hx8XrttdeatEEAgGtraMz4/e9/r7/+9a9O7hAAAPs5FKTatWunVatW6bXXXtOxY8ckSXfddZfat2/fpM0BAFxfQ2MGE/ICAFzVTT1rtqSkRCUlJRoyZIjatm2ruro6Hnl+m+rx/GZntwCghbvWmAEAgKtyKEidPXtW//7v/64dO3bIzc1N3377re68807Fx8frjjvu0NKlS5u6TwCAi2pozOBKBgCAq3LoYRNJSUlq06aNiouL1a5dO+P98ePHKzs7u8maAwC4vobGjG3btjmxMwAAHOfQGamtW7dqy5Yt6tq1q837d999t/75z382SWMAgNahoTHjxIkTTuoKAICb49AZqYqKCpv/Vax37tw5eXt7N3o7u3bt0pgxYxQSEiI3Nzdt2rTJZv1TTz0lNzc3m2XkyJFX7XPSpEkymUzy8/NTfHw885IAQAvS0Jjh5eXlhI4AALh5DgWphx56SG+//bbx2s3NTbW1tVqyZImGDRvW6O1UVFRowIABSktLu27NyJEjjRuUS0pKrnpM7qRJk3T48GHl5OQoKytLu3bt0vTp0+0/KABAs2hozHjooYec2BkAAI5z6NK+JUuWaMSIEdq/f7+qqqo0Z84cHT58WOfOndNnn33W6O2MGjVKo0aNarDG29tbQUFB11z3zTffKDs7W59//rnuv/9+SdIf//hHjR49Wq+//rpCQkIaf1AAgGbR0JiRnZ2tDz/80NktAgBgN4fOSPXr10//+Mc/NHjwYD366KOqqKjQuHHj9OWXX+quu+5q0gZ37typgIAA9e7dWzNnztTZs2eNdfn5+fLz8zNClCRFRUXJ3d1de/fuve42KysrZbVabRYAQPNoaMy48847nd0eAAAOsfuMVHV1tUaOHKnVq1frd7/7XXP0ZBg5cqTGjRunnj176tixY3rhhRc0atQo5efny8PDQxaLRQEBATaf8fT0lL+/vywWy3W3m5qaqoULFzZr7wCAG48Z/EcWAMBV2R2k2rRpowMHDjRHL1eZMGGC8efw8HD1799fd911l3bu3KkRI0Y4vN2UlBQlJycbr61Wq0JDQ2+qVwDA1W7lmAEAwK3k0KV9TzzxhNasWdPUvdzQnXfeqc6dO+vo0aOSpKCgIJ0+fdqm5tKlSzp37tx176uSfr7vymQy2SwAgObhrDEDAIDm5NDDJi5duqS33npL27ZtU0RExFUz0y9btqxJmrvSyZMndfbsWQUHB0uSzGazysrKVFBQoIiICEnS9u3bVVtbq8jIyGbpAQBgn4bGjKqqKid2BgCA4+wKUt9995169OihQ4cO6b777pMk/eMf/7CpcXNza/T2Lly4YJxdkqTjx4+rsLBQ/v7+8vf318KFCxUXF6egoCAdO3ZMc+bMUa9evRQTEyNJ6tu3r0aOHKlp06Zp9erVqq6uVmJioiZMmMAT+wDAyRozZtTU1DijNQAAbppdQeruu+9WSUmJduzYIUkaP368Vq5cqcDAQId2vn//fpt5p+rvW5oyZYrS09N14MABrVu3TmVlZQoJCVF0dLQWL15sM+nv+vXrlZiYqBEjRsjd3V1xcXFauXKlQ/0AAJpOY8YMq9UqX19fZ7UIAIDD7ApSdXV1Nq8/+eQTVVRUOLzzoUOHXrXNy23ZsuWG2/D391dmZqbDPQAAmkdTjxkAALQkDj1sol5DIQgAgMsxZgAAWhO7gpSbm9tV90DZc08UAOD2wZgBAGjN7L6076mnnjLuUbp48aJmzJhx1VP73n///abrEADgkhozZlRXVzurPQAAbopdQWrKlCk2r5944okmbQYA0Ho0ZswgSAEAXJVdQWrt2rXN1QcAoJVpzJhhtVq1fv36W9ANAABN66YeNgEAAAAAtyOCFADAJezatUtjxoxRSEiI3NzctGnTJpv1dXV1mj9/voKDg9W2bVtFRUXp22+/tak5d+6cJk2aJJPJJD8/P8XHx+vChQs2NQcOHNBDDz0kHx8fhYaGasmSJVf1snHjRvXp00c+Pj4KDw/Xxx9/bHcvAADXRpACALiEiooKDRgwQGlpaddcv2TJEq1cuVKrV6/W3r171b59e8XExOjixYtGzaRJk3T48GHl5OQoKytLu3bt0vTp0431VqtV0dHR6t69uwoKCvTaa69pwYIF+tOf/mTU7N69W48//rji4+P15ZdfauzYsRo7dqwOHTpkVy8AANfmVsfEHrJarfL19VV5eblMJpOz23FIj+c3O7sFwGm+fyXW2S3AQY7+/rq5uemDDz7Q2LFjJf18BigkJETPPvusnnvuOUlSeXm5AgMDlZGRoQkTJuibb75RWFiYPv/8c91///2SpOzsbI0ePVonT55USEiI0tPT9bvf/U4Wi0VeXl6SpOeff16bNm3SkSNHJEnjx49XRUWFsrKyjH4GDRqkgQMHavXq1Y3qpbm+l8s5e1zg3yUAV9XY32DOSAEAXN7x48dlsVgUFRVlvOfr66vIyEjl5+dLkvLz8+Xn52eEKEmKioqSu7u79u7da9QMGTLECFGSFBMTo6KiIv3www9GzeX7qa+p309jerlSZWWlrFarzQIAaNkIUgAAl2exWCRJgYGBNu8HBgYa6ywWiwICAmzWe3p6yt/f36bmWtu4fB/Xq7l8/Y16uVJqaqp8fX2NJTQ0tBFHDQBwJoIUAABOlpKSovLycmM5ceKEs1sCANwAQQoA4PKCgoIkSaWlpTbvl5aWGuuCgoJ0+vRpm/WXLl3SuXPnbGqutY3L93G9msvX36iXK3l7e8tkMtksAICWjSAFAHB5PXv2VFBQkHJzc433rFar9u7dK7PZLEkym80qKytTQUGBUbN9+3bV1tYqMjLSqNm1a5eqq6uNmpycHPXu3Vt33HGHUXP5fupr6vfTmF4AAK6PIAUAcAkXLlxQYWGhCgsLJf38UIfCwkIVFxfLzc1Ns2bN0ksvvaQPP/xQBw8e1OTJkxUSEmI82a9v374aOXKkpk2bpn379umzzz5TYmKiJkyYoJCQEEnSxIkT5eXlpfj4eB0+fFgbNmzQihUrlJycbPTxzDPPKDs7W0uXLtWRI0e0YMEC7d+/X4mJiZLUqF4AAK7P09kNAADQGPv379ewYcOM1/XhZsqUKcrIyNCcOXNUUVGh6dOnq6ysTIMHD1Z2drZ8fHyMz6xfv16JiYkaMWKE3N3dFRcXp5UrVxrrfX19tXXrViUkJCgiIkKdO3fW/Pnzbeaa+uUvf6nMzEzNmzdPL7zwgu6++25t2rRJ/fr1M2oa0wsAwLUxj5SYRwpwdcxX47paw+9vc2AeKQBwHuaRAgAAAIBmQpACAAAAADsRpAAAAADATgQpAAAAALATQQoAAAAA7ESQAgAAAAA7EaQAAAAAwE4EKQAAAACwE0EKAAAAAOxEkAIAAAAAOxGkAAAAAMBOBCkAAAAAsBNBCgAAAADsRJACAAAAADs5NUjt2rVLY8aMUUhIiNzc3LRp0yab9XV1dZo/f76Cg4PVtm1bRUVF6dtvv7WpOXfunCZNmiSTySQ/Pz/Fx8frwoULt/IwAAAAANxmnBqkKioqNGDAAKWlpV1z/ZIlS7Ry5UqtXr1ae/fuVfv27RUTE6OLFy8aNZMmTdLhw4eVk5OjrKws7dq1S9OnT79VhwAAAADgNuTpzJ2PGjVKo0aNuua6uro6LV++XPPmzdOjjz4qSXr77bcVGBioTZs2acKECfrmm2+UnZ2tzz//XPfff78k6Y9//KNGjx6t119/XSEhIbfsWAAAAADcPlrsPVLHjx+XxWJRVFSU8Z6vr68iIyOVn58vScrPz5efn58RoiQpKipK7u7u2rt373W3XVlZKavVarMAAAAAQGO12CBlsVgkSYGBgTbvBwYGGussFosCAgJs1nt6esrf39+ouZbU1FT5+voaS2hoaBN3DwAAAKA1a7FBqjmlpKSovLzcWE6cOOHslgAAAAC4kBYbpIKCgiRJpaWlNu+XlpYa64KCgnT69Gmb9ZcuXdK5c+eMmmvx9vaWyWSyWQAAAACgsVpskOrZs6eCgoKUm5trvGe1WrV3716ZzWZJktlsVllZmQoKCoya7du3q7a2VpGRkbe8ZwAAAAC3B6c+te/ChQs6evSo8fr48eMqLCyUv7+/unXrplmzZumll17S3XffrZ49e+r3v/+9QkJCNHbsWElS3759NXLkSE2bNk2rV69WdXW1EhMTNWHCBJ7YBwAAAKDZODVI7d+/X8OGDTNeJycnS5KmTJmijIwMzZkzRxUVFZo+fbrKyso0ePBgZWdny8fHx/jM+vXrlZiYqBEjRsjd3V1xcXFauXLlLT8WAAAAALcPpwapoUOHqq6u7rrr3dzctGjRIi1atOi6Nf7+/srMzGyO9gAAAADgmlrsPVIAAAAA0FIRpAAAAADATgQpAAAAALATQQoAAAAA7ESQAgAAAAA7EaQAAAAAwE4EKQAAAACwE0EKAAAAAOxEkAIAAAAAOxGkAAAAAMBOBCkAAAAAsBNBCgAAAADsRJACAAAAADsRpAAAAADATgQpAAAAALCTp7MbaC16PL/Z2S0AAAAAuEU4IwUAAAAAdiJIAQAAAICdCFIAAAAAYCeCFACgVViwYIHc3Nxslj59+hjrL168qISEBHXq1EkdOnRQXFycSktLbbZRXFys2NhYtWvXTgEBAZo9e7YuXbpkU7Nz507dd9998vb2Vq9evZSRkXFVL2lpaerRo4d8fHwUGRmpffv2NcsxAwCchyAFAGg17r33XpWUlBjLp59+aqxLSkrSRx99pI0bNyovL0+nTp3SuHHjjPU1NTWKjY1VVVWVdu/erXXr1ikjI0Pz5883ao4fP67Y2FgNGzZMhYWFmjVrln77299qy5YtRs2GDRuUnJysF198UV988YUGDBigmJgYnT59+tZ8CQCAW4IgBQBoNTw9PRUUFGQsnTt3liSVl5drzZo1WrZsmYYPH66IiAitXbtWu3fv1p49eyRJW7du1ddff6133nlHAwcO1KhRo7R48WKlpaWpqqpKkrR69Wr17NlTS5cuVd++fZWYmKhf/epXeuONN4weli1bpmnTpmnq1KkKCwvT6tWr1a5dO7311lu3/gsBADQbghQAoNX49ttvFRISojvvvFOTJk1ScXGxJKmgoEDV1dWKiooyavv06aNu3bopPz9fkpSfn6/w8HAFBgYaNTExMbJarTp8+LBRc/k26mvqt1FVVaWCggKbGnd3d0VFRRk111JZWSmr1WqzAABaNoIUAKBViIyMVEZGhrKzs5Wenq7jx4/roYce0vnz52WxWOTl5SU/Pz+bzwQGBspisUiSLBaLTYiqX1+/rqEaq9Wqn376Sf/6179UU1NzzZr6bVxLamqqfH19jSU0NNSxLwEAcMswIS8AoFUYNWqU8ef+/fsrMjJS3bt313vvvae2bds6sbMbS0lJUXJysvHaarUSpgCgheOMFACgVfLz89M999yjo0ePKigoSFVVVSorK7OpKS0tVVBQkCQpKCjoqqf41b++UY3JZFLbtm3VuXNneXh4XLOmfhvX4u3tLZPJZLMAAFo2ghQAoFW6cOGCjh07puDgYEVERKhNmzbKzc011hcVFam4uFhms1mSZDabdfDgQZun6+Xk5MhkMiksLMyouXwb9TX12/Dy8lJERIRNTW1trXJzc40aAEDrQJACALQKzz33nPLy8vT9999r9+7deuyxx+Th4aHHH39cvr6+io+PV3Jysnbs2KGCggJNnTpVZrNZgwYNkiRFR0crLCxMTz75pL766itt2bJF8+bNU0JCgry9vSVJM2bM0Hfffac5c+boyJEjWrVqld577z0lJSUZfSQnJ+vPf/6z1q1bp2+++UYzZ85URUWFpk6d6pTvBQDQPLhHCgDQKpw8eVKPP/64zp49qy5dumjw4MHas2ePunTpIkl644035O7urri4OFVWViomJkarVq0yPu/h4aGsrCzNnDlTZrNZ7du315QpU7Ro0SKjpmfPntq8ebOSkpK0YsUKde3aVX/5y18UExNj1IwfP15nzpzR/PnzZbFYNHDgQGVnZ1/1AAoAgGtzq6urq3N2E85mtVrl6+ur8vJyh69L7/H85ibuCkBjff9KrLNbgIOa4ve3NWoN4xL/LgG4qsb+BnNpHwAAAADYiSAFAAAAAHZq0UFqwYIFcnNzs1n69OljrL948aISEhLUqVMndejQQXFxcVc9chYAAAAAmlqLDlKSdO+996qkpMRYPv30U2NdUlKSPvroI23cuFF5eXk6deqUxo0b58RuAQAAANwOWvxT+zw9Pa85iWF5ebnWrFmjzMxMDR8+XJK0du1a9e3bV3v27DEeZwsAAAAATa3Fn5H69ttvFRISojvvvFOTJk1ScXGxJKmgoEDV1dWKiooyavv06aNu3bopPz+/wW1WVlbKarXaLAAAAADQWC06SEVGRiojI0PZ2dlKT0/X8ePH9dBDD+n8+fOyWCzy8vKSn5+fzWcCAwNlsVga3G5qaqp8fX2NJTQ0tDkPAwAAAEAr06Iv7Rs1apTx5/79+ysyMlLdu3fXe++9p7Zt2zq83ZSUFCUnJxuvrVYrYQoAAABAo7XoM1JX8vPz0z333KOjR48qKChIVVVVKisrs6kpLS295j1Vl/P29pbJZLJZAAAAAKCxXCpIXbhwQceOHVNwcLAiIiLUpk0b5ebmGuuLiopUXFwss9nsxC4BAAAAtHYt+tK+5557TmPGjFH37t116tQpvfjii/Lw8NDjjz8uX19fxcfHKzk5Wf7+/jKZTHr66adlNpt5Yh8AAACAZtWig9TJkyf1+OOP6+zZs+rSpYsGDx6sPXv2qEuXLpKkN954Q+7u7oqLi1NlZaViYmK0atUqJ3cNAAAAoLVr0UHq3XffbXC9j4+P0tLSlJaWdos6AgAAAAAXu0cKAAAAAFoCghQAAAAA2IkgBQAAAAB2IkgBAAAAgJ0IUgAAAABgJ4IUAAAAANiJIAUAAAAAdiJIAQAAAICdCFIAAAAAYCeCFAAAAADYiSAFAAAAAHYiSAEAAACAnQhSAAAAAGAnghQAAAAA2IkgBQAAAAB2IkgBAAAAgJ0IUgAAAABgJ09nNwAAN6vH85uduv/vX4l16v4BAMCtxxkpAAAAALATQQoAAAAA7ESQAgAAAAA7EaQAAAAAwE4EKQAAAACwE0EKAAAAAOxEkAIAAAAAOxGkAAAAAMBOBCkAAAAAsBNBCgAAAADsRJACAAAAADsRpAAAAADATgQpAAAAALCTp7MbAABX1+P5zU7d//evxDp1/wAA3I5azRmptLQ09ejRQz4+PoqMjNS+ffuc3RIA4DbH2AQArVerCFIbNmxQcnKyXnzxRX3xxRcaMGCAYmJidPr0aWe3BgC4TTE2AUDr1iqC1LJlyzRt2jRNnTpVYWFhWr16tdq1a6e33nrL2a0BAG5TjE0A0Lq5/D1SVVVVKigoUEpKivGeu7u7oqKilJ+ff83PVFZWqrKy0nhdXl4uSbJarQ73UVv5o8OfBYCb0S1po1P3f2hhjMOfrf/draura6p2WgR7x6bWOC45++8lcDO/Tbi9NXZscvkg9a9//Us1NTUKDAy0eT8wMFBHjhy55mdSU1O1cOHCq94PDQ1tlh4BoDXzXX7z2zh//rx8fX1vfkMthL1jE+MS0PSa4rcJt7cbjU0uH6QckZKSouTkZON1bW2tzp07p06dOsnNze2Gn7darQoNDdWJEydkMpmas9Vm4er9S65/DPTvXK7ev+T6x1Dff3Fxsdzc3BQSEuLslpzqZselK7na3w9X61ei51vB1fqV6PlWuBX91tXV6fz58zccm1w+SHXu3FkeHh4qLS21eb+0tFRBQUHX/Iy3t7e8vb1t3vPz87N73yaTySX+wl2Pq/cvuf4x0L9zuXr/kusfg6+vr0v3fz32jk1NNS5dydX+frhavxI93wqu1q9Ez7dCc/fbmKskXP5hE15eXoqIiFBubq7xXm1trXJzc2U2m53YGQDgdsXYBACtn8ufkZKk5ORkTZkyRffff79+8YtfaPny5aqoqNDUqVOd3RoA4DbF2AQArZvHggULFji7iZvVr18/+fn56eWXX9brr78uSVq/fr169+7dbPv08PDQ0KFD5enpmlnU1fuXXP8Y6N+5XL1/yfWPwdX7vxFnjE2Xc7Xv19X6lej5VnC1fiV6vhVaSr9uda3tmbMAAAAA0Mxc/h4pAAAAALjVCFIAAAAAYCeCFAAAAADYiSAFAAAAAHYiSP3/0tLS1KNHD/n4+CgyMlL79u1rsH7jxo3q06ePfHx8FB4ero8//thmfV1dnebPn6/g4GC1bfv/tXf3QVFd5x/Av8vLLiCvirxWAQEJNYpgwhbrGwKKMSNMjSEJQyAFGhPbdCKmmkakmqBIjDE61aSooBalpppgVYiIEA0Faw0gCkOBslIQJBExEAR5eX5/5McdVxfYVfFe8PnMOHHvPXvOd5/cew9n2b0aIzAwEFVVVSMmf1RUFGQymdqf4OBgSeS/cuUKli5dCmdnZ8hkMmzbtu2h+3xYjzr/n/70p/vq/9RTTw1bfkC315CSkoLZs2fDysoKVlZWCAwMvK+9lM8BbfJL+Rw4evQonnnmGVhaWmLMmDGYPn06Dhw4oNZGyvXXJv/jrr/YxJiDWlpaEB4eDnNzc1haWiI6Ohrt7e1qbS5duoTZs2fDyMgIEyZMQHJysmTzqlSq+44ZmUyGoqIi0TInJiZi5syZMDExGfAfWK6rq8PixYthYmICGxsbvPPOO+jp6ZFsXk01zsjIAPD4a6xSqRAdHQ0XFxcYGxvD1dUVCQkJuHPnjlo/Ax3HUs082LEsxnGxZMkSTJw4EUZGRrC3t0dERASuXbsm2Rprk3mo64XWiFFGRgbJ5XLau3cvXblyhWJjY8nS0pKuX7+usX1BQQHp6+tTcnIylZeX09q1a8nQ0JDKysqENklJSWRhYUFffvkllZaW0pIlS8jFxYVu3749IvJHRkZScHAwNTY2Cn9aWloeefYHyf+vf/2LVq1aRYcOHSI7Ozv6+OOPH7pPqeVPSEigKVOmqNX/u+++e+TZH/Q1vPLKK/TnP/+ZiouLqaKigqKiosjCwoLq6+uFNlI+B7TJL+VzIC8vj44ePUrl5eVUXV1N27ZtI319fcrOzhbaSLn+2uR/nPUXm1hzUHBwMHl5eVFRURGdO3eO3Nzc6OWXXxb237p1i2xtbSk8PJwuX75Mhw4dImNjY4qJiZFk3traWgJAp0+fVjtu7ty5I1qN161bR1u3bqWVK1eShYXFfeP09PTQ008/TYGBgVRcXEwnT54ka2trCgkJkWReIiIAlJqaqlbj27dvi1LjrKwsioqKoq++UgQ1HQAAE9xJREFU+opqamooMzOTbGxsKC4uTuhjoOP4s88+k2zmgY7lv/71r6IcF1u3bqXCwkJSqVRUUFBAfn5+5OfnJ9kaa5N5sOuFLnghRUS+vr60YsUK4XFvby85ODjQpk2bNLZ/8cUXafHixWrblEolvf7660RE1NfXR3Z2dvThhx8K+1tbW0mhUNChQ4ckn5/opx9iQkJCHnlWTXTNfzcnJyeNC5GH6VNXw5E/ISGBvLy8HmnOwTxsvXp6esjMzIz27dtHRNI/B+51b36ikXMO9PP29qa1a9cS0cirP5F6fqLHW3+xiTEHlZeXEwC6cOGC0CYrK4tkMhk1NDQQEdHOnTvJysqKurq6hDarV68mIyMjSebt/8GouLj4vgxiz/OpqakaFyYnT54kPT09ampqErbt2rWL9PT0aPny5ZLLS/TTQuqLL764b7vYNe6XnJxMLi4uwuOBjmMPDw/JZh7oWJZK3szMTJLJZMKiYyTU+N7Mg10vdPHEf7Tvzp07uHjxIgIDA4Vtenp6CAwMRGFhocbnFBYWqrUHgIULFwrta2tr0dTUpNbGwsICSqVywD6llL9ffn4+bGxs4OHhgTfeeAM3btx4pNkfNL8YfYoxVlVVFRwcHDBp0iSEh4ejrq7uYeNq9CheQ0dHB7q7uzF27FgA0j8HhsrfbyScA0SE3NxcVFZWYs6cOQBGVv015e/3OOovNrHmoMLCQlhaWuKZZ54R2gQGBkJPTw/nz58X2syZMwdyuVxoM3/+fHR2duIXv/iF5PL2W7JkCWxsbDBr1iwcO3ZM0vN8YWEhpk6dCltbW2Gbv78/+vr64O7uLrm8/VasWAFra2v4+vpi79696OrqkkyNb926pXYt13QcL1y4EJWVlZLN3O/uY/nIkSOSyNvS0oL09HTMnDkThoaGwjhSrrGmzP3uvV7o6olfSH3//ffo7e1Vu4gBgK2tLZqamjQ+p6mpadD2/f/Vpc8HNRz5ASA4OBj79+9Hbm4uNm/ejK+//hqLFi1Cb2+v6PnF6PNxj6VUKpGWlobs7Gzs2rULtbW1mD17Ntra2h428n0exWtYvXo1HBwchAub1M+Be92bH5D+OXDr1i2YmppCLpdj8eLF2LFjB4KCggCMjPoPlh94fPUXm1hzUFNTE2xsbNT2GxgYYOzYsWpt7u2j/wclfX19yeU1NTXFRx99hM8//xwnTpzArFmzEBoaivT0dMnO85rGMTAw0NhWCnkBYMOGDTh8+DBycnKwdOlSvPnmm0hOTpZEjaurq7Fjxw68/vrrQ44DQLKZNR3LL7zwgqh5V69ejTFjxmDcuHGoq6tDZmbmkOMA4tZ4sMwDXS90XUxpPlvZE++ll14S/j516lRMmzYNrq6uyM/PR0BAgIjJngyLFi0S/j5t2jQolUo4OTnh8OHDiI6OFjHZ/ZKSkpCRkYH8/HwYGRmJHUdnA+WX+jlgZmaGkpIStLe3Izc3FytXrsSkSZMwb948saNpZaj8Uq8/kx5ra2usXLlSePzss8/i2rVr2LVrl4ipRp/4+Hjh797e3vjxxx8lUeOGhgYEBwdj2bJliI2NFTuOVgbKrOlYrq6uxpEjR8SICQB45513EB0djatXr2L9+vV49dVXcfz4cchkMtEyDWWwzANdLz788EMsWbJE6zGe+N9IWVtbQ19fH9evX1fbfv36ddjZ2Wl8jp2d3aDt+/+rS58PajjyazJp0iRYW1ujurr64UPf5UHyi9Gn2GNZWlpi8uTJj7z+wMO9hi1btiApKQmnTp3CtGnThO1SPwf6DZRfE6mdA3p6enBzc8P06dMRFxeHF154AZs2bQIwMuo/WH5Nhqv+YhNrDrKzs0Nzc7Pa/p6eHrS0tKi1ubeP/juL3fubQSnk1USpVKKurk6y87ymcXp6ejS2lUJeTZRKJRobG0Wt8bVr1+Dv74+ZM2fiL3/5i1bjAJBsZk1mz56tdd/Dkdfa2hqTJ09GUFAQMjIycPLkSeEOd1Kt8WCZNVEqlTrPMU/8Qkoul2PGjBnIzc0VtvX19SE3Nxd+fn4an+Pn56fWHgBycnKE9i4uLrCzs1Nr88MPP+D8+fMD9iml/JrU19fjxo0bsLe3fzTB/9+D5BejT7HHam9vR01NzSOvP/DgryE5ORnvv/8+srOz1b63AEj/HBgqvyZSPwf6+vrQ1dUFYGTU/15359dkuOovNrHmID8/P7S2tuLixYtCmzNnzqCvrw9KpVJoc/bsWXR3dwtt+n9ze/f3kqSSV5OSkhI4ODhIdp738/NDWVmZ2iLx66+/hp6entoPdFLJq0lJSQmsrKxEq3FDQwPmzZuHGTNmIDU1FXp66j/aajqOc3Jy4OHhIdnMmly+fBkmJiaSOI77+voAQLhmS7HGQ2XWpKSkRPc55qFuVTFKZGRkkEKhoLS0NCovL6ff/OY3ZGlpKdxFJyIigtasWSO0LygoIAMDA9qyZQtVVFRQQkKCxlszWlpaUmZmJl26dIlCQkKG9dbDjzJ/W1sbrVq1igoLC6m2tpZOnz5NPj4+5O7uTp2dnaLn7+rqouLiYiouLiZ7e3tatWoVFRcXU1VVldZ9Sj1/XFwc5efnU21tLRUUFFBgYCBZW1tTc3PzI8//IK8hKSmJ5HI5/f3vf1e7bWhbW5taG6meA0Pll/o5sHHjRjp16hTV1NRQeXk5bdmyhQwMDCglJUXtNUq1/kPlf9z1F5tYc1BwcDB5e3vT+fPn6ZtvviF3d3e124m3traSra0tRURE0OXLlykjI4NMTEwoJiZGknnT0tLo4MGDVFFRQRUVFZSYmEh6enq0d+9e0Wp89epVKi4upvXr15Opqalw7e+/1vTf/nzBggVUUlJC2dnZNH78eAoJCZFk3mPHjlFKSgqVlZVRVVUV7dy5k0xMTGjdunWi1Li+vp7c3NwoICCA6uvr1a7nQx3H/bfmlmLmgY7l5cuXP/a8RUVFtGPHDiouLiaVSkW5ubk0c+ZMcnV1Fa7HUquxNpkHu17oghdS/2/Hjh00ceJEksvl5OvrS0VFRcK+uXPnUmRkpFr7w4cP0+TJk0kul9OUKVPoxIkTavv7+vooPj6ebG1tSaFQUEBAAFVWVo6I/B0dHbRgwQIaP348GRoakpOTE8XGxg7LIuRB8vffsvLeP3PnztW6T6nnDwsLI3t7e5LL5eTo6EhhYWFUXV09bPl1fQ1OTk4aX0NCQoLQRsrnwFD5pX4OvPfee+Tm5kZGRkZkZWVFfn5+lJGRodaflOs/VH4x6i82MeagGzdu0Msvv0ympqZkbm5Or732mtqbIUREpaWlNGvWLFIoFOTo6EhJSUmSzZuWlkaenp5kYmJC5ubm5OvrS59//rmoNY6MjNR4rcnLyxPaqFQqWrRoERkbG5O1tTXFxcVRd3e3JPNmZWXR9OnTydTUlMaMGUNeXl706aefUm9vryg1Tk1N1Zj33t8TDHQcSzXzYMfy48576dIl8vf3p7Fjx5JCoSBnZ2davny52r+7KLUaa5N5qOuFtmRERLr9DosxxhhjjDHGnmxP/HekGGOMMcYYY0xXvJBijDHGGGOMMR3xQooxxhhjjDHGdMQLKcYYY4wxxhjTES+kGGOMMcYYY0xHvJBijDHGGGOMMR3xQooxxhhjjDHGdMQLKcbYsJPJZPjyyy8BACqVCjKZDCUlJSKnYowx9iTjuYk9LF5IsVEpKioKMpkMMpkMhoaGsLW1RVBQEPbu3Yu+vj6x40mes7Mztm3bNix9T5gwAY2NjXj66acBAPn5+ZDJZGhtbR2W8RhjTCp4bno4PDcxqeGFFBu1goOD0djYCJVKhaysLPj7++P3v/89nn/+efT09Azr2Hfu3BnW/qWgt7f3gSZ+fX192NnZwcDAYBhSMcaYtPHcNLx4bmKPEy+k2KilUChgZ2cHR0dH+Pj44I9//CMyMzORlZWFtLQ0oV1raytiYmIwfvx4mJubY/78+SgtLVXr64MPPoCNjQ3MzMwQExODNWvWYPr06cL+qKgohIaGIjExEQ4ODvDw8AAA/O9//8OLL74IS0tLjB07FiEhIVCpVGp97969G56enjAyMsJTTz2FnTt3Dvq6+vr6kJycDDc3NygUCkycOBGJiYnC/qHG7M+6ZcsW2NvbY9y4cVixYgW6u7sBAPPmzcPVq1fx9ttvC++cAkBaWhosLS1x7Ngx/PznP4dCoUBdXR0uXLiAoKAgWFtbw8LCAnPnzsW33347YP67Pz6hUqng7+8PALCysoJMJkNUVBT279+PcePGoaurS+25oaGhiIiIGLQ+jDEmZTw38dzERg9eSLEnyvz58+Hl5YWjR48K25YtW4bm5mZkZWXh4sWL8PHxQUBAAFpaWgAA6enpSExMxObNm3Hx4kVMnDgRu3btuq/v3NxcVFZWIicnB8ePH0d3dzcWLlwIMzMznDt3DgUFBTA1NUVwcLDwrmB6ejrWrVuHxMREVFRUYOPGjYiPj8e+ffsGfA3vvvsukpKSEB8fj/Lychw8eBC2trYAoNWYAJCXl4eamhrk5eVh3759SEtLEybwo0eP4mc/+xk2bNiAxsZGNDY2Cs/r6OjA5s2bsXv3bly5cgU2NjZoa2tDZGQkvvnmGxQVFcHd3R3PPfcc2trahvz/MWHCBBw5cgQAUFlZicbGRnzyySdYtmwZent7cezYMaFtc3MzTpw4gV//+tdD9ssYYyMJz00/4bmJjTjE2CgUGRlJISEhGveFhYWRp6cnERGdO3eOzM3NqbOzU62Nq6srffbZZ0REpFQqacWKFWr7f/nLX5KXl5faeLa2ttTV1SVsO3DgAHl4eFBfX5+wrauri4yNjemrr74Sxjl48KBa3++//z75+flpzP7DDz+QQqGglJQUjfu1GTMyMpKcnJyop6dHaLNs2TIKCwsTHjs5OdHHH3+s1ndqaioBoJKSEo1j9+vt7SUzMzP6xz/+IWwDQF988QUREdXW1hIAKi4uJiKivLw8AkA3b95U6+eNN96gRYsWCY8/+ugjmjRpktprY4yxkYTnJp6b2OjCHwRlTxwiEj4SUFpaivb2dowbN06tze3bt1FTUwPgp3ej3nzzTbX9vr6+OHPmjNq2qVOnQi6XC49LS0tRXV0NMzMztXadnZ2oqanBjz/+iJqaGkRHRyM2NlbY39PTAwsLC43ZKyoq0NXVhYCAAI37hxqz35QpU6Cvry88tre3R1lZmcY+7yaXyzFt2jS1bdevX8fatWuRn5+P5uZm9Pb2oqOjA3V1dUP2N5jY2Fg8++yzaGhogKOjI9LS0oQvajPG2GjDcxPPTWzk4YUUe+JUVFTAxcUFANDe3g57e3vk5+ff187S0lKnfseMGaP2uL29HTNmzEB6evp9bcePH4/29nYAQEpKCpRKpdr+uyeSuxkbGw+aYagx+xkaGqrtk8lkWn0519jY+L7JIjIyEjdu3MAnn3wCJycnKBQK+Pn5PfSXmr29veHl5YX9+/djwYIFuHLlCk6cOPFQfTLGmFTx3MRzExt5eCHFnihnzpxBWVkZ3n77bQCAj48PmpqaYGBgAGdnZ43P8fDwwIULF/Dqq68K2y5cuDDkWD4+Pvjb3/4GGxsbmJub37ffwsICDg4O+O9//4vw8HCt8ru7u8PY2Bi5ubmIiYnReUxtyeVy9Pb2atW2oKAAO3fuxHPPPQfgpy8Uf//99zqNBUDjeDExMdi2bRsaGhoQGBiICRMmaN0vY4yNFDw3aYfnJiY1fLMJNmp1dXWhqakJDQ0N+Pbbb7Fx40aEhITg+eefFyaewMBA+Pn5ITQ0FKdOnYJKpcI///lPvPfee/j3v/8NAPjd736HPXv2YN++faiqqsIHH3yAS5cuDflr/PDwcFhbWyMkJATnzp1DbW0t8vPz8dZbb6G+vh4AsH79emzatAnbt2/Hf/7zH5SVlSE1NRVbt27V2KeRkRFWr16NP/zhD9i/fz9qampQVFSEPXv2aD2mNpydnXH27Fk0NDQMOfG4u7vjwIEDqKiowPnz5xEeHj7ku5N3c3Jygkwmw/Hjx/Hdd98J74YCwCuvvIL6+nqkpKTwF3kZY6MCz008N7HRgxdSbNTKzs6Gvb09nJ2dERwcjLy8PGzfvh2ZmZnCxxNkMhlOnjyJOXPm4LXXXsPkyZPx0ksv4erVq8LdhsLDw/Huu+9i1apV8PHxQW1tLaKiomBkZDTo+CYmJjh79iwmTpyIX/3qV/D09ER0dDQ6OzuFd+RiYmKwe/dupKamYurUqZg7dy7S0tKEj3doEh8fj7i4OKxbtw6enp4ICwtDc3Oz1mNqY8OGDVCpVHB1dVX72IUme/bswc2bN+Hj44OIiAi89dZbsLGx0XosR0dHrF+/HmvWrIGtrS1++9vfCvssLCywdOlSmJqaIjQ0VOs+GWNMqnhu4rmJjR4yIiKxQzA20gQFBcHOzg4HDhwQO8qoFxAQgClTpmD79u1iR2GMMUnjuenx4bmJAfwdKcaG1NHRgU8//RQLFy6Evr4+Dh06hNOnTyMnJ0fsaKPazZs3kZ+fj/z8/CH/IUjGGHvS8NwkDp6b2N14IcXYEPo/YpGYmIjOzk54eHjgyJEjCAwMFDvaqObt7Y2bN29i8+bN8PDwEDsOY4xJCs9N4uC5id2NP9rHGGOMMcYYYzrim00wxhhjjDHGmI54IcUYY4wxxhhjOuKFFGOMMcYYY4zpiBdSjDHGGGOMMaYjXkgxxhhjjDHGmI54IcUYY4wxxhhjOuKFFGOMMcYYY4zpiBdSjDHGGGOMMaYjXkgxxhhjjDHGmI7+D1R8IbEfEP1jAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -627,66 +685,149 @@ } ], "source": [ - "plt.figure(figsize=(10,10))\n", - "bC = nx.betweenness_centrality(G)\n", - "bc_distr = pd.Series(bC)\n", - "bc_distr.plot.hist()\n", - "plt.yscale(\"log\")" + "plt.figure(figsize=(10,4))\n", + "\n", + "for ith, G in enumerate([G_bu, G_tu]):\n", + " plt.subplot(1,2,ith+1)\n", + " \n", + " deg_C = nx.degree_centrality(G)\n", + " degc_distr = pd.Series(deg_C) #.apply(np.log)\n", + " degc_distr.plot.hist()\n", + "\n", + " plt.xlabel(\"Degree centrality\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Assortativity" ] }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 22, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, - "id": "gPMC9VDyuF5F", - "outputId": "871111c8-12b4-4820-8675-f74fccdd39e6", - "scrolled": true + "id": "MQOah_yDtbaW", + "outputId": "558fc1ea-f457-4386-b5ce-8dc61f8f0115" }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Bipartite Undirect: -0.13774320410491867\n", + "Tripartite Undirect: -0.8079472914876619\n" + ] + } + ], + "source": [ + "for ith, G in enumerate([G_bu, G_tu]):\n", + " assortativity = nx.degree_pearson_correlation_coefficient(G)\n", + " print(f\"{G.name}: {assortativity}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "c8peWeN9nh1m" + }, + "source": [ + "### Community Detection" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "import community" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Bipartite Graph" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "G=G_bu" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "parts = community.best_partition(G, random_state=42, weight='weight')" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.000720547185799644" + "2 465\n", + "13 234\n", + "0 148\n", + "5 133\n", + "10 113\n", + "9 99\n", + "8 93\n", + "1 87\n", + "12 80\n", + "6 72\n", + "4 66\n", + "7 57\n", + "11 20\n", + "3 9\n", + "dtype: int64" ] }, - "execution_count": 24, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "np.mean(list(bC.values()))" + "communities = pd.Series(parts)\n", + "communities.value_counts().sort_values(ascending=False).head(15)" ] }, { "cell_type": "code", - "execution_count": 25, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "94viGU4vserg", - "outputId": "ea65df57-df57-4e51-f396-9c808f274766" - }, + "execution_count": 27, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "Text(0.5, 0, 'Community size')" ] }, - "execution_count": 25, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA10AAAMtCAYAAABkWRueAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdf5CWdb3/8dfyYzdBdgl1WRgQzd8E9IMa3MkcC+JnHk2ayfwBdhg9eqBjkqac47GyJgzLtI7KOTMlOkeyPEfriKEhKtaRLDkaRkVKGnpgwdHcFRpWfuz3j77ep02sXPfjvWyPx8w1w31dn73v9+VMzTznuq/rruno6OgIAAAARfSp9gAAAAC9megCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBB/ao9QE+wZ8+ebNq0KYMGDUpNTU21xwEAAKqko6MjL774YoYPH54+fbrnGpXoSrJp06aMHDmy2mMAAAA9xNNPP50RI0Z0y3uJriSDBg1K8vv/sPX19VWeBgAAqJa2traMHDmy0gjdQXQlla8U1tfXiy4AAKBbbzvyIA0AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgqoaXddff33GjRuX+vr61NfXp7m5OcuXL68cP+GEE1JTU9NpO/fcczu9x8aNGzNjxowMGDAgjY2Nueiii7Jr1643+lQAAAD2ql81P3zEiBG54oorcsQRR6SjoyM33nhjTjrppDzyyCN561vfmiQ5++yzc/nll1f+ZsCAAZV/7969OzNmzEhTU1MefPDBbN68ObNmzUr//v3zhS984Q0/HwAAgD9W09HR0VHtIf7QkCFDcuWVV2bOnDk54YQT8va3vz1XX331XtcuX748H/zgB7Np06YMHTo0SbJ48eJcfPHFefbZZ1NbW/sXfWZbW1saGhrS2tqa+vr6bjsXAABg31KiDXrMPV27d+/OLbfcku3bt6e5ubmy/+abb86BBx6YMWPGZMGCBfnd735XObZ69eqMHTu2ElxJMmXKlLS1tWXdunWv+lnt7e1pa2vrtAEAAJRQ1a8XJsljjz2W5ubm7NixI/vvv39uv/32jB49Okly2mmnZdSoURk+fHjWrl2biy++OOvXr89tt92WJGlpaekUXEkqr1taWl71MxcuXJjPfvazhc4IAADg/1Q9uo466qg8+uijaW1tzX/8x39k9uzZWbVqVUaPHp1zzjmnsm7s2LEZNmxYJk6cmA0bNuSwww7r8mcuWLAg8+fPr7xua2vLyJEjX9d5AAAA7E3Vv15YW1ubww8/POPHj8/ChQvztre9Lddcc81e106YMCFJ8sQTTyRJmpqasmXLlk5rXn7d1NT0qp9ZV1dXeWLiyxsAAEAJVY+uP7Znz560t7fv9dijjz6aJBk2bFiSpLm5OY899li2bt1aWbNixYrU19dXvqIIAABQTVX9euGCBQsybdq0HHzwwXnxxRezdOnS3H///bn77ruzYcOGLF26NNOnT88BBxyQtWvX5oILLsjxxx+fcePGJUkmT56c0aNH58wzz8yiRYvS0tKSSy+9NHPnzk1dXV01Tw0AACBJlaNr69atmTVrVjZv3pyGhoaMGzcud999dz7wgQ/k6aefzj333JOrr74627dvz8iRIzNz5sxceumllb/v27dvli1blvPOOy/Nzc0ZOHBgZs+e3el3vQAAAKqpx/1OVzX4nS4AACDp5b/TBQAA0BuJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKKiqv9MFAD3JIZfcWe0ReqynrphR7REA9lmudAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAACupX7QEAeOMdcsmd1R4BAP5quNIFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAK6lftAQCAnu+QS+6s9gg90lNXzKj2CMA+wJUuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgqoaXddff33GjRuX+vr61NfXp7m5OcuXL68c37FjR+bOnZsDDjgg+++/f2bOnJktW7Z0eo+NGzdmxowZGTBgQBobG3PRRRdl165db/SpAAAA7FVVo2vEiBG54oorsmbNmjz88MN5//vfn5NOOinr1q1LklxwwQW54447cuutt2bVqlXZtGlTTjnllMrf7969OzNmzMhLL72UBx98MDfeeGOWLFmSyy67rFqnBAAA0ElNR0dHR7WH+ENDhgzJlVdemQ9/+MM56KCDsnTp0nz4wx9Okvzyl7/MMccck9WrV+fYY4/N8uXL88EPfjCbNm3K0KFDkySLFy/OxRdfnGeffTa1tbV/0We2tbWloaEhra2tqa+vL3ZuAD3FIZfcWe0RoFd46ooZ1R4B6GYl2qDH3NO1e/fu3HLLLdm+fXuam5uzZs2a7Ny5M5MmTaqsOfroo3PwwQdn9erVSZLVq1dn7NixleBKkilTpqStra1ytWxv2tvb09bW1mkDAAAooerR9dhjj2X//fdPXV1dzj333Nx+++0ZPXp0WlpaUltbm8GDB3daP3To0LS0tCRJWlpaOgXXy8dfPvZqFi5cmIaGhso2cuTIbj4rAACA36t6dB111FF59NFH89BDD+W8887L7Nmz8/Of/7zoZy5YsCCtra2V7emnny76eQAAwF+vftUeoLa2NocffniSZPz48fnJT36Sa665Jh/5yEfy0ksv5YUXXuh0tWvLli1pampKkjQ1NeXHP/5xp/d7+emGL6/Zm7q6utTV1XX3qQAAALxC1a90/bE9e/akvb0948ePT//+/bNy5crKsfXr12fjxo1pbm5OkjQ3N+exxx7L1q1bK2tWrFiR+vr6jB49+g2fHQAA4I9V9UrXggULMm3atBx88MF58cUXs3Tp0tx///25++6709DQkDlz5mT+/PkZMmRI6uvr8/GPfzzNzc059thjkySTJ0/O6NGjc+aZZ2bRokVpaWnJpZdemrlz57qSBQAA9AhVja6tW7dm1qxZ2bx5cxoaGjJu3Ljcfffd+cAHPpAk+cpXvpI+ffpk5syZaW9vz5QpU3LddddV/r5v375ZtmxZzjvvvDQ3N2fgwIGZPXt2Lr/88mqdEgAAQCc97ne6qsHvdAF/bfxOF3QPv9MFvU+v/p0uAACA3kh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUFBVo2vhwoV597vfnUGDBqWxsTEnn3xy1q9f32nNCSeckJqamk7bueee22nNxo0bM2PGjAwYMCCNjY256KKLsmvXrjfyVAAAAPaqXzU/fNWqVZk7d27e/e53Z9euXfnHf/zHTJ48OT//+c8zcODAyrqzzz47l19+eeX1gAEDKv/evXt3ZsyYkaampjz44IPZvHlzZs2alf79++cLX/jCG3o+AAAAf6yq0XXXXXd1er1kyZI0NjZmzZo1Of744yv7BwwYkKampr2+x/e///38/Oc/zz333JOhQ4fm7W9/ez73uc/l4osvzmc+85nU1ta+4m/a29vT3t5eed3W1tZNZwQAANBZj7qnq7W1NUkyZMiQTvtvvvnmHHjggRkzZkwWLFiQ3/3ud5Vjq1evztixYzN06NDKvilTpqStrS3r1q3b6+csXLgwDQ0NlW3kyJEFzgYAAKDKV7r+0J49e/KJT3wi73nPezJmzJjK/tNOOy2jRo3K8OHDs3bt2lx88cVZv359brvttiRJS0tLp+BKUnnd0tKy189asGBB5s+fX3nd1tYmvAAAgCJ6THTNnTs3P/vZz/LDH/6w0/5zzjmn8u+xY8dm2LBhmThxYjZs2JDDDjusS59VV1eXurq61zUvAADAX6JHfL1w3rx5WbZsWe67776MGDHiT66dMGFCkuSJJ55IkjQ1NWXLli2d1rz8+tXuAwMAAHijVDW6Ojo6Mm/evNx+++259957c+ihh/7Zv3n00UeTJMOGDUuSNDc357HHHsvWrVsra1asWJH6+vqMHj26zOAAAAB/oap+vXDu3LlZunRpvvvd72bQoEGVe7AaGhqy3377ZcOGDVm6dGmmT5+eAw44IGvXrs0FF1yQ448/PuPGjUuSTJ48OaNHj86ZZ56ZRYsWpaWlJZdeemnmzp3rK4QAAEDVVfVK1/XXX5/W1taccMIJGTZsWGX71re+lSSpra3NPffck8mTJ+foo4/OJz/5ycycOTN33HFH5T369u2bZcuWpW/fvmlubs4ZZ5yRWbNmdfpdLwAAgGqp6pWujo6OP3l85MiRWbVq1Z99n1GjRuV73/ted40FAADQbXrEgzQAAAB6K9EFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIL6VXsA+Esdcsmd1R6hx3rqihnVHgEAgFfhShcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAVVNboWLlyYd7/73Rk0aFAaGxtz8sknZ/369Z3W7NixI3Pnzs0BBxyQ/fffPzNnzsyWLVs6rdm4cWNmzJiRAQMGpLGxMRdddFF27dr1Rp4KAADAXlU1ulatWpW5c+fmRz/6UVasWJGdO3dm8uTJ2b59e2XNBRdckDvuuCO33nprVq1alU2bNuWUU06pHN+9e3dmzJiRl156KQ8++GBuvPHGLFmyJJdddlk1TgkAAKCTmo6Ojo5qD/GyZ599No2NjVm1alWOP/74tLa25qCDDsrSpUvz4Q9/OEnyy1/+Msccc0xWr16dY489NsuXL88HP/jBbNq0KUOHDk2SLF68OBdffHGeffbZ1NbW/tnPbWtrS0NDQ1pbW1NfX1/0HOm6Qy65s9oj9FhPXTGj2iOwj/G/J+ge/v8Xep8SbdCj7ulqbW1NkgwZMiRJsmbNmuzcuTOTJk2qrDn66KNz8MEHZ/Xq1UmS1atXZ+zYsZXgSpIpU6akra0t69at2+vntLe3p62trdMGAABQQr9qD/CyPXv25BOf+ETe8573ZMyYMUmSlpaW1NbWZvDgwZ3WDh06NC0tLZU1fxhcLx9/+djeLFy4MJ/97Ge7+xSAHsbVHACgJ+gxV7rmzp2bn/3sZ7nllluKf9aCBQvS2tpa2Z5++uninwkAAPx16hFXuubNm5dly5blgQceyIgRIyr7m5qa8tJLL+WFF17odLVry5YtaWpqqqz58Y9/3On9Xn664ctr/lhdXV3q6uq6+zQAAABeoapXujo6OjJv3rzcfvvtuffee3PooYd2Oj5+/Pj0798/K1eurOxbv359Nm7cmObm5iRJc3NzHnvssWzdurWyZsWKFamvr8/o0aPfmBMBAAB4FVW90jV37twsXbo03/3udzNo0KDKPVgNDQ3Zb7/90tDQkDlz5mT+/PkZMmRI6uvr8/GPfzzNzc059thjkySTJ0/O6NGjc+aZZ2bRokVpaWnJpZdemrlz57qaBQAAVF1Vo+v6669Pkpxwwgmd9t9www0566yzkiRf+cpX0qdPn8ycOTPt7e2ZMmVKrrvuusravn37ZtmyZTnvvPPS3NycgQMHZvbs2bn88svfqNMAAAB4VVWNrr/kJ8Le9KY35dprr8211177qmtGjRqV733ve905GgAAQLfoMU8vBAAA6I1EFwAAQEFdiq5f//rX3T0HAABAr9Sl6Dr88MPzvve9L//+7/+eHTt2dPdMAAAAvUaXout//ud/Mm7cuMyfPz9NTU35u7/7u1f8QDEAAABdjK63v/3tueaaa7Jp06Z84xvfyObNm3PcccdlzJgxueqqq/Lss89295wAAAD7pNf1II1+/frllFNOya233povfvGLeeKJJ3LhhRdm5MiRmTVrVjZv3txdcwIAAOyTXld0Pfzww/n7v//7DBs2LFdddVUuvPDCbNiwIStWrMimTZty0kknddecAAAA+6Qu/TjyVVddlRtuuCHr16/P9OnTc9NNN2X69Onp0+f3DXfooYdmyZIlOeSQQ7pzVgAAgH1Ol6Lr+uuvz9/+7d/mrLPOyrBhw/a6prGxMV//+tdf13AAAAD7ui5F1+OPP/5n19TW1mb27NldeXsAAIBeo0v3dN1www259dZbX7H/1ltvzY033vi6hwIAAOgtuhRdCxcuzIEHHviK/Y2NjfnCF77wuocCAADoLboUXRs3bsyhhx76iv2jRo3Kxo0bX/dQAAAAvUWXoquxsTFr1659xf6f/vSnOeCAA173UAAAAL1Fl6Lrox/9aP7hH/4h9913X3bv3p3du3fn3nvvzfnnn59TTz21u2cEAADYZ3Xp6YWf+9zn8tRTT2XixInp1+/3b7Fnz57MmjXLPV0AAAB/oEvRVVtbm29961v53Oc+l5/+9KfZb7/9Mnbs2IwaNaq75wMAANindSm6XnbkkUfmyCOP7K5ZAAAAep0uRdfu3buzZMmSrFy5Mlu3bs2ePXs6Hb/33nu7ZTgAAIB9XZei6/zzz8+SJUsyY8aMjBkzJjU1Nd09FwAAQK/Qpei65ZZb8u1vfzvTp0/v7nkAAAB6lS49Mr62tjaHH354d88CAADQ63Qpuj75yU/mmmuuSUdHR3fPAwAA0Kt06euFP/zhD3Pfffdl+fLleetb35r+/ft3On7bbbd1y3AAAAD7ui5F1+DBg/OhD32ou2cBAADodboUXTfccEN3zwEAANArdemeriTZtWtX7rnnnvzrv/5rXnzxxSTJpk2bsm3btm4bDgAAYF/XpStdv/nNbzJ16tRs3Lgx7e3t+cAHPpBBgwbli1/8Ytrb27N48eLunhMAAGCf1KUrXeeff37e9a535be//W3222+/yv4PfehDWblyZbcNBwAAsK/r0pWuH/zgB3nwwQdTW1vbaf8hhxyS//3f/+2WwQAAAHqDLl3p2rNnT3bv3v2K/c8880wGDRr0uocCAADoLboUXZMnT87VV19deV1TU5Nt27bl05/+dKZPn95twwEAAOzruvT1wi9/+cuZMmVKRo8enR07duS0007L448/ngMPPDDf/OY3u3tGAACAfVaXomvEiBH56U9/mltuuSVr167Ntm3bMmfOnJx++umdHqwBAADw165L0ZUk/fr1yxlnnNGdswAAAPQ6XYqum2666U8enzVrVpeGAQAA6G26FF3nn39+p9c7d+7M7373u9TW1mbAgAGiCwAA4P/r0tMLf/vb33batm3blvXr1+e4447zIA0AAIA/0KXo2psjjjgiV1xxxSuuggEAAPw167boSn7/cI1NmzZ151sCAADs07p0T9d//dd/dXrd0dGRzZs351/+5V/ynve8p1sGAwAA6A26FF0nn3xyp9c1NTU56KCD8v73vz9f/vKXu2UwAACA3qBL0bVnz57ungMAAKBX6tZ7ugAAAOisS1e65s+f/xevveqqq7ryEQAAAL1Cl6LrkUceySOPPJKdO3fmqKOOSpL86le/St++ffPOd76zsq6mpqZ7pgQAANhHdSm6TjzxxAwaNCg33nhj3vzmNyf5/Q8mf+xjH8t73/vefPKTn+zWIQEAAPZVXbqn68tf/nIWLlxYCa4kefOb35zPf/7znl4IAADwB7oUXW1tbXn22Wdfsf/ZZ5/Niy+++LqHAgAA6C26FF0f+tCH8rGPfSy33XZbnnnmmTzzzDP5z//8z8yZMyennHJKd88IAACwz+rSPV2LFy/OhRdemNNOOy07d+78/Rv165c5c+bkyiuv7NYBAQAA9mVdiq4BAwbkuuuuy5VXXpkNGzYkSQ477LAMHDiwW4cDAADY172uH0fevHlzNm/enCOOOCIDBw5MR0dHd80FAADQK3Qpup577rlMnDgxRx55ZKZPn57NmzcnSebMmeNx8QAAAH+gS9F1wQUXpH///tm4cWMGDBhQ2f+Rj3wkd911V7cNBwAAsK/r0j1d3//+93P33XdnxIgRnfYfccQR+c1vftMtgwEAAPQGXbrStX379k5XuF72/PPPp66u7nUPBQAA0Ft0Kbre+9735qabbqq8rqmpyZ49e7Jo0aK8733v67bhAAAA9nVd+nrhokWLMnHixDz88MN56aWX8qlPfSrr1q3L888/n//+7//u7hkBAAD2WV260jVmzJj86le/ynHHHZeTTjop27dvzymnnJJHHnkkhx12WHfPCAAAsM96zVe6du7cmalTp2bx4sX5p3/6pxIzAQAA9Bqv+UpX//79s3bt2hKzAAAA9Dpd+nrhGWecka9//evdPQsAAECv06UHaezatSvf+MY3cs8992T8+PEZOHBgp+NXXXVVtwwHAACwr3tN0fXrX/86hxxySH72s5/lne98Z5LkV7/6Vac1NTU13TcdAADAPu41RdcRRxyRzZs357777kuSfOQjH8lXv/rVDB06tMhwAAAA+7rXdE9XR0dHp9fLly/P9u3bu3UgAACA3qRLD9J42R9HGAAAAJ29puiqqal5xT1b7uECAAB4da/pnq6Ojo6cddZZqaurS5Ls2LEj55577iueXnjbbbd134QAAAD7sNcUXbNnz+70+owzzujWYQAAAHqb1xRdN9xwQ6k5AAAAeqXX9SANAAAA/jTRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgl7T73QBPdMhl9xZ7REAAHgVrnQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUFBVo+uBBx7IiSeemOHDh6empibf+c53Oh0/66yzUlNT02mbOnVqpzXPP/98Tj/99NTX12fw4MGZM2dOtm3b9kaeBgAAwKuqanRt3749b3vb23Lttde+6pqpU6dm8+bNle2b3/xmp+Onn3561q1blxUrVmTZsmV54IEHcs4555QeHQAA4C/Sr5ofPm3atEybNu1Prqmrq0tTU9Nej/3iF7/IXXfdlZ/85Cd517velST52te+lunTp+dLX/pShg8f3u0zAwAAvBY9/p6u+++/P42NjTnqqKNy3nnn5bnnnqscW716dQYPHlwJriSZNGlS+vTpk4ceeuhV37O9vT1tbW2dNgAAgBJ6dHRNnTo1N910U1auXJkvfvGLWbVqVaZNm5bdu3cnSVpaWtLY2Njpb/r165chQ3L4814AABgRSURBVIakpaXlVd934cKFaWhoqGwjR44seh4AAMBfr6p+vfDPOfXUUyv/Hjt2bMaNG5fDDjss999/fyZOnNjl912wYEHmz59fed3W1ia8AACAInr0la4/9pa3vCUHHnhgnnjiiSRJU1NTtm7d2mnNrl278vzzz7/qfWDJ7+8Tq6+v77QBAACUsE9F1zPPPJPnnnsuw4YNS5I0NzfnhRdeyJo1aypr7r333uzZsycTJkyo1pgAAAAVVf164bZt2ypXrZLkySefzKOPPpohQ4ZkyJAh+exnP5uZM2emqakpGzZsyKc+9akcfvjhmTJlSpLkmGOOydSpU3P22Wdn8eLF2blzZ+bNm5dTTz3VkwsBAIAeoapXuh5++OG84x3vyDve8Y4kyfz58/OOd7wjl112Wfr27Zu1a9fmb/7mb3LkkUdmzpw5GT9+fH7wgx+krq6u8h4333xzjj766EycODHTp0/Pcccdl3/7t3+r1ikBAAB0UtUrXSeccEI6Ojpe9fjdd9/9Z99jyJAhWbp0aXeOBQAA0G32qXu6AAAA9jWiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAVVNboeeOCBnHjiiRk+fHhqamryne98p9Pxjo6OXHbZZRk2bFj222+/TJo0KY8//ninNc8//3xOP/301NfXZ/DgwZkzZ062bdv2Rp4GAADAq6pqdG3fvj1ve9vbcu211+71+KJFi/LVr341ixcvzkMPPZSBAwdmypQp2bFjR2XN6aefnnXr1mXFihVZtmxZHnjggZxzzjlv1CkAAAD8Sf2q+eHTpk3LtGnT9nqso6MjV199dS699NKcdNJJSZKbbropQ4cOzXe+852ceuqp+cUvfpG77rorP/nJT/Kud70rSfK1r30t06dPz5e+9KUMHz78DTsXAACAvemx93Q9+eSTaWlpyaRJkyr7GhoaMmHChKxevTpJsnr16gwePLgSXEkyadKk9OnTJw899NCrvnd7e3va2to6bQAAACX02OhqaWlJkgwdOrTT/qFDh1aOtbS0pLGxsdPxfv36ZciQIZU1e7Nw4cI0NDRUtpEjR3bz9AAAAL/XY6OrpAULFqS1tbWyPf3009UeCQAA6KV6bHQ1NTUlSbZs2dJp/5YtWyrHmpqasnXr1k7Hd+3aleeff76yZm/q6upSX1/faQMAACihx0bXoYcemqampqxcubKyr62tLQ899FCam5uTJM3NzXnhhReyZs2aypp77703e/bsyYQJE97wmQEAAP5YVZ9euG3btjzxxBOV108++WQeffTRDBkyJAcffHA+8YlP5POf/3yOOOKIHHroofnnf/7nDB8+PCeffHKS5JhjjsnUqVNz9tlnZ/Hixdm5c2fmzZuXU0891ZMLAQCAHqGq0fXwww/nfe97X+X1/PnzkySzZ8/OkiVL8qlPfSrbt2/POeeckxdeeCHHHXdc7rrrrrzpTW+q/M3NN9+cefPmZeLEienTp09mzpyZr371q2/4uQAAAOxNTUdHR0e1h6i2tra2NDQ0pLW11f1dPdghl9xZ7REAoJOnrphR7RGAblaiDXrsPV0AAAC9gegCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgvpVewBe6ZBL7qz2CAAAQDdxpQsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKCgHh1dn/nMZ1JTU9NpO/rooyvHd+zYkblz5+aAAw7I/vvvn5kzZ2bLli1VnBgAAKCzHh1dSfLWt741mzdvrmw//OEPK8cuuOCC3HHHHbn11luzatWqbNq0KaecckoVpwUAAOisX7UH+HP69euXpqamV+xvbW3N17/+9SxdujTvf//7kyQ33HBDjjnmmPzoRz/Kscce+0aPCgAA8Ao9/krX448/nuHDh+ctb3lLTj/99GzcuDFJsmbNmuzcuTOTJk2qrD366KNz8MEHZ/Xq1X/yPdvb29PW1tZpAwAAKKFHR9eECROyZMmS3HXXXbn++uvz5JNP5r3vfW9efPHFtLS0pLa2NoMHD+70N0OHDk1LS8uffN+FCxemoaGhso0cObLkaQAAAH/FevTXC6dNm1b597hx4zJhwoSMGjUq3/72t7Pffvt1+X0XLFiQ+fPnV163tbUJLwAAoIgefaXrjw0ePDhHHnlknnjiiTQ1NeWll17KCy+80GnNli1b9noP2B+qq6tLfX19pw0AAKCEfSq6tm3blg0bNmTYsGEZP358+vfvn5UrV1aOr1+/Phs3bkxzc3MVpwQAAPg/PfrrhRdeeGFOPPHEjBo1Kps2bcqnP/3p9O3bNx/96EfT0NCQOXPmZP78+RkyZEjq6+vz8Y9/PM3NzZ5cCAAA9Bg9OrqeeeaZfPSjH81zzz2Xgw46KMcdd1x+9KMf5aCDDkqSfOUrX0mfPn0yc+bMtLe3Z8qUKbnuuuuqPDUAAMD/qeno6Oio9hDV1tbWloaGhrS2tvaI+7sOueTOao8AAPwFnrpiRrVHALpZiTbYp+7pAgAA2NeILgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoCDRBQAAUJDoAgAAKEh0AQAAFCS6AAAAChJdAAAABYkuAACAgkQXAABAQaILAACgINEFAABQkOgCAAAoSHQBAAAUJLoAAAAKEl0AAAAFiS4AAICCRBcAAEBBogsAAKAg0QUAAFCQ6AIAAChIdAEAABQkugAAAAoSXQAAAAWJLgAAgIJEFwAAQEGiCwAAoKB+1R4AAGBfdcgld1Z7hB7rqStmVHsE6DFc6QIAAChIdAEAABQkugAAAAoSXQDA/2vvjmLarPo4jv+hrK1xo0VxLRiE4ZxLliG6ZQ0Xc0tWHQuJu9A4ozGbMWiMd4xEFodgTAQ3osRJXLK4TL0YTrO4CwyZNuIFQUkWpmZMAkvf6BJb3RZHF7RT+n8vzPralw7X9jl0D/1+EgI8PX04D7+dnf5SKAAAgyhdAAAAAGAQpQsAAAAADKJ0AQAAAIBBlC4AAAAAMIjSBQAAAAAGUboAAAAAwCBKFwAAAAAYROkCAAAAAIMoXQAAAABgEKULAAAAAAyidAEAAACAQZQuAAAAADCI0gUAAAAABlG6AAAAAMAgShcAAAAAGETpAgAAAACDKF0AAAAAYBClCwAAAAAMonQBAAAAgEGULgAAAAAwiNIFAAAAAAZRugAAAADAIEoXAAAAABhE6QIAAAAAgyhdAAAAAGAQpQsAAAAADKJ0AQAAAIBBlC4AAAAAMIjSBQAAAAAGUboAAAAAwCBKFwAAAAAYROkCAAAAAINK8j0BAAAALD41bQP5nsJN6T/dTfmeAvKAZ7oAAAAAwCBKFwAAAAAYROkCAAAAAIMoXQAAAABgEKULAAAAAAyidAEAAACAQYumdPX19UlNTY243W4JBAIyOjqa7ykBAAAAwOL4O10fffSRtLS0yMGDByUQCEhvb69s3bpVJiYmZPny5fmeHgAAACAi/P2y61nsf79sUZSuN998U5qbm+WZZ54REZGDBw/KwMCAHD58WNra2uaMj8fjEo/Hk59fvnxZRESmp6cXZsL/IhGfyfcUAAAAgAVzszwOF/nfXFTVsnPavnRdvXpVTp06JXv27EkeKy4ulmAwKCMjI2nv09XVJa+++uqc41VVVcbmCQAAACA9T2++ZzBXLBYTj8djyblsX7ouXLggs7Oz4vP5Uo77fD754Ycf0t5nz5490tLSkvw8kUjIpUuX5Pbbb5eioiKj852enpaqqir56aefpLS01OjXQvbIyT7Iyh7IyR7IyR7IyR7IyR7S5aSqEovFpLKy0rKvY/vSlQ2XyyUulyvlmNfrXdA5lJaWsgBtgJzsg6zsgZzsgZzsgZzsgZzs4f9zsuoZrmts/+qF5eXl4nA4JBqNphyPRqPi9/vzNCsAAAAA+JvtS5fT6ZR169ZJKBRKHkskEhIKhaShoSGPMwMAAAAAEUdnZ2dnvieRq9LSUmlvb5eqqipxuVzS3t4up0+flvfee0+WLl2a7+nN4XA4ZPPmzVJSUpA/3Wkb5GQfZGUP5GQP5GQP5GQP5GQPC5FTkVr5Woh59M4778j+/fslEolIfX29vP322xIIBPI9LQAAAAAFbtGULgAAAAC4Gdn+d7oAAAAA4GZG6QIAAAAAgyhdAAAAAGAQpQsAAAAADKJ0WaCvr09qamrE7XZLIBCQ0dHRecd//PHHsnr1anG73bJ27Vr57LPPUm5XVXnllVekoqJCbrnlFgkGgzI5OWnyEgqC1Tnt2rVLioqKUt4aGxtNXkJByCSnM2fOyKOPPio1NTVSVFQkvb29OZ8TN8bqnDo7O+esp9WrV5u8hIKQSU6HDh2SjRs3SllZmZSVlUkwGJwznv3JDKtzYn8yJ5Osjh8/LuvXrxev1yu33nqr1NfXy4cffpgyhjVlhtU5WbKmFDnp7+9Xp9Ophw8f1jNnzmhzc7N6vV6NRqNpxw8PD6vD4dB9+/bp+Pi47t27V5csWaLff/99ckx3d7d6PB799NNP9dtvv9VHHnlEV6xYob///vtCXdaiYyKnnTt3amNjo/7888/Jt0uXLi3UJS1KmeY0Ojqqra2tevToUfX7/frWW2/lfE78OxM5dXR06Jo1a1LW06+//mr6Uha1THN68sknta+vT8fGxvTs2bO6a9cu9Xg8ev78+eQY9ifrmciJ/cmMTLP68ssv9fjx4zo+Pq5TU1Pa29urDodDBwcHk2NYU9YzkZMVa4rSlaMNGzboiy++mPx8dnZWKysrtaurK+34xx9/XJuamlKOBQIBff7551VVNZFIqN/v1/379ydv/+2339TlcunRo0cNXEFhsDon1b8X4Pbt281MuEBlmtM/VVdXp30wn8s5kZ6JnDo6OvS+++6zdJ6FLtd/+3/99ZcuW7ZM33//fVVlfzLF6pxU2Z9MsWI/uf/++3Xv3r2qypoyxeqcVK1ZU/x4YQ6uXr0qp06dkmAwmDxWXFwswWBQRkZG0t5nZGQkZbyIyNatW5Pjw+GwRCKRlDEej0cCgcB1z4n5mcjpmqGhIVm+fLnce++98sILL8jFixetv4ACkU1O+ThnoTP5PZ2cnJTKykqpra2Vp556Sn788cdcp1uwrMhpZmZG/vzzT7nttttEhP3JBBM5XcP+ZK1cs1JVCYVCMjExIQ8++KCIsKZMMJHTNbmuKUpXDi5cuCCzs7Pi8/lSjvt8PolEImnvE4lE5h1/7X0m58T8TOQkItLY2CgffPCBhEIheeONN+Srr76Sbdu2yezsrPUXUQCyySkf5yx0pr6ngUBAjhw5IoODg/Luu+9KOByWjRs3SiwWy3XKBcmKnF566SWprKxMPnhhf7KeiZxE2J9MyDary5cvy9KlS8XpdEpTU5McOHBAHnroIRFhTZlgIicRa9ZUSeaXA0BE5Iknnkh+vHbtWqmrq5O7775bhoaGZMuWLXmcGWA/27ZtS35cV1cngUBAqqur5dixY/Lss8/mcWaFqbu7W/r7+2VoaEjcbne+p4PruF5O7E83j2XLlsnp06flypUrEgqFpKWlRWpra2Xz5s35nhr+4d9ysmJN8UxXDsrLy8XhcEg0Gk05Ho1Gxe/3p72P3++fd/y195mcE/MzkVM6tbW1Ul5eLlNTU7lPugBlk1M+zlnoFup76vV6ZdWqVaynLOWSU09Pj3R3d8vJkyelrq4ueZz9yXomckqH/Sl32WZVXFwsK1eulPr6etm9e7c89thj0tXVJSKsKRNM5JRONmuK0pUDp9Mp69atk1AolDyWSCQkFApJQ0ND2vs0NDSkjBcR+fzzz5PjV6xYIX6/P2XM9PS0fPPNN9c9J+ZnIqd0zp8/LxcvXpSKigprJl5gsskpH+csdAv1Pb1y5YqcO3eO9ZSlbHPat2+fvPbaazI4OCjr169PuY39yXomckqH/Sl3Vv3fl0gkJB6PiwhrygQTOaWT1ZrK6WU4oP39/epyufTIkSM6Pj6uzz33nHq9Xo1EIqqq+vTTT2tbW1ty/PDwsJaUlGhPT4+ePXtWOzo60r5kvNfr1RMnTuh3332n27dv5+VDc2R1TrFYTFtbW3VkZETD4bB+8cUX+sADD+g999yjf/zxR16ucTHINKd4PK5jY2M6NjamFRUV2traqmNjYzo5OXnD50TmTOS0e/duHRoa0nA4rMPDwxoMBrW8vFx/+eWXBb++xSLTnLq7u9XpdOonn3yS8rLIsVgsZQz7k7Wszon9yZxMs3r99df15MmTeu7cOR0fH9eenh4tKSnRQ4cOJcewpqxndU5WrSlKlwUOHDigd911lzqdTt2wYYN+/fXXyds2bdqkO3fuTBl/7NgxXbVqlTqdTl2zZo0ODAyk3J5IJLS9vV19Pp+6XC7dsmWLTkxMLMSlLGpW5jQzM6MPP/yw3nHHHbpkyRKtrq7W5uZmHshbIJOcwuGwisict02bNt3wOZEdq3PasWOHVlRUqNPp1DvvvFN37NihU1NTC3hFi1MmOVVXV6fNqaOjIzmG/ckMK3NifzIrk6xefvllXblypbrdbi0rK9OGhgbt7+9POR9rygwrc7JqTRWpqt7482IAAAAAgEzwO10AAAAAYBClCwAAAAAMonQBAAAAgEGULgAAAAAwiNIFAAAAAAZRugAAAADAIEoXAAAAABhE6QIAAAAAgyhdAAAAAGAQpQsAAAAADKJ0AQAAAIBB/wWv+v0aSjy5VgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de1xVdb7/8fdWZOOFi6aAF7yUV/KuaVubtMTIGA/UPBqP2cGMbCqcNCtPnF83s2abjpqezEtesDHDMW+NpYaYeBzxgkKhlXlJ0QSsMdnCJCKs3x8+2jM7wGAL7M3y9Xw81uPR+q7vWuuz+Eq8H9/93XtbDMMwBAAAYBL1PF0AAABAdSLcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAU/HxdAG1rbS0VGfPnpW/v78sFounywEAAJVgGIYuXryoVq1aqV69a8/N3HDh5uzZswoLC/N0GQAAwA2nT59WmzZtrtnnhgs3/v7+kq7+cAICAjxcDQAAqAyHw6GwsDDn3/FrueHCzc8vRQUEBBBuAACoYyqzpIQFxQAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFS8JtxMnz5dFotFkyZNuma/NWvWqGvXrvLz81OPHj30ySef1FKFAACgLvCKcLN//34tWrRIPXv2vGa/3bt3a/To0YqLi1NGRoZiYmIUExOjQ4cO1VKlAADA23k83BQUFGjMmDF699131bRp02v2nTt3ru699149//zz6tatm6ZNm6a+ffvq7bffrqVqAQCAt/N4uImPj1dUVJQiIiJ+tW9aWlqZfpGRkUpLS6vwnKKiIjkcDpcNAACYl48nb56UlKSDBw9q//79leqfm5urkJAQl7aQkBDl5uZWeI7dbtfUqVOvq064p/0LH9fYtU9Oj6qxawMA6jaPzdycPn1aEydO1Pvvvy8/P78au09CQoLy8/Od2+nTp2vsXgAAwPM8NnNz4MABnTt3Tn379nW2lZSUaOfOnXr77bdVVFSk+vXru5wTGhqqvLw8l7a8vDyFhoZWeB+r1Sqr1Vq9xQMAAK/lsZmbYcOGKSsrS5mZmc6tf//+GjNmjDIzM8sEG0my2WxKSUlxaUtOTpbNZqutsgEAgJfz2MyNv7+/unfv7tLWuHFj3XTTTc722NhYtW7dWna7XZI0ceJEDRkyRLNmzVJUVJSSkpKUnp6uxYsX13r9AADAO3n83VLXkp2drZycHOf+oEGDtGrVKi1evFi9evXShx9+qA0bNpQJSQAA4MZlMQzD8HQRtcnhcCgwMFD5+fkKCAjwdDmmxrulAADVpSp/v7165gYAAKCqCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUPBpuFixYoJ49eyogIEABAQGy2WzavHlzhf0TExNlsVhcNj8/v1qsGAAAeDsfT968TZs2mj59ujp16iTDMLRixQpFR0crIyNDt956a7nnBAQE6MiRI859i8VSW+UCAIA6wKPhZuTIkS77b7zxhhYsWKA9e/ZUGG4sFotCQ0NrozwAAFAHec2am5KSEiUlJamwsFA2m63CfgUFBWrXrp3CwsIUHR2tw4cPX/O6RUVFcjgcLhsAADAvj4ebrKwsNWnSRFarVU888YTWr1+v8PDwcvt26dJFy5Yt08aNG7Vy5UqVlpZq0KBBOnPmTIXXt9vtCgwMdG5hYWE19SgAAMALWAzDMDxZwOXLl5Wdna38/Hx9+OGHWrJkiVJTUysMOP+uuLhY3bp10+jRozVt2rRy+xQVFamoqMi573A4FBYWpvz8fAUEBFTbc6Cs9i98XGPXPjk9qsauDQDwPg6HQ4GBgZX6++3RNTeS5Ovrq44dO0qS+vXrp/3792vu3LlatGjRr57boEED9enTR8eOHauwj9VqldVqrbZ6AQCAd/P4y1K/VFpa6jLTci0lJSXKyspSy5Yta7gqAABQV3h05iYhIUEjRoxQ27ZtdfHiRa1atUo7duzQ1q1bJUmxsbFq3bq17Ha7JOm1117T7bffro4dO+rChQuaOXOmTp06pccee8yTjwEAALyIR8PNuXPnFBsbq5ycHAUGBqpnz57aunWrhg8fLknKzs5WvXr/mlz68ccfNX78eOXm5qpp06bq16+fdu/eXan1OQAA4Mbg8QXFta0qC5JwfVhQDACoLlX5++11a24AAACuB+EGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYikfDzYIFC9SzZ08FBAQoICBANptNmzdvvuY5a9asUdeuXeXn56cePXrok08+qaVqAQBAXeDRcNOmTRtNnz5dBw4cUHp6uu6++25FR0fr8OHD5fbfvXu3Ro8erbi4OGVkZCgmJkYxMTE6dOhQLVcOAAC8lcUwDMPTRfy7Zs2aaebMmYqLiytzbNSoUSosLNSmTZucbbfffrt69+6thQsXVur6DodDgYGBys/PV0BAQLXVjbLav/BxjV375PSoGrs2AMD7VOXvt9esuSkpKVFSUpIKCwtls9nK7ZOWlqaIiAiXtsjISKWlpVV43aKiIjkcDpcNAACYl4+nC8jKypLNZtOlS5fUpEkTrV+/XuHh4eX2zc3NVUhIiEtbSEiIcnNzK7y+3W7X1KlTq7Vms6nJGRYAAGqbx2duunTposzMTO3du1dPPvmkxo4dqy+//LLarp+QkKD8/Hzndvr06Wq7NgAA8D4en7nx9fVVx44dJUn9+vXT/v37NXfuXC1atKhM39DQUOXl5bm05eXlKTQ0tMLrW61WWa3W6i0aAAB4LY/P3PxSaWmpioqKyj1ms9mUkpLi0pacnFzhGh0AAHDj8ejMTUJCgkaMGKG2bdvq4sWLWrVqlXbs2KGtW7dKkmJjY9W6dWvZ7XZJ0sSJEzVkyBDNmjVLUVFRSkpKUnp6uhYvXuzJxwAAAF7Eo+Hm3Llzio2NVU5OjgIDA9WzZ09t3bpVw4cPlyRlZ2erXr1/TS4NGjRIq1at0osvvqj/+Z//UadOnbRhwwZ1797dU48AAAC8jNd9zk1N43NuyqqL75bic24A4MZSJz/nBgAAoDoQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKl4NNzY7Xbddttt8vf3V3BwsGJiYnTkyJFrnpOYmCiLxeKy+fn51VLFAADA23k03KSmpio+Pl579uxRcnKyiouLdc8996iwsPCa5wUEBCgnJ8e5nTp1qpYqBgAA3s7HkzffsmWLy35iYqKCg4N14MAB3XnnnRWeZ7FYFBoaWtPlAQCAOsir1tzk5+dLkpo1a3bNfgUFBWrXrp3CwsIUHR2tw4cPV9i3qKhIDofDZQMAAOblNeGmtLRUkyZN0uDBg9W9e/cK+3Xp0kXLli3Txo0btXLlSpWWlmrQoEE6c+ZMuf3tdrsCAwOdW1hYWE09AgAA8AIWwzAMTxchSU8++aQ2b96sXbt2qU2bNpU+r7i4WN26ddPo0aM1bdq0MseLiopUVFTk3Hc4HAoLC1N+fr4CAgKqpfa6rv0LH3u6hCo7OT3K0yUAAGqRw+FQYGBgpf5+e3TNzc8mTJigTZs2aefOnVUKNpLUoEED9enTR8eOHSv3uNVqldVqrY4yAQBAHeDWy1InTpyolpsbhqEJEyZo/fr12r59uzp06FDla5SUlCgrK0stW7aslpoAAEDd5la46dixo+666y6tXLlSly5dcvvm8fHxWrlypVatWiV/f3/l5uYqNzdXP/30k7NPbGysEhISnPuvvfaaPv30U504cUIHDx7Uww8/rFOnTumxxx5zuw4AAGAeboWbgwcPqmfPnpo8ebJCQ0P1hz/8Qfv27avydRYsWKD8/HwNHTpULVu2dG6rV6929snOzlZOTo5z/8cff9T48ePVrVs33XfffXI4HNq9e7fCw8PdeRQAAGAy17Wg+MqVK/roo4+UmJioLVu2qHPnznr00Uf1X//1X2rRokV11lltqrIg6UbBgmIAgLeryt/v63oruI+Pjx544AGtWbNGb775po4dO6bnnntOYWFhio2NdZlxAQAAqA3XFW7S09P11FNPqWXLlpo9e7aee+45HT9+XMnJyTp79qyio6Orq04AAIBKceut4LNnz9by5ct15MgR3XfffXrvvfd03333qV69q1mpQ4cOSkxMVPv27auzVgAAgF/lVrhZsGCBHn30UT3yyCMVvgU7ODhYS5cuva7iAAAAqsqtcHP06NFf7ePr66uxY8e6c3kAAAC3ubXmZvny5VqzZk2Z9jVr1mjFihXXXRQAAIC73Ao3drtdzZs3L9MeHBysP/3pT9ddFAAAgLvcCjfZ2dnlflVCu3btlJ2dfd1FAQAAuMutcBMcHKwvvviiTPvnn3+um2666bqLAgAAcJdb4Wb06NF6+umn9dlnn6mkpEQlJSXavn27Jk6cqP/8z/+s7hoBAAAqza13S02bNk0nT57UsGHD5ONz9RKlpaWKjY1lzQ0AAPAot8KNr6+vVq9erWnTpunzzz9Xw4YN1aNHD7Vr16666wMAAKgSt8LNzzp37qzOnTtXVy0AAADXza1wU1JSosTERKWkpOjcuXMqLS11Ob59+/ZqKQ4AAKCq3Ao3EydOVGJioqKiotS9e3dZLJbqrgsAAMAtboWbpKQk/fWvf9V9991X3fUAAABcF7feCu7r66uOHTtWdy0AAADXza1w8+yzz2ru3LkyDKO66wEAALgubr0stWvXLn322WfavHmzbr31VjVo0MDl+Lp166qlOAAAgKpyK9wEBQXp/vvvr+5aAAAArptb4Wb58uXVXQcAAEC1cGvNjSRduXJF27Zt06JFi3Tx4kVJ0tmzZ1VQUFBtxQEAAFSVWzM3p06d0r333qvs7GwVFRVp+PDh8vf315tvvqmioiItXLiwuusEAACoFLdmbiZOnKj+/fvrxx9/VMOGDZ3t999/v1JSUqqtOAAAgKpya+bm//7v/7R79275+vq6tLdv317fffddtRQGAADgDrdmbkpLS1VSUlKm/cyZM/L397/uogAAANzlVri555579NZbbzn3LRaLCgoK9Morr/CVDAAAwKPcellq1qxZioyMVHh4uC5duqSHHnpIR48eVfPmzfXBBx9Ud40AAACV5la4adOmjT7//HMlJSXpiy++UEFBgeLi4jRmzBiXBcYAAAC1za1wI0k+Pj56+OGHq7MWAACA6+ZWuHnvvfeueTw2NtatYgAAAK6XW+Fm4sSJLvvFxcX65z//KV9fXzVq1IhwAwAAPMatd0v9+OOPLltBQYGOHDmiO+64gwXFAADAo9z+bqlf6tSpk6ZPn15mVuda7Ha7brvtNvn7+ys4OFgxMTE6cuTIr563Zs0ade3aVX5+furRo4c++eST6ykdAACYSLWFG+nqIuOzZ89Wun9qaqri4+O1Z88eJScnq7i4WPfcc48KCwsrPGf37t0aPXq04uLilJGRoZiYGMXExOjQoUPV8QgAAKCOsxiGYVT1pI8++shl3zAM5eTk6O2331ZYWJg2b97sVjHff/+9goODlZqaqjvvvLPcPqNGjVJhYaE2bdrkbLv99tvVu3fvSn1hp8PhUGBgoPLz8xUQEOBWnWbT/oWPPV1ClZ2cHuXpEgAAtagqf7/dWlAcExPjsm+xWNSiRQvdfffdmjVrljuXlCTl5+dLkpo1a1Zhn7S0NE2ePNmlLTIyUhs2bCi3f1FRkYqKipz7DofD7foAAID3cyvclJaWVncdKi0t1aRJkzR48GB17969wn65ubkKCQlxaQsJCVFubm65/e12u6ZOnVqttV5LTc2CMFMBAEDlVOuam+sRHx+vQ4cOKSkpqVqvm5CQoPz8fOd2+vTpar0+AADwLm7N3PzyZaFrmT179q/2mTBhgjZt2qSdO3eqTZs21+wbGhqqvLw8l7a8vDyFhoaW299qtcpqtVa6XgAAULe5FW4yMjKUkZGh4uJidenSRZL0zTffqH79+urbt6+zn8ViueZ1DMPQH//4R61fv147duxQhw4dfvXeNptNKSkpmjRpkrMtOTlZNpvNnUcBAAAm41a4GTlypPz9/bVixQo1bdpU0tUP9hs3bpx+85vf6Nlnn63UdeLj47Vq1Spt3LhR/v7+znUzgYGBzi/gjI2NVevWrWW32yVd/XTkIUOGaNasWYqKilJSUpLS09O1ePFidx4FAACYjFtrbmbNmiW73e4MNpLUtGlTvf7661V6t9SCBQuUn5+voUOHqmXLls5t9erVzj7Z2dnKyclx7g8aNEirVq3S4sWL1atXL3344YfasGHDNRchAwCAG4dbMzcOh0Pff/99mfbvv/9eFy9erPR1KvMROzt27CjT9uCDD+rBBx+s9H0AAMCNw62Zm/vvv1/jxo3TunXrdObMGZ05c0Zr165VXFycHnjggequEQAAoNLcmrlZuHChnnvuOT300EMqLi6+eiEfH8XFxWnmzJnVWiAAAEBVuBVuGjVqpHfeeUczZ87U8ePHJUm33HKLGjduXK3FAQAAVNV1fYhfTk6OcnJy1KlTJzVu3LhSa2gAAABqklvh5h//+IeGDRumzp0767777nO+mykuLq7SbwMHAACoCW6Fm2eeeUYNGjRQdna2GjVq5GwfNWqUtmzZUm3FAQAAVJVba24+/fRTbd26tcxXJXTq1EmnTp2qlsIAAADc4dbMTWFhocuMzc/Onz/P9zgBAACPcivc/OY3v9F7773n3LdYLCotLdWMGTN01113VVtxAAAAVeXWy1IzZszQsGHDlJ6ersuXL2vKlCk6fPiwzp8/r7///e/VXSMAAECluTVz0717d33zzTe64447FB0drcLCQj3wwAPKyMjQLbfcUt01AgAAVFqVZ26Ki4t17733auHChfp//+//1URNAAAAbqvyzE2DBg30xRdf1EQtAAAA182tl6UefvhhLV26tLprAQAAuG5uLSi+cuWKli1bpm3btqlfv35lvlNq9uzZ1VIcAABAVVUp3Jw4cULt27fXoUOH1LdvX0nSN99849LHYrFUX3UAAABVVKVw06lTJ+Xk5Oizzz6TdPXrFubNm6eQkJAaKQ4AAKCqqrTm5pff+r1582YVFhZWa0EAAADXw60FxT/7ZdgBAADwtCqFG4vFUmZNDWtsAACAN6nSmhvDMPTII484vxzz0qVLeuKJJ8q8W2rdunXVVyEAAEAVVCncjB071mX/4YcfrtZiAAAArleVws3y5ctrqg4AAIBqcV0LigEAALwN4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJiKR8PNzp07NXLkSLVq1UoWi0UbNmy4Zv8dO3Y4v5n837fc3NxaqhgAAHg7j4abwsJC9erVS/Pnz6/SeUeOHFFOTo5zCw4OrqEKAQBAXVOlL86sbiNGjNCIESOqfF5wcLCCgoJqoCIAAFDX1ck1N71791bLli01fPhw/f3vf79m36KiIjkcDpcNAACYV50KNy1bttTChQu1du1arV27VmFhYRo6dKgOHjxY4Tl2u12BgYHOLSwsrBYrBgAAtc2jL0tVVZcuXdSlSxfn/qBBg3T8+HHNmTNHf/nLX8o9JyEhQZMnT3buOxwOAg4AACZWp8JNeQYMGKBdu3ZVeNxqtcpqtdZiRQAAwJPq1MtS5cnMzFTLli09XQYAAPASHp25KSgo0LFjx5z73377rTIzM9WsWTO1bdtWCQkJ+u677/Tee+9Jkt566y116NBBt956qy5duqQlS5Zo+/bt+vTTTz31CAAAwMt4NNykp6frrrvucu7/vDZm7NixSkxMVE5OjrKzs53HL1++rGeffVbfffedGjVqpJ49e2rbtm0u1wAAADc2j4aboUOHyjCMCo8nJia67E+ZMkVTpkyp4aoAAEBdVufX3AAAAPw7wg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVj4abnTt3auTIkWrVqpUsFos2bNjwq+fs2LFDffv2ldVqVceOHZWYmFjzhQIAgDrDo+GmsLBQvXr10vz58yvV/9tvv1VUVJTuuusuZWZmatKkSXrssce0devWGq4UAADUFT6evPmIESM0YsSISvdfuHChOnTooFmzZkmSunXrpl27dmnOnDmKjIysqTIBAEAdUqfW3KSlpSkiIsKlLTIyUmlpaRWeU1RUJIfD4bIBAADz8ujMTVXl5uYqJCTEpS0kJEQOh0M//fSTGjZsWOYcu92uqVOn1laJqCXtX/jY0yV4lZPTozxdQpXV1BjWxZ8F4Ak1+f9RT/8e1qmZG3ckJCQoPz/fuZ0+fdrTJQEAgBpUp2ZuQkNDlZeX59KWl5engICAcmdtJMlqtcpqtdZGeQAAwAvUqZkbm82mlJQUl7bk5GTZbDYPVQQAALyNR8NNQUGBMjMzlZmZKenqW70zMzOVnZ0t6epLSrGxsc7+TzzxhE6cOKEpU6bo66+/1jvvvKO//vWveuaZZzxSPwAA8D4eDTfp6enq06eP+vTpI0maPHmy+vTpo5dfflmSlJOT4ww6ktShQwd9/PHHSk5OVq9evTRr1iwtWbKEt4EDAAAnj665GTp0qAzDqPB4eZ8+PHToUGVkZNRgVQAAoC6rU2tuAAAAfg3hBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmIpXhJv58+erffv28vPz08CBA7Vv374K+yYmJspisbhsfn5+tVgtAADwZh4PN6tXr9bkyZP1yiuv6ODBg+rVq5ciIyN17ty5Cs8JCAhQTk6Oczt16lQtVgwAALyZx8PN7NmzNX78eI0bN07h4eFauHChGjVqpGXLllV4jsViUWhoqHMLCQmpxYoBAIA382i4uXz5sg4cOKCIiAhnW7169RQREaG0tLQKzysoKFC7du0UFham6OhoHT58uMK+RUVFcjgcLhsAADAvj4abH374QSUlJWVmXkJCQpSbm1vuOV26dNGyZcu0ceNGrVy5UqWlpRo0aJDOnDlTbn+73a7AwEDnFhYWVu3PAQAAvIfHX5aqKpvNptjYWPXu3VtDhgzRunXr1KJFCy1atKjc/gkJCcrPz3dup0+fruWKAQBAbfLx5M2bN2+u+vXrKy8vz6U9Ly9PoaGhlbpGgwYN1KdPHx07dqzc41arVVar9bprBQAAdYNHZ258fX3Vr18/paSkONtKS0uVkpIim81WqWuUlJQoKytLLVu2rKkyAQBAHeLRmRtJmjx5ssaOHav+/ftrwIABeuutt1RYWKhx48ZJkmJjY9W6dWvZ7XZJ0muvvabbb79dHTt21IULFzRz5kydOnVKjz32mCcfAwAAeAmPh5tRo0bp+++/18svv6zc3Fz17t1bW7ZscS4yzs7OVr16/5pg+vHHHzV+/Hjl5uaqadOm6tevn3bv3q3w8HBPPQIAAPAiHg83kjRhwgRNmDCh3GM7duxw2Z8zZ47mzJlTC1UBAIC6qM69WwoAAOBaCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUvCLczJ8/X+3bt5efn58GDhyoffv2XbP/mjVr1LVrV/n5+alHjx765JNPaqlSAADg7TweblavXq3JkyfrlVde0cGDB9WrVy9FRkbq3Llz5fbfvXu3Ro8erbi4OGVkZCgmJkYxMTE6dOhQLVcOAAC8kcfDzezZszV+/HiNGzdO4eHhWrhwoRo1aqRly5aV23/u3Lm699579fzzz6tbt26aNm2a+vbtq7fffruWKwcAAN7Ix5M3vyZMtu8AABEPSURBVHz5sg4cOKCEhARnW7169RQREaG0tLRyz0lLS9PkyZNd2iIjI7Vhw4Zy+xcVFamoqMi5n5+fL0lyOBzXW365Sov+WSPXral6pZqrGbWnJv991JS6+LsCmElN/r+/Jn4Pf76mYRi/2tej4eaHH35QSUmJQkJCXNpDQkL09ddfl3tObm5uuf1zc3PL7W+32zV16tQy7WFhYW5W7RmBb3m6Angz/n38Cz8LwPNq8vfw4sWLCgwMvGYfj4ab2pCQkOAy01NaWqrz58/rpptuksViqfR1HA6HwsLCdPr0aQUEBNREqagkxsJ7MBbeg7HwDoxDzTEMQxcvXlSrVq1+ta9Hw03z5s1Vv3595eXlubTn5eUpNDS03HNCQ0Or1N9qtcpqtbq0BQUFuV1zQEAA/2C9BGPhPRgL78FYeAfGoWb82ozNzzy6oNjX11f9+vVTSkqKs620tFQpKSmy2WzlnmOz2Vz6S1JycnKF/QEAwI3F4y9LTZ48WWPHjlX//v01YMAAvfXWWyosLNS4ceMkSbGxsWrdurXsdrskaeLEiRoyZIhmzZqlqKgoJSUlKT09XYsXL/bkYwAAAC9R/9VXX33VkwV0795dQUFBeuONN/TnP/9ZkvT++++rS5cukq6+9dvHx0cxMTGSri4E7tatm2bOnKnp06crLy9PS5cu1eDBg2u81vr162vo0KHy8fF4JrzhMRbeg7HwHoyFd2AcPM9iVOY9VQAAAHWExz/EDwAAoDoRbgAAgKkQbgAAgKkQbgAAgKkQbiph/vz5at++vfz8/DRw4EDt27fP0yWZzs6dOzVy5Ei1atVKFoulzHeFGYahl19+WS1btlTDhg0VERGho0ePuvQ5f/68xowZo4CAAAUFBSkuLk4FBQW1+RimYLfbddttt8nf31/BwcGKiYnRkSNHXPpcunRJ8fHxuummm9SkSRP97ne/K/PhmtnZ2YqKilKjRo0UHBys559/XleuXKnNR6nzFixYoJ49ezo/EM5ms2nz5s3O44yDZ0yfPl0Wi0WTJk1ytjEW3oVw8ytWr16tyZMn65VXXtHBgwfVq1cvRUZG6ty5c54uzVQKCwvVq1cvzZ8/v9zjM2bM0Lx587Rw4ULt3btXjRs3VmRkpC5duuTsM2bMGB0+fFjJycnatGmTdu7cqccff7y2HsE0UlNTFR8frz179ig5OVnFxcW65557VFhY6OzzzDPP6G9/+5vWrFmj1NRUnT17Vg888IDzeElJiaKionT58mXt3r1bK1asUGJiol5++WVPPFKd1aZNG02fPl0HDhxQenq67r77bkVHR+vw4cOSGAdP2L9/vxYtWqSePXu6tDMWXsbANQ0YMMCIj4937peUlBitWrUy7Ha7B6syN0nG+vXrnfulpaVGaGioMXPmTGfbhQsXDKvVanzwwQeGYRjGl19+aUgy9u/f7+yzefNmw2KxGN99913tFW9C586dMyQZqamphmFc/dk3aNDAWLNmjbPPV199ZUgy0tLSDMMwjE8++cSoV6+ekZub6+yzYMECIyAgwCgqKqrdBzCZpk2bGkuWLGEcPODixYtGp06djOTkZGPIkCHGxIkTDcPgd8IbMXNzDZcvX9aBAwcUERHhbKtXr54iIiKUlpbmwcpuLN9++61yc3NdxiEwMFADBw50jkNaWpqCgoLUv39/Z5+IiAjVq1dPe/furfWazSQ/P1+S1KxZM0nSgQMHVFxc7DIeXbt2Vdu2bV3Go0ePHgoJCXH2iYyMlMPhcM46oGpKSkqUlJSkwsJC2Ww2xsED4uPjFRUV5fIzl/id8EZ8fOI1/PDDDyopKXH5xyhJISEh+vrrrz1U1Y0nNzdXksodh5+P5ebmKjg42OW4j4+PmjVr5uyDqistLdWkSZM0ePBgde/eXdLVn7Wvr2+ZL6D95XiUN14/H0PlZWVlyWaz6dKlS2rSpInWr1+v8PBwZWZmMg61KCkpSQcPHtT+/fvLHON3wvsQbgBUKD4+XocOHdKuXbs8XcoNq0uXLsrMzFR+fr4+/PBDjR07VqmpqZ4u64Zy+vRpTZw4UcnJyfLz8/N0OagEXpa6hubNm6t+/fplVrzn5eUpNDTUQ1XdeH7+WV9rHEJDQ8ss8r5y5YrOnz/PWLlpwoQJ2rRpkz777DO1adPG2R4aGqrLly/rwoULLv1/OR7ljdfPx1B5vr6+6tixo/r16ye73a5evXpp7ty5jEMtOnDggM6dO6e+ffvKx8dHPj4+Sk1N1bx58+Tj46OQkBDGwssQbq7B19dX/fr1U0pKirOttLRUKSkpstlsHqzsxtKhQweFhoa6jIPD4dDevXud42Cz2XThwgUdOHDA2Wf79u0qLS3VwIEDa73muswwDE2YMEHr16/X9u3b1aFDB5fj/fr1U4MGDVzG48iRI8rOznYZj6ysLJfAmZycrICAAIWHh9fOg5hUaWmpioqKGIdaNGzYMGVlZSkzM9O59e/fX2PGjHH+N2PhZTy9otnbJSUlGVar1UhMTDS+/PJL4/HHHzeCgoJcVrzj+l28eNHIyMgwMjIyDEnG7NmzjYyMDOPUqVOGYRjG9OnTjaCgIGPjxo3GF198YURHRxsdOnQwfvrpJ+c17r33XqNPnz7G3r17jV27dhmdOnUyRo8e7alHqrOefPJJIzAw0NixY4eRk5Pj3P75z386+zzxxBNG27Ztje3btxvp6emGzWYzbDab8/iVK1eM7t27G/fcc4+RmZlpbNmyxWjRooWRkJDgiUeqs1544QUjNTXV+Pbbb40vvvjCeOGFFwyLxWJ8+umnhmEwDp707++WMgzGwtsQbirhf//3f422bdsavr6+xoABA4w9e/Z4uiTT+eyzzwxJZbaxY8cahnH17eAvvfSSERISYlitVmPYsGHGkSNHXK7xj3/8wxg9erTRpEkTIyAgwBg3bpxx8eJFDzxN3VbeOEgyli9f7uzz008/GU899ZTRtGlTo1GjRsb9999v5OTkuFzn5MmTxogRI4yGDRsazZs3N5599lmjuLi4lp+mbnv00UeNdu3aGb6+vkaLFi2MYcOGOYONYTAOnvTLcMNYeBeLYRiGZ+aMAAAAqh9rbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgDcUCwWizZs2FCr92zfvr3eeuutWr0ncCMj3AA3qNzcXP3xj3/UzTffLKvVqrCwMI0cOdLly//MKCcnRyNGjJAknTx5UhaLRZmZmTV6z/379+vxxx+v0XsA+BcfTxcAoPadPHlSgwcPVlBQkGbOnKkePXqouLhYW7duVXx8vL7++mtPl1hjQkNDa/2eLVq0qPV7AjcyZm6AG9BTTz0li8Wiffv26Xe/+506d+6sW2+9VZMnT9aePXuc/bKzsxUdHa0mTZooICBAv//975WXl+c8/uqrr6p3795atmyZ2rZtqyZNmuipp55SSUmJZsyYodDQUAUHB+uNN95wub/FYtGiRYv029/+Vo0aNVK3bt2UlpamY8eOaejQoWrcuLEGDRqk48ePO8955JFHFBMT43KdSZMmaejQoc79oUOH6umnn9aUKVPUrFkzhYaG6tVXXy1z759flurQoYMkqU+fPrJYLBo6dKh27typBg0aKDc3t8y9fvOb35T78zQMQ6+++qratm0rq9WqVq1a6emnn3Ye//eXpRITE2WxWMps/17nkiVL1K1bN/n5+alr16565513yr0vgPIRboAbzPnz57VlyxbFx8ercePGZY4HBQVJkkpLSxUdHa3z588rNTVVycnJOnHihEaNGuXS//jx49q8ebO2bNmiDz74QEuXLlVUVJTOnDmj1NRUvfnmm3rxxRe1d+9el/OmTZum2NhYZWZmqmvXrnrooYf0hz/8QQkJCUpPT5dhGJowYUKVn2/FihVq3Lix9u7dqxkzZui1115TcnJyuX337dsnSdq2bZtycnK0bt063Xnnnbr55pv1l7/8xdmvuLhY77//vh599NFyr7N27VrNmTNHixYt0tGjR7Vhwwb16NGj3L6jRo1STk6Oc/vggw/k4+OjwYMHS5Lef/99vfzyy3rjjTf01Vdf6U9/+pNeeuklrVixoso/C+CG5dkvJQdQ2/bu3WtIMtatW3fNfp9++qlRv359Izs729l2+PBhQ5Kxb98+wzAM45VXXjEaNWpkOBwOZ5/IyEijffv2RklJibOtS5cuht1ud+5LMl588UXnflpamiHJWLp0qbPtgw8+MPz8/Jz7Y8eONaKjo11qnDhxojFkyBDn/pAhQ4w77rjDpc9tt91m/Pd//7fLvdevX28YhmF8++23hiQjIyPD5Zw333zT6Natm3N/7dq1RpMmTYyCgoLyflTGrFmzjM6dOxuXL18u93i7du2MOXPmlGk/duyY0axZM2PGjBnOtltuucVYtWqVS79p06YZNput3GsDKIuZG+AGYxhGpfp99dVXCgsLU1hYmLMtPDxcQUFB+uqrr5xt7du3l7+/v3M/JCRE4eHhqlevnkvbuXPnXK7fs2dPl+OSXGY7QkJCdOnSJTkcjko+WdnrSlLLli3L3PvXPPLIIzp27JjzJbrExET9/ve/L3emS5IefPBB/fTTT7r55ps1fvx4rV+/XleuXLnmPfLz8/Xb3/5WUVFRev755yVJhYWFOn78uOLi4tSkSRPn9vrrr7u8RAfg2lhQDNxgOnXqJIvFUm2Lhhs0aOCyb7FYym0rLS2t8DyLxVJh28/n1atXr0wwKy4urlQ9v7z3rwkODtbIkSO1fPlydejQQZs3b9aOHTsq7B8WFqYjR45o27ZtSk5O1lNPPaWZM2cqNTW1TD2SVFJSolGjRikgIECLFy92thcUFEiS3n33XQ0cONDlnPr161fpGYAbGTM3wA2mWbNmioyM1Pz581VYWFjm+IULFyRJ3bp10+nTp3X69GnnsS+//FIXLlxQeHh4rdX7sxYtWignJ8el7Xrfwu3r6yvpatj4pccee0yrV6/W4sWLdcsttzjXxFSkYcOGGjlypObNm6cdO3YoLS1NWVlZ5fZ95plnlJWVpQ0bNsjPz8/ZHhISolatWunEiRPq2LGjy/bz4mcAv45wA9yA5s+fr5KSEg0YMEBr167V0aNH9dVXX2nevHmy2WySpIiICPXo0UNjxozRwYMHtW/fPsXGxmrIkCHq379/rdd89913Kz09Xe+9956OHj2qV155RYcOHbquawYHB6thw4basmWL8vLylJ+f7zwWGRmpgIAAvf766xo3btw1r5OYmKilS5fq0KFDOnHihFauXKmGDRuqXbt2ZfouX75c77zzjhYuXCiLxaLc3Fzl5uY6Z22mTp0qu92uefPm6ZtvvlFWVpaWL1+u2bNnX9ezAjcSwg1wA7r55pt18OBB3XXXXXr22WfVvXt3DR8+XCkpKVqwYIGkqy/nbNy4UU2bNtWdd96piIgI3XzzzVq9erVHao6MjNRLL72kKVOm6LbbbtPFixcVGxt7Xdf08fHRvHnztGjRIrVq1UrR0dHOY/Xq1dMjjzyikpKSX71PUFCQ3n33XQ0ePFg9e/bUtm3b9Le//U033XRTmb6pqakqKSnRf/zHf6hly5bO7c9//rOkqzNGS5Ys0fLly9WjRw8NGTJEiYmJzNwAVWAxKru6EABuMHFxcfr+++/10UcfeboUAFXAgmIA+IX8/HxlZWVp1apVBBugDiLcAMAvREdHa9++fXriiSc0fPhwT5cDoIp4WQoAAJgKC4oBAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICp/H/3Tp22G+yBpgAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -694,171 +835,231 @@ } ], "source": [ - "# degree centrality\n", - "plt.figure(figsize=(10,10))\n", - "deg_C = nx.degree_centrality(G)\n", - "degc_distr = pd.Series(deg_C)\n", - "degc_distr.plot.hist()" + "communities.value_counts().plot.hist(bins=20)\n", + "plt.xlabel(\"Community size\")" ] }, { "cell_type": "code", - "execution_count": 26, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "vLp2CBJHtC1d", - "outputId": "c1ad4b5d-4d77-4ac1-84ce-6210fd7dc11f" - }, + "execution_count": 28, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "4 20.289855\n", + "5 18.671454\n", + "11 18.181818\n", + "8 17.281879\n", + "6 15.591398\n", + "0 14.538462\n", + "7 10.769231\n", + "12 10.758377\n", + "1 9.883721\n", + "10 9.622642\n", + "9 7.707317\n", + "2 2.969694\n", + "13 1.297648\n", + "3 0.000000\n", + "dtype: float64" ] }, - "execution_count": 26, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAMtCAYAAACVUkATAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde5TXdZ3H8ddwmUmQGUIdBg4o5p2ALtTBOZnHgrjmatKezAvYcnR1oTVJU3ZdS23DqCxrE3bPKdGzUq27WiuuGqJirmjJahgWKWnowoBHkxFaRi6zf3T8nSZvfKbB3wCPxznfc/he5vt7f/nveb6/7/dX097e3h4AAAB2WY9qDwAAALCnEVIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQKFe1R6gO9i5c2fWrVuXfv36paamptrjAAAAVdLe3p6XXnopgwcPTo8er3/fSUglWbduXYYOHVrtMQAAgG7imWeeyZAhQ153v5BK0q9fvyR/+M+qr6+v8jQAAEC1tLa2ZujQoZVGeD1CKql8na++vl5IAQAAb/rIj5dNAAAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIV6VXsAAOguhl1yW7VH6LaevmpKtUcA6FbckQIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoVNWQmj9/fkaNGpX6+vrU19enubk5t99+e2X/CSeckJqamg7Lueee2+Eca9euzZQpU9KnT580Njbmoosuyvbt29/qSwEAAPYhvar54UOGDMlVV12VI444Iu3t7bn++utz0kkn5ZFHHsk73/nOJMnZZ5+dK664ovI3ffr0qfx7x44dmTJlSpqamvLAAw9k/fr1mTZtWnr37p0vfelLb/n1AAAA+4aqhtSJJ57YYf0f//EfM3/+/Dz44IOVkOrTp0+amppe8+9//OMf5/HHH89dd92VgQMH5t3vfneuvPLKXHzxxfnCF76Q2tra3X4NAADAvqfbPCO1Y8eOfP/738+WLVvS3Nxc2X7jjTfmwAMPzIgRIzJnzpz8/ve/r+xbvnx5Ro4cmYEDB1a2TZgwIa2trVm1atXrflZbW1taW1s7LAAAALuqqnekkuSxxx5Lc3Nztm7dmv333z+33HJLhg8fniQ57bTTcsghh2Tw4MFZuXJlLr744qxevTo333xzkqSlpaVDRCWprLe0tLzuZ86dOzeXX375broiAABgb1f1kDrqqKPy6KOPZtOmTfn3f//3TJ8+PcuWLcvw4cNzzjnnVI4bOXJkBg0alLFjx2bNmjU57LDDOv2Zc+bMyezZsyvrra2tGTp06J91HQAAwL6j6l/tq62tzeGHH57Ro0dn7ty5ede73pVrrrnmNY8dM2ZMkuTJJ59MkjQ1NWXDhg0djnll/fWeq0qSurq6ypsCX1kAAAB2VdVD6k/t3LkzbW1tr7nv0UcfTZIMGjQoSdLc3JzHHnssGzdurByzZMmS1NfXV74eCAAA0NWq+tW+OXPmZNKkSTn44IPz0ksvZdGiRbn33ntz5513Zs2aNVm0aFEmT56cAw44ICtXrswFF1yQ448/PqNGjUqSjB8/PsOHD8+ZZ56ZefPmpaWlJZdeemlmzpyZurq6al4aAACwF6tqSG3cuDHTpk3L+vXr09DQkFGjRuXOO+/MRz7ykTzzzDO566678o1vfCNbtmzJ0KFDM3Xq1Fx66aWVv+/Zs2cWL16c8847L83Nzenbt2+mT5/e4XenAAAAulpNe3t7e7WHqLbW1tY0NDRk06ZNnpcC2IcNu+S2ao/QbT191ZRqjwDwltjVNuh2z0gBAAB0d0IKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKBQVUNq/vz5GTVqVOrr61NfX5/m5ubcfvvtlf1bt27NzJkzc8ABB2T//ffP1KlTs2HDhg7nWLt2baZMmZI+ffqksbExF110UbZv3/5WXwoAALAPqWpIDRkyJFdddVVWrFiRhx9+OB/+8Idz0kknZdWqVUmSCy64ILfeemtuuummLFu2LOvWrcspp5xS+fsdO3ZkypQpefnll/PAAw/k+uuvz8KFC3PZZZdV65IAAIB9QE17e3t7tYf4YwMGDMhXvvKVfPzjH89BBx2URYsW5eMf/3iS5Fe/+lWOOeaYLF++PMcee2xuv/32fPSjH826desycODAJMmCBQty8cUX57nnnkttbe0ufWZra2saGhqyadOm1NfX77ZrA6B7G3bJbdUeodt6+qop1R4B4C2xq23QbZ6R2rFjR77//e9ny5YtaW5uzooVK7Jt27aMGzeucszRRx+dgw8+OMuXL0+SLF++PCNHjqxEVJJMmDAhra2tlbtar6WtrS2tra0dFgAAgF1V9ZB67LHHsv/++6euri7nnntubrnllgwfPjwtLS2pra1N//79Oxw/cODAtLS0JElaWlo6RNQr+1/Z93rmzp2bhoaGyjJ06NAuvioAAGBvVvWQOuqoo/Loo4/moYceynnnnZfp06fn8ccf362fOWfOnGzatKmyPPPMM7v18wAAgL1Lr2oPUFtbm8MPPzxJMnr06PzsZz/LNddck0984hN5+eWX8+KLL3a4K7Vhw4Y0NTUlSZqamvLTn/60w/leeavfK8e8lrq6utTV1XX1pQAAAPuIqt+R+lM7d+5MW1tbRo8end69e2fp0qWVfatXr87atWvT3NycJGlubs5jjz2WjRs3Vo5ZsmRJ6uvrM3z48Ld8dgAAYN9Q1TtSc+bMyaRJk3LwwQfnpZdeyqJFi3LvvffmzjvvTENDQ2bMmJHZs2dnwIABqa+vz6c//ek0Nzfn2GOPTZKMHz8+w4cPz5lnnpl58+alpaUll156aWbOnOmOE8Ab8HY6APjzVDWkNm7cmGnTpmX9+vVpaGjIqFGjcuedd+YjH/lIkuTrX/96evTokalTp6atrS0TJkzItddeW/n7nj17ZvHixTnvvPPS3Nycvn37Zvr06bniiiuqdUkAAMA+oNv9jlQ1+B0pYF/jjhSl/I4UsK/Y435HCgAAYE8hpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKNSr2gMAAN3fsEtuq/YI3dLTV02p9ghAlbgjBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAU6lXtAQB2l2GX3FbtEQCAvZQ7UgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhaoaUnPnzs373//+9OvXL42NjTn55JOzevXqDseccMIJqamp6bCce+65HY5Zu3ZtpkyZkj59+qSxsTEXXXRRtm/f/lZeCgAAsA/pVc0PX7ZsWWbOnJn3v//92b59e/7u7/4u48ePz+OPP56+fftWjjv77LNzxRVXVNb79OlT+feOHTsyZcqUNDU15YEHHsj69eszbdq09O7dO1/60pfe0usBAAD2DVUNqTvuuKPD+sKFC9PY2JgVK1bk+OOPr2zv06dPmpqaXvMcP/7xj/P444/nrrvuysCBA/Pud787V155ZS6++OJ84QtfSG1t7W69BgAAYN/TrZ6R2rRpU5JkwIABHbbfeOONOfDAAzNixIjMmTMnv//97yv7li9fnpEjR2bgwIGVbRMmTEhra2tWrVr1mp/T1taW1tbWDgsAAMCuquodqT+2c+fOfOYzn8kHPvCBjBgxorL9tNNOyyGHHJLBgwdn5cqVufjii7N69ercfPPNSZKWlpYOEZWkst7S0vKanzV37txcfvnlu+lKAACAvV23CamZM2fmF7/4Re6///4O288555zKv0eOHJlBgwZl7NixWbNmTQ477LBOfdacOXMye/bsynpra2uGDh3aucEBAIB9Trf4at+sWbOyePHi3HPPPRkyZMgbHjtmzJgkyZNPPpkkaWpqyoYNGzoc88r66z1XVVdXl/r6+g4LAADArqpqSLW3t2fWrFm55ZZbcvfdd+fQQw9907959NFHkySDBg1KkjQ3N+exxx7Lxo0bK8csWbIk9fX1GT58+O4ZHAAA2KdV9at9M2fOzKJFi/KjH/0o/fr1qzzT1NDQkP322y9r1qzJokWLMnny5BxwwAFZuXJlLrjgghx//PEZNWpUkmT8+PEZPnx4zjzzzMybNy8tLS259NJLM3PmzNTV1VXz8gAAgL1UVe9IzZ8/P5s2bcoJJ5yQQYMGVZYf/OAHSZLa2trcddddGT9+fI4++uh89rOfzdSpU3PrrbdWztGzZ88sXrw4PXv2THNzc84444xMmzatw+9OAQAAdKWq3pFqb29/w/1Dhw7NsmXL3vQ8hxxySP7rv/6rq8YCAAB4Q93iZRMAAAB7EiEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQKFOhdRvfvObrp4DAABgj9GpkDr88MPzoQ99KP/6r/+arVu3dvVMAAAA3VqnQup//ud/MmrUqMyePTtNTU3567/+6/z0pz/t6tkAAAC6pU6F1Lvf/e5cc801WbduXb773e9m/fr1Oe644zJixIhcffXVee6557p6TgAAgG7jz3rZRK9evXLKKafkpptuype//OU8+eSTufDCCzN06NBMmzYt69ev76o5AQAAuo0/K6Qefvjh/M3f/E0GDRqUq6++OhdeeGHWrFmTJUuWZN26dTnppJO6ak4AAIBuo1dn/ujqq6/Oddddl9WrV2fy5Mm54YYbMnny5PTo8YcuO/TQQ7Nw4cIMGzasK2cFAADoFjoVUvPnz89f/dVf5ayzzsqgQYNe85jGxsZ85zvf+bOGAwAA6I46FVJPPPHEmx5TW1ub6dOnd+b0AAAA3VqnnpG67rrrctNNN71q+0033ZTrr79+l88zd+7cvP/970+/fv3S2NiYk08+OatXr+5wzNatWzNz5swccMAB2X///TN16tRs2LChwzFr167NlClT0qdPnzQ2Nuaiiy7K9u3bO3NpAAAAb6pTITV37twceOCBr9re2NiYL33pS7t8nmXLlmXmzJl58MEHs2TJkmzbti3jx4/Pli1bKsdccMEFufXWW3PTTTdl2bJlWbduXU455ZTK/h07dmTKlCl5+eWX88ADD+T666/PwoULc9lll3Xm0gAAAN5UTXt7e3vpH73tbW/Lr371q1e9TOLpp5/OMccck//7v//r1DDPPfdcGhsbs2zZshx//PHZtGlTDjrooCxatCgf//jHkyS/+tWvcswxx2T58uU59thjc/vtt+ejH/1o1q1bl4EDByZJFixYkIsvvjjPPfdcamtr3/RzW1tb09DQkE2bNqW+vr5TswPdz7BLbqv2CMBe7umrplR7BKCL7WobdOqOVGNjY1auXPmq7T//+c9zwAEHdOaUSZJNmzYlSQYMGJAkWbFiRbZt25Zx48ZVjjn66KNz8MEHZ/ny5UmS5cuXZ+TIkZWISpIJEyaktbU1q1ates3PaWtrS2tra4cFAABgV3UqpD75yU/mb//2b3PPPfdkx44d2bFjR+6+++6cf/75OfXUUzs1yM6dO/OZz3wmH/jABzJixIgkSUtLS2pra9O/f/8Oxw4cODAtLS2VY/44ol7Z/8q+1zJ37tw0NDRUlqFDh3ZqZgAAYN/Uqbf2XXnllXn66aczduzY9Or1h1Ps3Lkz06ZNK3pG6o/NnDkzv/jFL3L//fd36u9LzJkzJ7Nnz66st7a2iikAAGCXdSqkamtr84Mf/CBXXnllfv7zn2e//fbLyJEjc8ghh3RqiFmzZmXx4sW57777MmTIkMr2pqamvPzyy3nxxRc73JXasGFDmpqaKsf89Kc/7XC+V97q98oxf6quri51dXWdmhUAAKBTX+17xZFHHpm//Mu/zEc/+tFORVR7e3tmzZqVW265JXfffXcOPfTQDvtHjx6d3r17Z+nSpZVtq1evztq1a9Pc3JwkaW5uzmOPPZaNGzdWjlmyZEnq6+szfPjwTl4ZAADA6+vUHakdO3Zk4cKFWbp0aTZu3JidO3d22H/33Xfv0nlmzpyZRYsW5Uc/+lH69etXeaapoaEh++23XxoaGjJjxozMnj07AwYMSH19fT796U+nubk5xx57bJJk/PjxGT58eM4888zMmzcvLS0tufTSSzNz5kx3nQAAgN2iUyF1/vnnZ+HChZkyZUpGjBiRmpqaTn34/PnzkyQnnHBCh+3XXXddzjrrrCTJ17/+9fTo0SNTp05NW1tbJkyYkGuvvbZybM+ePbN48eKcd955aW5uTt++fTN9+vRcccUVnZoJAADgzXTqd6QOPPDA3HDDDZk8efLumOkt53ekYO/kd6SA3c3vSMHeZ7f+jlRtbW0OP/zwTg8HAACwJ+tUSH32s5/NNddck07czAIAANjjdeoZqfvvvz/33HNPbr/99rzzne9M7969O+y/+eabu2Q4AACA7qhTIdW/f/987GMf6+pZAAAA9gidCqnrrruuq+cAAADYY3T6B3m3b9+eu+66K//8z/+cl156KUmybt26bN68ucuGAwAA6I46dUfqt7/9bSZOnJi1a9emra0tH/nIR9KvX798+ctfTltbWxYsWNDVcwIAAHQbnbojdf755+d973tffve732W//farbP/Yxz6WpUuXdtlwAAAA3VGn7kj95Cc/yQMPPJDa2toO24cNG5b//d//7ZLBAAAAuqtO3ZHauXNnduzY8artzz77bPr16/dnDwUAANCddSqkxo8fn2984xuV9ZqammzevDmf//znM3ny5C4bDgAAoDvq1Ff7vva1r2XChAkZPnx4tm7dmtNOOy1PPPFEDjzwwHzve9/r6hkBAAC6lU6F1JAhQ/Lzn/883//+97Ny5cps3rw5M2bMyOmnn97h5RMAAAB7o06FVJL06tUrZ5xxRlfOAgAAsEfoVEjdcMMNb7h/2rRpnRoGAABgT9CpkDr//PM7rG/bti2///3vU1tbmz59+ggpAABgr9apt/b97ne/67Bs3rw5q1evznHHHedlEwAAwF6vUyH1Wo444ohcddVVr7pbBQAAsLfpspBK/vACinXr1nXlKQEAALqdTj0j9Z//+Z8d1tvb27N+/fr80z/9Uz7wgQ90yWAAAADdVadC6uSTT+6wXlNTk4MOOigf/vCH87Wvfa1LBgMAAOiuOhVSO3fu7Oo5AAAA9hhd+owUAADAvqBTd6Rmz569y8deffXVnfkIAACAbqtTIfXII4/kkUceybZt23LUUUclSX7961+nZ8+eee9731s5rqampmumBAAA6EY6FVInnnhi+vXrl+uvvz5vf/vbk/zhR3o/9alP5YMf/GA++9nPdumQAAAA3UmnnpH62te+lrlz51YiKkne/va354tf/KK39gEAAHu9ToVUa2trnnvuuVdtf+655/LSSy/92UMBAAB0Z50KqY997GP51Kc+lZtvvjnPPvtsnn322fzHf/xHZsyYkVNOOaWrZwQAAOhWOvWM1IIFC3LhhRfmtNNOy7Zt2/5wol69MmPGjHzlK1/p0gEBAAC6m06FVJ8+fXLttdfmK1/5StasWZMkOeyww9K3b98uHQ4AAKA7+rN+kHf9+vVZv359jjjiiPTt2zft7e1dNRcAAEC31amQev755zN27NgceeSRmTx5ctavX58kmTFjhlefAwAAe71OhdQFF1yQ3r17Z+3atenTp09l+yc+8YnccccdXTYcAABAd9SpZ6R+/OMf584778yQIUM6bD/iiCPy29/+tksGAwAA6K46dUdqy5YtHe5EveKFF15IXV3dnz0UAABAd9apkPrgBz+YG264obJeU1OTnTt3Zt68efnQhz7UZcMBAAB0R536at+8efMyduzYPPzww3n55Zfzuc99LqtWrcoLL7yQ//7v/+7qGQEAALqVTt2RGjFiRH7961/nuOOOy0knnZQtW7bklFNOySOPPJLDDjusq2cEAADoVorvSG3bti0TJ07MggUL8vd///e7YyYAAIBurfiOVO/evbNy5crdMQsAAMAeoVNf7TvjjDPyne98p6tnAQAA2CN06mUT27dvz3e/+93cddddGT16dPr27dth/9VXX90lwwEAAHRHRSH1m9/8JsOGDcsvfvGLvPe9702S/PrXv+5wTE1NTddNBwAA0A0VhdQRRxyR9evX55577kmSfOITn8g3v/nNDBw4cLcMBwAA0B0VPSPV3t7eYf3222/Pli1bunQgAACA7q5TL5t4xZ+GFQAAwL6gKKRqampe9QyUZ6IAAIB9TdEzUu3t7TnrrLNSV1eXJNm6dWvOPffcV7217+abb+66CQEAALqZopCaPn16h/UzzjijS4cBAADYExSF1HXXXbe75gAAANhj/FkvmwAAANgXCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKBQVUPqvvvuy4knnpjBgwenpqYmP/zhDzvsP+uss1JTU9NhmThxYodjXnjhhZx++umpr69P//79M2PGjGzevPmtvAwAAGAfU9WQ2rJlS971rnfl29/+9useM3HixKxfv76yfO973+uw//TTT8+qVauyZMmSLF68OPfdd1/OOeec3T06AACwD+tVzQ+fNGlSJk2a9IbH1NXVpamp6TX3/fKXv8wdd9yRn/3sZ3nf+96XJPnWt76VyZMn56tf/WoGDx7c5TMDAAB0+2ek7r333jQ2Nuaoo47Keeedl+eff76yb/ny5enfv38lopJk3Lhx6dGjRx566KHXPWdbW1taW1s7LAAAALuqW4fUxIkTc8MNN2Tp0qX58pe/nGXLlmXSpEnZsWNHkqSlpSWNjY0d/qZXr4NNGMwAABlTSURBVF4ZMGBAWlpaXve8c+fOTUNDQ2UZOnTobr0OAABg71LVr/a9mVNPPbXy75EjR2bUqFE57LDDcu+992bs2LGdPu+cOXMye/bsynpra6uYAgAAdlm3viP1p97xjnfkwAMPzJNPPpkkaWpqysaNGzscs3379rzwwguv+1xV8ofnrurr6zssAAAAu2qPCqlnn302zz//fAYNGpQkaW5uzosvvpgVK1ZUjrn77ruzc+fOjBkzplpjAgAAe7mqfrVv8+bNlbtLSfLUU0/l0UcfzYABAzJgwIBcfvnlmTp1apqamrJmzZp87nOfy+GHH54JEyYkSY455phMnDgxZ599dhYsWJBt27Zl1qxZOfXUU72xDwDY7YZdclu1R+i2nr5qSrVHgN2qqnekHn744bznPe/Je97zniTJ7Nmz8573vCeXXXZZevbsmZUrV+Yv/uIvcuSRR2bGjBkZPXp0fvKTn6Surq5yjhtvvDFHH310xo4dm8mTJ+e4447Lv/zLv1TrkgAAgH1AVe9InXDCCWlvb3/d/XfeeeebnmPAgAFZtGhRV44FAADwhvaoZ6QAAAC6AyEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFCoqiF133335cQTT8zgwYNTU1OTH/7whx32t7e357LLLsugQYOy3377Zdy4cXniiSc6HPPCCy/k9NNPT319ffr3758ZM2Zk8+bNb+VlAAAA+5iqhtSWLVvyrne9K9/+9rdfc/+8efPyzW9+MwsWLMhDDz2Uvn37ZsKECdm6dWvlmNNPPz2rVq3KkiVLsnjx4tx3330555xz3qpLAAAA9kG9qvnhkyZNyqRJk15zX3t7e77xjW/k0ksvzUknnZQkueGGGzJw4MD88Ic/zKmnnppf/vKXueOOO/Kzn/0s73vf+5Ik3/rWtzJ58uR89atfzeDBg9+yawEAAPYd3fYZqaeeeiotLS0ZN25cZVtDQ0PGjBmT5cuXJ0mWL1+e/v37VyIqScaNG5cePXrkoYceet1zt7W1pbW1tcMCAACwq6p6R+qNtLS0JEkGDhzYYfvAgQMr+1paWtLY2Nhhf69evTJgwIDKMa9l7ty5ufzyy7t4YqieYZfcVu0RAAD2Kd32jtTuNGfOnGzatKmyPPPMM9UeCQAA2IN025BqampKkmzYsKHD9g0bNlT2NTU1ZePGjR32b9++PS+88ELlmNdSV1eX+vr6DgsAAMCu6rYhdeihh6apqSlLly6tbGttbc1DDz2U5ubmJElzc3NefPHFrFixonLM3XffnZ07d2bMmDFv+cwAAMC+oarPSG3evDlPPvlkZf2pp57Ko48+mgEDBuTggw/OZz7zmXzxi1/MEUcckUMPPTT/8A//kMGDB+fkk09OkhxzzDGZOHFizj777CxYsCDbtm3LrFmzcuqpp3pjHwAAsNtUNaQefvjhfOhDH6qsz549O0kyffr0LFy4MJ/73OeyZcuWnHPOOXnxxRdz3HHH5Y477sjb3va2yt/ceOONmTVrVsaOHZsePXpk6tSp+eY3v/mWXwsAALDvqGlvb2+v9hDV1tramoaGhmzatMnzUuyRvLUPgO7m6aumVHsE6JRdbYNu+4wUAABAdyWkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAK9ar2AAAA7H2GXXJbtUfolp6+akq1R6CLuCMFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFhBQAAEAhIQUAAFBISAEAABQSUgAAAIWEFAAAQCEhBQAAUEhIAQAAFBJSAAAAhYQUAABAISEFAABQSEgBAAAUElIAAACFelV7AAAA2FcMu+S2ao/QLT191ZRqj1DMHSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKNStQ+oLX/hCampqOixHH310Zf/WrVszc+bMHHDAAdl///0zderUbNiwoYoTAwAA+4JuHVJJ8s53vjPr16+vLPfff39l3wUXXJBbb701N910U5YtW5Z169bllFNOqeK0AADAvqBXtQd4M7169UpTU9Ortm/atCnf+c53smjRonz4wx9Oklx33XU55phj8uCDD+bYY499q0cFAAD2Ed3+jtQTTzyRwYMH5x3veEdOP/30rF27NkmyYsWKbNu2LePGjasce/TRR+fggw/O8uXL3/CcbW1taW1t7bAAAADsqm4dUmPGjMnChQtzxx13ZP78+XnqqafywQ9+MC+99FJaWlpSW1ub/v37d/ibgQMHpqWl5Q3PO3fu3DQ0NFSWoUOH7s7LAAAA9jLd+qt9kyZNqvx71KhRGTNmTA455JD827/9W/bbb79On3fOnDmZPXt2Zb21tVVMAQAAu6xb35H6U/3798+RRx6ZJ598Mk1NTXn55Zfz4osvdjhmw4YNr/lM1R+rq6tLfX19hwUAAGBX7VEhtXnz5qxZsyaDBg3K6NGj07t37yxdurSyf/Xq1Vm7dm2am5urOCUAALC369Zf7bvwwgtz4okn5pBDDsm6devy+c9/Pj179swnP/nJNDQ0ZMaMGZk9e3YGDBiQ+vr6fPrTn05zc7M39gEAALtVtw6pZ599Np/85Cfz/PPP56CDDspxxx2XBx98MAcddFCS5Otf/3p69OiRqVOnpq2tLRMmTMi1115b5akBAIC9XU17e3t7tYeottbW1jQ0NGTTpk2el2KPNOyS26o9AgBApz191ZRqj1Cxq22wRz0jBQAA0B1066/2wR9z1wUAgO7CHSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAK9ar2ALzasEtuq/YIAADAG3BHCgAAoJCQAgAAKCSkAAAACgkpAACAQkIKAACgkJACAAAoJKQAAAAKCSkAAIBCQgoAAKCQkAIAACgkpAAAAAoJKQAAgEJCCgAAoJCQAgAAKCSkAAAACgkpAACA/2/v/mOqqv84jr8uFwGHASUTvEJotlRciZEymSVtlG4uyP7IWlFrDeeyuWUjpdLSVtB0RRGFmeCWW/hHJGxu6CJWOik3GGn+xvyRFpAzFPwaEPfz/aN56wqm53oP3Ht9Pjb+uOeec31/9vLeDy+8XC2iSAEAAACARRQpAAAAALCIIgUAAAAAFlGkAAAAAMAiihQAAAAAWESRAgAAAACLKFIAAAAAYBFFCgAAAAAsokgBAAAAgEUUKQAAAACwiCIFAAAAABZRpAAAAADAIooUAAAAAFhEkQIAAAAAiyhSAAAAAGARRQoAAAAALKJIAQAAAIBFFCkAAAAAsIgiBQAAAAAWUaQAAAAAwCKKFAAAAABYRJECAAAAAIsoUgAAAABgEUUKAAAAACyiSAEAAACARRQpAAAAALCIIgUAAAAAFlGkAAAAAMAiihQAAAAAWESRAgAAAACLKFIAAAAAYBFFCgAAAAAsokgBAAAAgEUUKQAAAACwiCIFAAAAABZRpAAAAADAopApUmVlZRo/fryioqKUkZGhPXv2DPdIAAAAAEJUSBSpLVu2aNmyZXrjjTfU3NysadOmae7cuero6Bju0QAAAACEoPDhHsAf3nvvPeXn5+u5556TJJWXl2vbtm2qqKjQihUrBpzf09Ojnp4ez+3z589Lki5cuDA0A1+Du+d/wz0CAAAAMGQC5ftw6Z9ZjDH/eV7QF6ne3l41NTWpsLDQcywsLEzZ2dlqbGwc9JqioiKtXr16wPHk5GTb5gQAAAAwuNiS4Z5goK6uLsXGxl71/qAvUmfPnlV/f78SEhK8jickJOjQoUODXlNYWKhly5Z5brvdbp07d06jR4+Ww+Gwdd4rXbhwQcnJyfrll18UExMzpH82BiKPwEIegYMsAgt5BBbyCCzkEViCMQ9jjLq6uuRyuf7zvKAvUr6IjIxUZGSk17G4uLhhmuZvMTExQfOX62ZAHoGFPAIHWQQW8ggs5BFYyCOwBFse//UvUZcF/YdNxMfHy+l0qr293et4e3u7EhMTh2kqAAAAAKEs6ItURESE0tPTVV9f7znmdrtVX1+vWbNmDeNkAAAAAEKV880333xzuIe4UTExMVq5cqWSk5MVGRmplStXqqWlRRs3btSoUaOGe7xrcjqdysrKUnj4TflOy4BDHoGFPAIHWQQW8ggs5BFYyCOwhGoeDnOtz/ULEh999JHWrl2rtrY2paWl6cMPP1RGRsZwjwUAAAAgBIVMkQIAAACAoRL0vyMFAAAAAEONIgUAAAAAFlGkAAAAAMAiihQAAAAAWESRskFZWZnGjx+vqKgoZWRkaM+ePVc9t7q6Wvfdd5/i4uIUHR2ttLQ0ff75517ndHd368UXX1RSUpJGjhyp1NRUlZeX272MkGAli3+rqqqSw+HQo48+6nXcGKNVq1Zp7NixGjlypLKzs3X06FE7Rg9J/syjr69Py5cv1913363o6Gi5XC4988wz+vXXX+0aP+T4+/nxb4sXL5bD4VBJSYm/xg15duRx8OBB5eTkKDY2VtHR0ZoxY4ZOnTrl79FDkr/zYC/3nZUsNm3aJIfD4fUVFRXldQ57+Y3xZx5Bv5cb+FVVVZWJiIgwFRUVZv/+/SY/P9/ExcWZ9vb2Qc9vaGgw1dXV5sCBA6a1tdWUlJQYp9Np6urqPOfk5+ebiRMnmoaGBnP8+HGzfv1643Q6TU1NzVAtKyhZzeKy48ePm3Hjxpn777/f5Obmet1XXFxsYmNjzdatW82PP/5ocnJyzIQJE8ylS5fsXEpI8HcenZ2dJjs722zZssUcOnTINDY2mpkzZ5r09HS7lxIS7Hh+XFZdXW2mTZtmXC6Xef/99+0YP+TYkUdra6u57bbbTEFBgWlubjatra2mpqbmmo8Je/JgL/eN1SwqKytNTEyM+e233zxfbW1tXuewl/vO33kE+15OkfKzmTNnmiVLlnhu9/f3G5fLZYqKiq77MaZPn25ef/11z+2pU6eaNWvWeJ1z7733mtdee+3GBw5hvmTx119/mczMTPPZZ5+ZZ5991msjdLvdJjEx0axdu9ZzrLOz00RGRpovvvjCnkWEEH/nMZg9e/YYSebkyZN+mztU2ZXH6dOnzbhx48xPP/1kUlJSKFLXyY48Fi5caJ5++mnbZg5lduTBXu4bq1lUVlaa2NjYqz4ee/mN8XcegwmmvZy39vlRb2+vmpqalJ2d7TkWFham7OxsNTY2XvN6Y4zq6+t1+PBhPfDAA57jmZmZqq2t1ZkzZ2SMUUNDg44cOaKHH37YlnWEAl+zWLNmjcaMGaPnn39+wH3Hjx9XW1ub12PGxsYqIyPjuvK9mdmRx2DOnz8vh8OhuLi4G545lNmVh9vtVl5engoKCjR16lS/zx2q7MjD7XZr27ZtuuuuuzR37lyNGTNGGRkZ2rp1qy1rCCV2PT/Yy63zNYvu7m6lpKQoOTlZubm52r9/v+c+9nLf2ZHHYIJpL6dI+dHZs2fV39+vhIQEr+MJCQlqa2u76nXnz5/XqFGjFBERofnz56u0tFQPPfSQ5/7S0lKlpqYqKSlJERERmjdvnsrKyrzKFrz5ksWuXbu0ceNGbdiwYdD7L19nNV/Yk8eV/vzzTy1fvlxPPvmkYmJibnjmUGZXHu+++67Cw8O1dOlSv84b6uzIo6OjQ93d3SouLta8efO0Y8cOLViwQI899pi+/fZbv68hlNj1/GAvt86XLCZNmqSKigrV1NRo8+bNcrvdyszM1OnTpyWxl98IO/K4UrDt5eHDPQCkW265RS0tLeru7lZ9fb2WLVumO+64Q1lZWZL+fvH9/vvvVVtbq5SUFH333XdasmSJXC6X108F4Luuri7l5eVpw4YNio+PH+5xbnpW8+jr69Pjjz8uY4w++eSTIZjw5nI9eTQ1NemDDz5Qc3OzHA7HEE94c7mePNxutyQpNzdXL730kiQpLS1Nu3fvVnl5uebMmTNk84a66329Yi8fGrNmzdKsWbM8tzMzMzVlyhStX79eb7311jBOdnOykkcw7uUUKT+Kj4+X0+lUe3u71/H29nYlJiZe9bqwsDDdeeedkv7e6A4ePKiioiJlZWXp0qVLevXVV/XVV19p/vz5kqR77rlHLS0tWrduHS++V2E1i2PHjunEiRN65JFHPMcufyMSHh6uw4cPe65rb2/X2LFjvR4zLS3NjmWEDDvymDhxoqR/XnhPnjypb775Jih+gjXc7Mhj586d6ujo0O233+45p7+/Xy+//LJKSkp04sQJexYTAuzIIzk5WeHh4UpNTfW6dsqUKdq1a5cNqwgdduThcrnYy33g6/dV/zZixAhNnz5dra2tksRefgPsyOOyYN3LeWufH0VERCg9PV319fWeY263W/X19V5t/Frcbrd6enok/f0Xq6+vT2Fh3lE5nU7PCzUGsprF5MmTtW/fPrW0tHi+cnJy9OCDD6qlpUXJycmaMGGCEhMTvR7zwoUL+uGHHyzlezOyIw/pnxfeo0eP6uuvv9bo0aOHbE3BzI488vLytHfvXq9zXC6XCgoKtH379qFcXtCxI4+IiAjNmDFDhw8f9rr2yJEjSklJsX1NwcyOPNjLfeOP76v6+/u1b98+T2liL/edHXlIQb6XD+tHXYSgqqoqExkZaTZt2mQOHDhgFi1aZOLi4jwf9ZiXl2dWrFjhOf+dd94xO3bsMMeOHTMHDhww69atM+Hh4WbDhg2ec+bMmWOmTp1qGhoazM8//2wqKytNVFSU+fjjj4d8fcHEahZXGuxTl4qLi01cXJypqakxe/fuNbm5uXxk6nXydx69vb0mJyfHJCUlmZaWFq+PVu3p6bF9PcHOjufHlfjUvutnRx7V1dVmxIgR5tNPPzVHjx41paWlxul0mp07d9q6llBgRx7s5b6xmsXq1avN9u3bzbFjx0xTU5N54oknTFRUlNm/f7/nHPZy3/k7j2Dfy3lrn58tXLhQv//+u1atWqW2tjalpaWprq7O84t5p06d8vqJ1MWLF/XCCy/o9OnTGjlypCZPnqzNmzdr4cKFnnOqqqpUWFiop556SufOnVNKSorefvttLV68eMjXF0ysZnE9XnnlFV28eFGLFi1SZ2enZs+erbq6ugH/2R8G8nceZ86cUW1trSQNeDtGQ0OD53cMMTg7nh/wnR15LFiwQOXl5SoqKtLSpUs1adIkffnll5o9e7YdSwgpduTBXu4bq1n88ccfys/PV1tbm2699Valp6dr9+7dXm9zZS/3nb/zCPa93GGMMcM9BAAAAAAEE37cCAAAAAAWUaQAAAAAwCKKFAAAAABYRJECAAAAAIsoUgAAAABgEUUKAAAAACyiSAEAAACARRQpAAAAALCIIgUAAAAAFlGkAAAAAMAiihQAAAAAWPR/hz359mMFZowAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ - "# closeness centrality\n", - "plt.figure(figsize=(10,10))\n", - "clos_C = nx.closeness_centrality(G)\n", - "closc_distr = pd.Series(clos_C)\n", - "closc_distr.plot.hist()" + "graphs = []\n", + "d = {}\n", + "for x in communities.unique():\n", + " tmp = nx.subgraph(G, communities[communities==x].index)\n", + " fraud_edges = sum(nx.get_edge_attributes(tmp, \"label\").values())\n", + " ratio = 0 if fraud_edges == 0 else (fraud_edges/tmp.number_of_edges())*100\n", + " d[x] = ratio\n", + " graphs += [tmp]\n", + "\n", + "pd.Series(d).sort_values(ascending=False).head(15)" ] }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.45484068767616925" + "Text(0.5, 0, 'Fraud over genuine ratio')" ] }, - "execution_count": 27, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deViVdf7/8dcRBMRRXJAtUcgFd0xNhpavmiSS00DNlJoFmjpT6TU6ZAszuWWFWpotjrSIaIvblVmTpimKppGOezVGaiiagGYKggkI9++Pfp7pxCIcgQPcz8d13dd4f+7P/Tnvz7nPGV7d577PsRiGYQgAAMBEGjm6AAAAgNpGAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKbj7OgC6qKSkhKdPn1azZo1k8VicXQ5AACgEgzD0MWLF+Xn56dGjSo+x0MAKsPp06fl7+/v6DIAAIAdTp48qbZt21bYhwBUhmbNmkn65Qls3ry5g6sBAACVkZubK39/f+vf8YoQgMpw9WOv5s2bE4AAAKhnKnP5ChdBAwAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA03FoAIqPj9fNN9+sZs2aycvLS1FRUUpLS7vmfqtXr1aXLl3k5uamnj17av369TbbDcPQtGnT5OvrqyZNmigsLExHjhypqWkAAIB6xqEBaNu2bZowYYK+/PJLbdq0SUVFRRoyZIjy8/PL3eeLL77QyJEjNXbsWO3fv19RUVGKiorS119/be0zd+5cvfrqq0pISNCuXbvUtGlThYeH6/Lly7UxLQAAUMdZDMMwHF3EVWfPnpWXl5e2bdum//u//yuzz/Dhw5Wfn69PPvnE2vb73/9evXv3VkJCggzDkJ+fnx5//HFNmTJFkpSTkyNvb28lJSVpxIgR16wjNzdXHh4eysnJ4dfgAQCoJ6ry97tOXQOUk5MjSWrVqlW5fVJTUxUWFmbTFh4ertTUVElSenq6srKybPp4eHgoJCTE2ue3CgoKlJuba7MAAICGy9nRBVxVUlKiyZMn69Zbb1WPHj3K7ZeVlSVvb2+bNm9vb2VlZVm3X20rr89vxcfHa+bMmddTPoBqFvD0OkeXYJfjs4c5ugTUUTX1muY1Z586cwZowoQJ+vrrr7VixYpaf+y4uDjl5ORYl5MnT9Z6DQAAoPbUiTNAEydO1CeffKLt27erbdu2Ffb18fFRdna2TVt2drZ8fHys26+2+fr62vTp3bt3mWO6urrK1dX1eqYAAADqEYeeATIMQxMnTtSHH36oLVu2KDAw8Jr7hIaGKjk52aZt06ZNCg0NlSQFBgbKx8fHpk9ubq527dpl7QMAAMzNoWeAJkyYoPfff18fffSRmjVrZr1Gx8PDQ02aNJEkRUdH64YbblB8fLwkadKkSRowYIDmzZunYcOGacWKFdqzZ4/efPNNSZLFYtHkyZP13HPPqVOnTgoMDNTUqVPl5+enqKgox0wUAADUKQ4NQIsWLZIkDRw40KZ9yZIlGj16tCQpIyNDjRr970TVLbfcovfff1/PPPOM/vGPf6hTp05au3atzYXTTz75pPLz8/WXv/xFFy5c0G233aYNGzbIzc2txucEAADqvjr1PUB1Bd8DBDged4GhoeEusJpXb78HCAAAoDYQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOk4NABt375dd999t/z8/GSxWLR27doK+48ePVoWi6XU0r17d2ufGTNmlNrepUuXmp4KAACoRxwagPLz8xUcHKyFCxdWqv8rr7yizMxM63Ly5Em1atVK9913n02/7t272/TbsWNHTZQPAADqKWdHPnhERIQiIiIq3d/Dw0MeHh7W9bVr1+r8+fMaM2aMTT9nZ2f5+PhUW50AAKBhqdfXAC1evFhhYWFq3769TfuRI0fk5+enG2+8UaNGjVJGRkaF4xQUFCg3N9dmAQAADVe9DUCnT5/Wp59+qnHjxtm0h4SEKCkpSRs2bNCiRYuUnp6u22+/XRcvXix3rPj4eOvZJQ8PD/n7+9d0+QAAwIHqbQBaunSpWrRooaioKJv2iIgI3XffferVq5fCw8O1fv16XbhwQatWrSp3rLi4OOXk5FiXkydP1nT5AADAgRx6DZC9DMNQYmKiHnroIbm4uFTYt0WLFurcubOOHj1abh9XV1e5urpWd5kAAKCOqpdngLZt26ajR49q7Nix1+ybl5enY8eOydfXtxYqAwAA9YFDA1BeXp4OHDigAwcOSJLS09N14MAB60XLcXFxio6OLrXf4sWLFRISoh49epTaNmXKFG3btk3Hjx/XF198oXvuuUdOTk4aOXJkzU4GAADUGw79CGzPnj0aNGiQdT02NlaSFBMTo6SkJGVmZpa6gysnJ0cffPCBXnnllTLHPHXqlEaOHKlz586pTZs2uu222/Tll1+qTZs2NTcRAABQrzg0AA0cOFCGYZS7PSkpqVSbh4eHLl26VO4+K1asqI7SAABAA1YvrwECAAC4HgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOg4NQNu3b9fdd98tPz8/WSwWrV27tsL+KSkpslgspZasrCybfgsXLlRAQIDc3NwUEhKi3bt31+Q0AABAPePQAJSfn6/g4GAtXLiwSvulpaUpMzPTunh5eVm3rVy5UrGxsZo+fbr27dun4OBghYeH68yZM9VdPgAAqKecHfngERERioiIqPJ+Xl5eatGiRZnb5s+fr/Hjx2vMmDGSpISEBK1bt06JiYl6+umnr6teAADQMNTLa4B69+4tX19f3Xnnndq5c6e1vbCwUHv37lVYWJi1rVGjRgoLC1Nqamq54xUUFCg3N9dmAQAADVe9CkC+vr5KSEjQBx98oA8++ED+/v4aOHCg9u3bJ0n68ccfVVxcLG9vb5v9vL29S10n9Gvx8fHy8PCwLv7+/jU6DwAA4FgO/QisqoKCghQUFGRdv+WWW3Ts2DG9/PLLeuedd+weNy4uTrGxsdb13NxcQhAAAA1YvQpAZenfv7927NghSfL09JSTk5Oys7Nt+mRnZ8vHx6fcMVxdXeXq6lqjdQIAgLqjXn0EVpYDBw7I19dXkuTi4qK+ffsqOTnZur2kpETJyckKDQ11VIkAAKCOcegZoLy8PB09etS6np6ergMHDqhVq1Zq166d4uLi9MMPP2jZsmWSpAULFigwMFDdu3fX5cuX9fbbb2vLli367LPPrGPExsYqJiZG/fr1U//+/bVgwQLl5+db7woDAABwaADas2ePBg0aZF2/eh1OTEyMkpKSlJmZqYyMDOv2wsJCPf744/rhhx/k7u6uXr16afPmzTZjDB8+XGfPntW0adOUlZWl3r17a8OGDaUujAYAAOZlMQzDcHQRdU1ubq48PDyUk5Oj5s2bO7ocwJQCnl7n6BLscnz2MEeXgDqqpl7TvOb+pyp/v+v9NUAAAABVRQACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACm49AAtH37dt19993y8/OTxWLR2rVrK+y/Zs0a3XnnnWrTpo2aN2+u0NBQbdy40abPjBkzZLFYbJYuXbrU5DQAAEA949AAlJ+fr+DgYC1cuLBS/bdv364777xT69ev1969ezVo0CDdfffd2r9/v02/7t27KzMz07rs2LGjJsoHAAD1lLMjHzwiIkIRERGV7r9gwQKb9RdeeEEfffSR/v3vf+umm26ytjs7O8vHx6fa6gQAAA1Lvb4GqKSkRBcvXlSrVq1s2o8cOSI/Pz/deOONGjVqlDIyMiocp6CgQLm5uTYLAABouOp1AHrppZeUl5en+++/39oWEhKipKQkbdiwQYsWLVJ6erpuv/12Xbx4sdxx4uPj5eHhYV38/f1ro3wAAOAg9TYAvf/++5o5c6ZWrVolLy8va3tERITuu+8+9erVS+Hh4Vq/fr0uXLigVatWlTtWXFyccnJyrMvJkydrYwoAAMBBHHoNkL1WrFihcePGafXq1QoLC6uwb4sWLdS5c2cdPXq03D6urq5ydXWt7jIBAEAdZdcZoO+//76666i05cuXa8yYMVq+fLmGDRt2zf55eXk6duyYfH19a6E6AABQH9gVgDp27KhBgwbp3Xff1eXLl+1+8Ly8PB04cEAHDhyQJKWnp+vAgQPWi5bj4uIUHR1t7f/+++8rOjpa8+bNU0hIiLKyspSVlaWcnBxrnylTpmjbtm06fvy4vvjiC91zzz1ycnLSyJEj7a4TAAA0LHYFoH379qlXr16KjY2Vj4+P/vrXv2r37t1VHmfPnj266aabrLewx8bG6qabbtK0adMkSZmZmTZ3cL355pu6cuWKJkyYIF9fX+syadIka59Tp05p5MiRCgoK0v3336/WrVvryy+/VJs2beyZKgAAaIAshmEY9u585coVffzxx9a7rjp37qyHH35YDz30UL0OHLm5ufLw8FBOTo6aN2/u6HIAUwp4ep2jS7DL8dnX/mge5lRTr2lec/9Tlb/f13UXmLOzs+69916tXr1ac+bM0dGjRzVlyhT5+/srOjpamZmZ1zM8AABAjbiuALRnzx499thj8vX11fz58zVlyhQdO3ZMmzZt0unTpxUZGVlddQIAAFQbu26Dnz9/vpYsWaK0tDTdddddWrZsme666y41avRLngoMDFRSUpICAgKqs1YAAIBqYVcAWrRokR5++GGNHj263NvLvby8tHjx4usqDgAAoCbYFYCOHDlyzT4uLi6KiYmxZ3gAAIAaZdc1QEuWLNHq1atLta9evVpLly697qIAAABqkl0BKD4+Xp6enqXavby89MILL1x3UQAAADXJrgCUkZGhwMDAUu3t27e3+eJCAACAusiuAOTl5aVDhw6Vaj948KBat2593UUBAADUJLsC0MiRI/W3v/1NW7duVXFxsYqLi7VlyxZNmjRJI0aMqO4aAQAAqpVdd4HNmjVLx48f1+DBg+Xs/MsQJSUlio6O5hogAABQ59kVgFxcXLRy5UrNmjVLBw8eVJMmTdSzZ0+1b9++uusDAACodnYFoKs6d+6szp07V1ctAAAAtcKuAFRcXKykpCQlJyfrzJkzKikpsdm+ZcuWaikOAACgJtgVgCZNmqSkpCQNGzZMPXr0kMViqe66AAAAaoxdAWjFihVatWqV7rrrruquBwAAoMbZdRu8i4uLOnbsWN21AAAA1Aq7AtDjjz+uV155RYZhVHc9AAAANc6uj8B27NihrVu36tNPP1X37t3VuHFjm+1r1qypluIAAABqgl0BqEWLFrrnnnuquxYAAIBaYVcAWrJkSXXXAQAAUGvsugZIkq5cuaLNmzfrjTfe0MWLFyVJp0+fVl5eXrUVBwAAUBPsOgN04sQJDR06VBkZGSooKNCdd96pZs2aac6cOSooKFBCQkJ11wkAAFBt7DoDNGnSJPXr10/nz59XkyZNrO333HOPkpOTq604AACAmmDXGaDPP/9cX3zxhVxcXGzaAwIC9MMPP1RLYQAAADXFrjNAJSUlKi4uLtV+6tQpNWvW7LqLAgAAqEl2BaAhQ4ZowYIF1nWLxaK8vDxNnz6dn8cAAAB1nl0fgc2bN0/h4eHq1q2bLl++rAceeEBHjhyRp6enli9fXt01AgAAVCu7AlDbtm118OBBrVixQocOHVJeXp7Gjh2rUaNG2VwUDQAAUBfZFYAkydnZWQ8++GB11gIAAFAr7ApAy5Ytq3B7dHS0XcUAAADUBrsC0KRJk2zWi4qKdOnSJbm4uMjd3Z0ABAAA6jS77gI7f/68zZKXl6e0tDTddtttXAQNAADqPLt/C+y3OnXqpNmzZ5c6O1SR7du36+6775afn58sFovWrl17zX1SUlLUp08fubq6qmPHjkpKSirVZ+HChQoICJCbm5tCQkK0e/fuqkwFAAA0cNUWgKRfLow+ffp0pfvn5+crODhYCxcurFT/9PR0DRs2TIMGDdKBAwc0efJkjRs3Ths3brT2WblypWJjYzV9+nTt27dPwcHBCg8P15kzZ6o8HwAA0DDZdQ3Qxx9/bLNuGIYyMzP1+uuv69Zbb630OBEREYqIiKh0/4SEBAUGBmrevHmSpK5du2rHjh16+eWXFR4eLkmaP3++xo8frzFjxlj3WbdunRITE/X0009X+rEAAEDDZVcAioqKslm3WCxq06aN7rjjDms4qQmpqakKCwuzaQsPD9fkyZMlSYWFhdq7d6/i4uKs2xs1aqSwsDClpqaWO25BQYEKCgqs67m5udVcOQAAqEvsCkAlJSXVXUelZGVlydvb26bN29tbubm5+vnnn3X+/HkVFxeX2efbb78td9z4+HjNnDmzRmouS8DT62rtseq647OHOboEU6jJ1xzHEOWpj/9fVx9fzzzP9qnWa4Dqq7i4OOXk5FiXkydPOrokAABQg+w6AxQbG1vpvvPnz7fnIcrk4+Oj7Oxsm7bs7Gw1b95cTZo0kZOTk5ycnMrs4+PjU+64rq6ucnV1rbY6AQBA3WZXANq/f7/279+voqIiBQUFSZK+++47OTk5qU+fPtZ+Fouleqr8/0JDQ7V+/Xqbtk2bNik0NFSS5OLior59+yo5Odl6nVJJSYmSk5M1ceLEaq0FAADUX3YFoLvvvlvNmjXT0qVL1bJlS0m/fDnimDFjdPvtt+vxxx+v1Dh5eXk6evSodT09PV0HDhxQq1at1K5dO8XFxemHH36w/vTGI488otdff11PPvmkHn74YW3ZskWrVq3SunX/+/wzNjZWMTEx6tevn/r3768FCxYoPz/felcYAACAXQFo3rx5+uyzz6zhR5Jatmyp5557TkOGDKl0ANqzZ48GDRpkXb/60VpMTIySkpKUmZmpjIwM6/bAwECtW7dOf//73/XKK6+obdu2evvtt623wEvS8OHDdfbsWU2bNk1ZWVnq3bu3NmzYUOrCaAAAYF52BaDc3FydPXu2VPvZs2d18eLFSo8zcOBAGYZR7vayvuV54MCB2r9/f4XjTpw4kY+8AABAuey6C+yee+7RmDFjtGbNGp06dUqnTp3SBx98oLFjx+ree++t7hoBAACqlV1ngBISEjRlyhQ98MADKioq+mUgZ2eNHTtWL774YrUWCAAAUN3sCkDu7u7617/+pRdffFHHjh2TJHXo0EFNmzat1uIAAABqwnV9EWJmZqYyMzPVqVMnNW3atMLreQAAAOoKuwLQuXPnNHjwYHXu3Fl33XWXMjMzJUljx46t9B1gAAAAjmJXAPr73/+uxo0bKyMjQ+7u7tb24cOHa8OGDdVWHAAAQE2w6xqgzz77TBs3blTbtm1t2jt16qQTJ05US2EAAAA1xa4zQPn5+TZnfq766aef+E0tAABQ59kVgG6//Xbrz1NIv/zmV0lJiebOnWvzzc4AAAB1kV0fgc2dO1eDBw/Wnj17VFhYqCeffFLffPONfvrpJ+3cubO6awQAAKhWdp0B6tGjh7777jvddtttioyMVH5+vu69917t379fHTp0qO4aAQAAqlWVzwAVFRVp6NChSkhI0D//+c+aqAkAAKBGVfkMUOPGjXXo0KGaqAUAAKBW2PUR2IMPPqjFixdXdy0AAAC1wq6LoK9cuaLExERt3rxZffv2LfUbYPPnz6+W4gAAAGpClQLQ999/r4CAAH399dfq06ePJOm7776z6WOxWKqvOgAAgBpQpQDUqVMnZWZmauvWrZJ++emLV199Vd7e3jVSHAAAQE2o0jVAv/21908//VT5+fnVWhAAAEBNs+si6Kt+G4gAAADqgyoFIIvFUuoaH675AQAA9U2VrgEyDEOjR4+2/uDp5cuX9cgjj5S6C2zNmjXVVyEAAEA1q1IAiomJsVl/8MEHq7UYAACA2lClALRkyZKaqgMAAKDWXNdF0AAAAPURAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJhOnQhACxcuVEBAgNzc3BQSEqLdu3eX23fgwIHWX6X/9TJs2DBrn9GjR5faPnTo0NqYCgAAqAeq9FtgNWHlypWKjY1VQkKCQkJCtGDBAoWHhystLU1eXl6l+q9Zs0aFhYXW9XPnzik4OFj33XefTb+hQ4fa/HbZ1V+wBwAAcPgZoPnz52v8+PEaM2aMunXrpoSEBLm7uysxMbHM/q1atZKPj4912bRpk9zd3UsFIFdXV5t+LVu2rI3pAACAesChAaiwsFB79+5VWFiYta1Ro0YKCwtTampqpcZYvHixRowYoaZNm9q0p6SkyMvLS0FBQXr00Ud17ty5cscoKChQbm6uzQIAABouhwagH3/8UcXFxfL29rZp9/b2VlZW1jX33717t77++muNGzfOpn3o0KFatmyZkpOTNWfOHG3btk0REREqLi4uc5z4+Hh5eHhYF39/f/snBQAA6jyHXwN0PRYvXqyePXuqf//+Nu0jRoyw/rtnz57q1auXOnTooJSUFA0ePLjUOHFxcYqNjbWu5+bmEoIAAGjAHHoGyNPTU05OTsrOzrZpz87Olo+PT4X75ufna8WKFRo7duw1H+fGG2+Up6enjh49WuZ2V1dXNW/e3GYBAAANl0MDkIuLi/r27avk5GRrW0lJiZKTkxUaGlrhvqtXr1ZBQYEefPDBaz7OqVOndO7cOfn6+l53zQAAoP5z+F1gsbGxeuutt7R06VIdPnxYjz76qPLz8zVmzBhJUnR0tOLi4krtt3jxYkVFRal169Y27Xl5eXriiSf05Zdf6vjx40pOTlZkZKQ6duyo8PDwWpkTAACo2xx+DdDw4cN19uxZTZs2TVlZWerdu7c2bNhgvTA6IyNDjRrZ5rS0tDTt2LFDn332WanxnJycdOjQIS1dulQXLlyQn5+fhgwZolmzZvFdQAAAQFIdCECSNHHiRE2cOLHMbSkpKaXagoKCZBhGmf2bNGmijRs3Vmd5AACggXH4R2AAAAC1jQAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMp04EoIULFyogIEBubm4KCQnR7t27y+2blJQki8Vis7i5udn0MQxD06ZNk6+vr5o0aaKwsDAdOXKkpqcBAADqCYcHoJUrVyo2NlbTp0/Xvn37FBwcrPDwcJ05c6bcfZo3b67MzEzrcuLECZvtc+fO1auvvqqEhATt2rVLTZs2VXh4uC5fvlzT0wEAAPWAwwPQ/PnzNX78eI0ZM0bdunVTQkKC3N3dlZiYWO4+FotFPj4+1sXb29u6zTAMLViwQM8884wiIyPVq1cvLVu2TKdPn9batWtrY0oAAKCOc2gAKiws1N69exUWFmZta9SokcLCwpSamlrufnl5eWrfvr38/f0VGRmpb775xrotPT1dWVlZNmN6eHgoJCSk3DELCgqUm5trswAAgIbLoQHoxx9/VHFxsc0ZHEny9vZWVlZWmfsEBQUpMTFRH330kd59912VlJTolltu0alTpyTJul9VxoyPj5eHh4d18ff3v96pAQCAOszhH4FVVWhoqKKjo9W7d28NGDBAa9asUZs2bfTGG2/YPWZcXJxycnKsy8mTJ6uxYgAAUNc4NAB5enrKyclJ2dnZNu3Z2dny8fGp1BiNGzfWTTfdpKNHj0qSdb+qjOnq6qrmzZvbLAAAoOFyaABycXFR3759lZycbG0rKSlRcnKyQkNDKzVGcXGxvvrqK/n6+kqSAgMD5ePjYzNmbm6udu3aVekxAQBAw+bs6AJiY2MVExOjfv36qX///lqwYIHy8/M1ZswYSVJ0dLRuuOEGxcfHS5KeffZZ/f73v1fHjh114cIFvfjiizpx4oTGjRsn6Zc7xCZPnqznnntOnTp1UmBgoKZOnSo/Pz9FRUU5bJ4AAKDucHgAGj58uM6ePatp06YpKytLvXv31oYNG6wXMWdkZKhRo/+dqDp//rzGjx+vrKwstWzZUn379tUXX3yhbt26Wfs8+eSTys/P11/+8hdduHBBt912mzZs2FDqCxMBAIA5OTwASdLEiRM1ceLEMrelpKTYrL/88st6+eWXKxzPYrHo2Wef1bPPPltdJQIAgAak3t0FBgAAcL0IQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwGn7stMAAB1BSURBVHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHTqRABauHChAgIC5ObmppCQEO3evbvcvm+99ZZuv/12tWzZUi1btlRYWFip/qNHj5bFYrFZhg4dWtPTAAAA9YTDA9DKlSsVGxur6dOna9++fQoODlZ4eLjOnDlTZv+UlBSNHDlSW7duVWpqqvz9/TVkyBD98MMPNv2GDh2qzMxM67J8+fLamA4AAKgHHB6A5s+fr/Hjx2vMmDHq1q2bEhIS5O7ursTExDL7v/fee3rsscfUu3dvdenSRW+//bZKSkqUnJxs08/V1VU+Pj7WpWXLlrUxHQAAUA84NAAVFhZq7969CgsLs7Y1atRIYWFhSk1NrdQYly5dUlFRkVq1amXTnpKSIi8vLwUFBenRRx/VuXPnyh2joKBAubm5NgsAAGi4HBqAfvzxRxUXF8vb29um3dvbW1lZWZUa46mnnpKfn59NiBo6dKiWLVum5ORkzZkzR9u2bVNERISKi4vLHCM+Pl4eHh7Wxd/f3/5JAQCAOs/Z0QVcj9mzZ2vFihVKSUmRm5ubtX3EiBHWf/fs2VO9evVShw4dlJKSosGDB5caJy4uTrGxsdb13NxcQhAAAA2YQ88AeXp6ysnJSdnZ2Tbt2dnZ8vHxqXDfl156SbNnz9Znn32mXr16Vdj3xhtvlKenp44ePVrmdldXVzVv3txmAQAADZdDA5CLi4v69u1rcwHz1QuaQ0NDy91v7ty5mjVrljZs2KB+/fpd83FOnTqlc+fOydfXt1rqBgAA9ZvD7wKLjY3VW2+9paVLl+rw4cN69NFHlZ+frzFjxkiSoqOjFRcXZ+0/Z84cTZ06VYmJiQoICFBWVpaysrKUl5cnScrLy9MTTzyhL7/8UsePH1dycrIiIyPVsWNHhYeHO2SOAACgbnH4NUDDhw/X2bNnNW3aNGVlZal3797asGGD9cLojIwMNWr0v5y2aNEiFRYW6s9//rPNONOnT9eMGTPk5OSkQ4cOaenSpbpw4YL8/Pw0ZMgQzZo1S66urrU6NwAAUDc5PABJ0sSJEzVx4sQyt6WkpNisHz9+vMKxmjRpoo0bN1ZTZQAAoCFy+EdgAAAAtY0ABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATKdOBKCFCxcqICBAbm5uCgkJ0e7duyvsv3r1anXp0kVubm7q2bOn1q9fb7PdMAxNmzZNvr6+atKkicLCwnTkyJGanAIAAKhHHB6AVq5cqdjYWE2fPl379u1TcHCwwsPDdebMmTL7f/HFFxo5cqTGjh2r/fv3KyoqSlFRUfr666+tfebOnatXX31VCQkJ2rVrl5o2barw8HBdvny5tqYFAADqMIcHoPnz52v8+PEaM2aMunXrpoSEBLm7uysxMbHM/q+88oqGDh2qJ554Ql27dtWsWbPUp08fvf7665J+OfuzYMECPfPMM4qMjFSvXr20bNkynT59WmvXrq3NqQEAgDrK2ZEPXlhYqL179youLs7a1qhRI4WFhSk1NbXMfVJTUxUbG2vTFh4ebg036enpysrKUlhYmHW7h4eHQkJClJqaqhEjRpQas6CgQAUFBdb1nJwcSVJubq79k6tAScGlGhm3Pqqp5xi2avI1x/vEFq/p/6mPx7Amj199fD5qSk09z1fHNQzjmn0dGoB+/PFHFRcXy9vb26bd29tb3377bZn7ZGVlldk/KyvLuv1qW3l9fis+Pl4zZ84s1e7v71+5icBuHgscXQGuF8fQFs9H/cbxqx01/TxfvHhRHh4eFfZxaACqK+Li4mzOKpWUlOinn35S69atZbFYqvWxcnNz5e/vr5MnT6p58+bVOrajNeS5SQ17fg15blLDnl9DnpvUsOfXkOcmOWZ+hmHo4sWL8vPzu2ZfhwYgT09POTk5KTs726Y9OztbPj4+Ze7j4+NTYf+r/5udnS1fX1+bPr179y5zTFdXV7m6utq0tWjRomqTqaLmzZs3yBe81LDnJjXs+TXkuUkNe34NeW5Sw55fQ56bVPvzu9aZn6scehG0i4uL+vbtq+TkZGtbSUmJkpOTFRoaWuY+oaGhNv0ladOmTdb+gYGB8vHxsemTm5urXbt2lTsmAAAwF4d/BBYbG6uYmBj169dP/fv314IFC5Sfn68xY8ZIkqKjo3XDDTcoPj5ekjRp0iQNGDBA8+bN07Bhw7RixQrt2bNHb775piTJYrFo8uTJeu6559SpUycFBgZq6tSp8vPzU1RUlMPmCQAA6g6nGTNmzHBkAT169FCLFi30/PPP66WXXpIkvffeewoKCpL0y23vzs7O1vDi7++vrl276sUXX9Ts2bOVnZ2txYsX69Zbb7WOeeutt+rSpUuaMWOGXnvtNfn4+Gj58uWlLox2FCcnJw0cOFDOzg7Pn9WuIc9Natjza8hzkxr2/Bry3KSGPb+GPDepbs/PYlTmXjEAAIAGxOFfhAgAAFDbCEAAAMB0CEAAAMB0CEAAAMB0CEA1YOHChQoICJCbm5tCQkK0e/fuCvuvXr1aXbp0kZubm3r27Kn169fXUqWVFx8fr5tvvlnNmjWTl5eXoqKilJaWVuE+SUlJslgsNoubm1stVVw1M2bMKFVrly5dKtynPhw3SQoICCg1N4vFogkTJpTZv64ft+3bt+vuu++Wn5+fLBZLqR85NgxD06ZNk6+vr5o0aaKwsDAdOXLkmuNW9X1bUyqaX1FRkZ566in17NlTTZs2lZ+fn6Kjo3X69OkKx7Tn9V0TrnXsRo8eXarOoUOHXnPc+nDsJJX5PrRYLHrxxRfLHbOuHLvK/A24fPmyJkyYoNatW+t3v/ud/vSnP5X64uLfsvf9Wh0IQNVs5cqVio2N1fTp07Vv3z4FBwcrPDxcZ86cKbP/F198oZEjR2rs2LHav3+/oqKiFBUVpa+//rqWK6/Ytm3bNGHCBH355ZfatGmTioqKNGTIEOXn51e4X/PmzZWZmWldTpw4UUsVV1337t1tat2xY0e5fevLcZOk//znPzbz2rRpkyTpvvvuK3efunzc8vPzFRwcrIULF5a5fe7cuXr11VeVkJCgXbt2qWnTpgoPD9fly5fLHbOq79uaVNH8Ll26pH379mnq1Knat2+f1qxZo7S0NP3xj3+85rhVeX3XlGsdO0kaOnSoTZ3Lly+vcMz6cuwk2cwrMzNTiYmJslgs+tOf/lThuHXh2FXmb8Df//53/fvf/9bq1au1bds2nT59Wvfee2+F49rzfq02BqpV//79jQkTJljXi4uLDT8/PyM+Pr7M/vfff78xbNgwm7aQkBDjr3/9a43Web3OnDljSDK2bdtWbp8lS5YYHh4etViV/aZPn24EBwdXun99PW6GYRiTJk0yOnToYJSUlJS5vT4dN0nGhx9+aF0vKSkxfHx8jBdffNHaduHCBcPV1dVYvnx5ueNU9X1bW347v7Ls3r3bkGScOHGi3D5VfX3XhrLmFhMTY0RGRlZpnPp87CIjI4077rijwj518dgZRum/ARcuXDAaN25srF692trn8OHDhiQjNTW1zDHsfb9WF84AVaPCwkLt3btXYWFh1rZGjRopLCxMqampZe6Tmppq01+SwsPDy+1fV+Tk5EiSWrVqVWG/vLw8tW/fXv7+/oqMjNQ333xTG+XZ5ciRI/Lz89ONN96oUaNGKSMjo9y+9fW4FRYW6t1339XDDz9c4Q/91qfj9mvp6enKysqyOTYeHh4KCQkp99jY876tS3JycmSxWK75+4VVeX07UkpKiry8vBQUFKRHH31U586dK7dvfT522dnZWrduncaOHXvNvnXx2P32b8DevXtVVFRkcyy6dOmidu3alXss7Hm/VicCUDX68ccfVVxcXOobp729vZWVlVXmPllZWVXqXxeUlJRo8uTJuvXWW9WjR49y+wUFBSkxMVEfffSR3n33XZWUlOiWW27RqVOnarHaygkJCVFSUpI2bNigRYsWKT09XbfffrsuXrxYZv/6eNwkae3atbpw4YJGjx5dbp/6dNx+6+rzX5VjY8/7tq64fPmynnrqKY0cObLCH5us6uvbUYYOHaply5YpOTlZc+bM0bZt2xQREaHi4uIy+9fnY7d06VI1a9bsmh8R1cVjV9bfgKysLLm4uJQK4tf6+3e1T2X3qU5177upUedNmDBBX3/99TU/hw4NDbX5AdpbbrlFXbt21RtvvKFZs2bVdJlVEhERYf13r169FBISovbt22vVqlWV+i+0+mLx4sWKiIiQn59fuX3q03Ezs6KiIt1///0yDEOLFi2qsG99eX2PGDHC+u+ePXuqV69e6tChg1JSUjR48GAHVlb9EhMTNWrUqGveYFAXj11l/wbUdZwBqkaenp5ycnIqddV7dna2fHx8ytzHx8enSv0dbeLEifrkk0+0detWtW3btkr7Nm7cWDfddJOOHj1aQ9VVnxYtWqhz587l1lrfjpsknThxQps3b9a4ceOqtF99Om5Xn/+qHBt73reOdjX8nDhxQps2barw7E9ZrvX6rituvPFGeXp6lltnfTx2kvT5558rLS2tyu9FyfHHrry/AT4+PiosLNSFCxds+l/r79/VPpXdpzoRgKqRi4uL+vbtq+TkZGtbSUmJkpOTbf6L+tdCQ0Nt+kvSpk2byu3vKIZhaOLEifrwww+1ZcsWBQYGVnmM4uJiffXVV/L19a2BCqtXXl6ejh07Vm6t9eW4/dqSJUvk5eWlYcOGVWm/+nTcAgMD5ePjY3NscnNztWvXrnKPjT3vW0e6Gn6OHDmizZs3q3Xr1lUe41qv77ri1KlTOnfuXLl11rdjd9XixYvVt29fBQcHV3lfRx27a/0N6Nu3rxo3bmxzLNLS0pSRkVHusbDn/Vqtavwya5NZsWKF4erqaiQlJRn//e9/jb/85S9GixYtjKysLMMwDOOhhx4ynn76aWv/nTt3Gs7OzsZLL71kHD582Jg+fbrRuHFj46uvvnLUFMr06KOPGh4eHkZKSoqRmZlpXS5dumTt89u5zZw509i4caNx7NgxY+/evcaIESMMNzc345tvvnHEFCr0+OOPGykpKUZ6erqxc+dOIywszPD09DTOnDljGEb9PW5XFRcXG+3atTOeeuqpUtvq23G7ePGisX//fmP//v2GJGP+/PnG/v37rXdBzZ4922jRooXx0UcfGYcOHTIiIyONwMBA4+eff7aOcccddxivvfaadf1a79u6Mr/CwkLjj3/8o9G2bVvjwIEDNu/FgoKCcud3rdd3XZjbxYsXjSlTphipqalGenq6sXnzZqNPnz5Gp06djMuXL5c7t/py7K7Kyckx3N3djUWLFpU5Rl09dpX5G/DII48Y7dq1M7Zs2WLs2bPHCA0NNUJDQ23GCQoKMtasWWNdr8z7taYQgGrAa6+9ZrRr185wcXEx+vfvb3z55ZfWbQMGDDBiYmJs+q9atcro3Lmz4eLiYnTv3t1Yt25dLVd8bZLKXJYsWWLt89u5TZ482fo8eHt7G3fddZexb9++2i++EoYPH274+voaLi4uxg033GAMHz7cOHr0qHV7fT1uV23cuNGQZKSlpZXaVt+O29atW8t8LV6dQ0lJiTF16lTD29vbcHV1NQYPHlxq3u3btzemT59u01bR+7Y2VTS/9PT0ct+LW7dutY7x2/ld6/VdF+Z26dIlY8iQIUabNm2Mxo0bG+3btzfGjx9fKsjU12N31RtvvGE0adLEuHDhQplj1NVjV5m/AT///LPx2GOPGS1btjTc3d2Ne+65x8jMzCw1zq/3qcz7taZY/n9BAAAApsE1QAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAqbfTo0YqKinJ0GfXO8ePHZbFYdODAAUeXUiUDBw7U5MmTHV0GUCMIQEAdN3r0aFksllJLXf8lb/yPv7+/MjMz1aNHD0eXUqaUlBRZLJZSv+S9Zs0azZo1y0FVATXL2dEFALi2oUOHasmSJTZtbdq0KdWvsLBQLi4utVVWnVFUVKTGjRs7uoxyOTk5ycfHp9Yf93pfD61atarGaoC6hTNAQD3g6uoqHx8fm8XJyUkDBw7UxIkTNXnyZHl6eio8PFySNH/+fPXs2VNNmzaVv7+/HnvsMeXl5VnHmzFjhnr37m3zGAsWLFBAQIB1vbi4WLGxsWrRooVat26tJ598UpX56cAPPvhA3bt3l6urqwICAjRv3jzrtn/84x8KCQkptU9wcLCeffZZ6/rbb7+trl27ys3NTV26dNG//vUv67arHyetXLlSAwYMkJubm957770ya/n222912223yc3NTd26ddPmzZtlsVi0du1aa5+TJ0/q/vvvV4sWLdSqVStFRkbq+PHj1u1XP/Z76aWX5Ovrq9atW2vChAkqKiqy9vntmJLUokULJSUl2dR89SOwq2dckpOT1a9fP7m7u+uWW25RWlqazRgfffSR+vTpIzc3N914442aOXOmrly5Ut5Tb631+eefl5+fn4KCgiRJ77zzjvr166dmzZrJx8dHDzzwgM6cOWOtbdCgQZKkli1bymKxaPTo0ZJKfwR2/vx5RUdHq2XLlnJ3d1dERISOHDlSbj1AXUYAAuq5pUuXysXFRTt37lRCQoIkqVGjRnr11Vf1zTffaOnSpdqyZYuefPLJKo07b948JSUlKTExUTt27NBPP/2kDz/8sMJ99u7dq/vvv18jRozQV199pRkzZmjq1KnWIDBq1Cjt3r1bx44ds+7zzTff6NChQ3rggQckSe+9956mTZum559/XocPH9YLL7ygqVOnaunSpTaP9fTTT2vSpEk6fPiwNfj9WnFxsaKiouTu7q5du3bpzTff1D//+U+bPkVFRQoPD1ezZs30+eefa+fOnfrd736noUOHqrCw0Npv69atOnbsmLZu3aqlS5cqKSnJOqfr8c9//lPz5s3Tnj175OzsrIcffti67fPPP1d0dLQmTZqk//73v3rjjTeUlJSk559/vsIxk5OTlZaWpk2bNumTTz6xznPWrFk6ePCg1q5dq+PHj1tDjr+/vz744ANJUlpamjIzM/XKK6+UOfbo0aO1Z88effzxx0pNTZVhGLrrrrtswiBQb9TKb84DsFtMTIzh5ORkNG3a1Lr8+c9/NgzDMAYMGGDcdNNN1xxj9erVRuvWra3r06dPN4KDg236vPzyy0b79u2t676+vsbcuXOt60VFRUbbtm2NyMjIch/ngQceMO68806btieeeMLo1q2bdT04ONh49tlnretxcXFGSEiIdb1Dhw7G+++/bzPGrFmzjNDQUMMwDCM9Pd2QZCxYsKCiKRuffvqp4ezsbGRmZlrbNm3aZEgyPvzwQ8MwDOOdd94xgoKCjJKSEmufgoICo0mTJsbGjRsNw/jl+W/fvr1x5coVa5/77rvPGD58uHX912Ne5eHhYSxZssSm5v379xuGYRhbt241JBmbN2+29l+3bp0hyfj5558NwzCMwYMHGy+88ILNmO+8847h6+tb7pxjYmIMb29vo6CgoMLn5j//+Y8hybh48aJNPefPn7fpN2DAAGPSpEmGYRjGd999Z0gydu7cad3+448/Gk2aNDFWrVpV4eMBdRHXAAH1wKBBg7Ro0SLretOmTa3/7tu3b6n+mzdvVnx8vL799lvl5ubqypUrunz5si5duiR3d/drPl5OTo4yMzNtPq5ydnZWv379KvwY7PDhw4qMjLRpu/XWW7VgwQIVFxfLyclJo0aNUmJioqZOnSrDMLR8+XLFxsZKkvLz83Xs2DGNHTtW48ePt45x5coVeXh42Izbr1+/CueQlpYmf39/m2tv+vfvb9Pn4MGDOnr0qJo1a2bTfvnyZZuzVN27d5eTk5N13dfXV1999VWFj18ZvXr1shlTks6cOaN27drp4MGD2rlzp80Zn+Li4msex549e5a67mfv3r2aMWOGDh48qPPnz6ukpESSlJGRoW7dulWq1sOHD8vZ2dnmNdG6dWsFBQXp8OHDlZswUIcQgIB6oGnTpurYsWO5237t+PHj+sMf/qBHH31Uzz//vFq1aqUdO3Zo7NixKiwslLu7uxo1alQqyNTWxxgjR47UU089pX379unnn3/WyZMnNXz4cEmyXqf01ltvlbpW6NcBRCo9b3vk5eWpb9++ZV5D9OuLzH97gbXFYrGGiKvr9jyfvx7XYrFIknXcvLw8zZw5U/fee2+p/dzc3Mod87fPS35+vsLDwxUeHq733ntPbdq0UUZGhsLDw20+5gPMhgAENDB79+5VSUmJ5s2bp0aNfrnMb9WqVTZ92rRpo6ysLBmGYf3D++vvqPHw8JCvr6927dql//u//5P0y1mYvXv3qk+fPuU+dteuXbVz506btp07d6pz587WANO2bVsNGDBA7733nn7++Wfdeeed8vLykiR5e3vLz89P33//vUaNGnVdz0NQUJBOnjyp7OxseXt7S5L+85//2PTp06ePVq5cKS8vLzVv3tzux2rTpo0yMzOt60eOHNGlS5fsHu9qbWlpaeUG38r69ttvde7cOc2ePVv+/v6SpD179tj0uXrGqLi4uNxxunbtqitXrmjXrl265ZZbJEnnzp1TWlpapc8iAXUJF0EDDUzHjh1VVFSk1157Td9//73eeecd68XRVw0cOFBnz57V3LlzdezYMS1cuFCffvqpTZ9JkyZp9uzZWrt2rb799ls99thjpb4n5rcef/xxJScna9asWfruu++0dOlSvf7665oyZYpNv1GjRmnFihVavXp1qaAzc+ZMxcfH69VXX9V3332nr776SkuWLNH8+fOr9Dzceeed6tChg2JiYnTo0CHt3LlTzzzzjKT/nW0ZNWqUPD09FRkZqc8//1zp6elKSUnR3/72N506darSj3XHHXfo9ddf1/79+7Vnzx498sgj131b/rRp07Rs2TLNnDlT33zzjQ4fPqwVK1ZY51BZ7dq1k4uLi/X18PHHH5f6bp/27dvLYrHok08+0dmzZ23uGLyqU6dOioyM1Pjx47Vjxw4dPHhQDz74oG644YZSH3sC9QEBCGhggoODNX/+fM2ZM0c9evTQe++9p/j4eJs+Xbt21b/+9S8tXLhQwcHB2r17d6mQ8vjjj+uhhx5STEyMQkND1axZM91zzz0VPnafPn20atUqrVixQj169NC0adP07LPPWu84uurPf/6zzp07p0uXLpX6Zulx48bp7bff1pIlS9SzZ08NGDBASUlJCgwMrNLz4OTkpLVr1yovL08333yzxo0bZ70L7OpHSO7u7tq+fbvatWune++9V127dtXYsWN1+fLlKp0Rmjdvnvz9/XX77bfrgQce0JQpUyp1rVVFwsPD9cknn+izzz7TzTffrN///vd6+eWX1b59+yqN06ZNGyUlJWn16tXq1q2bZs+erZdeesmmzw033KCZM2fq6aeflre3tyZOnFjmWEuWLFHfvn31hz/8QaGhoTIMQ+vXr6/T38EElMdiVHRFIwA0IDt37tRtt92mo0ePqkOHDo4uB4ADEYAANFgffvihfve736lTp046evSoJk2apJYtW2rHjh2OLg2Ag3ERNIAG6+LFi3rqqaeUkZEhT09PhYWF2XwzNQDz4gwQAAAwHS6CBgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApvP/AOwBW7WC+NwVAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "np.mean(list(clos_C.values()))" + "pd.Series(d).plot.hist(bins=20) \n", + "plt.xlabel(\"Fraud over genuine ratio\")" ] }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 30, "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "MQOah_yDtbaW", - "outputId": "558fc1ea-f457-4386-b5ce-8dc61f8f0115" + "scrolled": true }, "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAMWCAYAAAB2gvApAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd1yVdfvA8c85cNhLUcEFCgJuxL034tbU0sydIzO1MjVtmf3SLE3LkZmSM60eM2fi3uJEwMlyoDIF2eNwzv37446jhNbz9KD45PV+vXxp5x5878MJ7uv+Xtf11SiKoiCEEEIIIYQQJUhb2gMQQgghhBBC/PNIoCGEEEIIIYQocRJoCCGEEEIIIUqcBBpCCCGEEEKIEieBhhBCCCGEEKLESaAhhBBCCCGEKHESaAghhBBCCCFKnAQaQgghhBBCiBIngYYQQgghhBCixEmgIYQQQgghhChxEmgIIYQQQgghSpwEGkIIIYQQQogSJ4GGEEIIIYQQosRJoCGEEEIIIYQocRJoCCGEEEIIIUqcBBpCCCGEEEKIEieBhhBCCCGEEKLESaAhhBBCCCGEKHESaAghhBBCCCFKnAQaQgghhBBCiBIngYYQQgghhBCixEmgIYQQQgghhChxEmgIIYQQQgghSpwEGkIIIYQQQogSJ4GGEEIIIYQQosRJoCGEEEIIIYQocRJoCCGEEEIIIUqcBBpCCCGEEEKIEieBhhBCCCGEEKLESaAhhBBCCCGEKHESaAghhBBCCCFKnAQaQgghhBBCiBIngYYQQgghhBCixEmgIYQQQgghhChxEmgIIYQQQgghSpwEGkIIIYQQQogSJ4GGEEIIIYQQosRJoCGEEEIIIYQocRJoCCGEEEIIIUqcBBpCCCGEEEKIEieBhhBCCCGEEKLEmZf2AIQQQgjxZITfzGD9obvEJGTj4WLDkPaVqOduX9rDEkI8JzSKoiilPQghhBBClKzwmxm8FXgFRQGjAloNaDSwcFQtCTaEEE+FpE4JIYQQ/0DrD901BRmg/q0o6utCCPE0SKAhhBBC/APFJGSbgoxCRkV9XQghngYJNIQQQoh/mvR0POKuoTEairys1YCHi00pDUoI8byRYnAhhHhGSSGv+FsuXYL+/XlZU4ZTAxYABjSYoWAAzBjaoVJpj1AI8ZyQGQ0hhHgGFRbyno1OIzlDz9noNN4KvEL4zYzSHpp4lv34IzRrBjodpxZ0J8RsPCmcJo9EUjhNRZ+t1HWTYFUI8XRI1ykhhHgGTV9zjbPRaUVy7LUaaOzpyLzhPqU3MPFs0uth2jRYtAgGDyZjyQI8v6tPUk5Skd0szSyJfyceJyunUhqoEOJ5IjMaQgjxDHpcIe+1uLTSGZB4dsXFQceOsGQJLF4M69fzxYVlJOckF9s135BPYEhgKQxSCPE8kkBDCCGeQdVdrH/PqX9AwUBM1knGbR9HYlZiKY1MPFOOHoWGDSEmBg4fhjfe4E7GXeafmI9Goym2u5W5FUtOL8HwhyJxIYR4EiTQEEKIZ1D9mkkoKKZgQ8EAikLfFnb8dPknvBZ7seDEAvIN+aU8UlEqFAUWLoQOHcDHB86fh5YtAfjw4IdYmFlgVIxFDjHXmJNTkMP1+9fZGbmzNEYthHjOSKAhhBDPoJ9ivuDCHwp5Q8xew+PKESInRvJKvVeYtm8adZfVZfu17Ui53XMkMxMGDYK331b/7NsHLi4AhCWE8f2F73G2cS52WAW7CmjQ4FHGg69Pff20Ry2EeA5JMbgQQjxjolOi8VrshYKCk5UT93Pvm7aVyYGY16/h5OZNeEI4bwa9yYHrB/D38GdhwELqVKhTiiMX/6n/uIXx1avQrx/ExsLq1dC/f5HNXdd3JTo1muup1zEoRdOj6leoT0RKBPUq1OPM3TNcHH9RPi9CiCdKZjSEEOIZ89Wpr7AytwKgikMV0+saINUKpr7fDBSFei712Dd0H1sGbiEmNQbf5b5M3DWRlJyUUhq5+E/8xy2MN2+GJk3Uf585UyzI2BO9h6DoIF6q/VKxIAPA3tKevII8riZdpZJ9JRafXlzSlySEEEVIoCGEEM+Q+7n3CQwJxNrcGoBqjtVM2xQADayqfp/dX08CQKPR0LdmXy69fok5neawJnQNNb6uwZLTSygwFjz9CxD/tvWH7qIomLqLGRW19GL9obtFdywogKlTYcAA6NEDTp+GmjWL7GIwGpi6dyqtqrZiR8QOQK3JeJi1zhoFhQx9Bt1rdGdt6FpSc1Kf2PUJIYQEGkII8QxZeX4leqOelFx1VuLhGQ2AKvZVUDTw3qUlZN++bnrd0tySaa2mETExgn61+jHpt0n4LvdlT/Sepzp+8e+LfkwL45iE7AcvJCRA587q+hgLF8LGjWBnV+xc68LWEZYQxuf+nxOeGA6AQtGTm2vM0Wl12OhscLR0xKAYWBWyqsSvSwghCkmgIYQQz4gCYwFfn/qaJpXU9JiqDlUpY10GM42ZaR93J3fQwPnK8MWU5uoj8Ie42rmysvdKzo49S1nrsgSsD6DXxl5E3It4qtci/lxmfiaJ+tBiLYy1GvBwsVH/48QJtXXttWtw4AC8+SY8omVttj6b9w68x4u1X+RS4iVTgPHH9KncglzqVKiDi60Lx2KP8XLdl6XVrRDiiZJAQwghnhGbL28mNj0WOws7HCwd8Kvoh43OBq3mwY/qM7fP0KpqKwC+8Ezk1JIZjzxXw4oNOTLiCD8O+JGwhDDqLqvLlKApRQrLRemIy4ijxaoWhOoXFmlhjGJAg8LQ9hXVhffatQNPT7V1bZs2jz3fwpMLScpKYm6nuXx27DMAHHWOxfbL1mfj5+qHUTFy5u4ZhvkO42baTbZHbH8i1ymEEBJoCCHEM2Jh8ELaV2vPmTtnKDAW0MClATY6myIpMPlKPtNaTkODhmwdfHpyHvo7sY88n0aj4aU6L3F1wlU+bPchy88tx3uxNyvOrZCn2KXkctJlmq1sxpWkK6Rrwoq0ME7VnObDPdOp+/ZImDQJJk6E/fuhYsXHni8hM4HPjn/GhCYTqGRfiZj7MQC4lXEDQMODGZCcghwauDYgLjMOo2IkOTuZVlVbSatbIcQTI4GGEEI8A07GnuTUnVP08u5FSm4K2fpsfF19sTa3Lrbw2saLGxlQewCKFrb7wIqJLYqlUD3MWmfN+23fJ+KNCAJqBDBuxzgarWjEoRuHnvBViYcdunGIFitbkJmfaUprSteEEW7+JhH2I7iie4ftjkdg61a1FuPLL0Gn+9Nzfnz4Y8y15rzf9n2+OPGF6fVsvVrnodVoTcFGTkEOfq5+5Bvy8SzjyZ7oPUxqNomDNw4SnhD+hK5aCPE8k0BDCCGeAQuDF+Lt7E1mfqap41QDV3VG44+Bxm9Rv/Ftz28x15qjVTR8Wv0OV5bO/suvUdmhMuteWMfJV09iZW5FhzUd6P9Tf2JSY57INYkHfgj/gS7ruuBq70pq7oNOT4X1N77aSthnFbCsCSRZGuD27b8859Xkq6w4t4L32ryHs40z35z5BgAtWpKzkwEwKkbMtOrXyNHn4OvqC4BnWU+CooPo69OXyvaVpdWtEOKJkEBDCCFK2Y37N9h8ZTOTm01mb8xeqpepjoOlA9WcqmGjszHtV/hkOi0vjdvpt5nYdCJGjUKSLczf9zGGO399cwrQvEpzTrx6gnUvrCP4djC1ltZi5v6ZZOQ9Zv0G8bcpisLco3N55ZdX6FCtA9Ep0ZhrzU0BhoWZBQAN9oZzzwawtmLhW81hxgwIDv7Tc0/fN52qjlV5o+kbxGfEE58VjxYtbdzbmL6XCgoWWvVr5Bbk4mDpQI2yNbAxt+F2+m2iUqMY33g868PWcy/73pN7I4QQzyUJNIQQopQtPrUYR0tH+vr05WTsSWzMbajvUh+tRmsKNDRo0GkfpNEsCl7EnE5z1BkPcy2Bfgo/v9bmT1OoHqbVaBlSfwgRb0QwvdV0dUZliTerL6wuNoMi/p4CYwHjdoxj5oGZTGo6ibNxZ6lgW4ECYwFlrcsCajoTQP32A9FqtLR1b8cS20uktPSDgQMh5dGLLx6+cZht17Yxp+McrMyt+OTIJ6ZtHat1xMiD76GluSWgBhqgzpQlZydjZW5FUFQQYxuNxagYpdWt+McLv5nB9DXXePHzEKavufb4xTFFiZFAQwghSlFGXgYrQ1YyrtE4Tt05hUExkJqbSgOXBoBaXwFgb2FfpPvUtmvbsDK3YnaH2RgVI3aKjo/db3Bz2Wf/0de3tbBldofZXJ1wlbbubRm5dSTNVjbjROyJkrvI51BGXga9N/bm+wvf802Pbzhw4wC25rbEZcbhbO1MUnYSuofq8Z1eeJkmlZpgYW5BgbGAr95uCRkZMHJkseDRqBh5Z+87NKnUhIF1BwKwIXyDug2j6XNSOANmq7MF1EBDURT8XP0ISwyjjVsb9sTsobxteV6u9zJLzyyVRR7FP1b4zQzeCrzC2eg0kjP0nI1O463AKxJsPGESaAghRCkKDAkkW5/NG03fICg6iBpla3D9/nVTLn3hjIazjTP5xnzTcck5yVxNusrkZpMpZ1OOLE0BEc6wbNt7KP9Gfv8fuTu58+OAHzky4ggGo4FWga0YvHkwsWmP7mglHu9uxl3arW7HsVvH2PHyDvbF7OPG/RvozNUZqdaGyugMUD/T1nSMVqPF38OfY7eOMbbRWL66spq0wGWwbRt8XbQr1KaLmzh79yzzu8xHq9FyKfESaXlpmGvNqeJQhdN3TwNQwaYCAI5Waqtbg2Ig35CPn6sf6XnpNK7YmMM3DpNbkMvEphO5lXaLbde2PY23SIinbv2huygKpkUyjYoaw68/dLd0B/YPJ4GGEEKUEoPRwFenvuKlOi9Ryb4SQdFBpnUOGriqMxqFgUZF+4oYFSPah35sLzuzDHOtOUu6LUFBobxteRY2U9j3aod/O4Xqj9q4t+HMmDOs7LWS/df347PEh1mHZpm6GIk/dynxEs1XNicxK5Fjo45x+s5pNl/ZzAjfEcSkxtA8pxxH0sLQa8GtSWfsLNRVvs20ZnTx7EJKTgpda3QltyCXxWWj4K23YOpUOHMGUGclZu6fSR+fPrR1bwvArEOzALAxt6FbjW5ciL8AQCWHSgA4WzubxpeZn4lfRT8AytuWJ6cgh6M3j9KwYkNau7WWonDxjxWTkG0KMgoZFfV18eRIoCGEEKVk67WtXL9/nbeav0VkSiQ37t/AxdYFrUZLnfJ1gAeBhpuDui6Cs82Dm8afr/wMwEt1XsKzjCcJOUnYaS35wC2KxGUL/va4zLRmvNrwVSInRjKx6UTmHpuLzxIfNoZvRPmbAczz4OD1g7QKbEUZ6zIEjw7meup1Pjz0ITNaz2B1SCBaBQYfSyPVGtCApc6a6k7VAbX7VPMqzbGzsON83HnGNBzDwuCFZHz8Hvj9Xq9x/z6LTy3mdvpt5nWeB6jF5jsidwCQnp9Od6/uJGQlAA9qMyrYVjCNMTM/E1c7V1xsXUjOTqayfWWCooMAmNR0EoduHCIsIexpvWVCPB0REZSJPfdgcczfaTXg4WLzmINESZBAQwghSsnC4IW0cWtD40qNCYoKwsLMgjxDHjXL1TTVZhS2unVzVAONWuVqmY6Pz4wnKiUKjUbDqt5qIa+NQzlOVYG1m6ajxP53aU8Olg7M85/H5dcv07hSYwb/MpjW37fmzJ0z/9V5/4nWh60nYH0ATSs35ejIo6TlpjFkyxBeqPkC8ZdOk6nPZmykA7uGNMXZ2hk/Vz/iMuNwd3QH1NQpnZmOjtU7sjdmL9NbTyczP5NloSth0yZISeHeuKF8evRTxjUah085HwAOXD9AbkEulmaW6LQ62rm3I9+gptgZjWpBuIudi2mcmfmZAPhV9CM0IZQunl3YE70HgL41+1LFoQqLT8mshviHUBRYvpyL/r7ssldnfguDDa0GNBoY2qFSKQ/yn00CDSGEKAVn757l2K1jvNX8LQCCooNo7daaS0mX8HXxNe1XOKNR2KWosLC30KrzaoDRrlo7mlduzp2MO/g512VWWyNnRnb52ylUD/Ms68mWgVvYN3Qf6XnpNF3ZlBG/juBuhuQ2K4rCp0c+ZeiWoQypP4Sdg3dSYCygz6Y+VHOsxtvhdnyfsh9boxkTP9nDnsST5Ohz6Ondk8iUSNyd1ECjcK0Lfw9/jt86jpOVEyMbjGTByQVkVa4AgYF8kr4DY34eH7X/yPT1Pz36KQAuti60dmvN1eSrpm2FXaYq2T+4kTIFGq5+hMSH0MWzC+GJ4dzNuIvOTMfrjV9nfbi0uhX/AAkJ0KsXMTPH02W4hkTLi4SbTSDTLIRy9joaezqy6NVa1HWzL+2R/qNJoCGEEKVgYfBCPMp40NunN3kFeRy8cRB/D3/CEsJM9RnwINBwsHQAIDE7sch5frj4g+nf3/X+DoBb2XFodTpmu1zl/rKFJTbmTh6dCBkXwrLuy9gRsQPvxd7MOTrHdEP7vNEb9IzdPpb3D77P7PazWdV7FRqNhkH/GkRqdgpbfnPgtZR1oIEven7Fr3f2o9PqyC7IplP1TtzNuFtkRgOgi2cX9EY9h28c5t3W75Kam8q3574lqn19ljXT8u5BPRUi7gBq+9yjN48C6ueiu1d3NoZvNI2vsK7mUYFGA9cG3M24SwOXBmjQmGY1xjQag6IorDy/8gm/e0I8Qdu2Qb163L0UTOepLmTbWKDTWZKquUBlnyB+nubHvOE+EmQ8BRJoCCHEU3Y7/TY/XfqJSU0nYaY143jscbL12dQpX4fM/MwiMxoWZhZo0KDRqOtoxKbHUsaqjLpNa8GttFtcT70OQN0Kdent05t7OffoWqcvO71h26qp8F+mUD3MXGvO+CbjiZwYyZiGY/jo0EfUWlqLzZc3P1f1Gxl5GfTa2IvVoatZ3Wc1H7T7AI1Gw7v73uXA9QP89KuO/RmhXHIBzzKejGk0jsCQQGqUrUEF2wqmTlBVHKsAD1YI9yrrhbujO3ui91DNqRrD6g/j8+OfM23vNCo4VOTNrHrw0kuQns6m8E0UKAXY6ezILcilW41uHL51GFAD04x8tW1nRbuKpnFn6bMAdUYD4GbaTTV17/c6jXI25Xil3ivS6lb8b8rMhLFjoU8f7rVqiP9b5cjSKaTlpdHevT0AA2oPKN0xPmck0BBCiKdsyekl2OhsGOU3CoCgqCBc7VzJM+QBFJnR0Gg02OhsyNHnUM6mHMnZyXSq3gnA1O52Xdg60/6Luy1Gq9GyPWI7jcv58ra/kSvDu5dICtXDyliXYWHXhYSPD6dWuVoM+HkAHdZ0MHU8+ie7m3GXtqvbcvL2SXa/spvhDYYDsD50HQtOLmD+HqhvUYUpndUaiRW9VnDi9gmiU6PJzM+kh1cPolOigQdF/oWpUxqNhi6eXdgbsxeAmW1mkpydzJarW/i046fY/PCzmhIybhwLTqoF/15lvXBzdKN2+dqmoNPH2cc0e/Hw6vKFr3mW9cTewp4L8RcI8Axgb/Re00KNE5tNJDY9lq1Xtz65N1GIkhYcrDZO2LCBjOVf0617Ckl5KdjqbGlRpQU3024C0KF6h1Ie6PNFAg0hhHiKsvKzWHFuBWMajsHeUp22D4oOootnF0LjQ3GxdSlSvAvqjWK2Phs3RzeMipEunl2KbF8butb0bzdHN8b4jSG3IJdaleqTaW3G5w4Xyfqm6FoMJaVmuZrsemUXuwbvIj4znobfNmTs9rEkZiX+9cH/gy4mXqT5yuYkZydzbOQxOnmoQd/ZmGOM3jKS4Rdgsu9YpkyqSY4hj66eXelYvSOBIYG4ObhxM+0mPbx6EJkSiaOloykl7uHFGP09/LmSfIXYtFg8ynhQxroMOq2OF2u/CDVqwMqVZP6yidAENai7l3OPbjW6AWogodVo8SnnQ54hD61Gi7nWHFAX8CsMNLQaLb6uvqY6jXs59zgfdx5QA9227m35+vST+cwIUaIKCmDWLGjdGpydyT13ij5WW7h27xr9a/UnNj2W+V3mcznpMk5WTlRxqFLaI36uSKAhhBBP0ZrQNaTlpTGx6URA7RwVmhBKgGcAFxIuFJnNKGSjsyGnIAcfZ7XTUFmbsqZtDhYORKdGcyvtlum1Tzt9iqWZJRvCN/Bmq3dY7QeHFk+BW7eKnbukdPPqRvj4cBYGLOTnyz/jtdiLBScWmDog/RMcuH6AVoGtKGtdluBXg6nnUg+A+Mun6buiI75xRpb3Xcnx6YNZd+kHNBoNX3f7moy8DH6+/DP1XOqh0+rw9/QnKiWKGmVrmGYRClOnQK2F0aBhb8xefrnyC8nZyRQYC1gb9ntA+dJLLJvQDAXw1jtyK/0W3Wp0IzY9FgV15qpGmRoUGAvQaXWmQENnpjMFGgANXBoQEh9C8yrNsbewJygqyLRtUtNJHLl55LmYoRL/wyIjoVUr+L//gw8+QH/4IAMvvEfw7WC+6f4NgRcCmdpyKrfTb6Og0Kpqq9Ie8XNHAg0hhHhKjIqRRcGL6F+rv6nb0J7oPWjQ4O/hT2h86CMDDWudNdn6bOpV+P3GNiMeKzMr4MGT8B8v/mja39nGmXdbv4tRMRKaGEpNxxq83tXArSF9SjyF6mE6Mx2Tm08mcmIkQ+oNYdq+adRdVpft17b/z9dvrAtdR9f1XWlRpQVHRh6hskNlAPJ2bKX/Vy0xKEa2jAzCbMgwRm8bjVajZVKzSXg5e/HTpZ/I0eeQkZ9Bu2rtcLB0IDIlEi9nrweBhvZBoFHWuixNKjfht8jfmL5vOt1qdGNg3YHMPTbXFLgtd0vAzAivnMtHp9XRyaOTKdXJqBhxtXMFwMrcyhTEWJhZFAk0/Cr6EXkvkjxDHp08OpnqNAD61OxDVYeq0upWPJsUBVasgAYNICUFjh/H+OEHjNo1ll2Ru/jXi//iu5DvqOpQlQ/afsDWa1tNP2fF0yWBhhBCPCU7I3YSmRJpamkLatpUw4oNMdOaEZseW6QQvFBh6lQN5xoAhCWG0bBiQwDu590H4PsL3xc5ZmrLqThaOrI7ajcfdprNHUcNSy0vkLvsyd84lrMpx9IeS7kw7gJujm703tSbgPUBXEq89MS/dklTFIVPDn/CsF+HMcx3GNtf3q6mOxmNKLM+4o3v+nLWVeGX4Tup1NyfxacXc+3eNewt7Pmw3YcABF4IpFP1TgTfDqanV08AIu9F4lXWC4NS2NO/6K9jfw9/dkXt4vr963zu/znvt3mfW2m3WBe6jviMeK6n3UBXACcq5NE20xk7nS3br203HV/GWm0YYGthawpidNqiMxp+rn4oKIQlhBHgGcDJ2ydJz0sH1KL/CU0msCF8A8nZyU/o3RXib0hMhD59YNw4GDIEQkJQmjZl8m+T2RC2gfUvrCchK4FDNw6xvOdyLMws2BW5CwWFllVblvbonzsSaAghxFOyMHghzas0p0XVFoD65HlP9B4CPAMIjQ8F+NPUqWpO1QC4lHiJl+u+bNruYOnAleQr3Em/Y3rN1sKWuZ3mAjD32FzebPE281tCyPwpcOPGE7rCouq51GPv0L38OvBXYlJj8F3uy8RdE/9n1mjQG/SM3jaaDw99yCcdPuG7Xt+hM9OpT1B79OCbXbNZ2RCW91lBi9oB3E6/zfsH3gdgbqe5OFk5cTX5KidiT+Dr6ku+IZ+e3j3Jys8iLjPusalTAC2qtCBbn01v797UrVCXOhXq0L9Wf+Ycm8PcY+r3tUzZihz2NKP70XhYs4bwxHDT8YUF4GUs1foOKD6jUadCHXRaHSFxap1GgbGAg9cPmraPbjgajUbDd+e+ewLvrhB/w44dUK+eWvi9dSt8+y3Y2fHhwQ9ZcmYJ3/b8lg7VOzBlzxSG1h9KZ4/OnL5zmvu597Ews3jkz1fxZEmgIYQQT8GF+AscvHGwyGxGSFwIydnJBNQI4EL8BazMrfBy9ip2rLW5mjpVGGjEpMbQvnp70/bK9moaz78u/6vIcaMbjqayfWXCE8Pxq+hHRTtXxnQrIGlo/yeaQvUwjUZDn5p9uPT6JeZ0msOa0DV4LfZi8anF6A36pzKGvyM9L52eG3uyLmwda/uu5f2276PRaOD8eWjUiMN3jjO5pxmTmk5iZMNXAXhz95sUGAuoVa4WYxqNAeD7kO8pY1WG5OxkapariWdZT6JSogC1W5TB+OgZjQM3DgBqsX2h99u+T0xqjGn2qq17W3IVPd3q9YMJE0jJSkKLlsr2lcnIU1vblrct/6BG4w8zGhZmFtQuX5uQ+BA8ynhQo2yNIulTzjbODKk3hGVnlz3T3yvxHMjKgtdeg169oEkTCA+H3r0B+PLkl/zf0f/j886fM6bRGN4OehutRsuCLmpXtp2RO7Ews6BppabqgwLxVEmgIYQQT8HC4IW4ObrRr1Y/02tB0UHYW9jTokoLQhNCqVehnumm8GGFqVNOVk5Ym1uTmJWIt7M32t9/hMdlxAHF06d0ZjoWdV0EwDt732HDi5u4XAHWGM+T/xRSqB5maW7JtFbTiJwYSb9a/Zi8ezK+y32LFCA/K+6k36HN920Ivh3M7iG7Geo7VN0QGAgtW3Kzqj0DButo496W+V3mA7A7ajebr2xGb9SzqOsizLXmpgLuwfUGExQd9CBtKiUSAC/nB6lTD9do3Lh/g6Wnl+Jd1pvgO8Gm1xu4NqBjtY6m9THMNGZUc6pGzS/XkuHlRr5iwMJMh7ezt+kz4WrnavpMmZuZFwk0QK3TKCz4DvAMKBJogNrq9nb6bX69+ut//8aKZ0b4zQymr7nGi5+HMH3NNcJvZpT2kB7v9Gm1be26dbB8OWzfDi5qZ75V51cxZc8UZrSewdRWU9kbvZcN4RuY32U+5W3LA7AjYgdmGjNauUkheGmQQEMIIZ6wuIw4NoZvZGLTiUUCiaDoIDpW74jOTMeF+AuPrM+AB4EGqKs8GxQDt9Nvm2o27ufdx1ZnS2hCKPGZ8UWO7V+rP3XL1yU+M57Td04ztMEw3usE0Z9MgevXn9AVP/5GxsXOhZW9V3J27FnK2ZSj64au9NrYi4h7EU9sLP+J8IRwmq9qTmpOKsdHHadj9Y6Qm6suAvbqq2SNGEzfl7XYWTvw04s/oTPTkVuQy+s7X8fK3IoeXj1M7RfIWhYAACAASURBVId3R+0mPjOeFlVaEJ8ZTw/vHgBEpUThaOmIs7XzI1On3jvwHmWsyzCm4RiO3zpOVn6WaZuFmQUAztbOBN8JpluNbmhsbTn++STQgFWeAW9nb2LuxwBFA40/zmiAWqcRnhiO3qAnwDOAmNQY04wLQH2X+rSv1l5a3f6DhN/M4K3AK5yNTiM5Q8/Z6DTeCrzy7AUbBQUweza0bAlOThASotZlaDSAOoM7dsdYxjcez6cdPyVbn81rO1+jQ7UODPdV17a5nX6b0IRQcgpypD6jlEigIYQQT9iyM8uwNLdkdMPRptfS89I5EXuCAM8A8g35XE66/Nj84cIF+0BdZRrUYuLe3r1N+9QqXwuAzZc3FzlWo9HwVbevAJh1eBYft/8YW2tHxnYvIG3IADAaS+5Cf/fv3Mg0rNiQwyMO8+OAHwlLCKPusrpMCZrC/dz7JT6ef9f+mP20/r415WzKETw6mLoV6sLNm2p//rVrUVat4tXO2USkRrJ10FbK2ZQDYN6xedxMu0mBscA0wwEQGBJIA9cGpsCisLVm5D2145RGoymWOnX27ll+CP+B2e1n08unF3qjnsM31dW+FUXh6K2jgFrfE5MaY1o/41+55wDIVgrwvpHBjfs3AKjsUNmULmKufcSMhqsf+YZ8riRfoX219phrzdkTvafIPpOaTuLYrWOmdTbE/67cglyW7bmGUVEw/p49aVTUTMr1h+6W7uAeFh0NbdrAxx/De+/B8ePg7W3aHBQVxODNgxlUdxBLui9Bo9HwyeFPuJN+h+U9l6tpjqgNOAr/32pRpUWpXMrzTgINIYR4gnL0OXxz9htGNRiFk5WT6fWD1w9SYCygi2cXriRdQW/U4+v66BmNwhoNgNrlawNq+k1nj86mfQp/mT68eF+hjtU70qFaB3ILcpl/Yj5r+6/nmDv8mnWegmVLSuxaC60/dBdF4S9vZDQaDS/VeYmrE67yYbsPWX5uOV6Lvfj27LemG/CnZc2FNXTd0JWWVVtyZMQRKtlXgqAgaNgQ7t2DEyeY553Ij5d+ZE3fNdR3qQ+osxNzjs4xdWkqrKlIzEpke8R2RjYYyY7IHXSt0dV0wx+ZonacAoqkTimKwjt73qF2+dqM9BuJt7M3bo5uphv/QzcOkaVXZzdSc1Mx15qrMy7A8VvHAcjXgfeKzcQlqjMaVRyqmGZLzLXmpuMLFX7mQuJCsLe0p1XVVsXSp3r59MLN0Y3Fp6XV7f+KbH025+POsz5sPTP3z6Tvpr54L/bGdo4tobfiURRNkf2NCsQkZJfSaB+iKLBqFfj6qt2ljh1Tgw3dg9qKE7En6PdTPwJqBLC6z2q0Gi3hCeHMPzmf99q8h7fzg4BkZ+ROXO1c8SrrZUqlEk+XBBpCCPEErQtbR0pOCpOaTSryelB0EJ5lPPEs60logtpxqvDm9Y8eTp3yKOMBQMS9CJpVaWbaJzw+HEszS87cPfPIVbkXdFmAUTHyzdlv8Hb2pnuN7kzoAfEfTYGYmBK51kIxCdmmIKPQn93IWOuseb/t+0S8EUG3Gt14bedrNFrRiEM3DpXouB5FURRmH57NiK0jGOE7gm2DtmGvs1UXAOvWDZo1g3Pn2GkXx8z9M3m/zfsMqD3AdOwbu97AwswCOws7UztbgPVh69FqtHSq3omzd8/S07unaVvhYn1AkdSpHRE7OHzzMF/4f4G51hyNRkMXjy7sjdkLYOo25VnGE2drZ6zMrbDWWQMUWbDR26oy6bFqHUh1p+poteqv+kfNaDhYOuBZxrNIncaB6weKLLRYGET9EP7DP3bF9/9VGXkZnL5zmtUXVjNt7zR6/tATj688sJtjR6MVjRi6ZSjrw9aTW5BLT++eLO62GHPtXRSKBvJaDXi42JTSVfwuKQn69YPRo2HQILhwAVoUnYUIjQ+l+4buNKnUhJ8GqKmLBqOBMdvH4O3szfTW00375uhz2BezDw0aU6c/8fRJoCGEEE+IoigsCl5En5p98CzrWWRbUHQQAZ4BgNqRyqOMh7o+wyM8HGhUL1MdgEtJl3CycqKctZq+k2PIoVGlRigojyzc9avox8A6A9Gg4Z0977C672oUa2smdCkga+jAEk2hqu5iXexGRsFAOhHFakgeVtmhMmtfWEvwq8FYmVvRYU0H+v/Un5jUkg2ECukNekZtG8VHhz7i046fsqLXCnTpmWqP/g8/hI8+gh07uGpMZPAvg+np3ZOPO3xsOn7zlc0ERQeRpc/i4/YfU9ZaXbFdURQCQwLp49OH4NvBaDVautboCkBmfiZxmXEPZjR+n7kxKkam7ZtGx+odTelQAP6e/lxOukxMagyHbhxCg4ZBdQeRnpdOZn4m269tp8BYQHZBNhZmFphrzan+3c/cNysA1MC0cLZLq9EWCzRA/WyExIcAEFAjgMz8TE7Gniyyz+iGozHTmEmr21KSmpPKidgTrDy/kreD3qbr+q64LXTD4TMHmq1sxsitI01d5wbUHkBgn0BOjT5F2rtp3HrrFruH7GZys8l8ue8TQlmKgmL6f1SrUcsehnaoVHoXuGuX2rb22DHYsgVWrgR7+yK7RNyLoMv6Lng5e7Ht5W2mIHv52eWcunOKb3t+a6phAjh44yA5BTnEZcTRsorUZ5QWCTSEEOIJCYoO4kryFd5u/naR16NSoohJjSGghhpohCY8ekXwQtY6a3IK1BqNwha3hcXTHaupqTMaNLjYqp1Y1oWte+R55nSaA8D2iO1cTrrM4h5L2FYTDiedxbC05NJilDL7itzIKBhQULio/4qaS2ry7dlvTU/yH6VZlWacePUE615YR/DtYGotrcWMfTNMLVtLQnpeOj1+6GFa4Gtmm5lowsKgcWM1H3znTvjoI+7np9NnUx8q21dmfb/1ppv2jLwMJv82GWdrZ3zK+TCu0TjTuc/ePculpEuM8hvFjsgdtKjSwlTPEZ0SDWBqY1z4Pmy6tIlrydeY7z/flF8O0Kl6JzRo+OzYZ+iNehQUKttXRm/U07RyU2Yfmc3FhIsA2Ovs8Sjjgc63IfdttFjpwXn7PtOYHzWjAWqdxoX4CyiKQgPXBpS3KV+sTqOsdVmG1JdWt09acnYyR24eYfnZ5Uz6bRKd13am0oJKlP28LK0CWzFuxzh2ROzAytyKIfWHsO6FdZwbe47MGZnETI5hx+AdfO7/OSMajKBp5aamhxcHrh+g/uLaROfFk6WEcUE7nhROY6bLpLGnI4terUVdN/u/GN0TkJ0NEyZAjx5qmmJ4OPTtW2y32LRY/Nf542ztzG+v/Ga6rjvpd5ixfwZjG46ltVvrIsfsjNhJRbuKGDFKIXgpkkBDCCGekIXBC2lUsVGxX4BBUUGYa83pUK0DiqL8accpKDqjURhoxGXEqTUeNbqY9rubcRetRsvxW8cfuZqzRxkPxjcej5nGjMm7JzPcdzhNKzdlSD+4//47agHmf+ly0mUWhb5FmNkEUjhNHomkcJpQs/HcM56nrXtbXtv5Gm2+b8PFxIuPPY9Wo2VI/SFEvBHB9FbTWXRqEd5LvFl9YfWfBin/jtvpt2nzfRtO3zlN0JAgXqn/CqxdC82bg6MjnDsH3bphMBp45ZdXSMxKZOugrUVmnD4+/DHJ2cncy7nHl12+LNKfPzAkkMr2lWnr1pa90Xvp4dXDtK2wtW1h6lRhjcb8E/MZUn8IfhX9iozV2caZxpUam55W+zj7cDHxItWdqjOn4xzOx51nwUl1vQBbC1u8nb3Jys+iQGPEwgDaseMwi1G7i5lpzMjWZxerf2ng2oC0vDSu37+OVqPF39O/WJ0GwMSmE7mbcZctV7f8vTdeAOqMV3xmPAeuH2DJ6SW8vvN12q9uT4UvKlD+i/K0W92Oib9NZF/MPpysnBjdcDQb+28k9LVQsmZmETExgl8H/cqcTnMYUn8IDSs2xNbC9rFf68uTX+K/tjPphmycs8HMzJx0bRiXdVNo0fog84b7lE6QcfasGlx8/z0sXaoG966uxXZLykrCf50/Wo2WvUP3moJ2gEm7J2Gjs+Gzzp8VOUZRFHZE7sDdyR0HSwdTbZt4+oo3bBdCCPFfu5h4kT3Re1j/wvoiT6hBneloVbUV9pb2xKbFkpKT8qczGjY6G/IN+RiMBuws7HCwdCA9L50b92+YntQpKJy+c5rmVZpz8vZJtl7dyqu/LyT3sA/afcCqkFWEJoSy6eImNvXfhM8Sb97pUMDSIYOwOX4KtH/vGVSBsYAhvwxBURT6N2zEqpA3i2x3t3fn2K1jrOm7hrnH5uL3rR9TW07lg7YfmNIg/sjWwpbZHWbzqt+rTN83nZFbR7L0zFIWBSz6W33xwxLC6L6hO2ZaM46POk4dxxrw+uvwzTcwcqR6w2OtjuX9A++zO2o3uwbvKrKQYnhCOAtPLsTJyommVZrSzetBqlOOPoeNFzcyockEjsUeI0ufVaQ+I/JeJE5WTjhbOwMPUqcy8zP5v47/98gxt3Vvy5m7Z9CgYXDdwXwf+j09vHrQsXpHWlVtxdZrWwHQG/V4l/UmKTsJgDxrHbi4YDNkFBY9MNVqZOuzsbd8cGPp56oGN4UpfAGeAWwM30hSVlKRAtp6LvXoUK0DX5/6mpfqvPQfv/fPG0VRuJNxh8tJl4v9Sc1NBdSWwz7lfKhdvjYdqnWgdvna1C5fGy9nryJpQH9Htj6b0dtGs/HiRjRGqJsIF10B1LQ6BYWK9hX/y6v8GwoKYN48mDVLLfo+fx5q1nzkrmm5aQSsD+B+7n2OjTpGZYfKpm3brm3jlyu/sKn/JspYlyly3KWkS9xKu4WrrSvNqzQvsk6NeLpkRkMIIZ6ARcGLqGRfiRfrvFjk9XxDPgdvHDTVZxQWgv9VoAE8SJ9yrAaoN60+5XxMNyQKCnUr1EWDho0XNz7yXBVsKzCt1TS0aJm2bxqudq7M7vAJqxtA2O2zGL/+++slfHbsMy7EX0Cj0TCx6cRi2+9m3KWiXUXeO/Ae2wdt54O2H7Dg5ALqflOXvdF7//Tc7k7ubBqwiSMjjmBUjLT+vjUvb365SBH0X9kbvZfWga2pYFuB4FeDqZPnAG3bql1uVqxQ//49yNh0cROfHf+MeZ3nmVLcQE11Gr9zPM42zqTlpZlWHy605eoW0vLSGOk3kh0RO3BzdFPb5P4uKiUKr7JepuCzMCh4rfFruDm6PXLc2fnqbJaCQuPKjblx/4a6foZGwwdtPzAt4JeQmYC3s7epYNtCZwU//YT20mXm73mwVscf06cq2lfExdaFkDi1TsPfwx8FxVSE/rBJzSZxPPY45+6e+3fe8ueCUTFy4/4NdkXuYv6J+YzaOormK5vj+JkjVRdWJWB9ADP2z+DM3TO4O7kzpcUUfnnpF65OuEr2e9mEjw/nxwE/8lH7j3ixzovUqVDnvw4yrqdep+Wqlvxy+V9ojBAQDVdcNdSvUB8zzEzjdrUrPoPwRMXEQLt2ag3U9Olw8uRjg4xsfTa9Nvbi+v3r7Bm6xzQLCGrq4oRdE+hWo9sjg94dETuw0dkQmRIpbW1LmQQaQghRwhKzElkftp6JTScWu2E4EXuCzPxM083rhfgLOFk5UdWh6mPPZ22u3vwWpk95O3ujQUNUShRajZbGFRsD6tPR/IJ8FBQO3jhIak7qI883pcUUnKyciMuIY1HwIt5p+Q4+5XzoNxByZk6FyMj/+JovxF/g48MfY2luydiGYx95o6Q36mlcqTHmWnN6b+rNhCYTCHstDHdHd7qs78KQX4b8ZVejNu5tOD36NKt6r+LA9QPUXFKTWYdmmd6bx/k+5Hu6/9Cd1m6tOTLyCBVPX1bTNuLj1QLUMWNMC4GFxIUwausoXqn3ClNaTClynrWhazkee5xsfTbjG48vlpIRGBJIW/e2eJbxZEfEDnp69SwyoxWZElnkhqkwIPxjHc/D9sSo9RLlbcpzLfkalmaWdKjeAVCDgkJGjEUCDVsLW/Dzo2D+50w8DbWu3gOKBxpQtCC8on1F6rvUL1anAdDLuxfuju7PZatbg9FAVEoU265t47NjnzFsyzAar2iM/Vx7qn9VnR4/9GDWoVmEJ4bjU86H99q8x7ZB24iaGEXmjExCxoWwod8G3mv7Hi/UegGfcj5FFvAsKXuj99L4u8bEpd4iv0DPoItw1tMKL2cfLiddxoABK3MrgKcXaCiKmiLl6wtxcXDkiNrZ7aG2tQ/LN+Qz4KcBnIs7x67Bu4p15Pvg4Aek5KSwrMeyYjPGoLa1bVGlBam5qVKfUcok0BBCiBK2/OxyzLRmjG00tti2oKggytuUN81gFBaCP+qXZaHCGY2HW9yaa81N+f6FK1EbFAPBd4KpV6EeRsVoSqn5I3tLe2a1n4WCwqdHPyUlJ4UfB/xIvL2GD9oWkDt0MBj+/XUs8g35DP91OOWsy2EwGpjRZobpSf0frQ9bT2DvQJKyk+i5sSdVHKqwf9h+VvdZze6o3dRcUpNV51f9aR2GmdaMUX6jiJwYycSmE5l7bC4+S3z4IfwHFKVoX11FUZh1aBajto1iVINRbBv4K3YLFkOXLmqgce4cNGli2j8xK5G+P/alVvlafNfruyLfl3vZ95i6dyo1ytZAZ6ZjVvtZRb7Wjfs32H99P6MajOJK8hWu379eJG0Kiq6hERofyuEb6mJ8hR2r/uh2+m2iU9XaGTsLO3ZF7aJ9tfamz0RcZlyR/R8ONBwtHdX3YPxr/FwbBv98BXh0oNHApYEp0AC1ze2e6D3F3k8zrRlvNH2DjRc3lnqr28etPv/f0hv0XE2+yi9XfuH/jvwfgzcPpsHyBtjOscVrsRd9NvVh7rG5RKZE4uviy+z2s9k1eBc3Jt8gfUY6Z8acYU3fNUxvPZ1ePr3wLOv5VFJ3FEXhi+Nf0HVDVyrpypKYl8qIC3DRw44MnULzKs3RarWYa8xp4KL+/Klo9xRSp5KTYcAAGDUKXnxRbVvb6vFpjwajgWFbhrH/+n5+Hfhrsda0Z++eZfHpxXzc/mNTzdrD7mXf40TsCao6VEWDhmaVmxXbRzw9EmgIIUQJyi3IZemZpQz3Hf7Im8eg6CC6eHYxdQL6q0JwKB5oVHOqRoGxwNR5qrBWwagYuXbvGl08u2CmMePHiz8+9pzjGo/DzcGNfEM+sw7NwtfVlzebv8lXzeFG9FmUr776t6959uHZXE66TJY+i3GNxlHFoQpJWY8ONIwYWRi8kF2DdxGeEM5L/3qJAmMBwxsM5+obV+nt05vR20fTfnV7riRd+dOv62DpwDz/eVx+/TKNKzXmlV9eoVVgK87cOQOoAdDIrSP5+PDHzO00l+Vt5mE+4CWYOVP9s2sXlHtQWKo36Hnx5xfJLcjl14G/Fqsbmbl/Jjn6HGJSY/io3Uc42zgX2b76wmrsLOwYUHuAKXWjcOYB1Bv8+Mx4U73HtH3TTJ3CCj8Pf/RV8IPvw+302xy+cZjuXt1Nrx24fgAASzNLtBotlewrkZCZADwIXjQaLaN7g8ZcfXqcmV18psuvoh93M+6agocAzwDiMuMITwwvtu+rfq9irjVnxbkVjxzz0/DvrD7/V/IN+VxKvMRPl35i1qFZvPTzS9RdVhfbObbUWlqL/j/158uTXxKbHkuzys2Y13kee4bs4fZbt7k//T4nXz3Jqj6rmNJyCt28uuHu5P7Y7+OTlpWfxaDNg5i2bxoBLq24mBbF2HMQ72JDuF0mH7b7kJ8v/4ylmaVp5gvAxc7lyQ5s9261be2hQ7B5MwQGgsOj23iDGiy9vvN1fr78Mxv7b8Tf07/I9gJjAWO2j6G+S33ebP7mI88RFB2EUTGSZ8ijboW6OFo5luQVif+QBBpCCFGCNoarT3onN5tcbFtCZgIh8SGm+oyMvAyiU6L/tD4DMN3w5ujVGo3qZaqjoHA1+SoATSs3LbK/o6UjBsXA3pi9pOWmPfKcFmYWzO08F71Rz4pzK7iSdIVPO36Ki31FegwG/czpEBHxl9d7+s5p5h6bS1v3tuQb8pnRZgZAsRkNS62l6d/bI7ZjVIxsGbiFvdF7Gb19NEbFSDmbcqzuu5r9w/YTnxmP73JfPjr4EbkFuX86Bs+ynmwZuIX9w/aTmZ9J05VNGbx5MJ3XdmbjxY1s6LeBdx17oGnSRL3h2bYNPvkEzIo+ZX5z95ucjD3J5pc2U9WxaCpb8O1gVpxfQWWHytQoW4PXm7xeZLtRMbL6wmoG1hmIrYUtOyJ20NmjsylFBdT6DFA7TgVFBbEneo+phudxT7zXhq1Fgwavsl7ojXr0Rn2RdTZ+i/oNAHdHd4yKkeOxx02BRmEgpNVoSbeCdUPVz1nmt8XTnh4uCAdo7dYaa3NrgqKKd58qY12GofWHsuxM6bS6TctN4+vdlzAalb9cfR7U4D80PpSN4Rv54MAH9P+pP7WW1sLmUxvqflOXgf8ayDdnvyEpO4l27u1YGLCQA8MOED8lnnvT7nF05FG+7fUtk5tPxt/Tn8oOlf90BvJpi0mNocWqFuyM2Mmrni/yW/xRJpyGHGszznrZ4u/hj96gfnYy8jMwKkZc7FxwsHQwPcQocdnZMHGiuuilr6/atrZfv788bMb+Gaw4v4JVvVfRr1bx/RcFLyIsIYzven332LSzHRE7aFixIaEJoZI29QyQQEMIIUqIoigsDF5IT++e+JTzKba9sLi2MNUpPDEcBeVvzWgAxKbHojfocbB0oLqjupCfjbkNl5Mu4+bohkExsD1i+2PPO6juIOq71Een1TF171SsddZs6LeBmLLweTMD+cOG/GkKVY4+h+G/DsfXxZdzd88xrtE4Ktmri379cUbDiNFUjAwwfud4Ont0Zu0La1kXuo7pex+s6NuxekfCxofxbut3mXtsLr7LfTl4/eCfvkeFx50fd55PO37KT5d+4uitowyrP4x+F/LUFb5tbdVUqV69ih274twKlp1dxpLuS4q1Iy4wFvD6ztfxcPIg4l4EC7osKFaDcvD6QW6m3WSU3yhSclI4Hnu8SFtbUIv3ATycPJi6dyqt3VqbbvAffm8KhcaHkpiViEajYbjvcOx0djhaOhbpgHXq9ilATatytHTkkyOfcDdDvdmuYFMBeDBbEltN7cyTufNXNdh6iGdZT+ws7EwF4ZbmlrSv1t5UH/JHE5tOJC4zjs1XNj9ye0nQG/RcSrzEpoubmLl/Jr029sJ9kTtO85y4dDsZhaI3+0YFrsalsS50HTP2zaDPpj54LfbCdo4tDb5twOBfBhN4IZD0vHS6eHRhafelHBlxhKSpSSS8k8DB4QdZ2mMpE5pOoEP1DrjYuTxTAcWjBEUF0XhFY7L12bzhPYRV0T/z5kkwApEBTTAoBpZ1X8bi04vxKuuFvYU9VR2qUmAseHJpU+fPQ6NG6qJ7ixfDb79Bpb9eDPCzY58x7/g8FgUsYkSDEcW237h/g48OfcTEphNpXKnxI89RYCxgd9RuOlXvxOWky1II/gyQQEMIIUrIgesHCE8M563mbz1ye1B0EA1cG5jSFULjQzHXmv9lj/c/Bhruju7Ag243AJ08OgGQb8xn//X99KvZD51Wx8+Xfn7sebUaLZ93/pxcQy47I3eyP2Y/Hap34JV6r/Bxe4XEy2dQFi587PEfHPxA7W5TtSV5hjzebf2uadsfZzT0Rr1pzQgNGkLiQ/jX5X8xqO4gvur6FfNPzmf+ifmm/a3MrZjdYTahr4XiYutCx7UdGfHriEeuD/KwS4mXWHpmKRXtKzK07iusPh9IrXOj+NfwJijHj4OnZ7Fjjt06xhu73mB84/GPrKv55sw3hMSHoDfq8ffwLxZAAAReCMTH2YcWVVoQFKWmbvxxv6iUKMpYlWFH5A7CE8OZ7z/fVIvyqJSbBSfUjlZGxciLtV9EQSk283En4w6gdvTq5NGJPdF7uJx8GXiQf2+6Wf79r6xmfjBiBNx60LFLq9Hi6+JbrE7j6M2jjyy0r1OhDp2qd+LrU3+/S1khRVG4m3GX3VG7+eL4FwzdMpQGyxtgN9eOut/U5eXNL7M2dC0Go4FBdQYxselE8jTXH7n6/PWskwz7dRg/XPyBfEM+vb17s6LnCk6MOkHq9FTuvH2HvUP38lW3rxjXeBxt3NsUWZfhf4WiKMw7No/uP3SneZXmDHPvzbxL3zLtGJgXwP1XXyb4djDf9fqOHZE7uJ97n9j0WCzNLfH38Cc+M77kC8ENBpg7Vw3qra3VgOONN0xNFv7M8rPLmbF/Bh+1+4jJzYvPBhemVJW1LssnHT557HlOxp4kNTeVyvZqG1yZ0Sh9EmgIIUQJ+TL4S+q71KdDtQ7FthkVI3ui95jSpkBNU6lVrhaW5pbF9n/YH9vbWuusKW+jrm9QWBDexr0NoD7RS8pOom6FuuiNen6L+o30vPTHnruLZxfau7fH2tyad/a8g8FoYHG3xf/P3nkGRHWuXfvaM0MvUgUFCypgV+y9BlHBXmPvMUVT1MQYWxKN0cQSNbH33kUpItZYsKAiWEEBQYogSK8zs78fO2wdAUvOOe+b835z/TLDLlPI8NzPve61MDOpQM/hoJ09Cx4+LHXehScXWBayjFntZ7EzfCeTm07W8eQvaxi8glEFVAoVIpLe5augryhQFzCl5RRmtZvFjOAZbL+9XeecOvZ1ODfmHBt6bcD3oS+1V9dmW9i2UkPKACcfn6T9lvY4mjty3ecY25dGE7FOQV2Hegxy/JPOB7xlaVAJ8ZnxDNg/gNZVWrOi+4pS10zKTmL22dm0dm5NQnYCy7yWldrlfpH/gkP3DjHOYxyCIOAX5YeHo4eO5z9In5WLlQtzzs5hSL0htHRuiUbUICCUuqZW1HL4wWGUgpJGDo1Qi2pyi3NJz08nIUsqLrILsynUFGJmYEZybjJ93PtQx64O0S+iAXCu4Fzq9RgqDckZOQQsLGDoUCh+KX0qSQgvwauWF4WaQnlg/XWmtpxKyNMQeSbmXcgtyuXqd9QZiQAAIABJREFU06tsvLmRqYFT6bytM3a/2OG0zIkeu3rww58/8Cj9ES2cWvBj5x9Z1WMVy72WM6iuNDuz+vpqVl1bRVLRRhB10+cVgoI5fVuTNTOLJ188IXB4IEu9ljK+yXhaV2mNlbHVOz/PfzI5RTkMPjiYmadnMqvdLNpa1mNe2HJmnweLQkj5dBTHI48ztvFYvF29+fXyr7Sv1p6swiye5z3Hs+Z/oNCIiYFOneC772DGDLhyBerUeadT90Ts4RP/T5jaYirzOs4r85j9d/cT+CiQ33v+rpMB8zp+kX5UNKvI87zn2Jna6Ti86fnfQV9o6NGjR8+/gQfPHxAQFcCXrb4sU25RIoN5tdAocZx6G6/b2wLUtK6JUlDKcpxXJQIqVKTmpmJjYkOxthj/SP9yry0IAks8l5CvzifsWRg7wndgbWLN+l7riXCEdY00FL8mocopymGM7xhaV2mNWqumUFPIN+2+0bluWcPg7rbuWBhKiwSVQkVCdgKrrkrzAgu6LGCCxwTG+Y4jICpA5zyFoGBCkwk8+PQB3Wt1Z4zvGLpu7yoPw4NkK9tzV086VOvA+ZoLcGzXHeLjqX30Iv7f3iFgWADPcp/RZF0TJh2fREpuCvnF+fTb1w8jpREHBh0o05J3evB0DBQG3E29y0dNP9LJxChh7529qLVqRjYciVqrJjAqsJTbFEiFRrG2mNTcVH7q+hMgFRRlzWeciT5DbnEuAEPqDSEwKhAjpRECgizBC00MBV5alNa2q8137b+TC9LXczlKAh9zDETYtw+uX4fZs+Wfe1TyIDItUnalcrd1p2qFqmWmhAN4u3rjYuVSptWtRqshMi2Sg/cOMu/sPPrv60+tlbWwWGRBq02t+MjvI04+Pom9qT0TPSayoPMCfuj0A6MbjcbUwJTjkcf55tQ3TAmcwrST0zhw7wAhT0PQFhfR8ilUSQ0nTPmxnD5fwTqFlRPqMqhpizcuRP/beZT+iFYbW3Hi0QkODz6MQW4+s2/+yvdnwbFARcjknkSmR1LRrCK/df+NneE7ScxOxFBhKHdCu7p0JTkn+d8jnRJF2LZNmsOIj4fz5+Gnn8Dw3XJA/CP9GXV0FKMajWJ59+Vlfne+yH/B5yc+p3+d/vR27/3m60X509O1JyFPQ2hTpc0/Xvr2/wP6QkOPHj16/g38duU3HMwc+LD+h2X+POhxEGYGZrJDlEarIfxZ+FvnM+DlMPirhUYNmxoYqYzkjkYtm1qYG5gDYG5kzpnYM/Rx74OxypiD9w++8frNnZozsO5ATFQmzDo9i9yiXAbVHUS3mt34ykskOzwUli2Tj/8m+BuSspP4zes3frv6Gx83+7jU7uir1qcGCsntyEhlJCciq7VSOvH3578nNTcVQRBY47MGHzcfBu4fSEh8SKnn6WDuwM7+OwkaEcSTzCc0XNOQH87/wKzTsxh/bDwTm0zg6NN2mHv1gvr1JelGS8nasodrD8Inh7PcazkH7h2g1spatN3clnup9zg69CgVzSqWut/p6NPsjthNI4dGCAh83+n7Mt+/zWGb6eHag0oWlWTpRlmFxsPnD3nw/AFTWkyhhnUNQPo9KEs29WuIJCPTiBoG1RtEwKMAurh0oWnlpnK+RWCUNAjuYiXN57jauOoERNawqqFzTa2olQqNohxo1UqSuSxZIrlvIYVGioiEPwsHpCK0W41uZeZpwEur27139nLg7gFWXFnBON9xNN/QHItFFrivdmfQgUGsvbGWrMIsurh0YXqb6UxvPZ1xjcfhYO7A2dizLL68mNlnZ/PDnz9wNvYsNiY2TGoyib0D9nJx7EVGNhxJQnYC7Y3cmHhVTbIZXKsCmYpwIlRfEKLqhW1NX+pX/b9bYID0eTff0JxibTFXxl/hZtSfzLu5lJ9OgWu+KZtG1aexQ2OuJ1xnZ7+dmBqYsvjSYrzdvDn35By2prZ4OHpgb2ZPUk7Sv97RSEuDwYMlGV7//hAeDu3bv/Pp52PPM/DAQHq59WJj743lOnbNPDWTvOI8VnZ/s0wvNiOWu6l36VGzB1cTrtLGWS+b+ifw70+K0aNHj57/z0jLS2Pb7W182+7bcmVQQY+D6OzSWd41f5T+iHx1/jt1NBSCAmOVsU6hUb1CdURRlAsNQRBoW7UtQY+DyCvO40LcBXb028GWsC34RfqRU5SDuaF5ufdY2GUhh+8dJiU3hWUhy5jTcQ6bem/CdZUr3sMLuDj7O5Q+Ppw2SuSP0D9Y2X0lxyKPUawp5pu235S63qvSKQtDC9IL0nma+RRDpSH2JvYk5CRgojKR7XV/9/4dlULFngF78Nrphfduby6Ou1jm/Eq3mt248/Ed5p+bz/xzUh7I5Abj+GNLCsLhdTBzpuQqpdL9E2egNODzVp8zvOFweu/pTcjTEBzMHEjISsDD0UNn97NQXcinAZ/SxLEJ556cY8kHS7A3sy/1XCKeRRCaGMrhwYeBl9KN14dVswuzSc1LxdTAlO86fCc/rhW1pQbBC9QFnIk5g6HCkLr2dXEwc5Ckal7LSMpOYsPNDWhFLeeenAOkID97U3usTaxJy0uTr5NRkCH/W0BARHxZaAB89RWcPQujRkFYGPUc66FSqLiVdEvWtnvV8mLjrY3EZ8Zjb2bPvdR7RDyLIPxZOBEpEYQlh1GsLWbwwcEYq4ypa1eXmjY1aeLYBIWgILsom5iMGG4k3eB0zGlAkm+527pT174uXV26Ute+LnXt61LLppZOVykwKpAhB4eQVZjFevvxsGkTk3qBWxqYqCFfhTx3kp6fXuqz+b+CKIr8dOEn5pydg7ebNzv67mDRydksCfudJSehQZEVkz405/fOP9BvXz9md5hN6yqt2X93P1HpUQyuNxj/SH/iM+MZ23gsBeoCMgoy/rVC4+RJqcAoKIADB6ScjPfgRuINeu3pRdsqbdk9YHe5DlIX4y6y/uZ6fu/5eykp4uv4R/qjUqhwsnQipyinVP6Gnv8d9B0NPXr06PkXWXdjHVpRy+Rmk8v8eU5RDpfiLpWazwBo5Pj2jgZIcxol9rYgWdzmq/N5lPZIfqxjtY6ANBBeoC7AVGUqL+ZflyO9jputGxObTkSlULH40mKSspNwtnTmV89fuVIF9tfWkj5+GON8x9G5emc+bPAhK66s4JPmn5Ty4hdFUWfB62wpzQrEZMbQrmo7rE0k96MiTRFqrZq1oWu5lyoNMJsYmHDsw2M4WzrjtdOL+Mz4Mp9vkaaI0KRQlAolrubVWBuxmYmCH+kHtks79ary99FuJN7gasJVxnuMp37F+vTe2xuvnV7cTbkrH7M0ZClRaVEYGxhTw7oGU1pOKfNaW8K2YG9qj7ebNPjtF+WHt6t3qd3Zkq7ABI8JOvkqGrF0R+PQ/UPy8PyQ+kM4HXNatrX1rOlJal4qt5Nvy9KxAk2B7HL2aidp6ZWlOteVpVMlhYZCIclejI1h2DCMUFLPvh63km8R8yIG3we+sgtVi40tMPvJjKbrmzLGdwxHHhwBJBmOm60bRkoj6tnXIyo9igP3DrD+5nq23t7KvdR7uFi5MKPNDI4MOcLDzx6SOyuX8I/D2TtwL3M7zmVg3YHUta8rFxkZBRmM8x1Hz909qV+xPndsZuO8fBOTfcAjCSLtIN8AncLwRX7pbJD/C2QXZjPwwEBmn53N3I5zOTrkKD+cmMmSsN9ZHggd8isytK+a/YMO8GXQlzSr3IzZHWbLxYlnDU8uxl2kpXNLUvNS8azpKdsfvzpT9c7k58Pnn4OXl9Q1jIh47yLjfup9uu/qTl37uhwdelTHAvpVCtWFTDo+iVbOrcr9bn0Vvyg/OlTrQPizcFQKVbnOVHr+Z9EXGnr06NHzL1CkKWL1tdWMbDiyzB1vkKxPi7XFpeYznCyc3tnxxkRlotvR+MviNjYzliJNEYDODp6FoQV/xv1J91rdMTMw4+C9N8unAOZ2nIuAgEbUMPfsXAA+bv4xTSs1ZUJvLV86hJGelczmPptZcWUFGlHD122/LnWdzMJMirUvh4wb2DeQ/93IoRH3n9/HWGWMWlRjZWyFiYEJM4JnyMdYGVtxYsQJlIISr51eOkULSAPc7ba042bSTU47f8eDeamsuVmZg02MqR0zjV3hu8ocFgfJYnbooaF41fRinc86gkcGc3TIUaJfRNNobSM+C/iMm4k3+fHPH+lbuy+X4y/zq+evZc5vFGmK2BG+g5ENR2KoNCTmRQz3Uu+V6Ur100VpJuNVZy6QFv+vz2iUhPRpRA2D6g4iMCoQVxtXatrUpLVza8wMzDjx6ARZhVkoBSVxmXG42UgBbM9ypUWkgMChe4d0iicd6dRfvDBTErZiJtrLlwgY3oLE7ES2hG2hxsoa9N3Xlz+u/4GZgRmI0Me9D91rdqexQ2Oe5T4jODqYvXf3Ep8ZT6GmEFMDU2Z3mM3xD4/zeOpjcr7N4eZHN9nZfyez2s+ib+2+uNm6lbt7DVIXo/4f9Tl0/xAbe20kMMOH9Pnf0G8o2GLKYxtw/CuTT0SUZXkZhRnlXvO/lci0SFpubEnw42B8h/oyr+M8vjj6EcvD17HaH7oXONGx13P2DTnIxlsbSc5JZmf/nagUKgIfBXL72W3Ge4zn/JPzuFi5YKwypl3VdnKa/Ht3NG7dgmbNYN06+O03KYzP6c1dhteJzYjFc4cnjuaOBAwPeGOXdcmlJUSlR7HeZ/1bgxBzi3I5G3MWH1cfLj+9jIejx38uI0TPe6EvNPTo0aPnX2D/3f0k5SSVm1ILkmzKxcpFxwElLDnsnbsZIHU0Xi00SnT5WlFLzIsYAJpXbq5zfHB0MH3c+5BXnIdfpF+ZNqWvUtmiMl+1/gqNVsPmsM1EPItAISjY3m87BSqB7Y1hqb8Gi5hEfrv6G582/7TM2YbXB8GbOjWV/21pZIlG1NChagf5sbziPAKiAnRmASpbVObkyJOk5qXis8eH3CJpMDosOYxWm1qRU5jD5ZTedBj3PYo+fZm8O5L7Ux7S2aUzI46MwGunF4/TH+s8j6zCLPrs7UNFs4rsHrAbpUKJIAj0qd2Hu5/cZVHXRWy/vZ1Wm1phpDQiIiWCLi5dyh1A9Yv043nec8Z6jAWkQVQDhUGpNOOzMWe5mXQTMwOzUrvIr0un0vLSCE0MxURlQtNKTalhXYPAR4FyGnhJvoXvQ19EROzN7IlKj5KTnks6GsZKY6pUqMLCCwt1Xn9GQQahiaF47/amyvIq2CyxwePuFOZ0gu4HblHvhQpRFGlftT117OqQr84ntziX5NxkzsScIbMwk6aVm/Jj5x8JHB7Iky+ekDMrB88anhRpivi67df4uPlQw7pGuSGEZVGqi/HxHcafzSB+9hQ6jgELCzucn+WhFCH5lbWprYmtfP7/Jfwi/Wi+oTkiItcmXsPHzYePD43l9/BNrD8G/Qqq0ahXAit7ryGvOI9NtzaxssdK+Ttm0cVFtHZuTUxGDCYqE1LzUmlXtR3GKmOSc5KB9yg0NBpYvFiadzI0lLJopk6VOmLvQXJOMp47PDFWGXNyxEmdzt7rRKZFsvDCQqa3nk4DhwblHlfC6ZjTFGoK8XHz4XL8Zb2t7T8IfaGhR48ePX+TkoA+r5pe1KtYr9zjgh4H4VXTS0fqEZYcRmOHt89nlGBqYCq7CQE6ydUlcxpmhmbUt5dckbIKs7iVdIvWVVojCAL56nxOPDrx1vt83fZrzA3NsTC0kLsMjuaOmBpKu4NO2fDL0v6IosiMNjPKvMbr1rYlRZGAQGxGLPUr1pc7BC8KXuBg5oCdqR3TTk5Do33pbuVm60bAsAAinkUw+OBg/CL9aL+lPZWM7Ag5XpE6K3dLgWA7d4KZtIjfN3Af/sP8iUyLpP6a+iy6sIgiTRFaUcuIwyNIyE7Ad6hvKatTI5URM9rOYHWP1RRri8kszCQqPYqBdQaW61yz+dZmmlduLjtR+UX60bF6RyyNLOVjtKKW6cHTsTO1K3Pe5HXp1Lbb2xARKdYUM7jeYO6m3iU+K14nDdyzhqfsOFXHrg5ZhVlyoVEiizFQGtDEsQl77+zFfZU7IiJhz8K4mXSTuMw4krKTqFahGi2dWlLLuha/tlcQXAM+P5yEiEhuUS4dqnVgiecSfvOSOiyBwwO5PP4yG3tv5KvWX9G9VneqVqiKQlAwpcUUriZclQME34dSXYzhgVRZvZ2M2dNpPhFES3MsUzK5VQnscwEB6thK1qnutpJk7E0Wzv9NaEUtP5z/gV57etG5emeuTriKq40rEw+OYv2dbWz2hYEFLrj1esIXHaSibsLxCfSr3Y+xjaWC98KTC1yMu8jMtjPZGb4THzcfLsVdwrOGVAAn5ySjFJTv1k198gS6dIFvv5Vmeq5cgXrlf9eVx4v8F3jt9CKvOI/gkcFvlG2Joshkv8k4WToxt+Pcd7q+f6Q/rjauWBpZEv0iWl9o/IPQFxp69OjR8ze5EHeBm0k3yw3oA4h+Ec2j9Ed41Xopm0rJTSEpJ+mdBsFLMDHQlU4ZKg1xtnBGpVDxKP2VOY3q0pxGvjofEZFbSbfoUK0DFoYW7ySfqmBcgdkdZpNdmE3Q4yCCHgUxJXAKKoWKahWqMaS/ht+rPuMzTdNypWJlpYKDJHW5mXSTXm69CHkaQl07aeFtaWRJWl4ad1LusPnWZp1zmzs158iQIwQ9CqL3nt50NG/A+Z+TcXzwVLLSLCMQrKdrT+5+cpcpLaYw5+wcmq5vynjf8fhF+rG7/25q29Uu83nnFuUy99xcurp0xdLIEkdzRz4J+ASf3T46VrogBeQFPgpknMc4QJrDORsrSTdeZU/EHm4m3aSSeSW5GHiV16VTa66vAUAtqmXZlInKRP5cQRqGLwk/LCmY9t/bT8etHeXiMKsoi6BHQSgEhRxyaKg0RECgWFvMreRbPEp/hKmBKV61vFje8zfM9x6mY570mX7eYgprfdYyteVUPmnxCVbGVuW6T5W85zWsa5RpdVseZXYxPMYhzJ1L0bzZeEyGF5YG9KjZA7WmmMaJECk1MGQntpK5pOzC7HLlcv8tZBVm0X9ff+afm88PnX7g8JDDmBmYMfbAcLbe3cWOIzA4tzp1+ifRs/EgFnZdyFjfsRgpjVjfa71cEC+6uIgGFRtQpUIV7qbexcPRg3x1vk6h4WDu8GY5kijCjh3QsCHExkqmAT//DEZvzvwpi9yiXLx3e5OQJYUluli7vPH4bbe3cTb2LGu918qf85sQRRH/KH983HwIeSq51ekTwf856AsNPXr06PmbLAtZRl37unSr2a3cY04+PolKoaKLSxf5sdvJt4F3HwSH0tIpkAbCzQzM5CwN0P0DW9miMsHRwfR170tecR7HHh7TGSgvj0+af0Jli8rYmdgx8fhEdkfsZlWPVewesJtcQ8nt56ull+HOnTLPf72jUVBcIOvy76bcpVuNbqTlp9HDVdqlj0yPxNnSmWoVqjH7rFTklCCKIn8++RONqEFExN0/BLOadSTr2jbl71qaGZqxxHMJoZNCKVAXsPX2Vpo7NZfthctiwZ8LSM5JxsnCCVEUuTXpFvsH7udOyh3q/VGPaUHTZInOjts7MFQaMrT+UABORZ+iSFOkY2tboC5g1plZ9Kvdj5TclDLDw16VTkW/iObRi0dYGFrQrHIzXKxdCHgUQGeXzsRmxLL/7n7mnJnDzFMv5zxKhrLPxZwjJTdFzlwByNfkoxE1pBdIjkzWxtZ0rdGVqhWq8nzGc5KnJ3Nm9BlW91zNJ80/oW2zflhv30/NdLh1bJ18HZVCxQc1Pig3TwP+srpt/pkkJcxOKve4EgKiAkp3MSydYcYMxAULaPqxgidWAlt7b+XuuQMkWEKxsQoEKfjxadZTABo6NASkztB/s3zqwfMHtNjQgrOxZzn24THmdJwjdeH2DWH3vX3sPgSDs6rSbHguNap7sK3vNv64/gcnH59ka9+tcnfiVtItAh8FMrPdTPbc2YOdqR0ZBRnYm9rL3zdJ2W+xtk1Pl8IcR42C3r0l29qOHcs//g0Uqgvpt68fESkRBA4PLLOr9yqpualMOzmN4Q2Gl5IglsftZ7dJyE7A29Wby/GXcbZ01un46vnfRV9o6NGjR8/f4FH6I449PFZuQF8JQY+DaO3cWkdOc/vZbcwMzKhpXfOd71deoaFUKGXpFOgOhBspjQiODqa3e280oobc4tw37kqXYKwy5scuP/I8/znxWfE0dmzM8AbDcbVxRaVQoVHCA3sB7ejROsnSJaTmpuq83gJ1ARUMKwBSd8NQZYidqR0arQaVIBUgtWxqEZcZR0ZBBj9f/BmQhq1HHx3NggsLWPKsISsCYVlr+HVBT3BwKHXfslAIChKyEmji2IT7qfepvbo2++7sK7X7fS/1Hr+G/MrEJhPZFbGL2R1m42jhyKB6g7j/6X3md5zPuhvrcF3lytrra9l8azMD6gyQOwp+kX7UtqtNTZuXn+nKqytJzE5kdofZPMt9hquNa6nn96p0am3oWkDaAXY0c2TYoWGciz3HyUcnqfN7HYYcHMLKaytLpZsDJOcmk1+cL9sru9u6EzI+hKSvknAwc0BAwNnSmTbObdCKWmxNbct+wzp1orFNXW7FXpF2sf/Cq6YXVxOuvnExP9ZjLIZKQ9bdWFfuMRkFGYz1HYv3bu+XXYwm4xFEEaZMgaVLaT/ZkDt2Wjb13sQ3flOJtgGfSLhrI2WvTGw6kbT8NAwUBpgbvRzYeNVx678J3we+tNjQAqVCyfWJ1/Fx86FYU8yHewdy8MEh9h0UGPiiMh9MMqLQ2gLfob48fvGYr4O/5vOWn+tsdCy6uIga1jUYUGcAuyN2M7TeUM7EnqFrja7y71ly7hvC+k6dkroYJ0/C3r1SV6NChb/1utRaNcMPD+fPJ39y/MPjNHdq/tZzpp2cBsAyr2VvOfIlfpF+WBha0L5ae/18xj8QfaGhR48ePX+DlVdXYmtqy/AGw8s9plhTzOno0zpuUyDNZzRwaPBew7Kvz2iAlKVRpCnSKTRcrFzkIcu0vDTiMuNQa9U0dmxMBaMKbw3vK2FEgxFYGFogIJCQlUBucS6/Xv4VE5UJdqZ29BlYjBh2Uwp8e43UPN1CI1+dTzUrKZVYQCAsOQxvV2+Co4MZVG8QAgJXn16lWoVq1LSuydKQpYQ/C6f7zu7su7OXvZedmLEjms+nH2BWu1nMOP0N229vf+treJ73nD57++Bu586fY//k/qf3aVu1LUMPDcV7t7c8RC+KIp8GfEp1q+o8Sn9ENatqfN7yc/k6JgYmfNfhOx5+9pAetXrwccDHRKZH4uHoAUhdCf8ofx3Z1PO85yy8sJDJTScj/BX28GpHI684j9DEUG4m3SSrMIuu27ry62UppE+LlqDHQbIl8avykezCbJ3Ctn7F+rRybkX2t9nEfhErBwE2cmhEK+dWOFo4MqPNDERECtQFpVynysKj01DCnFWIwz6EFGnx3q1mN7SiltPRp8s9z8rYitGNRrM2dK3shPYqJV2Mw/cPv+xiVKgiDRtPmoT4xx/0/MicS45FzO0wl/jMeCwS07DKh1j3l4Vlz1o90YgaHMwddBys/tsKDa2oZd7ZefTd1xfPmp5cGX8FN1s3ijRFDN7TH9+Hxzi0X6D/c3tGflWdCMVz/If5Y2lkyfDDw6llU4tFXRfJ1ytJYv+6zddcir9EQnYCPu4+3Ei8IcumQJJOlepoFBRIMxienlC7tmRbO2TIv/TaJh2fxNEHRzkw6ACdqnd66znBj4PZEb6DXz1/LdNkojz8Iv3kYis0MVQf1PcPQ19o6NGjR897klGQweZbm/m42cdv1BBfeXqF7KJsnfkMkDoa7zMIDqXtbUHqaOQU5RCXGUehuhCQsgXaV5XSebOKJPvTEvepAnUBvg985WPfxP57+8kuykZEJKMgg3ln57H6+mqmtpzKpt6byDCGEf1B+/18aVHyCql5qVgavtLR0BTIjlgWRhbynMbd1Lt4u3ojIpKnzqOzS2fuP7+PqYEpHbZ0ICz+Gqd2qRgSbwnXr8PAgSzosoDxHuMZ5zvujdkgxZpiBh8YTE5RDkeHHMXM0AwnSycODT6E71BfIlIiqPdHPX659Avbb2/nXOw5xjQew4nHJ/jF85cygxedLJ3Y3m87vdx6YaQ0YnrwdAbsH8DxyOMk5yTLWRoRT7IZu+YC9fP2oEyeyNEwKYviyIMjDNw/ELdVbpj/ZE7zDc05HnmcnKIcbibdRORll6VEKmZuaM6UFlPY1X8Xtz66Re6sXH7x/EU+Li0vjeaVm8s2oSWOQq9mm5RkECTnJGNmaEZOUc4b5xk8KjclU6Um1kwNI0eCVkvVClWpbVf7jfIpgM9afMaz3GccuHtAfqzcLoYggFoNo0cjbtnCh5NtCayUw8iGI5nUZBJrj83jfkXwSjLltiANude3r09cVhwATR2b6tgOvy7Z+yeTUZBBn719+PHPH1nYZSEHBx3EwsiCAnUB/Xf3ITDSn6N7oVeKNd/Na8/B3OscGXKE2na1+e7Mdzx4/oBd/XfpfP8svrgYR3NHRjcezc7wndS0rklWQRYiok6hUUo6dfs2NG8Of/wBy5ZJ3Qxn57/92kRRZPrJ6WwN28q2vtvo5d7rrefkF+fzsf/HdKreiTGNx7zzvVJyU7iWILly3Uq6RaGmUN/R+IehLzT06NGj5z3ZcGMDxdpiPmn+yRuPC3ochJ2pHU0qNZEfK1AXcD/1/nvNZ0DZ0qmSLA2tqCUmI0Z+vE2VNvIuem272tKcRu2+FGoKyS7K5lT0qTfeKzE7kc8CPmNovaFSwJ6xNSuvrkQhKPiq9Vf0du/NgDoDONhAyQ1nJeLoUToSqtTcVB1//EJ1IV1qdJGf642kG3jW9MRAYcDzvOdUtawKwPnY8zhbOJNdlE1mYSZr9ubSvlEvuHZN2mVFKqTW+qzFx82HgfsHcuXplTJfw/ST07kQd4HXZL8KAAAgAElEQVSDgw7K3ZQServ35t4n95jcbDIzT89kwvEJdK7emV3hu+hYrSP9avcr970pGfqe2W4mO/vt5OrTqwzYNwAjpRFOFk5sv/onUzfdJTvDEUPRjrCYXM5dro2l2JAVV1ZwKvoU8VnxclEhIKBSqLA0lgozBQq+avUVud/mYmFowcQmE1nYdSHDGgyjsWNjTAxMCH4cDICdqR3JOck6Q+YlORqVzSvLj5kZmqEUlKTnp8shiWV1HEoo6dTcWvgpBAdLQ8BI8qmgx0FvLFLq2NehW81urLy2EnhDFwOgqAg+/BBx3z4++qQq+xye06laJzb33kzHrR3QKqF9LDxu99LlaGLTiRy6dwgAbzdvudBQCIr/mo7GvdR7tNjQgotxF/Ef5s+s9rMkZ7jifPru6sXpqJMc2wM9k8zZuHQ4i1IPsbnPZjpW78jp6NMsDVnKT11+0vkOic+MZ0f4Dqa1noYoihy6f4gRDUdwKvoU7rbu8nsuiiLJOX9Jp7Ra+PVXaNFCsqoNDYUvv3xv29rXWfDnApZfWc7qnqsZ3rD8ju+r/Pjnj8RnxbPWe+0bpaivExgViIhIj1o9uBx/GWOV8Xt/t+r5z6IvNPTo0aPnPVBr1ay6tophDYa91Yc+6HEQnjU8ddxd7qXeQyNq3stxCkong8NL21ig1EB4yUJWISg4E3OGevb1qFahGlbGVhy4d4DyEEWRiccnYqQyYnXP1Sz+YDEpeSmoRTU1rGvIsqzVPVdjYmBKj0GFiOHh8mIUpJ1lM0Mz+b8L1AV0qCblZhSqC7mTcgcjpZQH4R/lz4QmE1CgIDojmuScZNRaNTXSYeXQ6oh79oC5bqiXSqFiz4A9NKvcDO/d3txPva/z8y23trDy2kp+6/6bjlvTq1gYWbDMaxkD6wxEK2o5G3uW+8/v82PnH9+40Dl47yC5Rbm0dGqJVtQysO5AVAolhepCGi53Y/u+W4haEQFJFiegRECgmmYc7nbu9HDtwax2szg46CD3PrnHl62/xMXKhbS8NJSCEi1apracSmR6JAnZCTq2tiWUOOt4OHogIsqSrAJ1gVyMvj4MqxSUKASFXKS8ST7laO5IRbOK3LLXwnffwZw5cOECXjW9iMuMK+XA9TpTW0yVdpl3+5TdxQBJqjNwIOKxY8z4oi4b7GKpY1cHv2F+rAldgyoqmgxjaOnQlAup1wGpCBtafyg3km4A0MO1hxzYZ2pg+l9RaBy+f5iWG1tipDLi+sTrsiFCXnEevXZ5c+HxGfx3Q7cEY4LWzmDSk1XM7zifEQ1HkJ6fzuijo+ni0oUvW+s63S0NWYq5oTmTmk7CL9KPrMIshjcYTnB0MB/U+EA+7kXBC4q1xTgWKKFrV/j6aykT49o1Ken7X2TV1VXMPTeXhV0WvnUjpoSIZxH8cvkXvmv/nZxw/674R/nTwqkFDuYOXH56meaVm5cZrqnnfw99oaFHjx4978Ghe4eIz4rni5blB/SBpNG/kXijzPkMAYEGFd8eQvUqZUmnnCydUKDAUGmoM6fRrHIz2ckoMTuRrMIsQhND6Vu7LxqthqMPjpa7o70lbAsBUQGs91mPraktbaq0oYZ1DQQEwp+Fy4PIjuaOLPdaTpopTPIB8ccfJQkGUkfj1VTeInWRXJSptWrUWjURKRH4uPlwLvYcA+oOkC1wrXLVuGQpqOTSgMuaWA7eP1T2+2FgwrEPj+Fk4US3nd2Iz4wHJLnaZP/JTPCYwMfNPn7je3oj8QYH7x9kXod5mBqYohJUDD00lMP3DyOKIqIoEpcZh1+kH4suLGLEnkF8dWQyFXNErk3sifGwUfSb/BuFmiKWn4A+DyHPrCaCoDt7I6DEVlWP25Nvs2fAHuZ0nMOAugOoY18HRGmRmVuci72ZPS2dWlLNqhqBUYGShKxah1LPOzojGkAuVrWiVn7fSyjpdsnPQRCwMbHhVIzUzXpToSEIAh6OHoQ9C4N586BtW/jwQzqY1cVQafhW+ZSIiFJQcvLxydJdDIC8POjTBzE4mIUzW7PUPBxHM0fOjj5LTlEO3xyTBsAH3BeI9pC6UUpBibebN/am9jzLeYYCBU4WThio/io0VKalbJX/SWi0Gmafmc2A/QPoUasHIeND5AIxpyiHnju6cyX6TwJ3iHSJVxG+dTG9oxcwsuFI5nacK2dL5BXnsa3vNp3Ni9TcVDbc3MDUllOxMLJgZ8ROWji1QCEoiMmIKSWbAnCcPB0eP4bTp+GXX/6Wbe3rbL+9naknpjK99XS+bfftO52jFbV85PcRtWxq8U3bb97rfsWaYoIeB0nyS1HUD4L/Q9EXGnr06NHzjoiiyLIry+ji0uWt7fngx8GIiKWsb28n38bV1lVnx/9dKEs6pVKoqGZVjQpGFXQ6GiYGJvIiND0/HUtDS05Fn6Jv7b6yLOlMzJlS93iS8YQvTnzBmMZjZF11ck4yidmJiIg4mDkw7eQ0WTozzmMcHap1YHsTBXcrqRDHjEEsKiI1LxUTlQnKv3b1CzQFgLRYFBFRoOBG4g16ufWiWFvMnDOzARC0kG4CX3T/nkuZEbSv2p5vTn1DgbqgzPfEytiKEyNOoBSUeO304k7KHfrv60+zys1Y3XP1GzsTGq2Gj/0/pn7F+qQVpKEQFKzxXoOtiS0D9g/Aeb4lg0YYsa13NYr69KJf/1nMmnqQF4pClgXB5BtQXWPB8Y6OKERw/3g2Py+8BkbJiKJG514iGtLUd/nyxJdkFmTqPg9Rw4uCFwA8z33O4HqDAQh4FEBXl66lZkWyC7PJK85DISjkgdnwZ+GA7jB0WYWGlZGV3AF460C4owe3km6BSgV79kBhIWYTP6GDc7tyC42SWYxee3rhauuKVtTSw7WH7ueQkwPe3nDxIr/P92aO4jzmBuacG3MOB3MHeuzqQaUcqJIJnYbMlO17NaKGUY1GEZMRg0bUYG1ijSAIGCmk98fEwISUvH9mR+NF/gt67enFoouLWPzBYvYN3CdLC7MKs+i+oxs3Yy5zcrtIh3gFCTv+oEvs97R2bs2GXhsQBIEd4Ts4cO8A63zW4WypOz+x8upKBASmtJhCWl4aAVEBjGgwguDoYJSC8uUg9osXJM+aAkClFl0l29rOnf8tr9H3gS/jfMcxwWMCSzyXvLP8aV3oOkKehrDeZ32Zc1Fv4mLcRbIKs/Bx8yEuM47E7ER9ofEPRF9o6NGjR887EvI0hGsJ194Y0FdC0OMgGjo0LJWAG/YsjEYO768hLqvQAGlBaaQy0uloALSt0lZe2DdwaEBwdDDtqrbDxsQGa2PrUuF9WlHL+GPjsTK2YoXXCvnxxRcXY6Q0Ylj9YeSr8zkTc0YewhYEgY29NiIoFHQdnI8YEU7uovkUqAswUhlhZCAtHIrUUvekZHFV3ao6N5NuUtmiMjYGlhx+cISRYSAqQCtAPJnUsqmFodKQuMw4Vl0tPwSuskVlTo48SUpuCq02tkIQBA4NPlTuokWtVXMv9R6T/CZxPfE6tsnZrL6ykjb3crAbPpGDsyM4sA/IyeFE9WI0AjgozHnaqi4/fuSOucKYFoeuUjFLS/MHWTzu2YrWVdvSY/SPXC+O5a56FQIiir8SzkWkoW6XGo9Zf3M9tX+vza7wXXKxVqguJLc4FyOlEWpRzcC6A8ksyORS3KUyZVMlHaWKZhWJzYjF3NBcnrl5tdB43bVHQEAQBFkzH5cZV+57CuBRyYOE7ASpS+DkBNu3Q0AA31035lzsuVKGAgFRAdT7ox6H7x9mU+9NhIwLwcTAhHWhr1jdZmZCt25w4wa7fhnNlIJDqBQqAkcE4m7nzs7bO0mMukW0DfRIqcAN43T5uVsaWeLj5sPFJxcBqGcvzW2olJLrlInK5B8pnbqTcofmG5pz5ekVAocH8nXbr+VFeGZBJl7bu3En9jrB20TaxIlkb99I52eLsTO148iQIxipjIh5EcNnAZ8xqtEoBtUbpHP9rMIsVl1bxUdNP8LW1JYD9w4giiJD6g8hODqYls4tqWBcAc6cgYYNSb4jzTQ5rN8NVlb/ltd4Ovo0gw8Opn+d/qz1efcZi8TsRGlGymMC7au1f+/7+kX6UdmiMh6OHvqgvn8w+kJDjx49et6R5VeW42brRk/Xnm88ThRFTj4+WUo2JYoit5Nvv/d8Bry0t319ENfFygWNVqOTDg5SnkZJerRW1BLyNIT84nx6ufVCqVBy5MERijUvB7jXhq7ldMxpNvXeJC1MkGQWa2+s5ctWX/LzBz9TUFyAi5ULM4JnoNZKmQautq583+l7Us0FPu8hkLJasrs1UhphpJQW+4VaaVFashNrZWzFtYRrdN/QgdyCLLYfhnUDt2FtbI2AwLrQdXzb7ltOx5xmYJ2BLLiw4I2yGFcbV1o5tyK3OJfqVtWxNbFFFEWSspMIehTE0pPf8+WC9nw13I5lHQy40bUeB0M2M/YmmEfGUCUTfg8AB6UlT9rXx7rvUHY1X8yQRsP4obPA1M/dsFyzhT9tshnZZCy1XFsgCAKF6kKCHwfj7epNobqQmadnYm2VychTH+OSdI1CUkjnGmHKyVxJ28fPXX+mfdX2jDgygk7bOhHxLELuRFU0q0gr51ZUrVCVU9Gn0IgaWb//KiVFRWOHxkSmRVLDugYX4y6SV5wnL7QFBAyUBjrnCYKAFi0fNf0IkNKX30TJ7+itZMkxix494Ouv6bguiIbReVyMkxb8rzpKNXRoyJ2P7zDOYxxWJlaMaTSGtTfWSkVJejp88AHcv4/fH18wIlVKQN/dfzftqrbjed5zxh4dQ5EKekTCyB+OsilsEyIixipjhtYbirHKGL8oPwA6u3SWf88AjA2M/3HSqQN3D9BqYyvMDM0InRSq0918kf+CD7Z15WHcTU5v0dIyXkvRpg30LNxERkEGAcMDsDaxRq1VM/LISGxNbVnVo3TBvTZ0LfnqfL5q/RUAO8N34lXLC1sTW87EnMGzameYPl2ax3B1JWnOl1gYWrx3R7U8rj69Sp+9feji0oWd/Xe+l2X31MCpmKhMWOJZ2iL7XfCP8qdnrZ4IgsDl+MvUsqmFvZn937qWnv8c+kJDjx49et6B2IxYDt8/zBctv9DRR5dFREoESTlJpQqNJ5lPyCzM/FsdjRIby9dlRNWtqpNdlE1cZpzOz16VEDzJeIJaq+b8k/P0ce/D87znpOency72HCCFD84InsHkppN10nh/vvgzxipjvmj1BVUqVGFqy6kk5STx4PkDNtzYIB83rfU06lesz/oWCkKrSgtcI1EhdxVKOholKc45xTncfhbG7SfX8AuuyKJ2ENbBlZENR2KoNCS7KBsDhQGuNq5kFmUiIDD/3Pxy35tfLv+Cf5Q/Xs6duRIfQtOvK7CsgwG3mlTGvVl3pnnNZ/mciyzbncaQuwK7mxogqpRUadSB4+4wZ+AqaqWJtL6biefRCLr+tIdOQ79m0+BdXJlwBY1WQ6tNrUjMTmRIvZfZAuefnCe3OBcfNx/WhK4h5kUMRYnxjL4WjlHadEJUvYhQfUGWEEGzSs2YemIqT7OesrrHap7lPMNjnQeXn14GICknicF1/5JNRQVQx65OKfkTwIW4CwB0qNaBh2kPaVG5BYWaQi48uUBKbgpKQVnmMKyAgCiKcrHn+9CXtLy0ct/TWja1MDc01w0HXLAAWrbkwCEFF275lupiBAwL0JnF+KzFZ6TkpuB7YaMk0YmN5dyWefR+vED63Dx/kXfoB+0fRJV0DcUKaF2tLYdjA+XZk3x1PqMajQKQXca61+oOIL9WQ6XhP6ajodFq+PbUtww+OBgfNx8uj7ss55uAZEncZVtnYp5GcGazhqYJWrSrVzPG8jShiaEc+/CYfPzPF38m5GkIO/vt1MmmAckSdlnIMkY3Go2TpRPRL6K5FH+J4Q2GcyPpBhkFGXgu3AOrVknuUqdOkWxQWKrL+ne5k3KHHrt60NixMYcGH3qvIezjD49z6P4hVnRfgbWJ9Xvf+1H6Ix6mPcTHTcqu0c9n/HPRFxp69OjR8w6surqKCkYV5AXPmwh6FISpgSntqrbTebxk0fZ3OxpAuVkaIiLRL6Llx6tYVpEHsJNzk6liWYXgx8F0q9kNY5UxNsY2HLx3EI1Ww1jfsTiYOfBLt5f5DInZiay7sY6vWn0ldzi+bf8tRkoj3G3dmXduHlmFWQAYKA3Y3GczalHD5A+kYqejb9jLjoZG6miULAQePY9EBDY9a0nnwAekVLPleORxxnmMk49deGEhczvO5cSjE4xtPJZ1N9bJHYB9F9fx8+Le/DiqGlN7G/LtyW+YFAonJpxl50GRCMt8Iq01mJlYcq9Lfc7OH83tYxtIT3nCk7BznKhezC99fudwpXTaVW3HuDaflvu+t3BqwfWJ16lfsT4CAiMOj+DYw2OAJN2oWqEqThZO/HD+B6pWqMqYKDM0Apxrqpu8/X3n7zk96jQ5RTl8FvgZzSo349Pmn8ohjGqtmgF1BiCKIoGPAsvtmkU8kzJLmlduTlxmHK2dW+Nk4cTJx5J8TBCEMmVjAgJaUSvL10RRZMWVFaWOK0EhKGjk0OhlRwPAwABhzx5QKrniv7ZUF+N1yYy7nTsf2nai2fDpiCkphO7+lW4RXyMi8lnzz5jWWkqBPnz/MCGPzvHECj68KzBh5n5WX1+NVtRiaWRJDesatKnSBo1WQ0J2AvDy/6GSxa2x0pjnec/RaHXnY/6nSc9Pp+funiy5vIRfPH9hz4A9Ot2DlNwUOm/rRELCA85uUtM4UQuLFzO3ThJ77uxhR78dtHJuBcC1hGvMPzefWe1m0bZq21L32hq2ldS8VL5u+zUAuyN2Y2ZgRh/XXgRvn49FIbRIM5EyaKZNA4Wi7LC+v8Hj9Md029GNalbV8Bvmp2P+8DZyinL4NOBTutfqrlO4vw/+kf4YKg3pWqMruUW5hCWH6YP6/qHoCw09evToeQtZhVlsuLmBj5p+9E6Sg6DHQXSq3qnUgu928m3sTO2obFG5nDPLp+QPeal08Fd2vV8dCBcEgbZV2mKgMEAravFw9CA4OhgzQzO61eyGiYEJRx4cYdmVZVyKu8TWvlt1si9+vvgzpgamfN7qZUK2jYkNM9vNJCo9iuyibH6++NLStlnlZnzR8gsyzaQ/K712heKRJMm8SiRaQla2dLAIApA+ZQJKK2t6uvbEL9KPRo6NaFqpKeaG5jxMe0hq0mPsBXNOnFmPda6WCbMbYurixpD2k5k58zhD/eLYUbeYJqlKuhvW5fT3Y6i/ZCs/d/iB9U0hdO1ceh6OoPO8rTTqNQELm0p84v8JrZxboRE13Em5w3Kv5W/VlGcWZvLg+QO+a/8dDRwa0GdvH/rv64/vA198XH1YdHER+cX5PMl8wtBwkaBaYFhR2jUuyTNZfXU1XVy6cPOjm6zxXsOJRydYc32NzjEjj47k0P1DJOUklTmfodaqScuXuhAlHS53O3e61ezGyeiTcoaGmUHp31FBkDoaJioTBAQ6VOvAymsrySjIKPd1ywPhr+BfEIHHVCNCHIpZrepTqouhQ3w8G36NxCC3gKNrv6TT9U/Rilp6ufViRfcVCILAi/wXDD80HLs8qJsKXcb+yJbbW+XuXKG6kFENRyEIApFpkWhFLWYGZhirjAHkZHBDpSEiIun56eW+nv804c/Caba+GaGJoQSNCGJ6m+k6v1vJOcl03tqZ1MRHnFtfRIMkLcyezRZPexZeWMjiDxYzsO5AQFqMjzg8giaVmjC349xS9yrWFLPk8hIG1xtMLZtaiKLIrohd9K/qhZl3X4IjA+msqInBtVBo2FA+Lykn6V8uNBKzE/Hc4YmFkQVBI4KwMn6/WY85Z+bwPO85f/T8470yM17FL8qPztU7Y25ozvXE62hEjb6j8Q9FX2jo0aNHz1vYfGsz+ep8Pmvx2VuPzS3K5ULchVKyKXg5CP53/riaqKSFZamOxl9ZGsYq41ID4a2dW8s7vEWaIu4/v09CVgJ93fuSmJ1Ial4q353+js9bfq5jo5qQlcD6G+uZ1npaKbnG1JZTcTB3oKZ1TZZfWa4zVPxD5x/k42PsVUw8WZFG6hVkPvyUYYuP8d2fe0EErQLcbWtzI+kmBeoC6lER62sRLB1Zi7pn7pBTKDkind8yn+UHc3hglsfoMJFrzrCuX1VO/DCa64Gb6PtDHWwr1+Tk0lT6HbpL17lbaNBjNN90nsOsdrOYHjyd7be3y89vxZUV3H9+nyUfLGHeuXmMbjSaZpWbvfW93xW+CxGRqS2n4j/Mn30D93Eh7gJxWXFkFGTw29XfsDaxpo9hIxpG53DEwwRjA2khXJJncuDeAYo0RagUKiY3m8yjqY8wNTSVj/Gs4UlyTjKDDwzGQGEgy8xe5eHzh4iImBqYygngbrZueNbw5E7KHeIz4xFFEQsji1LnlnQ0BEHA3NCcNlXaUKQpYuXVleW+7saO0hxITlEOL/JfMOboGHz2+NCwWgs+D4HJ8/0QQkPLPjkmBjp0wFQwZNjnTgwNn0OhppDGjo3ZO3CvrOUffXQ05pkFJFSAbqmW9Or5BctCliGKIkZKIwo1hYxsNBJ4KZuqaVNTvk3JdUpmUv635FN77+yl9abWVDCuQOjEUJ3sCpAW5522diIjOYZz6wqpmyLC559zekxHJvlNYlKTScxoM0M+flrQNBKyE9jZf2epeZuS+8VmxMo2sjeTbvLg+QNG/BJEzuP7XHZR4dn7CzA21jlPDuv7m6TlpeG5wxO1Vk3wyOBSpgNv40biDVZeW8n3nb7Hxdrl7SeUQXZhNudjz+Pt6g1ASHwIFoYW1LWv+7eup+c/i77Q0KNHj543oNFqWHl1JUPqDcHJ0umtx59/cp4iTVGZhcbfHQSH8qVTlSwqYag0xNbEttRAeJsqbeR8iqj0KAQETkWfknXNSkGJmaEZP3X9See8RRcXYWZoxpSWU8p8HvM7zudu6l3MDMyYdXqW/DMzQzN5gdVvaF2W9fgNa7EFotqSxBx7PLRrsNFIC2ize484H7iG7AomfNN/Kee3wtTdj/n0UhGGWlBp4XgdgUqL/8Ddxo0Ho71pV7UdR1pZ0nXWBhZl+hGXHY/vUN8yNd4LuixgvMd4xvmOIyAqgPjMeOafn8+UFlM49vAYecV5pV53WYiiyOawzfR27429mT2CIDC43mA+a/EZKoWK3Xd2oxW1JOUkMT/JnVwDyOzWQZ4vKCFPnYd/pL/8389ynpFZmClLf4Kjg3Ewc8DR3BGtqKXh2oY67lQAl+IuAVDTuiaRaZFYGVthZ2onv+cxGTFoRW2ZO8wlw+Aln5NCUDCpySSWX1kuS+Bex6OSFAi4NnQt9dfU58iDI2zuvZlTo04RNLgxMS5WMGQIZLzWFYmMhPbtQaUiNfAgd83yKNJKWSoBwwPk3+WAyACOPzxOgQEMvgPjfznN1rCtpOenIyLiaO5Iu6rt5HmFk9EnAWjp1FK+Vcm8VIlt7/90oaHWqplxcgYfHvqQvrX7cmncpVIL6PjMeDpu6Uhecjzn1xTg/hwYP557syYy4MBAurp05Xfv3+UNCN8Hvqy/uZ4VXit0Ut9L0Ipafr70M96uknSNjAx2LhmBQw50qdOTP4+soFhUlyp2gH9JOpVdmE2PXT1IzU0leGQwVStUfa/z1Vo1E49PpEHFBnzR6s05RG8iODqYYm0x3m5SoXH56WVaObd6r0F0Pf9z6AsNPXr06HkDvg99icmIeSdLW5DmM6pVqFZqgZBZkElMRszfGgSH8gsNhaCgWoVqmBmYlepoNKnURF6APcl8QmPHxgRHB2NvZk81q2poRI0c+FdCfGY8G25uKLObUcJYj7G427rjYO7ArohdhCa+3NU2NzTHztQOE7NxaBQCCC8TshWigFvxOACqp6l5ZAOBPVw5+P0QBs+rR5+NXWkZr2VQ4+GYm1qhReSsUSLzOs3HP8qf8Y3HcyflDgP2D+DIgyPs7LeTehXrlfkcBUFgrc9afNx8GLh/IKOOjqKCUQVGNx7Nb1d/49t2376ThO1W8i3Cn4UzrvE4ncdPR5+WNeElXQuzw8fxdYeRrSfDK+Zgir/+1G68uVF+bNOtTYDkmmRpZEng8ECSc5JJykmiSaUmNK/cXHanupNyB4AzsVL2SUunlkSmR/L/2DvPuCju9e1/Z5feRUAUUMSGXTT23nvvJRpbiokxzUQT04yJRmM00Rg10dgQe0UUwa7YFRRQQLAAgvQOW+d5MdnBzYIlyf/5nPM5+82Lc1xmZneHBX73776u+6pftT6CIOBu707L6i15UvQEEZGqtsb+EMP9MBQtDlYOFKmL+Ljjx5RoSvjlyi8VvvcaDjUQEJgbNpdm1ZoRMyuGqQFTEQSBng36M26kiJiTAzNmgKEgiomBLl3AyYn844fpdWqqnNkxuN5geQc8vyyfcXvH4VMAVjpo7NeOej7NWXphqfyZTS5IZnKzck/UxWRphOnTC2hDMKVBQpVZ8v9v8lR2STb9A/uz4tIKfuzzI9uGbzPxKjzIe0DXTV3RZqZz5tdS6uYpYOxY0pd/zYDtA6npXJNdo3fJrz+9KJ0Zh2cwtMFQZrScUeHzHoo7RGxmLJ92/hROn0bbvClBVnGM9+qHRdBOwp5cxNvJmwZVjVO2VVoVOaU5f6vQKNOWMXTHUOKy4widFPrSCd4g5X1EpkeyfvD6Crs0L0pwfDAN3RriV8XPHNT3X4C50DBjxoyZZ/DjxR/pXLMzrWq0eqHjQxND6Vunr4k8yhCq9k87GqWaUpOv+br4gmDs0QCwtrCmVY1WWCos0eq1BHgGEJ4UTmRaJMn5ySgEBTllOVxIviCfs/j8YhytHJndxrSbYcBCYcF3Pb8jNjMWXxdfoxC/zOJMWlZvib1YVy4yDOgVSiws6wFgO24SaiUE/LKXUV/soGO/mZxIPUehqpBpAdNk78CqK6sY7j+chm4N2RW7i+zIACAAACAASURBVK61unI4/jCfdfqMof5Dn3nPLBQWBI0Mwq+KH6cfnObD9h+y8MxCPB08ZSPy89h4cyPVHarTt255hyqnVLpnaUVpeNh7oBSULKs+hXqppWxvCvo//zNgmPJzLPEYmcWZiKLIHzf/AKBQXUg1+2r0q9uPr7t9DUBcdhxnHp5hZsuZpBWm0WJtCz4I/YArqVcA6OrblfjseKOFZO/aveVgxIrkLAbpFJQXGl5OXkwPmM7yi8tNAvyOxB+h1W+tEASBLjW7EDIhxCgorm+dvly3yeH+8gWwdy+sWQORkdCtG1SrRmnYUQaffp27WXcRBIHRDUez584e2Xvx1pG3UJUUkuwMr94SeO/rY+yI3sGjgkeo9WrqVKmDpcJSnkql0WlILpDS3zv6lBujDR0NAeH/6+SpyPRIXvntFSLTIzn+6nHeb/++yc98Um4SXTd1RcjK4syqImoXWsCAAZRsWMuQXcNR69QcmXBELuhFUWTqwakoBaUc1PdXRFFk8fnFdPXpTIdVB6BHD062rMITe5FJYxaBIBCWFEZvv94m5xs8PC8rndLoNIzdM5ZLKZc4MuEIAdUDXup8kAquz099zuw2s2nj1ealzzegF/WEJITIXdn47HhySnPMhcZ/MOZCw4wZM2Yq4WrqVS4kX5Bn1D+Ph3kPicuOM1qUGohMj8RKaYW/m//fei0G829FoX21XWqj0qpILkg2KUTae7eXd0uLNcU8KX7CuL3jqONaB72ol6dPgRTi9vuN3/mow0cV6vyfZrj/cNp6tcVSYcnZh2c5GHcQkHaUvR290VokI2KakJ2PVAzdy5ZkXtfTrgMwqP4g1Do1YUlhdPPtRm2X2ng6eJKvyudA3AG+6PoFR+8d5VLKJRSCwmgh/zyK1EU4WDqw5MISDtw9wNLeS+X7+SzKtGUE3g5kcvPJ8j0EqWulF/Uk5CRQoCrgnTbv8EaCEzk2EOFvz8hdI41kbH5V/FAKSvSinqDoIC6mXCSrNEuWnhgWfseTjtPYvTGJ7yYyqekkNtzcgF7UM7HpRNZeW8v9vPuAZNKOy4oz6pp1qFm+0KpoISkIgtx5MRQaAPM6zaNAVcDaa2sBjL0Y1ZoxouEIijXFJovW9j7tcbByYGd9DbzzDrz3ntTJ8PVFeyKMcefe5WLyRbR6LdtHbOfbnt+SWZLJzuidhCeFExQdhHMZtE2BgGmf4WDtyJILS3C0kj53OlHHUP+hsgwsOiMavajHQrAw6kQZXpcePR72Hv9fCo3tt7fTYUMHXG1duTbzGj1q9zA5JiE7ga6bumKdnc/ZnwupWWYNXbqg2xHEpMNTic2MJXhCsJGRfs3VNRy7d4w/hv5RaR7EyfsnuZJ6hfk7UmDlSvj+e7a92hx/N39aVm/J48LHxGTG0Nuvt8m5Bl/Py3Q09KKeaYck+eHeMXtNJum9CKIo8nbI27jaurKox6KXPv9prj++zpPiJ7I/IyI5AgHBSE5n5j8Lc6FhxowZM5Ww4tIK/Kr4Mbj+4Bc6PjQxFKWgpGftniZfi3oSRWP3xn9bMlCZdAqkjoZh2k5ibqLR1zr4dJAnVUVnRKMUlCTkJLBj5A6aejTFw96DvXf2ohf1fHfuO5xtnF/I9C4IAkt6LSEhJ4Hm1ZrzcdjHqHVqMoszySzJJE78FRFRLjYMCdkPlZJk6FLqJWwtbOURu3Vc69DQrSHB8cEoBAVTW0yVuxrfnvuWnrV7YqmwxFJpyUftP+LHiz/yMO/hc1/nkvNLSCtK4/D4w+SX5WNrYVvhIqwiDtw9IAXStZhq9PihuENYK63xcvTCztKOzzsvQB8YyO7G8GG3+QSOCJQX8gICLtYu6EQdFoIFmyI3yWnZTlZOVLWtip2VHXpRz7F7xxhQbwBudm78MvAXot6MonaV2my5tYUmHk3k5595aCbZpdlGhYafS3lOQ0VeIkOOBhgXGjWdazKl+RSWRSxjb+xeIy9GyIQQOvl0Ijoj2ijcEaQpT919u0u+ieHDQa8HjQZx715evzCP4PhgtKKW5X2WM7LRSOpVrUf/uv358eKPjN0zFtcSyLaD7lkOvDrqa4Ljg4nNjKVQXYi7nTsP8h4Yyaaupl6V31tFO/1avfb/vNDQ6rV8EPoBE/dNZFSjUZyfep5aLrVMjrubdZeum7rikFPMmZX5eGntoFUrOHCAj899wcG4g+wYtYOW1VvK58RmxvJR2Ee80/qdCoMaAdDrWbz9LVqmCfR5bAtXrlA8Zxb77u5nYtOJCILAiaQTAPT0M/0dlFaYBrx4oSGKInOOziHwViCBIwIrf13PYXfsbkISQljdf/VzNzCex5GEI7jYuMgdjIspF2ns0VgewW3mPw9zoWHGjBkzFZCcn8zu2N3MaTvnhU2GoYmhtPNuV+Efvcj0SJp7/j1/BlQ+dQqkLI1CtTQ61iQh3Lu9/P/jsuPQi3r8qvgRUD2AYf7DSClM4XHhY/bf2c/GmxuZ22Gu0ZjbZ9HNtxv96/YnpzSHxNxE1l1bR3pROiEJIVjbpxGpeIscjBOyC4Tb8vkWCguOJByh/ur6rLy0kj5+fTiScAS9qGdKiymotCqcrZ2JzohmUNAgrJRWFKmL6FOnD1Vsq/DpyU+f8eqkXeUlF5bwcYePSchJQKPXYKW0YnDQ4Arv41/5I/IPOvp0NNKja/VaDsUfQqVTkVaUxhddvqBKVBzOaTkENYFRjUYxoekEWdYkInLu0TkUggKtqOVm+k12xuxEISi4m3UXL0cvFIKCyPRI0ovSjcbaNvFowvFJxzk47iApBSmA5Ol4VCBN+jocd1g2cuepyg3ZtZxNF78KQWEinTIwq/UsMoszGbV7lIkXI6B6ACqdirtZd02u2bdOXyxPn0McPBhatwYLC+b90Jc/Iv+QFqlt5/B++3Jv07tt3+VWxi1ySnMotoIpkTBy2REEBBafXyx7Sxq5NcLD3sMoSfv0w9MAFU7jMnxf3O3c/888GpnFmfTZ2oefL//MT/1+YvOwzRV2xWIyYui2qRtV89WcXpFLdcERGjSAI0dYc2cLP176kZ/6/SRLf0CaCDdx30Rqu9SuPCU7NZXLI9txQpfAfMf+CFevQYsWHIw7SLGmmAlNJwCSUbqFZ4sK5XPpRekoBSVudm4v9J6/OPUFq6+uZt2gdYxpPOaFzvkreWV5zDk2h+H+w58rdXwRguOD6Ve3n7xhE5EcYc7P+A/HXGiYMWPGTAWsvrIaO0s7k93sytDqtZxIOlHhtCmtXkt0RjQtqv09fwZI4zstFBYmORpQnqVhZ2ln4tPwcvLC29EbpaCUdn3tPEjJT0GlVTHMfxhF6iJcbVz56vRXuNi48HbrysPrKmJxz8WkFKTQzrsdn5/6nFJtKf5u/niVWFEg3OK2xXtGCdl2ynKzbKG6EIWgoKVnS+aGzeW3m7+RUZzBvjv7qOlckz51+sjSmaupV9k/dj9NPJqwNGIpi7ovYvvt7VxOuVzh6zLINbwcvXinzTssOLWASc0mEfZqGLee3GL07tEmu/RP8yj/EWGJYUwLMDaBhyeFU6Ipwc3ODb8qfrzV+i1UWzeR4gQx/lXkLoPBO1DVtiql2lL0oh6loMRSYYlKp6JB1QboRB3VHKqhFJQcTTiKg5WDSTCbIAgMaTCEEQ1HANJnKbc0F4C9d/biv9qf7be386ToiXxOpdKpCjoaR+KPMChoEBYKC5ytndk3Zp+RF8MwvMAouO9Phj+05eA2HZkBDeDkSX5YOoylVe9ihZJh/sNY3me50fGGAEfPQnAthZp1WvJK3S6ceXiGSymXyC3LxVJhyZ3sO0xoMsGo+xeRLCWod63V1fS9IaDT6/7POho30m7wym+vEJ0RzYnJJ3i37bsVdlVuPblFt83d8CzQc3J5NtWsqoC3N4SGciTjArOPzua9tu+ZdAw/P/k5MRkxBI4IrFjSt2sXNG3KYpfbNLD1Zvj3h8BWOi7wdiAdfTrKxujwpPBKO3bpRemSp+gFNk5+vPgji84tYmmvpcxsNfMF7lLFzAufR7G6mFX9V/3taxhIK0zjetp1WTaVV5ZHTGaM2Z/xH4650DBjxoyZv1CkLmL9jfXMbDnzhVv9l1Muk6/Kr9CfEZcVh0qn+kcdDZAKico8GgCe9p4mk6dA0u8bpvN0rdWVMl0ZEckRBHgG4OPkg7u9O9GZ0cztMPeFAgmfprlncyY2m0hcVpy8u/5Vt6/IKcmEp9ZihlC6Ep3x69eLeo4nHmfT0E3MaTsHAYHRu0czJGgIrWu05mH+Q/n8ZtWa8WXXLzmeeJz6VevTrFozPjj+gdEIWAO7Y3cTlhTGz/1/ZsWlFRSqClncczGtvVqzf+x+whLDmHF4RoXnAmyO3IydpR2jG402evzr05JhO6ski6W9lmIlKtDv3MHOxtC/wSB5AWq4bg3HGlgprejo0xGdqEOjl4obK6UVnWp2wkpphVKhJOReCL39ehtNAHsagxH8w/YfysWMl6MXdarUYeK+icw/MV++x4aOx9MIPOXRsHQgX5XPlANTGBQ0iObVmhM+OZxCdSEbb240Os/Zxhm/Kn4mwX0cPEiNiW9ywd+O7+a2ZVP8LuZmbMNeb0HLVD3b6n1itKAt0ZQwcd9ELLWQ7givRcLbC48CkrzNw84DURTpWqsrGcUZTG5eLpsq1ZTKeS0VFRogeTr+LwqNrVFb6bixIx72Hlx//TpdfSt+/htpN+i+uTs1i5Sc/CETdzs3cHGBsDBualMYu2csg+sP5oc+Pxidd/rBaZZFLGNRj0WmJuv8fJg8GcaOJWZgaw76ljGvzzfyfc0oziD0XiiTmk0CICYzhrSitEoLjRcN69twYwMfHv+Q+Z3mM7fj3OceXxkXHl1g3fV1fNfzuxcaDf48QhJCUAgK+tXtB5TnqpgLjf9szIWGGTNmzPyFzZGbKVQVPnPy0l8JTQzF1daVVtVNp1NFPYkC+NujbQ1UVmh42Htga2GLk41ThYWGp70nar0agKT8JNzt3AlLCkMQBIb5D5MX861rtP5br2tuh7nklObIhmmNTkOyjdpoxKtIxQt6gAJ1AZP2T+JR/iOGNxyOt5M3D/IesOicZBy1VdrKeQ4jGo6gqUdTFp5dyPI+y4lIjpDN7PL1VAW8d+w9hvkPo5F7I1ZcWsEnHT+Rd+p71+nN5mGb2RK1hU/CPzF5PXpRzx+RfzC68WijQjOlIIXLqZexVlrTuWZnhvkPg1OnsM0pYHtT5FRnQC4oPB08KVQXmuxiRz2Jol/dfuhEHVq9lksplypMAzcQlxUHSKNd61Wtxys1XqGGUw3OJ5+nTY02ZJZkyvf41P1TJuc/LZ1KL0onLiuOg3cPsnHIRo5MOEKXWl0Y12QcSy4sQaVVGZ0b4BlA5JPI8gd27YJRo2DoUA4snMiueweZfnA6ztbOVHetxaGbDbGbMAWKyuVZ88LnkVaUhoMGeiRBcq82uDt4cCPtBqGJoRSqCxERsVBa0MSjidF0tqgnUfJ7q2icsSBIHQ13O3cyi/8d6ZRGp2HO0TlMPjCZcU3GcW7quUoT0K+mXqXnlp7ULbbmxNInuDp7grU1nDhBiqPIoKBBNHRvSOCIQKPiK7c0l8n7J9PVt6vpFLRz56B5czhwALZsYclwD3ycfGSJFMDO6J3SRK8/i+GwxDCsldaVGrbTi9LlCWiVsSd2D68Hv85br7zFtz2+fZFbVSFqnZrXg1+nrVdb3nrlrb99nac5knCEdt7tZOlXRHIEbnZu1HWt+69c38z/DeZCw4wZM2aeQi/qWXl5JSMbjazQ6FkZoYmh9PbrXaEsITI9kprONSsMlnsZ7CztKhxvKwgCvi6+WCosTaRTxepi9t3dJ/87OiOann49CUsKA6CNVxvKtGXYWthyJOEIL4tap+bD4x9iqbSU5UI/RPyAqMCoowHlciIDoxuWdwusldZsv72dsMQwUgpS2DBkA252blgrrSnVlSIisuTCEh7lPeLLrl8SnhSOjYUNg+oP4pPwT+SxqQBfnf6KfFU+P/X7iY/DPsbD3sNkZ3Z80/H81O8nlkUsY3mEscTn7MOz3M+7b5KdMefoHEREVDoVP/b9EUEQ0G7bSkJVgcgagtH0IcNi3VDceDl6yR0Hw31YdmEZj/IfkVmciV7UV2q2LVQVUqCWukXNqjUjPjueV6q/wukpp9k9ejdPip+QX5Yv53Wsvb6WoNtBRt0aQRDQiTqmHJjCnjt7UCqURM+Klr0YAJ91/ozUglQ2R202ev4AzwAi0yOl623dCuPHw7hxEBREDTdf0orScLJxwlJpydFXj+G+bR+kpMCsWSCKXHh0gVVXVuFSCsWW8EqGBUcViZRpy1hyfgnudu6UaktpXq05px+c5tVmrxpJkwxGcFcb10qnhRk6Grlluah16gqPeVEyijPotbUXa66t4ZcBv7BxyEZsLGwqPPZi8kV6be1Fw1IHjn+fhoubN+h0EB5OYQ03Bm2XZGmHxx826Ra+HfI2BaoCNg/bXP57Q62G+fOha1eoWRNu3eL+oE4ERQcxt8Nco47XttvbGFBvAFXtJG9LWFIYnWp2qvQepRel42lfeUcj9F4oE/ZOYFyTcawesLpCediLsuzCMuKz41k/eP2/EqSn0qo4nnicQfXKvS0XUy7S3rv9P3qdZv7vMRcaZsyYMfMUwfHB3Mu598IBfSAFd11NvVqhPwOkQuPv5mc8ja2FbaUmZl8XXzR6DamFqUbHzAufR3ZJNpYKqRAo05bRukZrrj++TnZJNieSTiAg4O/mz+7Y3ZVKiSpCFEVmHJrB2Ydn2Tlqp/wH/0b6DQSd6fGeDp7yYhikSTsD6g5AKShR6VTUcKwhm9p7bOkhL9BAmtBUpi2jzqo67I7dTV3Xunx1+iuW9ZYW66suSxrwqPQofr78M192/ZL7uffZe2cvi3suNglSA8mc/GmnT/ko7CO2RG2RH994cyN1Xesa7QxHpkfKBduYRmN4pcYrUFaGuG8vgU1EWnu1MTLRGwofgzE7tyxXXqxaKCwQEOhfrz+xmbFEpkdSz7WekTfiaQwZLDYWNrjbuxOfXR7WN6rRKO68fYdG7o3kkb9avZYJ+ybQfXN3YjJiAGmhVqgq5ODdg4xvMh4LhYXJ8zVyb8SoRqNYfH6xkX+lhWcL8sryeLB2CUyZAtOmwaZNRGXF8P357wGpoD007pC0u9ygAaxbB1u3UrpxPRP3TQSgyArevAYtvvyVnNIcVl5aye7Y3fJCtK1XW1RaFRObTjR6XYacl/pupinZYOzRAEnW9ne5mnqVVutbcTfrLicnn2RW61mVLmTPPzpPn219aK6qQujiFJyr+0pdnOPH0davy5g9Y7ifd5+QCSEmkqXAW4EERQexdtDa8oTt2Fho1w6WL4fvvoNTp8DXl2URy3C1dWV6y+ny+QnZCVxJvcKkppJsSqVVcebhmWdOVHuWdOrCowsM3zmcvnX7smnoJpNNgZchPjueb85+w4ftP6zUvP+ynHl4hmJNsZwGrtPruJRyySyb+i/AXGiYMWPGzFOsuLSCdt7taOfd7oXPCU8KR0Q0mpJjQBRFqdD4B0ZwA5VJp0DyaRSqpEV6Yo404vbk/ZOsvrqaJb2W0Na7rZxRkF2SjYhIUHQQW29tpWX1luSV5fEw/6Gca/EifH7qc7be2srmYZsZ5j9M1s8LgKiEv6qlWldvbZR/EZMVQ3uf9tha2lLDoQaphak0dpOkMUXqIlRaFRq9hlbVW1HHtQ4gGZ2vPb7GvZx7nLh/gqDbQbzR6g0WnVvEk6InzAqZRQO3BsxuM5v3Q9+njVcbI7nJX1nUYxHTA6Yz7aCUFZBfls+e2D1MazHNyG8xN2yuXKwt67NMOjkkBMuiEnY0hZENRxpd17Cr7mrripXSisj0SEq1pQgIqHVqRCQ/QvNqzVHr1CTmJvL5yc+NOjMGzj06B0CdKnVILUilVFtqNNrW1tKWqnZVsbGwwUoh7Xi72bmRmJtI87XNabymMdml2XIXo0ftHpRoStDpTavBBV0W8CDvAdtubZMfM3gHbq76VOpSrFtHUsFD+gX2k3fPA6oH0N6nfMIZEyfCtGl8uedtHuY/xK0YauaDc/2mjG83gwH1BvBDxA+42rqSXpSOi7ULd7Lu0Muvl4me35AI3s6r4p9JQ7fGUGj8XfnUpshNdP6jMzUca3D99et0rtW50mNPPzhNv239aK3x4Oi3D3H0qQOZmXD0KGLz5swOmU14Ujh7x+w1kXs9zHvIrJBZTGw6kXFNxkmjgVetkkbglpXB5cswbx4olaQXpbPx5kbea/eeUbEceDsQJ2sneXrVxZSLlGhK6F2n4kJDFMVKpVOR6ZEM3D6QNl5t2DVq1z9K7RZFkTeD36SGYw2+6PrF377OXzkSfwQfJx+aejQFpM5skbrIXGj8F2AuNMyYMWPmTyLTIzn94DQftHuxgD4DoYmhNPFoUqHhMb0oncySzH9sBIc/Cw1t5R0NQyCXIUhu2sFpdPPtxjtt3qG9d3tZo3/24VkaVG3AqsurcLd354P2H3A/7z5VbKqY+B0qY/319Xx77luW9V4mLZaQxrFKpuM/+YsZ/GHBQ2YEzJAlRABBt4MoUhcROimUFp4tiMmKkb9WoCpg4PaBWCgsuPXkFg5WDqQWprJtxDYOjj2Ig5UDC88uZN+dfah1akbtHkVEcgRrBqwhKDqIm+k3Wdl35TN3ZwVBYO2gtQyqP4jRu0ez+PxiVDqVkRk5NDGU8KRwNHoNPXx7yDvQ4vbtRNZQEOeGiezJUGho9VpqOtckPDFcOufPu9PQrSGbozajEBSIiLza7FW+v/A9zX5txsn7J42udfbhWUDy0MRnxwMYFRogyX30oh5PR095tG5KQQqCIBCbGYuAgBIlXo5ecueloqK1WbVmDPMfxnfnv0Or1wJQ/ddteBRB5PB2sGoV6SUZ9NnaB51ex5PiJwyoN4C7WXdNpnhd+XQKP7TVYaGFLHuYdhNeXyjJ8yY0nUB2aTZOVk4oUDCh6QTOPTpndN9Bko0ZzO3dfbtX9C2UOxqGkLuXNYSrdWreCXmHqQenMqnZJM6+drbS7hJIGwsDAgfQQVeD4EVJ2Nfxl6Rihw5Bu3Ysv7ictdfXsnbgWnr59TI6V6fX8er+V3GxceGXAb/A48fQvz+8+y7MnAnXr0NAuSl8xcUVWCmtmNV6lvyYKIpsu7WNkQ1HyoVeeFI4bnZulXZO88ryUOvUJh2N+Ox4+m7rS72q9Tg0/tALBVk+iy1RWzj14BRrB62tsIv4dxBFkeCEYAbWGygX/xHJEVgoLKTOopn/aMyFhhkzZsz8yYpLK6jlXIvhDYe/8DmiKBKaGFqpbMpgBP83pFOVeTRAytIo1hTjaOVIQnYCH4Z+SHZpNhuHbEQhKGjv3V6WJd1MvyktWnPimddxHkMaDMFaaU39qvXZE7vnufKp4Phg3jryFrPbzDYyseaX5WNvaSd1Mv68hKGosLey517OPZb2XiqPrAWIzYoF4HbGbX7s86NREdLGqw0gpQHrRB2+zr4ICPx8+WeG+A9h6/CtALSq3gqNTsP5R+ep6VQTGwsbPjv5GeObjDfeZa8EC4UFQSODaFm9JT9E/EBHn45y0ajT65gbNhdnaykbRe5mFBQgHj7MtsZ63O3caexuvGttMN9r9BpqOdfiRvoN+Wu2FrY4WDlwMeUi6YXpWCos+W3wb0S9GUV1x+r03NKTKQemyBIgw2eoc63OxGfHY6GwkEcaG8gozkCn1+Fs7Uy/uv3k8bVKQYmFYIFSoUSlV9FjSw+yS7IBjLI0nubzLp9zL+ceO24HwTffIHzyCQF2ftxs7Ea+qoB+2/qRW5ZLdmk277d7n6+6fkWBqoDLqeWjhlVaFZNCZiAK4KCBYXfAYfpbeP9pqL72+BoCAg/yHyAiYmtpi72lPcP9jX/2bqSV3zeTqUx/YuhouNu9fKGRXpROzy09WX99PWsHruW3wb9hbWFd6fHH7h1jcNBguom1OLQwAbsGTeDePdi7F3r0YG/sXuaGzWV+p/lGUicDSy8s5fyj82wdvhXnI+HQtCncvg3HjsHPP8tja0Eyi6+5toa3W79t9DNzOfUyibmJ8rQpkPwZPWv3rLSoTisyDetLzk+m99beVLWtytGJR3Gydnrh+1YRWSVZfHj8QyY0nVBhd/fvEpcdR1JuklH2SESKNDXv3ypmzPzfYS40zJgxYwZpRnvQ7SBmt5ktT096EWIyY3hc+PiZ/gxHK0eTheHfwdby2R4NkMzHJ++f5Pebv7O8z3JqV5FG3z694C7WFHM/9z4gTTFysHKgd53eFGuKScxNlBe2FXE19Spj94xlaIOhrOi7wki/nlGSgVqjQvFUnWL4urO1M0XqIgRBYP3g9SbXDU8KZ8yeMXSv3Z23WklTaq6nXefHPj9iZWGFUlASnRmNiMiumF2kF6UztMFQAjwDKNIUMabxGAQE0ovTabehnWTord1L7uI8D1tLW5b2WopO1BGTGUNyfjIgyWmiM6LJV+Xjae9ZXjAeOAAaNbubKhhSf4iJjl+rk7oBGp0GRytHijXFsrTHw96DmMwYnKycyCrNwsvRC0ulJQ3dG3Jqyik2DNnA4bjD+K/2Z8PNDTwufAxIxWp8djx+VfyM5C0anYac0hz0oh5RFNkatZUybRkLuy0ka24Wn3b+VJZJ3cm8w7vH3gWQO2B/pWX1lgysN5Bv972P7ssvYNEiWnQezY30GwzZMYTE3ERKNCUM9x/OD31+oGX1llS1rUrovVD5GgvPLORezj0cy0CjhNYp8KZCmmqWU5rD+uvr5c5Qd9/uHIw7yKhGo0wM01cfS0ZwK4VVpV0GAanQsLeyx97S/oVD+y6nXKbV+lbcy7nH6ddO88YrbzzTWBwcH8zQHUPpTR32f3UXmyYtICYGAgNh4EAup1xm0v5JjG08lkU9Fpmc13rFGAAAIABJREFUf/3xdb44/QXzWr9Pl6/+kCZ3desmFRp9TX9//HL1F7R6Le+1e8/o8cBbgXg5eslSxdzSXK49vvZMf4bhe23IWMkszqT31t4oBAVhr4a9cIjfs/jw+IfoRT0r+q74x9d6muD4YGwsbOheu7yjdTH5olEYqZn/XMyFhhkzZswg/VG3trBmRssZL3Ve6L1QbC1sK9VzRz2Jorln839krjTwPI8GgKO1I6cfnqZvnb7MbFketOXp4Eltl9ryzuiFlAsICLL+f1iDYcRmxuJs7czumN0VPkdiTiIDtw+kebXmJqM6Ae7n3keNFr0ACNIC0LDQt7eUFpCn7p8y8TMAbI7ajKOVI7tG7WLNoDV0rdUVtU7Npyc+ZcvwLdSpUkc+Vifq+CD0AwRB4KtuX3Hm4RmCooOYHjAdtU6NUlBS3aE60w9Pp/6q+vx06Sc54+NZ7Luzjyo2VXCwdKBfYD+S85NZcHIB7rbuWCgsmNCs3Oshbt/OFT9rHjnpGVB/gNF18svy0aOX/RhPiqUwPcPoY1EUKdGU8EqNV9DoNfg4lY9NVQgKpgVM4+47d+lXtx8zDpV/Hhu5NyI+J95ENmVYWIuIRGdG09qrNTYWNtha2uJg7cDX3b/Gx8kHpaDkSfETXG1dAei7rS87oneYdrBEkc9vOHBXkc2exZPgs89oVq0Zjwsfcyn5EpYKS1pWb8nW4VtRCAqUCiW96/QmNFEqNG6m3WTJhSWIiBRbwXsXIaBBZ6zfmg1377L6ymq0eq3csVEqlNzLuWcimwLJewBSIV1ZESAIAnq99Dlzt3d/oY7Ghhsb6LKpC7Wca3H99evP1fofuHuAETtHMEjZkD1fxmAd8ApERsKGDTBmDPdz7zM4aDCtqrdi0zBTM7UhR6SZvR9fzd4Le/bAH39I/1u1qsnzFauLWXlpJdMDplPNoZr8uEanYUfMDiY0nSD//J28fxK9qK/UnwHlhUY1h2rkl+XTd1tf8sryCHs17F/JuDiRdIItUVtY1ntZhank/4QjCUfoWbun3L14UvSExNxEsz/jvwRzoWHGjJn/eUo1pay9tpbpAdNxtnF+qXNDE0Pp6tu10vGXkemR/zg/w4CdhV2FyeAgmY4drBx4lPcIjU7D70N+N1mYtfdpL6czWymsaOvdVh5zO7jBYERRpKlH0wqnT2WVZNE/sD8uNi6VarlTClKw0iF7M57OzjBcLzg+GEEQ5MWuAZ2o46P2H8mjOhd2XwhIEqSxu8fyVbevZPkSQFB0EOP3jKetV1tZirRmwBrc7NwQBIGYWTFcmn6JNl5t+CjsI7x/9Oa9Y+/JRvm/otFp2HJrC5ObTyZschgZxRl02NiBrNIsMksz0eq1DK4/WDo4IwPCw/mjoQqFoKBn7Z5G13o6y0StU8tTo3JKc2jk1ohHBY+o5VyLfFU+ANaWplIdD3sPto3YxkftP5IfW3phKXFZcbIHw8DTvpoevj04OvEo3Xy7cTzxuPy4tYU1lkpLzk09RzX78oXr+L3j6bmlpzydCr0eZs2i7fKd9LFsyCKnSHR6HftipYlbjtaOuNm5cXDcQaPPQB+/Plx7fI20wjQmH5iMXtTjUgoNs0Dv34D+P4WAjw/FE0bz8+WfaevdlhJNCU7WTpx7eA4vRy+6+XYzuQ+GULZnSQ8NHQ3DfXtWoaHWqXkr+C1mHJ7B1BZTOTXlFDUca1R6PEj3d/Tu0Qy3bMqOBVFYtWkP165JUqepU8ktzWXA9gE42zhzYNyBCn8XfHT0fR5lJRK4JAGr6t4QFQWvvQaVFE+/3/idfFU+czsYj2U+nnicrJIso8lcYUlh1HOtVz69qgLSCtNwsHJAISgYHDSY+3n3Of7q8X8lg6JUU8qbR96kS60uTAuY9vwTXoK8sjzOPTxnJJsyFJ/mQuO/A3OhYcaMmf95tt7aSk5pDu+2ffelzivRlHD24dlKZVMlmhLis+P/FX8GPFs6ZVi8pxenIyJSxcY0s6O9d3t5Io9CoaBvnb6cvH9SHg3awacDGr2GhJwEojOijd7H4KDB5KvyOTbpWKUyi3xVPlVLwFYsl55ZKiSJT0ZxBkpBKev4DR2Yp/ng+AeyB6WDTweq2FRhcvPJUjdh3wTae7fHxsJG9nHsv7ufeqvqUaotpUhdxJpra8gqyUKr17IrZhdtvduyfeR2Hsx5wOw2s9l2axv1VtVj6I6hnLx/0qiYCkkIIaM4g6ktplK/an22DNtCSkEKAH4ufjhbO9PRp6N08O7d6BE50ERJB58OJsXpvZx78vckKTeJYk0xIPkSXm3+KiAZ52MzJX+KQaZVEYZFcy3nWnxz9hsSc8sLJUPg25xjc+THetTugSAI9PHrw7lH5+T7KQgCoijSqWYnQiaGAFJxZamwJOpJFC3WteDjox+ieW2yNJp2wwa+mPQb0RnRjNo9ir139yIgUKYt4+jEoyafgT51+iAiMufYHGIyYrDQQp4tTL8B0745DA4OsGsXv9nfJbckm4d5Ukjk263fpkxXRvNqpl2/7JJsWTZWURFiwODRAKnQqEw6lVaYRvfN3dkYuZH1g9azdtDaZ/oxQBpWMG7POMZYtyTwsxtYduwMFy9K42dnz0atUzNy10gyijMImRBS4c9G8Mlf+fXmepYf1eP/3iI4cwb8/Cp9TrVOzbKIZUxoOsEkyyfwdiBNPJoYjY0NSwp7pmwK/szQcPBk1K5R3Ei7wdGJR/+10bOLzi7iUf4j1g1a969nWhxPPI5O1DGgXnnXMCI5Am8n70oDFM38Z2EuNMyYMfM/jV7Us+LSCob5D8OvSuV//Cvi7MOzqHSqSguN6Ixo9KL+3+toPEM6lVmcSXpRulxgGBa7T9Peu708XrZMW0YH7w7kleXJI22H+Q8j6kkUTlZO8i65Tq9j4r6J3Hpyi+DxwZXeo1vpt9CLepR6jAyaBm9AvjofTwdPEnMTEUXRxDwNoNKpGLtnLCAZtPvX609keiQxs2JwtnbmWOIxyrRl8u6mSqeSDc1VbKrw2cnPaFW9FRObTmTBqQXyuF8vJy++7fktye8ns37wepJyk+i5pSfN1zZnw40NlGpK2Ri5kZbVW8rTwQ7cPYCV0gqtXkt2aTb96vYr90Vs386FhvZk28KAugP4KwnZCQh//ve030VEZFrANOq61sVCYUGpthRrpTVJuUmVGrOvPb4GwOTmk9k3RuoqLL+4nD5b+9Dwl4YcijvE6y1fl4/3di5PPy/TlnH+0XnAOCzRYPpd2X8lH7T/gEJVIU6CLS0/WYkQGMjF72YhTp1Kx5odqVOlDgfuHqCZRzMEBDr4dJBHDT+Nl5MXdV3rSsMEELEUYXIkqKZPoW7VegCoGzVgeR9Hut2Hh/kPsVJa4e/mDyB/Lip678Azpws9LdFzt6tYOhWRHEGr9a14kPeAM6+dYWarmSbH/JWtUVuZtH8Sk2zbsmXeFSy6dJMSu+fPh/nzEUWR1w+/zoXkCxwYe4B6f75PGVHkyarFTDs2i0Gp9rz5y2X49FNQPjvAbmvUVh4XPmZex3lGjxeqCjlw9wCTmk6SF/RJuUkk5SY9UzYFkhk8vyyfE/dPcGDcgZca3/0sojOiWRqxlE87fSp/L/9NguODaVatmVG3JiI5wtzN+C/CXGiYMWPmf5rQe6Hczbr7UgF9T5/r4+RT6R/YqPQoFIKCJh5N/unLBCovNERRZFbILBQo5PTxp+U7BgwLZYO041HBIxytHAlLlORTQxsMpUxbRssaLWX51JxjczgUd4hdo3bR2qt1pa8tKDoIkMaYqhTlBuynczM8HTwp05aRWpha4Tx/gMPxh2XJz+D6g4lMj8RKaUXiu4myl+Hsw7Nyp0RExNvJm2J1McWaYppWa8rinospUBWw5PwSo2vbWtoyo+UMbr15ixOTT+Dr4svMwzPx+tGLw3GHGeE/AoCYjBh+u/EbFgoL2nu1J1+VL0/s4sEDiIhgbf1CdKKuwjTvhJwEeWH/dMFXv2p9POw96Fqrq9wxslJaodFr2Bu71+Q6oijKHYzWNVrLUrQAzwDCksLILctlYfeF1K9aX06MNgQENnZvTHWH6vK9VKCQzzf4ZfR6PUt6LeHOzCiOHHJgZIyeGRMc6KD6hZ5bevLdue/k57+VcYu+dfuSXFBx90Wr11KgKkBExEEFNlqoX2TFO5NXy8cE3gokRZ+LytONFmnwodtQ9t7ZS/2q9YnLjpP9QgauPr4q38e/ZlE8jUJQyB6NiqRT666to9umbvhV8eP669dfaJG98eZGphyYwjT7Tmz8JAJlj55w+jTMng3ffgtIO/mbozbzx9A/TD1aaWmIA/oz/dKnCLa2bPg2GuGV549i1el1fH/he4Y3HE5D94ZGX9t/dz+l2lKjXJiwxDCUgrLS0b8gfY5OPzhNZkkmQSODTEbu/l30op43gt+grmtd5nWa9/wTXhKdXsfRe0cZWG+g/Jhap+ba42tmI/h/EeZCw4wZM//TrLi0gldqvGKUAv2iGMbaViYXiEyPpEHVBv94Nr2Bysbb7ozZyZ7YPYxpPIa0wjScrZ0r7GgsPr8Ya6W1PAb0wN0DdPPtJvs06lWtR2P3xggI3Mm6w9ywufxy9Rd+HfirnMhbGYfjpQTvMguMQuecrMpHZqYWpAIQEh9C0O0g+fG/SstG7BxBqaaUvnX6ohSUHEk4QlW7qsS9E4evsy/5qnx5Mlizas2wtbBFrZdM4JsiN/HR8Y+Y1XoWyy8ulyU6TyMIAj1q9+DQ+EPEz46nsUdjRES+PP0lE/ZO4I3gN3CydkJAYGSjkQgIhCSEsDxiOezYgcbakiP+CjzsPSrsVt3LuSd/JnSijgBPaSyrQS7WpVYXEnMTsRAsUOvU+Dj5sDlqs8l1UgtTUelU8vs8cPcAAgKJOYms7LuS4f7DmXNsDquurJILDV9nX/k99qnTh+NJx+V/GzoGlkpLrJXWkqSrrIw6M+bSLiqbO+sWcbOj1LG6lHKJz05+RnV7qSCs6VyTEf4jiMuKo1hdbPJal11YJi/wi6zh4/NQf9FaObPDsIDu7tudC3ZZjL8N81bfIPzOEd5p/Q4N3Rry8+Wfja55NfUqoijibuf+zDGmglDe0Xi60FBpVbx++HXePPImM1vO5OSUk5UmYz/NumvrmH5oOm869WDd3LMoevaSUrpfew1WrgRBIPBWIF+c/oJvun9jGgi5fz80bco69UWO1IcNE3fh4e773OcF2HtnLwk5CczvNN/ka9tubaNrra5GkqHw++G08WrzTG/Z/BPzSS1MpZdfL0Y0HPFCr+NFWH99PRHJEawbtO65ErS/w5XUK2SVZBn5M26m3USlU5k7Gv9FmAsNM2bM/M8SnRFNWFIY77d7/6W1xcn5ydzJukPfuhXLpkCaOPVv+TNAyl8o0ZQYSUzSCtOYdWQWYxqPYXjD4ZRqS6ntUpuEbOOORmxmLDujd9LNt5ssKbqUconefr2JSI6QpTvD/IcRmR6JtcKa5ReXs6DzAl5v9TrPIqUghZhMyUysRJCD3gB5vC5AerE0+ebrM19ToC6fAvXXblKxpphJ+ydRxbYKnWt1losYW0tbYmbFYKmwlE3xMRkxckFi0OmHJISwJXILtpa2fHry02e+9jpV6pBdks3IhiNZ3mc5px+c5kLyBQpUBfSv15+zj87SwacD8zvN56Owj8j5Yw1nW7igd7BjQL0BFX5uEnISjAzKjdwbAeWSMsNYUr8qfqh0Kvxc/Dj14JRJUXQz7SYgGfcXnFzAH5F/4GjtSOzbscxpN4cdo3YQMiGE7NJs+fvnYluet9Dbrze3ntwivShdDgY04GDlQFFxDgwZAidPwuHDNJvxGTdev8FH7T+S729acRo2Shse5T+iVFuKiCib2w3cybzDl6e/lK6rgjYpkNeoNqPavCYfczDuIHHZcVSxqYKVworoXk2xi7/P0lA945uO592277L/7n4e5T+Sz7mYchERUb5/laEQFPK9drdzp0hdxL2ce3Td1JXNUZvZMGQDvwz8RS7GnsXqK6t588ibvOvSj18+Oomidx/JUzFyJPz+OygUnH14lmmHpvFai9f4rPNn5ScXFsL06TBiBHd7teCDHhreeuUto4XysxBFkcXnF9Pbr7eJVCytMI0T908YZWfo9DpOJJ14pj9jyfklfH/he+wt7enh2+OFXseLkFaYxrzweUwPmE6XWl3+tes+TXB8MFVtq9LWq638WERyBDYWNv/q71Uz/7eYCw0zZsz8z7Ly0kq8HL0Y3Wj0S58bmhha4cQhA3pRL422/Zf8GSAtVHWiDo1eSmAWRZHXg1/HSmnFLwN+kbM0POw9TKRTC88sxMfZh5ktZ5KnygMguzSbTjU7odFr5PTpYf7DyC3LRa1X42LjIk9/ehaH4g6h+NOgXc/Z2MNhmNsPyL6Mx0WP2TFyB4o//wSlF6ab3Md9d/YRnhTOoHqDOJF0Qt5Ft7Oyk8fEgtQx+PXar3zc8WN2jNyBUlCi1qlp5N6IvLI8tt/ezrF7xyp97ZdTL3Mn6w5vtHqD2W1n4+ngiaOVI1ZKK/bE7uFw3GHsLe35oN0HfF51BK7xyfxcO5MidRH96vQzuV5eWZ48thUk/8Cj/Ed4OnjKY24NBYdhrKhCocDe0p6tt7YaXcsgJdKJOg7HH6ZB1Qb0r9vfaBxp/3r96eTTCVsLqWvWaWMnLjy6ACBLZMKTwqVC46kC1d7CjqItv0NEBBw9Cn2kgLWYTEk21rxac7lrZDhvwakFKAUlN9Nvlt9/vY6pB6ciiiJKHZRYwtSbMGHhfrkIMyygO/p05Oi9o6j1avqPms8Po715+7KI29EzvNrsVRytHFlzdQ0Ajwsfy6Zu2YRfCQpBYdTRAOiwoQMpBSmcm3ruhSchrbi4gtlHZ/Oh6yBWfngcoXcfOHtWujfbtoFSSVxWHMN2DKNTzU7G5ueICGjRAnbtQv37Oib2yKWmc01+6PPDCz03SGGAkemRFXYzdkTvwEJhwahGo+THbqTdILcst1J/xtpra5l/Yj4LOi+gWFP8Qt2cF2XOsTlYW1iztPfSf+2af+VIwhH61+tvNEY7IiWC1jVav1DRaOY/A3OhYcaMmf9JMooz2HZrG++0ecco/OxFCU0Mpa1XW9kT8VcMBt9/c+fNsEA1yKc2R20mOD6Y9YPX42bnJhcajtaORoVGTEYMu2J28Vnnz+TdRwdLSdISlxWHt5M34UnhANgopalOVe2qkleWR3x2/HNf1/67+6mrcQIRXB2rGX3N1aZ8jG2JWvKXCAj08uuFo7UjANfSrrF6wGr+yshdI+ldpzcqnYoT908A0n01pGwbFqA6UUc7r3aMbTKWDUM2oNarOffoHKMajkIpKBkcNJhd0bsqfO0bb27Ex8mHHrV7EHgrkJvpNylUF7Ju0Dp+HfgrIiKnHpzCZ6UPbc4mkmen4OifE0ErWuAZJGuGha+bnRsXki8Q4BkgdywMvons0mxsLGx4kPeAkY1GsiVqi7yozynNYVPkJkDKPoiZFUOBqsBktK3hOnaWdlgoLLC3sqfTH5144/AbWCmtaOHZguOJx40nOuXl4fA4i6KcJ3D8OHTtKt/bvtv64u3kTWphKm292hL1RhS96kgFS4GqAJ2oY921dXJXbOWllVxOvYxW1KIE3roKq9oL1Hsq6+PE/RNce3yNhm4NUelUVLWtSiOPRsyr95CUPu1h+nTsU54wo+UMfrvxGyWaEiMj+PM8FQYzuMGLAFJw5fXXr8vp8s9j6YWlfHD8A+a7DWfZ+yFSkRERAe3bw+7dYGVFZnEmA7YPwNPBk71j9kqLXY0GPv8cOneGatUgMpKvfB9w68ktAkcEvlRy9Xfnv6Odd7sKJ2xtu72NwfUHGyWEhyWF4WjlaLTjbyDodhCzjszi3Tbvynk6lfmiXpbg+GB2x+5mRd8VJmOq/y2S85OJehJl5M8QRdFsBP8vxFxomDFj5n+SX6/+ilKhfK4sqCK0ei3hSeGVTpsCyQgOz57//7IYvB4lmhKS85OZc2wOk5tPZkiDIQC42LjgYuOCUlCSXpQuLwa/PvM1NZ1r8lqL13C3d6eua105BGz3nd309utNWFIYqQWpDNg+AFdbV2wsbLCzsDPKaKiI3NJcTj84TY0sFQigFbVGX3e3l/wg9hb23M+/j52lHSIiF1Muyt2OO5l38Hfzl4sfAwWqAr499y31q9bncNxhRFFk9tHZVLOvJvkenhpSNGznMLZGbWVy88m09WpLDccastFYq9cydu9YRu8ebWQULtGUsCN6B6+1eE0OB3S1dSXAM4BXm79KbGYsNZ1rkvpBKp93XkCTk9Hs9tejsZB20dMK00zuh0GyZpDy2FrayoVVamEqGp2GkHsh1HSqSXRGNDZKGx7mP2Rkw5Ek5CRwMeUih+MO03hNY3lH/7POn+Fo7UhaUZpJWB/Ak+In6PQ6bC1siZgWwer+qwmKDqLhLw3xcfIhLCkMAUGSTmVnQ8+eOBSrKRraHzpIi7YnRU/os7UPtha2lGpLcbV15eC4gzTzbEbwhGCOTjgqZ7DcyrhF/dX1WXFxBZ+dlKRDDloFVUqgRqkFsW6i3CEDSb7Tolp5wfPmK2+yM3onVWyr4L79ALi6wrhxzGo+g9zSXLbf3s7V1KtYCFJHxTAJrDIUggKdXsf0Q9NZckEaAPB1t6+Ngu6exaKzi/gk/BO+qDaWb987JBUZV65Ao0Zw8CDY2lKmLWPYzmEUqYsImRgiLfjj4qT7t3gxfP01nD3LOYvHLDm/hIXdFtKqRqvnP/mfnHt4jvOPzjO/03wTOd6dzDvcSLthlJ0BUqHRzbebyUbJkfgjTD4wmcnNJ7Oi3wq5k/ZvdDSK1EW8HfI2fev0ZXyT8f/4epURkhCCUlAa/Y5NLkjmceFjsxH8vwxzoWHGjJn/Ocq0Zay5tobXmr/2t3bkrqZeJa8s75n+jMj0SKrZV3vhxc6LYNgdLVYXM/3QdBytHPmp309Gx9R2qY1apwakkaG3n9xmd+xuFnRZIMsN2nu3l30UEckR9PbrTXRGNH22SvKZVf1XkVKQQqeandhz59mFRkhCCFq9Fr1KMoDnluYa7Z57OEhSFpVOhYCAv6s0oevzk5/Li+ZHBZIuv2PNjigF49Gfu2J20dSjKcEJwey/u5+QhBB+7v8z0wKmcSHlAm52brIEa/KByXxz9hsWdl9IamEqS3ouoVBdiKXCEmdrZ07dP0WjXxqxM3onoiiyN3YvhepCXmvxGj9d/onHRY/JKc1heZ/lCAgExwczqN4g3O3d+dS6F77ZOnY1k16fXtTTYl0Lvj79tVzQgeTPePozVagqpEftHjR2b4xe1PMw7yGh90IZUG8AelEvG5lLNCV4O3kz5cAUhuwYQjOP8oyDFp4t5ALmr4WGKIpkFGeg0Wuws7RDqVDydpu3ufP2HTrV7MTh+MNS0akuxL1QD927Q3IyDk1bUeQkTR/LL8unX2A/itXFuNq6Uqgq5OjEo3J4IkC/ev0IHBEo/zujKIMPjn8gf9aKLPR8fhY8v/oBL0cvuWtzNfUqJ+6foKdfTx4VPEKn1zGz5Uy23trK2MZjsa7qAbt2QWQkft+vZ3CDwfx8+WeupF5BRMRaaW2UnF4RoiiSU5bD9tvb+W3wb4DUEXoeoijy5akv+fzU53xTYxJfv7sPoVdvuHkTfHwkSZmjI3pRz5QDU7iZdpPD4w/j61wLfv0VAgKgoEDK1ViwgHxtMa/uf5VONTvxccePn/v8T7P4/GKaeDSp0M8ReDsQFxsXoyyJYnUxFx5dMJkgdebBGUbtHsXg+oP5fcjvUkFcJBXE/0ah8cWpL8gszuTXgb/+65kZTxOcEEzHmh2NOsYRyRGAFDxq5r8Hc6FhxoyZ/zmCbgeRUZzBnHZznn9wBYQmhuJi40LrGpWPe/23jeBQXmhsjtpMWFIYG4ZsMJJSAPi6+MoejITsBL4+8zW1XWozpfkU+ZgOPh3kMLr0onRZXvIg7wFHJx5lZKOROFs742zjTGR6ZIUTrAzsv7uf1la1eewoya6eFD8x6kw4WknyKARJuhGZEQnAmYdn5I5GgaqAQlUhbbzaVJiqfOzeMdKL0pl1ZBYD6w1kaIOhctHUy68XevSIiNhb2vPl6S/Zfms7Hbw7sPfuXiLfiKRrra7kq/Kp7VKbbr7dGLd3HKN2j2Lt9bV09+2Oo5Uj3579FgdLBwbXH0z32t25k3WH+3n3yxd+27dT6l6FkzWlTsUPfX7ASmnFV2e+wutHL94/9j5JuUncy7mHnYX0fVIKSnLLchnTeIwsazuedJzs0mwmNp1IdYfqqHVqPO09WXttLbmludzLucf6QetZ0GWB/P6beDSRJWx/zWooUhdRpi1Dq9fKUjSQ/B97xuxhz+g9CAjcy0lgUhRocjLhzBkcXD3lc4fuGMr93Ps0qSaFCAZPqDgvZUTDEdSpImVoGLoMIiL/j73zDqiyfvv/6wz2BgFBFMGtOHOh5saZK7XcmpmzYaUtK7VvVo40R1aae2s5cSCiYgoKogKigiAoe+911v374/bcegJc9Ty/p77n7R8q597nANf1ud7DQgV97kFCCzcmv/w2/Rv0JyAhABAL6EaOjbiScgVLE0uGNR1GQn4CKUUpTGo9STxw+/awfDmsWsW72vZEZ0UTkhKCVtDSwKHBEwvaC/cvkFeRh07QcWnqJaa1m4admd0T08FBbDIWnF3AVxe+4juPKXz+9n7o0wdiYsDeXqSUOYhF7oKgBRyIOcCuV3fRUekJQ4bA7NkweTJcuwYdxJ8Db598m/yKfHaM2GGgK3gabmTc4GT8ST7t9mmV0EKdoGNX9C5ea/6agbPThfsXUOvUBkLwiLQIhuwZQte6Xdk9creksdGbAejd5l4UEWkRrL6ymkU9FxmYPPzdKFeXE3QviFcaGTZdIckhNHRsKOlwjPhnwNhS+d4ZAAAgAElEQVRoGGGEEf9VEASBVZdX8UrjV6qloTwLAhIC6Ovd94nFxI2MG3+rEBweNRorQlYwvd30aicqXvZepBWn4WDuwIX7F/j99u983v1zA3qFr4cvWkErUWHeOvYWMmR0rdeVFi4tMFWYMrjxYO7k3MHSxLLajAcQC4JT8acYnmZLpq0cV2tXiiqLDNKRj8YeBaCJYxMUMgUetmKgnFwmNxAV3827y0tuL1GqLsXJXFxJ1yeAl6pLkSMntzyXNQPXUKYuE8XttnW5ln6NAQ0GYKowpX8DUV+wLWobpepSwlLDuJJ6hdMTT9PTsydX069yM+um6C6VeJ6Q5BCa1WrG4uDFqHVqStWlkrjVP84fSxNLenn1Aq0W9u0juHNtnKydqWVZi/c7v8/1GddxtHDE1syWbZHbaLimIf5x/uSU50j3CDCi6QgpcOx0wmnsze3pXLcz3T27U6mtREAg+H6wJHK3NbMlPC0cACcLJ2zNbInLjcPFyqVKY6kvqDU6DfZmhq8BjGw+kj5uXXAvglW+0H6+PVdsirA2taZYVczY38cSlhrGgIYDOJt4lr2j9taoa5DJZHzZ/UsAorOikcvkKHSgUcDEG7C1STm/3fqNfg36EZMdw7nEcxy6c4gxPmO4mHyRMnUZczrMYXvkdho6NjTUXrz7LgwbRu93VtLQpr7kolVTMy8IAuvC1tFnex+UciU2pjYSVelJ6eD6fT8K/IhvL37LSs/pfDxnjzjpSUgQw/TOnAEXsZjdGLGR7y59x4p+KxgRJwcfHwgPB39/caphJWaS7L25l51RO1k/aH2VNO+n4duL3+Lt4M1rLV6r8lpIcghJBUkGblMg0qbq2NSRMnxuZ99mwK4BNHduzuExhw0a9oySDFysXJ6r+fkzNDoN0/2n4+Pi80KZQ8+Dc0nnKNeUV5nuGPUZ/0wYGw0jjDDivwpBiUFEZ0XzQecPXmj//PJ8wlLDnqjPyCvPI7ko+W+faOgbAztzuxrdbOrb1yepIIlGjo04GncUbwdvJraaaLCNj4sP1qbWEiXlXNI5BjcazM2sm5IYeXiT4URnRdPDs0eN9Kkz985Qqi5lwLkUipU6aaXxcaepM4miyNzBwoHM0ky+6im6WGkFLWFpYdJ2sTmxtHNrByBlVzxux6pDh62ZLd4O3qwIWUF2WTZLei8hLjeO3l69UWlVHI07yvnJ52nt2prIzEgslBZ8flacDBx47QA2pjZkl2Wz4OwC2rq1xURuwvqr6/kx/EcAZrafKRVu/nH+9PXuKxZs585BZibL6iUjl8np36A/cpmcxk6NOTX+FAUVBXTy6MSPg36ksLJQyhFR69TYmdnhZOmEhYkFLlYuXE27Sv8G/VHKlTiYO4jJ42W5gKgr8PXwZVvkNoKTgoFH1rhxeXHVNsb6RkMraHGycKryOgkJDDwcQ64lOJeAiYUVvpt8uZFxg5tZNzkWe4wJrSawL2YfawaskfQ+NWFcq3HIHloY6wQdMuDDEFjb05z8ygLG/D6GH678AMAX577A3cadxAJRm9PYsTGd63Tmt1u/ManVJMNJhUwGmzcjs7Gl561HOR3VFZbl6nLeOPIG75x8h3c6voOLpYvBsZytqk8HB7HJeD/gfVaErmCt9xzen7VdFMOnpEBJidhkeIjNcGBCILOOz2J267d4f/MtGD5c1GRER8PgRyLlB4UPmOk/kzE+Y6pmajwFcblxHIg5wEddPpImEI9jZ9RO6tnVo2s9Q+etM/fO4NfAD5lMRlJBEn47/KhtXZsT409I2SV6pBen/2Xa1Nora7mefp2NQza+kHnG8+B43HG87L0MglBLVaXcyLhBFw9jo/FPg7HRMMIII/6rsOryKlq7tq7W2eVZcObeGXSC7pmE4E8TsT4v9OnbczvPNaDJPA4vB1GjYWVqxYPCB3zR/YsqhYFCrqBjnY5iYBtgb2bPO53eIb0kXcrDGNBQnBI4WzpzNe0qifmJVc51+M5hGlvXp7gkF2TiSjxgECg2oukIAJRyMZxuUKNBEp1Kb3cLojOWh60HzpbixMDD1gMTuYk01QCxgfvj/h8svbSUuZ3mMr7VeOrb1+d2zm3q2YoTg51ROwl/K5wBDQdQrinnesZ1tlzfQi3LWizssZDCikKGNRlGUGIQdWzrSFOESm0lLZxbiHz/8jwuJV965HizezdlnnU4V6uEzNJMBjZ8lAbeoU4HDr5+kKB7QVy4f+Fh8f3omotVxXx+9nPSitNwt3YntTiVl+u9zMRDE/k54mcARjUfhbuNO8fijjGlzRQCEgKISI8AHhXacblxNHasudEAcLb+EzXmzh3o3h2/HDsqlJBpC5emXmJV/1Xcyb5DXnke/Rv0Z+O1jczvMp85HedUOf6f8eu1Xx8ljAtK6hSBg0rB74vvsNxvORZKC8JSxQbyUvIlJreezP6Y/VRoKpjdYTaHYw+LOSl/WqEHRFH4vn1Yp+VIQv82bobN+oPCB7y85WX2xexj54idrOy/EoVcIbl8QfXp4CDSkOacmMPqK6v5ueFc3p6xGbp1g7w8yMwUm4wGIjXsZtZNRh0YRX+nTqyeH4Rsz17YuBEOH5amHSDa+04+PBlbM1vWD1r/3LqFZZeW4WrtyuQ2k6u8ptKq2B+zn/EtxxtQqjJKMojOisbP24+Mkgz8dvhhrjTn9ITT1WrOMkozDJr/58WDwgd8ce4L5nSY88wuXi8KQRDwv+vPK41fMXiWV9OuohW0Rn3GPxDGRsMII4z4r8GdnDucuHvihQL69AhICKBZrWYGxfSfEZkZibnS/IWpWdUhNieW7y6KjjqNHBvVuJ1eC5CQl4BCpqi+oAOcLZwlkWhhZSG+Hr6YKcwkm1sbMxv6evclsSARc6U5v982pE9pdVqOxh1luLoBF+uLv0oqNWKKtZWJlbTdgm4LDPbLKs1ijM8Y4FFSNsC1jGvIZDLaubUjMjOShT0WotapDaYaACP2jcDGzIYF3Rcgl8l5o80b7I/Zz7R209AJOn4M/xEBgRPjTvBWW9HW8y3/t4hIi+Dtjm/jae/Jvfx74rWUZBGRHoEMGW1qt2H2idkM3zecvTf3ohN0YqNRUQEHDxLcxV0SR/dr0M/gmvo16Me24dvYG7MXwOCaHcwdWH1lNZ4/eEphdF9d+Ar/OH+2DtuKDBk5ZTkMaTyEI7FHGN18NCZyE9KK0wB4ye0lBEEgLjeOJrWqWttmlWZJjY1BMRkdLa7UOzjgcyRU0rTow+106FDIFJyIP4G7jTuzO8yucuw/437BfeYHzn9EaZNpWHwWzL9YjKe9J/O6zCPxvUQmtZok7fPD5R/Q6rSYyk2Z3GYy2yO3092ze80c/86dueHrjVIHcp3hZ+R80nle2vASOWU5hEwNYXyr8dI9PZ4R4mJZlTqlE3TMODaDn6/+zKYmHzFj+gbRuraiAuLiICBAdJlCnAAM2jUI7wpL9s6/jNLJGW7cgGnTxMnLY/g+9HuCk4LZPmJ7jVbXNSGlKIXtkdv50PfDarVJJ++eJL8iv8r3sP57tL1be/rv7E+ZuozAiYE12tdmlGS88ERDEATmnJiDvbk9S/oseaFjPA9ismN4UPjAwNYWRNqUjamNweKEEf8MGBsNI4ww4r8GP1z+AVcrV6nQfV4IgkBAQsATpxkg6jN8XHyqpUK8CDQ6DZMPT5b0DWXqshq31TcaD4oeoBW01W4bnhrO4djDAChlSgQEwtPC6VavG4H3AqXthjUZxqXkS/T26l3F5vZS8iVyynIYEVnJhVbiJENf3J2IPyEd28rMymC/jJIMprSeAoiCcL1w+nbObUAsrK+lX2NS60l42XsZTAdAzIyY2GqiND2Z0mYKZeoybM1tUcgUZJdlcyDmADKZjA1DN/Bm2zfRCTo6/tqRwIRAlvVdRnhaOPXs6tHIqREKmQIBgQENBvDb6N+4knKFuafm4mnnibuNu+g8VFjI0noPcLRwpIN7B8my93GMbTlWCh3UU1dM5CbUtq5NyvspLOqxiPyKfEBcqf6m9zeMazkOuUzOvYJ7DG0ylIT8BDJKMujl1UtqVlq5tiKzNJOiyqIaqVP6Z1HH5mGQ37Vr0LMnuLvD+fPI3NykPJPtkdv58PSHdKrTCZ2go1mtZgD4rPdhZehKg1T3xyEIAm8de0vMq3iskQro6MCs3o8cllytXVneb7nU2JRrytEKWmzNbLmRfoMz984YNCJ/hk7QcVWRiUYhDjUOh25BEARWX15N3+19ae3amqvTr9LWra20z+OBfVCVOqW3vt18YzNbm3/G1Gk/QseOoh7j2jXxPW4n0vZKVaUM2doPXWYG/quzsPn4S7h4ERo2rHKt19Ov8/nZz5nfZf4LTUi/D/kea1NrZrw0o9rXd0bvpG3ttlWS0QPvBdLSpSVTjkwhtSiVwImBTxRn/xXq1O+3f8c/zp91g9ZJn7P/SfjH+WNlYkWP+j0Mvh6SEkJnj85/SWdixP8fGBsNI4ww4r8CuWW5bI/cztsd3zZwb3ke3M65TUpRyhNtbeGh45Tr36fPWH5pOeFp4Wwfvh0Zsic2Gtam1pgqTLEzswOo4hiVkJfA4N2DaeUq2qfqhau7onbh5+1HcFKwZFk6tMlQBEGgrm1drqRekVbkQaRNuVm70eHEDa44iQGC2aXZyGVyKRnb3MRcKjj1hWB6SbpEKStWFUsFUHJhMoIg0M6tHekl6eSU5dDAsQECArKHf/TYfH2zlBRez64efg382B+zn7Etx2KuNGf1lUeWv78O/ZWmtZqiE3QM2TuE+Nx4ZMgorCgkMjMSraDl9RavszxkOd+Hfo//OH9kMhn3C+8zZM8QyrZvptSnCcEWmaQXpzOgYdU0cD30eQV6IbO50hy1Tk3w/WDWha+TCvQ2ruL0xHuNNwICDwof0KVuFyxNLDkae1RatVXIFDR0bCg5TtWUoaGfINWzqwdXrkDv3mJhfPYs1BKF+fppzPRj0xnvM557+fcQEPjjjT+4Pec2U9tOZd7peXT6tRMRaRFVzrPlxhYC7wVSpi7DQvZQK1QOyb4tqlDz1lxZg1KuNEhvzirLovf23shl8ic+w7jcOErU4vPrliLjh4BFTDo4gbkBc3m/8/ucmnDKwGwARCrg482PnjolCILUpO+I3MEOny+ZNHW16HJlawvBwWJOxsMsEa1Ww9iVXYjNuMnxoNrUORUCCxeCsuqCQZm6jPEHx9PCpQVf9fqqxvupCTllOWy4toF3Or5TLQ2ysKKQY7HHqmRnCIJAYEIgRZVFRGdFc3L8ySqNyJ+3zyh5MepUQUUB75x8h+FNhzO86fDn3v9FYKCNeghBEAhNDjUKwf+hMDYaRhhhxH8Ffon4BQGBme1nvvAxAuIDMFOYSena1UGlVRGTFfO36TOiM6NZeH4h83zn0aWeWIw+qdGISItApVVJxao+fwHE4mbgroHYm9tzYvwJmjg1kZyKgu8H09e7L6XqUkKTQwHRd7+zR2dSi1IxVZhK7lOCIHD4zmGGOXTmrmkJhYiUqfyKfIlyJEOGhdJCKjYrtZXYmtmSXpyOlamVtPr+uJg5KjNKcg7ae3MvQfeCqG1VG3drd4NCMr8in1nHZ0n/f7Ptm4QkhzCo4SAqNBWEp4VzJeWK9PpPg38CRJ3IJ2c/AUS6mLnSnM4endkzcg9/vPEH6SXp9NzaE5VWxXK/5cQmhiPz92dfSzm2ZraUqEsM9BmPo0RVwq2sWwA0ryUWfjKZjNSiVIbtHWZgF7t75G4iZ0bSz7sfOkGHRqdh0sFJ+Hr4cjTuqDT5sDa1RiFXEJcbhwyZZC37OLJKs6Rn3DwuD/r2hZYtITBQsmcFcboC0NK1JfH58ZJg3drUGlszW9YMXMPlaZel6c/cU3OlfJDUolQ+CPhAmj5V6CqxUoGDlSMXky9yM+umdJ7iymLWhq1lWttpYlq5TImvhy8Luy9EQEAraPH5yYe90XsN6E56hKeGS/9u2vRlblmXcyB6H3tG7mF5v+XVTgkVMoUhdcrKhQpNBQUVBUw4KArd97T+inFTvhezL9zc4PhxMfG778MciqwsPnynMcfLo9hfPIDW525Bp6qJ23p8HPgxiQWJ7Hp11wstXKy5sgYZMt7t9G61r/9++3dUWhVjWxqG4kVlRpFekk5acRrHxh6jQ52aLbZB/JxXaitfaKLx6ZlPKVWVsnbg2ufe90WQW5ZLaEpoFbepu3l3yS3PNTYa/1AYGw0jjDDiXw+VVsW6sHVMbDWxymro8yAgIYDunt0lm9nqcCfnDmqd+m9xnFJpVUw+PJnGTo1Z3GsxIFrclmvKa9xnUfAibExtMFWa4mjhyN08sdEoU5cxZM8QCisLpVXhLnW7SJkbiQWJtHJthZOFkwF9anjT4WLgmlcfyX0qKjOKxIJEhqfZEdLQTJo2CAh42Xvh7SCu1FuaWEoFbrm6nNrWtckoyQCQGgq9IB1ElyJPO08czB1YHrKcVq6tWDNwDaklqVXuc0fUDs4nnQdEipejhSNX067SrnY7LE0sWRO2Rtq2Z/2e9Kzfk4YODUU+/8OmpUJTwX96/geZTIZvXV9uzLghOXHdyrrF5VqfYqGBhbVvIwgCdmZ2NYphj9w5gg4ddmZ20uejqLKIMnUZ24Zvo5dnL2nKlFSQRCvXVmwatgmFTIFSruTc/XMEJQYRkhxCYIL4/Ms15ai0KuJy46hvX7/agjarNAu5TI5cB43HvSNSgk6dElfsHyIqM4qb2WIzkFOWQ3RWtJTToZ++AHSs05Hwt8JZ1ncZG69tpPn65hy+c5gZ/jNEGp6mDEe5FU1yoE4R1K/XCk87T76+8LV0jF8ifqFUVUqP+j0oqChAI2iY2nYqQ5uKblZdPLpQUFHA2INjab+hPbezbxvcT3hauJTDsldzHRMUdEnUMia9Gketh6hCnXqYFzH297EcvH2Q/W2WMHrSUmjVCho3hn37YMcOGPrQYcvfn7XjGrDaNZF1njMZuOYkWFtXdypA1E6sC1/Hcr/lT5wm1ISiyiLWhq1l+kvTDUIRH8fOqJ308e4j0vceQifomH5sOgC7X939THQtfXr98zYaIckh/BzxM0t6L5Eom//TOBV/Cp2gMwgm1F+LDBmd6tTc+BnxfxfGRsMII4z412PfzX2kl6Qzt/PcFz5Gubqc4PvBz6TPACRq0l/BkgtLiMqMYtvwbRKVwMLEosaJRnhqOP5x/nT37M79gvs0cmxEfF48Wp2W8QfHE5UZhf/YR2Fsvh6+3Mu/hwwxnfpq2lX6ePep0miUa8pp7NSYkOQQUotSOXznMLZmtvQ6n8Sll5wNArRGNRsl0Zr0NC4Qi3o3azdJgN7TsyeApBEAkTZxK/sWrlaupJek89PgnxjVfFSNtI/R+0dTqirFTGnGhJYT2BG1gxntZ1CmLuNAzAGpyALROvZO7h2DghSQguVAtA2Wy+V0q9uN/bf2E7N6ATkvNSfFTmzUytRlbIvcVu1K/NbIrQC0cGnB1fSrAJJFbwf3DpxKOCWlON8vvC/tp9dJdKzTUZq8JBclA2Kj+fut30XHqRqMBbJKs1AWl+JeDEL3HmK+g9UjXUxifiIDdg6Qmp/U4lT2jtwrNcKPNxogTn0+7PIhMbNjaOXaihH7RnD87nFKVCWYKkzJ05WyJAhq+3QmPi+eT7p9wv6Y/dzOvk2lppKVoSuZ0GoCe27ukTj9tqa2bI/cjquVK8FvBHNl2hWaOjXlWsY1WqxvwQz/GdJ1hKeGS9S91rVbs9RvKcFekDhzDKSnUx0ebx4BKWskKDGIg+2XMWLSt6LQu3172LQJNmyAsWOhtBRmzuTYh0OY262ED1vPZNbUn6o9hx7Zpdm8ceQNBjYcyJwOT3fpqg4/X/2ZUlUpH/p+WO3ryYXJnE86z4SWj0TggiAw7/Q8wtLCaO7cnFEtRj3TufSN/fM0GiqtiunHptOxTsdnMgn4u3D87nHaubUzaK5AbDRauLTAztzuf+1ajPj7YGw0jDDCiH819AF9AxoOeKHVRz3+ePAHFZqKp+szMiLxdvD+y8LJiLQIlvyxhM+7fy6t/gNPpE4tCl5E01pNGdRoEMlFyTRwbMDd3LvMPTWXo7FH2TdqnwHVwreuLwKCgTWsn7cfV9Oukl8u0ncaOzWmWa1m5JTlYCI34eDtgxy6c4jB3gMwvRjKHy4VFFYWSlONzh6dKVaJlJvHG41yTTluNo8aDf09Pf6cbExtePfUuyQWJGJlYoVvXV/SS9LJK88DoLaVYbGUU57DnBNisTe17VQySzNxMHeQJge/RPwibdvdszseth7IkKGUKaXr/T70e4muk5ifyK3sW8ztPJfIkWfoElvGl263MZGboBW0dKrTiTePvsnAXQNJLkyWjp1Zkik5AUWkPtI31LGpg1wmp+/2vkSkRzCsyTDszOy4XyA2GoIgICDQxKkJl1Mu82bbN2nv3t7gHicdnsQfD/7A1dq12vc8Ky8ZuweZmOpAfvgwWFgYXFe/nf2wMrUyeHZeDl6SYP3PjYYe9e3rs/GVjViZWD2aWGk0jI+Ec+0cmNZ5NilFKQxpPAR3G3e+ufgN2yO3k1GSwYRWEzh0+xAqrQpHC0cCEwPZHb2b8S3Ho5Qr6VinI7fm3GLLsC3YmNmwIWID7t+7sz5sPWFpYah0KhQyBecmnWNGh1nYmduzvnUljB8vhif+CQr5I+pUhaaCj898DMCChlN5ZfxX0KiRmPq9ejWsWiW6R4WFQdu2RJzexpjxpgxv9irLhv1Y7bPQQxAEph2bhlbQsnnY5hdyrqvQVLAydCWTW0+mjm2darfZc3MPZkozRjQbIX3t6wtfs+ryKkwVplVycZ4EfaNRkyNVdVgRsoI7OXfY8MqG/zXxtUan4WT8ySpuU/AwqM+Yn/GPhbHRMMIII/7VuHD/Atczrv/lNNuA+ADq2NR5qr3ijcwbf5k2VaGpYPLhybRybcWClw3tYWtqNK6kXOHE3RN82f1LvB280eg0uFq5EpkZybrwdawftL4K97m5c3NszWylguds0ln8vP3QCTrOJZ2TthvedDin4k/Rx7sPO6J2EJkZyXBdY7LlldwVctBoNdKKeTPnZpKY187MThIKV2orqW31iDqlf0a3sm8hf/iryNXalbOJZ5Eho1RdSlZpFgvOLsDGzIYO7h2qXdHcFrmN84nnaV27Ne3c2rEzeidvtn0TuUzOT1d/kix3KzWVFFQUiCvfMni307v09OyJgEC3Ld24lX2L43ePYyI3wa+BHw2CrqGQK7nQwQW1Tg3A+sHrOT7uODezbtJifQsxU0IQ2HRtk3Q9pkpTOrmLFA8ThQnmSnMqteI1dKzTEU97T2mioZ+uNK3VlDJ1GRHpEfg4+0jHmt9lPjpBR155HtsjtzNi3wjOJ52Ximrtnt3kaIootTEnvZY5mD2iVhVWFDJw10BKVaW83/l94vJEQbm50pzTCaef2mgIgsCck3OkaYG5wgw1Oq54gNecBRKF7Fb2LT7u+jG7o3fz9R9fM6LZCALiAzBVmFKpqWRI4yEcjT1Kdlk2k1o/cpuSyWRMaTOFtA/SeKfDO5SoSphzco70THxcfFAqlFiaWPLWS9P59SUZpSHn4euvq1yr3jmsTF3G0D1DufTgEgB1f9oF3t4wYgQsWQJffQVvvy3+3aULD2pb8MoMG3zc27Dj1R0GWRXV4ddrv3I09iibhm56YRenLde3kF2WzUddP6pxm13RuxjWZJjUhK+5soYvz3/JtLbTUGlV+Hn7PfP50kvSsTKxqhLiVxPi8+L5KvgrPvD94G/PAXoSQpNDKagoqPIzqqCigJjsGKM+4x8MY6NhhBFG/Kux6vIqWji3eK5fztUhICGAfg36PXEVUxAEbmTcoLXrX/sFvfDcQuJy49g2fFsVRx8LpUW1Go1FwYtoVqsZr7V4TcoeSCpIolQtUjRmtK9qoSmXyens0VkqhOPz4kXbV8dGkk4ARA1EbnkurV1bE54WjqnClAFRZbwzQpxWtHVrKxWI3g7eUvHqYO4gaTQqNZXiROMhncnWzBZ3G3eKVEVS/oDe1creQqS+7Lu5j603tvKfXv/hu77fEZsbW+2zfe231yhVlfJm2zc5Hneckc1GUqmtJKs0iwO3DgBwNPYoJaoSkc4kCHzR/QvOTDpDF48uqLQq2v7Slu2R2+lRv4dY4O3ZQ2XvHsQImTSr1QylXInfDj+UciU3Z99kdPPRvHXsLdptaMeX57+UrqVYVcwrTcRiSSFToNVp6VinI0q5kjeOvEEdmzpVGg0vBy+sTKwITgqWKHKWSkvmd5kvFb/vdXqPuNw4em3rRdtf2vLHV9PImT4BQQYZLpaYmzyaZFRoKhi2dxiJBYks7buUD09/iIeNyLPvVKfTMzUa+2P2c/jOYco15ShkCiq0lXwQArlOFnx05mM2RGzAysSK6xnXmdZuGrZmtjwofMDcTnPZeE2chAxrOoxRzUeRVZpFE6cm1RauVqZWDGkyBDtzO+mzor8u/bXN7jCbIm0ZOz8dDIsXi0ntj0EvBn9l9yuEJIdwsut6nMplZLnZwsSJ8NlnMH8+jBkDL78MixdTtGAeg8doMTe34uiYo0/UXYHohjU3YC7T201/anp6TdDoNCwLWcZrLV6jkVP1WThRmVFEZUZJ2RnbI7fz3qn3mOc7D1drV5wsnAysfZ+G58nQEASBmf4zcbNxY2GPhc98jr8D/nH+uFi5VJno6U0djI3GPxfGRsMII4z41yI+L56jsUeZ23nuCwf0gRisFZMd81R9RmpxKnnleX9pohGaHMqK0BV81esrWrq2rPJ6dRON0ORQTsWfYmGPhSjkCsmy9mjsUQBeb/F6jefT6zRALIQiMyPp693XQKfRoU4H3KzdKKosAsTAwNMxR9nXWIWNqQ22ZraotCrsze0xU5pJ1+do6YhMJkMuk1OprcTN2o3CykLK1WKjpESXaUYAACAASURBVC8q9FSnSm0ljRwakVGSgbnCnO9Dv8fHxYdp7abR26s3ver3qrbJyi7L5p2T7zDWZyxKuZKLyRfp36A/tma2rL6yWqLPAZLz0bmkcyjkCoKnBONq5YpKqyI8LVykGD14ABcvEtK1HgqZgszSTGa1n0Xr2q3pv7M/3/zxDUv6LKFX/V7cyLiBVhDpPFYmVpjITehatysg6h0qtZWEpoQypfUUojKjuJV9i6T8JABpP1OFKV3rdeXCgwtSnoi1mTXOVs7SM3q/8/vcnHWTwImBTAvX8vLCTWzqJBbmFdoKrEytpPdw7O9juZJ6hfWD1vN+wPt0qtOJDu4iZa67Z3eC7wdL7k3VNRrZpdm8ffJtnC2d0eg0OCisaZcGHsUQPPMKX/f+mvVX16PWqTlx9wTmSnMsTSyRIePC/QsUVhaSU57D7Pazpe+Fx7U4egiCwLJLyxiwawCdPTozzmeclBqfkJ+Ay3IXfgr/iXp29RjedDhrat1D6NUTxo0Tk7z1x3n4noanhXOq28/0HPMJLmpTsjo0h/ffh5kzRfpU27aQnY36wnlGN7pOclEKx8cdr5GWpodaq2bCwQnUsanDyv4rn7jtk7D35l6SCpL4pOsnNW6zK2oXThZO9G/QnyN3jjD1yFSmtZ3GMr9lnLl3hj7efZ46eXkcGSUZz0yb2hG1g6DEIH4a/JP0efrfwvG7xxnUaFCVewtJDqGWZS0aOlbNMTHinwFjo2GEEUb8a7H68mpqWdaq4kX/vDidcBoZMknMWxP0QvAXnWiUqcuYfHgyHdw7MK/LvGq3qa7RWBS8iBbOLRjdYjQgZmXIkEmr2An5CTWe09fDl/yKfNysxGJEr9NIyE8gMT8RECcfw5oM4/jd4wBUlhQx2SceZ7k1ft5+ZJRkoBW0eNp5SvcBUMtCdPhSyBSotCppZVVPn+patysyZAZ5Cy7WLozxGYNG0HC/8D4r+62UiuL/9PoPcblxdK8n2gvrtQMyZGy5sYUbGTcY2Xwkm69vZlb7WRRVFnE17SpHY48SmhKKmcKMRo6N6OPVh8XBi9EJOpQKJTtf3Smdf2f0ToK+mY5gYcE692Ta1G5DXnkeo5qP4uT4kyz3W87K0JXUXVWXiPQIBjYcKF1HhaaClz1fxuLhdEFfNBVUFDCt3TQOvn6QlKIU4vLi0Ol0aHVa6fl0r9ediw8uEpMVA4jBcTpBJ1nlFlUWIZPJ6Hsshrc33yR/+iTCpw2UnndxZTFhKWHM9J/Jsdhj/DrkVz4/9zkuVi4cev2QNBnrWrcrFZoKojOjgeobjbdPvk2lppLssmycLJzIVRfyTRDkzJ9DS9eWfNLtE2Jmx4ji7vvB9Njag7TiNOzM7FgRugJ3G3caOzWmj3cfTt49KZ5HbXieUlUpY34fw8dnPuaTrp/gP9afqKwo6b2e00GkUc0+MZsGaxowoMEAbuXc4uzSWaDTiZMKnY6iyiLu5NwB4HT3jXR7fT64uODsUp/sy2dh1ChIS4Pp02HsWITr15mTt4OziWc5+PrBZ9JtfRX8FdfSr7Hr1V0vXIDrBB3fXfyOwY0G10hJ0gk6dt/czestXufC/Qu89ttrvNrsVX5+5WcKKgoITwt/7slsesmzhfXllOXwQcAHjPUZ+8Sck/8JJBUkEZMdwyuNXqnyWkhKCL4evn9pociI/78wNhpGGGHEvxIFFQVsubGFWe1nSYXfiyIgIYAOdTrUaEWpR2RGJPbm9mJw2gvg0zOfklyUzLbh22pMFbc0sZQmAiCu+J1OOM3CHguRy+SkFqUycNdALEws8K3nSy3LWgZZGn9GJw9RT9DQSVwxDLwXSC+vXshl8iruU3pqU2pRMo1yoQgV3ep1kxoHfdGmvz49JcpEYYJO0EnWwnpBeDu3dggIFFQUSOe5lHyJkU1HotFpRLpSg0eFVdd6XRnYcCBpJWmSoxMg/T3mtzGM9RlLbG4sDhYO1LWti42pDe+deg8QJybL/Zbzn17/4WbWTSntvK93X+ra1hWtZmVKnA4HcKWtC/7p4rTD1sxWbMjK86UJhqnCFLVWzZWUKwgIuFi5oBW0hCSHSHQt/XvoZOFEe/f29GvQjzkd5qDRaZgbMFeiTinkCnrU70FRZRE55WLYYam6lIi0CEzkJihkCnZE7YDvvoO5c+Gjj3D4eSuvPTapqtBU0GlTJzZd38TUtlNZE7aGUlUpJ8afwMHCQRL1NnZqLDYIScHIkFVpNA7ePsj+mP1SQnhJeQGzw+FIe2s+HvyNtJ23gzdfdP8CGTJCk0NRyBQ0c25GQUUBaUVpzG4/G7lMzvao7TRybERocqjkJpWQl4DvJl+Oxx3nt9G/saTPEtQ6NVGZUZKRwHd9vyN7fjajmo0isSCR6f7TsTG1YWXsVti1C86coeDbhfjt8KNcXY4M8B39ATg6wsKFuFy/K1KngoMhJAQOHYKNG1kWuZ6N1zby65Bf6e3Vu5rvCENcenCJby5+w6Kei56aWfEkHIs9Rkx2DJ92+7TGbS7cv0BKUQpta7dl2N5h9Pbqzc5Xd6KQKziXdA6doHvqYsefkVGSUcVEoTrMOz0PraBlVf9Vz3X8vwPH4x5pox6HVqflcsplI23qHw5jo2GEEUb8K7ExYiNqnfov2zNqdVoCEwKfSpsCUQje2rX1C62+nU86z5qwNXzb51ua1GpS43YWSkN724XnF9LSpSUjm4+kqLKIQbtFD/p+DfqRVpxGI8dGUpZGdbA3t6eFcwsUMrEQvZNzR8qL0DspAfTy6oVCpsBUYYpcgI8jranUqfD18JUaBT09Rx8Gpxez6gtuPUVKr9NoW1vkmusTtUHMQPgk6BNkyNDoNAZhcCBONeLz4g1E0/qJQlZZFr/f+p369vXZdmMbs9rPolRVyv3C+yhkCnp49mBok6H41vWlf4P+0lRDJ+go15SjE3Qsdn2dNpnwbb37qHVqUotS6evdlxN3T9BifQuO3z3O9uHbSf8gnZ71e5JXkYdCpqCoogi5TM6YFmNYGSrSazSCWKz38e4jFfrjW4nTtbVha1l9WUwwl8vkdHDvYDDZsTOz42jsURIKEvC082TnpZ/QLPhUTKr+7juQycgqzcJcIWo69NQSb3tvNl7bSHhqOKObj5beA/10RUCgX4N+BCYGYm1qbdBo5JblMuv4LDxsPSjXlFPfph7WpVoGxUGnj9dWcVLTN4oaQUNvr96EpoTq3xAmt5lMQl4CFx9cZEqbKZSqSwlJDuFU/Cnab2xPhaaCK9OuMLL5SEBs0rWCFo1Og7uNO9am1tiY2XDgtQPcmn2LZrWaUawq5kT8CebrAshd8D59HnxNfOYdfK2bodACdnawdClMnoyLYEmWplC0tI2OhuHD2R+zn0+CPuGL7l8wuc1knoaiyiImHJqAr4fvExuEp0EQBL65+A3dPbvTtV7XGrfbGbUTD1sP5gfOp03tNvz+2u/SZyIwIZCGjg2pb1//uc79LNSps4ln2Ra5jeV+y59KI/ufgP9d0ZL7z5+vm1k3KVGVGBuNfziMjYYRRhjxr4Naq2ZN2BrGtRz3l39xXk27Sn5F/jM1GpEZkS+kzyiuLOaNI2/Q3bN7jUnBejxOnbr44CJn7p1hYY+FaHQaRu4fyf2C+5wcf5LmtZqTmJ9II6cnNxog0qf0UwaVVkVsbix+3n4EJQZJ9B6VVoVW0KLSqvg1wJzzDeSYK83xdvSWtAY+LmLxr280bMxEvr1e5GumNMNEbiJNQJwsnbA3szfIQGjo2JCE/AR6ePYAYP7p+QbX+pL7S7za7FXyKkTLWwulhbS/DBlbI7fSw7MH+2L28brP69JrWkHL9/2+l5rART0XcSv7FgdiDnA9/To5ZTkMazIM5b4DaOxsON9UdHCKzIokKT+J4fuGi7ass28xsfVEbM1t8bTzlBq0Cm0FjRwbsWX4Fr7t8y0Ad7JFSk+v+r2k69fTy15t+ipfnP8CEKlTZkozaRIml8kZ3HgwR+OOEpcbx8s5lqTLSjjznymwaBE8vIes0ixpyhaTHcPHXT6WeO59vPuw8dpGPFZ6MOPYDElfo9Vp6degHzcybmBpYmkQmPjeqfcoV5eTUpSCraktScUPWBkAu8b7MLHNI8coPXxcfJAhw9XKlTUD10jvgU7QsSBoAZuvb8ba1Jp3O72Ls6Uzi84vYtCuQXSt25Wwt8Jo4fLIwS08LVx6lvoGVI9mzs1EO9yhW5AhY0XoCmqbriHRWcGvp1rhlvAWHYRjfDztV6I/+BoEAZfcCrLd7cRckdq1CU0OZdKhSYxrOY7FPRdXuZfq8O7Jd8kty2XHiB1/yeb1XNI5wlLD+KzbZzVuU6GpYF/MPgrKC6jvUB//cf4GAvXAe4HPTZtSaVXklOU8kTpVoalgpv9MXq73MlPbTn2u4/8dKFWVci7xXLW2tqEpoSjlyioCcSP+WTA2GkYYYcS/Dr/f/p2UopS/bGkLIm3KzsxOohjVhBJVCfF58S+kz5h3eh7ZpdlsGbblqULPxxuNhecX0sq1FcObDuetY29x4f4FDo85TAuXFng5eJFanIqXvdcTqVMg5mnE5sZKQWe7onbh5+1HXnke1zOuA/BR4CM7zi7xFZx0KaJN7TYUVhRKX9eHyukpMnphr77RKFOXUdu6ttTUlKnLJMcr/VQiLjcOpVxJbnkupgpTAhICiMqMMrjexT0Xk1achrWJNeWacmQP/+ibCv84f8rUZZy4e0I6rpnCTGqEQMz7GNBwAIuDF3M09ih2ZnasH/QjoyM1XO5YB62JEgulSLm7nnGd5X7LOTLmiLQ6rNKq2H1zN1pBy6z2swC4m3uX7y5+J51H7+y0+fpmSXDvYuWCudKcbvW6Mc5nHPBI26N/Th42HoxoOoKozCgeFD6gh/9Nmstd2dakwuA56FPBQSzOna2cWRe+jp8G/0TgxECS30/ms5c/42jcUY7FHQPgXOI5A8qQfqJxLPYYu6J3SQW1qSDn5STIt4APpm+t9nN5N+8uAgJNazVlXdg6bM1sERAwVZjyS8QvLAtZRhePLgiCgIWJBcH3g/m8++ccHXtU+qzpcTXtKs5Wzshl8hrT16e0ncKs9rOkaZdDRQvWdV9Ktn17zHDhap6c90etJLrzIJznfkYWpQiIVK2he4fSsU5HNg99tvyLAzEH2Ba5jXWD1uHl4PXU7Z+Eb/74hra129KvQb8at9keuZ0SVQm1rGoRMCHA4Pkk5ieSkJ/w3I1GVmkW8OSwviUXlpBUkMQvr/zyXCLzvwtBiUFUaiur2NqCSAttU7vNUx3BjPi/DWOjYYQRRvyroHcY6uPV529J5w5ICKCPd58aNRN6RGdGIyA890QjID6ADdc2sKLfCimx+0mwMBHtbS/cv8DZxLMs7LGQRecXsT1yO1uHbaVn/Z6AGLimE3Q4mDuQW54rBfBVBz01oaWL6HJ1KuEUnT06Y21qTWBCIJdTLvNLxC/Ym9mjRM7hJpBqI9KussuyAZAjp65dXQApd0I/0dDTP8rUZQYWt9/+8S0qrQoZMqnIzi3P5e0ObxOdFY2XvRgsN+/0PIM0bh8XH8a2HIuAgFKmxMXKBQFBajjyyvNwt3Hn2z++RYeog6jUVrI/Zr/BfS/uuZjbObfZGbWTAQ0H4HYnBa88HYvcYilVl0rWrgICXwV/RVhqmLTvqfhTFFUW4WDuIOkqZneczWdBn7EgaIHBfacXp9Pyp5asC1uHgICnnScPCh+w1G8pAEsvLeVyymWJgtbQsSH9vfwwEcRf0U3emMfk3h9w+M5hg8buTs4dUopSAOjg1oF5gfP4tNunTH9pOgDOVs583v1z7s+9L02IZhyfQa9tvXC3cUelVVGiKqGgooCZx2fi7eBNQUUBjR0bU1BZwNdnIeG9iQaBkY9j6aWlWJpYUlhRyNYbW3G0cKRL3S7M9lmGj2YlHVSHSI8bRJMV/ckqEYvetzu+XW1BG54WLk1Davq+TS9O5/S90wgIzK33OoOz3wRkCA+bI51cgSCXs3PSf3DxbolGpyGxIJHBuwfjYO7AodcPYaY0q/bYjyOlKIUZ/jMY3Xz0c4XjVYew1DCCEoP47OXPamxwcstymXd6HqZyU4KnBONi5WLw+pl7Z5DL5PTy6lXt/jVBCuuzrp46FZMVw9JLS/m026c0c67qCva/Af84fxo5NqrW7tcY1PfvgLHRMMIII/5VCE0JJSw17G+ZZhRUFHAl5cqz6TMybqCUK58rfbygooA3j76Jn7cfM16qmnNRHfQTjUXnF9HatTVZpVl8/cfXLOu7jLEtx0rb6bM09MVufF58jcds7NQYB3MHaQIRkxWDicKEHp498I/z59V9ryJDxqz2s+hT7sa+jhbo5OKKqb7QdbFykQpIjVbUJuiPZ6p81GjUtq5NRmkGsTmxLL20lNdavIaAIAmjARZ0X8DgRoPJKMnAysSKwHuBnIo/ZXDNC3sspFxTjkbQkFmaKVGw9FON1OJU0krSANH9ytnSWbK61aNjnY709urNvYJ7DGo4CHbvptzZgfP1xW1sTW15t+O7jPEZQ7GqmJe3vMzhO4cB2BG5AxO5CWN9xnLxwUXMFGasHbiWM5PO8KBIFM3r6V3Hxx9nSuspvHPyHXpv642zlTP3C+9Lz6uBYwMG7RokFYbWJlbYzHqP5pniM2k87WMmtJqASquSmqXozGhCU0IlF6QtkVsY13IcX/euGmhnqjCliZOo+9kxYgdtarchvTid/Ip8zied561jb1FUWURifiJmCjPu5cUz/xLs6mTOF0O/r/Yzk5ifyJ7oPfRv0J+b2Tep1FSSVJDESK8Pibrmi73QATNccKQjjSpWYC+Ik76A+ADpGDpBR355PtfTr3Mr+xa55bkAhKeG81nQZ8w4NoOR+0fSc2tPmqxtQt1VdYnPi8e1GOZ8uI9kR290f6I06WRy7mVVSMX667+9Tm55LifGn3iqmYP+mqYcnoKliSU/v/LzX3Y7+vbitzR2asyIpiOqfb24shi/HX4Uq4qZ12VetUYSgfcC6VinY5Up0NOgb+irm2joBB3T/afj7eDNpy+/uP7kr0AQBI7fPV7tNCOzJJOE/ASjPuNfAGOjYYQRRvyrsDJ0JU2cmjCw0cC/fKyge0FoBe2z6TMyI2lWq9kzrZjq8d6p9yhWFbNp6KZnLmgsTSxFXnPSOQY3HsycE3N4u8PbVexw69rVlSgmwBN1GvrgvoJKcUW9XFNOYn4iPT17EpoSilqnRitoGdV8JMOvlXHZSaTwRGZEEpEWATyiTcGjfAj9RMNMIT6TUnUpbtZupBWlMefEHOra1WVJ7yXAI+E0wL38e3zb51sKKwvJKM2ga92uzAucJ92L/nyTWk1ChoymTk2liYhSpjTQfMhlcr7s8SXZZdlEpEdwOeWywb37evgCkFOcSf62X/i5QT4ypTi9KlIV8UqTV9j96m4+7voxap2aV/e9yvJLyzkSewS1Tk1vr96kFKVI2SW9vXqzrO8y4FEgHwL8OPhHzk46y4PCB1xOuUx4WjhqrTj5WdxzMU6WTtJ1590IhZ07qdegnXRP7jbu+Hn7sS1yG4n5ifTf2R+FXEFdW3GK1LZ2WzYP3Vwj/UUuF7/e0qUl+0btY8eIHQDE5sby263fUGvV4rTFth4uRTp6J0DLD5fhbOUs3oIgiML6gvtEpEXw7sl3sVBaUMuiFhqdBhOF6I6150ImWkGLDLEBkKFAjpz6vAnAm0ffxHu1Ny7LXTD5jwmOyxxpt0G8Tz3lbk3YGnZH7yYiPYISVQm2prakFqeikCtornXiwhYw0UGmRSIC2j/dqY76LuaStXJkRiRHxhx55hyGVaGrCEoMYtvwbThaOD7TPjUhJiuGw3cO80nXT6rVeOiDFW/n3EYhU1Srz9LqtAQlBr1Q4GhGSQYyZNJ7+Dg2RmwkJDmEX175RQqJ/N/GjYwbpBWn1ajPAGNQ378BxkbDCCOM+NcgMT+RQ3cOMbfz3L+Fb3w64TRNnJpIReSTcCPjRo3++NXhyJ0jbI/czuoBqyXK0bPA0sQStU5NY8fGrApdxdAmQ/lhwA9VGhVThSketh5klmbiYuXydJ2Ghy8xWTGSLmFP9B4uJl9EQKBZrWbUs6tH21Jbhl7ORycTcLF0QSfoOH//PIBBWrG+wNZrFPTNV5m6DDdrNxILEglKDGLdQJH/7mRhuNIcmxNLS9eWDGk8BIDRzUdzK/sWm69vNthuYU8xvbigooCCygJ8nH0MGhYQtR8TW03E1tQWe3N71oatNXg9JjsGa1NrTm36BIeCCiwnTkWj0+Bq5YoMmeTh/13f71g3UKQ+fXTmI9Q6NR62HtzLv4cMmeS4BUh2ynpx8+jfRnM7+za9vHoRNSuK9m7tSSlKYfQBMffE3tyedzs+KjJjyUHYvx/TeuJUKiBBnAJMbj2ZS8mX6LmtJ5YmlijlSikjZe+ovU9scpUypcF7M7TJUIlq5mDuIGll4vLv0jYdpkywZNfN3TRe2xjn5c6YfW2G9bfW1F9dn/Yb2+N/158SdQkbr28ExOZUK2gx0dSVmoxHkGOq9cTN2g2NTsxHaeHcgh/6/8CB0QeY+dJMqVFsU7sNxZ8WEzwlmLfavYUgCPjf9adUXYqXyoozm9W4Ke0Z+KYZMaa/Ppxhic2GgBYdOq5XrmBDxAYA3un4zjMXq5EZkXx29jM+9P2QPt59nmmfJ2HppaV42HpITmOPQ61V8/pvr3M55TKNnRrj18CvWuOK6xnXySvPe+FGw8XKpQrtM704nY/PfMzUNlPpUb/Hcx/378Lxu8exMbXhZc+Xq7wWmhyKh63Hc/1sNOL/JoyNhhFGGPGvwdqwtdib2zOpdVWHnOeFIAgEJAQ80zRDq9MSnRVNG9dn02fklOUw3X86rzR+hcmtn26z+Tj0ouL04nTa1G7D7ld31+iIU9++PokFiTR0bPhU56kudbtQWFkoaUw2XtvIkdgj2JnZcT3jOsObDEd29izuZQoslRZYmFjQtV5XYnNiAQy0KfqVeT11Sm/BWqoqxc7MjsLKQkY0HSFNnR5fcZUhIy43DkDy9D8Zf5IJrSbwxbkvKK4sNri/3l69ySjNYFzLcSQVJEmNkh5aQcvasLW80fYN1Fo1B24dIK1YpFSlFaXhH+dPiaqE16J0FHjUIr6BA65WrrhZuyEgsDPqUZjfnI5zOPjaQen/liaW7L+1vwplTj950XPj1Vo1L214iY0RG7EysWJOxznAI2rLoduHuJNxE6tKsKqEbCuI7OJNWnEaDuYOHI0TE957e/VGLpOTW5bLnpF7KFOXodOJjYO9uT3xefFcTrmMf5w/W29sZfml5Xx4+kPG/DaGQ3cOAeC3ww/LJZbYfmcrJWrnV+Tr3zhMNRDhDqnKMi6nXOZu3l1yynIk3c3jcLdxx8bURhLcK2QKSkioMmUQ0OLhKGfnqzsREHir3VuEpISwJmwNDuYO5FfkU9u6NnKZHK1OS/Mfm1N/dX1mH5/NhfsXcLRw5HT/Xdz+rTb2aiU9JmlJd7GgSBbFDcUs8gijkixMre9zQzGTcxlbWR22Ghkyg0nbk1CuLmf8wfE0rdVUmrL9FSTmJ7I7ejfzu8w3sC0GsdmbenQqJ+6eYP2g9URlRjGh5YRqjxOYINoQd/bo/NzXUFNY39yAuZgqTFneb/lzH/PvhH+cP/0b9q/yfOBRUJ8R/3wYGw0jjDDiX4GiyiJ+vfYrM16a8be4lMTlxnG/8D79Gz690YjPi6dMXfbME405J8TQtg2vbHguDrggCFIYnJOlE0fHHn1iGKGXgxdJBUk0cmz0RI0GiHoFuUwuFSZJhUnM851Ht3rdKFGVMLzpcAgKorhzO8o1FWSUZDC08VAKK0Vxsr6g02sgZMgkSob+7zJ1GWeTzgKw4GVRMJ1ZkilNBUBsUmKyxXTsBo4NcLN2IygxiA87f0hRZRFLLy01uO4fBvwgHcdEYUIjx6qi0iV/LGFSq0mUqktRypX8fPVnDt85TIv1LdDoNCzt9hVjYpXsaq7lUOxhBjQcQHRWNB3rdOTzc58bNDePh7bF5cZxNe0qap3agJqjd/txt3EHYMuwLUxsNZHp/tMZfWA0juYiJWf1QDFHY1PoesJO/YpdJdS3rgOI4YO3sm9Rz64eh+8cZvnF5XTc2BFBEFDr1PTaJgqD9TQ1x2WONFrbCN9NvgzZM4Q3jrzBR2c+YmXoSvbF7CO1OBUQxfYVmooqDZmJ3AQTLVzcBOV/8j2oZ1uPmS/N5NDrhwifFo6tmS3zfOexd+ReilXFBhbC9xWbRWG+7tGUAUHAP/cDbmffxtLEEm8HbyJnRuJo4UjfHX357dZvJBcloxN0JBcl06VuF9YMWENt69rUt69P5Oiz9Jm2hOKM+7R+LQ/Pl/pgpRCvv4goopVzCVUOoVunOOq66NChw0RugkwmIzorusrnoTp8GvQp8Xnx7Hp113PRH2vCipAVOFg4MK3dNIOvC4LAuyffZVfULna9uou0kjSsTKzE769qEHgvkB6ePaRk9+dBRklGlUbjxN0T7I/Zz6r+q/4yNeyvIKs0i7DUsGppUyqtivDUcCNt6l8CY6NhhBFG/Cuw6domyjXlzOkw5285XkBCAKYKU8mt50nQ25M+i7Xtvpv72B+znx8H/fjUIK0/4+Tdk9Jq/9bhW6Wk7ZpQ366+mKXxlNA+EPUUPi4+Bu5U73Z8V6L/NHZoCOfOcaVXIwQEKrWVBpMIfaOhT3Y2UZhITZSZ0gy5TE5cbhzH7x4HHgXIfXnuS0wVpga6isdD+gY1GoROp2Nb5DY+6PwB34d+LwnQQXSgcrd250ziGd7r+B5RWYZWuHLkVGorWRH6/9g7z/goyrbt/2d3s+m9k4QASSih94QmKL1LL6IURcWGiIBdpEhHVEARBKQEkN5DaKGEHlIgEFJIIKSTXrfN+2HYgb0BRR+e97n1uh1CogAAIABJREFUtwdfSHZyzWR2klzneR5lEV3rdMVB7cCCswt4eevLOFs742Pvw8eljbGr0PFjUCEphSn4OvjKKckl1SXMOzNPXi8sPgyFoCDQOVCmhgHYWtjK/zfa8fo4+Mj35MPQD5nVZRaHkg8xaqdka7skSgr2a1Ci5qq7gUx7SNBK05bE+4kUVxcTmxNLhbaCacemcafkDiIiGr1Gzr8w3jc/Bz+aejalW51uvNLkFWa0n8GS7ktY0XsFC7stpE0NyTK2TY021HSsSaXuYbo8gE6vZeZJ+ClEyYpRm7j74V0KphWwuPtiFAoFP135iUVRi1h6fimV2kosVZZ022BK51GgQLBKJ1Z4m+Zp0pShgIt86noFQRPPu4fexd3anR8u/kD/sP5cvHcRBQq5WALYP2I/H4V+xNwzc3GyduJkvx249x1G4d0k2r+i4Z3R3xHkEsS9BxbJAC4WUtDb1eyrZJRkoBSUcrL8qiurOJZ6jD/CkZQjLLuwjPld55tYIP9dZJdls+bqGia3nfxY0+PLE1+y/NJyfu77M0ODh7IhbgMD6w+URf2PokJbwdm7Z/8Wbcp4HY/+jinXlDPpwCS6B3RnVONRf2vN54VDSYcA6BX4uJbuatZVqvXV5kLjXwJzoWGGGWb846E36Pn+4veMaDRC3tz9TxGeEk7Hmh2fuAH4T8TmxOJj7/NE0eWjyC7LZtLBSQwJHsLwhsP/0vXo9DrG7B4jd/7/0wLzSajtXJussiz8nfwpqCygoLLgD49v5d2KqLtR8sc7b+7kRv4NAGIiNkB+PlEBapytnKnrWpfT6aflY406i5wyKeXbKAAHqehQoCDsWpjc+c8uyyY2O5bVV1czNdRUyJ5elC5rCTrU7ICIyPJLyxnRaAQOlg58dvwzk+PHNR+HzqDjzN0zJp9XK9WyvW3YtTBcrV3JrcilWl/NxBaSBeyAegMQwsKgaVNoUB8BgYziDOq71aedXzumhk5l8bnFpBelI4qirBPpEdgDdxt3uRAbtHUQndd1pt2admxP2A7A3kSJ8tQvrB8NljfgixNfUKGtkKdAUXfOAqCs1KBXAoJUOCgEhVyI1XKsJXPsPwr9iAnNJFF1gHMAAC7WLrjbuBM1IYqF3RbSr24/7NX2nL93nvln5zPp4CQ+jviYi5mSNa9CocDZ2hm1Ui1fu4uVM7UKIfQuBH4wk1FNRuHr4IuztTNTQqeQ/F4yO4ftRBRFNl/bjM6g49sz38ribSPsLe1xtnLGuSSOxZsnc1HZn3jVZPbWS+S7WB8cqyC9OJ2Mkgw6+ndk9/Dd7Bi+w2SN9w6/R4e1HXC3cedE/51Y9+pHcfothr/txprpZwnxDWHhuYUggHOVAALUcJKcmg4lH8LP0Y9Do6VNrN6gx9namZ6bevJb7G88CfkV+by2+zW6B3TnvbbvPfGYv4rvzn+HWqmWKXJGLDm3RHaIe6PlG1zNvsrN/Ju80uTJtKnT6afR6DV0C/h7hUZWWRZetg8nGl+d/Iqc8hxW9F7xP3bT+p/iQNIBWvu0fqIuJepuFFYqq78VfmrGfx/MhYYZZpjxj8fum7tJK0p7Lpa2ANW6ak6mnXwmfQY8mxBcFEXe3P8mKoXqL/+hF0WRwdsGU1BZwBst3gCQQ/v+CLWcagEPu+1/JAg3iAZic2LRGDQ0dJMSm8OuhZFUkERNx5qUHNwFVlZEKe7Rzq8dA+sNZHfibvnrjZOMvHIpV+NRJxsjB/tuyV1W9lkJQGZpJh+Gf0iQSxCfdPgEZytn+XiNQSNPLVp4t0BExE5tx8KohczsPJPfYn8jOitaPn5kI8nW9+jtoyge/Flr5d0KjV5jch1br2/FSmmFt503Z+6c4XbRbTq5Nsewdw8pPdtSUl2CiEjY9TB0Bh2d1naSHJkMWgJ/CEQ1S8XN+zcxiAaWX1rO7aLbcjdeY9AQmR7JuYxzsrDauJGv41RHmjQ0foVp7abxXc/v8NNYs0WqR3gh9GHR+VPfn/C09ZQLrbTiNHQGHe427jT3as6amDUEuweTVpQGQFFlEfkV+fgt9aP7xu5MjZjKmTtncLdx582WbxI2OIyYN2PkYm5Uo1HEZMfQyKORfO0FVYWs2geLh/kypb1p0QdS8VNYVcjNfCnp3NfBF4NokKcpxq792GZjSStOo23Rg+L8AY1u5eWVbBlWn+On6uBUDYiSOH1A/QFcz70uP59Olk7E5sRSWFlId59OlL7UEU36bWZ91Znfv7pOfbf69N7cW74uG420/v0KyRZXq9dyYNQBugV044tOX6AX9VRoKni1yau8tvs1von8xsTeWBRFJu6biFavfaawzGdBYWUhKy6tYFLrSSZ2tGui1/DRkY/4tMOnfNxeSrvfFLcJD1sPutbp+sS1IlIjqGFfgwZufz3jQhRFE+pUdFY0S88v5esXvibAJeBvfGfPDxq9hvCUcPoGPW5rC5LjVOsarZ+o3TDjnwdzoWGGGWb847H0/FI6+XeihXeL57LemTtnqNBWPJM+A6SJxp8JwTfEbWBv4l5+7vvzn04+/hOLohax99ZeajvVZnLIZODZCg1jloYRf0Sfmn1qNleyJKvaYI9gBARis2OxVlkzoO4APC7Eo+vQnnOZF6RCo/5AkwnJgVsSJcoYXvcolcggGtCJOhq6N+TF2i/iZuPGidsnOJF2gsXdF6NWqU1cmwCZIhbsHoyVyoqXar/ExriNtPFpQwO3Bnx05CN50xjsHoyDWqLPIEj6kMzSTBwtHanSmaZp60U9WWVZJOQnALBvwRsoqqrpUr1KFolr9BqSC5I5fec0N+/flG2CjaJ2R0tHmns1Rykoae7VnHqu9ejg18HkPApBwZimUtjbsl7LODLmCBsGbWB+t/l84D+cyPUC3lXSpOLHzF3y141uPJrIsZGPvT95FXm8skvqfCfkJaAX9SgEBSIi3vbe7B2xl6T3kqj4tIK4t+PYNnQbM7vMZESjETT1aioXXPPOzqOReyOis6JNdBqXasBbr/9kok8wiAa2XNtCwxUNmbB3AtX6ajrW7IijpaPJtVVoK1AICtnpqea9ckrUoFZL67fwasHhsUdpsf8yt/bXwbEaVkWvYnHUYi5nXcbH3gcBgTJNGc28mvF6wzEsu7Kcnj3yWLpkGMumHsPZ2pmxu8dKz5wIodUeZNmCEgVZ5VnyPfd18AXg685f42nrSZm2DBsLG+a8OIevTn7FhL0TZFvhtTFr2XVzF7/0+0XW0/xPsfzScrQGrUnTY3vCdibun8ikVpPknBO9Qc/ma5sZ2WjkU8NAI1Ij6Fan29+aPpRUl1Clq8LbXnL6mrhvIo08GjEldMrf+8aeI87cOUNJdQl96j6uzxBFkbN3z5qF4P8imAsNM8ww4x+Ni/cucvbu2ec2zQCJNuVt5y0nZf8R8srzyCzN/MOJRkZJBu8fep9XmrzyVNHn07Dl2hamHZ0GwIo+K2Qq139y7J8EHwcflIKSnPIcPG09nyoI331zN1+d/IqZnWfiZuMmp2FX6avoXKszfWp3p01KNWdCalBSXUJ7v/a09W0raxScLJ3YfkNqzxu7y4/qF4yahVberQCJ9rU/aT/dA7rTO0jqULfwbiF3lAUEruVeI6Mkg/iceGo61iStOA1HS0f6hfXDUmXJybSTeC32wm2BG9ZzrCnRlADInfbMskyZovQoHnVPUilUvJfiys0G7gQ1exGloKRHHam4/PqFr8mZmoP2Cy3Vn1fTxLMJWr0WAYFvX/oWpULJwPoDsVBa0M6vHZHjInmvzUPqjSiK8kTDuLEF4N49eOEFnCpFvn5VovwYrWcVgoLg5cHU/fHJTkn2ansOjz5M5pRMfO19sVRaIiIS7BZMv3r9CHQJfKoDmXEzm1+RL4vVjfQrgL1DG8sbP1EU2Zu4l+Y/N2fkjpEEuQQx58U5lGvLuXTvEon3E+XrNcIgGuRnsp+uDgnuyE5csTmxEs3K2Rn3HYeI+0WFQzVMjZjK8dTj6EU9IiKedp580vRdJk7ZxKm1Anb+gXybvY0Jeyew4uIK2TkLASbm1sSgBIdHih6dqJOdvARBYFzzcQgI/HjpR+q61mXjyxvZGLeRPpv7cDX7Ku8fep8JzSfwcoMnh+n9VZRryll2YRkTmk+QKUHhyeGM2jGKEY1G8EPvH+Si4fjt42SXZTO68ePWtyBREONy4v62PiOr7GFY348XfyQ6K5pVfVf9LVH588aBWweoYV+D5l7NH3vtbsldMkszzfqMfxHMhYYZZpjxj8bS80sJcA6QMxeeB8JTwuke0P2ZOomxObEAT+UTi6LIhL0TsFXb8n3P7//SdZxMO8mru17FzcaNtj5t6RHQQ+5CP8tEQ6VQSZv0ojSCXJ8sCL+ee50xu8YwuMFgPu/0OSG+IXJCNYCnjScv5Fpjr4EN7pkoBSWtfVqjEBSyGL2FVwsOJh2kTFMmTzmMXe+zd86SXJCMWqGmsKqQ8JRw8svzKa4uxlplTZ/NfWj9S2vWxqyV6UIiIh+Gf4jfUj9arGohuzsVVReRWZopi+/zyvMwiAY5g8EIDxsPeZPfwFWinRg/hof6EZcyPW2uF1H/vZmIiHQL6IZW1OJp68n62PU4WzmjUqhQKpSMaTwGrahFEARa+7TmcuZlhjUcRtL9JAJdAlEICpb1XCZTVUREItOlyURmaSbhyeGs2fUlea0akH0/nY5jRY4jWRVX6KT30iAaqNBWyJtPC4UFqe+n4mApTWtKNaUUVBbgbe+Nr6OvvLF3t/nzCdm9Esl1qp5rPXIrcgnxCeFaniS6d6yEGt5BiKLI0dSjhK4JZcCWAbhau3J2/FnCBoUx/4zk9qXRa+RizSAaaODWgMOjDzO4wWBA0upY3kolwf3hM6o1aLmceVm6kLp1uTP/U5KWgovekhJNiZwFEuLYEO+h46l/XyA47ChXpiTyc9+f2XFjB+8ckvQOKh10tWnM6YKrABRWF5psxo32zyBN9Iw/w6N3jqZljZaEvxLOhYwLdPi1A242brJr2fPA6ujVFFYWyuGZZ++c5eWtL9MjsAfrBqwzKcw2xm+krmtdWtVo9cS1jqYeBXgqrerPYPwZNogGPj/+OZNaT6Ktb9u/tdbzxv6k/fQO7P3E369GjVion3mi8W+BudAwwwwz/rG4W3yX36//zgdtP3hqJ/evIqs0i7icuL+kz7CxsDHpDj+KX6J/4UjKEdb0X4OztfMTj3kSrudeZ+CWgTT0aEh+RT4zO89EEASZD/8shQY8zNIIcgl6TKNRUFnAgC0DqO1Um3UDpY1QO992XMm6gqet1JG9U3oHq8izlNqoOKK7STOvZhhEA6kFqZRUSlOEakM1VboqXlj3AkvOSU5Kl7Iu4fCtAx3WSpQijUHD3lt76bmxJ7kVUkd9T+IeDiUf4krmFYqqikyuzdnSmRENR/BhyIcMbTAUBQqOjTlGI49GtPJuRfQbkkbj7VZvyw5MRhF1bkUuIb4hqBVqXq7/MrYWtrKIXiWoZA3F8BtKDKKBgt4vcir9FL0Ce3E6/TRjm43ldtFtEwHxjfwbKAQFlkpLDicdxlplTYhPCIVVhQS5BKHRaziRdoLssmyZhmPs/L976F3e+b4n3cfNolJfzZzZ3Qlsbfp8CQhMaiXx+jfFbwKkDfrArQOxU9vxdsu3ARi1cxRTwqdgqbSU9She9o9nJTyKKl2VrKeJz41HrVCTX5GH/wODsVr+TTiVfoou67vITlK7hu/i7VZvszBqIU4LnOSJkbEjLiDgau3KtUnX6BHYQ97gL+62iGaFahI8pCwJI9bFrJOpbo1Gf8jsFwWSF1Zj9WDYI+hh8jdHaFVghe3xMzi2lzJDxjYbSw27h7QmnQomOr/E/gBJXzKu6Ti+6PSF/PqjhYaHrRQqObHFRDR6Db029qJVjVaMbjKaCm0FFdoKUgpS/vDePSs0eg2Lzi1idJPR1HKqRUx2DH0296GNTxu2DdlmMkmo0Faw88ZOXmn8ylObGRGpETTxbPJEsfSzwFhoLDi7AEcrR+a+NPdvrfO8kXQ/iVv3b9G37pP1GVF3owh0CXwmswsz/hkwFxpmmGHGPxY/XvwRO7Ud45qPe25rHkk5goDwzE4vsTmxNPFs8sRC53bhbaaET+H15q/TM7DnM19DZmkmvTb1oqZjTZSCklDfULoHdAcepk4/a6FR2+lhlkZSQZK82dMZdIzYPoLCqkJ+7vszMdkx/Bb7G8kFyZRqSuWN/8m0k/hUzaHGhwYySu9xJesK9t/aE/BDAAXV0vTi7F3JPSk6K5rMMknnIIqiTNfxsPFAJajwd/Qn1DcUlUKFp60naR+kUfZJGfov9VR+VikH/AFYWVgRNiSMJT2W8EnHTzBgwMrCiu96fMflrMukFacxttlYFpxdgFqpxt/RX6JNiSKOlo4EOAcwJXQKSy8sZUG3BehEHRYKC5Pk8FHXBE4EWbDz/mkMogFHS0e0Bi2vt3idIcFDmH16Nlq9lkptJdsStmEQDVTpqvj+4vc08mjEFyelDe7HER9jO9eWl36T0qTzK/JN3oPQEicStrrh612fmldT+eGtvbzb5l2TY0REglyDuF95Xy7yQEpJPzDqADO7zEQhKLBT27H0/FIu3LsgTzIe3Yg/CV+f/NpET9O/Xn9SClL4+qT0cbVBQ35FPreLbjO68WiUgpIh24YwbPswdt+UChQBgbY+bWnv117WhizqtgiFoKBMUybT4/yLBdSVGrJruhA2OEw+5y/Rv9BiVQvWx6zHWmXN8d4N2NYQ0paChQ5EBRyur8Ly6AmEtg87758e/VQu2GyqwVphyZi735NrK13TL/1/MXGGu5F3Q/6/cbP6duu3aezRmPTidHpv7s2qK6v4KPQj/Bz96Li2I0dSjvzh/XsWbIzbSEZJBtPbT+fW/Vv02NiDINegJ2bd7E3cS5mm7ImJ4SD97ESkRtC19t+bZoDUMLFUWnIo+RA/9PpBnor9X+NA0gHUSvVTk9fPZZwz06b+ZTAXGmaYYcY/EmWaMn6+8jNvtHjDRA/wP0V4Sjgta7T804wKI2KyY56Yn2EQDYzbMw43GzcW91j8p+vEp5cyfX0igxdEM2zZYSy1dZnabipXsq7I0wyQuvZWKisqtY9rNAyigbzyPM5nnCcsPoxvT3/LtdxrxGTHsCFuA0VVRfgu9cVlvgtWs62ISI2goLKAdr+2o+Pajry2+zV+jZHsW41df4NooMKgwfbBJMXf0Z+hDYbyevOHQWT1XOsxvf10rFXWDAseBsDQ4KFoDVrebf0uY5uNxdrCGncbdy7cu0CfoD6UVJdQ07EmtmpbBEFAEARa1mgpr5lVliULuRt6NEStVBOdFc1LdV6iW51ufHLsE16q/RI6UUe1vpr04nRA2rBPaz+NjfEbGRw8GDu1HZcyL9HSu6WJPsOvCEJua1kfrGHlpZWE+IZw4d4FApwDCHAO4J1W75BWlMa4PeMYvG0wZZoyef28ijwuZV5iX+I+QMoC+KHXD3Ss2ZE2Pm14p/U7WCgseK3pazTOht0/F5GsLOLW9p/Bx0e+j/+Jb898Sy2nWvzU5yeTzxdUFuBu6047v3a0822Hl50XVboqciokK2HjROdJuHTvEgujFspBhr4Ovhy4tY9BCbCgvXRMeqF07+4U32Fv4l5cbFxo7i3x5xu4NcAgGmhfsz1LeizheNpxrFRWuFq7MrKx5Pa15doW9KIelUJF/uVTAJQE+FLHpY58HdYqa7zsvBi7Zyxei724cf8m7/aGBHdI+BHcy2FOOx2fle+Tv+ZIyhEWn1+MiIi1FiosIazveronGUCQ8lnOZZwzocUZAyHhYaFRVFXEruG7UCvVnLlzBh97H+Z1nUfk2Eg6+nekz+Y+rL269qn38M+gN+iZd2YeL9d/GXu1Pd02dMPV2pVDow89cYO/MW4job6h1HGu84TVpOlZZmnm37a1BclGWGfQ0b9ef16u/3w0KM8DB5IO0KVWlyf+zi7XlHM166pZCP4vg7nQMMMMM/6RWBezjjJN2XPzvgdpUx2RGvHMtKkqXRU3828+UZ/xw4UfiEyPZO2AtX/aTYxPL+XDX29wOaWYglIdquoG1Cybyw+R+2jq2ZSCygIWnl3I5MOTGf77cHQGHXNPz6XWd7VwXeCKzRwbVN+oUH6jxGORB6FrQhm1cxSfHv+Ui5kX0eg1sjVpaXUpAgJ6UU8d5zoMbjCYd1q/w7cvfcumlzdxbvw5fOxNs0h+PADLQyW3nJfrv8y2YdtkRyUBgcT7ifQO7E2lrpLkQklwfjnrMrYWtsx6cZaUZ2EwkHg/kTrOdRgaPJRKXSUl1SUm52nhZeoaZhSvq5VqGns0ll2x5nWdR+L9RN4/9L58bJBLEKG+oTKlx8feh0VRi5jZeSbrY9Yzr+s8mWoEMOq6gkoVHGlkzdXsqzhbObMhbgPl2nJcF7jS5TcpeXtT/CYib0dKQm33YPrX7Q/A2KZjea/Ne3jZebGy70rGNx/P1eyr9K/bH51BhyAIeJcJnFgPmU5Kurwm0npvXyLTJN2Gn6OfyfcqIGBnYcfh0YdZH7segLY+bVEqlHT9rSufHvuUPkF9OH3nNAdGHpDvC0g6pficxxOwq3XVjNszjmC3YNnFSyWo0Gmq2dUAbjyopT3tPPF39KetT1uOvHKEG3k3uJl3kxdrvciN/Bu427izb+Q+Bm0dhPDg38SWE2WHqu/OSzqHRh6NqIqPptJSiYV/HbztHobFVeoqmdVlFqv6rqKkukRyIlPAp13BQoTzW2zxsvFk7pm5TIuYRk5ZDqN3jJaLCDsN9PfrxrnlM6h6UFd42XrRcW1HZp+eLX8cnxsva32ME5/c8lwCXAII8Q0B4E7JHU6mncRObceeEXuY0HwC4/eO56sTX5nY3z4rdt7YSVJBEm+2fJNuG7qhEBREjIl4YrMirzyPw8mHn5qdARCREoFaqaaTf6e/fC1GHE4+jIjIj71+/D/PzDCitLqUyLTIp9KmLmdeRi/qzRONfxnMhYYZZpjxj4NBNLDswjKGBA+hpmPN57ZudFY0+RX5z1xoJOQloDPoHpto3Lp/i0+OfcJ7bd6jS+0uf7rOxpOZiCIYHuxxBJToRT3VeR2IzYllxI4RTDs6jWUXlrEtYRs6g468ijyKq4uxUdlQ26k2ob6hvFz/Zd5u9Tazu8zmt4G/cXrcaXYO3wnAhdcvAFLoW7m2nHHNxpH8XjLbh23nx94/MqPDDEY1GUWIXwjWKmsslZayVei2lpacE+9gY2HDhXvSOsbCxc7CDpVCRXxuPE09m3K3+K58DxZ3X4yTlRMWSomyVKopZXH3xfK6j4rOgcfsiRPzE01eM2Zn1HSsiYu1CwVVBQgIOFo6yhu9EN8QwlPC+fKFL9l6fSttfdtSz60enx//nP71+svrDY83sK8u5CorEZGoKmWaMuq71uej0I/YMWwHe0bsQUCgSl+FQTQwv+t87pbcpYlnEzbEbeBK1hU5gPDsnbOUacroFdQLnUEHBhHF5s0kuymI+Hk6vrWbUqGtoNuGbmy5tgUrlZVJdohSoSTi1QiO3z7O7sTduFq78kHbD6jQVvBJh09YGLWQsPgwKnWVcoiiziDRwEo1pbT4uQWzT802cbiac3oOifcTKdOUycGFacVp2GihzT2Y+iAzY0G3BUxqPYnorGg6ru2IndqOpl5NOZV+Sn592O/DyCnPobVPayp1lbzZ8k1A0kldz7tOkEsQ7XzbYZ10m2QvNT5OfrjauMraGLVSLeVLHJyESqHCx8INBCi2glGDwD2/khOHvfC282Jh1EI6rXwVn7IvaaPdTZuq79BYN6FIqKb9uQzO1pLWPD3uNMt7L+dw8mEAedJjpEI5WDqgVqrJLc9l542dRKZHEuobilJQMvT3oaQXpaNSqFjZZyXzXprHN6e+YeyesY8FEf4RRFFk7pm5dPbvzCfHPqGoqoiIMRFPDQ7ddn0bgiAwrOGwp6559PZR2vu1fyxV/Flx7u45Eu8n0tij8WMF7f8lIlIj0Bq09Al63NYWJH2Gvdqehu4N/z9fmRn/mzAXGmaYYcY/Dvtv7Se5IPm5WtqCZEVpr7aXO59/htjsWAQEGns+tMHVG/S8tvs1fBx8+Palb59pndScCrnIMEJAiR2SwNzdxp0QnxDebPEmv/T7BT8HPya1nkTh9ELuTrnL9Xeuc3q8VFSs6LOCzzp9xpimY+hQswNtarQBpK6uh40Hi88tpplXM1b2WfnETme1rpqM0gyq9dWE+oaiEOGCn0BUxjkaujfk4r2LFFcVk5An5VC42LjQpVYXdifuZkjwEPIqpMC+QJdARjUeBUiOT8bwvH51++FtL3W6jRacRjxKnVIKSrkLD9DSuyXXc6+zJX4LwcuDZc1BiG+I3Pl1s3ajmWczDiQd4FruNWwsbOi0thOJ+YlcuHdBFkTXz4Pm2RD2iHtxfbf6WCot2T9qP591+oxBDQbRv15/Wni3wIABZytnApwDuJp9lRntZ+Dv5M+ZO2dkStLBpIN42XnRzKsZunt3QatF4eHFkNftwcmJU2NP0T2gOzqDjpE7RrLw7EKTjne/uv24W3yXsXvG4mPvQzu/dvL31dy7OWfGnaFUI02jvr8guZcZg9wMooG+dfvy9cmvafNLG9bHrOeNvW8w69QsdAYdacVp0klE8CmG3WHQeuA7skA4uzybQ8mH0Bq0dK3TFY1ew/W863T074i/oz+n0k9x7PYxAIqriulbty/+ThL164eLPwDwYciHNPdujs+dYuJcdfjY+6AQFDhaSe5jjpaOrI1Zi86go5tPJxZek56BJDeBKH/4ZEItgk7EMjW8FDehJV4lX+EktsISD6yVbWhm+ImUpBIa5kKFSsTGwgZfR18mtZ7EoVFSEnhMjuRGNuf0HOlnSBDwsPUgtSCVN/a9waAGgzg8+jD+jv5UaCsYtG0QVbrlotM3AAAgAElEQVQqBEFgeofpbB60mS3XttBrUy+Kqx63Rn4SwlPCicmO4X7lfW4X3ebImCNy8fkkbIzfSK/AXk+lZmr1Wk6mnfzbtrZavZaJ+ydirbKmvV/7v7XG/xb239pPsHswtZ1rP/H1cxnnCPENeW7GHmb8d8BcaJhhhhn/OCw9v5RQ39DnbtcYnhLOS3Veemav+ZjsGAJdAk34xouiFnEh4wLrBqwzEan+Eep42iCiN/mciB6DRRaLuy3m1aav4mLjwpHUI0zcN5G7JXf54eIPeC/25sX1L/LOgXf48eKPHEs9RmZppgn9w9veG7VSza37t6jSV6E1aNk5fKdJMNujOHb7mKyNqCE4YgByVFVczrxMn6A+6EU9J9JOyBaznnaeDKw/kJNpJ2XBOsDrzV+XC5lLmZcknr3KWqIUPaDUGDMPjAhyCZKtakVEWQQMUMe5DnpRz8idI3GyckJAQCkouXzvsizg77ulLyuvrESj1xB2LYxAl0DKteXMaD+Dlt4tZV3EyHgosoKDQQ/PHZ8bTxufNo+9Z3qD9L409mjM7pu7sbGwYUD9AczvOl/K6Xhwqw8lH6JnYE8UEUfRHjkECgFh1Cg0NpZo9Bps1bbsHbmXsU3HAjDt6DTSi9Ll8zRwa8DArQPpWLMjlipL6rrWxcfBhwDnACLTImnr25aYt2Ko71afi5kXAUyC3s7ePUuXWl2Iy41j7J6xrL662iRZ2dfBF0GEQ5tg1gAnZr40CwulBWqlmq9OfEVMVgx2ajtO3TlFtb6aLYO3EJkeSSOPRqyNWYu3nTcda3Yk8X4i77SWrGZFUWTt1bWoFCpebfoqzT2bEZwHsS5aeWplpC8ZC9DZHb5k3y4rYgoScBFs0QnSDZy7+CpZX01hSkQ5LQrHPCBoSRtO4QF9qqfqc8IaSFOcEJ+HzYAaDpIY/o3mbwBSINzUI1PR6rW4Wbvxe8LvWCotWdV3FQ5WDmwbug2DwUBcdhzvHHhH/nkZ2XgkEWMiiM6KpsPaDvJ07o8w59QcHC0dSSlI4dDoQzTxbPLUY5MLkjmfcf6p2RkA5zPOU6Yp+9v6jEVRi7iRdwMrldVzCyF8HjCIBg4mHXzqNEMURaLuRplpU/9CmAsNM8ww4x+Fq1lXOZl28rlPM0qqSziXce6ZaVMgdVAf1Wdcy73Glye/ZGq7qbSv+ezdxH4htoiIcrEhIgWY3TD8wCfHP6GOcx32jdxH6geplH1aRmOPxrzg/wJvtHgDVxtXItMjmRI+ha4buuKzxAfn+c6ErA5h3J5xLIpahIuVCz9d/okyTRm1HGv94QZk983dBDgH4GHjgU98Gg+YL2gNWvrV60cd5zpEpETI1KmaDjXpX0/SJZy9c1ZexzjluV9xXy4EjJQUO7UdNhY2j1GnlAqlPCEwiAais6LZl7iPV3e9Sr8wKSdFJagk9yxERFFEK2qp1lfLLjYLui7Az8GPocFDiZ4YTQO3BlzJvsKa/mtIL05HiYLXbliwowFYWtubnL+0utTk49TCVLlLfjP/Jluub6Ff3X7YWNjQ2b8zINFcbhfe5nredSZkeEK/fui8vcDCAoXaEguFhSxCVylUrBmwhs87fg5Ilr9GrLm6Bl8HX8IGh5FWlEZdVym07wX/Fzh1R6IwOVg6mAjFH9Vl5FXkcSPvBh+FfiQXcsb73SOgB1mlWbx/Ac7UhBGvSpan88/MR6PXYG9pz9yuc6nQViAgcH7CeXbe2ImthS0Hkg4wvtl47pXew0JhQZBLkJztcPHeRfIr8+lWpxu2alsaap1w0EgCb2OhUa2rNrmnfVefQgg/wqUejajpKb3XbjZuOFg64Dj9K34PscdeDJCLDCMElBRXO7KljeTg9Ohm3VhwGWmKaqWaJeeW0HJVSwqqCsgozWD9wPW42rgC0uRsfrf56EQdv8b8yi/Rv8hrdfLvRNT4KMo0ZYSsCZEL6ichMi2SM3fPUK4tZ8/IPX86Cd0Utwl7tT396j098yciNQIXa5cnhtn9GVIKUvjm1De83+Z9CqsK5UyX/wZcybxCTnnOU/UZSQVJ3K+8bxaC/wthLjTMMMOMfxSWnl+Kv6P/c0vzNeL47ePoDLpnLjREUSQ2O1YuNLR6La/tfo1Al0C+6fLNXzr3xqTZxCjfpoCLVJNLAReJUb5FqXANjV7DOwffofWq1sRmx2JjYYO7rTtedl580+Ubfh/6O9cmXaPiswoS301k9/DdzOgwg3pu9biee51Zp2aRXZ7NrYJbiKLIrYJbDPt9GF+f/Jqt17YSlxMnTzD0Bj17Evfwcv2XaVezHUFnruNULVUaSkFJE88mdKvTjfCUcHLKJcejWs618HXwpXWN1iyIWiB/T0Z++dcnv35QRIlUaCsQRVGeamSVZVGprSQ2O5Yt17bw1Ymv5GsBacrQf0t/NsRtwNrCGkdLR1ysXVAICmrY16B4RjGN3BshILCm3xp6BPRgVfQq+gb1Zd+tfSgEBd90+YYjKUcori7Gx96H1lkC/nlawhpBmbbM5H2IzYk1KX42x2+WrXhzK3KJy4mTufVG0fvdkrt8ceILhtxQ0H7yYujbF23HdggIKAQFFkoLE92EIAiIPFlwfHDUQe5X3scgGqjnWg+QNr7xOfHE58Tzy5VfWHJ+iXy8UXcxpMEQlIKSe2X3WHl5JVllWdR0eKhdSryfiFO5ng/PwU8Dfelbty+9N/VmxrEZOFg6UMepDpMOTKJVjVaUa8vJLsvm15hfKdeW82bLN8kpzyHYPZhT6ad4u9XbcvCckaL0eSepcLK6JWVYJLhLk67+Yf25U3JHen5QojYoOJV+CsOO7Vypvo2jpSMCD7Nh3jv8PuN7VONckoJgMJ3wgYFaGQncsJeej15BveRXjIJxB0sHrFRWdPbvjJXKCq1ey53iO9ha2NLGp43JapNDJtMzsCfWKmvePfguFzIuyK81cG/AuQnnpCnO2o6yBuRRiKLImF2SIULY4LA/DdYTRZFN8ZsYHDz4D7UXEakRvFT7pb9MHxJFkbcOvIWnrSdvt5YyV/6bCo39t/bjZOX01IlF1N0oyUL5vyRU0IznB3OhYYYZZvxjkFWaxZZrW3i/7fsmtJHngfDkcIJcgp7KH/5PpBenU1xdLAvB556eS2x2LOsHrsdKZfXM563UVrI+dj2lQjzxqsmcU/UjXjWZEiFephuBtAlu8XMLPgr/CLVSLadCG6FSqKjrWpcB9Qcwo8MM1g9cz8U3LrJ3xF5ZMD222VgMooGMkgxWXl7JiB0jaPpTU2zn2hL4fSCd1nUitzwXC6UFNexr4Hczi46iJCZVKpSoFCq61ekmJzkLCHjZSpuZQJdAk0369dzrJOQlsPLySjm1XUTkp8s/MfXIVAoqC1h5eSW2c21p9nMzRu4Yyc9Xfn6MtmavtmfDyxsomFZA19pdya3IxSAaWNpjKVqDlqSCJKwtrJkZOZNF3ReRWpiKiMid4jtcy73GoAaDaO7VnE+OfkJeRR4j4kRKnW0pCW2BiGiS3SEiMmTbEOn/osiG2A1yaFwTzyYICLxY60UAOfxwRMMR7Indyqo9BoShQ2HrVnQYEBGlQuORiQbAsvPLmHN6Dou6LTIRg6sUUpCgUQDv7+jPsdRjnL1zFhGRJj814a0Db5FfkY+nrScqQYWjpSO2FrZsv7FdLl7KNGV42XnJ9sRtfdqSVpTG6r0w6wVoWK8jLVe1JDormv0j96MUlJxMP8lnHT9jx7AdALxz8B1JS1GnG5NDJnMw6SD1XOthobRgbLOxgFRYh6eE42bj9rALff06VWoFaU7Qb3M/9t3aRw37GpLLGXqaZBuIHN6WpJC6lFSXSBMUQaCosohNcZtYH7sehZUV5drfMAgiiMZiQ8SAgVTFavRIOSlGnY/x3oE0BavtVBtfB180eg3F1cXYWthSri2nwfIGbE/YLtOkFIKCdQPWYa+2x8bChsHbBpNTliOv6WXnReTYSDrX6kzfzX1ZHb3a5Lkcv2c8d0vuMrHFRIYED+HPcCnzEkkFSbzS+OluU0VVRVy8d/FvpYFvit/E0dSjrOyzUnZze/Qe/V/jQNIBegb2fOrv7ai7UTT0aIiTldP/5ysz438b5kLDDDPM+Mdg+aXlWKosmdB8wnNdVxRFwlPC/xJtKjY7FoBmXs2Izopm9unZfNrxU1rVaPWXzr06ejVVuqqndrkrdZUPw+gQ+f7i90SmRZJelP6nVpxpRWkM2z6M2s61ERCYHDIZgEXdF5EzNYf70+5zZtwZfu77MwPqDSCrNAuFoODbM9+y4tIKWk2EE9bS5kuj17D03FKTjYKIiLutO6XVpRxLPWZy7l+u/ELPjT2xUFqYdIQnHZzErpu7sFRZ4mrtyur+qzk7/iwF0wrInprNz31/Nlln06BNvNJESlA2isPb1GjD0OChbLm2BZ1Bx/T201kXKyWbT2g+gW0J27C1sJWnGrO6zCIqIwqdVsPYRGvW16ukf0NpIlaqMaVLnb17lgO3DnAl6wq3Cm6h0WsY1XiUPGkxpnYnFyTjZefFnPwm6PQ6po3xhA0bQKWSC4v/nGhsjNvI5PDJTGs3jQ9DPpQFxwICeRV5tFrViqXnl6IUlDRc0ZCuG7qy79Y+bC1s6RvUl/yP8zkz/gxNPJugE3WUacpkepRxygCShWpOeQ4d/DqQVpRGxzTwKoVfm0PY9TDqudXj1NhTfHfhO4qqiuhYsyOzX5yNr4MvgS6BnL5zGm87b3YM28HKSytxtXHl4r2LjGo8Sk6333JtCxq9hvHNxj80FUhIIM3LClEhTXwG1hvIlx0+l5/TWvVDOaVJ5uK9i/LzaRANlGhKeHP/m9RyqoVfThUORdFc520a3rmIW0kuberY80LefHYGSlSxjn4dTd4zY/ffaNmcW5FLoEsgWWVZTGg+AUdLR9r6tmXo70PpF9ZP1sZ42nmyYdAGiquLKa4uZvj24bKTF4Ct2pZdw3cxseVE3tj3Bp8fl76XeWfmsS52Ha7Wrizvs5xnwca4jXjbedO5VuenHnPi9gkMouEvC8HvV9znw/APGd5wOL2CeskmC/8tE42s0iyuZF15qj4DHgT1+Zr1Gf9GmAsNM8ww4x+BCm0FKy+vlDYOD5xsnheSC5K5XXSbHoF/QZ+RHYOrtSuu1q68tvs1Gnk0kikkzwq9Qc/cM3NNPme0A30U6cXpdPLvhIiIzqCTaFs5sQzYMsBEUPwoyjXlDNwyEHu1PTPaz6Cougg3a8npxtiNd7F2oX3N9rze4nUWdV8kb9TLPy3ngsfnbNgBdZ0fKqanHpnKwK0DTc4zK3IWgd8HkluRa/L52NxY7pbcpYV3C5MC7ta7t0h5P4WhwUOxU9sxvvl42vm1w9namZ03djJsu6ntpzFl+1T6KeLzpI3mW63eQhAE1saspVdQL6a3n05Nx5p8dvwzvunyDdW6amrY12DfLSn8rXdQb9xt3Ol21wLHgnIOtXYmLD7sifca4NXdr7Imeg1WKisaujdErZDE9J38O/HtmW+p0lWRVJBEULUddd7+lC634beahaSXZgAPbWcVggK1Uo1Gr+Fg0kHG7RnH+Gbjmdd1Hp8e/1SmPnnbeWMQDRRXFxOZHomF0oIvXviCmDdjyPwok5cbvEx2eTbO1s6IokhRpZTarhf12KntiHkzhqNjjsrXr38wCahhX4P7pbms3QPv9xYQFdLzlVWaRZ+wPlzOvEwzr2ayZqegsoCMEul7CH8lHJ1B0jB0rtWZe6X3ZBE4wKJzixAQmNZ+mnROg5475w5zyUlKrB8SPISdQ37HZ802EECJgH2d+uRV5HEk5Qi1nGrJAnEBKbAxOy+NzyM0/NICSomja8Uv/P59P+Zf/IFvfj2EHZKBQbWh2qTINlKn9Aap0IjLiZONBBSCguLqYrYN2cau4buIyY4heEUwS84tQWfQ0T2gOx+3+5hKbSVn7pxhesR0k2dBpVCxvPdyFnRdwJzTcwhZE8Inxz5BQGD2i7OfabKq1WvZcm0LoxqP+kNKVERqBAHOAc88VTViasRUdAYd3/WU8kyyy7IREOTAwv9rHEw6iEJQ0DOw5xNfL6oq4nrudUL9zPqMfyPMhYYZZpjxj8CGWCnZ+v227//5wX8R4SnhWCgs/rDb+J+IzZH0GTMjZ5KYn8j6getNXH6eBXsT95Jdlo2XnZdMt3qUymOEUlBy4d4F3mr5FiCJiJWCkvMZ5wleEcyCswtMdACiKDJuzziSC5LZM2KPLMzOq8ijhn0NOQjvUVzPu05KYQoD6w/ExsKGNufSaVVkjVb5cDPu4+BDHSfTNOOUwpTHigwjPG09eb/N+yY2m8ZNsFGjAVIxMXLHSAZvG0yobyh2FpKLl0JQkHg/EYNo4MPDH8qOVFqDlviceC5lXmJ8s/FYqiyZ1WUWu2/uJrUwlentp3O76DbnM86TW54ryexFPYNjtZT7eTF47HwS8hMIcAmQJwGPhssVVhbKVqyjG49m+43t2Knt+L7n92SVZbE6ejVJCWcIupBM5MstiG7mgYu1C58e/1S6vgfvhYCAhcKCjJIMhmwbQp+gPkxtN5Wxu8cy/+x8+XwFlQUMbzhczoSp0lVhr7anqVdTBEGgU81ORGdFs+vGLtqubsulrEvys9bBrwONPBox49gM2Y0LQIGCbde3MeO0SEQduOYvPV+jGo0ipTCF1MJUhjccjo+9D2WaMqp0VfTb3E+e3KgUKtbGrJUSyMtyCPUNldPCCyoKiMuJo6lXU1xtXMkuy6bbb12xT8kgQTKZol9gX4TXX6fGfimgUKFQUamtRCkoicqIkh3AlIISEZFqXTUrIiz5LgQs9GCwtKDDRCmIj59+olCppQyJDnY09ShvH3hbDuYzbvZ1Bh2etp7cKb7DS7VfoqV3S1lIn1+Rz8D6A7nxzg1eb/46U49Mpc0vbbiceZnZL86muXdznKycWHJ+CVuvbTV5jgVB4OP2H/Nem/e4eO8itha2eNh6yDSyP8PR1KPkVeT9YUif8bi/Os04cfsE62LWsaDrAnmCkV2Wjbut+3Onl/5d7E/aT4hvyFMtfS9kXEBENDtO/UthLjTMMMOM/3oYRAPfXfiOgfUHUse5zp9/wV9EeEo4HWp2MLGp/TPEZMfgbuPOgqgFfN356z+0tXwajInGHjYe8obX3db9seMslZYoBSV7EvewrOcyRFESVxdWFdK6RmtmHJ1Bi1UtZNeneWfm8XvC76wfuJ7Gno2p7SR1SG8X3SbIJYikgiST9fMr8vnu/HdYKi05lHSInht6kL13M/v8KuUpAkiUnN5BvXGyfMijblmjJXVd6pL0XtJjRWBhVSEjdozgwyMPHcLe3Pcm0yOmk1yQTEFlAWuvrqXhioYcSTnCpkGb2DV8F7WcagHS+37r/i22Xd9GdLYU1lfXtS7RWdGsjVmLu407fepKdIxRjUfRxLMJM47OYEroFNlW9WDSQa5mXaWstIDhN5Rsbmgg9MGGRm/QYxANCAiyuB0kSli1vhqdQceIRiPYdn0b/er2o4lXE0Y3Hs23hz7lVsVdApu8wNsvVtCnbl9md5nN5vjNXMi4YDLRqNJVcTD5IM7WzsTlxBG8Ipjf4n4zedZ6BPRg46CNxL0Vh1qpRkDg3UPvMj1iOgbRgJ3aDoNoYNC2QSgVSnzsfeR8FEdLR5ZdWMaFjAt0r9NdorPZuGOhtMCrDN6+BHN6WvNjrx8B2JqwldY1WjO93XR+vforp++cJqs0izG7xnAp8xICAmqFmsPJh/nh4g/0DOjJ6TunmdR6kny9xiJpRvsZHEs9RrOfmnE38SLOVZBZ0wl7tT2xmxbBhg14fyvlbGgNWm7dv0UL7xakF6Vja2GLUpCCKX3tfRkao0XUVnPBTyoy3m/7Pm5+kiAeV1fsNQKtM8DV2pVfB/zKqiureGPvG+gNenlKoDPoOJh8EJDcxz5o+4Ec8phbLhXD9pb2LOu1jAuvS5vbtqvb8vGRj/ml3y9U6aqo5VSL8XvHcy33msmzfODWAVZeXknnWp0p15YjIppoOv4IG+M30tC94WPBno8ivSidpIKkv2RrW6Wr4s39b9KhZgcmtHhIJ80qzfqvoU1V66qJSImgb9CT3aZA0me4WrvKjnNm/LtgLjTMMMOM/3qEJ4dzM//mc7e0BUl7cOL2ib+kzyiuKuZ20W1Opp+kVY1WMn3kr+DsnbNEZ0VjqbQktSiVCq1EOXlUIGxEha6CKl0V5dpy1sWsY3jD4YiiJIqNTI/kBf8XUCvVdFjbgR4bevDZ8c/4stOXDA4eDICHrQfWKmuis6KxVllz9s5ZJu6bSMe1HXFf6I77QnfWXF1Dtb6a8JRw6uRq8SrWY9W9NwAN3RuiFJRU66uZ322+iVvT5czLrOy7kkCXQLrXeZij0dSzKXZqO7KmZLGk+0OnpGp9NVuvb+XXmF8BGL93PCXVJQS7BXPu7jlWXl5pYr8blx3HxxEfoxSUTA6ZTKhvKJcyL7EhbgNjmoyRO/sKQcG8l+Zx+s5pTqSdkMMS18WsY/+t/QxKt8GhUs/SOrnMPT0XtVLN7aLbCAi42bhhEA2PCVEtFBbklucSnxsvuU2JIl9ctSfHUEqJFTj2G8qN+zfpHdRbFoxPCZ9CcVUxeoOeFZdWEJ8bj86gQ6VQSTkdFra8WOtFOvh1kM9j1IkIgmQBbHRIWhC1AN8lvozaOQqVQsWQBkNk69UgV2lTllOew2fHP+PVpq+y6+YuQCo+qvXVbNwJX3eGYhsV4cnh8nt5/LXjzOs2j8sTL2OhtCA6O5odCTtwtHRkZOORdPTvyKb4TaQWpmKrtsXNxo2hwUPl610Xuw4rlRUJeQl029ANGwsb/O9Jz+9NDwW+5Uqu5l+DdevweOUtuYhOyE+ggVsD9KKeoqoi9KIeV2tXbFMz+DYCJveUcjfUSjXT208HFxfphIWF3PS1ZM8WGOzQlrHNxvLby7+xLnYd4/aMk7NMItMjibobBUjapmENh+FqLVnaGgsNI1r7tObSG5dY2G0hq6+upu/mvrze4nXSitJwtXZl0NZBFFVJFLXItEiG/D5EKjY9m+Bg6YC1ypqQNSFyIfM0lFaXsuvGLkY3Hv3EgEwjIlIjUAgKXqz94h+u9yjmnp5LWlEaq/quMtHoZJdn/9cUGpHpkZRry59qawsQlSHlZ/zR/THjnwtzoWGGGWb812PJ+SW0qtHqfyXp9uyds5Rry/+SPiMuJw6QKC/rBqz7WxSFBVELUClU9A3sS5mmTE55tlXbmmgHjP93t3GnpLqEm/k3icuNw9HKETu1Hc5WzkRnR3O/4j4Tmk3gSOoRVAoV9yvuMytyFqN3jqblqpZU6aqYdWoWh1MOk1GawcV7F/Fz8OO9Nu+xovcKANYPXM+t926xwmowWFjQ5dWvAClITy9K2R67EnaZCGZHNR4lb44eFVbP7zqfgsoC4nPjZcoNwMzOM1nSY4lcUA2qP4gpIVPwsPPg2O1jfHD4A46kHpGPTylKIaMkA7VSTUvvltR0rElcThz5FfmMaz7O5J72DOzJC/4v8MmxTxjVeBTedt6cvnOavbf28l6KKzRpgn+7nuy4sYMeAT1o69MWEZG8ijwaezSWN5ZG6A163tr/FnZqO3oG9IBp0wiatYIeqvoApBWlo1KoaOvTlv239lPToSZRGVFEZ0ejF/Vy9kSXWl2IGh/FuYxzBLgEsGvELjmfA+Be6T3goXZmcshkOV06qyyLBm4N6BPUh3ul90zclADO3TtHDfsaJOYnojVoqedaj+TCZF5MAUeNgqju9SnVlrLtxjZA0k4YaXpNPJsQ7BYsX0d+ZT59g/rSPaA7V7Ov0sq7FYeTD/N689flgMeY7Bhyy3NxUDvwzalv6OjfkdtFt5nm3AfR0pLLlgXUSy7iaoAN4iuvoFQo5c2+MYUbkCdU6iodu7cr+bgHlFsKlGnKeL/t+9Jkz1l6RvSigd4j9WgVMPeHG1BRwStNXmHzoM1sjt/MhL1SN/+32N9kV6fUwlQsVZa80UIK8UsvflzLpFKomBI6hYRJCTTzasayC8vwc/Ajr0IS07+661Uu3btEv7B+tPdrz/e9vmd19Go+aPsBF16/gJ+DH53WduJg0sHH1jZi983dVOoqGdV41FOPAanQaF2j9TO7LiXkJTDvzDxmdJhBA/cGJq9ll2WbUAH/L3Hg1gH8HPxo5NHoia/rDXouZFww06b+xTAXGmaYYcZ/NeJz4jmaepQpIVP+Vzpe4SnheNp6/iXq0/aE7QDM6jLrsT/yz4LE/ET2Je6ThN0PkpEntpwISJ35R0WcRjeq7PJsmno2xdbCloS8BMo0ZazssxJHK0cqNZXkleexJmYNINFUll9ezjenvuFG3g1aereknms92vq0ZWWfldL3/Uo4mwdv5ssXvkRn0GGhsGBAvQHSSY8dg5AQ7mglIbazlTOKB38uNsRvAB7y4md1mSVfqzHED8DPwY/aTrXZnrDdRLsy69QsBm8bLIebvdr0Vea8NIcdw3aQ8E4CFZ9WED3x8S6x3qBnxI4RzDo1C51Bh6XSkjmn5/BN5Df8fv13ruVKmSPzu87nWu41wq6FMbPLTAyigcS0aNpE58CoUXzQ9gMqdZV42XpRz02i5lirrAn1DUUhKEyKvP/H3nmHRXWua/+3ZoahI0gVFBQVAXtHjWKPXWONvZdETYwt0XQT405M7CWaxBI1sUvEhtijoCAWFAUVRHqVzgBT1vfHcpZOLMk+1zkn+c6eO1cuBlYvyPu8z10MGEjKMtBKXM/Yz67wflpNbn27hc7dJgHSzL6dhR2+a3wZtGcQ8fnx1HasLd8bK5UVHbw7YGNhQ/9f+0vpyKOOIYqiiRWw0UHs95TfARh9cDQ6g44RDUcA0qD5ctplojOiSSmScimMblOlVaUM8R/C5fTLWKusJRG0CF2SYU5/FY62zrJYGiROvzHtfB7s/5wAACAASURBVP+d/VxIuYCd2o46TnWoZlmNMYfGcCnlEgbRgJutGyVVJcxoNUPe/q2jUkaDzqDjzYZvcuHRBb7p/g09K7zQ2ttgUEDzNgMoNJTL5+pl7yVvn14sFVVGLciykBJyLPXsbQhWFtZYKC2Y336+tLJaDUolqYE1SbXWMmAkOCVnwYQJIIqMaDSCPUP3sO/OPkAKglzfdz3utu4kFUiZHkY639F7R597p4zwcfQhdGQo+4btQ2vQUqmrRK1UE3ovlOBtwQS6BhLyZgibYzbL+3S3c+fs+LN08+3GgF8HyMv+iF23dtHJpxM+jj4vPb5BNHA66fRf1mcYRAPTj0ynjlMdFndc/Nzyfwp1ShRFjtw/Qj+/fi/9tzsuN46SqhJzUN//YZgLDTPMMOMfjVWXV1HToeZf8qr/ryAsMYyedXuaUA9ehdKqUrbe2IqthS3z2s37Lx1zReQKLFWW1K9en7PJZ7G1sJULHYWgwN/F32R9lSANXO/l36OwshCFoEBn0NHnlz4kFyajUCgo15XLg+SO3h3ZOmArtR1rczvnNh52HnTy6US5tlzuCj0rCD8Uf4iudbpKbl56PZw9C926EZkWiaXSkgcFD2heozkCAjEZMShQyF2NxMeJ8n72xD0V0f6W8BtDA4dyKP6Qyb29mXWTXwb/QujIUJSCUhaEG2GhtJCPZUQNuxoULyrm0ZxH/NRfKqZqOdQivTidtVFrGb5/OI03Nsb2K1vGHhpLDbsazD4+G0RJbDwwAVQVVfDmm6QWpQJwMukkUWlR+Lv4oxf1hMSH8G6bd01shh3FZjTTb0Qoq0+ewoboem15pzCAFWcOApK43s3WjRWvr+D+7Pvcn32fkBEh8r15u/Xb2KvtiUqPIrEgkWOjjuHl4CV3xIzXWKGvYMJvE5h3ch4KQcHa3mtJmJXA7qG72TV4F3qDRDXSGXRsvbEVMKUCrYlaAzwtPgJz4ceWcM+3GnG5cZwad4r57aTB+5nkM3Tf0Z1Ddw8x5uAYmnk0wyAaSCpI4vDIw3zZ5UvZrSsiLYJ+fv3wcfRBb9Cz5PwSLqddRq1UM6zhMHbH7Wbl6ytZ0H4+HD1KYXkBAK8NeheA61nXAfB08MRSKaWkx+bEyuc94TqMuWFg8JtS5kO5tpypLaZS3foJZSo3F/R6Et0lE4Csuu4oduyEfftgiRSKOSRwiByi6GTlhJXKCl8nX5IKpUKjhn0NbC1sOffonCwefxEEQWBo4FDiZ8YzJHAIeeV5CAhodBrmtpuLKIqsjVrL9JbTZVGzrdqWg8MP8lart5h+ZDqLTy82OUZWaRbhSeGvzM4AuJ55nXxN/l/WZ/x07Scuplzk+77fP5fZYyxi/wmFRkJ+AkkFSa+0tY1IjUApKGnt1fp/8czM+N+EudAwwwwz/rHILs1m161dzGo967kgt/+u/d/IuvFv6TMWnFwgU63+3fRe4zG339yOVq+llWcrCioK6Fy7Mw8LHgLS7HaBpsBkG50oDVw1Og21HGrJgxmloOTEmBO80/YdBKTE6cH+g4nNjmXJhSVsG7iNxR0X803EN+y/u58Hjx/IYnqjIDy/PJ8Ljy4wyP+Jbe3161BYCN26cSn1EvWd63M14yodanVAqVBKydUYsFRaolaoCU8KB+Bk4kni8+JRoECtUBOSEMKwwGHklufyzvGnIvFPgj9hZOORKBVK3O3cySwxLTSMMFJ1QLKntVRZ4l3Nm9zyXAQEgn2CuTDxArkLcsldkMuFCRfY0HcDfev3pa5TXYori5l2ZBp6Uc/IWxDpo6THhSks/X0p3tW8eVT0iPj8eOYFzUMlqMgpz5G7Uw5iE5roVtFYvwaFqER88pxFFIiI1BYny7P0AxoMYFabWdSrXg+9Qc8XF552eBwsHbidc5u88jwODD8gu3/dyLrxZH9Pi5rf4n+jiXsTgryCeLv123IXaFTjUZwYc0LuSnxzSUpfv5hyEZB0JJX6SqxV1vg6+eJTJDA/Ah45SkVb5ORIOtfubDKIjU6PZsjeIfg5+zGx6UTKteW8Vus1Ovl0YmrLqaiVaiyVlhRWFKJWqEkpSqH3rt58ek6i0jVzb8ammE2s672OOW3fhfnzIT2drOAWALSo0QJXG1euZz4pNOw8USlU2KntyCnLQa1QY6GH9Udh/CDIt5G2AajrVPfpS3BQKuiyKqTOWve63WHwYPjyS/jsM9i3j6j0KPbG7UVAILkomSF7h+BTzUfuaIDUsSisKOT4/eMvfNeeRTWraqztvRYHSwf5+Yw7NI5Pz31KWVUZc9vNNVlfqVCypvcavuv5HcsuLmPMwTFU6iR3rN23d0vamj+ZJAlPCsfWwlbu8r0KWaVZLAhfwMRmE+lSp8tzy0uqStDoNP8I6tSRe0ewVlm/UncSkRpB8xrNX5mWbsb/3zAXGmaYYcY/FhuvbkSpUMq0ov9unEyUtAB/dSbxZOJJvo/5HgUKOnp3/PMN/oBKXSWfnP0EvahHL+o5nHAYkLoqU0KnABJNpkxbZrKdgCBbvuaW58rHbubejKF7hrI8Yjnf9PiGb3t8y8H4g3T06YiztTNdtnfB2dqZm9Nv4mnviUanYcyhMdSwqyHrAY7cO4Je1JvSpmxt0bVqwZX0KwT7BKPRafBy8JKoXk8GX262btR0qEl4Ujg6g465YXPxsPNAEARs1DZEpUdxPes6CkHBzWwp3NBKaWVSMHrYeZhQiP54zUZUaCWajSiKbLmxBR9HH+Ly4uTlLjYudPTpyLSW01jZayW/T/qdqS2m4mjpiEelBa8nwu7G0j5TilLkrAiABacWyE5fi88spprYlGb6jTjRBiWW8AfKh4AShVYSq1urrNkRu4NybTmiKPL20bcJiQ/B3dYdkEILHxY+pIFLA5O054i0iOeud23vtSgF5QupeN18u3Fp8iXUSrVcZOZppMG3MRxwQbsFPHh8nz17RS7Vkjpjg/0Hy90xY1epZY2WlGnLsFRZcivnFttvbpe2b78AgM0xmxEEgYZuDQGp21V3TV2uZlyldrXaCAhEZUSxqd8mZrZ+GxYtghWS2P9hx8bYqe2oZlWNZh7N5I5GDXspJ8T4XjsrbNEq4bAf7GmmYljgME4mnsTL3kumjwGwdy9Vzo5YFEraH3lmfPFiGDmS0injGP3LUFp6tsRSKekxTiWdIjoj2qTTVsexDo5WjnLn51Uo0BTQc0dPbC1s6VCrA7YWtlJY5eWVdPLpRE2Hms9tIwgCc9vNZd+wfRy8e5DXd75OgaaAnbE76Vu/rxxy+DKEJ4UTXDv4L9ljzzkxBwulBct7LH/hcmPh/k/oaBy5d4SudbpibWH90nUiUiPMQX3/x2EuNMwww4x/JCp0FWyI3sDEZhP/9A/1fxVhiWG0qNHiLwVbFVYUMvnwZIK8gtCJOpp5NHvpukUVRVxOu8zW61tZGL6QAb8OoP7a+lgvtWbztc3oDDqUglIeeM0NmitTW7r5duPM+DMm+xMR5e5JaVWpPJAtriymTFuGg6UDU5pPYV77eewbto/wxHAsVZZMaj6Jd068w8fnPmZNL2mQdT75PDllORx/cBy9QU9IQghBNYOoYf9kBvT0aejUiZuP71KuLWdo4FDUSrVJTocRfs5+3Mi6wYrIFdzJvSPTv2xUNggIEo/csY4sXLaysKKs6mkR9WyWxrO4nHYZjU4jf2+k20SkRnAv/x696vbiZtZNE1H6szCIBua1m0eZtowBt7QIwP5AgXxNPiIin3b6FG8HKbPC0cpR7hbklefhrZ8oBcjx4m6ViJ5S8T7pJelU6irJKcvhrSNv8cGpD9h8bTM/DvgRW7V0vclFyfi7+MtUm9KqUpb9voy9cZIwWykosVRaYmNhQ05ZDvfy7+Hn7PfC4zbzaMbC9gtfmiC/PHI5g+NAaYBjr7kxtcVUDsYflPUYxkIjrTgNGwsbtHotb7d6WxZlV7eujlavZX30eoYEDOFm5k35XlqrrCmoKCC5KBkRkS0DtjCtxVT4+GP4+mt4S9JtxLmKeNl7IQgCzT2ay52bGnY1qNBVSNQuET45JHXsJr0h0Y/UCjWOVo6MbDSS8KRwqZjKzoZz58j0dqL6k1chuHaw9EEQ4KefmDvUnsyiNHa+tgILpQX1qtfj6KijpBanklmaSX55PiAVxS7WLpxMPMnd3LsvvH8ghVz2/aUvGSUZnBp3iv3D92OrtpWLi9MPTzNs7zAySjJeuP3QwKGcHnea2zm3abW5FTGZMX+anVGuLediysW/pM84fv84e+L2sPL1lTjbOL9wHWPh/ncXGoUVhVxMufhKt6mcshwSCxLNQvD/4zAXGmaYYcY/Er/c+oW88jzebfvu/8j+DaKBk4kn/zJt6r2w9yiqKGJk45EANHFrQkZJBqeTTrMuah2zjs2i28/d8PzOE8evHWn3UzsmHZ7EvjuSwLS/X39GNBwhD/jc7dxp4NwAe7U9X3X7irrVn1JGajnUwlJpKa8rIFBUWSTnVxhtTO8X3MfV1hUBgREHRqAz6BgaOJQz48+QkJ/AueRzbOizgfDEcCb9JgmYV7y+Aj9nP65nXafNj204fv84b/i/IR24shIuXoRu3YhIjUCtVBNUM4gWNVoQlxsnFwwgFTlGN6kvLnzB+GbjUQgKRFEkuywbpUJJE7cm/DzoZwoqpIGlpdJStvGFp4WGKIpotBpyynJ4kP+AaaHTTDoaCXkJrIxcyTvH38HB0oG04jQ0Og3df+5Ol+1daLW5FQ3WNcDzO0/sl9mjXKLEf70/WoOWUbfgVB3IsNHJVqSfnf+MlOIULBQWpBSmoFAosFZKs6521H1lkSEikqyUdCL1netjY2HDz7E/803EN7TwkIrW4opi+XqNYXirL6+m7pq6fHruUznVurZjbZQKJT7VfLibe5eSqpKXFhrA067TM3C2dkalUKGt1LD5CMzuJxA+4QyTm0+WBsxJUmK4sRNSUFHA7xN/p69fX9liGKD7ju7MODKDjJIMrFXWsklBE/cmZM3Lws1GKsadrJwkEf3nn8PSpbB8OTRsCGo1sXZl8qC8eY3mpBankl+eL70XTwqkSddgRgzYVoHGAua1m8fuuN188NoH9G/Qn7zyPIlydeAAKBTcddJTXSMJyp+1PQ55FMYP3rmsiqxG/fFzsdUr0Bv0dK3TlW97fAtAn119KK0qxc3WDQMGPOw8WBe17oX3tlJXyRt73uBWzi2Ojz5OoGsgHnYebBmwhdTiVLkwDUsMI2B9ABuiN8hF3LPo4N2BiMkRPK54jIAgTwq8DBdTLlKlr/rTQqOsqoy3jr5FD98ejG48+qXrGQsNeeLgb0LYgzD0op4+9fu8dJ3I1EgAcyL4/3GYCw0zzDDjHwdRFFl5eSX9/PrJeQH/3biRdYPc8tw/LTR0Bh2brm5i241t9Kzbkx+u/YBaqabOmjp4rfCi+47uzA2by7nkczhZOTG5+WR2Dd7FtWnXKFtcxsN3H3J89HG+6fENl9MvU796fezV9mSUZOBm60bbmm1RKpRotBpUChUiIoIgUMexDgbRIA/SLBQWcpqyMV3bSmVFXlkeX3T9gtNJp3nvhJQz0r5WeyInR6IX9Xx67lO2DNgiz4AeTjjMhKYTsFZZk1+eT6W+kts5tymuLIbISNBooGtXItIiaOXZCiuVFe1rtufMwzMmlK6iyiI87DxwtHJEo9XQ1aer5FaEAbVSzet1XycuN459cfuwUUn86+LKYnbE7iDoxyAabmjI3jt7icmIweILC2y+ssH9W3fqr6vPrZxbJjP3VYYqPjz9IdezrqNSqEgtlgTdhRWF1LCrQcsaLenv15/pLafzeefP2dxvM78M/oVmVc4EP4LIjrUBqWBr4NyAU2Olwffk5pMxYODB4wfYWUrUtFISETEdQIqI6KnkMVHcUM6gWJBCDJMLk00KpxvZN+j7S1+Z1tTQtSFpxWlcz7zOvJPz6Fe/H6EjQxERUSlUeNp7ohAU+Dj6EJ8vOXY1cG7wwvewpLKEWcdmAZhQbB5rHqMz6PAqhkOBAu2HvEdDt4a08mxFgEsA229ul3+fQKIftajRgt1DdmNr8dRKeZD/ILbc2EI1y2psubEFtVLNYP/B5GvymXx4MjnlOaiVahq4NODE+A7w+edUffm5pM+Ii4MGDUgpy3haaHhIRejVjKsmg/s5l2FtayhTS9dx7/E93GzdeKvVW7Sr2Q57tT1hiWGwdy+G7t24ZcjCWWNKb8wsyWTK4SkMbDCQyV+Hw61brD2gQfek6/ZGgFQ438q5Re9dvbFX25NblsuMljPYfnP7czbGOoOO0QdHc+HRBUJHhpoIk43rZpRkMLLRSMq15XT26czMYzPpsKWDLOx/FvWr18dB7YCLjQs9d/YkNCH0hc8UIDwxHE97TwJdA1+6DsBn5z4juyybjX03vtJ9L7M0E2uVNfZq+1fu738aR+8fpYl7Eznt/kWISI3Ay96LWg61/hfPzIz/bfwz8unNMMMMM57BqaRT3M65LdN9/icQ9iAMO7WdPJum0WpIyE/gbu5d4vPiuZt3l7t5d+V8AuM2CoVkPzuz9UwCXAIIcA3A18n3T7M0Dtw5QHJhMg5qB1QKFf39+nM57bJsHarRaVAKSnnmuUWNFsTnx8vfaw1abuXcwsnSiYJKqUOwoN0CTiadZPXl1XzX8zvmhM3B38WfmW1mUq96PSInRzJw90DGHBrDloFbmHl0JofiD/Go8BEanQafapJIdm/cXg4nHGZBSi3edbDi48xthCaE4uXgRe9dvUl6nER2WbYsODfi3RNPu03jfhsnf9boNIQnhqMX9ey6vQsrCyvKddKAXKVQ0dC1IfaW9iTkJ3Ay8SSre6+mmmU1rJRWzDo+i5yyHKa0mMIP136Q97nwtYUsOb+Ea9Ou4ePog99aP4J9glnde/UL7/ed3Dt0i86nSq1kTQ3JZlVEJCE/gbeOvoWAwA/XfqCuU10ySjJkms0j5Rac9K0BPQJKuYtxUzlTLjAAbFW2WKusydPn4WrjSqW+kinNp7Dx6kaZ9mWkJelFPTVsa5BXnsfaKCkpW2fQ4WwtWc/WrlabI/eOoBAUslj/WdzIusHgPYN5WPgQlUIlU8ZUggqdqMO9BB45wbJ+jlzrLAm2BUFgfNPxfHb+MxafXixnPRhF7ClFKTzWPMbFxoXc8lxa1mjJnrg9FFUWAfB58OcEugVyMP6gTPUaFjiMn+MDUJy9zGfdVPzisJMtKV157c4dCAwkrTiCLrUlgXK96vWwsbBhecRy7uTeka/lvA+810v6XKWvYlfsLtb0XiPz+LvW6crVq4fhQhTXN35M5sEwqmuQwyBFUWTS4UlYKC34ccCPCDYusG0bQ0eM4OyOs9BpMZ72nqiVama0msGW61vILMmkpKpEslL+fSlbr2/lvXZSUW4QDUwLnUZIfAiHRhyic+3O8rkaRAPLLi6jV71e5JblEpUeRVDNIKIyojg04hAfnvmQlptbMq/dPD4J/kQWNEekRpBSnMKJ0SfYFLOJQXsGsbb3WpN0dSPCk8Lp7tv9lcXDjawbrLy8ki+6fGHS+XwRjI5Tf2f4nd6g59j9Y3+qrTMH9f1nwNzRMMMMM/5xWHl5Jc08mpn80f/vwmPNYy6lXGLbzW2427rzxp438F3ti+1XtjTf1JxRB0ex+dpmWXTd2K0x9mp7rk69SvGiYqxUVkxsNpEPXvuAgf4D8XP2+9MiQxRFlkcsp7FbY4qriimoKGBy88nklufKTjPl2nKUiqeFRluvtgByfoVKUIEADlYO8n43X9tMW6+2pBSlsPHqRho4N2D28dk0/b4prTa3osOWDiQ9TkJr0DLywEgeVzwGng6AL6RcoKiyiEp9JUWVRXzkfpvOo6oIuXeYMm0ZViorrFXWqFXSDLq7nSkNxK+6HxYKSdwdVDNIDmbrWrsrlR9X0qJGC7rW6cqvQ34FJK58+1rt+WngT6zqtYppLaZhEA0MDxzOmCZjyCzNJLssG2cbZ1a8vsLEFvfnmz/TtU5XOY+gpWdLYjJjXnrPj9w7wpjbAvTth61LDSwUFrIW497jewS6BnLrrVu09WqLRqfBgHTfi4VYbijf4jFRVJLzXBfDiDJdGXkVeSgFJbnluZRWlfLLrV+wsbCRz9vX0VemzmSWZRKeFC67dAGEJIRQXFlMWGIYGaUZOFk5cTb5LMmFyRhEA6Iosj5qPW1/aEu+Jh9XG1eslFbyO6IX9SDC/r0giJCprjQRuo9pIjkg/evSv5jecvrTbZDcqzzsPNg7VCoiPjj9AQA17WtiZ2HHB6c/YG6Y5LBkpOF8d9cbxYcfwaefMnL3bVxtXem0tRMlN6Ko9KtLZmmm3NFQKpTUcazD6YeneafNbAAEA3zSBfRK5HelunV1OVQPoGfdnnifikZUqThWW8tja7CvgmBPaUJgXdQ6Tjw4wdaBW2XtC8OH811PO7r8eAoOSXbKdRzrIIoip8adIrssG5A0MiMajWBd9Dr0Bj2iKDL/5Hy23djG9kHb6d+g/3PvUFxuHB91/Ihfh/xKVmkWXvZeKAQF30Z8y5UpV/gs+DNWXV5Fow2NOPHgBCBlZ9RyqEWPuj3YN2wfs9vMZuaxmSwMX2hif5tdms3N7JuvpE3pDXqmhk4lwDXgab7IK5BVmvW306ai0qPI1+S/Up9Rpa8iOj3arM/4D4C5o2GGGWb8o3A39y7HHxxn+6Dt/+WZLlEUSStO427ek+5E7l25Q/Fs/oCLtQsCAkMChhDgGkCASwD+Lv6y+Hxf3D42Xt3IrsG7aOnZkqzSLHLKcl4qBNfqtZRUlVBSWWLyNTI1kpjMGGo51EKlUFHHsQ7roiU6yYboDay8vJLbObep0FUQmRqJ09dOMs/fOAA2Wtw+m3CcXZbNjtgdOFk7kZCfQIBzAK62rtzNvcugBoPwdvTGXm2PrdqW8MRwTiadxE5tx+rXVzM5VEpTnt1mNv/q9i+sNVoOt6vO7JHVyC6VxK5HRkqOVIHrA7FX28tFhRH3Ht/D1sIWg2hgVKNRLDy1EEAWQw9qMIjlEcv5vu/3gMQzf5Z+ZRSsZpVmoVaq+ejsRwAs67YMO7Uddmo7idIFPCx8yJddv5S3beHRgtCEUPQG/QtthmPP72VhpsjxIDf0Br3clZrecjqbYjZRr3o9eu/qTV55HhYKC3k5SMXGLdWcFz7jZ6FWqKkySNkVBtFAVpnEjzcWGp8Ef0J8Xjxro9aiVqoZ2GAgO2/tlLcPdA0kqSAJdzt3HhY+pKCigN67egOSo5VaqaaosghfRykXYtFri1h2cZm8vYjI2FiwM0idlypdFR22dCBkRAjBtYNlCpqHnQfjm45nU8wm9AY9acVp7IjdwdKuSymtKpXP39nambSSNH7o9wPfRn5LQn4CNiobMkoy6FjshPuKZfCRVGg0EAQuTLjADye+wr7oE95K2Yyujk4uNPLK83hY+BAblQ3Wm7fgUh+KLKHgicynXc12HLl/hEZujUysjF+v+zqNbxvIbt+Cgw+PU+uJYZGn1oq4nDgWnlrI7Daz6VWvl8mzWPu6E69X1KLR2LFw6ZKcpdHKsxWb+m1i9MHRDNs3jLW917IzdifH7h+TOwXr+6xndBNT3YMoiiz9fSkdvTvSwVvKntnQdwPjQ8bzaadP+eriVyw6tYi1fdYyotEIZhyZQe9dvRkWOIxTSaeY3nK69B4IsKrXKmo71mZu2FweFT1i+6DtWKmsOP3wNICJI9kfsT56PTEZMVyadOkvWXxnlv79YX1H7h3B2dpZnix5EW5k3aBSX2kuNP4DYC40zDDDjH8UVl9ZjYedB40d+vH+9gSSssvxdbdhTGdPGvuY8o61ei2JBYnP0Z3i8+LlAZSl0hI/Zz8CXAPoXLszAS4BZJdl8+6Jd4mYHIGHnYdJUXA96zollSWkFafx/qn3aeTaiDs5d5hzYo7sWLP6ympWRK54rqio1Fe+8tqM2oKyqjKuZ17HWmWNXtTjZOWEo6UjBZoC3GzdmNVmFojw/un35cH9swPhoQFD2X9XSievZlmN+7Pv8+aBNznz8AyXJl1i+P7hxGTFsKHfBnnWd377+QzdM5QD8QcIvReKrcqWSkMla6PWkluey2bVGwy8a6DbkDME/z6Za1nX6LWrF05WTlS3rk5br7ZykJsRTlZO3Hn7DiMOjCAsMUxOezaKxgf5D+KTc58QmSaJPosqi0xdp57MvGaWZrIzdielVaX4u/gzsdlEQKL5GAsNhaB4KlpH6miUacu4l3/vOUvYmIwY/E7GUGQJQ0p+pG3dYLkIsBCk+/lbwm8EeQXhoHbgVq5pt8KIP1LF/ogqQxUTm05k562dJs/HKPZWCArUSjX2lvaSnsS+BlYqK0qrSrFT2/Hg8QOq9FVybkq/+v1Y3Xs1IfEhLDm/hDJtGX7OfrIV8bNFBoCVFjYchR5j9fSs25OTSScRDSI9d/bks+DPWPr7Upp7NOd61nXZKUkv6lkRuQJbtS0VugoG7pYE5hYKC4oqilAJKvbc2cOjokes6LmCj858hIjIFwcK4IMPpKC8JxMASoWSGbadAMjycQby2HVrF11qd2HyYamQ1WjLWXgMfp6tQKt6Opv/qOiRpJ0ozzW5prrlltRNgQ1DrInNuYTNk3iFytwsRl+agK+TL193//q5Z6FQqti3sC+NPjkD/fvTdFl3jhREA9DJ58k5lmYxP3w+LWu0ZH74fO7l32Np16UvpDSdTT5LVHoUx0c/zd4Y22QsJxNPsuLyCj7q9BGfnvuUNl5tGNt0LOFjw9l1axdvH32bkqoS2YrYWHTOCZqDdzVvRh8cTY8dPQgZEUJ4UjiN3Bq9tDBILUrlwzMfSvqVvyiYzirN4rVar/2ldf+ncPT+UXrX7/3KnKGI1AisVFavdO8z4/8GzIWGGWaY8Y9BXnke229uZ2bj5SzY9gBRBIMIj0uLuJpYXbjIuAAAIABJREFURO/gFHIN0dzOvU1CXgKPCh/JM/3WKmtq2NfAxdqFdjXbYae2k1NzS6tKJSvFx4n8evtX0orTEBDwW/dyhx8jUopT+Dn2Z+wt7SmpLEEpKKluVR0HKwfs1fbS/5Yv/5pRnMHru17nDf83CIkPoa9fX0JHhtJyc0sauzVm26BtAEwImcDjisfUqlaLhR2kzsCyS8tMhKsCAnZqOxMBcnJRMttvbmdz/8002diEWcdn8dubvxH0YxCD9wwmfGy4PGM8pukYDsQfkIsC72refN39a6aGTqWl5gT7mrrTNKApwkWB/n79uZd/j0upl+hSuwsNXRtyMP6gyb3Z2GcjHvYe9PDtwb8u/kv+uZ1aElY3cmuEr5MvhxMOoxAUaA1ak46ScYB1O/s2Ky6vwCAaWN1rtTxAqVe9HnfzpOJOgcLEj98oNr6WeY0A1wBEUeT0w9OsubKG0IRQEm7BnY7+xM8PY33Ueq5lXaO4spiNMRsl+1pBILU4lfSS9Jc+e5WgQis+b+v7LLbelJK6RzQcwe8pv5NRkiEXJ+ui19Hco7lE0Wk3n+URy6nUV6IUlPSq2wt/F3/WR6+nrlNdEvITOHzvMLE5saQUpdDMvRn7h+9nfvh8CjQFzGo9i0/PS/oLYwfmvQjY0xAu1wKSpEyYkqoSFIKCxWcW42Ltwtrea+m9q7dM6ymrKmP37d3UsK/BJ+c+YW7buay4soL2tdoTlR6FRqfh7MOznBh9gu51u7MtdAmxluX82gh2BOWwWlsud6wAuHMHVCrGDVlCyKER/Bb/G6eSTpGvyaenSxAn8y5zuLEFmXamVsS3cm4xtcVUfrj2A3nleU9pUPv3o1Up+MYlHoPWwOMnj/zjq99wJ/cOUVOjXpjLoFQoqVAr4LffoHVrZn19lu+HZiOKIq42Uk7KwvYLWRO1RiruKgqY0HQCi15b9MLnuuziMpp7NDcxixAEgQ19NxCZFkloQijjmoxj2pFpNHZvTDOPZoxpMob9d/bz+6PfWXJhCacfnmZTv01yJsnggMGcGXeGAbsH0O6ndpRUlsgudn+EKIrMOj5LdqX7q/i7qVOpRanczL750vtqRESqZDbxV7JDzPj/G2aNhhlmmPGPwaarmwDQ5wfLRQZIX/Winp/PpfNNxDccu3+MxIJEucgASYCcVJBEXG4ct3JucTvnNgn5CfLA71l3IkulJe1qtWNzv83sHrKbo6OOcmHCBa5Pv86D2Q9Y11uiNe0ftp+iD4pIeS+FuLfj6ODdgaCaQRx68xDbB21nXZ91LOu+jMUdFzO77WwmNJvAkMAh9Kzbk3a12tHIrRG/3P6Fmg41uZhyERGRpV2XUq4t52bWTdrVbGdy/s+KwUFyLYKn4XVKQUmFroITD06gEBTyz+eGzUWtVLN90HbOPDzDwbsHCXkzhCvpV5hxdIaJnSrA+x3eR0QkvSSdZh7NiJkWg21JBUED81gXvZ7rmdfp4dsDjVZDQ9eGxGTGsOyS6Ww6SNQpgB6+PUwoUcZCQxAEBjUYxG8Jv6FWqFEpVCa5GVYqKxytHPk59mdEUaS7b3d61u353PWDRB0rr3paYDlZO+Hr5MvltMt8f/V7Gm5oSI8dPXhU9Ijxuob4PYZ2C9dQy6EWB+MPyvakelHPxGYTcbZ2fmWRAfxpkWGEgEBkWiSre602oZdFpUexKWYTeeV5NHBpIIuFBUGgiXsTFIICW7Utq3qtAiTdQnJhMiA5WA3cPZCDdw8yp+0cPr/wubxf4yx5nwewrK8DEZMiCBkRgquNqxSs+OT3Ik+Tx2tbX6O0qpStN6SC6MSDE5Rpy8gqzWL30N0EukluRxZKCzQ6DWqlGr2oJzwpnNz1y7mrLMRKryBtZB9+jdtNy80t5XwMQCo0/PxIr5BcqfYM28NjzWMQYfL6yygNsGdcCwyCaWfIy96LD16TdCG/PzIN6cvr1IpHWqnT8dgaztaGb1N2s7Tr0pfOgMsi+Zo1ISQEj4R0Vh3UkFOajaXKEgdLB9QqNR93+piCigIEBHSi7oX0zOj0aE4lnWLRa4ueW+5g6cCvQ37lRvYNXGxcCHQNZPCewTzWPKaoooiwxDAWdVzEufHnyCvPo/mm5nx05iM0WskgoF2tdkROjqRSX0lWWdZLXZkOxR/icMJh1vZeSzWrai9c54/QGXTkluX+rdSpY/ePoRSUvF7v5W5+oihyKfWSOajvPwTmQsMMM8z4R6BKX8X66PWMazKOtFydXGQYIaDEDslxxcbChkDXQAb4DeD9Du+z842dxL0dh+5jHaWLS8mcl8m92feImRbDuQnnCB0Zyi9DfmFT/0281eotCioKeL/D+0xtOZURjUbQp34fOvp0pJlHM6xUVnx45kNGNR7FkMAhJudwM+vmv9XqTy9O55dbv9C3Xl9yy3Pp5NOJJu5NuJpxFb2oN6FDlGvLsVBYmBQaLT1byvSd6tbV0Yk6tAYtKqUKC4WFLEIvrirmq9+/optvN+a3m8/i04uxsbBhy4AtbLuxjeURUoqwsdCIzY7FUmmJ3qCn3U/tyEy9Q+S6CsY7BjP7+GwMGIjJiCG7LJvpraY/p80w4uj9owC08mwlFxcgDcaMGOg/kMzSTJQKJa42rjzWPJYLH5AC825m38QgGlj1+iqT/bfybGXyvZHTDlKCulJQsvHqRmYem0mAawDnxp/j6tSrtD7/gBInW+jShT239/Dg8QPi8+Plwu5wwmFKK0ufux6jWPzfhYhIaVUpw/cNNymOjPvTi3rGHhorU8t0Bh1N3JtgEA0oBaWci1JaVcqxUcfImZ/D8h7Lic+TLG8/PPshBtGAp52UI1H1hKL3TXuY038p7Wq1Y6D/QMY2HUtWaZaUdVG9AVZKKwQEfJ18ZRF4YWWhfKw397/JjCMzEBA48/AMCkHBV12/4uNOH5O39ht+3bEQvQKCfDuRXZ5DzLQYrC2saftjW1ZfXi09R9lxKo0adjX44NQHeFfz5r1IGH4X7LQCJ55QmJ69vz3r9sTXyZfajrU5/+i89MOUFIiMxGHMFHk9W/eajHsDOls2YF77eS99BkpBKV8jbduSvmoJ429Cxb8kXY+brRvR6dHMPTmX3vV6Y29pz67YXdzOuf3cvpZdXIafsx+DAwa/8FhtvNqwtOtSVlxewZy2cyiqLGL0wdHsv7OfSl0lIxuNJLh2MDdn3OTDjh+yPGI5Tb5vImea1KtejxmtpPu+6NQifov/zWT/RRVFzD4+m/5+/V96Di9CTlmOrMn5u3Dk/hFe834NRyvHl66TWpxKRkmGWZ/xHwJzoWGGGWb8I7Dn9h4ySzOZEzQHX3cbFH+YaBTRU0oiNhY2BHkFEegSSFpJGmuurGHMoTE03NAQx68daftjWyb+NpFvI77l2P1jsoOPEWGJYagUKtmG0+QYosiU0CnYWNiwtvdak2VG+9um7k3/8jWtvrIaawtrrmdfB5DteiNTI7FT25kMSo05Gs+eq7HIcLRylJO53WzdcLVxRWfQ0carjeRGBSy/tJy04jS+7PolDd0aMurAKN4IeIOPOn7EB6c+ICQ+BEcrRxytHLmUeomgmkGIiAS4BtDj8FAO+cP3I3YwLHAYANtjt1PToSbvHH+HTj6deLvV8zz22OxYRFFKLX/2vjzr4d++VntcbFwwiAbcbd3RGXSyW5QoitLsNzClxRSZYmJEAxfTTImwB2GcTjrNwN0DqbemHmnFaSgVSh7MfsCB4QcIrh3M5UeXGHSzkpKBvVh07mNGHRyFQlAQNSWKFh4tAMjX5KPRa0z27Wnn+XSg+l9AaWUpLjYu3Mp+qvdY1WsVNewkGotSUJqknYfcDSGvPI/iymI+OCXN7Hf37U7v+r1xtnEmKl2iCBn1LgICGU9E+k5PaqSIZtVle2SDaOBa5jW0Bi3LeywnaloUHbw7oFQoSSlMMQlAjJ0Ry43pN/io40dy98NY9MwPn88XF75gVxOY1xNQKHCwdCAmI4bMkkxOjz3N263eZk7YHPr92g993G1o2FBKStdX8rDgIbXvZPL1KfipqxMVNmrZ0MD4bgsIMq2xk0+np4XGvn1gaUlScCP5XAW1mlJL2K4cauJC9kc8a/sL4DRpJks7gveyDXDkCNYqaw7ePUjXOl0JeTOE8LHhiIh03taZR4VPDRbu5N7hUPwh3u/w/is1BvPbz6e7b3cWnlrIxr4bCXsQxpe/f0mXOl3wcpAshC1Vlnza+VNuzriJl70XPXb0YOyhseSW5RKZGklH74709evLG3veMMka+fDMhxRVFLGuz7p/yxBDDuuz+3uoUxqthtNJp+lbv+8r1zMH9f1nwVxomGGGGX87RFFkxeUV9KrXiwDXAMZ09gQBOTjNmGXwSPkT5dpyzj86z+F7h2ns1phLky6R9E4SR0Ye4ZNOnxDgEkBcThyfnfuMvr/0pc7qOtgvs6fV5laMDxnPuqh1+Dv7k1OW81yy74/XfuTEgxP8OOBHqltXN1l2O+c2BtHwlzsaxZXFbIrZxLgm44hOj6aha0OaekiD8cvpl2nj1cZkIKPRaVApnxYa9/Lv8dN1KYHaYDDIAtPyqnIySzPRi3qqW1dHoVDINJAFJxdgqbJk1+BdPCx8yMLwhXze5XOGBA5h9MHRXM+8jqedJ9ll2bKw+vPgzxlRWptRQ2FZ4nZKKkvkgL3EgkSmtZjG/mH7SS1OlbQNCFRTV5PP2Zgu7e/iL1/Ls1QPY2aI1qDF2cYZAYH9dyQh+7H7xyiuLEYhKPiiyxfP3cPTSadNvt9yYwvdd3QnqSCJzf03s3vobqr0VSYDzDsHN+FVAvNdrvFd5Hd42nsy2H8wHnYe/HTjp5cKvI0p5/8ujF2lKkMV9pb2WFlYycuupF2Ruep6UW9ig7zz1k6+j/megooC/Jz9cLRylIXRh+4eYk/cHjRajWwwsOr1VdSuVhtEUD+pRQuripgaOpWwB2HMDZvL+eTzOFg6kFiQiIOlA8dGH6NL7S5oRa18zTXsatDYvTFNPZoSkxkjpYAjYmthS/mH5STXWsGJnTBdE4hOKbmenX90HhGRrj93xXm5MwfjD9LCowU34s6gzM7hsOIB0enRkj6g0oJf9uqJ8gLdl0tMDBKM51DdurqsvQn2CeZm1k1Ji7R3L/Tpw4nMi/I2SQVJfH/ZhVqFTwvwF0GpUJr8Pttb2rOmrwsJHfzRvzkCZdxd7C3tOTD8AGqlmjZebXjD/w2KKosI3hbMw4KHAHx96WtqOtRkTJMxrzyeQlDw86Cf0Rv0bLuxjQUdFpBcmGwyeWCEv4s/Z8efZevArRy7f4wG6xoQnhROz7o92TtsL3PbzWX28dnMPzmfiNQINkRv4MuuX74y7O5FyCyRaIl/V0fjbPJZNDrNK21tQdJn1HWqi5ut2//SmZnxd8JcaJhhhhl/O84/Os+NrBvMDZJ8+xv72DO9Py/NMlApVCBKzkEtNrdgSugURETmtZ/HtkHbiJoaRfGiYh7NecTx0cdZ0nkJTd2bys5Ut3NvU29tPeyX2dNiUwvGHBzDgpMLeOfEOwwNHPrCtPAbWTdQCAoauTV6btmL8EPMD2i0GjJLMhERZVqQKIpEpkaa6DPAlDpVXFnMwN0D5ZnJ4qpiLBQWeDt4U6otRSkoUSlUxOXGMaPlDJnatDtuN1czrhLoGsi3Pb5lffR6jt+XrIIDXQPp/2t/2QlnTJMxCAiS3eZ+HZ+Ut2bxmcWEJYZRriunrVdbxjQew+Zrm5nw2wSi06MRn/xnb/m0YzHl8BSG7RtmUphVszTllA/yH4TOoKNCW4FCULD/zn60eq0c+Odo6fhcRocoinwf873JTLzWoOXs+LPEzohlSospMvXC2CGp0ldhvS+EJEe4W9eBI6OOkF6STnDtYDpu7UiFruKl9KjwxKf5Fs8e81VQK9QmRY6FwsJklnbnrZ1svrYZgA19NjwN2lOo5E6CgEBCfgIVugri8+LJKsliXIgUfljLoRY6g45m7s1wtHIkuSgZpwpolS2dn1qp5uKji/Ta1YvVV1bzmvdrdKjVgcMJhxFFkXVR6zibfNZkhjunLIfLaZe5mn6V4w+OyzPm/i7+qHbvxWfqfF4PnkxsY0lA3a1ON7QGLT7VfOjv159tA7cxqtEovB296VgmZWEsztpFQn4CggHW7ylFrdWz4t02LIlYJr+b7b2e0mREROJy4gCpoyEicjF6P0RFwfDhJu5mwT7BjCj2hvz8Vz4LE+rUE9RxrsuXU/2Id6gi5BcDzZResk4GYNFri9AZJDpip22dOJd8jl2xu5jfbv5fEinXsK/BtkHbOP7gOHdz76IQFGy7sY17+feeW1cQBCY0m0D8zHjaeLWhQlfBgbsHuJd/j297fsuaXmtYEbmC3rt608yjGbOfZI/8O8gqzUJA+NsG8EfuHaGOYx2TSYcXwRjUZ8Z/BsyFhhlmmPG3Y+XllTRya2TiJ1+siOW26j0iVf25pZpDsXBLHgBW6auobl2dwopCfKr5kF2aTf9f+xOwPoCN0RspqypDISjwruZNr3q9mNd+Hj8N/Ilvun8DwLFRxwgbE8ZX3b6ilWcrHhY8ZNWVVVToKth/Zz+2X9nS9PumjDwwki/Of8GBOwc4m3wWP2e/Fzre/BFavZZVV1YxouEIQu+H4mHrQfe60rUlFyaTXZYtB/UZodFqsFBYoDfoGXNwDBklGYSODJVzCeo715d5z3Wc6qAQFDwseMjYpmNNbDRnHZuFKIq83fpt+tTvw6TDkyipLOHwm4cBqUthpbTC2cYZ72re3E+KRniYTOOAztiobOTZ7ZNjTrJj8A52vrGTA3cOkFbyNAiusKJQDhL0d/bn90e/s/rK04RuG/XTwRxIYnEBgdzyXPSinsSCRD4//zmJBYnYq+1NZ71FkbMPz9L1566yRgGkGWSdQUdjt8by4NjFxgXvat5cy7zGrexbtF7XlH6xFdzo4s+VqVHcy7+HhcKC7yK/kylazxoIGOHt4C3nYRiP9Vdg3Mb4XibkJ9DZu7PJfh4VSLSc7NJs+efGgsPL3ku+FlEUKa4spubKmpRWlTLQbyBJhUkoBAVr+6xlXvg83MqgZjGcqSPtR6PTyEF8bb3aklyYzPEHx4nLjcNnlQ/zTs7jnTbvkPROEk5WUjaMQTTQZVsXuv3cDQEpPVwhKPAsMsDYsTBuHGXrVvJ7ykVqO9bm8MjDNPdoTlZpFtEZ0YxrOo5l3ZdxaMQhdgd+gqhUUuYtFTILL0Hv+yKThlpwTBNLRmmGbPt7NfOqfP0FmgJyy3PZfmM7dZ3q4mnvyYULO8HampKewVxKuSSv27JGS6heHR4/fuWz+CN1CqTuzYGUMGbNqEV10Yqvvr8PVU+fc2uv1rSr2Q5fR1/s1Hb0+6Uf9pb2TGkx5Y+7fyn61O/De0HvEXovlGCfYKmDtmewbK/9R7jautLWqy32anuKK4tp+n1TPjv3GVNbTmVMkzEUVxZjEA0UVBT85XMwIqs0Cxcbl7+Ut/HfDVEUOXr/KP38+r2S7mW09jYXGv85MBcaZphhxt+K+/n3CU0IZU7bOSZ/oGKzY2ngLHH0HdQOJtuIiJRqS3GzdcPGwoY7uXcY6DeQAJcAZh2fRa2VtVh0ahHpxaauQmGJYbjauPJ6vdfpWbcnc4LmsLn/Zt5s9CY6g449Q/dwauwplvdYTvua7ckoyWD1ldUM3TeUX2//SkJeAo02NGL4vuF8fu5z9sXtIy4njip9lclxdt/eTVpxGnaWdlTpq1jQYYG87HLaZYDnCo1ybTkWSguySrM4cu8Ivw75lQYuDWjm3gwLhQXO1s48LHyIgEBxRTFV+ioEQeDEgxNMbD4RS6VkYXsl/Qoh8SEIgsCWAVsQRZFJhyfhYefBtoHb0Bq0aHQadAYd9Z3rc/tBBMOHwbBHy2XbUkEQCN4eTHpxOqObjGZKy6cDLycrJ0q1pdR2qo1aqSa9JJ34WfEmnZ7kgmSTa7O2sMZObSdb21ZTV+O7iO8AGN14NGXaMnLKcvgh5geafN+Erj93JTYrlmqW1WRnGiOlLDoj2mTfLTxacODuAVpubknTm1lUr4CeH21FrVSz+/Zuma70suLBw9bDZGCmFJQybebPOhtKQYlKUJlQsT678Jn82SAaUCik4z7rGmUUdWeWZuLr6GtyfnpRj0JQcPieVBhOajaJX2/9SnF5Aa3ToNAK7BxcUQkqlIKSRacXMbrxaCImR5A8J1nWARkzWw7fO8yYQ2PkgauISKW+kuKqYoJqBnHk3hGaap2puHUdRo2CH3/k+2ub0Yt6ZraaiY2FDaEjQ/Gw8yCrNOupngLgzh3yPB1JrsykYzIsPQNLO0KdN99CREQpKOno3VG6rmdoTcb7NeG3Cdh+ZUuVvoptZZdYOa4+3978XtZ0eNp5ciHlwl8qNJQK045Gfnk+F1MvojVo2f7uOY5/M43myZWIb70Fz5gRvNP2HS6mXuSrrl9Rri1HZ9CZhGL+FYxuLIX9JeQnsHPwTh4VPWLy4ckmpgfPwkibuvXWLRa2X8hXv39F4PpAdt/ezahGoySh9E/tSXyc+G+dx98Z1nc75zYpRSl/qs8wGmGYC43/HJgLDTPMMONvxeorq3GxcXkumTc2O5amHk1xtnamiXsT+edN3KTPpVWlqJVqkguTmdhsIuceneNS6iW+7v41E5pNYMPVDdReXZsxB8cQkyFRa8ISw+hRt4fJoPN+/n3eP/U+M1vPZHjD4XTz7cbstrPZ2G8j5yecJ3dBLpnzMrFWWTOgwQA61+5MbnkuG65uYPj+4TTa2AibpTYErA9g6N6hfHzmYz488yHta7ZnV+wu1Eo1M1vPlI8XmRZJ/er1n+YGPIFGp6Gooojc8lyWdVtGn/p9AGjs3hilQkmVvop8TT61HWuTVZaFUlBir7bnh2s/sKD9Aip1lfKg+t0T71Klr8Ldzl3mhW+8ulEuVERE5p+cjwIFJypuc6a+imXdlpFbnouXvRcRkyLIK88j6KcgLqde5uebPwNSloVxwNrQtSECAiVVJZRWldLWqy3WKqnb886Jd5h1bBZFFUXy9TlZO8mOR14OXlToK2ji1oTXvKVwMb+1fkw/Mp26TnU5Pvo4IiIzWs14TiBuFJKClCIfnRFNUkESc4PmMvGuJUm17LBrEcS1zGtcSr2ErdqWYO9g8jVPqTdGITLAY81jEgueDuhaeLRgR+wOAF6k5fBx8JE/G3UXz9Kxnp1V7+Td6Wng4DN/bj/q9BFLuy7FIBp4WChpA4x0M6MhgIiIAgU/Xv+RDVc3MDNCT7aDQKGLHRZKCzkbpbp1dbYM3IKAwJora5h3ch7VLKsRVDOI8LHhdPTuSEh8iMk1GK8rMi2SlldSaRKXR6mnC2zbBkol66LWoRAUTG81XX524WMlatnIAyPl7lBBzCUu2OXjWgq798NFH4E9wwJYE7UGrUGLm60bHWp1QKVQoX+it7K1sCXQNRCloKRDrQ7oRT1FmkJy1ToW17jLkgtL5POs1FdyNeMqEeUJFKQ/4HrmdZPAx2ehFJTyvS+pLKH3rt5U6CowiAbcbN3QB7VhWn8QtmyB1U+7b0MChuBp78mS80uwsbDBp5oPnbd1NhH1/xn23dmHo6UjhZpCNkRvYOvAreyN28vKyyufW7eoooio9Ch6+PbA2sKaL7p+wfXp1ynQFKA1aFEqlBwfLVHagn4Kkicm/gqySrP+tkLj6P2j2FrYElw7+JXrRaZFYq+2f6GWxYz/mzAXGmaYYcbfhgJNAVtvbOXt1m+bDP5EUSQ2O5Ym7k2oYV8DXydp1ldEJDYnVs5aSCtOo6lHU7bc2MLE5hPp6duTBeELiM6IJmxMGN/2+FYKhvqhFUE/SoPPHnV6yMfRG/RM+G0CnvaeL0wbBml2v6yqDI1Ow1ut3mJdn3WcHX+W7PnZ5C7I5cKEC6zvs54evj0orJAGGqnFqUSkRVBSVYKl0pI3D7zJh6c/ZFfsLk4/PE1rz9bPHae0qpQHBQ+wV9vLgX0ghd5V6Cp4WPgQlUJFoKuUe1DNqhqVukpSilJ48PgBo5qMkgf6qcWprI9aD0Bfv7683ept5p2cx47YHRIVBanAO5l0ElEUuWGYxqH4Q6iVavr79aexe2OuTLmCi40LwduCKakswUJhgb+LP/3r9wekzoyR8hSaEEphRaHcEenu253tN7fjv96fPbf3IIoiztbOJhQjkAbVRj1Cr//H3nsGRHGvf9+f2QYsvXdQEBugWBC7Yo+9K3ZNYmJLNO3k5CQxXRNNjBo1xhK7sfeWWLBXFFFQREWkN+mwsGWeF5Md3aAn53nu/8n5P/fhyxtgZ2dnZmfhun7XtzTow4M3HrB39F5KdCUU6YqYHDG5lkj7dNppjCYjCy8spMXKp4+NDx5Cm7hcsvt14f6T+/TYIFHVJjWfxPqE9fJ2LtYuss0sYEGZAriecx1/B//n3gtALbcqnVH3QreqiRET5SmdeZUeYMbhGVQbqgl1D31qO/t7MOO01tPk62TChI3KBtdK+OY4JLqJNHANoaymDJ1Bh7ONM4IgUF5dztDtQ5lzbA4z28zky25fcjXzKq28WxETFoNRNDIlYkqt4wvPE1h0FCqcbSkL8ASlkuSCZB6VPKKdXzsLLU6IawhRvlEUVhYyYOsAMkoz0CVc544bHD/mgVKEdyb58EkPyU7WJJowiZKQ3NyIKQUldho7Hpc8poFLA1p5t+LezHu0FiXzh/b+HSyatm71uwFwoeIupdlptPypJXbz7Aj8PpDem3rz5pE3WXF1BadST2EUjRhNRjntPLkwme96fSeZSBSn4WHrwYYIKJ71Krz9NhyVAgzVSjWTIyYTnxvPKy1f4fSk0/g5+BG9PtoyL+QFMIkmttzaQkx4DMv6LePn+J/RG/W81/493vvtPWIfxVpsH/soFqNopGfw079D8TnxFFcXM6vNLA7cO0DdE4ZcAAAgAElEQVSfzX2YHTWbRq6NiF4fzZ47e/70OOA/G9Z38N5Begb3tPg7/jxcSL9AlF/UP3X0qsP/XahrNOpQhzr8x7Dq+ioMJgPTWk+z+H1mWSZFuiKaeTbDy86LKkMVvvaSZaRWraWwslBOhr6UcYnx4eNZfGkxlYZKDsUcoqCygI5rO5JRmsGN126wa+QueSV+7um5LLm8hLLqMr67+B0X0y+ybvA6y7TjP8BccJhdo8xw07rRKbATr7V+jSUvLeH4hOO08G5BM49m8gr1gIYDqNRXsiFhA+P2jCMpP4ktt7fQYEkDBm4dyPvH3+eHyz+gM+jQqrV42nlaUMjMlKS8ijyaezaXV6ONJiM6o44QlxBWxq3k7x3/Ljc2AB/HfkxhpbSKv6DXAgIdAzn3+BzBzlIWibQSr8CkgE2NqrmSeYUaYw2dAzsD4GPvw4bBGzCIBnnlvpFbIwY0GiA/34zdd3ZTrCu2KCjvzLhDe//2jN41mj6b+6AQFLLGxFxcp5ems7DnQkBaWa7vLIkP1savpYN/Bxq5NapFsbiWdY0u67rw3m/vMSNyBucmSw5FN1d9jq0eTKNG0mVdF/QmPcHOwSy8uFB+rkqh4onuKQXHx86nluhXRMTH3udFtwJ5FXm427hb/M7Z2hkFilpUq6/OflWLPmOrtuXjLh/z5dkveVzyWP69zqjDSmnFzqSdCIJATFgM48LHUWWoYtMu2NJMQKcWuJFzg9LqUkRE5naeS25FLs1+bEbso1j2jNrDd72/Y3DjwRhFI0fuH2HeuXmEe4TLYnd/e6mJaqTyItlFJGg27Awo525hMvcL7/Pl2S8BnpvsPLjxYFQKFfHZ8XRaFI53qYmu1d6E3c5jzDD4bMwq3v71baxV1nT074ifvR8XMy7KDalRNGKjtqG8ppwGLg1IKkgi0CmQc3udsDeqiE0/I98bDVwasH3EdsI9wvENDCfAaMflVy6zfvB6xoaPxVZty28Pf+ONo2/QbUM3zj0+x647u/D+1pszaWcYHTZa/qwkFyTLAunktydB374wahTckZyvzLQuRytHXLWunJhwgiDnILqt7yZPQ1+Es2lnSS9NZ1yzcUxsPpGYsBheP/Q6L7d8mS71ujByx0gySp/qm357+BtBzkHy4smTqifMOTaHkaEjWfLSEu7OuEvPoJ5MPzwdjVJDdL1ohm0fxuJLi190CDKyy7Pxsv3rJxqFlYVczLj4p7QpURS5kH6hLqjvvwx1jUYd6lCH/wj0Rj1LryxlbPjYWo5DCbkJAHKjkVOeI/PmK/WVxGXH8UqLV3DXSgXfplub+Dz6c048PMH7J95n76i9fB79OcuuLiNshVSoR/lGEeISQseAjrz969v4fOvD30/8nVdaviLTd16Em7k38bT1/FNawvXs65xIPUErn1aUVJfQxK0Jm4dt5ti4Y6TPSefI2CMAfNzlY9mJaeutrcw6KjnMlNeU86j4Ef229OPdX99lXfw6SqtL5QK+vlN94rLicNe6U1pdikqhws/Bj4P3DuJo5cjwpsPl3IXKmko+PS3pArRqLSNDRyIisi1pGxqlhtlRs4kQpIL688ytdK/fHcCisP/8zOd42XnhZuNGlaGKnPIcOSNjcsRkuXE48/iM3NSApBPxsfdh18hdHIg5QGJeInHZcRYC1/Z+7XG1cWV229lYKa3kxPDHJY/57cFvTGkhrcCbJzjmIr5CX0FGaQanJ53m297fUs+5Hr72vvgePMP1elaMjPsbDlYOGIwGi3wEkGhN5utj/vlZfY1GocHRyvG5IW7yNkpNLbF7ka4IW41tLapVRmkGX3b/Uv5ZISio1FcS+yiWic0nUlZTJj/maetJtbGa7PJstGotH3b+kP339tPpsUD7TAXv9pAcv6yV0oqxKIrMPjZb/v761OsMbjwYkKhprX1a8/ONnzn16BTZ5dkIvwfTlNeUoxFUdLmcy4aDKoId68vXIuSHEDbfkuh+f3RFAylkr8pQRafATnilSxOYDley+byLgkuNtFzKuMTj4scYTUbWDlrL5mGba+3D7ELlaetJUn4S3LuHIj6BMLtgi6mPQlBQrCumd3BvLlWlIJSX08Y9ggnNJ/BV96/YPWo3STOSqPygkuSZybTyboWt2pYSXQkNXRuyPXE7rx2UqF9Dtg9h8Dbp2nx9aSEb3+tDpZcrxv79qMxJZ/WN1TRybcT6m+sxmowyVayRWyO6b+jO5YzLL7wfNiVsor5Tfdr5tUMQBFb0W4GrjSsT9kxg4+CNWKusGbZ9GNUGqdn67eFv9Ax6Os1499d3qTHWsLiP1Eh42nmyZdgWjo49yqPiR5xMPUkH/w7MPjabOUfn1LLkNkMUxf8Ydero/aOYRJNM93wRUp6kUFhVWKfP+C9DXaNRhzrU4T+CnUk7ySjNYE7bObUeS8iVhMD+Dv5423mTXZ4tNxoqhQp/B3/mnZecb9QKNSIin8R+wsr+K6nUV9JhbQfa+bcjcXoiEV4RDNs+jG2J24iuH83moZu5N/MedlZ2iIisub6GUTtH/VMudHxOfK1pxvOw8MJCAhwDOJJyBAGB6ZGWIXe3cm9hq7blo84fsbDXQg6PPcygxoPk6UBLr5bYqe1QCAp2393NlH1T6PRzJ3mV93z6eXIrcvFz8JOKTpU1ifmJaJQa1t5YywcdP+CJ7gm2altMmFh+dTnJBcnsSNzBN+e/kYv1eo71eFL1hP3XG4Mo6UOCnYPxtfeVvfvPpp1lR9IOvur2lRw0dzHjosw7v1Nwh5iwGDQKDTXGGuJz4+WivUhXxM2cm5xJO8O6+HVkl2dbaBQaujbk/Y7vc7dQshv2tveWMwDWx6/HRm0jBweqFCo0Csupw+fRn9MpsJP8c2fbUNonlbEpzIS71p3XW72OzqizcJiyUlphr7GXpxVatZa8yjyL/b7b4V0+7vKxRQPwR2hVWlks/OwE43n0qWpjtYXVr0pQERMew+WMy6yNX0uIS4i8j7LqMvl7K6UV7/z6DvrqKnb9IvJpdwUjuko6H51Ron2Z7VwVgoKs8ixeO/gaR1KOyKL5gQ0HcurRKZSCEicrJ7YP3y69N9VF9E42siVc5PoXM7k587Y8NbNSWmESTdQYa/D5TnJP2pG4g0p9JQARXpLN7rEHx+iSqUIEzjfQ8F0PG+o71WfeuXkIgsB7Hd4jxDWEFddWANA/5GmuQkm1pNux09iRVZZF8bb15HpouWWQjBvM90l6SboUwmnjxEPF71qf5wjC1Uo1IS4hFFYVUlJdwi/DfyFpRhJP3ntC7ju5+Nn70a1eNwY0lCZxZ9POMvHkLML6pFKUncqVDvUpLisg0DGQtJI0Pon9hIdFD7HT2HFs3DHCPcPpubGnhROWGTqDjh1JOxgbPlaeQjpaO7J12FbisuP44eoP7B61m5s5N3njyBs8LnnMvcJ7cqMR+yiWtfFr+brH17UahN4NenN7+m3mtJ3DpcxLeNl5sfjyYkbuHEmVvqrWsZTXlFOpr/yPUKcOpRyipXfLfzoJBIk2JSAQ5Rf1Fx1ZHf43oK7RqEMd6vCXQxRFFl1aRI+gHoR7htd6/GbuTZp5NkMQBHmiEeoeio+9DwaTgayyLHLKcoh9FMvPg34GJNvSKfunsHbgWiK8Iui5sSfHHhzjQMwBvuv1HTXGGn6+8TNfnPmCdfHryKvI4+SEkyztu5Qb2Tdot6Yd7da0Y3vi9lo2mTdzbxLh+c+D+tKK09ieuJ1In0hyK3JRKVSMCR9jsc2lzEtE+kbKjcXaG2tZemUpn0VLAtgGLg1wsnHiQMwBHrzxgLK/lxE3NY4o3yisVdZyMXsjR0oaL68pJ68iDxu1DQsuLOBy5mXa+bWzyAqIXh/NyJ0jMYpG3mr7Ft3qdyO9NJ37+ck8uHseBMmxZ0fSDnlV1iSamHNsDq19WhNdP5oKvSTAndtlLnHZcSgEBefTz9MxoKOscdAb9fLEQiWo6LelH13WdSExP5EfXvqBlj4t5WO6V3iPbYnbsFXbsjNpp/QeV+RgEk2su7mOkaEjsbeyl7I0rv2I3vQ0cE6j1MgTLzM6X8tHEOF8lA/7Y/bz0amPar0/1cZq5veYT8qTFKyV1owKHVVrm3pO9Wjr+9QNzE5j99z99AjqUSv4r1Jf+dzshQ9OfCB/X2OqISE3AaNoJMAxgAdFD6R0dtcmVBoqJacmlHjYenDk/hHeOq2nyNmGnV085GZvTKh0T5mbKFcbV+w19jypekLfLX0JXR7Kymsr0Wq0GEUjDlYOnJ58Gl8HX3xKwbsMZhYEU66BAI8GaNVaObPBTHGyVlkzofkE0kvTGblzJJ4LPRm3exw7EndIDZEIn910xaQQGDq4BgetM3kVeSgVSnwdfPmg0wcYTAY23NyAtcoaLzsv1Ao1AgJ5FXlyXgxA0omtTJngJDt/macapyedpplnMz48+SEl2t9LlRc4T3186mMeFT8izCOMkaEjAUlb5WHrQahHKHZWdnzf53tcbVx5q91bVHxQwd4PbnJj2Yd0eGRk7Ul78ivzUQgKvjj7BcFLgrH9ypaOazvirnXHxcaF7hu6s/r6agvb2sMphympLqllZBHlF8Xn0Z8z/9x8SnQlLOu7jJ+u/8THpz5GISjoVr8bOoOO1w6+Rgf/Drza6tXnnpdWrWVej3lcn3qdek71EBHZd3cfndd1Jr8i32Jb80Twr55oGEwGjtw/YtFMvggX0y8S6hEqT0Lr8N+BukajDnWow1+OC+kXuJp19bnTDEAWgoPkhV9eU06FvkJaOURAISiI8Ipg3rl5dA/qztvt3kZAQGfQ0X9rf77v/T3TWk9j2qFpTD80nSpDFVq1ljei3uCT2E/47MxnjA4dTZd6XZgeOZ27M++yf/R+bFQ2jNo5iuAlwXx74VtKdCU8qXrC45LHfzrRWHRpEQ5WDpxPP4+DlQNDmwy1CLEzB/WZC9mL6ReZdmgaU1tOZUQTafVerXxagAHYamxp6d2SfiH9EBBQCkra+LZheJPhMp3KxcYFtUJNWU0ZMw7N4GLGRTlh2igayS7PprV3awwmA/0b9Wf94PWIiNxPvca06CocVba08m5Fka6I/EItf1ufzICvLlKTPp45zRdbhI9Nj5zOoEaDAEmrYNaDALJLEkhFsN6o59dxv5I0PYmpraZyN/9pJoZGqeHI/SPoTXp+ivsJL1svssuyOZN2hodFD5kSMYX0knR6b+rNtEPTLITkoihyJeuKvK/r2ddpcjyeE0Ewe9A8olZFWUwkrBRWCAi83up1diXtAqSpQJfA2u44P177kVcOPLXy/eMkBaTpz4IeC+Qm41nxa42xRhbkgzTxMK/gm/Go6BG/jv+Vq69elc/pWdG1ESNZZVl4Vyj4LBam9Kqie8PecgL79iRpMvFaq9c4Pv44nnaelNWUUVpdytwuc2ni1oRph6bxzq/vANArqBc+9j5UnPqVJzYwMM2ajwZocbJ24kiKROX7Y8Cip60na2+sZXrr6aTMSuFvHf7GjZwbjN41GqNoRASKSnO57C/gGxxBRmkG+ZX56Aw6lr60FK1ay6aETRTpimjn144bOTewUlnJDbbepGfL7S0oULDcJZXDdlm8GfWmfM1CXEKI9I3k8JjDrB24lida6TpdiD/AH/HthW/54uwXhHuEP3dFPcg5iIdFDwEpwyK/Mh8btQ3NPJuRERHEtH4w/nwZ142vsHmoRPX6sd+PfNPzGzoGdKRYV0y1oZpqYzWvHngV+3n2BCwKoNdGyXgiwDGArLIsssqyLPQ473V4j271uzF+z3gGNhrI1JZT2ZiwkSZuTXC2cWbe2XmkFqXy04Cf/jS3JdwznPNTzrO873KsVdbEZcURtiKMewVPP5s55TnAX99oXEi/QLGumH4N/7k+A6SgvudR8urwfzfqGo061KEOfzkWXVpEI9dG9GnQp9ZjOoOO5IJkudEw/+PMKc9hRNMRsj9/cmEyGqWGj05+xPwe8+ke1B2NUkNZTRnRG6J5q91b/NT/J1ZfX82CCwvo4N+BL7t9SbBzMLZqW7bc3kLMrhiyy7JRCAoGNBrAyYknufHaDbrW68rfT/wdv0V+vLpfWm2M8HrxRKOoqojV11cT6RNJfkU+JdUlssbAjMclj8kuz6adfzsySzMZun0okT6RLO27VF6tNlNX/ogwjzCqDFVkl2fTyrsVFzIuyMLp4U2GU6GvoJlnM/qG9CV2Ymyt3BFzWFr0+mharmyJk7UTWZpqktyhhU8rcspzcBCbIWa9xpX7xVTq1LgSxdpDKs4lp6MUlDhoHHDXuqNWqmnuKTVdU/ZNwcXaxcIlCSRaT2FVoSxs35iwkXJ9ubziX2Os4cd+P9LRvyOZZZmcSz/Hw6KHrL2xlgYuDUgpTCFsRRhJ+UkcGXuEbvW7yYW93qTnauZVDCYDVzOvMn5pNJ3SRLaEw5jdYyzoUCqFihqTFO44rfU0Tj46iZ3aDl97X745/43FNWro0pC47DjuFNzBWiE1Dy+iUPk5+tHRX9L1mLn3ZpiD8eD59rgx4TF0rdeVL858IT9ubpzMzWOJroSt20xsj9BwIVDg5/ifcbGWmtbuQZKWJtwjnO5B3Tk9Scq1sFJa8enpT7mefV1ufhQo2Ja0jXErerF0zVSMCrjYPoArhQmMDR/L0ftHyS3PtZjcDGk8hPSSdPwd/ZmyfwqbEjbxj07/oLmH9J53EP1BgGolnA4wWbiCtfFpw8BGA9Eb9Xwa+ykqhYroetHczruN0WSUw/uifKOoNlRjwsTWcJjWYipFuiJJUC8IRNeLBqSpxOQWk5kYLS1IfH3gfSbsmSDb6665voZ3fnuHDzp+QFP3ps/VL5gbDVEU8bD1kLNcjCYj88/Pp3DsYJg9G954g+GZTvja+xKXHccbUW+wvN9yTk48SfY72WS/lU07v3aoFWra+7dHo9SQWpRKRmkG3Td0x/c7XxznO9JmVRsm7JnA/HPzGR02mipDFRP3TmRR70UoBAXpJemcf3yeeefm8bcOf5M1SH8GhaBgWuQ0Umal8FKDl8iryCNsRRg7EncATxuNZ1Pg/wocuncID1sPWvu0/qfbFeuKScxLrNNn/BeirtGoQx3q8JcitSiVPXf3MLvt7Oeu5N3Jv4NRND6daPzOOc4pz6G1T2s8bT3RGXVU1FTQrV431txYQ2JeItuGb8PX3ld2per0cyf6NezHgRjJejUuO45ZR2bxsPghZyefZf3g9Zx4eILGyxqz9PJSmS4V4RXB+sHrSZudxuyo2Rx9INlgfnDiA86mnX1uCNeKayvQG/XE58YT7BKMn4OfLK42w6wBifCKYMi2IagUKnaN3IVGqZEbDY1S89xG41l6mYfWg6yyLDlPpFJfSXlNOZE+kRxKOcSQbUMwSwc8bZ+K7Nv7t2fHiB3MbDOTAIcAlCbpH0Ds4zOklaQRaJzye8Ng1h0oEEW4luiIvZU9jdwaIQhSund9p/q42rhSaai0cHFSIa1Ybx66GRGRtqvbsu7GOnl1PcgpCAUKXGxciH0Uy8ExB7FWWlOpryTlSQpbb29FQODlAy8zpPEQbk+/TZ8GfWrR66oMVfxy6xe6bejGsAQDNQrY07jWZaNrYFdEROb3mC/nM4hIVrtJBUkW25obWqWgxMlGonaYC+M/Ir0knZdbvizvzyxwtlJYkVWeZbHts3atblo3tt7eysHkgyy9shQ/eyn1Xfj9yyxU75AOEbkwo0cNCkFys3qie4JaoealkJcAZC2Ni40L4R7htPFtw8bBG8kuz6bKUIVCUDA5YjIAJx78xrJWRvQKSNVJIYGfdP0EpULJ5lubLdLuf+z/I/ti9pFTlkOgYyCfnv6UdqvbsTVxK12VDTj7QyURhRoCSsGmeWu2J26XnxuXHcfGmxtZe2Mtj0oeYTAZZJG7+R4HZO2VxggmBeRU5XPg3gFEREyiqZY5Q/+o8QDE+PRif/J+QpeH8rfjf2PqwalMbz2dL7p9gVKhrEV5BKnRKK8pp6CywKLR2HN3D/cK70nuWgsWQI8eqEbH8A+vkWxK2GRhbgDgZe/FyYkn6d2gN3vu7qG+U30EQeDRm49InpnMvtH7+LDzh4R7hPOg6AELLyzk1QOvUqwr5sj9I/gu8sVgMqAz6Oi5sSceth5Mi5xW63j/DN723hwae4itw7aiEBSM3DmScbvHkVGagbXKGgcrhz/fyf8gDqYcpG9I3z+dylzOuIyIWNdo/BeirtGoQx3q8JdiyeUlOFk7MaH5hOc+bubfmwWq5gIwuywbQRAYFTZKdlu6nnOdEJcQ3v71bZytndkfsx8BATuNHZmlmXRd11UOarNT27Hq+ipGNh1JC+8WTGg+geSZyYwJG8ObR9+kzao2Fu4y3vbefN7tc4Y2GUqgYyD3Cu/ReV1nIldFsjlhM3qjVITqDDqWXF5CS++WFFYWklWWxaTmk2r5xF/MuEh9p/p8fOpjbuXdYs+oPbLbllls+6JGo75TfWxUNmjVWmpMUvFpXrU+kXqClt4tOXTvECIi3nbe3Jt5j3Z+7SyKjrsFd+nToA8fd/kYZ7U9rhXgLdhT30majDgKDRGwPGaTCGVldigFJQ1dG5JRmsGt3Fscvn+YwqpCtGotQc5B8sq8AanQG9F0BG5aN+o71Wfy/skUVhXiauOKg5UDdlZ2hLqHsi95H1YqKwY1HoSzlTQFMJgM3H9yn390+gfrBq+TudxtfNvUuiaT9k2ioqaCwfE6DjaEMmtLcfbIpiM5nnocK6UVLb2l9HABgQp9BQl5CbX2d+bxGWZEzkBv0su6k2ebhGfxwYkPeP3g6/LPZvezalN1rW2fFYl72XkhiiIT9k6gnV87+bqJiGwdtlUqlEXwKYN3+6optlNgFI1YK60JdAyUUq7jpUwQPwc/eb9dArvw68NfmXV0Fk3dmmKltKKJWxPWxK9BEMFT/N1pS5CmNCXVJWy5tYW+Dfqy/uZ6UgpTAGlK4mHrQf+G/YmdFEt5TTku1i5czrqMxiRw5KATRmsNzhXSOfUf9J587zZ0aYggCEzYO4EZh2fIdtTPnr/ZMctWbcvDoocYBHBS2nL84XFp6vD79fhjsdzYO5xSawGbkioSpycS6BjIN+e/IcAxgE+6foIgCFIo4HME+WYb2YdFD3HXStQpURT56uxXdK/fXbq3VCr45Rfw9OTVTw5gX2lkzY01tfZlrbJm18hd9A3py7Kry2ju2Rx/R38aujZkYKOBvNfhPdYMWsP5KecpfK+QvHfyODPpDN3rd6dEVyJ/bqsMVWSWZeL7nS8eCzzo/HNnph6YyncXv+NwymEeFj18obuUGaPDRpP1VhaNXBux+dZmPj71Mc7WzhbW2P9upBalkpSf9K/pMzIu4mrjSohLyF9wZHX434S6RqMOdajDX4bS6lLW3FjD661etxAsP4uE3ASCnYNlOoejlSNWSiuZGjCsyTAMJgPZ5dmkFqcyrOkwTqSe4FDKIcI8wtg4ZCNlNWXYa+x5WPSQN468gZ+DH1YqK5ysndhye4ucb+Bs48yK/iu49MolBEGg3Zp2vH7wdZmaAXA77zY9gnpwe/ptjow9gqvWlXF7xlF/cX3mn5vPymsrya3I5X7RfTr4d6C8ppxJEZNqndfFjIu42Liw/uZ6Vg9YbUE1MLvIvIg6pVQoaereFCdrJxLzE2nh1YL00nRAEoHezb9LTkUOnfw7UVZThpvWjQ87f0jKkxS5aCvRlbDg/AKOpBzhWNoJvj8Gs4Ji5CwHa9tiRCyLGxEjRaY7FFYVcjL1JIGLAimoLKC5Z3M+7foplfpKfhn2i8VzVIIKhUJBr+BeKAQFKuEpL7+spgytWkuwczCZZZnEZcXRM6gnmeWS45CrjSvR9aP58uyXDN02lPQS6RzNuhbz5ACkoLTv602jZaaJbeEC1kpruVCt71if02mncbJ24qUGL/HZ6c8k16nftRDPCr7NmNR8ElNbTgWguEqybn22cNWqnt6vRx8c5eUWL8vhh1nlWagVapSCElvVi/NYEvMSCXEJoUhXxJfdviSrTJp+zIyciVatpdJQyZA7sCMUVjXTYxJN9GvQDw87DzJLM3HTunEz9yaAReigl70XGaUZBDkH0SOoByqFitPNFnHnZ1sCdFbcdKiwuHZdArvw1rG3+PXBryTkJrD86nIAhjYZKm8T5RfFpqGbZIH/vJMKlFevMWeyD01LrTABE+/Ok0Xcu0ftJnNOJs7WzhhFI7kVuQDMjZ2LVqVFo9AQ4R2BSqEivzIfEyb6pqooNlbI+gyQmsVbeZap3IIgUO1gS256Eo+KH3Ez5yYRXhEU64oJXxHO3rt7JReu5xTn5kb6YdFDeaJx7MExbuTc4INOT4X6ODnBgQOoCgo5cdiNHy/98NwJiUapkTU6CbkJsu7njxAEAXdbdzoFduLQmEPYamyxVlojCAItvSRjhLfavsWsNrPwd/QnLjuOj059RL8t/WQxerMVzRixYwQfnfyIzQmbicuKsxCju2hdSJqRxKTmk6jQV1BR5k7/hbsZ9nUcf1ufzK20F7un/U/gUMoh1Aq1Rfjgi3Ah/QLt/dv/pY1QHf53oK7RqEMd6vCXYc31NegMOma0mfHCbRLyEiyE14IgSPanv7uqdPDvgJvWDb1JT4hLCGfSpBXDd359B71Rz5AmQ5jbZS5lNWVYq6wprCrkSaUk6D47+Sxzu8zlHyf/QcyuGHk1to1vG668coUlLy1h6+2tNP6hMevj11NtqCYpP4kIrwgUgoI+DfpwbNwxbk27RZ8GfZh7ai5zjs3BxdqFYl0xNcYautbrSrBLsMU56Qw64rLiuJ59nXfbv1vLpUbWaKie32iANOERRZG4rDi6BHYhMS9RfizAKQCloKR9QHvSS9M5ev8oLzV4iQjPCLkgFUWRby58w+uHXqebMZBuaQKV/l6yBe8d4zKkpAapWBMxSqnKSmllN7s8WzhdSVwAACAASURBVC4SWnu3pn9IfwwmAxX6CuzUTzn+IiJV+ip6BvXkdv5tjKKRbvW6oRAUJBcmYxJNuNtKTj7zzs3j/ePvy899t/27HB9/nO3Dt3Mp4xJNljXhu4vfYRSNCAgylUkpKGni3oRxSUpKrOB0qK1s+woQ5BKEUTRSoiuhsVtj9iXvo9pYTWl1Ke382kn5DX/A2PCxxGVL4WzP5jmY8UcHqn90+odsmQoSN94oGqkwVMi/a+DcwOI5IiLxufFolBo+OPGBbE/7YecPmXVkFkEVGjbsAYUJEKTrvHPUThKmJeBl70VBZYEs3O6/tT9H7x+V+P5n5wEwJWIKq66vYqrfIFz7j6Cxb3OmdHtbfs9AKuQjvCKIfz1eTiE3T3ieFbLnV+Tz8v6XEREZl+bIW+eMzO1txQ+qOCZp2pDqDBcKb8iWxkHOQdhZ2aFSqLBV26ISVET5SjamVYYqakw1pBalYjKZiE2LBWCgYyQgTZNs1bZYKa0QEfnu4ndyk2mGys0dU2EhL21+iSi/KC5MuUDS9CSi/KIYsm0IZ9LOWDRfZjhaO+Jq4yo3GvkV+Xx19iuifKNkLYiMkBDYuZPQW7m8uSOd/cn7a+0PYEfSDmxUNgxtMpRRO0ex7fa2525nhtkyuMpQhc6g4+i4o4wMHclP139ieNPhbB66mbipcZT9vYzHsx/z67hfWdBzAZ0COvGk6glr49cybs84Wq9qjf08e/wX+dNzY09mHZ7FiqsrGNdsHKF2fYkwrqC8xJsn5UauPihmzto7/9Zm41DKIToHdv5TupbRZORSxqU6Ifh/KeoajTrUoQ5/CQwmA0uuLGFU2Kh/6reekJsg6w/MMFvcgrS6P7TxUGxUNqgUKs6nn2dS80ncK7zHyriVgBSIN6jxIHlFutJQSYBjACEuIXzS9RN2jNjBgXsH6PRzJ7mgUSqUzGwzU0rmDe7JpH2TaL+mPTXGGln8bEaYRxirB65m9aDViIgU6YowmAxcyrxEW9+2tXQc+5P3YxSNtPVry7zu82qds7nhedFEw/yaT6qekFmWic6os9BGmFcVzz8+TwuvFvx0/ScEQWBSxCRqjDX42vuiEBToDXrSS9JZdsaOm01cSC15JK/KZ+rPE6+cxhOuUE0eT7hCvPJ1SoWnq8vi71/Lri1j8LbBqBVqDqccprHbU4GEUTTSfUN3mQ4lCAJrBq1hQrMJ2KptyavI40DyAew19uy5u4fO9ToT6BgISPkagiAwInQEd2feZULzCbzz6zu4L3C3EFbbamxJzr9L8c8r2NMY8sWnq7y+9r6cSD3BKy1eQUTkXPo5C1elqS2nUlpTanFtbZQ2HL5/mKtZV2nq3lR203qWOvXHzI23f3ub6PpSoapRanhc+rgWT10QhFpp4SCJpi9lSpodPwc/llxeQmZpBps219BtkqRbAMlWufPPnSmrLsPbzpvu9btTWi0de7BzMC9tfono9dG09mlNQ9eGbErYRGVNBW99eAgaN4YjR7hVLDkTNXFvAki0pK/OfUWHtR2wUlnR1u/pdOf9E+/TdnVbNiZspO/mvuSU59BPE8b6vQJnW7gyr021pIGKO8cdd8n9LdQ9FBcbF2zUNqy4uoIiXRE7R+xEZ9SRU56D3qTH09aTzoGd8bD1wIRJvt/PNZIam0sZl6jQV1BtrCa6XjTFumKarWjG7ju75WNTuLrjWiVpUvbH7MdGbYO3vTd7R+1l05BNpJemcyvvlsVzzDALwt217uhNes4+PsvfO/79+avr3bohLF3Km5fh4dfv13pYFEU23drEkCZD2DpsK2PCxzBm9xg2JWyqva/fce7xOWqMNYiIVBurOZl6kjUD1xDgGMCQbUPk91QhKPB39KdncE9mRc1iWb9lnJhwgsy3Mil5v4Qrr1xhw+ANTGg2AQcrB04+Osnso7Ppta4HquJeCKIg0x9FUcBoMvHT8QcvPK7/E1TUVHAq9RT9G/45bSoxP5GymrI6fcZ/KeoajTrUoQ5/Cfbe3cuj4kcvtLQFyC3PJa8iTxaCm+Ft5y03GgDDmg6jylDFnYI7BDoGciDlAFNaTOGT2E8oqipCISjYMHiDxUrbgycPGLVzFHqjnuFNh3N+ynkKKguIXBXJxfSLT1/L3pvNQzdzfPxxWdi7M2mnBWXBjFVxqwh0DESpUNK9fncUgoL55+fTYmUL1sWvo9pQTVl1GW8eeRMBgb2j9tbSbsBT6tSLNBog8efNOQdmqgtILke3824zqNEgzqWfY1iTYRy8d5CM0gwq9BUICHjbeWMQDRh/n1KUpyTyqFUDHhU/sijMSoUEbqlmc1E1gFuq2UQFP7XKVKCQ6TfWSmsauDTAJJpYcGGBHGAHYKuy5UHRA2J2xwDQ1K0p9ZzqYaexw8XGBQ9bD+4W3pWpX591+Uym59wtkCxwa4w1bLm1hX3J+1AICmw1thbHUVZdRvMsE0H5Brb8IYYluyybN9q8QW5FLvUc63Hu8TlKqkuwVlnTxrcNW29vtdgXQFv/thy8d5BrWdf+1D0HpMZuV9Iumnk0Q0CQbVv/2GCmPEl5rvPUufRz8vfO1s58c+EbeiUb2RQBV30kCln/hv3xsJWE/61XtSa9NJ22fm3xc/BDgYKrWVel5tGkRykoae3dmqtZV5lwW4mfV0M4dowsoZy9yXsJdg5mX/I+APwd/Ul9M5WpLaey+PJiLmY8vfffaPMGWrWWCXsmcC37GjYmJdt3gODoxIrpkVirJeF+k1wjt90l4XZzz+b4OfhRVl3G/PPzmRwxGR8HH/m9KNYVU1BZwNDGQ+WMCzeTDWojbCw8Jb/fZrzZ9k1ERCK8paDN1w++zr2Ce5wuv42bTkFzr+YWn2tBEBjbbCxjw8eiVWsZtn0Yo3eOtsiZCHIO4mGxNNEAadI0oNHTaVQtTJvG/dG9eHNjCvd3r7Z46GbuTZLykxgXPg6lQsnPg35mUvNJTNgzgXXx6567u8Mph1EKSqIDoxkVOoqpB6eSX5HPnlF7yC7PZtLeSc81mTDDYDKQX5FPUUUB5en30d29hfFOEor0TFR6AyYlaAlGqKUpUnD9USbfXvj2uTSw/xOcSD1BtbGafiH/gq1t+gWUgpJI38j/0WOow/8/UNdo1KEOdfhLsOjSIroEdqGld8sXbmMWgv+x0fCy85KpUwBd63XFydoJtUJNqHsoO5N2MrXlVHQGHV+e/RKQsgnMdqohLiGYMHHg3gEm75uMSTQR4RXB1VevEuIaQtf1XWWRrRndg7ozKnQUztbO/HT9J5oua8qeO3vkguByxmXOPj5Lka5Inqi83OJljo8/jq+DL5P3TSZgUQBRq6MoqCqgpXdLPOw8nnvelfpKrFXWKBXKFzYaqcWp8vcjm46koUtDADoFdEJERBAFbFQ21JikLIe1N9ay9+5eWvu05lr2New1kj7BzWjF272guH1LUgpSOJhysNZrmYXmCbkJshNSPad6cqNTY6rh1KNT2Gvs0aq0Mk8fpIyKWZGzZDpYbkUuoihiNBnJq8gjryIPd607/g7+AMw8MlNe0T2VeooNNzfQ+IfGTD80neh60Szru4wqfZVMzzJhQkQk5hbk2sJJiYJPgIPkwqRVa5nfYz5HUo5Qoa+Qmwm9Uc/I0JGcSD1R63xjwmJIeZJCfE48kT6RMkXrWY2GORNFgdT46E16vj7/NcEuwfIK/fOaij/iWa0ESNoBld5I50ewvA0EOgVSXlPO1z2+Jqc8hyktphDkFEROeQ4Pix7KmTBqhRpRFPF38OdGzg1OXd+NUTQypTAQjh0DR0dWXF2BtcqaAQ0HyKYIJtGEl50XC3otYH+MJTXoRs4Ni+nUl8cMqBJu8+ZkL7ZmHmXDkA28GhJDQLFIkqR/53z6efzs/Vh6ZSml1aV82PlDrmZKTdBb7d4CpFwVD60HCy8sBEBVXUNLgzujQkfhauMqv56AwMabG9EoNPSs35Mf+/3I+pvrCf8xnCIbCMGVs2lnn6vFcLBywN/Bny1Dt/Dbw98IXS79XYCnEw3zNRgdNvpPXZICf97DpWArvCbNhIcP5d9vStiEu9Zd1iUoFUpWDVzF1FZTmbJvCqviVtXa15bbWxAR+WngT/zY/0dcbFwYs3sM9Z3qs3HIRvbc3cPnZz7ndt5t9t3dx3fnFzB9Uwy9v42gwaeuWH+mocHSBvTe2pc3rnzG/uQDPMm4h1BRger3S1HOg+dqrHSKR7x3/D0iV0VyNfPqPz3n/zc4eO8gDV0bEuL65+LuixkXaeHd4oW6vDr83426RqMOdajDvx1XMq9wIf3CP51mwNPC1pwRYcYfJxoapYYBDQdgq7HlTsEdHDQObEvcxvsd32fJ5SU8ePKAoylHySjNoI1PGx4UPaCDfwdMooktt7Yw/dB02Vf/xIQTjG82nkn7JvH2sbctVv5u5d2ia72uJE5PJNwznKHbhzJg6wBSi1JZcGEBblo3qvRVdA7sTHppOi+3eJnuQd05NOYQd2bcIcAxgDsFdzCYDOhN+udqAwC5eFQIilqNRl5FHiN2jGDaoWmoFWq54G/rL1FeOgd2BmDHnR0MajyIXUm7GB06mpVxK7madZWZbWbiYeshZ0K0eFjNmXqwreIy2RXZFq9npjupFWoUKMityMVaZU2YRxhpJWmy538zz2YSxaW6WEq0fmY11iga+ShWSua2U9uRX5nP9EPTWX5tOTqDjuaezYnyjSJhWgI+9j7EpsXirnXHWmXNyUcnmbh3IhFeESRMS2BYk2HMPDKTAY0GWOSSCCYYfRu2h4JRCQ4aB1mjodVouVd4j5yKHPIr87HV2GKvsZdoK/pquXlQKVSYMOGmdWNM+Bg0Sg16k54WXi2e2+yZk8QVCgV6ox6tWsuSK0twspKcscx6jGf1KmY3qmfxR8vcspoyRiaIvN8LrAU1n3T5hGpjtZz9sfjyYtYOksL6tt7eSmFlIeX6cvo06EPc1DhcbFzwTS9BWSWd/7qXWyE6OaEz6FgZt5LJEZMp1hXLr/fsuW1P3I7A09yKSxmXWHFtBQoULCzvwJuXRA5NjeYHUXJj25SwiSfxFwBIcpeoZWklaTwsesjCCwuZ2nIqAY4BXMu6RhO3JmiUGln38e7xd3G0dsRd7cwTtZH6PqHkVOTI1r6OVo5E+kTysOghNaYa5p6eS2xaLG42bhiNRrLUOmzLdBTpiriWda3WdVUKSoyikZjwGJKmJ9EpsBMjdoxg5I6RuGndSC9JlxcT/ix8E0BtreXaonfJ0dRg6N8XSksxmoxsubWF0WGj5SkWSJSnFf1WMCNyBlMPTrWYOJ5MPUleRR5DG0sBnimFKUyOmMzljMtErmzFwhOf4Yw1c2PnEr4inMHbBvPR4fc4d+EXtFdvMiSukh+Sgzla2Je94igGqULJdFZy1s/ELVcD5b9nZqYp11porBSCdE3svC9jEk2kFacRtTqKN468ITf2/18hiiKHUg79S9MM+F0I7ldHm/pvRV2jUYc61OHfjkWXFhHsHPynfN6EvATCPcNrrTZ62XmRV5FnsZI5rMkwinXFpBan0r9hf1ZdX8UrLV/B086TOcfmMHHfRACWvLSE+d3ncz79PF0Du6IQFKyMW8m7v72LKIpolBpWDVjFkj5LWHx5Mf239KdYV4woirK7TZBzEAdjDrJn1B4SchNovKwxu+7sQqfXMaXFFA6lHKKpe1MLG9a7BXe5ln2NmZEzASl7IXR5KH029eHY/WMWxXmVvgoblY1FoyGKItsTtxO6PJTYR7FsG76NKL8obFQ2xGXH0cm/EyCJXa2UVpxJO8OIpiNIzE+kW1A3ssqyUAgKugZ2lakpzT2bcyEQEOF6znX59es51QOQRepVhir5XCr1lbT3a8/qgavlRimvIo/kwmSW9lkKYDFtMkOr1sphdj/G/YggCGhVWhq5NaLKUIWDlQNvR0lCZXOqtFE0ciDmALtH7eZO/h1G7BjB0CZD+WXYL0T5Rcn77vQY/Mpgq+SAzJQWU8iryKNTQCfyKvJYe0MqzDUKDVYqKxytHOkR1IOFFxfK+wh1D0UlqOgc2Blbja1kz4rAP078Q97m2ftwSOMhgCRsrdBXMLHZRCr1lXIYYhvfNnhoPSjXP6XYPVvQNXd/QXErwtZw8CiHz3t8RYS3FAyZVpzG3K5zERD4/PTnAPQP6Y9RNKIUlKzsv5IW3i240nEDb11TkeEIKhSsStnKqJ2jWHtjLQWVBbzS8hX2Ju+VJzLm+6tKX8XGhI2IiLJuSG/So1VpCS6CV5ae50q7AFa2U+Ni48K3vb7lauZVtCkSTa5B+37yvu4W3qWkuoTZ7WYDcDXrKpG+kdzIuYGXnRfWSmsyyzLpH9KfhjotNSrwDY7g/pP7FFQVICJKz287m+uvXWdm5EyUgpJ9d/eRUZaBvbU9sZEeXHYoQykon6vDUClU8iKBp50nO0fs5Jdhv3Ay9SSfnf4MEZED9w6gEBS1MjJehPHRbzJ0rApDehrExHDqwXGyy7MZ12xcrW0FQWBxn8W82vJVZhyewZhdY/jgxAcM3DoQgN9SjuL6jSttVrdhbuxcnHWgib+F/4k4Zp7WseKIkhVHlNxLH0q51xIShp9g1/dZ9Pv+MIcGNGaQxwkGC9vYJSZS8xzX5VIhgRKXrynnGiZjHq2DHVn8ShNiX1vPukHrUAgKrJRWrIxbSdNlTdl7d++/dA2eh/iceLLKsv4lfUZeRR73n9ynnX+dEPy/FXWNRh3qUId/Kx6XPGZH4g5mt539XH3Cs7iZc7OWEBykRsMkmsivfMq77hXcC61ai5OVEyIiOoOOLbe2ML/7fA7cO0BRVRFOVk609mnNO+3fISYshitZV2jn3w4rpRXfXvyWz89IBZwgCMyKmsXRcUe5knmFqNVRnEk7Q2FVoSwEFwSBwY0HkzQjiaZu0sp+ub6cll4t2XN3D1Mipsji0tt5txm/ZzzDmw6nU4DUEMS/Hs/GIRvJr8ynz+Y+hK0IY/X11VTpq6jUV1pMNMxTjFE7R8kTlZGhIwn3CKdCX0FGaQahHqEAJOQk0CWwC3qTHpVChauNK/E58dhr7KUC8eK3VNRUoFKouJl7kwoNOFc+vbYCAmXV0rTDTesGSJxwsy6iylBFfaf6TIqYRJ9gKcl9WutpBDoG8s5v7+Bl54WHtjYl7N327+Jh5yFrGEqrS6kwVJCUn0RhZSGxj2L5/sr3APjY+8gr37uSdrH11lZidsUwKmwUm4duRq1Uy5MChaBgzC1IdYKL/tLxL768GIBve30LSAGKAHPazqGgsoCMsgycrJxkLYh5PyZMcsK3Weh+M++mvM2zzaC7rbu8HSA7VJmzIWIfxfJRl48sroGZagaQWprKi+CkF3AJbMybUW/Kwvi0kjTctG581PkjWVdyOOWw/JwOazuQfH4/6p69WNxOQaRbczRqawQEDiQfYM6xOXQK6MTVzKuU6EoY1mQYgNys77m7h0p9JS29WsrvtUJQoKzRc+NkCKK7GyN7l3Ls4a80cGlAS++WVOoraVag4LGzkm1phywsfxUoGLtrLBklGSTkJtDauzU3cm6gN+qlCZxvW5ZfW45VrlTkO2idySzNtLgOXep1AWBgo4FUG6sxiSbWD17P1JZTueuo56XxYDIZWXhxIcuvLrd4f5QKS3tbc+ZO0owkWYSsUqhwsXGRQ/v+DG5aNyK7jeflsfaIR4+yef3bNHBpgIu1C8fuH2P51eW8fextBv0yiLDlYdjNk7J6QJo+/RD7NTbFFThVwd+OlrNtB1zb6kDR6XbkF01lXFUIeg9X3lyTyMiTuXwTE8CoyFTODmzOhJJ1OK5tSPTGbhxMOYha8fQz8Cylz2xcAHCzdD81wmc4543m64mNCAuwRxAEJkZMJHlmMuObj6fGWEN5TTlDtg1h8C+Da7l7/Ss4eO8g9hr7WsGKz4NZ/1YnBP/vRV2jUYc61OHfih+u/IC9lf1zsyWehd4oUYv+qM+Ap+ng2WVPV85t1Db0DemLjdqGA/cOMLzpcBZfXiwXTYIg0LtBb5QKJYIgsHrgahq5NuJxyWOauDXBTmPH3Ni5LLq4SN5nj6AeXH7lMkpBSd/NfQEpyftZVOklEbqV0gpvO29eO/QaeqOeXsG9AHhS9YRBvwwiyDmInwf9zKXMS9RzqkeAYwDjmo3j2qvXOD3pNCEuIUw9MJWA7wOITYtFrVRLFq5GPU2XNeV02mm2D9/OjhE7ZBFrmEeYfA3MxdLNvJvEhEvC6x2JOxgZOpLNtzZTVlNGQWUBS64sQW/S08ClAd1SoW8yFNk+Xa1307rJ3PWHxRIX3UZlQ+yjWPmczY5Ljd0a42ztzMenPmZ65HTGNxtPTnkOxdXF+Nv7W1ynT09/iqOVoyQwVmnl65OYl0h8bjzR66PJKc/BQeNAC68WvN76dRSCgnU31zFm9xhiwmLYMHgDKoWK9JJ0Xjv4GgBKvYnhSb9PMwRo5NpIfs2FFxaiFJToTXqCnILILM/EQ+uBWqFme9LTBGsnaydu5d7CJJpo49eGj099TGK+ZBdstoEFS83Fnfw7wFONRVJ+EmEeYeiMOmxUNmSVZ9EvpB8ahYbn4bl0ld93n28t8mn0p6iVapysnbDX2JNWLE0OZraZKed/9AmRGr2ewT0JLbHC/qXB7G5g4KaTjq/7LmJBTynfQWfUUWOs4VLGJT4/8zl9Q/rKq/Bm7YyZ3jM6bDR9N/eVqGSiiQ0p4djeewTbtlOpVdPcszm5FblEr4+mtLqUpvngESk1v92CusmnolKquFtwl3Zr20nW064hZJRmkFWehYetB7GTYpniN5BTnhLFq7ymHBFR1g552XnhY++D0WSU3eNebvEyE5pP4OueX/Oo2VourIbO7q0xiSZmHJ6ByzcuvH/8fW7l3pKpU3+Eh60HK/pJjacgCBRVFXE+/fw/FV9X6iu5nXebvXf34mjtyBbvfL4Y7sEuUyL2ifcJ+SGEPpv78ObhNzhwaT01cVeIvpjDV0dq2L8Fbi+D965aUaYyUWWlYJJTV/7+6QlGnsih1Z1inE5eQPHjjwxfHsvJ+jDp4t94XJJOlG8UN3Ju0GVdFzYmbMQgGoj0icTT1pNyfbk8LTN/dv0d/Kk2Vst/Wx00DmA04musneXiqnXlpwE/cW7yOfwd/BEQOP7wOE2XN2XxpcV/GhD4LA6lHKJ3g96yBu6f4UL6BXztfWVNVh3++1DXaNShDnX4t6G8ppyf4n7i1Zav1soh+COSC5PRm/TPbTTM6eDP6jRAok9ll2dTWl1Kc8/mPC55zOR9k2nl3YoaY430j/d3aNVa9o7eS5W+Cq1Gi6etJ87Wzrz161sWAs4Q1xAuvnwRP0cpeXln0k6LomTZ1WWYREmQfOnlSwQ6BqJWqun4c0cWX1rMqJ2jKNGVsHfUXuw0drX84wVBoHNgZ/aO3su9WfeICYshPjueO/l3mHt6LkbRSHT9aBKnJzIidITF+YZ5hKE36XHQOMjC+aT8JPqGSE3R/nv7ae7ZXA6CA0nYffP1m1yfep2Xb1uR5SJNlcy0l4oaKffBy9aLR0WPAMk+NtApUN7H2cdnASioKqCpe1PGNhvLlH1TGNF0BGPDx1JjrKGgsqDW+5ZUkMTBlIOU1pTKhYa5eK/nVA+9SU+l4f9h7z3Doyr3tu/fmpree0iAkJCQhE7oIL13QaogRQQEBUFFUW8VNhZkU6QXUXqRTgih914TWkgjkN57MnW9H5azIAbL/W6fD8+zc3J4eEBm1qxZswau8/qfpZyohCj0Rr18TpbOjefFzynRldBvRz/ZcN4jEVwrJLmRVqHlcd5jVAoVI8JGcCDugLzYnN9lPvse7cOMGbNoRikoZZLQrW43jKIRjVLD3JNzWXB+AQpBQS37WtzJuFPtfQgILLkqEVKLx6Jj7Y7M6yDJrCwt8TfSb/ylRKR9rd92gUVQWG4rQVqQgXR/1HaqLSd57Xm4hyJdEQB9AyVNfEODKwfXlyDa2zGyUx6+9r50rN2RXoESEQl0DkQhKBAEgZSiFMyimaZeTQHp807MT+TS80uoBBXbYn9ruRdBKQpczbkNy5YxPXMjRrORqNFRbB60Wf7sgrPNHFYlkF+Rz+TmUsGhs5UzBpOBIl2R/B2NzZJikc2imTlt5qBVaVn7OJDO6ZK3wXL/VhorUQgKvO28EUWRaZHT2P94Pw3cGpBZ9uL7Lri50SYVtjdbCECXOl0oqizih8s/0GhNI9beWktBRQEJ+QnVrvmya8tQCArGNhqLq40r0YnR9N/Rn2MJx9gRu4MF5xcw/uB4OmzqgM9iH2wX2tJwdUMG7xrMuptr8TBq+ck/jxIt7NgD1zcqSVoKFV+beLJcJOpaED/aDWPm8CX0X32KsNhMnozphY3ahjKVmZz6vtClC3h6wkuRusW6YrrV7caR+CM0XdeUnQ92ynHIr9V+DXcbd26k35DLDy2kzCya6R7QnefFz/m+2/fUdaqLgBRnnaEow0ew/8P7r51/O26/c1sipaKUHDYrehatNrTidsbtP3yeBdll2VxPu/63/RlXUq/UFPX9l6OGaNSgBjX4P4af7/5Mqb6UGS1n/OVjLQuPhp4Nq/3M09YTqE40+gT1QaPUUMepDudSzuFp60mJroTxTcYDcPjJYTkRCMDf0Z9f3/iV62nXaefXDrVSjaetJ5OPTGZH7IvYU0crRxp5NMLPwY85J+Yw4dAEdEYd5YZyll9bjkJQMKnpJPIr80kpSmHTwE2MDB/JzOiZnEw6ydedv6auc110Rh23Mm79YVFVoEsgy3oto5lPM3m3FaSpyPW069VMyeEe4fL7uJ15G61SS255LqW6UnzsfSjWFTMlcgoCgrzbaK+xJ9Q9FGuVFTFecM/NRH3X+vIxy43lKAUljb0ay9MSAYF+QS/01zfTb/I49zE5ZTl42Hrw04Cf6BbQjSG7h8g67QpThfx436wvbgAAIABJREFUAYH9b+zH196XxAIpx3/jHan4r3OdzggI5Jbn4m7jzrQW0zCLZlbeXCk/d1LTSeSW59J0bVM6/dyJ5IJkWVI08j7EesB9T9CZdXjYeGAwG1AICvQmvbxQ++LMF5QbyuXXMYkmede2lkMtaQffbCa5IJkVfVZgFs30DOxJXmV1/b6txpYb6VJijyXF6kTSCZr7NMdR6yiTm7NPz8oldX8I4cX/XV+SsK28vlK+/rUdJaKx6c4mxu4fSzOvZqgVahZdXgTA8O+OoLC2IfnQZgwqSCtJY9ieYbhZu+Ft501CQQL/6vIvuT/keOJxXvtZkiWVGcrYdHcTCkGBm40bCfkJ+Dn64WBQUKsYtrSy5kAHD7bFbmNpr6W427oz/ajUXB7hFEZAoUCMq5EOmzowbr/kg7JR2/Bs5jOCXIJkn8ScE3Pk99anfh8QRVS7f+WQeqx8/UAibmbRjEqhYu7Juay7vY6NAzYypMEQzqecf0HyXSSPiY/RimDXYAJdArk88TJ+Dn5Yq6yxVltTqi8l6McgItZH8MPlH7iRdoPDcYdZeWMl9hp7jiUew2CS7pXI+Eh6b+vNqH2jWHZ1GY+e38G/SGBSaX1+SW/FxbMBZCxTU/JZOVkLdNTPNBBRYEOw1puIAmvqrtyGKj0TcnPh/HlYvRpmzIAuXdiff5kDcQfldKttsdv4/PTniKJIckEy31z4hqDlQTRY2YBdD1+U/c1pM4fFPRZjp7HjXMo5nhc/R0BAq9TibuNOqb4Ua5U1c9rM4UTSCT5q+xEftvuQS88uISIyoekEclV6fFUuf3oLqpVqZredzaPpj+hRrwciInF5cUSsj2B29OxXRnlbEBUfBUDvwN5/+hogxRbfSL9RI5v6L0cN0ahBDWrwfwQms4mlV5cyNHQofo5/PTaPyYrB39EfJyunaj9TK9W42bhVMx07aB3oUa8HKkHFsYRjZJVlYRJNHI0/SrBrMPmV+Sy+vLjKczrW7siyXsvYHLOZd5q/Q6m+lFoOtRizb0yVJuB7WfcYHDKYrYO3siN2B51/6czya8tlo/gnHT5h051NeNl58UbYG/I/pr72vkw/Op2pR6ZyLuUcepO+Sinay7B4Ma6nXcfD1oNvu34LSLvO/Xf0p8HKBqy+sVqeOrhYu+Bj74O91p5b6bfkuMhm65rJU4wB9QegQFp096jXg5zyHI4lHOPEhV/4voWOkCJ1NV22s5Uzwa7B5FRIHhgRkdyKXNk3YaexY/2t9eSU5+Bu445aqWbPsD009GzI1Mip1d6XiIjepKd7QPdqxv5yQznWKmvKDeUU64oZFDIIbztv+eeCILDu9jqCXYPRKDTczryNn4MfF59fxEYPgx6/MIE7ah0p0hXhaevJ9vvbGRU+Sp6YvCyzs/QumJGiXfc82IPRbKS2U23uTrmLwWRAq9RWb4q2nNNLpXuWyYpaqebrc1/zZqM30aoknXx0QjTWautXHsNR64hKUEkdGr+tnfNskImHUTTy6alPAYlo3Mm4w4RDE3in+Tu082+Hn6MfT4ueAuBi1sKZM3wbt4FQ91AODD/AyaSTtNvUDhu1DUpByYjwERRUFtA3qC8CgiwNM5qNrLqxCrNoJqssi6GhQ7mfcoNuqWpcTRrS1RVMPDyJPkF9eLPRm6y6sYqY7BjKDeWsC5qNIIp8NW0PPw34SS6NTCtJ48iTI9x956686/4ytsduJ/NCFDx7hu3wN6X76rdrYCFuiQWJfH/5e5b2XMpbTd7itdqvkVuey6NcSbJmIRrk59OzXk+iE6Np5tWMfcP30cq3Fc+KniEg0NSrKXG5cXx44kNabmjJgJ0D0Jv06E16CisK8Na44qawZ7NpED9d9eLiBkifl8/VGffYNusCXy+PZewjDe1CeuD11WKEU6fITIrheCAowxtBTAx4eMC334KNTZUJBUhTihlRM+hXvx+5Zbl08O/AZx0+Y8GFBXj+4EnA8gDmnZ5HQkECbjZufNzuY65Puo6vvS9Lry3lg+MfVNkcae7dXPo+lucS5BLEsl7LWHJ1CRObTuTbbtLfF7czbuNs5YyjlUQsfayqp529Cv6O/uwfvp9DIw7hYuWCgMCP138kdGUoR55Uj70GOBJ/hAjfCDztPP/y+Hcz71JprKxpBP8vRw3RqEENavB/BEeeHCGxIFHO0v8rxGTFvFI2ZcHL7eAvY0jIEBIKEhARCfcIJ8g5iNNPT9O/fn/ea/ke3176toqUCCQz89vN3ua7S98xv8t8Mkoy8HfyZ+juoZxMOkmpvpSE/ASaeDVhdKPRnB9/nuSCZOadmodSoWRy88m427izNXYrYxuN5XbGbSYfnsz4JuNJfj+Zpb2Wsi12G0N2DUGtUFd7X6Iosuv+LtmL0cijEe392+NqI3UKXJl4hcsTLtPIsxHTo6bjt8SPT05+QlpxGuEe4RRWFvK8+Llsbva192XfG1ISz5XUK5h+i7gcETaCZt7NWHZtGaPPzqB7koBnSAsqjBVVNNO5FbmYRTNFlUXynz3KeSRHt+qMOjbd3UR2abZsilYqlER4R1SJTn25SXv43uFExkeyuMdivnztS/nPr6ddp9xYjlk008yrGd23dCejNEOewExrMU26H7JjyC7PRq1Q8zBXSrsa+ETA1iDJpgBC3UPRmXRklWXxdaevOZ50XH6dcqO0WFOg4En+E6yVEgEQEEgrlUzIi3ssxs3GjZsZN2ni1aTafWJBib6EiU0nAi/K5UJcQ9gas5XWtVpTaZR8B0mFSZxJPvPKY5TqS+Xkpz5PQGOUGsAFBJytpFjhX+79QlpxGmkl0n/TW05nVd9V5JTnUMfKi1bZ0jVKXP89Mao8IuMj+bjdxwwMGci1SdcoN5STWJAomajv/oJSoWTz4M3cmHyDAKcA+Vws982s1rPYGrOV87cb41RYiRBQD0etI8X6Ytb2W0tmaSbzTs9Dq9TyVpO3aJIvkSxFWDi3Mm6hVWrxsvNCQOCdyHdovbE1JfoSuRvD4lf5/tL31D49gLdGWHGvvgNuNm4yIRQRsdPYkV+Rz7wO83i/9fsAtPFrg1JQcjzxOLFZsRzMluR7m08v5cKzC6QUpWCz0IZm65pxNuUsAgJmzMTlxdGnXi8WNprFdOde1C4SUIqg11fQ+nEZwVcTMBcV8ebK84wvC8K7XQ/+p68NAyfZ8evpFYg5OdUmFPtyL6AQFNzOuE2uDXDoEDx9CmPGgLnq1HHeqXkUVhbyWcfPOJ50nKSCJBZcWABI6WpKQcnI8JGcGXeG5PeT8bbzZtCuQaSXpMvTILNopr5zfTRKDTczbqI36RkWNowVfVbw3rH3GBgykDX9pCS3+9n3ya3IJdwjXL5/fV8i7n8H/YP78/Ddh8xpOwezaCavIo/+O/ozdPfQKt8JvUnP8cTjVaadf4bLzy+jVWpp6t30f3U+Nfh/CzVEowY1qMH/ESy5uoS2fm2rRL7+GWKyYl6ZOGWBt533K2NU+9eXGn5VgmRmHRE+gkpjJQ09GjKv4zysVdZ8frpqGpAgCKzos4IWPi1YdGkRi7ov4mnhU2o71WbgzoFsj5UKtix5+y19W/JV568wY8ZoNtLAvQGH4g6RX5FP3/p9GbxrME29m7K672rUSjXvtXqPuOlxuFi7YDAb6LG1Bw+ypR3lrNIshu4Zyoi9I2QvhoOVgxxvC9JCo41fG/YM20Pie4mMbzKeFddX4L/Un/Mp5+VdXietE2HuYRhFI4NCBuFm4yYnc9Wyr8XRhKNMajqJk0knUegNfJMdztXcO2gUGlmmBZI07WjC0ReLP1GUPTNuNm6SrKuygMzSTNxt3LmVfovm65qz5tYaRoWPenFdxaq7uw09GzK28VjZrA6SF8SCB7kPZNmRZQEf7hGOUlCSXpLOG6FvVDGpjogRuVILnkrrclmP39G/IxqlhvyKfFSCqsoUpXNdaUphkXbpDS9aqNv5twPgRtoNWvi0ICohqsr0wgJ/B382DNiASqGSr5FGqSHUPZT1t9fTxLOJnP5j8bO8DMsxs8uzaZwBbhUgCpIXRUSkoLIAlSAdu8OmDnKL91evfYUgCGTnP8fjSgwd09Ugwp6iy3x36Tv8Hf0ZGS5d2wbuDXinuWSYFxH54fIPjAgbgYu1C028mnD7nar6e2ulNXse7uHzp7VpEXUPuw5dyTIXU6QrQoECB60Dc07MwWAyYKWy4rtu38HDh+DnR4opn3W31hHkGkSYexgda3ekrV9bedpjCRfQm/W427hjMBtokC9wKkhFk/XNpangS0TDItWx19gz/9x83jrwFr239UYhKJgVPYtGaxoxaO9QirSQmxqHn6MfCkHB0OAhnOy0ieTg1XxPd+xNKu6uMvPLqD18MmQJP75/jFtrRFLONuXLrAY8dIcDoZBrBwNXtGfXqnfx3LyP2dufYtd7AMPOT2fgb4v+l7E1Zitd63ZFoVBIfq6wMNixAw4fhnkv4pBPJJ5gxY0V+Nj70HqDREBTi1PlrpJxjcdhEk3Ya+25kXaDwOWBfHD8A4p1xYiIMlHvF9SPclO5fO+/Vvs15raby9A9Q2nr15ZtQ7bJPR5rb66VW7ctKV4+Dr7V7sG/gq3Glm+7fcu9KfdkP09kfCTBK4JZeX0lJrOJi88uUqwr/luxtiARjQjfiL9lGq/B/7uoIRo1qEEN/nHczrjNuZRzf1nQZ0FeeR5pJWl/WqT1RxON6MRoAGo51uJhzkMKdNIC+lraNZysnPiq01dsurupmslXo9Sw9429KAQFux/u5qtOX5GQn4CvvS/vH3sfpaCUC+pEUWTtrbWoBBXBrsG8e/Rd5p6aS2vf1sw9OReAfW/skyU08CIpa1joMDJLM2m8pjEDdwwkdFUo51POV0mUerlHA6qWqlmrrHG0csRWY4tZNMuLDwWS2dfLzksqqCvNlEmXrdqWGa1mcDjusNx90TteZFErM05WToxrPK5K30NueS5JBS/aj02iiXJDOfkV+bTwbiE3hRtFI+dSztFqQyu0Si03377JrfRb8vOMGNEoNNhp7FAICu5m3CVifQSVhkq5vM5iIFYJKjmJyWL2FxCIzYpFRMTN2o3Lzy9jRjJyO5dDr0TY/ts0Q4GCnPIcBATC3cP5/vL3eNt54+/kj1k0o1Vq8bH34crzK1XIQ5GhCJVCRZBLEG42bhTrionLiyPcPZwLKRde2e7t+9vCzSLBAqnx/IfuP3Au5RwRvhGyIVxElOVAFoiImEQTKhNcXwen6oJRKVDHsY70XgSFfI7Jhcn0C5QWcs+Kn0FGBlkPb+BRBil924MAP9/7mR2xO5jTZo68uDeLZjbc3sDQBkPRKrWUGkrJrciVpy2/l3RVmCqwS3jOvJ1pMG4c6kZNySjJoIN/BwxmA/PPzWd77HZ0Jh0Luy6Uks8ePoTQUBacX4CTlRM2ahtqOdSiR70exGTF0LVOVwA5JQ2kXfx+1OexgxFnB0/eavyWfE6/x9xTc1l+fTlxeXHUdqxNhE8ETlZOXBx7lsxBF3Fw9OCDnEAOHrQhfr01W8bspWun8dQZORXNuYsYMRPQ902OvtOZLmPB/2MN720eie/Z2/T5n62kO8Cn7SVikFqcyoi9I/D8wZMZUTMYHjac3UN3cz3tOmGrwth8bzOiKJKYn8iV1CtMaDqBMQ3HsOrmKumz7tsXFi2Cb7/l0sKp9N3elx5bpWQ1i5FfIShY2HUhz2c95/S40/zY+0cGhwxm7a21fHzyY4xmI2bRLH/vxzQcQ4hbCEfij5Bdlo2j1pHpEdM5l3KOzr90pr5rfQ4MPyB/H0v1pWyO2YxCUOBr70t6cRrWBnBy9nnl9f07CPMI4/z48/w04CesVdbojXqmR02n7U9t+fnOz/jY+1RL4vsjXEm9UlPUV4MaolGDGtTgn8eSq0uo7VibQSGD/tbjY7OlhJo/k05523lX0d0DpJekMz1qOi28W5BanIqbjRuHHh8i0DmQX+79QmFlIZObTybYLZjZx2dXi7T0svNi//D93Mm4w9PCp0xpPoWkgiR5B86y+L7w7AK3M26jUCg4PfY0n7T/hKSCJJ7kPeF2xm32D98vEwsL0orTeF78nBHhIzgx5gTBbsEcenKISmMli7svrpIo9XKPBkiLxhtpNxi7fyz+S/357tJ3DA4ZzP2p97kwXtoxt1ZbU1BZwNXUq4BEuCzJT242boxuOBqdSceKGyuIcAoj0l/PTsUDFnZZWKX8DiQZlKW0D150LZiRDNLFumI5RvbA4wN83vFzzo47y6LLi4jLj6tyLK1KK0+X1vdfj73GnrY/taWWg5TiZemfMIpGWvm2QkCgsEKSX4mIrLq5ilr2tcitkPovQOqqWFjYDKVZagO3nJvl3Lfd30aZvozM0kz5M9Ob9AS6BErN5b+Rh687fY2HjQdGs5Hc8lwuP78sEyW9WY9RfNEK/zIsC7uXU8zyKvLoFdiL7gHdOZV8Sj4fyzWwwJJ0BbDmEDz1UJPmgDzJqGVfSyKQL0WzXkmTugcy4+9Cly5ka414jJpMhlKSg6kEFRqlhonNJsrPOZZwjPj8eGa1mYWTlRNapZYTiSfo9HMn0kvSeVb0rMp70hjh193w2E7HdyP9Ofv0LCbRxJbBW+hStwsrb6zEVm1Lc+/m8qSEhw8pDPBh091NzG0/l8zSTHztfelRrwel+lJW3VyFRqmhg3+HKuTuiPgEnRpiyxL5+d7P1b6HFolVqFN9svtf4Irzh2x9EMynV1QUVhbi2aY7nk3aI2Rnw/XrkJZGUYuGzO2lRH88CjIzUX77HSaNCuXadQxeeZrwETN4bq3nWFI00QnRBDhL0jHLd3vLkC0kvpfIpx0+5X72fQbuHMjkI5PpFtCN5t7NGXdgHP139GfNzTXYaewYEDyAGa1mkFqcyu4Hu/n14a8MrXWZX5opaP7FGorPSrI9R60jU5pPobFnYwYFD2Ju+7nYamyZf24+tZfW5siTI7hYuVSZ5AS6BHJwxEFSilOIy42TP+Obk29Kz1fbUqwr5ofuP8hRxwA7YndQrCvGYDbgbedNWl4SPiUguPy5GfyvoBAUjG86nvgZ8bzZ+E1AShHbErsFNxu3Kh6SP8LzouekFqfWGMFrUEM0alCDGvyzSC9JZ+f9nbzf6n15vP9XiMmKwUplRaBL4B8+5vcTDVEUefvw21iprPh50M8YzUYp4rb4GaMbjcZgNrDu1jrUSjWLeyzmzNMzHH5yuNpxI3wjWNd/HZvubqKBewP6B/enRFeCtdqa7lu6k1SQxMILC1EICqa2mIqPgw+2altUgor8ynzcbNzkoruXYSEAWaVZNFvXjOyybH7s/SOv1X6NcQfHMWDHAJ4WPgWkbgNrtbU8yej4c0dabmjJhWcXWNhlIamzUlndbzVhHmGEe4QjIEXkapQaWfc/+dBk2cCZUpRCXkUeaoUaV2tXfizvQo4d1HMKYFyTcdzJrDrdMZlN8rmAZBi2LMj6BvVFq9TyJO8JIE1LnKycCF4RzNbYrfJzVAoVSkFJqb6UQl2hfA0uTbhEv/r95Nc8mXQSgJmtZ3J10lVip8ZWiYQVEeU4T4C6TnVxt3On5/U8TtWF7N+lJFsM4TqTDpNows/BD7WgRkTkfMp54EXvwJTmU+T+EUcrR9r91I65p+Zio7IhNitW9kr8HhZZlKWjBV70YkyLmFZlGmT5PEGa0FjicG11MPEeTOxtAEFaSBZUFtDWv63sL7A8J68iD9dyiBj3CaaSInKtRTz8QiioKEApKNGb9OhMOjlCFqQI1xY+LXCzdiOrLAuj2ciJN0+QWpxKs7XN6PzzC6O7gEC7fFuCyrSMGqFi7tX5XEu7hkJQ4O/oj5uNGxXGCsoMZazqu0oq2qysRExMZIvxNg5aByoMFaQWpbLv8T6G7ZZIc5mhDL1Jz/5H++VyziEhg2maq5TifFHgoHHAZJIInSV1a/tVH+6thtuznyA0aACvvw5Ll9I+0YAgwrk5Q+HUKejYEfr3h/PnEVav5t8tDFwM1ICnJ8qXmsGNZiNHnhxhQP0BRPhE0GtbL2kKo3WSo4Kzy7IJcA7g0w6fEjM1hvtT7zM9YjpXU69yKvkUjlpHTiefZvGVxTTyaIQCBSmFKXjYejB2/1iG7RnGieSTTOkrcstXYM8OIxNcu5P9YTbzu8znfvZ92vq15YszX1BnaR3+deFfeNl5YTAbUCqUaJQadCYdrXxb8Um7Txh/cDw30m4gItInqA86k46V11fSa1svnKycCHELYeKhibInShRFVt9cTac6nQDp78f0/Gf4FgPOr76P/7dwtXFlw4ANXBh/AV97aap3P/s+YavCOJZw7E+fa4lrrmkEr0EN0ahBDWrwj2Ll9ZVYq6yr7Lb+FWKyYghzD/tTYuJt702ZoUzeBfzpzk8cjT/K+v7rCfMIo61fW3mB6mnnyeiGo1l+bTkGk4Hegb3pHtCdOcfnyF6AlzG28VhmtprJB9Ef8HbTtxEEAZPZhFqhpsOmDkQnRkvxm+3nSlGsN1ZiEk2MbTQWa7U1EesjqpmATyadxFplzbSj0+hStwsPpz1kesvpRI6KZO8be7mTeYfQlaEsvLCQUn0p19KuMTN6JiDJpQ4MP0DCjARmt52Ns/WLhYOtxpYA5wA5zjXELYRR4aMQBKGK7Kfv9r7YaezIq8jjapwUJeph54lCUBCVECU/zsnKCZVCVUUWZDQbcbV2xUplxah9o9CZdPIivNRQyszomfg4SPIMS+SupfCte0B3+TjHEo9hq7Flx+s7mNBkAgCVJkk2Y4kgDvMII3pMNI09XsjmLI3aKkHFs6JnfBMyndr3UjjeUiJVAoKsZ7f4AQQEFCh4Xvwcg2iQj2WvsccsmqnrVJe7WXflqcWhEYdY1WcVdzLuYDAb2Bq7lYLKAgSEKo3X8EJ2ZLlGltjY7y59x+i9o1EKyld6O+TPQ4QKNaxqpeRyHemf3ektpwMQ+SRSfpxSUKJVaEEE+0pQFRaTF/krIiIeth6Sf0JQoFVpCXMP44PjHyCKIg9zHnI88Tjvt3qftbfWypG7BrOBKxOvUGmslMsYAdrnWHPTsQzz2tVsm3db/t6ZRTOb7m5i30MpWMDbzpuVN1bS/qf2dJ1XC8FsZrv5HgWVBSy8uBAzZpytnKvsWi/puYTmPs1p4NaAWtZe7DW+zu2VJpKe9GbnPgUXlhZzcKf0WOVvQxxrjS0FTUP4rLeWLmPBaza0/z6Ekytn08S7KefqqaQeCm9vyJeSrhp5NsLT1pPjicer3H+WoIXkwmS+6vwVR0cfZXGPxSy/thy9WU9SvnQdft8OHuYRxvwu84mfEc+Nt28wqdkkbNQ2iIhcTr2MzUIbBuwcQKmuVCaFoe6hLO6/gsVz2mJQK1m3IQtNpYGDjw9iEk18cfYLfrj8A0EuQQBklGbga+9LTnkO4xqPY2WflVxPu86wX4eBKHWKrOqziiMjjzCvwzwWX13Ms6JnnHjzBIdHHiavIo8397+JWTRzPe06dzLvyDGzXnZepBWn4lvCP0Y05PvFvz1TWkxBKUgEKaM0g97bejPi1xGvlLOCRDTqOderIqOrwX8naohGDWpQg38M5YZy1txaw8SmE6ssXP8Kf5U4BS90/BklGaQUpjArehbjm4yXjYlDQobwKOcRaoWa00mnmdV6Fmklaex5uAdBEFjcYzGJBYmsubnmlcdf1GMRnep0YvT+0ZhFM242bphFs2yaHtd4HF52Xux+sJuM0gyaeTdj48CNXJt0jWbezeixtQerb6xGFEV23t/JhjsbMIkmdg/dze5hu+W0JkEQGNJgCI/efcTrDV7ns9OfkVuey/mn52nu3RyAwyMPMzBkoLwr/HuEe4RX2Zmt7VQbvVkiUJ1qdwIkDbqHrQcqhYovvB/TXPDlWto14vPiSS5IBiQTdZm+TJIYvSSHMJqN6Ew6dEYdJboSBgUPkqNMLXiQ/QABgQlNJQIhiiIiIm1qtZEjTh/kPJBlWJbdZgss3hFRFHkv6j0e5D6oYhQHSV6lVqp5uOJ/MCgFNtTJRyEoUAiKai3QIuIrOywsfoCJzSZy9ulZbNW2OFs5E+YRxtSIqXjaeqJVaqk0VmKjtsFOY4eDVdV7V5ZO/XZPW2Rgn5z6hHCPcEyiCa1SWy3K14KRMeCog4+7mGR9e9e6XVGgoMxQxoiwEThZOWESTWiMJromCzx1gXZTNWR7S6/pYeshy2SmRUxjaa+lXH5+mV8f/srya8vxsvOiX/1+/HT3JyY3m4yLtQvnnp5j/vn5lBnK5B3p8ExYdlBPiRY+cY9l/MHxiKIoF2pOPDRRJmpZZVnE5cZRx6kOU22kHo5cfzeezXzG2XFnAfim2zdcen4JH2tpQdky+gGxqbcZeOgJSfOypGQmoG70NXpZh3PF74XPJtteIogP5ozjwdczWNbSTLNRs8myh9yKPIbuGUpiQSJHnhyRJkiurpAnEUuFoKBHvR6yR8tCPI1mI99e+pbegb1p4tUEhaDggzYfcGXiFRSCgkNPDqEUlNWIxsv3UbmhnHJDuRwrbTHqg0SUNUoNXet25crEKzhZObE//xLJPy9FSEggpldTJhwcj4BAK99WaJQaHuQ8IMQthMLKQrztvbk26RozW89kzc018ne8zFDGqbGnmBoxFYPZIE+YNEoN7rbu1HOpx/Yh24l8EsmC8wtYc2sNtR1ry/0y3vbepJVl4lMCOFWPCP9PEZUQRbeAbjx+9zE96/UEYP/j/QSvCGbdrXXVOn8up16ukU3VAKghGjWoQQ3+QWy+t5nCykLea/Xe336OyWzifvb9v0000kvSmXBoAk5WTizpuUT++ZAGQzCJJmo71ubQk0OySXXxlcWIokhDz4ZMbDqRL89+SX5FfrXjqxQqdg3dJWvqd76+E51RJ8tgLj+/TFpxGtMip6FSqDg2+hgqhQoXaxeiRkcxrcU0ph2dRr2799+0AAAgAElEQVTl9Ri5dyRm0cznHT+v1u5tMBnYdX8XPbf2ZGvsVrlDwiga5Z383/+j/XuEe4STVJCEWqEmrzyPXQ+k0i8rpRVjGkkLOwUKPG09UVcaKdHCEI/O2KhtpOIwRAQEfujxA0azkSJdURXZkIhIfkU+3nbeaFVaDsQdACQJUdtabdEqtehMOoaFDsNeY4+AIJ97VlkWPQN7YqWywiya+ebiN8yKnsXmGKld2qLHn3hoIofjDrPk6hLW3FrDj71+lMmTRqFBibQAqzRW0v92GUeDoMgKWvm0qkYyLIvMK2lXqk0WLNKl+efms/bWWjRKDa1rtUYhKEjMTyS1JJVyYzkqhQoBgRJ9CTqjrsoxLH0llo6X5EKJqAkIxGbHMqX5FN5t+e4rPzd30ZrNB6B+vkCpViKAKoWKyUcmyzvjxxKO8UP3HwAoFgxMuimCCA80hUQnSAtpD1sPygxlCAjMaj2LbgHd6Fe/Hx+e+JBf7v7CtBbT2PtwL0WVRUxsNpGmXk1Zd2sd62+vp6N/RzJKMtAYYO9uwGAEEZZcW8KtjFsEOAfQ3q99lfP2svXCLJr5vvv3bB2ylY5lbqTZw7/C3sPv1A3SfpK+eysXDCQ/O4V+56SF+9Vz26hUmDArBKImdZZ21ydPJvPpfZqNLuX9QVr2NX6RQiQiMvfUXC4+u4jBbGBis4mMbzKexIJElvdaTlOvphRUFuCz2IfjBTcx5r4gCD3r9eRu5l2ySrPkBfuhuEPcz77Ppx0+rfJ+mvs05+1mb2OjscEkmlh7c60c5yyKItdSrzHr2Cz8lvjx2s+vsSN2h0zerdRWDA8bTnPv5phFKXnuVPIpQlaEMPnwZLrU6cI+TQLDBxkIvxSPR4UCG7UN51POE+YhTWqfFz9nbb+1XJlwhbuZd2mxroXsqQp2DcYsmll2bRmVxkreOvAWZ56eYdvgbZhFMxMPTUQURXoH9earTl/x5dkv2RazjXeav0NWWRZapRYHjQPp+rx/VDplQbGumPMp5+lXvx+1nWpzaOQhDgw/gJu1G2X6Mt458g7tfmrH/ez7gLThdDfzbg3RqAFQQzRqUIMa/EMwi2aWXl3K4JDB1HWu+7efl5CfQIWx4i+JhmVBvvneZk4nn2bjgI1yQRUgLzScrZ0xmo3sfrCbD1p/wO2M27JW/+vOX2MwG1hwfsErX8PVxpUBwQMQEFh+fbksA/K28yatOI2GqxtSUFnA1BZTcbN94ctQCkra+LXBTm1HcmEydR3rVpMR5ZTl8K/z/6LOsjqM2DsCrVLL/uH7SXxPas6e0GQCdzPvArDu1roqsa6/R0OPhqSXpMtxts+KnqFSqPCy8+Kjkx9hp7HDjJlxTcZhVCsQBfgyaweVxkp+ffQrAG1qtSHCN4JGno1IL0lnSvMp1V4nvTQdJysnLoy/gKu1KxqlhiENhsikolhXTEFFQZXpVWpxqpRc9FsK0+dnPmfZtWX0CewDIC/eGnk0YuDOgcw+PpuP235MZHykTOq87bxxt3PH186XwDyISIdt4dKOcmZZdamGnVrajVcgxcVaJioWAuLn4MdnHT8jryKPgsoCrqReYeaxmXTY1AGA+q716RXYiyCXIFysXap0g8ALopFVKknzLGTGcs991/27Kh6Xl7F0bwXxrnDLUzr/7PJsbFQ2ZJRmYKexo4FbAwp1hdx9epXm+dbYGmDCUKU8HZl3WkpJstfYy5I2b3tvSvWlTGo6iWdFz9CZdMTnxzMzeiZWKitCV4VyKvkUmWWZKFAQmx2LGTP/jgavMpgw2hZbja1039Zqw6N3H/Fxu48BaXrjqHHALiUTW73AqvWTYeRIbNf8hHcJvDH0C3j9dVJPH0Rphj21iljpMobc3h2wUVlzZJxUTrmwZSU2EW2goIDiUUPpsbUnpfpSDGYDtuoXXhdrleRN2v1gNwAfnfiILzt9Se/A3sw9NZdP2n8CQJe6XThXcp/KnAxe3/06F59dpFtAN0BqPrfIv769+C0d/DvQ3r8qcQIIcQuh3FBObcfaxOXFEboylLH7xxKwPIDWG1vzy71fsFPboVFqKNQVYhbNzO88n8zZmewcupObk28SOSoSDxtpevOs6BllhjJOPz3NiusrePpaY+YMdybdykCfbEfqudTjyvMrjGo4iifTnzAsdBgj943knSPvUMepDhmlGUxqOomYqTHsH76fyPhIGqxowM77O9k+ZDsjGo5g08BNHIo7xKobq6T7oeM8Qt1DMZgNdA3oSmZpJl52XpToSygzV0oTDUfHau/9P8GJxBMYzAb6BvWV/2xgyEDiZsTxQZsPUApKbmfcpsmaJsw7NY9Lzy5hNBtriEYNgBqiUYMa1OAfwrGEY8Tlxf3tSFsLYrJiAGnx/Gdw0DqgUWrYGruVqS2m0r1e9yo/j06IRiEoeJjzkG51u/HLvV/oUa8Hoe6h/PvqvwFpKvJJ+09YcX0F8Xnxr3ydjNIMmng1YdeDXex8sBOloCSnLAcPOw+56OzliY2lF2Pk3pH0qd+HQyMPkV0u7bqqFWpuZ9xm/MHx+C3xY8GFBfQN6kvMlBhOjzvNoJBB8sK7R70erOy9EoCPTn5Eqw2tuJl+85XnaPFFWKut0Zl0TGgyAaPZSHppOnYaO6Y0n4JCULDg/AJc9AocTSrebTWDsY3HytOAUkMpF1IuMDJcmr78fO/naq8zMHggZ8edpb1/ezztPKk0VnIq+RQADdwacCzxGGeenqmShPO06Cnt/dtXmTpolBoe5z0GJBkKSCZzy0I98kkkR+JfNBGnFKewqPsi8irzGBkLxRqIrP/CKP17FOmlnWkzUlRoib4EQD6H91q9R4RPhPz4UPdQll9bTkZpBkpByZO8J3St25XkwmR87HwIcQupcnydUcc7h9+Ri+EsBlyj2UiFsYINtzew99HeaudlVwmj7sN7fQWMKuSG+GJ9MUEuQeiMOvoG9cVB1LLm3gbev6GgTAMVCpM87dCZdCgEBaP3j5Z/7/WDF/bf2DNo1yDE335dfHaRUn0pfYL68GHbD+XrfHLsSXQmHf6F8O5NmD5Yy77PYlEKSkyiiX6acJQHDhL/3UfS8fWVnF1VTvwKmHNZJNIcx90Hp9GbjWQ1D5ZM2RkZPJozDlGpYHjYcMbM3swNw1NC3BpwK+OWLIFreiEBs78fveK/IL0knTltpEK4Ap1kalcpVFQYK6Q0L1GSQ51IOkHQj0F42XnRwK0Bo/eNJsglCA9bD74YvBQ7PTxJi6XDpg7029GP2o61iUqIkknlzYybMjn5PQKcAyQfByIapYb00nS2xGyh0lCJi7WL1GeiVDG/83wGhwymgVsD5nWYVyUEoE9QH46NOYat2pYKYwUCAh38O+Bk5cTN9JssCSkAEZrfSKdJhsj1t6+zpt8aHuc+psnaJpxIPEF91/okFiSyccBGVvdbjUapoW/9vrwR+gZPi54S6h5KnyCJmA8IHsD0iOnMPj6bmKwYBAQqjZXYaeyYdGgSqcWpeNt7vyjrM9uC8tWSy/+/iIyPJNQ9tNoGkp3Gju+7f8+dd+7Q3Ls5JtHEt5e+Zfivw7FWWRPmHvaPnkcN/u9EDdGoQQ1q8I9gydUlRPhE/K93sWKyYqQd7N88DH8Es2iWjLpqG77v/n21n0cnRtPYszFlhjIaezbmSuoVEvIT+KD1BxyOOyynJs1qPUve+X8V7mbepVdgL16r/Rom0USPej2Y2XomT/KeyF0XH0R/gN6oZ+f9nYStCuNCygX2DNvDrqG76F+/P53rdEaj1BCxIYLm65pzOvk0X3f+mtRZqazrv46Gni9IlcUbYaO2kSc0R0cdxWg20nJ9S96NfLfaDnuQaxBqhZqcMqmcz8PWAwEBvUnP2n5rGR4+HLNoJrkwmYXHzQy1bcmhJ4f4qM2L91yuL6fjzx1lEva8+Hm1a3Er45YsPbLT2GEwG4hKiEKr1JJXkcekppM4kXSiSoRrUkESYe5h8p+pBBUN3BrIyUxhHtLiY9HlRbTwacFXr33F/VxJctHat7V8nB+v/YgSBaNi4U7r2lSqJaJhSXt6GZbeCstO8+/xRtgbnH16FgetAwpBwa30W7T0bUm4e7gs8frizBcU6YrQm/VVYmwB1t1ex093f6J3YG9UCpU8rannVI8Gbg345NQn8jk4iI1oaFxKG+NhOpYtZXWnCM7Vk2RZ2aUvZD8ftPkAg9nAo8wY1l5wxKkCPu5vhY999Q4Es2iW07rcbNyY0mIKWwZvYUHnBfJno1aqCXAO4Juu37DxzkZa12qNvcaez898TrGumEXH4ViQQGCuGfu3JnN6eTEOlWDcuB5ef51ap24AMFBXhyYf/RtOnaLL979SqoVWA7OxN4DduLehSxfMnh7sfbQPlULF6r6ryS7L5nnxc7oHdKdYV4yjlSPWqHGOPMXeMAWxOfeJGh3F/Zz7+Nj7yCTHw8YDO40dxfpiOtbpiICAlcqKWa1nse/RPu5l3cMkmkgrTuNU8im0HtJU897wM0SOisTJyomUohR2PdjFobhDgETCewX2qnL9kgqS+ObCN8yImgFI0dOCIMht6ZllmdiobDg66ij3p95nWsQ0ohOjGdNoDILwQoqXkJ/AhIMTaL6uuTx9UylUXHh2AZVCxajwUVInigCfdod9yni+iPqI13e9TodNHXDSOqFWqCk3lHNh/AXZ3wSw4voKtsZuZWLTiSQVJDFg5wD574ZFPRZR37U+I34dQVRClCwrSyxI5GTSSbxsvUgr+a2sT/HPTjPMopnI+Mgq04zfo6FnQy5OuMiG/huw19hTWFlIhbGCcQfG/aEXpgb/PaghGjWoQQ3+Y8RkxXAy6SSzWs+q8g/z33pu9l8bwQGWXl2KzqSjda3WsnHVAqPZyMmkkwwKGUSIWwgZZRk4ah3ZfG8zoxuNxt3WnWVXlwHSFODbbt9y4PEBzj49W+U4OWU5pJekE+4Rzp3MOwgInEs5x+qbqwl0DqTCWEH3gO5ExUfJXoyuAV15MO0BQ0OHklOWw8ILC4lKiEJv0svRsxOaTODDth/iauNa7X1VGCrk87LIZZp5N+Pm5Jss6bmELTFbpCjZmK1y/4BGqcHb3lveud8Ss0U2q1YYKmji1URKiDHCW7fNjG4zmaSCJOadedFi/POgnwlxC/nThUB6Sbos2XhZyvV5x8/JLsumc93OWKusZUkRSMTpjV/fwGA24KB1wCgaqe9aX95xtphXVUppkbrggrRYVivUXEu7Jh/nevp1gp6XE5IHv4QZcNQ6cuatM1VIjUXCZNn9N4pGnKyccNA64O/gLz9u7c21nE4+jVJQYhbNDGkwhLNvnSW/Mp9Al0ACnAMYGjoUgCd5T7ifIxEfi09Eq9RiNBuJyYrBLJrlqF4vey8CnAPQm/SYMTPA/z2amFbjQku0eFBh35Jd7ZZSz7oLaoW6SvLT+8feByAy+TgjO2aTawMZ+jxsVDavTLCyYGjoUL7s9CVjGo0hKiGKjrU7MqfNHJ7kPaFP3Z68t7Qnb8SpiU7pQKscLUkPLuFRCoPioFe8yPRLBp4+uERKfXd62TdlU1dXvGZDvzHSvTds9L9gxgzo0oWOEa/T2LMxQXmgMsOgmE85EneEf1/5N1llWbTza4eztbM8ebP4g8oN5Ywp8EORk8uS2ukcHnmY5j7NOZYgTQKCXKUUJgetg2y4vvjsIq7WrpQbytlxfwdRo6P4rtt3aBQayo3lPC18yqnyBwAoCgrpE9SHE2+eYOOAjZhFs+xTcrV2JT4/ntTiVP595d+0XN+SesvrMf/8fNmHZBJNlOpLaerdlIMjDhI9JhozZt7c/yZHnhzh4OODlBvKGdVQar1/nPuYN/e/SfCKYPmaWzY+QCI3WWVZbL+/HbVCzfutZ5I+NobFVx3IunWOfY/3IQgCMdkxeNh6cHH8RVr6tpQ/0+2x25kRNYPZbWazvv96okZHceX5Ffpu70upvhQrlRU7h+7kaeFTph+dTqh7KG81eYuNAzaSUZpBTnmOPNHw0VaP2v5PcCv9Ftll2X/ZBq4QFExsNpH4GfHyd3TXg10E/RjExtsbq3Wn1OC/BzVEowY1qMF/jKVXl1LLoZa8WPvf4O8kTj3KecS80/P+sGfjetp1inRF9KzXkyEhQ4h8EsnQ0KFsidmCRqnh3Yh32XR3E3nlkuxmRPgIWvq25IPoD6oYeO9l3QOkxWaxrpihoUMxmAyyHtpKZUV0YjRqpZrUklS61OnCjtd3kFaSxoSDE/Bb4sf8c/MxiSZ+6P4DWXOyJPPmuS8ZsXfEK4uuLDujv28GVylUvN/6fR5Pf0znOp15c/+bdP6lMw9zHlKmLyO3PBdrlRS7mlKUQhOvJtR2rM25lHPsiN2BSTRha4ASVzteaz8GHzsfjsYfBaQJQMefO/I49zHuNu4oBaV8rJcR4RPB1+e+Jr8in+dF0sTDRm3DJx0+oZVvKzbf20xjr8bye7DgyJMjDAsdJu/8R8ZHMq7xOECKvAV4zf81+m3rh8FswEZtQ/eA7tVSttYUdaDc2Y4tbul0rduV66nX5QkLvBQf+xvyK/LJr8inWFcsx+h62nry3aXvuJ5+nYLKAlr6tGTbkG3kV+STXpLO8+LnDAoeJMeE1nGqI6dMmZDI1aCQQZx/67xcrJdTLk2Snhc9JzI+EpAM7I7lgxGk8F3p/BRKEATURb1liZwFeqMerUlaqH4V+DZn3zoLQG5FLlNaTKlCqF6Gj70PGI3curKXS88vMfO5LwP/9Su1iiBh12qiFiSzcmMG1j+uJjCxgAx7GH4f9s3pR+Antnh8rKDdWyaC95xhYP85PDXnkWX/gqy9TBpBKj4Mk94u993M9N/Zn49PfoyTlRPNvJsBcCP9Bm42brKELr8in843cklyhk/e/5VOdToRkxVDZmkm6SXp2GvscdA6yLIvgFV9VlGsK8ZoNmKrsqX7lu40825GyqwUZraWYp/HXJsLwJMnV+TzG9NoDLZqWzks4mb6TYJXBOO3xI+PT3yMlcqKrnW7olFquJJ6Ba1SS6BLIM5Wzvz6xq8MCB5Aj3o9uDflHu382zFg5wA+Pf0pbf3aUqovZeTekYSuDOVM8hkWdV/EsNBhnHl6Bo1Sw8DggRjMBu5n3yfYNRgXKxfJvyTCZV0C+xrAhY0iO8+4Yzab8bDx4GHuQxqubsjY/WM5Gn+UQ3GHGHdgHG81eYtF3RchCAKv1XmN6DHR3Eq/Re9tvSnRlRDqHsrXnb4muTBZKroUBEaEj8BGbcOV1CtcenYJF5MGK8fqmxn/CY48OYKTldPfnlQXVhaiN+tZ1G0RAc4BlOhKmHR4Eh02deBx7uN/9Nxq8H8HaohGDWpQg/8IWaVZbIvdxoyWM1ArX704+iMUVRbxtPDpnxINo9nIuAPjqONUhy51ulRrBwfJn+Fi7UILnxa8Hvo6BZUFhHuEk1KUwvmU80xtMRWzaGbtrbWAtPu2pOcS7mTeYcu9LfJx7mXew0Ztw6obq1CgIK8iDxu1DRqFhk13N8kRoTqTjvdavsfpp6fxW+JH07VNOZl0kq86fcXaftJrDA8fjkJQ8MVrX7D3jb0ceXKE9j+1lxfsFrwsnXqZaFjgY+/DzqE7iR4TTVpJGo3XNKbb5m7oTfoqu4Q7X99JpzqdOJ18mrmn5tLWry0F1pKJWqFQ0rlOZ5kQmDFjFs38q8u/eDbrGQHOAa/0yNxMv0mlsZL/Ofs/su9EZ9RRYahgcvPJHE88TqWxkrpOVbXbnWp34t2Id+XXKzeU827EuwByj8mp5FOklaYhIPBZ+884mnCUDf03yMcQzNDiQiKlA3tjVErk78OTH0o/++3Xy/j97y2TGiuVVZXW824B3RAEQd6Fz6/Ip3dQb5ILk3HQOiCIgvyZWCRUux7sYuTekTRwa1DlNZ4Vv2jb1pv1JGSWyiTjxXkpsaMe8KKV2lZtg5VRSjtqYh/E2qxIWvq2ZFiDYRRWFmIwGbBWWyOYQW18cT0AhoxfBLa2LFs0lDoF0H9pFPrEeF5PtuJYEKxbPxUyMhi7oS/3PQABrtSCRrO/I9MOTJj5ouMXhHmE0cFfMsNrFBqaeUmk4fMzn3M6+TQA556e41HuIxrmKih1sefSh1J8tFk0U1hZKBcZ3ki/QQufFnKYQZm+jE73iqkY1I/+IQMAycNlrbKmzFBGTnkOgS6BFFYWypIzFxsXlvVehohIoa6QUPdQem7tyYHHB1jScwl+Dn4U20iP/WjX2/Tf0Z+rqVcp1Zfia+8rS4cqDBUEuwbL07QLzy5wN/MuU1pMIW56HO392+OodaSgskAmwiBJ0g4MP8DCLgt5VvSM2xm3abi6IZefX2Zln5V80fELllxdworrK3DQOvBxu485mXQShaCgba22PHz3ITPbzESlULH02lKG7B6C2KQJn43zZ/i5HO7kvk7Wh1nETY/jw7YfcjP9Jn2392XgzoH42vsyuuHoKt/7dv7tOP7mcWKzYumxtQdFlUWUG8pRCkr2PdpHSmEKJrOJSmMl9ZzrsSVmC5469T+eOBUZH0mvwF5/u3z18vPLCAhMaj6J2KmxfNP1GzQKDVdTr9JwdUO+OPOFHDldg/8O1BCNGtSgBv8RVt9cjUqh4u1mb/+vn2uJQ2zs2fgPH/Pdxe+4lXGLXwb9Qi2HWq8siIpOjKZbQDeUCiVNvZpSx6kOcXlx1HOux+Z7m3G3dWds47H8eP1HObq0rV9b3gh7g09PfyrLN+5m3ZULtYLdgjn79Cy7h+6mWz1pYZ9WksaavlJ+/Y/X/z/23js8ivpt+/7Mtuymd5JASIMQCCUgXXoVpIN0aSoCgiCgKIoNEKQI0gSRJkUEgUgPvYdeEgihJKT33jdb5vlj3IGYWH/3fb/387w5j8PDkN2Z2Z2ZzV7X9zrLakCiFw2pP4TY6bHMaTeHB5kPqGVfS85aAMl698qEK+SU5tBiYws5NReqpk5VZZPaI6AHkZMjefult7mafBWNQiOv2qsEFfVc69HJtxORGZFkl2Szoe1iNEbYUreYq0lXORN3Rt5Xn7oSDaKhe0O5EC8xVp62mEUzpcZS1lxfA4C/oz8m0cS5uHMMCx6GrcaW+Lx4/J385W2a1mhKalEqLWu2RK1Qy7kXJ2NPVjh2Qbmktfimxzd8ceELpjSfwta7WwFwsnKiXQIok1M42FQS4t7PvC+7S9V1rltpmmGZhigFZQV9SHx+PIn5ibLT0aJLi/j07KdcS7qGrdoWG7UN7Wu3JzY3FmedM3H5cXLmh6X5crN2w1nnXOEcVoUiYhD5fb6HiSIkZzFLk1VsKKFMBeVKSDHlk16Qyspd0/ne2IvPLqro8vEPfHjdCgUgAPYv1GVLg3NJ+foTdoeomNrrM45d3karsXq+DSkjyCWI1YaLbEsL4/GxnVjpTQgipDWoRYBTgNz4ffCypNVZc32NpO0xl7Nt4DZsNbZ42XnRY3sPVl1dxbyz82jm2YzuZTWJdDWx6toqlAolvQMkofLiS4tZGb6SG8k3aOHVgrtpd6VmSoAYFwie9qX8uo8/PY6Pow82ahvi8uJo6tGUjOIMglyDUClUxOXFyToAlUJFdFY0XXy7MGLfCJZeXkrPOj1xdZY+Uy10AdxKuUWbTW1wXeLK45zH8nFCPEJ4lP0Is2imZ0BPWtdsTXZpNlvubmH3/d142nrKmieLvawFt1Jvsev+LgCMJiMqQUXvOr1Zd3Mdbx95Gw8bD0REnLXOLLy4kLEhY/ms42fcTL1JVkkWx54cQ6vSolFqsNPYcSHhAtvqFJLy/iRC1u6DffsIdAlkXsd5/DT4J+w0dnjbewPQfXt3vFd4M+P4DK4mXUUURVrXas2pMad4lPWIbtu7seH2BkY2HImD1oFR+0eRWpSKWTTzSftPEBFJUZdR7vT384v+CqmFqdxKvSV/Zv8OriReoYFbAxy1jmiUGua0m8OjaY/oEdADo9nIggsL5AlRNf7/gepGoxrVqMa/RpmxjHU31jE+ZHyF9Oq/i4j0CNQKNfVc61X5+L20e3xx/gvmvDyHVrVa4WnnSUZxRoXwt5zSHG6k3JBDpARBYFDQIEKjQxndeDR7o/ZSXF7Me63fI60oTeZyAyzuupiskiyWXVkmHy+1KBUBgYdZD/m0w6esv7We0OhQOdTt3WPvklIo2b7WsKnB3HZz+eXhL6wIl3IFwpPCaVOrTaX30sSjCdffuk6gSyCdt3Vmy50twPOJxu+pU1XBSmnF/Yz7+Dr6UtvhuQbBKBrJLsmWqWV9A/vSMDKNDvFwxxPabmpLapE0CfKw9eDQyEM092ouT3j8HP3IKs6SV6hBKq5r2deSV5wBMksycdI6cSD6ADYaG0Y1GkV2abbsHAbSyv7DrIeUGcto5N4IsyhNTz48/SECQgVHpwCnANbfWk8913o4aB04F38OBysHWnm3YtJje+IdBSZmb5Wfr1aq0al0dPXvWuncWO4JSyK25byA1MTVtKtJLbtazO88n4UXF7L+1npUCpW8r0OPDhGXF4dCUMiTuctJl+X3/SDjQZXX5EVkKc7Dbxa7AILZBKKIoUS61oig00PnmOfbZBRnYBJE5sZtpMbDCewKNvFjY8gSyrARlZSroFwB4m8DmzWNSpngehmNyoo3Os5g7m+6m0VdF/HjwB+5n3Gf9/ZPZP1pHWd+6/8crBz46uJXmEWz1Igp1URlRrE8fDmCIKWs+zr6YqexY0TDEUxvNZ3pYdO5mHCRee3nEZwlsL1OCauvr2ZJtyUs7r4YkJq79068JzXmLvXY93Af5aZyrMsh7CVHCJHCCQv0BVxOvIzJbKK+mzQVal+7PSIi9d3qo1aoeZb7DC87L+yt7JnQdAIN3RtyLu4crzV4jQ9OfUBMdgwJBQk8c1KQlxxDalEqgc6Bckq7BdZqa3YM3EHarDSOjz5O+JvhRL8TzeD6g1l8aTG7H+wmPkHEeSMAACAASURBVD9ePvcAV5Ou8uquV2mxsQVPsp/QzLMZJ14/gbuNO+tvrSetKI31r66XqZWedp7cfOsma3qvYVrLaSgFJeNDxxOeFI6txpZpLafJk5ac0hxGNXhI0cBXYcwYuHOH2NxYXtn5CnWc6xA5OZJn058R/kY4Q4OHsufBHtpsaoP/Kn8+OvURGqWGU69LzUZKYQpjQ8aya9AuwpPCmX9+PgD13eoT4BRAgdLEzBp3//I+/bs4+uQoCkFRSVz/Z6gqqM/X0ZcjI49wYNgB3G3cic+Lp8uPXRhzYEylZq8a/++hutGoRjWq8a+xM2InWSVZTG81/V9tH5EeQX23+jKl5EWUm8oZEzqGINcgPuv4GSAVySKi7LYEcCr2FGbRTI+AHvLvBtUfRFpRGsFuwRSVFxEaHUp9t/r0rtubb8K/kSlHfk5+zGg1gyVXlhCTE0NUZhRF5UUIgkC72u1YeXWlvBKvN+nRqXSIiJwYfYLIyZFolBoOPznMrDaz+ODUB6y9vpabKTdlG9Pfw93GnVNjTjG2yVgmHJzAzLCZFJUXAX9MnXoROyN3cj7+PJ93/FxuHCz44OQHrL6+GoWgwEXnwtKry7noK2BSVNQy5JbmUlRexNsvvc2xJ8dIyE/A19GX3LLcCrqA9rXbk1iQWIEyEVIjhAJ9AZvvbGbioYmyKDazJFNuUh5kSgX5teRrFWxBm3o0RaPUyC5XADG5McTkxjC1xVQWXVqEu7U7g+sPJjsvlVfvlfBTsIj4wrdUblkurzV4TU5QVyvUlShTFltXkOhUCkFBvj6fp7lPcbNxY0brGWzos4Gc0hzy9HncSL6B7SJbUookMa1JNMlTphdhxiwL2quCvdiYuubZgCQSFkURURDwjluGuuQeobtAZ4RSK7AxQuc4aVoxOAoWFrfGq1DA3tqJeFc1xwPhm8aFFCil6UiZBl58m2ExYQwLHsaRx0e4n3GfDrU7MOflOTTxaIKL1hnRUM7PDcxYKTUgCMTlxbHw4kJZeyKKIlOOTEGr0uKic8EkmjgRcwJbjS0lhhKW9ViGv5O/FOp4fhElGcn82FTA296bqS2nklSQBMD5cedlbcQbB98gMiOSmtYedI+FU41s4DdjiNOxpzGajcTlxaFVaanrXFe2aPZ28EZv0hObF4sgCDRwa8CzvGeceP0EPev05JeoX/B18OVsvLQCfqqughCN1GSnFaeRp8+Tpma/lTP5+nzsrOzk7BOAeq71WPfqOpJmJvFag9fkpnTo3qE029CMNpva8Cz3Gcu6L0Nv0mOltKLLj11w0jkx5+U5FOmLmHRkEgazgVW9VnFpwiWaejaVziUiHrYeHH0q6Z8auTdiefhyPnj5A+JnxHN6zGni8uPxaXKGdB9XTH1fZcTazthp7Dg++jgOWgcEQaB1rdasfGUlie8lcmbMGXr49+D729/TZH0TRh8YjaPWEaWgZOaJmQS6BPJ5x8/ZeHsjIP1dzNfn0ytBzVrNXbbd3faH9+k/weEnh2lTq02VJhZVIb8snwcZD6rUcwiCwICgATx996lkGoLAzsidBKySps7VYvH/d1HdaFSjGtX4VxBFkRVXV9C3Xl/ZReaf4s8cp+afn09UZhTbBmzDSiUVsZbQvheL7LCnYQS7BVegKrXxboOHrQfhSeF08OnAtnvSF+/M1jO5l35P5qADzG0/F1fhJd7+/hotDaE0Mq6khqIVlxIuUW4ulxoPBDb320zKzBTJ8eXXcWhVWo6NOibzuac0n8LUY1MpNZZWOdGwQKPUsKHPBlb3Ws2qa6v44vwXwF9Tp/LK8ph1YhaD6w9m9fXVuFi7yMF0aoWazXc3s+fBHtxt3Nl0dxNz7K6hV4oVjmtJ8P41+leGNxyOrcaWH27/gJ+TH3qTvkJDIiLS3LN5BRFzdlk2m/ptQkTkwMMDjNwvufLYqG1kIXDfwL4ICBx5dIRH2Y/kbW3UNuhNesyilHVhpZCuqdFsZNKRSWiUGm68dQNHrSNeVx/gUGxk12+ykVcCnq+ozmg9Qz6/BrOhEoXKkp2hElQMDBoon0uLW5TtIlveOvSc5pdalCoXOZamxbLPF4PlAHwcfSpdF197XwQEfEwTKgjBBUFAIYrYKTsS6Q7PHKXJRF+9H8fqwlk/aUqxLxi+tL/Dqx3fpAwDie8lsnfI3krH+T32PNjDuNBxKAUlh0YcQhAEPjnzCa9dyqVMCd+1UmKndaBVzVYUG4rxc/TDRm2DiMiuyF2cjz9PsaGYNb3XEOwWzMFHB7HV2FJUXsSRJ0eIzY3l21e+RRETw9u9TIhqFQX6AspN5SQVJKEQFDT3as7oRqPlpHgAn+Ri+jyG64pUckul3JnjT49Ty74WBrOB1MJUOvl2wtNO+iy7WbthFs08ypLulSCXIMITw5l8ZDLn4s4hIhKXHyfrY854GylKS0Cn0lGgL0AlqPi84+eyK5JGqaH/7v6EbAhh74O9FdzSnHXOFXJ+Huc85k7aHbzsvBgXMo6f7v8EQHxePJv6bWJlz5UcenxIfm8CAtkl2fI9dTH+IiHrQ+RsF4Wg4HLCZfYM2cPibotRKpR08etC5ORIhjcfT7NeCWQUpLF2YyonXzuEu01lO2alQklnv85s6LuB1FmpHBl5hHqu9UgsSMQkmojKlMTkPev0lP/uCgikFqbSJ8rIeG1rJh2ZxJ3UO395D/0Z9EY9J2NO/qmt7e9xLfkaIuKfCsdtNbYs67mMu5Pu0tSjKQX6AsaGjqXj1o5/mG1Ujf+7Ud1oVKMa1fhXOBV7igeZD/5xQJ8FZtFMZHokjd0rNxo3km+w6NIi5nWYJ68cAvLqqUWnIYoiYTFhMm3KAoWgYGDQQPY/3M/rjV7nVOwpkguS6eLXhcY1GldYVU9IVxBQuhRjsR9WuONMS+rql+FMM4YGD8XX0ZfhDYczvul4HHWOhA4PpbC8kGG/DKOeaz0ODj/IlcQrZJdm06pmK4BKgu/fQxAEpracStjoMGJyJB5NQl7CnzYan5z5hFJDKfZW9kRmRPLToJ9kzn2wWzBalRYBgbSiNIwmI/Zl8JP3e9R1looRg8lAoEsgbb3bsjNyJ7YaW0Y1GsWmO5vkJu1FSlp4Yri8Am5pCqIyoyg1lKIUlDhbO8uTqCJDkVxUftzuY7QqLZvvbZapKVZKK8KTnjsFta7ZmnJzOdZqaznH4p0W7/Aw6yEbb29kyD0jibXsiawhUcpe1P+8efBNrDXPV6t/D0uToFKo2B+9v8Jj7tbuFRpSCyzNiYWGY2k4ig3F8nN0Kh0daneotG1cQRwiIrYEVBKCmxVKntYIoGEGzO4JJiWc16XxWuPhFbI69CY9G29vRG/UM/vkbIYED5G5+xZY7g0LigxFGEUjJtGE1zde1FtTjz1HljL0AfQT6lFgLiGzJFPeT/+g/igEBWbRzMywmdiobejm343XGrxGv3r9OPz4MDZqG4rKi/j07Kd08OnA1JZTGezbm9D6oNGbyNfnc+jxIZILk6lhUwO1Us3pZ6cpN5XLlLin6kI0ZmkCdObZGURR5HjMcdyt3fGw8SAmN4ZOvp3k7BfL5CEhP4FJhyaxJ2oPT3KecCn+ElNaTGFZ92XUc6nHw6yHANyoCTXLtdx86yaN3BthFI0EuQbRxltqPhd0WcD5ceepYVODob8MpeF3Ddl+bzsGk4ETMSfkLA0BgfEh4zk+6jiOWkfmnJojhQ3aerBnyB5OxJyg+47uOFg54GnrSWffznzW8TPmX5hPxy0dee/4e3Ta1glfR1/W9FojX5drb13jteDXKlwrW40tS3ssxaVOIwaMgOAUA6XjR2M2V9Tz/B4apYbedXvLFLGdg3bSxbcL6cXptPqhlZwpMyZUCuKslSeyttYkgt2CGbRnkOyy929gaUT/ytb2RVxJvIKLzkX+m/NnaFyjMdffus73fb7HVm3L5cTLNFjXgC/Pfynr6Krx/waqG41qVKMa/wrfXP2GEI8QOvp0/Ffbx+XFUVheWGmiUWYsY2zoWEI8Qiol/FqKE0ujEZUZRXJhMj3rVGw0QKJPxefHE+gaiJXKih0ROxAEgVltZnH0yVEeZkqFy7azUlMgr0SjlLQEyilEZ0UTlxdHflk+s0/M5svzX3Lg4QHGhYzj7LOzDN07FKVCyaKui/j5wc9kl2TjpHVi9IHRhD0N+8tz0NW/K7PbzkZAoO3mtlxPvg5UbjRuptxk3Y11DKo/iC13t7Ci5woKygvkxiA6K5oyY5kceuidD1Frobi2J/VcJP2LiEivOr0Y1WgUJ2JOkFGcwcSXJpJSmCI3Oy82GmnFaVxKvIRaoZYnSl18u/DFhS+wUdsQkxPD1v5bAWTBN0CvXb0IcgmStScBTgGolWq5mH+twWs8zHqISqGixFBCmbGMhm4NWXl1Ja/sfIVGdgEMiIb1gQVYqaxQCkrmnZ0nU7ie5T2j2YZmf3luTaKJT9p/govuOe0joyRDpv1Y4GnrSZ86UjFlaSwszUpLLynrwM/Rj1JjaZXp6Rb8kRA8Sx3DfQ8w/fZtO/10KXdT7shi+BehUqjYHrGdlze/THJhskwHalyj8R9SS1p4tpAyOjIek2kDXcaK7FE9nyTte7gPDxsPYnNj5WuUW5ZLuamcNb3WIAgC/er1I7s0G4PZwJOcJ9xJu8P8zvN5mvOUuVm7eeOBlgGtxgAw59QcEvITqGVfi/DEcO6k3aGOcx3GhYxDq9TiUAYT+0rHXnJlCfcz7pOQn0BuWa6sxero0xGloMRJ58Tu+7tRoMBgNnD4yWF6BUg2wy1qtmDdjXXMPjkbJ50TYxqPQUAg1gk0Zmi/tT1Pc54S4BTAuF/HydO9ywmX6eDTgROvnyD8jXACnAIYEzoGu0V29NzRE7NoxlpljYOVA2lFaYz/dTxPsp/wah1p5T67JJt2W9sRGh3KF52+oJ13O7JLs9nQZwOfdfqMPUP2cCv1FiuvrWRI/SH0COjBmFDp3JhFc5W0O4PJwNC9Q6XgwA9PsXtmD4KO3+T7YXV4mvP0D+8pkCYLm+9uZlzIOEY2GknY62Hcfvs2zjpnWd9wNk6ild3wgjJ7HfuG7qNQX8jI/SMrTHT+CQ4/Poy3vbdMcfs7uJJ4hTbebf52lpJCUPDWS28ROz2WEQ1HYDQb+fzc5zRY14CL8Rf/1euuxv8+VDca1ahGNf4xHmY+5PjT48xsPfMfB/RZYBEQ/77RmHdmHjG5MWwbsK2SXa5aqcbV2lW2uA2LCUOr0so2nS+io09HnLROhD0NY2DQQH6MkHjAwxsOx8PGg4/PfMzkw5MJj41DFH9vlapE1NfgatJVBARup93m5/s/s+7GOuadnceyK8swY+ZA9AFe3vwyM0/MBOBp7lNyy3Ixi2Ze2fkK3iu8af59czpv60z/3f15/cDrTDkyhQ9PfchXF79i9bXVRGdFo1PpCHINktPKUwpSKNQXSrkNZhOTj0wm0CWQ/Q/3Myx4GJNemsSKqytkzYCF2lFmLGNr/618c8GKXGcdb17+QC5CAPrV68fQ4KEIgsCeB3to6tmUFl4t2PNgD/B8Zf9FfN7pcwrKC1AKSrJKskgvSqfYUIxaoZZtY71sveTifFDQIO6mPxekOlg5yDoUjUJDQn4C+fp8WUvhZeclU5TUCjUTEt2wNUDaqx3Rm/QUGYqIyorCaDaiFJTkluWSW5Zb6XUCsiuVgIBOrWPBxQUyrQWkQv5FTUdXv64Ulhdy+Olh4HlAnwW3Um8BUnPze9ioKtKq4pWbf0uFkM6hiAkRkT43NrHlACh+6xPmd4K05EdoldK0yEZtQ4CTZH9baixFJai4nnQds2iWDRayi7MREasM8nPUOdKmZivCflaTvt6WN2sNqPC4GTNpxWkciD4ga5tMoonJzSfLhX/Lmi1xt3EntzSX+xn36e7fnTa12jD6wGi8yq1Ymd2czf02M6TBEGJzYwmNDkWn1vHKDonStqzHMilLQunO7e+hi4dEnbmefJ2+u/pipbTiWd4zVIIKb3tvVl1bhd+3fuSU5hCZHimnob9S5xVupkq2w6diTzG15VQeTX1E+BvhbBu4jR/6/YAoQIyDGWu1NaXGUt5v8z5NPZry8RlJFH8p8ZJ0/kWR9KJ0mWZpCflMLUxFp9ZRWF7IsafH6OzXmUdTH6FUKKXUd7OB9rXbU8O2Bp+d+4yl4UsZXH8w/k7+7H+4n7cOvYWrtSvta7dnT9Qe5p2dR//A/gB423vLbnTy+RfNTDg4gRMxJ9g/bD9d/Low/usw4qeNYeK+OD56N5iVV1f+oS5r38N9ZJVI2SoWNPVoys23bqJRatAqtQQ6BwKwoCPUuDOKd4+/y8RmEzkZc5LPzn1W5X7/DKIocvjxYfoE9vnbf99NZhNXk67Sttbfy9t4EW42buwYtINzY8/h6+hLbG4sHbZ2YFzoOHJKc/7x/qrxvwvVjUY1qlGNf4yVV1fiaevJsIbD/vU+ItIjcLV2lelQIK1GLg9fzvzO8wl2D65yOw9bD3miERYTRkefjujUlcPm1Eo1/YP6sz96P2ObjCUqM4qzcWfZeGsjgiBwIPoAvz76FXcnM1DxS/5FS1JHrSNGk5GkwiTSi9OpZV+LMU3GsLLnSnr490AtqNnUbxM/D3nuZjU8eDh+jn6kF6Xj4+CDp60nZtFMQn4C4Unh/BL1CyuvruT9k++zJ2oPJcaSCqnYXbZ3wX6xPaovVdgusuVmyk2e5T2j3FROdFY0rktdOfrkqCzethT5oxuNxlnrhFW5mX3NbdjYd2MF+k9CfgKu1q70DOjJzsidAJIo/OmxSkW2Ba8EvIKPg4+cbKxUKFEqlJSZymSb3hq2NeRpiI+jj/x6FCi4nXa7wv6uJV/DSetEqakUBQoyijJIKUphRc8VuNu44/rrSa7WhG1Fl+RtBASslFa87P0yGqWG0KGhVb7WIkORfD4stBIL3K3dMZqN9K7bW27QTj87TUl5idzolJkr+vtX1XhZUGwsrvDvAiGCu8rJ5HAdPRnkcJ27ykn8HBjJuHswIvL5cws1yNbEaqWatKI0ORvESmWFUTRS17mu3IwkFyXL7+tFCAicjD1Jk61hdH5ixPanfQQHd6wg4Pew8ZDpiZZQPrNoZtX1VbgscaHn9p4sv7KcFl4tSCxIpNhQzPzO81lwYQG3Um6x45I7tkGNEQSBDX02oFaoySvL42L8RVns3652O+6k3qF+YhkJDnBg4hnebvY2APEF8XIjfCHhAokFiWy6s4ledXrR3Ks5dV3qysXsjogddPbrjFap5f2277OgywICXQLl9zI+ZDweZmvuOZeTUphCbfvaTD46mf71+uNqLSViX028yu77uwnZEMKAnwdgb2XP6TGnyXw/k50Dd6I36ckuzcYkmvB38ufTDp/y/sn3Ofj4IDVsanBv0j0ujL/A46mPqeNcB2uVNbvu78L5a2cG7xlMB58O7B+6n4ziDKyUVmiUGs7Fn8PfyZ8ZrWew+/7uCtTO946/x86InewYtKOCYYXPyi2YB/Rnxz6Rzdveo8OWDjzOfm7Ta8F3N7+js2/nCm5tIBlZNHRriEqpkicbdbJhYeP3yCjOYNHlRagUKhZeXMjc03P/ER0pOiuaZ3nP/pE+40HmAwrLC/92sF9V6Ojbkeip0SzovACVQsWP937E/1t/dkbsrBaL/1+M6kajGtWoxj9CVkkWP0b8yDst3qnSLervwpIIbikyisuLGRs6lta1WjOrzaw/3M7TzpPUolRKDaVciL9QSZ/xIgYFDSI6K5qUghS0Ki09tvdgRtgMmnk2Q6PQMPGliXw5sEOllWiAcgfJRaaovIjcslwG1BvAwi4L6erXlcj0SGaemMmJ2BOYMTPlyBR+ipSEpH3q9mHvw72s6b2Gl7xe4lz8Oea2n8uhEYc4P+48d96+w9N3n5LxfgZln5Qxu81sfBx8iH03lu0DpfBAlUJFHec6zOswD0Rw1bliNBux09hxL/2eHDT2okgVYN3NdfT7uT/9hhj4rHFWBdEzwLhfx+G21I2I9AiuJl2l45aOHH16FJVCJadgvwgHjQMzT8zEWeuM0WxEQMDDxgMHKwe0Ki0XEyR6g1qhlov1T899Si37Wthp7CqFfJWby9EoNPKUwYwZo2gksSCRGWEzKM5IptcT2NVImoRY8jmUCiXjQ8bz3avfUW4qZ8HFBX94zUEK2ts/dD+TXpokawAySjKo41SHo0+OYhJNz/UwmCk2FKNVavFxqCz2BmkSU9U04fcoECKIVM0gXNWXSNUMCoRIHrvBOV+YYNHmCtJ0Y6LEkiOvLI9iQzFKQYmIKBfMMbkx5OnzKjld1bCpIf8sIoIIbiVgmvshYvfu/HD7B5liOLj+YNKK05jddnaF/XTy6YS/kz+5pbmciD3BB6c+4MiTI7LmZ/6F+cy/MJ/Jzd6mZXgiNGgASGLq7gHdERFRCAqySrLwsPVAp9IRnRXNy3eyOdeyBlYqKya1mFTpnBnMBqa2mMrWAVvJ1+dzJ/UO99Lvya5Gk5tPZkv/LTSs0bDKFGlBEOhsFcQtLwGzaKbEUMLIRiP54NQHNPWQtFxlpjJG7BuBu40758ed5+zYs9S0q8mQvUMYdWAUXnZevBLwCipBRWxuLEFrg+R096Mjj8oT1o23N/I05ynr+6zH38mfYkMxAgInYk7Qbks7jGYj9ybd487EO5QYSojLi8NgMqBWqvn+1vcALLy4kFXXV7Hu1XUMDR5a8c0oFKi278QqKJjrhzwwpElhnN+EfyPTnSLTI7mUcInJzSdXeb/lluUyqtEo6Z5CIN4BYg0ZhL8RTuy7sXzR6QscrBxYdGkRbkvdGP/reE7EnKhAkawKR54cQafS0cWvy58+70WEJ4ajFJS0qNnib29TFTRKDR93+JjHUx/T2a8z+fp8Rh8YTcetHWWKZzX+70J1o1GNalTjH2H9zfUAvN387f9oPxHpERWE4B+e+pCUwhS2Dtgqh69VBctE40L8BcqMZVXqM0CiSNxNu4uAwIRDE9CpdFgprYh5N4bDIw/zZrM3+e7mdyQbr3BHOQmDVZS8Eh2leZcs8y3qOddDq9Jio7bhcuJlPj7zMU9zn/J1t6/Jm5PHmTFnmNVWaop+ffQrIFlCapQaBuweQBffLrhbu9Ptx25/6KiiN+mxs7LDz8lP1lNs7b+VEkMJS68sRUQkqzQLs2jG086T3UN2y3kZlqK0qUdT2tduz6CgQaQ5LiD6OxVWBqjtULuCs42F/mQym+SfC/QFf5iBkl+ez/n489xJl6pkEZGkwiSyS7MpM5Zx+LFEOYrMiJRX/71svUgqSKLcVF7BscqCF3/nZStRZua8PAcfBx8mx7uhRsHeYMgpyyGzOJO6TnUxmo1cTrxMix+kIsZCr6kKAgLlpnLaerdlb9ReWSsCErXNMhV42ftltg/czrre67BWW1NmKpPzFap6zZUCAl8o3OWfRbAzVb53NzWFLnHglyOJyg0q+P63eszqt9NhyfyIz4/HRm2DWTRjp7GTmqIXvqrTi9Pln60MMP4OfNwVJoTEcz35Og8yH5BamIqzzpntA7fTJ7AP887Oq/B6Do88TMy7MRR+VMi5seeY32k+dZzqyI8feXIEEZGwsHUIBgPT4r/j49MfszNip+xmNLXlVOys7EgrSmNm2ExMognfbBO/dHChxcYWNN3w3MThxYZz3Y119P2pL/fS79HRtyOetp4cGnEIeG6N3MCtAVFZUVVei3Z2wdzxEBni3wdfJ19+jf6Vrn5d+eXhL/Jz3Kzd+HX4rwS6BDL58GSC1wVzM+UmPw74kdtv3ybQJVA+301qNKHcVI5CUPDLw1/ILskmuSCZj059RLva7Zh4eCI2ahvuTrrLtJbT5GYsLi+OeWfnEZkRicFs4NW6r/Lh6Q9xs3Zj7Y21rL6+mnln57Gg84IKtKcKsLGBgwfRGkWuHPXinUZvMvvEbNpvac+jrEesv7keD1sPBgQNqHLz1KJU6jrXpYd/DzSo0BlhfdQ29j/cj5+THx+1/4iE9xLwc/TDSmXFxfiL9NzRE6/lXkw5MoWL8RerpGwdfnyYrv5dq5wU/xGuJF0hxCOkgq3wfwI/Jz9OvX6KfUP34aJz4VLCJYLWBrHgwoIKie7V+N+P6kajGtWoxt+G3qhn7Y21jG0yVi5y/w2Ky4t5mvNUXj08HXuaNTfWsLjb4gpUiargaetJWlEaYTFh1LKvJdtegiRmPvToEP1398d7hTeLLi3Cx8GHus51OT/uPCXGErlQmt56OpnFmXx0+iNq1zDjFnBIXokWdAlkl2bTzqcdD995SCe/TmSWZNLCqwUpBSn02NGDDls7kFKYwoLOCzg37hwANe1qsqnfJgbXH4xSoeSrS18RnR1NVkkWTdY3Yc7JOZyPO1+h+C01lKJTSV/ollX2Bm4NmNN2DqXGUvQmPVqVll2DdvHtK9/y0amPuJd+jwauDcgsyUSBgpSiFJp7Nedu+l1qnL1BYNDL2Nq7kJCfIH8pKwQFJtHE8u7L0al1mEWJux86LJRfXntepFmgQsWsNrNkLUWbWm1QoMDHwQdbta1cBCsFJWbRTJlRogJZCmHLtOXPYMmuWHplKUkFSfS7U8L1ejZk2kvFemF5IU9ypQbtfsb9CufNslr+ewtarUpLmakMj+UeFWxHBQSsVdYyV99B68DkI5OZcnQKZYYyPGw8+DuwHPdFWpXFdrlmPtgXVZ4M7asP+VYw6b4VpcZSifL222K/IIDwu1rPQndLK07DSmklU55efL+CGQxKGB4p/X/7g10subxEtrBd23stOrWOpd2XkpCfUKGglO17NTZ09O3InHZzMIkmbDW2Mk1tYL2BdCqWPuN7xAcsurSI0QdGy5qHX6J+oVBfSEiNENbfWg8i9B0FF/WPqe1Qmz1D9sif7xdX0C26q57+PekX2I/Mkkw8bT3RKDSyMLqBawOilFq3lgAAIABJREFUMqOqpMtYGURMCujm3obxIeMxY+b0s9N423nL5ye7JJuQ9SEEfBvAzw9+ZnG3xTya+oiOvh0Zuncoq66vAqSm78L4C2gUGtp6t2XZlWX4futLhy0dKDeXcynhEm80fYOw0WHMOTWH1ddXs7DLQrI+yOLbV77lbtpdhu8bLk+PQoeFkq/PJ6M4g3ePvcuMVjOY235uVbfRc3h7Q2goypu3WBZazMVxF8gqySJkQwib7mxifMj4Slo1kCatReVFeNp5kqfPo7MygJrF0rUbFzqOhPwEAOyt7Dk66ihlxjJCPEK4+dZNxjYZy+HHh+mwtQM+K32YfWI2N1NuIooieWV5XEq49I9oUyAJwf8T2lRVEASBQfUH8Wz6M6a2mIrJbGLe2XnUW1OP8MTwv95BNf5XoLrRqEY1qvG38fODn0krSmNG6xn/0X4eZD5ARKRxjcYU6AuYcHACnXw7MbXl1L/c1sPWg9SiVNnWVhAEyR3n9Fxqr6hNv939SCpIYnWv1aTMSuHr7l/zJOcJNhobmnk2kzM1Al0C6erflbtpd5naYioOuucJwxnFGagEFbsid1GgLyB0WCh7X9tLQn4CiQWJzGw9Ew8bD0YfGE3AqgAuxl9ErVSTXJiM3qhn64CtPJv+DG97b7ztvXmz2ZuIiCwLX0anbZ2wX2RP8++bM+3oNB5mPUQQpIA3S6Mx7+w8podNR0CQCmdjGd+Ef0OXH7vgonNBRMRgNtDUoylatZaM4gwauzcmPisW87mzCF274mnniUJQyMLptrXaolFqSCtO4/6U+4xsNJKc0hzqrq7Lk5zK05aaDjXZenervKrZrnY7RjceTW6ZFPhXw1ai8JhEk7zKa/n3i/ii4xeV9j0oaJBcnAlINJhaRQpaPi5mQ93CKrURv58oWP79ogYFqPBaQCo8vewksbqD9rkw/XbKbQbUG8D0ltNlwbTiL74SFS+kfr+I5MJkieJWCraunpUe12sU/NQQht/U46i2k5PLAVomIYcSVkXP+n3DZnm/Q++DVyG8Pvi5o9X+6P0UG4rxsvWS9VN5ZXm/UQOfv+7fOxFtubuFuLw46jjVke7THsvYP3w/3/tPx+zsxPcTDuBt740ChTy9SS5MxmA2yMJ/hQi+OTAieATta7dn692tcpI2SE14z4Ce2FnZ4ah1ZPWN1Xxz9RuMZiPZpdl42nnKTWoDtwYU6AtIKUyp8DpNZhPHk87iXgSLL37FO0ffoUdAD/rU7UNioeQepzfqMWPmSc4T/J38eTrtKdNaTmNF+Arqr63PlcQrLO+xHJDulZ/v/4zepGfXoF3Ez4inmUczYvNiKTeV82rdVxkQNIAOWztwJfEKR0cdZW77udhb2fNOy3eInhpNq5qtsLeyZ9yv45h2bBq96vSSX69GqflLmhIArVvDDz/Ali28vO86dyfdpV3tduhNeo4/PV4ljSy9SDpXHrYeJBck42+049yxGtRxrkOxoZiBuwfKxw5yDWLbgG3se7iPs3FnWdpjKXEz4rg0/hL96/Vne8R2WmxsQeCaQCb8OgGTaPpHjUZGcQZPc57+lzcaFthZ2bGq9ypuv32bhm4NeZb3jLab2zI+dDx5ZXn/Lcesxn8dqhuNalSjGn8LloC+XnV6VRIm/lNEpEegEBQ0cGvArLBZ5JTmsLnf5kpZAVXBw9aDEkMJUZlR2Kht6LKtC3VX15XtX29PvM2tibeY3GIyjlpHetftjZXSigMPDzCm8RgOPz4s+8u76lzlff6eC1/Xpa6UobFvOHqTniENhhD1ThSD6w/mm6vfUGos5dCIQ3Tx68Lc03MpN5UT6BLItGPTuBB/AQ9bD06NOUWJoYT7Gfe5+dZN3K3dqeNchyXdlxDsHkxYTBiXEy9zPfk6Hss86PuT5At6KvYUIBUq619dj6u1KzdTb9LArQG9A3ujVqh5kvOEla+slGk2TjonmqWCIr8AsXNnMoszMYtmtEotdZzqMKj+IExmEweiD6BVadk6YCsuOhc0Sg1vHHyj0nlOL0onX5/PyIZSKN/q66vZHrGdAn0BZszE5sZWKIxb1Wwli5cBGro3xFXnyqJLiyrsV0BAo9QgInLo8SG5AB4SYcKggP3PB1TysS2uRGqFusIx/gwKQYFKoaLYUCxb2lpyPUCapuyI3MG317+Vf2emaucfkJLbq3xclD4b1gaIrqFAsH/esFoaF0EQ2NwUahdAi4eFFTbPtFdycTPozJJGQ6fSoVPpcLeuHOb24jH3BYOv0YYym8Y0Mq6kjfEQjYwrsRcbM6rxKOC3MMTDk7BR21S4Vi9ON8qMZcy/MJ++9frKAYsW9y6ioqBBMJvvbSGjOIOP2n9EfbcXLhDSijmAWQFxTrA9cjvvhb3H8Zjj0ntHwEXnQnJhMmOajOHO23fkKWRxudQ0Lbm8hLrOdSkxlGAym2jgJmlCojKf06fKjGVMPDyRCEMyHeLBpFYRMSmCA8MO8OvwX2WtloUSpVPpuJ95n8lHJtPou0bMOzuPSS9NInpqNFNbTpXPx7Z72+QAweXhy7mQcAEnrRPvtX6Pc3Hn6L69OzklORwYeoBX6jwPjrScx4dZD5nddjZ33r5DI/dG/HT/J/nv2LIry2i3pd3f0xaMHg0ffgjvv4/uxFmySrJ42ftlig3FhKwPYcnlJRUaRMtkycPWg5TCFGqWqHDTuXJ+3HkCnAK4nXabqUefL9wMqj+IOS/PYc6pOZx5dgaFoODl2i+zpvcakmcmc/L1k3So3UGmQ76661W+uvgVsbmxf/nSryZdBfhvazQsCPEI4d7ke6zrvQ6dSsfWe1vxXenL7vu7q8Xi/4tR3WhUoxrV+Fs4H3+eu2l3/3VA34uISI+gnks9zsad5Yc7P7C8x3L8nPz+1raW4gRg1fVViIhsH7id1FmprOm9pkLAH0i2lj3r9GR/9H5GNBqBiMju+7spMZQQFhNGDZsarLu5Tha4WhCXF8eW/lt4lPWIOSfnAJIYdlP/TZx6/RSJBYkM2TOEei71+LTjpygEBamFqZhFMz229+BkzEkCXQI5PPIwt1Nv8+m5Tznx+glyS3P5+cHPrOm1hsfTHtPOux2etp7klOXIbjWWVWytSsv4X8fjpHXi665fk1SQxJJLS1AICoY0GEIHnw5yIndheSG9EzSU6zTc8dHIq8NqpZp2Pu3oE9gHk2jiac5TorOiUSlUjGw0Er1Rz4iGIyqd5zJTGUazkT1RkvWt3qhnafelDAsehr3GHp1KV4F776JzocxUhr3YmMbGlQQWbKVW8adojIEVmjgRkb1RUvJ1uem5XmP8Iy2PWgbg7/f8+h1/KhWrlpVtJ60TBrPhT4XZdho7nLROmEWzvKL7SftPaODWQM586Ve3n7wPi9vWsOA/d1D7Q164IP1XogG9wkx09vPV5xddnm7UhAZTIMNJOmcWStpDZxMLOynR6E0ICJQaSyk1lpJRklHpUAC6crAygVEJEc4BhJi+w5mWcthkiOk7NlwOo/v27sw4PoN76fcoNhTzRtPnzeSLjcbGWxtJLkgmqzhLDmgMfSS5epke3Oeg6imHHh3CJJpYeHEhhfpCrNXWOGmdsFXbSn8PLDWegOyEZjmGiChT2OacmsMHJz9gcIPBDA4aLP9+efhyucm5n3EfX0dftCotUZlRlBhKWHl1Jf7f+rP5zmbULu50iIc0oZgAZ2ma+PKWlwmLeZ5bY6uxRavSohAU7Inag1k0c2/SPZb3XI69lT0apUaeyF1JvEKvOr3otLUTSy4vQa1Qc+2Na6gVaooNxTSp0QSFQkG37d0YFzqugjPUjeQbFOgL6ObfDbVCTXhSOK1qtuL9Nu9L4YiYuZ9xn0bfNWLHvR1V3z8vYuFC6NMH0/Ch6CPu8nH7j7n7tqQN+ej0R7Td3FZuvix/K5y0TmSXZuNVBDg54WLtwrU3r+Fl58WGWxv44dYP8u4XdFlAF78uDPtlWIVQUZVCRTf/bnzf93vsNHYMqT+Ehu4NWXhxIQGrAmj1QytWhK8guSC5ypd9JfEKNe1qVgqZ/O+AQlAwucVk4mbEMShoEPn6fEbsG0HHrR2Jy4v7bz9+Nf45qhuNalSjGn8L34R/Q0P3hnTz7/Yf7ysiPYIg1yDeOvQWPQN6Vkh+rgr5ZflsuLmBFhtb8OahNwGpsH089TFnx55ldOPRfypcHBQ0iCuJVzCajfSq04sfI35kZ8RO8sry+LDdh5yIkRqAFwviUmMp0VnRLO2+lFXXV3Ho0SH5sa7+XYmcHMm7rd7lk7OfsOLqCoJcgkiamcTnnT7HaDbSY0cPeu7oSamhlN2DdxMaHcqGWxsIGx1GdFY0vXf1Zu7puYQnhZNZksncdnO5NP65patWpaVAX4CD1oEnOU+Yc3oOOpWOMlMZepOeJjWaYDAZsNXYYqO2ISozij6J1twPcmFn1M8465wBqQFpW6stdZzr4OvgiwIFM47PYNgvwzj46CBpxWn8dP+nSuesuWdzyWVn9AlAoi/E58ez8pWVGMwG3KzdKlCALiRcwF5sTIjpO5xoSU6RCQdzc0JM32Frrhj6ZaFGhdQIYfuA7bxUZE9wXAk7Gpq4k3ZHfl5OmeShb6WUAgOLyoswiaYK6d+/R2F5oRxcaAlxq+9Wn1Y1W8mBiAefHERExMfBR3bb+vnBz5X2ZcGHbT+s8F4r4YXFVMtqPCAnX2uUGhDAVmFFUIoRZ6WdvPKOAMf9TOTrKtPDqjqOrUHSgggi+Jgm/GaKWzFsMkCcSHJ+MmtvrEUhKGhZsyXfvvKtPGGxnP8SQwlfXfqKl7xe4krSFdnt7fjT4wz7aQiGqEjOaNPwd/JncbfFJMxIoLt/d5x1zhQbiikyFLHk0hIQYES6O938ulHycQlTW0gr6b8XBicVJBEaHcqck3P4Oepn+fVYKa1ki9ZlV5ahVCip61yXn+7/hN+3fsw+MVsOjls1cjsd48EgGun2Yzc6bO2AwWRg72tS8zqrzSyKy4vJLcuVm56Y3Bjupt2t8Fr8HKWFDYWgYOHFhcTkxiAiMq/DPKYcm8Ky8GUs676MO2/fIW56HMt6LONEzAmC1gQxYt8IItMjORl7EgcrB1ytXemxowe1HWpzfPRxFndfzKKui1AKSrzsvCg1lvJ66Ou029zuz9O6FQrYsYNUFw3HflbR0/ElSWfTYymXJ1ymQF9A0w1NWXxpMcmFyWiUGlm3VDPPDI6OADjpnIiYFIGdxo6JhydyIkb6DKsUKn4a/BPWamsG7xks66osuJZ8jZyyHN5r8x67Bu8iY3YGuwfvxsvOiw9Pf4j3Cm86be3Ehpsb5OsF/zyo778C7jbu7Bu2jzNjzlDTriYXEy4SuDqQry5+9ffoatX4H0N1o1GNalTjL/Ek+wmHHx/mvdbv/cdfJqIoEpEewbPcZxSXF/NDvx+q3KcoilxKuMS40HF4LvdkytEpeNp6snOglP/QybcTdV3q/q1j9q3XF5VCRWh0KGObjOV68nWWXllKv3r9eKfFO9S0q8mDjAcVCleloGT9rfVMbTmVPoF9GP/r+AqccWu1NUu6L+HGWzcoNhTzMOshX57/klltZhH+RjhqhZrrydfp8qOUpj0hZAJrb6zlyJMjjGw4kksJl/j68te4WrsyPHg4X3T+Qs6lAKjnUo+IyRHkzskl6b0k9r62V3abAknHYfOVDc9ynyEIAqefnqRxTCFHffTsur8LT1tPedV+4+2NuCxxIS4/DjNmTsWeIq0ojb71+uJm7SYXZC/iZupNREQuJ10GpAyDjbc3IiDQ3b87cflxFZ5fVF70h4VvbdP4SqJtgMT8RF4PfZ1etwoo1EBqx5dkC10L7DR28jShxPhcDK5VaisVFDXtagJSjglIrlu17Gsxav8oTsWeknM2nHXO7Bi4g8H1B1fYvqpJiUahYfGVxUBFdymlCdRG6ecXN7M0RdLTRDQKjTy5idPq2X4AZkXa4mAlUawCXQIle1ITXN2pQ2kG9R/0NL2fwKSbUKYBUQBbAuRz/fw9KNGafXiY/RCQJgvXk69T85uaspvbssvLyC3NZd31dWQWZ3Iv7R4DgwbKdsV6k567kWFojdCq+ziip0bTwK0BH5z6gM13N8uuYgICQ2wl+6x4FxVNPJqgUqhY2mMpGqWGUkOp3Ey0rdWWbQO2MabJGJl6aZn46E16WVuzI3IH9ovseZD5gGvJ1+gZ0JPH0x6jN+lpWbMlgTUa4F+kRmuQgkN3DdrF9beu09m3MwA7I3fK17GWfS3J/hUYEzqGY0+OyefJEpJoEk108++Gq86VINcgNt/dzN20u5x8/SSz2s5CEARsNDbMaD2D2OmxrHt1HeGJ4TRe35hV11bR0L0hvXb2QqfScXz0cRy1UrH/9ktvo1VpGdlwJGGjw2js3pjLiZepsawGU45MqVCov4gclYFug0twNVmheG0olEv3Tutarbnz9h1mtJrBx2c+5utLX+Oic5EpVDWzy8HpuXuci7UL4W9IlrOv7nqVS/HSIoartSv7hu4jIj2Cd4+9W+HYRx4fwUXnQquarQDJLGBYw2EcGHaA9NnpbO6/GSuVFe8cfQePZR702tmLzXc2cz35+r8K6vuvQGe/zsS8G8O89vMwi2Y+PvMxgasD5UWFavx/j+pGoxrVqMZf4ttr3+Jm48bIRiP/430lFSSRW5bL3fS7rOq1ilr2tSo8nl6UztLLS6m/tj7tt7TnYsJFPunwCQkzEjg44qBMsfr9dn8GZ50znX07s//hfvoE9sFWbcuTnCdMazkNtVLNu63eJTYvtqJgVpSSbiMzItnSfwsapYbXD7xeSUjrbe9Nuamc4Q2Hs/bGWhp914h8fT7bB24nryyPt5q9hYvOhR/u/IBWpeWzc5+x8fZG+gb2RSkoKTWW4qB14GrSVWafnA3AwHoDufHWDXkVt6Z9TYY0GEJMbgwahYaUmSkMbTAUg9lAuamcEkMJt5NvMraviS8bShQsi+Desv3MNjNZ0HmB/N72DNnD6l6r6RHQo8rV+reaSlMmC21sesvpqAQVE36dwJEnR6osyv+o8LWjToVgRguaeTbj0PCDzHzmwYEgKNcoK1HYVAoVU1tOZXyT8RW2tQTeWaBRaGTqjyXR+3H2Yzr5dMJOY0digUQVsVPbMb/zfKYfn86Kqysq7OP3K/BqhZpyczk6lQ43azdMoonG7o1RiDDqN7en35+GpzlPK5ybfH2+fB08/RtzrpEdvS6m0j2gOwBJ+ZJ+xKyE13uU0vcR1NJr8NDVqLBf+zIY9BDOd/QlRRrUUESMnPtiwYthkyBpZ9p6t8UkmuTrvDR8Kc5LnHn/1PuYRTMGs4ED0Qfk0EidSkd5idSUPfW0wnuFN7129iIiPQJPW09ZD9HWuy2nsq7jU6LmiiqFJjWaAHAx/iLlpnKCXIPk5t1gNjCmyRjW91nP/Sn3yZuTR9joMNxt3KllV6vCNLGwvFCmXm2P2E7HLR25EH8BvVFPndV1SNEZaVnuSmOPxoxoNIKE/ATGHBgDSIX0jbduoFFqyC7J5kL8Bd5t+S5m0Uy/3f24nHCZiPQIOTujrXdbWnq15EHmA57lPsNZ58zNt25WmSGhVWmZ1HwST6Y9YW3vtWSXZnM58TKJ+Yks7ra4wj3uoHVgbJOxbLi1gY4+Hbk3+R5HRx3FSefEdze/w3O5JxMPTeRh5sMKx9h6dyvPHEXK9/wEV67AtGnwm/5Aq9LydfevuTLhCiWGEtKK0lhzfQ0AXuklFRoNgGD3YLYO2IrRbKTb9m5ciL8AQHOv5nz36ndsvL2Rjbc2ys8//OQwver2qtJe3FHryLiQcYSNDiNlVgqre62muLyYNw6+gd6k5+Djg+x9UNFO+n8KViorvuzyJY+nPaZNrTY8y3tGqx9aMT50fKXgzmr8z6O60ahGNarxp8gtzWXL3S1Mbj5ZLuT+E1yMl1ZNe/j34PXGrwOSm8yxJ8cYvGcwtVbUYt7Zebzk9RJnxpzhybQnzG0/l5r20mr1iZgTKARFhZXjv4PB9QdzLu4cReVFuNm4oVKoZM7+xJcmSvkLxueaATu1HTqVjg03N+Bq7cr2gds5++wsS68srbBfixDyq65fETEpAh9HH7pv787xmONMbzmdH27/QLBbMJ62nnI6r0k0Ya22ZkOfDRToC9gbtZe2m9rKBen01tMrWVoefnSYtKI0mno2ZemVpWSVZvF/2DvvsKjObu3/9hR6lyZIESwgoGBD7LFrNGrsGrtGjUmMxqiJMcWYooktibFiiz021Fiw9y5SFBRBkI70XmZmf3/szFYEE5Nz3vd87znc1+UlM7PLs5/ZM7PWs+573WYGZpRryyU9ghLi6yioVFJNVJ+Un4RGp8Hf0R9zA3MEBI48PIJO1FXhtj+PIJcgDJWGMgWr+frmVOgqOProKDpRh6ula7V9Xhb4FvKIuNzqgthbabcIyjbBOiGdnX7IehB921tHM0cmBkzk6KOjbArfVOM4QapEWBpZ8iT/CTZGNtxMvYmlgSWVukq2RW6juLIYU5VUUSmqLGL60elkl2ZXcTD/bUjVIMlEZUKlrlLi2os6npY8JcAxAJP0LHQCRDpSrRKnEBQUVhRWSVif/3tu+7msbFJIQBpEn5VaCpdoSjBRSQlOrB08NYHHZhV45D07tkIHBYYw6Q24ICbIzycqN1YzmxQRSVQGy9s4mDmwstdKCj4uwMPKo9rciYjUs6iHh7WHTKUp1ZSSbQI5RvDVw/UYq4wZ5jOM8f7jKaooorhCMhic5jueNHUZzoaScF3fzvb4o+M4mTsRmx3LQO+BANxMvcn2iO3yeS2NLOnh2YMmtk0wMzCrkuRZGlrKGhb4o6sXEJ4RTrm2HL9pkGBYyuUnl3lz95s0/rkxd9IkB/pP2n9Cc6fmdHbvTDPHZlgaWfJrxK983O5jNDoNHTd3pNX6VjJ9zN3CnU/OfIKIyDDfYVwafwk3q5qNG/VQK9WyP42RyghnC2eG/DaELlu6cPbxWVmY/G7rd8kozpA1Sb0b9CZlVgrvtnoXjU7DlvAtNPmlCb239yY0LhStTsuaW2sY3GQw1t37wdq1sG4d/PxzlfMH1gskqF4QDWwasOfeHhSCgkRNVrVEA2BU01FMDJhIpa6SXtt6cebxGQDGB4xnSospvHvsXW6k3CApP4mIjAj6Nuz7p9cOEm1pWqtpXBh/gc87fo5SUFJYXsjQvUNx+MGBt/a/xZGHR6posP4d8LD24PKEy+watAsLQws2h2/GZbkLe+7tqRWL/w+iNtGoRS1q8adYd3sdWp32pe60fweiKPLNpW8QENgyYAuJ+Yl8dvYz3Fe602dHHx7lPGJZj2WkfpjK9je381r916oFzSfiTmBtZF3FuOxV0N+rPzpRx8awjSTmJ6LRaTifeB6QVutcLFxkKodSUGKgklzPt0Vuo7iimK4eXZnbbi4Lzi7gevJ1+bjXkq/haOYo+XXUaciZMWfY0G8D++/vZ1O4VAlZcX0FAY4B3J9+n/j346lvVZ/d93bz9mEpwckszkRElA37skqyCI0L5fvL3/PW/rfwW+1Hv11SR6rrKdcJeRCCpaEls4Mk7rp+NXhBQXMQwMPKA2OVMSYqE1QKFQXlBfx04yf67uxLYUUhAgILLyxk0O5BMoXjxdauC84uQKPTyNSMCk2FHDhMbTmVoyOPVpvjPwt89f4VzyO/PJ/tH79OlqnAqT9iYAGBbvUlHVB6UTqb7m6ik1sn2ru2l/d7sUOYiEhhRSGVuko8rD3ILM6koOLZSua4puOwMLKQtwWpWmFlKNFcxvmPo41zmypJgZ6mpRN16EQdBkoDjiR1JEKTipFOQZjjs45LeuiD4+eD5OfRzKEZJv0GkmGuYFrCMx+a5ylh19yUmJXDVXV6Fe0HgqTLMFQ9S7ALhAjuKqeRww3ZbPKucioFQqS8zem407Ra34r6K+vL3grPQyko6dOgDzMDZ8p0IoBCQ7job83bLafQxK4JUZlRfHHuC/LL87mUdAmtqGXKsekgQrg6BwGB44+Os+/+Pg7EHKBxncZoRA0KQSH7jLx14C3mnJyDVqflafFT5p2ax6WkSzzMecjbLd6W3b0tjSyrJB4iImYGZhgopM/kxDtgn12GVpS6qFVoK+Rqzb7ofYTGhdLBpQPXU64T+lYofg5+LLu2jIY2DaUKjrZSrrT8Fv0bWlHLD91/YHP/za9kUqfRaZhzcg4CAqdGnyL2vVj2Dd1HXlkeXbZ2of2m9hyLPYaXrRc9PHuw8vpKOdA1UBrwU5+fCH0rFGsja8wNzInNjqXntp40+LEBsTmxTPCfIJ1o/Hj48EP44AMIDa0yhoziDLrU78JIv5GoFCpavpnNIqMbNTYt+Kn3TzSu0xilQqJR6TUbK3utJMAxgEF7BrEzaidKQflSA9SXITo7miCXIG69fYvY92KZ224uYelh9NvZD8cfHJl8aDKn409XqwT/qyAIAsN8h5E0M4kJ/hMoKC9g2N5hdNzUsYoAvhb/PghibZpXi1rU4iWo1FZSf2V9enr2JLh/8F/v8BfYGbmTkftH4mTmhI+9D6fiT2FmYMZIv5FMaj6JFnVb/KkGJLc0F9vvbWnm0Ax7U3uOv3X8b52/w6YOpBWmkVWShZ2pHUH1gtg6cCsAHis9eJz3GJCoVkUVRTIPfX2/9UxsPpFKbSXtN7XnafFT7k69i4WhBV22dMHSyJIDww4AUjJ1+OFh5p2aR3SWRIswUhnhYuHC7bdvY25oTn5ZPk1+aVLNJ6COcR25Ew9IHhB+Dn4Yq4w5m3AWF3MXoqZHVQlwxx0cR2RqGHczImiSrSDKToeloSWtnFpx6vEp2rm0Q6VQcXbsWWJzYvnhyg+sv7Oev4JKUOFp40l2STaOZo4YqYwIzwhHo9P8qWjZhuY4a8ZghidFxJGoDJYDXwGhyr6CDhJWwJFGMP25hVQLAwuYpWg+AAAgAElEQVQKKgoY6TuSLQO3oNFpMP/mmYC6t2dvjscdl4+lpyqJiNXOMd5/PHvu7anit+Fo6kh6cbr8ePfg3cw6MUteOX8e+uMdLuzHo8uHmdVLas/7or+FpaElReVFsri8Jtx5+w4Whhbs79+I3o9V+E2ukDQcNTiog5RYiMKzTlN5xlXH9CIMlAYvXUWuaR9bE1vcLN24k3anymtr+q5h7oHpzCxpxufLbsvPJ+QmUP/H+tQ1rYuPvQ+B15L42uGB1EpYUKFWqqvMs76Vsa2JLWlFafja+RKRKdGv8sryUAgK/Oz9SC1MJXFmIhNDJrLx7kaWdFvCoguLKKgoQK1Qo9PpUClVfNv1W1wtXTEeMwF1TgE9xj67Fmsja3LLcqvNQTePbnjV8WL9nfWUa8vp17Afv8f+XqVV8bddvmVeh3k1ztuL0Ik6JoRMYEv4Fnp59uLYW890H6IocuzRMb668BXXkq/Rom4LejXoxdcXv+bqxKu0qdemyrEyizMZHzKeo7FHGeQ9iMtJl0kvSsfWxJZpLafxTqt3cDS2gzfegMuX4fp1aCwtRjgtdWJKiyk8yH5ASn4S7bdfYnFHBU0dm7F5wGa5uqRHVGYULde1xNHMkfSidPYP20+fhn1ILkimxboWaHVafOx8OD/+/CvNgx4uy10Y4TuCJd2XVHk+MiOSXVG72HVvF/G58TiYOjDUZygjfEfQpl6bf5tw/E7qHYbtG8ajnEeoFCq+6PQF89rPq5EeVot/DWorGrWoRS1eir3395JSmPJfNugDOPv4LONDxiMgkFqUSqmmlE39N5H2YRpr+q6hpVPLv/zxOf34NDpRh5+9n7zS/nfQr1E/4nLjGN10NOOajWNf9D6KKooo05SRXJAsezRYG1pToa3A0dQRV0tX1t5eC0iUiZ2DdpJVksW036dRqa3kRsoNguoFIYoip+JP0Sa4Df139cfRzJErE66wf+h+adUyJxb/Nf7MCZ1Dgx8bVEsyBAQ5yRjkPYiY6TEUfFzAqdGniMmKQSkoebvl29VW0Y1VxohFRTTIgScO0mp3fnk+LpYuKAUl/Rr141ryNcq15TS0acjYZmP/tD2sHhpRQ3pROtml2dx7ek8Whz/fVakm5HCHSNUHssv686vrL76/owrccC2AHX5Vj6GvRsRkxbA9YjsBawPkJMNIacSFJxewNHrOr0J4ZqT3YjC9+e5mOfgVEFAr1DJlT4/FlxZXSzL0NEERkXEZTnRbeZglvcxp4dSiRk1LhbaC8QHjqz2vHx/AuJBx5Jfnox07hiRjKRjWJxnV3hMR1Fq4s0aSgeQZP/9SzYney95XOxM76hjXqfZ8VkkWaUVp0qq4oJLv/1+u/UzvhyKHrKu22NXPUXpxOsMa9CfwgkSH04k62ru1p/DjQpb2WIoCBS4WLjR1aEq5thx7U3sMlYZEZkr3QlpRGqWaUnSijoS8BJILk5n++3QS8xMBmHNqDp7WnlIjAF0lHjYeDPcZzqzQWQz5bQgZhhpaqd3o1aAXHVw7sOPNHbJ+TJ9kGKuMUQgKziec5+ebP1OuLUcpKDkce7hKVUglqF45yRBFkdmhs2XTzwkBE6rOvyDQp2Efrky4wqnRpzA3NOfri19joDDgw9APq63q25vac2TEEVb0XMHhh4dJL0rnnZbvMNxnOMuuLsNthRvjDk8kcsUn4OwM/fpBTg5anZbM4kzJrK8whXqGdnx9Bq57/UClrpKW61qy8PzCKtUNX3tflvdcTmJ+Iv6O/gzYNYBDDw5Rz6IeWwdsJbs0+28H/0n5SSQXJNfon+Hn4MfXXb/m0XuPuD7pOiP9RrIveh9tN7al/sr6zD05l7vpd//llKbmTs2JmR7Dsh7LUKDg07Of4vmjJ7dSbv1Lz1uLZ/iPSjQiEwuZu+UBQ5aEMXfLAyITC/96p1rUohb/CKIosuzaMrp5dMPPwe+vd6gBheWFbLizgTYb2tBlaxcqtBWIiHzZ+Usujr/IWP+xmBpU70b0Mpx4dAJvW28a1mko95H/W/jjN62BTQNGNxtNSWUJ++7v42DMQSp1lbhbuwPP2n82qtOIwvJCbqbelDngHtYerOm7hh2RO1h8eTHFlcWYGZjRZWsXuv8qCXw39NvA5OaTCXkQwro76+RAMz4vnu+vfk9+eT79GvWjl6dkAKYW1BTMK2BA4wGARP/ovb03v9z8hUUXFvG05ClaUcsArwHVLslEbUJJUS6NSowp1JXJ5nahcaH42fvRwKYB5dpyem/vjcMPDrTf1L5KJWBWm1kvnS69kFlExFRtSp8GfeTOTjVBLahrFH3r8bx/A0C7y09ItIQrLs+E2F91/gpTtanUsjfrPuNCxlVxRtY7Hz/vCPy8k/iLwfbzQXkPD0n4/v3V71EKSiYFSK2S76TfkelY+v/1ehqAOo9S2fDp62QIxQQ6B1a7DpB0DbamEh3K165qO199AJ+Un0SLdS34Nms/fd569rpSUFZLHtQo0P5RzShRw4u5RU16qRerLPr5eFrylKE+Q2vUNRWUF7A/ej9tXdqSMTsDtUKNcUoG/aN13NElsylsk3y9+kRDRKRlTAF362iwNrBEQCCvNA9BELj05BKtnFuRVJAka6D87P3kz/5HbT9i28Bt1LOoh07U4WThhE7UsT1yO6cfn5bHFZYRJru4P857zNaIrXKFJMxOQ35FAR1dO3In7Q6Dmwzm5z6SjuHHXj9yZswZ3mn1DipBJSeFAgL2pvYYKAyquMdrRA3N1zbn6wtfcyr+FPll+dXmSI/vLn3H8mvLGeU3CgGhRsE4SAlHV4+unB17lovjL+Jh7cGVpCs0+rkRW+5uqZIACILAjDYzmOAvdWzbHL4Zf0d/kmYmsei1RZx5fIamO9rz1jgLKjLTEYcOJSs/Da2ofWbWp5S0GS2cW3Fr8i3mtpvLwvMLab2hdZW2vlNbTmWA1wAeZD2gu2d3Bu0ZxL77++TPz/nE8/x277eXXv+L0HfJC6oX9NJtBEGgtXNrlvVcxpMPnnBu7Dl6N+hNcFgwAWsD8F7lzRfnvuBB1oNXPu/fhVKhZGbQTJ7MfEJPz54k5ifSakMrxhwYI99jtfjX4T8m0YhMLGTmxmhuxeWTVVjJrbh8Zm6Mrk02alGLfxEuJ13mVuqtPw1Ea4IoilxLvsakQ5Pkzip6ke2SblJ5vYdnj789HlEUORF3gp6ePalrVpenxU//Vr90URTZHrUdS0NLLiVdwtXSldfcX2NrxFY2hm3EzsRObgmrN0sr05SRU5aDnYkda2+tlY810m8kY5uN5cvzXwIw/eh0wtPD8bD24G7aXSYdnsTI/SPZEbkDlULFm95v4lXnmZu6iIiLhQsn409KTwgwYv8Ilvd81gXJ3tSeGcdm8N3l76hjXAd3K3d87HyqXZeJ2oSS8iJEuzoylx2koDA8I5zBvw0GIC4njn6N+mGqNpXb2QoIrLq5qsb5et7Azt3KnXdbv8ud1DuExofWuD1ApVj5SgmgAgWIMChKZI+fgLWJDSWVJZgbmHM49jDFlcXYmdpRpimjbb22VfQjUU+j5LG/qNUwVhpXC9hVCpWc6N3PeuY0vei1RTzKeSQ/1gdb+vnTH8epAJa1hTmqMwxuMvhPAyK9hkDfEU2FpAPQazByy3IxVhlLScwfuYoRavnc1kbWGAqGCDoQdTp0CvCfCggwNIoqycaLHgh6vCzR+uXWLzJdxERtInuMFFUUUaopJakgiYMPDmJhaMEsy170eiQda8KhCfit9mNr+FYS8xIxUBpgqDTEJ+QqYT42eNv7ICJy7+k9skuyORV/CjdLSUytN1z8PfZ33m7+NgADvAYwquko7r9zny71u8gJvEJQ8GUn6fPkZunGur7r5OvR6DQIgkT9KteW81NABe7jcllwdgHFlcV02tyJd35/BwGB8IxwriVfY93tdbKZ5dkxZ/m++/dodJoaaWph6WEsvLCQ7r92x3qxNU1WNWF8yHjW3FpDWFoYGp2GdbfX8cmZT/ii0xeIiDSv25w6JtWrRC+ivWt7rk26hrHKGLVCzbiQcTT+uTHrbq+Tk1mNTsPhh4cZ22wsI3xHMOnwJKb+PpXJLSYTPyOeXYN28chapMeAQjRnT3Ph/f6A1CwhpSAFJ/EP/ZO1NYYqQ77q8hU3Jt9AJ+potb4VX5z7QqKBCgLBbwRjZmhGYXkhg70HM2zvMFZcW0F9q/qS4D9kfBVH9j/D1eSreFp7yuaHfwWlQkkn906s7ruatA/TODbqGIH1All2dRleq7wIWBvAkstLSMxLfKXj/V04mDlw/K3jHB91XGrwEfErTkud/lZyVYu/j/+YRGPbuVREEXR/fNHqRNDotCw6eIXMopodVGtRi1r8cyy/thwvW69XFgdmlWSx/OpyfFf7EhQcxKn4U8xtN5crE66QmJ/I2GZjZSM1fdvWv4OYrBiSCpLo2aAnjmaOiIhkFr/6Z//ik4tEZETwpvebHI09SmllKWObjeXM4zOcij+Fh7WkRjZWG1NSWYKJ2oQn+U+wNbGlgU0DtkVuY3PYZuafnk+nzZ3YfW+3nOgoBSX1rerT2a0zS7ov4ezYs2TPySbhgwR6efZiS/gWyrXlnB1zloFeA0GUAj99gPlx+485/ug488/MB6CnZ09upt4koG4AJmoTMoozSMpPYuqRqVUCXVEUKc7LJFdZyUUTSdT9vHOxkdIIcwNzPKw9KNWUsjlcohHpV3l16KhrXrdGH43nu0o1d2zO9eTrJBdJrVjVCjXGqr8Wzb4I2TUaHQiQbQrbfEXZmK+wopBbKbcwVBqSkJeAg6kDU1tNlfn0U1tMxVgpnVdErFLJACjVllZ53M6lHWZqM5mekVwgjV8pKAlLD+Nc4jl5W30yI3ee+uO3xsXMiWmtplGqKSX6aTSXkp6ZKr4IEREbIxuZvqMTqlc+ZgbOlDw0/sgHynWVsgg7tywXDRo+PwfaP8TfOiNpzsLqguIVWCYvNk94HqWV0vy82+pdCisKsTexRykoUQgKHuc9ZuzBseSV5VEYdh1LtTld6nch0DkQD2sPxh4cy1cXvkJAwN/WF/XxUMIcJZ0HSJSlJZeXUFhRyNXkq4BklBfoHEjCBwn81OcnrIysOBl3kjJNGWtvr+Va8jVZOO9j58OMNjNQCApSClMIvhMsV9M2999M2fwyZgdJ7Z8/ymnC/l1gIErXmlaUxuWky4iIBIcF88mZTyisKJQpcxMPT2TB2QWUa8rxtvVGrVDLAnU99HosD2sPDJQGXEi8wLtH36X5uuaYfmPKlCNT8Hfwp7FtY0LjQv+WcamlkSUTAyaSW5bLjUk3aOXciqlHpuL5oyc/Xv+Rfff3kVKYwvuB77PhjQ3sHrybE49O4L/GnxspNxjmO4xrk67x7VdX2DipBRZXpeRs7a21lGpKcdb8IZz/w7APpNbRNyff5JP2n/D1xa9pvb41YWlhsofM5aTLeNl6MdJvJCfjT9LApgEb3tiAu5U7A3cP/NPKjh5Xkq7USJt6FaiVano16MWWAVvI/CiT/UP309CmIZ+f+xz3le6029iOn67/9M8q13+Bng16kjwzmZmBMymuKGbo3qG0DW77UufzWvzX8B+TaMRnlMhJhh4CSpKyKnFY6oDhIkOar23OvFPzuPzksvyFWota1OLv43HuYw7GHOSDwA/+NHDRiTpC40IZtncYTkudmHtqLr72voS+FUr8jHg+7fgpC84twNzAnBW9VhCREYGntWeNHYj+CifiTmCoNKSjW0eZnvN3foR+uvETXrZezGk7h5LKEkLjQnnT+03UCjVqpRoXCxcEQcDW+Fk3oPTidERR5GryVUoqSxh/aDzLry3nQuIFDJQGmKpNEZCoD7en3Ca4fzAz2sygs3tnCsoL6P5rd9499i5jmo4hYloEnet3ZsuALTJdTB94R2RGsKrPKnZE7QAkikPX+l25nXab1xu+DsCk5pMIeRCC1yov/Nf4021rN5yWObE8ch1FBlAgPlvhtjaUqBSGKkMKKwqJz40nqyQLWxNb3C3dAYm3b6I2obC8sEZu/+pbq2XjvCMPj8hmbiAlQs/TT14Vz2sbFDrY5QOFjd0Z5D1IHoM+qZjcfDIanaZKn/9KXWW1ZMJAaVDjuVQKFSP9RpJXnvfMx+KPipVaqZZb6YKUeHTz6IZCUEhjFGHqTek1o/oNOR53gi71u5CQl1ClkvC8waOBwoBDDw5RUFHAmQSphaieDmZnbCdv983lb8gsyZT58F3jIT43HgsDSXtjUazlswtSUqFTPJuzRzbSnDn/RfynFbUv7Xqln4fmTs3lx9sGbkMn6pgYMFFyShe1qGIectuqBDMDM8LSw9jx5g4ipkZgY2xDubackvsR5CkqSBBzUCqU2JnY0aZeG36+KdGXUgpTCKoXhFbU8n7g+5gZmKFUKOlSvwvbI7fT+OfGzDs1j2E+w3jwnpQ430i9QafNnTAzMEOj03A99Tr+Dv4AeNp4olaq+b7H9xwYdoDH+Y8ZGAOHumzAwtCChLwE2jhLQmuVoOKzTp+xf+h+vunyDeYG5sTnxsttiqOzoqnUVZJWlCZXxPTzJSKSU5pDWmEa8bnxaEUtNsZS4mhtZE16cToj9o0gqySLdbfXMWDXAL69+C1nHp+hsPzP2RXvtn6XzOJMYrJi2D14N/en36erR1dmnZjFmINjcLFwkQ05h/oM5e7UuziZO9FxU0cWXViEVqclyCWIKWtvEd+vHQCph6Xvi7Vph7nhTLX2tgZKA7587UtuTJLM61pvaM1nZz8jyCWITzt8ysILC+niLtG/TsWfYu/9vRwYdoD0onTGHhxbI0VQj5LKEsLSw/6UNvWqMFIZMdB7IHuG7CFzdibbBm7DxtiGD0M/xHmZM922dmPDnQ3klOb8l8+lh6HKkGW9lhHzbgxNHZpyNfkq7ivd+er8V/+2Dln/V/Afk2h4OJigqKaVe2ZMVKGtICw9jMWXF9N+U3tMvzHFbYUbo/aPYlPYJqKfRv/ph6YWtajFM/x4/UesjKwY3Wx0ja8n5Sex8PxCPFZ60HNbT6Iyo1jcbTGpH6aye/Buunt2RyEoWHNrDafiTxH8RjBWRlZEZEbQzLHZPxrTibgTdHDrgInahLrm0mpkWuGrCcKT8pM4EH2A91q/h5edFz52Puy9v5fUwlQ5kbqSfIUrT67wpEBqAapf2dYH5no/CUsjS37u/TPR70RTXFnMcF9JuKlvGSmKIutvr8dvtR+x2bGEvhXK6r6r5eRqZ9RO8sulaLGhjeRsfiz2GN9c/EamK4U+CiWvLA8LAwv23t+LicqE/LJ8eazhGeGyML5ZuU0107j8inw5AVrSbYkcUDW0bkhCfgL+Dv4M8xkmC9ArdZWYqasmf8YqY9q5SAGNTtTJ1YMOrh04EnvkpXP9Ip0JqtN5jCsgIB32NYGUwlQiMiLk1r768zmZOZFdmi0nOMYqY4LDgqsdS69/eBEanYbpR6fLj1UKFelF6TRzaEaZpgzvOt5Vxncr9ZZUxfhjQeu3P4puOaU5xOfGs7T7UpzNnauc73nqXoWugticWBzNHGXHcXsTyWvhaenTauPTB/1LTkHffHua15WC/1wTGD1EgfaFaRQVMCISco3B5i880VQKFW6WbvI9+yI+O/MZCkFB74a9Ge43nL6N+nLm8RnuT79P4zqNaZqtItxWS8iDEEnkHjIeNys3mSIzIsmCX5tJ78OVpCvoRJ2cjDeu0xidqJOduvU6jdC4UG4k3yA2JxY/ez/uvXOP1X1X42HtgaWhJSN9R/Iw+6FssKZWqDky8ghKQVmFyjPAawDLR0hi7Lm/TeY199dQKVSsuyNRrcYFjOPLzl/Su2FvIjMjKawoxEhlRNZHWcxtL5lPDvcZzoFhB6TqIhKlR39f5ZblytRJlUJFTmkOKkFFXlke6UXpKAWlXPl4nPuYby99S9etXbH8zhLfX3yZGDKRdbfXEZ4eXuX+aGzbmF4Nesmtbr1svdgyYAuho0Op0FaQWpgqB7p5ZXm4W7lzYfwFPunwCZ+d/YyuW7vKFbn8gX2wqVRzaJ8az2x4WJZK4GRot7M7e+/vrUYpDagbwI3JN/i0w6d8e+lbWq5ryeuNXieoXhAzT8zEWGnMxICJTAiZwPnE82wbuI2QByF8d+m7l95jt1JvodFp/nFF42UwNzRnVNNRHB5xmPTZ6aztK1FWpxyZguMPjvTb2Y/tEdv/27QVDes05O6Uu2x8YyMGCgM+O/cZ9VfWl74PavHfgv+YROOtzk4IAnKyoRBApVCyZsxgRvqOrLGv+pP8J+yI3MGEQxNo8ksTzL4xo/3G9sw/PZ9DDw79S0pytajFfzryy/LZELaBaS2nVellX6GtYH/0fvps74PbCjeWXF5CN49uXJ14lahpUcwMminTKEDSBHx08iOmtJgi068iMiJoat+02jn/CmWaMs4nnJcdie1N7REQXvkzvOL6CoxURpRpyphyeAp5ZXlsi9yG1yovyrXlVGgrKNOU4WDmQKBzIAAGgrRSrm9Xqv9h2zN4D9NbT+duhiSyXPjaQnp49mDMgTHcTb9Lnx19ePvI2wxtMpTIaZGyAzTA3fS7vH/sfQyVhnT36C6LnHcN3kXDOg3ZfW83AKtvr+Zm6k3USjUiIiWaEsIzwnnN/TUm+E+gT8M+WBlZkVmcSbihtMpnbSStZgY4BlDfqj4iIq2cWvHl+S9p79oeA4UBl5MvS8d/fTX9GveTqSUiopy86WGoNORAjNSyV9/xyURpUqWy8TysDCTaxvMLOso/XMJf7GbzRqxA5wSItn0WoMdkx+Bn74dSUFKpq2ThhYVV9tEHTy9qMP7MiVjvhK7fX4dOft+is6XWww1tGvJ5p8/JKcuRx972CRSaS+9/bHYsbzR+g1JNKTHZMbR2bl3juZzMnGjj3Ia2Lm1l2pm+XfKL6Nuwr1yJSbEQGHI6g/tJd1h1BEwqYLtP9UUxKwMrdjeVcso2T6gmDtdXREB6v1wtXckpzZGrW88jPjeevg37EpERAcD33b/nSf4TVt1YhYuZM95PoW//jxjpK3Vy2he9D7vv7YjMkLpGDbyWz8N+7RAQyCjOILs0W64+GKmMUCvUZJVk0dCmIRnFGXT/tTs9t/WUE5WJARNpbCslliWVJagUKrZGbKWOSR2JVoakP3C2cKaBTYNqmoF69aXFioF2HQl5EIJGp6Fr/a4oBAVb7m7hu0vf0X5je3ZG7WR+h/mUacqIyIjghys/YKwyZmP/jQzwGiB305sVNIsWdVugUqgQEDBTm2FrYitTrHo37I2fgx9mBmZoRckb5nbabSIyIyisKMRYZYyjmSMllSUcjzvO1CNT8V/rj+W3lnTa3Ik5J+ew7/4+RvqO5HbabdnkEyQdi7WRNdHToxnlN4pvLn2D2wo3Pj3zKXlleSx8bSFnxp7hUc4jmq1pxsGYg6SXZOLo4EmplRmHd0JMyUQOHLNEpVQx5LchNPypIcuuLqtCfzJQGvB558+5NfkWSoWStsFtCXAMoLCiEGsTa9b2Xcv0VtOZfHgyyQXJLOi4gE/PfMqJRzUbel5JuoKZgdk/osG+KmyMbZjUfBKnxpwiZVYKS3ssJbskm7cOvIX99/YM/W0oB6IPvFSv9KoQBIHxAeNJm53GEO8hJBUk0Wp9K0btH0VxRfFfH6AWf4r/KB+NyMRCtp1LJT6jBA8HE0a/5oSvqyT2qtBWsPjSYn648kMVoyY9DJWGckcOpaCUV+eczZ1p69KWQOdAWju3poVTiyrBVS1q8X8Ny64uY96peSR+kEhd87rEZMUQfCeYLeFbeFrylDb12jApYBJDfYbKYssXoRN1dN7cmaSCJCKmRmBuaE5GUQaOSx3ZP3S/7Bb8qjgZd5Ie23oQMTVC7oDl8IMD77V+j087flrlvAl5CYSnhxOeIf0LSwuT22aqFCq8bb1xtXTl99jf8Xf0p6CsgHJtOUYqI+pb16dF3RYsvrwYb1tvorOiUQgKfOx80Gg1FGuK6Va/G8H9g1lwZgHr7qwj/cN00ovS8VrlRUlFCbYmtmx4YwOvN3q9yjUUlBfQYl0Lcktz0eg0PHj3AYsuLOLnmz8zyHsQRiojjjw8Ilc7AAIcAgjLCKvy/WWiNiHQWXIGDlK5c+T7t1nb6tl5ZKG8qMFQaUh71/YcGnGINhvaEJkZiVqhxs3Kjb1D9hK4IVA+bme3zlU0C+YG5ozwHSGvFD8Pvd+HicqEUk2pTEfSdxbSY7TfaH6N/LXa/vt2QpwNzPkT+c/LvCJe3Mbc0JziimL5O91IaUSFrgKdqMPB1EE2dhQQUClUWBlZ8bTkWYXB39GfQd6DWHB2gfTEH6c0UhlRppUCmD4N+nD/6X0S8xNfOqYG1g1QCAoEQSA2J1ZOWhQoZDqYgIBCUJA+O50z8WcYtm8YE27Dz8dghy+MjILB8xtwVHhU7fjP/25Zlf7R7lZHteVCN0s3+X53tXSltLK0yvXqsaDjAhZdWET2nGysja157+h7bI3YygDjALZ8cB6OHoXevZkdOptfbv6CAgXFmmIQwSMX4m2e/a4ObTKU0HipCqcUlPja+1JSWYJO1BGXG4eXrRffdf2ONxq/QaOfG9Hdozur+qziYMxBZp6YyZP8J3jbenPz7ZsM2DVAbpIwpcUU0ovSJarj6OeaEGRlgZ0dE8dZs7thBcWVxTibO1NSWYK9qT0Psh9grDLm0IhDdHLrRJ0ldQhyCSI0LpQ5beewuPtiAIorijH71oxxzcbxc5+fGfzbYE48OoFKUMnv2dFRR+XmFWWaMqwXW/NOy3fo6NaRW6m3uJl6kwdZD0gvTq8W8CoEBYZKQ3SiTv6cCQjYmtgyuflkOrh1YNS+UYz1H8uynssAiQ669MpSVt9ajYjItJbTmN12NmqFmkmHJ3Ew5iCe1p64WLgwVO3PiMkrsbJ3BUNDeDJvQH8AACAASURBVPCAO2l3WH5tObuidmGsMmZCwATeD3xf1qCB5I/03aXv+OrCVzI1b13fdUxqPokPQz9k+bXlLO+5nNC4UK6nXOfW5FvUt65f5dr67+pPSWUJJ0efrHZv/auRkJfAnnt72Bm1k7vpkp/RQK+BDPcdTtf6XVErq2vO/g6uJV1j8G+DSSlMwczAjOA3ghnqM/S/afT/9/AflWi8CkRRlFYxTs8nIT8BQOZm6uFg4gAC8g+QkcoIjU6DRqeRvyQDnQMJrCclH9623rXmLrX4PwGNTkODHxvQ1qUtPTx7EBwWzKUnl6hjXIfRTUczsfnEV1rBWn51ObNCZ3Fu7Dk6uT+jTvTc1pNH7z3C08bzL45QFbNDZ7MzaifJM5Pl1XG/1X40rtOY7h7d5aQiMkOiSoAkUm3m0AyloORk/ElChofQw7MHhipDRFHE40cPkvKT+LrL1+SV5bH06lLaubTD1sSWvdF7USvUVOoqUQkqdg/ZzaA9g5gROIP1d9aTOiuVQXsGYWpgytq+a3n78NscfngYkFbR53ecX2X8oigyfN9wjjw8QkllCW/5vYUgSE7K+iDQ3dIdF0uXGisGg7wHcT35OsWVxVyacOmZl8W6dQw+PYV9TaCNcxuinkZVoRS4W7lz/537KBVKLL61oFxbzpUJV5h8eDJJBUk4KAMxKngdMzxRGGYSqVlJgSCtcr/MSG5cs3FsDt8MSHSmSl2lXG14zf01ziaclbe1MbaRedXPm+Rt3wsX3JATJCOVESP9RrIxbCNNbJtU6Q5VE55PQu69c4/XtrxGVnEWOnSYG5hLVLPyfMq0ZfK2BkoDWtRtQVJBkkxBAWjt3JqCuzeIeSajwERlgiiK1fQgnd06cznpshycPR/86++X5/+2NrJGK2plOpBKUKFUKBndbDS7o3ZTWFGIbRGkL4XgALjkAkeCJOO5P7t2k3KREjW45kPiHwULV0tXnuQ/YUzTMWyN2IpCUOBk5kRyYfJLjyMicmj4Ifo17kdWSRYNfmzA4ERTNqxJhYQEcHPjRsoNAjcE8nWXr+VmBXojQRsjG3LKcgibEsY3F7/h4pOLVaqMpmpTlvZYysTmE2U9y/Tfp3Mk9gjett6ciDtBn4Z9UApK8sryCB0dSt0f6pJXnoeJyoQKbQV1zeui0WlI/VDynanUVrLw9Gd81fM7fpjgxcgVp+m3ox8Psh9QXFmMgICfvR8phSkoFUo2vrGRVTdXceLRCQRBIHdubpUFEuVCJR1dO3J23FkqtZWM2j+K3+7/hoCAj50Pcblx7By0k/5e/Tkdf5puv3YjfGp4NUM8gLyyPM7EnyE0LpRrKdeIzoqWReb6OKMmDxYTtQmuFq5423kT6BxIW5e2WBtbszNyp+QBoilncvPJfNT2I44+Oso7v7+DhaEFvRr0wvLiTdb+9BgcHCDtGZU0tTCVVTdWseb2GvLK8hjgNYCZbWbSzqWd/B367cVv+eTMJ1IHN4WSm5Nu0syxGfNOzWPJlSUs7LyQTXc3YWlkyZUJV2TXdFEUsf/BnndavsOXr3350nv134GYrBh2Re1iZ9ROHmY/xNbElsHegxnuO5wObh3+VGP4Z9DqtCy6sIivLnyFVtTS2rk1B4YewMnC6b/5Cv734z+GOvWqEASBkX4jefzBYy6Ou0grp1ZykmGgMEApKMkoyZCTDE9rT5rXbS6349OKWhLyEth7fy+TDk3Cb7Uf1out6bKlCx+f+pgD0QeqGW3Vohb/GyCKIkuvLCUxP5GQmBDGh4zHWGXM7sG7SZmVwvJey18pyYjJiuGTM58wI3CGnGSARJsyVZtWWxl7lXEdfngYL1svFl1YxOA9g2n4U0OiMqPYF72P6Uencz7xPG6WbszvMJ9jo46ROiuVzNmZnBx9kqclT+ndsDf9GveTjboEQaChTUO0opZRfqMY7jucSl0ll5IucfDBQUASXzuaOaIRNXjV8cJYZYyZgRnlmnK2hm/levJ1TFQm+Pziw/WU6xwYdoBZbWbx5fkv5ZadIAnrxxwYw557e+R2ltsjt3M56XIV07mE/ASZUtHAugEfBD4zSfR39Ofm5Js4mjnSa1svuf2j7vQpLnhKAdzttNtVWtIKCCTkJfDWgbeYfGjysxVVQeDKxCu0sxtF3YIvsKE1htijKvfGX7saC1EKoGpKMkb5jeJMwhnMDcyxMLSgVFOKpYGlfL7uHt2raChySnPo5i5159EHmiYV8MVrcPBZt1/KNGVcSLyASqGSk4zn6bAvBgsioiyk/+n6T9ga28or0CWVJZRoSqokGQAuFi4UVxSTUpCCUlBiqDREISjYpRjGwzpUoSKVaErkJMNYZSxf043UG1V8GURRlK9L//wInxH82PtH6boqy6q4VGtEDeXaco7HHsfBVKIRtTJvTLqZpFn51Z8/TTJACkqLDcGiHJItpaAfQBClMW6L3EZnt87oRB3JhcmypuBF6OflvWPvEZMVg62JLQs6LsA6LpViQwW4usrzaaA0kJOMDolwVTkNQO4WNmLvCI7FHsPJzEmeG4DiymJW31ot6waKK4rJLM7kSf4TojKjCBkewpERR2hUpxFpRWlsubuFvPI8+T3YPWQ3+eX5pBWlcT7xPI9zH9Nxc0e+vfY9ZWZGzGo0FidzJ7p7dpfnX0Skh2cP7k69S0unlvTd2ZebKTfRoaNPwz7VqrBGSiPZ/LNUU0p8bjwmahNERBLyE+js3pmBuwey6sYqTsafxN7UHj/7mn2FrIyseLPJm6zpt4a7U+9S8kkJd6fcZVWfVQxqMggXSxd5W2OVsfzP0tCShPwEDsQcYN7peXTc3BG/1X4svrwYE5UJdc3qsv7Oeur/WJ/dUbuxNbFFISjYc28PlxobIfr5Qno6BAfLx3cyd+Lrrl+TNDOJX/r8wv2n9+mwqQOtN7RmR+QOKrWVRGRGEOAYwIKOC9DoNLQJbsOlJ5f4rtt3zO8wn8/OfUbfRn15kPWAqb9Plbu3Pcp5RFZJFkEu/3Uh+H8VXrZefNH5C2KmxxA2JYwJ/hM4+ugonbd0xmW5C7NOzOJGyo2/bQyoVCj5vPPnJM1Moq1LW26k3MB1hSufn/28Vu/7N/G/rqJRE2KzY5lzag6HHhxCJ+pQCkrsTe2rrLyIiPja+eJjL/Wpv5N2h9icWEDig5sZmJFXlievztWzqEdr59ZS5cM5kBZOLf5RJ51a1OJ/GjmlOWyP2M6GsA1EZERgqDRkbru5jA8Yj7uV+986lkanod3GduSW5nJ36t0qNMQxB8YQmxPL1YlXX7p/SWUJUZlRRGREVKE/6VeEbYxtaObQjKYOTbmZepOiiiKuT7peo3kZwKUnl+iwqQPHRx2v1qbXZ5UP97Pu81Hbj9gVtYukgiSMlEacHHOSDps68KbXm9S3rs/Sq0t5t9W7pBSmkFKYgrO5M+EZ4cTnxgNSh5hVfVZha2JLuaacFutakF2STZf6XbicdFmmsegrBM+v8uv/ntduHutur0MQJHF2cL9gunl2w22Fm0xPaeXUisXdFjPp8CQEBC6OPc+DTk14beAzquh3Xb5j3pl5WBhYMNx3OAdjDmJuaE5cbhwKQYFaoebzTp/zcYePmbMlhhuPchF4FtCLaMkVbhChrNkJvqOrRBfR+0LoqUl6mtm0ltPYHbVbDkCNlcZ0dO/IiTiJ560W1IiaSjQvFIifpzjVNav7l67vAgKNbBqRWJD4Un52F7cunEk8Iz92NncmszgTpUJJuaYcpUKJPWZo8/PIMKOKoN7SwJLiymI0okZ+316sjL8MwW8EY6o2Zfi+4dVe01+nm6UbqYWpVOoq+X0b+GWASyF4vwMx9lX3eb5SUgX6BAPwyIEndtJ2ntaeJOQmoENXhebVt1FfjjysLuI3UBogiiIfBn0orZh3dMQrXUvBxZMsPL+Q84nnsTG2QSfqyCvLY/0hCNhygpb7etLDoweXnlyS7wdpPBJFzdXSlfX91vPd5e8IjQvFwdSBCm0FReVFaEQNK3qt4P3A9wGJrvnZ2c9wMHPAx85Hrg6GDA/BUGlIr+29UAkq1ErJEHLHoB206TQKhgwhfu7bdN/anfi8eKyMrGhRtwXnEs7RzrUdO9/cyeLLi/nxhpT4TfCfQHD/4CrX7/iDIxqdhuRZyfTZ3oc7aXc4P+48xx4d4+PTH2NhaMEwn2Gsv7MeB1MHutTvwo5BO/7yPngZ0ovSmRQyiVOPT1GuLUelUKHRaTBWGdO8bnOczJwo15aTWphKbE6sTKVUK9RVmjI8D7sKFX2fGOGZXIL7tE9wb9MLdyt36prXlZN0najjxKMTLL+2nJPxJ3E2dya7NJv3Wr3Hkh5L2Be9jyF7hiAiMrfdXL7o/AVLLi/h83Of86b3m+yP3s+qPqt4p9U7bLm7hXEh48idm4uVkVW18fxPQyfquJZ8jV1Ru9hzbw8ZxRl4WEvu8iP8RvwjXcn+6P2MDxlPQXkBzubOHBh2gFbOrf56x1r830g09MgoyuDri19LRjl/rO55WHsgIBCXG1flg+xj50MPzx7YmdgRmxPL+cTzcmDhbumOrYktZdoyEvISKKooknnceq1HYL1AfOx8ailXtfj/EjpRx7mEcwSHBcvOsO1d23Mu4RwHhh5ggHd1B+pXwbcXv+XTs59yafylaqtd/mv8CXQOZG2/tYiiSHJBMuEZ4VJSkRFOeHq4zG1XCAoa1WlEU4emaLQa9sfsJ2JqBL72vnLZf96pefx2/zfi3o976XiG7R3G3fS7RE+PrrIqHpERQbM1zeTgcZjPMMLTw3mQ/YDEDxJxXeFKK6dW/DrwV7xWeVHHuA4req1g9IHRvN/6fTlw2TJgC53dO3P28VnOJZ7jXMI5EvISAIkOZGNsU6UCam9qz0jfkQS5BBFUL4jTj08zPmQ8FZ9WsOnuJqYcmQLAtoHbyC7NZnbobM6OPUuPbT0QEKjQVjC15VT23d9Hm2xjbKLiONqmDqmV2TiZO5FZlIlG1NDZrTPj/McxLmQcAxsP5MCDA3hYeRCfF4+p2pT5Hedz5kwbNJXVXdnLyeSqql+15y0NLMmvyKdr/a6cSzgnB+AqhYqP23/MF+e/oK5ZXTKKM+SAvLFNYx7kPMBMbUZRZRF2hVBsCIYayDP5aw3G8xAQqGdRj0qdZAqoElS0c23HzZSb+Dn4cT3lehU9xMugQEGAYwC3029LwbogVUxEUXxm0mfuJL9vI31HsiNqB/0a9ZMD4Oehv0Y9TNQmGKuMyS7NlsftZO5ESmEKg7wHcSDmAOYG5sxpN4f5Z+YT9TOMGgRHdkDXCUoeWmvl/V51fnb8BisGOHBDnYGJygQXSxceZD8bk7mBuWQcl3ytxorJ/PbzWXptKXYmdhz+8SlhlmWMHwgt6rZgQUdJuzJgt/Sd8OhGG85+NZEpR6bQwKYBGUUZ5Jfny1UM/ZjdLNy4N/0eyQXJjD04lusp1wGJ0miqNqWpQ1MOjTgEwM7InYzcLwnPb0++TbtN7VAICua0ncP0VtOx++EZr+2DwA/4occPKAPbkOxpR9OAa1gaWZJckIyloSWTm0/m9UavM/S3oWhFrVwZSytKQ0Dgq9e+Yl77efJvs88vPsRmx/J6o9c5/ug4J0efpL1rewB+vvEz7x17DwtDC6a1nMbiy4tp7dyaC+MuyNXRf4LY7Fga/dwIS0NLkmcmE5kZyZWkK1xJvsLlJ5flpLtxncY0c2gmtxWOy4njRsoNWTsEUqVQp9GgRMBCoyDb4FkiolaocbV0xd3Kvco/nahjy90tnEk4g5HKiPH+45kROIMTcSeYcXwGKoWKBjYN2Nx/M6cfn2b+mfm0cmrFnbQ7XBh/gS13t3A56TJR70T94zn4d0Gr03Iu4Ry7onaxL3ofuWW5+Nj5MNx3OMN9h8sthV8FZZoyph2ZxpbwLYiIDGkyhC0DtsiUslrUjP9TiYYeRRVFrLm5hm8vfyuvLNY1q0tTh6bceyp9MZqqTanUVlKhq6ChTUMGeQ+irUtbskuzOZtwlrOPz5JUkISAgLett9SDXyGQUpDCvaf30Ik6TNWmtHBqIVc9Wju3pp5FvWodWGpRi38XUgtT2Xx3M8FhwcTnxtO4TmMmBkxkTLMxzDg+g9tpt3nw7oN/xGuNzIikxboWzAqaxXfdnrVFLNOUEZ4eTruN7ejg2gEECE8PlwMeS0NLmjk2kysVzRya4WPvI1dDhu8dTnxuPDcm36hyvpXXVvLx6Y8p/qS4xs9UckEy7ivcWdFrBe+2fheQaFghD0KYdGgS2aXZuFm6UaYpI+3DNN7Y+Qa/x/7O8p7LmXtqLg6mDjz+4DEGXxmgFbUcHHaQgbsHIiKiEBQoBSX1LOrJnYX0XZ+eD+SsjKwo05Th7+BPXG4cD997WGUF8JebvzDj+AzKPy0nKDiItMI0kgqSGO8/noS8BAxVhhwbdYwzj8/Q89eeNLFrQnRWNK6WrrS9msxht3IGth7NpshfERDo1aAXxx4do4t7F1b2Xonfaoni4WzuTNLMJIb8NoT90fsREfHTrMCG1tUqGjncIFJVc0XjeQgIWBtbU1xRzNddv2Z2qGSmZqA0kOlCpmpTGlg34N7Te2hEDWPCwFgDmwLVVNS0Sv8HXpYwmKhM8LX3Ja0ojcnNJ7Po4iIqtBV4WnsSl1s14fyzQF2JgBYRRMmgsVRTSjOHZoRnhAMSnUapUFJcWYyTuRO5pbmv7BuiF3w/v/JsqjaVO3zZGttSri0n6H4hoQ1g0D046KPk9UJHjhunoAW0KmkOzAzMamxu8iL6xsCsq9BvJGhMpAqYmYGZrNcxVknXGOAYQFh6WLX9pzSfQkvnlnx0YjaJX+SzqCNs7+1E4oxEVEqV5Nr+jTmiToe27mqG1jnN0dijlFSW4GHlgZHaCG9bb0JiQghyCZJ1RvoErp5FPVb1WYWXrRc/XPmB4LBgtKKWj9p+xMw2M4nOiqbr1q50dO3I+fHn8V7lTXFFMZ42nqQVpvEw+yE9PHrQzaMbc0/PpZdnL1aueEB4cRzB83uz/c3t9NnRh6jMKKa2mMr3Pb4noyiD1hta8yT/CWZqM9ys3EguSKawopCgekH8OvBX6lvXp9vWbpx+fBqloCRkeEi1Jg7rbq9jypEpGCml5gCGSkMC6wVycNhBrI2rd/R6FRSWF2K92Bo7UztSZ6VW+f4SRZGEvAQp8fgj+YjIiEAn6rAyssLP3o+LTy7Sv3F/Qh6EVNEJCSK0TVXiLgZS4jWXklIrDE1yEWzOklJ5mYS8BLJKsqqMxdrImqKKIip1lTSq0widTkdqYSpuVm7EZMUwu+1srI2s+eTMJ9SzqIdGq8HKyIoObh1Y1696o4j/n1GhrSA0LpSdUTsJiQmhuLKYlk4tGeE7gqE+Q6lnUe+VjnMv8x79d/UnLjcOU7Up6/qtY6TfyH/x6P9z8b9Oo/EqMDMwY3a72aR/mM6vA37Fw9qDtKI0TsSdILc0l6FNhtKvUT85S80pzeHHGz/yxq43+OLcF9QxrsOON3cQ+14s6/utJ6BuAJFPIzn+6Dj3n96nuWNzRvqOZITfCGyMbdgVtYvBvw3GdYUrzsucGbh7oGzyo6eE1KIW/ypUaisJiQnhjZ1v4LLchUUXFtHBtQMXx18keno0H7X7iHJtOXvv72VG4Ix/lGRUaCsYc3AMHtYetK3Xlu8ufcfIfSPx+cUHs2/MaBPcBq2o5VHuI2xNbJkVNIuQ4SEkzEggd24u58ed58fePzKp+SRaObeSkwytTsvJ+JNyW9vn4WjmSKmmVBZ/v4g1t9ZgojZhbLOxiKJIaFwogRsCGbh7IAXlBQz3Gc6m/pvIKM7gVuot1Eo19qb2bI3YioWhBTllOSgEBW5Wkn7r/7F33vFRlXkX/05Nn/TegUASQkJP6L2DlNAVQYqKgCiuDXVVZO2iLCLIUgWk9yYiLdTQAkmAEAKkk94nydT7/jHMJUMSxH333fIu5/PJJ5PJvXOfuXNn5jnP73fOGbVllDhxNQpGdEadKCqWICHIKYgJERPYMHIDaXPSaOvVlrLaMma0ncH5nPMsGrCoXptBja4GG7kNPyf9zIWcC6wZvgaAdVfXEZcRx4gWplXk3sG9WT9qPYkFiTwf+Txutm6sb6GhzAb2pB0AoL13e8aEjwFMKe2hbqHiKvOcjnPov6E/O27uQEBgctRkiq23PMhdNk1SBEy2nRkyy9aS/sH9cbZ2RorUotffHG6mMWh4+4gpn0AulSPUSVZV69SklaaJ9riealOb0ONIBtBoVaJaX01GeQYjQ0fyQY8PSJ6ZjK3cth7JMI+vIW2Ci05O4l8FsZqhN5jG5mH3sGep1lArtuPlVuZSo69BIVXgoHRAggQ7Rf1KUN3jPtreYiYZcqmcopoiArIqmfmAN+9oCcNDh7PXIYd1u2GYqWOXlh4tG3V1exQHmsPwiTA0FQTBiFKmpEpbJT7/Gn0Nrjau5FSako8fPS8/XvmRGftm0FvZHJUWbribnvczm5+hWleNrcIW5YPs9HH2h9h+Y7tYKVjYeyE3C03kVy/oxQwRML1PBASyKrL4+tzX5Ffls3zocnaPM+mgll5YStDiID489iEAo8NHAxDsFEyNroYT6SewVdjSM6gnUqmUP3X5E9vHbOfI3SNcqL1DK7kP+ybsw9nGme4B3anR1YjGBPnqfHIqcmjl0YoqXRUCAuWacjaO2khOZQ5Ry6NYd3UdBWpTZsaCngvqkQyAF9u9yI9DfxQ1PyuHrSS5IJkuq7uIWqk/io1JGzEKRvKq8jibddbifxKJhGDnYJ6NfJalQ5aS8FICZW+X8duk35gXM08k8Xtu7QFMLmM9MqU4Y40ggTtuLcn2/IqSMnc0GmvKSz0ovzOeAT4vsnvcbgr+VEDyzGT8Vf7E+MYwve10hrUYRrBTMHdK7pBWmka1vpqbRTeRSCR8dfYrFsYtJNwtnOyKbEpqSkgpTqGZS7P/uGA7pUzJ0OZD2ThqIwVvFrB19Fb8Vf7MPzof/2/96b6mO8suLqNQXd+lrS5aerTk9pzbLOq/CJ3RZCDQ7sd2T/W7jeC/sqLxKMyTkI9Pfsy57HPiKsyQkCG092nPlftXOJR2CINgwNfBl3JNORWaCrztvRkZOpLY8Fi6BXTjXtk9jt87bqp4pB+nQF2AQqqgo29H2vu0x9XGlQptBQn3E7iYe5EKTYWpIvLAacJc9Wjl2coicfYpnuLvwe3i26xOWM3aa2vJq8qjvU97preZzviI8RYiZIA3f32TlQkryXo964m0Rhq9hptFN0Udxa6UXWLLEJhaNczViSivKO5X3eejEx/94Z5es+PNqRdOie0MZsRlxNFjbQ9SZqWInvxm1Opr8f/WX1ypeu/Ye8RlxNHJrxMDmw3kwxMfkjQziVC3ULy+9mJG2xncKr5FZnkml+9fxsPWg4LqAvwc/Bp17QGT7emfOv+JDr4dLM7bhZwLdF3dFWu5NVqDlo6+HTk55WS9yssnJz9hyYUlKGVKYvxi2DJ6C/JP5GIv/6UZl2jn007cftG5Rbzx6xss6buIv/38BknuAg80wPw04idOZ55mz609lNWWsW/CPvpv6C+2h7XzNlWbpu+dTohrCEn5STgIrQgyTMWOplRxhwzZKiokSRZjdFA6mLz2rZ0pqzWlbHvYeqDWqYnxi+HovaOPfQ2lEin+Kn/yizIYmAZKA2yLqF9tkCDBRmFTLxfjUXtYAYFjzx+jV7ApEG7q7qmsubbmsWMw4/mqZmyxTsPFaMV9pcZiNfhx+OuAvzL/+HxsFbbU6B6SW7MgXW/Ui8/ncY8Z4R7B6xEz6BQ7lxPBEl4ZIogtbTKJjLM/GsDLk/5jajEYDTjZOFk4ZDUE8zkJLoF0J5MbVF0e4WTlRJmmzKLC42PvQ74632KczV2akxKyGMmgQQTPBfvmESQXJuOn8mNBzwVM2zMVAfC096SstoyxLceyPnE93w/6ntmHZvNiW5PzmkwiI7syG6lEyhud3iDKM4p3jr4jPo9mzs2Y33U+847MY2b7mTgoHfjg+AcYBAMxfjEs7LWQaXunidqm3Hm5LI5fzObkzfw66VdGbhlJRlkG3x+E9ndqyIrbz6CQQRy8fZAhPw/h+cjnWT18NV1Wd6FCU0FH3478eudXanQ1lGnKeLvz28zvPp9XD73KumvrxOe/Y8wORoWPavAcC4KA25dulNSWYCWzYvXw1bx/7H1q9DUcnHiQNt5tHvsaPfpYbX5sQ4BjAKnFqUR5RbFl9JYn3n/HjR2M3jaalcNWMn3fdIaFDOXWuf2kPogwijR8h7OxIxKJZaWyTHqJa9JXkUvlhLqGklyYzOwOs5nVcRbNXZuL854DqQd47/h7JOYnopQqaenRkntl9yirLaunFzJrcQIdA+u1ZwU5BeHr4Psf0T5eXlvOnlt72JS8iSN3THa9fZr0YULEBEaEjnjsd1ZZTRmjt40Wq2JvdXmLhb0X/t1uV/8f8ZRoPIJLuZf47PRn7Lq5Syx/R7hHMKPdDBBg8/XNnMs+h43chiCnIIqqiyisLsTN1o3hLYYTGxZLnyZ9UEgV3Cy6KRKPE+knKK4pxkpmRYxfDD0Ce9DUpSkavYYr968QnxNPYn4iBsGAjdyGdj7t6Ohj0npE+0YT4BjwtOXqKX4XNboadtzcwcorKzmZcRInayeea/Uc09pOo7VX6wb3qdJW4bfIj5favST6y9dFflW+qKEwaypuFt0UVw59HXzJrcyle2B3Xot5jUjPSIKcgiw+aN/57R02JW8i47U/tgL4yclP+Prc1xS9WVTPGz21OJUW37ewsNA1wyxW7BbQjVOZp2jt1ZqFvRYyOGQwz2x+hvyqfLEVa8L2CRxPP46VzIp8db6o33oUUqQmPUb6cQQEBjUbRHpZOtdfuW7x3iytKaXtirZ42HnQ0q0la66tEVdFH8X8o/NZdnEZ1fpq9Owi3QAAIABJREFUUmalmM7bAikRHhGkFqcS6RlJ3JQ4ix7gNw6/wZlti7jsg4Wo2tnaGQ87D4Kcgjh857A44bWSmdqvegb1RCKREPRdkDiJk0lkBDkFNVgRePS5160yfN7nc945+g7NXJqRVpLGi21fZMWVFWyK3cTEHRMbbFnqfg+ueoNWCrXKxo+lkCowGA0Wx6uroZBKpFTPr8ZKboVGr6HJ4ibkVjW8kuhr70tOVQ7O1s7EJJayd5uM114KYKnbwyC9QU0HcejOIXHC/ygkSExOTw+qEs2cm3G39C5GjHjYemAlt6JAXSBeNwqpAmcbZ3GlHBAFvwiwcScMuwVhsyHnYcYeMomM2VfkfLtPh89nruTVSRN/9PzXzVUBk22ur8qXjLIMWuVDkhdiKGTdFHfzNeFh52ExPjMuVk2k9ffbUb6lJWHmVaJXRmOrsLVoB/yk5yd8cOIDno98ngO3DzA4ZDBX866SV5VHUXURcqmcXsG9cLVx5WreVa6/ch2A/an7eevIW6QUp4jnycvei8UDFzNq6yjkUjk2chsqtZVIJVLkEjlao5ajzx8lqzyLKXum4KB0wMfBh13jdtHk27VU/vhXPF7V8Hnfz3mx7Ys4f+lMz8CejA4fzexDs/lt0m+M3DKSeZ3mMaX1FFota0W1rprlQ5YD8OL+F8XJ8/ORz7Nu5Lp65wQeaiomRU5ifeJ6UxL50BX8cOkHUopS2D5mez2zibowCkZqdDVU66o5lXGK2G2xLB64mLsld1lyYQnLhi7DWm5tckzTVaPWqh/e1lnevlNyh/SydDztPMlT5+GoVFFdXYHuwdpkJ/0+rPCoNwZXBwXzJwnEZ8ez9tpaLuQ8bEV1snaig08H0dY/2jeaD49/yPLLy0U78EjPSK7mXUUhVYji/ylRU/Cw8yC9PJ30MtPPo9e9v8q/HgExExNfle+/3aJqUXUR229sZ3PyZuIy4lDIFAwOGcz4luMZ1mJYozlrv939jfHbx1NcU4yXvRe7xu0ixi/mnzz6f088JRqN4G7pXb45+w0rr6xEL+gxCkZcbFx4ud3LDA4ZzG93f2N94nrulN7B3dadYKdgcqtyRUHasBbDGB02mv5N+2OjsMEoGEkuSBaJx8mMk5TVlmEjt6Gzf2d6BfWik38nZBIZl+9f5kLOBeJz4sVVYk87T9HlqqNvRzr4dvi3dHt4in8NEu4nsCphFRsSN1CuKadXUC+mt53OyNCRvytUWxK/hNcPv07q7FTUOrUFqbiWf0384rBT2NHKs5WpSvGgUtHMpRm91vXCSmZF/PT4RoOSBm8cjEwqY9+E+mLax6Hr6q542Hmwc9zOev+r1FSi+lzFpthNjI946PBzveA6Xdd0pay2jFC3UBb0XEBseCxSiZTcylz8FvkxpfUUavQ1nLh3Qsx2MKPuinRz1+b8OPRHeq3rhbe9N9W6alRWKvKq8jg48SD9NvQjbkoc3QK7AabVypFbRnIy4yS7x+1mwIYBdPTtyOnM0xybfIyeQT0tjjV973RWJ6zm7S5v81nfzwCQfCxBIVUws/1MVlxZIQoOzWTGKBjpNc+FOKdy2nq14UpegsVqtUKiQCeYVh3NblDl75SjslKJ/eZ1J88+9j6NTtQbQoAqAB+VD+ezz4u9/5tjNzN+x3i+G/Adrx1+qO9ws3HD096T6wXX+Xk7TBzz+Mc2T6gDVAFkVmSK95sn1ubjdQ/oTkffjiy/vFzUITSkyTBP8Punwd7NEnZ1c2NK7wqLSbo5fLDu/p62npTWlooWv9YyazQGTb3Ht5HbmMiOcxPSSh+G7NXVR9TFy0nWLNtRy4RY2FzHIdXRypFyTTk/dv2SGUM/wPodPUaJRGw587L3snBJbEgHopQp0eq1bNgB3lUwa6Y/KTVZNHdtTmpxqsU4Qt1Cae7SnENphyxWqFfukxJbG4zzmDss7LWQz05/hlqnJkLqTbLR5ARmvl6GhAyhWlvNlbwrJutanZqhIUPZf3s/G0ZuwM3WjYEbB3Jh+gXRnUcQBI6nH2f+0fmiOBxMRgNGjFRqK4nwiKCstozsimwkSJgUOQmFTMGqhFX0COzB3gl7UVmpYPFihHff5c/732DhqYVMiJjA7pTdeNl7UVRdxISICfRp0odx28eROjuVENcQFpxYwCenPkFv1CNBwvS20+kX3I+xO0xhbC9EvcCr0a9ixGgx2d9zaw/rE9fzl95/4UDqAU5nnQZM2TWZFZnkVubS0r0lzjbODZKFJ9X3SCVS7BR22CntsFXYYquwxU5R57bSjpSiFO6U3KGpc1MSCxJpYu9PTmkWmgcfvQ1pr6QSaN/UkS8mmyq/AzcMRG/Us33sdi7mXCQ+J970kx0v5voEOwVToalAb9QzKmwUh9MOk1uVi1wiF69LZ6E143xXUFQqp4mnLc/19KGpj4yMsgyReGSUP7ydXpYuCt3B9Fnr71iHiDg+UhH5FxORnIoctl7fyubrm7mQcwE7hR3PtHiG8RHjGdB0QD1DAIPRwOuHX2fpxaUYBSPDWwxnU+ym/3qx+FOi8TsoVBey9OJSFp9fTLmm3FQGFGB0y9HM6TAHiUTChsQNbLm+heKaYpq7NCfAMYCM8gxul9zGTmHHkOZDGBU6iiHNh4jtFQajgWv510TiEZcRR6W2EjuFHV0DutIrqBe9gnvh6+BLQl4C8dmmD4ILORdEu7tQt1ALi91Wnq1Qyh6zVPgU/69QVlvGpqRNrExYyZX7V/C29+aF1i8wtc3U3w3EK6ou4lreNRLyElhwcgEyiUn4ap50BDoGigJtM6lo4tykXjn47SNv8138d1yacUlM7G4I5sn9wt4Ln/j5ldeW4/qlK0sHL+Wl9i/V+78gCNh/Zs9fev+F12Je407JHT4++TEbEjcgIPB6zOt82e9LCtWFHLlzhJ0pO/nt7m/iyrQZ3vbeFKgLcLN1w8veiwJ1gWivujl2M+MixuH4uSN6ox6NXoOrjSuF1YUUvVVE9EoT8d84aiPwMKhw97jdrLiyguSCZJJeTmL4luGkFqdy7eVruNm6iccOWRJCelk6xW8VmyZPmALEjIKRW7NvcTn3MhN3TmRR/0W83ul1wCQgn3VwFu7VUsrsZbjaulJcXVzPAlUqkXJy8km6re3GicknqNHXMPTnoYS7h5NUkIS1zBqj0YhWqJ+X8TjUnZDP7zqfT09/ytYxWxm7baxYeTCnhEuQIJFIiLhv5PIKsHmPeta2fxRmImie8DhaOaKUKimsabiv2kYH27eCh1sQnQdmI5PKERDqVa78Vf5kVWTVe57Lhyzn3aPv0ty1OffK7jG+5XjRdawxPFqBeLHti6y8tILwQhifBN8/40VetYk4+Kn8LLQ+W444MrZfmaXItxFhe91Jn/h8tRC3FtpIfNi2+QNePffnesngIS4hxE+Pp8X3LSivLRcJ1ZmVUOBlz8ihJpI0Nnwsx9OP41JYxS27Glq6t+R64XWkSHGxdTHlUqnzae7SnNSSVP427G+mMMjXs/C29ybguwBGho7k+8Hf1xv7tuvbGLvdMm3ZTmHH2hFrTfqBVTEisTTjL73/wuCQwai1ahy37iXizS/ZcmENx/PPszphNQajSWdkI7dhXMQ4jtw9QrW2mmi/aNQ6NUXVRdwofBgG+Uecvczjs1XYUqOvEYmkv8qUjZFVkUWUZxQxfjGNkgW9Uc+0vdOY3nY6L7Z7ETuFHV+c+YKdN3dyb+49VFaqep0Laq2ay/cvi3OAQ2mHxPZCKVLC7IPILrpL+QOHb5UQSWvDMtN7DxlSCUgk8N20MCICHKjSVuH6pStf9P2C12IsTR/MQnQz6YjLjBMzgRRShYX5RWPH+XZqGK0CG9cWVeuqySzPtCAfdUlJXUJtJiKNtWb5qfz+aUTkTskdtlzfwubkzSQVJJkyU0JHMaHVBHoG9bQYx73SewzbNIzrhdexkdvww5AfmNJ6yj9lnP+OeEo0nhBqrZo1V9fw1dmvyCzPFD8AO/h0YG70XIaHDufYvWOsT1zPvlv70Bq0xPjF4OPgw+3i2yQWmPIJBjQbwOiw0QxrMcyiIqE36rly/4pIPE5nnkatU6OyUtEtoJtIPFp5tOJu6V2RdMTnxHMt7xo6ow4rmRVtvdtapJoHOwU/bbn6fwRBEDiVeYqVV1ay/cZ2tAYtQ5oPYXqb6QwKGVTvQ1dv1HOr6NZDC9kH1QrzRNpsUfpM82fo17Sf6Pz0qIajIZzNOkvX1V35tM+nvNP1nUa3K64uxu0rN7aM3sLYlmMb3e5R7Ly5k9itsdybe0/M80jKqGTDiVzu5lfTxNOWvUWv0Ss0GKNgZFXCKtxt3XG3dSe3MpfWXq25fP9yPTtPRytHJkdNpn/T/sT4xeBq68rYbWPZnbIbnVFH94DupBSlUFBdwIKeC/igxwd0Wd2Fs1lnGd58OHtSTSLMDSM3kFuZy/vH3ydnXg5pJWl0W9ONudFz6eLfhVFbR7F73G6Ghw4npyKHyOWRdA3oyu5xu5FIJJzLOkfn1Z0JcQkhdc7DFWfpx1I87T25/4bpNXrryFt8c+4bDj93mBuFN5j7y1wQYIHQgw+lcaZ2Ikyi9cLqQosV/i/6fcGfj/2ZWR1n8ePlH4nxi+F81nmqddWPtYFtLBX8UUxvM52VCStFN6NpbaaxOmE1DlYOFkYXnx+BaVfA4y1ETUlDsKjMNJYfUWe7UNdQsRXHDHdbd3Fi3eo+OGnhVCC4WrtQ/CDf4/eO6+PgI7aXfdTjIz46+RHBTsHE+MZQXFPMr3d//d1zUxfz275O13nfMm04lDubJqrm45nP9Tf9vsHNzo1Tuxezkiu4V0Hh78ilGtKvAHhXwJuXlHzXCTJttER5RpFanGoxaV/1zCpsFbZM2DHBdIcApZ/D513hi26wdsRaJkdNZtXxb5geZ3IU2zByA8/tes4iW0QukTM8dDiJ+Ym09mrN6czTrBuxjmpdNX+78jeO3TvGJ70+QWfU1WsJWp+4XrSzrptR8iQEYHAqHPgZfOdBrspkJ23OVHG2dsbf0Z+k/CRauLUgzC0MO6UdVZoqdt/ajZO1E89GPMvWG1tFouVs7cxnfT7jq7NfkVGWwWsxrzGrwyxsFDa0+L4Fr8e8zoc9TaJ1vVHPyM0jOXznMDqjjilRU2jq0pQPjn/AC61f4MehPzZY3f3m7DfMPzaf7NezcbczWfamlaTRfElzVj2ziuejnudG4Q2L7/fkgmTRxbK9T3uyyrNQyBRU66rFqo9RMKKQytE9IJ0qIZJmhmk4GJvSLiSIMV1daOotN+W2pB7gxf0vcnDiQdEuWmfQ1fttTjE/ce8ESy8tJdo3mmpdNUkFJg3Xk1RO/h7U6GrqE5E6rVmPEhE/lV+jrVl+Kr9Gq+z/G1wvuC6mkd8pvYOHnQdjwscwIWICnfw7iQtyK6+sZM6hOdTqa4n0iGT/xP0WoY3/LXhKNP4g9EY9229s54vTX3A1/6oolPS292Zm+5m81P4llDIl229sZ33ieuIy4rBV2NK3SV/cbd1JLkgmPicehVRBnyZ9iA2LZXiL4eKHjhk6g46LuRdF4nEm6wy1+lqcrJ3oEdhDJB4RHhFoDVqu5l0VVzzic+LFzA93W3c6+na0aLv6ey35nuJfh/yqfNZdW8eqhFWkFqfS1Lkp09tOZ3LUZLwdvAGTO9q1vGsWpOJ6wXVx5dZf5W8h0I7yjGLGvhkYBSOnp57+Q+Op1lXTenlrXG1dOfXCqceuKp1IP0Gvdb24OesmoW6hjW73KF7a9xInMk5wa7YpDyApo5LXV99EEMAomL7UDIKBa7JX0CpTTQJudYFFeJhZlD4kZAhe9l5M3TuVo88fpXdwb3GbM5lnGL1tNHlVeYS4hJAyO4U5B+fww6UfGN9yPJtGb+LD4x+yIG4BszvM5vuL3+Pr4Eu0XzTLhyzH71s/3u/2PisTVuLr4MuBiQeIXB5Ja6/W7B2/VyT6e1L2MGLLCJYOXsrL7V+m06pOpBal0t63PUcmmQSIeqMexScKBjQdwC/P/QKYqp9Dfh5CXEacyaJUGciN6gzcKyHb2fQca/W1eNl70cqjFYfvHBa1GVqDFhuFDQajgZYeLWnq3JQT6SdwsnYSA0n/ETC3Cn3S6xM+OP7BQ00CIDFCzvdKdjfR8srQh/vUtcGtC7MVbEOiahkyBIR6JKnuhNvF2oUKranlY+M2uOdjxUddDfVW/huapEuQ4GLjgkEwUFFbgREjA5oO4HLuZYpqisSKjQQJSplSzDNQKVVUaCtEfYmfyu9h65cAk6/C4l+gwywFmc7SetUUCRI+7fMpM9vP5NkdEzmQdpD3TsKO2FBSiiyJVGOwlVsSGAQYe0PCG3Z9cftmGffVefT7qZ9INiRI+HP3P7MhaYNJoyOAZiGMHgP7Qk3hjI7WjlSm3eSEIQ0k4Kx0plT7+OTyhiCXynFQOojtP1YyK3IqcyipMTm7jQodxdW8q2RWZKI1aOtVhL7u9zVrrq6hsLqQ4upibBW2fGg1gDfe2E715fNYt+mAWqvG9QtXdIIOmUTGuJbj2HJ9C7lv5OJh50FKUQrd1nQT7XavvnyVSk0l0/ZOY9uNbQAU/akIvaDnk7hPWHpxKTF+MUyOnMzMgzNZP2I94R7h4iS8UlvJn379E3dK76DVa4n0iqSDTwdWJ6wm1C2UGW1nIJPKxO21Bi2Lzi/C296bISFD0Bl1lNaUkluZy7nsc+LrYn7fOCgdUFmpsFfai7qAAnUBuZW59UnYAwe1fyYa04K4OSjY9taTi+P/KB4lIo+2ZtUN+5RKpJZE5JHWrP8tEREEgcv3L7M5eTObkzeTU5lDgGMA41qOY3zEeNp4taFGX8P47ePZl7oPqUQq5sD8Ny0APyUafycEQeDovaN8eeZLjtw9gr3SHo1eg0QiYULEBOZGz6WNdxsyyjLYmLSR9YnrSSlKwdPOk6HNh+Ji7UJ8TrzY69kjsAexYbGMDBuJj4NPveNp9Bric+JF4nEu+xxagxZXG1d6BvUUiUeYWxgSiYSi6iLTikh2PBdyL3Ah54KYGRLiEiIKvjr6diTKM+p/FT70FP830Bv1HE47zKqEVexL3YdcKic2LJYXWr+At4M3SflJFqTC3H5hJbMiwiPCglREekbiYuNi8fhX7l+h3Yp2bB+zndjw2IaG0CjmHprLiisruPrS1XqOT49i8fnFvHP0HSrfrXziMrcgCAQvDuaZFs/w10GmNpW3193i0p1y6rin1st9sJXbojFoWNh7ISNajMBH5YNcKkcmkTHzwEyOpx/nzqumlOwaXQ0fHP+ARecW0dG3IxdzLhLqFsr1WdeJz44nZlWMWG0wO1x19O3IhZwL+Kv8TUYQbxYyfe909qXuw0puxdWXrrLkwhKWXFjCjVduEOwcbPG8Zh+czcorK/mwx4fMPzafGN8YPO092T3eZPd5/N5xev/Umzc7v8mX/b4U93vv6Ht8evpTpBIpnuVG2udJEIYMJiHvKr889wtRy6MwCkZaebQiqSBJzISY0XaGqaVEMDAydCS7UnaxdvhaXtr/ksVkt24VwIyGsiycrJ0oqy2r93o9bgW6Z5ac46v0jHjFlT0exeL93nbe3Fff/939wVL8rJAq6ODTgWt511DrH7bBqYRIAg1TsX/goJXLamoNiagb+WiL9IikR1APllxYYpFzYW6hqnufGYv6L+Lb89+SW5mLncJOzLgwV7ilSOke2J3zOefF1XVbLbx9Bq55wp6WDZMnc/ubXCpHYzQ9z/Rvof0bDhQZH9o3u1q7UlxbzJPi2WuwYRfM6w/fdv797U+vgskj4I6riTz1COqB4cxpDrpbkou61aYQlxBul9xGZaWiQlPBvJh59G3aF4VEgUxqet+52rrycc+P0Rl0pBSl8PXZr8lT5yGXytEatCzstZCLORc5fPcwUZ5Ron6j7nXhoHTAIBgY1nwYSflJGG+lcHOJkQmzvSloH0ZaaRqZ5ZnIJDIUMgW1+loUUgVNXZpSo6sxrf5LJKLg3E5hh96oR2/UP5Hz2N8DK5kVcqkp0dxoNFKhrcBeaY8gmFr3zKTCTMx97H3wUfngYuOCjdwGuVROeW05d8vuklGWYbKjrhMsadb21IVcKidQFUhu8T2GVvsxasoXpjFIFcilcibtmkQX/y4MazGMAnUBhepC8tX55FbmklGW8VhDjLr4v6po/G9Rq69ttDXrcUSkofYsf5X/ExMRo2DkTOYZNiVvYtuNbRRVF9HctTnjW5qCActqyxi1ZRR56jzcbd3ZMXaHqO37/46nROMfgIT7CXx97ms2J23GSm6FQqagQlNB14CuzI2ey4jQEcgkMq7cv8L6xPVsSt5EgbqAMLcwRoaNxEHpwPH04xy7dwy9UU9n/87EhsUyKmyU2DLyKGp0NZzLPicSj/icePRGPZ52nhbEI8QlBIlEgiAIpJWkieXY+Jx4ruZdRWvQopQpaePV5qHewy+aps5N/6sY978Sj7YD9Wkn4VTBetZcXUNOZQ7NnJvR2qs1NnIbUopTSC5IFle/fBx8RB1FpGckUV5RNHdt/kQT+km7JnE68zRpc9L+kAWheTL87YBv6/X4NoRpe6ZxLf8al1689MTHuFV0i9CloeyfsF/0th/zZQJFlfVbaRpLsm4MUqRIJVJxhdtGboOdwo6SmhIEBAIcA5BJZdwtvYsECa08WyFBwrX8a0glUhRShfhF3NqzNcU1xWRVZBHuFo6fox9H7hwh0tNU0TCTHLlUbsqYQODnpJ8prS2lmXMztEYtDkoHJkRMQC6Vsy91H6cyTzE6bDR9m/RFY9Dw4+UfLfrKAd4uCWelbz5dArrwasdXeW7nc6Ko3cPOg897f87UfVMB00TW8CArw1pmTf8m/dl7e6/F4y0fspyXD7z8u+dOpVSxYtgKxu8Y/9jt5FI5gmDKk1h6AEbeluP/qgFBKvnd5G54SHzMIuhHqx8f9fiIv5z6izjZfbRf3JwJclU6kwppYoPHkEqkDGo2iAO3TTkk5qqMrdzWoioGEOoaipXcive7vc+Y7SZFu3kSLJfKGdJsiNhSV7edK/I+1CrApxJOWHLOx0MA3QKIngFX6qw7edl5ka/O/0O6gu+OWzE7TsOEKfacCLOpRyjBZCCATsf7cfBxTzA+kGI5Kx3RVpY3Stb+kahbwbJT2KEz6jAYDeJ9ZuJrJbPCT+VHM6MTv7x+mTHjZWwPNW1jq7BFJjFpnNQ6NRIkeNp5ojFoMApGpraZilKm5IszX/Bsq2eJ9o1GIVPw4YkPKVAXiDkp8zrNo71PezQGDVP3TKVcU06/Jv2Y320+LjYuKKQKFDIFCqmCouoihm8ejkKqoEpbhaO1I9/0+4YXD7yI3qinZ2BPUktSSS4wpWjbK+0tHJ46+nbE296b8B/CaeXRiq1jtlJWW8b6a+tZfnk5Nwpv0MS5CS1cW3Am8wwV2gp6BfXiVMaph1W6BxUNMwFcMWQFLx54kdn6Nnj2G0VGWQYZ5RmihXddyKVypBKpxfvLxdoFZxtndAYdORU54udHXYjvOUGCRFJfC/Lvilp9LVnlWY22ZtXNwpBKpPg6+DbamuXv6N+gLlZv1HP07lE2X9/Mzps7qdBUEOUZxbiW48gqz2LFlRUYBAMDmw5k+9jt2Ckbz+X5/4CnROMfiPSydL499y1/u/I39EY9brZu3K+6T4BjALM6zGJ62+m42LigN+o5cucI6xPXsztlNzX6GnoE9mBU2CgUUgWH0g7x651f0Rg0tPNuR2xYLLHhsTR3bd7osdVaNWeyzojE41LuJQyCAR8HHxPpeEA86mo2NHoN1/KviVWP+Ox4sZ3CxcbFot2qo29HCxHrU/xj8Gg7kHmClCSfjU55W+y3V8qUhLuHi1WKCI8IojyjcLN1Eycddd/Kv3dfTmUOYUvDWNh7IXM6zhG3qzuBaei+itoKuqzpgr/Kn70T9oqtJI/bt+9PfQl3D2fxwMVPNDYw9bZ+EvcJN165ITp2fLm9iOR0jUVFA8FAseQC91ULUWvVT+zuYoZMIsNabo2Nwoay2jL0Rj1NnZtiq7AluSAZAYH23u2xU9qJVUQfex9Ka0vRGXU4WjlSUlOCTCLDydoJjUGDzqAj3D0cAQG90eRYV/d3gboAtU6NtdwavVGPTCIT25uqtFWihWvdnvX/VMgNkPsNrG8rY834MLIqs+qtwDZUzbCV2VJtqLaYfNa1PAXLtO0nSTn/o8LfP4LGHvv8Cpg2Aq678YfjcX9ZD6vbwNaIv//4AC5KR3ZsNNAmrYro6XDLvcHNaFkAqlo4F/DwPlUtRBRAfKAMd1t38tX5pok8Rqzl1jhbO+Pj4EONroYgpyDOZJ0xrcJrypnaeiovtH4BvaCnx9oeBDkFkVaSxsvtXkaj17Dn1h5S56QybNMw7BR2JBckk6fO46cRPzEpahLzDs/jwO0DSJBgLbfmVtEtag21+Kv8ya7IxkXpSNH8MnK++Yho/kaBugCdUSdW3WwVtmyK3UTs1liMgpGd43YyvMVwAFovb02UVxTrRpjsbHut68WJ9BN8N+A7Dtw+wG93f2NBrwXM6TgHt6/ceK7Vc+xK2YXKSsW6EevEDBcwfWadSD/BM5ufwU5hR7mmXKxmgem67R3Um6P3jjK/23w+7vlxgws7Sy8s5dVDrxIbHsv+1P3ojDqGNR+Gv6M/W5O3UlRTxLOtnmXdtXViNoppAOJFYNGyaIaD0kE0oSmtLbUYm7e9N608WxHuFo6d0o68qjwu5FwQdRi/B5UQybiMqZSGdKKJryOTevn8W5OMJ4FGr3lsa1bd1jUJEnxVvo22Zvk7+mMUjPyS9gubkzez99ZeavQ1tPNuR35VPtmV2VjJrFg8aDGd3SZaLDg+19PnsaL6/yQ8JRr/ByiuLuaHiz/w1wt/pbi6mECnQHIqckxly8hJvBr9Ki09WgImi86dN3cmImeKAAAgAElEQVSyIWkDR+8eRSlT8kyLZxgdNhqtUcueW3s4ePsg1bpqIjwiTKQjLJYIj4jHVhwqNBWczjwtEo+EvASMgpEAxwAL4hHgGGCxX0lNiYXd3YWcCxRVFwHQ1LmpRdWjtVdrMT33Kf4+PEk70FOYUG/VWjAgNwqMP/Yyb/dIoqRhe/On+BdiwG34ZSO0ecmUofF/hcb6xf9otashmKspnf06U1xTzK1ik2aoriC9o19Hfrr2E/Bg5V0wggRuLIE+81zI05VaEAEnayc6+XXiUNohegX24nTWaZQyJR52Htwru4eVzIrYJD0KrYEtLU1VkcfBWm5NB58OnMs+J04061rsOtZKOLcKZAaB6BlQbfdQ7G+2933xEvwUVf9YQWoFtZ6uxPjFkJSfJFquCwi8Gv0qqxNW82bnN9mcvJlOfp34duC3LIxbyDfnviHQMZAXWr/AJ3GfYBAM7JuwjzZebQhaHMT8rvP5oMcHxG6NZefNnbRwbcGt4lucfuE0XQK6sCR+CX868ifGhI8hrSSNn0f9TNMlTbGR22AQDIS5hXH89Wt83k3Cl10Elg1exrLLy0grNiVbOygdaOLchLuld/FT+ZFels7aEWsZ23Isbx15i/WJ68mdl2tqd94xgV03d/Fm5zf5qOdHfBL3CQtOLqCtd1su379M6uxUrORWPL/reU5mnGRs+FgiPCJMblA58aJAWYIEDzsPlDIlhepCVj2zitVXV3Mi/QRyqZyCNwtEdzkzKjQVbEzcyA+XfiC5IBmVUsWU1lPQG/VsvbGVouoiAh0DcbFx4XbJ7fq2yQ8uK5W1qXWtmXMzSqqLKdE8bHfztvempUdLkvOT8VH5sGTQEnwdfLmQc4EDtw9w8PZBCqsLGyQqjQVQSpAwQdeCjavLISfHVM74L4BGryGrIqvR1qzGiEigYyA+Dj6U1ZSRXJjMxZyL6AU9UokUe2MEbQzLH1TjeGIHr/8UPCUa/4eo0dWw9upavjn3DXdK7xDsFExZbRmltaX0Ce7D3Oi5DGk+RHQoyKnI4eekn1mfuJ6kgiRcbVwZHzGeMeFjKK4uZmfKTval7qNCU0GIS4hY6Wjn3e5325zKasuIy4gTice1/GsANHFuYkE8HtWHCILAvbJ7pqrHg7arK/evoDFoUEgVRHlFiVWPaN9oQlxDniZi/gE01g5kNBQgFI6gws2BajdHpFam1W+NQYNWr0Vj0Jh+9PW9/RuCTCLDSm6FlcxKtAJVWanwU/lhLbPGSm6FtdwaK5mVxW1rubW4X3ZFNj8n/0xsWCy9gnthLbPGWm6NUqa0WKGTPFAlSiQScipymH1oNgt6LiDSM9LiOq27Xd37dAYd43eMZ2KriYwJfxi8IJFIyC6Qc/Z4DdkVEvKUd+h7dRXvHU2iUgmjx8JlX5M17+TWk+nq3xWpREp6WTrT901HKpES7BTMO13eIdg5mHJNOYXqQpPWQl3I1htbKa4uRilX4mTl1GgiuL3CHi97LzE3IcgpCHuFPcmFyVjJrHC3c6dCU0GVtqrRqoSD0gGdUUetvhYPWw/8HP1IKUoRbSudrZ0prS1ldNhoRoePRmWlIr0snVcOvsLKs+7M6V6F1qBl59idBDsHE7k8EoBDEw/x1dmvOJZ+DFcbV1q6t0QulXMs/Vi9MdStCMyNnsvi+MUNjlUukdPCrQXXC683+P+6eNStat1O6JAL4bPg+ajncbZxrnec1p6tuZp/td5jxfjGcCn3ktge0s67HTmVOUgEiajtAGjh2gJl/szfrWg8Do9zuPo9eNt7E+gYyPmc8+J9I27A7nDocg/ON3kYnKgxaESC4m3vzf2q+7zX7T0clA68c/Qd7BR21OprMQgG7A1yutzTk+EIKe4Q5BhEenl6o+MYHTqack05R+6ZjAVs5DZiyxBAxxoXDv21hEve8MwkGRrJw8nj+PBxTH53C4Mm1XlAs8BYADdbN8ZHjGd/6n5yq3LFNpsPe3zIxyc/5uDEgwz+eTAbRm7g2chnAUjMS2TY5mFklmeKYvlrL19jU9Imvr/4PXdfvcvnpz9n0flFAOwdv5dnNj/DtjHbGB0+mv2p+xm2aRgfdPuAr899TeW7lQR8F8DEiIk42ziz6Nwi4j8vZns4/GWIyZTF0coRDzsPbpfcFl/TYKdg3u/+PkfuHmFz8mbmd51Pz6Ce9N/Qn6svXSXKK4pXD73KqoRVjAgdIVpVH047zPDNw9EZdfyp058orC4kPjuem0U3xapjB58O9AnuI7ZAXc27yrBNw5gQMYGSmhIO3znMD4N/YO4vc6nR1/BF3y+Y0XYGmeWZ/HbvN7Zf386l+5fQG/U4WTtRrau2aGGSIMHb3psg5yCyyrMs7JfrvU6YruOuAV2pqSgmMS+Rw51/ILz3OFxsXMivysfrGy/Gho8lX53PqYxTGDHiaOWIWqeuRzCcrZ0pqy177PdL5sFQ/MOiYe3aRrf5b4PWoG20Nete6T1yKnMstpdL5ITpvv631Lv8o/CUaPwTYDAa2JWyiy/OfMGl3EuiwOhu6V2aOjdldsfZTG0z1WKlIzE/kfXX1vNz8s/kVuYS4hLCc5HPMSZ8DPfK7rHjxg723NpDcU0xgY6BjAobRWxYrIW12uNQXF3MyYyTIvEwTyKauzYXiUfPoJ542nvW21dr0JKUn2RR9TA7ozyaMNrRtyMedvVXGp/ChAYrGoKBMskFrkteY/QNeOkSKIyQ3M4f3YB+hPYbT+eALtgqbBEEAa1Bi1qnRq1VP/a3OUTqTNYZfrv7G6PCRiGRSBrdTq1TW5TZHwezV7zZO958u6K2git5V5gQMQFXG1fslHYNblf3d2J+IlP2TCFuShwxfjH1xXinTiF0706LuVJsa42EFsC8eIjKh3lD5PzQRg8SUwXu+ajnWXpxKQXqAt7t+i4f9fyo0ayZQRsHiSnoeW/kMWPvDLHv/qu+X7EvdR9xmXF42HmgslKRVpLW4OO427rj7+iPr4Mv7rbuONs4o7JSUaAuYOnFpUyImECUZxTZldl8f+F7C8cjpUz5eCGmAE6CgjKpDqVMiVwqp5lzMxILElHKlLzU7iWWXVyGi62Lqedc4UClrrJB3cFXfb/izd/eFP9+nKWtykqF3qCv9xiPJlTXhbUOCr6Cb7vK+bD7g4CvBwSqLhpr++kd1NuCIEmRYiW3Momu67SWqZQq0AQ1rNGQvUyFpH4biAQJTZybNJqIXndMjgpHBIkgCr8b2rbu6xaTBe+eguETG9y8Hqxl1iAxnX/zMcztQp6FNXTMgR1hgLzhlWUzHl2NfvS12TZmG/f3bGTme7s5MCCItwYrSS0x2Sp7VkHmt2D7HthJIgkyTsVOMInqM2SrqZAk8mH3D/k47mO6BXTjVOYpAAY2Hci57HP8OPRHxu8YT9brWfip/LhTcoeJOydy5f4VxrUcx9G7R8lT5xHtG82NwhuijWtcRhxf9/uaj05+xLyYeXx6+lO+6vcVc6LncL3gOhHLIlg8cDFzf5nL9VeuM/eXuaisVOwYu4MqTRV3W7hzwbWWl4ZL6RbQjaT8JErqWBjP7zafq3lXOXj7IIGOgbT2as2eW3sY3Gwwx9OP83HPj3mzy5ssjFvIwriFhLuH807Xd0QHx7NZZ8XrwF/lz+CQwcT4xaCyUvH+sfe5W3qXL/p+wZzoOWIb6bJLy5h1cBbDmw/nftV9LuSaErhdrF0sxmaGq40r4e7hqKxUJNxPILcqFy97LyZFTsJWbsuZ7DOcTD/ZuNWzAK+UNGWp6x1+efYXBjQbwAs/9Of61SOcePsmxw13OHj7oJj1pZQp8bb3prC6kGpdtah9MWtbWnm0IrU4VXRUM1+P5s8oicRkpysB/vIbvDtzI0x8wov9PwyCIFCjr6FSU0mVtopKbSWVmkqL31Xaqnr3mW9Xaaso15RTVltGlbaKGl1Ng591/yoHr38WnhKNfyIEQeBkxkm+PPMlh9IOmVYyVX4kFiRiLbfmhdYvMKfjHEJcQ8R9DEYDx9OPsz5xPTtu7ECtU9PZvzOTIicxKmwUSflJ7Li5g10pu8irysPb3puRoSOJDY+le2D3J3b5KVAXcCL9hEg8zO0BYW5hYrWjZ1DPRnUaZbVlXMy5aCE2NydKBzkFWVQ92nq3/a9PyjTDrNHQGw0WEyT7oA1cLt1JUUU+BhkElsHr5yVMvSJQqYTDzaXc7dQC24HP0KXVYKJ9o5/IOcwoGAlbGkYrj1ZsH7v9d7c3GA1U66qZtncah9IOsWPMDhysHERiYvbDb4zcXM69THp5Ou282zX4/yfRISikCtEW005hh50gx+7aTQpDfEjV5BKdBZd8oWc6dMqC2+5S9ofKUEsffjE3cW7CymEr8bDzEB/HHKZlrqgM2jgIuUTOwbSDrBi6ghuFN1h0fhFutm6MDB1JZnkmh+8cFleKZ3WYxdILS1HKldTqaxnZYiS7bu1ictRkrOXWZFdkiz/FNZZOQTZyG9GnHh4KiNv7tOdS7iUGNh3I+pHrKdOUUVpTSoG6gPHbxtE5RY0usiVnNLcZGjKUvbf2iiv+DYW3PQ69gnpxPP040Hh7hBkSJNgr7anUVja6TV209WpL1wt5LF6dS5/3/DmmaGAltg4ask01T5wfdb8KdQ0luyKbKl2VRSXiUdepDNmqeiTjrU5vsfWmqR1lVNgofk76mS7+XTiZcRIrqRUaowZ3G/dGw//MGNxsMAfTDgKmFqVqrSmXRKmH23+FnyPg3f4Pz52LjYt4Dbzb5V3SStLYfnO7xaQj0DFQzO4w76fUC8y+ACmucOAJFjbNbVCNIUAVwNDfMll6EHIWfcyCZjmsuLKCXnfh2E/gMT+SMGlDhG0mgtU9KrWVvNz2ZZZfWY5CqsBeaU+PoB74Ovhy+M5hbs+5zcbEjcw8MBMPOw82xW6ig28HKjWV9FrXi8v3LwOmSbdcJmfr6K30COrBqC2jKKwuJKs8iwkRE/is72dUaatw+MyBZUOWMfPATDaO2kh8djy/3v2Vm7NusiV5C44jxhMRHM2+TyfzxZkvLM4fmD47no18loHNBrL31l42J28WHSKlSAlyDuLZVqY8jcT8h6YBQU5BtPJoxb7Uffy5x58pVBey7NIyJkRM4KOeH1GoLuR2yW3+dvlvnM0+i6uNK842zuRU5FjoxJQyJYIgoDPqLGyXna2d+bTPp3QP7M7hO4dZfnE5qSWp2MhtqNXXiteFrcKWGl2NSGTlUrkYSggm/cf7KR78FixgCA7i3LRzZJRn0HdpNNUlBZS6mLJFfB18UevUVGmr0Bv1IgmVS+UYBZPeZkDTAcRnx5Nb9VAMbS2ztiAcYJoT6I16Rhma83XpAU7HHiAmcvDvX5z/BAiCQK2+1mKi/7vk4JH/192nSlv1u45ktgpb0SHMHOisF0zhrjX6mnoVKnulPUbBSI2+Rvz++3d18PpH4SnR+BchMT+Rr89+zabkTdgp7IjwiOBm0U1KakoYHDKYudFz6dekn0VbiVqrZs+tPaxPXM+vd35FJpExpPkQJkVOYmDTgVzJu8KOGzvYcXMHWRVZuNm6MbzFcGLDYunTpM8fSg3PrczlRPoJE/lIPy6u3kZ6RooVj+6B3RvN5BAEgczyTDFhND4nnsv3L1Orr0UuldPKo5VY9Yj2jaaFW4v/2parpIxKpq/diEzvRzMbA3u1f6Zcksii/ovoGtCVl/a/REJeAgggE6B3gS3vnpXTK7ECnRROB8CRFnIKerSnSZeh9AruTXuf9g3a8h1IPcDQTUM5M/UMnf2fwO+Sh/kPa4av+cPppsM3D0ej14iZEHVhtnh8lHyM3z6eIKcgXm7/csMEproM9bqVVHfpwL6KSyj0AjIBnDwDKS7KRKkTqFKC9gkDY82VlSptFQqZQky29rH3IbkwGW97b4qqTRkKUomUGr1J+PpRj49YHL+YhLwEfBx82D1uNxN3TKS5a3M2xm7ETmEnvgZrEtYwde9U+gf353T2aWp0NYS4hpBWkoa9wr7B1XI7hR1+Kj/8VH4YBSPH04/z3klYP8SPVt5RrBm+hrm/zGVT8iakSJHL5AQ7BXNiygmkEikz989kZ8pOi8eUSqQggBEjvYJ6EZcR98TWnr8nppZJZNgr7UWx975tCjxLdQyaa5r8Pm7/hiou5vHWJaOBqkBaebYiLjPOIhDwj8BMDABkUplJoHvyY3F8W0Zv4YXdL1iMR4IEW4VtPbtbgCZOTSitLaW0ppSofDiyDvzfAE0j11+4Wzi5lbn4qnxJLU5FZzTlPsikMgwGQz2Hn9nx0PMevDWzCeW15cikMgrUBaiUKlN73oPV6IZeR6lEioPCgXJtHQG+AMv2w9QE6D0ZzgTCrHj45lfo8tZ32Mse34Lm6+Br0f5hzrho590OJPDTtZ94LvI5fhj8Aw5WD/vLz2adpcvqLuLfg5sNZtnQZQQ4BrD80nJmH5xNW++2hLuHs3bEWgA8vvJgTsc5rEpYxZjwMTRzacasg7PImZdD1PIotu1W0E3RDI4fR2fQ4bvI18JVq3/T/twsvElWRRZtvNrQwrUFCXkJpBaniteijdyG5q7NxXbiE5NPICCwIXEDqxJWMSFiAvnqfJILksXFMzOcrZ1xsXERrcXHR4xneIvhBDoFsvLySpZdXmaxvbutO02cm3Ah58KDc/uQMIS4hNA9sDsKqYIfLv0gWml72XlRUlOCldwKQRCo0lWJ+3T07cgHa+8xpG8+o0JHkVKcIjrU+VZKiGwzkLSSNNHkxUzazWJyP5UfEyMmci77nFilMsPc2ieTyAh2CiatNI3Ofp05m32WAxMP0G/BRnq47OF+E3euvnT1iUJeH4X5O6Cxif7fQw6ehBg4KB1wsDKJ5M23HZQO9e5XyBRo9BqqddVUaCooqy2jqLqIAnUB96vuk1ORY7EI4mTtRIBjgOlHZfrtYOXAtbxrnMw4SVpJmjg+J2sn9EY9VdoqUX8oRWp6lf5DHLyeFE+Jxr8YmeWZfHf+O1ZcXoHOoCPGL4Z8dT63im8R5hbGq9GvMilyUj37s7yqPDYnb2ZD4gYu37+Mk7UTY8PHMilqEp39OnP5/mV23DSRjrSSNBytHBnWYhixYbEMaDrgD1cUssqzRNJxPP046WXpSJDQxrsNPQN70ivYRDweFbrVhc6gEwMLzZWPm4WmfleVlUpsuero25Fov2i87L3+rnP6n4i2P7Yh4f5VVgvDEIaPYNq+aQCsHLaSaW2ncavoFvOPzmdXyq6HvvJGBa/URDDnsgyPM9dQaHRkOkk40EzgeJg1uh7d6Bzaj97BvWnt1RqZVEbfn/pSqa3k/LTzT2RfXFRdRMsfWhLtG82e8Xv+sOVx8OJgxoSPsciEeBzyqvLw/sabjaM2MrHVY8rxjo7w/vt82K6KBacWsGYXdN1+gfVZ+9m1bQE7toBzNcwaZ88voVIqNBU4KB1MrSQC9GnShwFNB4iTR7VWzaqEVcikJned89nnaePVhit5VyxWieu2EDyJNkYhVWAtt37oJoUULwcvmjo3xc3WjV0pu+jq35WzWWcxYqRfk36cyTpDS/eWhLmFmb7cNGVcuX+F6toKjMJD69GGMKPtDCI8IpBJZMw5NKfBMXYN6Mrl3MvYK+0tJmU+Dj4W1o7/GzjWQP7X8E5fWNbVyiKr4O91f5JKpCgkCjRGjbj638SpCXfL7j52v7qTcHdbd4qqixAQxFXdfeP3MWn3JDEf5OTkk/Ra16ueDW+QU5AohF4yaAlzDs2xaOey10BgOdTKTDkUZtjIbKgx1DQotBXHWMeCGCDEOYTbpabJYc+7MOqWhFcHCRyYcIBxO8ah1poIT13RaWPndEz4GNxs3Vh26eGk10ErIW61QLMSWBUFCgG6ZsJbk/ehsXoyUb2ZHC74H/bOOyqqe/36n5mhDL0L0qVIFTvYe2+omFixJJZojBhjEm96uTG2RGMsMRpN7Bp7FxUbFrCDoKCCNEGK9DbDzHn/mMyREVBT7v3de9/stVhLhzNnzjlzmPnu59nP3t2+4JMzn+Bg4kCZsoxVA1YR3jxcZ1uFSkGPn3twIfMCzmbOfNXzK+adnEdxdTEfd/mYob5D8VvpJ8qSjo87DkDIuhAC7AJ4UvmEMkUZn3b9lC4/d2GE3wiOPzjOo4dhmF66BnFxIpnXk+qxuNdi5p6Yi0pQYW5oToWyQrz2+lJ93C3dUalV4r2jzUF5FnpSPVo1biXamRrqGfLLzV/Ir8hn5YCVTGo5CdBIkaccnMLeu3tp59QOAYHr2dfrlTuZ6ptiZWRFRkkGUqTM7TCXL7t/iYGephAYkxmjCRZEwNLQEgFNld7Z3FlUGmg7HX08+3Dy3nFUUrA3saeHew8M9Az45ZbGTctAZoC5oblo6KLN3Wjj2IapraZyJesK626se0p4kGJsYIyFoQXZZdkYygwJ9Qlle8J2JEhwtXDFz9aPTUN/obSFP3dH9mCEyWHaOLZhZtuZdUjCy5CGhv4mtDDSM3pKBF6CHNTeVuu4Vfvf2nlClVpFdlk26cXp4k9aURrpJU//XzszSJtCLhKJWj9uFm64WLhoJKbqGi6kX2D9jfUce3BMJKcSJDS1aUovj17ce3KPyAeROuc5oemnKAs6k/q4ko6enkzo4fw/QTLgb6LxH4PCykJWX13N8pjlPC5/TGfXzkglUs6nn8fc0JzJLSczM3gmbpZudZ6bmJfI5rjNbInfQnpxOu6W7oxrNo5xQeNoatOU+Nx4sdORkJeAib4JA7wHEOYXxgDvATpVp5fFw6KHoszq9MPTZJZkIpVIad24tSi16uTaSbTVawgl1SVcfXRVJ9Vc6+DhauH61OXqN8nV/6rfdOcNnYlLvcz4xw58vyaDmUdmsvLKSgC2hW1jVKAmtyCzJJOF0QtZc22NzpeYn6U3i42G0je+gpqD+5GnZaLQk3DWXcIhLzXRgWaYB7TmTNoZFvRawLsd3n2pDtLIXSM5mXKShBkJv5v4FVcVY7nQkk3DNjEuaNxLPWfjrY1M3DeRx3MfY2fSgA8ngK8vDBjAxgktmLFzAgG5MCBVxued1cxoO4OcrCTGfHuS4Xfhm676GH/9DXvuH+BkykncLdwprCqkTFHGqMBRvNfxPYLsg+izqQ+Wcku+6fMNrstc+bzr53x69lN6e/QmpTCFB4UPxAXdxOYT+bTbpwStDtJIoFRKol+L1khydgxnuN9wvKy9OJh8UKyUtmnchiD7IGqEGsoV5ZRUl3Ai5QTG+sbiEHhDadkvC32pPipB9VxJmpmBGRZyC7EKCxopi5OZE/F5z7e1bGTciNwK3aquNqgNQC6VoxSUJMjfwXveIpzfhhxzCa0bt+Zq9tMclectuhuCtgqrJQi1XZWeB3NDc4z0jHhc/ljnce17+UW3L1geu1xcjAU7Bou6egBDqSGtHVtzMfMiAA6mDpwKP0XA6gDxPGyrZTgUqUi2eX4nTTvPIdeTY2Nk80KSBJrAP7UEJhq1Y96b23H/zl18H2qTqNr5HaDbDVpkPYpPCnZRJalBIoAggcnX4LujIJVISLQRSLaB+cNebBP8LLTH4GPjw4FRB2hqq2vDnl2aTdjOMC5lXsLV3JWc8hxy3slBJpXx+ZnP+S7mO7ysvShVlGJjpGFocdM1MqZRu0bxuPwx3dy6sTx2OUlvJmG3RPO5sKL/Ct48nIt63Vo+3zyFL859IV7j2gRMX6aPQqWot+sjQYKeVE/ns3Ryy8m80/4duv7clUktJ7Gg1wKd55RVlxG+N5x9Sfvo4NIBLysvEvMTuZ17W2emzdrImtLqUswMNFLTdYPXcfjeYbYnbNcEiLaZzvEHxymsKuTg6IOEOIXwXcx3vHfiPayMrMgtz8XNwk2TuWXnx43sG3Wsr31tNcnxo+VtKXCy4lTKKQRBQI2aMfEStjYTaGLZhMySTJRqJT3cezDUdyjxj+PZGLexznyVnbGdaPOtJ9XDwdSBjJIM0bjjZQoEcj15nQW/SAIaerwBcmBqYPrS8u9nUVpdqkMi0ovTSS/5jUwUp5NVmqXzGWRhaKEhDZZuYjei9k9js8YNHkt2aTYHkw6yOX4zMZkx4qybgcyAdk7teL3l6/T27M3Sy0tZdnkZUolU59p3c+9G1Pgofk38lZG7RlI8r/i5Rdv/NvxNNP7DUFVTxaZbm1h8cTH3ntwj2CkYZzNnoh5GUVJdwlDfocwKnkUXty51qstqQc35tPNsitvEr4m/UlJdQlvHtoQHhTMqcBR2JnYk5SeJnY7r2dcxlBnS16svYX5hDG46uEEp1PMgCAIPCh/oEI+cMk3qa1vHtiLx6ODSAWP953uQCoJAZkmmTtfj6qOrVCg1nvqBjQJ1uh5+tn6/K2zuPxV9NvXhbkosLlmlXFitQJBK6fpzV7GdvfvV3Qz3Gy5uX1BRwPex3/PtpW91dPPG+saMDhzNfJdJNDp3FfXhQ3D2LFKFkldHyjjhrqJNFtzxs6G9d3d6uPege5Pu+Nj41Lmfdtzewajdo3SIzu/BhfQLdNrQibg34mhm3+ylnjN2z1iS8pNeHO7Xowc0akS7Xg+5ln2NGnUNv+6A3PfeZMbEFajUKrr/3I3g7dEsOAXnXOH8gum0atGff5z6Bwl5CbRu3JqcshyySrMY4D2A3PJcPCw92PHKDkLWhWBtZM2x+8fwtfFFT6rH7bzbTG41mXXX1+Fp5Ul7l/Ycu3+M6W2m8+W5L1kzaA2TW02mz6Y+RKdHU62qFr/kZ4XMYkmfJTqnoHWB0X6Jrx28lskHJ2Mlt2Jm8EzmdphLuaKcTbc28f6p99mzDd6f6IidnTsjA0cScSxCHOD2tPLkQeEDTPRN8Lfz58qjKzqvVZvM/Bk0RBC0sxJymRyVoGJzoi/lRXm81i5HZ+GnTZH+vZAg0cjblC8mFs8+T0Cot/PR0DyDTkYBsHnYZkY3G439EnuRjHR06Y9pXDsAACAASURBVMiFjAsABOGAIi+HGinc/62T4WzmXMe1rKtbVy5lXEKhVtT72lKJFCnSeudsnEpg3zYYPMeenPLHYgek9vvhb+tPYn4ixgpQyGB6qg3fexYgE8BEAbMuwT+7abIxSowAAeQ1cOEnCMiDrzrDd10bCD58Zqje39af/PJ8cit1SaeruSt9vfrS17MvPZr04G7+XcJ2hlGhrKC4upgzE87Qc2NPVgxYwRttNAGRt3Nv8+aRNzmXdg4DmQGmBqYUvPfbPMvJf7Dt9jaW919O6PZQLr6mkV8Z6Rvha+uLYfwdbPMrOehb973XEovOrp3FsNP04nQ8rTx5reVrlFWXsSxmGZU1lQTaBXI777b4XK1sadvwbVgbW5OQm0BCnuYnMS9RR7anJ9XTuOWplTS3b85wv+EcuXeE2KxYBATOTTzHuD3jyCjJwEjPiIktJnIgWROYuS1sG/NOzuPao2sEOQQRmxUrDttLkYpdjcLqwjrn5mbhxqPSRxpyI9F0mGqEGrFQoa+WoJS+/PJO60InQYKhniGtG7fmYsZFZFKZGFLaq0kvxgaNxezIScw27cTs8AnMTG344uwXHEg6QOyUWAIbvUTwy5+ESq0ipyyHtOK0umTit5/aphMyiQwncyedDkRtEuFi7vK7pF8qtYqYrBj23NnDrsRdOrNBlnJL+nn1Y2qrqXR264wECRtubuDDqA9F6aNarRZnX5pYNuHOm3cw1DMUndYezXlEY7N/oR/4vxl/E43/UKjUKg4kHWDhhYXEZMXgZ+tHW8e2xGTFkFSQRHP75kSERDC62eh6syyqaqo4mHSQTXGbOHr/KIIg0M+rH+FB4QzxGYKRvhGphansubOH3Xd2cynzEnpSPXo26UmYXxhDfYc+v6L8HAiCQFJBkkg8zjw8Q15FHgYyA0KcQkTi0c653UvlcNSoa0jMSxS7HrFZsSTkJaAW1JgamNLGsY3Y9Qh2CsbJ3OkPHff/JUK3h3Iv4xZpRWmUvHodWfOWGh3/995klWYhRcr+0fsZ1HSQzvPKFGX8eO1HFl9cLJI77cKjuX1zPuv6GUNcepIbuRe3uEl8ecWM944Uo5DrE+tjynaXYg56qVE6N6Z7k+7i/I2xvjGBqwPp2aQnO0bs+EMp8auvrCbiWARlH5S91HyQWlBjv8Seqa2m8lXPr56/8dix7Ku6ybAgjR5ZXwWtHsGOvVLsckox0jOi+Q/NkUlkWMTcZNcePaqFGj6Z4cv77+7nXNo5Pj79MU8qntDbU9OxuJN/BxsjGzaEbuB27m2+OPsFVaoqLAwtxKHARb0W8eW5L0Up1Poh6xkbNBbjr4yxMbbBxsiGO/l3APioi8aV5lTKKZLfStapUClVSsJ2hnEw+SAeVh64mLtwZuIZphyYwk83fuKNNm+wauAqQENCFRkP+fnbFJq8pWJb2Da+j/lerLDL9eQs6b2EiGMRWBlZUVBRoFN5NNU35fLkywSu/msXAC8aIP+jqE8G9LxQPy1M9TVDvkqhrlzFWM+Yypr6HV+exbNzIQO8BmBtZM2OhB0o1UqkEikyiUwkVsv2VvFeLygzlqD+bf+z281m2eVlOgP6k1pMYkvcFhRqhXg+tRPU4Wki+rPom2vOsVUluMyGTEt0rGeH3oFEBynJ1mqaPIGHVhrzCEOZAfkmgKKGAiN1g2YB9iWQ8y38HASThtcdqjcu2sAV61vPlexp7wU7YzvkenKdKriTmRMCAq0at+LA6AMM3DqQJ5VPuPT6JfH5giAw+9hslscuB2BUwCgCGwVqFq+PYuuQP+37ZKc0oMXDKuKaNcLUyILH5Y9pbNqYU+NPUaGsoOmKpuwftZ8hPkMAOJd2jn+e+ycnUk7gY+NDd/fu/HDtB7ysvcQ5RAkSZFKZDqGW68nxs/UjsFEgPjY+ol187KNYsUv1RbcvGNh0IKWKUoqqihi3exwFVQVi59hAZoBMImOA9wAqlBWcTTtLpbISexN7ssuy/5CcEKBRGdToSXgiF7A1tqVSWUm5shxzwZDuvv1o4dCCz89+jou5i2iPK0EiFgeCGgXRvHFzNt7aiIFUEwy7PWw7rde2prKmkv2j9jN422CsjaxJm52mUSn06gWGhnD4MKCZH239Y2vkenIuT778p/O1yhRlunKm37oR2scySzLr7UY8K2d6mW7EyyK3PJdj94+xK3EXJ1NO6kjt3C3dGRkwkjHNxtCsUTPx+/Jc2jlmH5vNjZwbYsfR3sRe7K6aGZhx7617ortnVGoUPTf25P5b9/G09vxTx/ufhL+Jxn84BEEgOj2aRRcXcSj5EI6mjgxsOpC04jQiH0Ria2zLtNbTmNF2Rp0MDC3yK/LZcXsHm+M3cznzMmYGZozwH0F4UDhd3bsilUjJKsli79297L6zm3Np5wDo4taFML8whvkO+1OLd0EQSMhL0CEehVWFyPXktHduLxKPYKfglx5YL60u5Vr2tacuV5kx4oCik5mTxlrXUdP1aOPY5oUSrv9rjN49mqTcO9zIvUWC7Sf4v/k5AJnFmTRd0ZTKmkr0JHocHnuYPp596jy/uqaaTXGbWBi9kPuF93VkJeYG5vjZ+RGfG0/W25lYpjyCI0fgyBGE6GgkNTU8drMh0kefDY6POe8ioG9ohIDA4l6LCfUNxcXC5Xef0xuH3uBS5iVuvXHrpba/9ugabda24ezEs3Rx69LgdoIgsPaDvrxpcAJBJiPML4xjD45RUl1C5EYoHz4I57c/pe3athwde5TqmmrmbBjFzt1SglIr+HCAIS2/Ws9g3yF8c/EbFl1chFymSQevrqkmvzJfXHjUtnxtbt8cAQELQwvOp58n0C6Qs5POsvbaWj4+/TFKtZKe7j35rNtnzDw6EwtDC86lnxPnbLRQqBSM2T2GfXf3oRI0VenFvRczu91syhXlWC20wsrIirTZaRRWFuK81JkfMppTWlHEB36PODz6ML029wI0TkU+Nj6MbjaaSfsn4WPtQ9KTJPG1+nv15+j9o8xtP5eVsSupVDWcnP4i4vDsEHBDdrhvXoZPz0HfTzy4UZVCUKMgcspyyK/I15l7+FcmddeHhnT4L0J39+4UVBQQlxv34o2fea3aUjitPh402R/aKqhWbhPsFMxQn6F8EPWBzr7MZEY4lEs4taqCV0dAjAsIAiCFKVdhezMYfx1WtgcjBVS+vOcHAF0fwpmf4fMu8FMryLCs9doGZhjWgH12KQl1nc55q81bfH/1+wbP39nMmSdVT6hQVmCib0Jnt87oSfQ4dO8QESERlCnKSCtOI60ojbTitAZlg6b6plTUVGhCZ81dkevLOTDqAJ+9F8y2DSWkJlzEe1dnOrp0pFRRyvVp1xEEAddlrowMGCl2E3PLc4nLiWN/0n723t1bJ9OgNmQSGeaG5hRWFWKib4KjmSPlynIelz1GJajQl2qMHl42f8VSbkm5ohw9qR7tnNthZmBG1MMoyhRlGEgNUKqVz3Uh07qiaTNJDKQGSKsVPFkI0xd35bJeDkkFSdgZ22GQk0eq90pyx4QydPtQrmZfFe1rBQSR0L7d7m0S8hI4mXISqURKJ5dO7H51N61+bEVacRobQjeQUpjCl+e+ZOWAlcxoOwMqKsDKChYtgogI8fhu5twkZF0I09tMZ1m/ZQ1eB203Qmc24pnOxPO6EbVlTW6Wbr+7G/GyUKlVXHl0hcPJh9lzd484ZA+IMvFxQeMY6ju0TvDxw6KHvHfiPX5N/JWgRkFU1lSSVpyGi7kL6UXpKAWNAUTM5BhaO7YWn3c58zLtf2r/u1QA/w34m2j8FyExL5ElF5ewOW4zxvrGjAwYKaaHVtVU8Yr/K8wKmUU753YN7uNewT02x21mc/xmMTF1bLOxhAeFi2nlueW57L+7n913dnMq9RQ16hraO7cXAwLdLd3/1HmoBTVxj+NE4nEu7RzF1cUY6xvT0aWjSDzaOLb5XVWIrJIskXjEZsVy5dEVyhRlSCVS/O38dboeAY0C/nSF46/Ea/tf43buba48usKm3E6MW/nUASQ6LZouP2sW3vpSfY6NO0b3Jt3r3Y9KrWLPnT18Hf01N3JuYGtkS3F1sfhl2N65PZ93+5xeHr00VZfiYjh5UiQe5ORQZWTAIXcFsc1t2OxYQLa5JpOiR5Me4nvzMvMaHX7qgKe1J5uGbXqpazD//HwWRC+g4L2Ceh2zQGNKMPngZCIfRCJVwxc9v8TM0Jx3I99FCjRPVxC5EaZvHsnZjGjSZqchk8q4+ugqQzcN5NNjlUw5U8r2ADj3UTiLh6+mpLqET05/wrob6zA1MOX9ju8TkxnDoXuHdF571cBVzDg8gxCnEGKyYmhh34IHhQ+oVlXTxa0LJ1NOMjpwNFvDtrLyykpmHpmJv50/cW/EifK+6ppqRu4ayZF7RzTk4rhG954akSr+XTl/60xOWY5mJsvCjXmn5pGz0ojB08yx9mnB9ezrZJVm0c2tG7ce3yIiJAI/Oz9G7hqpc7xe1l4cGXOEpiuaYmtkS5mirI5VJYCt3Jb8qvznvjcm+ib09ezLvSf3SMxLrN/h6DdHm0trocjCkE8igriSfeW5+Ry/B/pSfWrUNZpOQD3V+U4unYjOiNZ5TEtmzAzMxC6UNq239ozK74UECYIgYKKAcgPEwLQ/A5lEhlqtQqhnXzIVzLmsydNIswCVVJOf4GrYiDRlbt0nvARczVxJL03njSuw/ChYzAOPQsiwC8JNreloGBg94YbiGxyqUyhSlZNrortcGBc0js1xmzWVeq8BtHZszaILi+o4iDXUpTIxMEGuJ0epUookDCDANoASRYlYgV83aB3vnHiHalU101pP4/uY77E2tsazAMZH5XN8cjcOZp/F307j6NXZrTM5ZTkk5iVSqawU3YP+CLE10jNCqVaKFXQHUwf6ePTBx9ZHnCswMTDhcNJhfon7RSRZhlJDLrx+AV9bX+ZGzuWHaz/Q1a0rN3NuiuF8tbtXelI9/Gw1BSEnUyfUqMku0wRTyvXkIiGtbffcyySIW7lx5JtIGOIzhDnt5/D1yc+QRp2mbZdRLMjbi0KlEO97K7kVlTWV2Jva83XPr/n87OekFaVp7Ln9hrFl+BYGbx3MydSTzAqexTd9v8FhiYPGyvzDCs13xtGjMGAA3LmjmZWrheUxy4k4FsHKASvxsPKol0w8240wMzDDzdKtjpxJ++No5vhv+67OK8/j+IPjmrT05COUKErEDqdcT05vj96MChxFf6/+9crMyxRlLIhewJKLS7A2smaA9wC2xm/F0cwRmURGTnkOFYoKaoQatg7fyuhmo3WeH/84nqAfgrj8+mVCnEP+Lef878DfROO/EFklWXwX8x0/XP2BalU1IwNG4mzuzM6EnTwofECwUzARIRGM8B/RYIdAEAQuZV5i061N7EjYQWFVIS0cWhAeFM7owNGiPrCwspCDyQfZfWc3x+8fp1pVTavGrTSkwy8MH9s/7/GsUqu4kXNDJB7n089TpijD1MCUzq6dxcVtS4eWv2seQ6VWcSf/joZ8/Ca7is+NRy2oMdY3po1jG7HrEeIUgrO58x+SCP0VePPwm1zMvEhJVgqh96R8u01Xk7vqyirePPIm+lJ99KR6RIZH0sm1U4P7EwSByAeRfB39NWfTzgK6gVHWRtbMaDOD2e1mY2P8m7BcrSYn+jhrvxrGyDRzmt4rALWaQr8mxARZs8m5gO0mD1FLX5yvohbUWCyw4JMun/Bux3d5GXT9uStWciv2jdpX7/n8cusXIo5FYGpgSg882FMQTWbEQ07kxTBy10imtJzC2htrOf0zLOkoIWjSPOb3nC/uI60ojYFbB9Lm4kPW7FGSYqpk7jR35r+5l+YOzWm3rh3pxelkl2XTwaUDEiSiDh/go84fsSxmGeWKcgQEZBIZ73V8j7eC38LayBqLBRaoBTWP5z5mV+Iuph6aysTmE9kwdAOgqVyP2DmCkykn2TNyD9ZG1rT/qT0+Nj7cnfl0iNdruRfulu6cSj2Fl7UXgfrOrHr3DE5zJYwJHMOW21uwlFtyIvwEbde25UT4CR4WPmTKoSniPoz0NN2ZXh69iEzRdTd5Fs8jAtoFvZmBGVU1Vfww6AdeP/B6vdtKJVLcCtSkLIdxI2REd3TWqciODxrPxriNzz2WF6E+X394KneRSWR1Bly156DVoMtlcpb0WcLMozPFbZrbNxeH9p/N7bA3scfT2pPLmZdRC2rCm4WjKilm68MDSAXNoDYSXcnVnyJXz3wjSyT/2s7PiiMa+9zWU8G1MghH49X8dkUBATUq7hrMpkB5BZWUlyJV2pmacqXmb+XZ3Jj6YKKvMfooV5bjYOKAGjWFlYUv7BjI1CBIJUgkUiQSSb0zRE2tm+Js4YybhRte1l54WnliKbfE1MCUzXGb2RS3CVMDUx3DgDaN2+gYGDiZOeFh6UHMoxjkenJmtJlBRLsIjTlAyik+iPqA2KxYUZI0qcUk1oeuR6lSciHjAstjlnMg6YCO+1pvj95czrqMTCITq/hmBmZ18mpqdxt7NenFydSTSJBgJDFgUkw1Ectj8PYMRi2ocVrYiJLSAqoMNDMeWpLhbeNNckEyE1tMJMwvjAn7JiBFSn5lPtNaT2PlgJXMOzmPJZeW0MW1C2cnneX7mO+ZdWwW/b36c2TsEdSCmpx3ppF27gDpP39HenFGHVnTk8qnoYRSiRQns4ZnI1wtXP8l3YiXhVpQc/XRVY7eO8rB5INizov2M8PGyIbhfsMZ5juMHk16NJhVpRbUbInbwrxT8yioKOCt4LdIKUxhz909jPAfwZWsK1TVVFGuKKdMWcb7Hd+vYzIA8ODJA7y+9+LU+FP0aNLjX3ru/078TTT+i1FcVcyaa2tYdnkZ2WXZDGk6hI6uHYl8EMmp1FM0Nm3M9DbTmdZm2nPTuRUqBUfuHWFT3CYOJR+iRl1DL49ehAeFM9R3qCg7Kq0u5ci9I+y+s5vD9w5ToawgwC5A7HTU1ib+GShVSq5lXxOJR3R6NJU1lVgYWtDFrYu4wA2yD/rd2RvlinKuZ1/XSTVPL04HNJWq2l2Ptk5t/23OD3Mj53Io+RBB1Rbk3o7lzJJ8sLHR2Wbygcn8dOMnMRzoRPiJF1Y9BEHAc7knFcoKUb9sa2zLnfw7Yhha9ybd+aTrJ3Ry6UT/rf25nXub29NvY1WhhshITafj6FEoKEBtZUVGOz9O+hrwo20ascpUQJOvoh0s7+LWhSeVT/Bc7ikm1b4IJdUl2CyyYXm/5UxvO13nd9ml2Uw9NJVDyYcY33w8i3otouX3AQy5WMAPS+5yXp5Ll5+7cHPaTdqubUvzTCXr90HMz/9kcv8PdfZVVFXEK7++QvbVM5w5YI1xdj5TQqW0f2cpe+7swcHUgddavkbE0QgS85+2yi0MLShVlOpo900NTCmZVyLe8yN2jmDPnT183u1z1lxbg75MU4FPjUhFqVIybMcwzqadZf+o/fTx7MPx+8fpt6Ufs4Jn8V3/78T9Nv2+KaE+oVx5dIWzaWf5UX84ysMHeauPCiSaL7V7M+9xJu0M0w5NI3tONvbfPNW1SCVSDKQGVKmqGpRDeVl5kVueq6nYockHMTEw0akqS5DQo0kPTqWeAjSLnW/6fMPHpz+mVFGq00HQLrI/OKdJxXZ8T0qpvuZaWRtZ42frh4eVB7sSd2lkgH/AdepF0FZ9tedcW6r0vNd7llg0MmkkWlI6mDrQ3rk9e+/uBTTp0OlvpXC3pQsth+RQpY+48I4aH0WPjbqLg9pStq4p4FksYX1Lgak3pGz2V1OpD04VUibckhJvVcNB/6c8Q9sFCPMLQ6FSiLpw1xIp+dbyenNH/gj8cjX5PLft6w8Oe5Hr1B/Bs/dlbXco7e/97fwJbBTI4eTDlCpKRbJlqmdKWU1ZHdcxRzNHTPRNeFL5hFUDVxFgF4BaUBP0QxBHxx6ln1e/eo/lUsYlOqzvQG+P3tzOvS12EUDj5PWo9BFyfTmeVp5cyryEnbEdTW2acjPnJgqVgkYmjcgqzSLYKZive35NTGYMH0R9gFQipVmjZqQUplCqKMXexB5HU0duPr6p44rlbe1NVU0V6SWa76GG3NRCfULZn7Rf/P+ogFGsLGyH9dTZUFPD6fRzvH3sbW7l3kJPBUKtJHkruRUSiYQfB/1IfkU+M4/OxNHMkfTidD7p8gmfdfuMbbe3MXbPWOxN7PlpyE/czb/Lh1EfUq2qxtvamxp1jehepYW2G1Fb0mRlZMVHUR/hY+tD1PiolwqS/XeioKKAyAeRHL1/lCP3jlBQWaAzK+Vt7S3OqbZ1avvCNcblzMtEHIsgNiuWV/xfYVTAKN458Q5PKp8wr+M8ll5eioXcgrLqMnIrcunr2ZdDYw7Vu9/s0mwcv3Xk4OiDdeYx/5vxN9H4H0B1TTVb4rew+OJi7ubfpaNLR0YFjiLucRyb4zajElSMDhxNREgELRs/P86+sLKQXxN/ZXPcZs6nn8dE34RhfsMIDwqnZ5OeYkehUlnJ8QfH2X1nNweSDlBSXYKXtZfY6Wjj2OYv6w4oVApis2JF4nEx4yLVqmqsjazp6tZVJB4BdgF/6DWzS7OJzYoVZVdXHl2hpLoECRL87Px0LHYDGwU2KOv5M/g46mM2xm1kusdI5l9eTFGHA0gH6frW16hr6Li+I7FZsaK/etSEKFo1btXgfiMfRNJ3c1/OTDiDjbENCy8sZFv8NizkFrRp3Iabj2+Kiyqt9nfniJ28EvCK7o5UKrh69anE6upVkEiobt2CO23d2e+pZIPkFmmlGUglUjwsPbhfeJ/NwzYT6hv6whkZbSjgg1kP8LDyADQkadvtbcw8MhMDmQE/Dv6RIT5D2Ba/jTF7xhC/CgK3R3EvyJmmK5pyesJptsRvYd31dZxbD3KpAf5JT+pYIitVSt449AY7YtZzMSaAoKgEloXAoiE2dPDqxvYR2+m5sSe3cm7pLLydTJ3IKtPVdB8Ze4T+Xv0B2HNnD2E7wzDWN9ZIGl/ZydDtQ/n1lV9Zc20NF9IvcHD0QXp69ATgi7Nf8OmZTzkRfoJeHr3Effqu8GVQ00EIgsDSy0vpVmSJBLhkU0WlqpIprabw4+AfeW3/a8RmxmpC32oNQHtbezOpxSRUahUfn/m43uutL9VHQBBTgoPsg+o4VQH8EvoLE/ZPADRVf6lEirWRNadST9HNrRtn0s4wqfkkNsdv1uTkrIKbDjAuDAZ6DeTw/cNIkPBl9y9ZcmkJakHdYNCe1klJWwnXQq4nR4LkD81XNASty5AEzeKrdjeotkOXp5Ung5oO4ruY78SF/7YbnmTmPuDdZ/izdshTIoCeoHH86fPImEjHCuRK+OoUrG8FCXbQXuXAJVkOSDTv16PSR3XCAP1s/biTf4e0iDRsTWx59ddXOXzvMIc2Q+goUNWjJtH+Df8ejIqH+EaQYA/taw5iyPNzNPRrQPkSShbt+9jPsx9d3LoQlRrFydSTtHRoyZLeS3jj8BuaPIfWU7mUcYmLmReJfhhNkUIz9P28mSEJEto5t2NW25mc/WAsW4Pl5PzjCZ+d+UyTHTVLM9gtCAKNv2nMpBaT+LrX1/XuK6UwBf+V/qgFtbiI9rb2po9HH9bfXC+S8NLqUub3nE9SfhI/3/pZlGJJJVIEQaBXk140sWrCprhNOvdqgF0AX/f8mrXX13Iw+SBvtX2L0w9P67hcgcZ0ILUoVTSTkElkGMoM6wRHarNglJ8okX7zLcnff8Z7C3uxP2m/eM0NakAm1+RP5JZrFrc/DPqBL85+wYabG8Qwvi5uXbCUW5KUnyRmdNR+LdBY2vbz6kdz++a4qs1wfesj3D5cjOurUxrsRpxKOUXvTb2Z33M+8zrNq/8G+TdBLai5kX1DJBaXMy8jIGCibyL+nbdzbscw32GE+obS1KbpC/aoQWZJJvNOzmNL/BZaOLTg2z7fcjHjIp+e+ZRgp2BmtJ3B9MPT8bX1pVxRTnJBMl7WXlyZcqXBSIGS6hIsFliwY8QOXg149S+7Bv/X+Jto/A9BLag5lHyIRRcWcSFDow19o/UblCnKWHNtDRklGXR27UxESAShvqEv1D2mFqayJX4Lm+I2kVyQjIOpA2MCxxDePJzm9s3FRX11TTWnUk+x584e9t3dR0FlAa4Wrgz3HU6YfxgdXDr8panfVTVVXM68LBKPy5mXUaqV2Bnb0c29m0g86rNsfRmoBTVJ+UnikHnso1jiHsdRo67BSM+IVo1bianmwU7BuFm4/WlSNf/8fJZeXsqWYZvpu6UfyYo38P5qdZ3tnlQ+wX+lP4/LH2NvYo9SreT0hNME2QfVu9/+W/rzuOwx16ZeE48xtTCVJReXsP7mevQkegxqOojkgmSu51wHEJ1RPuj8ASFOIfWfW04OHDumIR2RkVBcjNCoEWU9O3ElyI6P9c9zufwuakEt2hxrZzw6uHSoExg54/AMTqSc4N5bGuvT3PJcph+ezp47exgVOIoV/VeIEq8OP3XASGrAqdfOwpYtlIYNxnyBOVuHb6W5Q3MCVgXQIlfK9VVqflw8mmlzt9Y5fEEQmH9+Ph9FfcTGR8GM3XCdy41rGD9aTnDwMLbf3o69qb2Y6aL90vW29kYqlZJdmi2SkFCfUOZ1mkezRs2wWWRDtaqaQd6DODjmIK3WaIYqq2uqOTzmMF3du4rH0GdTH06knKDg3QKsja3Fx/1X+tPXsy8Hkg/Q1NKT4yknNPVPiWbxlhKRwsGkg8w6NquOZe3YwLFsGr6Jr6O/5sMo3W6Os6kzmWVP5xK0VrPaXIr6ML3NdDHoraVDS27k3OD1lq9rwg1/IwZWciuN9PKxlBur1QwcA0eaajoZWhlFfba2WonJi/C87fQl+igFJab6pnWsbx1MHMgpz6lDXF6E2tKVZ3NNvhX64vzrcV59BZCAEXpIq2oor2Wy0y4DMswgyxIxs0KiAqlM2RGCUgAAIABJREFUigr1c693bfxVw/LWRtaUK8rrvKa+VB+zMiUFi+DVEfBr4J/vaGjnExqbNKaxWWOqVFXET48XP/+j06N5J/IdYrNiRXvWN9q8wb0n90jITRBnMkCTf6JUKRskmFKJlDnt5rD36Ld0sWnJ+o+u8uGpD9l6eyupEanidq/++ipZpVlceO2pDFKlVnH0/lHWXFvDkXtHkEqkyGVykGh09q+3eJ11oevILc9l6aWlrLyykgplBSpBhZ+tH0kFSZgbmKNUKylXltdxKhvpP5Lv+n/HhYwLhO8JR6FWYCAzoFXjVlzKuIRKUOFo5kh+eT4KtaLee9TayJrCykLxHnA1d6VKVSXma1yfdp0vvu7HCskVjOWarA6tDa1rqYxSO80gu6XcEnMDczJKMnTuJ7mepkvT2LQxZ9LOoFKr+Lzb53Rz70ZxVTGDtw9mSNMhRD2Mouj9Ik2Rcf16mDwZ8vPB2prn4YNTH7DowiKiX4t+7tzovwKFlYVi1+LovaPkVuRiIDVAri+npLoEQ5khvT17E+oTyuCmg0XXp5dBhbKCJReXsPDCQkwNTPmqx1f08ejDhP0TOPvwLB92/hA/Wz8m7p9IjyY9qFRWciHjAmaGZlyfep0mVk0a3LdSpcTgnwasH7JeDIP8X8DfRON/FBczLrL44mL23d1HY9PGzGw7EydzJ9bdWEd0ejSuFq682fZNJreajLXR8z8wBEHg6qOrbIrbxPbb28mryCPALoDwoHDGBo3F2dxZ3LZGXcO5tHPsStzF3rt7ySnLwcHUgWG+wwjzC6Ore9e/fLCrQlnBxYyLIvG48ugKNeoaGps21iEenlaef5gQVCoruZ59/anLVVaMmBLcyKTR02wPpxDaOrXFUm75/B0+g2WXl/FR1Ec8nP0Qu8V2bE/0Z+SOhHq3TchNoPWPralWVeNs5ky1qpozE8/gb+evs11iXiIBqwLYOHRjnaRe0OQ4LLu8jJVXVlKmKMNI34hX/V9l79294iLaxdyFd9q/w6SWkxqWkSmVcOnS025HfDwqqYQEL3Mav/o6UX5yduslczrtDPkV+RjIDHTcxkKcQvBf5U9/r/6sGLCCXYm7mH5YI59aNWCVTnfl6qOrtF3blr0j9zI0eDx88gnMnYvpfFO+7P4lxdXFfHX+K819+BN4FEHpg0R87fzqPfRt8duYuH8iU6oD+XhFPGedlIwcAUhgZMBInlQ+4UTKCexNNBkKgiBgKddYbaoFNV3duvK4/DF38+/S1a0riXmJ5Ffk06xRM85POk/rta25/+Q+v77yKyP8R4ivqxbUWC+0pri6mKoPq3TkBYGrAgmwC2Bn4k5ONf+WJbvmcNRLc0z+tv4kFSQhINQbyhc5LpIVsStEn/6GMMJvhCYVO/kgTSyb8KTiCcWKYiRIkEqkOpVk7SJIX6qPhdwCdwt3He26ocyQpjZN+eRYFd1P3KPxO/VXvA1kBiCgY+/6PPzehba9iT255bkEOwUTkxUjPq6tjD8rkaqNPk36EJn6/FkWuQLaPIILrjwd2P7NYlb89x/Es+cqlUhBQDze2tX9fvfgmDegBqlUSmCjQF5r+Rpzjs+pc34yiYyeTXpyMfOijhxHuzDumAbRGyBwOtxzMECu9n2pHA2JCoSXmNcw0jNicNPBNDZtTEVNBVmlWSTkJujM7shlcjq5daJ149YENgrk87Of8+DJA7Lfyabj+o4oVApyy3NRqBQY6hmiUCnq3Pvv3rbA8Z3PyCjOYGfiTjLefkpYVsSuYM7xORTNK6KwspCfbvzEuuvryCjJoFXjVkxrPQ2FSsGso7PE92B2yGyW9lsq7iM5P5nx+8aL95WeRA+1oEaNGhdzF9SCmqzSLAxlhtSoa1AJKto2boutiS3H7h8T96sn0UMqlfJJl0/YmbCzQSczrdRPgoQNQzfw+enPSS1OxVCm+ZywMLTQBOv9RoLVz74PAujJNPsIcQohuSCZqpoqbIxtKKgoYMvwLQz1HYpKUOG53JP04nR+Dv2ZCS0mIAgCHdd3pExRhpulG1U1VZwIP6HZ76hRkJoKMTG8CEqVks4bOpNbnsuNaTf+pbMYgiBw6/Etjtw7wpF7R7iYcREBAWsjaxQqBWWKMqzkVgxqOoihvkPp49nndztRCoLAjoQdvHfiPXLKcpjdbjYfdv6Qs2lnmbR/EnI9OVuGbyH+cTwRxyIY02yMJt8p8VckSDg5/iTd3Lu98HUMvjRgad+lvBn85h+8Gv95+Jto/I/jbv5dvrn4DRvjNmIoM2Ra62n0bNKT7Qnb2XZ7GzKJjPHNxzMrZFadhWp9UKqURD6IZHP8Zvbd3Ud1TTXd3LsRHhROmH+YzmJULai5mHGR3Ym72XN3D+nF6dgY2RDqE0qYfxi9PHq9tJ3t70GZoozo9GiReFzLvoZaUONs7izmRHRv0v1Pu2fllueKg+axjzTSq6IqTdvfx8ZHHDIPdgomyD7ouee65uoaZhyZQc3HNbh/ac3ImHIW7a8AvfpJmVZqJEEifhmcnXhWp+079aBmruHh7IfPfe0F0Qv4x6l/YCm3pKS6hBH+Iwh2DGZL/BZu5NwANF98Yb5hzO04lzaObZ5/YTIy+PjdNryabkqzuMdQXg5OTgj9+5PeMZAjrtVE5l3izMMzFFUVidr6V/1fpbCqkBMpJxjmO4wfBv1QZ7Zowj5N1ejBrAfI/Pxh0CD45hu8lnsx3Hc4OxJ30M21G1tub6F5kZxrS8tZPcqLN7YmN0gyt8VvY9L+SRiXVqOWairSzR/D5TGdMdI35viD4wB82vVTRgWOIuJYBJEPNItSZ3Nn0mancSDpAB9Gfahjgehv609GSQYqQcWcdnP4sseX4u+0NoYSJKg+UekcW9BqTXcqtzyXCdmNWK0fT+lvDaDu7t0ZGTCSX27+wqWspzkErhaupBen66R0NwQPSw8KKgsoVZSiL9WnaF4RG29tZNqhaQDYGtmSX6lxodJ2L7R41uJWCz8bX6I+f8g+tyqm6yr+qJ2+XNti9kVEwsfGR5Rz1K4YG+sZ1zufIEOGvkwfL2uvOrKU5+FfabOrlag0BEtDSx6/+5hPTn/CwgsLdX6nJRvWxtbkV+SLxzmo3JlDJplMUAayUV9TjNAe//O6P7XnVLRzDtOvSVl+SI3xh0/J4bM5GmnSnzQkQ/I058OwRpNdU/aM/N5QZii6HDUEUwNTvK29CXEKYV/SPvLK85DryXm/4/vMaT+HyQcmsz1hOyP8RnAg+QAdXTpy+uFpVg9cza2cW5xPP89A74EsvbwUayNrhMeP+SIK3tBEZSBBQjf3bgzzHcaEFhNILUylxZoWdHTpyOXMyxjqGTI6cDRvtHlD/CxLL07HbZkboKn0j/AfwaZhm8guzWbO8TnsurMLlVpDumoT1j4efVjWbxl+dn6iXEh7DNptJEho49iGW49voVApdLJSenn0YlrLabyy+2kxRU+qh7ulu8ZeW2YgztI967KmHVg2VEmolgkEOwVz/8l9nlQ84f3H3uiNeJVlMcvQl+mLZh1FVUUcGXOEtk5tAej5S0+iHkbpzIltjttM+N5wosZH8equV5neZjpfdP9CI59t1AhmzIAvv+RloL32A7wHsHX41r/UbKW4qpgTKSc4eu8oR+8fJbssG0OZIbbGthRUFlBVU4WbhRtDfYcS6hOqsVb+g0XOa4+uEXEsggsZFwj1CWVJnyU4mzvzbuS7rLiygiE+Q1g3eB3fxXzHV+e/Yk67OajUKr6L1VzTVQNW1Zk9bAiWCyz5sPOHL22i8t+Av4nG/yfILs1mecxyVl9dTYWygrFBY5nYfCJn086y+upqcspy6OXRi4iQCAZ4D3gpqVNJdQm7E3ezOX4zp1NPY6hnSKhPKOFB4fTx7KMzy6DtimhTye8/uY+5oTmDmw4mzC+Mfl796shp/ioUVxVzPv28SDxu5miG8dwt3XWIR+3OzB+BWlBzr+CeTtfjVs4tlGolhjJDWjVu9XTewzmEJpZNxA/ejbc2MmHfBKo/qmbkD70ojT3PybdvQIsWDb6eVuNvKDPE0cwRhUrBuUnn8LDyIL8iH5elLnzc5WM+6PxBg/tIyk+ixZoWTGk1hYW9FrLh5gYWX1zMw6KHDPAewNhmY4lKjWJL3BbR7cfTypO5HeYyLmhcvVWhckU5Zl+b8dOQn5jkPwbOn3/a7UhKAn196NIFdf9+3GnbhI+yNrEveb+4kDKUGdKjSQ9RatXCoQUyqYzc8lxclrrwz+7/1HwId+8ODg6wbRudN3RGLpNzMvUkF1+7yHeXv2NH4g6if9GjVUYNRy/+wvC243WOMzYrlsUXF7Pnzh7MDczFQLC4gpE0+34HxwPljB5UTaFc8xFZ9o8ycd4jeG2wONMwyHsQi/ssZuK+ieSW5/Kw6KG40Hqvw3sUVhVyKPkQabPTxL+J90+8z8orKzX7/eBppTmlMIWOP3XkcfljBAT0VaD8rXJsJDMiLCAMN3M3vop+Gmgol8mZ0GICa66tATRVbKCOvr32At1Iz4hRgaM4l3aO+7PuM37veLbEb0EtqHXIyuLeizmYdJBz6efE52mJglaaZGtki9+9Qs6tU9F1IiQF2Ou49zSE+hb4v4eI/GkIIJNIMMEAaY2KIr0anIohywIMlVCtD6YqPQL1nXlQ8hDTanhkrnkcNLrutKI0ssuyG0xeb2rdlOQnyfW+vL5UH6lEirulex19fG2pmbO5s2jFO9RnKBEhEXTf2J0fz1gwtdvTGaJPu37KcN/htFjTos51MzUw5cPOH7LowiLR3aiXey8GrT5Jt1RoMeP510kigFQAuaEJ5TXleJi4kFKe8TQ4sBYaGTcityIXO2M72ju352bOTXHQ+UWQ68nxsPQQ5xT6ePYRiX7ijETOpZ3jzSNvsnfkXoZsH4K13JrXHpgzLdmMln1TqVBWIAiCzvlr7yNTfVPmdZrHzOCZ9VbX3Za6kV6SjrOZMzKpDCN9I+7ma9zgLAwtGOE/ghH+I+jm3o27+Xfps6mPmBTfz6sfRVVFov6/9r3bEDEOsAugqKqowSyPRiaNRHKUV5FXx8zAxsiG4vIC3JUmDOs+g9VXV6MW1PjmClxVTsTV6yBZJVl0dO1IamEqMqmMyHGRolPknONzWHp5KV3dunJm4hlAY/jis8KHzm6d+Wf3f9J0RdOng/RXr0LbtnDuHHTu/FLvJyDO1G0I3cDEFhNf+nnPQhAE4nPjOXLvCEfvH+VC+gVUggoHUwcMZYZklWZRo66hpUNLQn1CGeo7lCD7oD9FbnLKcvjg1Af8fPNn/O38WdZvGb08epGYl8ioXaNILkjm277fMqXVFKYfns5PN35ice/FALx74l1kEhlTWk1h9aC6MuiG4PStE1NbTeXTbp/+4eP+T8PfROP/M5RUl7D22lqWXl5KVmkWg5oO4u2Qt3lU9ojlMcu58ugKnlaevBX81vPlMs8goziDrfFb2RS3iYS8BOyM7RgVOIrwoPA6g+HaD4zdiRrSkZCXgLG+MQO8BxDmF8ZA74ENDkv9FXhS+YRzaedE4hGfq5EEeFl7icSjm3s30eL3z6CqpoqbOTd1Us0fFD4AwNbYViQe1TXVzI+eT9H7RSy/8A1LT3xJgetKJDMaXgEIgsDwncM5kHQAa7k1poamCILAuUnn2HhrI/PPzyfj7Yyn9rXPQKVW0WlDJ/Ir8rk57aa4iK5R17D99nYWRC8gIS+BTq6deLvd2+SV57HowiJSilIATfVydOBoItpF0MLhKSGKzYolZF0IV6dc1QkjAuDBA42D1ZEjcPo0VFWRZiPjgKeKvK5tCBn7PnEl93TcxizllnR164pSrSQqNYqMtzM0FboxY+DRIzhzhld+fYXotGgsjSxJnJFIYWUhdkvsCKq25Mb8J+xpKaf3pVxMDEw4eu8oiy8u5mzaWbytvXmn/Tvcf3KfJZeWYGloSZWqilNWs2n3j5WkyEoJGwlxDnAq/BQ9PDSuQttvb2f0bo0HeiOTRpowOkHNxqEbmXl0JqXVpeKgqIWhBYVVhWwatolxQeMQBAGfFT6YG5qTVpzG+Unn2Z24m113dnEz56Z4qSyQM+18FYs6Q6vGrXi73du8uWexbrVZth594ywKKgsARK98rY2xFi7mLmSVZmlshw0tKKkuITwonLsFd4kcF0njbxqjL9WvM0j8rANO7fwK7XwEwPeHYVgSuMwGe3MH8ivy/3JXqYZgIDVgdOBofon7pcFj9DZ1R1JdTYGiiAIqRcmTRABTJcgl+uQZKPGvNCPRqBTUwG+1FvNqMFZAkRyq9J92V1rat+TGY03Hr5NrJwykBkQ9jNI5tm6u3TiTfuZPn6NWvhbeLJwHhQ+4mHmR3IXg8xaEBPXDRN+E3Xd2N+hYBDC++Xgi70eSU54jPnZ0E0T0g2S7uu5bdVCPRMyxGB49s2Zv79ye+Nx4KpWVxE2Pw9/On+zSbOadmsfGWxvxsPSgpUNLMksySSpIqpP4/Sy07mGTWkyihUMLIo5FcHDUQQZv17TObj7sT/PUCp4c3UP/zf2JfRSLuaG5eB0MZAZiBoX2WjZ3aM4g70H08uhFgF0AsY9imXpwqs4ckQQJIU4hLOi1gC5uXeosWJPykwjdHqpDErX3hq2RLeaG5jwsflivxPFZEq0v1cfVwhUTfRPic+ORSDRD34t7L+b4g+Nsid9S77WZ8dCOzEZyDhhnMLHFRK5nX6dt1F3Ufn5skN6inVM7kgqScDRz5Pi442Lw7uZbmwnfF46zuTMps1J0CiDfx37P3Zl3OfPwDBP2TaDwfc2cB/Pnw4IFUFCgKRb9Dry2/zV2Juzk2tRrv8sSv6S6hFMpp0RykVWahVxPjpuFpoufVpyGTCKjq3tXhvoMZYjPENws3X7XsdWH6ppqll1exj/P/xNDmSFfdP+Cqa2nIpPIWHt9LbOPzaaJVRO2h23Hy9qL0btHcyj5EOtD1yNBwvh94zHWN6atY1siwyN/l3LD+3tvhvkOY1HvRX/6PP5T8DfR+P8UCpWC7be3s+jCIhLyEmjn3I657edib2rPyisr2ZW4CyM9Iya1mMTM4Jl423i/1H61WsnNcZvZGr+V7LJsfGx8GBc0jrHNxtY7CJWUnyR2Oq5nX8dQZkgfzz6E+YUxxGdIvcE4fyXyyvM4m3ZWJB7aapqvra8O8bAzsftLXi+/Ip8rWVd0LHa1Q7NNLJvgZunGmYdn2Jvdlf4rjj/XHrBcUU7btW1FR4tqVTVSpJQpyhjmp5EfNYSF0Qv5IOoDzk86TweXDnV+rxbUHE4+zNfRX3Mp8xJB9kG83+F9XCxdWHppqY4nvL+dP++0f4eRASPZdnsb0w5No/yDcuR68jr71SIyfh+bl08m+FYBrzw0xj6vAuRy6NEDBgyguncPYg3ziUqN4lTqKc6na0IMbY1tNe/L9Sd0P3EfnyupTDs0jXXX17Gw10Kx5Txs+zD2Je3jwm4r2sUXMnlJZ2KNnpCQl0CIUwjvdXyPUJ9Qjj84zsCtA3G3dKejS0eNY1TCTt51CGPUZ7vwzYc3BsHhdjZEvx6Nr60vlcpKzL82RyWo+Eenf7DiygoxX0MrUbExsqG3R28s5Bb8cPUHpBIpb7d7m4HeA+m+sTv+dv4kFyRTo67B1MCUgd4DGeE/gskHJlOqKOW1R/Zss8mm3ADSZ6dz8FY8O05Y1qOfn06l7A5KtbJeD34HUwdxqN3D0kNc/FgYWiAgYKxvTE5Zzh/uIMhU8Ogb+KUFvNdH05XQl+m/UMLVEEYGjORO3p169ev1Dc0u7bOUNk5t6Lyhs2axLKixqNakZOeagloKHgVQYAzt8g2IdFJo5gtqkYmGYKgAhZ5mM7UEJNKnEi49qR5mBmYUVRXRo0kPiquKuZ5zvd6FZX2SpvreKwA7I7v/x955hkdVd2v/t2cmvYeQShISEiAEQieh9w6hhF4URFCRDoKoqGBBRJAiKCpNgoASqnQh9JBgAoROIIVU0nubst8Pm9lkSEAszznnuV7uL15mZnYdZq/1X3ehuUtzjscfl/NBAhwDiMmIke+RIELFJzC7N6wLNNzHs+6jvtjRi9tVgopODzSc8kJuHpzMnXhUWn0aJehApZPoVR3cO9DQoSGnk04TFxXEqpTdzO5imG3yfsf32XFjBw0dGnJozCH57xHJEUw/Mp3o9GjGBYxjWY9lLDy5kPCEcOa2ncu5h+c4GneUEs3zxfsybUhpwsVrLakXm8KK715l/eX15JTlyHTMUf6jWN13NZuubOLD8A/p5tWNy6mXqzXiUL34v/bmNRo7NiazJJOkfCls7m7OXc4kneFaxjWDsL3noblzc/r69GVN5JpqhgUgTSRtTG24PPkyyy4sY/3l9TiYO2BuZE5SQRImShMUgsJAFF/Hqg7ZZdloKsuxwoQfR/3MkIZDsP7CGseMYh7aKdAIUl5UM+dmHBx9UNZixqTH0PqH1pgoTUiclSjTU+/l3KPx+sYs6rSIRZ0X8eZvb3L+4XluTH1MQ+zcWUoE31c95+jPUFxZTMvvW2JhZEHEpIhnPtNEUeRm1k2ZDnXu4Tk0Og3u1u44WjiSXpROWnEaFkYW9PXty6AGg+jn2+9PdaYvClEU2XdnH/NOzCMpP4lpbabxUeePsDOzI68sj8kHJxN2O4w3Wr7Byt4rqdBUELwzmOi0aHaP2I1SUNL/5/7YmNpgbWJN1OtRf7luaPpdUzp6dOSbft/8K+f0fwEvG43/zyGKIkfuH+HLC1/KK7zz2s2ju1d3Nl3ZxIboDeSW5dLPtx8zA2c+SZR+AWh1Wk4mnCQ0NpQ9t/dQoi6hg0cHxgeMZ3ij4TU2EAl5Cey5vYew22FEpESgUqjo5tVN9rV+Xh7Iv4WM4gxOJ57mdOJpwhPDuZcjUR8aOzaWG4/OdTv/qz9u22K38eq+V3kl4BVuZN0gJl1ygDJWGtPMuZmB2NzH3sfgHiTmJ9JiQwsKKwrp4NGB64+uk1uey9kJZ+noWfOI+0bmDVp+35KZgTP/dOVEFEXOJp1l6fmlHHtwDG87b+a3m08/335si93Gqkur5IeumcoMbztvStWlxM+Mr3F7hRWFzDs+jx9ifpBDsWImR9O80PwJxersWUlk3rAh9OtHuJ8ZfZI+45vB35NUkER4YjhRyZfQoMPF0gWFoCC1KJVLky7Rxq0NgiCQWZyJ8wpn6uqsiF9SSIwzzF3ahSVdl9DBowOCIJBckEyzDc1oW6cteWV5+NbyZdOgTbx/8n2+uPAFpmrYesKSEVHFfN9S4N2BpqwIXseEZhPourUrZ5LO4G3rTUpRCh7WHqQWpVKhqUCHjhbOLbidfZvk2cn8dO0n5hyfY1BwGimMMFOZsW3oNnrV64WpypTs0mxqL6+NUlCyOq8t02zPE+AYwLr+65j6QzT2YhsE4d/LONBTJAWEZ1qJBrkF8Uf6HzVOKJwtnGl6LYOjodBluhVnahURPyMeG1MbHL50+NPGpaZgO30gWU0wKAYf/+f9G/akuViwuVYyJloITAHPfNjRBFplCFxyE7FRWlCkK8NMZfbCDlSCCJ7FKhKtNJiqocJIynoY1mgYP1//GQFBbuJ61evF2aSzlGvK//Sc61rXJbEw8ZmhfgICViZWFFZIGSfT2kzjl5u/yJMIPU0rbCfUzYduM21wMHcgqyTrL1nbGmlArZQmNoWP1wOedsSqer1VWvDNgfu1Fbjb1aWbVzd+6LAM/P0JGldGpOUTGpeRwoihfkPZdXMXx8Ydo1e9XvJrOlHH5iubWXhyIaXqUsY0GcMPMT9wbuI5vO288V7tLR+DfpqhFJQoBEWN+pOPw+H1GKgz98nxDmkwBJVSJdOu3mj5BssvLmdC0wncyLrBH2mSmYGFyoJSTWmN98zcyJxKbWWN33t7M3v8a/vT0bMjWp2W5ReWy9MgfbilWqemvn19RjUexerI1RRUFGBjYkOj2o2ITIk0mB7Zmdrxfsf3mXdiHsH1g/kt7jcpfO8pTZT+/PSp7qYaqKWy5thbF8kvz6fD5g5YlUN3dR32W6XSz7cfvwz/BXMjcwCyS7Kpu7ouZZoyIiZF0Matjbzt/j/351bWLW5NvYWZkRkB3wYQVCeI7wd+D0VFksvU6tWSRuNv4Er6FYI2BvF267dZ2Xul/PfiymJOxp+U7WeTC5MxVZrS2LExKoWKe7n3yC3LxcnCieAGwQxuOJhuXt2eu4j1dxD7KJZZR2cRnhhOH58+rOy1Er/HJiLnH55nTNgYiiqL2Bi8kaF+Q0krSqN3aG/SitI4NOYQSkFJly1dsDGVJsYXJ118phvk89BuYzsaOjRk06BN/+r5/W/iZaPxEjIiUyJlzrqjhSMzAmcwoekEjj44yurI1cQ+isXPwY8ZgTMYHzC+Wj7B81BcWcy+O/sIjQ3lRPwJVArJVnV8wHj6+vStcYUjtTCVvXf2EnY7jLNJEke8o0dHQvxCGOo3VB4D/6eRWpgqNx3hieHE58UjINDUuanceHTy7PSPXDX0oVE33rqBv6M/Lp/Y0ie6gJYzlhJZcJPIlEh5rG9nameg9Wjj1oabmTfp/lN3tKJkN1qqLsXH3ofwV8OrraiotWoCfwykQltB9JTov/SDHZMewxfnv2D3rd04WToxO2g2k1tM5vzD86yIWCGnkIO0kjcraBbDGw2X9TenEk4xcf9EckpzWNFrBQl5CWy+tpn0uemGuqCiIjh58knjkZpKqakS8z4DoV8/6NuX4jMnOP/xa5xaNZPVV76VV2o9bDwIcguiqLKI4w+OoxW17D5qS8ilfN6b7s9nqyVqglqrpvOWzqQUpnDljSsE7wymfq36bB60mSvpV2jxvZRP4mDmQPCFbNYdgmRPW3oOzKddx9F09+rO6wdfB6TUdSOlEadePYWRwoh2m9rJ/G3/2v4UVRbxsOAhpipTqWDSqlHr1HLCdyvXVpIsRjQmAAAgAElEQVQL0CaJk92tbjci74dTohQ57bGIKz98yql2Bygyr95oV4qZXDQaWO3vIBVqHTw6UKmt5ET8Cd5t9y6z2s6i2XfNyCjJoKFDQ5mHrnc2ejp9W0DA1cq1Ri65j70PP4ZpcLqRSKNpkhtTycIS9t/dz5g9Y/70+6S3pa0qVBYQmNxiMofjDpNSJGkTFFpQidJ0AQBRojNVqiAoBc57gKVWQWszH8qMBKKK76JT1JwrobfpNVYYo9apn9kY1CqVpiBVdQhmKjPcrN14kPsAFysX0orSAOjq2ZXwpHBsTWz/lAqkh5nKjAptRY0TkN9G/8aAHdUDu4wVxhgrjdGho+8dLbu3VdD8DShtXJ/E/EQqtZW0d29vkGj/PDtdt0KwKYNbL+Lu+Vin4ZcFcbXg64HrmNpmKhw8SN6IYJzeVaLmSbNqpDBCFEXsze258/adagtL+eX5LD69mDWRa1AoFHT36o5Gp5EDIn3tfQlwCqBL3S7MOTYHrahlVtAsLiVf4uqjq7ImZvolWPY7mH/wYroeGxMbueGsaaKkx9PbsjSyJKhOEK80fYX+vv25k3OHWUdnyVotTxtP8svzKa4sxtLIkn71+7Hvzj55EjGi0Qg2DdrEG7+9wfbr22uczumpVwGOATKFykxpJk94qibYN3Vqyq8fXWfYdBfuC3no0FGuKefgdni3B5g0a8GlSZdkWpRaq8ZnrQ8PCx5W00v8du83Bu4YKLn5NRxMQXkBdsvsJJ1d84lw8CAEB0NcHPj4PPf6Pg+rLq1i9rHZfNtf0ooejjvMuYfnqNRW4m3rTT27epSoS7iScYUyTRkNajWQxdyBdQL/VZt8PbJKslgUvogfYn7A196Xlb1X0s+3HyDRiD87+xlLzi6hvXt7QoeG4mHjwd3su/QO7Y1O1HFs3DFUChXtN7XHRGVCSmEKe0bsYYjfkL91PD1+6oGDuQM7h+38N0/zfxUvG42XqIa4nDhWRKxgy9UtqBQqprScwszAmSTkJ7A6cjUH7h7A2sSayS0m83brt/8yJzK9KJ0dN3YQGhvKlYwr2JnaMdJ/JOObjqdtnbY1TkwySzLZf2c/YbfDOJlwEo1OQ1CdIDkg8Hne1P82kvKTDBqPhwUPUQgKWri0kGlWHT06/iWdydWMqzTf0JzLky/TyrUVAzZ2Rxt+iiMj9ks/8EjaEj3lSi841xez3nbe2Jvay7ajw/2Gc+bhGVytXDn5ykmD6cvi04v55OwnXHr90p87SD0DcTlxfHnhS7Ze24qFsQVvt36bmYEzyS/Pp/G3jYEnFA0LIwteCXiFgsoCfr7+M13qdmFT8Ca87LxosaEF/o7+bBuy7Zn7ikmLZsInrfjZbCyN/3gIFy9KDije3hAfz/3vPqdh6ntolbCkyxJ23txp4P4E4KSwJmVxEWkWIhfCtzK6xSu8c/wdVkWu4uyEs7R1byuvJP0Y/CNtf2xLdHo0I/xHsPvWbtQ6NYEZRhzZZ4F5mYbRQ7RcbeZMQr7k1+9g7sD5ieepZ1+Pc0nn+Oj0RzLVC6Tmx9fel6sZV8kpy2FT8CZ+iPmBKxlXKNeU092rO44WjhLdpNCYBjp79ttmsOAcfHES7trD+CmrMFcZZhwodFqaJEVRmTeLDW0EqOJ2Y6Yyw7eWFAan/57oUbWIEhAY1GAQh+MO17jCbq4yZ3ST0QbuU3rBuJexM3GfF7GkVQlLukiv6T7U0XNbT7lgrIpn0YXk43lc1Gd4rqV+wlwKhUoQJOqOa6Ek1K5qKasUQat4UkzbmtrS0qUlZ5LOoNFpaOrYlLTiNAOay7iAcfx27zcQqdYUuFm5UduiNreTr1KhAhONJP42U5kZTCv8HPyY2Hwi7598H7VO/Ux9w9NN29PQawn0zYb+OlSdfFUNTgOpgHe2dGZEg6HMHbmaI80smNyzTM6sqdqwiYioUKGh+qq8sQbi1kDPDzx4pCmgWF38zKmWDBEaZkOOGQg2NgxvPg5PW0/q/HyQteoLRLg9uQauFq508OzAL7d+wVxlznsd32N64PRqur9bWbfo/3N/2S7czcqNtKI0+vv250LyBbLeyWLSgUlyMKz+GM1UZmh1Wi4aT6Xlu6sYvKkX5zL/qJEW9TzUNquNt503kWmR1b6f+uupEBTyAs7TuR72pvaUqksJHRrKhH0TqNBWyPfO3MgcJUoa1m7I5bTLOJg7kF2ajbWxNcXqYua1nSdpIo9Mr/Zvr6oJQC/vXhyPf2K/bKI0QUCgZXw5XZsN5tO8J3SmgqVQdyacnn2NAGdpRV0URbpt7cbppNNMbzOdNX3XyO+v0FTgv94fbztvjo07hiAIctDrnbfvSJqK6dPh0CFJY/c3xNUllSWcSjjF4bjDbL22lTJNGSZKEwLrBFLLrBYphSlEp0cjiiJBdYIY1GAQgxoOoqFDw7+8rxdFpbaSdVHrWHxmMQAfd/mYqa2nyhTDhwUPGbdnHBeSL/Bhpw95v9P7qBQqolKj6Le9H06WThwdexQjpRHtNrajQlNBWnEan3T9hA86ffC3jyt4RzAiIgdHH/xXzvP/Al42Gi/xTDwqfsTaqLVyzsKoxqN4p907WBlbse7yOn6M+ZGiyiIGN5ScUDp6dPzLDg83M28SGhvK9uvbSS5MxtvOm3FNxjEuYNwzdSF5ZXkcvHeQsNthHLt/jAptBS1cWsiTjv/kj9PTEEWRhPwEWd8RnhhOWlEaSkFJK9dWsqNVe/f2z50A3c2+S8N1DWW600fhH/Ltsc94JLyDsPSL5+5bb7EbmRpJRMoTy1N3a3cySzJxsXLh12G/0sK1BVczrhL4YyALOyyULAv/IVILU1kZsZIN0RvQiTpGNh7Jlqtb2D18N0WVRayMWCmL7UFa9fu026cMbzSc/PJ8nFc4yyLpZ2Hi/omcSjjFgxkPJHvCvDwpJHDnTpkvnGcKx+vBYV+Ibe7CuB5zGeo3lJj0GGYdnUVKUQpvRsGqY9D+dYFa7XtyPP44i7ss5sPOHwJPRtZBdYJkq9cjY4+w985evo/+HpVCRYCqDtEX/BEPH+ab3nbMapOLTgHjA8ZjqjJl3519ZJVm4WrlKoeRfffHdziYO5BbmosOHQpBQfY72bx56E2yS7OZ6v8aB76fQ/NrmfS9Dx75YLsQjLUw7Q8Fv9XTccMJbGlGgHYdClEAQYkoagGRPhffZH74dXxnSPV3ci0lGlHLrpBdjGgspct+FP4RS84uoZ5dPSnDQEQWTCtQoFKqDILpqkIpKNGJOoPV3Ua1G3Er6xYhN2H3r9BgGsQ5SIXtlTeu0GJDCyyNLClSV28q9Px6S5UFmopSypWiHGynx5hY+DmAGl2Nnoa+KF/UaRFfXfzKoCEwVhjjW8uXm1lPMmlsTW0xUhjVyLFvXLsxvWxbsTJui+Q8pZL2LyDQ0qUl1x5dkxuL0Y1Hs/2GoUh3jP8YDsQdeKYg2+A6VGkKnodWzq2IeRRDc+fm1LWty8F7B9HpdGhEDUtPwJRocJ0LnRr0pL9vf/wd/Xll7yv42PlwPvn8M1f43zkPU64I+E4Xmd9uPo1qN2LC/gmAZBVsZmz2zPOYfgm+ay1dy0qFKOfuPA1fe180Og0phSmIooiZkRmTmk9iQfsFOFs5y+87cf8EvbZL9CqVoMJEZUI/3378eutXBvgO4HTiaYrVxZiqTNHqtAYUqj734MjP4DlHwUNrqdHxtvPGx94HN0s3KrQVJOQncDn1soFFrJHCCAUKKnQ1T3usjK3o4dWD+g71SchL4PzD86QVp8mvK1BgZ2YnGzHooRSUkp6gOB0rYysiX4/Er7Yfc4/PZWWERBkSEGhUuxGdPTvzXfR36ESdgZ2zvI/HEw59A6TP0dGKWvq6deFk0mkqVZIN9Z7be8grz+OzkwLfDXYjafZD+Xk86+gsVkeupqNHR85MOGPwnP7i/BcsCl9E7JuxMlVo8enFrIlaQ/Y72dJ7GzSQXP6+e7bmrypEUSQuN04WcZ9OPE2lthIvWy+aODbh+IPjKBVKStQlmChN6O7dncENBjOwwUCcLZ3/fAf/AKIocjjuMHOOz+F+7n2mtJjCkq5LDCb/e27v4fUDr2NpbMnPIT/TwaMDAMfuHyPklxCaOjfl4OiDqBQqumzpQkphCiXqEvr79mfXsF3/yOlq1O5RZJVmcfKV6gs1/6142Wi8xJ+iuLKYjTEbWXlpJQ8LHtLHpw/z282nlWsrQmNDWRO1hjvZdyRHkMCZjGo86i/zJ3WijjOJZwiNDeXXW79SVFlEoFsg4wPGM7LxSNkH/GkUVRRxOO4wYbfDOBx3mBJ1CY1qN2KY3zBCGoXQxLHJv+rd/WfQ/8BWbTwySzIxUhjRxq0NXet2pZtXN9q6tzW4Rnofdz2fWZ+TkXwxiDrHIp6zxye4l3OPBt80wN3anfSidHTocLZwlh+ONiY2svB4ff/1dPDo8K9pXnJKc/gm6htWRKygqLKIEL8Q3uv4HqGxoXx96Wtqm9cmrzxP9qK3MbGhXZ12HHlwhEfzHj3zOLJKsnD/2p3FXRazoMMCg9e0Bflo7e3oPlGg2wORfnHQOk2id9CqlUSx6tePhHq18F7nSyO7+kS9l8hJt0oGj3liotPUSaLAHbl/hCZOTTgZf5LGjo059/AcufNz2XVzF28dekvmxv/QfwODwm5Ra9lqjnvD2BDINZeaqJH+IwlpFEJr19YEbQzCzcoNtU5NYn4iE5tOZO6JuQB84zsL5bHjtLqWRfO7hSjLK0i3M+Kgt5olnR6v3NcAazGAtvmvYSXWI876AQ+VW8gTrtI0HUqMoUc8DLsF83rBvKmhjPAfwaG4Q7xx8A0ySzMxV5mzqPMi8sry+PLiE22Oi6ULj0oeoRN1Bnac1kbWmBubGzgVVcXuXZIeovUbT/72dJp2VQgiOFWoyDDVsPQ4LHxM3W/yCK47Id0UEQORtp6n/yxYqCTL1cNjDrPy0krCE8KrrczraWHu1u4G6dMqhQoTpYlMYRG04FCpIMtMBzpQKpUoFconAurnNAdKQYkgCNVef5qCU9XC96/ATGVGgFMAUalRDPUbSlFFEYlRx7n7DSR+t4y6b8yX39tkfRPyK/LlFfGacHybQIlKZNQ4E5wsnOjm1Y0t17YAUhFtbSJZPldd5deLxZVa+OqUktk9tWzo/y1ZpTl8HP4R3xzQ8lYwBq1NTanwIH1PnC2dMTcyJy4nTqbtGSmNqk299Newa92uZJVmcSPzhtxgWpVD+FY4/v4oMus5sypyFboPdfLvflpRGp+c+YQfYn5AK2rp49OHpPwk2fTj6WOq1D47UFJf+JupzLA2sTawcVYICpwsnCgoK6BU+8TO1s3KjQH1B7AhegMCAg7mDhRWFMp0NgEBE5UJKoWKtnXacjL+pLzvqsegFJSMbjyauNw4kguSSStOQ9CBrbEVZagp15TjqDEhU1WBf21/rr15DaVCydarW5mwfwJ1rOvwYMYDAwek1MJUGnzTgCktpxjoJnqH9sZYaSytqicmgpcX7NkDQ55NBypVl3I68TRH4o5w+P5h4vPiMVYa08mzEz52PhRWFnI26SwphSnyd2psk7F82//b/6jLZFXczrrN7GOzOfbgGN28uvF1768NdBSl6lLmHJvDhugNhPiF8MPAH2TK3/bY7UzYP4He9Xrzy/BfUClU9Nvej6jUKKyMrXCydOLcxHN/iVJeEybtn8St7FtETHqx5/5/A142Gi/xwlBr1fxy8xe+vPglsY9iaeXaivnt5jO44WBOJZxiTdQaDscdprZ5bd5o+QZvtX4LVyvXv7yfMnUZB+4eIPR6KEfvHwWgr09fxgeMZ0D9Ac/M2yhTl3HswTHCbodx8O5BCioK8LH3kelVT9vs/k9AFEVuZ9+WG4/TiafJKcvBRGlCUJ0geeLhbeuN+yp3mSObXJCMxyoP9u8xJji65JnBfVXx9qG32X17N5cnX6b9pvbkleVhYWTB172/ZvJvkyX70opC7MzsZJcrTxtPOVgw0C2Q5i7NZeHg38Hi04v54vwXWJlYkVWahUJQMK31NFb2Xkl+eT6br25mTeQakguT5Yd5Z8/OTG09lcENB1ezAfz83Od8cvYTUmanyDa9ZeoytlzdwoqIFXz84wPGh8C6fuuYdngaW9stZ3yGo6TrOHZMmn44OHDcV8Fm10zmNZvK20nrSbCF9RN3U6IuITwxnFMJp3hYIHn9KwUlfg5+FFQUcOvtW5xKOMWgnYNoXLsxN7Nuyg//Hg9gZ5hAsZHIsBHw0NeR0KGh9KwnhXYtO7+MxWcWs3v4boZt7c/v7u8Rs/lz+sSBTx5UKiHGx4ID3hryurQhxq4caxMbSQj9nLTpCVcFNu8TUS0CrbLKC6LEuT++DRrmwE8B8HFPFUmWGiyMLLAwsqBMU4ZCUMiFu6WxJZuCNzFi9wh5M66WrnJz6mLpQn55PpbGlmSVZhkU2i5ac+I/L2VJbxOWtql5VdgAIphqoPzxV9muDPLMnpzj0/QjK2MrzFRmiKJIVtnzHX4EBEIahXA3+y7XM6+zpMsSPjwtTaqqpmrr3/tMHr8IjiWQZf44+foxzI3MKVOX/Sn/X+92pEfVVPVnBek9jarXIaRhCBeSL5BRksGkZpN4t+O7+K71paVLS6LTowG4uFlJ24Y94Kj0W5lamEqj9Y1k169n7fvhStgWAN8NcSetOM3gGlmLAXjpJmEueiOYPOKGZg2FgqELmG+egl5xOr5vrcDa3I5BDQax8QB8Gb+NBV2e7M/R3BFPW0+i06PxsfchozjjLzmSCQjUsa5DcmEytqa2ciiqo7kjOWU51FJZkanOZ6xjD5o17c07J95BvUhNYUUhy84vY23UWkxVpkxtNZXlEctxtXIlMV8KMTU3Mie/PB8BgV7evUgoSCAuJ87gPlsYWWBvak92WfYzG0QBAYWgkK+hPguoqKKIC8kX5O1VvbctnFtw7dE1tKIWI4URVsaSAcDCjgvpVa8X3bZ2Q61TGzT++oDW0spSMkszMa0EwdiIMtQoBAUdC+1pcy2bFR0VDKw/kDlt59B1a1dMlCYkzEzAydJQjDNuzzhOxJ/g3rR7ssZQq9Ni/6U9C9ovkDKYvv9eEoBnZ4OtrcHn7+felxuL04mn5ZC8Ht49qGVei4S8BI4/OE5BRQEeNh4MbjCYQQ0H0dGjI4vCF7EiYgUXXrtgIEr/TyC3LJePT3/M+svr8bT1ZEWvFQxqMMigHrj+6DqjwkaRkJfAqj6rmNxisvy6XlsyodkEvh/wPUqFknF7xhF2Kwy/2n6kF6dzefJlPGw8/vGxTj88nTNJZ4h9q+bU+P9GvGw0XuIvQxRFjj84zpcXv+RUwinq2dVjbtu5TGg2geTCZNZGrmXLtS2Ua8oZ3mg4MwNnElgn8G/tK6ski103d7EtdhtRqZI/+vBGwxkfMJ6Onh2fKQ6r1FZyMv4kYbfD2HdnHzllOXjYeDC04VBCGoXQzr3df0RY9mfQiTpuZN6QG48zSWekdOzHXO7hjYYzK2gWrVxaUedLJ6aeyOfjFdHQosVzt5tblov71+7Mbzefj7p8REx6DB02dUAhKPC08WRKyynMOjaLenb1iH0zlqzSLMle93GqeXRaNGWaMpSCkgCngCcuV3UCaejQ8IWv1YhfRxCREkFaURqeNp7oRB1JBUl08+rGwg4L6e7VHRGRo/ePMmTnECp1lXIhaG9mz5QWU5jccjLedt5odBq8VnvRu15vfgz+kezSbNZfXs/aqLXkluUyrNEwCo8dIN/FjoglaTh/5czU1lNlKhQaDURGwuHDlB/ci+n122gFiHQD90LYOMKXjzbcQVAoEEWR+mvrcz/vPq1dW3Ml4woanQaloMTVytVgFVwPNys3ovvsJbFXG5plwOox3rzrHc/8Dgv4pMsSUv84xeqP+/JuUVNso2Ix0Ygk2MLJBsaU9ezMl0aXSRGlZPSve33NW4ffem7AG0ir96vTmzJp3UUUH0rFsJ73rYdSC5NjYHG4lBHxVVv4sj2UPPZbeLf9u3jbezPl4BSaODYh9q1YPjv7GR+ES7xibztv4vOeZKVUaCtY2WslC08uNFiFnXLdmPVhFawb5UVlYgKfd4Jc/RrAYx2FSgSNAswxppTKF6JCVcWzws5AKsL33t2LTtTJDk4mShPszeyJmBRB3dV1q1+/x4X/ML9h/JH+h6wLACnpWq18Etb3rM+CFNYXmRJpUJD28u7FuCbjeGX/K9U//IKwM7WTA/UAbk69SditMD4/9zkKhQILIwuZ8qWfFEyMgY0HBYSkJE6q7zFi9wjyyvLkY5sbNJcVl1YY7MeqHAq/gLFDJYqaicJEphBZiwE0034r2yiDFh0id4xnk6mLMtjOsBxnLiszSLaGZq4tKCzPJzk7XqKcVYF+Fd/d2p0JzSbgYeOBUlDyzol3SC9Ol/YkKNGIGnztfbE0tiS1UMp90afUQ81NU60yWHoC5vRXUqKUKH49vHpwMeUiOlFHZ8/O6HQ6wpPC0eg01DavzYpeKxjccDDmRuZMOzyN76K/q2Yjq0DBZ90/41zSOU7En6i2X33TUMu0FiqliqySrOfnkDyGhZEF5ZpyuSkxmCCaWDOowSAO3TtEbnkuDWs15E7OHVytXMktyzVoYq0FM5ollHHZQ0mZQotSUCJqtcyMUtBx5W7GhI2RdR8Rr0XQpo5hMX/+4Xk6bu7IpuBNkuD7Ma4/uk7AdwGEvxpOl7pdYNgwSE+HCxco15RzJvGMTImKy43DSGFEJ89OtHdvD0g5SqcST1GpraSpU1NZzN3MuZlBYa/WquUcpytvXHnhzK6/Ao1Ow4Y/NvDh6Q+p1FayqNMiZgbONDCfEUWR9ZfXM/f4XOrXqs/OYTtpVLuR/Np7J9/jiwtfsKD9ApZ2XwpIYYerI1fT07unxFx4NZz2Hu3/lWNecGKBFGo84/6/sr3/C3jZaLzEP8IfaX+w/OJydt/aTS2zWkxvM52praeiUqjYfHUza6PWEp8XT6BbIDMDZxLSKOQvhddUxd3su2y/vp3Q2FAS8hPwsPFgbJOxjA8YL3NLa4JGp+Fs0lnCboWx985e0ovTcbZ0ZkjDIYT4hdC5bmeJ+/+/AK1Oy7VH1zgZf5L5v8+XGw4LIwvMlaa0ic3hm0bzqLNw6XOPcdn5ZXx0+iMezn4o05B23djFqLBRmCpNUSgUeFh7kJifSFevruwdudfgx1atVXMj84ZBqvntrNuIiFgZW9HarbU89Wjj1qbGMMPotGjab2qPWqfmk66fML/9fAQE9t7Zy9LzS4lJj6GVayvebf8udW3r0uqHVuwI2cG1jGtsiN5AXnme3HT08O5BM6dmfBXxFb+N/o0j94+w6Ypk9/da89eY03YOJkoTPFbW4btHrZn8bRTNNzSnbZ22rO+/vsZr1PFTb+pfTmBWSh2axEiUklIHW8yDh6Lp04s6sRPQWVtxefJlvFZ7Ub9WfR7kPaiRKqNfFQ/xCyHywVkW7M1i2mVIauHNCSGBfonGuOZUUKESuOvvTEXProwv+xnjRo3pUa8nP137iZLKEgRBoLFjYy6nXZZsTcUm1QL59CvJ+iJryhUlG/ZrMVnyxB71aRGrgIBVuci752H2JUnDsqgrbG4OM9rOIqcsh22x2/C19+Xe9HsUlhdis0xa0XyaXgQQPng/G7fMwLRMzY8uacy/INAnTnp0NE2HiUPgQAN559gZ25BX+YTu1My5GVczrhqE6ZmqTFFr1WhFLQICQxoOYc+dPfJnLIwspKTnZ0wRlIISL1sv7ufdl/9fK2rxtfMlqzRLFnrX5Lp0b9o9em7rSWZJJp42ntzNugMCNMiCO7XBmoBq98HTScTN2k2estbkaPUi0BePT8PaxJpKbaVBMZkxN4M5x+eQmJ/Ilz2+pPOWzmhFLU4WTnza7VMmH5yMZQUUrDbjzKi2dPcIRxCkFkEURVkTpBeb66lPbVIg8kdo9YaCaBeJLlepk6xcm2hWYY+h6YCIlnzhMteUM6sdt005lKnAwsyaV1u8hvejSqL2rSf0SYYnSpQs77WcOcfncGnSJfxq+9Hjpx6yY5OpylSmLFWln+ldloY0GMLeu3tRCkqMlcZMbjGZrde20sypGSn5Sdybm8i6N1qw0P3uM+2LbU1tMVeZk1mayVut3qKOdR0ySzLlvKeaBP3vd3yfpeeW4mTpREFFAWqtGj8HP+7k3EGr01ablFmbWNOtbje0opakgiRiH8X+6RRMISiwMraqRg80Vhize8RuMksymXJwihQ8+NhYQA7LFKGlc3M61+3KysiVmKqlieGK3itYdmEZmSVSQvvFSRfxsX/iFqXVaWn1QyuMFEZcev2SwULShj828Pbhtyl4twALhQnx9ew58lpHjvgKnEo4RZmmDHdrd/r69KWJYxOyy7I5cv8IUalRKAUlnTw7yWLuurZ1n3vuD3If0HxDcwY2GEjokNB/lXFw4sEJZh+bza2sW0xsNpHPun9WTf+RU5rDpAOT2H93P9NaT2N5r+UypVmj0zDl4BQ2X93Myl4rmd12NgDLLyxn/u/zGek/kl03d7ExeCOvNX/tXzvuxacXsyF6A2lz0/78zf8leNlovMS/gvi8eFZGrGTTlU0IgsCk5pOY03YO7tbuHIo7xJrINZxMOImLpQtTW0/ljZZv/O0APFEUuZB8gdDYUHbd3EV+eT4tXFowPmA8oxqPeq6YTCfqiEiOkAMCHxY8pJZZLQY1GERIoxC6e3V/bkDefxImn5qwvOdyguoEEZ4QzoboDRSnJrDyKLw9xpqOHh1lqlVTp6YoFVIhoNaq8VrtRR+fPvwY/KPBNt87+R5Lz0urMEMbDuXNVm8ycMdA+vj04dfhv8rWhzWhsKKQP9L+kKcekSmRpBenA1IxGlgnkDaubWjh0oLf439n+cXlaEUtH3b6kMVdFxtsSxRFfo//naXnlxKeGEFtGLgAACAASURBVI6DuQNFFUVkz8/G0tiSck05u2/t5puob4hMjay2cmlnasesoFlMbT1V1ussPbeUT35fRMaFtlj/fo6+2/tiqjJl78i91c4lIS+Bpt81paiyiNYurYnabgZnz/J7fSO6KuuhvH0HtQKivIw44K3hoK+IaZNmjG/6CsENgvFZKz2k9dQNlSBRiBplQb/7CnrH6eicBEY60Bmp2N/UhJ/9dRh368VvaeHETYvDeYUzLV1asnnwZpp82wQBgXEB49gyaAvuq9wpLnQwWEmuGshXy7YIWzNbrmRcYcofsP4QOH/hYLDa+zRFSF9geuTD5ydh7HWIdYR3esOJelKjpBSUFC0solRdisNy6bqqUOBSoiDZQir2Vh6VmhWAU17Q/VXoew8O7oC3+sPW5gKVypofI/ppi6O5Izp01dyv9MdoJBhhamQqN0v6Rq6mpOuqK8DD/Iax+/buGvetR01UqZW9VjLvxDx0og5vS3fii5PpeR8uuoPSOKDafQC4qZpONhJd6Xk6lL8KAQFPG08eFj5EJ+qY0HSCrJWY03YOxx8cx9vWm+PxxynXlMv5HXnleXJTsu94LRrfzsF3OgS5tyUiNYJaZrVkobKjuSOZpZnyPidcgY37weo9MLOpZSBobqs5iAnVNVMVZBKhqm6jbKSBbb+pmNBfg6OFIy2926OIuUKYeaLB+zytPanUSY1UVfcoF0sX1Fo12WXZMjXPWGGMRtSQvyCfpt81ZUD9ARx/cJz4vHjUOrXcDC9ov4BvL39L5hdavuqg4IM2htoOGxMbxjYZS4BTAKlFqfyR9gdH7h/BxkTKOnj6e1GT5ay8nYCxeNl48X74+wS6BXI98zqvNXuNxo6NefPQmzhbOuNj78P1R9drNBp4UW1O1ekSSJMTBORmUX8v2z0yJcKx3MBEwakQMq2eGCuMazKOy2mXySnL4eDogwTVCQKkZuLNQ29yadKlamyD8XvGE5kayYD6AzgcG8bd0oeoBCUdPDvSp14fXK1cufboGgfuHiAuNw4LIwv6+PRhUINB9K/f/y/nS/18/WfG7hnL1sFbeaXp358G6hGXE8e8E/M4cPcAHTw6sKr3Klq6tqz2vtOJpxm3ZxxlmjI2BW9iUMNB8mul6lJG7h7J0ftH2TJoC2MDxgKw7do2Xtn3CmObjGXnjZ1MazONVX1W/eNjroqvLn7Fp2c/Jf/dF7PJ/m/Ay0bjJf5VZJVkse7yOr6J+ob88nxG+I/gnXbv0NylOTcyb7Amcg3bYrchiiKjm4xmZuBMmjk3+/MNPwMVmgoOxR0iNDaU3+5JIUc96/VkfMB4BjUY9FxhliiKRKdHE3ZLajricuOwNrFmYP2BhPiF0Nun9z/SK/xV2H5hywedPmBeu3kA7L61m+G/DidhhxPbv59OeGI4F5Kl8bWdqR2dPDvRtW5XyjRlLDy5kOtvXaexY2ODbZ5KOEX3n7rLhfvn3T6nqXNTBu+UuLI7Qna88DRHFEVSClMMph5RqVFysWNvZk9uWS4LOyxkdOPRNKrdSG6GqiIyJZIBPw8guywbd2t35rady+stXsfC2AJRFFl3eR2LTy+Wi2h9MdrXpy9vtXqLvr59UQpK6n9Tn3YZxmzdrYG7d3lt/2vczr5dTURXoamgw+YO5JTmYG1izbVH17g56AQNW/bmopuOEdMdMU6VHJ+GxpvQ6YEGk0otoqcnQr9+JLXzx//2NEqMoZ9jB8zPXWJsqj19HygwSc2gTAXhdeGoD6TVNmH1CSW1irR88XpDFttJnvfvdXiPz89/jpFgxNiAsWy5tgUjhRHz288nuH4wgRsDn7mSnEsUyZYfU1xRjA4dX8Z5MWNHPMaLnvx0V12NNVGa0MO7B4fiDmGmMgMRyrRl9Mi25tNDZVCpJmgyeOZCkj18XNmBceW++FhvBsCiAsZchx9agXs+fHDFEkXzFjzycWFTRQTxRQ+ZFgkrjoHLPEkIr0fVZmdow6EcvHcQrU6LDh1BbkFcSr1kcG+enjY8rXGoCUpBSRPHJlx9dJXWrq3lVfGqeKvlW1zPuk5MWswzqVcGECWrXCtzWzxLlmArtqrxPuiDES2NLdHqtH9aOHrZeGFvZk90RrT8t97evTkWf8zgfKa0nMK3f3yLk4UTybOTsVtmR4m6xKA4FRAYUH8A1zOvc/WNqwTvCObsQylfqFk6XNkAKz8dwLu6Y9iZ2smNhYCApbGlwcRr+TEYcgd8qg8onvs91J9/gGOAZJv8+N9oU01tpp3IZ3JfNY3s6mNrakdMciQVSkM3sedBL7DOLs2Ww/mMFEZYm1ij0WmwMLYgrSiNkf4juZRyiaSCJGyMbSioLCBuNYQ1gs/7S1OmcxPOYWtmy/wT8zly/whBdYLo59OPUwmnOJ10GlOlKa81f42e9XoyZNcQFnZYiK+9L5dSLvF9zPfPPU5jpTGO5o6kFKXQwb0DESkRNKrdiE+7fYqXrRe/x//O/N/no9FpMFVKk5qaKFXGSmPa1WlHbGasrJl7erHgucchKmmVoeCKu4ra5rV5WChpzFQo0Dze3+AGg1nffz3Dfx1OTHoMO0J20NGzI/XX1mdgg4FsHiT9m0/KT5ID83679xsiIq5WrvQrcqbbodsofvyRE4mnOHD3AFmlWThaOBJcXwrP6+7d/R+H503YN4Hdt3YT80YM9WvV/1vbKCgv4NOzn7I6cjUuVi4s77mc4Y2GV5uSaHQaFp9ezGfnPqNz3c6EDgk1yOTKLcsleEcwVzOuEjYijN4+vQE4ev8oA3cMZHCDwZxKPEULlxYcGXvkX2dDrL+8nplHZ6Je9GKarv8GvGw0XuI/gpLKEjZf3cyKiBUk5ifS07sn89vPp7tXd3LLcvkx5kfWXV5HcmEynTw7MaPNDAY1HPSP/tHmluXyy81fCI0N5ULyBSyNLRnqN5TxAePpWrdrjUWvHqIociPzhjzpuJF5A3Mjc/r59iPEL4T+vv3/484YLitcmNpqKos6LwKkVXjvNd4c2g79zmWAkxMVmgoiUyNljcfF5IvyAzm4QbA88fBz8KNEXULAtwE4WzqTW5ZLdmk2OWU57AjZgZnKjGG/DmOE/wh+GvzTc69NTdDoNCw7v4yPT39MXbu6jPQfybmH5zibdFZuDCyNLWnl2oo2rm1kwbmbtRvFlcXYL7Nnfvv5JBcmsz12O7amtnT27Mzt7Nvczr6Ng7kDWp2W9zu+z3fR33E/975chLpaudLbuzebr23mtOmbdP5sOxQW8t7J99hxYwcJMxMMjnXGkRlsiN7Axdcukl6czsAdA7EytmL+0SLmXYCWUyCpjgVedl60d29Pdm4KvtfTWFrZkYoDezFJTEatgEJjsK2QCtK7taDOyMlYDBzKbocshh+SVuL8HPzwNXJi4uqzDL6lY0VHFQu6aEClpLZFbbJLstGIGgY3GMy+u/vwsfchKT8JtU793JXkSvePiU6XwhWnRFSy7JgOs6es2uXrY+mKh40H7T3asyJiBQIC5kozFKWlFBlDwzwFJUod8askKpVSB37Z0O71J9syr4BSE2mF19vOG1OVKSP8R/DBqQ+o0FZw8UfINofgMc8WV+tzAPR0F1sTW9JL0lGiRPt4SlDTZ18kdM3RwhGloJQnbDWha92unEs6J1O17E3tyS3PNdi+QgetUyHS/cm+gzQHarwPKAuINBoka5lMVaaUqEvk6UZVitLzMKD+AA7fO2xQfE5qNomNVzfyQccP+KTbJ1h8LtHG9PQM/Tnbm9lTWllKH58+7Lu7j8ySx1MKESZegbbJMGVQTXs1xKFQ0CoFgkdXv85PazREJGrbNeVb5AlX5esU3CCY/Xf3y59bbTua1CO/8FWQjqPjjrLn5Fo2pfz2JGSxCvTXanqb6XTw6EBRRRGFFYUUVRbx273fuJZxjUpdJU4WTrKz07MCJQEu/QDXHWHy43M3UhhhY2qDqcqUwopCWXxurJQCD2ub12Z8wHju5txl181drOwl2XDvurmLUnWp3AB723oTnx8vO5+N8h9FU+emrLq0ijJ1GYWVhZgqTanQVjz3e9zKpRWZJZlyM9DIoRH3cu4Z2O26W7tjpDAiPj9e/rxCUMgUuGqowTDCpgQKnlpba2YzmM7WS7ienEmW5gZ2rjFcLdjHxuCNXEq5xJH7R7iVdQuloKSNWxsiUiJY1GkR9ezqsf/7ORyrXUCpQkv9WvVlMXegW+BffmY8D0UVRbT8viVWJlZETIr4S/RqrU7LpiubeP/U+5SoS3i3/bvMazevRtOYxPxExoSNISo1iiVdl7Cg/QKD80gpTKFPaB8yijM4PPawLFK/nHqZrlu70tGzI8kFyVRoK4h8PfIvT29eBFuubmHi/olUflD5XMbBfxNeNhov8R+FRqdh963dfHnhS65kXKG5c3PeafcOw/2HA7D39l5WR67mQvIFPGw8mNZ6Gq+3eL1aiuxfRXxePNtjt7MtdhtxuXG4WrkypvEYxjcdb2Bn9yzcy7knTzqi06MxUZrQq14vQvxCCG4Q/I+PryZ4r/ZmpP9IlvaQqE6iKGL/hS1zjxbywey9MHhwtc+cjD9Jj209GOU/iuTCZCJTI9HoNDhZOGFpbElyYTKHxhzCw9qDwI2Bkpi0JItTr54irSiNUWGjeKXpK2wM3vjCgu/bWbd5dd+rRKdHs6D9Aj7q/BEmKhPmHpvL/rv7ufrmVaLTog2mHnqbTVcrqQi+lHKJbUO20bVuV9ZfXs/qyNWUqEtQCkoG+A7g6IOjfNT5IxZ2XIhO1HEq4RTrLq/jwN0DkmhUp0FEZHl2c+Z9cwVtQT7rb//EOyfeoez9MnkVSz8VGlR/EKnFEnVCXwAsb7eYt4cuZb9nOV+N8gDH2rR0bcnvMWF8pu1CjzgtlYf241ooUqkUKDARsSsHlQ7u1YKKXt1oMmEBJUEtsfz6if3y5kGbGe0/ipTFc/Fa+i0RXipCBqt5VEOfWrVoepGVZAGBGZdEPjsJTh8/0TDoqSY6UYenlTupxWm8qmxJQKqWmU7R1M2Du2uh71g45Q3WlbDxhDk9b5ZjLCo4NaI1w9wjKH/8XNMndlsZWVHXri73c++zZdAWRoaNpEG+EXdWqRkdAjubPP+7ohJUaEUtPnY+xOXFyX/TiBoUKLAwtpBX2p+3mvs0f76q+5VeCK6/PnpB9fOaFaWgRCGCf7oW+xI4VSXs+Hn34bbxPALdAlnUaRF9tvd5/sk/Rk2NU1WtilJQysXk263fplxTzqYrm557/DXZ7Kq0ULsEMq0VaB9fq3q29fC298bL1stgpT7ha9jZGN7rKaBSqOSpkx7WoqRRscKHIu6jcjhNhiaSwopCdKKOMk0ZzhbOUrp8Fc3JQcbwfsbP3HQS0Ao1H39t89pklWbhX9ufG1NvVHv9ZuZNOfTz6NijOFo40uL76mYYKoUKDxsPEvMSORSqQ2tqzI8fSGncQ/2GEp0WTVJBEiZKE7xtvREEgQd5D6jQViAg4GTpJDf+Lwo7UztcLF24lS0FgnrbeRNUJ4jLqZeJy42rRo8SELA1tTUQ+FeF/rvhYe2BvZk993PvU6wuNnhdgUJuzOEJdVB4nG9Zk55Ir+uqqWkUEYlVvk2+cBVnS2f6+vSln28/fO19WRu1lo1XNsr/FoNSYJDfEAa/8vl/PJ8qOi2athvbMiNwBl/1+uqFPnMm8Qyzjs3iasZVxgWMY2n3pdSxrlPje3+5+QtTDk7B1tSWHSE7aOve1uD121m36R3aWwosHHdcCipEomK139QebztvHMwdOJt0Vs5G+U/g15u/MmL3CPIX5MtOYP/teNlovMT/CERR5GTCSb688CUn4k9Q17Yuc4Lm8Frz17AwtiA6LZo1UWvYeWMnKoWK8QHjmRE4Q3Z/+Cf7jUqNIjQ2lJ03d5Jdmk0TxyaMDxjPmCZjDEamz0JifiJ7bu8h7HYYF5MvolKo6ObVjRC/EAY3HPyvZVH4r/enp3dPA85n95+6Y3PqInucZsCyZdU+M3TXUO5k3+HG1BsoBAUllSVcSL7ApphN7Lq1S36QuVq50qBWA04nnsbZ0plKbSWXXr9EZEok4/eOl6gb/b99rhhPq9OyMmIli8IXUde2LlsHbzXg9/b4qQc2pjaEjQir9tm0ojQ5VDA0NpS0ojSDQsrX3pfgBsHkl+WzLXYblbpKxgeM58POHxqIGJMLklkbtZblF5cD4KwxZfXecr4Z5IJb887svLmTvAV5pBWl8UP0D6yJWoNO1GGqNKV//f6E+IVQy7wWvUN709GjI4G/32H5z1lcdoFTLWwYFG+Mz50sVCLccVQQ3bQ2wTPWMyx9NcfTzjLWaxChtq9xYNVbBMXm4phTDubmhNdTssujiCO+8NAWRjcejaulK8UnD/PRt7cRgeEj4OJj98Oaik9rMYDm2m8fv6rXBohcUb5JofAk9HBWhOQoZfMetKrVhOic60zIcKE0K53ffQQ6JInsf1wTDE+354hTISWCBptycHNtwM28J6Fgbc0b8ObRbMadKyDVTMN73WF7E0NrVxdLF9KL0wkbEUbILyEsvmjC3PAKHN+B0qcWHpWCVJw7mDnwqPRJxkBVvYB8Hq1nseryk++6/pq8CH0KoJVrK/5I+0P+f30zUnUVvOq2q9qPguTOpVVSzQnrWcXZ1Sr3wdrYmjJ1mSTIrQJ91kpVzAmaw8pLK1/I4tbe1J5aZrXkpkyocmA1NR7Wxtb4O/qTUZxBQUoCpcZQXuWeDG4wmLOJZ8mteJKWbVEBxUvhlcGwq2XNWhN9I6QvOAUEzI3M0YpagusH88utXwDwsPagjVsbwm6HGWaFqEGpVCGYmjL0lsiJOpWkmT45d6WgxNzInAczHtSo1WuxoQVXMq4wsdlEHhY8rJYyb2tqS3Pn5jzIe4CtqS3rtxdgkZVP89FPBNXdvbozucVkBjccLOvuStWlTD88nU1XN8nnpp9yqBQqlvdczqyjs3il6Stsj91OYWUhtia2jG86nrvZdzmdeBq1To2IiIulZIiRXpwuNa6P6V5/hqrfcytjK0rUJZSqSw2az5reXw2i1GRU1xOJXHvcSDyvaXapf5iPu3zM0ftH2Xd3H7GPYlEKSlQKFav7rCY4XoXLyNchIQHq1v3T8/o3sDJiJXOPz+XI2CP08Xl2I5+Ql8D83+ez+9Zu2ri1YXWf1bL+5GmUVJYw8+hMNl7ZyEj/kXw34DtsTQ1teiNTIun3cz9crVw5OvaoXBdkFGfQbmM7KUDSpx9fX/qag6MP0r9+/3/vpJ/CoXuHGLBjAGlz0mo0XflvxP+8v+dL/H8JQRDo4d2D4+OPEzMlhnbu7Zh9bDYeqzz4KPwjPGw82Dp4Kw9nPWR+u/nsu7MP//X+9NrWi0P3Dr0QJeFZ+w2sE8jafmtJm5PGgVEH8Kvtx6LwRbh/7U6Pn3qw9epWiiqqJxjrUde2LnPazuHCaxdInZPKqt6rUGvVvHXoLVxWuNBlSxfWRq4ltTD1714e4IlXf1W0dGlJjJsCIqqH98TnxbPvzj5mBc2SpxEWxha0cWvDhZQL9PDuQd6CPA6NOcSYxmNk+kB6cTp55Xm03NCS/PJ8lvVcxoboDcw6OotnrTvE5cTRaUsnFvy+gGltpnHljSsGTYYoilx7dI0Ax5qnRa5WrgzxG8KrTV+Vr7W5ypw+9fowtslYzI3MWfX/2HvvqCrOrv3/M6fRe1EQQRFUBKzYu7FhiV2x92iMGjWWaIppRqOxJ0ZN7Ng1ttgVu2JXQMGCYkE6Cod+yvz+GBk5AurzfZPneZ/357WWy7XmTLmnMLP3va99XeGLWHVjFTqjDmuNNTujd1J5aWU6berE9YTrAJS3K08VJ2mm6ZfgX/B186dPL7ihkWhzAB4LPPBf5s+SS0uwVFuyodsG0qalsaP3DvoG9qVtpbbUs/Sl7IEzBNxOQVQqqJsAY45mkGJuZGwHCJhixdAf69Fp7x0UbdsRnnoDAYF8CzV8+CFP5syg3HgdGZfPkTZ1LA4FCn45CI8WQeSvUHPBZqK2/0JmLX9GzKzFfUc4uRau5Q5CLahKDBwyhQiuKz8mnUvkk0w6l+QkQ4GAZT445kgBsvGlfOyVtEhEEU5rElAYoUCjZPeHm7jVfh9VnKqw3S2dLIWehuUbkWWlkpMMN2s3BAQu5NxhcLM0tm77hovlYMMuuPQ7tHnuJI+rkJ6UkScFcd1u5LO3SvEkA8AgSko8LSu2BJC524VJhrXaWg6eTz85XWz7nb12YjC+naNeKIFaFIUz8q8nGSAF6SbVEhG6RUs9KLyWW2cKEdx4eR8sc6X7cEczUU4yApwDyCzILJZkAMWSDIAF4ZIRWmnvMKWglBp+gfS8dDnJAInq42bjxm8df2Nqo1eGfL4OvmgUGrJ0WRhFIw9fPCTfwQpRIVHhCq/77ju7TZIMG7UNfi/78e+WkYwIS6KpFAa8hUlGedvyZOuyydPn0d2vu8n57ojeIT/PAgJmqDl2szro9Tir7TlWzYI05WvXSpToU9+c/MZkca4ulx23d8jPwJoba7idcttknc09NtO1aldOxp3kccZj0nLSuCrGo3yegbXaWh6Hn7MfbSq1kZMMvVHP/rv7iUqWqiiFNN0CQwHlbMoRMTqCEbVHUNa6LIlZiXJT+MURF1kSvITDAw/zaYNP5XNNzk4mIy+DWa1m0ce/j5xkNPJoJI+1umt1lrRfQtcqXeX7qVFqqOdejwblGuBp5ylXM4omGW9LMF+uhJdhmJxkSIuUgEB5wxAArKlkkmQUruOk8ufIgyM0Wt2IRRcXEegayLae26jvUZ/OVTozKmgUbmGXoXLlf1uSATChwQTa+7Rn8O7BJGYVNwnNKsjii+Nf4PerH+efnGdDtw1cGH6h1CTjRuIN6qysw+aozaz6cBWbe2wulmQcvHeQVutb4efsx+khp+UkIzM/kw4bO5BvyOeTup+wIHwBc1rP+UeTDEDuCy1NPe2/Ee8rGu/xH0PcizgWXljIH9f/wCgaGVZTki2t5FiJAkMB225tY/HFxVx5dgUfRx/G1RvHkJpD/ha97Yy8DHZG72RDxAZOxp3EQmVB16pdGVh9IG0qtXmnXpGU7BT23NnDzuidHH9wHJ1RRwOPBrJBYEWHiv/SmJqtaUYF+wqs77ZeXrYlagt9d/YldbE5TkmZoH7F2ZxwaAKhEaE8mfjEhI86ZPcQdsXsIvLjyGIGQs9zn9N9a3fOPD5jwv0tVAfq6NuRFZ1WyC9bo2hk6cWlTD8+HXcbd9Z2XUsTzybFxp6YlYjbfDf+7P0n3fxM3WMLVcLmnpvLvrv7ABhcfTCLgxeblIazC7JZGL6Qr058RRvvNsSkxpjIrLpaufJhlQ85//g8bjZuHB14lMv3TrJ8Sit2BFmgNUpJWlEKzrh64/iy2Ze4WjjD9etw8CAcPIgx/AIKo0iMm5qqzXvAli180RKWtrEhqyCLRuUbcaD/AWzNbPn25Lf8cOYH9EY99dzrsbzTcvbd3cfMkzNNDMRs86BjnIY2d3T0emSNdbqWLAslhysaOOajpEGyhsHhucS2rkOTujpclCXQHUrwmSifreaJpY6QSNhSHb4Jg/GXoPVAuOEGxtemi9Z0WUO3qt2wUFtQY3kNYlJjMFOaYRSNcjCkElR0qtyJy88uE699lSA3fgTzj4CFHmp8LAXiT15+lz1sPLC//5TI36BTX9hfhRLhbOmMv7M/Z5+cfefG1kLMbD6Tb099+9b1NnTbwMBdA0v93dHM0STAfh0jrkCuGjbWePNxppyBvfVsuGOmlR3I34TX6V9FFYSKUrxK2q6oAzlIMrh30+8ypMYQ8vR5bIraBEhKQuu7rafz5s7cSrkle4EUVnS2bIdvmkNMkUJr4W/ftviW2EUzWbcbrGZAnpnUA/C2npiicDJ3Ii3PtDoV4h/CodhDvMh7QSWHSghaLbPDFPRqJgWLQToX2lxKZ3bjV9emmnM17qTd4dqoayRoE9gUtYld0bvQFmgJcAkgKiVKosJZOJCRlyFf143dN1LJoRIzT87kcKzUVG+TD99ctKTysq103tKZzxt/zq+Xf0Wj1PBl0y8xiAaWXlrKo4xHtKzQkieZT0jUJpKly8LHwYf7z+8T5B7EvNbzGLxnMI8zHsuUsB9b/UiQexArr640UTgr7OMoWql6k+/L67BUW2KptsRcZY7RaJRNMhUocLZyJiMvo5gs8+t4m0JYaRWNXFUE5f2OciT2COVsynFowCHcbdyxnWPLj61+ZGKDCeDtDZ06wdKl73Q+fxeSspKosbwGNcrW4GD/g3I/z4abG5h+fDrP854zueFkpjWZVmyyQT5HUWTJxSVMPTaVai7V2NJji0yFKooNNzcwbO8wOvh2YEuPLfJ3NF+fT8dNHbny7AorOq1g6J6hdPfrzoZuG/5x09+LTy/SYFUDbo6++U407/8GvE803uM/jrScNJZdXsaSS0tkI7YpjaYQ5B6EKIqEPw1n8cXF7Li9A0u1JcNqDWNsvbEmlJr/CR5nPGZT5CY2RGzgdsptXK1c6RvQlwHVB1DHrc47vVhe5L1g35197IzeyeHYw+Tp86hVtpaUdFTr8U781nah7bA1s2V7r+3ysrtpd6nySxWOrIc2Wy9DUBAgJUoeCz34tP6n/NDqB3n9vXf20mVLlzdqe+fqcmm+tjmPMh7xIvcF9T3qU921Ojujd5KYLQUGlZ0qU8etDjcSbxCdGs3YumOZ03pOqSpeR2KP0C60HffH3aeSYyVAolrtubOHeefnEf40nGou1ajjJs0upU1NKzFhbLG2BQbRwJmhZwApgbnw5ALrbq7j2INjJrM8hTx163xoYxVIt05TGLR7kMzRt1CYERCvY8QVI73vm2GfkY9oYwNt2rDYPobF9nd4ZGsk7tM4PHsNJ/HCMSqNB3M7Rx5NfIS1xpp7afcI/C0QbwdvolOjZRqDOfqx3wAAIABJREFURqnBTGlGWeuyLGy3EDtzO5quaQpIgcLS9oupk6Rk/+JPaH9XpEE8KETILV+WaMGVKQN+w6B4jZqj+Bi9LoIcM+SEQzC+VO15+QiqBBWTT+uZdAHKTi2u+y9fG0FFpyqdsNXYsj5iPbXdamOltuLM4zPyOtYaa04NPkXQ70EmgaZghMgKPxHweBqnV8P1svBdc0izglnHYPQV8J1hTboxq8QGaHdrdxKyEqjlVotrCddMfvOy8+JRxqMSx1x47TxsPeSmWaBEKlR77/YceiD5WbhYuJCSmyL3lZQEuQH95XUdcxGWvYOHqJkO3HVmxFlKCUDR6/R630hJPgxQssmcvZk9GfkZJQb4hfvp4NOBA/cPyI3IhfSzc8PO0ah8I9psaEOCNoFbKbdebWuAxPmwoQZ81g6aezbn1ONTgHRfWlZoSeDCjfS+BQGTLckz5CGKIoIgyPfxXZrxCyEgUL1MdXwcfZjSaAoNVjXATGmGm40bns9Fruoeka2BkMrdWTb5BP4hz0ko8mdvqbZEb9RTYCigilMVuvt1R5uvZe3NtWQXZGOmNOPntj8z9uBYrNRWFBgKcLRwJCk7ifK25UnMSqRVxVbEhR/mnhM4WksTJvtC9pGel87XJ76Wnzc/Zz9aVmjJ87znbL+9Hb1Rj63GluplJQWtpxlPS00EX4eDuQMG0WDicK4RNBSIkmlkB98OmKvMic+MlyZ1EClnUw6NUkNablqpzuivm/mVBCVKjBgRRZFAw5v7usqrm1Ixd06Rqofkq7JoeFUCvWy5k3qH4I3B5Opzmdd6HgN3D5QqBHnO4OsLe/dC5+KSxv80Cr8n89rMo1H5Rkw4NIHLzy7T2783c1vPxcveq9RtU7JTGLpnKPvv7WdC/QnMaT2nRMn6+efnM/noZIbVHMaKzivkyUWjaKT/n/3ZFb2LTT028emhT3GzduPUkFMlNpj/3YhKjiLwt8A3Vmr+2/A+0XiP/zXI1eWy9sZa5l+YT+zzWFpVbMXURlNpW6ktgiDwNPMpv13+jRVXV5Cem07Hyh35tP6nfFDxg79llkEURa4nXic0IpRNkZtIyk6iqnNVBlYfSP/A/m98uRVFVkEWB+4dYGf0Tvbf3U+2LptqLtXkSkf1MtVLHG/XLV3RG/X81e8veZlRNGI/x54vDuUwredCGDcOkF6S049P59GERzKPMy0nDf9l/gS5B7Gv7743XpP4zHiCfg/CzsyOO2l3ZLWbmSdm8t3p76hgV4FHGY/kgKOaSzVJ0apCS5pXaC57WRTi5/M/883Jb8icnkm+Pp/1N9cz/8J87qXfo7lXc6Y0mkKwbzDdt3bned5zTg05VWxMEUkR1Fheg609t9Lbv7e8XG/UcyruFDuid7Dm2hp5hthMaYaDuQOp2kT0CokuosrNJ1clUkVrgVdiLod9wMwoEJSqIduQT56/L3U8G7AhYgNfN/2a7858RwffDnzh0Y/arQbwU2NY2daBPkFDOP/kPJfiL0l+Di+DWAGBsMFhNPBowC+XfuGrE1+RMiVF4lvPtiFPn0e9cvUQRREfRx+2Rm1FRKSy6EjTO7l8EFPApWo/c7NCPYxF1E5E0UC6cInn2RNIsAHDyypF72q92XZ7m0nj9I8XLBl6Nge3KW9uoC4aMAoImKnMCPEPkcwYU6MBKSFxs3HDxcrFJCkYVWcUK66uoG8E/LYfEOD7JjD2Mhz2gdFviT2UgpLWFVubyLgWjqdocuJp68nzvOcoUJBRkFHivkoKfIvOHPfx78O2W9veKTgWjFL/iUoP+ncQuPvqBEy+qqbiDCvSC96sa1+0EbjoOY6vN571Eevlytfr6xaFg7kDGfkZGEWjyTpdqnRhaM2hdN3albhP44jPjKdtaFuTxFspKLFQWfDtviwGRSlwn2CkqnsgkckS5avwOu7dBGqUTJvgT0RyhMnx1YIaBN7aa/BJ0Cf8euVXAEk2Ni6MpMlJdNzYkbNPztLWuy3HHh7D1qDCLKeAFCuBeolKvj6qp0MJVgk/t/6ZbF02iy4uIluXTdcqXYlMjiQ6NZoylmXI1mfLfipWaisCXAPQKDVcTZBkg7tezeHrU+A/5mXfTSkonJworEb4OPjQsHxDNAoNh2MPE6+NR6mQxCZaVmjJibgTcuJX2H9T2602t5JvoTdK4gulPXdFn4FaZWrJVeJ8Qz7afC0pOSk8znhscq1fT0otVBYoBSW5+tzif+el9GgU9hNphSisNFbYiTVwzO2Fk7Ia9Sp6MrClOwGer5QpkrKS6LS5E5FJkRhFI9rpWsxWroJPP4X0dLD5Z9UWS8Pov0az8upKRERqla3F4vaLaerV9I3bHH9wnIG7BqIz6ljbZW2JNCejaGTa0Wn8fOFnZjSZwQ+tfpC/laIoyq7fm7pvYsmlJcS9iOPKR1dwt3H/R87zdTx4/oBKSypxbOAxPvD+4N9yzH8a7xON9/hfB4PRwK6YXfx07ieuPLtC9TLVmdJoCn38+6BWqsnV5bIpchOLLy4mMjmSai7VGF9vPANrDPzbfC/0Rj3HHhwjNCKUXTG7yNHl0MyrGQOrD6RntZ7FeJ6lIVeXy5HYI+yM3sneO3vJyM+gkkMludJR172u/JLru7MvSVlJhA0OM9lH87XNKRMexbbMdrBpE3qjnkpLKtGiQgvWdV0nrxeyI4QjsUe4NebWOzWRhT8Np/na5tQsW5NL8ZdY/eFqPvD+gFbrWhH7PJb65eqzodsGrjy7wok4SU73frrkwly9THU58Wjm1YxPD31KdGo0Xap0YemlpaRkp9CjWg+mNJoiSwTqDDqc5jrxeZPPmdF0RrHxjNw7koP3D/Lw04eIiIQ9DGPH7R3sjtlNWm4anraepOak0sG3A2PrjZWejxsHCduoIqGMBdecDcypk0OWBvQvgw1nc0ccLZ1JyEpAW6CVqx0g0T2OPThGam4qAgKzjolMCIcqYyGrrAN1y9XlSOwRZjafyYjaIyi/UNJAfTzhMeXtyssfhO29ttOzWk+arWnGxfiLdKnShe23paqUl50XddzrkKBN4MJTqc+msWE/atG52Plr8pN5mNuZWGcpsFELarpX6y4H0eYqc7pV7cbGqCoYly9j1pZPWBi+0CSALYqiSYgcLKksCXAN4NKzS/JMORRXMSoa3LtmC3x9UmTUZVAB3zSDrT2rEJN+p8RjluRIDfCB1wccf3S82Db13OtxO/W2iTHfvzKr/q4wMwjkK0QEXnk7lNaAK485Fo5tkALY20UYKiWNz0JpgSiItKjQgqz8LM4+OYuAgJOlUzGjwpLQ1LMp99Pvk5mXaULRcjB34MTgExy4d4AZYTOwN7OXXc+LoqJdReK18cxw/JCZY3fQrQ/sfimMoxAUuFi6YK2x5sjMWPYFqpnwga7UfRVFURO7QpW0wtn5hy8eyhWnWS1nUce9DsEbgxERsVBZkK/Pp0O8BX+5Z2OdD1nmr5K9fwUCAhZqC3J0OdiZ2dHMqxm2ZrZcT7xOclYydSNTGX4VJg9xIy43QR5nGasyTG40ma5VutJtazeiUqJQCSpae7fmUOwhOvp2xMfRh7U31pKrzyXAJYBHGY9Iz01/4/PnaOGINl8rJwVOFk5k5mfiaO5ISm4KlmpL+Xl2tHDkee4rFbTC5CFbl21yjJquNbmbfpcCQwG2Zrak56XL985MaUauPrd4BVEsrjqVpNlIvvougiDwIu8FHjYePNU+feMMeXZBNr5LfUnISpCq4d/uhefP4VTxCaF/Gjm6HOadm8dP535CZ9ThYO7A3bF3sbco/ZurM+j46sRXzD03lw+8P2B91/UlfgN1Bh0j9o1g/c31LG6/mPH1x5v8Xuj6/UvwL1xJuMLmyM2cHnpa/ob9O1BIQ94bspfOVf791aR/Au8Tjff4XwtRFDn16BRzz83l4P2DlLctz6SGkxhRewTWGmv598UXF7MnZg/25vaMrD2SMXXHvHP14V2gzdeyO2Y3GyI2cPzhcdQKNZ2rdGZA4ACCfYPfWfO7wFBA2MMwdt7eye47u0nNkQzruvt1p4dfD1ZfX01MWkwxw7mJhyay7/wa7m9wgIcPZfm766Ouy2aHhcs2dd9E38C+73xua66vYdjeYTT0aMjF+ItYqCywN7enqVdTtkRtKfYyfpLxhJNxJ+XEI+5FnKzoYxSNqBQqBtUYxOdNPi9GbTv96DTN1zbnysgrxZxa03PTKTe/HD38eqBQKOSkzMfRh55+PelRrQfPMp/RbXMXouuupfKlWDh4EPHqVQRRJFMD7YequFhWT9uKrVnXcyOX4i/J5oKX4i+ZBOSvB4oKFDga1EQuyMdKB8Gjrcnzr4LeqOfqR1clutT3GkREmboCUGtFLfyc/djUYxNTjkzhl8u/UNG+ItGp0bJB3bae21h0YRHn488DJcunYjRQK+4SCzZNkJqyq0vyo3l2r/oClIKSZ5Oe4TrvV1i9Gp48kZOdN+H1cy1MQJwtnFEr1SRmJZr87mThxIvcFyaSmgAbdkKPaKl/43G1cgxqksLZcgaTmVZ3G3eeaZ9RyaESsc9jTY5daOhoIu36ktIkIJjQd94VakGNTtSVmpgUpUyp9aBT/2umaDY6BWmzjXzaHn57GWtYqCzY1GMT3bZ2K7a+ldqK++PvM/qv0bLHxNOJT2m5riX30u8VWx8k5ShtgZZJDScxsPpA6qysg0E0lOrLUehLUljtKHRPtzWz5djAY9QtVxdj3SAOaq/Tqa+0vbu1O1c+usKN++doV7sXI7sKrK759k+/vZk9ga6BnHly5q3rlgSFoMBoNCIgKVE5Kixp8AQOls8lW2V6/JCAEGqVrcWR2COcijtl0sCfOiWV9Nx0Kv9SGTdrN559JvUzLAxfyGeHP8PCqJC8HszKcTc/nqE1h5JVkMX5J+dNepBKgoCARqmhtlttPO08uZF4gztppkl0YSLubu3OkuAlDN87nIz8DJSCEk87Tx6+eFhilUqlUGGhtECreyXhXNW5Ktp8LY8zH0tiHwnXsFJbybS/ANcA2nq3pbxdedZcX1Os6vQm9FDXZM1np3ma+ZTA3wJNlLAMXxveKGFefkF5nCyduJl0k5nnNcxs9jXCF1+887H/pxBFka23tjL16FQSsxKZ2GAiIYEhNFvTjG5Vu5n0LhZFbHos/f7sx7WEa8xqNYvJjSaXeJ7ZBdn03tGbo7FHWd9tPSEBISa/F7p+f9n0S5wsnZh4eCIbum1gQPUB/8j5lgZtvhbbObZs6bGFPgF9/q3H/qeg/Oabb775Tw/iPd6jJAiCQAX7CvSv3p/uft15pn3GgvAFLLu8TGoYdA0gwDWAkADJC0Jv1PP7td+Zd34ekUmRuFm74Wnn+T+mVZmpzKhRtgYDawxkZO2RuFq5ciLuBIsvLua3y7/x6MUjHC0c8bD1eOOxlAolPo4+fFjlQyY1nETLCi0xikZ23N7B0ktLuZN2B22+ltputSlvW142EkrJTmH13S1MOPQC8+GjGHliIj6OPnze5HNAKn132NSBDr4d+K7ld//S+dZyq8XTzKfsvbtXDtQODjjIp/U/Jbsgm69Pfo2btRtB7lJviJ25HTXK1qBL1S4092rOM+0z7qbdxYgRc5XkghuRFMGFpxeITY/FYDRQ1rosGqWGlVdXEpMaw/x28+UxZhdksydmDyP2jiBeG09kciR6o55hNYexJHgJP7T8gdZWAbgfuUDy15+xYFcO5dbvgshIqFsXYfJkcHVlq90TllbTgiAQl/kYpaAk2DdYrjzpjXoStAnyrL1aoTYJ4kREchQGbpRT0uqBiG1WASvdE9jcYzPejt4oBAXLriwjW5dNu0rt8Hf1l+/N2htrmdRwElkFWWyO2kxqTip+Tn48fCEZB6blpsk8eYA84RluYkdAREAh0R0EkWP23xPplo53OnxyWWTyBajxRIdBgAcOoFOI2JjZ0DzWABERMHEi62+u59iDYyC86h9ws3IjV59b6oxs4XKD0UCePq/YjH6uPhcXSxdTWo4Bfj0Aa2oLfNEKWt7OZdpJHfW1tvxZMR/dy5yp0BOjsFJSdAy5+txiFYSiv/+/VDCMSMmtvZk9tma28pgnN5zMo4xHMh1L4CUdTSj9OApBgVqpNklCHG3L0PR2FvZ5sFO65eiNeg7dP1Rio67OqCMxKxGNQiNTlgbXHMz6m+tltbWiikIAnXw7cTv1NlZqK7468ZUcGL4+TqWgRESUKDwvaWMKFOQb8jFTmhHgEoC1xprD9w9zNzmGPscS+L02ZJlJ92Vh+EKiT2xn1FWY1QSevYOmhkKhIFuXjVE0ola+ovUoBIU8PoWgoIJ9BTLyMvB19OVF3gv5N38Xf17kvcAoGqiRac4di1z8KwRR8PQJKUX6eBWCglsptzj64CjmKnPG1B1DE88mnH4kKZOl5KRwK/kWV59dJSM/g61RW/n82Of8dVeimap0IuF/wAU7LXEOkKBNwCBKNKK03DQsVZbojDqcLZ0ZVWcUKdkpZBVIil1OFk6EDQqjqVdTNkdtllWpFCjkv4PCd0WOLoett7bK916j1JCam4qjuSN6o76Yt4lRNOJi5cLUxlMZV28c1VyqcfTBUdloMSErQTbl87TzJHx4OPU96rPs8jI2RGwoUUHt5cMBgKPKhlxR6isZfhU2tFqKWfVazDk7h+uJklKfQTRgqbLky2ZflrwvpAmkb09/y28df6NGrh1fW1/isbsVHWr0/FuN+UrDlWdX6LOjDwvDF9KyQkv29N1Dn4A+8jf8m1PfUMmhEjXKmqo3bIrcROfNnREEgQP9D9Dbv3eJ37+0nDTab2zPpfhL7O27ly5VTV0tD90/RMjOEIbWHEqwTzCDdw9mSqMpfNbos3/0vEuCUqHk+9Pf08G3A7Xcav3bj/9P4H1F4z3+q/A44zGLwhex8upK9EY9g2sM5rNGn1HZqTIg9Uesv7meJReXcCftDrXK1mJ8/fGEBITIko9/FyKTIgmNCGVj5EbitfH4OPowIHAAA6oPkBui3wVG0Uj403DGHxzPzaSb6I16HC0c6VKlCz38elDOphy1VtbixFow/342DWOny2VVURTptrUb55+c59aYWyVq0pcGURTZGLmRcQfHkaPLQaPUUM6mHPmGfMKHh+Nq5cqEQxNYcmkJqz9czdBaQxFFkaMPjjLv/DyOPThGRfuKhASEMPvsbE4NPoW7rbvsWn4i7gSJWYmoFCrqlavHg+cPqOZcjY3dN3L84XF2Ru/k4P2D5Onz0Cg0+Lv6s6nHJqra+0B4uKwQxfXriILAFXcRsV176o34GurVA6X0AYz5aQpBmT8TXLMnadlpXIi/QIGhQA4ObM1saeLZhFvJtxARifw4krCHYfTc2hNvB2+Sc5LlwLgQdrmQr4JedSS/lbrudWmzoQ2RyZHM+WCO/AEqNBf7q+9fqBVq2m1sB8DaLmsZsmeIPNtcaIomIiIgYCMGvmaytYpMIVL2FzB7rqVPFAyMgPrxkGOpZlMVHZtrKtlhNxKHPYfhwQOarmmKnZkdSdlJPMl4QlJ2kjy739GnI/vv75fPydXSleSc5Lc+FyqFCm97b+6m35WXtbkPR0IlF/Vr7qA0CgyNUvHtGQWVR+bj+QKiXV7O/L6jAVpRh3AAFSr0vLt5Gkiz+c6WzsS9iCu5GVuU/tnlQ0YJfZzvQtGafRTGRttgM04rqbPlmtKgXlcaMlOaYaYykxt+N3XfRL8/+/1L51US3mWsNhqJT6/I0JIwH75pAXNfisQpBAV9bxgJ3QWVvnPBqWwFLj+7/Mb9Wamt8LTzpFbZWuyI3kGBoUCuCJVWGQpwCSDYJ5h5F+ahEBRYq6zxdvTmRuINvDIFHtmJuBoscE7LNaGjQenKXGqFmooOFUnITJCrA+YqcxqXb0zYwzCauwRx4pPLxCz/Ab/ELznQ7wCLLi7iaOxRvmj6BTNbzORO6h2+P/297LReiKIqWoXO6687j8PbDSXVSjUhASFYqCxYfnU5KzqtICo5irU31soJOEjJSf/A/rSq0Iphe4chItLAowEtK7RkxdUVchLiZu1GWk5ayQ3qIjjnwHOrV+aMJ9dA8y0XiPGxJ/C3QNp6t+VQ7CGMohEBgf399hPsG1zi+Lfd2kafHX1I/CyRMj/9QmjYIoa1z6dVxVZs77UdG7N/pk8jQZvAjLAZrL2xlgDXABa1W1RiX8KgXYPYFbOL66Ou4+PogzZfy7iD41h3cx39A/uzrOOyUtUoH2c8pl1oO1JzUjnY/6A8aVaIQtfvlhVb8lPrn2i8ujGNyjdib8jef0uSVRLMfjBjftv5jK039j9y/L8b7xON9/ivxPPc5/x25TeWXFxCcnYy3fy6MbXRVNnbwSgaORJ7hCUXl3Dw/kFcLF0YHTSa0UGj//amLoPRwKlHp9gQsYEdt3eQVZBFQ4+GDKw+kN7+vXGydHr7ToCvT3zN2htr2dVnFzujJVfyu2l3sdHYkKPL4ftzZlyrW46bZSBmbAwKQSGXe3f23mmib/82JGUlMXr/aHbH7KZfYD++af4N7Te2x0xpRnpuOp52npwcIsn+frz/Y1ZeXcnooNGcf3Kem0k3qeNWh6mNp9LdT+oh6P9nf55Pe27SuyKKInfS7nDi4Qn23tnLodhDJmMoZ1OOzpU74+/iz+xt4zhX7isqXIiGo0chIwOcnaFdO2jfnmUOsUy8/iMJnyXgaOGIKIo8eP6A4w+O8/nBSWQXZFPwsrlXISjoXrU7efo8zjw+gzZfSwOPBpx/ep7jg46TnptO3519pX6H7htRCkocfnIgs0AKDJUIBCZItrs33JAVnyzVlhQYCmhcvjE/tf6JmmVrolFq8PvVj5pla3Lu8TkSshIwikYmNZjE/PD5gBSsFegL0Im6EiUxpYsl/VfRoSLpuekmiU/lVDiuGIJ68zbKpOSQbaHE0tyWlCO7KLu/JWu6rOFG4g3W3lzLi7wXLGy7kOlh02XTO1crV1KyUxARsdPY4WTpxIMXDwDeqNRUFKt3Q+PHUGXcq+sBoNFBgRqC4iWJUf8UWF5XQK8o+bNS1DivJNfjonhX475CMzmFoJADOo1Cg7naHK8nWiJdRRPZ4Npla3Mt8Zq8XtFA7vWkwcXChaCbKRzYBL7jYGSfn5hxfEapAWdRg7vCpOBtfSBvOq/AMoFEJJVOnVEICqzUVvg4+PAk4wlqlVr2PdmwE+o+g9bTy1HbvQ47++zkUO86VD8agdck032URlnTKCVDv86VO3Mi7gSVnSoTmRSJzqgzke4thIO5A12rdiU5O5mwB2HkGl6jEumh4VMI9wCrAtCamTZvKwUlc1rPwd/Fn9+v/s6uO7sYXGMwGyM3EuQeRPjTcACG1hzKkuAlWGus8V/mTzkrNw4NOc6DOdPwzfsJJwsnFIKCjd030qZSG57nPicmNYYbiTf48sSXpOeWLn1cCEu1JRYqi2JGk4W/FU7OFBgK6ODbgSmNpnAk9gg/nftJ7qlQKVTUcatDZn4m0anRqBVqlrRfwqigUbQPbc+RB0coYyU5lBuQkjcbM5tS+67ehNu/gN/VR3Q4M5pbKbd4nvuc3v69WXV9Fe427iRnJxPaLbREOs6EQxPYd3cfseNjoX59qFiRsNkf0W1rN7wdvNnfb//f+t3M0+ex8MJCfjz7I2ZKM75v+T0j64wsVVZem6+l9sra2JvbszR4KQN3DSQxK5FlHZYxsEbpMte3km/RfmN7VAoVhwcclickC3Ev7R6NVjfCx9GHnb130mpdKwRBIHx4+H/UldvhJwemN5nO1MZT377yfwHeG/a9x38lHCwcmNF0BnET4ljRaQWRSZE0WNWA5mubs/+uNIvb3qc9B/ofIOaTGHr792bBhQV4LfKi/5/9uRR/6W8bi1KhpFXFVqzpsoakyUls7rEZBwsHxh0ch9t8N7pu6crO2zvfGjQVcnzruNfhxw9+JOaTGCI/juSzhp9hpjTjT88cdinvYaW2YmvUVqJTohl3cBz9A/v/S0nG9lvb8V/mz7nH59jRawcbu2/E18mXvSF7eZL5hADXAKKSoxjw5wC0BVoqO1XGUm3Jb1ck5/CwQWFcHilJDaoUKiKSIvC08yzWIJ+cncypuFPsitnFkQdHAMnAqnvV7nTwakOtu5l4zVlO0y7jiF8AXpN/IDM2Gv2n4+HiRUhMhNBQxP79+TVuGy28WhAaEUrv7b0pt6AcPkt9GLV/FC+MOXSNgY2N5jOv9TyMopGNPTayr98+4ifF80OrHwiPlwKUqUenErIjhF7VerGpxybUSjUKhULm63rYeiAolCTaK7nhDuUyX5mfGY1GDEYDZx6focGqBtjMtqH+H/WxUFuw7dY2CowFNPdqjlqplpMMkALGwj6C3X12IyDg7eBtcq2sC+BDlT8PXzyUHYcLcdcZKjqFsjh0HM2HKbhva4CMF7jWbcHlldDr2DNaWfrLwUlCVgLz2746fnJ2MrNazWJA4AAyCjLkJANemUK9TucpCnMd9LgNmwIxSTKsVFYUvLR1ueIO7lpYdAiqJ4mUyUI2ZSuKorz7CvYVSk0ygGJ/L4oSPletKrRCRGRyo8loC7TyOgXGAiYkeJGnfJnwCIX/CSZysK/PFr/ugZCel845TzAI0DwOph2bVmKSYaY0k6pWL2kqb6OEVXasjEooHlQNrTkUW42tvJ1GqSHIPQgrtamstJ2ZFASNqTMGLzsvriddJzUvlYSsBHwdfAFYXQuqpEGvjHLEpMZQeWllDFER3HbBZH+lJRkKFHjZSb1uB+4ewFpjzZ3UO3KC/HqSAfA87zk3k24CmFBYrNXWUrVLBfZ5UD0ZrNUWnHiNdi8icjXhKu182sniCX/d/Qu9UU9qdiq/d/791T5feijUKluLpNwUXpjD2Wu7Ael+tPFuw/env6fMz2VwnOtIo9WNGHNgjNQnpFCZBLVmSrNifwPmSvMSr826ruu6rThzAAAgAElEQVTwsvVCQKDAUIBCUBD2IIyW61oy++xszFXmjK8/niMDjpA+NZ0PKn5AdGo0Pfx60NG3Ix8f+BiHnxzkd2JSdhKi8IqGVvh3rBJUJf5dFi6zyZMSs0K45MD+rGscvH8QH0cfNEoNTT0llabJDSbTN6AvfXf2ZcWVFcX2ef7JeanvLC0NLl+Gdu1oVbEVZ4eeJTUnlYarGnIr+Vax7f5ViKLIn9F/Uu3Xanx98mtG1BrBvXH3+Ljux2/0rrIxs2Fj941cS7hG49WNsTOz49pH196YZJx/cp6ma5riaOHIuWHniiUZiVmJtAtth7OlM3v67GH43uEkZSexN2TvfzTJAOnvsyTzz/9WvE803uO/GuYqc0bWGUn0J9H82ftP8vX5dNrcieq/VWfdjXWSPrtzFX7p8Avxk+KZ23ouF55coP4f9Wm4qiGbIzejM7xZyvFfgaXakpCAEPb320/8pHh+bvsz8dp4em7vidt8Nz7a9xGnH50u8QNWqKpSCEEQCHANYGaLmQytNZT7HubY5IPaINLvz374L/MnT59HQ4+G7zRDl5qTSsiOEHrv6E2LCi2IGhNFj2o95N/9Xf0J7RbK8YfHCfYJZnfMblznuTLt2DS6Vu1KB58ORCVHkZmfaRJERCRFyMZC8ZnxLL24lBZrW+C+wJ1PDnyCUTRS170urZS+3FSNZedWkf3jw9m3QsuEGDtuloEZwyvg/YU1dl1uYWc2nw+ipzNi/yg+2vcR9f+oz+3U2xx5cIQpR6eQkJXA4BqDmdRAmpZdXW8WW3dAP/O6BJQJAKSKDUhO6XEv4rDWWDMgcABXE65iEA080z4j7GGY7ISuVkoR89PMp9ib23N7QDi7tyrwS5UCXmuNNRZqC0REia5WtRsTG0zE18mXO6l3EBFJzk7mRNwJE9M1eBW8LgleQhnrMoiIxYLoLA1UdQtEQCAmLabYvfN39Wf2hZ+IC/TghLfAfScFMz6uTL6bK5YzZtKp1Wg2vbRf+StyJ8nZyShQyIH+jLAZhEaGFttvoXTvm5pEO9wD2wLYHGi6vLBJ3VasTqBhEQ/899Fk6iLul63OgsNwYi3UjC+9ubuwh6UoCoMoL1svNApTkYXXaVEKQUFZ67J42XnJJn+F65gXQFJsJPdeKyaKiG81QSuKaY2nYedanhtloc4zKbBTK9TF1nOzccPT1pPOlSWVmEDXVxerpMTkbvpducpRmFgAHLl/BDOV2atjiBJ//XWX4EKK5C9XfjHxJSlrXVZ2Fj/nrSLOXiDgr0vcS7+Hp50n9TKsueUq9RqoFKo3ClkYMfLguZSUGjCQmJWIwSg1FGuUGgQEBgQWb5QNdA0kMSuRHH2OHDxm6bJwtXLFRmPDtbrl+DDNmYL8XL7q6cTHV169S4yikS1RW2i/ob3s6VPetjwNPRriYuXCiNojUCvUnIo7RWhEKF+GfUlEUgSRSZEkW0HyU6mJOzUnlejUaDxsPRhZeyQf1f4IC5UF5kpp0uD1fop8Q76c2PX06wlISebrwV4Hnw6MPTCW6LRoRERUggp3G3epwqM0QyWoODv0LHNaz6Fh+YYM2j2I2Wdn822Lb2nr3VZ+LxWtWNpobPC0lYxVDUaD/IwV9piUhIWWPdApTZNEa1tnJh6fSpBbEGEPw5jVahZXnl0BoHWl1qztupax9cYyev9o5pydI2+Xq8vleuJ1ydH8+HEQRWjTRrqXZSQ/B3tzexqvbszJuJMljuddcDPxJq3Wt6LHNslXKvLjSBa2X4iDhcNbt03KSuLrE19jFI0YRcl40tfJt9T199/dT+v1rQksE8ipIaeKVWMy8zMJ3hhMviGfQ/0PMe/8PI7EHmFbz21v3O+/C4UVs/8reJ9ovMf/CSgVSrr5dePC8AucHnKaig4VGbJnCN6LvZl/fj6Z+ZnYmdsxseFE7o27x+4+u7FUW9Lvz35UWFyBWadnkZKd8reOqYx1GcbXH8/lkZeJ/iSaT+p+wpHYIzRf2xzvxd58GfYlMamvgkoLlQW5ulxKYjNWc6nGC/IYcgMu1V3J7A9mIyLi7eDNuIPjKPNzGdpuaMuKKyvkj1lR7InZg/8yf44+OMrmHpvZ3ms7rlbFHWWrOleljlsd/oz5E6VCSb4hn2+bf0to91D29N1D16pd6bW9FwfvHZS3uZpwlVxdLg1XNcRjoQefHfkMS7Ulf7RbRlrQdo5G1GTtl1c5/tU9GD0akpNh6lS4coUJq3rz+SA3xi44x/y+a+kf2B8nCydOxJ1g1fVV/H7td648u4JKoWJ0ndGEDQrj5OCTDKwxkOVXlzOk5hCGNBojDeTZM8palwWk2SqQJHx/v/Y7nSt3ZmPkRobUHMK2ntukpu7QdgT9HsT2W9u5GH9RDmwrO1bGISCILm3HcSQUft+vorxteTk5UAgKSQ3t/FyOxR4jV5+LmUIyhCqcaS4Ko2ikgn0F9EY9887Pw0ZtYxIcFr6E5z7dQjmbcq+Wvwz+bTW23Ey6SY0yNUjNTgWjSD4GZpe5S+9+Krw/t2BMewOuL2PRzzbEUmXKHFo+FDEajQS4BNDCqwUCAj4OPnT07ShfJ5CCwPK25YuNuxB9I+Gqm1RZeR22oqTj70g9zHDFTF2PmobfWFWvOs45cHUlrPsTPEq2yCiGwsDqUeajt5qnGUWjZKjoGmhy3TUoydPAyjpQSpxWKl7v47qXdo+sgizOVBCIcJOSBr1RL/lNvISAQEp2Cg9fPKR/YH8CygTwJOPJ67suBrVCjZ+TnxxoqQQV8VnxpOakolQocbZ0LpWjXSgzbaGywCgaaVmhJWBaqShAz+qaIr2jwDJf5OL9U7gmZXHbRbrOeqOeMlZlTGbFX0dReeS/+v6FdoaW/oH95eOERobSuHxjk23W3Vwn+1vYamzlazqy1ki0BVrmtZnH/Dr5zLjlyDnLNBRW1jjnm85mH3t4DBuNDW7Wbtib22OtsebC0wuU+bkMOqOOBy8eMHDXQEmWVicJH9woCz5I1zIkIIRKjpW4mnCVWWdmsfLaSnL1uXLvRSffTmzsvpE6bpL6nUqhYs4Hc2hSvons/m1vbl9s0uDA/QNoC7T4OftxdOBRMqdn8mTiE1Z/uJp8Qz56Uc+AXQNYc30NjVY14vD9w9R1r8t3p75j1P5RXIh/pShoq7FFQEBboCUt52WPiKUjBtGAzqiTE5miEBD4oukX9MmrRL7q1fNqZVSxtIma2PRY8gx51CxbkxG1R8gN4VWdq6IQFCxuv5hvmn/D9OPTmXZ0GqIocuXZFfRGvVTROHIEqlUDDw/5mB62Hpwecpog9yDahbZjS9SWUp+XkpCSncKofaOovbI2CdoEDvQ7wIH+B97JxBbg8P3DVF9enRuJNzjQ7wBtK7WVqg8lfOcA1t1YR5ctXWjv057DAw4Xq7Tn6/PpvrU7D58/5FD/Q5x6dIqfL/zMgrYLaFOpzb90bv8ULNWWZBdkv33F/xK8TzTe4/8UBEGgqVdT9vXdx60xt2hbqS3Tj0/Hc6En049NJ0GbgFKhpEvVLhwfdJyI0RF08OnAD2d+oPzC8gzbM4ybiTf/9nFVda7KD61+4MGnDzg95DRtK7Xll0u/4PerH3V/r8uSi0vQG/WIiMU+bgCPXkiBadNnKuLO/sWsM7MYXms4tz+5TfykeBa3X4xBNDDmwBjcF7jTfG1zllxcQlRyFIN2DaLr1q7UL1efqI+jCAkIKabMcf7Jebpu6Yrfr348zXxKgGsA5ipz+gf256uTX3Hg3gFUChWbum8i2DeYLlu6MHzPcGour0lydjKnH52mjFUZdtZbwAv7ORzYpmboB59h17E7+tD1nHfTE7nkS0hNRTxzhtgxfVlmuMiqiDUUGAoot7AcPbb34MzjMzT1asqyjsu49tE1jg86jkapobxtedbdXEeTNU1w/MmR+n/Ux0Zjw0e1P8JoYw2WlpCQIAfQCVmSwtSY/WPwsPVgU+QmRtYeyaoPV9HLvxeXRlzi6MCjOJg70HtHb+lj+3KG+dKzS9KH/9tvEaxtGHFZj+vlaKY3mQ5IwVd6bjrWGmu5uTrfmI9KUJk0fRYNRh3MHfj82OdsjtpcrCdCaUCm9jzVPpWXF85WFvaO3Ey6Kc0Si68M/eq612VU2xk0+TGUud+1BWB3Veia4sToy6JktHfDgRNBS7k88jLmanMO3DsgVw7quddDISiIy4h7NR5BSQ1XSd3FXAed7r6kTZUAL8OwIq7DIKCUAm+3YdQcDR91gnaxcHcp/HAcrIsUE16vWBRSYQSEUoNfL1tT2Wo/Zz/29t0r90EJgM5oQBBB8/K6lkS5eh2F1+P1StP26O08z3vOQW+RNTXBRrBAEATK271KzEREBtUYhEJQELIzBGcL57fSJHtV64W3gzcOFg6k5qRib27PiNoj5P3l6fN4kfuCIXuGvHE/ufpcDAaDbMAY+zxWPp9A10DW1QRLHfS6DUsrjUUpwm0X5ODLx9GHSg6ScMXr17wobceIkV8u/YLOoGNYrWE8z3vlC9HAvUGJFbFOvp14OukpZ4ZI0rizz87G0cKRWym32BWym6/rZPLVZUt+9dMi6Ex7WEREtAVaErISOP34NM+0z1Ar1Pg6+hLgIlUtfw3+lSD3IO4/l5KuG24gpEseOX9G/0lKdgqWqle+SlWcqjC27lgUKGheoTkf7/9YNqn8psU3RCVHcfLRSXmboupZRTGs5jBuf3Kb1t6tsVBbkJKdwrTj02hXqR3hw8MxGA0M2zuMyORIcvW5XHp2qZgEtIBAZkEm/i7+WKmt0Oq0KAUlqTmpaJQalCixVlubUBUtVBZUda7KV82/Ylf2FZSiVLEVEMhW6PmiWiLNKzQnKjmKpcFLUSqU3E+/j52ZnVyxFQSBmS1msqjdIuaen8uov0Zx9vFZrDXWBLj4S4lG27bFztnO3I4D/Q8QEhBC3519mXtubokTYkVRYChg/vn5+Cz1YdvtbSxou4DIjyNLbUgvafvJRybTfmN7arvV5ubomwT7BrOu6zpERIbsGWKqHCiKzD03lyF7hjC81nC299pebOLAKBoZsmcIZx+fZU/IHrJ12YzcN5JhNYcV89T4T8JKY1WMxvnfjPfN4O/xfx7xmfEsvriY5VeWk2/IZ2D1gUxuNNlkRiUtJ43fr/3Or5d/5WnmU5p7NWd8/fF0qdLlH1OeyNPnsf/ufjZEbODAvQMYjAaMGPmj8x/0Dewrmw8ajAYqL61MXEYc86M92VM+hwfu5kR+HFlMaSM1J5U9MXvYGb2TI7FHZHWYHn49+PGDH03UsIyikX139jH3/FzOPzlPVeeqTGk0hf6B/dEZdTRe3RhtvpYqzlU48+gMa7uu5VbyLbbf3i7z3Os6BmJ3OZJQ836UOXMNYmIkNajGjaF9ewgOZnbmAb478z2zWs3iwtMLnH18Vq44CAgMqjGIdpXa0dizMZ52nibnExoRysBdA4kdH4uHrQcXn15k/MHxRCRHoBSU6Iw6HC0ciVqQz7PWDVD9PJ9aK2qxvNNy8vX5jD8kfTzGBI1haYelJQZEK6+uZNRfo4BXjbvDag5jVZdVsHw5fPwxj13NaDvdgzsZUiA3pu4Yll1eJp+Dm40bz7TPiu3bzsyOXF0u7XzaYaGykFy+39B8+zoEBOp71Cf8aTjLgpcRGhVK/+XnafgEao+WgvObo2/i7eDNH9f+YOS+kVipregf0I9t53/HpUDF5ZUidtkGqFkTfb8QmuQu46L4GICRtUcC8Pu1V9x3C6UFi4MXM+qvUQSn2LHv1xd4ToT4l0WDoupODfX7MKN4ZSyfZC6oJBqRdT5MOwufXYBMM5jZEv6oBR6OXqRkp1DbvTZnH5+Vt32b23lRvw0lStZ1XceA3QOoYFeB5OQ4cjTgkAfPS1CZeh2F97tQYjTYJ5gD9w8UW0+jB3M9ZL4mXOdp68njzMey+aGzRXFVqjedB2JxStibMK3xNEIjQnmmfVYqrUYtqPko6COaeTWjz44+PPjLh6fJ91lZT8GGHUbspwH2dtib2/Mi7wUCwhtN+1wtXXGxcuFWyi18HHz4pN4nTDw8EZCUkQqbz0tCiH8Ia7qsocXaFlx8dhEnCykhrFG2BuFPw8nPy5GawUXpGhcUYaVZqixpWbElKdkpfNX8K7499S23U25jrjSXzexA8n3J1efS8Q58eqaAJoP1hHYNZc75OUQlR2GptmRem3l8VOcj2qxvw+Vnl+VGbiuNFdkF2TKdTq1Q09SrKTEpMSRmJZZ4b7pU6cKCdgvwdvCWVf9OPzpNlypd2BG9w8R4shDmSnN0Rh1WaisyCzLxdfSlo29Hll9djpnSzIRKpVaoJQEJQ4EcbBaKR4QNCqNlxZZ88Lk7QnY2Yc5aLNWWqHLyyFAZUClVdK7cmT/7/IlRNKL5XoOfix+RH0cWG9O6G+sYvnc4ZazLUMWpCmH1l4GfHxw4AMElJwOiKPL1ia/54cwPjAkaw5LgJcW+j6Iosv/efiYdnkTs81hG1xnNty2/xdmyhJJoKbiXdo++O/sSkRTBnNZzmNBggsm7+9D9QwRvDGZ+2/lMajgJo2hkypEpLAhfwFfNvuLbFt8Wm0wr6vq9vdd2Gng0IOj3ILwdvAkbFIaZyuydx/dPo82GNjhaOLK159a3r/xfgPeJxnv8/wYZeRmsuLqCReGLSMhKoEuVLkxtPFU2XwPJOXR3zG4WX1zMuSfn8LLzYmy9sQyvNfyduKT/r0jLSeOrE1/x25XfAIm326NaD6mBNy+DHtt74Ofsh03Scy4pEzk28FiJMoAg8U8nHZ7EquurCHQNxN3GnVOPTpGnl0rqH1b+EJVCxcbIjdxJu0MTzyZMbTSVjpU7mrzMHz5/SK0VtbAztyMpK4l8Qz42GhuG27Wkf7wTuv17qH47HSsdiOXKIbxMLLKbNeRS1h3OPD7D2cdnCXsYhkE0YKY0o165ejTxbEJDj4aMPTiWZl7N2NBtQ6nXpdW6VgCyW3qhweD6ruvp5d+L8KfhnHh4gu6jFxFloWVANxGFoKCSQyUevniI3qhnfP3xLGq3qFR/kR/P/MiXYV9iobLAy95Lnh2e2mgqUxt8hlPtxnD/PmM6vDJtA4luMaTGEJ5mPuVw7OG3So8WbfAzWVcEX/Ny3MsvbiymEBSoFCrMlGaMrjOa2a1nc6VLXZRXr1NXyo2wUFmwvtt6AlwD8PvVDx9HH3J1ucRr4xlUfRCbr60nqsJcKh+8CPv2YdAVcMwbNtdUsr2KgZzXaPpFE4nZt8vR4GI8HwwtQTqWks0HRQykc4ko1UST8/TIgFnHYVAERLnA5LYQVbsc2gKtLAX7OoqqN9lobEwqRoUonInXiAp8EnX/H3vvHVbVuXXx/nbf9N5FELF3UbFi7xp77yX2GqMmOZpETxKNRpPYNfausffeey8IgoCCgEhvm7bLun8s9wIEU75z7j3n+67jeXhCtu9q71qsPec7xxwDlUmU4P0rMCcKAM19mqMr0HHvzb1iY2xUNmTps7DJB98sBSEuSIZ5LpYuJOX8fcqln70fUelRxRSpnCycMJqMJYJ+pVxJPY963I67LT7bjuWxUllJtBgZMlRyVTGq2W9df6OMTRk67uzIbZvPaDBjKdc6Vcf3ajDe71kDWKmsMAmmEmZzRR3B+1Xrx55ne/C19xWlhIsky+bAuOh5F922tMRaKRMb5z1tPLGNiMOhAKIcZWSrIVtV0lwSCo0J/R38iUiLQCFTcKj/IbpU7EL33d1JfHCVtVtSqTmhcLtulbqxpfsWsvKz+PTop5yKPFVM8c0ssaySq9jWYxs9qvQgSZeE/3J/qSplPlcB8d1ir7UnOz+byQ0m8zDhIRdeXSh2bY5aRxwsHIhMi8TTxpM3WW/EbZFT1aUqEakR1Peqz9WYq5IKnZOFE1YqK5JykkrcB/NzH+gVyK3Rt0jOScZ9kStfxJXj+zJR2GpsyczLpB4e3Jcl4GblJlX5yi8rz4DqA9jZa2fJhxA4GHqQnnt7Ut6hPI9NY7CaPVd0BLe0LHW8Gb/d/43xx8fTpWIXdvbaKS2KhSSFMP30dM5EnqF1udb83P5narh9oBxaCgRBYNuTbUw4PgFPG092995NXY+6pY79/MznLLu9jCvDr7Di7gp2Pt3J8o7LmdhgYqnjza7fqzqtYnjt4QRtDiIhO4F7n97DzdrtL5/j/xfotrsbRpORYwOP/adP5d+Cj9Spj/j/Dey0dsxqMouXU1+y4ZMNhKWE0WRjE5pubMqRsCOSKVWfan24NvIa9z69R5BPEF+d/4oyP5dh/LHxhCaF/r9ybk6WTvSuKjYhXhh6gRmNZnA1+ipttrVhwIEBeNl44WPnw13FWybegdaa0vmt56LOUX1VdfY828O6Lut4PO4xpwafImlmEhs/2YjRZOSfV/7J15e+Jj4rnuG1hrO843K6VOwiBQS3Ym/x+ZnPabW1FRn5GSQmxzA4zpm1Zy148ks+P088Qr1F22hgX42lba2pOR4W757MjD52BKYtwn6ND622tuLnWz9LzaBTA6eS/kU6V0Zc4YfWPyAgEJMRw5QGHy5XR6VFcfHVRUbWGQlAcGIwE09MZFSdUQypNQStUksL3xbMazmPWrU70N8xiLNDzuJi6cLLtJdSs+feYFF+97f7vxGRGlGi5L/9idgk7WbtRgf/DoypOwaAxTcW4/mLN2O7iOOs9RTj/BtMBtY/XC8lGaVRdKxVha5kOfocFHLRdC3AXeSGu8lsQAZR+QnSuMqOxe9tgbFA5LbfXEy93+qxxDeew5WR+Nv5hnz6/N6HpTeWinr+cpXkhryk3RI8nXz43ikY9u2DhASmfaLGxiBn834jbxfD1gOiT4bSJCZi23tsp3ul7iCANjqOXTU+vOoerdgoNsi/U48SEAOyaMWGEolXrB0M6yl6cSRbwqkdsGFVHD7RxZMMhUwhJbxF95FVkIWFsrBMYe4xMgqiO3m9V3p+vqDk8d+IGcxVKHuNPY4WjhKVpijMvg3ZSlAViMcyB4MfSjI6+Xf6w+Oalb/MQbS/gz+JMxNp4duixFjBJPAk8QkCAvZae8JTwonJiEEpV7Lhkw2ASLUAMemwUlnx6dFPGXFkBAAhjSuQqgXX28E8dy1Mts0N54IgoJarS1T7dHqd6JotV7P32V7kyHmV/goopPXJkNHQq2GJ5Ein1+Fr5yv9TThZOEkULYD6XvVZ33U94+uNJ7eSLx6ZoDAKqPOLPzNGwYhWoSV6WjSpM1NxsnCSqFIyZNJ81XavTYg2C8d3bBO5TM6C1guo616XwPWBeP/iLclrG01GHLQO2KhtsNXaMqbuGPQmPS18W5Cjz6HttrZSklHFqQpu1m7IZDLmt5iPSTCRmpuKQTCw5NYSLry6gAwZzhbOyJDhZeNFal4qthpbmng3kSpPddzroFaqCU4KpsBUwI2YG4DYhN7Cp4VIbZKJaopF1ZdkyCRKofldefj5YQQEnFViiTGnIAe7PHgke8sXTb/A18GXZpuasfj6YoASPTRFYU4C4rPiaRe7kLSWDf80yQD4NOBTjgw4wtmos7Ta0orw5HCmnJxCzdU1iUyN5FC/Q5wdcvZvJRmZ+ZkMPjiYYYeG0adaHx6MffDBJAPgh9Y/UM2lGq23teb3kN/Z03vPB5OMbY+3MevcLOY0m8O4euMYfXQ0zxKfcbj/4f+6JAM+NoN/xEf8r4dGqWFknZE8myC+aEBcQai2qhobHmwg3yCW0QM8A9jaYysx02OY1XgWB58fpOqqqrTf3p7j4cf/Mv3lr8IcRLlYufBNi294MfkFm7qJPQzpeemcijyFgIBLFsRfOV5s2+yCbCYcn0DbbW3xd/Tn6finfBrwKTKZjJiMGOZemMvkk5MJTwlnRO0RrOq0ih5VenAo7BB11tahzNIyBKwNwP0ndxptaMS185tY+MyTpAv1yfpJxfo1cfR7oeaCj8A/JlVl68VfGPtZRb5vpOepG8w+L/YfVHCswPKOy3k6/ikps1KYWH8iRsHI+Hrji/Fll91eRqBXIPW96n9wPjY/2oytxpaeVXqSXZBNn9/74O/oz/KOy0sO9vREkZBIG782qOVqDIKBDuU7cGLgCYbWGkpEagRjj42lwvIKuP7kStONTem9tzc9d/ckNDkUC5UFMRkx/HzrZ9Y9WAfwLoAWWO8QxZGKMPEO2L9bbBxUYxAPxzykslNlBAQqOlYslZaVrc+WFIjMDbhymZz+NUQ5XU3+u2ZbuVwKMCLTI6Xt3azEL0HFu4pBJadK3NGm8H0Q0kq4CRNahZbNjzdjwiQ1llqqLHG2cmZC/QnsCd5Dki6JZ/p4VtQp4Ot5LSk3FRY2hYbxMs5sh+ilAotPw9K1w7j46iIqExjksK/qB28RmbInPFKMJ5U75JNIKnd4pBhHpqwkVcOMp2VUtBwO3fuDbzo8XAu/HQb3d8WKik4VP/i3VdR7JKeg8Iu4/Qv4/YCcoV0MGBWUKh1bGsxzmJ6fLi42/AGNSZCLlRL7Ij2ajlpHQLwvZhwfeFxSayoNRZWeGpZpCEBEWgQ99/TkcNjhYmOdtE4YMUpBh7+jP6cHn2Zq4FQctA6MrDOS1Z1Xk5Yn9iYICNTzrMelYZeo5Sb22Yw4PZ4dNaFcKuT5l5P2PTZgLNZqa3IMOWQUZJQ65w5aBwpMBQgIpc6NgMDjxMdUdipMjs3JxdBaQ1nYZiFymZyU3BQi0yKlvo+bsTcZdXQUi28sxsvGizuNvOkTqiDTghIN/HnGPAxGA512dSIlN0W6twbBwOVXl3mR8oITL06QodCTq0Qyafzy/JfMuzKPsJQwAr0C6VC+AyBKpablpdGlYhdCJ4Yyt/lcAM6/PE/LzS2liiZAoHegSKESTKx/uL7wuossVggIJOcmi8G/pTMNvBrwMOEhN2Nv4mrlSsiEEM4OOSv9LZsEEyZMyJEzqf4kHrx5gPzbRy8AACAASURBVJOFEyaTiYSsBAwmw7u+J9FzxkxNM9Ne94Xuo1myFaE2+dI8WOrBR+PGN82/4dKwSwysMZA199cA0MCrSBn2Pdx4LSY8R3vv57kyjRaNX0i01j9DpwqdOD/0PM+SnlFlVRU2PtzID61/4NmEZ3Sr3O2DFeTScDv2NnXW1uFo2FF29NzBpm6bpATrQ8jMz8SEiRx9Di18WtCnWp9Sx52KOMXIIyMZVWcU81vOZ9H1Rex8upPN3Tf/YSLzn8RHeduP+Ij/I5DL5HxS6ROujbzG9ZHXqexcmdFHR1Pu13L8eO1HSc/c3dqdb1p8Q/S0aLZ230pKTgpddnWh8orKLL+9nKz8knSO/wksVGKikasXo1mZTCa5b3/Z7EvpS/r75uAdNo5229qx9fFWTkWcotaaWmx5vIUVHVdwbug5fO19eZzwmMEHBuP3qx9bHm9hesPpRE+LZkO3DYyuO5rBNQbTu2pv7LX2pKXG43n1IV//nkTUcjm3FqXSZ8tdHFU2vJk1gYHza+E4IZNpPbT84BzCsPOTuBN3B4PJQL+q/ajpVpMCYwFfNP2CcfXGUd21OnKZnNORp/Gx8ymmYR6SFML5l+f/sPnOaDKy+dFmBlQfgIXSgnHHxhGbGcvvfX6X5qkost0deZ77mqEHh/I66zUKmYKydmVZeXclpyNPE5UWJa2OJ+ckc/31dfaH7udg2EGgUB2nhW8LTg8+zfh64wEYUH0Atd1r83l70SfizRLQGERVq2mnp/E85TnlHcoTkRoh9fzYqm0lDfyhtYaWMPxSy9XMPDsTgFhVDghiAD25wWSgeDD9j6b/AJB09hN1icw7ZyDsmB/nhojPhkquIs+YJ21X1P378qvL9K3WF4ANDzcw58IcAC6+usgrB/FZ2rtvPr1neLO/Kgx7DHdX6bnycwaWegh3gtQ/WeDMlD3hqXIaN5Vdeaqc9odJhlKmFM9TBocrQ/UJ8HlHBd2fw4tlMPcSRMcXBnoKivO/i0qSmpvq67+G4ztgyCcm4t+1LH3IIO9DjeG+dr4kzfxzCpTCCPoifQQ7e4uUlLCUMOmzXnt6lSpRDOIKtauVK+eGnAOQvCJcLF04HHa4WAVHJVeRkpdSrElbq9TSrnw7sguypf6sMrZlKIobr2/Qfnt7TkeeBqCcfTm21QSVAHGZotiAQqYgOiNaSkY+hKK9ECBWfsyVkNrutQFxTp+nPC8hlTv/ynxmnZtV7J4Vvb77n94nbXYa10Ze4+n4p1zsXAV3nQxkoq9MUdRdW5enb5+yo8cOqafGRmXD6COjqbSikuRwHuoqChiUsRPnpK5HXe6MvsPcoLlSRcNGY8PxgcfZ2WsnbtZulLEtQzn7ckw8MZFHbx8BhYnq5kebpapTXGYc9lp7arnVYlaTWaV6XDx++5iE7AQ0Cg31POsRMiGEkKQQfH7xITojGpVcha3aFpVChQkTK++uxNfel+ScZGKzYpHJRBqcgMDqziKN1izJ23NPT7Y93sa5yHP0ilBzS1vYC/TGFn6pNRuNUnSl3/DJBklJ7qvzX5GWm1bq/b3x+gZVXarSOl7LlY2QrDHQbFMzqXL1RzgTeYZRR0ahK9Bho7ZBo9QQ5BP0t3odTIKJhdcW0nRTU1wsXXg07hEDawz80+2i06NpurEpCdkJzGsxjzNRZ9jxZEeJcXfj7tJ7b286+HdgTZc1HH9xnC/Pf8ncoLnSe/G/ER8rGh/xEf8H0di7MQf7HSR0YiidK3Tm60tfU/bnssw8M5O4TJGGolFqGFJrCHc/vcv1kdep41GH6aen47XUi2mnphGZGvknR/ljmHmuZlpGXGYce57toW/Vvsy/PJ+pgVNRypUsSKnN2mflyNHnMOzQMDru6EhWfhbLOy5nTMAYLry8QPvt7am9tjbXYq6xtP1SYqbHMCdoDvfi7zHy8Ejcf3Jj8s/tKLtxP7f32pG9RM3RHQIj37jxvI4PfYdYYDtDj7LZRcoqfuV34RnWahtMgomRtUUqU6cKnTAKRsbUG8PFYRfxtvOm9dbWxSR7T0eepn359sVWt1bcWYG7tbtEFSsN51+e53Xma4bXGs6y28vY8XQHE+tP5GrMVb699C2jj4ymw/YOVF9VHfuF9tjkfU2V4dlseyL2ewgI3HtzD4VcQRPvJsxoNIMt3bdwfuh5wiaFkf1lNmcGn5GO52DhgE6v49KrS0w8MZGs/CzkMjlbn2wlpyCHcg3asbqBHLVRNG47H3Wey9GXcbNyIyotig7+HQhOCgZEil5dz7o4WDgQkRJBfFZ8saDEbOoG8I6thEquYlSdUdIzYMbF6Iuo5WrqedQT///VRc6VA1+tK639WrO79270Jj3ett4lts3R59BiSwvKLyuPpcqS+ZfncyhMNDQzYZKCqTmX5nLELoEpncBzBnQZANF2omqTbzqc3ypj4jMrnA1/r1lSScmqQtEEQI4cgwK2N3fAfwqsrg//uCoqVA17CDITf2joB4AAYx/AD0Fw1r/w4w8ZEH6oYqHT63CwcPhDPxFkcHyPkrLZhWM6bhebZi0UhcmvWUK1KOw0dmLDOQJxmXEUGAtwtnSWZGKTcpJK+HOYBBOzG88m+8tsqdp5OfoyX53/isz8TGw1thhNRkYfGV3ieGqFWnoeDCYDBo14LwKSxWMYBSNHw49y/fX1D1+vdNmFc/lNi2/Qm/QMrjFYUsIzNzKb1fKKzvEnFT/h1qhbpM1KY1zAuGL7nXpqqvResNPasbLrGmJtBZpHy8gxVybeIatAfL+FpYRhp7HDJJjI0meRoEuQpI0tBAWr60G+SpzP37r+xu3Rt7kSfYUuu0T+Y5BPEKETQ+lUoZDaFpYcRnxmvLSwpFFoij2nZpWr/X33M6fZHILfBvPj9R8RELBUWUoN7ua5ismIwc/Bj/2999Nrby96/95boqHJkFHVtSrftfxOokU9SXzCW91bbNQ2qBVq9CY9fav2pcBYgFEwEuQbhFqhprZ7bYYeGopBMFArOo8QeWGiUfsNdK5T6Pgtk8nQ6XVYqix5kPCABusbEJIUUuLe3nh9Q/TPOHOGajJXro2+iSAINNnYpNTxAOEp4XTd1ZX229vjZOHEvTH3iJwSSRXnKrTa0orDzw+Xut37eJP1hnbb2vHV+a+Y2XgmV0dcLWFkWhqCE4NpvLExepOe6yOvMzdoLoNqDGL88fHFvoNfpLyg085O1HSryZ7eewhPCWfg/oF0q9yNb1t8+5fO8T8FS5VlCe+c/8342Az+ER9RCt5kvWHZ7WWsvreaHH0Og2oO4vNGn1PNtVqxca8zXrP63mrW3V9Ham4qXSp2YWrgVFqVa/W3SsfmfZX9pSynBp2ivX97vjr/FSvurKC8Q3nyjfk8GPuARhsaEZCqZdRv9xg2zZeYzNe0KteKqNQowlLDRPddk4GKThX5Jugbulbqyrmoc+wP3c+Fp0eo9zyLAbF2tI8Ax4QMBI2GxHpVuFndnh1lUjhkCsEgiBzmqi5VkcvkhKeE81b3FnutPXqjHg8bDzpX6Myy28tEo7rPE3GxciFJl0TLLS1JzU3lyogrKOVKyv1ajv1990vO5el56Xgt9WJW41l83fxrUnJTiM2MLfFzMuIk6XnpyJEXC9zMCk9lbMuIPzZl8LL14uaDwxxKvYECOc18grgRe4O8f+R98B4IgkDjjY2JSI3AVmNL5JRIyv1ajtputZHJZBx/cVwKnLQKLXnGPL6oPo65QzZwykdPr/6FTa7Ols4k5ySjkqtQK9To9DoG1xjMwecH0el1BJUN4krMFQAaeTWiQ4UOfHPpm3cnQjEJSzcrN97qCvXhNQoNlZwrEeAewKuMV1x8dRGZAHuDq9J7n6j81X9ffy6+ukiiLhFHC8di5o0OWgfGBIwhODGY4y+K0+2KNiK/jznXlayvacA/W82GG85UfBpPrgoOVoK5rSHKvvh5/7tQLg0WnIN+z+Cxh5zpbU1U6TuB4y+OF/MeAZAJUDURymTC2fJgehf/qxVqBEEoVhn6EIo2KrcvX1gFKDamSHP82iPQPdUFr5FpxVbqzU3FRZvXi0IlV+Fl40V0RrT071qlFkeNI/G6kmplAE3LNuVw/8PYamzRfKfBz8FP8s/ws/eTDPfMCa50LjIFPav05MbrG1KvTt9g2LMPUrTgPPvddf8NtSuVXIUgCKjkKnKNhc3KRZu1i167SqZCL+hxsXTh9fTX0ir3+gfrGXN0jDTu5eSX+Dr6AvD9le/5/ur3+KUJ2KfmccNbpKsVhY3ahnxjPgXGArEJOj8ThUzB540/Z+WtZWQbcnHMhXm9ljOi9gj6/t6XExEnsFRakmPI4fnE51RyFmlu2fnZzDgzg98e/PZBIYerw6/SyLsR2u9Eqe+LLy8SkyWKB6jlYlLQu2pvZjaeyZ7gPSy5taTEPmq51SIkKQS9Sc/YgLF42njyzaVv6F6pOydenKDAVFBsHr1tvbk28ho1VtcgMz+TvlX7cjf+LlFTo2i4viGPEh5hKshHryic820HZQx+YAC5OGG5+lwsf7CkhmsNDvU/RLfd3XiV/oodPXfwSaVPAJF6ZL/Qng2fbGDEqOVQrRps28abrDe0396e+Kx4Tg46KdFb0/PS+e7Kdyy7vQxPG08Wt11M76q9pXdsniGPIQeHsD9k/x82ZYNoqDf88HCpCf9Dwibv41rMNbru6oqPnQ+nBp+S5Mwz8zOps7YOThZOXBt5jdTcVBpvaIxGqeHaiGvIZDIa/NYAS5UlN0bd+FNa1n8a8y/PZ/W91byZ8WFFt/9N+FjR+IiPKAUeNh4saLOAmOkxLGi9gLORZ6m+ujpdd3XlavRViaPrbefND61/4PX016zruo6X6S9ps60NNVbXYN39dX+r/ClRpwy56Ap0rLm3hhquNXia+JQt3begVWqp5VaLo4TTdIgBR5OGG6Nu0MG/gxSMe9p4YqexIzwlnPHHx9Hsc0euT+3JpK8O8fo7HUd2Q+dXGh4GePHpOE+sZuTj3vYR0yq/RFO1Jss7rSB4fDDJs5K5NvIaV0Zc4c2MN9z79B4T6k3A2dKZiNQIVt5ZKb2szZxmFysXzg09h43GhpabW7Lm3hrkyMnR57D89nK+OPcFrbe2Jlefy6ZHm7D43gKXxS7UWVuHrru6MvnkZLY92UZIUgjJOcnU86iHjcYGX3tfLg69SMy0GPLn5BP3WRy3R99mf9/9/NLhF1JyUjiUeoOqieCucWJk3ZFSX8uHsCt4F7dib+Fi6UKjMo2kz6Mzojn4/CABHgGcGHgCuUxMdJwsnFgYvIYZrfR0fw4BceKKc/OyzaWeCEEQqOVeC0ulJW91b6UVKXOwV9O1Jnff3MVBW7p6WSvfViUa1Q0mAxZKC54kPpF8PBrGwuAqIZyOEIPi71t9T1puGk28m5SgSCjy/Thx2YPU0HHUMPyCrVCzcN8fSDJkyGiu98SolHPNo4DKvd5Qdhp831xB7QSRmlItESz0UCeev22KZ3bPfh9y5CS4WDCor4JGoyBHYeLCVvh2yX0O1V5YfLAJBBlUSYJzRZIMjUJDgbEAjUIMbN/36gCKNZQX7Us4G3W21PMqGpBf9QHXV0kIBoN0PCisvHzd/Oti+zdDb9JT3rE8GqUGuUyOhdKCPEPeB5MMuUzO/fj71FpTi4OhBzEJJsbWHSv9e1R6FOGp4VKS8X7FbF/IvmKGnHXTNKTYKLlZTgGyksaEpaHoPvUmPQbBQK4xV1Lp+zroa6mvyEybMtN19IKY5CXlJDHv0jxpP6PrjubGqBtS5ajyysrk6HPIys9i7f21+Dn4keXlyh0vMY9VvFfQyirIool3ExQyhWRoVsm5Ej9e/xEblTUeWVDzLTxPfo7PLz6ciDhBgEcAo+qOwtvWG3utPRsebKDdtnbY/WjHugfriiUZjcuI12bupzBiZMfTHchkMrY82UJcdpw0N6PqjiJ8cjh7eu/hWPgxltxawtCaQ/G2KW5+GZoUit6kZ0m7JagVar659A0d/TtyOOwwBsFAlwpdip1DZn4mvff2xmQSn7scfQ6eNp5kF2Tz+O1jvqn/Oa7vFHTN29UxukhJBhS+k2u41cDPwY+bo27S1q8t3XZ347sr3yEIArdjbyMg0ExbCR4+lPwzPGw8uDz8MhWdKtJqayvORZ5j3f11VFxekdX3VvN1868JnRhKn2p9ii3kaJVa9vTew7SG05h0chKzzs4q0feTb8hn2qlpdNnVhUCvQB6Pe/yXk4wjYUdou60ttd1rc3n45WKmo7YaW3b12sXDhIfMPjtbcv0+Pfg0thpb+v7el/S8dA73P/xfn2TA/70ejY8VjY/4iL+AAmMBu4N3s+j6Ip4lPaNhmYbMbDyzhM+GIAhcenWJX2//ypGwI9hr7fm07qdMbDCxhEfE+9AV6LBeYM3OnjtJz0tn0slJyJDxRdMv+K7Vd9yLv0fXXV1JyE5g/mUFtSu3YJjPAzLzM+lZpSc13WryLOImpvNnaf1cT6dIGWUyBHKVcL28mtMV5Rz0zSPKSUYNtxo09W5K07LiT1EDsj+C2RTpi/NfFFsR97Xzxd3aHQGB2MxYKbg2Q61Q42XjxZvsN7hZudGvWr/CqsS7H1crVxRyBSvurBC/jCp24cLLCzwY+wB/R/9Sz2XGmRn8fOtnRlUbzIZn29nn9Rlu7XrQbFMznk14RlWXkp3MOfocKq2oRF33upyMOMnS9kspa1eWnnt6IpfJWdp+KRPqT+DCywu03SY6xc4Nmou9xp5Zp2bwaA2kWsD0tvDg3bRVc67Gs2SxwmChtCDfmF/sS1YlVxE5JZLyy8rjYeNBTIa4Kjo6uxLrrUV+v9nX4H1oFBqMJiNL2i1h6umpXDztydTa8TxzV3BmyBlalWvFtFPT2PhwI9kF2VLwYXbtNhvqmRWhHinGkyl7ggwZlipLDEYDWpVWosDITe8C9/eqLeKki5/Z50KbKNh0GFxnQoNYiHKA1/aly5kWhUKmwCSYMDsff7CfQpDRJwRWXbXDPimT1XVNTOsABgXMvgKLmol9M3G24py/LwsKoEKFnuKVDbNcbWnn9SH/DjPKZMDrn0EzB2xtSnpmeFp7Ep9dPHlQyVXIZXIG1RjE1idbMZqMfyqF7GLhIlG5PtTvYYaV0gqdQccPrX7g28vfMqfpHA6FHyI0KZR8Qz5t/NowbtF57HRG1jez4qybjmRLkV7joHUoZr73PrRKLQEeAVx/fb1Yte39yk0tt1ps77mdz898LlWFio7Z12cfvar2ksYfCj1Ej709ALGyZm6QNsu9ulm50fDuW874Q64K6Tl0tXRld+/dtNnaRmyolokqays7rUSdV8DQsxPoGgpHq4jjB9UYxNygubTY3AITJpJ0hX045nMzy86m56WTnpeOTq/j8vDLBG0Okq65qCSuq5Ur9lp7wiaFYTQZmXRiEmvur6GuR11JtaxP1T408m7EzDMzpWeqrG1ZXme+JsAzgHvx91DKlUxqMIlfbv2CWq6mwFTA2i5rOfniJIfCDkmytk28m+Bl60WvKr3ot68fOxovYdCNGe+mRJzjNsm2rJn3QGoYN3sDrey0kgn1JwBiUv3dle/45tI39KnahwqOFVhzfw3JXsuQDR4M8fHg4SHNj65AR4stLbgffx8BgSE1h7Cg9QK8bL3+8HkE+PXWr0w/PZ1+1fuxudtmNEoNz5Of039ff0KTQ/mp7U9MajDpL1f9NzzYwJhjY+hRuQfbe27/YKL8w9Uf+MeFf2ClsuLmqJvUcKvBlJNTWH1vNWeHnC1V1e2/EavvrmbKqSno5/55VfZ/Az4mGh/xEX8DgiBwMuIki64v4nL0ZSo4VuDzxp8ztNbQEi+/qLQoVt5ZyYaHG8guyKZHlR5MaTCFpmWblvqCNQkmFPMVrOuyjsU3FvNW9xZfe1+uj7zOj9d+ZMG1BZS1K8vL9JesPwJK5Gyf0pKyMRm4XX1Au3ATTV6DygTR7hYc89NzxM/ADV8FSisb0vPTUSvUdK7QmRG1R9DBv4PkGGtGviGf+Kz4knSmrMLfzSosRWEOKuQyOX4OflR3qc6hsEPYamy5PuI61VyrcfzFcbru6sqtUbcILBP4wTmuu7YuJsHE47eP2dN7T6lNe4IgMPXUVJbfWc6SdktYdnsZVR6+5kSdJUQN7Yr/cn/ODz1Pq3KtSmw7//J8vrvyHTt67qDvvr608WvDuahzWCgtGFlnJCs6rSA4MZgmG5tQz7MeV6KvoJApyDfmo5araR5ewJntMLU9LGsInrae5OhzpCShNPrMglYL+DTgU7rv6c61mGvIkWFCYLvzWGbmHeFN9hv6VOnDyciT5OhzpPk1B14gBkQKuYLf94Kt1pbWXVIREKjhWgOdXldC6eiPPC6eKqehVWixUluRkpsi0b/kMjnzzploH6Oi/TgrnCydeZXxqhhNSLrnRqiSAiGu8GwFVE2GSz6wrZaoVFXU3M68Ol7UbO99lJYsOGgd0Bhh0KU05lyBRU3gl0aQvgDKToe3NoVjiwaDfxcKmQKFXIHeqP/TJCD8V6g4BZCJ2wkIzG4ymx+v/VgqHUkhU6BWqDEJJulemoPIos+KHDlymfyDiZel0hI7rR3l7MsRmRYpBf0ahYY67nW4OfomlVZUonOFzrQu15ouu7qglCvxsvHi1ILXnPU1MbcVdIiA0+Uhw0K8Jx+6XnPwK0OGm5UbOr1O8jExP5dWSius1FYk5ySTPCsZBwsHppycwvI7hcpwZjPE/tX7427tzvXX17kXd6/YXClkoqO8QTAwr8U8pgVOo8vOzlQ9cI21pQjTme91BccKJOckkzQziR+vLuAfl+bSKQxOVBJd77MKsqTVfQetg+T2bae2I8eQI9I77ctxfdR1GvzWgBepL2hUphHxWfFEZ0SX8G7pXKEzQ2sNpd++fryY/ILZ52ZzIPQAaoWaAmMBLpYuHOh7gLvxd5l5diY+dj5Ep0ejVCiley9DhkKmYGGbhcw+NxsbjQ3peemMqTuGlZ1XErAuQKxsCvA06SkahYZulbohIBCRGoE+O5NXKZFka6CaSzVCEp/hrbfgrYWJ2U1m80XTLxhzdAzbn27n5qibkrKZGYeeH2LIwSEA1Pesz4WLZcWKxuPH0piotChmnp3JgdADOFo4kp6bzqbumxhaa2ipz0pp2B+yn8EHB1Pfsz69q/bmy/NfUtauLLt77aaW+x+LEJghCAILry3kqwtfMS5gHCs6rfigga5JMDFg/wD2hezDXmtP6MRQDj8/zJhjY1jdeTXj6o0rdbv/Rmx5tIXhh4eTPye/hMjC/0Z8TDQ+4iP+h7gde5vFNxZzIPQArlauTAmcwvh640sY+2UXZLPl0RaW3VlGeEo4ddzrMDVwKv2r9y+h0KH5TsOI2iNYe38tCpmCnb128sPVHwhODKaiU0VCk0Oxy4UB4WrqvyygfSR4ZUGOWsYFX4ET/nCzmi1l6gTRrGwzmpZtSoBHABqlhoiUCNY9WMe+kH28TH+JpcqS8g7lsdfao9PriM2MJVGXWOx87DR2JSoPXjZe2Gps6b+/PxZKC/b33c+gA4Oo4lKFHpV7cDjssOT0rJKrcLJ04uyQs3x2+jPS89K58+mdD87pwzcPqbuuLkq5UvrifR8mwcTE4xNZc38Na7us5WXaS36+9TPPfnelfIcB6P75NdYLrNnWYxs9q/Qk35BPniGPfGM+r9Jf0XFHR3pV6UV8VjwXX13EWmXNyDoj2Rm8k/qe9Wni3YTFNxZjobRgSK0hHHx+UOLGmwPDozugWhLUHQt51lrk72gLeqP+fxzs/lUc2A2WgpKhox2L3a/3E5ymxhMoBacS2xd17TbDHFCp5Spe/CoQVceX8d2VdPLvRI/KPWi2udkfnpPCCLUT5fR9auLT+6A1wpFKsK0mnPYXqxCulq5k5meiN+mLVQ7Mrtp9qvQhz5DH0RdHSz2Gkw4GP4FfG8GlTbAmAHbXEBuJM/IzpF6KosnZH6G06sP7qOhYkfDU8GKfDXsAW+qKAbQMmXQtf5TomKtHZjpdacloaRUVjUIjGq4F75TO10JpgYBAVn6WtA9XS1eWtF/C/MvzydXnkpSTVOh2bQDdDzC5I6ytD9+fg6WNIcVSvO8WSotiSmWAGCBnRDO32Vz+efWf0udKuRI5cpQyMXB2sXIhQSfKoXbw78DW7ltRyBW4LnYttTqklCtp4duCPlX7cOnVJQ4+Pyh5VgDMbzEfH3sfvjr/FYm6RKrY+JHxKozo93qCKjlVIiwljOY+zbkcfZl6HvVE8QcTKExQoBQrhGVsyhCVHkWOPgelTIlcLkrKbnq0Cb1Jj43ahlujb3Es/BgTTxT2FJiri7YaW7ILslEr1OQZ8kifnY5RMOK8yJkytmV4nfla2mZ03dEsaLWAKaemsCt4F1MDp7Lp4SY0Sg3ZBdkUGAowIVbyNAqRQmentSMhO4FqLtV4MPYBq+6u4rPTn3H307scCTvCqrurSM1LFRehZAqCfIK4+OqiVHXsWrErt56c4FXWKH7o6SLJBRsFIzEZMaTPTsdOa1fiPjx5+4Taa2pjobLg+H4tLVqPgkWLyMrPYsG1BSy5uQQXSxcWtllIv2r9GH98PBsebmBZh2VMDpxc8gH/AE5HnOaT3Z9QYCygf7X+rP9kveT58mcwCSamn5rOsjvL+Lb5t3zd/Os/7Lmbfno6y24vY12XdXx14Sv8HPx48OYBo+uOZlXnVX/5nP8bsC9kH31+70Pa7DTstfb/6dP5l/Ex0fiIj/gX8SLlBUtuLmHzo81igBwwhmkNp5WgSpkEE2ciz/Dr7V85FXEKVytXxgaMZXy98XjYePA0Oovhm7ZiafIjQwjHyfMRV5O2oZIrqRybT9dIBW3DjTR6DUoBQpzhZAV4UMsVmjWjgkd1vGy9kMvlxGfGl6hEFG0SBnEFWW/SYzAZsNPYEeARQHv/9tT18lNuKwAAIABJREFUqCslFDYaG0rDtZhrNNvUjHL25dAoNSxpt4Qee3owsMZANnTdwNRTU9n4cCOVnSvzIKHQBK2DfwdG1xmNndaOPEOemAAUSQS2PdnG7djbuFm7MbD6QIyCUfq3PEMeufpc7r+5T2xmLP4O/qiVakKSQnDUOmKRnk2+SkaehYrsguz/8f00r747WTqhlquLBaPmoLhSEjxdDXuqwWcdIMkKPKw9eKt7y7Baw7j5+uYfUl5aJVhywT2H/X32oVFq6bKrCzZqG3L1uUxvOJ2lt5Yik8kwmAzUdqstyW46WTjR+0oKLV7CgPcKPebVdUEQ/T/+rKJRlMJkRuBruLUBWg6Dq34K3KzcKGtflluxt/76BArglAtNYsTV84op8NQVzgY6c8Ih+YNN5A4aByxUFsRnx+Nq6Voi+JUbwaQAywLoGQrbDsJtL+jWX6xsyJFj9j75d0Cr0CKTyUqlZAGc7XaAoBqdKftzWZp4N+H66+vFGvn/FTQu05jHbx+j0+tQypS4WLnwfNJzuu7sKgkLQCFtygzzs2sOZp0snXCIekPwSoGg4XDVF0bdgw31wEPlRKIhHSuVFZkFxU0TpwdOZ8XdFehNeixVlqgVavwd/HmU8EiquJiTkcVtF0tyzQqZAgetQwlKmTmxKmNThtisWEbVGUVbv7b039+/xBiAvtX6srD1QjxtPKn0gydx+lQMCmmg1Lv2fnKmNoB9HqTbitUYB62D5OMR6BXIT+1+YtCBQeK7UIDzQ8+z8+lOfr3za7HzbVWuFXfj7pJVkEVDr4bcjrstCV+EJYcRtDlIquC6WLqws9dOfOx86LGnB1FpUWzqtok7cXf46eZPaJVa8gx5+Dn4EZ0eTc8qPdkXsk+6VrVcTdikMNRKNZVXVGZIzSGs7LySsUfHcifuDo/ePqKjf0dORpwEwEVuS5JJvF/dK3cn/PpRnnn8E778kvCUcCafnMyZyDMoZArCJ4eXquQUnBhMjdU1qG9bhQfpofxcfiLWNQL46sJXpOelM7PxTGY3mS0lBYIgMOvsLH66+RPzWsxjbtDcP6U93Xh9g4H7B5Kam4qF0gK5XM6JgSeo41HnD7cDkao87NAw9gTvYVXnVX9ajVh0fRGzz81mVadVjK8/ns2PNjPi8Aj8HfwJmRhSonL/344TL07QeWdn4j6Lw9PG8z99Ov8yPiYaH/ER/ya8zX7L8jvLWXl3JdkF2fSv3p+ZjWdS061mibFhyWEsv7OczY82U2AsoJvPVFIj+mAUjCKfXjAiQ6Dj9fEMufcEj2zIUsP5cnCukpKzFeRodQXklnXnrSyHzPzigYKLpQvu1u64WbnhbOWMs4UzDhYO2GvtsdXYSrKaOfocniQ+4cbrGzxOeIzepMfLxovKzpUpa1cWGTLyjCUTgpiMGGIyYihrV5bXGa9RKVQlFKL+LszKPSB6l1irrdEoNGiVWlEfXqEhPCWcuKw4GpZpSGWnypyJOoOuQMfouqOxPnwSjS4f7diJLLi2gLoedRlSU3QQ1yq1RKRGMO30NClwyzPk0a9aP+a1nIdGoaHG6hpolBoSshO4OuIq7tbu+C/zR6fXSQHNiFoj2PR4EwBXHwXQ9MhDljfXMqW52Li3u9du+lXvx5ADQ9j+dLt0bdu6b2P44eFSULTyGEzsIq6CN/ZuLAoMINDMpxmty7Vm8fXF5BpyMQpGHLWOxfwM5CZRerZALcfVypWk7CRp3opSPWyFmgQY1mACZLKiPRrFDfXMDc35xnx+PQG9QkVakkZtgY3ahqScpL8UvH8d9DXzr8wv/uG7ng6tHuq+gQopkKmBR94qXtr8vcrP9+dgZ02IcBAlTINewdLTEOYMg3qBTxpEl95nXwLvVxRs1bYlgu2ialNFx5cx2RArz+Lz3LokNqzO3md7MRgNH6Q8mfFnPSANPBtwJ/6OJE2rN+rJ0edIx3W3cic5J7nYcWTIqOBUgcjUyGL7buXbiuODjjPv0jzebF7B5h3ZOM+ENCs5rpkmEmxh1GsXNngnFbvOonC3dictN43jg47TZmsbfuvyG5NPTUZv1Ev0NwGh2PbWKmsMgkGqUlirrMnWZ1PWpizZhmxSc1PxsPYgIz+DAkOBaDb3ThGq6Bz1q9aPXb12sS9kHwP2D8BoMqLVQ56aEr1DCplC8pLpHgp3vSDJXs3S9kvZ9GgT99/cp4l3Ew71P0TLLS15mfaSXH0uY+uN5feQ30nOSZbur0quonfV3iTqErnw8gKVnSsTnhLOyDoj+e3Bb3Ty78SJiBPSsQdWH8jKziu58foGgw4MwsXShYP9DpKZn0mTjU2QyUSaVCPvRlyLucbW7lvZ+Ggj9+LvFXtn+9j54G3nzfOk54RPDsfBwoFuu7uRkZfB5ejLtPVry734e+j0OkkND6CTX3tyzp/mYsvNMGwYAInZibgtcUMlV6GQK/iy6ZfMajKrGLV33f11TDg+gQz1t4x89A17q4j3r0/VPixuuxgfe58Sz0NRGtPUwKksbb+0VDloo8nIgmsL+PbStwSWCWRnz51o3y2mPE9+zr4++2jv377EdmZk5WfRc29PrkRfYWfPncV6e0rD1sdbGXZoGHOazeGfrf6JrkBHk41NeJn+kpyCHG5/evu/1pjvQ7j06hItt7QkfFI4FZwq/KdP51/Gx0TjIz7i34zsgmw2PNjA0ltLicmIoYN/B2Y1nkUL3xYlVoHS89LZ+HAje85aY6GvUWz1WW4yUinuDr4vpnGyAlz3Br2yMADSGkCmUCKolBhNxn+Jn24O5gVBECsHhlxkyLDX2uNp44mXjRcWKgtp3N24uyTqEhlZZyRxmXHsCt5FS9+WWCgtOB4hyqiOrzeejv4dMZgMDNg/AAGB8g7lGVB9AFdjrnIl+gr5xnxqutWkV5VePEp4xMHnB/m1w68lzPwMJgPDDw1nV/AutvXYxsAaA9nxZAeDDw7m9ODTtCvfDqZNg7Nn4dkzgjYFUdauLNt7isH+ozePaLqpKTq9jskNJjOx/kQqr6zMgb4H6FGlB4IgYLvQFl2BjuMDj9O0bFPK/VqOlNwUbNQ2lHMox9O3T6Wgz0ZtwyT/gfwwehf7vDLp00/kSwdPCCanIAeHH0VHZfP8lrEtQ1xWHAaTgYH+PRk+9wDthoG/gz8eNh5ci7kmBW1etl4kZCeUej9t1DZs3m9it5+Oyw1cSdQl0ti7Mc+TnxerWJkDvMDEmuQ4jsSa8mQTSbRiAwZ1JDn6nBJN2wojxP0sI7pTYwKrXpd45/9TmIM3pUyJ0WjAVSfSPZLeMSfsc8E2HxKtQGNtJzWjvw9rlTXNnmVzYicEjBHduaVjmKDbczhUFfbshVhb+C4I0ixLJhMfCqihUI71r1yPOdD97jws/8SNRF1iseNYq6zxc/DjSeKTvzRPpTXEmyWV30d5h/JEpoleAUWpWg4aB3IMOWISgIkdPXbg7+TPwP0DGXQwkin35Dh/XijFbKGH6PM1ce1Q8hwVMgUXhl3Az96PcsvKsbTdUrY92UauPpe3urck5RQ2VL9PU6vuWp0VHVfwNPEpU05OQUCQ5m19l/WMPzEeO62d1A/0fr/Ohq4b+PX2rzxJfCI9w+bkwyYPst7rAS76jPra+TL6Zh5fV07AJBfn0NXKlZjMGI4NOMaiG4u4E3eHPENeid6L8vblMWKkklMlLkdfxlJlSTXnatx7c48abjX4pOInzLkoml3KkGGltiK7IJsbI29wNuos3176li4Vu7C1x1YeJzym7ba26E16yliXIcg3iJ3BO9n0ySZuxd1i48ONWKosycjPYFzdcbxIe8H5l+cBsSq6rus6OlfoTOD6QFwsXTgRcUJSIQr0CuRB3F2MJiNGOWjkamrFFHCzzynk7cTg/cLLC7Te2pp+1fpRzr4cS24uwdvOm+Udl0v+IcMPDefBmwdUf5bELpcEfOx8iMuKo4FXA/b33V9M0el9rLm3hgnHJzC01lDWf7JeUh4DiM2MZfCBwVyJvsKcoDl83bxQmUxXoKP//v6cfHGSdV3XMbLOyBL7TtQl0nlnZ8JTwjnc//CfNm+fijhF111dGVZrGL91FWWK+/7el1MRp7g8/DJjjo0huyCb+2Pu/69QmzLjTtwdAtcH8mjso7/cz/LfjI/yth/xEf9mWKutmdpwKhGTI9jeYzvxWfG02tqKBusb8Puz3zGaClce7bX2fNboM7y19YslGQAmuYJH3uWZ3Q4ulROTDCiU28xTQq5MXD3Um/SoFWps1Da4WLrgbetNRaeK1HKrReMyjWnr15bulbszuMZgxtcbz6zGs/i+1fcs67CMDZ9sYFO3TWzrsY2D/Q5yefhlLg2/xJygOXjbefMs6Rl34+/ibu3OpAaT2NxtM/ZaezpW6MiitovY0WsHi9ou4sKrCwysOZCgskEAtCnXhq6VuhKTEYNRMHKk/xHis+I5HXmaA/0OkDwrmb2991LFuQoLry3k4PODKGQKknRJPEp4JEm9GkwGBh8YzO7g3ezutZuBNQaSnpfOjDMz6FO1j5hkgKiYEi/SnDxsPEjITiDPkMc/zv+DgN8C0Ol1rOy4kmUdl/HkrRhgNfIWpW1/ufUL2QXZdKrQiTZ+bai+ujopuSnYa+3xtvPm6ICjkgGajdoGW40t4UIyjyb1pmcoDHssIzbmGSdfnGTA/gFSkqFWqLFQWhCdEY1JMOFi6cJWjwko38WlAgJXY65irRK/BLVKLa8zX38waVzXZR2trWvQ5xns6LGD3b12k52fXYIWZ3bNvu0qunY/0PSWXLvtNHZYKi0l3rfZLbvlK3DLFrjU2BMZMmzUhbQ5rfyP5VDfd/A2XxuIMrqCXKQ3JVmBZT60iIJOL6BSMmgNhaZvRQsnZhqQfXI22w7C8Qrw4L34R5CLSYZMgMWN4dMHELEMpt4ErVEu3QMoLlM7tGbxpta/kmRIgYpMdIdvEyW6zLtbu9PAs4E0NlufTVR61Af2JMLdSrwQlVxVosohl8lxtHSUKk1Fz8GcZIAoOWuttkaGjFrutVjYeqF0jYMPDiZwfSC5hlyqJoFdHfE5T84RKU12BTISI59gXUoBsoJTBSo5VeJm7E187Hz4/Ozn3I2/S3BSsGQs6GYlrpi7WrniYe1BddfqyGVyniU+o8WWFqy+t5q6HnXFRYx3ztZjjo2RXLCdLZyLSTmb3c/HHRtH/+r9kcvk0jMs+Uu4+FE7DvEZebdp0UR4ZeeVNLWoLEkdd63YlYn1J6JRaFhzbw3XY65LlZasgixUchUahYaj/Y8SkxlDW7+2XIm+Qp4hj0vDLpGcm0yeIY9EXSJzL86VjtOqXCtCJoRgo7Zh+OHhfHvpW+a1mMeh/oc4E3mG1ltbozfp8bHzoXf13uwM3snqzqvJLMhk7f21lLUrS1ZBFg08G7C883JODDpBWduyaBVa3mS/oeuurtRZW4dX6a8Kg3S9DjdrN27H3aaa0Qn3XAXett5oZSrulIF6odO58PICAI8SRJplU++mLGizgCfjn+Dn4EfnnZ3pvrs7oUmhHA07SmhSKBcsEtig7UvU1CiujrjKy7SX1P+tPvfi75V8MN5hXL1x7Oy1kx1Pd9B7b29pTg8/P0ytNbWISI3gwrALzG85v1gSYqW24mC/g4yuO5pRR0bx7aVviz0DL9Ne0nRjU15nvOby8Mt/mmSYXb87+ndkTZc1yGQyvrvyHftD97O953YCPAPY1WsXcZlxTDk55Q/39d+GooyD/wv4WNH4iI/4fxmCIHAm8gyLbiziwssLlHcoz4xGMxhee7jknTF7Sxj3IjMwFflrFDCSKb9Ps0YvGFl7JE6WTuToc0jMTiRocxCfaVvSZPtlcjb/hg49ugIdOfocdPp3/y3QFf5e2mfvfi9NUag0FF2hNggG3KzcqOxcGSu1FRZKCx4mPCQmIwZvW29iM2NRypV83uhz1j5Yi7+jP181/Yro9Ghmnp1JNddqbO6+GWdLZwqMBTTa0IjYzFgCvQIJSwkjPS8dPwc/ulfqzsOEh1yNucqe3nsk47/JJyaz+fFmnk98Xii3uG0bDB0KOTlMvfQFh8MOo1FqeJkmNr43923O4f6ia+2M0zM48PwAL6e+5GDoQXrt7YW12pppgdM4FHaIp4lPcdCKVLMrw68w8shIyWdBKVfiZuWGvdae6OQI7izPxzdTzskgD6Z2lBGbFYuD1gGZTFYsAXC0cKRftX6seujJiV3z6NzXwNiAsRx/cZzYzNhicy2XyXGzcuNNdnHDJoVMwb299kTKMzg8bwDlHcoz/8p8BEGgS4UuHHtxrHB1XQCrAtCVYug9q/EsFt1YVGzVf8MhaBYDNaapKTAVqi+5WrqSnpcuJU+lwawsZN7GTIPzsPLgje7DplPuWdD/KTSPhiwNXPYRfTFi7ESfDASomgSBsbC3WunXUhSu2TDvophwRDnA7DaQ2akVL9IiiMmI+dsN4wDOFs5k5GXwWePPWHJzCQaTAdt8SPkRHGZDtgbJKPPvwkJpQWPvxmTkZ5BdkM3z5OcoZAqejH9CZefKDDkwhJ3BOz94vk4WTvjY+xCWHEaOPge1Ql1s3Oi6o5kyej3WrTviV+kk1V2qE5wUjEwQ59cmX5z398/J3Jdi7qmYHig25TpaOPJ9q+8Zc2yMVE3oXaU3B58flBKCb5t/S0hyCPtD9mMUjB+sJPWt2pd78feISo8qlVZm/qzY9u9MGkPcio+z0djQ1Lsp7decZWrLfExy2NVrF5sebeJ27O1i1TJvW2+qOFfhbNRZjg08xpOEJ8y5OAcBgcbejbkWc42xAWNZe38tULyKFOgVyM1RN0WJ8/UNyTPkcWTAETpV6PT/sPfeUVEdavf/50xh6F0UsaMCKoqK2EVjjV3R2Gs09h41xdyYmxgTu0aNsWCJUbFjx94LFhCsWAARAemdGWbm/P44zhEEE+/7Zr03399iu1wLhtPPmZmn7GdvFlxcUKzrMbXpVFbeWMnyzsvxdPak245u+FTwISwhDFuNLQ8mPaCiTUV+uvwT887O49bYW1x/eZ25p+eSo8vBiBE7jR3ZumyMohEvZy8UgoLChJfotfnUrN+WyNibdAlN52HXJlxPvEm3Wt3Q6rWcjj7N+RHn8a/mL102UWTP/T2MPzqe9ALJa+cTSz82fBOK7e17klkf8Cr7FX2C+hCRFMHGHhsZUn/Ie5/dY0+OEbA7AL+KftR2rs3GOxvp7dmbjT024mRZUoTChKIUrFE+o/it+288THlI5+2dsVJbcXLYyb90CH+S+oQWgS2o5ViL08NPY6m2ZP/D/QTsDuD7dt8zr808eVmTgtOOvjsY5D3oT7f7T0F0ejQ1VtXg9LDTH+wz8k9GWaJRhjL8H+LWq1ssvrqYvQ/24mThxBS/KUxsMpFXyWZM3/Tw7YzGGz59Fa9jHI1bS6Y2kwCvAGY2nynNJ6z2pKNNA34ZuRuuXIEWLf7Hx1RoKHxvImJKUnJ1ueTocniQ/IArcVdkyUgnCycq2lTE0cIRrV7L3aS75OvzsVRZUmAo+FM/hdLgaO4oV45zC3NJy5ckXM0UZtRwqEFt59pYm1mzI3IH3Wp1o0vNLliqLbFSW2H14AmWX3yDuG0b0yMXce/1PZpUbELDCg3ZHL6Zh5MeyjrzLTa1oKp9VaY3nU67re3oXrs7V+OuolaoicmMwcHcAXOVOZdHX2bjnY0svLyQWo61qONch+CoYKxUVuQb8rE3t2fQC3tWr3mOqFDgMNtIpoVkIDW43mDW3V5X7PzWdl1L/G+LCXSJJ0GjQ4ECQRBKBFkCAr08enHw8UH5dxNu7bLlsTqTwW+oy2ZKMzydPPm97++MODCC8KRw3sTo74VfRT/uvb5HVbuqPEp9hFmhSNISWNEM5rd7x+X5P5SNLbquRtCgFT8soK+bBMMiYEgEOOfD4VpwtQokWsEBL2ku4314N1Ct8xoWn4SuT+FSFZjZGW79tfx/CZgrzbG3sCcxJxErtRXV7KtxP/k+NTSuPPsyga/mNGaRVfhf+m+8CwulBfmGfBSCgrkt55KYk8jhx4dJyU/BwdwBG40NKzqvYNm1ZVyOu1zqOQJ0r9UdI0bOPj9bgmqlEBQIeiN5C+D3kQ0ZWyUcGzMbeRal/XOBdYdEPKa+NTw0IcArgBVdVuBm40bD3xpSoC8gKjUKjUpD7LRYOm7vSGpeKok5iThZOKE36snWZVPOqhx+bn4cGHCAxJxEecapKEy0JdPw/rvJEUjO59+3+575F+bzJO0JAPYae37pvIKYhXNZUDuJgjfFckEQUCvU6Iw6dkR6MN/1Mc9dVDSv1JxLLy7J27Q2s2Z99/UUGgsZcXAESzouYZLfJFwWu5Cty2ZW81nMaDYD91XuaA3aYsmdo4UjTd2kDtEE3wmMDh6Nvbk9CdkJpM5JZdKxSey4twNrM2vUgpqaTjW5+eomCz5aQG/P3jTf1JyaDjVlYYxTw07RoUYHYjNiqbO2DuMbj2dpZ8lVPC0/jTkn57ApfJOcZJkS2cMDD9NzZw/cdBq6txzFplsbWHFSwYRLBex9uI8vznwhy1xHToiknks9QKr+Tw+ZztW4q7hau5KQk0ANgy1rQlR0uZ4CRSi9BfoCxh8Zz9a7W5ndYjYL2y98r6TstvBtjDo0ClEU+bnDz3ze4vMP9sbYHrGd0cGj8angQ1RqFO6O7hwbfIzy1uX/dL3EnMRirt9Olk7cTbxLi8AWdKvVjaB+QcWOQRRFhh4YypGoI4SNC/vLJOafgKScJCosrUDwwGDZyf3/ZZQlGmUow38Bz9Ofs+zaMgLDAhEEgU8bfoqPXS9WHL9HdctmpBjucU+/kjzlQx5NesTJZydZfn25rPOuEBQYjQauTr0L//43fP75/9mxH3x0kD5Bffit+28ciToiq6F0qdmFBi4NWHB5AXXL1WXfJ/vw/tUbM6UZz6Y+wyga5STmQuwFZoXMooJ1BeKy4rA1s8WznCe9PXqTVygNtx98fJCXWS/xdPYkR5tDYm6iTJVQCAqs1FboDLoPrkxrlBqszKywVFkSnx1PeavypOanYmVmhX9Vf45EHcEgGjBTmqEQFIxrPI5sXTaBYYGYK835tbtkfjcyeKS8TXOlObNazOL7n0LJu3gGx9lG9CrJI2NAnQEEPQgqcRwqAxiUUiJgbWbNrOaz+O7Cd3KA/kndTzjw8ECpwb1CUBC2w44ITQbD+op0cu/EyWcn5UDEFJh4pSmJspd43Ca861NhbWYNokQFUQQf4kAQeE9RkVG9QokOy/u2YYLp2JWCEqWgpNBYuh/FX5n5gTTs7h8DX1+C9tHSa1crwYZGkj9Hzl+bWsvo8AyWn1JQL9HIH94wv6Oap7bSdf2zmY2iqGhTkcScRBZ1WERiTiJLri3BUmXJy58L2dgY5rT9sCTsfeaEZkoz2lVrx9nosxQaC2lVuRXX46+jN+rloLC+S30epz7G3tye1LzUYtsxJSC+rr60rdZWVjpSoqRSQi6P1kgqYuerF9+vIMKZrbCwFZwq4oc5xHsIOyJ30LlmZ7b32c66W+uYd24eQ72HsufBHv7d7t80cm1Ex987Yqm2JL8wn49rfsyJpydwd3QnOiOa+JnxOFk40WRDE8ISw0qcc2kdGidzJ1ILUkss6+XoxcM0qbAR4BXAy6QnxEZHkGiLNBRuABNzL8rqS765sZCgusgD4woUuDu6c/uz2zxIfoD/Fn8GeQ9icYfFfLTtIyJfRzKn5RycLZz5/uL35OhyEASJKpelzaJhecmj5Nvz37L25lqyddkMqjeIeW3mUXdtXarbVyc6IxovZy/JIPDcN4iIzGs9j2nNpuG3wQ+VQsWLjBdojVq+bfMt89vNB6BPUB9C40N5NOlRMYW/+6/vU+/XeiWembrl6nI/+T7mRgVft/+Ob859w+4L5el/VpIYzi/Mx3qhNUbRiJXaivG+40nMSeSPyD/wdvFmRZcVnHp2ik1hm6gXk8c5l1z6evVleeflxVQSRVFk5Y2VzDo5i07undjRd0cx2XZRFFl/ez3TQ6bjZuMmDfnbuHJy6MkPMvQz4d8X/s2357/F2syaW2Nv4eHs8afLZ2mz8N/iz+vc11z79BpV7KqQnJtMkw1NcLRw5PLoyzLF9d31fNb54GLlwqVRl/7xKlQ5uhxsFtqwM2AnA+sN/OsV/uEom9EoQxn+C6jhUIPVXVcTOz2W2S1msyNyB2NPdSJSNZ0xfV9z7PN+FKqfojfqafhbQ4Z4D+HR5EccGngIjUrDlbgrXI+/wbK+rmTduPjXO/wbEZEUgbOlM2MbjeXQoEMkzEpgRecVJOcms+DyAgAepjxk3JFxFBoL0Rl0TA+ZTnnr8tR0rEn98vWZ4jeFxR0XE5cVh5uNG1m6LJZ0XMKXrb/kq9ZfEZUWxevc1xwbfIz7E+8TOyOW/K/zmd1CktF0sZKqkFZmVgxvMJzfuv9Gt2rSrEYbSy++aSNxqptXao6txpZfPv6FxR0XM6fFHDq5d5J8CHTZmKvMaVWlFeGJ4W+6SQKFhkLsze3ZEr6FwLBAAAoMBYwKHlUsyTC9vuDSAurWOoVGZ2TadTDx30pLMgQEKmaDr40nIH2hPEyWgijTTMTTtKeoFWoWtl9YbD2QvuCz8tKp7eKJQlCg1Wtxs3EjfU46J4eelIP77bsNKN6JoU0JgpnCDAEBjVJDTmEOx54cY3CkNP/wwNn43iSj6DbehWmeoJJtJXRGnXwcJn6+CaUlGa5WrsWXUUC0g6RSdag2DOoLGeaw4TCkLoIDO6HbY/68ZfMGp92h8XgF/fpDu2iIXFXIj6fBSV+fuvplNNcfxlu/AluxpDKcCYnZiShQyPKeAHn6PM5UKqT587dBoFqQgpeivPSetaRqpMmMzoSiHar21dsT8ixETiyvxl2lY42OWKmtcLFyASDydSTda3cnKTephIKOQTSgElTsCNjB4k7UtDLMAAAgAElEQVSLaezaGKWgJE+fR503c9sPypXcrwj0GCxdl6JoUrEJ2/psI/RlKI3WN2Lfw33S3IiFI4O8B7Hm5hraVmtLt1rd5Pt77eU11Eo10RnRCAisuL6CmqtqlppkAMWSaAeNFMCWlmQAOFs742rtir25Pfse7uNW+n22lhuLs0nB2uRiD4x8/DO+RaxRBAQq2Vbi4qiLZGoz6R3Um8YVGzPVbypNN0k0TVdrV/bc38OXZ77E28UbERGjaJRVobb33S4VPh4dJFuXzeKOi/mj7x+yF0Z0RjT96/Tn1thbLLq6CBGRWc1n8XXrr+kb1JccXQ75+nz0op521drxjb/02XTsyTEOPjrIsk7LSsiIJ+ZIiYNe1Mv3TCko5fdmgcJIUo4kpVzO5m0HID47HqNopLZjbRpWaMjSa0vZEbmDod5DuTn2Jh9V/4irL6/Sy86PM2tz2VlhMtfiruG52pOFlxai1b8xFRQEpjebzokhJ7jx8gZNNzaVP6fS8tPot6cf44+OZ2SDkURMiOD6mOtka7NptbmV7Dn0V9hwewPfXfiOzu6dsdPY0Wl7J+6/vv/e5bV6LX2C+hCdHs2JISeoYldFou7t6Ue+Pp/ggcGlJhkgdZh3BuzkdsJt/nXuXx90fP9NWKgkSvX/X2Y0yhKNMpThv4hyVuWY33Y+sdNjGVp/KAA9d/Wk/57+fN9OMsrK1mXjtdYLnUFHD48enBtxjnXd1iEiMrdmNJVrHeHzkFnEZsT+nxxzRFIE9cvXl9vTzpbOTPKbxPUx12lRuQXuDu44WThxIfYCAgJd3Luw694uvjn7dqAyLT+NZdeX4eHkQXx2PNZm1jSr1Iy8wjx67urJhZgLHBl0pJgMYkpeChvubGC0z2hezXzF7c9uM67ROE4+Pcm4I+M4FnOK3w8KrEhvSteakrrKtZfXWNxxMZP9JjOl6RTmtpqLVzmJ66xRarj92W1aV2lNbGYsAgIKQcHZEWd5MPEBaoUUOG7ovoHsL7NJnJVIL49e8uAqSG7DuwJ2QR0v1vnC1BtgfA9zwExhRgNFRawLBWINb2c3dj/YDSBTWu4k3CFPn8eXZ76UlzEF7iIiChGeZcZgrjTnYuxFzJRmDD0wlFWhq+TlfuvogH+tDqUeh6nbkJqfiqOFI9VUTnSPgp3epScCHwITbScxJ/GtCzgC43zHUcW2yp+tWmKGw0wPu/dAujmM6AO76kO3oeA2C2Z3girZCo7sBJ9EaPISWsVK6lPvgw49++pK69ebCPHO9alv/BVH/NDggiN++Bh+fW+yYWtui0E0lOh+FLZuTpN4EeUbNpNpoFxv1MvJxqEnhwBo4tYEAQGVIL1eNBkxdQRN6F67OwcGHODo4KPce30PkO57dHo0NexrEPpKMrw0ybqClGz4bfCj+abmhCeGk1uYi4hInWRIsZCUvUzbgTcJhwDWWslp3bZI/jg9ZDrDDgxDZ9SRlJNEWGIYrtaubArbRIBXAC8yX3D48WEWd1xMRkEG1mbWZBRkUNelLnqjHhdLFxZeXkjMm2fUBDuNZBzXoHyDYs9ZujZdPp+i7y2FoMBB48ClF5dIyEkgvzAftSANz3ctDCSliO+b5k0O99zOSMME5G6GSqEiZFgIthpbeu3qhVqhZoLvBPy3+GMwGtAZdCTkJOBVzovVXVdz7eU1eZtD6knzCZdeXKLx+sayR0ovj14EPwrGa40XRtGIvbk9Qf2CGHd0HFnaLIZ4D2FRh0VMPDaRG/E3qOVYi4TsBJwsndjVbxdKhZL8wnymHJ9Chxod+KTuO4Y4UGw2S0Tk69ZfM6/NPLK12SjePG+rb64G4JmrRh6qvpsouXvHZ8dzPf46o3xG0derL9sjt+O7wZcjUUe48fIGfV/aIggCA/v+i8eTHzOxyUS+OfcN9dfV5+Szk/K+O7p3JHRsKGqlmqYbm/LT5Z9osK4B56LPsf+T/fza/Vcs1ZbUdqrNldFX0Cg1tApsJYttlAZRFPnh4g98duQzJvpO5NiQY1wfcx17c3taBrbkfMz5EusYRSMjDo7gyosrHBp0CO/y3oiiyJRjU7gWd40DAw5Q2a7ye/cJ0LRSU35o9wM/X/mZ089P/+my/20oFUo0Sk1ZolGGMpTh74OVmRX1XOrJlZeUvBQ+P/U5LpZSRfNV9iv8NvjJA6cD6g0AYGmlMUwMFdl0ZyPuq9wZuHcgofHvd97+OxCRFEF9l5JBWV5hHrdf3Way32SeTHmCSqFCRORczDkAfrz8IwP3DiQhO4GRB0eSrc1m3yf7MFOakavLZfjB4XTb0Y1rcdc4NuRYiSG4OafmoBAU/NzxZwRBwE5jR+irUBJzE+lZuydzWs6hbZyakItbaLulLSAlQf3r9Je3IYoiq0NXI4oiwYOCuRJ3hbmn56JRahARGVhvIK2qtKLDtg6k5KcwofEExjQeg7WZNaturCL4cTA/tv9R3p6DuQN/RPzBw5SHzG8rzRIIAKIUzP3R5w+5OqVUKAmNaMr9uy3Z2mcrAAGeAShQMK3pNEbUHyFvV61QM9F3IvC2W2BSh1KKkGPIR6GQOO61nWqjN+qJyYiR1z9SS+Tmq5ul3r+ilKa0/DSe6ZIY2A+2+JR+v03H/1dQCkr0Br0saVrNvhqrbqziRdaLD1rfhMUnoX4SfNIfMors+rU1bGptRePPjHhNAnudQLQDXNgCz1ZBjyJdjncVm0AKXJ85wsV6ozEqBFnlTUCJgEBVQ0m5TYDMgsziAfob/KS4hsYAlYvbb0jX4c371JQIPEx+iFKhlM23/mzm5VDUIZwXO7P/4X58K/rKr99JvFNMzcpE8wPpnmZoM7j+8jpKhRIrtRXxM+KZYOUvdTPeSX5N52MQwK6g+N+fTnnK0cFHmdlsJqIoGf/FZ8eTW5hLj509UClUjD40ml9v/Urrqq3RGrSIiNxNeBPk5sQDkpfPeN/xjGgwQjaTBKk7I7xzQC6WkpO4QTSgUUqeOUbRSJ4+j2ZuzQDJ50Wj1qBAIc2qFOlkmOZ3Uq0V1C/imTi8wXA8nDwYFTyKh8kP6VenH8MPDJeEHDJjUQgK9vffT8/aPZl0VHIGFxCwUFlQzaEaAJOPT6aiTUWODZb8M744/QV9dveR6VEZBRksu7aM7RHbqelYk219trH02lI2h2+mR+0eXH15FVEU2dt/r9yh+vnKz8RlxrH649WlzjTceHlD/tnGzIavW3/N/LbzqedSD4c3mgxuNhJFaYzrTdpsacNvt35j1slZAFSxq0LkhEgCewWy95O9hI4JxdHCkR47e6A1aDF/Gg2NGkG5cthobFjSaQnh48NxtXal8/bO9N/Tn7hMyfW8pmNNLo+6TEWbinx55ktUgorwceH08epT7Jgr21Xm0qhLuNm64b/Fn6txV0ucl8FoYMrxKXxz7ht+aPcDqz5ehUJQSF2nkRfxrehL5+2d2XVvl7yOKIrMDJnJ7vu72RGwgzZVJVXDX2/9yvo761nXfR0tKn/YjOLslrNpX6M9ww4MIzk3+a9X+C/CUm1Jri73rxf8fwBliUYZyvAPQWJOIhWsKzCw3kBuf3abU8NO4V3eW/575OtIOv3eCVEUsTe3p4ZDDWKcFCw8A3FVV7Kyy0puvbpF041NaRXYiv0P9xeT0v07kKvL5Wna01JNCE2+GJ3dO7Pt7jZEUaRl5ZZoVBrWdVtHdfvqBN0Pwm2ZG4ejDjPKZxTnYs6hN+pZ2nEpu+7t4sqLKxwbcqyEtOHF2ItsvbuVn9r/hL25PUuuLsH7V2+epj3lxJATBA8K5qcOP1HJw5eJlfrQ27M38EZ+dGkFuu/ozuawzcw5NYfYzFi61epGVkEWo4JHSYOkBh32Gns8nDwYe2gsdxLv0KxSM1Z3k6qG62+v58fLP/Jzh5+LcZmfZzzn8JPD0i/OTqxua4F/DDRMgIq5Sh6nPpaH2/P1+UQ8PA+tW8sVSD83P4wYqWFfg041JeqXSpB8UU5HS1U3k9FWvzr9ABCUSkQBWVYyrzCP79p+x1DvoVgapUr53sEH+LzF58VMukwSukAxisHkG3DfBblC/K4J1/voUu/CIBpk40ARkeiM6FLnNP4MvvEwNRTmdFFyuxSqd25hLh5OHjwqB+eriqRYQZOxkpHl15cAAX45CmOvanF+5ztaNpXDvYSUtIASa9xLPaai51D050gXqetS+x3Gj6lrATCs/jCUgpIcXQ56o5747PgS29/Sa0uxwHtQ3UEICKwKXcWN+BvFljVXmcvJi+l6FL3HIEm+5hbm4mjpiNuLdB65CMU6KEWRYg1fXFehefMx4WThhLujO11rdSU2MxZLM0tip8eytddWFChQK9R0qN6BjIIMDjw8wMXYi/LclOneg/Ss+Vf158f2P+Lh7IFBNMhUJKNolBMke409Zgoz2QV+X/99fNnqSzkg1xq0XI+XXOkFBFmNSYbAW4qgCIWCkTg7UL85lMYVG/PDxR/YfX83fm5+LL++HJVCRY42B1uNLcPqD+P3yN8Zf3S8rEZ2cthJ/Kv6syV8CwDN3JpxYeQF2cRu/6P92JjZcHPMTea2motSUMrO6IcGHuJI1BHmnp7LgLoD2P9wPwALOyykddXWgESN/OnyT8xuMbvUmQSjaGTPgz3yMzHedzwWagsKDYU8Tn2Mbzw4CpI8NSK0E9x5mPyQ8UfHE5clJQfLOi3D09lT3mYTtyacH3GeMQ3HIADta19nVFddMZpkPZd6nBtxjj/6/sHlF5fxXOPJz5d/5mnaU3ru6smTtCf4V/UnJjOG2adnlxoEl7Mqx9nhZ6lfvj4df+9YrDui1WsZvH+wlCB0X8/Xbb4ulmTZmdtxbMgxBtYbyKB9g1h0ZRGiKLL46mJW3ljJmq5rZNXBs9FnmXp8KtObTi/Vj+N9UAgKtvXeJvkyBY/knzyibGVmVdbRKEMZyvD3IiEnAVdria8uCAIdanTg9PDT7O2/V17mXMw5GqxrwOuc1zRybcSdzEfg7o71jTAm+U3i8eTHHBxwEKVCScDuAGr9UotVN1aRrc1+327/I9x7fQ8RsdREI+RpiOzfsfrmagLqBBA8MBg7czvW3lrLnXF3aOzaGBERFysXll1fxrQT0yhvVZ6N4RsxV5pTaCwk6F5QsS+AQkMhE49OpFmlZjSu2JhmG5sx59QcxjUex72J94q7zFasiCo9g6svr6JRapjedDo/d/iZTG0mow+Nljn2SoWSnrt6yoPLa7utlYwIX91ky90tVLCqQMjQEBSCguBHwUw4OoFajrWYf34+g/aVlEgcXHcwhwYdIsoynw7P4dBuJUdv1+anyz+Rmi9FokpByVWrNGjVSqaOZGgzEBCISIqQq9fWZtYYMRKVGoVSUDKr+SxsNbY4WjgCcLaygWRrAYPRgIXKgsjXkfhu8GXNleW4J0uV9DzBwN2ku3g5ewHSrITJlwDecn9d85QsOwnt39ozfDB9ylasj7d+xQfNORSF4s2/d6EpBGsd7KkrsKaJWKLqbcLj1MfFfr9TEcb2Av8REu3qchXJMfzVUji0A/rfk5zJTcjhGSLFE3ARAzk8432wUluVOGZRISlauby5rCbaj9b4dsh5c/hmDKLhbQehFHWqHy79UEwONPRVKK0qt8JMYVZi2QJ9AXrjW96+gMDwBsN5OOkh1z+9jq2Zrbxsz9+7Ij5+zD1nEb1RT4PyJY2/BASOeMDZraAyStsv0BdwNvosW+9uZXHHxZS3Ls9wn+Gs7baWQmMhp5+fluYFsl++V2EopzCHvQ/3YvmjJV+d+Up+vZylNCyiNWipZFOJDG0GrjaumCnMMFeZcyvhFt+2/ZboadH09+pfbJvvJq0KQYGAgFHJW7dwEQ54gqUoJVYXYi7wr/P/wtnCmQuxF1AKSqb4TWFZl2VkabM4HHVYlq22UltxafQlPJ09uZ98n/jseOw0drSv0Z7Q+FAa/CpdPxszGyInROLj6sO1uGsYRSOCIDCo3iB0Bh2D9w2mk3snjj05hkqholutbnzeQhLrEEWRKcenUMG6Al+3+brUa7c1fCtJuUny+fbzkgoMj1MfozVoMQjgZV6ZMXWHY2aAc+Iz0vLTaFm5pfyMzr8wvwQFSRAEsnXZDDPWZ/UxOGoeR+1fajPv7Dw5CRQEgcHeg3k8+THjGo/jqzNf4bHag6jUKNlfaW//vRyNOkqrza1KpevamdtxYsgJ2lVrR/cd3dn7YC9Z2iy67uhK8KNg9n2yj7GNx5Z67mZKM7b02sK81vOYe3ouHbZ1YO7puXzT5hsmNJkAwLO0Z/Tf05+Pqn/E4k6LS93On8HVxpWtvbdy7MkxVt1Y9R+v/38FS7VlWaJRhjKU4e9FYk4irjauJV4PqBPALx//Iv8e+TqSissq8jLzJbde3cLYvBlck7jFSoWSXp69uDDyAjfH3qR55ebMDJlJ5eWVmX1yNi8y/zMay7uISIpAISio61K3xN9CnoXQ2b0zp56fIio1iql+U3GydCJ4YDDP058zbP8wEnMSsVRbolFq2BmwE6NoJCUvhQfJD7DWWNOpRifW3lrLzJCZcrKx8sZKHiQ/wMvZC78NfmgNWq59eo3lXZaXdHt1dWWp7T0ScxJxd3QnX5/P9GbTme8/H5VChYeTVEEMfhwsUzW61+pOt1rd0Bl0HIk6gpnSjFPDTskOu72DemMUjTxNe0q+Ph8vZy8EBDkQFBAI7BXIwL2SOki2nw+VMgw0OPuA+pnmcuBup1dyrTLQooUcRFyIuYC7ozt7H+6VaXIZ2gz5dNxs3MgrzCPAK4DT0adxsnBib124XVXad1/PvrjZuBHULwhFahq1JD82zsacJTwxHD83yUiuiVuTEverkk0l+twzIAL76kivma7nu0Pc78JWrI+P4cPnHIoieFBwCSoPgGs2nK8Kw/qCAaNc1f5QaNWgU0GQN1ScBTM6S4nU7r2QuAQ2BkOLWIhVBCI5fpi6L1IiEKvc9N5t5xbmlqpQNbMz7H3zViiaRJi6Dia3d1MBwdQNKzq30sClQbEuxbP0Zxx/dvy9viUib/1KREQ23dlEy8CWjAweSZOKTeSENDrsHIJWy30XyXG6NIdhEZFDNfQ45cHsO5Ki2MC9Axl3eBytq7RmRIMRXIy9yKyQWSy6ukg+T9O5CqJ0IzVKTTGDRxMUgoIG5RtQ00GStSrqKp6Qk0Alm0rEZcXxca2PKdAXsPPeTgDuJt3lTMyZUs+/aMetWPLx5segulCAlIwF3Q9CIShIyU+hTdU2PJz0kPlt58vJj6eTJ3mFeVioLLj92W1ydbk0Xt9Y7ha6WLkQ8jSEtlvakl6Qjo2ZDW2qtqGqfVUuxFyg165euFi5YBSNjGk0hh47e1DLqRbx2fHoDDrKW5dnW59t8jEfeHSAE09PsOrjVe9VR/ryzJfF6IomFaewBGmwPsMczNTm/HJnLToljKrwMUPrD+VK3BX0ol7y2jAW0m5rO9puacuFmAvytq7GXWVAvD0TH1jxdMoTZjSbwdJrS6m5qia/3vyVQoOUkasUKnJ10jPvYO7A69zXrA5dTXxWPAF1Arj66VUyCjLw3eDLxdiSYiQWagsODDhA/7r9+WTPJ3j/6s3tV7c5Oeyk3G1+HwRB4PuPvmeq31TOxpylil0V5racK1+fnrt64mjhSFC/oPd26v4KXWt1ZXrT6cw5PUe+rv80WKotS0hD/7+KskSjDGX4hyAhJ0F2DH4Xk5pMolONTnIAaBANhCWGkVuYS3evMG4l3oH84hQX34q+/NH3D6KnRTOu8Tg23NlAjZU1GLxv8J86v/4ZIpIi8HDyKEHXiMuMk0yXanbml9BfaFihocybredSj229t3HkyRHS89M5P+I8BtHA1ONTUQkqLFWWbOu9jUH1BskqNSturOCjrR9xI+4G35z9BjtzO/6I/IP5bedz+7PbNK3UtNTji3e14iePZKY3m041+2ok5iRy//V9+u7uS/vq7WlbrW2xSnkNhxqEPAuhyooqpBekIyLi6eRJ4/WN6RPUR3bbbVShEcs6LyN6WjS7++8uQacZcXAEcVlxmCnMmP3dKWjfHjQaqqTqQZRmRdT5Oq7VUIO9vZxEhcaHMqDuADK1mTTfJLk3myrjVeyqUN66PCl5KQz2HszTtKf4VPDhdkU4U1HixVdzkHwdmro0Il2tp4qzpGH646UfeZr2VO5kRSZFlrhWjVwbMSgSTrpD6hvaVI5OKs+/68nwLqoaRiPw4XMORdE3qG+pXZMYR0AArVLyVjAN35qGnttWbSsvW7RyXxpSrOC3Zio6TbbFe6qalU2hZSzoFZAlRPDIOIH8wlC0vCaNUMKV48kSIilv+eca/u/iuSOyn0NRFJ3BEBHl4V5Tol90bmXfo30ljBlNKKo49C4q2VQCpCRCq9fyKOURZ2LOyPe8qOJUQk4C2+5uK3UfBiVsawCfn8nHRW1P8ONgnqY/JSknCYefHfDf4k9geCBezl60qNSi2LNvwMCIBiPwr+pPtq5419TGzIZ21doRPj6cJZ2WlNhvb8/e8gBv8GPJSDMmIwb3le74bfAr4XYPcHDAQUY2GIm5yrz4M/TmLW1LfcztV9CIw9TTL8dWrI+Z0owdfXdwYeQFknKTqLO2Dgk5CXSv1Z2br24iIHB19FWOPz1O+23tqVuuLmHjwrBSW/Eq+xXX468jCALta7Snf53+xGfHcy3uGt13di/2OTTl2BT0Rj3V7avzKOURBqOBvf33yolfri6X6Sem07129/d6I/xw8QcytZnk6/Olvp+gkH0lwhPDcTN34W4FOJd1F3PU+L6CwPar2NZnG9t6S/fXKBpxd3BnY4+NZGmzaLu1LR9t/Yi99/cSlxVHk3tp0K4dtjbOLGi/gKjJUXSt1ZVJxybh/as3q26swne9L79H/M767ut5/flrtvXexrmYc3is9mDJ1SV4OXtxc+xNvF28ab+tPb/e/LXEuaiVar5r+x02GhteZL5gdMPR8nzFXyE0PpSNYRvxc/MjOTeZ9tvak5STxND9Q3mZ9ZJDAw8Vk9v9n+CnDj9Rp1wdBu4bKH/u/ZNgpS6jTpWhDGX4m5GQnVBqRwOkKs/m3puxVFtio5YqhyYd+jtCIk0+NdB+QytCnoaU4J1WtqvMzx1/5uXMlyzvvJwb8TdosqEJbTa34eCjg//RHEfE64jSaVPPJJpRNbtqHHtyjCl+U4rRKqJSowBJFvRV9iu29NpCcl6yZDY24izDGgxj1ceriJ8Zz5FBR/Cp4MP52PM0C2xGgaEAJwsnroy+wrw282R+d2n4Un0RKx187TeLClYViM2MpeuOrlS1q0pgz0A2hW2Sh5XHNx7Pnc/usLLzymIV5YjXEeiMOlQKFQ7mDtybcI/b427LycuBhwdQoJCWecPHN0nZft3ma5ysnGH5csTCQmq+zKN7VnnyC/PRKiHGqpDEnEQ5WDNJnioEBS+yXlDTsebbyvibBCUlP4V21drhau2KRqnBtgCyzKVB9PDEcJSCkl27vyHLTKRlj8kAjGggDZbvuLcDgExtZokkNjz0EK3iYGe94tfQ3twebxdvutXs9t7r/J/OORTFu4PQzV/AlU3QJho5YDTx/kFKqguNhZyPPS+/ZlLo+jPoRT3pBenccyzk24/AawqESrE523ZFELJyOtdUPYhUTUfUSonYn7mflwYR+O1Q8dfepViZq8yxUkuZnKWqeBW7tATiq1Zfyc+V6TkxPfNFk+T8QqmwkJSbVKzyabq+dZKlGZLEd5p+pWGzDzjmg39YuvxaVFqUPJ+TUZDB0SdHufqy5IDv1rtbOfn8ZLFjUwpKdAYdZ6PP0i+oH32C+pRYz9XGlaufXiVifAQapQb/qpKL9fOM5+81QNwesZ0mbk0IHhjMik4r5OsKpXfZGhrW01G4xJ3bPkzcu4g2m9tgNBqxNrOWJYU39tjI4muLmREygxnNZnBy2EleZr3EIBrk6zqw3kAODzqMh7MHT1Kf8PEfH+NTwYcAzwCScpMwU5oRlRbFEO8hHHh0QJo767y0WCLy/cXvSc5LZlWX0uk6T1KfsOL6Cmo71gbAxdqF8lblUSlUpOalEnQ/iFcFrylUwgzPUdRVVqBaBlCxuMBAM7dmXH5xmSnHp9DbozdB/YJIL0in/97+KIySMAGdOsn7rWxXmS29t3D7s9uIiEw7MY0XmS/Y3GszYxuPRaFQMKzBMB5PfsynDT9l7um5+PzmQ2RSJCFDQ5jgO4GJxyYy/sj4Yu/b8MRwWgW2orxVeSY1mcTy68v56sxXfzkXEZUaRbcd3WhQvgHnRpzj4qiLRGdE47nGkyNRR9gZsBOvcl5/uo0PgUalYVfALl5mvWTa8Wn/6+393SijTpWhDGX4W5FfmC8Fg9aldzRAMg7b0HMD2YXZxb5gW1Vvy55gDVkZr+nyRxd8fvNhe8R2uQ1ugrWZNVOaTiFqchT7P9mPiEifoD54rPZgdejqv6zqiKIoS9u+i5BnITR1a8r2yO04WzozyPvtHMPlF5f5+uzXfNHyCwK8AhiyfwgjDkqBsFE0sj1yu7ysWqmmW+1ufOv/rdy9sTGz4Xn6c1pvbs2gfYM4GnW0xLmBVAX7PfcqP5wFu7Q8nCydeJD8AL1Rz8EBB2m+qbnMb/dz8yPydSSOPzsy8fhE+Uu6lmMtJjeZLLsdpxek029PP+adnUdYQhiiKHLg0QE5INaLeplCpVao5RY/3t68+KQzX1yGRQdzcUgrkBWUrsVdk79szRRmLLi0gDZV2lBQWIBPhbfSTy+yXmChsiAlLwWlQsnAegO5+eomLrmS2ZpWr+XE0xP4uvpy4M1A+nNbiTqx78G+4vcOkcTc4tKzA+9BngqCPYstSkZBBiu7rCQ64x2DhSL40DmHooPRpcEjGU5th+f2cLFa8UC66IyCgICbjRs/tPtB/v0/hvD2f8/BMKqnZJ5YJQM6Poej26HzzXQs/pNcQ3h3KXgAACAASURBVICb7wytv0uxytfnywFrnr544FBaQP3j5R9LGPvl6/MxV5kX6yakFqQiIOBs6UzzSs1pWbklrau0pmGFhgB4JwulKk6Vhsfl4EplGHlHRCEo5IRIJahKiAO8D8U6HaJBVqPa92hfqaIAq0NXo/5eTfNNzREQuBD7luKjUWjo69mX0T6jGVT37WfJ+ejzTD42mc7bOzP95HT5uipRUtVYssuGCNn5Rm4+y+DB3VbMaLiS9IJ0cnQ5GEQDA+oOYPmN5QQ/CiaoXxCLOi5i7c21tApsJRcfHDQObOuzDTOlmUQpKsylhkMNDg44yNLrS6nnUg+dQYezhTMrbqzATGlGgFcAU/ymyMf9IPkBS68t5atWX1Hd4R3nxDeYeXImjhaORLyWpGGdLZxxtXHllxu/UOsXiY7V1EJKQj6p+wkp2nRc9GZgKd0rE621l2cvHk9+zNSmU/nh0g/MPT2Xea3n0a1mN+wMKvyHG+ig3smVF1fkfafkpTD/wnyiUqPoWbsnVeyqMHDfQIbsHyKr2dmb27Py45Xc+ewO9ub2fLTtI0YcHMEXrb5gY4+NBIYFyp2Hc9HnaLO5DZXtKnNl9BVWd13N0k5LWXh5IROPTnxvcSsxJ5HO2ztTzrIchwcdxlJtiW9FX75q9RUZBRlYqC3kDtHfAQ9nD1Z/vJrA8MBiSlf/BJQlGmUoQxn+VpgMmkxc7vehr5f05WswGuRq6P7HB3CrUpfQsMacG3EONxs3hh0Yhvsqd1ZcX1EigVAqlPTx6sOlUZe4MeYGTdyaMP3EdCovr8wXp794r2Hby6yXZBRklEg09EY9p5+fpm3VtgSGBTK20ViZWpWcm8yAvQNoWaUl33/0PYs6LEJv1JOQk4CHk/Qhv/z6ctaErpGvQ/89/ekT1AeFQkFl28pk67KZ12Ye8/3nE5kUSfed3XFb5sa049O4GX8TURQRRZHpJ6ZT3642n94BQ/xLjj89js6g49CAQ/Tc1VOmq4iI3Ii/wZW4KygV0jV0s3HD0cKRUT6jSMlPIUeXw9kRZzk08BBN3Zqy9uZaGq1vRNUVVQlLDMMoGmUJVVMVXKPUFHOcXdHVERUCnnEF/H5boogoRYHLcZc59kSSylQr1ZwdfpZ9A/ahUqoQjW8DMrVCTVp+Gil50uDFwHoDSc5LJsZeqqTn6fMwikbCEu5ww0EKuOaenotRNJJTmIOFyoJxjcfJ27PV2Bbj9g+OhEMeUGhRXApWKShZdn0ZD1IelPocAMQqP2zO4d2AuWgF31IHe/ZAkoOG8d0BQQpmTDBdV7VCjYiIt4u3PEOiUqgob/WW5qQSVNhr3q5bFCZDuKLQqeBgHdArIcEGDnuARSHs3AdJS2DzAfjouaRopFKoOD2sdN19a7U1W6S4/r3xvGkgX1rmwxKkKrZVaFFJoh6arplpkNpMaUY1u2ookOSNU/JScLZ0pqp9VSzVltxPvo9aoabOm0SjnEW5D9pnYEPo9AzcMoxyQqQz6v7H3iofAr1RT7YuuwRVT2vUsv/RfgLDA9l5f6f8ekpBSqnJmQFD6V02wZRYK1EIKu4/Kk++Ph87jR0VbSpy4ukJ8grzuD7mOp3dJVnXaSem4ensKVPBDBhQCAoepzzmx0uStPWiDosIfhxMTEYM917f4+OaH5OYm4iZ0ozKtpXZ1HOTvG9RFJl0bBLV7Ksxu+XsUq/DiacnOBJ1BEu1pTyrVWAoICo1imknptHZXRK8aKuSZl3cKzcg2ZBFOdVbCuHthNsYRSNezl7YaGz4qcNP3J94nzrl6tBvTz8uxV1iwaNK7DvjzGsxh1abW9Hx9478EvoLDdY1kDwqBh4ieFAwERMi2NBjA2ejz+Kx2oM5p+aQUSDNjjWo0IBLoy6xpdcWTj8/jedqTzK1mZwefponqU+ou7Yunbd3plmlZpwdfpZyVtLzN7P5TDb13MT6O+sZemBoiWJRljaLj//4GJ1Bx4mhJ2SBhNuvbvPFmS/oX6c/PuV9aLe1HcGPgku9jv8TjPQZycB6Axl3ZBzR6e8vrvxfo2xGowxlKMPfClOi8WcdDRNWdFlBRduKVLeXKmMiIh18Irj/+DJtq/pzbMgx7o6/S9tqbZl9ajZVlldh3tl5spNsUfi5+bEzYCfPpz1nTMMx/HrrV6qvrM7Q/UO5/ep2sWVNJkzvJho342+SUZCBzqgjrzCPCb6SOohRNDLswDAKDYXsDNhJcm4y3XZ2KyazOs53HDOazWDK8SlMPT4VrzVeXIi5QIBnADq9jpNDT/JFyy/4/uL3WJtZEzkhkrBxYQyrP4zdD3bjt9EPrzVeDNg7gGsvr7Hio0UoRdhy7EfZZdZ/qz/3k986ztpp7BjtM5oFHy2g0FiIrZktYeOk2ZCQZyEE3Qvij75/0K5aO3p49GBL7y0kfZ5EyNAQOQiAt9Q1U/CYU5gjy1kajAZ2JJ3iwnB/BKORNudjcMkFgyDy263fWH9nPQBLOi6hXfV2OFo40tOjJ+GJ4fL2vcp5EZ4YTnR6ND7rfPDfLFFLDAqomSbRrVQKFWq9FAgqUKAUlFioLKhoXZGAOgF0qdkFgOr21TEYDbSu0hoBgTqvoUGSZNJXVCUJpGr00aijJR+8IsgSIghXTiCNknMO74NGoSlGUfvlGLinQc++WnLf5DrpBek4mjui4m0nRG/UY2NmQ8izED4/+Tn1XOpRaCykY/WOb5cR9cWG6IvCZAj3PhQqpf8fjQKPaUqWtIBWL+DMNohdDgtO6Pl+TUlTNZDuuUlKtXyREQXTM2GttiazIBOAanbVSqzfpkqbUiu0L7JeyDQlO40dFioLWbpUKSjpXrs7J4aeQECg0FjIsSfHJJrf63vUcqzFeJ+xeCQbiaqgortH91ITnHf9UXbXhTw1DA9/O3BtSnIEBGzMbFjXbR2XRl2Sj9ndQaLKbeu9jQUfLXiv58qw+sPkYFmlUJU6xKt8M+djgkapwUplhUahKZVi9i7yxZJdtqIQRcjKtsTWzJYcXQ4vs17Sumprbo69id6ox3eDLyefncTPzY+HKQ/Z0H0DKoWKLG0WUalRtN/WXk72knKT+Ne5f6EUlHxS5xNScqVigLZQy95P9mJnbifvd+e9nZyPOc+armtKzLaBpKo3I2QGtZ1qF5OEfpr2FBszG25/dpuB9SShCUVBATZacLIpTzJ5lDN/q1Z2L0kydyxKK6rlVIujg4+y75N9ZGmzmFI3hkt+FTg/8jy7AnZxN/EuU49PJb8wn8CegfTw6AFI92hMozE8mfKEr1p9xdqba3Ff5c7K6yvRGXQoBAUjfEbwePJjhjcYzuxTs5l0bBI9PXqSmp+KQTQwrP6wEo7noxuOZne/3ex/uJ/eQb3lin1prt8gfS/22tWL+uXrs63PNs6MOEP32t3pE9RHLk79byEIAuu6rcPRwpHB+weX2i3/b6BsRqMMZSjD3wrTMOj7ZjSKwkZjw+99fud5xnM8nSTeS56gp03PVJ5HSgogpg/mZ1OfMdJnJCuur6DqiqqMOzxOnpcoiip2VVjcaTEvZ7xkScclXIm7gu8GX9puacuhx4cwikYikiKw09hR2ba4A2vIsxDsNfYcjTpKH68+8oDnwksLOfnsJH/0/QOjaMR/iz85uhw+bfQpaoWap2lP+fzk54xrPA5nS2d+Cf2FVlVacWTQEQ4/OczcVnPxLOfJj+1/ZEazGUw+PpmNdzbiU8GHpZ2X8nLGS0KGhtDItRF7H0gSwF+GLqTPAPjccEL+wjZVhTRKDXXK1SF9bjpftPqC7y58h1JQcn7kecpZlUOr13Ih9gJLOy0loE5AsXNUK9V0cu/E4zRJWnVUg1Hy30wzHwBTj09Fq9dyI/4Gr3Nf4zT7W6hWDUEQcMkTQJSOp4u7lABYm1mzJnQNU49P5WnqU55lvKUeRSRFkKHNQGvQ4ufmx4/tf8TJwgmFCB+9tsIoGjHPLST3jTW1mdKMH9r9gEalISEngSsvrvDpoU8BiM6IJrcwl0svLiEiMihS4u+fqFny+VIJqg/yv8gSIohUvZ1zMCUZJvUhhaDAyeJtIKQ1auXK9ahwgdHhMLO3Offfmb/OLMhEz9tOiCAI5Ookp2u9qCczXwrcd9zf8ZfHWBSWasu/VLKKcjDw77ZQayo0+1SilX0aBiEr02jxAtkFvCh0b2Jm30Tp67SeSz2ODj4q7/NVzisAYjJjSigNXXxxkfzCfGrY15Bfm+o3lQXtFgBSwJdWkFbMyyRfn8+Z6DOk5qcy3nc8AN4u3qy9uZak3CTmtJiDxavXWOjhnpORzeGbJfUrQYGvq2+x7RRFjkZKNkaFg2iQkldT90BEpKZjTVbdWIX/Fn9ZDlVv0KMUlHx25DMWXFrwXs+V3yN+J+RZiLSOUS8bGppgpbaioWtDajpKD6RKUKE1SM+L1qh978yGDBFiFIEgFu2yie8sIlH7snRZGEQD37X9joMDDrLn/h6abWyGhcoCT2dPIpMiCR4YzJjGY+TP1/bb2mOhtuDsiLM4mDuwI3IH8dnx1ClXB0cLR+4k3gHA1823GP0xsyCTWSdn0a9OPzq5d6I0rLm5hscpj0nKScLdwV1W5rJWWzPBdwINXRsSlhiGs6UzyQVpuOeoydJlUagQcXlTmErKSSJDm4FKoaKGQ40S+yhnWQ63TPjxDGy0e0qtVbX46uxXpOWnMajeIFytXekV1Isu27tw/eV1eT1rM2u+bfstT6Y8IcArgJknZ1JnTR32PtiLKIo4WDiwuutqQseEkp6fzoY7G6jtVJveHr0ZfnA4X57+sgRNKqBOAEcGHeFCzAW6bO9Cen56CddveJt8GEUjBwYcwFxljrnKnKB+QUxvNp3Jxycz59Scv6XjZmdux86AndyMv8n88/P/19v7O1BGnSpDGcrwtyIxJxG1Qv3B/NMWlVvwdeuvZU8BjaggwxzaHOojd0dASiCWdV5G3Iw4/uX/L4IfB+O52pOA3QHF3GdNsNHYMK3ZNJ5MecLe/nspNBbSa1cvPFZ7sO/hPuqWq1tCOz/kWQje5b15lPpI5iWfjznPv87/i3lt5uHh7IH/Fn+0Bi3nR5znUNQh+tXpx7LOy1h5YyX1fq2HpdqS2o61uRV/i89PfY6bjRtft5Z05gVBYGmnpUxqMolxR8axNVxy1VYqlHRy74SrjSsCAo4WjtyIv8FBT8iwLF6NrVuuLuWty9PFvQvZumxaBrZEZ9CxuddmGro25EjUEXILc2lZuSXTm00v9ZoHhgWSo8uhTrk6Mm9ZQMBcZY6vqy8qQUVCTgJOi5z47PBn2JvbU7uiN2FTP0EQRSqnvw18TEHXsIPDmBEyg9PPT1PVvmoxPnzE+Aj594m+E7E3t5eqhQoIqZCLgEC2BbKsZ4GhgC/Pfkm2NltSpLKvRpOKTVAJKua0mANISkVmgppB92CflxQkv1stfpfu9FcoOodR3rK8bOSlFJSyh0hR1E2C1UdEAn1gRyO1vKwJRY3fKtlUws3GrQgFRiAuW6rs/6cBRl5hHsm5yagV6vd6gMiD3ALcqAyTu0GFWVB9ujSLcXgHdHgqGcKZF4K93gxnGylTqpVsxM3GDSu1FQ7mEl3r3Yruu1SIlpVaojVoi83DXIy9KLmDWzhjrjKnsm1lKlhVoKpdVbzLSUHYw5SHDNo3iF9vSWo/4UnhiIgYRSMjgkfw4IKUeD+poJY7iKIocivhz9XmAhuCezq0KWKPYLomYYlhPEh5gEapobZjbSxUFpirzWlVpRU6gw6dXqK6OZo7luig/BllzEJlgbWZNXeT7vIk7Qnw9hk0iAbcHdzpUbtHMapcafj2ZARhKqnLpiMdilD7hDfBbqxyE0pByaGBh5jZfCYjg0fy2ZHP6F+nPyIiT9Oecmb4GbrVloQQTEGv3qDnzPAzuNq4UtWuKieencBCZcHYRmNZd3sdSkFJ3XJ1icmIKfZcfnv+W7K12SzvvLzUY07OTebbc9/iauNKljaLF5kvUApKyeSxMIdKtpJ6QXhiOD4VfHhuSMG9wFJ2tS7nIA0IRb6Wkvzq9tVL7RZdjbtKr1gNs68pWNT6e7J12TxPf05Nx5pM8ZtC5MRIgvoFEZcVR/NNzfn4j4+LfT+42riyvsd6IsZH4OHsQf89/WkZ2JKrcVcxGA1svLOR+Ox4ArwCSM1L5XT0aXp59OLnKz/Tc1dPuatnQkf3jpwefprIpEhqr65dwvVbFEXGHx1PWEIYBwcepKJNRXldhaBgWedlrOi8giVXlzBk/xC0+uJd2f8JmlVqxvftvmfh5YWy2uB/E2WJRhnKUIa/FQnZCZS3Lv/Bg5cA37T5Bt+KvigFJebmNtRPggR9uqT5nl+cLuJg4cBXrb8iZnoMv3X/jcikSJptaob/Fn+ORh0tEbSpFCoC6gRwZfQVrn16jUaujbidcJvbCbf58vSXxGdJDsfp+emExoeSqc2kQfkGtK7SmqScJAbtG0Sbqm0k6cst/oiiyIWRF3id+5pHKY9oU7WN7LwriiKBPQP/P/bOMz6qQt36/z09k94JgVACIQQICSC9SAstgDQB6V0QRFRUDqIeFRQ4IooFkN5FmgGR3qWXQAgloSWk9zJJJlPfD5vZZEhA0HPuuff9ZfGBTLLb7DLzlPWsxfExxzFZTJxMPMmXXb7EQfmYhiEIAt/2+JZx4eMYGzWWb85+wwcHP8B/kT+LzizCgoWckhwEBCZd19Cp2NeuChriHUJifiIv+b9E53WdySzOZFrzaYxoPIKLKRcZvG0wSpmS3kG9KzQhM1vMvPHbGwCMCx/H0YSj0nnVm/TM7zqfD9t/CIgV29jMWPL0eXgt9KJJ7pccqSmayCksgPVxtfXihIsUziqU1FvKKrJM2TtFChrCl4czNkqUjpWbId1JvEYyCwRnPD7OW2/coqZbTQC2DNxC+xrtcXNw47VGrwGQVJhE2EMjgbmw6ZHp/IvccxUNd9uCQle1KyarSRqGLksfsUGwQpf7cN4fpvbkMQ/e5svwREBabCzmYcFDu8o6gFJQ8iJQyBQEuARgxYqDuf5TPUAq8sowKcQ5DqMchg6E677iz2+fgaT5BhauTyciHmrkQ5BbHeKy4+i7pS8gygW3qtbqqcd1Oe0yFqvFrvoenR7NueRz0qzQw4KHpBWlkZCfQEymPTXtyaDS9hyHZEK+GvK9nKQuStfaXQnzDeNZWLfwDvkBvoyLfnwtbOdEo9DgqnKlTUAbkgqTKDGVcDv7tjQbYLKa6B7Ynd+G/SY5ONvwrA5ZiakEvUlPiHcII0JHMKPlDADqedZDLVeTU5LDnrg9ktxxOVjBs0SUabZ12U4rupNkmipR+/I4zxXZJAqF6xwdfZRAD1FCd+fNnSzsspCTiSfJ0+dxauwpWlUXr1dmUaY0oD6txTQCXAOwWC0k5CdgsVqY034O7x16Dze1G7XdazO/y3zSi9Iliml0WjRLzi/h4w4fSwnDkxj761h0Rh0phSk08WtCXY+6BHsFS/MJtgD7StoVwquEc5dcAk0uZBaJD723d03g8SB4RaaMAGeSzhCZ6sL4MZ5MOT6TASED2D98P44qR1qvas3oXaNpF9COmMkxbBmwhYS8BFqubEnPjT05n3xe2k4Dnwb89tpvHBpxiBJTCW1WtSFgcQDLLi1jZZ+VbHt1G3HTRPWtqNtR1HSryYmEE7RY0YLbWfZGmy2rtWR02GiyirPwdvSWDEsBFp9dzJroNazss1LyAnoS01tO55dBv7Dr1i4iNkSU+877K3ivzXt0rNWR4TuGS7Nx/y1oldoK3df/L6Iy0ahEJf4XoKwr+PNCKVeyof8GMXhSODDlshz/QoH4nHi6behW4YeURqFhQtMJ3HzjJjte3UGpqZTIzZGE/hjK2ui1dvKENrSs1pK1r6xFhox2Ndrx/YXvqflNTUbuHMlPl37CYrUQkx7DtObTsFgtDNsxDKvVyrxO8+i4tiNyQc7x0cep6VaT5ZeX46J24Y3f3sBkMXFqzClaVmvJsJ3DyNPnIQgCCpmC1dGry9Er4rPjcVA6iI7f+99i/un5pBSmoJApmNVmFl5aL1pWa0lL1xCOOKRLVfIW1VpIFarxUeO5mHKRJlWasLj7Yu7n3qfXpl6E+oaiVWqfGnRP3D0RvVmPr9aXWYdnSb+3DUh2WteJT45/Ajye3bDRhhrkKbFaIFMLHe+DqgyTYNAvg3D+wpmAxQF039jdLiDTyDU09WsKwLut3kUtVyMg8MlxAYMcPpC/jMICaV6PpU+P3D+C0WxEo9Dg4+hDYWkhLmoXbmXekrY7P7MxKc5wvKb4+km52WfhWR23/NJ8RjYeKb22+SB4aB6tY4V2D2BZU+g4GkoqUCl+MiDN0edIA+A23wgAo/X5j9lb601tt9oUGgpp6tf0uT1AKkpm8h0g7VGTYn5b+LQ9NE+G/Rth/GUY9c1xAu7nSoFgrj6XM0lnnnpsNmM4W9dAyeN9KmVKZIIMtVzNpKaTSH8nnb3D9j46ZjEJsD0jLioXutfpjoPCgcXdFtOx2Icb3pBVkk1GsXgspx6e4kbm0wf8AXptieSLuun0jhPwU9oP0TfyboRGqeFB7gPmd55PkypNAOzEJvbd3Uerla3YftNe9expsL3v5b2Xc3rcaYY0HMKd7DsICJITts3fxga1rIx4gRX63hZpgL/XfXzeAJy1aRTni9S+K6q3KJDF8E3tN0jIS+Cln15CJshY1WcV80/PR6vUcnrsaUK8RefK3JJcIjZESJXy+Gyx0zLnyBxy9bkoZUp+uvwTWqWWUnMp2wdvp0vtLmiVWvbf2Y/FamHKb1MI9gqusEN6L/cendd2Zk/8HlQycYB8fb/13Mi6QVXnqpIogr+LPzklOSTmJ9LQpyGJyiICZZ5kpIkUS29/kWoWkxHzVCNVq9XKyfvHmf5SFluq5bG672o29d9ERGAE58ef56feP/H7nd8J+i6Ir05/Rb/6/YiZHMPmAZu5n3efFitaELkpkgvJF6Rtdq7dmSMjjxDsFUxKYQpymZyraVfJKs7Cw8GDH3r9wPkJ5/F29EZn0JGmS6PZT80kEQyAdVfXsfjcYqa+NBVHpSNtVrXhVtYt9t/Zz7sH3+X9Nu8zLHTYM++fASEDODzyMNczrtNmVZsKncpfBHKZnPX91mMwGxjz65g/leL9T8JRVTmjUYlKVOLfiDRd2nMNgj+JIM8gSfHEp3UXjq6yopapuJR6iX4/96swcYDHylNnxp3hxOgT1HKvxehfR1P7m9p8dforiYNtw43MG1iw8FnHz0h6O4kFXRZwIuEE7x9+H4VMgaPKkSENhzD35FyO3D/C/C7zGfTLIByUDhwffZzqrtX5Pf531kavRWfQ8WnHT7k08RJtAtqw/dXtoiHbmpfRGXSs7buWQ/cOMXXvVGLSY5gQNQHvhd4Efx/MkvNLMFqMeDl4SUHKgi4L2Hl7J65qV95s8SZjql9GZhUr7DVca9CmehvGho/FSelEkVGkHF1Ou0yLFS1otbIVWoWWqCGiGYIgCGQXZ/NH4h+svLyS9w6+R+e1nVkVvQqA9OJ0DGYDKpkKpUyJxWrBWenMit4r2Nh/IxObTJTOWWFpIVWdqxLvaqLLWGg/Dg7WEYe5bXFTbffazO00l99e+43OtTrTtEpTXNSikszgBoNZFLEIgK/Pfk2puZRpzacxLsEdqwDHE08wqKQmBo1Y1VbIFPwW/5ukqgOikouj0pHp+0WdeK2gpsGR6/zcACwv+OkvE2RS0FoWXg5e0s9bYrZI97Gtum6jTbR+CMfXwsD7WjuJJgFBoho9CXeNu5Qwu2vcpff1IsgsziQuJ45cfS6XUi89tweIWmmvxmW/vIBZBgvaQfBUeGk8XPeBzvdgeAz4Poq9/ZQezO88nxquNajrUbfcdmxyyLaugVV4HNgYLUYsVgtmq5n7ufdp+GNDem7sKS6HVUpCQfQV+bTDpzSu0ph5p+ZRK1XPTW9BGtYGsTtUkU9IWd+PW1m3WPuSkmYTrGQYcnFQOCBDhoDAhdQLpBelcyf3DpP3TuZy2mUp4WnoLZqx/JlTs+1ecVO74eHggYeDBwqZghE7RuA4z5Fem3qxO353hR0Q277KihdMv+/LxIuP7mVBvEfMVjMquYpUjQmdl7P0rGGFw8dWM2LnCAaGDGRep3mMjRpLXY+6nBp7SpotKygtoPvG7iTmJ3Jk5BFkyIhOi2ZTzCbmnZonXZuMogxySnJY3ns5Id4hqBVqOtbsyP67+1kTvYYzSWf4oecPdkp0haWFzDo0i/rf1+fUw1N4OHigN+tZ3ns5u+N246AQCyk2+XJ/Z39JIMJb641FgECVL5mpdxGs4Fm9HiC6hpssJjuFMxCTjA+PfkhuaR5OpVYut1rD6LDRUtdWLpMzvsl44qbGMS58HLMOz6LRj404cPcAQxoO4frk62zqv4k7OXdovqI5vTf35lLKJVILU+m4tiNpujQOjTjEZx0/Y3X0aup8W4cFfyxAb9LTrGozzow7w/LI5chlcvQmPb029WLeiXnsjdvL2F/HMj58PN/2+JZTY0/hqnal9crWDPxlID3q9GBup7nPvJdsaF29NafHnkZv0tNyZcu/7fRd1bkqa15Zw564PXx3/ru/ta2/Axt16r+Z7Py7UJloVKIS/wvwVzoaNoxvMh6A+bKzBOZB/Yd65IKcw/cPM3LnyGca8gmCQLsa7dg9dDexU2KJCIxg1uFZBHwdwKxDs0gtFIfUr6VfQ0CgoU9DXNQuzGg1g/hp8eIXu8WMzqAj+PtgPj72MRObTGTW4Vm4qF04NuoYjipHJu6eSM9NPbFi5cDwA8xuP1v6AvZ18mVBlwWkF6VTz7MedT3r0tSvKcsuLSN0aSgrrqxAZ9DRtXZXdgzegW6WjuS3k3FzcENAYHX0ajKKMpjfZT7Dtg9DEMDBBPtH7KeGWw1SdakcvHsQnVGHmXvUxQAAIABJREFUWq7mxpQbrOm7hvjseNKL0kksSKTZT80oNBTy0dGP8FroRdvVbZmwewLbbmyzG44EsVMxKmyUFFQVGgsZv3s8w3YMk9SkAML9whla/1W+Oqxgt2Ys1189RsYiOYt/Rwq0D98/zKzDs1jwh5i49QzqSUv/lgCsvLJSMjqTC3LCq4TzTY9v8CuEhgUaot1Lmdx9jlT1MlqMHLx3EJ1BJ9FlCgwFpOnSyHhUYW91pxTvQjM3O1dMsXgWnjYTUdYROrUolXRdOtWdHwsGKOQixSvyNixtChuC7Kt0Vqzk6iumPZStZsdkxpBfml/hcs/CPzv8k1NjTrE8cjkyQfbcHiA6g67C2QIPjYd9ICzAxWow6hWoOx3e6wrNdS6cWw73ZqXRdOT7dDqWiDGvvNN1Yn4iMkEmDYNrlOVViUwWEwfuHUAlVzGrrdhN0yg0XEq9xJq+aySVt7Zr2vJR+49wVThTLamAWz4Cd3Pvltvek3gyqE/TGMnSwoBYK1WcquDm4CZ5a5Tt+CkEhdQ1vJ55XTpWjULDoJBBvFLvlXL7yirJQiVTUWouFaWbS7IwWUzPZZT45HEGZ8KidenseBRbywQZufpcLFYL7hp3FHIFOoW9e3hU9SKWmXoQUTuCAb8M4OWaL3No5CE79+5em3pxO+s2B0ccJLRKKE5qJ25l3WLsr2NxUbtIn9Ol5lImNJnA8NDh0i66BXbjZMJJZh6cyfDQ4XSoKSrFWawWVl9ZTdB3QSw+t5jeQb0xmA3IBTl96vWhe53ubL+5nR51e5BRnIFKrkKj0OCmcSM6LRoHhYP0/AVqq5GZlYBnMcj9q2O2mLmZdRNA6sgAZBRlELk5knkn5/FSMpze6kS9ToMqPLfuDu4s7r6Yq69fpZpLNXpu6knvzb25n3efoY2GEjsllg39NhCXHUezn5pR59s6JBcmc3LMSTrX7swHbT/g7pt3GRE6gtlHZlPvu3psvLYRgAlNJxA3NY4xYaKAxuyjs+m9pTfd6nTjx8gfEQSBqs5ViRoSRYmphGJDMW+89IYkPf48qOdVjzPjzlDNpRrt17Rn/539z71uRYgMiuTN5m/y7sF3uZp29W9t669Cq9RitpqfWiz8v4TKRKMSlfhfgL/a0QCkyuZNTwvFGgVvFzYUAwIrbI3dytTfpz5XVSTEO4RVfVdxf/p9JjadKFGkxkeN59iDYwR6BEo0FoD4nHhy9bkIgsCK3iukAcXll5djspjYMmALZ5POEvJ9CFuub6GuR1061+pM59qd7fZrtpiZe2ouGrmG6PRomq9ozrnkcxIF4qP2H6GbpePAiAP0C+6HWqFmx60d5JTk4OngSUxGDFOaTeG17a9hwYIKBb9thGaejcS/p8UQnR4tnat+P/djzK9jpKBVjpzMokwsVgulplIC3QN5uebLdK3dlVJTaTmTNaPFyIWUC1isFinZmNZ8Gs4qZzuVJb1Jz0K3V5n6h5HIjpNoUL8Dsa9F8PpFMUgC8NH6sLDrQrJLsjFajHx24jPpWM8mn6VjrY6o5WoMFoPk9o3FQs87MgrU4N+0Ey5qF9HDQ6bEYDZQYipBrVBzMuEkv8f/TmZxphSkDb0OyT4OpIXYK4cBOCocy7mHPw9sVDEbrFilgW0AVVEpHiWQ5ApvdX/hzdtJ4j7NK+NZ+Pj4x7Rd3ZaJeyaikqme6gFicTtQbt2KKus5+vIJA8BdD5h8QSygH61hpetISPzXHJr7NWPVr1ZiP8tm0zboEQfCo/jXRiWxUWUqMs10U7sxIHgAPo4+fHHqC0C8tzw0HoxsPJIfev2Ah4MHBrNBTOYTE3A0QoyXuJM/k4a1vUfh0T8ZMpQm2B8oqpXZKHA23xYbTFaTnXCAjSJ3csxJFndfbCdKURYGi+Gp6lQ2vBzw8jMHyGeETmL/epH+t/KRj4mtM6NRaMjT5+Hv4k/voN5iUv/oMloF2PHgd4bvHC66eA/eKSXlJcYS+m7py5XUK/w+7Hea+DWR3pferKeqc1UKSgskhcAAlwC+6f6N3XFFBEZgsprEZ7/rQgD+SPyD5j81Z2zUWF6u+TLRk6I5n3yeep71yC/NZ1HEIhLzEzmffJ4B9QeQpkuTDCoFQeBK2hVCfUN5kPcApRmqu1QnMy8Z72KgShXu5NzBYDYgIBDkKRr6Hbx7kMZLG3Mh+QI96vTg+6NaNB26gPLZs00NfBpwaMQhtr+6nZj0GBr80IBZh2ZRYiphWOgwNvTbgIvaBaPFSFZxFrOPzJY6CN6O3izpuYTYKbE09WvK8J3Daf5Tc449OIan1pPlvZfzy6BfkAkyLFYLZx6ekeZZzBYzU/ZOwUHhQItqLei/tf+fSmw/CV8nX46NOsbLNV+m16ZerLqy6oXWfxLzu86nvld9hmwf8l+ZlbB1tf5/oE9VJhqVqMR/GWaLmXRd+nNJ21aEai7V8NJ60SOoF6f9TLRKEis8Hg5i5XXpxaV8dPSj596ev4s/C7ou4OGMh3zW8TP2xu9l7dW1FBmKOP3wtLTcvnhRxz+ybiQbYzbirHbGTe2Gp9aTImMRYcvC6L+1v6TlHp8Tz9hwkQdvsVo4cPcAPTb2QDtPy/WM6+jNekln/pvu31Ayu4QhDYew4PQCLqQ85gcXG4t57+B7BHsGk1WSRT3Penx+8nMMFvHLtqNbGB93hCqLq7Hz1k5pgFaj0FBoKKTQIKoy1fWoS5BnECqFSgp8LFi4l3uPYw+OcTLxJKm6VLtAbUmPJeR/kM/vw0QzQBeVSHNacn4Jfer14YO2HyBDhpfWi6vpVzl0YrXo3BsuRkPnBrQg0RUW7xO3V6Qv5GHBQ7GT41GXuh51pe4DiFr6tiqyRC8yGBh0oRgE+ObcN6jkYoW47KxFfHY87de0l1SfXFQuqEww4AasCi5h393yFb8iUxFpRRUHh89C2UQAHgesAAPrDWBFFGiNsKkhlD4R59iWs5kfQnl/B6PFiFKmpI57HTuvjIo8CcoixOtxdVchKAj1CUVv1lfoAXJNPhm104u/97LwKoJFB6BelpgwFGggpORf/DB/IO+tGMyKXn6EZ8jZuwki4yAoC2rfz8NisUjyqGXPiQ1N/Zpy+P5hrqRdsaOY5ehzCP4+mGqLqtkNwtZNF4P/2Ec+fWaraDjnpHIqR60pi3Y12nF2/FnqeNShUCNwewm8f+LxNp4W+Nvuz62DtlLFqQrDdwynxuIanE0+W+HynhpPu1mUslAICry13hxLPFYuybPdIy9VfYmmHy/DpVTsItmiGFvSozfpGdl4JHM7zmVLrOj2XE3hTuc74nL768C4h96sjlwhdVUNZgMDfxnI6Yen+e2136SB8MLSQrJKxKHggtICFDIFVZ3EAe3RYaPtBCvg8cxWM79mGMwGhm4fStvVbQExAds8YDObr28mTZfG/bz7vNvqXQI9AtlxcwcquYpedXuRpkvDZDFJg+A2xam7OXeomQdyD08ydBn4GJSgVEqKUzXcaiAIAu8ffJ+IDRE08mnEtcnXyMtIJOxBCURULK/7JARBoH/9/tx84yaz281m8bnF1PuuHrMOzaLTuk4EewWTOCORda+s40bmDZosb0K/n/tJFK8gzyB2DN7BidEnkMvkdFzbkT6b+3Ai4QQzD86knmc93mn5Dvml+TRb3ox39r/DzIMzOXTvEFsHbeXoqKP0qNODV35+hU0xLyZh7ahyZOfgnYxvMp5xUeP45Ngnf5l6pFFo2DJwC4n5iby1r2Ilwv8kbAlwZaJRiUpU4m/DZnD0V6lTgiDQ1K8pOqOO0uZNcL58na8jFkkSpwCfn/ycxWcXv9B2XTWuvNfmPe69eQ8nlRNGi5E2q9rQdlVbom5HsSlmE1asuGpcOZ5wHIPJQE23msxuNxuFIM5teDp4ciLhBCN3jkSr0IIVOq7tiHaulm4burHvzj6MZiN13OtwY8oNdLN09Krbi4+OfsTd3Lus7ruapn5N6bO5DzHpMVxKucSonaNIKkjiVvYtfBx9JIlf27m4qk8g2RlcZQ52nHG9SU9MRgzJhcn4OflRz6se3QK78WnHT9n+6nYcFA583vFzTHNMnBxzEj9nP7Hu/UjxqKZrTQaFiNSDLdfFAMZW3Z7baS4b+m/g0L1DdKzVkU86fALAB9lbsbZsIVUSbxbe570I6HYXIu7A15lN+ObsN+y4uYP4nHj0Jj096vSQjjk5P1lKgsZGjaXKv6pg0hfj9aggvPjc4grVUZ4MDItNxfSIB7dS2N3UiVeCy9Na4MXVnMB+mFyr0FLLrZYUJFbbGMWrN8Rh3bwyFhI2hRnbcl5aL2SCjJdrvIxaUX42wmgxcif3jt1x6k36Zypm2egkVZyqIBfkUkAG5T1A8rhmF+wDUhL5PHDXuKPxq4ZJgA4JSHM2JaYSPjj8AQuTfubt8AxaveVEk4lwwwcaZMCl5RC/TEW1YgVOjxpDTwbYRx4ckc7xkxSzuOw4kguTcVY5IyCwa/AuQrPlFKrgYZlxFh9HH3QGnWQ4V+H5yrxJixUtiMuJA7WKDaHw9llQPmpaaBXacuvY5pQAuqzvQpoujdvZt8sJOZRFtj4bIxUP85uspgolkTVyzWODzPMXGBYDU3pBivuTszYCP/X+iTebv0nk5kjp950b9sHX7bFE6kVFJtYffxD3aTExdPtQDt07xK4huyS6k9liZvjO4ZSaSlHKlGSXZOOsciZFlyKdz7KwVeU9NB5cz7hOve/qcezBMVb1WcX5CedpG9CWhLwE5v8xn1rutfDWejOrnUiF235zO11rd5WoMsWmYvxd/CkxlnAz86aoOJUdT2AO4O5OZmkO3ogV72vp11DJVQS6B9J2VVsWnV3Egi4L2Dd8H1qlFu/zsSjM1udONGxwUDrwUYePuPXGLQJcAvjyjy9RyBQsilhEFacqjGg8gptv3GRN3zXEpMcQviyc/j/3l6hG7Wq04+y4s6IxYPpVOqzpQEZRBuv7redf3f5F7ORYqjhVYdHZRXx99mvebPEmXWp3Qa1Qs3XQVoaHDmf4juH8cOGHFzpuhUzBj71+ZF6nefzz+D8ZFzXuL5vwBXsF8233b1lxZQVbY7f+pW38VVQmGpWoRCX+bbDNQfxV6hRAE78mXE69TOehs/EugiWbZ7BlwBYS8xIJ8Q5BhowZ+2ew7uq6F952XmkeOoOOpb2W8uuQXwHou6Uvl9IuoVVq2XBtAyq5igC3AJzVzszYP4P+If1JeCuBhzMe8nrT10nIT6DYVMywncM49uAYXlov3mrxFoNDBuOiduHU2FPU966PTJAxv8t8XNQutF/dnml7pyEX5OSU5BC6NJRmPzVj281tWLGilqvLBdkWq4VcY6Go7GR6bAwW6B7IVxFfISAwvfl0Ut5JYffQ3Xzb41vebvU2/ev3RybIcFQ5IpPJcFO7cS/3np3SUXJhMv6L/OmwpgP/OPwPu4AwtTCVxWcWc+jeIeQyOdczrqOSqbjsmM8svxs0Xd6UOt/WYX3MerbXh+M1RLnb44l/2MmbPix4yMF7B6XtFpnElr0toHNIy0JugasBqnKUmLKvbYEuiJVgk8XEyFgFKbV9iPdVPJXW8iJqThWh2FTMvbx7ADRNhvl7jRzrHYpOY18N1xv1dq+TC5Px1nrjqnGlQ0AH6fdPS3yGNxZ58TbKUUWwndN8fT5OKqenS6xawaeIcvX6AkNBhYuXhUomSmfl6nPJNORyparoQRFeRexgzes0TxrINlvN5BnyuVJVpFntCobuw+CSrxmZwcS083B0NYy9DC5lTo8VK6XmUgQEO8M/WyLp4eAhdenGR40nKN3MTS/s3pDeIG6wrFTpk6jrUZdN/Tfx+7DfaezbmFXh4FMMfe+I95XtXnSQi1V8hUzxVMWyZ9GeQOxa2c6dDXJBLtFqylLkVHKVZPQos0CXe2J37OfGsnJGfuv7raeKUxWaLm+KwWzAW+tNTdeaRN2OYqt3BlOixfvpqh9898u7mBMeMHLnSKJuR7Ft0DY7U71Zh2exJ24PvYN6S++zQF/AtObTaOTTSLrPbVh6cSmXUy9jsprI0ecwJmyMOJsQPkZKiN879B5ahZa47Dj+FfEvnFROpOnS+CPxD4k2BY+EJJyqEpsZi9lqFjsa2XcIzEVMNMwFeCvFZzwmI0ZUlko8SU5JDqfHnmZmm5nIBBnnks7R9S4YalaHQHuxg+fFnrg9nEs+R5faXfB39qfd6nZM2j2JzKJMFDIFo8JGcWvqLVb3Xc3V9KuELQtjwNYB4lyfIPBK8CvUdq+NRq5BLsh5ee3LfH7icwLcAtg6cKt0br4++zXjfh1HVnEWCpmClX1WMr3FdN7Y+wZzT8x9oc6EIAjMajeL9f3Ws+HaBiI3R1JYWvjnK1aAseFjebXBq0zcPVHyT/qfgO1Zf9J75/8iKhONSlTiv4wXcQV/Gpr4NSGlMIW8JiI1wvnydU4knuDbHt9yI/MGwV7BKGVKxv46lqjbUS+0bRuPNqxKGH3q9eHU2FOSmV6xsRgrVlQyFfHZ8SQVJLF36F6aV21O13Vdcf7CmaWXlmLFireDN8GewQgI6E167uXe4+cbP9M2oC1T904l5PsQHOY60PDHhjwseEh6UTqroldxJulMuYBCq9CikqukauprjV7jyKgjNKnSBAeFhgVH5MQZUqUP6/pe9fnwyIf0qNuDic0mci7pHAfvHmTbjW2surKKr898jcFsYNetXYyPGk/LleJAdnKh6BeilqtRyVWYrWZOJJwoxzH/7sJ3vH3gbcxWM7EZsfzx8A8aWrzAChvrFPNS1ZfoUKMDFquFEO8QZvaQUz8TvEtgcIJYmVzSYwn62Xp2D90tbVdv0uOkdCLYKxgrVj5UdsEiiNz0suekZ52eIkXm0Ud6QWmBFFgbzAaClH70um2hZNAr5OnzOJl40k4tCigX+D0NTy5XUVDpVgK//ALRVWBOD7VdkO+mdpOGh+Extz6rKIs72XeIiouSzvmT5oFKmRJXtSvrrq5DQJDmB56FElMJ2fryVfIyb4AMR+iQ8nSVqaeh7DUwmA2cqCEQnCkaVgL848g/njqQbZXB/rowaYgTia5woLboz/FTFKT/C3ZuV7FJMRQXwQGTxYQVq1TdDPMNIyIwAgGBQLdA6fxmlWTRIBNueEPHmh2lfeUZREqPLWC3oW31ttLPp5NO8+UfXxK5KZLkwmSM9YM4XxVGXrZ/9krM4r3/tK6FRqF5pm8GiNfEdm1tXUez1YzFKpoe5pXm4aZ2w1vrjcFswFHpiKPMgVp5kOgCb/SqWJzgavpVem/ujcFiYHKzyWQWZ0oSubuG7OL7/ivp9Cg/eKeDkdcWteHn2J/Z1H8Tvev1lraz+spqFp5eyFcRX5GQ/1gyNcQnhIVdF1LbvTb3ch8nGr/H/870faKyW/sa7ZEhI6xKmJ1h4/EHx9kauxWNUkO7gHYMbjAYgJ03dyKXyekb3FdKNLKKs/B38edK6hVkgoyGPg25V5BA7VzAzY0MoQQfBy8KSws5dPcQRouRZn7NuDLpCi/5vyTt8/TD0/S4J0PZvdczr0dFsFqtzDkyh6m/T2VGyxnsH76f6Nej+bbHt2y9sZWg74JYcm4JJosJhUzB6LDR3HrjFqv6rOJK6hUaL23MwK0D6bOlD2cenmH/iP08eOsBE5tM5NPjn1L7m9pEbo6kZbWWLOm+BJkgY921ddRdUpdlF5dhtVpZ1G0Rn3X8jA+PfsjMgzNfmAY1PHQ4+4bv42zSWdqvaU9KYcoLnwdBEFgWuQw3jRuvbX/tmd26fyccVZUzGpWoRCX+TbB9ufyZ8+2zYBsIv6J/APXqMc3yEnNPziWsShjjw8cTnxNPDdcaKOVKXv3lVSkQeh5cS7+Go9KRWu61iEko5P21tzl5vJ3kqCxHToGhAJPFRL4+n16bezFl7xSi06MJdA+kllstfBx9iAiMQKvU4qJ2IbskWwoof4v/jW03t3Ez6yalZpGmUMutFk2qNMFitdCqWiuWRS5jRKMRgBjo1navLakddajRgWrO1dh6fSu13GthsBjpN8iMzPKY170nfg8lphL2xu+lwQ8NaLmyJREbIhj0yyDGRY1jztE5mCwmbmbd5NC9QxQZi9DIHwdMfer1oY6HqFnv7+yPWq6mb1Bf6Rw5Kh0J8gwi2CuYpLeTuDb5Gid83se5FJKEQoY2HEp9r/ooBAVJhUlcqGJmTRh8fBzWry2itzWIz058RompxI4OVGouJcAtgDRdGg4KB8Zr9mMFQv2b8GrIq1IXw1apLms4p5FpEBDwdfJl5H0X1EYLfuNnSIlBWYqKgPBcyj9QPsCzYpWSBYVMISZXu5W46WHwIDiVccFu+fzS/AopT2bMxGbFYsVKsGcwpeZSrFjtEhmTxcQ7rd7h+OjjdrKh/w70jqnYXfjJGRS7Yy6TaBgtRj5pb6XZ6+WXs/HtW1RtUe5vckEOAjwI9CRiJFR/G/7ZWU7tdANDP9zMnfklfLsXWiYJ1HcXCwYuahfOJJ3BipULqRdQyBTicVpFs74b3nD0wdE/fc/BXsHSz14OXlxLv4bFaiG5MJn4nHhWhUPPePCroLmjkVc8I2PzBinbYfPQeODnaF9IsQ27Phm4JRcm46HxoHe93mQWi6oJdT3qMv2MhTrZol9Gnv1ohISFpxeikCnoUKMDsZmxaBQaieIU6BEIw4ezWdcNtUk0YtzqnsIa/6kMavBYjelEwgkm7ZnExCYTaeTdiEupl6S/jWw8ErVCLSUaKYUpjNo1ip6bRNnhnYN3snvoblpWb8n+MnNQZouZ6fumE+AqPsvf9vhWkpjdfnM7HWt2xMPBQ+pul5hKqOpclStpV6Sh8RKznsAcsLq5kakyUuysIXxZODqj+P4Wd19czon+/uXDBGZbELp1q/iEPQUmi4lJeybx+cnPWdBlAV91+wqZIEMhUzC1+VTip8UzuMFgpu+bTtjSMMmnSClXMiZ8DLen3mZF7xUcvHuQA3cP0MSviSRn/FW3r4h+PRqD2UB+aT65JbkEeQVxYvQJ3DRuGM1GXv/tdVqubMnFlIt82P5DlvRYwldnvmJ81PgXDvQ71erEqTGnyCrOotXKVsRmxL7Q+iB2TjcN2MT55PP889g/X3j9v4JK6lQlKlGJfxtSC1PxcPCokJv+vKjpVhM3jZv4pdiqFc0SDDT3b87IXSP5ssuXNPdvTn5pPh4aD5QyJX029+FSyqU/3zBiotHItxGxiUXMWHWTi3fzkVncJUdlV0SpVLPVTI4+BytWlDIlAgJxOXHcz7tPRlEGG69v5HLaZQpKC6QEwMPBA5VcrJC7adyo71Wfht4NkcvkJBUmIRfknEgUv/jXx6wHRNUaW0VcJsiIzYhl+83tnE85T0ZRBkaLEaMMJl4RpIFgZ5UzS3stZc/QPZwcc5Krr1/lwfQH5LyXg3GOEd0/dGgUGma2nkmaLg21XI3eLCr7aBVajj04RlJBElsGbEGj0PBao9f4qc9PgBgE+Tj6EJcdx62sWzRe2piFfywk79xxZt2vioDA67+9zsfHP8ZkNUmV5tmdRafwIhWsPeZOsaGIOUfmlAvCb2beJLM4Ey+zBudSUFhhVJOx9A3uKwW6m/pvkgzUbDBZxSp4RGAE7c8kc7eBH/Kaj+cnrFjx0tp3NZ4HZbsMbiqR4mKrvskFOW+dhZ43jIx5BQzVq5breFixSsmKgIAFS7kB8FvZosGgSq5iQdcFdutuuLaBMb+OeaanxrO6MxXOXgjwTteKt/MihoYmrZo1O2BKtkhTUcvVzGk/hwbeopHauZRz5daxzfnY/k9xgS9bmek2swrtp7uws7kzQ+NUnFlhZddnt3n/qJHEqyfsvG5MFhNGi5FqBeBsgDt+T/8scbGG0si0mFam3aTEdcfFGgogDT2XvT82NQSDHCbEilKrSpkSZ5Wz9HzYUNG1MFvNeGg88HTwJEefQ2pRqp1nR6GhkNbVWleYdOboc1h/bf3jZW9f4+MDpWRrIdvRflmtQmuX1JgtZo4nHOd4wnFMFpM0V3Uu+RwIAt5LVtHx4aPZLQFka9ZCvqhAdy/3Hv1/7k/bgLa83+Z9BvwyQNpudZfqxGaKQWo1l2rk6fMIWhLEr7dEOun3Pb+XZp+6BXbj8L3DUlC84vIKrqZfJbs4m0lNJxFWRXRozyrO4tiDYwyoL+4nTZcmBZg2D41wv3Du5ohdscBcyFNbMMphEWekz06wTxpBLAi4nbyARS6Djh15XuhNegb9MohVV1axuu9qZraZWW4ZL60XSyOXcmniJdw0bnRe15mBWwdK1CKlXJxpKTAUMKzRMFIKUwj9MZTB2wZzPf06n5/4HL1Jz9q+a/HUetJtQzc+O/EZG/ttJNgrGJVcRVZRFi1WtGDS7kkMbTiUDf02sPbqWgZvGywZKT4vGvk24sy4M7hp3Gizqs0LFdpsaF29Nf98+Z/MPTn3L63/oqhMNCpRiUr82/B3pG1tEARBmtOgdWuEq9fY2HUZ6bp03jv4Httf3Y5aocbDwQO5TI4gCHTf2J3bWbf/dNvX0q8R6hPKhmMpWK1gedS9tjkq+5tGllvHaDGWozvZYOOcywU5VqsVLwcvfBx9KDWVcjPrJrdzbqOWq2nl34rBDQZTx72OtG5ZA7I67nVY32893/X8jnmd5/F+6/dJ06VhMBsYm+RDvztKTieJKlm96vaiqnNVrFjJ1+eTVJDEjcwbnE06y6F7h9h/Zz9mq5nvzn9HqbkUk8WEXJBTbCym2FRMsFcwK/qsIE+fx93cuzT2bczt7NvIBTlqhRqzRZRIfafVO/hoffjw6IdUr7mDTYElWLFyK+sWxcZiRjQawacvf4pGriHNGb5oB04GcD9+jm8t3fjuwnfMOznP7nzZArENv6kpfBRX5OjzpHtGIVPQ9+e+5YaZbQnB3tPraHVDx6aGSIZvALPbzZZmOf6M6vI01PcWqXpe2oh8AAAgAElEQVS2L/7wB6UsOAj/agX7GqhJ0aUgE2RP5ezbAtSK5E4dFA6YzCaWXVwm/U4hKIjLiSM+J57M4szHruNP4FndmafOXjzxbahRaCrczpPvpWyQq7eUUqQE7+tiYOju4M6yS8skGdRGPo2eely2a2DrThgtRh7UcMVv6UY27fmSyNEqzla18v4puP8NnFwt8NZVLR56gWou4ixRSKao5HrOr+Jnz8UaSpj5RzxojhofivKrEmb+UUo2nnyfBic1y8Y1ZtbdKrzdYgZapZZCQ6E0MxLmKwbMT/qb2M5Jjj5H6py92+pdwvzC7JZbFrmswrkTG2q41kCwQmiKhZtecLkCdmmxqdguyXbTuKGWq0UFupod2XV7FwDjfh1H53Wd6XRgGPtqmaj5iHU3sX0+Wf94i3x9PpGbInF3cGdj/40M3T7Ujh/funprjj84zrYb23jv4HuA2Oms6lyVFv4tmNB0grRst8Bu5Jfmcy7pHLklucw+Mps6HnVQK9R81vEzablfb/2KxWqREpQ0XZqkLObr6CvOPPiGSfQ7rQH67B8NwCD3drzZ4k1JCvfJbsaNzBu0u62nMDwEXJ/P6DJPn0e3Dd3Yf2c/u4bsYnTY6GcuH+4XzskxJ9nYfyNnks5Q//v6fHLsE366/BPvH3qfOe3nsKH/BuKmxbEschlnk87SaGkjNl/fzNxOcxkZNpITo0+w49Ud3Mu9R/eN3Wng04CedXvyIP8BXWt35efYnwn6LohiYzHbX93O3vi9RG6OrFAK+lmo5lKNE6NP0KxqM7pt6CYJerwIPmj7AR1qdmDYjmEVinD8O2Hr+P03pHX/3RCs/z/YDlaiEv+H8eovr5JTksOhkYf+1nZmHpjJLzd+4UGXPdCoERw5wiq3+4yLGsf2V7cT4BpAu9XtaB/QnqMPjko0pj/G/iG54j4Jo9mI4zxHvu72NceOtSarsHx1t5QMzige85tlyBAEAavVKlF5BAQEQZQ9tQ0/24KKvxrkPguLf4O99eBAnT9f9j8B70KoqhOHTp8FjRFufgdFShjfF85WfBkASFkIgdOheB6M7gtrw5/vWF6/AEv2gt+7kOX458v/FQgIuBdbubIUklygwxgwPb/fVjnIBflTE9X/KKyIQ9QWUClVGM3G57o/FYICs1VMNj2KYcUu6P9a+eUEhBe6323L25I1s9WM1gD/yKpP5Pk8Gl5NxSSDC+E+bG+qpTD5AYnucPApc7+NTIvxoLmdM7oVMzmc57b6PTwdPEnVpfLpy58SGRTJ63te53zKedomQKlazhU/AYVMgd6sx9/Jn2Rdst32bQmS9FpQIsgEyXQsxDsEtVzNlTTRe8FX60tGcUa5cyJDRg3XGtzPv0/ne3DNF7x1cOMp7NJG3o2IyYxBhgwLFgQExoaPZUWfFVisFjqv7SwlvbeyxG6Z1iynRGbGKkD7e6Bp9hLni+M5O+4si84sYnX0aowWI0GeQcRli87ZK6+sBCCidgQH7h1gZOhINsRs4OKEi4T7PX4gzRYz3gu9mdZ8Gvml+Sy/tJwSUwk/9PyByS9NlpbrubEnRcYijo8+DsDwHcO5kHKBuOw4oidFE7YsjIMjDnL8wXG+P/kVyqISTG4u5BgLuN5xG8uKjrPqyiraBLRh/3B7yeqfzv3IoJenoH3/Q1SffMafIaUwhe4bupNUkMSe1/bQunrrP12nLHQGHfNOzmPh6YWYLCY61+rMgeEHkMkeZ/A7bu5g4NaBOKudKSwtZEjDIcxpP4f63vUxmo0su7SMT459QrGxmNbVW3P4/mG61u6Kl9aLzdc309y/OWPDxjLz4ExCvEPYO2yvZLb4vDCYDUzYPYF1V9cxv8t8ZraeKdHYngfJBcmELg2lbUBbdg3e9ULrvggsVgvyT+Ws6L2CcU3G/Uf28T+Fyo5GJSrxX0aaLu1vDYLb0LRqUxLyE8iu6QsuLnDmDGPCxtAvuB8Td0/E39mfFb1XcODeAYY0GEJ+aT4FpQVEbIh4anXmdvZtjBYjob6h1PbVInviM7Wso7ItcbBgEQc7HyUZrmpXXDWuWKwWXDWuWLHyY88fsXxswfKxBevHVqwfW7F8ZMH8kRnTHBM337jJlGZTKuTHt6rWipS3U2hfoz1uajcuTrjI9z2/B0TlrqQZSdzv1ZIDgSL1xeYhcHniZVLeTiH57WSSZiSRNCOJhzMekvhWIglvJZTbTx33OqhkKqInRXN76m1iXo/Bw8GDUY1HETslltgpsTTyaSRVdYc2HMqB4aKpYLazQL4G5jX7gA39NthVat017pKUsV4pOkk3yILWD2F2weOKr62TYatWP2ham17BYkJX2+NxJFnWhbsiytCsxAAOBEK+k9LuOv274CB34OXq7Vm3U/TLGDyofJLxovv01nozNmys9NpV9bgia7snnjYj8GfH+kw8MneTWcWA5GlJwZOUM5PVhCAIeDt4k6OF648CYneNO3U96j4zqX6WH4hteYvVgkquQiEoKFbBuoZm3pxel4FfteDDLjLU6dk4xj9gfRjc8oIG2XIUlM/0nAi0SzLEtyzHiUCsVitpujRCfULZGLORJsubEJMRQxv/1qS4ClzxNlPPqx47Bu8gvEq4XZKhEBR4OXiVo5kZrUY7Z+OB9QeyecBm6XykF6dL97mNTqmWq7FgIbEgkR73FXx6FDIdxSTD5nz95P1kkz62feZYsRKdFs07+99hy/UtNPBpQHJBMreybjGn/RzOjz/Px61nEZIjnosTteFA9gWCPerx0dGPWH55OXKZHIVMwdq+awEkA7j3Wr/HvuH7cFY5syV2C1OaTbFLMgDkMjldandh562dLDm3BC+tF419GzOx6URpmTx9HofuHWJg/YHS72y0TXeNuyTPXN+rPr/c+IVcSmiSrWZRFdG40zsgmJiMGARBqNAfJf3obtz0oOoRWe5vTyIuO442q9qQq8/l1NhTL5xkADipRNlspUyJr6Mvh+8fpsv6LlzPEGmusRmxjNo1ir7BfUl/N50fe/3IqcRTNPihAcN2DONu7l2mNp/K3TfvMr3FdE4lnsJd487JxJNcTr3Mxv4b0Zv0TP5tMhGBEcRlx9FhTQdpruV5oZKrWNN3DR+2+5D3D73P1L1TMVuev6jh7+LP6r6ribod9cLSuy8CmSBDo9BUUqcqUYlK/H2k6lL/kiPzk7A52V5Oj4YWLeDMGQRBYHnv5eKQ3q9jeK3Ra8xsPZON1zcyPnw8+aX5JBck02NjDzvOtw02TfRGvo0Y/nJVsJZ3VH4oX42X1ksKitRyNQ28GuCj9UEmyNAZdJKRlU0laPLeyWjnaglfFs6EqAl8c/Yb9t3Zx/3c++IwsFcwEYERGC3GckGFs8oZX0dffh3yK1VdqtJ3S1+m/T4NtVzN+fHn2XlrJ99wlpl/iBSaxr6NMVvMDNk+BEEQqOpcFX8Xf/xd/KnmUo3qrtXZeG2j3T6WRy7Hx9GH7nW707hKY4I8g3hY8JCckhzebPEmId4hhHiHEOgRKHHV9SY9fbf05XjCcb4qbMWtA3WZ1esLhoUOk6puYb5hBHsF28nL/hqq5GodZ7665Mnny+J5xasdALXcagHQTSXy+5Ne7Y5KELnlafpMZrUVNfjLcuVtzsA2VM+DgJhENjd6TKVa0mMJdT3q4u/s//Sb6QnIywSnZa+HQlDQuVZnhux7SK94GNEfsj0dpGVs/9u45E/OYjwtAUkrSrOjNuQbHlNzjBYjGoXmseTpU7w0KnLEtikmPRMCWJ7YZFm5Va1Si7vGnRb+Lez2Y7FaODJKHIr9qs2jZRVa4nPipWdDVsFXrm14GpBmmypCiakElVxMnBPzE4kaHMXnw1ayO7IuzceZmddOdCa/tBSuLzHT9KGZ+hkQWEZwS8dd6fm1wVYsMFrE7s21jGt23jTnUy8wJMbKK7chNjOWnpt6ciXtip3JoslqIqsky25mwAYvBy/61utLdZfqfH7yc8ZHjbejipqtZlzVrpJPhi2R9C1VsGKHmQIVYvKHjIf5ouO8zTcERKqUjXpX3aU6TkonADKKMth1exfDdgzj+wvfU2QsoqpTVUqMJdzPu8/AFmO41mo91R9ZkyjMUJqSyNYbW6Xr4ungSce14nxDn3p9CPYMJk+fhyAIyGVy5IKczzpV3C2IqB1BTEYMHloPHhY85Nse3yKXPb4n98TtwWgx0r9+f+l3kiu4izif4evoS58tfYjLjqOZyYffztbGmJuNYAUP/7rEpMdQZCiqMNFwPXGOYkc1NGtW4fHZcCH5Am1WtcFB4cDpsaelZO5FEZcdR69NvQirEsa96ffY+9pekguTCVsaxoSoCURujqSWWy3W91uPRqFhUrNJxE+L5/ue33Mi4QQNfmjA8B3DSdOl8UWXL4ibFkdkUCR6k577efeZEDWBuR3nsrj7YkkCPLkgmTar2tgpgD0PBEHgs06fsTxyOcsuLWPA1gEvFND3qdeHqS9N5Z0D70iqjP8JaJXaSnnbSlSiEn8f/66ORh2POmLlPvUytGoFZ8+CVRz4Xd13Nfvv7uf7C9/zRecviAiMYNuNbYwIHYHOoONG5g1e2fKKXdAD4nxGgGsAbho3GtVwprHpG3I4j1Weh0VzmypBu8gTrpJVnEXvoN4MbTgUhUxBbFYsGcUZaOTigPWRkUcY1nAYMkFGY9/GaJVaSkwlRKdFs+LKCt7a/xY9N/WkzpI6aD7X4L/In/5b++OodJSCNG+tN9VcqnHg3gGqfV2NHTd3sCJyBSmFKVisFnYO3snl1Mu8+fubvOM3gJr5jxyhfUOp41EHnUFH53WdySzKtHuPCXkJzD4yW3q9bdA2+tTrw5mkM7xS77Gx3cYYcVDR5pEAIvUjMT8REAOH6S2mc/fNu7x1oBB16/aA6O5t46lHp0dzJfWK1AXRKrUYLSbGdyyE7GxO+RlpfFNMxtQyMZBzjLsPwMisnzgUL9IjWgW0oYpTFWTIJGUegOuZ1+kT1Ed6PeQ6lChEzwYrVny0PnhoPUjTpUnSvc8Dc5ngtGxV3mw1U5QQz9jt95jXFvbVFQPisgPFLioXKYh8chbjaR0DAYFiU7H0c1n4OPrYzWaMajyq4mOugHqlkCns3LWfBnkZYa1gz+BySlvxOfHMbjcbrUJrt5+VV1bi5+RH/qMmRbIu2S74LqsKBlDPvZ70s0ahkYJ9G2wBuZ+TH35OfhSbirFYLejNetwWuNHwx4ZSUmAFPjkOi1pB55FwrQoMioU7S+D0Cph8HnKNq7BSvliQIBcpQV5aLyY1mcSbL71JdZfqlJhKMFqMLGgN20Ie7eQRbNfUhrLBv3QeBTlZJVncy71Hmi6Nfa/t42LKRUnS2wbbjIdckKMz6tDI1CzeVYrGaGVcX0AQ7xWb0pzOqEMlV9G9TnepiOGuccdZ5YzOqEMuyHlY8JDjo47zXY/vpP3UcKvBLzd+YfC2wQR+G4jr/Yk8dBPfl0kOtwypBGkDADGxSS9KlzoyB+8dxGgx8uvtX1kTvYY8fR613Ws/1cvFllQUG4sZ0nAI7Wu0t/v7thvbaFmtJf4ujxP+NF0aZquZqk5V2RO3h6ziLHQGHS5qF/oUVEXm7kFGfgqeehkZ+iyyS7KxYi2XHGQVZ9E0Joes1o1B/nQO48G7B+m4tiN1POpwcszJp1Jo/wyphal029ANb603e17bg1appUfdHsRMjmFup7msjl5NQl4CQxsOtSs2qBVqJr80mTvT7rCkxxKOPThGyA8hjNg5Ar1Jz7p+67g08RIt/FtQbCqm95be3M25y80pN+kV1ItcfS6pham0+KmF1Dl5EUxoOoGooVEcuneITms7lftueBYWRiwkyDOIIduG/Me6Do5Kx8qORiUqUYm/B51Bh86g+9vD4CBWdsOrhItDwa1aQVYW3BEpBd3rdGfqS1OZeXAmt7Nvs3nAZrwdvbmQfIFedXthtpg5/fA0Q7YNsZMPvJZxjVDfx4OiZ3S7iJW/xai+yZw0jWFR3+mMDx+PgMDBuwc5n3yeQyMPMaPlDEAc1Pzyjy/ptK4TG69vpH1Ae/YO20vRP4pImJ7AhCYT0Cq1yAQZvo6+uGvcMVvNUvJQtpqTWZxJbkkubmo3UnWpjIsaR9s1bbFiRY6cr858xdDtQxkQMoAFLT7kbDUId65LdZfq5OnzODzyMNnF2XRd31XqrPwe/ztB3wVJwV27gHYMCBlA1O0oBEGQtPWLDEXsurWLYY2GIQjinMnP139m642t0hfB192/5osuX/w/9t47vMbD//9/3GdlbxlCQowIEYLYxFZq771HVc1S1UG1aOlQ1CgttbdatVeNoLESxM4gSCSy1zk54/79cefcyUlCvd/t9/e+PteVZ69eOPe5933Oea3n84lznoh45zYXG3oy9uBYglZLBODyduUREGhZqSWNKjQCJHKwUqHkWgU42NgZ/xf5fOMsKdvcTbkLwJ20hwgiKFRqbo2PAODqyxtEJkTK88/m8alA90DmtpoLSEHb4NtwopYV2QXF50xdJoP3DpYDtjeh+NiaspRRnMWN53BW/4Bp78DcNoXPYdERrrcxvmtdubX8dyulpe+GuWNhTij0Rj0vsgv18P8T5SyzBPPfwVjkVBOyEizOIVefi0apoX2V9pKTcZHK/tK/lloE0VZKK7nzUc21WgkDwsdpj+XrrDVosdfYW6xr7nwlZCeUCM6LwzsLnLUQ5QFC23bkqWFRCxjYB1JtYPlRiP7uFgPOvI8mOxydmEQq4UQoJ1DBXfrMO2gc+PXmr6y4uoL4zHiZqG1QgqdWxRfhNnICXBxmkrh5O2ZOCUimcnqTnmnHp6E1amWiqxn1POthp7aT39/vho5+d2F8N0hwFEp4c5hEE4NrD+ZsrCTh62zlTJo2jUepj3C3dWfpO0ul7a6tx5RjUxgTPAYXaxc6V+tM3LQ4kmYm8Uu3XzCIBjxsy+GYDwiQp4HH2VLhwN3OnWWdlnF/0n0C3AKo5lINQRB4mfOSUQckE7649Dh+u/lbCSM3nUHHwgsLUSlU5Bvz+a7DdxbLs/OzOR59XFabAmlULyUvhez8bB6lPiIqOYraHrU5M/wMGboMqqYLkllfdhLuRituvyx0ujeLMphxNeokjZ+DXZdepd4rgO23t9NlWxdaVW7FqWGncLN1e+1734QMbQadt3ZGb9RzbOgxC86ERqnhWeYzBEGgY9WOfHrmUxr92oiwp2EW27BSWTGx4UQeT3nMsk7LOBN7hporazJi/wgcNA6cG3mOAwMPUM62HMvDl9P8t+bMaTmHcyPPUcm5Eq/yXhGyNoST0SeLH97f4t3q73Ju5Dni0uNouq4pj1IevdV61iprdvTdQVx6HNOPTf+P9/s2sFXbliUaZShDGf4ZzPOl5pn9f4oG5RtIsrWNC/T6L1+Wly3usJjKzpUZ+vtQbNW2HBx0kBfZLzBhop5XPaxV1hx+dJhxh8bJFdxbL29R11OSr+XFC6Ic8qigdqV7je4oBAVHHh1hTbc1vNfgPbRGLQaTgdDfQjn86DAtfFrwbPoz5obOlau6556co8KSCrRc35ITMSdY3H4xL2e+ZEnHJViprEjTpmGrtsXZylmujipRylWwHH0O2fnZFuMqIFXcT8dKcpJ2ajtWPtvH5YpQW3THzcaNxOxEarjV4NTwUzzLfEa7Te0Y9vsw3t32rsUM+YDakonW/gf7aenbUg5iDzw4QI4+h8FBUnDT+NfGDNw7EA87D0AaCcrNz+VpxlMW7JlC9cnQMvFrTseeppprNYI8grj23jWUgpKTMSe5EH8BQFa4CnAL4PCo5mBjXWJs5y+fgu0bcknMlLoQz3NfcvDhQTkpNLs2ezt446CR1Gf8XxoJfgm/1ZSCP5VCRRs/KRt4kzQsSAlXcblMY7GRG4UJgifNZ9IVWNmoSHAuSiNrxavbNiqbUseCBAQuPr0o/9t8/PJ+C4JPZytn+tfqT5o2TV6mFJSsCF/Bf4LiXYXXoiCuLTq2ZUa+MZ8Jf0wgLD7MorIvFPxXMUdKHtwEW3RGHQ3KN2Bg4EA87D0stmPEaMFrKKqkY62yxsXa5a35LbUKirF33eF03GnpONWwMwi6DoEKM+CjjtAw7hYnlk7j8A/dmH58JnWe3uar0Hms676OF1kvLPhVufpcnKycGFZnGMOTvZl3NA/fJOl8Q31CLcbviiaXZqfy4rj76i4BbgHk6HMszuvmy5vk6HNQCAoqpcGKI7CxLvweKJHhzclNI+9G8nqbbm1CZ9TxactPyc7PxsPOQxpFCujNpMaTcLF24VXuK5pUaMKabmsI9gqWSehKhZJvw77Fz9mPh1MeM9yrs3y/TQLYokYURaYem4r/Cn9i02NJzE6km383+T43qtCIHH0OYw6OwW+ZH1WWVWHMgTFsubWFr859RWxaLEaTEVu1bYkxxSOPjqA1aC0SjZfZLwGIz4iXu41zW83lZY70etVXJnB2Jjk/DXfsuJ10G41CQzmbciWS7ZQ/dqEUwbXHwFKflWVXljH498EMChrE/gH7ZXnq/xQ6g47eu3oTlx7HsaHH8HXytVi+9vpaVlxdwYrOKzg29BiXx1xGISho8VsLhu0bVsJAz1plLfM0lr6zlJPRJ6m5siajDoyilnstEmYkMLbeWOLS4whYGcDOOzu5OOoiC9suxGAy0HFLRz46+VGpZo5vQgPvBlwecxmVQkWz9c248uzKW61Xy70WyzotY+2Ntey5u+c/2ufboCzRKEMZyvCPYa5Y/hsdDZB4GtFp0aTbCFCzpkWiYau2ZWvvrdxOus0XZ78goFwAW3tv5eijozTzaYa7nTvlbMuxMWIjH534iOScZEn/vKCjkXzsd7I00LRSS9xs3Wjh24IDDw6gEBSs6rKKSQ0n8STjCY0qNOJhykMydBmolWrqla9HvjGfuaFz6VGjB0pBSVh8GOMOjcP9O3eG7B2Cl70X18Zdo2a5mmgNWtJ16bIfx80JN6UOyLQn/DHoD+a3nV8iCDZDb9Kz5dYWZlz/msdu8OzmeWacnIHepKfD5g78cv0X2vu1JzIxkm13tsmVVQUKlII0c52py+RUzClZchKksalgz2AmHZlE201tERD4c8SftPCVnJUdNY78FP4TlZdWZtHznbRMtuHP4Wd5OOkhCVkJsgzm2PpjUQgK7iXfQ0DgfvJ9bNW2+Ln4sSXlLOvelxLEyqnQ46kdGr2kSJVrzENA4KPjMwBQqzSy74Gt2pbUvFTK25fnTOwZum6TyJ+D7kC6lWRwBjAsaBhHHx/FxdqFx5Mfv9Fr4lnmM24n3X7tcoBPL0C7GJGMKuUpGgubMEkSvgUkZ0eNIw4aB4uRKjPK25dneN3hFl20iSETASlwLRqMLgtfJhuDmWGttC5VGhdK50N0qFyKWcbr8Dfx/aZbm+SROFuVVPkXEbFR2ZAvSOeToE8j/Hk4nat1Jvx5+Budid1s3KjhVkM+Z61BS8tKLRkcNJimFZqWyjkxQ4GCWsnSmFzsaybDkuxheRNoNB5qfgDrm1rT7qGRC79Bx3cmkvXRVCq9LEyaXG1cqedVj0xdJptvbWa19wvSrGHCbQ0fNvmQJ5lPeJH1guY+zXGycsLBygE7tR0KFLJBoVJQlrgPZo8UEVHmU4BU/TaJJj68DCm2MLmz9J6a5WrKyV6OPkfqYBaoktmqbQn1DWV+2/kk5SQBcO/VPY49PkaWTuraXUu4hiAI1POqx83Em+iNevrt7kdqXiq/9/+dacensSLtKGpRQDABArz7UCRxWCTPpj9j/4D91CxXE51Rx8bIjfKxP06VusUTQiYwJ3QO7fzacfXFVYbtG8bXF79GoVBgo7IhU5dpkUiDZNJXv3x9/FwkHpZJNLHo4iLp75joH9gfgHpeRTw0EnXg4kKSKRN3tRO3Xt7C3sqeWh4lORWO567w3NseoXJli9dFUeTT058y7fg0Pmr2ERt6bPivjS9Noonh+4cT9jSMg4MOUtujtsXy80/O88GRD5gYMpH3Qt4DoEnFJvw19i/WdV/H8cfH8f/Jn8UXF5fwxbBWWTO58WRipsaw5J0lHI8+TsCKAMYdGsfsFrO5MPICDlYOrLq2imo/VcNB48Dt929T3r4831/6nsBVgTK/8G3h5+JH2OgwarjVoM3GNuy/v/+t1htbfyx9a/Vl3KFxPEkvKSryT2CnsSvjaJShDGX4ZzCPQ/wbHA0oJIRHJEZAs2Zw6VKJ5fPbzGdx2GLOPzlPV/+uLGy7kCVXljCl8RQMJgOVnSuz5MoSPjktkY3NicaGG+tBgAENJN+MHjV6cCrmFNn52QiCwPLOy5naeCph8WGoFCoSshIIWh3E+EPj6VK9C/Naz2PfwH0kzEjguw7fUdWlKkbRyPHo4wzcO5DyP5Tn/qv7OKgKK9p6k55eO3vx87Wfcbd1p4t/F+p71ScqOQp7jT02KhspyNE4MK7eONxs3DCKRvQFxGeFWFi9f5z6mHU317Hz7k7ZNM78JV7bszYm0cTl+MssvbKUfGM+PWpIzt8RCREcfXSUiJcRPEp9xK6+u7gy5gpKhZJ99/YBknpOniGP33r8RuLZBvxm6Eorv9aSSVdeCh2rdgQkHXZRFGV5X61RS81yNck35pOrz2WO8jztY+CHEzD3nEhgMiBAVeeqOFo5Evlc8srIK/B3qOtRl1x9ruz5YRSNPEp7BCIMjVKwtxbkF3iT/Rb5G2qFmqYVm9JmU5s3ek38XRWtTQx8eRZ+61aRzR6WIz1edl58G/atzPfRm/QlNO/NwfSr3FdsubWFJhWbyMtWXJM6FPmmfFmlxxysmpMrM8ydnNJQWufCXOkv3iVwtXEtQVR/G9irpEC5ZaWW8mu5hlySbAs4KgW7WXBhAdcTrr9R2jYlL4XYtFjsNfYICOiMOg4+OMi229u48vyK7HkCki/MF62+kP9twkStZElxytwRe1Mn5L47fHh3YmkAACAASURBVNLGSOWpIqEjYWf5FEZczObBCojaaM+393xQJqdyM/Emfs5+CAhkKw1sDYJBN/QsC1tCg/INiJoYxcXRF3kw6QF1POuQo8+hlnst8g35OFo5WnRHisNKYSW7WoPUJXLOg0gvGNYLsqylc4hJi8FGZUPjCo1lwzyjaKRnQE9CK4XSeWtntAatnOydf3qe7tu706l6J96tLnUsB+0ZRL3y9YhLj2P8H+O58OQCHzf/mC7burAhYgNedl7Y5on4ZknXbE81A/c+Hk0Fxwr0COjBu9XfxcXGheY+zbFWWePj6COrRW25tYX55+fz681fydBlUNGhIiqFCoPJIN+z0A2h1F5VmylHp7Dj9g4OPzwsdzNeZL2gw+YOrLpWqGAkiiJOVk5Udq5MdFo0jlaOuL3MlEanFFo8bMrJhYDiRHC9IZ+6kS9JambpWWIwGRh7cCzfXPyG7zt8z7cdvv2vpVlFUWT6sensubuH7X22l+CfPEl/Qp9dfWjh24KlnZZaLFMICkbXG83DyQ8Z32A8n5/9nNqra3P44eES+7FWWTOl8RRipsTwQ8cfOPb4GDVW1GB9xHpODjtJI+9GZOoymXpsKt13dGdpp6W0rtSa+6/uU29NPaYenSpzeN4GbrZunBp+iq7+Xem9szcrw1f+7TqCILC261ocrRwZ8vuQ/9i5/E0o62iUoQxl+MdIzE7EWmX9t6Msb4uAcgHYqGwKCeF37kCW5Tz+R80+ooWv1LrO0GYwu8VsBgQOYPap2fzY8UcSsxOpWa4m626uQ6VQUc21GogiBwx3QITO1ToDUqKhM+o4EX0CkL5wf+j4A45WjhhMBiY3noyNyobk3GR8nXzlL2B3O3dmNJvBo8mPOD/yPP0D+1v4JmTopeplO792/NLtF+qXr8+ko5OotLQSHx7/kG47ukldkdFh1PWsS4Yug8FBg1nbfS2JMxPpXK0zKkGFxgjHqxcSkJ9kPJETi6Jz5uZuhojIplub+OJPKYCrt6Ye3j94U39tfUREBtUexJKOS7iddBv/Ff60/K2l7ObcrGIz/Jz9GBEwAPsrN6ClFHgef3wcB40DTSs2BSQyqllNylyZzTfmczZOmjU3CiLdgwfQ+z7YpecSnCMFspn5mQR6BKIoiFONBfFBZJJUtTOKRvkHyU5lR8Pn4JdiYrtlkZHy9uXRm/Ry9bc0eNp68jLnpRzcFw9YvbJg21444weLWpeshibmJFp0L/IMeThZWz7f5mV6k55WlVrxRWhh0GzmzwC8yHxBBYcKJYKVv0Nx9SN3W3egMPkoLimrM+hKdEasVda8IS+QiMsGKVA+Hn281Pe4F8TRu/vtZnBQKcYaFCZRTSo0wSAa5LEjAUE2hJzWZBpVXKoAMDRoKAcGHpAr9mbUSpbGpsz4O78OvUmPqIALlWF8d+j3Uwu+m9aQGE0u03bH82IJ/LFNIORiDFZ6EVdrV9bXg/JZIu9EQ1xGHLde3sJgMuBp70lVl6p42nmSmpcqE/nfBI1KUtAy81bqv5BUs7YFQVilwnPQGaV7U7RabKW0YlvvbRwefJh5refx1bmvLPYpCAKru6zm4MCDqBQqdt3dJXeNN0RsIKBcALNOzSIhOwFfJ190Rh0B/o154iRSIRNQQC/Ho5gO/wFI31kJWQkceniI0cGjic+MZ26ruSgEBd93+J7oKdHs7LuTUN9QnmU9k+VSE3MSsVZK3++2alv23N3DoN8lI8Att7bQa0cvAlYEcC/5HtObTJf5SAnZCQR7BSMIAtGp0VR1qYqQlg729iRbGXFz8ORu8l0ytBkliOD3r/xBpXQRmy495Ndy9bn03tmbTbc2sbnXZmY0m/G39+dN+DbsW5aHL2fluyvpVdOSB5Kdn033Hd1x0Diwu9/u13ZMnK2dWfLOEiInRFLZuTJdt3fl3a3v8jDlYYn32qhtmNpkKjFTYviuw3cceXSE5uubE+gRyOCgwYiI5BvzGbBnAPmmfLrX6I6IyM/XfyZgRQCbIzfztpZx1iprdvbdybQm05h0dBKzTs7621EsFxsXtvXexuVnl5l/7u89S94WZYlGGcpQhn+MhKwEvOy9/jXTH6VCSbBXMNcTrkuJhskE4eEl3rOp1ybS8tKYfHQygiCwvsd6arjV4POzn7O221ruv7qPq7UrBpOBvXf3It6+TYSrHne1EzZqqfJb1bUqge6BHHhwQN72uSfnJMJx7cF88ecXxGfG096vPWuvr6XVhlYWpElBkIjR7au0xygaKWdTKJGrUqi4+vwq4w6N46/nfzG23lhCK4Xy45UfyTfm06FKB5b/tZzwF+EMqj2INdfXcOD+AVQKFTv77sRabU2DRAWXbjaQA3sBgZ41erK261rK2RXONJswybPbDhoHFChwt3UnV59LUk4SKoUKpaBk+53tdN/Rnfnn55OQlYCPo4+8XZ1RR1x6HIbLlyA/vzDRiD5OW7+28o+t1qCVZ65FRFQKFbeTbmMSTfLYTP0B07hcESpmgt9TKVJNzk3mwasHWBcEZcZSvrn1Jj3WSmtyDDkMugOJ9nDWr3B5SPkQnkx/wtTGU0nKSSpByDUjKVdKQkJ9Q+XjlJ8do5RkiAIM6QOPM2PlZUUTk+KKT6VVFQUEanvUJvxFOOMOjbMgVasVamq41uBk7El6BfR6a56CRpASjKK8G2cr5xLk9+JJRWnjV1qDFgQQROn/4ih6jqWNaQEsPgmI0G93v1K5JEqUcvLjauPKjx1/xEpphVqhlrShRCM+jj78dvM3+bl5nvkcm4U2LLmyBChIBEUILEg0it7XN41bFcepFxf5yuMe6+Z1p8PiQKZ2ggo6DTv3QOL3sGRXBgsbfIRYpw6/pbTAzcaNgXsHUmNFDZZdWcbuu7sZV38ct96/hZ+zX6ly2UWPKys/C5NoQi/qscmHrXuhXoLkLVMcCkFBYk6hJLTOqMN5sTOVl1bmwpMLctfFDI1Sw8wTM1EqlKzqLHUKBu4p5Ctk5WfR0LuhrEJmr7FHpVBRv3x9/kzpisIED8vBD6uGQXY2ztbO6Iw62vq1ZWazmQCEPw/Hx9GH2PRYqrhUoW+tvjxKfYSXnRcKQcGxIcfY1nsbjSo0IkuXxb1X9+QOtgIFzzKfsf/BfrLys0jMTmRX1C55nPFxymNZ3S46LZqqzn6Qm4soiiTbgsnBnnxjPkbRWKKjkXJgO/lK8Os5CoC0vDQ6bu7I6djTHBx4kKF1hr71M1EaNkZsZPbp2cwJncOEkAkWy0yiiZH7RxKTFsPBQQffSqihlnstTgw9wb4B+7j36h61V9Vm1slZpT4/NmobpjedTszUGBa3X8zhR4fZGbWT5j7NJSM9zzqka9M5+OAgAW4B5BvzcbN1Y/j+4YRuCLUg0L8JCkHBkneWsPSdpXx/6XuG/D6kxHhXcTT3bc68VvNYcGEB5+LOvdV+/g5liUYZylCGf4zEnMR/jQhuRv3y9aWORkAAODtb8DTMqOxcmZXvrmTzrc3svLMTW7Ut+wfuJ1efy7qb61jeeTmp2lTcbNwYtm8Y644sIMcKQnybWGynR40e/PHwD7lbsf7mevzd/NnUcxM+jj6YRBOtK7fm/KjzvMh6QfDPwey9u1de/2zsWcYeHEtV56ryWIyd2o4hQUNkh19RFNl2ext770nr+Tj4cO7JOdbdXEc9r3rMaDqDPjX7MHTfUO4k3cFWbYsoimhMCvpVu8GTjCdYKa3oUKUDV55fYfwf42Wy5fEhxzk25JhcAS9nUw4TJpJzk9Gb9NIYVsGfbjZuhPqG8l6D9xgRPAK9SS8HddcTrpOcm8ycr9uRZa2g+53PmHR4EmHxYVR2rszzzOeIosjJ6JPk6HPk2XSTaMLDViIIR6dFIyIybP9wpr8DdnqIKzJvn5KXgtEgEYfVKul4Pew85GPoWLUj7nbuKEySrO2OQMsxmoiXEaTlpTHywEhpXVtLYjIgd3bAMpBWKaT5qy/OQegTGNhXmvkvCkEQcLZ2LrWSXjxRmNBgAtYqa7J0WVwYdYGUvBT0xiKO0go1L3NeShKXtzYx+djkEtsESnRd8sWS42AZuowSss3FE4M3VSxFKY5HVWwioiivypwsFA/s6yRJSlBQulmgedQRIMQ7hOj0aHRGHWqlZHrmZefFo9RHpOvSScuVSPBnn5yVCeRmsrhnNrjmSYlG0aSpWcW3M16zVllTwb4Cefl57H+wnws599jQ3JZ6o3Q0/siFe4M60PaJgs7vfYcu5hHuJ8I44TeX6+Ov06hCI6Yfn06GLoOk7CT67OrDg5QH+Dj4vJb8XzwR/f4k+GbAnLZSkGe+P+Y/i94f8/JqLtUk07vYU8Skx1g8dzn5OeyM2snYA2MJrRyKvdpe5tPU9azLqLqjuPriKm0rt+Vu8l0+afEJYfFhzA2dS7UfNjD3uvSZ+qRBOk+/mMapmFMAfN7yc/xc/PB18uXck3NUcalCTLrk4bD11lb+ev4X6bp0pjeZzjvV3mFQ0CBWvLsCEyZ2991N5IRIrJRWWKusyc7PtlB2S8pJkr1hnmY+5dDDQ8w9O5eo5CgqaaTPaqYhh3wV5NgUPmfFFafsz17iTjVHrJzdeJ75nNANodx/dZ8zw8/QuXrnt3oeXoejj44y5uAYxtYby5etvyyxfP65+ey9t5ctvbaU4Gy8CYIg0DOgJ3cn3mVuq7msCF9BjRU12BS5qdTPpq3alg+bfkjs1FgWtVskd0EevnpIel46X7b+kqz8LJSCkrvJd+lcrTOvcl9Rb009ph+b/sYkuCimNpnK7n672X9/Px23dCQtL+2N7/+05ae08G3B0H1DSclNeeN73wZ2ajty8ss4GmUoQxn+AcwdjX8T9cvX58GrB2QbcmXjvtIwtM5Q+gf2Z8LhCTzLfIavky97+u/h4tOL3H91H6WgJCUvhTqedZiYtwdE6BbQw2IbPQJ6kJqXyqX4S6Rr09l7by+jg0ez7c424jPjGRo0lM/Pfs7Z2LNETIigQ9UO9N3dlwl/TOBGwg167eyFt4M30enR8jZ/6PgDG3puIGFGAr90+wVvB295lttWbSuP5jhqHIlNjyXklxBS81LxsPOgxw6JN5Kjz+Gcj4FKaSJNKjShklMlanvUJmZyDKoC0zuAWadm8TLnJZ+2+BSA2IxY1Aq13K2w19ijFJQMCRpCkGcQUclRrLm+htXXVpOYnYirjStuNm7yWEtnQxWe1fbFpBDYc28PJtHEsr+WUfHHimjma+i5UyKYm89Hb9LLHQSDyYBGoUHMzOIvH/ijri1fnwEHLSjMClwFsVSuKR9nK2e54yIg0M6vHXHT4hibWY3y2bA9qPA+KQQFBpOB7ju68yr3Fb0Depcql2pOKJSCkr+e/yWti7Rux8fw2XmY0wbOV7Zcr0mFJhhFI9k66bz+rpL58/Wf0Rq0PM14SnRqNG42bhaz/LmGXNJ1UhektKCgqAs9vHlMyLysqLv4m9y4i0ImzAtQOUe6NlWcpHudmJ2Is5WzfM2gpHdHgj188FfBORlLViab+UqJgIPGga/OfyU7Dbev3J6XOS8tqvhmPoqLlQtBHtLN9XbwppJzJTrppOc1yt0yKDerm70JLtYuuFq78jz7OUaMcpfFXEm9apfOrFAtG/fMYcHXndhRNQ9EEVq2pH7XcWx/2oh+ri1xtXHll5u/cO7JOTxsPXiR/aLU+1L8NTsdDLgDMzvCg4Ljlx3Ri/E7ytuXxySaMGEibEwYmZ9kMqvZLEBKnCvYV5CKEwXrr4tYR8DKAAsuSExaDF+e/5Ie/j048PAA33X4jr339lLXsy7da3QHNzfmjNuCX6qkpNYldx077+yUjrVAnSm0UmhhopEWQ5Yui49PfYyPow9OVk7MaTVH3l9tj9p4O3hzMuYk626sQ2fU4Wnvyc33bpL7WS6337/N+h7rqehY0aKrF50WzdcXviYpJ4kfb62hwXj4LP8IAElCHg4aBxw0DpaKVvn5BNxJILFZXe6/uk+z9c3I0GZwcfRFGlds/LfPwpsQ/jycvrv70sW/C6u7ri7Rhd97dy/zzs1jQZsF9Cj2O/G2sFHb8Hno5zyY9IBWlVoxYv8Imq9vzrUX10p9v63alhnNZkgJR/tF2GnsSMhOYP75+cxsOpMvW3+JldKKo4+PYq205otWX7D2xlpqrKjB1ltb32qcqk+tPpwefpo7SXdovr75GwnfSoWSrb23kqvPZeyhsW89rvU6lHU0ylCGMvxjJGQn/OsdjQblGyAiSoTwIsZ9xWGeY7ZT2zFy/0hMoonQSqH81PknVl5diVE00s6vHbdf3kZtEEFAlnM1I8Q7hPL25Tlw/wA77uxAb9TTvUZ3Zp6cyYDAAWzuvZkvW3/J52c/Z9mVZezqu4s1XdewMXIjTX5tglqh5kmG9MVdyakSQR5BjKk/BpCC/DH1x/BBww8AqbqjFJToTXocNA5Uda1KRl4GAgLXXlwjJi2GuPQ4umzrAsD3Tv258BuERZ8lR59DQnYCow6MwiBKErgnhp7AQePAiP0jmHdunnxOBpOBNpXbcGb4GSo4VGBw0GC29N7C2RFnSf4omRcfvuCzFpLBXzXXauTqc2Vn2tlVYmjX5inHo4/Loy5QWMU1iSY0Ck0JxScBAQUKHKwceFkQXM7tYoOLXsXn55F/sMwcDZNCqtQLCLjauOJq40rky0j23dtHo3OPiXaB8ArISYg5AL749CIKFMxuPtvCUdwMs6ywRqmRyeImTHhnwJbf4Xg1WNyi5DMXlxEnXbsCEv6rXEvSttmPxIxr467hZOWEiEjf3X15lvWs5EaLQSkosVZICYI5kCzeQXjTiFVRmdq34RAABHsFU9tdqsxGOxiornAnJqPQhTgzPxOT6fXdkGsVFfR88NrFsmZ/Vn4WXnZe8mz/wUcHASyMCc2fvWx9NreTbuNi7cK3Hb4lNj0W19hEdEqIKaY49brr4WrtKnfx0rRpJOUkEeQRJD2HCsuwwNnambj0OOZfXMCc/GN8PNSD/YFKnjpK10T8+GO2TjvP9l/TmRrtTn3HAF5kvyiRdJXmGu6SC9ZGaD4GVjcsfF1ElDt1jppCEvyKzivwtPMEpCLNo5RHLLmyBEcrR6I+iGJGsxnYqG0YUafQxNHMdVGhkq+1STRx4KGkmLcobBGnY08TUC6Aq8+vYjAZUPToydHsHiDCHS9w1Er32MxtalWpFRGJEXg7eBOTFsM3F78hJS+F+Mx4FrdfbEHcFwSBVpVaSZ3i8OU4Wjly+/3b1PWqi0qhorZHbUYGj8TT3hNfJ198HH1QKVSs6bKGvrX6ymdxwxtWIgXc2x/uIU+fh43ahrD4MLmjnHT6IPY6kbjWwbRY3wIHjQOXxlx6rUrf26Ko6/f2PtstkmuAyMRIhu8fzoDAAXza8tN/tC8AHycfdvTdwZ8j/iRXn0ujXxox9uDY13LL7DR2zGw2kyfTnvBVm69QCkqmn5jO7/d+58KoC3So0oGIlxF8c/EbFrRZQHOf5gzdN5TWG1u/ldFfM59mXBp9Ca1BS5N1TbiZcPO1763oWJF13dex//5+fr728399DaAs0ShDGcrwLyAxO/Ff72jUcq+FRqkpJISnpsLDkgQ7kObCN/TcwOnY0yy7sgyQ5Bo7VJFkQD9o+AFNHALILejwTzo6SQ6qQaqUd/PvxoEHB1h/cz2dq3dmRfgK8vR5LHlHmiGf22ouC9suZN65eXzx5xcMCRoiKU6ZjPK4VNfqXXmS8YQf3/nR4kcsMjGSUQdGYa2y5sTQE2iUGvzd/KlXXpKqdLB2oK1fW6q7ShquJtGEUTRKbgZOjuSpYH7N5bimfUR85DDu3mqKo1iHgwMP8t2l77gYf7FEMCYikqnLJM+Qx4OUB1RwqMCii4t4/4/36bKtC+03t2fxpcUAnI07S64hV95Gjgb8Xarh7+YvEzvN2zRX0UfXG83AoIEWVXURERMmMvLS6HFPeu2mJoVFTQxM/QsqFVAczB0NowA13GrQoWoHnmY8pYpLFU7HnGbI9r70vodEAhegvV97rFRSldSc3Jgw0Wx96SM1SblJiIglOAuLT4JOKakBFff5CHALkGWazSpMIBF2zfs8HX3aYp3yDuVlR+W35V+oFCq0JsvkqPhYxZs6G6/jUWiUGrztvUtd9jTjKXeSpUBEVECMIZnWBdwVAcm4sTjRvSgWtjCxuS7Y6sBRrEOQYSlNDYcIMizFUazDkcdShdpGZUNiTqJ8/GYFpVRtKrU9atOjRg/S86SHwEplhUqhwtHKUU6q/V/qeeBmaTRoPrfSUMu9lnzdNUoNBtHA7aTbeNp5YjAZ+LXbr6R9nMbBgQcZUXcErjauMu9FZ9CxsaEa30wY6H8L75kCkzqDp8mGHzcn8efs+2zYJ9AuWvJaMV+rorwZ6YLC+gOwfQ88dKOEnLBZuKGoT8mko5Pkbs7NhJu0/K0lBpOBdd3XUc62HB52HuTqc9l2ZxvWysKktH9gf9JmF469uFi5YKu2papLVTl43Rm1k8brGqOer8ZpkRMD6z6kVor0zKQrLRON0EqhmEQTOoOO1LxUvr/0PS7WLjSp2IRhdYdZnEfY0zBORp8kQ5eBndqOiSETS/WtSMhKkL67BIE6nnUYHzKe4XUlhb/7QWu4vgYm5EpjUgpBgUE0kJSTRMvfWmK1wIpKSysx7M9pTOkEM57+QkC5AC6MukBFx4qlPgNvi6Ku34cGHZJNHM1Iykmi+47u1HCrwfoe6/81viFAq8qtuD7+OiveXcHv937H/yd/ll5ZajFmWRR2Gjs+D/2c5I+S6VS1EzcSb9D418b4OvmyqN0idEYdH574kNj0WL7v8D2J2YkE/xzMzBMzS4grFEeNcjW4POYyFR0rErohlOOPSxeAAOgZ0JOJIROZfnz6W/NCSj0fdZm8bRnKUIZ/AIPJQHJO8r8mbWuGWqmmjmcdKdFo3BgE4bXjUwDtq7RnepPpzD49W/5SbFC+ARqFhvcPv8/4FxVAALWgxlZtS4fNHWSjQZDGp6LTorn64iotfVuy+tpq5reZL2vpgzS7urj9Yuafn0/9tfV5lPLIYizidOxp3q3+Lu2qtJNfS8tLo+VvLSUX7j47GXFgBOVsy3F5zGXOjTzHw0kPGV9/PDcSbnAj8QYCAsGewShQICIy4+mvVPq4DkfuNsCVRqhEN1xpRD3jz/TaNJ2TMSdxtHKkm383pjSaAhQaru1/sF8O4haFLWJx2GIuP7uMWqmmTeU2qBQq+tbsy9VxV/m0xae42rjiKFgzNErBn9MiWNx+sRwEh3iHMK/VPCo7V8ZWbcuuqF1sitxUgjcAsD6zLbMKFIl/6vwTrnMX8cq2gFRMYeBmFKQqY0RCBEbRSHRaNC9zXtIrzgYXraTcA5LzuNagldStCjoUNcvVfG1A/rrXVSIM6AcppfDHzb4IgKzCBJIufRd/6RoWl6H1W+ond0GKjjapUFkkaEVRXDZSpVD9rbJSUbxOZrWqc9US1Xczio4uATjlwl9PL1twWdK0aRbSuEUTJxfRiq11QKWpQ7BxNa40wgoPXGlEsHE1jqIkHW2vtqeKSxV5XXPHZXH7xYSNDsNWbSvfP5VCxfsh7/N4ymOCPSUJ05rFFKfMx1E0SFeilBOPi/EXLYwCpzSaQjXXaiTmJKIQFFx5doWX2S/pVqMbP3b6kYgJESR/lMyefnsYWmcoj+tXJs4JnLSQaJXPmoYQPCyHqlPgh+YKmsWLnNoMqascWHbWmsCXJe/TmBvQ8wGsaFQoA1wcChTojDr5ujhbO3MqVuJLTDo6iez8bKo4V6FXQC/W31zPlKPS53h43eF81Owj6bwLhBwa/tJQdrdP06VxYdQFNvbciEk0sbX3Vs4OP8snLT6hbeW2OFo5cif9EXfdpGfGpAJE+PDwZFqub8mq8FW4WLsQnxkPSIliUk4Syzstl59fo8nI/HPzCd0QShVXadwuR59Dn1qFJn1miKJIYnYiWoOWXH2ufF+jU6NRK9RUybOmfgI0SLdFEKUE20phxfsh7zOj6QyCvYJJzU3lhM1zfmoCWqOWqOQoum/vzvxz84lMjPyvZFff5PoNkuhC31190Rq0HBh4oEQS8m9ApVAxseFEHk1+xOCgwcw4MYO6P9eVeTOlwcHKgaNDj7Kn3x40Sg0bIjYw5+wcetTogY3Khvuv7jPz5EwC3AKY0mgKq66uImBlADvu7HjjuJOnvSd/jviT1pVb02VbF9bfXP/a937f8Xuqu1Vn0N5B/3VXoqyjUYYylOEfISlHqh7/2x0NkBKFGwk3wMkJAgNL+GkUx9ftvsbfzZ8hvw9Ba5B+pJr5NEOj1HAq5iQKUZKjtFHZoDVoeWfLOzIxrq1fW1QKFXZqO3bc2UEdzzp80OiDEvuY1XwWob6hPEx5KAdN3f27079Wf/IMeUQmRsqOrEaTkabrmpKVn8W3Hb7lm7BvyNRlcnTIUfnHrqJjRYyikTRtGv5u/rTwbUHky0hMSARrBQI+ptGIgFAQYJj/rGQcDUjz/wcfHuSX678A0hd728ptqeJcRT7uSk6VGBM8hq/bfs30JtOp7lpddvW1VdvioHEgJS8FzzwV96q7Mvzoe3TbLo0Kbe+9nfCx4YxvMJ649DjK2ZYjVZsqK1l1rdbV4ho9uHmKfQVTDmuvr2Vx5Apmt4f+d6HFE6hdMI1lEqTRskCPQKBQErbnzTwiPeFewYTb7ru7gcJg3tPOk3uv7r02sAZkorqzldRxcM6FZY3hku9rVykBJysn7r+6T9MKTUtdrlSUVEPKyM/AgOG1xOzix1x0pAagXeV2/Dd4kf3CYsytOIomEan2IBr0cjBiHt0q2gEqmvwkK3VcXQONM0YXpLCFz6GAQGWT9Bwm5yUTkxYjy9qaZ/UjEiMIXBnIoQeHaOXbCoAsXRZTG09lw80NRLyMACRp26hi3P7iSZhaqZa7CgoU8nXuIq8hRgAAIABJREFU7t+dx2mPeZrxlC29trCw7UL+ePQHNVfWpPfO3vJnspxtOfrU6sOKd1dweXw4EydX4UyBqpk5EYhxhS9bmfCfDM3HKthWJYfB4Vpur4aI1TAjDJzyABEWnoVf6sPBN0z1mJNDQRBoXak1DhoHmU+Vrk1Hq9fSxb8LjX5txJiDY2jj1waQEpIFFxYwrM4wjKIRpaDkfsp9i9HPqJdRfHX+K2q512Jg7YG09mvN1+2+5vSI08RPj2d60+nYqG34/lltCr5EUGXnEhYfxrLwZaRp09h+Z7t0T/Kz8HH04XTMaSITI3ma8ZR2m9ox79w8Pm/5OWGjw3C3dcdWbUuD8g1KnGeGLgOdUUemLpPUvFTqlS9UnPJz8UOZkQkqFcnaFBxNUntZZ9LRuVpnvu/4PdfHX+erRh+DAH759rxT9R00So1EcP9zLsFrgrFeYE3VZVUZvm84GyM2EpUUJY/qlYa/c/0WRZFJRyZx5dkV9g3Yh4+Tz+tv5L8AN1s3VnVZxfXx1ylnW44OmzvQe2dvYtNiX7tOn1p9iJwQKV1DhZJTMacwmAyIooinnSc3Em6wPHw5/QL7Uc+rHoP2DqLdpnbcTb772m3aaezYN2AfY+uPZczBMcz7c16pyYmN2oYdfXYQnRbNjOP/nZywOdH4p1yP/zUE8f/6GZShDP9Hcf3FdUJ+CeHauGs08C754/NPsPb6WiYenkjWJ1nYfDBV6mjcfnMLNzIxkka/NmJyo8nsubuH/oH9GeLdiYGr23HfHb5t/y3zz8+nrldd7ibfJaBcACeGnkCtVOP4jSMapYas/Cwujb5EU5+SAebyv5Yz9dhUmaxZwaECYaPDqLWqFoODBhOVFEX483AWtF3A1edX+f3+7wwMHIjOqON49HHOjTxHiHcIAFeeXWHk/pHEpcexoO0CpjeZjlKhZEPEBkYdGIWXnReJOYk0NRzCipLqSjqSuKzqVuL1/xcoSk5VKVTYawq8MXSZ+Dj6yBwVNUocc4w4u3oTrXuBtcoarUGLYIIrv0pjUz/Xh18OQ+OxEF5RcsbWGrV42HqQm5bEy+/gm3ZqFjSVqtVWSiuLqvbrYN5X0eOtnKUkzsFI5dQC9av/YCLi7/arVqgtKuogjXa9yUTwTRAQsFfZk2WwHH9wtHL8W4UZBYrXdjuKopxNORq7BLJl2nnqzHIkHokjY6exQ6fXoRf1KAUlaoXagv+y4BQcDz2EUvGa51DZDYHXV/WLnqP5OSp6/crlQPJ30G+Agj01//48QOpqaQ1aYtNj5W1/1vIzvmrzFYIgoDVo2XJrC99d+o6HKQ8JrRTKrGaz6Fy9M/EZ8XTf0Z3Y1Gh6h+ewPVhBvmDC2cpZJvAXvZdqA3R6DMNuQbeHEOcMNSfB1t0wvRMkObz2MC3OfVH7RXx86mP8Xf15mPrQ4no0KN+AZZ2W0dy3OY7fOKIz6ujq35Xd/XYzcv9INt/aLG/LfL/Npnrb+2xnYO2BFvuLSooieE0w81rN47M6HzBtbEWW1c5BaYKUamt41qk5n5/5nP0PXu8eLSBQ1bUqLXxbEOobyqSjkzCZTOR8llOia3cv+R61VhX6YVwYdYEWvi3otr0bRpORI3HNYdkyprfVs6NGPklKLSbRxOPJj6niUoXZp2bz7aVvmX0BakxbwMiuEocsV5/L6ZjT7IraxcWnF3mS8cQiAbVSWhHkGUQLnxaEeIcQ4h1CdTdpDHXQ3kEcuH+AE8NOlDDkA1gZvpJJRyexrvs6Rtcb/fc38V+EKIrsjNrJzBMzeZX7ilnNZzG7xezXdlTStekM3juYY4+P0alaJy7FXyJDl4G9xp5hdYax7fY2TKKJPjX7cP7peZ5mPGV6k+nMbTVX/r4u7RgWXVzEp2c+ZVTwKNZ0XVOqZ8iaa2uYcHgCe/vvpXfN3v/ReW6O3Mzw/cPRfqaVR2D/L6Kso1GGMvyPYJ5r/7dHp0BSnjKKRm69vCXxNKKiICPjjevU9arL122/5ofLP/Ak4wl1PeviHvmI+wUjGWnaNPb238uVZ1do4dOCyMRI+uzqw/57+9EZdWTlZzG49uBSk4wD9w8w9dhUVII07uJt783zrOd02toJG5UN33X4jnMjzzGr+Sw+Of0Jv9//nRpuNfCw9+DAgwPs7LuTEO8QtAYtH5/8mObrm+Nk7cTN924ys9lMuUIenRqNu607T6c9ZWbTmWQTjYhl1U7ESDbRCAh42HpQ3s7y+jtoHLBV26JWqGUJWFuVbQkCZLGNYqUHJYI8E22u8rpYu+Bq44qDxoGRdUcyuPZgarnXQq2QRtHMP4560UiWjYB/xboAhYG/UsH0TtAgAfwLuBqmgqDUHNAm5SbR4z7YGmBTzcIA/m2SjKL7kk5FRG2ANb9L1+2ZI2+VZBQ1QdQZdShQWLxWFMWTDJVCRYh3CE5WTpSzKVSsal2pNSHlQyzeW5qilYhokWSYTeDeRsbSzBUpDgeNZQRsEk2cTvqLxtMdiBcz5P0ODRoqe8sYRSPudpYzTJ+3h3TF659DpQlWHVOiTZtEkGN1GpZvaNFFqetZlx86/oCbjZv8WtHrF1jAj40q93ZJhlJQojPqZMK+UlBSybkSCy4sIHBVIBsjNpKWl8awOsO498E9fu//OzqDjq7bu1JteTXq/FyHDG0Gfww+wvkqClrEmvBz8kOllD4fXnZecpLhYu2CXgWHAqB/f/CaAQ9cwTsTIrwhZjls3gsdH0seLa/j64iIfHLqExSCgicZT3C2kmSUzbyb6q7Vqe1RWx4/ctQ4sqnnJpJykjgVcwpbta0kiyso8HaURjoNJgP2anv61epnuS9RZOKRiVRxqSJ5Zjg78/3YXVgZJf+a8ccnEaj0svCvaFaxGSkfpdDVX+pQutm44WHnQVx6HBsiNjD64Ghy9blojVq8vvei9YbWfHzyY07FnEKr18q/BUXvOSCb9ZGWJrmCi1kolCrcbd2xUlpRwaECow6M4ttL3/JlYi2G3ILgkC7ydmzVtnSr0Y3NvTcTOy2WjNkZHBl8hCmNpuDv6o/OqOPai2usuLqCofuGErAyAKdFTvj+6MuuqF180PADvB28S1TUz8SeYeqxqUxrPO3/9yQDpA7XwNoDeTDpATObzWRx2GICVgSwO2p3qdV/Z2tnDg06xKzmszj6+CidqnViWpNp5OpzWX1tNe2qtGNg4EC23t6KzqCjR40e/PTXTwSsCGBX1K5StykIAp+0/ITNvTaz5dYWum7vWur3zfgG4+ldszdjDo7hacbT/+g8zVye/+s8jbKORhnK8D/Crzd+Zfyh8eTPyX9zEPtfQGvQ4vCNA8s7Led9hzZQsyacOAEdOrxxPZNoouHahtxIvMHFURd5tOQzRjmfw0YtjUwdGXKEl9kvGXlgJCPqjmD7ne2Usy1HXn4eabo0fuj4Ax82/dBim9deXKPl+payJ0UV5ypETIhg4YWFLA5bTKtKrTgz4gwKQcHpmNO039weAQFrlTV5hjxWd1nNhJAJXH1+lRH7RxCdFs1Xrb9iRrMZJa5bh80dyDfko1Ao+DPuT0IyG2Fn+yMF2jOIGCVFLuUEMoXCDo+NyoY8Qx7j6o3DXmPPT1d/wk5tR4auMDlztXHF382fK8+uyB0AM1nPPxkyrSCxyDSPu607ViorMnWZbwx4naycpP0UjGd0qd6Fw48OA5aV6+27oWucBvucfBqNV3DNW5Q7Q8+znvPHVmlmvuWYkvvwcfBBqVRaGCaaUbQy7Ovoy9PMpyw9JjA0QqTc7NcedgkoBMXfOui+DmYH7Dx9Hv8J7+L/JV7XlbFT2tL3Zh7b6wjkm0d7ilzD0uClq0MN5WpKew6zxduYFFA9XUGCjYnBt8DF0Z2Ljb2JyHn8t0HGxKsCS4+KOM1RYVJJ3BG9Uf/a47FSWuFi4yIHtxqlpiRRuwC2altZ1SxDmyF332xUNhhNRvJN+XxyHra2duWpKZVG3o0IfxGOUlDKo252ajseT35MmjaNud90ZPuyZ9R/Dx64wcxLMCwSAlIkKeDttWFzXYjwAgSJQF/JOBp7qqJVxBEt/EKmcEs+vulNptPQuyETDk/A2doZB40D0WnRhHiHcGb4Gdptasej1EfU9azL8ejjWKusqedZj8vPCzlrdybeIdA9UP73lltbGLZvGCeGnqBD1cLvy34f+7HHJg6Agy/bMtT3Gln5WagVaup71ydLl0V0WjQ/vvMj7zV4TyZFJ2QlMGL/CC4+vYjWIFWmdQZdic6C+Vlztnbm8ujLVHerjv039nzT7hum/XIbIiN5p+Z1bvg74OgkjWFVcqrE8ejjbOyxga4dPmBT9VwmnM9969+TdG0655+c50zsGU7GnLQYGSp+TA3KNyDEO4SKjhWZc3YOjbwbcXjI4X/9t+u/QXRqNDNOzODAgwO0rtya5Z2WE+QZVOp7t9/ezuiDownyCGLpO0vpt6cfL7JeoFFqGFR7EK9yX3H40WFqudfCxdqFsPgw2ldpz0+df3qteteZ2DP02tkLP2c/jgw5YsFPBGm0NfjnYCo7V+bMiDNvfc2OPT5G562diZ8e/49J/f9LlHU0ylCG/xESshJwt3P/f/JFba2yprZHbckh3N8fXFzeSAg3QyEo5PbusitLOZ52DUdRQxu/Nrxb/V0G7hlIU5+mzG8zn42RGxkSNIQXWS9I06VR3aU6p2Mt1YWepD/h3S3vSg7AJj2edp5cHX8Ve409F55eoIJDBc4/Oc/EwxN5kv6ELtu6oBJUfNX6K3nu/cGrB3x88mOarGuCrdqWG+Nv8HGLj0tct4evHvJn3J+cf3qe5JxkDg06RHhMeRq9+ppUwtGRRCrhRCgnkCVYShqa97X73m5y9DkYTAaujb9G5uxMroy5Qs8aPUnNS+XhK2lkw9wBMAeBD90hpaBr3yugF242biTOTCR+ejw7+0oa/GeGn+HeB/cIGx3G8DrD0Sg1CAiMqDsCz3yN3DU4G3tWPq6ileuPO4A6TwoI9YIJhwKFp+dZz3HLgY7RsCMIfBx9pCpoEcRnxZeaZIBULTaPcvQO6E3Pe9D2WRCj31tuoZD0dyieZKgESVpXJajeKEOrVqhxtnYm65Ms3G0LuwEBbgEICLJDeVEU7UK8rWrV61DUu6AoiicZZiJxjjGXHUECGApN+t6YHImQK94iNfP9Es9hpnBbVvF67Ggi2wp21wab58m4XYkkJz9HEgB4w+ZrJok8KidQ2b06OqOOfGN+ieMpev11Rh2vcgrlhztU6cC37b9lYZuFzAmdQ88aPXGykpS0vB28CfYKRmvQ8iTjCeVsJGWnPEOe1LUQ4ZtQeGqSOELhL8IBSz5Njj6HFr+14OuzX+IZn8oH70JcBTvyVfB1qDRGFTIOdgXC0Ftwcw3cXgXvR9ShnqGQQO9oamBBoBcQuP/qPoOCBhHxXgS5+blEJUfh7+pPQlYCs07O4vKzy4ysO5Lj0ccZGDgQrUErJxnmrlHwz8GyxGm6Np2ZJ2bSP7C/RZIBUKvNAOwM0rPWz+0Mer2ULKiVav569heCIHB13FUmhEywUF7ysvfi/qv7jK43mu41utPQuyGGuQZujr/JwrYL6Vq9q4UKVbo2nZqraqKer0Zr0LIyfCWL8s9wtlw2ifaQKeaRb8gnISuBP+P+5PDgwwxW1cMxKYNnTQP/o98TZ2tnutfoztJOS4maGMXyTssBCCkfInsDgfQZjU2L5ZcbvzD56GTStemEvwiny7YufHb6M/bd20d8Rvz/jEtQ1bUq+wfu59iQYyRkJRC8JphJRybJ3LWiGBQ0iIujLpKQnUCf3X3Y2GMjzX2aYxJN7Lm7h9OxpxkQOAAblSQd3KB8A+6/uk+d1XX45NQnpRrotfVry8VRF0nJS6HJr02ISoqyWO5q48rW3lsJiw9j4fmFb31e5m73/3VCeFmiUYYy/I/w/0LatijqexU4hCsU0KTJWyUaAPGZ8fg6+XL94h5OeOWgV0LjCo3Z2nsrXvZe9NjRg0kNJzG23lg2Rm6U1/N19uV0zGmy8yXloXRtOp23diZdl06+KR8nK2nUydXGlV1Ru7gUf4mNPTeyrvs61lxfQ82VNdEZdcxrPY+FFxcyIHAAUxtNZelfS/nu0ndMbzKdK2OvyARoM5JzkplydAqBqwIxmAx81OwjIidE0tW/K0J5b/wS/z/23juuirN79/7ObvSuVBEERbFgwYolqFHsNbG3WKJGjSaxRGM0lmiMiRq7JrFFo9HYK/aOBQugYEMBlSK9l13m/WPcA1swyfP8znOec87r5YePsMvM3PfM3rPWva51XXeJUk0hTNUdB5995AhRiIi0q9au3NizirLYeHsjAgJrbq4hrSCNZlWasX/Afqa2mEpGUQYiohy4WaqkVUWrEtC+vr/vf7CfzMJMAjcGMnT/UL4++zVu1m5423vj5+RHkGcQNSvVxCAa6FS9Ez/5fMKkSyXyl3FZjwcHcwfiJsfR2rM1Cfaw4/Ui3dBI6FlY2pzZL0ZAEGF3bUgtSCU2s9QA8Z/AmCQcPLGC6TcDmDxsHdk2jStUSKoIFQX7OlGHiIhO1JVr5A5wLt1WgEsA6YXp/HLrF9m8cEqzKbLh28WEi+X2lVWUJf9tDKq7Vu8qP7+uy7q3Hqul0pTHbUwo3kyG3tznlVFX6FxdclYWVBq0ChBEKaguO54K3szE65BoHilfh1GqKSYVNTszOyzNpGCzyMaCb9rB4ZqgNIBaDwOjYMRtyXfiTQRmWfDS056HaW837HizJ8DodwKS4tvCSwtZcGkBiy4t4sDDA3Il70nGE448OiI7L6cVppl6Gbw+7eNugPCWYpaAQGxmLGFX/uCUawG/NoLcsipkAtzygCmdwf0LaDYKNgRCqlv5BnoFChqopYqpiEhobCjxWfHsiNpBWmEaffz7EPUqitjMWFZcX8EXLb5gxfUVjGo4ih19d9DWu60sexvkGSTL+QZuCGRH5A6+Pvs1+dp8lnVcVm4clR2roNUosSmCYhXodMXYamzkxYawkWEVumHfTLzJ85zn9PXvS4hvCGEvwsgryaOBWwNmtZ7F4UGHGdVwlEwJHFpvKJ82/VSusjzNfMpXPnG0a/GQSFcoEXW8yH1BZlEmH9b5EAuVBdoTxyhSgWXbkIpPwj/A8cfH+Sz0M8Y0GsONMTeInhBN4ueJ/N7nd3rWlAz4jIF7Fdsq+FfyJ6swi013N9Fndx+qrqiK64+udP29K3POzeHQw0Mk5ib+28fz7yCkegiR4yNZ2mEp2yK24bfKj/Xh68s1vQe6BxI+JpzqjtXpurMrwwKG0aVGF4p0RXSt0ZXjT44TnRpNd7/upBWkkZibSIBLAMuvLcd/jT97o/eWS6rqudQjbFQYDhYOtNzUkvNx502eb+3Vmjlt5jD/4nwuxf+9kSa8SzTe4R3e4X+I/4RZX1k0cmvEvVf3KNYVlxr3/YW5mBGRKZG08WrDYL0/GZZQKJbQ1KMpduZ2HBxwkKTcJIbsH8Kqzqvk4GxIvSGceXZGatx+EkqJvoS+u/vyKP0RWoMWC5UFd8fdxc3GjUJtIdNPT6dHzR6092nPiAYjqOFYg0JdITUca7AsbBlN3Jvg4+DD6purqelUE3cbdzbe2sie+3vk48wvyWfhxYX4rvRla8RWuvt1RyEomPve3FJVI3d3wizS5VXrO8mlRku3Em8xrYUkgfnmqraIyIprK/BZ6UPwlmDabG7DsrDS4KOhW0OODTpG1pdZxA2+Sd4i+Di/lLOtUCgo0ZUQlRJFeFI4SXlJ+Kz0we47O5r90oztkdulAMctkMRVi2iab1euHVkhKKhsVRl3G3c5sN7XSAqSxr6qiu2d0lWzAZEip30g1Rp29NlBNftqJtsy+ln85eq/CFv3w+8tR2IQyiskGZW6AGzVNmzpucVkvv4VRLyKkH9PzU9FISgYd3Sc/Nj68PVvpZuJiPg5+ZV73CizKyIy/th4eaxv9uBU5NANVKj/rxSUMi2q+a/N5SBbISiwU5jLDdyPMx6/bagAJNhJFS/VWxRGPe08cbKUejAs1BbS50oQ0CslEQDXPFh/BBJ/hO17oW4ZSn+1xEKuWGfKDe1VbarSwacDakX5xlSQ+mHKKnRp9VrGBY4jbnIcujk69HP0FH1VxONJEuVIpVChUWhQCa+d0R185N8BvLMVrDsG75fa6+Bs6cyKkBUsbreYqUFTmSI2Z/ZFidqn/4uoQ6+EG56wujm8dPKFcsmfAkOJi/yXQTRQZ20dvj73NfOC57G3314mN5ssjVNQsTViK35OfqzqvAqFoGBLry1ylTAiJYKwkdLii86gY8j+Iay+uZrZrWfjYevBm3C2cqZE1OGjlFTvtArQFUuVUBGR9ML0Cse0N3ovlSwr0dqrNR19O6Iz6EyqliAtOhm/SwfWG8hPnX+SKah5s/LIPlSb81f9ZHlr49i33N1Cmy1tsMqaRr3x8MvD3+m/pz+rb6yWVMz+YYWhrOv32q5r5c+Cm40bA+sN5OceP9O/bn8EBD5v/jntq7XnZe5LbiTe4FX+K+q71KdPrT508OmA3qBnffh6eu7qiccyD9x/dKfHzh7MvzCfY48l6u1/Ehqlhs9bfM6jSY/oUbMH44+Op/HPjcsF9y7WLpwZdoYR9Ucw9uhYqtpWZUDdAeyL2cfc9+YyLWgaF+Iv8Cr/Fe95vUdsZixKhRILtQUf7PmATjs6yQm4EVVsq3BxxEUauzcmZHsIu+7tMnn+qzZf0dKzJYP3Da6w2vImjKaVFVVR/m/Cu0TjHd7hv4T/dEUj0D0QrUHL/dT7UqKRlQUP/8KmGOnmFfUqigDnAJQ6A5rXgVEj10aAZFq0s+9Ojj0+xuC9g9EatNib23M27iyfNP4EgGVhy/j48MecfXYWvahHpVBx6+NbeNt7A/Bj2I8k5SbxQ4cfAJhyYgqPMx7j5+jH44zHlOhLSCtIY+nVpcx5bw5R46OInhBN95rdGbRvEB8d+IjVN1ZTY1UN5l+Yz6iGo4j9NBZ7C3sCXAJMzbDc3LhauUj2D3CwcJBlW7OLs3mQ/gABAZ1eGqjxi70sLsRf4FLCJRCkAHNYvWGEJ0rJg1qphsuXAchyL7VlntR0Eq8KXknN+EiKXUcGHmFOmznUqlRLbgpceGkhHpW30a9H+V6AYK9gHqU/InhrMNFpEne66LVxmFVsAg+cwEInUCUb2iTAznpSYHz88XFZTaiGYw1UgooSQwlTW0z964RAgEIVxLr4IpSjOimxppSOJeTkMuLgCJRlAp+G9rV5E0b6lLQN6X8zpZlEqXpN8UjIScAgGkyOrSLXciVKqtlXw9bMloTM8k2VxiqOldoKtUItN+YaqyR/hzd9BoYFSGZpKoUKS5UlXap3kasfgiCQRekxFuoK/7IicsFHQKODlskV01ruvbonG4aV6EtwsHCQ50NvYcbyILD6Cvp9CA0ToVMsuOTBvLPgmg+PXEr3nZCbQF//viaJU1kKnruNO7bmUjNRJYtKVLaqzLrwdXj/5M2kY5N4kfOC6NRo2m5tS2pBKvv67cPH0UcOWp9mPjUxAoyzNTCor9SjZMSrgldMCZ3CzLMzWXp1KSuEa3zUC26Wj9/figqFHEQ92YaHchO4m7WbvNqblp9GUm4Se2P2AhItKDkvmZpONeWKXVZRllxdSytI41LCJXrX6o0BA5YqSwQE9sbsrbBp1yiNG6F5HSAKYJWnw+a1uWJZI9PS4xXZG7OXXjV7oVKo8HX0xdfBl9BYU7O3pLwk+fpr4PraQyMzFg8bDyzUFlhn5qO1NDcxy4wYG8G1UdeY3/JrvjsjYKGVJNN3R+9m0vFJ+K70Rb1AjfNSZ5r/0pyJRyeyL2afXHE24u9cv0Hqa1h8eTHfd/ieH0N+ZEuvLcRNjuPJpCds6LaBOs51uPriKjuidnDm2RmqO1ZnUtNJzAuex5CAIZToS1h5fSVdf++K64+ueC73pPcfvfn24reEPgmVhQn+V8LV2pVNPTdxffR1NEoNbba0YdDeQbzIeSG/RqPUsKH7BtZ1Xcf6W+tJzE1kdKPRfHFScph/NvkZU4OmEp4YTom+hDqV6xCXGYeDuQO3E29Td21dvjrzlUnFwc7cjmODjzGg7gAG7h3I91e+lz87KoWK7X22k1eSx5jDY/42EXxX0XiHd3iH/xH+0xWNAJcAFIKCW4m3oGlTiUL1N34acVlx5JXkUd+pDqfFJ7gKkvLOlogt8ms61+jMkveXsO/hPsnca9Q1NEoN5+POE+AcwNUXV2VKlUJQEDYyDP/K0mp/Ym4iiy8v5tNmn1LDqQa/R/7Oyhsr8bDxwM7cDjOlGXnaPJLykggbFcac9+ZI8rlmtvzW6zcmNZ3E1oitTDo+ifqu9Xkw8QHLOy2XjPxehNGiiqni1avKlsQ6guF16Xx+2/kmAe3hR4cREWXdeiu1VTm1ISMMogGDaGBPzB78K/kz6tAodkTugEuXSHe2IcZMagx1tXZlWcgyEqYk0NKzJWqFmumnp/PNhW/wtPNkXZd1CAhYqCx4rP6C/X+qqFKBBv3ZuLOAJOVrlJfU6aQejfuVYNEZ8EkXGRglJQgHakmBze77u+VAUIlSpslcSbjy1vPeJ9uDYXch4BXUfhkLYsUKSUZkW0i0IbPXsblggKj06HK9BEb6FEiceKOJnIikY/822JrZlnPy1qMnKTeJnOKccg7hZVWazFXmbOy+kcOPDiMglDrF/4u9HLUr10Yv6tEZdDRyb8TdlLsMqTcElaCqsEH7r7xJEm0Fmr+AVrFvN00zBhN5JXm0rtqaff32AaXULr1SUm+qM1EyufPKhOmvT+ncGBdsdEosFGYokKpDb2vwFhAo1Eor8ZUtK8tmbAPqDGDz3c14r/AmcGMg+SX5uFm70eePPjzJeIKgKJ2/svQ+BDjlA9YlYK4X5OoZACL8dAxurQOnfCpUL9MoNFS1LaW1+DQqAAAgAElEQVQBGq/deOUmJLkD/etN6REFkXjlryj0UuKQWZSJUqFkyftL2HBrA36r/eTqX1phGmMDx3L08VEabZRopPMvzMfbzpvmVZoDkunfyk4rUQpKCnQFLG6/mFf5r2i0oREnY0+aHGd+cek5t1NZYV0EqTbgkqUHseJEIzIlktjMWD6o/YH8WIhvSLlEIzkvmWJ9MeZKc1mFMDYzFl9HKbk/av+K7vUkqp2LpQtKQUmtyrVoVqUZXyuC+fyqSHUHH4pmF5HzZQ5/fvgnnzT+RJYDv5l4kzXha+i7uy82i20wX2hOtZ+q0XZLW5r90gxrjfVbDffCE8MZeWgkQwOG8kWLUj8IQZDke0c3Gs2OPjtI/DyRmAkxrOy0Eg9bD3be28nc83NZeX0lxfpiJjWdxB99/2Bn350MrjeY3OJcll5dSqcdnai8tDLVfqrGh3s+ZMnlJZx+elr2afqfoqlHU8JGhbG552bOPjtLzdU1WXRpkYnS3rjG4zg99DRRr6I4FXuKcYHjmHlmJksuL2Fe8DzipsTxWfPPiEmLQalQ4mbtRlphGvbm9nx/9Xtqra7F/pj9cuKgUWrY0nMLs1vPZsbpGUw8NlGmb1W1q8ovPX5hX8w+Nt7a+JfH/i7ReId3eId/G0Yn2P+EtK0RlmpL/Cv5S30atrZQt+7f9mkYV+Crx+cS5qZHZW1DrUq1mH12NneSSmlHXnZe8u8F2gKODz5OUl4S2UWmErqnhpyisUepPOmsM7OwVFsyu81solKiGHZgGOYqc7ztvLmVdAutXssH/h+QV5LH0qtL0eqlldiw52G8t/U9Vt1YRbMqzajuWJ1zz85x/PFxRFEkszBTMoh7I9G4ppbK9MZm70oWldj1wS6ToFNAkIPeVwWv5JuFuUqiKTV1b4q3nbf8+kJdIU8yngAwZP8Qfo35nYQG1XiZ8xIRUU4eVQoVMWkxfN78c44NOoa9uT0D9w7E6ycv8rR5WKgs8F2zk8Ia1biXLVFvjLKsxverFCqs1dayA7GROrGgDTRNhMZJMOouHPGDHHPJ4CynJEcOMh9klLp2Gxt1K8KHpxLZegBueMBR100YhDcCPKQAz4jJzSazrtt6PFwlzX1RAbo3FvTVOkoTD1G6TsomeS9zX1Z4LBZKC1pWaVmhQ3hFlQ4wNcxLL0zndtJtutXoJu/PSmMln89/itlnZ8vu4+ZKcxJzE/nq7Fe09mpd/sUi5RIjI+w0dugx4FQAd/6igFmsL8ZCZUH0J9Hs679PlswtBwGK1HDXS8OhhUPRC5CYnUiuSs/Sw8WcfhLEHK9hb7yl9HpPzkuWKnRIdLP0wnRabmrJlogt5GvzXwf3IplFmdxKuoW9uT0BzgHoDDqThK4sFCIc3wGjwsVS/wyFmhmRtnx6A2a3l1zlq9pWLRfM6g16EnISUKBAQKBEX4KAQI4QyV3lePyqCJQIqXIDvaXmOb+flehLJdoidAYdLT1bMrrRaPJK8uQksLFbY9Z3W8/tj29jpbai2S/N2Buzl1mtZ7G2y1pAum5GHhopUyfX3FzDrY9v0cSjCZ22d2L+hfnS4sL9PfTdU+ro/UufLRwp6AkiPLEsRiXC4/Ty9Lm9MXuxN7eXjQRB6iN4mvlU/g4xnpNiXbFJhdsobbvtzhZ69iykSaY0bzbmNvg6+pZWlUJDSbNV4dRM2oeNmQ19a/dlTdc1XBt9jVfTXqH7Wkfsp7Gs7LSSfrX74ePgQ2p+Kufjz5NVlEVcVhzOS52x+86OgHUBDNk7hI23NnI78Ta9dvUiwCWAjd03VkgvNEIQBGpVqsX4JuPZ8+EeUqamEDkukiXvL8HOzI4V11fQf29/Rh0axe2k27Sv1p4Tg08QMyGGXX138YH/B6QVpPHtpW/p8FsHHL93pPrK6gz4cwA/XP2B83Hn/5FcdUVQCApGNBjBw4kPGd94PHPPz6XO2jocenhI/r5/z/s9wseEY2dux2+Rv/FRA0k2eOyRsdiZ2bGw3ULiJksJR0JOAhYqC8xV5ugMOgq0BfTZ3Yeuv3eVz6sgCCxot4CN3Tay4dYG+u7uKycMffz7MC5wHFNCp5RrHC+L/1fkbd8lGu/wDv8FZBdnU6Qr+o9Sp0Dq07idfFv6o0WLv000IpIjqGRZibvXDqBXwMuSdEY2GEkd5zoM2T+EQm0hBdoCPjkm0aT8K/nT649eOFo4Mi94HvE58fK2LFQW2JnbyX+HJ4azNWIrC9ouQECg1eZWGEQDPvY+XHlxBU9bT26MucGefnvY/cFu9sXso9vObvT+ozdBm4LILc7lxOATXB15lajxUYxpNIaJxyfSZ3cfTj89DSCvVBoRpn2KSy4YXgecBdoCQnxDGNWwVANWRDRRyyrUFbK0w1KyZmSxvfd2YjNjSS1IBaCjT0cUgkKmoigRGN08hXbNH5BRlIHOoJMDqfNx50kvTKdf3X50rtGZU0NPcXfsXTlYyyzK4NP6iQyvIwUorlauaEWtTNHQGXTMD55PTkkO54afw1JlieJ1nH7f15o9teG7k1AzDX6vWMkRkDT5u1TvUuGKe8PXvZrFSpEeA6DnINBXK+SR5vMKFZKMWH1jNQsvLZRpGEa/kbIr1nqVomL/DbGCnzLQGXQcjz1u0rBsrjJnd9/dcu9JWZqSvZm9TMcyYtWNVRx5fET+O68kzyQZ+SdQK9VysnP62WkUgoLmVZqbrOrKEKjQ9K9dtXZkl0jJ935/uFy1/HgBZrScQTX7ahTqChl1aBSLLi6i847OFR6XcZW6xFBC/+LfaDBBQYdR0nxM7QDtql9mfvw2k/eUTfC0Bq1MEXzPW3Ib39BtA608WwFQw6GGTC8EqTJg/A552xy+sobT/mZ8+ciZo4OOEj8lnuIPIlh8QsuBdh6c8BPQKDUk5CRQoC3Ay85Lrhzq5YRW+mejsZGPN0eIpGGjO3R5/y7R6i/IEaJI1eWy65PWIIJGKzXMf3toKmvD1zItaJq83YTsBBKyE6hZqSZho8JkFaU90XtwtXbFWmONzqDj1NNT8gLB85znHHl4hKODjvJN8DfMPT8X7xXe9Puzn7zoUdOpJn39+/Let9vpHW8JCtAp4FHM5XLz8mf0n/So2cOEahbsHYxKoZIrJkaqqNagNVF6is2MJTE3keGHPuKjOzDpvjQuURSpXbmUpqgPPc4xbx0tqgZVeG5ACnp9HHyY1GwSf3z4B3fG3qGpR1Psze3Z0nMLX7X6ivbV2mNnZsfD9IfsuLeDsUfGEvhzIC9zX/I04ykdtnVgyokpHH10VK6I/RUUgoJ6LvWY3HwyBwYcIG1aGuFjwpkXPA+1Us2iy4tosakFTX9uyrbIbbhau/Jjxx9Jn57OgwkP2N57O939uvMy9yXfnP+GtlvbYvedHbVW12LwvsEsD1vOpfhL5ahgfwU7czt+6PgDUeOjqOFYg567etJ5R2cepEkLMl72XlwZeYWufl3ZfHczPf16sunOJgbuHUiJvgQnSye+bf8tcZPjmNJ8ChmFGZirzOXr9WL8RWqvqc2cc3PkpGJM4BgODTzE6aenabe1Han50r1kWcgyfB18GbB3wFvn07g48q6i8Q7v8A7/MpJykwD+o9QpkBxzI5IjpJtkixYQHS31arwFka8iCXAJ4OSL81QtNqdYX0yQZ5AUcGfE8uXpL1l8aTEZhRm09GzJ8cHHKdIV0WVHF748XWq6YKY0o75LfTrt6MSDtAeIosiUE1Oo51yPkQ1H0vyX5uQU52BrZkt0WjSdq3fm4cSHskN6C88WvF/tfU7GniT0SSibemzi9tjbhFQPQRAkj41VXVZxoP8BLsZfZPSh0diZ2VHdsbrJeK6mR9CwTO/hb5G/4bvSl1/u/GKyYm5cKXeycEIpKIlIiUCj1DA4YDAxE2JwsJD6LwwYiBofxYyWM7BUW6JHRGGAPLGUpnI/9T4X4y+y+/5ufBx8aOjaUH7O1dqVxNxE2lRtg2UJbAyU1Ko0Sg3J+VKHb9mG48TcRFSCinnn51GkK0L5Ol7M1uYxvQNUKoQiJYRVwaRfoiyiXkVxMb6McpMI/aKgZrqAw+v72+ROEi0HJHpbsuE6UaopXFP1KKeQBFDPuR4vcl6QlCddx44WjuX2axJ4C5QmHQLYCRamz5VJOLQGLYhQrdActSidIyczB1ZcX8GzrGeMqD9CfqtCUFBiKKFYXywr40Bp4mNM6v4dCdxCXaFcGQrxDcHRwpErz6/QbWe3f7yNs8/Oyr+r9ZBjIf1fFgIC7jbu6EU9vg6+hCeG89W5r966zfDEcEAa2w8nQCkKchJpZm3HryFr6ZJgzvpDkLAMEpfCiuNQ+/XnwCAa5L6Vmy9vAjD2yFguP5cC5ceZj8kqzkKlUL21odwIG40NHtYerAhZwd4WdlSJfUX40Z9RavXoBg0gztbAqFbpiIgsab9EHm98djy5JaYu7iIiFioLSnSln6VAt0A23d3EkIAh6EU9ChToRT37Hh/EztwOSy2YGQSOp10juNidF/H3EASBIM8gsouzCVgXwO9RvxObGcvj9Md82vRTIlMiqb++Pj4OPrhbu8tzsr//fgDGHBkDQM+aPfG09eR5znM0So1MCevo21Fa2be25veh+7F4fbjJ0dehDOc+JjWGmLQY+vqXVkJAogUGeQbJ9KmyKl5G74eMwgwyCjMIjQ1ldt0JbDwMMRbSfGUXZZeaBaakoIyI4qSvpKL1T2AQDQw7MIyrz69yaMAhhjcYzsL2Czk17BQJnyVQPLuY9GnptPFqg1JQ4u/kj4jI1RdX+en6T3Tb2Q3LRZZYfmtJ9ZXV6bGzB4svLSYyJfIvew6UCiWB7oFMDZrK0UFHyZieQdioMGa2mkmJvoSvz31N4MZAXH5w4cszX5JemM6oRqO4OOIi2V9mc/+T+2zttZWOvh15lvmMWWdn0WZLG2wX21JnbR2GHxjOquuruPr86t8G5rUq1eL44OMcGnCIxxmPqbeuHlNPTiWnOAcrjRW7+u5iUbtFHHp0iED3QA4+PEiPnT3kpmwnSycWtV9E3JQ4JjebTLGuGDOlmUyv/fbSt/iv8efQw0MAdKnRhQsjLhCXFUeLX1vwOP0xFmoLdn2wiycZT5h6cmqFx6kQFFioLN4lGu/wDu/wr8NolvW/o6JRrC8mJi1GSjQArl9/6+sjUyJpbFWTUOtkfKw8UQpKGro1pI5zHb7v8D0rb6zku8vfISIyselEPO08+aX7L9xKuiXztgPdAuUExcXKhY6/dWTtzbVceX6F5SHLGbR3kNyEnV2czYj6Izg2+BhmKjNyi3OZe24u1VdW59rLa4xsMBK9qGf/g/3yimJZ9KzVk7tj76JQKMguzmbBxQUyF1ar13Ij8Qa5VqXB0umnp3nf533ODjtLG8/y/gy9avViW+9tbI/czrwL8wCpfJ1ekM7ohqN5nP6YxhsbU8myElkzsvjN0JsqeYIJbSi7KJv3trzH5rubqeFYw6TsvT1yO0qFkswnUViUQIkKk2Z0QHaANogGVt9cjU7U8cudXzBgkCsaPpWqE2cPoo01KgNMuKtGr8CUH/8aHap1IE8rrfqptXBmK/yxF7rHiFx4LU6VXSbuz9fm/22ACXB00FFWhKwAShWf3oY3aUXZFJZLPsrmAvYlAomqIrQYcMuFl/lJXH1xlVYpZkzYm0BlSuk3xiZaEVH21zAG0sZr5n9qAhj1Kor0gopVhWT8zS60SvCtYBMiIpNPTCYhO4H47PhyrulQWsH5ocMPNHZrzAf+H5A7M5cRD8wYeF8hJ83ZJdnMvPwNx6oWMa4HNJ9kTodhsKExPHM02SlgSskom4w5WjjSxL0JSoXSZDW+LOzN7LHWWHP+o/NMbj6ZNaueku9ki+ueE2z/oAZERjK6vwV6CzPaerdl5pmZgES73NxjczlHbpCMRosNxSgEBQ7mDkwPmk54Yjgp+SkoBaVcIVUICor1xeTbmiGYW4AAd8REhi45zimzMbT1CsbJ0omufl0ZvG8wXXZ0wd3GnaUdlxI5PpImHk2ITIkkOT8ZtaDGIBqYe34uvWv2RmvQ0mh9I5r90gxHC0eWhyynRF9CkaGonFiEebuO7C+SKFRhrjpe7d4sP7c3Zi/WGms6+nYsN84Q3xDOPjtLib7ExBW8WZVmaPVahuwbAsAXLb5ggdcIBCDa6nXTe2FaaUXjtFTJDa9jX6ES25sQRZHPTnzGn9F/srPvzoppgEg9eRfjL7K111aiJ0aTNj0N3dc6Yj6J4ceOP9K7Vm887TxJzkvm8KPDzDo7i/rr66Ocr8RxiSMN1zdkxIERbLm7hVd5FYsxqJVqmldpzszWMzk19BSZMzK5OOIik5tNJrMwk2mnplFvXT1cfnBh4N6BXIy/SDOPZvzU6SeujrpK7sxcIsZF8GuPXwn2CuZB2gOmnppKy00tsV1sS8C6AEYeHMnam2u58fKGSU8GSFWe7jW7c/+T+8wLnse68HX4rfJjy90tiIjMbD2TQwMPEZMag5u1G5cTLtNxe0eT3pFKlpX47v3veDb5GZObTUYQBJQKSakuKSeJnrt60mVHF2IzYgl0DyRsVBgqhYqgTUFce3GNus51WR6ynLXhaznw4ECF82SptnyXaLzDO7zDvw7jSvB/skcDJAUTAUHq06hRA5yc3kqfyivJIzYjllrxecTZg7qSM/Vc6slUoAlNJuBo4Yhe1GNnZkevWr0o0BYw+9xseRvBXsFcGXkFtULN8mvL+SLoCxSCgimhUwjxDeHEkxOyKoxCUNC/Tn9+7fkrWr2WtTfXUn1VdZZcWcL4xuOJ/TSWX3v+ysEBBzkZe5I+u/uUu1kAeNh6IIoibb3bMu/CPNpsbsPiS4tp+ktTinRFXHeWAjeNUsO84HnMaj2L9bfWcz7hfLmA+szTM/Tx78OidouYd2Ee2yK2cTL2JIW6Qqa3nM69T+4xrvE4ZpyWDATr3H1J/JPubO+9Xd6GrBYk6jkZexKPHz2YcmIKD9MesuHWBjRKDb7Pskh/HbPYamxNAmGjTKaxgdloYmersZWrFrHZcXTNdkadk0euGQSkKqj1CpkfXxannp2SA0vnAnDPhTHdoPtDKiD7SDBel28L0G00Nsw4PYMpoVPesoXX27F2kxKnf1BQkJvwBcgyEylWS78LTpK/gL1WycLLGiodOUtBobS6axANVE2VxnzswSHsterXmxCk1cAK+hxsNbblHqsI3nbecmCZmJtoMhfGxMlEoefvxihA7TRolGT6cE3HmlSykMb4pvKVESG+kj9Cdcfq3E25i6etJ6tC5+OUVcy9yqKJWWLZFfJEdRH3XeBhJfDNgK/Pw+hwqaoy7PbrKliZU+xi5ULYqDCixkeRkJ2AzqAzaSo3jlej1JBVnIW9uT0RyREYRANm5lZYjRrHyAiBqRf1fBMMF5xyyS3J5VzcOYr0RTRwbcDTyU/pWL0jp2JPlRuncY4NogEXKxeCqwVTybISs8/ORi/qySzKxExphlqhRqVQScmGTnLCztNA3wECWauWUm3bYZJyk9jUYxNLOywlPjueAm0BVxKu4GzlzJGBR2js3hiDaMDZ2hmdQUdobCitvVojIBDxKoKB9QZyZeQVfov8DUdzR8xV5uRr8zn86LBJ4Bcyfwc+2UoQIOTSGMiWqHJ7Y/bSza9bhb1BIb4h5JXkEfY8TK5uA9StXJeeu3rKtKpZrWdBphTYPrUTUb6+7uSKRmgoT7xsqO5fcU/Tm/j+irRYtKbLGnr7967wNSeenGDaqWnMaDmDwQGD5ccFQaBW5Vp83uJz9vXfx8OJD8mblUfxV8WcGnqKaUHTeM/rPSzVltxPvc/WiK18dPAjXH50QbNAg8cyD4K3BDP91HROx54ut3BkpjKjtVdr5gbP5fyI82TNyOL00NN8HPgxL3NfMun4JGqtqYXHMg+G7BvC1rtbsdZYM6LBCNZ0XcP10dfJnZnL7Y9vs67rOlpUaUFESgRTTkyh2S/NsFlsQ6MNjRhzaAwbwjdwK/EWJfoSzFXmzGo9i4cTH9KuWjs+OvgRLX5twY2XN+jm101WrVIICqJSogjeGlxOoreyVWWWdFhC3GSpwqFRlhqwnow9Sa01tZh7bi6u1q5cGXmFmk41abu1LQceHGBs4Fh61+rNyIMjeZ79vNz5sNJY/V8vbyuI/y0rx3d4h/8fY1nYMuacm0PerH/OL/13UWt1LTr6dmRl55XQrRtotRAaWu51119cp/mvzfk2sxHf2N7Gz7UOQZ5BbOwuKWPsureLgXsHIiBQzaEaDyc8pOeunhx7cgwAXwdf4rPjOTvsLD9d/4mzz85SpCuip19PdkXvwsHcgcyiTAQErNXWBHoEcnzQcY48PsKsM7N4kvGEofWHsqDtAqraVTU5tpOxJ+m5qyfB3sHs62faKBudGk2dtXWY2Wom556d49rLa4DkkJ2Ym8iGuLqM9orA0cKRupXrcv3ldaw0VmQUZrC331767jalNnzdRtLkH3N4DNsittG+WnsSchK4/0lp097NlzcZfWgU95Oj+EITTLPek+i7py+OZo5kFJvqoxvpO0Z+u5mooEQ0IJaJCwQE+vj3oUhbxK2kWzKN6k30eAAHd4HzVNjxqC4BZ++ztbcP03+Lpd1wOFdNoq3JrtYi9ImGfXVApZcats2LoVkiUjVDxLSSYGaP3qCnsXtjzsWfq+gQZHjZeaHT63iZV3FTt3FcbyYrxuvACCu1VblmR1uNLTklpo2fdho7NvbYiJXaim47u6FEgR4DGj145Ao8sxepnCspAQG0f67iTBWjLFbpdlSCyqT/49+BnZmdbGpXDm/MKcDwgOGExoYy6lgyDZLhw/5gKwbgpR+JnaImOYaHxCk3kSNEYqmypEBXgAJFub4PhaCQk4oWCXB1E9QdD/ffLuBVDh7ZkGEBhWro8hjmX1LyW209p4NcuC+mYGdmh4hYrvHWzdqNpLwkXK1dKdIVseT9Jfxx/w/OPjuLfyV/Zraaid+zHJr1nkiss5r201yIzy+VElUr1CR+noijpSOtfm0lO3QDuFu7k5yfbJIwmSnNqGxVmabuTTn48CAKQSE3fl9+fhn/Sv5Spfb1vFiprQjyDOLc0zN8GW7B/MBcHllMZ77vC07HncXPyY9L8ZeYGjSVCU0mUHdtXfK0eVS1rUpiXiI6g05Sg1NLVBVPW0/mvjeX0YdHA7Cx20Z+vfMrNxNvUte5Ln9++Cc1nCQxhF+3TmZ0nOSqvS2rHUFfb6T6qurs+XCPieKUEQbRgMsPLnzc6GO87b35+MjHgCQ8EZ0WTb/a/dj3YB+ZMzJhzx7o148qn0O2vTl5hiLyZuZhpbZEdHPjp5qZFCycKyUlf4Gtd7cy4uAI5rSZw7y28yp8zcO0hzT7pRmtqrbi4ICDpX5E/wZS81M59vgY5+POczf5LvHZ8WQVZZl8H1iprfCw8aCOcx1aerakq19XajrVrLDpPK8kj8sJlzn37Bxn485yO+k2BtGAl50Xbau1pa239OP5hoJfsa6YqFdRhCeGyz/3Xt1DL+rRKDUEuATQ2K0xjd2ln4zCDD4L/YyIlAg+avARi9svRqPUMHDvQE7GnsTWzJbKVpU5NfSULNn+Jl7lv2LplaWsvrkarV4rUxvdbdzZ2G0j7X3aM3T/UPZG72Vl55UMqjdIpvOdHXbWZN791/jTpXoXfgz58d8+F/9tvEs03uEd/guYdnIaBx4e4PGkvzb6+l+BQXsHEZ8dz5WRV+Dbb+H776VVMoXpCtjPt35m3NFxdHppQa6jNVcsUtnQbQOjG40muyibWmtqUc2+GmEvpAChXbV2Mgc92DuY0MGhdNzekejUaGa1nsVnoZ9R36U+ESkR2JrZyoGLm7UbDhYOLH1/KQsuLeDai2t0qt6J79p/R33X+m8dx5mnZ+i+szutqrbiwIADqBQqQp+EsuDiAm4mSlzzlp4t6VGzB2eenuHk05O4Wrvy9XNfJtldQVQIKAUls1rPIr0wnf0P9vP8s+cE/RrE9ZcSnUxAQBAELn90mcbujem0oxPnnp3j48CPWd9tvcnxaK9d5YdpLZnXUYO52oLc4lyGBAxhW6TUiGsMGP8OlmpLTg89TQvPFuyI3MGQ/RJtwtHckYyi0qRFQKB1nMiFLVB5Kjz+1ZLf/AqY3lnNnZ8VZArF7Kwj9VrEvbb0+PkgPHSCH1qBpaimAC0IUD0dYh0wSXYA2nu350zcmQqD/38X9SrX417qPTnA8LbzJi47Tn7e3cadxNxEqtlXI6Mwo1wArxSUtPFqw7k4KfFRKVQYRAOVLCvJq/fnhp2jw/YOpRUBUYr1q2ZBso3k5PyvwkJl8dbmZ3OVOQaDocIKUkWJBoC50pwuSdZ8vS+N98YG0EC/DqPztVHZ665yPDlCZLn3lk0wFIKCPrX60PncC4ZvuIb1bIXsrwKlyZ2vvS8JOQnYmtm+1UyubX5lxh5LpfcDUCs15HRpzzCnixzyyDfhO3jaSjQZvajHUmXJmeFnaOrRFJDkl7+99C1HHh1h834YEglXPKHjGA31XeqjFJRy8h/gEkBVm6oceSI16luqLOU5drF0IbkgGQuVBSqFitySXMxV5nIV087MjiDPIBJzE4lIkQwfzZRmCIJAka5I6v2YEs+M0zPYeW8nAL8ehDE94Kc6U/nkgyUsC1vGrDOzsNZYYxANFOuLmdNmDrvv7+Zuyl0Amrk3IzEvkec5z7FWW6NRafC29+bG6BtMOTFF7q1IyU9ha6+t9KrVi+fZz6m2rCp6QaoWfe03msUJO0idlmrq61MGg/YO4lH6I3rW7Mnc83MBiYpzfPBx1oWv427yXcI/DoeNG2HcOCxmiVhZ2mFtaU/clDiIjIT69Wk/DGZ/c9ZE2epNHH98nO47uzOy4Ug2dNtQYSCfVZRFs1+aSedr9DVszf5Z5e9fgSiKRKVEcezJMa4+v0p0ajSJuYkmn2UmNY0AACAASURBVDMjbc7b3ptGbo0I9gqmc43Ocp9c2eO9FH+Js8/Oci7unHxNVHesTlvvtrSr1o5g7+AK6cmF2kIiUiIITwznVtItwhPDiU6NlipzSjPqu9bHQmUh90PNfW8uE5tOZO75uSy9uhQbjQ02ZjacGnrKpDH/TaTkpfD9le9Zc3MNWoNW/gy3r9aeDd02sObmGpZfW87UFlPp6teV9tva88173/D1e1/L2wjcGEhT96as67bu35/4/zLeUafe4R3+C0jOT/6PN4Ib0citEXeT70q9Cy1aQE6O1BT+BiJTImklVON8pXz8XephEA1yMDH3/Fxyi3OxN7envkt9Grs2lpOMBi4NODPsDBqVhj0f7sFSbcnmO5sREGReuzHJEBBIL0zHxcqFrju7UqIv4fTQ0xwffPwvkwyA9j7tOTLoCJcSLlFjVQ1clrrQY1cPnmQ8wdXalbjJcVweeZnpLadzYsgJHC0ceZX3in1ZYdgVSbKPHzX8iG+Cv+Ho46P0rNkThaCgim0VeR8iIpZqS4buH0qxvpjPm3+OiMjhh4dNKCkAXLlClwQz5rb+mrySPAwY+C3yN/npQl0hzT2aU8WmdPsVMZFCfEMk4z+Q5xsgoygDH/tSFRoRkYve0GIUVM0G6+wCjjdxwMbSnvHvF9PiBTR9pSRfDTMvSO/RCrD8dWtOgaDFWgv2hfDCxjTJMPZ2nImT1Lf+Kskw0s3UCvU/arKOSo2SkwxzpblJkiEgkJibiJnSjGujS/1CykIv6uUkw97MHp1BJzU0lzkfbbe1NaUdCeBi44pHQBBNvFuWPl5W5aqiJbbXjykFZYVJhlEGuSIKnxH975XeWI1z5WDugFav5aBTGgtag5d+pJxkSIdb3n0dpPkCU+d6g2jgz5g/yYu4QZyTUk4yPG08Xw9BGkR2cTZag5ZhAcPKnSfj3+esUvll+vs0+8aDwgVzSAk7RfOHUpLRJk6qfgA8z3mOKIoICBwfctzkOm3i3gRnS2c+uA8jImBrfWj9HKpki4wNHMu1l9cIdJP46dlF2XKSAZIIg6etJyKlsriFukIWtF3A7Y9v08Ovh/za/JJ8SdwiJUKmrhXri+VzISLS9feurO6yWjYP/aa/Cy5FKkYP/hHFlM+YWm8sa7uuJbMok/ySfBzNHVkWtoyoV1Hyvq4nXqeTbycA8rR5ZBRmsKrzKpQKJc5WzuQU5xD+cTjv+7xP7z96M+PUDFytXaUAuVhAq4KlD3+lk0/HtyYZIH3ubyfd5kbiDUREFIKCKyOvEOgeaOKhQWYmWfbmFKlBUKlkTyJOnkRnpuZaVQVNPJq8dT/XX1yv0PW7LHQGHQP+HEBqfiqHBh76jyQZINGvAlwD+LLVlxwaeIgnnz6h4KsCCr8q5OjAo3zW/DOCqgShVqqJSIng59s/M3j/YBy/d8RsoRlVl1fl/W3v89XZr4hMjqRz9c4s77Scu+PukjotlT8//JMQ3xCuPL/CwL0DcfvRjdprajPx2ET2Ru+V70cWaguaV2nOxKYT2dxzM1Hjo8j5MofLH11myftL8HPyIyU/hQJtAfnafKafno7T9048znjM2MCxFGmLyCjIoNWmVrKgQkVwsXbhx5AfiZsSx6Smk+TvzDPPzuC3yg9zpTlL31/Kj2E/sj58PTNbzeSbC9+YeB5Zqa3+0YLV/8n4N9Z53uEd3uF/iqTcpP94I7gRjdwaUaAt4FH6I/yNxn1hYZKvRhlEvoqkYbqaiw5g5V0Dy+ir1K5cm7vJd1l1YxWzW89m0eVFfNTgI36+/TMgBUBho8NkfnBlq8ocHHCQ5r82RyEoeJH7AhuNDbkluWiUGnR6ifN98+VNtvfezsB6A/+WWyyKIneS7/B71O/sureLIl0RSblJeNp6Ejo0lJEHR9Kqaiu87Eu9PS4mXCSjUKoGpFsqcCoEras9SkFJZEokcVlx9KrViyJdEaefnpbVZUAq0ZfoSvg89HOs1Fa4WLmgM+hov609Hzf6mHuv7nE7+TZRObcpHmlAuDAHERErtRWFukJEUcRCaUEd5zpEvYoiX5svV3akAb0+SEEK+EKfhLL/wX6aujdlQtMJJrSc4Q2GM/f8XHmVumU8qA1wrRpUmwwvbDNRFaq46KPgUiNHOsek0TVaUqEC+KQ78uq6bxosPgP9+pef44pW5t+6ol9WHQopKDdSA7b12kaxrlhW7nkTb/pgGIPiOpXr0PuP3kSlRFX0ttfTJZhUO8qu8r8JS7Ul/ev0Z0WnFYiiiOW3ltK+y8ZYf5Ej6Q16yfm5BPLVpa9NyU9BpVBJvQtvzJmZwoxiQzGiuxs2xclkm4nyHMlUMSXEVAZ7fOUko/RwTN3XoXS+jJ8RAQE3GzcyCzOp+aqQ+5UE+XmFQmFSRUsrlNyWl19fXm58Zekrp59JDcVWhbNhnDTWHg/g971groMTNQSWtVRw1ktK5AbuHUjdynXxcfDhWdYzzsedxyGjkHtHBCJa1SBiQgsKh21l4C0to61HIyAwu/VstkZsJT47HqNZZYGuAKWgJCFHcuHOKMrA3tyerKIsrNRWNHRriIu1lNg5mTuRXpTOwksLpWlUKDEYpHM/ockEDj86THZRNg/SHtByU0sODTjE9sjtPC9KIbjWe2gWd4M5c9Hu+5MVE5U082iGvbk9obGhCAgcHHCQ7jW7s+DCAuacn8PPd36W56eKbRVZ0cnZypm0gjSsNdb8+eGfLAtbxozTM7j+8jq2lg4UCDko9Vpy1SLVH/2123VH346IiBx7LFFPG7g2kKlYsRmxpZ5AmZncc5OulRK9trQ/4+RJous4U8vTBWuNdYX7+Ceu3wAzTs3g9NPThA4JLafc978D5ipzuvh1oYtfF5PHX+a85NjjY1yMv0hESgQJ2QmcfXaWM8/OsOjSIgCsNdZ42npS17kurau25osWX7C6y2qS85I5H3eec8/OERobypqbawBJ7rutd1vaVmtLG682soCElcaKllVb0rJq6cJEbnEud5LvcOjhIX6L+M2kYVun10miJ5uCmNFyBsPrD8fX0bfC+5mrtSsrOq3gy1ZfsvDiQjbc2oDOoGPxlcU4mDswLWgaK2+spIl7E5p6NGXQvkHcHXsXBwsHLNWW/9f3aLyraLzDO/wX8J92BS+LRm6NALiVdAusrSEgoFxDuCiKRKZEkpOfjkuRihfaNALdAlEICsYfHY9/JX9szGwQEOQkw97cnhJ9CT9eLeWOGkQD5+POozfo5eAztyQXS5UlJfoSFIKCIfWGkK/N51bSrb9cEX+c/pj5F+bjv8afwI2BbIvYRu9avbk68ioXR1wksyiTKSemcD/1vnxTTs1P5ZOjn9BuSzsANnTdQH3/YBwLISkjgZNPT7Lr3i7szOwI9g7m2ONjZBdns7CdFMAYTcN0Bh0/3/6Z9bfWozPoSC9M596re0w+MZmwF2HUqVyH7y9bcFk3nJWdV6IQFAyqN4jqDtJNulBfSEZRBvnafCzVlpipzEwrG6+HbfQOACnRG35guBxMmynNWHNjjcn7PHPg3FY4txkqFUjb0Yk63AqU5OSkcc8Z+gyArkNM92Om0PDbfpjeETlR+LsEz5hklPWsAEm21uhD4mLlYuLPkZyXTHRa+WrZ31U+biff5t6reyaa+AIClz66xONJj6nvUh8bM8lfoW+tvhUef9lV/0JtIZvvbuZB6gMmHJtQGrD/3S2vjApWSLYz+WrJAR0AEcy0b2/YLjZIfTFHnDNR6ksD+dZVW5vMYa8YKBBjMRoiGlHWfd14nMZ5q+lU8/VrRI4OOkrqtFTqZ6iJqiztp1/tfsRNiaN/3dIssoFLAwAWt1ssP1b2OCpSKDOO/1AtqDpNxdRelngUqqmbpMc5D9ZfccTxeTonYk+wNnwtx58cp6ikkK0HBQpVIu2CHrHq4VZ214GP7kqO8SIivXf3Zn34enkMxmToTYWtnKIclIKSKaFT8Fvlx6obqwBo4tEEhaCQK0Rl36dWqGnk2oi8kjwEQSCnKIfGPzcGQRrvhfiL9PO8RlL4OZZ2sia64Dku0fGExobi5+iHiMjwA8P5M/pPvmrzFcFewSbH9CLnBfFZkj9QZavKUlN6YSaCIPBF0BecHX6Wh+kPySnOoRAtnQ1SFXJlyRWKo9+eOIcnhpt8Luo5S9K2xbpiXuS8wNfhddKZlUWkswFEyCnJkag6BQVw8SJHvEsIqlKxrG1SbhIh20NwtnLm8MDDFbp+A2y5u4Vl15axPGQ57X3av/V4/xvwsPVgTOAYfuvzG5HjI8n6Mgv9HD03R99kfvB8OlfvTCXLSjzLesae6D18euJTfFb6oJqvImBdACuurUCpUPJd+++I+SSGrb220tCtIfse7KPnrp44fe9Ek5+bMP3UdE48OVHOk8PGzIY2Xm34oeMPJE9N5o8P/sDDxgO1Qk2QZxD25lKF9dtL3+K32g+HJQ6029qO6aems/v+bp5mPjWR/HW1dmV1l9UkTElgdKPRKAQFmUWZfH/1e6raVCUiOYK0/DSyirIYc3iMtEjy/4Dq1LsejXd4h/8CnL53YmqLqcxsPfN/y/58V/rSs2ZPloUsg08+gXPnICZGfv559nO8llWlXrqC+o7+XHLKp69/X2o61eTjIx9zYfgFxhwZw5OMJxhEA9Yaa5K+SOK7y9+x5MoSro68iqOFIyMPjeRi/EVCfENkLrMRgW6B3Em+w/jGUuIy8fhEFrZdyFdtSj0DEnMT+ePeH+y8t5ObiTex0djQx78Pg+oNol21diYrctdeXKP9tvYUaAu4OvIqlxMus/DSQgQEGrg2IDYzluefPafPhnYUXjpHcn0f7hUloBAUtPNux/EhEm/5UdojhtUfZqKeVRbtvNvxYZ0PyS3OZfrp6UwPms4Sz4/A3x9CQ/kw+2de5LygZ82eLLq0iNySXOzN7MkqzkKj1GBrZktaQenqpgDUcw4gLjtOcssWRVnJK7ckt9wq/YqQFcw8M5NCXSGDI2C7JPdPvfHwwEVB8zgDt92h4PXKu3cGZJhDTpm4YvgtuOMB95zB8DrW9rTx5HmuVMVxtHCUK0BvoqKm5LJVjLKw1lhjb27Pi5wXJo9/3fprFl5aWKGK1YTGE6jnUo+fb/8sJcNloFFqqFWpFr4Ovhx7fIxifTG9/Hpx4JGpFKS1xppiXXGF0rAapQYLlcXbm7crgI3ahlxt7l+/SHzdYK8Cy2KoliNwv7LIoKIa5GWmcMitYhdjm2KwEQOorqqoR0MyRrTT2OFm48aD9AeSO/nra0RA4IPaH1CQmsSRCZfp3xd215P6Vr5r/x3Lry3nZe5LXKxcyCjMQGvQVtiQD5L5pJXaiv0P95s8LiCZ6zV2b4yXnRe77u3CVmnBiNzqfLfuMWa5BZz3gm1N1OysqWX8LQXLThi4v305211SWHZtGcc8Z9J+xDz6jnfkWX0v7iTfAaRrycvei4TsBDnp8bL34nFGaa9aoFugvAihUqhwsnDCv7I/N17eIF+b/7+mf0iUqjUWagsyKZQrQZUtK+No4cjD9Ify8RqQePuTm00mtSCVzXc382XLL6nmUE12hy7UFfJ56OekF6Zjp7FDl59NvhpCUh344/tYLMysJNrMa9rS5jubGXN4DD4OPrKT9Ow2s5nfdj4P0h7gv8afc8PPEewdDP37M0o8yKY6UiJ7+aPLtIzJg06dqP0JfD3udwbWG2gyPKPEdlpBGmGjwso1SBsR9jyM4K3BDAsY9rfO3/+nI78kn1Oxpzjz7Ay3km4RmxlLekG6yfeUmdIMV2tXajnVomalmlhrrInLiuNc3DmS8pJQKVQ0cW9Cu2rtaOvdliDPoHLKdfkl+Sy5soTvr/x/7J13fBR11/a/syW76b13IBACIRB66B1Euii9SRFBEEVQUexiQWmCioB0ooj03mvohCR0AgmE9N6zbd4/JjtkIejt+zwv93s/T64PfHYzO7PTZ8/1O+dc1ze42bhR26W27FM0qP4gREQupl7kQYGUqXPWOsuN5k29m9LMpxkBjgEIglQ2+s7Bd9gUv0m+R+3UdigVSgoqCvj5xZ85kXyClMIUjo059nwO5P8D1BCNGtTgOaPCUIH2Cy2/9vuVMY3HPJd1Dt48mKySLOlhtW4djBoFOTngIonr7769m3cWvcgND1haexpTEhez/MXlzD40m771+jIqYhRd1kqjXVZKK1JnpOJq64reqKf1ytY8LHxIsa4YT1tPlr6wlKFbhloEdiPCR7Bu4DqWX1rOpF2T+KbrN5Qbypl7bC7zu83HSevExoSNHL1/FLVSTe+Q3gwLH0bvkN7VSpSaMWHHBFZcWSGXZb3e/HU+6vgR/aP74+vgy28v/UanX9rgvf8MeVGRJGvKuJF9AwEBZ2tnObjWKrXyqLdKoUKlUMm13y+EvMCuobsQBIGFZxcyY/8MjutH0H7eRgy52bj/VIvpLacT7BTMmO1j5CD8p94/cTXjKj9efNzEZ2MUaBzUmla+rdh1ZxeHRh7iq9NfseLSCgyi1HtgpbSykBQFKbC3NTUgKn8cdmJt3AsSifZfxaDYOPbUg1T7ysFoEcTKZu+7rsjZi8bpEOcBpirJCXMJ0N/hWYFqI89GxGVYNi5ff/06x5OPM3n3ZIvpFqVjTyB2UixqhZoGPzawmD61+VTqutYlITOBhKwEzjw889SyNiobjKKUPTOYDHIze1VUR5T+b1GVnKlQ0TuwK9uT94EolbTpzQkTc7wmPvYjtBZU6DFhEE0oRbClEYGmcdhRm1LhHvcVKygU4lEKSuys7HDUOMplRXZqO8oMZQQ5BZFfnk+d2zmcXQl1p8IdN+gQ2IHjycfl7fy++/d8cPQDi5HQJ8+jj70PaUVp1Z7bKL8oGno05JfLvzC91XQWnl2Ih60HRfmZfF7QlHYHb9P8VhE6Gy2q8gp2NLFhQB8p+H8x5EXiM+LYNe8B0wfbccSjGLVCTbuAdkR4RliUcn3e6XO+i/kOg8kgG/g5aZwoqCjASetEXnkeR0cfxUHjQKsVrdCb9IxpNIbVcatxt3EnqzRLPr/2antKDaUMbTiUMkMZ225uwygaeSnsJcLcwvjsxGeIiPja+zIubDgOh05ScDmGL9pDF/eWGO1sOJF8QiZ05uNifq9RarDX2JNdml3tPfp3UAgK2cG+1FCKg8YBZ40zyYVStiTMLYy6bnXJLcvlRPIJRjYaibuNO9abt7LK6T5plWpqi3stxm3LPhTHTzKkZxHRg6MJdpJIj7XaGgGBMdvHkJCZwIkxJ2QTwCeRUphCs+XNCHENkXrsnuGX8p+OpPwk9tzew4kHJ4jPjOdhwcOnzCLtrezxsvXCydoJo2gkOT+ZnLIcrJRWtPZrLZdatfRtiUYlZU7v593n7QNvs/XmVmo51eJe/j0A5nWZx7tt3yWrJEtuNDf/f1QkKfS52bhJ5KNS7crXwZePj37M7ru7gcfXnKvQlEjNTCrKXGgVHMiIjj6EB9o/x6P334MaolGDGjxnPCh4QODCQPYO30vPOj2fyzq/OvUV807NI292HorEe5Knxp490KsXAPNOziPml4/YWVvP+hd/ZcSusQyuP5iD9w8SPzmesKVhFOmKUKDg/vT7BDhJ8rNJ+UkM+WMI5x6do4F7A77u+jXjd4yX5VnND8wQ5xDOTzyPk9aJD458wBcnv+CNFm+w+85u7uXdQ0Cgc3BnhoUPY2D9gXLd7F/h/KPz9Fjfg/zyfNQKNaFuoRwfcxxbK1sc5jkwKmIUAY4BfHvmW8TCQooeV9bgY+dDanEqAH++/CdR/lF4feclKyIpBSUij/0Jfn7xZyY2nYgoikzbO43m7y+ln6E21/euJWpVFGfGnSGlIIWXt7yMQlDgqHEkd3YuKQUpBCwMkIIWUapVPTrmONtvbWf3nd3cnCoZ3ZnVppSCEkEQLAiAtcoatT6ExsYfUYgCCEpE0QiCSJwwmWIxDn1losfP3g+b/BIKDf64K6UgtphEkiulU5+FqpKvVYMsa5U1OqMOURQtgnU3azeyy7LlkWC1Qo3epGdIgyHcyL5hQSrMdfdPwkzIvOy8KNOXPZVxuDjhouwUP//MfN45+I78WdX+jGcFfXZWdk+VQjwLZqnZ6o6XUlAS5BRkoY5j7jt6FizIjQiDbsAZP0hzAIUREMBUxaTQSlCjM+lp69+WuMw4yo3luFm78cMLPzBq2yh5P8ylNj9ntuTVZWfRfoB87quu03wdVyWT45qMY9WVVfI2ms/Zk6h6vroEd+H0w9OUG8oZ1nAYk5pOYtq+aSQXJHO46RIih78NubkYjAaaTdOQZStQZCqnSAuBBQIZNiJ+dj7kK3XET47nh/M/MO/UPIlQK6zkjEvVa6tqb5CnrSdxr8XRYkUL3GzcSMpPIqcsh3YB7biWdY3cslwEBDQqDW7WbqQUpaAQFIiiyEthL7H5+mbgsRyxSqGivlt9DoyUFOmIiaH+H53ofEvH0vpvM6czfHl+PiD1ZjwqfESkd6ScaQt0DCS5IJnNgzczqP4guRm9TF/Gnrt7GL9DksLVKrVYG0TyhAq0eljWbQHlNhqir0VzIvkE7QPa08K3Bdll2ayOXQ1Aa7/WOGmduJt7l7u5dwn3CKfCWEHpw3s8tNb/S1401cGc0dOqtFirrbFWWaNRabiTcweDyUD7wPY4ah0lovLEfFXfW6sr//4X3lfN3vz/CKPJyNmUs+y7u49zj85xK+cWGcUZj2XBke4nWytb1Eo1JboSKowVWKusaRPQRla1aubTjGNJx5i2dxo3s2+iECTn+tebv84PvX546hikFaU9RT4ySiRPDi87L8Lcw7iVfYtHRY9wEC2V6RQCCAIsGFf/P45s1BCNGtTgOcPsVxE7KfZvlZb+u3Ag8QA91vfg9tTbhLjUAQ8PmDwZPv0UgCF/DCF/z59kuVrz4gtvsvjcYvIr8ln2wjLWXl0ry1PGvRZHuGc4oijy86WfeefgO7hYu9DWvy0bEzZarNNaZU2YexiX0i5hZ2VHG/82vNHiDaIToom+Fo3BZKCeaz3sNfbEpseyc+jOf4l4PSh4wPuH32dD/AYUgoIBoQNo49+GOUfmoFaqUQpKufnWWetMqb6UyEcmrDy9uWiVQ4fADuwevptGPzbiZvZN3GzcWPbCMgb8PoA57ebwxckvLIIdhaDASmlF3GtxhLiGYDQZyfJy4M8QPQnvj2dj/EauTLpC21VtSS1OpVedXuy9u5fY12Jpt6odRboi1EbJGRqkAK9nnZ7cyb3DjSk3uJZ5jdYrW9MhqAM/9/6ZV3e8yr7EffL+Cgg0NCzAhRYWDcQiRnI5T7xKMs1z0DgQ7BRMRZEXXgVzEYVnS6daKazQmXTUd63PjZzHJXQALX1bynK/5sCqOu+JsY3H8mvsr/I+VXXoroqqEqVVYSY05leloKSuS115e3YO3UlT76Z8ePRDVl5ZibXKms87f87bB96Wv2NCkwlcz77O6YenLfbrn+DJH3Tz8YpTTiFfiH2KVNip7egU1Ik9d/dUWz5mPh7mIP4jUzu2eOWRkJkAgEoUsC8TyTMn6ipTHl7FcGSLHRci3JgekUqJwoiDxoHOtbvy5/U/MSKNtAc7BzM5+h79b0Lom0r8HPz4ffDvjNk2RvaVePIYg1QCeCTpyFPbWvWYaZQapjWfxrdnv5XJnIDAkIZD+KTjJ/RY3wOdUcf+EftpMH8NLFoEp0/z7ZUfePfRGs6sFHAoE+kyGrJtJBf6dRHg8MbbzG4zm1qLa1GsK8bV2pW9w/cStSoKBQp5/VZKKwwmA0t6LmHK3inAYyPH/SP202VtF/QmPafHnablipZy/frQhkPZlLDJglg5WjlSoCvATm1Hsb4YjVLD1le2Mn7neKxV1hwceZBg52CGbR5C0o0Yti7KIOS1CkStNb7OAXJJk1E00tizMbEZsbIHTJ+6fdj6ylYLvwNzyRPAnuF7mH1gFgmZCYjAqPxADO3bsCl+k6SK1VxSxdp1exd9NvUB4NLES0R6RzJ973QO3DvAjSnSuUxuHETQACnrEeUfxfHumyirHcjnr4YQ36YOC3osoNxQTqm+lG/PfMv2W9uZ2XomjTwbSSTIUEaZvowyQ5k0n66UXXd2kVyQTKegTvL9aZ6vumX+SmWtOigExb9OTv4LhMb83kye/hXTwr9CYUUhe+/s5cj9I1xJv8L9/PvkluValLOaiayIiJXSiuY+zXkx5EWyS7P56eJPlBpKERHp4TOJRlZvcj+jjFqeNtVmI0RRJLUo9THxSJNes0uzCTcsfOqZrxCgWW1Hvh5d77+0n88bNUSjBjV4zth+czv9f+tPxswMPGw9nss6s0qy8JjvQfSgaKlhtG9fKCuDg5I7b8SCeqSm32aCY2euBFpx+sFpQt1CCXEJkQnE+gHrGd5oOMn5yYzfOZ5D9w4xrOEwADYlbMJabU2ZvkySiFXZEOwczPExxwldGoqDlYOcWq7nWo9XGrzCoXuHuJ59nWOjj/Hh0Q85dO8Qh0YdkhVenkRheSHvHX6PXy7/glqpxtvOm8S8RPlzZ60zxbpiNCoN5fpyrk25RohLCPbz7Pks1pn4IBt+tb3Nij4r6FGnBwELAviux3fsvLVTlk/dPHgzcw7P4XbubQBC3UK5lX0LpUJJhGcEZ8efRZWWAX5+vDMhiMUBqbTybUViXiIFFQUU64p5v+37fHnqS4sRdZURXrftSK9Bs+kX3Q+dUYejxpHLEy/TZV0X7K3sOT3uNGWGMkJ/CCWvPA9HjSOFFYWIiLQ27ETD09dKBZnEqPpYTAs3LMRVbAHCs0mJOSPhau1KTlkO1kpryoxlWCmt0Cg1cmD9pJeHxXrcw4nPkppd/0oB6p/AnOUQEPCy8yKrJAtBENCb9DR0b4iV0orL6ZefuXzV7bBXS/Vkf5V5AKr9QX/yeFUN2P+R4Z8IShGMVeIfe7U9puIiSjRSh1XbIQAAIABJREFUdsNczmZnUOJSIaDUGRFMIg8cwfBEKZYgQJDGm6Wr0tAL0G9Y9au1VdlSYvhnfQxP7pevnS8iopz5ExDQKDW0DWhLyzulfPrFGdYNa8jGHj4cun+I2s61qUh9SK5QjnM5HFwLvoWQawNNJ0Ke3eO+nh61ekg9VIUPUSlU6Iw6i+xKoKPUx2EeIQaJhAgIVBgreDHkRc49OkexrpgyQxmNvRpT16Uuf974E4NowEnrhEpQycpbIBEWo2ikXz3JeVtn1DExciK3cm5x4N4BmjjW53J2HCZEPsgKQ9+1E0tvr6egogCz07xRNMrELNQ1lElNJ+Fu644gCOSX5zNlj0SOJkZOpGNQR5Ye+YrT+XHSdSAomNVmtuw+rlAoWBO7Rn6+bhy4EV97X949/C4CAvO7z0cQBM6M6sTbHaRAf2DoQD7Mj0CY+xHdx6sZ1XE64xqPQxAEVlxawXdnv+PTjp8yvNFweZsFQaLQ5tcfLvzAV6e+YvmLy+lbr+9Tnz/5qhAUkvywQSdncCoMFfJ7899VSUmFscKCqFi8/wtC8+T7ZxH5Z0Gj1PwjcvKvEprskmzOp54nLiOOxLxE0orSqlXkUwgKtCotKl2dfzkbUVhRSEJGAicfnOR48nHiMuJIK0qjpWF7tc98N3s1m2c1+UfH5d+NGqJRgxo8Z/x08Sem7pmK7kPdf3kE5p8gYEEAQxsO5etuX8O8efDll5CfT7mop8Pr1pz3haNtV/DiuemU6EuYGDmR5ZclV/Aw9zASJiew4vIK3j7wNg4aB6L8o9hxS9Jc/6jDR1xJu8LK2JUAuNu4MzhsMHvu7iEpXypFahvQluPJx2XCUlBeQLtf21FQUcCRUUcYt2MccRlxHB9znAbuDbiTe4fLaZe5mHqRPXf2cDvnthzs+dr74m7rTmx6LNGDomkb0BYfex+uZV2j2fJmKBVKkqYn4aBxQPuFltX3G7PRJYUDjtlkzMxgTewa5h6bS8bMDGzVtnx45EPmnZ5HqFsob7R4gyl7psjNqg4aB4p0RRhMBslVNzMMhgzhZsJx6v/RAQGBMPcwskqyyCnLoXdIb3bc3iE7dGtNSsKy4MyXGWicXLmZdZNGPzVCb9KjVqixUdtw9bWrBDoFMvzP4ZL6SUUxIiL1XOuRkJXwl+QhQTVDMrEzmQhyDsIja2G1P1BGUyYnrfo8Nb0qnnTttnAZfwLmsil7K3vUCvUzCcmTUKHCQPWB+l+tD55d7lM1SK7aqP6s/pKq+Cckrjr87TqqyBnLy5gkH5PIh3C5+j7dv0TSAljbCOb+Q5GgvyoR+1ehMsK2TWBjgC6jnjZ9BMAEnZPg46OSp0axCgLeBhs9pNk9FiSowf9ePEuJTkCotkzsX/HsqYq/uiefDHv/7hnxD1dMuLH6bESIH0S1vMnltMvEPIzhVs6tZ4pUNDIuxFn8n5HRqPHRqEENnjPSi9PxtPN8riQDoKlP08ejwVFRUFwM165x3d2AcynY6UCoVZuSUyU08WoikwyA8U3G02tDL/Yn7qeFTwtu595m953dzG4zm5lRM7mUeompe6fK82eVZhF9LZrBYYOp7VybWYdmsbjnYubHzGf8zvGEuoXS1Kcpe4bvodWKVvTe2JuJkRO5kXWDZsuboVKo5BEjcw1+hGcEb7V+ix61e+Bp58nEnRMxmAwWkp4NPRrirHWmUFdIpzWd2DRIcgh2cfTkvvIGGqUGD1sP1sevp0/dPrIx1Zut32Te6Xlkl2bz7qF3AalkwtXalWCnYC6mSVKUn534jN75L9GiTh1+TXvcuGertuVa6TXsrOzYcXsHgBwwKwxGoh3Go3FyBSDUPZSXG7zMhvgN6E16CioKeOfgOwwIHcDG+I2s7rea1/e8Tqm+VJaKzTKuwl1ojigaERWPy3uSlSuJ9I7kctplnK2dScxLxIZErHC1/IEyGWlxL5F5lzR81bSCPfUqewSeQFWSUXUfqsLcC2CWKP2046d8fPzjZ153AK4aV3IqJLMsfyd/7uffr3Y+8/rMwXtjz8bEZcQxq80smvo0ZeqeqXJNc1Mv6XoWEQl1DyXCM4Lfr/2Ol52X7Ini7+gvq788C8XVHC8RIyUk/sVSyNkfvVFv4Q9SLVkS4MOIaYzt8Ca1F9dGVEiBTcPsx0RDKShZ1W8VoyJGAZBdmk2XNV2Iz3xseLiww1d8fOB9AgtMnK1UPR52FTZWqcBUGcGzQsUjG0sy92SJmBWuOBubW5TUNfVqyqX0SwQ5BrFz6E4a/dQIQRDoGNiRZb2XcfDeQRZve5cXR5TQ3bsdU/0bs+T8ErrX6s6BewcAWNV3FecenWOVahV5b2/E2HECq7s6ka9NImYFeCodiRpexh07HWqNNXqTHoPJQJ+6fdh5eyetfFvJpZrwuLRresvp2FvZs/DcQop1xXQN7sqh+4dkYvltt29599C7Msk0CzxYKa2IHhTN4XuH+S3hN7LLpSxHG/82FJQXcDvnNjqTDiuFFXYaO5b1WoZVuQ5x7RrEw4cpD63D65FpFBofZ4iCHIOY1WYWq66s4mLaRToESgpPiXmJOGmdKDeU83bLt1lycYmU5S0qolgDKlHBq80mUM+1HiIi807NkxXpovyieKHuC3x87GN61O5BK79WmMpK2bx9HkmOUKKBYQ2HEbR6K4/qeLHWJZm3Wr1FUkESW65vIdwjnK61ugLIWT2TaJL7q3LKcthyfQt+Dn50r9VdltY2lwFV92pCWv6v5jG/yuurvFbNn5mnmf+W/j37OyymPTlfdfNW951Vp1Wd/4nvrTqt6rpNosnivzyNJ/426BENBkxGPaLRiNFkRKcQsavGJ8ckQtzDTH5OGy1PMws/lOpLMYkmGnk0QqlQciX9Ch5+CZhSWsvLmrMiIzv58J+GmoxGDWrwnDFp5yQupl3k0sRLfz/zfyM+O/4ZC84uIGdWDkJpKTg6wtKlrG6pYcmPY/Gx9yEr1F+uzwdo69+Wi2kXUQkq1Eo1KoWK3LJcxkeO56MOH6FUKPnl0i8W0rDedt7kluVyaeIlGng0oMJQgfu37sxqM4upzafSZlUbUotT6VuvLzezbxKbHis38wY7BZNdmo1CUFDbpTaX0y4T5R/F992/p6VfS4v9afRjI1r5tWJ5n8eEKKUwBf8F/izquYivTn2Ftcqae/n32M8IXjCuR6u15ez4s4T/GM62V7bRL7QfAJklmXjO92TDgA0sPLeQC6mS26tZpra5T3Pu5N4hvzwfz3Ile282J7LxWeys7Ng4cCN9o/vKo+p1nOtwN++uvE0b/xQYuisZ/B8PXUetjCImJQZbtS1edl7kl+eTV55HXde6XJt8DaevnSxKfj46JjDoQSSfvjCaR07BlaPRKykS4hGBEJcQskuzySvPq7bnAFGk/q0pjI6JpdUjSHSGH1rAiqZQXEVspl1AO04+OPmPrisBAaWgtCi7UaLEyD8rewDJ9E5QCLwc9jJr49bKGQxzr0h12YMQlxDyy/NZ1HMRw/58XEvkbedNenH6345WPqtHwyw1W3U//Rz80Cg1Fuf3X0H3RNisGkaLyEuydCrAvAPwXnfpvbnnZWGPhbzc4GW6retGVmkW01pMk+8vpaCkSYqRC79AnbfU3HMwICLipHYgX18IIiy/6EVOSTbvdTSgMFVmD54xyipixKS9xUnD2Ke22VxeNzB0INEvRUvu9Rs3Yhg5nE3LJjO3fC9J+UkWcrOvNX2NVxq+Quc1nZnXZR6z287G+Nab1DMt4p4jbK89B+vzl+nmvpf1W2B8P9AppKTPoIYvcebhGRRIRp+u1q4MDhvMT5ck/41wj3Deb/c+7QPaE7QoCIWgkIQKKs+veTva+LXhdMppetbpyb67Uq/ThMgJfNf9O7QqLdEJ0cw+NJu04jQcNY44WzuTlJ8EwIaBGxgWXqUe7cQJmDSJy8V3aPaqEbEKOS+cXYidxo4Vl1cwfd90ygxlNHBvgMFk4FbOLTxsPbCzsuPAiAPY3byH1wHpRAuCwCcdP+H9du9jN88Ok2jCUeOIm40b+0fsJ2BhALuG7qJ33d6QnEzDb4LQKeGOC2R22Yd7+558+kln9vuV83337+m8tjNda3Vly8tbnmnIl1OaQ4sVLbBV23Lm1TPPNPirwTOQmwtxcXD1qvQaF4eYkIBQXs4je1jTUsPGBiauOetRGKGhuBDnau61cnU8av91FFYUcj3rOgaTgdZ+rXkp7CUUgoLPT0gS4At7LGREoxEkPChm/bFU7mWUUsvThpGdfGgY8J/VCA41hn01qMFzx/M066uKSO9I8srzSC5IBltbiIiAmBiu3zhJnCcEete3IBmDQgdxMe0i5YZy1Eo1eeV5tA1oy7nx52jj34ZxO8bhNd/LgmT88MIP3H7jNv6O/ozeNppTyadYcXkFrjaufHnyS9znu3M9+zr55fn8cf0P6rrU5Zuu37CgxwLUCjWt/FrRv15/CioKiM+IZ1XfVZwae+opklFYUUhCZgKt/FpZTI95KBkRDg4bzLExxyjUSV4GMXYFGJXSiNuGuA24WLvQK6SXvJx5vMVeY0+AYwBBjkEA5Ffk42vvS6m+lFJdKXWdapOhMdIvUCIZYxuPpW1AW5lk+Nn7Sce3El1TtQxtMMSCZGy5voWYlBg8bT05MfYEOWU5qJVqBARuZt+kyfImFmpJHqUCb8dArZ5N2OswjfP0IV71JoXE41o5293cu3I2okRxjVjlZPKE81SQSS7nuaJ8jWs2sXz1ZjNajoezfvDNQUj7TmDxHmhQJMlixqQ8NnK0MBisgn71+j017Un52OpIxt9l8CI8I6gwVeBi7YK1yhpHK0e5TCq5IBkrhZUFaRAQmNJsCruG7kJv0jPsz2FyTTlATlnOU/NXh0IhjljlZHJ5fLyeJBmt/VrTMagjLf1a4mXn9ZQUaAufFn+5f4eDIdBjI7dyblkEee5lj4/Nyr4rmRU1izf3v0mDZQ3IK8vjxJgTsnKNi9YFo2gkLEtaJtlWj4jIyEYjJZIBuNq4MmLrPaJfkaSClUop8PTXaasdZRVQYih3o0NgBwD2Dd/H6r6rUQgKub9hz5099I3uy4qtczFOfg3lkGGMmLiUhh4NUQpKmWRYKawYWH8gI7eOpH1ge2ZGzQTgs8ZFJDrDwCw3eo/8lFnh6bTybk7xuBGUqyA4Dx78ZE2Pnw9TnJVKSlEKAgJGUVIGUilUdArqhI+9D0O3DKXjmo40922Ot503EZ6PUzkl+hL61evHiXEn0Cq1HEw8iL+DP772vmyM30jETxGcTTnLyIiRPHrrEZ90/IRiXbFMMkBSBbJA+/YQG0vkhLl8eEpiRKrKsMn7O28upF5gQtMJfNThI0BqCDeb+2lVWs6MO0Ntl9p4RnXjE1N7EMBeJ/DRsY/otq6b9GxVqAl2DuZG9g35+VXbRTLrq8jJ5JYrKBBQKVW4nZRMV9fa3CHUNVR2/Y4eFP1MkqE36hm8eTCFFYXsGLqjhmT8FQwGuH4dNm2C996D3r0R/fzA1RU6dcIwayZJx7axzjaR7kN0OM4Gv7dgTtsKbrtK94BJCUlKs7qbSX4VgDviT5x6cAp7K3vmd5vPwxkP2ThoIwcSDzBj/wy61+7OjSk3GBkxEkEQCA+05+vR9dg8qwlfj673H0kyoIZo1KAGzx3pxemStOJzhtkh/HJaZflU69YQE8Oj84cwKGGn+FixpoFbA3bf2S2rjdRzq8eXnb9ErVTT9te2jNo2ilJ9KXVc6sjL9A/tj96o5/Xdr2MymbiUdol2q9sxY/8MRFGkzFDGJx0/4eyrZzky6ggGkwFrtTXTWk5jcrPJDG4wmE0Jm/jt+m+81fotHDQO/HL5l2pdUc8/Oo+IKDuCmxGTEkOQUxDe9t7Uda3L550kx+/5pQfxKpLcrjcmbGRw2GCLYNEckOpNevbd3cfEphOZFTULgEdFj7iWdY2+9fpyJz8Rv0J46AzFumKaejel+S/NMYgGOgd1JqUoRZbsFIA/1pTDjBnyei6mXmTk1pHUca6Dl50Xkd6RLOqxiPTidPwd/Hm5wcvEZcTJ2+OsdWbuackNeW54DiJgNMcTArx9zZ62uQ7y/CpUGEUjhUIccco3iVFVkhJFPGcDYXvJRc77wYhBUGuGgoUtRYYkQMJ3ZexaL9LxjqHS+0EgpcjSdM+M7be2W/zd2KsxPWr3qHZeM7RK7d82i5sDvsySTNbFr6NAJ9Uuj28yHgcrB1mZyNw7IyKiVqppsaIF5fpyC0lilUKFv4Nl80PX4K7PXHehEEe8qsrxqiQZAgIKFFxMlQj3oXuHOPXwFDqjjiCnIM6NP0e7gHa42rgyPHz4M7/fpBDIr1SZkkmkWJlNEiUCvO7qOtoFtsNR40heeR6dgzsT4hoi+4c09JQC+waZcN8JjEqJgKyLWyevJ8w9jDar2sj+Jp52XggIPNSUU0z1buQlQqLswfHuoXdZenGpfK6CnYL5rPNniAYDdd/6nEcUERZ2hPa/tmfX7V0WzbpO1k50X9+djOIMPmj3AUqFkoziDD5LWk3zFFh+J5RN8Zu4kn6Fed2/4X3dHgQE6jgF4zdsEq9eEVgmVSPyUoJIRWE+VzOu8nLYy5x6cIrV/VdzYcIFGng04MzDMyQVJGE0We7PuZRzbL2xFV97X4yikd4hvSmsKCR2Uiy+Dr50WN2Bdw68Q4Wxgrkd5jK+yXiL5WcenEnnNZ3JLa3Sb6TRwNy5fLgkjrASGwxILt0lhhJarmjJp8c/JSYlhuY+zQn3DKfcKF2Lkd6ReNp5yl8z94OD+JQqKbQyMVaI5GLqRekciCIRnhEoBAW77+6WlMWcggG4mXoVgxJ0KgEXaxeEgwcpa9eKxJKH7LqzS3b9/iuvobf2v8XJByf5Y/AfBDkFPXO+/3XIzobDh2HBAhg7FiIjEe3soEEDGDaM3BVLOJ0Sw/chWQwZBCFTwe59CBtXxqhOeRwKMlFoDQiSEl24ZzgqpQp3G3dWv/wx3dvfR7BJpIJMcjiHyfdHPu45lpQZKZwad4qpLaay5foWGi5ryPWs6+wauouNgzY+N4GY54kaolGDGjxn/LsyGt723njbeXMptbJkq3VruH2b7LwUnMoFHpRI6jJWCiuuZV+j3FiOSqGiS1AXbmbf5P0j73M75zbvtnmXDQM3gIiFo++2m9t47/B73M65TY86PehTtw8KFBwceZDLky6jFJS4WLvQ0q8lnYI78VPvn/jl8i9M2jWJBssaEJ0QTUvfluiMOsLcwtg7fC/xmfEM+n3QUz4JZ1PO4qR1op6bZVNcTEqMBfkw/wCXmCoorPTReFDw4Kmg0JzRiEuPo0RfQv/Q/sztMBcnzWM/j603t+JWDK4Vgjx6+M7Bd8gsycTdxp3hjR5/p4iIi06FY7M20Lw5AI8KH9Evuh/hnuF0Cu6EIAgYTUYWn19MgEMADwoe8Pu13y0CYrv0PMaf1fFdGwULMrZRpgJllXh9bstSTrkUyuRAoXj2I12vBJ8CKv08FKTYm/iwM/jPgFf7C/gUwcF1cH0pTLggon665xqVoKJXnceZIE8bTy5NvERhReFTGYNAx0D5/SsNXnnqc7NsqRnmkXGDyWBBLldcWUGhrhBF5c9V1eB24bmFaJQayo3leNt5y+swmAzcz79vsc5rWdeeeWyqgwJJbad/aH961ulJTEqM7C8xvcV0rr9+nRa+LXilwSscvHcQF2uXZ36XiEhfqwjzHxIEiPeAynYNRm8fTZ9NfSioKMDeyp718esJ/zGcI/clSdoH+Q8QEWmQDVc9pe988pheTL3IjewbiIioBBUpRSkyCU1RrqmsTjdWboYREFk4tA/HRx9HJai4k3tHLhsEuJ9/n9i0WJberEO7ZMhY+jUtG/Tg1MNTFuv1d/BndCOp9txJKxGOIX8ModvabphEE81VAdieOMOcg+/St25fVl5ZKZtl9u49AxYs4MDxVURXejYOvg5p38HS3RB/cCNG0chru16jgXsDtr6ylcMjD6MUlLLqmRllhjJe2vwSiflSf82tnFsU6Ypwtnbm2OhjfN31axafX0yz5c3YdXsXv8b+ipXCCmetMwABDgEcTTqK53eezNg3w8LhXlW/AdvfjUVhblYWwcWk4eNjH7Hj1g7crN1kgqdSqNhxa4dcugWAlRVn++4CEX41XmJEoCQ0UGooJbs0m+Y+zTmXck4qz6s0hYuvlEQushLx13rC6dOcbyINUikFJftH7P/L6275peX8cOEHfuj1Ax2COjxzvv/R0OshPh42bIDZs6FnT0ze3uDuDl27ontvFjePb2G96gbTO1XQYQx4vaem3SeBzJ4exsqXarOnqT133aACA2WGMvwc/BjZaCQr+64kYXICi3otIj4jHl97X8Lcwxj8x2A+jBmJ6LOC4X2S2T/rZY6/tpY3Wr6Br4MvCZkJtFnVhhn7ZzC28ViuvX5NKpX7H4qaHo0a1OA5wiSa0H6uZUGPBUxpMeW5r//FjS9iFI1SEB9zi/WL93GmVm0KFJYKNFW19b3svAh1DUWlVHE3965FqQFIAe6inovoGNSR+u715SDcYDLQdlVbskuziX0tlr6b+qJRadg7fC8gBUX9NvUjtTiVFj4tWNVvFWHuYby++3V+ufwLu4btQq1Q88LGF+gf2p+NAzfKuvW9N/bGaDKyb8TjH/JyQzmOXzkyv9t83mj5BgALzy7kvUPvUW4sx7kU8myk2v2Ut1IsSl3SitLw+d6H7rW6k1SQxM0pNxEEgS9OfMHcY3PlUo5+twS21xNlV2K1Qo2zxpmedXsSnRBtQYhcSyC75R8waBAluhLa/dqO7NJszk84zyfHPuHco3OMihjFjP0zcNY6oxAU5Jfny4F035C+9P92By/cgdrTpGZQvwLIdVBRKlRp9K18gm/vs4ERB177WzlXRHDSOJBfWVZWdXq7ZJh+DjolQavx8MBBaho3m8IpBSVKhdJiP9f0W8Po7aN5Es9SiALpmnHWOpNbnisfSwAHKwdK9aUW/R4qQYWN2gadUWfRdF3dd1YtlfpHMrTPgEapwWAyWJAbrVLL7uG76RzcGYCM4gy8v/N+qk/lSQQ7BnO/4D6zYpR801r6vnaPVMR4GTAopXtOrVRja2VLVknWM3tLEhfBkhawsJJPqwU1erH64yxvs0KLg9aB8hIvWXVKr3rIbfFHankr2TNsD7UX10Zv0rNl8BYm75mMl60XV9KvEJ4ucmE5LIlSsGFEBLHpsYiItPJrxdkUqWlbNsQTVHSr3Q0HjQP77u6TFXW29VpL4sxxzOpiYnbbd/ny1JcoBAVKQUn6zHSKdcU0XNaQIl0RPvY+lOdksiDOmy7HH+JbBMNfUbOtth43tQORoZ058eAEOqMOnUH3lG9KmFsYd/PuojPq5EbxCxMu0MynGQDxGfGM2jaKq+lXUSlU2Kpt2TdiH61WSmWYnYI6cTTpKGqFGpNoYkSjEbwT9Q4NPCQWNGnnJJZfXo5KFDAgMuaBM6sDpbLFNv5tOP3wNFObT+WHCz8AMKPVDOZ1mSeTh5kftuQ71XnsDAoqrJTyPRLhGcH1rOtE+UdxbMwxAGZ/34tND/eRZg+jrVux9MOz1P/Mi2R9JnGvxcnbVB1OJJ+gy9ouTIycyNLeS//y+vgfg4wMuYeCq1cxXo1FuHEDhV66LzPctMR5wjmXcq56wTUvBYqQuoS4h+KodcRgMpBWlMaV9CsWwhjOWmfaBLRhdMRoetXpha2VLSD9bozaOopD9w/JksAdgzryUv2XGFh/oEVGC6DCUMEXJ79g3ql5hLiEsKLvimfKuf9PQk1GowY1eI7ILctFb9Ljbf/8MxoglU9dSr1EfFIhM/YVcLFWC1QKD1xoQWPjjziIjQDLUeP04nSupF/BaDLyUv2X+KbrNxZB+vzuUmAf7hluUSesUqhYP3A96cXpzNg3g371+nHk/hFuZt9k9LbRNP+lOU5aJxp7NuZe/j1srWwRBIElLyyhV0gvBm8ejLO1M9GDovnj+h9M2TNFVh45m3L2qbKpy2mX0Rl1Fg/u3LJclAolgY6BfC1ZhlCkK3qKLJmDunOPztG/Xn+5Ln5g/YGIoohRNNLAtT6Hg0Q8iyRVLSeNE3qTnsyyTE4kS4GPWiGVOXmWCOTYQmbXKEyiiZFbR3I75zY7h+7Ey84LERGdUcesg1J5VjOfZnzQ/gP5uCtQ0KXci1FX4bP2EskQREixhzftu2MRgwrQ/b4C07q1FvXXSsGyHr9yRxHAgmRoVVr5e04GwUuvQL13bUlxkJqYm6XClmhokQJu1q5PZZfmHpv7VH14Q/eGzyQZ5uNtlsM1N/9DZWBfGay7W7ujUkgiBGsGrHmKZHjYWJYYWKusUVbpQfivkgyQVLDM5yTcIxyAOi516Lq2K3MOz0Fv1JNenI5CUMjnHqC+W335vblv5H7BfaxRMSj+8b2V6GjCJIDaAF72XjyY8YCMmRmUzSkj7rU4Ogd1ttgeGx0E5cH5KsIzT5KMJ7McChQEOgXKJXXmErFJfdT4e5iITY+l3g/1MJgMRPlH4WbrRmpRKt/1+I4F7b9kwxZI8Xfg/tuvyiQDkElGM+9meNtJ2dIP2n9AhbGCP2/8KZMMhaBgwN7RvNfJSFSGFV+d/go3GzfsrOwYWH8gNmobOWvZyrcVZfoyiq0V9P09jo4fB/Hd+x2ZQ1tKraB+YiHbbm1DzMmlvmuofI0pBaWcJb6efZ0XQ16kuU9z+dzNPDBTVh8L9wzn6y5fIyKiN+lx1DriqHHESetEzzo9OZZ0jOY+UhaytkttDiQeoOGPDemzqQ8nk08yOkIi1QZBuplWB0gB6dAsLy7cO41CUGCrlgLR4eHDWXphKa1WtuJm9k0A5s89hVu5gmKlSd7+2W1mczP7JnqT3sIEML40ibAsMCih4cMKRo6wIUmXQZfgLn9JMpLykxj0+yAgyFaAAAAgAElEQVTaBbRjYc+Fz5zvPxYVFVJj9rp1MHMmpm5d0Xu4gZcXdO9O+ZzZxJ74nVWqeN7oZqDdWGg8L5CJS7pzZOGbqL6YR/3JH9Ki80hQKtl+aztrrq7h92u/c+LBCfLK8/B38Gd21GzuvHGH3Nm57By6k5fCXqJIV8SyC8to/2t7fL6XPGTqutZlWe9lpL2dxuFRh5ncfPJTJOPUg1M0/rkxX536ijnt5nBl0pX/FSQDauRta1CD54r04nSAf0vpFEBT76ZklWax4sh9RBFMlT9qUpOokUDjOJJt5yKKIl52XnzZ5UsivSMJdgpGEASKdcX4fu8r1cELKmq71GZay2nPXF8dlzos7LmQCTsnsKjHIkmm9scIHLWO/NT7J16NfJWC8gKa/9Kc/tH9OT3uNLZWtkQPiqbTmk703tibmFdjWNFnBeN2jMPV2pXRjUeTW5ZLa/8n+jMexmCtsqaRZyN5Wm5ZLhXGCvqH9ifDeyVQjL2VPR1Xd+TI6CNyj4k5sVtQUSArUd3KvkWvDb2ws7KjTF9GVkEaegVkVFb8KASFbGiXlJ+EjcoGR60jaUVpvJIAi1vCwC2DifKLYtvNbWwfsl12gi/WFXMz+yZG0cicdnMIdgpmws4JRHhGcDvnNmWGMsIWbyLVWcXyppX+EKKAQSHyVfHep47zgVomDrAfHveQS2RJlIL+hKyEyokgihD5CK74gChImaAnR/+zxRJQw54QcC2D0Gw4twJiPTOZ3xqiw8FYGQ9VbX43H5eErARZKco8rWqPRtXsQ4RHBDeyb1AhVqBSqugS3IXD9w+TX5GPwWTAQePAgN8GWKyjmXcz0oqlxl0vWy8ySzIri4KMeNh4kFeW97ej/P8qzNm9u9l3UQpKJjSdQKm+lA+OfMCeu3tIKUzBzcZNlt0FeLXxq8w8JDVD13GpI5cYlmGg2+jKkyBAprUJkwJcSqFXnV5yGYxGpSHcMxyNSiP7lYB0HhRAvp8bAjnVZj2enKZVaYn0iWRTgiT1bJaLTi1KZVHPRXRb140iXRHBTsEUVRSxPm49fg5+tA9sT8eF26jIEwgZXkjK1RWIiDTyaIRWpSU2PRaFoOBmzk2572TbrW209W9LUl4SDwoeYBANBDoEcr/gPjoBTnqUY49WlnQd12QcU/dMJS4jDp1Rh1alpVhXjN6kp8JYwaRWU3j/yBxafXME+/U9OVCnmAUXXJm+O4cHngn80EhkYStwsHOUSYVaoebgvYMWUskXUy9Sd0ldpraYyjtR7/D2gbext7LHw9YDhaCgyfIm+Dn4Ya2yZsfQHQzdMpQAxwBSClNo6NGQOe3msOziMtqvbk8TrybyevQmPQjgZbJl4/Icinx96N8xnSWqJQQ4BmCjtuHsq2cZ9ucwIn+OZFHPRYyPHM/+nhtoemyofI5GR4zmlQavELk8kuNJx9l2cxv9Q/sTZ0ihj1Stx9GKW+wKKkMhKOgf2v+Z12uxrph+0f2wt7Jn8+DNklrYfypEEdLT5QyF6epV9Fcuor6TiMIgne+HrmouuxuIDROJ84TMWp7Y1Y+ggVc4YW5h9LL1oHVFPlfTr3Lu0TkWn19Mqb4UhaCglnMtNEoN9lb2FOoK8XPwY1j4MIY0HEJDj4byZqQWpfLnjT/ZfH0zJ5NPysZ81iprVvdbzcsNX37mLhRWFPLeofdYdnEZrfxacWXSlb8kif8TUZPRqEENniPMqib/jmZweNwQnpheiumJGEVAiR11aOrVlCJdEeMaj+PFui9Sy7kWgiAgiiItfmlBYUUhKoUUmC7pteSZaidmjIkYQ2Ovxsw4MENq/nStw91pd5nUbBIqhQpXG1e2D9nO3dy7jN0+FlEUsbWyZefQndiobXhhwwv0C+3H/G7z+fLUl3x0VFJ4aeHbwmI9MSkxNPdtbvHDejf3LgaTgf6h/TkWXNk8O2Ad1mprOq7uyO0cyQHcHJw5aZxo6duS84/O02ZVG2zUNhwbfQxBEMg05FNRuatapZbc8lwLk7oKQwUv1HkBtQleviVtQ8zDGL6N+ZZvun5Dn3pSTfbR+0fZfH0zRtHIpx0/JcQlhAk7JzA8fDg3sm7QL7QfHdO0dL1axPsdDHLZkqGymN9UTXA5uP5L/HTVX942Z40zBpNEHMwj8XKGQ4DLPjDoBrIoSnWj/04aJ4xKyLSDBlOg+whIdRBYv02qn//oCGiqieVFUeodeFjwUJ5mq7J9esZKxGbGolVLWZW04jSS8pNQoJBHe3PLchEQ8LR9PEJ4Ke0S7QPbE+ISQoRXBG62bnKmJbM087+NZAByaU6ZSXIqfmv/W3wf8z0+9j5cTb9Kdmk2WSVZFsssOb9Efm8OwgUEye1d8/j8GSpPib0OC8U3gOtZ19mfuF8+jwANs6Vr+JaQXS3JsFJYPTWt1FAqkwx47LHw65Vf6R/dXx55vZ9/nxtZN/j92u8MazgMxaHDsGgRn81uzUMn6R6xUlgxoP4AzqeeR2fS8W7bdynTlzG1+VRW9V1FY6/GrItbx738exhEA9Yqa6IColAKSrRqLV4lAhX6x5mpaXumsfLKSpp6N8Xeyp5jycf4pts3ABxPPs7YxtLzoNOaTjhoHRGB1j/uRDh6FM+OvfnsqJR1c3+YS2ZJJpgkQYcDIw7wXtv3AGm7vey8mNh0Ij9f+pngRcEkZCVQpCtiZd+VxL4Wy4TICdzNvcveu3tp5NmImFdjMIpGtCott7JvseziMvYN3yc1Xqukvq+qVefpihLundyBvW8wh1eb+GWrkYzsB2y+vplQt1AuTrjIyEYjmbhrIoM3DybFy8biHPk6+BLoJPU0aVVaBvw2gOl7p/NIKMa7shJyR0ApHzr0wSganzkSbhJNjNo6int599gxdAeuNq7Vzvf/JcrL4fJlWL0accYMyjq2pcLVCXx8oGdPSua+x/mTm1hle5spPYy8MNmB3j+25Zu1k0hbt4wua0+y4OdkPp24iQ61OpGYl8gHRz+gT3QfRm4dyW/XfsPT1pMJkRMY2mAoPvY+slrfq5Gvcn78eRKnJfJ5589p6NGQR4WPWHxuMe1+bYff937M2D8DG7UNM6NmYq+xx9vem8uTLv8lydh5aydhS8NYc3UNi3su5tTYU//rSAbUEI0a1OC5Qh6F/TcRDT8HP9xs3LCyzkHxhNqniBE7XTK3K3X+3zvyHg7zHGi1ohVv7X+LtqvaciNbUqZytXalT90+dKvd7S/Xd/T+UZqvaE5seixqhRp/R39Si1LlH2szwj3DWTtgLZuvb+bLk18C4Gnnyd7he8ksyaR/dH+mtJjCe23fI/paND72PjhpHzdqi6L4VCM4SM3qaoWaRp6NOOUqNRvbWdlxbPQx7DVSZuNm9k05aGjl14oDiQfotKYT9dzqcWrcKQKdAnGzcQMRHAxK1Ao1rjaucgBvhkal4ej9Iwy4AWKrFpXHVPpenUmHSTTx8dGP6bK2C3qjHq1Ky8kHJxmzfQz2Gqn5V2fSER0fzUf7yon3FNhYuQq1oDafJMCyIRxg9509rOngDCKUG8txt3WXP4u+Fo0ChUU5HAL8EQZOggaV8DRR7FG7BzmzcizmP1gHeg8XqTsVtjexRqeCCjV0eMJ7TzbM4nEZT5G+6Kl5zNCqtBRWFKJVanHSOpGYl/iUXK6IKI+Cg0QWNwzcgLuNO/sT95Ndmo1RNP4jE0xzA/C/Aq1SIkK2altZYCCl8HGj9ZPbm1z4OMtjvudFRMLcwnDRuph3SoatHmLTY/n42MeYRBMHEw/S8peWmESTBdEIzRS55wjGJ3bTXLZVtV/B194XkGSq4THRNBONpIIkivXFpBeny+ep3FhOTlkODRReGEaP5K3RXnyhPiMTmCj/KOafmY+T1olWfq1YG7eW5r7NWdBzAWObjOXVJq9SpCuSSWGfkD7suLUDo2ik3FDOuLv2OFaAyiQJKtzKlZ41MSkxFOmKqOtalwDHAEJcQth/dz9T905Fb9KjVqqJnRRLLedaLLmwFDp25JPxIdSebc1DZyVWKAnMhyHXQKuHwSu6Y29lT/960sh/Un4SSy8spV1AO/l4WqusuZt7FyulFYt7LWZ2m9mUG8ppuKwhl1IvcfbVs9R3q0+ZoYyM4gza/dqOuq51+fOVPxEQnjrnbU+NgxMniJ7Whd7X9Cw/qCG/PJ+IHxtxO+c2P/f5mT8G/8GR+0cYvW30Y+IvwoHNX5GYKzWwl+hL+KzTZyy9IPVVxFXy67fPgHP9JthZ2VmMtlfFp8c/ZdvNbWwYuOGZ8/zbIYqQkgJ79iDOm0fZ4AEU1w3CZGcLTZvC2LHcW7eIPZmn+TKikGHDtbw0rwlv/TaOc78voO5vh/g4Op3tS7L5sv8PhHuGc+HRBV7b9RpBi4LovLYzX5z8goLyAkZHjGbrK1s5MeYE45qMIz4znkXnFnHg3gFeDHmR42OO83DGQ77v8T3NfZuTUpjCwrMLabOqDX4L/Jh5YCYOGgdW9VtF5sxMBoQOYMHZBTT1bsq58ecIdQutdhczijN45Y9X6Bvdl0aejbg+5TpvtHzDoizufxNqiEYNavAckV6cjqPG8S/lCP9fQhAEIr0jKXfYgyAgkw2zSVmK7ieKctOYXG8EFydc5Pse31PbpTarY1dzJkWS2dSqtGSVZhHuIT3g9canR49v59ymf3R/Oq/tjEap4cy4M/z5yp88KHhAfnk+px6cemqZgfUH8lGHj/jg6AfsuCW5a9d1rcuOoTu4kHqB0dtG81mnz3C1diWtKI1tN7fJyz4oeEBqUepTI32pRakEOQWx49YOdIIUGJQZyvC29+bY6GM4WzvTcXVHDiRKrsY2ahv6RvelS3AXDo48SF5ZHlGroqgwVKAwQbFaqqt+VPRILoMzB2mlhlLuFdxn3GXY2E4KYl2sXWjh04I5R+Zg/YU1n5z4RA7Eyw3lHLx3kACHAIY0GIJKoWJE+AgywtfQMRne7SJKZms8rsNXGSWFn4/PWo5clxpKicmPw1nUIIiQV/I4KBcRcdQ6PnW8FSJQUVFtNuNg4kFGbB3x1HSAO27wWncd89pDi4dwzQOcy6BWLvS+Ae4aKZA2YZII2t/AYJJM5wKcAmRVJ5DKSaoScpP4f9h77+io6vWN9zMtk0nvPSQkpIdOgNBBeu9SRZAiwsECil1Qj4pHVCyIICBNSkKT3qRK76SQQkgjvZCeyZR9/9hkJ0Oi4rnn6O/ek2ctVhYze/Z8d5mZtzzv8xgl5al7xfdw/NRRuifliIPFblZuEj++MdTvvj2uetUYWji0wN7cnmpDNVNbTqVKX4WN2oZAx0DszO2kWYzGOgmN4cKDC2IX7LEkP9MGLLSw9PRSgr4OYsDmAVTpRZON+gFtaD4cfaQo3dK5LtFtbB7mYfVDNEoNu+7uApCknkcFiTQ0OXJe7/Y6/f36S0kJAAKoXnyFyV1z+aJ5jmjWKRd9Xk6lnUIhU1BSXYKLhQt5FXlsHrUZpVxJSXUJU3ZNoZVLK3Ircuni3YU3ur9BWU0ZCpmCD/t8SEq/CPItYVCigN6oRyFTSNdEJVdRo69hzI4xJBUlsf7menbH72Zuh7lU6io5mXqS+RHz2RG7g9i8WL658g1Tey1A1ao1d5wMmFvYcDhUxYQYEMrLCHt2EUXHf5YOa8WAFZxNPyvJT3fw6MDMfTNpvao1Pyf8LCnRRXpH8uzeZ5mzfw5bx2xlYvhECqsKKa8pp/OazkSsiUAmkzGt9TSsVFZScptdns2ALYNIGt2TVv9Q8lSgKPn8zP4MJi3ryLJzyxgZPJJbz99CrVCbJP6TEj8mMTtG+n+IUwjzO84HAXaGio99VBbByZKbdPTs2GgXOToumqWnl/Jhnw8ZHjS8wfN/C6qq4OpVWLeO6nlzeBjZjmp7a9FXaMgQypa+xdXLe9hgl8aCIXKmLQ5i9k8T2bn3EzR7D/DcnjS2bKokavE13u71Lp42nhxOPsz46PHYLbOjzfdtmHtgLteyr9HVuys/DP+BmLkxPFz8kPUj1mNnbsfS00vp8WMPvrj4BZ29OnNo8iGyF2bz3dDv6OHTg4ySDD6/8DmRayNp9mUzFh9fjIPGgQ0jN5D3ah4HJh1gSqspvHfqPebsn8Pz7Z/n0ORDjap9CYLAjzd/JOTbEH65/ws/jf6JA5MO0My22d9w8v/voEl1qglN+Avx8uGXOXzvMPHz4v944/8S3jzxJhtubeDwmLtsPpVFTGYBGdVXSVOspcpwB50StkZB8Ow3aLPgI86mnaXHjz0AGOQ/iOP3j+Nk4STNP5grzYnwiCDSK5KWri05k3aG9TfX42HtwbK+y0Rp00fD1S/sf4Hvrn3H1FZT2ThqY4O1GQUjY3aM4UTKCS7OvEios/gruzt+N2N2jGF+x/l8c/kb2nu053bubQ5PPkzv5r3ZFrONiTsnkrsoV9IhTyhIIPjbYEYGjaRcV07FvbtckGVycNJByawvryKPvhv7klyULAV2z7V9jlVDV3E16yrDtg7D3tyeg+0/58N/DWNrWxU1gg4fGx+TqnXtXAGCOLQtPEoQZMjwtPEkqywLo2CkZ7OenE4/Lc0vTG8znR+G/8ArR17hx5s/krogBfNO3bhSGk/P6Zg4ESOAldycxJdT2PhsG15vlQeIwXNtldZOZUtNZSlVSgEbc1EJaFzoOHbG72zUx8JGK1aA8xrx8GrMhbtRCIAMvjgIC66Iw+R7A8FSUFKmME1iNAoNBqOBGqGu8m6hsmjUK0UlV2GuNKespgyVTIVMLnpaPD4UXsu1tje350rWld9Vm5IjlwJ3jVIjXfPfwv6J+xm6dShy5CzotIDNtzdTUFWARiFSgk7cP4G/vT8ZpRkNhuRrYam0pEJfIVWwpQDz0XmT/j4BEr+CJb1k/NRKlK81CkaTRKT+8dW/fr52vrzd/W1m7jP1jSh9vRRrtZhw7bu7j+HbhzM1RkG2xsAvzUGhbFw5rPYcd/HqwvS20+ni3YWPzn7Ezwk/42/vz83cmyTOT2ToT0NJLErkxxE/Mq3NNJ6Ofprrv0bz4x4YMsea8aHjWXtjrckx1CpYQZ3bt0KmwM7cjje7v8k7J9+hvXt7rmVfI/XFVJ7d+ywHkw7yYscXWXF5BYFWviSWp3LgSiC9jiZi9zoYZNCz2pVTFuJnxkHjQGFVIR09O6I36rmefZ1Ir0iuZV9jWd9l+Nj6MGf/HABWDVlFcnEyi48vlooKvna+BDkFcTj5MN8N/o65B+dK66897yefOcms7ZPpd6uMFTsrWdrdwIWJ3Vg3djPDtg6jsLKQrPIsUb1KJuCrs6TURo2zhTM9fHqQX5HP3rt7MNdBlQqWC/34xOomc9rP4YM+H5hcj5s5N+m6rivDAoexdcxW6fv2L4MgQEYG3L5NzfUrlF89j/xOLDbpOciNAkaZ6Gx+2xXuuMkpCvBE1qo1LqERhLu2JNwlHD97P6niX6Yt42rWVS49uCT+y7wkdQa9bbzp6NmRTp6d6OTVifbu7SUVqJzyHKJio9gas5ULmeLM3rCgYUwIm8CggEGS8MX94vtEx0UTHR/N5QeXUSvUDGgxgHGh4xgWOMykMFNcVcz46PGcSj3F14O+5vkOzzd6ClKKU5i9bzYn7p9gaqupfD7g8ycqtPwvoCnRaEIT/kJM3DmRnPIcTk47+betIToumnFR48hemI2blRvV+mosP7KUKsaC0YiVDg5thtJQf0Z0TUdn1DE6eDQ2ahv2Je4jeUEyGqWGGzk3uJBxgXMZ5ziRckIKEBw0DgzwH0C3Zt3o4t2FcJdwlHIllbpKPJd7UqmvpPT1UknysT7KtGVEro1Ea9ByeeZl7DVid+CrS1/x4uEXAbgx+waLTyzmfMZ5Tk47yaZbmziQdIDkBcnSfpadW8brJ17nlc6v8OWlL/ncaiwvle0geswOxoSPk7bLq8jDY7kHBsHAoBaDODDpALvv7mbSzkm0dG3JOz3eIW//di6e3crato1/XarlanTGGoxGQeoTt3FrQ7WumqSiJLp4d6FaX8317Ot423iTVpKGk4UTOYtyyC3Pxe8rP17v+joL0z2xmjaL7tPhnE+9NzACcvCydCf1lQxavWFLnKYCuVxOoEMgCYUJUlApR4bx0bCxrdqWFzu9yOY7m0kpTpF2Vz8IVRrEWYH6j9mb21Ojr6FCX/En7ixwqZSTrzGyZSeMugtbWsH73SH9EUtJKVdiJjeThpvrw97c3kRS8vn2z9PPvx9jdoxp9L1au7YmwiOCqNgoSmpKiPSKJLssm9SS1D+15t/DsSnH6Le5H5YqS3RGHQH2AcQWxNLatTW3cm/ha+tLakkqTzV/ipOpJ1Er1CbJi1qhRmvQolFoqDKIjz/T6hk23q6XZAtgpQWHaki3E2lajcn4muug4p/Q8gWI+w1Pr2Y2zTAIBrLLsk2C9y/6f8HG2xu5kXODCWET2Ba7DYAbc27Qxq0NAGtvrGXJxpnYaeGePejNVWwbu40J0RMYGzqW6LhojILRlIL3GGoH110tXenp05MdcTsYEzKG6PHRFFcV47bcjZDMGm5+D5dPbGKXMYZlvy7jpU4v0dKlJYuOLTK5BzQKDR08O1CqLeVW7i2TRKqVayte6/Iacw/MpaymjOGBw8koFeeCbuTcEN83/H06bX2Ky8ocHiwXjQ7XtgOrKTPw8Qhl4+2N3M69TahzKNX6alKKU/C28ebIlCM4Wjgye99s9ibspb9/f86mnRWvpVJDpa4SJwsnbM1tSZyfyNRdU9kSswUAP3s/6bPWzLYZShTcyx6HsHw5ic5y5o1QcspDVMcTE2MF5TXi5yzIyocBYSOIiosSle3KDYyMFdgZJkpzA0SPi2ZMaN1nIq8ij4g1EThZOHF2+lksVKbzH/9xVFRAbCy661cpuXIWw62b2CSkoikX79li80cJhStk+TmjCwvBqm0ngnzaEe4STqBjoIlZqt6oJzYvVkooLj24RFx+HAICVmZWRHhESElFJ89ODRQbi6qK2BW/i20x2ziZehKFTMGAFgOYGD6RYYHDpEQ6pTiFqNgoouOjuZp1FXOlOYNaDGJs6FiGBg7FRm3T4FATChLEpLCqkOhx0fRu3rvBNnqjnhUXV/DOyXdwsXTh+6HfM6DF7xuY/q+hKdFoQhP+QvT6sRce1h78NOanv20NKcUp+H/lb1LZt/7YWhpaVcmUWGoFyuUGNHooU0OwxosfJ0fTeW1nVg5eydwIsYInCAI/J/zMq8deJbkomYnhE+nh04O4/DguZF7gRs4N9EY9lipLOnl1ItIrksLKQlZdW8XMtjNZM3zNb64xYk0EHTw6cGDSAYkq0H1dd85lnCN6fDQD/QfSd5PYjXCzdKONexs2japzSe78Q2cuPbjEmJAx7EvcR1rIGtxjprGp99dM6TEfEAe4R24fKRlrqeQqfO18SSpKMukUyARoVm1GukZnUuW3VFny0+ifGLF9BDIBXryt4cvWYkBZq+H/Vve3WNJrCW//8jbLfl0GgK+t6F5+/rnzvHjoRTbe3kjSnDi0Qf7csq9hyMTHgjkBeqTDGR8YFzKOqPgoVEbQySHIMYiER3M19dGqQAnBQbT17MCGWxsklRyVXIXBaKgLRAVw1CkpNBOPtdbfoLaS/cSdjXpwrpQz45qReVfAuxRO+cC/+ltyxLMSQyP78rb2JqNMDBL97PxIeZiCs4UzBZUNh541Sg0TwyeyL3EfBZUFdPXuyrmMcwQ4BHCv6J44tKwwQ2vQYm1mTVlNGeZyc6qNv+3B8VuI9IokryJPHFCXyU2q+/bm9siQEekdybn0c1Tpq3ij6xssPbO0wX5qk6gxwWOY1GqSSfIkM4qdK+sa8bMG4GXt1cCZvXU23Pwegv7pRoW5ggdlD574OGpVvxw0DowPHc+qa6sAiBoXxdjQsQB0/r4j95OvoBCg0lyJu1sL7hXfw8vGC08bT5KLkk3ogukvizTIA4kHeOfkO1ioLCivKW+QiMiR42bthrWZNQmFCZjp4OEKc0qenYCn80YsVZZsHLWRmT/PRK1Us2boGm7m3uSdk+9gFIx4WntSUFGA1qhFKVNiZ25HQVUBdmo7HmrrqHYKFDzX7jl+vPUjOoMOpVxJwWsFfHnxS9479R5dUuHds9AvBSrMZPwULnB9cFtsuz3F6fQzXH5wGSszK6p11RgxMqPNDN7r+R7Lfl3GN1e+Qa1Q82m/T/ns/GdklWVJhYmDkw+i1Wvx+sLLZI5oRpsZHEo+RHZ5Np08O7HMeRJdP9zA7QfXaT8H3NROPDSUM6fdHOLuX+JY/kUQ4LvB3zL30DxkyHj7jIwEByMP7OS0HzGXr659S4BDALuf3k2YSxg1hhqe2vgUSYVJXJl1BW9b7ye+J/4QggBpaRhuXKf48mmqr19GE5eI/YMi5ILYJUp0FM0j03xsqQzxx6xNB7zCIgl3bUmIc0iDpEcQBDJLM7n04BKXH1zm0oNLXM26KqlAtXRpaZJUBDsFNzrXUF5Tzt67e9kWu40jyUcwCAZ6+/ZmQvgERoeMlmhNyUXJRMVGERUXxY2cG2iUGgYHDGZs6FiGBAyRkpDGcPTeUcZHjcfD2oN9E/fh7+DfYJtbObeYuW8m17Ku8WKnF/mgzwcmEuNNENGUaDShCX8hgr8JZkjAEJYPWP63rUEQBBw+dWBR5CLe6vEW+RX5uHxWVyJ10oi0KJVBQKsQsKiBzOXQ+yVbDN5e3Jh7E6VcyY3sG7xy9BVOpZ6in18/lvdfTktX0wHpSl0l17KucSHzAuczznMh84KoDvMIg1sMZlTIKCK9IglxDjEZ5j2RcoIBmwfwUueX+Kz/Z4BoOHg16yol2hJOPHOCYKdgeqzvQWx+LB/2/pC3erwFiLMZnp+LvPPmds0JdQ7lTefRdP31OQa7dsXa2YuEggRi8mJMaDa1QXWAQwCz2s0i0DGQAIcW+EX0J27CU7S3qEtkrCYG1QUAACAASURBVMysqDHU8Fb3t/j2wgqKKosYnACn29ZRPwBWDl5JT5+etP6+NQajATOFGTZqGwIcA9gxdgf+X/nzZvc3abHjOBNWnqXt83DbrY4GU5sgrL/oyvTOooSqH/boSx+SbiOYmCs+Dg+DJS4eAdzJEx2Ua4NAhUyBUTDWDW0bwVphTqlQF4x38+7GxQcXTYaR/yz8rXxofymdf1wU6JYBqbbwzx6wsTXU1KOZ1x6jWi76aPxW1VwukyMTZJgpzZjRdgYLOi1gX8I+Fh1bhIulCyFOIZxOO42t2pYKXQVqhZoKXQUOGgfJibo+6nca6qN+crVu+Dp+uP6DNA9SC3crdwQE+vv1Z+PtjSyMXEhL15Y8u+dZFCgw0PAY3KzcpGBdep9H3acrq6DfNHiogf5+/TmacrTu/MhUjL2lY/NusP3QCh87nwZO5x/0/oCu3l3ps7GPSZL8R9AoNeJ8REUpAUXgprDjVjMzDEYDhdWFEpXJz94PnUEndQ2mtprKjyN/pO/GviQWJrLr6V10+qETrV1ak1qSSom2hG5e3civyiezNFNyfgf4+gCMjhdd6a0txP13a9aNLaO3SHz2WT/PEj0zBIGymjJaOLQgoUBMqOvfu7US0/VhZWZFeU05n/b9lCGBQwhbKSr9BDoGcnfIYYzr1qJd8x0WuUXcdIXtkVYUjBzA8eJrpJak4mLhQqW+kmp9NQajgQH+A6g2VHMq9RTPtX2O3Xd3S/fTp30/5dWur3L5wWU6/dBJuq7v9HiHZ9s8i99XflIxINwxhGE5tnyivEjbbLjhDnMjXuDbId+iWiJHLxNE6uUj5tOBLfB5Z7BxdMf1qREcSzmGRqUhpTiF74d8z+m002y8vZFT0041kPv+Uygvx3j7FkWXTlN+9VcUd2JxvJeFRaWYWBdqxIQi2UvDw0AfZK1b49C+GyHN2hHqHGoizFEf/y4FqjFU66s5mHSQbTHb2J+4nyp9FV28uzAhbALjwsZJ81yJhYlScnEr9xYWKguGBAxhbOhYBgcM/sNEQBAEvr78NS8feZmBLQby0+ifGsy4Vemq+ODMB3z666eEOIfww7Af6OTV6YlP9/8amnw0mtCEvxDZ5dl/m+JULWoHwq9lXwNEh26oCz6LqotoZtuM1JJUZAJUmsGQ2RpuaUr4cUsNyeF7WfZwPxtubiDIKYgDkw4wqMWgRnnBFioLuvt0p7tPd0D8Ek8pTmHSzklcz7nOsZRjHL53GKNgxFZtS2evznTx7kKkVySdvDqxvP9yXjryEq1dWzOl1RQuPbjE7HazOZt+luFbh3P+ufN80PsDRu8Yzeprq+ng0YGCygITOc/7D+9z/+F9DiQdABn8WnCDMDOxsqaQK/Cx8cFCacGd/DsICPja+ZJXkUdP356ihG5qKqRnscY7H0yEmGQ83+F5Pjn3CVX6KjQGuNjembLqQul8GgQDLxx8ASszK/RGPU+HPc38iPn03NATCuHjcx9jobLARqeg98azbGklJhm1XgcABycdpP+mfmidHZHL8jEKRlIoJqQasKHRJKODWwdmFPuwoHIn2bm3cLZwpri6WFJmejyQF+SgrtBCvQKkESOulq5/qnLuaulKbkWuRKHJqMzmXpjAjjBolwUvXoRvD8CXh2FVe1jWDfKt6oaZtUZtg33W8uIFBIyCkcEtBrNh1AZqDDU8u+dZjqUcI8AhAEszS5ILReqczqjDxcKFrPIsgEaTDMAkyaifXEi0MpmSipoKzmeel2hQICbj2eXZTAyfKNGgRgWPYuhPQwEaPccgBigvd36ZLy5+YfI+AG6V8Hx1OLmREay/uR4AWzNbgp2CuZR1idB8uOCjoFxX3iDJGBIwRKRuPDIxbO3Smms51xocVxevLszpMIdpe6Zho7bB2swao9FITnk2vTKhaxp82Osh1GO21SbNtXSgQMdA8ivy2XR7Eyq5ipOpJznxzAlePvwyAAYMlNeUM8B/AIeniJ3Cm9k3abta9J+Y0WYGe4v30Ce1CEt93f7PpZ/D50sfrMys8LbxxlZtS0FlAfsm7ONW7i2WX1iOQTAgQ8Zn/T9j4dGFOGoc6ezVWfxsP4JaoaZaLybMrx1/jU/Pfyo9V62rBl9fFB98iMWSpXD0KH7ffs6H+35Bt38nH3eF93uL1M+8wjzpWl7MvMhbPd5iWMAw3jr5FkI9bfDXjr9GXkUen/b7VHIEFxA4cu8IS3svxcfWh0EtBrF2+FqW/bqMjwv3oRYUZNvLEGR6bD9fydL8StEAUDD14gzLg2INtHBvwfnM8/Ty7cWKgSt4/sDzTN0zFYDvh37/5EmG0YiQkkLx5TMUXzqF8RHtyTWnDDlgJ4McJ4j3UFIwyANdeChW7bvQPKwr4a7h9LH8Dc4eT0aBmtZ62m9SoBqDzqDjxP0TbI3Zyu743ZTVlNHGrQ1Lei1hfNh4fO18AbhbcJc119YQFRfFnbw7WKosGRo4lLd7vG3i5P1HqDHUMP/gfNZcX8PCyIUs67usQUfldOppZu2bRVpJGkt6LeG1rq+ZUMGa0BBNHY0mNOEvQqWuEsuPLNk0ahNTWjWu6PNX4dWjrxIVF0XqS6ksPbWULy5+QYm2BIVMgSAIJvzuiYYQtiricdGpObZWS2A+vDtIje/bnzGrw5x/yxBqy+0tTNk9BUuVJSOCRvBcu+ekjseFjAsUVxcjQ0a4Szhag5aUohQ+H/g5Cw4t4KuBX6FRaXjjxBtU66uxVds2CIbNFGaYKcworynHTGHG+hHrCXMIos9XHXjBvj/bLFMorylnx9gd9NnQBxcrF7LKsvhnn38yL2Ieg7YMIjY/liNTjtD5ZBLlM5/B/m3TKrFSruTNbm+y7NwyjDVaXPVmZJrX0MunF6fSTknb1Vax1Qo1R6YcoadvT7qv78659HMoZAomt5yMx7cbWXoSgv8BlZ6u5FaKnYsRgSPYM3EPoQvN6an0Z6NtKlYqK2Y49uWTjDr63eNdjTnt57Bq4DeMe8GJaI8SkImSxIVV9TKlx/AozsHTxpMHZQ/qDMn+BFYMWMGLR1783W1cy2DONZh7Bdwq4EALeOspuO1uGmTV0p6gbigYYFzoOCaET2DWvlmoFWo2jNxAfmU+k3dNll67cvBK5h+a32AA/t85JhCr9ztid0iJBoCN2oZSbSmhTqHUGGtESk9lAZklmQ2G0TVKDVq9FiNG3CzdyKnIefwt+OVHiG1mzoI+WikxCHcJJ8w5jEPJh/hxQymXPeCTHg2P5+JzF5m8azL3iu+Z7NNMYcbPE35m5s8zJSrW2JCxRMdH08OnB/eL75NRmsGwBPjokjVR385j1Z11eNp4El8QT7W+WkqYfw+1w+FymRxBEFXVFkUuop9fP9q5t6Pr+q4kFiYS4BDA8+2fZ+HRhZgbwK1ayYZ5J6jSV3Hi/gmuZl0lsTCR3Ipck8+aDBk2ahspKaldU/dm3Tkz/Qwu/3Khg0cHDiUfMjWobAStXVszPmw8/f370869ndhFzcmhZt0PFKz9Cq+p+UQ8gMte0FzhxH1DARYqC6r11XhaezK3w1ze/uVtjBjp4dODM2lnAHH2ZvWw1fit8JMSXP3beqb/PJ2YvBiuz7kOQLvv21FcVSzNEu3bocK1WEfHOaCUKdAbDVJXo3cq3HWEKZ1nsTx+LWuGrWFG2xkcv3ecAVvEOYAIjwiixkU1pE2VllJy5Rx5F45Tc/0Kmvgk3O4XYKEVr2W+hTiYnd3cicrQANTtInCL6E2odzs8rT1/d6C8lgJVS3/6PQpUR8+OhDiFPLG0q1EwcjbtLNtithEdH01BZQGBjoFMDJ/IhPAJkqRsbF4s0XHRRMVFEZsfi5WZFcMChzEudBwDWgz407MqBZUFjNkxhgsZF/h+6PdMbzvd5PmH1Q9ZfGwxq6+vpluzbqwZtuY35W2bYIqmRKMJTfiLUDsbcWzqMfr69f1b17L1zlYm7ZpEwasFPLPnGW7l3EIhV5Beki5tE+4cTphLGDvjd2Iw6JEbIaQA/hFvzexTZcS39cJ39yk0Pg25q3+E4qpinP/lzOSWk9l4eyM7xu5gXJg4oF2qLeVEygmOphzl6oOrJBUlmVCRamFtZi1VLj2sPXgh4gU+OPOBJLs7u/1sVl5dyfjQ8Wwftx2AZosUBD5UkN7alyNTjrArfheLji2SgvATz5ygT/M+lGnLGPzTYG7l3OLwg958VPMLBzzFGRZbta2kXqLVa6msfEiNHGzU1njbNqO8ppy0kjS6N+vO2fSzANiZ2xHqFMqlB5dY0msJcflx7E/cT1lNGQ6VcG8FbGunYu4AnVSBliHjq0FfMT9iHs+ON+N8SzuShAK8bLxIH3aSKYsD+OmRCXr9IVmAdm7tuDbnGkNXduNA3q+oZApUSjWV+kpkyBqvuAug1sMzYRNYk7jtT19TMK2e/9Fsh5kexseKXY4O2ZDgAD+OD+BfzkmS6ziI8xvjw8ez/IIp3XB0yGhWD12No4UjD6sfYr9MnDjXKDVYmlma8OX/aK2/h0ivSFIfppJdno2NmQ2lNaUAWCmtKNeX42ThhJOFE0mFSQQ4BnC34G6DfciRo5KrGu3Y1CYL752EQckQOUtcV0ePjuRUiGIBeqOexG/lzByo46Rf3Ws7eXbiRs4Nevn24lz6Obp5dzOhXO0ev5uRISP5x8F/sPraanTGuhkjT2sxoRx6X83WLVou7f2G+25qZu2bBcCstrNYc2ONNB+lN+oZFjiM6HHR3Mi5QZ+NfajUVRLkGNSAGvVbqO9yHpYLF9bJuHflCKGhPU2qwoIgkFuRS8SaCGzMbLBR23An706j72GuMEcmk+Fn70dGaQbjQsfx052f8LD24F7xvQbXWSlXIkOGzqjDwdyBfv796O/fn35+/XCxcMZ5mSNl+kq+Oyhj5jWBg4Ey9nZ3ZqNbHnKVaUIvR04zu2Y8KH2AzqhjgP8APu33Ka1XtQZEaujokNHM2jeL4sXFWKutsf3ElkWRi1hyegkAToIGl/wq4lzgvVNw09eckz6BNNfPwErwp1R+D3fvWI5mryF+XjxKuZKOazoS4RnBkp5LmLBzAuVVpfzLahRtb+ejjI3DKTkb93yxW6eTw11nSGtmS0mwL/JWbbDv2JOAsO742jd/ogTg9yhQXjZeYlLxhBSoxiAIAleyrrAtZhvbY7eTVZZFM1tR9ntiy4m0dhXPZ0xejJRcxBfEY21mzfCg4YwLHUd///7/tmx8TF4Mw7cOp7ymnN1P76Zrs64mz++O3828g/MorylnWd9lzOkw50959vyvo4k61YQm/EWodQV3t/rjlvF/G+092gNwLesalzIvUaIt4Y1ub/DhmQ8REKUzY/Jj6O3bW6wsymB8tR/77FJY216GxZBneOr9jWhDg8hZ8THNZ776p95frVRLErXhLuFM2T2F5ReWk16SLv2AgThEG+QUhIuFC4eSDyEg0N69PfH58ZTVlElBxMPqh7hbubN+xHom75qMXtBLJmu13aNf7v+C3GDE0qjm1xm/Epsfyxsn3sBcac7up3fT48ceEk3HWm3NocmHGPLTEJ6q2ke1QgxUarnWr3Z5lbdPvi0uUgEqo4zWbm34fuj3UpDR0qWllGiUacv4oM8HnEo9xbsn38VB4yBV61/7FVSCjDUDXZAJWQgIUgU/xCkEioqISNOzMbxAUrQpdrLku/1Iicbj5mHXc67za/qvJBvFYHveVTn54wew7b5ontZohVomGvD9u0kGmFKBfiuIr51fqFHC5tawuRU8lW3BrF8rmb49iQNPQ7zzIzUscyUZZRnsjNtZb5liULlj7A4pSKrvQl6lr6JKX2XSBfGw8pCqzLWwMbOhpKZhAvs4EgoSKNGW0MqlFZ42nhxKPgSAmcqMCJcIrmRdoaCyALlMjo+tT6OJhhEjNuY25FfmN0gKlXIlOqOOS57w9hkY6tOXfWnH+KTvJ4S5hNHiqxYIWi0++QYSHlPLtDKzQqPUcDr1NAcmHeCz859Jz8llcvr6iwWN2PxYBgYMpFJXyfGU4wA8KHtAaC7s26Bl0UgLPhowi6K7ewHo7dubzXc2MyJoBHsTxMemtZ7GxlsbeeuXt6gx1KDT67AxsyGpMEk6nq7eXbmZc5Prs6+TWZbJtphtrLleJ/hQX20s2xrM9AIbXu3Pl5Fil8LSzBIHjQNulm742PngZunGg7IHbBu7jR7rezCvwzy23NlCibaEwQGDOZh0UFLoqqWTrb2xFhky7j8UnSQFBDq4d+BGzg2a2zcnpTiFZjYiNbSouoi9CXvZHisWIjRKDdWGarxsvZi6/yLan36i88ovGb4mi/etYWsHOStbwv1HFgr+Dv6SD4yFyoIj946QX5kvre1g8kFe6fwKAgLn0s8R6BhIeU05XjZe0nmY0+MV/nn2n8gEGJIAo5MDWTDtO0CGTK7AAUeqMyJwUl1HXV5Nv22DsarSs2jHA+yXDOZcwUNmDYOZ/utZlApDizTc6+SJITwMqw5d8O7cn2C3MFo+Yef5z1CgOnp2xMPa44n22xhi8mLYemcr22K3kVKcgqulK+PDxjMhfAKdvTojQ8bt3Nu8e/JdouKiSChMwEZtw4igESzru4x+/v2kos+/i/2J+5m4cyJ+9n6cnHZScmgH8Td7/qH57IrfxbDAYawcstLk2jXhydCUaDShCX8RaodA/+4ZDRCNyKzMrDhx/4REp1l9bXWdRKpcjrXCmq+vfI1CpsDZ0plbzubsd/uc8RcX8n7udtz3/ICwaCF9Z71GzK4dhG49hty2biiwVi4yqTCJpKKkur9FSWSW1inqWJtZIwgCqQ9T6wawHQMIcAjA0cJR2i74m2CSipJo6dKS8zPOE18Qz96Evbxz8h1KtCU8s+cZoM4lefWN1QD0bt6b7THbmbp7Kr4yBR7mopv0jL0zMApGXu38qsQXrk8XsDKzYk3XZQTfr+M/9/btTUFlATPbzmTp6aWi+ZcAqzt/zPTLr5NWksarXV7lo3Mf8d3V76TX+dr58nT001yZdYXevr15auNTAHiUwoJL8HlXGdcFkf5lrjDHxdKF+w/vE+IcAgn3kT+iNY0PHc8nv37CxfwbDHBwAeoG6+vDRm3D0tNLSSxMBBm8dNeOfnFHMZj/PgUGwKYKtBYqtMKTU4z+jDJVgyFpGZzwqOTEOJG+5VAt4/gGge4ZUDS8D6PDYjhbT7J2cdfFfPLrJ6y7sY5Z7WdRWFnIwC0DTXZZK0EKYgBbO6NhrjSnWl+NudL8iZIMgKLqIhw0DszvOJ/Z+2dL/htFVUXSfu3N7bk++zrd1ncDxNmK+vu3N7enTFvW6P5r5XBvu4FSgIS757GwsZCkNGXICCwUDRZzrcTjqVXAOpN2Br1Rz/5J+6nWV3P43mGTa9FvUz/2T9zPjZwbLIpcxHPtnsP/K38qdZXYVMEvG+F4sJryGVMwU5ix4dYGQPyucrd2J7kwWaIpuVu5s2LgChYcXgDAioErCHIMks59F+8uXHlwhde7vU6gUyBKhZLouGi8rL3IKhd9ZJRyJbuf3s3IbSOZP/At8m8d442EZHKe60NaqVhkKKoqIrM0k4sPLkrnqNUqMaP+/vr3EqWqsLKQEKcQ0kvScbZ0Jq0kTVJLszO3M5HJvZotzqElF4kzPBqVhte6voat2pb0knSOpxznXvE9qvRVyJCRWZqJ7SofOnp2ZPi6fzC8whvrjduYu/swi07C8ebwQzvYE5yEVlWnlKZRariefd3kO3589Hjcrdw5k3ZGuidrv9csVZb88+w/ifCIoLymnFu7F3Bgqx5kMmQoHl1/BTLBgKduKq0ezbn8+gMoVIlk+rtQ/VQbXm7TAT+HPD6TbSKmRS82j97cqKHc43gSClRX76683PllOnl1+lMUqN9CclEy22O2szVmK7H5sdib2zMmZAyrh66mp29PFDIFN3Nu8s4v7xAVF0VSURJ25naMCBrB8v7L6evXt1FZ9D8LQRD47PxnLD6+mBHBI9g0apM0KC4IAmtvrGXR0UWolWq2j93OuNBxf70/yf9P0JRoNKEJfxGyy7MxU5g90Q/AfxtymZy2bm05ky7yi+3UduRW5OJj60NGiWg+VjuM3N2nO6uGrCJybSQfWB3gzLBdDN09lklH5xD1zSY+37MSrwPn2DnGmbSxfcmw1JNUmER6SboU8FiqLKXkIdIrkgDHAKzNrBkbNZY1w9bgoHGg/+b+OFk4MbX11AbrraipILkomWdaP8O6m+to49aGf3T6B7dzbwPw5YAveenIS0xuOZkdsTtM5hFsP7bFiJFgp2AM2geck+WxavdU+vn141jKMSaET6AxBqlRMDJm19OS+Z5cJmdvwl66eXcjZGWI6IguEwPAdI2WHj49WHR0EUt6LQHESqqF0oIgpyDu5N7B1cqVkdtG8o+If0jn5b1ToNeYsSyyjo7xYZ8P+fLSl6jkKrH7df9XtoWJAaeLpQvOFs5cyLhAWcTvK7QcSzkm/f/AwmEk5a6jncafXGX17w54l5oDRt0Tm8gBOJk7kV+d/4fbWSgtUMgVUjfncQgyKNQIDJoCk+/Airv3OLM3i+tusGgAnPGV8cmvn2BnbsdLh1+ip09PBv80mKwy025FJ69OnEo9BYjJRW1nozZINRobmhf+Hqa0nMJLR17CTGFm4pNRm9QWVxfTdV1XqWtS+361QX9JdQlKhfhzq5ArEIxCg8Qs2xpyLSBXVkH3ZiL//r2T71FaU0pYHty3B4MceNSRqh1Od9I4kViQyKJjiwBwsnCiuLqYieETOZh0kC7ruvCw+iEeVh6ErwwXg10BNu4R790pQ7REt57K/sT90lB1fEE8CzsvZPnF5dib2/NCxAt8dPYjdozdIXWK7MztTD43ChTYaexY1GURlbpKxuwYg6WZpWRWCbDn6T3cyLmBWqnm5ciXsXspEgYNYqvvQoiIMDkfOoOOU6mn6L+5PyqZCndrd1GxTi5ex/qJSPlDkdZY+z71kwwZMpwtnMmrfDTcjZz4gnjiC+JNtlHIFLR0aYnBaOBO/h0MgoELmRe4mHmRNxCwCreiY7cOeB69yOK7jmzbWUihRuzIrWmXgsxVJtES6yuLFVUX0c6tHafTTqOQK/Cw9kCr10r3yeAWg7n/8D5V+io+u/IlDtafoeaxYF6mwN7QgnI1KFFwOPoDXu3+OmH1At8BwPDkiUzeNZl237dj5/idUue6Fk9CgVrSc8m/TYH6LWSWZrIjdgfbYrZxJeuKOJsXPIJP+n5Cf//+qOQqrmdf5+1f3iY6Lpp7xfewN7dnZPBIVgxcwVN+T/1HB66r9dXM2T9H7NB1f4v3e78vUaGSi5KZtW8Wp1JPMb3NdD7r/9n/id/s/y+jaUajCU34i/D2L2+z6fYm0l5K++ON/wLM2vFPrsXaYm70pZx7ZKk2YVSnUKotxVZtS1F1kTSQu2fCHuLz43nrl7cIdgzGVWHD+ayLaOVIAalaD4GF4GbjQbvekwhwDpaSCzcrt0arQW1WtSHcJZzNozfz0uGXWHV1FVdnXyXcJdxku9Opp+m1oRe3n7/N+pvr+erSVxydepRd8bs4lnKMhPkJvHfyPd4/8z4A3w7+lnkH50mvD3YMpkpfRVqJeO5t1DY4aZwo0ZZwcNJBrNRWhK0M49S0U/T07QmIDuofn/1YNG+W1dGmaoPHYYow9ulj8TV35aFMy67xuyRp0VoOeJBjEIGOgWSUZlCqLSWzJFPieHepcOTs58Us7Gvky0gx2DFTmJGzKIfArwMREMh/NZ+zH8+lR80qghwDae/RgfKacipqKqi8c50LlsXS+a+t1gMNXKjNFGaotQZmxWuI7mJHej2PhvoKV/8pqOVqaR7ht6ReH4eVmRUVNRWi1GotD16AUdm2TD9TypC7AkUauPTCcL4JLuHwg9PSa+u7gZsrzFncbTFLT5v6WQQ5BJFQJMqj1leyqv3/k3ZkZradSVRclDQ31MmzE1ceXMGIETO5GX4OfhRUFpjMiFiprCjXlaOUKZHJZL/pUbJyP7wwFHZEfs5NRQEfnfsIgKW/QLNKJdOHNpSsrZ17sDe3p6S6BCNGZMhYPWw1Xb270n19dwqrCqXE5NXIV6lcuYJv9tYwYgL8HAyLuyxmS8wWmts152z6Wdq7t+duwV0qdBUcmHSAgS0GMmDTAM6kn8FSZckA/wFExUWhlCvRGrQSHezrQV8zL2Ie0/ZMY3vMdhRyhZSYvdHtDT7o/QHNVzSnv39/fhj+AxgM4OMDw4bBd981ODYAt8/cyKvI472e77H09FIuzbzEnrt7+Pry19yZe4cxO8Zwr/gepdpSejTrwZ28O78vevDonNub26OUKymsrNu2PqVNhkykpqnEQf7H58SC8+HleFvGXi7HodzABS+xy7E9DCoaKbjLkOFr50u1vhqdUfebM0Qt9V/iQEepowGAYKBQdplJA6rILsvmq8tfMThgMOtHrMflMSWotIdpjIsax63cW7zW5TW8bLy4/OAyl7MuE5sX26gR3v9bClRjyK/IJzoumm2x2zibdhYzhRmDAwYzMXwiQwKHoFFquJp1lai4KKLjorn/8D6OGkdGBY9ibOhY+jTv828JjfwRcspzGL19NNezr7NuxDomtZwEiMnr8vPLWXJ6Ce5W7qwetvpvn6X8/wuaEo0mNOEvwnN7nyMmP4ZLMy/93UvhTloZL66NwygYkaFAwICAgNr7R9ydtZJkZ63RVy1qB1dDnULp59GVE+c2E2dZxRcBLzBxxDscnf0U46PiyGruhPOuI1i0ave763j35Lt8fflr8hbloTfqiVgTgUKu4PLMyybt8U/OfcJHZz+ieHExAgKDtwzmWvY13K3cifCMYP2I9QiCQNA3QSQVJdHLpxfnM89LAfTy/ss5nHyY4ynH8C2CUYNe4usr30pOx7XB9sSwiTwd/jTmSnMGbhmITAAPvYYsVTV+9n6S605gigAAIABJREFUqk8Xry6UJd7GTGvgmn0VaoVaHEKN+Umib1iprNALegIdA9kyagutV7WWAhkzuRlH9tkSkFSE/zwDBrWoaKWUKRkePJyjyUdxtXIleUEy/d/0Jre6gJ79ZnEo+RAz287kw7MfUqEtF0PU2kRPoRYpQdqSBso74S7hZBSnMfhmOVtDBZNuRXO75hKfXULtr0IjXY3HHbxrUT/Yf5LHG0MtBaXR54pg/mWYd8ccRZWWrzsILOsOudZ1wbqThegB42zhTG5Frsnrvxn0DQuPLkRr0NK3eV+yyrOIy48DMJGu/T0EOARwbvo5uqzrYqLwVBu8vtz5ZRIKEjiYfNDkdbXPu1u5m8wgtXNrx/UcUY1IKVPSM1nPL34wL8+Xb1xTJT+Mg7stONPemWXN0pEjx4DBxCujfgevltp1ctpJevn2YvCWwdJcyRvd3uCjZtOpDAskrn87OkbckM6dSq6ilWsrYvJicLNyI60kjeltprNuxDoAPj//OQuPLaSVaysuzbyE5+eeFFUV4ahxxNnCmbuFd5kYPpEIjwheOfqKdD0KKgvwsfUheUEyB5MOMmLbCK7OulpXbX/7bfj6a8jOBgtTpaCKmgqc/uWEUq5ELpMzKXwS3w39joySDJqvaM6KgSvwtfNl6FZRVrjg1QKWnlrK11e+bvS+sze3R2vQUmOowSgYG6iSPX7Nar//Hk9C6ytxqfQwNBGev6mgb6KBCjPYFg6fdoVkB0AGNkIrfAwzsMIfrSKNZFZTKrvd4D3lRggsbYWr5XfIBRmCXPxuBgG3e8+z1e0pZB99zIH0E0zfOx25TM7GURvp59fPhAJV24mpvT9aurSks1dnKbH4T1CgGkNJdQm77+5mW8w2aRaon38/JoRNYGTwSGzUNlx+cFlKLtJK0nCycGJ08GjGho6ll2+v/0pyUYsb2TcYsW0EeqOePRP2iPLlwPXs68z8eSa3cm/xSudXWNJryX+sm9OEpkSjCU34yzB4y2DMFGbsmbDn714KizckcOVeCfU//QIGirhMjPJlBATpR9bZwpn8ynzCnMMIcQohriCOuPw4unh3oZmFO5dvHSTFvIp2al/CgrqTef8WdpdvY1UD2jYtsW4TgQw5MplILaj/t6CygKi4KEYGjcTb1puCygK2x2ynrXtbevj0kLbbc3cPOqOOCWETkMlkaA1a1t9YT4m2hP7+/enk2QlBEFh+YTkquUpSBnKxcMHb1ptr2ddQypR4Kx1Q5OQxoMd0vo1dz+x2s1Er1cTmxfJL6i9YqCwkHjWIRnb2cgtKZFrJg0KtUEtSpfOsn2KL7hpy5BRVFxHoEEhiUSIquUoyEhMEgTDnMG7l3ZL22/4BXF0D00fA5vZK7M3t0Rl1PKyuczr2s/NjXsd5LDy6kDdzAjGMGcWyX5fxfq/3effUu7UXzSQZ6Ne8H8fu11GmaivNz7V5jrU315rcA38UXNsYW+FjFIOjcu6RplhHteLub5oDPl6dVyvUIr2MhsPq9SFHjpnSDEEQGqxHIVPQtVlXSUIUwFoL02/JmXfRSGARHPeFVwdAjIcCfb0hd3u1PcXauoToxDOiAaTeqGfl4JXsiN0hyRD/Vkfj8cRAo9SgN+obSOQqZAraubcjNj8WbxvvBk7tduZ2KGSKBpX28WHj2RG7AxC7HqqScixrINMWzGUqqnlkmPajGxMmqThmVjf0XkthGhk0ksTCRLLLsymuLsbbxpuM0gwyXs5gV/wuXjwsyg372flRVF3E/pPueFxL4p3PhrAlda+UDNSijVsbbubcxNXSlfsv3kej0pBUmESb79vQw6cHR5KP0NOnp3TuzBXmVBuqTc6VQqbgn33+yesnXgfg/IzzRHpHMmjLIAorC7k863LdSUhOhoAA2LwZJtdJFAMsP7+c146/hlEwYm9uT/KCZInGMnbHWGLzY4mZG4PPlz48KHvAvgn7GLV9FHpBj6uFK5ZqSwRBIL0kHYNgkJKPYYHD2Je4j16+vYgeF01KcQrXs68Tlx9HcnEyZ9POojVoUcgUVOurn7jbZV8hKqm9+iv4l4jdjQUjWhEs/078LqtX1LmpmGuSbMy8o6J9sYZNvqVYmbXH2W0x+RUastX3yDPbQqrlWMzffBf8/Sn78XuOWOTw5i9vklSUZCJ8UF8F6qH2IV9c+IIAxwB2jt9JC4cWT3QcfwaVukr2J+5na8xWDiYdRGfQ0cOnBxPCJzAmZAyOFo5cyrwkJRcZpRm4WLpIyUVP356Sstl/EzvjdvLMnmcIcQph74S9eNp4UqmrZMmpJXx+4XPCXcL5YfgPdPDo8F9fy/8amhKNJjThL0K779vR0bMjq4au+ruXwrhPb1BQ1nDYt0ZWQILlMxRWF6KSq0S+d1Ux9hp78ivz6eLdBZVcRUxeDHkVebR1a4u1ypL7KddIV1XiIbPB1zOcqppyypPicCjTU21ljiogCFQqSWO//t+4/Dhs1Da4W7sjCAIFlQXkVuTSzLYZGqUGAYF7RfewUdvgoHGQXldWU0ZBZQHmCnOcLZ2p1leTX5lvEjSq5CpJFQZEfjMGA0qVGVqjDmu1OIhuEAxU6irF4Nioq6t0PhbI/6dwZCN4lUKruZhIuf5fgY3QijaGPw6O/k7IjDAwGV68BAPuQboNvDQQ9gWBvpFzWp8ippKrMBgNv5sAPY7Hu3sma0GGj50P6Q/T/9Q+XSxcpNkBQOokWdVAuVrcr1IvUP4R2L0po0opmKyl/jE97pPSzKYZ6aWiXLWXtRfhLuGk3jpNmrqKFuVmpLiI3UmdQYdaWWdyV/v56e8vzkwJgsDRe0fRGrQMCxzG2fSzkphD7edFEASCHIO4Wygqbo0LHceFjAtklmXiYO7A5FaTKdWWsuHWBvr59SPcJdyk6PD8q9sR5DJ++NdE6XG9Uc+3V77F1cKV+yX3aevWlhFBI6TXpD5MZd3NdUxvM53Uh6mcTD2Ju5U4x2FlZkWJtoSOHh25kXNDSgwfdxEf6DeQYcHDTNaiM+rYEbuDK1lXGOg/kNyKXDJLM3lQ+uDJr+2jpqGFDsKMX6JRdEQmU9R7WizqPLT7F/PvO7PY+SYrsttgc/Emb/aF6RGzsSuq5PN7m8m3hKHBIxgcOJjLMUe4dOsgsTbVCDIx2XSzcuP+w/v42vmyfsR6evj0MFnKnVyRXpZbkcvGkRsZETziyY7hd1BjqOFI8hG2xmzl54SfqdBVEOERwcTwiYwLG4eHtQcXMi4QFRfFzvidZJZm4mrpypiQMYwLG0f3Zt3/Kx2VxiAIAh+e+ZB3T73L02FPs27EOixUFvxy/xdm75tNZmkmS3otYWHkwv9qN+V/GU3D4E1owl+E7PLs/xPStgB+rhYUlZdgfKyjUUEyhY+crXVGHfbm9mSXZzMpfBLrbq7D396fdSPWodVr6bupLwkFCVyceRE/W19WvTWAeWbH6ZpWxMZ3riOXK/hp2RQGfhSFRhaL7ruVOE2Z1WAt8w7M40DSAW4/fxuZTIbBaKDvpr7cK7rHxZkXKaoqwv8rfzaN2sSQwCHS6z4++zEfnv2QSl0lM9vNJLM0k3U31iGXyQl0DORuwV10Rh1tXNuwb9I+5h2cx8HEA/gVg8LLlc7BfSVayN2Cu4R8G8LiroulOQ9f7EiViR2G2oCwh08P4nJjKaiuC+hqhwi9bbxJK0njmVbPsCt+F+W6cqzMrCivKX8UriuwUlsRcbeU/ilGRj0NKBVYKTWMCR3Dv/r9CwGBbXe2mZjefXVYxqgJSzBOe5ZWq1rhbuXO3cK7yJARnCcQ/4ii7WDuQE/fnpxKPdWA2tTArM8I1JOBr6Xb1MLHMENKMoBHfw34GmZwW/lSo0G3k8YJmUxGfmW+dF46enbkYuZFqdPTGMyV5mj12karxo93GuzUdjzUitfE264ZhwMzOBQoEJwP398PY8ueeOR6I0t6wQ+dVRSY1SXTGoUGnUH0kTAKxj+VEEjnSFclyj8/kqSthYBAM5tmosxuvcOo77tRn+pUiyCnIMqzy+u6aDJwqISOmZDkCPccBAKKRLWp2iQDxOBJIVMQ5BhEYmEiWoNWUsCqdWdPL02X3tPd2p3wlHKivqqix3xLbthXgK4GS5UlNYYalDKlRIusPd81hhqyyrJIKU6hsKqQ1q6ticmL4UFpnZCAlcpK+r6oTTIAjqccl+5BSzNLTqWeIrs8G7lMTmZpJpmlmSYFB1mrGj7dnMvFs1vJcFQiCKJkdaWukozSDGTISChMYPX11SZFCoVMwZY7W7BUiTSX2o6KwSg6iNdPMgCTJAPgcMphjqQcMbmO9bEn4d/sPsvE26DCDBR6f9N5C8TPkxX+fLyrhizZXeT9ZNzMv82nSTB9FP8Pe2cZH8XZtv3/rEc2SgSikEDQAEGLBncrLsXdKZRSaIEK1pbSQgvFKW6B4l6KE5wETSBAIB5CdCMr834YdsgWej/3+77P3fb5PTk+RWZnrr1mkj3lOI+DfGcHVj/aQZqjpMS2L2YfB2IPUNWzKu816cfka0nUW32ESuWro9y4iRt2mfSN6Eu7Le1Y2nYpQ2sOlWfiqnlV4+qIqwzZN4SuO7oyvcF05rWY93/dRTBbzJx+eprtd7YTcT+CzIJMqnpW5ZNGn9Cnah8CXQK58PwCX1/4moj7ESTmJFLasbScXDT0a/iXJRdWGIwGhuwbws67O/ki/As+bfIpmQWZTDg8gXW31tE0oCmH+x+mgnuFv3Rd/9tQ4jhSghL8BTBbzKTmpf4jpG0BBoSXQRBA8bpab61YP1GsASQ5VjedGy/zX6IQFCy+vJh8Yz7rb61n8tHJxGbEsrfXXlx0LnTY2oFXhVmMXnCCCPvBHLA8oO1nZTEYshg8cydxZ37lUqCaUh+MJO795pBjqzjUpWIXnmU9kxWklAolv3T9hezCbMYdHsel55cAqO9b3+Z1F19cpKFfQ74I/4I5v89h7Y216FQ6zKKZ6t7VZaqTi50Lng6e7OixA29Hbx65wf2C53QJeVPZszZ255+Thm/VCjUvTTm8n+GNncqOVEMqzcs258zgM/xQ2ByA4ZU+QECQud7WQfOzz87KLr25Rbmv91fEjBk/J1/mnbBw2Qd+rSgF4/mmfBa0WICHgweeDp4oFUpZBQdgV0URXUAQ/i7+BLgEyAGdiIhRCerX9aJ8Uz5mi9mGfmVF8SRDgYLJeVXk71UKlZxkqATpXI68OzhyQDJnLGX3B0MHID0/3SaQsIgWqnhI17HKihZfA0gV8X9FTfkjFcuaZDQPbE702GhZieahh0DTuncJnKpkVgvJeTxtvpGtu6HCK2lNWUVZ8vn+K6fr4tAoNTioHajsURkLEl/fqt1fPFg7G3/2LRMv6/3XKrXvdBGe+t7Ut37e8w7s3Smw8HFZEKByGtx4XZ+wDrEvaL5AcsYOaEyRuUj2alCgkK+pUqjQKqU5p93tNvDNxiQca9Yjcn6aLONpTXDyjHlsfn+zfH6QkqTPwz/nRfYLPg//nH199pGSl2Kz3hxjDjqVTr4PoZ6hOGud5STDTmXHg/EPuDriKgAT6k7g3rh73Bt3j/vj7vNg/AMejn/I1yvjQK/ndwbzeOJj7o69i1alpXbp2oiI9KnaB29HbxI+TCBxaiJJU5NInpbM8g7LMVlMRA6PlNfeqXwncmbmMKPRDOzV9lQqVcnmedVr9Db7LSIiCAIhpUKYVHcSazuvZVePXQDs67MP02cmosdES/vYczcFswrI+SSHnpV7Yq+yx93OnX+FXB6/nrMofk0zuTzGxa00EYPqIlhEXmotVJwq3a8lkUtIM2XhVAgV02F79+1kz8jm9ujbrOq6lmFfHaZqxDmUCYlQvTphh29yfcQ1+lbty/ADw+m9uzev8t8UG5x1zkT0iuCbVt+w+NJiWm1qZaOM9WewiBYuPr/IhMMT8PnOh1abWnH66WnG1RlH9Jhobo26RUP/hiy5vATfJb403dCUPff30KNSD84NOceLD1+wrP0ymgQ0+cuTjITsBJqsb8LBmIPs7rmbT5tIilaVfqpExP0IVnVcxW+DfitJMv4ClCQaJSjBX4A0QxoW0SL7NfzdqBagZ8nQStQOcgZlFhlc4ZZyNNmC9IH6NFMys0rNS2V95/UAtCvfDr1Gz9LIpVRbUY0qK6pQ3q08z7Oe035LewpNhXT9eD0ny84mihQaf1WOhORYGtTqQr3IF/w8ujaeB0+TWt6HvN9PymsJDwxHr9HLxmAA/s7+LO+wnK3RW9l4eyMV3CvYeGqIosjlF5d5z/c9mgQ0QSWosGChWaDkPbA1eisqhYqRYSO5+Pwiw/cPR6vU0qdqXzmUCnJ742huDTytw6NBruW4vkHLQ6ciOQif9t40KCpi/fN9hBrd2PooghblWtCzck85wHS3c+dZ1jMb6UyQglURkfJn7lAnET5trQQBuYL8zcVv5GPvp9+XEyZPtQsX/KHqg0lsjd7Kg/QHNsHgI3dwF6QB2nxTPkdij8jBdKBzIPZq2+FagNlNZ/OiZpBceS9eZXfRST4o7wqOFBYzblmPQZSSij/CSeNErdK1bNZ3I0kadLYqIVnRxF+idxSaC/Gy98JH72Pz+3fBOr+hUWq49OIS4w+Pp9BciKeDJ9u6bwMgVWtkcUMImgTdekPpHHj4g5lby6HpUwHh9XvWKP59qUyVQoWI5Fxsp7LDy8FLludVC2raBr3x8DBajDbvo3iidCf1zlsdTV8nX5sOAcA1H9CZRJ5WLo1bnpRonA2wPZ+DVqrg77q7iwGhA7iaeFXyo0Ekz5iHs9aZp5OeyoWN7HHDEZOTYfNm1Fo7lChtukWdK3Rm1qlZiIj0qtwLgP0x+2m7uS11y9RlQt0JdNrWCXu1vTx34+3oTZH5TVdk6ntTiXkZY9Pp6h/aH3u1PRH3I0g3pDO69uh3b7K9PfTtC+vXg9nM6hurSc1N5W7aXSbUnUDPyj2JexVHfFa8zcv6V+uPk9aJgXsHyu8l1ZBK0w1NWXV9FVmFWdxPv2/zvNb3kQoWMxrOINgtmHbB7RhXZxxPXj1hU/QmUnJTaB3UGhedC1EpUSgVSvY92IeD2oHHGY9psLYBLgtd2HVvFwaTwSaJd1A7UM+nHuVc3ti3P1Oue702aV8EUSrqPFOupVHtKI4lnkUEsl0dqFmuIQpBgUJQUNUpmOAMaBwPvbyavz2c3KgRREVB794wfDiOvQawpr4kQXwi7gQ1Vtbg3LNz8uGCIDCtwTRODTzF/bT7hK0M43z8+bduhSiK3Ey6yfQT0yn7Q1karmvI3gd76V+tP1eGX+HBuAc0L9uc5VeX4/OdD81+aca+h/voU6UPF4ZeIH5KPD+0+4FG/o3+NvfsKwlXqLO6Dql5qZwfcp76vvXptqMbvXb3ooFfA+6Nu8eIWiNK3L3/IpTscglK8BfAWj36p1CnQEo2Fg0K4eMBZqJVk+UkwwqtUouIyKB9g/DR+xCVEsVvg35DEARG1hrJ8JrDySjIIN+Yz+WEy7h97cbAvQN5VKsc+2ssItuUx3vfV+VezAVc7d0YtfwKxyO+5ok2D13zVryYPBSMRjRKDe3Kt2P/w/021+9XrR99q/bl1JNTVPOsZvO7RxmPSDekIyLSZnMbfJykQPXwo8NYRAuLWi7CZDFR37c+v3T9hU1Rm/js9Ge46FwQAEeLis7bOsv+C4svLZbP3TSgKTfrrMU1w8BdZQZ+Tn44a51pUa4FTzf/yCmfIh5oc3jP9z3299nPT+1/euOnkC+pYimL8bEFBIrMRSjNMO8UnCiv5FTAG9nZ+c3ns+TyEn65JZmlPUh/gEW0YK+256r3bLxyIdecT/89/VEr1NL5X3cbnAoFVOY3gZ3xtcmeg8qBp1lPbQbbrVh5fSW7H+1HJ7zNR07PT0cpKOXgyJpsWDteC/euZeN+BZqit2lH7vbuHIo9VGweRsXN5JuARCvzdnjTzbuaKFW4HdQOOGgcSMhJwEHtgJeDl805/5h8WPcy35TPpqhNAIwMG0mvKr1k+oxaoUZUCPxaCZoNgRqj4IaPwOltajIWwuCbIBT++3K+ZotZ3seQUiFEjY6SOwUalYaTT07KnSBpr94kFx83+BhAHix21bnanHv26dk26lgCAk8CnMi3U1N0N4oMeynRuOhnu6azz86i1+jJLMike6XunIs/R15RnnztrMIsfrzyI5U9KjP8WSmq7r/ExsE1KSrrT3xWvNzd8bD3AOBWyi0evXpE/2r9bWbI8k35iKLIgL0DeJr5lLG1x/Lo1SMUSF4R1q5npwqd+KbVN7Qr346cohz5vgW7SsPHK66tIDww/J1dHRlDh8Lz5xSdOMqiC4vwdfbFRefC580+p7F/YwQEVl5byZoba/jo+Ed02d6FWqtqkVWQZeOpEZUShbeDN+PqjCPYNVh+Lqz3zNPRk1CvUBJyEphQdwIn4k4ws/FMHk98TN+qfZl7Zi7llpbDVefK0UdHGbhnIHN+n0OeMY+PT33MjeQbNh2xml41WdhiIbt67CLYLZjIhEgb5bRsIYoX+s/I5AqFpJIuSEWdHOEOpXTu+OYIDLmj5PTE6zjbS89H+/LtCXQpS5oDeOaBEBv77j3T62HNGvj1V7h0CapWpedjLbdH3ybAOYDwX8KZc3qOTTGhaWBTbo66SbBbMOEbwllyaQmiKPIg/QFzf59LpZ8qEbYqjPW31tOhfAfODD5D3KQ42pVvx5oba/D5zocWG1twKPYQA0IHcGnYJZ5NfsaStkto4Nfgbw/et0Zvpcn6JgS4BHB5+GUiEyKpvLwykQmRRPSKYE/vPf/tUr4l+NcoSTRKUIK/AEk5Enf4n0KdKo7WQa3l9n/xQMgaHAkIJOQk8PjVY+aensuwmsPYErWFMXXGcGnYJV7NeMXU96ZiMBo4GXeSIfuG0Pjhx4QovXHKNdJwQ2MOnF2DIAi83+kjSl29x5rOvngvW09CaFlMD+7RJaQL15Ou2ziGA3zT6hvMopmolCibSumlFxKd6quzX9E5pDNOWif0Gj0W0YKfk5+sje5m50afqn34uuXXzDs3T5J8FODzxBCMFiNtNrdh7Y21bLi1AYBKpSpxetBpck8d5XAwIEgV7a4Vu6JRqPny3DxEoJ5vffb33Y+d2o4ZJ2egUWjwcvDCggWFoJATDWuQAzDqjpaKL2FOK5VMuSkyFzHj1Azc7dwZun8oX5z5glvJtyg0F1LRvSL+L3I4dtiNotc8c6uyjBmJg64TlbwQct+6p3km6TidUqL4FA/Yk3KT6Fm5J82DW9m8xhogmEUz2UIUGa7zyXgdHGVwhZc5o1lQJ5ru0RYurIXAV7adgWdZz9AoNTItyoQU3NTyrkWeMQ8fJx/52KZlm+KocUQURRJyEqjqWZVcYy4peSly0gZvc+bfRbEaWnMos07Nkvem+JwBwO3SMLSLSN3ZpfmmIXz1G+TPg6+PgefbW/cWiuuljAwbSa4xV+6uZBdmY7aYqedT752v3XlvJwoUqBVqvB29yTXaXvCPMrjVvaqj0Gi4VlZLWEwufjpPqqTCfQ9pBseKPff3YDAaGFlrJD9e/VGi8GGhVmlJMnZUrVF8ffFrom4fZ0lELs/CazLSK5IWG1uw6PwiQHIvTzeko9foeZb1DLVCzcqOK3HRucjUMIDIxEgOxx5mTec1fHvxWwBUShU6pQ57jT12Kjvupd1j592d7H2wl8Z+jeX9/+rsV9xKvsX5+POMqT3mX2903bpYKlXi/tfTScxJJD4rniDXIFptakX5H8sjIjL//HxGHhhJxP0IisxFtAlqQ83Sklu2WqGW/XIm15/M6NqjKTQXkmfMo6Z3TZx1zgAciDlA++D2HIo9RN+qfVEpVKy/uR4fJx9mNZ7FRw0+wmwx8yTzCReeX2BT9CabxKK0Y2mG1RjGivaS78foOqP5+frP9NwteVcANsG2SlBSM+Eu/X6bxMLcdaz4oCrZQjRKhZJB14rIVouUb96LV/6eHIo9hF6jZ8v7W8i0GEizBw8D8GeJhhVdukB0NNSvD1264D/tS06/v5+5Tecy79w8mm5oytPMp2/eg740pwaeYljNYXx4/ENcF7lS6adKLLm8hPq+9Tna/yjPJj2ja8WubLq9iTKLy9BqUyuOxx1ncI3BRA6P5Omkp3zb+lvq+9b/25MLkGhes07Nov+e/vSu2puVHVfSZ3cfxhwaQ6/Kvbg/7j7vV3r/717m/0r8/U9HCUrwvwDWIUUvR6//4si/HoWmQnl40iqPCRKP3vy6zd8isAUAhx4dYnPUZgDGHx4PSOZ337b+ls/DPycpN4mfO/5MRK8IQsK7410qkJBUkV7HR1DvU28mHJ5A1Mt7dN18jXXLhpGXloCxejWaHLmHSlC+1dWIeyVVBmMzYvnu0neAFPgti1wGwLg64xhTewzRqdEUmAvQKXUkZCcw69QsAFztpMRpWoNpjKszTnY+/uCeimP9j/Hk1ROGHxguX29Zu2VkF2Zzc9cP7AxVUs6lHE8yn9Czck/O71vG+oAMvDWuHOl/BHu1PaefnGbdrXXodXpS8lLQKDVYRAtFliIUgoKyLmUREbEzwtJIN47UcuaSZyEqQUUpu1IMDB2ISqGink89NEoNc36fI1MxknKT+PblAc5W02OymBAQbIJNEZE0remdqljftvoWJ40TBeYC+VgrlCjZ+2CvrHOvNQIirz1V3pwsxEdHtGoyl1SdiFZOJlkTzX1PqD8cnArh+koIj5EGieX3bS6yGbL2dvRmTvgcMvIz5BkcgIUtFuKidaHQXEihuZCYlzEoBAVL2y6lXXC7dz6nnvae7/x58LJgFlxYYPOzpgFNbb7vVaUXBmcH5jeBspOgX3eJkpLyLRzdCKEpAu/IYQAoshTJyc/3kd/Td3dfaR8FJSIi7cu3t/F8Kd7diMuMQxAE1Eo1WYVZb9Gk/jgv0Mi/EXlFeRwunUvD55D62YTeAAAgAElEQVSak4q+ELJ04PCaBmevtpf9X24l3+Jk3En5/rYNlmhcMxvPZGu3LSyPKMQgFmFeuYLTg3/nYdpDVlxbgUJQkFWUxcS6E+Ug2iyaGbB3AHGv4jCajQS5BhEeEC6vbci+IaQaUqVnRESWBz3Y7yBJuUkM/HUgXUK6UMrhzTxErjGXXrt64eXgRdeKXQHpOYvPiufE4xP8eOVHJh6ZSJvNbQj8oSwf+d0n5Ow9XA3IA/eVSlVieoPpdCjfAR+9D4ZZBuImxXGk/xGG1Bwi0/Ps1HYUWYoIdgtm3rl5NFzXELNoRqfSEeQaJLmKIyWHbnZuZORnEJ0STd0ydfnizBc4zHegzHdlmHdunjwLVBwdynfg0YRHxE+JZ3zd8fL/qlEHR9kE8d4O3iiQig32aOn9QMnuHfDRrEM0WbKHNLNEu9MWmpl+soBsHQQ27UKfiD4UmAoYXXs0Tlon0vLTKVCDm0ULMe8WUrCBlxfs2werV8O2bSjDavGZqjlnh5wlITuB6j9XZ/ud7STnJrM0cqlEL7uxCo1CIxUC9D4cH3CcPlX7sPPuTvy+96PN5jb89vQ3hocN5+qIq8RNjOPrVl9T16fuOw1Y/y7kFuXy/o73WXB+AQuaL6C8W3nqrq5LUm4Svw38jdWdV8u00BL89ShJNEpQgr8AybnJuNu5y0OT/yQsubyEnKIclIISf2d/SUZW54YFi0w3OPX0FO2D2wMSncJgNLDv4T7GHhwry2t+1uQzPgj9gIlHJuLl4MWy9ss4OTeOXdOv0jbJnquqFC6f3sT7O9+n9OLS/Ky8wfzve7AzTIvvx/M4ucuOM1d22qzt0otLOKgd+LD+h8w8NZMbiTcYe2gs15KuUat0LfpV60fn7Z0BKajtXbU3P7T7QTYctGruC4LAD21/QK/VgwDRxhcsurhIroJboVPr6LO7N6GPcrheToungyfOWmf0Wj2tb0xBFGBT7x04aBwoMBUwZN8QVAoViTmJtA9uz7UR1+RzWUSLbJo3/qqAIjWNGeFGSZvfXEA1r2qs6rSKyh6Vic+O58G4B3JHyVnrTJG5iM+crzO+ijRkHuAU8JZqzrti42qe1fj52s+y2tEf6ToWJFlUa6XeqEZOVqwDxQARDyLk1+i1elL1MP0cPCwFdUZKdJ4jm2FhpCNG47upSBqFhpXXVwK2A9gFpgIcNA5vZmMsJgaFDmLFtRUceXQEO5UdYBu0W5PGP8La6VIICuxVUjD+IP2BzTFahZaH6ZK3hVEF26vBeyOg3nBId4BrK0XifoD2MaB8hxhVeGA4jhpHYl7GcCXxik1CdjT2KL89/Q1ANmm0omKpirJ0cm5R7ltD6NZZDyusg/lnAkBfBNNfVeTO69pEdk46OpUOLwcvRES8HLy48PwCAOPrSEm/0WxEq9Ti6+RL9b0Xaf8IpvctRe297cg35tMvtJ+suqVWqFEqlBiMBuxUduzrs4+jj45KppmCEjc7Ny48v4Cvky/wZnA80CUQtVLN41eP2dZ9Gw39GsrzGo38GnEw5iAKQcHA0IGAVCTwdvRmwJ4B1Pi5Bo7zHQn4PoDWm1vz4bEPORl3Enu1Pb2r9KawTw+UIgy4qyBqdBSXh19mQ9cNfNL4E4aHDSchJ0GmoYqiyPjD49EoNVTzrEZ2YTYJ2Ql0qdCFQ7GHUAgKLg27RO8qvbmedB17tb3k2aLQ8P3l7xEQaLGpBWfjz1JgLsBgNMidSJWgorF/Y0Cao/Gw9+DIoyNU+qkS2q+01FxVkyOPJRNE6xxUmHcYy9svJ7MwE41STYDRnnZ3C3nm4yh1G9q3xyJaJLd3EVokaHgSVhaQuiyn4k4B0LysJDZh9TbxUrn81x0NKwQBhg+H27fB2xuaNKHBioOc7nuMEPcQ+kb0pfTi0kw9NpVS9qXY8v4WkqYlsbz9cvKMedRfW592W9pxNv4so2qN4vrI6zya8IiFLRdSu0ztf1RyYcWzzGc0XNeQU09O8W3rb9l6Zytzf5/L5PqTiRodRbOyzf7uJf6vR0miUYIS/AVIykn6xwyCF0dSThLzz81nYr2JdK/cHQGBu2l3GVtnLBqlhkJzoUyPOfzoMHqNniDXIMq6SB+QK66vIHhpMJtub8IiWljdaTX1fevTZXsXWWnIr0JtIr5LYFKiH9ccs5js3Ja1nddSzasaJ1MvMbhtPp36QsUnuSybfoYzS6eSb5QGsC+9uERdn7rMbzGfkFIhhP8SzqrrqxAQqOdTj+Ybm6MUlNQuU5v4rHj6V+vPuDrjaFVOogU9ffVUfq8Go4G8IimxaN3uJdujt8u/swbXSy4t4emVE6TZQ7LCQEJOAg38GtBxc3sc8y0EKz1pUa4lAGMOjeFZ1jNMFhMf1v+QA30PyAFMcfpPC9dazDgrEtHAlSfuSlmr3Sya0aq0bO62mZiXMSyNXIq/sz8gSYLW86lH2+c6nEQNY+qMeSvJAN7ZzbiTeodHrx7J9624ClVVj6ryXljnOTRKnc3rresrPmdiDYjHdQRXA2TaQee+MDccphzJ5Nft4PxaHddZ6yy/7kX2Cw7FHkJAsAmyN97eSMxLqUqrU+mwiBY2Rm3EXm3PzVE35eq3NWgXEGhZtuWfDoxb5XYNJgMKFG+5gm+K3oS52HC7NZG54gsDukPgZNgcCht+hdz5MOkSOBbzDkzOTZbVnECi6XzTShrgL37eKe9NsbnunKZz/ssh915Veslf/3xNmo+4VgYK1Ap6xtlzo7SU/GSJBdTwqEZOoXQvrO/RUe3IqhurAOlel3Mth+LBQ4LmrWBVPTWLl9yjjk8dWm9qzU9XfpKTN6PFyHeXv0OBApPFRLvgdgyrMYxXBa/QqDTcSLpBoEsgKbkpcsEB4EnmE/KMecxrPo9mgc0Yvn848VnxUufh5HSMFiMqQSUn+yDNTaQZ0qjvW595zedxsO9BYifEYphl4N64e+ztvZcvm3/JnowLHKoAH8d4UMmjks0+WQ08f3/6OwC77u3iwvMLmCwmNnXbhLeDN4XmQrlj07ViV5y1zlQqVYknmU9k35QiSxGJuYlyF8hKL1SgoGOFjnza+FNmNZklFyleZL8gzZCGRqmx8dipVEpanyiKrOy4kukNpzPp6CQcBC3avAKOrjdSuV4H4krrwMMDURSZfHQyVxOuogQCMyw8njEKgC3RWxhcYzCAPI9mfd681C7/XkejOIKCyDlxiC2f96Bj/EIqLK/ItcRrVC5VGa1Si5+TH+GB4Rx7fIxyP5Rj5MGReNh7UNVT+v/Qplwb5obPJax02D8yubDifPx56qyuQ1ZBFu9XfJ+PTnyEWqnm6oirLGy5EDu13d+9xBJQkmiUoAR/CZLzkv+R8xmzfpuFTqXjsyafMbr2aJ5lPaNNUBtWXFvB2s6Sk3RxJ+icohwev3rMpPqTmN5gOgAJOQkM/HUgoStCOfroKBG9InC3d6fD1g6ytr/C2YXvlsbwTWoNvs86yrnjq1nTaQ3PpzwnZnwMHT/8mX6zq3LZF5pO+o4t7znQdkUjTsadxNfJl6zCLLRKLTlFOdT1qYuIyIprK2gT1IacwhycNE54O3rTvGxzBEGgd5XeAAzbP0we+D72+Jgc7CrEN++rZbmWfNta4p5H3I/gJ5d+HAsGrVLD8+znnHl2hsr5juToYHijCQiCwKLzi9hwawMCAms6r2Fxm8V8H/k9626tY1StUTba/aNO56AzwcTaaQS7BqNWqNFr9NxKvoXRbKSaVzUWtFjAd5e/43bKbezV9iTmJHIj6Qa/BuZTR1uOn6/9TKHJ1jXbmhz9sa0hIuKkdaLIUvSWD0XMyxg5cLB2Oqz0Kuthng6eVPaoTMcKHQFbek+GHaQ4SceKCvgyHLr0U9A4Hq6uhiop0iCyFRYsbOq6yWZWBeDHqz/KvO4CUwECAnPD53Jp2CWqeFZ5q9IvIrLyxkp0Kh3dK3bnz2CdVfgj7FR28jC6m86NfFM+CkEhJ4SJTjC7OfhNgTEdYPAtyF4Aa/aBQxFEp9oKJZhEE9NPSM+/9T4ICEyqN4k2QW3k4zzsPajpLc0QWLstxWGvsmdi3Yny9xqVlBwaVZBcrSze955y2Rf0WicQoEWiTlZQslfbIyAQOSKSUM9QQKqMBzv6w4ABpJayY+fg2rjbu3Ow70ECXQIxiSZMookaXjXkBKiMvgxGi5FTT06x+uZqelTqQV5RHmbRTGxGLCPCRuCodnyLh7/m+hrs5tmxOXozJotJlncGSbJ6c7fNVHCvIItKVHKvxM8df2bKe1PoUKEDwW7BNvLAG25uICk3ib3vueITmwK3btlcz83Ojere1fn96e8YjAamHJ2CSqFibO2xVPeuTnWv6oA0fxDsGsySy0twWeQiu5P/0XXeihD3ECq4V8CChQMxB/jq3FcsvrSY7MJsHNWSDLBCUFBgKsDT3pNJdSfho/eRleUa+TcCEfrt6YefxZHs/Cz23ahI+dNRlGvRg8ScRPKN+Sw8v5BlV5bRzRSMKEKZtr04nS+dY3jN4fg5+eFu5y5/Tlg7xR4qZ6mj8W94KxeYCthzf49EV1tShgHmnbyqG8p3t7yI+0nFfEN92gS1IT47nqnHp3Ik9ggT6k4ganQUD8c/JGp0FCs6rGD1zdU0Wd9E8oX5h2L9zfU0/6U53o7eiIjsureLRS0XETk8Up7bKcE/AyWJRglK8BcgKeefY9ZnxfXE62y4tYEvmn2Bq50rTQOaEuIeIhmomQu5mnCVBS3ecN897DzkrycdnUR5t/JMqicZywkIxGfH03VHVzpu68jsJrN5aXhJtx3d5ABZ0OmYtuw6m/PasinvEl2+qIShKI/y7uUZVXsUp6ZHM2NCRSa/b0/fKJFPv40ktyiXTVGb8P7Wm9spt3nP5z1ZYWZag2l0CemCBQtRqVH0rdpX1mrPKcrBTmWHUqGk245uZORnMOPkDHn93q9jYZWgYn3n9TaVr5M5tzlWQ0+p14o8oe5V6HM2A6NSYGCtYXx66lNmnJqBgMCxAccYVnMYB2MOMu34NIbWGMram2vlc3nlQPtDMfxQH5KdBG6m3GR209lU8axCdmE231/+HoDJ9SfLz0ft0rXxd/YnOS8ZpRmumZ9Tw6sGhZZCea+BNwG18HZjI7tQok0VTzIUKGgd1BqLKFHipjecbvui1ydxVjoQ4h5CoEsgIHU4KntUBiRqGUDQS1AgoFFqOFjeQu2RYFBD5BrobRuT4+Xo9U71q+IdjtlNZvNpk08RBIEfr/zIoZhDbx1vspjY0WMHdpq3q5TWKvOf+XEEuwWTnCdRbqxJjEW0yFVra5W/UA0bakLN0dB0MLgWwIqD0jnUJuRkzCJaMIkmNAoNgiDg7+yPiMjjV4+Z0fDNcxabESvPORhMb++Br5MvZ56ekb/PK8x7k/zUDMI1MZPrZUD7+j1HvHwjV+rl4EX3yt2p7FGZsNJhBDoHkpKXQpMNp7FE3WZCf1eqBNQBYN/DfTZKSDEZMYiIuOveGDkO2zcMPyc/riddf6McplCx5uYaXha8fMugMSE3AYWgIDwgnPjJ8USPjpZf52bnRrBbMDEvY9jYdSNKQcmK6yu4lniNd8FoNvLp6U8B6DZllUT7WbfureOaBTbj9NPTfH3+a5Jyk7BT2eHj5EPNlTVl473Hrx4Tk/FGZlclqN6ahSmeNEWlRkk0MkFJ5wqdiR4TzakPTlFgKpCH9wOcA9jZfSczGs1g9c3VCILAzx1+xknrxIm4E4w6NArfPBVxvGK9ohuND9yG8uUp5yrJ3C6+uJiZv81kpfdILHGPsShAV7MOm6M3o9fo+anDT0SnRhPqFYogCCRkJ8h7WUqlB4MBEhP/dO+OxB5h0K+D8PzGk+47u/Mo4xFzw+fyYNwDprWaw+X+4YSOFehqWMejm6f4JHQsQ2sOJd2QzqUXl3C3d5ec0QWB0bVHc27IOZJyk6i5siYnHp9453X/LpgtZqYem8rQ/UMJdAkkOjWaYLdgosdEM63BtP9rI8IS/OdRkmiUoAR/AZJzk/9RiYYoikw+NpnKHpUZWWskgPwhczj2MFPqT+Gnqz/RsXxHBoYOREAgLT9NrnIDjDg4gpTcFPyc/KjrU1du+T9Mf8iAvQMIcg3i4vOLjDgw4o1yj0JB/0WHOWw3jHPGxzT7ohxpWUnyOXtW6cWGOmrWrZvAaV+JNvPZZR2uKj11ytThSuIV+diolCi+u/wd5VzKkW5Ip3+1/vLvMvIzcLNz49c+v3Ir+RZBS4N4/OoxjfwaAfD89Uy1UqFk2P5hTDs2DYCJdSeywCWaUx45JOYkUsq+FMcyO7K1kom2AS2YcGQC887PA2DL+1toFdSKO6l36BvRlxZlW7Alegsmi4ka3jWktZ+FIiV83fANXaehX0P0Gj3BbsHMPTOXp5lPJXpGXprsgGytJFoEyDEbuJF84829Q3yLjqP6k3/lxY+zYOFg7EEc1Y4UmYv45NQnbx1fyiDwLP0Rvk6+PM9+joPagayCLDIMUmeqwCR1P/LVoCsS5aprnBu8Nwz2VILtEfDjCQ2q13nElGNT5KTISuf64/oPxB6g09ZOlFlchglHJqBUKLFT2dmYofnofehYoSP7Huyzea3VfO5fITo1Wr6mtdukUWrkAWGrSWKxjeNcIHTvDTMlyjxhSVA9GXrdAY1FOrbIUoS7nTuJ2YkEOAfQL6IfHg5vEvLvL3/PL1G//Om6YjJi5AAbYEStEdip7VApVFwNtidTayHFkdeSsfDAHZSv/5SeZD7hw/ofyl9X965O42cCH54p4rOmFvY6xFPduzoZ+RmMPzweF600DNu7cm858avkWYnq3lIn4EXOCx6/esyTzCc2hopF5iJ0Kh1KQYlCUOCr98VebU+RuQiTxcTc8Ln4Ofux/pbkt9OybEtWXl/JjJMzCHQJpHvl7uzosQOARusaybMHxbHmxhrSDGk09m9Ml6rdYeBA2LwZCgrkY3IKc3DRuhCfFc/nZz9HRCSnKIdPTn3CrWTb7oeTxgmdUoeAgEk0yZRJK6xJSJh3GPV863Fn7B0+CP2AC/EX6L6zO/XW1pOV7RSCgm3dt7Ho4iKmHp/KsJrDuDv2LiNrjZT31DdbIN6+CCelA9kdW1EoSOe3JhpzzsxhSsgQRiw6wXMv6f/AT1d/QhRFWgW1QqPUEJ0aLf8PtfpbOBcpUL9O7ovPaVhEC2eenmH0wdGUXlya9lvbE/kikqnvTeXGyBvMajyLm8k3qb26Nu/vfJ+ol3eZ1mwWd8PWcnebK18O3sjanOacGHCce2n3CF0RaiPEUdenLtdHXqd2mdq02dyGr85+9Vai+XcgqyCLjls7suTyEhw1jqQZ0ljXeR0nPzhp44tUgn8WShKNEpTgPwxRFEnKTfpHUad239vN+fjzLGmzxKYCNLD6QJQKJVqllrKuZZlyfAorO66U6R+HYw4zupZkuiUgsP3udiyihciESCbWm8imbptkp+C4V3ESfzpqExOPvKGHIAi0+mQNZ8p+TnxRGg0Wludx4l1AolxkFWZRuUEXzgxphpsBZh8v4PQePSZDLjqVDp1Kh0qh4nride6k3iEuMw6loGTB+QWsuLqCh+kP5UQj5mUMAoI8pyArGokwx6kTazqv4XjccZRKqRPygU87WsdKAb6IyLKW3xG/ZTlXy4jczX5ExP0IedC1b7W+pOWl0WlbJ/yd/bn84jKF5kLmt5jP7eTbNCoqzcjrsLCRNNNgMBlw0UlUDotooapHVdzs3Bh/eDwLzy3ETmWHiEhKXopczRQVIAgKApwD5D2Xlm9buTe+gy5kpRRYoVNIAUuuMfedlX8FCnLsleQoTHgl5fAo4xHOWmcsooX0/HRal2stH5voDEYlqMQ3HyH5GhjYDca3g1GXiji5Uero3E27K897WDtHIqI8wAySsd/B2IO8zH+JVqllVK1RiIg2lKuXeS858+wMOUU5NrK6Vi57OZdy+OjfSOgWhxKl/J6tazFZTPLPCs2Ff9oNefFarOaKD0R5w7QLkDVf5LtLzrjkSwZxJtHEwOoDSc5N5qtzX8mvffjyoY2h27tQ/LpGs5G8Iqmr8XupHK6/rk0YjAZEoEqGSp4IqeFVg/f83gOkRMPXomdDhJnMsCo8GdETkORlG69vTLohnczCTAQEdtzbIV/vQvwFmd5oRVWPqjybItGgWpVrhYBAgakAs2hmbtO5nB1yVi4ciIi03dyWs0/PsvrGagCWd1hO55DO/P7sd3pW7olSoaR75e408m9EobmQ+mvq2wT+RrORmb/NRCEoWN9lvUTtGzIEXr3iwo8fM+HwBGqurInLIhfmnJnzp/to9QQByC7KpsAsOc6HuIcwrcE0Qr1C5dkykBJUL0cvIl9Esuj8IvbH7CctP42YlzE09m/MZ40/k6h4ooUGaxtQZC7i0rBLLG23FL1Gz7R944jPjsc3C1L1Ap3LtadT5a6MOzyO8svKs/LaSmLSpdmKah5VWbzjFcKrVySXlhLjF9kv0Gv0VPGogsFo4FHGI6p5SYnG2WdnAXA3qkGhAIUC8eFDriRc4cNjH+K3xI/wX8I58ugIw2oO4+LQi3zR7Avupt2l0fpG9NjVg/tp9/m44cfcH3ef6DHRzG46m8qdhkomfx06wIABtJi5mqg+Z2jo35Au27sw7tA4eT6ulH0pDvU7xJymc5h9ejadtnV661n5K/Eo4xG1V9Xm5BNJZa1dcDvuj7vPkJpD/tFzJCUAQRT/DeJfCUpQgv9n5BTm4LTQiW3dt9Gnap+/ezkUmAqo+GNFqnlV40DfA2/9ftCvgzj37Bzft/2eLtu7sLf3Xhr6NcR3ia+sVtM5pDM77u6QK54KQYGzzpknk54gIDD/3Hy+u/wdjhpH8o355JvyaRrQlE3dNuHn/MZ9LG7vOtr+PpwsBxWHBx4lLKQZAd8HUMO7BodiD+Gqc6WXKYQD6RcxKeDb0oMZkLuBTxt/Kgd0OpWOej71MFlMRCZEYrKYpAFPQXqvXSt2JS4jjqjUKOxV9hhMBipmKLnlNpNW/r9zM+mmTJHYUmYiQ+OXUqSSWDI7vSdw8uAyVtcWZKUfURR5MP4B9mp7Wm5qycP0hxjNRjILM1nWbhnn4s8R+SKSU8e90Z2PpPwEKQh30jrJlKZQz1AqelSkb9W+dNvR7a1ZCgCVKDAlyoGlYcY/5Ze/CwICHg4ecrVeq9DKtCsHtQMV3CuQmZ/Jk6wnf3oO/xwlSc4KHDQOZBZkYq+2596YewQuDQRez21k55Cj451rb5agYfO2IkQBevaES/5SgG+lS2kVWmmw9nWCFNEzgp33drLr7i70Wr085/HHc/vofUjISaC0Q2mS8pJsrln8/P8uXHQuNsPy/xZE6JngzPBzebR6aGJnZfispUCsm4irzpVXBa9sDn/X/vwRjhpHcotyUSvUGC2SclTDAk9anXnOZ83A9Hou/4ta05l9/WsA5jSZQ7/QftxLvUePXT3YfciR5reyaDbFlRt2tmuw7o2v3peMggwKjAVYsNAlpAv7Hr7pEJVzLUfcqzgm1JnAimsrUCqUOKgdyCjIQEBgX599vCp4xaBfB2GvtsdF50JiTqJ8/lCvUG6Pvs28s/P49PSnhHmHcXn4ZdRKNXlFebgtcqPIUkTrcq052O8gaqWaBecWMPO3mfSo1IPwwHAuPL/A+fjzbFvynBwNDBrtiVapJTk32Wb2ybqvxfdXQEClUOHt6M2BvgfouasnYaXD2N5jO9uit9Fvj+Sv46B2wNPBk5S8FLm7oxAUOGocqedTj+MfHCdsZRj30+5TYC7g/Yrvs73HdtRKNWaLmdErO7Im9Si1UpTc8hJpFNCYYwOOoVVpeZD+gC/OfMH2O5LYhEqhYuOLuvRZdQFxzx7U0T0xi2bWdFrD8APD2dBlA1U8q1BndR0ih0dS16cuYSvDuJl8kzo5TqyNrcx21QO2VxWJU2Th5eBFryq96BLShTRDGrvv7eZw7GHyTfnU9K5Jj8o96FG5BxXcK/zr53jHDhg9GuztEdeuZYV7HFOPTyXINYht3bfJSQ/A0UdH6b+nP3qNnoheEdQqU+tfn/u/GafiTtF5e2fyjfl4OHiwquMqulTs8peuoQT/7yjpaJSgBP9hWD00/ikdjSWXlpCQk8C3rb595+9H1xrNk8wnaBQa2ga35cNjH6LX6vmowUdSEK/ScST2CN6O3pgsJvRaPWbRTEZ+Bq02tsJebc+Clgu4O/YujfwbkW/KR6/Rc+bZGYKXBvPhsQ9Jy0sDoFy3oVzscYSyr0Sabm7J8ctbqOBegQMxBxBFkT5V+7BNeQ/Bx4ePrqgp3LIBQYSPKgymnGs5udq6tvNazg89z6uPX7Gm0xosokWm+fz64Ffupt1FgULmyc9+7MuFyzuJTIjk2AfHZCnOEQnLERDQa5zwd/anT8IyVtWSKrddKnQhJS+FH9r9gIvOhTGHxnAl4QoiIpmFmXzV7CvCA8PZdXcXiz0HEnQkks+bglErdYw8HTyZ23QuAPfS71FoKuTi84uALR1KJahQokQhwg/V8t6iLHg7esuUjdcvfgsnB5zESeMEICcZlUpVYmHLhdxMvklmQaZM5QIpQCvrUlZeQ7bKjNFilINwg9FA2Oow+fheVXpRoFWACPaFby/gtE8RrSe5EecKv2+AsVdAKHaYBQv1fN+Y3KXmpbLj7g5WdFxByrQUJtSdIO9LcSTkSD4UqYZUanjVkH9et0xdmyTD2gFy1Dj+S9Un6/srrhL2r2BN4k6VV9Kmr4kqk1SkOML1n0VurISuyS4oi13v30kyALljaO0uFpoL0T96zvXSr/dNlPwZzmRcl/fxy7NfEvJjCN12dqPbHTNdr2QxsYNA+9bjaOzfmBD3EPyc/LBX22MWzdip7EjIScBoNsoUSKsHBUjJyPWR11nefjnLry0HpK6PVe2sednmdNvRjREHRjCo+iCO9S5vwDMAACAASURBVD9GRn4GIe4h8t438W+CKIr8cvsXWpVrRVRqFJ/+JlHDHDQO/ND2BwBOxJ2g3ZZ2zP5ttkwd231/N1OOTeF2ym28Hb3ZU9+Z1o9Bk5jK8+znNkkGvHk2fJ18GVVrFDdH3qRJQBPq+9bnefZzTBYTE+pOYPe93SRkJ9C1YlecNE4oBAUGo4EnmU/kJMPf2Z8XU16woMUCTsWdouPWjtxMvkmASwBlXcpSWl8atVJNUW4W/T+txLrko/z0uBJP/PUICgV7eu+RvVQqlqrIghYLKGVfCmetM0azkU/sLrB2eiu2lJOG7JWCUn7+g9yCiE6RqH1VPKqQb8wnKlnynLlvn0do2GVWVM6jeYYz+/vsZ3HrxbzIfkHHbR3pG9GXp5lPmdN0DrETYrkx6gYzG8/8r5MMgN694c4dqFIFoV07xm68z9UBZxEEgTqr6/DjlR/lzlXb4LbcGHkDDwcPGqxrwOrrq/mratRzTs+h5aaWGIwGBtcYTMz4mJIk438YShKNEpTgPwyrK/g/YUYjKSeJeefmMaHuBEJKhbzzmPq+9Qn1CmXljZUsabOE59nP+e7Sd0ypPwWloJSCVLUd+cZ8SaJVqZUlTa8kXqHB2gakG9IJdgtmX599HBtwjDL6MoA0ALzy2krKLS3H3N/nkl2YTanGbTg1/grhyTo6HvmA+7clPXkRkZXXVlKrdC2ix92l54HHLGvjSsU0EKqFUutGMkqFEr1GLw8uH4o5xORjk1EoFHQN6UrG9AwWt1qMWTTbqBFFFb0g6+lDRtcaTQX3CrJSkAETBSqR7KJsBtrVx6IABBhcfTDXk6/TLrgdvav0ZvGlxay/tR4XrQvphnSmvTeNWU1m8cWZLwhwCaDb5qu88vNgfU1JochB7UDcqziGhQ1jbO2xmCwm9j3cx+KLi+U1WQOnluVaYsZMkULE3aKzCbAUKEjOTZYr/jqljqpGF5tkQ0QkbFWY7KNR/N4fjpWcqCuUqkC+KV/+nVqhJiUvhfDAcEAyiLOikV8jdEqdDW1i7c21Ml3L/I5PEaWg5IWjmeaDYHkd+OkwbNgLdq8FzOxUdjzPfqNoM/HoRMbUHsPIWiPRqrQ0C3yjfa/4w8dUacfSKAUlqzqukn9W/Fm2V9nL5/53vWv+GMT+GZy1zuhUOrIKsmhRtgVBddsyqT34fgi/hMJXW5JI+EZk6HXQmmxdxZUo33lOvUZPebfygDToav0/UTlNkrlt9gQqpktytpdfXEYEVGboluvLyQ9OcrDJSlYegMgGAVxuVp4vm39JZkGmPINSZJLUx/JN+aiVatzs3OQg93n2c5y1zjhrnTGLZppuaEq78u3Y1n0bJtEkJxADqw9kd6/dOGqk+Z6qnlVpFNCI3T13E/syVk7mfrz6I5+c+oTYjFg+bfIp85vP5+uLX7M5ajM77+7kfvp9dCodIiKnnpxi3vl5WEQL1T2r09CvIQpBwb20e1xNvMqq4Czy1TDolpSAFXcrBxhSYwjxk+OJnxLPzx1/pkbpGpTWl0YhKPB39ufHqz8yqIbUeVlxbQU3km7gpHXCIlrkvzUHtQNVPaqSbkiXDd0sWDj++DgApwedpp5vPW4m3yT/+mW6TfVlrzKWbfrB7GjmQcFrZbfiXjXphnTabG6Dg8aB+30vcH67HeUzlQy3P8EHv34ASM/w44zHAAS5BhGdGo2/sz8rr68kbFWYLJnsYbFjx5UAluQ3Ja0gg567ejJg7wBeZL/gi/AveDzxMddGXuPjRh8T7Bb8bz3DNvDxgaNHYdkyWLOGqm0+4ErYCkaEjWDCkQl02d5FnqkJcAng/JDzDK0xlJEHRzJ0/9B3ijz8dyGvKI96q+vxxdkvcNG5cHrQadZ1WSc7vJfgfw5KEo0SlOA/DKvB1D+ho1FczvbPIAgCo2uN5sDDAzhqHJlYdyLzz82nwFRAp5BOlNGXISUvBTuVNLRazasaPk4+cvX4SuIVqi2vxpUEaXC7dVBrosdEM6/5PERECswF1PCqwYJzCwhaGsSSS0sQKoRQI7wPHWMkqVE7oxS49Avtx+H+h3HWOePn7IfRrwxulWpyzsPA8l0GRLOZQkMO887OY+yhsfSJ6EPHCh3x0fsQ7BaMq52rXAUH6BIiVcK2VTbjm6dg6ZWleHzjwcBfpY6GbxYgSl2Fr5J2okCiZm2/u510QzrLOyznYMxBpp+Yjqe9J6mGVIaHDeeb1t8QnRLNrnu7WObQE8WRo3zUpABBrX7dIdEjIDD64GjZmAveKEf56d/QyW6l3JJnE5JUb5IB6/GjwkbJgVIDvwbkv6MYX8mjEmqFGpVCRbCrFIBkFmZy5NERapeuzZWEKzY+GVbjNuvwqiggJy9RqVG42L3tqmsdwi54x/XNopmswixMSpjSDvq/Dz3uw8W1UDZDmqt4kf1CPr6OTx2+b/u9/P3W6K0277n4rEZSbhKCIDBk/xBASrasbvXwWt1JBLWglivb/78o5yLti53ajsScRMyimYGhAyllL7lg924wgj1t/PAbU8DwztD3DrxaCN+cAPfXsZgovLsCnFuUy7pbksJSkaVIprwFZMJTV7heBoKzVeTNzMNJ64RKoaKc2gP/O/G0MHhR85Ol5Kth8cBggt3LU2Aq4G7qXe6k3qGUfSnc7d0RESnjWIYicxHphnQ+Oy39/bvZuaFSqFjQUlKXyyzIpM7qOmyJ3mLTCWpVthXjD4/HaDYypMYQPjrxEXN/n0v78u0ZXXs0IqIsH7zowiJK2ZXiTuodbqXcwk5lxwd7P6D37t4cjD0oJ/UqQSV3626n3ubC8wsyRdBF54JPmRCO1HRkyC3AZMFokpJBvUaPQlDQ0K+hDQ0TpAA+KTeJsbXHsi16G3lFeTT0b8jC8wtptL4RL3KkZ06j0OCsdcbf2Z/YjFgMRgP119Zn3OFxBLkGoRAUNPJvRGl9aWp61eD282u0/ek9fvc0cCB8JQeDzFxOuMzHDT/GaDHKlMi8ojw6bu1IRn4Gx/sfw3vCDMKSBOI8VfjofeTnOM2QxvY727FT2rH3/l7W31rPs6xnzDw1E5WgklXQBEHBB7XiGaw/SbKQx7xmX/Jk0hOujLjCRw0/kv9e/7+gUMD48XDzJjg6YteoGcuuebC/514uPr9I6IpQTsadBECr0rKi4wo2dt3Ijjs7aLC2geyX9N+JY4+O4fWtF1cSr9AuuB1JU5PkIkgJ/uehJNEoQQn+w7DKMDppnf7WdfxRzvZfoX9of3QqHWtvrGV209k4aBz4+OTHDAwdSEJOAt0rdedl/kvsVHb89uQ3vmn1DTW8a8jUj1RDKg3XNeTnaz8jiiJqpZqZjWdyadglNAoN55+fJ9A1kLo+dfnoxEd4fOPBvMfraTVsPjVyHMhXi6gtAms7rZUr0pkFmdxNu8uIRpPYOK8X3fsIIIrs3qdj0Yk5rL25lhUdVrD1/a1kFWbhaufK/2HvvMOjqPf9/5rtu+mdBNJIgVBDh9CRjnSQDgIKKqBgRz1Sjh4rIhYE6VVaiLQA0qW3AKEECIQkhFTS22bb/P4YdpII4j33HvV375M3D88TJrMzs9+ZXT7l/Xm/RVHku3PfARDuHs67HSTp0RRX2NXMkYPjDuKkccJBIwUAIY/mdi2iBRcjIAg83/R5jBYjWqWW2w9vM3r7aNz0bmSXZTMsYhjL+ktDsPOOzSPYJYi+K46TFl6LjfVMmG1mWarWJtrYk7iHxPzqLr9apZb7xZXV/cySTHRKLYbfjGU4q51pXqs5yy8tByCqThRxGXHcFQpAkAJrO+7m38VsM+OgdmBwxGA5aHRQORCXGYeIWI1qZLPZ0Kl0JOUnVUp/Pooz69pc+fX5Xyt9Fxz9UClUlJhLKrsFVp5sU/4IG5tA56kaHE1w4UfomWiTA1OAZf2XoVaoOZl6kmfWPsO2hG2AxJuv61b3sRmV3qG9uZ4jCQjYh371Kn1lcCxIsrw20SYnl1VR1XH830G+MV9et4flD9mTuAdXnSvllnLyjfnYFLC7HvSYAK1eBGcjpH4FP2+EOvlPVu0REGTqHkhJWtUgv04R7A6xMGzLMDJKMojyj8I/oBFpPgYYPRq/s9eZOdKVeHMaoe6hxKXHYcOGh8GD9OJ0zDYzCkGBIEiVd6tolQP8oooito/YLrtgL+67mDD3MHbc2iEns+Ee4Yz/eTwbrm7gx/4/smLACj555hPmHZvHa/tekwsKmaWZ+Dj4yGszY+8MEnMTGd90PE5qJ/wc/dCpdOy+LekFV3VQd1A70DGgI4PqDaKhZ0MKjAWkFqZyqU8zQvLhXTEKK1bUCjVxU+NoVqsZR5KPPLaWvo6+ZBRnMKLhCKyilfDvwtl3Zx9W0YqjxpGve32Nq84VhUJBsamY2w9vy89WUn4S+8bsY1n/ZVRYKyRDvvv3CVm0jlJMXAxQ88vzBzmjymRd/DpWD1wtr1tOWQ5mq5nhW4dzLfsasWNiCVu9E3bt4sKnr3LXoYJySzmfdv8UkDp6m65votxazvS90yk1ldIntA8Ley0kpyxHfsYsCvj0nDMpzdZyZpnIG37D5O7tfxz168Pp0zB7NsybR/9JnxLf62caejekx7oevH3gbVllblzTcZx94Syl5lJa/NjiMSW4/y6KK4oZt30cvTf0xmgxsrz/cmLHxD7WzarB/y7UJBo1qMGfjMwSyazv71TGEEWRWftnEeEVIcvZPg3OWmfGNB7DsrhlOGgc+Fe3f7Hh6gZcda64690JcgmifUB7WRZ0XMw4tg3fVk3+1ibaeHnPy0z4eYLcYm9duzWHJxxGrVCTV55HbKLUrbArnbx1/iPincrRWQXMgsjQz5rLsxZn084CErXrVNppbkV446VxZVR/I74lMP2KjvENRyMiyqpTr+x5BZPNhFJQsn7IeoZtGYaAQF9NA/7ZvIihW4YS7BbMtuFSYHs8GBBAYQOdBWyiyJKLSzCoDIiI9N3YF1GUjt+jbg+2DN8CwJXMK0QnRLOU/ijOnGFqVC61nP0wqA0YzdL12wM3BQrcde5yQP/bINpF60KuMQ8EMDxSihIQeKHFC7Sr004ORG/m3KSg4tEgswjNPBrKx7Cv98ahG4nLkBILnUpHXfe6T5SpNNlMhLmHcT3n+mOeA8r7aXRe0VG+/oH1B8pdArvpoUK6yKfirEc5bV9ScjIA9myANw+W80gFlEN3D9FuRTs6rOrAydSTeDt4y+87KT+J7sHdqx3rWMoxnDXO1WYrqlLB7C7hgOwyXhULey58+sX+BqlFqUClvG8th1qsj19PTlmO3FGp6hwOcN0Hpg4A/9fhVAC8fVLa3iNJkOcuQOrY2B2ZAfyd/Qly8ifPIFGkRl6FLQfcOJ4qeWj4Ovni61QbjasHXL3K/u7BpLYKJyk/iVD3UD49KQWzBeUF9Kzbk7zyPELcQnhQLPlejGsyTj6XQW1AKSjlynhOWY5MIbJjUa9F8rO67+4+kguSCXUPpVtQN7499y0XMiRvDK1SS1ZpVqXPi2gjuSCZ1ZdXU2wuJr0knRs5N7CK1mp0uHD3cErNpRxPPc6he4do6tuUbcO3kfNWDh/POUahvzdhOyS517WD1hLqHkrXoK4cTT762JyATqWj2FRMw8UNsdgslJhKqONch0bejQh1D+XVNq/SIaCDdB/FSld3R40jThoneoT0kDug9xJOk9G2Ie/XvgnAB93nk1yazpyjc/io60eMajxKfk4zSzKZvHMyB5MOEjMihpbJJnj3XXj7bb73kkQXBtUbxI8XHzm4VxTgpHHCSeOEiIjZZmbfnX28EvsKeeV58vMwT92DWWcFAhpLstz/tkP4vwu1GubPh5MnITcXv6he7C8ZzOfdP2PhmYVErYjidu4jJS2fxlx48QLPBD/DoM2DePfgu/+j7uHexL2EfhPK+qvr8XHwIWFaApObT/5PvbMa/I2oSTRqUIM/GRklGfg6/b3zGdtubON46vHH5GyfhpdavsSD4gfsub2Hic0m0sK3BW8eeJPnGjzHT9d/YvPQzXjoPfDQe5BXnsfATQNZN3gdEyMnSmZoOsms4qdrP9FmWRsSc6VKfjv/dqwfsp6HZQ9x0bqQX56PSqHCTedGhaUCGzaMSpEW6bC/7Cq9Pq5PQXm+ZCyl96C4opj7RffJKs0i01JA0+C2jE/Q8Hl0EalNgyi+GY9NtFFgLGDJxSUALHl2Ca/EvgJIgXw9lxB0Zqmi+03vb7DapIDDpgC1TeDMBh05jsidjla1W8luyaXmUpw0TnQK7CSrXM07No9Ql2C6Lz/Ejca+nAjXca/gHuXmcrLKsuQ1reVQC4soDdj+ni59qbmUnk6ReJZBma0ySUkuSOb7C9/L/y6zSoG0gEDLdMh9RLmxQ6/SY7VZOXzvMHqVHi+DF1ezr9ItqFu1/dz17oiIGFQGskuzZRqIHRd9bJSUSvMZnnpPWcbUDqWglGZZqgTPVSvyVc3RtB4+DBwJc7vArP2F7NgELuXw6v5XsdgsDIsYhk20yfMXVtFKK79WXMu+Jh/TLldsES3ybIWb1u2xc9mx786+x7Z9eurTx7Y9Db8NoDJLM7mUeUn+GaQuiYPKoZoz+IedPiTPAJ93gBl9pMHufxwRebAAWj1AXrP3Dr0nv+bKS1eonWfmqo/kSn4hRMvwk/lEFEvDxttubOPQzVhmb0kHrZYvI/LwdvSW1ar2JO5BKSgJdgvmWMoxBAQS8xIJdAlk7eC1bIivpEUFuQTRaXUnFpxagJ+jH0eSj7D3zt5qLuYDNw3Ex8GHKP8oNsRvoO43dRm+dThJBUkEuAQAkrTs6MajHxt+zynLkRNp+xzXa61fw1lX2d29m38Xf2d/tEotsWNi2TBkA0MbDMVB48CGqxv5LDybYTdgoE8XRjaWVPu6BHXhQfED7uZLcw6XMy8zdvtYXtsnGYiWWcpkQYCFPRfyRY8vuJx5mVP3T8kS1zZsKAQFoW6hlJhKyCjJIC4jju3xmwk2OXCo9BptJ1opqeONj4MPV7OuMmnnJJ6PfJ73Okr3y55oLDi1gHXx61gzaA09XJrBiBFUtGvNtA6FbL4uyQmvvLySnDJJBGNg+ED5u8QOEZFAl0DMNjOt/CSjxVp6b8msLyAANJpqXhp/Ktq2lahU48aheGUab318lNMDd1FUUUTzpc1ZdWkVoijionMh+rlovujxBV+e+pIe63qQVZL1x8evgpzSHMZEj6Hvxr5kl2XTNagrt2fcJswj7E96czX4q1GTaNSgBn8y/m6zPqPFyFsH3uLZ8GfpGdLzj1/wCM18m9G6dmuWXFyCQlDwTZ9viMuIw03vRnpxOvHZ8ewevRuzzYxaoeb8g/OM3j6aJf2WMKDeAB6WP5QNqJIKkmjxYwt+vvkzAC18W+Cud6ewopAXmr2AVqUl35iPp8GToRFDAbhYG2pZNFw2ptDx41CO3DtM2zptWX1ltRwofdnjS05MPsUL0fcYOzMATU4+GV1bApIqD0hUn/1393Mj5wa7Ru1Co9KwLP8gdfOhoVNdRkVLErMgdTJ+SG2C2WrGJkhBfyPvRnJABVKgq1ao+ezEZ7Rb0Q6XT1yIuRnDzLteCNdvMLFNBkWP3KftQVd9z/qANND7JNgVoAbWG4in3pPLJXdIdak8n0JQsP3mdnn/CM8Iuboe5hpCx1TINOZWC/DNVjNDtgzBXe9OHec6suyqfQbAvm9+ubT9Ws61atdsxwhdS4oFKaB/WP4Qi82CAgV+jpUD/ghU/v3NMarOgvQM6YmogH92gWfHQIdUiUrVNEvgYsZFtiVsw8/JTx5aB5jWaprMrfcyeMnHtndtXHWu5Ffk4+vo+1i1HGDjtY38Fvaq9e8NaP8RqiY9dng7ePNhlw/Zf3e/7OdhfwZB8kQRBeg0GZ4dDf1uAwLMOAuuJZWJTGxiLO73sojzlagz+S0aIgoCDW48pLZTbS5NvcS8Q1ZCs63MfrUBN9SFOOZLAeuSi0tQoJBVpuy0MkeNIycmneCl3S+BAJ0DOwPwZc8v+aDjB8w9NpcSU4ksyVpmKZMLEiabifSSdArKCxhcfzCOakcc1Y4EugSSVijdl5yyHFZdXlXtvise/QFoV7sdwxsMR61Qs+jcIgqMBXgbvGnl1wqraGV+1/k0923O4M2D5Yr5ojOLGBszljVNQWuFpWWVCXLHwI4oBAWLziyi6+quNFvajK03tsrn/7jbxyS9lkSUfxSLLyymZ0hPwj3Ceffgu8w7Ng9AHgy/m38Xg8qATqVj276v2HtrD89eM4ECip20nHjhFA28GrD1xlba+7dn6bNL5e60u94dAYGfb/3M172+ZnjEUA5O68PkqBw8e8ezOG4p7np39Co9zwQ/IyfiO2/vpNxczrCIYcztPBe9Ss+ZyWfkblLMzZhHz5QXmEwgihAS8ud3NKrC0RGWLIHduyEujpbdxhLn8yHPNXyOSTsnMSp6FAXGAgRB4M2oNzk0/hAJOQk0W9pMNhx8GkRRZH38eiK+jyA6IRqAN9u9yYFxB/52mnEN/rOoSTRqUIM/GRnFf69Z3x/J2T4NL7V4if139nMv/x5R/lGMbTKW5XHLCXELYe2VtdT3rM/W4VtlVafYxFgm75rMtuHbCHYN5mr2VVr5tUKr1GITbQzePJjnf36ediva4aH3oGNAR5ZdWoavoy+nJ52mnX87ohOi0Sq1DKk/hBS9iSId3CGP4ynHwWZj8XlJerN3aG/eiHoDQRDwc/Jj/ZdJDH8/jJ/qS90JeyDaxKcJ0Tei2TBkAw4aB3LLctGqdBxZA9M9+pJRkoHRKgXtjhUw8mAGKwcHoVPpcNe5cy37Guvi12EVrQS5BnFo/CHKLeV0De7KiYknCHQNxAUd/dafIzoCztWR1k6BQh4Wvpcv0SdERLwN3vL6ejt4E+QShI+jD0pByY5bOwh2CyZbLJFDWBERm2iTq/VuOjcS8xJl3rJSpaZdroFSsbrpnF6tl5MChaCgxFRCgEsA13Ku4a53l5PAYBfJxMxeXXVUV3faPq3OQmWzvycBnVKHl4MX6SXpjz8wIhhMktmXPdg228y4aKSsaW38WnnXO63D6Pe6DyUaOLdSyYw7HgQ4B9Dctzlrr1TuNy12mnRdGkda+7WudjpnjbMsUTuzzUzUCnU1dbGqeJLMrZV/z3ej8m1WGtbZ6VvTW0/n/cPvM7nZZFlFSkTE39lfTmjs1xDnB3O7SYnt+dpwQWq84V8AY2PGciTQxi0PKNVAu8Z9uBvgSPf7KtrWaUvjGw954UgR73eDHz1SSHeCO4lnERCIy4jDIlqo5ViL+Ox4+XoX913MOwfeIa0ojTD3MJb2XwpISWdkrUiGRQyjyFQkc/ABPHSSK3uERwRuOjdu5t4k5mYMJeYSSswlHEs5Jq911eRudKPRNPBsgE6lo3NQZwQETj84zcZrG6v5CMWMiOHohKPolDqmxU5j+3Pb8TJ40WNtD2bEzmDm/pk4a53JcBa43aouPlv2AFLhZPO1zWgUGr47/x1nH1RSKrc/JyXjoe6hKAQF01tN50jyEX5N/hWD2sCJ+ydk6deiiiI5wY/0aYLKbGXT1Z8wqkTWtzXgqnNDp9KhV+m5nHkZm2hj2/Bt1VTMfrr2EyIikT6R3Mm7Q+2P3enR4AIHI52xYCXIJYimPk0pt5Rz+N5hmd63fMByREQmNZtESmEKDbwa0KZOG6L8owhyCcKgljpKo/OXs7UB2EpLICzsr+toVEW/fnD1KnTqhOOIcazcbmVTn5Xsu7OPyCWRnEyVOIGdgzpzaeolQt1D6bK6CwtPL/xdCdyUghT6bOjDuJhxKAQFNtHG6oGr+aLnFygV/73kvwb//6Im0ahBDf5kZJRk/G0djYziDP514l9MbzX9d+Vsn4YRjUbgrHWW6TKfdf+MMnMZPg4+RCdEU2IqoUdID77o8QUAYe5hbIjfwBu/vMGWYVsQELiYfpEg1yACXQJRK9SsubIGo8XImMZjOHX/FJ56T3JKc3DTuxEzIob6HvXRqXRyVW9S5CRcda6IAuy5uxesIiIir7V5rdq1KhVK9rz0K58+8ygQeERLqTiwj0+7f0pDr4Z0XdMVlULFwHoDWRkJLyV/i1qhlkNQ/1IFZGWz0fU+RouR6a0r3atdtC5ce/kaXYO7sn3Edvbe2csnJz4h4WECMy/r8C+E9x8VXRUosGGTpSERK4NMO31CKShJmJbAsgHLSC5IprZTbb7q+RWn006D+Ej56RGi/KNo7CUlBgXGAp5r8BxGixGVQsXNhzfxrZK82OGkdeLDTh+SU55DUn4SALUdpeD//Q7v09xP8sUoNBVWe53dvNCO1JL7WJQg2MCGSKBroNyZ6VW3V7V9EUBvhqLSvGrPvD0grUoXU6vUFNf2Imoy7G/qyDfrc7mU0JleAd3kxE8pKKmwSNSbUnMpe+7sqXa6IlORnHzczL35VJnap/lZ2OWXgcdmFP4I9nN+ePRDyXem3evyPMWQ+kPILc/FilXuTFWFTQFn/CHsNUkOt/9tuLQEWqchd4eOpxxnbXAxUfestHOoD+PHUxLVkq/awYKeC0CAC65lVHVSzyzJxE3nhgJJnUmj1LDx2kYMagMTIycy9+hcQEpqhmwZwuHkw9WuS4FCpvzdzL2JUlCiFCrd1fXKSg8WV40rM9pIvicGlYGdt3dKHhWWMo6nHmd80/G469wpM5dx+N5h+XNwLv0cBo2BRX0WUWYuY/re6ewZvYeH5Q/57vx39ArpRXFFMZ4GT4JmzYOzZ1m8ahr+X/kzZfcUeWC6c2BnTkw8wbHnjzGo/iB0Kh3pxVISPDhiMM5aZ3pt6EVaURp6lZ5OAZ1w07nhoHYg2DUYvVJL6fXLlAhmUlylz2mYVz22Dd9GRkkG3dZ0w2qzYhWt8nNpF5kYHzMeAYHLWZeJid/M4AulzLS2Ilcsw2gxklqYilKhpJVfK9rUaYOHXkrefNhD+gAAIABJREFU7EWCEHdJ2raJTxMATt0/xTN1n6Gln9SVDdT58NxzELk2iugIsN2+9W89m/8xeHlBdDSsXg0xMYwYPpfLkUuo7VybTqs7Me/oPCw2C75Ovhwaf4hZbWfx+i+v89y25yiuKJYPY7VZWXRmEQ0XN+RK1hW8HbwRBIGjzx9lQuSEv+e91eBPR02iUYMa/IkwW808LHv4t3U03j/8Plqllg87f/jfer1BbWBC0wmsuLQCk9WEn5Mf73d8n3Pp5ygzl7E9Qaogvt7uddrUbkPCwwReaP4C3577ll23dzGt1TSUCiWphanklefJXHejxcjcY3MZUG8ACdMT8HP2o+/GvqQVppFUkMS8LvP4uvfXKAUl6+LXYdJIX1UKm0RB0SjUckW+KhSCQg78HAQNDXLg8Fros+EcXVd3wVnrTIRnBMfuH2d2D3BHz+0Zt+mfL6nltHioYdPAEMpFE50CO/HZyc8ASQ6z1FwqG+z1Du3N4r6L2ZO4B8cKmPZLAasi4baXFEQpFNL12lV4KmwV1argIFGObuTcoHvd7rjp3MgoyWD2odmPvScXrQufd/+cK9lXAGnoNuZmDBqlhsH1BiMiMqjjg8dUn15s/iJzOs8BKoPhuEzJoK2OSx3MVmnbb2cyfosIzwjpuhXgWwy3cm/JVfzfqpcpEMjTA1abPCQMPDYoDZBWmIaj1pFyDQzoU8DhN4biumojDUe+yjgvafjbVecqKYBpXZjZZuYTr+9cuqR6tOryqqe+j9+DgFBtBsNR7fhvUTdGNRwFSHMcVzKvELkkUg6Cp7acyoiGIwDQKDWPOZc7qaXBe7MKKlSS58grfeGZe6CxwMzTcPHucT7qDG93F6m3/GcoLsaycjmiAu4VSJ0yZ4sSxMquVC2HWhL9DxvhHuGMipausdRcynuH3+NalkSTa1u7LR38O1QmxI9gw4bw6I+ISKm5tBoFzsMg+ZOoFCoKTAVyIaLMUobJakKtVLN20FqCXIM4ef8kRyYcwcfBhwfFDxARGVJ/CG8feJuL6ReZ0mIKDb0aEp0QzfiY8ZisJvQqPQfuHkBE5K2ot3hDc5QcAxiXL6HcUo6AQOvaUoK5qM8i2ge0l+6lIMjKUwk5CfRY14OiiiKsNivnXjjHi81f5Me4HwlyDSLYNZgHD5Mosxq54mLETSXdc3e9OwfHHaRrcFfcde7czL3JyoGS/PDOWzuZc2QOQYuCmLF3BmqlGm8Hb8JdQgi5V8DSFvC18rz0/dZ5LllvZXFg3AF6hvQkrSiNh+XSOheUF6AUlNRxqsO17Gs09m5MUUURV7OvEuUfRb4xH4WgYH/kAk6uAB+NO8P0O2ne8x4xV7f+ZWZ51SAIMGECxMdDUBBBfUdzLKEt/4iazfxf59N1TVdSClJQK9V80fMLtg3fxv47+2m1rJUst9x+ZXtm7Z9Fl6AuFFcU4+voy/kXzxPlH/XXv58a/GWoSTRqUIM/EfbK798xDP7vyNk+DVNbTiW7NFuer5jVbhYBLgG46dxYc3mNvN+e0XtQCSrWXlnLG+3eYP6v8/Fz8sNZ64y3wZvM0kw0Cg113epitpkxqA3suLmDDfEb2D1qNyWmEvpu7IvJaqJ9QHtebfMqA+oNwGwzk1eeh0apoZ0iEJUNTFYzdRcF88HhD2TqjCiKtFveTg7kSzGRHejB1OEG+uij0T/IZn/TL7mbf5e7+XepV6wlJXsMQc4BkCfp2m4MMzKnQRZKQcn17OtUWCtwUDtwZ8YdetTtwdAtQzmbdpbhW4czZbek3vX6aXAywbwuUhKhFJSEuYehUWrkuYj5XebTo24PvAxeQGV3o+Oqjrh/5k6+MR+zzYzJamLVgJU4VyAnDrM7zualPS8BSLQrAXnf6W2kjkuu+vFKfkZxhiwB6q6XBvMrrBX4OPjwyYlPZK+K3+sC2Cvwdr8LAQFRqWBKhp/8mn139slVWpA6HqIApt/oDTypm1BkKpITFietE43mLWboyx7UK1SxeM45olKh+NGsS0Ovhnx15qsnXmfV6/2vontwd5kiJiLKcysgdcZ6h/T+Lx/rp+s/AVDPox5pRWmYbWY0CqmrVlJRwuF7hyWhA2tFtWAdeFx6V4AzdeCaN3iVgXcZ3PhW5NtYuFIL+kdep91sLw6Yb6JVarn1UKpwF6mkBEbxqA2WXZotd6ZWX16NiEhj78b0DulNfc/6XH8oSQPHZcRxIf0CSkGJTlldQlQQKge76zjX4ZVWr3Bo/CEW91tMZmkmJqtJTtDKzGUYVAaOTThG8mvJBLgEMGv/LL7o8QWlplIm/DxBql4/uke3c2/T0KshI7aNoKiiiA1DNgBw4v4Jdo3aRefAztiwoVKoePvg26y7tZnNkSrGXrExPGwQ1165xt4xe1EKSo4mH6123bUca7Hv7j6aLmlKVkkWW4dtRRAEdtzawfTW03lY9hClxYpj0n0KMeJi0yAIAvkWKeGu61YXJ60Tc4/OlUUbzj84j1JQ8vKel/nqzFdkFktSvi18W5BVmkViwV0MZoH+gT0QENg+YjtzusyRqZN13eqSVpRGUUURThonkgulNUotSsVoMdLYR/Idsok2ovyjKDQWSp8Ng4Go+3Ag6geOR36DRxkM2f4czX9szo6bO/6ehCMoCA4fhs8/R/XNd8x9fSfHOqwgtTCVpkuasuW6pMQ3tMFQLky5gEqhotnSZjRd0pSiiiJeavESsYmx9AzpyYlJJ6rNv9Xg/yZqEo0a1OBPxN9l1vfvytk+DQ28GtApsBNLHhHJdSodX/X8inxjPoeTD3O/8JELs8GDWe1mYbKa+Pnmz7zW5jXeO/wevo6+JOQm0KtuL9QqNUn5SQxrMAwATwdPZu6fyexDs9k0dBMJDxNQCkrqe9Tn7QNvy/QpL4MXbjo3TpKCRQm9MgyYbGY+O/EpdRfV5fOTnzNz30ySCpLQKDUyZ9xN787utq6UuOj5eK+F9tufpdhUjLfBm+vXu+CYkYt4/TpnvaWAKbRAyQNFCQ5qB3LLc9EqtVx9+Sr+rv6sG7wOrUpL2xVt2XZDksP1LIU3T8F3rSDNRVIesopWysxlzOsyj7RZaThqHHHQOODj4ENOWY6s6GN3E65KLRAR+f6XjynWIlNn5h6Zy7Xsa2iUGroEdcFoMWKxWXDXu+Pn6IdCUOCJ4TF52fMPzsvzDf/oWN2g8XLm5ceC/w7+HeSf1Qq1zJ22B/vdgrtxvcNPLFiVjvLR+hZUFDCo/iC0Sm3lgSqHS3BQVqoXPUkRyu7BoBbUtF/Rnr3ehYycHcZlh2KOroYpp0wgIvPw67pUGpTZg3k7XHWu1HP/r9EDK6wV+Dn7PfF3GSUZMpXq30lebuXeQkRkcrPJslzs2JixpBSm0NSnKcBjHY08Y6Xbuv1cAYUQ7yN1797rDvWnQ4oLJHwHOzeCLjWDEdtGYLVZqitqCWATRGke5NFlV6U7Xc+5TnpJOu392/PpM5+iRIlOpcNoNWIVrdVklpWCks6BneV1CHYNxk3vxodHPmTanmlygmFQGXi97esAeDl4MWjzIG7k3ODX538l3COccTHjmN91Prdyb3E1+yoiIqHuoVzLuUa+MZ/MkkzGx4xnzPYxMp3ok+OfsO+u9L4sNgsqhQqT1UTeqEF4l8Iq9TAaeDXASetES7+W1fw0jqcc51r2Na5mXeWd9u8Q/3I8wxoOY1iDYXx//ntC3EPo69Sc1JSr5NhKaGEIRePogogoe6vEZcTx2YnPmP/rfOo4SwNXC84swFXnSh3nOpisJkw2E3nlebjp3XiGukTkwKRe77Ar9QAfd/uYAfUGVLvPVY31vAxe3M2/K9Gmsq4C0Ni7Mafun8JN50a4RzjFpmJpFsThkVFlaSkdWg7h0Fo4FvYvXHWuDNo8iJbLWrLr1q6/PuFQKuHNN+H8eQA69JnKFdNkeoX0ZMS2EUzeMZkSUwnZpdmYbWYsNgs20YbFZuGHiz/wQacPZKf5GvzfR02iUYMa/InIKM4A+MtnNKITov9tOdunYWqLqRxJPsLNh5Km/IB6A+ga1BUBgTVXKrsa77R/B71az4PiB8RnxRPmFsblrMt46b04nHwYrVJL69qt2XFzB//o9A90Kh0uWhd23trJtNhpNPJqhFW0ErE4goVnJFlKP0c/cspy6BvaF5CCoMO1zTyT64JFtOIjOvDeoff45tw3gCTBasOGj4MPiXmJGC1GosfuYvwYDWnOEJoLTVLKUTo5Q3o6ice2k/XIOkLzqOJcZCpCgYLzU87j5+TH7IOzqbWg1mMUk/d/BZsAn0i+XdR2rs2OkTu4++pd3u3wLl4OXvg6+pJenM6he5IjeJhHGCIixRXFOGudaewjUcD6hfVDp9KRWpxWzZnbzgs3WU2cSD1Bt6Bu6FV6Co2F9PupHw5qB0RFFTnZR1/r1x9el117q9KYfk/56sT9E2gUGtQKtdRxqiJxCrBz1E7c+z9H7Li2WLHRxKMBAFuubakWpFYNziOTKiV4nyTna39dXkUed/LvUNetLgH1W/Py6+F81xq+3QvRuw1oKqz0C+tHUqE0axLqHorJZpLP5aB2IN+Yz628/xqH/Xjqce7m3ZX/XdXAT6OUhozh6XMd9o6PXbbVjpWXVspBsz2QOppyVH5NVey/u1/+2X6uRnlKbnhByaM8ytPNj+EpBspVEJkObx4xcn4pDL5qpdhYiN1wXEBAY5EG3G2iTU56AYY3GM7WYVvpWbcnp+6f4u2Db2PFSpGpSL4m+/kjPCPIeyePxf0W08K3BQC/JP0iu4kv7rsYhaCgjnMdmvk2Y+GZhUR4RnBp6iVa+rWk1/pebLi6gV/G/kKUfxTTYqfJx/bUexI3JY5OgZ1IKUxBpVCx49YO0ovTmdZyGgoU/Jr6KyB9zjVKDRabhRmtZ/Dh9K3QsiWsXCmvWZegLhxNPkp+eT5Td02l0+pOOGgcCHEL4Z/d/infhxmtZ3An7w77Z/Th1cVxZDuIpLgKBAU0lWemLKIFJ40TVtHKu4feRUAg3D2cUPdQBARyy3NJK0pDIShY2Gsh2W9ls6fWG3Q+kkSWl54Jd75kZKORsiloVVRNNPyc/bibd5cQtxDis+LxdvDGx9GH02mSGIZCUFBqKkWv1oPh0WewrAz8/MBgoFOGhiMTjnBkwhEcNY4M2DSA1stbs+f2nr8+4WjSREo2XnsN13fnsum7TFZGfc7m65vx/8pf6tjq3Tk8/jBBLkEk5iUS6h7Ki81ffGLhoQb/N1Fzp2tQgz8RmSWZKASFrLf+V8AuZ9svrN+/JWf7NAyNGIqnwVM2nBIEge/6SsHYN2e/kf+D8zB4ML3VdAQEjiYf5U7+HRp6NiSnPAezzczoxqM5PvE4IxuNZPah2UyKnEQTnyZYbBYKjAVczrqMUlCSVpTG21Fv82bUmzT3lYaWb+feRikoeSvqLd7t+C4nvI24WdTcKk/DVqVSbFdDMlqMuOncyCvPo9f6XpisZuZ2mYvNyZGiimIqdmzHlpjIjvitKB+9PN6tUnXnmeBniLkRg/Mnznx68tPHvBQC8+HlC/B5eyhx1OBp8ORB8QNUClU15ZRajrX4+ebPZJRISaeIiJPGCZVSxcstX5b9GH4a+hMtfFuQraqQkownFNPTS9K5X3Sfcks5aqWaxNxEOgZ2JNdWqcdvH7w2WU2yl8CGqxI1pap7tl1xx45Q91AaejeUE5xic3G133de3Zk7eXfY0tGdZpkC+uu3n7hf1WA63gdpsP13AnatorITMrvDbG5Mu8GqgaswKURe7w2jhkKv+DLOrVKSdOEAICl1jW08Vl5LpaCkR3CPx879e3DSOKESVDKtBaq7VGuUGr7t/e1jHZOq0Kv0iIi4aF0orKgcpndQOyAicjnrMiAN/tvnMOzXWxW/7XAAuJRYsSmg0CC9lzEHsmiRWMZX7cC/BGYM0jBiOLRNg2vfw1snJb8NURRxLYdBCZXnUilUhLmHsfXGVoZuHcp357+rRhPTKXWIiLL8skahQalQ0nZ5WyK+j+CXu78AklxslH8Up9NOE30zGptoY2abmXzT+xtERBIeJvDRrx+xc9ROZrSewYy9M3jjlzeIfi4aPyc/WYo5rzyP1/e/zoGxBySK0KO1yzfm8/XZr6sN4r/a5lXSZqXxcbePWXB6AUsvLIVJkyA2FjKkz1LnwM5klmQS/l04P137ie/7fs+M1jOqdYoA2qUJNMvV8F3RIXq8+yO1nWpjES1E34xGQJCLMfbunUapIbJWJIeTD5NamIrZZsZVK13bsQnHmNl2Jq4FRhg9Gm1gCLlCOQ28GrBiwIonGrPWdqot0+b8nfyljoabNAje2LsxNtHG6funiaojzSqUW8qlRL9qoiEI1ZSnugR14eiEoxwafwidSsezPz1L2xVt2Zu4969NOLRa+PxzOHIEISUVz7fm4GBVUlRRhFJQ0tqvNWNjxlJhrWDVgFWYrCaa/9icg0kH/7prrMHfippEowY1+BORUZKBl8HrL5XsW3h6IWlFaZIizX8IWpWWiZETWX15tezi3cCrAQPrDSSnLKcahWNC5ASMFiMKQYGIyK3cW7jqXFEr1Cy5sITUwlTWDFrDu+3fZe6xuTSv1ZwJkRPkQNwqWqnvWZ/PT33O4XuHcdFJFePTaaexilYmNpvI/K7zuTn9Jt0a9Zf8CZCM9hArFV3KzGWSdv2jY8aOiWVOlzl0bTOC1DAvNkVYUeTl0erAddrcf3Txj2KEroFdOXDvAHOOzZHdr0GqUDtrpKHRuUehUK9gSZRGcvYds49+Yf0YtmUYJ1JPUFRRxIJTCzj/4LxsLAYQPTyaQJdAjBYjKy+tREDAoDKwLG4ZJ++frLbuYe5heOg95C6FfbhcQMBokTwSqnpOuKucqgXbqYWp1Y5nE214OUhzInapzYHh0pxAQXkBVtGKWayc2aharc8ozqDB9w2ITo6lWC1y0cuCo6I6rx8qEx1BgBItPB/HY7MJdtglcAGuZl/FarMiiiLJ+ckAbGoMbV8AvUnk5A8mhtzTMarRqGru5VbRys+3pfmh30to/J39q62BRbTI6+Soqk7fKDGV8HLsy9Xu+29hH0i2z+D0rCsl9PvH7ufz7p9Xk0AtNhfLUrG/7RI9CTZBcgS3IdI0A+YdtPJlFKxoreKmJ+TbyrnnLvBmb4HWU6BUDcdXwHexoLXBzxFIrteiVXbHtq+X/ZkxqAxolVoctY5EeEbInUqTzcTNhzelruPIHRyfKKlndQnqwq/P/8rcznPlALFvWF9WXFqBj4MPC3stZNHZRQzaNIg5XeawYsAKVl1eRfuV7UkuSJY7O8MbDmf5peX03diXs2lnq71vq2iV1xMkrx0vBy9md5jNjNYzeCX2FXY3d5Lcq9et437hfb499y0gPUcJ0xJ4pdUr+Dn5kVeeJyU3FgvMm4fQsSMzHtRhb4iN68+2leVjFUjfUXbDTjtMVhMBLgFsGLKBjDcycNW5ykmR0WoEqxVGj8akhFXNpedo1cBV8nF/C6VCiYdBegZ8nXwpMZXIilONvRuTkJNAYUWhPBRdYanAUetYjToFQHh4NS8NQRDoFtyNX5//lQPjDqBSqOi7sS9RK6PYf2f/X5pwZLWoz4hPmjNgcDktbhVx68Yz9AvswTfnvqHYVMzuUbt5vtnzXJxykea+zem5ricf/frR7xqX1uD/DmoSjRrU4E9ERvFf6wr+P5WzfRqmtJhCvjGfrTe2ytuWDViGAgWz9s8CJH30IZuHoFPp5CqhRbSwrP8yWvq1xCpamRAjyRh+0v0Tvu3zLYvOLWLHzR1y4FfXrS63H97GUePIkM1DSMxLlOYFsNHEp4msgx/kGkR/OxdaBLMgorMKsheAi9aFbQnbUApK1IKamARp3sNR44i7oxe1Xv8HLz4LTTJhdpX4XoWKIymVvG8AD70HKkFFhaUCB40DvcprMyFeYF4nG0VqGy82f5EWfi3YNGwTkbUi6b62O34L/Hj34Lty8mIfME4rTkOpUGJQG8gtzyXUPZQySxlv/PIGA8IHyMZ3akHNvfx7TG0xVQ7ec8tzuV90HxGR3qG9Hwvg8yzF1YJtJ61Ttd+HeYQxsuFIea0VKPjh2R8AyYwvPiteXjuoPgfxoPiBPAR+x0Myk/MsrN7lqUrTEwG9TUGFWqrSPwn3i+/LP8cmxjJl1xTSi9PlIF+Jknt1HGjzosCFEB1b1xiZvCuNfx6dJ6siPQ32js7g+oPlbasGSupUmaWZOKgdMGgM1WZMGnk1ku7DH8C+zhqFRlZAu1dwj7fav8WYRmOq7ZtrlMQGyixlf3jcHAfwKwadGTZshxte8EE3iGjyDC2mCnirXRjeYLjkjaKF79tAi6mwJwwW74KOych0KqVNoqeNajSKvaP3sm7wOgqNhZRZyrCJkvxywkOpBdLKrxXjGo/DTefG6kGrGVBvgPwdklKQglKhZGwTqZOkUWpot6Idqy6v4sXmLzKz7Uz2jd3HuQfnaLO8De3923Ng3AFu5NxApVBRYiphRMMRbL6+Gb1Kz6F7hxAEQZ5dqbqmYW5h6FQ6puyagtFiRBAEvu79NcMaDGPYgRfI7NWBvMULaPB9BJczLxPuEU59z/rUdpaSVjtNNfPaGejQAf75T8z/eA+3eVICGLk0ksQ8qSvgYfAgwCWg2mfG7iszs81MRjUaxTsH3qGooggREY1Sw6WMSzBvHuKxo7zyYQvuFqUA/CFF1V6gsCehfo4ShaqJTxNO3T+FUlDSqrbkCG6ymqT9q3Y04He9NARBoHvd7pyYeIL9YyU6Xu8NvemwqoOk3vUnJhyiKLL68moivo/gcNpxNg7ZyO6BW9hYdIKdyfvo4tQYvUpPrw292H17N54GT2JHx/Jh5w/58MiH9P+pP3nleX98ohr8r0VNolGDGvyJyCzN/EsHwT84/AEapea/LWf7NIS6h9Kjbg95KBwkY7budbtzK/cWay6tIWplFCarib5hfamwVtDRvyN9QvsweedkFvZaSKBLIKfSTsmme+Ee4Thrnckpy8HLwQtvgzeFxkJ8nXxRKVQUVxRz/sF5HFRSZW9S5CT53Nml2UzaKf1br9TTpdANo1LEZrOhFJQ8LJeclBt6NcQsmvkx7ke+PvM1BrWBcnM5fl79MPl8zYDXd7Gg/9c4i01ABAtS8Gx3AAdpOHpe13nEjIwhoySDFed9yfLSs7aVBotoIcQ9hCuZV5iyawrnHpyTaVajGo+SfSA+fuZjANKK0kgrSqPcXI5NtMlUliCXIG7mSpVlRClBc9Y6y4ICjbwa4aRxwmgx4qB24GzaWbwMXtWC7RCqq4vZK8QCAm46N1ILUll6calsKGfDxqQdlWtqD4Ls1duc8hz5dwaVgWa1muFl8EIhKDCodGz7qTLR6BLY5TF62ettX+enJjDlgnQNVelKUKl4JSAwMXIiqy6vouOqjvLvrUhV+VydlR/e68WCPs40/CGa7RuteFQonjpDoRAUvN/xfQBuZN+Qtw9rMExes1qOtVApVNXW8G7+XWLvxPJbVO2+VIXJZuLb89/ioHbgyL0jfH36a1ZdkZKZroFd+ajrR7/b0XkSkt3ApQI+OQgheTByGFjVCvYn7WekMZQvjunYcmNLNdqVRqVlX7hA/7FwPAgmXYLjK+G5GwKFZflsjt/Ij3E/8sHhD+Q1r6o25qJ14ewLZ+kV2oucshxZoMBZ64yrzpWUQimYtjudbxq6ibpudSm3lJOUn0SZuYzudbtz9oWzKAUlbZa3YePVjVhtVnl97epQ5ZZylIISi81CenE6S/ot4cVmL8rX0jGwI9/1+Y4ySxmjo0cD0r1cO2gtTWs1ZZzrYdxTspmj6UnCtASGRgzlaPJROZj2e5RopD3Xm6PK+7y0tD+++sUMjh6GzWaT57dAorbVcaojn1shKGjn3w6AZZeW8eGRD1l+aTk/9P0BZ60z7np3LsXtgY8+4ru5fVmRGcv8rvPlYz0N9q62/TNSbimX1MB8GnMq7RRNfJrgqHGk1FSKiCjRyJRKiZpUtaORllaZePwGgiDQM6QnpyadYu+YvVhsFnqu70mn1Z04lHToP55wJOUn0XN9TybumEi/8H4kTEtgYP2BjBK2MadtOR/dD+fwG1e5mtSLNrVa0P+n/ry691XMNonGGjsmljNpZ2jxYwsupl/8j15bDf7/QU2iUYMa/InIKP7rzPriMuJYdXkV87v8z+Rsn4aXWr7E6bTTXMm8Im/7rLvkNTFp5yTcde6Ee4QTczOGDgEdZA16f2d/Rm8fze5Ru3FQO/DavteYtmcavdf3pl2ddvw84mdyy3Ix2UzsGb0HN70bRotRrjba5wDsevmiKNJiaQtsog0njRN1XOuQGuyGh9IRBImGoVNqWdZ/GZdeusSmoZtwUDswa/8sYhJisJb5M/O0QEqt1qgV3oiG1kRaf8BZbEKnZGiap0FEpH1Ae2o71cZV58r01tNZdGYRY4rrUvvwBd7oUEaJYKKhV0PeOfgOkUsjOZZyjC97fknijETc9e6si5eUqkCiQbnp3Nh2Yxu55bl0CuxE58DOFFYUUsuhFsmFydzOvQ0iBNocERHpEtSFjdc24q53Z/PwzXLiUGouJd+YL/sm2BFgfJzKBFKlON+YT5GpCI1Sw+28SvqFXeEHKg31qs5O2GcMyixl3Mm7w8hGIyUKlqMPbV+UAnQBQaZkVUXjgFb4lSnZFQHBRcrHhuntcNY64+fkx6y2s2RvCDv0aj2jGo3iVPoZlvb2YtgEA61SzJxZYqVx5hMPB0CYWxi55bnoVXoOJlfywecenSsnKGlFaQiCUM1NvLCi8DEqDSCbwNnhZfBCp9LhpHHCZDVRai5l5eWVzPpllrzP5czLfHDkgyfOYvwekl3BrxBmnoUJQwRueUnPe0vfloipKbzdtNKp3Q6bJCwMSF0qv6btmd4X/ApFTqyAqUdLOHAlhtTkHBnfAAAgAElEQVSCFGo7+jK52eRqr2/o1ZDMkkxC3EMAqlH9Al0CSSlIQRRFtt3YhrPWmYH1BmITbTT1aUrMzRhaLWsliT94hHF68mla+rXkx7gf8dB7yHStqiIEVtGKl8GLh2UPqeNch/SSdDnZW3lZGqZv7N2YmJsxnE07S7m5nLlH5xKXEcfJEDUpbgqmxqtx0bnQJagLWaVZ3Hx4EzEnh4y3XgZgwEiRrj3T2VVwjnoe9TCoDTIt0N/ZnyDXIEDq1IFUTBBFkbMPzqJX6dmesJ2Pjn/EZ90/Y0rLKYxtPBZTUQGXEg5zcHgLZon7eL3t60xtMRWg2uzLk2BPMEpMJXg7eJOUn4SAQAOvBtJ8xiPalP04dklqDIbqHQ2AO3eeei5BEOgd2pszk8+wZ/QejBYj3dd1p8uaLo/JAf93YLFZWHBqAY0WNyIxN5G9Y6RumdFipOOqjuy+vZvtz23n/WU3EZYswWvNNnbNv8O39V/nx4s/0npZa65nX6d3aG/ipsThafCk/cr2LI9b/vdI9tbgT0VNolGDGvyJyCz5azoaoigyc99MIrwimNpy6p92nv7h/fF19GXpxaXytqQCSQnIhiSFeiJV0sJfO2gteeV5bLq2iV2jdlFUUcTLsS+zZuAarKKVxRcWM7vDbGLHxEo0IIUSURQZGT2S1QNX071ud7mSasehJEm5aVrsNNKK02TTMLPNTJm5jCKk7oGzEYyWCvpu7MugTYNo4deCW9Nv4aRxIjEvEZeyIVhFK8KjSrOAEgGB+hWTWLQXzn1vYkdKFL0CuzOq0SiSC5OJXBLJgbsH+HBvKQl+GrY1UaFAwfWc6xjUBlQKFVObTyXYNZgzaWcorihGKSjlQdjdibvRq/TsvLUTF60LLloX4jIkA72OAR0rq+oCGB45PP9y9xfpP2//jvTf2F9eB4WgQK1QU9u5NiKi/Nojuoyn3j+1Qv2YeZ69awOVwVCwe7C8zV3vLnsgFJuKMVlMOGuduTz1Mh6PkgsRkeiE6MfOty5+HXkGBQme4J9rka/9t3DWOnMl6wrfn/++2nYnjRM20cbQiKFklWZxN/8uLgOfo/FkE0VaOLMcRsdX7l+1c6DX6LmXf496nvVkKpgCBf86/q9q7zevPA+rtXoi8KROyW+3dQ3uiskimdNB9XW0I78i/7FtvwdnsQmNLV/T2rYLX93XjBzVhC0NKk0ec8tzORChJckNOlbJxVQKVTWDwWeCn+FquCs3PWFBe+jzsiO3PWDLFli0F7Tp2ay4tIJH1hs4a5y5nXubet/V4/A9ySHcrlYGEOgaSGpRKgeTDlJsKmZEgxGcSz/HlawrfPLMJ1yYIvlwtF7Wmu/PfU9qYaqs6PWw/CEqQSVLOQO0q9OO9YPXU1hRiJeDF4M3DWZP4h7USjVzOkkGk2NjxjKt1TQUgoK+G/vS+IfGfHXmK+Z0nsOtVxPZ3tYFxZatPMxOJso/CpVCxawNYwn9xJdeoZKpprO7L8GuwaSXpHP2wVkqLBX8o9M/eDb8Wcot5UTVicJB7UBKYQrNfZpjtpkRBEGWnjVajIxrPI63ot4CYErTSYw/Y+SGu5XhkYl0r9udz3p8hqvOFZVC9YeJhv17IL04XVacCvMIo8xcxq3cW3KiYe+M2Gc6qiUa4RJttOqcxtMgCAJ9w/py7oVz7Bq1ixJTCV3XdKXrmq78mvLrf+kYv8WVzCu0W9GOtw68xdQWU7n2yjV6h/bmbNpZWi1rRU5pDicnnWRwxGBpUGvqVLh8GcHDk+mjv+ZcxXisNgstl7Xkh/M/EOASwImJJ5gYOZEXd73IpJ2TKDP/McWwBv97UJNo1KAGfxJEUSSj5K/paPyn5Wx/D2qlmheav8C6+HUUVxSz5MIShm8dTj0Pict9v+g+sWNi6RvWl2C3YMY1HccXp77A18mXmBExnL5/mrE/j5UVj3bd3kWZuYzLmZcxWU2sG7wOg9pAz/U9ebPdm4+5f39w+APWXVnHDxd+QEDAarXiqHGkpKKEh2UPZTrIwqh5TLolneP4vaM0XNyQL059QZ/QPlhtVhwJQaA6nUVAiVIdQpsXYWFbeHbVKaKe/4CY/V9jtpq5V3CP3ncg/EYWb3QxYcIiV8LLzGVYbBbeP/I+gzYPYvT20RRUFFSrZI+OHk16SToiIoUVhey8vVNWudmasLVaIJtgk6q/dtO1Hbd3yAkdSJ0Hs80sD/E+jUIEUgDurHXGJtoe2/e3dCeFoKjmFp5SlCIP2CsFJeuvrqe2U21e2/caWWXZkqeGWNkNUQpKOfHZnbgbI2b0ZjgWBDoLTxz+NFlN7Lm95zHzwGJTMROaTOCLU18A0MynGauvrCbZDaImw5aG0hzDoljQWRTyeutVem49vEXCwwQCnAMIdqtMnOwKUwaVAWetM+WWcqw83nEIdQ/93fUUEDiYdBAbNplf/nvGh3bDyqfBWWxCpPUH3GmNFm/u+bYmI+QHnGki75NWlMYDRQnTzsGQJLVM5bLYLOSW58r7Hbh3gCxTHh9p+3DnexU3Bx3kVEtvXnjFj61tnXjvsJVNW6C1VMhHLyp5M+pNRjQcwQeHP0AhKOSEAyDAOYCUghSZNjWnyxx+uPADwa7B9ArtRQOvBhLtKqQX0/dOp8mSJiQXJsuO8hbRQr4xn2mtphE9PJr4rHi+PP0lqwauotRUKt+Pyc0mM7frXD7uKlEMX9rzEr6OvuSV51FhrSD+pXg+6PQB/i7+DP4kBr1J5ONXm9H6x1ZYbBYO5cXhojQQ4CitS0ZxBi18WxDqFopBbeDo80eZ33U+M9vM5HrOdf4fe+8ZFdW9vn9/9nR6F8ECIqKoQQUVu8ZesCSxa4y9xGgsMSam6UlMTIwn0ZjYNZoYY+xdY0VRsaKo2BuKgCC9DFP2fl5sZsOI5uT8jp7n/NfiyspaMrPb7BmY733fV3mc/1iZCA4LH0aLqi1k4wVBxeXHcnK6iKi4SNX7cSOdbsvaJFcHN37v/btMCxMEfBx9SMv/a+qU7Vx3s+7aCcFjH8YClBQaxcexhXvi5FRCnfLyAnf3Z+o0/gqCIBAVEsXZUWfZ1n8b2cZsWv/cmnZr2hGTGPO3jlFoLmTGwRlELI3AaDFycsRJvuv8Hc46Z9bGr6X1z60J8gjizKgz1K9Y337nGjUgJgZmziTsq5WcXW1geMBrvL37bV5b/xq5plwWRS1ida/VrL+8nmYrmtkVu+X4fxvlhUY5yvGSkGXMwmQ1vXQx+Muws/0rjAwfSYFZ5k+P2zWOXjV7KToCtaBmx/UdyrYftviQ5NxkVsat5OCdg5hFM0aLkalNpxLoHkhCWgK9fu/FscRjGDQGOgV3ImZYDHV86tDhlw6kFaQpXWpnrTMWycKQrUMAeXFdwbkCOUU5pBem2/HsfUIasHzOVT677EWWORcvtQvzT83nj4Q/QIA8boP0dBfbSvW8ZNZ3WUHSjAl0HelAYBbE/STSJ8kNQZR580erwp5iBoOzzpkQrxBaBbSiZ0hP3A3uOBVPI6JqRAHwj9Yyh1un0uGsc6a6R3UMagM6tY6oGlFlBM2uxhIx71/h6fwGG54uNIPcgnDQOmA0y8FsKkFFdY/qpV63/clESbSjCalQ8TjvsezOI1nJN+djFs3surkLAH1xEWI7jFWyljlmfjETy/gcqUJqfipWyfrMIuSHMz8ogX1xqXHK40YtDOsF47rB2LOwf7VIxWKn3UJLIYWWQo4lHmP7je1cSJHtZktTpAosBXYuR0/Dloj+LEhIfylgDXaXi5QgjyB5Efov+PsB1uHF0vbiCVtxsRZoLdHPWEQLgiAQnqah+V1rGaE/yILuh5MfcmLECd6bspGqWi/6rumOSlBxZtQZNn15mwm9HXinG7S5BzvWwqvnM/nowAdsjF/H4LqD0Kl1LDq7iDE7xpBRmEGAewD3su5x4sEJgj2DMWgMrL+8njERY7CIFlZfWE2TFU3YfmM7Aa4ByrXYwjf1aj2eDp5svbaVqu5VOTHiBJmFmUzeN5keIT2Uz8rGKxu5m3mXD1t+SOuA1oBMazKoDTzKfYSLzkV20zsxjz6n32N/NXjlehbWG9dxLgKLGm55QuugtoR4htCjVg+uPblGVlEWR4YeoUVVOZCybbW2BHkEceieXEypUBF9P5ph9YeRVpCGKIno1Xrc9G7subVHfjG7d2P9eg6z+snajj6hfeyseCs4VfiXE418k1wsJGYnEuQeRHxqvBLU5+fspxgX2LKXlEl46YmGIJRxnvp3IAgCPWr24Nzoc2zpt4UnBU9ouaolHX7pwIkHJ567X/S9aOotrse8k/OY2WYm50afI7JyJKIkMuPgDAZvGcyAVwZwaMghfJ19n30QjQY++QRiY3HIKeDHUVvY6jySY4nHqLe4HofuHmJIvSHEjowl35xPw6UN2XZt2//pdZbjfwvlhUY5yvGSYLNrfdnUqZdhZ/tXqORSicquldl5cyd9avdhx40dNPRvSIegDlR0rsj8U/NlrQGy2LtnrZ5M/XMqs6JnMavNLKY1m8bsY7MZHT4aq2Ql+n4082PnE14xHJ1ah4eDB3+++Sdtq7UlOS8Zq2SlcaXGis2tDXq1nmxjNtlF2XgYPJjRYoYSvObh4EGGjzMFbw5ALUJyUXHHt3j9e1+9EpUkoSrm4kvIi+ND+h94MGUkc7cVsPara7zzZUu21RBJLcrgndNQPxU+bA8IMKfdHGa1mUVUjSjZUtOYgYPaQelc7ry5E4BPo2Vhvkk0IUoidzLvYLQaCXQP5M87fyIIAlpBq1xfjgE5sI+SXAhb8RDsGczDyQ95q95bFFmKyhQpWkvZCUVYxTDaV2uvODnV9amrcPBLT4xKU5rCK4Yr59dr9EpoIMjTgtmvzqbIUoSDxoFQn1AQQBBL7u+zUNu1OgjgZP77adu2Scrz4O3ozeJG0Hu8N9Wy4PwSaF7MtousFAlA1+CudrSmVlVbAc+33LXBRnX5KyjuXaXunYCg0F7MVjN+Ln521KFn4XkTNg91qPKzhIQoiURXshCWLJL08FqZ48xpP0dxX8LRkenv1uGE7jF/RMzB38WfeSfnUWgpJMdVx5etYPAgBzSCms2/w8ij+Ww7vxaz2YiH2pm1l9ZSc2FN7mTeId+cj1Wy8m7ku/x84WckJHKKcgj8PpCh24bi7+zPxMYTFRMB28RSo9JwZOgRLo27RCXXSrRc1ZIrj69wZtQZqntUZ92VdQB4GDzILMqkxaoWtF3Tluj70Xg5yPfQaDUiSiIhC0Oo8l0VPjz4IblFOYzqZ2BEL0hxkvB2kk0GoodGs+a1NQS4B7Drxi4yCzM5OvSoksUDMjUpy5ilFLURfhFsubpFmRAJCBRZi2hSqQkZhRlcvXQY3nyTj0ZX57Q+TRa2Fwcw2lDBqQKPC55faOSZ8mRqFgLZRdl4O3rzpPCJ4jjVtEpTZXKSlCePmpS/d6UnGvBc56l/B4Ig0KtWL86POc+mvptIzUul+crmdPq1kzJhAblZNmbHGNqsboOvsy8Xx17k41ay4UhuUS6vr3+dOTFz+LbDt6zssVLRo/0lGjaE8+dh1Ch6vrec+KN1qOVSjfZr2vPBgQ8I9Q7l7KiztK3Wll7re/HBgQ/K/E0rx/9bKC80ylGOl4T/Rir4y7SzfRYKzYX03tCbB9myLemGhA0MfGUguwftZkSDETzIeYCvk69idxt9L5qYxBhlivFp60+Z034OPWv15MuYL4mqEYWDxoGHuQ/JLspWvvwNGgMjG4xUzhvkHsT4huPtrqXIWkSBpYBA90AeTH7AsQfHiPCXk4wXnVmE77e+zI1biFUFagnUVggqNPBG6BvkCPGc1Y7DbD1LEY/J5DQX1GPJVF9iUieJWg4r+L1bIJ77jvFOfxdiqsAXh2BPMNx3lycZwxsMZ0rTKczrNI91b6zjzzf/pIJzBQLdApWF7WetP1PSlR00DhSYC5QO7o0nNzBZ5eKjdHaFbbEuICAhoRJUyhfte03fw9/Fn2nNpmG0Gu0EwABmNYS71ba7T7tv7mbHjZIpU54pj8GvDEYtqGlZtaVi7Wpz4gG4knYFkIXA1Tyq4aBxUBbTJquJfpv6kWfOo9BSyLnkczhrnZHUUCH/+aF5V3Pv4GPRozf9PbFneMXwZy4wSidyHx9xHAGBnV5PaDgabnjB4dUwIRbGhI+Wz5t+1Y7WZBPC/zsCbdt5a3nXYkrkFOUx2/0v/Tse4hVCiwC5e15gLiAuOa5MgFxpuOhcyOM2EmUnbCZ1YpntL9R0RS3J99oGjUqDi85FmQQArLu0ju8KD/HPs560nL+VtPw0vj3xLXq1HrPVLGt8vKvx7aok4pd+zrVQH+btkfhmH7g+ySPfnI/BJLHorGx/rBJUtA1sy+dHP8cqWpl3ch4dq3dkatOpxKXEsfDMQnJNuXQP6Y4oyc5vJquJKfumYLKaiB4aTZ/afRi4eSDfxX5Hbe+Sz2n3kO646Fx4lPuImPsxrOy5ks/afGZXIOab83HVuWIWzTxOuUP7BCO712s4mtqNe5Z0VIKKEw9OcC39GicenMAqWYkZHiMXwsUoNBfS8/eeaFQapYjtXrM7jlpH+m/qj6veFSetk13I6hcL+7A2DL72u8037b8h2DOY+NR4zNaSz5SP019Tp2zfBQ5auQCz0cVqedfizKMzSlBf6W1tk1G7iQb8RxONp6ESVLwe+joXxl5gQ58NJOUk0XRFU7qs7cI3Md9Q+8farLu8jp+6/kT00Ggl2PFe1j2ar2zOobuH2DlwJ1ObTX1mUOFz4egICxbAvn1UirvNnx9c4Suf/sw7OY/mK5uTVpDGpr6bmNthLt+e+JYOv3QgNS/1Xx+3HP+TKC80ylGOlwQbnehlTjRepp3t08gszKTTr53Ye3Mv7au1B6BBxQas6rkKnVpHj5o9cNW70qRKE3bf3M2QzUNou6YtdSvUpUtwF7Ze34pVlKk7v7z2C9U9qhOXEqcUFwlpCbz353uK60hsktxZUwtqfr/yOzMOzyhzTXqVnhxjDntu7SH6XjRZhVkA/HZZttYURGj2AD7y7cuupNZkYeTsVVlQPu1wPDGGiZzS9sSz+lZyhEuYNVA5B3QWeKerxNnKUDm1kE8uueNsho9fhTNL4ZvdFgb+9jpmq5lsYzank07T6/deXH582Y7bPyt6FueSZdvG5wVThfuWdFsFwMkqf2HbFrGl9xu7ayyG2QbCFofZHUNCkgsGAS5n2y9CTKIJq2RVPod3s+6SUZiBRqXhavpViqyygN5J64SAQFSNKOWx7jW7k5CWIDszFV+HJEn4u/hT1a2qcg6blsSoUyFJ0nNTted2W0CmwzOfsoOAgKve9ZmFhq2zv+a1NVx5fAUJCV8nX9JdNbQfAj80hgV7odXHy3A0UcbFyvZ7+a9Qzb2a3c8SEtfSr5GSX7K/g1p+MTbnIoDrT66z4NQCQM49sb0WKNt00Kg05Jpyua9eiSST04qfkbU0V6wL7Lb3dvTm4D/u80sLV257lTxuES2E+oQqi71LqZcYuWMkg14ZxDv9v4OtWxn8w6tYJStqlRq1Sk1D/4aYRBO+zr583OpjNv8zCY9fN7I1qjrDzsPKbVD1jjwJdDCBKIrUWVSH7KJs+tbuy8TIiWy/vp0FpxYQFRJF22pt8XDw4PC9wxRZi1jWfRnHhx/nUe4j6i+uz/br21ndazVzO8xlTswcVlxYIdsa1xvGmvg1ZBozcdQ6YpEsDN82nIl7JpaZBOWacti2xUDqr36snHyELm3HUG/veRa0/yeiJPJ97Pe0XNUSR62sv7E5S4H8e/TW1re4mHKRXQN3KYWOTqPDoDGQbczmhy4/kGfOQ5RE9tzeg6dkYLvXE0a0zWNIvSFMaTqFbjW6YRbNbLm2RTl2Bce/pk7ZPnO2QL/swmwctY7kmfIoMBco+gxAcedy0j2n0KhRA9LSILskkf4/hUpQ0bt2b+LHxbO422KOJx5n+sHpWCUrv73xG+MajVMaDTGJMTRa1oh8cz6xI2PpWqPr//3EHTvCpUuo23dk+vh1nLjbjoz8dBosacCai2uY2nQqB4cc5GraVRosacDxxOP/+pjl+J9DeaFRjnK8JCTnJeOicyn5wnjB+G/Y2dqQlJNEq59bcfnxZcIqhnH4/mF6h/bmWvq1ErqE1oG+tfsS+yBWtna99AsfNP+AA28e4PNXP+dWxi3+uPIHIE8Etg/YjkW0KKnBoyJG8V3sd8w+JotBbQ5Tnap3KunuPQWdRkeIZwh9NvTBKlm5nnEdkGk8He9rWBUyjX0/5TLr7fV0Wn6Y49oxGHPlYqRirkxR0qq0ChXCIkCai0xi2ZPbC72jK3edLYzdn8XaV+C6N8xtBsNPGvnnxzE0n+SC+9fuRC6PZN/tfTjpnEjJS8EsmmlQsQEA9XzrUd29urJ4t8G2UH+12qtAcUqxAPlqSZkyCAh0De5KDQ9ZFNK5emfMVnOZosVG9wAwUXZxrlfrFcpQqE8o+27vQ0Ii+l40rwbK5y+yFlHVrSrr+6xX9mtauSkqQUWBuUAReYvIGo7MwkwE5NC1eR1k2p7ooEct8sxUbQGBSdHT6aCRX8tf6VD8XfzL0FNKY1SDUdT2qc3QbUMJ9QolNT+V/nX7Y1HD1M7Q/w2ofOgsJ5dDzYy/n2FhQ0Wnisrrexq/Xf5N+bdFsuCsdVZenw02qk73kO7kfJij0ICezhGxFVImzQ0uqMeRwWl5wibIE7Zc4bLd9mpBzfmUOEa2zaXrU03t00mnCVsUxuIzi3lt/WvU8KzB0u5LEQYN4k4df47lXaGqa1UsogWNoKF5leYUmguV/bVqLW/UfoPZg1cxsy0cnPoGdTI1rN4M3W+ASgK9BbRW2HxtMwtOLWBw2GBuT7zN66Gvc+DOAXKKctCoNNT1qcvQ+kNpWqUpF8ZeoHNwZ/pt7MeoHaMYGzGWWl5yZ1yn1vHzxZ+Ve2j7nNkgIhLhF4GjCRwsAhIwPkpAHXcBWreG4cMhOZkJWSG8UuEVbmXewlnrzIyWM3hS8MSuUP3o4EdsTNjIb2/8RoRfBOmFstXyN8e/odAi3wez1Uw192oYNAbSC9Kpe89Inh5CvGuyJGoJgiDQpUYXAObHzleO/a80GrZCw0XrgoDAnaw71K1Ql9iHsejUOntqV/FkRPmb9yzqFPzH9KmnIUkSK+NWMv3AdAwaAxMjJ+Lp4En3dd3pvq475x6dY2XcStqulptHp0eeprZP7X994H8FT0/4/XdYu5ZGm2OJm2/kdbemDN02lEGbB1G/Yn3ixsQR7BlMm9Vt+D72+3IL3P/HUF5olKMcLwkv09r2v2VnC3A17SpNVzTlScETfBx9uJ5+nX2D9/FD1x8wi2Z+ufiLsm39ivV5mPsQs9WMSlDhbnBHrVIT4R9Bl+AuzD42W1kkV3Wryrb+20gvkGkPsQ9imdVmFp8c/oT5p+YTlyILfwvNhWXyIppVacbX7b4m15RL7KNiTrEk/68S4UDYXPauNPHWoG+UQgZBoNYXi1mdKBcA47vJCze7AkCAQrVEopeWaQVbKRCLmHJKhZsRPnlVdurJchRoMUqDJMCxRUUsSWyAp8GTDkEdyHw/E61aS9NKTbmbdRdnnTMXUy9yO+s2KlTU8akDgEFtIDFbpsVsuibbwqoFNWoRXCUdFqu8QPJz9mNRt0XcyryFo8aRvbf32gmtHTQOaAQNNb1rysd+zvevv4s/RxNlO8uEtASsklWmbSEqQunkvGQsooW5MXOV/d7e9TYeBg8MaoMi8hYQ0AgahQY2u+1sLqddppJLJfKshXxX2PKZ1yAiUmAq4IAou8lIpdbwapsIunixXnpCAHLHdXG3xYpWpV7FevT+oze+Tr50r9kdCalEmwCsfwUihlswWCB2iZVu10uOZdMPlLzlZYuJlPwUsoqylAXw0/B1lGlmZtGsTHNs70tl18ps6Sd3ux21jgiCoCweSy+QSk99jFYjOUI8lzSTaJL3PpLfCnKES3bvdV2fumQWZhK1LgrvfFi/AVzMKuX+HB16lAC3AMbtHsedzDv0qCmnm9/KvkvX9qmoREjJfYRaUDM6YjRejl7KAtvutRWLefcnH2NZPQtDX4NkZ1i4C8adkYsNs7mIioIL7YPa4+3ozdCtQxEQaFKpCVnGLGa9OkuZrrgb3Fn3xjpW9FjBusvrCFkYwtUnchp5kbVIoQe66GRxu1WyKkYHdX3qElt9DncW67mwSEKDiofaQlpv6SlnnTRoAPXqkfrDV4ouLDE7UUnyttFtlp9fzpzjc5jXcR69avXi0uNLJGYnolFpyCjMYOeAnXQL6cYPp39gWP1hWKwWVCLEV5Y/b1VcqyhUK1sD4cTDE4qNbwWnCmQUZjxXS3Av6x4Aeo0eCUlxnDrx8AQN/RvaaRueFMhTJOXv1rMmGvDC6FMg2xm3W9OOUTtG8Vroa1x75xrzO8/n8rjLrH19LTef3KThsoaM2D6CHjV78OfgP0vsd18EBAEGDoRLl3AJCmX1+P2szevErhu7qL+kPvey7nFwyEEmRU5i8r7J9NvYTwmVLMf/PsoLjXKU4yUhOS/5pTlO/bfsbE8+OEmLVS3QqXWIkojRauT48OO0rdaWis4V6VWrF4vPLcYqWvk65mve3fsuerWebjW6Mb7ReD4/+rnSzfu41cdcSbvC1mtbleNHVo4k2DMYURKJfxyPi86FKU2mMGnvJKySFa1Ky+H7h5XtNSoNWkHLiQcnmH5wuvxgcYHhUyigFzQIajXuzdo+lzPsF19CpRGtVvzU7mW2yVeZSfCBx5oiZhyVWNQIEt3griesqi/hl2PloxGBLGgMW4ri0GTn8Gvk16y+uJq4lDjOJJ8hy5iFQW1QFrKCIHDjyQ2ctc44ah3xd/EHShYhIiJWFeQIJsVuNdgzmN8u/YaERIGlrLf8/C7z6VC9A1fTr8q6CkHuPHLQcv8AACAASURBVNuobTYs7raYuDFy4bam1xqla+zl4EXXYJn6YBEtGM1G5p8u6dRmFWXxpPCJIga36UYskgWrZMXT4IlBY2DnjZ1EhUShElQIUd3tCh5XnSvdanQDigXxpZ+0OVVhE+WXrZRUgoroodGceXQGi2ihoX9DJuyZwKXUS/g6+TLvpDxN+fr413b7XffTEDlaIKaaip3rYOZhedJVenFtez1lzomKVlVbMbPNzDLPAaQWlPDFB78yGCgRlyflJClp8IXmQiRJUgrly2klE4rSUx+DxkAj/0YADHJozK+v/1rmnI9yH+GglXU+zkYJZzOEP5CLdj9nP1oGtCSyciQCAq0DW/PlsS8J+C6AZiuaccNDpFqRA3qTKOsmmk7BQeNgN9F4mPOQ6fun03hZY0A2fZjZeqZcUAfCOz1UbK0F02PgH4eB9HR6/t6TwFnupOWn0Tu0Nzq1jroV6tKrVi+7a5eQqOlVk/ZB7RWTDAFB6drnmHKoX7E+OwbsoFuNbmQXZVPVtSpH7h+h+6oOuNcJp+9oD5pUlSlGMQ9iaL+6PWbRwsWuEXjuP04Pr2bo1DpCfUL5KuYr5Z7tv72fsTvHMq7hOCY1mQTAxoSN6NQ6pTDQa/RMbDyRi6kXCfUIxiJaEFWQpZUnrkfuHVG29XHywd/FH71az7Lzy5THJCSlSHgaNqtWm+tZQlqC4jjVtHJTu21teh5lEv70RMPNDSpUeCETDYto4euYr3ll0Svcy7rH/jf3s6rnKiUsUK1S061GNwLdA+VQTkcfNl3dRN+Nfe1CW18YqlSB/fvhu+8Y+MMRLmz2wU9wpeWqlsyJmcOc9nPY2Gcje2/tpdGyRlx5fOXFX0M5XjjKC41ylOMlISUv5aUIwf9bdra7buyi3Zp2+Dn7kZqXSiXXSsSOiKVOhTrKNmMjxpKQlkCLVS344OAHvN/8faY1m8aum7v4oPkH6NQ6Pjz4ISBPIdpWa8sXR79QOrsmq4n72ffpENQBgBmHZjC5yWTq+8o+7KVFvE5aJ/yc/UqE08UFRtU8FQiQ5ihRu+IraFVamq1oxjfHv2H/7f0sPL2Qd3a9Q/iScEKm6nFNkalTJg20TIQUSxbeyNzpr9p9pWgsRJW8qLIIEqsaQLtKLbg5+R4/J4ZzsYLEbs09FkUK7K0B3+60YKjfkL2zZTtSAYGv2n2FSqUi3C8cd707VsnKF69+QZBnEBbJgreDt113XS2oGXRB1mnYipOjiUeZcahEm+KkdVI64Y4aRz7Y/0GJBSfgZ9YjCvCPV/9h54Q04+AMZfFw7P4xrJIVjUrDk8InSpYHwKCwQcpizMfRh2CPEr1JgFtAGReoDGMG7X9pT1pBGkvOLUFAYPLRGZQeEuSYcqjiWoWn4VQEzxgmlMG37b/l9MPTrIhbAcCFRxdknQYiMQ9ilILURjezwSJayDJI9Owr8lFb+CQadv4GHgUl0wQbbaw01IKaOe3ncDTxKDOjZ9o9F1YhjIb+DQmrEKa8RwlpCYDcia/kIgco2orHPHMenx3+7JnFTF3vuoBMazNajDT0awjAHV0+269vV7azCaKzjFkKTfGGN5zzF/AsNsaq412H3Td3M/PITGa1mcXhtw5zc8JNKjhXIK0gDQmJy66FqC0ig9xaEuAegIPWgUJLIXHJcby55U2qza/G4nOLGRU+ikC3QHJNucrrr+9bHxUqOrYbzZAd9zG9P5XX7jnwzz1QLdUEApy4spcjtw4wvdl0VIKs1TmffJ73979PwHcBtFjVwu51SUh4O3qzue9m3o18V7Yivr6dDX028GHNkSTmJFIhD/bWgDfGePDl0F+JSYyhZVV5YnYk8Qg1F9akvbgKVCp+K+hCZCW5cWGbHO64voPeG3rToXoHFnRZoDQflpxbgslqonuIbP278PRC2ge1J9Q7lPXrP6VGKe1+Y//GFFgK2H97v/JYg4oN8HX2ZdWFVZisJkU4/jz6lG16mVckT79stueJ2Yl2+gzb+wx/IQaHFyIIP598nsbLGjPj0AzeafQOl8Zdon2QfYPiVsYtmqxowqmkU/z55p88mvqI1b1Wcyn1EvWX1OeNP94gPjX+OWf4P0KlgkmT4Nw5qlldOfreFWYIrZgZPZNXV79Ko0qNODv6LFq1lsbLG7Pu0roXe/5yvHCUFxrlKMdLQnJu8kuhTn0f+z0Pcx7ybcdvX/ixbVgVt4qev/ekpndNrqVfo3Vga6KHRpeZ0Bg0BjQqDeeTz7N74G6+bPclb9V/i1xTLkcTj/JF2y/4+cLPnE46DcDHLT8mLiVOWRxfTLmI0WJkZpuZ9KrZC505hCE/HcE5+StesXyPqySLnlWoyDfn8yDngcLt14vgqNJRKTRSWbDHpcRhFs2YrWamH5hOx1878u6ed1ket5y4lDg+P6rGqbhO8XXy5dDEc0yOdyQd+Yt8983d/NH7DwQEKmXDhNMwrylc94Ip21LRuHvw1opzXO+8k3cvO3HXTUIlwpjusC5UJDBbniis6bCIFXErcNW5EuEXQVaRvHiYf2o+3o7eciK1McOOSiOIVtKd5Q5+6YWpja70aatPWdR1kdIJL7LItBOdSoejRi6UNGp5AZ2Um2Sn4ziXco7fL/+Ok9aJNfFr5G1VGqJCoth+o2Txl5iTqLw3A+oOUDjvUJJNUZpqdH/SfSY3mYyj1pHVvVbTqFKjEvpIcSEIsPjc4jKfsXwduIpyGnZTyw6797s0puyfwtT9U5WfLc/QoBg0hjIaGAA/Jz9EFSzq6EGXwRCZBOeWCbTNlosuW5ZCaehUOt4/8D6AXREG0MCvAZ+1/oz4x/GKWPxC6gXl+RAvObl59cXV8vHvHuLzY5+XOQeUJECrBbW8wBNAY4XTqhS+OfGNst17zd4D5G64j0NxiJsADUdLHAiSf3TQOTBo8yCiQqL4qNVHABx/cJyEtATUghoPgwcCAlkOMGz5ORJSLnEjXV6ohi8N59j9Y8ztMJet/bdyM+Mm97Lv8SD7ASpBRYhXCKE+oVgkC2MbjqWqW1U+6vIlKYN6MqUzuBsF5u6DpldzEQV4Z/MI2v0YSfUF1YlYGsGCUwt4lFeSywLyhG17/+3km/MZv3s83UO6s7LHSlZfXE3Hb+oy6e01rI2tRLaLDmetM7tu7WbhmYVMbTKV44nH8TTI79/drLtYPdyRevRAs2o1bQJacyzxGLsGyhkvXxz7gkoulVjfe70y+f1H9D94nP+YAXUH0LdOX0RJZP3l9aTmp/KOrgWbNbe45WW7zYIyqfo+9vuSz0HFBuSb8nmc/5it17Yqhcbz8lJsrz81P1X5/ckzyUVH6YlGvikfk1X+/X6uGBz+I4vbAnMB7+9/n8bLGiNKIqdGnmJux7lltISH7h6i8bLGSJLEqZGnaB/UHo1Kw5B6Q7j2zjVW9VzFhZQL1Ftcjz4b+ighhy8MdepAbCyaadP5x8xoDp8K5V76Leotrkd8ajyxI2J5PfR1Bm4eyITdE5T7Vo7/PZQXGuUox0vCy0gFT85NZvax2YxvNF6xGnyRkCSJr459xfDtw3mlwitcSLnAmIgxbO2/tYQzXLzdvBPzaLO6jeI/39Bf7sgGewbTrEoz1lxcw6jwUdTzrcfEPRMRJZE2gW1oVqUZnx/9HEmSFDFkhF8EHzVaSgPrYsSC6mhETzxpTH3rIlylMERJRFW8bn71gZrgQicsajUFkomTD09SaClUOtqiJOLn4qd0iEVEmldpTvTQaPre0FJMa6dNYBvUDcKZN+8yI2/KrkCXrh/jyN0j+Lv481k05Ongu6ZyOFzXxjcZOCWAjze+Ta2r4/nulXwqFqr5MEb+Qzq2O3zTQu6ct+46jrArT+gU3Iml55cys/VMQKbLXEy5iNlqJj0/3S6fwiRa2R8EkyPfLfO+jIkYQ2xSLEO2DVEeExEJ8ggidmQsRdYiXHQuPFDlgggfHvjQzhoUYPi24ZhFszLpsIgWOgZ1VIS5IAuKL6fKC4YR9UcgIGDQysXk4/zHCAh2qb9W0cqx+8doHdCayEqRJGbJnVsBwTaakXUzxV81ti6tgIArYdQXS9KwS7/ffwW9Wk+/2v2Y3ES2UNaoNMzvXEL3Eor/A0jOl2k6WcYs/gyG5uN0ZOolNs9PYfBzmB+BHoF83f5rXHWuZZ7bfHUzbau1pbJrZcWAQZREJWzNRif5+eLPyj62TBIocR2CEvpVgaWAsRFjScxOxL0I1nNZ4Z/X9KppZzucVphGtxrdcNG50OYu5BYPcWyTgk9bf4pKUJGQlsCYnWOo7lEdF50LmcZMKjpXpL6hGrd0uTSbH8a8WJlytrz7clb2XMnum7tpu7otV9Ov0rl6Zxy1joiSyJQmU7j0+JJ8Pd41yTPl0WNdDzZe3QgCjPtoC+I3X3OhInwcDYPOmjiddJrEjLt45cs6DGedM2G+8vs6sO5AxjQcQ/ea3YkfG09tn9p0+KUDN+6fZ//FetzMukOjd/TUXrSRYyNicNG7oFVp2XNrDxdSLxDuF65MOrUqLZnGTMZWOAVXrvCqyZ+MwgzuZd9Do9IUO3lJSkG/9dpWZh6ZiUalYXn35UqxqFFrWLb/ayK/+Q1RkIMWnbXOSEjEPIjBQePAwbsHyTbKE6UGfg14UviExpUas+TcEiXF+3kTjfT8dDQqDVbJipPWCSetE5cfX6aaezW75o2tUFEJKnTFTYMy1CkomWj8m6LoQ3cPEbYojAWnFvBF2y84M+qM8ne7NBadWUTHXzrSqFIjYkfGKgW0DRqVhqH1h3Jt/DVW9FjB2UdnCVsURr+N/ZQJ3wuBTgezZ8PRo7S6VsjFOdm0I4g+G/owae8kFnVdxE9df2LJuSW0/rm1Yrtejv8tlBca5SjHS4DRYiTLmPXCJxo2O9vPWn/2Qo8L8oJp0t5JzDg0g7oV6nIh9QJzO8xlYdeFdjqQzMJMeq3vxXv732Nyk8mcHHESAYGfL/ysbDMkbAj7bu8jrSCNBV0WcCrpFL/G/4ogCHzc8mNiH8Zy6O4hTj48SbhfOHqNng0xGcXORjZhsOxyFGAdDgLUSYXuNwQSaniQ5+2CFatCPwEI8w1DLaiRkEjKTeJs8ll8HX1x1DoS8yCGxWsmIuTksKM4buRq2lV6/9GbN868x91I+Ys0Twef7ZiC850khsfB7JZygF4l50oIEmz0z+K7uEWkZSaBAJWq1ye6d0O8xBJK0eet4IsmZhokZPLjmR+p4ujH5mubAbl7nVGYISekW+0D4SQViAJ8e+o75THbgnnxucWKC5cNapWaO5l3aL6yOVbJqnRIEeBW5i072hmgCMBtGgWLaGHi3olce1IS/PYo95Eibq63tB4SEukF6cqUQkJSRPoAQQuCOJt8lj239lDrx1pK59aOKiSUcNNtWgUJqWwadun3+ymUdh0rshaxPmE938XK90mUREZsH6EUULbFpd29tVkFBwbQfAT8Xhd+2QI/7JJDDkujXsV6fHbkM2WaUZqClmvKZX7sfEY0GGHHD7+fLacEPi2uDvEMsaObiWLJlElAUIrjCP8IErMTcTXCAylLud43Qt9g2v5pStFo0BhY33s9ZtHMTS/QWaFe8bBAlEQaLWtEq1Wt6PhLR3ydfLmTeQcnnRM1PGuQnJfMfbIY3R1aJmvx1cpTgcn7JtNuTTse5z9mfe/1JLydQK9avcg0ZqJVaXk18FWlW30x5SLt1rTj+IPjuOndqONThy+Pfcn0g9O55QVz2un4NQwGX4RpMeBYfG9rWty5/CgevVrPvE4lwaJ+Ln78+eaffFVxEN+eX8g0nwtsbPwt3pVr0Py3diRmJ3Ju9DnqV6yPgMDBuwdJyk0i15SLi84Fs2gmvGI4qyskk+ymot6m4+jUOkbvGI1VtNK+WntS81Lp+XtPDtw5QP+N/XEzuPFarddw1DlSzUMuNFpXbslPpxbSv4cJTwcPMgoz6V+3P1qVlkJLIQ0qNsAqWdmQsAEoEYS3rNKSQ3cPkZybjEFjeG6hkVWUpRSZOrUOJ50TJx6cKEObsu1vm1DKPxRPNEoXFTVqyPa26enPPN/TyCzMZMS2EbRb047KrpWJHxfPBy0+QKu2b0aYrWbG7xrP27vf5p3G77Br4C67BPSnoVVrGd5gODfeucHS7kuJfRhL3Z/qMmDTAK6mXf1b1/a30Lw5XLiAx+sD2fDBeZbdC+O3S2tpuKwhTSo3IWZ4DEk5SYQvDefAnQMv7rzleCEoLzTKUY6XAJsA+kWKwV+mnW2RpYgBmwbww+kfCPYM5uaTm/zR+w/ea/aenaj6dNJpGixpwLH7x9gxYAffdPgGPxc/+tTpw5JzSxS6Tt86fdGoNPx26TdaBbSib52+TD8wndyiXDoHdybCL4Ivjn3ByYcnFerAndQCxKcadAJqnKkOwCU/2BEikWbKVASTtkWyi9aFM4/OKCFsGkGDs9aZxwWP8XP2w0XnwjrxIh+1hRXFDWaT1aT42GcXrwVnnnUiXyeH8z10hcXFzb6kvCTcHNyxqOXFU4HKgoOgw1XvSgWvqjw0mNAIatwK5WLhp8bwSTvoegOO/lhAH2soWpWWYM9guw53abhayor6JSSFumTLYgC50y1KIoPDBivUDq1aS5CjPwigEzTP1EUAStgdwIgGIwirEGb3HMid4raBbcvkYZTuyNu2+1t4RuP1eWnYtvfb9rp0al0Z17GS7eV8D1u2xr/CzYybGLUwvCeM7Qajz8kBf345Jdusv7weo8WIu8GdqBpR1PQqCcLUqXV8duQz1savtSsUVahkcXVxoWErjERJVKhVFRwr2NG7JCSF7hGfGs/97Ps8crG/3kVnF9GiagvlPg9+ZTB5pjyMFiMpbmo634Kom3LwW+p7qfzy2i9cf3KdpNwkHuY8RKfWkZSbxM2Mm6hQMaDuAK522cnQMxY8TSWTLdv9tr3/ts9H40qNWXZ+mTLd6b2hN1fTruKkdeJJ4RMS0hI4n3IeAG8Hb8Y2HEuH+m+wuDHMb63jlRT4KBpITERUQ4VCFdvPri0Roefmoho5iuljfyXmTmvSavjT9dYsJjSaQFRIFL039GbJuSUcGXqEfnX6AfKk2NvRm1xTLlqVloT0BAbXH8KKMBHNr7/ho/ckPjWeCP8IHLQO7By4k5MPT9J1bVcaVGxAljGLPrX7AHLGkV6tJ+xKGikOFpI9NGzou5EsYxa+zr5KsW67R0vOLQEg0D0QN70bznpnPAweLI9b/lyLW6topcBcgKPWEY1Kg8lqUvQrTwvBbe5kpafHODmBKEJRKWpgSPGE4V/oNCRJYsOVDYT+GMqmq5tYGrWUQ28dKjOhAMgozKDz2s4sPb+UpVFL+b7z93/baESr1jIyfCQ3J9xkUbdFHE88Tp2f6jBo8yCup1//1wf4O3BxgWXLELZtY+TuFM6tNuCQbyJyeSQxiTGcHX2WcL9wOv7SkdlHZ/+tvwfl+O+gvNAoRzleAl50WJ8kSUzeN/ml2NnmFOXQ9beubL26FT8XPzILMzn01iH61Oljd/7vY7+nxcoWVHSuSNyYOKJCopTnx0aM5XbmbaXr7uHgQY+aPVhzUdYDzO0wl2xjNrOPzZanGq0+5si9I9zLuqd82Qb5OiKUCVewImnt+d06tU6hQtgSdnPNJVx6AQGLZEElqKjqWpXbmbep71ufYRcEvmwBZyrJFqfDGwxn7+C97Bm0h1ltZgFg+OATwpOh91X4rA0UaeWiBWB1r9Ws7rWGdEd5wdTsgcThe4fZe2svIiLdakaR7QBVcQMBvAtgdwi07ZVNjSUbmHXOlSZ+jfm6g707EsjnyNFYUD1jQb6w60J0ah2ZRjnXwUXnwskRJwl0D+TgnYMUmGX+tslqol6F+qhEMBXfl9KFQDW3avg4+iBKoiJKvZ91nwc5Mt1Ar9YrX85m0cyhe4fK5GEUmgsVGpRtOx9HH9wN7mhVWgQEAt0Cy76IUqJv2/7PS8POR7YMtRWNkyJlcXrTyk2JGxPHnkF76FS9EwaNgTERY+hWo5udaP1vQYAljaDVMAjIgvNLoOU92zVIeDl4kWnMJN+cb1ccmKwmLKKFAnOBIjgGeWJjKzKqe1RX/m0rZG2P2yYVtkmVhISnwZMTD06QU5SDsXhdZ8vd8HL0ok/tPhRYClAJKgwagxJAaJWs1E2FNvcFTFYTBo0Bo8XI4/zHvF7rdcyi2e7axzYcS7hfOK+dnUbvvhK+D7MwmCB2RCz739yPh4MHfTb0IfTHUOaekC2Oe9XqxcoLKxUDiEe5j8g15SqhcgHuAQS6B1LVrSqLuy1m49WN7L29l/md55M1I5fuUxYxr52BfI084Qi/XcjYI+9R6R9ufPx9D1Ka1IU//oCVK4n85TBx4y4SFRLFsO3DcNA48GmrT5kVPYtBmwdhES3KfUsvSMfD4CE74VmMZBRmoB42HFejhMfdFAwaA/Uq1ONR7iP8Xfxx1jpjFs1YJSsGjUHJwlAJKgLVXhzIlovBal7VaVutLVEhUey4sYMQzxAEBOKS49CoNJx9dJbbGbcRBJlCePnxZd6q9xarLqzC28H7mengNjqUVqWlimsV8sx5ZBdlYxbNZSYatm1d9KUqTsfi4r60TqO6XIz/lU4jKSeJ19a/Rt+NfWlWpRkJ4xMYFTHKbkJnw9W0q0Quj+RiykUOvHmAURGjnnvcv4JOrWNMwzHcnHCTH7v+yNH7R6n9U23e3PImN5+8oNyPHj3g0iVqhbYk9qO7TMgKYeqfUxmyZQgre6zkk1af8MnhT+ixrgeZhZkv5pzl+I9QXmiUoxwvAcm5Mjf8RWk0Nl3dxNH7R/lnx3++UDvblLwU2vzchlMPT+Goc8RR68jJESftvgCzjFm88ccbTN43mQmNJ3B02FEC3APsjtOsSjPqVqhrJ/odEjaEi6kXuZhykapuVZnefDrfxX7HzSc36VGzhxJY16RyE67dPsWNW9OKsxpsVqdWVIKaZUMHkDk9k4VdF+KgcZDF3qVoQS46F6JqRCkdT5t4OseUw/0cmdJy8N5BVtWXlL94hZZCZkbPJHJ5JL3X92bm4ZkAvHf4A746AFe8YUcNcLdocNAYqOxamaFbh/LjmR/xcvDiiaOAj+RI42Q1BSZ5AbDt+jb61u7LQ1UubloXPAQHft8AOQaB/m+IbPR9Qtg/lmC8ry0jgLZIFsKSoct9ebFemm4zbNswpQDQq/V0Du7Mvax79A7tTUJ6AkEesiLYTe/Glnu78SuuuR7kPLC7T3ez7yoLGZud7PUn1zFa5M58dY/q6FUylae0PsFWLEf4RSAhMbVpiTAboMBUQJYxC7NolrMLihehqqe+Xipng7feQ6FRPZ2GLSHndDxQ/2y338IzCwFY1XMV9SvWp2nlppx4cIJJkZNYFLWIBV0W8G7ku2XO9yw8vcg6VQUixsA1bzi0Gt49CUgoxUH0vWjuZN6x20dC4lHeI25m2C+cnDTyFEOtUivvV46pZFSiVpVkhdhExj6OPjSq1MjO0Qjk4h9g7WtrmfLnFDljRVBzM+MmdzNL7JkLNdD0gURSxj1OPzzNuJ3j8HbwZvO1zUrAYrBHMHq1np/O/sTIHSMptBSytuX3HFwDU2JlKlr7oPYcGHKA0yNPE+Ybpkwpvoj+gozCDE4+PKmc06Ax4GHw4MTwE2zqs4lbGbfwcfSh98behPuFkzA+gYmRE9FpdAyoOwCNSkOCL8xtAQ/CAnj/shu94s18n7aDgDcSeXNGLeI71QdBwM3gxtrX1/Jzz5/ZmLCRdZfXMafdHHZc38HGqxv5ocsP/PqabP2bacyUtQwqHTtv7kRbM5QjgTA0rpi6WpRFUm4SnX7thLuDO/M6zOPMozMEugeWTAxu3kSblEKcPwyvP5zLjy9zIeUCEyMnEp8aT7ugdgCYJTOh3qGoBbXSPGlQsQEXUi4wOmI06QXpiJLI44KyEw1b00lAwMdJ1nKYrCYcNY684vuK3bZp+Wno1Dr7icazCg1HR9kK9hkTDVESWXJ2CbV/qs2ppFNs6ruJzf02K3baT2Pvrb00WdEEvVrPmVFnaB3Y+pnb/TvQa/SMazSOWxNusaDzAg7dPUStH2vx1ta3FKvf/wgVKsDWreiXrmDe0vvs3e/LhQdnCF8aTmTlSHYN3CXTcpeGc+7Ruf/8fOX4j1BeaJSjHC8BKXkpaFSaFxJqVNrOtlNwpxdwdTJuZdyi2Ypm3Mu6h1WyUtunNidHnKSGVw1lm7OPzhK+JJxDdw+xpd8W5nWaVyJSLAVBEBgbMZZt17bxKFeeQHQO7oy3oze/xMuBftOaT6Oic0Wm/DkFlaCinm89AN7+vj111jThfP5OWkrLyeA0DgYTmcJp2ra4Qd2qLrgb3BlYdyCjw2XuNYCHXqaP5Zvz2XlzpyJYfaveW7joXPB3lr9Yxzcazzu3vdCZAQkc1bJDVYG5gNNJp9l0bRNnks8A0O42tL8LM9pDliMUYCHPlMfDrIfkmnI5lXSKSU0mMbvdbH6vks3pilZ+2QTVn8iL2D8S/qChf0NOjIwlzUPPmuHhPPrdnxFxKu54wIROwcw9qCkjgPZXRfJRDNyt4UOAewBB7kHKvZWQFOqG0WpkQ8IGwpeGK85EtzLlL+48Ux5uejeaZjopkxGbOw/I4veJjSfaLbaNFqOyAB5Qd4BSmJReIAd7BCMgkPBYFnmujl9td4x8i0xrCnIPwtfJV+F92woKGwq1AunGkg5jjhBvl4adgZyGXai+Zref0WKkjk8danrLFKafzv5EoaWQtII0ai6sSfUF1Zm4d2KZ81V2qczTeBadIsNFQ/shML8JfL8P1m4CoUB213J3cMegNpTZByjjcmO7D7bgOCgpWABF26JVaeXMFMmKh4MHdX3qKqGJKhFcVHIx7WHwYNr+aRgtRoY1GIZZNHM9/TrXn5RQUY4HgJMZ6j200nRFUyyShUCPQEBe7IX5hnEr8xZF1iK6/ffluQAAIABJREFUBHdhaL2h5JvyGXRsEk3f86ByDuSmyMW42WomvSDdLgsi2ySLnzWCRhaT+9bHaDGy7o11RFaOZPh2WWfzMOchf/T+g+39tysNBIBPD39KvimfTtU7ceStIxgdtXxbJ5sCLbx/uyIjz8GRtLPUWxZO65kB7In7AwmJt+q/xfkx53HUOvLhwQ8REPB18mVm9EyqulVl36B9qFBhFs3K1G3a/mmc6xTG+LOAJAv3U/JSyCzMZN/gffSt2xeAa+nXWHJ2CRQWcnxMVxK8RDwNHiyOWkxl18osPL2QdtXaEeodSmJ2ojJFMVlNiJLIzxd/RpREGvg14Hbmbfxd/GkV0IrkvORnUqeScuTwySJrEQ4aB4USWLtC7TJNo8f5j9Gr9fYOUE7F/35aEP4M56nr6ddp83Mbxu4aS9/afUl4O4HXQ18vc01QMqXu9ls3WgW04sSIE4pm5UVBr9EzvvF4bk+8zfedvmf/7f3UWliLYduGlSng/20IgpwMf/EinQgmfnYGETnOdPutG/tu7+PE8BN4OXjRfGVzlp9fXp4m/v8jyguNcpTjJSA5LxlfJ99njqn/XbwMO9uzj87SbEUz8kx5ZBmz6B7SnQNvHsDb0RuQv4QWnl5I85XN8XL0Im5MXJkQrqcxOGwweo2eFeflvAOtWsvAugNZe2ktFtGCo9aReR3nsfPGTtaeXcnZG0dAgv2WG8w3tuHG1LuEDejMJc0klk8Mwi9kD/uSlnIv6x6T9k6iyndVWHxuMT1r9sRR44iIiJvejZ41e7K+93pCvUMB2VpURCTDmIFerefHMz/SJfYJPxx1BAFMktnufQlyD6J/nf4gwTcHVZysDNtryjkaJk1xgrVQwtP+5PAnfHDgA3lnAUb1BIMVkCScdc6cTjpN99+7MyRsCHty4/j4xz4srzWNrreghmk4PEMA7WUaQL8+kGB5xMOchySk2zu3OGudlUXJ1+2+JnpoNO56WUNggyiJHB12lA33G9OwUC4wbFoWkBc8Ae4BiJLIqwGvKvvYROQalQYREa1QQrfydvAm5kEMEhKFVpkOlG3Mpp5vPTttR03PmtzJukNqfir5pnwi/CIA7CYzTxylMhQqWxr2SU13LmkmkSNcwigaMagNCmVNlERaB7Tmx9M/0nVtV2YcnIFFtLDv9j5aVm3Jq4GvlhF/69X6Z3aXa3qW6C1slsgWyYJVDe91gn69ocd1iF0Oq2rP4Mn7T1jeY3mZ4yguWhqnMs89DzadSWk62o0nN5gXO08pkirkQ64o32dJkjiaeJRgz2D61ZandYnZiXamC3F+soFBq/tyQbpzwE4MagOOGkcKzYVcTL2Ii86Fy+Mus3vQblb1WsXDKXJRoA8I4u0o6L69P7V/rI37HHe6/taVI/ePANiFOmpVWlLzUol/HE+X4C5Udq1M+JJwLqZepFVAK66Ov0qfOn3s9FzX06/zw+kfUKvU/NT1R1ofuEncp4/48oIXO+obWNJYxSszFzG9xnAmntOSl5xI1+39CPnIlcU7PsNJ64RerUer1mKRLNStUJcQrxDarmnL/ez7RA+NVq7RhuROzTA4uNDQ5KV8JqY1m0awZzCbr25Gq9IyOnw0b+9+m5iRHXm94S2qOvtjFi1oVBrGRoxl7aW1ZBozmdB4Antu7aFNtTYICNx8chMJicTsRGISYxT3tYupFxkTMYbU/FSlqCgNW3p4ljELi2ihuodMe3qWhiqtIA2tWmtnfvDMiQbYZWmYrWZmH51NvcX1SM5L5tCQQyzrsey5Wj6T1cSoHaOYvG8y05pNY2u/rXYasBcNg8bAhMgJ3J54m3kd57H31l5CfghhxLYRdhO6/xOCgiA6mgoff8WuOYnMv+jPojM/0W9jP5Z1X8bQ+kMZtWMUI7aPsAuoLMd/D+WFRjnK8RKQkpfyQoTgKXkpL9zOdv/t/bRe1RqVoCKtII33mr3H771/x0ErL7yyjdn029iPCXsmMCZiDDHDYv5Wp8vN4MbAugNZdn6ZMnUYUm8IKXkpihNIa7+mVFG58+bOESRLuYSZPSnSQKsp89FXCuDw3cOEeIXg7+JPsyrNOJZ4jKD5Qfwa/ytTm04lcXIiW/pvYWXPlWQXZeOic+HAnQP0qtWLGS3lYLtfX/uV6c2nU8enjsJRjxoAnzcswDu/REBc27s2v772Kyn5KRy4e4A3EiD8kciMDgLD6g8ja3oWs9vOpnaq7O4D4CToy7xuoxau+ACihGgyoRZkN6gFpxcgITH37Pe4uy/mWGM/dOrqCMLzBdBQUtBACdUnz5yHVbTionPhj4Q/2HdrH/nmfOa0n6Ns81a9t2QL0apVqZlp/6ddJah4mPNQmV7YisbSC8OVcSsBSgIRkQWiepUeF53MGW9WuRkmq4mO1TtyLa1k8mCjQ2hVWlb0WKH83KySPQcdUIThpSdn8n0ouZYAtwBFfwPyFGPSvklKEN6Wflu4NeGWnNdy/2iZUxg0BjuHJxuuZ5RMA552iAL4oy5E/n/svWdAVGfX/f070+gdAbFQRUUkiiU2FOy9G429YYzGkngnauxRo0YTe+y9966xxNhjr4AKKsUCIr3PMDPn/XCcI4iacud+3v/9PKxPw8yZ61zXOTPD3tfea60wMNNDl/5zOD7/i+LzR6rWuFm5FRvD3kxS6ClMojdJn/4ZJBZqzTd5rzxKfUSzzc3k85oUrgD0SoE73pY0ep1ozL00lwtPL5CrzyXAJQABgbnN5hYx2VQr1JS3K49f6QA0OshVGLiffJ9cfa5crTQZTAoIPPvyGc/GPKO0dWmMopFjj44RuDyQ6NRo3KzdZH7H2xh6ZKjUavfR53gPHANhYWh69OKbLbHcH/GQj8t8zOdHP+eQzTOGrLnFpB7L+CbKhQrxOQy78R1VZpUlO/IWh7of4FivY9xLusejlEe08m3FkMND2BGxg33d9xU55093V5DVuS1Nbr+pyI09NZaDDw+y5/4emvk0Y1nbZfyQEsRImwuorGyZ0GQaWbosUvNSCasRhlE0svbWWvp81AcbjQ12ZnayQWR5u/JYqa3YcHsDlZ0rY6Y041bCLTpX7oylylJukyqM6DSp6qA1aEnLT8PXSeITvSuwf5X7CpWg+vMVjUePuPbsCjVW1mDKmSmMrjOau0PvEupV3IhSPkfOK5pubMqmu5vY2HEjs5vOln8X/tOwUFswqs4onox8wtxmczkSfQS/JX6EHQyTv9t/C0oljBuHcOUqIx/ac3WliO5VIvXX1qe6W3XWd1jP9vDt1F1TV078SvA/h5JEowQl+A8gIfufMeub8OsENEoNkxtN/gdmBVvvbaX1ltbYmNnwKvcVP7f+mR+a/SAHq7cSblFjZQ2OPz7Orm67WNRqEWaq4sH1+zC05lCeZj6VTd+CSgfhX8qf1TdWMWV+B3zmlSP5tfMtAiwO24envSczz88E4EzcGbwdvAlZH8KUM1MQEGjn1474L+OZFjpNNsZKzUtFISh4kS2RU3+L+Y3UPGn3vl65eoytP5apIVNp4dMCr1SpKvHMFpKtpJ1sC5UFkcmR7I7czZm+Z8jKSWPmaTjmC5e9zZjVdBZ25naMbzCeHD8PDAoYelNFjqhFgYBGocFMYYYSpRScCVBV70holI5KQqmi8pRAhjaDJF3qewnQ2TyWA/DS1qXlHfPCrT4iIlm6LG4k3OD7C9+jN+qpvbq2fMy9pHtsvLORi+UgQi1dY5OXiCiK5OnzSMuVWpcuPr0ISKRaE0wBkQkapQYjRhwsHcjSZeFh58Gj1EeIiMy5OAedqJOTAxPnY2nrpUw+Mxl3G3dcrFy4/Pxy8Q+JCA6iOY/THlPDrUaR9ZlQOCGQPioCZ/qeQaPU0Mq3FS19W9J1V1f2P9iPg/mbIFeFSr7e7wqeCiczAgJuVsW/o5EuUHsInPdS0OKrpTwZ0Vv2cCmMPH0e3o7ecmVEQJCTg8LfmcLJHLxJHgdXG1zEzVwA/FKgssUb/pOtxlZO8t4FEZEdHrkcqQCIcDburHyOxOxEzFRmPEx5yMLLC/nx0o/03NMT57nO1FlTh7W31qLTgFe6wKTsIBa0WCAT+dO16QgIiIiolWriM+Jl6WKloMRCZUFuQS6lLEtx5fmVYvM6Gn2UM7FncFTaMGnYDrh4Efbvh5Urwdqa8nbl2dt9L4c+PURUShRBK4K4RQJT18cyevwBuj3S0OIRxFoW0G5TK9Zu+Rc7Wq6lWulqHIo6RDPvZiy/sZyBBwcWuYYiIg0d9tM68k2yLAgCHbZ34HzcebpU7oLw4CFXk24R6QKZKoOs6habHouLlQvdq3Rn6bWlWKgsGFR9EGfjzmKnkVS4DEYDBtHAzoidFBgLZBlwc5U5wR7BaA1a2WvDhLj0N4nhs4xn8uflXW18STlJCILwxxwNIMenPF8F51JnbT3USjXXwq4xu+lsecPoXbj38h61VtUiKiWKM/3O0OejPu899j8JC7UFX9b9kiejnjC7yWwOPDyA32I/Pjv0meyi/rdQvTrcuMFHn4zk+vSX9I13YOiRoRx4eIBfev9CTkEONVbW4MCDA//cYkrwhyhJNEpQgv8AErL+fbO+wnK2jhaOf/yGP8D83+fTa28v7MztyNZlc7DHQT6v9TkgBaLLry+n7pq62JnbcXPITbr6d/3L56jhXoOa7jVZfl0ihedqsymfo2bP/b38kHKQzzIqEN/1Ag08ggFJtWZ8g/HsitjF2BNjeZD8gF8e/YLWoGXPJ3voEdCDR2mP5H/OJux/uJ9Qz1DWtJfatMb/Ol5WGJl7aS5l55el3bZ2EBtLxM9QMUMKQEtZODPi4xHyzu3+h/tpsL4BfW4aqJgC45tALfdaMrdm893NxGXEYWflSGr9apTJBKMoYparQ2vUYqGxwL+UP983/p47mlRqetUjfHIi2boxJI15yak+p2ju3RyQdjRfsBbE4gToOMUaeW0J2QnF+AYmqBQqOVi2UlsV4QDcSLhBv/39aKDawE0XqRpg8j8wBfHTzknqWnsi9wAU4YK8HYSrFCqUKEnMTsRabU1cRpzcjmRKhExVJBNMCePS1ktJy0sjV/9Wu4f0ZvS6fFQoGNdgXDHJXBPKWJeRH3s7ePPZkc+48/IOw2sNp+3Wtpx6copG5RuRnJcsz11QvFmDp71nsTELVxfK25bn/MDz7zy3ztqCDt0M3B/dmwnn4fBWcCi0FAFBdqA3VTUKJ0qF5XhNyVwt91qAFGCqFWqi06LlipuJHH51FaCQrq1GoSF6ZDSzm84upuRlIusrBAVL6sC2quCe82btRtHIq9xX5OvzmX95PqOPj+ZfJ//FtvBtckJu4tLYWDkSHXuLxKeRsqKVt723vJ7A5YE0XNdQHvuX3r/QqkIrnC0kh/vgdcE0WNuAw1GHMYpGdAYdQw5KqkVLdmRhFVgD7t2DDh2KXee2fm2JGBbBN/W+YdaFWVRaUoleRwZyvXZZxi+8ycJyYfR8oOZiZgShe9qSffc6w8t24XTMaWw0NiTnJuNo4cjMxjPlMW/b5XHdQ4O5UbqO4xuMRyVI5n0ZaYl8PzmEnZUMrGqzkgrOfow+LqmamdY+ovYIYtNjORp9lOG1h5OWl0bNMjUREHie9Zx8fT7ZBdnsu7+P6m7VuZUgcW86V5K4ECZOmgkmzhpI3KccXQ42GhueZxVvszKpVv1R69SJxycIiB7N8powxzOMK4OvUL109WLjFcbBhwept7YeDhYOXA27St1ydT94/P8ELNWWjKk3hphRMcxsPJO9D/biu8iXzw9//vfN98zN4ccfsfzlV5YfU7L3oAVno07Sc09Pfmr+E6FeoXTc0ZHxp8YXqR6X4D+HkkSjBCX4DyAxO/Hfqmj8k3K2RtHINye/4asTX2FnZodaqeZs/7O08WsDQJY2i557e/L5kc8ZVH0QFwdexMfR5w9GfT8+q/EZR6OPMm15D3ymOfJrluSWPOOjL5m75CHO1evjauWKUlAy8fREErISEASBH36XyM0Huh/g90G/07lyZ3oH9ibyVSR3Xr6xcc7Iz+C3mN/oWKkj/av1l2RPE28x+OBgAHZF7KJnQE9ufXaLX2IbYK4HpUJFOZ05r/KS2RWxixCPEBp7NWZm6ExU+QVMPQNbA+BOabjw9AJVfq7C0aijDDs6jD6BfdjRdQc7866TZKdizCXQKUEQpX+UJ3qfYHzweGY3mc009SVmTW+B8N10Sn07g3pl6lDWViIlawwCKaq7GJRT8C+vxswsn3ThGg8ZRib3QCga7L8LeqNeDgDN1e8mKQNydeRtU0ATTBWIwv/MTWpdpse5BbnycdkF2YRVfyONacRIGZsyxcy84jLi6FO1D803N5eJ5e9aU5YGtAYd3XZ3e++an2e/CcSsNdZEvIqgrG1ZZl2YJZHyPx7NyZiTCAjMaDwDoIjK1sOUh8XGLszb+KnFT+To3u3PkafPQ6XSEOCwlYFDS1P7OVxfCUGJ0nilrUtTyrJUkTYm01pNrXkmGEUjAgItfN4IOViqLTkfLyU5LlYuiIiYK8x47Aj3c6SA187cjspLK/PF0S/I0+fJ8sGAbKooiiLf1BlD1GLo+8AMM6UZAgJVnKsUW7u12ppytuUoa1MWW43tGw8PdQrbA0RmR66Ur9+T9DdE3chXkbJ5IcD0s9PZHbmb3oG92dltJ9s6b8NgNNBuWzs+Wv4Rfde043nWC2okCPQYugSOHAG39/8WWqotmd54Oju77SQhO4GUvBQqOVfCycqZwUNXsmZHPuvbr2VEjAvZWaksfbaHchkirk/TUKFEqVAy+8JsGpRvYLoJjAnVUT7NiEahxlxlTq0ytVAICp7MncDEgCSm+g+jz8dhHO11FEu1JQpBISfltcrUonaZ2iy+uhhvB2/aVWxHfEa8/L2zN7fH3cadDXc2UM2tGhGvItDqtQS5S/44626vK7K+V7mvUApKufIWmxGLl4PXO8nQr3Jfye7hMgq1TqXkptBvfz9abG6Bt3MF7q1Q8K+86h9UIhRFkdkXZtNxe0da+LTgwoALRQj7/y/ASmPF1/W/JmZUDNNDp7Mrche+i30ZfmQ4zzKf/b1BGzeGu3fp5N+FO/OyqZCgo8P2DlR2rsysxrOYe2kuzTc152X2y392MSUohpJEowQl+IdhFI28zHn5b1U09t7f+4/I2RYYCui/vz9zL83FQmVBWduyXBl8hRruUsvK3Zd3qbmqJkeijrC9y3aWtllahMD7V6E3FKANvw2iyNTEHbRKdyaq0W6a+jTlUM5N+birz6/iZu3G5nub+f7C99QtWxcBAR8HH9pXai8f18y7Gc6Wzmy5u0V+7tijYxQYCzBTmtFhewe5dSNTl4mZ0owXY14wv+V8qrl+BLt3c9XXgkjbfFY59KP/R/2JSo3iTNwZ9AY9/i7+DLsq4pIDk0Ohmms1KjlXIiolijbb2qDVa3GzcmN7+HZpfaKBZTXBRiclGnmpSbJD9NgGY5naaCrfGo4zf14XYjYvpv608mwN38q69mtJ/KUKi4/AdfV5lr+ozXFDI2rVvMejiecZ9sAaQQThLcfCwj4YjuaORUjshdue3obZ6406c5U5Nur3t94U5mPAW47er2GrscXN2o31d9YXMd4LcA7g65NfF+EjWKmtmHlhJgajAZWgQiEo3jmmhcIM12wId5rMx2U/fu/8QDJjNCWaL7JeEJ4UzqzGs5h9cTYgqWUtvLxQPt4UYJtc4huWb1h8UCQzzbdlZQG5TSZPn4dRNPLl5GP0GO9LmgVcWC3S5zaUtytP7OhYxjcYXySgf5cruen55j7N5b9zC3LlZMRUics25NKtK/I1Ts5Npk9gH4bVGsar3Fc08272xuH89Xu3dN7C7JbziC9rjZiXj9agRUQkIjkCERFvB2+mhUwjekQ0Wd9mEf9lPE+/ekrG+AwKJhVgrbFmSI0hVFC6oHjd0Ve/bH2A9/4OnIuXODELriyg6rKqfLr3U64nXMdGY8PjpAfsSDgBgLpKIKvraLjw9CJP0p58kIh76ekl+u/vT6BrICvbruRmwk0qL63MvEvzMBgNNGs0gEXrX7JvYjijkyvgmWLkoTPY5Roo9eAZ1gYVF+IvyK1wFgUQ5QQ6QwGPUh5x9flVRpqHsr46lE+HPHvpO+Fm7caJPidQCAqWXV8mJ54jao/g5JOTPEh+wMjaI4lOjcbDTmppUwpKdAYdJ5+cpIxtGfRGPRGvIuS2zpsJN4u4Yqfnp6NWqiWDP401D5MfUs2tGvEZ8RQY3nz/cnQ55Bbkojfqi3I0zM0RBdiecobKSytz8OFB1rZfy6l+p/Gx8/qgl0a+Pp8++/ow/tfxTGo4iZ3ddhYd+/8xWGusGdtgLDGjYpjaaCrbI7bjs8iHEUdHFKkM/WnY28OmTZRdtYNTawuYcdWaHy7MYf/D/WzqtInIV5EErQziYvzFf34xJZBRkmiUoAT/MFJyU9Ab9X+7opGvz+dfJ/9F6wqt/y0522xdNu23t2frva2oFCrqlqvLhYHSbpYoiqy+uZqPV3+MhcqCG0Nu0D2g+98+l1E0sm33VPy/teOLmKX45JrhrLZl5ZJ4PJt0oW9gX87GnWX/g/2039ae+Mx4MvIzcLFy4SPXjzje+7ikif+WdK5aqaZHlR5sDd+K3qDnxosbTP5tMkpByZDDQ3ie+Zyfmv8kB8Nag5a99/dKb754ETIyWNfYgXIZ0LTNCNZ1XEffwL5kaDO49uIac49MYMJFBauC4LET3H55mxY+LRhYbSAg7ZAvvLqQNbfWoFJI7Re5ZpBsCXNuOOKYBx3WNOXmCymJmtxoMuMbjOer7D0EjNaQnpvK7xF16B+pweFaOEcqK8g3aDFXmWOuMufAwwNsj9jBTftc2uJHO93r/vzXwaadmR2WakvUCjWp+aly201hWKmt0Cg08i6lWqFG+zo3zdfny7Kr8CYI93f2B95IBH8ImbpMErMTKTAWFGnpOh5zHAGhiIpS4ZahKqWqvLMP3c7MDoNCxNzcmqh18zgdc/qD5y/MdxBFEV8HX0b+MlJ+bvf93e9UmDKIBj4u8/F7ia4OFg6cjT9b7PkMXYac0DlbOjPn4hyUXj40GqRgWwBs3A/9V1+jIC+HGY1n0NK3pfy5/VBFavNdyf9BJaiKVF5mhM6QH8fbIStzlbEpQ6hnKEuvLcXX0Zejj44WGc9GY0N6fjoBPwfQq1k2P7ze0Dfxg+Y2m8vjkY+Z3Ggyvo7FDQ1VChXmSnP2RO4h01zATARHvZp8Q76khGbhhIXKAo1Sw+ORj3ky8om80+5u7S63ezlZOOGotkPMzSHPROAX4HLqHYYcHkLwumB8Fvlg+b0lZjPMcPrBiQqLKtBgbQN67O5Bj909CN0QipeDF1s6b2FA9QE8GP6AQdUHMfbUWIJWBnEh/gIAWUo9q90TsGzWiuXOA2iQqOFBKUjVplHrORgTE/Gw8yBPA00fSfPYGr4Vg2hgb+JpvLAnt7Qzcy7N4fPDn0ufJ0df6perT0puCt12daPAUEA3/264WLmw9OpSGns1xr+Uv1y9S8lLITk3GY1Sw53EOwgI3E68LbflWWusWXljpXydc3Q5CAgoFArK2ZZDRKSRRyOMorEIH8HkcaMz6IpUNJ5mPqN9LyWfpq0mxDOE+8PvM6D6AIn7U0h56m0kZCUQsj6EPff3sL3LdqaFTvtHVBD/J2BjZsP44PHEjIphcsPJbLm3Be+F3ow6Nkr2qPpL+OQTlPci+FZfl4urjLyKv89nhz9jYvBEiRO4IYQFlxeUSOD+h/Df8akrQQn+i5CQ/dqs72+qTpnkbH9s/uPfnkNybjKNNzTmdMxpDKKBXlV7cazXMezN7cnWZdN3f1/CDoXRN7BvMe+MvwJRFDlw+EeqjbWjZ8Q0KmaqueW/iL1fXSVZn8mBhwcwikbMlGYoBAWddnTi+ovrAFwbco3tXbZz7cU11t1ah0E0EJUSVaw3t4VPC15kvcB3sS81V9XkUeoj6pStQ/jn4Vwfcp1RdUbRtmJbtAVanCyc6L2vN8eij8HMmeSqYZvrK/rF2KGsLAXXGzptwNvBmzx9Hq0PRKIuMDL9tUfV7CazWXR1EWtvr2V8g/H0rtobnUGHjcYGvVEvS64iwNc1U6lvKINLpoHg5bU4G3NGIs++TgRyRR2jqw6h2t7fEQcN5EqgE794G3GycKLAWMDmTptp4duCsENhXC5tpIpzZZ57S8GK+ev4PDkvmdyC3CKBaeHHFR0r0iewD14OXiRmJ9KmQhsKjAXUThAIREp0xzUY9+Z+vc5gTPK5ado/ds4NcguiSqnirTiFx3vX83eS7hR7Xq1QoxAU6I16kiwMDGqeS9Nslw+ePznvTeVGo9RwI/EGIiIuli70CeyDzqDDz9HvnXPK0GbIBOm3oTfquZlws9i6FIKCNhXayAne9vDtWKosyVcLDOoA3/VwZ8A1A9rguiheJLCx00aZQyUivtM40EJlwYY7G6TzFlLTUgkqVtxYIf8d8OpNsvIi6wVddnaR120yZjQhS5fFsKPDiHgVQZydJHiwtdZsrDRWlLMtx5KrS97bGgZSNTMtPw2DaOC7kO/IU4GgLeBGwg3qlqvLxk4bydPnUdm5Mt4O3ng5eGGmMsNSbcmTUU94+uVTpjaaglUBJGlTcMtRgADmSnMuDrjIxo4bCfEIkc0G3a3d5QQlPjOei08vsiNiBzsidqAz6LideJtKSyuhnq7GdZ4rW+5toYx1GWLTYwleF0ylJZUIXhdMaevSLGuznLDha/h+7i28tVa0iFXy1BaSbMDhQRyBySoU6kAC9QuoqdtLoH4BmH3EoRG/8/CLh5SzlaSye+3thSiKVHerjruNO6eenGLQwUGolZIM7vo768nSZTGi9gjuJd2T5XQ1Sg2VnCuxI2IHfk5+3Eq4hYXaAmuNNTXda7LhzgaJy6HLxiAa0Bv15OhysFJo1Id3AAAgAElEQVRb4WDuQCMP6QencPuUiZ+h1Wux1lhjFI0svboU/5/9uekmsl/Zi53ddhbdwHqHlwZIVZXaq2vzNPMp5wec/7c2kf7/hK2ZLRMaTiBmVAwTgiew8e5GvBd58+UvX75T4euDcHeHX37h4/FLuLVIR4eHMOKXEZSzLcfQGkP58viXdN/dnSxt1h+PVYK/hJJEowQl+Idh+gH8O61T/4ScbWx6LPXW1ONe0j10Bh1TG01lXYd1aJQawpPCqbWqFvvu72Nzp82saLfigyol74Moipz8dSV1xjrR8ca/cMky8rvXTA4tTaNatxFUdQukbtm6TPptEv5L/em+pztOFk6Uti5Nn8A+lLYuTUWnioR6hdKlchcmnZkESDtZcy/NJV+fz86InbTe0pr226VWKkEQ+C7kO0RElrVZVkSys0PFDqRp0/Av5U/rCq3psrML56NPsbeuHZnKAvq7t5IMnl6jc+XOuGXBl7/DgjpQ1k9SZ+pSuQuO5o6oFCq2hW/j5JOTuFm7kaXLkpIM4Y3/gpOlE9ucXvDICQowErohFO8F3kw/N51pIdP4vMbnjH62imNNPECrw+ZVBsHWVWjs1Zjg8sEMPTKUGaEz+Mq7FwgwO+UA119cR0Agv/AmvAhu2KBRaOhSqUuR+/Aw9SEnnpwgLj2Oys6V2dVtF8Hlg7nnApXyrTA5Q/+Z9rv3kbJvJt7kSdqTYknF2wT9P4MCYwFp+WkYRSO5+jzSzOGs+ZtqhCnIft98TeRpgPaV2rPp7iYmN5ws82BMMMnMRqdEy8GhAgWuVq7yMV13duVF1oti53KzdiM2PZbcglwSshNwsnTifsp9qTojwO6GTjQerIL4eAgKwvlaBLu77Zbf/y6VqGCP4HfuJutFvUxC1hgEMjXgZiklXkaMqBQqNnbcyKDqg4r19DuYOzChwQRKW5dGNNfQKRIS710mJS+F9R3Xk5idyIxzM4qdE+Bc3DkarmuIWqGmU8VOTD07VbpGCiUqI+zpupuvT36Nk4WTXJWKSokiNS+V8nblMVOZUcZgycRlETyZlMLRF6EklZI+PwbRwMqbK/F28OZ0v9M8/+o5Y+uPJacgh+dZz+lYqSN3h95lbfu1KAUlTbyasK79OiY3nEzvqr0J8QjB28EblUJFSl6K7PPyMOUhWbosqY1poQeK7xRUWVaFBzb53K1RDq8yAbSJ1aBVQayTP1r3ZTiIkjGmA7XxUi3lTNxLHC0diRweSQXHCmwL30a7be3wtPckKSeJ9R3Xs+nuJsadGsdnNT8jryCPjXc20idQkro1CQyoFWp0Bh33k+9T3q68bMboYuVCBccKpOWnsTtyt/y/oMAomSHmFORQt1xdPOw9ZBlsE0wVDYNoID0/neB1wXxx7At6V+1N5P4ydMj3LH4j/fzg8WPQv0led0XsosHaBpS2Ls21sGvUdK/5zs/AfxPszO2Y1GgSMaNiGFd/HOtur8N7oTdjjo/5axwLQYDhw7G9cptNkZXYtF/gcPgejkQfYWbjmfzy6BdqrapF5KvIPx6rBH8aJYlGCUrwD8NU2nW1dv2DI4tj4umJ/5ac7d2Xd6mzug7PMp+hN+pZ32E9U0KmIAgC62+vp/aq2qgUKq4PuU6vwF5/6xwXL20ndJwbzS98hjInl9Olx3FqSSZ1+n4LCgUpuSnMODeDiFcRPEh+QHm78lwceJFtXbaRkJ3AqZhT1C1XV5b9nNd8HlnaLJwtnOnm342fr/2M6zxXuu/uTlp+GsvaLOPrel+TmpdKfEY83g7eBLgEFJlTS9+WCAjkFOSwo+sO6qg8adtNz8IGGkJiwKd5jyLHx6fHM+ks5Ktgbj1kt+VRx0dhxMjxXsd5mf2SpJwkkrKTKGVZSt6Z7OrflcZejVEr1ZgrzelcqTMfae0RRIjLjENE5Ej0EczV5lQ0OtDgZBSHgl2ppLNly8JnpD+OpJl3M/IK8vBb4sdPTyT+iaychEBTr6YAmCuktqFEMQudQUc9sax83A9NJFniJ2lPyDfk09avLSIiP7X4iTyVSJouAw97D+ZemltMXeVdZFA7Mzv5sVJQ0u+jftRyr4VKUJGnzyu2U/8uHwqTN8C7dvXfh4JCcb4pmfkzajCrb67m+ybfM6XRlCJiAYXnplaqmRg8UX4+qHSQ/NhE5C5cIQIYW28s95LuoVaoqeZaDb1Rz4PkB/LcknKSMNauxZjZoeDvD02aUH37GZSv12xy0y4MRwvHYtertnttVIJKNsm0zxWJcYSE3DeBk7OFMwMPDuTL418WG3Nv97242biRmJ2IXjTQJQLmZ/xCj4AeNPZqzLfB3zLv93nFgqb9D/bTfFNzarrXxN3WnV33d5GQnYCzpTM2ds50D4e9+7/nZsJNegb05HHaY0RR5Pvz32OltpLaS06fhsBAOH4c5dZtpA4fRKYuEw87D6Y0msK5uHM0WNeAgGUBbA/fzph6kgfOzMYzORJ9hEpLKzHw4EDa+rXleO/j9K/en2mh09jUeRO/9f+NyOGRJP4rkZwJOeRPyKexV2PMFGayKaeNxkaujlmoLHie9ZzLmREc8dRx3xm89a+NMYU3xpgg8OOR2/x89WesNdbc/fwu1dyqcST6CKturkJr0BLiGcLClguZe2kuOyN20rlyZ5ZcXYKl2pLBQYN5mSPdm5yCHB4mP8TVypVsXTZ3Xt7BKBpxsXLBYDTQ2KsxK26sKFKdNYgG4jPiqVe2HiqFCg97jyKJRmFX8clnJpOcm8y5/udY1nYZdhqb4j4aIFU0CgogPh6jaGTamWl8svsTOlXuxNn+Z3G3cS/+nv9i2JvbMyVkCrGjY/m63tesvrUa70XefH3ia7ki9KdQsSJcvEjvDpO5vViPS0wSk3+bzKCgQagUKmqvqs22e9v+cwv5P4aSRKMEJfiHkZCdgIO5w18mVd9KuMXaW2uZFjLtb8nZnok9Q/219cnUZqJWqjne+zj9qvUjtyCXAQcGMODAAD4N+JQrg6/8rWrJzZtHaD2uHA1Ofkp6XhqHHb7g4vxMQofMAqWSx6mP+eLoF5SbX46Z52fSvUp37M3sCXQNpF65eoR4huBu7S4lQ2XqyOOqFCo0Sg3JecmsurkKo2iksnNlHgx/wO+Dfuezmp8xOGgwmdpM9tzfQ4eKHYp5E9ia2WKlseJl9kuJ+7BHjUc6XNe8otVjQVIgeQ2jaCTuxq+E3YRZwWC0s0Grl3bKj0YfZXW71ay+tVpWCzJiJC0/jWZezTBTmrHp7iY87TzJK8ijYqmK7H2wlzvWOdjplXS/J53jWVoc8y/P54EiFe8voWvIS/xHKkjXZrDshwg27JuCj6MPRqMRJQK1XwgoBAUqQcXw2sM5HSvxFvKNWr6p/43ctz/m4UJ43UfczLcZI2qNAKR2n1nnZ+GxwIONdzaiEOGUTTKx6bE8Sn1Eeds3iYVGqSnSG27aaU/ITnjjiyEaCPEIobxtebnV532Su3ZmdnSv0h0BgUxt5juP/RB3wUb5uh/9b7RHf/vrt6imSzvfhWGqfAS5BXHk0RF5ToWrDfl6SZHr7cpMsEcw3fxfu1wLkK3NLkJ4T8lLoU6ZOhzPvAUnT8Lo0ViOncjW3SJWWt6Jt3X7vey8GFh9IHpRL+9kJ9lI7U9q4U3m9Tz7OUbjG15O4aqIn5Mf089NR6VQ0TuwNwcrwVOzfMbW+waAb+p/g6e9J8OPDpd7z1fdWEWXnV1o6dsSFysXqVL1+rWeAT15ontJ94KKfBu1jMHVB9HEuwm5BblcfnaZzXc308yzCfHJjxGbNJGC3Lt3yencji+OScaGmzptYkLDCTwa+YgTvU9Q2bkyY06MofS80ny651PM1eY09pS+iyaOks8iH9pubUuP3T1otaUV9dbUw3+pP2V+KoP199aYzzTndMxptEYt95MlknWWLosCYwECAlYaK7wdvKldpjYhHiFUdK6IheD7HmNMX4YfG87Qw0NRKVRcC7tGg3INiHglCTpEpUQx8uORjG8wnjEnxlDRqSIPUx5y6skphtcaTo4up8jnpbpbdcKTwsnWZfM49TGlLEuRlJskGZ3GXyjGP8opyKFeOcnE0tvBu4i61/UX1+X727VyV+4MvUPwaxlwLC2LO4ODVNEAcu/fpcfuHkw9O5XvG3/P5k6b/1al+r8F9ub2TAudRsyoGL6q8xUrbqzAc6EnY0+O/aBIRhGo1TB1Kt5HLnH+WGnGXRRYeHkhjhaONPdpTs+9PRlxdISszlaCv4+SRKMEJfiH8XekbUVRZPTx0VRyrsRnNf66nO2eyD0029SMAkMBzpbOXBp4icZejbn/6j61V9VmZ8RONnTcwJoOa97bIvM+REaepeu3vtQ41JYn+QnssOzHzTnptBm5GEGj4cqzK3Tb1Q2/JX7sjNjJuAbjiB8dz8p2KxkUNIh1t9eRr89HqVDS3Kc5eqOeAJcAttzdQvNNzSk3vxx5+jw0Sg31ytZjXINxhCeFy14WIAVVlZ0rk5afJrtavw2VQsWLrBekJcRgc/0eLdIcUIiwuIGap8Z0+bjdkbsZeSSFJCvY3siJ3/r9JgfyAgLbw7ezLXwbVmorbM1tERDQG/WcjDnJpOBJLGm1hE13N1HKshS3E28DEgF0Rc9txDjAd7/Bi9yXhMbAubVQJkNycH4oJhM4DLp+Aj2jzFhT5VsmNJyAAZHrpUXK2JShhW8LFrVaVCQR23Jvi0T4VknBriiAwggj133ChjsbUKBAFEWZE7T46mKMghS3V3etjohIh0pvPAxMru0mCGJR1SSQKhoDDg5gzwPJb8Nc+f6k+fKgy2zvup32Fdu/83VLleV7uRwAWYY3O7UaQf1Bg7q3YTKVex8uPbvE1edX5b8PRR0q8rqjuWOxioZaqWZ+i/koBAW3E2/T96O+RQjveqOeqm5VicuI40VeEglTxtC7u5r2j5RcXg2+RXMeoGj1x1JliYXGothcHPKl+1DwOrFzs3ajtnttelTtIc/R1MakEBSMPjaa5ByJlDyj8QyO+kHrKAjMlAJMc5U5S1sv5UzsGTbf3cyMczMYcngIoZ6hnIs7x/HHx/Ev5S8phClUxKbHEuASwO5WHigLDHyfW0/eER/36zjs1NZUPHSJPEHPT9+35YfvWjAhajnB64JJz0/H1cqVCacnELgsEK+FXnTb1Y299/diEA3ojDqORh9l5LGRbA3fCiA73SdkJ3Ak+ghHo4+SmpdKRaeKtPBpQVhQGM18JEf0sKAwTvU5xeXBlwn1DMVcac6wmsPkzZzuVbrj6+jLpWeXiE2PRTBLfKcxpoNdPtZqa1bcWEHjDY3J0mZxdsBZmnlL5+m5pyd5BXnMbDyTAdUGMOvCLLzsvVhybQleDl60r9he/v1UK9VoDVpZ+vdW4i1crFxIykmiY6WOuFi5cDjqMCBxcezM7FAICmqVkfxUvO29eZL2hCxtFiOPjWTptaVyG9+wWsOKblRZWb27olGuHM+c1ATfGsHR6KPs676P8cHji23E/G+Fo4Uj0xtPJ2ZUDKM/Hs3P13/Gc4En40+NJyX3HV/Ed+Hjj1HfvM0MnzBOrxd5En2VMzGnCQsKY8WNFTRa3+jve3qUAChJNEpQgn8cCdkJf5kIbpKznd9ivmyk9Wex7Noyuu6SzPX8S/lzZfAVqrhUYfPdzdRcVRMRkWth1+j7Ud+/NO7jx9foO7EKATtDuJEfwzplF8K/S+aTr9eDuTkHHhwgeF0wddbU4U7iHX5u/TNxo+OY3GgypawkUvOQGkNIzUtld+RuRFGUA6VOOzrRe19v8vX5DKo+CIAlrZZw6dklgkoHISKy4PKCIvMxBT3vq8boDDpERI6tHosBkR3+Ij0ilSjNLWm2qRmvcl5hMBrYsXk8PcNhagjM7bCEKi5V5J5+F0sXdkbuxEpthc6oIyM/gy2dt9DcuzkiInse7KFDpQ5s77qd2IxYQAp20/LT6L67O1fLwqaqsOSowJyTUMpgxq7v7qOdqKW5T3OUgpIIF/ixWi61Tvfgh3OzQQQjEJ8ZT+fKncktyOVmgqRiVa9sPZ5nPSevIK8Il8AowHltNHk56agVkozr86znCAjMbiLJvmoMcOvlLfRGfZHA422dfsNbARlAO792chVCrVAXCbQLQ0Cg34F+5Ovzi8hmmnZm7TX2RAyPeOd7Tde7yD00FhTxbPgQ3K3dP5hkvK3OBcXbvVLzU4u1aY06NooFlxfQ2rc1AI9SHxUbx2R0+PvT35lxbgZHq1vzw7zOqI2S30a7B++ft86o40HyA45EHynyvPlrh2uTelE7v3ak5qdyLu4cCkHBL71/kY8VRZFd93dhxIhGqWHggYFkm8E3l4BzkvysVq+lmls1KWg/FMak3ybhYunCrzG/4uXgxYBqA8jIzyDfkI+dmR0How6SlJPExqQTaM2UuN8fRO3VtQGJ05Gqy2BOJWm3+GvdEWZdnM2GOxu4lXgLAYGqrlXxsPegkUcj+gT2YULwBFa0XcGOrjs42vMoHStKGwQBpQJkUYU2fm041vMYx3sdp1aZWlx9fpVLzy4R4BJAoEsgBx8eZEzdMaxst1JqR7q+gvPx59nXYx+zms5ifIPx5Onz+O7cd+y9v5dRtUcRFhRGuH4RCkHA5N9oMsa8kD2NOmXr4GrpyoX4CwStDCI6JZrjvY9jpjQjITuBSksrkaXNYmW7lbSq0IrnWc859PAQMWkxjPx4pFw90xl0/P7sd6q7VcdcZc6thDeJhkapYUC1AYS/krw5TETxj1w/kl2/vR28eZj8kIBlAay5tYZa7rWo6FQRoLgE7XsqGlcSrlNrsEiKLoNLgy69dxPmfzucLJ2Y2WQmMaNiGFF7BIuvLsZzoScTfp0gG1R+EFZW8PPPhPx8lLtb7QiJyGXVzVW0qdCGpxlPCVoZxKknp/7zC/lfipJEowQl+IfxVysa+fp8vj759V+WsxVFkcm/TWbY0WEICDT3ac65AeewN7cn7GAYffb1oat/V64Ovop/Kf8/Pe6zZ5EMnVqTShtqc0p7n6ViKx5OSKD/xN0UWJix8sZKKi+tTMcd0j+1/d338+CLB3xW87Ni5Xo/Jz/ql6vPhF8nUGFxBTbe3YiAgKe9J49GPOLcgHOIokiASwCDgwbT0KMhk3+bzJCgISy+upj0/DeViPiMeAQE9t3fV2zOWr2W3IJcPO08OfDoCKd9FDwV0xnxu4FTTTeSnp9Oyy0t2XBnA4N3P+GhE6yrBm0rtGXcqXFy8PAy9yVqhZqcghyyddksb7uchh4N+S32Nzr4deBJ2hO8F3rTdWdXOUA1Gd2JiNQvVx+rgGqklnGk1gsYFarl080dSc1L5WCPg9R0r0mBEha1XMyZa1UQtFqpmvI6IFp4eSED9g+QjfasNFY4WzhTr1y9Ii7gKoVETNeqQGsowN6owdvWk0xtJr/G/ArA7h1g/VrqdNGVRfJ7BYR3tgOYEotGHo3oV63fG88Go7GYTK1CUEj9+ojcTrhNh+0d2Hpvq/y66fg65eow4MCA4h+y1+j3Ub/CE5Cvw5/Bi+ziuvpKlPL8TCpNf0SEL2KOBpyOPc283+ex94Ekk2zyjSiM6WenY6uxZdn1ZSy/vpz2fu2ZkryTj8PgtBcc3A6NngVSVb+AuvpDVNUvwE0h+YXojfpi13N0ndGIahWI4OMgmWVWdK7Io9RHPMt8Rr1y9fj96e/y8abEUa1Q42jhKN/zfh3A4fEQVN+pMJ9pjus8V44/Pi63kplkgKNSotgevl3mHJirzFEKSgoMBZS2Ls23/p+x8BhssehFzRcC9rlwNbMHt/tLnjU7uu4gbWyaLMgwudFkTvY5yaZOm1jcejEzGs/g6/pfE1YjjE6VOrH53mYORh1kTfs13Bt2jxdjXjCrySxuJtykyaYmfHHsC1r6tORYr2PSb8GhwXTd1RX/Uv5MaigJRUw4PYF1t9cxpeEU9t3fh/uP7kw5M4UmXk2YEToDN2s3frz8I0uuLWFCs14sHFSFmj52ONuoqeFji533djKFe5yKOYWNuUTsfprxlBora3D88XECXQOp5FSJ+Ix4/Jb4kZ6fzo6uO6jmWg2QXO9DPUOpUqoK1mopWcjX51PTvSZavZarz69SyrKUzBUICwqTfyP0Rj15BXly29SrnFccjjpMTkEOPg4+hH8eTimrUjJPypSMyHhHorH57mYarW+Er8GWqzdrEOgaWOxz+n8NzpbOzGo6i5hRMQyrOYwFVxbgucCTSacnyX41H0SrVjhej2BPXjtWHILj9w9hqTTH19GX5puaM/PczHdKdpfgwxDEEuHgEpTgH4XfYj/aV2zPvObz/tTxsy/MZuLpiYQPC//T3Am9Uc/nhz9n9a3VAAytOZTFrRbzOPUx3XZ1Izo1mqWtlzKg2oA/XUZPSoph9so+/Ky9iLUOxisbMWzkJizcypGcm8zP135mydUlJOcm07lyZ/5V71/UKVvnnWNl67LZHbmbDXc2cCb2DCApQ91IuIGXvReXn13mxZgXOFs647PIhzYV2rCo1SJuJ96mxsoaTA2ZysxzM5nYcCITG07kYfJDKi2tRHW36lhrrDk3oGjwl5idSOkfS9PTox2Hog7RMs2J8FIiEas1CM9fcDfpHo3WN6J2VC7H1+ro2g32VIGtnbfSc29PPvH/hJ2ROzFTmhVRNvJx8CEtL43UfGlXTKPUyEH6Z0GfUatMLYYfHY7WoEUpKGlQvgFrQhZgGRjEc/+yqEu50ariNSycXDn+2QW0ei0BywKwUFnwU+gsPj85muaPoILShVW+6agVavL1+RjEN1WGtn5tORp1FA97D1mhCCgyV7VeIlWPt2/HnIwjGEUj0QvhxKIRDH+8GEdzR3kNf4TxDcYz//f5crJjqbIkVy8FOQICFwZeoMHaBjJ/pUbpGtxIuCHNQ6Eu1orUyrcVAkIRH4jS1qVJyE6giVcTzsadLVJVUBrA8G7rC3nH2IS3W6eUgrLItSsMZ0tn2f+gcKL19hgahQb/Uv7YmNkQmRRJSn4Ktma2Mv/kQ1AKSowGA8PuBnLffxkGhYCAUt5Rv638nEzhLgBuVm4k5kiqRHZmdmRoM1AYQVR8uB2sMDztPHG2cub6i+s4WzhTMzqbas+NrAm1k7kfhbG9y3a6+HdBpVChM+iwnCkloi5WLnjae3Ll+RWuhV2TSPN16xL38Aq+X4g0xZtj30mkcOtZ1kwPnU4112o02dQEFysX4kbHvZOTlq/Pp/vu7hyLPsaWzlvoVqVbkddFUeRc3DlW3lzJnsg9GEWj5F799AJKQUl6fjo2ZjbUcKvBr7G/4mHnQVxGHO427oQFhREWFEYZ2zIYRSNDDw9l1c1VqBQqytqWZUmrJbTxa1PkfGturmHIoSEyX6e8bXkepDzAKBoJdA3E0cKROmXrMOvCLBzMHbj3+T3MVeZy4hH1RRSnnpxi6JGhgJTQ9qzak613t2KlsWJZm2X03teb7PHZWGmssJhpIXOBADZ32oyIyOhfRqM36iU/n8HXqFmmJrVX1cbRwpHjj4/z7MtnlLEt82bi/frBkydw/jxG0ci3v37LnItzGFBtAMsu2mO2e7/0egmKICknibkX57L02lLUSjVf1vmS0XVGy54o74UowubN3J/8OZ+2kwQGQrxCOfHkBG0qtGFTp004WPyxB1EJJJRUNEpQgn8YidmJf1ra9u/I2eYV5NFxe0fW3FoDSMZcP7f+mV0Ru6i5qiY6g46rg68ysPrAP5VkpKcnMnF2c7wX+bAm5yITtLWJGRbFmO/P8FyjZfiR4ZSfX57ZF2bzSZVPiB4Rze5PdhdLMoyikdMxp+m3vx9u89wYcGAACkHBmvZrcLVyxdnSmWeZz/i06qeIiOwI30F8RjxP0p4Q4hkCQDW3aoQFhfHjpR/pXbU38y/PJ1uXzYGHB7BQWTC81nDOx58nLj2uyLlNu1XNbmeSZQb7S6czMFyN0FKStQ10DWRU7ZFMPaHjeml41kxqCRlxbAShnqGyIVjhJAMknfvU/FSaeTUjxCMEnUHHxOCJ9KraixU3VzD40GBaVWhFmwptMIgGzsadJXHiKErpVHSp+5SIKZ9zKbEN6hcvqbc0SC7jl7Mtx/BTXwGw4hAs2JTECn0r1Eo1BtEgt5YICByOOowRIzHpMdhqbLE1s5VM+V4nNwB6lXSfV744RO/nkopR10/gx1jJ0fzPJhkAG25vkJOMNhXayEkGQM+qPbn/6r5kOuYpeQGY2rygqIJT30CpVe/rel/LO+cmZORLykxn485ipjQr8pqJMmJy6DbBQmVBUk6SXHlRUNx13M3aTa5qQNH2KdPjPyJ36kU9TzOfkpqXSoZWmufbSYajuaM8b9N8LNWWGEUjogLOBQzEKAiv1Y4kIrKAgIdhoPyewi0dGdoM1KIC3yzJFNJMaSZXWuzN7Hkw/AEjao0owpXxsPMgemQ0LlYuBLgE0LNqT3wUzsw6puP3FjtxspA4TjYaG7lFrceeHtRfU5/xp8Yz5bcpGEQDlmpLErITuPPyDsNqDiPIyhcGDIDLl5lVX8RSVPGyjHQvBEHAw86D2PRYBh6U1rKq7ap3JhnZumzabG3DiccnONDjQLEkwzReI89GbOm8hedfPee70O84+eQk6fnpWGusGVR9EDYaG36NlSo2RtHI8jbLiR0Vy9SQqXKSMeTQEFbfXM3qdquJHCZJ17bd1pZOOzoVET4YFDSIB188oJRlKbJ0WdxPuU+VUlVQCAruvLzDtRfXmNxoMnOaziEtP41KSyuRlp/GgR6SH1DIhhDa+bXD3sxeSrRFI8eijxFUOogsXZb8fTQlecq3COmrbq6iz74+NPdpztXBEnfItHnwKveVTDR/X+tUljaLjts7MvfSXH5q/hNr2q/BrEJliIsD7XuUCP4Pw8XKhbnN5xIzKobB1Qcz5+IcPBd48t3Z7+TfoHdCEKBPHyqfiddmuMUAACAASURBVOByeB2G/V7AiScnqOkWJLfcFf7dK8GHUZJolKAE/yBydDlk6bL+dOuUSc52SsiUP3V8al4qIetDOPboGCqFip1dd/JF7S8YdmQYPff2pH3F9lwfcp2qrlX/cKzsnDS+/6kjXj+4Mz/rJCNyqxIz4DaTfrhCuCKZLju74LfYj933d/Nt8Lc8/fIpS1ovwcfRp8g4j1IfMen0JLwWetFkYxMuPb3EuAbjiB0Vy699f2Vg9YEMDhrMtnBJLrClT0ta+bZi492NcrXDZGAFMKPxDARBIE+fR5Y2i2XXlrH/wX5a+Lage0B3LNWWRdp0TNcFoNaBazjmgl400ufES2jZEpCIpy+3rqLuMxjXFJJft0ql5qXyW+xvRdpw6pWtR0WnirhaudLWry0AZ+LOcCvxFkd6HqGme01OPj6JhcoChaAgR5fD6varqexcGZ80gRrbz3GzVxMaNezDZydHYlgwn4uKwfjEZdFyfROsVJZUc6uGUTSiQMH2AFj/EfSfdoBxr6Rks7CpW+Hrk12QTaY2E3sze1ytXOXde5OPRIolbCwt7fjfKQ1OBSqZXP120PM2TI7SpmtR1aVqMR5BiGcIm+9uppZ7LYLcgt5LxhYQ+KnFTwS6BjLk0BBuJNx4Y3YIcvKiN+rJKcgpokqlfD1chi6jSBJialmQW7peK1sVbn3K0mXJz5srzbkw4IL82ojaI1AKSll617Sr+fb8jaKRlLwUIl5FFLsPJqTmp8pJqen9+fp8BEFAQMAaH3in6pGP/J7CvJcapWtQIBgZ8ljaJTWIBhwsHBAQqOhckYrOFUnKTSqycdD3o75EvorkaPRRxtYfSzm7chx2SWdVdai4rwkpeSmMqTuG1LGpJP4rkZ1dd8pjr7u9jtkXJS5Pti4bC5UF5kpzJpo3h2rVYPdunq6ax9oaCv51WSAp8bGsTlXerjxnYs8QlxFH3bJ1aVexXfHrk5dK041Nufb8Gsd7H6dVhVbvvI6FYWdux/n486gVakbUltR+Vt5cydPMp1hrrGnn144cXQ7Djw5n4MGBhCeFYzAaGHBgAOtur2NDxw0MChpEBacKHO99nB1dd3Dl2RUqL63MDxd/kBPMCk4VeP7Vc1r5tsIoGrmbdBdfR18EBLJ12YSsD6FPYB9WtFlBti6bqsuqYquxpZFHI15kveDTPZ/Sv3p/2XE+JS+Fxl6SktbdJKlaZWqferty9jjtMYc+PcTWLlvxc/bD3txelrhNykmSW0/fbufDyooY0qi3th5n485y+NPDfFn3yzfu4EZjSUXjA3C1duXHFj8SMypGJvl7LvRkxrkZH65UenhgfuoM85vO4+h2FfGxd1CLAipBRb019Vhzc83/3CL+i1GSaJSgBP8g/oor+F+Vs32W+YyPV3/M9YTr2Ghs+K3fb1QvXZ26a+qy7vY6VrRdweZOm4v3976FfG0OC5b0wnu6M9PSDtA3twKPP7nAjHk3OWeMof7a+tRbW4+IpAhWtF1B3Og4JjacWEQFKiM/g1U3VtFgbQMqLK7AoquLpJaHAReI+iKKiQ0n4mHvIR8fFhRGbkEuthpbPO096ftRX64+v8qBBwcIdA0sMrazpTPTQqaxLXwbbSq0Yc7FOVx+dpmOFTtirbGmY6WObL63mcJdn6ZEwyk5F5XaDDOUuOQJJHxchb3399Jxazu+OJDAKS/41Qcepz0GkA24TBhUfRAXBl7gbP+zaJQaDkUdkgN0S7Uly68vp+OOjnxc9mMej3zMyT4nuZFwg+B1wcxpOoe5JwWSrSDU7RfUCjWuVq58uq8XNj8u4VfvqTR5WECuLpf9D/YhIOCutGdKKMzoXZ4j7Ssz9sfLOBcSl7FUW9Lvo374OvrK5mkTgifwaeCnRXbrn2YWUkV5HYs2fQTXFAnoCiQC9PtaiuTPheFNi4edmR33kiSt3rDqYfLzS68u5UzcGa69uMay68s+6Ax+NPoon/h/wqO0R1T5/9h777iozm79+7un0XuRJogUu4golthjwxKNLbZoosYSNSaWFGOiiYm9927sUWPB3mIvoCIIIiqogDSp0su0948tGydgkvM8Oed5f+dw5eMnMLP3ve99zzCz1r2udV0ODd56fQEBexN76XeFSgy2/DMVqN/Ypf1jtQlgcIPBBtSUvNI8aU6z2s3Cx84HG2MxeH+UIVJkdIiyxX/mmv2mD4iF8s9VsGTIaFyjsZQ8minNKOBplapHBTyVfn+zEb6celYnRgxQNToNAc4BBuv7/NVzg3u1NbZl4Y2FeFh58EGDDzBTmpGgKGBsHzDSCVz96CpLui5BIVMgCAIDGwzkk6afEJcdx+lhpwGxN0OPnmJNMdkl2XhefI+uPbOZv3s8X1jewtLYis9u6vjoSp70N+Zk7sSD9AfIBBnb+2yvVDV9WfCSjjs6Epcdx8WRF2nn0e5P1w9ECtXo4NGcjj2NkcKI1bdXY29qj0qmoq5dXTysPDj+5DgWRhZ09+7OxWcXabS+Ee4r3NkTuYc9/fbwod+H0niCIDCowSCxdyxgHDN/n4n/Rn+uxIsu8Uq5klPDTrGqu9i79DjrsdQfEZ0eTfPNzWnq0pT9/fdTqiml2eZm9K3bF51eR0hyCDEZMZXV2xD4/ZlYeUkvTEer0xpU+GpZ1+Lhpw+lzQt4LXGb84widRFF6iJUMhVKmbKSIMhV0wwCuyRQrC4mZHSIYeLm4yP+vwqH8GoYwsncieXdl/Pss2eMaDyCn67+hOdKT+Zdm/d2R3CZDKZNI+jAPSJ/9yUgJpe4nDh87XwZc3wMo4JHUayu7ClUjQpUJxrVqMY/iHIn2L+qaPxX5WwfZjwkYFMAz3KeUdOyJnc+uUNKfgpNNzaloKyAkDEhjA0Y+6dUKbW6lE2bxuHzvTXTM/bSp6gmsb3OsmBxBEfVUdRbW4/397+PXJBzbPAxHk58yCcBn0i0CK1Oy7mn5xh6aChOS50Yf3I85ipz9vbbS9q0NDb13sQ77u9UOQcPaw/sTOyQyWQIgkAv315YG1vz+/Pf6VirY6XjJzSbQD2HeiTlJ0mN2uV862GNhvEw46GBSVtOiUidemEJ6cpSStCw21+Oyy8N6X+gPw6HztAgA+Z0VbGx10ZJFen5q+cIr/8DWN5tOYIgYG1sLSVsDmYOrOy+kowisYHzu3bfETw4GGcLZzp5duLOJ3cwkhsx7OBgVGodX3aGIhXsityFSq7iXuo9vrv0PaYzZ3O482Z8skV1JT16WmmdKJNDQn4i49vl8UVXeGUMNd74zpvVbhZ7ovaQV5pHoEsgd1LusPHuRpLykySzN6hsknfBG9BDmU6DieavP+rfbHIspwxNbzVdcj0GiHgZgQwZ8zrNk0z8/qjuVP779ojtbA3filKmJDojmo+bVN0UrkdPRnFFP0GxthhLhRl+LzTMfu5W5Tnl9/pbzG9vTdLnXp2L7SJb6b2xM2qnFLiXU9SqwvMpzyn+thhLlWg+WKgRE5I/7jKXJ6DOFs542XhJgXiBuoAE+Tb06KVko7xHI0FesQNa3phdPrZcL7ClVYVfR/Bj0XsjNDmURusbEZEaYSA/fC/1nmiG12oa2yO2M/WcSMXzUJvx/De3Cg+GNzD/3fko5UqGHxkOiH0i6KFNtjlhmwXmqrqjbNGan6LXcSjmEPmaQs61rsGMm/D73QPo9DqiXkahR8/4gPHUsa9jMH5ibiJtt7clozCDKx9d+UtXap1ex9m4s/ht8GNn5E5UchUD6w8keHAwaQVp+Dv7c3fsXaImRHFr9C06eXbi4vOLvCx8ibWRNSn5KWj1WtbeWcvJJyf5Y8uppZEly7otI2xsGFZGVnTY0YGRR0dKfT6TW0wmcnwkJgoTXpW+kl4/nV5Hm21t0KHj5FCx52na2Wm4WbjR3KU555+dx8PKQ/rc+O3hb7hYuEifScn5ycw4P8NgLs1dmmNhZJi0lntplFdAFHJFpY2irfe20lm+h8aZMkLHhFLPoZ7hIjo7i6pJT5786VpXowLOFs6sDFrJ08+eMqThEH648gOeKz1ZcH2B5ERfCY0aUeNaOKdcZrDsLDxKe4C7mQt7ovbQamsrnmY/rfq8alQnGtWoxj+Jclfwv+rRKJezXdZt2V/K2d58cZPAzYFkFGbg7+TPjVE3WBm6kkG/DSLIJ4iwsWE0cWry1vO1Wg27d06n3kxLxqdsol2hAzEdf2Pe/DtsL76F+wp3Jp6aSBOnJoSMDuHqx1fpXae3FIzHZMTw9YWv8VjhQbfd3YhIi2BO+zkkfp7ImeFnGNJoyF+aQ2l1WgrVhbwqecXdlLsYK4zp4d2D3NLcKnc8lXIlK7uv5G7KXWyMbVDKK/wVutTugr2pPevurGNf1D6mnJ7CD+dnYVoGW/3F861K4EwbJw4NOsTqDouZfUnPwfow8pM1LLu1DE9rT+laevSSY7RcJudF7gtab2tNTGYMTWo0Ia0gjU9PfUp79/YEugay5OYSAw+E2ja1uTXyGp1eKOg9FO528EYhKHAwdaBQXYiRwohFNxdx/ul5DgVa8MQe3F7Tg0+rY0AQqU+vynLZ2M4EvQw2vB5er9cx5LchlGhKUOvUhKeFo9frmf/ufGImxnBkUIUCl6OZI7PazqpsjicIFMsrkoiqXLvf5uS95NYSotKjEBBo7Ciq2njZejHv+jz06JndfnYlediJzScCcCn+EmkFadL7aJT/qEpzK682/JHWZawy46QvJOdXVpaCCtqURqepsunZ2dyZxV0Wc2DAAdq7i7SzNx3C69jVkRKrP84pNiuW1ttak1eWJzlhG8mNKgXNWr0WNwsxETr8wWF6+vTEy8YLNws38oRIIuQTyOY2paSTzW0i5OPJE6IqzVUlUyEIAiqdjFCHqvtHkvOSDahWWr2WPVF7kAtyFt9czLgT4ySazh7H8Tg+TIDk5Erj2JnasbDzQh5mPESGjORXicj0sP6mLU0PhzDt+9OcHH6Kj5t8jIXKgq/e+Yo9vT2Q6yD+m0+xWWjDvTSRmz6owSCDwP5J1hPabGuDRqfh+qjrkiJVVcgsymTxjcX4rval+57uRKVH0aV2FzJmZPB9++/5/Mzn2JnacXLoScxUZgiCQEu3lmzrs434KfHUd6gvJcP2pvbEv4qn175e+G3wY0/knkrvST8nP66Pus6W3ls48eQEddbUYf2d9Wh1WhrVaETmjEx8bMXKgIBAakEq7lbuDDk0RDTeG3ERuUwuOpAnhbDw3YXE58ZLid+zV8/wd/anVFuKscKYWRdnsSpklcEcyk0B30S5l0Z54iMTZFJ/hkan4YszXzDm+BjGGLXizD65QeVXgiCIVY3qisZ/Ga6WrqzpsYa4yXEMajCI7y99j+dKTxbdWFR1xdPICNmChXyx8CqhJ5wwSUxFptNLm37HHh/7n7+J/wdQnWhUoxr/INIK0jCSG/2pqsWbcrbdvbv/6XjHHx+nwy8dKFQX0qdOH3b23UmfX/uw+d5m1vVYx6/9f8XSyLLKc/V6PYcP/EDjry358PlSGhVZcD9wG3N+uMKyggu4r3Bn0c1FDG4wmNjJsRwYeIAWbqIEZ3ZxNuvurKPFlhbUX1efTWGb6FOnD6FjQon+NJqv2nxlqIryF4jOiKZEU4KjmSMb724EoJZNLeDtvQOda3emt29vckpyKNOWMfP3mcy/Np8BBwdQWFbI5nubGXp4KKfiTlEnU49NMRxsqmKq2yB6PYEH7sa8V+c9spb/jGsebOpbk9DkUBJzEyvxcv1q+AFw+fllmm5qSlx2HApBQXphutQnEOQTxOWPLtPDpwfv73+fzWGbpfMtdu3n8OY8vvUZRWx2HIIgkFKQQv+6/SVJy+67uzP40GAAXprDuwlyiuR6HErkXBxxkWJ1sag4JcDmQPGjWV5QzN3Uu4BYbcn5KodzH57ji1ZfUNe+ruQ50cunFy8LX3LzxU28rMU+ANnrEFqPvkI2Vi/K1f4Rf3TydjR1pId3D2pa1qRUW4oePR09xcpTbHYsBWUFDGs4jC3hWwzoPe96vsvq26slGopcJsfZ3BkXcxe++f2bSmZ85dWGP1YX0ovSyTCDfQ0rz7Vc/vXPek7GNh3L5BaTGdhgIL72onvymzuOb1ZhgrwN+we67u5KTGYMvra+ZH2ZxY6+OyjVlnI35W6l6+j0OpLzk3mR+4IrCVewMrIiKT8JgDwhkijF54Qq+hCl+Byd6rnBueXzd7FwEU3ztDpy/pCvlzd/VyUOqUOHWqeWaHPlidOU3P0A3Ny9gOc5zyudW+4BItfpUQs6WiVBw8sPIVAUSEjJT2HLvS18+c6X/NjxR45+dpMN7UyYcleGORU9Mx12dMBlmQvDDg9jzqU5tN7aGnOVOdc+viZJC78JvV7PjcQbDD88HNdlrsy6NAtfO1+M5Eb0q9uPM8PPoNPrCNoTRJm2jLPDz1YKrIvVxYw4OoLY7FhODj3J7TG36VunLznFOcgEGWkFaQw/MhzvVd6su7POgNIiE2SMbjqax5Me079efz499SmttrYiLCUMU5Upjyc9NjCXjM2Oxa+GH/Ouz2NpyFIujbyEUiZWwq4lXuOnjj9V+VqVaEpQyBTMaj/L4NrRGdFEvow0fC1sapPwKkGqhAsImCnNeFXyil57e7H69mrW9ljLOoePUBaVir0YVcHXt7qi8W+gplVN1vVcR9xncfSv159ZF2fhudKTJTeXGMiKS2jbFv9LjwgrHMaHd9VkFGVgrjChz699mPn7zEqJ7v91VCca1ajGP4jUglSczJ3+lMK0MmQlibmJLO269E/H2nJvC31+7YNap+aLll8w3G84rbe1Jqckh1ujbzGh+YQqr6PX6zl9fDnNZljRP2YObsVKbjdaxYyvgpmdf5w6a+pw5NERZrWdReLniazusZraNrXR6DScfHKSgQcH4rzUmc9Of4ajmSMHBx4kdVoqa3uuJdA18F9ynb314hZyQc7YpmPZ+2AvuSW5JOclo5KrOPr4qMGxOr2OR5mP+CXiF7KLKpR5loUsY961eRSpi/igwQcAHB50mNjJsXilliDXQ7a8jNHPrOiTbEFkfhzrfl/Ap+dfsd0fOnWfwNbwrThbOEt0LG8bb8b4j2FbxDYAev/am3r29ShWF6PRa6jvWJ8nk5/wTZtvmHF+BqdjT7N/wH4mNJvA2BNjmXN5DvrsbJg1C9mIkcwdtpUDAw5Ia7Q8dLnECy8P5vvX649aDl8O38DmY1Ag19JuXXO0eq0U5JzyFo+dcFccp76NL1NaTKmkRlOeMM3tNBcQVZyevnqKUlDiqXBg+H0M8Te8KhxMHUiZlsLJYSelZmq5IGdl6ErpGJVMxaOsRwYqUOXnOpo5SrvNBWUFxOfGk1KQwrXEa+SVvb3xsrzyAWKlQyEoyFdVTLs8MH+eIwbsWr2WRg6NDM4px62kCs+J8r6GhxkPpcfKd5CNFcZSwluOdT3WUaQuYm6nuRgpjPjQ70MmNZ9Eodpwh1NAkBrnzz49y4P0B4SnhWMkNzJQvtKho65dXYOARUCgnbtYyTNXmVOsKWZMGKTdekcybfO19eW79t8hF+QGvRl/nAOIilzl3g5huiROecOdw2uovao2yrlKnJc602ZbGyadmsS0g2MAUAt6ZAjccAeNSUUCsfjGYkyUJkwOnCw9drZPQw42EEgpzZASlZ86/sRIv5GEp4bzw9UfyCrOIr80n+8ufceu+7tIzhMrKnmleay7sw6/DX602d6GkKQQfu70M6FjQglPC6eJUxN299tNmbaMvvv7kpCbwJnhZ3C3cje418KyQnrt68XVhKucGHKCIJ8gmrs2Z/N7m0mZlsK6Huukc9IL05l4aiJuy9yYd22egR+Pvak9W97bwo1RNyjVltJ8c3MmnZpEbmkuTV2a0tK1pbSukS8jaeLUhIvPLjLuxDhODTuFQqbg2JNjGMmN6ODRQRr3yKOK6mJb97YGr3djx8Y4mTtJmyzlqG1TG61ey+Osx+J7Ra9DLpPTcktLbiff5uzws3za/FORGgVVmvYB1RWNfwjuVu5s6LWB2Mmx9K3bl29+/wbPlZ4su7WscsJhaYnZ1l1s+vgwv522oDg7HSu5KQuuL6Drrq68LHhZ9UX+D6I60ahGNf5BpBWk/Wkj+N+Rs9Xr9cy+NJtPjotNuMu7LUen1zHgwAA61+7MvbH3JKrPH3H1whbazbCjx72pmJZquVh7LuM+3caUnH28s70NMZkxbO69mfjP4/m23bfYmdoR9TJK5B8vc6PXvl48znzM/HfnkzQ1ieNDjjOg/gCMFEZVXu/v4lbSLfyc/JjQfAKlmlJ23d/FpfhLNHVuysHogxx9dJQ5l+fQfXd37BbZUW9tPUYFj+JBxgOM5cZSkLk6aDXnPzzPtj7b8LLxEilML1+SXZBJgbGMFq4tqH8mjO7e3UXjvQVzMS+Dk4MDpMbZ5znPpd3fqa2msqjLIilIbevelsiXkah1aua/O59zw8/hbuXOT51+YkD9AQw7PIx7qfdYHbSaeZ3m8cOVHxi7pD2ashL08+YRkhTClYQrkkwliGo6Z4edlQLpcu79jEer+K4TbDoGZQW5KN/Y1C+vCGxvLsclDx7mPGHtlcWV1rW8otG4RmM+aPiBpAJVx74OTzXpBMXB7Q57DYJwSwyN5Cz1FUZfKpmKjKIMPj/9OQejDzL3qpjA1LSqaVBBKNOVEZYaJlU7ynHxuViZeTP5sDOxk6o6fzQVK6dsKQWlQY+ISq4yUHzq9ELJtCYTACTvDjDsc3gzAT737BxXE0SvlXLOdXkwB0hVh1JNKZvubjKYU+TLSJzNnXm/7vvSYwu7LDRQzQKxeiMX5ChkCo4+EpNlPXrq2tfFz8lPOk4uyLExsTGoGgmCIL125e7RbQUPrC0dpQbith5tmdl2Jr52vgaN+m9Cj55mzs1o5dYKR/OK5vKew+HzHmIipZKryCrK4saLG6y9s5Z7xa8rOwLoXr92Hx/9mE1hmzjy6Ajr767ns8DPsDKukBd2dPFhfE896GF38wXIBZHG07l2ZxJzE2nl1op9/fYxoP4AwlLDGHF0BG7L3bBeYI39InsmnZqEm6UbZ4ef5cnkJ4wNGMuHRz7EWGFM8OBgVHIVww8PJyQphONDjtPQsaHBfeaX5hO0J4jbybc5M/wM79Z+1+B5SyNLxjUbx92xd7n7yV1G+I3ATGlGdkk23138Duelzkw7O42UN6h4rWu2JmxsGEu7LmXH/R3UXVMX9OJrEzEuAhOFieh9khaBs4UzhWWFDPptEAvfXQjAjAszDN7Pb8pSR2dEE58TLz3XybMTo/1HsztqtwElp7zyE5sVi6WRJc9fPedJlliZCB0TWnGfpqIi3FsTDV9fkSpX+HaBg2r8fXhYe7Cp9yaeTHpCb9/efHn+S7xWebEiZEXlxu/336f/0Sfcf9wRv6dFoNdzOykU/43+3Ei88Z+5gf+fodqwrxrV+AcRtCcIY4UxRz6o7F4NMObYGI48OkLs5Ngqm1i1Oi1jj49lW8Q2lDIl63qsY3P4ZsJTw1nadSmTAidVWVG4c+MAs458xjmLlwRkGTG74UReNPZk+Z2VxGXH0d6jPdNbT6eHTw9kgoyMwgz2PdjHLxG/EJ4Wjr2pPcMaDWOk30iaODX5l6oWf4a6a+rSuXZnVnRfQbfd3XiQ/oD0wnQDAzY7EztaurWU/jWp0QTv1d5MaDaBXZG70Ol1WBpZEv1pNHKZnNmXZrMidAVpmi/oEfsDl2vDxnaLGdtpBuzcSfuUeZz4/hHrm8GRj1vyKPOR1PBZTln4+p2v2f9wP8l5yRRrxC8QuSBnaKOh7Hx/p8E9FKuL6bSzE89znhM6JhQPaw92nF7A6JBvaF5qT7qLJc9ynuFi4cKwRsNo79Gefgf6UaYtw0JlIZmkle+MWyrMkecVcKX+Iu4v+5KP+4geEnZmjmjRSlWXhT4TST2whdV+pZx/7zc6BvSX5rTs1jLmXJ5D3jd5DPltCL9G/yo919C6DsXPHjOu0cfMzzpKTkkOlvrGNNGuf93+/oaRnGwCeTJDWgdUmNk5mDgYNGz/Ee+4vcPd1LsoZAoK1YUoZUoUMoXYMC7I0Ov1fOT3Eb/c/8UgMREQMFYYS2v/NrRKlnHLVScZ8rlauKLWqQ3M+0B0AdfoNPja+qJSqLg39h499/bk/LPzVY5bw6wG98bdw22ZmzQvM6UZ01tPZ06HOQbHNtnQxECAwNrIGo1OQ4G6AGO5MSXaErp4duFq4lW+eucrfrz6IwCuFq4k51f0S8gFOTXMapBelG5AsfAuMuFoWgda17tBXmkeY/zHsPm9zTgtcZJ8SAQEevr05ETsCQCmtJjCiu4rpDH6/NqH3JJcftC0IX7Nzzz/eTrx6gyev4gi/kUkiaaav+W+LhfkuFm6Ud+hPnXs6nD8yXGe5jylW6KKYyXv49s8hADnAE7EnqCTZycODTqEqdKUEk0JB6IPsPr2au6m3MVMaYaxwlh6LzdybESHWh24nnidpzlPuTX6FvXs6/HpyU/ZdG8TRz44wnt13jOYS25JLkF7gojOiObMsDO0qtnqr28AMcHc/2A/a++sJTwtXHzPCwID6w9kbse5+Nj5SMcm5yUz9dxUDkQfQCVXETEughpmNWi2uZnkc+Fg6oCvnS+hyaHUsq7Fs5xnYgXiDZNIFwsXXpW8QkCgnn09ifZ4aNAhApwD8FzpyebemxnddDQAaq0a45+N6ezZmfC0cDKLMrEztSN2cqwh/fbCBejSBZ4/h1q1Kt/srVvQujVERICfX+Xnq/Fv4VnOM366+hM77+/E0cyRr9t8zdiAsYb+MXo92k0bmX/wM+a8o8ZUaUqRrpSlXZfyWYvP/vHv1P+XUF3RqEY1/kGk5qe+tRH8r+RsSzWl9Nzbk20R27A0smRB5wXMuDCD9MJ0boy6weQWkyt9WEWFneb9Ge4EXviAJE02NhZLEgAAIABJREFUu6w+plfv6Xz8ageTz00hwDmA22Nuc/mjy3T16sqxx8fo+2tfXJa5MO3cNDysPTj6wVGSpyazovsK/J39/9EPxLSCNHbf383jrMf8/vx3rBdYc/H5RSlA7O3bmzp2dWjj3oaMGRmcGHqCWe1m0bl2ZyJeRpBbmsugBoNY1GURqQWpPM56zG8PfwNgWONh5JXmceLcGuLsxODog0SxB0DduRMfBMehFeBU/0aEJIdISYazuTPXP76OUqZk0c1F6PV6qQJha2yLVq9leKPhle7FRGlC8OBgTJWmdN/TnWU3l+H71UI2B0OISSb5pfkcGniIhCkJjPIfxZOsJzRyFKk9+WX5lGpKDXbJ8zQFuBTAQys1o94DjRw8cqC4+BWBriJfXkDggx4zWDw3lI4pKgb+NojnUdfEe9SqScpLwlhhzMSTE/k1+lccTB0AMVh+8OoxT23hy+TtUi+Eh3aUlGSI4782ktONQtCBmVZOLXM3ZIIMlVwlBd/lSUZDB3GnudwMrhx3U+9Sqi2lUF2ImdKM+g71mf/ufECkgwiCwJPsJ5XkcOUysSJgrDCuNCaIhoEA4a5ytgTDZt/pgKjqM6zRsErHywW55IfwMOMha26vqVJFprzvxsvGCxcLF4MKTImmhLEBYw2OL1YXS5LI5ShUF9KwhrgeJdoSZIKMSYGTKNWWGvwNlVcuyqHX61EpVHzsJ6pwKWQKGjo0xFgr0KLWOfJL87E1sSUqPYrgR8EGZoeNazTm3LNzgPjeeFPUAEQTv8yiTNp3G8fI+zCnKJBfYupwZWokCRf98LWoJR3bqVYn2ri3AUQxgjf7Z7R6LQm5CZyOO83K0JXSvZ91L8PYez/JuUkcfnQYNws32nm0Y1v4NkYeGYnLUhdGHh2JjbENhwYdIuerHDK/zCR5ajK7399NM+dmbI/YTnhaOPml+Yw8OpK229uyIWwDq4JWVUoysouz6byrMzGZMVz48MLfTjJApKSNbjqae+PuET4unNH+o1HKlOyP3o/vGl9ab21NyIsQQGwK3j9gP9NaTaNMW0bj9Y1ZfHMxEeMj6O0r+oRkFGVwN+UuXTy7EJcdh06vw0huZNBflJqfilyQU6guNJCcbuXWCg9rD7p7d2djWAV9SilXUtOyJndT75JRlIG7lTvtPNpV7vErp069rWJRLXH734raNrXZ1mcbjyY9oqtXV744+wVeq7xYc3tNBa1REJCPG8+sDQ+5drsBdllFyHXw+dnPGXxo8Nvlc/8PoLqiUY1q/INwWuLEp80/5fv23xs8rtfr6bijI+mF6dwff7+S0lRuSS4dd3QkPC0cNws3gnyC2HxvM33q9GF7n+3YmNgYHB8bfY3ZOz/mV5OneObJmWrfm6g6NvwSsxeFTMFo/9F83vJzalnXIjwtnB0RO9j7YC+ZRZk0dW7KR34fMaTREAN51H8XpZpSItIiCEkKISQ5hJCkEOJfxUvPd/XqSpfaXQh0DaTn3p4ipePLLLbc28K4E+NI/DzRoMF88qnJHHtyjPgp4hhtt7fl/sv7eFh5EDkhEpkgI3BVI5xvPeC0r4CPYz2ib/jBkyfs+f59Br4/izkdYEE7AZkgE03QjGwI/SSUVaGrWHNnDfam9mQWiYozsdmxUrCrlCu59vE1vG29pfmUaEo4+eQk6+6s42L8RYKewKm9cG35F5T0DmLgQdH52FxlTnJ+MkZyIwJdA7nx4oZEC2rg0MBAfUalASMTc0q0pai1ag6GeLDGKYGrHmJ1Qy6T42rpSr96/UhNi+NY3En06DEztSarrIJ3Xg6ZIJOuZaowpVhdhCVGKEzMqW1bG0Xi9xjhWOm8UtK5pegNelBpQaVQUcCfO2j/GcppVn/l3QEVVZO3QSlTMrn5JJbMuYGQX4DxkKeUakvxq+FHYm6ilES9ebxMkFHPvh6Psh5Jfgbla+Nk5kR2cTZlujICXQMJHROKaq5KoizVMKtB2vQ0gzEXXl/I179/XeX8ZMjQoaORYyOCvIP45f4vFKuLKyUYb66Ji4ULrhau3Em5A0DX2l05tCadvp3S+d04BTcLN1ILUtHr9QaUKzOlmSgM4duHk3EnGRcwjjU91kjPL7qxSOxJ+PoVuLuDRgMvX8I33xDz6UDqb24irXniF4k8y35G+x3tcTZ3ZlCDQWy9t5XfR/5OZmEmIckh3Eu9x+X4y5X6U/5472/CUmWJj50Pde3r4m3rjbetN142XnjZerEzYiczLsxgwbsLcDBzYMPdDdIaKGQKWri2oJNnJzrW6oiPnQ+99/XmRe4LLoy48KfKen8XhWWF7Inaw8LrC3n2SjS4q2VVix87/sjwxsO5mnCVDjs6MKn5JDbf24yTuROrglYRnhrOnCtzpHFMFCYUa4pxNHXEwsiiUhIK4vtQrVNjY2xD9ldir1nwo2D67u/LvbH38Hf2J6soC+/V3rwqeUWTGk0wU5nhbevNL31/MRzs/n3RSPH2bWjevPKN6fVgZwfTp8PMmf/2OlXjzxGbFcvcq3PZE7UHZ3NnZradyWj/0RUUY42G3AU/8On9n9nbUI9CUOBp48nRwUep71D/Pzv5/wCqKxrVqMY/BI1OQ3phepUVjSOPjnAl4UqVcrap+ak0Xt+Y8LRwGjo2xNnCme0R21nWdRlHPjhikGQkxoXxycxG1DvQjqu65/yk7YB/465MVgcTHH+a2e1nk/hFIt+0/YbDMYdpvKExAZsC2B+9n5F+I4kcH0nY2DAmt5j8byUZer2ehFcJ7H+wny/OfEGrra2wXGBJy60t+erCVyTmJtKvbj8ODDjAlBZTcDB14MywM0xvPZ227m2RC3JyS3LJLMpkYP2BKGVKA7dvvV7P0cdH6VOnj+i2LAisClpFYVkh0RnRHH8s6r8Oi7fgpA+oZXpau7WEc+co694FYc4csk1gdStxZ1mr12KmMCN4SDAjj45kQ9gGZIKM7KJslnZdytdtxCAypziH08NOY2lkSZddXXiR+4KrCVcZe3wszkudGXBwAHlleUz2G8eyc3C3jiU/2kTSa18vcktzKVQXklOSw6ruq8j6MgtzlTnO5s54WInmhY8yH6GUKaUd9IBMJfnqAjHIFeCjdplc8QS9DBDEeSfmJrL+znri1Rm08WiLVgCn1Hxmu4/E1aIiMbNSWdHVqysA9R3qkz4jnQYFpuQKpWSVZNHBo8NfGsm5WrhgJK86yTCSGWFtZE1Hj8q+J2/2gJSvtx491kZvV1+ruP6f73WpdWqWhS5HEXQXq/ceotSKx99/eR+FTFHl8S4WLkS8jBBVvF4nO1LVQkCSii0sFQPoNysQLwtfEptVsTOcW5LLD1d+QEAwqER28+oGVDT5x2XHcfbpWVRyVaXmbRdzF8ntG+BV8SspwAbRef6JKp+6ejHRTcpPQqvXokNMjMpRrCmmq1dX3q/3PhqdhseZjw2u42bpRm5pLvk7NkFqKmRmwuXL8NNPrA0XVdJkgoyevj1xs3TDVCVy/7OKs1h7Zy2ftfiMQNdAevj24MeOP/Jt228pVBdSw6wGUKHQZVuEqGBGZRWkvLI8wlLD2Bu1l5+u/sSHRz6k9bbW1FhSgxkXZmBjbMPVxKsEPwrmTsod+tTpw4XhF1jRbQXOFs6su7OOTjs74b7cnej0aIY2HEqxuhi1Vl3pWv9VmKnMGBswlqdTnnJv7D26e3XnRd4LRhwdgdUCK3ZH7gagh08Poj+Npp5DPfr82ofL8Zdxt6xoTi/WFFPbujbpRemUacuoaVmz0rXKE9cAlwDpsZ6+PXGxcGFT2CZiMmJosaUFJZoSjOXGNHNpJlUEK0/8Lyoa1RK3/6PwsfNh5/s7efjpQzrU6sDk05PxWe3DhrsbRJlphQKrWXPZ/dVtdoQ4oyrVkJD9jICNAeyL2vefnv7/OKoTjWpU4x9CRmEGevSVzPpKNCVMPzedIO+gSnK2TzKfUH9dfRLzEmnh0oKU/BReFr7k2sfX+KLVF1IA9DLpEVO+a4bPjmYEa6OZXuyPt4c/3you87Awni3vbeHRxEd423oz4sgI3Ja5MfPiTOrZ1+Pk0JMkTU1iSdclNKrRiH8FhWWFXE24yqIbi+i3vx+uy1yptbIWgw8N5tiTY9S2qc2SLku4PeY2ed/kcWPUDZZ2W8rABgOJzoimpVtL6V6e5TwjtzQXQRDYEbEDK2Mr+tbty477OyQpznup90jKS6Jv3b7SHJo6N2W0/2gUMgWzL89Gr9EweG8k2tefYv5l9pCVxV7z5wwO1zC3k5xCpRjIKmVKVnRfwYCDA4hKj0Kr04oNqH7DmdpqqsSVH+43nOauzVnfcz3Zxdl4rfKi/S/tOff0HJ80/YS1QWtp7tIchx0H8MmCjzrm8TTnGRObTWRtj7X83OlnrIysmHZuGv4b/Tkdd5oSTYnE0dfqxd11PWJjbWgNw+DJysgKpaCkLvY4vGb8fFhPdAE3Vhgzpd2X9Kj5LtF2Wor37CA9Nxm5IOfgwINkfJnBaH+R+/0w4yE3XtzgYmoXTF8vUFJeUiUjOZkgUvatnUUueUZRJot6rSSx21l8Cl7vzr3OA0p1peSW5nIp4ZI03/r29TFTmlWqKsgFOS7mLhJd7U1q0p/J0pZDhkw6zsnMiSDvINb3Ws/3QnumXK9IlN62017Oq4cK2dfyhKNcShQgOjMa83nmkgdFObrs6sKAAwP46OhHtN3elmJNMQHOARI1DcBcaW6glFWsKeb+y/sk5SWhkqsMxmvh1gILlYW0DkWaIsm3AUT1s16t49lqLCpjvUkjG9hgoMG9zOs0T+oviMmMMbiOG6LUdfL0caJcrUYDDRui1qrZGrFVGqNcUaqcMljXvi4anUaiqpUfN/ywSCHc/t52lDIlp+NOi67qRuJ93Blzm5SpKZwYcoK5HefS27c3LhYugPh3J5lfKitM6HJKcjgVe4pjT0TPgeDHwXTe3ZnPznzG9cTr1LKuhbnSHKVMSR37OmyL2Ebrba2xXWRLjz09WHJzCfdS71Vy5v6vwt/Zn9PDT5P3dR7TW01HJsjYEr4FgGnnplGsKebQwEO8X/d9Lidc5kXeC4Y0GCIJNZRXRIo1xWQVZVX2r3mNrrW7Sj+XV5t33N9By60tRXWv5pMp05XhYOZAQVlBJWU54K+bwaFa4vY/gDr2ddjdbzfRn0bTxr0Nn578FJ/VPmwK20SZtgyhWTNGHH7K/aIRNErRUqopYejhoUw6NanSZ87/ZlTeDqpGNarxLyG14LVZ3x9Up8rlbE8NO2Xw+K0Xt+i4oyOl2lKauTQjNCWUXr692NF3h7Rzmp0ez+L1I1ilvoZKC2OKvbnuWMpCdTgdLTpyousJbE1s2RW5i2nnpvGq5BUtXFuwOmg1HzT84K2uyX8GvV5PbHasSIF6/S/yZaRYFVCaEegayEdNPqKVWytauLXA0awyFaccWp2W0KRQvmnzjfTYpfhLyAQZfev2ZWPYRqa2msoIvxH03NuTiLQI/J39OfroKDbGNrR1N3Q3/vndn9n3YB/3X97n7KGFvJNTiBzQAvYPn1NmY4n9Lwd5agPr/bXSXnk3r26MOzkOY4Uxaq2aBZ0XcCD6gBRolSsUuVq40mxTM8JSwzBViF/ulkaWKGQKlt5aKjakC8a4uZayfJaSHLkacp+zPHQ5IAbRjmaOGCmMiM2OxcHUgfHNxuNs7sxvD3/jYvxF6trV5VHWIwTARA2FKlHtaWD9gex5sIda1rV49CqegFz4KkTOdPbhbuLMlYQrXEm4grulO+84NmdR2zsIeuho1oAB9QcAYrIrQ0aASwDzrs3jsktzvo+w5uuAbPZF78PO1I6Iogl4aEfhpGqCv7sTYaWLMDLNgAzo5t2NCScn0KZmG2LNSysWXgc/mfTggZc5vz48ID38OOtxlfQorV4rKTuBGHSayk0p0hah1Wux1DfGQzsKc7wo4CkJ8m3kCZGi1Ku6GJ1eR9faXTnz9AxZxVk4mzuLfRN1h0H9+kTWK+a4XUbVGveIFZYjHxyhw44OEmVKLsjFfhEEAl0DCUkOQSEo+KnTT8w4P8OgMTspLwkfWx9e5L6QDAsT8xLJKa5IqA49OlTltaFyAhT8KBiVQkV+UQWd6s2qRwvXFvyS8RD961i1f73+bLq3CQGB1bdXS8d18OhAgEsAmUWZgOh5UaYtExOb33/HbdIYGAxJi76lbvtR4OUF169zqFYhJZoSVHIVNS1r0rl2ZwDJaPNJ5hNsjG2YeXEml0ZeQhAENodt5tmrZ3haezL48GDUOjUmChOWdl2K06Mk+j2bh92daJz7NqenRU96+lYkKTnFOUSkRRCeFi7K0T45IT0nQ4YePeYqcxrVaESxupis4izSCtKkf+V4kP5A+lmtVXM14Spn486iQ4ep0pTmLs3p7tWdXnV60cChwb/UX2aqMmVx18Us7rqYfVH7GHF0BDGZMTRa3wiFTIFer+frd76mRFvC6lBRCtzKyIrEvERANB/0r+FP+MvwKsfv5NlJ+lmvF9P8Yk0xvna+XPv4GqdiT6HT6zBXmVNY9paKxt9JNHx84OzZ//L9V+PfR137uuztv5dZ7Wbx45UfGX9iPPOvz+fbtt8y0m8k3st3cOvcEL5bP5BFfgWsu7OWW0m3CB4cjJul2396+v/tqK5oVKMa/xDKvyDfpE69Tc72cMxh2m5vS6m2FC8bL8JTw1nUeRHBg4OxNbEl/9VLfpzXDc8VtVlddo2BOS7YKS3ZaPuc+nXe4eSQk3T16sr089Npva01xx4fY3zAeGImxhAyJoQJzSf87SQjtySX80/PM/fKXHrs6YH9YnvqrKnDyKMjuRx/mSZOTVjXcx33x98n9+tcLo68yLx359G7Tu8/TTJA3HHNL8s3aOK8HH+Zps5N+SzwM2KzY7kUf4muXl1xNHNk531R6Sn4cTC9fHtVopk5mjnyY0dRzefrsIUcaAC617FFWWQ4u9pZ0euxjsEDXtOPEBt/T8SeQKfX4WXtxb7++2hcozF5pXncSrpF111dJdrW/OvzCU8TA4YiTRFqnZq80jye5jzFxtiGps5N6VrkwrtJSma88yVb39tKe4/2qOQqTg49SemsUlKmpdCvbj+UMiUZRRlYGVkxofkEGtdojEKm4FHWI+SCnM9uCxS+3vj2tfPlVNwp2rq35WXBSwQEwlzhVF05W46KSWxNI0dUMhWNazQmqGEfaU0s7kbCXnH+GUUZOJg5MLPtTK4kXOGGs5rSwlzp2OzibMlIbu4oYxaOrIPeOF6iecx/dz5b39vK9Reif4ZCUIAAHnpzvp55ikc3xV1oI5lY7bAysqrkKl4VnQmgSCsGSTZ6f5po12NLIEY4YksgTbTrGeb9LUu6LJFoV542npgpzVDr1Jx7dk6sTJiZwdq1LNz7dgUshUxBTkkORx8dZbT/6IqeFaUpCpkCHTq6eou7zBq9honNJ0q70UpBSSPHRmj1WgY1GCRJvP464FdeTn9J8OBgg2vVtq6NDJlBZcPX1reSFK4OncExULExAbD9/nYpyQDYdE+U3P0jrSwsNQyPFR60/6W9qOaFnqBd3Rg2qx7jVnRmVVvxDbXJ/Anrs86wq70NR29s5bMzn4n3q9UwqMEgsouzJcpO+XU29trIlYQr7Lq/i/NPzzPxlOjwnpCbQF5pHnXs6hDoGsiE5hOo3/1D8bm1P1dpImdjYkNHz46M8h9FbHYsHtYexE+J59CgQ5gbmWNnaoe3rTd3U+4SnhbOi9wXOJs5Y6owxUJlwcTmE5nVdhYjGo+ghWsLnM2d0eq1FKoLJbpWkbqIKwlX+ObiN2JSMFeBwyIH2m5ryw9XfuDy88sk5SUZyCb/FYY0GkKbmm1wMRerMhqdBq1ey8rQlRSri/lt4G84mjmSmJdoQJcKfxku+Z/8EeWfaaWaUkYfG81PV3/Cy8YLuSDHwshCqgDp9DoK1YWYq8wrD/JX1CkQKxoZGfCqcu9WNf5nUN+hPr8O+JWoCVE0d2nOJ8c/oc6aOmwL3wbvvsuCbYlcSOqIfSFEpNyj/pr6XHh24T897f92VFc0qlGNfwip+akICAbB93cXvxOpPh1mS4+tCl3FlDNTkAkyLI0sKdGUcOWjK7zj/g7FBa9Yu/5jFmQFU6DU0zvbljuW+fzmmstHTT7Cx9aHU3Gn6LWvF0YKI/rV68eq7qvo5NkJueyvKSlanZaHGQ8rqhXJIcRkxKBHj42xDS3dWjKlxRRaurUk0DXwTx3O/w5uvbiFTJDRzKUZIO7oXYq/xNCGQ2nj3oZ69vXYcHcDnTw7MazRMPZE7WFcwDii0qOY3X52lWNODpzMilvLuE8yK1oLBDg15W5aGIflcUy9C2ubwT3xuxulTEmpVtyZlyEjKiOKAQcHvHW+AgI6vQ5HM0fecXuH7j7dcTBzYOihobT1aMtBn29RjA+E5cuh2xQAhjYaSuednfk4+GNCRofwNOcpOyN3sqnXJuJfxTP9/HSS85M58eQEg+oP4kTUA2ppRpHs40XL4qc8NN7Gg4xISQr0TanXohZNaf/h15ydPoa+XTKoZVOT03GnORF7gqmtprL29lou++jIHjMM29xcMjzEROO9Ou9R36E+3xZd4E5LrdS0+2bgWqIWd9S1Oq1EWbM2tmbprQojSY1eg4nChAQK+Hz7ICLixWrG4gw/fnZ7zsvXalTWRtaodWoK1YWVKC0qucqAJuCmHVmF8pWOkox3eGxfIUObmJso7fon5SXx1fmv+KbtN2y0imL1eGOgoiJgrjKX1KU0Og01zGqw6vYqoiZEsTVcpAwVlBVU/I3oKxrnYzJipGqGQq5gRusZjDg6gnnX5hGfG09jx8YMajAIwECsAGBOhzmMODqCdm7tuPpCrIo9ya6gr5Q3DStlSmmNy5vfywNguSBnRbcVfHNsMk2ManFdHy+dLxNkdKzVkd+f/w6IvR7v1X0PtVZNWkEa2cXZFISHkpJfQkFgTQpszJBlyzj+5DiHYw6j7agFguH1RrgOHfOvz2f+9fnStUHsUfn24reYKkwZGTxSur6R3IhSraiW9qrklSQsUU4Nu6CNw2bPUsx79sNcZY65yhxTpSmCIKDWqhl4cCAp+SncGn0LE6UJX134CkczR26MuoGjmSNqrZqYzBjOxJ5h7rW56NAh6AXW3lkrrreFK02dm9LNqxtNnJrgZumGRqch/lU8MZkxRKVHEZsVy4vcF+SX5ZNZnMn1F9elRLl8va2NrXGzdMPLxouGjg1p5tKMeg71qGVdy4DmdiTmCKHJoZRqS1nXYx1BPkHMvjSbvQ/2sjFsIxvDNtLMpRmfNP2EwzGHpfUBkRJaVXP8qtursDWx5fyz89xNucuu93dhZWTFe7++R1hKmKT2VaopFSsaVVGnlEpQKP66ogFin0ZVDePV+B9DA8cGHBh4gKiXUfxw5QdGHxvNvGvzmNVuFsM3nSNm7zY+vDCR0575dNnVhe/bfc/sDrMrbUb8b0G16lQ1qvEP4eerP7MydCXpM0Tp1vDUcAI2BbCy+0omtxA50dPOTmNZyDJJkaS7d3d2vb8LS7kpWzeOY27yPjKMtHRPM+O+aSGams68V+c9isqKCH4STF5pHm3c2zDSbyQD6w80MNWqCumF6YQmhUpJxe3k2xSUFSATZDSu0ZiWrhW+Fb52vv+41veo4FGEp4UTPk6sEsRmxeK7xpeTQ0/Sw6cHq0JXMe3cNF588YK0gjT8N/oz2n80u+7v4tmUZxSUFZBakEpqfiqpBamkFaSRWpDKg5grRKhfGFwr6AksPwv1JmGwO1yu1DOqySiyS7K5nnidzKJMUQpVENDoNFLwt6LbCnr49DDQ2Ac4FXuKPr/2YWiyHduvWCOLjBK//F8jozCDVltboZApKNWW4mHlIVFQ1t5ey+TTk9GjZ3bgdi7d9K3wsdBrQdATLp9AnhCJk5nombCj7w5GHB0BwJCGQ9jSZDaxHwbRpW08mabiDvTgBoO5mniVnOIc2hQ7cGp+IsPnNCLd3Z6LIy+y9s5aJp2ahGUJyMwseKXNN1ClGh8wnoENBjLx1EQ0Og1x2XH4O/kTnhaOqcKUIk1FUFP+fgVQIMOmSE+Gif5veTL8Ea00x6tUvioTMgmR966ywfiPsFZZUlKYR4my6ue7eXXj7NOz+Nr6Epsdix69wb339OnJzRc3ySnJYUTjEeyMFHedTZWmZH+ZTY0lNcQ+IgSefvYUTxtRRjarKAv7xaKIgonChCktprDp3iayi7OrnIep0pRidTFGCiNKNCU0dGgoGfSVo7t3d0Y0HsHQw0NZo+rHpLLDANKxvra+UvJipjSjplVNjg48zNzNw9lbdo/lkU5M+eEsNBbN4wI2BdDMuRkbem2gdMMacmZ8hut0MFaa0M6jHdNbT6egrICCsgL2RO7hzNMz1LSsSVpBGhqdppLPSU2rmggIZBVnVSkV/EcICJipzNDqtBRrivGx9cHB1IEHGQ8o1ZTSu05vnM2dpcSksKyQtXfWYqo0ZWHnhdS0qkluSS7PXz0nLiuOR1mPuJ92n8xikS5ma2KLv5M//k7+NHVuir+zPz62PgiCQEp+CtHp0ZyKPcW1xGvEZcdVUv/6I8yUZtiY2EgULkdTR4o0RaRMTcHCyEJ63ZeHLGdFyAqK1EUS9cvDysNARc5MYUahprKDvB49VkZWnBl+hpZuLdHoNHiu9CTIO4hPmn5C4JZAJjWfxJo7a9jZdycf+n1YeaLW1jBrlqgsVRXy8sDKCnbvhmGVpZ+r8Z/D/bT7/HDlB448OoK3rTfftfuOIdZt2fxtEFNqP0Yjh7au7xA87Hglhcn/DahONKpRjX8Ik05N4mrCVSInRFaSs5XL5Aw6OIhDMYdQykQX5J86/cTUFp+zb+sXzHm6hQQzDe8mq3hmUobC15cG9g2ITI/kac5TPKw8GOE3ghF+IwwkV99EmbaMyJeRUrXiVtLDX5f9AAAgAElEQVQtnuWIDYs1zGrQqmYrKbEIcAmoukT/D6P+2vp0qNWBdT3XAbDh7gYmnZrE5Y8uk1+aT1x2HNPOTSPAOQBXS1epeRqoRHkwU5rhbOGMs7kzTreiOOnwiiIV9PDuweknp7i8XXRELu9hFhCY2HwiTuZOfH/5e3R6HUqZUlTz0evEhlO5kpySHGa2mcm86/PQz377x+G+rV8w7MUKJjv1YcW4I5WSsseZj/Hb4Idap+b++PsG7sYfHf2IHfd3EChsxETdSNrNB1H1SSi6zVXzz9EJYFkGtYqMiLQplQJ8GTLsMUZdXESeClGR6vXmV/kxDiUytDodZUoBjbGKUm2Z1HT+ryQE5bA1tiWnJEcKQGta1CS1IAWNTgsCmGgEWjkGkESewW6+TJDRumZr2rm3Y/HNxah1alRyFXXLFmGjD6y0BirzBJo2jWDhTdF52cPKg4TcBMkMrzxgC3QJRClXcuPFjX/53mTIkMlkaHQaqXdDjx65IGdcwDjOxJ3h2atnWBtbszpoNZZGllgZWZGcl8ywI8Ok+/N38icmM4YaZjUMGtDLYaIwwUxpJgXJnT07c+G5IVViQrMJJOQmkHPxFBkeDsTpMrA1tiW/LB+1Ti2ZEAL83OlndoVtJyXrOb2itexvLDA+YCxrem+Qxuvzax80Og0nh54k+OhCbD7/mvaiZQc3Rt2gdc3WlGhK+CXiFyadmoRWr8XKyIopLabwScAntNrSiqR8saH93PBztK/VHoBrCddo90s7wseG42HtQYcdHfCW2fP1DxcpmDmdgs7tpATm2ONjnIg9QQ/vHtS0qsmxx8fIKMygmWszyeekoKyA3JJcskuqTtKqWksjuRGCIKDVaynVlErVBIWgwN7MHmdzZ9yt3CU5XRtjG/ToicuOI/JlJHeS70i9FZYqS0yUJhSUFbxVVEApU2JlbIWzuTOeNp742PiQVZzFiScnyCzOrFStA97afyQgcHrYabp5i2plcy7PYcnNJezou4MBBwcwsN5ADsYc5NCgQ/Sr16/yZFxcYPx4+P77ys+Vw8lJPGbOnL+1ptX4n0VEWgRzLs8h+HEwvna+fNfmWxpfjKbPi0XEW4GtyopzH/1uoFT2vwHViUY1qvEPof+B/hSUFXB2+FkOxxym/4H+nB52mnc936Xt9raEJociF+Q4mDmwr99e0q+cYnbUKh5ZltE2SUa6kQ5ZvXooZUoi00UqzYD6AxjpN5L2tdpXKqsm5SUZNGyHpYZJDZ9NnZsaVCvcrdz/W51JSzQlYrUhv6Lq8Cz7GUtDluJXww+5TC4990feuZHcCJ1eR3uP9mQUZXD/5X3er/s+HzT4oCKxMHeSdhdJTETj6YHrdIESk0b4MA6rEncKhKc8MhK/1C2NLHE0dSQuJ87gWl29utLTpydB3kHMuz6PfVH76OHTgyDvIMaeGPv2RKOkBOrVY0MHcybUesD37b5naqupUpBSUFZAeGq4OIZeT5uabRjUcBCFZYUUqgv5JeIXSjQleOdtq3o3X5/ObVlvNH/NfkOmB0EPWgEQxGDIVPn/sXfe8VHU6/d/z9ZsNr1XQkJJKAFC7x2kF0FEEZAm4EUQFVFRQKyoKFhAEEGQDgKhCFJT6C0NCAkEElp6b5tt8/tjyEBMUO+93p/e+83JK68tMzs7Ozu7+zmf5znn2FJYUYjaKhCYJ1JkpyZLZ8FBY0+BoRAEaObRjPSSdLLLHuob2vm241rONYxmI+UWqWXLWetMfoUkevbUexLiFsLJ2ycxi9Jg99EkZAEBR6OAR5GV6y4PdTEANiobzFYz7rbuVfQIDmIzwiwrHjz6kXRy5TSKhITfPwD/Y6isHoVmQIInIEAdhzpkl2VXaaNTCSqcFbb4pJeQ5ihSoJXOVXuNPS28WqAQJK1Icm4yhRWFtPNtR1RqJE/FmTnYQMDkaEcHvw6kFqSSWpgqD5AFBFp5t6KZZzNS8lKIvB0JSG10Y0LHoFKoUAgKykxlrLy4khGNRhDsGsyua7swmA2MT7ZFcfsOyldeRaHWcDnrMhsTNtInqA/96/dnY8JG4jLi+Efbf9DIrREKQYFSoeRu0V0+PfUpLjoX5naaKxs1GC1GKiwVGM3SpfxvrqDcXE6FuQKD2UC5uZySihJyy3MpMBRQYiyh3FxeRdT/z0Cj0GCvtUclqMgsy8Td1h2z1YzBbKDCUvGbWo9KEuwgNqOFZcXDiqV8bk+nRHEZrUJL5IRI2vi24W7RXQKWBjC22VjWxa2js39nTtw5wcExB2UyUgX168PIkfDxx49/EV27gp+frNmqxd8Tl9IvsTBiIXuT9xLsGswbQeM4/tNnrK+TjwKBJb0/5eVOr/7Vu/mnoZZo1KIWfxI6relEfZf6rBq0ikbfNCLELYStI7fSfEVzbhVKs529A3sxXtGSzy59RZyjgXb3BMpUIiXBgaSXpGMwG+hRtwfjm49nROMRctWh3FTOxfSLVYhFpWVqgGOATCja+7UnzCvsYXDQvwFRFCmsKKxCHn7dwlR5u8BQVYBYOROYU5ZDz8CeNHBpgKfek6Vnl9I7sDdvdH4DLzsvPO08ic2Ipd3qdux/dj9JOUm8cugVPuvzGa92fMwX7aJF7N+wgGefbUaYRZrJ/fWPepEQD4Cbzo0BDQZgr7HnmwvfsOvpXThqHSk1lfLW0bdIyErg1Q6vciPvBuFJ4cxsO7MKeZAv76dRUphNqbsjhaaSPxREpxSUOGgd0Gv03C26i6+9Ly75c3Ch+mx+oeICsYqZKBDkSXorIh9qBjAkz42lxihWO6eCAK+dgAWRMGYE7A2WJvVfSnGh1FHPGrc7NK6wJ0lTzLq4QCY1T6NCsOIl2pL+rmRR3O2HbvL+Odo44qpz5UbeDUREBjcYzL7r+2QyuGf0HlLyUph9aDYCAu56dznVPcQthGHBw/j89OdgNGJWQItsJc80GM7rRT/hrHMmrzyPPkF9OHzzofbi+PjjuAqtWHssjTM3UylX3OKm8B1zeowivTSdlRdWVjm+CkGBRqHBYDEwo+0MDt04RHJeMvO7zmdR1KIqx9zd1l0mUmFeYTT3bM4PcT9UaQWrHBR28OvAuXvn5CDH/Ip89Go9Hfw6cOTWEeo61iW1MJXhIcPpHdSbzQmbOXHnhKy7qEQ9p3rcKrz1T4mOH0VlX7/SIlWpBEGgqUdTFIKCuMw4eT1niwalwUhXsy/Klq2IybvKjfwbKAUlTzV+CqVCqsxczrpMUm4S/g7+pOSnoDNB+ztwLlhqIVQpVHjpvUgvScfLTmrV87X3xdnGmdjMWAC89d6kl6bjY++Di84Fi1WqAibnJuOic8FB60BuWS5l5jI8tC5Ys7KwOthRoVFKhFehRqPQUGGtwGw1o1KoEBDkauL/KkLNS2v8fOdxjgTVywgIOGgdODflHA1dGzJk8xAupl8kpywHLzsvbhfeJnpCtJzYXgXNm0tE4quvqi+rxKRJEB8P588/fp1a/G1w4f4FFkYsZP/1/TRyDaF/liPfWM9SoYa+Xp3ZPfGQ7Az334xaolGLWvxJCFoWxKgmo3C2cWbesXkcHnuYJ7c9SYGhAAGB5736cSUxknPOZYSlS6nPSf62FBuLqedcj/HNxzO2+VgCHAO4mX+zimA7NiMWs9UsWzpWkop2vu2q2en+HixWC1mlWVXIgnz9V7d/HTxWGUD3aKWh2m17b1x0LiyKXMTX574me042giCQlJNEyDchHBhzoEqeiCiKtFrVCj8HPwRBICotiqYeTYmeEF1950UR/PwY0fk+mU2+Q2tuhvWRbzARC/nCOZI0c2XHmN+DTqVDKSgpMZXQ1KMperUeO40des2DSyPYbdyGPrQVdgOGY6u25efrP3Mw5SCvtH+FoSFD2ZW4i2VnlxE+OpwuAV1YcmoJ70e/z9aRW1EKSkZuH8m73d9lacRuwizfYhEtDwYjVpQKBW897cYTPwVjp7ajoKJAFpn62Pswu91s5hyZw6d9PkWlUDHn8Bw6uLZgc7QH75X8zMrWgBVmZQWwzDMNBJgTDe9EQctpcMMVFFZIi2zBxSAdwwJOy6+9kb4u10pTEZGqF5mlmXTw68Dpu6fRqXTcf/U+fp/7UWoqZVzzcWyM34hFtMjtWo3cGslZDr18OhMe7Uf23i0Evgw6QYtFIWK0GKukYl/7xzWC3SSHHrsP7dCpdHJrkQIFdZ3rcq/onpTibeeFgEB2WTZmq1nWiYCUNZFbnlvlvaxsg7JV21JqKuWNTm/w8cmqM8AuOhfyyvNo5tGM+CyJkLrr3Mkuz5ZF5R56D3Y9vYtOazrhonMh+vlomq5oirvenS51uvBT4k/y/v4w7Acp8E3rSGFFIf3r9+fAjQM1nmv2GnucbJy4U/RQXyQ8+FOZrZiVoFHZ0MK7BTmlOdUqco+DQlDgY+eDm96NclM5SblJ1dapa1+Hfg0H0CeoDwduHGB9/Hqin49m+LbhDGk4hM2XN1NYUcigBoPY++xepu6dypYrW0iakSRnAzVb0YzOdTqzfOByvjz7Ja8ffp2yeWUoprzArWM7aTdNSbB7CIfHHmbpmaW8efRNlg9YzvQ20+X9OH3nNP029qORWyP2PbMPe629TEB+/V9JcKrd/0+sX9lmdavgFtGp0exO2k2RsaiKcNtObYeLzgU7jR2iKHIt9xoapZQW/88Qo8fpjyrI4rRqsHzbU+9JzNQYLqVfYtDmQTjZOFFcUYxFtBAzNabmFPQOHaBxY/j++8fvwOLF8OGHkvPUf7CCXYs/F+funWNhxEIO3DhAQ1t/yrLuc9fOgrtgT+S0MzTy+O9OE68lGrWoxZ8AURTRf6jnzS5v8unJTxnUcBA/Xf0Jo9WIrUJL/QIl8Q5lNM4CB7OCM96Sb/ropqMZ2XgkSkHJ2XtnOXNPIheVPvkNXRvSwa+DTCyaejR9rH1ouam8ZvLwqypEVmlWtR9Pd1v33yUPXnZe/5Su44kNT6BWqNn3rOShX6nPyJ+b/7AN6gFWXVzF9P3TUSvUjGg0gk2XN3HjpRvUc6lXdaPnz5PdvS2+r0IvTRSGiuqVG6OQQ/2wrbTyaYWzjbNMGOYfn49FtLB5xGaO3TrG1H1TcdO5kf16NisvrOTFn1/EMr8GYjJuHBw8KIVhOUkuXKIo8sLeF1gbu5blA5Yz+9BsJodNZln/ZfLycbvHsf3KdnoF9SK1IBVvO2+UCiWzmn/Bm9uPoBeDKFPcYlqf+pQqrvLWsbe4NfMW6+PW8+YxKXekckDfI6AHR8cfRRAETtw+wajtozBbzYyIyMa7FBb0AMEqtS5plVosVgvNSvTE6woxK8DOKDDZ0AhdYRkf+afKL613Mhx5oHsXRHg+w5ODHkWkq8qZn98cc6NgPszYhl6tx1HryP2S+zhoHCg3lxPiGkJCttTq5Gvvy61ZtyQ74shIQvb0oRgT96X8ODxsPZjWehqLohbxdpe3ea/ne8RmxNLjhx4UVBSgElRYRAsBjgE8E/oMS04twWg10iuwF5mlmaQXpxM+OpzOazsjIBDsGkxSblLVNrwHpSCloERAwCyaZfJUE1QKFRarBaVCKRO8SsH4jqd2MKLxCEJXhHI567K8nTOTzrDtyjY+P/M5ILU92ahtyC/PlzUePQN7ciXrCvdL7gNQx7EOdwrvyPsa6BRYTc/R2bMNJzLP0842GIO9DbHTYpm1/yVWnVuOQWEFEbp4tiE66zzHxh1DpVBRWFHI6B2jKTWV4mzjTJmpjJ51e5Jeki5XJgBUFjj/HbzaT+BY3d//uQ92DcZF54JOrePk7ZP4OfgxPGQ4DloHdlzdgUW08H7P90nITGB+xHxOTTyFR4GJQau6Y3Jz5sycJPYm7WXinonM7zqfd3u8K287Ki2KgZsGEuYVxv5n91f7HvhnUVl1zS3LJbc8l5yyHHLLHlyWP7zMKs3iavZVcspy5IrWryEgIAiC/N2oQIGnnSdapRajxUixsbiKsFyBAj8HP9r5tqNPPYm83bjc7bEVjWTtXFlTAlIl+tILl6iztI78fgIkz0iuZkYBQO/e4O4Om38jWXrnThgxAjIzweO3rcdr8ffDmbtnWBixkF9SfsHVoiVXUYEAfN3lI17s9cZfvXv/MmqJRi1q8Seg0FCI02InetTtwbl75yRnElHEzqygRG2lQQ64lsEZf2jv355Qj1BMVhMX7l/gStYV2ZWknV87WVvR1rctLjoXCgwFNZKHjNIMmUSkF6fLP1SV0Cg1Mml4HHnwtvPGQ+9RLa/i34VVtOKy2IU5Hecwr+s8AEbvGE1aYRqnJ52utn5xRTGen3lK6crT4ui0phOvdXitii0wAFOmsPTyal7vp+QfdWKIv1VepaIBFvKEc8QrX8ZOY8fghoN5qvFT9Kvfj3Vx65jx8wwyXsug57qeGMwGcstzyX09VyZB5vm/6u8+exbat4eVK+GFF6osslgtjN4xmp8Sf8Ld1p0bM29UGThVmCvovb43J++cZGyzsWxM2MjSJ5ayJnYNCVkJjG8+ngJDAbuu7cJV58oT9Z/gx+E/AvDJyU+Ye2RulUHRmNAxrBu2DqVCSUZJBgM3DeRS+iXWmgdx9dzPfNrBiiCCWqnBKBoREBjr3Y/16Qd46ZzA9x1t6BzQhUMph9AoNBitD3v0RURsRCXRaT1pU/cwghXSlgkEzRQxK6FxJlz1ADuzQHJMV8KanyJLY0IUQIMKI2a+67ecSW2nUWYqo9mKUG4W3AIrIMDLjk8wd/JavD/3wUPvQVOPphy7dUx2BNs5aidjd42lwlJBe9/2sj3psJBhxKTHkFWaRdm8Mvw/9ye9JJ281/P4/PTnvBv1cBD7qDBcQEAhKOSKlkpQyRqTUY1GsS1Rsun11HvKouLKdqimHk2JnxaPIAhsjN/Ic7ukdOxnmz7LxhEbGbZlGOFJD/M0VAoVSkGJRqnBTmNHRkkGChRYHqSvP6qNUQpKXHWuZJVlVTmXlIIChzIrA/x7ctvWxM5Wn1BnRye637RyoAG46VzJeVC9OTruqBwC1351e87eO8vqQatZcmZJlaRwJ62TlMxuBdOXDihnzabsrTm8H/0+S04tYceoHdzKv8XsX2bLx6pPUB8auzemsKKQoooiErMTScxJxNfeF7PVTG5Zrnwcfw2dEU6shSFT7blHMW62boR6hOJk44SD1oGiiiL2Je8jwCmAWW1n4WHngaPWURLa2zhip7aTwuxM5eQZ8mTSUIVAlFe9L688r0ZNhq3aFjdbN1x1rigEBUk5SZSZy+hRtweDGg7CU++Jq60rrjpX3GzdcNG5kFmSSUxGjJQlEv8jpcbSahVRtUKNt703rjpXTFYTN/JuYDAbZN2Sp6ItwcYvHrFvtiJiJU75IgVCnBxaWYlgl2CsWEnJT5EJzr1X7snZGlUwZIh0uWdPjccfgMuXITQUoqOhcw3tV7X4r8DpO6dZELGAwzcPo7CCVQH99WF8OOIom6OyuJlZRpCnLc919yE04N8j6/8/UJujUYta/JtISCvm28MpdDDvJedGCkpFLqIQDwK4llhpXgQJQXpEB2/sSzM5c/cMZ++eJcQthEZujegV2AtXnSsiIpklmSRkJXDo5iGZWDw6CwZSUvWjZKGFV4saiYSLzuU/KgD/LVzLuUZhRSHt/doD0sxjRGoEE1pMqHF9e609dRzrkJKfQiO3RjzV+CnWx69nfrf5D1+D0Yi4eRNrxsHQwP5M7FaX2WsSUQBWERQCgJJUxfcs7beUkooStl3dxuZtm7HT2NE7qDcW0cLCiIUkZCUwq90sVl5cKe9fNVitMGuW1Bs9aVK1xUqFkgENBrAjcQdFxiIScxJp69tWXq5VaZnfbT59N/Rl3/V9WEQLV7KvyCnrU1pOobVPa57c+iR7kvfIWQuCIDAmdAxzj8xFRGRZv2V8ceYLNiZsZE/SHj7r+xkTWkxgca/F9NnQhwmqfdh0UNE0WyTZWcQqGtHbSAN4g7M9wn14M0pkTZiBS3fPo1VqaeLWhEuZl6TXISgxi2aMCpEZnYrgHiiVKt5ZOwZz/DrsFbZc9SxDgcDp0mc4bYoiTyWRjKGJ8OopM10nwZSDL7J3+cvcc1Fyx8EACrAT1JRh4rucXwiZ2BFNqJqs0ixySnPYMmILCkHBqB2j5NyUN46+USUDwWwxU1hRSLm5nMySTLLLsrGIFs7eO1uF1FU6M6ktYFKCo41jFd3Qo4PjPvX6yESj0FCIjcqmSovgl/2+lM+5LgEPk+lf6/ga8Znx7L++v8p5YLFasGChwlIhz3hXkgyA+Kx4FnVbxPxIyfks35DPr2ERrXx+EHZPMeKQUcBXr3VBaCdyJ9AFyMNd78GklpNZfHIxGxM20jOwJ6Io4m7rDsC0n6ehEBRVWtkKKqSWzTb+bVB19YKoKMS3XuO7i98xueVk7DR2zDs2D51KR5m5DH8Hfw6MOVAlj0cURbr90E12z/sh9gem75/Ondl3yCzJpNV3rWju2Zwr2Vd4vfU/KN62nGxrKfVd69PWty155XncK77HuXvnuFd8D6WgJK0gjZcOvlTtGDwOlSROp5YcvBy0DjhpnQhyDsJV54qn3lP63rP3po5DHQKcAvDQe1BcUcxrh15jTewaugV0Y9XgVTR0bYjZaiYpJ4lL6Zc4eOMgl9IvEZsRK0/UVOpStEotqwavIswrDFu1LXGZccSkx3Ap4xIx6TEk5yZXqYy46lzJLD9HuXI6AZaJOAgN8HdTM6i9juPprfk+Nk42XKhEUl4SNiqbKt8/NSaDg5QOnpPz2wer3oMK8PXrtUTjvxgd/DtwaOwhTt4+ydu/vE7E/VOcLLHw8ppElIIKqwh5JYVcvFnIFxMb/e3JRi3RqEUt/g0kpBUze00iVlFEiwcaXHG2tiHZPB2noniS3CDNGWywUFhRiJ3GDpVCRYGhgMScRHlQUBn0V0keGrk1okfdHjVWIWzVtn/xq/59VAb1VQ68r+VcI7M0kx6BPWpc32w1k16SjtlqZm/yXsY1H8fa2LWcunOKTnU6SSsdOMBFxzISPGFxhxcJDbDni4mN2BBxX57hGdvDh4m/2HD81nF2j97NvK7zSMpJYvvV7Wy7Ig0uvzn/DZ56T0wWEwazAVEUERGrk7JNm6SKRkQEKKvbQWWXZjPn8BxGNBpBekk6/Tf2J3pCNI3dH/bTnrh9QprNNRRhq7bl24vf0tqnNQWGAtr6tpWf08vOi7Wxa1EKSlYMWsHbx94GJAvOHVd3cOOlG3x84mMWRCxg6r6pLIxYyMAGAwFws3UjrzwPhaDgp60WRo6GUmMpYd5hbL+6HReVPd4lxUy9pueLpvm4a124kiN5/1e2GIGUq7H8gmRDXN+lPuvi1wFQbJVmYNcNW8/71/ex1ekuAK29W3NCd4vv5u2n7v5h+Ih27A26AaKUY6K0QonCRJNMuOIJ05qkSpURdxgVncfTUbu5W8cJbOHI+a0c6b6G7xzqUmAqlgXdpcZSCg3SAPDz05+jFJS08GrBhyc+pLGbdJwfzfgwKQERCgwFVe5/FFP2TZGvGywGDJaHJEMtqKuco0O3PExg/+LMF8RkxFDHsY5sG61VaKmwVsjJ4q91eI3PTn/GwAYDqxCSnYlSNoYgCPI+KVHKhEQAnkyE9ckJuKQX8lUHLZNaTeab2FUgQoWlgg97fcjKiytZF7sOL70X+67vIz5T0pi08W5D+DPhvHX0LdIK0mThu4jIjDYzoDAL3n6bb099SVFFEa28WzFg4wC61+1OZKrkMrXxyY3VQj8FQeCLJ76g/fftmXN4DgGOAYiIfB/zvTRnLyiJy4yjmWczdmYc470xZgRR5Eb+jRr1JZXmA262bjhoHbDX2KPXSEGVGqVGFo2LiFisFkwWEyWmEgorCik0SFWWwopCMkoyKLxf+LsOUwICrjpX0grS6LWuF2WmMgorCuVKhavOlUDnQAY2GEhTj6aEeYcR5BzEpoRNfHrqU4Y0HIJCIVmp9Q7qTe+g3oCUSv7SgZdYE7OGFp4taOLehIvpF8ktz6VIiCdB9TIKFJzKF9lyQMRV54qT1gmdWkepqZSiiqKH56DZgCut8LWMRS/W4/2t6Yzrrqg+eNTrIS3tN18vOh3UqSO1edbivx6d6nTi+JSTRKdG8dqay4AgV/CtIiiADRH3WTy+5lT6vwtqW6dqUYt/A3PXJXEhpbCaILnSZUSlUOGp98TfwV/WOdREHjz0Ho/VXvw3YsqeKZy7f464aZJrzvLzy5l1cBb5c/Nr1HlEpkbSfV13Qj1C8bLz4uBzBwlcFki/ev1YOViqOtC/Py8qD7KnvTNpb2U/Ngl92ZllzDk8h4zXMnDRuVRZNnTzUPYk7yHQMVB2Anu6ydM4ah1ZG7sW4zsPPPFLSiA4GDp2hO3ba3yesbvGsj95P4n/SESj1NB9XXdyynI4MeGEHPDWalUrgpyC2H1tN2bRjJedF6XGUl7t8CoLui/gduFtApcFsmLgCmxUNkzaM4kQtxAuZ0mhbou6L2Jh5EIWdFvA/G7ziUmPYcCmARQYCuRZeHuNPcGuwVxMv4hHsUimPTiXQ4kGbGzsKTOXkbTUgvbb7/C/OgXfYrAxQYqr9DoqXZT2PbOPwZsHIyLipnOTBdoAY5uNpbiimN1JuwFpUNorsBch34QwPGQ4RrORTZc34aB1kGeGKwXtWoUWq2jBLFo4ktyeXg1O0zBPIOlYY8TyMmyfuYXWDAWLYV9DGPwsVE4UNzc6E6eVKgCOSj0T642kS0hfntwzhk7+nTh552Q1FyiFFRAEVCq1bOH6aIJzJR7Np6iETqVjy8gtdPLvxM7Enbyw7wV6BvYk4laEbCW8YuAKJu6ZWOVxDVwaoFaqyS3LpdhYzOgmo1kTu6bG86YSv96n1eHwbXslqqD6XChPYe/ovfTf1F9+j6MnRDNy+0hu5EkD+L71+tLetz2LohbRPaA7H/X+iHVYXPwAACAASURBVA7fd2BZv2XMPjhbFjqHjw5nSLEPtGnDwOmOFLRqwpm7Z+jo35Fg12C+j/0eW7UtE1tMrKJrqNQ61JQxoRAU2GnsKKoowk5jRyf/TkTfjkavsmXG8VL8gtvgNv1VLmddZsHxBfSt15cdo3b8qQ46oihiMBtkEpJekk5EagRrY9Zyu+i2rK2orDo4aCQHOLVCDYKUO1RUUUSZ6fFp2ypBhaONo/SvlS5FUSQ2I5ZSUyl9g/rSNaArTjZOrI5ZTUpeCvmGfJng1HWqy+Xsy9VMNWxUNhKRspqqWeIqBEnHXW2m+qWXICoK4uL4TfTuLWnJduz4l49tLf5+eOqTGHKKq0+cuNmr2f562F+wR38c/zsjm1rU4i/AzcyyX2kEJKvVIH1HImfl4WTj9Je1L/2VOH33NJ38O8m3I1IjaOvb9rFi8t3XduNj78MrHV5hQvgEbubfZGyzsXx97muW9V+GTVEZ5cd+YfNsmN5ywmNJBsDopqN59dCrbL+ynamtp8r3i6LIzQJpJvrrAV9zI/8Gsw7OIi4zjms51wB4budzjGoyigHrTqHKzYVPP63xOX658Qsb4jewZsgaPO08pfue+4Uua7vQ58c+RE+IRkTkUvolOvp1xCyasVNL/fsAY5pJoW+rLq5Cr9bzbOizcn//3CNz8dB7kFWaRbBbsCSojXyXnoE96VynM7FTY3ly65OcunsKgGJjMRfSLxDiGsI1rqGywIEDLkzrmEeCRzEKlZqhz1jYU14KAmTbwpXl0OAlQEAeBKXkpciDskdJRn3n+mSVZPHLzV8QENj37D4GNBgAwOLei5m6b6rU9oUkzK1MtK4cRB8Zd4RDNw/xQfQHzOxURH1DAMmkkZF2Ba+OfWngpiahMJl7UfsYmGWg37W3OWxKwoLITcVD3VGZsZRXp67Du2QdjWcouFV6GqUOmWTUUbpy25KLVQB3A2TbGBEEaXa8cl/qONSRA9sW91zMq0eqWigbLUa5iiEgoFKoeC70OYoNxZxPP0+foD58fKJ6jkFGSQbONs4oBAVDGg7h/P2H9qKVLl6VqJyxf5RkNM2E71tCQV1vMkz3GBM6pkr2SLGxmBYrW+CgcUApKOXzo6V3S0AKAhu9YzR+Dn5Ep0XLJEOr1DJ0y1Ac1fakaaFZciEfe0rnzYk7J+Q2NbPVTGRapKxbqGxLcrN1w9XWFVuVLTMOzCDELYQTaSd4qe1LrLiwAh97H0I9QrldeBsPvQcnJ57ER7kZ5s5l66DhzD81n5GNR/Lj8B//VB1YTlkOMekxxGRIzk2X0i9xPe+6vLyecz16BvaUksO9wgj1DH1sJdhkMVFsLKbQUChrU2LSY3j5l5d5uf3LuOhcKKwopKC8gAvpF4jJiMFGZUOgUyBXsq9w6u4pCg2FVdqoRERyynPkz5GtyhaVUkVRRREqhYoKc4W8foBl4iOajt+YqdbroezxpEhGw4Zw4sTvr1eL/yoEedqSV1J1UlMhSPf/3aH4/VVqUYtaPA5BnrYPtAEPoRAg2NsBZ53z/0mSUWgo5Gr2VTr4dwAe6jO6B3SvcX1RFNmdtJuhwUN5usnTONs4s+riKsY2G0thRSF7k/bCtm3sbihSoIMJ7ab95vN72nnSO6g3GxM2Vrn/8M3DXM66jLedN3uS99DARXJ2OTz2MPO6zEMpKInNiGXmiqGYP11M+OAG7KmIp8JcdSa81FjKtP3T6BnYk+dbPC/f72XnxeGxhyk3l/PEhifYfmU7CkFBVFoUAFuf2kpD14YAnL93HqPFyOpLqxnffDx2GjvSCtL49NSntPZpLQtDM0oymNd1Hh39O/LsT8+SX56Ph96jSnsWwMAGA2VL05b+bXliSBGfnHGkWypYzCauu0DvVEk4bVTB120FHB9MslYOeB7VRlRCrVDjZuvGLzd/QSkoiXo+SiYZgNyC8mhlQERkca/F8u2+G/riqpPKJ9dyruHl7A8CbF46Ca5fp+MxaYb+lF0+wogRfDF1F1YBFAoFxeqH7mhDgvrjuz8KxYaNvOk5kvt6q5yODrBzeS7Cg9VDMkUQoPWdh7/KggieJjWKB21OWlX1ga+PnQ+3Zt0i2DUYEREPvQcT90zkfLpEHH6+/nOV9HOQWteKjcXcKbrDlpFb6BXUS65IgTQr/iiqBG+K0n+xmz2n/eGeMYcSYwmuOlfePv52lcf5O/jjZOOERZTsqWMzYhm2dRgg6THSCtPILs1mX/I++TG9AnvRyrsVhaZihjwD7e7C0IZDOTf5HGNCJbLbyLUR7f3aEz89nuPjj7Nj1A6+HfQtH/T6gNkdZjOu+ThGNhnJioErZDKy8uJK2vm144l6TxB9O5rssmx+ee4XScT84ov82NmBZ0+8wrOhz7LhyQ3/MskQRZG7RXfZm7SXdyPeZdiWYdT5og7un7rTd0Nf3ot6j+t51+Wqy5MhT5L5aiY3Zt5g1eBVTGs9jXZ+7aqRDJPFRFFFEZklmdwrvkdGSQZ55XmUGEswmA242boBUGQswkHrgE6lIyItgovpFwn1CGV0k9G082tHa5/WdPTviJONEzYqG2yUNtiqbeX3WK2QXneZuUxulzJbzVVIiR31qrhUgUQ2bmb+ilTY2kJpzQnmVdCgAdy4IWnMavE/g+e6+yAIyOONysrX2B41GAf8zVBb0ahFLf4NPNfdh4s3C2VBsogFQVD+V3z4/1M4d++cHIgGcDX7Ktll2Y/VZ8RnxpNakMqwkGHo1DrGNx/P2ti1vNfjPdr5tmN9/HqeWnGbNWHQxa5xzdaPv8JzzZ5j7K6xpBWkEeAUgCiKLIpcRFvftnTw68D2q9t5usnTgNRv7an3RKVQcfnFyxQNeQKj02ne72DmwpahOGgdGBo8lKcaP0Xfen1ZELGAjJIMDo89XI1I1nWqy+Gxh+m6tiuLohbR2L0x8VnxtPdtTxufNtzMv0lb37Y8H/48ybnJZJZmMq31NEqNpQzbOgx7jT0HxxwkvSSd0BWhLDi+gC51urDxyY00/7Y5U/ZOoZV3K1bHrJYtXhWCgvvF9xERcdG5kJKfQolaZOSTRpbsBK8S2BQKt8R8EKQE5G87QlihLWcoQIGAFZGD1w9WO45W0cqZe2dQKVScnXSWlj7SDLooisw5PIclp5fIM/R6tR6tSkvctDiWnF6CjdIGN70berWel395GR97HwQke16ANcazzL5yhU4fP8tKdnNs8Ys89awDIUOG0MitEVdzrlbZl2fbTYZGkjh7tHUU49/bIc/ca5QawpJz6LSuOydyLnGyjtRCFS8Vm/AugnR7KE1LweouaSJe3TcTVKA2S2nrFWroFVvIxb2rSMpNooN3W05OPs3gLUM4nnocg9lQY6aCIErnwDtd36Gjf0dJo/LIQPLknZP42ftxt1jStshORpWrCJCmlETk5Q/0IpX2uZVQK9Q42TjR1rct38d8z8SwiThqHVlyeglapRaDxcCIRiP4esDX+C7xBSSCs3/MfkRRpPm3zTltSSDPFnb3WoxKY8Pmy5txsXGhvV97Lmdf5vcwLGQYfYL6cOTmEXQqHdtGbqP7D90pM5URMT5CJtFrrm1mco8CJlwSWTV0Fso/0BJqFa2UmcpIzE7kwv0LxGbEkpCVQGJ2ouSchZThE+AYIOvXnG2cicuMI/p2NHYaO/rV64daqWbKvimUm8opM5VRbi6n3FROufnB7QfX/2h6+KqLq+RsFpBcykxWE3GZcdiqbSXNhbGUfEO+3MrXr24/ruddJyU/hRdavkBzr+bo1Dp0Kh2xmbG8H/U+n/T+hITMBHZd20WJOQUNrlXIRo0z1ba2f7yiUV4O9+6Bv/8fep21+PvjcZrEpnX+3kJwqCUatajFv4VHP/wJd3O4a7jAijEj/ys+/P8pnL57GmcbZ5kQHE89jlqhlgZhNSA8KRwHrQPd63YHYGrrqSw9u5SdiTsZ13wcMw/M5GK2haNBsKbb7D+0D8NChmGrtmVTwibe7PImEakRnLxzkn3P7EOv0bPs7DLSCiRhZblJar0RBAEiI3HYewjWr+f82LFczb7K9ivb2XZ1Gz/G/4herafMVMa45uPwd6j5R7yxe2M586FSyLx84HK2XtkKwK6ndzFm5xjej36ftr5taezemKd3PM313OucnnQaV1tX9BrJecZZ50y3H7qx8+mdrB68mpHbR/JT4k8MbjiYvcl78dR7smLgCkZsG4FCUBDmFUb46HC+u/QdH0V/xJSh5bx/FF47BZ896GTTKDWUmErwaTUAkneDRQQlFJuKq7wO2R4VODnxpEwyrudeZ+iWobKRgVap5Yn6T/Dz9Z8pNZVy5q6UNTEoeBCuOleOpx5nw/ANTN47GYPZQLBrMDfybnAl6wr5GGjx4iL4djcRAVYYOhQGDWLw+C7ViIaT1km+rlKoJLbwYLDe0KUhCjt7+jYdxomIS1gV4GyAfBtpefqDPI+b3lr81E5orHDTmImNVcrNqFBL27pNEeMTP0KthJ9eOceSTTbs72FCbRWwClKVRIsKo9WM+KAwkV0uCdcXRS2qllQOYMUq5+I4iM0IsEzEjnqUkILBfi8phuNYRatsY+mp9+S9Hu/x0s8vUWGtoJFbI/wd/dEqtXw3+Dt2X9uNn4Mf87vNx8vOi9cOvwbAiEYj2BC/QT4uZtFMmamMV355hYSsBIabAolX3aLN6rZ4O/phFa2sGryKyLTIKhqXSpgspioD9MKKQpnQCoLAMz89I1fRIlMjiUiNIDItkv3X99PMvSnvX0gjYfIQ3pvbXh7gP0oAiiqKKDWWYjAb/lCwZomxhCvZV7iafRWNUiMHcjrbOOPn4EdBRQFGqxGdSoejjSPe9t7oVNIAv5IU6FQ6dOoHt2u4/ui6fdb3AQESMhPoGdiT9cPXV7OdFUWRrj90JcwrjOltpnPyzknWDF3D28ff5n7xfe6X3OfrVl8Dkt11ubkctULN60dex0XnQt96fTmSuAZ3qzQpU+meV+NMtV7/xysaIDlP1RKN/ymEBtj/7YXfNaGWaNSiFv8mKj/8d4v0+H/RmXsmb2DUX71bfxlO3z1Ne7/2cvtARGpEje0Lldh9bTcDGgxAo9QAEOIWQve63fn24rfsHLWTl/e/xNs9QS+qGdls9B/aBzuNHcNChrEhYQNvdH6D96Leo6V3SwY0GIBFtOCic5E1DuXmcmnwhCDZ2bZrB2OktpLG7o1Z0H0BC7ovIDY9lv6b+mO2mlkXt47d13YzNESqdPQJ6oNW9TA8sLKVwyJasFXZEuoRyvT90+lfvz8+9j580PMDOq3pxO2C27xz/B22X93OT6N+ItQzFHjYXvNG5zfYdW0XAzYOYE6nOfL9e5P30tClIR56D7Zd3Ya9xp4KSwXRadFEpkXycvuXaefbjo5rOvJOb4EZZ0SWHIRXn5DaOLrU6UJMliQqtSqktiIR5BwKtUItJ5TbqGx448gbvNfjPT4//Tk7r+2U1wlwCuDouKO42brR+JvGpJeks/rSai6mX2Rup7molWpWXlxJB/8OxE2No+mKpiTlJqEUlIiIbL2ylUlhk1ApVCTryynfvgndK3MJ/uQgDKz6nq6NXUvPICk/QhRFeZZZKShp6CbNpquVatSCGpNokknGozBYKrBxsKfEVAJGpDA8hXS8rVg59sAdVCOo8ZljAh64WSkeMBoRKjCjsYCxsgNKBJUV/Mw6HJV6rqsKKeOhaHNowyHYqHWcvJxKkOVzuR9fgysUtyVTOY0iIR7rg2M/JnQMXQK6UGGVWvZC3EIIdg3mx/gfpaBEtxDO3jtLcm4yjlpH+Xk2xW/iYsZFrKJVdtxqvaq1TAjtmrflxNQ0er5g4qpJGqx/fvpzUvJTyCvPo+7SulWIxW8N/ktNpRxPPS7ffvPYm6gEFQaLAQetA2bRylcD3fnwu5vUib9NTH2JoBdXFJNnyCO3LFfevputGwGOAdRzqUdDl4Y0dm+Mj71PtYG/TqXDKlp5P+p9vjz3JS28WrB68GrCvP98IezN/JvcKbpDgaGAj3p9VOWz9ygOpRzixO0T7H92P9uubKOZZzO87b0REPC08yQ8KZyotCj2J+9nbexassuy8bHzodRUStrLaexM3MnOa+P59Pn6bI3O/u2ZaltbMJvBZAL1b7SiBQZKLnnJydCz5598ZGpRi38etUSjFrX4k+Dn4Edj98YcSjnEqCb/N4mGVbRy9u5ZZrefLd+OSI1geuvpNa6fVpBGTEYMczvNrXL/tFbTGP3TaDKL0xl4S8XPgUae8+v7TyWTjwkdw6aETfwQ+wPHU4+z6+ldCIKASlAxsMFAIlIjAORwRcxmydHlzBlQ1DCouHmIrNIszk4+K7WOXNnG9qvbWR+3HketI8NChkmko14flp5ZCkiz/eXmcp7Z+Qxn751l60ipqrEpYRNutm6Umkr5IPoD5nWZx5ONnpSfq3JQo1Fq2DN6DyO3j+TD6A/xtfflXvE9HLWONHRryL2ie2y5vIVNT27itcOvYae2Y9CmQXzc+2NZgyIisq69ln6XK/h+N0waZuXUnVMPB5ICVPEeFMFkNaFX67n6j6tsiN/A28fepvPazmgUGjRKDQICLb1bsveZvbjaSvqL5QOXM3DTQLZd3YZOpZNJnUqh4pcbvzC9zXRmt5/Nl+e+lAXoH0R/wLTW02jg0oDEnETOt/Gla2IidT+YDGwBQIkCC1Y2JWxicsvJtPRuKdvLgkTmskqymH98PodTDsvtVI9DTbarjwZFqxQqugR05eitoygFJX4OfhgtRiKfj2TmzzM5ePMgLnpXMoy58mPHFwcRZ73P+pO2PNE1B6UGih8YLEXH7iHPFkItS6uIfgWUiFioJ04hhpdkkrfiwgq2X33odHbg+gH2Ju/FbDWj//BhxsLP13+u8hL23Xiozai00E3MSURAwF5rT0JhEnd97PhoXxHDRkvC9/SSdHzsfSgxljAmdEyVQf2j13cm7uSHuB/4sOeHXLh3gZ1JO/Gz9+PouKMEfxMshUnGrWNWu1kMDxlObEYsMd4XSTxwnxE/XmDpBCl3ppF7I/rV70eYVxgtvVvS3LM5jjaO/BEcSjnE1H1TySzJZHHvxbzc/uX/iFPfpoRNTNsn5ZL4Ovgyt/PcGtcTRZG3j79NR/+O9KvXj8l7JvNcs+fkZQpBgUJQ0O2HbjjZODG++XheaPUCBrOBVqtaEZUWRVZpFvYae1oGudAyyKXG55Ghf/Del5WB428cM7VaIhvXrz9+nVrU4v8jaolGLWrxJ6JvUF92XtspB6/9X0NybjL5hnw5qO9K1hVyy3Mfq88ITwpHrVDTv0H/KvcPbzQcd1t3Vu5bSFiqkd1B0L3NP0fe+gT1wc3WjXcj3yXUI5QhwUPkZUODh/JjvJTCXW4qRywvQzCZYOxYqaLxK6TkpbAgYgGz2s2itU9rAN71eJeF3RdyJfuK3F61Lm4d9hp7io3FuNi4kGfIY0G3Bbwb+S4apYZBDQZRYixhfdx6xoSOYX38ehQoSC1IrXLOVBINq2gluyybmPQYXGxcuFd8D0+9J/nl+Vy8L/n2P9X4KZ5u8jQTwicwp/cccspymHtkLgGOAQA4ahwpNBayrQkU2alYHW5m8lCLPLAFHl5/kK5tr7HjzU5v0Xt9b67nXSfAMYC0wjQUCgUmi4kBDQawZeSWKlWqAQ0G0C2gG5FpkXQL6Ca3f3Xy78TBlINMbzOdF1q9wCenPmFel3l8EP0Bd4vu8uaRNwlyDuJazjW+OvsVF/w7cKOTM1yQtmt5QBwEQaD7uu41vtcn75wktTAVi9UiHccHuhEFUqVCZQazElzLoMgG6pvsqHO/HJWvH/s1aQxKsnKgPphUoCs1E5lylAE3wMXVm22WO5y40o564ZNobH+ayDCYdTiXN/tIz71nCwxOvsk5X+gy5jZeJXBkHQTPlJb/uBO0Fnj/6Xqg+lVOBUp0YhA6UUG5wgqCVGGzVdvKaeYDGw6kiXsTFkUt4vWOr1NsLGblxZVMCpvE9zHf80anN/jwxIdyOnXlMT955yQ96/YkIi2C81PO09C1IVFne9F18zGeDx1H/+CBTAifICdbf9DrgxqP7cb4jfwQ9wPv9XiPOo51eOvYWwDcLb7LqkurEBBYF7cOZxtnlp1dxrKzy9AqtTTzbMaRid15adFBrtX7gjqjp/5L9ra5Zbm8cugV1setp2dgT46MPUI9l3r/9HZ+D8UVxcw4MEP+bIZ5hfHm0TexWC01utztvrabC/cvcHz8cS5nXya9JJ1mns146+hbbL68mXJzOd523hQbi7k58ybOOmdAIiFNPZqyLm4ddR3r4qH3+GM7aPvgs1Za+ttEAySdRm2WRi3+Jqh1napFLf5E9K3Xl9uFt0nO/b/5JX/6zmkEBNr5SYP146nH0Sg1sjD81whPCqdXUC8ctA5V7tcoNUwKm8S623u47AEKUSAh6/cFq49CrVTTvW530grTeKvLW1VaH56o/8RDRxhTGRw6hCACH31UbTuiKDJ131Q89Z4s6lG1B18QBJp6NOXdHu9y9cWrxE6NxU4tVV3yDHkICNzKv4WDxgGjxcjSs0vZGL+REmMJB1MOEugUyOohq9mYsJFFkQ+3XRkAV2YqY+CmgZgsJpQKJf4O/mSVZtHUo6lsf7p84HJKTaVUWCrw1Hvyfs/3+ajXR6QVShqUCksFA5zaggDOXfuROnYgC48BoqQZCDUvpYN5L6HmpTjQDL0RPg+vYOHReTT3as7yAcsprCjEXmOPwWygnW87dj69swrJsFgtZJdmMzFMypdIzE5kTcwaPjn5CaIo8vP1nxmyeQjPhz+PrdqWT05+Ij/24+iPOXZFEi3/HLuDXRvfJvvgTp64DsOvgkepdCzeOG7BwaSgR5kn6+60Ah5kZgAaq8DFcC9mnQGsVvqmSgNDjUlaITQLEODjI9L6/zhawsH1FnYvTqNFBkT7SyQDwMUAOzdDr1wHNrje5ZtbjWgjepOkL+dwgJl6JRoS3StPDjgwvCl7V75Cx0ngYudB1KgDOOx8WF1YOMSe3uMhX30TqNqOpLBasLPeo1xpRflIIeZWwS35+M5sN5OF3RfKOQ7jm4/HKlrZEL+BGW1myMe8kmQoBAWxGdJ5eCH9As80fYaGrg0pMBTwnhCFswG+qTONUU1GcXrSaSlPwljE0ZtH+TWi06KZuGciIxuNxGQxMW73OPwc/OTlS04vQUTEQePAuObj+GHoD8RPi6f4zWLOTTnHSwt/hs6dCf58HTqlttr2fwuiKLLl8hYafdOIPUl7+H7I9/8xknHh/gVarmrJzsSdrB+2ng1PbqCReyNMVhP3i+9XW99itfDO8XfoFdiLTv6dWHJqCQpBwdhdY1l+fjmBzoE0cW9C5PORlBhLCE8Klx8rCALjmo0j/Fo4d4vu4q53r7b9GlFJNP6IILxBg9qKRi3+NqglGrWoxZ+IrgFd0Sg1HEo59Ffvyl+CM3fP0MSjiUwcIlIjaO/XvsaZzLzyPCJTIxkaPLTaMoApTcZSKJjY3QjauTVn4+WNWKy/Lxp9FPeLpEFCpb1qJew0dnKVpfzOTcSoKASNBnx9q21jfdx6jt46yreDvv3N1i1BEAhPCiejNAOtUouHrQetfVoTkRpBkbEItULNvGPzeOvoW7jZulFUUUT46HAmhE3gg54fsDByoSTmfbAtkNpoUvJSUClVONk4ceGFC2x/ajvxWVIitNVqpcJcISdpu+vdySvPY/HJh/ayZtEsp6u3UfkzdfK3fDvAFU+TFBTmQlu0eOBCW1pYVqBVNKPTTRMn4lvTxKE+Mw/MRGEVKTYW46dy5fTdUzwzvwmvzQzh5QnezHhKz6zBKj4d5sHNWeMJyIessixuvDqJBtPfZuzqc5itZkZ8dYzNCy7zxc8iJquJXzY/6DNXwJRLSIF4Voj6ppztX2dycCPs3AZf7Zf6mu45wYbtVo7bZnK4XBKKWx/8gikRWBZmJDfQC6sC2usaoDOB4cFTJD94+z/rIKWHf9wZlm2ahfJ+BsbgBuTrK7ejJM0ZhoyB1zuWMjlsMpPXXyZz3XLadU3imreaDB8H1reofNPhaogrT2Z+ibuDFw6e/tjYO7Pji4fp43l1PGjl3QoXn1ippebBOSxYLYDI4vVf8flxDZUykGCXYIwWI8VGSZxf36U+giC1ql1Kv0QTjyaARMYX9VhEgFNAFRJtFa30DuotJdJXFPF2V8kmd1L4JE54m7GoVdiekux6m3k2Y16XeYBkQ7zk1BKSc5LZenkrL+x9gV7reyGKIjsSd7AoahFKQUmIWwgOGge5YuagcaBfg34s7beU8S3GE+oZ+tDOVhAk8h4b+9jgy5pwp/AOQ7YM4ZmfnqF73e4k/iORiWET//QqsVW08unJT+n4vWRRGzM1hrHNxwIQ6CSFbt4quFXtcVsub+FK9hXqONQhYGkA6+PXY6+xZ82QNdx75R6d/TujU+to4NqA/vX789W5r3g0G/m5Zs9hsppIyErA3fYPEo3K1qk/Ighv2BBSUqR20FrU4i9GLdGoRS3+ROg1ejrX6cyhm/83icbpu6dp7yu1TVlFK5FpkY/Nz9ifvB+LaKnS0vQogiLjaZwFJgW8/cQH3C++X0WA+nu4lH6JU3dP4aH3YPPlzdWWDw8eDkDR5nWITo6g0VRbJ6s0i1cOvcKY0DH0q9/vN5/v5O2TvBv5LnUc69DGpw1ZZVks7r2YgQ0H4qn3ZE6HOdhp7Mgz5JFdlk0bnzZcz7uOyWLizc5vMqHFBCbtmURUWpTc/nMt5xoeeg8sVguHxh7CQy+Rl8pqjBUro7aPkoMAXWxc6LWuFwWGAjQKDVqllhaeLZif8CUAgUUquqztgtbGjr5unyGIVTUDSquAPxPZ0BSOZ53n3TMf45NvJq+ikOX7IPWdXIYlwn6SGbUziaU/ZPD1jjKWHVbx/jk902KVfHBSOo7biSgW7QAAIABJREFUWmsZ5N2VSe598TLbcLVjPfyeHM+4rjNwQcfh8Z3wVTghICViAxTq4MPlzzL+43YEz9HhP8+WqaMkkro+TEHwmnBmpXmzqf5DlyR7jT3TO73M156pJDaXiOLWxiJeboHyOqUPJtOTHozp7jrCOU02g45M5GrRw5nfR1tkLKKFGW1nAPDG0TcQBAGT1US+Ib/K+x6ZFsnYZmOZ0/5VLqZfxHdbe2a2eBi2t2rwKtz17hQrEigunE7rm+fQl2fRPO0cV6zTCA9KYGa0iYuroOX9h+5flQYF9hpJFFxJNE7dkUwMOvp3xNHGEZVChfIRa9RF3RcRnhROVlkWvva+hLiFEJ8Rz85rO/Fyq4uiXXuIisJkMRGfGS+HVXrbefPa4dcI/iaY0T+NZm3sWrQqLeObj8dB60Ar71bkz83n0HOHcLJxIq0wjSdDnqTIWMSVrCuP/2B07gwDBsA770hC5t+AVbTyzblvaLy8MZfSL7H76d1se2obXnZev/m4fwUZJRn029CP14+8zuz2szk58ST1XerLy+s61QXgVv5DomG2muXEeIAdiTsYUH8AaoWad7u/y4SwCXLLYCWxmNF2BpfSL3Hm/7F3noFRlOvb/81uNr0XUiEVAgkQCL2GGopAaCJVQDqIIAh68IiggF2K2Oi9ifQWeu8QCISaXkhCes/WeT+MGYgJqOfo8fzPu5cfhJ2ZZ8russ/93FdJvSyP427jTrh/OAn5CX+cOvV7Oxo6HSQl/b6xjTDiL4Sx0DDCiD8Z4X7hnEo4hUav+bsv5T+KQnUhd5/elYP67mTeIbcs94X6jD0P99DCs0UVy0gZq1dLdBZBsvwMdApkw+0Nv/t6FpxdQIBjAONDx/Pz/Z9lG9sK9KnbB6UBtI/uI/bpLdOVnsf0I9MREFjcbfFLz5Vfns/QXUNp5tGM1MJUrE2tcbJwooVXC3bE7GBkyEgWdllIfZf6gESNupN5hx6be+D6pStj942lX91+tKnZhn7b+/F25NuIiLhYupBTlkPk8Eh87H0wiAZG7x2Ns6Uz5kpzLEwsuJh6kc/OSx2MLy99ya3MW7hZuaExaBjaYCjn3ziPp400AR+e/QMmggnnRp+jTOuMIFTmnosKJQ6GAD5rB++Gg2chZNjAT25TmfTpcZQXL7H53Ss0cm9Mr6lOxCVFgUaDUqMlPu467m/rMVu/GTszO+Ks1CyeG46wZy/dmrzGkQBgyRLMF33O6y0msN4khoFNRyICzjaucvH0z6db2FB+BYfaDSmwUpKP9L6ZKc2YmbySz36Iw0phLgu4a+vsmNlsGuW6cq6lX0MpKHmQ84B/tP3HS9+zLXe3yIYAFdAYpO+sAgWmClNmHJ3BxeSLrLu1jnrO9QDoGdATM8UzGpC7tTulBdnMPjYLRGiiqsWdMTfk7eX6cko0JSQVJNHRSsln26bjK7zHV5unY1d8h486KdCNGY3KAFdWwuQ9TzB9biG6z7Y+lGpLCXUPJSE/gckHJ+Ns4YxWL03aj8YdRStKf25fqz0fhH1Ad//u6Aw6FIICURR5deerAAwKHsRhjxJyj+7FZpE1IT+EsOLmCgCaezZnSPAQzJRmWKossTW15ejwoxyLP4anjSdHRxzFQmXB5IOTSS5MxtPGk+2vbsfN2o2HOQ9f3m1cuFCi8qxb98Jd7mXdo93adrx5+E2GNxjOvcn3iKhbfbfz38Whx4do+H1D7jy9w9HhR/ms62ey610FLFQWuFm7kZCfQGphKvNPz8d3qS8DdgygVFvKB+0/4MnMJ/QP6o/WoKVbQDf52IpEeoDuAd3xd/Bn+bXllcYfGTKSYk0xSqGq/qNaPC8G/y3UkVzYjDoNI/4bYCw0jDDiT0a4fzgl2hIupVz6uy/lP4pradcqBfWdTjyNmdJMFoY/jzJtGZGxkfSt27f6wTIyuBt9nMdO4Ghmz4obK3g95HV+vv8zxZri37yW6Mxodj/Yzfvt3mdEyAgK1YWVEpMBPMxdsFdDoqclNGhQhZZx+PFhtt7dytfdvn4pj7pCw1FQXsDwhsPRi3oe5z6mT2AfTsSfIKcshxEhIzgae5TLaZdp4t6EiMAIcstzWd17NZObTeZc8jn6bOtDVEYU5bpyll5ZCkBOWQ4HhhyQbW+/vfotpxJPsarPKsr15czrMA8XSxf2PdoHwNa7W7E1syWjJAMBgdY1W2NmYiat1ItQImrxtPXE2tQaNycpYLLSvaAnRxGLXiHZ12ZYw47t0GbhRhJqmELLllg0bs6+0Uext3Skx95BZGulrJAdMZLNbq86vehfrz/25vZ8eOpDEvIS6B7QnejMaJnvPjZ0LFmlWXLWiru1OzqDDpVCJYcn3sq8JaeyKwUlnraeHHh0gFPJZ3BzrCnnRQRHpeLeoRej3bqTWZIJgIWJBcNChlVJ5X5+Ai8gUKorrUKrAxjSYAgag4aTCScZtmsYQS5BXH9ynRpWNSjSFMnCXoD04nRu3DzI4kt2tLWrj2ndYHzd6srbH2U/Iqs0i6zSLF6tIRXd7u17sj4E4h2kYD0zB2fm9LbgozCYdRFurICmadDYrTHX0q4RsS2CYBeJMpWYn8iAegO4m3WXO5l36L/9mVtZV/+uZJdkE5URhZnSjJTCFFy/dJU1Y19d+op9rvk4FulYWXsmZ0ed5adXJUrTNz2+YfOAzXTy7USpthS9qGfYrmHoRT2RwyOxM7Nj3L5x/HjjRwYFDSKvPA+loGRM4zHoDDr5M1stGjWCwYNh/nwoL6+0SaPX8NGZj2j8Y2OyS7M5O+os3/f6/ne7Uf0RqHVq3j7yNq9seYVmns24PfE2Xf27Vruv3qDH3tye1VGr8V7izRcXvyDcLxxXK1deC36Njzp+hLWpNUfjjlLLrhaBTs/yDZ5ftFAICqY0m8JPMT/JnUdApozG5z9zUHspnheD/xZq1gQzM6NOw4j/ChgLDSOM+JMR4haCi6XL/3c6jUupl7A3tyfQWfrBPZV4ilY1W2FuUjXQ4ETCCUq0JS/UZ7B1K2sbg7NGxeTmb7L5zmb61JFWdnfd3/Wb17Lw3EJ87H0Y1mAYdZzq0MyjGZvvbK6803ffYaWGn/3UaAzaSpODYk0xEw9OpKtfV0Y0HPHSc627tY4dMTtY0XsFV9KuEOgUSFxeHP3r9WfTnU2EuIbgZOHEqztfRUBg3+B9bB24ldY1W/P20bfpX68/D998SNSEKHoE9JDE6b/A196XYk0xWr2WRzmPePf4u7zZ7E2aezYHJHpHzOQYuRugQEGRuoixjcciIlLLrhZXUq+QmJ+IShTY9agR0ZnRhP4YyqHsmcCzYkNEj4hIknI1IFmkNvVqwY2Zg9EVFyK0b8/by3sRnRmNs6UzR4YfoUBdQO+tvSnVlrIjZgcRdSMwNzFnYNBA8svzsTO3483Db9LFtwsCApGxkQAE1wimlVcr9j3ah5u1G9GZ0XT06YjWoCWzJJOvu31N/Rr15Q6DicIEAYEw7zCmH5lOobpQekAClHTrCGZmdPtKKrYMooFuAd2wVFlWKR41z9UdFSvOizotqvKeKhVKxoWOQyEoSCxIpERTgohI38C+nE46TUbJswmjmQ4epg9g6tZ4BrQaw4mEExSrnxXDd7Pukl6UjpXKiqZmUsZBp5B+fNgRrLTQMl6DVl2Kq9aMjztAr7ddUSvh8iqYuT+bAwN3cSH5AtOOTAOgnXc7Ovl1IqM4g7Zr21bq1H1+4XNcvnQhsyRT7nhklWYhIHB0+FGK5xTzw6JoUCoZkV+Ldt7t5EKrTFfG/DPzORx7mO96fAdI+oThDYbjZu3GqL2jWHd7HRv6bWBog6GUakvJKM6gk6+U1fDh6Q9JL3pGGauCjz6CjAz47jv5pUsplwj9MZSPz37MrNazuD3xNu282714jH8DD7If0HJ1S767/h1Lui3hwJAD1dKWnhQ9YcHZBfgtk5zQ8sry+LbntzyZ+YQQtxCySrOY12GevH9kXCTd/LtV+aw9r8kY3Xg0KqWKFTdWVDlfVHpUtYnzVfBHqFMKBQQEGDsaRvxXwFhoGGHEnwyFoKCLX5f/73Qal1Iv0cKzhRR+Jho4m3T2hfqMPQ/2UMepDnWd61a7Xbt6JRsbwginjkxsOpFyXTnnks/RwafDb9Kn7mfd56eYn5jTdo4sSh3WYBiHHh8ityxX2ik7G+bNw9TShjQrPbE5lbMVPjj5AVklWfzQ64eXClAf5Txi6uGpvNHoDQbUG8Dhx4dxtXLF2tSaZh7N2PtgL4PrD6b/jv6UaEoYGDQQD1sPzE3M2fPaHuo616Xbpm5yiN3Bxwfxs/eTx08uSKb75u64fulKuzXtcLBw4OOOH8sTbRtTG+kef5nTGDAQ5BLE0AZDAcgoyqDLxi6IiNTXO9EvWsuuQbtIK0ojUX2GIucvUFrFoxVyKFLeJFo5mULhjnz+uLw4Pk7fxoT3gjG1tmPOnMOMmBdCry29yCjO4MCQA0RnRtN7a29ismIYFCRZEHf27YydmR0dfDpw6PEhTiedprlnc47EHZHHHhc6jmNxx+jq1xWtQStT7gB6BPTgsy7PBO0avYbcslyW9VjG49zHz95H4GDWRR4dWM/9sREoDFIB0SvNioKSXDlPogLWptaYGMDql0V1paDk2+vfytsraCw77+3k3TbvyhPAlIIUDKKBlTdXAuCissfil6HVJiBu2QKOjkQERqDRaziWcEwe83bGbQrVhTT1aIoyLx+cnHCzdSfFDl67J/D2JbhiSMESFQpBwQWHIlqNhbkdYeCRZML6TmdvyKecSz6HgEBGUQYLz0lWtIXqwkq5IdYqa2pY1qCrX1cODjsov+5m7UabWm2kot/aGpo0gbNnAWSjhu13tzP/zHwWdFzA0YSjqHVqBgcP5tMLn1L7m9psid7Clv5bGN5wuKxliMuLo5ZdLUDqzMw8OpMXonZteOMNWLSIouw03jr8Fm3WtMFSZcmN8TdY0GlBtYsS/y5EUWT1zdU0WdGEMm0ZV8ZeYVrLaZW+1wbRQGRsJP2396fW4losOreILr5dGBUyCgcLByY2nShZAJ9byOshr8v/biUXJPMg+wHd/LtVOufz1CkAe3N7RjQcwQ/Xf5AptRUGDjllOZxJPPPbN/JHOhpgdJ4y4r8GxkLDCCP+AoT7h3PjyQ2yS7P/7kv5j0AURS6nXpZpU7czbpNXnletPkNv0LPv4T76BvatfhIfHc1B/X2yrOCNvvPxtPWkd2Bvvr/+PSMajOBkwklSClJeeC0Lzy3Ey9aLkY1Gyq8Nrj8Yg2jgp5hfnG/mzgVRxMbDBxtTG2KyYuRruZp2laVXlvJRx4/wc/Cr7hSARMMY8vMQPG09WdpjKVfSrpBTlkNmSSY9a/fk4OODqPVqbmXc4saTG+hFPe+0fkc+3sbMhkNDD+Fq5UrH9R0J3xSOjakN8fnxfNn1S8xNzFHr1YwLHUdD14Y8LX3Kk6InBHwTwIwjMwBpkthpfSe04rOOTExWDN9c/QaACQcn0MRdsoINNq9JYkESo/aOwsvWi04+nbiZv5sc+y+4oOxJnPn7lJk8wFRpipu1G0pBSV55Hqt7r0bt7kLIkAIy7Ey4uNEUmxt3aLOmDe8ce4d3W7/LqQTJxrirn0RDMTMxo09gH+4+vUtEYARvHX6LDj4dOBZ3DJ1B4i8NCh6Etam1LHY+Fvdscj7p4CRZjFuBnLIcjsQeYXyT8ZUKCDdrN17bPZRIpzwcLaXQs9Ltm1k8NrjKe9bBtwMe1u6UmINgkATf0ZnR8nZRFPGx86FUW8rkg5PlwqNiMq8UlDiK5oj5+QSVPgvP2/VgNwC+Dr40qNGgEk0v+mk0IiJtaraRClwnJzbe3ggClKsE+jyEK8UPKDFTYG1qTam2FDMLaxa1h9DxcL80iU59pjHqhgFRFHmQ84A7mVIx6GXjhVJQYmEiFQsl2hKelj7li65fyK9Zm1hToC7g9d2vP1s5DwuDM2dAFOX95p2Zx+hGo0nKT2L/w/38NOgn1vdbT1P3piQVJOHr4Evrmq0B5O9FbG4sNW1rAtC/Xn+23t1arU2ujLlzOVyjgPrLg1kdtZqvwr/i0phLNHRt+OJj/g3kl+cz+OfBjN0/lqH1h3Jj/A0auTWSt2cWZ/LJuU8IWBZA983dic2NZWn3paTPTGd1xGra1GpDWmEaap2a5VeXk1eWx4dhH8rHR8ZGohSUdPbrXOm81em93mz+JunF6ey+L31WskqkQsPL1ov1t9f/9s0oFGBu/vs6GmDM0jDivwbGQsMII/4CdPXrioj48h/d/yFUrDJX6DFOJ57G3MRcpvg8j8upl8kqzXqx0HPjRtaEQtNSB+r7SeNNaDKBO0/vUMu+FuYm5lVpUBXXkfOYrXe38m6bdyuJO12tXeni10U6LjoafvwRPvwQCwsbatrW5F7WPQQEtHotY/eNpbF7Y6a3nP7Se37/5PvcybzD1gFbsTa15uCjgziYO/Aw5yH96/ZnU/Qm6jjWYXvMdoJcgmji3oRmHs0qjeFk6cTPg34mtzSXpyVPSStKY3br2cxsPRMzpRk9A3qy8uZKziefZ3br2dwYf4NxoeO4lCbpf7ps6EJURhRKQYmJwoT+dfujUqjY/cvEt5NvJ6a3kO7D29abDgOLMUHB2dFn2dBP6gzdzrwNSKvj3QK6cXP8TSkV2cYTvahn9vHZrOmzhiPTr7NkYW9uOGtY9U0yH2naUlheyIdnPkQpKNHoNXKBAzCg3gBismJ4q8VbFKoLicuNI688j2tpkrWqlakVQxsMZe/DvThbOHMjXRJQmypNOR5/nBvpN6QcbUGJmdIMAYF3j78rT7IrsGXAFmKexnA++TzCL65RC/s6Mj8wA0Sw1D8T24qiSJ6uGETwLKBSIjhIBUVFMXg0/qicbF6BgEIlrWLVZFtBq06j5NfnnZ4n/zkiMIIjj591bjR6DQIC7jbukJOD3tGBZVeXYaIw4adAA3kW4BIdRxqFMg2qQod0301Br6lOLAg35/tDAmuPWiCI4GHjQZBzEKlFqehFPRGBEZgqTSnUFNInsA8hbiG8d+I9ACY2m8iW/lvYdX8X/zwpWd3Svj08eQLx8XIeS0PXhnhYe7AyaiWr+qyii18X+m/vT/TTaBZ3W4zWoJUTrS1UFnjaeBKbG4uZiRnu1u542njSrlY7Jh+aLGtrnkdWSRbDr75Hz9d0BCYVc/e1M7zd6u1qw/D+DFxMuUijHxoRGRvJjoE7WNlnJVamVhhEA8fjj/PqT6/itdiLj85+RDvvdlx44wK3J95mSvMpsj7E194XEZGYpzF8duEzxoWOq1QAR8ZF0sKrBfbm9lXO/zx1CqB+jfp08Okgf0cqOhqDggax897O36U9w8rq9xcatWtDcjKoq74XRhjxn4Sx0DDCiL8AnraeBLsE/3+j06iwbnw+qK+VV/X6jD0P9uBq5UoLz6oJ3Oh0pG9fzaEAeKPOa/LL4f7h+Nj7sDF6I/3q9WPD7Q1VfsgBFp1fhKuVK2NCx1TZNrzhcM4lnaP8zYkSf3nKFCxVlrhau1KkKUIv6vny4pfcy7rHyt4rK00wf43I2Ei+uvQVn3T+hFD3UAAOPD6An4MfpkpTGro25FTiKWLzYhnTeAzRmdFMajqpSgdHq9fy5uE3USqUGEQDjhaOvNdWmiAqBAWta7bG0cIRvains19nQt1D+aTLJ6zu/UxHISDIYW12ZnbYmNk8O4GIXJSsKTmHiQFOt16Bl60XX178EgArlbQy72TpxLLuywiuEczJ10+i1qtxtHCUCsjVLVEpVax+fSc+lx6Q2NiXdz87T+Dpu7St2RadKHUpZh+fzaQDk9DoNYT7h2Ntas3FlIt81PEjdt7fia2ZLUdiK9On0orSCK4RjF7U42blhpOFEy6WLkw+OBk3azdMlaboRUk/snfwXuLy4uTjbc1saV2zNWMaj5FT1AUEMjW5klhcAPuSZ4L3C8kXKNIU0dqrJakOSCGNz0FAqET/sTG1wdLkWTDhAxs1Zu06YmtmS1ufZ1qCe9n3ZMF1RN0I8tX5lcYVETFRmJCXFscNTRI5pTkgQpkprGgCEXd1FIplmCqk4rhCxN6wRkPSyjJZ1MbAmtVvUi+5jG0/QUbhE7KLnulEPu3yqTzZHR0ymlMJp7icehmFoKCGVQ0i6kbwedfP+eT8J6y/tV6ynBUEio4eYMKBCQCEuoWy8PxCPu38KYOCBxGxLYITCSfYP2Q/01tO5/q46wTXCKbzhs4sv7ocfwd/YnMlyqG3vTfJhcl8/8r3xOfFy58tkCbcm6I3Ue/behyOPcz6zsuJ/NkC32+38FdAb9Dz8ZmPab+2PZ62ntyeeJtXg18lqySLzy98TuDyQLpu7ErM0xi+7PolT2Y8YX3f9bSu2brK99PXQbJI/vrS15Tpyni//fvyNp1Bx/H441VoU8AL6ZZTm0/lQsoFotKjeFryFIDxTcZToi35XdozLC1/P3WqTh0wGCD+d4rNjTDiL4Kx0DDCiL8I4f7hHI0/Wu2E+H8Nl1IuUc+5Hvbm9ugNes4mnaWjT1XalCiK7H6wmz6BfapfyTxxgo218lAZYMir8+WXFYKCCU0msCNmB/0C+3E/+768Al6BhLwENt7eyOw2s6stcPrW7ctrj00xP3cJFi8GU1MsTCywVFliYWKBWqdm/pn5vN3ybbl4qA5PS54ycs9Iwv3DebvV24DE4Y/OjKZEW0JXv64yFSLMOwxHC0dszWwZ0mBIlWcxbv84TieexiAa6ODTAVEUZTtThaDgRMIJCtWFNPdszms7X5MzD2KypNwCBQpEROzM7Gji3oT9j/bL+gVzpTknE0/yw/UfpL+bWnJqHXhma1hwdgFfX/4aAYESbQleNl6Ym5jTanUrrqReIdA5kOOvH5fzPAyigXZr23E68TS13AMJPv8QBgxgy096tDelDkVLz5a4WLrww40f8Prai1U3V9E9oDs77+3krRZv0citEQpBweHYw/IzaOLRhMZujeWsggq6WIm2BBOFCeW6clQKlWyd6mPvw7qIdfLxpdpSitXFmCpNK4XWKQSFTF/Jtn32Ocsvz0eJgjm/hNiJAnhWrgkqhUsWaYrwzfvl+/vL/+LFXLr6dcXb3rvScfNPS5/XJu5NcLN6lvtQcR2TD07m8cNLROvSsDOXCkJrlTXfNwMrDXRJNsXBwgGVQoVO1GFrasv97Pto9BoCHAOYlPANm76bSJSXkrV7BbLLcjHRg4+dD162XpRopAmoicKEYbuGISDg7+BPSqFEM5zZaiZjG49l3P5xnC2IxtCwIec2LZS7KKujVjO9xXSmNJtCry29OJ98noNDDxLuHw5IYZBHhx9lSrMpTD08lfTidB7nShoAbztvkgqSCK4RzIyWM1hwbgHxefEk5SfRc0tPRuweQbh/OPen3Of1tlMQ3pklicJTXkyB/FeQUpBCpw2dmHdmHu+3e5/TI08TnxfP4J2D8fzak7mn5tLCswVnR50lZnIM01pOq+Qg9mvUtK2JQlCw8/5OpjSbUsmK+2raVQrUBfLzeR4ClTUaFegT2IeatjVZfnU5WSVZ2JjaEOgcSJh32O+jT1la/rGOBhjpU0b87TAWGkYY8Rch3D+c1MJUeXL4v4xLqZdkfcatjFsUqAvo4NOhyn73su4Rlxf3Qltbcf061jSG/poA7G0rO8KMbjQavUFPUmES7tbuVUThn57/FCdLJ8Y3GV/t2NYGE5YdV3E2yBqxRw9AmlSW68oJdApErVfjaevJ/I7zqz0eJNHoqD2jEBFZ33e9PLk9+PiglN+Q/YAeAT1YcnkJ1qbWbO6/mbW31jK60WgsVZaVxpp/Zj7rb6/HTGlGM89mHBp6iEPDDhGVHsXAHQPR6XWcTjzNh2EfcnT4UTxsPHhlyyvE5cYx99Rc6XkhMqXZFHQGHa7WrmSXZfNq0KtYmlhSri+nXFcuC8entXobl1KYGPMpH5z6AFszW0REbM1sGdloJNfHXcfXwZewdWFsuL2B+jXqc3LkSVRKFdml2TSo0YBum7qx/e52UKkw3bIdYfx48gQ1vTS+FGmKyCrNwkplRW5ZLtOOTONo7FFuZ94mOjOaH3v9SH55PtefXK+kXRrWYBjJhcmYKc1IL04ntyyXUm0pc9rNIa88D61BK2skUgpSZKoPSKvKPkt9+OHGDxhEgzzBM4gGeaKnQY9QMd0XoGWSgTc2D0Txy89fmv2zzoaZ0oz88ucqDxFKNCUoUcidotuZt+kR0EPOJgHJCnh7zHb6butLwDcBlV2pTKTMjSnNpxCAAzmWcHbUWYJrBONq7UqKHRyvo2TITQ2FZfnyuIFOUkK4QlBwL/se77d7n2W9v+PEwFDOD23LmJugU4LPk1J+urqOEq1UaKy4uYL04nTeaPwGfg5+pBamAtIq+7evfEvbWm3pt70fa/0LCLqXzXttpA5aq5qtmNdhHj229ODak2scGXZEdpSS71OpYkn3JWzou4GE/ARuZ9wmpSBFKjTypXC4D8I+wMXShd5behP0bRB3n95l/5D9bBmw5ZnL09tvg42N5ET1J2H3/d2E/BBCfF48e17bg525HQ2+b0CnDZ2Iyoji0y6fkjYjjU39N9HOu93vShlXKVVYm1pjEA1yp7ECkbGROJg7VKFDVqC6BSYThQmTmk5iy90tJBcky7bZI0NGcirhFMkFyS+/ICur39/RcHOThP9GQbgRfzOMhYYRRvxFaO/dHlOlKcfij/32zv+HUawp5s7TO7Jr0OnE01iYWFSrz9j7cC9WKqsqExgACgu5fHknD53hjTZTqmx2tXalf73+rLyxkqH1h7L17lbZwSW5IJm1t9byTqt3qkzoZSxZgnNuOeM7Fsu6BEuVpSS+/WUyOLf93BcfDyy7sozDsYdZF7GuUlrxwccH8XPwQ0Bge8x21Ho1n3X5jJMJJ8kuzWZi04mVxlnyzPaSAAAgAElEQVQTtYb5Z+Zja2aLn4Mf+4fsx0JlQUuvluwZvEfqZGgKcbd2572272FnbsfBoQcp0ZQQ8kMIpTppVbOjb0cWdVpEibaEvQ/3Mrv1bLYP3I6piSm+9r6VVvmnH5uBzT9gZck5atrWpEhdRCefThSqC2nm0QxXa1dOvn6S4Q2HM3LPSGZGzqR+jfrsH7Ifg2ggqSCJfnX7MfjnwSy5vASUSm7PncAjZ5iyI4E7aREcHnqIph5N0Yt6FIICf0d/AFqvbs3u+7t5Lfg1RES23dkmX1dF0nZtx9qo9RKfvMLOtol7E8p0z+xbUwpTZLoOgL2ZPTllOfKEvEJULCAQ4hoCSE5MkguQhCveAk+FcgwY8FI6YKGByVENaaBbQmP1TzTQLcFWlMapXW5JrIOBOs6BMsVMRORUwimZcgQShU0v6rnz9A4RgRG83fJtedv4UKnw7ezTGZO8Alxq1aWBawPszOzkztux+pYE5EKbe8Wyo5OlqaVcNIFE/RME6Zn8ZLjDmqYKVDo4bfWU45+NZ1SBRPM58OgAViorlvdcjpetl1xogKR/+XnQz9LnITARu3KRVXulonVgvYF03yzlnRwbceylNrMjQkbwcYeP0Yt6mq5oilavJbUwFb1BT2J+IuYm5tzLvkeYTxj3Jt+jV51elQewsYE5c2Dt2n97xb1UW8qkA5Pov6M/DVwb0NKzJa/+9CrvHX+Pxu6NOTXyFA+mPGBGqxk4WVbNTHkZ0ovSKdYUU9upNs6WzpW2RcZF0sWvS7Wd2ZcVMWNDxyKKIhdTLsqF18CggVioLNgUvenlF/RHOhqCIHU1jB0NI/5mGAsNI4z4i2CpsqRdrXb/8zqNa2nXMIgGWQh+KvGUHBT3a+x5sIcetXtUb2P588+sqa/Du0hJx1ferPZcE5tO5GHOQ4JcgsguzZb5/p9f+BxbM1smNZtU/UWmp8OCBYiTp5Dj7Sz/oFuYWFCoLpQLj5yynBfeZ1R6FO8ef5fpLabTo3YP+fUybRkn4k+gEBR423tzLvkctqa2jAsdx/fXv6ezb2c5WwSkldDx+8djb26Pg7kDkcMjK4lJu/h1kc0EHC0cZecjH3sfWtdsTYm2BAEBBQp2DNzBnJNzABjRcASfdvmUIk0R+eX5FKoLZdpOkHMQ5ibm6BSSdCGlMAURUQ64a+zWGJBW31f2Xsmy7stYemUpvbb0oqlHU0Y0HEFqYSrpRenMaDWDtyPfZtbRWWyP2YGjhSOdxy5CWLSI7ksPcvr1kxwaeghTpSlRGVGYCCaYKExYdnUZex7sQUBg0Xkpu6JEU8KPN34k0ClQLjgEBLxsvbiYepHRjUZXeg9SCioXGqW6UvkeDaKBh9kP5W22prYA8op0BXSICILAruRW3Pw0D1shhJgG3+NIc8yogSPNaaz7Hl+xFbXqSZ/pB9kPKnUptt/bjkE0yDqeXnV6oRAUlGpL+Sr8K95v+4zLX7+GlAZ/+N4+bMsMtGssdfPszO1kB66rHgauu8O0K8hi4wvJF+Qx7MzsWBO1Rh4vrzwPPQYwVRFmUY/VjQy4RSew9BBYqkW+7vY15ibmVQoNkIr93LJc9JbmvDoI+mW7YCKYsPjyYh5mP+TE6yeqDdn8NSqSsD1tPVl2dRlag5YZkTNo/GNjlIKS1jVbc/fp3RdPuidNAg8P+OCD3zzXi3An8w6hP4ayOmo17tbunE06y63MW3zc8WPSZqSxdcBWOvh0+F3di+qw8NxCTBQmsjNXBXLLcrn25Fq1+gx4MXUKJAra4PqDicmKwdlCKl5szGzoX68/62+vfznV9o8UGmC0uDXivwLGQsMII/5ChPuHcyrxVLUuLP8ruJR6CVszW4JcgtAZdJxLPletPiOtMI1rT67RN7B62lTJhtVsqw+jLFqhUFYvxA7zDiPQKZCj8Udp5NaIDbc38KToCaturmJGqxlYm1pXf5Fz5oC5Ocp58xgcPJitd7eiN+ixVFmSXJCMQlCgUqjY93Bf9demKWHIz0MIcgni0y6fVtp2KvEUZboyHuc8JjE/ERtTG0Y2Gsm9rHtcSLnA5GaT5X1vZdxi4E8DsTa1RqVQcWzEMcmN6PnxEk5x8PFBLEwsuJt1lzknpEJic/Rmdj/YjYnCBBERa1NrPjrzEd9ek3IgprWQsgGupl0FpNXr5T2WAxCbF4uVygpTUcAA9A+U0qQT8xMBaLaqGZMPTuZUwikMooGpLaYSOTySq2lXabGqBZObTsZSZcnFlIs8zH7IV+Ff8dWlr1h+bTkRdSJQvfsPycnru+9g5Eh6+HThytgr2JjaYG9uT4m2BK1eS7BLMEpBSXpxOh3WdWDh2YXkleWxoNMC0orSsFJZIQgC1ipJRP58gQbwIOdBpQ7h4WGH5cRsOzM7yvVSQIafgx/nUs4ByAXC8y5kXXy70G/1RVx2R9KmeByiICAgFXQCShAErPWvcSLxJPAs3M/W1BYzpRk6g44h9YfgauUqfz7C/cLJKM7gdOLpSjkajhaS5e6F6P0A1K7T8tn16qTrvWVXxtIW0C0O7OMlaphO1LG422K8bL2oaVuT9bfXo9VryS57RjsLdgkmypBGXcdAPm0HmdYQ/QOMK5C6Il62XmQUZ8jhfScTTjJu/zhGNByBvYUDZ70hzU6BXtSTW5bLyZEnaerRlN+Dim7V9JbTZZrkN1e/4d0273Jr4i029dtEVmkWH515AT3K3Bw+/BB27ICbN3/XOStgMBiYGTmTRj824lHOIwyigba12nJ8xHEevvmQWW1mybSkfxWJ+YmsuLGC9rXaV6E0nYg/IQdDvggvKxjebP4mZbqySt26kSEjeZTziCtpV158UX+EOgVGi1sj/itgLDSMMOIvRLh/OKXaUi6lXvq7L+Uvw+XUy3JQX1R6FIXqwmr1Gfse7sNEYULP2j2rDpKUxM68CxSbwag+c194LkEQmNh0Irvu76JfYD/2P9rPx2c+xkJlwZvNq++CcO0arFsHCxaAgwPDGg7jSdETziSdIbUglSJNET0DemJuYs655HOSI9CvMP3IdFIKU9g6YGuVTs2BRwdwMHfAgIHmns0p0hQxvOFwvr/+PR42HvQJ7ANI9K6em3uiEBToDXqODD9CbafalcYqVBcyeu9owrzDcLJwoqtfVz698CkzI2cycs9IlIISvUFPHcc6FGoK+ebqN0xtPhWQVkpTClIYsVtKMt85aKc8kdHoNWj0GvxFB15NsmLXw10oBAUtvVrSrlY7Xm/4OgcfH6TThk54fu3JlINTUCqUXB5zGZVSRbfN3ehdpzdKhZJjccc4n3yeBR0XUKwp5lbmLYrURTB+PGzdCtu2wYABNLCrze7XdpNfno9CUBDuH05GSYbsUHU26SyfXPgEDxsPatnWop5zPZwsnDCIBvLK80guSK7yrPc82EN+2TMNRduabeWJd7GmGHOl1Cl73pmqAtaqZ0XouZRzksA8PBzRvYVcZFRAQIkNAVLn6JciFKBQU8jsNrMBmHZkmiz6TitM45MunwCS7fGPN36Ux3pS9AQAQ/YvBYKztIptZ2Ynp8AXmxjYUR8yrKHO1kh5+/SW0xnbeCxxeXE8LXnKgUcH5LwRK5UVrtauFKoLWdN3LTUsa7CoPXzSFoTOnWHyZLwVjoiIpBencz/rPgN2DKBdrXayRfAXOU1Ybye5Eo0MGVkpY+K3YGtmi5OFE8uvLudEgmTjXWFgkFOWg6+DL/9s908WX17M3ad3qx9k5EgIDIT3369++69QUF7Ap+c/xf4ze76+/DXWKmvmhc0jdUYqO17dQWe/zpXogv8OPjrzEQ4WDgyuP5is0qxK9rORcZEEuQThZetV7bG/1UFp6tEUM6VZpe5cR5+OeNp4Sq5gL8K/0tF48gSKf4d1rhFG/EUwFhpGGPEXoqFrQ2pY1fifpU+Josil1EuV8jMsVZY086wqkNzzcA9h3mHVu7xs3syaUOj81BqfZl1fes7XQ15HqVCi1qvRG/SsjlrNtBbTsDWzre4CYdo0aNgQxo0DoIVnC/wd/FkbtZYjcUdQKVQ0dG2IuYk5BtHAwccHKw2x895OVkWtYmn3pVWSzEVRZN/DfRRpirAwsSDAIYDajrUJdApkU/QmxoeOx0RhQn55Pj0396RQLWUl7Buyr1pnqxmRM8gpy2FtxFqUCiUtPFswq/Usvr78NXpRj17U83mXz+WVe0EQZE2JWqemw/oOaPWS5W1mcSazj8+Wx9YatBx2mMr2rVpCXBtiEA2cTz5PZ9/OfBH+BYnTErk85jLDGw7nwOMDdFzfkfbr2tPaqzX1XeqzI2YHIKV2H3h0gI3RG7E1tSUuL46wdWFkFGfAa6/Bvn1w/Dj06EFnl+asiViDQTRwO/M2CdMSWNV7VSVqSam2lBarW6A36HlSLE3K04ukVf3k/MoryaIoYm0mFQwuFi48yn0knRcpfK/iuVSH3HLJjcvF0oVyXTkHHx0kpzSHbN1dRPSV9hXRU6ZIQETEx95H7oYoBSX/bPdPwrzDKFQXynSv7LJsGrk1IsAxgEuplzideFoe60qqtELtUjE/dJJ0AnbmzwoN1zIlGhP4vikMjdJhXwYF6gJyy3J5o/EbqPVqfOx8WHZ1GRdSJEqVn4OfRE1C4FHOI56WPkWlULGqCcxf0AXWryesz1Q6x0F0ZjSvbHkFDxsPDKKB+Px41vddT1LpE949Lz3XChrd78WBRwco0hQRlRHFsu7LsDe3Z0KTCaQUpNBkRRMuplzkndbv4O/gz+SDk6tf4TcxgY8/hiNH5KTyX0MURa6kXuGNvW9Q44sa/OPEP1Dr1cwLm0fee3nM7TC3kl7qz8DD7Iesv72eOW3nyF21iu6fKIpExkW+kDYFL6dOPY+kgiTuZ90HQKlQMqLhCLbFbJM7XVXwr3Q0AGJjX76fEUb8hTAWGkYY8RdCISjo6tf1f7bQiMuLI7s0W3acOpV4ijY121SiqYBkK3oy4WT1blOiSOxPP3LWG96o2ec3z+lo4chrwa+x5e4WatnWQi/qmdZiWvU7b90Kly7BEkm8DNLkfFiDYWyP2U6ptlQWcyoEBS08W7D34V758OSCZMbtH8fAoIGMaVw1m+NWxi3SitLQGXRMaDKBfY/2MbzhcDZFb6JcV864JuPQ6DX0396f2NxYSrWlbBu4rdrE9IOPDrI6ajVfh3+Nr4Mk5NaL+kqhj2G1wjifcp6UghSaejSlq19Xll5ZirnSnB6be6A36BlcfzD25vYSReuXVfxOvp1QCkrmKs8gqDUo9CKNXRuj1qs5mXAStU6NIAi08GrBl+FfykXHsAbDiIyL5GLqRSxVlqj1avY/3s/ibot5kPMAV2tXzow6Q2ZJJq1Wt5KyJHr0gMhIiQ7TqRMjPHswsN5AUgtT+ebKN4wJHUOvOr1k7UlOWQ4uli4UqAvQGXSSnS4GPG085XCzCh2GiCivLPs4+HA09miVFGYFCuzM7GjuUdmMQIkSWzNb3m8nrZ7PPDqTtmvbkqRYi1JQyMWGQpDOU24jFZxPi59Soi3BUmWJXtRzMvEkayLWoFQoic+XugEV1/Rheyk1+nkNUkVh4FjBknmuo1FhLRuSJT2LH5qCiQGm3JY6OWeTzlLTriY9AnogInIm8Yx8vwXqAtKK0iTnsUNTUClU8uR3nu443/z0DgpfP45vhOLRw1AUFeNr78vl1Mus7LWSSQcncc5bYNEJCCgzZ9/DfdzOuF3lc/lrZBZnMnjnYHpv7Y2zpTMNXRsytcVUvO28MYgGro+/ToBjAB3WdWD97fV898p3nEs+V8UlTsaAAdC4sURvfK4YKVQX8sP1HwhdEUrL1S35+f7PaA1a2tRsQ/xb8XzY4cM/rXvxa8w7Mw8PGw8mNJ2Ar70ksq+wYL6ffZ/UwtSXFhrwcupUua4ctV6NnZmdTH0EGNloJPnl+ex/uL/6A/+VjgYYdRpG/K0wFhpGGPEXI9w/nJvpN8kqyfq7L+VPx/NBfS/TZxx+fBidQUdEYDVp4Neusc4xGbty6Dfkxdayz2Ni04kk5ieSWpSKQTRUskuVUVICs2dD//7QsfI1BbkESUnH7k1Q69SSNaogEBEYQWRsJOW6cvQGPcN2DcPWzJYVvVZUS4d48/AzulYtu1oUa4oZWn8o313/jr51++Ju7c6YfWM4m3QWtV7ND71+oH+9/lXGySnNYez+sfQI6MHY0LGAVPgciT3CzYybqAQVzhbOnE0+y6HHh6jnUo8glyB2vLpDtrJV69WcGnmKM0lnyCvPo6VnS/LVEm3p6PCjfP/K92zIO836hnA35z4h7pIr05W0K/TY3IOC8gL5eiqKjq+6fUXi9EQujbnEhCYTJIqYaGDqYYmuFZsby/Kry7nwxgUsTCxovbq1tILfrh2cOgVJSRAWxoom81AICmYdm0VkbCSuVq7oRT2+9r4EuwTTxa8L2aXZclAdQFpRGlfSruBp4yk7PgGysFspKJl7eq4chldhV2vAwKhGo7j65GqlZ6xUKHG2dGZK8ykoBSWxebEUa4o5Pn4VS8YE4euhQ81TvN01lLks5n6JZDRQrC1GpVDJ2SbDdg3D196XeWHz5LE1eg06g47egb0BZE0EQGJBIgDOpSAKAjhIHT07czvZtve6i7R/lrXAtvow+ZpIbVtfTiZIGpFxoeNIKkhC/OU/TxtPUgpSaFurLQAl2hLmtJsjdxI7+nTkrWsfsfKLIbzZS0Gv64VcXlKM7sghFndbzLsn3kUv6vlp+gUU/gF8cN0aOzM7em3tJXeTfg1RFFl3ax31vq3HiYQTbO6/mfGh42WxeS27WiQXJuNm7caJ108wNnQsEw5I2TevBb/GO8fekTNeKkGhgEWL4MIFOHSIG09uMH7/eDy+8mDKoSk4WTgR6BRIiaaERZ0XcWbUGTxtPauO8ychOjOabXe3Mbf9XMxNzHG3ccdMaUZCvlRoRMZGYqY0e6kr129Rpyp+C3rW7sn62+tlC+q6znVp7tmcDdEvKMr+aKHh5ASOjkadhhF/K4yFhhFG/MXo4tcFEVHmMf8v4VLKJQKdAnG0cOTGkxsUa4qr1WfsfbiXJu5NqGlXs8o2/YZ1rGsEQ3I9sPAO+F3nbeHZghpWNTCIBmxMbdgYvbHqTp99BtnZ8MUXlV7W6DV8fPZjaYVep0ZElFfSI+pGUKIt4UT8CRaeW8jFlIts7r+5WrrX2qi1XEy5iL25PcEuwZxIOEHrmq15UvyEe1n3mNxsMh+c+oBN0ZvQi3oWdFzwwoyPNw+/iVqnZlWfVfIkpURbIrk2KUyoYV0DP0c/FIIChaBArVNja2pLkboIjUGy+HU0d+T9k+9z9+ldnC2cuZh6EQsTC1wsXSRaRsgIhtceyOReoBV1lGvL8bbz5tiIY0RlRNF+XXtZT/A8KrQcX3X7iuzZ2UQERsi0EBGR1VGr6bO1D591+YxA50A6ru/IgUcHIDQUzp2DoiIcuvSim3s7HCwcGPjTQI4nHAekVOSYrBhplXpaPD1q96hCOckvz5fdmZ7HlbQrMvUook4EKqUKB3Ppfdoes73K/hqDhqT8JJZcXiKvhLev1Z7aTrVp4G3DmoltMfX/kmtM4t0ugysdqzVIhcC0FtPILctlRuQMZreZXSmYL7s0W6aXVSS1V8BEMKGhiQclViq5s2ZnZvfcHtI9C4LA0hbgkaNh+lM/udB4pc4rsqgcoKVXS0RE2VjBwsSCuWFzCXSSaD6+9r681fwtJh+ewrdNDUTM8eOWbRlHNorYT30He7XA2VFnJYersDDaPCwlzCcMURSJ2BYhP9cKxOfFE74pnNF7R/NKnVe4P+U+QxsMJcAxgKclTylUF1bK0jBVmvLdK9+xqvcq1t5aS3xePOW6ctnY4Nco7tiG9NDaPJz4Ks1+bMrh2MPMaj2Lpd2XcjXtKhq9hgtvXOC9tu9VH/T5J+KDUx/g7+DPqEajAGQ3uYqORmRcJO2927/UBvu3qFMVqeAjQ0ZSriuvpMsYGTKSw48Pk1lcDZXtj1KnwOg8ZcTfDmOhYYQRfzE8bDyoX6P+/yR96lLqpUr5GVYqqyquNWqdmkOPD1XfzdBoOHZ+A2m28EajN373efPL8ykoL8AgGuhVuxcbozdWsjAlKUkqMGbMAD+/Ssd+fuFzHmQ/YErTKUQ/jQakiaQgCNRzroe/gz8rbqxg/pn5fND+A3nV+HlcTr3MxINSNoZaqybcL5wjsUcY3mA43137jkCnQB7nPGbhuYUAvNX8Lea0q36StSNmB9vubuPbnt/KycP3su7J2gMTwQR7c3seZj/k+IjjtPRqSXxePFklWXRY3wG9QU9IjRDuZt1le8x2TJWm5JTlsKLXCrQGLTVtnxV33/ZbidUvi+3Jhck082xGO+92nB99ntyyXFqtbiVzxquDQlDIydyWKktMlaYEOQdx5+kd+mzrQ1xOHO427vTd1peVN1dKQt/z58HUlFc3R5FXloeLpQuJ+Ym4W7uTmJ/I+NDx/OPEP4iMjeRa2rUqVCidXlet9sLTxhMREVOFKTfSbxDuHy5rJjKKM/Cx86lyjIDArGOzcDSXJu077++UixhBEPi86+fcfXqXvPK8SrScikl+25ptcbN2Y9nVZWSVZvFVt6/kfR5kPeC769/R3b97pXuoEJTXE1zJsng2+XzeSnmQpM3G1tSWKA+ID/ZkwLE0YrJiyCzOxERhIluhAtxIvwEgi87rudRDISio4yRx8u9m3aVBjQby/ieJZ+83U5g10I7et8u5vqycmhd/EWi3b49/Wik2xRr2DdlHTFYMI/eMxCAa0Bl0fHXxK+p/V5/HOY85POwwG/ttlDMlKjI/4nLj8LaX0sGfpwyNCR3DmVFnSCtKQyko+fHGj7JmBSTq4aQDk/D42pOBjR4TmFrGNduZRE+MJiE/gamHp9I7sDe3Jt6ihVeLKu/nn40rqVfY93Af8zrMQ6VUya/72vuSkJ9AmbaMM0lnfpM2BS+nTmWVSh2NIJcg+tfrz/Jry+V/vwbXH4xSoWTLnS1VD/yjHQ0wOk8Z8bfDWGgYYcR/AOF+4RyNO/pyj/T/YyjRlBCdGV1Jn9G2VttKP9AVrxdpiqrXZxw6xJo6JdR/KtB0yMzffe5lV5YhIGChssDMxIzE/ETOJ59/tsPs2RJF5R//qHTcg+wHfHz2Y2a1nsXM1jPl96OC6iIIAt0DunPg8QFaerbkn+3/WeXcT4qe0H97f3kiW6YvQ6VUIQgCYd5h/Hz/Z8K8w5h8aDIKQcHg4MEs7r64WjpFRnEGkw5OYmDQQAbXl1bRizXFtFv7jJbhau1KZkkmp0aeooNvB/YN2YeAwI57OyjRlODn4EdyYbIsZtfoNYwNHcug4EHoDDp58glga2FPxywrEOF62nU51Ti4RjCXxkg2xW3WtOFiysUXPvsHOVLSvUanoV/dftzLvkcnHymA0dvem3JtOXpRz/j942m5qiXnxCQMZ8/Qp7QWCoOIWF6OmdKMcl05hx4fYkqzKaj1asYfGE9zr+bMajNLnqgrUaIVtdVeR2qRRNlp4dWCxIJE8srz5I4GPKMsVUClUKETdfg7+JNXnodKoUKj17Dr3i55n+aezRkUPIh5p+dhpnzmeFWmLSPQKZDhu4czv8N8DKKBiK0RlYLo3jn2DrcybjGt5bRKXT1PW090og4fvTUZZlqyS7O5mnaVtw6/Je9z4BcX3wK1RF872qsurjceEJIuFfBZJVk8zn0s30difiJuVm48zn2Mh42HTHeqmPg/zH7IpEOT6O7fXT7HhjsbOdKpJmU3r6IMbgA9e8Lo0dBIcpryv/uEUPdQNvffzM/3fmbC/gm0Wt2KWcdmMaHJBO5Ovkv3gGfjPX++uLw4vO28KdYUy8VeBVp6teT6uOsEuQQhIDDwp4GsvLGSFqta0PjHxux9uJfpLaez9esk6NULtm+n+crm7Ly3k/V917Op36bqjR7+Avzz1D8JcgliSP0hlV6vKDTOJ5+nXFf+Ultb+P3UKRcrF6Y2n8qjnEccj5e6fI4WjvSu05v1t6txn7KykgqNP/I7YuxoGPE3w1hoGGHEfwDh/uGkFaVxP/vFq8X/13D9yXX0op6WXi3R6rWcTz5frT5jz4M9+Dn4ycFlzyNn80r2BsIb+gYI9vZVtleHQnUhS64sYWLTiQxvMJyj8UfxsfN5JjY9d07y5v/kEymB+BcYRAPj94+nll0t5obNxdXalVAPyflJo9dIdAdR5F7WPQyigVltZsmBbBUo15XTb3s/lAolQTWCcLZ0xsfeh9OJp+lZuye7H+xGKSjZEL0BAYEuvl1Y3299taJVURQZt38cJgoTvn/leym9WhTpuK6jzGW3MLFAo9dwZtQZGrtLoXpF6iIMSJoSnUHHg+wHaPQaPG08ZRGyqdJU1s9UhPFVIN3ehDoaazQGTaWVdy9bL86NPkcD1wZ03tCZvQ/2Uh12xOyghlUNbM0le9Ol3ZdyJukMgU6BXH1ylYlNJ3Ju1DlaebXiStoV2q9rj9emUL6Y1YaGBRYklqfzda3xaA1aUgpTaLm6pUxDmRA6gRENR8jn0qN/cTZKxf0UpVPPuR7nk88/6078qiuiUqhk+lOhupDzb5yXcxYmH6rsiLSo0yIyizMrZRyU6cpY0m0Jjdwa8cEpqct1Pf26FNT4y8/ojfQbeNp4Eu4fXilrpYl7EwyiAfP8YnIsYOWNlXTe0FmepAOk/sKiqqDbbPMvh1q1+PCWHScTTrIpepO8zSAaEBDIL5dsfue0nUN6cTo5pTnYmNlgbWpNgbqAxm6NOZV4Cm87b/m+32n1Di71mkguT6tWwa5d0KMHBbZm1L0n0Xm6+Xejg08HVkWtIr0onUtjLrG4++Jq3wdHC0fszOyIzY3F2146TwV96nm427jzbc9v8bX3JbUwlfEHxmNnZseuQbtImp7ERx0/wsvWiy9H1aFV91TsilWzOSkAACAASURBVDVETYji9ZDX/+WwvT+K04mnOR5/nI87flyFnuXr4EtifiJHYo/gaeMpZ7e8DL9FnbI2tcbcxJw2NdsQ4hoiGx+A5Kx3O/N2VXG+paVUZPw/9s4yPoqzbfv/WY8rCWmMkJDg7hI8SHEoXihQKHrfdWrUkOrdAi0trsVaJDjBCRY0EDSEkBAhxHUjq++HYQeWBEr73E/79vnt0S9l5JrZmU1yndd5SPnT3dUqITRUpJDm5//+sTbY8L8AW6Fhgw1/AToEdkAtV/+fok+dSTuDk8qJetXqceH+BbR6bSV9hslsYmf8TgaEDag8YcjNZUPafkwCjO725nNf98dzP1KmL+Oddu8wuflk7hffp6VvS369/itl5SWinW2LFvDyy1bnLb+0nBMpJ1jSZwl2SjHp98VaLwJi0q8gCKy6vIqjyUdxUjlJwXcWmM1mJu2aRFxmHFuGbuFY8jHK9eV0CuzEufvnGFl/JIvOL5IKgCbVm7Bt2LZKDlwWrL68mt23d7Os7zKJijJj3wwuZFxAePifQqYgelw0davVBcRuSuc1YjE3sv5IckpzMJqNCIJAuaGcVf1WAbD4wmLWx60HoF1AO6v3cdm5lIZ54j19e+ZbK5MCV40rUaOj6BPah0G/DmLJhUd5EJbzf7vxG0PrDuWtNm+xPHY5A2sPZP/o/WRps/C08+TjYx9zJu0MpyecZlnfZcgFORqFhjUpO7jsUgZmCPv0B6oZxHfgoHQgcUYirf1aM2zrMFosayF9V9RytTSRB6z+34I7+XdIL0qnml01inXF4rt6YpKnN+mRCTLa+LUhuzSbpReXkjA9AZkgI7csl27ruknPIdg9mC5BXSpdp31ge3YM34GjypFsbTZKmZJXdryCg+qRUL3cUI7ZbKam6yO6noPCQeyeZGVQ5KRk1tFZtPFrw87hj8Iha2eDo6CWvitnMs+je20ifS4Wc+XqQWkSaq+wl/Qf5cZy5IJcEiVfzbpKZkmmFA56M/sm9bzqSXqAfmH9mLhroqifEQSYMAGuXYOGDXEpqqD7iQxOXd5Fo8WNOJlykmY+zcjSZqEz6io9CwsEQSDEPUQsNB4WNPcKHxUaZfoy1l5ZS7uV7Wi6tClavVai8hVWFNLGvw1KuZIHJQ/otb4X71z7jtcLa3P6Zz217KvOqPjfgNls5qMjH9HUpykDaw+stD/INYiiiiL23tlLRHDE7xY/lkWLpyG7NBsvBy/xWEFgRssZ7Lm9h7v5ootZr5BeVLOvVrmrYf9QF2JznrLhHwRboWGDDX8B7JX2dAjs8H+q0IhJi6Glb0vkMjnHko/hqHKk2QvNrI45n36ejJIM+teuQp+xeTMrG5noe1dBtb7DK++vAiW6Er478x0TmkzgBacXaOLThJa+LXlQ8oBiXTFXv3oTYmNhwQLRzeYhMoozePfgu4xrPM5qEmmhgsTnxmM0GZmxbwbjG49nUJ1BVja3APNj5rMubh0r+q1AZ9BRUF5Aib4EBDG8rMxQRkZJBnqjniDXIPaP3m81CX0c9wru8e/9/+aVxq9IgX4br24UC5WHBYZSrmRQ7UHSyndGcQad13RGqxfFoJuub5IKkApDBVGjoyTaWucandl4fSOA1AkBUdRbLNOj05VS060mJrOJV3a8YjUp0ig0bBq8iWktpjF5z2Q+PvqxtD8mLYa0ojSG1hvKjJYzcFI58cXJL+hWsxvnJp7Dy9ELtVzNu4feZeHZhbza9FV2jthJpjYTLwcvzDJAgO4vgyYzG5cKgZyyHOr+VJeYtBhKdCWi684AsTtVYaygoOJRQN/TVomLdEVkl2VLnYwWPi2oZv8oGdrTzhOT2cSEJhPErInY5Ry4e4DRDUYDcPLeSRoubij9fHo7ektjWcL6Dtw5QDWHauwduZcsbRYBzgGSW5AFuWW5LDq/iKWXlkrbLmRcwMvBC2NOFg/Uetzs3Ng1YhfVnR4JyRs8ABe5o1Rg6ow6jnevhaBQ0P1QEkkFSQgIOKudUcqUmDEjIIjZKiYjKrmKi/cv0m9TP6l75qx25k7uowJgfo/59Antw+BfBz/6PeTvD3v3crJLCM6lBoLb92NQgoK4KXGcnnCa9gHtGbh5IIl5lQMQLbAUGl4O4rtPKUzhZvZNXt//Or7f+TI2ciz2Snt+e+k3Ut5I4crkK7iqXYnLjKP50ubMj5lPo8WNuPLgClGjo/h6xi5UD7Jh0aKnXvO/jf139nMq9RRzOs+psogIchMtbm/l3HoufcbzUKce/36OaDACV40rP53/CQClXMnIBiNZf3W9lYMZDg9/n/wRQbil0LDpNGz4m2ArNGyw4S9CRM0IjiUfk1Yc/8l4MqjvaPJROgR0qEQ1irwViae9J23921YaIzbyZy77wHj3rqBWV9pfFX4+/zNFFUXMbD9T2ja52WROpJygnWtDan23BkaNgjZtrM6bsW8GaoWabyO+tdruYSeGpyXkJpBTmoOfsx8Ley2kf1h/bmTfkJJ7DyQe4O2Db/Nu23cZ2WAku2/vFh2d7KoRfS+aQbUH8UbUGwB42ntyeMxhPOw9qvwMJrOJ8TvH46pxZX6P+YC4+mxJ9AYIdgsm1D1UKlQyijPotKYTWp2WvqGihWr9avWl+1PKlUzZM4U7eXewV9qzdehW6V1YKDYAsRmxAKQry2nj24o1A9awN2EvC88utLpHuUzOgp4L+LLrl8yOns3EXRMxmAxsvrYZH0cf2gW0w0ntxDtt32H5peXcK7gnhtVNOENEcAQgJmcvPr+Y3rV6c3TsUUlkLiAQ5B7EUFMdlAaxcMjUZmKnsKOVbytOpZyiTrU60gQfHjk0WQoNizDaTmFndZxlv5PKyco5ySKyr+VRi9eav4ZSpmRc5DjeaC2+MxMm6nvVp8cvPXgr6i1i0mKo6SZ2JSyUq3kn5wEQ5hnG9mHbSSlKwV5pL3VR3DRuyAU57x54l/kx86VrJ+Ylio5YJSZkntXQ6rRi6vpDahuAUQ7OCnt0Rh1mzPg4+rAr5xSGUSOYeh7kRvGzPdA+wNvB2+qzXs26Sh3POvx4/keuZV3DTiF2irK0WTT2aczK/iulZ7xpyCa61+xO/039JUeryPgdTGuUjgAIgYF8+cNNav97NqqCYrYM3YK7nTt9Nvax+h49jhD3EBLzE6kwVuCmcePrU19T96e6bLi6gYlNJ5IwI4GDLx9kSN0hqOQq3OzcWNBrAeWGckr1pbwR9QbeDt7ETYkTvzshIWK35YsvoLCwymv+N2E2m/no6Ee0829XSYNigSVLA0QXweca9xnUqezSbIm6B+JC1KtNX2VF7Arpezu20ViytFlEJUY9OvHPdDScnKB6dVtHw4a/DbZCwwYb/iJEBEdQZih7ptD2n4KkgiSytFm08WsjWk+mnqpanxEfSd/QvpUKEG7fZqXiGtWLoeegdyudVxVK9aV8e+ZbXmn8CgEuAdL2YfWH4ax2JiypCFWZjqxZ1jSsyFuRbL25lYU9F1pZhAKSNqBIV4TepGfj4I04qBzoHtwdtVzNzvid3Mm7w7Atw+gR3IN5XcXJ5p6EPShkCtoGtOVu/l1u5NygoLwAjVzD0bFHq7TxtWDRuUUcSTrCqv6rcNG4oNVpab+yvUSJqe1Zm5PjT6JWqDGZTVIno6SihK41u0pOQ3GZcbTzF2lR3/X4jnPp51h6aSl+Tn44a5zRKDTIBBn9NvaTJi+xD2LxUbhzvRo0d6hF71q9eb3V67x76F0uP7hsdZ+CIDCz/UzWDljLmitr6L+pP5uvb+alui9Jq+bTWk7DRePCvBPic3FWOxM5PJL324si/Cl7p/D9me/56uRX6E165IIchUzB3YIk5vok0FItTuB66AIoM5QRnxOP0WykzYo20rtSCAorYTZAqUH8POWGcqkQeBxH7x2VOj+AxLn3cvDinbbviJNAQbQVru1RG4PJwKj6o/hPxH9YeHYhCXkJuGncJKpWgHMAFzMuciP7BgAda3RkZf+VVsWMRqHh/fbvU2GqkFyFQNSZ3MtLxq0c3PxqUWYoIzYjlql7pkpFUokKNHKNlAni5+zH/jv7Mc+YgU8J+JSIFLOGXg0lEbybxg0XtQuXMi6hN+lJLkjG18lXojp52nuyd+ReKdk6rSgNlVzFlqFbCA8Mp8+GPnRa3YmBmwdSWuMFMp1kePcZBmvXwt69ULcu7vuOsWfkHjJLMnnpt5esV9cfwl5pT1pRGn7f+fFA+wCdUcemwZtIfSOVr7p/ZaVFsaDlCy1xVDmSX55PixdacDXrKrOPz340/qxZ4mT6P/+pdO5/G9tubuNSxiXmdpn71E6Eu507CpkCf2f/py4gPI4nNUJPIkubhZe9l9W2Kc2nUFheKFEeG1dvTAOvBtZBh3+mowE25ykb/lbYCg0bbPiL0MC7Ad4O3v8n6FOW1djWfq05n36eUn1pJX1GfE48t3JuVek2Vb5uFesbwpi7jijCO1XaXxWWXlxKbmku77V/z2q7vdKesYH92aVK5stwGb/kHZP2FZYXMm3vNF6s9SJD6w2tNKZFqwGiHqCpjygOd1Q50q1mN7be3Eq/jf3wcvBiw+ANyGVykguSuZ59nWJdMUaT0UrPsX/0fupUq/PUz3A79zYzD81keovpdK3ZVRR/r+lMXrko/g71COXMhDN42HsgE2SU6ErosrYLxRXFNPBuwC9xv0guX8PqD+PddmKR1i2oG9uGbSMpP4liXTEms4kSXQlhHmHcyL7B6G2jMZlNxD6IJdg5kHIltDD5APBlty+pW60uw7cMR6urPIF5udHL7B6xm6NJR8nUZkodC8tzerftu6y8vJLkgmRAtMCd13Ue6weuRybIePPAm0TeikQhU2AymyQbz4lNJrL7szsE4ErYpRReqgih3FjO661eR2fUSe5FBrOhUtBbqb4UjVyDRq5BhkwqfKrZV0NAqOR8FvdAtDH2tPMkwCWAMQ3HIBfknEk9I1HLPjr6EW+2eZPZXWYDIuXJIoD2d/FHQGDWkVnSmKMbig5UFhSUF/BBhw+kxHN4NOH00iuRmyHOkI5CpuDr018TlxkndVpKVCB/mK8R7BZMYUUhCXkJLCo5ym91IMNJdHmzdBVa+bbCUeVIqb6UXbd3cSP7BgICKYUpUuHl6+SLg8oBN40bdgo7KVhPLVczIGwAepOe6HvRzO48m7GNXuF0TSVER4vaphs3oHVrGDyYWtNmsa3HSo4lH2PGvhmYzWYqDBVsuraJzms68+ERMWm9T2gfhtQdQqBrIMPqD0OtqNylNJvNrIxdSbNlzcR8F0FO39C+/NT7JxZfXEy3dd1ETYmvL8yYAd99B1lZlcb5b8FoMvLxsY/pXrM7HWt0fOpxJrMJs9ks6Sp+DxZjh6fhyY4GiPSsvmF9+fH8j5jNZgRBYGyjseyI30F+2UMh95/paIDNecqGvxW2QsMGG/4iyAQZ3YO7c+DuP7/QOJN6hlrutfCw9+BY8jGc1c5WWgAQQ/rsFHaVqQYmEztPLCPfDsbVHmGlpXgayg3lfH3qa15u9LJEaXkcr21PIdsBjg5pZrUC+P7h9ymqKOKnF3+qcrWyqFzk2NvJ7TCYDBhNj4LW+ob25XTqadKK0tgxfAeuGtEVa8/tPcgEGU5KJ44kH5GoM4PrDH7mZMVgMjA2ciy+zr6SK9G/9v2L8/fPA1DDtQaXJl3CReMiHb/r9i4Kyguo7lSd6HvR9AjuwZm0MwB8F/GdNAGv5lCNniE9CXILIqMkgym7p2AwGWhcvTEbB29kR/wOZh6cSWxGLM7OnshM0LhQLLLUCrW4Al2Uyr/3/7vKe+8R0oO+oX2RCTLeiHpDCi8DmNpiKu527syNnittS8pPYtXlVVJRYcKERqFhSZ8lpL+ZjqvGlcUXF/Prjd/o2XQoUe28WfvNHZqXOLMubh2D6gyy6mIYzJUD+8qN5ZQZyzAhFi8edh5kl2ZjxsyNqTcIdAmUJvpGxPfacnlLVsWu4o02b5BXlkef0D5surYJjVxDenE6iXmJpBSmPHJq0hUhIBCXGYcZM9tubePC/QvSPYxqMEr6/zJDGdtubrMK6zNjRilT4lwsTv4v6u4R6h5K5K1IXmv2mkQJ0ypB9/AzdgvqRkJuAnJBzvyz8/m0E8jM0KPAk5SiFPqG9uXNNm+SWpSK3qTnbv5dfB3FTBGjyUj3mt0BuFckirIFQcDfxZ/UwlTu5N2h69quTN07lWH1htHarzXfnP6G3LJcogOBCxfE1XIfH4iMhPXr4eBBOkVMYkn1iSy5uISua7vi970fI7aOwGgy8mOvHwEYVGcQDb0aVuk6BWIhNmLrCCbsnMCI+iO4OuUqb7d9m3kn59EjpAdHxx4lPiee5kubc/H+RZg5Uww3/OKLKsf7b2DjtY3cyL7BnC5znnncxYyLGM3Gyp3ZZ+CZ1KknNBoWTG8xnbjMOE6knABgVMNRGE3GRwGUf7bQsHQ0/g/Zq9vwz4Gt0LDBhr8QETUjuJRxycrp55+Ix4P6nqXP6BHSo3KC7okTrPTPpW0K1B75L54HK2NXkqnN5IP2VYTeHThA3d+OEW5fhyJzuWQLeSrlFD9f+Jm5XeZaUa0sMJlNUuheXa+6GM1Gjt87Lu235EVMaDKB2p61pe27E0R9RoBrgBV15nFL06rwzalvOJd+jjUD1uCgcuDXa7/y43lxkubt4M31qdclTUZmSSa3cm5RYazATmFHSmEKrfxaEZUYxYQmEwBw1jiTXZqNSq7CSSXa+JbqS+kb2lcSIzep3oS+YX35vsf3fHvmWzK1mehlZurlynBIe7RSHOYZxg+9fmBF7Aop3fpxGE1GolOiGdtoLGbMtFnRRtJ7OKgceLftu6y6vIrbubf55OgnhP4YypFkUQNgcRkq0ZVwI/sG3o7efNjhQwRBYPjW4eiMOuKNmWQs/54dP+RQLb+CS/cvWnUGfg8KmQKdUSfZ+zqpnaTtAoJEUUoqSGL8zvF0W9uNxtUbE5cZR8caHaVrvRn1JsfvHcfP2Q+FIH6f5YKcYl0xckGOt4M3Hx15lK2y9OJSK9vXqXum0r1md+kzCwh4OXjh8dApt8BRTk5pDiazibld52JCLMRKlaA1idqtUQ1HYcZMoGsg6cXp3K4up2MyjDuSh1KmZMPgDQyoPUAKHQRIL0kHoIVvC7YP346nvSc5pTkSjcrXyZdDdw/R4OcGJBckc/Dlg/wy6BeiRkdRt1pdll5ayu4aOjAY4IxYyCIIMHIk+rjLpDcKYvykn+l3C44mHaWNXxuuT71O9LhopraYir3SXrK4zS7NrpQsfjr1NI0XN2b/nf1sHrKZ5f2W46ByYFb4LLwcvJixbwbt/NtxYdIFfJx8aLeyHWvT9sDbb8NPP0FKynN/F54XeqOeT459Qr+wfrT0bfnMY6PuRKGSqyplhDwNz6JOlRvKKdYVV9kd6VazG2EeYfx4Tvy9UN2xOj1Cejxyn/qz1KlataC4+H+1O2SDDU+DrdCwwYa/EJbVfUs40z8RpfpSrmReoY1fGyoMFZxOPV1Jn/Gg5AExaTEMCKtMm0pd/xMHgmF8th/Ur5yt8SR0Rh1fnvySEfVHUMujlvVOvR7eeAM6dGByz4+4mnUVV40rqy6vYuKuibTybcW0FtOqHHdBzAKiEqNQy9W4alxRyBT8EvcLAL9d/435MfPxd/a3suvU6rQcSTqCVq+V+PoBzgH0CO5RJRfdgrjMOD459gnvtH2Htv5tic+NZ/hW0WnLWeXMjWk3pIIssySTzms6ozfqJfpFkGsQMWkxRA6LpPkLzZELcuwUdtLKqCAIVBgqeFDygIG1B0qr2qlFqQD8q9W/6BcqulvF596meYkzpKZa3eO4xuMYVm8Yk3ZNkmhQFpxIOcGDkgdMajaJU+NPEeASQPjqcA4mHgRgSospOCgdaPBzAz6P/hwBgYlNJxIzIYbcslzebfsugS6BzD87nyG/DmFwncFSqvvqK6uRCTL21VXhvmkH+1bpKMvOwF3zfLkqIHZ/3DRuDK8nPtOJuyZSbihHJsgwY5bcuYbWG4q3gxiAGPsgluTCZBwUDmiUYoGy+/ZubmTfoMJQgZ+zH44qRzYOFt27jGYjMkFGVGIUx5OPU24oZ0XsCiloER66X2mzSS8SJ/5mzOiMOvz1YvfIK6AOWaVZUuq2ziAWAqVK0D5MP2/+QnOa+TSjsFwUQhvMRjQmgUHXTXxT93UcVY7kluZW0qao5Cp6hvREJVdJYZLJBclcyrjElQdXiMuKY3qL6VydclX6PeSkdmLfqH142Xtxx83M1VouIn0KsSv1weEP8N/YAr925/j4tVA27ndgwF0VRxIOoH9474IgEOwWbGVxm1IoFgZGk5E50XMIXxWOr7MvlydftqIwOqgcWNhzIXsT9rL91nb8nP04/spxRjYYydjIsbzeKAO9mzN89oii9t/CqsurSMpPYnbn2b977IG7BwjzCONewT2pS/csPIs69XhYX1XnTW85nW03t0lUtzENxxCTFkN8Tvz/rKMBNp2GDX8LbIWGDTb8hfBx8qGhd8N/NH3q4v2LGEwGWvu15lz6OcoMZZX0GbvidyEIAi+Gvmh9cmkpa+9GYqeHoe0nPdf11lxeQ1pRGh92+LDyzsWL4eZNWLCAQXUGiwF6LjVYEbuChLwEMcdBVnllPDYjlpmHZvJG6zdwVDliMBlwUjmx9eZWzqad5ZUdrzC8/nCmNJ9CVGIUZXpxSfpw0mFpldiMmeY+zUkpSmFK8ylPvX+dUceY7WMI8wzjs06fodVpaba4mUSrufTaJUn4nFmSSZe1XXhQ8gATJuyV9qgVahLzEzk85jB9w/pSVFGEs9oZQRCsuN6WiUmAS4C0ov/DuR9YFStma7TwbYFCUJBSmMILCrdKhYYgCCzusxhXjSsjt46Uwu9ADOkLcAmglW8rvBy8ODL2CB0COtBrfS+m7J5C6A+hFOmK0Bl1olvOO1ks7rOYPQl7AHin3TvET4+nXrV6bL25leFbhtPcpzkKuYKFPRdiMpv44uQX6HpFUGPzAfZsVpCZm2LlKPUs1HSrSZmhjNVXVgOwM34nhRWF0sqyWq6mumN1jicf59rUa6wbuI46nqKWZs+dPdKk3tJhiM+Nx4SJrkFdGVBnAA7Kh+5fJRnYKex488Cb/Hr9V3LLcnmj1RtW93I58zIbhmyQ/p1XlkdHBzHg7Xz5XemezqSekexxy5RQaijDUeWIUq6kV0gvcstypTGO+ZspU8K/LirQ6rT029TPatXc086TVr6tuJ59HUAKx3z/0Pu0XNYShVxBdcfqfBPxTSXLZVeNKx+FfwQCdBtaxpnoDfT8pSfBC4P56fxPvFT3JeKmxPH54njs4+/yS3lvQu9X0PfHtmQkioFyFotbS+cwpTCFtKI0uq7tyifHPuHDDh9y/JXj1HCtUend9QvrR5/QPvx7/78p0ZWgUWhY0W8FP/b6kUVXltFjhhvZv66CW7d+51vw/Cg3lDM7ejbD6g+joXfDZx5bWF7ImdQztA9oT4VRLOafB0+jTlmMAqqiToHoNmWvtJcybPrX7o+L2kWkhKrVItX0j3Y0goPFDpVNp2HD3wBboWGDDX8xutfszoHEA88UC/7/jJi0GByUDtT3qs+x5GO4qF1oXL2x1TGR8ZF0COggBdFZYIrczsp6Ol66AU4jx/3utfRGPV+c/IIhdYdUFlnn5sInn4hWmE2aoFaoGd94PLfzblOiK2FInSE08G5QaUytTsuIrSOo71WfL7p+gZ3SDr1Jj5PaiaKKIvpu7EuYRxgr+q2gf+3+lOpLOZx0GICtN7ZajRXiEYK/s3/lguoxfH78c65nX2ftgLWo5CrqLKqD1qBFQODI2CMEuwcDohNNl7VdSC9Kp6iiCCeVk2QBenLcScki2FJowENR6cMJi6V74e/iz528OyhlSiY1ncSru15l281tXMm8Iq3sL3/hARlZdyvdq6vGlQ2DN3Au/RyfHRNXkQ0mA1tvbmVo3aGSzkVv1BMeGI5SrmTxxcWkF6czov4IvO29pXGKKor44dwPvNbsNTztPVEr1FyYdIFmPs04d/8cCXkJ7EvYx7gm4xhRfwRpRWn0Wt+LotZNaLbpOJv32lfpcvQkJjSZwO3pt8l4K4PpLaajkCnQKDSUG8opf9glyCnLoa1fW4oqivj61NeMbjia61Ov833E9+JnfEIDUqwrJq0wjV4hvVDIFPQM6SnR0xyUDlzKuMTMgzPpFtSNul51kWNdzP7nlOiWZMm6eEGnpkgNBeZSzJhx07hxKvWUpLEpU0CpqVx6l252btJYMmSUaGBlYzAu+Zlxm4ZzLeuapA2SCTKKdEXU96rP1cyr4j0+LCYib0Uyp8scZoXPEsMdH9MgPQ7LpNhsMDCoeSK5+fdZ0W8F6W+m80PvHx79HHl54fDrdnaFL8aoq6D/t80o+2U1IW7BJOYn4ufsh0yQEXkrkkaLG5GYn8jRsUf5rPNnT9U3CILAwp4LyS3Nlb5zgiAwreU0Do85zDVVAc0ny4idO/3pX4I/iCUXlpBRnGEl5n8ajiQdwWg2Snk3j+uTnoZnUacsAYpVdTRA7DKNbTSWpZeWUmGoQKPQMKzeMNbFrcOEWexq/NGOhkYDAQG2joYNfwtshYYNNvzFiAiO4H7xfYl680/DmbQz4uq4TMHR5KOEB4ZbdQ2KK4o5dPdQlW5TJyIXctcdxpsbg9/vJ/+uv7qepIIkccX1SXzyCRiNMOeRkPPVpq9Sqi9FLsifSnF4ff/rpBalsnHwRtQKNXYKO/RGPUqZEieVE4UVhUQOj8ReaU8dzzqEuIewM34npbpSNlwTV6odlA6EB4Sz49YOXmv22lMnUWfTzvLFyS/4pOMnNPFpQtsVbaWCYEW/FbQPaA+Ik49OqzuRUphCYUUhfUL7UKIrQSVXcXr8aasiy6rQ0D7qaFjoKv7O/twvz+PlQgAAIABJREFUvo+7nTs/vSiuSI/YOoJTKafwsPNAIShQyBX0bXyjSpeptv5t+azTZ8w9MZdjyceIvhdNljaLofWGEp8Tz7Q90/D9zpcPj3xIuaGcFxxF5yRvB2/e6/Ae6+LWkZCbwJILS9DqtLzZ5pHdsEahIXpcNC19W1JUUUSFsYK50XN5u+3b0vPquLojGWG+JH/yOpb5mrO5IQ0M82lj2EUDw3yczeIq9Pgm46WulVwmp5ZHLVRyFfffvG/1me7m3+VQ0iGa+jTl+5jvuZ1zG0EQeL3N64QHhlOvWj0G1x5sdY4Jk1QERgRHUKIrAaCVXys87Dx4oH1Aia6EhNwESWz+Vpu3UMlVnM8QBf4WV7PEhLPkPjQ4C3YLxlHlyNHko+hMYnesXCEWdBbq0eM6GRMmWvi0YHEbBbL8Aly27sFgNGDGTNegrpjMJil/43bubV7Z/gqLzothd33D+vJe+/cIdAnEYDKQqc2UxjWYDOyM38mLG15k0i6xuzjCoyOu5WLmRqcanZ4aOOk78jV2jTvAdS8Yu3Mcr807QHlqEqX6UuwUdvx84Wc6BnbkyuQrhAeGVznG4whyC+Kj8I/4PuZ7rmVdk7aHB4ZzcdJFqrn70S7wMBt2zn3GKM8HrU7LvJPzGNtoLKEeob97fFRiFKEeodLP6pO0wqrwXNSpp3Q0QLSNztJm8duN3wAY23gsqUWpHEs+9ucKDbA5T9nwt8FWaNhgw1+MDgEdUMvV/0ibW0tQXxu/NpQbyjmTdqaSPmP/nf3ojDr6hz2RBp6RwUr9OUJyoUOfqnUTj8NgMjDvxDwG1B5Qmd5w7Rr8/DN8/DF4e0ubLdoXDzsPdt7eWSm5ecuNLSyPXc7CngulfAF7pbhynlOaQ6m+FKPJKAl8BUGgf1h/dsbvpMvaLhKdSKvX4u/ij96kZ0LTCVXef6m+lDGRY2jm04yZ7WYyYNMAYtJFW+DXW73OuCZiRydLm0Xn1Z1JLkimRFfCqAaj2H9nP05qJ7rW7Iqvs6/VuEUVRRI16vGORkphCtXsq2GntKOgvABfZ1/kMjlrB66lY2BHMkoyyC3LpbFPY/b4vE28i4FRW4ZXucr9Xvv36FijI6O3jWZ17Gq8Hbz55Ngn1F5Um1/ifsGMWaRzDFhL2ptpLOq9iAVnF3Ay5aR07Hcx3zG20Vj8nK0LSnulPYfHHJYEuF+e+pJDdw/h5eDFsHrDyNZm02p5K2Ze+55XggfjbG5IY+PPuNMSNV6405LGxp/p7jORFf1WVHITM5vNuNm5WYnJ7RVi0RifEy+6cS1pzMyDM7lw/wIftP+A69nXGdVwFE+i+7rudFnTRUw1x4yr2pWoxCiavdAMgMsPLlNn0aMiUECQXJgAqdh1LjGQ5yD+uS3RlZBdms2VB1ce3fPDv8S1PWuTU5oj2SVbsLjPYgxBgeyuBf86a8ZgMjCtxTR2jdgldVoOJh7EaDay5eYW5nQWi+/Hu1wg0uvSitL49NinBC0Iov+m/mSWZEqF3msvL+DwdifUFQa6rO0iFa9VoWndrqwfsYUt9QRWOMTz6yYzrb4No0xfRkvflmwdurVSbs2z8Hbbt6nlUYspe6ZYLRL4u/hz4vWrvJTmzKjYj3gr6i0rWt8fxcKzC8kvy2dWx1m/e6zZbCYqMYoewT1wVDniae9JUsHvdzTg2dQpR5WjlbX2k6jtWZvuNbvzw7kfAGjj14Za7rVEUbiDwx+nToEtS8OGvw22QsMGG/5i2CntCA8M/0fqNFIKU3hQ8oA2fm04m3aWckN5JX3GjvgdNPRuSJBbkNX2og2r+K0ejLsqRxgy5HevtfnaZhLyEviowxPdDLMZXn9d5B3PmCFtTi9KZ+ahmXSr2Y2s0izKDeVsubHF6t4n7prIS3VfYnyT8dJ2O6UdWaVZFFYUSs5Rv13/TdrfP6w/mdpMzqafBaCma000cg3n0s8xuM5gqjtWr/L+Pzj8ASmFKawZsIYJOyewI34HAJ1rdJYSyrO12XRa3YnE/ET0Jj3jGo9j47WNvBj6Ik2rN62yU1KsK7buaFioU4Wp+Lv4U1JRgsFkINRdXK1VyVXSRPJa9jVqutakUXA7Nm+BXXf28s7BdypdQy6Ts6TPEvLL8ll3dR2Z2kzuFd6jtmdtinRFDK03lNszbvNyo5cRBIGpLaaydehWdt/eLQqor20ksyRTyvl4Eo4qRw68fABfJ7GImnloJg5KBy7cv8Dp8acpKC+gVF/KyDavUVuYimAWEB7SkwTkCAjUV1Z2LHucsmIym6R8jVJDKVOaTyHj7Qxmhc+izFDG4ouLabGsBZN3T8bbwZt3D1rfa7BbMG4aN44mH2Xg5oGoZCpcNC4YTAaOJB2hhksNDGaD1YTyVs4tJjabSC130bSg3CBStzzKIFtjoln1ZmRqM6WgQct7tKCJTxO+P/N9pUnquqvrSMxPZEFraJAJP9gN4odeP2CntJMoPYn5iQDM6zqP99q/h0yQSVazPo5iZsq0PdMInB/It6e/pVdILy5MvMCFSRcYVm8YAGUmHS80CefIOZFi12VNF0nYXhUG1B7AF12/4IuWFXQcD6r7mWw+6oFvEU8Nv3saVHIVi3ov4mTKSeuQOsDOzonVLy5n/j5YEDOfnr/0JKc05w+ND6LF7tenv2ZSs0lV6kWeREJeAskFyVJ2TJBr0P+YOvU0a9snMaPlDM6ln+Nc+jkEQWBMozFsvbGVEif1n+9o3LkDpt8Xs9tgw38TtkLDBhv+BkQER0jONf8kWDIcWvm14ljyMdw0bjSq3kjarzfq2X17d5VuU79G/0yFHMZ4dwfXZzsKmcwm5p6Yy4u1XpRWjyXs3AmHD4thXioVIK48Tts7DQeVAxsGbcDH0QdfJ19pwmIwGRi1bRTOameW9FliNQnSGXXcL76Pi9qFt9u+Tbea3Vh/db20/1jyMeDR5KHcUE4b/zYk5CUwtcXUKu//aNJRFpxdwJzOc/j61Nesi1sHiA5V24dtRy6Tk63NJnx1OAl5CchlckbWH8mqy6uY3Gwyvw75FaVcWSX9y0KdMpqM5JXlPaJOFaUQ4BIgdU0e183cyrmFUhDHi0qM4q4b9E6AhcHT+T7mexadWyQdm1KYwsyDM2m9vDVlBlEE39CrIXdy76Az6jgw+gBrBqyppL8ZWGcgh8YcksSuPk4+lV3CHoOz2pntw7YDYKewI7UwlbisODZf30yxrpgwzzD6b+qPxhyE8ITVrYCcpMyyp46tN+oxY7bSTjhrnFHIFHzW6TM6BnbEx9GHfaP2EREcgVav5U7+HasJYnJ+MsdeOcaa/msIdAlEZ9JJDmQGk4H88nxpZT3AWRRBH0k6wp28O+wcvtPqfnwr1OTaQ4lepF/ZK0T3IDeNm9VxrX1bS9bEFvg4+vDj2R9RyBQcCYLUABemnTFixsySC0uIvBX58JkIuGpcSStKQy6T4+XgRW5ZLp8e+5QWy1oAoph9Ue9F3H/rPkv7LpV+tiyr62WGMujYEf9jlzgyMgqdUUfXtV2fKoDOLc3lVOopAIwyGObfm4irpaz68DysXv2Hcxu6BHVhVINRvHPwHXJLc632CUOG8G9DMw6er82VzCu0WNbCqiv0PPjP6f9QYaio2liiCkTdiUIpU0qLKUFuQc/V0XgWdSpLm/VcwX+9a/WmhmsNyer25YYvo9Vr2Rpc8ec7GuXlkJb2x8+1wYb/AWyFhg02/A2ICI6gzFDGqZRTf/et/CGcST1DsFswXg5eHLt3jPDAcGnVGOD4veMUVhRW1mdcucLKamlEJILfsN93m9p6Yys3c24yK/wJekNFBbz1FvToAS8+EmBvu7mNHfE7+KHXD1RzqMarTV8ltyyX4/eOk1yQzNzouZxOPc36QeuthLaphalcy7qGRqGR/viPbjiaEyknuFdwj/Vx6/n42MfIBbm0yny/5D46o4561erRIaBDpXsvqihi3I5xhAeEc/H+RckJyU5hx+Gxh3HRuJCtzab9yvYk5CbgpnGjd0hv1satZU7nOfzY+0fkMjkyQfb0QkPlTG5ZLmbMVtQpf2d/zqSKxWA7/3bSObEPYglyFztMLhoXukW/yn0nmGZsxuutXmfGvhl8e/pbhm0ZRs0FNVlycQnjm4yna1BXZIKMuKw4RjcczdUpV+ke3P2p7619QHveb/e++JyK77M7fvdTjwXRCatetXqo5CppdX/moZl0COhAzPgYanvWJt94EzPW9C4zRjxcny4UtxRIRoxSHsaGOFFfIwgCC3ouICEvgZvZN1nSdwm57+ailCmttEZGjHRb240QjxDu/usun3b81OoaRRVFeNqJxZbFQrnCWEGTJU2ISYuxOtZFa0Dl5UN8bjxuGjdJpP7kyndeeZ7VSn2IWwhZ2iwMZgMGkwG5TM6tERGwcycjvm7F5D2TGVF/BK4aV5RyJXqjnssPLhN1J0qyzv3q1Fd0r9kdP2c/RtQfweTmkyt1UuwUDwsNfRmEh0NpKUGJeRwZKwZSdlvbrVL2z9GkozRc3JDTqafZ8tIW7BR2zDUdZfHaf7MzDBg3TvwZ/YMT228jvkVv1PPB4ScycwQB5s2j854bXAj6EjeNG21WtGHTtU3PNW62Npv5Z+czveV0fJx8nuucqMQo2ge0l6iUQa7PV2jAs6lTTxOCPw65TM60FtPYfH0zWdosAl0D6VSjE2sC8v98RwNsOg0b/nLYCg0bbPgb0MCrAd4O3v84nUZMegxt/B/qM1Ir6zMib0US4BJQyYXq5vr5nPGH8bftoXfvZ17DZDYxO3o2EcERtPJrZb1zwQJITha7GQ+7EgXlBUzfN51+Yf0YXEcU9L7a9FV0Rh0qmYq50XP5PPpzZoXPkgSdIGooBmwegEKmwNPOUyqYBtQegL3SnrnRcxkTOQalTMlLdV8CRO2Hu8admLQYpjSfUiU95K2ot8gty0WtULP5hpjoKyCwZ+QeQtxDyCnNofWK1iTkJRDgEkBTn6Zsv7WdFf1W8GH4h9KYzyw01M5Wfvxms5mUQrGjcSVTXOV9vBMUmxGLm8YNO4UdR8YcQW82EPGKnAfJ12nq0xQXjQvvHHyHmLQYFvRcwI1pNyjVl3Io6RDV7KsR7BYsUcd+792tjRM1IUqZksG/DeZ06ulnnjO03lCMZiMe9h4ICJgRdUChi0KJfRCL1nEHZjH3GhCLDDNmQmulVjmeGbMUGGcym6QQvy03t7AvYR8Ajao3YlLTSXx2/DOytFmU6cswmMTJvLudu0RZyy7Npt3KdoT+GEphRaF0DRliPkdOmRi+t+3mNkBMWR9cZzDjdlo7qrmXmsixE+2MS/Wl0nu1uE4BqGQqPj/+ufTvavbV0Oq1UtL4S3VfomNgR97xukyexkyP/QkcGXOEZf2W0TGwIzqjDq1ey+G7h+m5vqc00V0zYA0r+q8g2C2Y9OKqaVBWHY2mTUUdwPHjhLiHcHjMYXJKc+i+rjt5ZXnojXo+PPwhXdd2JcwjjCuTrzC47mDaB7RHJsj48fY6xgw0k7VpJVy5AvXqwYoVz93dqO5Ynbld5rL00tJKBRvdu0OnTgR+voBTr5xgcN3BjNg6gncPvvtURy0Lvjr1FQICM9vNfK77qDBUcDT5KD2Ce0jbarjWILUw9Xc1Is+kTpU+H3UKRLMDuSBn2cVlgGh9e9StgHv6P04bo0YNUChsOg0b/nLYCg0bbPgbIAgCEcERHLx78O++ledGuaGc2IxYWvu2JiYthgpjhZU+w2w2syN+B/3D+ltPwA0GVt3+FfcygX6Nhole8M/AzvidXM26Wrmb8eABzJ4N06ZB3brS5pkHZ6LVaVnUe5F03QCXAF6s9SIOKgdWXV5Fa9/WVs5VZrOZibsmcjP7Jl2CumAym6RzHVWOdKnRheWxyzGbzewduRetXqQqlOhKqOVRC41Cw8uNXq5073tu72F57HICXAI4lnxMmlD+0PsHOgd1Jqc0h+ZLm3M3/y4NvRvi5eBF9L1oIodHWulG4NmFhpPaycqPv7CikBJdCQEuAdzJu4NKrpImjxWGCq5nX8doMtLEpwnB7sFsHrKZJBczAaZvGRM5hqbVmxLsFozBaMBOaUfLZS1ZdVnM39gzcg87hu8gMT+Rt6Leeua72xW/i+vZ15nbZS5fd/8anVFHlzVdJHpPVRhSdwgluhIG1x4sTY4NJgNZ2izGNBzDgVeXcVk+hTzOIVOWUCCcJ04+lQpF5QmT5R0+nkytkov0uojgCMbvHC91DGZ3mY0gCHx05CNOpZ6Srp1XlseQOqKGyMLjr+Fag+WXlktjOqoccVG7SP8+e18swsr0ZfzQ6wc2DHyUo4EZPEohQcgj1COUCmOFtKtI98iswEXtYpVMX8u9lkRZUsgUuKhduJ59nSvFCVzp14pxl8x09GjKobuHrKhNJkzsG7WPeV3nAY/cyPyc/SRx+JOw6mgoldC2rRTcV9uzNofHHCa9OJ2OqzvSdmVbvjr1FXO7zOXgywcls4K61eri7egtFWTXW9YQTRsGDYJXX4WePZ874Xty88k082nGlD1TrCf1ggBffAFXr2K3JZK1A9byXcR3fHfmO3qt72VVuD2O+8X3WXR+EW+0fgMPe4/nuofTqacp1ZfSI+RRoRHkGoTRbCS1sOrn+Og2n02det5Cw93OnVENRvHzhZ8xmAwMrjMYe5OcdY6Jz3W+FZRKCAqydTRs+MthKzRssOFvQkRwBLEPYiVf9f/fcfH+RfQmPW3823A06Sjudu5WORWXMi6RVpRWiTalP7CftbVKGX3FjHr02Gdew2w2Mzt6Np1qdLLqPgDw4YeiJuOTT6RN0feiWXppKV92+7KSu9FrzV4jvzwfo9nI223fthJWf3P6GzZc3cDqAavxdfLFYDZIq5BZJVkcST6CGTNzOs+hY42OkptVhbGCu/l3Gd1wdCX6SW5pLhN2TsBN40ZSfpK0wjqu8TimtZhGTmkOjRc35l7hPcIDw9EZdSTkJXBk7BH6hPap9CyeVmgUVxRX6mg8bm2bXpyO62Op2tezr2MwGXigfUCQaxCv7nyVLmu6YJQBZjOtfFuxd9Refn3pV/LL85mwcwL1verTN7QvoR6hNPVpSj2veszvMZ/FFxez/eb2p767eSfn0SGgA+0C2jG1xVQCnAOoZl+Nwb8OZvGFxVWeV8ezDv7O/nx95mtpWzX7anze6XN+ufoL/Tb1o0iIw7HGZo4TwS3VuxTLrj110gzWhYZSrsRF7cLq/qvRG/VM2jUJs9mMp70nn3X6jOWXlvPr9V+tntmkZpNQCAruFdxjQNgAYtJiJCtgAYEiXZE0oe4R3EP67pgx4/aVG4svLpbeoVMFKIxmujQfyo3sG5JL1JNQyBXS+3ZQOnA67TRmzDgqHXFQOrA8djkuGrG4kU+bjllbwuwJIXRf113SM1iKKoPJQG3P2oDYzQLxu2EJdXwSVh0NgI4d4eRJ0T4aqOdVj7dav8W1rGtczbxK1Ogo3u/wvhXVLMQ9hLSiNNYPFPVNc07MwezqCqtWwd69cP061K8PS5f+bndDLpPz84s/c+XBFSv9EACtW0O/fvDxxwgGA2+0eYOo0VFcyrhEi2UtpCyRxzEneo4YtPiY1fLvISoxCm8HbyvHO4vBxfPSp6pCtjb7uTQaFkxrOY304nQib0XipHZisDaQtZ7pfy6HyeY8ZcPfAFuhYYMNfxO61ewGPLJk/f8dMWkx2CnsaOjdkGP3jtExsKOVPiPyViRuGrdKuoX9278h0xHGZ3hDh8qahsexN2EvlzIu8XH4x9Y7LlwQJyyzZ4O7aJlZbihn4q6JtPVvy+TmkyuNdb9YzFJQy9VWnaO9CXt579B7fND+A4bWGyrZ24I4QW26tCml+lLslfbkledxMuUkZYYyiYKTXZpdZRL4pF2TyCnNkbj0Jkw0qd6EJX2WkK3Npu6iuqQXp9MvrB+JeYlo9VpOjT9Fa7/WVT6LqgoNk9kkuU5ll2YjF+S4alylFdYAlwAKywvxc3pUdF28fxEQrU3XX13P/jv7+bTTp6Tnj+NgdA2uZF6h1fJWdFrdCXulPRq5Bpkg40DiAauQvknNJjGoziAm7JxQ5Yru0eSjnEs/xwcdRG69Sq5iVsdZpBWnMbzecKbsmcKsI7OsJkgnU07SaU0nUotSMZlN/NT7J5zVzpQbytl4bSP/6f4fbuTcQC7IcVY7s2vELvRGPUazkbv5lQMHLSgqf9QpUMgUeDt64+Pkw9K+S9l+azurL68GYErzKdSpVodtN7fhpnHDVe2KXJCz4eoGetfqjRkzWr0WrV6LWqFGo9BInQ+ZIMPL3ouDdw9a8fEdlA5Ep0RLx3g8nLsvStrExx0/loL2JDw89XFthqWDFh4YjiAIUlEzu9NsFDIFXY6OZVttmHSqgugxx4ifHo+rxlVKrV93ZZ2UEXEjR8zr8XP2I70ovcriVSlTIhNkYkcDRJ1GURFcuUKJroRxO8bx/pH36RHcA7VCzafHP5VyRSwIdgtGZ9TRwLsBDkoHjiQdYeHZheLOXr3EQmPoUHjtNYiIECmQz0AL3xZMbj6ZWUdnST/LEubMgaQkkZIFdK3ZlQuTLuCkcqL1itZWrnFJ+Uksu7SMme1mSoXa8yAqMYqI4Air33GBLoEICL/rPGWhAD6JCkMFxbri59JoWNC4emPaB7SXROFjDfVJcCivTCt7HtiyNGz4G2ArNGyw4W9CdcfqNPJu9I/RaViC+vRGPTFpMZX1GfGR9Antg1KufLSxqIiV2pM0yRRo1GMsyJ7+K8fSzWjn387aMtdiZ1uvHkx6JCSfGz1XnET0XWY1GQDRZen1qNdp5tMMo9nIxmsbqTBUEJ8Tz8itI+kT2ofZXWYDIm3EYBI7Gm1WtCG9OJ0ZLWYwvvF4Nl7bSOStSAQEDEaRwlHLvZaV0xbAsovL2HZrG3YKO/yc/SjRleCucRddmLTZhP4YSnZpNiPrj+TEvRO427lzZsIZadW5KlRVaFgmd5aOhqe9qC1JKUxBIVPgpHJCb9JTy6MWRRVFLIhZwNsH35bO/y7iO5L+ncR77d/Dwy8Uz3tZ1HAViw0fRx/ip8cTOTySqMQoCisKGVpvqHSuIAgs67sMB5UDo7ePrsSJ/+LkFzSp3sSK0z620ViCXIMoM5TxVbevmHNiDq/ufJWz6Wfptb4XHVZ1IEubhezhn6IgtyB6BPcg2C2Y3NJcPjjyAQEuATirnaVi0RIAdyLlRJXhaWazmbzyRxQamSCTVpAH1RnEK41f4V/7/0VSfhJKuZIvu35Jsa6YLG0WepOetv5tWXNljUTdO3j3IP3D+lNmKKOOZx1c1C4ICNRyr8XukbsxmU1Mavroe/k4HcpgMuD5sLnyQG3gi5Nf0DO4Z5XvW2+yFrf7OvkSfS+aAJcAaduwrcNQy9WEuIfQfcEufDKK6XCrFJlMRkvflrhpxPyQI0lH8HH0QSlTWlGn9CZ9JVE3iO/WTmH3qKPRsiWo1Vw6sp6mS5ry2/XfWN1/NftG7SNqdBSXH1ym38Z+Vp2jEPcQAO7k3SHMM4yGXg1588Cb7Lm9RzzAxQWWL4f9+yE+Hho0ELNwnmG3OrfLXOyUdrwZ9UQnokEDGDkSPv9cEkbXcK3B6Qmn6RfWj6FbhvL+ofcxmox8Hv05HnYeTG/5/MnimSWZXH5w2eq7DKIG5wWnF363o/E06tTjdMc/ghktZ3D83nHiMuPorKyFv1YhZmr8UYSGwt27YPjzOSQ22PBHYSs0bLDhb0REcAQHEg/8uTb4X4jHg/rOpJ1BZ9RZFQOJeYlcy7pWKaQvc/MKdoeYGH/RDKNHP/MaB+8e5Gz6WWaFz7LWeGzeDKdOwfz5opgRuJZ1jS9Pfcn77d+nbrW6VuNUGCoYsXUE/s7+/DpETFguKC/gt+u/0X9Tf15weoFfBv0iFSd2SrHQSClMIS4zjoFhA1nYeyGjGo7ifvF9NlzbgBkzBrP4x/lJylRsRiyT90xGLVfTN7QvN3NuohAUnBx/koKyAsIWhVFQXsArjV5h261tNPRuSPS4aF5weuGZz6OqQsMSQOikcrJyr0ktSsXXyZeLGY+6F37f+fH2wbdRyVWEuIfgrHbm363/jVKupNxQzsd2MTQZrcVsNPJRh49IyEtgTvQcIoIjaPGCaId6JOmI1fXd7dxZP2g9J1NOMu/EPGn7ufRzHLp7iPfbv2/17pRyJbPCZ7H91nYigiOY12WeqJlZ3pq7+XfZNGQTbho3QtxDCHYLZsuNLfQM6UlcVpzkzGavtGdW+CxMZhN9NvaR6Dp6o562K9paWZxaKEyPc/XNZrMVVWVBzwV42nvy8vaXMZqMqBWiZsjSuXi77ds4qByYvu/RxNTyPGIfxErhfUaTkRa+LRhefzi7E3ajlovjyJDRpHoT6VyPh3PxHHvRSnl/4v5nvXYAFIKCwopCWvu25naOSHXRyDX0DO7JJx0/IbUwFbuOXaFZM9EgAWhavSkARrORnLIcrmReobpjdfLK8tAZdRK18Fn0KUtHw6RS8p+XfGld/D3OamcuvXaJsY3HIggCrf1as2/UPs6mn2Xg5oGSRXegayByQU5ifiKBLoFUd6xO39C+DN86nLjMuEcX6tFD1G6MHAlTp0K3bmJ3ogq42bnxbfdv2Xx9MwcTn9CzffYZZGfDj48CEu2V9mwYtIFvun/D16e/pvOazqy5vIYPO3z41JTzqmBZ/KnKYe15LW6rgoUm+0eoUwADaw/kBacXWHRuETJ7B15OsGPz9c1/3B69Vi2xyPidbpINNvw3YSs0bLDhb0REcAQZJRlcz77+d9/KM5FWlMb94vu08RP1GR52HtTzqift3xG/A7VcbSWcBPgl+kdkwEhDHXEV8imwdDNa+raUwrEAcbXynXdgwADo2hUAo8nIxF0TCXEPkWg6j+ODwx9wI/sGGwdvpKZ7TQbWHohGoeGtA2+GBcIOAAAgAElEQVSRqc1kx/AdVsWCvdKeCkMFJfoSWvm2YsswMeSvlW8rApwDyCnNQSVX4ePog4PSgRvZN6QJ2d28u7RbKdrIftLpEzZe3wjA9uHbMZgN1Pu5HlqdlrGNxrI2bi19Qvuwf/R+Kz3A01BVoVFcIdJuLNQpy8rovYJ7OKudmbZXtFm9lnWNGS1ncPdfdyk3lKORa2jm0wyZICP6XjSNFzfmy/xdvP//2HvPsCju9433M1voXSkKgiDYsPeCYEUUscUajRhLihqNiYmxRY01MTFqjMbee8UWsWHFDogNlCJFBUXpbdlyXoyMbgBjTv4nP69z7f1K2Wk7swvP833ucgGi2u9kTsc5LO++nCVXlzDr7CzuZ9ynlUsrvjrxFYdjD+tdg6+bL9PbTWfWuVmSPfOCiwuoWakmfev0LfM+Pmr4Ea5WrgTtCGLamWk4mDtgJDfC2tiapMwkLqdeZnXQavrX7c/BmIN0cu+EVqdl6+2tfNHiC9Lz0iVh+pD6QzideBoQ9RAO5g6029CuTEOUVZQl/btEW4KD2evCzsrYii19thCeEs5Pl37i3KNzmCnFXAuFoKCLRxdqVqopFtK1+kjvz6eaD53cO0nBeHGZcWQUZDCv4zye5z/HXCkWskq5kvCRotOWmdKMqipRN/HiL0HQMmRY6RpQX7OE1urD1FcvwUon6gFMlabkqfLIKMxgXqd5+Hv4U9m8MlHpUXR070ihupCrj6/BhAkQGgoxMTSp0oTMokyMZOL51kaspYZtDUCkD/1to/FqopGel073bd2Z5JnAhEhjwj++KNGwSuHj6sORwUc4n3Sefrv7iQ5vciPJjMDV2pXknGS29d2Gl50XQTuC9LM4rKxg1So4eVJcYa9fX2wYypluDG0wFD83P8YeG6tfWNeoAaNHw8KFkPX6eQuCwKQ2kzg+5DhXH19FLsj1rJ7fBaHxoTR2alxuQ+Bu417uJO1NVESdelNX9U+glCv5rOlnbL29lUwzgWG3BLKKsjgUe+jvd34TNV89RwN9yoD/EIZGwwAD/ofwcfXBRGHy3tOnSoP6Wrm04mzSWdpXb19Gn9GlRhfJbx5A9+gR660S6BMjYDfg7SLwc0nnuJh8sew0Y9EiePYMfv5Z+tHKGyu5knqFNUFrpNXoUhyPO87iK4tZ2GkhjauIq8qfNfuMInURzwqesarHqjIhcucenUOLFiOZERc+viC9L0EQJGqTSqMiqyiLwfUGU6gu5HTiaWIzYmm6pimF6kJ+aP8D08+Irlaz/GZhY2JD01VNUWlUDKg7gE23NvF5s8/Z+cFOSevxd3jbRMPK2IqMggzsTO3YELmBkNgQbj+7LdmXJoxPYF6neRSqC8lT5ZGen059h/qMPjQav41+VDKrRFTvP5l9FkyeiKusY5qPYW6Hufxw/gdyinNY3WM1vWr1YtC+QUQ8jdC7jhl+M2jt0poP93/I5ZTLHIw5yOS2k/XEwSAWtWOPimLW1JxUvvP5juSJyYSPCCcxK5EpZ6YwsO5A/Kr70a9uP14UvuBW2i2UMiWO5o782vVXTnx0gkdZjxAQaOTUiBXdV0jHn9thLm2qtSFga4CUp6BDR3bRayvaInURjhaOetfl4+rD5LaT+f7s9xyLO4aNiQ3GcmO0aAk+GMy1x9cwlhtT16EuSpmS/JJ8RjYZyaB6g/SeyYWkC3jYejCm+RgyizIB0TDgae5TQNSHeGis0Jmasm/4Mb2APgtdPRppVmJHC4xxwI4WNNKsxEbXiADPAE59dIrYcbF80/Yb+tTpw5PcJ6TlpSEgYGtiKzZXAwaAoyMsW0aTKuJEo9Raekv0FurY1wFEOpO9uT1KmbJi5ymlKfee36PBHw2ISoviuPcCFh0uwig2rtztO7h3IGRQCCcTTjJw70BKNCV42nkS9zION2s3krKSMFOacWjwIdRaNb139n6tASlF585w+zYMGwZffAEdOkC8vqOSIAisCFxBYlYiiy4t0t9/xgwxhO6N3w+lsDe3R6VR4WjhiO9GX/bd21fu+/grtDotJ+JPlKFNleJd08H/L6lTAKObjqZEU8IGWTS1nhTT0rnlP6dPubiAiYlBEG7AfwpDo2GAAf9DmChM8HXzff8bjZTLuNu4Y2lsydXUq3q0qef5z7mUcqlMGvj1rT9yzwFGROhEmsRb8MO5H2js1JhAr9chfCQnw48/wsSJ4uolYsDelNNT+KzpZ2VcqdLz0gk+GEyAZwATWk2Qfp6W+3ol9a/89G3R2zj0QFwV9Kzkqa8vQQznA3GFskhdxBSfKXjZebE+cj1t17clpziHfnX68VP4T2h1Wrp5dqOhU0P8Nvqh1WkJ8Ahg171dzO84n9+6/VamEH8b3tZoFKmLuJ1+m2MPjzHi0Ai0Oi2DvAfhbu2OUqbEzkwUzJc6Dj0veM6mW5vYfW83KwNXcuHjC9St217UzLxhOTq13VTqVBaL01vpt9jadyve9t4E7QjSWwlXyBRs67uNnOIcBu8bjIuVC0MbvKbGPct/xsTjE/Fc5sm++/tY0GkBNWxrcPf5XYzkRjSt2pTGTo0REAhLCiPiaQRNqjShuk11Jp2chCAIaHVaZIKMZlWbETo0FAGBX8J/YXij4dJ5gkOC+d73ewbXH8zgfYOlycabmRd5qrxyV6Znd5iNt703t9Ju8bLgJcWaYmSCjL339rKlzxbGNh/L8mvLcbN2A+Ba6jVW3VxFQ0dRn2MsN+Z8kij6ntBygrSCrZQpmX1uNvCKtlUkR7Czo5u6OrdrLUPQgXmJQLOC0QgICK/SywXkyBAIdt3E7v676eTRSWp6u3t1R6vTSsYGftX9CHsUJlpFf/45bNqEB7ZYG1tLVMKc4hwpg+POszvIBBkuVi7lTjSK1cVkFmZyIOYATao0IfrzaLp2Hy9SFc+dK7N9Kfxr+LN/wH6OPjjKkP1D8LD1EKlTNm4UqgvJKMjAxcqFQ4MOEZ0ezfCQ4WXF6JaWsGIFnDkDKSnidGPpUr3pRl37ukxqPYl5F+YR//KNRqRKFRg/XqRVpqfrHXZG2Aw87Ty58/kdAmsG0m9PP6afmf63eRtRaVE8L3heZjpbCndbd57mPS3bNL2B8vJ1QPxeWBhZSC5f/wROFk4M8B7A76qLaFTFBDf4iNC40ApT28uFTCb+LjVMNAz4D2FoNAww4H8Mfw9/ziWd++d82/8QpUF94SnhlGhL9ITgRx4cQafT6Vu06nSsj9mBS56MTi6+UK1ahce+lHyJsEdhZacZkyeLAtJp014dUseYY2OwMrZiYeeFesfQ6rQMDxmOgMDGXhulAi3iaQSjDo+iSZUmCAisi1wn7XM28SzDDg6TuPV/DdnKLc7l3nPRsUcuk9Pdqzsedh60qNqCAzEHUGlUooD6RSw5xTlUt65OD68e9N3VF7kgp021NoQmhLKh1wamtJtSYfFREcprNEonC23XtyWjIIP6jvW5P+Y+JdoSfN18eZL3RC/5/FzSOZQysXlq7dKa+2Pv81mzz8T7o1CIhVrK6xXuYk0xKdkpNHZqzPCDwzmVcIpDgw+hkCnosb2HRN0CkZM/r+M8krKTaFutLUZyIzILM5l2ehoeSz1YH7Weqe2mkjAhgW/afsOs9rM4FHuIG09ucOD+AU4mnOSPwD9ws3bDb6NoIext783Dlw/5stWXPC94LnH7W1drjb+nSDP8YPcHmMrFQs3G2IaOmzvSyb0T37X9jv0x+9FoNVJDBqJmobxGw0huxIRWYoNQmtSt04nRgC5WLnzd5msK1YWSmHp91HpuPLnBT11+orFTY4o1xfwZJwYALrv0C7JXnx9btZItUZvF4xXkU/nRc3j8GOrWxbnPR3x+DfKVOhRyT6nJeA05j2+nwODBomD6FVytXanvUB97c3uOxx+nY/WOXE69LIqxP/sM1GqE9etpXKUxuapc5IIcU4Wp5DgWkSZ+bsprNB68eEDrda3JKMigedXmHP3wqHi/zMygeXMpT6MiBNYMZHf/3RyIOcD1J9d5+OIhrlaigD0pOwkQwyO39t3K7ru7mXV2VvkH6tABoqNh5EjR/MHPT68gnu47HScLJ8b9OU5/WvDtt+Jnef5rzdCV1CsceXCE2e1nY2Nqw84PdrKw00LmX5hPz5099ah1f0VoXCgWRha0qdam3Nfdbdz13lt5eBt16v/NNKMU41qMI0H9nOOeMLC6qFfaFr3tnx3EYHFrwH8MQ6NhgAH/Y/jX8KdIXcTF5Iv/60spF8XqYiKeRtDKuRVhiWHYm9nrCbAPxh6kTbU2evSUgsvn2VEtm+ERWuRD3i4Cn3N+DvUc6tGr9htC8osXYedOsXiwFHMH9tzbw5EHR1jebXkZm8qlV5ZyPO44m3pvkq4jPS+d3jt74+3gTcjAEBQyBZFpkcRkxHD/+X38t/ojF+Qs7rq43Os6mXBSKvTVWjVDGwzlfNJ5DsSKORK5qlyaVGnC7We3MZGb0M+7H2P/HItSrqRu5brceHKDkEEheivw/wSljYZaq2bvvb34rPfhu9PfAaIbj0yQEdwwGEtjS9RaNa7WrmQVZeFs6YxGq2HplaWsvrkaHTosjSw5NuRYWQF6tWp6jcbxuOPkleSxuc9metXuxYA9A4jJiOHoh0dJzEpk0L5BegFqd5/dxURhwsH7B/ny+Jd4LPNgydUlfNHiCxInJPK93/eSHmZwvcHUqlSL6WemM/bYWHrU7MHIJiMJCw7D182X7tu7S1bPnat3xlxpzvG418LpgBoBKGQKTiecBkEs5vp79+fD+h8SfDAYtVZNvzr90Og0hMaH6r3NisS3SVlJUiMGcGzIMVo6t2TC8Qk4mDvQ0rklKq0KN6tqFGuK8TSuSpcT8Wy94YZDHsRmxBLa1Ibfrv/O6GtiYZlfUkC1fDnoQCeTUUkwFQMmz50jOzaalc1EC9w0ZayUdi49c60Gj7Q48bNfu7ZIi5owAZ49I9ArkKyiLC4kXRCvS6MSU9cdHWHQIFi+nGb2jYhMi8TdVnT6KjUHiMmIAfQbDZ1Ox4bIDTRZ1YT8knyaVW2Gh62HvoObn5840fgbs4retXuzve92otKiKFQXYqQwku5vKfrW6cvCTguZc34OW6O3ln8gCwv47Tc4exaePIEGDWDxYtBoMDcyZ1m3ZRyPOy4lsQOi3fU338Aff0CSeL7pZ6ZTz6Eeg+oNAsQJw2Sfyfw55E/CU8JpsaaFtIjwV5xIOEGH6h2kTJK/QsrS+Bv6VEXUqX+qz3gTLZ1b0szMk99agp3OhJ61erI5evM/O4jB4taA/xiGRsMAA/7HqOdQDycLp/eWPhXxNAKVRkXraq0lfUbp6ny+Kp8T8SfKhPTt3zuHHBMYfkcJ/fpVeOxrj68RGh/KDN8ZrwscrVYsrpo2hWBR25FZmMn4P8fTp3Yf+tTpo3eMyKeRTD41ma9afSXRHVQaFf329KNEW8LBgQdxsXahX91+yAQZK6+vpPma5mi0GkKHhlKrUi3xtH+ZHmyKEvnPckFcdb6UfImArQHUdxBF7e7W7hx+IAqlu3l14+fwnzGWG+Ns6UxqbiphwWEE1gzk/y1KNCWkZKdQY1kN+u/pj0KmYETjEZjITRjVZBQanQZ7M3uJc1/ZrDIl2hIqm1Wm1bpWTAydiFKuxNXalbaubcufqPyl0dh9dzcNHBtQz6Ee2/tux9fNl6AdQRSpi9jbfy+hcaFM+HMCOp2OtLw01kasxdfVF7VOzbKryxhcbzDx4+NZ0HkBdqZ2eqeSy+R87/c9ofGhZBVlsaL7CgRBwNzInH3991HZtDLFmmKsjK049PAQHd076jk0NXJqRIm2hCUBSyhSF6FDx+Pcx6zruY4lXZew+Mpi7mXcQ4asTM6Ho7m+RqMUpxJOSc/dRGZM03tZLCtsT3R6NGvGtOTZ3euggxaXxOMVPH+C8MUX1D4VyeSLgAADehbhZVSFaRPE7IZ8YxjWfQoIoDFSYCOYiUF1vr5EGr1AJ4cgryAeydYjzk/EZkOHBkEu5yOLV5kRtrZilsWyZeDoSOD0TeSp8tDoNDzJe4KDuQNhiWHithMmQFISQTE6EjITaO3SGgEBY7kxckEu3Y/SRiO7KJsP93/IiEMjGOg9kJuf3MTB3OG1vW0pfH1FStI7FKb9vfszv6M4VZhxZgamCtMyq/7ftv2Wjxt9zMhDIyUjgXLh5ydONz79FCZNEvN3YmPpWasnQTWDmHB8gt50jQkTwMYGZs0iLDGM04mn+aH9D2Vsr7t6duX66OsYyY1oubZlmcT6PFUel5IvVajPANF2WCFTvNV56m3UqX8z0RAEgXEufQn1hAdP7xDcMJjo9Gii0qLe/SA1a4oNWdH7O0E34P9fMDQaBhjwP4YgCJLN7fuIK6lXMFGYUMO2BtceX9PTZ5xMOEmRukjf1ra4mPU552j/2IgabXuIBVMFmHN+DrUr1+aDOh+8/uHGjRARIfK0X+VufHPyGwrVhSzvvlxv/3xVPoP3DaaeQz3md3pNnRj/53iuPb7G/gH7cbZyBmBs87FodVp+u/Yb+SX5bO6zmQ7uHSS+9JtUB61OK7kbAVS1qMrv13+nffX26NBhrjQnMVssNBo6NuRAzAFMFCZYG1uj1Wm5NOISLV1avtsN/gtiMmIYc3QMu+/tJjk7mY7uHYn8NJKzw8/ibuOOtYn1a1HpG6ngpcXk6cTTFKmLCBkUQpG6iJeFL2lWpVn5J3N1lTQahSWFHIo9xIC6YnaGscKY/QP3U8+hHgFbA3C2cmZl4EpW3FjB4suLGX5wOCXaEk4nnqZnrZ4oZUqUMiVOFk4VvrfSIEF3G3eqWb+m0y27toy0/DSG1B9CTnEOGyI30MWjCxeTL0oFZWl2iZWxlZSlcSL+BFqdlgmtJnB8yHESMxPRoi2TT+Igt4SYGDHD4Y8/4LvvSPgokPDkSxJnX1lYzOdbBtJ84iKGx1nwnf0tYi2L6CC4c6SBuLr9xApys58jS3zE/tFtkQkycigmsPmHOHd57bh1LknUNag0Kqzz1VCpEiA27UqZkl33dpFDNFGyz1EZ3UUlPOcl1wgOLKbemh/hwgWxCSwqgu7doXVrWkU8w7YQbAsgdMEoOuiqcybh1We0SRPw8aHpXrF4r2Qqnk8hE+2gM4syJYvb5OxkGq1qxLGHx9j5wU7W9Von6QbK6A7athW/g2/RabyJ8S3HA3DowSFMFCZ6Ew0Qf9f90eMPWru0pveu3m8NXcTcXNRenD8PGRnQsCEsWsQy/195WfhS0sEA4iRk+nR0mzcx7ehXNKvarMziRyk87Ty5MuoKXWt0pc+uPswMmyk1m2GJYZRoSyrUZ4DYMLtau751olEhdargn6WCl4eBrt2pnA+/39lA1xpdcTB3kBZF3gleXuKEKuEt994AA/4PYWg0DDDgPYC/hz+30m+Rnpf+9xv/x7iceplmVZtx/cl11Fq1nj7jYMxB6trX1XNySjy4gbBqakZcVcGQIRUeN+JpBEceHGFau2mvRdI5OTB1qshRbytaUoYlhrEuch0/df6pDPVnwvEJpOSksOODHZID1crrK1l1cxUrA1fSulpraduWzi1RyBTo0DGy8UiGNBCvrdTa9E2qQ8TTCCmdGeBp3lN06KhrL1KiSsPVbE1suf3sNqYKUxQyBVUsqxA+MpxalWu9+w1+de7QuFC6betGnd/FpOoGjg1o5NSIDb02SE5COcU5UlgfiO41ydnJmCpM+eSIGBo3otEIbn5yU1rNzSrKorlz8/JPXK0apKaCTsefcX+SX5JPf+/+0ssWRhYc/fAoVSyr4L/Fn47uHQn0CmTSyUmExodSu3Jt7o+9z/6B+/nZ/2eWXVtWxg63FMXqYj47+hmetp7cy7jH5RTRySzyaSTTz0znmzbfsLXvVr5q9RX5JfnsuLMDtVYtCbxtTGyoblOdqLQount1B8QV4k+PfIq2IJ8ualcmO4rF/oPnMVLiNjpI93KGOnXEhOpx40g4uhWfaqfQCYAAJij5o/F09njD1uvrmL/iAQVGAtbG1nw5cAmFOhW1K4nNyxcnJwKic1WpQHvF9RXcf35f0vmUisS1Oi3m2YVQuTIgNkZqrRodOj6LkJEji+aK9hPqNT9EocNyQh+vEq/Zxwdu3hSnGRcvQmwsiqW/EWDbHIVMznHbF3TYdY3rqVfJ7dwOjh6FL77A/PINWj03QaVVSanmpYLwuBdxXEm9Ik29bn12i4H1BkrPRy+wrxRWVtC48d/qNKRjKMXAym6e3cgsyuRY3LEyFCIjuRH7BuzDxsSGHtt76DmElQsfH4iKgrFjYfJkqgcOYYnrpyy5soTb6bdfb/fJJxxrXZnLL6KY22HuWzVRFkYW7Om/h3kd5zHn/Bx67+xNdlE2ofGheNh6SOGDFcHd5u+zNMqlTv1LjQaAiZUdoyNgY9JBitRFDKk/hG23t1GiKfn7neG1xa1Bp2HAfwRDo2GAAe8BOnt0BpA46u8TSoP6whLDcDR3lFaL1Vo1hx8cLuM2tfHsEixVAh88toLAiqlDc8/PxdPOU+JRAzBvnths/PgjIK6yf3LkE9q5tmN009F6+++5u4d1ketYFrBMKuzPPTrH+OPj+aLFF4xoPELaVqfT0X5Te0lfkKt6TbswVZSdaGyIFHMbBAQ0Og2D6g3CWG7MkitLsDOxQ6VRAaK7kbHcGI1OQ/OqzTk3/NzfBvG9iXxVPn/c+IO6K+oSsC2A9Lx0NvXeRNKXSTSv2ryMS5XUaLyaaAiCwLqIdRSqCyWtwbJuyzCSGxGZFillOzSrWsFEo3TVPCODXXd30cipUZnMBDtTO0KHhKLRaai7oi5HHx7F0kjUzSzuulhqMse1GEePmj34OORjnuQ+KXOqHy/9yMOXD9k7YC/e9t7MOjeLgpIChuwfgreDN3M6iEntP3X5CRsTG649voapwpSQ2BAoLITYWBoJVYm6eYRue8WQPrkW1kWs44v+Fuhq18Zh1TYUGjArrbl0oBBktJ1gzuWQ3+HRI+6m3MRnuBaVjSVGciOMZEZ08vLnw/5zGNpgKONCJ/Ak9wk6nY6c4hw23dokPWNAstF98EIs1Eo0JVS3qc7AvQOlZ9DOtZ34fBCwyC1GZ2dHbEasGM6JjpnnwLhFa0zkJqIYXV3E6Caj2Xtv7+uwQYVCtHx98ACCgmDMGAIvZ/DcRMMjW3DvMQSNDC4kX4QePUSaoakp06+bSgsWrlauktZg0L5B0rWv6L6C6jbV9Z6PqaKciQa8s06jFDVsa2BlbEUblzbEvYxj+pnpZYruSmaVODL4CE/znjJg7wA93U+5MDODX34Rm67MTEaPXsmPEXaMO/SZNI3QGimZEWhGuyTwf1nxFLUUgiAwtd1Ujnwo5oG0XNuSww8O4+/h/7f7/l2jUVGT8281GgCYmfH5dchTF7I1eivDGg7jecFzPT3TW+HoKE6ADDoNA/4jGBoNAwx4D+Bo4Ugjp0acSHi/6FOpOamk5qTS2qWsPuNi8kVeFr7UoyhonqWzwTSWQQ+MMOvdX/RsLwe3029zIOYAU32mSvQO4uJEqsTkyZJL1Zzzc0jOTmZ10Go9vnVSVhKjD4+mf93+UkORlJVEvz398HXz5Rf/X/TON2jvIC6lXKKze2eUMiUHYw6SrxInFqUTjTc1GgdjRe62Dh29a/Vmfa/1mCpN0aEjozADAQGZIEOnE4vE3rV78+eQP8uI1CtCcnYyk09OxuVXF8YeG4u3vTfnh5/n5ic3GdZwGMYK4wrtbS2NLXmWJ2Zf+G7wJT4znnoO9ahqWRWlTClRwSLTIqlkVomqllUrbn5e3ef8xAcceXBEok2VQqfTcTzuOD139pRsNGvY1kAhU+Bo7sjHIR9L1C1BENjQawNGciMpdbsU95/fZ96FeXzb5lsaOjVkpt9MTsSfYNj+YSRmJbItcD3G8Y8gNBT5mrV8mOdB5RIl6uJCtt7cQKqjGdSuTaP94URlxlA75AIyDWhk8Ivgz4oW8PXa/ujmzAGlAicnT3g1rbAwsaKOcyM63Z7E4if78NvSCXtze7ztvTGWG1OiLZEmJMu7LcfGxIZ+e/qhlCtxsXLhQMwBRjcZzcOXD3GzdqNYU8zPl37mYMxBKXtjUptJejSgUgqRXAemJTrCC2Jpt6EdOnT4ZFvzfbI7B8yTcbNxQybI2Bq9lSCvIDQ6DVtubdF/Ro6OIp3w4kUCnpgj04JcJ3C/XV1crFw4M3ekGFxnbAyFhXS9nsmTk/txVVtQy8RFaoofZT1iT39RR1KeJaqpspyJBog6jZQUSWj9dyjN0gisGYipwpT5F+cz5/ycMtvVqlyLfQP2cSbxDOP/HF/uBKAM2rSBqCiE8eP56vALFs0KJ2TvPAD2399PpCqJufFuCNOnv9O1gmgdfH30dTRaDcnZyWW0ReXB3fbtWRrlUaeK1cXkFOf8a+oUZmZUy4HeNq1Yfn05DR0b0sCxwbtnagiCwXnKgP8UhkbDAAPeE/h7iDqNd/qD+x/hSuoVQBSsX398XU+fERITQlXLqjSt2lT62Zltc0ixhhFXit9Km5p7YS7VbarrZS8waZJYVH3zDQDR6dEsCl/EtHbT9Dj3aq2aIfuHYG1izeqg1QiCQL4qn967emNpZMnufrv18jAmnZjE7nu7aejYkBMfnaBPnT6oNCopwEvSaLy6709zn0or8rYmtuwbsI+55+eSU5wjFf6mSlNkyCQa1pvUrYqg0+m4lHyJAXsG4LHUg1U3VzGy8Ujix8ezd8Be2rm101sJLTcZ/JV16U/hPwGiY1ntyrVp7dKax7mP9RLHSzM0KpxmgKjRAI7dD6GgpIAB3q8bjfNJ5/Hd6Eu3bd0wUZhwNvgsEZ9E8DTvKZlFmezutxsThQmB2wMlO9nKZpXZ2ncrYYlhLAoXw9W0Oi2fHBqFm1kVZqhawapVfLD1JtVV5uyL2ceiMCV1qzURXZYCAkkZTP8AACAASURBVGDMGPqdfEy6ooiJud6UyKH5N9bcP7qJRnNWk2EOz6Iug1z88+U3ej7Luy3n19Q9HMoQnduKNcWAqFHIKc6hWFNMA8cGfH3ia6xNrDk59CTXn1wnV5WLDh0BngEAWJtYs6HnBh5lPcLb3psmVZqgQ0ebam3o7NFZClucemYqDRwb0M2zGwqZguTsZJYELEGlVUnnBVCoxc/Uwth10hRq8a5sIueMJTknhaTsJIY1HIYWLaOOjKJXrV6siVhT/u+Atm2pFB5JKyN37AohdOssOqqcCcuMhNWrITNTpFDJBDrH6aj1KI/7D8Ol3Z1NHOlduzcKmaLcLI0KJxrtxOnMu+o0ShsNV2tXCtWFzPSbycyzM1l4cWGZbTu6d2Rl4EpW3ljJb9d+e6fjY2oKP/2EEB6Os8ya7oO/J2/mFH44NQP/Gv74TlgsJo6Hhb3b8QCvSl6MaT4GAYH5F+fzw7kfyuZ9vAF3G3cyizLfSvv66zP8N2F9ejAXp5RfWHXm3vN7hD0KI7hhMIcfHH49Dfs7GJynDPgPYWg0DDDgPYF/DX/S8tK48+zO//pSJFxJvYKbtRvxmfFodBpJn6HT6TgYe5BetXrpTRrWx+ygTpaSljiLlItycP/5ffbc3cMUnymvG4JTpyAkREwCNzNDo9Uw6tAoalWqxXc+3+ntP/f8XC6nXmZ73+3YmNig0+n4OORjHr54SMigECqZVZK2XXplKb9c/gVnS2eujrqKIAh82+ZbAH69+ivwBnVKp0On0zF0/+vmZ36n+Vx/cp0FFxdIhYdSpqREU4JaJ9I9Wru0LuNu8yZUGhXborfRYm0LfDb4cCv9FksDlpL6VSo/+/9chsJSir82GiWaEu4+u8vZR2d5lv8MFysXtn+wnbS8ND1rWxB1GYlZiVI2QoWwtwcjI3Y/PknTKk2pYVeD64+v03VrV/w2+lFQUsCxD49x4eML+FX3w6uSFxZGFihkCuZfnM+BgQdIyU5hwK5+qGPuwYkTdDwZx3fqVkw/NZUr3eqzprMtF1PDWfVbEibde8KYMWQc2EamILreNPDpCxs2iIVhYiIUFdEuPFV00Qrwx0huhGBmRtvbX6KuJK42R6VFYWEsptCn5KQwtsVYFvsvJjQ+FK1Oi0r9uuAPqBFAYmYiVx9fxd7MnoTMBKaeniqt3nvYeuBh6yHdklJtTtTTKE7En8DDxoPpYdOZ1HoSsS9ixeevLWFhp4V08+om6UhGNxktuVuVukEZvRrqpBmXUNm0EgoNNPDuyH6HF5grzSlSF/G97/f4uvoSnhJOY6fG3H1+V2rwy0ChINB3FDkWSsJcNbTdfZXIpxG8vHBCXKnu3p3sD/vS4RFc9zIj1QpavuopEl7GIatdm6o6S1KfxpY5dIUTDTs7MUTvHXUaNWxrkF2cLaWg96/bn5l+M5lyegq/Xv61zPajmoxiUutJTAydyLGHx97pHAC0bIki8ha/+xhjOmchGxbG8ItjMPTpI+Z/TJnyznQvEAX8bau15Yf2PzDr7Cz67uqrl8fyJiSL2wroU+VRpyRd1f8BdQrAj+rUc6jHb9d+Y0j9IWi0Gnbd2fVuxzBMNAz4D2FoNAww4D1BW9e2mCpM3yv3qcupl2nlIuZnOFk4Sfz96PRoHmU90qNNZd6+xgGHl4y4JUMY/KHkGPVXzL84H2crZ4Ibita1qNViQJePDwwQV9R/u/YbN57cYE3QGj0/+wtJF5hzfg7f+35PW1dRLL7g4gL23NvD5j6bqe9YX9p23719fBn6JdbG1kR/Hi1NHJpWbYqbtRtRaVE8znksTTS0Oi0TQydy5pEoPjaWG9O3Tl+G7h8qFfwKmYISbQkarYaNvTbSplobKVn8r3ie/5y55+dSfUl1hh4Yip2pHUc/PMr9sfcZ22IsFkYWb733bzYa1x9fp/ma5iRmJVLPoR7dvbrjbuNOYUkhzwue42juSIm2RNJL3EoTNQwFJQVvn2jIZORVr8pR1R183Xzps6sPLda2ICU7hb3993Jj9A26eXVDKC6GBw/YumMKz/KfsarYn7CHJ5k/uzO798k4HXeScd94o+vaFT7/nNlbH9Msx4IBTRP4tl0RI8zb0WGD2EjoCgsZPasJCisbUavhngzDh0P79lC9OiiVKGQK+tTuQ0hsCO1c21HXvi4NHBswZP8QzJXmRKVF4WAmUlBK3bYmtp5Ir1q90Oq0UjK4TqdDLpOTVZSFrYktOcU59K/bn3VR615lcssJqhmkd0tW3FhB0ypNsTe3p0hdxJqea0jOTubmk5s0rdJU0hOsiVhDF48uAFx9fJUSbQkf1Bbd00pzIoxfSQ/yLY0pLszD+zkYL17KgZiDknuWu607BwYeQCFTsPjKYlytXFkTsabCRxboFUixVkWRTIvp1BnoBDj3SVcYNQrds2fs6FuT7kPATA0I8MPnuwFQKeBScRwuSZmkblgqFuPr10OWGF5X4UQDXus03gGlQupS6lxydrLYaPhM4asTX/H7td/L7LOw80J61OzBoL2D9AXefwPHym4ofvyJVqPAVmZGvcDhMHcu/PADXL0Kh8r/bv4VJZoSziSeIcAzgBl+Mzg0+BBhj8JoubalpMV5E6WhfY+yHpV7vPKoU8/yRbrjv55oKBRgZIRQUMC45uM4FHuIInURAZ4B706f8vKCp08hL+/fXYsBBrwDDI2GAQa8JzBRmOBX3e+90WmoNCpuPrkp6TM6VO8grdQdfFUovUml2rHne9QyGHq9YtrUwxcP2X57O9+1/e411WjVKrh3T9RnCAJJWUlMPzOdMc3H6LlGZRZmMmT/ENpUa8M0XzEt/HDsYaafmc5Mv5n0rfPaXvRi8kUG7B2AsdyYm5/cLMO7/rr11wAsv7YcmSBDJsh4XvCcpVeXStsMrjeYOefmEJcZB4huOaXF09xOcwluFEzPmj05EX9CTGh+hej0aEaGjKTar9WYf2E+QTWDuPP5HUKHhtLdq/tbpx9vQibIKNGU8OXxL2m1rhUyQYazpTMBngFkFmVib24vUWBKV+EbOYruVJFpkZIw+a2NBrC2uZxCQc2SK0uITrzKZuuPuf24Jx/M3YfQti1UrQqmpmhq1+LHq4vpHQMjtt5l19067Hd8yZ7A6vxhP5xVzWDxkalQVIQyMYkdM27x1FhFsULgpzEHpEZize2NHIo9xLqe65jbcS5hj8I496hsEduvbj8SMhNo4NiASymXODDwAD1r9SS/JJ/99/fjZuMGIGlEALp5dkNAkFbmS7QlHHlwhIH1BpL8ZTKD6w9mz7092JvZv0qweD2lA4h/Gc/xuOOMajKKIk0RgiBw5MERxjUfx/yL8yWdDsDhB4epblMdFytRB3HjyQ3aVRdpRi+LRAqLyauJRiOvduRSjGWlKsQ4KbifcZ+0vDSGNRgGgJ2ZHdPaTeNl4UucrZzZeWdnhbScBo4NcLFywcLIgkiLPDxsPAj72I8XR/fQ92sXvri1gB6PlPy5S3z+xnYO0mdh9eyeuFSpSUolBdy4IaZwV6oEXbpQ/9x9KCgo95z4+kJ8vJhw/jeoYVcDEI0S5IKcpOwkBEFgXsd5fNXqK8b9OY7VN1fr7SOXydnWdxs17GrQY0ePf+S+p5QpueEMvb52RvvNJJg9W5xmNG8O06aBRvO3x7iSeoVcVa5ka9ujZg+ujboGQPM1zTn64Kje9g7mDpgpzf42tO9NvGlJ/a9hZgYFBQxpMARLI0tW3lhJcMNgrj6+SmxG2WlVGZQ6TxnoUwb8BzA0GgYY8B6hi0cXziedr3hl8T9EVFoUxZpi6jvW5+aTm/r6jNgQunt1fz1t0GpZnxlG4GMznNy8xUTfcrDg4gIczR0Z2WSk+IOXL+H77+Hjj6FpU3Q6HZ8f/RwbExu9XAydTsenRz4lV5XLtr7bUMgU3H9+nyH7h9Crdi++9/te2vb+8/t02tQJgDPBZ6TC502MaDwCpUzJ2si1ki1kfkk+Y5qNkbZp4dyC5dfF3A6ZIEOtVWNlbIWzpTMPX4h/oHvV7kWhupATcSc4FHuIjps60vCPhpxIOMGs9rNImZjCqqBVeDt4/8O7L66WxmfGsyZiDT91/olro6+h0qgke9tSa1uA1Gyx4ShtzCLTIrEztcPdxp3KZpWhuFgsKk6ehDVrYNo0Uob1YvRoR77yjEepgZWHdcRMe8pHX29Cvm2HWFR6eYlC4/Xr2b/zex5UhikLL8GjR/Tee4d1vTewVojkQW0HpvhM4ZsbC9gfJ9rbRqdHo9aqKdYUc+TBEUB0apoYOpHRTUbTq3YvetXqRWOnxsw8O7PM++9QvQO2Jrbkq/IpUhdx7fE1dvbbSSPHRkSkRZBVJK7Ex77QL6xkgkwKWdTqtLSv3p4tfbZgYWzB+p7r+bnLz1LRB+KELaMgA4A/bvyBrYkteao8cotzmeozlV+v/Er76u1RypRcTL6Is6UzNsY2lGhL2HxrMz28eiAgcD7pPI2dGgNI3wtjNajlAnuengIt3LUoYPed3ShlSowVxnpWwjP9ZuJk4cTVx1cpUhex/fb2cj8XgiDQ3VNsWI/HHaeje0cOGyXR8GtzzrvLOLgD2qeZ0uBBNm0fy7nz7I40idzz+AQObfxJbegupm8PGgRKJZw6RcC0DaTNL0Hbvz8cOwYlb9il+oq5Je9Cn7IytsLB3IHErERcrFykLA1BEPjZ/2fGNR/HZ0c+Y2PURr39LIwsODz4MCWaEnrt7PVOvwOL1EXMuzCPrjW6cjcnjmVBDuIkQ60Ws3ju3oUtW/72OKHxoVQ2q0yTKk2kn9WqXIuro67Svnp7gnYEMff8XGnCKAgC1W2qv5U6VUajkf8cc6W5ZD7xr/Cq0bAwsmBE4xGsjVhLZ4/O2JjYvNtUw+uVHbmh0TDgP4Ch0TDAgPcI/jX8KVIXcTH54v/6UricchljuTG5qlw9fUZSVhKRaZF6tra3jq3nZmWVmJ0xdKjIF/8LEjMT2XxrM9+2/VYS1TJrlljQzBOdY3be2cmfcX+yInAFVsZW0r7rI9ez594e1gStwdXalczCTHru7ImrtSube2+WpgSPcx7TYm0LVFoVOz/YSZtqbcp9b+ZG5nT17EpGQQZdtnRBq9NiZ2LHrXSRcuRq5coXf34hba/T6XA0d+Ta6GuMbDySfff3UVhSSFXLqtib2TPs4DB67exFkbqInR/sJGF8At/5fKenF3lXpOWlMXDvQA7EHMBIbsSdz+/wdZuvJWFzqb3tm41G0ivHo1ax+bBmDZGRfyLLzqZZTA44O4vuXzVrgr8/6V9/yoSHy/B0P8yBKtnIdPDDZRM+XXQGZVyCaHeblCRSZTZtgtmz0Q0fzoLMw3Ry70QLt9f3NLhRMEu6LuGn8J+wNLKkv3d/hu4fSlhiGGOPjaW7V3eCGwYz9thY7j67y9D9Q3G2dObXriJXXxAEZrWfxbmkc69Trl9BKVfSq3YvziadxdnSmdD4UGSCjAmtJgBw8+lNgHJXcN/UtjR0bCh9PgRBwK/6a+2QicKEhy8e4rPeh5iMGNZHrSe4YbCYcl5/MLM7zKaje0fGHhsrUexGNRlFVrHY5Hx3+jsCPAPQIeaQuFqL4vpSpycTNZRYmVOpAJBBtiqXNRFrMFWa0qd2H73PuCAI7Om/B61Oi5WxFasjVldoDBFYUxTg38+4T3J2Mo+yH+Fm5070pHh6bbyM0tKah3Yw9ZKM20nXpKTrYnUx6fnppOakovP1hR07RBH5zp2kN6uDUgvCvn2iLXWlSmKTef68qOWpVesf6TTiXsbhZuOmlw4uCAJLuy1ldJPRjAgZUaaZcrFy4dDgQ0SnR/NxyMd/a4yx8vpK0vLS+K3bb3ze7HNmhM3gsZeTmEEybZr4e+jTT8Xm4y0IjQ+li0eXMtNGK2MrDgw8wEy/mcwIm0H/Pf2lAMm3WdyWR536P7G2LYW5OeSLU8wxzcfwsvAlB2MOMtB7IFuit+g5vpULOzvx+Rp0Ggb8BzA0GgYY8B7B296bKhZV3gudxuXUyzSt2pSLSRepallV4l6HxIaglCnp5tVN2nZD2K84FAh0v6cWw/bKwcKLC6lkVolPmorBcty9CytWwIwZ4OTEi4IXTDg+gf51+9OzVk9pv5iMGMYfH8+oxqPoV7cfaq2aQfsG8bLwJSGDQrA0FjMdsoqyaLq6KXmqPBZ1WaS3WlweprUT6VcXki5gqjDFWGHM1VSxIEnLT5NyE0B0pbn5yU1qVqrJkAZienW/3f1wWezCi8IXqDQqwkeEEz4ynIH1Buq5Xr0rtDota26uoc7vdQhLDCOoZhBVLKqIwtPiYopj7lKsKcYy/CbPs59iv+9PUhbPxLFARvzZAyg1YNotiKKxn3KX57yUFdNc6QajRsH69bwMPciUvZ/h8Z0pm5rImdHpB37s/TsaGQyOUImr1u7u4gr3XxAaH0pkWiRT200t89qEVhOY6TeTqWem0rZaWxo5NSJweyAvC1+yMnAly7svp6plVTpv6UzE0wi29t2KuZG5tH9QzSCaVmnK92e/L1NY9qvTjwcvHtDSuaWUE1A6NSj9HCVkJUhWxTp0aHVavSJvydUlbIveJv3/3KNzUkFpY2yDWqsmuzibVmtb8bLwJVUsq5CSk8K3bb5FJsjY2GsjLwtf8jTvKTUr1eTog6PUsK2BkcyItLw0vO29ERC49vgal1Mv612/aQk8kRXQ7bloe+zr6ktqbio5xTkMaziszL30cfWhi0cXsouziUqLkpqpv6Kje0eJDnUqUczeGdd8HM5WztCqFU2W7eG3FuB/v4SnIVvxuSuKmhUyBRFPIyhUF5JZlPnqIk1h4EDCN8+j6teQv/AHMdwwN1fUcPj5gZMTGBlBaOg7CaxLnafcrPUbDRAnTit7rCS4UTDDDgxj7729eq83q9qMrX23suvuLmadnVXhOfJUeSy4uIDhjYbjVcmLeZ3mYaY046sTX4nXOns27NoFKpVoiztjhjjZ+wsyCjK4+eQm/jXKz8+QCTJmtp/JwYEHORl/klbrWhH3Mk6caPwD6tSz/Gf/3tq2FK8mGiDe625e3fjt2m8MazCM1JxUwh69g+OWwXnKgP8IhkbDAAPeIwiCgH8N//dCp3El9UqF+oxOHp2k1VhVbhZbFfcYlmiFsm07cHMrc6yU7BQ2RG3g69Zfi9QBnQ4mThTFv+PFzIGvT3xNibaEZd2WSfsVq4sZvG8wrtauLAlYAsCUU1M4nXCa3f12S7SowpJCWq5tSXp+OmOajWFSm0lvfW+5xbl8d0p0s5LJZBgrjCnWFEtOUqUr0iAWPtdHX8fJwomwxDC+OSna755KPMUXLb5gX/99FGuKy6xg/hPEPImmwx+t+OTIJ/SReXM/awj1Lseje5wqTiRMTcltWg8Ao/UbKRY02D/LI9nBGFdTJx47W2JjYg0JCdyJC0crg2KZjmYTfyZ36iTmeKTiERHMstjNTGg5gcQJiUz3nc6hB4doZV4Lt5daURxaARZcXEAL5xZ6eoY3MdNvJl+0+IIvj39JO9d2FKoLsTa2xtrYGgsjCyb7TCYtL41WLq1o4dxCb19BEJjdfjYXky9yOvG03mudPTpjZWwlUuUy7pOUlUQd+zooZUrqO4jCf7VWTYdNHUjLTWNr9NYyz2FA3QEMOziMPXfFDImzj85Kr/059E983Xx5lv+MgpIC5IKcFddX0KNmD8lYQC6TSw3QQO+B3Hh6g3Zu7aR0+LHHxlLfsb4oyN0aoHduUzWkWmiJqV8VY7mxtAJuobSQQjr/in0D9qGUKREQWHV9VbnbHHlwBB06BAR83XypU7mO3vuqV6UhW5vIURnLaZcEtRauBUTNSnxmPEAZi1tTpSnPLCDz02BRM3Xnjmg5bW8Pz5+L/09MFL+zs2ZBbMVaAE87T+Iz48VGI6ts/oZMkLE2aC0D6w1k8L7BhMSE6L3et05fFnRawA/nf9BrEt/E0itLyS7OlmiTNiY2/OL/C7vv7n69UNO/P3z4oViYL1wIzZqJ2pQ3cDL+JDp0FTYapehVuxdXR11FrVXTfE1zijXFJGYlljt1KZc6VfDvU8ElvDHRALHJjEyLRIcOLzuvd6NPGZynDPiPYGg0DDDgPYN/DX+i06N5mltx4ff/NZ7mPiUpO4n6jvWJeBoh6TNeFr7kfNJ5etXqJW17ePssXpjBx+dyRNpUOfjx0o9YGVsxpvkrDcSRI6JeYPFiMDbmVMIpNt3axKIui3CycJL2m3J6Cvee32PHBzswNzJny60t/Hz5Z37x/4VOHqIOQ61V02lzJx68eECgVyDLuy9/63vLLMyky5YuRKZFMrrJaNRatbiqXY74trN7Z059dIq99/bSaFUjOm7uSEJmAgO9B6LVavm6zdcE1QrC3sy+TLGkh+JiMZDw1ClYuxamT4ehQ1G1a8MPQVY0XNmQJ/evc3oTrJ8cTqUt+5Dl5KJVKkTB7tq15OwWuebqjesBsP9xOcmN3HGt25osoZiqdtXB3Z3I57cREJvC8JRwPJZ5MPfCXIY3Gk7C+ATmd5qPrakt2UXZHI87zgCPV9OjlJRyL/1i8kXOJ51nqs/UChOPBUFgScAShtQfwk/hP+Fm5UaRpoj+e/rzouCF6L5lU51LKZfKTTDu7tWdFs4tmHl2pl6BZqwwpmetntx+dhu5ICc0PhQjuRHeDt5Ep0dLeRUJmQl4LffiUsqlMsfe0GsDg+oN4sP9H3Lg/gHOJZ1Dq9PiYuVCI6dGhAwK4aP6H1GiLcFUYUpSdhJNq7zOhvn6xNdYGlvyQZ0PWHZ1GUE1gzj24BhVLKogIHA68TTt3doDYiFfqg8BMaHcSm7G1bwY6trXFYXRCKi0qgqtUy2NLZnTYQ46dGy8tZE81WtnoDxVHiNCRjB432AaODRAQODmk5v4uflJbmkgUsJcq9Uj1M+Z4Te1KDdtBR0o1WCkE//sl7p1laLU5lmyuPX2hh9/FBvQkyeh9yuqZHKy6OxUuzY0bAg//1zms+Np5ymu4Fs48CT3iaSDehNymZxNvTfRu3Zv+u/pX8badnLbyQQ3DGbEoRGEp4TrvZZZmMmi8EV82vRTia4GMKT+ENpXb8/YY2MpUov2ycydK37/xowRp3WtWsHUqdJ0IzQ+lPoO9SsOtXwDdezrcG3UNdpWa8vaiLUUlBRIblJvolzqVP7/IXXqjYkGQFfPrnjaefL79d8JbhjM/vv7JYpXhTBMNAz4j2BoNAww4D1D6UrnqYRT/7NrkCggOpHSU7qSffTBUTQ6jR61af39bbR8bkzdTAX061fmWE9zn7I2Yi0TW00ULV1VKvjqK+jcGYKCKCgp4NMjn+Ln5sfIxiOl/Y7HHefXK7/yY+cfaeTUiOuPrzP68GiGNxouJS/rdDr67e7H5dTLNHZqzIGBByoshkGkL3TY1IG4l3GEBYexNGApckFOvipfjyoFIqWnpUtLPH/zZNShUbhZu3Hqo1NEfxbN0oCl6NCx5+4e5DI5PWp0I+TO3jKNBD4+4OIi0lO8vKBLF/jkE9i8mUvZt2nse485TfOZZBtIdNAxOp6KFzUSycnIgoejrVxJtOocMYLcpq9W8F+9PXsze1JyUnCycEKlUeFlJwo8bz65ianCFIWgYObZmfSp3Ye4L+JYErAERwtH6f0dij2ESqOif/NXNsPJyZSHBRcX4G3vTVCtoHJfL4VMkEn0urT8NGa3n83ZR2dpta4VGfkZnProFAGeAQQfDC7jKiQIArP8ZhGeEs7JhJN6r31Q5wPuZ9ynoVNDqUlp5NSIqLQoaapWzaoaeao8qVguhYWRBWZGZmzqvYletXoxYO8AclViAVaqMZLL5MhlciqZViKvJA+FTMHsc7P5JfwXTiecZuednSzqsog1QWuwNLYkoyCDXFWuFCKp0WlYF7kOAGdLZyyNRCofOnGi4dW4E4IgSDQbHTpkyFh0aVGF93Kyz2SqWFRBrVNLdrARTyNouropu+/uZkOvDezqtwstWnJVuVS1rErcyzi95qFJlSasbmOMXSEURFzF2sQauUKJWqcFHSQe3CiKpl+hVINSRoQtl4vf1f37xWmGv7/oICYI4pRj8mQx+NHHB1auhIwMatiKk0a5IEeHrtyAQBCpXNv7bqe7V3f67urLyfjXz14QBFYHraaVSyt67+ytR1P65fIvqDSqMlQ+QRBY0X0FSVlJ/HRJDLXE3V36znH8uDiN+flnaNIE3dWrnIg/IWlY3gXWJtYcGnyIUY1HAfDhvg/1msGK8Cz/mWTJ/K/xl0ZDJsgY23wse+7twb+GP4Ulhey7v+/tx6hZE168EA05DDDg/0MYGg0DDHjP4GDuQGOnxv9T+tSV1CtUs6pGdHo0LlYuUqDZwdiDtHRuKa3+PX54k+PWGYx4YA7du4siw79gUfgiTJWmjGsxTvzBsmUiBePXX0EQmH12No9zHksp3wDpeekEHwwmwDOA8S3H8zT3Kb139aZxlcb8EfiHtN3YY2MJiQ3B1dqVs8PPvlUb8TjnMX4b/UjPT+fs8LM0qdIEY4Ux7ibtqaf+ldbqw9RXL8FK1wAvWy+Oxx1n6dWlDK43mNhPb3Oo+WI6JegQ1q3DceFvdM5zYNvWb8HFhV7TNhObk0DsoFeNxKZNoqDa3V101Fq7Fk6fhvh4srPS+XxFID7NorF0r03E51HM++oIpl26gYeHyC+nbGBf6Qp4aep1ZbPKetau9R3rs/nWZjbe2kiBugAXaxdixsWwOmg11ayrlbkfu+/tpm21tri41AULi3InGlFpURx7eIzvfL77W1ve2IxY5l+cz6TWk2hTrQ0zwmbQu3Zv4l7G0d2rOzXsarCx10YEBIIPBpdJXg7wDKClc0u+D9PXanSt0RVzpTl2JnacSjhFiaaERo6NuP3sNpVNKgNwL+Meu/vtlgLzSlHZTHxdIVOw/YPt1KpUS3otsGYgIK6Ob7+z+8Zc1gAAIABJREFUXcqEKaV7TTo5iQF7BuBTzYdhDYdha2rLpt6buJx6mXZu7TifdF5qdPJL8hEQeFn4Us9K2UwFuVUqodVp9cLwOnp0ZOnVpaTlpVV4P0MGixOyWWdnsfjyYlqtbYWFkQURn0YwvNFwPCt5UqtSLYzlxpLe4k1ufpMqTThFIqF1FFRZvwcXS2eKKEGuUIIAZyL2ilSiS+IUqMxEozy0bw/p6WJDnZIi0pFqiw0X16/D2LHg6EjjEdMYegu0uWJT91edxptQypXs6reLTh6d6Lmzpx4FzEhuxL4B+7AytqLHjh5kF2Xz7P9h77zjmrrbv/8+Sdgb2YJMEVERERdOXEhFxWpdYFVaZ7VaW62t1lVra5daV5W6ce+tWHHgwIkL6gZkyBBl7yTPH0eiEbC0d71/vV9PPv/oKzk5OefkJFzX9/qMwkwWxSxiQssJatPPSjS0bMhnfp8xP3o+D56J1tTMmCFOMBYvFv9/7ZrY/Pv5MXHPEwIdqqcE1gSJIOGH7mKjeC75HH6r/Xj0wpAB3kCdegti8EoM9x6OjlSHw/cP4+/s/+f0KY3zlAb/JWgaDQ00+Beiu2t3kTv8F5Jt/0lUBvW9qs8oLi/m6IOjaiF9G3Z8hY4cBp55Vi1tKrMwk1+v/MrEVhMx0TURi5S5c2HsWGjcmNgnsfx04SdmdpypsuBUKBUM2zsMAYF1fdZRLi+n33YxCG33gN2q/I15Z+ax4soKTHVNOR92Xs3B53UkPE+g/dr2FJYVcmb4GRpbNaa0opT3NkzBLn8u5rREByvMaYm3fAXSbEsWZHiRcqwxv4zaQ327JuoTifXrCU0wItosj6QRfek2eRl6Eh32r/lcnEgkJ0N0tGit+fXXEBaG0t+f3aXXaRjelIhbESwJXMK5sHNqIYOvoqZGo3LFWSJIKCov4nmRWGSujl3NsL3DVPSdSa0mqSYMryOnJIdjD44xoNEAcWXawaHaRuO7s9/hZOrEoMaDary2lZ/ZqIOjcDB2YK7/XPYN2oezqTM743fiYurC9vjt7IzfibWhNeuD13Ps4bEqKdGCIDDXfy4XUy+q0av0tPQIcg/icd5j8svyuZByAW8bb0oqSnhSINILP2j2Ae81ek+Vj1KJV8W32lJttRR2mSDSrtZdX4dcIefR80c0sWrCzTE3aWzVGIkg4VnJMwx1DFWanc7OnZncejInE05iaWCp0mkA+Nj4UFxRrNZoGJRDqrbYGFZ+Fg7GDsQ+iUVbqs03Z76p8Zq2sGtBU6umlMhL+DTyUz5u9THnw86rvicghvdJBAmnEk/hbeNNVMJL+pSPrQ8Vygr2Bjhi9SiddzPE4wpwDUBAIKaphdjUtmsHw4Zh+FwsXN9oK9uhA9y8KTpV1a0LU6aIU43YWLHJsLAAhQKtcxfYuAfeDxInDkkndovfixqgI9Nh14BdtK/XnqDNQZx7/JICZ6FvwcEhB0nLT2PgzoHMj56PVCJlatupNe5vRocZ2BjaMP7wePE31MYGJk4Us3rS06FxY4iJ4czIACbFQKd3J8OFCzXurzqY6ppiqmvKWN+xFFcU47vKV6UNeZ06VVpRSl5p3j+n0XhtolF5PEO9hvLr1V8JaRLCqcRTNQYKAi8bDY1OQ4O3DE2joYEG/0J0d+1ORmEGtzJrn5L7T6EyfKypdVNin8Sq9BknEk5QVF6k0mcolUrWPjtB/1QTTHSMISioyr5+Ov8TMomMia1ES1JmzBCTbWfPpkJRwYcHPsTT0pMpflNUr1kUs4hjD4+xPng9VgZWjDs0jmtPrrFn4B5sjWwBWH1tNV+d/AodqQ5nhp8R3XZqwN2nd+mwrgMSQUL0iGjq16lPTkkOPTb14OFDJ6SCFAGRVy8gRaoQ6PV4KJ/c0MPEwU1MrQ4PF1dxHzxQNRLBm66ir6XP5u526I8cR7f6Aex7elY1kXgVKXkp9N3Wl37b+9Gibgvix8UzvuV4pBJplW0rUVOjUVheiImOiWo1/MB9MbfCvY67yh5VrpTTom6LGve9985eKhQV9Pd8QXWrV69Ko3E/+z474ncw1W+qSgtRE9bEruFM0hlWBq1ET0sPA20DjHSMkEqklMpL6e3em6F7hhKTEkOAWwCftfmML058wdU0dVelbi7d8HPwq6LV6O8puk+Z65pz9MFRVQNRqhCL+MokcFUI5AsUlhWq9qNQKoh+HA2IU4u+2/tyPvk8K66soLNzZ04mnmRau2nYGduxvs96lc7l+MPj9IjoodLwfNPlGxpYNCCvNE8tqDG7OBsA7YKXBbVeBTzgGY4mjtx5egcQp3VZhVm0qtuKlVdX1uhcdOzBMdIK0gCRgvRdl++qnF9P954UVxQTmx5Lq7qtOJl4UnW+lba+97zsuW+rQ0iUmBXSxr4NSpQ8KXtKwpEtsGoVHDqEY6vuTIiBkpI30IA6dhSNHM6+Yr8tCODtLeqt0tLg8GGEPn0olQkYFSuwKhRI2rgErKzE6V5kpBplqxK6Ml32DtpLi7otCNwUqHKAA/Cw8GDnezs5kXCCJZeWMLn15DdaR+tr6bMkcAnHHh57SSGaOlX8br6w0kYmY17bcj6e3w6JsQm0bSuK34trn2HkbOpMYXkhl0deprV9awI3BfL9ue+rtbaFfyisD6qdaACMbzme9IJ0JIIEAy1R01YjDA3B1lYz0dDgrUPTaGigwb8QbR3aoifT+z+xub2ZcZOSihK0pdooUar0GXvv7MW9jruKm37u5HruG5Ux4qYE+vUTsxpewdOipyy7vIwJLSdgpmcm0hVWrxYnGnXqsDhmMbFPYgnvFa6iPF17co1pv09jcuvJBLgFsPTSUtZcX8OqXqtUbkUH7h5g5IGRCAgcHHywxolA5bl0WNcBYx1jokdE42jqSHJuMu3WtONG+g3q6bVEqVTXdCglUhIatlKfSHzwAXTpAq6uqkbCUNuQYI9gIm5FoFQq6dOgD+eTz6uJQ+UKOUsvLcVzmSeXUi+x872d7B24t1oq0+uortGQCBJySnIw0DZgyO4h4nso5UgFKceHHleJbqWCFG8b7xr3vT1uO+0d278UwDo4VNFofH/ueyz1LRnRbMQbjzO9IJ0px6cw3Hu4SqC/8MJCzj4+S0TfCLSkWtzJvkMTqyb03tKbhOcJfNPlG7ysvRi0a5CaaLXSgepy2mU1cXCgWyB6Mj0cTR3Zf3c/QVuCkApS2jq0BSA+M77aY4vLimPS0UkolAris+JVzdr0dtPxtvGm28Zu3H92n3JFOU6mTuKEB/j8xOdYGVjxbZdvUaLkbPJZ2q5pS1p+GroyXfzs/SgsL0QiSDDTNQMgMTcRgKep4gqxoASJEm7J07AxtEGulNPBsQPuFu4Y6xpzPvk8prqmzDk9R+2Yy+RlfBb5GT029aC5XXPa1WuHXCln+L7hVc6vXb12ou4JMNAy4HHuYxWFx0DbAA8LDxQo+blFOe7n7+L8DIrKizDVMQVg7c31YlbG3buUDejHoqPQJniCeO9XB2dncZJxumqSOyAuIgQGwubNjFndlwVhDXCUG5Jkgtig79oFAQFi2vyECXD+vJpdrr6WPgcGH8DL2ouAiAC1RrSLSxf87P1QKBW1Cr3r1aAXvRv0ZtLRSeI9ZmYmNhsrV0JCAkXlRUQnRePZob9IH/vuO1i6VGyazlU1Faj2cpg5k5iTiKmuKQcGH2Ba22l8/vvnbLixQa1RzioUG423YW/7KhpZNcLfyZ/wa+H08+zHhpsb3jwV1zhPafBfgKbR0ECDfyF0ZDp0cur0f9JoXEi+gLZUm+S8ZOqZ1MPJ1Am5Qs7+u/sJbhCs0kesOfEjzrkSOsY+r5Y2tShGtKP9pM0nYjExcSJ4esKYMSQ8T2DmqZlMaDmBVvatANFRZ/CuwTS2asz8LvOJSojik2OfMLn1ZFXmwNnHZ3l3+7soUbKm9xq6ulZvEQpwOfUyndZ1oq5RXU4NO4WtkS03M27SZnUbCsoKOP/BeRramSJ5TTsuEcDFunbpvSFNQojPiudGxg2C3MWJTmUK9q2MW7Rb244JRyaI230UTz/Pfm8Uq6sfh3qjkV+Wj55Mj823NpOWn0ZhWSFSQYqhlqGKrhObHouBlgGNrBrVWIw9K37G8UfHGeA54OWDr1GnUvJSWH9jPZ+2+fRluGIN+PjIx2hJtPix248A3Ei/wZdRXzK59WQGNh7I8aHHyS3JpaSiBANtA97Z/A6FZYVs6beFJ/lP1IIRAbo4d6FdvXZqUw0DbQMC6weSVZRFXFYcCqWCLi5dqFCIK+Op+akAVa5tz/o9WXp5KYN2DlIzV+jr2ZdDQw6hI9VBIkhE22K/KcgkMg7fP8zeO3tZGLCQae2mcSTkCPoyfe5m36XFqhbMOz2PVddWoSPVQaFUkFOSo5p+6CDjsZ5Is5IoQaqAS6WPeF4s0tvG+Y5jW/9tFJcXUyovxdPSk403NxKfJTZK97Lv0WZ1G365+As/df+JQ0MOsa7POgA23drEg+wHauenLdVWaVhS8lOQCtIq9KmnxU9Z31hBuYkh4y/BjYwbtKvXDhDpdnKFHOrUQbl8OS1HQoW2VKRIDR0q0oxehSCIU41aBPfVtW/IssaFOLYOIKlnW1GEbfeisS0qgrVrxSmCiwt88YVIyVIqMdQ25HDIYTwsPOge0Z0b6WKI5qPnjzifcp4O9Tow7cQ0jtw/8qfH8EuPX3hW/OxlHsfHH4s6stmzOZ14mlJ5KQFuAWKDNHUqXL8uPt++vWi/XU0x/ypeDe2TSqR80+Ubdry3g7jMOEoqSlTTKtVE4y1SpyoxoeUEziefp419Gx48e1DFsUsNGucpDf4L0DQaGmjwL0V31+6cSTrzZs70W8CFlAv42PoQ/Thapc+4kHKBrKIslT6joCiH7UI8I1KtkNjaicXHK3he/Jwll8S0Xgt9C9ixQ6RbLFyIUiplzKExWOhbMK/zPNVrJh6ZSEpeClv6bSEtP433drxHZ+fOLOi2ABAL94CIACoUFczqOIvhzYbXeA7RSdF02dAFDwsPooZFYWlgSVRCFO3XtsfKwIoLH1zAw8KD0E52CAKqZkMiiLXUUP8/t7oEkepjoW9BxM0IrAys8HPwY/cfu5l+Yjo+q3zILcklekQ0K4JELclfwauNxs2Mm4RfC6ewvJD8snxa2LVgUKNBOJo6klOag62hSCmLTY9FJpHRwu7NtCm5Qk4/z34vH3RwgMxMleXnzxd+xkDbgDG+Y954jAfuHmBH/A4W9VhEHf06FJcXE7I7hAZ1GjC/y3xA1CZEDo0kOS8ZC30L0vPT6b+jP46mjizvuZz1N9arJUQLgsDcTnO5+uQqB+4dUD3uY+Ojci/6pPUn+Nn7qehI1VkTg2ibu2vALg7cO8C8M+K9Zm1gjZu5G7klueSW5qpE0G3s21BcXsyEIxPo6tJVNd3o7tqdK6Ou4GTixJOCJ3x16iu0JFpcHSXayupr6auoZRXyCkpe8SOQKiFJVsij54/QlenSu0FvPC09WRK4hHJFOdGPo7ExsOGrqK9Yd30dPit9KCgrIObDGCa3mYxEkOBq7kpLO3Ga12trVeevnvV7UlheyO+PfsfH1kddEG7jw6NnjyjWhnt9O/BBLKQ9uUsfD5H+mJafpnL50pXpcrUu7FkzVTQvOHJETANftEid6tSxozidzH+zfaqbuRspeSnYGdrxuDRTtJT94w+4dEmkUFVOQPPzRZF206aidmLePIxTsjgaehQnUye6buxKXGYcc07PUek1gtyDGLhzILczb7/xGBxNHZnZcSaLLy7mZsZNkXL01VewcSPHLm3GwdhBzSAADw/xd+rHH+HXX8HL641NlbOpM0k5SWpJ3P09+zPZbzIAvuG+/P7od9VE421Tp0Cc5DgYO3Ax5SL1TOq9WRReOdH4P9ICavD/BzSNhgYa/EvR3bU7pfJSFa/8v4WYlBia2TTjRvoNlT5j3519WBtYq6YPO3bOoUimZFhMsZgELlXXGvxy8ReRAuL3gvM8ZQr07g3durHp1iYiH0ayoucKVar39rjtrLm+hiWBS6hrXJc+W/tgpmvG1v5bkUlkJOYk0mldJ4rKi3i/6fvM6jirxuM//vA4AREB+Nr5Ejk0ElNdUzbd3ESPiB60sW/D6eGnVVqPJo5GLAxriK+rCRZGWvi6mrDog4Y0rmdUq2ulJdViUKNBbLm9BblCjqelJ4fvH+bHCz/yVYeviB0dq1o9/quQCBLK5eUM3jUY71+9ySjIoK5RXTzqeOBl7UVyfjL2RvaitW2d+iiVSmKfxJJflo+vnW+N+90Wt42OTh3VHXscXlC5UlJ4WvSUlVdXMqHlBNXnUx3yS/MZd3gcPdx6MLixmAb/xYkvePDsAZv7bVbTE3hZe3FoyCHis+JpaNmQM4lnGHtwLKFNQglpEsKYg2PUXHv8nf3p6NiR2admo1QqiU6KZsG5BQgI2BnZEZMSQ1ObpmQVZaEl0aJMUfYyN+EVWBtYE+wRzPHQ4zwrFm08K6mAq66uQk+mR5m8DCsDK3pu7smU41NIzk1maeBStelI/Tr1+a3PbyruvUKp4MGzB6wPXv9yOyXIX/2LKogTjSx9qFBWEFQ/SGUhG9YsjPc830OpVGKma8buO7sZsW8EAxoN4Oqoq/jY+qidx+Q2YuF65+kd1sauVXsusH4gIE6qPC08iUqIUk2CfGx9KJGXYGNow4Gu9TAoh06nk/G09ATEichv18QwP0EQ0JXpUqwoFamC9+5BSIhoRd2s2cuCu0MHkMtF2tMbUGlxq6+lz+Pcx2LTLAjQogUsWSLqOfbtA39/cX8SiSgynzcP3Nww7RjA8YJ3sdO1ouO6jmy8sZHp7adjpGPEpnc34WLmQtDmoCpWya9jcpvJuNdxZ+yhseIxjBwJjo4cu71XFMa/PmGUSsVzvnFDFJF37ChOQqop7J3NnClXlJOWn6b2eF2jumhLtfG18yUgIoDtcdvRl+nXivJVK1RONKppEGQSGeNajGPL7S30b9if7XHba16sql8fCgpEkw4NNHhL0DQaGmjwL0VDi4bYGdn9V+lTGQUZJOQkYKBlgBIlnZw6oVQq2XNnD70b9FZZnK6Ji6Brmi71HudWoU3lleax6OIiRjcfLeY2/PijGPr1449kFWYx6egkBjUexDv13wEgKSeJUQdGMaDRAIY1Hcb7e94nISeBfYP2Ya5nTmZhJh3XduR5yXP8nfz5rddvNdKPKvn7/s7+HBpyCAMtA747+x2he0IJ8QrhwOADVYrnJo5GLBjWgB1Tm7FgWINaNxmVCPEKIS0/jaDNQYRfC0eJkoUBC5nZcWYV8W5tkZSTxI74HeSX5XP28VlWBq0k2CMYBxMHnhY/xVLfkse5j1WFa1PrpqTmp5JdnI1CqahxovG06CknHp1Qp02BKAYHSE5mycUlAKqskpowPWo6z4qfsaLnCgRBIPJhJIsvLmZB1wU0tmpcZXs/Bz92D9jNlbQrtKjbgjXX17Dg3AKW91yOpYElg3cNVgt2m9NpDrHpscw6NUvVOAa6BSIRJEQ+jFQlg1deg+qyGio58ZYGlqom4UTCCW6k3yD8WjjuddzRlekSPSIaPS09ll1exkifkTSwaKC2n6ScJN7ZJN6vvd17I1fKCd4WzMF7B1nRc8VL96lXbsvKErDEULvK9RQEgfBe4ZjomBD3NA4BAS8rL9b0WaPSXLyKYI9gzHXNkQkyxh8Zr5Zcb2NoQ3Pb5uJURYCMwgzVpKdSp2NtYM1ZkojyNmHU+RKs9ETb3zJ5Gfvu7lPpivRkei+LUnNzWL5ctK01MBAL7tBQMDYWhd016TReoNJlSxAESuWlVYPttLXFxYcdO0SK1ooVIo2qtFS0nn3yBPOps/h9Wjzl+TlIgM7mYpCiobYhBwYfoExeRvC24DdOfbWl2izvuZzzyedZd30daGvz+KuPuaNbQIDSpeYTcHcXz3HhQnHC4+UFp06pbVLpYlZJn3odh4ccZorfFPbf248gCGrmAf8RDAzE5qysrNqnP/QRMz4EQSC3NJf9d/dXvx/3Fw5mGp2GBm8RmkZDAw3+pRAEge6u3f+rjUZlUF92cTZOpk44mToRnxXPw+cPVbSpe4lXOav/lLA0a1Fz0bSp2j6WXVpGUXmR6CSVnAzffguTJkH9+kyOnIxCqWBRgKjfqFBUELI7BFNdU1YGreSb6G/Yc2cPm97dRCOrRuSV5tFlQxdS8lPwtPRk36B9NWZlbL29lXe3vUsv917sGbgHbak24w+P54sTXzCzw0zW9F7zxpyNvwOlUsmj54+QCBKiEqMI7xWOu7l7FTel2iK9IJ0JhyfgvtSd+Kx4tKXa3J9wn5HNR1JQVoCxjrEqYTg5N1lVmLdxaEPsk1hALKxqEsjv+WMPSpTqtCkQQwWB/MS7/HLpF0b5jFJlUFSHmJQYll5ayjx/MfH7adFThu0dRjeXbkxoNaHG1wW4BbC532Yupl7E186XL6O+5Mj9I2x+dzPXnlxj5smZqm07OnWkkWUjvj7zNV2cu3A45DADGw8kJS+F7OJsnhY9xUTHBH2ZuEqcnJus0kpUorLRqMxmEBCwNrCm7Zq2ZBRmcC/7HmN9x+Jm7oajiSMyiYyD9w+qBd89L36O7ypfisqLWBq4lH2D97ExeCNSQcr4I+O5mnqV/tnWCK8tLiuBcimUKSsw0TFRm2zJFXKWXV6mCg800THhZuZNTidWX7zryHQY0WwEOjIdcaq3532154PcgxAQuPv0LloSLZVOw0TXBDdzN7QkWtzKuMXZ4OY0yAZZ5AkA6uiJGR+V7kR6WnpVczSaNxenF6tXw7FjIr3I1vZPGw0bQxv0tfQprRDpeEk5NWdpYGYm2kafPSs6u33+uZjiLZeT4mBMnkyORYGSHsv9SOzfFbZuxUFmzv7B+7mRfoOw/WFvFD13curEUK+hTD0+leyibI410UeihC4rqqbUq0EqFX+7bt4URfD+/qKNb4HozKVqNF5zDqu0t5VKpHzX9Tv8nfwpriim7Zq2b74OtYX+i8lIDToNC30LBjcZzI74HbS2b10zfcrFRZwyaXQaGrxFaBoNDTT4F6O7S3duZd7iSf6T/8r7xaTEUNeoLlefXFVzmzLQMqCzc2cA1u7+CtNiCD6dIVIrXpkuFJQV8NOFn/iw2Yei5ey0aWBkBDNmcOzBMSJuRvBT959UCdXzzszjQsoFNr27iZMJJ5l1ahZf+39N7wa9Ka0opdeWXsRnxWNtYE3k0MgaqTxrYtcwZNcQhjQZwtb+W6lQVNBvez9WXl3JqqBVzPGfU2sRdm2RmJPIO5vfIWR3CB4WHmhLtQlpEkKwRzAH7h1Q423/GbKLsvn8+Oe4LHYh4lYEszrOYmaHmcgkMpUYO78sHwMtAwrLCzHXMyc1P1VVqLaxb0NsupjN0NS6KdrSqha7IIb0+Tv5V3W/0deHOnVYmbyXwrJCPvX7tNrXA5TLyxl5YCQ+tj5MaDUBpVLJqAOjKJOXsS543Z8G+/X37M+qoFVcSbtCY6vGDNs7DLlSzjz/eSw4t4ATj8QieG3sWpVIOtQrFF2ZLr3ce6El0UJXpsuxh8fwtvFGJhX1EQ+fP6zyXpX3WaVA38fWh+iwaJWmolReyqTWk9hzZw8nE0/ya89fkQgSOm/ozJP8J5RUlOAb7svT4qdMazuNj1p+JB5P01AufHABYx1jFl1aRMHTDMxk6pMIpQAFWiLN6j3P91T3X2peKl03dmVG1AymtZvGCO8RKp3N9KjpNRbMH/p8SGF5IbaGtmyP266mT+hZvyflinIupV7C186XqER1QXhBeQHJeclI27Xnii3orViFraGtauKx6toqlEql+kTjVUgkEBYmrny//75YeF+4IDYeNUAQBNzM3cgpyQHeHNqnBldXmDVLbDjOneOrvqbUfy7hYjhoCzI6O50mefRgsLLC97Of2eDwMVtvb63i3vU6fuj2A3KlnGm/T+NYwnFaGTTA7NgZMUjzz+DmJk4zliyBdeugSRM4cQJ9LX2sDayrTDReD+wz0jHCz8GP3JJcfMN9OZlwkv8If9JoAIxvMZ7HuY/xtvbm2MNj1f8N0dUFR0fNREODtwpNo6GBBv9idHURXZUqBZtvGxdSLtDMphk3M26+1Gfc3Udg/UB0ZbpUKCpY//QEIanm6BaUwJAhaq//9cqv5JXm8Xm7z8VV0M2bYf58CnVFAXhn584M9x4OiILtr898zayOszDWMWbonqH09+zP9PbTkSvkDNk9hLOPz6Iv0+f40OMvrVhfw9JLS/lg/weMbj6adcHryCnJocuGLhx/dJx9g/YxsvnIf/QaVSgq+On8TzRa3oi4zDj2D9rPnoF7KCgr4OC9g/Tx6ENWURYxKTF/uq+80jzmnJqDyy8uLLu8jMltJpMwMYEv23+JnpZeFXtbLYk4kZEKUhRKBc+LnyOTyDDQNiA2PRYtiVaN+oyswiyiEqJUIufXUeJYl5/Kz/B+0/exN7av8Zh/OP8Df2T9wW+9f0MmkbEmdg177uwhvFd4jZ/R6/jA5wN+6PYDtzNvY2dkR5+tfXi34bt0du7M0D1D+ebMN4TtD2NU81F0ce7CvOh5KJQKzPTM6OrSFUNtQ44+OIq3jbeqMH79egsImOiYiBqPFzqngY3EiUhuaS5aEi0qFBVsi9vGpKOT6Fm/J2HNwoh6P4qSihK6bOiiSnwOaRLCt12/Vdt/i7otuDPqJq75Whx1BzNj9VRyBIh7of2tDJfbd2cfXr96cT/7PlHDopjXeR7hvcIx1zMnozCDc8nnOPKgejclDwsP2tdrj4OxqKcJ3voyOLO5XXMs9C1QoMDe2J5TiadU946PjQ+Pc0TrYlM9Mxa3Buuz12lbWAcrfbHhvJd9j5iUmOonGq/CzEy0gN2yRdQH9Ogh/gakpVW7uauZK49zH2OkbfTXV/IFgQsOAod0HzNjV0alAAAgAElEQVRn2FocV+8k6rE/CnkFnYdDmrstREfTf9gC5p/TZc7pOWzeNkOkFFUDa0Nr5neez2+xvxH5MJKAFoOgVStRpF4bMbREAuPHw61b4OQEXbvCmDE4G9erkTpViazCLNzM3bg88jLNbJrRbWM3FsUs+vuBrAYG4r81CMJBvCfa2LchPiseLYkWm25tqn5DjfOUBm8ZmkZDAw3+xbA0sMTH1ue/Qp8ql5dzOfUydfTEIKxOTp1IyUvhctplghuIRU3k+Y080Skj7LG5mCjs5KR6fVF5ET+c/4Hh3sOpZ2Qv2tn6+MDw4cw6NYv0gnRWBq1EEASeFz8nZHcIbR3aMqb5GPps7YOruavKynPcoXHs+WMPEkHCgSEHaGTVqNpjXnB2AROOTGBy68ks77mchOcJ+K324+Gzh5wadoqe7j3/0Wt07ck1Wv3WiinHpzDSZyRx4+Lo1aAX7nXcaWHXgk23NtGqbiusDKzYd3dfjfspLi/mx/M/4rLYhW/PfssHzT7g0cRHzOs8T+VOVV2ORmXAXyVH/3nJc9X2V9OuUlheWKM+Y9cfuxAQeLfhu9U+v84bMiVFfN728xqP+172PeaensunbT7F28abB88eMPHoRMK8w2rcb034zO8zvmz3JQk5CUgECb229GJRj0XkluYy4+QMPmvzGSt6rmCu/1xuZ95mV7wYvNbfsz/ZRdnEpMTgZu6mEnnfzrytNrXS19JHEAQePX+kCvQL9ghmxeUVGGsbU6GoYFjTYXxy7BPS8tNY3GMxgiDgbObMiaEnePT8EbHpsbRzaMfGvtUHn9mu28XtXyroZtWahzkPVQ5WlbhjIdK37I3t+ejQRwRvC6Z9vfbcGPPSaEEqkbK131YUSgV6Mj2+PPGl2uf+KkY1H8WltEv0cu/Fw+cPWX55OSDeK0HuQehIRWrVs+JnossS4kSjqKIImURGYXkh2xvBMxNtPjhbSHZJNsENgtGSaBF+LbzmicbreO89seno00cMsmzQAH76CcrL1TZzM3fjUc4jHE0deZz7uIad1YzpUdNpYtWEgd6h0K8f9XZEEjX+MiUWpnTpmkrG8xQwMmJaVgOG3dUl7PY3nG9hI4q5L1+u0kCMaj4KDwsP8svy6eLSFebPF12w9u6t/UG5uIhTkGXLICIC57NxJCRcU9vk9WTwrKIsLPUtqaNfh8Mhh/mk9Sd8cuwThu0d9vdcBWsx0QAxwO/M4zN0curE+hvrq29sNFkaGrxlaBoNDTT4l6O7S3eOPzpeY/HxT+FW5i2KK4opLC/ExcyFeib12H93PzKJTCXcXnPiR7wyBZqdeyTSpl5B+NVwsouymdZumhh0d+UKLFrElYxYFsYsZHbH2biZu4lUm4OjyC/LZ13wOobsHkJeaR77Bu3DQNuA2admi1QOlKwPXq8qyF6FUqnkq6ivmHZiGjM7zOTH7j9yJe0Kfmv8ALjwwYU3JmP/VRSWFfJZ5Ge0CG9BhaKCmA9jWNRjkRqVK9QrlMP3D5NbmktQ/aBqG40yeRnLLy/H9RdXvjjxBf09+/Pg4wf8HPBzFTpTTcnggEpUml+Wj52hHc+Kn5GcJ+oKappobI/bTheXLtVqLyoUFXxfN5H+KcbUr1O/2tcrlUpGHxxNXeO6zOo0i3J5OaG7Q7ExtGFRj0U1Xbo3Yl7neYz1HcvToqek5qcSuClQdW72xvYIgoCfgx/dXbsz5/QcFEoFfRr0QSJIUKKkqLxIVdC9Lgav/GwqaUSmOqbYGNqw4eYGJIKEAY0GMMVvChJBglwpZ370fJXmZcmlJZTKS5EKUgrLC1WNihoyM2HOHHRHjuXY2PN80voT1TTAWOlFk4pFuOodwEe5FL9lQ1hzfQ3L31nOnoF7qqRad3PtRmfnzhRXFHMj4wY743dWe736NeyHqa4p7nXcMdAy4NPITykpF9223nF7h1J5KVfSrqAj1VHpNJrZNgPA1tCWx7mPkWtJifAzwv9MMnnpSYz2HU25opytt7eiJdV680SjEhKJmDWRlycWqcOHizkU3t5w8iUtyM3cjcScROyN7WtPnXqBE49OcDLxJF/7f61Gx3Nx9SVq3CVybczoOq8+Tz/+EOHZc1ZuL6FlljbBPXJI3LMWWrYUi+ivvhJtdRGbuvb12gOIyeOdO4uTiRk1T0JqPP9x4+DWLZy1LElIvi1qTHLF++R16lRWYZYqQ0MmkfFD9x/Y/O5mdsbvpN3adn+9CavFRAPEptzawBqpIOV25m1i02OrblS/vkhTU7zdvy8a/P8LTaOhgQb/cnR37U5mYaZqhfJt4ULyBbQkWvzx9A81fUZHx46Y6ZmRVZDJfnk8YU8dECRScVXzBUoqSvj+/PeEeoXiIrMUtRkDB1Lu15qRB0bSxKqJyqJzdexqdsbvJLxXOL9c/IVTiafYOWAnTqZOLL20lLln5gLwbZdvGdJkSJXjVCqVfBr5KfOi5/F91++Z4z+Hw/cP02l9J1zMXDj/wXlczV3/sety9MFRGi1vxLLLy5jfeT5XRl5RpZS/ioGNBqJQKtgRt4M+Hn24l32Pu0/vAmIhvzZ2Le5L3Bl/eDxdXbpy56M7/Br0a400pSqBfaX5quIlrzQPY21jyuRluNVxU4Wa6cn0aGjZsMq+0gvSOZ10uqrb1Atsu72NBGkeX5yuudhYe30tpxJP8WvPX9HX0ueb6G+4knaFiHcj3miD+yYIgsDSd5YywHMAhWWFpOSl0NKuJR+3/Jipv09VndecTnOIy4pjR9wO6ujXwd/ZHwMtAxUtBFCF4lWiMsRwd/xuQKQhRtyMoLCskJzSHKb6TWX8kfG4mLmwpvcaNtzcQPC2YL6J/oall5dS16gu58LOkZSbRI+IHmqNHiAWp1IpzJ2LIAj8HPAza/usxUTZFG/5CsxpiQ5WFOfZY5I9lW09YxjbYmyNWqHfev2mKqg/i/xMFUb4KvS09BjqNZQNNzew9J2llFSUMGjXIED8nZAKUjIKM/C28VblaVjoW1DPpB6G2obczrxNHf06LPYuQapQ0iUqka4uXbE3tqe4opjcktzaNRogulBduCA6RC1ZAlevilOOzp1Fy+vUVNzM3VAoFZjrmv+lRkOpVDLj5Axa1m1J7wa9qzxfv059Trx/gsyKXLo5nORZ/FV0Tpxit7w/xkVygt7JIbdpA7C0FDM6PD3FJmjBAm4lX8HVzJXZp2eTmpcK33wD8fGwqQZq0Zvg7IzzuOmkmgiUbt8s5oAcVReYl1aUkluaW2UhYXCTwZz/4DzZRdn4rvKt0QigWtRyoqEt1WZ089GcSjyFlYEVG25sqLqRu7vo9PVKYKcGGvyT0DQaGmjwL4efgx/6WvpvnT4VkxpDY6vGxGXF0cmpEzklOZxMPKlym9p0UAxgC7mjDYGBUOflquya2DWkF6TzZfsvRTpCTg58/z0LYxZyM+Mmv/X+DS2pFnee3mHi0Yl82OxD8kvzWXxxMYt7LKaTUye23t7KhCMTEBAY3Xx0tRQeuULO6IOjWRizkGXvLGNK2ymEXw2nz9Y+dHPpxon3T7zRLemvILMwk5DdIQRuCqR+nfrcHnubz9t9XqNzlbWhNV1durLp1ia6unRFT6bHnjt72B63ncbLGxO2PwxfO19uj7vNhr4b/rQZerXRUCqV5JXmUaGswEDLgCcFT1ThX02tmxKbHotUkNLMtplK6Pwqdv+xG4kgUX2Wr0KhVPDdue8I1G+K94OCaoPYMgoy+CzyM95v+j7dXLtxIfkCX5/5mq86fEVr+9Z/ei3fBLlCjlwpR4kSmUTGpbRLmOmZ0dCiIYN2DaKwrJDW9q0JdAtk9unZyBVy+jfsT1F5EUcfHKWhRUOkgrRKgVypPziXfA6AoV5DWXFFzG4JcA3gTvYdTiWeYmngUkY0G8GhIYeISohiRtQMjLSNuD76Oq3sWxEZGsmdp3foubknhWUvVpBjY0XL0zlz1L4Hw72HM8B2JQICAiLNTUCKVJBy7sabE9adzZyZ0HICEkFCcl4yyy8tr3a7kT4jySzMxEjbiEaWjdh3dx+xT2Ix0TWhbb22SAQJ5nrmnE48rWpWfGx9KJOXcTvzNg5GDjzSKSQpoDUfni+loCiHMc3HIBEkpOan1p7K06EDlJSIk0sQC/noaFi/HqKiwMODZht/R6tCdM36KxqNQ/cPEZMSwzz/eTU2Zg0tG3Li/RMk5yYTsDmQ3FbeWIRv4uCnV0mx0WeQ/zMqLl8Ui+jWrcHAgOffzuRSRiwfX1BgUC7wyf5x4uSjb19RgF6DXeyb4GzmghIlydGHoGFDCAxE2LBBNWl7WvQUqD6sz9vGmyujrtDEugldNnRhycUltdNt1LLRABjtO5oyRRmelp5svrVZzUIaECcaoNFpaPDWoGk0NNDgXw4dmQ6dnDq9dUH4heQLqhC3Tk6dOHL/CBWKCvo06INSqWTN7Y30SdTB4uYDNdpUmbyM785+x6DGg3DPlcHPP8PUqTwwLGPWqVlMajUJXztfSitKGbxrMPVM6jGkyRDGHBrDSJ+RjGsxjsiHkQzdPVRF01r6ztIqBUaFooJhe4exOnY16/qsY6zvWGaenMmog6MY3Xw0uwbs+kcCsZRKJWtj1+Kx1INjD46xIXgDkaGRtZqShHqFEv04msyCTLysvfj6zNcM3DkQFzMXroy8ws4BO1VhaX+GytVtpVJJYXkhSpSUycuwNBAzNCpX8isdp2QSmSpB+nVsi9tGV5euVSg7IDoy3c68zZcNR4kPVLOyOfHoRKQSKT91/4n80nxC94TSsm5LpneYXqtzqQnF5cX03daXvXf2svndzbSxb4OuTBT2hnqF8jj3MZOOTgJgdqfZ3Hl6h21x2wj2CEYQBDIKM3A0dRSpKihVNCIQqVdJOUnkl+UjIKCvrc+tzFvkleYxvuV4Po38lP6e/QlwCwDEZOxKK1ZzPXPyysQJRnO75hwNPcr19Ov03tqb4rIiUX/UsCGMUU9Ov5F+gwfpBaomoxIKJTzK+POi8KsOX2GgZYBEkDDtxLRqi/4m1k1obd+a8GvhHBh8AAGB4G1iA9nLXUwOzyjIIL8sX2Wz7GPjQ3pBOrmludQzETNT7ob2wCkX8rZHMKLZCFBCTkmOqjD+U3h7i45yr9rcCoLoSnX3LoSFYTpnATd/BbOHqeSW5taY4P4qFEoFM6Jm0MGxg8oMoyY0tmrM8aHHefDsAYGbAskvzcfDoRk7Q/Zx3OwZn2wZDt99JzYb58/zewNtFBLom2HOT7sL2PFwP8cGNgdfX0hKglWranfur8DZzBmABP0y0YUrPBzh6jWUCgUcOkRW0YtUcP3qU8Et9C04FnqMj1t9zMdHP2bEvhHVhk+qoZbUKQA7Izv6NezHo2ePyCrKqmo24OQEMpmm0dDgrUHTaGigwf8Aurt0Jzop+p8LfHoNmYWZPHz+ELlCjpu5G/bG9uy9u5fmts1xMHHg2uMYbmk9IyzPVSwuevVSvXbDjQ2k5KUwvf10+OwzsLJCOWUKYw6OwcbQhrn+IhVq2u/TiM+KZ3GPxYTsDqGFXQuWvrNUFJtvDUYqkeJl7cW2/tuqrMqXVpQyYMcAtsVtY0u/LQxpMoSw/WF8feZrvuvyHUvfWaoSSv8nuJ99ny4buhC2P4wg9yD++OgPhjYdWmtr3GCPYHSkOnRY14GLqRcpKi9i38B9HA45THO75n/pWCobDYVSoaLtlFSUYKlvSXJesmq12s/Bj8uplymVl1arz0jLTyM6Kbpa2pRSqWR+9Hza12tPuyYvhPOP1fnih+4dYlvcNhYGLMRC34KJRyeSUZBBRN+IaqcntUVeaR6BmwKJSoji4JCDDG4ymAODD+Bp6YmuTJcvT3zJhBYT+C32N3bE7aBl3Zb0rN+TuafnYqFvQVuHtqprVGklXCkMB3A0deTYQ9F+1c3cjTWxa9CT6dGqbisiH0SSX5rPwoCFANx9epduG7shESTsGSBmsLRZ3UZVqLe2b83hIYeJSYnh3V/aUno+GhYtErMeEIX4wVuD8V7pTZHwEOG1UA2JAC7Wf94E19Gvw4wOMwAorihm2N5h1W430mckkQ8jEQSBsGZhPM59zE/nf6Jn/Z4olApuZt7EQMtARZ9qbtecwnKxKLUwECd+Cc5mRNcD/RW/YWdkR0/3nggItdcLyGTQtu3LxPBXYWoKixcjXLtGgYke/ReK09ike5f+dLc743dyI+MG33T+plbfu2a2zYgMjSQuK041derq0pXlPZezNG4NS9tqwbVrcOsWx7o70/C5DIeTVxlS4Ix/Xh3GO8ZRMmu62CR99hlEREBx7QXaDsYOSASJ6DwlCPDhhzB7tvhkUBCWH03FtJiqltKvQCaR8XPAz2zsu5FtcdvosLZDtQGUKui+mI7VYqIBMKHlBB7nPcbVzLVqpoZMJgrcNYJwDd4SNI2GBhr8D6C7a3dK5aVEJ0W/lf1fTLkIiAm3nRw7UVpRypH7R+jToA8Aa/bPxS4Pul/Ph379RF42olPV/Oj59Pfsj+etdNizBxYsYP2DnZxIOMGvPX/FQNuAI/ePsOjiIub5z+Ork18hlUjZNWAXj54/okdED0AM+Do05BAG2gZqx1ZcXkzwtmAO3z/MnoF7CHQLJGhLEJtubiKibwSft/v8P87IqDyPJiuakJSbRGRoJBv6bqiW7lATYlJi6LO1D6XyUrKKstjWbxuAakXzr6K6RqOwrFA10SiuKEYmkSERJNzPFlcjqxPA74rfhUwiq5Y2dSrxFBdTL/JFuy/Azk4slF6ZaBSUFTDu8DgCXAMIaRLCrvhdrL2+ll8Cf/mPdDDZRdl03dCV2PRYjg89TnfX7oAYMHc05Cj1TOohESSsvLaSHq49GHlgJEk5SczuNJu72XfZcnsLAxoNQKlUkpiTWK0g3NHEke1x2wEIdAtkR/wOiiuKGdh4IMuuLGNWx1nYG9uTWZCJb7gv5fJy9g3aR3DDYM6FncPJ1IlO6zupKIvtHduzv+92TuXe4L0J1pR17sil1EsEbQ7CN9yX+Kx41vVZx69D30MiCEiEys9RvKxD/Wtn/Tuh5QTsjOww0jZiR/yOam2SBzYaiKG2IauvrWZl0EqMdYz5MupL7I3ssTe2p0JRQUPLhipBuI+tDyA6cUkFsSF/+Owhv7QC88u34Pp1xviOQYmSrKIs1WTnT9GxI5w7BxVV9SQANG3K7Dn+HOktTvEeh/aCBQtqpChVKCqYeXImPdx6qAUc/hla1G3B0ZCjxKbHilOn8mJGNR/FJ60/YeLRiRx9cBRlo0YcM39OQMA4OH4cwa8ty3cUkaRbyoKB9qJVb2kpDB0K1tYwbJiot3jNSet1aEm1cDB2UAvtE8zroBSAtWuxPH6OuGVgE/XnTVaoVyjnws6RXpBO81XNa/69l0hE+lQtJhogLkZ423ijLdXmwN0DZBdlq2+gsbjV4C1C02hooMH/ADwsPLA3tn9rOo0LKRew1Lfk/rP7+Dv7czLxJPll+QR7BFNcXszmzBMMS6mDNClZjTa1+dZmEnISmOE3TUzQ9fMjs3cXPo38lJAmIQS4BZBekM6wvcPo4dqDW5m3uJlxk70D91KuKKfbhm6UycvQkelwNPSoirpVifzSfN7Z/A5nks5wcMhBmts2p+O6jsSkxHAk5AghXiGvn8pfRkxKDD6rfJh5ciaTWk/i1thbdHPtVuvXX0+/Tq8tvWizug2ZhZnM6DCDkooS3C3caevQ9o02t2/Cq41Gfqmom8gvy8dM14xnxc8oKCvARMeEW5m3UKDAUNsQN3O3KvvZHr+d7q7dMdMzq/Lc/LPz8bbxpodbD3F13tZWrdGYETWDrMIsVvRcQVp+GqMOjuLdhu8ywnvE3zongCf5T+i4riMJOQmcGnaKtvXaqj1vaWDJ8aHHsdC3oKi8iDtP72CkbcSQ3UPwtvGmd4PezDk9h94NeqNEqQr1A7j37OWqrL2xvapIr9S7uJu7s/32djwsPJjUehJFZUV4/epFQVkBK3quUNkhWxpYEvV+FB0cO9Bzc08ibkYA0GXHVfbskHDE7Cn1Ftaj1W+tePj8IRF9I4j/KJ5h3sPwdjZjYVhDfF1NsDDSwtfVhEUfNKRxvdoJ5vW09JjnP08Vxth7S++X2pAXMNA2IKRJCGuur0GJkjW911AmL2PAzgH0adAHqSBFR6LD2cdnKa0oxcbQBltDW8z1zFXUqLisOM43tyLXygQWLybANQB9LX0USgX77+6v3YfZoYOYkh1bjZvRC7jVqc82jwq0JFokBfrB9Ong5SXa4r6GTTc3cTf7LvP859Xu/V9BG4c2HBoiajv6butLSUUJP3T7gZ71ezJgxwD2391PSl4KAfUDRaepDRvwiM9kSp1efOuaxoOYw6K4XyaDgACIiRG1aHZ2Yhr42bM1OjM5mTqpZWmoFj6GD2d9xBRu1JWg028AhIZCdna1+6iEj60PV0ddxdPSk84bOrP88vLqdRv6+rWeaAiCwISWE/jj6R8olAq23t6qvoHG4laDtwhNo6GBBv8DEASB7i7diXz09hoNJ1MnQNRn7L2zFxczFxpbNWbv5Y3kyMoZkesiFqL+oiOVXCHnm+hvCPYIxmv/RTHIavFiJh37BAGBhQELUSgVDNs7DIkgoY1DGzbe3Mjq3qtxMnWi24ZuPC95ToWigv2D9uNh4aF2TM+Ln9M9ojvXnlzjWOgx6hrVVRXz0SOi6eLS5T8657zSPCYcnoDfaj90ZbpcGXWF77p+V2udx92ndxm4cyDNVjbjztM7bH53MzfG3GBmh5lY6lsScTOCPg36cPzR8b9FeatuopFbkouOVAcQLW7tjOyIfSIWeb62vlVSuVPzUjn7+Gy1IX2XUy/z+6Pf+aLdFy8Lo3r1VI3GpdRL/HLxF+b6z8XR1JER+0agI9VhVdCqvz1BSnieQLu17cgpySF6RLTKevV11DOpx4n3T2CobUhKfgqmuqbEJMcw9/RcZneczYNnDziZcJLmts2RK+WY6ZqpzvfV61dYXoiOVIetcWJORbt67YhJjWHZO8sQBAGfVT5kFGYwo/0MRvuOVjsGA20D9g3ax/te7zN0z1C+P/QlZyLm8dMAeyqUcjIKM2jr0JYbo28Q4hWiRiNr4mjEgmEN2DG1GQuGNah1k1GJUK9QvKy9sNS3JKsoizEHx1TZZmTzkaTlp3Hk/hH6efajmU0zjj48ipuZG3KlnIc5DymuKOZSqriS7mPrg4DAnew7aEu1eZTzCFszB34PdIfNm5E+zVZR71ZeXVm7A/X1Faebp2t2THIzdyMxNxEHEweSuvqKTYmVFXTrJjrXvbjfyuRlzD49m74eff8yzbASHRw7cGDwAU4nnea9He8hV8rZ3G8zLmYuhO0PQ1uiTQfHDi9fYGjI9HFbsTWvx/gFHVF+MU20ud25UzS0GDJEbDb27RPtfJ2cRBvf69fVMjqczZxrDO1LMChj7Gh7USR/6BA0avSnuR2WBpZEhkbyUYuP+OjwR4w8MLLqlOkvNBoAgxsPxlzPHEcTx6r0qfr1ISHhT6c3Gmjwd6BpNDTQ4H8E3Vy7cTvzNmn51afw/l1UKCq4nHoZmUSGex13bAxt2Hd3H8ENRMHtmlM/0z4J6l9NEG0rpSL1YlvcNu4/u8+sJh+LXvXDh3PYJJMtt7ewMGAhlgaWLIpZROTDSCa2nsic03OY6jeVPg36ELQliKTcJArLC9nQdwPtHdurHVNWYRadN3TmXvY9ot4X6R9t17TFUNuQCx9cwMva6z8653139uG5zJO119fyc8DPxHwQg7eNd61em5iTyIh9I/Bc7smF5AuE9wonflw8g5sMRiJI0JJqMbDRQLbc3kKQexAlFSUcf/jXhfzVNRrPS56rivxyRTlu5m5cT7+OTCKjlX2rKvvYEb8Dbam2igL3Kr49+y31zevTr2G/lw86OMDjx5TLyxl5YCTNbJsxqfUkfrn4C8cfHWdd8LpqBeW1wR9Zf9B+bXsEBM6Gna3SWL6OBhYN+H3o7+hIdYjLiqORVSPmnZlHXmkewR7BfH3mawY1Fq1djbTFQj67+OVqcaW+ws3MjfSCdCz1Ldl7Zy+hXqF0dOyI/zp/7mbfZVjTYXzd+etqj0EmkRHeK5zQJqF8fuVbOoaUk2FlyM73drK131YupFxgzKEx/3jGjVQiZUHXBWQVZSETZETcimDLrS1q2/jY+uBj60P4tXAA9g/ej0SQ8P3579GR6pBekI6xtrEafep5yXPuPL2Dua456fnp2Bvbs62NsfidXrWK1nVFB7GohKjaaTW0taFNm+p1Gi/gZu5GmbwMawNr0eK2SROxMYmIEKcEHh7w3XesvrySpJwkvvav/rOoLTo7d2bvwL1EPoxk0M5B6Eh1ODD4AIVlhehp6VVpxvW19FkSuIRjqafZOaipaM2towPBweLUZeNGUXMyerRIFVuzBpo1Ey1z586F+/dxNnVWp04hfkeVSiVZhVlYGVqLIvm4uJcuV0OGwNOahfdaUi0W9VjE+uD1RNyMoOO6jmqNNAYGtaZOgTgp+7DZh6QXpnM57TJ/ZP3x8kl3d5H+lphY6/1poEFtoWk0NNDgfwRdXboiIPytovVNuJ15m8LyQlLzU+nk2InLqZdJL0inj0cfknKSOFF2l7A8F/GP4gvalEKpYN6ZebxT/x28V+2D0lIK5kxn7KGxdHPpRqhXKNeeXGPa79MI8w7jh3M/EOAawJxOc+i/oz+xT2Iprijmh24/VFltT81LpcO6DjzJf8Lp4adJzEmk64auNLVpytmwsziYOPztc03LT6P/9v4EbwumqU1T4sbFMan1pFoJydPy0/jo0Ee4L3Hn8P3DLAxYyP0J9/nQ58MqlrchXiGk5afxpOAJHhYef4s+VV2jkVeapxI+A3hZe3Ex9SIViopqheDb47bTw60HJromao/HZ8Wz584ePm/7ufq5OyCdt94AACAASURBVDhAcjI/XfiJuMw4wnuF80fWH0z7fRoTW01UaSn+Kq49uUaHdR0w0zMjekS0anr2Z2hm24wjIUeQSWTcyryFg7EDoXtCmdRqEg+fP6QyfPlpsViwVVLMANU1lyvF6+Vm7kaFsoIfuv3AkN1DOJt8lq7OXVnbZ221761UKvn90e90Wt+JiFsROOSCBIEG1g3p6d6TgY0HsiF4A+uur+OjQx/Vzpb0LyDANYAuzl0w0TFBIkgYdXAUD589VNtmlM8oDt0/REpeCvbG9oxrMY4nBU9UzlLOZs6qwEIfWx8KygqoUFRgZWhFQXkBtka23FFkirqE5cupq2spWvMKAmtjq78uVdCxo2hrW0PgnauZqOUx1jF+aXErCOJvyd27MHo0xbOnM2/PJwyx8KeRVaO/cbXUEeAWwK4Buzh47yBD9wxV0QYLywsJ2xdW5bMKcg+iT4M+TDo2ifxJY8VpgUwGqaniFKJJE3EisWmT6Lb16afivz/8AO7uOC9cR1ZRFgWJ916c3suJX1ZR1kutl52dOB2JiBAdqhr9P/bePKDG/H//f9zntO8b2dMiZYnImq2i7MJYs2Y39mEYDGNfxpbdMPZlyr7MkCVCZc1aEiWJUFJpr3PO749bhxTK8P6Oz+885g8zp3ufyv18PZ/XdVWH/fs/eS/9avXjovdFnr55itNGJ4JiRbvmknY0AEbUG0FmbiY66joFMzVUFrcqviGqQkOFiu8EMx0z6pSt89XHp0KehCAVpMSmxOJi6cKhiEOY6ZjRuGJjtp1Zgk4u/PCqjGjn6SiOuuwP38+9xHvMK9sXVq+G6dOZHr6ahPQE1rdfT3puOr3296JaqWoExwVTSrcUO7vsZPDRwZyOPk2uPJdR9UbxU6OfClxLTHIMzbY2Iz0nnQsDL3Am+gzd9najs31nTnidwEjL6IvuUa6Qs/7aeuzX2HMx9iK+P/hyrNcxLIwsPrtvYkYik05OwnqlNXvu7mG2y2yix0QzpsEYNNU0i9ynQfkGWBtbK8enjkUeK1AgFIcPCw0NiQYgOk8ZaBoozxP2MgyAeuUKCsFjU2IJiQsp0m1qUdAiKhhUoG+tvgW/ULEiD988ZlbgLMY3HE+1UtXwOuCFjYkNC1suLNH153Mx9iIu21ywNLLkXP9zlNUvW6L9m1o05VDPQ0gECbGpsSRlJLHi8gq62ndl7bW1VDGpohxNy5W/G/24/VIMuIx4FYG2mjYhcSHMdZnLiksr+OvuX9QsXRP/vv6FxsAUCgUnHp7AebMzrXa0Iisvk6OXrHh8oS77u+3jWOQxWu9sTXJWMl4OXmzquIn119cz3n/8Vy02BEFgcavFvMp6hYZEA6kgpef+nuTI3gmpe9XshZaalrIo8PHwwVjLWCzCgJy8HC7FXSIjN0MpCAeUo2Y6ajpiovyYMRAfT/XAeyhQIFfI2XB9Q/E6Nc2aiWNGd+8W+WULIwukglTUaHwY2mdgAMuWsXb3BF5oyfhtRoBoNhFbTOerT9Detj2+P/iyL3wfnf/qTLYsm4VuC9lzdw9zzhfumvi09iE5K5mZN5bD5Mmi1W1sLLRtC3v2wPPnYnaKTAZLl8KRI9C+PUyfjqWeGLoZ06AqtGihHCXLF9cXsLbNL7LCwqBxY/jhB+jeXUya/whO5Zy4NuQaVUyq4LLNhQ3XNpS4owGilqRj1Y5oqWmx4/aOd7+TKlQQnaxUOg0V3wBVoaFCxXeEu7U7p6JOfdVRjUtPLylfuJtbNOfQ/UN0sO2ARJCw5c4OekSqo3f1lviXoyCI3YwLc2ll2ZLai7aChQVXujsr5/mtjK0Ye3wscSlxmOqY8uzNMw71OMTswNnsurMLqSClg20HVrReUeAlL/JVpHK0JnBAIOuvrWec/zgmNp7Iri67PvpS/znCE8JptqUZI/4eQfdq3bn34z26V+/+WZ1BSlYKM8/OxMrHivXX1zOp8SSix0YzpcmUQs5YHyIIgujSdG8/ra1bk5CRQEhcSImuu4AYPOeN8pxvct4oiw4zHTNy5DkYahoqV7Hz2Re+D02pJh2qdijweUxyDLtu72Jio4loSDUKfE1RoQLD3HMoo12a31r8xrQz07j/6j67u+5GS+3TgXNF4f/QH/cd7jiWceRMvzNfPHbVtkpbdnYWBdmZeZkcijiEvZk9j5IfFcglyXefEhDIystCSypes6GmIbXL1EaukLMoaBHl9ctzdcjVAmM0CoWCY5HHaLCpAW12tUGBguNex7ksDKP9iWiElavwrNaF031Pc/vFbZpuacrT1Kd4O3qztu1afC778MuZX75qsVGnbB161+yNulSdtOw0bj2/xdQzU5VfN9A0oGf1nvx5409kchkSiYTtnbcrfz88fP2QHFkOwU+CqWhQEVNtUww0DZQ6n6y8LJKzkkmrYgEtW+Lgew4AM20z4tPiORN95vMX2aCBOEL1EZ2GhlQDCyML8uR5PE97Xigj4k32GxZGbcXbaTA2q3aJaeN2dmLwZ3Yx3a8+Qmf7zuzqsoszj86go67DuIbjmOc6j5nnZhYSRFsYWTCj2QxWXl7JrR7NxVTxmTPfbWBoCN7ecPasOGI0daqoN5k7F8vL4gv6ox97g4YGwvYdACg6dODl8yhKqxexQFKmDBw4IBYxAQFid8PPr4D2433M9cw50+8Mw+oOY/jfwxlaPZrszMLhmp9jVP1RJGUm8fTNU+VYHRIJ2NioOhoqvgmqQkOFiu8Id2t3EjISuPX81lc7ZsiTELTVtLEzsyM1O5WIxAg87Tw5Fx1AjJCCt8xBXDnr3RuAo/ePcvvFbZbJWoG/P7lLFjH4xEjlPL9fmB+bb27G1cqVs4/OsrvLbg5FHMLnsg8GGgbUKlOL3V13FxjZufPiDs22NENfQ5+TfU8y5cwUll9azsrWK1ncanGhuerikJ2XzcyzM6m9vjYJGQmc63+OjR03Fum+9D4ZuRksDlqM1UorFgcvZmjdoUSPiWa2y+wSdVS8HLxIzU7lRfoLSuuW5nBEycanPuxo5L/oJ2UmIVPIUJOoEflKfMGpV75eocLJN8yXNlXaKLsf+SwJXoKRlhGD6wwudM5t0jsEWMGG6pMJiQth2aVlLHBb8EWamP3h++mwpwOulq4c9zqOvmbJBNEf0qtmL1a3WY0CBVJByuLgxbhbu3P12dWP7pMrz0UiSHie/pwe1Xsw3n+86NQ14o6ycJUr5ByKOETdP+rSYU8HNNU0OdX3FMHewbQu1Qhh2jSxyG7UCADnSs4EeQeRmp1Koz8bEZ4Qzoh6I1jusZxFQYuYFTjrX93nh8x1mUu2LBstdS1ql6nN0pClHH/wLnRtaN2hPE55rAz0bG/bngblGyjv30jLiIBHAaL4vWwdtNS0yMgTO0Av0l8Ab0X0Y8dS6m40DZ6ICecSQcL66+s/f4Ha2qLu4DM6jXwXrQ/zIXwu+5Cancr0Zr+Kv2MiImDkSJgxQxxZOnGi+A+rCHrU6EF5g/Jk5GYw+vhopjhPoV+tfgw4NICQJwWL//GNxlPVrCojzkxAPn2aOCpVVKfGwkJ0z7p3Dy5fpmzrH9DMg0f/7IaEBIROHcXtkpJIePOCUr+vgZ49xbGp94snQRA/DwsTR9B69BAF8i9eFHkv6lJ1VrVdxeaOm9lW6hkulQNLrNlzs3SjqmlV9DX0C4rCVc5TKr4RqkJDhYrviEYVGqGrrvvVbG4TMxJ5kPSApMwkWli04PD9w2iradPSqiWbTy7CNhEaP1cXg7ksLVEoFMw+P5uWFZpRY+Gf4OrKErNIwhPC2dRhE3GpcQw9OpTGFRpzLPIY893mE58Wz9SAqZjpmGGma8bRXkcLODtde3aNFttaUFa/LId7Hmbg4YEcuX+Efd33MbrB6C+6r/OPz1NrfS0WXFzAlCZTuDX8Fs0rN//kPtl52ay+shrrldZMC5hGj+o9eDj6IUvcl5QoTyMfW1Nb6pWrx567e+hg24EjkcW0DH1LodGpt92Hl+kvyZGJXYzQ+FDR0atCowL7xiTHcOXplUJjUy/SXvDnjT8Z13Bcoa7My/SX/HR/FX1ugVOaAf0P9cfN0o1xDceV9NbZdnMb3fd1p2u1rhzscRBtde0SH6Mofqz/I782+xWZQoZMLiMyMZL4N/EYaRZdAMoUMqSClE5VOzE9YDqaUk1uDr+JsbYxcoWcfeH7cNzgSGffzhhqGRLQL4DzA86LeihBgLlzRfvWhQXHxuxL2RPsHYyRlhFNNjfhYuxFxjUcx0K3hcwKnMWCCwu+yv2CqLMYVW+UaNrw7CrNLZrT71A/5Qtm/fL1qVm6plIUDnC452GlINlcx1wZ3FenbB0yczOVWol8cXFcahy0bUu6RVnGXobu1bsrbW6LlRTevLlYaHxkNd7a2JqEdDFPRqnTQHSWWxK8hOF1h7/ryBkYwJIlcOsWlC8vuj516SImd38BT1Ofir+X6g5l3bV1TDg5gQ3tNlCvfD08fT2JSY5Rbqsh1WBt27WExIWwpZ6a6DI1ffrHDy4IUL8+klWrsShdhZh+HcHaGo4eAyDbWJ8ULSjl0l4sSjw9xU7G4MFw5sw7XYu5ueh05ecndoaqVxc7HR95ngMdB3L+mTuP1TNw+sOpUMH0KfKtbtNy0th/b79S/6XK0lDxrVAVGipUfEdoqmnSonKLr6bTyA/qi0+LV+ozPGw8yJXlsv/5WbxjjBGuXFWKwI8/PE5ofChro6vBw4dEzhnHrMDZTGg0gZrmNfE64IWOug43X9ykZ42e2JrYMvToUMrpl0OhEEdR3k/IvRh7Eddtrtia2rK983Y8fT25+/Iup/uepot9lxLfz+vM1ww9OpTmW5tjqmPKjWE3mO0y+5NjP3nyPP4M/RPb1baMPTEWD2sPIkdFsrbdWsoblC/xNbxPH4c+/PPgH1wriw5aEYkRxd73w0JDTaKGplSTuNQ4smXZlNUvy6Wnl5Ar5IX0GXvD9qKlplVobGrFpRWoSdT4sd6Phc437sQ4BImEpQFShkUuJTM3k62eW0vcTVp1eRUDDg9gkOMgdnbeWUgo/2+Z1WIWQ+sMRaaQEZMSg6WxJXmKgoFx+SNUILrt5HcALnpfpKJBRXzv+uKwzoFue7tRWrc0gQMCOdv/LC6WLu86Q5GR4OMDv/wizrB/QHmD8pwfeJ5aZWrRakcrDt47yOQmk/mt+W9MDZjK8pDlX+2epzWbhra6Nvoa+uhr6KMh1aDvwb7I5DIEQWBInSEcuX+EF2niSri5njm9avQCIDY1lqtPr/Im+w11ytbhTc4bnqQ+EZ2p0p8DbwsNiYS4fl34IRxKJ+fiaumKTC5TZoh8kmbNICFB7EYUgY2JjagFgQI6jd+DfydXnsvUplML71S9ujhStGcPXL4sasTmzoWsrMLbfoKTUScREJjvOp917dbhc9mHGedmcKD7AfQ09Oiwp8O7l22geeXm9KvVj5/PTiVx5iSxC3GpcGjih1gaW/HIVAL79iGsXAnAyyzRBa3UAX+oW1d0rBo5Uhy/atlS/L4aO1a8P4VC7GaEh4tf691bLLCePy/yfA2kFlw/b4eVsRXNtzZnU+imYj+TfrX6oaOuQ1ZeFvvC94kf2tqKmpQSPl8VKj6HqtBQoeI7w93anYuxF78om+FDQuJClKM1dqZ2XIq7hGdVT/4K3UYOMvpKHcVVu27dxG5G4GzaGdbDZvVuFMOHMezBMsoblOe3Fr8xJ3AOIU9CUKCgqmlV+tfqT6/9vahgUIGkzCSO9DqCramt8tyno0/jsdODuuXqsrTVUjx2eJCRm0Gwd3ChELfPoVAo8Avzw36NPb5hvqxrt44LAy980sEmP7iq2ppqDD46mAblG3B3xF22em7F0tjyyx7oB/So3gO5Qs6rzFfoqOuUaHwqf0U6X6MhESSY6piSLcsmT56HtbE1t1+IgucPHaf8wv1oV6Udehp6ys+Ss5JZc3UNI51GFhofO/7gOHvu7mGZxzKO1zNmX85NNrTfQAWDwi/YH0OhUDD3/FzGnBjDxEYT2dB+Q7HcvEqKIAisb7+ejrbieEr062jSctI+un2OLIdceS4Hux8kIjGCGutq0HN/TyoaViTIO4hTfU8VzFbI56efRJegn34q/LW3GGkZccLrBB2rduSHvT+w7uo6ZjSfwRTnKUw4OYE1V9b86/sFMNE24Zcmv5CRm8GxB8f4tdmvnH10loUXxU5LH4c+qEnU2Hpzq3KfbZ7iWExmXiYyhYwLsRcKCMINNQ1JSE/ATMdMWQQk9+xEphrobNzKqHqjUKBgzdU1n9edNG4sWuR+RKdhY2JDZl6maHH7tqPxIu0FPpd9GFN/DOZ65kUfN3+0KCJCDM2bNUscpzp+vOjti8A/yh+nck6Y6pgy3Gk4Pq19+D34d1ZeXsmxXsd4kvKEnvt6kid/V6z+3up35Ao5U4yuQY0aoh7jM8/gfYtbQVf8uUvYLo6ele7sJT4bb2/RcapHD/D1Ff/084OGDUWNxLRp4tjUX3+JHY7gYNFGd+fOwufX1aVMUg4B/QMYXGcwQ44OYcSxEQXMAj6GvqY+3o7eqEvU2XLzrbtYlSriOaKiPr2zChUlRFVoqFDxneFu7U6OLIfzjz8+E11cQuJCMNYyplqpalx6eglBEGhv257N51fS5iGUe5wErVuDmRmno09z+ell1l0yQ5BI2NzDlnMx51jfbj3Xn11nzvk5WBhZIJPLmOs6l+57u1NOvxxxqXHs7LyTxhUbK8979P5R2u1uR3OL5kxsNJHWu1pTVr8sIYNCqGpWtUT3EJsSS8e/OtJjXw+cKzkTPjKc4U7DP7oSr1AoOHL/CI4bHOm1vxe2praEDg3Fr5sf9qXs/9Xz/BBzPXNaWrVkb/he3K3dS2Rz+2FHQ4GiQOFQ2agyaTlpmGqbFnByin4dzbVn1wrZBq+5soYcWQ7jG40v8HlaTprSlti5ojOjGr6mf4ol3ap3K/a1KhQKfj71M7+e/ZU5LnNY3GrxF4f6FQdBEDjQ4wANK4i5D8Lbfz5EipSsvCz61+rPT6d+os/BPtiY2HB58GWOex0v8D1ZgBMn4NgxcYRH+9NjX5pqmuzpuofR9Ucz8p+R/Hr2V+a5zmN8w/GMOj6KP0P//Nf3CzC6/mjK6ZdDX0OfQxGHmN5sOjPPzeRi7EWMtY3pVq0bG0M3KoXgalI1mlRsIj4HQUrAowCsjK3Q19BHIkjQ19QnPTed8vrllboJDWMzNjuC0XY/2ld0w0jTiIdJDz+pgwFAT09csf+ITiPf4tZMx0zZ0Vh4cSFqEjUmOU/6/M3r64tWsrduiaGSbduKY0ifyX2QyWWcij6Fh7WH8rMxDcawuOVi5l6Yy77wfezrvo+TUSeZ4D9BuU1p3dIscFvAnzc3E/RLH7EDUUSS+fvkh/a9X5Tlj4uVGjcNHj4Uc0PatIF168QiIzhY7JgdOACurrB2rVhIOTiIHbV//hG379sXOnWCZ+/pMd7a22pINVjbbi0bO2wUtXHbXHmeVnQX5H1+rPcjufJcLsZeFAsk27eLQCqdhoqvjKrQUKHiO6OqaVUqGlT81zoNmVzGladXSMtJU+ozmlZqSnxaPFeyo/BOtRYTcPv0UWozesuqU8HvBM9n/sTEkFn0r9Ufp3JOeB3wooxeGZ6mPsWntQ8DDw/EWNuYmJQYlnkso2u1d6Fwvnd96eLXhQ62HehWrRuevp44V3ImcEAgZfTKlOj6fS75UG1NNW7E3+Bgj4Ps777/o+NO+bkIDf9sSKe/OmGibUKQdxDHeh/7aEL116CPQx8uxF7AuaIzl+IuKcdbPseHhYZMLkNb7d1Lr6GmmI1RqJsR5oeOug7tqrRTfpaRm8GKyyvwdvQu9IxnnJ3By/SXrG67mr4H+1JKoc3K66UpLjK5jOHHhrMkZAk+rX2Y3mz6Ny0y8pFKpAQOCMTa2BrF238KXRtiavjWW1upXro614Zc42ivo9QvX//jB87NhfHjRd1B164f3+49JIKE5R7LWdxyMfMuzGPw0cEsdFvICKcRDDk6hB23dnzpbSrRVtdmrutc3uS8wT/Kn+YWzWlUsRG99/cmKTOJIXWGEPU6inMx55T7DHcSE8VlChmHIkSL4Dpl66CnoacUw5tomygLDW11bVY1ALXkVNR99zLMaRgCAuuvFUMU3ry5uGpfxMq/lbEVALrqujxOeUxcahzrrq3jp0Y/YaJtUvyHUK2a+MLv6wvXronjVHPmfHTcJzQ+lKTMJDxsPAp8Psl5EnNd5jLj3AxC40NZ3XY1q66sKtCBGlJnCPXK1WNEyi7yGjf8bFejslFlUrNTxVDNt0VvQsbbQkOnlNidcXaG9eshPl7sWJQtK3bM8u1t166FvXvFsbG5c8Xk9ehoUdNx6ZL4+bZt3IlJZbKkMd26rGPytvvcefyGwXUGEzggkOjX0Tj94aRMhP8YVc2q4mrpikSQsOP2DjGtXV9fpdNQ8dVRFRoqVHxnCIKAu7X7vy40whLCSMtJ41XmKxpWaMjp6NN42nmy5cIqzNKhvdReXKns0IHAx4FcfHyRlf4Cgp0dY8vdQl2izpJWSxhydAiJGYnEp8Uzz3Ue089OR12iTlxqHOMajCsgJt5yYwu9D/SmR/UeOJZxxPuIN/0c+nGk55ECq/Wf49bzWzT6sxHj/cczoPYAwn8Mx9PO86PbBz8JxnW7K612tEJA4HTf0wT0C/j4ivZXxNPOEx11HZKzkhEEgaORR4u134eFRq48FzWJmvLz7LxsBASaVGpSYD+/MD/a27YvIPbeFLqJ15mvmdS44OrxtWfX8Lnsw28tfsP3ri+Xn15mh6IzBjHxxbrGXFkufQ72YdONTWzptIUxDcYUa7+vhYZUg5vDbmKsZYyBwoGaeStolHeUmnkrMFCITlluVm7cHHaTgz0OUrdc3c8fdO1acVV3xQrx5bCYCILAJOdJ7Oy8kx23d+Dp68milovwdvRmwOEB+IX5feltKvGq6YWDuQO66rrMODuDXZ13kZaTxqAjg3Cu6IydmV0BUXhrm9bKf496HUVieiJ1y9ZFJpeRKxMzRwSEd4WGmjbRJpDg0gB8fBhaZwgKFOy5u+eT42mAqNN49kx8Mf4AbXVtKhhUQCoR83rmBM5BT0Pvi4wGEATxxTwiQsz/mD1bHG/6++9Cm/pH+aOvoa904Xqfac2m8WuzX5l8ejJZeVmMazCOsSfG4v/QHxAL2XXt1hGWEMbK4Y5iYXPw4Ecvy9JIHLd8PyE8ISMBHXWdwnbYWlpiEXv4sPjMli8Xi4/evWHIEFEQf+iQ6HplZgZbt4qBqVpa3Jm+jPGbwrgmNyZRz4xrUSmM33yPO4/f0LBCQ64PvU4lw0o03dL0s6GL4xuOR66QszF0o1imq5ynVHwDVIWGChXfIe7W7oQlhCldY76EkCchypW3HFkOObIc2tq0ZcfdXfS9K0Hj7j1RjKijw5zzc5j4rDKmV+5ydEYP/O7tY0XrFRyMOMj+e/vJleXi7ejNrju7eJP9hleZr/C082SJ+xLl+dZcWYP3EW8GOQ5CT0OP6Wen81vz39jUcVOxBcMZuRlMOT2Fun/UJSM3gyDvIFa3XV3IwjWfG/E3aLe7Hc6bnUWdSM8jhAwKwc3K7X+y6g6gp6GHp50nByMO0qhCI47cL5771IeFRlZeFgqFAnWJOmoSNa7GX0WBosDq/INXD7jx/EYBt6kcWQ5LgpfQq2avAtqTXFkuQ44OwcHcAedKzswKnMXUJlNxrtBITET+SNJzPpm5mXTx68L+8P34/uDLgNoDSvBUvh56mnoc6nST2rJ1mFAfTUpjQn0cZes53Okme7vtpVaZWsU7WEKCmJ0wZIiY/PwFeDl48U/vf7gQewG37W7MdZlL75q96b2/N4ciDn3RMfORSqQsbrmY9Nx0guOCuZtwly2dtnAo4hDrrq1jSJ0hHLh3QOkUZapjSs3SNZX7Dzw8kDpl65Cem058mlhMpuemF+hoADz0agN37mB1Kxbnis5k5WWxN2zvpy+uSROxCPiETiM7L5vY5Fg239zMlCZTPvpzWyz09GDRIrhzBywtxfC8Tp3g0bsXff8of9ys3D76+2VWi1lMdp7MeP/xWJtY09qmNd33dVeGYNYtV5eRTiOZGbeDuHZNRQeqj/xc5P9sPUp+pPzdkpD+QVhfUZQqBaNGwZUrojPVyJHi6J67O/z6qziSdukSbNgAdnbsbOKNQgFy8n8/iI2WnefEsaqy+mU52/8sA2oNwPuIN6P+GaUsKj+kjU0byuiWIS41jqAnQSrnKRXfBFWhoULFd4ibpRsCgtI7/0u49PQSJtom1Chdg4CYABzMHQhPCCOBdAaq1xdFgX36EBQbRHBkAL/9nU5qRw9Gxm+itU1rapvXZvTx0WiradOwQkMiX0Xy6PUjZHIZjmUc2dl5p1IMvDhoMaOOj2JUvVE8T3vOptBNbOqwiZktZhb7hf9U1ClqrqvJiksrmNViFqHDQmlUsVGR295LuEe3vd2o80cdHiY9ZE/XPdwYdoMOVTv8zwqM9/Gq6UV4Qjj1ytfjVPQp0nM+n+hbILAv+w2ZuZnkyHJQoMBA04Cbz28CULfsu1X6veF70VXXpU2VNsrPdt3exZPUJ0xxnlLg+MsvLef2i9usbL2SAYcGULdcXWY0nyHOwMtkH3W7ATFkrd3udpyJPsORXkf4odoPJXoeX4vsvGwuxV1i/pHLb1Ua4vebgBSpICXoVglDBmfMEP+cUzg5uiS0sm5F4IBAYlNiabq1Kb82+5Uu9l3ovrc7/zz4518d293anZaWLdFW02bqmal0qNqB0fVH89PJn5Ri7+23tiu3z9fqCAj8/eBvKhpUBFB2KFKyUniV+YrM3EzlaF5svSrimI6PD2MbjAVg1ZVVn74wIyOoVeuTOo2U7BTyFHmYapsW6Xz2RdjZwcmToqg6NFQcr5o1D/fbYwAAIABJREFUi5Tk54Q8CSmgz/gQQRBY4LaAcQ3GMfr4aFrbtKayUWXa72nPy3QxqXuu61x01XUZ30FDLAR2FD0GZ6ptip6GHo9ePyowOlUia2w7O5g3TyyWzp4Vx9GWLRNHqLZuhZ49ia7ZGPkHJgtyBUS/eGcOoqmmyYYOG1jfbj1/XP+DljtaKu/nfaQSKRMaidqU9dfWqzoaKr4JqkJDhYrvEFMdU+qWq/uvxqdCnoSQK8+lWaVm/B35N55VPdl8fgVOT6GmYC76vbu6Muf8HBbdLo1OQjLTepQiKTOJFR4r6Lm/p/Ja9DT0uPb0GkZaRpjqmHKk1xG01bVRKBTMODuDyacnM6HhBK48vULAowCO9jrKoDqDinWdiRmJ9DvYD/ed7lQyrMTtEbeZ1mxaoVRrEIXQ/Q/1p8a6Glx5eoU/O/5J2Mgwetbo+UWhf1+LVlatKKVTitQssTNRnAJROSIlyyYzL5OM3AzSc9PJk+dRWqc0SZlJlNYtXSBt2zfMlw5VOyhzSmRyGYuCFtGpaqcCDlxRSVHMPDeTcQ3Gsf3Wdp69efbOirai+CJKbGyR15WUmUTLHS25Hn8d/z7+BcZzvhUyuYyHSQ85eO8gswNn031vd6qurorOfB0a/dmI1DfayiIjnw9fvj7LrVvwxx/w22/iKvO/pE7ZOgQPCkZAoOmWpvzU6CfaVmlLF98unI7+tLD4UwiCwOJWi8nMy+TWi1vsC9/H4laLsS9lz/Bjw+lg20EchXmrJ+hgK1oc66jroEDBhJMTlHbPmlJNkrKSANHiNr+jkZmXJY4lHTlCJ42a6Gvoc+P5jc/bM+frNIrAxsSG+DdiF6WPQ5+vlq0CKJ3xuHcPxo2DefMI8KyNTCH7ZKEh7iqwzGMZI51GMub4GPo79CczN5POvp3JysvCUMuQZR7L2Pf8DCf6O4sdryISywVBEJ2nkt8bnUpPKGDnXWwkEmjRQrTDff4cdu8Wk8lHjsQqLATJW8G/cnMBrMx1Ch1mmNMwzvY/S+SrSOr+UZdrz64V2mZQnUGoCWrsC99HprWFeL43JU8cV6HiY6gKDRUqvlPcrdw5FX1K6TJTEpIyk7j/6j6p2amY6ZqRkp2CcyVn/om/gPcDPQgJgZ49ufL8Ondu+DPydAqXxv3Amge7mOc6j3VXxdllAYG6ZepyKvoUlsaWZOZlctzrOGY6ZigUCiaenCiOXTWayJHIIzxOeUzggMACK+4fQ6FQsPP2TuzX2HMs8hibO24moF9AAYvcfJ6mPmXEsRFUXV2Vk1En8WntQ+SoSLwdvVGTqJX4+Xxt1KXq9KjegxNRJ7AztSuW+1R+ofEmW/xLX4GC5Kxk5Aq5UkD7vl1pRGIEt1/cpkf1HsrPDkYc5P6r+/zS5BflZwqFguF/D8dc1xyn8k5surGJFR4rqGJaRdwgv9B48qTQNcW/iaf51uZEv47mbP+zNLVoWrIH8RkUCgXP055zKuoUy0KW4X3Ym3ob66G/QJ8qq6rQxa8LKy6t4Pqz6zxOfoxcIUdAIEsSAxTv5esjJxbzDGxtRRvVr4SVsRVB3kFUNqpMyx0tGVxnMK6WrnTc0/FfucY5lnXEq6YXmlJNpgVMQ02ixl9d/yIuNY70nHQiEiPEURjAwdwBYy1j0nPFLtr1+OtYGFigJlFDR12H1CwxQyIuNQ41iRpqEjUy8zKhTx8wNkZj/UYG1xmMgMCG6xs+fWHNmolOUEUUqTYmNspE8lrmxRxlKyl6erBgAdy5g7+9GlVegWW/MUXqRt5HEARWtV3FIMdBTDo9iVH1RxEaH8qgI4NQKBT0qtELV0tXRtWMJfP5E3GMqQjynaeUo1MZxRid+hw6OtCrl+hA9fQpfWrpICgUSOTiCJdEIUcA+rYoW+TuzpWcuTbkGuX1y9NkcxO23dxW4Osm2iZ0se9Ctiybffpvf+ZV41MqviKqQkOFiu8Ud2t3EjMSlSM0JSE/qA8gLiWOSoaVuPH0OuoyBb1Mm4sOKH36MOf8HNZeNEBmoM+QSjdxKueEjbENPld8kCvkeNh4cDjyMHXK1iEmOYajvY5ibWKNXCFnxN8jWHZpGRMbTWTbrW1IBAkhg0KKJciNfh2Nx04P+h7sSyurVkSMimCg48BCY08J6Qn85P8TNqts8Av3Y57rPKLGRDGq/iilq85/BS8HL569eUbtMrU5FnkMmfzTGghloZHzbnXxddZrALTUxRVpl8ouyq/tDduLnoaessOgUCiYf2E+bpZuNKjwTgy74/YOTkefZr7bfEb/M5pOVTsxuM7gdyc2MgJd3UKFRkxyDE23NCUpM4nzA84XKHK+hNTsVEKehPDH9T8Yc3wMLttcKPV7KcouLYv7TnemBUzj9ovb1ChdgzkuczjQ4wCTnScjV8iJSYkhR5aDiZYJ893ms67vD0glEiRC/rMTF7n7upQr3sXs3y+uxK9YAepfN2CwlG4pAvoF0NyiOZ19O9PVviuNKzam3e52JUp0/pC5rnORK+Q8THrI9lvbqWpWlbXt1nIi6gSldUrzx/U/APElum2Vtsr9pIKURymPUBPU0JBqkCUTHZveF4Rn5maKL7hDhsCffzLCri8KFGy+sfnTOQ1N3xaeRYxP5esEtKRaPH3z5dqy4qCwtcXfTh2PKm3ETlW1amKnKjPzo/tIBAkbOmygj0Mffjv3GyOdRrL7zm7mnp+LIAisabuG2IznLBpZSxxvSissjs/P0sgfnUrMSPz3hcb7lClDzZ8Hs3xoDZzKqWOmyMQp7iYrtgymhkd98bqKSFAvb1CewAGBeNX0YsDhAYw9PraAbmNas2kALHv2NrxPVWio+IqoCg0VKr5TGlVshK667heNT4XEhaAp1cShtAMno0/S0bYjW0PW0iUcjLKAqlW5UVYg4cwxOl1JZfHPjYlIimSB2wK8Doop4W6Wbhy+f5gWFi249uwae7ruoUGFBuTJ8+h/qD8bQzcytsFY1lxdQxXTKgR7B382CC9XlsvioMXUWFuDyFeR/NP7H3Z33V1o/CA5K5lfA37FaqUVG0M3Mtl5MtFjovnZ+Wfl2NB/jQblG2BtbM2bnDckZiQS/CT4k9vnFxrvpxbnk78K/b4Q3C/cj05VOynHYk5GneTG8xsFuhkJ6QlM8J9Arxq92H5rO+pSdTZ22FiwgBMEUafxXqERkRhB0y1NUaDg4sCLJcobyZHlcOfFHXbf2c0vp3+hw54OVF5RGcOFhjTe3JgRf4/gZNRJzHTMGNNgDPu77ydyVCRpv6Rxbeg1lnssJyM3gwGHBvB78O+kZKdQWrc0K1qv4MmEJ0xpMoUGNmVY7m2Pk7UhZvrqOFkbsmKQPTUq6X/+AjMzYeJEUUzs8ekxmy9FV0OXQz0P0c+hH4OPDqa5RXNqm9em9a7WRY6zFIfKRpUZ02AMahI1fg34lay8LPrV6kcfhz4kZyfjG+bL60yxMM3Xaeip61G3bF1yZDlkybKUIXWGmoYFBOGZeW9fyH/8EdLSqHIsGKdyTqRmp3Is8tjHL6pUKfGlvojxqfxguFK6pZShfd+KB0kPiEmOwcNjpDhO9dNPMH++qDs5cuSjNrUSQcLmjpvpXr07K6+sxKumFzPOzcD3ri92Znb87PwzC0zCeSC8FlPjP8DSyJLHKY+VVssJ6SXUaBSTmhb6LPrRib1zm7PozyHU2LwU6tUT77Fy5XdjV6nvfndoqmmyqeMm1rRdw9pra2m1o5Uy58PB3IEqJlW4mXiXZxbGKp2Giq+KqtBQoeI7RUOqgYulyxcVGpfiLiERJFQrVY241DhszWyJyIpjYFIlOHcOvLyYd34u609rcq9JVeZmnGBi44nMPDeTN9lvqFG6BmcenaGlVUvOPT7HyjYr6WTXiRxZDj329eCvu3/hXdubVVdW0dqmNaf7ni6gJSiKq0+vUm9jPX458wsj640kbGRYoRGr9Jx0FlxYgJWPFUtDljLCaQTRY6P5rcVvGGoZlvg5/C8RBAGvml5ciL1AaZ3Snx2fyi800rILr5w+SRGLgPyuQnhCOHdf3i0Q0jf/4nzql6+Pq6Wr8rMJJyegQEGN0jXwj/JnS6ctRb8IVayoLDRuxN+g2ZZmGGoacmHghY8Wi3KFnOjX0Ry5f4R55+fRa38vaqytge58XRzWO+B1wIsdt3eQJ8+je/XubPPcRujQUNKnphMxKoK93fYyo/kMuth3oYppFVKyU5h5diYVl1fkt8DfSM1OpaJBRTZ22EjM2BjGNBhToKisaaHPov5V2fuzI4v6Vy1ekQGwdKloMbp0afG2/0LUJGps6riJX5v9yoxzM6heujr2Zva473Dn1vNbX3TMqU2noqOuw7O0Z2y4Jo7zrG27lvL65cmR5SiTwt0s3ZAKUrJl2bzKfIW5rpjEnZQp6jP0NfULdzRA/D7o0gVWrmRCfdGKduXllZ++qObNC3U0gmKDOBV9CgNNA3TUdYhNLVr/87U4GXUSdYk6LSq3ELtz8+bB3bviaFynTmJR+ZEEbKlEyvbO2+lUtRN+YX64WbrR/1B/LsVdYmrTqZQzKMeowWVR/L4YkpIK7GtpbElWXhYpWSkApOakfplGoyRIpdCqlShSf/ECtm0Tu3KDB4O5+buxq7w8BEFgZL2RBPQL4F7iPZw2OhEaHwrA1CZTAVjioqnqaKj4qqgKDRUqvmPcrdy5GHuxWC5G+cgVckLiQsjMy0QmFwPNbj6+QqUUcC3bGNLTifBwQtvvIA6x2Qzrqkklw0poSjQJehKEmY4Z4S/DcbN040z0GSY2msio+qPIzM3E8y9Pjt4/She7Lmy6sYmRTiPZ223vJ4WfaTlpjD8xnoZ/NkQiSLgy+ApL3JcU8J7PysvC55IPViutmHluJr1r9iZqTBSLWy3GTMfsXz3D/yVeDl6kZqdSo3QNDt8/XCBF+EOUhcZbd6D8/5YKUl5kvKCMXhmlPahfmB8GmgZK4WtQbBDnH5/nlya/KLsV/g/92Xl7JxMaTmDO+TmMqjfq40LuihUhNpag2CBctrlgYWRB4IBAyumLo0gv018S8CgAn0s+DD4ymIabGmK40BDrldZ0+qsTvwf/TlxqHM0smrGy9UrODzhP0s9JxE2I47jXcRa3Wky/Wv1wLOuo7MDkk5iRyNQzU6m4vCJzL8wlLScNa2NrdnXZxcMxDxlcZ/DXG4uLixNn+vP1Gd8YQRCY7TKb9e3WszF0I2X0yij1G+EJ4SU+nom2CdObTkdAYFbgLNJy0tDX1Gdf930ICMy7MA+FQoGuhi51ytYhV55L1OsoNrQTi5L8lXcJEuLeFNHRAPHZREbS9Ykeuuq6nH98XlmUFEnz5uKKeLwo/FYoFEwLmIaDuQPVS4mGBN+6o+Ef5Y9zJeeC2Ty2tnD8uJjCffeu2N2YMQMyChsGqEnU2N11N61tWnPh8QVsTGzo9FcnEtITWNVmFSfVY9lrnS3a675HfpZGflAf8HVHpz6Hnh706wenTok6mVmzRPvfdu2gQgUxiPLGDZpWasL1odcx1zXHebMzO2/vxMvBC201bbZWTEIRef9/d80q/s+jKjRUqPiOcbd2J1eeS+Djop1eiiI8IZy0nDQEBO4k3MHDxgO/e3sZeBMkLxOgUSMW3N/EkjNS/hjsyIWU24xvMJ45F+agLlEnNTuVJhZNCHoSRLfq3VjUahFvst/QdndbzsWco0XlFviF+7G45WJWtlmptLgtir8j/6b62upsuL6BRS0XcWXIlQIajlxZLhuvb8R2lS0TTk6gXZV2RI6OZHXb1ZTVL1r8+F/G1tSWeuXqkZ6bzsOkh5908flQo6Gtpo2AoCzA6pQRuxkKhQK/MD887TyVL+ALLi6gWqlqdKzaERA7QcP/Ho5LZRf2hu/F0siSxa0Wf/xCK1bkpOIhrXa0wsrYiv61+jPn/Bxabm+J+RJzzJeY47bdjcmnJxMaH4qtqS0zms3gn97/8GT8E15Pfs2FgRdY224tI+qNoKlFU4y1jT/5bF6mv+TnUz9TcXlFFgUtIiM3gxqlanCg+wEiRkXQu2bvry/snzJFfDmbPv3rHvczDHMaxv7u+/GP8kdbXRtzXfF5Rr4q+cjK6AajKadfjuSsZHwuieM8dcrWYWjdobzKfMWykGUA9KrZS7lPSk4KBhrvMixyZDnKLlmBjgZA48ZQty4aq9fRv1Z/FCjYFLrp4xfUrJn454ULAJx5dIbAx4HMcZmDjYkNWXlZ4njRJ4rsf0OOLIezj84W7TYlCNC5szhONXGiWChUqyYG531wPRpSDfZ224urlStRSVGoCWq039OeZhbN8LTzZFwHdVLX+4jdsLdUNqoMoBxJAr7J6FSxqFABfv5ZLDRCQ8XOxu7dUKcOODhQYf1uzrvvoWeNnvQ92JfJpyfT2a4zr6U5nM0oedGrQsXHUBUaKlR8x9ia2lLJsFKJxqcuxV1S7huRGIGZthlpimwGaDaAwECed3Kj6sYDZKsLTKn8kL4OfZl+djoKFKhL1XEwdyDsZRhO5ZzY5rmN1OxU3He6c+3pNWqUrsG5mHPs7rKbSc6TPppZ8TztOT329aD9nvbYm9kTNjKMiY0nKl8k5Qo5u+/sptraagw9NpTGFRsTPjKczZ02K/8y/17p49CH0PhQtNW0Pzk+9WGhoSkVi4j8cSE3KzdATHi/l3hPGdJ36/kt/n7wN1OcpyiPMfPcTJ6nPcfaxJrwhHB2d91doMuUK8sl7GUYvnd9mR4wnfoaW/Fon0xmXiY3nt9gzPEx/PPgHww0DRhedzh7u+3l3o/3SJuaRuiwULZ33s4k50m0qdKGCgYVSpRV8jztORP8J1BpeSWWhiwlKy+L+uXqc8LrBDeH36SzfedvY00cHCwmL8+fL1qH/o/xtPPkdN/T3Eu4h0whQ09dD9dtrkS//rRD0odoqWkx320+ChQsuLhAOQ61us1qtNS0mBYwjaepT+lUtRMgfh8FPAqga7WuymN8GNpXoKMhCGJXw9+fCcaiqHzd1XUfd7srW1YMfgsMVHYz6pevTwfbDtiY2PA66zVpOWlKY4OvTVBsEOm56Z+2tdXRgblzxc5GtWrg6Smu+j98WGAzTTVNDnQ/QBOLJrzOek1Mcgy99vdiqftSUtTlzHShQOaKvqY+ptqmvMx4l1nxzUenPocggKOjmD7+9KmYoF69OsyciZZlFTavfsIq076svLySxymPMVA4MMtjLt0WXmfytvvceayyulXx71AVGipUfMcIgoC7lXuJCo3g2GDUJeqY65qjKdXkZswl3KKhsrkdAGsk15kQAuN+tEJTQ5uopCheZ71GT0MPSyNLEjMSMdMx43DPw7zJfoPLNhciEiMoZ1COyFeR+PfxL7B6+j5yhZxNoZuwX2PP2Udn2dVlF8e9jivn/hUKBYciDlFrfS28Dnhhb2bPzWE3+euHv6hqVvXfP7D/AD2q90CukFPVtGqxCo207DTUJGoIgoACBYJCfIlvVEEMK/QL88NQ05BW1q0AWBi0kMpGlelZQ8w5CY0PZfml5fSp2YdNoZuY2GgiT1OfsvDiQrwOeFFrfS30FuhRY10Neu7vyZqra7iaE4PtK9jYcD5Xh1wlbWoakaMjOdDjALNcZvFDtR+wM7P7Vx2GZ2+eMfr4aCotr4TPZR+yZdk0t2jO+QHnCRkcgoeNx7cLV5TLxZfnOnVgwIBvc45i4FzJmSDvIDJyM8jIy0AqSHHd5kpsSsk0DF41vaheqjqZeZksvih2qtSkaoytP5YcWQ499/XEwtACc11zsmXZnI4+Tf1y74wE0nLSSMhIICsvS+xo5H3gztS9O5ibY73zbxzMHXiZ8ZKzj85+/IKaNYPz5zkaeZQrT68wz3UegiBgY2KjNDf4VuNT/lH+lNYtXbw0+CpVxBfvQ4cgPFx8AZ8+vcA4lba6Nod7HqZe+XrI5DL8H/qz8vJKZraYyUrHHG4e3VhA72FpbFmwo/G/HJ36HGpq0LYt/PWXmJexcSNCbh6jRu/gzG51njzKwlG2DkGrPonpMq5FpTB+8z1VsaHiX6EqNFSo+M5xt3bnXuK9T89Nv8f52PPkynNJzEikccXGXEy4xsB7mhARQbprE2pvPc7BOjoclETiVtmN4LhgtKRamGqboqmmSXpuOse9jpOVl0Xzrc2JTYlFW02bjNwMLgy8gIulS5HnvZ94H5dtLgw5OgRPO0/u/XiP3jV7iy/QCgUno07SYFMDOvt2xlzXnJBBIRzpdaR4LwzfEeZ65rS0aklGXgaX4y7zPK3oBO78QiM9Nx2JICE7TwwJS89LR0CgdpnaKBQKfMN86WzfGQ2pBg+THuIX5sfPjX8mNTuVM9Fn6LSnE4aahmy/tR2pIGVB0ALa72nPgosLiEmOoWH5hix1X8q5/udY6LaQ5KxkBlt1I3wNDNZshFM5p6/q5PUk5QnDjw3HYoUFa66sIVeeSxubNlwdcpWA/gFfPZujSLZvh2vXROcg6cdH+/4X2JeyJ9g7GDMdMc8mR5aD6zZXnr159vmd3yKVSFnmsQy5Qs7yS8uV31OjGowCIOhJEPMvzKe9bXsAnr55irmeuXL/fK3GszfPxI5G7geFhqYmjBgB27bxS7XhAPhcLuy6pKR5c7h7l6VHf6FF5Ra4WYrdNxsTG+Umj1O+XaHhbu1e/C6YIIgC8fBwmDwZliwBe3s4eFA5TqWjrsOxXsdwLOuIhlQDn8s+6KjrYGdqx8gOEuQzZygPZ2lkqUzh1pJqFdCa/acwNIRBg0Tzj0ePaN53Op1eDgWFoAy/lCvER7DzXPG/F1Wo+BBVoaFCxXeOm5UbAgKnoj6fNp2clUzU6ygEBO4l3kNHXRvDHAldLNrA5cucMXxNyyiY2EED54rO7Anbg1SQoqeupxy1+rv33wiCmHacmJFInjwPMx0zQgaFUNO8ZqFz5shymBM4B4f1Djx784wz/c6wpdMWpQvVxdiLtNjWAo+dHkglUs70O8PpfqdpWKHhV39W/xX6OPRRzuMfvX+0yG3eF4MLCMpV5jfZbyirXxZtdW1uv7hN5KtIHMs4svXmVrr4dkFNUGP2+dmY/W5Gyx0tiXsTR648FwUKJjaeyLFex4gZG0Py5GSCvIPY0GEDP9b7kaAnQUw5M4UJDSfwR5ctSBUUGdr3pcQkxzDo8CAsfSz54/ofyOQyulXrxt0RdznW+xhO5Zy+2rk+SWqqqM3o2ROaNPnfnPMzlDcoz/kB53Es68irzFckZyXjtt2NF2kvin0Md2t3XCq7kKfIY06gOM5TwaAC7WzbUUavDL8F/kbN0u9+PuPT4gu9jMelxhXd0QAYPhxyc+kakoyWmhb/PPhHOaZViLc6DeNr4cx1mavsTFkbWwOgLlEvcdemOLxIe8HN5zc/mwZeJDo6MHu2OE5Vo4bottWmjdLqVV9Tn396/0ON0jXQlGoy7sQ4BtbxJqRMLpvv7Ra1EBQsNMx0vxOjisqVYdo04q3rIQgFC2+5AqJfFBbMq1BRXFSFhgoV3zkm2ibUK1+Pk9GfH5/KD+orq18WBQpCH1+m1y052vrGyHV1sAy8xZhueqRK85RBgJpSTVratOTMozP4/uCLgaYBzbY0Iy0njZTsFOqWrcuFgReoYFCh0PmCnwTjuMGR2ednM7HRRG4Pv620W73+7DptdrWh6ZampGSlcLTXUYK9gwvYsf5fxdPOEx11HSwMLTgSeaTIbd4vNGQKGTKFGPCnQIGuui5dfLvguk18VmNPjGXg4YHceXkHG1MbBjkOYmXrlWhKNWll1Yq0nDS2d97OwpYLaWfbDgsjC+XLn0KhYMrpKUwLmMasFrNY4r4EQVcXTEy+SqER/Tqavgf6Yr3Smi03t6BAQb9a/Xgw+gG+3XypXrr6vz5HiZg/Xyw2PnAM+n+NoZYhJ7xO4GnnSVJmEs/ePKPljpYkZiQW+xhL3ZciV8jZcH0DMckxAAytM5T4tHgcyziyJHgJaoIaUkHK+cfnsTG2KbD/zts7i+5ogGiV2rMn6us20K9ab2QKGdtubSu8HZBXsTxxJmr0T6mMcyVn5ecm2iYYaRlhoGnwTUan8kdI3a3dv/wgNjZw7JgoEL9/H2rWhGnTID0dQy1D/Pv4Y29mj1SQMitwFp2qdGCyh4TEGRMBcXTqVcYrgO/KEQ/AylxHGXqZj0QQP1eh4ktRFRoqVPwfwN3KnVNRpz4u0HxL8JNgJIIELTUtqplVIz7nFd5PS0NwMDHl9UjVhO02aRhpGpGem45UkDKg9gD+uvsXa9quobJRZZptaUa2LJuE9AR+qPYDJ/qcKJRhkZKVwsi/R+K82Rl9DX2uD73OPLd5aKtrE/YyjK5+XXHa6MSj14/w/cGX0GGhtLdt/+1m8v9j6Gno4WnnSWZeJqeiThWwJ1YoFMSlxnEx9iIAV59dVQar5ROfFk9qdioyhYwmlZpwefBlRtUbhZGWESGDQpjjModjD45hqmPK5aeX6ePQR6nZeB+ZXMaIv0ewOHgxKzxWMKP5jHf/Dz4I7SspD149oOe+ntistGHXnV1IBAnD6w4nZmwMWz23Ym1i/cXH/mIePhRFsZMni/f3H0NTTZM9XfcwtsFYUrNTiX4dTavtrZTBe5/DsawjPav3RIGC6QGik1abKm0op18OezN7MvMyMdA0QKaQcTr6NA3KNyiw/9abW1GXqBfd0QBR1/L4MdOSxc6IzyWfIt2jdtzaQUCFPDyeFrQuztdpaKppfpPRKf8ofxzLOP57AbYgQMeO4jjVlClixoq9Pezfj7GWEaf7nVY6aF2Nv45MS4vJ8pMQHIylkSVyxN/DZtrfV6HRp0U5BAFlsSERxEfR16Xc/9sLU/Fdoyo0VKj4P0Ar61a8ynzFjfgbn9zubMxZ5Ao5T1KeoC6RUiNRgpNjW7h/H724l/TtrUkZ3TJKT/3xjcaz9tpapjhPoV65ejTb0gy5Qs7L9JdMdp7+HSwqAAAgAElEQVTMjs470JBqFDjHgXsHsF9jz47bO1jVZhVB3kE4mDsQlRRF34N9qbmuJqHxoWzptIW7I8WQuW/iKvQfx6umFy/SX5Aty2aC/wRG/j2SpluaYrLYhIrLKzL02FDgnesUiBkaAIEDAlncajEp2Sn82uxXrI2t2XxzM6PqjcJA04Bdd3ZxMuokxlrGGGsZs7rN6kLnz5Xl0u9QPzaGbuTPjn8ytuHYghu8zdIoKRGJEXTx7ULV1VXxDfNFQ6rBhIYTeDrhKWvbr6WiYcUSH/OrMXGiuDI/adL/u2v4DBJBwjKPZfze6ncycjMITwzHfad7kQnxRbGw5UIkSNh9Zzf3Eu6hJlHDu7Y3h+8fZl27dSRlieNOrzJfFfh/oS5RJ1eey4XHF4ruaADUrQvOzlTaehA7Uzsepzzmevz1Aptk52WLmR6N6qATFgkpKQW+bmNig1wh/+qFhlwh51T0qS8bm/oY2tpiFkVYGNSqBT/8AB4emD5J5OyAs1Q2rMzz9OcY6puyuQ4ELfoRy/dc8T4XUvpfo6aFPsu97XGyNsRMXx0na0NWDLIvfvilChVF8P+/v91VqPg/SMMKDdHT0Puk+5RcIefas2sICOTKcwlPuMfA63IEmZxsTTVWNIJYnVyep4tC0kmNJ7Hq8ip61ehF2yptcdnmgiAIJGYksrrNaha0XFCgQIhLjaOzb2e6+nWlXvl6hI8MZ1T9UcSnxTPs6DDs1thxJvoMq9uu5v6o+wyoPeDr5yL8R8nKy+JG/A2239rOz6d+ps2uNgw9OlT59Y2hGzn/+DwVDCowqfEkDvc8zNl+oqtPOb13q4kSQYJEkFCjdA38wvww1TbFpbKLMq15bMOxJGYkMt5/PDVL1yQ8IZwdnXcU6jhl5WXR1a8re8P28lfXv/B2/P/au/MwG+v/j+PP+8xmZgxmMMMwhrFlGfu+y1ahLIlCoqR+ZCltqq8WpcXaSovKTkVIGpSdEpKxM2MfZjBMM8as5/79cecwkZQzc2bG63FdXbrOue/7fI5Gzuvcn/f7PeDqRV8xHfxG7IrbRafZnajyQRUW7l2It4c3LzV/iZNPnWRch3Gub/O5YoW1Headd6z9+LmYYRiMbDKSmV1nkmnPtOoOZnRwDG+8ntAioQxpYBWBP7PyGQAervMwSWlJJKUl8UidRxzHpmSkAJd/rgp6FGR//H7HZOtrGjYM1q5lbLGeAEz8eWKWpz/d9ilHE47Svv8Yq7vXhg1Zni/vX54LaRecvnXq91O/E3ch7ua2Tf2d8uVhyRJYvNi6KxYeTuCYiazt+QOl/Epx7I/j+Nt8GVRqO8GbL8/GyWt3NMAKG2/1q8xXz9TmrX6VFTLkpt0af8uL5HOebp60Ltua5dHLeb7589c8Zu+ZvY6tEz4ePpxJjKWPUZPMpd+xv1AGbzczsP+5DWJArQF89ttnNCrdiL41+tJhZgc83TxJTk9mQc8FdLmti+O6mfZMpmyZwvM/Po+vpy9f9/iablW6cTr5NCN+GMFHWz6ioGdBxrYZy//V/z+ndjDKbTLtmUSfiyYyLpLI2Eh2nt5JZGwkB+IPOLa1hRYOJTwonAdrPsiWmC2sP7qeAm4F2P7Y9izB69C5QwBZPlxm2DMo5VcKD5sH83fNp3uV7qRkpPDe5vcYWGcgxXyK0e/bfqRmpLLnzB6ea/bcVV2cElMTuWfuPfx8/GcW37/4+tPBbyBo7IjdwcjlI1kRbTUjKORViFHNRjG4weCsk5ldKT0dhg+H5s2tVq15RO8avQn0DaTLvC5sjtlMh5kdWNF3xT/+GXqp5Ut8vO1jvtv/HVtjtlI3uC7ty7fnk22fsKrfKr7c/iXp9nR2nd4FWNv10jPTqRBQgV2ndxF74TpF6F27QkgIHX+IxrOCJ9/s/oZPOn+Cj4cPyenJjFk3hj41+lChwR3WTI01a6yWqn+qEFCBxLREEtMSSU5Pdtr/DyKiIvD18M1SE+J0nTtD27bw9tvw5puUnDmTjW+9QN3M0cRdiONcIEz9YggBdQOIT4nPc3c0RLKD7miI5BPty7dnw9ENf/ut56ZjmwBra4OZmUnnfRBYuxlGfDwPdQXTZs1paBnaklWHV1GiYAkG1R1El7ldsBk23G3u/PTgT1lCRmRsJM0+b8aQZUN4IPwB9gzew+3lbufFn14kbHIY07ZPY1TzUUQPi2Zkk5H5JmSYpsnJxJMsj1rO+I3j6b+oP/U+roffWD8qvV+J7vO7897m9ziTfIb25dszpeMUNg7YSMJzCRwefpgl9y/hjTZv8GrrV7mYcZFzqefYeGxjlte4dLcoOeNyxxcTk5olarL15FYOnT/EfdXuY+rWqSSlJfFU46dYEbWC6b9Px8fDh5pBNXm51ctZrhl/MZ52M9qxJWYLEX0i/j5kgFXDcP48JF67h/5vJ3+j9RetqTmlJiuiVxDgHcC7d7xL7MhYnm32bO4JGQBTpljToCdPtjad5yHtyrdjff/1Vv3NsU10mNnBcSfi7wR4BzC65WgAhv8wHICBdQay6fgmDsQf4N6q9wLwY/SPlPIrhYmJHTtnL56lTok6ZJqZfPjrh9e+uLs7DB6Mx9z5DCjVmdTMVObtnAfAh79+yJnkM9ZrG4ZjnsaVrmxxe2kauTNEREXQulzrq7ZyOp23N4webW2nql2b0r0fZ/PqihT2KAgGPF/5OP6ZHgAU9VbQENEdDZF8on359qTb01lzeA0dK3W86vmIgxEApGamEnvxNAO220gL2MqndWFbMGDaKeVXiuT0ZC5mXOSpxk/Rd2Ff3G3uFPctTkSfCCoVrQRYWy7GrB3DWxveomJARdb1X0etErWY/PNkxm0aR2pGKkMbDuXpJk/n+W/1ElIS2HV6l3WHIm6ndbciLtLR2tPHw4dqxatRI6gGvcN7Uz2wOuFB4QT5Bv1jcXvDUg0p71+emMQYFu9bTIvQFo7nLgWNlPSsHyrbhLVh/q75FPcpTsPSDem7sC99a/SlqE9RHlv6GCULluR8ynlmdpuZ5UPXqaRTtJ/RnpjEGFb1W0Xd4LrXf+Mhf+7fP3bMmp78p83HNzMiYgQbj1vBKMg3iDG3j6FfzX54uHlc/5qucOYM/O9/8Mgj1oTkPKh2ydpsGbiF5p83Z/3R9bSb0Y4fH/zxuh+qhzYcyjsb32H9sfWsObyGzpU7E+gbyCdbP2F4w+HM2TmHDDMDP8/LW2Nik2IZ2Xgk205t46mIp+hfq3+WCfIOAwfCK6/wv70lmOID4zeNp3vV7ry5/k0G1BpwudC/ZUsYOhQuXABfa57EpRa3YM3ScMYgzqS0JDYc3cCEDhNu+lo3LCzM2kq1dCmhQ4eydfNFwv/PHQ9bVQolD6CxUZ5ft/oSWTKR8FBtP5Jbl4KGSD5RMaAioYVDWR61/JpBY/0xq4uRj4cPhRLTuKNcG2I2RDBiqPW8p82T8KBw1h1Zx8gmI3li2RO42dyoHlidpQ8sdQz4WnVoFYO+G8SRhCO81OIlhjUcxrTfptFtXjcSUhMYVHcQo5qPokTBEjn23p0hNSOVfWf3ERlrBYlLoeJSv383w41KRStRPbA6wxsOJzwonOqB1QnzD/vPxeyGYdA7vDdj149l4d6FvNPuHUc4uXTNNHtalnPalG3D3XPvpnuV7szaMYtTSad4ttmzvLL6FY4mHCXDnsFHHT/itmK3Oc45cv4IbWe05ULaBdb2X0vV4lX5R38JGpuObWLosqFsObkFgDKFyvBm2ze5r9p9uNlcO/TuukaPtmoFxoxx9UpuSjn/cmx/bDvNp1lh4/Yvb2f1Q6v/ts6pgHsBxrUfx0PfPsQTy57g98d+p3+t/ny89WPeaPOGY17GgfgDjnNMTEcb5ZTMFO7/5n6+7fXt1RcPCIC+fSk5YwGVnyrHrtO7ePGnF0lKS+Klli9dPq5FC8jIgE2brC1HQImCJfB29yYlI8VpdRqrDq0i3Z7u3ELwG9WxI7RpQ/m332bOokVMuOs9DMMaenci1mTEtD1MHFBFYUNuWQoaIvmEYRi0L9/+mvM0ElISrAFd2PBJr0LDxL70ql6FuGp3UsA2jTR20KlSJxbtW8SguoN4Zc0rGBi0C2vH/B7zKehZkPiL8Ty9/GmmbZ9G8zLN+brH12w6volqH1bjVNIpHqr1EC+1eInQIqEuePc3zm7aOXz+8FWBYv/Z/Y42siGFQggPCqdXtV6OQHFbsdso4F7gH67+7/Wu0ZtX175K9Llo9pzZ4wgB1wovboYbSelJHEk4wr1V72XgkoHcW/VeLqRdYNzGcXh7eHNHhTsYVHeQ45x9Z/bRbkY73G3urB+wnjD/sBtbWKlSYBisPfAjTxx6hh2xOwBr68u4duO4u/Ldub8dcWSktW3qnXcg0MXF6E5QzKcYWx7dQqsvW7Hh2AYrdAxY/7dBr2+Nvry65lUi4yL5/sD3PFLnEd7a8BYL9y6kUelGrDq8CnebO5mZmY5zLrVarlKsCov2LWJbzDbqBNe5+uJDh8LHH/N+cn/acYgpW6YwuP7grPN0qlaFYsWsOo0/g4ZhGFQsWpGo+CindZ6KiIqgXJFyWbZl5agCBeB//2NjYGfcjqdg/tkdzjQNTKzJ2m/1u/k7NyJ5kYKGSD5yqeDzaMJRyhS+PCfg0qC+gmZ1qma+S2JhA7vNDRsNqGWvj1epL1iw9xO63daND7dYe7MH1B7AlE5TcDPcmBM5h+ERw0nNSGVKxyl4e3jTdX5Xos9Fc3/1+3m51cuObVW5SWxS7OXtTn8WZ++K28WFdOvDlH8Bf8KDwmkV2oonGjxBeGA41QKrUaRAkRxbY6Wilahbsi7bT21n0d5F1w0aJf1K8s3ubwjyDeJk0kkOnbfmkDyy+BF8PX3x9vDms7s/cwSA7ae2035Ge4r7Fmd5n+WUKlTqhte18ugahg51Y8/ZdwCoHlidiR0m0qZcm9wfMABM0+qQVKECDBni6tU4ja+nL5se3kSHGR346fBPNPy0Ib888ss1w4bNsPHRXR/RYVYHhiwbQtTQKFqXbc0n2z5hQK0BrDq8ikx7ZpZzktKtGq/pXabT4NMGdJvfjcPDD1+9kGrVoG1bWi+JxNbRRro9nZFNRmY9xjCsAvxr1GkcPX/UqUGjQ/kOLv+5jP4DR8i4RJO15VanoCGSj9xe7nZsho0VUSt4uM7Djse/O/AdAGXtAzBMK2QAGLgBmZw6Vo1m5ZqxYO8CAF5u+TL/a/k/jiQc4f+W/h/LDi6jR9UedCjfgQk/T2D36d3cXfluFvZcSI2gGjn+Pv8qKS2JXXG7rur2dDr5NGBtI6lavCrhgeH0qNqD8EDrLkWwX7DLP5wAPFjzQbad3MY3e75xdA27VtCoEViDr3Z/Rfeq3Xlrw1vcWeFO1h1dx7ZT2wCY032Oo43sxmMbuWvWXVQIqMAPfX64oSnFpmnyw8EfGPbDMGtLjT/UTS3Ku48vpklIEye+4xzw7bewahUsXQqe2VwgnMPcbe6sfHAl3ed3Z+HehdScUpPtg7bj7nb1X+ntK7SnfnB9fo35lXk75/Fo3Ue5/5v7Gd9uPAAZZgYF3As4Csz/SLHmdQQWDGRAbav73PiN43mqyVNXL2TYMNw6d6ZRTRsbS8PmE5vpWqhr1mNatrQGJKakWN/8Y9VpRNgjnLJ1KvpcNAfjD/JOu3du+lo3KyzIh/ikBOxXzDDUZG251SloiOQjAd4B1A+uz4rorEHjp0M/AeBrlsf4yzduBm4UsVVm3bH12Awbn3b+lL41+zLx54m8tOolAgpYHWy+2/8djyx5hLZhbZl29zQals46VTgnpGems+/sPusuxRWB4tB5qxWszbBRIaAC4YHh/F/9/yM8MJzwoHDK+5fP1XUEPav1ZETECLae3MrJxJOU9Ct5zaBRPqA83x/8ntJ+pdkZt5OXWrxEv2/74Wa48WjdRx21OSujV3LP3HuoF1yPJfcvoZBXoeu+vmmaLN63mOERwzl8/jAATUOa8t6qAtQ+CbyRx0JGSgo89RTceWeW1qr5iWEYLOi5gH7f9mP679Op8kEVdjy+45rF21M7TaXOx3UYHjGc6KHRFPUuyrxd8yhXpByHzh8iyCeII39YH/pjEmMAuJh+kamdpvLV7q8Y9dMoBtUdREGvv3QSu+suTgcXZvjmC2wsbefNDW/StcpfgkaLFpCaCps3W/+OdUfjQrpzZmksj1qOm+FG67Ktb/paN6tPq2C2Ridgw7qTocnaIgoaIvlO+/Lt+eDXD8i0Z+Jmc8Nu2tl/dj8AyURRwF4U84oP3SaZnLfvw9PDk8W9FlPctzgNP23Ibyd/o3uV7pxIPMEra16hSUgTVvVbRauyrbL9PZimyZGEI45AcamWYu+ZvaTb0wEI9gsmPDCc7lW6Ozo9VSlW5dpdcnK5oIJBjrbCS/Yv4dG6j14zaCSkJFCyYEkW7VtEs5BmfPbbZ2TaMwnzD2Nc+3EAfLv3W3p+3ZM25drw9X1fX7elsGmazN89n5ERIx3T4NuUa8N7d75HleJVYOeTsHlp9rzp7DRxolXE/v33rl5Jtvuyy5f4uPswZesUKr1fiR2P7cDf2z/LMbVL1qZjxY4sPbCUL3//kgdrPsgXv39Br2q9eP/X90nNTHUcu+GYNWDvYsZF3GxufHb3Z/T4qgc9vurBsj7Lslz3aOJxJtVK4p0Ik3pdSrL5xGZiEmMI9rvig3WNGlC4sFWncUXQADiReIIMe8ZNDe6MiIqgcUjjq4ZSusKlydozV8cQHZtMWJAPfVsHa+id3NIUNETymfbl2/Pa2tf47dRv1Auux74z+xwfzssf/ZyzIfXBzMQw3DDJxMTkTIG5/NT3J77d+y0Tf55IOf9yNCjVgK/3fE3tErVZ+sBS7qxwZ7ZsMzqTfCZL69idcTvZGbeTxDRrfkNhr8JUD6xO05CmDKo7yFGcHeAd4PS1uNKA2tae+bk75/5t0Fh5aCWNQxqzYM8Cnm7yNO9sfMeqoek+Bx8PH2b8PoP+i/rTrUq3q9rbXsk0TWbsmMGzK57l1IVTGBh0qtiJd+98l3L+5S4fWKaM9YHdNPPO/ImYGHj9dXjiCbjttn8+Ph/4qNNHFHAvwKRfJlH5/cpsG7Qta1E28MFdH7Ds3WU8/+PzrH1oLRN/nkjZImUBiLsQ5zguIdWaCn4x/SIA91a9l9olavND1A/8fOxnGoU0chz72prXWNmoMOPXpfP+4ao0CjvJe7+8x9i2Yy+/sJsbNGuWpU7jUtDINDOJSYzJUk/2b6RnpvNj9I880/SZ/3R+drg0WVtELAoaIvlMw1IN8fP0Y3nUcuoF12Ph3oWO5won/M6qMo9TxngEHzOMJA5yoeAixnZ4jD4L+xCTGEPlYpXZfXo3HsU8+KrHV3Sr0u0/t2+9UnJ6MrvidmWZRbEzbienkk4B1nTzKsWqEB4UTpfbulh3KQLDKV2odK6oo8huXW7rgqfNk7VH1pKUlnTV73lR76LEJMZwLOEY1YtX5+MtHwMw5vYx1A2uy4e/fsjg7wfzcO2Hmdpp6jW3itlNO59u+5QXfnqBM8lnsBk2elTtwaQOkwgudI3tHSEhcPEixMdD0TwyD+X5562hav/7n6tXkqMm3jERN5sb4zeNp9qH1dg4YCPVAqs5ng8tEspDNR9i2vZpLNm/hGZlmrHs4DJHm9tLPN08SctM4+fjP9M4pDEAi3stJnRyKN2/6s6JJ08AcDD+IJ9v/5y3272NceYI9WfNxPdxGx9vs9rnZvkz27IlvPyyNaHdw8Mx3T7dns6R80f+c9D4+fjPJKYluqatrYjcEMM0TfOfDxORvOSeufeQkJLA6odW0+jTRvxy4hcCLxic9zLBgAw3G3bsVAyoSI2gGnyzx+pkFHchjrJFyvJyq5fpHd77P9U1ZNgzOHD2QJbWsZGxkUSfi8bExMAgzD+M8KBwR1F2eGA4FYtWvKktFPnBPXPuYfH+xXzd42vuqHAHBcde3hMfWjiUixkXibsQR9OQpmw8tpGGpRuyvv963t7wNqN+GsXwhsOZ0GHCVcEs057JR79+xOjVo4lPicfd5s4D1R9gQocJ1x+ouHkzNGwI27bljWF3v/wCjRrB1Knw6KOuXo1LPL38acZtGoe3uzfL+y6nWZlmjufOXTxHifElsBk2Jt8xmUHfDaJpSFM2HNuAu+FOhpnhOLaod1H2DtnraCLwxPdP8P6v7/Na69d4scWL9FnQh1WHV3HwiYN4HzkBlSox+ZHqDC8Vycq+K2kT1ubyoi79d9m0yfoVqPx+Zfaf3c+MrjPoU6PPf3qvL/70IlO2TCF2ZGyursESuZXd2n+ri+RT7cPaMyJiBImpifx+6ncwwTvdJMkDkj2BP0NGbFIs3yV8h82w4WZz48OOHzKg9oDrThy+xDRNjv9x/KpAsefMHtIyrSFzJQqWoHpgde6ufLcjVFQtXhVfT9/s/Q3IowbVG8Ti/Yv54vcvuKti1iLm+IvxBBUMwsPmwYZjG/B292ZOtzm88NMLvLXhLUa3HM3olqOzhIxMeyYTNk3g9XWvk5CagIfNg0F1B/F2u7f/sUAcyDq0L7cHDbvdmu1QqxY8/PA/H59Pvd3ubeymnQk/T6D1l62Zd+88ulXpBoC/tz8jG4/kjfVvsCN2B4W9ClPM2woShmHAFV87pmWm0X9Rfxb3WoxhGEy+YzKzImfx6ppXub3s7cyOnM0Hd31g1URVqAAdO/LIuj0M7wlvrHsja9CoU8eaDL5mjSNoVCpaiUPnDt1UQXhEVATtyrdTyBDJxRQ0RPKh9uXbk25P5/sD35OSabWtPHLFaIii3kU5EH8Am2HDv4A/o5qP4vF6j/9tIfW5i+cuB4orirMv7ef28/SjemB1GpRqwMO1H3YUZ99IS1W5rF1YO3w8fFgZvRK7ac/yXGJaIonxifh5WoWlUztN5e2Nb/PRlo+Y0H4CIxqPcBybYc9g7LqxvL3xbZLSkijgXoARjUYw5vYx1y0Ov0pQEHh4WEEjt5s507oDs2aNVRdwizIMg3Htx5Fhz+Ddze9y7/x7ee/O9xjcYDAAL7V8ifc2v8fUrVN5qOZDLNm/BAPDUcd1ycA6A5nw8wTe/eVdhjUahs1mY0bXGXSa04l75t1DaJHQLJ3tGDYM33bt6Bbrz7e21ZxPOX95Ho2HBzRpYtVpPPssYLW4tRm2/zxL40zyGbbGbGVw/cH/6XwRyRkKGiL5UIWACpQtUpYpW6YAYHD5y0oDg7MXz+Lr4ctzzZ5jWMNh+HlZH14vpl9kz5k9WYqzI+MiHS0vPWwe3FbsNqoHVqdjxY6OwuzQwqG3RB1FdvNw8+Cuinfx9e6v2XB0Q5bnfD18MU2TxLRE7qxwJxFREcyOnM2nnT91fOBLz0xn9OrRTP5lMsnpyfh4+PBi8xd5scWLeLl7/fsF2WxQunTuDxqJifDcc3DffY7ORrcywzCYdMckMuwZfLjlQ4YsG0JMYgxjbh9DAfcCjG0zliHLhnAy6SSxF2Ip7lPcMXPmksrFKvNkoyd5esXTNCvTjLrBdelYqSPVi1dn5+mdPFL7kax3Ptu0gWrVeGOnnQUlzvHRrx85ZsIAVp3G229DZia4uVEhoAJpmWn/OWisiFqBiUn78u3/0/kikjNUoyGSTz04+yV27C3+Z9F3FEfcpvGHsQMPmwdPNHyCntV6cizhWJZAcTD+oOOb9HJFyllBonh1R6CoVLTSDW2rkv9u47GNNJ3WlO63deebvd9c9Xwhr0I0C2nG8ujlzOo2i/uq3UdqRirPrXyOKVumkJKZgp+nH882fZZnmz1783UvLVtCqVIwe/bNXSc7jRpltbTduxdCQ129mlzDbtoZtGQQn/32GSYmD9V6iI87fYybzY3g8cGcvnCa8KBwElISOJxw2HGem+HG+Pbjebz+4zT5rAkJqQlse3Qbfl5+3P7l7aw6vIpA30BOPXUq6xcMH3+M+dhjVBgGKSElHYXjAKxbZ4XArVuhTh1+OPgDd866k/L+5Tk49OC/fm/9F/VnS8wWIh+PvInfIRHJbrqjIZIPRR5J5PjeThQx7Ri44UlR/DPrE1f4VTx9T/Lhrx8yYdMEAIr7FCc8KJw7yt9BeBOrQLtq8aqOuxySsxqXbkwhr0JEREVkedzAwMQkrEgYPx3+iUW9FtG6bGse++4xPt/+OWmZafgX8Gdsm7EMbTTUKZ3CAKtO48jND1bLNtHRMH68dUdDISMLm2FjaueppGamMnPHTGbumElsUizze8znw44f0n1+d+x2e5aQcem8ixkX8XTzZO69c6k9tTaPL32cQXUHserwKjpX6syS/Ut4cdWLvH7765dP7NMH4/nneXOPL/cVOcbWmK3UDa5rPdegAXh5WVvb6tRxtLg9/sdxTNP8V3dETdNkedRy7q9+/83+FolINlPQEMmHZq6OwcDAwNqrbv2aSfHUXlSqtJ7+tfs7pmYH+ga6drGShWEYdKzYkTk752R53MSkqHdRos5FseC+BczbNY975t5Dhj2D4j7FGXP7GAbWGej8LWwhIbB+vXOv6UwjR0JgIDyTe2Yp5CY2w8a0e6aRlpnG17u/ZvXh1bT+sjVLH1hKxYCKRJ6OxNvdm3R7Ohl2q+uUaZqOORoVAiowtdNUei/oza8xv1IzqCYL7ltAyQkleWv9W4xoOIJivn/WYvn4wMCBdP3wA3zrwKtrX2VRr0XWc15eViH42rUwYgShhUOxYSM1M5UzyWco7lv8ht/TzridxCTGqK2tSB7gpK+8RCQ3iY5Nxv6XTZEGbgR51OTTuz9leKPhtAlro5CRSz3f7PmrHnMz3Mi0Z9KodCM6z+nMl79/SaBPIDO7ziTu6Tgerfto9tTJlCkDJ05Ye+tzmx9/hIULrb3/vupk9nfcbe7M6DqDzpU7k2HPICo+iqbTmjruRvh5+mW5A2Y37VlmazwQ/gDty7dn/3qCvJQAABesSURBVNn9PFbvMdzd3JnbfS6ZZiZd5nXJ+mKDB+OWfJH/2+3LsgPLHIEFsLbhrV0Ldjsebh6U9CsJ8K/rNCKiIvB296Z5aPN/+TshIjlNQUMkHwoL8sH2l8+cNsN6XHK/8KBwSnk0JTxjEo0zlhCeMYnCZk3+SP2DFdErKFWoFAvuW8CJp07Qu0bv7F1MSAhkZMCpU9n7Ov9WRgYMHw5Nm0KvXq5eTa7n4ebB3O5zaVe+HcnpyaRkpDBk2RCqFqtKXHKcoyU1gB17loBgmianL5ymgHsBqw4oI4U2YW1oUaYFG45t4IeDP1x+oZAQjG7deHqrFxkZ6Xy+/fPLz7VoYQ1/3L0bgIpFKwL86xa3EVERtCzbkgLuBf7D74SI5CQFDZF8qE+rYAzAZre+hbYZYBjQt/U1pj9LrhN5JJGKF8cRQAO8CCSABlTPeI/KBTuwrPcyjgw/QtcqXXNmMVfO0shNPv4Ydu2CyZOtH275R17uXnxz3zc0D21OfHI8xXyKOeozvNyydiW7kH7B8e+L9y3mt1O/8e4d77L3zF6eWWFtU1vQcwHuNnd6L+iN3X5FO+Zhwyh+PJ47onDUggHQuDG4u1t1GkCVolUwMDiacPSG30NyejLrjqzTtimRPEJBQyQfCg/1Y2LgAeod2kwxXxv1yhdm0sNVqF5GBd55wczVMdgMW5YaGzfDjc7FJnJHhTtydjG5MWjEx8NLL0H//lC3rqtXk6cUcC/Aol6LqFeqHscSjlGnRB0MDFIzU7Mcdy7lHGBto3pp1Uu0LtuagXUHMqHDBN7b/B6L9i6iqE9RRjUbRfzFeEauGHn55CZNoG5d/re9CFHnojh49s+uUj4+UL++I2hUKGoVhP+1GP161hxeQ2pmqoKGSB6hoCGST4XPm8Jb8cv46rl6vNWvskJGHnKtGhvTNIiOTc75xfj7W/UPuSlovPwypKfD66//46FyNR8PH767/zuqB1YnMi7ymuH19AVrrsa8nfOIjIt01HM8Xu9xut7Wlf6L+nMs4RivtH6FEgVLMPmXyZxMPGmdbBgwbBiNdp2n8ml4ec3Lly98qU7DNKkQUAETk/1n9t/w2iOiIggpFMJtxW77z+9fRHKOgoZIfhQVZXUKevBBV69E/oNcVWNjGNZdjdwSNHbtgg8/tO5olCjh6tXkWX5efizrvYyKRSvyy/FfqBRQKcvzJxNPkmHPYPTq0XSs2JHGIY0BqyvaZ3d/hp+XHw8seIAMewZf3fsVdtPOPXPvuXyB++7DDAri6S2eLNizwNHRipYtITYW9u93tLiNOhd1w+uOiIqgQ/kOGhAqkkcoaIjkRzNnQsGC0KXLPx8ruU6fVsEYBo6w4fIam5AQOHrj++izjWnCiBFQrhwMHerq1eR5hQsUJqJPBCGFQzifch7bFR8J4pLi+HL7lxyIP8CY28dkOc/f25/Z3Waz6dgmXl3zKs1Cm9G2XFt+jfmVRXsvt7M1HnuMPtvteCVeZP6u+dbjTZpYE+fXrqVckXIAxCTG3NB6jyYcZe+ZvZoGLpKHKGiI5DemCTNmQI8e1p5oyXPCQ/2YOKAK9coXppifh+trbHLLHY3Fi2HFCmsKuJfXPx8v/yjAO4AVfVdQzLcYPh6X/3+RlJHEy2tepkfVHtQqUeuq85qWacorrV5hzNoxrDq0igU9F+Bh86Dft/0uF4Y/9hiedoNHtsHY9WOtxwoVgjp1YM0avD28CfAO4EL6BZLSkv5xrcujlmMzbLQNa+uU9y4i2U9BQyS/2bTJ2jqlbVN5WnioH2/1q8xXz9R2fY1NmTKuDxqpqfDkk9ChA3Ts6Nq15DPFfYvz44M/UtKvJIXMGo62yv7xI+kYMvhvz3uu2XO0Ltea3gt6k5KRwmutXyMhNYHB3/95TokSGL16MWKrJ3tO7rxcw9GihVUQbpqUKVwGuLEWtxFRETQo1QB/b/+bfs8ikjMUNETym+nTrQ+GLVq4eiWSX4SEWHM0UlP/+djsMmkSHDli3c3Q/nynK1GwBFPb/EDtzI+ytFX+fKkni7fvuOY5bjY3ZnSdQYY9g37f9uPppk9TulBpPt728eUhfMOGERyfxt374NU1r1qPtWwJx4/D4cPcVtQq6v6nFrcZ9gxWRq9UtymRPEZBQyQ/SUmBefOgb19rH7SIM1xqcXvihGte/+RJGDMGhgyBKlVcs4ZbwA+/puNmuGdpqwzwyrfrWHdk3TXPCfYL5ssuX7Ls4DIm/TyJBfctsArD5/xZGF63LmbTpjy52cbsyNmYpgnNmllhce1aqgdWB+Dw+cPXXduvJ37lfMp5BQ2RPEafRETyk+++g/PnraAh4iyunqUxapRVkzF6tGte/xZxrbbKBm4UohLtZrRjwZ4F1zzvzop3MrLxSJ5b+RyGYdCxYkd+j/2duTvnWtcYNoxmh+2UO/IH3x/4HgICIDwc1qyhcrHKAOw7u++6a4uIiqBIgSLUL1X/5t+oiOQYBQ2R/GT6dGjQACpXdvVKJD9xZdD49Vf44gvrjoa/9uZnp79rq1yvbGm63NaFe+ffywebP7jmua+3eZ1aJWrR6+tefNr5U7zcvBi4ZKDV1rZrVzJLBzP0lyu2T7VoAWvXOlrc7jm957pri4iKoG1YW9xt7jf9PkUk5yhoiOQXcXGwbJmKwMX5fH2tb6FzOmiYptXGtkYNGDgwZ1/7FvR3bZX73V6a2d1nM7zRcIYsG8ILP75gbYG6gqebJ3Pvncvp5NM8ufxJ3mz7JklpSQxcPBDc3XEbMpTeOw0OHdjM+YvnrTqNqCgqJHsDcOj8ob9d17mL59h8YrO2TYnkQQoaIvnF3LnWp4KePV29EsmPXDFLY/Zs+PlnqxDczS1nX/sWdL22yjbDxoQOExjXbhxvrH+D/ov6k56ZnuX8MP8wPu70MXN2zqGwV2HKFSnHl79/ycGzB2HgQNzcPXh0y5+tbps3B6DgL9vw8fAhNin2b9e1MnoldtOu+RkieZBh/vVrCRHJm+rVsz4MLlzo6pVIftS5s3WH4bvvcub1kpKsLYCNG8PXX+fMa8oNmR05m4e+fYg2YW34qsdXFPQsmOX5gYsHMnvnbGZ1nUXX+V2pUqwKuwfvxnz0UU7N/YS6zxUlZtQZq7C/ZUsqVF1J1Lko0l5Mw8PN46rXG7h4IOuPrWfP4OtvrxKR3Ed3NETyg127YOtWbZuS7JPTQ/veegvOnoV33sm515Qb8kD4AyzrvYwNRzfQ+svWxF2Iy/L85DsnE1o4lNFrRtOlchf2nNnDF9u/wBg2jJKJ0GrrWTYc3eCo0yjnb00IP/7H8ateyzRNIqIitG1KJI9S0BDJD2bMsPbQ33WXq1ci+VVODu07fNgKGCNHQrlyOfOa8q+0CWvD2v5rOf7HcZp81oSo+CjHcz4ePsy7dx77zuwjqGAQ3u7eDP5+MGmVK3KxVTOG/QIvrnrRqtPYs4f67qEAl2dvXGHvmb0c++OYgoZIHqWgIZLXZWbCrFnQq5fVAlQkO4SEwLlz1pam7Pb001C0KDz3XPa/lvxntUrUYuOAjbjZ3Gj8WWO2xGxxPBceFM6kOyYxdetU+tXqR3J6Mv2+7Yf3U8/S8ASkrV/LxcZWq9p2JwoAVqj4q4ioCLzcvGhZtmXOvCkRcSoFDZG8bvVqa8qutk1JdsqpFrerV1s1GW+9BQUL/uPh4lrl/MuxYcAGwvzDaPVFKyIORjieG1R3EN2rdGfuzrmUK1KOebvmsbt+WRJKF2fIz3YmHJsPYWFU2X0agN9P/X7V9SOiImge2hwfD58ce08i4jwKGiJ53fTpUKmSNT9DJLvkRNDIyIBhw6wC8N69s+91xKmK+RTjxwd/pHW51nSa04npv08HwDAMPun8CYW9ClPYqzAA98zrit9Tz3Pvbliw8j1o0YJiW3YDVw/tS8lIYc3hNdo2JZKHKWiI5GVJSfDNN9YkcMP45+NF/qtSpayfsewMGp9+Cjt2wOTJ+nnOY3w9fVnYcyH9avaj37f9GLtuLKZp4u/tz5zuc4iMi6Rq8aocPHeQT2qbpHu50211LMdqlcd95y6Kp7pzLCHrz9a6I+u4mHFRQUMkD1PQEMnLFi6ECxegTx9Xr0TyO09PKFEi+4LGuXPw4ovw0ENQv372vIZkK3ebO590/oTRLUcz6qdRPLHsCTLtmTQOacyY28ew6/QuCrgVYPj6F0jscx+DtsDrqSvANOlwqiBxyVm7V0VERVCyYEmqB1Z30TsSkZuloCGSl02fbnVuKVvW1SuRW0F2Du175RVITYU33sie60uOMAyDl1u9zNROU/loy0f0/LonKRkpPNP0GdqGtcXL3YuUjBRG1IkjIAXsG9Zjli5N++OeJKYmYjftjmtFREXQvnx7DN3dEsmzFDRE8qrjx+HHH1UELjknu2Zp7N4N779v3dEoWdL515cc92jdR1nYcyFLDyylw8wOJKQkMKPrDLzcvSjoUZA5sSvZ0KIcQ362s79KII2j0zExHTM5YhJj2Bm3U9umRPI4BQ2RvGrWLKud7b33unolcqvIjlkapgkjRlh35YYPd+61xaXurnw3Pz74IzvjdtL88+Zk2DOY0XUGSelWi+QhLS9QIw7Wph8k7FACBVNh3xmrIHx51HIMDNqVb+fKtyAiN0lBQyQvMk1r21TXrlCokKtXI7eKS3c0TNN511y6FJYvh/HjNQcmH2oS0oQNAzaQmJZI488aU8qvFM80eQYDgx22OGbW9aDskT+w2e00OYZjFkdEVAR1g+tSzKeYi9+BiNwMBQ2RvGjbNmu7ibZNSU4KCYHkZIiPd8710tKsuxlt28LddzvnmpLr3FbsNjY9vIkA7wCafd6MOyrcQf3g+hgYDG+XSfOj8EdBD1oehsi4SDLtmayIWqFtUyL5gIKGSF40Y4bVAahtW1evRG4lzp6l8e67cOgQTJyodrb5XLBfMGsfWkvtErW5c9ad9KvVjwLuBTjrZefNZhDrlU6LI3Aw/iDbTm7j7MWzChoi+YCChkhek54Os2dbA83c3V29GrmVlClj/eqMoBEbC6++Co8/DtXVvvRWULhAYZb1XkbXKl0Z8v0Q7q9+PxjwRgtrN16DE3DmzFEioiLw8/SjUelGrl6yiNwkBQ2RvCYiAk6f1rYpyXlBQeDh4Zyg8cIL1rVeeeXmryV5hpe7F7O6zWJEoxFM2z6NqsWqkmnA823B0w5h+08TERVBm7A2eLh5uHq5InKTFDRE8prp06FGDesfkZxks1kTwm92lsbWrTBtmnVHIyDAOWuTPMNm2BjfYTzj2o1j95nduHt4sqAqfF8BakansOnYJtqHtXf1MkXECRQ0RPKSc+dg8WLdzRDXudlZGqYJw4ZBtWowaJDz1iV5zlNNnmJWt1lk2jMpnAJPd6rB0QqTaJD+Lbt3NCLySKKrlygiN0lBQyQv+eorq0bjgQdcvRK5Vd3sLI25c2HDBpg0STVGwgPhDxDRJwI3rzoUL/gRMYEN8CKQ3UfSGTFtj8KGSB6noCGSl0yfDu3ba3qyuM7N3NG4cAGeecaa/9KmjXPXJXlWm7A23Bc8BUwDDDcA7KZ182vm6hgXr05Eboa+ThLJK6KirG+CZ8929UrkVhYSAidOQGYmuLn9u3Pffhvi4mDcuOxZm+RZZ867YxhZB0HaTYiOTXbRikTEGXRHQySvmDED/PzgnntcvRK5lYWEWNv3YmP/3XlHjlhB46mnICwse9YmeVZYkA+2v4xSsRnW4yKSdyloiOQFpmkFjR49wEd/8YoL/dehfc88A/7+8Pzzzl+T5Hl9WgVjGDjChs2wZjj2bR3s2oWJyE1R0BDJCzZuhOhodZsS1/svQ/vWroX58+HNN627ciJ/ER7qx8QBVahXvjDF/DyoV74wkx6uQvUy+nkRycsM0zTNfz5MRFxq0CBrUF90tDXLQMRVTBMKFoQxY2DEiH8+PjMT6tUDT0/YtEk/vyIitxAVg4vkdikpMG8ePPGEPqSJ6xmGtX3qRof2TZsG27crZIiI3IL0f32R3G7JEkhIgL59Xb0SEcuNtrg9fx5eeMH62W3UKPvXJSIiuYqChkhuN306NGwIlSq5eiUilhsd2vfaa5CcDGPHZv+aREQk11HQEMnN4uJg2TIVgUvuciN3NPbtg3ffhVGjoFSpnFmXiIjkKgoaIrnZnDnWvvaePV29EpHLQkLg1ClIS/v7Y558EkqXtn4VEZFbkoKGSG42fTp06gRFi7p6JSKXhYRY3adOnLj2899/b/0zfjwUKJCzaxMRkVxDQUMkt9q5E7Zt07YpyX2uN0sjLc1qe3v77dC1a86uS0REchW1txXJrWbMgIAAuOsuV69EJKvrTQd//304eBC+/tpqhSsiIrcs3dEQyY0yM2HmTLj/fmvQmUhu4usL/v5Xz9KIi4NXXoHHHoPwcNesTUREcg0FDZHcaNUqiInRtinJva7VeerFF8HNDV591TVrEhGRXEVbp0Ryo+nToXJlqF/f1SsRuba/ztL47Tf49FOYPFnNC0REBNAdDZHcJykJvvnGmqasPe6SW115R8M0YdgwqFLF2jYlIiKC7miI5D4LFljTlPv0cfVKRP7elUHjq69g3TpYvhw8PFy7LhERyTV0R0Mkt5k+HVq1gtBQV69E5O+FhEB8PJw+DU8/DXffDe3auXpVIiKSi+iOhkhucuwY/PQTfPaZq1cicl2RfqHM7DWJ6Em7CGv2FH0Gt0N9pkRE5EoKGiK5yaxZ1iTl7t1dvRKRvxV5JJERW70wwxpgt7kRX64BWyMSmVgqkfBQP1cvT0REcgltnRLJLUzT2jbVtSsUKuTq1Yj8rZmrYzABu80NALthwzStx0VERC5R0BDJLbZuhT17NDtDcr3o2GTsZtbH7Kb1uIiIyCUKGiK5xfTpULIktGnj6pWIXFdYkA+2v3RethnW4yIiIpcoaIjkBunpMGcO9O4N7iqdktytT6tgDANH2LAZ1siXvq2DXbswERHJVQzTNM1/PkxEstWSJVZ70B07IFy9eyT3izySyMzVMUTHJhMW5EPf1sFUL6NCcBERuUxBQyQ36NEDDhyA7dtdvRIRERERp9DWKRFXO3cOFi9WEbiIiIjkKwoaIq42fz5kZMADD7h6JSIiIiJOo61TIq7WtCkULgzff+/qlYiIiIg4jdrbiLjSwYOwcaPVcUpEREQkH9HWKRFXmjHDmgJ+zz2uXomIiIiIUyloiLiK3W4N6evRA7y9Xb0aEREREadS0BBxlQ0b4PBhdZsSERGRfElBQ8RVZsyAsmWhWTNXr0RERETE6RQ0RFzh4kWrrW3fvmDTH0MRERHJf/QJR8QVliyBhAQraIiIiIjkQ2pvK5KDIo8kMnN1DNG7Awh77HP6eJYg3NWLEhEREckGGtgnkkMijyQyYtoeTBPsJtgwMWwGEwdUITzUz9XLExEREXEqbZ0SySEzV8c4QgaAHQPTtB4XERERyW8UNERySHRssiNkXGI3rcdFRERE8hsFDZEcEhbkg83I+pjNsB4XERERyW8UNERySJ9WwRgGjrBhM8AwoG/rYNcuTERERCQbqBhcJAc5uk7FJhMW5EPf1sFUL6NCcBEREcl/FDRERERERMTptHVKREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDREREREScTkFDRERERESc7v8BlF0px3e6IqIAAAAASUVORK5CYII=", "text/plain": [ - "-0.13774320410491864" + "
" ] }, - "execution_count": 28, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], "source": [ - "# assortativity\n", - "nx.degree_pearson_correlation_coefficient(G)" + "gId = 8\n", + "plt.figure(figsize=(10,10))\n", + "spring_pos = nx.spring_layout(graphs[gId])\n", + "plt.axis(\"off\")\n", + "edge_colors = [\"r\" if x == 1 else \"g\" for x in nx.get_edge_attributes(graphs[gId], 'label').values()]\n", + "nx.draw_networkx(graphs[gId], pos=spring_pos, node_color=default_node_color, \n", + " edge_color=edge_colors, with_labels=False, node_size=15)" ] }, { "cell_type": "markdown", - "metadata": { - "id": "c8peWeN9nh1m" - }, + "metadata": {}, "source": [ - "### Community Detection" + "#### Tripartite Graph" ] }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "G = G_tu" + ] + }, + { + "cell_type": "code", + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ - "import community\n", - "\n", "parts = community.best_partition(G, random_state=42, weight='weight')" ] }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2 525\n", - "0 329\n", - "5 220\n", - "1 138\n", - "3 131\n", - "4 119\n", - "8 84\n", - "7 74\n", - "6 56\n", + "11 4828\n", + "99 4493\n", + "26 4313\n", + "94 4115\n", + "8 4036\n", + "5 4011\n", + "82 3768\n", + "97 3740\n", + "2 3712\n", + "83 3699\n", + "64 3600\n", + "7 3598\n", + "53 3522\n", + "48 3457\n", + "73 3341\n", "dtype: int64" ] }, - "execution_count": 35, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "communities = pd.Series(parts)\n", - "communities.value_counts().sort_values(ascending=False)" + "communities.value_counts().sort_values(ascending=False).head(15)" ] }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "7 29.538462\n", - "6 27.272727\n", - "1 21.203438\n", - "3 20.712695\n", - "4 20.472441\n", - "8 17.484009\n", - "0 4.667955\n", - "5 1.989235\n", - "2 1.485530\n", + "Text(0.5, 0, 'Community size')" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAGwCAYAAAC0HlECAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de1hV1b7/8c9SBDQFvHAtFMlb3suKSE3dUkhuU+uU2+ygZu1T6c423WTvSrtiWmYeTa0U7FRqnsw6WewUFXfbW6iolJGgiB4BbwlCiQTj94c/12nFpSmyXAt8v55nPk9zjDHH/E5mxeeZc7CWzRhjBAAAgBo1cnUBAAAA9QGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFjg4eoC3FFFRYWOHDmiFi1ayGazubocAABggTFGp0+fVkhIiBo1qvvnQoSmKhw5ckShoaGuLgMAANTCoUOHdNVVV9X5vISmKrRo0ULSuR+6j4+Pi6sBAABWFBUVKTQ01P57vK4Rmqpw/pWcj48PoQkAgHrGWUtrWAgOAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFjg4eoCAKAqYVNWO23unOlDnTY3gIaLJ00AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABggUtD08aNGzVs2DCFhITIZrNp1apVDv02m63KbebMmdXOOW3atErju3Tp4uxLAQAADZxLQ1NJSYl69eqlefPmVdmfl5fnsC1evFg2m0133XVXjfN269bN4bivv/7aGeUDAIDLiEs/pykmJkYxMTHV9gcFBTnsf/rppxo0aJDCw8NrnNfDw6PSsQAAABej3qxpKigo0OrVqzVhwoTfHbtv3z6FhIQoPDxcY8aMUW5ubo3jS0tLVVRU5LABAAD8Wr0JTUuWLFGLFi1055131jguIiJCSUlJSk5O1vz583XgwAH1799fp0+frvaYhIQE+fr62rfQ0NC6Lh8AANRz9SY0LV68WGPGjJG3t3eN42JiYnT33XerZ8+eio6O1hdffKFTp07po48+qvaY+Ph4FRYW2rdDhw7VdfkAAKCeqxffPffPf/5TmZmZWr58+QUf6+fnp06dOikrK6vaMV5eXvLy8rqYEgEAQANXL540LVq0SH369FGvXr0u+Nji4mJlZ2crODjYCZUBAIDLhUtDU3FxsdLT05Weni5JOnDggNLT0x0WbhcVFWnFihV64IEHqpxj8ODBmjt3rn3/iSeeUGpqqnJycrRp0yaNHDlSjRs31ujRo517MQAAoEFz6eu5tLQ0DRo0yL4fFxcnSRo7dqySkpIkScuWLZMxptrQk52drePHj9v3Dx8+rNGjR+vEiRPy9/dXv379tGXLFvn7+zvvQgAAQINnM8YYVxfhboqKiuTr66vCwkL5+Pi4uhzgshQ2ZbXT5s6ZPtRpcwNwHWf//q4Xa5oAAABcjdAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABa4NDRt3LhRw4YNU0hIiGw2m1atWuXQP27cONlsNodtyJAhvzvvvHnzFBYWJm9vb0VERGjbtm3OugQAAHCZcGloKikpUa9evTRv3rxqxwwZMkR5eXn2benSpTXOuXz5csXFxWnq1KnasWOHevXqpejoaB09erSuywcAAJcRD1eePCYmRjExMTWO8fLyUlBQkOU5Z82apQcffFDjx4+XJC1YsECrV6/W4sWLNWXKlCqPKS0tVWlpqX2/qKjI8vkAAMDlwe3XNG3YsEEBAQHq3LmzHn74YZ04caLasWfPntX27dsVFRVlb2vUqJGioqK0efPmao9LSEiQr6+vfQsNDa3TawAAAPWfW4emIUOG6L333lNKSopeffVVpaamKiYmRuXl5VWOP378uMrLyxUYGOjQHhgYqPz8/GrPEx8fr8LCQvt26NChOr0OAABQ/7n09dzv+dOf/mT/5x49eqhnz566+uqrtWHDBg0ePLjOzuPl5SUvL686mw8AADQ8bv2k6bfCw8PVpk0bZWVlVdnfpk0bNW7cWAUFBQ7tBQUFF7QuCgAA4LfqVWg6fPiwTpw4oeDg4Cr7PT091adPH6WkpNjbKioqlJKSosjIyEtVJgAAaIBcGpqKi4uVnp6u9PR0SdKBAweUnp6u3NxcFRcX68knn9SWLVuUk5OjlJQUDR8+XB06dFB0dLR9jsGDB2vu3Ln2/bi4OL3zzjtasmSJ9u7dq4cfflglJSX2v6YDAACoDZeuaUpLS9OgQYPs+3FxcZKksWPHav78+dq9e7eWLFmiU6dOKSQkRLfddptefPFFh/VH2dnZOn78uH1/1KhROnbsmJ577jnl5+erd+/eSk5OrrQ4HAAA4ELYjDHG1UW4m6KiIvn6+qqwsFA+Pj6uLge4LIVNWe20uXOmD3Xa3ABcx9m/v+vVmiYAAABXITQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYIGHqwsAUL8584t1AcCd8KQJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALPFxdAADnC5uy2tUlAEC9x5MmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsMCloWnjxo0aNmyYQkJCZLPZtGrVKntfWVmZnn76afXo0UNXXHGFQkJCFBsbqyNHjtQ457Rp02Sz2Ry2Ll26OPtSAABAA+fS0FRSUqJevXpp3rx5lfp++ukn7dixQ88++6x27NihlStXKjMzU3fcccfvztutWzfl5eXZt6+//toZ5QMAgMuISz+nKSYmRjExMVX2+fr6as2aNQ5tc+fO1Y033qjc3Fy1bdu22nk9PDwUFBRkuY7S0lKVlpba94uKiiwfCwAALg/1ak1TYWGhbDab/Pz8ahy3b98+hYSEKDw8XGPGjFFubm6N4xMSEuTr62vfQkND67JsAADQANSb0HTmzBk9/fTTGj16tHx8fKodFxERoaSkJCUnJ2v+/Pk6cOCA+vfvr9OnT1d7THx8vAoLC+3boUOHnHEJAACgHqsXX6NSVlame+65R8YYzZ8/v8axv37d17NnT0VERKhdu3b66KOPNGHChCqP8fLykpeXV53WDAAAGha3D03nA9PBgwe1bt26Gp8yVcXPz0+dOnVSVlaWkyoEAACXA7d+PXc+MO3bt09r165V69atL3iO4uJiZWdnKzg42AkVAgCAy4VLQ1NxcbHS09OVnp4uSTpw4IDS09OVm5ursrIy/du//ZvS0tL0wQcfqLy8XPn5+crPz9fZs2ftcwwePFhz58617z/xxBNKTU1VTk6ONm3apJEjR6px48YaPXr0Jb8+AADQcLj09VxaWpoGDRpk34+Li5MkjR07VtOmTdNnn30mSerdu7fDcevXr9fAgQMlSdnZ2Tp+/Li97/Dhwxo9erROnDghf39/9evXT1u2bJG/v7+TrwYAADRkLg1NAwcOlDGm2v6a+s7Lyclx2F+2bNnFlgUAAFCJW69pAgAAcBeEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALKhVaNq/f39d1wEAAODWahWaOnTooEGDBun999/XmTNn6romAAAAt+NRm4N27NihxMRExcXFadKkSRo1apQmTJigG2+8sa7rAy4rYVNWu7oEAEA1avWkqXfv3nrzzTd15MgRLV68WHl5eerXr5+6d++uWbNm6dixY3VdJwAAgEtd1EJwDw8P3XnnnVqxYoVeffVVZWVl6YknnlBoaKhiY2OVl5dXV3UCAAC41EWFprS0ND3yyCMKDg7WrFmz9MQTTyg7O1tr1qzRkSNHNHz48LqqEwAAwKVqtaZp1qxZSkxMVGZmpm6//Xa99957uv3229Wo0bkM1r59eyUlJSksLKwuawUAAHCZWoWm+fPn6/7779e4ceMUHBxc5ZiAgAAtWrTooooDAABwF7UKTfv27fvdMZ6enho7dmxtpgcAAHA7tVrTlJiYqBUrVlRqX7FihZYsWXLRRQEAALibWoWmhIQEtWnTplJ7QECAXnnllYsuCgAAwN3UKjTl5uaqffv2ldrbtWun3Nzciy4KAADA3dQqNAUEBGj37t2V2nft2qXWrVtfdFEAAADuplahafTo0Xr00Ue1fv16lZeXq7y8XOvWrdPkyZP1pz/9qa5rBAAAcLla/fXciy++qJycHA0ePFgeHuemqKioUGxsLGuaAABAg1Sr0OTp6anly5frxRdf1K5du9S0aVP16NFD7dq1q+v6AAAA3EKtQtN5nTp1UqdOneqqFgAAALdVq9BUXl6upKQkpaSk6OjRo6qoqHDoX7duXZ0UBwAA4C5qtRB88uTJmjx5ssrLy9W9e3f16tXLYbNq48aNGjZsmEJCQmSz2bRq1SqHfmOMnnvuOQUHB6tp06aKioqy9Gnk8+bNU1hYmLy9vRUREaFt27Zd8DUCAAD8Wq2eNC1btkwfffSRbr/99os6eUlJiXr16qX7779fd955Z6X+GTNmaM6cOVqyZInat2+vZ599VtHR0fruu+/k7e1d5ZzLly9XXFycFixYoIiICM2ePVvR0dHKzMxUQEDARdULAAAuX7V60uTp6akOHTpc9MljYmL00ksvaeTIkZX6jDGaPXu2nnnmGQ0fPlw9e/bUe++9pyNHjlR6IvVrs2bN0oMPPqjx48era9euWrBggZo1a6bFixdXe0xpaamKioocNgAAgF+rVWh6/PHH9eabb8oYU9f12B04cED5+fmKioqyt/n6+ioiIkKbN2+u8pizZ89q+/btDsc0atRIUVFR1R4jnftaGF9fX/sWGhpadxcCAAAahFq9nvv666+1fv16ffnll+rWrZuaNGni0L9y5cqLLiw/P1+SFBgY6NAeGBho7/ut48ePq7y8vMpjvv/++2rPFR8fr7i4OPt+UVERwQkAADioVWjy8/Or8pVafeXl5SUvLy9XlwEAANxYrUJTYmJiXddRSVBQkCSpoKBAwcHB9vaCggL17t27ymPatGmjxo0bq6CgwKG9oKDAPh8AAEBt1GpNkyT98ssvWrt2rRYuXKjTp09Lko4cOaLi4uI6Kax9+/YKCgpSSkqKva2oqEhbt25VZGRklcd4enqqT58+DsdUVFQoJSWl2mMAAACsqNWTpoMHD2rIkCHKzc1VaWmpbr31VrVo0UKvvvqqSktLtWDBAkvzFBcXKysry75/4MABpaenq1WrVmrbtq0ee+wxvfTSS+rYsaP9IwdCQkI0YsQI+zGDBw/WyJEjNWnSJElSXFycxo4dq+uvv1433nijZs+erZKSEo0fP742lwoAACCplqFp8uTJuv7667Vr1y61bt3a3j5y5Eg9+OCDludJS0vToEGD7PvnF2OPHTtWSUlJeuqpp1RSUqI///nPOnXqlPr166fk5GSHz2jKzs7W8ePH7fujRo3SsWPH9Nxzzyk/P1+9e/dWcnJypcXhAAAAF8JmavG5Aa1bt9amTZvUuXNntWjRQrt27VJ4eLhycnLUtWtX/fTTT86o9ZIpKiqSr6+vCgsL5ePj4+pycBkJm7La1SVcFnKmD3V1CQCcwNm/v2u1pqmiokLl5eWV2g8fPqwWLVpcdFEAAADuplah6bbbbtPs2bPt+zabTcXFxZo6depFf7UKAACAO6rVmqbXX39d0dHR6tq1q86cOaN7771X+/btU5s2bbR06dK6rhEAAMDlahWarrrqKu3atUvLli3T7t27VVxcrAkTJmjMmDFq2rRpXdcIAADgcrUKTZLk4eGh++67ry5rAQAAcFu1Ck3vvfdejf2xsbG1KgYAAMBd1fpzmn6trKxMP/30kzw9PdWsWTNCEwAAaHBq9ddzP/74o8NWXFyszMxM9evXj4XgAACgQar1d8/9VseOHTV9+vRKT6EAAAAagjoLTdK5xeFHjhypyykBAADcQq3WNH322WcO+8YY5eXlae7cuerbt2+dFAYAAOBOahWaRowY4bBvs9nk7++vP/zhD3r99dfrpDAAAAB3UqvQVFFRUdd1AAAAuLU6XdMEAADQUNXqSVNcXJzlsbNmzarNKQAAANxKrULTzp07tXPnTpWVlalz586SpB9++EGNGzfWddddZx9ns9nqpkoAAAAXq1VoGjZsmFq0aKElS5aoZcuWks594OX48ePVv39/Pf7443VaJAAAgKvVak3T66+/roSEBHtgkqSWLVvqpZde4q/nAABAg1Sr0FRUVKRjx45Vaj927JhOnz590UUBAAC4m1qFppEjR2r8+PFauXKlDh8+rMOHD+vjjz/WhAkTdOedd9Z1jQAAAC5XqzVNCxYs0BNPPKF7771XZWVl5yby8NCECRM0c+bMOi0QAADAHdQqNDVr1kxvvfWWZs6cqezsbEnS1VdfrSuuuKJOiwMAAHAXF/Xhlnl5ecrLy1PHjh11xRVXyBhTV3UBAAC4lVqFphMnTmjw4MHq1KmTbr/9duXl5UmSJkyYwMcNAACABqlWoemvf/2rmjRpotzcXDVr1szePmrUKCUnJ9dZcQAAAO6iVmuavvrqK/3jH//QVVdd5dDesWNHHTx4sE4KAwAAcCe1etJUUlLi8ITpvJMnT8rLy+uiiwIAAHA3tQpN/fv313vvvWfft9lsqqio0IwZMzRo0KA6Kw4AAMBd1Or13IwZMzR48GClpaXp7Nmzeuqpp/Ttt9/q5MmT+te//lXXNQIAALhcrZ40de/eXT/88IP69eun4cOHq6SkRHfeead27typq6++uq5rBAAAcLkLftJUVlamIUOGaMGCBfr73//ujJoAAADczgWHpiZNmmj37t3OqAUAUI2wKaudNnfO9KFOmxtoSGr1eu6+++7TokWL6roWAAAAt1WrheC//PKLFi9erLVr16pPnz6VvnNu1qxZdVIcAACAu7ig0LR//36FhYUpIyND1113nSTphx9+cBhjs9nqrjoAAAA3cUGhqWPHjsrLy9P69eslnfvalDlz5igwMNApxQEAALiLC1rTZIxx2P/yyy9VUlJSpwUBAAC4o1otBD/vtyHKGcLCwmSz2SptEydOrHJ8UlJSpbHe3t5OrxMAADRsF/R67nwI+W2bM33zzTcqLy+372dkZOjWW2/V3XffXe0xPj4+yszMvGQ1AgCAhu+CQpMxRuPGjbN/Ke+ZM2f00EMPVfrruZUrV9ZZgf7+/g7706dP19VXX60BAwZUe4zNZlNQUFCd1QAAAHBBoWns2LEO+/fdd1+dFvN7zp49q/fff19xcXE1Pj0qLi5Wu3btVFFRoeuuu06vvPKKunXrVu340tJSlZaW2veLiorqtG4AAFD/XVBoSkxMdFYdlqxatUqnTp3SuHHjqh3TuXNnLV68WD179lRhYaFee+013Xzzzfr222911VVXVXlMQkKCnn/+eSdVDQAAGoKLWgh+qS1atEgxMTEKCQmpdkxkZKRiY2PVu3dvDRgwQCtXrpS/v78WLlxY7THx8fEqLCy0b4cOHXJG+QAAoB6r1SeCu8LBgwe1du3aC14v1aRJE1177bXKysqqdoyXl5d9nRYAAEBV6s2TpsTERAUEBGjo0Av7Ysny8nLt2bNHwcHBTqoMAABcDupFaKqoqFBiYqLGjh0rDw/Hh2OxsbGKj4+377/wwgv66quvtH//fu3YsUP33XefDh48qAceeOBSlw0AABqQevF6bu3atcrNzdX9999fqS83N1eNGv1f9vvxxx/14IMPKj8/Xy1btlSfPn20adMmde3a9VKWDAAAGph6EZpuu+22aj99fMOGDQ77b7zxht54441LUBUAALic1IvXcwAAAK5GaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAs8XF0A4CxhU1Y7Zd6c6UOdMi8AwL3xpAkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsMCtQ9O0adNks9kcti5dutR4zIoVK9SlSxd5e3urR48e+uKLLy5RtQAAoCFz69AkSd26dVNeXp59+/rrr6sdu2nTJo0ePVoTJkzQzp07NWLECI0YMUIZGRmXsGIAANAQuX1o8vDwUFBQkH1r06ZNtWPffPNNDRkyRE8++aSuueYavfjii7ruuus0d+7cS1gxAABoiNw+NO3bt08hISEKDw/XmDFjlJubW+3YzZs3KyoqyqEtOjpamzdvrvEcpaWlKioqctgAAAB+zcPVBdQkIiJCSUlJ6ty5s/Ly8vT888+rf//+ysjIUIsWLSqNz8/PV2BgoENbYGCg8vPzazxPQkKCnn/++TqtHQ1X2JTVri4BF8mZ9zBn+lCnzV3f8HNGQ+PWT5piYmJ09913q2fPnoqOjtYXX3yhU6dO6aOPPqrT88THx6uwsNC+HTp0qE7nBwAA9Z9bP2n6LT8/P3Xq1ElZWVlV9gcFBamgoMChraCgQEFBQTXO6+XlJS8vrzqrEwAANDxu/aTpt4qLi5Wdna3g4OAq+yMjI5WSkuLQtmbNGkVGRl6K8gAAQAPm1qHpiSeeUGpqqnJycrRp0yaNHDlSjRs31ujRoyVJsbGxio+Pt4+fPHmykpOT9frrr+v777/XtGnTlJaWpkmTJrnqEgAAQAPh1q/nDh8+rNGjR+vEiRPy9/dXv379tGXLFvn7+0uScnNz1ajR/+W+m2++WR9++KGeeeYZ/e1vf1PHjh21atUqde/e3VWXAAAAGgi3Dk3Lli2rsX/Dhg2V2u6++27dfffdTqoIAABcrtz69RwAAIC7IDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAIPVxcAAA1J2JTVri7hgtXHmgFX4EkTAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALPFxdAAAA7iJsymqnzZ0zfajT5salwZMmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsMCtQ1NCQoJuuOEGtWjRQgEBARoxYoQyMzNrPCYpKUk2m81h8/b2vkQVAwCAhsqtQ1NqaqomTpyoLVu2aM2aNSorK9Ntt92mkpKSGo/z8fFRXl6efTt48OAlqhgAADRUbv05TcnJyQ77SUlJCggI0Pbt23XLLbdUe5zNZlNQUJCzywMAAJcRt37S9FuFhYWSpFatWtU4rri4WO3atVNoaKiGDx+ub7/9tsbxpaWlKioqctgAAAB+rd6EpoqKCj322GPq27evunfvXu24zp07a/Hixfr000/1/vvvq6KiQjfffLMOHz5c7TEJCQny9fW1b6Ghoc64BAAAUI/Vm9A0ceJEZWRkaNmyZTWOi4yMVGxsrHr37q0BAwZo5cqV8vf318KFC6s9Jj4+XoWFhfbt0KFDdV0+AACo59x6TdN5kyZN0ueff66NGzfqqquuuqBjmzRpomuvvVZZWVnVjvHy8pKXl9fFlgkAABowt37SZIzRpEmT9Mknn2jdunVq3779Bc9RXl6uPXv2KDg42AkVAgCAy4VbP2maOHGiPvzwQ3366adq0aKF8vPzJUm+vr5q2rSpJCk2NlZXXnmlEhISJEkvvPCCbrrpJnXo0EGnTp3SzJkzdfDgQT3wwAMuuw4AAFD/uXVomj9/viRp4MCBDu2JiYkaN26cJCk3N1eNGv3fA7Mff/xRDz74oPLz89WyZUv16dNHmzZtUteuXS9V2QAAoAFy69BkjPndMRs2bHDYf+ONN/TGG284qSIAAHC5cus1TQAAAO6C0AQAAGABoQkAAMACt17ThAsTNmW1q0u4YDnTh7q6BAAALOFJEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAAC2zGGOPqItxNUVGRfH19VVhYKB8fnzqfP2zK6jqfEwCA+iJn+lCnzOvs3988aQIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALKgXoWnevHkKCwuTt7e3IiIitG3bthrHr1ixQl26dJG3t7d69OihL7744hJVCgAAGllC/DcAABLXSURBVCq3D03Lly9XXFycpk6dqh07dqhXr16Kjo7W0aNHqxy/adMmjR49WhMmTNDOnTs1YsQIjRgxQhkZGZe4cgAA0JDYjDHG1UXUJCIiQjfccIPmzp0rSaqoqFBoaKj+8pe/aMqUKZXGjxo1SiUlJfr888/tbTfddJN69+6tBQsWWDpnUVGRfH19VVhYKB8fn7q5kF8Jm7K6zucEAKC+yJk+1CnzOvv3t0edz1iHzp49q+3btys+Pt7e1qhRI0VFRWnz5s1VHrN582bFxcU5tEVHR2vVqlXVnqe0tFSlpaX2/cLCQknnfvjOUFH6k1PmBQCgPnDW79fz8zrreZBbh6bjx4+rvLxcgYGBDu2BgYH6/vvvqzwmPz+/yvH5+fnVnichIUHPP/98pfbQ0NBaVA0AAGriO9u5858+fVq+vr51Pq9bh6ZLJT4+3uHpVEVFhU6ePKnWrVvLZrO5sDL3UVRUpNDQUB06dMgpjzxRN7hP7o97VD9wn+qH394nY4xOnz6tkJAQp5zPrUNTmzZt1LhxYxUUFDi0FxQUKCgoqMpjgoKCLmi8JHl5ecnLy8uhzc/Pr5ZVN2w+Pj78D6Qe4D65P+5R/cB9qh9+fZ+c8YTpPLf+6zlPT0/16dNHKSkp9raKigqlpKQoMjKyymMiIyMdxkvSmjVrqh0PAABghVs/aZKkuLg4jR07Vtdff71uvPFGzZ49WyUlJRo/frwkKTY2VldeeaUSEhIkSZMnT9aAAQP0+uuva+jQoVq2bJnS0tL09ttvu/IyAABAPdd42rRp01xdRE26d+8uPz8/vfzyy3rttdckSR988IE6d+4sSXrzzTfl4eGhESNGSDq3ePuaa67RzJkzNX36dBUUFGjRokXq27evy66hoWjcuLEGDhwoDw+3z9qXNe6T++Me1Q/cp/rhUt4nt/+cJgAAAHfg1muaAAAA3AWhCQAAwAJCEwAAgAWEJgAAAAsITZeRjRs3atiwYQoJCZHNZqv0fXzGGD333HMKDg5W06ZNFRUVpX379jmMOXnypMaMGSMfHx/5+flpwoQJKi4udhize/du9e/fX97e3goNDdWMGTOcfm0NRUJCgm644Qa1aNFCAQEBGjFihDIzMx3GnDlzRhMnTlTr1q3VvHlz3XXXXZU+0DU3N1dDhw5Vs2bNFBAQoCeffFK//PKLw5gNGzbouuuuk5eXlzp06KCkpCRnX16DMX/+fPXs2dP+gXqRkZH68ssv7f3cI/czffp02Ww2PfbYY/Y27pPrTZs2TTabzWHr0qWLvd/t7pHBZeOLL74wf//7383KlSuNJPPJJ5849E+fPt34+vqaVatWmV27dpk77rjDtG/f3vz888/2MUOGDDG9evUyW7ZsMf/85z9Nhw4dzOjRo+39hYWFJjAw0IwZM8ZkZGSYpUuXmqZNm5qFCxdesuusz6Kjo01iYqLJyMgw6enp5vbbbzdt27Y1xcXF9jEPPfSQCQ0NNSkpKSYtLc3cdNNN5uabb7b3//LLL6Z79+4mKirK7Ny503zxxRemTZs2Jj4+3j5m//79plmzZiYuLs5899135j//8z9N48aNTXJy8iW93vrqs88+M6tXrzY//PCDyczMNH/7299MkyZNTEZGhjGGe+Rutm3bZsLCwkzPnj3N5MmT7e3cJ9ebOnWq6datm8nLy7Nvx44ds/e72z0iNF2mfhuaKioqTFBQkJk5c6a97dSpU8bLy8ssXbrUGGPMd999ZySZb775xj7myy+/NDabzfzv//6vMcaYt956y7Rs2dKUlpbaxzz99NOmc+fOzr6kBuno0aNGkklNTTXGnLsnTZo0MStWrLCP2bt3r5FkNm/ebIw5F44bNWpk8vPz7WPmz59vfHx87PflqaeeMt26dXM416hRo0x0dLSzL6nBatmypXn33Xe5R27m9OnTpmPHjmbNmjVmwIAB9tDEfXIPU6dONb169aqyzx3vEa/nIEk6cOCA8vPzFRUVZW/z9fVVRESENm/eLEnavHmz/Pz8dP3119vHREVFqVGjRtq6dat9zC233CJPT0/7mOjoaGVmZurHH3+8RFfTcBQWFkqSWrVqJUnavn27ysrKHO5Tly5d1LZtW4f71KNHDwUGBtrHREdHq6ioSN9++619zK/nOD/m/Bywrry8XMuWLVNJSYkiIyO5R25m4sSJGjp0aKWfJffJfezbt08hISEKDw/XmDFjlJubK8k97xEfcwpJUn5+viQ5/It3fv98X35+vgICAhz6PTw81KpVK4cx7du3rzTH+b6WLVs6pf6GqKKiQo899pj69u2r7t27Szr3M/T09Kz0hdK/vU9V3cfzfTWNKSoq0s8//6ymTZs65Zoakj179igyMlJnzpxR8+bN9cknn6hr165KT0/nHrmJZcuWaceOHfrmm28q9fHfknuIiIhQUlKSOnfurLy8PD3//PPq37+/MjIy3PIeEZoANzVx4kRlZGTo66+/dnUpqELnzp2Vnp6uwsJC/fd//7fGjh2r1NRUV5eF/+/QoUOaPHmy1qxZI29vb1eXg2rExMTY/7lnz56KiIhQu3bt9NFHH7ll4OT1HCRJQUFBklTprxIKCgrsfUFBQTp69KhD/y+//KKTJ086jKlqjl+fA79v0qRJ+vzzz7V+/XpdddVV9vagoCCdPXtWp06dchj/2/v0e/egujE+Pj5u+T8qd+Tp6akOHTqoT58+SkhIUK9evfTmm29yj9zE9u3bdfToUV133XXy8PCQh4eHUlNTNWfOHHl4eCgwMJD75Ib8/PzUqVMnZWVlueV/S4QmSJLat2+voKAgpaSk2NuKioq0detWRUZGSpIiIyN16tQpbd++3T5m3bp1qqioUEREhH3Mxo0bVVZWZh+zZs0ade7cmVdzFhhjNGnSJH3yySdat25dpVedffr0UZMmTRzuU2ZmpnJzcx3u0549exwC7po1a+Tj46OuXbvax/x6jvNjzs+BC1dRUaHS0lLukZsYPHiw9uzZo/T0dPt2/fXXa8yYMfZ/5j65n+LiYmVnZys4ONg9/1u64KXjqLdOnz5tdu7caXbu3GkkmVmzZpmdO3eagwcPGmPOfeSAn5+f+fTTT83u3bvN8OHDq/zIgWuvvdZs3brVfP3116Zjx44OHzlw6tQpExgYaP793//dZGRkmGXLlplmzZrxkQMWPfzww8bX19ds2LDB4U9wf/rpJ/uYhx56yLRt29asW7fOpKWlmcjISBMZGWnvP/8nuLfddptJT083ycnJxt/fv8o/wX3yySfN3r17zbx58/gz6QswZcoUk5qaag4cOGB2795tpkyZYmw2m/nqq6+MMdwjd/Xrv54zhvvkDh5//HGzYcMGc+DAAfOvf/3LREVFmTZt2pijR48aY9zvHhGaLiPr1683kiptY8eONcac+9iBZ5991gQGBhovLy8zePBgk5mZ6TDHiRMnzOjRo03z5s2Nj4+PGT9+vDl9+rTDmF27dpl+/foZLy8vc+WVV5rp06dfqkus96q6P5JMYmKifczPP/9sHnnkEdOyZUvTrFkzM3LkSJOXl+cwT05OjomJiTFNmzY1bdq0MY8//rgpKytzGLN+/XrTu3dv4+npacLDwx3OgZrdf//9pl27dsbT09P4+/ubwYMH2wOTMdwjd/Xb0MR9cr1Ro0aZ4OBg4+npaa688kozatQok5WVZe93t3tkM8aYC38+BQAAcHlhTRMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAPyGzWbTqlWrLuk5w8LCNHv27Et6TgAXhtAEoFr5+fn6y1/+ovDwcHl5eSk0NFTDhg2r9OWXDU1eXp5iYmIkSTk5ObLZbEpPT3fqOb/55hv9+c9/duo5AFwcD1cXAMA95eTkqG/fvvLz89PMmTPVo0cPlZWV6R//+IcmTpyo77//3tUlOk1QUNAlP6e/v/8lPyeAC8OTJgBVeuSRR2Sz2bRt2zbddddd6tSpk7p166a4uDht2bLFPi43N1fDhw9X8+bN5ePjo3vuuUcFBQX2/mnTpql3795avHix2rZtq+bNm+uRRx5ReXm5ZsyYoaCgIAUEBOjll192OL/NZtPChQv1xz/+Uc2aNdM111yjzZs3KysrSwMHDtQVV1yhm2++WdnZ2fZjxo0bpxEjRjjM89hjj2ngwIH2/YEDB+rRRx/VU089pVatWikoKEjTpk2rdO7zr+fat28vSbr22mtls9k0cOBAbdy4UU2aNFF+fn6lc/Xv37/Kn6cxRtOmTVPbtm3l5eWlkJAQPfroo/b+X7+eS0pKks1mq7T9us53331X11xzjby9vdWlSxe99dZbVZ4XQN0hNAGo5OTJk0pOTtbEiRN1xRVXVOr38/OTJFVUVGj48OE6efKkUlNTtWbNGu3fv1+jRo1yGJ+dna0vv/xSycnJWrp0qRYtWqShQ4fq8OHDSk1N1auvvqpnnnlGW7dudTjuxRdfVGxsrNLT09WlSxfde++9+o//+A/Fx8crLS1NxhhNmjTpgq9vyZIluuKKK7R161bNmDFDL7zwgtasWVPl2G3btkmS1q5dq7y8PK1cuVK33HKLwsPD9V//9V/2cWVlZfrggw90//33VznPxx9/rDfeeEMLFy7Uvn37tGrVKvXo0aPKsaNGjVJeXp59W7p0qTw8PNS3b19J0gcffKDnnntOL7/8svbu3atXXnlFzz77rJYsWXLBPwsAF8AAwG9s3brVSDIrV66scdxXX31lGjdubHJzc+1t3377rZFktm3bZowxZurUqaZZs2amqKjIPiY6OtqEhYWZ8vJye1vnzp1NQkKCfV+SeeaZZ+z7mzdvNpLMokWL7G1Lly413t7e9v2xY8ea4cOHO9Q4efJkM2DAAPv+gAEDTL9+/RzG3HDDDebpp592OPcnn3xijDHmwIEDRpLZuXOnwzGvvvqqueaaa+z7H3/8sWnevLkpLi6u6kdlXn/9ddOpUydz9uzZKvvbtWtn3njjjUrtWVlZplWrVmbGjBn2tquvvtp8+OGHDuNefPFFExkZWeXcAOoGT5oAVGKMsTRu7969Cg0NVWhoqL2ta9eu8vPz0969e+1tYWFhatGihX0/MDBQXbt2VaNGjRzajh496jB/z549HfolOTydCQwM1JkzZ1RUVGTxyirPK0nBwcGVzv17xo0bp6ysLPuryqSkJN1zzz1VPpmTpLvvvls///yzwsPD9eCDD+qTTz7RL7/8UuM5CgsL9cc//lFDhw7Vk08+KUkqKSlRdna2JkyYoObNm9u3l156yeFVJYC6x0JwAJV07NhRNputzhZ7N2nSxGHfZrNV2VZRUVHtcTabrdq288c1atSoUuArKyuzVM9vz/17AgICNGzYMCUmJqp9+/b68ssvtWHDhmrHh4aGKjMzU2vXrtWaNWv0yCOPaObMmUpNTa1UjySVl5dr1KhR8vHx0dtvv21vLy4uliS98847ioiIcDimcePGF3QNAC4MT5oAVNKqVStFR0dr3rx5KikpqdR/6tQpSdI111yjQ4cO6dChQ/a+7777TqdOnVLXrl0vWb3n+fv7Ky8vz6HtYj8qwNPTU9K5EPNbDzzwgJYvX663335bV199tX3NUXWaNm2qYcOGac6cOdqwYYM2b96sPXv2VDn2r3/9q/bs2aNVq1bJ29vb3h4YGKiQkBDt379fHTp0cNjOL1oH4ByEJgBVmjdvnsrLy3XjjTfq448/1r59+7R3717NmTNHkZGRkqSoqCj16NFDY8aM0Y4dO7Rt2zbFxsZqwIABuv766y95zX/4wx+Ulpam9957T/v27dPUqVOVkZFxUXMGBASoadOmSk5OVkFBgQoLC+190dHR8vHx0UsvvaTx48fXOE9SUpIWLVqkjIwM7d+/X++//76aNm2qdu3aVRqbmJiot956SwsWLJDNZlN+fr7y8/PtT5mef/55JSQkaM6cOfrhhx+0Z88eJSYmatasWRd1rQBqRmgCUKXw8HDt2LFDgwYN0uOPP67u3bvr1ltvVUpKiubPny/p3GutTz/9VC1bttQtt9yiqKgohYeHa/ny5S6pOTo6Ws8++6yeeuop3XDDDTp9+rRiY2Mvak4PDw/NmTNHCxcuVEhIiIYPH27va9SokcaNG6fy8vLfPY+fn5/eeecd9e3bVz179tTatWv1P//zP2rdunWlsampqSovL9cdd9yh4OBg+/baa69JOveE691331ViYqJ69OihAQMGKCkpiSdNgJPZjNUVnwCASiZMmKBjx47ps88+c3UpAJyMheAAUAuFhYXas2ePPvzwQwITcJkgNAFALQwfPlzbtm3TQw89pFtvvdXV5QC4BHg9BwAAYAELwQEAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAW/D+E99wXnBeLHQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "communities.value_counts().plot.hist(bins=20)\n", + "plt.xlabel(\"Community size\")" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6 6.857728\n", + "94 6.551151\n", + "8 5.966981\n", + "1 5.870918\n", + "89 5.760271\n", + "14 5.653863\n", + "76 5.628272\n", + "57 5.205479\n", + "80 5.182421\n", + "98 5.100182\n", + "30 5.078895\n", + "40 5.047319\n", + "34 5.023761\n", + "86 4.874715\n", + "96 4.678899\n", "dtype: float64" ] }, - "execution_count": 36, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -873,17 +1074,50 @@ " d[x] = ratio\n", " graphs += [tmp]\n", "\n", - "pd.Series(d).sort_values(ascending=False)" + "pd.Series(d).sort_values(ascending=False).head(15)" ] }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 36, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAMWCAYAAAB2gvApAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzddViV5xvA8e85NAoq2KjY7ezWqTOwZmAnxibqdMas6ZxYs+awu7tjdnd3YQcGiooIKojAeX5/vD9QJihxCPX+XNcur53zxv1S573f57nvR6eUUgghhBBCCCGEEekTOwAhhBBCCCHE10cSDSGEEEIIIYTRSaIhhBBCCCGEMDpJNIQQQgghhBBGJ4mGEEIIIYQQwugk0RBCCCGEEEIYnSQaQgghhBBCCKOTREMIIYQQQghhdJJoCCGEEEIIIYxOEg0hhBBCCCGE0UmiIYQQQgghhDA6STSEEEIIIYQQRieJhhBCCCGEEMLoJNEQQgghhBBCGJ0kGkIIIYQQQgijk0RDCCGEEEIIYXSSaAghhBBCCCGMThINIYQQQgghhNFJoiGEEEIIIYQwOkk0hBBCCCGEEEYniYYQQgghhBDC6CTREEIIIYQQQhidJBpCCCGEEEIIo5NEQwghhBBCCGF0kmgIIYQQQgghjE4SDSGEEEIIIYTRSaIhhBBCCCGEMDpJNIQQQgghhBBGJ4mGEEIIIYQQwugk0RBCCCGEEEIYnSQaQgghhBBCCKOTREMIIYQQQghhdJJoCCGEEEIIIYxOEg0hhBBCCCGE0UmiIYQQQgghhDA6STSEEEIIIYQQRieJhhBCCCGEEMLoJNEQQgghhBBCGJ0kGkIIIYQQQgijk0RDCCGEEEIIYXSSaAghhBBCCCGMzjSxAxBCCCHiwyXPVyzZ78Ud7wCyp7OmdeWMFHK0SeywhBDim6FTSqnEDkIIIYQwpkuer+g17ypKgUGBXgc6Hbh3yCfJhhBCJBCZOiWEEOKrs2S/V3iSAdq/SmmvCyGESBiSaAghhPjq3PEOCE8ywhiU9roQQoiEIYmGEEKIr45lspcoFRrhNb0OsqezTqSIhBDi2yPF4EIIkYikYNm4lFKMPTKWf58to7iajk6FYtCboAgFTGhTJWNihyiEEN8MGdEQQohEElawfPq2H89fBXP6th+95l3lkuerxA7tixRqCKXb1m4M2DOADObPGLXyFwoFPySIp7zgJBZZ5lMwiyRxQgiRUCTREEKIRCIFy8YTEBxAo1WNmHlmJs55nam3/wkl71+mX4esHDP9kbvWf7D78VzevHuT2KEKIcQ3QxKNOLrk+Yr+C6/TZOw5+i+8Lk8ihRDRJgXLxvHszTN+WPgDu+7sYlLNSezy2MQfZ6zRt3XBIkt2AMplKkewIZhll5YlcrRCCPHtkEQjDmTagxAiLrKns0IvBctxcvvFbcrNK8fdl3fZ02YPc87Nodet1Nj4BkDfvliZWQFQLnM5AP459k9ihiuEEN8USTTiQKY9CCHionWKp+gMCj3aHxG9IRQdSMFyNJ18dJKyc8ui1+k51vEY229v5/LjC/x+1BSdszPkyYOlqSUA6ZOnx97Knms+1zj3+FwiRy6EEN8GSTTiIKppD9cf+yVOQEKIL0qhyUNxP+FOiZwpSJ3MhBKep5nAUSlYjoZN1zdReUFlctnn4miHo/gG+jLi4AiWKmcs7z2A/v0B0Ov0WJpaEhQaRPOCzTHRmTDj9IxEjl4IIb4NkmjEQfZ01uh1EV9TKpQ7b45Ra2kt9t3dh1Iq8p2FSEKk1igRHD4Me/dSqFtLxrjkZfWA4oxJe5eCE4eAr29iR5ekzTg9gwYrG1AzZ012t9lNMvNkuGxw4bu0hWi86RZUrQolS4Zvb2VqRWBwII3zNyZUhbL44mJeBcnPuBBCxDdJNOKgdeWM6HTA/6c9KELRoWjntR8vv4f8sOgHSs4uyaorqwgxhCRmqEJESWqNEsnw4VCoENSv//61fv3g3TuYODHx4krClFIM3DOQLlu68EvJX1jdZDVWZlYM2TeEmy9usjZVZ3TnzsPvv0fYz8rMisCQQCpkqYCdlR2BIYEsv7w8ka5CCCG+HZJoxEEhRxvcO+TDId0bgniKQ7pAzpp2JuOFbZxfZsuOBmtJaZmSZmuakWdKHqadmkZAsHSTEUmL1BolghMnYOdO+OMP0H/wZzh9eujcGSZMgJcvEy++JOhd6DvabmjLqMOj+Lv630ysORETvQlHHxzl72N/M7TyULLNXAklSsAPP0TY18rUioDgAEz1pjjndcbazFqmTwkhRAKQRCOOCjna0NLpLcdMf2Rs2zzULlSALg3N8fK8Qg2XYex2WsqZTmco5VCK7tu64zjBkaH7h/I84Hlihy4EIC1WE8Xw4ZAvHzRq9PF7/fpBUJCManzA760ftZfWZtWVVSxvtJzfyv2GTqcjIDiAdhvaUcqhFH1MKsK+fTBgAP8fag5nbWZNYHAgAM75nAkIDuDck3Oc9jqdGJcjhBDfDEk0jMDeyh4An0AfptaeSjIrW9oPzI/hqTdUrEixd/Ysb7ScW91v0bxAc8YcGUMW9yx029qNO753Ejl68a2LrNZIbwgle6C3NrQhjOvMGdiyRRvNMDH5+P0MGcDVVUY1/u+h/0Mqzq/Imcdn2Nl6J80LNg9/7/fdv/PA/wEL6i/AdOzfkDs3NGjw0THCpk4B/JDtB2wtbLG1sGXm6ZkJdh1CCPEtkkTDCOys7ADwCfDBzsqO+fXns+vpMabO6QQhIVChAly7RrZU2ZhcezL3e92nf/n+rLyyklyTc9F8TXPOeJ1J5KsQ36qwWqPwFqs60Ol0tJnTD37+WasZEMYzfLh2Q9ysWdTb9O8Pb9/CpEkJF1cSdPnpZcrOLcvLty853P4wlbJWCn9v3919TDo5idFVR5PnmQE2bNBGgyJJ3qxM3ycaFqYW/Jj7R6xMrVh+eTn+Qf4Jdj1CCPGtkUTDCOyt349oAFTPUZ3upbrT79xYrm6aDylSQMWKcPYsAKmtUzOk8hA8e3oyudZkTnmdosTsElRdVJUdt3ZIpyqRoMJqjUrwjNRvfCiRIwUTOhWg4Mg+sGgRODnBixeJHebX4cIF2LgRBg6MfDQjTIYM0KkTuLuD37fZLnvf3X1UmFcBeyt7jv90nAJpC4S/9yroFe03tqeSYyW6l+4OY8eCgwO0bh3psazNrCPUxznnc8b7jTeBwYEsvbg03q9FCCG+VZJoGEFKy5TodXp8AnzCXxtdbTRZU2alzZHfCN67G7Jnh8qV4eDB8G2szazpWrIrN7rdYFXjVfi99aPm0poUmVmEJReXEBwanAhXI75FhRxtGOO3k9U7+zLGJY+2jkPbtrBnD1y6BGXKwI0biR3ml2/ECO1vQcuWn9+2f38IDPwmRzWWXVqG0xInSjqU5GD7g2S0ibiA4W87f+N5wHPm15+P/uEjWLIEevcGC4tIj2dlZhVeowHglMMJK1Mr8qbOy8wzM+XhjhBCxBNJNIxAr9OTyjJV+IgGaEnE4oaLueB9geFXpsHu3VpfdycnbX72B0z0JjQp0IRTP59ib9u9ZLTJSJv1bcgxKQcTjk/g9bvXCX1J4lvk6wupUkV8rWJFrUOSiYmWbOzdmzixfQ2uXIE1a7TRDDOzz2+fMeM3N6qhlGLskbG0WteKFoVasKXlFmwtbCNss/3Wdmafnc34GuPJliob/PMP2Nho0/yi8OHUKYBk5smolasWoSqUC94XOPnoZLxdkxBCfMsk0TASe2v7CCMaACUylmBIpSGMPDSS435XtASjZk2tWHH5xz3cdTodVbJVYVurbVzofIHKWSvTd1dfsrhnYdCeQXi/9k6oyxHfosgSDYAcOeDYMa1tqJMTzJmT8LF9DUaOhCxZoE2b6O/Tvz8EBMDkyfEXVxIRagil+7bu9N/dnz8q/sGC+gswNzGPsI1voC8d/+1IjRw16FS8Ezx/DrNmQbduWrIRhbAF+z7knNeZ6z7XcbBxYOYZKQoXQoj4IImGkdhb2UcY0QgzoMIASjmUos36NrzWh8Dq1dq0iVatYEbUfdy/S/cdixou4vavt2lXpB2TTk7CcYIjrptcueEjU1hEPHj5MvJEAyBlSti6VXtq/PPP0KcPhIYmbHxfsmvXYMUKbSE5c/PPbx/GwUH7ev/zD/h/vUXLAcEBNFrViOmnpzOz7kyG/zAc3X9a1AL8uv1X3rx7w9x6c7X3p0zROqN17/7J4/+3RgOgTu46mOnNKJK+CCsur+DlW+nwJYQQxiaJhpHYW9vzIvDjgllTvSmLGizC65UXfXb2AVNTmD9f+2Ds0gVGjfpkC9EsKbLwj9M/3O95nyGVhrDx+kbyTslLo1WNOP7weHxekvjWRDWiEcbUFKZO1WoG3N3B2Rley7S+aPnrL20qVPv2Md93wAB48+arHdV4HvCcqouqsuvOLjY236iNVERi/dX1LLm4hEm1JpHJNpP2szd5Mvz0E6RJ88lzfNjeNkxKy5RUy14N30Bfgg3BLLm4xGjXJIQQQiOJhpFENaIBkMs+F//U+IeZZ2ay9eZWbSXgCRNgyBBtvnb//p9dryCVVSp+r/g793reY9aPs8LbPn4//3s2Xd+EQRni47LEt+RziQZoC6F17w6bNmmLo1WoAA8eJEx8X6pbt2DZMu33PIpi5U/6ikc1br+4Tbm55bj94jb7XfZTN3fdSLd79uYZrptdqZ+nPm2++//UszlztK/Hb7999jyRTZ0CrfvU8UfHccrhJEXhQggRDyTRMBI7K7uPajQ+1Kl4J2rnqk2HjR20VcF1OnBz0xKOceO0BbqiMRXF0tSSn4r9xNVfrrK+2XpCDCHUW1GPgtMKMv/cfIJCgox4VeKbEp1EI0zt2nDkiDbdqlQpOCnFtFEaNUp74v7TT7E/xoAB2hP8KVOMF1ciO/XoFGXnlgXgWMdjlHQoGel2Sim6bOmCQRmYWXemNmXq3TsYP16bhuro+NlzRTaiAVA/T30Actnl4vLTyxx7eCwOVySEEOK/JNEwkk+NaIBW6D233lxCDCF02tTp/ZOzHj1gwQKYO1f70Izm4mh6nZ4GeRtwtONRDrc/TC77XHT4twPZJ2Vn3JFx+L39NrrUCCN5+1b7L2XK6O9TqJDWkSprVqhUSas/EhHdvautRdKvH1hZxf44mTJpicr48fDqlfHiSySbb2ym8sLK5LDLwdGOR8lhlyPKbVdcXsHaq2uZXmc66ZKn015ctgwePtS+rtEQWY0GQJpkafje8Xuu+Vwje6rsUhQuhBBGJomGkYTVaHxqClP65OmZ9eMs1l9bz6ILi96/4eKitb3csAHq19e6zMRA+Szl2dh8Ix5dPaiZoyaD9g4is3tm+u3qxyP/R7G9JPEt8fXV/o3uiEaYdOm0KVQNG0LTpto6ETL95L3Ro7Wvqatr3I81YICWZHzhoxozT8+k/or61MhRgz1t95DaOnWU2z5+9Zhftv5CswLNaFKgifaiwQBjxkC9elCgQJT7fsjK1Ip3oe8INXw8auyc15k9d/bQ5rs2rLqyCt9A31hdlxBCiI9JomEk9lb2GJThsyMJzvmccSnsQvdt3bn38t77Nxo21NrfHjoENWpoU1JiKF+afMytP5d7Pe/RtWRXZp6ZSbaJ2eiwsQMezzxifDzxDYltogFgaQlLl8LQoTB4sLbQX5BM4ePBA63xQ58+YG0d9+Nlzvx+VOMLLMJXSvHH3j/ovKUzXUt0ZU2TNVibRf11UUrx86afMTcxZ2rtqe/f2LhR6+I1YEC0z21lpo0mvQ15+9F7DfM1JNgQTNpkaQkxhER8CCSEECJOJNEwEntre4BPTp8KM7HmROys7HDZ4BLxCVu1atpKzB4eUKUKeMdu3YyMNhkZXW00D3o94K+qf7Hz9k4KTCvAj8t/5JDnISl4FB8LS2xjk2iAVnP055/a+jCrV0PVqvDsmfHi+xKNGQO2ttC1q/GOOWCAVgA9dernt01C3oW+o93Gdow8NJJx1ccxqdYkTPQmn9xnwfkFbLm5hdk/zg7/+4pS2ihRpUpQtmy0zx+W0EQ2fSqTbSZKO5Rmz909NMzbUIrChRDCiCTRMBJ7q/8nGp8oCA+TwjIFCxss5JDnIdyPu0d8s3RpOHhQSzIqVoT792Mdk62FLX3K9eFOjzssqL+Au753+X7B95SbV451V9dFOo1AfKPiMqLxoebNYf9+uHlT+1n2+LJG0i55vqL/wus0GXuO/guvc8kzlvUQXl5aV6RevSB5cuMFmCULdOyoNZD4QkY1/IP8qbOsDisur2B5o+X0Kdcn0jUyPnTf7z49tvegXZF2/Jjnx/dv7N+vNR6IwWgGaFOngEgLwkEbad52cxsuhV24+vwqh+8fjtHxhRBCRE4SDSMJe+IW2VoakamUtRK/lf2NQXsHcdH7YsQ3CxbUplCFhED58to0gTgwNzHHpYgLF7tcZHOLzViYWNBoVSPyTc3HrDOzIp1OIL4xxko0AMqU0W4GkyfXnjrv2BH3YyaAS56v6DXvKqdv+/H8VTCnb/vRa97V2CUb48Zpxd/duhk/0N9/10Y1pk0z/rGN7JH/IyrOr8ipR6fY0XoHzQs2/+w+BmWg478dSWGZgglOEyK+OXo0FC6srVAfA2FTpyJrcQtaohEYEkhgSCA57XJKUbgQQhiJJBpGYmdlB0Rv6lSYET+MII99Hlqva/1xW9ocOeDwYW3qRcWKcPZsnGPU6/TUyV2H/e32c7zjcb5L9x2dN3fGcYIjIw+OjHaSJL5Cvr7aGg9x6Yz0IUdHrf1txYpaK9wvYKrPkv1eKAWG/8+aMShtps6S/V4xO9CTJzBjBvTsCSlSGD/QLFmgQ4ckP6px5ekVys4ti2+gL0c6HKFy1srR2m/G6RnsvrObufXmksLyg6/fmTOwc6c2mvGZEZH/+tyIRk67nHyX7js2XNtAp2KdWOOxJlqj00IIIT5NEg0jsTazxtLUMkYfThamFixxXsJ1n+sM3jf44w0yZtSmUWXPrtVsHDxotHhLZyrNmqZruN7tOs55nRl+cDhZ3LPQa3sv7vvFfrqW+EL5+sastW102Nhohbs9emhP9rt310bpkqg73gHhSUYYg9Jej5Hx48HcHH791XjB/dfvv4OfH0yfHn/niIP99/ZTfl55Ulml4ljHYxRIG73uULde3KLvrr50KdGFGjlqRHxzzBjtb2HjxjGO51M1GmGc8zqz6cYmWhZqiUKx8MLCGJ9HCCFERJJoGNHn1tKIzHfpvmNElRH8ffRvDnpGkkjY28Pu3VCihDZdYOtWI0WryWWfi+l1p+PZ05NeZXqx8MJCsk/MTut1rbnw5IJRzyWSsJgs1hcTJibaitbTp2v/1a2r3SAnQdnTWX/0oFwRio3Nm+gf5NkzbUpT9+7x8/UM4+gI7dtroxpvYhBfAlhxeQVOS5wo6VCSQ+0P4WDrEK39Qg2htN/YnvTJ0zO2+tiIb968qbUA79sXTE1jHNPnpk4BNMrfCP8gfy56X8Q5nzOzzsySonAhhIgjSTSMyN7aPlbD7b3L9qaiY0Xarm+Lf5D/xxvY2Gitb52ctHU2li83QrQRpUuejuE/DOd+r/v84/QPh+4fosjMIjgtcWLPnT3ygfu1i69EI0znzrB9Oxw/DuXKaQvZJTGtK2dEYUChNUnQG0LRAWu9u9J/V3+CQ4M/fxB3d21aT69e8RssaKMavr5JZlRDKcXfR/+mxdoWNCvQjC0tt2BrYRvt/Sccn8CR+0eYX38+yc3/U0A/bhykTQvt2sUqts9NnQIokKYAuexyse7qOlyLu3Ld5zoHPA/E6nxCCCE0kmgYUWxGNABM9CYsbLCQF4Ev6LG9R+QbWVpqT/RatoRWrbQ54PEguXlyfi39K7e632Kp81KevnlKtcXVKDG7BCsvryTEkHSnvog4ePkyfhMN0No3Hz+urbFRujQcPRq/54uhglmS451iGDrr2xhCn1LizklcbHczuEZb/jn+D98v+D7i2jf/9eIFTJ6sTROzt4//gLNm1UY1xo5N9FGNUEMoPbb3oO+uvgyqOIiFDRZibmIe7f2vPrvKoL2D6FmmJ987fh/xTS8vWLhQS94sLWMVX3RGNHQ6Hc75nNlwfQMVMlcgj30eKQoXQog4kkTDiOytY5doAGRNmZVJtSax4PwC1l9dH/lGpqbaAmDdukGXLloHlnhiZmJGy0ItOdvpLDtb78TOyo7ma5uTe3Juppycwpt3SWu6hoij+B7RCJM3r5Zs5M2r1R0tXRr/54ym80/Oc/X1NhpWecFBix9pc2ow+eeM4beyv3G4/WGevH5C0ZlFo/79nDABQkOhd++EC3rgQO17F08PHqIjMDiQJqubMPXUVGbUmcGIH0Z8tn3th0IMIbhscCFryqyM/GHkxxtMmKAlGJ07xzrG6NRoADTK14jnAc85/OAwnYp3Yq3HWp69+cbXgxFCiDiQRMOI7K1iN3UqjEthFxrmbUinzZ148vpJ5Bvp9TBxIgwZok2d6N9fa40TT3Q6HdVzVGdXm12c6XSG0plK02N7DxwnOOK2300+hL8WCZVoAKRODbt2QYsW0Lq1ttCfwZAw5/6ENR5rsLOyC1+34VabupS68YajW2ZQOlNpzrmeo2q2qjivcqb71u4R20K/fAmTJmkPANKmTbigs2bVphONHQsBMSxaN4LnAc+puqgqO27vYGPzjbiWcI3xMcYcHsOZx2dY2GBh+MhDuLCpYV27xqmDl5neDL1O/8mpUwAlMpYgk20m1l1dh0thF/Q6PQvOL4j1eYUQ4lsniYYR2VvZx6lFrE6nY2bdmZjoTPjp35+irovQ6cDNTXvSN3YsuLpqT1LjWbEMxVjeaDm3ut+iZaGWjDs6DscJjvyy5Rduv7gd7+cX8SghEw3QWunOn6+Nyg0friUdgZ++CYxPSilWe6ymQZ4GZE6RGR06ntWsyJNUZviPGwFASsuUrG6ymqm1pzL77GzKzi3LDZ8b2gEmT9amhPXpk/DBDxyoTdtK4FGNO753KD+vPLde3GKfyz7q5q4b42NceHKBoQeGMqD8AEpnKv3xBtOmQXCw1rksDnQ6HVamVp+cOhW2nXNeZ9ZdXUcqq1Q0zt+YWWdnYVCJnwgLIcSXSBINI7Kzsov11KkwaZKlYW69uWy5uYXZZ2d/euMePbSbtblztdqNd+/idO7oypYqG5NqTeJ+z/v8XuF3VnmsIveU3DRb04zTXqcTJAZhZPHR3vZzdDptRG7tWti0CSpX1tagSAQXvS9y88VNGudvjKnelHTJ0+EV+JQnLo2pcsSLy5f3/j9kHV1LduX4T8cJCA6g+KziLD0xRysC//lnyJAh4YPPlg1cXLT2rwk0qnHq0SnKzi2LQRk41vEYpRxKxfgY70Lf0XZDW/Kmzsuflf78eIOAAG30tkMHSJ8+zjFbmVl9dkQDtO5Tj1494tSjU7gWd9USqbv74nz+b80lz1f0X3idJmPP0X/h9dgtfCmE+OJJomFE9tb2vH73mnehcbvhr5O7Dp2KdaLXjl7cenHr0xu3a6cViW/YoHWkSsDpE/bW9gyuNBjPnp5MqTWF016nKTm7JD8s/IHtt7ZLp6ovRXCwVkyckCMaH3J2hkOH4OFDKFUKLiR8W+XVHqtJaZmSqtmrApDRJiOPXj2i4KAJKL2OayMjdpEqkr4IZzqdoWHehrTe/jMdKvvxplc8rAIeXQMHgo8PzIz/4uUtN7ZQeWFlsqfKztEOR8lhlyNWxxl2YBgezzxY1HARFqYWH28wf752TUYaJbI2s/5sjQZA+czlSWOdhnVX11EhSwXypc4nReExdMnzFb3mXeX0bT+evwrm9G0/es27KsmGEN8gSTSMyN5K6zRjjBVlxzuNJ0PyDLRZ3+bznZ4aNtTa3x46BDVqaPPFE5C1mTVdSnbhRrcbrG6ymtfvXlNraS0KzyjM4guLo9cWVCQeX1/t38RKNACKF4eTJyFNGihfXhvhSCDh06byNgjvlORg44DXKy9MU6flVp2ylN98kQdPIyb9yc2Ts6j6NBbsTs7K7/SU3NqAy08vJ1jcEWTPniCjGrPOzKLeinpUz16dPW33kCZZmlgd5+Sjk4w+PJo/v/+TIumLfLxBcLDW0rZZM+3ajCA6U6dA6wLYIG8D1l1bB4BrcVfWX1uP92tvo8TxLViy3wulCF8A06C0UsIl+70SNzAhRIKTRMOIXvvbUyhkAl2mPozzUHFy8+QsbriYk49OMubwmM/vUK2atrCfh4fWzcc74T8UTfQmNM7fmBM/nWCfyz4yp8hM2w1tyTEpB+7H3HkVJE+zkqSwxDQxEw0ABwc4eFBLluvX1xb6S4BRsctPL3PD5waN871fcTqjTUa8Xmk3RdmHTCDDazj0dyQrfc+Ygcvxt5xuuB1TvSklZ5dk9pnZiTOaN2gQPH8Os2YZ/dBKKQbvHYzrZlc6F+/M2qZrwzs5xVRgcCAuG1womqEoAyoMiHyjlSvB01ObWmck0Z06BVr3qVsvbnHp6SXaFm6Lqd6U+efnGy2Wr9nTN0+5+OBpeJIRxqDgjnfCNywQQiQuSTSM5JLnK+ZsMsWOUvi9UUYZKi6buSwDKwzE7YAbZ7zOfH6HMmXgwAFtnnvFinD/fqzPHRc6nY7KWSuzpeUWLna+SJVsVei3ux9ZJmRh4J6BUXfUEokjKYxohEmWTJsK2K8f/Pab1tI0OH5HxFZ7rCaFRQqq56ge/pqDjQOPXj3SQipSkhslspF/6Q78Aj8YLQwIgL//hnbtyFe4Kid+OkG7wu3otLkTLda2wO9tAq+Anj07tGmjjWoYsbD+Xeg72m1sx4hDIxhTbQxTak/BRG8S6+MN3jeYu753WdhgIWYmZh9vYDBoTQJq1YLCheMQeUTWZtbRTjSqZKtCCosU4UXhTQs0ZfbZ2VIUHoXg0GA2XNtAgxUNyDg+I17vzoYvfBlGr4Ps6WKXnAohvlySaBhJ2JCwDu0D2FhDxX9W+pPC6QrTen3raA37U6gQHD4MISHaFJRr1+J0/rgqlK4QCxss5M6vd+hYtCOTT07GcYIjnTZ14vrz64kam/i/pJRogNbCefRomDdPm6dfs+b7GJuXBbAAACAASURBVOPBGo811M9bP8ICcxltMvL0zdPwaX+pfx9BES8DW+YPfL/j7NnaCMLvvwPaE/PpdaezqvEqtt3aRrFZxRK+OcKgQfDsmdFGNfyD/Km7rC7LLy1nqfNS+pXvF6M1Mv7rkOch/jn2DyN+GEH+NPkj32jrVrhyBQZEMdoRS1amVtGq0QAwNzHnxzw/su7q++lTd3zvsPvObqPG9KW76H2R3jt64/CPAw1XNuSGzw3srOx4ZLoYhfog2TCg00GbKhkTNV4hRMKTRMNI7ngHxMtQsZmJGYsbLubey3sM2B3ND94cObRkw9ZWG9k4ezZOMRhD5hSZ+bvG3zzo9YChlYey6cYm8k3NR8OVDTn24Fhih/dtS2qJRpj27bX1Ns6f10brbt40+imuPL3C1edXaZK/SYTXM9poN0SPXz8GwK5Bc7wypSDFzPlas4e3b7WRg9atP6ohaFKgCedcz2FnZUe5ueVwP+aecFOpcubUYjLCqIbXKy++n/89Jx6dYEfrHbQs1DJOx3v97jXtNrajXOZy9CrTK+oNR4+GcuW0v11GZGUWvRqNMI3yNeLS00vc9LlJ2UxlKZi2oBSFo9UgTj4xmeKzilN4RmGWXlpK60KtGVRxEHd875DaOjW+6hznTbqQJX0Qwbrn+OpOMa5dLgpmsUns8IUQCUwSDSPJns4a/X8e9OlVKNntI5kaEEP50uRjTLUxTDo5iV23d0Vvp4wZtfnu2bJpNRsHD8Y5DmNIaZmSARUGcK/HPWb/OJurz65Sbl45Ks6vyKbrm2RqQmLw9QUTE23aUlJTqRKcOKG1wg2bGmhEqz1WY2thS/Xs1SO87mDrABBep4FeD7/+Ss1Lb9m8Y4rWUtrbW+v2FInsqbJzpMMRupfqTu+dvam/or5RmkREyx9/wNOn2ohLLF15eoUyc8rgE+jD4faHqZKtSpzD6r+rP09eP2FBgwVRT706fBiOHNFGM+IwchIZK9Po12gA1MhRA2sza9ZdXYdOp8O1uCsbr23k8avHRo3rSxBiCGHLjS00XtWYDOMz0HtnbxxTOLKx+UY8unrw6PUjRh4aSfsi7THTm2HAQDKbZyzsWom8JdZxweRXbgZE87NLCPFVkUTDSFpXzohOR/hQsSIUlMJ5cmc4Fvcn9t1KdaNa9mq039ge38BoTiOxt4c9e7SOPk5O2pSEJMLC1IKOxTri8YsHG5ptwKAM1FtRjwLTCjDv3DyCQoISO8RvR9hifUa+sTOanDm136GiRaF6dW06lZGs9lhNvTz1PmqvGjaiEZ5oABm79ifA2ow34/9CjR6tLTKYO3eUxzY3MWe803g2tdjEkQdHKDKzCIfvHzZa7FHKmRNatdJGBt6+/fz2/3Hg3gEqzK9ASsuUHOt4jELpCsU5pN13djPt9DTGVhtLTrucUW84ejQUKAB16sT5nP8V3fa2H25fK2et8O5Trb9rjbmJOfPOzTN6bEmVxzMP+u3qR2b3zNRdXpebL24ytvpYvHp7sa7ZOjLZZqL0nNJsv7WdVY1XkTZZWi4+vQiAu5M7Op2OdkXaATDh+IREvBIhRGKRRMNICjna4N4hH6GW1wjiKW9Mz3PHqh8BL48QWqE8hlGjtCLHWNLr9MyvP583wW/4Zesv0d/RxkZLMJyctE4+K1bEOob4oNfpqZ+3Pkc6HOFw+8Pksc9Dx387km1iNsYeGZvwBbXfooReFTw2UqWCbdu06VQdOmjdiOLw+wTaTZTHM4+Ppk2B1qra3MScR/6P3r+YLBkvWjWi0UEfbc2PQYOidZ66uetyofMFsqXMRuUFlRl5cCShhtDP7xgXf/yhjbjEcFRj5eWV1FhSg2IZinGo/SEy2WaKcyh+b/3osLEDP2T7gS4lu0S94cWLWpvu/v21ESQji2572w81yteIk49O8sDvASktU9K8YHNmn50d/9+/ROQb6MuM0zMoPad0+IOfpvmbcrbTWS50vkDPMj1JbZ2aKSenUHZuWVJYpuBsp7M42Dow/OBwADImz0iTAtrvVZlMZbA2s+bYw2M89H+YmJcmhEgEkmgYUSFHG2yyruZOip8IST+LR+okI4ZUZmw5BYMGYnCqEae2s5lsMzGt9jSWX17O8kvLo7+jpaXWyadFC20F8QRY1Cs2ymcpz4bmG7j6y1Xq5KrD4H2Dyeyemb47+8oHVHx6+TLpJxoAZmYwY4bW9nbcOGjUSFtoMJbWeKzBxtyGGjlqfPSeTqeL0OI2TJa+w7EKgVuONpAvX7TPlck2E3td9jKw4kAG7xtMzaU147f7Wq5cMRrVUEox/uh4mq9tTpP8TdjWahspLFMYJZReO3rx8u1L5tWbh173iY+cMWPA0RGaNzfKef8rJu1tw9TJXQdzE3PWX1sPaEXhnn6e7Ly9Mz5CTDShhlB23NpBi7UtyDA+A922diNtsrSsbbqWR70fMbHWRIpmKArAy7cvabK6Cd23dce1uCtHOxwlTbI0tFrbKrzl8ehqo8O/16Z6U2rnqo0OHQvPL0y0axRCJA5JNIzM3toeWwtbLjy5QP/y/dl3/wBBw4dQt60pL08dwlD4O229i1hqUagFzQs2p+vWrjG7+TY1hQULoFs3rWXo6NGxjiG+5U2dl9n1ZnOvxz1+KfkLs8/OJvvE7LTb0C7xFkT7mn0JIxphdDro1Qv+/Vf7PapYURtdiIXVHqv5Mc+PWJpaRvp+2OrgEU5/6BA6wPzlKy54nYvR+Uz1pgyrMoxdbXZx+ellCs8oHP2aq9j44w+t1fWcOZ/cLNQQSs/tPemzqw+/V/idxQ0XR+jAFRebb2xm/vn5uDu545jSMeoN79zRRlv79NESyngQmxENWwtbqmWvxtqrawEo5VCKwukKfzVF4Td8bjBwz0AcJzhSc2lNLnpfZMQPI3jY+yGbWmzCOZ9zhGmFpx6dotjMYuy+s5u1TdcyqdYkLEwt6L6tO95vvHkT/IZ0ydLRolCLCOdpkKcBCsWss7OkDk+Ib4wkGkZmb2WPTqdDr9OTwSYDFbJUYMH5BXQbuJEy3Sw5YReAqlFDKyKN5foAU2tPJZlZMtpvbB+zP9p6PUycCH/+qbXk7N8/QRZEi60MNhkYVW0U93vdZ1TVUey5u4dC0wtRd1ldDnoeTJxF0b5GX1KiEaZuXa1o+PlzKFUKTsesjey159e4/PRypNOmwoStDh4uJARGjsTw/fc4+sGeqb/FKvSq2aty3vU8RdIXwWmJE4P2DCLEEBKrY31S7tzaCOYnRjUCgwNpuqYpU05NYVrtafxV9a84ta/9kE+ADz9v+pnauWrToWiHT288fjzY2WnT4uJJTGs0wjTK14hDnofwfu0dXhS++cbmiNPqviD+Qf7MOTuHCvMqkGdKHqafnk69PPU4+dNJLne5TJ9yfUifPH2EfZRSTDw+kfLzypPaOjXnXM/hnM8ZgFVXVrHowiKSmycHwK2SG6Z60wj718xZE71Oz32/+xy4Z9yGDkKIpE0SDSOzt7Ln5duXVMpaiQ3XNrCo4SJeBL5g9dXVrP/1KM06pmBMbVvU2LFQubK2+m0M2VnZMb/+fHbf2c3Uk1NjtrNOB0OHgrs7jB2rjW6EJu35xrYWtvxW7jdu/3qbhQ0W4unnSaUFlSgztwxrPdZ+1fOlE8SXmGgAfPcdnDwJmTPD99/D2rXR3nWNxxqSmyfHKYdTlNt8NHVq+XK4fRu9uztP8mfhuxX7eeD3IFahp0uejm2ttvFX1b8Yc2QMlRdUjvWxPumPP+DxY61L1n/4BPhQbXE1tt3cxvpm6z9dPxEL3bd1JygkiNk/zv508uLtra2Z0qMHWMffgm6xmToFUC9PPXQ6Hf9e/xeAVt+1wtLUkrnnPv6aJlUGZWDv3b20Wd+G9H+nx3WzKzYWNqxotILHvz1mWp1plHQoGen3yTfQF+dVzvTc0ZNfSv7C4Q6HyZYqGwAP/B7gutmVYhmK8SzgGamtUtOuaLuPjuH1zJwKJvMoF7KZMWuex2khWyHEl0USDSOzt7bnReALnPM6s+/ePmwtbJlUaxILzi/gus91jv18gmV1suDUyYq3nnegSBFYvz7G56meozq/lvqVfrv7cfXZ1ZgH2rOn9uE+Z442l/vdu5gfI4GZm5jTtnBbLna+yNaWW7E2s6bx6sbknZqXmadnxnhahPg/X19ImTKxo4id9Olh/36oVw8aN4ZRo6I1SrfaYzV1c9fFyswqym0+XB2c0FAYORJ+/BGKFSNF/yFUu6NYuXJwrEPX6/QMqDCAg+0P8sD/AUVmFgm/mTWaPHm02qxRoyDofSe3u753KTevHDd8brDPZR/18tQz6mnXeKxh+eXlTKk9JbyDV5QmTtSmdv4SgyYXsRCbqVMAqa1TU8mxUvj0KVsLW1oUbMGcs3OS/EOOO753GLJvCNknZqfqoqqcfHSSPyv9yf2e99nWahvNCjaLcuogwImHJyg6syj77+1nQ7MNuNd0D59WF2oIpe2GtlibWXPX9y46dAyoMOCj413yfEWveVfRv82DOWl465+JnnOvSrIhxDdCEg0js7eyJ8QQQrXs1QgxhLDp+iZcCrvQMG9DOm3qhInehEPtDxFaphSOLj48LJEbnJ212okYtqIcXW00WVNmpfX61toiYjHVvj2sXq0lOg0aQEDcFhdMKDqdjlq5arHPZR8nfjpBkfRF6Lq1K44THBlxcAQvAl8kdohfli91RCOMlRUsW6ZNCRw4UPu5Doq6PfINnxtc9L74yWlToI1o+Af58/rda+335Pp1GKwlFlYt2uBnn5zUs5fFuTNauczlOOd6jopZKlJ/RX16bu9p3PbO/xnVOO11mjJzyxBqCOVYx2OUzlTaeOcCvF9702VLFxrla0SLgi0+vbGfH0ydCq6u8f4zaGVmRagKDV/tPSYa5WvEnrt7ePn2JQCuJVx54P+Abbe2GTvMOHv97jULzi+g8oLK5JiUA/fj7tTIUYOjHY5y7ZdrDKgwIHydmKgopfjn2D9UmF+BDDYZOO96nvp560fYZvyx8Ry4d4AqWavgH+RPCssUuJZw/ehYS/Z7/T/31243dJiglGLJfq+PthVCfH0k0TAyOys7QHv6Xi5zOdZd0xZ7mll3JqZ6Uzr+2xFbC1u2tdpGteJNyFL+JHv7NNJGFsqU0W5mosnKzIrFDRdz0fsiww8Mj13Azs5aS8mDB6FGDa0D0ReklEMpVjdZzfVu12mcvzEjD40ki3sWemzrwb2X9xI7vKQvNBT8/b/sRAO0+qOhQ2HJEm2KU/XqWv1GJNZ4rCGZWTJq5az1yUOGL9rn9xCGD4eaNaFkSe1NMzN0v/xC8/PBLN0T9/UB7KzsWN9sPZNqTmL66emUn1ee2y9ux/m4AOTNq3VyGjWKrR4bqbygMllTZuVYx2OfXtMiFpRSdN7SGR06pteZ/vl6j5kztQcsvXsbNY7IhHVEik2dRoO8DQgxhLD5xmYASmQsQbEMxZJMUbhSioOeB2m/sT3p/05Ph40dMNWbsqThEp70ecKsH2dRNnPZaNXfvAh8Qf0V9flt52/0LN2Tg+0OflTIf/bxWf7Y+weuxV3DR3p6lekVXqfxoTveARj+M8io0HHH+8t4sCWEiBtJNIzM3toeAJ9AH5zzOrPj1g5eBb0iTbI0zK03l603tzLrzCzMTcxZ3HAxfcv3o2rytfzt3hT19q22uN7C6LcALJGxBEMqDeGvw39x/OHx2AVdrZrWwefKFW0V8adPY3ecRJTTLifT6kzDs6cnvcv2ZsmlJeSclJNW61px/sn5xA4v6fL7/9P4Lz3RCNOqFezbB9euQenScPXjaYXRmTYFHyzat3UleHhoIyYfsO3eB73ehNdT/4nVU/L/0ul0dC/dnWMdj+EX5EfRmUVZcdlI694MHsyctA+pt9qZH7L9wD6XfaRJlsY4x/7AkotL2HBtAzPqzvj88d++1WrF2raFjJ+ZXmUEVqba9zs2dRoOtg6UyVQm/KYatFa3W29ujZ/ammi673ef4QeGk3NyTiotqMRBz4P0L9+fuz3usrvtblp9977lbHQcfXCUIjOKcOTBETa12MS4GuMwM4nYBSwgOIBW61pRMG1BXge/Rq/TY2lqSbdS3SI9Zva0luj/M8VMEUrqVEl72pkQwjgk0TAye6v/JxoBPjjncyYoNCh8eL1O7jq4Fnel987e3PS5iV6nZ0z1MUyqOYl+T5fQ7o+ChDZyhnbttA/f16+jdc4BFQZQyqEUbda30aZ5xEaZMtqoxpMnWsvQ+/djd5xEljZZWoZVGcb9nvdxd3LnyP0jFJ1ZFKclTuy+s1s6Vf2X7/9Xmf9aEg2AcuW0InErKyhbFna9byF768Utzj85T+P8jT97mLBE49HquVoyXrZsxA1Sp+Z10wa0PuTP6vNLjRZ+sQzFONPpDHVz16XF2hZ02tQpVk/hwyilGPJ4OT/Xg05XrVjXYHmMbj6j66H/Q7pv606rQq3COxJ90qJFWiF4375GjyUyYYllbGu5GuVrxPZb23nzTlu7pUXBFlibWTPn7KfbBxtbQHAASy8updqiamSdkJUxR8ZQybESB9od4Fb3WwyuNPjTrYQjYVAGxh4Zy/fzvydzisycdz1P3dx1I922z84+3Ht5jz++/4OlF5diUAa6luwaPpr/X61PLUOnFHq0DokKLcEItk16086EEPFACaN6FfRK4YZaenGpUkqpojOKqmarm0V4P+eknKr07NIqODQ4/PU1V9Yoi+EWqtL8Sur1vBlKJU+uVK5cSp09G63z3vS5qaxHWivXTa5xu4Bbt5TKlk2pzJmVunYtbsdKAoJDg9XyS8tV0RlFFW6oojOKquWXlkf42n/TTp1SCqL9c/ZF8fNTqmZNpUxMlJo+XSml1KhDo5T1SGv15t2baB3Cdpi1GlsOpQ4ciHyDy5eVAvV7+yzKYDAYK3KllFIGg0HNOTNHWY2wUgWmFlBXnl6J8THehbxT7Ta0U7ihRq3tpQw6lJoxw6hxhsXqtNhJZRyfUb0IePH5HUJClMqRQ6nGjY0eS1SO3D+icCNWX0ellLrlc0vhhlpzZU34a66bXFXG8Rnj/e+JwWBQR+4fUT//+7OyHWWrcENVml9JzT83X70KehWnYz9780zVWlJL4Ybqv6u/ehfyLsptN13fpHBDTTkxRVVbVE2lHptamQ8zV17+XpHvcOWKUjqduljwe9Vv/lXVaMwZVXjwRFV5uouyG2On3ga/jVPsQoikTxINIzMYDMp8uLmadHySUkqp4QeGq+R/JVeBwYHh2xx7cEzph+rVsP3DIux7yPOQSjU6lSowtYDyOr1fqaJFlTI3V2rSJKWicRMz49QMhRtq8/XNcbuIhw+Vyp9fqTRplDpzJm7HSiIMBoPadXuXqr6ousINlXVCVjXp+CT1Ouh1YoeWuHbu1BKNu3cTO5L4ERys1K+/atfYo4cqNqOYarKqSfT2NRhU3t8sVM+ODp/c7HmF4upkRtSuWzuNEPDHLntfVvmn5ldWI6zU3LNzo53Q+L/1VzUW11Bmw8zU4guLtRebN1cqSxalgoKMGuOs07MUbqitN7ZGb4cVK7TvyalTRo3jU856nVW4oU49iv05C08vrFqsafHRMTdc3WCMED/y0O+h+uvgXyr35NwKN5Sju6P6c++f6pbPLaMc/5DnIeUw3kGlHpv6s9+7J6+eqDRj06g6S+uorTe2KtxQNn/ZqC6bu0S+Q2ioUvnyad/n9evDX66xuIYqN7ecwg218vJKo1yHECLpkkQjHmT4O4Masm+IUkopj6ceCjfUv9f+jbDN4L2DlclQE3Xy4ckIr3s89VCO7o7KYbyDuuR5+v1NUoMGSvn4fPK8BoNB1V5aW6Ubl049ff00bhfx/LlSJUsqZWur1MGDcTtWEnPW66xqubalMhlqouzG2Kk/9/4Z96/Xl2rlSu3ny9c3sSOJX1Onqtv2eu3m5uT86O2zZYuq2hbVZEqlT25m2LxZKVA9B5eKc5hRefPujfpp408KN1TLtS2V/1v/T27v5e+liswoomxH2ardt3e/f+P/T5jVzJlGi+2u712V/K/k6qeNP0VvB4NBqSJFlKpWzWgxRMfVZ1cVbqiD92L/92zY/mHK5i+bCE/iS84qqWotqWWMEJVSSgUGB6oVl1Yop8VOSj9Ur6xGWKnW61qrPXf2qFBDqFHOEWoIVX8d/EuZDDVRFedVVA/9Hn5y+7DPlrTj0qpHfo9UwWkFVY6JOZTeTa/uvLgT+U5Tpmh/W4oVi/CgbOLxicp8uLkqPbu0clrsZJTrEUIkXZJoxIOC0wqq7lu7h/9/3il5lct6lwjbvAt5p4rPLK7yTM7z0TSOD28S9t7Zq9TGjUqlSqVNZzp8+JPnfvzqsbIfY68armgY96kc/v5KVamilKWlUlu2xO1YSdBd37vq162/KuuR1spyhKXqsrmL0Z4UfjFmzNBuPEONcwOTlI2e20FZDUK9LpxfqXv3Pr2xwaBU6dKqTac0qvzc8p/eNjRU+TlmUCvzoy48uWC8gCOx7OIylfyv5CrnpJzqjFfko40eTz1UFvcsymG8Q+TxNGtmtFGNUEOoqrygssrinkX5vfWL3k7bt2s3oHv2xPn8MXHP957CDbXj1o5YH+Oy92WFG2rLjfd/D+ecmaN0bjp11/durI9rMBjUyYcnVZfNXVTK0SkVbqhyc8up2Wdmq5eBL2N93Mh4v/ZWToudlM5NpwbtGRStaV9TTkwJv+45Z+Yo3FBpx6VVbda1iXyHhw+1z41IpmWGTUH7ZfMvSuemU54vPY1xWUKIJEqKweOBvZU9PoE+4f/fKF8j/r3+b4TONGYmZixuuBhPP0/67+ofYf8MNhk40O4ApR1KU3NpTVZkD4ALF8DRESpV0hYOi2I17/TJ0zPrx1msv7aeRRcWxe1CbGxg61ZwcoL69WHlyrgdL4nJmjIrE2tN5H7P+wyqOIg1HmvIPSU3TVc35dSjU4kdXsIIW6xP//X/KVgTepHaWauTzD8QSpWC45/o0rZrF5w4QcYSVd4v2hcVvZ5kvw2g0VVYsHGocYP+jxaFWnDO9Ry2FraUnVuWyScmR2hwcMjzEOXmlcPWwpbjPx3nu3TffXyQwYPhwYMYdbeLypSTU9h/bz/z68/H1sI2ejuNHq21Ca5SJc7nj4mwAvi4LOyZP01+ctvnZq3H++5TzQs2x8bCJlZF4U9eP+Hvo39TaHohSs0pxb/X/6VLiS5c73adIx2O8FOxn0hhmSLW8f7XgXsHKDKjCGcfn2V76+2M+GEEpnrTT+7j8cyDPrv60LVEVyo5VmLwvsGUdijN0zdPGVBhQOQ7de6sLQLbtCkULRrhrRx2Ochjn4fXwa+xNrNmwfkFRro6IUSSlNiZzteo4YqGEYaEz3idUbihdt3e9dG2k45PivIpW1BIkGq7vq3CDTXuyDhlePdOqT/+0J5AV62q1OPHUcbQbkM7ZfOXTZyesoULDlaqTRvtvPFQSJpUBLwLUNNPTVc5J+VUuKEqL6istt7YavQi3ySlf3+lsmdP7Cji3Z0XdxRuqBWXVij19KlS5csrZWGh1LJlH29sMGjvlyqlJv1/msdnfwZevVKByS3VuPI69cDvQfxcxAfeBr9Vv279VeGGarCigXoR8EKturxKmQ83V1UWVFG+gZ+ZCte0qVKOjnEa1bj+/LqyGmGlum3pFv2djh3TnnKvXRvr88ZWWKOOZRcj+Z7HwO+7f1f2Y+wjjAR03dxVpf87/ScLqcMEhQSpNVfWqLrL6iqToSbKYriFar6mudp+c7sKCQ2JU2xRCQkNUcP2D1P6oXpVeUFl9cj/UbT2exv8VhWZUUTlnZJXvXn3Rg3dP1SZDzdXWd2zqoYrGka+09q12vfYzCzKkcPe23urjOMzqvbr26usE7IabUqYECLpkUQjHvy08SdVYlaJ8P83GAwq64SsqvOmzh9tG2oIVdUXVVcZx2dUPgEf12AYDAY1cPdAhRvq162/ah9Ee/YolT69UmnTatMQIuH31k85ujuqivMqGufDKzRUqW7dtA+QUaPifrwkLCQ0RK25skaVnFVS4YYqOK2gWnh+oQoKMW4BbZLQqZNSxYsndhTxbuzhscpyhOX7Dj1v32rJMyjl5hax2cLevdrrmzerNVfWKNxQz988/+w5gnr9qnwtUQM39oinq/jYhqsbVKrRqVSq0anC6zei1cnn0iXtGmfPjtV5Q0JDVNk5ZVXOSTlj1lChQQOl8uRJlKl6IaEhCjfU3LNz43ScU49OKdzQprX+34UnFxRuqLUeUSdQZ73Oqu5buyv7MfYKN1Sp2aXU9FPTo9elKw6evHqiqi6sqnRuOvXn3j9j9HnQd2dfZTbMTJ31Oqu8/L1UspHJ1I/Lfoy6qN7XV/tcMjFRqm/fKI+7584ehRtq3tl5Cjci1hEJIb4qkmjEg/67+qtsE7JFeK339t4q3bh0kf6Rf+j3UKUanUo1Xd00yien005OU/qhetVoZSOtg5W3t1JOTtrNQr9+Sr37+Ena/rv7lc5Np8YeHmucCzMYlPrzT+2c/ftHqxPWl8xgMKj9d/erOkvrKNxQmf7JpMYfHf/ZQtwvSpMmCV6UmxhKzir58RNYg0GpkSO1n+cWLZQK/H9nuMqVwwtYjz04pnCLZu3FvXsqVK9TvepbRr9eIY5CQkNU+w3tFW4onZtOjTo0KvpPh5s0USpr1kj/dnzOmMNjlM5Npw57frpmLIIrV7Sv9dy43ejHhdkwMzXlxJQ4HcNgMKgs7lnUL1t+ifB6mTllVI3FNSK89vT1U+V+zF0Vnl5Y4YZK/3d61XdnX3XZ+3KcYoiuPXf2qHTj0ql049LF+GZ+z509ET4/fv73Z2U3xk4VmFrgo+sM5+qqjWSkTPnJBhNBIUHK5i8bNWz/MJVncp4InbxEzFy856/6LbimGo85q/otuKYu3vuKPp/E+2/lVAAAIABJREFUV0ESjXgw9vBYZTvKNsJrhz0PK9xQhzwPRbrPiksrIqy/EZkNVzcoyxGWquK8itroR2ioUmPHKmVqqlSZMpG2KO27s68yH25u3CJVd3fthsHVVeuH/w245H1Juax3UabDTFWKUSnUgF0Dou4d/yWpVk274fyKhRUBRzllZvVqpaystN+hDRsitOP0fOmpcENtu7ktWucKqF9HXU2NGn94nLHCj/pc7wJUo5WNlH6oXk06Pkn9vvt3pXPTKafFTsr7tffnD3Dxonatc+bE6LyXvC8p8+Hmqu/OqJ9YR8rFRSkHB6O31o2JFKNSGOXBS89tPVXG8RkjJHXzz81XuKGuPbumNl7bqBqsaKBMh5kqs2FmqtHKRmrz9c0Jtn5PSGiIGrJviNK56VTVhVXV41dRT7ONjE+Aj3IY76CqLKiiQg2h6rL3ZaUfqlc///uzwg21/+7+j3c6cED7edLptM+Iz3Be6azKzCmjxhweoyyGW8T7yM7X6OI9f1X1zxPqh8EnVOU/tH+r/nlCkg2RpHz9FaCJwN7aHv8g/wjF32UzlyV98vSsu7ou0n2aFWxGy0It6bqlKw/8HkS6Tf289dnbdi8ezzyoMK8Cnv4PtFV1Dx/WVvQuUgTWro2wz/Aqw8ljn4fW61oTFBJknAvs2RPmzYPZs6FVK63o7ytXMG1BFjRYwN0ed/m52M9MPTWVrBOz8vO/P3P9+fXEDi/2worBv2JrPNZgYWIR5UrHNG4MBw7AvXvQvDnkzg316gGQIXkGAB75f6Yg/P+s+v5O3udwfuGYCL//xuYT4EP1xdXZenMr65quo3vp7vxV9S+2t97OuSfnKDyjMHvv7v30QQoV0q59xAgIjl6swaHBuGxwIaddToZVGRb9gO/fh6VL4bffwNw8+vsZmZWZFYEhsS8GD+OczxmvV16cfHQy/LUCaQpgYWJBsVnFqL+iPvf97vNPjX94/Ntj1jRdQ53cdT5beG0Mj189pvri6gw/OJyhlYeyo/UO0idPH+39lVJ03tyZgOAAFjZYiF6np9/ufmRLmY2L3hcpl7kc3zt+H3Gnt2+hUydIlQqyZYOuXT97njq56nDi4Qlq56pNiCGEZZeWxfRSv3lL9nuhFBj+3w/CoEAp7XUhkgpJNOKBvZU9AC8CX4S/ptfpaZi3IeuurovQJeZDU2pNwcbChnYb22FQhki3KZu5LEc7HuVtyFvKzi3LhScXoHRpOHcOqlfXbhy6dIFA7cPUwtSCJc5LuO5zncH7BhvvItu3h9WrYf16aNAAAgKMd+wkLJNtJsbVGMf9XvcZVnkYW25uId/UfDRY0YCjD44mdngx5+ur3Rx8xVZ7rKZmzprYWNhEvVHJkjB9unbDdP8+bN8OaN3h0iZLi9eraH5wlytHwHf5abX3OauurDJC9B+763uX8vPKc93nOntd/sfeecc1dXZx/GSxQURBBQfOuveoe2vdq9b61j2rHbZq1dZ1CXuKuEAUFbe4996KCxC3IrhBQZQ9k/t7/7hNME0CSUjU2nz/8eN91rkkufc5z1mnaVDdQfK2XjV7UeyPsdTAvgH1CO9Bi84sIgkrUT/ZokWcgrVxo0Zre1zwoNjXsRQ+OJzMhGaaCx0QwGWxmzxZ8zEGwFxoXqqsUzLaVWlHDpYOtPnWZlpxbQW1XN2SWq9pTTwejwhENybfoKgpUfRLm1+onEU5PUiuGSfiT1DTkKZ0/+19OjXmFC3svJAEfIFWc4THhlPEvQgK6R9CVcpUoVMJp+hw3GEa3Xg0XX11lf7q8Bd3nx/i4UH0+DH3PPH01EiZ7Fu7L4FAN1/fpP51+tPamLVayWmEKP5NjlzJkMGCKOHNf+N9bOTfgVHRMACyF8uHigYRdwr2LP0ZRSdFqxxX1rwsrR+0nk4/OU1BV4PUzl+nXB2KnBhJjtaO1HFdRzqZcJI7ld6xgyg4mGj9eqKvvya6f5+IiBpXaExuXd3I77IfnXt6Tj83SUQ0dCjRwYNE589zKXDT0/U392eOrZktze0wl57MeEJrBq6hh6kPqX1Ye+oQ1oH2P9yvVlH87PjCFY3n6c/p6qurNLz+8JI7r15NVLcup7APGEC0dCkRQI7WjporGjweWfzxJ/WOJ9q9y1XtoYKuRCVGUdu1bUnCSujyhMv0deWvlfpUtKpIx0YdI9euruR+wZ26h3dXb5Fp1Iho2DCNrBrRSdHkdsGN5necTy0cW2gu9Nu3nPXzl1+IrKw0H2cA9GHRkLASOhZ/jKxMrGj59eU04+gMqmxTmfaM2EOREyMpR5JDCe8T9CSx5jItOL2Aem/qTU0qNKHYH2Opi3MXreeJfxdPPx/5mcY2GUvDGwwnFiz9ceIPalu5LV16cYkaV2hMfWv3VRx05w6naDg4cGmjh2vwWyPue9qiUgs6FHeIJjSbQDGvYygmKUZrmf+r3H5zm57kXCaQYqp7Po+oRgWLTySVESPKGBUNAyCzaHxYS4OIqHO1zmRnbqfWfYqIqHuN7vRbm99o3sl5dDf5rtp+Fawq0NlxZ6l91fbUZ3Mf2nRrExGPRzR1KtG1a9ymoWVLonXriACa2XYmdazWkcbuHUsZ+Rn6uVEiblN28iT3sunalSg5WX9z/wswFZrShGYT6O70u7Tv+33E4/Fo0LZB1GBlA1obvVZ/7mqGgGU55fALVjR23dtFJgITGvDVgOI73rhBdOQId8K/Zw/RzJmci+D06eRk5VhyLY0P+e47yre3o16HHpbsvqQFR+KOUOf1namabTW6PPEy1S5XW21fAV9A8zvNp7Njz1L8u3hqEtyEDj06pLrzokVET54Qbdqkdr58ST6N2TOGGjo0pPmd5msn+LJlnD/HL79oN84AWIgsKKdQt9PeB28f0NwTc6nqkqrUb0s/YlnuMOHE6BO09/u9NLjuYGpasSm1r9KeQqJC9Cl2sbzKeEXdw7uT50VPcuvmRkdHHSUHSwet55GwEhq9ZzTZW9hTUB/uoGvzrc0U8zqGJjafSCcSTihbM6RSzkpVoQJRUhKRnx/3HtKQfrX70dHHR6lXzV5U0aoihcWEaS33fw0A5HPJh5qGNKXHtJpAkCsbfB735x/d1fETS2nEyAd82hCRL5PXma9BDGHv/b1KbeP2jsNXy74qNi9/TkEO6q+oj6bBTUtMqVogKZBnnfG84Fk0b1YWMHEiF5z3v/8BGRl48v4JrD2sMW7vuFLdn0pu3eJS7tapAzz7b1d6vfT8EgZvGwwew0NFv4rwvOBZcl2DT0FaGvf92L79U0tiMNquaYsBWwaU3HHgQO67+2FygzVrAKEQk390QouVTbValxWLkSviYfiqblpKrJo1UWsgcBFgwJYB2qWTBZCSnYL+W/qDGMKsY7NUP1OGDuXqqajJQDX3xFyIxCLcen1LO8EzM4GyZYFff9VunIHoGNYRo3aP0rj/+9z3CL4ejK/XfA1iCHbedvj50M+ISoxCXmEebL1ssfD0QoUx4TfDQQwhLjVO3+IrcSTuCMr7lIejvyPOPT1XqrmYMwwELgJcfn4ZAPceqhxQGcO2D8PQ7UNRK6iWctbEZcu4Z0ilSsCgQVqvefXlVRBDOP/0POaemIuyXmW5rIpGVPIu5x06hXUCMQSBiwDEEGwWN8Zg//3yrFO3nxkDwY18XhgVDQNQIClQm6/9wMMDIIZwN/lusXNEJ0ZDJBbhz5N/lrgey7JYdHoRiCFMPzhd8WWwZQtgbQ3UqgXcuIH1MetLzPeuM3FxXLrMKlWABw/0P/+/jPsp9zFp3ySYuJrAysMKs47N+ijF3DTmyRNuk3D8+KeWxCA8T3sOYgjhN8OL7xgTw/0dNmxQbjt9Gsw3Zqg4VwA8fqz54snJkJiIMLc7ab85/4APf9s/HvhR56xFLMsi4HIARGIRWoe2RsK7BMUON29yf4N165TGXn5+GXwXPjzOe2i/cEAAlxXvMzl86LWxF4ZtH1ZsH4lUguOPj2PkzpEwczMD34WPfpv7IeJuhFKNkjF7xqDBigYK13IKclDWq6z2Wbm0oFBaiHkn5oEYwjebvkFyVnKp5rv8/DIELgIsPrNYfs3jvAeEYiEOxx0GMYQ1Uf/ITvb8OWBlBbRty9XNuH9f63WlrBQOvg6Ye2IuHqQ8ADGErbe3lupevlTOJJxBGc8yIIbg4OsAYkie1lqTOj9GjHwqjIqGgbDxtFGZRjG3MBdWHlYQnxWXOIfHeQ/wXfhqU+L+k9U3VoPvwsfgbYORU5BT1BAXxxVlE4nALlmCIduGoJx3Oa1THmrEy5dA/fqAvT0QHa3/+f+FJGYk4s+Tf6KMZxkIxUKM2TMGt9/c/tRicZ8PEXBdReGtL4DAyECIxCKk5aYV33HYMO40v1D1Jn71IVfwFhMKy9sB589rvL50wngklhFgQsRobcSWo9ZaWQquvbyG6oHVUcazDCLuRig2DhkC1Kyp8HfILshG7aDaaBPaRnslJz+fS2c7dmyp5dYXg7cNRt/NfVW2PXr7CPNPzUflgMoghlB3eV14X/QuNo313vt75SltP+S3I7+hvE95zYonasnztOdov7Y9BC4CeF3wKnVV7Yy8DNRYWgNfr/la/hknZyXD2sMaM47MwJg9Y1A5oLKiJYxlgf79OSt2mTLAj8rFaDVl7J6xaLiyIQCgQ1gH9Aj/8uv6aEOBpACzjs2SKxY9NvQAMQQnfycQQ+i9sfenFtGIkWIxKhoGonpgdcw9MVdl24iIEWgaXLIrhkQqQbu17VA9sLrGReIOPDwAC3cLtF3TVvGUIy8P+P13gAjJQ3qhgo8D+m7uq5fNixJv3wKtWgE2NlptzL50MvIyEHA5QL6R6bu5L848OWOYz0ATTp3iFI04w7t4fArar22Pfpv7Fd9JViG7mFoSBx8eBDGEF73bcsXI1q/XTIC/61T8MFyAl+kvtZCc+6703tgbIrEIG2M3ajW2JNJy0/BdxHdyK4n8UEJm2fng/mYcmQEzNzOljbRGhIVx890t3nr7MRm5cyS6rO8i/39GXgbWRK1Bh7AOIIZQxrMMfjzwI668uKLR7zKnIAeW7pZK1p57yfcMcjp/6NEhlPMuh8oBlbUrllgM4/aOg5WHFR6nFlnsfjr0E8p4lkF0YjQELgIERgYqDtq+nftsBw0CLC2B1691Xn/HnR0ghvAs7RnWxawDj+HhyfsnOs/3JfHo7SM0WtkIxBBMXE3ges4VJq4mGLR1kFzxOPjw4KcW04iRYjEqGgai5eqWmLRvkso22YM1/l18ifPEv4uHlYcVJu6bqPHaV19ehb2PPb5a9pWyi8SBA0C5cjj4dTkQQwi+HqzxvFqRkQF07coVQjt0yDBr/EspkBQg/GY4Gq5sCGIIrVa3QsTdCJVV4w3Kzp3cZuHtl2d2f5n+EsQQ1seUoBSMGAFUq1ZsEbmYpBgQQ7j65GJR3NOff3IFM0ugsEsnXKsiUHvooIrEjEQ0C24GG08bras5awrLsgi+HgwzNzM0XtUY91P+dnsZPJhzsywsxJknZ0AMYUlkycXXlJBKga++0slv35BM2DsBrVe3xumE0xi9ezQs3C3AY3jotbEXtt7eqmgJ1pDhO4aj5eqWStc7reukoNSUhgJJAf44/geIIfTb3E9vrjIRdyNADGFdzDr5tQcpDyAUC+Fz0QfTD05HeZ/yinFBqamAgwPQuzdgYgK4uJRKhrTcNAjFQqy8thKZ+Zmw8rBScOH6L8KyLNZGr5W77lVdUhXHHx+HvY89OoZ1RNPgpiCGYO9j/9GKQBoxoitGRcNA9N7YG0O2DVHZlpmfCTM3M/he0qx6cGhUqNrgcnXEpcah5tKaqOBbAVGJUYqNL14AnTphan+CBSNCXLKB4ilyc7kgW6EQ2LbNMGv8i2FZFkfijqDr+q4ghlBzaU2svLZSp82OToSGcpvmL7C6e9CVIIjEouKD8O/f56oYBxevbL/JegNiCHvu7+FcRvz8uHFDh3JJF4pj/36ACN2nWWpklbyXfA/VllSDk78TYl/Hlti/tNx6fQt1l9eFhbsFp5T97U6XsyYYzoHO6LSuk26uObt2cd+tyEj9C60jCe8S0Gp1K4jEIhBDqB1UG+7n3UsdN7X19lb5ifyHbL61WaVblbY8S3uGtmvaQigWwveSb6ldpWS8SH+Bsl5l8e2ObxWsN4O3DUa1JdWQ8C4Bpq6mcD/vrjhwwgTOXWrIEC4IvKTfgAZ0Wd9Fbn2ctG8Sqi6p+vEPXj4TUnNSMWz7MLnFos+mPnie9hwNVjRAjaU1cDL+JIghCMVCg8YBGTGiL4yKhoH4367/ofO6zmrbB20dhLZr2mo0F8uyGLBlAOx97PE6U3MT9ZusN2i1uhWsPKxwNO6oYqNEgszFf6LWL4SvZ9qg8IWBgjULCoBRo7iNWUiIYdb4Arj+6jq+i/gOfBc+7H3sIT4rNnyAn68v5972BdIxrKNaX3w5o0YBlStzboXFIGWlEIlFWH51edHFffs4l5EWLYBXr4oZLEVh9WrY1pCHgMsBxa5z/ul5lPUqiwYrGuB52vPiZdcjWflZGLd3HIghjNkzBpmD++K1YxnYiC00sroqwbKc62QX/Zzml4as/CxsuLkBXdZ3ATEEkVgEG08bXHx2UW8ui+l56TBxNVGy/OQV5qGcdznMPDpT57n3PdiHsl5lUXVJVUS+0J/SJmWl6LahG5z8nZCakyq/fv7peRBD2HxrM/44/gdsPG0UlXWZu+Wff3L/hobqRR6fiz4wdzNHTkEOIl9EghjC8cdfZpKK4jjz5Ayc/J3kyjBzhkGBpAB9N/eFjacN7ibflbtSaZJUxoiRzwGjomEgfj70szzATRUbbm4AMaSx7/brzNew97HHgC0DtHpBZuVnod/mfhCKhQrmcRmR+1aAv4jg+o0FcPiwxvNqhVQK/Pwz92Ly8jLMGl8Ij1MfY/rB6TBzM4OFuwV+Pfyr4fyV//qLcxv6wkjMSASP4SEsOkx9p0ePAD6fS8+pAVWXVMVfJ/9SvBgTwykqTk5AVJTqgQAQFAQJn4c2ixxRIFGdPnbHnR0wdTVFl/VdPlkq5I2xG2Hpbomqng64WYFwykXHNNiyzejRoyX3NQAsy+L80/OYsHcCrDysQAyh24ZuCL8Zjnkn5sHJ30nva/bf0h8dwzoqXZ91bBbsvO20TtmaL8nH70d/BzGEgVsHKigD+sD3ki+IIQXXPJZl0Tq0NVqEtEBKdgqsPKwUsx7m5HDJAjp04JTI+vXVJlDQlrvJd0EM4fCjw2BZFvWW18OIiBF6mfvfQL4kH/NOzAOP4cHC3QJWHlbY/2A/AC6xAN+Fj6NxRxH5nFPCyvuUR+vQ1p9YaiNGNMOoaBiIxWcWo5JfJbXt73LeQSgWKp6SloAsw4lSmsESKJQWYvL+ySCG4HrOVUlRWXBgJoSLeLhRiYDZs4v1V9cZlgUWLuQ2IHPncv83opbkrGQsPrMYdt52ELgIMHLnSEQn6jmL17RpQFPt6kP8G1h2dRmEYmHxm7Nx4zi3j1zNNoBt17TF2D1jlRsSE4GWLQELC2DPHtWDMzIgsbaCRwfClltblJoDLgeAx/AwcudIg2Qp0oZrL69BJBbBZCFhRV8HsGrqahRLz57c9+oj/8afpT2D6zlX1FxaE8QQqgdWh8tZFwVF3fOCJ+y87fS+dlh0GHgMT8ni/PDtQxBD2BS7SeO5Et4loHVoa4jEIiyJXKL3ZBExSTEQiUWYfWy2wvVtt7eBGMKZJ2fgctYFZm5meJP1pqjDvHlcTEZwMPccP6i/IGSWZeEc6IyfDv0EAPC75AcTV5P/RNrWh28fouXqlhC4CGDiaoK6y+rK3e1CboSAGMKyq9yBSL3l9eQ1NFZeW/kpxTZiRGOMioaBCLoSBBNXk2JfEr029kK3DdoV9Jq4byIs3S0VMoRoAsuyEJ8VgxjClP1TFALICiQFaBHSAnXFDsgxFwKtWwPxOrhMaEJAAPeSmjr1i4wN0DdZ+VlYdnUZnAOdudSG4T1w/PFx/Ww+vv+eC9j/wui8rjO+2fSN+g4JCVze/yWaBzkP2z4MPcN7qm7Mzga+/ZZzD/T2Vr3BnjkTGZZCtA1qIv/spKwUvx35DcQQ5p6Yqzff+9Iwevdo2HjYYPzqfiCGMMy3lXYWlhs3uN/3R4rJyinIweZbm9EjvIf8NHjsnrE4++Ssyr9nYGQgzN3M9S7H2+y3ELgIVCbX6Lq+q0prhyp239uNMp5l4BzojGsvr+lbTGQXZKPe8npoGtxUQanNK8yDc6AzBmwZgMz8TNh52+GXw78UDbx5k/vNMAxnyejaVe+K5E+HfoJzoDNYlsWbrDcQioUIuhKk1zU+J1iWxZqoNbBwt4Cdtx2IIQzdPlQey3Uq4RSEYiGmH5wOoMitre6yujB1NcW7nHefUnwjRjTGqGgYCFkgYGZ+pto+wdeDIXARICU7ReN5M/IyUD2wOtqtbadTsFxYdJjKCsP3ku/BzM0Mv64fwdUUsLExXMXotWs5t5URIwxjPfkCKZQWYtvtbWge0hzEEJoGN8WWW1tKl3Gkd28uoPMLIikzCTyGV7zVb/JkLmtOdrbG8/5y+BelwmwKSKXA/PncJnv8eOXvdUICWD4fU/oTTiWcQm5hLr7d8S14DE8rq6Yh2XN/j0Kmrl2jWqDMX3w4L3HG1ZdXNZvk22+VanHoG5ZlEfkiElP2T4GNpw2IIXQM64iw6LASA+5X31gNYsggKaW7b+iOXht7KV2XWQqK86fPK8zDr4d/lW82DeU+99Ohn2DmZqYki98lPwhcBLiXfA/+l/0hFAuLgtslEs5q17AhsHIl9x2/cUPvsh1+dFjh7zRk2xA0WdXEIJ/Vp+bDgO8qAVVADMH9vLv8Xh++fYiyXmXRI7yH3N2ydlBt8Bge6i6r+59yKzPy78eoaBiIo3FHQQzh6funavu8znwNHsNTWUG8OC4+u6h7pV5wD3RLd0u0CW2jUFE26EoQF4QXu4dTAoiAKVO02pBpzK5dnBm+Tx/DzP+FwrIsTsafRK+NvUAModqSalh6Zali+klNad2ayyDzBbHi2goIXATqXS6ePeNqYfgoF9MsDq8LXrD1si25Y3g4973u3FkpbTA7ZAjiK5qix7pu6BDWAWZuZlwmq8+AlOwUOPg6YODWgUUbu+vX8cSW0MazJoRiIfwu+RVvdXn4UKMsXrryKuMVvC54oe7yuvIN2oJTCxCXqnkdmI2xG0EMGSSz24prKyAUC5VOmvMl+bD3sceMIzNUjot/F48WIS1g4mqCZVeXGWxjfejRIQU3HBmpOamw9bLFtIPTkFeYh0p+lTB+7/iiDgEB3Od6+jRXoO9//zOIfDkFOTB3M5cXupXVr7nxSv9KzafkdMJpOPk7wcbTBhX9KsLWyxaHHxXFR77LeYc6y+rgq2VfyRXOE/EnQAyhc1hnEEM4EnfkU4lvxIjWGBUNA3H91XUQQ8qpZf+BRtlxVPDnyT8hFAt19tu//uo6HHwdUCuoltwNS8pK0SO8Bxz9HZGa/ZbLKGJuDjRoANy5o9M6xXL8OOfb3rEjkFZC9WYjSsQkxeCHXT9A4CKAnbcdFp5eqOhTXRK1awOzZhlOwE9A1/VdVZ4qy5k+HShXDshUb2lURfjNcBBDyC7QQCm+cAEoX56rR/Hgg9Sm584BROg1imDrZYvLzy9rJYOhYFkW3+74FnbedkjKTFJs7NcPBXXrYM6x2fIik2otsJMmcRtRDeNeNCG3MBfb72xHn019wHfhw8zNDP/b9T+ciD+hk6vZzrs7QQzpPbga4BQhYggbbm5QaptzfA5svWyVFJyIuxGw8bRBjaU1DLqhfpP1Bg6+qou0/n70d1h5WOF15muE3AgBj+EVpeR98oR7Rv/yC1cvw8SEu2Yg+m/pL8/WWCgtRCW/SnLXoX87+ZJ8zD0xFzyGh4YrGsLczRyNVjZScIMukBSg24ZusPO2U1CgayytAb4LHxP2TYCjv+N/NvWvkX8nRkXDQCS8S9AoRV9gZCBMXE2QlqvdRjtfko+mwU1Rf0V9nU/n4t/Fo3ZQbdj72Mv9gV+kv4Ctly2+3/k91+nOHU7RMDfnFA99n7ZdvgzY2gLNmgFvtNgkG5Hz9P1TzDgyA5buljBzM8OPB37U7JTX3h5wczO8gB+JN1lvwHfhIzRKTcrNly+5jZK7u+r2YjiVcArEkOan5/HxQL163Hf7JJfZJ+rVDdxyEuJILVJbY+dTIKsDsf2OClfJa9c4y+bmzTj86DDK+5SHo78jzj45q9jv5UvOUuTtXWp5WJbF9VfXMf3gdJT1KgtiCG3XtEXIjRCtn5P/RHaqr22ldk1pt7YdBm1VLlIYlxqnoITkFuZi+sHpIIYwfMfwUt9XcbAsi36b+6lMjx7/Lh4isQhu59xQKC1EjaU1MHzHcNlAzr2yShUgLo5L52zgg4lV11dB4CKQn+T/efJPlPEs8/FqCxmIBykP0CKkBYRiobxu0oiIEQqWaJZlMfXAVAjFQpx5ckZ+XWbZGbptKGy9bDHvxLxPcAdGjOiOUdEwEOl56SCGsO128UGRz9KegRjV2WhK4s6bOzB1NcVvR37TVUykZKfg6zVfw8LdAocecRW8ZRsPuUzZ2ZwLFREXQJyervN6KomNBSpUAOrU4VxbjOhEak4q3M65wcHXATyGh293fKvet55luUKKK1Z8XCENiGyTovbE/ddfuY2/Dt/f+yn3QQzh3NNzmg9KSwN69QKEQhwJ+hWW7pZYPL46QISGvwjxKqOY+hsficSMRNh52+G7iO/Ud+rbF6hbF5BI8CrjFbqs7wK+Cx8uZ12KTlZnz+aKuJXi2fA68zX8Lvmh4cqGIIbg6O+IeSfmFVUt1wOyaufauFtpg98lP5i5mamMzesR3gPt1rbDo7eP0Cy4GUxdTbHy2kqDxyCsvLYSxBAOPDyg1PZdxHdw8nfuhkw7AAAgAElEQVRCdkG2PK5QbiXftIl75h84APz4I1C2LPDOsAHIsvehTOmVKWibb2026LqGgmVZhEaFwsLdAjWX1sTXa74G34UP30u+Sp97YGSgyqySVZdUhcBFgHUx6/RSANKIkY+NUdEwECzLQigWYsW1kjdyLVe3xLDtw3RaZ0nkEqV86NqSXZCNQVsHQeAikD/kRu4cCVsvW8Wqudu2cUHiNWoA16/rvJ5K4uIAZ2fu9OzhQ/3O/R8jpyAHwdeDUTuoNufXu64zDj06pPhiy8zkNhFbtFdwP1e6beiGHuE9VDcmJQFmZpz7hw7IDg623t6q3cDCQqyd2RWCRYT+82sg630ypBUcENpG9MlPJlmWRf8t/VHBt0LxCSmuXlX4rkikEjBnGPBd+Oi6viuSnt0DrKy4Im5aki/Jx+57uzFgywB5es/vIr7DkbgjBnEPufLiCoghg1Vdl1myd9zZodQWcTcCxBAs3S1RO6g2YpJiDCLDh9xPuQ9zN3P8eOBHpTZZYbx1MesgZaVouLIh+mzqwzWmpHDufyNGAPfvcxmn/P0NLi8ANFrZCGP2jJH/v9O6TlpnZ/wceJv9FkO3D5VbI6otqQY7bzuciD+h1Pfwo8Pgu/Ax65iixWj3vd0ghvDDrh/QZ1MfjYv8GjHyOWFUNAyIg68DxGfFJfbzvOAJC3cLzfy//4GswmvlgMqlSncnkUow7eA0EENYfGYxUrNT4eTvhO4buiv6QsfHc1V/RSLuxaPP07iXLzl3E3t7IFrPNSP+g0ikEuy6twutQ1uDGEKDFQ2wPmY98iX5wPPn3ObxyJcRVJiclQy+Cx8hN9RUn581i1OS3+uezcfKwwp+l/w07s+yLJgzDJdS2rMdCgU8oH9/4K+/kG8qhPMimxKzJBkS2Qnpvgf7Su7cpw/32/wgJfWZJ2dQya8SPHpbQGJqArx+XcwEisQkxWDGkRko71MexBBarm6JFddWGCR24kNiX8eCGMKVF1cMtkaz4GZFrqd/k1OQI69lVDuo9kf53PMl+WgW3AxfLftK6d3Csizar22PxqsaQyKVyGs0XXx2keswejRnwXj9Ghg4kDsEyvs4NV7mnpgLex97+XtHVtxWpyr1n4hTCafg5O8EO287/H70d1i4W6BpcFOVxVdvv7kNaw9r9N/SX0m5dvJ3glAsxMOUh8U/34wY+YwxKhoGpN7yemozjXyIrKjT7nu7dVrnedpzlPEsg//tKl02EJZl4XHeA8QQJu6bKE83uPTKUsWO+fmcqwQR0K8fd/qlL1JSuFSKNjbA+fP6m/c/DMuyOPf0HPpv6Q9iCE7+TvDbORPppgRERn5q8fRCyI0Q8F34qoPh37zhAloXLCjVGnWW1cHMozM16lsgKcCEvRMU01YePgxYWwP16oEViTC3Jx9LIjWv5aFPnqc9h42njeoihKq4ckVlfYzk5KdIsxZheSvCnONz1FY+Bzg3zaVXlqJpcFMQQ3DwdcCsY7Nw+83tUtyJdshccT70gdc3rudcYeVhJa8G/iDlARqvagwzNzP02dQHNh42Oh0qacuc43MgEotUJiTZdW+XPIZQVhG807pOXOOxY9xnHRYmT2DwMS2fsnoRMmUwuyAb1h7WWHh64UeTQVfyJfn44/gf4DE8dF3fFVP2T5FbJFR95m+y3sA50BmNVjZSUj5laZHH7x0PrwteMHMzM2gsjxEjhsKoaBiQDmEdMGr3KI36NlzZUOO+qpD512rt2qGCDTc3QCgWos+mPph2cBrM3MxwL/mecsdDhzjzuqMjcPascruupKcDXbpwAeiHD5fc34jG3HlzB+P2joPIRYgy8whzt09GYkbipxar1PQI76HevWLuXM61523pqgx3Xd9Vo/z1mfmZ+GbTNxCKhcoZiG7f5k6HzcyQVsYMNfyqlK4Wig6wLIse4T1QOaCydvUavvmGK9Ym/cDCuWwZWIEAITvmQSgW4us1Xyuc2hZICrD/wX4M3T4UIrEIIrEIQ7cPxf4H+4tVSgzFy/SXIIbk8WiG4G7yXXlMxKbYTbB0t0SdZXUQ+zoWCe8SwGN4CIsOM9j6AGdt4jE8eF3wUmrLl+SjVlAteVHLk/EnQQzhaNxRICsLqF4d6NaN+5xbt+YOfqQfr5hkobQQZb3KYtHpRfJrU/ZPQeWAyp91tqUHKQ/QPKQ5RGIRFp9ZjK7ru0LgIkBgZKDKOJy8wjy0X9seDr4OKtPgV/CtAJFYhOz8bHy17KtSHyQaMfKpMCoaBmTQ1kFFPq8lsOj0IpTxLMO5tegAy7IYETECtl62esmocuzxMVh5WKF5SHPUDqqN5iHNVcv28iWnFPD5wOLF+qv2nZvLmeyFwo9WZfi/xMsda/BHT4K1uxVMXE0wcd9EvQbdfkxSslMgcBFg1fVVyo1v33JKxty5pV7nh10/lFjhOSkzCc1DmsPaw1p9xrk3b4DGjQEiBLTRz+GANsiCg489PqbdwMhI7nRbVsizoACoVk1eVyHyRSSqLakGWy9bBEYGYtaxWajgW0FeYHLplaVaFSc1BKk5qSCGsPPuToOu89Wyr1AnqA6IIYzaPUohOLz3xt5oE9rGYGu/y3mHygGV0WV9F5Ub86ArQeC78HHr9S0AXGxT85Dm3GZ41iwulikujnvuEgFnzhhMVnV8v/N7tAhpIf//1ZdXP9v6ESzLYvWN1bBwt0CdZXWwKXYTqi2pBnsfe7WWM5ZlMWbPGJi6mqpMc70+Zj2IIUw9MFUeS6MqtsOIkX8DRkXDgEzYOwGtQ1tr1Pdm0s1SP0hTc1Lh6O+InuE9dcox/09ikmJQ0a+i3E90wSk1ricSCSAWc8pGp06c8qEPCgqAUaO4YlEhRt9UvbJuHUCEtIwUeF/0RiW/SiCGMHDrwCI/7X8JoVGh4LvwlVJ3AuDcpSws9JI6ec7xOaixtIba9vsp9+Ec6AxHf0fcTLpZ/GS5uVx1ciKsGFgJ7Ec6MX6c+hiW7pYqg4M1ondvLt21VAps3MhtRGO5wOrUnFT4XvKFrZctiCGYuZnhp0M/fZSgZ03JKcgBMYSNsRsNtsa95Huw97EHMYTVN1YrnWbLAnxL/I7oAMuy+C7iO9h62eJ52nOl9rTcNJTzLoeJ+yYCKAoI33l3J1ftm88HvLy4eIzq1bmYok+ArLCizNrKsiwarmxYlHr3M+Ft9lsM2TYExBAm75+M0BuhMHMzQ8vVLVX+/WV4XvAEMYRNsZtUtpf3KQ8TVxPkFeZh6oGpqBJQ5bO25hgxUhx8MmIwylmUo3e57zTq27hCY6pZtibtvr9b5/XszO0obGAYnUg4QSuurdB5HhlNKzalyImRZG1qTSYCE/K46EGRLyKVOwoERAsXEp05QxQfT9SkCdGhQ6Ven0Qiog0biKZPJ5o6lcjbu/RzGuF4/57I0pLKWJenOe3n0JMZTyhsYBjFpcZRh3UdqH1Ye9r7YC+xYD+1pCUScS+COlXrRBWsKig2pKURBQURTZtG5OBQ6nUcrR0pMTORACi1XXx+kdqtbUcWIguKnBhJTSo2KX4yMzOikBAiIpq+P4neDO1NlJdXahmLQ8pKafy+8eRg6UC+vXx1m2TxYqK7d4kiIoi8vAh9+tBRi0QasXMEVfKvRPNOzqMOVTrQ5OaTiQVLl15cIguRhX5vpBSYCc2IiCi3MNcg84fHhlOX4HFUPdeN2koO0NXrDejO8yyFPv3r9KdKVpUoJCpE7+tvvLWRdtzdQcH9gqlKmSpK7Z4XPSlXkkvirmL5/+uWr0tDavUnmjSJqFEjopkziVatInr27JM9c7+p9Q3xiEdHHh8hIiIej0cTmk6gvQ/20tuct59Epn9yKuEUNQ5uTOeenaMd3+4gc6E5TT44mUY2HEkXxl9Q+fcnItpzfw/9eepPWtBxAf3Q+Ael9tVRq+ltzlv6scWPxIKlbXe20ZgmY0jAFxj6lowYMQyfWtP5kvG64IWyXmU17v/H8T9g72Nf6pOLnw/9rD6uQgdSc1LRbk078BgeKvpVVJkjXk5KCncKRgT8/jsXOF5aWBZYuJCbc948/RcN/C+ycCFQubLSZSkrxYGHB9AxrCOIIXy17CuERoXKA1s/N95mv4XARaA6jbSLC+cGkpSk3KYDO+7sADGklN1t592dMHU1Red1nbXL/CaRgK1RA1E1LJAn4gPt2hm0aKX/ZX/wGJ5ysT1t6dULL+pUAogw+Kdy8oxmfpf8FKxKMUkxqLOsDqw8rNSe3H4KzN3MERgZqNc5s/KzMG7vONgsbowuCyLRbeFVdFlwFV0WRKL7oqu49VQx0HfBqQWw9rAu/lmqJQnvEmDtYY3Ru0erbH+W9gymrqby2Idbr2+BGML6mPVcoUU+n0tb/v49YGcHTJ6sN9l0oe2athi6faj8/8lZyRCJRZ8sgYKMDwO+u2/ojpjEGHRa1wlCsbDEuijRidGwcLfAtzu+Vet1YOdtB1NXUxRICrDl1haD1n0xYuRjYLRoGBA7cztKy0sjKSvVqP+wesMoJSeFLj6/WKp1vXt6U7Uy1Wj0ntFUKC0s1VxE3H2cHHOSetbsSa+zXlPfzX3Vdy5fnmj/fqLAQKLly4nateOsHKWBxyMSi4kCAoi8vDgLh1Szv6kRNbx/T1S2rNJlPo9P/ev0p/Pjz9PlCZepvn19mnJgClVfWp08L3jS+9z3n0BY9ex7uI9YsDS03lDFhowMoiVLiKZMIapYUS9rOdk4ERHRq8xX8mtLryyl4RHDaUi9IXRs1DEqa678N1WLQEC8X3+lps/zadi3LBXGPSRq04azGOiZ+yn36a9Tf9GMNjOos3NnneZIz0un1VGrqd03r+h5ThJdqconxz4j6Prk63R72m2a1W6WglWpacWmFDUliobUHUKj9oyiCfsmUHZBtr5uSWfMReaUK9GfReNu8l1qvaY17bi7g/qV8ycQiJUbvfgEEG06m6gwZlLzSZRVkEXb7mzTiwwSVkKj9oyi8hblaXnf5Sr7zD89n2zNbOmP9n8QEZHXJS+qWqYq/c+iNWep+u03opYtiTw9ifLziVxc9CKbrvSr3Y9OxJ+gAmkBERHZW9rTwK8GUlhMmEqr4sfgwdsH9PWarynwSiB59/Amt25u1H9rf3qU+ojOjD1D01pNIx6Pp3JsYmYiDdg6gOrb16cNgzcQn6e8/Vp2bRm9y31Hv7T5hUQCEa27uY46VO1AtexqGfrWjBgxGEZFw4CUsyhHIND7PM02Z62cWpGTtRPtur+rVOtaiCxo09BNFPsmllzPu5ZqLhnmInM6/L/D1NW5K114foFG7Byh/mHP4xHNmEEUGcm5rzRrRrRNDy/U338nWruWaPVqolGjiAoKSj/nf5X374lsbYvt0rZKW9o9Yjc9+PkBDawzkFzOuVDVwKo069gsepH+4iMJWjwR9yKoY7WOVNHqH8rE8uVEOTlEc+bobS1Ha0ci4jYMLFiadWwW/XbsN5rdbjZtHrqZTIWm2k86fjzxzC2oV7IV/eXRncjGhqhtW6KjR/Umt4SV0Ni9Y8nZ1pk8untoNZYFSycTTtIPu3+giv4VadqhadT+nRW1e0nUnO9EK/oso5aOLdVurqxMrCh8SDitH7Sett/dTq1CW9Gd5Dv6uC2dMRea68V1CgCti1lHrUJbEY94NKPNDHqanEc8UnRxYUGU8CZH4Vo122rUp3YfvblPeV7wpCsvr9DGIRvJxtRGqT06KZo23dpE4q5isjKxovh38bTtzjaa0+4PEk3/hVPGxWLOXWrpUqLZs4kqVdKLbLrSr04/yizIpAvPLsivTWw2kW4n36YbiTc+qiwAaHXUamoe0pxyCnPoyqQrZGduR53Xd6YqZapQ1JQo6lC1g9rxOYU5NGjbICIi2vf9PpXuhABo4emFZC40J6/uXvQi/QWdTDhJ45uON9h9GTHyMTAqGgaknHk5IiJKzUnVqD+fx6chdYfQ7vu7S+0b39KxJS3qtIjcL7jTlZdXSjWXDAFfQCdHn6S65evSjrs7aOSukcVbTFq0IIqOJhowgGjkSM4HOLuUJ5oTJhDt2EG0axfR4MHcZtKI9qixaKiiTrk6FDIghJ7+9pR+bf0rhd0MoxpBNWjMnjF0+81tAwuqnne57+hkwkkaXn+4YkNWFmf9mjSJyMlJb+tVsuI2Xk/TntLIXSNpyZUlFPRNEPn09FF5OqkRNjbEmzCBJt1gKfT5Hnp9ZCdR585E/fpxypIe8LnkQ1FJUbRh8AYyF5lrNCb+XTwtPL2QnAOdqefGnhSVGEVMZ4ae//acfKPLEdWoQSZPXxDt2aPRfGObjqUbk2+QkC+kVqGtKDQq9JOdSluILEpt0cgqyKKxe8fShP0TqF/tfpRTmEOeFz0pi+IJ9E9rK0s1KihvLKe2mEo3Em9QdFJ0qWS58vIKuZxzofkd51P7qu2V2gHQrOOzqF75ejSh2QQi4r4T5S3K04Q7JkSnThEFBxNZWhItWMAdQMyeXSqZ9EGTCk3IydqJDsUVxfv1qtmLnKydKCwm7KPJ8TbnLQ3dMZSmHpxKY5qMociJkRQaFUqTDkyi8U3H09mxZ+WHEKpgwdK4vePoXso92j9yv9q+/pf9KT0/nWa2nUkCvoA23tpI5iJz5eebESP/Nj6h29YXz+03t0EM4dLzSxqPOfPkDIghXH15tdTrF0oL0Sa0DWoF1dKrL3BSZhKsPKzAY3joGd6z5Cq3LAusXcvVxahXj6slUFqOH+eyCXXsCKQZixhpTdu2wNixOg3NyMvAksglqBJQBcQQ+mzqg9MJp4v1TTYEYdFh4DE85TogPj5c5fpnz/S+Zjnvcqi2pBrM3Mx0LrCpxOPHYHk8/DzEFH+e/JPL4vb771xM0k8/AYW619m4mXQTIrGIm7cEMvIyEBYdJo/PsfG0wZT9UxD5IrLos42N5eTauBHo0QNo1EirGgs5BTn48cCPIIYwImIE0vPSdb01nWm8qjF+OvSTzuNvvb6FusvrwtLdEr3De4PH8EAMwdrDGjW8u6HzgkvoPP8yuiy4is4LLqPzgsu49VT5PgulhXDyd8KU/VN0liUjLwM1l9ZE69DWauuSHHh4AMQQDj48CICrJWLiagKvI/O56t+j/q7fFB3NfbbBwTrLo28m75+MOsvqKFybf2o+bDw/TtHDE/EnUMmvEsp5l8Oe+3uQmJGIdmvbwcTVBKFRoRrNsfD0QhBD2HVvl9o+UqkU1h7WsHC3gEQqAcuyqBVUS228jREj/yaMioYBScxIBDGE/Q/2azymUFqI8j7lMef4HL3I8OjtI1i4W2Dqgal6mU+GrLKsmZsZmgU3Q1KmBgG39+5xGxMzMy5dbWk3ppcvA7a2QLNmQHJy6eb6r1GvHvDbb6WaokBSgI2xG9FoZSMQQ2i5uiV23Nnx0dIw9t3cV7muRXY2YG9vkEDWJ++fwNTVFKauplodHmjEoEFIqloOtp5lig4FgoMBgYBLKauDMp0vyUeTVU3QaGUj5BXmqewjZaU48+QMxu4ZC0t3S/AYHnqE98DmW5uRU5CjPGDkSK52RkEBcOECtzHdpX4DpY4dd3bAxtMGNZbWwPVX17UeXxrahLbBhL0TtB4nq5dg5mbG1Qvx5NL4ytJCr4laA2IIZRY2RreZgej41wE0XrgUNosbIToxWuWci88shpWHVcmHNWqYsHcCLN0t1QYLF0oLUW95PXTb0E2uLP5+9HfYetki/X/DgHLluGcnywLduwN165ZKsdU3e+7vUQqGjn8XD2II4TfDDbZuXmEeZh+bDWII3Td0x6uMV7j0/BIq+VWCo7+jvGp5ScgK6bqfdy+2n9s5NxBDEJ8VAwAuPrsIYginE06X+l6MGPnUGBUNA5IvyQcxhHUx67QaN2nfJNQKqqW3E+Lg68EKJ1r6YtzecbB0t4SDrwOcA53xIOVByYNycoAff+Q2KMOHcxlOSkNsLFChAvDVVwY5wf5iqViRy8qkB1iWxdG4o+i2oRuIIdRYWgMrrq0w6Inj+9z3EIlFWHplqWJDQAC3OU9I0Ot60YnRqOhXEeZu5ui+obte5wbAFUUjQu8xfMV7OnGCU6br1wfi47WacsGpBRCKhSo3uU/ePwFzhkH1wOoghlBzaU24nnPFs7RifkPx8VxmouXLi651784VH9ShDkj8u3i0XN1SnknoY1nEuqzvgpE7R2o1JiMvAyN3jgQxBEd/R7mCYeJqgu13tiMzPxMOvg4ghmDlYYUJAwnNpxDMXc1g5mamtgbRi/QX4LvwEXxdeyvCzrs7QQxhbfRatX1kz/6oxCgAXHFLC3cLLFz9PfcMDv97s374MPf/ffu0lsOQZOZnwsTVRClLWNf1XdFlfReDrHk/5T6aBTeDSCyC3yU/SKQSBF8PhkgsQoewDpodqoGrUWLqaorRu0cX+92WSqWwdLeElYcVpH//jibumwjnQGe91MMyYuRTY1Q0DIyVhxX8L/trNebwo8MghhD7OlYvMrAsi76b+6KCbwUkZ+nv5D89Lx3VllRD69DWqLe8Huy87TQv9rZjB1CmDODsDFwtpZtYXBx3ylqlCvDwYenm+q9gagoEBel92huvbmBExAjwXfgo71MeLmdd8Db7rd7XkVXOfZn+QXHInBxOgRo3Tq9rHY07CisPK7QIaYH/7fwfWq1updf5AXAnyk2aILqFI5wDnVEo/eBU+f59oGZNoHx54KJmv69rL69B4CKQn5ACXArW8Jvh6Lq+a9GGeO8EnH96XrNN/rRpnLUo+wMF8vx5boO6Wzc3snxJPmYenSm3Chjiu/JP+m7ui8HbBmvc/2bSTdRaWgsmribgMTy5q1SDFQ3kbnvzT82HwEUAHsPDyJ0jMb8HD1V/I0xb1R9mbmaot7ye2vkHbBmAZsHNtFK0Xqa/RFmvshi6fajacRl5GajgW0HB/Wbh6YWwcLNASi1HoFcv7nsnkQANG3LFVj/D1OE9w3ui18ZeCtdkBf0epz7W2zosyyL4ejDM3cxRd3ldRCdGI7cwFxP3TQQxhJ8P/Yx8iWbp2p+lPUMF3wpot7adWmuiDJlrlfcFbwDc79TawxqLzywu7S0ZMfJZYFQ0DEy1JdXw18m/tBqTL8mHjaeNXh80SZlJKOddDoO3DdbryeG5p+fAY3hgzjDotK6Tdr7rCQlAmzaAUAj4+up0Kirn5UvOHcjenvM1NqKenJwiP3sDEf8uHj8d+gnmbuawcLfAz4d+RsI7/VkZ+m/pj/Zr2yteXLaMO3F/9Ehv64RFh0HgIkDfzX2RmZ+JRacXwdHfUW/zK/B3tfbaPxO23d6m2Pb2LbcRNDEp8XPLLcxFveX10CKkBfIL83Hx2UVM3DcR1h7WIIbQZX0XbLi5Qbu4rdevOeXUzU25rVs3oGnTUm1SDzw8ADtvO1QOqIwLzy7oPI8mDNs+TGnjqgqWZbHy2kqIxCKIxCK5FYPH8DD3xFy5i+DT909h6moKczdzEEPYfmc7lrUTwmQB4a7fXPm4+yn3Va5z8OFBEEO49vKaRvJLWSm6b+gOR3/HYhWzhacXwtTVVG6lSs9Lh62XLX6f15SLb5NZ/dau5Z4HpT3wMRCBkYEwcTVR+L7mFOSgjGcZrd+t6kjJTsGgrYNADGHqganILsjGi/QXaB3aGqauplytEQ3JyMtA41WN4RzojDdZxdfFkUglMHczh42njfy9LFOi4t9pZ8E0YuRzxahoGJhmwc10io/4YdcPaLSykV5lkcVVaOvKVRJ/HP8DIrEIV19exXcR34HH8LD86vKSBwKcr/ecOdyL7ptvSlewLCUFaNkSsLHh/MeNqObVK+7vfeCAwZdKyU4Bc4ZBOe9y4Lvw8f3O7+VuHLqSlpsGE1cTxcJdeXmAk1NRYGspYVkWLmddQAxh8v7JcgtD8PVg8F34holDyc0F7O2xp3tltAhpoXwgkJ8PjB/PfXbz56tVzGcfmw0TsQl+PfwragfVBjGEakuqYfGZxbore3/+CVhZAe9UFCQ8d46Tac8e3eb+mxfpL9AxrCMELgK4n3c3mNvIqN2jlGN7/kF6Xjr6bOojVxJELpyiYedthwtPFZ8tIyJGwNaLi9cQioV4n/seEc1MueKO08aj+4bu4Lvw4XZOhZIGbrNZdUlVTNw3USP5/S/7gxjCifgTavu8TH8JczdzzDsxT37N+6I3RC5CvLQhwM+Pu5iVBTg6AiNGaLT2pyAuNQ7EEPbe36twfdrBaXD0dyz1b/H44+PygG/ZGueenoODrwOqBFTRKoZIIpVgwJYBsPawxu03JSc9mXN8DoghBdewbhu6ofO6zlrfhxEjnytGRcPA9AjvgW93fKv1OJlS8Oit/k5nAS6uwtrDWq+ny3mFeWi0shEarWyEnIIc/H70dxBDmHtiruabhSNHOGtEpUrAqVO6C5OeDnTpwmW4OnxY93m+ZO7c4TaGGrrh6IPsgmwsv7pcHhPQfUN3HHt8TCfrWvjNcBBDeJH+ouhicDDA43FuRqWkQFIgd5dwPeeqIKMsg49Spit9sWgRCs1NYTuXVFfwZlmuijOPx8U4feDGlFOQg8VnFstP3c3dzDF692icTjhduk17WhqnvM+erb5P166ltmoAXPDyglML5EHpmvrDa8OU/VPQcnVLte0Xnl2QKw5mrmZyZaPXxl5IzUlV6CsL2q27rC7KepWVxw1cqGcJYgj3+rTEoUeHQAzhq2VfqV1TfFYMC3cLpOUWH/R/M+kmTFxNMPPozGL7Tdg7AeV9ysvnyynIQQXfCpg8tizQokVRwLebG5ehTcv4n49NnWV1MHm/YoKH66+ugxjCoUeHdJozrzBP7rbXM7wnXmW8AsuyCLoSBKFYiC7ru2jtajz72GzwXfgayVQoKYSpqynKepWVP2Oevn9aVK3diJEvBKOiYWBGRIxA1/VdtR6XXZANczdzeF3w0qs8sriKjmEd9XoqG/s6FiauJvjj+B8AgN0JuegAACAASURBVIDLASCG8MOuHzT2a0ViIueGweMBCxfqnv0kJwcYMIBzydq2reT+/zVk2YLu3v3oSxdKC7Ht9ja0CGkBYghNVjXB5lub1abmVMWALQPQdk3bogv5+UDVqno5lc3Mz0SfTX0gFAtVvuyjEqNADBkuU1JSEliRCL5DKqLf5n7q++3eDVhYgG3VElduHsTUA1NRxrOMPM3q6hur9Zc61suLc9l69Up9n7Nnue/U3r3q+2jByfiTqOBbAQ6+Djj++Lhe5pQx48gMNFjRQOm6VCrF+L3j5YqatYc1eAwPAhcBll1dpqQUS1kpWq5uifor6nNWD7EIvpd8AQBxNThF5XRTW0hZKSr5VQIxhCfvn6iU6VXGKwhcBFhxbYVauXMKclB/RX00XtW4WL//2Nex4DE8LLu6TH5txbUV4DM8xJXnAzEx3MU3bwBray6V8mfO70d/h5O/k8JnwLIsGq9qjKHbh2o9373ke2ga3BQisQj+l/0hZaXIKcjBmD1jQAxh5tGZinFSGiDLOqZgaS2GGUdmgBjCqmur5NdczrrA0t1Sr+nojRj51BgVDQMz/eB0NF7VWKexQ7cPNUjgqSyuwvuit17n9b3kCx7Dk5/Ebr+zHSauJui+obvmmx6JhDtl4/O5GhnPn+smTEEB50bD4wGrV+s2x5fKgQPcpjDRQKfyGsCyLE4lnELvjb1BDKHqkqoIjAws8QWbnpcOE1cTBFwOKLq4Zg13P6Wsz5KUmYTmIc1h7WGtdnOblJkEYgj7HhgwO8+YMcisWA6ChYS7yaqVwcSMRHhv/xX1ZghBDKGyVwW0CGkBU1dT/VpBc3O5rG6apAvu0oVLNa2nGLDXma/RM7wneAwPf538S+uNnzrmnZiH6oHVFa5deXEF9j72XHravxU2vgsf1QOrIyYpRuU8G25uADGE4duHw8bTRiEOI8OpPIghbGlIQGoqfC/5ghjCojOL1Mo1eNtgNF7VWK2V75fDv8DU1RR33twp9v56b+yN2kG15cp7gaQA1XydMHI4n3NTlTF9OpeQ463hA/BLy8n4kyCGlD6LpVeWQigWamx5YFkWq66vkgd8y+Z7+v4pmoc0h7mbOTbf2qy1fGefnIVQLMSU/VM0stLmS/Jh4mqC8j7l5dekrBTVA6tj/N7xWq9vxMjnjFHRMDALTy+Ek7+TTmNlObiLTTmpI3OOz4FILMLNpJt6m1MilaDTuk6ouqSq3GR/9slZlPEsg8arGuNVRjEnov/kwgWgcmXAzk73lItSKVfwjIhzNzHCER7O/U1ycz+1JAA4d5BRu0dB4CJAWa+ymH9qPl5nvlbZd1PsJsXfRGEhUKMGMFT7U80PeZDyAM6BzqjkV0ntxhLgNgMCFwFWXltZqvWKJSoKIMKksWUV/PbzCvMQcTcCfTf3Bd+FDzM3M4zcOAjHetdCnqUpBnxPCqfYekHmkqZJgP3fKXr1mSJVykrhecETAhcB2q9tj+dpOh48fIDLWRdU9KsIgAvc/WHXD3Irhr2PvTyr1Jg9Y9Qqvpn5mXD0d8TQbUNh62WLpquaosbSGvJNJutYCRaLhQj4mnNRzMjLgFAsROWAymrlOhJ3BMQQIl9EKrXJMhEGXSk+U9yxx8dADCkk5NgQvY7LYtiicpGr3YMHXBpoH59i5/tcyJfkw9rDWinO5W32W5i4mmiU2TE5KxkDtw4EMYRpB6fJ02+fSjiFct7l4BzoXOxvXx2PUx/DztsOXdd31dgyO/3gdBBDCIsOk1879/QciCGce3pOaxmMGPmcMSoaBiYwMhBmbmY6jU3LTVNdK0AP5BXmofGqxmi4siFyC/W34Xzy/gmsPawxds9Y+bU7b+6gckBlVF1SVe0JrUpSU4FBg7jNy4wZXMCvtrAssGABN8e8eZ9l+saPztKlXNHEz4yn75/ityO/wdLdEqaupph6YKrS6fygrYPQJrRN0YUNG7jPNkb7DYKMi88uws7bDvVX1NdIqa8cUFltXQS90akTnjd2hkgswtHHR/HzoZ9h520HYghtQtsg+How3udyNWjS3r7C4cbmkPIIUl9f/X3HZUrc8OGaj+ncGWjeXO+/s4vPLqJKQBXYeduV2prke8kXZTzLYHPsZrklwsbDBgJGABNXE5i7mWNjbPGZvRacWgBTV1P4XPQBMYRKfpXw6+FfizpUqYIai20xtycBoVwF6Z7hPYvNJiRlpXAOdMa4vYrpmd9kvUEF3wr4ZtM3xZ6WS6QSNF7VGB3COsj7SVkp6rpVxICRBJw8WdR5yBDO3fAzOWzQhKHbhyq6TP7NdxHfof6K+sX+bY4/Po6KfhVRzruc/PvDsiz8L/uD78JHz/CeOqVWfp/7HnWX10XtoNpK8TvqyCnIgUgsgoOvg8L1cXvHKSirRox8KRgVDQMjS1WnssquBvTZ1Aed1nXSs1QcsriKWcdm6XVeWY2DXfeKKga/SH+BRisbwdbLFuefntd8Mpbl6j2YmHAbGF1Tl/r7cxvSH3/k3LP+yzAMF3T/mfIu5x3cz7vDwdcBPIaHoduH4sqLK8jIy4Cpqyn8Lv2dMUciAWrXBgYO1HmtnXd3wtTVFJ3WdcK7HBUZlVTQJrSNwd0b3m9ZBxCh1RTudL2iX0XMOT4H95LvKfWdsHcCbNys8P63adx3fNIkLm6ltGzbxs1344bmY06f5sbs31/69f9Bak6qPAXpjCMzSqxPoI75p+bLA7yJIZT34dycBC4CNF3VFA/fFl+L5+n7pzBzM8NfJ/9Cq9Wt0H5texBDOPb4WFGn6tXRblFljB1tDczinq+y+J4fdv2gdm738+4wdzOXK5Esy2LAlgEo71O+xMD4sOgwEEMKVat3XgzlrCRT+xZ1lMVoGTC9tSFYG70WPIaHlOwUhetH444q3beMfwZ8y5I4ZOVn4fud38uTlugSr1goLUSvjb1g62Vb4nfmQybu5RJNfOiilZmfCUt3S4W6N0aMfCkYFQ0DIzN5K2TI0YI1UWvAY3hqXUlKiyyu4syTM3qbk2VZDN0+FOW8yym8HNNy09B1fVeYupoi4m6EdpNGRXGbSisrYNMm3QRbu5aL/fj+ey6G47/KjBlczZHPnNzCXKy+sVqeorXu8roghooypm3ezG2YrusWmL30ylLwGB5GRIzQatM6ZNsQ9N7YW6c1i6NAUoA99/dg0NZBMGEEeGJL2NvSGlbuVvKN5z+R1WAIjeJOzbFuHZdFqGtXziKoK38XEETPntqP69SJy2xkgJNZWVYgE1cTtAhpoVXBtvS8dPmmU1bVWygWwtLdUivl5fud36OiX0Wce8K5uozaNQqW7paKY2vVwtAFddD7d3ugb9Emv7xPeVi6W6o9tU7KTIJQLJS7SMkqe5dkxckuyIajvyNGRBQlRGBZFs3n2qLbJFFRHAbLAl9/zR3alKZu0ScgMSMRxJCStUkilaBKQBWlrFR3k++iyaom8pguWea1+HfxaLyqMSzdLbH9znad5fnp0E8QuAhwMv5kyZ3/Jis/C0KxUKkWz7qYdeAxPDx9/1RneYwY+VwxKhoG5sqLKyCGdI6FSM5KBt+Fj5AbIXqWjEMilaDzus4KcRX6ICU7BRV8K6Dv5r4KL9W8wjyM3DkSPIankDtcIzIyuABvIq76c1aW9oLt3MltxPr2Vaxw/F9izBigXbtPLYXGSKQS7L63G2W9yoIYQv0V9bEuei3yG9QF+vTRej4pK8WsY7NADGH2sdlap3796dBPeq1xE/s6Fr8d+U0ejNwipAWWXV2GLE8xWJEIlWfxVfrmp+akoqJfRfTZ1Edx43ruHBfbVKeO7hbAI0e439np09qPPXXK4HVaohKjUCuoFqw9rLH19tZi+7Isi42xG1HBtwJEYpE8BkNWHV0bd6xLzy/Jfesn7ZuEygGV0XZNW+VK43XrYvpfTdBkoT1QvSjw/NfDv6qsCfEhw7YPQ4MVDXAv+R7M3cw1qsPkes4VIrFIwS3raDiX6vjkmvlFHSMiuM+mNCnEPyHNQ5rj/+yddVwV+ff/n5cGRUrFLoS1sRvXRsVYO9bOdV1dddeuayMWdifGqpiI3YGiomCgYmGgKEp33PP7YxRlQQXks+t+fzwfj/tAZ+Ydc2fuzPv1Pue8TxfXLqm2Tz41WYxnGUtkXGRyosUPGdk/jbs4+vComDmaidUiq3TlufgcSz2XCmpk5dWVGSrXY08PQY243nFNsf3HDT9Ko02NPlvupn+4jN54TzrMuS6jN96Tm/7hmep3Ntn8G2QLjf8xH5INnXyc+Qd7g40N/iczqB/wD/EX41nG0nNvzyyt98Ns698fxkmaJBl1bJSgRv44+kfG1/jfuFHJbFuqlIiPT8Y7dvSoUt7OTskR8P8brVqJOHxh6dTvkIi4CNGfri+DDw6WVttaCWqk4Ehk7rbfMrSMa0xCTHJSyczGPs06N0vM55hnquwH3ka9lcWXF0ullZUENZLHKY+MPDJSbgbe/HhQaKhIzpyyp31ZKe5cPNWqS912dxNTR9O0F1l48EDkhx9EzMyUIO2M8uOPItWrZ84qodEov62qVf+nMVFhsWHS1bVrclLFD8G9n+IT6CN26+2S4yg+uEh9WFXKbr1duq3NSZokqba6mlRaWUmCo4PFaKaRjD0+VrSmaslar7UpDy5XTqaNqSmW03IpwfTRiutsQFiAoEYqraz02XaOPTwmqBGbJTZis8RGIuO+PKESGBEoOWflTJlbIyxM6g3Sk+p/mojmg+UiLk7EyipT4vx7YdKpSWLmaJbqt/A4+HFysPyH58OnAd8ajUZmn58tKrVKmm9pnm43ybQ4+vCoaE/Vlt8P/56hcmExYaI9VTvVggCPgh+laan5wE3/cGk02VMaTvKU+hOVv40me2aLjWz+M2iRzf8UC0MLAN5Fv8t0He1Kt+Pkk5OExIRkVbdSUNS0KEtbLGWzz2ZcfV2zrF4HGwcGVRnEyGMjefDuQfJ2LZUWTk2cWNRsEQsuLeDnPT8TlxiX/op79QIvL9DTg+rVYcUKEEl/+aZN4fhxuHULGjSAoKAMnNX/AUJDwczs3+5FhnD3cycuKY5RtUdxoPM+7hyzpmlMAcY/XEXhhYUZc3wMLyNefrGOkJgQ7LfYc+D+AVw7uTKsxrBM9aWAcQGCY4KJTYzNULlETSLufu502NmB/PPzM/LYSIqaFmVf530EjAxgvv18yluW/1jAxAT69KHl6QBeBj1hz909ybt2++5m261tLG2+lALGBVI3VrIkXLoElStDkyawbl36O3rpEpw9C2PHgkqVoXMElDJTpsC1a3DoUMbLp5Nc+rnY2m4ra1utZcvNLVRfUx3fIF8AQmND+f3w71ReVZmnYU+xMLTgbfTb5HIAQ6sP5VSvUxTKVShd7W29uZWrL6/i3MyZrbe2EpcYR8FcBdGIhhbWLVIerK1NvkQDgjSRJCFw/z4ABXIVwMrMihuBN3gc8jjNdhqVaISpgSkP3j1gW7tt5NDL8cV+qc+o0dHSYUK9CcnbLkzuzbn88YxvPQ+V1vvX/KpV8OQJt0bNZsym+3R0usGYTfe59TQiXef/PeBg7UBIbAiXX1xOsb24WXEqWlbkj2N/cOnFJQ50OcByh+UY6RoRGR9JJ9dOjDs5jgl2E3Dr6oaZYeaef3eD7tJxV0eaWjVlftP5GSo78OBAkiSJZS2WERITwuOQx3i99GLKmSkY6hgSEhOC4wVHxhwfw0C3gXTc1ZHGmxsz2GUXSUlJaN6/4jSivO62nPny8y6bbL4XVCIZGaFlk1E0okF3ui7LWizjl6q/ZKqOgPAACi0sxOafNtPDtkcW91BBROi4qyOn/U9ze/Bt8hvnz5J6I+MjqbSqEhaGFlzoewEdLZ0U+3f77ubnPT9Tq3At9nbei6mBaforj42FP/+EZcugfXtYuxZMM1D+5k1FdJiaKsKjcOH0l/0vU768IrAWL/63e5JuOuzsgH+oP9cGXoN9+6BtWzh3jgDbEiz2XMxKr5XEJMTQo0IP/qz9J6XzlE5R/mnoU5pvbc7rqNcc6HKAOkXqZLovJx6foIlLEx4Ne0QJsxJfPd43yJeN3htxuelCYGQgFSwr0KdiH7qV70beHHm/XPjBA/jhB+b2/YFdNYzx7O9JUHQQZZeXpV7Rerh2dEX1JTGQkABDhyqDzFGjYPZs0Nb+cps//QT37oGvL2hlci5KBOzsID4ePD0zJ1gywJ03d+jk2oknIU/oWq4rbn5uRMVHUb9YfY48OoIKVfKAXU9bj7fRb7k75C6lcpdKV/1R8VHYLLWhduHa7Oywk3IrylE6d2l0tXV58O6Bcl9+StWquNXNQ2uzI7yaB/lWb4OuXQFwvODIuJPjGFJtCEtbLE3V1ln/s9TfVB8dLR1e//kac0Pzz/brbtBdyq8oj1MTJ0bWGqlsvHgRh+V1eVoqHzcnBqCl0oKwMLCy4lbHQYzI2wYRZcCqpVIuzcK+pSlf1Dhd38XfufU0gi1nXvL4dTQlLI3oXr9Apuv6GhrRkG9ePvpV6sfsxrMBiEuMY+yJsTh7OgNwvs956hapC8CDdw9ou6Mtz8KesbntZn4q9VOm234b/ZYaa2tgqGPIxb4XAQiJDSEkJoSQ2BCCY4KT/5389/32N5FvuPnmJiqU34GQetilpdLC1MAUMwMzzA3NsdA3pfGtaM5rxhNmlDvV8bmNddk1ulKmzyebbP4psi0a/2O0VFqYG5p/k0WjYK6C1CxUkz339nz94EyiUqlY2XIletp69D3Ql6zSnzn1cuLS1oWrL6/ieMEx1f72ZdpzoucJfAJ9sNtgx4vwF+mv3MAAli6F3bvh5EmoWBEuX/56uQ9UqAAXLiiCpW5d8PNLf9n/MiEh/ymLRlR8FIceHKJjmY7KAHbaNKhfH+zsKJirIHOazOHZ8GfMbDiTI4+OUGZ5GVpvb82FZxcQEbwDvam1rhYxiTF49PX4JpEBJFsQvmRBCYkJYcXVFdRYW4Oyy8uy7sY6OpbpyPWB1/Ee5M3wmsO/LjIArK2hZUsGXYjlasBVzj09xy8HlQmLFQ4rviwyAHR1FYufszPMn68I8sjIzx/v6wv798OYMZkXGaCMXtVquHoVDh/OfD3ppGzesqxttRZjfWPWe69HX1sf23y2HHp4CI1oKGFWgvC4cOoWqcu2dtsAiEmISXf9ThedeBv9FqfGTpx/dh7fIF8GVh7IkYdHcLB2SF1AW5t88foABBa1UITbe7qU6wLA+hvriYxPeS1CY0PpsbcHNQvVRIWKzT6bv9ivMSfGUMSkCEOqDVE2xMXhPaoHh2xgXCsnRWQAODpCdDQuFTsliwz49tnxW08jGLH+LtcehfE2IoFrj8IYsf7u/8xKoqXSorl1c9wfuAOKiK++tjrLry3HqbETJvomuPsp+9z93Km2phqJmkQ8+3umEhkiQkRcBM/CnuET6MPpJ6fZc3cP666vY57HPCacnMCv7r/SxbULTVyaUGJRCfxD/QkID8DcyRzTOaYUX1Scyqsr02hzIzru6sigg4OYfWE2O313cu3lNYJjgjEzMCM8LhyAPhX7sKrlKnZ13MWJHidY6bASgCM/HyFhUgLvRr/jYV9vrsT24KD6AX/Mu0jBtw/Q0iT97XuAEpZG/5PvOJtsshqdrx+SzbdiYWjBu5jMCw2AdqXaMfnMZCLjI8mplzOLepaS3Ea5Wd96PS22tWDltZUMrjY4S+qtWagmE+wmMPXsVJqVbEbVAlVT7K9bpC4X+16k2dZm1FpXi8M/H6Zc3nLpb6BdO8VFpFs3RTDMnKnM3qZnoFSyJFy8qLiX2NnB0aOKYPm/zH9MaLg/cCcmMYaOZTuCuzvcuAGnTqU4xsTAhFF1RvF7zd/Zdmsbcz3mYrfBjtK5S/Mk9AllcpfB/Wd38uXM9839+ZzQSNIkceLxCTZ4b2DfvX0kahJpVrIZrh1daWnTEn0d/cw1OHw4uRo1ok9IUUYcHcGNwBvs7rQ7fUIFlEH/778r93qXLsp97uYGhdJwGZozR9n+88+Z6+unNGoEtWvD1KnQvPn/zKoREhPCpNOTWHFtBaVyl6KZVTM239zMi4gXGOgYUMC4AP6h/ixouoDhNYdz9+1dAGIS0yc0noU9w8nDiZE1R1LcrDgTTk3A2twaPR09QmNDaWnTMnUhHR0sE/QACPyhANy9m7yrmGkxyuUtx503d9jkvYkh1RWRICIMdh9MeFw4FzpcYNTxUazyWsXvNX5PU1Ce8T+Dm58bf7X/6+O95ejI7EL+FDcqSMfynbn/9j53bxzDYcFcttsX5GJAAHqScnZcI/D4dXS6vosUxMez5fAjRCNo3s/Ua0SZvdxy5iVzev2Q8TrTgYO1A5t9NjPj3Axmnp9JMdNiuHV1I1/OfHg892CV1yp8g3w54HcAGwsb7IrYMf3c9FTWh9DYUBI1iWm2YaJvgpmhGWYGZpgamPI45DFRCVF0KduF8pblMTMwS95vbmie/G8TA5OP4u49QVFB5Jufj5JmJVnXJqUL4yafTVibW9PUqimqgABYuhRZtQqJCGd/eT28m+kz6MxGRvaoAWgArWQrVI8GabhMZpPNd0i20PgHsDCyIDgm+JvqaFe6HaNPjObIwyN0KNMhi3qWmubWzRlcdTB/HPuDRiUaYWNhkyX1Tqo3iUMPDtFjbw+8BnphpJtyNqZ0ntJc6neJFltbUHd9XfZ23kuD4g3S30CxYopf+ZQpMG6cMhDdvBksLb9etmBBOHcOmjWDH39UBrN162bsBP8rxMdDdHTGXMz+ZVx9XamcvzIlTIvD9K5Qp45i0UgDPW09elfsTU/bnvxx9I9kd4rw+HDc7rvRw7YHBjoG39QfE30TjHSNCAgPAMDvnR8bvTey2WczAREBlM5dmukNptO9QvfPuiBmyN2kQQMoV44J14WS5jdwsHagXel2Ge+4g4Miqlu1UmKbDhyAqp+I/qdPYds2mDtXiX/6Vj5YNZo2VQR8s2bfXucnaETDRu+NjD0xltjEWOY0nkNYbBgzz88EwEDbgNjEWMLjwrnY9yLVClYDwFDHEIDohPQNrseeGIuJvgnj7cbzJuoNrr6uODZ25PCDw1jmsKRKgSqpC2lrYxmnC0Bg0dxw/G6K3V3KdmFK0BScPZ0ZXG0wWiottt7ayl+3/2Jbu20UMSnCoCqDaLS5Eeefnade0Xqpzv3PY39So2ANOpXtRJImCX+PQ8Qvn8auwYKVviEWThZExkeyYS+E6WlxrH1FjPxfkxRvhmh9dJ9Lc3Y8IgICAuDFi49/nz5VLDNPnypxbTExPB7mhiZX3r/1LePCJSYhRnE9+tTtKC2XpNgQXoYrAn/S6UloocW9t/ew32Kfor4DfgfQ19YnNjGWqy+vJguBgnkLphAJZobvhcIn20wMTFK4+M7zmMeo46PY9NMmetr2zNB5AfTd3xeNaFjTek2K7eFx4bj6urLEsg+qHj1gxw40Robsr2fJMOtQftWuyFTna6g6lGJhv9JM2HOa0HBDqpcoRo8GBShX5H/jnpZNNllNttD4BzA3NP9mi4aVuRW2lrbsvrv7fyo0AOY2mcuJxyfovqc7F/teRFdb95vr1NXWxaWtC5VXV2bsibEsbp46PqCAcQHO9TlH+53taba1GZt+2pTsZpC+RnRh1ixlYNa9u2KZcHGBxo2/XjZ3bkWctG6tDIz27MnygdF3Qcj7BQX+IxaN6IRo3B+4M9FuIhw7BleuKIPWL8yOiwizzs/C2dOZ/pX606tiLxZeXsigg4OYdHoSw2oMY3DVwZkOCFWpVOTLmY8jD4/getcVj+cemBqY0rVcV3pX7E21AtW+6NL0wd3kgwtLcGQYXo/DPu8nr1Ihv/9O8YEDsKmswszgG65dhQrKd9imDdSrp4jxDu+fJwsWQK5c0L9/5uv/O40bQ61aiuCwt88yq8b1V9cZcmgIl19c5ufyPzOmzhj6HejH1ZdX0dXSpXrB6lx8fhEbcxv8gv2YfWE261qvw8zQDENdRWikx3XK47kH229vZ13rdRjrG7Ps6jK0tbTpXbE3dhvsaG7dPNUMNgA6OugnCmYGZrw2zAl+FyExEXSUV277Mu2ZeHoiD4MfcvThUUrnKc2QQ0PoXqE7XcsrsRwNijXA2tyaVV6rUgiNJE0S8y/Nx+uVFx3KdKDexnp4B1znyOpoFv4I2lraVLCsQL+C/fgx1JSaU39FtXQJI2qVJWbaMNSdVyC8t0JIEoiKHh4bYOt1RVC8eKEIjU/R1oakT9x3cueGsmUpoYogWGOB5hPholKBmUkcB/0OEhITklpApBHPEJeU9mIgOXRzpBAFCUkJ3H93Hy20yG+cn3F1xyVbFMJiwxh3chxPw55SrUA1LvfPgBvtZzhw/wCjj49mbJ2xmRIZryJe4f7AnR8sfqB+sfofd2g0XF4xAfe1MTTwX44UK4bHsLZ0ynUETc5IXHOMp86wuUq8lIsL5XV0MCmxm9DQp8zpde6bzyubbP5JsoXGP4CFoQV+777d/7996fY4eTgRmxj7zbOyXyKHXg5c2rpQZ30dZp2fxZT6U7Kk3tJ5SuPU2IlhR4bRyqYVTayapDoml34u3Lu50/9Af7ru7kpAeAAja438ui/6pzRpAj4+0LOnIhrGjVPcN3S+crvnyqX4k3furAiOLVugU6cMnuV3zn9MaBx6cIjohGg6lukArXpBjRrK9f0MiZpEfnX/lTXX1zCt/jQm1puISqWibpG6+L3zY8GlBUw7O41Z52cxsMpAhtccThGTIunqi0Y0nH5ymo0+G/EP8edxyGPsrez5q/1ftCnVJt2/yS1nXqbyk/+au8nGMvG0NISlj36gZZ6dzG06N/NuYJaWcPo09O0LHTsq4rx/f1izBkaPhpxZ6Jr5waphb68IRXv7rxb5EsExwUw4OYFVXqsol7ccZ3ufJSYhhlrrahGVEIWNuQ0aNFx/dZ11lKu8ZgAAIABJREFUrdfRp2If9t/fT9/9fam4qiJ/tf+LsnnLAl93ndKIhhFHR1ApXyV62fZCIxpWea2ic9nOhMWG4Rvky7T609IurKMDSUnky5mPQF1dxZL45IkScwOUyl2K0rlL8ybqDYs8FxEZH4mZgRlLm38MDlepVPSv3J+JpyZSq2At/IL9uP7qOjde3SA6UbEY3Hh1gyoFqjApNDeFw/exv6w2jiUH84dWPbj6AhY5Qs6cJG1xofTwyxgmwEKXwWyp25fHea0o/uYRLa+to2R8MOgZIrExSFJicvBmopEhwdaFCLTOx9NipjwslIO7+bQJ1IRj+OwlQzY4ca39MkSSUKm0EZLQiLDj1S+s2X4LUCxIf3czsja3/qxF4dO/etqKZS02MZZxJ8bh7OmMvZU91QtWZ57HPPpW6ouhriH77u1jgNsACpsUZoLdBGZfmM3ryNdY5kyHRfsz+AT60G13N34q9RMzG83MVB299/VGENa3Xq9siI5WxP3ChTT188O3pAkB66bSQ3Zz+sUu+lfqzwJVM4w7/gwtWigWxvfvrXfR77Awssj0+WSTzb9FttD4B8iKGA1Q3Kcmn5nMyccncbBJIwAxC6lRqAYT601k+rnpNLduTvWC1bOk3iHVh+Dm50bv/b25NfhWmiuq6GnrsemnTRTKVYg/j//J8/DnLLBfkPbM4efIlw+OHAEnJ5g4Ec6cge3bochXBpWGhkpweZ8+ij97WBgMGJCxk/yeCQ1V/v5HhIarrysV81WkpPczZdnVgwc/OyseGR9JZ9fOHHt0jA1tNtC7Yu8U+20sbFjZciVT609lyZUlLLu6jCVXltClXBdG1R5FBcsKadb7OOQxG703sslnE8/CnmFjYUM5y3IY6RpxpPuR9J2IRqOscnbqFI8Dy6PRN0m5+wvuJv6h/gw7O4bcLSvS8tBDLCrrsOzKMqY3nJ6+ttPC0FAZxPzwA4wfD3/9pXyvv/2W+To/R5MmULPmRzeqTFg1NKJh3fV1jDs5jgRNAgvtF/JL1V8Yengoa66vQQstWlm34viT41ibW+M10Ct55bGfSv1E5fyV6bq7K3Yb7JjWQBEHX7NobLu1jSsBVzjT6wzaWtocfnAY/1B/trffjvsDd3S1dNOcLAEUC0BioiI0tN5bAu7eTRYaoDzPnS87c/TRUVSoONXrFM/CnuF1zwuvl154vfLixqsbJGgS+OPgUOpLUZppF8dGSuKidYsbQe0pdz0entyF27cZ1gxyRScxqM9SiF+KRk8XrfgEwq2L4BV0DXNTiNYHnR/i+dlvLmbnwsj/OgqdJEXxPjZT4W0p+JQEH0vwyQf+pjGgeoC+9jNFFOiaYxZlRsloA+YuuEe4xPE06TeMdHthqVuBRN0AfBMXsbPrXGzz2WJmYJb52KT33Hlzh257unHv7T2c7Z0ZWmMo997eY/q56Zx6corLLy4z4/wM2pduz4Y2G0jQJOB00QmXmy78WfvPTLUZGBlIq+2tsLGwwaWtS8bePe95FvqM44+PUy5POWrrFlfeQytWQGgoEa3saWrnRxF7e/bfH0OhXIU42fMkDZ+guDg2bgw7dihW+vcExwRnLHYxm2y+F/69FB7//zDz3EyxmGPxzfVoNBqxWWIjffb1yYJefZ34xHiptrqaWC+2/mrSqIzwIuyFmDmapZnh9e8su7JMtKZqSYedHSQmISZzDV68KFKkiJK8bO/e9JVJShIZMkTJojtnTuba/R45dEg5p+fpS1L2bxIdHy05ZuaQGWdnKAnkKlf+bAK4wIhAqbq6quSclVOOPDiSrvoj4iLE+ZKzFFlYRFAjzbY0k1OPT4lGo5GIuAjZcGOD1NtQT1AjxrOMpf/+/nLx2UXRaDTy59E/xXqx9ecr12hE7twRWbpUpF07JVM3iGhpyeguztJwvIfUn+iZ/Gk43kNG918jsn27SGJicjVJmiRpsLGBFFlYRMIf3xPR1ZW9A+uJ+RzzrPtNrl2r9K1AAZGgoKyp8+8cOaK0cfRohoteeXFFqq2uJqiRnnt7yquIV/I05KkUXVg0ORFf081Nk5O0RcdHp1lPfGK8jDsxLjkr+Jzzn/9dR8ZFSsH5BaX9jvbJ21ptayUVV1YUjUYjzbY0+2ImZ2nZUqRNG+nq2lXqb6gvYmyc4jkSnxgvf936S+nLZKTQeANp111PBrZEptVDdtXIJTfK55XAormlU2dtsfkN0YAEGSG5xiKD2mjLs2Jmcq2ipbiV15c5dVWiMxkp9buO2A5CavVBnpggz42RwyWQlzmR9wtMSZSeSm6VyCmHGhaWDQOqyazZDlJwirEUmF9AVl5dKfvv7Zdz/ufk9uvbEhAekPr7fPNGpFQpicqfWwoPR/Sm6wlq5MLTCxIWGybFnYtLnXV1UiXVyygajUaWeC4RgxkGUmZZGfEJ9Emxr/CCwlJ0YVFRqVUy+/xs0XzybOji2kVKLS2VYlt6iY6Plhprakj+efnTncwxLRpubCjlf0HedGopoqcnkjOnyPDhIo8fS999fUVrqpZoqbVk9LHRynd89qySSNbeXiQm9buu5OKSMurYqEz3J5ts/i2yhcY/wMqrK0VrqlbGM2CnwbgT48R8jvk3P8TTy72ge2I4w1B+Pfhrlta7/dZ2QY1su7ntq8fuu7tPDGYYiN16u8xndA0OFmnbVnnZ/vZbmg/yVGg0IhMmKGXGjv2fZjn+x9i6VTmfyKwTjv8rdvvuFtTI/UMuSp/37UvzuPtv70tx5+KSb14+uf7yeobbiU+Mly0+W8R2ha2gRizmWIj+dH1BjTTa1EhcfFxSZZ1e4LFAjGYafRzIaDQiDx+KrF4t0rWriKWl0mddXZGyZRWhCyKlSsnNlTtTZvod7yGNxl+UW826KceULp0sOBZfXiyokROPTijtdO8u8UUKie4ULVniuSTD55om8+eLaGuLWFiIlCgh4uubNfV+ikYjUqOGSK1a6f4dBUUFyYADA0SlVontClu58PSCiIisvrZadKbpCGqk5daWUnRhUTGZbSKud1zTVe/Rh0dFpVaJ8SxjOfn4ZJrHTDk9RfSm68mj4EciIvI09KloTdWSVddWSWRcpOhP15cFHgs+30ibNqJp3lx+3d5DrBwLyLmqeWXvj5ays3lR2V8ph5wrijw0RYr+jlQZgOQYj4QYIIkq5EUulVwuiLiWRhZVR7q0U4RRhV8Q07GISq2SEotKSI01NaTDtHIytR7y068WYjRJS3wrFJAEPZ1kURFpmkPeGiAx2kh81coi9++nELIfuBl4U3LOyilttrf58nsqJESkUiXRWOaVeuPzS401NZKFm3+Iv4iIXHh6QbSmaikTBJnkdeRrcdjqIKiR39x/SyV2br2+JSazTURrqpYc9jucqvzxR8cFNeLxzCND7Wo0Gunq2lUMZhjIlRdXMtd5jUZe7dwgx0q8F3eFC4vMnSsSGiqRcZEy4siI5OeM10svpczFiyI5cog0apScRf7vmDmaieN5x8z1KZts/kWyhcY/wK47uwQ18i763TfXdTXgasqBxz/AUs+lgho55HcoS+vt6tpVTB1N0zVr5PHMQyzmWEjppaXlaejTzDWo0YgsWyairy9SsaLy0k0P8+YpL4xfflEsHf9lli5VBr//AdHUxbWLVFhRQXn5VqiQZp8vPruYfF98GOhkFP8Qf5l2ZpoUdy4uqBHDGYaCGimysIgs9VyaSmSISPJsdOiGFSK9en0UElpaItWri4werYjTsmWV7TVriuzfn3z/3PQPl9Eb70mHP4/K6JE7FJFhYSGyc6dIixYiIHHWJaRnR1357cDgjw1fuyYCMm9UXSnuXFwSk1IPGjNEbKxiyejdW+TJE5Fy5URMTESOHfu2etPi8GHlu/hK3YlJibLi6goxn2MuJrNNZInnEklISpDYhFhpsLGBoEZyzMwh/ff3F+2p2lJzbU15EvIkQ12xmGMhJZxLiEqtkkmnJqWYuHkW+kwMZxjKmONjJEmTJCExITLEfYgYzTASt/tuMvr4aEGNTN/QV1Y7dZF1I+rL1q7lZG+jQnLK1kRuFNaVGG3FAjGnDmI6RhlwRusgfubI6aLIdlttmW+nIxUHIUaTtUWlRhosqiITj46VuRfnylqvtbLHd4+cfnJabry8IVaLrKTpijqio9aW2ZMaiLRqJVKokAiKQMk1FhnVPa9Inz4iTk4iefJIZPPG4lIBidNCEg30v2rFPHj/oGhNVWbY0yQyUqROHREzM1myeoDoT9eX3nt7i6mjqaBG4hLjkg+dcHKC6EzTkasBVzN0XUREDj84LJZzLSWPUx45eP9gqv07b++UHDNzSDHnYoIa8X2TWhgnaZKk6MKi0m9/vwy1PfXMVEGN7Li9I8P9lpgYkTVrRMqUEQG5UgDxX+EoEh8vIor4Ke5cXHSn6Qpq5PzT80o5T0/F4vXjjyJRqZ81IspvQqVWyRqvNRnvVzbZ/MtkC41/gFOPTwlqxO+t3zfXpdFopMjCIlluYfham/Yu9pJvXj55G/U2y+oNjg6WgvMLSqNNjdJl7bkXdE+KOxeX/PPyi/cr78w3fOOGyA8/KDNImzenr8y6dcogsmvX5BfHf5Lp00Xy5Pm3e/FVouOjJeesnDLdZYAyON21K9Uxe3z3JFu6Mirio+KjxMXHRRptaiQqtUpyzMwhvff1lrP+ZyVJkyReL72ki2sX0ZqqJRZzLER9Wi1BT+4oloaBA+V8rYKCGrmTB0W0jhgh4uYm8uqVImaLFVP63by54hLxOWE3ZIhyL757pwxQihYVCQiQxEsecrG8qQhI0g82Itu2fZyJrlNHwmtWFtTIrjupv5cMsW6d0s8PVoywMKXP2toiy5d/W91/R6NRRFjt2p/9Pi4/vyxVVlUR1EiffX3kdeRrERE5639WjGcZC2qk5tqa0nBjQ1GpVTL2+FiJT/zy71Gj0UhYbJj4h/jLjVc35NTjU5LbKbc039Jc7Dfbi0qtkvzz8kvLbS2lyabGUnKyqVQarCWdeueUQa1UMrUesrYScsQKuZUH6dUGsR760RVJQEIMVXI7n7YcLomsrqwcdz+vjjQfrdwn68a3kNtFjSQ0OkSSNEmyx3ePoEbGHB8jqJGmLk2lmHMxRTiGhysz3MuXiwwaJFKzpiyopyeqKUjBkUh0QUvFvaZCBRFDQ5m5oa/oT9eXl+EvlROePVs0urqibqqv3D8qlMmSdLDAY4GgRtZfX59yR2ysSJMmIjlyyLOju0Rvup5MOjVJrBdbS5VVVcRyrmWKw+MT46Xq6qpis8Qm3S5+MQkxMuzQsGQ3xlcRr1LsT0xKTP6+urh2kaDIIDGcYShzL85Nsz71abXknJVTIuIi0tX+jts7BDUy9czUdB2fzOvXIlOmKM9VlUoiWjSWun2QqquqiIjIu+h30ntfb0GNNNjYQFpta/XRrevaNUXY16kjEvH5fr6NeiuokT2+ezLWt2yy+Q7IFhr/AD6BPoIaufz8cpbUN/zwcMk/L3+WuGKll4DwADFzNJMOOztkyu/1c3wwcS+6vChdx7+KeCWVV1UW41nG32bViYhQZqJBpGfPLz7kk9m1S7EGtGjx2Zmn756RI0VsbP7tXnyVvXf3Cmrk7k91lQH43yxJSzyXiEqtko47O6Y7dkej0cjFZxel//7+yYPWehvqyYYbG9IejLx7J4//WiG/jSkvhhNVYjgBGdICeVTVSh4N7S6okeM3divHhoSIzJypDDY+CNIbN77eqU2blHswJETk2TNllrpCBXE+MlVUapV471+dbOGQUqUUwfHXXyIgA9VVpfqa6pn/PSYmKiLnp59Sbk9IEPn9d6XNYcOU/2cVH2KEjh9PsflN5Bvpu6+voEYqrayU7PKSpEmSX9x+EdSI9lRt6b23t1jMsRAzRzOZfGqyrLu+TuZdnCcTTk6QwQcHSxfXLmLvYi/V11QX68XWktspt2hP1VbKT0IKjUBq9EPad0SGNUMW2enJzMYGkne0SszGIHtLqVIIiCQtlYRa5JDLBZG7dmXkctvqYj5RV6qPNJZGfbSl5FAkxwSVlFteTnrt7SWLLy+Wi88uSkKXTiL168uRB0cUt6Kdq5U6AwIkIDxAzOeYy0/b20jio4eSb4aZdFOXF9TI3vr5PravoyNSvrxI9+5yaHY/QY10dmmjfGFnzijxFsucJbdTbhl88L3V680bkVy55EgNC4nWRoJyaoumXLl0T45oNBoZeGCg6E7TlTNPzigbExIUt1N9fdGcPCkttraQoguLis8r5b1m72IvVd4Pqj/lg9ttct++wK3Xt6T88vKiP11fFl1elOrd9jbqrTR1aSpaU7Vkvsf85HveYauD1N9YP806/UP8RaVWpRZNaXDlxRUxmGEgXV27pv/3dOeOSP/+ioXcyEiZNHjwQGquqSmokduvb8uO2zsk79y8YjLbRNZ6rZXg6GAxmGGguEDduKHEDdasqQj8L3D/7X1Bzcdrkk02/yGyhcY/wPOw54Iacfdzz5L6zvmfE9TIxWcXs6S+9LLz9k5Bjbj4uGRpvcMODRODGQZy582ddB0fHhsu9i72ojtNV7b4bPm2xjdvViwbNjbpGxgeOaK8VOzsREJDv63tf4M+fRRf+e+cbru7Sbl5VsqAa9vHOJ4kTZL8efRPQY2MPDIyXWL7edhzmXVultgssUl2iZp0apI8fPcw5YFhYSIHD4r88YdIpUoiqveDTisrCRrUQ6Yu6SC5Hc2TFydAjWw8vVBk1CjF9UFfX2TwYCVWI73cvau0ceK9aL59WxJNcsmZYioZ6zb843GeniIODh8Fh4WFPG/TUFAj5/zPpb+9T9m9W6nv0qW09y9frlg2mjf/6kAoPWg0GomKi5QXdW3lpn1FOfvkjOzx3SPdd3cXgxkGYjDdQH7c8KN0de0qzbc0l4orKorOVJ3kGIDPfYxnGcsPjoWk9dRSMmJMRVk0pKq49qgq51tXknt2ZeR1maISncdMNFpaKUREvK62iJWVSL16EtS9nbScWEJQI1X+yCVee1fIJreZMmBPH8k5K6eo1CpBjWiptZIH10s9l4rHM480XeukZ08ROzvxfuWtTDKdVuKMkkaMkL2NC8ul4nqSZJJLBGSwA1J0pJbUGpFL6k8sJLJxo/Isio1N/t5qrq0pZo5mUsK5hCRFRynPqzp1ZNElZ9Geqi2Pgx8r7Q4dKjFGeuJnpgSCC4icP5+h6xSfGC8NNzUU8znm8iDovkiPHorocXOT/ff2J8+sL7y0UPSn64u9i7202d4mzbqWX1kuqEnTBerDuS3xXCL60/Wl7LKycjPwZqpjvF95S3Hn4mIxxyLV5NLyK8tFZ5qOhMak/SxusrmJ1FlX54vn+zzsueSfp8SbfG4hgU86rIjkZs0+LqAwe7ZikRRFMKFGKq+sLK22tRLUSPsd7ZOtTauurRKtqVoScOWk4ipZtaoyyfAVPJ55CGrk1utbXz02m2y+N1QiIv/2ylf/14lJiMFolhGbf9pMD9se31xfkiaJggsK0r1Cd+Y1nZcFPUw/Pfb24MD9A9wafCvd+Qe+RkxCDJVXV8ZI14hL/S4lr53+JRKSEhh4cCAbvTfi2MiR0XVGZyzXxqf4+Sm5M+7ehfnz4ddfv7wEp4eHsgRhiRLKErp58mSu3X+Ddu0gJkbJF/KdEpsYS965efnTvwCTzwj4+oK2NnGJcfTa14udd3aywH4Bw2sO/2Id++/tZ4P3Bo4/Po6+tj7ty7Snt21vGhRvoCxXGR2tXMtTp5TPtWtKUrJChaBhQ+XToEGKJZGjE6LZ6L2R+ecceRz5nBIhsPyUEU0dhqL6fbiyrHJG0GiUpYbHjoVx40hISuCXceVZ5uyHbqs2aO90VZZK/cDVq0pOGHd3BJjRKR/X21Rjb7cDGWtXRMkOnjOnklPjcxw7puTaKFIE3NygWDFiEmLSlcE5rWRt8UnxaTajo6WDZQ5LLIwsMDMwIyg6CN8gXwAqmZQiIjacx3GvGKZVixHBpTAJCsfw9Tt0A9+gehHwcdnmD5iaKtexYME0/7Y4M4C8hUuxouVKfF774PXSix23d3D++fnkKrRV2libW3Pv3T162fZicNXBHHpwiIWXF/J29Nu0n1Mi8PKlsjz2/fu8rluJfDb72f+Xitb3BI0K7luAWY0fyVfHHmxtOZk7gsaHuzC70WzGnRyHzy8+KZZa3nVnF51cO+Fs78zwo8M5ntiNxk6uxHt5YnW8FQ2KNWBz283w8CGa0qXwzp2EzTswMMiBTvuOsGFD+u+L94TEhFBzbQ0m7wqi24UwVNu2EdO+DWWXl8XGwobDPx+miUsTdLV1eRnxErsidixtsTRVPSJCy+0tufbyGrcG3yJvjo9ZxN9EvaHP/j4cenCI36r9hlMTp+Rkih/Ydmsb/Q/0p1TuUuztvJeipkVT7H8W9oyizkXZ2WEnHct2TNX+jts76LK7C3eH3KVU7lKp9kfFR2G3wY630W+5MuDK53PTxMUpy6MvWAC3binJYEeOVN4beh/vg6qrq+L1ygsjHSNMDExY1mIZbUu3Td5fe11tTBN1ODT5PhQoACdPgnnqJd7/jrufOy23t+TlyJfkN87/1eOzyeZ7IjuPxj+Aoa4hhjqGWZJLA5TMrz+V+ondd3czt8nczA+wM8GS5ks463+WXvt6cbLnyUytL/53DHUN2dJ2CzXX1WTa2WnMaDjjq2V0tXVZ33o9hXMVZuzJsTwPf86iZovQ/iRDbbqxsYHLl2HUKCWPwIkTsG7d518AtWvD2bNKTgA7Ozh+HAoXzni7/wYhIZD/+35RHXt0jIj4CDrsvQ/zN4O2NiExIbTd0ZbLLy6zs+NOOpTpkKqciHD15VU2em9k++3thMaGUrtwbVa1XEXHMh0xURmApye4TFeExeXLSiK1vHkVQdG3ryIurKw+KzSNbt7l17lnGLT7OcVHaBFhZkiz9lFUsDzMqDfl6JynM7raummWTRMtLahaVcnWDcy+MJtNOR8ydvVcrPuNhmHDYOnSj/2pVk3JJXLyJCp7eybtDOTeSTdeRsyjQP8RKUXJF4g/fgS9a9d4tmMNL557fDmD80wrQh7dJmS5FSHGOsRq0hYLRrpGqRKu2VjYpErIhoDBL78SFxHOxm6lmFt2BLaJFhAQQOS9eyx/vINZZYPJl6RisJcWC6vdwyQOLrhCrYBLkO/JR9FQv2xKEfHhkyNHqv5FJ0TjE+iD16tzeCc8J/r+fbbc2kqSJKGjpYMKFcVMi9G5bGdcbroQFR+FlZkVb2PesqrlKvR19Bl+dDhNrZoqIiMuTpmc8PFJ+Xn3Lvna5n5eBC1rFYG/dOfBupNUa/WKPna/s7DZwuR+1UtKwPyMOaGxoRTKVYjFnotZ23qtcp2S4hl7ciwO1g4MqzGM1R5LWOW5ncbjp7Al4Tovwl8wtu5YAGL+HE6MbhKVA+FRhcJYPY9U8ghlAjNDMy49boj5+VUs6FuaoR3b43R+Fi/CX3Ck+xEi4yM59/QcC+wXMOXMFArlKpRmPSqVivWt11N+RXkGuA1gX+d9qFQqDj84TO/9vQFw7+ZOC+sWKcolahIZc3wMCy4voKdtT1Y6rEwlQgCKmBShXN5yuD9wT1No/FTqJ8wNzdlwYwNzmsxJsU8jGrrv7Y7fOz88+nmkLTLevYOVK5XfYGAgtGwJixZB/fqpnhF77u7B65UXAD9X+BmnJk6YGpgm77/39h6XXlxix3ETsCyivGfSITKA5LFDWnmnssnmeydbaPxDWBhZ8C46a4QGKFnCV3mtwjvQm0r5K2VZvV/D1MCUTT9touHmhjhfdmZkrZFZUm+VAlVQ/6hm8pnJOFg7UKtwra+WUalUTGswjUK5CjHYfTAvI16ytd3WNF9IX0VfHxYvhkaNlNnISpWUGazatdM+vkIFOH9eSUZWt64iNmxsMt7uP01ICJQp82/34rPcehrB8gNx2CUcZFOrALrXaYVJ2DOab23Oq4hXnOh5grpF6qYoExgZiIuPCxt9NuIb5EtB44IMrjqYXuV+5gf/SDh6CsZ2hAsXFGuOmZkyUJg/XxEYZcp82YIlosz6Ozoq17lECbSXr6SM4W4M9XIwrMYwnDyc6LG3B+NPjmdkrZH0r9yfnHrpzLBdvTq4uHD91XWmn5vOeLvxWDf4AxJNlGSR+fMryb4+pVEjkgYNhG3beJ47mia/jCJyziJ8BrTCu34pguPDPgqFNKwP+9ZFY5EPqvgOgLsfq9XX1k/O3vxBHFgVKo9ZwWqY7T2CmUcA8R0nc0evMcGhehTKrUMnu9zULJkvZWK26GgICFA+L15AQACa53d5fPsCoY/uUCJYg3k0dJtwDxgEQJy+DqOaJLKyKtQLM6OEUQGm1LtD+1w1WFt1OqYjSykWI92vC7mo+Ci8A73xeqUkvrv+6jq+Qb5oRIOuli5GukaY6Jswp/EcqhSowv57+3HycOJEjxNYmVsxru44+h3ox+67u6loWRF585ogb088X3iy/nVNmFFBERmJiUqDVlZga6sIQ1tb2LUL7t5F+9x58s7Pz4sKxWjnEEmReCNmN56doq+62rq0/qE1++/v59eqvzLt3DQcGzuS2yg3y68uxz/UH7eubqg0GgZdTuCP0kLArz1w/KsZbUu1pUyeMsSfP4vhfne0teBUBWMa3nyuDJAza211dMTceRUPxw9mjMEavPb1Zs+9PfxZ+09sLGzYc3cPCZoEGhZryNCYoRQ0LvjZqixzWrK29Vra/NWGFVdXcO/dPZZcWULzks3Z0GZDquzdQVFBdHbtzLmn51jcbDG/Vf/ti5NpDtYObPDegEY0qSa+9HX0+bn8z2zy2cSMhjNSTAJMODmB/ff2s7/L/tTJOv38wNkZNm5Ufv+9esHw4VAqtVUkPikep4tOTDo9CYDt7bbTpXyXVMdtOuOMWayK1mH54eQJsEh/lu930e/IoZvjm5N6P82vAAAgAElEQVQfZpPNv8K/67n1/w+2K2zTFRSXXuIT48XU0VQmnJyQZXVmhJFHRoredL0s9RlNSEqQWmtridUiq3SvFPIBt/tuYjjDUGqvq/3tK2M9faqsAqKtLTJr1peXtH3+XPGZz5s3fTEe/zZFiii5Qb5DbvqHS8PJnvLjRCWZXcOJl6XhJE8p4dhAii4sKneD7iYfG5cYJ653XKXltpaiPVVb9KfrS+edneTIkaWSOG+uEs9gbKz4UefMqQRUz5sncv16mnkE0iQpSYljqFZNqadiRSUQ+31wdJ99faTGmo/xLj6BPtJjTw/RmaYjZo5mMv7EeAmMCPxiEwlJCRK2bYMISM1pRaTEohKy2XuzLLuyTGacnSGHetQWAVk6sKL8uOFHqbCighReUFhyzMwhNr8pPvi92ii5GA7YKP+/lxsZ3DWXlFn8g9RaW0sctjpI9z3dZeihoTL51GTZun6ECMjVhaPl/NPzn0/M9ndiY+Vm/9HSaNxFaTjhUvI1ajTxktwcPEHxWy9fXglw/SQWQkASjHPKg/z6csQKudDkB4ka84eywlbZshJ86ZR0XtlEmKLkiBh8cLCUW1ZO9Kfry4qrK74anBsRFyHnn54X50vO0mNPDymzrIxoTVViKfSm60nV1VVlkNsgWX1ttXi99JLYhFjpvKtzcsK952HPxXCGobKsa0KCyO3bIlu3ik/vZjK0GWIwUclhMbuOEhMSWK+yshrU8uXK6lDh4ak79dtvyqpQIlJxZUUl0HmKttwsmzvNc3C775ac98FghoHMPDdTgqODxczRTAYeGKgctGiRBBsiBtP0pItrF0GNkutBo5G7Jc0kRhvxyYsklCmlrO6V3vv87yxbply3KVNERGSN1xpBjZg6miavINVnXx8ps6yM+L31E9TIqcenvlpt+x3tRaVWid50PVl8eXGa1/VawDUpvKCw5J2bN92Bzx9iFj1feKa5/0OczL67H/PwbLyxUVCTcsUqjUbk9Gll6WBQcuFMn/7FJJaeLzyl/PLyyTE89TekHZie+PCBFBilLb92M1VWpssgE05OkCILi2S4XDbZfA9kWzT+ISyMLLLMdQo+zoLtubsnXa5GWc3MRjM5+ugo3fd0x7O/Z5bMtOho6bC57WYqrqzIH0f/YFWrVeku29KmJWd6n8FhmwN11tfh8M+HKW5WPHMdKVIEzpwBtRomTFDcbFxc0va/L1RIsWw0a6bMkru7Q506mWv3nyAkRPFf/w7ZcuYlGo0GFYr7jwYVIknkT+yB65DmWOaw5MarG2zw3sC2W9t4F/OO6ublWWLUni6eUZgtPAHBO8HAQLEyjRunWCyqVEnXLHgy8fGwZYvidnL/vnJdjxxRXOU+mVktaFyQ44+Pk6RJIiwuDCNdI4ZWH0pTq6b8dfsv5l+aj5OHE2Vyl8HGwgYNmlTxDBHxERQMgxdAXt9nXC4FPff1REdLR7EoVDMl+oUlv6zxJta8Hk/s7JItDeaG5gTeXMqi+8Hkr/qKk4sG0cS0AzYz57B8+0G4nh8mDYHOXVK6VHXsCFZWVB06K92uVgB+kU+Zbl2bpHAVvJ851qBCS6Nhi8aKOfq3oV69FK5Mb0z1GH9/Gev8/qJ6weosa7GMqgWqKhXW+RFat6bl9tZcMo/C3MicgZUHsvjKYoqaFOXqgKuUtyyfog8RcRHcCLyB18uPlop7b+8hCPra+lSwrEC9IvUYUXMEVfJXoWzesmnGUhjqGqITFgFnznB685+suy102n0UfBcpLlFAHnM9uhXNwwDa0qmIOxPzB1LcpAiWZ72+/mXp6CjxPoCOSgfvN9445+lB+TsuEBYGJiYpDm9cojE59XJy8slJupfvzvKry3kX/Y74pHimNpgKz57B+PGY9fmVzuWj2H57O42LN6ZawWrsn9WLNg9DiNYBk/bd0Fm5XYnlycC1TcbFBYYMUWbvp0wBoIBxAQDCYsM49/Qc9iXtOfTgED1texIQEQDwWdcpUFwal15ZykG/g+hq62JjYcMvVX9JZaXY5L2JQQcHYZvPlt2ddn+xzk+pVbgWpgamuPu5U71g9VT7bfPZUiV/FdZ7r6dNqTZceHaBAW4D6FuxL3/U+gMSEmDnTiX+4vp1KFcO1q+Hrl2VZ0kaRMVHMen0JBZ5LqJivooUNyvOk5AnuLR1SX3ws2cc71WHl02S6DN6W8bjuIDgmGAsDNNvAckmm++J7GDwf4hOuzoREhvC8R7Hs6zOA/cP0OavNvj+6kvpPKWzrN704h3oTfU11RlZaySOjR2zrN7VXqsZdHAQbl3daGnTMkNlHwY/pNmWZkTGR3Lo50NUzl/52zpz8iR0764E7bq4KIPNtAgPh9atFV/7PXsU4fG9kZioDLjXroV+/f7t3qTCYZYH0TGp5z5yakXTqMk1Ntx24ebrm1hq5aJHUAF6Hw+i7L13yjnVqqWIioYNoUYNxRUuA2hEQ9jbF4RsWkXIljWERAQRYleNYIcGhOQ3SzPI+WnYU4Jjgj9bpxZaGOgYEJcUR5IkkTdHXipYVsDa3BozA7NkF6U3ka/p1WI8N1tUoczqvZgZmpFDN8fHgVhSkhJ06u6u+HV/KmSPH4emTVni2A616gzPRzzHSNdICWyfOlWJ57CxgcmToUsXePgQSpdW3GoGDvzq9/Is7Bk7bu9g183t1DxwA7/ybsTp5011XG5jXXaN/ujCmZCUwNIrS5lyZgr6Ovo4NnKkT6U+ya4tYbFhDDs8FNnsgktFqF+0PhZGFuy+u5t+lfqxqNkikiSJG69uJLs/eb30wu+dH4JgoGOAraUygKxSoApV8lehTJ4yacfHaDTKeX8SRxHseQbzoEgAYrUhwqYoeWo1UtyebG3xyStU3NmAfZ330aZUG0JjQsk7Ly8JmgR62vZkWYtlX3aN+/NPOHiQIK/zFHUuip62HsFNT6JVpSpcugQ1a6Yq0sW1C37v/Nj00yYqrKyAjpYOk+pNYnK9SUpsgI8P+Poy7/ZqRh0fhVNjJ2rnq0ZJ2wZYRsH+35rQZuMlxc1naerA7K+yd68iQnv3hjVrQKUiLjGOcivKUcSkCIY6hpx7eo7VrVbTdXdXzvQ6w/Pw5/TY24Oo8VHKffc3Xke+ps/+Phx+eJhh1YfRrnQ7Gm1uxMR6E1HXVwPKvTLy6EiWXl1K34p9WeawDAOdtAf4n6OLaxceBj/k2sBrae5ffnU5ww4P40KfC7T6qxVl8pTheMud6K3bCEuWKC5+9vbwxx/QuPEXXSmPPTrGoIODeB35mmkNplGtQDXqb6qPvZU9R7ofSXlwQAD8+CNd6gZyu1JBbg27l6mYys6unXkX/Y4TPU9kuGw22fzbZFs0/iEsDC14GPwwS+tsUqIJOXRzsOfuHibkmZCldaeHivkqMr3BdMadHIeDtQN2Re2ypN4BlQdw4P4B+h3ox+3Bt8mTI/1+xiXNS+LRz4OW21ry48Yfce3oin1J+8x3plEj8PZWXt729jBmDEyfnnqGPFcuZSWnTp0UwbFli/Lv74kPK/OYmf27/fgbGtEwct9iQmNKo4spKj6+iIUknmp8GHF8FI2faePmAc0eR6JTxQTatlXERZ06YGSEiBAeF05IzCtCgtNYCenvQc4f/h8dTGhsKPKh2eRFYq6i8r2G6WPTFHELFkYWlDQviZWZFa53XZnfdD5FTYomWxk+WByM9YxRqVTEJsay5eYW5nrM5cTjE8QlxjGq9igcbByITYyl0qpK1LYypck7U7RM0lhUQFtbuZ+aNYNWrRQLWtmyyr7GjaFMGfqdi2B4jVA23NjAkOpDlABzNzdFcEybpojladOUeI98+ZT7+TO8jnyNq68r229v5+LzizR8oceO4wZsKQpn9B9hjkWy1enDNSqQ+6OwO+t/lt8O/4ZvkC+/VPmF6Q2npwhiPfn4JD329uB11GtUFbUYdlmDm949rkg43cp1IyohisqrK+P3zg8AQx1DbPPZ0rhEY8bUGUOVAlUonbt02qIiIgJu3kwZnH3rlhIzAsr529ri3aA07oYvCCiRmwcWKq4Mvg6fLCSxzG0ghXIVwsHGAYAbgTdI0CQwtf5UnC464fnCkx0ddmCbzzbtL1FHB0lKYoDbAATBxMAErVLvJ4Pu3UtTaLQv3Z5Orp3IqZeTvDnyEhITosy479gBhw7B/v2IsTG7fXdjpGvEKf9TyIQJ1I6C45VNaf3GFIyMYEYmLNzHjilCtH17WLUqeaA9z2Me/qH+HOhygEK5ClF3Q10Guw/GWM+Y2oX/H3tnHVZV9v3/1w0akRDFFruwE7sDe+zuHnWMccZExhg7RsHCjjFGBbGxxsAObEExUAQlpOve9fvjKA4Doo44n+88P97Pw3O5J9beZ597z91rr7Xeb0cW+izE2sQ6XSfjoN9B+nn0U/7vfpAWxVoAMK3eNFxOu9CsSDMKWxWm065OXAi8gJuTG0MqD/lHE3GnYk703tebV9Gv0i3q7u7QnbFHxtJ2R1vKRplwMKA4hiOLKNGMXr2UCE7Zshm2ERobytijY9l0cxMN7Rum1POUWF4CFSrWt/0bu1dQEDRsSLgqgX1FkphZddA/Jm4JjQ3FxjQropGF/yayHI1/CdYm1pmaOgVK+N+puBN77u9hct1/39EAGO84Hi8/L3rv683NoTexMLL4apsqlYq1bdbi4ObAYK/B7Om854se0DnNcnKyz0k67+5Mq+2tWNt6LX0qfHxi9UnkyqX80C9YoKRSnT6tFIoXKpT6OBMTJZrRt6/yo/32rVLM+38F/wcdjdikWHpsm0yYfycMUKFChSDvXnUIwlONO1o9eBfS8cwcNmpyoSlhRrj5VcKfeBN+/4MToRd9uu1YGlumYUQqrLXF6vEDrC4+wyrBEKvajbHq0APrgiVTjrEwsvgos9qVl1fYfW839QvVzzByZqw1ZmClgfSv2B/PB57MOzePNr+3oVSOUuSzyMfTiKeUajkUtdtGZfVdnU57xsawb5+SmtS8uULLmz+/MiEcMwbTIUMY2aIliy4sYmiVoR/Y16pUAU9PuHpVodD19oYcOZRi5a5dlRQfICI+gj339rD99nZOBJxArVLTOUc9Nl6tTeH9Z/mplzXzikRiIeuw0lUFdKjQpNyjbYED6Ph0MW5X3Nh+ezs189XkyqArqYgqYhJj+Mn7J5ZfXo5GpcHc0JxcpjlxrepPkZeviM0B+x7so4JdBZoVacak2pOonKcyJXOURKv+20+VCAQEpGV8evxY2a/VKkX+5csrq/TvIhXvi6NPnpjKxituhMbd4kTLE6nY6t7Gv2Xrra1MrDUxpd0DfgfIbZ6bKXWn0KVMF7rs7kL1tdVZ3GxxumlAaDREx4bj8cCD/hX7s/3WdsTEBFXBgkoReTpoUawFRhojll5YSkhMCAB3/c9TddQo6NgR2rThzyenufDiAoMqDmLN9TWsugbhJlD1p2WoOvdWoq5fmhp57hy0a6c4rZs3p6RcPY14yqwzsxhTfUxKxHx/t/0UWVaE7EbZ0YmOwMjANIXgcUlxTPSeyG+XfqNlsZasa7MuVcH3pDqTOOR/iM67OqMT5fNzqu8pHPN/hHjjM9C8aHNUKGxW/Sr2S7Pf3MCMZq/M6XsihHb3Vahs9inRi+HDled7BhARdtzZwahDo0jSJ7GuzTr6VuiLSqXixOMTPAx9SOvirVPTzgYHK4tUMTH8vmYIyZdn0LNcz398faFxoRS3+Q+QjWQhC+kgy9H4l5DZrFPv0aFkB7r+0ZWA8IB/XpPwFdCoNWxqt4lyK8sx5vAY1rVdlyl27cztWN1qNR12dmDjzY30rdD3i843MzTDo6sHw7yG0dejL4GRgUyqM+mfUwGr1fDjj8pEr1s3hZVq7VplBfCvMDD48GM/eLAyuZ8w4Z+1mdkID1de/484GkFRQbT9vS2Jgb3exTGUCc57ZyOJSG5rJhCpusX7BfSH1vBQHYT1kyAcYkwpX7ASVmVaYZUtZ4oT8XfWpOxG2VPTHt++rdRfbNum5MqPmqLQGn8BCwx8yF1/GfXys1L01Co17Uq2o13Jdpx7do6J3hM59vgYFkYWrC8WzZC4CLL7+3+cvczSUqkVcXRUomtnzyr0mD17ws8/M+mmBcvyPWbf/X18V/pvn8vKlZWJ9oULivPRqxd6Fxcu9mvCvALPOBhwlCRdEvUL1Wdls+V0PxOB2U+/ojfQMmJ+fdxiTmFlbEV4vC83NMMoqOtPYbOavNX7cz1xPpFyi7ob6pLdKDvr266nd/neqFVqwuLCuBZ0jT339rDp5iZikmIA0ImOqIQoIhMiaaKyx8stgBe711OgTa+0FNWxsXD7WmqHwtdXSVcExXEqX16ZLL93KEqVSqVv8Hdo1VrC48NpX7I9DewbpNq3xXcLCckJDKw0MGWb10MvWhZriVqlpkSOElwYeIFxR8Yx/OBwjgccZ22btamoTEMT3xIbE8agSoNoaN+QddfXEZUYhUWpUh91NMwNzWlWpBnrb66nrG1ZohOjWbp+KFsSExVGPGD22dmUy1WOsNhQTJJgY0VwGjiXSpNcoF496NHjo9ecLq5dg5YtFeaz3btTjdm4o+OwMrFiWr1pKdsMNYYk65OJTIhk0P5BRMZHpqqluBV8i+57uuMX6sdvLX5jRNURaZ65WrWW1sVbM/nEZHKa5uT60Osp36V/ClszW6rnq84BvwOpHY3kZPjjD15MH43Hg1Du5QD/OeMpNmqGsjD0CTx/+5zhB4fj9dCLTqU7sazFslQRk8Feg1Gr1Kl/9968UZy2iAg4fZr1p3rQoliLj2t0fAayajSy8F/G14sgZOGzYGNiQ0xSDAnJCZlqt2WxlhhpjNh7f2+m2v0S2FvZs6z5MtbfWM/ee5nXj/al2tO3Ql9GHRpFQHjAF5+vVWtZ3Xo1M+rPYMrJKQw7MIxkffLXdapGDbh+XVmt6thRWRGLj099jFqt5EhPnqw4J5MmKSuw/2v8H3I0/nz6J6VdS+MbfBNTvX2qVBx472wkYWedgInWBBUqKtpVBLVCwRqvhdO2sTy+c5aWE9fw077XDLVuSpeyXWhSpAlV8lShiHURrE2sP0xcz59X0tocHBS62oULlSLb6dO/2MkAyGWWC7VKzYvIF198brlc5XgZ9ZIqearQsXRHpgZuJv9Y+PHQDxnby5MHjhyBkBAljSo2VpkwDRlCrh1etMhZi/nn55Om9C4sDFatInnkcDwWD+XnX5twSPOYmpNcWTrOG8+kTgSOesKJIi4MGrwSsx8nk9ytC/2WN2FlzGka2TciMiESjUpDpMqXW9oxLBmak0ld7BRH8B0iEyI5GXCSLru7UHhpYWzm2dBkcxPcrrgRlxyHWqWmsX1jbE1tsTG1waubF0edH2HoUAH7pRvRvAxSalFmz1bqUkqWhGzZlLqboUMVYoZ8+ZRC/4MHlRz4kBAlUrNwIfTurTgaGTgZAD6BPuhFz/wm81NtFxHcrrjRtmTblMnvo7BHPAh9kKpezFhrzAqnFezutBvvx95UXFWRSy8ULZQkXRK7H+7FUNQsbrY4ZYL5KvqV4gB9xNEAsLe0JzIhkp/r/Mwoq+bsNHlM0NwpkDs3V15e4eijo1TJXQV79z10uwVuNbWUD4iDJ0/A1TVjmua/4949xWEtUUKJev1l4n3s0TH+uPcHC5osIJtRtpTth/wOoULF8pbL2eK7hStBV8hnkQ8RYdnFZVRdUxUVKq4MvpIuLW1CcgJDvYYy+cRk6hWsR0hsSMq4fS2cijlx9NFRRRTy7VuluLtIEejaFb/EYPYvGkqrSYWYU/LNJ50MvehZcWkFpV1Lcy3oGvu67GNnp52pnIVDfod4FP6IdiXbkcM0h7IxLExxMkJC4MQJ7mRP5PLLy/SrkDbK8iUIjQ3N0tDIwn8WWY7Gv4T3+ZWZnT6VzSgbTYs0Zc+9PZlq90vRt0Jf2pVsx2CvwcoPaiZhafOlWJtY02dfH3R63Refr1KpmFZvGu5t3Fl7bS0ddnQgNin26zplaamknqxcqajuVq+u5F2nbljJlV6wAObMUZhc9Omn9fxr+B87Gom6RDzue1DLvRb1NtQjIj6Cyi8ETcIjhNT3VtARzSPidHEYaYzIZ5GPG69uMLjSYLRqLcbZrTHSGHG+gJoGHWOoE/0bh5sVQVo5KRPx92MtokxI69ZVajn8/RVu/EePYPTodIXdPhcatQY7czteRr384nMnHJtASEwIOzruwL2NOwFjAhjub8WqMG/sl9rT36N/ijJ2GpQooUzGb9xQ0p+SkxWHNy6O+YGlufjiIueen0s5PFmfjN/MsSQmxlFS40a7He04mD0Y39W/8OKEBwWqN6WZy1byFCyrCFAaGpJ44RxdG4axze8PptSdwvGA4wiCTj7cp25/dKPplqZYGHxIlxSETb6buPnqJo75HclnkS+lKD6/RX76VejH8YDjlMlRihu1tuB0/rWisJycrDC95c+vFD7Pm6cIpDVtCqtXKyxK0dGKSvz27UoaWIsWiuP1hVHKwMhATgScQIWKwlaFU+07++wsd17fYViVYSnbDvgdwFBjSOPCjdPY+q70d1wfcp1cZrmota4WC88vZPrJ6TyPeYW1gQVmhmYpk9Pg6GDF0Xj8OO3iBIqD4uXnhQoV4W+D6TfnEIaiZmVxJXIz5+wc8lnk4+qRdcw5Dv1uQpBJMkd2zFTSgL5EHycgQNEAsrNTasssPtzDRF0i3x/6nnoF69G1bGo9CC8/L2rkq8HgyoNxrufMy6iXBEcH03JbS0YfHs3QKkO5NOgSZXOmrXd4GfWSBhsbsP7Geta2XsvJPidpV7IdAz0HEhQV9Pl9/wicijkRlRjF2Z+6K5+jn34iqHIJKg1Ts2/5CFr/4EbfSv3ZeWcnUQlRH7Vz7/U96qyvw8hDI+np0JO7w+/StmTbNMcNOzAMtUrN2taKuCIREcrn9cULxSEuWZKNNzdiY2LzxaQmf0VCcgIxSTFZNRpZ+M8iy9H4l/A+7PlN0qdKdeD88/OZ8rD+p1CpVKxutRq1Ss1Az4FpV1T/ISyMLNjUfhNnn51lkc+if2ynf8X+7O+2nxMBJ2i4sSGvY15/XcdUKhgyRGGZSkxUUlPeizv9FePGKSlWq1YpKS5JSV/X7tcgPFyJtph/ppBcJkAves48PcOQ/UOwW2BHux3tOB94nnLRZjxcBtPiq+Nrug5RprEAqWoznkc+J0GXwPPI51TNWxX36+7MbjSb4jbFSdIn4ZC/srKCmldFi55QrehJPEY3R1+yhLK67eAATk7KPdq3T0mb6tPnkyven4u82fJ+saNxxP8Iq66uYkHTBSkT3TzZ8vCrQQueHy/HnEZzOProKGVcy9B6e2vOPD2T9vtUvbqS6nLwoLLSnycPdOpE6d+PU8a6JPPPzefss7OMODCCInNyY7lqIzuqm9O90RjuDL/DzaE3+bnOz+St01KJzpmZpUx+9RHhLF0/hIP3PNnSYQubbm7CytgKjUqTqlD/QuAFTLQmVMpTiep5q6fqnl+YH1tvbSUuKQ49euqblSVvpLD+2jpm3LHFe8g58tZqrohjenkpzpOdnXK/njxRPqunTyspQwMGKOlen5Hq8jn4+fjPGGuNlfQ8ferv48qrKylmXYyG9g1Ttnk99KJ+ofofZZmyt7LnTL8z/FDjB8YfG8+cc3OoXbgeBu/YBdJENN6zYP0Na66t4XH4Y6rnq87eo0uxfPKKvqW6sfKdMOuee3uIiQxl7zbQCJQdPI0KMRasqq6FqVM/fwBevlRW3Y2NlSLwv0XzFvssxj/Mn+Utl6eKSCTqEjn26BhOxZQC+feK5J4PPbn04hIHux9kSfMl6TJGnXt2jsqrK/Ps7TPO9DvDgEoDUKlUrGm9BgONAf09+3/db8bFi1QYM4c8kXDgoRd8/z3+17wpXf0yto6NWdJ8CaAsiMUmxbLjzo40JhJ1ibicdqHCqgq8iX3D6b6ncWvlRnbj7GmO9bjvwdO3T+lcujNWJlZKGl+zZooD5+0NZcqQrE9ms+9mujt0T5di+XPxntkuK3UqC/9VZDka/xK+VUQDoE2JNqhVavbd35fptr8Etma2rG29lgN+B1hzbU2m2a1bsC4THCcw+cRkbr66+Y/ttCjWglN9TxEQEYDjOkcehT36+s45OCjMPl27KpOmXr0U5pu/YsAAhTlm926FKSku7uvb/Sd4r6GRXrFxJuN2yG1+9v4Z+6X21N1Ql0P+h8hrpky4pv6p4rpnHvJv82JExSBy50jghmYYiYZ3SCCEMC5xQzM0JSUnLlkZr0svLtGgUAPGHhnL6GqjmVF/BtdfXadMzjLUta8PwANbNe26QcUmj9l5bTO6B/egbVtwd1deM/na82TLk6Il8DmIiI9ggOcAmhRuwpDKQ1LvrFYNiyu3GFflex6PfsyGthsICA+g7oa61HSvyZ57e1JH9Vq0UK7L3R2mTUNGj0b1+DEdH5vg+dCTOuvr4PnQk6Uvy5EjQUPPDddwaeBCadt3K99nzyoO8pgxihMcFMTz4/s4bRrChJW3uO+mwdu5D4FhTwmPDydJn4TwYTJ4acAloidFc7LvSXwG+FDCuoSyQ4B3AaXwmFAGXoGLQVd49vY5Jy+XZqpNBzTLliupbFFR4OenfDdcXRWGqGfPvjhK8bm4GHiRLb5b6Fa2G6AULr/H65jX7L67myGVh6QQAEQlRHH66emUyfXHYKAxYFKdSdia2qJVa7n06irJSUqabHaj7BhpjD44GpAmfSoyIRLnU870qdCHvtYNOaV6SujU8XzfdCohMSEMPzAcA7UBS/6II18kxOfJiWWxsgw5GYlXwUQCdeGfNwBv3iiRjMREZUKcO3eq3YGRgfzy5y98X+37NFGJM0/PEJUYhVNxJ+KS4hi8X6FHNjMwQ6vSptE8ASUVzfWyK/U31qe4TXGuDr6aSusih2kO1rVZx9sWEZkAACAASURBVGH/w7hedv28a3gPnQ7++EOJVNaogeradVrmdORA4wKETRlHy5MDsTO3Y0fHHSlF/fmz56dZ0Wasu566lvBC4AUqrarEL3/+wgTHCdwcepO6Bet+tOmRB0eiUWlY3Xq18hlu0UJREz92TEndQ1lQeBX96uvTpt7NGbJSp7LwX0WWo/Ev4f1qREa8+/8U1ibWNLBvwB/3/sh021+K1iVaM6jSIMYeGZupdL4uDVwoZVuKXnt7EZ+cNu3gc1ElTxV8BvigQoXjOkcuv7j89Z0zM1Mme1u3gocHVKqkFFn+FR07KnSjJ08qrEHvC1n/TYSHf9O0qcDIQOafm0+FlRVwcHNg1dVVtCjaAs8uHuRPMMYv+B5b9xvi0mQ2at9bzDW6wrO3z4hJiiFS5Uu1qrfx0bbmlnZMqrz/v8I7wJsyOcvQc29PSuUohc8AH5J0SZx9dhaXxFoEzE3g5HowUhvQpROUnWzN5rBTJJcrq6zc79unpOlkEvJky/NFEY0xh8cQlRiFexv3tMQE1aopYnG3b2OoMaRPhT74DvPFq5sXxlpjvtv5HaVWlGL11dUfvgN9+hAyZSzMnMmMha05nw8ae97GRGtCmxJteDrCn3Ze/qi6dkVV+F2aUHCwEtWpU4cIiWON2yDa1g8izwYHCpxpR8MOUdQeYcJjOyPW7E7A382Avr5qNDql7im7UXbUKjVV/aJRL12mONiVK+M93R+NDlC9+xPQq2BtFahVrAE3ZgRT98BtcHNTojA1a6aOrrVtq0zSZsz4mlvyUYgIY46MoVyucrQs1hIgVRrluuvrUKFKRTzh/dibRF3iJx0NgBEHR5CgS+Bsv7NYZ8tJfEIMLqdd0IseO3M7xdGwsVGK1//maMw9O5foxGh+qTOdtvP3o1eBZ7NClMhRgvoF6+MT6EPlJ0n0vgUGAibzFsG4cXTP3RQTAxPcr7l/egAiI5Vnz+vXipPxd9Y8YPzR8ZgbmqdoXPwVXg+9yJstLypUVF1Tld/v/K5s7+aFsYExbba3ISYxJuX4+OR4BngOYMTBEQyvMhzvXt6p2Kfeo0WxFoyoOoLxx8Zz7/XH61dSEBWlRLqKFVOeq1qt8tx98ACnthN4EOaH01YnwuLC8OrmlapIH6B/hf74BPpw7/U9ohOjGXN4DI7ujpgYmHBl0BVmNpyZoY7Hrju7CIwKpLtDd7Ilq5WI6e3bSnSo0gdSiPU31lMuVzkq2FX49DVlgPdZEFmpU1n4ryLL0fiXYGms8Op8i9QpUDjYTz059c3sfwkWNVtELvNc9N7b++uLr9/BSGvElvZbeBD6gKknviBNIB0UtirM+QHnsbe0p/7G+hz0O5gpfaR7d6VQ3MJCmUQtW5Y6lapZM2XF6+ZNRf/h9Vemb30pIiIy3dGIiI/A/Zo7DTY2oMDiAkw9OZXiNsXZ12UfQeOCGGnZlFEbOvMo1I9TzxrSfa8//PQT/jHPmXN2Dl3KdCEwMpBcZrmoU+DjOixGmg86Db7BvhhrjemyuwvPntzk2vOW9L+czDTDc/QYYUfgspmEFlMmRLGWpvRu9JYSv+Rkrc1TEju2VwpE585VVne/Enmz5f3siIbHfQ823tzI0uZLyZ+eXkaFCsqk6dKH4li1So1TcSdO9T3FhQEXKJerHEO9hpJvUT6abW5GGdcy5NIsws3RkGm7X5OnSXtqP05iWZ4BHPE/QvSmtfDsGSEj++F1Zx8HR7Ugxj4fYbs3M6g1WLf3Y2LELsLjwknWJ5PNMBseXT04uOAVffpmx2lMTm7YJLF+j54HK8DHLZlsr9+iTdIr4og//0zCzascNA9iVk0dRbXvxPxUyio/KqWwP1ydiFrzCZJDtVoRFjx+XIm2ZDJ+v/07FwIvsKTZkpQ0qPfRMr3oWXV1FV3Kdkk1oTvgd4CSOUpSxLpIhra3+m5l261tuDm5UT1fdYbX+B5j0TDj9AyabG6CjYnNh9q1vxWEP3/7nEUXFjG25ljyrf8Duwu3qWVdnj1+HsCHFe0ppyHcXIPUrKGwbr1+jcUSN7o7dGft9bUZP2tjYxXyAH9/ZUJcokSaQ04GnGTHnR3MbzI/3XQhr4deFMhegOprq6NWqZnVcBYAFXNXZH+3/fiF+dFzb0/0ouf52+fUXV+X7be3s6ndJpa2WJq+7sk7zGsyj0KWhei5t6dSzJ0eAgMVco38+ZW6npo1ldqd06cVkge1mkb2jVCr1Fx6eYk9Xfake9/alGiDjYkNU05OoYxrGVZfXc2CpgvwGeDzcV2Uv2DU4VFo1VrcGixUxvT6dYUNrmrVlGNCY0PxfOBJvwr9/jnT4Xtb7+5/VupUFv6ryHI0/iVo1BosjS2/SeoUQNsSbdGLnv0P938T+18Cc0NzNrffzMUXF5l7dm6m2XXI5cCshrNY6LOQ009Of5WtHKY5ONHnBI0LN6bN9jaftyL4OShaVEkJGT5cKTZu1w5C/3LPHR2VH8bAQKVA+fnzzGn3c5BJEY2E5AT23tvLdzu/w26BHYP2D0Kj0uDexp3g8cHs7LSTtrnrc/znLjge/A6LeLhUfys1Nh6H/PkREUYeHImduR0xSTFoVBp6letFMZtiH22zXK5yFLIslPI+JikGnejoeHQgW866sbzUOA612MrNHMmMvr+IWQ1nsajZIqISojDWGmNiacvgMo8pOisXy9vlJu6XaQp7Uf/+aaNPX4A82fLwJvbNJ9nk3sS+YbDXYFoXb02f8h/RdDExUVLxLqcfZSuQvQB1CtShXK5yhMaFcvTxUR6GPqRV8VY02ueLuktXCm49gC6HDQ08fNHrknk1bSzHShnRYXVj8jdqT/PlhzlV044Vm0fR/NfdPP4hgBtDbhAcE4xWpeFCJVfaHA/kXMuy7FjwjAJ+IfRvB07d4K2xmipBcGoD9LljgNy8ydpTi8nRKYDBbdUcb16MJ+q3KboKSfokquetrqQSvbhE7fW1CYwMzHhA27WDcuUyPaoRmxTLRO+JtCvZjgb2DVIE5t6nTh19dJSAiACGVh6aco5e9BzwO0CrYhkX8j6JeMLwg8Pp7tCd7g7dAVAbGKIVFcd7H+f+m/vcfn2bWyHvonR/czSmnpyKhZEFE/N2VmotRo3iu2p9OfroKDvv7ORW8C2sYsG1OlhF61CNGKkwKk2eDIULM6TyEAIjAznkdyj9DiYmKjTcV64oNT0V0q6wJ+mSGHloJLXy10pX7+Hcs3P4h/vjE+jDsCrDuDToEmqVGnNDcyyMLCiXqxzbv9uOx30Peu7pSeXVlQmOCeZc/3P0Kt8rw/EDMDUwZWuHrfgG++J8yjn1zqtXFdpee3uFGGDwYKUWYutWpXbnL3C/7o5e9JTKUeqjqU9RiVHYmtqy594eilkX4/bw24ytOTatVks62HxzM6+iX9G3bC/MOveAixeVMa1ZM9Vx229vR5CUz8PXICwuDBWqNJGZLGThPwPJwr+GosuKyvgj47+Z/VrutaTVtlbfzP6XYvLxyaJ10cqVF1cyzWayLlnqra8nBRYXkIi4iK+2l6RLkqH7hwrOiPNJZ9Hr9ZnQy3fw9BSxthbJl0/kzz9T73v4UKRgQZECBZT//w00aiTSufM/OlWn18nJgJMy0GOgWP5qKTgjFVdWlAXnFkjg28APB+r1ot+4URY3MRf1NKS1SymJjHyTstv3SaT0XnFKak7ZL91/Oy6W0ysIzsilwEvyKuqV4EzKn8pZler9Ef8jUv+3yqKaTqrtOCPddneT2MRYeR3zWjrs6CA4I7339pYn4U9k3JFxYviLodjOs5Uaa2uIeoZa7ObllAUzW0p04XwiIOLoKLJtm0hCwheNyxH/I4IzEhAekOFxnXd1Fuu51hIUFZSxwcGDRcqWTXn7JuaNrLqyShpsaCAqZ5UYuBhIm+1tZJvvNvEP9ZdRB0eJ+WxzUTmrJO/83OJeRSuXC5ST8d2WSKOJ++XHrkvEq3EzEZD4SuVFf+mSiF4v8vixyN694uf8vRScZCoFx2vF3woRkESNSq7nQtbWMRcjZ40MWekkOCM9/ughDUZbikdJlQhIYC5T6d0OabSuvmSbnU2KLC0irbe1FpwRAxeDlHszzGuYGP1iJMYzjSXvwrxyO/h2xmOwe7dyT86e/cy78Gm4nHIRAxcD8Qv1ExGR60HXBWfk8ovLIiLSZnsbKe9WPtX3/8qLK4IzcjLg5EftJuuSpc66OlJgcQEJjwv/sGPNGuUa9HoJiQ6R/IvyC87IxGMTJXHRAhFjY5HkZLkedF1UzipxvbRCpEkT5XkQFSVPwp+kjKPJZOSX2ohmGvK0S3ORevVEihUTiY9Paa7yqsritNUpbQeTkkQ6dhQxNBQ5duyj17Hw/EJRz1DLjaAbafbtf7BfzGeZC87I3rt7U7b/cPgHKbm8ZMp7vV4vbbe3FZyRUstLSUh0yEfb+xhm/zlbVM4q+fPxKREPD+VaQcTeXmTpUpHIyI+ee+DhAVHPUEuDDQ3E8BdDiUqISrVfr9fLVt+tkmNeDrGYbSE4I3/c/eOz+6bX68V2nq0YuBhIrFNTERMTkZMn0z220qpK0nZ728+2nRF+PfOrWP1qlSm2spCF/wWyIhr/ImxMbL5ZRAOU9Kmjj45mSN33b2JavWmUy1WOnnt7piq6/Bpo1Bo2tttIeFw4ow+P/mp7WrUWVydXZjWchfNpZwbvH5xp6V60bq2kSdnbQ/36Ct2t7l0xb7FiSnqIqSnUrq0c963xDyIavsG+TDw2kUJLCtFgYwO8A7wZUXUEd4ff5dqQa4xzHEdei3fKwL6+JNWrzZDdffihVjTjyg9l7+RbZMumhPxvPY1izLp7PA0yxIicvAw2pbxuBUVNGlElT5U0xY5/LTxW6WHYylbs+vEqgx9m4+/Yfns7hZYW4tyzc+zquIsNbTew995e6m2oR9sSbbk/4j6NCjfiQuAFiloVpULuSvykP0rBIXHMXtmDSHMDJfWtYEFwdlaYeT4DfxXt+xh23N7Bzjs7cW3p+mnRrmrVkLt3+f3CWpy2OWG30I5hB4ahUWmY22Qu7m3cccjpwCbfTdR0r8myS8uITozGzNCMsIQIfnAqzYRebly1r4bOICdXCldjUbVp3Bo4AaMatVCNHasQAhQuzJ3B7akTswLjZDil782tYR2oMsIAi0kqek934PakgRgbmaPNXwhbU1tC40IxqFyNtl2FSkPgcq5kTJLh+LNT1NIUQoWK4wHH2dB2A4d7Hk65pJVXVuLSwAWAtwlvqb2+Nmeenvn4GLRvr0R2Mimq8SLyBb+e+5XR1UdT1LooACZahcEqNimWZ2+f4fXQi2FVhqVKc/F66EV2o+zUyl/ro7bnnpvL2Wdn2dx+c+oV53fq2uj12JrZ0q9CPyyMLFjos5B6eneeGsUjT58y/uh4SuQowcB7JkpapZsbmJuTO1tuTLQmJCcnMeYC1DUqhnkirHCIVyKiK1aA0Yd0wiGVh3DI/xDP3j770Ae9HgYNgr17YedOhWkqHQRFBeF8ypnhVYanSh2KS4pj5MGRtN7eGmOtMQ0KNaBdqXYp+wMjA1PE+mKTYum9rzceDzxwyOmAf5g/9958Rr3F3/BjhRHM9y9M3uqNlZqdpCSFKMDPD0aNUjRV0sHtkNt03d2VVsVb4drSlURdIicCTqTsfxrxFKdtTvTY04NG9o14+P1DquapmqYoPCO4X3PndexrBgXnxcT7tKI9Ur9+muN8g325FnTtq4vA3yM0LjSrPiML/2moRP4vKIn9/wGnbU5o1Vo8unp8E/tPIp5gv9Se7d9tT8N//r/C3dd3qby6MoMrDWZpi6WZZnfjjY309ejL7k6706og/0NsurmJAZ4DaFqkKTs77sTM8J9rLKRCcjL88ovy16ABbNnyge3l9WuFscTfX9FGqPXxSc1Xo3Bh6NwZfv01w8OevX3G9lvb2XJrC7dDbmNtYk2XMl3o4dADx/yOaXOOIyJg+nTC3JfTsbcxZ+0SWdl6Ff0r9k912MSND7jkH85fMzZVeh0lwm/jFqxMTPfc3wt6UUiHBFQColJe1QI5DbJT3b4Ot9/cJSDsMWqVCr1ICumqShT2szK2ZVADN4NvEh4bTmGrwhSzKUZUfCT339wnPD4ca2MrjDRGvI4JRq3SUNA0NwXDdBi8eKXU1uTMqeSDZ3+Xr/7XR+W7/98XopexLUPO96Jdf9mfmJzAlaCrWBpbUtqm5Eft6PQ6IuLDiQx/hf3TSG7bgs7MGEONESJ64pLiUhxgQ7UWUwMzzA1MMTUww8zAFAO1ATqV0M9xCM+zOaBSfRBAVOt1VA64xLybq1OUs68WNaWZ33TyWRZgguMEpp+aztO3TymdozQBEQGc6H2CuhsUtrd1N9bRunhrdt3dhaWxJf5h/pgZmFHIshD+oX60D7VlT7YXlIo0ZIfDDEr0HQ9aLSMPjGTFlRWAkk7p2tKVoV5DMdQaEpcUx7bvttGhVIf0P4S7d0OnTnDunJJu+BXos68Ph/wO4fe9X0rtwfO3zymwpACHexzm3PNzLL6wmJdjX6YSp6u2phr2Vvbs6JiWChXg8ovLOK5z5EfHH5nVaFbqnZs3K/TKCQlgaIjbZTe+P/Q9f/b7k+47u/D2dSAjC3dlZtDveLTYRJuWPygaDNu2ATDUayhbz68i2hBW/pmdwddgwsACrDO4TeCTDphu352quejEaPIszMOYGmMUp05EYRP77TfYtElhFfsIeu7pydFHR3n4/cMUZ+nmq5t039Odx+GPmdlwJj8d+4nFzRczstrIlPMc3R0pblMc5/rOdNjRgftv7rOu7Tq+K/UdzbY0wzfYl4sDL36yvgVQHPsVK2DlSiQigr2l1dzu2YRpEz9dPxcSE0K1NdXIbpydc/3PYW5oTvHfitOgUANcnVxxvezKz8d/xtLYEjcnN1qXaA3AqiurGH5wOM9/eP5JZXIRwXZ+DqJiIoicp8Zo736lsD4djD0yli2+W3gx9kWGdSmfiwEeA7jz+g4XBl74altZyML/AlkRjX8RNiY237RYu5BlISrnrvw/F+/7K0rblmZu47ksu7SMY4+OZZrd3uV706FUB4Z4Dck0/ZDe5XtzoPsB/nz6J/U31ickJiRT7KLVKquzx48rudnlyyvFgwC2toq4U/nyCu3k4cMZ2/oaZBDRCI8LZ83VNdTbUI+CSwrifNqZMrZl8OzqSdC4IFydXKlVoFZqJ0NEmcSUKMHDPWuo8aM1voVM8O5zPI2TAfAg6C1/f+SIWkOIeUGIiYHYWLIlqzFNBuMkMEoGkyQw1IGpTo1a4E3iW/xCH+KQozT5LfKhF8FAo0WvUhiOdGoISQjlxPPTBMS+oEpBR4rmLs396ABOvbqA2syM6sUbUN6+BuGaJPwTX5EtRz4sbfPjm/yC/dlD8HUsQnz5MkqfrlxRcsQjIxXGoJw5lT87O7CzQ5uvAMEWasKsjJWaj3z5FOekQAGkYEHOql8QaKWlcMWGiqNXpIhSx1O0KPqiRQi0M+W4YSBbE6/gwUPO2sSSpIYYA7hsFc91m0SeF7SEcg7YOTalbJMeVGzejxKNu5C3XmusajXCsFpNVFWqoC1dliiD/KmcDAC9WsPdMlXhzh3Yto2z3WrR0G8K+S0LYmduR8+9PbG3sse1pSu+Ib4sbLqQnXd3olVrqZGvBoGRgWQzysab2De8jFQiN3HJccQnx+NYoBa/W71gcLEuXHjejBKDflbUvDdsYH7DORTKXgiAmMQYXP50YVenXSTpkrAwsqDjzo6suLQi/c9qhw5QtuxXRzUuvbjEppubmNlwZqoCZxMDJaIRlRjF2mtr6VWuVyon41X0Ky6/vPxRtqnoxGh67OlBBbsK6TI0pUQ03jGc2ZnboRMdxayLcX3oDeo/UzMz6HfyZMtDk98OKN+lJYrWg/s1d7aeW4VKABVkK1sRlV7PiMiSvDUUtgyslqY5c0Nzejj0wP26u+KQTp+ukFG4umboZPz59E+23trKr41/xdLYEr3oWeyzmGprq6FVa7ky6AqFshciWZLTjEVgZCBJuiSqrK5CRHwEPgN86Fq2KwYaA3Z33o21iTWttrciIj7io+1z86bCgFaokOIU9emD6tEjYrasY3r8IXbe2fnxc1GYrdrvaE98cjz7u+1PKfJ3KuaExwMPaq2rxajDo+hTvg93R9xNcTIAupbtipHGiI03NmbYBoDbxeWExoUx/LJgtGvvR52MJF0SW3y30LNcz0xxMgDC4sOyIhpZ+G/jf5y69f8Vxhwakyqn9Vtg1p+zxGyWmcQmxn7Tdr4EOr1OGm9qLHkW5pHQ2NBMs/s65rXkmp9LWmxpkam1FddeXhO7BXZSeGlhefgmk+snQkJEWrRQ8o4nTPhQExAbK9KqlYiBgcjOnZnbpoiITieiUomsWpWyKS4pTnbd2SXtfm8nhr8YinqGWppsaiIbrm+Qt/FvM7Z344ZIrVoiIN7964vl7OxSankp8Q/1T795vU7qztog9aacl/pTLqb81ZtyXiZsuKccFBUluWdYiHqakttvPE0l/KUeQ+OsEdNZpoIzsv/BfknWJUu11dVEM0MjFnMsUvLIcUZMZpqI0S9GkmdhHtnmu02uvrgqpVeUFqNfjGSxz2LR6XWSmJwov138TXLMyyEmM01k7OGxMvbwWDGfbS4mM01kzKHREui5RbkvKpVSb/PjjyIBAamurfDSwvLj0R/TXPOG6xsEZ8TjvoeIKDneD14/kGknpkl5t/Kp6hhwRnLOzymtt7WWJ+UKyIvmteRl5MvPu7dJSRKzdIFsqqyV0T2WSMNJqce4waTzUt/ZXUREjvofFdNZplJocSExdDGU/Ivyy647uyQsNkzyLswrTTc3leCoYDGdZSqTj0+WwfsHp4w5zkiddXUEZ8TqVyvJtyifWP1qJXvvfcjbl2vXRNq1Uz7fRYpIwKLpop367v7N0EiTTU3kVMApMZ9lLnkX5hWckUnek9L//u7cqdg5f/7zxuFv0Ov1UnNtTSnnVk6Sdcmp9kUnRAvOyKhDowRnxPeVb6r9666tE5Wz6qN1BoM8B4npLFN58OZB+o3v2KH0/V1Nwfln5wVn5FbwLRERWd1OqdnQOmuk4hDk4eo5IiJy4fkF0c7QSM92iHYqkm+mtfTuoBIZPlxEpZJ2Mx2kzIoy6Y7X+7qTvXP6KG3PnZvh+CTpksTB1UGqr6kuOr1OXka+lGabmwnOyA+Hf5C4pDgREem3r5+UXlE69bnJSaKeoRaVs0qabm6a7nP9wZsHYvWrlTTZ1ESSdEkfduh0IgcOKDVjIJI/v8iCBSIRH2ru9Hq9dNrZSax+tZLnb5+n23+9Xi899/QUo1+MxOe5T8r2+KR46bWnl+CMFFxcUM48PfPRMei1p5cUXVY0w98PfVKSWE41EOPJSMLuHR89TkTE476H4IzcfHUzw+O+BHXW1ZGee3pmmr0sZOHfRlZE41+EjanNN9HR+Cs6lOpATFIMRx8d/abtfAnUKjXr264nNimWEQdHZJrdHKY5WNd2HYf8D7H66upMs1sxd0V8BvhgoDbAcZ0jFwMvZpptbG0VJeQFC2DxYqhTR2FQMTGBPXuUdJGuXRU18cxEZCSIoLPMzomAEwzwGIDdAjs67epEYGQgcxvPJfCHQI72OkqfCn2wMLJI305EhJIrXakShIezassPNCt4hmr5q+MzwOejaRIbb2zkRuIiQECUOhW1XodaL5TKeVdZgS1QAKuQSPTvgiZNSrbiL0LU2GWzIzYplhI2JeixpwePwh+xp8seLIws0Kq1JOoTKfkuPSkuOY4EXQJmBmZ039OdH47+wIa2GxhWZRg/HPmBppubEhwTzMhqI/H/3p/R1Uez4vIKtt7aikt9FyY4TmDDzY0UvtmfYUPy8fT6KUUvYvVqJSrRrp2iRSCSLsXts4hnjDw0kjoF6nDm6RmqrqmKySwTSqwogcufLtwOuU1By4IMrzIcr25eBI0LInh8MJ7dPCnYpBN57r8gd7bUYmrp4tw5jjUpzKGV4+l1NZkGrw+hU31QWVfrdagQRu5ZwkyPcbTc1hIRITAykHGO47g34h4dS3dk7NGxyup+67UsvrAYFSoq5KrA2msKbWq9gvXQqDRcfKF8F8LjwymYvSA3ht6gXckPeftUrKjUBFy/DuXKUWjsDILdrelzHUjW4f3Ymz339nCs9zGiEqMomL0gs8/OZoDnAJJ0qVW6+e47KFPmH0c1dtzZgU+gD4ubLUajTh3leR/ROPboGLXy10ojNufl50X1fNWxNbNNY3ff/X2subaGxc0WU9ymePqNpxPRACVSEp0YzbSyr+n+0obLHjmJyW5KpTezWHF5BW1/b0u/KzqOF4Hqkod+QXZ4loCkiz7g4MDorou58/oOxwOOp2mygl0FqhkUYtXtjQoj1Y8/Zjg+rpdduR1ymxUtV3Dg4QHKrSzHzeCbHO5xmEXNFmGsNUYveg76HUwVzYhJjOG7Xd+hFz0dS3fkYPeD6YrJFbcpzu7Ouzn55CSjDo1CYmNhzRolUuXkpDyTfv8dHj+GceM+pCgCKpWKla1WYmJgQt99fdGLPo39OWfnsMV3C+vbrqdGvhoA+Dz3odLqSmy7tQ1DjSH9K/andoHaHx2DARUH4B/mz5lnH6kZ0utZMtaRCE0So+3aYvhd5wzHdP2N9VS0q0i5XOUyPO5LEBoXmkVtm4X/Nv7Xns7/T3C95CpaF23mMhulg9IrSkvvvb2/aRv/BNtvbReckW2+2zLV7tD9Q8V0lmmmRx/exLwRR3dHMZlpIp73PTPVtoiIXLyosKlYWHyIYuh0yuoliMyfnynN6PV6uX7FS8Y3QfLOziE4I4WXFpapJ6bK/df3P8+ITieyfr1Izpwi5uaSNH+ujPIaKTgjIw+MTL1i+Te8iXkjNnNtpObammIxvZx0HL9Gak7ZL61GLpFb+RwkXoMk54FTWgAAIABJREFUmRiJjBkjdd2qpayeTzsxLQ271PuV8UKLC0mp5aUkMj5SPO97Cs5I9TXVBWektnvt1JGCeTnFfom9qGeo5fuD38ueu3sk78K8YvmrpWy/tT2ln08jnqashJZaXkp23t4ps/+cLTnm5RCti1b67esnD5/fEFm9WsTBQblHJUtK59mVpMbKKrLNd5uMOzJO6q+vL1oXbar+4oyYzzaXNtvaiNdDr4yfAb//rtgODv74Ma9eycv+ncSlDvLUAok21kjQirnSaENDyfNLTXGYskRqTtkvg/oukauFyssbY+RiHsTiJ6TJpiapVuL3P9gvOCPrrq2TNzFvxHy2uVRaWSml/6MOjhLNDCWaZL/EXnBGHFwdMrznKbh+XXTvIhx+1kiftohmKrL6ymq5GHhRss/JLkWXFRWti1ZabGkh0QnRqc9/Hxnw8Unf/kcQmxgr+Rflz5D5x/AXQ8EZ2Xxzc6rtCckJkm12Npl5emaac15GvhSbuTbSdnvbjO/hvn1Kv0OUiEhMYkxKW84nncXIWSsBOQ1FTEwk8t4N6b67u+CM2ExUycIaiGo64nt0i1y3e8e4VgSRc+dEr9dLObdy6bMLbtsm7hWVcwPCHmc4Pq+iXonFHAsZ4DFAhnkNE5yRVttapYngXH5xWXBGTgWcEhER/1B/cXB1EJOZJoIzcj3oeobtiIhsPrJAnOshsZZmSmSwfXuRM2cU9rNP4NijY4Izsthncartu+/sTnlGiIhExkfKyAMjReWskmprqonvK19p/3t7cXR3zNC+Xq+XIkuLpP97qdOJbtBAsfgJMZlhKInJiRnaCokOEa2LVpZdWPbJ6/oS5JqfS1xOuWSqzSxk4d9EVkTjX4S1iTXJ+mQiE76tKnSHkh3wfOD5ceGj/xG6lu1Kt7LdlAK8t5mnH7Gg6QLyZMtDr729Mo8xCiUC5d3Lm+ZFm9NuRztWXVmVabYBRQn6+nUl37dzZ0UtOSEBli+HSZNgwgTl9R/yNTyJeMLsM7Mp61aWil6t2FAB2uVuwPn+5/H/3h+XBi6UyJFWuCsNrl9XmLH69YNGjXh76zKtc59kxVU3VrRcwW8tf8uQg/7n4z+TrE9GL3rKFbSg4O0hmD1tTXL4GMq8fohWVLToksy+IfWwsymUcp5WrcVQY5jy3lhrjI2xDQYaA0wMTHj+9jl99vXBqbgTo6qN4lrQNX6o8QPnnp+jdv7aKSJ/IbEhPIl4Qv2C9Vl/Yz2DvQYzwXECTYs0pdsf3eixpwfhceEUyF6ATe03cWXQFezM7ei8uzPeAd7s67KPeY3ncdj/MCXXVaK1mSfzXHuwYn5nTpm/Ic/pa4TeucLrgd05e2oz90Pvp3wOLY0t6V+xP8d7HydiYgQe3TxwKuaUsYhXtXc5+OnpaSQno1+2lDUdCrLPdxdTz4BhydKY3n+Ed+08HH9yAiPj59xRj8FH2xrD4DFUenIT94pQLAy8txuwuZFrykp8WFwYg/cPpmWxlvSt0JdxR8cRkxjD3dd3qZG3BmYGZiy7tAy1So2I8Cb2DWrU1C5Q+7N0B6hQAfXevTw9uY/buVRs8IAHy+HizKEkxEXj3dubN7FvKGJVhDPPztBgYwNex/xFyLJjRyhd+oujGgt9FvIq+hXzm8z/6DEqVJhqTelYumOq7WeeniEqMQqn4qlrEvSip69HXww0Bqxtszbje6h9NzbvWOZMDUyxMLLgYehD5p2fxyhtLQqFJML48WQrWZ7sxtkxSYIYrTCxCdTKVxOHX1ZR3qok9m9V7GlfEhwVIoZR1UZx4OEB/MP8P7Tn6Qm9etGlfHeyGVuw5lrGEdGJ3hOVa312hvU31uPa0hXPrp5pIjheDxVlbcf8jhz2P0yVNVWIT45nTqM5ACmaKenizh0YOJCebSbz00UD1paI4fSxtUrktnZt+Awhu8aFG/NDjR/4yfsnbgUrOiTXgq7Ra28vOpXuxPT60znod5AyrmVYd2Mdi5ot4nz/8zjkcsCpmBMXAi9kWBepUqnoX7E/u+7sSv27LAIjRzL33loijWF8nYmfrLnYemsrKlR0c+j2yev6XIgIYXFZNRpZ+I/jf+3p/P+E96szj8IefdN23ufqHvE/8k3b+Sd4nwveaGMj0el1mWbX57mPqGeov8nKT7IuWUYeUFbvpxyfkvkRKb1eWSU3NlY0FO7cUbbPn6+sig4bpkQUPgNvYt6I22U3qb2udkqtQrfd3eTAzlmSqEbk0Rd89sLCREaMEFGrRcqUETl5Uh6FPZLSK0pL9jnZ5aj/0U+a8HnukzJuOCOLOuQRAZnniBhNU0l8UKDoqlSWYFtTyfmTRlptbZWykt59d3dps71Nuroamhka6ba7m+CMzDw9U+KS4qS8W3kp8VsJ2XF7h5jNMpMyK8pIjrk5Uuk6FFhcIMVm1dVVxeWUi2Sfk13yLconxx8f/8st0YvHPQ8pvKSw4IyUXF5SqqyuIka/GKX0wXSWqTTa2EiaragphtPVUmWYEsUwnoxUnZZb9t/bJwnJX6bL8a5xkRw5RKZPT7397Fm5Uae49GuD3LdBEgw0ErNgjohOJ29i3kiOeTmky64uYjBDK/ajlD6a/4Qkq5AwU5U0GmomEUbI5SIm8uqV8jnouaenWP5qKY9CH8noQ6MFZyT3gtzicc9DNDM0onXRSv0N9QVnpNKqSjLCa4QYuBjIuCPjvviyVlxaIeWGIrtLKXodj63VEvLbXLn69IJY/WolpZaXkpzzc0rRZUVTPyPfR3guXPisdl5EvhDTWaYZ9jE2MVZUzqp0V7zHHBojeRfmTfM9X+KzRHBGDvsd/nQnDh1S+vz8Q31B8d+Ki4Org1jPtZbwskWV/d7esu7aOmE6sr0M4lJHuW+GzlpZXQnRN24k41sbS665til1JrGJsWIz10ZGHxqtGPb2FjEyEvnuO5GkJBlxYITYLbD76Ar8madnlPoQF62Udysvd0LufPQyqqyuIp13dpZZf84SlbNKnLY6SXhcuCy7sEwMfzFM+yzU60WOHhVppmi3SJ48Ir/+KslvXkurba0k2+xsn9ZR+RvikuKkrGtZcXB1kEdhjyTPwjxSZXUVeRL+RLr/oUSCmm5umkbL5mXkS8EZ2XJzS4b2A98GinqGWlZdWfXhGkaPFp0KMZthJGazzNLU+KSH8m7l5bsd333RtX0KkfGRgjOpIq9ZyMJ/DVkRjX8R7/MsvyXzFED5XOWxt7Tnj7t/fNN2/gmsTKzY0G4DxwOO89vF3zLNbo18NZhcZzIzTs/gyssrmWYXFO2OZS2WMbfxXGaemUl/z/5p88m/BiqVwnd/+bLCfV+lCri7K3nLa9fCqlXQq5fCKZ8O4pLi2HlnJ21/b0vuhbkZcXBEijp7yIQQtn23jZaq4hjoUTQUPgW9HtavhxIlFFap+fPh+nXO2GuovrY6CckJXBh4gSZFmmRoJlmfzLADw6hkWpToreuxiYWm54Nx7edA00eQoBbOxT1AvfsPbPUmHDtoy6EHXinn33tzj06lO6W8F4Ti1sUxUBtQPld5dt3dxeBKg5l6cionAk7we8ffeR75nKOPjnJ+wHmiEqPQqDXYW9qTpE8im0G2FM2EfuX7kahLZNqpaTQv2pyC2QvSaFMjmm9pzsiDI6m7oa5C7xnxGICHoQ+5FnSNmvlrsqvTLmY1nIWpgSnHA45z5LUPiSo9drWa0jk0Dye2GXDJJYhWLX/AcPEyCPvCuiyVCqpWhUuXlPfBwcT068FP02uzn4es9oI8+Uph6Hsb03E/gVrNRO+JJOmS6FO+D0mSTL2nyqnRxrC/OFjFCt9bNqV1by0lA+MJqOvAZp9VbPHdwtgaY2m7oy3LLy1Ho9IwwXECnXd3Ric6CmYvmKJ54dHVg3hdvBIJeKes/SUYVmUYdo5N6dbNgPJD4VZuNbbfT6RC/a7cMBpNWGQwtqa2iAg13Wty9eVV5cSOHRU17c+Makw6PglTA1Om1J3y0WN23tmJIJS1LZtm3wG/A2miTreCbzHReyKjqo2iWdFmn+7E3yIaANkMs3E75DbTEh2xvPsY1Gou3T3GEK8hDLuqovNdWNnAjKaFm9DP35zBbaCb5XGaNRlKcNxrzj8/Dyj1JUMqD2Hd9XVEnvFW9Cbq11eUsrVahlQewqvoV3g+8EzTrcC3gbTc2hKAEVVHcHHgRUrblk73El5Fv+LKyys8Dn/M5BOTmVp3Kp7dPLE0tkzR0EgZo4QE5ZlRrpxC0xsSotB4BwTAxIlobHKwrcM2ClkWotX2VqmjVp+AsdaYrR22cv/NfRzdHVGhok/5PlReXZnD/ofZ1G4Th3scppBloVTn5c6Wm0q5K3HA70CG9vNa5KV50ea4X3dXIhk//ghLl+Iyz4kYSeDn2j+nqfH5O268usHN4Jv0rdD3s6/rc/BedyurRiML/2VkORr/It6HP7+laB8o4eAOpTqw78E+dHrdp0/4l9G4cGNGVRvFRO+J3H19N9PsTq07lQp2Fei1txexSbGZZheUMf2x1o9s7bCVrb5bab29deYLI5YtqzgbPXrAwIHKa6dOsGMH7NqlCJnFKcKHuv/H3nlHRXF/7/+1u/SOCChi74JoLNh774rGFnvvRmONDTX23mLvDQ32ilhRUBQVwYYdpQgqKL3t3t8fE9cQS0xiPN/P7/icw/Gc2dn3nRl3Zt7P+977PDqlsbbH/h44znekg3cHnic9Z37D+USNjOLYD8fo4tZFL/dIfLzy7x8aLj+Ia9cUL49evZQJQ1gYjBzJplvbqbelHq4OrgT2CaREzhKfHicri19X9eZGdDBLlz5ga64YGuSoQOl+Wi61KItTEjhijs8DH8ifH5WXF6VvxrLhal79EPfj7tO0SFPUf3hMFclRhExdJrdib1HKvhQXIy7SuEhjOu/pjIHagGVNlrH++nruvLjD5T6XKWhbkKjEKIrZFSMpMwkjtREmBiZsvLGR6MRoKuWphPdtb/yf+QPg89CHtdfWYmZoxuRakznZ9SRxY+J4PfY1IyuPxP+pP533dGbSmUnEp8bj5uimb4S9+eI2u+2iyDjtC4GBSnnIhAmK5G3fvn/PlNHdXfktLF3K4caFaK3bSYdbMD5ADZOnYBkUosjIokiUrr++nuFlFjJjVzRVsg7xtPBirMSN3Ba5mVfPBICGG85xPZ8h66a1we1xCrm6DqCkRUGm+U1DhQpTA1OK2RVj5ImR2JraokKFTnR0cetCbovcOFs5E5cahyD/iGioVCo2tt6ImaEZd5wMafV9FpWHmHDJPp18IzwJX2VKvbPhWKpNcLZypvbm2oqohUYDkyfDsWPvyNdHcCXyCptvbGZ6nenZDfT+hJVBK7EwssDEwCTb9nuv7nE/7j7NizXXb0vLSuOHvT9Q1K4ocxrM+byT/VMzOEBkYiQmGmMGzvKFESOIKV2QNi+WUzZaWHhcGNXGnCh1MpPi3Vi1/Q27zjlwrLiGfroD2JvZZ5MtH1RxECmZKWya3FJpwN+7V2/gV9qxNFWcq7D6avZSz4NhByn5a0kSMxJZ0ngJixsvxtjAmI/hrZnd3Vd32d9hP1PrTEWtUuvPxdnKGV6+VIxI8+dXnhkFC8KZM4ok9A8/gNG70kdLY0sOdTpESmYKbXa1IT0r/fOuJeDq4ErJnCWJSY7B2tiaoceG0rBwQ+4MvkPXMl0/WsbWtEhTjj84/pcltb2/683lyMvcnNgP5s9Hu3QJ89LPYGlkyfga4//y+DZe34ijuSONi3xY9vaf4u2i5LfSqW/4X8Y3ovEV8bUyGqC4hMcmx+pXwf6vYXb92RS0LUiXvV2+WC+JocaQbR7bePL6CeNOjvsiY/4ZnUt35tgPx7gYcZHam2vzPOn5lw1gZqYos+zcqahTlSunaMwfOoScPsW1dtUYeWgIeRflpcHWBvg/82dklZHcG3KPwD6BDKs0DEcLx/fHjY9XSIbmIytz8fEweLCSTUlKgrNnYds2dLkcGes7lp4HetK9THd8uvh8+qWXmgorVxJVphATI7YwICYvzxZM4pVRFg9yQLX81fEL9yPJ2YGGiY6cePS7Olr9+qhmzqTbkWe0vKtsSspIIjkzmfqF3jkaB0QEUKdAHdJ16bQu3pq7L+9Syr4UjhaOtPZqzfelvqeDSwf6He5HSmYKvl19qV+oPvde3cPSyJIMXYaehMamxBIYGUgxu2K453FHhYpCtoXIa5WXs0/OokKFex53fB/50m1/N5ZeXkqWLgs7Uzt0oqOATQGm1Z5GQC/lHnvy5gkAk85MwtfuDbJ5Mzx7BhMnKv4oZctCzZqKS/NHslN6mJvDy5cMPj6cMw4pHNmhwsW6KJrAyxhM8dSvmKdnpdP/cH9cLZtxLqAkBuklMcYBrZk7ZbUrKWfrQVBuHTccwTQ2jqWJNZih8mPsjy5UD4d5qx8zvMwAauSrQXJmMuFvwqmVvxbPk55TImcJrve/TnRSNBWcKgDKIolOdP+IaIDipL66+WoydZmoUHHdQUf1ps9ZuroXxhUqseS3JPZPuUNTv+dUc3Sn2Y5mbAvZphDuEiU+mdUQEX70+ZHSDqXpU67PR/e7Hn2dwMhAclnkIjUrNdtnR+4dwVhjTN2CdfXbxp8cT9irMLZ7bH+PmHwUf8ponHx0kudJz8mZLBg5OpExeQLfN3iNYWIy23dlccsBTtYtSM081ag+YyuUK0f7cy+53ngfdmaK/9LmG5vR6RT1pTzPk2l3z4BlFXToDh1Unht/QP/y/fF95MvDuIekZKYw8PBAWnm1Ii0rjc6unRlWadgnD//wvcNMOTsFUwNTrvS9QqsSrbJ9rg67x+SdUYpnzMyZyiLI3bvv3LI/MvHPb5OfAx0PEBQVRN9DfZHP7D+bdHoSIbEhqFAR9ioMr7Ze7Gi7Awdzh09+r1mxZsSnxXMp4tNmd82LNcdezNhwdR0sXMikks9JyUphcq3JenL1MWRoM9geup2ubl0/r2/pb+CtSuWHVL2+4Rv+V/CNaHxFmBmaYawx/s8zGgCVnCvhZOnEnjv/98qnQEn/b2uzjdDYUKae/XemXH9EiZwlmFt/LssuL/vPJH7rFarH+Z7neZ70nCrrqxD2MuzLB+nYUWnCtrXlUdMq/HJ9CaWmOlLe/TrbLq6mXcFmBPYJ5N6Qe3jW9qSoXdFPj/f69YfN+nQ6pUyrWDHFzXjhQiWrUasWSRlJeOzyYF7APBY2XMiaFmuyNWe/N/6sWQopGjKEnxqpMLG0ZcbCG6xJvUC53OUIigqiSdEmhL8Jx7R4aRqGGxD8PJiYpBhljDFjeN20Llv3QrGXyqaFFxfSpmSbd2HSXjOo4iAAtoRsYUqtKSy6tIiptacS/iYcj90eVMtbDRHBbZUb9vPs9aUTCRkJmGhM0Kg0GGmMcLZyxtzQnDsv75CYnsjBTgexN7PnYfxD7M3sGXNyDDZzbOjg3YHIhEhm15vNsxHPiB4VTXD/YArZFqL1rtb03N8TAEdzR377/jfSstJouK0hVdZX4fDry8j48UoJibc3qNXQoYNynaZPh5iY7NcxJgZtj26s26lIkw4PUjPfV4XhsB8xCg6B8uWz7T7OZxRvHt/F+nkDVAIqFCKpQoMKFRJXlwxtBrN/V/js4HWTuKSXLDe/RbeeNtR9DLp1a/k16FesjK1wsnDiYsRFAHa3242VsRVBUUHviEbKK7Si/cdEA6CDawc6uXbCSGNEhi4DezN7hkdvYPsUD7hxA9uq9Zi+PYq1Y86zPLocPb27Mu/SQmTSJDh69MNN8ijlUAHPAljUaNEnJ3yrglaRxzIPuS1yv5f5PHz/MHUL1sXcyByAEw9PsDhwMbPrzf57kqV/yGjoRMdo39Hk0+QgWZcOq1fz04XJXDR7xYX14JAMB+f2IfTlTX5+lh/evIHbt2HIEApVb4F/L3/alGxDfFo8dbbU4VVYMNSvz/DwXDywSOdY7PuLSe1d2mNjYsMv53+hwpoKbL6xmap5q2JuaM7ixos/etg60TH17FRa7GyBiPBTlZ/eZS9FlGxFixZs+fkK7leiFRL99CmsXKmUWn4GKjtXZmOrjWwN2cqsC7P+cv/ZF2Yz88JMALq5dcPSyJJ9d/d9Fkmp6FSRnGY5OXr/0w7jRrPn0fViClurmJM0qC+LAhdhbWzNT1V++ssYh+8d5lXqqy9eNgXfSqe+4f8PfCMaXxEqleqreGmA4l3RpkQb9t7Z+9mrRl8b5Z3K41nLk9n+s79o5mWw+2AaFGpAzwM9/7Nr7eboxsXeFzEzNKPqhqpfPHP0MuUlv8b5UK2/IYUHZzE78Rjln2VxrPQcojbYsnTCBdzF6dPKN3/Eh1zBr16FqlWVMq3GjZUyqR9/BENDnr15RvUN1Tn1+BSHOh1iRJURH44VHQ1jx0K+fODpCW3acPLsBrysnzK/6WJeprzkzJMzWBlZ4WTpRFxKHPZm9ji4VabBNcUx2PfR747xKhWJq5YSaQV7d4FVhprFgYtJykjKFvLG8xvUzFeTJ6+fkJyZjJ2pHT0P9CQ1M5WTj04y7PgwcpjmIDkjmWp5q3GuxznejHvDb9//BoC5oTlqlRojjRFa0eLm4Madl3dotbOVfhIdmRiJChVGGiMsjCwY6j6UHyv/SB4rRWWnTK4ynOh6guM/HNf3cVgaW1LBqQKBfQLx6eKDocaQFjtb8N3q7/C+tx+dRxslUxQSAs2bw+zZyopwly5w4QIsXcr16kWobLqdS86K03mRZBNUU6agKlhQISa9ekGTJmjLluGNrRnzWywnagHkTi8Mf3IEV6EhM9UOA7UBN6sX46UpmD2Nos0dRdFrybxbdJ7rzqLy6dR/CJnpqRgbGFO/UH1c7F1wdXTlyesnxKXGUT63QnDeTnxMDUw/73f3ESxvupwcpjmwNrYmNiWWYjmK0ftgbwJzpGJ16ASPz+7nhpOa/isvE73Wijtzx/CTZQC6EsU/mNVIzUxlzMkxtCzeknqF6n00bkJ6AttDt9O3XF/MDM2yZTQS0hPwC/fTe0a8THlJj/09qF+oPsMrD/97J/g2o5GVxbaQbQQ/D+aHi8nEmcE6u3CWX1nOjJPgnAg7+1fjQtYjyuUsTcP5+xQSam0N06YBYKQxwqudF5ZGllyOuEzZ9RW54JRF5Z0XqOhUkSWBS94Lb2xgTGmH0mwK3oSB2oCNrTYS8CyAmfVmftAbBOBN2htae7Vm6rmp9CjTA61oaVuqLWRkKIsQ5cpB3bpIeDh92xiw5cA0pTQwZ86/d22ATqU7MaXWFCacnvDRXsL0rHR6HejF+FPjsTa25kLPC2xqs4mVzVey69YudoTu+Ms4GrWGJkWafLpPY+5cmDiRXtWH8JJkOu/tTFpWGtPrTP+s5+um4E1UdKqIi4PLX+77d/Eq5RWGasN3JbDf8A3/g/hGNL4y7EztvkrpFCjmfc8Snn3x5ugvibHVx1IpTyW67uv63oTyn+KtQWBqZuoXNQj8M/JZ5+NCzwu42LtQb0s99t/d/6/GS8lMweumFy12tiD3gtwMOzYMGzNbtntsJ6aSN9t2pNF46BIMFiyClBSll+L+/c8b/I9EIy4OBg5UGo5TUsDPT5lI5FYM4i5HXsZ9nTuv014T0CvgPZlPAB48gP79lUnRypUwaBA8eUL68iUMvjGTmvlr0tWtK+uurcPa2JpLEZfoX74/e+/upU2JNqiLFMXxUSxlHdyyZZ5yOBbAowPkewM7j5pS1LYIo31Hk9vinXnd3IC5+lX3WRdmYWVsRYY2Qx9ThYrVzVczs95MTj8+TaY2EytjK9qVaseFXhcwMzJDRIhKiKKiU0VCYkMwVBuiQ0dQVBDmhubsb7+f4ZWGk5GVgQoV3fZ3o4N3h/fu3dyWuYlLjcPCyIKoxCiKLy/OGN8xVHSqyPme5znb/Sz25vZ8/9v3uP7qyvaAVWSJVikFWrAAGjWC/ftJqleDkUeH06xlEvOP6Vh3CNQC6pQUhcD99BNs347cuUNExiu2mT1gwXdpjGxtym+zu/HE4qHepO8tBC0vMm/gYO5AIuksd4csFXieA21WFhXXV8Q39RYVo1Uc3Q5b9gnebbzwC/ejg0sHAK5GKw3Z5Z3K66U2gX+V0QClFGRT6028SX+DqYEp9+Lukd8mP613tSYiIYKCtVpR9PQN6v9kz9VcwoaDMKTbCtaUziD92BEIyv5MW3hxIdGJ0cxvMP+TcbeFbCMtK40+5fooRCPzHdE48fAEWbosmhVrhojQ71A/0rXpbG69+S/LZ97D70QjNSOZCacn0C7BmeoxSj/E4CODcY8x5Mffq3lKNP6B009O83OYIyoDQ4XwL1yYrZ/KQG3A90Va4vRGR4EEFbWbxjLr8RaGVhqK7yPfbL1uUYlRNN7WWG9CN7rqaOZfnE/ZXGXpX77/Bw/3zos7uK9zxy/cj8OdFUlbF01uymw8pvRddOsGuXKBry+vLp5iXZkscucs8PeuyZ8wpdYUOrh0oOu+ru+9o/yf+uPyqwsbgzeSzyofT398SrV81QBFJv2H0j8w6Oggwl+H/2WcZkWbERIT8mFJ9UWLlIWSyZNxmbSMCrkrcOTeEWxNbBniPuQvx45JiuHo/aP/STYD0EvbfvaC0jd8w/9BfCMaXxk5THN8ldIpgJr5a2JnapetifD/GgzUBmxps4WYpBhG+oz8YuPmscrDymYr8brpxc7QnV9s3D/D1tSWE11P0KJYC9rubsuvV379W9/P0mVx4uEJuu3rhuN8Rzrt6cTLlJcsarSIqJ+iONL5CJ1Ld8a8ZVulmbhoUeWl366d4iZevfrnNRnHxyuKU+vWKWVSO3YoL9lr1xR38t/hddOLWptqUdCmIJf7Xn7PMZlr15TSn+LF4cABZXX56VNldT53buYFzONR/CN+bformbpMNt3YRGmH0mhFS2Xnyjx+/VjxLSisOIg3tCnPiYcn9Fk3jUrhR8L8AAAgAElEQVTDfQcNPVtB0+BkPI49QaPSEJ0UrT+EDG0GU2tPpbidUqpxuvtpZtebzdknZ+lTrg9Nijah456OtC3ZlroF69J1X1e9yk253OXY3Hoz1ibWpGnTOP/0PJZGlqhUKnKZ56KSUyVepLygnXc78lnnI3hAsL5saP/d/ZT6tZSeGGVoM+i+vzsutsWoZFeGhrYV2axpR9qvS1ndMg+hbapRY/gCfJcnEHDIgUIX79LFdyAl133HhjENyBw0EHx8OOicTKkhKp6bw4OlUPMpSjN4587K/3FsLKSlcfvKUeoPNCNvzSss61GS6bUE/0alaJ+2hXuGGxDeOYILWgThkXodUQlRhL8OZ3Z1OFoUSr6AlveUSYyB2oAruYU9k7+nVWgmN1tWIiUtiQ6uCtEIigrC2cqZXBa5SM5M1vdT/VuiAdCwcEMGVxxMli4LFSqexD9BhYrWXq0VB/icxVk53p/eXa1oOS4/lC/PgN8eE2euIqVvD32fS1RiFLMuzGKo+9BPlhCKCCuDVtKyeEvyWOXB1NA0W0bjyP0juNi7UMCmAOuvr2ff3X2sa7EOJ0unv39yv5dOLb6/jZjE58zaFIF574EAWGWp2bEri9u/txcsurmWEpYFabPiFBgaQt26SunkH5GYiMfmKzyyyGB5Ny/GVx/PxNMT2RS8CQdzB72C38Gwg7itdONm7E1OdDlB9XzVmXF+BkFRQaxouuKD6kl77+zFfZ07hmpDgvoF0VRVjPIzN3L1lxeopk6Fpk3h5k2lGb9+fSITowCUZvB/AZVKxcZWGyntWJpWXq2ITIgkIT2BwUcGU31jdaISo8hjmYegfkFYmVhl++7ypsuxMbGh+/7ufyl40qhIIzQqzfvlU8uXw8iRMG6cQuYBC2MLdOgYU23MZ03ut4VsQ6PW0NG141/u+0/wKvXVt/6Mb/ifxzei8ZVhZ2b31YiGgdqAVsVbsefOnv+z5VOgKAktarSItdfWcijs0Bcbt4NrBzqX7vzFDQL/DBMDE7zaeTHMfRiDjw5m/Mnxn7zeIsKVyCv8ePxHnBc602hbIwIjAxlddTT3h97nYu+LDHEf8n6jY548cOoUTJkCixeDnR04OkKtWuDv/+mDjIiA8+cV9aNmzZRV0+HD9SuvIoLnWU867elE25JtOd399Lv4b2uzGzVSegSCgmDFCqXvYNw4vWTuo/hHzDg/g5GVR+Li4MLBsIPEJsfy+PVj2ru05+yTs+QwzUHtArX1RKNUvCExyTG03d2WcqvLYTXbCq1o2eMCi2oa8otPFttz9KV50ebZTidDm8GW1lsA6HuoLyOrjKRK3ir0PtibNc3XkNMsJ213t2VV81Vk6jJp91s7ppyZQskVJWm0rRFanVYvh5mWlcZ2j+0UsC3A1edX6eLWBUO1ISNPjKSrV3u25BrELqfh5NSZ8iIplkbbGjFwYF4iSjpzYmQw14fewvmYPzFXz9Hx5x0sPZTFgGsqMgMDOPfgFI/zWlC5UR8OV1nGtSLzKFusJtdywf2c0Kq9ju6tYfOlXOzYC2b1GqHq209prN25E1JTSd2zm1EnRlFmVRmevnnKrna7uPfqHsYaY+6+Ujrn+1ZtQLBmIHFcRq19SbzqMsGaAWRkhZI7AVCBCmjVGfKNgNwpatIy00jKSKKDSwc6TtlN7KqFtLmawvrDGmyMlIldUFSQvmzqj2WIX4JoAMxtMJeCtgXJZZGLDF0GGpWGOy/v0OtAL0SEonZFOdfjHMEOOhq1esPJ/QsJzKfGLPgWWfnzwvr1TD4xHhMDEybVmvTJWP7P/LkZe5OBFZQJv6mBqb5HQyc6jt4/SrOizbj/6j7Djw+n93e9s/UH/S0YGBBrDrMebmJQqAmFKjZirMEZAPr4p5EzWbi9chqhpR05mHKdcTesUFvbKP0ZK1Zkb6ZOTYVWragfEI2lgTkHM28xve50fLv6civ2FskZyWwM3kiv/b1o5dWKavmqETIwhAaFG9DZtTNhr8JoU6INVfNWzXaIWp2WCacm0HZ3WxoXbsTlEgso0ns0UqwYja6+4UmfdhAerohTuLwrC4pIiAD+PdEApVfvQMcDaFQaam6qSckVJdkUvAkXexcM1Ab4dPH5YKmXjYkNW1pvwS/cjwUXF3wyho2JDdXyVctePrV6NQwdqmQKZ84ElYrUzFT8nyrP0SztXxu/igibbmyidYnW/xkZeJX66lt/xjf8z+Mb0fjK+JqlU6CUT92Pu8+tF7e+Wsx/gj7l+tC8WHP6HOpDbHLsFxt3eZPlmBua0/NAT3Si+2Lj/hlqlZpFjRexoOECZvvPptv+bu+paT2Me8i0c9MosaIE7uvc8brpRSfXTlzpe4W7g+8yudZkiuQo8ulAb6U+T5+GJ08gKkqRT23QAHx83t//1SvFcfz2bYUwnD8PmzcrZRC/IzUzlY57OjL13FRm1J3B1jZbFXUdnQ727YPKlZVV1pgYZfIbFqaMafquTl9EGHpsKPZm9voJ39praymRswSRiZH0/a4vW0O2UsKuBAOPDOS7A01INoSrB9cAcDHiImVzlWVRo0V6t+FzfRtyrgB4eO7iYI1fsTS01MfbErIFd2d3CtoUxPehL+FvwtnYaiORCZHM8Z/Dvg77eBD3gLa722JlZIVfuB9zA+ZSOU8ljjXbSXSD4zws/itjrZqSqcuk8+4O/HLeiJ8e5WJbyDaqPkinWjjceH2XQv7fE7t2CfcWpjMu1BqNDlY5RlDO4wV7uleE9evJ06QDkcVyQXQ0qowMbF4lYxx8k/kTalOo9GmqFTrDxZbl+K5AFbzWvaZIPFQYoCJdpeXWShVVQuJJ37ReWTVevRoiI5H58xHAdOAQenZbxME3TbnU4SSTz0wmMSORAjYFSM5MZnqd6cQkx5CgCiHU4EccUvqhzbWWBFUoaYZg6KxIBmdowC0aWtyD7S7KvaAVLTXz1yRDm4FV9770aWtIt+tazjYtRUzic65GX83WCP4WX4pomBmasbXNVmKSYnC2dCYiMYIKThXYdWsXM87PAKBwjsKc63GOTG0m/cOXY7H/KA16aPCxfgF9+jChzxa83zTGRmP+yVgrg1ZSJEcRfQ/HH0ungqKCiE2OpXGRxvyw9wecLJ0+2TT9l9BomFYL1BmZTDqtZVrHXFyJCgKBInGwbnAVOrWayOyaKvKlGtN52w1ITFQ8HEr8QTo6MxPat4dLlzA+eJTmJVrqBT7qFarHjQE3KG5XXCnxurGZFU1WsL/DfnKaKX0T16KvoUJFLotc2Q4vPjWe5jubM99vFgfoxO554ZjVU/q0To79nqKjjHBeuE5ZyPgTIhIi0Kg0OJp/QN3uH0CtUlPKvhSP4h+h1WnpXLozd17eYVe7XZ/se6hVoBajq45m4umJXI++/skYzYo249TjU6RlpcGGDcrza9gwxSPod1I3/PhwMnWZVHOuxsYbG//yfXE1+io3Y2/So0yPv33On4tXKa++Sdt+w/88vhGNrww706+X0QDFs8LSyPL/dPkUKGn0dS3WoRMd/Q71+2IZmP/KIPBjGFllJF5tvdh9azfNdjTjUfwjll9eTpX1VSiyrAjzAuZR2bkyPl18iBgZwaLGi6jgVOHv1+DWqqWUTFWuDLduKcSheXPFbwMUWc01a5QyKS8vRS51+HCl1OoPiE6MptamWhwKO4T39978XONnVJmZivmWiwt4eCiE4tgxRQWrY8d3ja5/wIGwAxy9f5QljZegUWnYe2cvJx6e4HnSc0wNTKm3tR4RCREERgZyNfoq5XKXJy2fExMc29KwcENcHVzZ0GoDg90Hk9damRhnqaFjO0g3VKFq146epTrr4z2Kf8TLlJdMrDkRQRh1aCjFkowZX6ALyy4vo+OahqRmpRISE4JF1AvWnLMmdEEaG9vvoHHFThiWq4i6SVNmjzzKel8zstDRqIAfNY2KcjytHSEFzXhYyIaxeTuhMTRiaDOoPc+VYZvvcmPwTUwNTXljCoMcgxjhFEquMtWITn+FztFBXzbj4uDCkc5HONn1JCZxCdxtWZWr31fHvfZ9JtaF41ddOL4N4grmpni/DPLGjmO2/xwS0hO4mfKEOjkOctMBgsrloqB7QxovOoxB/oL03x5GA3M3wl6FMabqGCbUmMCRe+9Wa6/Lc6ITo7EwssBAbcDTRCWbp1PBnZzQLwhuLoeJfqDSweCjg8m7KC+dvDuxyTWTu7NH0f5CPCeal+B16uv3GsHhyxENAPc87kysOZGoxCjMDc3xC/fDo4QHk85M0j+3CtoW5GyPs8rz4cgApledyLg6OsoNUHOngDm1Z25Xfuvr1n1QOvhF8gu8b3vTv3x/fb+FqcG70qnD9w5ja2LLyUcnuRZ9je0e2/9VA25YylNWVYAJpzJ52LMVU8M3U+G5GvsUOOpqTJ8Zx3gU/wivnDGM8dNiaGkNTk5Kc/VbaLVKmaSPj0L4q1fHo6QHN2Ju8DDuITrRsTVkKyExIZgamKJDx46bO/QZh6tRV1l/fT218tfit9u/6X0rQmNCqbO0HBV3nOP12py09NyJysZGUfS6eZM5JV9Rpdg75a0/IyIhgtyWuf/SxO6vICJsubGFkitKEhQVxMjKI4lJjmHd9XUsbLiQJkWb/OUY0+pMw8XBhR/2/pCt3+bPaFa0GSmZKZxdP0kRvxg4UMkK//7cTcpIYmOw4oUxs95MHsU/wi/c75OxNwVvwsnSiYaFG/69E/8biEuN+5bR+Ib/eXwjGl8ZbzXRvxaMDYxpXqz5/1mZ2z/C0cKRtS3WciDsABuDN36xcesXqs/wSsMZd2rcFzUI/BiaF2vO6KqjOfvkLIWXFmaEzwhymuVkZ9udxIyKYXPrzTQs3PDfa67nzAmHDim9FhERYGWl9E9MmKAQkP79oUULpQwnLU0ptfoDrkdfx32dO5GJkVzodYG2+RopYxUqpKgbFS8OAQGKUlLjxh/Uxk/JTOHUo1P0OtALZytnJp+ZjOUsS9rubgsocrTuedxpWLghFkYWxI2N43r/66xvtR4714o4xiTRpEgTzoef15exvG38TkxPxNqpIGsHV4Hr15m0+Fq22L4Ni9Cjy3weLoamS45Sf3IBPO+tRSXwKC2atX42jHjowE3TRPKVrMzpqrnwbJuD1N074NIlpSwkLY1eF5I52f0Uao0hzZ3O8qpzG26MuIdLvvLMfebFQPfBVHWuytXoq+RblI8RPiPI0mWxuNFirE2sWRy4mClnp5Cpy3z/3s7Kot7RO+yf+4xr+Qyo2A9MElO5v8GCGmcewooVuF6P4Nykh7Qt2ZYpZ6fgMM8Bt5VuRCZEYluzEeUlFwtGVaPQcFjjrsYyU8XJpBAGxeRjdkZNsrIyiE+Lh9+5eaqlCbcH36ZugbrZjcpUIMYG/FpRUTuafgZahEGz1w60K9oKn4dKRmyQwxVWzG5Lu4A3LPCBfFYK8fsvSqfeYmLNiZRzKoetiSJYcDDsII0LN6brvq4EPw8GoIBNAc71OIdKpaJj8iZWXbQjXa2jTdtMzhxYoogb9O37jnBkvMsobgzeiAoVPcv21G8zNTTVT06P3D9CeafyzPafjWdtT9zzuP+r8xl7bS7OCdDnRV5qW+0lr1ix8zcd1mlg0LQ51ibWzPWfS06dMb2uZCklU8uXv/PDEFFW3XfvVrKIjRQ38sZFGmNiYMLmG5tptK0Ro31H82PlHznd7TQAd1/epezqshy4e4DBRwfj6uDKsqbLeJnykr139nLEZznnPMrhP+UpU32zMG3YFIKDwdcXmjQhITMpm/LWhxCRGPGvy6Yexz+m0bZGdN/fnSZFmnBn8B1aFG+hJ4HWxn9hLPo7jA2M2e6xncevH3/SO6mUfSnyG+TkyMH50Lu3cq3/8DwbcnQIWbosFjVaRI38NSiao6jiFP4RpGelsyN0B13duv5rwvUpfOvR+Ib/H/CNaHxl2JnakZiR+MVM6j4HbUu2JSQmhAdxD75azH+K1iVa06tsL4YfH86j+EdfbNxZ9WZR0KYgXfd1/U+ufZYui2P3j9Flbxcc5zsy4/wMXB1csTGxwdHckTn159DRteMXn6ChUimStAEBCtFQqZSa46gopW9j0yYlm6HVZpO33X93P9U3VsfR3JErbX0ot+qAIlE7ZgzUr69kSfbvhypV9N9JzkjG/6k/SwOX0n1/d1x/dcVyliX1t9YnPi0eG2MbquStwtLGS8lplhMXexdymuXk2A/K6m27Uu2wMrZSjiU6GiwsIDSUhsGJpGvT8RvTAdq2xcE3AAReXzmP26XHSm11ZiY5z12hfxDKhFpgSYk31GwcTfHhKvq2gAf5LVldfgpB3/uiNjMnaEQH5m2KokGRRnTOf4XCy7axwC2ZQUYnoFIl5Xx/d1OuW7AuwQOCMTU05Ye9P7Dz5k58uvjwS91fWBq4FLVazez6sxEE30e+5LLIRQfXDkT/FE3f7/oqE32g/6H+elM1/P2hQgX2rxhKqYFatpUz5MLDWpzfpOKZYQrlB2mYXzaFNG06+a3zUy1fNayMlB4VjVpDTHIM5x1S0d4IZvbJKeR3q8G4usKAlmq6WlRlWaAdqubNuVxOKYtR/040TGzteZbwjLNPzr73cxlUYRDb3SDeFJ5bwJxzhviax+Ltvw6dLovOpTqiUqkYkrYH+581PLEF7wE1iE2K4VXKq3fZAMN/J2/7ZxhqDNnaZisvU19SPnd5siSLWy9uUcyuGC13ttR7reSzzsfZ7mcxUBvQpFk8v+2Glg41qR88gjVj6yvSwW8JR/HisG4duvQ0Vl9dTXuX9tnKUN72aEQlRnEt+hrXo69TxbkK46v/tRP0p+AX7seByFPMOglz3RIwNTZnoXcSdkk6jPMVRKdREZkQyaYbmxh5WYNpFlCnjrIoAArJGDVKIUsbNkDbtvqxLYwsKONYhlnnZ3Er9ha+XX2Z13AelfNWpnq+6hS3K071fNVpvas1gZGBLGy0EFcHV2ralmXh+t40bjKU7iFqjEaMQhUerjwfypTRj+/70JdMXeaniUbCPycaWp2WRRcX4brSlbBXYRztfJRtHtt4k/6GtrvbUqdAHXqV7UW/w/04H37+s8YsZV+KufXnsvTyUnwefKB8FFB5e9Ps4iuOfGeBrFql+Nn8joT0BLaFbMPJ0olOpTuhUqno9V0vvG978zrt9QfHOxh2kPi0+P9MbeotXqV869H4hv99fCMaXxlvX3TxqfFfLebbVbB9d/Z9tZj/BosbL8bezJ5u+7r9paLI58LU0JRtHtsIiQlh2rlpX2RMESEwIpBhx4bhtMCJpjuacjX6KuOrj+fRsEdc73+d0IGh2JraUm1Dtc9+cf5taLWKJ8abN+9eoFFRClEQURSnAGxtERHmXJiDxy4Pmuapjd8td5xKusP8+UqZxsOHsGkTSUXyceHpBZZcWkK3fd1w+dUFq9lWVN9YndG+o7n94jbV81Vncs3JaFQaPGt5EtrzMmtcxpEnMoGXKS8pd+4evwUXI637DyxcEsbi8X6KhK6RkVImsn07REVRcuBknBPVnHhxCZKSsLN0QAUk5ralTI123ChujYSFkdWtC0uOqygXDaggMC/4W73GPV8VUEG4JpHCpWtRzqU+8xvOZ/XV1Zx6fIodbXdgY2LDTz4/sbDhQjYFb/qgBn8p+1I8GPoAWxNbfjrxE6NPjGZ89fGc63GO8NfhzLkwhxymOTA3NOdZwjPyL87PthvbWN1iNae6nQJgX9g+SnraEd2uMU+bVadVlXDadIQ25uWJ+S0/VXcFoP5lBgVCn1GlTjfGnRxH4aWFKbmiJF33daVuobo8Hv6YZz8+o0a+GszL8sNABwMMKuP/1B+VSkXrEq1ZP/IcqQF+zJ/nwYpir5Xa/9+TKZGpMVRdX5UsUbIZhmpD/QrxiisrEBNj1pUDiwwo8TyTdvfUOGlN0YpwMdCbQVnlCBt0FzubPGwqr8Gz7GsqTXXmYNhBzA2VcpovTphRzDbn1J/D1eirFLMrRkRCBLkscpGpy8Rjt4e+9CevdV7almpLkoGORj01/HJKGFRhEP0P92fKS29k165shCO9cH7qnnzEILfsbuFvfTSO3j+KChXp2nS2eWz7VyvUOtEx6uAQKkSp6HAL7ltk0NEvnna3dKwcWIHvClXjedJzFlxcgJlWw8CzycoX27d/N8j06Yq87bJl0L27fnNyRjL9D/UnMDKQLMnCp4sP9QvV138+vNJwAiICGFlpJOaG5hjqVPjO6U9SBTcGrA0myDaVLaMaYBH9CsNZc/Ry1n/EkftHKGVfioK2BT96jpEJkThb/n2iERITQpX1VfjpxE/0+a4PNwfepEnRJkq/yI7m5DTLyW/f/8bK5iuplq8abXa14WHcw88ae7D7YBoWbkiPAz14mfIy+4f790PnzjR1qsljwyTuxt3L9vHAwwPRipZljd+V1nYv051MbSZeN70+GG/TjU1Udq78zszwP4BWp+V12utvPRrf8D+Pb0TjK+NtGvRr9mmYG5nTuEjj/4nyKVCMz7a02ULAswDmBcz7YuOWy10Oz1qezLow618Z7N17dY8pZ6ZQbHkxKq+vjPdtb7q6deVqv6vcHnSbCTUn6F/UzlbOnO95nrK5ytJga4OPmlP9YwQGKqvzAwZA69ZKCdX69YpM5rx5hPb8ibEHY/h+2CFG37Wm0/ZxjDs1jonxpdnVxwezbbtIHzmcgAs7WdQhP12CfqbkipJYzbKixsYajPUdQ3T4TTqIK4fsh/M4xzSSDT25cqcGK7e/5vSBRRR+o2acxwKl7KNwYdZ4j6dCJKzdk0l1v3CSgy+jMzLAokY9pTZ65Uo4eBCWLgVAFRZGwxo9OFHVEXx8sGvfA1Qqkk0NKFW7PS8z39AxZBJORQ4Q4iDs2QV2v8/PyjiWIeBZAHks8mBlbMW4U+MQEfqX70/9QvXpfbA3GpWGfR32cT/uPufCz9HJtRMDDg/4YMYst2VuHg57iJOFE4sCF+Gx24OKeSoSPCAYWxNbYpNj8SjpwcKGCxER+h7uS42NNShuVxwVKoYmu+I//zXrXvhQdLiaoELGhCZ0YenkSxipDODyZRg/HgdrJ2bUm0FH145EJUYR9iqM4nbFGVxxMGaGZgw9PpSjD45Sok47Mg01RNy6RJZk4WTpxOz6swmMCKTM6rJMTj/Gnu+MQKWUQwEka1Mp8caAlMwU1Co1V/tdRRBUqHBzdCNdm846dwNMMyE6hzF9L+sIsU6jjHVRSmbZ0j5iIV1mlif3w1hG15/CBmlJiegsfB4c13vd3Iy9+Z8o2Q1xH0K9gvVISEvA3Mic4w+O08WtC1ejrjLwyEBEhOjEaFZcXkGf8n0xt7anrvMphljWY1a9WUzzm0a/Q/3IcimplB2FhnLN2YC1h6BSvW6KgtLvJVWmhqakZaWxOmg1grCy2Uq9Etk/xe5QL67EhTLxsglqgfzP01joAxtrWNBvpg+5LHIRmRDJ6qDVDL2oxSpDBSYmimgDKH0DU6bAjBkw5J2Pw/Xo65RfU56tIVtZ2HAhBmqD93oIWpdoTT7rfAw+2I/BAVm83uDAnDWPCHoZivd3JlgbWxNazxWVxYd7T/6ovPUp/N2MRlpWGhNPT6T8mvIkZybj38ufJU2WYGlsSaY2k/be7YlNjuVwp8PYmtpipDFiT/s95DDNQYudLXiT9uYvY7z1TsrQZtD/cP93v83DhxUS5+FBnSUHMTEwyaY+FZ8aj9ctL/Ja5cWjlId+e27L3DQp2uSD5VNRiVEcf3D8P20CB6XsVJBvGY1v+N+HfMNXxe3Y24In4vfE76vG3Xpjq+CJPHvz7KvG/TcY5ztODKcZyrWoa19szExtplRZV0UKLSkkiemJn/2954nPZfHFxVJxTUXBE7GcaSk99vcQ34e+kqXN+svvp2WmSUfvjqLyVMmSS0v+zSkoePFCpE8fERApW1YkICD757duSch39aTeeH+p+3OA1J4YKLUmBkitif6yoJabJNhbiXd7V+k8PK+06IT0bY5MrWsge2o5SHDlghLrWlDS8+QWnZGREuOPf1ZWIsWLy+YOJQRPxHeUh8jcuSJbt0r44e2i9lRLwRkO0tbLQ0REXFa4SNe9Xd8/h/v3lfF8fcUr1Ev/+9xwbYPgiRhOMxTb2baCJ+K8wFmmnJkiNy4fllgz5EQhRD0ZMZhqINPPTRc80f953/IWEZHw1+FiNctKeu7vKSKijzHTb6YUWlJI3Ne6S0ZWxgcv7+vU11JoSSHBEym/urzsub1H8ETa7WonRtON5LtV38m5x+fEbaWb4InU6msoDmPV0qcF4jbeRvBECg1DLuRTiU6lEu3oUSJpaSIiotVpZdP1TeIwz0EsZlrIPP954vvQVyqsqSB4Iia/mIj1LGvZdXOXiIj41nQW0wmI4zxHyTE7h6inqgVP5LtV34nfEz/9eVuPf3cNDCYhbb9HzCaoRGbMkE1+SwVPpMjSIvp9jroYSay9uQhIzR6IxUwLCYoMkjN7F0qF4aaCJ1J3qLUEn9slseOHS7g1Ur3XuxhlVpaRZYHLJC4l7t//nv+Ap6+fivUsa6m9qbbgiWimamTa2WmCJ7IgYIH03N9T7ObYSVxKnETHP5OSPxpK7gkmcufFHdkcvFkMphlI8x3NJTkjWZ6+firqqWrx2jlRpH17EZVKJH9+kTVrZEfQJv25uK10E51O96+OOy0zTQpMt5OWHZEWHZV7JcZCLZedkIv3z4qIyHz/+WI03UjMphjICwu1SJEiIpUri/zwg8i6dcr9MHasyO/HotVpZZ7/PDGcZijfrfpO7ry4IyIijbY2kjqb6mQ/gPBwmfRTOTGaiERZquRR06pSecC7e8jtVzfJMSeHpGamfvD4L0dcFjyRc0/OffQc36S9ETwRr1Cvz7omfk/8pPiy4mI4zVA8z3hKelZ6ts8HHR4kBtMM5PSj0+99N+xlmDsQQXEAACAASURBVNjMtpGGWxtKpjbzs+K9vU83XNsgcvy4iJGRiIeHSIZynzfd3jTbdWu7q63giRwKO/TeWPvu7BM8kRvPb2TbPufCHDH5xUTiU+M/65j+KcJehgmeyNnHZ//TON/wDf81vhGNr4yYpBjBE9l3Z99XjRufGi+G0wxl6aWlXzXuv0F6VrqUWVlGSq0o9dGX4z/B/Vf3xXyGufQ72O+T+yWmJ8qW4C3SaGsj0UzViOE0Q2m5s6XsvrlbUjJS/nZcrU4ro0+MFjyRUT6jRKvT/v2Dz8oS+fVXEVtbERsbkRUrlG0iotPp5E3aG7n74q6cfXxWui09pScZb//q/hwgIzovFu2fyINOrRZdrlwKaWnSRKRXL5GffxZZtkzE21vkwgWRhw9FkpNFRCQuJU7s59pLR++O2Q5vypkpYvKLif4F+ZZYH7h74P1zycgQ0WhEVq2SF0kvROWpkoZbGordHDv9BHCUzygx+cVE5l6Yq/9a2342kqVCZlRX9lkWuEzmXpirTLZnWUuxZcX0E5P119Znm0iMPjFaNFM1suLyCjGYZiBjfcd+9FK/Tn0tJZeXFJWnSjRTNeK+xl20Oq1ci7omRZcWFYuZFrL79HIJbVpB3hgjNmMRpiClV7jKo5ljJd3USB7YItV6IiWWlZCLzy7KtahrUnV9VcET6eTdSSLeRIiISGpmqow4PkLwRIynG4tmqkYGHxksB+8eFPOfkXID1eL3xE9KLC8hmqkasZhpIZqpGnFd4aq/Vo6j3pEAPJHR6zoInojWxFh0RoZSYIK54Ik03dZUjKcbS4NuKhGQuDw5xLcgYjTNSDRTNTL7/GzZdn2rVO6FFBtpKKopyA8/FZC1TRxFQH5shOwI2SFtvNqIZqpGTH4xka57u8q5J+f+9WT9Ld4ujDTf3lxUnirJPT+3DD82XE+yVlxeod/3+brF4jIIcZxlJ7dib8mx+8fEfIa5VF5XWUb5jBKLmRaSkJag7BwaqiccSblzSt/miOFE5MLTC//6mOcfmySaycjMmmopNs1BBCTJAFm1a4x+n7VX1wqeyJCmv997p06J9O4tUrCgQoIGDtSTjIg3EVJvcz3l//LEaEnLTNOPszpotainquVF8guRK1dEOnUSnUYjT2zVYjQJqb34O8ET6b6vuySnJ8vaq2vFeLqx4InMPj/7g8c/5cwUsZlt88lJ/a3YW4Incj78/CevxevU1zLg0ADBE6myrorcir313j7LApcJnsjqoNUfHefkw5NiMM1ABh8Z/Ml4f0TP/T3FYrqpPHQ0EmnRQiT9Hbl5e9+/Tn0tL5JfiHqqWgouLvjBcTKyMsRhnoMMPzZcv02n00nJ5SWlk3enzz6ef4qApwGCJxIaE/qfx/qGb/gv8Y1ofGVkajMFT2Td1XVfPXbjbY2l9qbaXz3uv0FoTKgYTzeWEcdHfNFx1wSt+eBKVkZWhhwOOyydvDuJ6S/Kqm71DdVl1ZVV8jL55ReJveTSElF5qqSjd8dsk4ePIT0rXZ69eSZXjm+QQ00Ky5pyyLQfy8kg757isctDqqyrIgUXF9Qf79u/KhMPZSMZb/+ajzwkO12Rae1zyciZteUXr8Gy8fJa8X/q/9nnOPDwQLGcaSmRCZH6bVnaLHFe6Cz5F+WX0r+WFp1OJ9POThOLmRYfJYrp+ZzFr30V/Uq78XRjabernf4cREQqr6ucLSPy/e7vZUx9ZaLWugPiusJVdDqd1NhQQ/+9VVdWiYgyMWi6vankmp9LXqW8kkxtptTfUl9yzs0p43zHCZ7IiQcnPnqe8anx+hVhs1/M9PsmJMXJ5j4VJc4Y2VrOQBynWgqeiNNI5HhRZQIv/fvLvSfXpOTyktn+X4ovKy5nHp/RxwiNCZXSv5YWo+lGsiBggSRnJMvcC3PFYoaF4InYjkXiTBD7cRopu6qshDwPkZSMFJl9fva7cadkJxlNtjWRHSE7BE8kKTpcZO5c6dLFTPBEagyzkLVj6ouRp0Zu50SC8huKgFTphXh4eYjKUyXOC50l78K8kpGaLKsXdJbco9WimowsrKYRAZnRPrfEJsVKdGK0zDo/SwovKaw/t3n+8yQ2Kfazfkcfg06nk3a724nNLBtxXeEqKk+VNN7aWGxn24p6qlpCnoe82zkzU2JLFZDSY63EYZ6DhMaEypXIK2I/1140UzXS2bvz+wFCQyWwWgHRgjy1UYtu1apsE9K/i5fJL8VmooH0aI2Ump5LRjRUfp97GufPtqDQ92BfwRPxz4dCeEQUogFKVkOr7Lvvzj7JMSeHOC1wkpMPT74X7/nrSFF5qmR9+6LKdwsVksCxXcR8PJJjTg7BE1l8cXE24hcaEypmM8xE7amW9dfWv0cKK6ypIB1+6/DJ8/R54CN4Io/jH390nwN3D0ieBXnEYqaFLA9c/sEFleP3j4t6qlp+PPbjJ+OJKKTq7YLC5yDB94gUGq6Sqj/ZSGZKUrbPnsQ/ETyR3279Ji13tPzL+3+UzyjJMSeH/jl96dklwRPxeeDzWcfyb3Ao7JDgiUQlRP3nsb7hG/5LfOvR+MowUBtgbWz9VXs03sKjhAd+4X68SH7x1WP/U7g6uDKz3kwWXVrEqUenvti4bw0Cex/sTWxSLBefXWTI0SE4LXSi+c7m3Ii5waSak3g8/DHne56nf4X+X6wpb1ilYexut5u9t/dSY2MNDoYdZEfoDhZeXMjoE6Ppuq8rDbY2oPTK0uScmxPjX4zJuygvFS/1okWlh/RvqWJFnkj8X1wjOSOZYnbF6ODSgVn1ZuFVYTZnY5oQttqIyk8egfypmV60PDV7SK9W8CDjObW3+1N40UYOz+tL0xXVyDkvJznn5qTahmr0OtCLORfmsP/ufu68uKNX67oSeYVVQauYXmc6TpZO+qGPPzhOREIE4W/CGeI+BJVKhfcdb1oUa6EYAP6OR/GPmHl+Jm4r3ThnEEH8rSvUzFeTzq6dsTCy4Je6v+j3TUxPxM3BjRsxN/Tbvi/1PXOrgXdJ2LwPMu7cJDAykCWNl+j3GXliJEkZSahUKta2WEtaVhrDjg3DQG2AV1svLIwsOPHoBHUL1KXrvq4fNYkMeBZAfFo8ea3ykqnLpPG2xuxdPwrL6nWp6X0Fj8E56Noyi2RDYdaLMtxcqaL0c6HJD1Cvyn2s7Jz4sfKPmBooKk1qlZqIhAiCnweTnpXOkktLqLCmAjrRcbnPZUZWGYmZoRkdXDvolZ1sUsA2DQap3LnY+yKlHUsT/DyYFVdWfPQ31tG1o94HIsnCmKyfRuBXTvn9ns+RhJHPSW4u0bK+ooYyTzN56WzHwsu2xCTHcLr7aWKTY3me9Jz9D4/Qb+R27o+Pxk5txqi6WhZUgZ93R7Oid2k0Kg3jqo/j3tB7nOp2inK5yzHh9ATyLMxD+9/ac+LhiX9klKlSqVjVbBUmhibYmdlhZmjG8YfHiU+LJ591PtrsavNOStjAAPtRkzm9LIHcBrbU2VwHI40Rk2tNRitaTjw6oZfIfYugHGlUafCU0oMgopQzqoEDoWhRxXsm4++r0k3b0A2tNotUS1NMnj1n1klle/12Y/RKXamZqewN3aV8YGik9GOcOwdbt/4+yDSSs1Lpf6g/bXa1oWb+moQMCNEbDAKQnAwrVuBYoRY1ngh77F/Cnj28CblCkxxH0Zm/UwOzN7fP5s/j6uDKqmar0KGj98HedN3XlcR0pbEnOjGaoKigz+rPALLd928RkxRDB+8OtPJqRZlcZbg16BaD3Qfrz/8tbr+4TXvv9jQu0pj5Def/5bXtV74fIyqPYPjx4R9VldLjwgUsW7dn67MKXLJKYPaVRdk+zm+THxd7F7xve3Po3iGK5ihKg8INPjpc73K9iUuN40DYAUDxznC2cv5/7J13WBTX/sY/W+hV6R0ERARULKjYK4gtduwF7DW2GKMxNybRxNgb9oK9YO+KXawoqCgqVXrvbdmd3x8TNzFqklu99/f48uyz7MyZOWdmZ2bPt70vHZw6fHCbfxXe0El/orf9hP91SATh31DR9wl/COdVzvR178uPnX78j/abVZqF1VIrNnTbQHDD4D/f4L8EKkFFx50deZn3ksfjH2Osbfwv2e/1pOv47/IHiagHYWNgw0DPgQyuN5j6FvX/fhE9xMLHzJJMMkoyyCjJIL0kXf3/7z//nmZXX1MfS31LLPUtsdK3wlLPAsunSVgevYhVmQzLkZOxHDYBM0PLtzU4FAoICxNZam7eBFtbVOPH01n2gOriGSCRIEGGgBIQcEiexkGnh0iUSsrkAnWKNAmOqGLoEykSF1eeNLTlkpsG5w2zeZ73guIqcTIilUhxNHIkpzwHLZkW37T5hrrmdXEzccNS35Je+3sRkRJBZXUlqdNTSS1OxW2NG2H9w2hq25T9T/az7+k+7qbeRVdDl55uPfnhYB72z9KRRkVxPek6rbe35uLQi3QMFdl0YifFciHuAp+f+5ySuSVoyjTJKs3C4mcL9Cvh7iYQpBLWrBzMusBQGm9sTElVCbG5sfhY+xARHIFUImVX9C6GHhlKWP8wern34lHGI3y3+BLgGsDVxKs0tmnMqUGn3poU5ZXn4bnOk/qW9dndazf91rZh+N5nDIxSsqCbHiubKKmpZ8oCz0nYfbkIvweFHKonx+vANbqdH8arvFdIkCAgMKTeEAI9Apl8ZjKvi15TrapGV65LWXUZU5tOZXHHxWpjLKMkg1bbWhGfH49KUOFs5MTDr16zuFk1p/s1wMfGh62PtmKqY0pGaQYA9VOhQyIsayGO3d3UnbGNxjLt3DTipsRxI/kGw48Op4Z2DWwMbEguSOSby5AkL+HbcLjmJKFbrIBPMCyffwP/3f44GTvxOOsxIxqMYJX/KpxWOuGob0tSxnMWnK1k0j2Y/pkOMzc/w9rEQX3ecstyCY0OZVPkJmKyY3A0diTIO4iRDUZiY2jzd91PZ16eIWBPAMHewWx+uBmAfX32MfH0ROpb1ufs4LNoyDTEe6BOHXIb16VT+1SSC5NxqemCUlAiCAIvcl9wNPAo7Z3aU1pVSsONDamqriKxMJFV/quYrN9eZHs6cADs7GDuXBg5UmRI+xPEJT3CfYs3gY8h3FOXiPUKMjQVNElHFL4cMQKAdXfXMun0JAQJHNYdSe8246BDB5Fe9uZNIg+vZlDaGl4XvWaF3wqCGwb/+gxKSxO1H0JCRHa5vn1Z2duG2S/XkjUzSzTq4s/TwLIBJweeZMSxERRVFnEn+M5bY61SVmG33A5vS29uvr6Jlb4V+/vu52HGQ4KPB5M1K0utKv4+LLy6kLX31pIxM0O9TBAEtj/azozzM5BJZazyX0WgZ+B7n585ZTk03dwUXQ1dbo66KdJd/wUoVUp67uvJ9eTrRARFUNes7ruNbt+GTp1EtrGTJ5l/exGLbiwiIiiCJjZN1M2+uPAFK+6soEpZxZXhV2jj2OYP+26xtQUGmgYcGXAEq6VWTGwyke87fP+Xxv3PYHnEcuZfnk/J3JJ/e1+f8An/TnwyND4CfDb5UM+iHpt7bP6P9912e1t0NXQ5Pfj0f7zvfwbJhcl4rfeih1sPQnuF/mn7x0nF7LqSRnxmGbUsdBnS1hovBwPSi9PZ92Qfux/v5kH6A7U68CzfWSzqsOi91JYqQUVeeZ5oKBR/2HDIKMlQ6ym8gUwiw1zPHCsDK9GI0PvFkPjlc0V1BbMvzEYikXBuyDk8zT3FDSMiYOJEUY07OFjUxjAze3tgGRmiBzYkRNSlaNdOZKrp0YORJ0ezPWo7hkI9GhePolzXmRLiyK3egrTqMecvWLJhrh9rX+5GKpGiUimRCPBZgSWjL+bR4Wk5UjNzBD8/Cto0JcbblqdCJvuf7Cc8MRxbQ1vSi9NR/hIx0dPQo1RRikwio6lNU6Y0ncL5uPOERofS3LY515OvoyHToItLFwZ6DqRb7W6i8vCSJfDtt1BUhEJVTc2fajKnxRzmX56PgMDlYZeRSWW03i56d70svACwXmpNekk6DQt0ubKujAuuUjrcy2Xf0/1MOD2B5rbNufn6JkO8hrCj1w4kSOh9oDc3k2/ydMJTzPTM2PN4D4PDBjOu0ThCHoSwtPNSpjefrj69Q8KGcOrlKZ6MicJmzwlU877ikmkxA/sI5GoL2Bvbc9/mW8ymzEGorOS7AVZ8bRlDV9eumOiYsDN6p3pfnWp1Yk+fPejIdei9vzfn48+rjZD+Hv35udPP2BnZkVuWi+9WX+Ly4lAKSobWG8qGbhvQCejBC41imraOpaCyAF0NXbXAIcD0W+CRDUE9RbEzLbmWOkqzPmA9y24vU0/O8srziM+PR1OmSUp+EqvOSOjzREmhJhgrJIQGuvOVRQzHRp0nvSSdiacnYqZrRlJhEs1smqFCxd4mP/JsWAB+UaUE9YSWXccxKmgtkt/oEwiCwO2U22yK3MT+p/upqK4gwDWA0Q1HE+Aa8JcFK8edHMfWh1tRqBRIkGCia8Km7pvod7AfYxuNZU3AGrHh1q0QFET+veu0vjueJ9lP+Lbtt3ze/HP6HuhLeEI4O3vt5EriFXZG7WSA5wC2P9rO5eGXaevYVtzH06d/t8HRZboF0ZIsrHQt+OZYAS1fVBK6bRqTB60QtTCCglAoFbj+aEPzyGwO14UVDeYwIXgD1KmD6sxpfu5pxrx2Al5W9dnTew9upm7izh89Eqlu9+0T2alGj4bJk8HRkeTCZBxWONDMphm3U2/TxLoJ10deR0uuxYnYE/TY14PbQbdpatv0rfHOuTiHDQ82cH3kdYYfHc6TrCe4m7qjI9chIjjiD7+LsSfG8iD9AffH3AfE6OSYE2O4lHCJofWGssxv2QcNlcrqSjqFduJ5znPujr77dzN8FVcW02JrC0qqSrgTfAczvd88D+/f/9VoO3MG9PRQKBX4bvWlqLKIyDGRaqXzQ08P0e9QPxyNHEmYlvCn/W6J3MLoE6NZ1WUVk89M5sWkF7iauP5dY/9HMC98HqHRoSRNS/q39/UJn/DvxCdD4yOgy+4u6Mh1CBsQ9h/ve9WdVcw8P5OsWVn/ssjAfwpvvNL7++6nv0f/D7Z7nFTM51ufIQigEkAqAQEBqe0mLmdsQy6V09W1K33r9sXb0ptZF2YRnhDOnJZzUCgVotFQmqE2LDJLM99WWEaczL2JPqgjEL/9/IshYaJj8qe8/GnFaQTsDiCxIJGjfttou/qE6Alt1AjWrhXpa99AEETP3Zo1cPCgSGM7bJholHiKRsryiOVMPz8dDUGKSlAx/SYsaSVuLkNKjVIVdfKlXD5hQvrRXSzMPsSWyC0YaBmgq6FLekk6jtqWBBW7MvJiLjZ3YkAiIaNFfep0eEZ/Wz82jgyjCiVxeXHE5say/t56LiZcRCWo3pkEa8u0qVWzFr62vtSzqIebqRtuJm7YGdkhPXJUFCTLzARzc3ru60lhRSH30+5TqihlR88d9KjTgxo/1mBXr10MrjcYgKFHhrIreheGWoZ0fFjE4QNwa0ovPH/ajtVSKyY1mcSqu6uoqK5gRIMRbO6+mZyyHDzWedDOqR0H+h5AIpEw49wMVt5ZSR/3Phx5foSIoAgaWTci7FkYfQ704YzTfPyXn6Dg+SPmTnInRP852nJtDBVSFp2uYuQ9BaUd26C3Yw+nSx/RdY+YeiJBwrRm0xjsNZg+B/qQVJiEroYuPtY+XEm6QjPbZrzKe0VldSVSiRSFSsH0ZtPZGbWT5KJkAAZ6DmRPH1Hv48a8YQRW7qbERB+VIFCqKFWnJEmQcHwvRNnImddagbupO+2c2uFm4sbUs1PV38MK/xWUK8r5/vr37O+7Xz3WkTq+bP3iFqE+Wgy9W0m2NsgAnXGT0Jn8OXHGAoGHA7mfdh87QztcaroQPjwcVCoSuzTH7sJdBveGF/a6LG31He16ff7ONV5YUcjeJ3vZHLmZB+kPsDawZmSDkQR5B/2hZgPAq9xX1F5TG3M9c8z0zHiW/YyW9i1FmuJT41gXsI7xTcaLUQ03N2jUiIkjzNnwYAMGWgZcGHqB+hb1CT4RzM4o0fgL6RrC1kdbuZt6l/Bh4bRzavd2p3/R4Ni3ey4DXy2iV4oB9ullrDil5OvJXixY8RCZhiasWwdjx7IzchvDT4wiaj10nWzCyNsVfJviSuqJ3QwLn8zl+HBmldRn4Y93RRrkM2dg6VK4fFkUlpw6VXQ4GP4aAcgoycB1lSslihIs9CxI/jwZTZk4PpWgovbq2vjY+KivoTeIy4vDZbUL23tuJ9AzkBnnZ7D23lrqmtblxqgb1NCpwYfQdU9X5FI5h/sfZuXtlcy/PB9zPXM2dNuAn4vfB7cTBIFRx0ex5/EewoeF08K+xR9+5x9CUkESPpt9qG1Sm4tDL6Il1xKdMe3bg7s7nDsHBgbq9i9yX+C9wZth9Yaxvtt6ANrvaM/lxMuMajCKLT0/rP79BsWVxVgttcJK3woLfQtujLrxD43978X4k+O5k3qHyLGR/5H+PuET/l34VKPxEVBTp+ZHqdEA6FWnFwqVglMvTv154/8yDPYaTL+6/Rh3chypRakfbLfrSprayADxXSWoKEhriHMNZ+wM7biUcInBYYOpu64up16eory6nAVXFrDt0TYeZT5CggRvS29GeY9ipf9KwvqHcWvULeKnxFM6t5SCOQU8n/ScKyOusK/vPpb7L+eLll8wvMFw/Fz8qGdRD3M9878k/mVtYM21oeE0UVniF9ab/U8PiFGKNxoZABUVoopvkybg6yuu++knSE0VdSl+MTLOvjorGhlSDRQSFQOeSrjT4NccXyUqnAQjblupmN6yDLsuA9hoNorYybF0rd2V9JJ0rA2ssTN3ZZHuA+wDntN9a0eOr5nMjMZ5aJRXsWjKcTAzQ3PwMNxP3aGTnhcPMx4ik8iQSqSUKcpoYNEAgBENRjCt2TTcTNy4lXKLmRdm4rfLD8eVjuj9oEffB18AsGH/bEKjQnEzcePm65vq+oLkomSMtY1xMHIgOjNafRxtHdoCoqpvWF1Y01aXpquPYHDzPgM9B7L/6X5m+85GQ6rBjkc7GHFsBKa6pqzruo5DMYc48PQAAD92+pE2jm24nHiZOqZ1CDwcSHxePPP2jeHSZXv8hi/kgF0R7gtMCK35mpX+K0ltsp97axX0i1LwZb+a2HeMZn3qMWZfmC2OzbEtjawasfruai4lXOL5pOcEegRSpijjStIVPM09ORF4gqcTntLOqR2FlYXYGtjy3fXvSC5KxkjLCHsjezb32IxKULHo+iLaauxGVq2iqLKYBpYNeDjmofpcCAh4ZAqY1W0MgJmuGdml2fRw66H+bKxtzLSz09j6cCslVSVY6VvR3FZUfU+y0CbcVU7LfAPiTWXccoAQXw10duwGFxech09jl9k4AF4XveZRxiMS8hNAKsXxTATF/Xqy6wjUSS6jffR0unxuRtT1g29d40baRoxrPI77Y+4TOSaSnm49WX13NbVW1aJTaCcOPD2gFuT7PRbdWIS+pj7ZZdl0cuqEllyLq0lXSS1KZbLPZCafmczlhMui0f3VV3DoEFEXdzGh8QTqmNah486OPMx4yOIOi9W1MtGZ0dxPFb3y5dXl73bq4SFGEZ48Ee+38ePBxQU2bFDXcGTlvmbJ9UXUzpXwWijmp3MqNrbUYfz358T7Xi4HpVL8Dk/OoXss1Gvgh2V6MRnGco6sn0q9Pa14nvOci6/b8WOEHpqbt0HdutCtm1iPsX+/KKI5ffpbRsbtlNs02thI7QDZ1H2T2sgAMc1xss9kDsYcfOdZ6VzTmU61OrHhwQa05Fp8VuczAFKKU/De4E3E6w9HNVKKUtCWadN8S3NmXZjF2EZjeTLhyR8aGQBLbi1h+6PtbOmx5R82MkCssTg64Cj3Uu8x5uQYhKgo6NgRatcWjbPfGBkAtU1qs7TzUkIehHDyxUkS8hO4nHgZIy0jorOiP9DL2zDQMqCbazde5b9iWP1h//DY/17kVeR9qs/4hP8X+GRofASY6Jj8Wsj4H4adkR0+Nj7/M+J9v4VEImF91/Voy7UZdXzUBwXD4jPL1EaGeltk6KiccDB2oFvtbsxvPZ/QXqFcGHqBx+Mfc2LgCSRImNJ0CvdG3+P4wONs7L6Rb9t9y4QmE+jl3ovmds1xquH0r1dFvnkTwxbtOfV1LP2rXAgMKGVZvVKQySA5Gb78EmxtRY+quTmcOgUvXsC0aWD8a1QqOjOanvt6AqCnoYtMBX2zTHCo7fNWd5k2RnR/KWG1Vym7WhhAx464RCayu/duosdF42Pjw/Xk69gZ2jG64WjSFfn0zF7FHuNkmnp1ofDEQaomjedUSSRDj4/ENMSF7LJsjIoVTDIJIHlSHIGegejIdVjTZQ2LOi4ibEAYTyc8pWxuGa8mv+LUoFP80P4HbOu3BuDJ7WMMOzqMJbeWUK2qVhMW7I7ezdJbS7HQtyAiJUI9sfrtZMVQ05DZbRVcdoTq/n2ZaNmDpMIkGlg2wFjbmDYObdj7eC9Djwylt3tv+nv0Z8LpCWSUZKiLw3U0dBAQyChIZduYxtxakodDYj5df/BgQKN4fGu14VnQQyYffk0N/55YujZgwDw3NjWWIJPKmXB6AvnlYtrcZJ/J3Aq6xSzfWcy5OAfPdZ4ceHoADzMPLPQseJL1BMeVjlxLvMaR/kcYWX8kL35RK66hXYPCykIs9Sx5nPmYgN0BYnG1nhXJRvC1eT/Ch4dzNemq+vhlSnAqgJPl4sTJRNeErNIstbGWXZbNmUFnCB8WjpW+qAbddU9XMkoy0JBqcCXxCi8G+eH0MgftwSPpGQv7aitIeHJdFLh7/ZrCSWJNVwMsUVZVUj+kPruid4FUivGew5R+FsCOIxD00oCXskK8L/Vn6MxaJD551/vrbeXNuq7rSJuexrae2yhXlDPg0ABsl9sy8/xMnuc8V7eNTI9k26NtLOqwiC9afMHqWSaSsAAAIABJREFUe6uZ12oeAAuvL6SLSxfaObWj78G+oor0sGEUW5sy5XwRk5tO5tyQc3iYe9AptBO9D/TGUMuQRe0Xsf7+elSIEaHfRt/eQd26sHevaHC0aKE2OJTr1vLdtEZEWoGmIOHIMU0emQvU2ngIK4NfFLdlMqiu5uijvTwXspgbIYdXrzCtlHKuvh69z42kjUMbHn92gfZxKjFdcvx40ci5cUOMXPbvLxosv8HGBxtpva01doZ26u9Y+XvSB2Ck90i05dqsv7/+nXVjG40lIiWCx5mPOfXiFLaGtkSPi8bG0IZW21rx082f3iniL1eU8yL3BQdjDlJRXUFEUATL/Zerx/AhHH1+lDkX5zC35VyG1Bvyh23/CprbNWdrz63sjNrJj7N9wdERzp4FI6P3th/baCxdXbsSdDyIQWGDAJjefDr30+6TUZLx3m1+D2Md8TlrqWf5T4//ryK3LPeTKvgn/L/AJ0PjI8BEx+SjRTRAZJ86++ospVWlH20M/yhMdE3Y1nMb5+POs+7euve2qWWhi/R3dYgCSgqFF1yMv8iqO6tYe28tF+MukluWi6GWIV1duzLLdxbzwucRlRH13v3+y5GZKRaKtmwJGhpo3rrDzsUvmOP7BSdDZhDdwgXByUlMvxg6VDQuTp+GgACQvn3rphWn0WFnB6qUVXR16UpBZSGDomFT7RLq1/JFtwqspMZIkJBcmIzNwLH4v4TR3q+JbO8OXbvCkSN4WXhxZMAR7gTfwd7Ing0PNqASVFjoWWChZ0F40mWcb/RDT+MnujV5yf02rtTSs8G2TM6z9VJWTjqJnVMDfKYsZlmyO3qZeW+NUyaV4VzTmQDXAD5v/jkr+m8Bc3NW155G0Zwi7gXfw0zXTM24lFacxtdXvuZu6l2uJ19H53sd6qypw+wLs9XF05pyTcpRMHmICUWSKhpM/p6GNTzY/Xg381vP51ryNX7u9DMHYw4yOGwwK/xWIJfK1QrCZnpmHBlwBNNHL7izUcW8I/l8OdAMr9HVPNUp5njgcQ7Xno9th16wciUsXoz06nXadQimoKKAnLIcGlo2JK0kDZlExuvC12jINBjlPQo3Ezfi8uPQ1dRlmd8yEqclMqHxBEoVpfQ71A/rpdZsi9qGVCLFtaYr+RX52BjYkFCQQLMtzbiSeAV9TX2qpQKXT5nyTXIt0Th6sk99Tu2KxHctJ2cAriReIaEgQe299zL3opldM9o5tePqyKvUNqmNSlCRUJCAroYuKlScdFYRbwxlLx6TUEPCvGvQ9kAApUMD4eFDctcsEb+/tAx6R1dx+Lo1328cyuCwwRQoijHaf4zyrp1Zt6+YzmVW/GzQm4vSJNz2t2La3IZkv/7VeHgDPU09RjQYwY1RN3g64SlD6w1l+6PtuK91p9W2Vux4tIMpZ6bgbubO2MZj+abtN3iae7Lr8S5GNRiFVCJlUNgglvstx0THhO57u1OkKmd1R0P6PgPX9EoMtQw5O/gsprqm3E65LRp/rebQyr4VEsSHRF5Z3jtjewe/Mziqp0ziTI1smqRJWHpVG/3iKq79OIGO7gG/biOXIygUfH9wKu0SoFmlGQ90CrjlJCelLIND7t9w+KwRNd29RaNCEETl+MOHRaPmd8XUldWVjDkxhrEnxzK64Wh87XwpVZTiZuL2XseRoZYhIxuMZMODDVRUV7y1rodbDyz1LdnwYAOnXp4iwCUAB2MHrgy/wuwWs/ni4hcE7A5Q1/lcTbyK13ovKqor6O3emwdjHrxT+/E+PMp4xJCwIfRy78XC9gv//Dz/RQzSaMjX9/X40reMsPVToMaH070kEglbemxBUa3gdsptGlg0YHzj8UiQcOblmT/tSxAEwhPCMdQ0ZH/M/n/ZMfwZcstzP6mCf8L/C3wyND4CTHTFiMbHKo/p7d6b8upyzsX9CVXgfyn8XPyY2GQisy7Mesv7+QZD2lojkYBUJXr53rAtJcm2IJPIMNY2JqkgiR3ROwg8HIjDCgdq/lSTx1mPMdU1pfeB3mpqwX8LqqtFhig3NzhxQkzHuH0b6tZFEhLComknCN8J0pdxbB7VgIqkOFi+XKTffA9KqkroHNqZvPI82ji04XbqbWSChB+fWHLWpoJGzi0xrAQbmRG6GrroaeiRUPIafZ+WuOVAr7rRZPfyg759xfQswMfGh/NDzxM+LJy04jQySzPJK8+jvLocU11TLPVFz15GeTbPFGmk6irZc34p3LtH/pTRaOQUMGbzQzG/3MMDZs6Eixeh8j3pMc7OEBeHgZYBjW0a09u9t3qVm6kbxV8WszZApHL9vv33+Dn7UaWsUk8Uc8pyAIiV5RHQu4zqyPt8f6yYI8+PUMe0DvZG9lxOuszBfgc58uwIk89MZl3AOo7HHic0OhSysmj41Roub6wiwrQSk7lSQuyzGOQ1iKdjouh+KFpMWZPJ4P59bg9qjc82MXWkv0d/3EzdSCtJ46uWX6EUlKy+u5o1d9bQIKQBVaoqTgSeoJltM/x3+fPdte9Y2WUl37cXWWsyyzIBmNNCnPxqSjVJL0knuywbPQ09KpWVKFQKvm37LW1sW4oTUeBhxkP18Xv8wsw7qIuYhqanqUdyYTK+W3wB8Hfxf+t0d6rVCaWgREumRSsHsXjnVPwZ1napif2Fu6xqItD3GRi8TKbnvp5UKCvJrSV+39WeddH1aECnyAKerYXRs/cza2JtriffwPDwSSo6tWfZpmRiEyO5PfUxCzQ6so2HOK9357uFnSjNfz+NcF2zuizzW0bq9FT29dmHlkyLEcdGcPP1TZxrOPMk6wmaMk1Ce4XyKu8Vepp6uJm4UVJVQtCxIMIGhJFWnEa3Pd1YYB9PubW5WGOBSCSRUpiCtYE131z9hquJV4nJiWGg50AAvrv+HenF6e8d17sDrcuuL7rwdVuIrwGbjwp0flzGlWYWTOvz09tt5XLO590jUiuXubdk/ORRQPO+BbgWaWBTrkGfAd8guXBBHOelX6i7Kyre6RIgtSiVNtvbsDNqJ1t7bGWSzyRW313NV62+YoDHAE7EnniHxQ7E6FpuWS57H+99a7mGTINRDUaxI2oHL/Ne0q12N/XyHzr8wLkh53iY8ZD6IfXpvqc7bXe0xUhLjBhMbDLxrTStDyGjJIMee3vgZurGzs92vkNz+w/j5Uto354FCQ70d+7JkAvjeZD24A83sdC3wFzfHIDubt0x0zPDx8aH06/+nBQlIiWCl3kvCfQM5HDMYXXk8t+NvPK8T4bGJ/y/wCdD4yPARMcEhUpBSdXHoa1zNXHFy9zrfzJ96g1+6vQTdkZ2DD0yFIVS8dY6LwcDlo9yp3FaFMaqEvK4y0PZOPw86qCnqUd+RT66GrqMrD+SoAZB2BraUlBRwJlXZ8goySA+Px7Tn0xptKERk05PYnf0buLy4v41huGNG2KR99SpEBgoRinatYMZM8DGRmSNcnOD8HBeXQ1jimMMfkf7fPDHrVpVTb8D/XiW8wxLPUv8nf3JLc9l8BMZaR2aIpFJaWzTBAOFBBNBh1JFKWWKMk69PMXUzxZhjA7lqioGuD6iOmgkjByJsGIF0ZnRfHnxS4YdHUZmaSbacm01eUAjq0YcHXCUmAkxeFl4Ifzyt+fpPrbLn7Dez4ROY7UpTU0Ui2mbNRO9wZ06Qc2a0L27WOQeFycexC+Gxhv4OftRqhCjbZmlmUglUto7tQegiXUTVnZZydkhZ/mm7TfIJGINjIZUAwkS7loLzO9TA//wZIY/UNF5V2cSCxI5HnucxTcW4+/iz9HnR1l+ezm9XXsS/fVYVLVrk3cmjJYzahD8GZTKVZjpmpEffQfddn7w9dcwezZZl08yKn45zbeItQ0RQRHs6bOHqyOuYqJjwtZHW3EydiI+P57JZycT4BLAo7GP6ObWjXNDzvF9++9ZfGMx1kut+Sr8K+wM7dTGwg83fmDro604GDsgCAIyiYxSRSmdnTvT0akjwSeC2SKPRnnvLk8zHlNeXS4SHCClaQpU2Vii0tYCYEbzGUiQ8CznGSB6o9OK09Tnt7ltc3LKcvB38efEwBNqpq2VrnmUSQUMqqDK2oK51+Ba0jUGHBpAdmk22nJtKiRKdHzbQFIS7N5N85r12LQ1G7tG7Tg70R+djVtRtGvDipBEvlvSnTEz9xI37hnBgjcLqy7issiKkOWDUVS+py4C0JJrMcBzACcHncTGwAbnGs7cS7uH9wZvmmxqwq3Xt/i69desvrua2b6zkUvl3Eu7x9aHW9nfdz83km+gpaOH9vy/wcGDVEU9ZFDYIFxNXIkaG0UT6yb47/InpyyHiT4T0ZZrU1RZhO9WX17kvvjT2zcyPZKb34xiSyNwyQX3HHhpJqXntSzkteuI9VKVlTxOKuaL7t+xSBhKq5IVrPL1IFa3nOTtNRhxOZ9MjSqE0FBISIDZs6FxYzFK+ezZO33eSL5Bo42NSC1O5frI64xoMILJZybjaOzITN+Z9HbvTWFloVin8ju4mrgS4BrAyjsr33l+jW40mtKqUuQSufr+eoPOzp1Z1GEReeV5nHx5kgCXABZ3XAyAraHtn56nckU5Pff1pFpVzfHA42rGp38a8fFi4beREdJL4WwfsBcvCy967Ovxh3V7MdkxxObGYqZrxtKIpbzIfUFX166cjzv/zu/H77H90XbsjexZ0HYB1apq9jze84ft/yoeJxXzxY5Y+v30kC92xPI4qfit9blluZ9qND7h/wU+GRofAW/yLj9m+lQf9z6cfHHygwWY/+3Q1dBlV69dPEx/yHfXvntnvZeDAT8+DOFIwWG8GtylUi7mFq/psobv23+PgMC2qG0cfn6Yua3mkjg1kc3dN9O3bl+0ZdoICERlRrHj0Q6GHBmCy2oXzJaY0X1vd364/gPhCeFqsau/hMxMGD4cWrUCLS0xgtGjBwwZIhYy7toFEyaIE4+wMGjXjs/ce3Fp2CWeZD2h5baWJBcmv7VLQRCYemYq5+LOIZPIONj/IItvLkaKhJ/OVXOwiQ4eZh7oa+pjWC3DUPlrrreehh5hz8IIHr+RNolwXfKa0R5xLJzbAo9Xn1M/pD4bIzcik8gw1TElfXo6GTMzOND3AEmFSTTe1Jivwr8isSARLZkWnZ07i6kax0by9eWvsdS35KWQA/36wZYtkJICUVGwYAGUlIj1JS4u4rG/eAExMVAm5sq3c2r3TrTCpaYL2nLtt4T7Wtq3VOem2xnZoUKFt6U359rZIQQFEXJGSpcCM0K6hmCua86L3BfqCJjy1k2+mnGMH49XML5tCVbjS7lpkE97h/Y0MvdmxI0SQr99Qm7qS5TXrrK2pzVuG704+vwo67uu527wXZrZNgPAXM+c8OHhaMg0SChIQCqRYqFnwZWkK+oCdqlESmPrxtTUqUl2WTZyqZzXRa/Z2nMrZwafQfrLo/hl3ks0pBo4GDvQr24/zsedp0pVRehnoVy3qERWXMK0LX3V58DOyA6vLJB5eCIgqMcjIKBQKdDV0OVx1mNcV7uy4PICSqpKsNC3AMDDzAOAWb6zRKpdmZQhfWHMA/imcQmBT6FpiTFnXp5hy8Mt1NCuQZmiTKxR0tKCQYPQuhuJ8s5tipp503ZbOEpnJ1QmNVE2bMDKdfHMmt8UTE1ZtiiS2P7X6KR0YELhHjzmGnFw6wwE1fvF/FbcXkFmaSYnB50keVoyRwccxULPgvGnxrPoxiIs9SyZc2kOSzstRUBg+e3lZJdloyHVoFRRyq5GGmBvz9OpA3me85zdvXdjqmfKyUEn1dG4ckU5ehp6jG00Fh25Dr5bfLmTcue943lzLU4I6Y5OhZJiTdh7UouHlvAy/DCSp0/Fe3viRB77duXzzTHcs/VGIjNDpuVDqc16pkXWw9KrOZYzv6FKJlDQp6tYwA7i+axV6y1DQxAE1t5dS7sd7ahjWocHYx7QxKYJh2IOcSnhEqv8V6El16KeRT2cazh/0HE0telUojKjuJZ07a3ljsaO1NSpiZ6m3luGQEZJBv0O9iPoeBCdanViZvOZnI07y+QzkwH+VAvlDcPU48zHHB94/O/WTvkgkpJEp4yODoSHg4UFOho6HB1wFKlESo99PT6YDjz86HAATg86jY2+NUMPDcbPqSNFlUXcSLgqMpZVVYkR14oK8VVeTllhDscj9zK69kCsMaCvnR/7IzaJWiYFBZCfD3l54is3F3JyIDsbsrLEZ35mpkhDnp4uaqGkpkJKCo/vx/H5lmfcjyskp1jB/bhCPt/6TG1sVFZXUqoo/VSj8Qn/L/CJ3vYj4EHaAxpvasyDMQ9oaNXwo4zhceZj6oXU49SgUwS4Bvz5Bv+l+Pbqt3x79VtujLqhnvip0aEDmJmRvWU1ddbUwUjbiOTCZMIGhBHgGsC88Hksv72cKmUVprqmLOu8jCH1hlCtqqbZlmbE58XjYe7BndQ7VKuqMdYyRk9TT51CJJVI8TT3pJlNM5rZNqO5XXNqm9R+O0WgulqssZg/X5xUfP31r8vi4qBhQ5EXPzBQ5Ml/D2JzYvHf7U+VsorTg05T37I+AMsiljHj/AxApOssqixi9sXZDE0zY2dCA+r3zsTH2odNPTbRbpwOlua1OKmTjJmuGVKJlJyyHCKCIuh/sD/pSU/I1QVtqSb98CAw9CHlPbvSV/8UB/sdpG/dXye31apqdkfv5ouLX5BZKqb+nBt8js4unbmRfINW21pRQ7sG+RX5NLRqSLB3MIO8BmGk/ZtizeJicbJw5gwcOiT+SGtqQtu24O+Pk3IpiaWih7Jsbhk6Gjo03tiYehb12NpzKyD+GBstNkKhUmCqa0pWaRZ1zeoSkx3D/aE3cO0dTH7ic15fOkKpkQ7+u/0522knnTZdQrp9B8fcYHRfDbI1RI+mlkwLs7xKth6DTvGw1gdmdwSZvgHFVcX4O/uzsP1CvC2932ITK1eUM+fiHFbdXYVcKkcQBG4G3WTW+VncSb3D2i5ricyIZP399XSs1RGXGi6EPAgBxDSUJ1lPuJp0FS2ZFpVK0fDv7tqdHb12cDf1LiOPjaRSWcmGFj/St+VoPMfDUwuQIsXbypsD86KoNXgSB4KbM+DQAM4NPoffbj8aWzemoKKArq5d0ZZrs+L2Coy1jfGx8eHki5PM8p2lFg3tsLMDCfkJJOQncHsz3B/Qkp6bb3DJCbZObc315OsYa4s1PrNazGJOyznvXKeR0ee4NG8wgdfysCsUKKmpj6SkhPGTa7Hs2ztqfYXoK/v58ugkTtfIoUmBHj+2+Y52n01T7yejJAPX1a4EeQexwn/FW32kFKWw9eFWNj7YSGpxKsbaxrjWdOVB2gPkMjkKpYIBngMIexbGdj5jwPwD7Ng1k5GDl6j3UW99PXLKciioKEBfU59xjccxrdk0euztQWR6JAf6HVCnEr2BQqmg086O9Nl0k5kdlPglazDuloJ9MzoT0HIkxZXFFFUWUZwaT+T9+hRreIHk12tEqlLSuDCOH1MOcUM3h1ZuN4l52hb3cn2xNkMQRC0IlQoaN0apUvIs6ylpRWk4GNnhWsMVqURCtbKaOym3MdTUx8vMU9wOmO0cz3arTNKvNkEmoF6OICAIKjxaRlOnVJuw+y7q5UpVNSu1o5jhBw/Da1O/UIe8slwyitOQIMFG3wpDTUMkQGlVKSmFrxFUKmwNbNB/Q4jxZuy/eeVXFFBYXoCZril6cp1f132g/QeX/3adSiU6KEA0NCSSt9qpBBWK6iqkEilyiQzJb9YJv7x+71UVAJsZMOgx/Hz+ncv534YMfZg+aAVpZj5IfnuNSKCxsxE/DncjrTgNm2U2nBx4kq61/1it/RM+4b8dnwyNj4DEgkScVjpxfsh5Ojl3+ihjEASB2mtq08ahzUcRDvxXoVpVTYutLcgrz+PR2Edvh+j79xc9ThcuEBoVyrCjw/C19eVB+gPODD5DO6d2lCvKmXFuBpsebqJaVY2VvhVrA9bibelNvZB69HLvxZoua7iadJXzcec5H3ee2NxYtUq2kbYRBRUFJBSIwk/G2sY0tWlKc9vm+Kfr02jRNuRPYkTPvq6umEqkUIifJ00S04r+ggJ5RkkGAbsDeJX3iiMDjlBYWUifA32QS+UM8hrEmi5rsF5qTZmilOSlAibrtqEXH6RWge85xhCVmSkltR3IKskiNjdWHQ3QkmkhUwp4pVXzyFxFxIgbuJ27T92X06ijZc2ZhYlI3nhef4MBBwcQ9jxMLTwX7B2MuZ45i28uJn1GOjeTb7IpchOnXp5CS6ZFf4/+6iLWt1SDb90Si19nzoToaLh6lb49KjksOtyJcw+hVpdBjAqfKtKS/iIWBtBya0ueZD2hsLJQvcxK34putbuxof488j1qkVrLFM+7SawK9mLE4Ti0dQ1Z+mUb/lZ+hiplFXKpHKWymiSzH7D9ajEKHS22TWnN+KowdZRAQ6qBQvWrQeJS0wU3UzeMtYw5F3eO7LJs/tb2b5RWlfLDjR+w0rfi/NDzzLowi9MvTyOXylnut5xyRTmzL87mh/Y/IAgC8y7PQ0AQC9sFkSFne9R2CisLMdIyIrRXKL52vow7NY5DMYd4vUGP5oGlpPxisxlL9chZUIpsw0b2Nzck8HAgq/xXMeXsFH7u9DOh0aG0sGvB2q5rSSpI4qvwr9j9eDdyqRwPMw8ejn2IRCJhc+RmRp8YjQQJtoUCF687YtZvJAZfLqDuJAlxJhJUggqZRMbSzkuZ2uxXfY7foqSqhOmnppC9fxsLo01xepWDSgLjhtVk5dyrmDp5qtteCVvGF9e+5m6NUvwLzFjcey31W/Uj+HgwR54f4eXklx9MHVGqlMy+OJtlEcuQSWSoBBUCArpyXVKnp9JlTxfupNzh+k4NnJt3oXjlEoqrionLj6P/wf6MazSOa8nXiMmOwd3UHT9nP/Iq8rgYf5G04jScazijq6ErGg9VxRRUFLzDwvRbSJCgKYjCl42FE2hh/k6bGpX5HHy6ggSdSly9LhP+wpd2Jabi/S+RiNodqamUdWxDRMptCisLaWTTGAdjR3WbqMwonufG0rV2N/S1DNTLb2tl09z2LFfT/WhdafXrPgEkEkL0nzPR+BZxWYE4qkSa3PiCBE7Fn2eRnw7+FbZ0f1ROSlEKdczq0NK+NTqaOm/t51zceWLzXlCpUtDYpjGtHdqIBvebNhIJMTnPCHt+lLaObWjp0Oqtdb8dz19eLpFAUZHomFGpRL0gE5P3bhOd9ZgNDzbS2bkzPd0/Uy9feP07kotS+K7dQiwMLEEi4fiLkxx7cYziJvV4LGTxzHbRe8f0w41FVAtKvm67ACQSlIKK8afG09S2OUGNgqhUKsguzyarLJvsUvE9syxLfC/NIrcin2oJ5OpBji7k6Eso0RBoXv3+a8TUQIODs715kvUEr/VeRARFvOtA+4RP+B/DJ0PjI6CosgijxUbs7bOXQM/AjzaOORfnsOXhFtJnpP9lld7/RrxPlAkQU5Fu34bISARBwH+3PzFZMbiauHIv7R6Xhl3Cx0akfi2sKGTS6UnsebIHlaDCwciBvu59WXp7KYf6HaJP3T7q3SYXJnMh7gLn489zMf4ieeV5GGga4GXuRU3dmkhzchm07T4DHip4UROq9LTxfF1BqakRJSMHYzptLjLrvz+doLiymH4H+3Ex/iISJGhraONk7MTt4Nv8dPMn/nb1bwxWerBrdSrXbu+nzT4/tZr2gLE1eWSmpMq0JomFiYAoOqinoUfMxBiuJl1l1uqe6Csl5NbUoVerMay/u5Ynq5W4tOop1lhoaanHklOWg/VSaxQqBfv77Ce5KJlFNxZRUFGAo7Ejt4Nuq5V7U4tSRQ79h1tIKEjA3dSd4IbBDKs/TPRyZ2WBhYWYMtarF5SVsXbfDCa9Fr3+N7ZAiwwNVgyw50uXJIp73kFe3xskEuZcnMO6e+sorirG3sielKIU2ju1J+J1BOkz0jmzcRZ9pm5AYmaGNCub2R1hT2dLMsqzmdF8BkWVRRy6FsKGUxJ6xwgoBw9i83AvZj9YhFKlpFRRioGmAc1smxHSLYSXuS+JzY3lefZzLiRc4FXeq7e+IwNNMfphoGFAlaqKSmUl1gbWpBenU8+iHlGZUXzV6ivaOLRhyJEh5JblohSUSJCIFK4tvyC/PJ/g48GEPRcFPfvX7U9ItxCOPT9GybiRTP5NALJuvpynK6tZ8mNPjDoEMPbkWBpYNOBR5iP29tnLmrtrcKnpwvbPtgO/RjIt9CzILM2knWM7lnZeiqOxI+ZLzKkWqpELEibcEVj+t9tUde3Cbrt85g+2IqMkAwEBRyNHbgXd+pXG9T04HHOY0SdG0zxdxu69VUgKixjbDdbo9MZ0/Axo3hwkEgSVirBts5gbs5qXBgr6FFpzU5rGxJ7f0bduX4qrin+NFvzu/6LKIo7FHiO9OB1jbWOyy0RKZAkSJBLJHxoGIKazvWljb2SPlb4VBloGxOXFkVCQQFObprR3ak98fjzHH+5n6n0pi31VTI2AmpVS5E2bE5UfwxWDfLIMQEcBGipwkK2gpvA7b7VKiaryLg9M5vOZ22eEPg5lV+9dDPYa/OuAtm3j8sJR9B9nip6mHkcGHMHbylu9+kXuCzzXefJVq69Y0HbBW8eiElTYL7enj3sfVnZZ+c6xllaVYrvclmDvYJZ0FqM7o46N4k7KHawMrLiUcEnUbum++YPOr177e1GhqKCTcyfmXJyDt5U3+/rsUwsu3k29S5vtbejj3ofQXqFvOxP+UWRmQps2Ylrl1avg9Mfijj/f+plZF2ax47MdDKs/jHup9/DZ7EMbhzZcGXFF3a5aVU3rba2Jz48nszSTuClx1KpR6619JRUk4bTSiYXtFuJt5U1iQSKJBYmceHGCl7kv1WmQbyCTyLA1tMXByAF9TX3KFGWklaQRnx//juCrV/UKauKDhPdHNK4mXqXtjrbEToqltkntf+IEfsJxS/ShAAAgAElEQVQnfHx8MjQ+AgRBQPM7TVb4rWCiz8SPNo67qXdpurnp+5Vx/8cQcj+E8afGv50KNn8+7NghalEACfkJeK73ZHi94TzKfERsbizXRlzDw9xDvZ+skixGnxzNidgTCAjoa+ojQULspNj3TqyUKiWR6ZG/RDvOcSv5JtWocCqQ0ClZA79nVThqmnOgiS4rrZKpkKnQ19THx8aH5rbNaWbbjKY2TdWT8j9DbE4s9UPqU6msREumRfS4aMz0zLBeZk1ldSXxe8xw7NiXnwY58O3Vb9nYbSMHYg5w4vkxVICHuQdPs59Sx7QOVvpWXE68zIWhF+hYqyOjjo2i8PAeLltVUqAL81t/zd9KGovRl9atRUNAX+TMXxaxjFkXZolUrFMTkEllPM9+jvs6d7Tl2silcj5v9jkzms9Qp0ypBBXhCeFsitzEkWdHkEgk9KrTi2DvIDo06I1kwQIxqgE8TH9Iw41iWuGBlqvo91zK5RuhtK9zh2droI6mNfj7c6KFKT1ei2w/9ob2ZJRm4GDowKv8V2z3/Yl+oZHohO4lTwe+mNuEzcp7aMo0uTHyBsbaxsyd5smm4xKqqysZ1xVuNRUn1GMbjeW79t/xzZVvCHkQQrWqmiWdljDTdyYpRSkMPzqc8IRwZjSfwdyWc0kqTCI2N5azr86yI2rHWxEQQB310ZBq4GHmQVRmFDoaOpQpyvCr5YeJngl7Hu9heP3hrAlYg76mPmHPwhhxdAQlVSUYaxvTu05vkg9t4cIv2S8yiYz+z6Ts2afAcb4B2dpKtSaEhlSDpZ2XcvLlSQy1DDnYTxTQmxc+j7X31nKgzwE67+6Mo7EjSQVJDK0/lPup94nJiWG89xjWP9zI3iQf+nv2RzlrJk1mGlLXpyt7n4jsRXKpnPGNxzPLdxY2hjaUVJW8YxDEF8SzPGI5KSnPuLVPF6vMMnoHSrAsFlCYGFHkaE1xTT2KFaUUVRSSW5JNhaCAP5ifyqVyDDQNMNQyxEDLAG25NtGZ0aLRoFJRpfqVeUnyy1/tPCmrSlpSc6E4CS2vLufi0IvoaujSbEsz0ovTySzN5MiAIwS4BiAIAj9c/4F5l+fRx70PZ5+d5PRRHab5FJBiJBaB37EFlRQ8KgzpoFWH9Mw4DpvnYloGcnk9XOTrkakkCFIZAkokgsCqHeMo9tUnqGkGz4sTqKFdg8k+kxlafyjONZxZsX8as56toq25D/tGnlKnmoH4m9Fldxde5L7g6YSnavrn32Ly6ckcjT1K8rTk907yZ1+YzabITaR8noKOhg5mS8yQS+VqzZpVXVYxyWfSB899k01N8Lb0ZmP3jdxNvUvgoUDyyvPY3GMzTW2a0mRTE2rVqEX48HA19fQ/hexsMZWyoEA0Mlxc/nQTQRAIPh5MaHQo4cPDGXdyHDHZMcRPicexhuNbbePy4qgfUp8yRRmjG47G09yTxIJEkgqTSCxIJCY75i0xR7lUjr2RPWa6ZtxJvUNf9750d+uOvaE9AgJPsp8QnhDO5YTLFFYWoquhiwSJmtjitzAU6tFAuf6X2iwpAkrkUhkrgtzxtDcg7FkYfQ70IWdWzqc6jU/4n8cnQ+MjwfJnSyY0mcDXbb7+aGMQBAH7FfZ85vYZqwNWf7Rx/CsgCAJd93QlMj2SJxOeiD/SK1aISsGlvz7ol0UsY+b5mZwdcpZZF2aRU5bDjZE31F65N0gqSCLoeBCXEkTaSX1NfS4MuUAzuw+Esa9dg1GjKH4dx5VaEi64SDlfX59YjUKkEik+Nj60dWiLjaENRRVF3E27S0RKhJqn3qWmC81sm9HMRqz18DL3QkP2drpSfnk+vlt9yS7NVhMJTGoyCS25FssiljGgZiu2f36Nc8eWMvHFctKK01AJKpraNEUv5hVxWqVcn/MC+xX2DPQcyMkXJ7E3sse5pjPHAo9RVFmE5zpPZGkZJOopmGLfl5WjDsKVKyJTlKcnnD6NYGxM7TW1ic+PZ3GHxcxqMQuA1XdWM+P8DJ5Pek7I/RDW3F2Dtlyb2S1mM9ln8ltpbTllOeyM2smmyE08z3nO002aVDRugGXoEawNrNU5ygAr/VcypekUcspyMFtixn63efS/VwZnz5KbEIPpF6CtlKCQgRIBqQp+jnMm6EgiBloGBA814rBeMggCMxtOZEHMepY1/4ZaC9fQ/UYWpX7tGNVVyYE8sVh2b++9BHqJkUaFUkGHnR2ITI+korqChe0WsuTWEnQ1dNnx2Q461OqgPiaFUsH0c9NZc2+NWIfRLYTRJ0aTW55LcaUYcUkuTFanY72BkZYRtU1qoyHT4H7afUx1TVnht4JutbtRUlXCiKMj1DSc5qUSqiUC5XqaVAgKzIsFTp0wwC7yFX339/0/9s47Kqoz//+vKTD0DkoREAWsWLFXbGDFFjtqLNFYY080uhp7iRoralTEhoq9i4JiQUSxUMSCgAjSe5mBmfv748bJsprdfHf3+3P3e3yf4zke5pZn7ty583yez7sQ/jYcAx0DjHSNmNh0InHZcZRWlHJpxCUtXbKDYwc29tiI+RpzlnVehlKtZGvkVvLL8xEQWNJhCYHnl1MhqBndbByzJh/gmFsFK0bU4G3hW63+5s9CJpFhVKrmxgGoUQA9x+pgpmuCxdscjCUKTNwbYtysDW+EPIIeBtJFcCJMkgwCjFG0YPKoLVSzccZYVyws/nYSffDpQUadGsXAOgMprSzl0itRXD+v3TyOPDtCckEypuUwtckk1r/Yx7LOy5jXVkxx73KgC5b6lqL+6eVFgr8Kpo9bb4iLY+2ZeSxQXsS+CIp0oUBf7Fo0KTdjTPvp9GjQj8it3zNTepUMI+j0BhzzYG8z8HrnQR2daWQ4NyOl7D4Jwna84p9x/JQMWZ16OA7PwNy0Gkn5SRSpirAysCK7NJvpEbBh5AHkI0ZVeY+n4k8x4NgAzgw9o018/1uEvgnF64AXkeMj8bT3/Oj15PxkXH5x4efuP/Mo/REHnh7AxdyFowOPsvTmUt4Xv69CS/xb2G6wZVKzSdpuSkF5ARPOTeB43HEs9S0x0DHgwYQHWrOBfwk5OaK7VGam+Pxxd//Tu6rUKroHdif6fTSFykJa2rdkQbsFYhGRn0xSQZL2/399H+vKdHEydcLJzAknEydOJZyinnU9VnVZhbOZM7ZGtlptVqs9rSitKMXTzpOQNyGkFKQgl8ppZd+KSk0l0e+jtXqrD4sMBjoGlFWUab//mzue4c5TBW+zKinmFasGd6GXh0gt3P1wN9+c/4aKHyuq6MG+4Av+G/Gl0PhMqL+9Pl1rdv1km/v/J2ZcmsGJ+BO8/e7tv8/n/DMhvSidhjsa0sGpA8FfBSM5eBD8/KCsTCu0rtRU0mpPK5RqJReGX6DLgS5oBA23x97+ZMciLiuO/kH9tdaXnnae7Oq9i8a2jcUNkpJgxAhRZwBgZyc6Kn39NVhakpyfzLXEa1x9LdKs8srzMFGY4FXTi24u3ahvXZ+0ojQiUiOIeBdBdHo0FZoK9OX6NLdrru16NKnehLFnx/Iw7SGlFaXMbj0bF3MXJl+YrP3hGpRvT4jBe/J11cilctrUaMO+fvtwMXdh5ZSGbDJLIGO5Eruf7ejj2ofd0buZ3mI6WyK38Gr6K1zMXVh0fRErbq9gZKIxB12KOOS1jeHtvxWFqt7eYGdHeMAyOpztj45Uh/TZ6doVtw77OmCsMObC8Avaz2NF+Ap2PdyFhb4FC9svZGKziSjkv1OwBEHg7tu7KIYMJz8rFW8/Cb3cejHaYzQDj4t0tZktZ7LReyMA9j/bM7bxWJZ7/eY0lpJCvcBWlJTkk6Ioo8trUdjZOAMONITt4xtyP+8ZcjU8P+1ArUpjtgx2ou8vV7AoFTg72YvJNpEodPQY02gMG+5twFhhTMrMFG0nJqM4gyb+TcgqzaJSU4lvHV9+7ftrFf1AXFYcfqf8iE6PRoNGS934oA1SyBQY6BhUsbXWleqyo9cOMktFzUxCdgJxWXFV9CaOJo64WboR+S6SQlUhCGBWDhV6curaNSbpVRT5+jCg4VdklWQRmhSKmcKMfKUodDbWNaa0opRaFrXILskmpTCliuj8j2BTIqFULuBarMuoVAumnHlP07nGxOoX4VPbh5yyHCLfRdLQpiFJ+UkUq4rxqunF142/pr5NfW3HwVjXGIVcQXR6NJMDh+C/8RW2RTBxjhu/Dg7E8tcjsHcvQlERV+vrcbN3A1auiCD7bQIrdwxnmzwaC6WUJbZDGfftHnQUH6/kr7uzjgXXF6Av18fZzJmEnARx9dnEkQcTHjD/yhx2Pt6NjiChQiLQwbED37X+jl6uvegf1B+5VM7xlusZcuwrzpY9ZvArBUl65UTai10LNCAToH4WdMCJdT8/I3X7aqbGrOWKcyXVMGLQ/WK6J0K/YYAAL34B5wWr0Jm3QMu3B3DPhLDLNgzsnEXtmk2ZP34/PY/0JrUwFY2gQVEp0E9aj9Ej19OtVjfkUjmlFaXU21aP+jb1OT/s/B9Skio1ldhusGVck3FaK9q/RYd9HYhIjUCtUaMr1yV3Xi76OvqcSzhH36N9iZoQRTO7Zh/tp1Kr0Fuux+4+uxnXdJz272qNmma7mvEk4wlulm6cGXqGOlZ1/u699Q+RlycaeaSmikVGvXqf3EwQBHLKcsTi4Tda04duxOu818RlxVXZXk+uh7OZM06mTjibOeNs5oyjiSOLwxbzOu81L6a+wNVSzCoKTw6nw/4OhI0Oo6NzR0orSrmdcptrr68R8iaEx+8fA+Bu6Y5PbR+czJwIeBzAk4wn2ufxh+9ZHas6vMx5KV6v32iS01tOZ5P3JlbcWsHm+5vJK89js/dmvvX8FoA1t9ew5s4acuf/L+Y5fcEX/H/Cf/fM8r8Ynzsd/AMG1htIWlEake8iP/dQ/mXYGtvi39ufU89PceDJAbD6jXqQ8/t1lkvl7Om7h/iseA48OUDIqBCUlUq6H+z+yZC+etb1SJiaQH/3/kiQiJ7+u5rQcWdLYvu1ES0p794VfwxPnRJpWnPnioJFwMnMifFNx3Ns8DGy5mZxf/x95raZS05pDjMuz6BTQCcW3liIUq1kftv5pHyXwp2v77DcaznVjapzOOYwA44NoOYvNQlLCkOpVuJs5kxvt964WbpRw7SGdqyPNe+YatyF66OuU6mpZGbLmVresbHckEJZJRKJhBb2LUjMT8TVwpUCZQFmemZsi9xGQXkBe6L34Grhyq3q5Yx8rmD8tWlEpz4Qff5v3YKcHHZuGoVMImOUxyhtkZFelM7tlNsMqvu7O5WtsS1be27lxbQX+Lj6MPPKTNy2urE3eq+WsyyRSGjr2Jbm7YfQWePIFp8tvC14qy0yACJSI7T/96jmobWMBcDRkbYNe2GmMOXX0xASCCq5BNfpEib2g8zEZ1yMdGNDpBkhnRzh1SumLbtMkqlAi6kK/CzC8Gs8mhdTX7Cu+zq29dxGobKQxjsbU1AuTvhf5oqThEpNJTKJDEMdQ22Rodao2XB3A039m1JSUULE+AhMFCZkFGdwM+kmE85NoIZJDZRqJfnl+RSriung2AEAlUZFUGwQ5ZXlWOpb0sCmAT6uPnSp2QUrffHeTS9OJzQpVCwyACSQrw8lkkqi0qPINoRKKRyLPUZokpijYGVohZ5cjxJVCe+L36NSq2hm24xqRtUw0DFgZZeV/Nr3V7q7dMfe2J47X9/h0cRHKGQK3C1FgXumocCQWIi2VOG0cD2FCvg2VCyQvm/3PRHjIpjeYjoxmTFs9N7Ixh4bic+OZ+Spkay+s5piVTFWBlbaorKJbRNufPeYgxtGk2EosP3nBEYdH07O8oXw7h1XZvfDLqOUlasioX59rM7f4OeFt0gYfLOqJe6+OVUscTWCBv+H/gyqNwgdqQ6xWbHs7LUTtUbNm/w3fHPhG7b12ckwRXM0GgFTuRFllWX0D+qP4yobdMLC8dh7gbFzXAnPiUYtEThau5xMRwt0NBK2Pa3BnLuglsI7E/iq1TjWjKpJg/yVxDkocDC0Y8TdYr6/DaOGiiF29oXgmgc6ncRsigY2DZjfVgxTTLABp2GZyExMyXj+kJy2TXAoEIj+JprUWaksS6lFjCqVnod7UmNjDeZcncOsK7NIL05ns/fmv6t7kEvl9HPvR3B88EeZGfnl+Uw4O4HwlHAqNBXUMK1BP/d+WgqWj6sPDiYO+D/0/+Sx04vSERA+ytBYeGMhTzOestl7s2jhvKu5+Oz9Z1FQAD16QEoKQkgImU5WRL6L5FjsMdbdWceUC1PodbgXDbY3wHiVMdbrrGm+uzmDjg9iSdgSrr+5jlpQ42ouFgxSiZRWDq1I/S6V0h9KiZ8Sz+WRl9nZeycL2i1guMdwDg04BMCQE0O01+3X6F+xM7Ljzts7dDnQBfM15vQ42IPDMYfxqObB7j670ZfrY2dsx/4n+/nuync8zniMVCLF3ljsxLpZutHSvuXvobKCSGls6dCSdd1EnUyxqhgjXSNa2rfUfn/ht1TwL5SpL/g/gi8djc+E/kH9Ka8s59KIS591HGqNGtsNtoxpPIa13db+4x3+CzD69GhOxZ/iaesDOHfuD48fQ6NGVbZZELKAjREbeTLpCYIg0GF/B2qZ1yLELwQjXaOPjlmiKqGxf2NkZSpUuRm80VeCAN0zjPhl0B7cuwz5H4+zSFlEWFKYqO9IvMqLnBdIJVJa2reke63udK/VnRb2LZh3bR4bIzZirmdOkbIIjaBBQ1Wha99XMo4dUfP+eRQPK5IZeGwg72a9w87YDoCAOV0ZY3wd5SIl6+6sY93ddUxsNpF9j/cxptEYdj/azdAGQzn07BDR30TT50gfWiZVElP4iuzqJkTNf42VgRW5z6OpfqQpFVKI7hZM4zZiivf2B9uZcXkGGXMy/tAp6Hn2cxaHLuZ43HHcLN1Y1mkZg+sPFjtp/v6io0xZGejo8DDtIS32tNCKdbu5dGNC0wncf3efc0+e4WvzC4kZpbjY6NPkxV56bFyHAIzvL+OUmxok0NDEFc+7yeyU9EF94Tx6pUoERAlAUF34rifsn3yF7rW6a8coCAJfnfiKE3EncLVwpaVDSw49PYS7lTuNqjUiKDYIgH7u/bDUt+TCywtklGRoqRUlFSXEZ8UjkUg+mdT8KejJ9XA0ccREz6SK/iCrJIvQN6GoNCqa2zbnfcl7UgtTtftJ1fBiC2z00mObx++J0ia6Jujr6CMIAnKZnLSiNGqa1aREVcKAugO0hgkfKEfZc7NJK0rDY6cHKzqvYGHoQk4MPkGA/2Q02VmE1pYxIULNmuvgMgPOzhZXvTWChonnxHvo2CDREnbf432svr2a5IJkfOv4sqj9oo9WyK/cOYBz/7EYKDWMmlGD7dMu02pPK8Y2GsNmw4GwZQucPg2GhjBmDEyZwtO06E9a4l59fZUeB3uwo9cOvr0grgav6rIKPbkeM6+Ilrnbem5jjENvzHc4oaOBo5FOnNNN5nRdyDQUbwgjqR5dnL34ts0MloQuIeJdBH11Pdi37Cl1pkGDDHhmJyNPV1yRHuXclzOZ4Qy7lcvmS+C1yIEI3UxUahXT78H6Wwp0Coq0ORkqtYo6W+to3ekADJWQuEsPq0pdpNt3wPDhMHUqQlgo0dcCCXgcQODTQPLK86hmWI3v233PsIbDsDH82K3oAy6+vEivw714NvkZDWxEGs7J+JNMuTiFElUJa7quYduDbcRmxRLYP5CRHiO1+y4NW8q6u+tIm52GicKkynHvvr1L271tiZkco9W07X+8n7FnxrK+23pmt5lNiaqEqZemsv/xfvwa+bGt57ZPPks/QCNoyCjO0HYi0t49x3fGDqxT8/CbZs8Vo4wqGgljXWNtJ+JvOxNOZk5Y6ltqCzHXLa68zn3N0YFHGX5yOJObT/679GD7n+1JK0pjSP0hKNVKTj8/DYiU2U7Onejm0o2uLl2pa1WXuKw4Zl6eScibEO3+FnoW1Lepz52UO9QwrcFIj5Hse7yPQmUhJaoSFDIFUqkUAx0DHn/zWJstMv3SdMKSwvCt48v2B9vJnJuJVCJl3JlxxGbFEjE+4pPj/YIv+G/Cl0LjM2H82fE8y3zG/fF/HBD1/wsTz03k+pvrvJr26t/jFPKZUVBegMdOD5wV1bgx5QGykOsi3/evUFZRRsMdDbEztiNsTBjR6dF0DugsZgwMP19VzFhaCocPcz9gBW29klgcBvWwZrq3hnSV2C3p596PDd03UMui1j897qT8pCpuVvnl+ejL9SmrLKvCi7cysKKjU0diM2N5nvMcfZk+EVvKeGEJQ4ZKcTBxoKC8gHPDztHcrjn6Ovqc+qE/AxSnyZ6bzaP0R3Q/2J2ggUEMCR7C0YFHGRY8DID13dczq/UsHrx7QOtfW7Mvqy2z9G/hYdOAK7Oi2f5gOzMvz8QzR4/7hw3g8mVo3pzOAZ1RyBRcHnn5H77P6PRofgz9kQsvL9CoWiN+6vwTvVP0kHTvDq9eiUnhgPEqY1RqFWqNmhb2LbiXeo/qspa4KX9GJpEjCKKbj0QQaPZ4Mls94yiVip0SU4Up7pbuPEyNZG6RB2ZRMSQZa0iwApsScYW6SAFZJnJUVuYU6kspkqgoUhV95BDzR5AgQVemSwObBjiaOmKsMMZE14Tg+GAyijNAItKjytXlNLNtxrQW05h+aTqFqkJOfXWKvnX6cjL+JH6n/Ghg04AzQ89Uoe9VqCto6t+U13mvUalVojmBjhG6lRrKyovxLDQhdGshnUZDfAMbBEHQuuAY6xqjVCvRaDRUCr+/H325Pu2d2tOkehPM9cxZcH0BhwcepryinHFnx5E5JxPXra5M9ZzKiAbDSWpTj6++gjI5ZK6HAA/odDqaxtVF6qBao2bUqVGciDvB6aGn6enakwp1BYeeHWJl+Epe5r7Ep7YPizosok2NNtpxZL56grJdKzTl5XQfr+C9pYI3M9/8XqS+fQs7d8KuXWIIWo8eMHUqYWXxzL/zFyLNS/HOt8aimjOPjUsorSzFztiO1g6t+eX+LzwYfYfFZ7/jSnYEakHNxIcStnsKSAQQJGAuNaC7c1fSKvNIykvC2dyZ8JRwTBWmFKuKsdA3J7c4m14v4Uot8HoNl9zFgqRCIqAW1IyOqmTPWVg6vxVL9e8jICa6nzmsoaeDF5KQ3yeiIHbmPqTKf8Dk2sPYegGkR46IWTpNmsCiReIzRy6n56GeRKVF0bpGay69vISAgE9tH/wa+dHHrU8VGiKI2TI2622Y1WoWE5pNYNqlaZyMP0lf975s77kdexN7vj7zNfse7yNiXAQtHVpq900tTMVpkxPbem5jUvNJVY57LPYYQ04MIX9+PqZ6poQnh9PlQBf8Gvmxu8/uKr8bgU8CmXxhMg4mDmzx2YK+jv4n6U3JBcnaYtxQCdeOyGiQIfCXHzugbtLoo4LCTM/sT/0+XX55GZ/DPvR178uZoWe0RiFbfbZWMV/JKc3hxpsbhCSGcDTmqLZr+EFLdWzQMXzr+KIj06FSU4l/lD8rwleQXpxe5Xw9a/fkVsot5FI5P7T7gUJlIStvr6SGSQ2SC5Ix0zNDEAQKlYVcHXWVri5dtfuOOzOOuOw4VnqtxOuAF08mPcGjmge+R32p0FRoaahf8AX/zfhSaHwmzL82n+D4YF5Nf/WPN/5fxpVXV/A+5M3jbx5rw+D+23Ez6SadAzqz9qrAnJnHROekv8GNNzfocqALO3vt5Jvm33Ar+RY9DvbAu7Y3xwcfR578VvRv//VX0flEKmVxNzkrW1Vwb9xdmto1Z//j/cwLmUduWS4SJAypP4TVXVfjZOb0L43/de5rZl+dzZmEM1X+Xt2oOn3d+lLfpj4zLotZBtHtD9G4ywiub5nFSOVh3he/R4oUDRrkUjmNqjXC90ExPzokEOoXikc1DyzXWbK/335+uPEDA+sO5ODTg5RWlFK4oBBduUgBWRK6hBW3lnMyoTEDXB8xo84Yzmbf5lXuK4K8f+WrGbsgLo7cYwFYRw7SZnb8Wdx9e5eFNxYSlhRGf0VjTn7/GK5cge5ih8F6nTUlqhLKKst4MfUFKrWKOQFxlBU6VLGFFFCTSyTP5DM/eR6ZBnQ1EspkAkjA1tCWBm/LMMoqJF9HQ/0iBaYFSozRxdilLmnVDfFXR5KtqERHqkNti9ocH3wcJzMxg6TprqYUKAuw0LcgYUoCVoa/uwPFZMTQ2L8xakGNqcKUImURK7usZG7buSTmJVJ/W330dfSxNLDk5pibOJg48DDtIX2P9kUqkXJ26FmtpemKWytYEraE8LHhbIvcxqEYMf/CXmGNQ0I6wzOq8e2FDGy+l5GlUKMn16O8spzDAw7z9ZmvUaqVjG86nqCYILxqenHl9RUkSChXl2Osa1xFC6KQKZBKpAxpMIRnGc9ILUzlut91zi0cRM17zxk6GAbHywgIVjN8XSv2TbqEmZ4ZIBZEg48P5srrK1wcflHrYKfWqDkWe4wV4SuIzYrFq6YXi9ovopNzJ9F+9m0K2Z4NKFYW4TVORuC0UNo7ta/64ZWXi9kzW7aIOiEXF4RvvuGkQRI/JO7mpUklndJ1eWci5YbPUawiY2ieu4pSVQl9nsP2FlDx260iQYJfgh5HXJUMbjSMwP6BzLoyi6uJV4n9NpaItxH0ONSDElUJakGNRSnk6oNUAzYyI9b32Up01jM2RGxAqoHDwWDbpR+dLc5homdCfnk+aKBovRyjBYtF17u/wqvcV7Tc3ZLc8lytta4ECYPrD+aQqg/yKdPEDkhWFiQkcJ4X9DnSh+CvghlQdwA5pTkExQYR8EQMcjTXM2dog6H4NfKjpX1L7SR8RPAIbiXfokhVhEKuYKvPVgbVG6R93feoLxdeXmBy88n84vNLlTH2O9qPlIIUHk18VGVS//O9n1kStoTCBYW8yX9Di90tqG9Tnz199pBenP57EfGb2HOXLb4AACAASURBVPpFzosq3TcQ6cJ/Wzw4mTlRU7cadcfMQR79BK5dg5Yt+VdQc3NNUgpSeD/7vdbNb+blmWy5v4WVXVaSX57PtcRrPEp/hIBAHas6uFm4cfbFWZxMnMgpz6G5bXNCx4SSmJfIvGvzOJNwRrsAoZApGN9kPM5mziy4vgABge9afceYxmOYenEq4SnhNKrWiOj30dga2VJWUUaBsoClnZbyY8eq98SQE0PIKc3h/PDzmK02Y3XX1cxsNZMO+zrgZOZEYP/Af+lafMEX/CfgS6HxmbDm9hpW31lN3vw/797yvwWVWoXNOhumt5zOss7LPvdw/m2Ye3UOv4Rv4IHNQjymLf/kNuPOjONE/Anip8RjZ2zHhYTz+Ab5Mjzbln1bU5EaGYuJ1bm5MHUqFUt+pHWwD8WqYh598wgDHQNUahVbI7eyJGwJxapipBIpfh5+LPdarm2R/xmkF6VzPO44R2KOaHUJlvqWlFSU0LVmV8Y3Ha8Vln/QDZjrmTMjuzbdrr+hRcRbSjUqLNZaICDwl05/wdrAmojUCAyPn2a7mzixtDawprSilIbVGmJjaEN4cri2WxIyKkTrpFShrqDVr62QFBUz8mY+3zUTHbIs9C14P/s9OmVK8PWl8vYtBgxSs3dXRhVLzj8DQRC4/uY6P179nltTotg20o1WKwJo5dAKx42OZJdmU1ZZxibvTcxoOQPf1Q8oKPn4kaUkk0eKQSjVSvSleox8ouGHEBXFhnLG9qxE1UxMg04rSuPu13dpre+K0Kwpj8lg3YqeHK67iJIzJ0g+tgv3F7nIBJgzxIItdfLpmGlATh0nxrX+loU3FqKQKSirLKNIWcT0FtPZ5COmV99JuYPXAS/tKq2jiSNHBx2ldY3WCIJA94PdeZX7iovDL+JzyAe5VM7NMTexNxFpG32P9CU+O55DAw7hYu5C813NmdtmLiu6rMDvlB+BT8VJhwQJU6Ok9H0u0DZTj64bGxOdHq2lmXzd+GtcLFxYdGMRIPLUrQ2sGVJ/CMu9lrP81nI2RmzE3sRepLYIkK/MR0eqg5WBFbFZsVqbXL0KSNkIPUZCjL2cp79Uct4Nlvc15S8d/8K3Lb5FV6aLslJJ36N9uZNyh2ujrtG6xu8r9xpBw+nnp1l+aznR76NpW6MtizosortLd4b93Ib1K6Mok6rpPBqm9FvBgvYLPm1MERkpFhxBQSCTEd3CmQCD5wTVhxx96JgMBhoZoTWhSK5GX6qgnXMHQhJDEBCoZliNNL2FHNs1g2EDBdZ0XUN+eT5HYo7wctpLvA968yTjCd8kWqEb+5yfOkHlb0VKmxpt0JXpcjPpJv3jBBRqONIAzPXNsTSw5FXuKyz1LbF7k8PTnUBoqGjN+hsuvbzE8JPDsdS3pFhVTE5ZDpWaShRSBWrU+NT24VirDeiNGgt37lDZpxcNO8biWM2NyyMuf7SS/0FjFvg0kHdF73C3dMevkR/tarTj24vfEpsVy6C6g/Dv41+FyqisVGK1zormds2JSosi9btUrekB/E69uj/+Pk2qN+Ft4VuS85NZfXs1D9Mf0r1Wd84knEGlVqHRVKVw2hjaVCki7I3tuZZ4jQsvL+Bbx5d9/fZpi1Mtysqgb1+4d09cZGjb9uPP/X+AMwln8D3qy8C6Azk2+BhP3j8hJDGEq4lXufHmBhpBg6W+JT1q96CbSze61OxCDdMaKCuVWK61ZEDdAQQ+DaRRtUYUq4p5nfdae2xHE0dWeK3AUNeQhTcWEp8dT9PqTYnJiuGA7wGmXpqKjlSHGqY1iE6PxtnMmcySTCQSCS3tW3JxxMWP7uveh3sjl8o5PfQ0XQ50wVDHkLPDzlJ/e326uXRjk/emf+l6fMEX/CfgS6HxmfAhibfix4r/iLA8v1N+WmvY/ytQVirxnGUIllY8WJj8Ec0AILcsl7rb6tLVsgWHSnrA1q0c0UlgxECYmmTD5oBMJG3bwtat0FikizzPfk4T/yaMbzK+Cu+3RFXC2jtrWXNnDUq1EplExoSmE1jSaQnVjap/coy5ZbkExwVzNPYoYUlhyCQyOjt35lH6I6wMrZAipVKo5MGEB1re9IcQKoDOjh2JfnGLfD0BU4UpzeyacePNDTo7dyY0KZQVXiv4vt33JGxbSt2cpazrupZCVRF7Hu0hoyRDq4Ew1jVGLpXjbObM4YGHcbN0QyqREpcVR1P/piyx+Ypf4w7y2kxgUrNv2NFHDNOjvJzbbR1p9SQbeeAhGDbsn/qsBEGgxNmeE64qxrbPoY9bH55lPiO9KB2lWklXl66MbTyW9SdyMdE0+6ijUSR9yCPpNBzzYd9p8EqCTS1hcVcZMiNjaprXJCYzBnN9c3zdffHv4w9RUajbtmZPw0pKt/7MmttrUAtqDnTcjE+yDuWXz9PM6DD65ZWEBMBtR3jfvjGDZ/1KnImS9vvaoxbUXBx+kYySDMadHYcgCAgISJCQMy8Hc31zAA49PcTIUyPFIsPVhzd5b+gU0AmFTEHo6FDsTewprShl9OnRnIg7ga2RLRb6Fjyc+BCFXIHdBjuyS7O12Rzf34JJURDj6USv9skEDQwiKDZIm9RuqjAlX5mPr7svpxNEvvm+fvsY03gMIOaxTL88nauvryKTyJAgYX339cxoNYMKdQW2G2zxqulFZ+fOFM2ZxuCnalxnSqmZoyF6J9ScCdmG4uqup70nXWt2paZZTTbd30RiXiKho0OrhM19+IwvvrzIT7d+4v67+9Qyr8XrvNdcb7eHdqMWkliZScfRAvUbdObQgEMfu8ClpsL163D+PKprl4kwK+ZSbTjnDrE2gABSATrKXKjdsCO7n+7j1phbhLwJYdlNcQFldcefmD9iB4sGW7LSPIYRDUdwLfEaozxGsTFiI5sf2vBQks6+JuLxOtZoT1Z5DnHZooORaTmsuCFhqPsA2ng+40XuC3RluqjUKhQyBVMfSFh3SY2koAD09dEIGlaFr+LH0B/p7dabwP6BRKRG4H3IGxAXCmRSGUXKIto7tef0oGAMzW2oVFfw3EKDUdBpnDv1+8PvjVqjJjQplH3R+zged5wKTQUKmQK1oGZxx8X82KHqCnpIYgjdArtxdeRVeh7uyby28+js3FnbjUjMTyQ4Lhi5VE5ZZVmV0EMdqQ4GOgaUVpQyptEYmto1/d29ydQRAx2DT44xOC6YcWfHYa5vTtCgIG1IKuXlYkDnzZsiBbNDhz98n38WthtsySjOwLeOL+Ep4WSXZmOgY0BHp460c2zHvsf7UGvURE6I/GhRxPugN+Ep4doiG8Si3ru2Nz91/gm1oGbutbncSr6FV00v1nZdSzWjajhuFHM0urp0Jaski8S8RNws3YjPiqeWRS3yyvOI/ib6k4swnfaLlueHBhxi+a3lrLu7jpx5OTj87MAUzykfdUC+4Av+G/Gl0PhM+OCLnjkn80+Htf1v4vTz0/QP6s/zKc9xt/rznuX/6Xja2gXPHinMaDvr02L35895+dNMqp+4gqFaitS3P9jY4P/kVyZ1V7HYrB9Lp5+Cv1lR3Bq5lWmXpnFlZFUxMYjFw7KwZWyL2oZaI1rNTvGcwg/tf8Da0JoiZRFnE85yJOYIV15fQSNo8KrpxdD6Q/Gu7U3/oP68LXhL6xqtufL6CvfH39cKOwG6B3bnVvItOjh14KrO16iHDyPq9jGuVjznwNMD2rTqD7qOHrV6sL6sAw3TFnJh8Gl61uvH1sitzL46m24u3bjw8gINrBuQU5aj5R+b65nT0qElrexb8a7oHbsf7UZHkGJVpEHH1IyHc15iZWBFVkkWDmur8/RhC9wv3hepZpOq8rv/NLy9EfT1OLpsCIvDFvMq95XWg14mkaEW1HSx/ZrKt+MQpwAyENSAwCP5JEwKnxG+T6S6jPGFmy4ifezDvr1ce+Fq4cqe6D2kz07HSNeI8p3b0Js8lXF9If0rH/b221ulKFx3Zy3zrs2nU6qcZaHQKqkSHQ1Quzb+/RyYZByGAjlKKpEgQS6RM7bJWHY92qUN28oty6XO1jp41fTi6KCj2mMn5iXSaX8n9HX0CR0dip2xHRpBQ+f9nbmVcoterr0I/ipYdHBaZ0V1o+pIkJBenI7/czfGHHtBy291KHWvSfyUeHZG7WTG5RnUs66ndeZqYdeCyLRI5BJxMWO513LmtJmDTCpDEARWhK/gx1BxMjOi4Qh29t6Jka4R0y5O4+Tzk7z97i1+mzoRMDuctQva84MinF8uSdA3tSRu1iiOxx4ntSgVuVReRdsilUjxtPOkmW0z3K3ccbd0x93KHUdTRyRIuPTqEgOPDaS8shyPah6schpHt7HLeUkOXcZIUFmYcrDDZnxS9cTi4sYNUt+/4HJtuNTclKvVSyiWVqJfKWFAlhU972bRTGWFf2s52xzeY66UYGRihcbIkB/aL2TC+Qnoy/VRVioJNZlGuzm/MHBXFy6lhwOgVCsZHAvXXESzgGrFkFHdiJMjzzH42GDyy/Op1FTikQEx1UAuF4uLD8XSh+/agxAXmmuqw507FCoLGX16NKefn+YvHf/Cjx1/1K5oDwwaqE1+tzawxkjXiMySTJrYNmHboXzGusZx/qoltqkFsHw5zJoFsk/nKTxKf8S4s+N48v4JPWr1oLSilFspt5BKpPRx60Nrh9aYKEx4W/iWk/EneZP/Bkt9yypaAwkS7E3scTJ1okhVRHxWPOu6raOedT2czJzwO+VHgbKAlzkvuTzychWdwZ/Bm7w3DAsexsP0h6zusprvmk1BOnCQ+NleuPCRhu7PIr88n9A3oYQkhnDq+SnSi9ORIMHT3lMr4G7t0Fq7yJSUn0SL3S2oY1WHa6OuoSPT4WT8SZbdXMazzGfa40qRYqhrqKWQLbyxkKDYIBrYNGBt17V41/bmTf4bhp4YSlRaFNYG1hjqGlJeWU59m/qEJ4fT2603ZxLOED42nFYOn85f8tztSdPqTfHv468V3N8fd592+9qxyXuT1u72C77gvxlfCo3PhFvJt+i4vyPxU+L/dd/xfwNKK0qxXmfNovaL+L799597OP8+tG/PuialzLeMJnR0KB2dO4JaLf64bd0K164h2NhwrI0pN4yy2B5VDdmLlzB1Kqt7m/H93WVs7LGRma2q8v81ggafQz7EZMbwbPKzTzotpRWlsej6IvY/2Q+ATCqjlnktkvOTKVeX06ZGG4Y1GMageoOoblQdtUbNoOODuPb6GtNbTmfV7VUc7H+QER4jtMcMSwqjc4DIgb815hbtJ/wk0g/CxQnT+LPjuZ96n+Vey7n6+qooTC7J0IpgB9Xqy6yOIq+47V6RptDaoTX55fk8mPAAh40OdHPpRkObhkS8iyAiNaKK7e/3Dw3YXacUt+r1uDH9EYFPA/nm/Dekf/cOm4UrRWrLqlWwYMH//LOaMkV8H0+fUqGuwGOHB89znmtfdrN040XOC9wNeqBb6IOFrC4FQgL1kg8w/E4UoweAAKjkIBga4mLuoqWYlVeWVzlVd5fu9K/bn833NzNn/wtGRGt4dGwzbQZMB8QJzPRL0wl8GoibhRuJ+YmcGHyCuScn0TVJyjq1F1kRN2jeK42c3xZya0osONN9LyUONrTe20Yr7JxwVgw1i58S/9EqfWJeIh33d8RAx4Cw0WFklGTguduT3m69ufTyEs3tmuPr7svckLnYGdthZ2RHfHY8p6Qj6Pb9LqrPhiILAw4NOMS7wnfMujqLkh9KWBCygA33NmjP41Pbh4Y2DVl3dx3tHNtxoP8BnM2cKVGVYLLaBI2gQU+uh6W+Jeu7r6eGSQ3a7WtH2OgwguOD6TRrC82LTag5vhg9jYR7O9VUXr9K0wbduPb6GnOvzeVJxhO8nL3o4NSB7Q+2U6gqxMHEgZSCFC2dTE+uh6uFaD0akxnDhKYTeJLxhPvv7uNT4czxLe8pVSvJMIbaWQL3asBFTzMuu0mJ0cnVurIl5CSQW5bLdb/reNX0gidPYNs2OHiQJMMKFnsrCKxVggSwkZtibVGDnLIcyirL0JMpeLwTDNt2plat82RqijEvhzx9GPkUeifA0MEwsanoqGWmZ0b92Czc86T4N9Xwned0tjzcjkKmqJr6LIBypxW6Y8eTMHsMvkG+pBWlEdg/8KOQvbTCNOw32mOiMNEWwq4WrmJxXVqKgQoSFqZj9NMaWL9eXO0PCACn37VfWSVZzA+ZT8CTAOyM7PCq6UW5upzk/GRiM2Mpriiuck4ThQnlleU4mzkzpP4QNIKGFeEr2NlrJ2ObjEVXJmqz0orScNzoyGbvzVrxtMUaC/LK89jeczuTPSf/w6/yp1ChrmDhjYWsu7uOXgXV2L83F6tj57WarD8DlVrFvbf3CEkM4VriNR6kPUAjaKhtUZu0wjTKK8tJnJH4dzVyd9/epfP+zriYu5BamPrRdepfpz+ru66m+a7m2JvY8zr3NTaGNvzU+Sf8Gvkhk8oIigli4vmJWBtY08etD5vub8LZzJkWdi0Ijg9mduvZrL27Vhs2+keot60e3rW9+bnHz1SoKzBfY878tvNZHLaYIwOPMLTB0D99bb7gC/5T8SVH4zPBUl/0yM4p/fxZGgAGOgb0dO2pXWX7PwMrK2a9rkZ7p/b4nRxJwdplULs29OsHhYUQGIjk7l36SNzxP5hPorQAHj2CzZtZ0G0p89rM47sr37Evel+Vw0olUvb23UtZRZkYmveJet3awJrB9QfTr04/pBIplZpKEnISUAtqpreYzsXhF5naYqp2BX3utbmcTTjLss7L2HBvA1M8p1QpMgRB4IfrP2CgY0AHxw60xxFCQsRwwN9w/9192tRoQ786/djWaxvv57zn176/0jBHXA09n3SFNnvb4HPQBxDvQz8PP+Kz40ktTGV8E1EHMqv1LC4Mv0D23GyeT3muLaT8W8pYeAvuF8RRbakR80PmU8OkBpHpUWSv+hEWL4bvvxcLjf/pGkatWpCYCIKAjkwHQx3DKi+/yHmBV00vJrf34Zl8JvWan8Y5YTqbjkfRNgUe+INNKRTrQElFCc8yn2FvbI+yUknbGm1pbtecY4OOYW9kT8ibECZfmExCdgJHJrThuYMC5/Gz0WRlcvX1VRpsb8CZhDME+AbwdPJT6lnXY3HYYk5PuM65ulJc613HY2QReYZSkIBOJVzZlk/DNr7YeYvGA2lXTnA39gp7ovewuuvqTwZCupi7EDY6jBJVCZ0COjE8eDj1rOsRNCiIsDFhvMp9xaJQUWuRVpSGRCKhiW0TEnXFyZFvloVYNAX1Jyg2CKlEilwq12qtTHRFut2lV5fIL8/n4oiLJBck47HDgwNPDmCgY4CFngVmCjPip8TTwr4Fw4KHsfDGQmyNbDkScwRlpZL97Y1wTC2kR5o+NqZ2fNsbXv1FnEB1q9WNhxMfsr/ffhJyElgRvgLfOr44mDigUqt4PuU5r6e/5uLwi6zqsoomtk2Iy4rDVKJP7Kld9Dh0n51nQZaYRIuR5SAICBoBx+/AawxsbFBEzfptOTrwKFlzs5jXRjRf6OnaUywyQLSv3rUL3r3DecFqDtyx4clOqJctIUNdwLt38cytNoBCZSFFqmKGD9FBFXSU8tJikECBvoR1oTrsOwWzeoCNgQ27Hu3CxtCGugm5XDumYEd5FyY1Hs/GB79gbWCNdy1vJEi0FtIAo9tls87mFc13NUeChMjxkZ9M8rYzscNQx5BCZSFSiRRnM2eeZjzF1cKVfFkF8opKMlR5PJs9insBKyhMeEpZPTd+mdYCz13NMV1tis16G/Y93odG0JBenE54SjhZJVnUta7LlBZTkElkTPWcyonBJ5jQdAKCIGgLPlsjW2a1nkVL+5YcjzuuLTIA7Izt6OveF/+H/giCwJVXV8grz6OTU6d/usgA0JHpsLbzSi4mt+O+PIPG80y45a73d/cRBIFnGc/YeG8jPQ/1xHyNOZ0COrEjagfOZs749/bnzYw3LOm4hNLKUkY1GvWHRYYgCFx+eZmZl2ei0qh4nvOc4opipEgZUGcAPV17opAp0JGKXY4KTQXPs58zsO5AXkx7wdgmY1GqlUw8N5GhwUPp6dqTlV1WsuvRLnSk4vPqWNwxVnddzY6oHQyuN5hpLab93fdXrCrWPud0ZDq0d2pPSKLoVvZhjvAFX/Dfji+FxmfChzCe/4TQvg8YUGcAUWlRJOcnf+6h/PtgaYks5S0B96qTl53KjPtLxdXByEgxgC4tDRo1wuDuA64t8cNt8Htumf3uxrO662omNp3I+HPjCY4LrnJoexN7dvTawbHYYxyJOQKInY6bSTeZdH4Sthts6Xm4J/FZ8fzY4UdODzlN15pdqdBUsCVyCw4/O7D81nKKlEVsjdzKxoiNrPRayeb7m2lSvQkbum+ocr4LLy9wL/UepRWlInc3IAAMDLSOWkXKImIzY6tYVgJ83eRrgrx2YKwER5U+Jwaf0G6TU5bD5IuTkSBhzOkxuFq6UlBewKFnYoiVRCKhSFVEblku1gbW5FYW4bJ6J6vvGFAgryS/JJecshz6HOmD9XobXK0Oc3BsM1izhqzRg6lQVe0k/F3UqgUlJRSnJjL69Ggevn+ofclEYUJ1w+o8Sn/EvJB5ALT3v8SpIFE70WS2AYv7GfNwJ/R+8fshX+e9RkCgr3tfotKiMFGYYKZvhkbQ0M+9H8u9lqNR6OA7sAK5spLQ1rb4HOiBtaE1DyY8wK+RHwq5ggDfAOKy4gh8EkiXml1IL06nSFWEBg1z28xF18CQut9qeLZ/HbZdRE79u00/4enhTdQREyZeL4CnTz9ZfNWyqEXYmDDSi9KJz47n5+4/oyvTpZVDK+6Pv18ljyOjOINmts14lvGUDEOYInhycshJtvXcxt23d1FWKnmR8wIDHQMMdQyrBDruid7DuLPj2Oqzlf51+zP69GgGHxfvHQ0anM2cOTnkJFdGXuF98XveF78n4HEAaUVppDdzJ8Yavr1bwf4BgdytAS8yn5OUJCYky6QyRjcezYtpL1jScQmHYw6TWZJJsaqYboHd0Jfr41OrBzMVHel9NoFLhyXkrpVw/QC0ydHnYdNqPK1lRJwNdPEDuyI4fxhMysU05XMvzrHs5jKWhi1lxKkRSCVSNntv/rjANzeH2bPh5Us89pxjR0ZzAArlama93oZLsS4lqhJuyFNxnA1lv82vNYLAS+MKfuoAaSaQVZqFs5kztV7mcD1IgbxlaySnTiPTUSCTyEgvTif4ufg8GFpfXHUeVlaLaFuYV3gCtaDmq/pffZRH8dewN7HHztgOlVpFTGYMNUxqEJUehUGllAqJQJ3Nrnjs9KBN4g+4fF3ElXoKpm99wNKdCcjyCqljVYdD/Q+RMjMF5SIliTMSuTH6Bvv67WN119V0q9WNmKwYBtYbyK4+u1jUfhFyqRwXMxemXZqG7QZbBEQzhuj06Cpj+6bZNzzLfEZQbBBDTogZQTNazvjD9/KnoFaDnx8+gRE8brGX2nYN6BzQmWU3l6HWqLWbvSt8R8DjAEaeHIntBls8dnrww40fqNRUsqTjEh5NfETm3EyODjrK+KbjcTJ1YvbV2cilcrb6bP3otDmlOSwIWYDlWkt8DvvwIO0BIOqLAHb32c1+3/2EJYXhbObMifgTLLqxiPFNxtPPvR+XX18mtyyX2MxYWuxuwcGnB9nTZw9ezl4MCx5Gj1o98LTzJDYrltVdVhP4NJDqRtXZ03fPP7TjLakoqZI10tm5M5FpYnjul8C+L/i/gi/Uqc8ElVqFYrmiikDzc6NQWYj1OmvWdF3zEVXovw4VFXDyJMyZI4pIHRwI+KYlY9TBnBh8goFppjBtGrwUaVIsXYrGxJh2e9uRW5bL40mPtVkaao2aESdHcOr5Kc4PO0+3Wt2qnGpE8AjOvTjHkPpDuPjqokg9MHVkaP2hDGs4jEbVGlX5wbmdcptZV2bxIO0BEiTo6+iLnZHmk3md95qotCiiv4muMknUCBqa+DchKT+JulZ1uTf2DhJXV+jcWbTfBULfhOJ1wKtKqJYWjx7hcKgZRnomZJvqUFJRgpulG6WqUtZ1X8fsq7N5V/gOpVopjkmuz7y28+hRuwcb7m7gRPwJ9vbdS3B8MFFpUcR77GKafz+O1YcLo69S26I2Eaki1epe6j08Lj7E/4yGkw1k7JjWCk/ntrRyaEXrGq3/UBhPTAxPuzbkq9mOJJanU6mpREDA0dQRJ1Mnbqfc5uW0lyzd9hWBmke83QBLusmJ92nO/bRIhtYfStmxwxw7AT9667LaUwUSMJAbMLrxaA4/O0xZZRnVDKtRrCpmRMMRWjH/1VdX+Xllby7sr+CXjnrM6lSOQqagg1MHfGr74F3bG/+H/my+v1lrTQpgrW/Ng4kPSMpPonNAZ4x1jUn5LgW3rW546tXC5fJ9lqvaYXInSsxGsLMDb2/xX9eu4sQYxIDC3S0w1BWLgxt+N6hmVI0n75/Q2L8xhjqGWprOAd8DrA2YwOZTSjq5dUd65QoAc6/OZcO9DRjoGLCj1w4Why0mrTANlUbF9p7b2XBvA4l5iQgITGo2ibaObZlxeYaWGpczL0fbuVKpVcy/Np9N9zchk8hoZtuM9pdiWXO6BFlSMtMil7L7yV42pjVk8q9P+VtkFGewNOwvXL7uT7Yh2Kr0uH1YD+t3ecRZwclONkR6WHJDkkSJugw7Yzu8a3nj4+pDV5eu5Ny+hk2/4Ty1rKTnKAmGFtVJL07X0ow+wEzPTKv/cLd0x83SDXdLd1wtXdGT6/F9yPfsfrATysuolabkvSGkmAESMBE86JjzNdlmtXDIec0Vm70USp6iI9UR9Qpv8gjZr0FevyFcucLZdzfod7QfW7y3sCJ8Be9L3tPSviWpham8K3rH5eu2WL9Mx2uGKeWV5QgIqDVqmtk1o6FNQ/Tl+qQUpmiF139tL/xBi/QBS0JhR1cT5PpGBA8JxtPOk1PPT3F11XjWn9fCRAAAIABJREFUBBegY2yGwcEgpN3+mHa0++FuJl2YpLV57XKgC7oyXS6NuMT74vcceXaE/Y/38zTzKXpyPSY1m4RfIz8aV2+MgIDLZhdyy3KxMrDiTf4bHk189JHA/09DrRY7r4cOia5hAwei1qj56dZPLL25lIY2DfG08+Re6j3is+ORIKGpbVO6unSlm0s32jq2rZpt9FfY+2gv486NY0LTCezqswsQuxc3k2+yJHQJ4SnhVa5tQ+uGzG83n4H1BuJ3yk90xXL35XDMYe02RwceZUiDIeSW5dJwe0OMFcakFKTgYu7C0YFHORF/gqU3l/Jt829xs3TThkN2dOpI5LtI7o+/T8NqDf/hZVEsV7Ch+wamtpgKQFRaFJ67PQFImpH0L9ukf8EX/CfgS6HxGWGyyoQlHZcwu83szz0ULXof7k2BsoDwseGfeyj/HN6/FykUO3dCejq4uIh/KyhAkMkYFNCLm6+v82yTCtsm7UWdhoeHdvfYzFia+Ddhftv5/OT1k/bvKrUK36O+3Ey+ScioEFrXaE1MZgxHnh3h0LNDJBckoyvVZWKziQxvOJxWDq3+7mqWIAhcenWJqRem8qZATAv+EM53fth5ern1qrL9kWdHGH5yOID4+jsDUUAZHg7t2gGw+vZqVoavJG9+HjLp3whHExKou6UOXh79OJJ3i/zyfKY0n8LWqK3kzc/jwosLjDw1kttjb3Mi/gSbIjZVmdxKJVJ+8f4FT3tPeh7qSSfnTnQ69//YO++oKs623f92oXcQVIqAgIqioqLYURS7URSxRcHeSzSWJMaSGEvQxN57RUXFhooK9oIdUBGVqghIkb5hlzl/jO7Ii3nzfuec7yTfWV6uvfZazp6ZZ4Ypz33f131dcewwSiS/lg33pj+tlIErU5aRuvN33CbN53FDawYOlPJSkQGAo5mjGHTYt6KlfUs8a3iiK9Nl6+31TImYAnI5Ggl0cOrAxeSLeNt5Y6RrxK3nUYQ9dCWu8CU/+0BdqvFYLx+NoMHL1ouXeS95r3jPgKewP0xglTfM7gqfPuB0pDokT0tmXcw6Nt3fRNLUJJZcW8LKWyvxrOFJ56MP+fUCvN65mrB6Gs69PMfllMvaAOzjhEUqkbKt9zYWX1ssKv8ERbMvdh/zL8/H286boooiEnISmNV6Fss6LxMVdq5fF9V1zp6Fp09BKoVWrVB16czQkr28dDJlT/99+O31w9LAkqigKJZdX8bvt3/H1cIVpUZJakEqnZw7cSn5Ejf3GdAqz0A0tJNItF4HAfUD2PVoF6Z6phSWF2qvGV9nX+ZFzeP3278jkUiwNbZlmvc0Zl2cBUAvt14cGnBIqx4kCAJua91IL0inQlNBDcGYZ8uKkU6ahM6yENznW2L+XsH5HxOpbiv2XZCRAVFRYpPvpUuQns7D6tB+JEikUiRSKYUyFXKpnDYObeju2p3ubmL/SJX75e5dlL4duF2tjG5DBARDA62E73dtvqOZbTOe5z4XPzni93vFe0CcuDuaO5JTkoO9YEyr2Hx21i9HJoCpQoJatyGewkYkH0QFJBo1aqnAI9kEZPrpNMnX5fz2CuTOLnDxIq8lRTTe1Jh2tdoxsMFAhhwbUul6kElkPF+t5q6nDQv9LXiR96KSYhMgqrqZOdHSviUNqzfkxPMTKFQKBtQfwHeXvkOCBH25PkMaDGLnw51sMh7Ir/r3Ka4opr51faKSo+hbry8bPedRY/JckTY5bZrYE2VgUOUZk12STc2VNdncazOBDQKx+tWKVV1XVTKtA5gcMZlN9zZhYWBBTmkODW0aMrThUDbc20BaQRor/Fbw7YVv//eFSzQaGDMGdu2CAwdQBvQj5k0MF5IucDHpIrde30IjaJBKpHR16coIzxF0dO74H0llC4KAdYg1heWF5M/J10qNr41ZqzWvlHz4F9AggG9aflOpMftm+k267+9OYXkhpnqmRAyJoO+hvoxpOoYlnZZQoCigb2hfLqdepqV9S85/fZ4Z52ew/eF2lnZaSk3jmgSfCGZmq5mcfH6SF3kv2NVnF0GeQX85dpVGhc7POpWSjWqNGpOlJpSpyiicW4iJnsl//Xx/wRf8w/Al0Pgb4bTKiSENh7Ck05K/eyha7Hi4g9EnR5MxM+PPM8//NAgC3LkjNiIfOSKaXg0bJjYX370Lo0ZBSQmsXUtOyCI8RpXTtFpDzsx8gERalT24IHoBS64v4cHYB5WyUqXKUnx2+RCfHY+diZ1Wbaa/e3/qWNVh9sXZrOq6imkt/zOKQVpBGi22tsBY15iC8gJySnMAqG5Unfk+8xnVZBR6cj2UaiX1N9QnvywfR3NH7o25h2T4cPGYnz/XKmL5H/KnsLyQS8MvVd3Z69d4L3LAon4zzhfep1nNZjx8+xANGi4Mu4CXrRfWIdb83vV3JjWfRMONDXGxdMHFwoXfb/9ODaMavCt9h1pQU8O4xgdTQAkn79UluP5zGju35NzYq1WlmiMjRQnLZs14s38Tt4qeaisf9zLuUa4uR0eqg7GusdbLw1tty47JF7j79i7B4cH4OPpgEfuC5XsycCiAgBn23LYsxcLAgl/9fqX/4f5ag0ITXROqGVbD+1oy+47B1iYwrY8OFYJSW4nY1WcXbWu1xXWtK3YmdrwrfcfijouZ0WoGY06Opu/8A/RO1kVy9y4KVyemn5vO5vubq2TTfRx9aO3Qmn2x+xAEgeigaMacGsPl1MsYyMWJX87snM/Lfqalib4BZ8+iOH8G/dIKVFYWyLv35LlvIzrkrKCasQ3FFcWkFaQhCAL+7v6cSTxDubocu0K4dbMBDrefaN3UV95cyU9Xf6JgbgH7Yvcx/Phw8fZA0GZoQayoDT02lNeFr7WT4Y9+MK6Wruzz30cz22YA/HTlJxZeXsiQhkM48+IM88PfExwvR5WSxKOX1+geMZSxr6uzwXCAGFg8ewbAy1Z1Odu+JueqFxNd+kQbIAC4WrpyKOAQTWs2/eub5NYt1H6duV6jnB4D1ZTq/pH9H+oxlE29N2mpJ4IgkFOaw/Pc5zx794zrMUfZk30eE4XoAs/HOEYAr4pVGMlaVJFJzpfE8FQ6g7gDZrjo2/Jo/0pekMu8qHlkl2TjZevFjfQbVdzjaxZCxm+wdFpTMrq0pqZJTY49O8ajzEf81uU3Wjm0YtuDbRyIP0BJRQldXLqgI9XhRd4Lnk56ik2IDfll+dgY21DXqi5WNx5w1q6MEc3Hsum+KCX9a+df/0hKaTTi827OHJFyuH+/Vn77U3TY1QFDHUNGNRlFwJEAkqcl42TuVOk370re4fC7Awt8FtCoeiN2PdrFsYRjWkPB5rbNeZT1CMUPiv/ImbsSBAFhwngSjm3hwvyvuWhVwOWUyxRVFGGhb4Gvsy9+tf1oUrMJCy4v4NzLc2KSp+PP6Mh0/nLzG+9uZGLERPq796e4opiLSRcrV7z0zJniPYXxXuMr9dKkvk9lXvQ89sXuo5ZpLdIK03A2dyZ+YjzjTo8jNiuWbb23MejoIHJKc2hXqx2RryJpZd+Km69vsv2r7ZjqmRJwOEA06ms+mRbbWqDUKEmamoSzhfNfjr1AUYD5cnMOBxxmQIM/DGUbbWxEfHY86vnq//r5/oIv+AfiS6DxN6LZlmZ41fQSNf3/IcgpzaHGihqs77GecV7j/u7h/HsoFGIZfu1auH9ffOFOmgTBwVpKCidOQN++4rKUFJg6lYig1vQMH8DGnhsZ71VVirVcVY7nZk/M9My4MfIGmcWZHHpyiND4UO5m3EWKFF25Lqu7rSbYM1jbSDn93HQ23dvEg3EPqG9d/98OvUBRQJsdbShRlnBkwBG67O2Cnakd2SXZvCt5h4CAnYkdC3wWoNKomBghyhweCzyGv60v1KgBCxZo1Z0EQcDuNzuCPYM/H7jm5eH7jRUxLnq0cm4nNqJHTGbLgy34OvlycfhFuu/vToW6gqigKDbf28zEiInUNK7Jm6I3pE1Pw1TPlOiUaCJfRbLj4Y4PXiFS6ufLiTetYEj9QHYPOFC1mnLzJvTsKVaXzp0DazErWqGu4GDcQSafnUxxRTESJMy9KuD+DuYG2+Jo5si9lFv8fFOXmdEVxDvoMnmgCVZN2pD8Ppm47DjyZufhtNqJEZ4jiHwVybOcZ9rdDn0Me47DgZZGzOlvwtuSLAQErPStmNB8Ar9c+wUjHSNuj76tpZqlF6TTZIUrz/aaUmBtyoARxsTlPEEtqLE1tuVt8Vt6uPUg4kUErR1a8yjzESXKEmQSGXoyPRZ1WMSiK4soVhZjb2JP+oz0f3sdxLyJod2WlmyrNophGdXE8/PoEQnVoMNoOflyFTX0q5GmyqG7a3eySrJ48PYB609DuaUp30QWwoEDMHgwITdCWHJdrGgpVApMlpggkUhQapQM9RjK3n57tROXkooSZl+czYa7GwBRDcrFwgV9uT6Psx6zwGcBc9vOJTk/mTrr6hDsGUyZsoyXt85w77dizteV4ym1ZV2NNJa2g6iz1Sn29uScm4Szmue8LEhGRyo2t3Z37Y6vky+9D/QmszQTHakOKo2KCV4TmO8z/y+z5MLVqyj8OnLVQUOfQeDp5M39t/dRaVToy/Xp6tIVI10jskuyxU/hW96V5qCWVH61fQxGJUhoqTqFHlX3q9Jk87a4NxoJFOhC3id6BC4WLujIdHie8xyZREYn506cTxJpa4HxcCgMsXpavfqHbamYeGYiWx9sZYnvEua2nUuJsoRD8YfY+mArd97c0TqDH35yGJlExsAGAwl9Esr0t45EydJ4ZK2mt1tvUgtSSS9M5/zX52lu1/yPQT15Al9/LX7//LNIFf1EBnfNnTV8G/ktgQ0CeZj5kCcTn3z2HI88MZKLSRdJmpbEmjtrmBk5k+GNhnP6xWnyyvKQIGF009EENQ6itUPrv5wAZxZncvHVBS6GLuFiRQJvTEFXpksbhzZa2dmmNZtWelZoBA0rb67k+6jvaW7bnIP9D/5b6tB7xXtqrqxZSVHuYzKgcfXGzGg1g8AGgZUoV/ll+Sy9vpQ1d9Zgrm/Oog6LSCtIY03MGjQaDd3duuNfz5+vj3+NTCKjac2mhAaEoiPVoe66upSryzkx6AQGcgN6HOhBn7p92NRzE97bvTHUMSQpL4lvWn3zHxnfvil8g/3v9pwZcoYebj20/999X3fOvTpH2Q9lf0oX+4Iv+J+EL4HG34gue7tgqmdKWGDY3z2USui0pxMyiYzIYZF/91A+j7Q0kRq1datIG+nWTey36NZNpKN8+rvhw0VDKC8v2LkTPEQ/ivGnx7M3di8Pxz2kjlWdKrs4lXiKrw5+hYuFC0n5SejKdOnh1oNBHoPwtvOm676uKFQKro+8jr2pPSDShZptaYa+XJ/bo29XUnL5FEq1kh4HenAv4x6Xgy4z+tRockpzuD/2PgZyA9bFrGPx1cWUKEtQC2pkEhnGusbYm9oTOyEW6ZatMHEipKeLnH/ECXKtVbUIHxhOn3qfMfgqL6feTH0SrSUkTE6gjlUdLTXmVf4rRjcZTZOaTZh6diqZ32ZiIDegxsoaFFcU09K+JbdG3aq0uW77uhGVHIWrpSv19Ow4m3oRhfwP9TK/2n50cenyR/Y0NlaUsbSwgMhIBHt75kXPY+m1pQgI+NfzZ3OvzRiPnUzZk8cs/bU3MZE7+X1/Lg2z4ScfONLbheeFr7A1scXD2oPIpEhujbrF8hvLySnNIXxgODYhNpXcioc/gp0nILZvK7w976Gva6ClE/k5+3Eh+UIVielZkbMIu7SGHHkFKrmUcqlAu1rtuJp2lU09NzG66Wja7mxLbmkud0bf4WHmQ8KehmmDr09xOegy7RzbfdbpWqFS0GRzE4x1jbk16tYf1aC3b+H8eSJPr6Grx0OMKsBQLcFYboCOoQn5KHgzv4ApY+2ZczgD6Vd9cNx5jOXXl7P8xnLy5uRpfXrsTOzILM5ELajxr+fP9q+2a00EAeqsrcPrwtfanoLxTcdjom/Cylsr8bbzZmuPjXhs8WT8G1sy9MpR5+dxer+ASiZhlZfA3TqGJBqWkm4GuYYiLe5jT4uvs6+W+hFyI4TvLn3Hzj47GXd6HI7mjrwueA0SGOE5gs61O1OgKOBd6bs/AoYPn1f5r2j0NI+I/RDlDP0GihLGn8JUz5T2tq1xevkOy5sPibXX5YRzOVKJlEEeg7AzsWNf7D6ySrJQC2q8yj9T0RDUNEyL4avr0+k2HARJZarcx2eBIAhYGlqSW5qLgICfsx+Lj+Vjdv0eR479zLz28z7ZpiBWha4sZFLzSazutlo7uf7l6i/Mi56nrbQ5mTmRWpBKc9vm3H0Tw7ZTEhYNc0BHqsPZoWcJCg8iPjueiKERtK3VttK9zYIF8OuvIo1yzx5wEu+7j88FUz1Txjcbz3K/5VWuQ0DbCzSnzRx+vfErs1rPYrnfcq3Bn42hDfo6+qQVpOFi4cLwxsMZ3ni49v4urijmaupVrexsfLZo/No4E/xcutC57wzaObb7U1O/T3H79W0GhQ2ioLyAnX120rde30rL72fc55drv3Di+QltRU4qkSIIAoENApnqPZVW9q0qBUPlqnLW313P4quLqVBXMKv1LGa2nomhjiFOq5zo7tqdHm496HuoL05mTqQUpOBX24/TQ06TXpBOt/3dyC/Lp6C8gAD3AE4lnhINFgeGM/SYaPp4f+x9Qm6EEPEygpRpKVUTLv+CxNxE6q6ry5XgK7R3/MOs8OtjX7M/bj9Rw6Po6NzxL8/XF3zBPx1fVKf+RlgZWv2jVKc+or97f6JToiv5J/ztEASIjob+/cHZWdTMHzoUEhNFznuPHn8EGeXlIm/Z3V3M9AH89ps2yABY0WUFtia2DDs+TEuDKFAUsPvRbrrv745/qD8SJKS8T2FFlxVkfZvFsYHHCGwQiKO5IxeGXRAnGXv9eFcicoENdAzY128fcdlxWifiqochMP70eK6kXOFY4DE23dtEbFYsYQPCsDSwxEDHgFltZpH6TSpz285FLpGjFtQUlBeQW5pLaHwo6p07oHt3bZABoqwtUEVx6iMSi1J4YQV2UnNtYCWRSAhsEIiZnhk7H+3k2DORLnHq+SmMdI2obiRmZue1m1dpWwWKAqJTohnZZCTPcp7h17gfhR4H6PISKpQKXuS+YOKZiTivdqbO2jpMjpjMSb0UCqPOQmkpbzu3xP13F5ZcW4KZvhnnhp7j2MBjWBtZo1+3AUZpbzHfsJ3zq3PRU0Pw7Los9oH6to2QICGjKIPIJDEIHndqHBpBw830m+LE40OQoSfTQ0+mxx5PGNMbPI/fYsUZJSXlYuUEIColCiMdI7be36o9tjJlGTmlOaQYVlCmI8GySMNoWXOupl1lhd8KxnmNQyaVsavPLtIL0/npyk/4OvuyoecGUqenalWGbAxtAOiwuwPVV1Rn6LGh7H28l6ziLO2+5kfPJyk/id19d1emnNWsCcHBrO/vABJQ6EkpN9AlWbeURGUWi48XoKOBX/Ej1cmc11HH2XB3AwKCNqAJfRKKrbEt7xXvsTCw4OuGX3M55TKemz25mX5TvE1U5aS8T+GnDj/R1aUrAJsfbOLxhX2EqvzJevmY5utEOk7HGxkU6ggU1HNi7FBT5GqBMA844lJG7+dQpAsD3Ppyd8xdpnhPwVzfnHMvz7E+Zj0zz8/kh6gfcDR3ZMuDLVgaWJKQI0qLFlcUszZmLX1C+zA8fDgLLy8k7GkYCTkJyKVyHM0dKVAUUN6uFQFDdfBLkXLsmA5NrDyIGR3D0cCj1LGsQ6GikDNJ53iSep8NXhDu9KEZW1CzP24/a2PWklGcQQPrBpgoIFF3B6KHu0izEb8FvJ5tZ+FwBzQSkXKmL9engXUDVvqtRCaVoRE0aNCQU5qjDUJuv7mN5f2nPK1nxY/RPzI4bDDP3j2jQl2BRCJhQYcFbOm1hY33NjIwbKA2A/+xMiEIAks7LcXSwBIBgZiMGCzR59vOAoe7badEWSKKUQw8TjPbZnTd11UrgSpe7HqwbBlcviwmVxo1EoMNQcDBzIEG1g0oLC+s0vf1KRrXaIxXTS9CbobwVd2vWNp5KQC+zr7oy/Ux1DEkeVoyUcOjaOfYjuXXl+O82hnnVc7UXVcXy+WW9DzQk7CnYbSwbc6Bit5khcCjhusJ+fY8XV27/kdBBkBL+5Y8HPcQX2df/A/5MyViCrmluWy4uwHn1c54bfXieMJxbZBhoW/B3DZzSfsmjdCA0EoVF42g4UDcAeqtr8fsC7MJbBDIiykvWNBhAca6xkQlR5FemE6wZzBm+maY6pmSUpCCnYkdBjoGPM58TKvtrZBKpNwdc5fp3tMJfRKKs4UzRwOPsvHeRo4+O8quPrtwtXRlVNNRvC58Xfnv8ycorhAlqv9VxhvEfp6o5Kj/6Hx9wRf80/El0PgbYWVg9Y/x0fgUfev1RaVRcer5qb97KFBcLFYvGjYUm58TEsQG7jdvYNUqcHOr/Pvz58Xf/vij6FB9R5yAk1v5PBvrGrPXfy9339xl6NGh9DvUj+orqhN8IphSZSlru6/lxZQXVDeuzqXkS1VkKh3MHLg47CJ5ZXnaZkKApjWbsqjDIpZeX6qd0H2KpdeXsuPRDrZ9tY30wnQ23d/Euu7rtJz4jzDXN2d2m9mY6JlgoitmhfMV+Qw9NpSGXjEc6Ve3UrPpndd3qGVW67N9NYIgMOnsZIyVYCboVVrWwq4FBeUF7O67mztv7mCka0Tok1BKKkpIeZ8CwJuiN5XWOZ14mgp1Bd+3+54JXhP49sK3pHT24rj1ZBq+1VBQkE3i5ESOBR6jk3MnIl5E0Ce0D1ZHW+AyFewHZ/C8MJlA2y5kzsykq6s4yX2Z95ItLw6il1/IdyfzyRjuT7OxkOQiZuB/aPcDHZ3EDN83Lb+hmmE18hX5RCVHoRE0jDo5SjtGQx1DytXluFm6saMpjO0FU2Jg3UVdZnh/g6GOIRKJhBJlCWti1pBdnM3znOd4b/Nmb+xeANQSgdG63mxVx7Cg1vBKog11q9XVShFfTb0KiBnKwvJCbE1sK1U2XMxdSMhJYHj4cGqsrIHXFi+Cw4NZeWslC30W/inN7mrqVbHXQyKhQkecONkYWuNkaI9aCqZhp2j3MI/mr2HaqUmEX92CVBAoqSjhdOJp2tQSqXkGcgNqmdXi0fhHOJg60H5ne5ZeW8rjrMcoNUo6U5uwkp7IBAg5D+dD3tJ7yVEOXzDDW0ekrgwcAJfN8riuTuZgPRUvLWB+nCXta7XnTEtLFkXDkcRwbFbY0GBDAzrs7kBgWCAzImew+f5mbcbe2dyZQR6DCGochFQipZNzJ44EHKGbazcA3Kzc2Np7K9FB0fzS6Rcevn2IjZENJromnHVWMXuCK52fK/l+QzytNrdg2W/92bcskQNhoiN8dG3IMdBoM+1nBp9hd9/dlKnKmN9+Ppkp8RTpQyGxPJJOII8YyskmjxheqcYzocdTbkrS6eTcCQO5AQqVAqVGSQ3jGjzPeY6AQHWj6lwcJk4kdWW6zHUfi+vrUh7WMUFXpkvok1Dqb6iPwWID3Na60etALxJyEhjfbDynEk/RcXdH8krztAFvv3r9yCnN4VHWI5zMxHEr5BLyDcEvrA+jmoziSfYTRp8azclBJ/Fx9KHXgV6cTjxd+YJp3140LuzbF4KCIDAQcnO1zwTPGlV7OD4iuySb1IJUNIKGma1magNWqUSKoY4h6YXp3H1zl2c5z3iveK/tn0gvTCcxV9ST7l2nN1t7b2XLvZoMXnIKm19WiZXX/w1YGFgQNiCM79t+z4a7G7AOsWZSxCRS3qdoZWkBerr15M2MN/zS6RdtZfkjopOjabG1BUOPDaVx9cbETYhjU69Nlfxsdj3aRR3LOpx7eY5OezrRtEZTBjYYSGZxJmdfnMVnlw8uli7cGHkDtaBmX9w+jHWNyS3N5WrqVWZdmMWMljPwd/cHoLltczxsPNj+cPtfHmNJhSi08am8LUBeWR42RjZEpXwJNL7g/w98CTT+RlgZ/DMrGrYmtrSyb/X3mve9fAnffAP29mLfRZ06YrNpfDxMmADGlR/OpKWJ1Y5u3cDOTnzhrlwJtWqJyz8JNCrUFZxOPM3amLXIpXIOPz1MQk4CSzotIf2bdK4EX2FC8wm4WLqwoccGIl5EcOjJoSpDdLNyI/LrSF7mvaT3wd6UKcWG19ltZtPSviXDjg/TZq1AVI76IeoHFvosxLOGJ+NPjyfYM5jRTUd/9hT8fut3SpQlFFUUEdI5RGzmFSDFHALTf6PJpiaEJ4QjCAJ33tyhhV2Lz27n8JPDXEy6SLd0PYqFyr4WH9cx0DHgSvAVJEi48OoCP0b/iFpQU69aPdbFrKvkVxD2LAxvO29qmdUixC+EmsY1CQoPQm9pCMeTmlOUn8m4YyPoXbc3G3ttJGlaEjdH3KSGUQ2SitPQSAAJXEi6wNdbu7M+Zj1TzkwmZFQ9hh96DoBky1YkK1ZSroO2kTijKAMvW9EXoYtLFzrX7oyTuRN7/fdqx9besT36cn1tY3lSfhIAW71gYk8Yf11B49/3U1pRyuKOi6lhXAOVRoXjKkcab2pMYm4iEomEEL8QzPTM+MngDjNf12LB7DPiNfYJprWcRttabQkODyavLI9xp8dps7Efq0EW+hbcybjD0k5LyZyZyZ6+e3CxdGFv7F40goZl15cx4MgAtj/YzuvC19ptv8x7yfvy99SxqoNaUNPFRZQx1ZHrkiEt4o1zNcjKQrZ1G7oaOHjbnrvlyRQU53HI341SZSk9lU6A2H9RoiyhllktIodFMtd1BHGrv+dVf1+SVoFn2/4YTJxK3XwZx7yMaDlZH+Pvwav3Wy5LPnjqfELJ19XRZ2MLCZ3v51FHZUqrdoNxUBrQ4g1IBLAzsWN77+28n/OeO6PuUKYqY2WXlVwKusQe/z2s6LKCTb02scJvBVEsKs2CAAAgAElEQVTJUay9u5Ym1ZvQuXZn0ZRxjy/6v+jjscGDV/mveFv8lqiUKCwMLHjn48XhBQH4J0o5dFSCBrjcxpYJg40xM7bEq6Z4faQXir0x62LWMe70OALcA1h96ReyDTTUzhOPp1AaS7xsOuqCAbSJm8Eb/TjKpGocTB24nHKZMlUZHtYeJOYmMvjYYAQE5BI5D8c95Gb6TSRICKwfyPcyHwB+mh+N4gcF37f9XnuN9nLrhYDAiecn2HR/ExXqCm6/vo31CmsCjgQAopnimjtrmNJiCo8nPOablt+gQsO0W1CkLuWXa78gIHAm8QzDjw/n6ICj9HDrgf8hf448OVL5ZjczE6sZhw+Lz8uGDan+6CXAn2bZFSoFfUP7IkGCvYk92x5uA8Qm8YNxB8kvy0ctqGm5vaVWDnlmq5ncGnULxTwFadPTWNRhEYm5iXTb3w3H0iXM/aUjT4f4fXZ/f4UyZRk7H+7Efb07S64vQYNGWz2SIKFXnV4YyA3Ql+lzfOBxDHQqK27FZ8fT80BPfPf4IpfKuRp8lfBB4bhbu1f6XYGigKNPj6LUKFl8bTELfRZycfhF9vjvwd7UHqVGST2relwafgmFSkHnPZ0x1TPl2ohrlChL6HeoHy1sW4iqch8gkUgY6TmS8IRwrbjHn+Gjop+RbuWKRm5ZLk5mTsS8ian0/viCL/ifii+Bxt8IK0OrfxY96RP0d+/P+Zfn/98+6DSaP2hQbm6wd68YVCQliZ4Yvr5ahSUtysthyRKoVw9u3YKDB0V5zQYffCTkcjA3R53zjktJlxhzcgw1VtSg98HePM58zLz282hg3QCNoGG81/gqWbE+9frQ370/U89O/Wz1qXGNxpwZcoZ7GfcYcGQASrUSuVTOnr57yCrOYsb5GQBcS71G8IlghjcezjTvafQ/LCpVre+x/rONlTmlOay8tRIncyeczJ2Y1nIau3tuIz7Ugq6CCyCa0fkf8sdrqxcxb2JoYVs10CgsL+Sb89/gX8+fpoVGFP1LoGFrYoudiR0xb2JoWrMpp4ecRkBg1W3RPyHEL4S47DiupF4BRFPAsy/OMqC+qJJipGukrYaE3F2F4+4THL5gTnT6Vb6/MBeNoOG3W7/Rfnd7Xhe9pptrN4q/K+ZG4HmmvHXg9cPLLD48ma7frGdzuJrY1q4AKIz1tS/gEmUJUomUt8VvcbMSK1iZxZnUs6rHnTd38D8kZhOrGVbjSvAVFvsuBsTm308VaDY2hyndYVhkFksuwc9XfmKZ7zL0ZHoo1ArK1eUYyg25OfImtcxqaatUw6buQGJoBAEBogDBB0glUnb22UlWSRbd93XnRd4LtvQS3aRPDRGrgeWqcuRSOX1Cxb6ZYY2HYW9ij45Uh0MBh5jZWvQvGXt6LA6/O9BwY0NmX5jNsuvi5MXexJ5qhtV49PYROlIdypRlLGtYQEYdW5BK0QwMRJDJaN1tNF2cfFHKYWLzLGxKpZwKDwEgI/sV5yM3sLGNHq/sjVg8dBsHjkKjpBJO1oGuI+Q4LDLnRTUpN61KuFNNgYGBMTKJTJt1b2TzhwR0QP0ATMZOQSmFta8bsa7HOqwWhbDnGOgjF6tLp0bR/3B/Bh8dTDXDarwues2gsEG02t6KmitrYvCLATMiZyAgcDX1KuvurkOhVNC3bl/61eunrSB61vDkaOBRVBoVB/odYH/XLQxTuiOTyvB/KjAtBua6Z9Cnfj8SJydyd+xd9vYVgzhdmS6RSZEoVAqOPw2jQEdN7+fw7sO8VK4CQQIjYmUEjlmLIBElpj8GKTpSHWRSmVZBDEQ61bLrovOzgMCIJiNE408HB3B0RCKR8EunX1jht4Jzr86hJ9fj9ODTvJz6ktLvS3ky8Qlruq3BQP5Hr5BCLVZNVt9ZjdkyM448PYJUIiWskYyeKlG9qJtrN8z1zQl/Hk7ttbXp4NQB/3r+DDo6iN2Pdle57xkwAOLiKHevw/7fU6lTbsyx+CNVfiYIAqNPjubB2wccHnCYbm7d2B+7H48NHtissGHIsSEICNga22Jvak/e7DyuBF/hR58faWnfErlUjoOZA9+1+45nRUHc2Qp9zL3ZIntEgw0NaL61OWvvrP3LSTfAs3fPGHNyDFa/WjHy5Eie5z7X0oos9C1oYN0AAYHk/GTKVGXMaTunkjLVm8I3jDoxisabGvM85zmHAw5za9Qt2jm2++z+5kXNQ6FWUKYqIzoomh99fkQqkbL8+nJSC1JF6mxBCplFmXTZ2wUBgYvDLtLQpiFOZk6UqcoY6DGwijrWsMbDANgfu//fHu+fUafyyvJwt3ZHpVFxPe36X563L/iCfzq+BBp/IywNLFGoFJQqS//uoVRBP/d+lKvLiXgR8d+/s/fvRRpU3bpikJGVJTZup6eLvRaOf6I8cu6cSJNasECsejx/DoMGaYMRQRC4lX6Lqd0E7MoW03lvZ6JSopjgNYG4CXHET4xnvs98wgLDSC1IZc6FOZ/dzdrua6lQV/DthW8/u7xNrTYcCzxG5KtIgsKDUGvUuFi68HvX39n6YCub7m2i76G+tHFow5ZeWxhxcgTvSt4RFhj2p7zlZdeXoRbUJOYm8l3b78SX2ZkzNHiez/FBx7k16pa2GpGQk0C5upzdj3dz4dWFStWHBdELKCgvYFW3VZhKDCikooqbsre9NzFvRDfa9o7tqW1eW+SvC+KnvnV91txZA4ju5OXqcvrX71/p+Ge1nsX86Pk8lmTju+oEIRclhNxeidMqJ2ZGzkQmkbG/337ODj2Lka4R1WyceNDejXWnBN6sBN9MA9b/2JXBfZUU6MGiHUH4h4oBRE5pDtaG1rwteqvtZYh8FcmWB1uoUFdgIDeglX0rckpzeJn7UktJ0KDBQt8C92piJnOBzwI2tJTybTcp312HEddLCT4ZXInmlF+ez+Cjgxl6bCiDGw7GzdKNOY9DxEA3NhamTq107lwsXZjVehYxGTH0d++vlUN2tXRFR6pDNaNq6Ep1UagUtNnRhsspl/n99u/84vsLgQ0Cme8zn5ujbpL9bTah/UNpVrMZux/v1lIvLqdeRi6Rk1aYho2RDY2qN+SdIQR4PMEmxAad38yJrabmzP6FnEuLQgDK0WBapqFZkVj1c3mnwTNNyZD7Fejr6HO9VyN+Wz2IdtNNmdFTSqSjimyhSHue7o25R9F3RWTMzKBx9cYAxGXHAeBs7sy+uH3sTAtnfyMoW7eKjTfXcEGSxP1achZcUvG2+C0Al5IvkZCbQHZJNoefHCarJIt61eoxrtk4dvbZSXRQNElTk1jVdRVFFUV0qt2Jvf32svWrrZjomuBq6UpyfjIDwwZiqWdBmxtpULcu+auXMWlOQ4YEwJA42HVGhydZcVq6T6MajRAQ0JHqoBbUSAX4GG7GOEgoMgCjcrBSgEUZrOhlSZNOQ7DQt0ClUSFBglpQM6v1LGKzYilTlSGVSJFJZMxuM5ttD7fxtvgtBnIDsYJy9Sq0a1cpCTKz9Ux+6/Iby28sZ/aF2QiCgJ5cD/dq7lgZWmmrnwBBjYLImZXDjZE32PHVDoY2HEqTmk14Y6TmrFT02DmecJzSilLM9czJLM5k+rnphCeEY2tiS/CJYDbEbKj6ELGzY/+vXzO1Owy6W8apR4epuHdHu1itUTPpzCT2x+3H1dKVrvu6su3BNjSCRpssufD1BQB+aP8Drwtf8+Dtg6r7AVi5Esn339NizELW/3ibtzPfcjTwKLYmtsyInIHtSlv8D/kTnhBeyem+XFXO/tj9NN7UmPob6rPt4TbKVeVaumhti9ps7b2V1zNeEzchjm29t/Eg8wESJNom8cLyQuZFzcNtrRsnE0+yqusqnk56yoAGAz6bxKlQVzDj/AzW3V2HtaE18RPiae/YHpVGxfjT45l/eT6LOy5mYIOBvFe8x3OzJ7lluVwYdgEHMwcWX11MXHYcnZw78WP0j6S+T620/WqG1ehTrw/bH26v6lz/CT4+p6pUNEpzcbV0paZxTaKTo/90/S/4gv8pkP/1T77gvwtWBqLBWW5pLoZm/1mj3P8rOFs406RGE449Exug/1sQHy82de/dK1YmBgwQy/4tW1atXHyKlBSRVhUeLjpjh4dDfZHnLggCj7MeExofSmh8KKkFqdg66TCkqA6DZuyguW3zKi+fetXqEeIXwpSzU+hVp5e2Z+AjaprUJMQvhLGnxzK04VA61+5cZUhdXbtyoP8BBoYNxEzPjA09NzC66WjCnoYxOWKytnlwzZ01hCeEEz4wHFdL188e3uvC16yLWUddq7rkKfIIavzB/GnnTlE9q2FDWgKXhl/iYtJFRp0cRamylPTCdLrs60K7Wu34uePPmOmbsSZmDcs6LaOWWS1MZAaoJBoUKkUlukEL2xb8cu0X1Bp1JaWUDk4d6HuoL4M8Bonn8n0qYU/D8LL1qqLFv6jDIiJeRDA8fDiXgy6T2bMDVESTXpiOq4UrUUFROJg5UFJRwuKri9ketYKtkXo0ywTs7TF884ZJzgOZNGIE5TsbMMzYkgQj8f54r3iPTCJjT+wePGw8kElkHIw/SEObhmQUZaAr02Wf/z7qrq9LwJEAHmc9Ri6VY6RjRL4in5GeYtN6YXkhC30WMl+YT5GzA3ss05FpQP0h3fJRGvNV/ivt38HH0YdtD7cR2XIGXTZsED1ZvL3F7w/X2/W06+jL9bmZflNr/CWVSKlpUpOA+gFcS73Gw7cPeZX/iu77u+Ni6YJG0DDnwhyyS7OrqCx9KtdZoizRUixKC60pzw+knfJbUo2SKBJO8n2XXpjFnubr+89J1NizXX2XfB01UbtBqinm+5YgdbDnrUd1Nvq5czbtEjflsajyY6mTA/5FFlDHjV3Ke0g/iClkl2RToCjgbdFbPGw8eJrzFBAnaMnvk9GV6ZJWkMbaFjD2fglXfp/OvXa1edLLnjOLUzjY3pIUE7XYkC/XI6skCwkSpraYSt96favcf9NaTkOhUjD30lwMdQy5m3GXUmUpt0ffpkxZRodl9XhnkE+d2LH07OfISTtTyjQv+HnmKuhtztfBI1DveoqfpDMXhl/kdOJpdKW6lChLkAiiYeOGU/DYUc7mRioMKmBoHOxoArNr9GfV+7N8d/E7BnkMYsfDHVqazpLrS7AxtCG7NBuNoEFHqsOznGf0dBObnhUqBU1+cyPxfg4EB/GvGkPftPoGuVTO1HNTUWlUzGg1g0kRkziVKFa7jgceZ1j4MHbH7qZX3V70c+9Ha4fW2vVH/ODBcZ6xP+gkw8OHY6lvSQenDpx+cZrM4kyUGqWWbjfp7CR+vPwjPVx74FnDU+uUfvLFabL7t2Jz/dn8FOnPxa9bY9XpK35rLyMiSaxY68p0cbZwZkzTMfi5+GmfUYENArV0q6/qfMXqO6vZfH8zPk4+lQ90zRpRVveHH2D+fAD05Hr0c+9HP/d+IgUr/iC7H+/G/5A/VgZWdHcVpbTPvDjzB4VIxwi1Rk2FpoLOtTsz1XsqPo4+la6X5Pdi4GVjZEOr7a3oW68vF15doERZwoyWM5jdZjZm+mb8GV7lvWLQ0UE8znwsDr3bGqwMrShVljIobBARLyK0BnrHnh0j9EkoRRVF9HTrSR2rOkS+imTRlUUs7LCQad7TaLSpEcPDhxM1PKrSs3Ok50itsmAlOeJPUFxRjI5Up5I6oVqj5r3iPdUMq+Hr7PulT+ML/r/Al0Djb8RHJ+XcslwczBz+5tFURT/3fiy/sRyFSvF/T89bpYKTJ0Xvi8uXRT+IWbNg7FhRbeffQaGAFStEqpSFBYSGig2PEgmJuYkcjDtI6JNQEnISsDKwIqB+AIM9BtN20nJkOrrwJz0MABObT+RU4ilGnBhB3IS4Si7XAKOajmJ/3H7GnR5H3IS4z1YiAuoHsKXXFkafGo2FgQU/tv+R3LJcNIKG2ua1eZz5mO8ufcfcNnM/L0H7AYuvLsZQx5D47HhWdVuFnlxP1Oc/c0Z8qX+ARCLBz8WPzs6diU6NRleqS2F5IXHZcXTY3QEzPTNqmdViesvpAJjKxcxZUUVR5UDDrgVFFUU8z32ulXYEcaLkbu3O+rvr0ZPpser2KiJeRLCww8IqY9aT67HXfy/NtjTDcZUjxUqRFmBTAirDMgzkBhx5coQZkTNo/DiLl2cMMFFKYd8+GDgQJk+GkSPh/Xv06tSnQX4+4YPC0f1ZF6VGiZO5EzmlOZx8flK7T1NdkV7TxaULj7MeI0HCs5xnHA08yvq76ylUFHLv7T3elYmqYEefHSV+Qjw/X/2ZLdXTkQjQIBv22oxjkkMcN1+Lzfu6Ml0q1BVcTb2qbfTutr8bbWu1JaRHY7wmTiDF3ghFk4YciDvApeRLfO3xNYefHcZ7qzfu1u7aoGHtnbUoNUrtmBUqBS/zXrL42mJsjGy0n6Y1mmJtZI2NkQ1ZRVksubGE1vatufla7AUwERrSWL0RBIECIxlmghVmRV7sDZvOmPOxGBSXY3ojk7LWAm1kTuhH7uDrhCWQcpHHqjcIua+5p5OAr4cvq126Yp1VxI313zEtvxoOBx8w2kZDYOAjMIFxW3qRr6Oh+EPPrQQJTuZO2kmeUq3ExtAGo6bOXHa8w7cP9THdFIG9qT3hpy3Yd6CcFqPV4rU4IQ5dmS7Tzk2j3+F++NX2Y033NZXkhAHmtJ1DcUUxcy6KVcXDAYexL5LwZNQg3pzXENGpFsG+BWxTpmImmLGl1xYGNRwELQG1huCRI6mQPcWPzhSUF1KhqQABZBo4dQCsymByLxV6KtgVDmO+gmqlcFaWxKgmo1gbs5agRkGUq8sr9c7lluVS27w26YXpyCQyTiScEKVUETg56CRPD65Bpr5I9/TljHxiTUD9gEoT4yneU5BKpEw+O5n1d9djrmeOgdyAkU1G0te9L63vtebJuycEHA5gXY91TGz+R/P0SscxRLyYzo77WzkaeJROezox1HQoadPT6BPah+tp11nfcz1Ps5+y7eE2ckpz2Be3j4PxBytRBk11TelVOA0ZUha013BnYzizzxvwoHcFtTx9OTv0LLryPya707ynsfn+Zo48PUJJhegRU9OkJmObjuX7qO/JKc35w7V740bRnXzWLNHH4zMJImsja6Z6T2WC1wTWxqwl5GYI++L2aZcb6RhRqixFR6bDxOYTmdh8YpVEBoiB7spbKzHRNSGkSwiTIyYTGh+Ks7kz10Zcq9KD8a8IjQ9l7Kmx2BjZMLTRUMITwunr3pec0hx6HehFfHY8p4ecpptrN5RqpVaNzsfRh9AnoXjYeLDqziq6uHRhXntRlniv/1467OrAipsrmNP2j4p4F5cu2Jvas+Phjj8NNEqUJVUawfMV+aLXj4EVHZ06cjD+IO8V7zHXN/+3x/YFX/BPxhfq1N+ITysa/0R8dFu98OrC//nG3r0TaVC1a4tN20ql2E+RmipSn/4qyDh7VpSnXbRInJQmJJDWrRUhN1fQdHNT6q6ry8pbK2lh14KIIRG8nfmWTb024ePkg8yqWhXVqX+FVCJlx1c7UKgUTDgzoUrJWyqRsqX3Ft4UvmHh5YV/up1RTUexsstKll5fivc2b56+e8ryzsuJTIqkT2gf2ju252ffn/90/Zd5L9n+cDtulm5YG1n/0Si+d6/YbzJ4cJV1YjJi6OrSlSeTnrD9q+0Y6xgjQUJBeQEp71P4KvQr7r65i6mO+FL7yA3/iGa2zZAgIeZNDEtvLEUjaLA2tObk85Os7b6WZZ2WUa4uZ93ddZSpyujv3r/KGN4WvWXp9aWoBTVFFUWY6Jlwvv9x7kTVpij/Le5r6xB8IJDNEXJO71Zi2qQlkvh4UaJYLhcnLHPnwowZkJEBr8SqwscA18bIhqKKIvTl+rhaiJWgG69vAHDk6RH6He6Hub45comcHq49aOvQlpSCFIx0jDj1/BT2pvakFaThudlTK2csSKDnc/BctJnvX4pSweb65iCAXCLX9ifoyfQQELiXcY8OzWK5Z61EJ3AwHVZ4sOS6aI546OkhDHUMSchNEL0GLF1wMHXAydyJXX12sajDokrX0pWgK7yY8oIbI29wfOBxNvfezGLfxUz1nsrbEpF6VNuiNroyXQzkBrgIY8QJrETMmkokMqQaCYL+UPz7itSvpw1sUMg0ZJhIqHnej8iUi9pJsVwqp7VDa5LfJzP30ncEPviO1a2gdo8XVJ8rZ1dvB5Y9s8emVEK6sYbhsRIyL3jyNY3wtvDg5ZQX4tiRIpfKeV/+npg3MWxro4/XqzKGLWjE7ke7yZgygvqpJbR5pUJA4Om7p7hZuXFmyBlODjrJq/xX2j6UovKiStdQUOMgdKQi370k7ABCnTqYxDyk+7c16eOTgYVpdVZ3W42HjQeDjw2m+/7uxGXFwYgRsHkzY28qCNoXx8s8sfnZqAJubQWPfDl+w8Sg48gRuOwEJbqQYypHJpWxNmYtJrom7IndgwQJuWW52JnYIZWIPT5J75NY0WWFNpOvFtRYG1rTq04v5gitUVlaIG3QgMCwQLy3eVeiuyTkJBD6JBQApUaJqb4phjqG/NxRfAbYmtpqkwGTIibxw6UftM8eywZerD0LxxJPkFeWx0Kfhfx05Seupl7l8IDDuFm5MefCHCY0n8C7We+0TegfqTiyD9dKYUUhuWW5yKRy7tlBu2CwzC3j/kY1PpeTGXtqDEuvLeXYs2M8yX5CbYvadHHpwuo7q0kvSKemSU1kUhlBnmJlddejXeLBbdsmqkpNnw7Ll/9pFTo5P5lZF2ZRLaQaMyNnklmciaHcEDNdsfLwkTrctGZTGldvjI2RzWe38/2l71GoFFgYWDD8+HDaOLQhpHMIuWW59D7Ym3sZ9z67XqmylDEnxzD46GB61enF3TF3ufDqAoM9BpNRlEHr7eJ9cTn4Mt1cu6HWqBkePpxLyZdobtscqUTKJK9JzIsWZb739dunpem1d2zP7Daz+TH6x0q0MplURnDjYA7EH/hTanRJRUkV2tTHnk1LA0t8nX3RCBptsuMLvuB/Kr4EGn8jPq1o/BPhbu1OvWr1/s/Up+7dE526HRzgp5/Az0908b5+Xeyn0P28qZ0WKSmiXGOPHuDkRFZMFOsCatHmSDccVzky//J8XCxdOBp4lKxvs9jddzfd3bpXbtCzsvrLQAPAztSOTb02ceTpEQ7EHaiyvI5VHeb7zOe3W7/9OVcZmNFqBq3sWxGXHUdQ4yCmt5yunSgv67yssmfCv2DB5QVYGVjx4O0Dvm39rVh5EATYsQP69fvD8fwDCssLefruKd523silckY2Gcmt0bcw0DFAV6qLXCIXG8W3tWC+XaJ2nU9hqmeKu7U7d17fYfO9zRjIDQhqHER4QrhI8Wk7h9+6/IZKo0JPpkd14+radTWCho13N1J3XV1OJZ5CggRTXVMs9C1o6ORN2IQO7Dyqoe6LfF7uMKLHjSyRLnf+vKgo9hESiRiILl0qOomnpoLij0rarde30JfrU9u8Nl1cu2Cia4KuVBd9uT4SJDSt0ZSSihJKVaXYrLAhKjmKnNIc6lvXF7OEHyZvyfnJ2gmYoY4hy9vDpO4QrA6jRpFI06rQVKAW1FoKzac9HHN9F3B/9VwsJYaEnzBARy1BR6KDUqPUcugTchLwcfShba226Mp06V+/P7se7aK1Q2vqWoqyxB12d/jTBMO5l+eQSqS8yHuBUq1EX66PvsYJQag8kROkMvQlLkQ7Q6kcajzPEI/xfbI2o60RRCdslUbF7de3aVKjCfN95tPRqSN1reqS9W0WOQtL2bwhjaER6UzrvRh9qR7bmkvp2iaJjNR4LO/EoXAS/1aDSpxoauhKa4fWCAgcclGQbgqLnlgzMWIiJ+QvOeoOm8NV9HLtyYQzE8gszkQikdC7bm+eTHzCAp8FIjVwXV32x+5HEARUGhXDjg/DXmrOiERDRmnCGTfeDqepAlFmuSzwWUDs+Fimek/l2ohrHA08ysu8l3hu9mT0ydFkDO7F+xWLmXJdydKLIFPBxV3gWiCh69diYHH0hB6182FTc5Eu51Fd9OKIGBKBWqP+4KshYCg3ZHW31ZXko5vVbMbJwSexNLAExGf2vYx7cPUq8vY+nBkaQXRQNBKJBN89vnTd15VJEZNovKkxWcVZRAdFM7v1bF7lv8LDxkNL76lhVIPM4kx+6/obK/xWsOT6EkadHIVSrQR3dwY8ga+MmzEpYhITvCbQqXYnhh4bSnFFMWeGnEFXpkvH3R1ZdHkR997eQ0eqQ2F5IboyXe0kViqR4uvsy5JOYlD8umEtOn5jQaKPB/N3JRO0+BRbI5fS/3B/PDZ6YLjEkNisWO5l3GN//H50pDpEJUdRrionwD2ALfe3IOzaJVahJ00SPYr+JchQaVSEJ4Tjs9OH2mtqs/LmSq30s7GuMWWqMnycfUSJ8Nl5bOm9BaVayf9i77yjojrXtv/bMwy9IyBIFVARBUXsFbtib9iwayyxxiS2JHrUaGIs0ahYsDdUFOxdrNgBFURFRekgvQ9Tvj922B6i55y831tyzlpea7mysmf3vWd47ue+ysjjI7H9xZZxEeO4lnRNegaxGbGsvbMWECfoLgVd4syIM8xtPZfoL6KxMLCgVUgr1t1ZV22S6GnWU5pua8r+J/sJ6RPC/gH7uZd6j9SiVFo4tKBViPgeR42Pws/eT7QCPzONw3GHOTDwAKN9RnPj3Q3UWjUCAmWVZVJuUhX+5v83vGy8GHlsZDXtzdjGYymsKOTYs0///SxWFn8kBK/6TbAytMLVwhVnM+fPeRqf8R+Pz4XGXwgzPTPkgvzftqMBosd7REKE+Ifvz0KphP37oWVLaNpUpEj97W+QkgIhIeDr+6/3UV4utuI9Pcl7fI+QLZPpMkrA/mQHZp+fjYW+BXv77yVrbhZHBh9hgOeAj2wOJdSoISaI/wkM8RrCiIYjmHZmGu8K3n30+detvqa+dX0mnJggzTXqIOUAACAASURBVIz/EVsfbiUqJYo2jm3Y8nAL/UP7k1Mq+tl/deEr1Br1J7d7nPmYg08OUq9GPcz0zZjsN1n84M4dMT9k3LiPtnmQ9gAt2mpBfYsjF6Mr1yV+WjyL2i1CqVKiL9fnsX4BALPPzZaSe6vQrFYzLr+5THZpNoPrDxa51aXZUhbIF35fIEOGUq2k3c52ZBRn8DjzMa13tGbqmamY6JlQVlnGD+1/4M74O2QUZ+C+wZ2lKQfwsPHk+g5I0inh9JEfxVnQf6TBmTdPpGJotUSN6STN8FVxupMLk4lOi6ZIWYRSo8TodzpYLdNaNLRtiEyQUVpZys1k0a3lftp94EMWiBYtPjV9MNMzw9rQGlNdUzY1A1MdQ+I2wcwoeDTpEZXfVZI2J40JjSdInY0yVRnHE44zPOBbXm/+kRYvy7j7tgvFC4u5O+Euq7quor1Le0orSxl/Yjw7Y3YSnx2PT7APKYUpzGg2g5vjbmJtaE1BRQHtd7X/6F1ILUwlvTgdRxNH7qbeRYuW3PJcinklhctVQYuaYl6hkkO0HTT7Pe7EwdSB2ua1pbwBmSDDUMcQQ4UhZxPP0tKhJTllObRzboeNkU01qk9Lh5aUayo4MDiUCid7Il0gv0l9SgNFYf7gk6+59fUzTm0qYIMQgFyhS7AftLuZwmiH3kRnRLO0HdTOgy0lHZHL5Ew8OVEa/Onr6LOo3SISvkygtVNrRh4fSbtd7fhydyD3k++wPzibBcoW2BnZss30JfoKA+Kniu+xno54PYIgMMBzAHFT41jXbR3hCeG4/eqGdeliZneFebdg+RX4sjcMGWVIgrmKPeEC3eMq6DVOD7lcLPRjMmKYf3k+wQ+DKVWVUsNApAOVqkoZeXwkxooPtJb+of2JyYiRJoU0Wg3dQvzR3okS8ysQNU13xt9hRacVRCZFsun+JjwsPTgx9ARtnNpw7tU5apvX5vrb61LQZE1jsdDQarV81eor9vXfx97He+l7qC8lxnoINjZsKhbfqfmX57Ov/z40Wg3+u/2ZeW4mRcoiXue95m/X/wZaWNl5Jd+3+x6lWjR9GO0zmo09N5JalCqZWSQXJrNx6F78zj+Bo0fxTxJ4td2IXO8DXBtzjeCAYIY3GI6RwojkgmTe5L+h055OOKx14HjCcV7mvqTT1bEsme3LoUmtiM6IkYTNyQXJfHflO2r+UpP+of25/u46+nJ9alvURibIKFGWMMl3EokzEokYGkGn2p0wNzBngu8Ero+9TuL0RL5q+RWRSZF02N0Bl3Uu+G31o9GWRmi0GkZ7j+bBpAd0qt1Jeja1LWpza9wtvmz2JbPPz6ZfaD/el7xn28NtNN0mdiQeTHrAuMbjEASBXbG7cDJzYtqZaTibO3N73G1qW9QGxK7Jlodb2NZ7G4PqDyKgTgAqjYrgh8Gs6LQCF3MXeh3sVc1FS1euy/4B+3mT/0ai/lWdl7+L/z/M1PgUdarq/apiO3R07cjVpM+C8M/4z8bnQuMvhCAIWBpY/tt2NAAG1h9IXnmeZG/6T5GWJooBnZxg5EgwMhKF2q9ewTffiJ2FP4PTpyluVJ+DYUvo87UDtmPfMzF9Cxo0BAcEk/FVBqeGn2Kk90hM9Ez+9f6srCA3V+wM/An81vM3TPRMGBM+ptqsJoBCrmB7n+3EZMSw7s66j7Y9l3iOqaenMq3pNCLHRNLGqQ2nX55mfOPxhA4K5da7W6yOWv3J4y66sghnM2eikqOY03LOhz9CO3eK97Rjx4+2uZtyF1M9U4nzfuvdLUKiQ1jRaQVulm780OEH3sx6w9SmUykTxMLoUcYjvDd7MyxsGAnvEwBREP4yV6THrOq6iuYOzbEztuN4wnHpuqr87JPyk6j7W118t/iSVpSGhb4FGq2Gy6MuM6j+IKadnUaFugK35FLeHLCh3t1EhNat2NQMhjyaT2xGLFqtlsKKQhJzE7mdfJvwhHC2PtzKsuvL+M5HLC6W6NxG+/tA/GziWVQaFUXKIqJSo6TrrzqnnNIc6tWoRx3LOtib2LO7327sTeyrhXtVwVBhSBunNiQXJIuzvgLkmijQmTyVdechfeVC5DKRl76tzzZezXhF81piIRebGYvzWmf6ZK5l0yAnGu+5gG7EKZrVasaM5jMIHxrOrn67ADHATItWyvIYGjYUuzV22BnbIUNGXHYcvlt8WXptKRNOTKDj7o7UWS+mtr8trO5k81b+cZK1Fi1pCjFD5I1HDanQSClM4XX+a5RqJaa6ojC9XF1OZkkm70vf03ZnW55kPqGGYY2P3u+mtcSBWW5ZLg8mPsBE14TbRfF84ScmmutsDWFWPz3e6ZXz5S/XebJOSbgnyLVgHXqSivISXtTSY2Nrb1beVtC04jhv4zvz0+XqOTROZk4cGXyESwGhpLyKYcvbYzTK0+fkD8No2Og2Grn4p6lSUylpQ/4IXbku05tPJ3RQKEqNEpVaxfoWEF4Xvr0NvV7AJdsStp2AIU+1dAmCJIMKaYJglPcofrr1Eyeen8DL2ouUOSkMayBSE8tV5RRXiinyMmRkl2YTeCQQHUGHJnZNWNx+MfXeliCUV1DcrDEgUmG+uiCmoHtZe7Gw7UJyynLw2eJDlz1deJz5mNDBoezsu5OQ6BAmnJiAjZENZaoyipQijWyE9wjODD/DjXc38N/tT3bD2hg9f8OwBsPYHr0dv61+ZJdmk/A+gVvvbom6hx4bUMgUWBhYMKvFLJb4L+HnLj9LRcj4xuN5OOkh4xp/mKjofbA3Xfd25Ug9DcqYhwg+PlgMGE67VYeZ6DmC1d1Ws6KTSIUc22gsCdMSiBgawWKL/piXwRNnPTbWfMew4yPw3eqL8Qpj9Jfp47TOiWU3lpFTloOVvhV2xnaUq8tRyBX81uM3UuaksLrbamlg/0e4WbqxuMNiYibHMK7RONKL0nmY/lB89wQdWjq2/KgjW/UurOm2hhNDT3D97XWc1jkx6dQkRvuM5t6Ee1IoZl5ZHkfjjpJSmEIHlw5cGXUFayNrQHT6W3lrJWu6rpHuVaW6Epkgw8XchW9af8PJYScpqihiQOgAKlQfOp31reuzqssqNtzbwLnEc9LycY3HEZkUyavcVx+dc0nlP6dOAfi7+PM48/FHXZTP+Iz/JHwuNP5i/DtnaQA0rtkYF3MXwuLDPr2CVivSoAIDRRvaNWtEDUZ8PFy6BH37gvyPfiyfRkViAuFBTRm6qxe2Q94yvL+abOca/NL1F1LnpHJ51GUmNpn4kVD7X8LKCtRqKCj4U6ub65uzu99uriZd5dc7v370ebNazZjZfCbfX/1eGkSC2N4ffGQwPTx6sK77OhJzE4lOj8bexJ49j/cAYpjfoiuLJNeTKkQlR3HyxUk8rT0x1DVkWtNp4gclJaLofcwYkH38db2belfiEas0KqacnkJT+6ZM9J0orVPDsAaru63mSaW4rFhZjLm+OecTz+O1yYtRx0dJuQXulu7YGNkgE2T0q9ePY8+OodVqORp/lIY2DXEwdaBcVU5hRSECAskFyTSt1ZSbY28SnhCOT7APr9+/5FJaFx5sF0gvSOGnNQMZO8eNrFrmaCvKabK1CQbLDTBbaYbHBg9a72hN/9D+TDk9hbV31rIm5TBKGbQvtsL29xiXbs4fZjB1BB2ujLqCocKQOS3nICAwwXcCu/rt4pvW35BcmExuWS4ZxRlUqCvQEXSwMbKR3F0qNZVcfXMVDRoyijNwNHUkX1lAl3r3OdevAT3Xn0WzcaN0PFcLV+5MuMNv3X8DRM7724K3nOpVF82ggWIKc0KCtP6wBsPo5NpJojzUMq7F0AZD8bPzw0zPjCdZT9AgDvAfZz3m+8jv2R0tvm+l6k/zufWM0jEsXyglWZtZZBMjn0yl4iW2Rracs8zFLQ8sS8HD0oO2Tm2RCTIKlYVUairRaDXo6+jjZe2Fsa4xWrSsuLkC21W2BB0PYv/j/WSXZGOsa4y3rTdRKVEY6Rqhp6PHQM+BnHslDp6yjCE/aDADArVo37/H4/g1dpmOItQLpt4HbXkFepV1OdphM3G1/Cgp18GK5py75sSluJcfLqi8HH78kaZdx0JpCTYyEx5ZVbAi9SDtndsz2mc0hjqG+Lv4S8LnT+HAkwN03dcVjVaDUz5oZFCrCC7XFlgcCbdCYEwsjB4At90UOJo6Sh2qp9liV08hU/A67zV7Yvewtuta6XMQdQNVzyqpIAm1Vk2QdxA/dPiBZYpuFOmC561hRCRE0GBzA4IfBPNT55+4N/Eeyzou+zBD/zYShUzBucRzDKo/iD3997A7dje7YncBYi5MFdq7tGdN1zXEZ8fj2OY+VnWOs+XhFvR19ClUFnJgwAG+bf0taUVpdHTtyJfNvuTAwAMcjjssWXTrCDroyHS4k3KHQUcGsSN6BzuidzDJdxJatCxsu5CSyhKGHB1CrUNNmTvbi+frFokd5yZN4OFDxjQaA8Db/LfUrVGXPnEqvpkRyg8lfhQoxImF+W3mY6Ev0jkr1BUICOjJxOI+pzyH9OJ0MY9EkHP5zWVW3FjBntg93Em5Q15Z3kfPU6VRsfXhVur+Vpd9T/Yxq8UsRjQcAYjU1alnplLzl5oMPTqUsy/PftRVtjW2xUTXBKVaiQwZTmZOUidMq9UyJmIMKq2KYQ2GcTzwuDTQD34QzPzL8/m+3ffMbjkbEIMDBx0ZhJmeGaWVpWjR4mrhyvHA49xNvcvk05Or0bSmNZ1Gd/fujI0YK3U8BnoOxEzPjJ0xOz+61mJl8ccdjdIcjBRG0jn7u/oD/LmJvs/4jH9TfC40/mL8u3c0BEFgQL0BHE84Xp3mUVr6gQbVti1ER4tJ3KmpIgff8587gFRBpVFxIf4kY5c0xjbEk/7uD0jwc+a7Lst4PeM1UeOjmNF8BnYm/0Is/s9Q1Un5EzqNKnR07cjsFrOZf3n+RzQjgKUdl2JjZMMXp75Aq9WSWphKwIEAPCw9ODjwIBWqCgYeHkgt01rEfBFDS4eW9DrYi351++Fp7cnI4yMlG1OtVsuCKwvwrOFJZFIkM5rN+GDRGBYGRUViofEHVCWCV822b7i7gbjsODYHbK5mtVgFD0NH5BoxT6Jz7c7kledhbWjNqRenCDouhkxVJSuDaGn5tuAtB54c4NizY+SV5ZFSmEKZqkzMHNCKgt+7yXfx2ODB+nvrcc5Rs+/XFPy3XmRtcy2+EzUsLzpNYv5rjJq0pF+SProqDa7mLhwYcIAro67wdMpTMr/KZE3XNZRWluJi5YbG1Zn5tUfh49wMHTU8eBkpndeufrvwd/Wng0sHIpMicbd053HmYwBaOrYEYPb52dJs/dhGY1Fr1BL9z97YHjdLNxQyBTZGNtLs4b30+wzye83aFiD78kvKN2+odv+mNZ9GoFeg9P8X3lzEut4J3plBWufmdN/cGud1zhgsN+Dym8uSbWexspgXOS+obVmb8Y3Hs7HnRsKGhOHv7C/tS8WnaXggztamTUnE8u11nujMIkqnN40aP2RQ46aSFiPaUaQDNU0VNRqVmkrezHzDiIYjpIFzuaqclMKUaiGcSo2Sa0nXJG58s23NkAtyrry5QqW6ktyyXDq6duTAAFGz9MWpLzBSGJHwPoHHuc+gXTua/ribq728cM2HwYkKXDTj0AoCGukdlAECyyPuoNGo4ehR8ffhhx+YMMWeFHM5Wdoimjs0p0/dPpx/dZ7VUavp6taViKERNKvVjIADAdXEvhqthgWXFzDi2Ag0Wg0uudAjWYFtMbxxMmHwBFOiakHLVDjiJbC/oVhg2hrbYmVohVyQE58dj4muCY8nP2aUzygmnZpEl30f0qwt9S25N/EeYUPCpHuoRUtMRgyllaV0TJaT1sCZlLIM+oX2w8HUgSdTnjC31VxJh2Wka0R6cTrm+uaMbzyepdeX4r7BnWJlMbv67pKMNm68vcHaqLX03N8Ti58smHRqErpyXRSCDkZKODHkODFfxFChqiA6I5rlHZfj7+rP8LDhZBRnMMBzAL92/5Vfon5h/d31nHp5ii61uxA+NJxzieeYcGICIxqOYGPPjVgbWqNUK7k17hZPpzwlyDuIXbG7qZe/jHa/eLG3ThllbZqjWPkzgkY0myiLOAqBgWgGD8Lxi29Qa9X4BPuw8uZK8srzsDWyxcfWB5kgQ1dHlxnNZnBl1BXOjjjLqi6raOfcjrzyPHbH7mZ0+GhahrTE8mdLbFbZ0HZnW8afGM+Y8DG4rHPhi1Nf4O/iz/Mvn/N9++8JjQulhmENnk59SvLsZJb6L+Vp1lN6HuiJ41pH5l6YS2xGLKtvr6b1jtbYmdjxbNozFrRdwKIri+i2rxuphalMOzONE89PUMeyDnv775We0cEnB5l6eirTm02v5qj35ZkveZHzgl+6/kJWSZaky2vt1JqQPiHsitnFqturpPUFQWBHnx1UqisluqCBwoDhDYezK2bXRzTJEmXJxxqNspxqE2kOpg7UsarzWafxGf/R+Fxo/MWwMrD6t9ZogGhzm1mSyZ2UO/DmjUiDcnSEiRNFQe+5c+KM7owZYPaPPcyroNFquPH2BtNOT8N+RQ26HenDrZwYZuq0Jm7MfWK+TWJe2/m4Wrj+z1xAjd+tGP+kTqMKP3b6ETdLN0YeG1mtTQ5grGvM5oDNXHp9iS0PthBwIACZIOPU8FMYKYyYdGoSSflJHAs8hrWRNRFDI6hrVZfeh3qztMNSXuS8YNEV0cXk0utLRCZF4mXthVwmZ2aLmR8OtGOHSJly/fheJBcmk1GcQXOH5qQWpvJ95PdM9ZtKE/smn74gQ0OMlaILy6wWs/ilyy9YGVpJlooAh+IOYfmTJVY/WdHzQE8ARh4fSYW6gpSiFGS//2QUVBTQwLoBenI9CpQF2BnX5FLJIJ5v16eprBbvz4UxK7KckMF7KVIWMavFLI6NPsOBLy5w8oDAi/cviMmIwd/VH0sDS0aFj2LW+VlM9J3Ig4kP0K9TH03iS5JkhajkiB2p31GV69LNrRs33t2gvnV9Hmc9JjYjlp77e0rrLWy7EBD1GzllOVKREPE8grSiNH7s9COZJZkcGXyE1o6tcTB1oERVytzuAhuagf7UGSwYURP/Xf702NeDVttbcfzZ8Wq3NFenkg4DizF+X8j8HS8Z0WA4mwI2sbzjcmmdMY3HcGfCHUIHhTK84XAepT9i6NGhXH1bnXttbWj9ycemVCuxWVeLcI8PNKeqAZCJngnuFu7EmyrJNQD/bCMMdAy4m3KXLnu70KV2F+nZbu65mTZObSRNhqW+JUUVRVIStqOZI0XKIuKy4nhb8JYaP9dApVGJzk6/Y6jXULY83IJCpmBH9A5peUVjb+7Wgp/TvKip1xjhD6kSAnIqyixYNN4VBg9GVb8eY7f34ohuIgYKA/b028PtcbeJGBrBjx1/pFJTSfjzcKadmcb23tupb12fbvu68STziURdWXFzBQA1SuDiaUuu2VXSJEvOuxXzmHumgJapcMldTuBTLdPuit/Z6PRo3pe+x1BhSLmqnJ19d1LPuh7BvYLZ228vT7OeSp2v/Ip8XuS8YIDnABrbNZauZVfsLlxWO1ISeZGj1lmSU9brvNcfFfhRyVHsitnFyk4r2dxrM8+/fE6X2l2YcnoKX1/8WnJQm3ByAguuLEClUfFD+x94NOkR7795z2u/PXhmw/BjI3lX8I7v23/P6qjVxGbGsn+AmDw98thI1Bo105tPZ27Lucw6N4vIpEgCPAKob10fAx0DBEEgKT+JUlUp/er1I+xZGFqtFi8bL9Z0W0PqnFQODjyIwsSMUb5vsftWh6/uLWPlRShRFrN51VB+Gl8Pp6Y3GRQ2BI1WpCz62PrgYelBZkkmZaoy1nVfR+qcVH7t8Sv+rv50d+/OzBYz2RSwicujLpMyJ4Wi+UU8mvSIgwMPMq3pNAwVhhyOO8zu2N2SlupI/BG67etG/U31UWlU9PLoxY13N5ALcua2msuTKU94MPEBQ+oPYWfMThptacTci3Np69SWsCFheFh5sLTjUi4EXeBxxmPc1rux5eEWAJZ3Wi59B069OMWo8FEE+QSxrvs6afnO6J3siNnB5oDNBHkHYaZnxukXp6XnOtJ7JAvbLmTepXmEJ4RLy+1M7NjaeyvhCeFSF2Nc43GkFqVy/tX5au9GsbL4k2F9VfqMKvi7+H8uND7jPxqC9p9FV37G/zrGRowl4X0CUeOj/vXKfxE0GjXDpljz3WMLGtx9IxYT48fDlCng5van9qHVanmY/pBDTw8RGhdKSmEKjhX6BD4oZ5hxCxr/uBOhXr1/vaP/H6SmigXR6dOie9V/AdHp0TTf3pyvWn7Fis4rPvp8WNgwwuLD0NPR4/a42zS0bcim+5uYdmYaBwYcYFjDD3a0OaU5tN/VnoKKAkZ5j2LFzRVcHnWZeaeD0S3ojqbcBmsLNUsH+tPQ2UTUtri7i1kTI0Z8dOwjcUcYcnQIDyc+5NtL3/Iw/SHLOi6jRFki5jj8MQyuMAPlH2bOZYIMA7kBJSpx9l1AQCFXoNao8bXzJT47npLKEkx0TRjecDhbHm7B2cxZDAxTV+Ju6U5bndoMXHOOHomgnTQJYfVqMBYpAVqtlsFHBhOZFMnTqU+paVwT1q5l9ZE5zO0Gc1vOZWfMThRyBTv77qS7e3fxXo0fQd65Y9SZVIFCrsBUbkRORR5GKoGi8a/A1ZWE9wl4bvRkRIMRhD8XE4fVWjUGOgYYKgzJnJuJ8zpn+nv2J/hBMPNazxNFs8CmHpuwN7VnaNhQfGv6is4zKVEYKYzEToQWNp6GyQ9gXD/Y3Qh0ZDqoNCpczV1JLkjm1x6/suz6MrJLs/FLUhG1A7YMqY3bj1sYd2IcdazqcO3tNRQyBd+2/pYd0Tt4V1jdYMDR1JG8sjwpd+Tv8WPHH9nycAt+9n40uPGcv1k95e+NpzxreGJvbM/lpMvIBTnn9kGFoMHmyl0WXlnIxdcXMVYYS/tOm5OGnYkd9TfWp6ZxTYx0jTiXeA6VRoVckFPHqg7vS9+TXSrywWsY1qgmegWY3GQyDqYOLL2+FJVGReToSOrWqIvbejcGPSxnR1gl09fd4Gm2XLLiBVFTksc9HstnMdq6M/eFNOKz43GzcOPehHtYGlpK63bd25XCikLGNBrDwisLUWlUzGs9j9C4UFKLUrHQt+B13mvxWSsh8pQVytwc2k6A5c0XUrFqBUuuaFgUYED+lLG4LN/E3Cj4ohds/b1hpyvTZWzjsQT3CpaOO/PsTHbE7EBAkDQTjWo24uzwszitc5LyUOSCHN9MGfc2VdJxnBzfIbOIyYzhypsrWBpYcnnUZXxq+qDWqGm2vRkCAheDLnLz3U0uvr7IpdeXePb+WbX7KiDQ37M/hwYequ6Yl5xMiZsTQ37y40JxDNt6b2PdHXFAfG/CPa6/vU6XvV1Y0mEJ37X/Do1WQ9udbbmdfJvdfXezKmoVJcoSNvbcyLCwYdStUZe5Lecy5OgQYifH4m3r/dF7l5ibyI7oHWyN+o0cdRFm5VApQKkuIIgFqqOZI7GZIv2zh3sPZjSfQVe3rpLt65/Bq9xXLLiygMNxh2lo05CfOv9EQ5uGvMh9wfP3z4nNiGXro63IBJlU2IBoolIVSKiQKTiWcIxKdSUNbRryMP0hGq2GHh49GO0zmlYOregX2o+XqZU4qsdgjDst3VwY4+9ErvYR3fd3p7t7d44MPiJ1OGIzYmkR0oIRDUewvc92AAKPBvIm7w33Jt6Tzl+j1RB4NJAzL89wc+zNasXo+IjxHI4/TMwXMdS2qE2jLY3wsPTg6JCj0jo+wT60c2rHhp4fOqeBRwPJKc3h0qhL0rLDcYcJPBpI6pxU7E3s//T9/YzP+HfB50LjL8bcC3M58fwEL6a/+KtP5WMUFcHu3SIVKiGBZ3YK6i3+DWHECFHo/ScQnx0vBekl5iZibWjNkBIXhu6LoZXSFtm6X6F//3+eBP7fRXk5GBiIqeNBQf/lzVfcWMHCKwu5PvY6bZzaSMu1Wi1jI8ayO3Y3HVw6cHX0Ve6m3KXtzrZM9pvM+h7rP9pXWlEabXa0QUemg7WRNSmZclxKV/7eKZAh+/02zBygh/GxVWSdO0bWmqVkKfM+SpBOLkxGqVZ+dAwzPbNqYXDSv2fv+Pnlbpo27cPSLiuwMbLBQt8Cn2Af4rPjmdp0Khvvi9oES31LcstzERDQosXa0Jq88jwGeQ7iwqsL5JbnMshzEAdVfdH5cgbFcjWDuxViPTCI7X22V0u7zS7JpsHmBjSr1YwTQ08gAMohAxklhHO4vpb2Lh04PPgw1kbWqDVq1kStIXP5fJZe0hC0tz+nXp6mQl2BiY4RBkXlZO6xgYsX0davj+NaR9RatcRxH+g5kH51+xEUHsSmnpsIiQ4hrSgNpVpJQUXBR5xuAQG5TE6LWi24n3YfXztf5IKcm8k3GVR3AIcumyML2UnsT3NordyMvkKfvDKxA2SmZ0agVyAP0x/yKP0RHd5oObsXeo6EyNoyZjSfwaYHmz56RgqZgqENhvJr91+xMLDg5POT9DnUp9o6unJdkmYmYb/Gnv29d1EvcBpNRpZgqGNIqaoUKwMrBtcfzJ3UO8RkxACw7IrAhIda6iw04Zeuq0krSmPxtcXSPuOnxuNs7ozJChOCA4KZ2GQi+eX57I3dy/eR35Nfng+Aj60Pz94/w1LfkowS8b4a6BhQpiqTCjE9uZ7Eyfe28eZN/hvGe41k/vDNbGnry1Xf9YBInxIF7Fqi5ZMpFMTuiAwZFvoWvJjxQqKugTjI9djgwe5+uxnlM4qc0hwWXVnElodbcDB1ILUoVaTEaUHQwoHL5tR5lc9ZD1jSWYcF0cYsDs9nQUdwXhnMnAtzKK0sZeslfSbeKmdcH9jpKxZRidMTJYpiwvsEGmxq8DuNaBfDvIZxMO4gAG0c23A75TZy5BjoGlBYUciXd2HNRRnzZxRakQAAIABJREFUw6aw8UkIOoIO+gp9CsoL0NPR43jgcc69PMfqO6vxtvUmLisOtVaNi7kLXWqLnSZ/V3+eZj2l275uKNVKBAQ6uXbizIgzH4oNrRZMTFD98B1f1HnBjpgdzGg2gw33NvBjpx+Z12YeiyMXs/T6Ui4FXcLf1Z9Rx0cRFh9GpaYSXbku9yaKYuhH6Y/ourcrdiZ2vCt4x+wWsz8ZvplblsvumN38eHkxxeWF1CqEV1agqwZbA2vSKnPRk+uhr9DHz96P8yPPf7SPf4b3pe9Zem0pmx9sxsbIhmUdlxHkHfRRN2jksZHsf7KfgwMO0s+zH69yX/E85znP3z/n2ftnXHlzReqAgPhddjB1wEjXiLyyPCmR3krwpaFq4+9Wz+L7KBNkPNOdhZeTEaeGn5JstAsrCvHb6oehwpCo8VGSk+Ge2D2MDh9NxlcZ1ey9SytLab+rPelF6dybeE8qBIoqimi0pRG2RrZcH3udTfc3MffCXFLnpEric/f17gyqP4iVnVdK++u8pzNWhlaEDvpgnpBVkoXtL7bs67+PEd4fTzh9xmf8u+Mzdeovxt+n0P7b4PlzmD4datUSw5gaNODBwdXUn1TJo15N/mWR8TrvNSturMB7szdem7zYcG8DbZ3acMFtCWnBRvy2IpY2gV8je5YgZkP8bxYZAPr6YGj4X9Jo/D2+af0NLR1bMur4qGohY6ujVrM7djfjGonOIgefHGTwkcE0sW/CL11/+eS+7E3suTTqEsXKYvLK8jArHfg7/1v8Kmq0oNaoWRQWSSf5foYFlPFN5EL2Pt5LdEY0lZpK6taoy0DPgdib2ONn7yf9992sd5QvLCd/Xj4vpr/g5ribHAs8RnCvYP7m/ze+rNUfhyIwlRtS37o+NQxrkF6cTlx2HK0cWzGzuUjZMtE1Ia9cFGpW8YWzS7Ox0LfgUNwhurh1ob91O8b/fAmdEUHQrRvGz98wet5BQuNCCTgQUM0ZxtrImm29t3HqxSl2RO/gbuo9mjWL5dubWrzydHibn4RcJicxN5H2u9rz7aVvqd+iDwaVWmoVy6hQV+Bg6oBCoYeOlTXqGpao2rYmZN8cskuzpSLD2tCaq2+uEhQuFpNTz0wlOiOa9OJ0SitLUWlUDPYcDIhpxEkzk7g06hIqjYoVnVcwtelUXua+5NzIcziYOBD2/DiPF09FGDsW73lrCHyq5emUp7z/5j3jGo2joKKAky9O8jD9IYIgcNUVPGaCTANarYZ1d9dVKzKMdY3Z1HMTxQuK2dN/DxYGFsRkxDDr/KyP3LHqWtWVtEF+SUqiLEoQQBKJFpQXsDFgI8cDRSqXgY4B8a7G2JaAVXYJk05NYvG1xdgafRgU9djfg4NPDqLRavCzF6f2zfXNmd58OulfpTO4vnhvylRlVKorpSIjqGGQVGBX6U5M9UylIjQ2K5YyVRlpFTls8dUy6/JD1u2Zgl9qDPrlWThl3CNJO10qMkB0C6tQV3Dp9YeZW4AtD7ZgoW8hnYuVoRWbe21mUbtFpBSmSEUGAkx7qo9JVj51cuB0fy/cS/VZHJ7Pxm6WRA5vSW55LqWqUhDgh77mhDTXZftJGBkrDnb9tvpx4vkJtFotcy/MxcnMieiMaNo5t2P/wP1423ijkCm4mXwTuSDHRN9EMkFo9xbu2Gvo6NmTpJlJTPGbQlFFkZSn0mVvF1bfWY2uXBcPSw9+6/kbidMTeT3jNVt7b2Ww12BqGNagg0sHGtdsTEeXjtiZ2HHpzSXc1rvxIuf3iSdBgHr10El4wfY+21nUdhHr762ncc3G/HD1B17mvOS7dt/R3rk9w48NJ70onfOvzlPHqg6VmkqMdY2lQs7XzpdrY65JXapDTw9J912r1XLr3S1GHBtBzV9qMvf8V9ikFyLXQJ3GnTGv1MEpD7Tvs1Fr1bhauOLv7M/l15erCdn/Gcoqy1h5cyVu693YGbOTJR2W8GL6C8Y0GvNRkZFbmsvBpwexN7EnsEGgaGRg48UAzwEE+QTxtuAt6cXpLOmwhPQ56dwYe4PtfbYzrMEw6lrVlQoELVrsKoOkIgNEGp9Gq8FFO47woeFSkaHVahl/YjyZJZkcHXK0ml16D/ceCAicTTxb7TwNFYZEDI0AoO+hvlI4n4meCfv67+Nu6l1W3FghaqUEgb2P90rbflIMXvYxdcrGyIYGNg0+29x+xn8sPhcafzGsDK3IK8v7h9kK/2dQq+HkSejaFerVg9BQUXORlARHjuAzeDqWhpb/MHworSiNdXfW0WJ7C9zWu7HsxjK8bLyIGBpB5oDb7NiaRZegH9DxqAtPnsDy5X+6K/I/gv9ClsYfIZfJ2dt/L9ml2cw+LzqSHI0/ytcXv2ZBmwVs77Odzq6dGXdiHKWVpRwZfKTajP4fUduiNheCLvCu4B3GuH3MZxfkuBe7Ufgj3EvuzsuA87ydmcT9ifc5Pfw0O/vuZFnHZWQWZ2JlYEV2STZ7+u3B0cxRGoh+EkZGmFZAUVm+tOibi98AMLvFbMkD3tbYltjJsXRw7lCNOlPFba+bJ2fTisc0i8snYf0PYsK7pSVDGwzl/Mjz3E+9T7ud7UgrSpO27VO3D2MajWHqmam0CmmFnkUNLMLOcCJMl4Jcscvjvdmb9OJ0Tg07Rcv24szd87siLzq/PJ/88nzSSzOx6hnHN34FTHm5DqVKHMgLCLiYuzCn5Rz29d+Hn72flGsAH0L3FrRbgL2xPSWVJRRVFNHBpQPOZs7sid3DRN+JvC99LxZEfUU72a4HuhM2uzt7GmrZfqQCu3M3sTSwZHOvzbiai4FaE3wnSIODZFOIdIWeL0Dxd80TG0MbBAT61usrvRs7o3fSMqQlJromUoZDFZ5mPWVHzA5MdE1wPx3FLS8TQJD0ACqtivSidA7HHUZfR5913dZxuYZYBD9sHIyHpQdmemb4u3wQnL8teMuEk2LS/K6YXYQnhEuDRH0dfUIHhbLMfxkvcl7gWcNTOtahuENcfC2Klpd0WMKmnpvoW7dvtUGSWqsmND6UYD8wrASXzMc4qNcxtuNzrpjP4a3iEfXMqtMsVRoVgUcDCToeREF5gaiZiNnJ2EZjpUGeSqNizvk5LL2+VCzGqmQqWthVt5wGmRCxPIgHBc+YdK2Y0308mdkyn009N0ndHGczZ7b02crEbkp2NIJd4TA2wYCskiz6HuqLd7A3p1+epr9nf2IzY1nqvxRBEBjXeBwajXjASk0lxRXFHA88zs+df6LtW4hy1WHIkSEiTfLpASrUFSLNhw9ampnNZnJ0yFEm+03GzdKtWmZJFWoa10RfoU/SzCSm+k0luTCZer/VY/qZ6eL3z9MTnj1DEASWdlzKpp6biM6IRiFXMP7EeARB4MDAA2i0Gvod6kdWSRYxmTEsbr8YuUxOwIEAyQDAy8aL62Ouo5ApeJ7znBPPT7Dh7gY8N3rSZmcbQp+GYpdTSdR2LXI9PSoMdDj77hL29nV4VUPg8uu2nN0H9ZLLiHgRgVqrpvu+7lxLusY/IkeoNWp2xeyizm91+O7qd4zxGcOrGa+Y33Y+hgrDT24z+dRkNFoNG3psqHbPTr04RaPgRrzOe03k6Ei+b/89NU1q0sapDeMaj+OnLj8xqckkKX1chuzTv7HIEZR2fHflO2kyYP3d9RyNP8rOvjtxt3Svtr61kTXNajXj9MvT/BH2JvacHHaS+Ox4RoePlkwoWjq2ZGHbhSy5toRXea/oV68fIdEh0n0qqfyEGPwTGg34rNP4jP9sfC40/mJYGVihRUtBxZ+zXv0fR24u/PILeHhAnz6iBeyePZCcDMuWSenNCrmCPnX7SCJCEH8Utz7civ9ufxzWOPDtpW+paVyTgwMPkjU3i4M9Quiz/wF63r7w9CkcOwZnz0KdOv/31/kn08H/EWpb1GZdt3WERIfw862fCToexNAGQ1naURyUeFp7Uq4qp51zOxxMHf7l/upY1cFSx4Qy7Su02j8UmVo19rmvUGigScg5HH07kGql4FZHd24tmUDa49s8zXpKmaqMq0lXmdtqLp7Wf8Lly9AQ0wooLBPfNZVGRVh8GEYKI8ZEjCEqJQofWx8cTBwYGzFWCr2rgr5cD+8SY35+ewDPMcX4LrBknnVMtXU6uHTgxtgbvC99T8uQljzLFrnor/NeE5cVh1KtxN7UnrXd1vLQrJS747sTul9JQvYztGjJLskm4GAAvhcHAWCXVYaAIInxdeW6uNduwtrWoJLDiKeC9HzqWNVhYbuFjPAeQaBXIHeS77D14VYABtYbiL6OPlffXGV6s+kAjD8xHpkgY6T3SA7HHcbVwpW2Tm3Z+mgrnWt3xt3SnVJlKSPCg9g8pQnC0KFohw3jwqrJDD06lPTidO6k3mFn9E6yS7PFzpQABio46wE9Ej/cl5yyHIqURTQObkxcVhwTT0xk3IlxDKo/CKVaSVZpFoCUWq6vo8+hp4dwMKmFLOIEN53F7oHs7yyO3xa8JTQulF51ejGxyUR0aznyzgwMY55ya9wtnM2dufTmEmZ6Ij1IIVNInZON9zfSP7Q/dqvtcFnnwrCwYay/u57OtTtzcOBBEnMTqdRUoiPTIWtuFkHeQcgEGctvLGfqmanEZcdJrlkBHgG0rdkctGICt0aACgXMdHtB4L25ZBpDxAE4EO2Go6mjVMCUq8sREDgadxTvYG+WXl9KTlkOX/h9AYjFZa8DvVh/dz36OvooK8txKAb3PAHvTCjWBffZAo+LX1EpaLCwq83gpm+Y2mwak09PRqlWopApiJ0cy9mXZ0EmMKWPjPhuvoQcUdIvTo2HhYfUPdj2cBttndrSzlkM4HOzdEP9dyGJgiAwOnw0r++dp2YJXHFQUVJZwtnEswz2Gsy5Eecoml/EvNbzAFH/tCpqFY2CG5GY83cvwx9QFdqnkCvYGLCRsMFhyGVygh8G47rOlWV1Mih5GS/lAE1pOoWwIWEo1UpuvLvBhrsbqGlcU0y9ThM1BF80+YLv23/PmeFneJnzksFHBkuua+6W7mzsKVIk+x7qy8xzM3mR8wJdmS4TdFvSJl1Om/EC8eYqHEwdiJ8az/2J97EwsCD4iyZ0n72Ro7+mk3LUiSam9YjLjqPD7g7U/a0uP9/6mcxiMXNFq9VyLvEcjbc0ZmzEWFo6tOTZtGf82uNXiT70KWSXZBOWEIaTmRMDPAcAUKGqYPa52fQ+2JtWjq2I+SKGts5tpW2KKopYc3sNjmsdCTgQQLmqnFJVKSZ6Jv8w7NLGQsOmB5tovaM1R+KOMPfiXOa0mCMd84/o6dGTC68ufDK8trFdY/YP2E9YfBg/XP1BWv5du+/wtfNl5LGRjGgwgvjseO6l3kOr1YquU5/I0fh7KmEVOrp25E3+G5Lyk/7hffuMz/h3xedC4y9GFTXl/9x5Kjb2g2vUwoXQpg3cvSv+CwoCvY9nxgfUG8DznOf8dOsnAg4EUHN1TaacnoJCpiCkTwiZczMJHxrOUK9AjM5egvr14aefYO5cePbsf1+L8c/w3yw0QHQP6eTaiXmX5uFt683OvjuRCTLOvDzDhnsb6OHeg/CEcO6m3P2X+9p2fwur9mQw/eoeED4EsQkCaAUYHxnCgo7QfnUDDi0fxssO3lgmptJycQj2Pq2x8vJj53GY8ETBJKtuf+4CjIwwqUCiNS26sgilRklJZQmjvEfxbNoz3C3dufb2Gk+znkp6hmNDjtEqVcakRwIxQhb6CgO8XJuToi0g4nkECy4vkJKBtVotNkY2bO61Ga1Wi+8WX5psaUKdDXWIyYhBIVOQUphC6x2tGXRkEMNkx3hqK/DTRdF+tU/dPoQOCiV48C5STKErtdGR6aDRatBoRbpNdHo0BjoGhPbdxz5tfzGorqhIsrgF6FK7C+XqcrZHi45FpapSWjm24mrSVaY1EzNK7qXd41H6I4K8g0Qa1POTTGoyiStvrpCYm8hUv6mUqkpFx63idHyaR3PIU43/vC2Ynr36URdSixYBgZ6NA5lt2JGTdcGlWBSYNrRpiKHCkKzSLBpsbkBIdAidXTsTmRRJQfmHSYb+nv2rdoZckFP8KoHM8hyShY9Dyu6k3OFR+iMCvQIRBIG2Tm25XwuSLh7F2siaK6Ou4GTmJAmbF7VbhFKtpKZxTckGuKNLRwI8AnhX8I5vL31Li5AWjAkfI83oqjVqolKi8LL2wkzPjKy5WeztvxcrQytOvjwJwPMnkSS8FDtH0++JzKYapdDx94gZPYUBT2xhU94FkguSaWTbiIY2DaXrKFeXk1+Wz483fsTJzAlnM2de5rykxfYW3E6+jVyQo64op2WajCI9aJOuIHoLTI0zRKGVsbP0NjbFsLuXI2YG5lx/e527qeJ3cGPARox1jdkVuws9HT1UgobCTWsRhgxhV2gFPvfeolQr6eHegyJlEXdS7jD7/GymnJpC74O9AbFbZqJrQoW6gsKKQioiL6MWINpVpNwoVUrUGjXd3Luhr6PP5TeXsTGyAcQgzNjMWOr8VocRx0ZIhfffo6rQqMKA+gM4NewUOjIdahjV4G+aq7iPLiD46s/SILe/Z3+ujL6CrlyXORfm8CDtAc5mzpIN7+D6gxEEAZ+aPhwLPMal15cYHzGe4AfB+AT7MDRsqLSugECARwDeJm5sqbhJlIsOK/2X41nDk57uPcVsH4UhE30nEhKzg+IJoyA6GltdS3779SUqjYqf/H+kaa2mfH/1exzWOtB5T2d8t/jSY38PzPXNuTP+DocHH/6oU/ApTDw5EY1Ww289xNyaxNxEWu9ozcb7G1nXbR0RQyOwMrQioziDxZGL8VjvgelKU766+BUphSlY6Fvwc6efae8sGm8UGYVXC7sUBLFgu1m8hMlNJvO+5D2BRwOpbVG7ml7ijwjwECmh/yjTpV+9fqzsvJJlN5ax7/E+QJyg2zdgH6lFqZx6eQpHU0dCokMoU5WhRVutK1ihqqCksuSTOVHtndsjIHD1zWf61Gf85+FzofEXo2r24v9Ep1FZCYcPQ7t20KiR2F1YuFDsXuzZA82afXKzssoywuLD2BEj2lnOvzyfwopC1nVbR9qcNC4EXWBs47GY65tDYiIEBEC/fmLL/+lTsTNi+OkW+f8Z/gcKjbzyPJLyk5AJopBVT65HUn4SI4+NpFedXoQPDcfXzpcJJyd8UqRdhRJlCfJv5jH4mcC4r79jSJd8KYhNx+g1683j8U6NY783PK54x7DKgyzvb0XpnZvkJb8gasO3nG9oQKMM2Hi4BJfGHUiuoeBW57pELZ9CZvz9Tx/4d+pUvrKQ2edms/nmWRqq1tFbNwqD7GlMPfqz2LFCi4OpAz3de+Jl4ka/Hbe5sV3DhKe6vBxyg97eg7iTcgdjXWMEBFbeXInlz5bY/mKL4XJDaq6uSZ+DfUguTKZcXc6jjEeY65szrvE4VnRaQRfXLtIgJ8g7iNHnMpgrb8OwRAOOPztGbYva4syorTFNy6yo1FRKeREAntaexE2NY0ijERAaSjcjHzJKs4jPeird94jnIm+6o0tHAr0CuZV8i/bO7bn29hoGCgOczJwQEFhweQF1a9SlWa1m7H28l4GeAzHVNWXamWlSKjpAWnEamRU5/DDOleP1YOu+fAa/Fuk9VefmYu5CyuwUDg0+xC/fXuZCbgAlggqFGmIyY6htXhsdQUfa56U3l0gpTKGwQgzVM9U1pVhZjJ2xHSqNCrVWjbPGhIi64voyZBItw1TPlLMvz2KkMKKnh+ikZqxrzIva5tg/TyPy1WWsDK24POqyRM8oqywDRP67kcKIjT028jD9IWHPwpjVfBb53+Zzd8Jdfu7yM941vZEhQ4uWngd6sjhyMeWqcrY92oaLuQttHNrQLVHLb1cMUJeWkGmkRdDCmFiBUC94bAOzHsj5tvW3jPYZzaZ2+mxvAp1ew8u8l9KAu8pJqFApFlIpBSnU31Qfv61+lFWWUVZZhqyykgmPFUTZa2iZZcDmCBUR9WV83XMZV0PUZBtBtrHA1eRr5Jbmkpwv2vVaGlgyrtE4vrrwFWWqMjq7dkYhU9DEsRns2UNl7wD2H1LSJ1GHK2+u0KV2F7q7d2fdnXUEPwyWuktatNStUZc6VnWwMbJhtrIJMXYCBlai/kVfoc+Gexs4EneEkEch3E+7z5FBR+jh3oPnOc9Z3lG0Uz327Bhem7wYcmRItcDOmsY1ySzOrJbS3s29GyeHnSSjOIOW1o3xfwNTb8zHa5MXR+KOoNVqaePUhsjRkQC03dmWjns6okVLHcs6BB0PIqtE7JJZGVjR1qkte5/sZcrpKcRnxyMTZPjY+gBip+bUy1MICS+IeFiHl/PTmdNhPunF6dW6s9OaTqNEWcLumN1Qty7cvk3zoHl4Z0DUoVXs9/kbdyfcpVHNRlx+c5mYzBhsDG3o5NqJWqa1Pv2b9AekFaZx4vkJXM1d6V23NwefHMR3iy8FFQVEjY+ih0cP5l6Yi+NaR+xW27Hk2hJe572WrKEXtFlAyuwUQmJCuPb2Gp1cO2Funs8rg2/IFx6gluXR1M2ctePqMrZFR9bfW09+RT4KuYIXOS/48syX0vfkj2hs15iaxjU58/LMPzz/r1t9zdhGYxl/Yjy33t0CxO71mq5r2PZoG60dW3Po6SHp2fw9dapqDPAp6pSFgQWN7RpzJekzfeoz/vPwudD4i1H1o/K/2tHIzISlS8HFRUzwlsngyBExE2PhQrCx+WiTSnUlZ16eYdTxUdj+YsugI4N4V/AOH1sf6lvX58bYG0xrNu2DA0dpKXz3HXh5iangx4/DmTMiJevfAf8NjQaIs039Q/uTX57Pxp4bOf/qPMEPghl0eBDm+ubs6bcHXbku23pv41n2M1bdWvUP93V3TiCTb5SS+/MS6NePqe16Mq2vPlE6vblYPgy98F+Q9+7DwamXMdYzxkTXhITsBPy2+TElaiF6A4cwtXMF/ee7kP32Gbd+nUtiK0+sEt7SclEwtl7NeGety62untxd8SXZz6PFAxsZkWYCiWWp7Lt/k0bqzVjRnKJSGQ9eFZD6vBdWiBkcwxoMIy/qKifWpKNat4Y1fazxGVZA7YiO7H28F7VWTUFFwe8zhVpMdE3ILslGV0eXib4TWd99PXbGdljoW9DasTW5ZbnUt66Pq4UrjzIeIRNkuFm4EdInBAtTG4TQw2yPNMXj/7F33lFRnWvb/02DoUqTXgQVUREVbFhQsPeCDXsvscYSSxJNMYnG3rvGBLEgVmwoIgQLooiCCCoWqtI7A0z5/thxDEdzkvOd874n71pea7GUmd33Zua5n/sqhWK6/9yNp/lPcfHqhig3973rFzg48F3GilRKj3lbKNcBFRqSVy9i460NrLy+khbWLcirzKOjY0eKFEW4mLpQUlXC/ez7DHQdiAYNl1Mvc/nZZVrZtCL0SSjNdzWnpLqEK8+vkJCTgFQsFZJ6xbrklOdQqCxl5igjQhvCgV9KGPbKEEOZUHBFjo/E1vid/WS3tSFERzfEM1uYNU7MTUSDBmNdY6RiKXV06iATy7QC65LqEi49u0SNqga5TJgtjzYr5WcfIbXdTN9Mq0mxMrDiXvY9BroN1PLc1Ro16a7WGFXDmv0TqaipwERuQldnIVV9/a31aNCwrc82Il9FEvo0lLjpcXRw7MDwE8MZETICWyNb5radyxH/I9Q3q49cKsfb3huFSkGNuoYVESvodLATn19dSp4enPXQ4YUZIBKoYi4FGnZ5S9jWBnonqzgauobcilwURvo0ew3HLujRy7ErxnLjD/5tqFHzvPA5pdWlpJWkIatRsemanJ0ta/AqMSD4pJj7lmpMJs/BYdpirjsJ+35bsNSoayiqEjRIBwYc4HbGbbbEbEEikiCXyvGy9RLEv1IpX05x4bKrhOBjanxSBGH6uSfnECHCQt8ClUalzY0Z3Ww0V8depUpZhWVcMvX6j8FEboJYJKasugwHYwcmnZ3EZ1c+Y1zzcfjU8yHIPwg7Yzt+iv+JY/7HECOmnkk97mTeocXuFgw8OpDYzFisDa1RaVTvfQd0c+nG+VHniS18RK6hiJsmi2hg1oDhJ4bTdl9bIl5E4O3gzZZeW7RhjAAhI0JQqpX4HfLDa7cXnns8a83Cd3TsyJDGQ3iU+wgAL5PGeORJSLEA89WbkZiYUllTSX5lfq0CwaGOA0MaD2HLnS1CUSSTIfp2FdO7LORc3UKet3Nj5wwv0ovS2NV3F9GTounfqD9rb67FaZMT/YL6cSb5zAepR28x9dxUNGjY1GsTk89MZtTJUbR3aE8Hhw70OtyLRtsaseH2BqEAs/dm/4D99G/Un/zKfHb3282ctnOot7keKfkpTGoxidVdVxP/Jp4CTRw+3k+Jlw9j9ThXWjqbsbbHWiY0n0CRogipSMrklpP55eEvtNnXhqTcpPeOTSwS06dBnw/qNN5CJBKxq98u2tm3Y/CxwVqq0zSvafRz7UdYahil1aWceCTY3P6+o/H2/n+oowHCpEnEi4g/1MJ8xEf8XfGx0PgvQ0ud+k93NDQagQY1ZowQrvfDD9Cvn0CZun4dhg4FmazWKiq1iogXEUw/Nx3r9db0DepLbFYsi9ovImV2Cvem3ePzTp+TlJvE88Ln7/Zz6pRAk/rxR1iyRCg0Bg3679GkPoR/o6Oh0WiYdHYSMRkxnA04y/RW05nScgpzL80l4U0CIcNDMNUzBYRZr0XtF/FN1Dek5KW8t63yn/fjt/08l4d7YrHwS+3r01tN1w4Yu7VORjlxPH7Ofjyc8RA/Zz8ySjPwrefLzfSbeO3xQqlWMrbZWOo6utFh7lp8zz7ELUPBm5ePiN64gGftGmHx6Dltl2+nrpsnt51ldP6+IcfdQa6EppI5tdyuREgQIcJONQ6JCtTfrSJyZyXlagVjlrsRMaw1arEQlnd25FkezHhA0ZIizo48CwjPr5uFG57WnuyL28fcS0K6+b1p94iaGMVHVrj1AAAgAElEQVSs1rOYd2ke/sf96ejYkQujL/Cy6CXf/fpbsJ2NDfpBwZz8qZLq0mKcTZxJblKX9t1eaa/RW4/+tzkPb9HWQRBUA2y+s5UFYQtZ0v4zFnkv4uGbhzjVcUIiklBaVYqBzICIlxH4N/EHBN1Cn6A+7Li7Aw0aLPQt+MFPyEspUhShVAs8fCcTYRt5FXkUKEtZPtWZN51acuRwFd6Py9CgIfxFeO2brauLYssmTh6BkQ/fZQC87WB81vEz4mfE18oHAPCy9dK+hgZumJQgFUvJq8jTinoNdQwpVBTWSipXa9Qk1zNAIxJhn5zNV9e/AoTAQrFIjLGuMLh3NnHmXMA5Il5GMOfiHIKGBHFy+EliM2Npsr0JO2J3oNao0ZPpoVAqOBdwjla2rVCqlfiXOXJjH6yMFGHdyIswi3e0rzl3xTyrZ0zXkct50LUpJbow656I4KRgChQFqO1sKVNWEqQcSM6iHGKnxrKg3YIPZi+8PX/XPA3zO1dST6FH+DkzcijnwdjudF6+iwsNNQSPaaldXyKS0NyyuVaMveHWBoYFD8NI14ge9XtwJ+sObWzbEJYaxtSzU1kbu4mh/irC6qk5cxS6PNdgbWBN2vw04qfHIxaJtULkFREryCzN5KDnN1jmlPO4cV1ipsQwv+18QAjPVKlVlFSX8FVn4bob6xpzduRZYRAct1vrNqcr0WV9j/Wk5KXQZl8bVkcLdJ0PuTf5OftxcfRFbjrC57lHCB4WTMT4CEQiEX4/+9ErsBfXX14H0HYJl1xdIgQv5j4i/o2goero2JEF7RZgZWBF5KtIol5F8X3X7+lu5Y08MYXo201oWa8dPU77E/48XGsb+496s7lt5/Ik/wmXnwmWtlXKKgqsTVCLYWF3NbvOqMiIasV0x8F0cOjAvgH7yFqYxc6+O3lT/oZBxwbhuMmR5eHLSS1IrbXttOI0Lj67iIOxA3MuzOHQg0PIJXIup17m0INDFCuK6ezUmWNDj1G6rJTQUaEcjD9IWGoYp0ecxtvem/pb6pNbkct3vt+xu/9uAkKEHKOzAWfp7tKd0upS7bldSb3CoQeHWNZxGYMaC0JtHycfalQ1tN7bmgP3D7w3qO/r2pfHeY95UfjivXv1FjoSHUKGh2Cka0S/oH6CU5lIxP4B+5FKpFjoW2gdv36v0SioLAD4oEYDwNfZl8zSTJ4WPP3DfX/ER/wd8bHQ+C9DLpWjL9P/z3U0FIp3NKh27eDWLVi9Wgit270bPGoHNGk0GmIyYph/aT4OGx3w+9mPsOdhTPOcRvz0eJI+SWJF5xW4mgsC7t4NeyOXygX3qadPoXdvwaK2aVN49Ai++ea/T5P6EP6NQmPl9ZUEJQTx8+Cfae/QHhCsIpVqJQ51HGhm1az28p1X4mDswLTQabXoEEREoDtlOoEtJHjsPffefro4dQEgow4MLBVEzOb65pwacYrtfbZzK+MWcqlcO6BYc3MNS68upbCyULsNK6cmdJy/Hr9zCTTKrCIj9T5zfuiE71gVyXrlnDgGpavUUGr2QScWC00j7gfq800E7OlaB/cXFRz7+hHnR5/H296bsuoy+jfqj4eVB3XkdejfqD99GvahgVkD5FI5119dR4OGhmYNSclLwe9nPxaFLSLkcYjWRlJPqkdnp8584fMFq6JWcTfrLgDlbT054mPG6aPwpOAJHVR7ydHXIP6NNfW2+5ddll3ruGUSGV1duiIVSTngCbPuwA/H8+lezw+AG+k38LDy4MTjE5jrm/N15Nd0OSRc67faj009N9HJsRPPCp6x6tdVgBDQ19JaCOF6WvAUlUaFhb4FEpGEHYP3oX8qlPD6Is4dE/ONqjMrrq+oRbu4nXGbPlHTGD0Ufjkt4lBBFwoVhUhEQlH3ZcSXfBf1nfaavOWvJ+cl42buhpPKiN9utVYvo9QI/2aXZiNGTM/67/Q5GjQo9HUQubkxU+PF+lvric2M1eoFrA2tMdY11mZ2nB15lvDn4fgf96dPwz4kzUpiVLNRzLowi04HO6FQKgCITbtFszwJDQvFBEtTGD4cChfM4obyuXbf9fOhx1M1p7vZszFmE3eKH3GgJUyOA3mNUNA9UmVR71Noc2cqm25vpK5+Xdb3XM8AV+F4xIjfUUk0ws8DS1DIYNSdSqqy0lnXx4Qpm6KIdpaybKoLj/IfC8FpTUdwZuQZ4nOEgfXqrqu5l32P7LJsSqpKqFZVk1acxs67O+kZ2JNfHv6CXCrH3MSGocPhUWMLrgTr4vm0DP9gf/bc24NULEWlUTG++XhKq0vx3u9NWqiQxj0xbz/5lfms77meI0OEvI1KZSVo4Nuob99dF7P6nBh2QrC/TjzCjUk3qFHXsP7Weo76H+Wo/1GtlfTok6MJfx7+3uC2c73OXHrZkRhxNv2O9KOVbStuT77NiWEniMuO48TjEzgaO2qLswtPL6BQKtAR6wiBmU2GkZKfwobbG3CzcKOVbSvKqsrwE9dnxLFH/GpbQ0XIUS6MD6OTYyf6BvUlOCkYeL/Q6ODQAU8bTzbHbCYoIQi37W58FfkVjczduNPKGtWpEKS370CzZkJAKkLBNc1rGrFTY7k//T7+jf3ZEbuDBlsb0O3nbhxNPCqYQBzuiwYN6SXppJWkodKoUGvUdHPpRsjwEEqWlXB9wnWGNx1OTnkOHQ905HHuYyLGR6Aj0cFzjycKpYLAwYEs7bSUiacn8qzwGQNcB9DNpZvWMONx7mMySjIYdXIU3et3Z5XfKg4POUzQkCBuZ9ympKqEzk6dmXx2MmNPja1lad7dpTsyseyfdjVAyGkJDQgloySDkSdGolQrsTSwZP+A/eRV5HHv9T3gr1OnADo5dkIiknzUaXzE/zl8LDT+BviPZGmkpws0KAcHGD9eGFiHhsKTJ7BgAZiaahfVaDQ8fPOQ5eHLqb+lPu32t+PYo2MMbzqcW5Nv8Xzuc37o9gPNrZu/Z8doqGNIz3rdOHl5E7i7C5kbZ84I+2rw50K//xrMzYUirKLiX1rt4P2DfBv1Lau7rmZ40+GAkBy7IGwBfRv05UXRC3688WOtdfRkeuzpv4eoV1HsixOSZUlIQD1oINedIOmHT7Exfj/hdXDDfgA4qI248Owi31wXUqxFIhGftP6EmCkxZJdlo0GDrkSXRe0WsfXOVly2uLA6erXWw/0tYjNjGXBlEturopnqPZun3xaDWIzPeCiQvu/EIlKr8ExNRr+ogo6T4HhAczIUOdr3hzQewuXUy1rh91vMbj2bZwXPtN2DRuaNeFrwlPYO7alR1bDx9kaKq4pZ020NR4ce5VTyKXof7s3s1rNpYd2CsafGUllTybLwZaxqWcr3g4QvWg3wdQQ0F0xsMJWbYiI3Ibu0dqEBgn2sUqPE2tCaLcMOwIEDFH0yCTsjO5ZeXcrDNw+59uKadtAZPCyYfg37odKoaGDagKVXl/Jr2q/kVuRqMyKUaiUJOe+yHy6OvkjWgix8nX3xP+7PuPNTGD/GAHy78Pm6GFwTstgeux2NRsO2O9vwOeiDk4kTD5uYcWJcK8Ztuc6c/AZ42XoJs/AaCEoMAgSajIupC82tmuNp48nd7LuU1pTTuMZEu3/HOo7a/78uf40aNV57vFhweQGXnl2iWlUtbLdNG1qm19DCugWTz07GVM8UtUZNVmkWAe4BdKnXhX5B/VCqlZwZeYarz68yLHgY+jJ9dvXbReSESPIr8nmS/wQpEn5dMYGKuBgc9axpZ+pBlrGIjfe3vcta0TNn5l2oMTZk0Za7FC4p5OGMh5zoXBeTCg1TkvW1qdoAb2RVLL2yhHqb69FkexPOppxFhAi5VE55TTmmal2Mq94+lEJQ3Pc+MMofVgcXEWVVRc8h5SSXvEChUmAmN+PQoEPaZGeAfXH7KK8p1772ttv0hc8X7O+/nypVFSq1ijflb+jg6kermDQk3h04G6jC5F4Sa26swcbQhkbmjdjaeyt6Uj2GNRmG6d1EkupCtp6SsafGotFoGO4+nHp16gEC9etg/EF2xu7UHouvsy9be29l652tRLyM4Obkm1gaWNLlUBdsjGy4N00YdJZWldLtl260P9CeC08v1Co4Ojl24vJ5U+5m3aXP4T6UVZeRX5FPbkUuUrG0VuL82+7e28mh4KRgfJ18eTDjAdcnXOf6+Ou412lIn1NDaVFtjkgs5mzuDW0mRO+GvfnymtBttTOqra0QiUR0d+nO5dTLjD45muZWzUn8JJGfB/9MVmkWF5voCLq81q2FDvqMGVD+7vOihXULtvXZRtbCLDb32syr4lcEhARguc6SxFwhN0YsEgroUyNOUbysmCtjrzCk8RDtRMWD1w/w3u+NQqng5uSbxL+Op/fh3ohFYiLGRzCq2SjmX5rP4QShKPzGV/gcdTZxRleiS2JOIiNOCNkcgYMDtR2xgGYBJMxMwM3CjYvPLtK7QW/OpJzBa48X97MF+qmRrhE+Tj5/WmiAoCULHhZMWGoYi8IWAdDPtR9TWk7RLvOP1CkRIkHr+AEY6RrR2q71R53GR/yfw8dC428Ac33z/7+Ohkbzjgbl7Axbt8KoUcLg/9IlQZQteTdr/TT/Kd9Gfov7Tnea72rOrru76ObSjWvjrpHxaQabem2inX27D3q9a/d38iRD9t/kljiTrKWzBJrUgAF/L5rUh2DxW07Bv6DTCH8ezrTQaUz1nMpnHYS8iSJFEf7H/XGzcCN4eDBLOyxl5fWVxGXH1VrXz9mPiS0m8tmVzwRxdq9eZNaVM2GMAYs6L/vg/nyfCrPVFqYOmOuZszJyJcGPgrXvx2XHUVFTgZWBFVWqKh7lPSJ2Sixjmo1hRcQKGmxpwO67u8mvyGfuxbm03dcWDRpuT7nNlt5bMNIx4tcGMqKd4ZXkAKDRWuuK1SrEGg3jf91P/UI4eBoCtkexeIojAza2Ye+9vfjV80OhVHDp2SXtMWWWZLL+1npAsJhNnp1M0qwkVvisICYzhszSTJrUbUI7u3bMuzSPr69/zbKOy4jLjsPvZz9+7P4jLwpfMPbUWLbe2YpEIiXSuAALhZh+GXqsiIIGBQItxEDHABtDm/c6GmGpYRyMPwhAiaKEuZb3aLDKkkYNL/G6JJO8ijwC3AUKReDgQJRqJSVVJdpu07PCZyhUClrZCCF22WXZ2q5RE4sm/DrhV22goEwi48SwE4IY+9lFVnT/Dt0z5xF37MSFIDHXDn3NsOBhzLk4h1mtZ3F9/HXq6NZhVL27RLa1ZtPBbKK99zK/3fxaeQvZpdlEvoqkd4Pe7O2/FwC7IjWPZe8yT9KK3w0m38LDyoPgpGAhjC/xCIk5iYSZF6N5+JB93beRlJukFaUWKgppZ9+OUyNO0bNBTwYdG0SVqorTI08TlhrG8ODhVKuq8XHyId7vOHK1GKVGxeZGhWT4tCDLvg6RpQ/fO4b93bYy9YGE852sQE8PiViCq7krmZZyLjSEH1McKfysgMtjLtPWtg35elC3RDj3x3mPUaNGg4YKZQUyjZioQBmDHiN0c0RQLQXTCth3FhKsof8oocvx1nq2QFFAg60N6BvUV3tMzwqfoS/Vp6FZQ+qb1qehqaAVC0kKYdZFwXWspbVAu9rXfx/o6cHZs0hateZcoAqPV1WkFafh39hfoMC49uNpwVPGFDmhaNcKlUbFtRfXGHp8KPvj9vOy+CVt7doCwrM668IsghKCtMczo9UMZrWexawLs0jJSyFyQiRetl70+KUHYalhGOsa80nrT7gw6oLgAhXUl1Z7W3Hq8SnhOW3cmA5xeYQOOEZsZiy2622Zfn46YsSo1CpEiJCKpIgQaV3GEnMT8bDywFzPnLzKPNwt3QEwyMrl3JZcDFUSRg8X096hPSGPQwAhEPL40OPaZd++DpDwJoE+h/uw5sYapGIpg9wGcXrkaW2XpKV1S3bf2w1WVkIm065d8Msv0LIl3BFsd5PzklkTvYb2+9sz79I8nhW8b/vbxq4NI91H0qN+D21x8RbXXlyj08FOWBtac2vyLfbH7WfG+RkY6hiSODMRHycfVl5fydY7W2lu1ZwW1i1obi2I3t8+l4ceHOJO5h2ODz3+ns2uQx0Hro67yvoe6wl/EY6NoQ0SsYR2+9ux7c42NBoNfRv2JeJFxHsTLh9C9/rd2dp7K5tjNrPr7i4ANvXahL5U6Pr/njaYX5mPidzkvfDC3+OjTuMj/i/iY6HxN4C5njkFioK/vkJ5+TsalK+vMNjfskWgR23eXCunIr04nfU319NqTytct7ny480f8bTxJDQglNeLXrOn/x58nX3/6YcbIHRGevUCf3/6G7VCKpJyqm994Qv6/wLMf2tH/0X61KOcRww5PoSuzl3Z3mc7IpEIjUbDhNMTyK/MJ2R4CHoyPVZ2WUkzy2aMOTnmPbeSdT3WYVkto7pnV5RSMR38i5jp+9kfcnBdAs9jqBSTWPqUsDFhiEViAkICiHgRQX5FPouvLGZ0s9Fo0DC8yXCi06LpHtidIY2HkDw7Gd96vsw4PwOrdVbsubeHdT3WETs1ljZ2bSirLmPsqbFsbilMFVeIksitswp52R0syvLwynqAQeECuo1IYMRQiHCGzq/g6Ak4uyCWDr2mETPIizHJOhy49IPWicxjlweP8x4zq/Usnhc+J6Mkg8Vhi/k26lva2LVhle8qihRFRKVFMcRtCNaG1trE6uyybMadGsd0r+naAU15TTnd63cnZUQ0R0+KKZZD/UJhJlUulWNj9K7Q0Gg0BD4MpF9QP+rIBX1DhbKCsyln6ekxhLONv+FsiC416hrGugwC4NTjU4hFYiafncyDNw8QiwS6jggRd7Pvau/FwvYLmdhiIm/K39DWvi0DGg1gz709aDQaqlRVlFaVIpfK2X9/P+ViFZw5Q4WXB8cPlpEbdppjQ4+xsddGTief5mXRS6wMrWl3KRGRoyOyoSP4ynOBduYZICEngZzyHOoa1OVetjDDHXK5Dr5OXbTZF7+nWbydqTeRm5A2P42kT5LwtPFEIpbwbeVFxDVKlm3oIxTEvytWvWy80JXqEjwsmP6u/fE/7k95dTmnRpzi4rOLjAgaQvWnc5G18KRKpMbXwJ1KKdwoiOdx3mMMZAboS/Uxk5tpizG94FMYVapZ2vCVlsb3ZcSXZJdmc6CDHnqJyZjEJdGjfg+iJ99gaLYJ4t/GSXrSd58fEhXUiNQ0G1fGzy2hV5EF6y6DU6FQbHScDD1GQ4UO2BnWnmnPKMmo5UymK9alQllBakEq45uPx1hujIuJCw9zHqJQKvC29+ZJwROmtJzyzljAwABCQ3llb0RYoIgWWRrOPz1PsaKYAPcA0lPjET9+jOeI+byc95ImFk04mXyS6aHT6eDQgagJUZjITRCJROhKdBl9cjQrI1ZqbZA39tyIj5MP/sf9ya/I58KoCwxyG8TQ40ORS+W8KX9D74a9uTHpBtfGXaOObh2GHB+Cx04PNurGsag7+J8ZhUKloKxG0Oo41XHiW99vBRc8qa6WPiVGjLGOMQk5CUJAaGoYa6LXQFoa+Ppiqdbj0qRr5FcXk1mSSfiLcIoUQlErk8jo4NABU7kp40+PZ030GiafmUyL3S14kv+E4GHBLOu4jCupV7TriEQipntN58LTC6QXpwsTT9Ono467R5m+FJV3Ozb2NsV9S2OWhS/jwZsH6Ep0aWbZTDvYbmjWkGNDj2GkY8TEMxOxWW/DJ+c/0XYTjiQcoVdgL8GmelwEsy7M4sebP2JrZMuLeS9oaN6QDbc28G3Ut3zR6QsScxOZ2GJirefESNeIB28esLb7Wq3F8z9CLBKzwHsBsVNjkUvlpBak0tq2NXMuztFqzKpUVX85QG9m65nMaTOH2Rdmc/X5VQx0DBjffDwACy8v1C5XUFnwh0Lwt/Bz9iO3Ilcr5P+Ij/i/AJHmY2n8X8eIEyPIr8jn6rir/3zBZ89gxw44cABKS4VOwuzZ4OdXq6OQW55LcFIwRxKPEJ0Wja5El76ufQlwD6BPwz5/mMb6FgmvSgm8nsXzNxW4WOgw5tlFmq1bLmRubN4M/fvTM7AnSrWS8HHh/3Rbfxu8eAEuLnDlCnTr9k8XfV32mrb72lJHtw7Rk6K1Itofb/zIkqtLODvyLP0b9dcun5SbhOduT2a0msGmXpvebUihIKdDS8SPk1m0sh0XJc9JnZtaq12uRXo6ODnR9TtXrlWnED4uXEvR0pPq0bN+T669vMbVsVdps68N5wLO0dK6JeNOjyPiRQQzW83kZfFLLjy9gKWBJTnlOXjaePJD1x+wMrBiWPAwcvMN8CqZQIVBfWyNlHQ+t5I50Q9h9GjYupXb5Sm0399eCIYTCVaqtqUiOr3U0OUl+L0E19/qtEd14Xo9SPWwZ96SU5g5NsJmvQ1yqZyy6jK+8/uO+e3mIxFLqKypZNudbfwQ/QMKpYIhjYeQUZJB5KtI5FK5VgsAsKbrGhZ3WCx01YKDKRs9nCB3mD4QOjp0xNbIloScBDo7deZMyhlt98HP2Y+CygLuv77PlTFX6FZfuMeKG5GYXeyCe6ked80UaNBgZWCltbiNehX1wWcgYnwE5nrmeOzyIGR4CPoyfXof7s2tSbdYd2sdka8iOTb0GAOPDsS3ni+jm41mTshkTv5cjUdmDYrzZ7hgXsDks5NxMXXBRG5C7NRYodvYujVPPJ1w90umRqOstd+35xKbEkFh1licm0fQ0Kzhe0JzVzNXnhQIQXPf+n7LFz5fMPrkaDJLMrk87CwyMwvOT+3CV83yiXv9rts2v918etbviY+TDzoSHcaeGkvwo2ACBx7COOImgwt20DdVwvYmi7FVrqZfw36C9SlCYKBEJEFfpk9pdSlixExqOZFPpu9HY2eHXz8L+pqvp7TMgJcVMfRtq0u1JIVPxm2hXld/JEePU6WsovOBTsRkx9K8sg4P9AQxuZfMiSub8ukxsIy79mBdKaVIqsSxGK4fhKPusLCXkDHzezibOPOp96csu7qM8ppydMQ6VKtrW0vrS/WpUAq0QgOZAa7mriTlJlGlquKHrj+wuP1i7URLeXU5Db+z4sLPKurl1tB/sj41zZpwZuQZPp3pTFBgJbx6BY6OghXxehutQL+tXVsmtZjEjPMzqGtQl6LKIqrV1XRy7ETgkEAc6zhSUFlAm71tkEvl3Jx8E0MdQxZcXsDmmM24W7rzcMZDbUe5RlXDmhtr2HR7E/mV+YjVYF0OWUaC5kUilmCkYyRke6iq6ObcjbU91nL52WWWhS+jd4PeXHh2QUvHKa4q5volazq91oXISHBwICYjhi4/dUGhUnBo4CHGtRgHwOBjgylVlFJcVczd7LsYyAxY3W0107ymoSPR4XXZaxw3OrK622oWeC8ABOqX7QZb5raZSyenTpxOPk3I4xCKSvNYESViWZSG+3YiAj/rhWenEQQlBhGWGoatoS1ZZVnETImhjZ1gsf6i8AX77+/nYPxBskqzsDOyI7M0kwD3APb234vvIV9is2LxsPIgZnIMcpmc/XH7mXJuCks7LMXGyIZFYYvIWpiFhb7QzX5W8Az3HUKnpvLzyj/u3P8OCqWCL659wfpb62latynpJemYyk1RaVT0bdiXXf12/ek2QNBY9T/Sn1vpt7g95Ta/vvqVaaHTALgx6QbtHdoz+cxkHuU+4vaU23+4ncqaSkzWmLC2+1rmtp37l/b9ER/x38bHjsbfAGZysz/WaKjVQt5F375Cp+LQIYH3mpoquD117QoiEUWKIn6K/4megT2xWW/D3ItzMdIx4tCgQ+QsziFkeAhDmwz9S0XGpwcecze1mLzSGu6mlvCpqD0Jy9cKYu/+wgB7iNsQIl9Gklfx/28Z+7+Kv0idKq8u1/LXz486ry0yrr+8zrLwZSzvuLxWkQHQpG4T1nRbw+aYzVx9/luxqFbD2LHUTXrJyoUtOaS4zYJ2Cz5cZIAg4NfTo2ebUQBcfHaRee3m4efsR426htMpp5nderbW7autXVvsjO04H3CeXg16sePuDq6kXmFH3x28XviayAmR6Ih16BnYk5a7W5JfYISHajtK/TboYklhsRWnfXaybeUCCAwEU1Pa2bdjZquZwuFr1BjrGFNkqsd5L0Nm9ocmcyXYLYAAf7jhAN1TYcP+DJxcW5PuaMLq0+X4xhUQ2fcEC9sv1A7e9GR6LO6wmOfznrPAewGnkk/x4M0D+jXsVytvRCqWkpyX/G4AMGwYOs4ulOsIv97JusOJxyd4nPeY0KehFFQW4GbuxutFr7k67ipfdPpCe69KqkrYdXcX7RM/pVIGD40raVokw07fCqVaycuil8RlvRuAD3AdgBgxuhJd6pnU45cHv9DMqhne9t7subeH7i7dcazjyPJrywl5HML2Ptvxc/bjiP8RQp+EMjJkJH5N++HyayKPbKXo9x/Cju0TmdJyCgHuAWSVZgk7atSIqgN7cY1MZONDGwAGug6s9SzFJIfjmanmUbfmpBWnoSfVw8XEBU9rT+1yTwqeIBVLaW/fni8jvuSr61+h0QgFoq6BMeIWLelfYs296fcIGiJQeMSICX4k0KxM15jSK7AXza2a08ukFaNOjSHvpx2E5HUl1E3MEKvrAIQ+DQUEobmJrglqjZrS6lKBHtR6FnvNJ9LyNSxvWZcWqh1k5uhTWiHGnDbExnrSzX4aW1qpEYWcJPfZQ3wP+RKf85D+qTKsM4pBA1IkvC5II8S+jBfOddDRiGn+RsP8OB0a54H7bFjQ+/0iA+Bl0UtCkkIorynHUt+SanU1KzuvZGvvrTgYOwBoiwwQOmZv8zEamDVgWfgyWu9tzc30mwCcSDpBtricbiNrqLa34VqgBFFSEgOPDmR0sSMZZlI0DsJ2UwtSKa8uR4SIiS0mUqOuYfr56biYupBTnqM1jkh4k4DHTg+OJR7DTM+McwHnSC9JZ8zJMWg0Gjb23IiHlQeJOYlMOzeNZwXP+Dz8cxw3OlTGYhMAACAASURBVPJlxJdUqYQupO8LocgAQdivUCrIq8hDLpWjI9bhTMAZWli3YIH3AppbNyejNIPYqbF423tTqChEo1YzqPNrci8EC1o+oK19W44NOwbA11Ffo9FoqFZVE5cVR3R6NAk5CXjbe1NeU06Rokib6m5taM0I9xFsvbMVlVpFsaKY0CehWBpY8kP0D/Q+3JuD8QfJq8hDpqtH0uwR3AhajZeuMxuWRJD43TzuZ8Wxq98ussqyaGndUltkADibOrPKbxUv5r2gv2t/MkszESHiTMoZrNZZEZsVS6/6vbg//T5ymZwTSSeYFjqNGV4z+L7r9xyMP0g/137aIqOyppKhx4diqmdKlapK24n5M8ilctb1WEf4uHDBzlujQUeiQ2ZJJkcTj74X2vlHkIqlHPU/ip2xHf2C+vGm/A06Eh1EiAg4EUBpVSn5lfl/2tHQk+nhbe9NxMuPgvCP+L+Dj4XG3wAf1GgUF8OmTUIwUp8+kJ0N+/dDRobgIlWvHuXV5RxLPMago4OwWmfFpDOTqFJWsb3Pdl4ves2F0RcY13ycdrD8VxB4PQuNBtS/9bnUYgkaiZRA5161aFKD3Aah1qg5m3L2P3EJ/udhaCjY+f4T6pRKrWLUyVEk5yUTGhCKQx3hyzirNIsRJ0bgW89XKyz8R8xpO4euzl2ZcHoChRUF8OmncPIkoqNHedXYFhGi9+wctdBo4OBBGDaMjq7CTPzZlLOIRWIODDiAWq1GLBLz04OfCEsNw9nEmboGdYnJiKHd/nZcTr3MiKYjsDO2Y8mVJQQlBNHCugVOJk7aXdgpxyFChOi3QZZaLEElEnFOvw1LrixhVdQqtsRsITk/GR2JDmLElFSX0L9Rf1xMXRAhQl+mT5YxHG0GMwaIWPfTVNYcmc3k4brcsFfTMxWCj2lo69mfZ3Z63BrShoSdX1OZLQSomchNWOW3imdznuFq5kro01DBRlWqh6ncFKVaycEHB1lxbQWnHp9i2rlpNBiZy4LewjlUq6ppZdMKHYkONaoaGtdtrBXWgkArANgbtxeb9TbMujALhzoOjHIfRY1UzFPDajLL31BZJcxAO5s6c8z/mJC4+zJCmxngaOxIcFIwFTUVTPOaRlhqGGnFaYxoOoKIlxEMdhvM8KbDySrNYnX0am1h1MqmFba2rmz8vBvxFiquB8nYZTMVOyM7Xpe91g5Kdthl8UMnEZ2jhOsyvdV0DHUMESPmZdFLKnVE2JSCz3NBkFutrsbVwpVVfqu091MqkqJSq7iZcZMWVi34OvJrHrx+8I7z3bq1lhc/wl2wwFWjJnJCJEmfJPFjtx/RrVLybdgXnC+MQVctYvxgONbNhs5OnbmdKcyqbu21FVO5YCRRVFWEnZGddqC+P34/t5aMptDeHHX9zxD6MW8pmBLUag0Xb1XyalAXFGINgbM68aLoBedHneemmz7RTrAoTs7dn3SwKNUwdSCUVZViVgGX66lY07qaNDMJVb+d0mj30XRzrt2N1KAh8lUkADkVOdgb22Oia0K1spqs0izEiLExtKm1zt3su1SpqnhW8AwzPTPSS9LpcKADo0JGsevuLhqZN6JQT4MmLAyZgxNRgTqoHyfh+OAVEfZK7r++j0ajYfbF2bhZuPFZh8/45eEv7Oq7i18G/0KVUigMrr+6Tq/6vSivKaeVbStGhoxk/Onx2BnbcdT/KOefnueLa18gEonwcfLBXM+cfff30XBrQ9bdWqcV27ezb8ehgYfQMX03CH07s/5pu08prylHLnvXGZRJZOwfsJ9HOY8ISw3jRr+TBN6yQaaCArka1zPdtHQkgAGNBjDYbTDPC58z+uRomu5oSlpJGk3qNuHZ3GfcnHyTVb6r+DLiS5aHL9fqAwKaBvCy6CWt9rbC4kcLRp0cRUZJBhqEwbh/Y39ODj9J/mf5HBl6hA7DF/L9lmEcaKxg7Yli0iJacPr6bkDIPPlHKJQKxpwcw/mn59nZdyfRk6JRq9Xa3Jn0knS2xGwh+FEwo0JGMaLpCLb33c6DNw+Ifx1fizY15+IcUvJT2NJrCyBog/4VvLUaf6vVsTe2p7iqGJ+DPtrwvT9DHXkdQgNCKa4qZl/cPuro1kEmkfG6/DXzLs2joLLgD2m1v4dvPV+uv7z+l4ucj/iI/zY+Uqf+Bth4ayNfRHxB+fJyoWuwbZsgoquqEoTec+aAtzeIRFQpq7icepmjiUc5m3KW8ppyQTzXdCTDmw7/ywmsf4RhP94nr/T9QCUzQwkhS7xqveZz0AdjXWNCR4X+W/v8X4ONDcycCStWfPDteRfnsS12G+cCzmnTlmtUNfge8hVmwKfHaQe1H0J6cTrNdjZje5Izo3+Jh127iBvQGq89XoxyH0VQYhBRE6Lo5NSp9opRUdC5M0RGomjfBsPvDVFpVLxe+Jpjj44x79I8QAhpK1IU4efsh7OJMzvv7qSlTUv29NuDl60XJVUlzLowi8CHgRjpGKFUK1Gqlag1atopzyHTvD9bphYXkmUxm5KqEkoUJShUiveW+TPIxDI6OHbAUGZIyv2rtElV0OUl+L4U9BUAT+zkZHq5UuHbka91bxGbc18ofH6j5NgY2iAWickozdBu18HYgSHqRhidv8qqzmBcI0GhKxEG3uau/DrxVywNLClWFBOUEMSeuD3Ev45HhIivOn9Fc+vmBCYEEpIkpJ3riGVUq2tonyUhwVHOwg6LWdllJZZrLcmtyOXMiDNEp0ez7c42KpWVHPE/woBGA7Bdb8us1rOIex3HpWeXWNd9HV62Xow4MQKZWMbxYccJfRLKD9E/4N/Yn5DHIdhpjAgPktEoT0PUgZV0fjCfrAVZmMhNcNniQk+nbhj8dJh9LTXEDb2C++nu2BnZYaxjzOP8x8jUIkwMLcityMVUbspI95GMbjaajgc7AtDOrh23M29jqW+JWCwmpzwHtUaNlYEVJ4adoE7wGZotXsex6N1kictZECbQWxzrODLUtjvdgm7TPTSJbDMdvgiw5JJdFbmVue/yO/4CrEshbSMs7g53Wp9Dl/f/NqrI4baoP9suwpBkmDm/EVdlryjTKBjyCBoWwOUGEP+2FtCAc5EIi3INyXXBoAoKTXUZ5DaII/5HWH9rPYuvLEZPqifYyf4DbA1ttc5sIHQtlColWaVZVKur+d7ve76O/Bo3CzdyynPeMxYAgV7lYeXBjUk3EOXng68vNW+yEeXlM7u/GN0Zs2lt15qxp8YSPi6cjo4dabevHQqlQusg9U3kN6y+IeRj2BrZIhaJWdZxGUuuLsHSwJLAwYHcyrjFwrCFDHYbTPjzcEqqS9CX6VNRU4EYMdNbTadPwz6cSznHTw9+olpZjUeRDgc+u4mBjgE/RP/A4YeHUWlU6Eh0cDN349r4a9pZ8SVXlrA5ZjMPzjvS6FUZby6F0PKKv/acx3iM4Vvfb6lnUo9jiccYGTISgOZWzXn45iF7++9lsudk7XXZeGsjC8IW4G3vjVKtJDYrFhDyS1QaFfoyfQY2GsidzDvUN6vP5TGXtetmlGQwKmQUN9Jv8E2Xb1ha0BT1lEkUVhayZmJD1m97UuseFFYWMujYIO5k3uGo/1EsDSzxPeRLlaqK1V1X42njyd64vZxKPoVSrcTW0JaDAw/SrX43FlxewJHEI2R8moFMIuOn+J+YeGYiBwYcYKT7SAy+N3jv3P4VHEk4wozQGZRUlyCXyjGVm3J4yGF8nX3/0vo30m7g85MPBjID+jbsS+SrSG0Ku39j/9r02w/g11e/4vOTD/em3cPTxvOfLvsRH/F3wMdC42+AX+4d5OTaSZx40xnJ9Uiwtobp04UfGxuUaqXgw55whJPJJylSFNHMshkj3UcyoukI6pvV/48dy5JDKdxNLdZ2NAA0qKiUJbB3ejs8rN7lcGy6vYklV5eQuzj3X+qa/Nfg7i5QzTZvfu+tLTFbmHdpHjv67GBm65na1xdcXsDWO1uJmhD1h+LB3+PG6ll0WLaDR9MG03T3SXof7s2Lwhc8mPGALoe6UKQoEtr9v3dTmTABoqOFXBKRiFZ7WnEv+x5be21l+bXljG42mpLqEs6lnBO48SIxelI9vvP7jlltZmmFwW9tVReELUClVqFBg1QspUndJjRUrCYv36RWdoYGFWWS+0zuK2KK5xRiMmPodLATF0ZdEJLQjw/GSMeI0upSjHSM6O/an/NPz1NeU67NdXhbLKhRY65njkgkIq8iTzv4cCgSROW+L0CvBmb2h2JdsC2BNpnwwF5CurEG5W8OTG8Lj7f/esjs6RaZwSZvsCyFPCMRSpGGXX124WDiwLFHxziRdIIqZRX9XPuRUZLBvex7eNl4cS/7HqZyUypqKqhSVdHEogkZxeksTjDinjSHwlbunJwWjv0GeyqVlZwZeYaOjh1x2eyCvkyfFtYtuDD6ArMvzOZwwmGKFEV4WnvypvwN2WXZdKnXhSP+R7A0sESlVtF0R1NS8lP4pNUntLVvy5yj48m82AT5q0y8RhazZuFFbqXf4rtfv2N5p+WsjvgW72wpQ7NNmNc6n2me09gdJ8zwtlZZEyt5jUwso0Zdg45YBzM9M16Xvx/q9iG45cLj7dB1HES4iGoVEJsviZkaB8f7OXNhUBMqpXAv+x5ZpVmY6JpQVFX0lyy3v4+WMy+qCttPNTjKNmFGm/eerwLukCCdT5M38GgnjBoCRzxApBGoUOYVwnORaQSHzkmwLVJhVwI1YvCcCRKZLraGtsTPjKdYUUzj7Y3xb+zPzw9/ZmP3jXx65dMPHlu9OvXIKs1iQKMBhDwOqXX+EpGEFZ1X4Ofsh7meOVGvojiVfIrw5+HanBIQCo4+Dfsw3qoXvUevQJyRSe/xUsLrizDTM6NzPSE8DgTzCK89XnzS+hM29NwAwI/RP7IkfIn2uW5m1YzjQ48z/vR4YjNjaWjekCf5T9Cg0d5nLxsvetbvKVCSNCoqaiqw0LegWFFMT6kbZ758hLiiEnQEPuH2O9uZfXG20OHSqLA0sCR6UjQNzBpQmZNJs7Uu2JZouD4/HnHjJpRVl+Gx04MXRS8wkBlQrarGoY4DzwufoyfVw1jXmEJFIdWqai6NvkT3+t2JyYjhdPJpTqec5km+UBC8PV5diS5Vqio29NjAjFYz0JPpsS9uH9POTeP5vOfUM6nHuZRzTDgzAX2ZPkf8j9DRUSiWu651Z/6+R/R/AkydChs2gKEh6cXp9D7cm+yybIFmVpzOqJMCpfSo/1GGNR0GQPzreHwO+lBXvy5SsZQnBU9wMXXhddlrxnmMY2e/nTx885B2+9oR4B7A/oH7Aai/pT6D3Qazrse6f/p8/zOkFafhtduLvMo8HIwdyCjJ4EufL1nRecWfG6sA3X/uztUXV5nacip77++ls1Nnol5FsbD9QtZ2X/tP161SVmG6xpRvfL9hUftF/9/n8BEf8b+Fj4XGfxN5ebBvHxVbN6CflUtV21bozlsA/v6oZVJupd/iaOJRjicdJ6c8h/qm9QlwD2Ck+0iaWjb9HzmktxqNt/Qp8W+86BKLH0kqu8hPA3/SftCnFafhtMmJoCFBBDQL+B85nv8ounQBOzs4fLjWy2eSzzD42GAWei9kbY93H/LBj4IZfmI4W3ptYU7bOX++/fBwNL17E9nBjsE9C9k3YD9Dg4dyfOhxhjUdxqOcR7Tc3ZKlHZe+o2CVlAidluXLhRwUYHHYYjbHbMbO2I7y6nJSZqfwqugVbfe3pVpVjUwsw93SnaiJUVrNR2FlIZPPTuZU8ilaWLfQzuxr0PBFpy84evcWtqXf/FYWSNAgFCIJklkUiuJpYNaARuaNuP/6PumfplNQWYDTJicqaipwNHYkrSSNXX13UVJVwtKrS1GjxtHYkZY2LTmTcgbHOo4UK4opry7HQMcAHycfgocFk1acxtHEo2yP3c6bciEQQ68GFBLQiKFxLvR6Bo0LxLywMySwSQ3pOsJMtRgxpioPbDUTMKQ+ZaRSVHOAdL3aFqsiRAL1SCSmtKoUNWptoSMVSWlu3ZwqZRU5FTnCoEQNI6IK+KpRNkuUbVlvmECFsoKuzl0JHBzIulvr2Hh7IyAMbJJyk/gq8itcTFxQaVS8Kn6Fh6UHnZw6UVlTSWl1KTGZMaQVp6Er0RXCufQtyanIwahCxZWfwakYfMfDI6vaj4xtCfi9gEgnKLQ0xDyvgldGapoYOJNU8UJ7D+USubbbZCA1AJHgjlNeU46uRJdNvTZxKP4QSblJFFUVoYOU4h/F1CxeyK7upiy5ugRdlZBQfspDRtLom5i4NOG7qO9Ye3MtjnUc2dZnG57Wnsw8P5OTySe1+/5HGOoY4mXhwZFFtznbQM3sPqAv9qCFeud7z1e8ZAalokREiAg7pEauhK7jYd4tcCiBCil82xl2XZIwMl5Feh0hN6PzBHhm8W6fZho9VGKoEqnwtGxBzJt7BLgHEJgQ+N7x/f64G1s05nHeY+yN7VnecTmzLsz6rbsliMalYiktrFvQxrYNRx8dxVzPnOeFz9GR6NTqmGy8CHPuQJ65nDZjFKSbiEj8JJEmdZtol9lwawMLwxZybdw17ey2z0Effk37FXtjezJKMjDSMUJfpq/9W3iLt8fzRacvCEwI5GXRS3QlusilcnQlujjUcSCq4ffo+/UUciqaCp//E89MJDYzloujL7L06lKCEoMQi8TMbT6dz9fcJKHiBX6DS9jZdyczWs0ABL2C40ZH8irztNdLV6qLt703sVmxNDBrQPzreLq7dOfhm4e8KX+DvkwfuUROgaIAXYku1apqOjh24PTw0zTf3ZxeDXqxb4CQGVRWXYbtels+af0JVcoqNsVsYkCjARwYcEDbbXlL++xg355o1XiBampry7PNK+mSvBSpWMrlMZc5lXyKZeHL0JXoEjE+QjvZ8yT/CR0PdMTJxInwceEY6RgRnRbNiogVXH91HYlIQu8GvYnLjsNc35yYKTHoyQTqb7+gfmjQcH7Un2dh/DPsvrebmaEzkYgkmOmbkVeRRyfHThwecvhPmQWTzkwiLDWMzNJM6urXpbtLd4ISg3CzcOPRJ49q2d5+CD1+6YFULOXC6Av/1jl8xEf8b+BjofHfwL17Aj3qiJAomzOwG71MznPw63jUGjVHEo9w7NEx0orTsDOyY0TTEQQ0C8DLxusvOWX8u6jlOmWlz1hfW1xsJEw+O5mjiUf5vNPnfOP7DWKRmNZ7W+NUx4kTw0/8jx/Xvw1/f8Ea+NK7HIi7WXfp/FNnejfozfFhx7Uf8Ml5ybTe25p+rv0IGhL059f9wQPo1Anat6fg+CGa7fOkoqaCenXqcW/6Pe12V0SsYHX0auKmxwle9fv2wbRpgu2kvZDCe+rxKYYcHwLAvv77yKvI4+vIr5GIJJTVlDGv7TwO3D9AG7s2hI4K5cHrB4wMGUmRoohG5o2IzRJsGd3M3fBx8mFTjNCKN9Z44Cb6BInSjjJSydc5gszoNRklGUhEAiXJysCKRd6LWH97PUWKIq34satzV06nnAaETICHbx5yK/0WruauLPReyLbYbTx88xAvGy+ScpOoVFYyvMlwWli3YP2t9drZcYlIgkgkhOEZ6xozyrA93qlV2N57gmtCFg5FGsLqw4JekGHhQUvlTvhNW/Ju8DqTEtFDWlq3xNvem+i0aJLyklCpVcjEMq3rkKncVPt7RXVFLTciWQ3UyODiL7DPE0L+xbpdV6KLub45elI98ivztV3G+qb/j73zjorq3N7/Zwoz9N5FpNkRwd4Ve+8au1gwloiJMcaoMTFqookau7H3hi12o2ILICo2wIKAgCJI7zADM3N+f5wwSogmt+Teu35fn7VmueSUeU+Zc/be736ex5MrSVeQSqR08ehC8KNg5tSZxNCPN+NWbEDbMRq+mnKImRdmklKQQsjoEMbvH0r/sGxWDdxM/3ufc8m2AGc7D+Jy4vTu6YZyQ8q15WKLityYAXUHEPwwmHJdOZ5WnijlSn0i1MGtA59f+pyQXRKKjWTM72NMvKwAtRwyO/9CvVtjcbVwJb0ondTCVDp7dMZcaU5kaiQJuSKPSC6R66v73rbexGSJZmq9vHoRlxuHz/WnHD4MPpMhxl6cnTDHhxra8fqkMFm2jQJJtD7w7/8Yjh+CFHMok4rJRKYJfH0V5oTBSysZBmotc2c2pH211oxJ3wCCaKfR+bkBF2uU4/MK4q2hVC4mqm+i4nukSPUeJW8qTtka21JcVkxT56bcTr3Nmh5rKNOWEZESQUhiiJ6wr5Qp6erZFQOpARefXaSkvISrOwQK5Dpq/zbJ0z4AiuwtWNZ5GUPqD8HayBqdoKPT7k4k5CQQPSUaC0MLMoszqf5jddRadZXErcJksrS8FI1OQ7muHBkyhvsMZ3qz6dga2eK90RuVRsXRoUcZYNsG7O3hyBGxGCXocFrhREDDAJZ1WQbA9eTr9Nzbg5LyEozKYWq9MaQaajj19BSPpj3C0tCSFeErWBq6VJ+4BvoFIpfK2Xx3M1pBqz9/EiRYGVqRo8rBxMCEPrX7MKTeEFHNKu4sw4+KKoaNnRrzbei3vPjkhZ58PfLYSIIfBiNBwvKuy5nebHqlZ2iDjQ2IyYghdlostWxrQVwcBUP7YRz1mG09HOiz6yYLwhax7d42LA0tiQyM1M/cP89/TpvtbTBVmHJ93HX9dwL0O9iP5LxkJjaayPzL88lX5+Nk6sSkxpMY7zceVwtXPrvwGUcfH+XZjNfO9v8MXha8xOVHF5Z2Wsre6L08yXqCiYEJBjIDdvXfpW+//SMMPTyUnNIcLA0tORl7ErlUrk9s/0pha2noUpb8uoSc2TkYyAz+peN4j/f4u/E+0fhPoaxMfEGsWwc3boCrK0ydChMmcD4vkh77elDdvDovCsSH9ZB6QxjmPYw2rm3+tLrxn4IgCPwQ/gNzLs2hV61e7B2wl42RG1l0fRGZn2X+qaLVfx2TJsG9e3Bb7C1Ozkum+dbmuFu5c3nMZX3Fq6isSDS7EwRuBd56u1JUBZKTRQ6Ns7NooGhqypLrS5h/ZT6Tm0xmY6/XLsFqjRrfTb5YKC0IGx+GrE1bsLAQlcUqdpeXjNtqN0DUlk/ITeDj5h+TVpRGSGII+ap8NvfZLJKlrb2IzY7Fx8EHrU5LbHYsMomMenb1uDD6ApaGljTd3FTvEWEqN6VIUwQCnC3pT2/Tk0xuPJnEvETOxZ/TBxl2xnZMaTKFb65/g42RDbmqXAzlhpSWlxI8JBhzpTnd9najlnUtkvKTWNJxCYZyQ+Zfnk9JeUklJ2gAC6UFCzsspEBdwIKrCxjnO47M4kzCXoSRq8rFXGmOp6UHFho5qoxU8gozMDZejpn0j9txEnQfU6J4+yWRIKGGZQ1MDEwwUZigkCoIfRFKbZvaxGbH0serD6fjTzMwVkrwIR3N59gQqciiT60+2JvYE5MRw82XN/UzCRVBYnWz6uSqc/WSpu+CBAkyiQypVIpVsY5fdmhwKpHyzVf+rC8KQSFTMK3JNH68+SOrn9dn2p5YXII0+Nr7cEEVg1QiZYn/Er4I+YJOHp24+Oyift+mClP61+7P3ui9zGo5i5/u/ISZwkz0yBlxmh3X1+A+egYNM8D6c5BKJOgQWN1tNd+Ffser4lf6YzKQGtDIqREtXFrQwqUFLV1aMjB4oN6E8k3J2Iptru0Qnds/GATpb+ma/H1gbac14t6qUszUMH5RE4qdbTE7e4lDBzRkGYNUgK7j5FRr3YOQpBD83fyZ2WIm3faJUto+Nt782vwnbM91oLHgRIQgkunbpyno8qiMFHM4XB+yjfUD0EOKePwVY1LIFOgEHfPbzmd0w9HMuTSH2y9vk5SfxJC6Q8hR5XDr5S0KywpRaCD/O1jQXcF5b0NObiqgTAodAiDtt2N3tXClp1dPunp2JeBEAN29utPYqTGb72zWJ28VMJAaYKG0IKc0B0czx9eKZIg+J7cDxefTsKPDOBV7inp29XiY+ZADA/fTv81Esfo/fz63X96m2dZmXAu4Rrsa7cQdFBYSO7A97f3uo7E0Ry3RotFpkEqkuJqL8rr56nyCmgfhYeXBlDNTKl2r318zS6Ula3uuZWDdgVWe72fjzjLw0EBaVW/FjZQbfNnuS+a2ncv+6P1MPDmRUk0pP3T5oUp7T2hyKG13tqV9jfZcDbgKwKGYQ4w7OpqfHlRn9MlkYl1N6NurgDLPGtyZdEc/E5JRnEHbHW0p05YROi600sxBelE61VZWY3X31WgFLTPOz2BZ52XE58RzIOYAxWXFdPPqhoelBxsiN1Ayt0T/zP9n4bfJj/p29dnadyvzQuaxMmKlvu1wVstZLOm0BIWs6oOq1/5eKGQK9g3cR4utLYjOiAagX+1+/JLwC3cm3ak0W/Z7VMwIhY8P/0stve/xHv9NvE80/m6kpormeps2QXq6yBH46COS2/pw8PFhDj48yP1X9wHoUKMDc9rMoaN7x//pKsW5uHMMPzocJzMnVnVbRfd93Tk29BgD6g74bw/t3fjiCzh0CJ49I0+VR+vtrSktLyViYoSe5C0IAiOPjeRk7EluB96mrl3dd+8zJwfatAGVSkwgHRzQCToab25MRlEGOaoc7k66W2k/oc9DabujLXvqzGPUsCUQHAxDhuiXzw+Zz5LQJYBIiD4x7AR+Tn7UWVeHDm4d+PX5r8gkMpRyJZGpkXhZeVGmLaNEU4Jao6auXV1+GfULloaWJOUl4b7a/Q+HHh5sRtiGL/js6lzaVm9LeEo4AgI6QVepog1iINLFowslmhLCX4QT0DCAfdH78Lb3JqM4gxcFL97aavMuyKVyjA2M0ejEyu6b27fUvJ1gfENeWWK4Isju6N6RLXe2kFKYQvz0eFEx67dKasttLXEydeLU01P08OrB6aenaejgw72oVpwM2Ui/ERDQMIAd/XdQpi3DeYWzfiZmjM8Yjj0+xictP2Gc7zg81njg6zDBlgAAIABJREFUbe9NXHYcm3pvolm1ZhSoCygsK6RAXcD9V/dZGroUF3MXEvMSMZQbYpqv4tZ+E0wK1bhO1yA3NkEmlVGgLsBAAycOQM/RYKaCwsqGyPpWsIprIZfIKRfK9eews3tnziecx8HEgaXKXpgdOIZHUj5+aQLOM+GV+etrU1GpVmvVHB16lPZu7StxhlILUnH50QWpRIqnlafer6MCfply7q7X6PkWv4epgSmlmtJKBnpSHRiWi+1HX1+Fap+Kju+/7paRL9ei1MCy8bVg8GBW31xNcbkoG9uyeksK1YX6QKyze2cuJb72GxruPZz9g/ZDSQk8ewbx8fhGTSVKl1blTjTQQtdnEOuk4LlJOWXSymsYSA3QCToG1xuMh5UH1c2ri+Z7N24zLmg7LaYYcNOhHPccuLYT1IYGtB+rI8tcVkmm+c2g3crIipzSHD2XoaVLS2IyYijXlaPSqJBJZMilcnp49dDPGI73G0918+osvLaQI0OO0LtWb0YfH83Rx0fZ+NCdSfLmsG8fX135ijW31pD5WabI0youFhUK798n7sR2/O/OwEhuhLe9NydiTyAgYGtsS7/a/XiQ/oDI1Mgqv1m5RI4O8fdfpitDJpHh6+hL+ITwPwyYLydepu+BvpgpzZAgoZtnN3Y+2MnIBiOJzY7F2si6EikcoO76usRmxRIfJP4+K0jmo3xG8WO3H/noq6Z8sz0J10IJ0h9XoZg6XS/h7r/Ln1dFrwgdF1qFm7jyxkq+CPmCk8NO0vtAb6Y3m67nyxSVFXEo5hBb7m7h5subAAT4BjC3zVxq2tSsehP/Rcy/PJ+fIn8ifVY6MqmMy4mXGXN8DNkl2SLnxrkxBwcdfG0K+Rs67OyAi7kLewfuJbUwFbdVbpTrygkZE8JHZz9CKVdyc+LNPzznIPpyWC+zZk6bOcxtO/efHv97vMd/Au8Tjb8DggDh4bB2LRw9CkoljB3LqwlDCS5/wMGYg9xIuYGR3Ig+tfswtN5QBh8ezKbem5jUeNJ/e/R/CU+zn9L/YH+RQGpoSdsabdkzYM9/e1jvxooVsHAhZblZ9NjXg3tp9wifEE4d2zr6VdbdWsf0c9M5OOigXhb0rSgthS5dRBO28HCoKb6wgh8G88GRD7g4+iLTz03H2MCYGxNuVHppTDk9hVo/bCMo2gRZ2itQKhEEgbW31jLj/AykEikKmYLW1Vtzacwlcktzsf7emt39d6PRaRh/crz+/gl+GIyF0gKdoKOubV2ChwQDUKAu4Ltfv+PAQ7FFz0huhICgl8Gskwn1azThgiZWTzK3M7ajqKxILyH5LrwZpFS09kiQYGRgRGFZoX69urZ18bLy4mz8WbSClr41+9LZszMvCl5w48UNItMiUWlUGBsY42ruSlpRGvnqfBpoqhKMJTotTZ7dom3kx8zsDvE2gAS9RG5JeQl56tca+RZKCzytPfG08iS1MJW7aXdxMnUiMS+Rzu6duZJ8hdzZOUgWLsTCYAUWEkOyFhSTlJ9M/Q31KdWU0tipMZGTIpl6ZionYk8QMyUGzzWe5KvzuTj6ol5W9/eo4P54WHmQkJuAg4kDr0Y/IKqVF76ji9jecilh6nhupNzg/uT7nBhYj8F+cdwP86Fbx5eo0aLSqnC3dCc5P1kcd24iEokEnaDD3sRe3+tfIfkrCIK+kl8tH1J+hH7D4GSdymOTSWToBB1Whlb4OflhpjTDXGmOmcKM4IfBZJZkYm1oTY4qp8pxbTwF/WKh9gwphQY6zORmqHVq/axH2PgwQp6FsODqb+puAvox2RRDykpY3hLGRIG5GuQ6eGQLXg07sGxmM1ZGrOT40OOkF6dzIOZAFbPCChjKDCmdX1l5qrS8FJvvbQj0C2Tt7bV6QYQK8QJfqTNHMv3xjM0kMe0R7TunkGoGWok4RoUWnDVGqA2kZEhL0aJjzq/wxa9gPQeUCmO0ghaXDDXXd0KukYQOYwWyTKj0PW/CXGlOE6cmhD4PpUxXRoWj+iifUazqvorF1xez7tY6NDqNOGv4WwvNwg4LWdBePIdanZaPz3/Mutvr+PqJIwv2p9J0S1Nq2tTkwKADYqLVp48oaXzhArRsyZFHRxh5bCRl2jIcTR3JKsnSj89SaYmRgRFpRWlIJVIMpAZIJVKqmVcjPiceP0c/VnRdwZQzU4jNjsXZzJkzw8/g6+Rb5fjCX4TTeXdnSjWlKGQKNvXexNiGY9l5fyfjT44nISgBDysPQExMOu3uRBePLpwfdZ7PLnzGyoiVzGk9h6lNptJ0a1PSi9MZ4tqTgxEuSDdvhl69KNm4hq4Xx/Ao8xHXAq7RwKFBpTEIgoDPTz54WHpw99VdXC1cuTr26h8W7MJehNFmexu9wlcHtw4ENgpkYN2BlUU6/gJuvLhBq+2t9KZ7IPLlpp6dysGYg5gYiMWE7X23M6jeIP12TTY3obFTYzb1EcUfxp8Yz477O2jv2p4V3VbQcltLZracydLOS9/63b3390alUf250e97vMd/Gf8bPTn/v6C0VHTtbtRIrHLfvUvOD9+w9Zfv6NT8CdVOd2TWhVnYGNuwb+A+Mj7L4NDgQwyqNwhrI+uqXhr/w6hlU4uIiRG0q9GO5PxkvfLP/zRsbBAKC/nwRCC/Jv/K8Q+OV0oyIlIimPnLTGY0n/HnSYZWC6NGwd27cPq0PsnQ6DR8eeVLetbsSWePzuwZsIeo9CgWXVtUafOl7Rcx8p6WM00t0RkY8CjjEf67/JlxfgZKmZLRPqNRaVRcS7rGqohVzLogth+suLGCCScn6OU9gx8GI5fKyVfnU1hWyK3UW7itdsNttRs+P/nokwyAUk0pZdrXgc4TWzhXcFefFBjKDRlSbwi1bGoBYtuWUqb8w8OvULoCCB0XSum8UvYM2IMO0dDNwcSB9jXa42npSZG6iFNxp9AKWiyUFpyMO0nQ+SDW3VqHmdKMbzt+S8iYEKY2mUpSfhJSiRQLpQUZiv0ICAi/VcYFtGilArdNt2Gkhbh18GADNE8RNfdTi1LJU+dhKBODBU8rT8b6jsXP0Y+skizic+Ip1ZTyLO8ZAgJXk6+i0WnouLsTX7Qtw0lqQY5ExYI5zfDe4E2pphRjuTHRGdFotBomNZ5EamEqzbc2R61V6+Vk34Z+dfqxqvsqfeuMTtChtbOl+wgtggS6BK3mWvwl2tdojzw7lye58VgIShpcjmHmqWwWdliISqOiXFtOSXkJfWuLleMmzk1wMHEgvTgdmUSGURmUa8rwzBawKQVD5MxuNZtvx+wkw1xGs5evxzSn9RxmtpiJp5UnAgI5qhzSCtNQlatIyEng6KOjZJZkAvxhkmFRCqOj4KcmUGigQ4qUQk1hJf7LiKMjWHB1AVKkOBRC6DboGi8uyzaBAw3EfcTYiYF9r5GwtC1Y/HKVo6e+57tO39G7dm/G+41Ho9PgYeVBd8/uVcZiZWjFmog1ehNLgJDEEEo1pSQVJGGmEN3tKoJrUwNT7utSqWd/mE1LBuL24Dn3FqRiYKDE4Lf7uZXWmQx5GWnSYrxf6fgsFKbfhKc24suyzysLWqlsSbGR0XEM2BQLXNoN1iX8YZIhRUqBuoDLSZf150hAoIlzE/ZE7SH8RTgru63k8bTHmCvNKxHQD8UcIi47DgCZVMaaHmtYoujB13VeMfb4GO6k3aFXzV7ibOqAARARAWfP8tDTnLbb2zLk8BA0WnFMGcUZeFl76X/7+ep80orSaFW9FT8P+xlThSlNnZtSrBYLDHmqPPzd/Xk87TEzms8gtTAVv81+jD4+mqS8JP0YBUEgKj0KnSByYmQSGb1q9kIikfCB9wdYKC3YcmeLfv0PT3+IBAnre6xnxNER/BjxI2t7rGVo/aHU3VCX9OJ0gpoFcSjgNNJNm+DUKYTbtymrX4dqlyM5N/JclSQD4N6re8RkxJBSmIJKo+LQ4ENv7QpoXb01jqaOBDULYu+AvfpZbOcVzsw4N4OYjJg/3O6P0KxaM2yNbTnz9DWx3MrIigODDrBv4D5kEhnl2nIGHx7M1DNT9UWe4vLiSi25/m6ieMC159c4EXuCRf6L+D7se64lXXvrd3d070jYi7D//ffue/yfx/sZjX8HkpJgwwbRUC83l6LeXTnxQUMOSh7yS8IFtIIWfzd/hnkPY2DdgX9oylNrbS361u77L0nu/TegE3RMPj2ZLXe30M61HedGnfvf5WqcOsXi5X35siPsGbCHUT6j9IsyizNptLkRrhauXBl75a1T1oA4YxUUhG7DeoqPHqCgYxvRh0JdQPDDYFZGrOTr9l9jZWRFgbqAX+J/IfRFKF08uqCQKcR1M1MoSE3kuQUIMqn+Rf1HkElkKKQKSrViEOJi5oJSriQhNwG5VK4308tX5zOs/jAG1xuMudKcq0lX+Tb0W/1+FFIFAgL17evr2/UAnA3tKRHK0Ak61Fo1CqmCT1p+gk7Qsf3edlKLUiuPBzHoCX4YzLXn15jSZApSiZT1t9eL7S4uLYlIicDQwJCS8pJK2yplSgbWGYijqSM7H+ykqKyIZs7NeJj1kDJtGcO8h3H44WG9tKeNpDHu5WNRCO6UCgkkGIgEYzlyJmt86Hz4Lv1i4bENzBpmya/VtBSXF1c6nzZGNrR3a08713Z8fulzvdPywg4LWRa2DCdTJxQyBXE5ca+DRQGMDYxwMnMmITeBLh5dGFxvMEHngtDqtISOD6XPgT6MbDCSH7v/+NZrp9FpsP3elnx1PgCXRl+i857OeJi6ErpLhvOgRA61X8vQeEMGXgokv3Nblse64bd8D7m7N2OXOAWtoMXGyAZ3S3fup9/Xj9FcUFKIGjM1DH8oYVMjAQcTB0wUJpRqSikpL2HPrgKsBSN2LBvOtvvbaOvalstjLyOXygl/Hk6v/b3IU+fhbOaMqYFplTYpAC8rL+Jz45EgYfoNgeUXwfUTeGVWeVbrTRK2VCKljsaSoxtyMCkH/wBIsBbPa7MUuLlNJIT3GgmXfuuAsS8Ctzx44mGOp7UnGp2G6IxolDIlWkFLXZu6RGdGVxpbxfd7WHnQzbMbSXlJRGdEk1KQQnfP7txOvU12aTaGctHQrkK+F6CTeyfmtZtHx10dMTYwRq1RkxCUgJ2JHefiznH4YTBnn5wiZXEp37WFyBauLIurwY2Sp6z2SCfOGhq8gpDd8NxClBIWlAoaSp15KM0mR1fIX0EDuwZM8JtA8KNgbqfeRilTUlReJKpByZSs67mO8X7jxRbAc+fYMbcnE/uL5/r51DiqB8xAuHKFUysn82n5KeJzxKzO2shalHQuSCEpPwkJErztvYnOiObo0KNkFGewNHQpyfnJtHBpQURKBHPbzOW70O8QECr1/y8NXcoXIV9grjRHpVExtclUPmr2EXNC5nDk0RGmNJmCp5Unsy7Ows3CjbAJYTibOTP97HSCHwXz4pMXXE68TI99Pejs3hmNoOHGixvsH7QfpUxJ/0P90eg0rOy6kk9avpYs1uq0TNren/4rztDniQATJsCPP4KZWaVzOP3sdHY+2ElxWTHnR52nq2fXd57zjrs6YmNsw+EhhwFxhn7b3W3sfLCTjOIMWri0ILBRIB/U/wAThck79zX6+Gii06O5P/l+lWXP858z5vgYriVf03PngocE02VPF8b5jtOrD66/tZ6g80EYyY0oLi9md//dbL23laS8JKImR2FhaFFl3/fS7tFocyOujr1Ke7f27xzje7zHfxPvE41/FoIAISFie9SpU6iszTk3oR0H6mg4nXqVUk0praq3Ylj9YQypPwRHU8d37q7ltpbUsa3Djn47/jPj/zdCEAScVziTVZKFt4M3P3/wcyVX6v8V7Dv6FaNivuGrulOZ0WexPjnIVeUy4/wMEnISmN9uPjKJTL+sQF1AQVlB5f9nvaSgNJ9Cw3dzEip06c2V5qQWpqIVtHRy74S1kTXmIaHkl+Zx2F30ePB38+dB+gNqWtdkfc/1mCpMabSpEXKpnC6eXTj9VHTRPv7BcQ49PMSeqD0M9x7OgZgDOJg4EDc9jiW/LmFZ2DK2991OgG8ADTY24GHmQ0wVppSWl9LWtS1Xk6/iaelJQp5YZf8oyoj1DUqRSl9zABQyBWXaMqwMrWhg34Drz69zNeAqUa+i+PLKl/qguZ5dPZJyk/SqPnKpHLlEjkqrwkBqoFdSqWhruhJwhaWhS9lxfwfedt509+rOtnvbyFXlIkFCHZs6PMl+goCAs6mzPsExMTChuLyY0fdgj1/lc1xLY0nPOwU0SdExLAaSLGDBGBcOWKUgSKC7Z3fq2dXjVuotIl5EoBE0+uB0vO940ovTySzO5MzIM/Q/0J+wlDAUWglrzggkNvUk0d+Pw0+OAlS61hZKC4zkRuSocvi4+cfUtq2Np5UnntaeeoM2gN0PdjP257F4WXsRnxNPQ/uGRGVEMb35dFoa12b4lWmkHaqOo70Hri0j6N9uEi/ynjN66Vm6x+poPFHLEzvxO22NbVFpVLhbuFEtX8fZdXkMbZvGyToSjJSmlGpUlOnK9NfPw8qDKeezmfqriiuRh+l9sC8APb160r1md64kXuHSs0uV2txArPwXlRfp5VXVGjUqrYr+CXKWn9ZwqxqMHCwGwSqtCjtjO1TlKrF96rf75nPPsfSdsgobrYJWo8rYP/smrba25KcTOpyLREnjKAdoMkXG3LZz2XpvK26P0ihWQNTvHpXGBsY4mDiQUpBSRWTgbagg4gPIZXJaV29NdHo0GSUZlTguMokMhUwhtpL9JoJwZMgRPKw9RNPLyFsYtWhDp4kKrlfX6XlL5gpzCsoKkCDhw2w3vt2ayFNr6DYKCpVip9igR5BnCL+6SZib4sZTezkPTIqIFqryR96EnZEd9qb2PMp8pL/n2tVox74B+3DJ1YC7O6Pm1uGAIpZGeUac3lrC6IESLnoIel6NRCLhafZTjA2M6V2rNx1qdOD78O/FZ7WZaGoYMyVGJCRH7+PbX78lLieuUuKolCk5MlTkiAiCQNC5IDZEbmCE9wiOPT5GqaYUpVzJ1j5bGekzEq1Oi9tqN5HkbupIyJgQisqKaLBR9A+ZfWk2SXlJ1LGpQ3pxOieHnyTqVRQfnfsIqURK8JBgBtYdqD8PgiAQeCqQnfd3cmTIYfqHZcPHH4ODA+zdKwpwIAps2P1gR2FZIV+3/5qvOnz1p/fHtDPTuP78OtFTKieuZdoyTsWeYsvdLVxIuICpwpTh3sMJbBz4VtXHA9EHGHFsBC8+eYGLuUuV5TpBx483fmROyBxRHEIiRSqRsqD9Ama3ng2IBo9rb60lqyQLfzd/wl6EcWDQAcadGEff2n3/sC1ZJ+iw/d6W6c2ms9B/4Z8e83u8x38L7xONfxSFhbB7N6xbR/nTJ4T41+BgV2eOax9SUFaAr6Mvw72HM7T+UNws3f7ybnvv741UIuXk8JN/39j/Rsy+OJutd7diobSgqLyII0OO/FurLIIgoNaqKwf8f+FTQc5NL0rnRcEL5FrQvMNPSYJE369e5aMwxzzxJeYnfsG8XRfM+w6ptO7J2JOsCF/BjYk38HP0qzR1H58TT8OfGjKqwSi+aziTOdPrsqWRQCPHRjzNfoq7lTtxOXE8nPpQ38/cZXcXbqXeEsnCUgMm+E3gSfYTwl+EM6/tPJaHL8fR1JG4nDiRAFmrN1POTGHL3S180+Eb5l+ZD4hBcb46nxYuLbiTegeJRIJWp0UpV2KtlpEifR1oVhj0fd3+a+a1m0eeKg+7H+z0XilPs54y8vhIIlMjq5y7VtVb0bdWX1q7tqaJcxMEQcB7gzfP8p7R2Kkx50edx9bYlg23NzD74myKy4uxM7ajVfVWnI07qw8irQytyFXlYmJgwpoea5BJZAScCODAYRgxpDKp2dHUkaYJKpYczmX0YJh8GwLuwytTCOgPNzwVyGRypjebTnJ+MsceHRMN8H4Lxiv2ZSQ3QioRZ5ZKNaUcdZjBwJmboUULhk+04mDcMayUVqzrtY7xJ8bTunprrIysOPr4KNZG1uSUvm4zMpQb4m7pjoeVB2HPw6huUZ2BdQey8NrrYODsiLOcjD3J+SeniFpZitGrHNw+hpe/FS6tNAbc3i6nXF1Ks0BQGRvg4+BDcUEWdRIKKC/I5XTZYL4f48nimA10cOvAqaen9OdFKpGiFbR0iYcLe2HdoVlMf7xc33InQULr6q2pb1+fk7En/9Ahu2Jfzex8uZl5j8O/WDD4Rj5txkFYDTEQtVBa6IP3inM5tfogpn1+lGqCKUa/RlD3Yl9ySnOYeSaPL38V+RBrmsEnN6HuNPSJ1BTXwayYdIRz49owuFqYKFX72zX5vfKVl7UXZ0eeJSEngY9/+Zj4nHi6e3Xn9NPTAJUMB00NTKlmXg1TA1MySkThgr+KGRESll4UsPgCtAbig+NNkjuAj4MPNeKz2bX+JY/soPsoMLWw41jdr7BMyaFH+nKqlRpw/UI1ZPEJ3LYopvlEUZ63Y4qCK9V+a6n6C8rlTtLmjHgynCgXT8wLE7hpvp08WRRFite/m4rkYki9IfSs2VM/w/wi/wX+u/wp1ZSSVZLFtKbT9GRprU7L/uj9TDo9SU9SdzB1IL0onU29NzGh0QS0Oi2DggdxNu6sniOUVZKFjbENX7X/igl+E1h7ay1zLs3BycwJQRAIGRNCwIkAisqKiEqPwlBuiL2JPedGnGPbvW2sjFiJodyQy2MuV1JPEgSBWRdmsTJiJbv672JMwzHigvh4GD1a5KLMnQsLFrApajuTT0+mdfXWXAu49pcM89bdWsenFz6leG5xpTbQN5GUl8SOezvYfn87KQUp+Dr6EtgokBENRmBpaKlfL6c0B7sf7NjYa+M7OZZR6VEMOzKM2OxYdIKOZs7NCBkbgqnClBnnZnAp8RJGciOcTJ3IV+fzJOsJc9vO5ZNfPuHAoAMM8x5WZZ8DDw0kqySL6+Ou/+kxv8d7/LfwPtH4q4iNhfXr0e3cQahtCQd6u3HEMZus8nxq2dTSG+m92fP/j2Dsz2OJz4knbHzYv3ng/xlEpETQcltLTgw7wZqba7iWfI1V3VYxuclkSspLqgT+/8znXdVMuVSOhdLiD5MEnU7HidgTOJs4Mu1wMtbjp2Heyh9zpTnR6dF8evFT5rQW1TtMFCZvlxO+eFFUdRkzRvS/eKO6VaguxHONJ31r99UbV/0emyI3MfnMZCwwRFCp+K7b93zYbiaLry/m62tf6xWPANIK02i9vTWJeYn67V3MXSgpL2GR/yI+v/Q5jZ0ac2r4KUYeG8nNlzeJnhKNjZENI4+N5PCjwwiCgEwqQ6PT6BMIK0MrHE0deZz1+PXAdLDUchAFPrVZGroUayNrisqLCB0XiqHckA67OohVa41KP57fq1KB2Jp1duRZOnl0AsTkymejD2VascpuYmCCu5U7t1NvU9+2Pjp0lcZREQRXBJeD6w5mVfdVvCx4SfNtzbm6Q5QUrSAWy6VypBIp7hbu7H3emLqr9+P4GZirYOYNmBwJOYbwyTALTlcvRa0ro32N9lxLvoa/mz85pTk0tG/I7ujdGMoMUWvV+mC5oUNDFsm74rF4PZ2Gl5FuqMHGyIbUT1MJOhfEmbgzJM5IpPPuzkglUs6OPEtibiIJuQkk5CSQkJvA9eTrPEh/oHdRfhMVFXGAnk9h3nVQaiB8wxxmxixnVbdVWD7PoPeob7hV15yoxdOZdXsJNbPBT2VJTgNPLgZFcijmEMOODsPGyIac0hz9+Gta1yQuJw6rEsj5HgYMhZ/rgbedN/3r9Gdp6FKczZ15nv8cFzMXUgpTADEprZjBAPA0d2PGlRKCGmdw/2Q1hJcv8ZsMbWq0IfT5a7lgEBMAmyKBq7ughs4c0/DbaLw8aLalGb5n7rH9lBhMTx1uwTaPfF6ulnGzuQt92iQD0NWjKwPWXMA1D3qNgqBmQTzNfsr5hPOVVLcqUNe2LvPazqOta1tW3VylN1ns6tGVRR0X0Xxrc+yM7Wjv1p6LCRfJV+fjaOpIi2otCH0RSlaJaFhX0fJlZWhFUPMgVtxYgVQiRVWuYv+BMmxLodO435zuzatTzawaEiQ8znpcSXigyUu4tBvuO0LPkVSRXzaQGmBjbIO5zITC0jzSyrKRChKsNQZkGZThXAgZxuCbBk9toUBJJYlec8EHX+1GpIIEJDKkOi06icBduegrA6JviIe1Bx5WHtSwqCF+LF//W6Ypo+PujmQUZ1CgLiBiYgTNqjXTf8fJJyfpd6ifntjuYOxAekk6Czss5MPGHzL6+GguPruIkdyIu5PuYmhgyIIrC9gbtRcvay/mtZ3HtLPTCGwUyPmE8+SW5jK92XR90aOeXT3OjjjLx+c/5ufYn7E2tObmxJt42XhVOleLry/myytf/rGnhEYD330HCxei8/OlRfs47luU8nLmS+xM7PgruPTsEl32dOHpR0//VHVKq9NyPv48W+5u4fTT0yhkCobUH0Jgo0BaV2+NRCKh7Y622BjZ8POwn9+5L5VGxZyLc1h9azUSJHhYeXDsg2P8EP4DyXnJDPMeRtC5IO5Pvk+/g/0wkhtRx7YOIYkhRE2OorpF9Ur7W3drHTN/mUnenLz/3Zbl9/g/j/eJxrug1cLZswjr1hIZc5GDzYw41FDOS0khrhauDKs/jGHew/B19P2XjfRm/jKTc/HneDzt8Z+v/B+ARqehUP3Xk4J8dT6nn57GytAKayNrnhc8/0teA2+2F/0rH6VM+YfXILM4kxbbWmAoNyRs7HUszexEqeHAQBJzE2m0uRHtarTj+AfH3+1Xcu8etGsnmvKdOAEGlYmGi68vZtH1RcRNj8PVwrXK5vE58Uw5PYVLiZdQaiVEJnbBe88vCIKA/y5/br28hZOpE9FTowl7Hsao46PQaDWVCLnulu4s7riYSacm0axaM04NP4WJwoT0onS8N3rTunprjn9wnKS8JDzWiLOZ9/PuAAAgAElEQVQitsa2+oAKxGDQycypknb/gCx7jt2sgSr8Orvu72LOpTnkqfMqyXQaGxgzsdFE6tjUYVn4MpLykpBJZFQzq0aZtoxXxa/0+xvbcCzLOi9jUPAg0orSaOHSgqOPjuq5EZaGluSp8vCy9sJIbqSXLlXKlHza8lP2Re/D2MCYV0WvKC4vZnj94eyK2sX5PfD9KHcuS8Rkp6Ktx1xpjpHckEe/NiT7bhh+HwpoJDpM8lUE3RQlVUvkMHGAhCs15ZQLWlzMXHhe8BwQPSnG+43nwasH3Ht1jwJ1AUZyI7GyqxWomQOGOimPbHTM6/wNPWv2pMmWJpwafop8VT6jjo+qErCUlpdSb309TBQmeNt7E/o8lJeFr1nZFclHhexpBWxUUgoMdHSq1Z2skiy0dyNZfQ7cC2U0CtRSYCxnQL1BpBansaHnBkYfH829V/do4dKC1IJUCssKyVXlAq9VkJ6ugZyu7WhR5zp9avWhebXmLLq+CLVWjau5Ky8KXlRqC3MydSKtKI0mDo1IT4ohRVlGjXxIWA0f9oEXQ7vh4+DDulvrKpGXEWDoQ9h62QSz8DtkuljT50AfzK7d5PxekAG7ZrTnQ9sIatvUZuChKD69Ab2WNSSsIAatIMrcemWD0sWVW3OeIZPKGH1sdCUH8E29NnHw4UGuJF3R/83X0ZfHmY9Ra9XYm9iLv4Unx/XqceXacsJfhHMm7gxn4s7wKPNRpd+nscyYEu1rPpE4KyQhbqWO402MKZj/GYGNAlFpVKy/vZ5t97ZRVFaEpaEltW1qM6vlLIIfBZNx6QQndqi472pAtw/KKTUQ255kEhnXk68T2CgQE4UJuaW5HH18lAJ1QRXndzkyNFROqhDAV7MKC5ohkbxZsddiZ/Ccu0azeFWey2if0QAk5yeLn7zkSgpyRnIjfeuUqlyFlZEVK7quwNPakxoWNbj98jaDDr9WR/K28yYmM0b/+zRXmrOu5zrmX56v53HYmdjx4NUDvgj5gnPx57A3sadcW86DyQ/oc6APT7KeoNaqMZYbE/tRLAOCBxCZGom7pXslafEKVCj/LfJfxPx283krbt/m1YAumKfn88uHnRiw9mKl4s+7UGG2d2LYCfrW7vuXtgFILUxl1/1dbL23lWe5z6hrW5eJjSaSU5rDqohVZM/ORin/YwGNCuSp8rBaZoW50pyisiJkEhm1bGpR07omO/rvwGmFEws7LKR3rd603NaS5tWa8zjrMTWta3JpzKVK76lHmY+ov6E+F0ZdoItnl798HO/xHv9JvE80/gg5ObB9OzH7V3HQ6iUHGytJMFFjb2zP0PpDGd5gOC1cWvxbjfSWXF/C6puryfgs45/exz/aXvSu2YXfk3jfxNvaixJyEkgrSiOwUSAWSgueZj/lyKMjuFu5s6DdAtys3Cqtb6Yw+1v9QkrLS+m4uyOJuYlETIwQW9lsbOCzz1DN+phW21qRr87nzqQ7labCqyApSewHdnGBK1fAtLKBX3ZJNh5rPBjvO74KMVitUfND+A8svr4YJzMnFtcYx8fhX9HGpRXHpoeyN2ovY34ew7a+25hyegqNnRsTkRJBF88ubOi5gZpra+pbSI4NPcbIYyNp7tKcU8NPVapg/fzkZwYcGsDyrsu5kniFM3FnKo2jhkUNskuyCWwcyOqI1XrSLoCPoRsmcUncqWFAma4cU4UpRnIjMksysTK0YlqTaSyPWC5yP04EUKYto3/t/nzZ/kva7miLj4MPkamRYutCsqiSUhHkDq03lGOPj6ERNHo5SRDlNYvLiynXlVPXti6ruq9iy90tHHkkOszvH7ifXrV6sfbmWpaHLydPnceu4xDdzI1f/MyIzhAdp/2c/LibJspZluVlE7fXmjBXCT3avw6erdQyJt7WMvOG2LYT2F/CeU8BQSJ61ziZORH6PJQXBS84Pfw0Aw4NoFxXjpnCDAdTB4Yrm2KxJ5jZHbVUywehhgul5aVUt6jOwUEHabmtJcO8h+Hv5k9ESgQRLyO4lXILjaBBLpXT1Lkpzas1Z/XN1QgIGMuNKdWIniHJgY8xqe/LoJnOaOQy/K+/4KGFmkz/Ztx8dYfyNwJOuSBFI9FhamCKVtCi0qhQyBT6REUqkeJo6siHjT/k+7DvKS4vxt7EnpV7M3HLFmgzUQwWdYKOqU2nEpcVx9mEswAYyYyQSqWVgtInkS2oERrDoG8b0m5fGJPuQIO5lni4NOBB+gO0Oq1+fQMNfB4KizvAqOq9mNHtawYGD8Q6LoWIzQKGWpjaEzY2g829NzOk3hDqz7ciaRX8MNCBed7pmCvNKVAXgADz7pmy+Hg+oSnhtNvRTn8tK4KzsT5jeZz9mJSCFBa0W8CJ2BP6e74iQZZJZEQGRtLQsWGVIsStlFu03N4SUwNT/czS7yHRQedEODrsODfrmLLm5hqxmGJkRWCjQKY2ncrxx8f57OJnpM9Kx8rIitLyUiIP/UjTiQv4tbpAnw90qA1AKVViYWSBvYk9kYGRKOVKdt7fybgT45AgYZj3MM7FnyNPlYcMGcoyLWY6OflyDa2SIc8IDO1OoZBU9ZWxLchgy+Y+9Bsh4VY1OJTTSQyeGzZEaNCAHKVOn3RU/Psk+wmXEy9X8v+ouId0go5qptV4WfQSH3sfjAyM9N4TpgambOy9kebVmtNmRxs8rDwIGROifxZdSbxC0PkgYjJiaGDfgA5uHVh7a624rcIUK0MrXhS8oKlzUy6PvVzFDLWC0zSzxUyWd13+zgLe8cfHGbV3IMsvSphyW4Du3UXVRyent25TAUEQsFhqwby28/i8zed/uv7voRN0XEm8wpa7Wzj+5Dg6QYdGp+G7Tt8xu/Xsd8YGFUnOocGHOPzwMEcei888VwtXHkx+wEdnP+J26m2eTHvChYQL9Nrfi/61+3P0yVGWd1nOp60+rXQcTiucGOc7ju86f/cPH8d7vMd/Au8TjTcRFUXChiUcjDvGwToaYuzBUm7GoAZDGeY9jA5uHd7az/mvQCfoWB2xmlkXZhEzNeZvbS9666yA4q/PHrytvehq0lX8d/lzc+JN/XT8rZe3GHBINPI7/sHxStP0fyd0go6hh4dyNu4s1wKu0bRaU3FB7drQpw+B7fLZG72XGxNu4OtYVRtej+xsaN1anK4PDwf7qi/6zy9+zvrb63k241ml6tz15OtMPj2ZuJw4Pm35KQvaL8A46FOORx9mYJds1nZfy6JfF+Hv5s/yrstps70NyfnJfNT0I1Z1X8Wam2uYeWEmMokMiUSCgdSA1q6tOTHshP7FXqYtI/R5KOfizrH13lbyVHlVxieXynEyddInlx6WHsTnxuuXK2VK+j+V0sbGj9az19HAoQFyqZx5IfP4NvRbjOXGlQjfW3pvIcAvAHgdGADs7r8bM4WZKKv5RluVTCJDEATMDc3xd/PnVOwp/fIuHl04P/I8UqkUlUZF9R+ro9FpyFPlEeAbwLcdv8VEYYL1Mmu+uKrFuBwefTKqUoW7V81enIs/h5+jH+qY+9zdZsDCcR4ssXuEodyQMk0Z/u7+PHp+h/438pgdBnIBAvvABS8wUohk81ENRrFn4B6abG7CnbQ7oib/h3exMLQg72kUjnsbMjsUEtr7cMn4FRklYlHgTX6Ci7mLPuFys3DjasBVlHLRI0X+jWiGNr/tfBb/uhiAebYDWfzRMVy/d2K472iKHt5j4VdXsS2X4z6plGJTA670O8791V9wRh3DMW8p6t9Xu38bg0KmwMrQir61+2KqMGVlhNh/30Bry/G1WXjNAKlUyoaeG1h9c7W+5UkniMlLiaYEnaDTtxJlrlJwb/u3DLg7m+QVOs62smOSf6FeohPEtiM7jYI8VLR8AY9tId1MDFhrqk24uaIQCzUcG9OUwR6ROJo68nLmS7659g1fX/uaA4eh0StIDD+Lt6MPNVbVQKvTggQ6mHrzWMgUZ3YELVKJlLzP89j1YBffXPtGFCUQYGj9oSTkJnAj5QbnRp7jyKMjbLu3TT9GBxMHunt1p4tHFzp7dMbC0IJxP4/j0MNDYhKPSM79fStgr1gI8QCFoTEF2hIa2DcgqHkQIxqM0P/+0grTqLayGlv6bGFCowmvN75yBaFnT575ueHTJY5SqU5/j3jbezO96XRmXpip5wRVupY66BkHE+5Ci5fgVASRTjA5YBWmst/5yqCjaQ0Tlnlmobofyci09fxsnMyms2JyDUCNGuDrCw0bvv64u5Nekon3Rm+ySrJY12Md7lburI5Yzc2XN+nm1Y1jj45VOScVUMqUeFl7EZsdSz27eizqsEicFbGsgYmBCY02NSI6I1rf7lYh6ACi+/XhIYerFJlOPDnBoOBBBPgGsKXPlncmGQk5CTTa3AhBEOhZsycHjcfA+PHic3rLFlHu90/QfGtz6trWZWf/nX+67ruQVZLF7ge7+fzS52h0Gtwt3ZngN4FxfuNwNnOusn5sVix11tfhesB12ri2YX/0fkYfH42AgKOpI1+2+5JpZ6cROi6U1q6t2XB7A9POTqOze2euP7/O7cDb+Di8dsocfnQ4z3KfcXPizX/pON7jPf4u/J9MNKKTC9l7NZVn6SV42BvSXXOH+1e+4qDxM265gDEG9PPqzfAm4+jq2fWtU6H/aHtRFfWiipkFdeFfVi/6O9qL/l3Q6DQ4rXBivO94lnVZpv97WmEag4IHcTftrmjm5Dv2bxtDBWZfnM3y8OUc/+A4/er0e72gVSu2N5YywTaM7X23M85v3Nt3UloKnTtDXJyYZHh5VVkltTAVrzVefNryUxZ1FL0yskuymX1xNtvvb6elS0s29d4kar+XlIjVtqAgxjVJYV/UPpQyJRt6beCTXz7BUG4oEmwNLWjh0oKNkRtp6NCQB+kPAFGz/erYq2QUZ3Au/hzn488TkigquziaOtLRvSPHHx/XBy717erzMPNhFVfpCgM5mUSm1+7PKZ+J0Yo1opP9G9KRH5/7mNW3VgPifRg1JQov68rnYcKJCey4v4MObh0IaBjA+JPjq/TTV5B5bQxt8LTx5NbLWzSv1pybL28ytP5Qfur1E7se7GLWhVlET4nmWvI15l+ej1qrZn7b+fwQ/gPt7mYz5Y6UDyZa6NuDpEixNLSkZfWWXEm6QmePziiOnST4MBh9LUeNBgOpAVmzs1h4dSErI1ZijAGD7pfzRSgYl8OUXnC+JpgoTBjlM5otd7egFbS0cW3D9YDrPMt9RkRKBIsvzkeXnMSNLdB1NNypBnbGdtgZ2/Eo63UrToXHxVftvmJSk0k4mzkTnR6Nz08+GEgNKJpbhPl35ihkCgrLClkR7cynDVI52HEjMy58wucXVQTdkfHQWsukjz3R2lpVIt/LkaFDICEoASTQdkdbkSuRFYtUKsXayJr4nPhKrYsSQfTNq+j5r+Ds1LKpRVphGoVlhfr7RCKIXIpV1SYyM3U7o+/q2HkChKdPWZl5klkXRU8XmUSGQq3l0h7IMJMxcIi2EqF53xEYEQPftYEtg93RCWJlPahZEGturREJ6ckCv+6A2bMaktDUk7DnYfSv1Y+D4ZvJNxTHWzE71qdWH71YRoG6gOXhy1kWtkxfla9lU4sn057g+5MvURlRLGi7gHW3xfYuJzMnvd9GxXG+2a7k5+iHtZE1IYkh+kRr9zGR4/NxT5H7ENQ8iL61+9KsWrNKhOOOuzoik8q4OPpi5YfDxYsIffqQ2LwWPh1jEeRy/UxWBZRlYtJbJgOpAOrfYu+tJ2DwIzjoDTt84aYLmCNyNCSCBMlvHA0QmNBPx4hmbQCRTzD93HQ2Rm5kUb2PmKdqhiQqCh48gPv3ITPztxvADHx8SPb1oJbdfgSJhDtjw1l2ZzXP858zq9Ushh8ZTommBF8HX4KHBPM8/zlXkq6wInwFGkGDRqfRz4C8CStDK8q15XqJ3t+/204NO0Xv2r0r/S3kWQg99/ekX+1+HBh04J2E7tLyUlptb0VWSRYpBSmcH3mebl7dxGObNAl+/hnGjYPVq6vI4L6JgJ8DeJz1+N8WoE8+NZlTcafo6tGVQw8PUaYto1etXgQ2CqS7V3d9kfJu2l0ab27MnUl3aOTUCADLpZaYK815UfBC7yPUr3Y/PWdv+tnpbLi9QUzkFCbcDrytNxfcfGczU85MIWd2zh/K4L7He/y38X8u0YhOLuST7Y/RCQKCIEEQtAgSgWjJFDxMCmlYqz01rN1RaVRiEvGW5OCfbS/6/exBxTrP856zJHQJBwcdpK5d3f9Ye9G/G4EnA7mafJWnHz2tlNSoNWo+OvsRW+9tZUbzGSzvuvxvmR0C+CnyJ6acmcKqbquY0WJGpWX3hrajVd0wRjUez5a+W96yB0R+zuDBosvulSvQ7I9nYqaeER1gE2ckYq40Z0/UHj698Cnl2nKWdV5GYOPA17M/+/aJJn/x8VyRPafjro56RaheNXuxs/9OotOj6bi7I1KJlJ96/UToi1B2P9iNBAnNXZqTr8rncdZjZBIZraq3oodXD7p7dcfexJ4PT39YpWXqTTibOXMt4BoqjYoGG0XTKxdzF1IKUjjXbTfdWwfA+vUweTIAex7sYfzJ8ZWMyDq5d2L3gN3/j72zjo7i3vv/a9bj7o4kEBII7hYcQnELbqUUWmgpULiUlhYoULy0QCnuWtwluENwCSEKcc8m2d3szu+PIQspcG+vPM9zfufyOScnm53J7szszOz3/f28pdxMXZGhCK8FXuWEsR7WHuSW5GI0GcuFuSllSoyikdUfrWZI2BB2PtjJxwc/xkppRZGhiO5Vu5vF9DnFOcw4O4Nl15YhE2QEvzBwYiPI0zMJ+62m2T1IjpzwgHDy9fnE58bTN6QvvjOWcDAIovwkd5+6nnW5nXqbn9r8xIiaIwhdEUpSTgJdHolMPQ/2JfB5Bzhc+RV95BW17E1HKU8bT14WvGTdXujzWMHYha05XvKAuHFxNFnbBAuFBaPrjGb0odGUlJaYZ3ADnQJx0Dhw9cVVnCyciPksBqd5ToiIRDyTc7iiEZMAq46qGNleT02FD8bUFI6vLSXVVsbYCVW4WhSD0gjrdhtx96hE88YxjKw1kpWdV9JuUzuslFbmULYVESsYfXA06+6sk8CAScAzp5RYB0DgnYO/sudUohyfbCOxTrw6tjKurjSRa6dGfvgorTe2NmdavMiMpcSox0YPYS6hnNJKWhtXSxeWrMug70P4uama2R85UFRaRNTgKFpvbE12cTa2KlvODzvP91EzmDHhIHFWejpHwqZum4gMjaTZF/ZccMgvlyp+Y8QNanvVLrfdL/JeUPHniuiMOmxVtgytOZQlVyVgnP5VOnqjnogtEUSnSRkHFgoLBEEod++u7VGbyJBIHCwcWH5jOddfXgdg9zZIddEwppUERsoAirOlM+0rtSeicgTtKrVj54OdfHLoE472P8rLgpfcTbvL3fS73E27S63odPZugwNB0K8HqA0SmCiVgcz0CmQoAFEKL9TLIThdcuJSGwWKleU/J1uxOv7GYTiWVqR2xkuGHFvGuvrxjF/z0GytKoois87P4psz3/BpnU8l5zaZXLJkT02VQEfZT3Q0+8RHdO0L1jqoXKhCa63iqbqQCLt6nCiIRmfSs6DtAr5s+CUgZU6029QOrV5LmHsYJ55LAKuxT2P6hfRj0ZVFxOXEIZPJ3hliWHYt1XCrgZ+dH4IgsOb2GsLcw9jaYyt+9n5/l3o0cv9INt3bROfAzlxKukTC+ITXwEQUYe1aGDcOXFxg40apI/2OmnthLrPOzyLv67z/yATcwacHJU3KmMe4W7uz5d4WVt1axe3U23jZeDE0bCjDaw0nMS+R5uua83jMY4KcgzCajCh/ULIiYgXZxdn87dTfMGFCJsiI/SwWfwd/Sk2lRGyJ4FLSJUpKSxhbb6zZMexZ9jMq/1yZA/0OEBEY8Q+28kN9qP/9+q8DGpPXP+FGbB6mN/ZaxEg217inGG9+TibIUAgKFHIFKrkKjUKDpcISG7UNdmo77DR22KptsVPbYa+xx9HCEUcLR5wsnXC1dMXJ0glrlTVWKisslZb/cFAdnRpNzZU1y9GO/n+sIzFH6LilI3c/uftWgqsoiiy/sZxxR8fRzK8ZO3ruwMnS6T/6/odjDtN5a2fG1h3Lkg5Lyi3LLcml9kwf7ItFLs7NNM8IvVWiCGPHSqLxffugU6d3rvY85zlBy4KYFT6LrlW6MvrQaE7HnaZfSD8Wtlv4dnZKq1ZgNGI8fYqwFWHEZMegM+roVLkT+/vtJ7UwlYgtETxIf4AoivQL7ceGuxvM/66SqxhYfSDtK7WnilMV7qXf40LiBU7GneRp1ttBayBRHELdQtHINTzNfoqPrQ/ruqwjdEUoSpkEYF2tXOkV3ItFy59DQgL6G1eJ3NOf3Y92o5KrWN9lPeOOjiOrOAsnCydMmFjbZS0RgRGciTvDyAMjzenXAA28GpCnkwCRQqbAz86PoWFDmR413Tz72aFSBxa2W0gV5yrSF+/a5sTnxfNZvc9Y2G5huevlYcZDmqxpgiIrh/Sf4NqlXcxL2sqL/BdceXHFvF5zv+bE58ZjqbRkSLX+3Fo2jRMVIdtScsk6Oeik2XJ59vnZfH/2e3RGHTJRoE2syJTz4F4IX7SDI6903d623vzY6kc6VO6ArdoWr4VeBNoE8O2CG9gZZNQfWsqhyEOkFqYyYv8IVkSsYNTBUZwbco4g5yCi4qOIio9iXfQ6c6fJy8aLFwUv8Jc5YcrKIttKoFApmgfU4QHhPMt6hk1MImc3yEiwNbF/2eccyrzE6IeWDFtyjvHdLVlSvYij/Y+y59Eerr+UZjg1Cg3xufEk5CWgkCm4N+oe9VbX4+SSPJqOgJJXh/VN1ysBgRpuNaTB+BsDe+lagAo5UGyhINXCaKYaWaLg+Go9tqUKGg4upUDzev0x12DZEYhqVYmWTZ6BICWSb7y7kZTCFEyiyRyYeTruNJvHt2LVAaj0GQzpNoMewT2oubImrjkGMqylwXcZNeybZt8wsfFEc6BmmTYJXneSFDIFThZODK4xmLXRa8koynjL7lYhV+Br60tRaREquYpHGY/K2ekGWHiSqH1JtRwFyV625OnyMIpGHDWOdKvSjVPxp4jPlULwNApNOfpTgH0AnjI7HJOzqPQwhSFXSwnNgGwL8PoSdAqQi+ChU/FSrce9ECyMArEO7wZ/8IqiZuVCTkkO0y7Kmd6gmBmufZj4+XZK5QKR31dn55dXyt3Tfr/1O6MOjqJblW5s6r7p/fe74mIGb+7JxheHEUUpAX3xGQ1jz5XQu5eUA5JlAReK+lA/pD2EhZHq40DHnV2JzYllSfslLLy8kHvp95AJMnP+RtdtXTGYDAgI/P7R77hbu5ufA/Cx9UGj0PAs+1k54KuUKfGx88HPzg9/e/9yzlk3Um4w6cQkVkasZPLJyYyuM5rZrWa/vU/Pn0s2uFeuwNdfw7ffgqq8Ddj+J/vpsq0LyV8k42Xr9e5j809UkaEIp3lOzAqfZQZlADdf3mTVrVVsubeFQn0hNd1rciv1Fs8/f06AQwCZRZm4/OTCnt576Fa1G3dS79BpcydeFL7AQmHB4f6HaeHfgrySPBqtaUS6Np3MokxODDxB6wqtEUUR38W+9A7uzYJ2C/7t/fhQH+o/Xf91QKPXvNtkFrytY9CRzhXFR3+XwvTvlEJQYKWykn6UEviwVFqagYgoihx4eoDOgZ0Jdgl+5zqWSkvz839+zkJp8R8Vp/+rpSvV4TrflS8afMF3Lb575zpn48/Sc2dPbFQ27O27txzf9N+p6NRomq5tSnhAOHt67ynXfjeJJrpu68r5J8e5td+TgFvP3/9CP/4oebSvWgUjRrx3tUF/DOJE7AmG1xrOT5d+wtvWm187/iq18f9ccXFQoQKsX88oh4v8dus33K3daR3Qmu0PtrO2y1rGHxtPSWmJ5NqVJzkiqeQqDEYDoa6h3Eu/R4/gHlxNvmqezXe2dCarKAsfOx8qOVbifML5cjqdJW2XMOHkBBa3W0wT3yY0X9ecai7VuJR8yUzL6hrUlSdZT3gYMJ+YAZ1oPsmZFF0mgY6BRA2JwsPGgwWXFvDVia+o61kXVytXDsUcMot3BQTCA8I5HXfafP10DuzMpMaTsFJa0XJ9S0RRpFQslWgu4ussgsE1BjO58WQarmlIkFMQN17eoJ5XPTZ330yAQ4B5P4bsHcKWW+vR/wDd+wjENg9Fb9LT2Kcxq2+vNh8nhaBALpMoYYX5GRQpRPNM8YSGE2gV0IoryVc4FnvMLHB9s9qmWPL9ZQusU7L4qq1EqRJEqO5eg4mNJnIx6SJ7Hu1B0Ok5cNiOkdXj8atQi83jzuE+3x1rtTVVnKtwZvBrR6RCfSH2c+wxikbkghw7tR05xdlmmpG6FAwKGXKZHHdrd472P0rI8hBERAYLtfh9cSyKSoE07ldEraCWDP7tKqEHrzPxm/rssUlmWM1hLL26FJNookBfQMfKHdEb9ZJmy2jgTuodlh8wMbu5BFqg/CBWISiQi9DtbilnQ61JEQrN9KFRd9UIxlJWhBnLA5BXpRGUlIgGMwf/06sw4B6c8xeY1cGKAsNr+laZFW4VpyrYqG3MlBXfWc7cmZ1NdIeatKp+G29bbxSCgvi8eFwKIeOVXtjJwoncklyqulTl986/E+YeRrVfq1FcWoxckJuvibJtlwtyAuwDeFn4El2pjia+TXic+Zg0bRot/FoQlRBl7qR1rNyRai7VmH9pPs6WzrS6nE5AHsxu9tohTI4c4xv6GBuVDW5WbpSaDKRkJ2KpF/nppIw2z0z45oFJgEeeSk76lFIiE5lwBbaEwCedwTMfYp3gsyf2bPTLJfc9GABeUdReUQ+NopH0TR70apzC+QoyTlyuTJMzsZz2M7F97kDWdFlbbnZ+/5P99NnVh3pe9djXd997TS9W3VzFqIOjJAcsheA33rwAACAASURBVIZLQy9SU+/I1qifiUxYSM0iO7JNWm79UopjMaBUkh8aSI/WWZyzzOBH/5FMS15vzmgpy3EBiAyJZHOPzQBMODaBNdFrcNA4EJcbh4CAn70fUYOjyNflm8XqZWC57O80bVq57S3LDOlUuZOUY/InG19LpaWk15g7F777DqpXl0L+qlY1v0ZMVgyBywLNA/b/RHXc3BGdUcepQafeWqbVa9nxYAdzLs7hadZTnC2dGVJjCK0qtKLD5g7lEr5LSkuovLSy2XZ6QsMJzG09l4S8BOqtqodRNGKltOLu6Ls4WjgyeO9g7qbd5fao2/+R/fhQH+o/Wf91QON9HY1c4Tp35ONwtHCkQ6UONPBqgEwm43n2c2JyYojNjiUpP0lyRXlVCkGBjdoGtUItJcuKJvRGPcWlxe+lVSllSjQKDSq5SkqklUlJoaIokpSfhIPGAbVcjd6kR1eqo9hQXM4h6O+VRqH5hwDlrcev1vkr/6dRaP5Si3nAngESfWD03feuk5CbQLft3XiS9YT1XdfTM7jnX9rH91VyfjL1f6+Ph7UHZ4ecxUplVW75nAtzmHJqCgcVg+i06BBkZr77hTZsgMGDpS+nb9+fMHs//T6hy0Nxs3IjqziLSY0mMa3ZNCyUFu/+h+++Q7dkAZ+t7smqe+vws/Njd+/dnEs4x99O/808I+ph7UGIawinnp/ChMk8gC4bFAY5BRERGEGgUyBro9dyNfkqkxtP5tO6n+K32A8REYVMgUauodBQSIdKHTjy7Ajx4+Lxs/fjYuJFWm9sTUlpCSNrjeT3W7/zSZ1PWH5jOT+2nMW0U3/DKMCYumNY2nGpGbyW7a9MkGGpsKTw1QDSWmlNl6Au7Hq0C51RZ05dvvbxNcLcw0jXptN0bVOeZj2ltkdtanvUZu/jvZIu4+YKjCajNDCRyXjw6QOyirKI3BNJdnE2yzstJzI0EoBvz3zL9+e+J/UnuNm5Dt2q3cVgNLC0/VImn5xMUWkRtipbXK1dScpLKmcZ2+s+7K8izSSDBM5cLF14lPnIzNMfGjaUtdFraeLThItJF2md58SIY5lUyoapreFYJUmkK5dL+SHtK7XnVMxxfsyowWTn2yQ4fs9Ip8sciT1iHrjojXquJF/h1+u/sv3BdvP2qEwy/HJM/HhKYHFbGy7aF2CtsjYndJeBADuVHbHjYnF6kgitWnHbrpjdC0diZ+9GiyHfUdPoQuDgfIocrEnTpqGRa6TgvsgDuMxzIV+XT1WXqqzvup6UJTOZlreXOx7gb+dPfF48ILmRKbQlxJamoRAFAl2qopKriE6Lxq0QEhbB1FawsBHU8ajD0+c3GHtHxewGeix1UPRKvhbsEkxi8kMK3yFne5PH36tqL7pU6cKAPwawv+9+Ap0CCf41mDnHTUy4b0ftb92Izn+Kv70/JfoiUrXpyICe1Xqz4+EObFQ2+Nv7cz/9Pk18m3Ap6RKWCktC3UK5nHzZfJ2UURJBsmhdEbGCRj6NmHhiIgsuv571HVV7FF81+gqZIKPPrj7EZMXQwr8FvZeepvqzAkLHlN+XNwFaS3klFl2wxvPaQ4576xnQAw5ugSdOEmXvvB+oHF0YJoZRI66IfZkX2bwbMjzt8B+eR4kMEMDL2gs3Gzdupdx6973jT+99a58HRy1T2No/lOTseK4tLKBSNgzqCvWm/MzYemPL/d+lpEtEbInA29abI/2PlJu91+q1fHbkM9ZGr6WRdyMuJV/CzcoNvVHPiYEnqOxUGZefXJjceDLLri2jqWdD9gZMkXQf0dHo796mU5VbnPQ34VEIFQqVXHF/5ZUmgFJQIJcriPksBm9bb7MQekn7JUw9NdVML6znVY85rebQMqDlO/c9XZtO/VX1kQkyvmz4JYuuLDKf3/G58bzIf1FOF+Zs6WwGHY3T1AyZfwq7tFxSpn+B1fhJ2Fs4SIP12VbMbzP/7ayOf7F+ufYL44+NJ2tSFrZq23euU+Y29nm9z9l0b5OZmjk7fDbjG4w3f4fseriLXjt7mc04qrlU48TAE8TmxBK+PhxBEOgS1IXtPbez4c4Ghu4bSsbEjP84S+BDfah/t/7rgEaZRkMUwSSCzGSkVCYSLf+EfOEe1VyqkVGUQbo2nRpuNRhWcxiRoZE4WzoDkggxPjeeuJw46XduHHG5cebnygYLIDlteNt642LlgqPGUQIlcjUKuQKTaKJQX0hWURbZxdlkFWcRnxv/3u22Udlgp7HDTm2Htcoaa5W1efCvlqtRypUoZUpkgswMBowmIyXGEooMRWj1WooMRdJjwxuPXz3/Vzo5ZXkK/6jLklqQyvHnx/m07qf42Pq8F8TIkDHz/EwOxRxiQsMJzAyf+f72/t+pfF0+Tdc2Jbckl6sjrr5FWTodd5o2G9swtclUfnjmA6NHg8EAsj91gI4fl2hSQ4bAb7+915M9syiTWitrkZSfRCPvRvzW+TequVZ7/waaTMRW96ZXFz3RqmzkghxvW2/i8+LLCbWDnIIwiSZismOA1yLYYOdgYnNi8bD2oFNgJxr5NOLTQ59ip7FjQ9cNBDkH0XJ9Sx5nPgZgYsOJ/HT5J3xtfUnMT5TE35+/pjYN+mMQG+9uJMw9DK1eSzPfZqyOllx6LFCydxu0vZwO9tLsZ6G+kN9u/MaEE69tFYNdggmwD+BwzGHzuTMwdCAb722kgkMFZIKMvX320n1Hd/J1+cxuNZsxh8ZQx7MO5xPPs7HbRpr7NefLY1+a7R2tVdb80PIH+of2Z/yx8ZIbS/WBLOu4jE13NzHm8BgObIK6XnXYNmcA449JVEcfGx+SCpLeGeoGUCdNzg03I+5aGbl2Knb12kWPHT2wVlmTVZyFjcqG3Mm5VP21Kq0CWjGq9ihzJkBgJiy/74/ls3imtYRTFUFuAqNMuh787fxIzUliSpSR3c2duSPLZHit4aQUpnA2/ixag1aaODDqqSV4clN8gcwEK7QtGbngDGeOrST88ig6VurI4WeS1eybA3MBgRruNRigr8rwydvIDfDg4JKxLD05k9u/ybhuX0TrASaMcukzqeZSjZisGKLTos2DELVCTfzZ/Qxe14Vz/u85R0VQypW4WLmQWZSJ3qhn2jkZU8+Z8PoSrN19yE9L4uxWNfk2Kpr1ku5zHSp14F76PRbddqPHxpvcd4Gbh1cx8shoMz9feNUKefMeIyCglCuxVlpjMBlwzyjm8eJSPo6AQ83cSdWm4mvnS2JuIs0TBaIW5TD//iomnZyEXJDTN6Qvm+5tMh+rP4ci1vOsx4RGE8w6n3RtOg4WDmQWZaKWq5EJMopLi9/SbFirrKnrWZet30STU78G2iXzcVA70H9rd65k3UFtEtDJXu+H3AjhSXJMJiOnAsDR0pHI0EjqKv3x3HeGgL1RGEqkJHCfIgX9nlsx5WAeK+vAmE4gyCSqkSiKdK/anS33t5Q/Rq/2y0pphUKuIL8kHxMmXLRQvVorYnNisXiRxuVNapSFxQR+YmDzmNPmmfGyepTxiHab2iEIAscGHKOKcxXupt2lz64+JOYl8mvHXwlzDyNsZRi2alsqO1bmWfYzTgw8wYyzM8jX5TOx0UQ+2vYRi9otYnwD6drb82gPkbsjcVU7kFSUir2oJhcdCND5EbgUw5qaoDYJjCsKZYJfP7obt3BL+wwnCyc6B3Vm+Y3lZjph+0rtmdNqDjXca7w+NUWRPrv6cPTZUW5+fBNLpSW+i31Z0WkFI2uPBCQjkhf5L96y8S3riqSnx/PDUT1jr8OxivBZLyvUvgEk5Cbga+fLoBqDynVF3Kzd/iWGQFxOHBWWVpDuMcE93rnOL9d+4cvjX6KbpqOktIRvTn/D/MvzASljaEDoAEbWHkmQUxBeC73oF9KP+xn3iYqPQi1Xs7n7ZrQGbTm3v+b+zfFbLE1eda/a/Z/e7g/1of4n678OaMAbrlOJOVR4eJVMj+PscD6H1qBFLpNjo7JhcI3BJOQlcPDpQQA+CvqIYTWH0bZi2/fqLURRJLs4+zUAeQOMlP1+0xrS0cKRAPsAAhwC8LfzZ9WtVbSv1J6xdcdirbJGa9CaQUh2cXY5UJJdnF3u8fvC8ezUdmbtiKOFI04Wf/pt6YSDxgFrtZSdoJFrkMvk6Iy6vwRQ3nreoKVQX8id1DvYqm1RyBRoDdpy+/33Si7I/7kui1zD9ofbScxLZFrTaVR2qlxueaG+kN67ehPiEsK+vvuwOXgCee/ekm2to+PrN751C5o3l3727gXF25+xKIqsv7Oe8UfHk6fLY1iYJCh/3xeSKIo8zXrKjzs/Z3PKcUpfMbnsNfZUd6tu/iJ8swQEqrtVZ02XNTzJfELknkga+TTiUtIlPgr8iDPxZyjQFxAZGskvHX/h5POTfHLwE3JKcpAJMpQyJV2CurDtwTaWtpfscS2VliSOTzQ7klRfXp3HmY8pNZXiZeNFqjaVUlMpdmo74vpcxiGwOixcSOKgLiy9upTlN5abB2LOFs5YKC1Iyk/C0cJRsuK9uph8XT4fBX5EdFo0jX0as//JfkRE3KzcODHwBBUdK3Ly+UkitkRgq7bF396fayOvMfH4RJbfWE597/qcjjsNSFz7Re0WYTAZGHN4DK5WroyoOYKpp6cy5SxMu2vLqoPfM/7YeJr6NuXai2vlOhgAPav2xEZtw9rotciRITOamHoO5jYTMCoVWCgtynUn48fF8+OFHzmbcNYcmtlodSOuvriKSTTRw6ou069bknPtHDOai5wJACtUaJGoYAoT5s9XJsgIDwiX7FQDWvHT9+3Y5pHF6v0Cwz+SbrdPMvoSeOgK2/f/SN89/czbMa7+OJZcXYJGoaFftX40829GVHwUZ+LP4PowkZMb4KGHgjb9SqmbInByA+xo50Vk/WQcNY7k6nLxsPbgRcELYj+PpYJDBXSlOuqvqI3PxQccrPL6GDV1qMn57NsggI3KmrVd1vH5kc95WfgSS1Q8XqjnWEUY2UUSLl9aDTpbK3oP1JCmz6KSYyWCXYKpfTiabzYmkmkJ/uNAbyEB5DC3ML5o8AVD9g1BRDQHAfYK7oW3rbc5ydvfzp+k/CR2bzHinwthn1COptXxKfQK7knVwV9xK+UWYw6PMYOWN8GlQlBQ0bEiT7KesLzjcqo4V2HJ1SUciz32loUsSN3DsnuZlcqKGm41ODP4DLKMDHB3h6FDMWm1lJ4+gSIrh9lN4bsWYKuDHA1vUclslNZYiHK2Pgml8Y7LqE0ysrq3p1boZdJM+ehemSIMuQ1r98HqJlaMaKUFAVoHtOZk3El8bH3MFLCy+4G3rTdJ+UkE2AfQ3K853WfuYnpDHY/cZJLGCIEKWSK7DltRYGdB9z5wY9TNt4JDk/OTab+pPS8LXjKi1giWXl1KkHMQ23tup4pzFQ49PUTE1gjs1Ha0r9SexLxEHmQ84LN6nzH7/GxSJqQw7+I8fr72MxeGXeDai2t8fuRzelfrzZQmU2i8pnG5HJZghyAuVplH5LXJXNfHUWzSY0SiMuZr4NBJNzo4N2BmWD7TOUM3n7bc18bxLPsZ/av354eWP+Bv78/PV3/m86Ofmwfvcy7M4fuz35MyIeUvuyyZRBPp2nRy/9iG35czQK9n85imTHe6S74uH7lMXu5+oJar8bXzfU3H+hM1y9vW+73jgOBfgmng3YA1Xda8c/ncC3OZe3Eu2ZOlTsb66PUM2TeEB6MfsPHuRtZGryVNm0Y9r3rYqGy4k3aHF1+8YNXtVYw7Mg6jaKRfSD98bH2Yd2keFgoLHo55SOsNrWlfqT3LOi77S8fkQ32o/636rwQa5hJFqFsXnY0lVbpKN/cCXYGZ+tTCvwWzw2dz9cVV1kav5W7aXTysPRhcYzBDaw4l0Cnwn3w7kTRtmrn78SYAicuJKyeoBWnAFeAQQIB9AP72/q9Bib0/vna+ZkEkSNqInJKcd4ORPz33JnB51xewgIC9xv4tcPJngPLnv23VtuZBd48dPUjOTzbzsE2iiWJD8XvByoXECyy+shhbtS2DawzG6lW2wd8DOVq9lpeFLykyFJln//9RNYuHs+ug7gRbUjxtsFRaUjlfwYZ5z0h3tuC7b5oit7F9q1NToC/gj0d/EJMdg73aHmuVNRu6bcBGbVNuXVEUuZx8mWOxxzgcc9gMJKwNAjq11MkyikYzDaKJTxPG1BuDVq9l5IGRaBQaEscn4mzlzPdnvzcHr8kFOWq5mqLSIha1W8SgGoP47MhnbLm3xWwTC9C3Wl92P9qNwWRgR88d9N7VGyulFT2Ce7C+63ozdcHD2gM7tR2Ps6QuSGPvxtzPuE/mpEyuD2nDYuUtdvlJ9pRG0UhN95q8LHhJmjaNyo6VzZ9nRGAE6++s56e2P/Fd1HfoSnVmbUy+Lp9Z4bOY2nSq+fgfenqILtu6YBSN7Ouzjz67+zCp0SRmtJzB1eSrfHbkM7PrT5BTEFObTGXx1cVEp0YjItIqFk5uBM8vIcUWKRTMrwVHYo/wLFvKBlHKlDT0acjpQaepsqyK1A2ydKPCo1SmnoOOAwABvm32LTPOzQAktyOFTEHf3X15+eVLPGw8+PX6r4w9PBa1XE2QcxB30u7Q17klg6NyEW/fZnYzuOAHqlLJOUhtgANb4ZkDpM2ZxqeWzbCePJ3V+itMaC+Q0u0izvsaYae2I2uxivVDajLW5rz5GlTJVCxuv5ixR8ZiEk1EBEZwoN8B873DarYVLVI1bPsth1se0Kk/jLopsPCYSK9esKuaRBPqXrU7P1/7maxJWQiCQN9dfdn+YDudngocCpRu9z4WHghpqSTaiFgoNIS4hXIr5ZZ50N7tIezZAeNmNeVn/XlkJvjmgoyZLQTqeNXlSvIVQl1DaXDtJSvWZVGsEqjwmUj6G26i54ac407aHT478hk2Khv0Rr0ZEEaGRLLz4U40Cg2ZEzOp/3t9nC9Fc2IjNB8m8LiKizmnxEoP2vI63nJVBjbUcrWZMvhmZ8tSaUktj1roSnXmfRQQWNZxGQOqDyB8fUtuptwiQhnC5ruVsDlyGiE/H6MAN73lnPY1crGikgs+JnKVks5GLpOjEBQUlRZhKbegyFiMwvgabFqiIsytBjcz75r3Ocw9jBWdVnAu8RxJP33D0r06FjSEr9pK52NVp6o8znr8VlI4vO5ybei6gYENPmZuF2eeRbanS5UuLL6ymFPPT0mvkQFWCgu0lf25MfIGlirLNw8V8Tnx1FlVh6ziLDpV7sSu3rvMXeSVN1Yy5vAYVkasZMSBEezuvZuFlxcSnRotJaJ3/IWhNYfSbG0zHmU+Il+Xz5cNvqRzUGc6bu5IcWmxuTPhae2J1qClpkdNvm78Ne03t2dr9618ffJrEvKle2Ko0Zn9NwPxv/aUhZUzmdAOxt5WUk3jw4ygVLJlerq5t2BP+lnG1B3DovaLEEWRqr9UpY5nHTZ138S/VJmZMGoU7NnD7XY16NXkJc+mpZNbkitpQ97REUnITSCjKKPc5+Ft610egLx6vP3+dg7FHOLlhJfvnISafmY666LXkfiFpMNbdHkR35z5hsKp0mShwWjg4NOD/H77d47EHEFEpHVAa2a1moWzhTNtNrbhee5zPKw9qOJUhaiEKMLcw6jlUYvLyZd58OmDf+24fKgP9T9U/91AA2D7dujbl+cnd1Lr+giqu1VHZ5S+kBw0DuTp8pjSZAqTG0/mUeYj1txew5Z7W8gpyaGRTyOGhQ2jd7Xe2Kjf79f9V6vFuhbYqe2Y0GjCO8FIcn6ymVIhE2R42XhJAOQdYMTLxuvvepGXVbGh+J0A5X3gpGzZn2eQy7bJQeOAk6UTJpOJZznP6F61O762vuXAyZ8Bio3KBkEQeJr1lC7bupBSkMLWHlvpULnD3932eRfnMfnkZHMehsFoMINErV7Lt1Hfsv3Bdha1W4S/vT9avRbVo6d06z2dTSs+5VmQC2RmMnr8ZjAZmfZDS1IsjG91ZzK0GeVm6v6VkpnAJANPa08K9AVo9VrCA8IJdQslKT+JPx79QaBTIHG5cdTxqMOERhP48fyPiIgk5yeTUpiCvdqeAn0BH9f6mL1P9lJcWsyyDsv47eZv3E69TYG+gFktZzHtzDSzlmPTvU3MaT2HIXuHsLPXTp5kPmHWuVnIZXIKDYVmaka/kH5svb+VYOdgHmY+xFIPRSrJQQcgLjeOyo6VicmOIfmLZGSCjOorqpNZlMmcVnOY3GQyyfnJtFzfkmfZEi3io8CP2Hx/M5eGXaK252tb0h0PdtBnVx9sVDYoZArixsWZZya1ei0rbqxgzoU5ZBa/raNxLYC0BXBr5Qxqp3zLik4rWBO9hujUaFRyVbnO3qDqg6jsWJnvzn6HQqbAZDKSPLeUhQ1hbhPwsvXCRmVDSmEKkaGRfNv8W9wXuLO5+2YiQyPNNAiQBsY3Um6Y3b0cSgS+vK0mJEnP3IYmrviArVHBBGVzpn53imueUD8ZElyVNBxkoFKVRlwcfhHF9woqaDxweZLMJV/J1aqCfQWS85NJyEuggXcDAC4mXQRgY7eNtKvYjulnprPi5gpcrVyZJg9nyNfbEOrV59OPveg07w86PRGpNxIeuUpCWTu1HSs7r+TU81PMuzQPX1tfWibK2GAXL4nQX5lcdQxoy/2cJzhqHHmQ8cBsRbx3m4BrkUC7SBM+hTKeOJowymBkrZG08G9B/z39aZdswaHVxRgFqPkJPHyVVelu7Y6jxpEN3TbQaE0jPqn9CeMajCN8fTglpSWUmkrJKs4yg+3uVbuz9/Feghwqs+f7J+QH+lG/bQLWKmsK9YVYmOQUy4z4CvYYra14UfDiL11zVkorxtcfT33v+gQ4BNBpcydaV2zN8WfHcSoRaHohiTp5VnwSrqVNLET5g71exvrdJqpkQsh4FdkKPXJBThPfJnSs3JGOlTviYe3BsN0D2f/8CK46BemqUux0UKCWBOB+dn6UGEpIK3otYHa1ciXcP5z4vHiuJF8hIjCCX+Oq4fO3ucxpAlNaUa5DUgaeKthX4Hnuc/Ox6lipIwcHHGbx8GAutq3Krt4S7XDhpk+ZELucxjk23LcsJE8tYqu25fN6n9MnpA/VXKpx9cVV+u7qS54uj0CnQMkNqfMqc5bQ9DPTWRu9lsTxibTd1JaYrBiujLhCn119uJh4kVoetbgw7AJ9d/Xlj8d/EOIawteNv2bQ3kGYRBOja49m472N6Ep1aBQaPG08eZ7znB5Ve/Ag4wFp2jQKdAXs7buXWedmcT7xPDJBxqAaA5kSOJxTV7cxOuEXRuRUYMFJOXPcY5jTRDJjmP7Ama9ULbgb4kwjwwpOdNxK6zp93ktv/YclirB+PYaxn5KsLMZ55yFsWnf8u/9SZCgiMS/RDEDMgvVXf78seFkuU8RB40Alx0pvOWftfLiTq8lXefKZFJg57fQ0Nt7dSML4hLfeMykviQarG5BdnC3ZkruGMrzmcO6l32P17dXIBBlOFk5kFGXwUdBH7H+yn5QJKW87Hn6oD/V/WB+ARmkpVK4MDRtyetYI2m1qx8DQgagUKlbeXEmYWxgPMh4Q4BDAik4raBnQkpLSEvY93sfa6LUcjz2OhdKCnsE9GRY2jGZ+zf5lT+6eO3qSr8vn+MDj71xuMBpIyk96ZzckPjeelMIU87oKmQJfO993dkMC7AP+ZQ4qSLOrxaXF7wUn2cXZpBSmsOXeFgIcAtAoNOZl70ouV8gUZgBir7EnLieONG0aTXyb0K5iO5wtnd8CJ1HxUQzeO5hpTaeZg/LerO33t9N3d1+WdVjGmHpvKDpTUsDTEw4cgPBwyXI2NhYuX4aKFcu9xqnnpxh9aDTxufFMbjyZrxt/TfiGcHRGHWPrjuXE8xOciT9DRlEGMkGGSqYqNwupkqvoVOjFoL1x9Oonx8/Bn9TCVAwmA8EuwShkClIKUnhR8KIcb/yvVplGp0xMqFFokAtyig3FVHaqTEphCl42XmZBeEJuAhqFxmzVaau2ZW74XEYfGf36NV8JD52KBUSVkmy53uwg5WPrg/8Sf/b13Ud4QDhBy4JIKUhhRK0R/Nb5N47EHKHHjh7ojDpMoon6XvXNgO3Wx7fK0Ry6bevG3id7CXYOZnLjyVx9cZUrL65wJ/UORtGIpcISf3t/EvISyoM8ETJ+gtShvQlz3Y1GocHZ0pnhNYczPWq6eea3TAwcYB9AXG6cecBWLwmuroaPxjpxwDnLfP5VdqzMwzEPqfZLNaq6VKW5X3NOPD/BoZhDmERJlN85sDMt/VuSW5LL/MvzyS3JZXjlvtht3kVYcilL68MNL3ArgDknoUueO7WG6IgnB7kgp13FdpIOQ4SquQp+/fwYA/cNJjIkktW3V5Nfko9BNPBFgy9YdGUR3ap0Y/+T/WgUGhQyBXm6PFZFrMJabc0vC/txfLOM894mTs0cxicTt6EvKaLRKAVFFgpkMpmZ7qaUKRlTdwznDi/njoMOjQFKlCDKBOLHJ5BZlEmdVXVeT2KYwCcfQlJh7H0LuncpplgBCOBr60szv2YURB1j40pphrdrpAyhZUuz65gMGXPbzGXlzZXYqe24OOwiaoWahNwEwjeEU6QvIlWbWu5cHlt3LM9ynlFx81EWHwO/8fDS9rUAetERaJoAdUZJ2+Fk4YSrlSuPMh+9dV2UaWLKjBHe7HTalyrJVRjo8BQavZSxpZpIoq1IjRS45QklKrixEh67KzgxvT+dKneiTcU2kluTyQSnT8PatYh7drM0TM/EtmCh0JBvKn5nPsmMFjOo51mPpdeWcjz2uLnTUtW5Ki8KXjD2goFZh4qZ2ULGNy1MWCgsKC4tNjtnlZW1yppifTFGjISkQYRFDS6F2nF2yFnpshBFPh7txQbXVI7ttSYuxIthQY/RKDSUlJbgYulCVnEWIa4h7O2zF187X6l7cXMls8JnMaXJFIbvH87DjIdcGXGF5znPCfk1hI9rf8ys8FnUdmkd8AAAIABJREFUXFmTmOwYarjV4FHmIz6r91k5Uf28NvMoMZQwPWo6U5tMpXe13nTY3AGTaCJNm2amzZVNCpVlP/QL6UdUfBRp2jT6hvSlmks1vjnzDX2q9SGrMJ2bL27QVRHCxqLLOOrlVMowkmBjIn4xyJxdyqed16ghuUop/3ru1MNrh8juGUHjZAFh8mSYMeMtG9y/WgajgeT8ZGJzYvlo60c08G5gvocl5CaQmJdY7vvPTm2Hn70feSV5FBmKmNR4UjlQ4mLpgiAIrLyxktGHRrOh2wb+ePwH+5/sRyFT0NS3KRcSL0jniyDD2hSCn3EYPhZ1CfFyYkALT0L9/v0J0A/1of7d+gA0AJYuhS+/hNhY1uWcYei+ocxpNQdXK1dGHxpNJcdKWCotuf7yOoNrDGZ+2/lmcXhSXhIb7mxgbfRaYnMkTvTQsKEMrjEYHzuff2ozRh0YxY2UG9z8+Oa/tBvFhmIS8xLf0oeUgZLMotczxBqFBj87P7M+pFxXxCEAJwunfzvEqOPmjmgN2nJfhoX6wn9I7cosyuRO2h2S85NRy9WUmkrfKfKVCTJcrVzf0p6IiGy6u4kw9zAmNZ5Unu4lt8bS2gFWr5YyMk6dgqgoqFPH/LoZ2gwmHJ/AxrsbaerblBWdVmAUjfx08Sc23ttoHsy+yQ+v4lyFRt6NeJb9jHOJ5xhYfSC/dvoV68Yt6dokmUueRowmIy5WLhzuf5gKDhXY/XA3fXf3pUfVHmzqvunVrLuJnjt7cuTZEUpKS3C3dmd+m/ksubqE6y+vm/NdFrVbhM6oY8v9LdxJvYPBZKCOZx1zgnSISwj3M+5Twb4CSrmSfF1+OSD6j0pmgv734FQ1S0R7O7Pm5XHmY3NYX3J+MmHuYdxMuUmoaygPMh5Q1VkKm3yU+UhKwdYXYhJNNPRpyOzw2TzLfsaDjAdsuLOh3PYEOQXR0KchDbwa0MC7AdVcq6GQKTAYDfx28zemnJpiNlo4sVFAqxDp2k/quBwfeJxGqxsRHhCOn50f8y7NA8DV0pUCvUSFVMvU6Ew6rJRWpGQOwfrnFTSeWYHLJTHltiEpP4kig5St0NinMXqjnlspt7BUWJI2Mc3cJUwrTMN7kTdyQdIzqUphcDQ0SoLFDeGOO/jnQONE2FwDOlXqxNHYoxJtxwSDdVWIGDSTnjt7srT9Uj4/+jl1Pety/eV1JjeazIIrC/Cz9SM2NxaVXMXBfgdpu6ktm7tvJio+ilW3VtEr3YWta/KRt2jJtA4aJk7ay5kKMrr1NtElqAv7nu5Do9DQrkI7TsSeQF1QRL4GfPIg3kECWP1D+1PPsx5jjkhg3F5tz5eHc9lXVdoHdSlolSAIkhFEkaGI2i8Fzq8xcc0TpoTDgh8uM+rAKO6mSy5zlkpL2ldqz4nYE9wedZuKjq8BfEJuAkHLJNOD4TWHs+LminLnnU0JvFgIixrAt+Gvn2/zDA5tgaAfXPH2CGJOqzl02daFzOLMctejKIq8HJ/EnP0TWfx8C4IIK09asKNCMffdwM1owSMbHTZGOVkKw1s6C0tBTad7Op44AzWq832L76llcMJr5zFk6zdAYiJUqSIlTw8cyE3xJRFbI0gtLA+cyurjWh+TmJfI0dij9Avpx5QmU1hzew3Lrks8+lJTKRMvwLyT8GM7S6Y2lMDh1CZTaV2hNeEbwlHJVeb0c0tBhc6oxyiAvYU9zz9/joOFAwD6s6dpvb4VT3wsuL6kmDNfdGMoe6nkWImY7BjUcjU6o44gpyB6BfeiV3Av9jzaw4xzMxhbdyyPMx9jp7Ezd0kWXFrAxBMTuTT8EibRROM1UvDd/DbzeZT5iNW3JQOJmS1n8lWjr3CcJ2nesidlSwYEufG039Se2JxYSk2lqOVqPqnzCYvbLwag9YbWFJcWc2rQKdbcXsOcC3NIyk+inlc9bry4gQmTOYQuPjeeqaemsvX+VhxVdqx0H0mPBEuEO5L7FfHx0gFXqSA4+G0A4vRuJ6ZiQzE2My25kt2dOiv2Q2ioZIMbHPzO9f9q9d7Zm4S8hHKp4ybRRGphKkP3DSUpL8msA/3j8R8U6KR725uTKhYKC3ztfPG08eRcwjnCA8IZVGMQNiobriRfYdejXTzLfoaFwgKlobKUGo+AgByZIDV7Fg2r+gFsfKj/8/oANAAKC8HXV7I1XbSIb05/w8zzM9neczsVHSrSY0cPCvWFDKkxhDXRaxAEgflt5jMkbIh5MC6KIhcSL7Ameg07H+ykyFBEm4ptGBo2lK5Vuv4lN6Wpp6ay5d4W4sfH/4/sZoGugPjc+PKdkLzXFK03xXDWKuvXnZA3AEjZ478iwlt9azUjD4wkZUIKbtZu//T27n64m8F7B1PJsRIbu23EWmVNdGo0Q/YNwcPag9F1RpOnyysHUjK0GUSnRmMSTYiI5VrZZaUxgKNRiVOeAUf/bijF3og6N6ysC8DhFCdf/o4gCLTwa0FuSS530u+Uo+TIBTlh7mG0qdCGxr6NaeTTiJSCFHrv6k1cThzf1l9D1osw4pLzsY67zB7vNRTJH9LYpzF7+uzB0cKRnQ920m93P3pX682GbhvMwsLUwlQG7BnAqTjJh/3Jp09YcWuFWThbFjx2cdhFqjpXxXuRN6IoBY1FhkSy7cE2ZIKMqU2m8u3Zb8malAUitN7YmsvJlwHMs/tKmZIG3g24mHSx3HGq5V6LYb5d+KTLD5z7pD3ne9Q109H2PdlHob6QnJIcgpyCcLRw5G7aXbQGrRRsKdegNWjfCQz/XtmobPCw8Xi3AYDCEpVcxe+3f0dv1DP7JAy4C75fgkauoaZHTe6l3WNX7104aBxotbEVhfpC3KzcSNdKPP+ymWYBgXC/Fozbm8oxZQK/heoxiK/dkQQETJg4P+Q8TfyacCL2BG03tQXg7JCzNPNrZt7myN2R7H24B9sSkUyFNPhzltsQ4z2P9b+PYVWYiQeuki2uKECgcyBx2c9xyStF4+rB8xIJaDX3a87ZhLPU9qjN3bS7KOVKigxFtK7Qmu9bfM+og6PIKc4huSCZ6q7VzQP6mLExVIpOgIgInob5MtU3hl07RL5uBXObSufptRHXcLV2xW+xHyaTCUGEoGyBZy5ySsXymiZrlTVCfiEvFsLpKhq6dSsxZ30MrjGYK8lXUD58wuXfwdoAlcbJeOmiZkn7JXx88GNztkFD74ZcTr7M9p7b6V2tt3T8X9l3zzo/i99u/mbunL2rlh6G3g/A7wv4qsXfGFVnFGMPjSFw7QEWNIaqrsE8zHgISJMNd0beJvnyMbrdnoReDnv3WtD5TjHnKipo29+IThARBLAWNBSIrzuOAgKOFo6Mqz8Od2t3Tsad5Nb1/XinlXA94JXQ/1WpSyFAtKeiZzAVA2pTwaEiqdpU1t1eV64786ZjWNnAXi7I+bXjr4ysPZIFlxcw6cQkulXtxg8tf6DJmibklOQw+4oVU45qmdQafmoiBSq2r9Se3Y92l7uWOjs24mb8JXIsoFgpdU0jQyKZ3Wo2HjYeZHRoTr3Qy9gJFsyMktEzogi9ycC6LuvoG9qXk89PsuPBDvY92UduSS5BTkFUdKjIkWdHsFJaMThssFlMXGoqpeHqhuQW52IwGXhZ8BIrlRX5unxMogm1XE2AQwAlpSX0rNqT+Zfn813z7/i2xWtb8PFHx7Pk6hLzcbFQWJD6VSq2alt2PthJ7129uTf6HiGuIeiNejbe2cg3Z74xT0LU96rPyYEn0Sg1bLm3hcF7B9PEtwkXEi9Qx7MOP7T4gWb+zRDzchHv3UO8f0/6fe8u4qNHiDqJ4mvy8sBYrRqmkGBMwVWlHz9fjAI0XduU9hXbM90mArfRX6FMTCZ12hdkDeuLSZAAQpm2DhFMmDCZTJgwIYoiRpPR/NgkSr+PxR5j0ZVFbOi6AVuNrXmZSTQx5+IcjCYjkxtPxiSamHV+FlYqKz6t8yn5unwyizLJKMogqyiLzKJMsoqzeJr1lJLSkrc6ZlZKK0REKhbPxpF6CLymS8sEqFPRjrmDg955nX2oD/W/VR+ARllNmwaLF0NSEqK9PQP+GMDuh7s5Pfg0gU6BRO6O5FTcKaY2mUp8bjyb7m2iuV9zVkSsoIpzlXIvVaArYOfDnayNXsuFxAvYa+yJDIlkaM2h1Pao/d5OwYJLC/ju7HcUTCl45/L/yRJFkdyS3Pd2Q+Jy4srRehw0Du/Vh/jZ+WGlsiJDm4H7AneWd1rOx7U//pe2617aPbps60KBvoDVnVfz1YmvEASBy8Mv42jhWG5dURTpt7sfh2IOcX3kdQKdAskryXub2vX5SLKEYpLaD+V5Ydl2yRCRko+j5aPJF96dAeKgccDH1gcnSyfJsUvtwMvClxyPPS65I1WdyfnLVQEBkwiiaEQURFwr/8GmyJmoFWp2PNhB5O5I+ob0ZV3XdWaQsf/JfobvH24OGrvy4gpuVm7kluQyu9VsFl5eyIsCKS12YqOJ2KptmXxiMkaMDKw+kD8e/4Gt2pYmvk1IK0zDRm3D35r+jbYb21KgLzDTMQQEAhwCSMhJMAeQyZAxoeEEfrr8E0qZklODTtF0ynLEmzekL2ykwfr0M9P58cKPtPBrweH+h1l4eSHTzkzDzcqNktISIkMieZD5gHMJ58zHrCyxGSStw/Oc5zzOeszwsOEsuLKAas7VeJD5gLqedQl2DkZbqqXYIGltikuLzY/jcuKkDIunUvJ0vRGQbfXnT+j99eYgEMBZCxUKFVxzkwbcCkFBgEMAMdkxyJBR27M2jbwb8euNX5EJMhp6N2RA9QGoFWostHqO7JnLauunjHpqS0DzLnydshGQBuzVXUKxP32ZaA+Ju1+gBu98gUIrBXJdKasH7eKXWyuIio96PYh5o7xsvPixlaTRydBmMO30NEqMJVgqLWlboS17n+xlZvhMHNQOeF65T8evVnKkgolt1WW0emZiYUPwb9iBMPcwFl9dRLGhBM8CiY4UmAnN2owgtyTXbC1cVmOuIFGXvgAbF29idC8x8WpQKdrR+1Q6MhHO+kNUBSmYTUTEWmVt1kiVOSV52XiRXZJNTnEOOSU55ShMb9rR/plyFJQBj3+B4b3VJEU0o9RUyvOc5yTkJoAAdgprbOSWJOvScderqJJqRDQaueItaSQMcnCSWSEqlWTrc986D8q6tZlFmVR1ropGoUEURURMjNmZSNerubQYJIU8JtlL+StWSiuUciUGo4GS0pK3Pi8ZMmSC7C3w9maV7bO1yhorpRUZRRlmWp6DxoGxhzKYFmXii3ZSV6ysyo5PWd6SpU5Eqy6/rOz8VolyBL2BYhXwKuXbJEjrleUzSPsqDXyNJuNb+6KUKctZpJct//PnJBNk5oF3uedeVdn7/P9UGsP/Y++so6M49Pb/mVnLZuNKEhKS4AGCB3eXFoKU4sWKFajQAlUKt6VGC/RixSnQ4sULBCvuwSEQd3dbm98fQwZCAre39973vu/58ZzDAXZmZ2dmZ2e+9jwPfH0Upl+CI4EweUAwBpux2FGdAiKJVa197rPhv4lW5n3o8Kjwupu9hu0fNP4v7NFLvMQTvEw0ypCaKnc15s6FOXMoNZfS9eeu3M+4z4VxF/B38ueTE5+w4MwCBtYdyKiGo3jvyHvE5sQyp+0c5rSbU2nXIiIzgvXh69lwYwNJ+Uk08GjAmEZjGBE8AneDe7l1y4x8Sj8uLaco9b8BkiSRVphWXq73Ka5IbG6s0t4HmfwY4BRAdHY0Bq2B2W1nK8mIn6MfOnUlzl7PQWZRJoO2DeJk7EnsNHZcn3idGq41Kqy35OISZvw+g22DtjG43uDKN7Z+vTz20KwZs97aVKl5YxaXuKN+F7VKjVpUIyJSaCpEEAS0Ku2TB7VVDhCffpg2MC+qUFlStql5V3kwCwioRbXsMSDI1UOrZEVERKsqz/Uo428YLcZyD3152xVlPsv+XdnM+Ev8D0OSA/t+D2BnEES5yCNVCfZgrlwd8y+hx0PY8yscqAlDBj9RP6oMVXMhwYGKTt8S3F0Ktz3gtdcqLgOwMUOJuvx7HaRgqln+vcHYkY1gXwqtJvxLm3khBAQEQe5iIVnBKnFyHaTYwbDXRKwCWF5glioiKqN0kiS9MMl4Gk9zSEREHG0cMVqMFBoLWXhSy7unjEztDctCngTuTyfIohVUogoTFpxtnFGJKrKLs5/I/FrA/DjedywBB3tXEsxZGDQGeexRKH/skiRRYCogIS9B+QyNqMFWY0teaZ48wmg1KYUKtSDLQxcYC6jtWpvUwlSyS7JxtnGmnns9BEEguSCZR1mPqOZYjUBnWVDhfsZ9pVPR2qc1DjYORGRGEJcXR9eAroiiyIWECxSZiuhUrRNatZaIzIhyPJxaLrVoXKWxct7j8+IJTwkn35hPoFMgTb2aYq+zV/ykyo5T5PH/BQGxpBQhIwMxPRMhPZ0/pBge6Ut486p8WQuOjtQssaV+hBcfDv4RSRCRBBGwIggQ1PA0NvaplJpLMVlMlFpKFUW1UnOp8vfV5KuoRTWedp4Um+SCSbG5+F8SFhERsdPaYcUqf/7jZL2y587LjsZL/G/By0TjaUyYAPv3y/OeOh2ZRZm0WtMKURA5N+4cLnoXdt/bzejfRuPj4MOvA39l572dfHXmK/yd/FnRdwWdAzpXummL1cKRyCOsC1/Hngd7sEpWXqn1CmMajaFXzV6oRTV7H+yVVZf+D6pGWCUrSflJFRKQ03GneZT1qFzQKyDgbe/9XOneZzXKrZKV4TuHs/3udiyShXGNx7G099Jyycr5+PO0X9+eaSHT+L7H95Xv5O+/Q9++4OUFISEMbvExGfkVyemlpHHLdqhihlhgLCC3NBc3WzfUghoJCaPFSF5pHhbJgp3GDq1Ki1WyElS0Ga3kVuk2z6tf+RfP8v883B9PjGXYPT9pefohbraaUQkqBATMkhm9Wq889K2SVSEoq0U1Bo0Bi2ShwFiAo9YRo9VIsbkYe609Bo1BqarmluaWlzCWYO+vAjsbqNhQ36yMqCj780znogxeBi/yjHno1XoQZONF71xolgR768rrlJFxNaKGLgFdiM6JJiIzQjn2AVE6fFNLiajtxiGXDFxsXMg35tPcuznZJdlKUPT0PqkFNU6Cnmpx+XSOhq0NIN4RamZCrAOU/pM1Ba2oxWg14ufgh73OHqtkJSIzgh4PLOz+FX6vCQ3TRNJsrHQYC8VqGGPfjlOaRKKyozAYwbNIIMpJQoUKO60ducZcejyC3zdBxzfgbIBaDuYkKLWW8sVRmdexqhlorCImUT6/DlJwudlwCTnBHdwti/a1/WQZ4wd7WH1tNfF58TjpnDBZn3QFyuRQn5ZzDXQKoN6FaPb+Ch3HivxR1YokQI9okeaJEsOuSQRNh0YewXQK7MKu+7vK+dF4GjxRi2oS8xNx17uTXpxONcdqxOXG0admHw5HHsZitbDGayKjd0chHDkKOh307w87dsB338H06YAsBztk5xAuJV5Stt81oCvbX9suE8SRk4w+W/rw+6PfARjXeBxrrq9BQqK2a22is6MxWo2VGkqWqTPF5cQR4BzAyAYj8Jr3PeNP5DJqSENu1R6H3hqIxiaDcNP3+Nnmc7soGkGQf48CAh2qdaC1b2suJ13maNRRBGD6eThfy4ZLriUsPQB/D/XhnjGRPjX7MKTekHLjQFbJSkJeAvP/mM/QoKHsfbi3XNfGXmuv8KPKvEperf0qu+7tIiYnBiWEEGBg3YFkF2cTFh1GkHsQId4h8qjR4+7JubhzxObFIgoi3QK7YbKYOB5znAYeDcgrzSMuN47GVRpjr7NX9i23JJe76XeV36Bercfd1h1bjS1W5O3mluYqyZZBY8CgNSjjSmVdGYsk8+SePm4FErgXgksx2BlBZwG1yyIEXQiCULFodEv9doXfpSjIRSKVoEIQBCUReF7Bx05rh5POiaT8JKq7VKeFTwu87b3xtvfGw+CBu8EdN72bLKaRfI1FFxcRlR1V7vPcbN1IK0zDQQqmsWU5PPU7VAkqFo+vS32/lxyNl/jv4mWi8TTu35dVK9asgbFjAXiU9YiWq2Vy6pERR9CpdTzIeEDo1lDi8+LZ0H8Ddd3qMnH/RE7HnWZk8EgWdl9YoVvxNDKLMtlyawvrwtdxPeU6ngZPRjUcRUPPhozYPYLbk2+/2Gn6/xAS8xKp+kNV1r66lo7+HSvthkTnRJOUn6S8RyWo8HX0VfghZQTr+Z3mY6+1Z1bYLJp4NWHnazvxsvcirTCNJiub4O/kz4nRJ9CoKlEduXpVNuPr3BkMBkhOZtaYlVyOzEGSnpRnJSzY2MdxT/sBcblxSmepnns91vVbRwOPBqy6tooZv8+gjlsdtg3eVs5PZdaGBxW6JKLVQqA6iTXiYEY3Gs3qV1YD8NWZr5h7ai7BnsEs7LaQXfd3sezyMlxtXUkrTGNCkwnkluSy/e52RZDgRuoN7DR2FJgqN2h8GlqVFn8Hf5ILk5VAwU3vRodqHbiWco3onGhmtJhBTZeazDwyk141e+Fl58WyK8to79eeS0mX0BSVcHU5tB4HmXYyIbgsCOlevTvBHsHKA9wiWbibfpcTMScI8Q7havJVGlVpRG232lisFtKL0hVTPpWgQhREgtyDeJD5QHEjjsqOIrkgmWqO1bDV2BKdE02puRRPO3k0K7ckFwmJsC1qTnmbmd+RSgO4Pw0JPj0JS0Mg8zljWNUzIdIV7Eqh33245Qk3/0IdQLDCkgOwrAW0j4X9teXqeVAaRDsDdnbo1Lpy0q9qQY0gCErlUi2olcq5i40LFkkOssqqza/ch53b4FgAdIiBLcEw/lUqdC8G3IFdj28xajNYVLBzK9TNgLpTHydrWKmSBykOsH43dI2E+lMg5ylrhsoqqWBFbRdDgt3nPMp6hMVqQRTk0aKy4/B18KWeRz3Oxp3FTm0gtyiTIkyKF4VogYQfQKOxoeN4FRGGYkxY0aCifpKF697lj0cjapAkieY+zeVRKCQeZj5UpHA99B6kFafhbTWQJBbSJBmueUH7eBVNTG6cC3aiVkIJPy+K5dVZftzxUpNVnEVuaW65AknZv7WiFluNLRbJQqGpUAlaVY+D0r98PYJ8TZ4P5mzT5VhEAQTVk7FOcTJd791kV1DF7/TZbVTPgkQHebUxd4I5Xb/yrtPT3CSNqCk3yqcRNJikJ8WYsnNQxVAFvVpPfH48ZqsZB60DJqsJk9WE2WrGVe9KoHOg3BEW5M6PKIgICJyLP0eppRS1qKaTfyfCU8IVdbqGng2p615XKVZISJgtZvZG7KXUXIpWrUUn6sg15mKnscPHwQcHnYMy0pZWlEZ2cbb8HT2+d5uspkoLD5WhbB+tkpWW5r2VjiM9r2hUpoTmbnDHw+ABEuy4t4PpIdNp7dtaeb3vlr4MqTeEr7t9TYm5BP0Xejb038CohqMASCtM41jUMY5EHuHgo4MKz6wMdd3qMrnZZL45943ShZrZaia7w69jm/8KfvrmpBjDqVc7hQ1D5/2p436Jl/hP4mWi8Sz69YOHD+H2bRDl/vPZuLN02diFwfUGs7H/RgRBIL80n7F7x7Lj7g5mtZnFvE7z2HRzE+8ffR+Ab7t9y5hGY/6hclN4Sjjrrq9j863NZBbLcpvvtXqPT9p/8qddT/+3o9WaVlSxq8LuIbufu06JuURWzHomAbmceJnonOhy65Y9DNWiml41enEr7RYZRRlsHrCZEJ8Q3Gzdyp/3qCho1QoCAmR5ytmz4cQJbu0/x7TVtwGUKpCExD1hCsfeXIfGRs+so7PYF7EPG7UNxeZiRS6yS0AX1vZbW8F991ZsPjPW3MUqWWX1D6v8wF68cSIFgUWE7LlMrJTDyN0jOZ9wnjlt5zCs/jDG7xvPhYQLvN/6fTztPJlzbA55s/PQqXXMPTmXv/3xN06POU2PTT0Y32S8Qg7Xq/UEuQVxPeV6uVlpXwdfSswl5UymnjVNexbPdp2cbZwpNBZgKDDipXcjWlNELdda3Ei9QTXHaoRPCsdB51DhGn/n93f4++W/E+ITAsDZsbInRI9NPYjPjad3zd4surCIFlVbcC7+HG1823Ap8RJx78ThafBkyoEprLi6AluNLT72Pux8bSdB7kHMPDqTJReXYJWsaKxgejweMrDuQPrV7keAUwADtg0gsziz0sDCzdYNO40dMbkxHB91nJquNXl9x+vcSr1JiwdFhPlbUIkqnPUuynl7N7ce3y65R/23RApc7cnTyCMLJZYSWvi0oEdgDxacXYDJapKlUAO78c7hd5SRDZ1KR32P+iQXJJObkUCeVj6/Y67C8QDokmHggHchmXpolAI53s48ErKVef6+NfsS4BzA/Yz7HI06Wq66bNDIppZVDFWo6lhVURzrfw+2b4dL3tA6AWaE6lnVVJbfLEtSPjwFX3YAtVXALErMC4MPz8LU3rCyuXy+PArgt1+g9QTYvAMWtIPbz2g6PG82/EUdPJUFWiWArQmOVoeeEXDoca4uWkESZfL8zDMw/wT4vgsZzySBghVU1j85fiYTjHAshVwbOQB/5QFsbgDpTxV7h92EAXdh8GvyPvw38aIRzKer6WXiECCLOOg1eu6m3yW7JFvx7vGQmlDX/COioEJCQHrMy7qumoRZ80iR791wYwMjgkew6eYm5naYy9rra4nLk03lxjceT1J+EocfHVZ4XYHOgURnRytJ5LSQaXx/4Xu87Ly4Pfk2xeZi8krzKvw5Fn2Mzbc2AyhmmDdTb+Koc8TP0a/cui9K2MruVypBha3GFp1aVigsNhVXuMeJiBi0BnQqHWqVPA5rkSyUmEvIN+ZXer9oWboYnap5hSTa0z2fgV1ylMTB3dYdF71LBd8qq2TFe6E3I4NH8m33b5XXPb/zZFrIND5u/zFJ+Un4fO/D3A5zZWn7qCPcTpOfSWUFFBe9C6F1QhlSbwgLzy/kRsoNUgvOWGL7AAAgAElEQVRTkZBwsXHh9JjTpBel03FDRzmZ/9jEV2e/4vNTnxMzIwYve6/nnsOXeIn/CbxMNJ7FmTPQrp3ss9C3r/Lyr7d/ZejOoXzW4TPmdpwLyC3zhecXMitsFp38O/HLwF8AmHl0JhtvbKR9tfas6LOCuu51/+HHlppL2XRrE+P3jkdAwEZtw8CggYxpNIaO/h3/sufF/wZ8e/ZbPj35Kenvp2OntfvT7zsaeZTeW3ozvvF4vun2TTnp3ttpt9lxb4fiIfE0DBqDQlSvjycfzNqDWtQQvX8TfjWa4PT1Yli5ksuX99B11XjaGD4hN19PFWcIy51DHrfQSAK7h+xm1P6xvBb0GqMajmLQ9kFkFGXgZeeljGo08WpC98Du9KjRg9a+rSk2FdN4cX9qMBFHoTYeybcZvvdbHvV0ZOSmmxTYaQl9tYjIOh5s6L+Bm6k3+eDoB3jbe7Oh/wba+LVhxK4RPMp6xIXxFwA5QGyztg05JTn4OvgSlRNFQm4CZsn8pPL9eKzo6UAUoFXVVnTw68APF38gekY0DzIecDruNDvv7eRG6g1lPb1aj0Wy0M6vHTdT5UpnbbfapBSkEJn5COk5+bJKUFVwineyceJEzAnSCtMwWoys6LOCQlMh7x15j2W9l/F6/dfps6UPcblxTA2ZytwTczFZTUxpPoVFPRfx8fGP+frs1wCMaTSGAmMBx6KPlfuuGyfBz7uh3Rg4MuMyNmobum7sirPeme+7f0/fX/pWIKPq1XpMFhOCIDC/03xmtZ1FTkkObda2IT0vhfTSLIIz1dx0MaOXRGplwA0PK2PEpjg1ac3625sUo8576ffIL83HLMnnvMRcQvr76TjaODJs5zB+uf2Lsv+bb25Gkqx8+buZ3xqoOestB/saM7S0q0NiTixt0/QcdMsiTwshiVClYRtibY0UGAu4Ofkmx6KO0XNzT2JnxHIl6QoDtw9UjsvH3oe0wjSlW7C/2ofcWv0lM89Blo8zjknZtB8Ll6o++d5W7oFJr8pqSqv2govembY3c/B6R6JIB86FcHSnngypmJ6joUY6PHqmSas1Q20qCYglC0bTJa7YvINJlMd7gnRViSpJplqhhtCbpdxws3KoppxQaBAxYaWuax0eZUdispqwUdtgm1dCwvcwrwN81U4uMIiCKFfDn3LhLhtT06q08sjec+Sw/1WoRbXiCl5qLi3Hl/I0eKJTy1yqsk6IKIjYaewqqLDZqm0pNhdXOk6jElRYrBZaWSpP4KxCJmfoTZeAzhyNk7uDTxPry6BX63EsslIoGPEXfqg0aaldVSSg3gkOPDzAmbgzyrJuAd2QBImwqDDl+EY3Gk1Nl5osOL2AEksJngZP8krzlHtN2X3oz/DC9Go9pZZSdCpdOYGRGi416BLQBQlZycloMVJsKuZcwjkyijKoYqhCelF6Ba+hpz9bJarKiQ48DScbJ6raV8XTzhN3gzuueleyirO4lnyNB5kP0Kl0jG44minNp6BCoOPSUTSQliOKKqwSimTsonF/fhxp7J6xXEi4wN2pd5XXDF8YmNB0Aq56V/Y82MPV5KvKeSnrCAU6BTIoaBChdUMJ8QlBFESuJ1+ny8YuZJfIHZvhDYazrt86NCoNfbf05cDDAzTybMT1SdfJKcnB7wc/JjebzNfdvv5T+/oSL/GfwstE41lIklz91ung1Klyi748/SUfHf+oXJsT4Hj0cYbsGIJerWfXkF00827G8ejjTNo/iZicGGa3nc2H7T78hxK3ZqsZzXwN33T9BotkYV34OiIyI/B38ueNhm8wutFo/J38/xNH/R9FZFYkNX6swfbB2xkUNOhPved22m3arG1DG9827B26txxnowy77u5SAq5JTScxtvFYEvISlGQkOfURn35+iioZxbQcB9GPRapmXrXhy4OlVP+2KrmlufSo3oMdd3dwecJlhu8aTkTmA6THzsmiqOKzDp/xt9N/o4FHA1ny2KU6KQUpHI08ypGoIxyJPEJaYRoGjQF3gztJ+UmEjQzjYeZDPtoyjuilagqnTeKzalEM/+ogIUkCGe9PYWSdexyNPc6UZlP4pts3GLRy2bbmjzXpXaM3i3stVo71QcYDGq9sjK+DLxFZEZWes6cf8i18WjC3w1zSitL44OgHMgnRKAc8dlo7arjUIDwlnGH1h7Hl9hbebfku31/4nrzZeay5vobZYbPJmpVFfmk+tRYFkm8uQhRENg74GbPFzOg9o/mi8xc42zhX6iCfXphOZHbkc0cWNKIGs9WMQWugpktNbqXdkv//uEpf5tkA4O/kT79a/ahiX4U5x+YA0E+oy2+f3aPrSOg9eSFfnP4CP0c/9g/dT6/NvRAFkbCRYfTY1INrKdeUz/W28yapIImmXk258qbcAYjNiSVkdQhphWnYl8D6I3oGvlKMjRle8evGb6knaVSlEZeTLitBXZkKURvfNhyPOk6xpZgu/l1Y1ncZ4cnhDNk5BICvOn/F7OOzAVi9R6DKum2MPjxJHrkpysUkyBeaTqXD3iTinydwx7YIs0omjWfooW6d1vja+7L17lYmNZ3E0aijRGZHolfrMVvNFYjI7oWQbguexSL+mVaKNXL354GbXOEGcC6Sq/u2JijRCghWCdMLCOTPQ2UcDVm5bRJ5wi2Ex08XUZLVj2ytKopVVqyPr1Nve29S8lNAABe9C1lFWeU6c6v3yNyM2SsHYxZlV3kJiRYJUK1Yx+/1dOQZZVnu0DqhdLCpjfbCFTQXLrKsVj5Zjhq6OTdlrfGi8pmiINKnZh8+avcRhaZCll9Zzp7bO7m8QmJFcwjv35ItA7fgauuKRtSgUWmUufuwqDAm7JtASn4KalGNRbIoSlvNvJsRnxdPakEqPvY+pBelV6isC8iCEu382nE+4TyFpsLyicLj7ksDa+UdjVyukJk/nXjnJ9uc13EeN1JvsD9iPxMaTyCpIInIrEhyM+KxTcnC0eX5XacH9qMBKi3YPAudSoed1o7M4kyFB6URNTTzbsalxEtKMqVVaTFZTMxsNZNXa7+Ko40j9lp7zJKZnJIcEvISWHZpGSdiT6BX6ck3/TWVRVEQqe5cHX8nf1SiioeZD4nMjsRF78LAugN5vd7rVHWsSmpBKgvOLODQo0OE+IQwq80s7mfcZ8WVFcTnxdOqaitySnIIcg9ix2s7ZFnfb2pRkBDNz12OsT3Ph6jUIgI9bRnZyfuf4jzsvLuTQdsHcXTkUe5n3OdI5BH2RewDZH6OjdqGnBJZGa2pV1P61+lPaJ1QgtyDlE5xibmEaQensfr6amW7oXVC2TVkFwD30u8RtEz2/fiu23e81/o9AGaHzWbZ5WXEvROn8Ile4iX+G3iZaFSGnTth0CC4eBFCQpSXJUliwr4JbLyxkSMjj9DRv6OyLD43nkHbB3Ej5QZLey9lXJNxlJhLWHB6AQvOLKCaUzWW91lO18CuL/xo56+dmd1mNrPazkKSJM7Fn2Nd+Dq23tlKgbGALgFdGNNoDAPqDlDkCv8voNGKRgS5B7Fl4JZ/uG5SfhItV7fERS+3he11FW/sUdlRNFnZhE7+nega2JW3D79N+2rt2TZoG662rrLje2gonDiBdPIkGXWrKQmIfsceQhb+gvdMATdbN7KKsyqvgJb9MgToX7s/8zvPp4ZLjQoJo1WyciPlBuvC1/HjpR/LcQaC3IJ4LdWNlYV/UOLmyIpey6i1bCsNVu/lSoAW4/q1tGs3XNlWZlEmbt+6sXnAZoY1GAbICejOuzuZfWw2WdkOL1T4UQkq3PXuGCVjueChvV97RgSPoGXVlgS5B3El6Qot17QkfGI4H4R9wLWka2QUZ3BmzBlc9C4ELQvi4LCDLLqwiGPRx7AvkSjVCLSv2ZVtg7fh9o0bP/T4obzr+jO4nnydpj81xdHGkZySHH7o/gNBHkFkFmWSWZTJ2fiz/HrnV9xt3ckvzS+ntPWPYNDY4pdcTLZOItVewEHnQBvfNsTkxHAv4x6hdUKpYlcFjUrDb/d/K0cWLkNo7VBEUeYNZGTGcy79OghytyTOx0CmJKvDVEYuL6tu/zPz3/8MVAhYHt+atRZAFDCKkjK6B3InIyk/SZE+fXY/VIIK/0wrnaMkRAmS7GDf4+Zqv/tQNw12B6uxKzQzJhxOjWrP6aL7eEal8fYFcDDCqsbwe62nNipB3UyRBDsr+TYyl8JOfKI65Z4dyaxDa2gWe4vNDUXGvmqlXTSc8ZfVkFQqFf2qdmN3ynF61+jNzdSbROU8IbgKCNhp7SgwFiAh0SgZrq+EfQvGsDdIxS+3f0FA4G1VG+bPPoxp+1bqxX7Aw3xZ+rZTNHxxxYHqXV/Dx2U9P/T8gW13tslcEclCgFMAFxNlE7X2fu05G38Wi2ShQ7qBk0sLWb5kJDNyfqWGSw2W9V6Gr6Mvsbmx3EuXDequp1zHUedIkamoQhehDH4OfvSs0ROD1qCMOMLjMUf3ILQqLRcSLsidSNSYMSvnFkHuFNmogmlsWfH4nKgQrBasgsQt1RSyhBsv5mc8DQkaWhbhJP1jUrNOpcOgMZBVkoVKUNEtsJt87E+pPrXxbYNFsnAhQe62ftH5C5ZeXoperWd6yHR+uPADMbkxyvplylzPO1fPwlHnSG232njbe+Pn4EdyfjLb721nZZ+VNPBsgLvBHXdbd0rMJXTf1J3EvESOjjxKYy9ZwvV22m2+PP0lW+9sxdPgyfut3+fNpm9iq7Fl2eVlfHbyMyVReqXWK3za4VOaeDVhyoEpnI47za3Jt1hw/HM+PjWXc5EdabHpxJ880eWRnJ/MsehjHHx4UOluqgU1VR2rEpMjnx9REKnrVpc76XcInxhOwyoNK2znaORRhuwYonQx2vu1p557Pbbf207iu4loVVrG7x3Pzzd/lpXL5hRiq5VJVCkFKfgv8ueT9p/wUfuP/tJxvMRL/DvwMtGoDBaL7P7auDFs21ZukclioveW3lxJusK5sefKjUWVmkuZfmg6P137iTebvMmSXkvQqXXcz7jPxP0T+SP2D0YEj2Bh94UyWawS1FhSg4F1B1ZodxYaC9lxdwdrw9fyR+wfOOoceb3+64xtPJbm3s3/ZRfv/zTmnZrHd+e+I/399BdK2xYYC+iwvgOpBalcHH8RHwefCusUm4ppvbY1BcYCrky4gqONI6diTjFo+yDstfb8NmQ3wZ8uhXXr5BG4nj3Lb+DoUeZ90Z2vu+lJfC+JUzGn6L+1P3uG7CHPmMeKKys4Gy/zCsoe/k/D2967nFqWv5M/1ZyqMfPITCyShbGNxvLukXep716fxPxEskuyESQINjpT4u3Bg8wHzFf34MMVtxELCmHlSkVP9NDDQ/Te0ptH0x7hauvKqqur+PHSj8TnxdPR4w2kpAlQoXpc3vcjyC2Itn5tqeNeh/vp91lzfQ2/DPxFrjRaTZgsJlmW+fgcZraaiYPOgS9Pf0mJpYQ+NfvQxKsJiy4swkHnICsCqW14VVWXnLvXCash4m3vTUFpAQatgXoe9TBZTMp2n/07pSCFQlOhPEaitcNoMWK0GP8jwflfQRVbD5zzzdikZxHrJJBlI+FuVNMxXsX26rLZmre9N/F58eXe91G7j/A0eKJRadCIGi4lXuKnaz/Rxb8Lx2KOKet52HrgrLbjQV4U6zwm0mzgW0zeP5kz8WcUt/IORZ60uZLKknYaCgQTraq24vCIw5iLC5i3dAirik4jSND7IUQ5waPqTuSUlveH0Is6iq2Vc29GhsP63+Suhs2noLbC346BvdqW2T1URGxyQXRyZu6MYPZf2Ej/e/DtEdhRD7Z/+Cp7Huwttz23Qlkxq2U8hD6AMf0g0gUapMlE+XqpMDR4GN/lHsRsNVNgLEC0QvsYqJ0hE9TzdSi/KwGBSU0m0b9uf3ps7sHmAZsZvXu0Ih19Yb2GIkx0HSNS1aEqIT4hfNr2Y7JbNqJuqT1vdikkW2Olc4KaXzt7cM+URJB7EA8zH3J5wmUarWwEwLp+6+jk34lO6zsRnSvzvvQqPSMajiD4djrxf+wndkwo97IecC/9XoXgWECgmmM1jBYjaYVpjG08ljpudYjLjWP55eWYJbNyXdtqbHGycVLI6P5O/qgEFZHZkX/62nSSGuFreQN7aqAyRvLhvtVM63qLRy5Pzp1aUCvqS8PrD2f9jfV0CeiCt503a8PXMvW8lQl3gpkxajmCSi17+zxWJLLxX8/B+OWKitnTsNfa09q3NQ2rNESySlxOvsy1pGtK9+jPQkT2WZGQsNXYUse1Du2rtcff0Z93j76LjdqG+Lfjefvw2/x882cEBHa8toMBdQcA0HlDZyQkToyuGPBnFWfRc1NPIjIjODT8EK18n5iPRGRGsODMAn6+8TO2GlvlXhbgFEBbv7acjT9LdHY0w4OHM7/TfPY92MfMozO5OP4iLVY24+1zEl8vfQA1KsqoV4b80nxOxZ4iLCqMsKgw7qTfAWQ53pSCFExW2WOmbMxvWsg0Pu3wKbvv7Wbi/omYPjGV43hkF2czZs8Y9jzYA8hFgx96/MBbIW9xN/0u9ZfXZ8fgHbTxayObcUpWfOx9Kpj9Tt4/mZ33dhLzdgy2Glte4iX+G3iZaDwPy5fDW2/JxPDAwHKLcktyab1Wnse/MP5ChaRhzbU1TD04lYZVGrJj8A58HX2RJIkNNzbw3pH3kCRJJos3HlOBe9FidQsaeDRg9aureR4isyJZH76e9TfWk5CXQJB7EGMajWFk8Mi/5MD9P4E7aXeov7w++4fup0+tPpWuY7Fa6L+1PydjTnJmzJlKKzwA4/aMY8vtLVwYd6HcOrE5sfTf2p/Q7Xf49JhJ9swYPbrC+41XLlLt15aE1h/Esje2cyL6BJ03dubhtIcEOgcyJ2wO35z7BpWgwipZ4LGzc3vfNgxvOIqE/IRy7uplVWV4Mr7kYeuByWoirzSP3jV6o38YxW/mO5jU8nJnG2e6Vm1Pj1OJdN96Bd9BY2HxYuZe+Y4lF5cwtMFQNoRvwGQ1MazBMN5u8TZLfisgMlH8hwTRfwaiICoGXSXmEjSiBg+DB1nFWRSbixEFkTpudbAVdWiv3iC3qht3kMfEBAR61OihBNtlYyZP/30l6QrHY+RZ8jIJU42ooZZrLeq41uFB5gNup99Gp9LxZtM3+fHSj/yt09/Yfnc7N1JvMK7ROMY1Gcf036crZGcBAX8nfybujKHvA4nvVr7B8j7LabaqGRpRw6Hhh8gz5pUzaVxzfQ2nYk9Vfg6sT0aKnodnZ88bVWnEyOCRCi9Fo9Lw6i+vKhyCp9+jRsRQYmVAk+Es7PsjDZY3IDE/ETe9GxnFGRwYdoDee++R8elMXh8IJ2rIMpledl5kFGVQVJxP7UyIcpa7G6H3IMZJNs2rrLKtQlZtK6ssV3OsRqeTsazbA7qPwd4ok56757pyumstFn92nkGD4b0bevr2L+atywKdoyS6jwTjUxOLzkWQZyN7XHSOkcezUprW5vX6D3jgDpZKzqFalANhQRLINeYqr7sXQMdo2N4A3i4M5ocRP/Nt/mE+O/kZVyZcIXhFMIIg0MCjATXDrrN1B9SfDHc8YaO1HyPXX+dz/zg+/QOqfKJnePAIfksMw0Ztw7st32XKwSmYrCYCnQOJyo6iiqEKWpVWITdXuAYkcDSrsXP1Qq/RoxE1ZBRlKEaTGlEjywCX5r4wSS7rLD17vZSZVqpQKWRqAI0F9CYYnODA5sBCSsTynVUBgS4BXYjNjSXo7EO27IQ3Q0U213uyD2teWcO7R96lW/VuuOvdWX51OQDzLtjyye9FfN8K7Jw7cvXVr0jIMJNsvE6+YQ/RJSdkk0Gr+R/yKl4EAYHqztVp49uGQUGDaOfXjhmHZ7DxxkYkJBb3XEwdtzpsv7Od3fd3k1mciUbUYNAaZNPIwTvoV6cfIatCuJ5yHYClvZfSu2ZvAhYHVBhVfhp5pXn03dKXa8nX2D9svzJlEJUdxfLLy1l1bRW5pbkICBi0Bt5r9R4zWszATmvH2utrmXtqLlnFWfSt2Zdd93dR37k2locRXNNNx+a7Rc89ZpPFxMXEi0picTHxImarGV8HX4I9g5Ekidvpt4nLjcNGbSO7nof+TAOPBgSvCCZsZBhdArvw1Zmv+Pbct2R+IBP6JUli883NTNw/kSKzPDpa3bk6u4fspoFnA+Xzyzr+jas0ZtHFRRSZipgWMo0lvZaU28+o7Chq/liTxT0X81bIW3/5O36Jl/hX8DLReB6KiqBaNRgyBP7+9wqLY3NiabG6BQHOARwfdbzCGNOVpCsM2DqAEnMJWwdtpVNAJwDSC9N5/+j7bLixgXZ+7VjRdwVB7kHK+3pt7oWN2uaFCk1lsFgtHIs+xtrra/nt/m+YrWb61OrDmEZj6FOzT+Uyr/8lSJJEnaV1aOPbhrX91la6fPqh6Sy/spx9Q/fRq2avSrez5toaxu8bz/p+6xndqGISUbpqObo3p/BRZxA/+pjPO31eIZnbcmIJw/+YwZ3glQSFvsnlxMuErA7hxOgTfHfuOw48PIBWpcVoMVLfoz5RGQ8pMZUiiNCyaiv2Dt9fzpU8PjeeBssb4G3vzb2Me/g6+JKYn4hOpUOn1ikzuD0ewvDbMGeUj+zPYSogvTAdCYm6GQKdUm055wfh9oW427ozpfkUJjWbpHiqdPo8DMwOFY/5GYUfURBxtnHG0+DJ3Yy7DK4ry+rWcq2Fm60bGpWGYlMxHt958OvAXxlSX+YTVF9SnZicGLYN2sZrO17DKlk5NfoU7f3byxueMAEOH2bjnnmM3jsGgOwPsnHSP5n/zSnJ4WTMSY5GHiUsOoyITJlPohbVaEQNa/utJbROKJHZkQzcNpDEvEQWdl/IR8c/olGVRjzMekg7v3as67eOBWcWMPfkXEJ8Qmju05wfL/6oHJ9FsrA4vRnTl15h6KqeBAQ05rtz33H1zavlHshlKCgtwOErBzQqDdXUbjwsTUJjAUGQR5JAJs5fSryEWlRjtJRiVypX3gUE3A3uFWQmFV+PSiAg4G7rTlrR4/dI8meV+XRISNio5ACkY0BHIrMi6XQiltX7YGlzmN1X7lCUC1itUCNHIM5BwmCC129BipMaR5WeZK2Rw75yguNu605GUQYSEjVdavIw6yEAv++0ZWjvIhxKISAbFh6Ghz42dIvToGnQEJuzF9HNMjHwLhysDUVP3T7OrwKfPOg2SvYA8cmDde+d5mLyJd4/+r5iNvk0v+JpGDQG2vi2ITonmrTCNHJLc1E9XjV2sYBPrkSHafY4+ASi8/XnfMpl8kvzGRk8krUXVhC5yMqRmgJj+kmMu6mmm097whoYSD+2jz11ZcnPEnMJMTkximfLPwOdGRxVBhxcvXDQOVBsKlb8fxx0DmQUZ1DVvioJ+Qm8Xu91Xqv3GhvCN7AnYg9vNHyDL7t8iYveBZ1ax5DtQ9h2t3wnXBRE7LX25JbmytcC0C0SPjsFr422JVFdpKzrZeelGNuVXUt6jZ6N/Tcy4K2/w4mTfL7wFT7Pl2f9VYKKjtU6PumkSfD5Cfj0D5jbAT7vyJ8etfKw9aCKXRVc9a6IokhGUQaR2ZEUGCuX0zZoDMxuM5vjMcc5HXcas9VMPfd69K7RmzsZdzj48CBqUc3F8Rdp4tUEo9lI903dORd/DoPGQE5pDjZqG2a0mEGP6j3osamHLGlrNdPOrx3Xkq+ROjNV4a9VhkJjIaFbQzkdd5oP237IxcSLHHx4ECcbJ8Y2HsvkZpPRqXV8d+47Vl5diUbU8FbIW7zT8h1sNbYsurCIr85+RYGxAEGCE7sc6PBHLDg9ua9JksSd9DtKYnEq9hQFxgKcbZzpUK0DPg4+pBemczL2JGmFaVSxq0L/2v0JrRuKl50XwSuC2Td0H9UcqxG8IpgL4y7QomoLPjj6Abvv7+bhtIfE5cYxbOewJ9104M0mb7Ko56IK8cWqq6uYdGAS9lp7PO08iciMIGZGDNWcqlU4P8N3DedM3BkeTXv0vyomeIn/f/Ay0XgR5s6Fb76B+Hhwda2w+HLiZTqs70Dvmr3ZNnhbhYA2vTCdoTuHciLmBF93/Zr3Wr2njDidiD7BpAOTiM6O5oM2H/BRu4/Qa/SM2DWCuNw4/hjzxz+1q9nF2fxy+xfWXl/L1eSreBg8GNFgBGMaj6G+R/2/fAr+nfjw2IesvLqS1JmpFcjdiy4s4p3D77CizwomNptY6fuvJV+j9ZrWjG44mpWvrKy4wsGD8OqrSOPH881wf+Yc/5C+tfqyacAmHHRPAvQWK5vjePYKR3puhmHDFDKdh60HRquRvJI8vuv+HeGp4ey5vwcPgwcFBVmkFmeiFgT8XWvw+8jDBDgHADBmzxi23dlGkakIP0c/4nLjmNFiBh2qdWDqwakUm4uZ03YOXS5l0vTdb1j23RCO+ZqIzo4mMiuSPGMeDiVyZTPVXpbtdLJ1obZbHVpUbUEzr2aERYdx5UrDF7qO/5ngyqAx4OvgS5BHELvu7WJi04lMbjaZGi41WHp5KbPCZinrioLIij4rmND0sT3zlSvQvDns28dH+vN8eeZLRgWPYlyTcUpicSnxElbJSg2XGvg7+hMWHcbYRmPZcmsLXvZyEPdOy3eYenAqAc4B7HxtJ7VcaxEWFUb3n7vTLbAbJ2NPEvd2HJ52npyPP89rO14jIS+BXjV6ERYVhslqQi2qKQ69irpBQ0ZN92WzayLzO83nw3YfPvfYayz0J7JA5mrUybfhvr3MdfC298agMSgBOZQ5r8sh/jKvCUxJXoWjzpGqDlWxUdsoSjFlvhaNPBvR0b8jiy4uQi2qqedej541erLw/ELMVjNa65OE5kXQWMA3FzSSQIKHDYUWWWGnjPdjo7JBANwyS0ixl52f3wiXnca315P9MJ7+rstciEdfhxX7wWsmeBZA1dJgmhSMJcqzOp7ZkfS+upZ9/jcVaduW8TDutsFEQcAAACAASURBVIavm5l45A51UuG+BzjaOMpJgqAib04e7dbKKmUvcsXuUb0Hs9vM5lTsKeaemsv0kOnE5MSwN0IeydIKalxyzaTYg1c+JDuAi1VLkWChBAsIstfJB2fB513IrYSaJgoiNmobtCotOSU5cgVbYyjnNyMg0KtmLyY0nkCAcwD2Wnve3P8mp6KOE79Q4sdpLRn//hamHpzKoUeHGFp/KIt7LsbN1o15p+Yx99RctCot33b9lj0P9vBH3B9MD5lOHbc6RGZHcjvtNqfjTpNX+vzxIocS+OV3A8aSQgYNERhebyjf91lC3aV1SS9KR6vSMrf9XD479VmF0S0blQ2SqZQVeyRevw2NJsGDZ+2aJHnsbeZ5+KArfNtWfvnz0xqaJ1qZNtGPyNxoPAweZBZlluOmtfBpwblx5yo8xyRJIiIzgiORR5h3ah4ZxRnllmtFLf3r9KdXjV5IgsQfsX9w8KHs/1BGdLfX2hM+KZwDEQeY/vt0tg/eTr/a/Zh3ah5/O/03HHXydeWgcyCvNA9nnTPZpdnUdKnJnSl3XhggZxdn89PVn5j3xzyKTEX4O/nzcbuPGdpgaIVxodSCVL4//z1LLy9FQmJi04m83/p9IjIj6Li+I6IEHioHPuv9NT2q91DGoY5FHyOlIAWdSkdbv7a09WuLVqUlPCWcQ48OUWAsoIZLDULrhBJaJ5QWVVso51GSJGr+WJNugd0Y3Wg0rda04tbkW9T3qM+4PeO4nX6bwXUH8+HxDzFZTagEFQatgQ39N9C/Tv9KjzmvNA/3b90xWUwK0TtrVuWE/pupN2m4ouELO0Mv8RL/SbxMNF6E9HTw84MPP4RPPql0lT339xC6NZSZrWfyTbdvKiw3W82KXOfgoMGseXWNQm4uMZfw1ZmvWHBmAb4Ovizvs5z9EfsJiw7jzpQ7f3m3b6XeYl34On6++TMZRRk0927OmEZjGNpg6H9VfeJK0hWar2rOsVHHyjmo/3b/NwZsHcD7rd9/rhRfdnE2TX9qiovehTNjz1RU8Lp8GTp2hG7dZDK/SsWhh4cYunMoXvZe7Hl9D7Vca3Ex4SIt17Rk33Y1fSd+j/WtqcqoVD33elR3qc615Gs8nPaQQmMhdZfWpZl3My4mXsRXdOZ2XiQ2koidgxsHhh+kyFRE+/Vyxd9GbYOTjRPLei/j4MODrL6+mp41erL6ldUy18RqhRYtQKUiLWwPy6+sYNmVZaQVptHOrx1NXOqjWrocvzzY3kjDeS+zopQDL1b4cXMuVEi1XQO6EuQexPrw9cpMtUbUKKNLzyNmPq305Ovgi63GFj9HP/YN3afwaqRmTbkTYMeRd/sx88hMpdruqnelS2AXugV2o2tgV6o6VKXesnrUdKnJ9z2+p/bfa/Ndt++YfWw2ZquZYfWH8dMrP5WrVH524jPm/zEfnVrHh20/5JMOnyBJEp03duZy4mUlaC7D/Ul3CPBvxEcdLJwc2ITz485Xqk5GXh588QWT7n3L+oYSBq0BG1tHkgqSlADHzdaNXtV7senWJuWYPA2epBakMjlczYrGZiRktZfTcafJKCofbHX278zUZlMZuENWQavnXq/c6E1ZR+PZERVXvSv1PerjbutOfF48V5KuMM29L3lH9vLQWSKqbhVsdAaisqMqHW/xzJc9JtwLYcJVmfC9qSGUlsVlktx9+OIY3B7SkW22UehS3fFWLUElCVhFFUgy0TjCMpkU3U2ap6jJ1VqJcLLCUzGno9aRQrOsklSmtPSvjNyA7G1SUFrwRAjgcbX/WTllz3yI+wE+6AY7u8udhanNpnI14RKZty9zruh13Nb8wvGo43T7uVt55apXVjOk3hD+fvnvfH32a0rN8oz8B20+wCpZqb8wkJD7BRwLkBW4qthVYWXflfSo0YPYnFjOxp1l2u/TsNfKLuzKd/oYZXLkZbKrIiKOOkd61ujJbw9+U14felfF2p0W4hzh7SEOnPcTK3BtnsWzJH+1BYbcgonXoFYmNJ4oJ2YANoKWpb+LjD1fwnt9tSxubqFzQGf2Dd2HePcukz5twtrG8GXnL4nLiWPFNZls3qN6Dw5HHgZgboe5fNbxs0r3JSE3Ad9FvgD82OtHVlxZoXARnkZ1Z9k5vLZbbeKy41h+dblCZga5c7iszzIaejbEIlkIXBxIp4BOjAweybrr69hy+4lgiIBAK99WHB5+GDtdeWn08JRwll5ayuZbmzFbzQwMGih3FWJOsjF0oyKmURkyizJZfHExSy4uodhUjKONA9rUTKbc0LLx1Wo8eKzsJyDQxKsJXQO70tSrKWmFaRx4eIBj0ccwWow08WqiJBdPK0U9ixmHZrD7/m7WvLqG7pu6EzU9igDnADpt6KTc28p+T+2rtWfzgM1Udaha6bZAjiucvpKf5YWmwnIqVJWh75a+ROdEc2vyrf/TUvkv8X8TLxONf4QpU2DHDoiNBX3lKk9/phq/8+5O3tjzBr4OvuwespvabrWVZQ8yHjDpwCROxpwk2COY5IJk0t5Pq3Q7/wyMFiMHIg6wNnwthx4eQqPSEFonlDGNxtAlsMv/+A1HkiT8F/vTt2ZflvZZCsClxEt0XN+RvrX68uugXyvdJ6tkpd+v/Tgbd5ZrE69VlPh99Ahat5aJe2FhYPukihWRGUG/X/uRnJ/MLwN/YdOtTVxMuEjE10VkTBjOyBo3ORp5FAmJBV0WMOfYHFa9sorxTcYD8MutXxi2axjzO83n81Of08O5OYfTzmNvVWG01aERtUqwEFonlNENR/P24bdJL0zn+x7fM6HJhHIPn1v71/DD6vFsbqJGrdbyRsM3mNFyBrVca7Hp5iZG7h5JXrNdaMaOJ6ckh9BBVmLqViGlMAWQk41AaTx6awCFRBKjWkOecEvZ/rN69j2r96SDfwfic+O5mXaTiwkXMVlN2GntKDYV42brhk6lIyE/4bkdEVEQcdG7oBE15BZkyA7Oghq9Ro9aVJNdkl2hWrb2+lrG7R3HtTev0dirMbV+rEVOSY6i8PVN1294v8375T7HYrXQfVN3zsefx0HnQPw78Wy/u53hu4YzuuFoNtzYoBjhWSUrXnZeHF5RwE19PsFHb1YcmbJYZJ7ORx9BXh4rPujMVOEQVqyIgoir3pX0onR87eVRNytWfB18ic+LfzIWJYFaAo8SFc0b9ORg9BElUXOzdcPT4FlpsFUGrVkmYUui7LlyLflaueV6lZ7pLafzXqv3mHdqHseij9HcpzmP9m3k2DYbhDp1mfZBfVbd/bmcK7ggwYD7Iq8N+pQpUT9izcwkRw/e+TD1IqTaweomUKgFlVSeP1GpGZxkIVu4xM2/wPWRuUzWch4GAgKd/DtxPOY4VeyqkFWchdFixM3WjfzS/HKyr3q1HpXFitFcilEF466CXlKRq7Zwy0ugSCVhMMsGfp3TbPGeVESHgI6cjD0pqxM9SufEGgtdv6jN2UJZIclWbUuRuYg6rnW499YT1aSckhwWnlvIDxd+QCWqmBYyjWprdvJmrfvljqeKXRWSC5LL/Sbc9G5kl2SjFtRIgqR4slglqzJqWRk88iHNDpxKYEKEHbtbOBJdmoJVsmKrtqXQXFjp+wACHANQqVREZUUhiqJyfj2LRM79ZKVQC/vXf8g3N5aSV5zLD4dlQv4vLQws672M0XtG82XnLzkdd5qjD39n5Rkn9o9rz+6IPcr31K92P3578Buftv+UeX/M47chv9GvTr9y+2GVrPgv8ic+L545befwZZcvORp5lO6buisFjC4BXbibfrfc2JdG1NDUqykphSnE5MSgETXK2KiPvQ+9a/am1FzKr3d+Jf6deMU5+0TMCYpMRcrvUKvSMqHJBIY3GE5UdhTLrizjXPw5qjpUZVLTSYxvMh5PO08sVgvj941nQ/gGfnrlJ+U+XhlKzaUcjTrKtIPTZD7TY+EPP0c/QrxDeJT9iPCUcHwdfHGyceJ22m0EQaCdXztC64TSv07/SkeVKsORyCP02NSDRT0W8fbht4mZEcOSi0v4/sL3wGNvEXMp8zvPZ1abWRXM/57FtjvbGLJjiPL/E6NO0DGg43PXPxt3lrbr2lb63b7ES/yn8TLR+Ed49Ahq1ZLJ4RMrTyIkSWLaoWmsuLKC/cP207NGz0rXu5d+jwHbBpCYl8jG0I3l2qKSJLHxxkamHpxKoamQn/r+xLgm4/5tyUByfjKbbm5ibfha7mfcx8/Rj9ENR/NGozcIdA78xxv4N+Gd399h652tJLybQGxOLC3XtKS6c3WOjTr2XLneL09/ycfHP+bAsAMVuRtpaXKSoVbD2bOVjrjlleYxYtcI9kXsQxREFnZfSMOPljCsTSpWBzvW91tP7y29aejZkCJTUblWvSRJ9NnSh5upN3mv9Xu8e/hdpvgOYFX0LhAFTKKEiMjfe/+d+xn3WXJpCe2rtWddv3XKef1/7L13VFRn2/b92zPDDEOXKkUQFUHF3rBr7CX2XmOLmmiMJbbERGMSNCaxxBJN7LEbe1esCAI2ELCBFEF6kT51v39sGYKamPt57qzve9/lsZZLndl99uy5zus8ilE0cvpJhVWsh8acGbGWTNoZg71NhXh/xukZHH98nNoOtbl7/yJHLtjT7l4uG1sIzO4qUs9TmlFTyVXE5cW98Vq1cGtB+PNwk0Xoq3CxdDHxrx9mP8QoGk2DqfLZ/Wo21cgqljIA/jxjLUMm/fDrtZXE0+Xr9fPtR49aPahuV52JxyfSyqMVh4YeIuhpEH339aVUV8r18dc59eQUK26s4MyoM3Sr2a3S8WUUZVBvQz1ySnPY1GcTX1z6AicLJ2KzY1nSYQnxefHsub8Hg2jAwsyC5cdK6BoPVRLTKxshXL8OM2fC3bswciQsX04Iz2iztQ3N3JqRkJdAfmk+CGAQDQgIeNt5k5CfgCBItscfNfuIJVeXgAg18mD+DZjSh7/ku/959lklV2FRZiDPTE9nhS8hJFPDrgZpxWkm2+Eq5lWY3GQy6yLWIYoitua2lGhLKNGXMLnJZLyKzfjl5jqSrY1UtXIhvTQLo2jE2qCgUKZ/43FYl0GRSqJfzQ6BLEvY0FzKzDAK0rG/Lc17YaiCH5rr0f1N6rZPFR+KdEWkFaVhLjfHKBpfcy6qdG2QoVJIAW3lOpVLAb9Q/1QEdnv+wGViPhqljPZmtSizs+Jy3h28bL1IepGEfQk4aGQ4FBkJ3QK/drLhww4FBFRtzs30CGyNStK/1fJ1B1jbWQrr1Og1xOXFIRfkHB9+HGcrZ+Jy43iS84TY7FhiMmN4nPMYjV5D8ioYMAxuu1eE/0GFecFfobyYL7ccLs+GERFxsXTB08qdUWdSmXoqg1YTIcqlgtpmqbBEqVBWmumvYVeDhPwEmrs15276XXRGHU1cm7Bv0D4EQWDwAck+/eXOqZ8l4/pvRuTtOyBaW/Nl8UlWVxgvsbXvViKeR7Dx1kbUCjU7m33HDwdnEVFNSp7b0GsDWSVZfHn5SyyVlhQsKJAyH+IvEDYpzOSoKIoiE49PZNu9bdir7cn+LBtBENAZdDj/4MwAvwFsv7cdgJ0DdtKxekfOx5/nYMxBridff60TWatKLUb4jyC7NJughCCTjquWfS1mtJiBgMAnZz+hW41uXHh6gfeqv8eNlBto9BXPI09bTz5u/jGzAma9RqsyikY+OfMJ6yPWs7r7amYGzDS9HpURZdJZXEu6Zuo2+b4wo0axkjNuUmfB39kfrUHLo5xHps/Z39mftT3WmvSW/wk0eg3239vTx6cPB2IP4GrlSnpROuXJ5tVsqrF38F4CPALeui1RFGnxWwusldYEJwdjEA0Yvnx7QGW7be3QGXSETgz9/71L5Tv8v4V3hcY/weDBEBUFDx6A/M0zDXqjnv77+nMt6RrBE4Jp4NLgjcsVaAoYf2w8hx8cZmHbhSzrtKzS7MXm25uZclIqaNpUa8OmPpuo51zvv3YqoigSlhrG1rtb2Re9j0JtIR2rd2RCowkMqjvoX7fAu550nfbb23Nm1Blmn5uNxqDh5sSbOFm+SjaWcPGpFLr2RTtJ2F0JxcXQqRMkJ0NoKHh7/+V+jaKRjts7cj35OnUc6/Ao6wEdSpzZvfgertauKJdJ1q97B+1luP/wSusm5SdRb0M9xjUcJ+kWbv+Ch9KRxLJ0BFGieTioHSjUFLK8y3JmBsxEJsgo1hazI3IHa8LW8DjnMS3cWzArYBaD9D6YNWkOGzbA1KkAJOYn0nRzU3JLc/F18GVFlxV08urIt6M9WXK8gChPJW3HGVnZbSWB1wPJLMk0iW9fpbDYq+3JK82jhXsLJjWZRGBwIE/znuLr4EtT16bIZXIS8xO5+ewmOvHt/va+Dr4MqTuEF5oXRGdGE/U0hBxZxYy0o9qRYl2xyaWqfLBtrjDHTmVHenG6SeC6qvsqhtYdysTjEwlLDSNicgQ17WtW2t+VxCt02tEJSzNLdEYdWoOWlV1XMrf1XL67/h3fXv/WRPEadxe2HoOrkcfo1KAvJCbCvHlw8KCkJ1mzRgrgBMLiMpi8Yx+uqsakae6SLN/GCyESK6UVdio7UgpTaOHWgojnEa9RgmRGGBYDcgP83qhCMzG5yWR6+fTicc5jFlxcUGk9C5SUGbV0cG/N5bQQoPJA9p9QjwQEXIsFSmVG8s3BQVSTLaucjPznvBeMYPbyT4kSauTCvGDIU8O6VjJSLY000q/GVniz1ue+4tM3Wjq/DX8Wxvet3Zfjj4+jVqjZP2g/fff3BeDx9MdsuPYDq6M2Y6eVEbXOSDWLqoSM70wb1W6UciWPpz+Wghcfn2Tk4ZEUaYvwsPIgpSgFjHB/k4CX1oIx3Ys55lex/zH3YHaEnMaTDVS1qkp6Ufo/ur5eeZC4BnqMgnM+0sxyE9cmhKaEmu5jLxsvkgqSTN00TxtP7C3s0eg1xOfGv1aM2Kps6VLsQuDudGomFbKhgwVLOyvI0RfwQaMPTEYgAgI3nt2oRGVs5NKIY8OP4bXGCycLJ2zNbUkrTMPf2d+U/4EISoXUQenzCI7vBQSB9Z91YIbFFUDqJAgIuFi5kF6UjrXSGiulFWkvniEziuwfcpB+9QdLTkmrqpFTkkP2vGyJqrSlFVqDlvDJ4diZ2/HV5a/4+trXABwbfoy+vn1Nxzvu6DgiUiMYWGcggcGBGEWj6bsKFSYf6yPWU922uslWuBzedt4m0ffj3MeIomi6HrXta1PXuS5HHx4FKsIO23u2517GPbJKsqhuV53BdQYztN5Qmrk1Mw2gRVFk/sX5rAxZyUC/gSgVSoKeBpFVkoVaoaadVzs6eXViR+QO5Ll5rN2ewca5HTmUdcW0LxGRVh6t+KHrDzwves6ioEXE5caZLHH/0/Dcnrt7EpwUbNINVTGvQl5ZHvWd63N9/HVszW3/0XauJl6l446OHB9xnL57+yIgkDc/763rn35ymt57enN53OVKGWDv8A7/Nt6R9f4J5s6VbG5PnPjLRRQyBfsGS0FPvff05nnh8zcuZ6Oy4dCQQyzvvJwVN1bQc3dPckpyTO9720mD5b2D9pJdkk2jTY34POhzSnWlb9zefwpBEAjwCGDz+5tJn5vOzv47ERAYe3QsVX+oyocnPiT0WSj/Vv3ZulprnC2c+fDEh2QUZ3Bm1Jm/LDJSClIY8ccIutTowpcdvqz8pl4vZU88eCCJwP+myADJjjA2KxZ7tT0Psh8w+pGK47dq42rtiihKPu+uVq4MrTf0tXW97Lz4rvN3bLi1gdYerVHIFCSWpSNDkJKPRcgpzaF37d5MbzGd1IJU5l+Yj8cqD2acmUFDl4aETAghbFIYw/2HY9aoKYwZA0uWkJuVzNzzc/Fd50tuaS7D6w0n+qNo+tTuQ489Pfm+QQHNPoSL9S2R6/Q0PnGbzOJM3KzdsDW3RUDA16GChlduTSsiFZTb721nbIOxrOiyAhuVDXui9xCVEUVf376mDpJSrgSkH1d7c3tkggwXSxdkLx8Pj3Ie8c31b1gXvo6ojChqVKnF8EgYatNauj62XtSyr1WpyCgPtEsvTsfRwtH0+qxzs3Bf5c6NZzco0ZXQdHNTFl5cyO9RvxOeGk5eaR4dq3ekc/XOFOuK0Rq0bOi1wTRwcbF0MX0XZMh44mWFDFizbgwl82ZJ+TfBwbBjB9y8aSoy7icV8vmuJOxpgVZjjj0taGjYgI3YgCJtESmFKQCEPw9/4+DUzEzF3vpStgQiJhHtr3d+ZcD+Acy/OP+19cpEqfNz/8VjLBQWWCgsKrlUNa7amF0DdrG6+2rszSUXs6ZVm6KSS3oYR7UjW/ttpYdnZ9omSQJt7+elVDGqpE/m5b1XCTLQyaWsjKkOPUi3kzO1L2xtAt+eN0phhMLWl8kG0jmUa32S5Fv+ssiwU9kx0G8gZjJp9rj8eK3MJN58+XnJBBlHhx+loUtDjKKRjbc3Ihfk1MyBkr49uHx+M4hgIShpPM+GM5d/ZU8biWs+O2C2lBRelE56cTpF2iJ6+/Q2Dcxkchk/BIhY5hUT/cojY1dDWNrWgMIgBZWBVNR523mjVqixUloxO2A263quY3CdwcgFOd523myxk+h+7w2dT3Xb6pTqSwlLDTN9BgBJBUkvr5OIk4UTjpaOVLOpho3KplKRoZAp8LL15IC2H4dWJOCj9mDLuol82rGM/SMOI5fJaeLahEtjL3E77TZXkq6gM+oQkHQh7tbu3Mu4R5PNTQDQGDQM9htMia6EsNQwzGRmbIv1IzqxJ/7O/pjrYFoE6GUgiCKRD69S26E2FgoLqUA3ak3FfV5ZHs8KnmFhZsnlHQL9rmeajrm+c32MopGZZ2dirbLm6PCjZJVkMerwKH4M+dFUZHjbefN+7Qp3O4BBdQbxIPsBQ+oOobZDbdys3fjswmfMOTcHo2jkUsIlNtzawOL2i3n66VOip0abdFR2KjsS8hPYGbWT6KxotAYtHjYeOFs4S0Vn7mNTkQEwwn8EdZ3qEpoays4BOwkaG0T3mt3ZEbmDFr+1oMbaGkw/NZ3lwcuZdmoaRx5Kzo2HHx7mWuI1JjWZxKWxl8idn8vx4ceJzormUc4j0koz6TwOrhZLFMjAzoG8WPCCzX02k16UTpttbdgVtYvt/bezsfdGLj69iO86X2adnfWaVutNEEWRXZG7uJJwxXQvO6gd0Bq0yAQZU5pO+cdFBsDKkJX4O/uTnC9ZNQuCYAoF/Dv0rNWTBi4NCAwO/Mf7eod3+G/gXUfjn6JdO0nMe+PG3y72vPA5LX9riZOFE9fGX8NKafWXy158epHhh4ZjpbTi8LDDJg53081NuTX5Fv7O/qy4sYJvr3+Lh40HG3tvfI1q8t9CQl6CKZsj+UUyfo5+pmwOV2vX/9p+RFHEb50fj3MfV7ZOfQVag5YO2zuQWpDKnSl3cLRw/PNGJKvVHTvg1Cno9vZrMu/CPFaGrMTJwonlnZdjPuNT6iWVkB8cRJm+jB67ezC07lD2D9n/xvX1Bj2+6315mleRYqyQKTAYDciNIv4F5tyvopNsUIsysVZZM7nJZKa3mP5GHm9Z/CN+Hl+P7zqboVcqGO4/nN/u/EbE5AiauTXjo1MfsfHWRmxUNjhbOKMQ5DRKE9kb+Jgb9e1YPKMeEdmRFGuLsVfbk1NaUayW06dA0gXE58bzQvMCC4UF1iprckpzTANDpUxJe6/2BCUEcfUDybKx155exH8Sj5etFz4/+5CQn0D/2v15kPOA+Lx49EY9MhHkokQdK4dSppTa+KIBhaDAiBFblZQKXj4IlyGjmXszrJXWFGmLiHgegVKmrDRgs1fbk1+Wb7JMXd97PQEeAdSyr8XlhMv03SfNqDZ1bcqxgQexd63Bgi4SNejr+jOpsvgbSlQSNSwmM4Y7aXeIuFUfRVmdt6YjA5W0EOXH7GTpRD3HOlxKukKvJwKnfSpyU/r79ufII2lQIxfkeFfxJi43DnMd9DKvT5hFrokm8WfO/9B6Q5nYeCKDDwymmm01YrNimdBoAtvubcNaZW1yL3IuAhudDLtiIwMfwuamkFjFdBIVf8swFQotzWtitLcn4nlExftCxd82YoPKCfOyLRTIKrQ+SrmSGnY1eJjz0HSeMkG6DulF6XzQ8AO2R27nvervmXJSyq9VwqcJ7Ivex8Yjn5NorcdaK3B6l8i5mvBNR6hpU5336/Tnjwd/8KzgmWn2uJyC93cw18Gzn6TCYnaPivNx1CrINtPjWAJl5gqK5Hp29tuBhdKSexn3+DHkR5OOolRfaupIbT4OLVOg6XQFVa2qklea9xrVB6SuXuiEUOzUdpyPP8+c83OIyYoxdai29dtGuxJHpuwZQZBTEWMM/nwwciXdD77PoraLWNppKX329CGvLI9FbRfRZ28f03nbm9sT83EMLpYuDDs0jIOxByvtW0Cgc43O3Ei+gXce7C/qge+KLaR0aorL/QT6D4cBD2HSHfhqUSs2WMZSoCmoVPiWd5ymN5/Oz3vy4MoViRZsbk7zX5tjobDgWvI1Dg45yOC6gzkXd46eu3siIlLdtjqJLxI5M+rMa7TgUl0pTiudWNRuER28OtBuWzsG1hnI4QeH6efXj5BnITRwacDZUWdNnfv90fsZ/ofUNV7acSl+Dn7si9nH8UfHK7lgAbhZudG6WmsuJV4yUQ5tVbYUagv5qv1XzG0zl+DkYLbf287FpxfJKskynW89p3qMrD+SUl0pS64uYWrTqXSo3oGjD49y8vFJinXFVDGqmHTbyIBvj9DUvyvWgdb82O1HU+aEzqBjb/Revrv+HY9yHtGtZjfmtppLeGo4K25IxiXz28zn04BP32jBG58bz+QTk7mcWDlwsJlbMza/v5kmm5q8sYv+V4jNiqXehnps77edDREbiHgeQS+fXmQUZxAxOeKt65drDm9NvkVTt6b/aJ/v8A7/W7wrNP4pjh+Hfv2kQqN1679dNDI9krbb2tKxekeOhNPHkgAAIABJREFUDjv6t8KupPwkBh0YRHRmNL/0+YWO1Tvivcabc6PPmYqKR9mPmHZqGpcTLzOy/kh+6vbTvxbMVz4Lte3eNg4/OIzOoKNHrR5MaDyBPrX7mGa//6f4+urXfHVFcjUpFwq/CZ+c+YRfbv1C8IRgWri3qPzmkiWwdCns3Cl1Bv4GeqOeLy9/SWBwIA5qB2I/jsXZ0pmSebMp3LoB90/0uFm7kV2SzaTGk1jba+1r28gpyeHDkx9y+IHk6lE+SJEJMgLcA2inrs33j7cjCiBDwM3GncvjLlPL/vVUWYPRwO77u/ni0hekvUhlyj05i1ffYX/GJeZdmEfBwgK239vOlJNTsFZam4KYVoetZteAXexbMYaDZ6yZ3k3HgRplFL2ceFXKlTRyaWTidle3rU5KYQoGo4Ga9jWJy5U0HeX8+D+fB0AbjzacHHWSUl0pbj+58cfQPxhYZyDBycG029ZOEvaOu4RGryHieQRXj6ziyu3DXKoldTEszCyoZlONxzmPTQOccu56OcqtLm1VtqYBXzlcLF1o7tYca5U1p56cokBT8MaBp4PawVRUeZlXZcUNC5JynpJhK+enFgbkMknI++cQRZUeAgwnEOR/rUuwUlhRaih9baDzKlQyJRqDVrKrlVc8OtUKNXqjnlr2tVjWaRljD46kBC3z603hi/d/YMnVJfwY+mOlbXnbeZP8IplO3p3wqeJjClqz1MCodEeql5qTUJxCrBOEekihgmYGqWPxWufhz/SpVyBDRvUcI8m2Es2vXCcwJxhapUBgO0mfUA5XS1duTrrJjLMzOP7oONZKawxGgylssZz6JRfkNHdrzs3Um5WOw7kYVEaBHJVIiYrXYCaYYau2RSmTrGhL9CVvpDm5WLpgq7LlSe4T03tyQc63FwxMiQCvOTJcXX1IfpFc6V4y10LZnx5TKpkKM4UZRdoilHIlo+uPprFrYzxsPOjeeybPmvuyeHAVjj08htagrbh/ZeaUGcsqWa/6VPHhdvptFDIFjmpH0ovTWdF+GfOu6uHbbxH9fNmxbDCzH62lQFOAh40Hj6Y/QqVQsTtqN6OPjMZKaUWZvsxU7CsEBY1dG7Nv8D4yijJou7VtJdes/r79WdNzDUXaIoYFNiXORsfaB9WZdDqdniNEgqppQafnzO/QOB1aToJ4B2jn0Y7rKdcBKen7wyYf8tPNnzjXcQtd35sk0QqnT8ftRzc+bPIhMdkxBD0N4v60+4SmhDL04FDTtfCx9+HxjMevf5jA0INDic+L5/aHt5l+ejrb7m0j8L1APj33KUq5kgcfPzBZgZfjo1Mfsfn2ZgyigVH1R5FWlMalBKlglSOnQdUGRKZHVroOKrkKvVGPr4MvD3MeVirabVW2dKvZje41u2NpZsnVpKscfniYzOJM7NX2CAim50ZDl4ZkFGVgLaiI+vwZ5ku+hQULAPDf4E8Hrw4ms5JyGIwGDsUe4pvr3xCdGU0Hrw580uITriVfY0PEBhwsHPiqw1dMbDwRM7kZOoOOVTdXsfjyYtNxVrerTlxuHGYyM4oWFfG88Dnea7w5P/o8XWt2feO1fRWTjk/iTNwZnn7yFJvlNnjZevF91+8ZsH8AkVMj/5KyXQ69UY/vOolCe2DIgb9d9h3e4b+Fd9Spf4o+fcDXF1aufOuiDas25OCQg5x5coZPz376tzQkLzsvgicEM7rBaMYfG883174BqESn8nX0JWhsEDv67+Bc3Dn81vux+fbm/ziU6p9AJsjoUqMLuwfuJm1OGut6rSOrJItBBwbh/pM7s87OIioj6n+07V2Ru/jqylcs7bgUO3M708D9Vey9v5efw39mTY81rxcZv/0mFRmBgW8tMlIKUui0oxPf35Bsh3f032FKcbdwrYZzmYIeNXvwrOAZSrnSZAX7Z1yIv0D9jfU58+QMUDFr37d2X8Y1HEdISggrnmynvl1tzAzQOkuNaNDTZWcXHmRVuN2Iosi5uHM03dyUcUfH0cK9BTFjQll3xQKXHzcRlhpGY9fGhD4LZdqpaQgIDPAbgNpMTXZpNtXtqvMo+xHX/K0R793DRVEFpQG8ysxRCQrae7bHKBpNHbTEF4kmYWpCXgKBnQN5MuMJzd2bo1aoWdR2EbUdapuO70bKDZy+d2LU4VFUMa9ickdq69kWN2s3Lide5sQjyea2rWdbPv/wdy6csGOptg1qhZrPWn/2WkK6gMCslrPY3m87+wbtY1mnZagVauzV9njZeVWip2QUZ3A67jR7o/eaZvLLaSUAzao2Y3KTyagVFYYBSaXpDG/6lPnd4KeWBlOQX2phKiIiai2sulmFou+geWI8gvHV1GWRYiEegCJ9kanIKKcHAVz/4Dqruq8y/b+qlSueKmf0gojsT1+/Un0pOqOOB9kPGHxwMCVIwugVMZuwXWHLzsidlc4XICE/AQszC8JjL7IzZCMYwT9bjn0pbPbKZpFfCjsawmOHivpBVz5nIYCNsQENDKtppT9Bu5LV2IgN+HNenkKQKCrmWiOF5uBZQCXK1Y9tpTC3by7DmV3QPlF63d/Znyknp3D80XHTthwtHFHIFJXcogyiwVRkyERQvGwCNUqDdmlK6ZhfPvrU8orPTSfqyC7JpkBTYOocWZhZYKW04rNWn+Fp44mD2oHc0lyJt/9ScG2hsMAgGtjQTEo3Hx5l5FHOI9RmatN9YaaHMjPwk7tw61FH/jggwzVXg6GslGn23dHqtbhYudCtZjdioy+jfprMYsMFYjJj+Lzd55U6p3PazOHqB1fxspU6kgWaAm6n38bSzBJ3a3cyijNY4TCczz49CN9+CwsXIty+wwf9lzCmwRiMopGkF0n039+fpPwkutToIt1r2iL0Rj1VzKswqv4oQieFklmcie86X1pvbY0Ro+mz6+/bn5CUEGr/XJvt97YTesKZsQ+UfFg3nhE/tCLEW7ohxjaZwJChkG0BJ/eAbSmmIgOgUFvInfQ7dPLuxKjw+aSOGwiBgeiKCkgvSsfD1oNfev+C2kzN+3vfZ8ShEQyrNwxHtXQ95repyNd5FYPqDOJO2h0S8xMJ7ByIvdqeVWGrkAky5DI5Qw4OIaOosiXw/DbzcbJ0QkBg9/3dxOXGsaP/DhSCgupVqnNnyh2OjZCcsfrW7ouLpQsagwaDaCA2OxajaDR9T63MpMT2Iw+PsPv+bqIyo7A1t8XH3kfSL5TmVco2SSlIIaski70RnphXrQafVnQ06zjV4UH2A16FXCZnmP8wIqdGcnTYUYq0RQw6OIiw1DA29t5IF+8ufHTqI+ptqMfy4OU03dyU+RfnozVo8bbzNnVwfex9JIc2QW76jXeweN3A5E1IK0xjV9QuqcBJuobWoGVQ3UH09umNi6ULW+++HoT7KhQyBfNaz+NQ7CGTCP8d3uHfxrtC459CJoM5c+DYMXj89i9oj1o9WN9rPesi1rE27PVZ8j/DXGHOb31/Y3OfzeyK2oWAYJqBLocgCIxtOJaH0x8ywG8AU05Ood22dkRnRv+vTuvvYGdux9RmUwmbFEb0tGjGNRzHnug9NPylIU03N2V9+HpTO/ttuJJ4hYnHJzKh0QQWt19MX9++/PHgj9eWi8mMYdKJSYyqP4qpzaZWfvPkSUk8/dFHMP+vf/gATj0+RaNfGpGYn0gHrw742PtUdqxycMBQWkx8Xhz+zv4UaAo4+fgkaYWSNWOZvoxZZ2fR7fduqM2kLoBCUKA1alHKlJx8cpLfo36nhZtUCM3sMJ+THTdzq0oJtZ8WYClT0WZrG4KTg7mbdpduv3ejx+4eWKusCZkQwqGhh6hdswUsXAi//EL63WB8HXzps7cPRtHIt+99y9n4s4zwH8GRB0cY13Ac2+5tY1T9UVh41uBmZ19yLaB6WhlGvZ7gpGvcSrtlEklbK61xUDuwoM0CDKKBZdeW0Wt3LyLTI7k49iLfdv7W9AN3cPBBlnRcgqetJ5cTL5NXlkdgcCAD9w9k7/299K3dF3O5OROPT6xIx1arYdw4Wp+KolRfajIW6OzdmZAJIcxtNRejaGR12Go+OPYBk05M4krSFfyd/dEZdUROiaT081LS5qQRPF4yTygvyOXIsVHaUKIrMRUut9Jv8eudX01aCgAEaOfRljZZaladBrnh5ShblEIPS5UwKyAP9efwu/dWjDIq6RIQwN7trmlzzpbOpq5LOXr+3pOI1AiUciVjG4xFY9DwTJuFrUbqMHSzbGAqhsphLjenZq70avnAwtfBl6qWVU3LyA3ScRaVFVKggmIVIINoRwPP/hR1o5dBqbkco6zyPux1DWhs2Ii9sQUqnJEpW9DIuBEboWJG00JpwcgosNZAlgWkW0lWu7x0nwLJCrXnaFjQBb68Cte3gtm5C5yNO4tCpkAhKLAzt2NE/REs67QMGTK6eVemKqq10DT1ZadEgPO1YI+vRjonQeq2lRoqa8wmNZ5EU7emaA1aVHIVMkFGkbaIlaErSS5IJqc0B51R9zKgUGCE/wjmt50vpZ47WXCpviUzwuGrdl+iN+hNHQ2dQtrnQ30GLf2uM2ioEQ87T6KOu7P8s3OsumHN9tOB+K7z5dHR3wBYuOAUEZMi+O3Ob2SVZDGs7jDmtZ7HihsrmHdhHlGZUdSsUtNUhBTrinmen8yh+3X47NODkgA5PBy+/hqUSsJTw1kXsY5lnZZxYsQJojOjqbOuDvU2VJh6tPFoQ15ZHhMaT+DIgyOkFqRW0u9cHHsRgJNPTvLr+7+yoO0CDl5ej+ppMuuO69nVeBnHsoMp1BZS17EuMpmMfDWMGm+DczEcOPjyHgMWtl0IwOXEy6QUpCATZAxrloAuK520X39CRMTDxgMHCwc+a/UZd9PvUtuhNovaLiK7NBuVXEVgcCB5pRUOWX9GL59eKOVKjjw4grXKmnENx5GYn8jQekMJmRBCamEqbba2IS4njtBnoYw6PAqfn33IK81DIVNQy74WyS+SuZRwCb2oJyEvgY0RGzn68KjkGvb4ONkl2QS4B9C3dl+UciVyQW76nhbpipALcuxUdoSmhBIYHMiKGyu4m36X97zfY++gveTNz+PyuMu0dG9JTqkUVDjA9TpzZvtzM/ue6dlTx/HNhUY5ZIKMfn79iJgcwZlRZ5AJMiadmERMVgzfvvctWoOWhUELic6UtChtq7XlSe4TWldrTdTUKHwcfDCIBsJTw00dFgf1Pys01oWvQylXMqXZFH4O/xmAWS0l162xDceyK2oXGr3mLVuBcY3G4WLlYpqAe4d3+Lfxjjr1n6CsDKpXh/794Zdf/tEq8y7M44eQHzgy7Mg/8q8OTw2n1ZZWqBVqTo48+ZfuEFcTrzL11FTicuP4rPVnfNH+i3/dMQokzurpJ6fZdm8bp56cQibI6O/XnwmNJtClRpc30sQeZD2g9dbWNHNrxumRpzGTm3H80XH67etH7EexJhvFQk0hzX9tjkKmIGxSWGXOa1iY5DDVvbuUa/IX7l86g45FQYv4IfQH+tTuw3fvfUfjTY1Z1X0VM1rOqFjw1Cm2f9GH8f3h1uRbzD4/m7CUMBwsHPi+y/cEBgcSlxtHS4+WXEuSUtrLqUC2SlteaF/w7XvfsrDtQqaenMq2e9u4NO4SpU8f0TdoEm2zLCho6MutrEiMohE/Rz9WdFnB+7Xfr2wtWFqKwacWOxyfs3C0M9kl2fT26c3QukMZc3QMyzou48srX/Jb39+YeHyi1JnIfcL2u9slWsFLCs2ghzL+8DPStGpTcstySchPoKpVVZwtnZGJMiIzI01ZIQvaLuD289u0+K0FKrmKks9LTIeTXpRO913duZ95/zUqi7nCnKauTQkaGyQF+D14wIHBdRk2VJqRNopGEmcmmmh9D7Ie0H57e1wsXRhSdwihKaFcTbpKmb4Mc7k5jV0bU822GgICZ+LOvJao7GHjQVXLqtxKu4WnRk2mUIrCKNm3vkoRUupBKcpwltsw4G4Z7z0ow7YMHjlKg+jmjXoRHp+Bq25MhS7hZQbJnwuFxe0X81PoT5USpV/NSFDKlWj1WgTAXdOAKgpJ61AiS6ClfxE7Yr9EgzRoNJOZoRbMKNC/vMavUptEqRtgJTPHyc6dj1p8RKGmkMBr3+GfbqBHkQs7G8l49ucCi7/IwnhFczLurpShsb0R2JVA7l/LxUz3UaM0WHNWSrAObAfH/BV4VPGin28/IjMiCX0UxLCHcgZGGRgwAvRyqYugk7/h3F6i3B3ttddfmgc0d2uOSq4i5FmIaTknCyeODT9molmeH3MewEQ/6vQULu0ELl/mO1kIn1/+HDlyRIwYRRHXIkizlmhaelGPp001MgrT0Br1dI0XGR0J7xe7YVsGBXGxNNjUkKQXScxoMYPR9Uez+MpizsefRyVXsbP/Ttp4tqH9tvZkl2RTVFaAUQZ+WXDQaRr+C1eDUuJqlepKabK5CVZKK1OAZEhyCF12damkDWnp3pL0IknwXm7e0MW7C3lledxJuyM54+U8ws/Rj4T8BM51/52AkfORPXnCmgCBwAGOZJdko5Qr0Rg0yAQZa7qv4ff7v6MODuP8LknLM723dK0D3AO4mXrTlDpdpC1idn5dBlx6TpsBudyfdh+9UU/H7R2xUlqRXZJNHcc63Mu4x4FBB5h6eirN3ZpzauSpNz7j39/7PnmleewcsJMmm5pgrbKmWFvMw+kPySnJodOOTiZtWM0qNfmo+UeMbzSe8/HnGf7HcFp5tCI0JbQSnbOuU11sVbbcfn6bJ588wdPWE5CSrttsaUMth1o4qB24nnT9NWtle7U9zhaSMUZmSSYWZha85/0e99LuAZD+IgU3jZIyBzsySzKpZlONwXUHSy5bV74ib37ePwq3FUWRK4lXmHl2JvczKzRO5RRVAYHPWn/G8i7LEQSBIQeGcOzRMea1mSdpSA6PpGBBgSnE969QpC3Cc5UnHzT6gJ+6/4TdcjtUChUZc6VO0cPsh9RZX4cDgw8wpN6Qtx739ze+54tLX5AwM0EKk32Hd/gXIV+yZMmS/68P4v8aKBSg0cDatfDhh2D5uvjrVXSu0ZnozGhW3FhB95rdcbN2+9vl3W3c2Xt/L3JBzoaIDVgprQjwCHjN97q6XXUmN5mMQqbg+xvf8/v93/Fz8HujLuC/CblMjp+jH8P9hzOl6RScLJw4F3+OVTdXsfXeVnJLc/G09cReLbnSZBRl0GlnJxzUDpwbfQ4LpVQMedp6svrmahwtHGnv1R5RFBlzZAx30+9ycezFygL0J0+gc2fw95c6Sso360QS8xPpvac3Rx4eYWXXlaztsZafw3/mTtoddg3YZUq3BtBkpzOoZDtda3RlZsf5XEq4hFKmpFRfyrZ721DJVfg7+3M9+ToyQYaIiN6o55OWn3BuzDmyS7LZcGsDYxqMYUi9IVxJvMLP4T+zoHcgrZU1WJlzgpTidFQyJQbRyIK2CxjfaPzr/uVmZtzTJPOTPIxYq1I87Ty5MOYCM87MoLZDbUJTQrFUWnL04VE0Bg1BCUEUaArILXvZSRLA3rwK3eS+PNWkU+d+GuO7zqNYYSSzKJP04nQySzLRi3p87H04EHsAc4U5S68sRalQUqgp5Iv2X5iOy0pphYOFAwdjD/J9l+95nPPYpJMQEEh8kcjKkJWEp4azI/U0y93isdTL0AgG5raeW6mYdrJ0oq1nW34O/5nnhc9p69kWa6U1cblx6EU9KQUpxGTFEJMVg8agMdGtGrk04t7UeyzusJgPDY24GnaANKGYYiVYqCwopaLjMLbBWKrIrfj40DMslRZoSwo5XUPP9saS09JxXyhRwZPcJ5SQRqbsLKmyfWTIzqIVsvB38sfBQgrukwkyriRdeW3Q4mTpZMokkQty5MgxYMDG2IA6so1Y4IECa8xFV7IzvMgWwtEIGSgMoBeMaI26yoNwAbwtqpGvK8BGZcOkppO5/jwEo2hkdIPR/Bq2Hov0LE7drMmXPdXEvXjKq6hp/BgFlQcnAjLMMKfU8jx9Hws8s9BxtA4gQtViKUvjL21rX76ebgXbG0O4Byy7DHOCjaQY8thRFkrV6GSWXBLp/FRkRi/ItAYMYFS8ebs2KhuMotE0cBQQaFutLYWaQsoMZaZC9nnhc5ILkk3rLe2wlFtptzgQe4CYzBhmBsw0USjrOdXjQOwBbimzGfvYnCpp+QwRDqIxaDg89DB7Y/ZSJwsS7UAtV6ERpc+yRFeCVtTRzL05c3p8TX7SI5qEJFJaVohf2UpSjHmM9BlEljaXzy58hlKu5LPWnxGUEISLlQtLry2lrOQFiy6UcXiXjluecsLcRTZyi4d5T2hUtRH2ansWBi3kfPx5zo4+i7OlMxtvbWT4H8PRGrTUdaxLZonUEUwtTOWF5gUagwZ3G3d2DdjFN+99w8qQlfT06UlmSSYZxRk0d2uOs8KGH2/+RPckBe45OlRTPmK97gYG0WByzBMRuZZ0jdSCVJ7aGalTvxMTjiSSrYYID8gszpQKZKPWJAy/ocrAPr+MkGowofEEeu7uibedN9fGX+PQg0PEZsdSz6ke63uvp6lrU5ZeXUqZvsxEAfsztAYt68LXEfQ0CKVcSdDYIH698ysHYw6yNnwt2aXZ2ChtEASBbf224evoy/6Y/RyIPUDyi2SeFTwDJGcvbztvBAQez3hMX9++/HTzJ6rbVqdR1UZciL/AzsidPMx5SGJ+IulF6YxrNI4R/iMITQmlinkVPG09pdDbkkyKdcXIBTkOagficuLIKs2iY2QBa8/C5mYCNR1q8dv7vyETZByIOcDJJycB6bfE3doddxv3v82cyCjO4Jvr33A58TIqucpEZ9Yb9diZ2+Fk4cTZuLPE58XTxLUJRx8epVhXTGphKnUc63Dh6QWWdVr21lyLX279wvFHx9k7WHKjXBmykv5+/RlYZyAgURsvPL1ATFYMoxuM/tttAdR3qc+68HVo9Bq61+r+1uXf4R3+N3hHnfpPMW2aVHCsW/ePFpcJMnYN2EV95/r02dOHpPykt67jYuVCW6+2zG41mznn5zDijxFvDF9TKVQs7rCYqGlRVLerTo/dPRjxxwiTveO/DRcrF+a0nkP0tGjCJoXRx6cP68LX4fOzDx22d2DTrU302dOHMn0Zp0edrmThpzZT08unF4cfSjqNtWFrORh70PQjZEJGBvToAY6OkiD/L9LZjz48SuNNjUkvSid4fDCzW0kZHZtub2JC4wmvzRhtzrtIig187TZSekGE2OxYkl4kUbNKTVIKU7ieLHGcO3p1xF5tzwC/AazpsQZzhTkruqzAWmnNR6c/wkxmxqGhh7BWWtNqSyvGRyzGTGGOmRHapArM9p/M3PNzmX1u9ht1NdPsQ7hUAxQGI8s7L2dR0CLCUsO4nnydB9kPTBzjDxp+QOrsVCY2noiFwsJk0dm7dh9O1tRT396PJ/YwcfxadrpMpcxQhs6gQ2PQ0NS1KfG58UxsPJGFQQt5mPOQqU2nojPqKvHuQbJdBUlrFPdJHHsH7cVaaY3OqMPO3A6DaOBywmXOxZ8DQCsYTQF6W+5s4fOgz+m/rz8+P/vQbls7inXFxGTF8HP4z2gMGmo71KaaTTWODjtKDbsaOKgdqO9cH7lMjkqh4l7GPaqt8qD9Ahd6r2lJrEUxmVZgkAvkiaXYqeywNJOK/J61erDweU2mR8Ce3RpuXqtNQSBcLBsqjX0FXuv0lQ9wRUSis6JNVInyz0aGDDerigmBP3+fDKIBjVG6Xl7ihJelkTTDKyBHQMDLMAEAp1IBlUHAvgSsS6lEWUookQZWBdoCPmz6ITJBhruNO0MPDSUqJ5ZPYm1pPDCL6NzXaRwCAkXEI74iXBcxUOVFHB7J+ezzLuaaFzRLhRtb4Znt6064b8TL47vrCq0nwfDBMO0WPPgZGjw3MLkvtJkID8p19fKKY1LIFCZLZJA0DTYqG0AqYF2sXAh+FvxGLZTUjRCxM7fDxtyGc6PP4aB2wCAaSH6RbPps5DI5nwZ8CgL83MyI8egRzJ5n0NqjNSP+GAFAjqcjogxK/1S8/vr+rxwZdgRzhTn9giaxrqEGpRFm9YA0tQGvfNjz5A8eRF3id9+F3J8Sybw285jfdj5rw9di9SSZC6tzmXa1BN2ieZzcVEjXGpKA92DsQfzW+dFvbz9+DP2RZZ2W4WrlyuCDg/n49Meo5CoauDQgMT+RajbVKp33mAZjeDxdGlCnFKQQnxfPwDoDCZ8UjoPageDo02xbEkmdfCXdh2iIcNAyWTyGo9pRmrR6+XnJkEl20EYtX3X4ihFrLqGd8TFrzwl0iwOtUYv8peNasa7YRNdZFQBKHQzcNwAHtYOpQCrXE5WLi7vU6MLKritZcWMF+6Nfd+Yrt719mP2QmS1nMuPMDPLK8niY85AOXh24MOYCizssxkZlQ++9vQnYEsCKG9Iz9Puu3+NiKXVB57aaS0J+Anlleey5vwcrpRVNXJvwxeUvcFrpRK89vbiUcIlJjSexuN1iSvWluFq5Mqf1HG5OuolSrqRYV8ztD29zedxlJjaeiJu1G2lFaab77nINWNTbHJlcwd30u/Tf35+skix+7PYjB4dIjl9n487SemtrvFZ7MevsLEKfhVZ6douiyJY7W/Bb58eJRycQEGjg0sAk6q5uV538snxkgowR/iO4GC9Z4kZlREk2xun3SMhPwMHC4a1Fht6oZ9XNVQzzH4anrafJVGJWwKxKy01oNIHz8edJfpH8ps1Ugo3Kho+bf8ym25sq6UHf4R3+DbwrNP5T2NvDxImwfj2UlLx9eaRB9fERx7Ews6D3nt68KPt7C0cHtQP5Zfl83/V7Dgw+wMnHJwn4LYAnOU/euHxth9pcHHORnf13cvHpRfzW+bHp1qZ/RSz+JgiCQAv3Fmzss5G0OWnsHrgbM5kZU09N5VbaLVq4tSD5RfJrovhyEeGh2EPMvTCXOa3mMKjuoIoFioqgd28oLYWzZ98RCIK7AAAgAElEQVSY+q3Ra5h5ZiYD9g+gU/VO3J1yl5YeLQFJVJ5TkmOyKixHsbaYb2J+YWwk1Cm14mDMQQ7FHqJEW0JDl4bE58Wblg1wD6C2Q23K9GWs7rHa9LqtuS0bem/g5OOT7Ivex6nHpyjVlZJelI69hT0JsxI4230XIU4a7p/fxU8tvmT1zdUMPzS8khPTsqvLCE+/hShI9J/hfwxn0+1NqBVq2lRrg63KlpktZ2JhZsGanmtws3bj1JNTdK7RGaNopKpVVd6v/T7RmdE8s5MR6wwZ/t649xrOgNsl6Iw6BvoN5HbabapaVyU4OVhy+BFFTj05BfAaZammfU2slFbcS7+HQiZZ7y7tuBQzmRnu1u7ojXqKdEU0c21GQ+cGEu9fhMWXFzPpxCR+CP2B6Mxomrk1Y2PvjYRMCGHf4H3ojZLD19KOS3lW8IyPT3+MQTSwvtd67mfeZ22PtUSPv0UAHuiMeq6rMzldGzLV0oDa2dKZ7rW6k6/JRxRFGmYraDX2c7ot2UmyLRhkQE4OiQc2M8DmDD19erGt77bXMmi8bSUHnPLBzaswYuR5UeUcnHJ6lUquwtLMErkgx4qalahL0nLS64iQY2OG3FxNjiUUq//6Ubv0ylKMopGB3hLPxVILM1rlkqt5MydeRCRft/XlvypnYVyz30IpepQG6JgAIb/Bzy0krQdCxXn8FeTI6K+Vjr/TU7jrBs0/hI/HOvBBJCSvEVh4TRIb9/ftj5nMjHbV2lWYALwcNFWzroaZzMzEQy/SFpkKtledvexUdlS1lvQrlmaWzDk/h8abGpPyIgW1Qs3KkJW8t+M9nuY+RRRFqphL3r6/+mspVBiZeguuJV+j5CU9rV7V+ox7oGLrcdnLayTywbEPOBN3hqCxQYRNCuO95ypkIlyuLl0Xg5sr28yHE3vMg1EjApHXqUvR8q+5dv8UXi8Ecg1F5KiMpF89hfXXK1Co1Jwfc555redhFI0IgsCJx9KA89bzWzTY2ICgp0HUd66P2kxNRlEGJfqSSqLoOo512BG5g5lnZ5Jfls+VxCsAtPdqj9pMTXPbOnR4bobWoMHoLOV3tJ8A93WplBnKsDSzZFCdQaZ7AiT3pa+vfc03175B/uNPyHr05PgRc+pkSgVGeSGYVZJFVcuqGAQRrQKMhQVcGHMBRwtH7jy/Q0xWDO7W7uyN3svFp5JeZFbALEbVH8X4Y+MrEspfYn/MfkREBEFK9U4pSGFy48m4Wrly4vEJuu7qyvyL8/Gx96GRSyNAoikeH3GcOa3m4G7tjlyQk1qYypIOSwCYdnIajisdCU8Np0BTwLB6w4iaGsWTGU9Y2W0lX7/3Nd+99x1Lry5ly50t1HWqS8jEEGxUNnTa0QmlXMlvfX/jyYwn1HWqi5etFz2MNZGLEOFQZrLU1hv1HH5wmNFHRjP04FCpMHRuwNa+W+nr25d9MfsqFR17o/fSaUcnJp2YhFE0IiIyrdk00grTCE8N59CQQyTMTCByaiQBHgHsjd6LIAh0rdGVtKI0bj+/bbpPyjv/f4c/Yv8gMT+Rua2kLKGTj09iYWbxmj3t0HpDsTCzYMe9HW/dJsDMgJnS8zdi/dsXfod3+F/gnUbjf4KEBKhVS6JQffzxP17tTVqFN2Hy8clEZkQSPlnKQojNimXA/gGkF6Wza8CuSsmsryKnJIf5F+ez5e4WWnm0YlOfTdR3qf+fnd9/AXPPz2XVzVUMrzec0JRQEvIT8LH3YXyj8YxtOBZ3G3cKNYU4fu+IuZk5DV0aEjQ2qOKa6HSSnXBwMFy7Bo0avbaP+Nx4hh0axv3M+/zY7Uc+bv5xpWTYJpub4G7tzsmRJyut993171hyZQl31ulYOaslOzVhWJhZmITUAAvaLKBHrR7039+f/LJ8Pm35Kat6rKq0HVEUabetHWGpYeiNegbXHUzXGl2ZenIq89vMJ7BLIFdu7qP3yZG0yVIxccQPjAueg3cVbwLcAzgXf460Ikl8bmlmyZzHDjRNExjc9jlLOy5l1c1VjKg/gmMPj9HZuzNb+m0htzQXp5VOTGs2jfUR62nv2Z4TI0/g+L2jiUoxu+WnqH/6ma8uGZg6zoG93sUMrDuIPdF7MIpGvGy9+Kn7T4z8YyQag+aNnuqtt7TGRmXDuIbjiMmK4WbKTYISgl77DOSCHIxGDILIt+2WolZbcz35uoniZa+2p2uNrnSr2Y0yfRnTT09naL2h7I/Zj5OFE6ETQ+mxuwcavYaqWjMiyp6i1IODzJI8MwPda3bn/NPzklYm8RqWSkuMhYV8dRU+vQnPnVTcG9yWg6lBzAyHqE1fMyf6R8zkZnhYexCTFVNJ3P1n+Nj7YK4w537m/X+U4fAq/olO4m34c55FMfFk67fy3PzNrm7lFrB9M+woLsonwrsBftoJyBUVmpNRYfc5VheeW0PcatCaQd2PwaEEct7A9CzXT3hrrUhQSl3TodEQ5QIFDpbkKHQYRCNu1m4kFyTTNF1g81GR2i/kbGwhY2VzHU0adie9MJ3IzEjTMW7pu4WBfgOp8r1UFJTTzcphaWZpyquwVlpTqC2UrofKBgGBQk3hm3UdyFAppOwKo2hk9RkYeR985qp4IdMwqM4gSYR85xgjF+zh5rT3mW04jVIh0SJdLF2o51SPrr9eYmwkeMyRLH9B6i7MCZhNw/giSn/dwGc5+5hxU0Qng8ZTYUDdgRwY/rqBxe6o3Yw5MgYRkRp2NXia/xSZIKOhS0MiMyJNJhICAg4WDmSXZGNvbs+ExhOoaV+TeRfmYaW0oo5jHbJLs4mcGgn37jF+eQCPnOXs/fgyQ65N59bzW6aCopFLI0bUH8H8i5IphquVK9OaTWPT7U0m97e2nm050H0Lrt0HkZ3zDL/RL954DyCCpR5CJobSwDuAJpuacDf9LhGTI1hwcQEPsh9wf9p97NX2lOpKabutLbmludyafIukF0l8c/UbU44MSAGeSS+kzr2fgx9xeXF0r9GdfUP2YaW0QhRFFgUtYvmN5cxtNZdJTSbht96Ptp5tTRMh0mGJNHRpyB9D/6Db791oU60NOwfsrHzoosjHpz9m8+3NnBhxgp4+Pckvy6ffvn6Ep4azf/B+U+bFrfdP0LDVAJg9m+R5U9gXvY9DsYe4m37XJMQvz4spL4Y9bT3pUbMHNarUID43nr0xeynSFpnuc39nf9p5tmPT7U20qdaG3wf+btKSlONh9kMCgwPZHbUbwGS/LQgCNarUIPaj2L8cC4iiSPNfm2NnbsfFsRcp0hZhHWhtsht/FROPTeRS4iXiP4lHJrx9HnnG6Rnsjd5L0qdJb8wBeYd3+G/gXaHxP8Xw4fwf9t4zLIqzff//zBaWBaSDoICCYhd7x4a9966xd2NMTIxJjCUxpqiJGhv23nsBFXsXK01RelGK9LrLlvm9GFklYpLn+T7//yvP4+DwcHdmdua+Z3eu676u8zy5f19SoPoAMbk8XIm7Qrc93fikwSds7rO53LLp10Ffc+TZEWJmv11Zz9XkMu7kOE5EnmBB2wUs7rD4b/05ridcZ+qZqURnRfNlqy/5vv33/7+QxQHW31/PzICZrOm+hk9bfIpRNHIt/hrbn2znyNMjaA1aulXrxic+nzArcBZ52jwS5iS85WWIolQ12r0bAgOh8/s9wYciDjHp1CScLZ05OPjge4HyjYQbtNvRrowfCUB2cTaeqz3pWLUjN56cJEstPbrfdbX+o+sfzGk1RyKqbm7G09dPERDYNWAXg+sMBuBRyiPmBc3jUtwl5IKc7tW7mxKaFbdX8FXQV+wesJshdYaw/sJS5t1dioVBIN9MeoCWSjOWcj9OjzhN7yxHls1rxY+dlWzsu5lxJ8exoecGpgdM587EO7R0a8mB8AOMODqCkfVGEhAVQEWrikTOiqTe+npEvI7Aw8aDpNwkenr35EjVeRgmjKNxt3isKnqQoRZJzEtEKVMSOSvSpARWuUJl5rWZR3phOk9fPyXidQRRmW+9C1ytXDGKRtIK03C3dmfPgD0cizzGuuB1GEQDAgJG0Ug3i/rsmXUZRwtHdAYdwS+DOR9znvMx57n/8j4iIo4WEolVLkh+FyIir/JfoTIK9IoUGaJuQq95m6FadeptqEdibiIrOq+gk1cnWmxpzjRjY6xuPyLFXMfVqpJxnVjOIn2pepS9uT3uNu6EpL1dgf2rZ4NCpsBoNJYJbGXI6FuzLyeen+BDqKbuhFv+D2+OKJeqC6LIY8U08oSwD+5XCmvRh4aGDab2q9KqxBP5dPKE8pONChoYHCHxKERBcgAX5XIaJxm47w5VsiHRFuqnwhN/8JkOT52hU7IZGYoSvrgLYwaAk8qe19oslip7skAXQP+ncKIOyEQBhUxOiag38VFs1bbYmduZpGYRYaShNgt2xFIlVcuu5mYsa1FC0pvOSG97bzpU7UBGUYbJnRmkZEOlVJkS+tJ5sDKzorCkkM9bfc7V+Ks8SnlkEl6Y0XQGIK3ilvI43p0/7wx4sRZmDavAutr5HySe/3W/m1sh2UbgwtLxaAwa9oXtM31mG+cmDD2bwMQLGSRVNGdoHw1tE2B9cwiSj6fzxJ/A9S2H7ErcFfx2+ZmO7+Psg1qh5t6re2+vXZCzuMNiDkUcoqptVdys3Tjz4gzxc+JJyU9hZsBMTj4/iZedF3fqr8Z54Bi+6WXOwSYqYj+P50LMBbrt6fZmHGVYmlmRV5Jnus9vTbhFa/fWFOuKWXNvDT9e/5EiXREWSgv2tvmdvkMW8Mi2iGGT7ckyFJBdTrVMhYIlnZYy/9J8mldqzr3J90jOS8Zngw+dvDpxaPAhBEEgKjOKxv6NMWIsszhTCl8PX6Y3nY6fpx8uVi6subeGz859xs3xN2nj0QaQAuj5l+bz263fTOOukquoaFWRV/mvuDD6AiOPjiS1MJXPWnxGRcuKLLm2hFdzX71XBTAYDQw8NJBLsZLpaJNKTdDoNYw5PoajT48iCAKL2i9i4eYXcPGixPmr8LaV1igaOfb0GONOjqPEUFJmYUIpUyIX5GgMGtP8lvp5mCvMTclyS7eW/NrpV3yr+H4wwI/NjsVngw/FumKU8rd+NN723izrtIxBtQe9Fw9cjb9Kx50dTWaJv936ja8vfs2BQQcYVm/Ye59xK/EWvtt9ufTJJfw8/co9j3cRnxNP9TXVWdF1hdSS+BEf8f8BPiYa/y0ePoSmTeHQIRjyzyoP72Lnk52MOzmOZX7L+KbtN++9/9ut31h2Yxk583PKvG4Ujfx681e+u/wdXat1Zd+gfX9betXqtSy/vZyl15dSqUIl1vda/56z6/8aZ1+cpe+BvsxuPvu9CgBICdOhiENsf7KdO8l3TK+XSQgWLoQff5QSjdFliW3FumK+OP8FGx9uZFjdYWzqs8nUB/4uhhweQnh6OE9nPC3z4z3jzAz8H/qbFJvcjFYkywuwN7cnS5NlSo4Atj7ayqTTkzg/+jzbHm/jYMRBZjabSVZxFvvD91PbsTa/dP6F1IJUpp6ZStCYIPw8/QhJDWHKmSk8fPXQpApja2ZNviYP71wFP/b5gxG3P8dgNKCSq9AYNGR/nY2VmRWe31vTLU5GSo+2vNZk4mHjwfPM54ROC0UQBMYcH0NYWhhphWnUdqzN7aTbFH1XRIONDUxSxyq5itz5uRL5PT+fh1+MoKXrWZonQ0R1a/J0+TioHbBSWRGfE28aGycLJxq4NKCuU12yirPYHbqbK2OvMDNgJgk5CbRwa8Gr/Fc8m/kMrV6L60pX8kvyeTjlId1WN+O1sgQzMzWTG09mbuu5ZVb2soqzWHJtiSk5MUGU1HuWRFfGeuIMEqs5kpCTQHRWNMcjj5u8NN5NDCroZBTLjBgEMDOAh7kzUfp0VAbQ/kX9SCGT5FkzijJwsXIhtSCVXt69uJ10G0EQyNPk8W3bb/npxk+mpEk6LRGZIMPKzIo8bV4Z88Ht/bZjJjfjTtIddgVf/1uH7b+u5MPbpPY/roiIUmKh/8v6giCCaz68spa28U01o2lcCXoZrG0JHat25ErcFXxyVEy9pWVmb+gfKXCilsjLFWVX9QGTpKwBAyWGEhpUbEB0VvTboKpyS5LykkjJf0X9VJHDAVYUaQtoNA0cCiHXWokgCCalrtJg2MfZh9D0UA4MOsCY42NMPi8ALpYuxM2Jw1xhTkxWDONPjudO8h30Rj1qhZrKFSqTlJf0Hp8I4M5hWywLtCxb2Y99A/eRp80jsziTtbs/pduaACLmjMRffMCLLEmW3FwHuT9L/IytrVSYyc0oKCl4T2WtdMzt1HZUltuRnJeM1ljCkKfg6uqNQ5N2WNRpwHdXv6dQV0gFswoYjUZyS6TK2LsKSg7mDoxuMJrV91ZzfvR5zBXmtN/R3hR8x2fH47nGk+6pVhzcXkBRTS8OrJrEt7d/JGJ6BPU21qNIV0SXaLhaXY7uzT1Vz7ke4enhBE8KplnlZqbTzirOYsHlBWx8sBERkYEVmrPvu0fsr2Pk/uKpHIk8aiKmv3utpd+dkKkh+LhI/IzDEYcZemQoX7X+iiepT7iWcM00twICckHOt+2+ldqqTozHwcKBUyPeerAYjAZ8t/uSXZzN+l7rCYgK4HjkcWKzY03qTA5qB8Kmh2FrbkvLrS3R6DVMbzqdL85/gYjI+Ibj2R26m+VdlpcbEBfpivDb6Ud8Tjx3Jt7B086TopIi3Fe5k1WcxXfVxvPjmO0ImzfDpEnvzzMQlx2H3y4/cjW5ZGuy6VezHzcTb5ra//4KmSBDrVDTtFJTXmS+IKUghcoVKjO4zmCG1BlCK/dW7yUddr/aMb3pdOJz4tkfvh8ZMjztPInJjqF55eb82vnXMkqTvff1JiE3wfT732BjAyLSI9Au0Ja70CiKIrXX1aZJpSbsHbi33PP+Kz45/glX4q8QMzvm/2zI+xEfUR4+cjT+WzRpIsmtLl8urcD/BxjbcCwL2y3k28vflkusc1A7kKvNLaOrDtIP2zdtv+Hc6HPcf3Wfppua8jjl8Xv7l0KlULGg3QLCpofhZedFj709GH5kuMkr4n+NRymPGHZkGH1q9GFF1xXlbmNjbsPkJpNNBlBt3KQVrm57utHIvxGX5w+Tkoxff30vyXie8ZyWW1uy/cl2/Hv7s3/Q/nKTjMTcRI4/O86nzT81JRnBL4PpsqsLGx5uwIiRuk51qaRVkiNo6OTZyaTiNLHxRAAyijKYd3EenzT4hK7VurK2x1p83X1Zd38dx54dY3X31YROD6Vvzb50rdaVGg416H+gPxVXVKTxpsZEpEdgY26DUq7k3KhzZM7P5nKfIyRZGZh8aTYKUVKy0hl1uFVww9bclpORJ0k2K2bo/SLOxZ5nSB1JCnFK4ykIgoDBaOBc9DkauUik9y5eXdAatERlRvE0/SkAjV0aozVo+f3O73x/+XsGBY5jhM8L9DK4XQVydRIfI6M4w0RMXdB2AQ0qNkCj1zC/zXxWdV9lepj33NsTURS5P/k+M5rOIDIjksTcRGKzY8nR5IAoJc5DXTtRJQfmeY9jT9geqq2pxtjjYznx7ATzguZRb3091txbg1E0Ut22Gg68ra5FOsOw1i/p8ew7pp6ZyprgNZyNOitxOixdEEURyxIpyAbIVxrRy6XgWKsAhZ1EqBwdAmPCJfLl3FZz6VG9B1ZKSaoTpIDXXGHO2aizOKgd8LLzorZTbX64/oMpIFTIFMhlchq7NMYoGhnXYJz0uqAwjdfjlMeMrD+SJpWakCeEEqaYQ7gwkDDFHFOSUd2+uilY/ytKK2d/y/F4B6VmdwLQ+M1Xt0G6jFrFVvQsrMzqQKjxJhZyMVqQJS9hW2MpyQDJPwEBoqy0/NFKeu2xq/S92NoIHLRyXJRvFyw0Bg2NKjUidrakdhWSFlJm5Xpu67lEz45meL0RhLhAnUkaOk82o1IeJP0Buw/qqJ0sBaJNXZuS+mUqHtYehKaH0silEZ29OkttfojUdJCEH1ILU3Fd4cq3l75FKVfyMv8ljVwaUc2uGsX6YuJz48tNMgCW+uRQP6GYmtE5JOYmYmNug5edFyMGLWZ9M/gmfR9RWVFYmVkhF+S0SAYzI/gMnknTSk3JL8mng1Nz9j/0InINbD4JPVT1SicErUGLhY0jLWv4oTOTc7ahJYcsE1gatZVZ52ebfquzNdmmJAPeclF8nH2oYF6B1fdWS8T0R5t5kfkCe7U9v9/5nciMSM5EncEvFs7uMpBSw5XqvWLxj9hFsb6YpluaUqQr4jOvkRQry3gymngvr4telxkTe7U963utJ2Z2DI1cGnEsPxivOQIdY4xY/LmBbE32e2TiMmN6YylRmVHsfLKTTY82IRfkLL+9nKDYIJwtnJnTYg5+Vf0QEZnWbBpLOiyhhkMNBtUZxIWYC+RrpVY4rV7LhZgLuFu78zzzOZ12dWJP6B46e3YmcFSgyZ26WFdM3wN9yS/J59DgQ7zKf8Wd5DvYmNvQ1asr259sx8PGA/+H/uUa4FooLTg94jQVVBXovrc7mUWZ/HTjJ/K1+cxu/ik/xWxnylh79GM/bPLqaefJjfE3TKanNR1qolKoMJebY6m0RCbIyph5GkUjxbpiriVcI1+bj19VP+o41eFA+AF8t/vi8YcHnwV+xs3Em6bvfGFJIW7WbuwduBe5IMfJ0omUghTM5eYk5iTScWdHk9/R09dPORt1li9bfYkgSFXjiPQIajvV/mA3gyAITGw0kaNPj37Q9+Sv+LrN1yTnJZtauz7iI/7X+Jho/F/w5ZdS+9SNG/+87V+wuMNiRvuMZuyJsdxKvFXmvVIjtQ+Z4XWt1pWHUx5ip7aj9bbW7ArZVe52pfB28CZoTBB7Buzhctxlaq+rzcYHG/+nZPGk3CR67+tNHac60o/o37R1RWdFM/bEWAbWHsiNCTfo5NmJhhUbMjTGnPa/HWJtCxlDqgYTEBVgSrb2hO6hyaYmaPVagicHM6XJlA+qdWy4vwErMytG1h/J4YjDtNnahhZbWnAx7iICAr29exPxOgJvnTVHrlbkUtwlpjWRzAFL1b3mX5yPUTSypP0Sfr35K9X/rE5IWghjfMZgJjPjt1u/MfbEWGqurYnnak+iMqMo0hVR3a46lz+5TPbX2Tyf9dwkeVmsK6Ztk4F0rNaZHDMRjbGEL2tNwMrMipf5L9n+eDt/Bv+Jr4cv9/s1RaUTMWRnoZApTHKF91/dNwXNtipbvO29AeiyuwtGjMgEGY9TpcTz28vfsuXxFnI1uZjJzVDKldSzqYGLRknAXlAaBYKTpNaO2k61uTlBWlntsbcHO5/sZMeTHYCkZR88OZjaTrXp5NUJuSDnfPR5Fl1dhLuNOz/6/cjvd38n29WeWHswPLhPO4922Khs2BW6i7EHF3HuemWq5myivn4VdmIDclPiEArf+kpUMKtgUsQpnYNCXSEKZCjSXlM9CwrNYHzD8dSVuVK9dIHxjYrTs4xniIh0TbNke5wP+wbtY0XXFQSMCiDz60waVmxIw4oNJcWoN4ZW0dnRPHj1gLD0MBNBVoYMnVHHjCYzeJrxlFqOtbgcJ/VBu9m4mRzkd4TsMCV9pUmAGXJkRpAZJb8RpUwpKS39hXD+rjt4ATEmMncpRAxoZQll1JtKze5+vCgZ7JkbZLSLM+KYXsDeNS+poJdxw0va/tdTRTzZCKPedF7JDFK1o0EKfHEbHN/w4rOdpGBqYSfIMDeQqst69yR4kvqEeUHz3gxz2YpSUEwQSpmS2k61cTB3wK+qHxmKEl5aQ5Op4J4jtW2d2QvKew9ou72ticD99PVTNj3chFE0MqHhBJ5nPqeKTRXkgqQ6teruKqqsqkJsdiyPUh7RxLUJI+uNRBRFvO29TQaZpRAQCPCGaDuosf8CVVdXpcWWFnTa1Ym229tyoYacJVdgYmFN/uzxJwbRQMdEGdlqgU8TN/Jl6y+56/0bOxc/oV9gLP5NYXofgXPaCL5s9SUvZr1gXINxhKWHcTXhKm08fMkUC5k/9E/cHCRRgRqZoNaCmUFA/mbeSs39BAScLZ1xs3YDpET2yNMjTD49maziLI5FHqP2utoErv6Us3vhklsJ/ceYUblSDWKzpEQvqziLpq5N2ZcUwL3KYMDAgFoDGFl3pOn3IDS1/FY7TztPHk19xM5+O8myklNrFrRKgiHRKmY2K4df+GaaDz89TI21NRh3chwXYy9io7KhglkFmlVqRtycOIbXG86NxBvUdqzNlkdbeJTyCIABtQagNWhZeGUhI46OwHmFMz339eRRyiNaubVCLsgJHBWIfx9/ulfvzr6wfdRyrMWN8TdIyk2izbY2KOVKNvXexKGIQzSv3JzgV8Gs77me2OxYIjMiuZZwrdxrdbJ0InBUIFnFWXTc2ZFfbv3CwvYLWZ3vy87jsMMrlwFHBpfb7lUKN2s3dg/YDcBvtyVDO41BQyPXRhwbegwvOy/UCjXdqnWjlkMt0zOoQFfA1firBMUGkVaYRg37GrjbuLM/fD9tt7fF/Q93Zp2dhc6oQ61UIwgCcpkcvVFPwpwE5raeS6GuEKVMyZ2kOzTyb0Tf/X1xtnRmRH1JTe3Ys2MYRAMj6o744PkDjGkgVQv3h+//2+1KUde5Ln1r9uXXW79iML6/MPIRH/F/xcfWqf8LRBHq1wdPTzh9+j/eXavX0nVPVyLSI7g76a7JA6OUX/CumV15KNYVMyNgBjue7GBG0xn80f2Pfyx9ZhVn8XXQ12x5vIWWbi3Z1HvT/5ksnqfNw3ebL3naPO5NumcybCsPRboiWm1tRbGumPuT72NjbsOG+xvYs2kWN/eqKOnix8Z5fmwN3UFYephkOmfhTGh6KGN8xrC+13rTilN5KNYVU/n3ytR3rk9CbgIJuQk4qh3JKJYeyA5qBwpKCljWaRktFm1G/jSS0JP+VLevTqddnYiZHUNqQSpttrVhjM8YrsRfISU/hb41++Jp66it/ocAACAASURBVMnt5NsEvwzGKBqRIaN79e5MaDSBjp4d2fhgIwuvLCR4cjCNXRsDEJIaQpttbehevTut3Vsz98Jc1HJzSnQa2qQquVXJQEv3VtxKkpLNfQP3seDiN/jeTqZ1TgWuTevBt22/JSI9gnX313E3+S4yQUaJoaRM8Ffq+/E88zn1nesjE2TcnHCTc9Hn6LG3B/69/enl3QufjT60L3Jm8LFIRg0C22L4ZfBGpjadis6gY/Tx0RyKOIRMkOFi6ULX6l35xvcbEnKksVxybQl6o57UglQcLRzJLs5+rxWqVN3IQWhCXd1q3uUwiIiECdPJlYejVqolJRxBxvSm0+ni1QUblQ2fbhlIv3AdscoCgmopyVDqUMgUiAYD/Z+KHH1rsGyCUqZkfVwdJu19Bvn5YGZGUm4SAVEBzAiYgYXSwkTibOzamLC0MJPkp0E0IBNkWCgsKNAVULlCZTR6Dc0rNycwOlCSbRVkjKw3kr1he9EZdfzU8SdW3FlBtubNqqGRMss2DmoHboy/QUBUAF8GfVnuvfphjsY0k5GglZkVaIrJl+nxzoAoB5gaZU21uDzGhsAtdxg0HJw1ctLUBlYFQO9oqDtDckevngmhrlAvBV5VtmRggxFsebyFShUq8Sr/FX90/YPHqY84HXGcYl0hZiUieW8MEX3saxNajrwuSAGzmdyMYl3xey1HMmRUf21k0xlonwAhtez4qmk2QdWkNiStXks1+2r0r9WfpdeX4m3nTVxunKk33s7czjSuZnIz9EY9X7f+msUdF9N8c3NC0kJwt3bHUmlJelE6WcVZ1MiQZHxH/dCAoILQt+ckQugGSGzizVDfl/Ty7sWmP+O5/foxY8ZVIL84l6P7jdRTVqZbx5dkukktlDJBxqnhp+hVQ1ICyyzKxP+hP2vurSGt8K1ylJncDJ1Bh4usAilGqVq4+rYNm1uryFXLSCpOldyka/bjQswFkr9IJj4nnm8vfUtgdCAA64r8mLTyMsENnAhe8TmvDXm8zH/JoYhDH6zilAcXSxc8bD1wUDtgr7Z/+6+FA3bmdhyMOMjp56dBgKn34Zm3Hddts2nq2pQHKQ8+OM+/d/2dWc1ncTvpNu12tGN+m/nsCdtDpQqVOD/6PJ13deZl3ku+bPMll2IvERAVgIhIQ5eGDKg1gAG1BlDPuR4lhhIab2qMpdKSOxPvkF+Sj+tKV5Z0WMK8NvOIzY6l255u5GvzCRwVyIYHG9gVsgudUcfaHmsxV5gz4dQEvOy8iPo06oNciOvx1+mwswM2KhtSZsZh7tMI6tXj3B8zGXxoMPUr1uf0iNOmZLAURtHIxgcbmX9xPvkl+aYWx89afIa7tTvfXv6Wuk512T9ov0mCXW/Ucy3+Glsfb+Vq/FWTuMe7sFJa4WHjwauCV+RocrAzt2Nk/ZEmtafns55Tw6EGOZoc/rz3J3/c/YNcbS5G0YhckPNp80/5rt13jDgygotxF8n5OqeMVHx56H+gP0l5STyc8vAf7xuAu8l3abW1FUeHHjV5c3zER/yv8DHR+L9ixw4YPx4iIqBOnf9496ziLFptbYUoityZeAcHCweevn5K3fV1uTH+Br4evn+7vyiK+D/0Z3bgbJpWasqRoUf+0RQQpGRm6pmpvMh8wdxWc1nYfuF/pTqhM+jovb8395LvcXvibeo4fXgMRFFk/MnxHIo4xL1J90wJTvqjm8h822Ko5U3FWyGgViOKIocjDjPt7DRT0NHarTUTGk1gaN2h5TqpRmdFM/X0VC7HX0YhKGhftT1PUp8gCAKWSksSchNo7NKYXQN2se7+Oqou28DUJGdsEtMIfhlMiy0tuD/pPkMODyGlIAWtQYuLlQt52jyKdEU4qB3o5NWJzp6daeHWggWXF3DmxRl+7vQz89rMQ2/U02RTExQyBcGTg1HIFIDk8THg4ABAIlYr5UrWt17G0NNjKFKIXGu3gy+i/uRhykOTUk1znTO5uelEO8kwvKk8vcs3GN9wPMl5yQTFBiEg8GvnX2nj0YY229rwecvPWRu8lpjZMbTc2pL6zvUJHBWIIAgcf3acgYcGsqnWV8Tv/pNlzTT013oxfuwfXIy9yJZHW9AZdOhFfbnEWjOZmSlAt1BaUKgrLFsZE8FZXoHqleojT52MTFPzPQ5CvvwRz5RfcXnsZVptbUXDig15kfWCi8MDePX95/Q89BilswuK1X9iHDiAx48DOLV8MiurpVFYTh5dx7EOzzKe0eO1LWfXZfPLmqFsF57wIvOFaTV+QsMJRGZGkqvJJTE3EbVCbepRV8qULO6wmIevHpp8XUrhaetJYm4iBtHAmRFnmHJmCq/yX5lMz8qDg9oBAYE/e/zJrMBZ7/V4W5tZU1BSgBFjGdWpd93KPwQ7mQW+z4ponQgWJfBFD6mlLGItVJ8De45K7VBXvMDyTYxaqHpblQiZGkJD/4amQHxDrw1o9VrmXpiLu407XeW12JRxDgEYHQq7G0jHKOWa+FX1497Leya+RineFVN4916oICpplAL1XuqQCQJ3Kok8dAVLlSU6vQ5zM/MyHBgZMnwq+pCjySE+Nx47czvytHlYKC0YXm84Wx5tkRSAsmM4M+IMNuY2tN3eFkSolg0dYmFPCxWOFo68zH+JWwU3Wt9O5lYV0NvZ4N9vC31bjuXlkO74uB5HRCRfJWAURea2+RL/h/64WbvxIvMFBlGqHCzrtIxajrXQ6DV8fu5zNj7caLpEhaDAIBpwt3HnZd5LZlcdhir0KSstnvBgs4CDT0taNnxAsoXEUXky7YlpFfx24m02z+3A5qM6DteFmD8W8l2nxcTnxNNuRzuS85JNnyEiYhANdIqBdd/cQGtvTVZxFplFmUw4OcHkEVHbsTbeDt5kF2dL7xdnklmUWYbgLDOA+CZG/6uQgkIH+jfdQaXKYAICc1vNZVbzWawNXsvKOyuxVlkTMDKAey/vcSDiAMEvJYXEth5tsTKz4mr8VbK+zsJcYV7m+HeS7tBmWxtWdl2JhdKCGQEzSPo8yfTMSi9Mp/e+3kRmRHJg0AHmX5pPXE4clSpUInJmJCOPjuRAxAGG1R32wcr5Nxe/YcWdFRiMBmbJW7F6yT2E8AioWZMHrx7Qc29P7NX2nBt9jqq2VQEITw9nyukp3Em+Q12nukS8jsBB7UBl68pEpEdgEA180fILlnVaVsb49a8oKCngYPhB9oXv4/7L+yY1tXdhp7JDL+pN7/l6+LLMbxltPNogE2Tka/Ppd6AfV+KvmPxpzORmlBhKcLRw5NXcV+8d8684/fw0fQ/05fHUxzR0eV+xsTx03NmRgpICgicF/6O3x0d8xH+Cj4nG/xUlJVJFo3t32Lr1vzpETJYUENZ2rE3QmCByNDm4rHTh5PCTfytl+y7uJt9l8KHB6I16Dg05RLsq7f751A0lLL+1nB+v/4hrBVfW91xPD+8e//q8RVFkyukp7AjZwfnR5/9R5WLzw81MOTOFXf13MabBm17Z1FRo3Zo4TSrfLmnL/snnEUWRHU92MDNgJl52XuwesJsXmS/Y9mQbQTFBqJVqhtQZwoRGE/B19+V64nX+uPsHp56fkkzs7Dxp69GW7U+208a9DSn5KcTmxNLLuxfHhh3js8DP8H/oz72sgTTbfRmyskzKMe/K3JrJzWhXpR2dPTvTpVoXGro0LLOKZhSNLLqyiKU3ljK83nC29t1KeHo4rba24pdOv/BVm68A6SHWZFMTSgySxOW+QfuQCTJWXv+V4LRHqA1QrCg7VhXNHelzO5PGVVpSb+6v2KvtqbehHmMbjGVP6B66VOvCpdhLOFo4klKQQszsGKrYVMFlpQsDag1g86PNdKjSgYcpD9k9YDfF+mISchJIzE3k9IvTJOUlYaFQU6R/x2NClAzRKphVQGPQlPH7AIncaqm0LKN2Y6m0pJVbK1ytXNkdtptG+VY8OlGRjd3s2WW/EBXO/BVa0rmj6IOnradEinauT25aPGGvI7i4XcSsWw/qrz0EVlYQFAQjRmCsYMXPX/uyIG3ve608pZKUgs7Aje1wvK0DOSMH0aVaF0JSQ1h9bzVh08NovKkxWcVZTGg4gd+6/EallZUwiAYMosGk4jLtzDQ2P9pskiR9l9DrVsGN9lXbszdsLwpBgV58K4npWCzwWi0JDHSr1o3zsefL/Q6UG5CX837p58qNb/xB3sC2GCx0kGEBJW/uGYciaJAKl72gfSzc8gCjQkoS3yW3A6aARa1QozVomdBoAt2rdWfw4cHUd66PzqjjdeFrMoszTeNsXwjrAmDMQFAolGjEt0Fr6TZVbKqQUZiBpZlUZfC09SQhN0G6VhFsZGrQask1K3vtMmSYK83R6rVUUFUgV5OLiIhckIz55rWeh0avYdOjTay4vQKtQYu92h5RFHk28xm99vXiUcojREQ8ciHNEizU1mS/4SLZmduhM5RgllvIwmBzjlfRcPWNzcDtzrXo2i6eQqMGmSDD2swabwdvLo+9TGxWLC23tsQoGtEZdfSr2Y/w9HBismPKzF/p9csEGVVsqvBnjz/pe6AvS9t8zzexlWHTJvYXP2DkG72Q7hV9OTlZcs9m61aMkyexp6GM8X2MGGVIxprZMeRp86hiU4W4nDjUCjUCAmOsWrE7/RIODm5s6L3RVG1ptbUV1mbWXI6/jMFooLFrYw4OPkg1+2ok5iYy/+J89ofvN/22mcnNqKKuRGZ6PEVK0Augf3MvqeXmmBVoyC3fF/U9lLaGOVs6E5YeRiu3VnSr1o3F1xaztONSetfojYOFAw5qB9RK6aCzA2ez9fFWajrUxLWCK2dHni1zzIKSAgYfGszluMv80vkXvrv0HRqDhnOjztHYtTGVfq+EwWhgtM9otvfbXibZuJd8j9bbWvNDhx9wNKiYdv0rVhS2Ye5vN03bRGdF031Pdwp1hZwYdoIzL87w661fcbFyQW/Uk6PJobFrY5Jzkyk2FJOjkXx7To84/R+7aCfmJrLl0RZOPj9pSlj+On6l/AtXK1cG1R5E75q9GXZ4GJ/4fEJ1h+r8fONnUgslLo653JxV3VcxodGED0riglRpcf/DnSF1hrCmx5p/da7no8/TfW93gsYElev+/hEf8d/iY6Lxv8Bvv8H330N8fBnZw/8Et5Nu47fTj0F1BrG973ZUP6nY1ncb4xuN/9fHSCtIY9iRYdxMvMnKriuZ3WL2v1qZiM6KZsbZGQTFBjG07lBWdVv1Vmr2b/DLzV/45tI37Oi3g7ENx/7ttg9fPaT1ttZMaDiBDb03SC/m50OHDpCaypa1E5kZ8Svxn8Uz7+I89oTuYWKjiazpsaaMLG9SbhK7Qnax7fE2YnNiTYFTDYca9K3RlxV3VuBh7UF6UTpdvLoQGBWIhZkFlkpLYmbHMOfcHDY/2szanmvxuPuMoMC1BHavTlR2tOkzvOy82NhrI74evqaH49/hyNMjjDsxjhoONTg+7Dir761m/f31HB92nFf5r5h7YS4lhhKK3w3qkdqdFIKc4pIijAJsbvA908N+RiaToTPoOJjXjSGrLkBoKNtLgpl4aiK+Hr6EpYeh1Ws5MPgA085IFZ/1PdeTkJvAntA9pBSklNvSopQpUclViIjvrUgjgnOxQFXXOnhUri2RNzOeExAdgJu1G+082nEt4Rov818CUkC0vMty2lZpi+J1JuLJk9SN/YJI80IWXIUfO0Jv/XaKhDoYxXc/xkChIoSV4+qw/v56DkUcwloj8tld2OcDL+2VPJkZTg0Hb/jtN8RvvyW1VX269cjgmSGNTl6duBBzocy1vZsAAdgbVHRtMICuXl3ZHbqbjKIMEnMTKdIV0cmzE4GjpZYV15WuvC58zYBaAzgeeZwjQ4+gkqvoua8nIHkVPEl7YlIks1RaYqG0eI94qxDk6I0GBMBKC1olVLRzJzkv2XSepQnq3yUZpVWDOo51yC/JJykvCUEEpV7yw7AogSIzSWVKFKQ5a5UENTMgrqKSa5XL9wspvQ47lR05WknJzlxh/t79WOol0sWrC0GxQabXB1OXybsiSLKBSf1gwjM1DgNHsfzZFgQE1vRYw+Kri03JiUKm4NTwU/TY1wMHtQOZxZmmlX+XXJGvb0GDdHhcEY76yLnnasQolxrI/hqIlZ6rk4UTSXmSm/pfE826TnVpX7U9106vp20SbGwGPar3YEG7BUw6NYnIjEgpYSqC/jEKhj3Wc62eFT83LECUSfdPqfHa/oH7GV5/OCDJ1nbd3RV3G3ficuLezLUCI0aMopGqNlXJLM6kqm1VorOi0Rl0GEQDFS0rcn38dbwdJA5V2z8bIUtJY+TFND7tbqRxjpqLBYOw2r6HrHHDcPQ4SBW7qoxvOJ4l15eUSTQFBNRKNdfHXadJUDjxc8YxbU1XzsdeYES9EazqvopJpyZJpOwm0+i7vy9mCqndzNHC0UQWr2hZkXENx9HZszMyQcbmx5t5fuEAtTJhf33pXlLIpOR5ZnpVaoSl8Fknrem+VCqUpoUHmSBDFEXcrN1o7d6a/JJ8MosyicuOI70o/b35eXceHdQO2Jrb8iLzBTqjDj9PP5pValamzctebY+1ypql15dy9NlRRtUbxd7wvdR3rk/o9FBGHB3BtfhrpBWkMbz+cHb234lCpkCj19DIvxGWSkvuTrqLYuanfJe4nWXNtewftJ/h9YabziW9MJ2229sSlRmFXJDTyLUR91/dp12VdmzouYGZgTO5Gn+VbtW64d/bn1mBs7gQc4GDgw/Sv1b/D3yD/x4PXj6g2ZZm9KvRjzvJd95T/Sr97pRWn8Y2GMuERhNo6tqUTrs6cfflXdO2HtYerOy2slxJ3FLMvzifTQ838Wruq/cqS+VBFEWabGqCvdqei59c/K+u8SM+ojx8TDT+F8jJAXd3+PRTWLbsvz7MoYhDDDsyjO/bfc+qu6tY2H4hX7Yuv7/7Q9AZdMy/OJ/f7/7OyPoj2dR7079qiRJFkf3h+/n8/Odo9Bp+6fQLU5tO/WAfbKmfw8J2C1nSccnfHjurOIsmm5rgaOHIzfE3pdKzTge9e8Pdu3DjBvEe1niu9sTVypU8bR7+vf0Z5TPqvWO9LnzNxgcbWf9gPakFqVSuUJmMogy0Bq2p1F/TviYqpYrw9HBG1x/NrtBdbOqzidORpzkddZoa9jWIzYlFb9RTQQMF5gLWKmtytbnYqGyInxOPrbntvx7vqKwoAqMCWXp9KUX6IlysXEjMTTRtU7pqVc2uGiWGEgpKCrg67ip99/elb82+HA47yOuCNNzzIMFOxuTGk9n4cCNuFSqz7qQembsH3/vqeJX/yvRwKs9gzkxuBiKUGEvKvC4gUNGqIh42HrhZu+Fu7S4FiMFrkGwRRGQGkVoFKu7467FcuJQbQ1qwN3w/mx9vBqQgxK+qHxdiL9DarTX64gLuFY+GEyfgzh0QBPYM8mZM3ecAfJvfkOGzrvH59khEgxGjIAPRgFEQiZDPQqVO5lhqB+wOn+anZhr2NRDQCyK25rZYKiy5e98Ht4OB/NnPlc8apOBu54HOoHuvB7qWQy3cbNyY1GgSw48O56dbauKtdDzu0ZCHrx6aAp7ajrXJ1eQypM4QVvVYRa4mF6flTtir7Un+IpmRR0dyIvIEh4YcYujhoXjZeaE1aFHIFMRmx5oShKQ5SXTZ3YXIzMiyN8Ibbop7DryyETAIbxKMv/F1KIWNyoZifTEqmYp8XT4/dPiBNfdW89NFmNMsk2KlxHufGqKkZbwO/0Zwp8qbuX2TdHhnSvyN0s8rTcA/BGsza0qMJdRxrMOIeiP46uJXqOSqv+UE1M+QY6uyIVrI5souGfWmGtDL4fiw4wS/DGb5reXoRT0CAkPqDuFQxCHTvnJBjk9FH5NYgUeRks13nOh08xW5Nip+aaZlQ1MoNpcCbJVcxb6B+zBiJDkvmRW3V5BemI5RNJabjJSiTjpYmFnyxF6LmcyMIn0RP7T8loq7jxOd9oyjdQVi7USTSaC7tXuZBEYmyNjZfyejfEaRp82j6aamRGVFAVKwXsrP6O3dm9+7/U4j/0YU6Yq4Nu4aO57sYFfoLqyUksfFwNoD6ePdh7Enx3J4yGEGenTj56Xd0QTf5scrkGlnjsO0zzFTL8fhjb+Ms4UzKQUpZRLULl5dODf6HGzYALNnI5aUsDdsL3POSV4/btZuZBRl4G7jbvKrKa04AgyrO4wtfbawP3w/6+6vIyQthOr21bFR2dDwRhS+4XlM7SNQxak6CkHBs4xnLLsEe9vZEmGW894Yy5Axsv5I9oTtKVN1L61w7wrZxaA6gwiICuDsyLMmueHSVq+s4ixOPj9JUl6SJAQgk5NZlPm3hpmliZePsw92ajuuJVzD192X28m3aVqpKd+0+YbDTw9z+OlhLn5ykda51igaNUFcvpyxnk84GHGQ86PP06FqB7KKs5gXNI+tj7eanhkquYrlXZbT2aszo46NIiw9DL1Rb+JP6Aw6Rh0bxbFnx9g9YLeJoP2f4HrCddrvaM/zWc95kfmCPvv7sKT9EhZdW2SS+f3rOBsx4qB2MFXZ1/Zcy5KrS0yeMnUc67Cu17oykrileJH5gppra76XZP0dSqWM/yqX/BEf8X/Bx0Tjf4W5c2HbNkhMLGMG9J+itErgaOHIpEaT+Lnzz//VcQ6GH2TCqQlUs6vGsWHHTETzf0JWcRbzL85n86PNtKjcAv/e/jRwaVBmm5uJN+m8qzND6w5lZ/+df1s1MYpG+uzvw93kuzya8ogqtlUkEv24cbB/P5w7h9ixI5sebmL62elYq6wJnhxMDYcaZY4Tnh7Oqrur2BO6B5kgY2yDsXzW8jNqOdbiafpT+uzvQ2xOrGl7azNr5rWRKiPJ+clo9Vp0Rh0WSgu6eHVBQOBi9AUoKmJ+08+oVastgw8PZkrjKfj38X/vOkoTiqevnxKRHkHEa+nvReYLU6++o4UjeqOeXE0uvu6+3Ei6gRw5bjZuWJlZcW/SPfK0eTTb3AwnCyeepD1hVP1R7A3byxDvfhx+cRKFEQSFAsObVdN/i4YuDalqWxVnS2c2P9xscre9Of4mzSo3e08kYFfILiaemojeqKepqyTxGZX5gqZ5Vtxclc/1KjB/jCsv1IX4uvsSmRFJUm4i3gZb5j5QMqlZCq/XmOPQrhv074/Yqxcz7y1iw0OpWrU+SMX0wNeEZcGeAw95kVpAXIU4WueeY/G2c2itzKmUVsShDo5830EkRsykd43eXI29TIGuCJUBFAaJXwCS+lVnr86EpoZyK/EWFmYW5Gpz8bLzQi7I2dJ3C+13tCdEOwHv5dvo69+Bu2kPKCgpoLFLY9IK03iZ/1JKmDz9kCEjKDYIhaCg8DuJZzLo0CCCYoOo7VgbG5UNd5LvMLTuUHaH7jZVG6xV1uRp88qMpWCEJlo7Hqizcc+BpH+XowJSAjes7jD2hr2VlnSxdGHQzSz6hpfQbQzUTQXfJDhaBzIspeSicoGMVAsj9QyORIsZFHygbdxCYUGRvuhfOZ8rZAqszazR6DUU6ctX5lEr1OgMJThpFeSLWjrGwZXqMpbQkS8VlxDB5JcBUoD4fbvvWXp9KeMajmPL4y2m121UNpjnFPDNpRKmPhIoUslY1czAmhaQYylxNR5OfsiOkB1MPDXRFHhVtKzI/cn3+ezcZzxKeYStua3JkLFKNtTIgrBadqTq3pf3dCxE8o9RFJTh2XjZeZGYk2hqh/Owlsi7eqPeNHalyVu/mv24HHeZEkOJKTGb3Xw2a4LXsLr7aiY1nsSukF38cfcPXmS+wExuxq7+uxhcexDypT/B4sX87AtL28O6iyrG95CO0cjck8eaOMkoUZBT2boyKQUpaPQaxjUcx6Koynj8sJqQ59e5GHuRgOgAbiTcMCVevWv0pn/N/mRrsvkq6CtT25ytuS16o56CkgJ61+jNzGYz6VKtC347/Qh+GczcS8X0i4QBM+x5ZZTahEREPHLgtZ0ZxeLbhNVcLq2MawwaHC0cEUWR8BnhuFi5AJLASYedHYjJiuF10ety23AMRgMeqzywUlrxuug1z2Y+o6JVRUki+B1uSWlicjzyOCefnwSkqmxr99bcTb6LXCZVov7a4lkK6xIZDs4e2JrbkZCbQJ4mj2aVmxGaForeqMfT1pPIzEhTxbJ/zf5ciL2Am7Ubq7qtoue+npwafoo+NfsAUjvSpFPS3G7us9kkhf5vERAVQK99vUj+PJmLsRcZd3Icmu+kKkwrt1b80vkXZgfO5kDEgQ9ywKzNrBlSdwiVrCqxO3Q38bnxADSv3Bz/Xv40dC3Lx2i7vS1qhZoLYy78q3M0GA3UXlebes71ODbs2D/v8BEf8S/wMdH4XyEpCby8JF+NOf+9w2bpqtDWx1vp6d3T5Db93yA8PZyBBweSXpjOnoF76F2j97/e92biTaaemcrzjOd80eoLFrVfhKWZJVGZUSaC8fnR5/+WGAew9PpSFl5ZSMCogLdmgQsWwE8/wb595A3sxeTTk01ShuFp4WTMy0CtVGMUjZyLPsequ6sIig2icoXKzGo+iylNppiMCg+ES+1DeqOeYl0xRozYq+3J0eSYAvVSoumi9ovwsPFg0dVFpBakMt1rGN9P2UuFwEvUD5lKTFYMf3T9g67Vu0qJRHoETzOkxKK01A9SQlHXqa705yz9W8epDk6WTuiNer668BWr7q0CpFUphVzB1CZTydXkEp0dTXRmdLll8/LaDRTCmweO8CY4M7dhTfc1uNu4s/z2ciLSI4jLiSNyZiQ1HWuaKk11HOsQmRnJxl4bmdxksul4Gr2GOefm4P/Qn7E+Yznx/AT5JfkmYzoAP3l1AtfmoNSLDP7UmeySPCbeLGK0XzZqHWzNasvIijc40Gcnwxp/glE0MitgFhsebMDO3A4PC1depD3lictiasxahBgdTbcfvMl2c+R2fCeU+yXvmNBvJjDW4xFP0p4A2sW58wAAIABJREFU0EZVgwcFL9AqMVUIGrs05ie/n+ju3Z2FVxby4/UfOTDoAKdenGJfmMR1kQtywqaHUWtdLa54/UCHTxZSfzoU1KjKy/yX5MzPQa1QY7HMgm7VulFQUsCluEumMRlYeyBD6gyhrUdbJpyawJW4K8hlcua2mstvt36jXZV23E2++367WSmMoJIp0KJHbgB7rQCOju+1WIGkQFOgKzD9v4pNFTpW7cjOkJ2mVds+kSKbTkHD6VJr1LZzZmgMJbScCK9sQCEKFCuke2VYGKw4D8O+q8Ft7Yv37iOVXGVSKFPJVSxuvxj/h/6mAAXAyszKJOtcHkrPq5tXN3xcfLgQfYGQ9BAwQs8oCHGBXHNMyY5XBQ+qOdU0CRVYmVnR2r0152POm85vSO0hnHpxCq1BKymBqb3YFl6N6vsvIMoENjQR+b0VFDnZkKfNM12TgMCmPpsYXm84FVdUpLp9dULTQlnUbhG25rZ8Ffg5casgwBv+7G5HjahsjtWFbpXaUSVDj0fgbQK8Ib5OJYr1xW9Vw/4BpSvfjVwaETAygOisaPx2+Unqc4Iki9ysUjPuTrprqgJnFmVS6fdKVLKqRHxOPBtu2jDtUi7aHxZyfaQvvfb1KkPSRgSlEYwyge6V23Nw7BnmnJvD2aizFJQUUFBSgEovolFIvhGl/LFbibc4/vw4aoWaHzr+QIvKLfDb5WcKVOWCHEEQ+KHDD8z3nW9aGHJe7szrotc4WTiRk/8anRwclDZk6nJRCAo6xOgZnlmJSc0k8rGtypZcrcShsTW3JUeTg4BA00pNuTfpnum4r/Jf0cS/CdmabD5p8Amb+mwqM5aBUYH03NeToDFBjDg6Aj9PPw4Oft9P6l3sD9vPqGOjEBEZVHsQrdxa8c2lb0j+QhLEGH1sNNZm1hwZcoSi4BtkrviRrGljyfRyJas4i9jsWK7EX8EgGlDKlGXMIv8KGzMbnKyciM2Oxdvem6aVmppau+zUdpx+fpqLcReZ22ouM5rNwF5tj43K5h/blEurBTlf57D18VYWXllIwbcFfHnhS/aG7SX582RabGmBrbktFz+5SEhqCBsebGBv2N5yv58qmYrGLo2Jy4sztcj5VfVjS98teNpJ0ss7nuxgwskJxH0WJy3y/QtsebSFyacn/6Pq5Ud8xL/Fx0Tjf4kxY+D6dYiOBuWHiVr/BJ1Bh+tKV3K1uYROC/0/fdlzNbl8cuITTj0/xcJ2C1nUYdEH26H+ihJDCStvr+SH6z9Q0bIiP3f+mYVXFiIX5NyZeAc7td3f7h8UE0S3Pd1Y1H4Rizoskl7csAFmzIDly3k4siPDjgzjddFrNvfZjE9FH2qvq82BQQfIKs5i9b3VPM98TrNKzfi85ecMrjPYRIDL1eQy9cxUDkYcxNnSmfTCt4G7T0UfOnl24nDEYdIK09AZdciQYaWSgukhdYawpMMSyMzg6cB2rJtYn6sF4QhC2T7x0oSijlOdMkmFk6UTBSUFJsnXhJwEk8Z7XE4cCTkJZYJJ+HAiAZK7LyLE58TjaV2F8IwIGqQLnBt8iqRaLrTc3AKDaKRBlpIefefyc+efKdYV47zCmalNprLyzkoCRgbQ0KUhddfXxdPW02SOVsW2CoeHHAak4w8+NJjQtFBaVG7B04ynJq8Wb3tvWlRuwbEn+yiSG9mQ3JBpO8JZ2lrPytZQS3RAVtEFWycPLsQF4WLlQhevLmzqs4mJpyayO2Q3W/puITA6kJT8FNKjnmBXJHLr9xwOhx7g5oJPWHVZidLSmqyF8zgRF0BQ0jWO15cCdIBmyVDnNYiDBzGm1TT6HJBWEjV6jUkJ5me/n5nfdj7zgubx+53fTXMVMSOCuuvr4iJa8vKHQn6ZUIOFHjHUc67Hk2lPMBgNKH5UsLXvVtIK0lh0dRFreqxh+tnppvaZUunbl/kvSS1I5fcuv7P+4Xrkgpznmc/fm7cPtRr1i4STNSnjUP6h7Z0snBAEgdeFr5EbRa5vhZYvof9wuFcZHh9zwj5bQ8OR+STaglyEuFWwbG4LdpTcI8dcCk61b8i8tRxqkZCb8F4bBrxNKNQKNXJBTrFe4vHUdapLWHpZpStzuTkaQ/krxe8S2t+VjkaEwF1Q7zXUnA0qQUG2UqqYhaSFmII7lUyF1qhlZP2RfN7icxZcWcD5mPMoZUrs9EqmXy3i82ABc53I9obwWxvIqSRJ3qrkKtK/Smd36G5mBcxCJVexe8BuhtSV2NY+G3zod/j/sXfeYVGc6/v/zDZ6713ALiD23rD33jUae68xMaaZxGhMYu+x94a9gSX2FhRRFCwg0pHeYZfdnd8fI6sETc4533P++nlzeXnB7sy8O/PuzPs8z/3cdyRfXofq0+G1lYz6rtLxPbRmnFybjYmgYM2uaaz4cxUHBxykV41ePM14yuzzsyVzw3dQTqd6H11LKVMS4BTA86znFGgKEBAY7j+cMfXG4Gvry8HHB/nqj69InBmPMHs2jtsOMqeLwLY2lowJHMO91HtcT7j+zrGk+Hp4tJIej8u43NKVQ2655OqLkQky3PTmZOjy0RupmNZoGgtaLcDO1I6dETsZfWI04+uPZ3P4ZsP+yiWMv271NZnFmWy8v5Hu1brTwqMFITEhXEu4BkATtybUtqlO96930zXLmjNHljD6+lyKy4rpESPndFWd4f5lY2SDSqHiddHrCnSfZm7NCB0ZalADvJ14m5bbWmKkMKLgy4IKDduDgwcTlRHFo0mP2P9YCiD+FeGTA5EHGHpUoiwtDlrM91e/54d2P5BRlMHKuysREOhWtSuHfnqOyt4JLl9GK+pYc3cNX1/+GguVJDZQqiullWcrNnbfyIvsF0w5M4U8dR6N3Rpz5dUV6jrVJcg7iF2PdmGqNKWKdRUD5SurJOu9lES5IMfGxKZSr8m7UsOPXj9i4/2N3B13l90Pd3Pi2QniZ8Vz5dUVgnYFsbHHRiadnkTI8JAKTec119YkNjuWwwMPs/7eem4n3a4UeAgIKGVKNHpJcKRH9R5s6bUFU6UpLstc+KzZZ2+fwf8AtVaNz2ofOvl2Ynvv7f/SNh/xEX+Hj4HGfxMPH0JgIOzbB0P/fQ7nuxh4aCBnY87iaObInbF3/tab4p+gF/Usub6Eby5/Q9dqXdnTd88/BgnvIjY7lklnJnHx5UWM5EZcHnWZZh7N/nabhLwE6m+qTyO3RpwZdkYKbo4fh/79EadPY+1QXz67MA9/R3+DQkpyfjJ1N9alQFOAVq+lX61+zGoyi+YezQ3O2PdS7rElfAu7H+2utGhb0n4JnwZ+ipO5EyeenqDPQalpr4p1FV7lvjLwlhUyBXqxIjXJw9KDnNIcWnq0ZF7zeTiZOxmUmmJzYonKiCI2O5bE/ETSi9Lfu5B7F+WLsfIHdNeqXRlcZzAeVh54WHow6fQkwtPCyS3NZXff3cw4N4ORdUey+f5mPq0zgn33tuOWpyPJyZRStHjmC7wwK2VIrUHsHbifU89O0edgH55MfkLgpkCWd15OaGwoYclhhAwPod7v9RhQawAX4y6SNFviuC++sZgyXRkikvnZwNoDicuN43rcFZKKUtn4sjaj90YxrxOsbwTnGI5ap6Gn8jDnd4Htum3U7TSSSacnsfXBVixUFnT06cjJ5yfZ3Xc3Q/yG8OvNX1l4dSHnfb+nTdQ8PrfsyuAV56mbrONmbQvmfuLE3dIYBAR89FYk63JZEyrj+1Z6PNVG3HcWsTaxYXH7xVS3q06n3Z1ws3Aj5k2zfiPXRsxvOZ+Y7BgWXFpgyCZ7WXkRnxePn4MfD1aWou/YHjPnrVgbWxM/Kx6NToPNUht29dnF7NDZDKoziPXd1+OyzIVx9cYxudFkzseeJzQ2lPOx5w0B2LsqZO/Fm8rLu5hxG1b/5etRPh/e5c6/q2gliNKumiVCvVTYEQiX9slpkmfBsKnOHFA+xUIjcHuzSLi7nEk9RMI26Il1kNNrkA5BeBvIftH8C5beWoqp3JRiXbFBirh8MfxudeCvwa+DqQMZxRmGDH45LI0sJYpJSbah6f59+zAWVPjorXipzWDlWZjUG7qlmHHOqQjxL0qkKzuvpJVXK+o41OGby9/w661fDfs0KhOZdhfm3QLbUjjXwIovG+YR42rEmHpj2PZgG3pRz62xEkcfoOB1An5ra1NaWkTyMij5bBY7B/iy9s+1PMt6hms+5JjAujNwvCZ0nL2GSQ0nsSV8C19e/JI8dZ7kDC/IKdWVVvps7pbupOSnGHpuAhwDUMlV3Eu990FqmrHCmDrF5ri/zMS9fhvMApsQnhrOH3F/oEdvoOS9e/4zizMREalZZIJzegnXvCCjeCq2GYXkRtxh2fKBrLy7EpkgY07TORgrjJl/aX4F6WlRFPms+WcoZAoW31hMt6rdiM6MNjS1+1j78DL3JQ1dGhI2IQyAqdsHMH/OUZw865B0dj9N97QloyQLX9GadSMO0HVfV8P58HPw43HG4wpzwMnUiX0D9hnUB+dfnM/Sm0v5vPnnLO24FJCouS7LXFgctJi5zeciiiI99vfgYdpDnkx58o/+EF32dDGIQQRVCeJZ1jNSClJY0n4J/k7+9NvXm47PtATPvk2UuxHjT40nPDWc3jV6E54aTkZxBiIizd2b08qrFYuuLaKJexP29duHl7UXwVHBDD86nNZerbEzsSM+L57bY28bji+KIsVlxWQWZ7LkxhI23d9Ev5r96ODTgZzSHCkgKc2uEJiUU8A+FKzaGNuQWZKJSq5CJVPRr3Y/7E3ssTWxxdrYmqlnp1LNthqHBh4yBDBavZaNYRvZ/nA7L7JevHffAgIDaw9EKK1CXJwPnsaN8XEyZURbV/y9/p7evezWMuZfmk/sjFg8rTz/9r0f8RH/hI+Bxn8bnTpBZibcvw//By3q6Wenc+HlBfLUeXhaeXJ51OUK6kv/CUJiQhh2ZBg2JjYcHXS0Uu/Fh6AX9QwNHsqxp8cwV5mjE3UsDlrMpIaT3qtjrtaqab2jNWmFaYRPCJeczm/dgvbtyendmbF9BI49O87MJjNZ2mEpj14/YsWdFRyOOmxwiI6cHElV26rEZMdw8eVFLry8wOVXl8ktlZoTzVXmaPVaTBWmmCpNaeDagJ87/Cxlyl4/4qfrP1XiuNqZ2OFl7YVaqyY2J5ZSbSnVMyDRTk7LqkFci79mMMP7u4ZTY4Ux9qb2uFu4423jTQ27GnhZe2GqNGXGuRk4mEmLhaq2VdnTZw91N9UlT53Hhm4bmNRoEnpRj83PNpRqS/Gx9SEuJw61Ts03rb5hyc0lJM5O5EjEfqZdnINZ2RtXbOt2BO6/zKyuUqOtXJATmR5J5ORIqq2phq+NL6GxoQZOsf96fxRyBRFpEQa+r5nSjMkNJzOy7kj884wRTpzg28jV7LBPoksM7A2UESwOYlLBASxr+JGYl8iRgUfosKcDGy4aMylMlJSgpk1j+LER7H+8HwGBI4OO0LeW5BNy9dVV2u5sy4HWa7i0aibb6urZfgzWNoF0Kzkd24yho09HXCxcmLO0PcF7NHjkw/iJLoRUl0wGv7z0JQceH6C+S33aVWnHstvLcDJzYnPPzSy/s5wrr67gYu5CamFqhYy6tZE1n9b7lOU70yh9+QKTrvdQyVSMCBjBwrYL8Vzpydh6Y9n1cBcxM2LwtPKk857OGCuMOTFE4oDr9DqORh9l/Knx/9jTAFQKNAQRuj+D0zUkqeB351G5mlNAnglPLEqYf1vBkqZa9DJYcFvBskZadDLQyiWH8cB0gVJ7a6IVuYiIhOyG9jJfqo8r5ZOzyXx1HepPhCQva4Ms7Pt6SA4PPEzfmn25Fn+NNX+u4fjT4x+srlmqLOldszfbem+j/c72hqz3XxHgGEByQTJZJVk4mzuTVpj2wSDGpgScCyHaASwEYwrEipUSGTLsTO0MVDNrI2ty1RItR6EVGXcfvr4txzVXx5VAG+Y1yuGeG7TwaMGBAQdwt3RHd/I4fY8N4YqLGrmRCauPltAz0xbrhHQi0iNpua0FESuKGTQAHrhA9RwZn43cyMo7K4nKjJLUnRQmFGuLGRM4hjnN5jDw8EBeZL1AK2pxs3BDRCSlQKIRGcmNUMlVBtrhF82/ID4vnh0RO2jq0ZQbCTcQ9DAx0ZGyrHSSW/iTbCElYP5uXgkItPNuR2ffzvg7+vMs6iqzI5byerMVjsl5kuTzpk0kdmjMhPPTCY0NNZxnC5UFDmYOXP7kMotvLGZL+BYEQTDcBxu7NmZkwEi2R2wnPE1y8j499LRBJjenJIdB39Tk5NosVJ270aDzKx6nP0YniHTyaEt9z6YsvbnUUBFXyVQIMqFSID654WR+6fgLpkpTLJZYUFpWyvUx12nu0Zz1YeuZcW4GSXOSDH0dCXkJ1FlfhxH+I94qEn4Ad5Pu0nRrU4OKmYhITbuaRE6JRJFfSGh7L3r1LMDd1pv43Hhq2NWghn0Njj09Rrsq7djaaythKWEMCZaao79u/TXftvnW4HkE0j2s94HeBpPPvPl5H6RF/XrzVz6/+Dmzm85mWadlH3yfKIr8cPUHVt5dyYWRF5gTOofskmwmN5xMVkkWWx9sJSEvgbpOdTFWGBuClJySnA8qeL1bMVHJVLzMfUlSflKFBNxfTUFlgrQsWTGm1t8GGwXqArxWevFJ3U9Y2WXl316Tj/iIf8LHQOO/jQsXpGDj4kVo3/4/3s3CKwvZHL6Zk0NO0npHa7pW7cqhgYf+ZdrThxCXE0e/Q/14lvmM33v+zoiAEf+4zYJLC/j5xs8cHniYIO8gSTYv/HepAa3HpkqGQNPOTmNz+GZDIzLPnkHz5txp7smQoGzyNPls6bkFEZEVd1ZwK/EWPjY+zGwyE29rb3od6EUX3y5EZ0YTnxePQqagrlNdUgpSeF34mqo2VXme85zaDrWxMbbhZuLNCpnicsiQ4e/kj6OZI/nqfF4XviarJOu9JkrlKNeFd7FwwcvKixp2NahuV91QiXC3dH+vWWBJWQltd7YlKT8Jb2tvYrJjCJ8YjquFK88yn+G3wQ+tXsusJrMYW38s/hsk9+7oKdE03NwQjU6Dj40PNe1rMtx/OEOPDKWxS0MeJNylWKanqokbO0KMSS/NZFh3qbF9brO5LO24lNbbW3M78TZD/IfQp0YfgqODORJ1pML5mNl4BsvthiE7cVKqLEVFgYkJv47w4Sf3lySPj6bBkc6YqcyobV+bU89P4WLuQmZxJpklmYzzH83ma1awahXazp3o362Akzm3ERDoVaMXC9ss5EbiDUKfn8Pp0Fl+viitwf2mQomNOTfdvsVv9OdoUpNY8WI3T1Z9xaYTegq8XbAfMoYbu36i7adwZ8wtmng042bCTaacncKj148wVZhSqitlQv0JrO++nrvJd5lxbgZhKWGGz+dg6kBWSZak0PO6I9qvF2D0uYZV3dcw/dx0fmr3E19d/gprY2sG1h5o4I3POz+P4OhgHk56yLYH21h9dzVxuXEGWdbyqsBf/SgMc0wPJipTirTFhsW1QxEUqqBU+Xax7WTigFVaDjuDdTRNFOk2DMJ8jMiRa9AJIrUKjZlypZQ5XWDjKShVwo/tZLw2kxpzEaF+KmQ5mqMvLCRsM2yuDwvby6X+HZkcjU7DsUHHmH5uOvmafEPA8WXLL2ni1oTfw3/n7Iuzb5Wp3mTA/zr/JzeczMA6A/nlxi+ciz1neK2abTWDAhNI/UMOZg6kFqZKzdMFKYaF7c0xN5HL5PTa34ucPEmpSSOnQlBWXuX5J28RAQGZTmT0YznzrumokQUXfGB1kBmhHmpG5HlBTCw768Gpzju5VfKcywd+5uZmHTE7VtA8fTHNNE6c+PoxPYcLPHCTk2zytn+hvKJQz7ke67uvp6l7UwDSC9OpuqYqBZoCjORG/BT0E/MuzKO6XXUDlU5AUpNLzE9ErVNjojDBztQOTxNnPl/3kG5RZcwd7YLv+C9IK0pj5e2VqHXqSvPIQmlBQVlBhc/8114bjwIBl+wyslU6XtpAiRJqWfggNzY1VBcauTYiMT+RtMI07EzsUMlVpBamUt2uOi+yXrC3317y1flMOjMJgCDvIA70P4CDmQMgeSms/bYLJw7AspZy6qzYw6CjQylTynCwdMHN0o1nmc9Q69Q4mjqSnJ+MUq400OzKJVrdLN3Y1msbB54cYGfETqyNrQmfGE6fA31wNnfm5NCTFT7/2j/XMv3cdK6OvvqPHlBNtzRFq9dyP1VyvW7o2pCw8WHw+eecP7OaUaOsSCtJx9XCFbkgJ7skm187/srEhhM5/vQ4406OQybIyCrJYkHLBfzU/qdKx4h8HUm7ne3IKsn6R+PcdX+uY9q5aUxsMJH13dd/8Bn9zR/fsPPhThJmJ9B+V3vsTe0NvSmtt7XmeuJ1kmYn4WbpZtimxdYW3Eq6ReSkSIrKiipVSSr8/sacMaMow0Dd9deuxJbGvGuaKhOgoa8VS0fV+Nvz/N3l7/jt9m/Ez4qv5KL+ER/x7+D/tmr9iMro0EGiT/366/9pN7YmtmQVZ1HfpT77+u3jaPRRvrjwxf95eN423twcc5OBdQYy8thIZpyb8bcymJvvb2bJjSX82vFX+tfuj42JDZt6buLGpzco0hTR8PeGzDs/jyKNRLPY+2gv68LWsbrLainISE1F36Uzv7VR0qrxYxzNnZjScApzz89l4OGByJCxsM1C+tbsy46IHfQ6IPF07yTdoY1XGxa0XEBHn45EpEWQWZyJHj3Pc54DUs/BvZR7KGQK7E3tK2mF69Hz8PVDLry8wN3kuyQVJKGSq6hlX4ugKkGYKc3wyzfhWEobZjaeibHcGBERU6UpfWv2ZVWXVSztuJSx9cfSybcTtRxqvTfIEEWRMSfHEPk6ks4+nbmddJsDAw4Y3G5r2Nfglw6/ICCw5s81DDo0CJAkMlUKKSuqlCuJzozGzcKNQcGD6F+7P398eoX6nk1RiAIxpcmk9OlA3/AStue0RifqCI4O5nH6Y4MR1NHooww4PIDojGh6VJMa/xXIqa21YeX4I8iaNIVNm6BxYynYyMzEcsJ0ClBj6uzJvv77iHwdibWxNSq5iio2VcgpzUEhU5BWmgkrV1J4/BD5ty7z+1d3CJC5YGNsw8lnJ6n3ez22b5/Jzwuvs+UURDZwp98Cb5wLQVumZqPyIQIw5dsGmMz7kt1H9KR0boZTRAzyHxbR8tst2BfBsd/GQVkZgc6BKGVKrI2tMVeZI0PGxvsbmXdhHjklObzKfSV9vjeZyIziDFQyFZfjLpPh54OiVEM30ZdpjacxOnA0P1z7AZDMwBa0WmC4dq4WUqOu+3J35l2YR1P3pvSo3sPg5l2sK0YpUyK++SmHDBmIoBeg6I1CU/nrGWbQKPnt712LXFl0OJvnVlruuors+7Yvl6rKyFSo6RUtvSfavJTDdeDwYRj6BIJrQ5qZHoVMTkC+KaZl4F4gEK8oJNEaXD6Db4MAAXSizjD3X+a+NKisleOXm7/Q52AfQmJCAHCzdEMuyPk0sLJHj4jI+nvrabezXYUgQyVTkVmcSc/qPTky6Agg0alySqRm6oR8SbGpTF+Gk7kTg4MHM/7UeNKL0hGVSjQKaO/eigzlV4SescW+CESdFFy8G2SYKc2QC3JkyFDKlMiRIyKik8PWujoCpiv4ZJgxrmoVp7YUEbdcT0l8LNvrQR0nP+w8ajCxwUTuuIuEucGrnz7DydyJn5Rd0AsQX8edNGMtX16VjlceZDiYOjDcfzg17N4uvkJjQynQFOBt7Y1Wr+WzC59Rz6Uej6c8Znrj6YDkHF+gKUCtU2NnYoeNsQ1JeUnYX7lHvryMzgt92eyTw6zQWfx842cQpD6acggI3Bpzi7wv8/iixdv7ezm9Z2svyQS2g08HGqXJkZfpeOokQ6lQodBBdMFLQ5ABEJYSRkZRBjXsajDUbyizms5ifP3xJOUloZQrGX50OPMuzDMshiNfRxK4KZArr64A0LlqZ4o7B/F5B5h3XUe3x2p2y/qjEfSYCCrupdxDRMTH2of0onSaeTSjV81eFcZdpi9DrVUTtCuItII01Do1elFP171dCUsJY3Tg6ErzbkqjKTT3aM74U+M/qCJVjplNZhqCDIB7KfdYfmoBI18uo/MgNdUda9LGqw0pBSkUaYoIGx/GqMBRTD49mf6H+hPkHcSL6S/4teOvLL6xmI33NlY6hr+TP8EDgwHovq87d5PufnA8UxtPZVuvbWwO38zo46PfqxYFUFRWhLnKHJAoZHYmdgCkFqQaPDLeFakQRZH7qffxtvbGz8mPJu5N6FqtKyMCRjCm3hh61uhJI7dGeFp5YqQwIrc0l/i8t/2BSkGJOb4VggwAvQgvX/8NHfQNpjeR5vjqu/+a4d9HfMSH8LGi8b/A3r0wYoTUsxEQ8J/t4tFeRhwbQeGXhZipzFh1ZxWzQmexofsGJjWc9H8eoiiKbLi3gZkhM2ni1oTDAw9XMuk7H3uebnu7MbHBRNZ2W1upLKzRaVh+eznfX/0eRzNHPm/+OT+E7qK+8WeYi1XxsVfR8+DX/Ox+jjOeahq4NCA6IxqNToO/kz9KuZKI1Ag0eo2kVmTliZHciKeZTyvwwP8T9KjWg2YezfBz9MPb2hsPK48KyiDzzs9jXdg6osIaU0WwgWPH6L2/NxnFGdSyr8WhqEMUaYoI8g5iTL0x9K3Z94PmfT9c/YHvrnzH/Bbz+fnmz/zc/me+aFkxKNTpdTTb2oyMogyS8pPQilq29drGq9xXLL+znNaerTkbcxaAifUnsq77OjQ6DXa/2NHYpQFXE25Q/7XAxazuaELP0XSeDemyYgNtQSbIWNRuEf09O/NHyAZmpGwFUaRZouQUnVkwCeveQ6BFC1C8pQnsj9zPsKPDDPOsnAqwoOUCFt9YbNi3scKYHb13MO3cNOTpmWw9pueZPczrBMPdu9Ns+wXG3dEa6URzAAAgAElEQVSgq1GdFZ9UZZXqAelF6YQ/b8cfuQ+Y3SiLI/uhcbYxTlml7B5djzFbKtILx64K4nrsZaISetJvoJ7LCVe5/ul1qtpK7rhLby41UJFaebbiesJ1VDIVjd0acyPxhiEz7mbuypWfUrg2uh1jlv9BcVkxtdbVIiEvgX41+3Fk8BHuJN1hxZ0VBD8JRo+eEf4jWNBqATNCZnAl7gpN3JpwM+mmwZzsrxnoLu5BhCT98cH555kDCTaS9O3ih3botVq+b1iAhakNDRWeXMt+gEYOn7h2ZXvaOXpGw4hI6PMUeg2F0GqACE3zzOnwpIStATo8SpQ0StAy94bIF3MDOKx7VOm4VayrkJyfTJm+zND8Xd4HUN5v4mLuQlphGtMaTWNN2JpK/Rjl1/zdAKCcfre7z26GBQzD6TcnMoslylo53/+vUMgUDPcbzs5HkhX32WFnUevUfHf5Wx6lRyLXQ/uXsOWeC55DUrEztiWrNNvQZPx3AgptE+SE7tDx2hw88iHSWcaKtkbsrF5CXdd6iKJIQGgEO4/D5XMbSfh6GnWTtbScZkY1+2pEpEpKZ55mriQUp1DDrgax2bGoFCpG+I9gQO0BDDw8kB7VJb8Mn1U+FJUVYSw3Zl//fYw9ORYPKw8evX7E5p6bcbNwY23YWi7HXf6gH0K51PC7GFV3FDv67AAklSrnZc6MqzeObQ+2Vao2XT1sgamLJ38unsK5mHNciL2AWqdGJgJ6aJ+ooIpzdUJtckgoSUUlVyETZO9duCtlSuSCnAF1BnAz4SZxuXEM9x9O31p9GXl0JHJBxr5zZvS4m4Nw/Dgzfu/LxkAtYxqO5/f7UjWwe7XuXIq7REvPlixsu5CvLn3FlfgrhmO4mLuQXZxNmVhGJ59Okpy0TEHe/Lz3qhVGZURRb1M9Pmv22XurDOXILc3F/hd77EztaOPZhsPRh0EEU63AlGYzOPj8KDmlOZIf0b2N+Dn6UaAuID4v3iA/LAgCoigyM2Qm68LWcXzwcYOMbTm0ei0mi0zwtPYktSCVQwMP/a1y48HHBxlxbAR9avZhb7+9lSTFJ5yawIO0B4SND8NzhSej6o7ix6AfWXBpAWv/XEs1u2pUta1qqHJcj79O6x2tGVxnMB18OhCdEU1UZhRRGVEVfJo8rTyp7VDbYCB5M+EmKYUpIIK/7j+vaADMCpnFroe7iJ8V/94k20d8xL+Cj4HG/wJlZeDrC+3awc6d/9EuQmJC6Lq3K/Gz4g3NWDPOzWBd2DpODz1N12pd/ytDvZV4iwGHBiAiEjwwmBaeLQB49PoRLbe1pJVXK04MOVGBw/pXvMx5yYRTEwh7mUE93QbkggK9CIKoQ4/IE8U0MoUHUmZYL6JFMvWSy+QfzP68DzbGNvjY+OBp5Ul12+pcirvE/VTJlM3N3I20wjSsTazp5NuJff33fXA/j9MfE7gxkB/b/ciXv0dBfDxcu8bwo8NJzk/myugrFGoKCY4KZnvEdq7FX8PKyIqhfkP5tN6nNHJtZAhYyk0WZzedzfaI7bTxasOxwcfey9V9mPaQhpsbSio2eh0qmQozlRndqnVj/+P9BqrT0g5L+bzF5wYZyCZuTRD1eqKSwpGX6ShRgEYhmTVFZ0YjIKBHT+KDdixQXGW3v57psfbk+7pxwyyL2KIkjg46auijeBenn5+m5/6epMxJwcXCBb2op+PujkRnRBuaUp3MnAyO4DJBRteqXRlYsz+1Qu7TpGwdZ/fL6Jyg4pdOZqxtJqenXz823tvIxPoTqRGRyKxvz1LtMxXFooZr2wVmD7Fi+68vKpXjzzw/Q4/9PRj2WMbBOiKn+h+hq7805osvL/LJsU9IK0yTNP6tPA0P25lNZrLp/iacTJ1ILkxGq9ciiNCzwJWfvgjFz9GP/gf7c/TpUeo718dIYcTtpNtUta3KtEbT+OzCZ3zf9nsOPjlIXE4cNsY2JOYnVljk2pvak1uSa/BZMENFERUXgkpklIl6EKBPFByvLf39r5r4Mh0IMuhXrTfXkm/xuiSDuTdhySUYMAhO1pQy3fYlAo/X6Ok/UsVTSw1GWohaBy86N6R07UpabpfoHDZGNlSzq8afKX++d77bGttycOBBgryDCIkJYXbobJ5nVZbCtTW2xc3Sjcfpj1HIJA78+yhN9qb25JTkYKwwpqisiNVdVvPb7d9IyEtAJVehF/VUt61OVGZUhe3K+2rae7fnh3Y/MPbkWJ5mPmV0gS+7zGJJXWvEzlGBfG71Nnv8rlKXkdwIXZka7Tt1eAEBT7UxfWKVdHyQj7kadtWFPXWlfpmEFZLzdbcXEFnfnfEdi8kuycbexI69G7Oo1bYfJya1Y07oHPwc/Wjr1ZaDUQdJKUhBJVOxscdG7qXcY3P4ZmrY1SAqIwoEyWRxb7+9fHv5W+6l3jNcY7dSFdWTNdz2VaAR3gpOvI+mBvBLh1+Y12Ke4fce+3qQXJBMXae67Hq4q8L1aZCu4IGDFlEQaO7RnJzSHGKzY7n4yUWGHxzMyDwvFm2OhfR07nUJ4Ou2ekJLHxPgGMCURlPwtPKkz4E+hnGo5Cpq29cmuSC5khSzqdKUYk0xLTNM8M3S4+xVh31l4WhdnJjfagFfXf6KQk0hI/xHcCT6CK28WnF88HGORB3hk+OfGMatkqtwlDXGpmQA5lSlkBgGtrDhmy6fvHeu/nD1B3689iP3xt/7YA/hnNA5rPlzDQICjV0bczPpZoVeqfbe7dnSawteVl7MCp3F6rurMVOacXX0VRq4NqiwL51ex8DDAwmJCeHK6Cs0dmtc4fU66+vQyrMVr4tec+rZKTb12PS3/hknn51k4OGBdPDpQPDA4ArJqeFHh5NSkMLlUZcxW2zGonaLGFd/HB4rPBjqN5RSbSkHnxxkdN3RPMt+xq3EW4YgUUDA19aXWva1qO1Q2/Cvpn1NojOiWX9vPQceH0Cr12IsN6JQU4RcBGd1AFWVG5GLAnpBZujRWDm2Fn6e/xw4JOYl4rPah5/b/8zc5nP/8f0f8RHvw0fq1P8CSqXkpbFvHyQl/Ue7KC+rZhVnGf62ovMKulfrzqDgQTxMe/hfGWpzj+aETwynmm012u5sy5q7a0jOT6b7vu6G7MrfBRkg0Qesja3xEccBAvo3z0ZRkIMg4KIbBUCZvgztGylTEdGw+FLKlNiZ2FHboTbtvdtT20FaoZkqpOb31p6teTnjJdlfZHNvwj0WtFrAraRb3Eu9h7ulO2282pBRksGowFHkluZK0rUfgCiKTD4zmWp21aQbp50dZEnn2EJlYZANNFeZMzpwNFdHX+XF9BdMazyNU89P0WRLE/w2+LHs1jJCYkIYdXwUg+sM5nLcZexM7NjRZ8cHGwLrOtdlbOBYNDoNHX060si9EZklmZyPPU+ZvowFLRewoOUC5l+cz+nnpzkSfQRbE1vuJt/lflo4hXIdhUag0kHY72D7Oh+vYiWNE6TFTIPa1znir2Bfq1Ws3pVB70HfEVuUhJeVF6Gxoe8dk6WRJQAFmgIS8xLZEbEDc5U5qYWp0vXSaytQ65Z1XMbpYacZZdyERhce45kLodXlyEQY23k+brZVDBnPXY928aP8BiXWZlz9vYwSpYD/ZJFPp259L+e3vU97yRHaT8/aiyq6TvqNwvQkppyZQsfdHalpX5PYGbH0rdm3QkZPIVNQpisjPj8erV7LyICRiAJcN3mN/wZ/Ou/pzOkXkh9NeFq45Ew85ATPpj1jZlOpL2jx9cUk5CVQXFZscN01U5oBMDJgJPGz4isovxWhkRY3b+a6oIcy9IbFTrPEt5/LTGmGsdzI8F69HKrZ18TPrT6vizJQ6qSs/PB+cLaWpHqk1Ilc3arnhzZQqBLJfKOWhIU5DXZdIDoj2nD97MzsGOpXWeXOy0rSzc8uzabj7o4Ebgxke8R2ifZFxX4TAYHWXq1RyVUcHngYvajHRPF2kSRDhoXKwkCh0ok6QxVkVsgskvKk+5xe1BM+IZwnU5/wc/ufK4yn3FX7aeZTtj3YRkuPlggI7LZ8RX2nQBxmfcWF/Ad4Z8OP0c7I9BiCDFNRwc4DampkQoc0c5Y0+tJAacs0l7G5rpYew6HtGDhSB+q+hupZsKxtAPG+K5k/8hQb/T5DW+yOl5UXnwSMIrqqJXb7jjPJdzA3x9wkpzSH7Q+307tGbwCq21VnzMkxrL+3ns4+nVnWaRl2pnboRT05pTl029eN59nPcTR1xEIrJ/xSNWLWyihVwbFhpwx9PTXtalbqHyvH5xc/p/X21txNusuhJ4eIyY4hIi2Ck89O0tqrtYFqAyDo9IyIgJr2NdGLel5kveD4kOO09GyJg5ULGU38JT+n4GAa6p0Jmf+Yq4fMsEzOYNKZSUw5OwWNXsMI/xEGfxWtqOXyqMuULCihuXtz6VwrTBlcZzD1XeoTZlfKUzuRvTwixQJSi18zM3Sm4T65J3IPJgoTLr68SK11tUgtTGVq46mGOWWsrYlPyVJsaYwRDtjSmIs3q7Ln7o33no/5LedT074m406Ne28S6nr8dVbeWUkbrzaU6cuIyoxiQIo1CBjOt4elB0ZyI3ru78nqu6sZUGsAALNDZ1eShZXL5Oztt5d6LvXosa8HMdkxFV6vZV+LF9kvCB4YzIQGExh3ahyLri3iQ/nZXjV6cWroKS7HXabH/h4VjlekKUIuyDnz/AzFZcWcfHaSwE2B5Knz2Hh/Izse7qBEW8KZmDPYGEuqkGZKMyImRlC0oIgX019wcuhJfu7wMwNqSzLlbXe0pfGWxlyMvUhth9qSn5S6CI8CAfc8SDZ5xIiuRTQsjMNek09DX6t/OcgA8LDyYETACJbfWV6BjvkRH/Hv4GOg8b/C+PFgZgarVv1Hm9uZvgk0St4GGnKZnH3991HNthrd93UnOT/5vzJUZ3NnLn1yiamNpjIjZAb+G/zRi3pODztd4UH3Iay8s5Ij0UdwM2pYiQ8qIMcc30rbyAU5Zkoz3CzcqGFXg1r2tbAzsSMsOYxnGc9QCAqKtcVMaTCFlV1WIggCD1IfMDh4MI02NyImOwaZIKOGXQ1uJ91mT989nHh2gjH1xlDNrtoHx7rz4U5uJNxgXbd1Umnbzk5SCePDxmVVbauyKGgR8bPiCRkegr+jP19e+pKue7tiojAhoyiDp1lPOTLoCNbGf28LXa6alVyQjL2J1FeSVpSGhcqCL1p+wcymM6nrVJc+B/qw9cFWg8zqN62+IrHtSXrqqlKilHwWbsiS2JncmAmBUoYt3UjLmEYTGNJO4tZ29O2ISq7Cw9JDUqf5y8MxX51PeKqkPtNpdyc8V3oy7uQ4kvKSDGX/zr6dySjOQECgjkMdFp2bT8rkEVC3LkJyCp2rdyW0ow+MHo3DlHms2p2JXCsFPh7mrqQ874lpbhHWagG9SkGpEkpyK5oVliMkJgS1To2TmROTll+j7Ekk8fV9OXNrB2u7ruXiJxfxtvEmeFAwI/zfihisursKnagznHuVTEWDDCVFgo4mrk24EHvBECw1c2/Gq9xXVLGugkyQce7FOWKzYykqKyK3NBedqMPb2huZIDNQ+eo61SW1INVQ1anE5hFBfBNglKumhVQD4zfxWZ46D61azRdPrDGVSb0UxWXFfHf1OwRByrwvagV/NLLDTGWGTq/jyAE4VxXWNxGIsipj6GPo/RwsNm6n0FTB3AtSdtHXxpdXua+YfX52hSE1dW9K1NQoqlhVka6vTycS8hIIjgrmadZTQPLKKE8iyAQZx58dJyItAq1ey7be2yrQqfTocTB1QERkddeKnG39mx+Q6CY7I3ZyIfYCux/tNrzH2siaoi+LuDDyAoPqDOJm4k22PJAEIXSijuf5L/ktyJgLHhpG2LYh6GYaKcvA5M36XKvTcqY6PHGES86FnEy9gpnSjK29tlLHsQ7FZcU0cGmAi7kLJjoZMj3IlAHcrbeBh1Uak23hiMa8MfV0GzDV1WZ35G5+qJePTq/n26EuTDk7hdaerXE2d2bDvQ3UdqjNb51+QylTYqmy5HTMaTrvlb4LCplCkuCVG3Fq6Cliht7m5jYBr/BYPpnqhnW7rmx5sMVQzXiV98rQrwVvA1iZIEMhKLiecJ2mW5syOHiwgY6WU5pDeGo43at1NySd4qxFejg0o6isiNtJtzFTmfEg9QHZJdk4mEmyxKhU0L8/hIZCbCyt+8zk2lY9p/ZCQs4rAJLzEnEyc8LOxI6ojCgCNwbS71A/biXdYmuvrXTw7cD2iO0092yOj1NNXB18SNhkhnq/L+tDpPk9tdFUlnZYKikklWZjLDcmIS+B+Zfms/bPtW++FiJeujEGxSOQngcCAsvOPuB51nP+CpVcxZaeW7ifcp9Vdyo+O4vLihl2dBgmShP+iPuDWna1UKuLCXbNxUiQgs6JDSay69EuvFd5czfpLqeHnubwoMOcH3meiLQIuuzpQoG6ohiIidKEk0NOYmNiQ9e9XckoelvdqWVfi+iMaOQyOeu6rWNRu0V8c/kbppyZgk7/fmXCDj4d2N57O7cTb+O33o8RR0fQdEtTTj8/zaW4S/TY38MwL9IK0whwDCB4YDCPJz/GycyJwXUGs7zTckq1pXSr2o26znUNlZHnWc+ZEzoHt+VujDs5DkczR6Y2mkqhppAnqRKVsmeaFXqFghQ7JSMDRjKueQeWJh3h8MPfWDqqxr8cZJTjixZfkFqQWuH7/BEf8e/gI3Xqf4n582H9einLZPX3+uB/RV5pHtZLrTnQ/wCD/QZXeC2lIIWmW5piZ2rHtdHX/mvcSa1eS6PNjYhIi6CGXQ3ODj+Lj43P325zPf467Xa2Y06zOQjPBxGWWiZVMt5AFHXk8icP5bP+a2FtOW9eEAT0op6qNlXRi3ricuMYHTgaHxsfbIxtsDK2wsrICmtja6yMrRBFkaBdQXT27fyWWrVhA8yYARoNC69+z+bwzSTP+fsArkhTRPOtzUnMT8RMaUZSQRIWKgsmNJjAp4GfUsexznu3Ky4rxv4XezRajaEJ9V1/BZVcRam2FL2ox1hhTIm2hF66agy/ms2gGCPK0lJwnicQpPUg2DwBh2IYbNGMtfrbKGVKWnm14o+4PxhXbxwbemxAIVPQdW9XUvJTeJT+iOip0WSXZHMh9oKhQb48a9itWjdG1x1NkHcQW8K38M3lb2jv056QmBCM5BKfuo9pfVYtuo9lgQb1/M+w/noRR2JPM+DwAEKGh3B99Vxmb3lCkZFA50lmPDUu5Merchb0XkafP2fzZzVTWkUVcSHAjEfToyros/+Z/Cdtd7QlwCmAu8l3GV13NPfO7+DKXiUWTp6oLl8Ft7dqLGW6Mhx/cyS3NJcmrk24m3LXYDLnaelJ02dFxOuyCHcVUKpMsDWxNZg3GiuMsTSypJFrI868OGPYp42xDbbGtiTkJ/BVq6/4stWX9D7QG51eRx/vrqzfN4cnjlTyzSiHs7kzrT1bczX+KqS/xisb/vQAozJQK6GadVVe5MZga2KLl7Ez2xdFEe4Gk7tLr5ejTjo0T5BUpcxkKqxzNYRvEXDo0BuOHKHngV4Vxv0uLFQW1LKvRWR6JO6W7uSU5JBZkolCpmCI3xCG1BnCuFPjSCtMo4ZtDZ5lvzUiLFfaAqlJ/nXha0Ojeam2FEdTR9KL06lpV5OnWU/f29vxLhSCAlOlqaHf6tWsV4YqC0gKeC22tSC1MNXwt3Jvkf61+rPNeBCed4aQZyTilgfJUvENpVxSmDs/4jwdfTsiiiIHHh9g9PHRBh8JTytPHNJmYiprDO9IcIvoyOZPIhWzpOPpoVo2aHyqUKgtJr24chDsZOYkKRslh5FVIvkhWKgspEbxEmMeH3PBKLeQNsM13LTKo7ZDbeJy4hhbbyxrw9aiEBRoRYkuOrfZXBa1W4TTMidEUXxvL5pMkGFlZEX01GhDY/2T9CeYRDzhvqsU1P7Q9gcS8xPZ9XAXcpkcD0sPLFQWBk+MCigr45dtY/kidTfdXkCcnYxoOz01zasgGJsQlxtHqbYUG2MbTg09RXOP5qz5cw3zLszD18aX51nP2Wo8mFELDoJczoQ51dhj/pKw8WFo9Voab2mMUqZEL+pRa9WYq8xR69SodWqaaU9hhGOlIalJJ9xoAKeHnaaDT4dKr88KmcXv938ncnIkvra+FKgLaL2jNRFpEdR2qM2kBpP46doiXhenMyHLG7/hs5kRMsMwf2SCjEDnQM6POG9I2t1JukPnPZ2p41CHkBEhhmruu/Ox6dameFt788eoPzBVmrIvch/Djw4n94tcg8fHtgfbmHBqAj2q9+D7tt8TlxtHVEaU4d/TzKcV+nRMlab0qN6DO4l3qG5XndlNZ9N9f3d+aPsD3175lgcTHxiUG8ecGMPd5Lt09OnIqruruP7pdZq6N+XUs1Osv7eeiy8vYmdix9h6Y2np2ZJF1xfxZ/KfOGiNyBXU/FTQmOX2MWiUUqU3akqU9PmHDJEq9xcuVJ4f/wL6H+pP5OtIoqdGv1fS/iM+4u/wsaLxv8SMGVBaCps3//N7/wJLI0sUMoUho/0uXC1cOTPsDLHZsQw5MuTf6nP4EERRZOa5mUS+jmRD9w1o9Voa/N6Asy/OfnCbtMI0BgcPpoVnCxZn16P1tinopRyltE90IIh0jNhK1i+Q9Bv8GGbOGOfu1HOuZ8js/auQIUMlU0mGVIiGjGFMTgwvc18iIrI9YjvfXP6GaeemMfLYSHod6EXrHa2pu7EugZsCyS7JZv/j/Zj8ZILDrw5UzVlIw0+1dN7RgRNPT5BRlMH8i/NZcn0J68PWs/fRXk4/P831+Os8ev2IuJw4hhwZQkx2DBt7bCSzJJN+Nfsxtt5Ydj7cid8GP5psacLGexsN1Yty7I/cT4m2hADnACxUUnBY/n+5JrxSrmSP6zRmp3mDCNlJL2gTo4VBg7gc/CvZJiLRPha4W7qTawxrdbf50X4QdRzrUNWmKjt672DHwx30PtCbAnUBjd0aG1Rp6m2qR4ttLVhxZwWOZo6s7rKaO+MktZMJ9ScwsM5AFDIFS28upVeNXtxJvIOR3IjWahc6RqmJjL2NdbO2dPrSjdauoRSgIdA5EAGBrnu7ssY1kSbTjXH2rM3jnwvp8Ry+aaOjvfVxTlUX2XTVgs2XzbHQKRh9fLTh+sXlxNFzf08CnQP5utXXCAjsidzD2E9WYBMWiUpdBq1awcu3DcdKuZLWnpIM5qN0KZNXLtGZkJ/APUctRw6CicKYYm0xQVWC8LLyYnOPzVgZWZFelF5psZ5TmoOdmR3hE8P5ru13qOQqOhnV5lrsH5zeNIcnTvDJE3kFylSl74PfYKrbVSfLVKDjS4lSpVG+oWDkSrSMnlV78CAniucOEO4iBRk2xjbIBTkBaaDQweaGgAyKRA31XsPlKpD289f0PdSv0rjfbTot0BTgZO6EUq7kRfYLckpzMFGY4GDqwI7eOzj9/LSBjplenI5SpkQpUxLoFFhBVjSlIMXQeF++CG3h2YIApwBDRUSj01DXqS6eVp6MCRxT6XxoRS35mnwDVavjro6UlL1dgHnbeONt4w1IlSaQqFdOpo4oDx3h3ILB5BmJWOqVJFtKlR+FXqJgKnTw+71NaLQadj3cxZgTY9DoNTR1a4pKriIuNw65wrdCkAFSRt1CqIaR3Ag5cpyN7FDoIKMg9b1BhoBAdkk2Z16cIb04HQuVBfWd62Nvao9HLoRuLiUrLY4/dnyH3F/qKXiR9YLBdQazNmwtnpaeaEUtCkFBuyrtcLN0w3u1N3nqPIPMtqOZI3Uc6hh8ksqpWc7LnOmypwuF6kJERHolmRkqZ7E5sWzssZGE2QnMaz6P+Lx47qXeo9/BftxMuFmheqkW9PyQdRSVQsWB7x9z03oOANlpr4jOiEatVaMQ5HhYedBye0umnp3K6MDR3B5722Bw+mnJfuK/nwMaDStWRuNq4kjH3R355dYvWBpZUlRWRIm2BD168jX5BspbIbGG50E5RHSoTLJR69R03N2RWSGzKnlxLApahKOZIxNOT+DUs1P4rvYlIi2Crr5daeTaiBkhMwgotqBxMjypaUsLzxYICOhEHU5mTvzxyR8k5iXSYlsL4nPjAanKd3HkRaIzo+m0uxN5pRX9TLxtvDkz7AyP0x8zJFh6rtayrwVIvWyHnhxi4ZWFhMSE4G7pzolnJwjcFEjfg3359davxOXG0cClAT8F/cS54eeInxVP+IRwzJRmRGVEYaoypZZDLUxV0nU+8OQAHXw6VJCH71atG1EZUQRHBWMkN+KPuD+osrIK/Q71o0hTxO6+u3ky5Qkl2hL6HOzD69wkLMtkmBZpOO/6BVt988BYRXZJNuu6rTMEWcjloP3P1wnzW8znRfYLjkQf+Y/38RH//+JjReN/jU8/lbIIL19KZe1/A06/OTG98XS+bv31e18PjQml+77uTGo4iTVd13ywN+BfwfLby5l7fi6/9/id8Q3Gk1uay4ijIzj74iwL2y7k69ZfV9AH1+q1dNjVgWeZz3iQ0RfTVRtoMscSpV0rHMuGUVxkSSGxxMu38mnTIHZcX8vIBzpm3wafXLhb3ZTHI7swWwhFL0jZfksjS8xV5m8pKm/wIeWfv8JSZYmdqR0OJg5Ym1hjojShTFdGUVkRSflJxObEYiw3fq+OPbzVri9vaNXpdf94TIWgoIZ9DayNrbEwkno8EvMSDf4fgc6BdPDuQFP3pswKmUVinkTef9cNuI9zEL/ru2F0NoQRlpc4XU3Ep0iFhbElD+WZ9KrRm2NDjjHx9ESORB0hpzQHWxNbBE0ZusJ8PPLAw7ceGid79vXfx4rbK/j11q8IgmCgDJkoTPCy8mJ7n+00dG1ooMyotWqMfzJmV59djKw7koVXFrLkxhJUchUNrGuzM7omzut3sbqFgs/baQkbH4aJ0oTm25rjbulOcn4yhZpCvKy9eJn9kpu5/Wi++nX1Bx4AACAASURBVBgRAQ7UiUxnaw9XJtdLwd3IgaffZWBWK4A/6tvQvspVVnRewai6o2ixrQWl2lK6Vu3KhnsbsDK2oqpN1bfZ2YQESTa6sFDyp6kt9fBMPzedtX+uxcbYhpzSnErXJnmDKfUniGTI1bhaupJbmkuhprCS50r5dR/qN5TdfXcjz86RlOO2b+d08UN6DgelDuyKIM2SSiZ9MmSYKCWlpNzPc5i4Ioj9mvuc2A9TukGyFZgrzTE3MietMI0F16QA464b5Ji+VSVq+lrJ9oNlzP+uGSU2Fpx/eR7XPDDWwUvb98/VNl5tuBp/tYKikauFK58EfEKQdxBDjww1VCm+bf0tP1z7gckNJ7Ph3gZD9lcpUzLEbwjru6/HYokFq7qsIiE3gWV3llU6p+9zwPa18SU2J9YwrlaerbiWcA1zpblBarMcKrmKIX5DGFR7EEHeQXit9DI0IsuQUVVjTsSj5picDqHbVGtCHfIrSguLUDMDGqTBPn+w1cgpEnSoVQJzm89l+4Pths9bT78GS32DCnTOv1Y0yvfpVAyZZnK6Ve+GtbE1ux/tprl7cyLTIyv47lioLDBWGKMqKGb2hSJqZMHUbpLCGFBhbvnY+JCYl4iJwkQKuP6i5PVFiy8Y6jeUAKcABEFArVVz8eVF9jzaw4EnByqde4Dx6jqEOhSQkJ9AI9dGUmOxyowfr/7I0ptL8bDy4GnmUxq7NWZus7n0q9WPJdeX8O2Vb5nbbC6/dfqN6Ixoaq+vzQXfhcyOXMYT4wJEAcxFJRN9B7Ep+QRWRlas67aONl5tGH50OGdjzqKSqQgosSBSnoX6A2175gpzCrVvr7mLohnVSn9741YuICLdUyPkkxCNXknS3jIlVayrsL33doMYCbxVxAPp/uVm4UaJtoR8dT7Lm3zL2J7fcnR6BwaYnMJUaYpckKOSqyjSFDHMfxjzW86n857OqHVqifLq5A/A/f/H3nuHVXG1a9y/2ZXeQYoUQZqCKNg79t57wd4Se0wxMa898U1iNGqMPXZNYiOW2FCwRGxYEEGliFKk97Jh7z3fHyPbEDXJ+c753u+6zvG+Lv5hz6y9Zs3aM+tZz3Pfd8Ztuu7pSn2b+pwde9ZQclleXU5CbgL7Y/fz7bVv8bDyQC7ISSx4xdtwMHWQiNh2DTBWGrMtZhsOpg6cG3sOd6tX2bo/IiE3gc67O5Ndls20kGl0qteJwT8PBuD06NN0r9/dcGxhRSF2X9uhE3WSiaTSmNGBo5nRdAaNHRtz8MFB5p+dT3FlMS2N63Oh5D6900zYNulXhicsIzYrFpkgo717ew4PO/xqTRAWBk+fwqU3G3D+E3TZ3YW8ijxipsb8t9Ya7/B/D+8Cjf+vERcHAQGS+lTYm5U23gb/7/3p4dWDNT3WvPWYLbe3MO3ENL7t9i3zWs1763F/hSPxRxjy8xA+bvMxX3b50vB/vahnxaUVLIlcQm+f3uwZuMfwUP743Mesvraai3eDaPPrXQYtbcBF+TNuTL7BlONTuPzssqEdZzNnoidH0/9gf+6n32FgAiz4HVqkQ5w9rG4FjlPn869uK4lIieDDcx8SnxtPPat6pBSm4GHlQWphKiKiYYFlY2yDpdqSwsrCNy4y3wSFoCDYKRhvW8lJu65FXcwzclF99CllXyzmjJjIvth9TAmWXKHzyvPIKc8htzyXgoqC12QrQVpYqRWSS7BckBuComp9NZXayreSQAHDgtW2HJxKwNLIAgtbF56aVhFflISJ0gSdXodGp2F04GiOxh81LCZb1m3Jrv47KRk7nC6N76ORi+iUcqpeBjCe1p5klWZhpjLDUm2JsdKYpIIk8j/KRylX1uqGarmKNd3XMCJgBK5rXKnWV/NRQQOWHy1GlpHB7yPb0aluBBolBDgE8EWnL5hxcgbpJekEOgTSzasba6+t4eRJS7rfLICPPyb5g4kM/8yXw+FqbtlqCBuhIiBHxvEoZ+zLYP7G/my8uZGgOkEk5CVgZ2JHWnEay0OXY21kzbQT03ix4AUOpi/LLrKyoGtXyMiAs2dJrmfFmCNjuJYmmQbKBJl0D2RySqtKmRYyDf22bWxtojMoF9Xs/FfpqlDJVOjRo9VrsTOxI7c8F7WgYHa2J3P3J+NcKvDr6BDG1LtHOa+c4gXemMwwzMvvnwVyMy+WnU3g0XewtJuC/f7STmIjh0ZM2h/P7CvVTO4D25tK55opTSmtKuPKNpg0AALbD+FQ/CGs9GpubNCQbQptJ/CP8s+D/Abx89CfDeUNO+7sYNKvEodHIVPQ37c/Hd07Muv0LIKdgonJjEEmyJjdfDZreqzBabUT00KmEZMZw/HHx6lrXpfLEy7TYWcHA0n+TXC1cOV58XOCHYMNrtM1Skub+2xmRdQK0kvS0fPKoK9GxrYGcdaLcPpkJSgVaDdvpm7idKp11azruY6f4n7iyrNXBOJGmTDyAVx2h1M+YK5TUCJ/JS6xo/8OAi36Mm97PIJeRC+TGxa5DxQzKZM/pEpXhYnShLLqMlTa2kpui9ovYlnoMslI8ztP0kvS8bPzo5tnN1LSYolNuMRTizfX6L9pXoC0YTK3xVwSCxLJLMnkxpQ3q4QBjD0yloiUCBxMHbiXJQl/WJdLBPdkX3tUchXpJek4mjlyY/INziadZfLxyWgWScHK6muruZByAVcLV16UvpAM6j7Kw1Rlyrmkc3Tb240PWn3At9e+5WjnrdyK2M1K/SVEAdrkmZDmYESqPv81xTRBD9Nuw4B4mNkLEu2kksHJTSaz5/4eMkoyqNZX17ru+sadsa8agZMymDTNLVKErWhVSRRpigyBl7+dPwm5CcxrOY9locvYH7ufD899iEanoVonPUN1oo7uXt3Z0ncLbvOWUHw6nGmrQzn4+DBe1l5s6bOFzns6M7flXNZGr2X3gN109epKz309SSlI4deREsG+qLKIYwnHeP/U+5ipzAisE0hifqLhHQMYNi9au7bmUe4junl1Y33P9a8yBC/xOO8x3fd2p0pXVSuY+TOSC5LxXu+NhcqCBa0XsOjiIgLsA7g/4z6CIFBUWcTue7v54dYPxOdKQg+jA0ezodcGrIyseJT7iPdPvU9ESgS96/ci/8l9bohprMzwZ8G/LxMWOZvDDw8T6hFKdHo0D997WFuufuJEyTj36tW/nbNvQ0RyBF32dHktOHqHd/g7vAs0/hPo3Vviady7V8s34O/QdkdbPK092T1w918e9/G5j/n69685POzwGyVM/wrX067TcVdH+vv2Z//g/W90NT315BSjj4zG1tiWI8OPkJSfxKCfB7H6uhXzbylZ+lUvlqbu5teRv9LHpw8Nvpde1jUGeBqdhi86fcEnbT9h1m+z+P7m9yBCm2dSwNHvEeSYCextb8UXAQUE+nfg665f06hOI+y/tmdB6wVMD5lOnwN9DAZ93rbeJOQmGF5UgQ6B+Nr6YmtiS5WuiqzSLJ7kP+FF6Yu/dAKvgQolZkbm5FfmM6TBEJo7N8fH1gd3K3c8rDx4mPOQjjs7MtBvII5mjqy7sY5P2nyCh5WHwZE1r0L6yyjO4HnxcwoqC95e1iaCdSWUqUArF/CwcEepVCMiUlxZzIuyF/+l+1iz+q2nsMPTLYg6ZnUMZOeiyiJkMhlVuipWdV5FW7e2Bv6KpZEl9dbW48M2H3I9/Tp3rh1j/2V7WsfkSA7369ej965P512da2nkd6rXiZYuLfniyhd0tWrKucJbRO1T0f6LfTBkCKIoYrHKAkpKefioC1nR5+kdpsCiTMvpveCckI7TjgaG3fEQpxB2DdhFQ4eG5JTl4Ljakc19NjM5ePKrS8zL4+qY9qyxfcwxbz3GSmPKqsuY2Hgi2WXZnE85T5WuCkEUsDO1I7ssC0EPoqy2jKtMkCEX5KgVapoVmzP8Rjm7vcvJU1aTaSmjUikQYNeQmNz79PXpy7mkcwbnY5BKm7QvN8mNFEZotFKGzLZCQATa1WlOePF1Dv8EZQoIGyxxD6Ze17HxFGxoBvN6ydAK0txV6EErg654c55EakwjNxyqYNR9kcbTIMFB2vGvyWLczrz9xnk9xH8IU0Om0s69HUYKI25n3Kbp1qaGYOubbt/w450ficuJo1XdViQXJJNVlsXiDotZ0nEJ7X5sh6uFK0fij6DRaWjp0hJrY2t+S/ytltRsDWp4MTUwV5kjE2QUaYowkhuhR0/Zp2WsvLSSNdfW0NSlKZFPIzFXmVOoeVVaqNTBkDjoYhrIR46xtG7Sl1NPTqETdUSERdB1T1es1FaIiLU2FswqJYdsUQC9DIy0MMWpL3p3V86nRNDguhpv7USueHlRJkshRbaVNt51WdVlFScen2DlpZXoRB0eLzQ8sZMMGEFyQV8eupzHeY9ZErWE9T3Xs+LSCvTVVez/SUun6roUnzrK2pQDLItaZghE/w41fKcmjk34oPUHNHZsjKe152vP3Rp583U91jH39Fz06OkfLwVV1fJXXBaQAsg5Leaw+tpqXnzwwqCOdifzDmFHw3iQ8wCVXMXs5rOZ3WI255PPM/FXiaQ9tOFQfG19uZlxk+jn0a/uiQjGWqhUSGMrIGCsMKZcW45lBdzcCjaimjlfdSI85zIjA0ayLUYi9zubORMRFkHjzY3R6DTYm9hTrClmashUOtfrzICfBmCuMsfX1pessiyeFz9HQGByk8nsvLcThUxBhbaCiY0nYmNswzfXvkEmyNjSZwsTm0xEuHOH6P4hjJpqS56ymt7evTkcf5jUOan02NcDdyt3rIysOPTwEJt6byKvIo/V11aTXpyOtbF1rXJkmSDDTGVGWKMwQpxD8Lfzx9/eHwu1BYsvLmbZpWU0qtMId0v319zMa/Ci9AW99vUiqSCJ8BHhdPTo+MbjTFaaYKYyo7y6nLLqMnYN2EWjOo344eYP7IvdR6W2koH+A4lMiSS3IpeCjwpQKVR8cfkLvrr6Fa6Wrkz1G8OaqFXINFUctJpE+0+38HnkYlZcXsHCtgv58sqX7Oi3gwlN/mTGOWUK3L8P199uPPh3EEWRFttaYKI0IXJ85P/rdt7h/x7eBRr/CURGSp4ap09D93++E9D/YH+0ei0nR72Z+FkDvahnxKERnHh8gqjxUZIj9z9AckEyLbe1xMfWh/Nh519z1v4jaoKLx3mPEbQ6eiXo+CUpmF+/nc6AiMksD11uKPFy+NqBnPIc2ri24erzq8gFOXKZnImNJ7L59mbMVGa1FkmNCtTMuKJh3D3pRX+nZ2PqL/sex6DWjDo8igfZD3A0c+Ry6mVkMhnzWs5jRacV3M+6T/DmYPr69sXayJqYzBjicuLQ6rXIBTkNHRriZ+dHeEI47d3aM6vFLJ7kP+Hui7vE58bztPAp+RX5b/QKeBNUchWeVp4k5CUQ6hHKe83ew93SHXcrd4orizkcf5hD8Ye4lXELtVxNT6/uDNL5Idy+yVjLi6i10o645uXLG1HaDcwpz8HB1AEHUwfyKvLILMn824WLgIC52hwbIxtsMwspqSrhsZUOIw0Emnkg2tlRoa2gRFNCekn637anEBSYVGhxKwIrUYVl/QAsPfwMLuGXn102uPEqZUoODD6Ar50vK/ZN4+fC3zHRwvyg6Swb9gMAz4qe4bXOizqmdUibnwYHD5L84WR6DCyjSA0dXdrwc5G0u9berT3nw87XyrR03NkRE6UJp0afolpXzaGHh1gTvYabGTfxKzNh7uVqrGd9yPAnXzCkwRDcLd3ZeXdnLZU2C7ERQ59N5LGTF4WyJFLlOygW7qPQwjeZAcy4r0J1M4Z8Y4GJYRY8rG/JuSmX6LG3Bwm5Eg+hhvRbA8dSKSjWvQxcvKy8SCqUyobQg1KuwExtTkFlAfPvmfJeZBn+85TYFFXzYjVsawJT+oJKoaJaX40oivR5DCd8JXfqmjKi4GwFN37Q8k0r+KRb7Xtlb2JPA7sGRD2LonXd1vye9rth4VlD6DZWGNPBowNtXNvw+cXP33jP7YztaO7SnFOJp1jZaSWftvuUCeETiEiO4Hnxc8O8qGNWh8/afca/Lv6L3Ipcw/lOZk7oRB3ZZdmGjMabMDZwLD28ezD6yGjuTL3DuPBxpBSkUKIpQYaAXCdSrQA50rjW7KLbmdihqdbgauXKw5yHWKotqdBWGDKGf4ZKC1VyQJDUqprhwrfJ3rifvY7TnGqmBE9hX+w+dHodFdoKxjQaQ0+vnow5OkYivVeBwtgYEyNzsste8TU6e3TmxOgTFF2PYsyOPkS4alnS4mPU5tZ8EvEJdUzrGKR7/zi2fxyrP3uW/DFTYKwwJqhOECHOITRxbEJjx8b42PrgusaVsuoy2ri2ISo1iptb4P7YbkwzvWBo788bGQvbLmRuy7k4mDpQVlWG3deSjPTExhPZdW8X5dXlmCpNa5W02ZvY42bphiAIPCt8Vour8jIWRpRJ3jEWpjYUV5Xg+KKMO5uhMsAP135P0KDDWGHMtJBprL2+lpZ1WxKXHcfowNFsur0JlVxFla6KU6NO8c21b3iS94Ss0iwG+g/ExtiGH25Jzw2ZIDnCa3Qa/Oz8SMh9JTpwdPhR+nr34d8TffiXRwrNXFuwb9B+NDoNwZuDCa0XSmlVKZefXa5VTilDRn3b+pRXl5NWnMb4oPHMbjEbXzvJpLHz7s44mztzPux8LdltURSZ9KvEvXM0c/xLkZBiTTGDfx7MpdRL7B24l6ENh9b6XC/qkS+T803Xb/jswmdodBoaOTTifvZ9nM2dmRYyjcnBk3E0c0S9XI1W1LK4/WJ23d9FRkkGn7T5BFlWFsviN9MxXcH+AXup02e4IWO5rOMytt3Zho+tD2fHnH29tGn6dLh1S/r7b+BI/BEG/zyY3yf+TivXVv+ttt7h/w7eBRr/CYgiNGsGVlZSjfk/xMTwiTzMeWgg7P4VKqor6LS7EykFKURPjsbDyuMvjy+oKKD1jtZo9VquTbr2Rl+DPyO3MAPvNfUolFUxo8SP6bN303ZfZ7p6deWXob8YyoZUy6WylO97fs+MUzNqlVOo5WrsTexZ3X01a66tITpdujZThSkt1Z60PRHL+zfBpgJut3Qjflxvxr/4ASOFEVOCp7Dx5kZS56biYuHC6COjiXwaSeKsRIP8X6W2ktisWGIyY7ideZvD8YcNO1gyQYafnR/BTsGEOIUQ7BRMozqNKHV3IvHDSZxpbM6qq6to5tyMrLIsMksy/7r06Q2wVlsRIHMk9Jkc35vJlGormN1L2oVsYdGASlM1d17cYbDfYH5L/A07EztDScrU4Kks7rCY4C3B2Bjb8Cj3EVZGVuRXvtqBM1IY0dWzK+ZqcworC6VMStELsnNTKX5LnPhHdSCVXEXnep0xUZqgVqhRypRcunaQkGQNptVQ3cAXXWBDyqmmsLKQ5IJkMksz/1EwJhNkuFq4YmlkybOiZ5RoSpDL5ExqMklS/irXI1u/gS1+ZaRYganajD5+/Tjw4ABnxpyhi2cXwwvyu+jv+Oj8R3zW7jO2xmwlrTiNLp5dmNdyHj1cOiAbNpzouDO0Gq/Fw9KD4qpiw30WEDAXAyXzSL1Qq2wmXpyB54v7XNwNQsdOGE2ZzlFvHYPCJR8KL2sv8iryWNt9LXPPzK1F6DdCiUNhNfl2JpRpK1DI5Oi0Woy0UK4EG2ObWveqeaac65t1tJ8A1+rCv8/BB93BwsiCYo2kNtQ0HeLryChTvBpfmR6ub5fhnSfSdJaSRNNXPiYdPTryRacvaP9je7Silg5uHYh6FmX4/OqEq5irzTmbdJYzSWeIfBopKW3JjTBTm5FXnldrwbu0w1IWRy02uNl/fuFzVlxeYfjc39afRo6N+CnuJ8P/aha5dc3rkjg7USLJRi0huSAZAQFTlekbZaJBIn3nlOeQlJeIKIBcB3FpfZncKJVUsYBKbeVr5nE1GOI/hFktZjHk5yGvHSMgMMh/EIH2ASTfieDCi2ukm+i4swkKjAX6TzJGL5fxWdvP+PTCpyxqv4htMdvILM3EQm2Br7U3tzJvIwpS+Vkvn17M+W2O4XfjUqli9xGRptYBvD/Xm72Pfn5jH00VppRppXOauzRHq9OSXJCMp7UnMS9iDAFhO7d2PCt6RmpRqqH/SrnSwKmqGWMBgY/bfMyqq6s4vh/6rDpCeufmrLy8ki23t2CmMsPexL4WjwAgqE4QVboq4nPjpXn58rdRoyAGUnmQhdrC0Acvay+8bLx4UfqC+1mSwIKtkS0FlQWYamWoqrSUqACZjBaWDZHfi8UnD7Y0k/o7rvE4fuz/I/0O9OP44+N81u4zVnRawc47O5n460RERCxUFoSPCKfzns6EBYWx6+4uRgWOIuppFGklkheLrbEtGq3GEAwdHHSQPbF7uPb8Gk6iGQ8rn9HItB5G1g4k5CbU4gz52fqRWJBIW9e29PHpw6KLixgVMIrt/bejF/V8cOYD1l5fy6J2UmmcIAjEZcfRaXcn6pjW4XzY+Vflmkjqdk02NyEuJ44bk2/85SZela6KCeETOBB7gO96fMesFrMMn5VWlWL+pTldPbtyLllSflLIFCwPXc4HrT4wbLLUGKjWcH26eXVjecflLNk3mdMVsSx64sTi5ZeRe3pxLukcvfb3YlKTSchlcnbe3cmDGQ8MAgu1MHOmVDZ1585b+/9PoBf1NNzYEB9bH8JHhP+32nqH/zt4F2j8p/DTT5LE3O3bEBz8j0758OyHHHt0jCeznvyj47PLsmm5rSXGSmOuTrz6Vk8HjVZDj309iM2K5dqka3/pO1EDMT2dccuacMguh7nWPfi64jwKmQI3SzduTbllkNjNK8/D7mvJHyJ5djLO3zrXaqdzvc60dm3N2mjJGyOsURi/Jf5GSmEKelFPR/eOmOvkOB+NYH60VJN82Q0ihzRlj0cRwU7BHBxykPtZ92m8qTE/9P6BaU2nvbHPNTWl2/puM9Sj3868TUxmDPey7hleuD6FCoItfHBp05PV11ZzZvQZutXvhlanpee+nvye9jsL2y5k061N5JTnYKo0pbCy8K+J4n8iDNdAJVdhbWRNsaaYjh4dWdB6AamFqcw7M+81km3NouTP7sitXVtzZsyZWhmAyumTMXHczsJm89l6fSOmRZUscw9D1ymUvPI8dt/bzcPch5J7sbkLNsY25JVmk1uaTZXs9euo8YOoUXFp4tiE/Ip8bmTcQIaMXo/0tHoOEfXApf9Ywh+HU1xVzLTgaTzKe0RkaiS+tr48ynuEv50/FdoK8ivyKa4sfqs8rEyQYaG2wFRpSnl1uWFH0tPak2bOzfCy9jKUfBWXF3DixGoumUq7xm1d23LluVTDLyAQoF2DDc1rEYEFvY76+ffYWed9zPQKqoyULGy7kPmt5tN1T1euPr+Ki7kLB4ccpN+Bfm/k/gQVqrlnpUGBDGONnhL1q77rRT296/fmZKKUgbSohKJVkGgF3nMlR3D9y+7IRBh9D1oWmfN++5JaYzL/hpyvf9PRdgLEOgqUqkQDn0EpU+Jg6oCzuTMxmTG4mLvwrPgZoR6hXHx6kehJ0bSo2wKQfotBm4LILc/Fz86PJ/lPXlP3WR66nM8vfs6Xnb9kQesFBP0QVMvRW0DAydyJJo5NOPnkpCHrUrNjXxOgHH54mCG/DDHMHblMXsvo0c3CjUKNRMY3BK0i2CnMWdNvI8+KnvGvi/8i44MM3jv5HscfH691fk1f3vSbq1mUhY8Ip59vP0BaIG46+wUjhyzh+6awsTlkm0KjPDmP6ygIcAikg3sHVkevllywq8vxLjNixqVKVg925EVFDqIoEj4inAsXdrAv+SjZf2EpJCAw0G8gW/puwXeDr5RVkhvz68hfmXx8MhZqCzb02kDYkTBSi1ORIWNMozFMCp6EWq4mNjuW2KxY7mbd5U7mnVpZNAEBURQZFge5jhYoWrSkpUtLnMydOJt0lqMJR99IvK+Bu6U7bdzaYG9iz9H4o4aNjZpxs1Bb4GbhRkphCmXVZQTVCaJl3Zbsub+HNq5tWN9zPV9d/Yof7/6IGUpKxCoDWUmhh+9Og9o/kMmesewasIuF5xdSWl2KjbENMVNjpNK7J7/R90BfdKIOJzMnunp2JfxRON423tzKvEU9q3qENQpj6aXaZqs19+aPRHq1TiCgbjD+9v40sJMcslVyFb3292LPwD1EPY3idNJpUuaksPvebib9Ook9A/cwptEYRFHk69+/5uPzH9eSAY/PiafT7k7YGNtwIexCLXPOs0ln6b63Ow6mDtyacgtXS9e3zgO9qOfjcx/zzbVv+LjNx6wIXcGZpDOsjV7L+RTpnanT62ju0hyFTMG9rHucHHWS9u7tqdZVE/hDII/yHmGiNMFEaUL4wF8Ysbsv5ZpS9pZ1p8c3x8DIiNisWNr+2JbWrq35uM3HhO4K5bse3zG7xew3d2zOHLhwAWJj3z6J/yF23t3JhPAJxM6IJcAh4L/d3jv878e7QOM/Ba0WvL2hVSvJMfwfYNWVVXx19SvyP35d4vZtSMhNoPX21gQ7BfPb6N9eI/6Kosi4Y+P4Ke4nIsIiaOvW9u8bvXKFzf/qzfQOxewNXMLIgZ/TdkdbotOicTB14MjwI7R2lVxl7724R+PNjbFQW9DatTWnE08DGBZKckEybHq/+fssar8IOxM7KrWVfBrxKWuj16KUKZHL5EwLmcb+u3todTePD65BqQp6jYFt2t6M++QAg4+PIS47jvj341+7RpCCqaBNQTiYOhA1Puq1VLJWryU+J14KPr5dQIyrghiTIgM51dPaE4Wg4Em+5Ap+9dlVQ1bGXGVOX6cOdM8wod6VB6SlPSTJRiC+gT0PnZU8lZVQWP26Pv4/wZ8XUzULuzomdVjVdRVTj09Fq9cSFhTGzgE7X52YmUnd1S6MN25F2JwdhK4PwTKvjAveK3Cc8xnhCeEM+GmA4TuGKYLYsiqOcrGaT3qr2N9Qz8XxkTzKe8T6ScHqAAAAIABJREFU6+u5m3UXDysPWtdtjUwmI688j5TCFBJyE5CJr2rZ39R/kAwnAx0Cufj0It08u6HVa4l8GokePYHZMpZFydjWQs5JNw19TYM5WxmHt603oigSlxOHkcIIAQELtQU+tj4UaYooqiwitzz3L70bavA2/X6VqgJL3+/5Jf4XAuwDeJjzECOlkWEBbq40p0pfhUanMSwKRETMleZQWoK/0pkbsgwDJ8ZcaUY1Wgb6DeTAgwO1VIfsSyHrG8lkrsVkKetRs0CzqoQ9h2HUWCNKxErD2LkWisR9D4cbq7AtquKDqe48KX2GiEh3r+6cSTqDTJBxb/o9mm1pRpW+Cr2oZ2vfrUw5PsWw6yqKIoN+HsSl1EsE1QmiWlfNledXkCGjjWsbLj+/XGtcPK08qdBW1PK0ABjRcAQ7+u+gzjd1pPp7c2ce5z1md//dTDs5jUptJcdGHKNKW8XQQ0NxMnPi+uTrdNjZgbTiNLR6rWE+q3RQt0QgeouI1wcKSuWvq7o1c27Gncw7aMX/mhRny7oteV70nLj34gx+B6Slgasr86a5s8HpOXpRj30pHD+kYEeAlj2NQG5hQammFG9bbzKLM9BUlNBRW5czRmlSGQ9y9NpqquVgb2RLTmVere81KIa5tCRqfBTjw8cT/iicAb4D2P9gPyZKE/YM3MPE8Ik0d2lObHYszZybcfzxcUOZWwuXFsxsPpOhDYaSWZpJm+1tMFebs6LTCib9OglnM2ee5D8BrQ7dP7QwqPHueBOMFcY0dmyMq4Urxx8fNzzzjBXGTGg8gc87fI6jmSORTyPpua8nXT27cnjYYW5n3mb4L8NfiQKIMDQOZtyC9qkQFmbGL16S6MLZsWfps78Pbd3acmzEMWSCjIjkCLrv7Y5O1BmyrHJBTl2LuqQWpdbindRAJagwMzIjvyIfBTK06LnQbhuhnSa9dl3d93YnvyKfjb020nxbc34dIXEGxx0bx5H4I9yaegs/Oz8AgyRyb5/eHBh8ABOlCY9yHxG6KxQrIysujLuAo5kj8GrzzN7EHgdTB65MvPK3xqwrLknGfjXX2cCuAQ9zH2KqNMXKyIrQeqFs6r2J/gf78/vz31keupwdd3dIMrgKac4M/mUwcj00zxD4KWQVrtM/Al75aNkY23B2zFna7WyHrbEtlydcfrvHxfz5Uun2w4dv/vy/gCpdFV7rvOjo0ZE9A9+Z+L3D3+Odj8Z/CgqF9GP/+WdITf1Hp9ga20puxW9xIH0T/Oz8ODr8KJdSLzH9xPTX3KCXRi1lz/097Bqw6++DDFGE77/n1qiOzG5XwnsNxjN60GIWX1xMdFo0ewftpb5NfTru7MjGmxsRRdEgTVuiKSHyaaShKSu19GDWiTpmNJvB2h5rDeVaRgojvu3+LRfGXcDBzAGtXsva62vJ0eTTZPoSFixqzsjB4JkP41aepKiOJU02/cqygFlvDDIAVl9bTVJBEht7b3yjFJ9CpiCwTiDjGo9jXUYQVxLb83TOUwBmN5+NvYk9j/Ml59r1N9YT8yIGlaCghd6Z+TFqRn9xgm5rfqWdkS8jF+xi0eEc9m3M4s6iNNb0+g4BgW5e3fCy9qK+TX1aurR86zALf9jO/vPCq6ZEJKs8i/dPvY+7lTtyQc6ue7voursrJx+fJC47jlJbczzNXEl5FI1PpSmRs2IosjUj9MkiMlcvpYtnF9RyNSEV1myOMCa84i4hE6r59/YJ7GpQhauVG788/IVpJ6ZRpCni8LDDJM9OZt/gfewZuIdTo09x1XoBAMse1jH0uLd3b65MuEL4iHCDc7RcJqe3d2+sja0NWvAXnl4wuEfHOugZOFTLSTcpS3O8LAZttYYH2Q94kv+EJo5NGBEwgqbOTcmvyGeg30CCHYPR6DSUVZcR7BjMlt5bSJqdhEJQIBcFzF/ykU0Ukka9VpuEKL6u35+re8C5lHMICDzIeYAefa1d/pLqEkP26I/yxvUV9pSoobowr+amgQAl2lLJ0M9XCuJqggy3AjCphjJTFc8soFz1koSuA9sKKDSGocMxBBkglbj9cAIKjWBx22rGDoSZbT4wfG6lsjLM3SWRSwyGlQDBjlKWtGaub7q1iWMJx9jRbwe+dr7cyrxFU+em9PPtx/MSiUvRyKERZkppmz65MLlWkKEQJP3Sbl7d2Hp7KyVVJQzyG2Rwc86rzGNey3nIZXKG/DyEXfd2AdDAvgHWxtakl6SzstNKtvTdgp2x9DuvkkGypcjq5T0pkWuZEDSB0YGjMVYYMyV4Cmq5mpsZN9+4QK5rVtdw7X/8vdTg3ot75JTnMP/M/Ff/fFkmUhUUSFv39gwLGEGWOXQKE3EphuitYFxcgbFexqO8R2h0VdQrFDijlkp49KIe0zIpyFAJSnIq85ALcnxsfAxfoUePgEB0ejQBPwRw4MEBfuz/I3sH7WVBqwWUV5cz9uhYvu76NRdSLvCi9AUzms5gUpNJaHQatvTZgoXagrFHx+LyrQvBm4NRyBVcCLtAE8cmtHVtS2pRKmqZ0nDVAgJ2Jna4mLu8ZjpXg5oxNFeaE2gfWMscs0JbwbW0a1xIucCU4Ck8nvmY5NnJTA2Zyu77u3Ff687E8InYmdhxdPhRTieepv3O9vTc25OMkgwEBMl4UYBfAmDUIEhyUPDDgVJ8Mqsx18poqq7HnoF7OP74OPPPzGd/7H4in0YS7CTN05rNAp2oI6MkwzDeU4OnYm8i+eG0cmlFlVhFfkU+nVzaEfQCEGHQzQUUVLyebZzdfDa3Mm5Rra8m2CmYzbc3IwgCG3tvxNXSlWG/DDP4uIQFhXF85HHOJ5+n656u5Ffk42vnS+T4SIo0RXTc2dHQL1sTW+xN7BnWYBgZJRkM/GkgGq3mte8XRZHfn//OmCNjWH5pOQpBIrW3cGnB1r6Sl1althJjpTG2xraYqkzZ0X8HNsY2LDi3gIoqqW/9/fqzJ+JbaQyyVURNvmoIMkqrSumzvw96Uc/JUSdZE72Gp4VP2d5v+18b6cnloPvn64i/gkquYkGrBRyIPcDTwqf/I22+w/9uvMto/CdRVgaurjBuHKx5u2RtDWqIV7kf5r4mq/d32HNvD2HHwgwkT4Bdd3cxPnw8X3T6goXtFv51AxUVMGMGeT/vImSBOXVc/bg04TInHktO0DUlE1W6KhacXcD6G+sZGTCSpwVPuZZ+DQAzlRlWaivSStKwN7EnLCiM1ddWo5QpiXsv7o0lW+nF6QRvCSa7LNtQQjOs4TB+ivsJN0s3FCnPmBcNE+5I5Sf3ezSh3tJ1OAS/CppSClJosLEBs5rP4quuX/39YA0fjpiXS/SPK2i9o7WBSKiSq+hpFszpwhs0yZLTNqmaO25KYpwFCuRSWYezuXMtzkdMZgxLo5YyqckkguoEMfv07Fo+AxZqqT5/fNB4etTvQXpJOkn5STzOf8z1tOuvKQm9rVzkTVDKlCg11XSvdsc9dCCmShM2Xf4W88JKfrOcwQeVv1Kelc6/L8gY019PupOJpPBSJRltGSuNWdRuEXNazqktDKDVSi73q1fj8ZkprQN6cuDRIcPHEWERdKrXiS67uxCREgHA0o5LMVYY80nEJwYSfV5FHhfHXcTkQQLJEwexd3B9jtrlYZ1RQIo1GOlBr1TSxr0dxVXFPC96/hrJ9o8wU5kZuAD2ogk5QjlyPehkMPV+I574b0IvSCZtkmmYyB35dGytS5nUZBLLLy1Ho9PwVZeviMmMqeVd8MfdVROlCR1fGHPaOg+VXlLi+TvI9FLWx6FM+nvw0lFcpoe+j+CkN2hftmOiNEEtV1NUWUjkdpEv28K60zBqlhM3Za8W/wICDqYOuFm6cTPjpqGcREDg1tRbhGwJ4fbU2yhlSpptbcbk4Mls6LWBvvv7cuLJCW5MvkFacRqDfh4EQNd6Xbnz4k4t0rKnlSfJha+MEWv8VvR6PT52PlTpqkguSGaw/2C+6fYNnt950tChIQ+yJVPIQf6DCGsUxoCfBhD/fjz7T3xJ2+W7EQXoN1KSkK3B8AbDyS7PJvJpZK05LiAgF+RvDDiczZyxMbLhUf4jBvgN4Hzy+ddK3Fq4tGBayDSGH3mMycYtDP0hlOKqEk6NOoXnd56Ua8vJLctFJkpZlmm3IDLQjHtmpYZ7558DT60kdbEqOQajPDtjO/Ir8gmoE2DgMdSU99TMm3U91zGj6QwEQeDT85/y5dUvMVGa0MmjEyeenGBph6XMbTWXRj80wt3KnYvjLnLq8SlGHRll+P3XkKdrYKUwxzWthHXDdhDcWvJgiHoaRURKBGeTzhokUWtUrf6sDvbHsf3z88TZzJnxjcczvel0zNXmbL29lXU31pFWnEY7t3ZkFGeQVJiEgICLhQv7B+2nnXs7lkUtY3HkYgDMNHB1B1hooPlkiZNmIzclWfUq+2iptqS0qhSFoECj1xiyQQICX3f9mgMPDpBckCxxQl4++92t3Mkrz6OkqoSGuQJt2o1hS/webI1tOTX6FM1dmhva14t6/Db40cSpCZ3rdWbGyRmkzEnBzdKN2KxYmm9rzthGY9nSd4vhnBvpN+i9vzf2JvacGXMGV0tXEvMTCd0VirHCmIvjLuJi4UKHnR1wMnNiZvOZdNndhYH+A9k3aB8yQUZpVSn7Y/ez8eZG7mXdw9PakxlNZzCh8QTuZd1jwMEBOJk78TjvMX18+nAz/SYzms6gjlkdFkYsRECQODyZMYiiiAeWFGiK8Km2wMinAZemSu9TrV7LgIMDiEqN4sqEK+hEHc23Nmdpx6V81v6zN95vAxYulDY5k5L++rh/iLKqMtzXujMiYAQbem34H2nzHf734l2g8Z/GokWwdq0kd2tt/ZeHRj6NJHRXKI9mPsLH1ucvj30TlkQuYWnUUvYP2k8dszp039ud8UHj2dJ3y18b7qSmwqBB6OMf0nuJDzdJJ2ZaDMWaYlpua0lvn94cHHywVhtLI5eyNGqp4SVWs1Dzt/MnPjceM6UZ2R9mG+qX27i24cyYM7XaKNGU0HNfT2KzY1nYdiHf/P4NGp2G8upy9KIefzt/5raYy7ST07Aph7l31Uz5XYNDGdxr5obVohV49B5Nv5/6c+/FPR6+/xAz1dsLq0VR5GbGTQ59N41DPCTlJelWgYyASgvO7Kim05AydColN4WpmA0YBq1bI8rlPC18WovzcTvzNrnl0oLtjwaDAgJ9ffpy9dlV8irzCGsUxoknJ0ifn25YzOdX5DPmyBhOJ542jJ+diR1FlUXUt6lPckEy7pbupBSm/CNyukIHCqWaKrEaUafHpBqcSmFkLKzoICWqmro0xdrY2kBMNFGYkDg7sbb2OkBODgwfLhk9ffMN/epc4ELKBRraN8RMbcaVZ1dwNpOc6kO2hFCpq2RU4Cj2x0rlge3d2nPl+RWM5EZcnngZc5U530Wv5cffN6KTwZiQCcxtPZ+MRzcZeHYSVYJII4ULNh5+nE+JQC7ICXAIkIz0ZHLyyvNIKkhie8x2qRTo5WLb386f+Jx4A9dBLgqYEoi7biJmeBnMI0uEB8hlcrR6LTJkyGVyg5zmn2GltqJQU8icIn/Wromn3xQzLnpIu7F9ffty/8V90kvSqdZXv1Jdevk0bVCg4KGNlrqF0PcJbG0iLVodyqBELUmy/h0kkzPRkAkCKWMQnxOPv51/LS7Fyk4r+ezCZ2zps4V/X/03SpmSyxMuU6GtwHu9NxqdhvyP8jFRmmD+pblhHtUsPGvmbEePjkSnRRvGo3O9zkS8vA86UVIWqtRWopKriH8/nuknp5OQm8CzIqmcpoN7B7xtvIlKjWTWbSXjD8SDlRXZW75lTulhA3+lBjX3Ty7I8bX1rXVNbhZupBWnGa7fycwJjVZjINy7W7rT3r09CbkJ3My4+dr4HT0I7nIbJs1yx8bYhvNh55nz2xzW3VhXS+FLQKBZnhGd4yr4sj1sDYdJd2BLM4FZvWVUv/SmqRmDGuK2jbENoR6hLAtdRtAPQWj1Wqr00jPEQm3BonaLmNBkAuuvr2fZpWXIBTk2RjbkVOSwsO1Cskqz2HF3h2HzAaQstrO5M5mlmeSW5+Jr60t+RT6mOjnmqS8Y0G0WEQW3uZ52HZ2ow83Sja6eXelcrzMbb23EUm3Jb4m/GebOH4M1ayNrSqpK3i65Ddgb2zO20VjmtJjDoshF7L2/t1ZgMjpwNNNDphOfG09cThwHHxwkuywLEXArhBtbIdEWOoWBmVbGR5f07GyhJMlSRzV6podM56M2HzHsl2HcyrxlKDW0NbZlXc91jD0yFkGQHL4VMgX9fPtxoMFiRi8L4lBDKfBtU7cNUc+ikAkyPmr9EUs6LkGtkAKs9dfXM+/MPB6894BmW5sZfDkAtsdsZ/LxyewbtI9RgaMM11TjhVGtq+bMmDM0dGhIckEyobtCUcqUXBx3kZWXV3It7Rr3pt/j8MPDDP1lKBOaTMBEYcLu+7ulTINPH95r+h5dvbrWkiu+9+IebXa0oay6jM29N/PeqfcM5WKTmkxiVZdVWKotsVhhSqVYjVsRXDCZQcSARrz320xyPszBysiKmadmsvn2Zk6MOkHnep1pvq05elHPrSm33prZN2DRIti7VzLt+x/CsqhlfHnlS57OeVqL0/IO7/BnvAs0/tPIygJ3d1i8WNpl+AvEZsXSaFOj/9dScjV8jIMPDqJWSCTiEyNP/PVD6fx5ibRubs6yVT1YkrCZ02NO08y5Gc22NsNEacK1SdcwVZkC0i7Ll5e/ZEnUEmTIDC82uSBna9+thAWFEbQpiLicOK5Nusaj3EeMDx8PwMHBBxkeMByQ5AF77uvJg+wHnB1zlhZ1W/Ci9AXjjo7jbPJZg16/hdoCL2svdg3YxYrLK/j17s9MSTDhvcuV+GXr+b6DKTNDyzg8+BcGBQx57fL0op7otGgOPTzE4fjDPCt6hr3emEFxOnooGzDY5y42FfAoKoBZvQTC5YncmHqTBg4NX2srrTiNc0nnOJt0lmMJx6jUVSITZAZH2Sf5tUn8arkamSAj1COU73p+h5e1FzGZMQz+eTAlVSU0qtOItOI0EvMlBZnFHRazLWYbg/0H813P79DpdaQVp/Ek7wnnU85z4vEJ4nLi3nDjwVQvx1JmTItHZdTPFdnYDMqUGIol37SzqZQpqWdVDw9rDzwsPXAvleO+5Sc88vW4f7UFp66D6La3GxdSLnB32l3sTOxouLEhxZpiXMxdkMlkZJZkIooiRkojqnRVtHNtR8TTCGY2m8mz4mccf3QcOxM73r8lY8bJLBwO/Ap9+1JUWcTyi0tYc30tekFS+VnV/WvuV6ex484OXix4gSiKbLy5kcWRi5HL5KwIXcHe2L38/vx3bHQqNLoqVDqJz7O6qDnjvjzNztg9zDk957UhqmtRl9Kq0lqqUm+D8JJTobCwIqdaOj7YKZjYrFh0og4rtaQMVq8QUqx45egngGklbDsBI4eAewFY2jiRrCjBSGlkCExXd11N4qHN7DN6TLFKOm98ohnKYSPZGrO1Vl+czaRFaI3R3N/2/WXkJSLiZ+eHXJAb5oyAILm7l6SjF/V4W3vzpOBJLUlfGyMbiiqLcDBzwNfWlwptBTGZMYZApSbA8rP1IyEvAbkgx1JhRoe4Uobf0xHe1ZVrbgJPi5/VyhLVBHE1qMkiWoiN8BKnYKT3oEr+jCdsRqtKZGrIVNZGrwVgXY91uFm6EZUaReTTSO6+uGuYy2YqM8qqyjBSGPHw6woOB8pY0EUKVFzMXWopqNUYgjZ3ac6N9BsIIoy8D3uPSvHq9rBA3qv/CC8bL5LykwxBxB8xttFY7r24R2l1KTcm3yA6LZoJ4RNquZ138OhAaVXpa8GQucocKyMrnhc/RyVXcXjYYXp795YW2nodO+7sYN31dTzIeWA4x0plQZf63ehcrzNdPLvgZe1FhbaCU09OMf/MfNKK0yRFMIu6vNf0PYoqi/j37/82nN+4TmPuZt1lXY91pBalEp0WTXxufC1viT9DJshQy9RU6F4F4wIC9W3qU9+mPhdSLqDRaehd5kJlaSEntpRxKEBg7AARtUwpBTaiSNALWKRrzQzPeDRykYb2Dbn6/CpmSjN0os4Q3AoIBDgE8Fm7zxhxeASPz/njnV7BuVPrGXxMyvoYKYywUFlQUFmAt603O/vvpJlLM0o0Jbh868LM5jPJr8jn+OPjpM5NRSFTIIoiY4+OJfxROLem3MLXztdwPZklmfTc15PUolSOjzxOW7e2PC18SsedHZHL5IwNHMuqq6so/LiQ44+P8+mFT0nMT8RMZcbs5rOZGjL1rc7goijivtad58XPUcvUaPQaXC1cOTD4AG3c2lBWVcakPUP4Ke00fjmQYA8bem6gn28/3Na6cWDwATJKMvjg7Ads7rOZqSFT+eLyF/zr4r+4Pvk6Ic4hb713BixeDDt2SBuc/0PIr8jHfa07s5vPZmXnlf9j7b7D/z6842j8p1GnjuQQvm4daN6c3q5BTbnUH70B/isQBIHlocuRCTIqqitY1XnV24MMUYSvvpJ8PkJCOHP4K5YkbGZpx6V0rteZkYdHUlBZwLERxwxBRnJBMu1+bMfiyMXoRT16UY8MmUSiFXWkl6QjCAID/AYgIBCeEM6YRmNoYN8AexN75p2ZR7GmmKLKIrrv7U5cdhznx543qOY4mjnSo34PZILMkPko1hQTnxvP2aSz7Bu0j5uzY8ka0YeG0/UMnWjO8mZl9HoMzUNHE/PpBLTFEsflcupl5vw2B7c1brTZ0YYDd/fSp9SZizf8yVxewYajVfzgkAoygWEhYzm4YQb7iWXbgB2GIKNEU8LxR8eZ/dts/L/3x3WNKxN/ncjZ5LNU6iqZ22IuZZ+WkTQ7ifGNx2OkMOLBjAcsaif5i1gbW0uLgsRTeK/3xvQLU5ptbUaltpLP233Oncw7mCnNkCFDLVdz6skp0kvSGdLgpZqPTI67lTtdvLqwqssqHrz3gLvT7r7mfzKwzJU5V3W0jSvlWR0jNncwoUzNq1+7+IoLopS9mg/V+moSCxK59vwaB+/sYVncD4zpmE/bQYW4Rg/DaIURF1IuALDy8kq2xWwjLCgMEZG0kjRUMskbwsnciadznuJs7kzEU6mUasPNDSTlJ7G171aezXvG4jrDcNCqebRrNbNOzaLumrp8d2sDfXz7YSozIkNdhemHnzHlmT15FXmsu76OJpubMO/MPEYGjOTxzMfMaDbDoI41+mYVZSowsrDBSW3Li4c3sRg/jRmNJhlqvv+ITh6dMJLXHrcaXsKwBsM4YjFNChhEqWzGqlpOG8+OhmOLK4up1lejF/WGHfaUGn7oS/4GQJkRjBwMxlWQYwL3xUyMFEbkledha2yLWqbm8O5PsLv7mNKXQYZDKTyoq+LKsyt420jlhWMCxwCQUZqBi7mLQTHNWCHJOh8ZesTQtw9bf8iJkSf4sPWHiIj085GUmNKL02sFpsZK41o+Mk8KpMD4j+V7+ZX56NCRWZpJckEyj/MeY6I0wUwpyarWLA4T8hIkFaIqHfnVRRz10TFiKNz0VNPTuzfhw8Pp7tXdMMaFmkKmBU/j4XsPqWdVzxBkNNb9gIU+BDUOmOma0ET3A78NeoivjbQoNFGaMMh/EP39+vNt92+JmRZD3kd5bOu7DZBq2EVE1MUV3HaGbS3VhmupCaikWyTQ27s3ZiozbqbfRI4c1yLYHwStPrFl4DCY7BnL0LtVLN/0mCE59lirrbBUWxoELQD23N/D/ez72JnYceihVE64uMNiQpykxZ8ePRefXqwVZCgFJQ3sGqCUKfGx8UFAoJ5VPXxsfNh+ZzsjDo3AcbUjU09MJbEg0cBrQITCqmJKNCXYmdgRkxHD8EPDsf/anqG/DKW8utwgIZsyJ4V+vv1Yf3M9IwJG0NBeeobFZkuqQ78l/saYwDEcGHyA/YP28+8u/6afTz8s1Zb8GXpRbwgy/hi4ulq4MrvZbANPpH9EOmfn3OLoh30Yc0/k4yugEavRCSLd63UhxhkGuf5OswcFxO21JDK7F35W3pRWl9bKKPrbSy7hJ5+cZLvJKLyvxnN33ki6+vch58McetXvRaW2kuzybEI9QjFSGNFqeys+i/gMlVzFxCYT2XJ7C+OCxpFRksGJxyekvgsCm/pswsXchWGHXvE1AJzMnYgaH0Vjx8Z03dOVYwnH8LDyIGp8lLTBcWsjGp0G9+/cGXZoGE5mTvTy7kVZVRlNnZu+NcgAuJhy0eAxo9FL7/ypwVNp49aG+Jx4Wnzrx/Hk03x5Dtb2XMf8lvOZ+dtMDjw4YDD0W3B2AZ+0+YSpIVNJyE1gadRSFrRe8M+CDJA4otr/msDC38HG2IZpIdP4/ub3hozcO7zDm/Auo/H/Bx49Aj8/2L4dJk5862EarQajlUbs7L+TcY3H/Ze/pry6nI47O/Ks6BmmSlPkMjnXJl17ne9RUiL149AhWLiQ1A8mE7y9GS1cWnBi1Ak+jfiUr3//2uB1IIoiu+/t5r1T76HRatCJOmSCjJnNZnI2+Sx6vR6NTkNqUSr9fPsxNXgqfQ70wcvai8TZiRxLOMbAnwZipDBiXNA47r64y6O8R5wbe46mzk0N3dLpdfhs8KFl3ZYsbr8Y/43+6EU9IU4hxGTGEOQYxOY+m2nu0pwH2Q8Y+stQSXWryIKFl0R6xJRQYgTbW6hYHVKFzM6eIWVuDInKofWVZ8iNjKFHD7C3Z9bzLWxqpcDZzJk2bm049PAQU0OmMjpwNOeSz3Eu+RzRadFo9VrcLd3p6tmVDh4dOBB7gLPJZ9k9YDcjAyUvBq1e+/+w995RUZ172/9nCsPQe0c6ggWxYMfee1dixx6NPTEaNcUUY9TErrH33ruCXREUbNiwICJFehvKDFPeP7ZsJZhzzvO871nneX4/r7VcLmZml/vee/bc33JdF97Lvenk24mNPTfSfXd3Tj0/RUvKQScxAAAgAElEQVQPwftgV99djDsxjojECHxsfNDpdaKWPQg/5u192hORGIG5kTnZs7LF1oCPIeJlBF12dcHCyJx8TQE7D8OgeEi3kbNl3xwiki8RnRKNkcyIcnUp2ncBh9JIibnCXMysV8BML8dSpaXczJgCuZ5yQ9V2LQuFBTqDropcakVvtYeVRyWPgMZujbkw/AKmClP0Bj3n1n3Jiht/cNZfUPOZ0GgiE0Im4GrhSlJ+EoGrAinXqjm8FzKtZExtr6O+ryC1Wc+lHiDILH69O5xMM6iWDzpHezLK82jg0oBaZRZs/vIatGtHnyFyjr44AYCHlQdvCt6IgZZUIkVikCCVSsUsfbsiB0ZEZDFcoDIQ/tSEm/5KnsryxPEMDx7O3od7BWOxQmOeWqpp/Qoue1FF2limp4pa0McUdkR8RBq5Z/WeRCRGUKotFc3e5BI5wU7BxL2NE7PyHX06cnboWcq0ZdRaUwsPKw9czFzY+1jgnzR0bSgueqtZVsPFwoVbqbdwtXDlq6ZfMeP8DJzNnSsRw42kRjSr1owm7k3Yfn87CpkCI5kRibmJ4jz+Mx7Rh/KkFZAgwVhuLDqrB2mXVZUklhjwcFazI7sN4XXDOfviLP52/kQOi6xCfv3pyk/MvyyYE1Yoo1liTCH/OKED0PE5bDkODyeHMdzmEhnFGXjlQfdnMP2uEp+3ZTxzN8Xlm1+IbxdE8z3txG3/ei0lSHAydyLIMYhHmY9IV6WL8/Nhq5qRxAi1Xk2ISwix6bHiPDV0bShWLJpWa4pSrsTjJzve6HIZW3c0B58eFnkpbhZujKo3iuHBw+m3rx8PMh+wtttahtYZSsMNDZFL5dwIv0G6Kp1Rx0YRlRIlXtMP2zAVMgVSpKh1akyNTFHr1ExsOBGlTMmO+ztIL66sRvZXGEsVoNHwY7I/VzsF0PDPk3x7FfoMgqM13s+LhSGIfmaLKMpV4JP8iJovNxPe+Z7Igdnbfy8zzs2gSF1EkaaI+U8cCbtTTvNRem6Pi8XP1g+Ao0+PMuDAALR6LfWd69PVvyuLbiwSTETb/ESffYLU8Pq49diZ2nFmyBnxXB9kPKDxxsaMCB7Buu7rKo1DrVUz7MgwDj05xOquq/Gz9WNJ1BLOvTwHCK2BK7usJMgpCL1Bz2eHPuN4wnEuDL8gKi9+iKfZTwndHComCw8NOCSoSUlkjKk7ip13tuKZVc7kR2Z83aKM3B/USCVSvrv8HT9e/ZE6TnV4kPGAATUHsLf/XgwGAy23tiSrOIv7E+6L/lH/FL/8IrRsZ2b+88/+F5BamIr3cm9+bPMjX4d+/f9035/w/x18CjT+U+jVC54/h4cPQfr3hSXzX8xZ0GYBM5rO+NvPfAw6vY7+B/oT8TKCq+FXsTK2osmmJgTaBxIxLOJ9FvzZM+jTB5KTYds21D270WJLCzKLM7kz/g4RLyMIOxTGkg5LmNlsJrmluYw5PoYjT4+Ix+rm340VXVbgY+OD9a/WVLOqhpuFUL4eengoDmYOJOUloTVoeTH5BT42PjTd1JSUwhRSi1KxUFhweeR7RZIKVJgXRY+OJiEngRFHRyBBglwqx8vaC7lUztPsp0xsOJFhdYYRuiWUbn7diM+KJzEvEY98mBEjYVScAYUO4h3BS2+Jfdd+0Ls3tG8Ppqas2TqJSa/XsLbpL6x4voOXeS8xMzJDp9dRqCnE0tiStt5t6eDTgQ4+HfCz9UOlUdF7X2+i3kRxcMBBulXvJp53hafA3fF3CXYKxvJXSxQyBbmlufza7lf2PNzDs5xn/Nn9T4YFDwNg5rmZrLm9hjJdGdVtq6NHL7ZQmchNCHYOFgnnDVwaUNOhZqXq1KrDs5kcvwi5DsIeQkOfUEasuo7fVMgWhJho5dmKwbUHM/6U4DsyRduA5Qtus/X+NsKPhbOlxVJ2HvmBC/aFOEstkZqZi8orFbBR2lBQVoC5sTkSJFW8PyoInvDx9iwLhQUanSAf66SCjq9k9KnZB/8vvsPTylP0Yznz/Axdd3cFA6w6De1fS/E/G4u0Xj0MBgM/Xv2R6PXf0SZZyqx3rTGzm8/m1xu/0tG3IxIknHX+kh1zujG2iwa1VDBQi0uPq7LAdzJzIrc0Fz8TNxJUSRgMYCwzosxQTh/LJhzPjyay/jI26+PY8WCHODaJRIJvtp6LW6HWJKFlSy9951AtBSRCvHB+K+SZwsCBiAHEhAYTWNJxCbETe2F+6gKdh0K2OcxRN2YVMRQZv3d/L1QX4m7pTnZJtljJ+Dv42/pTzaoaqYWpPMt5hgQJegQORKhHKP62/my/vx0DBnR6HXKZHBO5CTqDjq7+XUkuSEalVontOgqZAitjK55Pfs5b1VtCN4dirbQmozhDrHw0k3kRpUviq2uwoYmMun4teJbzTOAWKMzERZYECUZSIzR6DQqpolIrkgQJTbTHPypJrCYTvedPXB5xmejUaNpua8uPbX5kbsu5JBckc/TpUY48PcK119fEa9s5Rclvx8qIPLyYU4lnuZF8g3J9+UeDO5n+XfFKCnam9gI3wjaA8hcJJNoKnwnTBND1jZK7mfeJribltose7QdxzoeVwRr2NUgpTCG3LBcrYysczBx4kftCIGobQKPXVHEJr+UgEOojh0fS2qu1+F6xppjTz08z6/DnJOmFeaznXI+m1ZqSWpjKmRdnkEqk9Answ96HezFgYE+/Pfxy7ReeZD/Bz9aPpPwk8b75UECgkVsjnuc8FytyruauZJVkEWAfwK6+u6jjVEc8j6ziLJZFL2PHgx1VHODFINIAltQReVEyTSIFZZuItxVI8xUVK4lA90eCAT06HjGRbPl9MICXxJqrn0UwIfY7Tj8/DcDKgGmszD6NkdSIm6Nvis+IrOIsPP7woExXhlKuZEGbBeyO3018Rjw+Nj4Yy42Z2ngq406MI3FqYiUT2w1xGxh3chy7++4WE0QVyC7Ops++PqIvT23H2oTVCmP+pflYGVsROy4WX1tfQFCR6rijI4+yHhE1KkpsxyopL+Hnqz/zW9RvaPVaWnu2Ji49joMDD9JpZyf8LL14UZhE3bdwufov2BbOJcipDvcm3BPPY1bELBZHLQbg8ojLtPJqxcqYlUw5O4UrI6/Q0rNllXv5b7FokdCxkPPf6474Rxh7fCwnnp0gaVpSler6J3wCfGqd+s/hq6/gyRM4ffoffszO1I6ckv/6w+GriK84nnCcff33Ud+lPr62vhwPO87t1NuMOjZKkL09flxwLNfp4NYt6NuX6eemcz/jPocGHuJNwRtGHR/F4KDBzGg6g8jESPxW+IlBhre1NzdH3+Tk4JP42Pig0qgoUBcgl8pRypV0r96d2HGxKOVKUV3keMJxJBIJc0LnkFqUilQixdPKk2Cn4CpjWBGzgkZujajnUo/vLn9HZ9/OGDDwfavvUcgUvMx7SVf/rmyM20izTc3Q6XUce3YMvaqIkfneVC+QMb2jgcbjpWxvZY2rCuwzComPjyRZnwcmJhx8fJDJr9dRKxN+ubucJ9lP0Og0+Nn6MbPZTKJGRZEzK4cjg44wseFE/O38yS3Npf2O9sSmxXJ+6PlKQQYIcrihHqHUda7LjTc3UGlUOJk6YSo3ZeH1hZSUlxAzJkYMMgDOJ55Ha9Aik8i4N+Eeu/ruAoRWkUD7QHxtfLnw6gJjjo+h7p91sVhoQcMNDZlweBTrZ7WjyZRFjH1hjVYG99rXZqrFdRqPk6CRQjVTF4Icg7jy+gqzL8wWiYrby+N4M/tznM0EIl/7Mb8QedSSLUHzyaaEus51eTvzLdfCr2FlbEUdpzoMrDUQK6UVpeWllYKMipaKiiBDivSjRPwiTRFSiRQHE3vKpbC7lo6+soMErQ3C8ldL7H6zw3eFr2j+hgS+6Aa/N9JjaNwI7e9LGX1sFOmLv+PkXgnuvnUBIas8PHg4IARmaUVpTC0/wfDuGsKeyGiZBHfT74oLzQ8lUvPL8jktG87VH5Ix00lRyBVULEcf5T0lIE/GkBe/VZEhdirQc2EbFBqD1kgqKFzpBWUlpVa0zOCH9hIGPIGgdwJaUomUdXHr8F/qQfzDixwIlpH9bqq87yfRJN9CPEZFS9Sefns4NPCQePwKdaG/wsncidTCVBJyEjAgEMkVMgU6g44rr6+w8e5GNHqN0PaFXgj6tGpUGhVHnhyhWFNMQk6CuD+NTkORuojqK6sTuDqQ7NJs9OiZ2HAiEiBQpeTG/CT8cmBpc8g30jGy7khODj6JQq4gpzQHG6WNUNVybywGFxq9psp8qvi4JLFa9pqY1Bh8V/py/fV1htcZzvxL8wlcFYjnMk++PP8lSrmSNd3WEDUqCqlEytCYMvQWZsy+NJfrydcp05WhM+joUb0H8Z/HM6XRFDDAzFtyJseASblwrSqqewm5CWRYgNO7LrK9igSG+97nYDsXiozBSA8NUyDvSS+eN93DZ7U/Q2fQCe2SWQ+xNLbk57Y/0zewLyUaoeqn1qnF1pkPodVreZDxAAtjC0YeHUlWcRYHHh1g4IGBOC5xZODBgcjfxSWTG04manQU4xuMJ6x2GJMbTcbPxo89D/eIwctnhz4jPjMeXxtfWnq0ZGG7hZwbeo4309/Qs3pP6jrVRSaVEZMaQ7m+XPAukshIU6VRw6EGRwcdrRRkADiYOfBzu59Jnp5M2ow0xjcY//47/47Mb4kQSNgaGmGMIzJFQ2ws12JpEPblqRslBhnCtZUgQYoL4QSb+6MwSEky5DN0YUMO7NWz+KoSiQEmJywjvG44yQXJjDg6QqyMOZg5cGLwCXEOZ0XMws7Ejtmhs3mZ95KHmQ8pKS8RlbQ+xJj6YxgcNJhxJ8eJks1xaXGMPjYaj2UexKTGUMdROO+mbk2ZHTpbqGKgp9XWVjzPEdoMlXIlR8OO4mTmRJddXchQZXDy2UlqranF0ptLqe1YG1dzV1p5tcJMYcbjLEHs4HVuEt2TjLnnDAPsL6HHUImgnluay7GEY6I09IxzM0jMS2TOhTlMDJn4Xwsy4N/SOlWBWc1nkVmcydZ7W/8t+/+E//34VNH4T8FggGbNQKGAK1f+9mP1/6xPY7fGrO2+9l/e9apbq5h8ZjKru65mYsOJld478OgAg/YP5MKrFrTZcU3I7G/bBpaWoiTu+u7r6VujLyEbQrBWWnNh+AVmnpvJ1vtbAVBIFfze6XdhsfGBalRCdgKBqwNp4NIAX1tf9vXfBwhZudDNodzLuIebhRtx4+Loursr8RnxOJg6kKZKY223tUwImSDu63HWY2qtqcXOPjspUBfwxekviP88nlHHR+Fq4cqI4BHMuzivChk6NFnC9sMGvL3rQe/ePGpbmx/f7mf/o/14mboyJdGR9kcfUPutjruuUhY30XOgFvjlgqV3ILdUTwlxDeH22KoqNiCYJXXc0ZGM4gzODT1XpQrzIOMBweuC2dd/HwNrDSTsYBj7Hu0TM7h9AvuwpdeW96ZiCOVn9z/ckUqkdPLtxOkhp/nq/Fdsf7CdRe0WEX48nFODT9HVvysqjYr7b+8TlxbLnahDxCXd5LGNFr0UkfBYsZiW6eDaZvCe/j3OM7/jSdYTvrv8HQceHwCEhbBtMaxIrM6QoGc8utWQmltOgqMj51+ep9/+fgTaBxJgF8CJZyd4OukpOoOOFltakJSfhAQJVsZW5KvzcTF3wVhmTFJB0j+8N53NnLE1taVQXUhmXgqaD7LCZkZmaPVa1Do1JnITTOWm5HxgkNYoBa5vhquesKUuWAXU4VUtV868PIudiR2xY2PxXuFNV/+uRLyMwICB5Z2Xk3bnGiuT9lL4l2RbhamZkV7C5S0Gmg2dw/y28NONhQC4mrkQ8CKPSy5lVVp/pHp4vkKQ0m0ZDm6eQcTlxoMekaMx7C7sqAcKg4zSH/WM72bgWAtB7aiRcwi212I57wtIJSjlJpRoS/DMhRxrGSqpcA339ttL2KEwbo+9TW3H2lgstECr14rmfY6mjmSWZH7UoK27f3e29N6Cvak9o4+NJjpFqAwG2gXypvANhZpCpBIpvja+onCBq4VrlSrWX2EsM8ZYB0UGNVIDOJTJsHT3FX1nuvh24cKrCyjlSgwYKNIUVSFiV1SEPpzTQLNOuOR/J0yhpEKSGBYO9ySx9BKLoxbzIOOBqOZmLDdmZZeVDKg5oNL3ad7FeQwe9DOXvIUgtQITGkwQn6MlahW7W1jT+5GOVdOa8ZNxTNVqxwekflulLWXaMtQ6oVXUzcyFB8bTsF29WWiFrV+fJxP6M1N5hTOJ5yrdLxVmpU3dm3In/Y4oPfvXa2YsM64kS1vLoRatvVrjZe1FSsQhlhONscxY5AaBwGPztfHlxpsblSRxTeWmzGo+i3ENxlVSkmu0oRH+tv7kleVx5oXQTiSXynEwdaCbfzcOPz1MSXkJE0MmMjt0Ng5mVflNABNPTWTL3S1423jzJPsJEiTU0/yBpaQRSD5sadMT9OY2bWKmsLbnCcoVVStWyArY91UwddbWIa80D62+nM6vjTi8XUNsHXs69MqnFC3hdcPZcm8LP7b5kXkt54mbhx8L59CjQ1S3r05cehxmRmb80uYXvr74NWXaMkJcQkgpSiF5WnKlKnCRukhQytOW4WTuRGxaLNUsqzEhZAKj643GydyJrfe2Mub4GHoE9MBEbkJCTgIl5SUUlBVwacQlsYLxOv81jTY2Qq1VU6AuoJNvJ+a3nE+bbW34ue3PZJdks+PBDvJU2ZQZyom7FUz9TWfYkHaScSfHAZDxZQaOZo6otWo67OjA46zHRI+JZujhocSkxuBi7iKIOUx69Lf+KX+LZcsE5SnVx93j/28x8MBAYtNieTb5mSiJ/QmfUIFPFY3/FCQSoapx9apQTfgb2Jna/ZfI4CcSTjD17FRmNJlRJcgAGODanucRgbTacY24SX3h0CGwtCQ+I57xJ8czIngEI+uOZNDBQag0KuY0n4PvCl8xyOjq15W8r/OY1GhSFYnclELB6EqCpFIJ1UxhxqaemwCBkOm7wpek/CS29t5KmiqNFh4tmHNhDpnF7/tHV8asxNncma7+Xfnx6o98FvQZiXmJlOvKRY5HeXYGA9NskeoFSddJKW688rCk9pcmLF75GeVz51CjeW/mhM5hRtMZlEp1THe+S9B4Hd1GGJFpomf3YUheZcTSc0I/bR3HOn8riZuYl0jo5lAK1AVcC79WJcgAWH1rNa4WrvQJ7EOhulCs/mj0GqY3mc6hgYcqLYpAcJEFITM4sNZADAYDB58cpG9gX0bUHUEHnw58fupzVBoV5gpzmqtsmDLnKFtnXiM+vTdF4c+4MeoGA2sOrNSSoZNB6Gho8+p7Om5py/mX53mY+RAfax/g/TpqloewQDw/eyA6e4G/09G3I9fCr/Eq7xW74ncxrfE0IhIjqLm6JulF6e+2N9DYvTERwyJ4NfUVPjY+lbLUIPgyDAkaglwix1Zpy9vitzzPeU5KoRBkSA3gpDbCvtyI4vJikWRqaWxZKcgAuOUO1rNhUz3wKpTwVJPK2Xe90zmlOXiv8AaEtqtyfTkdfTpy8PFBfn67V1DcQqg4gLD4s5dZ4J8vQ2Iw0GWcGY+mDaFbYE/xeL4Ga9wyypAjq8wvMIB3ASikRrQdAW8tQHEnXnwPCdTMhCtewksaiY4VDQ20ylCSVZKFTCIjPKcaJ3dDrQxo7hEq9su/tgGV5P2Ct0J1ykRuglKuRCFVAEJlyNLYUlQ3+iu+Cf2GE4NPiKaYfrZ+JBcmozPo8Lb1FmVa9QY9FgoLcbu/Bhmbe27m0vBLeFp5YmZkhnMhzHhkSYlOjVOxEGhZVfOrND9nXp5Bo9dQqCkU26sqiNgKmQJXC1eh2vIXzkZyyWXi5BPIldxCWZZJIbe5KxtP18O1GHpkKKlFqQwOGszI4JE4mzlTpi1jzoU5RCZGUq4rJyYlhmFHhrHy0iICcuCu8/t9mxmZ8VPbn7icdJnF1xYx7Jsa/NxMh8Ms+EERJZ6LTCLD30Yg4HtaeyJ99yXJLculRFsiBiMZpVl875fC06uH2bZjJsOavaVdwjecSTyH3CDF1vi9uWKpthQJEvoE9kGtU4uZ8gD7AGyVtuI5/tX74lHWI1bfXs1XEV9xyPBQaLvSafi94+9cD79Ozqwc0mem42gmLN7nNBdUDH1tfBlaZyiLoxbjscyDsINhXE++jl6v51nOM448PUJ0SjSN3QTRDa1ei4XCgl/b/0rilERmN5/Nhjsb8F7uzbyL80RltvyyfGJSYpgdOZu1sWsx0oNd3BMWXISoDQa8Vb5/CTIApKRbedPrKQSmvYSPVKxqVxMct7f13iY43WMgwk1D35nuhNTvTsJaOdalsOXeFoJNvJl/ab5I8AZY2nEpJgoTPK09Wd9jPRqdhqnnp4pCCnfS7/BW9Zbl0cvFbV7kvuCHKz/wVvWWN4VvyFBlcCzsGK+mvuKbFt+Icq0j647kWNgxzr04R9SbKF7kvuDS8EvYmNjQeltrnmQJFfC9D/dSqC6kUF1IPed6nPjsBCefnUQpVxJeN5zzz8+SrkrHO6scJ4Mp9Y/dBhcXxtQfg0KqQIKEAQcGkFOSQ/ixcG6l3uL4Z8fxs/VjSuMpAKSr0vGy8frvtSf9PzTs+xjmhM7hVf4rDjw68G87xif878WnisZ/EjqdQAqvV08w0/kIBh0cRHZJNheGX/inu4tLi6Pl1pZ09uvMgQEHKml5AxAfD336YMjNZcWUxnwpi+TskLM0dGtIyPoQTIxMuDn6Jt9e+pZl0cto4NKAW2lCEGRlbMWxsGO08mr1t8fffn87I46OELkEHxoj6Q16bBfZUqAuQIIEBzMHjoUdY0nUElG3v3v17mzrvY280jzc/3BnRpMZJOUnsfvhbkzkJhSXF+Ont+GFNI/fz8K0+0q+GO3CDod0uvh0Yv/LY4IjtdKGXfG7sFJaIUFCXlkeSrmSlp4tCXIM4kHGAyISI5BKpMw270Kzg9F0jMmhxAhOtnZlR2sbzs5+WGlsDzMf0nFHR8wV5kQMi/ioykjFec9uPpv5reYzO3I2i24I0pLVbauTMDmhyjYZqgw8lnlgJBUW2hlfZvCm4A0hG0KIHBZJO592vMp7Re21tRkbNJJl183h99/BywtWrYJOnbiSdIVp56Zx7+09UfnJRG5Cfdf69HVoxZP1P3PSHzKspJUyygYM9Hwm5YqPlAK5kFmtqBaNrDsSL2svaq2pRUphClq9Fq1eK6o86Qw6vgn9hp/b/YzBYGDAgQEceXIEpVxJiVZoFfk85HNWd12NRCKh1dZWokrRtdfXOBp2FMnpM+w6v4R99Y0p0atxNHVApS8VTfhA4E/oDDqxpUWiB2OpHKXWQL68MgHXxsSG3NJckSfy1wyxCINQdOjzGLytPdjuW0yepgAbYxv29N9D+x3tK39W8gHX5F0gYa4Bu2Kwr9mAt29foCkqIMtckMINzILndlTq4bcrgbsn3PAYlIqt1JxWT4pp8crAyjBvckpzOND/AL22d6ZMahB5HJYKS0rKS0RuE4DfSj9xnx+Oz1JhSaHmvfJLe5/2nB96XkwG7I7fzZDDQ3AwdcBaaV1Jerkis+5q7kr36t1Zf2e9eH8YvhPGnavKYsuwICadyOCL3gq21dLQyKOZwLEytiA5P7nS8b2tvVHr1KQVpVWSL3U1dyVN9T6Y+dB08R/BVG6Kl7UX1e2q427pjo2JDdeTr3Mp6ZIwhncEeXcLdxaa9WLohNU0GAd3XN/vo2JMZno59d5oSbOVk2ihxd7UHiOpEdkl2cikgqLU/gH76V69O+dj9lA+dDArB3lyQZH6URNBAC9rL/o7taXD7RxCt1zAtKiMu0PaMb9hEaeyo8TPBdgF0MStCWdfnCWj5O/NKEGookilUrJLsvHVWZGpL6LISM+mnpsYVU8QEXmd/xrv5d44mTlR26k2kYmR/NntT8aFjKOgrIBt97ex6tYqnuc+F+c60C6Q4vJi8svyWdZ5GQceHeDsy7PYKG24MvIK5gpzbqXeYn3ceq68FqrtJkYmqNQq/HOgQyJ0fAltXoGlBorlcM4PNnVYRonlXyoaBh0lult4vJrOtzeCmDp8LXqp0D5lQIcBAxbeu/iz/ze4Wbox5fQUVt1aiXOJlFxLI9r5tONw561k795IUPo88o30mJdL0BvJiet/noDarQHY/2g/gw4O4tDAQ7T0bEnHHR25+/YuEiS0825HVEoUJeUlDKo1iNzSXCISI7A1sWVU3VFYKa2Yf2l+Jbn1vyI6JZoOOzqg0qiIGxeHu6U77ba3I7UwFRsTG17nv2Zq46m08GzBgAMDGBo0lCNPjzCo1iAevYkjKjMOzwIJPbw6ctEohYcThd+XmJQYmmxqQp/APlx5fQWZREZWSRb7++9nQK0BADzJekLNNTWpbludpIIkOvp25MCAA/+1gGPtWpgyBcr/uQ/Tfxedd3YmXZXOvfH3/rFP1yf8/w6fKhr/SchkMGOGUFVITPzoR+xM/jWORnJBMt33dBfNzaoEGXv3QpMmYG6OJDaWifOP09a7LX339aXf/n5kFGdwaOAhDj4+yNKbSzFgEIOM8LrhpM1M+4dBBggVDTsTOzQ6TZWH4Ic67S09Wwr9w1taUsuhFmlFaXTw6cD2+9s5++Is085Oo0xbxtKopeyM34m11ohZURIerYbna2QEaWyI/awlcQ8jWGufxNy23zO04Wi6+nXl7Iuz7IwXTKY0Og15ZXn0qN6DV1NfcW7oORZ3WCwQySVy2ni1YWHRafp2LSL4c4gMsaX75TROzH3EvY7B5EYLi5iYlBhabmmJo5kj18Kv/a2U4ZZ7WyjXlTO2/liWRy9n0Y1F4sL8y2ZfVvm8wWBg3MlxlOvKcbVwpal7UxzNHDnw+AB2JnbifHtbe7HAbgAr4tYQc2AZfPstxMeT2Miffvv70Xpba3R6Hfam9tib2mPAwMaeG5YYi5EAACAASURBVIl6E8Vb43L+9J1G4joFNio9Nkob1nlMwrNAaP85FYAYZEj1YJRXyB/RfxCwKgCf5T68yH2BRqsRTb46+3ZGJpEhl8ixM7UjMjGSGqtrcOjJIUyNTJnceDJLOywVbrmH700dG7k24nbabfb224uXtRfDjwxnju4sm+pDJ7tGJG6xJD1vFIWzC3k78y3Xw6+ztddW2vu0R5efh5kGQWpWCmVoyZfrkCPFpFx4XamTkluai7HMWFQj+jt3ZKlekKy9GWjGNv8Ssspy0Oq1ZJVmVQkyhP8MeFh4AGChAfcCgfj92gYaWAQQ8LKALEHxGblOCCoqggyFTIFSriRfCSurpWJRLsX/tYpILwO3JnTn3vh71LCvwdg9Ybjlvze7BCjUFIoLWxMjE76K+KrSOD4cn9JI+L6ZyE1wt3QnMjGSHnt6kFKQwvb729lxXyCxZ5Vk8Tz3uSiqAIL6FEBj98YcSzhWdcIeP8a2XXemHctgcmfYVFuDkcKE57nPeV3wmoeZDyvJk46uN5piTTHpRel4WXnxcOJDsfr3YZAxOGgw4xuMf9eKJcH4gzV8l2fwrdtgxtQbg7nCnDJtGY+zH3M04Sgb725k6c2l4iIYEO/PlKIUbpxYTbn0nRv7B3A2dWR6hjdLT2t5awavLQ2YGpmSU5KDhcICRzNHyrRlzG0xl+7VuwPQon5vbtYyx/xFcqUg46+Vu6T8JH5P2Mp0n+d8s2UoG37ux9XsWNzPRuFaiHgvJeQksO3BNnJKc/C38cdWaYuxzJgBNQcIjIV3alQSJOSW5YoBtmt2GSq5kCSYEzmHiJcR6A16Jp6eiAEDrb1bcyHxQsXJAWCltGJiw4niHJfrhEXm05ynaPValnRYgrHMmAauDQiwCyCvLI866+rgs8KHsENhRKVE0cjEj/FJdvx+UEXSMni2CpafgVZJ8MYS+g8Aqzmwp66U2ml73g1UOE8DOgwSA73a2LNjRwn0q83y7Z9jpLqFmkzUikf0apNOXN5haq6pybrYdSy07INXHqSb6QmvG87FVxfpe3Yk9hNmcHXqfUzlJujkMkoop/XWNhT06gTHjzOgeh96BvRk0ulJyCQy7oy/w7JOgu9K5KtIsdVo36N93Ei+wYLWC0iZnsLijouZ22Iun9X+jLEnxorci7+iiXsTsRW4y84uPM1+Sg37GuSV5ZFckMy+/vtY2mkpvQN7s7HHRrbe30qhupBD93fzOvEOrTNMqF69KbnV7LE1eV/FWh4jVFkWdVjE9MbTySrJwsrYipoONcXPzLs0D7lUjp+tH8fDjovf7WLNP/fREfFvrmgAzA6dzYOMByKJ/xM+oQKfKhr/aZSWgoeH4L68alWVt+dfnM/W+1t5M/3vjXYKygpE59Ho0dGVXTq1Wpg9G5YuhcGDYcMGMBVkiArVhQSsCuCt6i1bem4hvyyf6eeni5vamthyYMAB2nq3/ZeGMunUJG68uUGptpSe1XuyuKOgmJFVnEW77e1Iyk8S23/SZqYxO3I2q2+vxsfGh0xVJkYyI/LL8jFgwEZnRHCqnmgXHYlHquHSeYDAJ2nWjG+v/sCSqCVYK60pVBdSphWInp5WnjSv1pynOU+5k36H8Lrh1LCvwYKrCzBXmLOs0zJSi1KZeX4mW3ptEVrEDgzi4JODGPR6quktCHKpS62TMUyKKscj38Cd2vZ8H1JEbmgDTg45hbXS+qNjr5DiDXEJAYmQYQMhWyyRSMiZlSOqpVRg54OdDDsiEMKVciXftfqOr5t/jf9Kf9p4tWFDzw3w4gVMnoz2/FmazLRC7ebE5bFRLIlawu/Rv+Ng6sCEkAksj1mOq4Urf3T8g3Y72nFz9E2i3kQx8/xMtrVfTViXr1gXWEKupZxvL2pZMzSAKb7PsDWxJWJYBPXX18cEI/TacqRSGaXSyj9KbhZu2ChteJj1EAdTB0yNTMkvyxcJ4b2q92J3/92YGgn3lvdyb5Lyk1jTdQ2fN/xcILceHMjjiY/55dov7IzfiYnchEM7y+kyfrHgWLt7N6SkCLwlYNu9bWxbMZpj+yVk1/Cieo8kzI3N2dZrG+HHw8ktzcUOEwp0pRjroFhR+ZpUSHhWZLIlgJGW97yQfyXp9q6CoSgHjRHItYJ5X7Y5GEnllOu0leVoP7LPBi4NMM7K45Y6kb45jqSVZnLdE44POk6PwB7kl+UzeaI3+9zyMTJWUqITFIKCHINE34MKh3WJQYKOqguGuaFz+fn6z3zV7CsauzVm0ulJZBS/z5gH2gfyNPspzas158abG/jZ+PEi70WlfYwIHsG2+9sA8LHxITEvkSuyMdw6v4UrAUrOu5aikVZud6qopLT1asvFpItidSTYKZj4zHiGBg3lwOMDaHQajGRGlGnLkElkeFh5UKAuEBMQtTXWDL6az08toMQY8heC1aoNMGYM6UXphGwIwdXclRYeLdj9cHelsVWgQqVr6cEiGqYYqPv5B8pnBnApEhzZ8/9GEVSCBIVMgQEDnlaeFGmKyCrOEtqlDGCkg8beoXzV/CtqOtQk5k0MB58cJOJlBMXajy/6pID+3f3hrALMzXmLUMGp71KfP7v9yerY1Wy9t1WcQwkSLI0tKVAX0MKjBVFvojDVGLAo1ZP2QWu+nYnQVmtrYkt+WT7fhH7Durh1TGs8jbkt53I3/S4jj40kPiOeENcQnuU8o0BdUEXa1lZpSx2nOsgkMq6+vEDjFPi6uB4N7mXg9DwNqQFK5KDQgdwAsc4wqxNc8oZmakeWDNtB48D27I3fy8zjK3BQf4a1NBBHGz1Xi76lmb8bBwce5MLLSDL6d+GiD+yqI0EnBWulNSPrjiSzOJNd8bsIzbNgxlNb+jVNxlhuzM4+Oxl6ZCjtvNtxaOAhridfp9POTribu/K66A3upUY8+qMcS3tXUkf1p6bJFgbWHsT6Huu5lnyNn678RMSrCHGszas1F72Y5rWYxzctvsFIZiTyNcwUZtwcffOj1YJyXTnKn5SiEpylsSUL2ixgy70tpBSmEDkskmDnYNRaNVa/WqHWqamdAZcyOjO8pw6lUgiYjeXGHBkktNQ6LHagXFfO/gH76bqrK4NrD+Z+5n2SC5I58dkJMlQZ9D/Qn7DaYZxIOEHOrByiU6Lpvqc7wU7BnBp8qkor7kexaROMGSMEG/9A5fL/BgaDgWabmyGXyrkWfu3fcoxP+N+JTxWN/zRMTOCLLwTXzo9Iz/0z1alyXTn9D/QntSiV04NPVw4ysrKgY0eBCLZsGezcKQYZAPfe3iOrOAulXMmk05MqBRmDaw8mcUrivxxkgJBNdLMUzMQqHtSZxZm03d6WzOJMDgw4IJJDI19G0qxaM+q71CcxLxFVuQpJYZFAkgd23/LgtoeMqbVG4RyfxPNvJrBGGU+fg/1ZFr2MUm0p6ap0Grg2YEWXFTz74hmvpr5iV79dxI6NZUOPDex/tJ+1sWvZ2msrzao1I+xQGDPPz2Rcg3GMrDuSHfd3sP/xftZ1W8fDmPo0K7HldOZ1Fjcq59DxRSyf1hRDTjbHt6rZ8UM8WWuWgKaqOzAIBliJeYnEpMZw5vkZelTvgY3SBq1BSwefDlWCjNTCVL44/QWB9oHYmdhRpi2jR/Ue3M+4z8u8lwzy7Sm4udauDU+eID9yjPXTL/K44AWeyzxZHrOcOaFz2N57O0uiluBj48OlEZcIcRN8SF7lvWJ6k+mMqjuKsZemM7uTjC9uw/cXtKzoaMV3NTMwYCCnNAeJRIKJ3ITJzaZjpjCj7IOFbLBTMF7WXqQVpYmSp1klWbwueE1JeQlSiZQBNQdwJOyIGGQAbOm5BYDJZyaTU5Ij+qM02tiI48+OM7XRVAwY2N3CCsOdOBg/XrhfjxzBYDCw4MoCIhaM5PwOA2aNW+IdcZtxDcaRX5ZPalEqNe1rCsZ3lKKXQsO3Ugp/gX4fdLxVKOq893oQFKGQIFY95DowlworT1mV/nLEwEH37kmplSMqRFGuFSoqkg/+/QUyiYy49DjkDs745MEdWSbRbsJ7y24JGdcnWU/I0eSDBEp1akbVFdpiHmY+pL6TUAm4/uY6eoMeuUxeSUrVSiEsMpbFCPv6/ebv9D/QH6VcKfIzbJQ29A7oDcDL3JdYKCxws3AT96GQCRHah21IRcWCT0Mr3Ua+ayvhqheUvyMsmMhNxHPo5t8NHxsfriULCwu5TI4ECY8zHyOVSDny9Aij641Gb9BTpi0TzTxf5b+ioEwIUk/1P8KNdVpsS4UgQyqRojKG7Kd3SC5I5vzL87iYuxCbHssfMX+IQYa7pTvBTsF4Wnq+u74GrIytaJSp4K6zIKVcEWTUzIJbf4LVu69viItwP9Z3ri/OQYB9gFgJrajk2Zvai/dFuVy4Dr329sJ/pT9Djw7laMJRirXFKGSKjyqB6Xl/X6hM5dR7WcykW+CjMedO+h0abmxIXmkeKzqv4GbKTTytPDFgoEBdgJmRGS9yX3B3/F1GF/iQaS4RKynWxtYidy+3NBeFTCG4gusNbL2/FeclztRfX18kz99Ouy06yU9pPIUN3Tcwt8VcghxqY5eSS5tTj1j2x2OKfpVwbQt0PnAX52dCkJFhClEeEi57w/A+0HAC3HEGVxNHwvv9zKPSZGqursmQI0Oo7m6Mxmktj82G8MNgD7aG/cDJZyeZeGoiC2/8yq8j/dhWFxZGGPjVfyLhdcPZeGcj+x/tZ2pJEBn6IsKapdHSoyVl2jL2PNzDsbBjRCZG0m9/P0I9QtnUcxOvi97QvFpzUkzK8fnOivv9muO2fAs/nChi492N+Cx0ptXWVrwufE2wU7BYRbjx5gZ1nerydbOv+fHqjzTe2FhU/No/YD9Psp4w49zHpeTvZ9xHIVdQoC7AydyJMm0ZXtZeXBh+AQ8rD9pub8uFxAs0WlMPTbmaBmnw1ElK3K9TUOnLMFeYk1MqGHUCpBWmkV2STT3nevTf35+Ovh3Z3HszV0depZ5zPdpvb8/o46PpHdib2c1nU1xezNXXV2nl1YrIYZE8ynpE+x3t/zVVSvk7gva/sapRoSZ5Pfk615Ov/9uO8wn/+/CpovE/AdnZQlVjzhyYP7/SWxVKUCXflFQx5zEYDIw5PoYdD3Zwftj5Svrr3L4N/foJ7uP790Orym1P6UXpBK8TJGU/JJSaG5mzq+8uen5Aiv1X0WB9A0JcQjiWcIwvGn3B2Ppjabu9LbmluVwacQknMyf8VvhRoC7AYBCkNxvnm9H0STEb6wsZaVuJGXmUEFb7M448PUK/Gv24lnyN1wWvkUvlNHFvQhO3Jiy9uRR/W/+P8h4q8DL3JSOOjiDqTRQj645kT/weod/eYGB8yHjWx61nUO1BbO65GUnfvlBWxrdfNeSnawI524CBuk7BfGtohc3qTbR+VEyWtREZowZRY+4yZLbvjQ+D1wbzMOshNR1qsqffHtpsa0M1y2rcfXuXi8Mv0sa7TaXr1nV3Vx5kPMBUbopcJketVfNyykvmXZzH850r2HfVEcmbN4JgwNy5XMuKY9q5adxJv4NUIiVyWKTAsdjTkwauDTjx2QmxPcD+N3umN5nO3JZzUWvV1PsjgMzs18T9CZ51WpB99jCDDg7i4quLSCVSpjWextrYtYKajV6PRK9HJ4W1aQ0Yvzqay2+useDKAi6/vvw+Q/wXOJs7V/L5CHYKJmhtEKpyFQF2AZjITbiXcY86TnU4P/Q8TuZOYl/1j/EOzDuYCa1aoZdIGDPNG/flW1lwGQwjRyL5809QKCgoK8BmkQ0KmQK1Tl3JswNgwHMFw+Il9Oyrpkky3PcxAYOeUq0au1KoYxXAVe0L0WASEPX/PxYkuGtM6NRgIElXjnHBViDE/t34390wQhDzgYGbg6mD+P3acBTGCut9kVMQVjuM0wmnKCsrop7eiRijDNzM3cgqyUJr0CJBUkkN6cN9f8z075e2vzCw1kB8bHwoUBfQYH0DMoszUWlU4rn72fgRYB/AqeenAEFC+UPjRaVein2RnhQrmObaj135V5FJZWJ2f0jQEBa1X8TlpMui3GjFnATYBpCQK3wnw2qFUaot5cSzEyI3qFdAL+o512Ph9YWodWq8rb1Zl9ucjgt20mGuB5FGyRjLjGmYVE68o56CD9buNkob8srymNRwEgvaLKjcghK9nGnnptHEsQGXJscxqwOsaiIhxDKAZ5lPKXznum6QvB+vp5VnJaPMIMcgqttV51bqLXJLc/G08uRpzlPx3K1KBS6Gt1ddHM0dsVHaYCQ14mnOU+6m3yUpPwmdQYdCpqBcV/7390kF9IImiEEi3FfVbauTXZpNobpQrDjIJDK6Ve/Grl2lzPBKYLdLjljB/WcI9QiltLyUuPQ4Pg/5HE8rTxZcXYBqfDL6yAhytq3F9Fo05ipNpa9AkhVc9IErnlCkgGmJjpyzzGRpM7AwMuenzouo41KPCacm8CBD8MgIcQ1hRecVNK3WlNzSXNpsa0NWcRZXw69yI/kGI4+NBIQqeYh9HXbPvUOqoZCyy5EEeIWwNXodffvOJdpZx6zxXiTnJyOTyijXlxMzOoZ8dT499/SkvU97Dg08xK/Xf+X7K9/T2bczZ1+eFX4bXBpyNzWOYoMGs3LYF2lN1/afc6NHXVqcG8RPrX9i3mVBrcrRzJHfO/7OwusLeZbzjPkt5zM7dDab7m7i81Ofi6qBIJDg516Yy9rYtVgaW+Jv68+1UdcYcngIR58e5c/uf9KvRj+abWpGQk4CVqUGth2X0XXZSXpnr+LK6yu4W7rT2rM1EYkR9K3Rl986/MbXEV/zW9Rv2Jva427pztWRV8WElFqrJnB1IEn5Sfzc9mfmhM7BY5kH/Wr0Y1lnIalw7+09OuzogLO5M5HDIisnGf+KnTth2DChg0L57/O60Bv0BK0Nwsvai1ODT/3bjvMJ/7vwqaLxPwH29hAeDitXCg+CD1Dh4v0x5amF1xey+d5mNvXcVDnI2LwZWrQAV1eIi6sSZKQWphKyPoSskqwqfZ7Dg4f/t4KMiv26W7pTpi2jXFdOm21tyCnJYXKjycw8NwOnxY7kluViq9JhWaonaa0x0cmd+GPIdqLCr4NEQg7FGIDdD3dTqi0lNj2WngE9OR52nNxZuVwLv0ZGcQZKuZLs0myxN/tj8LX15crIK3zT4hu23NsCEjg5+CRj6o9hecxyDBgYVmeYwCOwt4ecHPzt/AUSLAZ8bXy5n/GAqWVHeLzlNyKOLSMmyA7/5TspdXXgweB2FCY8YPiR4TzIfEBjt8aCuWB2Atkl2eJ5Vro2wMY7Gzn74iw/tv6RF3kvyCrOomdAT3j9mtYzlrN/qwqJjw/Ex5P01VgGnhpJy60tkUlkXBx+ER8bHyafmUyXnV0I9QjlzJAzleQOvW28ScwTOD/SI0c5tfA1JjoJvaY7o4q5hv3jJM4OOUugXSB6g57fo39HrVMjQYKZwgwTpTnmEmO+sYkj4Fsb2m5vS3RqNC7mLmR9lcXLyS8xlb+vXpjKTXGzcCOvNI91sevova833iu8Ra+EhJwEUgpTCHENwcnMSfxBHFhrIAssejE/KIv9cdspGTUc6ZUr9JqzjQWXgZ9+QrJ5s9hKZaW0orVXa5Gb0NS9KbIPXKSNevdnZg9hZfrzRfj+TClatRopkGMK+XamjK0/lloOtdAb9JUqMJ1fQC+VOwAmemGfKUalbLu/TQwyADFDHpry/tFpVbFGlwjZ+A8XgRU99jWNXHFVQc+nwusmciFpcODhAYo0RWhkEGMkZOpTVamC+o5BX2VB+eHfH1tsDg8ejq+tLxKJBGulNSc+E3wG5BI5BgzIJDIySzK58eaGuM2HQYZ9MeT/rKe9eRASJKxIP4JWr+Wt6i06g45gp2B29t3JW9VbVt5aWeUcKiRuJUjY+2gvxxKOiVn4u+PucjTsKN+1/o613QSZ2fSidH57tRO3WTIijZIBgXtSYiyhx1NhoT298XTeznxL7te5TGk0hT/j/uRhZmWxhimNp9DNrxuq+DiUOhg2YinbQ39n78q3eOa/M+WTVB7v64LXmBmZ4fTORyY+M55DTw5RXF5McXkxZdoy9AY9/WsIni5nd8ORvXp29N1BW6+2PM99ztKbSzn4+CA2Jjb80u4XXk55yYvJL3C3dMfNwk0ce4VamJHUCLlEyC4rZUaY6KUC9wgDCbkJ5JTmVGpr0hl0HE84jkVIBBvskykuL64y59ZKa7r5dcPb2rvS69eTr3Pv7T1G1hrKF0U1aTRvLQm/lYK9PbKwz3A8cxUTlYZndhIOtnFizw8D+G7v5wR9bc7GejDooUD87tM2k0Wh0NKvPbFTHpJVlkvPvT15lPmIrn5dCa0WSmxaLJ+f+pwTCSewUdoQMSwCS2NL2m1vRxvvNtRyqCXO/cZ+27E8exnfAhkFA3qg15YzNdqAe5EE00VLsTe1F32XANpsb0MTtyYc/+y4WNn4uvnXDKszjIjECCwUguTz9dSbeNj7cnLwSbRKBVdb+yBZvYbmTQdRX2XB9diDNHdviqeVJ1nFWQw7MoxWnq34sumX/HDlB5psakIz92YMqjWIMcfH8DznOTsf7CRgVQDbH2wXJd3TVGko5Ur299/P+AbjGXtiLGEHw3iWk4C52oBWCumLv0XesTP7+u8j0D6Q5znP0Rl0lSoaBx4fEGSaZcac/Oxkpar35aTLJOUn0cGnA3MvzmXexXl08esiJgcA6jrX5erIq+SU5NBya0tR9fGjkL17Tv6beRpSiZTZzWdz+vlpMQj9hE/4FGj8T8H06UJlY/v2Si9XPJQ+JFMD7Infw9yLc/m+1ffvjd/UapgwAUaPhuHDBX8Od3dxm2JNMT9d/Qnv5d6kqdKwMrYSFYJGBo9kRecVrIldw9rb/7pnRwU0Og0ZxRli69Qf0X/wKvclOcXZzLswF9XVSJae0vJioxnD7gt90tGnN7BkZlM6SXbSeH+HD1pchP+XdFjCk0lPWNFlBT0CemBhbMGVpCvseLCDGU1nkFuay7XX/7gXVKvXcjnpMrZKWzytPOmyqwuXX1/GzMiM6nbVabe9HRNOTiDPzgxDTrb4IP+i4Rc8n/ycRxMfEeoRyhenv2D0y6Wk/P4dd28e4Vy3ANyPXMS0ZjBdvt1BaIaSC8MvCFK+dzdR37k+aUVp1HOuV0mBIyk/iRnnZzCm3hiKy4uRS+UUFuXwxYUiDDVrUPNVMXeXzUZ18jDzUncQuCqQ68nX2dZ7G9Fjomnj3YYhQUN4lPWIGg41OBZ2rNKCGYT++ld5iTB7NkYDw7jlCqsG7+KlQsXw4RakTBxK/T/r8TTnqbiN3qDH0cyRdt7t0Og0SI2MyTOBN1IVfQvc0Gg14rEGHx6MucIcKVLB70JhypuCN0SlROFs7sy8FvMYVGsQOr1OvJbZpdnEpsUSmRhJ++3tmRUxi30P9zEoZCRD7sOIU2MJTfsJjRR6PpMIfI25c4WU7zukFKbwJPuJ+Pez3Gfo0OFuKdzjux/t5rmRoHy0uBlMvwk3N0N9lSWhHqGiUZ5Ko0ImkaHSqLBQWNDSowVTXthzeGkKo+7AjpxWmGqEDO+YWJhl1rnS/FYvNOKOo14k+BZ8MP1KmZAtrAjEKsZvmpRGpJ+EP08KylQVsq86dBgA/zwpIc4N/uG9XAEpUsyMzP4Pe+8dFtW5rnH/1szADL1LERABsUJQrIixgb0FC/YStz0qSWwxMSZqjDGWaIy9t6jB3rArFqxgp4hgQUB6h6nr+2OFUaLZ+5xz7X2+fOfLfV1elwzDet/1rrVm3ud57ue+qwVZVbiXdc/opfCy6CV3s+4S6BxobGTWi3qK1cXVNr4yHcZzmX8eZFevcdWp0ihBa6O0oaV7S2SCjE7enRh/bDzNNjSjVFPKiIAR1RqjRUTJzwXJ6yLYPVjyXvFsQ8yLGIYdHEa9VfX4+IhED9NqK9HJIchW2ohWndPg+7Dihh1KhZLnxc+NNLAlnZbQxrMN/fb140XRC+O4giDwuvw1jSXlZcocrGg3eh7l5cU8cJYob++DWq+mhkUNAmoE4G7lzutpr8mbkceHnh+SWpjKtOBp5JTnEOwezJYRgUyr+wKnHxwYuH8gL4pe8G27b0mdksqtMbeY0XoGlqaWhO0IQybI2NpnKyIis0JmUdNaCjrqONQxelMYZAIaE5nUAyTKkOvfXIc/QmGAkAqpu71nnZ7G1+1UdpSoSziecpy0wrSqiwCAVwFsjtKzcshOGgyaTOD156TYiixtBf2HmNJzQQPmn/qCu5f2YL9xF7rePUm4eZxft5Qy+wpM6S4wsTvkm0nUQZWpGf5r/FkQs4ABDQaQMiWF40OOc/njy1wedRlblS299vSi1aZW3H99n7PDziIX5LTZ0sbod1Spq+TGqxuYfNCY0m0b6fCogosRLRAXfocwcSLde37GzX/cJGZkDF18peeuXFuO049O5JblcmTQEc48PYP/Wn+iU6KNamYuli44WziTUZLBpBOTGNX4Y5Za3CMu/jjC1q1MTXMmuvQuPffd53nRc06020hN65qsvr2aHQ92sKffHslzY0NT6tjXwU5lR5P1TRh2cBjtvNqROCmRyJaRRvGSosoi5DI5C9ovoL6dH6dTTzPjssiGW66I5mbMfLCMG+k3sDC14NggSYr3wOMDFFYW4mDuQIm6hLTCNARB4MSQE9S0fkNlLFGXMPbYWDrW7sipoadYEraEhVcWklqQSkp+SrWG9fpO9bk86jJqnZo2W9oYE0zv3kC/PwD/IdO+tzGw0UBq2dRi0ZVF//Gx/sb/N/A3deqvhH794P59yTH89wxESn4KdX6uU41+c/n5ZUJ3hDKw0UC29t4qbWRfvZL+Pi5OaiofM8Z4WJ1Bx5b4Lcy9OJfssmwjdcQgSlmjgY0Gsit8F4IgMPXkVFbdWsXRQUfpVqfbf3nqtzNu02xDMxrY1eVxQRKCCO1eyuj3JYA8TgAAIABJREFUwMBHZVIz96uurYkyf07kmTcc2CrZ2WD3YL6/8j2CIFCpkwzSZIKM2NGxRn6/Rq+h8brG2KpsuTTyErVX1KZP3T783O3n985JFEVGHh7J3od7uTjyIoEugXTZ2YVLzy/RwKkBhyMOc+rpKb449wUqjYGgtEqia0sZn9QpqdS2e5MhTMhJYH7MfPY83IO7tTvh9cOJurWNiJvlTLyqwacAkv3dKJ42hRbPZtO9TneOJh/lp84/MbXlVEDazHfc3pHUglQeTHhARFQEjtfuMee319TJF4gNb8aAho/5tucy5lyYQ0FlAdNaTWNmyEyjt8f2e9sZdXgUtW1rk1Oew+OJj6t9SQHMOjqFPdc2kLZYw/zuljwZ2ZOlnZcx9eRU9jzcw1cxIGveArPuffjywpfG+0BAwIABM4UZE5pOoF+Dfgze0Ydnmmwm5HuzasljBhwawsmUk1waeYnhB4cT6BJIbHosGr2GL0K+YO/DvVx5KfFzq6gp01tN58fYH3Eyc5KUnbxDSc5LNm4UrdWglksb8IUX5XRJV+L36DVyizd+JjHPY+j/W3+KKotQ69VYmVpRoikh2D0Ybztvdj7Y+daFBwQIzTRj/wlrZK9fM6kbXG3nTV5lPsWVxbT2bM3lF5eZEDSBNXfW4KRy4OcTEBGTh9rdhatmeSTa6ZjUrfrHo1IHVmokF3ARCpWgf2sTW0VP+iOtyVINruY1CL6TzWk/OZnmb2UWRbAwyCiTV2+0fh9ae7QmyDWIpNwkTqWe+tP3vU0rM1eYGxMKb5siAlgKStolqjlWV8r6N7DzA6XS2ITua+fLzvCdtNzU0vj3VSZ/j3IeGbPvKoWKSp3UxG4imGDAgIWJRTXJW1O5KYEugTRza8bBxINklGSwfx/UzYFGE0Emk2FlakWodyi1dh5l0UkdJ+/v56Pf+jK1xVSWdV4GSFWipuub4mDuwKGIQ6QVpDE/Zj5n087yU7RAr0QRjRwyLSFseHWZ4bfhaOZIubbcuDYgVdmG+Q9jyIEhFGuK6eXXiyPJR4wN1AFZ0LmyJhOWXa72+QCSKEf7be3JKMngysdXOJp0lJlnZ7KtzzZS8lM49uQY8Znx1SoWxuslyIw0OXMtVCjeVGCqYGsIwMPwMdZCHYrFJ2SZ7iLEz52DiQf5SO9H3fh0dvmWk2cOy0/B6DuQag+H6sK+hnDHTVJtq4KJzAS9qH/Hz6QKSrkShUxh7O2ouv6DGg2itWdrHM0dcTBzwMHcAQczB2xVtlx4doEvz3/JzVc3aVurLZOaTWLEoRFU6CpoV6sdLpYuHEg8wKmhp2jn1Y4HX4zGf9FmztU1oeO1LLC3rzaH5NxkAtYGGO9XcxNzKrQViIh42Xqxvc92Jp2YRH5FPqWaUgJdAqnUVXIn8w5O5pI/x60xtzCIBjyXuNGnyI3feMToOyKL9e2J7KXi58JoAD5v9TmiKLL0+lLj+D39enJk0BHjz3GZcQStD+L66OvIBBkD9oRTlJ/J1oMiR+oY2NQEVnVdxa8Pf+X+6/ucGnqKVh6tsFlkg1anpUJfwa99f2XNrTXEvIhhcvPJrOy6sto5Tz4xmc13N/NgwgO87STPo133dzHi0AhERL7v8D0zQmZU+5sXRS8I3R5Kubacs8PPUs+xXvWLeeCARKXOy3tnjf8TWHVzFVOjp5L8STI+9j7/8fH+xl8bfwcafyXcuCFJ0B48KCksIVUyHBY78Fv/3+jXoB/Jecm02tSKD5w/IHpotNTIefky9O8vZS3274cWkhGTKIocTT7KrLOzSMhNIMw7jHNp5zCIBuTIsVJZUdehLpdGXkKpkCgneoOe8H3hnE87z+VRlwl0CfzT6WaWZHIg4QBRd3dxKTMWEWj6Em57wPK7LoxuPJpLLV04o0/mTOpZo4OsUqFEKVdSw6IG9yfcR6VQsfjqYr6+8DW+9r48ynnEuu7rGH98PAqZgl3hu+jfsD8/XPmBL89/Sdy4OAKcA5h6cir7E/bz4tMX78r5AouuLOKLc1+wK3wXg/0Hc/n5Zdpva0//Bv2JTY8lryKPFV1W0LF2R9quCuK5Pg8v61o8K37OgwkPaFSj0TvHfJT9iCEHhnDv9T1UchVdfLtwNOEQmww9abj9JNFeOha2gRHJ5mzxK+fm5HsEOEsGXT/f+Jkp0VM4N/wcrWS1ONrTjwEPDCTUd6L+3nPUPt+LEnUJeRV5DGg4gMWhi6tJ6a65tYaJJyYypskYFnZYSKM1jQj2COZAxIE3E4yLY/2sMCa0ymenwxiGFW4mvH44R5KOIJfJCajhz/VXN1gZY8GUkDJszW2NhlzGcX53adfqtTRe15iU3CQci3R00Xqy2eElhwYeolfdXgw5MIS0gjQORBwgbHuYUTYz2D2YEM8QTj09xb3X9zBTmFHTqqZR5WjHRzsYGjCU3PJcNsVtInvBLJIcJC1+3e+X0UJQEujelMaujSmoKGDPwz0EOAcQnxWPTJChEBRoDJp3/CNMdKCVg1wmQxTBTG3g52gYFQ97/AWuzRpKZNdvcLd2x2WJC8XqYgRBoG/9vhx4vJ/l0SKTYvXoZfDp2Fq4DRnPF+ckIzQM8PN5JVM6qlHqwCcPHrlUWzrae7XnwrML1HOoR++6vfnp2lKcC3WISlNeqjQ0zYSkGnJKFO9SGKqCf287bzKKM6j8XX3qv4K3e0eq/l/DvAYuVi48znn8DsVQKTNFbdBgroZyE96pbdub2Rulqt2t3bn56qbRn6VKytbZwpkA5wDOpJ4h2D2Ya+nX+CPsVfaU68q5MOICTVybYCo35UDCAfru64tvgUDSCpHpfa1Y5l9CU9emJOQmMK/9PBrGPqXz56s5d3Unj+X5TImewqRmk6jnWI/HOY+5/PyyUZzgbdzepKDeaz0nfURGDjbDxsxOorrIVTRybsTtjNuYK8z5wOUDYtNjWd99PT4OPnx3+TvOp51/79oqBAXzO8wnomEEF6f3Y9iWOISUp8hreyOKIrnludx7fY8JxyfwsuglLdxbkFGSwdP8p8ZrYqO0oZ5jPXzsfMiryJMM9EQDU1pMoZNPJ04+Ocm+R/t4UfwCM4UZol5Hpag1Bs3WYgCB+jW/pwPkiKIemSgy5egEQhPus6w1zGsLjTPhmwuQ7AC7mshxbNWR2W2+xN/ZH9+VvihkCrLLs7FT2eFo7kjN+KfMiDFgpYHZneRc9tDjaulKa8/W3Mm4Q1phGnJBTg2LGmSWZv7Le9DezB4HcwdkyHhV8spYuQPJo2deu3msvr2apNwkDkQc4MNiO+J6NadpBjz7bT1+4WOqHTO3PJevzn/Fujvrqr1ey6YWr4pf0cW3C8u7LKft1rbG5vkZwTNAwOhh9GWbL1nQYQFzL8xlaexShjcczG/395B+NgBlzFXu1bWhc4SW17JyI63N1syW/Ip8DKKhmr9GmaYMy+8tGeo/lH0P9xKYKbIvxpla2w8T+mgm59LOEeIZwu5wybcmPiue6CHRtNvWjmEBw9hyd4tR0Q14p/fyyosrfLjlQ5Z1XkZky8hq53zm6Rm67uoqneeUlHdc27NKswjdHkp2WTZnh581fu8AcPiwtKfIzgan97u9/ztRri3H6ycv+tbvy5oe/32GxN/4v4W/A42/Gj78UOJRXpU41AbRgMl8E1Z3W014/XBabWqFqdyUqx9fxU5lK/V1fP45tG4Ne/eCs8Q3vpF+g+lnpnP5xWU61O5AWO0wZp+fjYhIXfu6WKmsSC9O5/aY2+9kxMs0ZbTd2pas0iyu/+O6kZoCEn3lQMIBou5s50pOHHIDdEwVqVUI65vCgFQL9nmXUc+hHikFKegMOjxtPAnzDiPMO4yO3h35LuY7tt/fTn5FPi8/fYmLpQs+K334wPkDjiZLHN8wnzD87P347vJ3iIiMbTKWHfd3MKHpBJZ2ljJOl55dot22dsSOjqWle8tq53Aw4SDh+8KZ8+Ec5rWfR1ZpFo3XNaauQ13ODj9LubacyOhIttzdgoulCzml2Xx61cDuMGcyyl8zLmgcK7uuNCrygGTIN+LQCI4mH2VC0wnSBvjRHswUZizttJSIBgNosNyHgKelRG/Vk2MBeaMHU2/OT6QIBQSuDWRMwChWpPiinfMl+VQwPQyCZi7n9NMznEg5gY+dD1v7bCXEM6Ta+fx49UdmnJ1BZItIlnVehiAIRsnY/QP2E14/HLZtg/HjOdPOk04tk98YsVm5Mbn5ZMYGjeVOxh1GbOpBjkKDUm5CGVJ2teq9H9X7iIOJB4lsEYmV0oqFlxdyYsgJhu+J4LWukC8zfFmw8iEolfx49Ue+vfQtkS0j+fHqjwiCgM6gY3PvzQz/YDgAww8OZ3/CfkxlphSqpYCmuVtzzgw/w8GEgxxZ/DH79orIlCoS4k/T8kA36ucK9M2y43af5px6eopitRRIVG2g397svg2lBvQmMgS53Jg1rsrmz82qx9e7XyGzs0fcsYOVJnFEnopELsiZHjydpbFL0em03NlnS+PEQqJ9oNdQGTNCZvHd1YXSAAbwzYcXtpJ61R/nISDgZetFQWUBhZWFzA+Zy5wr39I2w5TyoAC61OlK7O4fuOmoofitfkzLSqhQydDzrysagNQrU5ZTzdehKkh5G28HH05mToT6hPLrw18BaPfanIvO5Qh6EN+T8ZcLchQyxXu9SFwtXXGzcuNJ/hPjtaka31xhTqMajbiZcRMBAVcrV0I8Q9jbby8JOQksubaEzXc3A7DvsivtYjP5fud4Vj7YYKwAzQyeSYNXGoaPWk7wWDmPa1saZZQFBEzkJkZ6GLxprL/ZdhfNOgzlYW0LPhhehkyQGxvq7VR2GDAwsOFA1t5ZyxB/qZFXrVcTNzaORzmP+C7mu2rBy9tVqQDnAJq7NcdEL2K/chMJQe5kNfAkMTexGq3VzcqNQJdA/Oz92BC3gb71+7I4bDFO5k7oRB0avQa1Tk12WTYrb6xky90tKOVKRgSOoHfd3iTnJXMu7RyXnl0ityIXBdIcGul/wp7mCG/R5WQGPfXSb3LVLJL7LuBcAmWOUqVvadhS4rLi2PNwDzYqGyY3n8yCmAWs6LKCZm5N+fnATPbnXKJSBh4lAq+sAVn1/iKZIMPV0pXHEx9jrbLmWcEzgjcHk1maaQzwbZQ2dK/TnTaebZDJZOSV55FXIf3LLc/lQtqFahWR98FcJ2ClhhqlIg7+zanh6IXOoONJ/hMe5zwGpEAtvzKfEQEjSMhNMHo8ATR2acyqrqvovKszHtYeJOQmsK/fPqyUVoTvDadCV8H2PtsJ8wnDc7knn7b8lMXXFrM7fDeDFIE827iEKbk7OOotBXYyQWBO6y+oEHUsvrYYuSDn2OBjdPHtQom6BJclLpTrypl8A5YYQjHdtYcMUzVeP3kxNmgsux/sxt3anaj+UYw9NpZbr25RrivnqzZfGYVGQHJwT5nyRmK6UldJ4NpAyYxy1BWjMt7bmHFmBj9e+xEfOx9ODzttrHhUIbc8l847O5NWIPlGNavZTPrF8ePQowdkZICr6z+9Hv8uLLy8kHmX5vEs8hkuli7/+g/+xv9Z/B1o/NVw5Aj07i0FGsHBgKQiNLn5ZE49PcXTgqfc+McNvExrSJKgO3dCZCQsXgwmJjzJe8Ls87OJehyFfw1/5refz857O4lKjAKk3gO9qGdj3EYujrxIsEfwe6eRWZJJi40tsDezZ3f4bk6lRPPbrS3EFj7ERA9hT6FfigmNfEO42NSer4uPUMkbSkDzms0ZHjCcMJ8w6tjXqdancDz5OD1+7YFckLOq2ypqWNSg776+BLsHk1uRy2etPmP8sfHEjo5lxKER6Aw6UgtSMZWbkjAxAW976cNVb9DjutSVkYEjWRy22Hj8+Mx4QraE0K1ON/b224tBNBC6XaLrxI2LM37olWpKab2pNfez72OjsGDbjjIabDyM37neyAQZ9Rzrsa7HOkI8Q7ibdZe++/pSUFHAzvCddKvTjbOpZwnbEUZo7VDOpZ3DwdyB3PJcPvT8kPz714mMFRl8RwuCwG8trLjlo2LFHSdkjx5zsVtDPm72ijQKUMlVKOTSZil/Rn61DJcoinxz8RvmxczjqzZfMa/9PONaiqJIn719uJl+k4TnPbBdtZGkXq35qG0mCSVSxuynzj8xodkE1Do1ww8O51DSIQBkIpjpBA4NOUa3qD5oDVoczRzJnp7N6luriYyORC/q+bzV57TzakfPX3tiJ7dAWVjKhbQP8dsZzTfXFzEvZh4mMhOmB09nevB0pp2Zxqb4TUallHNp5wjbEcatf9wi6nEUP1yTsowK5EyK1bPsNIiNGyOPvwulpZzOvEK3nV0ZHmfgXof6JJQ+Y0H7Bay8ubKaQlA1/EE1ykHlQF6lJJ5Q5Z6946MdDLVpg2HwYLgey7w2IrmfjWP9vc180/Ybvrk4l+XHdEy8BUKjRsSM7EDb0pXUy4bEGrzhzgvQPRmO+1WfQjO3ZiTkJlCqKaVfvX5EJUbRPFNBXA0dJiZKKgxqZIIMz2IZ4Q90LGv1+5xFGJTlRFTNQmSCzLixD3IJ4k7Wnfef7z+Bg5kDW3pvQa1Tk1aYxsLLC40B3tuBh7UYQC39x1jiQylPeS7fTLEgNW+28WzDlRdX/qlqklyQY29mT155XjXlLxOZCTWtalKsLia/UtqAT242mUe5jzifdt64ee/nFsbuyMssaa5lQZgSE5kJ5dpyY4DoqlaS8b2aAf0Fjn0g0bKq+j7C64czxH8I7bza0WJjC57kP2GCfWdWfXsLWV4+XYZAaos6RvdzGTKUCiWbe2/G3dqdAfsGkFmWSWjtUM6mnTXO3UZpQ5G6CA8rDzxsJMW49wW0iFLPhLmZFVZKa4rVxZRqSqllW8t4v5Vpysgpz8HcxBydQVctMPqfoJXuKEpqvPO6mmxum4YTXj+cug51OZZ8jLisOACsldYEuQah0Wu4nXEbtU7Nt6XNGHM8A6fkV0zrLLC+pQmVoqSQZSozRWPQ4GjmaJS+BsnlvatvV7rV6UZTt6b02tOLm69u4mTuRA+/HuxP2E+pppRedXvxSbNP6FC7A4Ig8DT/KXV+roO3nTdftfmKL859QVZZFg5mDsxvP595p79ELCjgkzqDee1oRv7uTRSZy7ha14xCfRlyQY5MkP0p1UwUReM9KkNmFMGwM5P6VhaFLsLZwpmPj3xspHY+L3rOtZfX8LD2QECga52uzLs0D3uVHSusBuB27CI96t8l3xzq6e35NvhLht6ahbm+ASFWcykuNqNEn8SoS5uZ0q4XfPMNyOXMOjuL1bdW8/LTl2SUZNB5Z2cEQeBgxEGmnpzKlZdXCPMO40zqGWrb1iatMI32Xu05P+JNFW32udksjV1K/Lj4aoZ9byO1IBWflT64WrpiEA2cGHLCaIZZhcLKQrrt6sbD7IccH3ycNrXaQHQ0dO0KL19W69v8T6KwshDP5Z5MaDqBH8J++F8Z82/8NfF3oPFXg8EADRtCvXoShQqou6ouiPCy+CUXR16kucYJwsMhKQk2boTBg8kuy2bepXmsu7MOF0sXFrRfQF2HuvTc09OofLM4dDF2ZnaMOTqGdT3WMTZo7J9OI60gjZ9jf2LFrZ8xIGKqhy5PoEuWBSr/QK75WXBGm8jzYolnLxfkWCut2dRrE+H7wokeEk1n387vPXaJugT7xfZ423njbedNhbaCgooC7mffZ2+/vYTXD6fh6oZ423kzrdU0o1uzjdIGK6UV+wfsp3nN5gCMPTqWc2nnSJmcgiAIZJZk0nxjc1wsXbg08hLmJubMPDOTpbFLuTDigvShi0RJ67arG49zHrOtzza2XPmZoxkXGOLUkV0551jWaRl7H+3lxqsbfOj5ITczbtLQqSFRA6LwsvUCoM+ePqQWpHJv/D2S8pLosrOLcTNc1ecw0LkjD6aNYNDFXMz0UGGlQrN4ET7F8ymsLMQgGpgVMovDSYdp7NKYneFveg1EUWTa6Wksu76MRR0XMTNk5jtrmZ58mwY7WjDgvgFrhSU/+ZfSuU4XolOiae/VnhNDTvDtxW9Zdn0ZGr2GGhY1+KrNV3SV+9F+dxdc7NxJNS0nvzIfJ3Mnsqdno9FrqLeqHi+KXlDDogaFlYV08unE6m6rCVvbipzcF/jobbhuLWWZl3debizzi6LI/Jj5zL04l3FB41jSaQk1fqzBt+2+ZXrr6TT8pSGPcx/TLhUubIdFrWFDTzdGnMxgxNf7qdUhnMgTk1lxaxU2BlPaN+jG0aSj6EU9CkHBt+2/xUxhxmenP6veOPsn5ntulm5klGYwrdU0vvzwSyL29KXV9ot8HQOyFi2JHObEUfV9In9LZ/JVLeUmAmYrVzPJ4z5rbv9e8helfowqzryRuiW+2Tw+mfyEuRfmsvvhbixNLSnVSKZs5qICU5WlcbPfNRlO7IZ2vzTjUs6tagGMgICHjQe55bnV5WYVKvrX78+OBzuMr1koLGjl0cq4Uf6j7K6JzAQXSxdeFr9EQGBUzR5cTThFkrXmXRoOUtP+XfkEY7DxNhQyBTUta5JenM4PYT9gYWLBy6KXbLu/jVclr94r+asQFBhEgzEIUclVGEQDGoO0ZiHPoX0aLA+WXNbdLN0wVZjyrPCZ8RhdnkBSDRlpNgZcLF1wMHMgtSAVjV6Di6ULpZpSitRFCL9v/HslQtRv4DwNsi35t+CPlSIbpQ0myDDkF1Bg/uaeqGlVE39nf7xtvbFR2RCfGc+Z1DMs6LAAS1NLo8+GqdwUpUJp/NlEZkLeyySeXTxE5fUrNHpaSsBrMNdBqVLgha8TD2pbEOUxFZmqekVDRE8+N3mgkJ49U7kp7tbupBakMjN4JpZKS2Kex3Dt+RXCHlYw5xI0zpKeue/byylVGGhbqy255bk8zHmIo7kjpZpSNHpJ8WxowFD61+/P6dTTnHhygrTCNJRyJW292lJYUcjNjJuoFCoORhzkeeFzVt1axcPsh9R3rM+kZpNYe3stD3Mecm/cPQJcAqTN/tkvWH59OYIociHKgv69NTi71yPEM4QrZzdzaa2ax7UtKd6/m051uyGXyanUVZJXnsd3l79jze011DCvwVcffkVeRR7Hko9xJ/O/HpBXXU9bpa3xmfzA+QM6+3TGzcoNB3MHbHNK+fniIk7LnyM3wIjsdqQ4fWd8XgSDHlGAlWMa4V/LihJ1CR7LPRjTZIzRpDa9OJ0uO7uQWZrJmu5riIiKMM6hSpJXQGBvv730b9if+Mx4mm1oxty2c5nTds57516F+r/UJ8g1yFjxOTDgAGE+YdXeU6oppdevvbiefp3DAw8TlorkqfXsGdSq9d7j/icw88xM1txew4tPX/yp2e3f+L+PvwONvyI2boSxYyExEfz8qLmsJhklGRyMOEifF+YwcCDY2cHBg5TV82FZ7DJjiXd2m9lMajaJORfm8NP1nxARkQkyxjcdz7CAYbTd2pZRgaNY22PtO8Om5KcQFbeTqNvbuaNOQ6WVOL/X3cFfdMTE1oG4kmREROo51qNlzZacTDmJSqGiUY1GVOoqWdN9DX6r/Lg44iJtvdq+5+QkhGwOoURTYuSP13Osh5nCjNtjbyMTZEZaUPSQaPru64tGr+HO2DuMOTqG+Kx4VnVdxZigMZxKOUWXXV24O+4ufg5+tN3allclr7g15hZuVm4cSjzER3s/YknYEj4P/hyQqjWddnYisySTU0NPEeQWhJidzeYuzkR+pKLUUMnskNl8EfIFnXd25lr6NVQKFau7rWZk4EgEQeBZ4TN8VvqwpvsaxgaNpaCiANelrrSs2ZKYFzGIiDgp7dmY1YI2605iKjflYbNa2N1/gl8+XPGApcHQ8ONZDG0ygvq/1OdQxCF61+sNSJS5iccnsu7OOlZ1XcWk5pPeWcOnR7bhMHICaxpWMDsUPqr7EYs7LWbr3a18d/k7mrg0ISE3gQpdBXYqO5Z0WsLIwJHGfpb4SX0JsTuAWgZ6uSTBqZ6jZs75OSy6uohNPTcx+qhktra9z3Z6+PVgxpkZrI9bj9wAv6TWY0HjEoYEDGVRaHWFkS3xWxhzdAxd63RFo9OgF/UciDhA5/VtuJ4vbWZP2U3BvE9/Nt/ewL472ykzlegETwueYirK0QgSjaPKP2Fr763kV+RLQQa88a1AbnTLHhYwDKVcycb4jcC7vhNymZwxTcYQITYgMPIHzF7ncaRmGeGJ8ElXqFUE2eOHsf7pPbwMH2MhShn/F7LNfPD8PpmNfXhS+PSda1HNbVmEFumQ4ihQ060u9wskdS8rUyvamNVjztJbtPoHKJGj/oPLd5W7dQu3FkZHY7kgZ0WXFVx9edVIfTKRmTC5+WSWXZcapBs4NuBx7mPsVfa4WrniX8Of40+OS5xyLZTJDUbTQX/duzScP25a/zinf+kJ8d+BKLmrCwIUqN4do6qxPOyFCTYutYh1qCCvIo+IhhGYyk3Z92gfAMXqYiy0Al9dU7CzvpaBD0RG35Ph9plEryvXlWNpYkmpthQLEwvKteXvDYj0ohRoOZk7MS14GjPPzmRaq2ksiV3ClVFX+PXhr+y6v4tZIbPYGL+RlPwUfAvleBQauOAlEuYdxsvilyTmJiITZDSv2ZzCikJUJipujbmFQvZGLUCn15Jw9TBZ0VEorl3H62E6tfOke+CFkympDVw57VrOfscc0pwUaH+nx1mLATTWrwFRQBDeDg7HUy5LwNfel1JtKRnFGcbgTiHKGPfCiRnn1Xg+L2RtE5jdSaBAVX0NalrVZEbrGYwPGk9BZQEBawMo1ZRSri3H3dqd0Y1H83Hgx1ToKjjx5IQkBvH8UrUqzSfNP+GHjj9wK+MWq26t4sDjAxgw4G7lzpnhZ6o1Jx9NOkrfX/sQlG7gnovk1m4iMyGyRSQ2V28zc8EFikYOwmHT7mrzrNBW4LPSh9dlErV1dffVgCREEhEVIVUzVHaUa8pRGySfnYYpeZLMAAAgAElEQVQ1GrK6+2rmXZzHpReXMJWbGpMAAgLOls44WzhLdK/yvPdWsP7seQnysWbpyIb8dP0npp+ZTuqUVDxsPIzvKagokKo/6TfRGDTGzyILEwuUciVd6nRh/+P9nBxyks9Of4ZBNHBrzK1qdN33Ydrpaex+sJvkT5KJ2B/B6aen2dJ7C0MDhr6zXv1+68fZ1LNE1fuanv2/gpQU8Pnfa87OLMmk9orafN32a2a3mf2/Nu7f+Gvh70Djr4jKSvDygj59WD+mCeOOjaOBYwMeFQ+VJD87d0a3Yxubnx9i7sW55Ffk80mzT5jdZjYlmhI6butIamEq9mb2mMpNqWVTi7399tJqUyu87bw5P+K88cMsKTeJqBub+e3ubu7p0jHTQsgLcDa1I9PDjmvyDCp+b0pt7NKYyc0nE+odil7U035be2SCjAsjLjBo/yB87X2ZHjwd/zX+7+2beBtzL8zlp+s/UawpNioInRh8gq51ugLSRrvZhma8Ln1Ndmk2ShMlgxsNZmXXlURGR7L2zlpGNx7Nss7L8FzuyZTmU0jOT+ZI0hEuj7pMkFsQKfkpBK0PItQ7lKj+UQiCQFpBGqE7QlHr1JwZdob6TvWlCel0YGrK018W4Jv9JQICThZOFFUWsSh0EdfTr7P30V5CvUNZ3W01G+I2sCFuA+mfpmNhasEvN39havRUvGy9cLVypTL2CrvP2VIntZDNTQRyv57GXV06e+7/Sv80FZMuVfLhC3jlbE5MeBBTneN4PjsHMxMzdAYdHx/+mF0PdrGp1yZGBo40rptBNHDqSTQp333G+J1J3PEy5eby6ezOPkt+RT4/hP1A/339q22uZ7SewYIOC95pmC9IfcyJPg0Z2vfNa9dHX6f15tbMbD2To8lHKVIXGXtnLEwsEEWRT1t9yqE7u8jNfkYDrS0mjYM4NeIsf8SplFP0+60fdio7skqzCFH48P2aJFqPFFHpwdTajuTJyTiYOXCkmy9jmmaQo6jeAK1Axode7XhW9Izudbrz882f36FKWZpaUqYpQ0Tk5JCT+Nj54LdK4jbNDpnNwisLjV/yTuZOFKuLjb4hfiWmNHmmpkYp3PRV8cRCjdZM2tRJw0ibOkSR8MS5/NImjeT3BBq2Slt87HyIz4qnTo6BX05A6Aip8lCmKzNeCx87HxzuJfPMFjKtMJ6LTJCkgv8Vn/2/C4VO6vPWyt9k3/8ZDSdW0bPaaxYmFgTUkFR/8irycLNy43r6dZQKJRqdphpt6m1Urbe9mb2xh8HG1IYiTRFTnruyYksmgePgnuubcd4+dwGB4ztFZGZmrJ3dmein0TSq0Yj57edTpimj/2/9MdOIJGwwYXSEGRecyjiyQ8o0DxhZ3YCwCj52PgR7BNO8ZnN87X2JiIqgVF1KTeuavCx+iQwZF0Ze4OsLX/Mg+4FkuDkunszSTHxW+jCr9SzmtJ3DyScn+UfUcLK0+VgKSqa3nc24oHGo9WpOPz1NdEo0BxIOICLiaGJDeEVtmqVpqPM4iwbJ+TiVgV6Apx6W5Daph751MCn1a3C09A6nn56mTFuGrcqWEnWJ8Tn+4BWkuUl0Nwe9LwG+7nRvruLj0x15VfIKU7kpGr1GMogsy2FUoRcz9mVQL1PDzkbwWRfIsZQoRgqZJKTgbOFMUWWRUXRAKVfiYuFCekk6Oz7agbedN5vjN7P74W7KteV09e3KuKBxdK3TlUpdJefTzrPu9jpOpJwwXvNOPp1oW6st82LmUa4tx15lT35lPqHeoXzS7BOauDZhc+xqVlxcRIGZpCKl1WnRiloaODXg5OCTbJvQijl7MlCvWIZyyqfVruHeh3sZuH8gAMcGHaO7X3cAtHot446NY8vdLZgpzPCw9jB6urhZujG/w3wioyON94Ve1NPAsQGZpZlkfJ6BTJDxMPshsS9jiU2PJT4rnqTcJPQGPa30739eDLICVk10o8evPWhbqy3bP9r+znsKKgqovaI2Reoimrg04VHOI9R6NW1rteXU0FN03dWV6+nXqdRVcnPMTaPC4j/DhbQLdNjegTtj7xDgHMC4o+PYfHczi0MXMy14WjWaskavYfD+wRxOPMTOfXoiDiSBn98/Ofq/H+OPjedAwgGeRT57R4r9b/z/A38HGn9VLFyI/ttvcJ+qx6GmLzavcrn6Yz7il19yZFATZl38ksTcRIb4D2FBhwV42XqxPHY5089MRy/qGdhwILkVudzNukvsx7EMPzSc50XPuTP2DvkV+fx2aTVRj6N4KL7GXAP+2WBqaUOSrZ5sSlEpVLTxbCM1cfuEsefBHhZfW8z+AfsJdAmk/bb2KGQKLoy4gIeNB14/eTHEfwgf1f+IZhuaET8u/p8qVl1+fpkPt36IgIBKoSLILYiYkTHVPiQ3xm2UzJAaDqS1Z2smn5xsDGC2xG9hwvEJ+Dv742HtwZUXV8gpzyGqfxR9G/SlXFtOq02tqNBWcHvsbayV1jzKfkTYjjAsTC04M+yMkQJlhL09zJyJufZbtKIWnUFHHfs6RA2IIsA5gJNPTjLxxEQySzIRBIGxTcayousKAJqsa4K5iTmPk66yN96XjmdTyPZ2pl/bbF4H+pCSn4JMkDGwkaS/n1aQhv+zciZf1tD5XhmFZgJ5oyLwnP0DQ658ypGkI+wK32V0p63QVrDj/g5Wxyzl023JjLgHSUO64L1xPwaFnJ+u/8QX576olrE1NzEnbmwcdR3rvvcajD06Ft/l26iQGfimjZQ59bLxws5MUqS5+eom63uuZ1nsMm68ugFgdOZV69R0XNOS1IJUlIKC3Jn5CFZW74wRlxlHx+0dKaws5IczAp+mOtFqhgOvdAW8LntNHfs6VOgqJIqPCJ19u5CYm0h6STqWGihUSPOyNHlDR3o7yPCz92NNjzV039XdKKm6sMNCJpyYgEquws3KjdTCVNyt3fG28ybmeQx17OpQ16EurlfvonyWzhkfeGkN5b8nEv+7Gf+3YaaRqiKfXYOxvd+tBlTJzn5/FrY1kZNo/6ai0dilMSn5KdWUehQyBY2cGtGzbk9+vvGzke7xR7TzasfFZxf/dJ3exv/k/P54Hq4WrmSWZUrN2TITIyWqjr3UG9GhdgfOp503bjTfxtWNoDOVM+ZTH5LzpM3g+KDx5JbncjvzNht6bOB50XMcP/sK9+QsImb5UFhZWM20VG6AU9tgfC9IsZfONWMJbGoMczpK7/G286aXXy92PdhFfkU+Y5qMqaaAE/0kmq67uyITZHT17cqpp6ewUdowtflUvr70NXPbzuWbdt8A8Pmpz9kYv5G0qWn8+uBXPjn5Cb2TZFhhwoFGcqPL+wjvvuRdOM6jg+sJy1AS+EyNxe9ytdfdIc7HnMrmQdi070K2opLTT09z85XU2NzSvSUdanfgUfYjDiUdooFjAxJyE7AysaBYK13TGfa9+H7qEWQ5ueDgQMzzGNpubWtc9wYmNcnPf0WWFdiqBTSCSIXp7z1d76lK2avs8bL1Iqssi4ySDGlt38q8t/ZsTcuaLVHr1ZxJPUNcZhw1rWoyuvFoRjcZjaeNJ0k5SbTc3JLCykJslDYUq4sREbEwsWBU4CjMTcw5knyExFypsmcqyhj0SEb9UdP54tYiRgaOpKCigENJhzCVmzKmyRgaLFjHuBt65NGnIOwNLUgURUI2h3A/+z5mCjMeTnxIDYs3QcCmuE2MOToGERFnC2cKKgqM92YVloYuZW7MXGNyws3KjZyyHLQGLTJBRgOnBjiYOXDj5XXciyE05weSPFogviXNJqKnTHGPe7IpaA1a7oy5QxO36r0SBtHAkAND2P94/xtxit9d6U3lphyKOISDuQMtN7bESmlF4qREXK3+daO2Vq/FYbED04OnM6ftHERR5OsLX7Pg8gKjDPTbSSWdQceoDT3YnXGKTS2+Y2S3/93KwtP8p/it8mNll5Xvrcz/jf/7+DvQ+IviYUIMXoFtufRhLc46FnOyRhGH/RfyD/kxrry4QsfaHVkctpgmrk0orCwkbEcYtzNuY2lqSdSAKGJfxjLv0jxODzvN3kd72XZ3G8NcOhObHkuCLA8zLXgWC5RZKUk3fVOxqAosQjxDUCneSOMYRAOD9g/iSNIRbJQ2WCutOT/iPO7W7hhEA8oFSlZ0WcEHzh8QsiWExxMfv6kWvAcavQbLhZboDDpERC6MuFDNQVsURUK3h3It/Rq+dr7EjYuj5aaWxvKyQqbgTsYd+u7ry+uy11TqKolsEcnyLssRRZFRh0ex79E+bvzjBv7O/tx8dZOuu7ribu3OqaGn3quCoffzZW5/J74zvY6fgx8be21k0vFJJOYmMr/9fKYFT0OtV9N3X1+iU6LxtfNlU+9NWJla0WR9EyYW1WX++ieYGgS2hHszzecpKpUllfpKhvkPo0RbQtTjKGm95EomNJ3AuKBxdFtQn2/u2tI3thC5CDs+EPCat5Kwbp+QVZrFLzd/Yc3tNVhl5HHusA21siqRrd9AVp9Q1t1Zx9rba3ld9hoXSxeySrMQEOjk04nbGbfJnZH73vW/8uIKbba0YcOHSxk9YCGe4ytIV0jZvr71+3I46TCdvDtxMuUk/s7+/Nz1Z4rVxQzZPwQXSxc29tqISqGi9/auZGryWJngTcM5K6g0lVGpq6RCW0GlrpJ7r+9x8vRqUq31CEC4d3eu5sXzuvR1NYUbE+Q4lujJshKQy+S4KVrhUNEflVj7nWbl/wmqvnirGkgn3YBVJ2H+h/B1B6idBxNuwcqW4GH5/gymXsjnuqErSj3IzC2oQIPWoMXH1oenv1c5uibBybpgWw6F5m8UkRQyBeYKc4o1xfhprEhYpqZcr8HhKxOcLGvwquQVJjITApwDjJzzKj65q6UryzovY8iBIfTw7cGRJ0femdvbMNWBRg4e5Sa8NNcaKyaiKOJm4UZJqcOf9GiMp0z2+L2O43+6rsgQBIEGTg14kP2AdrXaEZcZh9agNdJQTGQmmJuYo5ApaJhWyqW1apbMbMNG92yeFjyVejne6oNQKVTYqez47HwFIy8W4jTj3XGXn4Qf2ghkWYggSIpLWUuh7wA48HsfrY3SBi9bL5LzknG2cOZZ0TOmBU8jomEEXrZebI7fzMyzUt/T+h7r+eLcF5Rry7FWWvO67DVjmoxhfc/1AGSXZeO9wpsOtTtwNPkokS0iCXpcyNDPt3JhVAcyXzzELyGbwExQiJBnBmkNa6Jr3RLnzn0xbdaS1fc2cjDxIMl5ycY1djJ3op1XO8YFjSO3PJep0VOp1FUyKnAUq26uooFTAx7lPEIv6nFR2JOly2fQA5g3fi++oQMkOeQlHnybURdN4kO+9M+hSAkqg0CxafWvdnOFOau7r6auY12OJh3lRMoJHmU/em+ztZWpFYEugagUKq6nX6dEU4K5iTn+NfwxiAYeZj+kUldJ1zpdGdtkLMEewXTc3tHovwKSB0XM8xijYpiZwgw3E3telrxCUCgYFDgUT2tP5sXM4/NWn2OnsuOrC18hF+RYCEr2bC+nQ5YZyltxUs/i77j16hbNNzbH0sSSdrXbcWTgkWoJqpNPTtLr115Gw0mj8pq5EznlOdXOs8psclTgKMYEjaGeYz2+vvA1P9/8mYgUFRtibHj2ywE+vaVANIgYEIzPi6XXTm7lR5FTnkMr91Zs6b2lWlLny3NfsvDKQmaFzGLRlUX42fuRnJ+MDBnd/bpz6ukpfOx8jCIINSxqEDMypppD+J+h375+pBenc/0f142vrbm1hkknJtG/YX+299lulKwHMMReY8LC1qxvCr90+4WJzSb+yzH+nRi8fzDXXl7jyeQnmMhN/lfH/hv/7+PvQOMviFfFr2ixsQW7t5bQ5kEx8/rYsahxKZWilgDnABaHLqaTTycEQWDfo32MODiCSn0lYd5hHIw4SMzzGLrv7s6ExmNJfXqb6GJp46LSgrVWINdMxCCAp7UHYT6dCPMOo0PtDu/ocv8Rj7If0WR9E/QGPVdGXaGlh0SNyirNwnWpK4cHHsbCxILQHaHvGN79EVq9FqvvrdAZdOhFPTEjY4yN2iA5nw8+MJhlnZfx2anP2PnRTvwc/GixsQXLOy83muCdeXqGLru6YBANdPbuzMmhJ9kYt5Gxx8Ya/RrOp52n957eBDgHcHzw8fc2peWU5TBoli8XHEpwsHBkqP9QlnVZhlqnZs6FOSy5toTWnq3Z1nsbfX/ri7XSGq1eS2x6LM1Ma/Oi+CXpi3UkdgykV5NE0i30aA1aetftzdJOS42mRSuuryDylJQ1djJ3opVHK848PUPa1DQi1ocRcuIhn1wXcSmDiwE2fBtUym1fFT+IYYxdegGDvR1X13zBLwWnOZIkGYl1q9MNrUHL4aTDAHhYe9C7bm9W3VrF0rCliIiUaksp05RRpimjRFPC4cTDyAQZQW5BVL5I5VleGq/+sCwCgpFiV3Wd/tv4LzRs/xH/1WblKrqNr70v6UXpqPVqAl0Cic+KN2Zlqzj6X4R8gaWpJSqFCtc9x+mz+jxzuptxprMv97MfGClMggEaGX7CXmyOILyb8X8oi8SpHDbccWNA+zzUhjfyr7YVoJVBmRLmtZvH5ReXOZN6BjO5GRX6CmPQcabxckJ7fwoqFWFrgsmuyOV+9n2jYlEVWtVsReyr2Or9H38Cc0FJuajGQg0VpkiEJuFNJaJlzZY0qtHI2LvytupUuZBKmmwjGsUTiVImCJJIQetZkpt72ru0OOnwgvGc3s6Wv1396ODVgc9bfU73XyWKy8sbrRHu3MFrggaV0pz6jvXJK88joyQDtV79RkVIkPHxQxM2/KbGYvabahMiDH4AR+pCmekbOljfZ+ZEbS2n3mem2NQP5H7WfSY2m0i5tpwtd7dgrbQmvyL/nXvY3syegooC5DI5fer2ISpBUudzMHOgQltB5rRMrJXWAITv+YgH1w4xpMiTkBdQ+2E6PrlSgPTKwZT0AC9e+HuyTH6TG1bFuFi70tK9JeXacmKex1Chq6C2bW161OlBY9fGFKoLOZd6jvNp541BmYe1B+H1w1l7ay0WSgsKKgqwMrGg471S9k44x1ZlAt9GfcJrazmjG4/i66x6mH4zH8fMIkq7hzGg5UtO6hON56eUKYloFMHZ1LMUqYso05bhaO7IR/U+YkDDAYR4hnAv6x6fnf6May+vvWM0CZKccbta7TA3NSe9OJ1rL69RoinBRGaCmYkZxepiHM0dGdxoMGtvrzVWEFQKFTqDjo61O1LLphaJuYlM/TEG73zoFulIqaimRFOCl60Xzwqf8VWbr9CLer6/8j0da3fkdsI5rm4CFxM7LOMeonR2M85pxKERHEo8RLG6mLXd1zKu6TjKteXcf32f269us/bOWqMbeRUUKAj1kZTGRIOIHj3u1u6kF6cDMLjRYJLzkrmXGc/ykyITTYMR9v0GLi48eF7CzoOPSE3Lxbqmgv3lMyn6/bNoUcdFbIzfSHpxOgvaLyCypSSbPuboGH4M+xFPG08ioiII9gjm2kvJa6Zv/b4k5yXzIPsB37X/jp51exKyJYSW7i05NujYv9yMb4nfwugjo3k97XW17+2DCQcZtH8QwR7BHIw4iI3KRvrF7duIzZrx2fYh/JS6ix/DfmRa8LR/Osa/E/ey7hG4LpDtfbYz7INh/2vj/o2/Bv4ONP5iKFGX0HZTCCMPPmPK2WJEoNNwOOsNW3pvYVjAMOQyORqdho/2fsSJlBMo5Uo299rMIP9BHI3fS8Sx4aDXUykzSLrgIhhkYCUzp4NvqBRcvEd29p8hJT+FdlvbGb88zE3MuTb6GrYqW+5k3KHphqbcGXuHrNIsuu/uzqvPXuFm5fanx6tq9gapfP9x44+Nih1FlUXU+0VSIvmt/2/03tObB68fkPhJIpHRkey8v5PETxLRG/Q039gcLxsv8ivzSc5Lpr1Xe668uMLoxqNZ02MNhxMPExEVQVuvthwYcAALU4t35nI9/Tr9f+uPJi+bPWlNmdFOQxOXJqzr+cYkKuZ5DMMPDie7LJsKXQV7++4l2KYRqdM+pk/tG/R9DE/toahlE+JeS/KSwwOG08S1CaWaUsq0ZZRqSjmZcpKXRS/RG/Q4WTiRWZpZbcNmp7JDXV5M/3s6pl2Dhjlwyw0WB8P+BtWdff/TqPJSUMgUmMhNMJWbYio3RSFTkFuWS6m2FA8rDzJKM5AjQ9BqCc2zwa1jHx7kJ0LsDay1EP//sPfW0VEdetf/54xl4u5OIAJECO4OgeLuTotbL7SFlpaWFmiBFooWh+DuwUlwC4RASEhCjIS422Ts98eQgSD33ud9et/b37u618qinZmjc86cr+29PeXkiHVdM1sjW3LLc/UB5dvqLyMew6tgb7Irp3x0tKfCdg0JBQmM8B/Bmfgz5FfmY29sj7HMmOSCZFJmpxCwPoCCygLMZGZYGVmRVpRG+px0bqTd4MLJVTyMj+CB0xtzQLTgWQDJVrp8o76mFdbqZYi1AhrRa44GWh6KJ1EsvKnY6vkVr8eh6mWB1tSEOOMKpjeZzuWkyzzOrtmFaefejssDTurGzAID+XX9aL648AUaNP9WIicg6PT3CxL0iZZUBd3i4UR1A/EtDsvHiNy2RraotWpujLvBy+KXdN7Vma5eXUkqTNKPMxmIDahSV723fLUM7NtwNHHkVekralnUQiaWEZv3Jtit3geJBr69Cnec4dTrwq+hxBAXMxcS8hOwkFvQ0bMjSzstxd3CHcm1G9CuHYWPbtPx9hRi0iKpkw/PbEAjFtCgRS6WU6mu5KsImHsTrL8AdwsPcspzEIvEzGg6gzV31jCo3iDmNJtD+x3tsTC0ILUoFVdzVzp5duJq8lWe5Dx5L6ETq6FlgQmdXsoITCihSZIShzJdEpfgYkReQ1/yy/P55EIyFZF3MQhqyIOMB7TZ1gYTmQm5FbpuokgQ0cipEQtaLaCnT0/9b65Gq2Hj/Y3MuzAPmVhGG482xOTE6M+/VCQlyCGIexn3iFwPDU7dg0aNqPB0YW07Y5Y4JFAh1jAh141TslSSrd981xJBQm3r2sTmxtLarTXJhckMqjuIof5DORhzkANPD5BUmISNkQ0tXVtyIu4E37f7nnmt5umSy8SLHHp2iCfZT977/r2tvAlwCMBAbEBWaRa3Xt76KLdoVcgqZjSdofufiAho25a7S2ew0beUM/FnyCzLrJHctHRtiYuZC4efHWZNtzWsOzCXi2tLSHCU8Wz3KkY2Go9UrJNxD9gQgJWhFVmlWXoTPLVWrb/eHEwcyCnLwc3cjaTCJEDndD+7+WymntGZPz7Pfa4fuSxTliHVCoQe1DKo62xYtgykbwX8ZWVgZgZ//MFY6+vsfLwTjVaDocSQrb23cuflHVbdWYWfrR+xObF81ugz1nZfy/ZH2xl3Ypz+HpnVdBbr76+nSl2Fu7k7L0tecmDAAczl5oSEhjA8YDhbe239p8/m6uLehwL366nX6bm3J27mbpwdflb3HH74EIKD0d67x8Li4yy+tpjv2n7HwrYL/+0Y4H+LT/Z8QkphCo8nP/6gwe7f+H8XfycafwFEp5QQejWDxKxyiqueMuTMCsbciWJRZyn+rzSUmsoZ27mU/Hn5WBpaci31Gj339NQRzByDWRrwOccjNrK/6Ca5MlWNQMNUYsys5rMJqdONJs5Naiig/LuIz4un3Y52unGpUZcpVhTTfEtzGjg24Ozws5yNP0uf/X3I/DyTG2k36H+gP3nz8rAytProOltubcm99HsoNUq61+5OQkECcdPiAJh5diZbHm4hdlosLmYuPMl+QsD6ANZ0X8PQ+kPxXetLU+emJBUkkV+Zz/4B+7mWco35l+frg/YFrReQkJ/Anid78Lb2ppNnJ6rUVZSryqlQVlCu1P2bXJRMSmEKcokc+3IRGrWKTBPdLWEo0RGzq6v5endlLQx5AivOwTkvGNdXR7pV/c9P7UchFUkxECS0iKvAqRjO1dGRhz1LJEjtnTAztyOnPIeUohTMDMwwlZmSV5HHmMAx3E2/y+Osx6i0Kj4L/ozmrs31buz5FflMPj2ZgXUHMqf5HAwkBvwU8RNxF/YS+TovFAtihvkPY0efHR99CGm0GhZeWciP137EztiOho4NeZWdyMuseCY+lRPmVEGUA8hEEvrVH8TAugMZcHAA37T5htV3VpNfmY+7uTvFimIKKgv06/VRmuNucJyqKsP3tilTZJNU0ZNEWxHjGoyjnm099kbv5XHW4xqEVmOpMRUq3ehWdRBTHSy5FYJDKWTXdae4qoT8ynwELVzYCX3HG1OlVeGWpyTLvD6ds8eRaeVFsZCIWc4Wbjjqkoy3g3fPQoFKCWQaa9EKsDjocxY9Xo0WrX5kykBsoFc8Cu0bipfYhtqNQ4iqb8PYoYakFaf902tBhIhRQaNYFbKKJdeWsPLWSqo0VVjIzCmseh3wv0OQr97HbrW7EZ4cTrmqvMbrLVxaIBKJuDb2mt43ZVyDcWx7tA1fa9/3EiQAO2M7ssuya7w2NmgsxYpiIlIi3htLeXdfBC2YVkGxQc33fa19ic2LRSyIWdppKf9o8Q+KFcVcvrSFPp/MofsoCQ/sVFSJoVAOBmKdq/mI+iO4lX6LosoiNuzIw6pcy8XN81FpVERnR3M+8fx7PgzViYlUJGVcg3H42fjhYeHBjLMzyM1NpUuOGf7xxbROE2iWpsW0CiolcNcJbrgLRLhpuekKxXLdfWJvbIdJ8isqTeTkm0oofc2laObcjM8a6u69QzGHWHd/HRklGXTw7MDMpjPxsvRi0ulJXE+9zsTgifzc+WdicmJov6M9Veoqmjg3wdXMlaOxR3VGiFXQxbEVM1McaLnmBJLKKoqH9WN6u0p2ZZzRH5+V3Io61nVQaVTc//Q+FxIvMOvcLGJyYmjm3IxjQ45hb2KPVqsl8lUke5/sZfWd1Sg1SqwNrenn14+BdQfS3lPHwb35jc8AACAASURBVFOoFIQlhLHi1gpupt3UJwRv3wPGEmMq1BXvGUZWo4FDA37tvIKmQz5HjgRu3waRbpQvKiuKs/FnOfTsEJGvIvXLGEuNUWqUbOqxie1rJxC2TcnOAJgzwAQzuTmvSl/ptycTyTAzMCPYMZhLSZfwtPTUSXF7ddY/m/zt/PUjiQ7GDriYu/Cq5BXpJek4GDuQWZZJg3QolUOatYRVPdYyMXji+79//v7QsiVf9Dfn55s/M7HBRHY83kGVuoputbvRx7cPk05NQhAElnVaxuxms1l3bx1zL8xFo9Wg1CipXFBJ622tuZ9xHz8bP7ysvDibcJZ9/fehUCsYfmQ4C9ssZFH7RR88n9VovKkxXpZe7Buw7733YnJiCAkNQRAEwoaH4fdKCYGBunPftClLri1h/uX5zG0xl2Wdlv1fSTaqx3WPDzlOL59e//Ht/Y2/Dv5ONP7LiE4pYfbWZ2i1oNHq3F5BizRnGvUHdOAb4+4cmzObFV3G4WXcAoU4lRtl31MqPKEetqQocyiWamoEGv3cuhJd+oJyZTmRn0XWIMv9TxGXG6erAsotuDz6Mg4mDrrxj8QL9Nrbiz6+ffC29ubnmz9zfMhxzieeZ9WdVfzS6RdUWpWuml9VRoXqTXCfWZrJ9bTrgC6IMjEwoVhRjLOpM1XqKnLKczCUGCIRSfQBvlKt/HMlNt+BCBESLYjVWqqkIkSCCEtDS6Qiqb6aL0IEsbFsCpPSKlHJkboC4wcZUIRu5KOaIAsQUjuEfr79sDS0xFBiiFwiJ6kwiYknJwI674mozCi2R23X74ObuRsvi1/iaOLIcOcQ0sMOctClGLFURkuTuvQ8GceU8ArKDcWEtjDlx8AiJnzyDf3r9qfBxgb81vU3pjedTomiBL+1fmSWZrKs0zK9rK9Wq6VraFfi8+N5MvkJEpGEGWEz+OPBHzXORTPnptxOv/NR7463cSjmEEMODUEkiOjh3YNjz46iFcA/E6bWHcXgiav0o2r11tbjef5zvCy9yCzNpEhR9F4VeUyyJZGu32KprdnREDRqGqbe55fQGdxxhnPNbVnvVUCmoS75q+4IfQxd8q3ZuCsfSeu2VGxaT99DA8gszSSvIg/HcjFZhmq0wvteFGq1EvMKsKoE40p46ixGo9XQwKEBkZmReObrEpd+MTA3RLdctcu6q5krfrZ+3Ht5jwJFQY392XgCmqZD0OQ3r70dvDmZOiETyUguSkaEiB4+PUjMT+R53vP3x6je8uKoRrUKEbzpuLwNd3N32ri3YWffnUw9PZXwlHAcTRw/OiYF0MWrC+lF6TzNfTOS8m7HRJ9UvP7XQm6Bj7UPkcl30IjhV2V7un6+geCNwTR0bEhJVQkPMx/WWN5YppOiRaXh2H545GfJt4EFaEVgINIlGXKJHI1Gg7uFO97W3vw+/SzXg6z48hMZt8ffxtXclfOJ5+m2u5ueYNzOvR3fR3xPdHY0Gq2G+oI9PrG5NE9W0yoVgl+BVAP5hnDDFe54SLjsoiLGTU5tx3pcGnWJsqoyfNb46IQkBHiW8wy1Vo1cCWJDI8pU5TWOxcHEAQ8LD1zNXalQVvAk+4m+um5jaMO2Ptvo4d2D0KhQRh8fDcCGTzYwseFE1t5dy/Sz0zlaaz7G3/5IUL4Uy2Ile/xhU2OB6Nrm+m5gdUJtZ2xHoH0g8XnxJM3SbSerNAuHFQ6YyEwQEPimzTfMaDoDA4kB8y/N55cbv7C7/24iX0VyMOYgLwpeYG1orR+vqk46ShQlrL23luU3l5NXkffRe04uluNj7UN2eTavSl/pX5eooYVVEB2C+ujMFl2a1uAB5pfnM/DgQC4nX35vnaMewY5j8HV3OT82qcTJxIlpTaax/v56ndBHzlPEgphv237L3JZza6y3OtnwsfbRc0jEghitVotELNHfJxuvWxLVNYh1ZVcA8Lfz59iQYzXdt8eOhehousy04sKLC8ROjcXe2J4uoV24l3EPAQEPCw+61e7GuvvraOnakmYuzdj+aDt5FXnYG9uzrNMyxhwfw9rua1lyfQkiRPjb+xOWEMae/ntIKkjiy0tfsqnnJiYET/jgvQjw3dXvWHVnFTlzcz5YQHxZ/JJuu7uRUZLByWaradF2RA0j4NV3VjMzbCZTGk3h9+6//1/pMrTe1hqVRsXNcTf/r3VS/sZ/H38nGv9lfLEjjvuJRWhqfAtqfO3UrB3qw9MiMbO2xaEW3khtvj2vLtMI1Je7YW3nyYWXVxkVMIq4vDgevHrAqIBRmMvNKVOWUaGs0P29rvRWqipRqBQo1Aqq1FVUqXXEVqVaiVKj1Af31bPD7zqx/lmoJuNp0SIVSfVVKlsjW2QS3aiOTCRDi5bY3Fg8LDzQarUkFyUjl8gZVHcQZgZmPMp8xPW069gZ2dHQqSFnE84CMLjeYGY0naHTLpcYIJfISS1K5dOTn/Ky+CWbe25miL9OLpEff4TffmPohk5klWbVcG2lrIxrE7rQ9OBNJO6eRH09kfZZyyhSFCETy7A2tGZgvYGsvrMaXxtfEvIT8LL0YkOPDXqS+/fh37P0+lIUKgXd6nTjdPxpAEYHjubbtt/iYubC2ntr+enit+SoixFroIdrR9YN3omTqRMKlYLPNw2k1q6TTHgAcjWk9GjF2taGHBHFEj89Xk8APPX8FD339qRzrc6cH3kegD3Rexh+ZDhnhp1BrVUz4+wMkgqTEAti3M3deVH4ApEGLKQmTG4xk5+u/cSxIcc+Wn3KLssm9HEoP9/4mayyLEQaGP4Y7rsKZBvBpVveBB6+jsbaih8jfmTh1YU6QrBtPaKyovTff13buhQrisktSKdCpMGMABqoN7x+/4287LLgcn4/+AmjH4toF1uJSBC4XteUNb7FnPQGxUfGmu3LBObcEvD3ao7tohUMODKYoqoi6ljV4V7GvZoffn152xq/IY7alUC2KRzbCx3H/cCKxiq+i9BVG31U5oStLeaWk5ZhA/iXPBSZSEarYgtmhSvo8aCEQ3e2Mej0aL13xIcgEkQ0cGhAmbKMxPxE1GoljV7CXdcPfrxGkmEoMaRCVYG5gTnGMmOdOWZlAUYSI+a2nMv8VvOpt64eGSUZ+q5HNaqT7A9JxZrJzHAzd+NJzhM6enZkRZcVBG0M0vNMFrVdxLfh3zIqYBRHY49SqihBK+gShS61u3Ly+UnuTbiHt403C68sZNWdVW++L2N7jKXG5JbnUlxV/OY8vCae2xjZkFWWBcCYoDEcub2doqVQ+MdqgspWYGZgxrWx1zCXm7P85nLmXpjLkLqD8SmWkXRqF31zbfCNzcX3tU5ChqWUxLoOHLHN4YJjJRpfH9LLX1GqKK2RoAkISMVS/bl1NXOljXsbAky8GDD4exSD+jK3bRV55Xks7rCYlKIUUgpT9F3T53nPawTe1ajuskgECbOazaK1e2vsje0ZurMXi+NdGXYsEQoLYdAgChbMocuJgdxXpdW41gLtAonKjqKhY0N9Z2B7n+0M9x/O05ynBG4IJGxEGKefn2bdvXV4WHgwqdEk5l2Yxw/tf2BBmwWArhjxMPMhB58e5EDMgRpJR2evzsTnxfPHgz9ILU7Vf9fmBuZUqCqQiWT6jo6B2OC9LjCCriAgFsQo1AoMxAb42vhiZ2yHWqMmtTiVhPwE/TFZG1pTUFmgfyYsuQDzbsKqL9uz26OYB68e6K9vZ1NnXpW+InxMOK3cWr13jquTDTczNxIKEvT7JFdBpRSalFkgru3NzU/vkJifyJTTUzj/4jwCAr19evNjxx91bt1r16KdPRvTr7SUiVR6id0SRQl119blZYmO79HPrx9TG01l4qmJpBamIhPLKFfpJIJvv7xN9zrdCe0XSlpRGl1Du5JVmkUT5yacf3GeXX12cSPtBhsfbOTE0BN0r9P9veOBN6T48DHhtHFv88HPFFYW0ntfb+6+vMP+UAW9NkVA6zdcyGqVrtFBo9ncczNikfiD6/mzcPr5aXrs7fGe+Mvf+H8bfyca/2UM/PkhuSXvEz0lVdm8LOuJkdlvmImawAeIqf9KavNfQfRark8k0lXwxegMzSQiCYIgUFhZiFgQ42HpganMFCOJEYZSQ4ykRhhJjTCRmfAk+wm3029jY2jD122+5l7GPfY+2cvJoScxkZlgbmCuJ+HKJXKKFcXU+b0OAC9mvuBcwjkmnZ5ESO0Q4nLjSCxI5NrYax98WEw7M41tj7ZRrixnbou5/Hb7N+a3nk9L15Z0De1Kjzo9OBl/EoAf2v2AgcSALy99SXuP9uztvxdbY1sOPj3IuBPjcDVz5fCgwzWVsTZuhClT+PTwWB7lPObuxLug1cKxY2hnzUSRkcbZgQ0427c+m2NCsTa0pkhRhFKj1JOOBQQ29dxEM5dmfHbqM26k3WBM0BiWdVpG662tSSpM0ssoarQalnVcxtgGY/njwR/68Yp2STBAFsitjj7sjTuEg4kDY4LGEJYQxqPMR8xrMY8uts1I+nk+XU7G4FICkUH2eP+0EZOQXjonNMB5pTM5ZTmkz0lHLBLrHWUFQeBM/BlczFxIL07HytCK2+NvU2dNHTwrDUmSV/B8cgxfXFnAhRcXuDnuJv72/oCOxH86/jTbH23ndPxpHaHcsSG3Xt7iyF7wy4Or679gc/pJkl8949htT5aP8+Z4UhiNnBpxP+M+AG5mbqQWp3J44GFGHx9NubIcjVoDIpAKEswJxFE5EhO8cLWRcil3Lka8IE2imwW3KdONr414rOsMFBrAwXqQ0acDnUctIrkoleFHhyNWg4Ea1CJQvFP0k4qkqFVKbMrAxs6DjIJkCl8XQjt6dORS8iX9Z31zwLVSxsntVTzt3Zym/ndQCRoMNWJESjVl1eNAHxlhcjF14WXJS0SImHlfQqWLPT/sSMPpc6h6a7+quw8SkQQBoUb3wsPAgTHXSxhxs4xfm8Hapv/8/q4OYA3EBogEnRrYkPpD9KZ/FnILCis/LJcLOv+BV6WvsDS0pLCiELFIrN+fI4OP0Ne3L/ue7OOzU59Rpa6iUlWJr7UvLwpfkP2PbOquq0uXWl3Y8XA7L/bYsiHEimU2cfpE6O3iRfX942HmQcS4CFzNXLi1cCyvDu4g3FOnBmYgNsBYZqz35ahGvyxrDq/PI/zkGlR1fem3vx+NHYL5zqofhRdPU375HK1SwakUNAIkORvzKrAW24zj0bZsyZbpF8guy8b1V1d9ELwmZA1Tw6bWcAY3khjhYeGBscxYLzjwNnnfuAoUMhFe1nUIqR2Cp4UnnpaeOJg4sPPRTtbdX0cDxwYsbq9zCz8bf5ZVd1fpEzm5WI5aq0ZaoWTqPfjHTbCshJPBxpx2KONOF19i8uN0fBc1fB00nVHtZnMx6SLnEs/px6zeTlq9rb0ZVG8QiyMWkzY7DRczF2JyYpgZNpOLLy5iKjMlfEw4DRwbvPf9V49X/Xb7N47FHdPLJtexqsP0JtP5tOGnfHPlG365+Yt+mQnBE+jj04eIlAiuJF/hfsZ9tGiRKV9f5/8kERcJIupY1aGdezsSChIITwlnY4+NLLi8AKVaSX5ZHocPQKcX0HIcRDu8ub8MJYbUsqxFmbKMqElRegL/2zgTf4bee3sjl8opVZQSnClwfLeW+tPA0Fo3PvV40mP9b9399Pv03t9bL/sb4hXC98Y9aNxvGu2mGnPPUcui9ouY1WwWvff15lrKNY4NPsasc7OIzo7GQm7Bgf4HmHdxHo+yHgG6LklmaSYxU2OwMbIBIL8in557e/Lw1UNaurbkcvJltvXexpFnR7jw4gLhY8I/6K+h0WpwWuHE6MDRLOu87KPntVJVychdfTmSHMZ6nzl8OmxFjff3RO9h1NFR9K/bn9C+of9RVSitVkvQxiAcTRwJGxH2H9vO3/hr4e9E47+MD3U0RBo1DZPu8vPeWfSfdYp8k/fVoD5krvXfhkSQoEWLWqvGVGaqT1r0hGKRlKLKIvIr87E2tKaOVR00aLibfhdXU1fSStLwsPCgk2cnDCWG+qTGUGqIsdSYuNw4fr/3u06astdWdkTtYE/0Hgwlhvjb+WNpaMmp+FP09e3Lzr47kYllXEu5xpDDQzCUGNLKrRV7n+xlcL3BbO61GROZSc0DOHQIBg5kwcHJHM26SkzISZg+Hc6eJa11AG0bPCbL3ghDiSHftfuOZTeW4WHhwfXU6zUUg+5PvE9Dp4ZotBrW31vP3AtzUagV+oBFLpFjbmBOXnkeQ+oP4WDMQQQERmRYM/1oBgGzlsC8eSAIPMt5xogjI4jMjEQiSJjZbCaLOyzWjwZ03twWjwt3mRahIDBTy0svW+RfLMBmzBQ+DZvKlodbGOY/DIlIwt7ovbqHk6kT4xuMZ+HVhUhFUq6Pu04T5yaYLjGli3UTjmRcZplpX6ZM30mrra0oUhSxrfc2TsSdIPRxKDnlOTR0bMiYoDE4mTpx/Ifh7PeqZHGCO/n9QlgSs5GR/iOJTLnJs8JEpBqQG5lRVFWMgEBf376s7rYal19d6FKrC+dfnNePfsiUUCXVBR32xvYfrABDzZGdGRYh2BwJY8Rj8CwEhasTkR38WF1yiel3oe1YXYCpFb1Zpjqw1atNaV//p/BmEkkqSFFqdYF11wJrzlnm4Z8F0faAVicjK9XqpGTVYgGnMjGZchUNDTy5o0r68E2iBa8C8K3VDNHdO4TXlrJt8F4GHRqkl+J82+SuGv1LXDmwMo1wd5g5wJhokzJczVz/Jb/jX6E6sREJIupY1iEuP44VXVbw+fnPefDpA5psaoK9sb1Ojhi1voLc2Kkxof1CqW1Vm557e3I2/izV3gkt3VpybsQ5ZpydwfZH2wl5puTArkpO7/yGAam/6INgD3MP5FI5yYXJ+tfkYjmGEjm70pvS3+IcO46CTTmMnubM4HqDWXl7JWODxjLCfwQ99vagQlXBvLsyvjtfhelXOod7UwUEZupGofxydONQGSbwwF3C7z9E4uqhCySPxx6nz/4+rO2+lvyKfBZHLGZg3YGERofWPEevk411n6xjciPdrFu1Z9G9ifcQBIHj1zZj9OtadgWCcSOdp8TbxwU6Y8m6tnXxtPAkvyKfK8lXEBAwkZnwZasv2f94D5HZUfjki5h8R4OjiT2ZE4axNfEQj5VpeoWtt2EkNcLd3B13C3fyyvKIzIyksVNjbqfffm+srVoRyVhmzIJLC1h2YxnOZs68LH7JpIaT+L7991gbWQM6UZLd0btZf389j7Me42XpRS+fXmi0Gk49P0ViQSIWcgsqVZUEOwQjE8u4na4znnM3d6eXTy9sjWyJTLrB7SfnyHxHsVVA0Kubga7z5m7ujkwsI6UohSJFkb7b3b1Od8JTwvGy9CIxLYqIrWBVAa0nydDY2ZJekl5jvc1cmnFt7LX3qvO55bmEhIbwIOMBM+/Al9dg/lg3ttmk6r/nEK8QTg8/rV9GoVIw5/wc1t1bp+vclBZRugQ2jqrLtuZyAu0CMZAYsClyE2eGn6GLVxcAlt9YzpeXvkStVVPbqnaNTs3owNFs7b21xqhShbKCIYeHcCruFC3dWnI99TobPtnA1kdbSSpM4tb4WzVHuF5j7PGx3Eu/x5MpT96/ON6C+kUis6bVZk1TWNhmId+1+67G6NLRZ0cZfGgwIbVDODDwQI3Rsz8b1YqSDz59QLBj8L9e4G/8/x5/Jxr/ZbzH0RB0wc5vQz2on/qIoRE5vBJq1ZhXR6umWHSfSPEM/Y/9ii4rWHB5AW5mbsxoOoMiRRH5FfkUVBSQX5lPfsWbv7zyvPdUY6ohRowaNWJBjLOpM0ZSI2RiGVKxFIlIgkgQ1fiB1Gq1RGZGotao0Wg1WMgtKKgswNXMVTd+9XoMS6VRoVKr9OMZIkRo+fNHsf4VxIIYuUSuP57qBEgmliGtrEKalEaFow2jruTzxXUoMJexfLArK20T0AhaAuwCaOXWivyKfPY93YetkS0qjYpSRSm1rWvzLPcZ7ubuTGk0hcfZjzkRd4KSqpIa6kp2RnaUKcsoU+qCxaku/Ziw8CjW2aWwb5/eoOp53nPGHBvD7Ze3GRM0hip1FXuf7MXBxIGvWn1FgF0AbXe0JbRvKB09O3Bm/ee4bzlIx+cq8qyNWDOtMYvFN/TjC9Uk+amNp+L9uzeFikK9wSGA0wonhvkPY8WtFQTnSDj/XSJrn27nh4gfUGlU2BjaMDJwJGOCxhBgH8DORzuInTuOny5qaPSFJf5NerCt3062P9rOxJMT35vf7ufZHbGhMcmFyWzquYlGmxqh1WjxsPQgseC12/ZbHQF9MvAaUhUoJTC72WyOPDtCkaKIYkUxvX16czLuJGq1irYvxQx9pGboEx3xuEgGS7rI2eJXiamzJ9fGXiMmJ4Zfb/+qG6/Tgm2VhBzZ6339SMVVAIwV4JMLcVZQaghnQsE7F3ym6wLcd7sZ70IiSNBq1Lz4VcuIlS259vIGx1Nb0u2PK5gsMUGj1dQ4Z9XH3zIFHjjB0Fgp2+spaejciPHB49kUuakGgfZ/ilqWtXhZ/JIqdRViQcyZYWfoursri9sv5usrX5MzN4fRx0ZzKfESCo0CI6kRDRwaoNFqyC7LJqMkgyZOTYhIjWD/gP16FbnaVrW5POoyUVlR9Nzbk2u7pEiqVDQfr8VSbklBZQEXR16kYy2ds16lqpIJJyawO3o3zqbObwJHLfx8AfrFiVi0aTi7Hu9iUbtFfN36a349/TXhe5bQ/qWE4ZEqbMohzRxuuwpcq29CpIuERwYFVLxVnBULYqwMrZjeZDrBjsHUs63HnHNzOPFc50ui1qprFEtGBozkYeZDMksyqVBVUKWuInxMOM1ddUagtX+vTQfPDuzquwuNVsPxYCMCUhS4vCqjRF3O7LDZhEaH0sipEUPrD6W0qpSnOU+5kHihhgCCeQXMvCsw6w48steyoJsBt2wViEViqr0gAIIdgjk59CQGIinJ/q6kTBpCSptAkguTSSlKIT4vnpjcmJrX3OvZ/bevq+pO1XD/4WzosYGNDzayKHwRYkHMZw0/o7CykN3RuylTltHTuydTGk+hU61ONbxoHmU+YviR4cTlxen3z0quE/+oNmgUEHBXGtMtVknLub/T0Ks1l5MuM+3MNLRoPyguUJ0cycVyXM1dySjJeE/RyrkIorfJybEzpuHgItQGUswMzMiryNMfp1gQ07lWZ4b6DyWkdgiJ+YkMOjSIytJCdu6uwKZUw/ChMuJNFNS1qUtMbgxmBmb635P1n6yvYZ53LPYYY4+PRa1Rs3p/CWoRTO9viIHYgEJF4Qf5FGlFaXTa1UmvIgbor+827m3Y2murXva8+juafGoymx9uprFTY+5n3OfXrr+y5t4aBARujr+p74JU41DMIQYeHEjyzGTcLdz5KNLS0Lq5sWzLWL5K28aEBhNY32N9DW5HWEIYfff3pbVba44OPvpBhcY/AyqNCp81PjR0bMiBgQf+I9v4G38t/J1o/AVQrTr1IqucWvZGjGzvRH03UxLyE2i5djh1q1Yh0mjRiMQIWjUiLfy8bwq/Bj4iNPB1NVYAI7Gc9Z+sZ0jAML3/wceg1qj1yUj136PMRyyOWIypgSm9fXpToaqo8X7138dIt9UPIrEgpoNnB6wMrWr8RWZEsit6F728e7G001KsDK2wkFvQd19fziaexd3cHT8bP9Z0X4NCrUChUlChqiCrNItZ52ZRqapkepPp/HTtJwLsA1Br1Nx/pRvFERBo6daSosoiorOjaenaEo1WQ255Li8KXgC60YtyVbmenF09Q6zWqFFr1ag1arrGa/n9DLgVwfIW8GObtzT8/1PQglgLEokMsViiJ1mWK8t1yjYm9pjJzJCJZWi0GrLKssgpz9H5XIhk9PbpjYmBCYZSHYFeEXmP1ofvIS9X0n8IeOTDSwtY3Hkpta1qsyh8EdHZ0QyrP4ypTaYiE8swEBvQe19v2nu052jMYQoVRYgFAa0gorlLc26n32aE/wi29t4KwE+XF2E3bxETI0H99QImNc7kXsZ9ro29Rv8D/bnw4oL+8ATASCkQccmNywtHMffuD+9VNN8+F9ULVY/WNHJqxOFBhwleXhuZQk2GsVqvrvPg1QNUGhXm2kDc1GOxEPlQz0zKlM3fYFb4iCemFXR5ncNc9TOk+VdrSWkdwOfhCziXeA6xRjdW9XaC8CEvASOpEeVV5TU+1zUegjLBUgHLWosoMNAgE8kYWuRG/5MJ9Bqm+1y1HGx1N8BSKaZAqmZIgQvbjqjp9oMPV5Ov6tdrY2hDbkUuJiqBUokWv2yIswGp1ICOtToSnRX9f9TJaOjQkDJlmV561tHEkeH+w1l+aznjG4zn584/Y/2zNTOazGD13dWUzS/j6LOjjDg6AtCRlKedncaqkFWMDhxNp52duJ1+Gx9rH86PPI/7b+764y1XlqPWqvHP0PBoI5z+YRQB0xcz4sgIIlIj+KPHH0xsOFG/b9POTGNz5CZ+f+DAzLqpVLy+56begeXnwG8afJJtTts0EfXji/DL1l03WRZSDCqVPLGFkl+X0q3PP0CsK8r8EP4DC68uBKBb7W7IJXKOxh79KIm5l3cvUot0PIEKVQWCILCv/z4GHBwAgJ+NH4WVhTz49AGOpo6su7eOaWem8WTKE+ra1mXYV97sXhrPujWj+K78DGqNmpVdVzI6cDSCIHDk2RE+PfkpEpEEa0NryrLSOJf3CbV2nUSoquJ2twA2djAjNP/Ke/smaMDdyoP6tvXxsvLCc9NBPJ3rU+vrFXhaeOqDwmabm2EkNeJK8hW+a/sd1kbWbLy/kbSiNMzkZrwsfvleccdIaoSJ1ITiqmIqVZWIBBFt3dvybdtvaebSTM/7yi7L5kHGAx68esDJuJPczbhbYz3VI1smMhNaubVCVFTCxVc3MJDK+azZNGY3n42TqRN30+/ScUdHSpWldPXqytigsVxJusKp+FP6JFNAXzAFUAAAIABJREFUwNTAtAZPUH8uEGj4UkvEdggPtmbJpLo8zo6msLIQZxNnBEEgvST9HZEC8C8x5vSmMpyGfMq56d3ofVTXRVRr1TrZdrVOXdBEZoJIELG8i+6+qK78J+QlUG99PVSqKhZF27C1tSlJRUlIBAmTGk1iVrNZNRKHapgvMddzjQb5DeKzRp8x/uR4ssuyWdpxKVObTK2RxH179Vt+iPgBfzt/nc9Ghx/57fZv1LaqzaVRlzCUvlHkK6oswuYXG1aFrPrnJnwZGeDsDKdOsdMlj/EnxtOtdjf2DdiHkdRI/7GryVfpsUfn83J62OkPjqD9GdhwfwNTTk8hblocdazr/Ee28Tf+Ovg70fiLQq1R03Z7W16VvmLvJ7c4/M1eYusEkaR5xJj2LgQ7GtHxQA/mqZuSkPuc4zZ5eOVBrB1Yq2QMNW7GqOaTaNRqEIL4XxO8ojKj6LizI27mblwcdfGj0rRarZYyZZk+6UgtSqX3vt5MDJ6IpdySlbdWokVLD+8eNRKZgoqCj2qtV1exbI1syavI07fdqxORPdF7SMxPZE33NQQ7BrPvyT5+ufkLaq0aTwtPUotSsZBb8GLmC0qrSnFe6cz23tvJKsviq0tf0c6jHXv778XO2I4tkVuYemYqgQ6BHBp4CFfz14za1FSYNAnOniXTy572IVnE2up0122NbUkpSuHIoCOoNCoySzMZcngIHua6SryfjZ/OGTZqGxqtBlOZKWYGZqSXpGMpt0QkiMiryAN0IwICAuWqcqRaEValGiSGRlSZGqHUqqhSV1GhrPhTOj02pZBrAluOwrQe0CYZMk0gyvFfLvrR70gqkiIA8nIlxlUgs7RGZm5FsaJYT9CtPs5KVWUNXX+VRqUP1N+uHL8NP8EeZW4WCdZvtmlvbE8zl2YcjzuOoNF5iYgFMV28utDWvS13ErPISxhAtcGfSKNzIZfariOsKBTHCgnfZdcj4EIUzV6+4XPsCoDrbv+eN4lEJMFKKSVPqMCmTGcW10RlzzXDLJSvl5cgQoUGiSBhWll9fjN8hI1gRC7lNcZY5EipREn/p3DoILjMk6KwNie3Ildf8QcQaXT+N+9Cz+N4rW7176KuTV1KlaWkFqXqXzOSGlGuLCd1VirOZs7IfpAxpP4QdkfvRr1QzfgT49n+aDsAX7f5msURi0memcyV5CuMPT6W4f7DuZJ8hfyK/BpjQtXjXzuOCXRIFuGUXU6OogDnlc742vhiLDPmzoQ7+s/329uHmPtnSTKqQiVA/RxolQqDn0CbN7vLU1u45gY33QXMO35CmyYDGdBsHNO6a9ncRMLjSY/17sxLry/lq0tfAdDarTVSsZSryVfRaDU4mDjQ2rU1FoYWHIo5VKPDIBJEWBlakVuei7OpMw0dG3Ly+UmCHYJ5VfYKDwsProy+glarxWeND02cm7C3/14sllpQP6mU2y46EYpVIauwN7GnRFHCrLBZbH20lZ7ePdHk5dL28H3m3JciVmth8mRSJwzix4StbH64uUby3c+3H5axyZwue0Smse63xVhmTEFxNgrRm8/ZGdvhaeFJlbqKqMwoNGj4stWXfBr8KZ+e+hQzAzMODzrM15e/Zsn1JVgZWpFXnoeJzITSqlL9tfkhhTIDsQFatHoSvFwsR6lR4mLmwpxmc5h7cS4LWi/gmzbfEJUVxYGnBzgYc5CE/AQsq0S4utQjoSARpVrJ6MDRzG05FyOpEa22tiKlKAU/Gz/Cx4Rja2xLdlk2u6J2sSNqB0+zn75HxjeUGOq74kOfithzUMMPnWQsbFVV4x4TELA0tKRUUUqVpopR0SLWnNQwoxucbGFNSO0QHEwcWHVnFWrNG/lrJ1MnHEwcCLIPYuujrbR1b8sfPf/A29pbL6YxVdqStcobiDUCapGWOc3msPPxTvLK8+jj24fPm39OC9cW+gRF+r20xn3qaOLIsSHH2P5oO+vvr6ete1u29t5aYzRq/b31TDkzhdqWtUkoSODLll+y+u5qunp15eDAgzXGwtrvaI+R1IjTw96MfL2H7Gywt4fjx6FXL8ISwhhwYAD+9v6cHHqyRqfk9svbhISG4G3tTdiIsH8qU/9/ikpVJR6/edDTuyebem3609f/N/5a+DvR+Ivi5xs/8+XFL4kYG6EjRhsZwdKl9LK9SFRWFAqVgnp29ehepzv/OP8P9vTYxtBCV56EH2Tny9OEWr3klSn45YsZpfBhuO8gXDv0hfr1QVQzenmU+YhOOzvhYeHB+ZHn/0c/LE+zn1J/fX1ujLtBC9cWDD00lP1P9zO4/mB299utr9Qciz1G3/19GVB3AIvaLdInIHui93Dg6QGq3Ytvp9+mgUMDxCIx+RX5pBen1yBcvgsBAWdTZzJKM/SSnWEJYZRVlVGqLKW3T28+Df4UW2NbfWclPj+eAQcGUKmqZH+fUNofjoQffkBrZoaQmcn4vhK2BqpY2WUlg+sNxnO1J4vbL2Zuy7mAbj77i4tfoNFoEES67acUpQAwr8U8FrVfxNn4s3wf/r2eBFiNm+NusvTwLMbvjWN5/SKuucHIgJH80vkXDj87zLwL87A1tmVb7220dW+LSqPSd3cUaoVOMUxZybAjw1CoFHzd5mu2R23nctJlzA3M9RKOKo2KZs7NCE8Nx1PuSJ0XRVx0KOfWFigxgPABjblVz4zUojQySjL0I0pSkRQTmQkFlQVIVSAXS1FKxfrxt/81PiDF+r+Fv+q3jxr8VQsmiAWdLG3tXC0jH6PncySbQ2gA7AqE5zYfNrh7mxDcPFPKQ2slHVIEQoZ9x4y732KghDVp/pTFRbOljQnRxqU1lpdpRVQJGoS3Dh+gVqFA4m9aPhkGZ70/sN13Eo139+1taWBfa1+e5z+vEaQaiA1Qa9T6IKeahF29np86/MT8y/MBXWC8rNMymm1pRgOHBlxNvsofPf9g5NE3ZmDNnJtRqixlacel9NrbizbubTA1MOVc4jl9ECoTybg5/iZell74f2tLwkoVCzpA4C87KawsZM75OWzpuYXRx0cTNSmKAPsAMl7GMuMLf7wzVbRKhRZpYKGAKhE8s4XALNg5MoBBP5/h98Q9zLs4j/5+/YnNjUX+6Cn3N8GA2S4cNn+JicyEuxPucur5KeZdnFeD79LKtRVD6g/hWuo1jsYeJWJMBMYyY/zX++sDujGBY2jh2oKHmQ/Z+nDre789fjZ+xOXF0dqtNcu7LOd+xn0mn57MqMBR7IzaiYXWgB37FLRaewqrjp9wK+0WI46OIKs0i1+bL8Lyt/WEhCViKJYjnjad2NE9WBz3B3uj94KA/vvzs/FjR58dNHZuDAsWoN2zmyuXt7L6zmpOxJ3AUitn2BNo/30o5apyXhS8IKkwibjcOG69vPXuLYKZgRk+1j7cz7hPoEMgAoJeVlgkiGju3BwzuRmPsx6TUZJR4zqTi+U4mTrpxDyqikkvTn/vWg2yD6KWVS3czd3xsPDALSYDxYpl3J3elxNV0STkJ2AkNUKr1VKhqqCvb19mNZ3FwqsLCU8Jx1JuSfiYcPzt/SmoKGD+pflseLABZ1NnxCJxjeT4bfx0Xc5XFysZOBDOBBpRqa5EQHhTwNBCz+cwIEbgt2bg3q43ruauXE+9XkNW+d177OFnD8krz+OzU5/xsvgl37T5hkMxh7AzsWOTyxRiJ/Sh9wgxlYKa5Z2XM6XxFEIfh7Ly9kpic2Np4tyEz5t/TpB9ED5rfRALYszl5owPGs/yW8sBmNNsDt3qdGP8ifHklueyrNMyJjeerH9mHnl2hKGHhmJnYqfn0fwR+QdTGk1hdbfV+kRm+c3lfHPlG/Lm5dXoTtRAXh7Y2MCRI9C3LwD3M+7TfXd3rAytCBsRppNsfo2Hrx7SJbQLTqZOXBh54X8lkf8xLLu+jG+ufEPSzCSczZz/9PX/jb8O/k40/oKIzoqm0aZGzGo6642ahKUlzJ9P5PCONNzUEHMDczb32syQQ0OY3Wy23lW7GuqyUi6GrWNn9C6OamKoFGnokASjE4zp69AekzadoF07Htqo6LS7C7Usa3F+xHksDS3/R/t6LuEcIbtD9DOiU09P5UzCGZILk1nQegGLOywGoNaqWqQWpVLwRQGmBjpmYFpRGn5r/RjfYDxXU64SZB/EjbQbdPTsyMaeG9kcuZmJJyfyW9ffGBk4kvyKfNKK0hh+ZDiZpZlo0TKk3hAcTByISI0g8lUkdazq6B1iPzQCA7qHiZmBGYYlFWRLqlhyCdyMnfhH8xKG3yghyduOg3bZhPYNJSIlgu1R23n02SO8rLyQiqT4rvUluzSbQkUhAgKD6g0iyCGIry59xdetv2bX412kFKXgbe1NfF48pjJTiquKkYlkPAjeiOXQsVgamCM/epLtxvF8fv5zSqtKUWl0Bnu/dPlFf44+hLCEMLrt7sbZ4WcJqa0zbzj49CCTT08mryIPQ4kh81vN50ryFa6mXOXLll8yseFEvFbVwrRSS9guaJYO0Xawsjnk9+3KyMYT2BW1C5VWJ9lossQEU6WIzB8VEBtLhq2cmUvakJ+eyD0Xgd1tVrG/9A4HYg7o+DnvVEGdTZ2pY1WHClUFT7Of1uBavJtsyMVy7E3syS3P1Xe9pFoRSqHmOkWIMEKCQlWF8i2lpuaqkxjw/oPwbcGEdyu1ggZapsLIxzA4RsC8Uss9Z4GdAVr21Yfcj4wn938Ch+tD4zS49468bM9YWHoB6k3nX/I1qs9D31golsGlWui7NdXLvS1T+zZczFxo7NSYE3En3ru+3+1yCAiIBJHeMdnb2pu4PJ0xpoOJA5mlmXRw78DT3KcUVhZiLjfH3dyd53nPKVeW11C9MhAb0MipkT6Q1Wg1tHBtwcC6A7E3tmfYkWFIRbp5+f51++Oy/A++uifHYaaSQrlODraeXT2WBX/JoiVd6JRhSMOEMgJSFUg1uvNw0xXueMq46qok09eVk/0OUrtOUwYNEijq0ZmI1AgmBk9kdbfVABSs/hnzOV8xfFtPDiWfrpEMiwUxfXz7cOTZERxMHJCKpdwefxsrQyva72hPSlEKHTw6cCT2CBXKCpo6NyU2L5ZHnz3C3cKdK0lX6LCzAwZiAyY1nMSqu6uwM7ZDQNB3795WzhIQ2NB9Hd6DJmPp5s2R74aw+Npimtg2YGdiAK5rdqLUqskeO4iCyWP44dkGTsSd0AtJVP9ezW81n+/affdG/Wf2bDh/Hp7q/EteFLxgzY6pbMkKo8xQTD+/fsxsOlNfRe+wowM3024yJmgM/fz60Xtfbxo4NOBh5kMUKsU/7ZaaGZjRwL4BnpaeaLQaIlIiSC5KBnQcjCCHIC4nX+aXTr9Q374+/Q/0p4FDA/xs/HRyvq8lfd9O0Exlptgb24MAOWU5eqK3Fi31bOvhbu7OmYQzSAQJU5tMZU/0HipVlSzusJgpjacgEUmIyYlh9Z3VbIrcpHfjrlBVgBb2HIY+cQKT59XlsnVxzbFCLcjUb5TdqiWSe/n04osWXxCTG8OWh1u4kXZDv4gIEe092+tJ0d+Hf88vN39Bo9WwpOMSdt3bQuS8RFIXz8WnUvfc/brN1yxsuxCRIOJs/FlW3l7J5aTLyEQyqjRVOJs6Yyg1JH56PE+yn9B1V1cySjNwM3fj+ODjbHywkQ0PNtDeoz1bem3B09ITgIiUCHru6YmBxICc8hwG1x3M/pj9/NzpZ33h61nOM+quq8vpYac/KoVLYaEuhjhwAAYO1L+ckJ9ASGgIZcoyzg4/S5BDkP69mJwYOu3shJmBGZdGXfrTk4FiRTFuv7oxIXgCy7ss/1PX/Tf+Wvg70fiLoUpdRZNNTVBr1dyfeF8/H4uDA0ybxueNC/j19q+YG5gjFokJdgzmzPAz/9Txu1hRzKFHe9h5awPhRVEYq0T0fwajIzUEZsITbwuaDJ+HYacQCAjQzzj/O6jW4a78uhKZWMb44+OJyY2hn28/5l2cx5ZeW/Cy9KLdjnb09e3LkcFH9MsOODCAG2k3iJ0ay/fh33Mg5gAD6w5k35N9hPYLpWtoVyYGT2Rt97UIgoBWq6X77u6cSzyHi6kLIpGIAPsATgw9gVKtpNbqWqQXp+Nr7cuzvGfs67+PT7w/qcEvKagooCLtBcHLd+N9OYrJA+Rsrqsb+TCRmmBZUE6ekYhy0Yer928nLyJBRFevrhhJjfTOyBKRhFaurXA2dWb3k90MqDuAmOwYkgpeIFGqMKhQMfs2TNkeg7mnL1sebmFW2Cy0aClXltPGvQ0bPtlQU3b3LWi1WhpvaoxcIufa2GtklWXx5cUv2RG1g2DHYOa1mMfZhLPsjNqpJ1y292jPrbRbpBa/rgpqoccrUyaFl/FJnIYCS0Mqp0zke98snijTuTb2Gh12dOBK8hVyd9gjDgpmltVdpp7N41JTG75rUITiHdM4e2N7ssuyEQtighyCeJLzhEpVpc50UaNmcL3BtHBtwcywmW8CnbeC8QD7ANq4taGNextaj/4G+4Zt8al/hfj8+Dfn/rVQwbv4dzoaAA0dG+Jk4sTJ+JMYK6DMAMb5DqetextOrPyMkY+h++vNfdMelrUGAyVIjUzQoEGlrOLSZhWtJ4BfrkCstRYzA3N+6fILiQWJvMh/QUlKHLfzHlMqA4cSHTcGQKaAqrccsS3lljiZOsGTpyRb6kax/hWqFYrKlGVIRdJ/2un7s/C28lY1xIIYT0tPXM1cMZebIxPLeJz1mNjcWNzM3JCKpaRnJ5L2K8R2Dua7hiU4RCXQMkVLq1Twf83/zTCBFzYi9vtpuOb2Ws1LpEsIPcw9ODToEM6mTtg71uHhpD40Mt2DgcSA+OnxOJs6E5cXR8XEcZjfi8L7U4WuuPD/sXfeUVGdXdv/TZ+hV+kgImIXxIq99xI1ltiNIZZYoqaYmBhTTLf33nvvir1jQUQRFRGkCALSBqaX748jo0RNnrzv863nedfKtRZrYIa5zzn3nDPn3ntf+7peOUde7cVo4teEh88fCtnsURdR69VEroi0qZqt7LGSfjX7Eb4sHD8nP86NOIdULKX/zv7sureLDiEdyCrJIjEvkUcTHvH9+e9Zf3s9IpFA5ykzllX4bijv/Wls9GbkyTxq5cGJQDOqydOIKbrJmbQztubj8kcJEobUG8K63usqfghjxsCNG8JPOa5fp7R5I9Zv/oQFOft5+PwhkT6RTGw8kVJ9KeOPjqd3WG8ifCKYeXbma5+ru8qd6h7V8XHwwUHugMak4XrWddKK0l4LRFyVrpitZkr0Lz1NRIjwdfQlW53N3oF76RbazUbnsfz+G7nffsaTg5t44i4RmtWLhCAktTCV1KLUN/ZdlG/Xy96LGS1nUN+nPkHOQfg4+tiy/CkFKUStjrL1kwAokLL/gD3hj9REjLaQ7SRIDX9+Hn5uK0Mrsbwx4QQCVapfzX44yZ34/sL3r+1T04CmdK3alR33dvDw+UN0Jh1KqZLnu6tiVzuC6o2u4apy5VrWNZoFNGNL3y34O/kDsPbWWkYdGAUIwYuXgxdXR18l0DkQq9XK+CPjWXZjGSKRiBktZtAiqAXvH3if55rn/NrhVz5s8CFikZg7z+7QaVMnNEYNxfpiOlTpQMzjGLb02cKgOoOwWq2ELAihS9UuLO62+I3HSWkpODrC1q0wcGCFl3LLcum2pRsP8h+wb+A+2ga3tb32qOAR7Ta0QyKScGrYKVsA9O/Cl6e+ZH7sfNI/Tv//QtH6B/8d+CfQ+C/DjNMz+PnSz1wbfa2itnlQELuGN+RdyW4+b/Y5P10SmqmTJyT/rQs0rSiNjbc3svLmCjLUmbgaJERn+zLyWA5h2UZwcYGWLaF1a2jVCurV+9PA49tz37L0xlKypwo37CF7hpBZksmZ4WcYe3gsq2+txsfBh8ySTHKm5dhKsEeTj9J1S1e29t3KwNoDOZJ8hG5burGh9waG7RuGk8KJhr4NOTr4qC2zN/XEVOZcmUOgcyCxo2M5nXqawXsGc2rYKXYk7mD5zeUALOi8gLXxa6nmXo1t/ba93FmTCRYtgq+/xqJQsHFwbd53OYeXow+FukIqu1Rm73YRzoHV8AndZzMdG99gPKfTTpOUn4RCosBoMWKxWgh1C+W59rmNmvEqxeaPkFgESUa1QoROasXHwQer1UpOWQ71veszqM4girRFrLst9JZER0bzRfMv8HbwrsDH3Zu0lz47+nByqECh++bsN8glcma3m837Ee/bKGehC0NxkDm8DC4Qbna1K9Xm/vP7JIxJwNfRlz17fkA+fxF9bpRhkojY0dSREWvjWVN4mtEHR9NcVBnnB2lcDoBCFWAVjlMsFiMTy9CatPg4+NgWbGLEdAzpiKPCkQMPDuBl70W/mv24m3uXk6knK86PFerny7BWC+X4+2c5nHyYE49OEBt/kExxGQbJW76a/lAtcLLWJcK8FLFFhFX8wuAPK2l203liOA9A/IfxKKQKwpeF41qsJ8cBfMukpP+ko+rCqkKvUVgvzt/cy4BEMIphT01ImQ+7a4lwGDWWgblLGHf9pX9Fw0y4LqwpkIllhLiGIBaJuZd/D5kJ7i6GsEnCgsXZIqfEqkcketF8DvirRazcZ6VhFnh8CvxJr4hEJEEmkaGSqmz9BOWS0Lb/ebHIVklfquGAQGfyc/QjvSQdpVRJmbEMO6lAM7FYLcjEMhQSBd2qdSPhWQJJ+Um2Mf/o9O0gcxCypiJsRp86o47LmZfRmXQ4yxyJKFDw/ol8Bt+Bp47gpxbGSvIQemIuBEKcNyR6gdgKbhqhl+htSFwEJ0Lg4y4vnyvfn8urINVdwpQhHjgrnMkuzUZtUCNGjFKqJNQ9lNvPbts8RUCozET4RJBSkEKeJg8fBx8+bvIxCqmCjJIMfr/8Oz3DejK4zmA0Rg3RB6MxWAxE149mRdwKgpyDkIgkpBalYiezI2ZoDM3WNCPIOYgP6n/ArHPf4FBqpF4OZLmISXa1VJCmLe9xKBfsUEqUtKzckuOPjpM6ORVvB++KEzBsGKSlwfnzL58rKQFnZ9i0CfOggWxK2MS82HnE58RXoNS9iiZ+TZjeYjr1ferj5+j3RmfmzJJMZp2bxdpba3G3c6dHtR42aui++/veqlYoFUsJcAqgnmsN2q0+RcN63Qj+cSmedp6vbcdqtVKoKyS1MJUTKSeYHzu/Qn/XHyETywh0DiTIJYgg5yCcFc5sSNiAXCzHZDGRrxWcF5tliOj+0Eqxk4qfGmppWmDPFbcXvjt2HjTya4Rar+bOszu2a+NV/JGa+E7YOyASqvYakwapSCook4mlrDiuoF+2K8NmN0BtUDOz1UwG7R6E1qhlXe91tK/SnvBl4Tx4/gCJSIKL0oVifTFWq5X+tfozpekUm69Q181dydPkEeoWyr4B+5gfO58VcStoG9yW1T1XU9mlMk+KntBpUyfSi9PRmrRE+kSS8CyB40OO0ya4DROOTODgw4OkTkp9s+O2VivQrzdtgsGDX3u51FBKvx39OJ16mg3vbGBg7ZfBSHpxOu02tENr1HJq2ClbD9S/A7lluQTNC2J68+l83errf9u4/+C/C/8EGv9FuJp5lWZrmvFt629tTq3leBBZmQY9ntK11juIRWJ2Je3CTmrHk4+f4KJ0+VvbuZ51nfYb2hPoHEhDv4bsvb+XIl0RjRxrMFxdhQGXS3A/fx10OuFm1rKlEHS0bg3h4RUCj+iD0cRlx3EjWsi29dvRj1JDKceGHMNkMdFsTTOuZV2jsV9jro6+Cgia4bWX1ibYJZiYoTGIRCJKDaW4/uzK922+54vTX+CidOHRhEc2Kteia4uYcHQCPg4+JI5LxFXlisVqodaSWoJEp8nAkm5LuJRxiX339xEdGc3i64vJ+yRP0AS/dAnGjcN65w63ezelV527lNiJmdlqJuMbjudRwSP67OhDVk4yS9JqM7Tqbfwd/cnX5qMz6WgR2IKxDcYy6sAodCad7abUxL8JHzX8iOiD0cxsNRO9Wc/XZ78mun40oyJGsef8chyXrcXeAM/6duRnzQkq2VUiVyOkdT3tPBGLxBRoC964OAAho+imcsNV5cr9vPu2wKtQV0izgGYMqjOIQKdA3FRuOCudmXxsMufSziGTyCpkDj3tPPm02acsub6EQOdATg8/jVgkxmg2sunUXM6v/gp7tYGbvnDDD0xigc7T4THUzoV1rZzpHNYNrUn7Gm0nKiCKMPcwtt7dShWXKsJi+8WCp7yZFCsYLAIVyLYYelvPxp9QjxQiGXqrkTp2VRjTeipfn/kaH2lTmiW0J8MjhAKnp9yzLKJMfM+2j/mf5NN9a3cynz0iW5cPIkElZ1a775kWM41anrXIL8vnmebZi90RoTLCZxesDEmAKkWQYw8b6sGaCIFa1TALpF26czXrKvnafNs5UU5futlsIz1jRuKkMZPkbsXOBGbrKw7mIojMhBurIGQipLmJCXQOJFeTi8aoeU3e948op2WA4NRdrmxT3usEFalUUpEUfyd/GxXGReGC2qAmeUIy35z9hg0JGyqMX/4ZvUq/Wt59OdGR0bb/ycp7zIXdc7m1exEtnkCzDMFkzgqU2knZ2cSRA56FXA4Et8AwTg07xegNfUlPiuWBB0gtFY0UpSIp9nJ79g7Yi9FiJK8sj9rDppGiz6H/IImNAiYVS+kS3JGdo49zcmQrTr8TzpWMK1zOvEyAUwBZ6iwkIgkqqYoSQwk1PGpgJ7MjozjDdu398VjFIjEGs+F/LMSgMoJWBqPi4OuzsCEcFjSXki9/Kbla7pXyKsorL65KV2p61sTL3gsvB8EdXS6RI9+9D4XOiPyDMcjEMtQGNVklWXw3ZDU7mjrzSQuNzUxPLpFjNBtt2whxDSGlMIWqblW5+v5VHOQOyCSyChLlb8LD5w/56sxX7EjcQZh7GF2qdmFe7Dy299uOzqRj4lFBQj0qIAp/B3/u5t3lSfETygxlFa5bhURBiFsRL5PkAAAgAElEQVQIIa4hVHGtQrBLMFVcq1DZpTKJeYl8GvMpeZo8vmj+BZVdKjPr3Cyb1HV5RaGeVz1UUhUZJRk2atabAhMHA5TKwV0DClcPSq0G1vVex+aEzey+v9smtCAVS6njWQeRSERyQTJqg/qt81Dfpz46o45HBY8wWAw275rht2DNfgj9zoMSBeROy6VAW8DI/SM5+PAgjXwbcePpDSxYkEvk+Dv608ivEVEBUcy9OpfUolRaBrVkatOpdKnahQ8OfsD62+uRiCTMbjebCO8I3j/wPoW6Qn7r8BvRkdEUaAvotqUbcdlxGC1GqrpVJa8sj4ujLpJZkkmXzV24O/YutSrVev1ADAZQKGDdOhg+/I3HajQbGX1wNBtub2BOxzl83PRj22vZ6mzab2xPviafmKEx1PWq+6fnz9/BR0c+YtvdbTyZ/OT/m6TuP/jP4p9A478EGqOGiOURuCpduTjqYgUqVJmhjMafu2N2sGNw+yl8deYrlndfzuRjk5nSdIqtD+JfQWxmLB03daR2pdocHXwUJ4UTOpOOgw8OsiFhA0eTjyIWieletSvDFY3ocleP/PwluHxZyIo4OUGLFkLQ0bo13e5/jUwqZ9/AfQB039IdqVhq+7vm4pok5SfhY+9D3Jg4vB28mXlmJj9e/JE7Y+9UyI40X9Oc5OfJFOmLCHYJ5v5HggznxoSNDNs7DBeFC6mTUnFRCYHVsUfHeHfnu5QaSlnYZSEfNfqIvLI8whaF0TKoJfsf7OdYx410Wnka1q6lsE4o73fSsd8xizGRY5jVZlYFtQ21Xs2Q6WEccH5pEtcsoBlzO83FQe7ABwc/sHF5a3nWYk2vNTTya0TCswTqLavH4DqD2XxnsxAstfgC0ZkzFPfuQrHEyK9Tm+LXugdfnPoCK1Z6V+/Ns9JnXM28ypSmU/iuzXeYrWYbvSs+J55fLv/Cvbx7hHuH08y/GTezb9oWkPYyexwVjqj16reqeb1K5QhyDsKKlYziDORiOXqLnsa+jbGX2/Ow4CGZJZkAiBERXupAj+tqVteHZw4w/aKIYyFWbvgLtBYRIpyVzhhMBjQmDRHeETgqHLmUfsm2vQjvCPrW6IvaoGb+1fkYLca30heAioGFFRQm8HSsRKYu19ZfYS+zp8xYhggRsxLc+UraFrZv54P9H7AqfhUjb0HkUzg0pBGf9fyZ6Sen2+brs6jP+OXyL3iUWsmzhzG3xGyPcqJIV4wV61v7ecK9wnmYeZvM5Q6UqEQ45ZXgqoOkSiLW1LNytaqSi146KtlXwlXpaut/EIvE9Azryb2cOzwsTEFpBN2r9KhXvnVvroDNnXxZUCW3ggJOuSxuOV7tM7GX2iMSi2wLzDfBXmaP2Wp+aZDnUpmc0pwK6lAedh409mvMiZQTFQJdESKODznOzxd/ruCQ3sGtIZMtjTGdP4N3/CPqPtGjNINaDlf8IaWmN88sJXxzRANnzmBt1YoZp2cw++JsxCIxW1st4otDk1GLDGCGXCfBcbtcSejX9r/yyclPmNJkClezrnI54zLLD0CDHBH7N31F7+q98XHwofvW7ojuJXF9vgZOn+Z4gIEum7vwRYsv+LLFl0Qsj0AmlpFZkkmRvqiCnO6HBz9kRdwKAEaGj+TYo2O2ilw192q0C25no0KeHX4WO5kdTVc3Jbs021a1dJQ5sqnvJh4VPOLX3VPRyIRegLknxFRu1pWfqudx6lksOpnQoyASiSjRl+Bh50GBpgCVTEUdrzqIEPEg/wGFukIUUkWFz0YukSMRSbDq9VhEVkxiUYU+ozNrhYrR4H5vPQXeinLvILlEjkKqsP1eLnVd/rverCelIIXn2ufIxDJaBrUk0CmQ3Um7kYglqA1qlBIlHUI60EgWjHn+HB60r8/dSlaSC5IpNZTaKH9ikZgyY1mFPhqZWEaoeyhh7mG2IMRqtfLl6S9tgTMI18I7Nd7h3Zrv0r5Ke8wWM0eSjzBo9yCMFqNAVRPB7IsK8qR6ljWggoeKTCz80TKoJWKRmHxNPimFKZToSxAjxknh9FqVw8lalyDzKBwIoZQU0iVrqewNjfwaEZBezFcf7aDVCDhfWdi/vjX60qVqF849Ocei64sqVJZ8HHzoX6s/8zrPw2wxs+/+PuZcncPljMuEuoXycZOPCXUP5d2d71KkK6K2Z232DdzHTxd/YtWtVbSv0p5VPVbhae9J/539OZJ8BCtWvB28kYqlnB1+lrrL6jKz1Uw+bfbp6x+4xSIkCFevhlGj3npeWK1Wvjj1BT9d+ompTafyS4dfbEFpviafjhs7klaUxomhJ97oVv4/QVpRGlUXVOX3jr8zqcmkf8uY/+C/C/8EGv8lmHh0IqviVnHrw1sVFt9Wq5Uhe4ew/9Y25pY2Z4zrRT5r9hmz283m85Ofs+jaIlImpuDl4PWX27iaeZVOmzpRp1Idjg4++saG49yyXLbc2cKG2xu4lXMLd5U7g2oPYnjNQURmmBGdPw9nzwoVAq2WeuPFNLf4szj4I2jdmg5J03Gzc2d7v+2cenyK9hvbU8OjBsX6Yvwc/VjVcxUNVzbkk6hPXguQGq1sxPWn1/mqxVd8d+E7Uielcj7tPCP2j0AukZM0Polg12DMFjPfnf+Ob899S5eqXXiufY7BbOBG9A3EIjErb64k+lA0I9JcWbirDKVUyeLefkwJTKJt1fbM7TSX2pVqV9j2taxrzLkyh2a/buexm4h5TYTM9Opeq9mUsImYxzGUO9VasfJowiObZvryG8sZe3gsVqzM7TSXyY0nwe+/Y/3sM05XgYF9rfRoOoKNCRsRi8Ts6LeDXtV7CTr7V+Yw48wMqrlXY+M7Gys041mtVtbfXs+0E9MoM5ahM+mQi+Ws672OgbUHojVp2ZO0h9W3VnM27SwqqQqJWIKLwoXuYd1ZdmOZLaMd5R9FvjafHHUOaoP6L7O2ciMElECKO1xcDZ4aWNFAxKIGVhT2ThUWAQDe9t7klOUAAu9ZrVf/aabwNViheQakOsPYjl/yRbcf0S5biP3T8bYbtoPMAa1JS7BrMI8LUlhwFG6M6cm6J/ttw7x/E1b2XEneoJ5sv7udiccm2l6TWUQYRVZbQFMeXLxKeWvo05AHzx9QYijBRelC3id5HHi3Ht333+PY9h/pf2s6PR6JGHbLSqdHgv/J2Roq6k79hY8VZziccZoaHjWIzYqtsCiMvgatnrxYFL6Qn5JYBKM/7xKYFm/H9NZG28LkVRpHh+AOJBckk1acZuPzl0MqEnxXRCIRWpMWMWIa+jYk9mmszdfgTXg1iGng24CqrlXZlrjNVg0ppxpVLpPR+LGR5unQIh3qPBMYXvlOUrLqVIaWLZgjvkZhWCAHHx+lsV9jZv4cSytlGHYJSSAS8cmJT1h+czmKAjUW8YuKhwXKAr1sFSQQgrrn2udklGQgl8jpGtoVg9lAg9XHmHHbGVn+S7f0UkMpSyY349OlCSw6+i1f3Z5DVEAUBwYeQCKWEJsZS9SaKEZHjGZFnCBPGhcdx7kn5+i1rRcqqQq1Qc22vtvoU6MPbde3JeFZAj3CenAp4xJpRWmAUE30d/LnTu4d27Y97Twp1BUy1bMX6uREljjdp+1jGCiLZLLXTeSOLpQYSgQZXTXkOAr9QeVu4dOipvF1q6+xk9mRW5ZLlflVmNBoAiMjRnI5/TIxj2O4kX2DtMI0W8WqHCqpiqpuVanlWYuy65eJFWeRqzQT4R3BoNqDaBfcDpFIxJLrS1h1a5Vwjoil1PCowZ3cO7gqXWlVuRVN/AR/DL1Jb6PA6c2v/G7SY7AIjxfTL5KnybPNWXkjdrCL0DCeV5aHxqRBYhUhNVsxy9/sU/LvglgkxlHuiM6oQ2/RozAJ52WcL1hFIlal1OK9rXdp+okb8YoC2xyYLYJfhkqqokhfVIHGKRVLsVgstmvWyVqXcPNSm2S2FSEBEC8Zi0ZyD6vRRPFPMK+LCzPqCwHKqwFz+fVTfh07K5yZ2nQqX7X6qsKxXM28yu9XfmdP0h5cla5E14/mTu4dDiUfQiqWMq+T4J8x+uBoinXF/NbxN0aGj2TMoTGsiRc8jZwVzgS5BOHr6IvGqOHciHNvnjiRCFasgA8+ePPrr2DRtUVMPDqRQXUGsbbXWhvNr0hXRNfNXbmbe5cjg48Iipj/BgzdO5SzaWdJmZjylx5g/+D/Hv4JNP4LUL4gn995PhMbT6zw2pLrSxh/ZDzzkoKYVS2bJmHtODjooI2LX2V+FYbVG2ZTYXkbLmdcpvOmzoR7h3P4vcN/qmpUjjvP7rDh9gY23dlETmkONTxqMKzeMIbUHYK/shLcuIF7THumpfkxfcdT0GhoMVpCFYU36wImUFuynHtlqRwYeAB/J3+ar2mOg8IBe5k9ieMSKxgPLb62mI+OfgTA6WGn6bSpE73CerEraRcAMUNiaB8ilG6H7BlCzOMYvmvzHZ83/5xL6Zdoua4l2/puY0DtAViuX6P5prYUm8qYEivii7bgFBDCnI5z6F6tu43DarKY2Hd/H3OvzuVyhiDJueVONTzOXidkSL5t32p41KB2pdrsvLcTP0c/wjwECggIfic1FtcguSBZyJqGDYL334cdO0j9cABVvbbbJEpFiPi94+8VStIACc8SGLp3KEl5ScxqPYtPm30quAJbrey7v49JxybZjLbqVqrLJ80+4VzaObYnbkdtUNMqqBUjw0fyuPAxP1z4gYVdFjLx2EQc5A4Uv8jYg+CZ0NivMc0Dm+Np58knMZ+gN+txkDvgonAhUy1UNSRmCFKLsPevyp3SZLw0EpYcMNP7PuTaw/ctYG0EaBT8bdjJ7Ah2CSbCO4Kjj47SNbQr17KuCZUAK/x0UcFn826gee9dfu/kyNcO123vVUqUTI2ayg8XfiDKuxGXcwTDMA+VB72r9yZnxxpOBFtQSORCxvyPsILUDMPjIbj7EGbkbKrwso+Dj039J0+Tx7iG41gcMAZL/Qi+bWbmuzYVlasG5HtTLTGHng/FNMiyUKyAXTXhfItAUur4cSnrpczogc2CL0TbYRDvC4jAsxTyHISAo26eCNfGbTiddhrgpaoO8EObH5h9cTbV3KtxK+cWHat05MTjExUWNuWwl9njZe+FWCRGZ9bRK6wXa26twWg2vtVzo5xu08SnEbnJt0hxMLDiqIz2D4wEv0jyPnR/2V9xIRA86zZmfpcFBLsE4/27N/M7z2fC0Qm0KPPg/K/5sH49DBuG2WImaF4QzZXVOPD0DDXyoVABOZVUrzUE28nsGFxnsKCqVrULIyNG0mxNM/bq3qHnj7tBowHVy+8M85QpFGxeQaVxZbir3EmekFxBNW/6yen8dvk3TFYTComCWpVqcS/vHs0Dm3Py8Uka+zUmPifexjtvuLIhrkpXLoy8QFZJFh8e+pCzT87axlNIFBjMBgI0Mt69ZeBQGDxxgeaZYh5V9SDNlIsIEfZye1ulKSwP/LxCOG1JoYFvA1b2WEmdSnV4+PwhcdlxzL06l/iceFRSlY0mV9mlMpE+kcKPbyQRIz5HUzOU2x8PZv+D/Zx4fMJWgQRh4V3NvRr1vOpR16su9bzqcSf3DtNPTUciklC7Um3ix8Rz59kdFsQuYNOdTVitVgbXGczExhOp513vjecFYPOO2PXuLvrU6MPBBwcZuFtIcvQK68UPbX+gVqVaXNo9j0knPuamLwysPZAf2/2It4O3LXA5lXqKz2M+J70knZqeNQU6UuEjQHCSr+dVjzqV6hDgFECuJpec0hyy1dlcf3qd1KLUt+6f2AKuWiiwA7H4JbVu7SEZPe4a8P0EDBIhXPijMt6f4U0CE2IR+HppcAzawem006z89QFZjjDo3dffX06xehWjwkcxr/O8N957UwtTmR87n9W3VmMwG2gd1JqLGRfRGDVE+kSy691dfH/he1bfWk2HKh1Y2WMlK+NW8sOFHwCBBhrkHMSjgkfkfZL3ZvVIqRQWLoSxY/+lOdh1bxeD9wymZVBLdvffbTPvKzWU0mNrD65lXWP/wP20r9L+Xxrvz1Auk7+211pGhI/4X4/3D/678E+g8R9Gsa6YOkvrEOoeSszQmArc2djMWFqsbcH7Ee9z8dxGdHIR12akV/gS+eH8D8w6N4uHEx5W0MF+FZfSL9F5c2cifSI59N4hHOR/0nn5BpgsJk49PsX62+vZe38vepOedlXaMbDWQIHT2XsDQ2sMgJs3aRTTn/BsK90v59Orjx5ftYiMxI6IW7fhO/e7fJ21iV5hvWzUKoATKSfourkr4xuOZ038Gr5o/gVr4tfwqEC4Ec1uO5vpLaZzPes6/Xb2Q2PUsLXv1gpfcF03d+VR/kMSH7RDumwlZyM9aNctD6sIoutHs7DrQlumpERfwuq41Sy4toC0ojRaBrVkSpMphLqFsnTNWFaWnUcvFQzOrFh5XPgYk8Uk9DNYjLYGdqPZyNC9Q9meuJ02ldtwOmq5oFH+5AmsW0c3/RqOJB9BjJjR9Uez6tYqcqbm4Gnv+doc6016Zp6dyS+XfiEqIIqZrWby6+VfiXkcQ8eQjsRnx2MvtyezJBOjxYiTwonxDcYzKmIUYrGYPUl7+Pzk5zgpnCqYj9X3rk/8s3imNZ3G922/p8xYxpnUM8Q8jmFv0l5bFQJeOsz3eKLiXu1KpKifVNhHuUno27B5O1hfvOdfMLxzVjhjspjeSvOCF1l8qxUXPejkYvQiCyLxy2qDUqJEKVWiNqgFmtMrdCtHuSNxc8qIGmHBopQzt98qinRFtoqGyIKtIXfcTQlLGgg0qR7VenDw4UEAvmzxpe3GDTCvw+/0GPkT+sJ8wj+02iQyy+VIvTUScuzM9E9RccfNyMB4Ex+nVMIxM5cMFxEba1vJsYO1kTA6DnbWlZBtZ8YCKI1Cr4YVoU/BLAZXhQsz285i1rlZFGoLbQHilj5beG/Pe7gqXSnSFSEVS1FKlQQ4BXAv/94b5/K3Dr8xLWYajf0aE5sV+9rr2/puY+j2gXQt8SI06RnN0wW532R3iBoNW3cKtJzYylLO+ZsodBakdl0ULvg5Cd4GCc8SiPKP4krmFZLGJ1F9cXWWH4TBaU7YP80DuZyzaWfpv7gNBXbQJg3uu4HG240CnZBpLq+6OMqFxZe7nTu1PGuRUZKBzqTDVenKpSo/IGnXHh48gGrVbMdgbdeOa+r7tOyZj8FssPkLlIsn6E16IpZHkJSfxOgI4fpzV7kzpM4Q1iesJ2VCCn139iXhWQJX3r+C1qil6eqmtK/SHp1JR8zjGMLcw3hc8Jhl3Zdx7/559sau57GrcN5JLCARSzC8aMB3UjjZeq3kEjmjwkex88IyyuTQJ3wQ7nYe3Mq5xa3sW7brQISI6h7VGV5vuBBUeEfgbude4bMqjqzNxrbuLA3O517ePcLcwxjXcBz9nrqQOWE4t9f+RIIxk9vPbpPwLOG1hm0/Rz9mtZ5FPe961PKshcaoYWXcShZfX0xmSSatgloxqfEkeob1rCA8kVOaQ60ltehQpQMb39mIzqTj2KNj9N/Vn9ERozn26BhZ6izaB7dj4M4kHGT2nBzRku33dqA1amkZ1JKaHjU5mXqSpPwkvB28aeDbAKVUidaopUhXxLPSZzzXPqdEX/JSsUskwYr1rcIa5fB/EQRnOvNaP5fYAqfXwd1KglnpvwKJSIJSqsRsNROh2/lGyWw7pZH90xsjFUvRTRiH+cA+fMaU4iB3IK8s77Vg3lXhSqH+5fexVCSlZeWWdK3alS6hXajhUaNC83aRroiVN1ey4NoCMksy8VB5kK/NRy6Rs7z7crzsvfjg4AeU6EuY02kOWqPW9h1XTq0svz+9BqUSfvsNPvroX5sQ4FyaUAEMdg3m6OCjNqECrVFL3x19OZ16ml39d9G92r84yX+CXtt68fD5QxLHJf5lD9E/+L+FfwKN/zBG7BvB3vt7uTP2DoHOgbbn88ryqL+iPv6O/vg6+XLi7n6uprSl1uYTFd5faiglZEEIXUO7srbX2tfGv/DkAl02d6GhX0MODTr0v262KtGXsDNxJxsSNnD+iaCC0rFKRz5v/jmtKrcifFk4rYJaEZNygocFD/ld0o2PL5oouXaBGiM1NMgRMTbWinOnnjQd8jn3KzvQZH0LogKiODjoID229iAxN9GmltQ5pDOH3zvMirgVTDo2ifo+9dnRb8dLR28Ai4X4Vd8TkT2TpcdlPPd1ZVatPKp71+Zu7l0G1xnMxj4bSStKY2HsQlbGrURr0jKg1gAmNZ5EviafBdcWcOzRMTwljhhL1WhVEr7v8BPjG44nZEEI2aXZgrqXFZ5OFQyt+u/sbzMrO+E8gQ4z14OPD0Vb1jI2dQHb7m5DjJjJTSZzJ/cOZqvZVgl5G44/Os6AXQMo1hfjrnJnZPhIDiUfEszJpEp6hfUSmu0fHUMpVaKQKmyqV1KxFDupHSqZCrPVTKRPJPsG7CNkYQiBToFYsXL96XUsVgtedl5oTBrUBrXQXGu0YnyF0/xnCloKI/R4AL+cgKAS2Fcd5rW352olA3KJ3KZqZLAYUEqVHH7vMC2DWgKCUlGhtpACbQE/nP+BzXc3227GbSsLkrpWrIgtoDSB5i+q6GIzWCRCNvzuHB0/NbGwNhIC3KtQ1bUqJ1JOvPTreOHIDUIjtUqmooZnDa5mXkUsEuOscKZQV4i/oz+Z6kyir8Gk6/DpxBocNr9UYiqfm5mtZnL4yHzEGi3XPPVUca1CasFjmqbDsATonyjQhB66wYEGjry//DozEhew5MYSpGaBU+5gEIIMvVR4XNptKTKxjNEHRwPCQvTy+5dpurqpjbOvN+uZ0GgC82Pn2/ZJJVFhsBhsi7VyykagcyA1PWpyJu0MniYFNVNKaJ4OrTMkNMgwozJBmQyuBoi4EGCloHkkC2U3AQh2Ca6QTX6VztUjtAeh7qEsvLYQs9XMp1GfsiLmJzLngPWL6djNmo3GoKHFr9WJM2XQ/65QCckWkqJCM3dIFw4mH7T1/MRFx/HenveIzYzFihWlVEn8h/GElcggJARiYqD9i+SC1YrW2Z7ZDbRELN7Nc81zxh4eS4+wHmzps8VWLT2bdpY269sgl8iF4ylMxYqVcQ3GMa/LPAq1hTRb0wy9Wc/FkRf5LOYzNt7ZiIvSha19t9K6cmuGflOPUUeyqZ6qZvAAKVe8Ta8F2H90upcixYQJMSIsL+asqlvVCpWKHYk72HZ3G6mTUt+Ygb6dc5ulN5ay6eoKdFLoXbMPYxuMpXlgc3QmHdrke+haRqFdtwptowi0Ri0ao4YrmVeYdXaWLYNfThsqVw9zUbrgqnTFQe6AzqzjWekzivXFyCVy3FXu2Mns0Jv05GpyMZqNf7saAK/71jjIHFBJVYjEQjLBYhUkZ8uNQP/K38M2nlXwvun6EL7oKifV3oCb0o1gl2CelT2zVWVBaM5PWAzvDIJ7nhXNL0FIGJgsJsxWM36OfrjbuXP32V0sWKhvWYSjpX6FigZYeE4sZZ4L+LLFlwy7K0E6bAT9lrXF4GTPc+1z0ovT6R7anWU3l731WFyVrqj1akxWE0HOQXQN7UqXql1oG9zWdn82mo3svLeT36/8Tlx2nO3ai/KPYvu72/n6zNesjV9LpxCh8j/h6ATbuVfLsxZ3x919fcP29jB7Nkz6e30Qd57docvmLsgkMo4POU41dyHY15v0vLfnPQ48OMCWPlt4t9YbSjt/A1cyrhC1Jord/XfTp0af/9VY/+C/C/8EGv9B7L+/n97be79WLjRbzHTZ3IX4nHhGRYzi50s/syelIe8UesHBg6+NszB2IZOPT+bO2DvU9Kxpe/78k/N03dyVxv6NOTjo4NtdQ/+H2HZnG4P2DLKViQOcAigzllGnUh3OPTmHncyOp1Oe4qx0ZsrRySy/uZwk6WRKd28jICENgwQaR4tQKOy44jQF+9YdaJY4hdjsGzYzscVdFnM16yobEzYyodEEfuv4W0UOZ0ICjBsHly7R9kMl57x0NK/ckoVdFxLsEozvHF/0Jj29wnqx5/4enBXOfBj5IcPrDSfmcQwLry0kuSCZCO8IJjWehFNSCn0efkdNkxvvtpuAl70X446Ms23O28Gbc8PPMe7IOC5lXGJWi5lov57OzHNAr14c+Wogo85MRmvU2voYYobG0HlTZxZ1XcSYBmPeOJcWq4VNCZv4NOZTCrWFOCudydPkAcJN1tfJlyquVbj59CZlxjLkEjkqqYpifTHV3atz//l9annWIqc0h3pe9biccZkmAU24lnUNjVGDXCynRVALivXF3M25i87yCnf/b7p1iy2AWExrr8a0uphJ/2MZVH8O61s6MaJNiZDtfeGEe3LoyQoyzUW6IpLykph3dR477u0ABPWjVxsxyysbDgbQKsRIxFIMFmFBYbFaKNIX0T20O4eSDzEgwxkHlQubvHIIydYTlQ5nQ0Q8crXaxnnbcb1qiFeeOXwVPmrIfsFysJPZoTFqcFO5odapkUvljAwfSRO9J0MSZuJmUVIg1qF4UanwUQtKXcEaBZPP6QkpFKRcj4fAxrqwvzroZPBrfCUOuOZy2f+F7K0IDg08RJ8dfWz8/Gujr9FoVSNcla4opAryy/IxWU02FZ03IcAxAOPTDFpniOn2zJmaDwqp90zoKcm1gytBYs4GWrhWWcbambcYengUN57eIMg5iNSiVAKcAoiLjsPzN0/clG5s6rOJb899y728e6/155RTipqkWxlzAzK/m8ZFdSI37hwnT2VhfCwcre9A7+bRzImdg1gk5mb0TYbvG47GqOFJ0ROMFiOfRX3GN62/oe/OvhxJPoKvoy+xo2MFmqZSCatW2RpZz55bT+vWI9j4fX+GfrkdgMMPD9N/V3/qedXj4KCDuNu5E58dT8QK4fw7NewUBx4cYH7sfLqFdmP/wP1IxILPQ+TySPRmvY2qcjP7JhcjFhG17iTWvXuZ2xS+7IsmBF8AACAASURBVCBGLFegeYXypRAr0Fve7GdiJ7UjwjuCoCOXqGp2xmfGT2iNWrQmLblluSy6tohI30hqe9ZGa9KiM+koM5aRXpROpjqTUkMpEpEEe50FsVyBQS5GZ9L9Zab/TXBTur30ubBaMJgNaIyal4GRWGpT3So3NC3WFxPuFY6byg2jxUihtpC7eXfxdfRFJpZRZiyjzFD2GgXuTVBIFAQ4B+Dj4IOTwglnpTNOcuHRWeH88jmFE84KZ6RiKUn5SVzNvMqR5CO2Zv2wfOiXCNcCJSTVFWS1XxVxKKcTli/MvdSwYS90GgbjI8cyttF4TqScYOqJqTQLaIazwpmLGRdfqwJ5ihtS0yAE8uU9GmKRmD7tcjmZvZr9D/bTVu/HqR+zWPx9L2bJL5OnyePM8DMEOgcSsiCEGu41eFjw0LZ/f/yeA4HqWK66KBPLaF25tS3wKF/Qn3tyjl8u/sLRlKO2z2pZt2X4OPrwwcEPKDWUEh0ZzcLYhTZvnXJxlApwcoKZM2Hq1L8+Yf6AjOIMOm3qRG5ZLoffO0xjf0Hj22QxMWLfCLbe3craXmsZVm/Y3x77VbRe1xqNUUPs6Ng3y/T+g/+T+CfQ+A8htyyX2ktqExUQxd4BeytcVF+f+ZofLvzAd22+Y8bpGcxoOYNvl94X3D1PnHhtLL1JT9iiMCJ9I9ndfzcgZPK6belGU/+mHBh04N8eZABsTtjMkL1DUH+uJiE3gfXx61kZt9KWOWsZ1JI9A/aQUZxB5IpIZrebzafNPsVsMdN3Sy/OJh1BIlNy43ZjfM/eYHDHUvZVh5q58NBLQpSuErecNRisRlb1WMWgOoNebrykBL75BuuCBTzzdWJo22Ie1PMjS53FT+1+4uOmH7M3aS9TTkwhsyQTd5U737b5lmYBzVhzaw1r49eiMWroW7MvExtNtLnqdl4SxfP4K/i7BuLerAPb7m6zacGnFqVSyb4ShdpCJGIJJ7vvxGvMNKrEPkD71XTG1c1gw91NdK/WnUa+jZh1TlC1+r7t90QfjCZ7avYbm/bjsuOIPhjNzeybOMgdKDWUYi+zRyqW2m6A9jJ72lVpR/OA5jQLbEakT6RQTr+5nHGHXwZCdjI7yoxlSEVS6nrVRSQSkZibaPMQeA3WFz9/Ual2lDvSrVo3dtzdQYOnVra4f0jI7KUAxD+NY+PsgfQ8lMy5IJjZFurnShn/3lyKxUbu59/n/vP7PMh/UEGW0kHugN6kt0motq3clnW91+GqcqXx0vokFj4EkSBnW9cnnNTCVIr1xSikCt6p/g4OcgfW3ljFzaVmRCdP0WV1G/LtYNNuWD29E4fSjtsqHuUQWaCycyCp6nSbrOirMrHlkJjhgzhYXw+0b6iqOMgE4zwPlQd52jwaZAn/JzfCbW8he1rfuz5xOXE0eSbnoaOB/okw9DZEZQou2LtqQsjEmURavJm2byzLXxFx8bJ72SjdqUonjj8+jlQkJcgliCfFT2xUPtui0wrV86FLjiN1H6lpkQ4hL2KQR65wIUjosbgYKPRblAdfXUK6MCJiBAN2DWBy48nMi50HQKvAVszvMp/w5eH0qd6H3QN28/vl35l5diZ9avThTOoZwem4IBl3lTtYLMjyC8kpp5+/uKvUewbFgZXoW38oc67OwYoVP0c/RtQbwc+Xf+b6B9fpvKkzeZo8LFYLTfybkF6UTk5ZDvZSe6QSKat7ruad9h/B6NEwaxaPCh4xc3I9Nm/UYE5/giRAMEDTmXRcTL/IwF0DcVI6MbvtbKadmMbT0qd42nmikqlswWdGSQYNfBvQpWoXTqae5ErGFUHFx96bEabatNp4ns73DNzxl9N/gIj7ji+DiT/6LfwdKCVK7OX26E16NCYNNTxq2KiseWV5ZKozMZgN+Dj4UM+rHjU9a2I/fwmqZq1RteuESqpCKVUil8ixWC1YPvsEc80aGN8biMFs4HDyYY49OsaQukPYmLDRtt0WgS0AoSJdrC8WHnXFf64E9wIqqQo3lRulhlIMZgMDag3AVeUqBAWnLuIUcx7nXxZQ5qRi9oXZPCx4iEQk4f2I95nTaQ7Xsq4x+fhkEp4lMLzecGa3my2YVb6AzqQjrSiNx4WPSS1MFR6LUkkpSOH+8/sYzAbcy+DjK3A+GE5VEaqBAKFuoXQN7UqYexjHU45z4MEBW5BUfn2Mk0XxPO4yR0JB5ORE7xq9UevV7Lu/D7lEjkgkwmwx46pyJdwrnKtZVynRlxCsaI1jWW/sX6hOPZGspkQkiAK4qdwQWaykfFPIby0kfN/cTOeQzizptoR5V+ex4NoCTg07RWpRKqMPCNXJAbUG8E2rb1h+czmLry/GivW1pnm5RI7JbMKChSDnILpX607X0K60rtyajOIMxh0Zx+lUoY/Lz9GPbX22sSp+Fetvr6dZQDNuPr1p+67fN2Afvar3ejm4mxt8/jl8+gZVqn8BBdoCem7tSVx2HDvf3Um3at0AITE69vBYVsatZEnXJYxt+K/1gLwJxx8dp/PmzpwcepJ2Vdr9j8f5B/9d+CfQ+A/AarXSd0dfLqRfIHFcos3EDoSsXPet3ZnSZAqrb62mRVAL9g/cj3jYcEhPh3NvVpRYH7+eEftHcG30NdQGNd23dKd5YHP2D9xfoen634lfLv3Cjxd/pPCzl1lVpx+dbGpDYsSIRWKclE7Yy+y5N/4eDnIHrFYrI/ePZMPtDbip3Lj8/mUmHPmIc2nnGC1uwGLTZcbcFLOllgXvUtiV1og6jXsIkroNGsC+fVinTMFU+JzZbSQsaCrhs7ZfManxJMYcGsOOeztwV7mTUZJBq8BWXMq4hFwiZPRPpJzATeXGh5EfMrbhWJuLK8CD/AdUX1yd9Xvhauuq7A0QskxP1U+p6lYVF6ULGqOGpPwkrBYLv9xwZfSZYj4fGcD+YD1lhjLmd57PsHrD6LypMxfSLzC07lDSS9LRGrWcHXG2wvxlFGfQf0d/rj69+trchrqF0tivMbuTduOmciNLncXwesOZ31nIsp1JO8PJxyfZlLDprSZab4JUJEUilrx0lX6lz8HmAyGW2hY08zrNY8zhMbbPtH1we3Y/rIfTnCWoE2/xQKFmzpU5bL27FYAGmRDvAxYR7NkGib4STnWtTqUqQqPnoYeHSH6eTNvgtpx7Inh9mCwmogKisJfZ822bb5l5diYHHhxAYRahl1jBAoEiJ9JFJRwbfIyn6qeMOjCKfQP2MT3mM+RJD4mt9CUFv39PnXGglYJFIcdkMmCSvDxuk9XEjLQg5oU+R2/Wv+ZbEuoWSkZxBjqzjqh0GFf5XYZadrGm5xrWxa/jXLpw7SmlStoHt+dQ8iHhb6NQraiaDwm+vBXl8xvyHIYkCBSQkEIo9HTEZKcgxvk5Q3pbsYpfl9Z8IlmDWnQHe7k9GoMGq9WC3CJi7E0RLR9baJ4uKIOZRZDoK+VmFRWR/SfTOe07+rWdwMLrC9+4T80DmpNalEqYexhxOXFUca1CXHYcLgoXvm39LROPT2Rdr3UMDx9uq8Cu77We4fuHU9m5Mukl6VisFgbfhk17ocknHiQpitBhIjwHbvmJQSKxzXV5fwtAA58GdK7amR8u/ECwSzA5pTkYzAZMVhOOckebLGyWOosba+Xk+DkzY6gfSflJzDhl5MMbUO1LR3Rm/VvVtd6GcsWx8s/EXeVOi2w5ow9n0y0ZUivJ+bCzgZhgXquI/VF2uBxOCiG4aerflCknpnDuyTkmNJpAsGMQ5xZN42KIlOdyEyqpyubN08S/CWdSz3Aj+wZKqZIGvg2oU6kOMonsZVBwZB/FVf0pcREqmMW64j+tIogQ4aZy47n2ue1YK7tUpmlA0z+tIjgpnHBSOPHhwQ+5kX3DFoTlluVWCK5cla5C07ldMHV/20TdzsOI79WEL09/id6s59OoT8lSZ7EybiWedp581fIr2ge3Z3nccpbfXI7epKdWpVqopCrSitJs1QoQZGgru1TGz9GP5IJknqqfMrG4OnPmJWHq2R35hs0Y7VU2M9jy47VipYZHDRr5NSJbnc3Jxydt1C2JSMJ61XuMLt5IF3MwF1zVtupl+XtHhY9ibue5OCmcMJgN7L+/nxVxKzj5+KRt30ZHjGZE+AhSi14GQ+M+202GWE3fAa9/Dm0rt0UsEnMyVRhDJVXhIHdgcdfFhHuHM3D3QO7m3iW6fjQysYyYxzHcf36/QvBRHixJxVJaBLbgnervUNOzJiP2j7AJAjTya0Sf6n2YHzsftV5tExWQiCRcHHmRJgFNhME8PWHKFJg+/a3nzl9Ba9Ty3p73OPjgICt6rGBUhFBhtFqtfHz8Y+bHzue3Dr8xNervV03Kx4lcEYmbyo2Tw07+9Rv+wf8J/BNo/Aew8fZGhu0b9hoXMbUwlcgVkTTxb0JaURoWq4XY0bE4K50FJaPERLj6+qIUhKxC3WV1UUqVJOUl0TKoJXsH7P3/FmSAIMl7Ju0Md8YKWR6tUYv9bHuUUiWtKrdiXa91TDo2ie2JArXBw86DQbUHIRFJmBc7j/md5/Pr5V8p0BYgFomZ03EOE45OQClVUqwvpqNbI6oducZMQxM8biZBcTGIxWCxkOIt57MWBjwHjOSbTj+iMWpYELuAlXErbfStpd2WcvvZbT4/+Tlqg5pKdpX4qf1PDKw98I3zMunoJLbe2UL6l/n0nliJ4065RNePZv3t9ejNevwc/TCYDVxxmMzygzP5tbEJJ6OYEpmFTiGdWNVzFf5O/pQaSnH72c3WOD5071DmdZrHiPARXMu6xo7EHWxP3F6B9lKevWoX3I5mgc2oZF+JWWdn8dOln0gcm8jKuJVCRthqfaME6t+FwgQ180S0adSfpk36cTn9MnNj59rGbRHUgm19t3Ep4xLv7X4Po8VIoFMgGSUZyMRSlFojJW9QnfKw80AlVfG8NBeRTs+VlRBWJOZJj5aMC3vEFQehGmS2mPkk6hNaV25N6/Wt6V6tOzEpMejNeqq6VWVmq5mkr/iVLz0SeLFTAORNy8Pdzp32G9vzuPAxW/psofXq5ky8reLXfWUM7AuHqwnGXYgEmpdVLLL1fVjFvHHGxIjJmprFtthVfHzxK1oVuXDepZhvWn/D162+xvd3X7JLsys4apcHafMPwbQuIEFELf/6FGmLSCkSTMewgoPUDjcHD/LK8jBajNhJ7SgxlGAvtaNhuokP79nTM7YQOyM8cYIf2tflYY2lIHoprQlWpDljaZmcQJEC5kZBzAaISodYf6H/4WIgNOozAXfvYKacmELCmASiD0bzuOgxzgpnQt1COfLoSIXjlogkiEVi7GR2OModmdh4Ip+d/AwrVptvycjwkZToS7iXd4+k/KQK551SosRZ4cThubkkVILx3YS+k1ln4JOOUPY/UCZ7tcLU1L8ppYZSZiy+g5dWwuDx3uSW5XLtoA8OyNgzN9oWFKtkKqEPQCTii1Nf8KjgERKRBIPFwLpe6/j18q8k5iVydPBR9ibttXlpfKCpyaSYYmrdyuKeB3zTGnbWennO+Tv5s7L7Sg48OMDSm0uRiqVMbDSR+VfnY8Zs+59sdbYgziASU6gtZM/9PZgtZsI8wsjPScVo1FOi+vNr1kHmIAQCtgDACef9J3Bq3ALnuo0qBAXOSmecN+7g/7F31tFRnf23/4xnJskkxN1IQogQCBrc3QsEd2+RtrTUaCltgZbitBQv3mLFrbh7IJBAAnF3l8nY/eOQgRRq9/f2vfe3Vjcra5EzOc/xM89X9t7qUxcwP3mOEQdGUKmtJHJKJEqZEvtv7MmrzGNo0FCupV0jcVbin5Jsa76barLhRqORG2k3GLF/BInFiSilSho6NcTazJr46Cs8lZeaRBbMZebUt6+PrdLW5FXxOPfxK6aT5jJzKrQVqGQqEym6rk1dodXV0oWrqVcZum8oBr2O3bfc6fDLfVi8GObMESRan+PA4wNE7ItAZ9DR2aczHmoPkyKXQqJAKVNSVCW0KknFUrpnW/JrnUKa58gxNG/GjbQbJvK2lcKKvvX6MiRoCF18uqCQCjfulZQrtNnSxrTNlm4tmdx4MoODBgu8sLG9sDx4HK+3X1Qwa8br5NOJexn3TAaZL8NSbkkz12bkV+RzP/s+LVxb8G3Xbwl2CCahMIEjcUc4/vQ4UdlRrw0q7ZX2+Nr6CjLaz6uaDRwaYGVmxeWUy6ZnVC6R82jaI/xs/cDJCd58E+bNe2W8vwO9Qc+MEzNYe2ctX3T4go/bfIxIJFQKazxzPm//OfPazvu/an/aE72HiH0R3Jp4i6auTf9H+/ov/v/Av4HGfxmpxamErA2hb72+bBvwwom3SldFq82tKKwsJNA+kEvJl7g16RYBdgHCH0yfLgQZ9+797tjzL8zn84uf09SlKZfGXRIcsf9BDPx5IBXaCk6OPAnAt9e+5b1f3wPg+PDjNHVtSr019ejt35t3w99l24NtbIrcRFFVEbZKW6Y2nsru6N1CgOXSmJzyHAoqCqjQVWA0Gsl7L48GPzRguE8/vrlhiXHpUkrMRDy20hJUIMGyUo9eISfG14p9Dnnc87cgrN804ivT2RO9BzOpGeXaclq5t+JyymUkIglR06Jq8VhqUKopxXWZKzOavcWoUd8SMkmHu40XMokMo9FIfGE8rkpH7id2w2btj2T27UjDZvfI0RVhY2bD9QnX8bcTemoPxx6m30/9kIvljGs0jnV31xHsEExMbkyt/moHcwc+bv0xkxpPqhX4aPVa9kTvYczBMZjLzP/U90KECJVURbnu9YpONS1C/QP6U/XkEfM3PCNA7IDV2StovD2YdXIW6+6uMzlRu1m60cytGReTLpqyoiBMxv1s/dDoNSQXJaOuMiLWQ6G5kHlr69mWw0MP88m5Tzj29BgAVZpyJl2pZNK5YlzK4Ig/xI7tzci31uNk6Ux0TjRh68NMXIklnZcwO3w2UrGUPl8EcrPkMXnmQsVAL4YG5nU5NfUKZdVlhKwNYXqT6bgWG5gfuYKSxTB4EOwL5vXO4kYwE8uQywS36MbOjbmfdR+9UY+3tTdPZzxl28y2jLe/hsgIrT3bcH7MeYqqirBbYlfLgMu2Aiw0grzp/DQ/ljsnUibSoa4SzoeHlQebkhuyI/cs2/wEl+9SbSkKiUIwo8x/go+1DwlFCWS+m4nTkzRo2pSq8GbM8xrOPe9mGF5SABIb9DRJuMXwc7MJnwS+BQLZNdIJtFL+Y6i5V14m877MZQFBBhggsyyTHr49CHycx7DNt2k3DpzK4KNLMKOXiArZi3tWJpaxoMMCnhU8Y3PkZtzUbtyceJPjT48z8chE+tfrz6HYQ88v04v1xCIx7b3a8/mxSpzP3sR3hoEJjSaw4c1TiEaOhEWLau2/Rqehz+4+XE+7zrFhx1hwaQFnE88yqsEodkbtrGWK1ybJyKcXoVMiPHIUsaqLmq2+5VQjTD7VCjUqqaqWMtvvoUYpSSFRUN++PlYKK6HXPP0mdczqMMS3P7qtW7gcZEGcWRlikZhOXp1o6NyQgsoCrqZc5Un+E0SIaOLShK51u9Ktbjda2DRApraGnTth+PBXN7xlC4wfz9fnFvDR5flcHX+VFm5CBttzhScpxSmcGHGCHjt7cGXcFVp5tPrdY8gozSDo+yB6+fVix8AX0s/pJel4rfBiQqMJFGmKOBp3lHJtOebVUP4nYg0KiQJHc0c0eg3Z5dnUrVOXJV2WUN+uPu/++i7Hnx6nnWc7VnRfQQPHBiy5uoSPz31M6zqh7F6ThXOhFn76CTp2fO34kZmRdNzWkaKqItp4tOHosKOkl6ZzKv4Up+NP82vCry8qBEaw1kCHJBEP7Y206jiGRk6NmH1qNhFBEURlR/E47zFqhZp+9foxOHAwXet2ZczBMRx8chCNXmNScasx6Ms/uJuDP1ZS/1MbhncUuHmLri5ChAgXSxdau7dmT8weHMwdODnyJImFiRyKPcTemL1odBrBwPG5UlkNHMwdajmoqxVqUotTicyMJCY3huLq11ewa4KLmvd4DZRSJQmzEnCq11jw0Jg//48v2l+A0Whk4eWFfHL+E6Y2nsqanmtMHKCFlxfy8bmPeb/l+yzuvPhvBxt6g56A7wJo4NjA1Ar+L/53499A478Ig9FAtx3deJL3hIfTHmJtZm36bPKRyWyP2s64huNYe2cth4cepk+9Pi9WfvttgZ8RHf3asU/Hn6bfT/1QSBT42fpxa+Ktf5xM1Xxjc0IcQtjYdyPFVcV4r/SmsKoQB5UDmXMymXJkCvse7+PJm09wtHDkYfZDWm5uSYhDCDZKG5O7aQ2ZGYSX7Joeaxiybwi/DDlA9s719Pr+VxzLYGFrI7t6uvFF9yUY9TqO7l+I3a1oemeY0ypJzxX7Kla3EHPYz4AICLP058CoIzjbeuOwxAGxSEyIYwjnx5x/5dx8f/t7Zp6YydMZTxn6cT3SrEU4eARyP/s+IkR4a815dDEYs+u32Tu+BREuVwl2FFSt6tapS25FLl91/AqFRMGSa0t4VvDMNGESi8QYjUbT7751fNk2YBthzmHE5ccRkxvD1ZSrnE44TWJh4it8gZchEUmQi+VU6n+/dcLGzIZw93CSipKIzo2mX71+HIo9RO8CO5ZtzyO6qQfpH0znbkksBx4feKUNRCwSIxfL0Rq0DKw/kLGhYxm6fyhyiZy89/MwGA2M/Xk4mv0/sy9Q4CME2wdzadwl6ijr8OP9Hxl3aBx3Jt0xKfrIdDA51pypF8oJzoX0ei7s6+nFe5bXkcmV2KhsSCtJY+/gvQwKHERmaSbe37oRnGmgzN8TN1tvzqZcwEIDVpZ2/DL6OOcSz/HRuY84MuwIH60eQFhKNT8FP3cEfk2g0SVdya+uwnkTI8ZN7YaZzIy4/DjEIjERdu1QnjzP5sbC33fw6sCRYUcYvn84h+MOCwuNYFMJHiVw3wm8tBYkycpM2xsWI6HxrK+Z2WwGMr96XO7XkLZ1DppadfrX68/B2INYK6zR6DVU6ipZ3m05KfkJfDlwDZ+2M3K92RHkolelNfWGHC7L+vxl0v5/C59cgGUtISgXpt+CKX0wSQG/DjXtIEqpEFxX6iprBXE2ZjYYMVJYVWj627duwpLToPoYbCshdwmMHqrgSEMlEpFEUEYyGiitLkVr0CITy17bA48ROiTCpxehfTLcd4Qv2sGBAEw8JYlIgkwso0pfVWu/6tvWRyVXmYJTqE0+7u3fmyNxRxgYMJBmrs0Qi8R8f+d7koqSTNUhhRZQyPm8wwLsze0Ri4T2UolIQmFlIdG50UTlRPEw++FzczwzGiRW0bhhd5q0GoKrpStSidS0nvhRNCkfTGfMYAlDg4fxdvjbps967+pNZmkmUdOi6LC1A119urKg44Ja26z5P8CgvYN4mP2QT9p8Qn5lPklFSSQVJ/Eg80GtJIYIESKDEYMIEIGDyoF+Af0Y1WAUQQ5BWCusSS1JJSo7yiS5+yD7AU/zn5regUqpknD3cNzV7pxNPEtaSZpJVOQj8x58/skZpKGNYN8+cH9JYfA1yCrLot2P7YjLj8ND7cHFcRexU9nx3a3v+PrK1xRpikzbFT2vau7cD+fnDGJ46+ksu7mMG2k3eDjtIfkV+eyN2cvemL3E5MagVqgJdwvnVPwpAPr692V59+VsvLeRZdeXodFraJEKdWxdsGjSivjCeCIzI4mcEsnS60vZEbWDGgfvhJkJpoRSUVURc3+dy/p762np1pLZzWfzxeUviM6NpoNXB9zUbibeSo2HUs296aZ2MyWg8iry/hIZ30HcjJFJ40hxqY+PrxMj27sQ4vnnXlp/hs2Rm5l8ZPIram8rbqzg7VNv81bTt1jZY+XflqvdcHcDU45OIebNmBfJ1n/xvxb/Bhr/RdSY0p0eeZoudbuYltdMzGY0m8HqW6tZ0H7BKw6ifPCB8NJ99uyVcU8+O0n/n/rT2acz05tOp9euXvwS8Qv9A/r/o8fjusyViY0m8nmHz/ns/GcsvrKYakM1I0NGMr3pdFpubmkih+WU59BsQzOszazZ2Hcj/X/qj0wiY3LYZJZcW2JqIwp1DGV5t+XM3zya706KCb6TwnFfeK+Pgjd6v49SrmTt7bWklqTS0bsj05tMJ6cihzU31xCTF0OI2JmZSY6kZjxhcZMq4tbJ8QwM55BTEWtcMzijzmVr/6211DGMRiNB3wcRaB9ImHMY885+zMrHXswLK6JEU0JYqoHLR+0Qa/WMGq7gqFMJCzsu5HradU7Fn6K5a3POJZ4zTUhqJpU17rCWcksqtZWYycxo59kOg9HA3Yy75FTk/Ok5tpBZoFao0eg0FGoK/1BxZmTISL7t+i1qhZqnBU95nPuYvTF7ORx7GK1ea3KiBiFzDZgmaC6WLiztupRxh8ZRri3HxdKFM6POUN++PiD4lJx4doKU2Sl8fO5jtkdtZ1gUfHkeIt52I9KYiZ3Kjrmt5hLuHk74pnBcLF3IKM0AYEjQEH4e9DNHnhzmwIopjDidRedEyLYzY9/sbszQHcbZwpkRDUYwo9kM2v7YlqSiJAY/gnsNHXg0N5k6i63R6jTUzYcEOwkdfDpyOeWyKUMdnA2lcqHKAM89GvS11bXkEqEtx6+OH3mVeTRzbUZaSRqftfiA4YdGYa4VUSw3srDTQj4691GtNh51FRw4ICNJpWViP8FHwUHtTGa50GMeUKrApdjA2e/KhOc0KAjt0cPUeTDM5JsgFUlRyVU4mTsRVxBX6/pd3AxZFvDtkLWodKG1pTWNemwKbnHAcTZzqhpTt3l3rhtS2fZwW60xaibGv61C/BleR4gHMJeaU64TSO9OFk48LXiKwWgw3ev2ZVCohG7P4I0YmNwX9JIXXJ+aib5SqqRaX43BaDCJRTiYOyCXyE3GZrZKWwoqC1BIFYgQ1ZpA9X0Ch34CxzkQmgWnd4DfDHhm+8ou1z6umvNghC7x8PllCeHJjqqpDQAAIABJREFUeu44w6puVuzyKsWAEbFIjN6oRy1X42blRmpxqkn62cvai9yKXJMJ38utY7ZKW1PVTyaWCfwnnQZLhSVVuqpa10CMCIPRiIgXni7/myB6HuHWtCHKJXJEz/k3OoMOESKUMiXmMnNkEtkrwYxIJKJaV02Ztuz3iehGsNSAk9QKtWtdLM3UyKXyF4HVb8YUi8Qmc9PLyZfJKMtALBIjFUnRGrTUt69PoF0gx54eM91PYqOIoBwj356EXiPBKBWeMxulDcODh2Nvbo9ULCWnPIeHOQ95kPWg1rt6UtgkREYR6yPX08W7C5w/xxlPPYhe8H3W9V6HWCRm833BS8lgNAiVraAh9PHvg0qmMnnRfHP1GzLLMhkbOhatQcu2B9to7tacRZ0W4WDugN6gJ6ssi/TSdNJL0kkrSSOtJI2UkhRSi1N/V3muBiaXc6MIkUiCWCR0oC0fX/8/EmzUqL01cmrE4WGHBRl4XgQLYxuOZUOfDbU8Wv4MGp0Gn1U+dKvbjc39Nv+P9/Ff/L/Fv4HGfwlP858S+kMo4xuNZ03PNablD7Ie0GJTC3r59eJ0/Gk6+XRi/5D9r2YAPvsMNm+G1Npuo8efHmfAzwPoVrcbewfvRSFV0GlbJ7LKsoiaGvW3Hu6/A51Bh+JLBT/0+oH+Af3xWeVDPdt63M28y6a+m1h1cxUyiYwbE26gNWjptK0T8QXxbOy7kbEHx+Js6cz+IfuZeHgil1Mu08ipEeYyc24nXOH9q/DRFcGFelZ3OBooIdSpIU/yBAWS4SHDGRI0hPOJ59kYuZESTQn96vVjZvOZtPNsJ8gFVpVQd4U3PY2+bLntSvW5M8iLSxk6WMQ5PylPJLOwad8DwsM5k3mVLtu7sKnPJqYem8qcRCe8841MDkujWZaEyxsNPAy0p2v3HFSObjhYOPAo5xHV+mqkYikdvDrQyKkRF5IucCvjlukc1ShI/R1YK6yp1Fa+IpkpFolxtXQl1CmUU89OvRLUWCmsCHUKJaU4heSiZNNEyFphRZ2sYjIsBNnVerb16ODVgY33NmJnbkdWWRbjGo7j07afMu34NE4+O4mdyo5KbSUxb8aYvF32x+xn0N5B1Lerz5O8J8Jk0QApuxxxtfch8eh2Fl5ZxNYHW5GKpKYJ/tiGY2ng0IB3Tr9DO0+BmG+rtGVy48mYP4rDc9M+Wibq8XwHZiTYkxDixiNpAaXVpRRVFfFRlDXrgyrZN/4UYw6OEQwL9VpTVr9mMutXIiNumZYOYwS+wsLbaua2KKG1R2seJN6gVKIzVR3MJGZo9Bq29hcEFFb3WM30fckcPrKUfkP0iEQinCycXpBUn6+3/ydong69R4q472jE2VwIMiQiCV5WXnzuP5mRt+byyH0RQXli+PxzDHm52K9yp6CqoFZ2/Ldo5NSIDRetCb3ylNVbV3HwnKOQOX7O0TBiJIqp+GY/5OxuGeoyLcbQUEb7PGBHA1CbqSmvLkdv1CNGjLvanYyyDNQKNZZyS5KKk0xu4w4qh9cGuZZySwxGw++aKtZM8mo8EGqOJyQL/PPhQP2/Zt74ezBVJjDgrnanRFOCRqdBIpbQIEPPlTUVNJ0EgzNtePNMMQ4fyah4LtNcM/m3lAsT/JrzXLOPneJhzAPBYPJUCzt2uuSBSERPv55cTb2KSqaiqXNTDsUJ7VuB9oHMazuPj89+TFl1GeXachOJ3VZpS/+A/qy7u46efj2xlFuaeGgRQREceHwArUGLvcqeiWETeZj9kHNJ59DoNFhoDNzfIMUzrQyjTCqcS4NeUJB6/qM3vvhd/zQWQ+vWlOzdwVVHDReTL3I5+TKJRYlIRBIcLRzJKMngM1F7uo77iuzybFJLUkkvSee7299Rqa2krk1dkwFiDZRSJY4WjjiaO2Ipt+RSyiX8bPwY32g8tkpbpGJh3w4+OcihWMH9+WziWSzllgy+X02QuTeGiRNM+5lXkce11GvczriNRqchwC6Api5NcVO7Cf4ivzlGnUFHbH4sl5IvodFrkIqkeJSKyJVpKf0Nr8dSbomVmZVJIMBCbiGoblF7vLSSNBO3EQTejEwsI6U4BaNRCCZfNtRbdxiMEjFTexpqVQnFIrEpaBQjxogRjU7zihlfDU5uhxQ1TO732o//n+P3XM6b1LXi6zH1/iPbuJV+i167emGvsufkyJOm740dUTsYe3Asg4MGs63/NmQS2Z+M9AJLry3lg7MfkDAzobZv1r/4X4d/A43/AnQGHW22tCGvIo/7U+6bTHmKqoposr4J5jJzqnRVSCVSbky4gaXiNVmGhQthxQrIeTFBOBZ3jIF7BtLDtwd7Bu8x+UvcTLtJi00tBMfu0FH/yDGllaThvtydY8OPcSbhDBvubkAqkVJUVcT4RuPZErmF25NuE+YcxuiDo9kbvZfl3ZYz98xcAu0DWdp1KaN+GUVSURIhDiHcm3IP0alTZI0djF1eBUtbwpdtXxi2iREzu/lswt3D2flop0nGcGKjibzZ7M3XuqK/7C/iY+VF+zl2zBS3ZJr6IsNiJPywXwNyOTHeFlzyFnOvnpr73koW361Db48rVEkh4hFc9BaRaSE8Jq6WrjR1bYqbpRs/3PkBf1t/8ivza8m2/lWIEAkSr3rNK9lnC7kFrT1a08GzA951vNEb9VxNucq6u+teO1mViWUYjAY6eXciIiiCAPsAohNv4TrxHbrFw8CvQki3kRFfGE9RVRFKqRKdXsfa3mtxVbsy5uAYQMjqNXFuwvmk84Q6hXJ02FFEIhGFlYXYfGNTa5uLOi3ig6om0KULZXt3stTuKYuvLjaZb8nEMj5s8yGZJZlsur9JkJpsOp0lXZaY5JYLKwvZeWwxi28uoV2CkS0H4UCYkqODQrggS0edV8pjueDNoZAokElkuFu6EZv3RGAQPJ8g1M+BmO+h5Xi46SFCojNioVQT0WA4P9z+4RX53g9bf4hULGX5jeVkdjyOeasOfNVZzrzw2m0IKuRUGKpBDMtPQPzMUexOO05hZSEGDKhkKjb13cSw/cM4MvQIk7a9Qa80FZ9GWpEhq6TLGxWvkGFfhquFK+ll6aS+nYrbyWskT44gdK6azi4TSU8JwFLvg6zwEVfqCNKacrEcY3U1K+lOvzul2Px6lUl9YV8QOCvssLP14GF+zO/LGb8GNXwM0fN/f8ecza1Y4M9k2EhfbVN6jppg2FJuSbW+Go1e80qw08GrA/42/mSUZXAk7gjhbuGkl6SbjDttKyDvG3hjCAyOBtdSaDu+9nZslbb42/qjVqhJKUrG/GEsXkVG9gUK6+e/pPD9MgelhWsLghyC2BG1A4lYQoW2grU91xLuHs7oX0YTlROFk4UTNmY2PM57TEv3lqhkKgoqC7ibeZcPW33I4quLASHbX8O9+fmNnxkSPIS4/DjqrREmdJYSFYkLKyj4ej5+Mz778xN8/z40agS3b2NoHEZmaSaJRYncTLvJ0bijXEi+gEwP2t/kkyQiYYHRaGRi2ES8rL1YeXMlzVybsbnfZmyVtiYCb69dvbifdZ/o6dG1jAMrtBW4LBVk1Mq15bwb/i7zbikx/+xLoYX3JZf2GpRXl7M9ajurbq7icd5jGjo1ZGazmQwLGVaLM1iqKWXikYnsid5DR3UosRlRZKuMTPB+gyHtpvPFxS+4kHyBQPtAGjo1JLU4tZbreY3yVbBDMEVVRZyKP0V+RT5jGo4h2D6Y939933R9BwYMZG3vtSilStyXu1OsKUaECAVSshdqyf9oNm/XSzRxhBo5NaJEU0J8YTwSkYQWbi3o5N2J1bdWU1hViFKqxGA04GntSVx+HN9ckDM+EuxmV4MIVnVfxaHYQ5xLPGcK2Dr7dGZDnw0kFyWz5tYa9j3eh1qhZnyj8UQERWAmNSM2L5b5F+cTnRtNH78+pJemE5kVycgGIxkTOsZUdasVlL4UwFXpqgT/l+QrPMp8QLlReAeE64681uXczlLG3vcbvbL8/xZx+XF029GNan01J0ecJMQxBBBI+0P3DaWnX09+HvSziWj/ZyjVlOK5wpPRoaNZ0X3Ff2w//8V/H/8GGv8FLLq8iE/Of8KVcVcIdw8HBL7GgJ8HcDHposkg6vak24I6xOvw7bfwxReC8hJwJPYIb+x5g97+vflp0E+1TeyAAT8P4EHWA5689eSVz/4TuJF2g/BN4ZwacYq+P/Wlh28PDsYeBISWlQmNJrCm5xoWXV7ER+c+4r2W77H61mpaubdiWPAwZp6cCQjZqkd9TmA19zNkh45w3gtm9pEQYye4x1orrFHJVWSUZpiylu5qdz5o9QFjGo75Q6fzGn+RMOcwDkQIL7vY/FjGNxzPrJOzuN5hB743nvLr9vnYa6Tct9NxxRMueUCBClMZ32hpQbBDMAYMxBfE1yJI/x3UlPx/GyjYq+zxt/UnwC6AO+l3iM2PpZ1XO54VPCOxKPGVdilLuSXvt3qf40+P8zjvMQ+nPcRKYcU7p95hY+RGevn1ooXYk15vf09AsQzZ/oO8qTvE1gdbTWPpDDocLRxp7tqcQ7GH6O7bnR/7/cjog6NRK9SMajCKfj/1Y9fAXfT2702f3X24mPxCWnl97/VMajwJnUHH5jEN+Mw1jgJzCVKJFFulLXXr1OVG+g2qdFWIENGtbjeKNEUkFCZwa+ItPK09ax3TgJ8HcOjxQfzyhHOfZw4KPfgYrHksK+L62CtcTb/B+2feR8zzzKRRIPJe8pEQlKEncj10HA0XfEBZDaFaG8z86nM+4+or16KPfx9uZ9zmDb9+rJh/g9jMRzSYpDd5bogQ4VQOcy8Ymd0L5EYxUrkZdko7UkpSqGdTj9iCWMY2HMvAgIFMPjKZCl0FzpllpFoYWH8IPuprRori1Qn/9v7bOZN4hq0PtpomvOt7r6eXPIihy1vxzMeaNW9sYuzBsXTy7kTozxf4vKGgnlPPth4pxSlU6iqRiCRYVOjp/kxQSapTBed+hCZThMx9tYTf5XP8trriaO5Idnk2gXaBxOTFmJbPbzsffzt/ttzfwq8Jv5qWi42w/jCMjYQWn7kQLSukUldJsF0wj/IeYau0ZUPfDRRXFTPn9BzM5eYMCBhAfmU+kZmRPMl78pc8HEBoN7NV2dIoKgeFtx/fbcjgZF0jEzuXm4w9FRIFeoOe+rb1CL6RwJwzlYRlwa5QMSMGGF4vDvAb1MjCGowGUzuKs4Uzvfx6sSlyExKxhPnt5jPv/DzEIjHjG47nfNJ5nhU+q1VZDHMOw1xmzt3Mu8S8GYO1mTU+K31ILk7GWmGNd1IRO09bUu9ZYS0VJYDiqmKTdGpCYQKJj6+TcP4AiWHeJFVkvJCl5kWr1v4Ljmgrytg8oxXxBfE8znuMwWgw8VsODT1ER++OfH3la1bfWk32nGzTZG9L5BbGHx7PkWFH6O3f2zR2RmkGfXb34V7mPZq7Nmdzv80E6m3Az0/wM1m+/A/PpdFo5EzCGVbeXMmxp8ewV9mbJMXzKvIYvHcwmaWZbNb1ZNBne6js0YXv3m7FonsrqdBWMKPpDBo4NWD+hfkkFSUxvel0Pmv3GWXVZURlR3Ev8x5H4o7wIPuBKcAVi8T42/pjp7TjTsYdU7Dd0asjh4cdxlxuTlR2FGHrwkwtfM10jtxYmIPo2HHuNrCn07ZOFGuKsVZYM7LBSDysPLiedp2ziWcp0bwwquzj34fve31PiaaEqHULGDrvZ1zfgQw1jAgZwZCgIdSzrceQvUOIyhGU85q5NmNy2GQigiPIq8hj0eVFbLm/BSszK94Nf5c3m76JSqbiu9vf8dHZj7A2s6ajd0d2PdxFuHs4uwbuqpXZL68u51T8KXY/3M211GtklmW+EFKoud+NEKL/5ysaNcgqy6Lnzp4kFCZwaOgh2nm1A+DE0xMM3DPQpIb5V329Pj3/KUuvLyV5djJ2Krv/6L7+i/8e/g00/mE8yHpA0w1NmdNyDgs7LTQt//rK13xw9gMigiLYE72HY8OP0cOvx+8PtHo1vPceVFVx6MkhBu8dTN96fdn9xu7XliOjc6IJWRvC6h6rebPZm//x46pppRnVYJTJxddWacuF5AtYm1mTOCuRc4nneGPPGwwIGMDh2MP09u+Nk7kT6+6tI9AukITsJ8RUT8Jt5RbyZVre6ybmcJiKkupSlFIlWr0WXxtfssuzKawqxMXCBaVMSXxhPHYqO4YHD2d06GjCnMN+l/he4y9yc+JNkoqSiNgXwZ1Jd4jYF2FyY00rFfTIxYiwqDKi0EGuxYsxxAawRE612EgVuldUccwkZib9/z+DWq7GxdIFRwtHVDIV+RX5PC14WqvP1k5lR3PX5ljKLXmY85Do3GhszGwoqCrATGpGwswELiVfYuj+oewZtIfBQYNN6/7y+BdG7R2GvELDyosqRq67ziV1Ib139TZl1vv492F06GjGHRpHWXUZoY6hHB1+FDe1G4P2DKK0upRTI08xZO8Qziedx13tTlR2lGliOCd8Dt90+YajcUeZe2Yuj/MeM/IBiCQSYrs2pqlrU9bfXY/WoGVG0xkUVxez6+EurM2sMRgMuKhdODrsKLczbnMm4QzHnh4zacIDNLRvgM2NKL46B6lWMGQIfJsezIcuMWhFQvD5ZccvORF3jNNPT6IVG2meCjc2QcOp8MReyNR6lEkwWlogLSgm1g4QgZO5E0qZksSiRAB+SmrK4B9vEz4Rbj23VLEph4UXxHzUwYBSpiRd9qLKIRVL8bTyJKkoySSdCi/a5KykllRoSol4CDsaCuvIxXIkYompRzzEIQSD0UB07m+EHZ6bmI+NhC1hLxYrdELgoBeBXiamhWsLIrMiTeNJRBLkEjmVukpWxflyXBzPSV8jq48KilQXWrtxy0FLVsWLqlsfvz5kl2ebWv3eDX+X725/94ofxamRp+hatysA19Ou02lrJ3SaSn75CVqnwLEACSMG6Al3Ded6+nUT6fn2pNs0cWnC9GPT2fpgK1FTo6hrU5fCykLTJHHlzZWvfUbqmNWhqEog8EpEElq6t8Tf1p+Cwz9TaWvJsSWZzBlizarA0t8NVtRaMUiklIiF61PPth6NnBrxJO8JD7IfYKmwpFRTatpGmFMYZdoyMssyTZKofwUKiQKMIBaLTcGf3qhnYMBAjj87TkevjoxtKBgiAoxvOJ4t9zczMNpI425jKfCwJ7Eo0WRU9/J7wEJugbfUHp97iXgPGIePZyO863jjbe3N4djDfHzuYy6Pu0yr3Vfgq6+EJJRIRFFVEafjT5u2CUJQEuoUyp2MOyztupTZLWabVKYGBAzgx/4/AkIC4rtb3zHv/DzKteU0c2nGtQnXhPfr5MkveII2taubf4Sn+U9ZfWs1W+5voVJbiREj3mpPTlzxxO/ARfj0U+FHLKa4qpil15ey7PoypGIpb7d4G4lYwjdXv0EmkfFpu09RSVUsvLKQ5KJkIoIjeC/8PXRGHddSr/HDnR+IzY+txQ8CIfk1PHg4Ld1bklSUxJeXvzQlruZm1GXxT7lw/Tr36lTRYmMLQh1DTQHbhEYTmNl8JpFZkbXOKQgtdkPULfls1Eb6DYVbTZywVdoSnRuNpdwSazNr0kvSGRo8lCJNESeensBCbsGIkBFMbjwZG6UNi68sZlPkJtQKNe+Ev8Nbzd6isLKQacemceLZCTp6dyQ2L5YKbQWTwiYRXxjP1dSrZJW9UENT6EUoq40Um4HSKMFcbk6urgQrhRUbOp/mu0PCcyLiBUdjxYT6BHv8zzkav0WJpoQ39rzBpeRL7Biww/T9dD7xPH129yHMOYyjw4+iVqj/dKy8ijw8lnvwXsv3+LzD5//xff0X/x38G2j8g9DoNDTd0BSRSMStibdMWaTziefpvL0zAwIGsP/xfhZ2XMiHbf7ERGf9epgyhV9i9jNkXwQDAgawc+DOP+x5HHNwDKeenSJ+ZvwfZv7/b7DyxkrmnpmLVq9lapOpfH/ne2Y2m8mqW6v4rN1n9K3XlzZb2hBgF8C9zHsMDhxMUlESD7IfMLbhWGL3rWf3uTrYpxeyuhl80VFCuVLC8ODhtPVsy8/RP5uUPmY1n8W11Gs4WjhyZNgRorKj2PZgGzuidpBdnk2QfRCjQ0czImQErmrXWvup0+sI/D4QmVhGoEMg+2L2/e4xifTgVA5FZlAle+63UBO/GEGpA5cS8C6XYl5lpECm557LH3sFWMotKa0uRSaWCWXu5+V8tUJNgF0A9WzrEWAXQIBdAFvub+Fuxl029NnAkmtLuJh8kWCHYDr7dGbljZUYMfJ9z+8ZUH8AQd8H0dmnMz8P+tm0rVJNKV/P68CEDXeZ8YaSY+6VNHVpyt2Mu6hkKsq0Zbzf8n2863jzzql38LDyYGzDsay4sYIKbQWLOi3idsZt4vLjuDbhGo9yHhH6Q6hJMUsmkqE1amnl3gqpWMrF5It09OqIr40vjeav56mTlHWtFIhFYgbWH8jWB1u5P+U+oU6hxOTE8O7pdzkZf7LW+fFQe5BZlomXtRdpJWmoFWqCHYI5m3iWmU1mcOvEem7Ya0hZBjkqaDIV9vfazsAmI0kvScd7hRdag46GmRC5XiAIa8Uw446YOV0MmGkFKdhHzw3Zr0+4TqhjKOrFanR6He9cA/cSeKeHCKPBCGKYd1mMpcKSuF4t2Jh76i89Dy/DP0+oJuhFkGotZMVLq0spqy5DIpIQ4hBCa4/WbIvaZuJV1LS6zEh2YkGiJ4m71hK6LpTWHq2JzommW7SGy45VlNpa4GvjS4BtALse7arVAgQC/0QmllFeXYpvoZiLmww4lcNnPZR81aTSJAZQw9eogZeVF/PazmPCkQm1juXRtEcEOQSRVJREt+3dyMx+xpkfDTytAyMeQaMp8MBZRL96/UwVzTYebbg07hIHHh/gjT1v0Ne/L3KpnLsZd00B3svVPWcLZzLLMvG38aetZ1t2P9pNubYcB5UDgfaBWCosOTzsMHTrBhoNXLzI2f3f0vXR+wzw64fd2et0v5KFTRXc9FOxsX4FcbZCwFJcVYwBA0H2QSQUJlCpq/xT/xmFRIGnlSe5Fbmmib+VwooSTckr63moPTCXm/Mk74lAQDZq/7q/jRFUchVqhRo7pR2OFo64qd3wqeODv40/XtZe2N54gM2YqVjHpyNxFtqYYvNiabiuIdOaTGNZt2Vw8CAMGAAZGeAsSA+nFqfisULokz8x4gTxBfGcTjjN0bijGIwGbJW2puD06rirBDoEciPtBtOOTeNB1gM6eXfiTOIZ0/NLVJTQwrV8Ocyc+efH9htUaCuYfGQyOx/uRC01p0RXTrMsCbNavsOg4V++UnXPKc9h4eWFrL2zFmsza2Y0ncHphNNcTrkMCPfY972+J9ghGBC4ipOOTKK8upxVPVYxMmQkqSWp3Ey7yftn3ie5ONnEt6gRI3j5Gs2Os+WdByrczt3hm7gtfHj2Qw4OPcj9rPusurmKoqoifG18icsXBBxkYhmb+23mXOI5Tj07yZ3PMtgYBiv7CIIYfjZ+3M+6z5JrSwS1MYmCQYGDaOfZjsSiRLY+2EpGaQZNXJowOWwyrT1as+bWGjZGbsRcZs474e8wJHAIK2+tZOO9ja+01pohJaDMDOvcMh7bQ7YFNFZ4Y+3oybmUi4Q4hjA8eDgfnP2AuLfiqCp1ZMyWbZgZvCgXxdO2oZbVA+f87ev4V1Gtr2bcoXHsfribld1XMqP5DACup16nx84e1LOrx4kRJ0zE8T/CrBOz2B61neTZya9vK/8X/9/j30DjH8SHZz5k6fWl3Jl8hwaODQBBkzxsfRje1t5E50bT3bc7ewbt+XMp2q1bOfD1WCKGSXmj/hvsGLjDpBz0e0gqSsJ/tT+ft//8zwOZv4n3f33f9CXQxKWJYMxUXUZ6aTonR5xkwmFhwpJems6AAKFFzFJhyZpGH1M+axoRD/RcdYfpvSDFy5ppjadhb27P1gdbeZD9gAC7AOrb1eeXJ4J6Viu3Vsy7MI+89/JMQZPOoOPX+F/ZFrWNg08OUq2vpr1Xe4LsgiisKiQyK9I0ufgtfKx9yCzLfPHZy60VRkFRSC8WlqlkKpRiMxzSCmiXBO2SoH2SEJToRHDbFS55wSUvMZfcDZQ9DzxEiPC09sTJwolH2Y8Qi8UsaL+AiOAIHM0da13zR9mPaPBDAzysPEguTqaJSxM+afMJ9uZCOV8ukRNgG8C1Cdd4Y88bXE+7TvT0aFM5OaM0g03TmvPh7jQK2zVHte8QXX4ZwPW064gQYS4zp0xbRmv31lxJvcKUxlNY1m0ZKpmKwspCPjz7IevursPR3BFzuTmXxl6iw9YOxBfEY8CAmdSM7f23M3T/UPRGPUH2QXzZ8Uu2P9jOgScHMBPLEVdVM1PRljlzDiAWibH5xoaBAQMpqCrgWuo1qvXV2KvskYqkZJZnCoROo4FW7q04OvyoYNKUfouy6jI0OqFFpMbhuGWuGVOuVTOrq4G3b4mZ6BfBx0E5/Jh/FkQgMcLh3TC1l1AF8SkWkaM0Ctfi+bWtUTrKKc/BaDRSpxIKVSDVge7lR8mIYCr4mmx5jV+ClcKqVvbZwdwBH2sfbqbfZNNJOeO7axgdCVc6+vBsxjMCvwvkSf4T2nq2xVxmzvERx+m6vatJ4CC7PBuFREFKxRQc1u0gPu4mvmuENsof+/2I6uQZhmh20MY8kOuVca/lQ7wso6xWqCnRlGAhUdHmSQV6McTYQpo17PsJusxYxuFgORMvvWtqx+nr35fo3GjiC+NNYxbOLSSxMJEeO7sjysvn8gY9a5qJGBYjplKkZ/qc+mSUZdSSSP4tv8JSbkmYcxhhzmE0dm5MTG4MC68s5PDQw/T9qS/96vXjs3af8d6v73E28aypmqkz6rBWWGPAQOH7hYinToWTJzFkZVJnLnxeGErEwac4p5dwpp6Mea213HCHYIdgtHotcflxpsmkXCJHIVFQWl1KoH1TFSmyAAAgAElEQVQgizstpplrM9JL0+mxowc5FTlIRVIGBQ7C18aXwqpCjsYdJbk4+cX5/U1Q93fgoHLAydKJh9kP8bfxJz8vhUJjJc3tGiK2tKCgsoDCykLyK/N/Vy3MSmFFHbM65FbkYjAa6OnXEwdzB+rlGJg1fh3HN8xF2zocG6UNKcUpjPxlJACXxl6ijadgOvfFxS/46vJXtPdqb0rkgBCUFVYV4mvjy6Y+m3jrxFu4ql05MeIEGI3QpYsgRPLoEcj+OqEXhN79QXsG8azgGWttRjHq3W0cb+vMygEunMm6irOFM9OaTGNKkyk4mNfmEiQUJDDu0DgupVwChMqUSqYiMiuSPv59mN9uPt/d/o7N9zfXMk19GXqDnhnHZ7D27lrEiJnffj51lHX45Nwnr0h719FKCfEJ51lRPJXaSvYP2U+IQwhfXfmKFTdq8wQ29t7IhMYTMBqNnA5SYKzWMmziC9lqZwtntAYteRV59K/Xn2eFz3iU8whLuSW9/HvhY+1DZFYkp+JPoZKp6OvfFycLJ355/AuJxYm1tlXTBmejlVEs0WJeDSUKsBSbMSJoGHWdA1l+YzlFVUUsaL+Amc1notFrsP3Glq87f83sFrNxX+5OL99eHIw9SHZ5Nj7WPpwdc/a1/Mb/BAxGA3N/ncu3179lbqu5LOq0CJFIxL3Me3Td3hU3tRunR51+5Zr/FinFKdRdVZevO3/NO+Hv/CP7+i/+WfwbaPxDuJZ6jTZb2vBVx6/4oPUHgGDE1n5re5KKklBIFFjILbg24RoWcos/GQ32bXiboWkrGFx/ENuH7P7TIKMGM47PYMfDHSTMTKhF9PufosfOHpx8dpJFnRbx8bmP6ekryJ/WTEKTi5Mpqy6jg1cHziedp6d3V9Ylh2L51RKqJfB+FzjT2oUZLWaRW5nLlsgt5Ffm08uvFzObz6SzT2cqtZVYLbZCb9Qzq/ksVt5caZLtrdBWEJsXy73Me5xNPMudjDskFyXXkuis6bl2MncisThRmJwZwUwfgKd+PBbUpYx40thM/fQoKtRmZLiqBZKqASHw+L34zwj18qBdMnRKltAxWYRdiQ6dCBJ86vCLUyHD3voBj57DQK0muyybiH0RXEm5wrddv2VW81mIRCL0Bj37H+9n8pHJFGuKaenekk/bfkrXul1JLEqkxcYWqGQqwbBpaiQPsx8y8peRHBhygAH1BwAQnfWQS8NbMe18KXnjIij75ksG7h/Co5xH6Aw6LBWWpv5ilVTFjoE7TOu+jGup1+j/U39yK3KxlFtSUV2BHj1SsVSQitVWCfKdeg0Hhhxg5omZpJWmIRPLmNFsBgN+TeX+rcOcmdiB8xnXKNGUIBPL6O7bnc4+nU368KXVpYw/NJ6ziWcBYSLqZ+PHs4JnlFQL+6mUKgUOgRF0Rh2uVXI0NmpKSvMIzIFzWwX+zM/B8E1LIaNXqARVNRSphHY3QND659XAYeQDWHQWvGYJkr/dngq+GLnmIJZI0Rl1Jt7C78HPxo8ghyAOPjnIsxnPcFW74vmNC53vFnLVAzyLYPT4lbQP6oXval/B28C/NxeTLlIwt4BZJ2Zx4MkBkwSwtcKaHvEidm0s5NzlbXQ6O5pwt3AWtF/AsTu7WBWzhT6xcKS+MOGViqQ0cGzAvax7OJg7UKopNQXOV8dfZdXNVSZzNQCxHgwSOLFXQfeYalAo+LVnAF0b3EdqECFXKKnQVpiOT4yYEyOE3mqnvCqurNezqKuSe/Y6Lq/XMmSEnL1+1aZ2qRrIxDJslDYUVRVxfMRx2nu1N6no1WTjJ4VNYk7LOXiu8BRa0WYnYTAYaPtjW66nXTdxiTzUHqSUpBDuFs6Bp41xWL6eNJUWZHI8cjUcDRCzorMFZ+1KaOfZjozSDBKLEvmw9YesurnKNJEUI8ZOZccXHb9gfKPxSMVSEgoTmHZsGqfjT5sqPHNbzWVUg1EM2juIJ3lPTPdila4KPxu/WlWOGsjFcjysPMgqy/pD4v9rYQRblS22KltslDbYmNmgNhOMAhVSBdLYp4h/PQNvzUAvMnIn4w430m/Q1qMtUomUgsoCykoLeDw3hek9YUOTVzchl8ixV9ljo7RBKVVyK+MWEpGEALsAvK28+TVRMLWrMTitaTua2ngq05pOI+R2CqI+feDQIejb928d3p7oPUw4PAFXCxf2xTcmeOVuGDUKfvgBVCpicmNYdXMV2x5sQ2/UMyx4GLOazyLUKZT9MfuZf3E+MbkxtPVoi0Qs4XzSeQLtAunp15NtD7aRU5GDTCzj267fMqPZjD9M2P1w+wemH58utEu1msvw4OE03dAUnUEnPE9IGH/PSKG/O3fdxCQ8r76JRWKkYinmMnM6eXficOxhqg3VKCQK9g7eS1OXpqzt68ys22J8P1GT/m4GV1KucDr+NKturTIFjo2dG9PYuTE6g46b6TeJzo3GTGqGWqGmsLKwFmdKLBJjrbCmuKoIpV7M+PtG0s30HKwvJMCkIglSiYwF7RdwIfkCx58ep2+9vqzusdqk+ATQbUc3IRAadRrXZa5MDpvMvLbzmHJ0ChsjNyIWifm8/ed80vaTv3Vd/w5qPDVGNRjFpr6bkElkROdE03l7Z6zNrDkz6swrnQi/xbhD4zgdf5qEmQl/mUz+L/7/wb+Bxj+A8upyQn8IxcHcgcvjLpskZt8++TZrbq2hiWsTYvNiuT3pNnVt6v7peHuj9zJs31Aiogxs/SELqb3jX96XrLIs6q6qy8xmM1nUedGfr/AXYfuNLdX6aqY2mcq6O+vQ6DQMqD+An6N/NvUp10ihrrYeTs/lR/BMLmFdE/iurzMjO8wkMjOS/Y/3o5KpGN9oPG82ffMVMnyrza1IL0knuTgZc5k5aoUavVFPTnlteU6ZWIaDuQPWCmuqDdVkl2WbJq0vw0PeBq+KxS+kQ416jCIjsbppZJtF/eExW8osMfBC/nNp16UMCRJMtG6n32Lk1y3omiojIs+JgEdZ2BdrQSKBsDBo3x5duzbMNZxm2b01RARF0NGrI8tuLCM2PxaAD1p9YLpGBZUFtNzUkipdFVllWcxqPotZLWYR/H0wPfx6sHPgTgAuPj5JQURf+j3SUvLVp9wd0oYh+yPQ6DSUa8uZ3Xw2comcb659AwgVgjOjztDI+fVqI++cfIflN18QPVVSFSKRiHJtOU1dmtK9bne+uPyF6XNva2/UCjUJhQmUVpciNoAtZljZupFTkYNWr8VGaUOxpvhvS/26WLoQ4hDCqfhTDHksIXTafI48PUZGaQZl+ZmMuKvl7RvgXQQPXaR81kbHoQCwr25Aq6LxZNnUpVQUT7JkMyWiF9fWrhwefwfX3SDJWpBQFomEoESEiDrKOnzY6kNup99mz+M9r+yXhcyCu1Pu4m/rT6W2Evfl7owOHc2ybstY+HFb5kkv46iRkanUck/9PocaKVl2fRlBDkHIxXIupVwiamoUF5MvMvvkbPRGPbZKW9p7tacw7Rln331A6Kf2RIlzUclUVGgrcLV0RZWWTUCmjuv1zamUCkZ3k8Imsf7uesQiMUqZ0nSOPaw8WNRxEaN+GWVqF6lp4+vu250T7TfCrl1U/riR8fXjuOgFH1wTs7qvI880maZjFSH4VlzYDN8Mc2ehdyq79kHTdGj0jhK1sg4ZZRmmv7dV2tLYuTGnE06jkCiY3Hgys5rPoq5NXXQGHa03t6agsoD7U+8TlR1F+CZBHOPxm4/55fEvfHTuI/YP3k9RVRGTj042kXZd5HYs2JvHhEhhO78EwNcdZNxxMjA0eChzW80lxDGEan01X1z8gi8vf1nrmsklcrb228rQkKFo9VoWXFzAkmtLsJBb0MO3B1W6KvY9frWtUowYdyt3SjWllGhK6OnXk8Nxh/Gy8qJSV8nqHqsZfmA405pM48uOX1J3VV3yKvIAIRB9WvCUYPtgHuU+EnhpRQkmHoyZXky1yIClwpLmHuGYScwwYqRYU0xBZQEFlQXkl+ag4fXcL2szayE4UdpgcyeaOnbuqJq1QiFV8CjnETdSb6Az6ujg1YEAuwA0Og1l1WUceHwAvVGPXCKvRS7/PUgMYKOT4eoehK+NLy6WLi+2+5ufOso6WJtZozfomXN6Dmtur2Fo3X6sX5+F5Y17sHIlTJ36Cgm+oLKATfc2seb2GlKKU0z3fRefLnzR4QuauzUHBBnVuWfmciHpAiC0JRZVFWEht+Crjl8xvtH4P5R0P594nl67elGpq6SXXy96+PbgrRNvAYLogDlyrq+uoP6cxWzp6sD4w+MJdQzlYfZDGjo3JL4g/pUqiFKqxDetks2HYeBguP1lFo4Wwne0x3IPUktSWdB+AdfSrnE5+fLvykeLEOFm6Ya5XkRceSpK3f9h773Dojj39//XbGdh6SBSREAQURR7DbaILWrUaOw9GmNiNMaoaaadaMqJxlhj7xqNvffeKxYsSBHpsHS27/z+GFklanKSk/P7fv7IfV1cewGzs8/sPDPzvMt93yIN0+Ger5wsrZQkqe9Xn3CvcH659YuU/LEacVY6s6z7MvrW6fvMPuecn8Pkg5PJ/yCf8J/CeavRWw6PrvOPztNlXRf0Bj21vGtxeMhhquqq/tF0+EvYeHMjQ7YNoU31NmzusxmdWsf9/Pu0X9UepVzJ4SG/X1lJyE2g9vza/NztZ0Y1GPU/GeM/+N/hn0Djf4Bxu8ex4voKro255lg4/3LrF17f/DodQjtwOPkwewfudZAsfw8bb25k4JaB9PeMZcX4o8gfpYO//58az4eHP2T2udk8GP/gb7mRnH54mlbLW9GlRhfOpZ/DVe2KKIo08m/Erwm/OioJbiUWZh9T0+1ULpeqwphXoGqbrmSWZnIl8wrhnuGMbzqeofWGYrFbuJ17m9u5t0nITeB23m1u5dwivST9uWNwV7vj4eSBgECRqYgCY2UzO51KR7B7MAG6AEn2L+MypZZSYuxzcLM3qqTAIWJDzwVuKCYAEvG2Tjbka+DNnl/QPKA5K6+vZM2NNcT4xdDEvwkbb21EP0XvyNROPzqdf538F13Cu3A4+TCfvPQxU/1eg2PHnvxkZCDKZCx+2ZPxTfNQWSE2OJYCpZX88nxuvnUThUyByWoibk0ct3JuEekdSXpJOjfevEH/Lf25lHGJm2Nv4qX1YtOx+QQOeZv62QK2VStZEJTFlENT0Cg0yJAx8+WZrLy+kssZl5nUfBI77+3kUckjjFYjPSN7ElstllJLKcWmYoqMRaQUprD/wf7/WA2oAhVGXZ4aT6qU2PFIysStTUdSLLncyLnBlBZTcHdyx03txrlH51hydYmjtUcpU6KSq1jRYwWzzs3izKMzgESYPjvyLAarAZ/vfNiyAXpuuc13+l18eORDrDZp8RWiDaDZ5Sy+PGCjWjHUnRiDr9M8ZKIAwhMPimuysRTL4lGbYelOePUOKEUBITCIidMaMC9T4hfIBBm+zr6ViJYVx1jFuQouKhceFDygfWh7Dgw6gCAITDs0jQWXFvDovUfs6B7JwObpyAU5nkbomabjUAN32oS2I9g9mB/O/kCpuZS5Xebirnan/5b+6FQ6vLXe5BvyifSKZNzcCwztJX3uxy99TO+o3tSrUo/+izuyL/kg/RLkLKkP/q7+lJql81dxzip61pMKkii3lFdSl/LSeJFvzKdvVF829pG4PYXGQpq+70GiF0w9Bd+1kAjkrkYo1kDbJNi1Dob1hM21BQKKRJJ/hPc6wjfby/noyEfMPjfb0aIU4RVBqbmUCM8IXgp+iQWXFpBfns+rka/io/VhydUlDvW9Cg6Hs9KZXrV6sSZ+DR/HfswXbb8A4KsTX/H5sc8ZdMXK9GNQ/fH6bmFDGNddxsj6I5naaiqhHqGO81RqKuW1Ta9VagsCSZY6vSQdnUpHqbm0Un++VqnFardWalkKcg1iz8A91PSqiVKupNxSTue1nTn/6DwKmYI7b9+h1bJW6NQ6htcbzqSDk1jWfRkhHiG0XdkWb603hcZC7KKdPlF9uJ17G4VMwblR5xi3Zxxr4tcwNKIvN/at4kwQjsqpTJAR7hlO3Sp1qVulLtFnHxAx/xecrt2i58aeZJdl8++4f1NuKXcEI3qDHv2hHegVFvQRQegNejJLMl/o2VIBtVxNlE8UoR6huKhccFI4kVeex+aEzfSI6EE1t2o8vHqc5LR4HgbpKLSWABKxWi5Ilc0/kjRuafRl+4ICkCtYOq0TRfVrPTdAcde4cz79PF8e/5Jr2ddw17hTaCwkyDWIcY3H8UbDN/B08uRYyjGGbx9OZkkmfi5+pBal8lK1l3BRubA3cS8xfjHM7jjboXb0PCTqE2m9vDUZpRkOjtyue7scwgA+NjUXZpUSsHIrncsWsS9xHxOaTmBWp1mIokhSQRL1F9WnxFyCn4sf2aXZiKLoUHkKcguiWWAzvJy8WHZ1GWa72WHe+jScFE6YbCbsop0AjQ/+ZXJyynNJ1dlQ2kCUCVgFaZ4G6gIJ9wyXWmEFAbVC7RAtUMgUhHuGs6nPJmr71q70GQ/0D6jxUw22vr6VMbvGML7JeD6K/cjxf5vdxuCtg1l/U+qS+LbDt0xsNvF3581fxZHkI7y64VUivCLYPWA3VVyqkFqYSvtV7THZTBwecpgIr2clkyvQa2MvbubcJGFcwv/MH+wf/G/wT6DxN+PAgwN0XNORuZ3nOtSeEnITaLKkCfWq1ON02mm+6/Ad77f4YyLWuhvrGLx1MIPqDmKZ8wDkcZ0gKQlCQv7UmAoMBYTOCWVg9MBKZoF/BaIo0npFa049PMWr1SeQmBiMC2F4uVs4UfIZxUI8clHg7WtqPt1vRAA+6qZlUW0DaoUGg1UiKDfybwQiJOQncDv3tqNCURGkyGVyioxFjoybm9qNUnPpM4tgmSDD08mTcM9wmgY0pXONzrQJafMMudBgMTDr3Cx2Haj7XE1xEzmcU0htAXKbyJuX4Hgw+LfsyKmHp1DKlcxoP4M3GrxBr196UW4p5+DgJ3KfMQtjuJ59nXGNxzHv4jzuv3OfGp41HP8vM5Xyy44Z3No0j5g7RVQ3qBnR2USOM0w/Cp0juxLZewxiq1YMPvoOm25tYlKLScw4NYOFXReSXpzOlye/5IOWHxDuGc6+M6vx330Cq0pOadcOHC276VBuerof/Y/gpnDBU+mKQpCTVJ6O7ake9FBlFbzlLlw2Jkt/f0oyEQH+repGP6LxtzmB1QoWCxgMknBBQAB7O9Wgi+ceHqT1othu4FvVRbZ552FUQOdCH0ZnVqVRoZbGDS9TIrdRqrDjYZJRoLIjAN5GGe/FOzOtaQkrt8KQe0581sLC5y9Ji5sG6RDvB8dWQNUSCC2EuAmzMTs3QRAqu2oXCQlYKaGKOYwGDx8w6NQyvIriebszbI1CapWr8NoQoUGugjKFnXvudkRBOuxTR6pT06ClSdtEkpzNfJYYxPS0UB46WwlpfJp/J9Zglk8iolJBvtLK+IxAfgx4RPOHMN29GyqZiuYev1LL5kk9qnBTlsdNIRcNcoxI87qtPJz7xcnIbDYeuorM9OjDB57dEZRKfijcy6SslWzeomRRtIXpr3xL3P1PHaZ1ABNDB9E1sA0vnxgl8UlEsTKvQIROwS/zc/dFXMmN53LmFWacmoHNbnMslmR2sMskUvvtuXAoLowRjdLJUBmZeRDGXIbAifBtz3mM2zOOf8f9m5mnZpJbnotGrpEy6m/dJNA1EIPFwOr41Xx98mtSi1Kp6lKVWR1n0TuqNwsvLeS9/e/RIbQD+x/sp3N4Z7b32y4F70Yj2YtnEZj3Id8dgCqlcCoI5u2FT3u48mX9Yqq7V2dk/ZH4aH1IKUxxtFA+j4itlqtxUjpRaCxEIUg8tyJzEYeTDiOXSSIUOrWOH8//iJPCCZkgI9I70rEgAklsIWhWEOWWci6+cRGVXEWLZS1oVLURwe7BrI5fzfFhx5l0YBJn0qSAOdIrkjv5d/gh7gfeP/g+M9rPYET9EYT8GMLYRmNpPWsLl8uTmN5W5Ot2X+Pr7Et8djzxOfHEZ8ejN+gd4zfZTHSP6E7HGh2lIMQ3GjeNm3SA770HO3fC/fsAvL75dbJLs8kqzaKxf2PGNBzDupvrWHBpgYMI3Tq4NVV1VSsFLGlFaS8MUDQKDU4KJ0REysxlWOwW5IKcANcAqrtVJ9QjlEJjIXsT96KSq3g3qzqTfr5BWpg3n79ZiyRlqeNzXnRvkiHdz6vqqqKUK8krzyO9OB1BkJ4LOWU5RHpH8mGrD6ntU5uLGReZdW4Wd/Pv0rZ6W/IN+cRnx/Na1Gt81+G7F2bJCwwFdFrbiQvpF3BXu6NRasguzcZJKfGDwsrVnF5k441xgexUpdA8sDlHhh5xLHBnnpzJtCPT0Cg0mKwmgt2CWfBzOoujLWyJeu5HoparifCSBA961+pNM4MX1k0bOHpiFfs06WyrLZDpLM1dAQHN4+elRqHBy8mLjJIM5DK5w4VdJVfRPLA5Zx6dcRgSzusyjxH1R1RqIYucG8lL1V5i+93tTGw28bl8zaPJR+m5sSdFpiLqVanHoSGH/idystezrtN5bWeclE7sH7SfGp41yCjJ4OVVL6M36Dk05JAjWfJbXEi/QNMlTZ9RWvwH//fxT6DxN6LAUED0gmiifKLYN2gfMkFGqbmUJoubYLQayS7LpkfNHqzttfYPyd9r49cyZNsQhtQbwpJuS5CfPgOxsZCQAJGRf3psM0/N5NOjn3L37buEePy5QOVp7E/cT6e1nXAV61LfthCgknvxNflYtq+Ip3UqTG8vZ3UHX1KMUitGxcMSpFanMM8wPDQeiIjkleWRVJAk9crKFI5M7NMZs4q/KWQKJjefTP/o/tTxrfPHRPqnEPfNBsylwb9b0VAIcqoW2sh0AetT61V3hQshaj9ul6cS4xTCYPdYQmRe6OwqYjOkdqKeqnokWXM55DSGYmsZ6RY9q+xX2CjepBQzTWx+NLf4obZBjqWQX7WpFKtFgorA3SBlkQs0UKZ6TEZ/AVxM4GoCrV1GurMdowJEAUL1oLDBPR9olA7DroFfKbiZYGNt2B4J1xfAbR8Y3U3iNoy5BHMbg1mBI7ManQV3fB4bgT32E6lw7I3JkvgMiw6qGX3HGRQKiSBa8VpaCllZPGgQQo3uydQo05DobMSrHPo+cuMDY0Oqi25YFTL+7fuAT7yuYxVEYs1VyZUbua0ooKrdmW5iOMtk8VgFO68mKpmf2YBaLa5SJDejMwuUqETmew9lrFcnOHwYli0j7uMDWOzPUSYRRUTsCIIcwW7DLohclY+VWqoEyRfCLoAbGqoJbqSKhRgwY0EEET4yN+MrQzOwWimylhLus55cmYlNma14rSiA1/xPcUyTRZnMxqyjat552cRHKdWYEfyQEVdhXmYDMuTl1Iy7i9omUKCyO4K22no5t7xsyOzQJk3GWX87w6/A6npQooG3z8PsfTCtHcxqAdNOwRdHpcMa2gNWPZbRdbKCUQ5xSXAgDHxLQWmTzrGlgtIlSsT5irnlWwoGJfiUQZLnk21q54CzBX7aAw0ypcBjbxh0SIb5jWByR2m7YJOG+Um16B8RT6nMhl0GH+RH8k1BI2k+KBSYFAJNvLdQLFioLrpxTJFGNdGVcMGLu+QjCAJpYhGXdJNoKAuEs2cR9++H4mJajBK4UsWOWQGTr2j5Zkc5b3WBhU0qn16FIMcq2pALMkK0QTwyZLE7bgXloplu+4c6iNyRnjVJKkzGbJeECaa2msqwmGFsvr2ZMbvG8HaTt1kbv5ZmgZKEsFapZe/AvUR4RWCymnCf6Y6XVmobPTbsGLlluXRY3YF+dfqRqE8kpTCFtb3W0m5VO8eCvllAMx6VPKJHRA+WXltK/JvxrI5fzfdnvmdXs5+I7TCKbp+EcVKdxblR5xwLLVEUyfj4XfZdWMebsUWEuoeiVqhJyEtw3BeD3YKloCPdQt1V+6m77yrhfrVps6INoR6hpBWn4aJ0wWK3sP/BfjQKDedHnWfCvgnIZfJKyZKbOTeJXhDNsu7L6F6zO/rpk9FvW49+zRL0TlQKSPIN+aQWpfKw6CF55XmVuD2/hUKmeLaCoXZHb9RzJfMKWaVZ+Ov8aRnUkkBdIBa7BaPVSJmljEJjIQ8KHpCoT3zGT+hpCAgIgoBdtKNT6RzVlgZ+DegQ1oGqLlUrtXd5OnmiU+mYfGAya2+udTjeywSZQ6o6JkfG+vUWjq2fwZizHzLz5Zl80PIDQBJaCZsT5hiTDBmbNthxM8HLQyuPTYaMyS0nk1SQxPX0y9wvSkZERGaHkCIBlbMraRoTpXYjUT5RNPBrQKGpkOMpxyl5LPUOOPhXKrnKIaxRZCxCJkj8owqZ9l61erG8x3KHfOyk/ZPYcGsDRouRD1p+wJRWU577HVpsFvps6sP2u9tRypTM6zKPNxq+8cLv/K8ipTCFTms6oTfo2TNwD438G5FblkvcmjgeFj3kwKADNPRv+Nz3tl/VngJDAZdHX/5Tz/1/8P8W/wQafyMGbx3Mzrs7Hdk8URQZuGUgO+7uwMPJA2+tN6dHnP5Ds5rV11czbPswhtUbxuLui6UM34UL0LSp5BRbr96fHlu5pZywOWF0CO3Aqp6r/tLxiaJIo8WNJJnW9OHPmAAh2sgXLtDn+AS+bUUl9aUuqjqEK7wx2SxkWgq4ZE/jERKHQi4K2BERn1J9chYVBFmdiTF5cEupx9Wq4NT9l+hT7TxbPbNoWuzG4St10JjtUibdYnmSVf+d110RkXzXYz6CKCA8bq1BFLkqf5Ni2Q1JE98ukWaxg28ZNMwEFzOUquChG9yqAk4WHIv7J8dPxQG/EEobuFnluFnkCIJAorOJQKOKR2oz3mYFvoVW4jI0BOaZ8C8S0ZmgVCsnwQd6axtTkHqHZjcKsVTx4tzANvR22YUJGzbsTFK34RfLdfLEMhZ6DGaAW6tKAeHH02QAACAASURBVMCqohMMTZlFWfNdaDU6ikUjcVcncb7o5jPjVMtUmOxmOgS1wVxeyqWcq0xoNZlF15c4etBbBrXk1IhTz7z32qNL/Dy1A2tCSihR2ByKNh+99BFftv0SQRC4nnWdETtGcC3rGu81e48GVRswYMsAxwNfRCT53WSptWdJUyxWM0o7mB8vkCuI1ZNbSBr6fks2UOOHFXT/aBnlxpDfzMvHJ+apB1NFcPnI5XMUMgW55blPzpFMiUahcWRdnZXO3Bx7k2D3YMfD7VHxI2rMqYHFbmHPgD1klmQyfMdw+qV7siFAT6ewTsRnx6NNy8Ii2GnsUYfNovQ9VywUetXqRaI+kSb+TVh3cx0uShdyynP4IeIdEtf8xKn24YxrOYGx+9/hlZBOnM+8SHZ5LnVyBTYd8yFwyyGidsSRVi61eYU4+WO0mck059HKLZpTRTeenYCPq1HzPYfQTVWHAFHHqwXzKbUaOWK/DyJ8fBzKlbC6kYI8lRWfUhh3Q82wcyYCSqDjIEku2K6U4yZqSNQ8RTaXgcYOB6/Vo1W+M1itfFQjle9q5HDxYAj18hVc05UxK7KQ1WFliAIoRNCa4ItjMOS6FNSurQtfxUKi15Ohr/4V+t+E7TVhcpwUGHmUSyIAIJHvD62AZmOk/Uw5BQN6wZHHQZfeSUoc+JZCTCYcCIdu92V0TlYwroOZt+M1/HjGlXU1LQxqV8DCc97MrlVMrsbGrnOhWBUyXmp5l0OX6zCxZjJ5SgvHE5pywbWEQaHXeD83gnXuabjbVdxWFyEToZ5exeB7TnzarJz+lkhiLjzERetOn7r9+f7ibOr6N8Tl4lUCc030fbsKZVi4WPVTPFRuoFBgX7OaNtWO8KiaO/HR83FR6zDLRO6YM4gvT+ZGeTLxpQ+Iz79Nhq3Qce2KiES4hZJr1JNjyMVN5UahuYh9/XbTMaIzP19ZzNjdY8l4L8NRsRmydQjHUo6ROD4RVVIq1K4N06fDR09abZ6HjJIM+vzSh7OPztLMsx65KbdIdJWqImEeYUR4RhDgGoCLyoUiUxH38u9xI+eGo3USeG4VRUBqEargIcT4xSAikqhPJKcsx2GOGO0bjVKuxGg1cjXzKpczL2O2mR0BgyBIjLwXtYQ+3dbkKtalhjgatT2YUh7gm7WM1eeLGf1+JHtTDtKpRiceFj3kZs7NZypnX551YvxxIy2+jWRl79VsSdjC16ck76whmmZ8cNxK7X2XKXJRsLB/BKtCirhteoRckCOXyR2texWu59G+0RisBnbd21VJlEIlU2G2mx0qcxXtu4IgSXTbsePr7Muu/rtoFNCII8lHaL+qPTqVjk9iP2Fyy8m/ez733N9D3019KbOU0TSgKfsH7X9SOfubkF+ezyvrX+FG9g02991MpxqdKDAU0HltZxLyEtgzYA8tq7V85n2Hkg7RYXWHSv4+/+D/Pv4JNP4mVBjYrXp1FYPrDQZg7oW5vLP3Her61iW9JJ1Loy/9oZTcymsrGb59OCPrj2RRt0WOmwjXr0NMjBRwNG78l8Y4/+J83t7zNvFj419Ynvw9VBzjjPYz2LG/zgtbkM4quuFmkBSAMl2hSonk9mxR8MxiXBDB3SQQVqqkid6JjjluxOW7o1GoHQvk2cGZTA15QMGVOPZ76ekZcgG1XcarZUGsK2iHTKHEpJRRpLRRrLRTpLBRrLBRJLdQJLdSLLNQJDNTLJgpEsycMILK0hvnx6pTafLlFAvx2P9A+172uFxttJlo6F0Xb603KoWai9lXyCrLpoqzL9llObiqXJ8hogsIBLkGUd29OqGeoVR3q86q+FWo5WoODDrAqvhVfHTkI3QqHXM6zWH49uGsjvmCateTSdq6nNdyvHDJlBzJLW4uXGtfh6+V5zgTokDtW5VXIl5h0aVFNA5ozLIeywh0DcRis2C2mbHYLVhsFs49OsegrYMY32Q89/X3OZJ85BkyaMVDN8onivYh7dlwcwNlljLJJde1GsWmYuZcmOMgtMaFxhHsHky5pZxEfSL39ffRG/SoBSX++RayPJUYsBDoGoiP1gezzUxmaSZ6gx6lTOnQRTfbzBgshj/ND6nAB6ekhWXIlLrE2BY8Iftje3zmno3+Kubq06iouj1PylQpU0peB7pAQjxCEBAkLwtBRg23UJLzEokwOVMW4EMT/yb8cvsXh3Tu9IQqhE77lsySTKYellTo1vRcw/a728ktz0UtV3M4+TACAuUT8xk0wo2c+hEcmXaHnXd30vuX3ljsFkkdyWIg9zuY9lEzVlgvPdcosmIxopApeLXmqxxJOUKBocCxOOpSowvb+29HIVMwbNsw1t1Yh8VmQW2TKlzbasJDDxgQPYBjycfILM7gwQIll3wtfNXblyRLDpd+hgjXEFZH25lZ/REJntK50yq02EU7uwfupsBQQN/NfekW0Y0on6hKrtd55XnIbfDeWXj/jORsvr6Bks9bWEjylMi5SpkCN7UreQY9SRv9CMooxdKhPQuH1OaDqzMxPlaZi9BWI92YgwiU241MDxzC9xm/YLSbsWHHS+bCWx5xhMq8mKb/BZPdwghNcxYZTlKKmY7yCPbIhyKz2RGtFnqJGzgtPOJUaV9GaPZzRZFLT0N1dmsekp/SlzyxjDaBhygTrJy415K1bg/5OOge01Or80W1FJxtMkoV0vx5/xT4KHRMaVbCvt2e1Lqrx0vlBlYrJlMZ14NUtL1n5lCYQN/XRJo9gp3rpMrTT01gfBfJ8b1tyu9fA3lauOEL8VVgQkcpgLM+lugGKTnS6iHUzZYy6e/GiXx3QsnE686kegiEDS7g3+fdePeuB+TmSp4lERGgUjmqU5WqlwoFhz0KGBByFQUCG6+F0+rAHdBqedSlFQf9yjmgecRBZRr5MiNaUYkWBXmCgSh8+VbdlS6qOqBQYFCI6GUm9IIRvWDkvDmZ2YX7yLUV85JLFDWcAiiwl6O3laK3lpBl1pNvKcL6gvuFWqbC/Dh40SqdKLOU46P1JrZaa4Ldg1HIFNLCXBSx2q3czbvLyftpz9w7RESqPhhLl5vxEm/qBUmkaN9oeqW58NmMs9R/T0vfLpNRJ9xnUv46dEbQWqXKYqjchwKFlQJTAc0CmzGm4Rj6RPVBq9TysOgh8dnxXM++ztXMqxxLPeZonZMJMsI8wvDWemOymZ5LSgcq+YMICHza+lOmtZqGz3fSvfdf7f7FpBaTfn8iAUaLkR4bejhEHZZ1X8aAugP+8H1/BuWWcvpt7sfexL0s6baEoTFDKTGV0G19Ny5mXGRHvx20D21f6T2iKNJkSRNcVC4cHXr0bx3PP/jf4Z9A429Admk2tefXpnX11mzusxlBEDibdpbWK1pTt0pdrmVd48DgA7QLafe7+1l+dTkjd4zkjQZvsOCVBU+CDIA7d6BWLTh5Elq1+kvjNNvMRM6NpG6Vumzrt+1PvddqtxK9IJpAZStcy3uSm69DJqoqlS8rssR3lJOxiC8mIsoEGW5qN4Ldg6nhUYMqzlVw17ijU+twVjmjlqtRypWYrCaKTcXc199n8ZXFdAjtgFquZvf93Xg4eaA36J9L5Pwt1HI1bho33NRuuKpdUSvUnE07+1zjpgrE5ut4oCgh3U1aOEX7RqNWqLmQfgGjzYiTwomG/g1p4NeAhZcWYrab8XbyJs+Qh0ahoU1wG1oEtaDcUk5OWQ555XnkledRYCygwFiA3qB/ZswyZJLkrWhDISio7lGdpIIkdEoX3PNKcDaKGHVOlGNGtNmwC5I5nVkBJvnvt1r9VVQQvVVyFUqZEqVcMh6slGGTqySJyMdGYMHuwfi7+GM9cpB7zibSvJUMqTeEfEM+x1OOU2QsokW1FsRWi0Wj0KCUS4Tw48nH2Xl/p6MFomdkTwZGD2Ti/olkFT3CIoiobAJWhfR/D40HI2JGMKTeEKrNnI9u3mJ+bKPl85ahDHD7kdwME8EZdzgf6oGC8Oe2y/mlTmD8OejTT0Cr0DL1pWnsSjng0O2vgE6lQybIKLeU/z7J9nHFoKIyA1CjXENAjoGWXceyJ/8cV7Ou4qxwpk1IGzydPNmbKLXmVPT133rrFu9+1hR3F282fZOMyWoiaFYQBcYCiUuByNzdkmP4Gz2kj5Ujx4ZUPfqp808M2joIZ6UzIiKh7qG4qF24m3e3kjRr04CmTG01lcFbB1NuLOXXjXAyGGY1A/HxXCqbVsbptNPM+SSOneshZIJAirtIhEcNhhfX4K17rtg3/YK7Ec4HwNq6Ar9EC2RrKwdpAgJBbkGEuIcQ6hGKvKSMbfG/0PuunHl7YHVDJZ81M5L6WIHb38WfQlMhhwYf4lDSIT4/Op3ib2Sk1AmkR7scErVSG0mfqD40CWjCN6e/kThcdlul81Pbpza3cm+RMC6BSG+p5TS/PJ+3977NhpsbEBDw0nqRV57HlJZT+LLtlyjlSsc9vW1IW1b2WMngbYPZkrCFaN9o4sdKCmbpxenErohFFEWODzvOF8e/YNm1ZY7zXnGPu5lzE5VcRV3fuuiNepoFNmPn3Z1cfOMizZc2p3et3oyauAoXhTNpu9bSeV0XpjWfzIioQUT/HMOwNG/mzbguVWZ/+/N0xfbll8kY0pOxtZLYUXCWOppgWjrVZFnBYVzlWkbpYrlryiTenEaS7UkFL0qogkW08ogiVtlfpUmqlaCV2xA6d4bw8Gc/y2rFbrXwL89bTPdLoH2RF2v3afG9kwbe3hAaKlURH2972rWISTHZnPcx4WwRMMpFbDIILZQRlyIjLkmg3QM7bmU2THL4ojXMbCW17K3cBlFPhvoMkt2lYGxFjOSJ0yAD2iRDlTJJUe5Ydbjr/Tg+ECUp6woO0m8RbZ39TJW+4j5hKpyAKMB9L0ntK8o7CovdwsWMi4Dkk1Jd4cXUnxNYWl+6jopVPOF9/QYKQeEwaHxa2tjTyZPssmx+TfgVvUHPwOiBxIXGkV2WTWJBIjeybxCfHe8IMpwUTijlSofL/fNQ07MmoU5tSX8Yib+qAXWDfBnUxp/o4D82v9t8azNDtg3BYDXQpnobdvXf9bea/1rtVt7a/RaLryzm63ZfM7XVVAxWA7029uJYyjF+7fsrXSO6VnpPhYjE2ZFnaRbY7G8byz/43+GfQOO/hCiKvLrxVc49OsfNsTfxcfYhtyyX+ovq46x05p7+HrM6zmJCswm/u5+lV5byxs43GNNwDPO6zqscZAAkJ0s38EOHoH375+/kP8Ca+DUM3jr4T1+kK66t4N1ts2hkX4xNtD2WhhUdRmhPOBpvUixILRtyQU6ALgBXjStquRqD1UCxsZgySxkGqwGzzfy7fbcg7VsuyLGKVlQyFS5qF8rMUquGq9qV3PJcqrlVw1fr+0zPpl20I4qilNF/nNWveNUb9P+RtONfhUyQORSVlHKlY5Fe8fqw6CFyQU6QWxCJ+kRkgowqzlXQl+spsz4rf6i0gbPciTKZ1bGQqq0MwDktm5p6gZhCJ1zyixHskBbuQ0KYK7dcTdwzZ2ITbfhofQjUBXI1++pzx/ty6MtMbTmVy5mXmXJI6uGNqRLDkaFHnvFfKTOXUWd+HVKKUhzHqpApmNJyCp+2/hSAkTtGkrhzFe+eh9f7wKj6o1h6dSlNApqwtPvSZ9RRALqv706xqZicshwS8hJoULUBl0dfxmemF3lGPQo72OUCQ2KGsvvebnrV6sWyq8twU7uxY6WZpndLCZukIEVrJn2OklvRfrzzikB2qSf1bPOB3/KJpLmqMUtO8G1T4PBWV64N60gDz02ApKI0ucVk3tz1Jq9EvMK63utQypScTD3Jupvr2Ht/ryTv+jttcz5WNbkKE92SVewMeXFA7DjXMiVVC6w0ewT7GkgqSb+9Tupkw4E1AtUnKxyZWze1G0arkfYh7dmTuAeAwXUHsyZ+Dd1qduNI0hGHtKaI6HDkVtkFDqwUqVOgpMNwOVc9npDLE95KYOe9nTQc9AF3vGHcK1I7TF55HiXmEuyiHbUFut2DQfHQReIiEx9TlcEv5ZDgbgNBIkWPqD+CIcHdUcydj2zOHMLGQ1y6htM+Rsz+kpGir9YXi91CgbEAP2c/pr00jY5hHen2eST35kKHwZI5ppPWjaXdl9I7qjd20c6mW5sYvWu0wy+mwtujsX9jLmZcJPnd5ErV5BOpJ+iwuoNk3KjxoFONTqy7uY76fvVZ33s9YZ5hbLq1ib6b+7K+93q6R3THdaYkrf10C2BqYSqxK6SA+eCgg8QsiqHIVET/2v1Zf2s9KrmKcI9wbufdpl1IO06knmB0w9FsvLWRVtVa0TywOdMOT2OtvC99P1rHo32bWOv8gKmHp1LbpzZl6cncuNIMl72Hf3fOWO1W5vYL5dNaWSiddegNei6Ousj3Z79n462N7Bu4j441Ojq2LzGV8P2Z7/nixBf0jerL5tubpeROhfiGRU7dsBaOFp66VepSx7cOOrWO3LJcBm8dzIEHB5je6H0+/uES8mPH4ZtvYNIkR4vipYxLTD82nT339xDlE8XnbT6nV61elJnLOJZyjAMPDrD/wX7u6+8jF+RE+USRWZJJgaGA0fWG07dGDwymUooNRZSYiikxFlNsKqbEXEKBsZB8UwF6cxGF5mKKLKXoLcWU2Y3/mSv7c9DcuvN3q/TheWCp6k2KJQ9/F38KjAXPNYP9I1RUV0VEZMhQypUoZApsou0Pn4kauUYykFU6Oby0zDYzpebSFxLsXcXKVV6ZIJ2iWSNq/UfBRpm5jM5rO3Py4Um0Ci3req+jR2SPP33cL4Ioinxx/As+O/4Z4xqP48dOP2K1W+n3az9239vNut7reC3qNcf2dtFO1LwoanrXZHu/7X/bOP7B/w7/BBr/JVZcW8Hw7cPZ9vo2ekT2wGa30XFNR65kXsFgNdAnqg8rX135u8SlxZcXM3rXaN5q9BZzu8x9/rYZGRAQALt3Q5cuf3m8NruNmEUx+Gh9ODzk8H9EqDJZTdScW5MI00xsZaHYn5oxEsXWTCFXSJUvdQQZ/w3kghy5IHEYKsZXcQN+UQVCo9CgU+nQKrU4K51xUbmgU+twVbs6qhkVlRK7aOdI8hHOp58HnriuKgQFy3ssZ9+DfayLX4vaCqJGzSexn9A6uDXxOfG8s+cdFHIFZpvZwT0AyWOjxCLd6Ks4V6FreFe6RnSlQ2gHR3tQBSoWMAcGHWDa4WlklmZyftR5TFYTdRbU4Z3G75BWnMaGmxuomQ/jLgrc7N+eZcXHsNltju/k6QeSVqnFxSanyFqGSWbH1STQPknk5SRoLgbwwM3GBs8sdtdWYuRJxreObx2WdpcCAJvdxuSDk5l1bhbuancKTYVMbDaRr9t/jUahIT47nkWXFrHmxhrHgk4hU5AxMYPPT3zO/IvzifGLcchQru65mpCPvqN5w6toUfJV3DeMbzr+udKEdtGOz3c+vNPkHUbWH0nw7GAA9g3YS8d1nRyVgnnG9ngMGMmALQMomFJAUZmeGZ+1J/xyCt3vwYftYXMUxNlCOCBPJjY4lrmd52IzBDH1lwMUl2gxyx+SxGIKhGuVxqCwwce3vFhSXc8jV2mOectcSH47kQOZpxmwZQCualcEQXD0iHtpvcgozsBqNlKlHNJ10lwcWm8oS68uxUfrg9FqRCwswCiXeD1PgnORhlUbcjnzMhqFBovN4mgdczbB+AuwrX0gD2w5aOQaR3ZcREQQYcJZmNv0MWH/N5AJMlRylWOfFR4av5XZ1FjgzBLwNkD3UVquuT5L6q2XCbvXQdi7YFJIGVJXjSt38u5IHivmMla9uoqBWwfSXBNOk9MptChx5/U2ucw8JBBgVJL0UjTyK1cZd86O2gbzGkuE8mC3YAqNhcgEGaEeoaQUplBgLGBGuxlcy77Gxpsbkcvk9Iy3sHEzeE+GBjkCK+akoVZoWH5tObPPzXbIYGsUGrpHdGfT7U34ufhRbimnyFTE8HrD+b7j93g6eXIx/SLtV7WncUBjlnRbwjt732H3/d10De/Krdxb5JXnMb/LfAbXG0y/zf04mHSQpd2W0vOXng7j0KH1hrK422KUciUP9A+IXRGLUqYktSiV6u7VsYtSn/yljEu80/gdFl9djNFqZETMCFZcX8FXbb/iwyMfsq7XOt478B4dqrdn+pvrKaoZQv2T92n4c0OuZl1l6YNoRpSEwdatz57kxzibdpaxu8cSn3WdsWl+tHj3ewZtHcT5UeeJXR6LyWaicErhM332JaYSfL/3pWVQS84+Okvqu6mUr19J/Hfvc+OTMcQ7FRGfHc/dvLuOeemv80dv0CMgMKlaPwbN3E1oro3cJT+S06Q2JaYSrmVfY+W1lVzOvIyP1ofY4FiCXIMci+GKYKHCm6TAUECRqegPAwSZIHNcN89bjAsIOCmc0Cg1jsV3hfRrTe+aFJuKuZZ5Db1RX2mfGoWGckv5Cysa3l6FbCnqiiiKbNwmZ/kbjblafA+zsQyz1YTMLok2bLC+SviZeyRl3qbP6zh8LhpWbchnbT7DYDFQbinHYJVeE3ITOJpylAcFD1DL1Q6hkyifKIfKYpm5zJGYM1qMmGymP5Qt/i2ed1wyARqFufHN0Jr/8X5WXlvJ6F2jMdvMdK7RmW39tj2j7vjfYPHlxby5+016RvZkTa81yAU5Q7cNZeOtjazoscLRkg5S98eIHSO4Ofbmc5NW/+D/Fv4JNP4LpBamEr0gmt5RvVneYzkAHx/5mK9PSjKFga6BnBx+Eiel0wv38fPlnyW1k8ZvM6fznBcv/PPywMcHtmyBns+6Ov8ZbL+znVc3vsqBQQfoENbhD7f/6fxPTNg/gW6qcxSVPTtdTORyU9sfo9X4wpugk8IJd43kfeGh8cDLSXLD9dZ64631xtfZF19nX/yc/fB2lv72NGl+2dVljNoxirzJeWSWZlJnQR0mt5hMTa+afHvmW1IKU3ip2kuUmkvJKMkgszSzkmKVgEAVlypoFBoySzIdEoG/7W9f3G0xQ+sNpf7nVZHl6ymqEcTD4oeMqj+KIfWGELsilpaBLTn96LTjQQLg6+zr8IPY/2A/u+7tIiEvAaVMSevqreka3pVXIl4hxD2EOgvqEOwWjEqu4mjKUU4OP0m9KvXotLYT9/Lvsav/LkZNj2HaESujewgYdE4U28sREIjyiaLEXEJmSSZ1fOuQWpSK3qBHIVPgo/VxOBxnl2bjX2SndQq0SZEczMP10GUgGBTw2m1QtG1Pl1Hf4B8Wg8FqYNCWQey4uwOZIGNWx1lY7BY+PPyhVNrXeHIz9yZ+Ln6MrD+SkfVHUn9RfYpMRfwQ9wMTm0/kZOpJXln/CsWmYuLC4vDV+nLxyBrSXeE9p3Z8/smLs7K3c29Te35tDg4+yMuhL9NwUUOuZF1BLgrYHmvJj9AHsyS+OtfXz6b+ovpSVe7fG+HHH8kPD6Q8M43giVLbj1ah5acuPzE8ZrjjmrLZbQzbLvER7KIdrUJLufU5ajkVMr6A0greRoF8ZwGzYEcuyNGpdcztPJcg1yBar2zNvDpTKJ79DdPaQ9uQthxNOYqr2pVONToxMHogPTb0oLrGjxRDFrOETqypmsvlzMsv/C5kggy5KDBzvw2nXq/zVtlGTgw7gV2002ZlG8d2Chu8fQEWNAKl1oVgd0mBaP3N9cgFOX2i+rDtzrZKgYVCUDjmvNYE1xZKvfzthkKKx29HIhFTv9tYwILGcNn/ybUUFxrH/iTJq6JjWEc61+jMhP0TqOFZgyjvKPYm7qWld3123m2I7edFuBrsWGUwtwl82xKynoq9O4V1YnmP5YzeNZqd93byzcvfMKbhGGacmsHsc7MRBIHpe40MvAGDRnpwdHYB7y7ry89p27CKUsteuGc4yQXJzHh5Bu+3eJ/47Hg+OPiBw09DI9egVWkZ02AMCy8vJNI7kgODD+CickEURZZfW86EfRNw17hT07smh5IOMTB6IF+2/ZJmS5vhofEgqzSL/A/y2XhrI8O2DaNtSFuH+VhCbgJ1F9ZFJVdxbuQ5Oq/tjJfWi0R9Ija7jZ86/cTo3aOpoq2Cv6s/VruVYPdgLmVcYkLTCXx45EPW5sTSZ/4xbpzdRqvDA1Er1HjlG7iY3gW3Nc+aCeaX5zP10FSWXF1Cw6oNWZjViEZzNjNvz+dM2DeBl4Jf4lbuLXLKchxy26IoYrJJLaklphJG7RzFidQTdA3vSv/wnpRMmUhxzWBK+rzqCAgKjYVklGRwX3+fvPI8SXrVImJQPp4P4m9EMZ6CWq52tEfKBTkCAnbs2OxS9v5FzwwBwSHlCuCiciHYLZhaPrVo4NcAf52/49lR8RxxU7shCAImq4lLGZfYcXcHm25vIvmxw3dFm5zNbnMkiCqSTJHekUxpsIA1+7SIIo+TaXbs2ImXv8WAJi2Zf3E+Mjv8shlGvyLxDjubg4kMb8Gs1PUoBAUTTln57Bj0X9aFt5q9Q+e1nXmr8VvM6zLvud/PlcwrDNk6hFu5txzS7uObjmdYzDCsdis5ZTmOn+zSbOm1TJItrvi73qD/3SDtRZUab52STR8837j1RSg0FhK3Oo6LGRfRqXRs7rv5byVl77i7g9c3v06TgCZs77cdnUrHmF1jWHZ1GQu6LmBMozGAlHgMmxNG2+pt/7K4zT/4/w//BBp/EXbRzsurXuZBwQPi34zHTePGrnu76La+G6EeoZSYSrg0+hLV3Kq9cB8LLi7grT1vMb7JeGZ3mv371YWSEnB1hfXroV+//2rsoijSYlkLrHYrF0Zd+N3PLTOXETonlC7hXdDkjCPhoeWZjI/odI+TluGPfxfpE9UHHycfFlxeQLRvNCMbjMRmt5FXnke+Ib/ya7n0+ryHjUahkR4kTl64qFw4nXaaTmGdaBzQmJXXV+Ln4scXbb5Ao9AwdvdYSswlnB95Hn9Xf+yinbzyPDJKMsgoyeBs2llWXl9JWnEaVV2q4qX14l7ePcz2+VxHWQAAIABJREFUZ1tZ/F386XvNyuwaUitHi2ot2H1vN3bRjk20EewWzCexnxAbHEvE3AgUMgV20S5l5bU+DIgewNB6Q3FTu7EncQ+77u3iaMpRzDYzfi5+ZJVm0Ta4LcdTj7NrwC46h3dm/Y31DNgygO39trPlm+HMW6MnN9SPiW/XYFu+pOz0NMlcQKChf0Pah7Tn5dCXaRnU0hHQ5pXn8dmxz1h4aSEeTh408GvA6Yencc8vQ2uBcpVELo14nNi75QOnQmQcDRYRY2PZWXSB2OBYnJXO7E3ci8FqQECgf53+LOm+xPE5b+x4gyVXl6BT6bj79l2GbBvCydSTxAbHcijpEABvNnqT+NNbCEotYP38HHB7vnrJokuLGLdnHIVTJZffn87/xPh94ysmGc4qZ/LEyWi+/YHynHRcZrqyVNuP4R+sh4AAUkvT0TtBozclErdckOPh5MHkFpN5q/FbuKhcACnYGL59OGvi10h8E5sNG39MQO+erOb7nSbk0XXp3CGbAqUNNyd33DXunEnvTOl3XxHxqSc6jSsWm4VHJY9oFtCMBn4NWHx1seQ5YJM8KPZ1DCWlIEVa5GBHo9Awsv5IXFQuzDg1w/GZC3dCoid831Kq8gGOzLJMkCHa7eR/I5nnbWriTKBrIMmFyUR6R5JamOqQHH362qrICMvsEjF4+R4l7QeLpOishHmE8aDggWPxBdBQV5Mmh++yqBH46vyQy+Skl6RX2uZ58CmFKecVvHlealNb0Aj+3RyyddA3HrZHSdURb7OSPJUFLycv8g35yJDRIayDZLBpLqVltZacSD3B0fUq8m1lTG8LVxdB8zFy4qtJsnZft/uaEnMJ/zr5L9LfS8fTydMxjq+Of8UnxyQn5ACXANJL09EoNKzttZZetXpVGnNqYSrDtw/naMpR4kLjOJN2Bl8XX95s+CYfHPqA+n71uTLmCiCZj/Xc2JMwjzB2D9jNtaxrdFnXBZ1KR5RPFD90/IFOazo5qlDtqrdDq9Sy6/4uBtYZyIZbG5jYbCI/X/mZ3rV6czDpIC296vPj2J10HetKbqA72/ttp+3cRrSy+rP+i9uUmcskc01TEZtubWLBpQXYRBvdI7oT4xdD9YMXeP2LLcR+G8U5430sdgth7mE8KHyAn4sfJquJEnPJC032QAoadCoXXJ3ccVY646R0Qi7ISSlMId+QT7BzAHO2W+h+KoefO3jzbSdn8s1FlJhLXijkICCgU+vw0fpQVVcVX2dfPJ08uZ9/n5MPT1LVpSqTW0ymWWAzR+BQETQUGgs5knzE0WaVUpiCUqakRVALOoZ1JC4sjgivCM6nn+dk6klOPDzBuUfnMFolHl1VXVVMVhMZJRmOxbiHxoNetXrRLqQd8y7O40zaGbRKLQaLgf5hU/Ex9yM9z0ZoFS3BmlP8dOoN7nqJvHYLNtUBlRWmXlTzRXMTQbog0krSHMd6o9ZP1Hn9Hd75ti2dekzilfWv8Fnrz/jwpQ/JK89zBAephamsjl/NyYcncde4E+kdSZm5jOTC5Oe2QAkIeGu98dH64KZxQy5IKlVFpiKySrMcnI3fVvxDPUIJLf8KW0l1RNl/V9F4GgsuLuDdfe9isVvoXas3G3pvQCFX/PEb/wOcSTtDt/Xd8Nf5s3fgXvx1/kzcN5E5F+Y4kloAs8/N5v0D75M4PvEPRXb+wf9b/BNo/EXMOT+Hd/e9y+Ehh2kX0o6kgiQa/twQTydPHhY95PCQw8QGx77w/fMuzOPtvW8zoekEfuj4wx+3MJnNoFbDihUwdOjvb/sf4GjyUdqtasevfX995oH7NGacnMH0Y9O5+/Zdhm34DCHjTaByr7ss4Gfeb9uH7hu6I5PJHC1O9fzqkahPRC1Xs6nPphe6tYqiSKm59LkByNOByc67O9EqtWgUGrLLsp/7wBQQ8HPxc2S7dCodiQWJ3M69TRXnKgyLGUbr4NZ4ab1YeGkhy69JlaiqzlXJKstCJVcR4h7C1AQvjqafZmX9Jy63T0MtV6NT68grz3MskgZGDyS/PJ/z6ecpMBYQ5RPFsHrDGFh3IK5qV/Yl7mPE9hEYrAasdisahYau4V1pW70tnx3/jNhqsTTcfJp3t2WzoqMvnzY3ordWVq9y17gzu+NsutXsVmlBBZIp4exzs5l5eiYAfaP6cjPnJufSzzm2UclUyGVy8ibnkXHvEolblpK5ez2tkqyE5z12oX1P4gC4mSTTwkJ3NS4qF/IN+fg5+zEsZhiN/BuRXJjM5IOTHdWiYlMxTfybcCz1GO1D2iMgcCj5ENVdgpCnPSJROxW+/vq5c2Dw1sHcybvDxTckcuXWG5vptaWPo7oQoAvgUe2l0KkT3L9PyC8t6HMsl7GXBcb30tL7YhnRJU6UHN5D25VtWd5jOecfnWfp1aW4adwqBRw2u41BWwex4eYGR+D3PPz2vH+j7cH7R0wUnNhHozECKa4i39WeQLM5W1jt9pCU1+M4lHyo0gLcVeVKqUXiWHRQRnIv9w4P+p+l3e0pnEk7g1qupkHVBlTVVWVB1wX4fOeDIArYsLH2YjWUyQ9JWjiTpdeWkqhPRCFTVAocdqyTZF3rjcVRhQnQBRDsFszlzMv4OvuSVvxkIQTgXwTfHILBvSUH8FInGR4aD/rX6c/h5MPcy7/nOG4vs4J8lRWNGa5OTCDcM5wGixoQnyMRoutWqcv+QfvZe38vI3aMoJbVgxGHCxh7SXI2ntsEfmwhR+bjS0ZpRoV1CPWzZFz1s5M3E6a3hXlNQW6TyLoVqFg0qWRK0mZamN8YfmoK+d9C776wJUpaNHYJ78Ke+3toFtiMr9p9hZvaDXeNO24aN/be30v3Dd2Z3no6X534Cptow9dZ4oO8EvEK/477dyU3YrtoZ+6FuUw5NAU/Fz+0Sq30fdhtqBVq7r9zn8D/j733DIvq/KK+f9NgBhiGXgUFBKSIigj2LpZo7L3ErrFEY4waY2Js0SR2/dtiSSwx9liwV+wdsdOUJr23GYaZeT+cMErE9Od5nw9ZXnPBJXPuuU+Zc+6999prWdYAIDojmi67uiARSbCUW6IyVbGy40ra72hPoEMgH4V+xIADA4zGa8PrDWffk32UaEto7tacaynXaFqjKVeSrxib1l3VJqTKy3G3qAESMTnZKZRI9b8rmS0WiVGaKAnLlnNqWQatJym5ZFeEh5UHoa6h7Hm8h151euFr6ysILaCnQleBWqdmy70tqCvU+Kq8qPEggTx3e3JsBIfw4vLiKp/jUAwnd0GdLFgwyJWzzV1IL04nuTAZS1NLOnp1pINnB3QGIamUVpRGQn4CT7OekliQCAhUS08rT7LLsskry6OPfx+WtFsiqLj9wTPQYBCkbX959gv7n+7nftr9Kt8FuVRODWUNoXemIJFyXTl2Zna09WhLO492tKnVhsT8RFbfWs2xmGPYKGwYEzwGXztfll1bxqOsR0JfnVjGF7J2TD2ciem1m2gVpvTuXcHR2jr8bevwJOcZFhrBT+haTTHjQsZxPfk6URlRtLYK5sLUe4zvbcqF1jWJyYnBTGb2Tp8RG4UNtW1q42ThhIOZUNVXSBXcTbvL2RdnUVeoCXMNo45tHZKLkrmXds8oL640UWIuMydX/VpYRISIAIcAxgSPYVi9YSTkJTBo5RhqSNZgkEjQIzL2aKwc5Ueg+x/3aLwLmcWZtN/RnoeZD7GSW3FkwBFa1Gzxt8d7E8+yn9FxZ0f0Bj0nB5/E396fz89/zuIri1nQZgGft/icUm0pNVfWZGDgQNZ0WfOvfO5/+D+D/wKNv4Fn2c9osLEBY4PHsqrzKsq0ZTTb2ozUwlQySzNZ03kNk0InvXP7ymzttMbTWBq+9M8ZzxgMIBYLrstj/h0TnfAd4aQUpvDww4fV8uYrHcWH1B1CM/dmDDwwkKHec4h6aoebohG5uic80a2mSCSoqihkCnxsfTg68KjwMHiyn/MvzhsXLd18urHuvXXGB/Vfxfhj47nw8gLPJz0nOj2aehvr8WP3Hwl0DCS7NJu7r+7y1cWv8LD2oE2tNtxJu0NUehR6gx5LU0vKdeXvvOGLEKGSqyjSCJm5UGktmlx5yaowoWw/odEEdkbvRCFT8CLvBU4WThgwkFachpXcilJtKQqpolrJQRAWRNZyaxLyEwBo6d4SH1sf7ry6Q1SG0CtgrRZhVWYgWfWrLCUC5UMilqCQKhgVPIo1t9ZQ26Y2B/sdxMvGCxCy9DujdzLnwhzSi9Pp7tudtOI0riVfw0ZhY5RItDOzY26ruUw+MZnM6ZlcSrzE0END8bbxJsQlhCs399EwppgbHjI6JMvYtEc4VrnuDjwNcOAn33K2Wr2o0uPxJiRIMJGa0D+gP739euNh7UF0RjQTjk8gvyyfry9J+HR7PFK3mm9t67HKgx6+PVjRaQXqCjU2C8wpEwsLdndLd5ILk4nqf4Egv9YwYQIdC9fx0gqSbKUglbD7gIj3rRtTfOIwqiUq9vTZQ7+AfiQVJLH48mJjwDG9yXTe836Psy/OsuDSgip87d8GFmZSM9a9t44t97dwOekyABYyCzrZNuZQ2jmkOgMaCULPhQF8bX2wlFtx69UtFFIFtVS1eJrzFJWpCrlUTphzI47EHePQq5ZsbGHGyfiTKCQKBgUN4kbKDbZ238rgg4NJLUylrKKMqbelfHylglofV9+XJELExNJA1nz7EKdPhGrBm6j0Eah8rwEDSjVkrjfnqXkZYSP1RiO/pjWaYmtmS2JBIikFKVQYKihUF4II6maJMa8fyvXR1wH45so3RoneLrW7EDE4gkvXdnN/2iDG3QWtVMSqUAMrG8OULvNo79metj+2pVxXjggRNa1qMrLBSL6+/DUbzPvzQf4PuBZBqiU0yDGhyFAu+Gf8elv0KDEh4btyPvhAxfZaBRR/Dd91VrG2qZR8Tf7vSiJXepZIRVIkYsHFOqkgCYPBgFQs9Fq1qdWGAXUH4GzujIlUUFdLLkhm8ZXFPMt5hpulG8mFyUhEEtxV7gwIGECxttgoXFApE+1o7ohMIiNfnf/WIr06VIooSEVCI7ABA1qdltrZBoLNPPHuOAjlqvVcDbLmiFTwW7mTdgd3S3c+bvwxAQ4BaHQaijRF5JTlUJCbxszOC3GfLiHNwkCQQxB56jzjIv+3qLzelSZKKtSldE4QY9dzMHYqF2wVtjzMfMiuh7vwsvHiB9VwGn20BJG1DanbVvFF3gG2P9iOs4Uzn7f4nJENRmIqNX3nvuar83mQ/oBVN1dx+PlhTCQmRhU3EBbcQY5BBDkEUddRaD4PsA/A3MScjOIMLiddJjIxksjESKIzojFgwE5hh7XCmnx1PjllOcYAX2miJNg5mP6B/RkWNKxalaT43HjW3lrL1qitlJSX0MurG96ZWn7MPEuqqQYRYK2T0dW6MdZegdzIuset1FtVvod2xUJgnPcbZnTsOikna1awZVR9otKjGBo0lNa1WmMwGPgh6geuJF+hi3cX1nVZR00r4V6o0+uIyYnhXto94ZV+j3uv7lWRSbdV2OJh5UGJtoTn2c/R87pnMdA+kFHBoxgQOAAnCycACtQFBG8KZvo5Nc2f1GDnrC0k5GjxdDRjaBuXfxRkvIml15Yy6+wsdAYdQ4OGsq37tmrXE38Vr4pe0XlXZ5IKkjg68CjN3ZuzKHIRcy7MYVazWXzd7msWRC5g8ZXFJE5NxMH8bXrYf/h/A/8FGn8RFfoKmm1tRr46n/vjBOfY0UdGsyN6BwCD6w5my/tb3hk8rLqxiqmnpjK9yXS+7fDtX3O3lMth6VKY9O4g5q/gzqs7NPq+Edu6b2N4/eFv/X32udmsurmK6PHRtPqhFSEuIThZOLHx7kYih0dSx64OLstdjJUFM5kZgQ6B3Bx90zhGTmkOh54dYsmVJcTnxQOCrOaAwAH09uuNm8rtT893/5P99N3Xl6SpSdSwrCFQump34X/vvea/Ho89Trfd3bBV2JJVmsWI+iNY3G6x0ZSqTFtmrJL02dvHOCeADh4dOPtCoPxgENy6k1Xv5h9XQiKS4GXjRQv3FqhMVYJGOyIq9BUUagp5lPmIZznPqkiLVsGvWXupDnSi19KilV4IYS5hrO+6nkCHQJ5lP6Pnnp7klOWwq9cupGIpM87M4EHGA9rWaotGp+Fq8lWCHIOQS+TcenULEBbrV0ddJbs0mwYbGzCy/ki2Rm01VmOcLJwYWX8ko4NHM/TQULxsvPgxbAlERsLFi8Lr2TOKTWBaXxXfexfQXOrJHW0iapHOeBzcVe6kFqVWke61kluRr84HAzjq5Yxs+TFtPdviYeWBu8qdjJIM3Fa4sb/vfnr79yZ8VQhn8u4aF5pftvySRZcX4ap04faSHG5alTKkl+CiPjBwILsf7SblSiiuMlt0x44iXSBly/tbGNlgJCA8xH959gsLLy8kKl0I6sQiMS3dWxKdEW0MNpQmSlSmKqPDbuU+tfVoS1JBEs9znlc5bYG2AVikZnJDnsX0q/DtdXOOjWzO+zanjFnMSopRQ+eGRKVHEVBhjTwtm7s1xOh+9emQiqXVVuc6xgoZZKdPoHVYf/Y82UOoSyi3Xt0ixCWEO6/usLrjKlr0mMJHXQRJzTDXMJaFLyO9OJ1n2c9Ydn2Z8bqTa2HwQxh1DzoPhoI3FkiNXRtTrC1GXaEmtTCV3n692f1gJwYEGd3+jYaztftWUgpTCFwfiNJESWpRKnVKzXlUPAzD5u8pElewojHsbedI19AhLLu+jIVtFjI/cj7lunI+bfopgwIHEb4zXMis6/XklOVgwECAypuZuX788uIkB2uX0/0ptMhSsLeODvu8co7tBvepkGwFcetN8Bo4AVasQG/QE/Z9GC/zX1KsLaa8opwGzg2o61AXiVhCVHoUd9PuIhVJqWlVE61ea6Qg/dWm2jevCaWpErlUjpnUjNSiVKO8cwv3FgQ5BlFSXsKO6B3UdayLt403e5/sxU5hR7m+nNY1W3Mk5ggj6o1g24NtTGo0iQ13NmAmM6OwvJCRsUrssoopm/wh2Xu28tjLkoeiLAwY3nmtSMVS7MzsmHQskzmt9bgqXenq0xVbhS0rbqygm083Pqj/gbHSay23pvHmxvjZ+zHesi2db0/hnu1sGkxaRHF5MeOPjWfXw11MCPmQZXdskc9bRGmHNnz2gSv/i/sJe3N7ZjefzZiGY5BL5X94zGJzYhl+eDjXk6/zceOPWdh2IaZSUxLzE4nOiOZhpiDbGp0RTWxurDFokIllxvNkp7DDTeWGRCQhIT9B8OuRmNLMvRlta7WloUtDcstyOZtwltPxp0ktSsVUYkpD54YEOQbhYe2BXCInqzRLoDAVpZGW/Iz4okRyJeXVSt6+CRuFDVqdtgq1ybkQMi1FTGs6XbgPFabw5FowBY/vsXndKCFJMfwyV5OvMu/SPGzNbFnecTm1rWtzP/2+MbB4kPHAGHR5WnsS7BxMoL3gdRWbG8vx2OPG73FlcOFr68sH9T5gQOAAPKw9qszVYDDQd19fzsedIWODElmHjrBlyx+ep7+L5IJk2u9oT0xODHZmdpwYfIIQl5B/PG6BuoCee3pyLfkaP/X+iV5+vVh5YyUfn/qYyaGT+bLVl9RaWYspYVNY1G7Rv7An/+H/BP4LNP4iFkYuZO7FuVwbeY2wGmFsvb+VUUdGYS23xtvWm0vDL73zxrvi+gqmnZ7GjKYzWNJ+yV8LMkDgt3/5pSAh+C+hz94+3H51m5hJMVUyUunF6Xit9mJK2BQAll9fzpOJT5gQMYFT8aeI/ygeT2tPBu4fyM+PfwYwurxeG3Wt2pvMvsf7GHF4BDqDzqh3H+YaRh//PvTx7/OHPMuc0hzsv7Nna/etDK8/nCknpnDw2UGSpiYhEolIK0pjxtkZ7IzeCcAnTT5hafjSaseKz42n9praANS2rk1cXtzr7KdYigkSBt/WUOLjQXwdB1KLUkkpTOGH7j9gbmLOuRfn2HBng3G8EOcQRCKRMYipVGX6I4gM4JMt8OVvuMJjp99/v43CBhelC6mFqcYHj6uFq+CTkPOcOrZ1mNNyDlvvb+X8y/MA+Nn5ETkiEjszOy69vFSlobijV0fGNhxLN59uyCTC+euyqwtyqZyD/Q9W/fD0dGPg8cuzw4xv+IpCE4FrH1JmzT3zQj5v8BFfdlvKq6JXvMh7wYv8F8TmxAqBgsiSDG2BMYsOwoLfRmFDdmk2/QL6YaIXsfPJHgD87f15kv2EEfVHsPPBDlRlBnQGHXkK8Lfy4VlBHMHOwYhFYm4cskNkYgKHDmG2yIy5reZSy6oWx2KPcTz2OLlludib2dOqViuKNEWcf3EeS1NLWrm34uDz1/vpaOZIRmkGv0WgQyCdvDqx4sYKdAad0dCveRK4FsKeQOhlqENWWjxxFlpyzURopAYsZBZIxBJjpUteDmoTsNaIKZKLqTBU0Ni1MTdSbxAxKAIRIrr8JKjKNSi3497X2Wya25XCDq2YdU7IGopFYqaGTeVozFFCXEKQ7dxNqQziGnuTqsvHWmHNicEnKCkvodH3jdDoNISmQIEcgtLhhDfYOdbiZf7Lt/azMsttb2ZPXlEWzsVCsA1CRbJQU0hsTiy1i2QMjkhm+D09JXIxSxvrWRsKeksLcmbkoNaqqbmyJvkaQVHqUL9DvF/nfQAuJ16m1Q+tfqVFmdCrTi8eZT3iUZbgnB5QpGDKTej5FFYHlSHRw+Sb4DsRspVwcgdo5DKGDJa/U9Lzt3C2cMbe3B6liaBEpzRVYjAYiEqPIjY31qjG5WTuxPu+71PbpjZ6gx6tXsu62+vIKc0xqgJp9VoczBywN7cnoyTDSGV5F96UMxUhMvrE/B5sS8DUXEmJuogCOUbVJplYxoI2C6ihqmEMGiopogl5CQSt9KHVCz3hE19Lqvuu9aWbT7cq98JDTw/Ra28vro+8RsMhn+Lc7AajWn/MBw1G0GdvH5IKkvi+7UoGLvwFw/HjHBvYkD4+UViZ2zCr2SzGh4z/XZGTSlRS0WadnYWL0oVt3bdVodcYDAZicmKqVCwqKzCO5o6YSEyMSlWVx0wsEhv9ejytPLE0tUQilhgrTJWN01mlWdVWAs3EpjiopXi+KsMtX4+D0gk7vxAyfFy4mH2He+n3qogmVJ7DEQ2EpFXA/wLILssW3qOvwKEEsi3EfNX6K768+CULHzrwyS+ZdN/YhtMpF3CzdCO1KJUA+wAkIglPsp8Yq3u+dr4EOwcT7BRMsHMwKlMVV5KvcDz2OBdeXKBcX47KVEWFvoISbQn2ZvbIxDJeFb+inmM9ZjabSd+Avkap20pUUruvOM+h2biFcOMGhIX94fn6p5h3cR7zI+djMBgYFzKOdV3W/fV1zm+gqdDwwS8fsPfxXtZ2WcuERhPYdHcT44+NZ2SDkShNlWy7v42kj5OwNLX8l/bkP/yb+C/Q+Au4l3aPsM1hzGo2iwVtF3A/7T5NtjTBWmGNwWDg7ti7uFq6VrvtsmvLmH5mOp81/4xFbRf9vS+fgwNMnQqzZ//DPXmNp1lPCVwfyIqOK/go7CPj/08+PpmdD3dyduhZmm5tysxmM5nfZj5119XlUdYjyj4v43bqbdr82AZXpStJhUmAoC4lFok50O9AFd32SiQXJNNvfz/upN5hYN2BFGmKOBF3Ao1OQ4hLCH38+tDbvze1bWpXO9/gjcEEOASwo+cOziWco/2O9twYdYPIxEjmR85HIVWwuN1iHmc9Fsr0Aw7T1afrW+PMOT+HZdeXoa5QV6GYLGqziHmR8+hYozVHE0/TJVPFoi8uErwxGFOJKSWflyAWifnw2IeCeo1tHeLy4jCTmbG281qGBA1BJBKRXZrN8ZjjnI4/zcXEi0b5zUo1MhEinqc/olSnETJpbygd/RamEiEArNS4r1zkvkvq901Yya3o7tudQk0h99LuGR/iPjY+nBh8Ak8bz7e26b+/PzmlOZwddrbaMc8lnOO9n95DWaDBSm5JnLQQsQEm34B1oXD/uBsB9cOhdWto1Qrc3Ki/oT6hTg1ZN+0cK9qb81WtlyikCvr49eHWq1vE5sbib+/PrZRbbx0HE72EcrEO9MIxCsgRMXnYOsYf/xCA88PO02bMIoqUpmye0Z6ZZ2eiM+jQG/QEOQbRzacbXX26EuoaiqZCQ3RGNGcSzvBj1I/E5cVVu49mMjNjv0klGrs25mn2Uwo0BXT17kpSfiIxrx6ilr29vdgAepFgDjazpD6Fdb1Z91JQDjJgoOsLGcouPTkSF0HrWq2JiI3gzNAztK7VGvOvzSnXlSNDSsZyMaqPPsXfcT/Pc54jQoSntSdhNcKwkdtw4OkBsvPTCE+ACvca/O/Ti3Ta1Yns0mzUFWrUFWo6Jys48GMZHlMhRwEVEhgWNIzIxEheFrw0St9C1Qxyx1i46g7FpkIAYjAYqJmr59s71nS/kUe+HJY2hXWNoEz+mobTwr0FFxMvGjO0HioPZFIZhepCwaiyGgGGN1G5yJOJpOj0FdzcIqb+Kz1iA5z1EpNioScoA7p8bI+FiQXZJdns6L0DG7kNlqaWyKVyTscL0tGVviFrOq9hVINR1S6Ob6bcZPqZ6VxJumKsvnX17sqM5jMwlZjSfGtz+gf0J7M0k9Pxp43fOzOpmeApJBIhRlytglllRevN4ypChInERHCgF4kxGAx/+D1WmghmppklmVjJrQhzDcNaYW3sR1GaKNkWtY28rGTmnFRTvGwhPev0RGWqos/ePnjbehvVeQwGA423NEYhVXBRORn69OHD9e+xr/AGZRVleFh5sD9oIbWHTkWTnc7AnjquBaqY0WwGExtN/NOGbQl5CYw8PJJLiZeY1GgSS9ovQSFT8DDjoRBUJAmBRWZJJmKRmFqqWliaWqLWqckozjAmUhRSwTNCU6H53WvHVGJqTMR4WnniZ+9HXce6uJg7oXocR/zpPVxOuMgZVzUPfk3TikB7AAAgAElEQVToNLD2J9y/GwH2AUSlR7EjegdZpVk4WziTW5aLTq/D29abmJwYwTNGakp5RTmWJpbkl+cL14LBgLIcbG1qkFKaTmhiBVe3QsNxIu45C+dVIpIQ6BAoBBW/voIcBZWyyMRIjsceJyI2gpicGGRiGTUsa1CkKSK7LBtHc0f6B/RnUN1BhLqGAnDx5UW+ufoNp+JP4WHlwadNP2V4/eEoZApupd6i+dbmTGw0kRUbXwoeXPfvG/1N/k8jPjeedtvbkViQiLOFM6eHnibQIfAfjak36Jl+ejorbqxgdvPZLGy7kF0Pd/HBLx/Qzacbx2OPs7DtQmY0m/Ev7cV/+DfxX6DxJ6GuUBOyKUSQLxx9g5LyEkK+D6FII8j/XfjgAs3cm1W77XdXv2PG2RlVjJ7+FmrUgFGjYN68f7Anb2Pk4ZEcizlGwpQELEwseJn/Ep81PsxrPY9rKdeIzojm6cSnmMnMcFrqRIGmgBdTXhC8MRhvW2+ODTyGy3IX42I9xDmEqIwotr6/tYr2dSXKdeXMOjuLFTdW0Me/DyvCV3A1+Sr7n+4nIiaCsooy6jvVp4+fUOnwtXutjDHjjFCxSJ0m0BWsv7FGLpWTr85nYqOJzGszDyu5FTq9jr77+nI6/jSRIyIJdg42jlGkKcJthRtFmiL06PG08iS9OJ3SilLCXMNo5NKIndE7qRObz1NHEWnzSghYF0BiQSIJHyXgrnLHeZkzGSUZWMmtGF5vOBklGex+tBs/Oz8sTCy4l3bPqFCVW5ZLUXkRB/sdpKdfTwwGAxu/6ceAr/aT4CAhfKCOnNdKvrhZujGu4Th87XwpUBcY1bPOvTjHk6wnAH/KlEosEiMVSd/5cK6UxHVRuuBm6Yabyg1XpSsn4k6QUZzBwf4HcVG6GL0jKvQVzDw7k+XXlyMTy9jZaye96vRCuUSJukKNrakNZjoRNcpkXDlsi/jRY+GDPD0Z3kvMY1sdt80/ho8+IvnsASZnbefwc0HCsKNXRxLj7nBb+xKxAU4PO0vZo/v0uvMpWhEgFpSMii1klFFVRclWYcvhdbnEWukZ1UuCRCwhxDmE1Z1XU64r527aXeH16i5Psp6gM+iQiCSYm5hXa4YHgsFcF+8unH953ki3+i2cxZaEPSokt2l97pbEGhe1UrEUuVROK4dQIpLPs/COks8jiljex5VPAlOx1Jug1ZXzrd1AJhfsxtncmeyybFZ0XMHE0Ikov1ZSrC3GQmZB7tVmZOSl4tbxEQ5mDihkCprUaEJKUQqzms2i624hiPbPEeNeACeWZ7Lp5QHGHRNkILvGiDi4B47XNtBjADgrnanQV5BVmoWnlScJ+QnYm9mTVVrVfnnYYykmZRVsbogx8Jt6Hb47DTlmgkTthhBBwaw6WMgsKNYK94NW7q2wUlhxJekKOWU51QbInzT5hBlNZ2DAwIyzM9j+YDu1rGoRMSgC/0Zd4P33ITiY+NXziCl8ScM0eBRcg2XuKZzxgg51ujCy/ki6+XZDb9DT9aeu3Ey9SX///myJEigj1nJruvp0pbl7c7Q6rbH6WCk+EZcXR1JB0jtVmWRiGSpTFfmafCr0FcaAP8w1jP4B/Y3VhdPxp1l5cyX9/Puxved2jsUco//+/tgobCjRlmBpYkl6STr1HOvxIOOBsTl9athUVt5ciRgxBoOe/o8Ep2ubAR+QH1KXAk0BUelRHI05Sh3bOjhaOFKgKaBALSgP/Z55XKV0qkquQiwSE5cbRxPXxvheeoS5hQ1n/OXE5MYQaB/IFG1DaqzbQY6pnkWdLegZ/hHTmkzD1sz2neNXwmAwUKAuYNXNVSy5sgQLEwvaebYjtyyX2JxYUotSjQFXdSIblXO1MLHA0dwRT2tP3FRuOJg74GjuaJRBr3xZmloKyo8Z0YJrdqZAv0opFOiPJgYJ/jliglK0BJVbUTeoA0Hdx2Lw9+dUwmm23t/KjZQbxjnVsqrFgIABDKs3DCcLJ7ZFbWPNrTW8zH9pPE8gBD+96/Rm16NdRuNasQ4QgbwCChfD+K6wuSFcHXGVYJdgI9MhtTCVE3EniIiN4GzCWYrLi3E0d8Rd5U5WaRYv818KAaJ/HwYGDqR1rdbv7Hm4n3afb699y97He7Ezs2Ns8Fh+fPAjzkpnLnfcg4lHbVi9GiZM+MNz92/CYDAw48wMll1fBsC0JtP4rsN3/7i6UZmwHVF/BBu7buTI8yMMPDAQF6ULmgoNL6a++FNUvv/wfxf/BRp/EjPOzGDVzVXcHXsXf3t/evzcg3MJ5yitKGXDexuM+s6/RWXj5Bctv2Be63n/7Ivm5QV9+8KSJX9/jGqQmJ+Iz1ofvmj5BXNazmHE4REcjz3O+i7r6b2vN/v67jM6c8oXyrFR2OBj68PznOfcH3cfJwsnzsSfIXxnuNB0KZIQXjucozFHWdJuCTOazah2vw8+PciIwyNwMHdgf9/91HOqR0l5CSfjTrL/6X6OPj9KibaEQIdAY9CRXJBM5586c3LwSdbfWc/h54exMLHg2shr1HWsW2X8Um0prX9oTUphCjdH30QlV7Hu9joWX1lspDbVc6yHo4Ujdgo7fnr0EwA/dP+BDyM+ZOgtDVvq6/mk+Qy2Rm1FU6GhrUdbvmn/DXX+VweVqYoCTQFNajQxcmxFiDCVmjK6wWimhE1hzoU5RtWXA/0PUKGvYMfUdgz5XyQXPEX06WOgSC48uEylpvTw7cGdtDs8ynyEg7kD/QP6I5fK2XJvC6UVpXhae/Ik6wk1VTUZXm84Bgzsf7KfJ9lPqux7JRVELpVjq7AlrTgNmViGQqagQF29OZZYJAaDoB7/JmRiGeYm5pSWl1KuL8dEYsLoBqMJdQ2lllUtllxdwoUXF7BR2JBWnAYgyBDWHiJQrS5dYlXKfmYGpFH0NcikJmBlBd9+y64aeQy58jFSkYQKvbDoONf3KDV+PMTk9K2c9sJY7UnwXouqeXsGz67DSe/X8zOTmXF1g5aHzhJGddW9xb2vbPR3s3TDw8qDmqqaJOQlEBEXYZQMfjPjXAkvay+8bLywMrXi8PPDxoqSRCTB09qT7FdxXNklxz+xBANQZ20d4vPijYunMJcwojOjESEiP2AHXS6P44oiG7UUZHqY/tiKxUH5xs/q4t2FoUFDCd0cajyHp1+2IGDXGWxnCsdgQMAAUotSiUqPorl7c07EnQDAVAdtXoDMVMFRN2HB2ecR7D4AB/1gcG+hkvEuVF7LAOblULAYmoyCO66w9RBsDRZ8A9omwLaGYspMRJhKTKv3IfkVShMlYpEYdYVgNFbZt1Ip1SsSiXBVupJWnEYHzw4MqjuIaaemUVZRRi2rWphJzbjeKwJsbWHXLhg0iINPD3JhWm/WnISNLcwYd7mUfEsTDgbJWO9XwoMaUiQSIfttb25Pvjq/Sr9QJSrpN04WTq/9fBR2WMmtiMuN41T8KUq0JcYgdEX4CiaFTkIqkVKqLSXs+zAeZT0y0i3f932fLe9vwc7MDoC9j/cy9NBQWri34EC/A0TERjD44GBAaOpVyBSkFKYYt6/vWJ/HWY/R6rXGLHnUFhmici1BK4R9r8SCSwuYe3EuRwYeoatPV+Jy4whaH8SIBiPok26L98cLiDvyIzIPLwo0BSy9tpT4vHg+DPmQfHU+Pz38iSJNEU20jmSkPueJqwnqP6gygVAxqFT9k4llQjUGg9HRWl2hplhT/Nb9oxJmUjNUcpXRfyijJAO9QY+NwoZQ11DaebSjq3dX6tjX+cO5vBMxMbB7N7kHdvKwMI5oLwseNnIn2hEelr00VtnMpGZo9Vq0ei21rWsLvj/mDlxOuszlpMuU68pxs3Qj3CucEOcQYnNjOfTskNGToxLGoPnNirQBHqyHW+4SxncDzRwNN1NvGqsWUelRiEViGjo3xMnCiaSCJB5kPEAhVfC+7/sMDBxIp9qdfre5/reIz43nu2vf8f2979Eb9IwNHsvcB1a4fL0G0tLeKSv+fxqPMx8TvjOcV0WvqKmqydlhZ9/JVviz2BW9i+GHhxPuFc7ePnu5lHiJHj/3QKvXsrrTaiaHTf6XZv8f/i38F2j8CVRyir9p/w2fNvuUxZcXM/v8bKRiKSPqj2BTt03Vblf5vrmt5vJV66/++UT8/aFjR1ix4p+P9RtMOTGFHx78wInBJ2ixrQXfdfiO9XfW465y5+zQs4hEIkGbfJECezN7cstyufDBhSp8W7tv7cgpy8HZQsiaDggcwJpba5gcOpkVHVdUm5WJz42n776+PM1+ytrOaxnZYKQxKCnTlnE6/jT7nuzjyPMjFJUX4W3jTWxuLBKRBCcLJ3r792b1zdUkTU2qtrE8ozjDyFPXVGgoqyjDVelKblkuShMl/QP7c/DpQTZ320y7He2wU9jhpHSio1dHNl5aTsMUA1e8hMzbuIbj2Hh3I7WsXvPbRYjo4NmB9p7taefZDgdzB0YfGc2p+FOEOIdwJ+0OMrGMpI+TsJCZc7R/AwYejmdjQ5jU5fXir61HW7b32I6rpauRO/7FhS84GXcSnUFnXJC4WLgwt/VchtcfbnRlTS1Mpf6G+mSXVeWK28htjBrz4V7h7Ou7D6WpkplnZvLz4585N+xctVLCJ+JO8DTrKX72fmSVZJFVmlXtYq06VDawgxDE1XOsh7vKHa1eyzdXv+GqxyKaHLqF6JfDxm0e2sMnHeGsFzjpzWifKOHnmkXUkFjT1KQ2u8oFydtgp2CiMgQVMZMKKJeCvZk9dmZ27F7wlMia8ElXGRKxBHOZOZ7WnpRoS8hX55NXlve7Gd/a1rXR6rVVFHrkEjlzW89lQsgEuu7uyu3U22+5atevsOXs/EQeZz0mbHMYphJTfGx9eJb9rErg4mzhTFpxGi0dw4jMuIlzoRBsFMiF15vKQ28iPA5O7YTakyHeVghIZRIZhZpCFFIF5bpyY2DjrJaSJq9ArIfv0gKZuvkRO4Jg1Ptgq3QgV51LXfu6PMt5Rkevjvzy/BfMZeaUaEvY+N5GxkUIyZJlp2DUQxlfNteyujE8XS04rh8KgLENx7Lp7iYiBkbw7bVvuZR4qUqQZi41x87cjuLyYsxl5kZK5ZswlZii0Wlwt3RnfMh4XuS9YPP9zRgwEOQYRHuP9kRnRHP2xVmmlNRl5XcPaTfLmRvKAiF58AIu/Ajek8BcC8Meihn0CJwK9Ty3E7GjroGdQaCu4YibpRt30u5wZMARnCyckIqlHHl+hI13N5JWnEan2p2Y1nga7T3bV0mGFGmK+O7adyy6LDSY6g166jrUZXXn1bSu1ZrN9zYz5ugYZGLBiE4ilmBpasnOXjtp69EWgEsvL9FjTw/cVe6cGHyCYzHHGHdsHN423qQWpWJhYmHMkFf2cdRzqkd+WT7ZZdmMfyjnu93ZpCyZTY2Zrxtd9QY9vfb04sLLC9wcfZOxR8eSUphC9IfRHD6zlsFdP0N35DCSbkJPzOfnPmfXw128nPqS+2n3Cd4UzMZWyyibO5vP2+gwt7ChgdiVuSvuUy8Nvuxvx9nmLuSq88gtyzVW6t6ETCzDRGJirEpo9Vq0Ou2frrRamFhgb2ZvrKJayQVPmjelid/8vfJvcqn87aRVSgrs2QM//QT37oFSKZjaDhoE7dqBVAg8Dz49yKqbq7iZehO5RE4NyxqU68tJLkgWZNpFYjysPLA3s6dEW0JGSQY5pTnG71flvop+/WfgNeVNgsToxyMywObDUC8DwsZLUMlV5JblYquwpZ1HO2wUNjzPeU5kYiQikYiOXh0ZGDiQ7nW6G/1+/g4qs/19/ftyKv4U6tJChpX68OlnR6tIOP/fhsFgYOLxiWy4swGRSMQXLb/4x+uhM/Fn6LW3F/72/hwbeIyHmQ8J3xGOTCLj1bRXWCuqcR/9D/+/4b9A4w9QXF5MvQ31cFG6cPGDi1x8eZEOOzpgYWJBoEMgFz64UG3mYWHkQr648AVftfqKua3n/juTadAAmjaF/1XvMvpPkFmSiecqT1yVrmh0GkYHj+ari1/xYPwDAhwCAHiR9wLP1QKnf2mHpXzStGpTet31dYnPjUddocZF6YLSVMnY4LFMPzOdXn692NFzR7VlTXWFmiknprDp3iaG1RvGui7r3uIBq7Vq5l2ax5pba4wPPi9rL7r5dmPNzTWs6rSKiaETq2yTUZzB8uvLWXt7raC5rarJwX4HabylMSKRiNnNZ+OsdBbM/j4rwu5bOwwGA2qdmnVd1jH98AQ8c+CFm3mVh23lQ8ZcZs7YhmNZ3nF5lc81GAwMPzyc7Q8ETvSQukP4tuUCot4LpvOtPGa2F6gnIpEwzvw285ndfLYxELuadJXpZ6ZzI+UGrkpXXhW9wlRqalS2CfcKZ1jQMMK9wtkWtY3Z52YbF3qeVp4kFSbhZ+eHTq8zVjpMJCa0rtWart5dKdAU8NXFryj7vMzYAP4mll9fzlcXv+LkkJOMOjKKuNw4RIgIcgxi8/ub0eq0ZJdmk1KYwov8FzzNesovz38BhB6UkvKSahcnb8K+VISzJgi5xSjkeg9My+KxT9tKpEs0KZbQJNuUluWuHBEn8NRZ2MZOYYdELCGzOKOKEpi7pTvnlrwiwgemtn9Ne1GaKAXDKmtPPKw88LT2xMHcgU9Of4JULGVcw3HMOjcLqUiKn70fz7OfV0szqzzfTuZOlOvKBZWq3+mpeRdEiPC29SavLI+CsnzKDVrCUuCWKzgVQ56FBLVIh43chuLyYsr15fiJHXnyZQaDekHnL7cztN5QozGoCBGTQiex5tZrDfk1x6GTYzNqH73KllAZYzppUcpfGz2u7byW7+99T0ZxBuklr/1DKmlUACd2QHi80OA+qI/gjq6VQgv3FjzIeICtwpZnE5/hv87fqNpmKjZFo/+1h+iNvoPKfgsTsYkQSBkMVRZo1cFMZoaliSUZJRkseeDAlOM5LDo6A1ulA7Zmtqz/eTpXF2fQbhgMnrqFEfVHYNBVsHxRVxwPnWFAjAmyMg1PfG2Y2CSPi7UM9PHvw6gGo+jg2QGJWDA72/NoD8tvLCcqPYq6DnWZ1mQaAwMHGu/nZdoyVEtUhLiEcDP1JjKxDI1OQ3ff7kSlR+Fq6cq15GtGJbBKBbdZzWYxv818ZBIZjzMf02lXJ0SIODnkJJ+c+oST8Sfp7tOdwzGHq+x35ThzWs5hYeRC3PLg6jZI86tB6I2qXiiFmkJCvw8lX51PRkkGJwafwNfWl4WXFtD5820UDO1HZrP6ZJZkEpkUSVR6FIEOgcTkxKCuUFcZq9lLOLBPkCXu3deAIbQR/vb+b9GUHMwdkIqlPM9+zvWU60QmRnI//b4Q+P+aCKlrX5eWtVoSlxvH9ZTrFGoKMZWY4mfnR22b2rgoXbAwsRAoX7/SvvLV+RRofv2pLqBQU/jO60MmlglBh8wCqxI9qswCVOn5WGnFqFw8sQpoiCowBJVSqE4Vago5m3CWiJgIctW5tHBvwbiG4+jp15NXRa+4l3aPGyk3uJp0lcdZj433rTfpfXKJHEcLR/QGvdGTxkJmgZvKjRd5L6okHyqn3T0hCO+KkVzz8sLeWo937STiy85zPPY45bpyWtZsycDAgfTx7/OnKGl/hGvJ12j1Qys+bvwx33b4lsKIg2z8ujfLu9qSUZ5LL79ezGw2k0aujf7xZ/1d3Hl1h867OpNdmo23jTdnh539XUPjP8K9tHt02dVF8KgacpJLLy8x8shIvKy9uD3m9n/Bxv9D+C/Q+AOMPzaendE7eTD+AaZSUxpsaIBWr8VMZsbdsXdxVjq/tc38S/OZe3EuC9osYE7LOf/eZBo3hsBA2Lz53xvzDYw6PIqtUVv5stWXLLu2jDHBY1jR6XX1ZM+jPQw4MABPa0/iJse9lVnyXetLY9fG7IjegZXcChAydBNCJjDsl2GEuYbxy4BfjH/7LXZG72TcsXFCM2K//dSxE0rojzMf89HJjzj/4jxdfbriofJgS9QW+gf05/Dzw+SW5aKQKpgUOok+/n1wMndi6fWlfH/ve2RiGZNCJxHsHMzAAwNp5NKI269uo9PrSJyaSFxuHG23t+XZxGdMOTmFU/GncFW6VsniV2Z9hwUNY3TwaFr+0NKY3bo5+qaxQa8SF15coOPOjtSyqkV8Xjwi4IMoESsjdIx+H/YGvn6Qbe62mVHBowB4nv2cz859xqFnh7BT2JGrFpSSPmv+GWMbjkVdoWbfE8ERuLq+gUrX1JNxJ+n+c3fKdeXMaDqDMQ3HEBETQURsBBdfXjQGJaMbjGZw0GCauTWrEnCsvbWWySeE8nMduzq8yHtBU7emHBl45J0ZN981vrwseMmsZrOY12Ye+57so9++fgBGd/j5F+fjaumKu8qd0pcSDKUzMYhEVcwfo0Ufki+JrvYzTCqE57j2V++KSkhFUr45YyCjlj232/vxNPspGKC5e3OKtcUUaYqMyjVpRWlGCtTvoZJ//7t4I9ioPJ9jgscQ7hmOr70vzubOTDs1jR0Pd1TZzMncifSSdPz1tkgzc4h2AktMKDSUo9CCX6mCaCsNOgw0c2/G1ulXuBRgzshLhYhFYqPZZg/fHkxvOp3m25oLcxaJKfjRFYuEZNY2lbC0jyu56jyKy4sZFDiIXY92EewUzA89fiBkk6CS9uax+OS+gmt2ZWSZQYtEOBqqIruiAIVEQZmuDB8bH2JyBfnKIk0RGp2miqJSdcfQztyO7JJs47H0sPKgoXND9j/dTw1lDVKLUmnv2Z72Hu25knyFozFHsZZbU1xejFavZccB8MmXMPnLhvjZ+eFn58eFZyc5OeYio3qIsJvwKUvaL2HKySmsvbWW7T23M8SrJ/zyC+zYwZas04x+38CpXyxY51vMg2AXBjUczvD6w/G29cZgMHDx5UWWXV9GRGwEjuaOTAqdxIchHxKdEU3b7W2JHh+NSCRixpkZnIg7YfzuD68nNN9ui9rGsvBlzL80n0JNIeoKNY1cG/FTr5/wsvEitTCVzrs6k1yYzKaum+i3v1/V61psglYvVANCXEJIKkiida3W3L+8j4+vGvDIh+T1iylRyo2qSpklmcRkx/A89/k7RSFsFbY4mDtgwMCz7GdGKWgbExV5mgJkiPn4pohFp/XomjdFtvcA3nua0apmK7Z0F/paXhW9MqpBRSZG8jhL6Ltys3SjVc1WaCo0HIk5gggRCpmCPHUeMrGMJm5NaOfRjrYebQl1DTVWX/8M9AY9RZqiKsFHgaaA/Lw0Cu5cIf/+DQqSYykwhfyajhTUsCPfSk5BRTH56nzyy/KrLv5/e13+pgG/kl7qrHSmpqomPrY+uCpd0Rv05JblklacRkphCleTrwoy3W+MU11/l6U+iAb69Yj1Igzi1/c2tcNK+jUMo39g/7/tJVUdKiXLa6pqcuGDC8K9vFcviI9HfecGO6J38t2174jNjaWtR1tmNZv1VgXv/xb0ej0jDo9ge/R2JCIJi9st5tNmn/7t8RLyEui0sxOFmkKODz7OxIiJ3H51m0CHQM4MPYO9uf2/OPv/8HfxX6DxOzgRe4IuP3Vh/XvrGdlgJK1/aE10RjRavZZLwy/RuEbjt7b56uJXzLs0j0VtFzG7xb+nDgUICj7u7rBjxx+/92+g3Y/tuJh4EQ8rD4rKi4iZFINKLnA7S7Wl1Flbh+TCZL5t/221N4eaK2syNGgoWp2Wb699S5tabbiafJV+Af0YFzyO939+nxqWNTgx+MQ71bmeZD0xyiuu6rSKR5mPWHNrDR7WHqzqtIou3l24nnydplubcn3UdRo6N2TqyalsuLMBlVxlVCoxlZgyNGgoS9ovMWaMtt7byqijo1BIFbTxaMPhAYeJiImgx54eBNoH8iznmdGxW12hpkeuI6fNMzCztsNWIZiZLeuwjIknhMqJs4UzqdNSq9ywn2Y9pcmWJtRzqsfNlJtMtOlExbEj/K+RAbkWSn4tfolFYiY1msSqzqvIKM5g/qX5bLy7EYVMQZm2DCu5FbOaz+LDkA8xNzGnTFvG3sd72XRvE9eSr6EyVRmb2UGgEH0Y8iGtarVi0vFJpBal4mbpRkxODCs6rmBCowmIRCKKNEXsjN7JhOMTsJZbk6fOQ2WqomPtjrzn/R4KqYKJxyeSVZrF0KCh/PzoZzp4dWB/3/2/K2f50YmP2HJ/C762vtwbdw8QpJPPvziPylRFZmkmvra+WMmtOD/sHDO/f8idpBL0otd0OgM6crnFQ6kgyynVCdQysQ70Euj8HGrnQ6IKEqyFn0Vyfre6UNmXYi4TKmRpxWn42/njZ+/HsZhjaHQa+vr3ZUjQEHr83AMTiQl+dn5EZUSxuO1iPjv/GQCfNf+MQk0h39/7HoCm8eXEOMp4pajamP7mgs/SVHCLftOZ29HckcySTAwYMNWL0IgNVRyxx9l24oes04h0etQygV617RC0xQPnaKHiMPjAYH569BPftPuGTfc2GasKW6M9GXFQeM+cOU3JaOTPpcRLxObGsrrTaj46+RFSsRRXC1cySjNQV6ipmy3lmXUFH0TBzCswpw3srfvH3jEgVEG0Oi1ZZVlvZcnnt54vBEFbm3M//T4GDMxtNZdPm37KgP0DOBZ7DD87P7Z231rlPrr9wXaG/zKcDxt9iLulO117zaKocQM2jAziafZTnmY9pai8iNSlsDEEvm4jxcvGi+c5zxlVfxSTwibha+trvFY3X1jGmMjp6A83QHT/PsVKU/b4G9gSUI60WXNGNBhJ34C+WJhY8Cz7GStvrOTHBz8iQoS/vT/xufHkzMwR+peA0/Gn6ba7G+W6csQiMVamVsgkMmpa1eTIgCNMOjGJ/U/2Yy4zR4SI9V3XMyRoCPll+XTb3Y3rKdfRG/TG68Td0r0Kvez3AjeFVIGjxa8N0WYO3H51m+LyYkq0JfTz78eYhmP48sKXzNrxgi5iH6TnLxnn3HFnR1q4teBy8mVEBlBq4NLl2tS/Gqno0EwAACAASURBVAczZ8LChRgkEiYfn8zWqK309e/L1eSrxmvLx9aHlu4tqedYDz16bqXe4tCzQ8aeh/pO9eno1ZG2Hm1p7t4cM5nZW/P/W9Bo4MQJ2L0bjh6FsjJo1gwGDhT6FR1em7TF5MSw4c4GtkVtI1+dj6O5I6ZSU9KL0o2VykrxC1szW0Gh7NdetjcrK5W//54R5O+hbsVKbAhFxOt7m1gEIV4qvvnA93e2/OuoFD64/eo298fdFwKYtDRwc4NVq2Ci8KzS6XVGP6u7aXdp4NSAWc1n0duv979irvdXcSXpCt12dyNfnU+gQyBnh541el39VWSVZNF1d1eeZD1hbsu5fHr2U6xMrXBWOnN22FlclC7/8uz/w1/Ff4HGO5BblkvgukCCHIM4MfgEU09O5X+3/4fOoKuSha6EwWDgq4tfMT9yPovbLWZW81n//qTCw4Um2r17//WhL768SJsf2xDuGc7phNMsabeEmc1nAsK+jTg8gl3Ru6gwVHBq8CnCa4e/NYbTUicmhU5idovZ+K71JS43julNprP0+lK+bPkl/QP702lnJwBODTmFn71ftXMp1BTScUdHbqTeQCqW8mXLL5nRbIaR0lChr8DmGxtmNpvJ5y0/Nz5IQVCW8bPzIz4vnoySDFyULvT2600f/z6IEdPiB6GnxMvai8ySTKOsZ6BDIKPqj+LTM5+ikqvo4t2FU/f30euumg2hMKvZLPY83kOJtsQox+iidDF6eIBA1Wq8pTEWJhaEuYSRcGIXe3aoyVeIaDPUQOqvhRwbhQ12CjuujrzKhrsbWHJlCRX6Cir0FShNlMxoNoNJoZNQmip5nPmYTXc3sT16O/nqfDp4dqCNRxvmXZiHRq9BjJjF7RcTkxPD7ke7KdWWIpfK+az5Z4wPGc/CyIWsubWGYfWGseG9DShkCrQ6LfJFcta9t44Q5xCOxRzjyPMj3EsXAgSFVEFZRRlixPSo04PdfXb/YUYyIibCqICU/HEyNSxrkFaUht///Ohm3wzz/FI2Fl9EqheRsM2SaT13km35tpOrhkyuS7tV+xkyg5gOMXreSzal1XMNci3Ungpj7ov5voGeYU9kRNdWEm2S/1Y1ojIIkIqlmIgFadF3LSTMZGYYDK+bXCvRs05P6jvVZ9H5eej1esykcpxta1Yx8gtxCWF5h+WklaQRnR7N0utLsVZYU6gurLZx2lItNF9nmAvBlJO5ExklGYz2GcDWmJ/RYWDhOZh9RUTZ6mWcauJAr2NDkIgkguSnTgMGcCiBjKXweRsY8kRCsp2Mzv3K3+nXEJYMn9wUMaOdAfNyCMqAlzYizvxooObHVFFBW9N5DTuid3Ar9Zbx/8xl5jhZOBkXopXH900KVWWjvb+dP+nF6bSp1Yb7GfdJzE9EKpZS+FlhtdfVprubGHdsHNOCxvNt7w1cnDWAdl/vBoR70aADg5gy9WfKvGvRtvVLgCoSvZXu4352fmh1Ws69OMflEZcJzBKh2n8U/a6diJNTeOWgYLNfGQeCFTRsNYAR9UfQ3L052aXZbLizgQWRC9DqtXTz6ca0JtNoVbMVm+9tZuyxsSxut5i1N9eSWpxqnHebWm3oXLszkYmRnIo/ZZRYNpOZUa4rf6ealVwqR1OhEfoEEGNpakm+Jp+hVq2Z+N1FTvtKGH1bh/XLDOQ2wnem0pPp0vBLnH9xnvmX5hMxKILpZ6az7IoFnS4mw6tXAES+jKTVj62Mn/fZJZj33AlpUTFPNywk0sfUWLGolOH2sPKgq09XGjo3BASayrkX54wVDYlIgonEhMlhk5nVbNb/x955R0Vx9u3/s52l9yYoRYqiiAp2xV6J2EvsxhLT1MQSk8ckJiYRTaIm9t5774pdsWNFBVEUFZRed4Ft8/tjZJWgKc+b5D2/8+Y6x8O6O3vPvTP3zHzrdf3XZSrl11mZoQydUYfOqKNMp0UXdxrdvt2UHY9FV1KMLsifsjYt0UU2Q+dkT5mhTAyG5dzj7OOz3M68XUFFG8T7rJPayUwDbK20RkCouC/jy9el+lJKjaWUGcooM5ahN4rN4r+nefJrNDbsRUXle5u9lYSdn/61pUszzs5gyrEpHBxwkI7VxWcr330H06eL59++YvWAIAgcf3icGXEzOJoiNmZPaDyBIWFD/nG2JqPJSL9t/dh2dxtyqZy5HefyXsR/x46l0Wnos60Ph+8fxsfeB3sLezI0GahkKo4NPmZWYP8X/zv419F4A97e/jYH7x8kYUwCZx6fof/2/sgkMkbXH11BiRrEi3fqial8e+ZbYtrG/H1czlFRIJPB7t2/v+2fgCAINFvZjFJ9KTqTjqTsJHrV7MWGniIL09L4pYzaN8osLHb7vdvUdKlZaRz7GfZ83vxzJjadSGp+KtV/qY5SqmRCkwl8ffprVkavpJ1fOzqt78TTwqfs7b+3EiXw5bTLfHjwQy6mXSTCM4KbGTcJcQ1ha++t+Dm81HzourGryGRhX40dd3egkCoIcw/j1NBTqBVqjCYj55+eZ+W1lexI3FEh5Q2iMTKq/iiGhQ3jnT3vEFktkvld5hO5MpLTj09zbPAxOq5ux0fnTPzYFLoFdeO9iPdov66ig7Wmm1g3/yrD1ZbeW/hlYiSrt5u4UgWi+4mMPSDSpibmJOJj74NGpzHTfVoqLJnQZAJjG45FKVOy9c5WFscv5tyTc7hauZpVu58WPqXd2nboTXpUMhXHhxyniXcT1txYw4g9I8x10CcenUAhVRAdHI23jTcLriwgyDmIHX124Ovgi88cH/rX6s/3bb9n592dvHfgPYp1xfSq0YvzT8+bjecqNlXoHNCZqMAo2vi2eSOHfnFZEQ4xjpgEI/Pl0bx7xxJu3GCp+g6jogRi18Cp2rZMr1uISg+N9D8jVUYg8FKOtzyjIcv5mJbNBlC/lnisYx/EsubmGvN5a+vXFutjZzC4OXNQnUaPFDUemVp+aQgH18POYNgVDFH34KQP3HfEnPGQIkUqkVYQ4/o1lFIlKrmKIl3Raxs/fw9yiZzOgZ1JzE4krTCNr1t+jaXSkjH7xyBBgkwqY2rzqcy9NBd9Xi4lClEixPSGwGKTxxC3AuqNgmu/Cs5JgEHXYU0YjLgCFzrXYlKiEwN+OYXnt45YW4lZq2VvLaPHlh4cCv0Bt69mEnork8ihYn+ISSbBgMCVJZBtCR1fYaS2U9kR6BTI5XSxIf/X7FzlWTE3KzcyNBlYK63p4NeB7YnbAdEhWR29ms9PfE5SThKR1SLxtffl/NPzJH6Q+MZjOPfCXDYsH8fFZTDiizCWTbsGiP1cXj95sWhNLtVxom7vbKo7Vif5w2TyS/NJzE7kbtZdMfuRfZcLTy9UENRztXKlhmMQXTPs6XAuk4CTN1EWl3CtmoplIWVcaFKV5vW7E+EZwZBdQ6jrXpfUglSytFnYqezQ6DVYyC2QSV6KML4KmUSGt503LpYuPC54TIbmpfiji6ULbXzbmAVOAx0D6RLQhdkXZ+Nn78fToqfmTIm3rTemEi0J07JoMwjOrYD4cX1o9ONm7uXco86iOoyuP5o5HedgEkxEb4rm7OOzGEwGNpZGEfX1JkpynjPjxgK+O/Odeb2vPGHHA1khFwLVxHvLydMXIpPICHQKpJZrLfzt/Vl2bRlKuRILmQUP8x8iIOBg4UBVu6pka7NJK0ojwDGAyGqRSCVSdKYXRvsbDPjfe/+PXle/B5lEhoXcArVCjUqmQi6VmzNR5cxQJsEkCsYKRrMjUT6Xv2oe4WVzsJY2gNdka2Veq+gX0o++tfr+rkDt7+F06mlarW7FlGZTmN56uvimySSyU7ZsCStX/ub349PjiYmLYdudbbhauTK+0XjeDX/XXMXwTyH2QSw9t/SkSFdEuEc4RwYd+a8cV4PJwOi9o1lxfQUAm3ttZsqxKWKwYfAxApwCfmeEf/F34V9H4zXYcnsLfbf1ZX2P9YS5hxG+JBwBgQjPCI4OPlohCicIAp8f/5zvz37/2gbpvxQ9e4JGA4cO/aXDljeXvhf+HguvLGRy08nExMVw/d3r6I16mq5oyrCwYdzKvEXckzgKPi14rQKn+ls1M9vONNPLlauTNvFqQk2Xmqy6sYpDAw5R37M+3TZ142LaRTb23Ei34G5kabKYcmwKK66toLZbbX7p9AstqrXg6rOr9N7amxxtDqu7rSY6OJpzT84xcu9I7mTdwc/Bj8+afcb93Pssjl9M0gdJnH18lqMpRzn68Cj3cu4hQUJ1x+o8yHtgjk7JpXLkEjmLohaxI3EHpYZSDg88zIZbGxiwYwCTm0wm9/IpthZeIF8tbr+z705zE66blRstfFpw4uEJ7rx3h5H7RhL7IJbjg49x6oMoJu7OZkMtGB4NZQrxITigtljyoparzdFXpUzJpCaT+Ljxx6QXpVfIXrT1a8vo+qPpGtQVpUzJweSDRG2IwoTJTOkb4hrC1ONT+e7sdwwPG87CqIUoZUrSi9LZcGsDq2+sJiEzAQcLB3PJxuZem4mJi8FOZWd2aroGdWVB5wXsTtrN+wfEdPvcjnN5lP+Ifff2kZybjEqmopVvK7r4tKeLUB3f+zlw4wbcvAk3b9KqSza33KDhcxn77zeEOnUw1gqhgWYOiWVP0b6om/ax8yE335Z6xkVITWCSyhBJdU0UF7yLvb+CUwU3kEgktPdvT3u/9ow7LJZTlZeajM6syvcP/WkdnUeEZwQLe64g6osAzvOEt7X+7BLukDbThMRk4tMoC36oX8oCYyfUteuxUhvHmSdnsZBZUGIoIdInkrjHceZ+BbVcTamh9C8xPP5Ir0d5idirJWDSFw6YCRNqvcjL/0EnWBxR8XvbD9nRLKEA50ngZOXMvv778FV74FizPpZjcqnpXhsXKxdmOfSlbvxILi4FtR4G9pVz08mAQqoQiS0S8zi9CjoOgMO/eh7LJDKcLJ0qMCQJCEQHRZOjzeHsk7N80ugTfrzwI3KJHCSYo/dVbKqQVpRmZiM7NOAQK6+vJFOTyfEhx3/zuBya0J02s3dh8xk8nJSOh40Ha26sYciuISw9ZUeLGwV8MKcdR1OO8mjco9c2ls4+P5tPj33Kiq4ruJlxk8TsRB7lPyK9OJ3cklyUOhNvJcGgm9DxhXbjweqwtg7sDQSDUmS3UyvUPCt6hkavwVJuSaRPJFGBUVS1rYpUKmXdzXVsTNhoPnfDwoZR1b4qs+JmUawvNq8DhVRBI69GaPVa4p/FU8e1DlZKK849PWfuBXt17QRlmnjkKKHOcwGHUglC+/acT7tAmbGMWi61zFm3EkOJWQPESmqBXleKTl7pcPxXUEqVyGVySvQia5uLpQsOageUMtEhV8qU4mvZy9fmz6TK39xOlZGN8vJVlOcvoUzPBAd7cprW436IB/dVGh7lP+Jx4WNyS3IBzI66wWRAKpFio7RBLVej0WveqBIvQYKtyhZLhSUKmQKTYMJgMlCiLzGzEf7Ra91F7YLWoEWj15ivA7VcTSe/DkTfKqPTzwd53vxtxkeMRQBMglg2hQR6tsniVOYa9ibtpcRQQmOvxvSr1Y/eNXu/ttfzt5CpySRsURiBToEcHXz0pTL4kSMiM+W5c9C48R8aKzknmR/O/cCqG6uwkFswJnwM4xqNw93a/U/N6X8CnVFH983dOZB8AKVMyeKoxQwNG/qnxxEEganHp/Lt2W/xtffl1NBTtF/XnvzSfI4OOmomtvkX/yz+dTR+hWdFz6i1sBZtfNuw7K1lRCyL4EnBExzVjsSPiq9QRygIAlOOTSEmLsbciPu34u23xfrLEyf+siFNgom6i+tirbDmbvZdetTowcIuC6m5oCZ+Dn7cyxGbP88OO2sWrdNP1VcaRxAEpF9LWRy1mFH1R5nfa7y8MRfTLvJT+584/OAw55+eJ254HNUdqzN452C2391Ozxo9OfLgCFKJlG9afcPo8NEvb5xAQWkBw3YPY2fiTrxtvXlS+AR/B38e5D1gV99d2KhsWHNjDatvrDY36FV3rE4b3za09WtLK59W7Enawzt73kFAYGffnRx/eJyFVxaKPRkyC+QyOVt6baGRVyOcZzlT1a4qJ+zGEZI8Dku1DXK1Fa5WrtzMuGlWZz497DTB84LxtfclISuBzdHrkY8bT7eTz5neHL5oBS7WrlSzr8aTwicUlRWh0WtEOkyJDD9HPxKzE2lYpSEAF9Mu4mrlyrCwYYysNxJ/R3/zMdh6eyt9t/VFQMBJ7cTlkZdxs3Zj8M7B7Li7g5ntZvJJ408qNfiVU+WuubGGtTfXklOSA4iR6IKyApzUTvzS6Rf6hPThh3M/MOnoJIaFDWPl9ZXEDjxCW4uacPMmydeOsT/tOPuEe5x21qCXQc1M6JJlTxeL2jTxb8WP7il8mbkZiURK5oRMjqQcISYuhivpV5AgoUtAFy6mXeTd8HcJcAxg8q55eJW+jbt1BDVK8wiIncJnUanI1VbM6zyP58XP2ZiwkbOPz5p/z5eRX2JvYc8XhyZjqdXjH9QImUTG6XfOUrD0FxqVzSdHm0OJvoSiD9I4cXABbe5OYfo9Lz7b8oxslRHfcRJGFwWy0OkhHtbuJI9/iOpbC6wUVjioHdjUcxOt17SmedXm3M66baZivfLsitkZUAkyyiT/XQ33r+GkgTw1WOqg+A3VC/GLYFYT2BQq/l9pFCk0374l0teuDqNCn8rQmzJW1TbS9YGMKefkSMvKaDgSBmZ6sM75GUjhixZfcD3jOvuS9vFzbC3u+A/nWlV/inmAzvYgSdrD5vHK+5YAWlRtYQ4clL83qt4ollx9SfM9su5Ill4T+1nquNUhKTsJo2CklW8rSvQlVLWryroe637zuAgjR/Ls2C6qDMkmKiCKJW8tocPaDmgNWjoffMDMo/D1gU/54cKPBDkF4WHjQV5JntgQXJZPYVnha2mZLeQWqOVqLOQWZi0Ig8kAZTps8zTYFemxMECJHDKtxGykTik3Cz2+6kj9FXhVWLPceJW86NYwIeBm4YymIJvmj+FekBMPTDm092+Pt613BeP9Xs49diXtQgIIrzitcomMajlGGj6FUJknlp98SmJ2ItefX+d6xnW0ei02ShsaezWmRbUWBDkF0Xtbb9Z1X0fH6h0Ze2gs62+tp2tQVxZHLf5NA9RoMlJYVkheaZ6ZVjq/NJ+80ryXrzNTyb9/i7z0FDKNxWTYSsi3kqGVVqZ3LservSu2Klv8HPwIcgoyi4kKgoDOqKOgrIBsTbZZiLGgtAC9UPl59aZ92FnYEeQUZCYNuZh20UyC8CrcrNzoVbMX3YK70SLbCuWwEXD/PnzzDXzyCbeeall3Mp2UDC1+bpYMauVJrao2gMhkuSdpD5sSNnHo/iEMJgMtfVrSr1Y/etbo+bssVEaTkY7rO3Iz4ybXR1+v6KT07AnJyWIA6E82ez8resacC3NYeGUhOqOOIXWGMLHpxP+x7sWfQbkAn1avpZl3Mw4OOIi16s9T/g7ZOYQ1N9fQwb8DS99aylsb3+Jp4VOODDpSQbz3X/wz+NfReAWCIPDWxre4kn6FW2Nu8cGBD9iRuAOpRMrZYWcrUMMJgsDko5OZdW4WczrMYWyjsX//BIcNg6QkMVrxF2FTwib6b+9P18CunEo9xb0P7+Fq5cr6m+sZuHMgtipbbrx7Ax97HxxiHJAiJWdyTqVxdEYdqukqVndbzeA6g83vZ2uz8Z7tjcFkIH5kPIN2DSKvJI8LIy6QmJ1I7629yS3JpZ57PQ4NPFSJJUIQBA4kH+Cb099wMe0iANXsqtE3pC9zLs4xR6dcLF0o0hXRvGpzlry1pFJautmKZiRkJhBRJYLYQbEA3Mu+R8SyCORSuTliZqeyQyaRkVuaS2r9dSyePZCYFlK+ajmNqSenVhhze5/tbLi5ge2J2/mo1gh6f7GJhonFjI6ClfWga2BXGns1NjcUg5gZ+TDiQ7rX6M62O9tYdm0ZWr0WlUzFxCYTmRo5tVLd+qrrqxi2exgAXrZeXB55GZNgouvGrtzNvsuGHhuIDo7+3XOtN+pZc2MNYw+NNUdOI6tFMrr+aBKfXmfvrpn8xy6KSH0VnO0Xs/2ANT0uierO2NhAaCjUqUNhrQCOepayT3+bA49izQrpEZ4RxKaIx9bd2t1clz+56WTin8XzxYkviKgSgauVK7v77ebxqrkMPTmOE74w9gJ83/RL8seOZuDOgZx4eILPmn/GVy2/YufdnRWYehwsHOhkUZu066c55QNKqYKyL/Swbh33OzUkbFEYGr2G5A+SabayGVXtqjKt5TSKctLZeOIXDpfc4thuR5p0z6ZTMnx3SkbdkUYcSsAggSIVlZrLbZQ2aPVaTCYjvrmQ4oSZ0nNE3RH0DumNk9qJ9MJ0emzpUaE0SyVTEe4RTrGumISshDf2hliXQfEbNLra3oejL573MiOs3wE978DAHrC59q82FqDdA/jiFDR7Alc84KOOcP5XZcq2Slsc1A64Z3hjLYnBKJWA5CVLzi3Z++RJKrOb2ans6B3Sm2VXl+Fn78ejgkdiOdoL49vH3oenhU+RIEFv0uNp7Ukt11qcfnyaUkMpMokMFyuxKVdn1FGiL6HUUGoW9tMb9RhMBs4vNnLbBYZ1r3w8ou/Crs3gOgGyfsMOKQ882FvYYyGzwEJugVL+q6j6a6Lt524fxDfTQPUMHbaFOkrlkOgMN90g+0X1oIXcAr1Rj1Ew4mPvQ1sfkTkrMSexguq1n70fnQI6Mf/yfHOmylppTYRnBLeybqEz6PCy9cLf0Z999/YhIGASTFggR1ViwMXDn9zSPH7YmMuYt2BM07HM7jiH/NJ84h7HceLRCXYm7iQlL6XimjH58p/wTxA++oArHnC+KpwKcyCnLA+1XE2zqs1o7duaNr5tqOtR1xzcKTWU0mR5E4wmI2lFaZQaShkUOogQ1xDRiXvhQJidiVecit+iprVBhUWZEanOgF4OGpWUMqmY7VPL1XjbeRPgGEBNl5qEuISQkp/CrsRd3My4iZXCitqutXFQO5CtzSa9KP1P6fuA2HtlqbDEYDSQXyaW0tZwrkFUQBS9QnoR7hmO0WRkxtkZfHP6m5cO6As4qh0Z23AsvWv2Jtg5GIleL/ZCfPcd1KkDa9ZAyJ+LmOeV5LEzcSebEjZx7OExpBIp7f3b0y+kH9HB0a+tHPj61Nd8dfIrYgfF0savzcsPnj0TyWJmz4YPPvhT83gV+aX5LLqyiDkX5pClzaJXzV5Mbjr5HzPQtXotURuiOPHoBBZyC9Z0W0PvkN5/agy9UU+Vn6qQU5JDZLVIVkavpO+2viRmJ3JwwEEae/+xbM+/+Gvwr6PxCpZfXc6IvSPY238vKXkpjD0kOg+/Np4FQWBi7ER+PP/jP6tE+e67cOWK+O8vgN6op+aCmrhbuRP3JI45HefwUcOPgJc6ILVda3PjXbGMRfGNAl97X+59eK/SWIVlhdjNsGNzr830CalI31heilbdsTpHBx2l0fJGlBnKyCvNo1GVRoR7hjPv8jzeqfsOi6IWIZfKMQkmdtzdwfTT07mRcQM/Bz/crd25lXHLnCJ3UjuhlqvZP2A/tVxrMWbfGI49PEbyh8kVIvuJ2YnUmC82nm/ptaXCTevs47O0Xt0avUnP7r67iX8Wz5KrS3he/ByVVMFbN/XsriWjd+2+bLi1QTSSLF2IqBJB3OM4kYJWYY9zej5nl0Of3nDCX8rsDrO5k3WHxVcXm/dVz70eQ8OGsuXOFs4+PouLpQvD6w6nS2AXpp2cxrGHx/iwwYfMaDvDzNryKtVskFMQF0ZcICUvha4buyKRSNjTbw91Per+7rk2CSYWXl7Ip0cnE1xmi4+1F9u0l83MR7al0Oc2DL4JDZV+qAaksJJuYvo6NBR8fF4bITMJJuLT49l+dztrb6wlvVhsQFXJVAyvO5zR9UcT6haKwWQgfGm4eFxlKh6PfwyLFmF6/z1+bgiftpfi5xLI2u5rCXMPY8bZGXx58kuxzESnJSErAYPJgK+9Lw28GnDsfixZpTkokKHHSNZM+LKPK2cauPEw7yHF+uI3HgsbpQ3u1u4k5ybT0uBN6OMyfvbLxFIH/W/B8vqw+GEIvWr3w6JtR6Zn7WDW+VkiCYFRiWuBgUTHlyV42ROzzXXN5Ux1rzYnl2Nqi6noDDpizsUQWS2Sq8+umrexNErRyn6jxEqA2Yfguxawdr+SVok6+vQGbed2nHlyxpxZGHLPkrHHtdR9DherwLrasKKxBQaJ6bUaIQB9ns8h27HBixK28t1VZAD7s3BUO+Jq5cqD3AdmZ0MhU5gFESVIsJBbVBAcLIcECfYyK9KnFTM72o3lLazNTecgGoefWrZn8PC5LF00Csfm7em1tRfruq+jU0Ans7Mgl8qZfWE2005No+DTyv0Ub4JWr8V+hj2zO8zm/Yj3KD19nC2fvkW3W3psNQaueMKGUAkXmvuid3EkNS+VrJKsCmOo5WqaVm1KfHq8mQmvik0VVndfzYQjE7jx/IbZIP+p/U/MvTgXg8lADecanEw9aTZwJQJIpTK6Bnbl2I2dWOkhsmoLElWF5jHKnZpy2mSlVInOoKPTcytuWmtIswWZCVwNSkKCWuBh7YGV0ooiXVHFTMMLh+HXDGLlUEgVOKgdcLBwwN7CHgf1i78WL/86qB2wVdlSoi8hPesBj26eJunpDW4p8819am4yO2pXqUs1J39cLF3MivFPCp+QkJHA/bz7v6vD86b5uVu742PvQ02Xmvg7+JNfmk9SdhJnn5wlQ5OBrcqW9v7t6RLQhY7VO5qzM3kleYw7PI6Ntzaae5BkEhl13Oug0WlIykmqKAp76xYMHgwJCTB1KkyZAorKmkR/BhnFGWy7s41Ntzdx9vFZVDIVXQK70L9Wf5ERUKHmWMox2q1tx5eRX1bW5/r+e/j6a9HhsH89hfyfQamhlNXXVzPz3ExS8lJo59eOyU0nEEgCtwAAIABJREFU09q39T9Cjbvh5gaG7xlOmbGMdn7t2NNvDxaKP96wPu/SPMYeGouVwgpfB1+29t7KyL0jiU+PZ2//vbTybfU3zv5fvIp/HY0XeJj3kNBFofQN6cvwusNpsbIFAoKZgrQcgiDw8eGPmXNxDvM6zaskEve3YuxYOH5cvMn9BShv8g51C8UkmLg2+hpyqZyjKUdpv7Y9fWv1FdO7Aw7RxLsJtjNsaVGtBaeGnqo0VpYmC9cfXNnVd9dro+tdN3Zl7729NPFqwtXnVykzlBHqFsqlkZdQypSsvbGW4XuG096/Pa2qtWL2hdmkF6ebVYTlUjkNqzSkrV9bwj3D+fnizxxNOYqAQOaETFysXMzMR3feu1OB0WpS7CR+vvgzNkob0j5Jq5QxKDfmB9QewLoe6ygoLcA+xh4HhS1eTwu59SvWvV41ejG87nA6b+hMIE78sD6H6LfBrQgybaWMazSOhVcWmpWobRQ2yGVitDCvNI82vm0YXX800cHR5rmYBBPzLs1j8tHJ+Nj7sLb7Wo48OMLnxz8HINwjnFPDTnHkwREG7BhATZea7Om357dre0tL4fZtnsUd5sze+TjfT6dBjgrrojIueEHjEVCtUEa6lZGGVOGJlZHU0uf42vvypPAJnzX7jGmtpv3mGkorTGPOhTksjl+MzqjDw9qDbG02epMeuVSORq/By9aLLgFdCHAMYGLsRAQEro26hnH2j2TvWEdOo9okDO7EyltryNRkUtOlJs6WzjwtfEpKXsobWV+URpBJ5ZRIDJxZATFN4ViImjpudbiQdgGAqMAoprWchrOlM9NPT2fbnW08HPuQBZcX8Nnxz4gdFMu4Q+NIyk7CIBjwUDhSo8yGo0c9kVy6DAYDpe7O1BhYQJnExKTbdoxvkEtktUgSMhPIKckxZzQLywoJWRBCTeeaxLSNoenKphiMhgoGfnmtfrhHOPHP4ikXfvy1YfVrR8UrH57MgUueUDsTuvd9pZdCgC734Ew1GHsROibDtJZw3Af00+H9KCm7ImxIF0Rj28PaAxcrF54UPMGYn0fbkr3k2ryeAeyiPPr39UT+IHztfcnWZlOkK8JGaUOxrpi2fm0ZHDqYKrZVzKJwjmpHZLfviA7uqVPkhIfg+oOreR2s676OAZ4dwMWFpZ91ZMT0A9RdXBdfB1929t1ZYZ8/nPuBb898S97kvD88z6MpR2m3th0JYxIIcQ3hp/M/MSl2EvdG3cLvfCJlK5chP3gYwWQk1g82hynYEqjHzdUHhVRBcm4yIGYtdHodOqGigxfsFIybtRunU0+ba/wPvH2A8UfGk5KXQk2Xmlx6ekk87iZ4hS8BABudBFsnT3JKcig1lOKgcsCEqVJzetgzcCyBU9Ve0ifbKG3MTkIFh0El/n1e/JxNCZvQ6rWUGcuY1nIa79R9Bwe1A2q5upKBaTAZSMxO5Oqzq1x9dpX4p5e5nn6VYkF0VqrmQ5BWjaWNI088rHhGEVnarEqlZ6/TApEgQSKRVLj+7VR2VLOvRpBTEDWca+Dv6I+fgx/+Dv64WbmRlJPEgeQD7E/ez5nHZzCYDNR0qUnn6p3pEtilgmZQan4qcy7MYeudrWa2LQkS6rjVYVLTSfSq2Qu5VI7Vd1aiivvETDAYYNYs+PJLCAqC1auh3l8f6X9S8IQtt7ewMWEj8c/isVZa096vPcceHqO+Z32ODDxSkZbWZILq1aFFC1i16i+di8FkYPud7cTExXDt+TXCPcP5tOmndAvu9rdT477KQGmlsGJzr810Cezyh76r1WvxmeNDa9/WnHtyDolEws4+O5lyfAqnU0+zo88OOgV0+lvn/y9E/OtoIBp5rVe35lH+I44NPkbTFU3JLcmliXcTYgfFmm9MgiAw7tA4fr70Mws6L2BMxJh/dqKTJolCVPcqZxT+LEoNpVT/uTpetl5cTLvIiSEnaOkjsibVXVyXeh712N9/P5GrIyk1lLKu+zpqLqjJoNBBrOm+ptJ4TwqeUHVOVQ4NOESH6h0qfb7l9hb6b++PSTDRL6QfvUN602drH0bXH833bb7n2MNjfH3qa65nvCzV8Hfw563At2jr15YW1Vpgo7Ixf2YSTEyKncSP53+ktmttjg4+io3SBudZzkxtMdVML6w36vGa7UVBaQEfNviQWe1nVZqbSTChmi4qb6/tvpaBoQMJmhdEck4ymukCcyY0Y6r6vDnyKpVIUUgVVC2UkmxVwsK98HEHKFG+pIYth53KjoKyAhwsHBhZbyQj64/8zZrXu1l3GbhzINefXzc/YNv5tWNf/33MvjCbKcem0LNmT1Z3W/2Sq14QIC1NbMoub86+cQPh3j0kRiMmCaQ6K7AOb4JL4zYQGkpadTe8tonp4wZVGnAp7RLjGo4jKjCKDbc2sPL6SgQEmlVtxuDQwfQO6V1BaPFu1l1mxs1k3c11qBVqetboSfvq7Tn58KS5Vr9bUDfySvNIyUshQ5Pxm2UO5aJZBpOBDE0GTmon2vu35/D9w+iMugoZirkd5zKi3ggsu/WmTDBg2egoi3abeNqhEdMtLpmPm7OlM/ml+RwZeAQfex8C5wUyvdV0JjebTM/NPdmRuIOsT7LwnO2Jg4UDmdpMZBIZy7sux1HtSEl+Njbxt7C5cJXbd07xbpSo4K2TQ4FSNN6qYU8q+bhYuqDRa9DqtW8UUHsdZBJZBV2F8j/BziI7WTlsSyB3JhikEDVIxlEfIxITdEsSS6TCnkObwXDXx4rRrSaw+fYWUvNT2bVCyxN7CSOiBIRXDVYB6mZKWbbTxKaWc7ji1wDhVxmNPC5zU/7flYTKpXKsFFa4WblhFIw8yHtAsFMw7Xzb8cuVX9jWexuJ2YlMOzWNYOdgVndbXTEzt2YNDBkCBQVc1dwnYmkEJsFEt6Bu7Evex7ZeW+kY1otfoj2YsOUJ8y/NZ+yhsTwZ/6SC8x1zNoaZ52aSM6lyueeb8J/j/2FJ/BIyJmSg0Wvwm+tHdFA0S7suNW+jz8rg5Kz3sdqykyapJoqUsKMGXG1bE/uO3dlxbzcJWQkoJAr0gkiR+yj/EQmZCW9cGwqpAoPJ8NtrRwCpACapmDWUSqTm+41MIsPRoGDGOUs6X87n26Ym5jWATVvhWdsGbK4t5fyI868dtqisiImxE1kcv5i2fm1Z3nU5Q3cNRSaVmUtNNToNp1JPcSb1DFefXSUxR2RVK78vumkk1Hou4FUIxQpIdob7zhKMKiVGk7ES05tcIkdAqJDRkiDBy8aLQOdAAp0CzU6Ev6M/vva+FZ4BIKq3n3x0kv3J+zmQfICH+Q+xkFvQ2rc1XQK60Kl6J3wdfAHxPn8l7QqL4xez995esrQvs1AyiYxR9UbxS+dfKhjPF59epNHyRgwOHczqGlPENXnlivgs/uorUL2h1vEvRHJOMhsTNhITFyNm2yzs6VWjF/1q9aOlT0txvrGxIv19XBw0afK3zEMQBGJTYplxdgYnHp0g0CmQiU0mMih0kJl6/u/C8qvLGbN/DHqTnuigaLb23lpBZPZN+Pb0t3xz+hvOvXOOIbuGkF6UzvY+25lzYQ4Hkg+wqdcmetTo8bfO/V/AX8RL8f835l6Yy6nUUxwddJThu4eTU5KDm5VbhcUsCAIfHfyIeZfnsajLIkaHj/7nJ6pUigJGfwEWXF5gVknuE9KHlj4t0Rl19N7aG7Vczfoe65HL5Hzf5nsiV0Wy4ZZIdftqg/KrKGfs+fUNJzknmXGHx3Eg+QD1POpx9dlVjqQcYWjYUDpW78iCKwtYeGWh+eHqYe1BYVkh7tbuxA6KNT8kfg2pRMoP7X9gU8Im7ufeJ2xRGJt7baa9f3v2JO0xOxr7k/eb2XJG1BvxxrGCnIIwmowM3z0cb1tvBtYeyBcnv2BDLfDLMSH1lmIUjOamWKtiHclWAhIBxkTxgkbRRImhBF97X1ILUjEJYpSxV41erO+5/g+p4wY7B1PfvT5Xn4maFo5qR37q8BPv7n+XlddX8lWDyUx17oF07aYKjE/kij0m2NpCaChZjUJZXE/DfssntI76iM87fWd2TPRGPeN3DABgQO0BrO2+lrkX5zLhyATOPz3PtJbTOHD/gJid0GQzet9oxuwfg6eNJyqZigxNRoVoe5GuiFU3VrHqxirzexIknH96ntputWlatSlOaickSEQWq+R95qbqwAIFXTp8QPfg7jT2boxcKuf8k/MM3iUSBeiMOi69c4mPDn3EhbQLyCQy9iTtoYl3EzT1nSk+uAs3pSN3XbJp6h3BpICW/Hj+R/QmvZnWtM2aNubfvvzacuZdnkd6kVji5fKj2BOUqRXXiFEwMnT30ArnRBmoROcPKpOM59ZGPrjnwFqfPDTArRn5fNVOxk8NRKNlkFNrmjbohZWFDdZKa7bc3sLm25txUjtVMGzKMTxsOCdST1BYVkhuURYGiXgdlNfbyyQy3PUWbF2vQQASAmzZsyid/TOGE7hoC6GZcMwXIofCtUAxS2CjshXr1006Og8Eg1QwOzAIEPkQ5h+EGlkm8i0gTViBSRIBGEWRMcGIIBF4JFtmnme5wfwqqlhXqaAjUY7ooGhSC1J5Xvycx4WPzaU4iTmJZuep77a+OFs6m6+V8KXh9Ajuwfdtvsff0R/JtWvg78/t0ie0X9veTDM8v8t85Ifk9Nnel8euNsifpqHRaRgQOoAJsRNYdX0VU5q/7IkyCSaxgftP4OSjk7T0aYnBZCDmbAz5pflEBUZx5MER8kryuJJ+hXW31pFhlUHNSTVppvek4ekHtDzzhCE/3iFtyR2sa8PaULjlLh6zvff2mseXS+XmiP6r6tKv0gYDqPRQJgVenb7k5am0t7A36+bM7TCX9C3LmDD/OtYeDgjTv2L09I9YFAG7mtjj3ak52cmvp0U/8fAEw3YPI0ubxceNPqa+R33W3lhLYWkh8c/jcZrpRGFZYcUshACWBvAokyLXQ44aMqwEMl48HqRIUSvUyKUyTAZdpZ6l8mynWq6medXm9K/dn8hqkXjbeVcgAnkdUvNTzVmL4w+PU2IooZpdNboEdKFLYBda+bQyCzZqdBp2Je5i7Y21HH5w2Jw5VMlUOKodyS3JpV9IP37q8NNrs8MLLi8A4L379vB2XbEHIi4OGlUW6/27EOAUgN6op9RQyoquK7ife59Ntzex7Noy3Kzc6F2zN/023aJxrRCkf5Bp6r+BmQXQvz2X0i4RExfDqL2j+OLEF4xvNJ7R4aNf21PyV+Cdeu/QLbgb7da2Y3fSbpxnObOr767fLX96v8H7xMTFsOX2Fs4MO0P0pmg6re/E+h7rUSvU9Nnah1XdVjEwdODfMu9/IeL/fEbjTtYd6i2ux3sR76GSqYiJi0EhU3D+nfPm5idBEPjgwAcsuLKAJVFLGFl/5P/OZL/5BubPh+fP/0fDFJYV4jfXD08bTx7kPSDx/US87bwZe3AsC68s5MywMzT0amjevtP6TsSnx5OlzWJr7630qtmr0pgJmQnUXlib8++cp5FXI4p1xXx7+lt+uvAT7lbujGs0DpNgYs6FOTwtegqI0f8yYxkmwUSEZwSroldR01VU4+2wrgMavYaDAw4S5h72xt/y3v73OHT/EN523sQ9jqNHcA+23t3K80+e42btxlsb3+LUo1PU86jHyaEn3zhO983dKdYViyVkz66xr/8+mq5sSoM0GJvlz4CwB0iQoJIqsS0so/4zqJYHSxpUpi8tNySq2lbF0dKRiyMu/iEnwySYGLh9IBtvbwQBhnh04kzuVZ6WZjL4Osy65Y59aoaYJpdIICDA3KBNaCiEhlJaxY1vTk8nJi6G6o7V+az5Z7hauZKjzSFbm21mcnpc8BilTIm10hqVXEW2Nvu1GQe1XI2DhQOlxlLyS/MxCSYkSPB18KVHcA/qe9bHSe2Es6UzzpbO2FnY0Xh5Y4p1xVgqLFnfY72oXqzTUKwrpri0gCk73idDqaO+1h6tsZSHDmKGrbwG3FphjQQJKfkpZgae34ry2pRBs8egsVZxyUtCmVGkq3xdn4S/gz9h7mHsu7cPtVwtkgOkxJrFqk4OOYmzpTPWSmusldYoZAqq/1ydYOdgYlNicdTJCanemFuZtygqK+IDj2imP6mOt+lH8hVGZh6GiUmOEBkJkZEYI5sTeKo3KfkpDAwdyPqb6yv8FgkSLOWWaA3aSlkNG5UNjhoT+1br8cjRcSRIRsBzI9YmGcGZRo74wYzWCk54vZlVRylRYKvRo0DKM0sTPdJs2b60kAxXK7ZX1TC3ESQ7Qb97dXBpupi0+zmYdMk07+XNxDN9zNFmV0tXszNmJbdCY3hzDX2XgC542XrhaeOJp42nKEJYlMGoA6MQBFGPRClVYmchZvtet+5OrZKSb6OgV28TCpkCrV6LVCJlRpsZjG00lp5bejJ26n7ylQIuB04S6RPJ4J2DiXsSR/KHySKb1AsR1YVXFnJ8yPGKDcy/6kso71XILcnldtZtc8nmmyCTyPCw9sDN2u1lGZLKjtqpZdQ7dptaxxOwK9Jxww22hCm4274uccZHZGozxevJUFoh8ylBgo3ShkJdIdYKa0JcQ7iYdhGJiYqZKKDpI2j/AL5qAw5qR0aFjWD43qf4z99AQnhVQo/c4Ez8Tpq3Hc6sJjC9XSh1lZ+gL3HC102NZ9VENLLbPCp4xOW0y691gF/F69TKlQaw1oFcIkVvoaRIqsfwSmaiik0V/B398XcQS5ssZBbEP4/n8P3D5JXm0dq3NaPqjaJbcLffjYbrjXrOPTlnzlrczrqNXCqnWdVmdAnoQueAztRwrmEu63pc8Jh99/ax5fYW4p7EmR0klUxFS5+WOFs6s/XOVrxsvVjQecFrM/DlcJ3hRLE2H803JiTjxsG334LlX6R6/gdx+P5hOq3vxPTW0/ms+WeAaJNcSb/CpoRNbL61kTTNM6pKHejbaAT9avWjrnvdf6SPIik7iVnnZrHmxhosFZa8H/E+HzX86L9W+f4jmHthLhNiJ2AwGegX0o91Pdb9ZgnXpNhJLLqyiMfjH2Mht2DQzkHsuLuD+Z3nczntMiuvr2RR1CIzW+a/+Ovxf9rR0Bv1NF7eGK1ey7SW08zMNuu6r2NAqBjxNQkmPjjwAYuuLGLpW0srKYL/o5g5U2z4yvvj9cavw9envmb66ekICHwV+RWft/jczD41v/P8Suqc155do94S0em6Ourqa5uP49PjCV8aTvzIeJJykhh/eDw5JTkEOwWTockgS5uFhdyCCM8ILqVdosxYhgQJI+qOIL04nWMPj3F88HEzG0SmJpMuG7qQlJ3Ezr47K7JrvILtd7bTa2svHnz0gGVXl/H92e8BsbymV81eeM/2xiSYKpzT12FS7CS23dnG1dFXabqiKcVlxTwufIzCCEtPWDO0bTEKA+jlMOEs/NCs8hjeNt5klWSZI7gSJExtMZUPG36Is6Xzm09ISQmGWzdYsGw0ws2b1HkODXMtUBeVUqSE97rAujrQRO/O+y5dMFX1JsdJTbahiGxtNjklohPxuOAxqQWpb6TetFRYYjSJvPth7mE8L36OTCqjR3AP1Aq1WaF4Y8JGUgtS8bb1ppFXI04+OkmWNgsXSxe8bL3IL83naeFT9CY9FjJRIEsikaDVa9/YSPoqpC+MJ4kAAVpLbANCEBAoLCskS5Nlbp4FCHEJ4VH+I7OQmcFkMBu/3ap2YNYnh5n/SXN2ZZ1hRpvv6Xd1CjPbzWRS7CQODzyM0WSkx5YelBpKcVY74+vgaxafc7V0RSFTmOuzh4cNZ3n08gpz3XZnG7239sbJwpHwO3lMCBlFuxKxwX9Sk0nMPDeTbsHdOHz/MENrDWTh9aXMNLVl4ik9nD/PumAdg3qAg0GBpUGCvU5U7S5XMa5Uh/7ibmyhB7syiF0rqn7PaQjDr0NArqjz8FNbK0576pFIJGaDuNwhe5XxyNXKFUGroc8FDfMbwo5YR7yGj2OC5CinH5+mXZoFs/aVUeeZALVqUVCcw27bZ+z5vCcHkg9UMIZfpbgt39eO3jvI0mYxev/LDG+n6p3I0GSQXpRORnHGG53E1r6tqeFcA3drdyRIuJN1h/3J+yksLSAvRsLMJvBdi9d/VylTsmCHjtoZ0O4DW6rZV6PMWMa9nHtUsamCzqgjvzS/UpagHGq5unIzs9qBorIidiftZnLTydzLucfee3tZ130dt7Nu88ulXxAEge/bfM+o+qN+07hZc3k5CxeNoEapFalyDRe8QKsEuUmCWm5BkakEdyt3ooOj2ZO0h2fFzwAq9uu8QlH7KuTIMGAk/JkEZfVgpi5Nov09E1+0ghktJNhbOlKqLSTvGz37a9dh9lsLXuSDREYxELijHEe26cobz41KpsJGZUNxWTEmwYilSUaBUIrwYj4qQYavlRf+VULwd6gulji9cCx8HXyxkFtQoi9h+93tLIlfwpnHZ3C2dGZY2DBG1BtBoFPgG48diI3Rh+4fYn/yfo48OEJBWQFuVm50CuhEl4AutPNrZyZgMJqMXE6/zN6kvexK2sWdrDvm9amQKmjn185MmT720FhS81OZ3HQynzX/zJz5qARB4PH876iW8x/apFtw9O1DYvDgH0Z5KXO4Zzj7395vFiB8FabvvyNuxTQ2xQxi64M9ZGmzCHAMoF+tfvSr1e+14rp/NdIK05h9YTaL4xejN+oZXnc4E5pMqCCy+1fiWdEz2q5py53sOziqHdnffz+NvF+fZXpW9Azfub58GfklU5pPwWgyMu7QOOZdnscXLb4gpySH+ZfnM7vDbMY1+u/IL/7Fb+P/tKMx7eQ0vjn9Ddv6bGPgjoFo9VrGNxrPjx1+BEQnY8y+MSy9upTlXZczrO6w/90Jz50rsltotf/1ENnabHzn+OJo6YhcKuf2e7dJyUuhwdIGRAdHs677utdGQjx/9ORZ8TNSx6W+VhirvBHb2dLZXLIilUgJ9wynjW8b6nvU5/zT82LTsEGHzqTDQmbBg7EPcFQ70nZNW5JykrjwzgVzeVaxrpheW3px/OFxVndbTf/a/SvtN7ckF+eZzubzs//efrpt7oZCqmB43eEsjl+MlcKK5xOem6PWr8OS+CWM2T+Gks9LSC9KJ2xRGEJpNaoZh+NR5k+O/AHvHV3BlMibZFphNgDKDQMvWy9cLF1QyVVceCo2IpeXhUiQ0NKnJT1r9KC9ZW2kiUlk371KTkoC2en3ySp8Tq6FQJYlPLKHAhdr8mwUpAr5lMlfbwqUGwJWCitUchW5Jblka7OxVloT4BiAldJKVMF94ViUGkpJyUuhzFhWwWD8I1DJVLhbu+Ni5WKO9FsqLMkryeNh/kMe5onqwcFOwbSo1gI7lR0x52KQSWRMaDKBYWHDxO8tWIbV51+xcvZg3s1fh4NORrsiFzbOrVh+cyfzDuFLw3G3didTk4lGr6lQbqKSqYgOimZ/8n48s0oZZqjF5043sJZb0Tk4ivmd5+M8y5ntfbbjY+9D/SX1zbz4jmpHpjafyvgj47FX2ZtpLgFmd5jNRw0/qvAwb76iOXez7yLR67k5oxCPq/fwPdCexwWPSfkwhV5be3Hl2RWG1hlK54DOrLi+gkP3D9GoSiMspApOPTmLjaDEoC9D+7qk1q+MSVsh1Lzmqj9/wIC4FXjnJuCdb2JfAFgY4OfGopicXCrH1coVS7kl9/PuM7D2QDR6DXuS9oiOhiAOvWk7rA6FAwHQO6g7W+/tJMTajx8WpdChySAkGzbCihWwezeavTuYHy4wuT3UswnkWlFyBWO0vNTH09qT9OJ03q3/LvM6z0PxjcK83auCnnqjntSCVO5l3+NB7gM+PfYpWoPYx+KgdkAhVVBQVlBhPfrmQsrP0GkAHPoNMd//nIIPLoH7xMqflWfrEECj1zCy7ggauNenqUdDqli5o5LIxcZeo1H89+L1D6dj2J6wmQP99+N3oD0dXZvySJPGhfxbDPHoxEz/d3GV2lT6XpGumHNFtzldfIdjmltcLBNZsuwkaqoUCoQ/MTEo2ZIWN/MRBDhWXcK+WkrOuJXxyAGKlSIzlG8eBOZAYBbsDIEyGXx9UiyjyrCCXxqJ2h6Tz8Dnp0WhR4UJElygwAIUAsgFCRKjQJ0M+LTfHG5Uq9x/k8slEuTjsVXZisa2IJZAvkpK4IQldhoDKVY6PriqoJ53BH6R3fBv0xtPh6qvNXpBrBJYEr+ENTfWmLMXo+uPJjoo+o3Zi3L2uvKsxeX0y0iQEFElwpy1qOdRz7zPorIiYlNi2XtvL/vu7SNbm21WrZdKpLTza8fgOoPpGtSVYl0xnxz5hA23NhBZLZJFUYsIdg5+88J68gTeeYcv9LF80xK2dFlF7/Ahb97+b4LeqKf1GrF39Nroa68PVplMYma7WTNYvRqDycDxh8fZlLCJHXd3UFBWQKhbqFmN/O8y/MuRV5LHgssLmHtxLjklOfQJ6cPkppN/syrhf4LvznzHFye+wCgYeafuOyyJWoJUWnldvrvvXXYm7uTR2EeoFWoEQSAmLoYpx6Ywou4IHNQOzDo3i+mtpvN5i8//lrn+X8b/WUfjSvoVGi1rxOSmk9mZuJOknCSaV21uVtk0CSZG7x3N8mvLWRm9kiFh//yNphIWLRL5sQ3/vVjUxCMTmXd5HqWGUvb020NLn5Y0WNYAmUTGxREXsVJavfZ7NefX5G72XX5s/yMfN/4YrV5rVuA+fP8wNzNvAmJDY6fqnRgaNpSWPi3R6DXMipvFkqtLUEgVvB/xPuMbj+fniz/z7ZlvifCM4MKIC+SV5NF4eWMkEgnnhp8zixbpjXpG7B3Bmhtr3qi8Hr4knCDnINb3WA/AlKNTmBE3AxCNsTH1x/Bz559/87iceHiC1mtak/h+IkHOQfRY/TE593uZI4EIorbANdkYCqU3cbNyI0OTQTW7atiqbBkeNpyPj3xsjqLpTXoa2NWkWJPHc10uhejE+vvXRCiKfWrIAAAgAElEQVQlr1TMWCgsEATBnPH5M+rUdio73K3dsVZaY6W0MjsF5UxiBaUFDA0bSg3nGlgrrTmdeppNt0VWMRuVDTqDjk23N7HmxhoKywqxUdpQZiwjxDXEbLS/DrkluWy5vYU1N9Zw/ul5s+aEu7U7tV1rc3DgQdi0Cfr3h//8hytjoolYGsFXD334yvcRe/vvJSowyjzep0c/5ZdLv/Dgowc4WDhwOvU03535jpOpJ83b2ChtGN94PNsO/ohlroYrXuBh4cqdsUlYKizNmi6bEjaRkpdCwnsJ/Of4f4iJizGPMb7heGZfnF3ht1SxqUJUQBTNqzUnW5ttViTvWlIN2+e5pLUK5+Sjky/OV+VzI5PIUCvUFOuKkUqkOKvFkrK72Xfp4NOWQ4/ExtpNt2uyzPIuR30FquVBqgPYmkIJMy00rzmpyYhEEOh2egwrQm5yzQOyZytI6dmGjX2CmX1xDi4qB4IcgzibfoFBwX0YFtSX1nt6mucTEwu1cxX06q5HqwAbiYrP/IcyYc195Al3QKMRmWo++giMRrKWzCHE/zBGmYRctYDCCHop5nWrMop9A53znKmRnIfcBC29mxP36AwL64laJJ/d90CvL8OgL8WgKwWjCZkAchMsrQf3ncQxZ8RCVZ0FauSoJAqUggSNXGCXewHz9psIexfuusDoKzD0tpx8mZF2gwS+OAV9E8ChBNy04D0OLiwDlUTGonomvmkukPQLuGlgegtYFwqpc/7gRfQC/4+9946Oqs7//x/T03sljRQgJCH0ECD00AII0gOCShEsiIIi4K6KawFBRaUr0kR6kRI60kKkt5AQkkBI731KJjNzf39cMhATsKz72e9vd5/nzJmck1vet8y971d5Pp/z+sDirqLoU8tiWHkQuj949P8SSzjnC2f8xM9VT5Gg7VYtHmelCvb9CN0zQSqTk2Fj4HSAjDP+Ek76GnhgL1b2OuRC1APxO6RQDBSMUvE8LY+ANfshuBiOBcBnUeCiFgOMTjnQqkD0fPnFT0aZ0ohRIooFaBRQYAN+VVK29f4JveoJimKKofja+4pka8dAAlUeBCTlEXjsCgEnr2IvqKh6pj9uYYdZ0P095vR88gRMW6tlZ9JO1lxdY5burqteNHNuPFos15VzNP0ocalxHEo7RKG6EAcLB/oH9iemWQwDggbgZv1o7BnlGexP2c+B1AOcyjiF3qg3P2uMgpEefj0Y12qc2fTOJJhYc2UNc4/PRSFTsKTvEia2nvjkliJBEFWkZs4EW1tazIC0mjzU89VPTVL9q/DOsXf4POFzTr9wmq6+XRtf6Phx6NsXzp2DrvWXqTHUcDjtMFtvb2Vfyj40tRoivCIYGzqW0aGj8bLz+peNXVurZd31dSw+v5iM8gwGBA3gna7v0MOvx1/e0pVRnkH0xmjSy9Jxt3bnyHNHaO3Rut4y6aXpNF/WnK8HfF1PKXTjjY1M3jeZAYEDaOfZjg/PfMi8qHl83Pvj/5PWs/8W/FcGGtpaLe3XtMdKYUVLl5ZsvrUZT1tPbk6/aX5ATd03lXXX17Fh2AYmtJ7w7x6yiHXrYNIkMdCQ/XFZuZzKHAK/DsRSbklnn84ciD3AuN3jOJh6kMtTL9PCpcUT1/X6wouC6gJUchXtPdtzIecCeqMee5U9WoMWQRCoNdWSMTMDPwc/7pXdY+G5hay/vh4bpQ1vRL7BjIgZOFo6AqJkXvjKcJKLk1nUZxFzouaQVppG57WdxX74CY/65gVB4N2T7/LpuU+ZFTmLxf0W18umzT0+lw03NpA7KxeJRFLPNwNgQNAAto/c3kCx5HFkV2bj86UPB2IPMCBoAN0/WY+iJkQMMh5CEIyUSv68twCAAhlIJNQ+JEc+HkxE+0dTqCnkZsFNIr0iGRk6EjulnTlgsFZaY62w5ueMn/n47MeYBBOaWg29mvbiu2e+azRbVVBdQN9NfcmrzuPoc0frtb3tS9nH0K1DSZicwKYbm/j++vfIJDKmtptKkaaI5OJkvhvyHcO3D6eyppItI7bQL7DfU4/vbsldNt3YxJKEJeYs9Ty/55jyzjYC+o2BjRvRGWuw+cSGZTe82NvcxG03SHolCVuVLdmV2TT7phlvd3mbD3t9aN5unYFkkGMQWZVZ9frnmxfDXRdoqWjCqZnXcLN2Q/kPJTMiZvDFL1+wevBquvh0oaC6gI/PfszPGT/XG7Ol3BKDyWDmAvwaSqkS/xIjbrYeVHm7ciP/BkNbDGVvyl6kEikzI2by5YUvWRS9iLe7vE2Vvoqgr4Mo0hQR5RvFucxzLB+4nL6BfYlcG0mptpS/d/s7KomMv5/5QCxqmGBY8VJKHSOQSOrfc2WSi9yUvwEC3FwBrR621C+NhDcHQIsiyLaDCTfhq8NgM1+cyD9zB6Lvwwc9odQSrGshf4nYW/8kDBgPxwPFoNf08CcmM8Hz1+BQc8izhYASKLSBy6vBQw1GmQSDRGBvC5j2DOzbbUHnIhUSuRyJTIFEoUAqVyCTK+jbKwsPtYRzTmr8yyEuqS0utu4gk1GpMBHd/BfGxlcw46oCzbODGSvbzZEAgS56d9ZX9WGq3SkkAmwo7oYxO5OmhxJoNgOG3lNipTNgsrHm09ZVRGVCeAGc9xE5KBPuqJAplAgyKXpM1AgGtNSiw2CeoBulomFjrh3cdRZjq0iJD4McO+Hi5INaBXd1OcSXXiexXFT+87FuQg+vLnT36kJ3n25cKb7J+LjJvNf1b9QIes5nJ5BUlESJVlS9kkvlCIKA0WSkVQG8cF10d/dQQ5KLGBStawMaW7GyZYPo1P5A9j2VkpsoDKKfyog7sKwDnPSH1GBnPGw8SSxKxE5lR2VNpfl6tjYsxYGIes8xCQIhfgq+fLEVCo0OfvoJtmyBo0fFyXZ0NIwbB8OGgZ0do3aMIr00navTrja4X24X3ubbq9+aqxeNSXc/upcFc3tcXGoc5zLPYRSMhLmFmasWXXy6mMngRpORCzkX2J+yn/1395u5GS5WLpRpy6gx1tChSQdiw2IZEzqm3sT5Rv4Nph2YxoWcC0xpO4WF0Quf7ridnw8vvQT798Pzz1O56EMcVjUlzC2Mmy/ffPJ6/yIcuHuAIVuGsLjvYt7q8taTFxw9GpKSRMn7p0yM1Xo1B+4eYOvtrcSlxlFrrKW7X3ezG/mvjXL/KhhMBnbc3sHC+IXcLLhJJ69OzI2ayzMtnnliRezP4t0T77Lw3EIEBGZEzGDpgKX1goXYXbEkZCWQOiO1nmLV4bTDjNw+klburYgJiuG9U+/xesTrDdb/H/48/isDjdlHZrP80nLmR83n/dPvo5QpuTjlIq09WmM0Gc0Z9A3DNvy/pUaweTM895yYhfwThLTpB6az8cZGDCYDia8kcjjtMDMPz2xgYgfiS+FO8R2O3zvOifsn+CnlkWJJC+cWDAwayJH0IyQXJ/N86+fp5teNKfumED8pnpWXV7Ll1hacrZyZ3Xk2L3d4udFJfmpJKiErQjAJJq5Pu04r91YkZCXQa0Mvnm35LJuHb673MFp2cRmvH3qdsWFjWT9svflFdiz9GP1+6GfWvRcEAfuF9mhqNQQ4BJCvzsfT1pMdo3YQ7h5u3p7eqCe1JJXr+dc5lXGKtdfWmtuKIg37UNF4JjBBPuTpJ/qxdhgpUhQyBQqZwsxnsFHaoJAqSC5KrqfkU7fv2NBYZnSagYeNB+427g306/ck72HagWmUaksxCSbeiHyDT/p80iDrll2ZTfTGaCprKjk+8XiDXt0dt3cweudoJEhwtnLm9YjXeTXiVZwsnZhzbA577+zl7oy7lGpLGbdrHEfTj/JR74+YGzX3N18SS84vYf6J+SKPoxZ0Cojy7srzbV9gVMgootZF0TU+i7keIwl12sLktpP5euDXTN03lb0pe0l/Pb2egkldUDQxfCJnHpwhoyIDuVSOJXKqjDps9WCUiH3wThZOlOpK6yn6PA0KqQIfex9e7fiq6ONg4SQ6mZ96z7xMp2wY1+M11qvjcbJ0Ymq7qcTuikUhU/BRr4/YlbyLy7mXiQmK4ULuBUo0JShlynocBwBLvdjqYpCCTyXccwS5EaZcg9zm+ylpxM8CSjkjj8GEQGS2hNM/Krj3txncKLnNF+WHuegtVsWGFNqzdnM1TWYaqZWBtQHUcnCskVBmIeBbLmb+jwbAiGTQS+FoECwcaIOjtQtpsgqyTWU4q6HMUgw0gh2aUVVTSbW2ApO+Bq9ygTuugAScVI6U1pTRxbsLMqmMs5lnxXPl1YmEyQmNvqT9v/InNiyWi9kXOZFxgrYebbk67SqaWg0DNw/kRv4NHhwPw15lz/L3Y5h5eCbbRm5jzvE55FfnM7jZYHYl7yL/rXxc8iogKIg+E2HUjJUsv7ScUm0pbdzbkFaaxp4xe/jHmX9wMuMksyJnkVuVS251LjmVOeLfVblP5HA8DRIkqGQqbJQ22KpsUcgUGE1GSjQl9Vrx6mCjsMHV2pViTTEGk4Guvl0p05Rxt/QuVfoqZEbocx8m3IAhKdBvSjiWjmJl63Gn9iThZeyqbpJvQ702PJUBnBw8yavOo5VdM7ILUtnjNoNCVS2v5J0nVLLy4ahlSCXifHRpsyLC9m8UJ9ZarZgNHzcORo4Et/r34O7k3YzYPsJc7dXWatmRtIM1V9YQnxWPm7WbuXrxa+luTa2Gk/dPEpcaR1xqHA8qHmClsKKPfx9imsUQ0yymXituZU0lR9KOcCD1AHGpcRRris2V2tyqXKr0VQS7BBMbFktsWGyDakm1vpr3f36fry58RbBLMKsGryLKtxFC3ePYtg1eeUU03FuzBp55hu+vfs/k/ZNZFL2IOV3n/L4b4y/Cg/IHtF3dlijfKH4a+9OTJ7sFBeDtDZ9/LlYkfyfKdeXsvbOXrYlbOX7vOADRAdGMDRvLs8HPmrkvfyUEQeBw2mEWxi/kzIMzBLsEM6fLHMaHj/9dQim/FynFKfTd1Jesyiy87bw59twxgl3FNrkb+Tdos7qNWcL+cVzOvUzM5hicLJ2YED6Bv/38N6a0ncKqwav+5V4h/w34rws0TmecpteGXszsNJNvLn6DUTCa3ayNJiOT9k3ih5s/sOnZTYxrNe7fPdz62LkTRo0SpUwdHf/QqmmlaQQvC0YikTC782yGthhK9/Xdxaxv/y8AseJx4v4Jc3CRW5WLQqqgs3dnzmSeoYVzC7r5dmP9jfUYTAbae7bnm4Hf0NmnM5+e/ZT5J0VFDG87b+Z0mcOUdlOeTLZ7iK9++Yo3jrxBU/umJL+WjIXcwkzAnR81n4/7fFz/FCTtZPzu8XTz7cbuMbuxU9mhqdXguMiRz6I/Y2bkTCp0FTh/5oxRMPLdkO/o6NWRkdtHiiVW/2i0Ri3JRckUqgsbtL9YyC3wsvXCqmgGTr/KBCIY0esvct5arGhITWK7hlQqR6+vwaSUIZVIqTXV1lPU+isgQWJW0jFhQiFV4GTphMFkoFRbioXcgtburfGy88JeZY9UImVn8k4kSFjQawGt3VvjauWKu7U7V/KusCRhCUfTjwIwMXwiKwevfOTLgegMv+ziMvLfEhXOjCYjH5z6gI/OfsSw4GFsGLbhqVKGdSpkPtUyehZZ03/aYjam7+L4veMoZUrcrd1RPcjhtv08vupnz9vH3ubj3h/z7sl3Gd9qPG0921KoLjR/0krTSClJMbelPQ63aggpgqsBltRITfWqHZ42nkQHRNMvsB+RXpG427jj/5U/pdpS0SxNZonOqEMikTC0xVA6e3emoqaC7699T151Hq3dW1NekEFBbQW6p8i2O1s6U6WvwiSYMJgMhLqGkpp3G3+DDSkW1YxJUTL/hJ7QIkh0gw4vgUkC7fMkXPUUeKc4GHXldK43bXjPlTxeRRPg2Ttwww3uPUzQds+AfBuIvgcJAQquuYjnx1phzcTWE7mWf40b+TcIULqTOCcDrVLKJQ8TkTkw8P0gTprSzCpL1jJL1EYtEgH8HQNIfCUR7y+9qaypJP6Fs4QlFRN6ZgwZCg1IRJJ7hdzAwKAYDqYdNA/70PhDDAgaUO8cCYKAxccWfN7vc54Lfw63xW7Ummq5MvUK80/O51zmOY5OOEqXiBEIkyYR2mQPoW6h7Bi1g2p9Ne8ce4cVl0W50YV9FvJOxzfAwoK549yoHj+Kv3f/O93Xd6dcV06hupBzL55jX8o+9tzZw90ZDb2HBEGgRFtCemk6H5z6gMPphxss80fbF+sgk8iQS+VIJJIGfKi6ANheZU9Pv5709u+Nnc6E5NJlNt3aTJHfUpxNv+JVCEYkuov4pr/Bz00h66GljcQEO3bAC8/ZIJFI0OqqWXTdhRYLv+PZ7cPpk2pE6R9DE58PKC4wElCZzYT9XxCWkgBt2ojtjGPGgJ/fE49FW6vFfYk7E8InIJfK2XhzI+W6cqIDonmp3UsNqhf3y+5zMPUgB1MP8vP9n6kx1hDgGCDKzzYbRI+mPeolRdJL0zlw9wD77+7nzIMz1JpqCXIKwtnSmftl9ynUFOJj58PYsLGMazWO1u6tG518772zlxmHZlCiKeH9Hu/zZuc3nz6JLS4WA4wdO8RzsGwZuIg8iK5ru3I++7xZvfD/Cnqjnu7rupNfnc/VaVdxsnR68sKLFoleHjk54PSU5Z6CInURu5J3sSVxC2cfnEUhUxDTLIaxoWMZ3HzwE1up/xkkZCWwKH4RP6X8hJetF7M6z2Jqu6lP7Tj4IxAEgTePiO3ZAHOj5vJJn08AiNkcQ2ZFJjdfvtkgWZZWmsaAHwagrlXzSsdX+ODUB4wNG8uGYRt+U3L5f3g6/qsCjaqaKsJXheNp42k2EZvdeTZL+i3BaBL187fc2sIPw39gbNjYf/dwG2L/fnjmGcjLAw+PP7Tqc7ufY1fyLhwtHImfFE+3dd3wtvPm7S5vcyrjFMfvH+dOsahx38ajDdH+0UQHRBPlGyUq9ix2IcQlhMzKTKr11fQN6Muh8Ye4mHORj89+zMFUcZKxatAqXmz74u/OUgiCQNS6KM5nnWd6++msHLwSEDPibx97m2+HfNvA/+J0xmmGbh2Kv6M/cePi8LT1pPeG3qhkKt7r8R4rL61k061NgDgBrGtb+DW8bL1o4xJGD2VzepfYkX5wEwftCtgUXENkQThK5/pZRRBY3NlIk/aehK/vRKmutJ4MphQpH/b6kFuFtzicdpijE47Sa0MvprWfxsLohZRpy0guSmbI1iFU66uxkFswNmQs225vQyKREO4ejqZWQ15Vnij7aXpKjwuNy07+EdS5VCukCrPMraXcEku5JVX6KnKqchjSfAh2KjscLBxwsnQipyqHzTc342zpzNcDv6aLTxccLR3rXW9BECgrzSH4c3+c1QJ57lZ8HP0pxZpi7pffF82+iu88NZtso7QxO0W7W7sjQcLelL282OZF1l1fR6RXJDcKbmAht+Cjn6pIdDKwrpOKFYNXcuDuAXbf2Y0ECT52PuRW5WIQDChlSixkFmbFpyedU3sLe8p15dgp7RjYbCDOcT/jbOnM2Y7uxGfFY6eyo0RbggwZvg6+3C+/Tx+fHiiS79Lkbh4ROdA+V2zdUZrggx6woBcMuSPKgu4LhloZ5qpX1AM4+CNsad+GH3svr6cQJBUEJPq5nFOdRS8Ha52o2GVtAHus+DBOQ2wi+M0UW34MMsyqUy+1f4lVg1bh9YUXdio7vOy8OPFRFqSmUmtny9GODgzulmW+D+qO37NCQK2Ew68lsOT8Evbc2UO4WzjXpl8D4E7xHdqsaE2NoDdX70akqdgVVIOtFoIDO2IwGbj80uV6L/MSTYmZpD+85XDWXFnDtAPTUMlUCIJA3Pg4+liFgqcnt5a/T3jRAk49L0rX1uHEvRMM+nEQBpOBFYNWMHXw++zt6c7HveRcfuky2ZXZdPu+G9lV2Twb/Cy+9r7sv7ufuHFxZFdmk12ZTWZFJtfzr5NUnMT9svsNXNkBVFIVvg6++Nr74mLlglQipbC6kKzKLArUBVTWVP7p353cCO2K5HTLU9Ahy0SbzBqCi8UAtN006Kbfj0nRsLJloynkF9kQih+f+wkQWApaCxnlVlJUulreazaFWdlrURgFKj4FeXQ/5NduiBnwoCAxuIiNhZYtG+zj16irXrx19C2KNEW4Wbsxqc0kprSbYhbt0Bv1nMs8Z/a2uFN8B4VUQXe/7sQ0i2FQs0E0d25uDg4MJgMJWQlmIndycTJKmZJOXp2wVdlyp+gO98rv4WLlwuiQ0cS2iqWLT5cnVlEflD/g9cOvsy9lHzHNYlg2cNkT/ZfM+OknsVXKYIAVK8RA4yEMJgPWn1jjauVK9qzs3zxHfyVmHZnFsovLGkjMN4DJBM2bi+Z8Gxsa6P4ZZFdms+P2Drbe3srFnItYKax4psUzxIbF0j+w/19uypdUlMTi84v54eYP2CptzdK4f1Ub182Cm/Tb1I8CdQEBjgGcmHCCrMosuq/vzr6x+xjSomFnwuNql29Gvskn5z5hSPMhbBmx5V9uSvifjP+qQGPqvqlsSdxCK7dWXMi5QDe/bpyceBIBgef3Ps+2xG38OOJHRoeO/ncPtXEcPQr9+0NGxlMzUL/GrYJbhK8SW4bmRc1jy60tZFdlYxJMmAQTAY4B9PHvQ3RANL2a9mrwQ191aRUvx4ku6K91fA1LuSVLLywlwiuC+Kx4Wrq0JNI7UmzLeu+PE9VzKnNo9k0ztAYtR547Qr/AfgiCwKtxr7LmyhoOjjto1joXBIEiTREH7h5g9tHZGE1GQl1DSSxMrOce/TgkSPBz8KOTQxjy8kp2lscTpLNm1zEnWlx9AILAJW8J40dIyLAzMaa0CUk2Gu5bNMXb+AKuhkCK5Ok8kK2lf2gw/QP7M2X/FPoH9ud81nmzV4OPrQ/ZVdkICMilcgIcAujZtCdrr63lyktXsFXaEr4qHHWtGjdrNxb0WMAbR96go1dHdo/e3eC8q/VqNtzYwILTC8ymg752vnTy7kRLl5ZYyC0o04na/0XqIq4XXCezIvM3z7dUIkUpVSKVStEZdEiRopKrzPdDXVb+z06knoS6ib6V0gqZREZOVQ5NJPaUSHXmYM3P3o9lA5fhaOlIqbaUUm0pJdoS7hbfZfXV1XT36058ZjwKmQKdQYdcImfiFQNt8uH1gTQg28skMpo7Nxc9G3QVZJZnNuoB8UGPDyjSFLE7ebdZarS9R3skRgPld25Q6mJNqfBIdtRJAzFpIom3Y47ozG1lENu3klzhmpcMdXgw1a1bUhPagq9vrKFIU2TOZo8NHUtWZRaWp+I5uF3OOU8DQ8aDXB5OP8eF5JaY0JrSqNKt5Zn0dMa+8wNL97zNj1bp7NoKk4eCqwZW7Ic3Y0TVIST1g8+hLYbyXo/3aL+mPV19uuJgYc+Bt69Dbi6VVjJeX/MsG9J2mgMTlUyFtdIafXkpUy7DwSHNuFd2j5hmMaSXpXP7ldvm8/XjrR8Zv/uRXLStXkqV0kTcJpB268aApmfZMXI7Ix9ryax7DtV57ZgEExYfWVBrqmVUyCi2j9oOhw5BTAwvf9WPs/Icbr18q0H2+vPzn/P2sbfFdqKNdlQG+dC16x1WxKwwc4u23d6GwWT4TT8MADuVHZ29O3Mk/QhSiZRwt3Ca2DbhbuldsiqyGqxvpbCiiW0TwlzDaOvZFmdLZ949+S6R3pHmMeRW5ZJVkcXR9CNkXj9DyP1qOuVARA60ywNLg8ijueEOF7zhFy/YEQo1cpiQs5QctwhMj1U0JIIJG4c8zpumNkic2AnhNNdPQiELBON9biu/w8QdjsU5E3kpD2xtYcoUMbjo0OGpvfx1SCxMZM2VNWy6uYlyXTltPdpyLf8aFyZfIMI7gryqPA6lHeJg6kGOpR+jSl+Fp42nObDoE9CnXsWzXFfO4bTDHLh7gENphyjVluJm7UbPpj2xlFtyI/8G1wuuY6O0YXjL4cSGxdLHv89T3Z9rjbV8deEr3j/1Pg4WDnw94GuGtxz+9L768nKR7L1xo5i0W726QdLu+L3j9N3Ul+kdprNy0MrfPFd/FfYk72H49uEs7b+UmZEzn77wiRMil+bsWVFx6i/GvbJ7bEvcxtbbW7lZcBN7lT3DWw5nbNhYevv3/ksz/FkVWXz5y5esubIGk2BictvJzO4y+4niI38EJpOJlw68xNpra5FKxETgodRDmAQT8ZPiG71XHle7fCPyDb6+8DW9/Huxe/Tu3+zQ+B8ax39NoFEnvzqo2SAOph7E08aT26/cxlZly8Q9E9l+eztbR25t1Izu/xmcPg09e0JKipjN+A2YBBPX868zfvd4UopT6un192raS3yYB/R5ouRdRnkGs47MYs+dPQDMj5pPV9+uLDi9gIs5F3G2dGb14NU82/JZvr7wNe+efBf1/CcbeT0NdRMXB5UDqa+n4mzpTEZ5BmN2juFmwU0GNRtEoaaQpKIkSrWiC3ZdO1Gd++/j7rM2NRCt9aDVfTVvVYRhdy0JKioASAyyY+TwWnIsDax2foE7TiY+SV+Pl50XWRVZ+Nr7klWZhVKmpMZQwxxVbxZrT5jJsQ4WDqI2e/tpRG+KNk9mfhz+I/0C+3E0/Sirr6zm9IPTgDixt1WKmvRGjDS1b8qY0DEsOr+Iia0nsmbwmgbZEpNgYuWllcw9MRcHCwe+6v8VUqmUnUk72Zeyjyp9FS1dWjIyZCQjQ0bSyq0Vl3Mv02djH2qMNSikCvoE9CE+M54SbQm9mvZiSPMhOFs5i5N3TQl5VXnEpcVRra/G3dqdipoKqvXVDXgFvwW5RI5KpkImk4kTXa0WavToLOXU8Ij0Dn+++mLel1SO0WQ0b8fRwpHXT+volKol5rlH/Iy6yoRJMJkVtAQEqvWNB6MgyuZKJVLz8culckIMjow9UcSlFtbs8VXjVwYWRri+SpSaLfJy5EEzVzar7nLVS8oVdxMalQQLuQU7Ru0gpnczr0sAACAASURBVFkMNwpu0Hb1IxJ+v4B+rBu2jhnT/diy3ciJAAnjY5Vo5KLaWMprKQiCQP8f+vOg4gFL42DWAPh7z/dYcOZDkpaJnN2Il0CtpF5wNSpkFDuSdgBiC+OUtlP44pcviPSKxLa0mp1vnOecLzw3Wk6evRSjyYhJMNHZuzNlujKSi5P56DjE+4rkbxDd6vOr8ymdU1rvxTxt/zTWXF3zaOcC9E2Hg+ebMqRLBg9cldzy/hj58y+CszNH0o4wYPMAHrwherS8fPBl1lxZYzZlTHwlkZBv92JatAjFrCqW9Puc/kH9zZWIuk9aaRo/Z/yMSqZi05YaHHTQb6I4BBcrFzxtPDGajCQVJ9W7vkqZEi9bL2qNtWZneKlEWu+5AWLgUWOoocZYg0wio5lzM6J8ohjUfBADggY04EKN2TmG4+nH2TJyC3lZyZSfOYrs0mWa3i0kIhvcHuoLFLhZUxbejMo2LZlXuQf7zj0Z3HoUNwpusD9lP/fL7zPropyJt0J4Y+JKpIJEDDYEIyaJwHXZdColt+q1c9kJ4bQxrqxXBUMQWLTvLTpFhsH586Kh5+bNT7zv66Cp1bDj9g7WXF3D+azz9aoXXrZeuH/uTqhrKDXGGq7mXUWChEjvSHNw0cajTb37I7Uk1Vy1OJt5FoPJQGv31kQHRCOXyEnITuBs5lmUMiWDmg8iNiyWQc0G/a7JXEJWAtMPTiexMJEZETP4sNeHv+1KfeQITJ4M1dWiVPzEiY0GXSO3j2RX8i5uTL9Rj9P3r8S9snu0W92OPgF92Dlq52+TkMeMgcRE8fMvJiwnFSWxNXErWxK3kFaahquVq+hGHjaWrr5d/zJSd4lG9LP4+sLXlOvKGRs2lne6vkMr91b/9LYvZF8g5scYSrWleNt5k12Z3aBa+jgeV7uc3n46G29uJMIrgn1j9/1lLV7/TfivCDRKNCWErQzD29aby3mXUUgVXJ12lWCXYHNL0dYRWxkRMuK3N/bvxC+/QOfOosJEWFiDfwuCQHpZOifuneD4/eOcvH/SPCkHGNZiGHtT9vJx74/NDqONQVurZVH8IhbFL8LZ0plI70h2Je+imWMzUstS6ezdmVDXUL6/9j3JryXT3Lk5i84t4rPzn1Eyp/E2pSfBaDJyv/w+SUVJzD0+l+TiZOxUdhhNxnotDTKJjECnQARBMLcuADSx8qCmRk2lUc3IRAGlTMkhnxqyvwA5EpKdBHy7DcKmY9dHLtpeXlTpqxm9czSH0w4jQcLfuv+Nbr7d6PeDqKpkrxJdiwH2j/mJRUtHkuluQa5ci8FkYOOwjfxw6wd+vv8ztaZauvp0pVhTTOIriWZlmWHbhhGfGU8nr07EpcWZj8VOaUelvpJJbSaxPGY5For6E5eU4hSm7J/CucxzTG8/nUV9F9V7idYYajh27xg7k3byU8pPlOvK8bbzpqC6AB87H8LcwjiQegCTYMJB5UC/oH7IJDIK1AVmzkOxprgBf0QlU4mtSjbumAQTV/Ou8mzws9gobTCZTOiMOnS1OtS1ost3ha6CfHU+Vfqq393LLpfKUcqUKCVyKnWVWMossLS0oVhTjIulC+W6cnE7Ahgxmq99HTelMbyRIEqgtpzxm7tvOB6JKGX9+Lbb54g8iA654sdZCy8OFVueyixgv3EsvbuOx6JTV8otIHJtJGXaMoo0RThbOjOo2SB+uPUDJsFEU/umqGvVFGmKkElkxIbF8sOtH5iXHcCH39/DMGQQHXumkljxiENQ/HYxzlbOVNZUErbQh6YPKmlZBCOSYG602JZ12h/SnESekPFh4rsu8DY+5tAc6hpKiGsIBeoCvC7ewT9Py8LwKpRGMCjleNt5YxSMfNb3M2J3xdKraS/sDv3MTy1FjsfQFkM5cf8EBeoCOnl14u0ubzMseBgyqcys3pdcnFzvnKa9epfy+BN0uP4y6/bLeCFRDiNHsm6IN5PuLEI7X8vso7NZcXkF0ztMZ83lNZgwYa2wJm6vNbKSUqImNqyMeth44G3njbedNxezL2KrsmXL+SY4nUyg6cs6rBXW2Kpsn2oSWFe9CXQMpLtvd0yYyK3KJSErwVwRbe/Znt7+venj34co36gGferV+mqu5F7hyoMEkk5sRXXlhlityIbgh4+/Mgu44iOjJDQAy649KQ4LoMxOrMLpDDou5lzk6L2j9Avoh1wq51DaIfpUunDsiyJ2dLTGryiQDT0mkegVRIUsnQzpWiokDdWPWhmWNuCSCRipll2l2uUbvtxeQYt8A1vXvim6tNt4mD+uVq7IpLIG1Yu6JEpX366cyjjFwdSDHE47TLGmGKlEyujQ0QxuNpj+Qf3reTvUGmuJz4o38y3ultxFJVPR2783/QL7IUXK0XtHOZJ+BJNgIjogmtiw2D9EQC7TljHvxDzWXFlD+ybtWT14Ne082z19paoqeOstkejdrx+sXSuSqBuBIAg4LnLEKBipnFv5f6I6VGOooev3XSnTlXHlpSs4WDg8fYXCQnH8ixeL1Zn/IwiCwLX8a2xN3MrWxK1kVWbhZevFmNAxjA0bS4cmHf6S86XWq/n+2vcsSVhCZkUmMc1imNt1LlG+Uf/U9o0mIxP2TGBL4hZATKAkv5r8xOUFQWD+ifksjF/ImNAxHEo7RIhrCIfGH/rta/Q/1MN/fKAhCAJjdo7haPpR9EY9WoOWHSN3MDR4KON3j2fPnT1sH7mdZ1s+++8e6m/j2jVo1w4uX4b27QFRvvTk/ZNmEveDigfIJDI6eXeid9Pe7L2zl9tFtxnXSpSx7e7XnT1j9jSahRAEgT139jDriKjQ8mbkmzR3bs7so7OpqKmgi08XPur1ET2b9qTGWEOzb5oR5RvFlhFbWHBqAauvrCZ3dm6jQ69TeEoqSiK5ONn8nVKcYm5NsFHaoK3VYhSMtHRuia2FLRnlGea2IQuTjN6qYCLKrOiQqqbDhUzc86vRymHcWAX7AmpRCBKaFQss6DKfvoNn4rLMx0wSr4PBZGBx/GLe+/k9sxpMG482fDXgK7p83wWAPv59OHH/BJZyS8reKeObOT34u81FdDIBS7klKrmKcp2oMCOXynmh9Qt8d+071g9db/ZcyanMocWyFuaASSaR4WPnQ1ZlFvYqe0p1pVgprOjt35sBgQPoG9iX3cm7+eDUB/jY+7Bq0CpCXEPqkaIf/xSoC8ivzie9NL1RtZs6yCQyWrq0pLlzc2xVtlgprFDKlMikMm4V3OLYvWNMbTsVjUFDibaEEk0JuVW5ZsfsxlDH27BV2mIUjKSXpiMVoE1mLTaevugD/NAZdNwqvGX2BbFR2KA36dEbn849eRrkEjnGh54mrVxbkVKawpG0znT64TRO7ymQyZUEOQUhQUJqaSrqWjWBjoF42XpxPvt8Pdd0l4fqSj3ui0aJ951gWDLs3g55NnCpCVxuAgneouRrYx4ov4ZUIsXL1gtBEMiuykYukZsz5rZKW9HA8lQm89anc7CTIx5bDzL50DSSipIwCSYEBAx/N5iVTrZfXMeYQ5O4skoc4/gRooJX33RY8uIWJiXM44o+Q9z5E8a3OHoxGy6sJq8gjVJLECTQNUdKD9eOfKK8wLpn1jHzyEx6+/cmsSCRtLI05p2Bk7GduJR7CTulHeU15XTy6sSFnAsEOgYyq/MsXmjzAjmVOYSuCK3Ht3mh9Qu8FvEaMw7NIKUomcmG1uSnXuWcQxWZDiCRSjH8KmisC1QzlsnZ11xg+5TOvNrxVRwtRNELda2a3KpcHpQ/IKUkhYSsBIq1xbz+Cyw8DlbvPjp+BwsHghyDUMqUnM8+D4jtTppaDS6WLnjYelBQXUCRRtQJtlfZU62vxigY6e7b3Uzg1hl0aGo1VNZUotGr8SzS0T7LQMccUYWsXZ5Y3aqVwnUPuOgFF7zEVqhUJ5FLUweFVFSek0vlyCViIqKqtgqDyYAECdZ6gbzFYvDYpgC2hsKUZ0D9q7ZwmUSGRCIxV/U6G/Y3qo6np4jz8sHMOQfzz4LD3Mbvj7rASylT0typOcEuwWgNWtJK00gtTcUkmAhzC2NI8yF42Xrx2qHXOPfiObOvQ5m2jENph8wtUeW6cjxsPMRAJLA/RsHI7ju72Z+yH61BSxefLsSGxTIqZNQfIlkLgsCPt35k1tFZ6Aw6Pun9CdM7TP9tRaBTp+DFF6GoSFRneumlp1YAkouSCVkRwpBmQ9g3bt/vHt8/gxlxM1hzdQ0JkxN+O2gC+OwzeO89yM390yTwfxYmwURCVgJbE7eyPWk7hepCAh0DzW7kYW4NE6F/FLXGWrbd3sai+EUkFibSxacLc7vOZVDzQf9UFeVUxiliNsegNWhp7tSc+EnxuFg3Yob4EHVql/0C+3Ep9xJ+9n4cnXC0cQPF/6FR/McHGltubWHc7nF42ojyf7M6z2Jhn4XE7oplX8o+dowSg47/X+D2barbhXFm+2KOW+Ry4v4JbhaIWa5Q11CiA6Lp49+HHk17YKeyM/ea2ihsCHQKpEpf9cSMSXJRMq8ffp3j947TP7A/Ub5RrLu+jntl93CydKJUW4r+b/p6PbPfXf2Oqfuncm3aNbH1LHErt16+RUpJihhIFCWTVCx+p5WmmTOtrlautHRtSaBDIJZKS2oMNeRV5XG76DYPKh65YnXFhx6FVnRMqqD91Xy8K8EklSANbomkrjoRHg7h4Rg9PQhdGUZKSQpyiZySOSXYWdgxcPNA9EY9JyaeAMRqwfN7n+dS7iXmdJnDBz0/ILEwkVE7RlGmK6NcV45UIiXAIYC0sjRiw2L5ccSPpO7+lua3XsJeB2orsX1HIpHQyasTXXy6sOryKrr7dedO8R1SXktBIVMQdzeOQVsGidfHJZSk4iRUchWbn92Mq7Url3IvcS7zHNfyr/Gg/IE5C6uSqVDIFI22+dgobXC1csXR0hF7lT15VXncKbljXs/b1huDYCCvOg+9Uf9It/+xLPfjqJtoeNmKalUqubjvGkMNNwpuEOISIsruGnVoa7VU6auo1FU+magugJ2FHU1sm+Bo4UiBuoDsimwMJgPRgdH0C+iHg4UDjgUV7Fs9m53tVahNNRwZf4SOXh2pqKlg1pFZHEk/wud9P0cikVCsKeZW4S22395eL1NtIRPH9fw1+PgkeP/Ky1GCBEuFJdpaLfZagXZ54mTQKIHk5aIbc9irsH+ngvf6Krhpp8W6RuCDDm8xKeZdkg9t5KflM9na35MMbZ55m372fvjaiyTw7Mps8z6cLZ0p1ooOxTKJDJ2xofv6axfgm0OwsgO8GlN/Mvr4NVFK5Lx4Hf52tIa2L4nk73sP5xQKA6g/gRenurLZs0gkcwsmkIjBU3GdeNjj86mHXpFWevi896f0OJ5GO/laJrR7gTN5opP9C61fYO6JuYyRtGLL+7f4cP9bjOv8Em8ceYO41DgcLRx5NvhZ0svSOfvgLJYKS7GVxlDD/QKhUd8HECsjnjaeVFQXUVFThV5qIqwQwi38EIICSZdXcTH3Eo41Uko/NTFxGOzsYIneqH/ifVuHYcmwZxu4vk19kvRTUGeqaK+yx8nSCZlExvWC67hauRLsEoxar8ZUVkJAajEh99V0yoaIXHB7WGDNd7cmu0UTjrtWcsiplOJgH5Kr7qOSq/C198VaYU2ZtoxiTfFTeWPme1mAn9dD60Kw1cHyMU1Z0VlBVlU2X/X/Ck9bT3Yl7yIuNY5CjZh0UUqV6E36J1Y0DKpkDr09isptG/F6/jXWx33KLWkRF3MvkliYaE6SPHFMv4JKpsLd2p3cqlzcbdzxsfMhrzqPrMosTIKJFs4t6B/Yn5EhI9EZdKIz9Z3dlOvKCXcPZ1zYOMaEjflTffd3S+7yysFXOHH/BGNCx/BF/y9oYtvk6StpNDB/vtgi1b276EEV8Nuu2G8efpOlF5ZyIPYAg5oP+sNj/aPYfns7Y3aOYXnMcl7p+Mpvr2AyQYsWEBkJmzb9y8f3e2AwGTidcZotiVvYlbyLcl05oa6h5qDj15LHfxSCIBCXGsfC+IWcyzxHiGsI73R9h9iw2KdyeJ4Gba0Wl8UuaGo1KKQKVgxa0UB05nHUqV2282zHvTJRqOD4hON42nr+2cP6r8J/dKCRW5VL2Iow7FR2PKh4QFefrhyfeJxxu8Zx4O4Bdo3e1ajywP9LqDXWcjHnIsfvHed40gF+yb+MQSb2X0cHRBPtH01v/94NbnhBEAhdEUpycTJdfbpyJe8KCZMTaOPRpt5ylTWVLDi1gK8vfo2PnQ99A/sSlxpHTmUOI0JGMD9qPrG7Yskoz0D3t0cTp3JdObcKbzFy+0isFdYIgkBOVU69zKa3nTctXVoS4hqCv4M/MqlMVF4qTuZy7mVSS1MBsJVY0L7GSSTWJpax01/LzhBoVSzlcnI3FOFtITycC846+lyewfiOk1k1eFWDMmqdJCHAtPbTWB6znDVX1jDj0AwK3irgh5s/MPfEXHzsfNgwbAOdfTqb1y3TlhG9MZqr+VexkluhMYiN1XvH7GVo8FAqKwqJ+Js7HipnrjjXoNarERCYGD6R2Z1n0+X7LnT06sipjFMMbzkcvUHPgdQDwKPJfGOQIsVCYWF+4NmqbFHr1WZncAcLB+xUdqjkKvQGPaW60nqGXI/DWmGNtdIaS7klCqkCvVEvBgY1lfX2r5Qpn1pVsFPZYae0I7sqm3D3cAIdA8XgwMJR/LZ0rPe3Q2EljiPGY+kbyLzZbVh1/Vsmt53Msphl/JL9C7029CLCKwIHCweOPHdE3El8PPsmRzE0FgYGDSRu/KPWsnJdOS2XtyTCK4K9Y/YikUi4X3afwK8DCXYJZl7XeUw5MMV8DM/mO7JsayV+r5uQyOUEKNxwvZtjJmpH5EkJKhEz6Kq/gUcVvHoJdobAJW/q+Z7UwdnSGadqI04lGhK9FKhr1bR2b016WXq9ANBWKV6vZQOXMbn9ZFZeWskbR94g0DGQ9LJ0ANys3bj18i1Ui7/EfsFCPu8MXwz3JFedZ74/IppEkFScREVNBRHVDqzdrsO7UMfzI2TsCxKv3ajbsONhonDHNnhuhEge/jVsamDkbVhfRwt5eGyBxTDpBnzS3xqTXkeTMiMSuZx0eyMOFg6U6coAiCm05+CKCtq+Kie1iXjfPe730uB+aYQnICBwXfayOdh4HFKkSAGjYEJ47Lx3y4Az66HVy1AY4IbRZERTqzFzZtys3QhyCiLYOZhQt1DWXFlDxzwpmz5JZt23rzIpZzlL+i7h5P2THEk/Uu+e7+Ldhct5l+nk1Ymjzx2luraaq3lXuZRziZXxX+F5v4iIh5WKyBxo/rAFqtJKRqKfFVd9FZz11HPStbrRgEYhVaCUKjFhaiBrLZPIcLV2xcvWCz8HP5raN8XX3heDycCcY3N49RcTS4/JkDo5wa5d0K0bV3Ov0v7b9vVU82wUNgQ4BZBakoqtypbnWj3HuoSTtDIuf9heKEFqMoJUylXZNOb0GcM8l2FoWoewfeM7rFaf5pfsX3C1cqWNRxuq9dVczr1MrakWVytxfBZyUZXtQfmDeq2rSqkSuVQumrM+DEYUUsUTRSMUUgWetp6EuITQwqVFvZYtDxsPPG08cbFyeWpFQmfQsfDcQj499ynedt4sj1neQDK5USQkwPPPQ1YWfPqp6DEh/X0ZcL+lfuRW5aKer/5L/R0aQ2pJKu3XtCemWQxbRmz5fW1BJ09Cnz5w5gx06/YvHd+fgd6o52j6UbYmbmXvnb2oa9V0aNLB7EbuY+/zT23/XOY5FsUv4sDdA/jY+TC782ymtJvyp2R4V15ayWuHXkMlU6E1aIn0juTIc0eeyPWpU7v0tPWkUleJldKKExNP1POB+R8ax39soCEIAjE/xpCQmUCFvsL8sp92YBpxqXHsGr2Lwc0H/7uH2QCCIJBYmGhuhTr94DTV+mocLBzo5R5J9IrDRM/7lmbDJj/1wbQraRcjd4zEzdqNQnUha59Zy6S2k8z/NwkmNt3YxDvH36GyppLuft25ln+NEk0J41qNY17UPIJdgilUF9JiWQtR/rfNC+YKRZ0yT10WzMPGA5NgYlH0IgIdA9Eb9eaA4lLOJZKLk0XfAhS0VdvSMdNIh+QKOuRC8zIp0hbB5gpFdVhzgpNfJUeTz7vd3uWj3h+Zx/39te+ZvK+hkdKD8gf4f+WPgECkVySXci8xpMUQPuv7Gc2/aU5Ll5YkFyfzesTrfBr9aT3PCBD7Qpt/05zc6ketXzKJjPXD1lOuK2dn0k4eXD9Njt1DaVKeHkDUwVphbX5hO1s4ozaoMZqM2CptqdRX1mvlqYNcKpKrJUioNdWaW8tkEhkyiYxaU+1T+RAKqUIMAB4GB/YqewyCgZzKHHNlSSlT0t23O30D+zL/xHze7/E+r0a8ir3KHplURoWuAodFDo2aOdZDSYkosSgIIvHUxYX119cz/cB0Wrm3YsuILbRZ1YZeTXtx9N5Rit8uFsl0hw+TNWYgvrNgRcwKXu74cr3N1pmE7Ri1w+z5cjn3MrFhsTzT4hnePfkuReoiNLoqPMsMvHhNdMC2NkD5pyATQKMAVYdI0gMc+VBzCO8+z7KoeI95Hw4qB8prxArWxPCJ7E3ZS1P7plwvuE7vpr1pf+AKyUH2HLDIxF5lj5+DHyWaEgqqCxoQiOvwuFSs7KHDt8lk5Ovz9rx2rIKl/e15t5ueUaGjuVt8l4ScBPO6lrUgFQABJiQrWN/ahF4q4GThRLm6mL+fhk09nUiTlOJeLTp8pz+hc8K65hFRXFkLNrUw/ZIYfOQ+fI/2vCdyPQQBeGwe5lkJuV/AkFg40OLJlx7EVrZQwxc4CB0aZNVLecz/4yFUMhX9A/vj7+iPn70vPlmVGI4f40vhPFGZ8NFJsJ0HJpmEtp5t6e7bne5+3YnyjWqgyvZlwpcs2vs2+Z8ZWTAjnA+cxaCmzmvlcc+VNu5tUNeqSS1JJahMQsdsQQwscqDtwxYovRRueMAlbym3/K247W9NlrsFPPwdamo1VOgq6vF5pEjNMrjedt5423qbeSQ+9j5423njZu3WoNWj1lhLxJqOGFOSubhMzx0POR4nL7C5+Ge+vfotd0vumkny0QHRDA8ezrfXvuVa3jWmtZ9GN99uvPDTCwxqNojMAglW1UNwV7Qm8O4VJlReZuNUe5b+spTRwSM4cHUrlRbga++H3qgnrzoPpUxJD78eZkfuXxvfFauL2XZ7G3vv7CU+Kx6tQYuVwgobhQ2FmsJGn31yqRwXSxe87LxwUDkgSATzOStQF9TjC4LYZuhm7VY/CLEWv4s0RWy4sYGC6gJmdprJgp4LsFL+hkltTQ28/77IXYiIgPXrxez/70SRugi3JW50aNKBS1Mv/e71/gy0tVq6fN8FtV7N5Zcu/zaRvQ5jx8LNm3D79r+cBP7PQlOr4eDdg2y9vZWDdw9SY6whyjeKsaFjGRky8p/yJ0ksTOSz+M/48daP2FvYMyNiBq9FvPaH2pl0Bh1NlzZlULNBZFdmc/TeUVQyFeuGriO2VWyj69wquMXAzQMBkEhETtyJiSf+6arNfzr+YwON1ZdXM/3gdKRIkUllXJxykfdPv8/htMPsGbOHmGYx/+4hmpFZkSlWLO6JBO4CdQEqmYoo3yiz7Gw7z3bIikvA3R327oWhT273MpqM+HzpY36hTAifwHfPfGf+/5XcK8w4NIOE7ARCXUPJqshCU6shOjCadh7tKNIUmTkUj78cQlxDzBWKum9fe18i10aSV5Unmt1Ze5JYfBuDYEQhSGldaUXH+zV0eFBLh1wIMTohD2/ziJgdHg4hIWBRnxAdnyl6fQCcefFMPXfXv5/8Ox+d/chstAiw4NQC/nHmH9gobfB38Oej3h8xascomtg2Ib0sHQu5BZ/3/Rwfex8zv+FxvsOtwltmLsivUfdStTHJqZYakJpAkErMhly/xTlQypTIJDK0Bq058Hh8QtoYbJQ2OFo44mjpiJXCiryqPHIqc+pNcB0sHBjWYhi9/HvR1qMtTpZOOFo6NnASfxy1xlpmHp7J6surkUnFoEUqkRLmGsaSfkvo2bSn2elY/g853w35jsntJjc+SJ0O+vaFO3fELGLQo4ftldwrjNg+gmp9tZkz8UvOL+wctZMRISNQ/7gRq/HPY/Whinnd5/Nej/fqbbrGUMPAzQO5kncFfwd/bhTcQIoEB7XA8DvQOV9O22wDNzwkvDhUwFkNLYrhvB+MvQm5fg5cttewcti3vHnkTYIcg+jdtDcLzy8076OuGmHChJuVG4WaQgY3G8z98vvcLrpNSAHc81CgE2oJcgzChImqmipzb//vggBfHoY3LsDbfWFJ14aLyIwiodu/FKz1kOQmmvnJpXLcbdzxtPWkqCQTY1Ehnxa25vWwTKrVZdxYAZ1egqqHffxuVm5U1FTUk2OVmsQAY1sr6JIJ+1tQr3oz9TJsbC/Dx8mftLI05nadSw+fbvRuNYT3BqhwnPM+JZoSvvjlC8Ldw3G3dqdSX0mZtozMikzUteon8gRqKCRB3njFWC6Vi4pPJgMmwYQECd/vEQgpgu4vipWaifL2tOgwAKytMJqMGEwG8qvzSS1NJaM8g5yqHPQGPeqP4f1+CpZENKy6KA3iuXRXw5r9YoXL9aEKVLaLkgvecMZDzzVfBVfcjGjkj36TFnILc9DgZOlEZnkm1wuui9dMIuP0C6fp6NXxT/WLLzj2Lv849wkXvwWb4Na0jrqFTmYyn5sIrwiifKL47PxnjA4ZzY6kHbT2aM2qQavIr85n1I7/j73zDo+i3tv+Z1t2N7030khCKKEECIQSmiBNei+CgCJio1hQVPQoFqx4ALGh0qRKjYj0XgKhk0BIJb2X3WT7zvvHkIFAEPSU5znneb/XNddusruzszOzs7/7973LaAY3Hcz6ketJKkii84rOLBu4jCfSnNj48RS+nBjJxZo0ZMhQ2gQsCjE3qA5Y+UkMpgAAIABJREFU9A7vjbODs7Q9giCQUprCzus7SbiRwImcE9gFO7GBsQyOGsygqEG09W9LZkUmHb7rgIBAhbECZwdn2ge0J8w9DAGB7MpsiVJY19WRy+QEuQYR4haCv5O/dE1TyVXYBTu1llpJb5ZXnSdZr99ZGqWmQUBSt4RnVtJ07geo0jORvfuuKP5W/jkL1sWnFjPn9zksG7CMZzs+BI3pH6gZO2ew6tIqTj15ijb+bR7uRXUi8I8/htmzH/z8/0VVbapm+7XtrL+6nj3pe7ALdno37i2lkXto/1wAcV1lV2bz+cnP+e7cd8hkMqa3m87cznMfusuw6NgiFhxaQOasTE7knGDS1kkYrUZ6hvXk1wm/3jMhCaIdb/+1/cnX5eOmdsNkM7Fv0j6ifaP/0mf4v1D/lUAjvTyd1stbYxNsmGwm1g5fy7qr69ibvpdt47Y9XPv1X1jlhnIOZh4UwUXmPtLKxR+E9oHt6dO4D73De9M1uOu9Nn9VVeDuDhs2wJj7Z33U5V44qhxp6tWU49OOo1VpKdIX8eJvL7IxeSOOKkdMVrHFr5QrpZk/jVJDc+/mNPdpTgvvFkR5RTFm8xh6hPZg/+T9d3QpEjmbeYKL5cmYBAsI4mzyuMu3sgUK5LT0bIq6ZcxtQNGmDQQEPPRMzLy98/jkxCf4O/uT8lyK5ExisVkYu3ksCakJfPzox3hpvXjhtxeoMlVJlJWWvi1JLU29r5agTtCtkCmwC3YqjBWSVe79SilTYLXbkAugUN6bUN1Q+Tr5EuoWirvGnTP5ZyT3JrPNzGNNHuPxVo/j5eh1m4akccdd445SrqS4ppglp5ew7MwydGYdE1pNwMfRh89OfkaP0B44qZw4mHUQg9VAkGsQ/SP6M6DJAHo37v1AF5cLhRd4fMvjXC+7jouDCyabiVpLLZ5aT4Y1HSba5m4cxfu932d2pwZ+1Ox2mDgRtm3Dum8PhtgYSUBbtxTqC5l/YD5J+UnIZDJxQOAezqQ2k9B9/Xde+v4qoZ8Ho1I4EOMfQ74uX3LE0huqaFwOmR5gk8PMJBlXvQUa6WD1FkjxlXE6UOBICKxqCwq7+LyHrTv56Hda4sb4x+Dj6ENy5mnybFUIcjFdfGz0WOyCnVWXVoEAlaZK+ob3JSYghlUXV1GsLwaZ2CkcGjWU03mnKdYV8nUCTD8HLw/VsridGV8nXy7MuMAnJz5h8enF/OL7Ar0+XM+CZgUsvsXkqzsP77xFADt2RlyFLdEQVAU5X0DPJ8SuxP3KwS4jpEIg3wWeSXbk761qscqRMjccTQIRFWBsESXu/1eK0aq0VIYF8FNAIc8eM+GgcCD4i2BGNB9BS5+W7E7fzb6MfVSbqvHQeBBhfB8na0z9RHPstGnsiG9kAm8cfEP6b504XilX4u3ojauDq2gjbTOx6f0bJAbJmDVEhaHue/sQl4qUJbCriejIFVOI1KnolAcLu4m6nGs+YuZIsbMo2E5sBHrX2xkb3UK60S+iH+Ee4TTxbEJjj8Z4aj0pqS1h0bFFfHX2KzRKDY9FPsbaK2tZNWwVk9pMevgT7o46n7iDjglDef0Y+NXIeH6gIJ2Pz7R/hqUDlyKXyVl7aS1PbH8CuUzOJ49+wvMdnychNYExm8YwpOkQ1o1cJ3HUh68fTsKNBOQyOWarWTq+AgKvpPnxuDGKVhsP15uAMNvMHM46LLlEZVZm4qhy5NHwRxkUJVrBB7gEUKQvYuPVjfx85WdO5Z5CJRffc93IdQyKGtRgkJnZZianKofMykwyKzLF28pMsiqzyKzIpKimSHqug8KBENcQVAoV6RXpKOVKxrUcR/+I/qiVagwWgwRE7l7Kqgt57YjAm0fgsi88MRxyQ93/EJTULXdTt9p9007s6r9a9seJ3P9g1Vm5NxRG+4f1ySfw1ltiEriX179s+/7VVVZbJjp9XlnPoaxDKOVK+kf2Z3zL8QxuOrgeAH7YKq0tZcnpJSw9s5RqUzUTWk3g1S6vPnDwX2WsImRxCNPbTefTvp+iN+kZ+PNAjt48iqPKkbUj1jKs2bB7XlduKGfo+qEk5Sfh5+yHzqRj76S9tA1o28C7/P/6rwMaNruNHj/14Gz+WUw2EzNjZ5Jdlc2BzANsH7edvhF9/+3bZLAYOHbzmESHOldwDgGBJp5NRJ1FeB96hvV88MXNaAStVgwbmtTwj5zZZsZrkRd6ix5HpSNPtXuKQn0hx3KOSd7xdRXoEkj3kO60D2wvdShC3UOlAU5aeRp70vbwwu4X8FW5o7fUUosZmQDNyuXE5trpkAfta92Y36mGckcZF9p+g7xNjNilUD9ckqYgCFSbquu5KRXXFJOvy2dp4lIqjBV4a71x07hRUltyX40C8FABXQqZArlMjoBQL5OhoXUp5UpqLDWSrqFRNVRr5czp/SY7U3eSUZHBW93fYt6+eRKVoE6oeWfgU4Whgie2PcHO1J2EuYdhsBjoHNyZrWO33vO+GRUZfHriU3688CMKmYKn2z/NrLhZ/HThJ945/A5vdHuD93q9h0wmw2AxcCT7CAk3EtiTtofU8lSUciUx/jF0CupE+4D2hLiGYLKZ6oEAg9WAzqQjITWBYznHUMlV9IsQMwvSK9KlEEJnB2eCXYPRqkRxrsFiENdRXY7RYsDoIMf2B52Z+9Xzp+HjveD0pgxBEIgohw750KVIRWy+jNZ5VgwKOxEvQrUGllxoxKpmRowuWibGTsOiVvHWobeY2HIi6y6vJVzvwGcHlIwYamBO55dwUbvw9qG3AfE8z9fl16N7jGkxho3JG3FXu2OwGkQXNc8mZFZm8mHvDxn23kaaxp3BLoO1w9cyssVI+qzuIwZDmvSMbzWen4b9hFwmZ8W5FUzfOR0BAT8nP5Y/tpwpmx/nh602hl0wcfCtx3krOI1TeaLoOsgliBJ9IeOzXXl7Szmzx7iyPbBaGhjWOSTdXRoLGJUQU6XhqpuZsg/t7BjTmscj79VBqGQq1Eo1LmV6ClzhzlNcZQeriF1wM0L2Yug9GZIaicC4b+O+vPz+ATIM+ez6+ClKa0rZlbYLs82MXCanU6NODGgygJ5hPVl+djkJl67Q1vY1QD2NRqp6LoW20w88FxxVjrjaHchZUMmLA2VcGRlPallqvcGonw7c7Ersbm5UaaDCWElomY2OefDhPpFG5mwB9S0K1OVAORdC1HzSyUqBM+jlNqmD9zClkqtQyBWYrCZkMhmBzoGEuYdxNv8s3k7eDI0aiqvGFWcHZ1wcXHBRu+Di4CL+feu+i9pFelytVHMk+wi7v3yBncZLyAV4Mgm+mtyU6e2m83zH53l86+MczDzIzvE7WXBoAfsy9hHtE016RToFLxVwMPMgYzaPYVizYfw84mfydfm8f+R9tlzbIuk4FDIFg906Mub7k/RbuI5XZfto88lqZuYHokzPpKSmhF03drEzdSd70vegM+sIdg1mUNQgBkcNFgP0VFoqjZVsTdnKz1d+5kDmAeQyOf0j+zOh5QQiPSPp+H1Hto/bzpCmQx5qf95dtZZaCXQcu3mMlRdXUqAvwFPricVmka4/INJPG3s0prH7reXW/WaFViLmvIfi8hWKZ0/n0lODKTCVNghICvWFkgapru6kbvk4+rAvYx+ualf+1vNv94ASV7XrP8W69VrpNWK/jWV48+GsGrbq4dcpCGJ2VlwcrFnzD2/H/5Yq0BWwKXkT66+s52TuSbRKLYObDmZc9DgGNBlwT2bNg0pv1vP9ue/57ORn5FbnMjhqMK/Fv0aX4C73fc38/fNZkriE7NnZ0hhs5cWVPL3zacw2MwMjB7Jl7JZ7ALXBYmDClgnsuLaDUPdQyg3l/Dbxt3raz/9fYv3XAY1Pjn/Cq/tE7n5sQCzejt4cyj7EjnE7eDTi0X/LNtjsNpIKktiXsY/9mfs5fvM4JpsJPyc/eof3lroWf1pEZLeDQgHffw9PPkmNuYZrpdfq2cUeyT5Sj+7krnHHZDVhsBrEGUyVIzPaz2B+t/l4OYqzIoIgkF2VzZnc05xNOcDZmydJ0qVSJbs9YG9ZCFMuy4hVhdE2KBbXVrG3uxT+/nT9MZ4TOSdYN3Id41qOw2Q1UVJbIgIH/W2aUr4un1xdLgW6AopriikzlFFlrGpQ6yCXyREE4S+HvMmQ4eTghLPKmcKaQmTI6BbSjabeTSX9QrWpmo+Of8QLHV/gQOYBKgwV5Ovzae3bmoszLzJn9xy+TfoWi92CxW5hcIkXO33KuDr5NE4efjRd2pTGHo25Vio6PylQYMNG1+CuXC25yrax2zh+8zifnvwUo9VIlFcUySXJDG82nI3JG5nSZgrhHuEYrUZuVt3kZO5J0ivSUSvUhHuE08i1ETa7jetl18nX5ePj6IOTg9M93YM/W0q5Eq1Si0YpCtFrLDXIZXJC3UIJdA7Ejp2z+WclaphKriLcI1ykzeUYcdn+G5rHhqLpIwaYaZQaaX0apQaFXEG+Lp+M8gxSy1JZfXm1pEfxqBGdl0amylnW15OXY0sp/wg8jEBYGHTogNC+PUMct3GyNpVIryaUGcpoH9CeQn0hh6YcAqD5suY4qZy4mH8Od4uSolPxRHc8w6Pdp9I9pDujN4+mmXczLj1zSQrEqhP51w3qT0w9weTtk0krT+PR8EeJ9Ixk+dnl+Oqh2lmFCSvtA9vT1Kspm5I3oZQp6R7WnR3jdqBSqHjv8HssOLQAtULNiiEr+DbpW05lHGHDZhh8Q86EkQKFA7qRXp5OaW0pyloTbQtFO9QRKbCmtUjt0apE9zUfJx+KaorE3BiPCG6U3+DHoT/SJbgLMd/EUGup5YftMqYNFTjwExS1CGVCx5v1viNKlFixMlfbmxc+2E/j2UidgTD3MIr0RVisRmyCwIunYM4pOBYCk0fepvMtS4AuOdC2vnTmvuUqtL7LdWoF1bLLKGQK2vm3w0vrxe6M3QDMjJ3JtLbTcHFwodJYyf7M/fy67m8cX24m7ilIDBLPzzv1Sx61YqeiU664XbEF4HkrV7LKAZRqDTeeH8+Mkh/59OU9dGsqXusnbplIga6ADoEd+PbctyQ+lchzu55jb8Zead1apZa9k/ZSY6mhQFfALym/sCd9DwICsYGxRPuI9r0HMg+Qr8snxj8Gk9WE3qxHZ9ahM+keOLkht8Pbh8Su2wfd4NNDDmyb2hkPR08JmNgFO9+f+x6L3YKXxovpsdNp5duKyVsnMyhqEAmpCcQHxxPlFcWO1B0SEHNVu9IvXNS9fHziYw5NPkiPqe9ARQXlx/cz95kwInNq2DWpE6fyRODXsVFHCVy09muNTCaj1lJLQmoC666sY9eNXVhsFnqE9WBCywmMbDGy3kRY6+WtifaNZt3IdQ93gjRQerOevx36G1+c+oKm3k35+rGv6RYq0mUrjZW3OyF3dEQyKzK5WZ7Jc0eMvHtQtBF+cZwr1S2bNAhGQt1DpcGqyWq6b2ckqSCJxLxEXB1cMdvN91xTH0Tdqlv8nP3uOziutdQS930cVruVM9PP/LmZ+4MH4ZFHxNDe7t3/2g7/X15ZlVlSGvmFwgu4ql0Z3mw441qOe2BK/N1ltplZd3kdi44vIqU0hfiQeF7r+hoDmwy8B9wV6YsI+zKM+fHzeavHW9L/Kw2V9F0jWto6Ozjzy5hf7pmottltvPDbCyw/u5xQt1BKa0tJmJBAz7Ce/9C++G+r/yqgcaX4CjFfx2ATbHhoPGgX0I4TOSfYOX4nvcN7/8veVxAErpddl4LyDmUdotJYibODMz3DekrAIton+i/NitQ5NaWUpJD8xnRSujcnWVtTzwo2yDWIJh5NOJR9CAGBoU2HUmOuYV/mPkCkh8yLn8fM2JnozDrOpB3h7OXdnMk7w1ljBmVy8cIaXCXymGOrHIl1juJSpAsva4+yKfZjenWdSJGlkuKaYgr1hWRXZnOz+ib51fkczDqI3qxHQJAEy/+MquNym21mZMjoENiBRq6N8HPyw8fJB71JzxenvwCQeL/NvZuL4q5JYnaK0WrkvcPvsSdDHDw81+E5YvxjMFgMfHbyM/RmPdPaTmPR8UXSttcNqnel7sLbybuefsPBCjFVWjKDxaC5fwQIyWQy3NRuGKxip6AuvTjELQRHlSNqpZqrxVe5UX6DrsFdiWsUJw3m71y0Ku09/1PIFKSUpnAq9xRHbx7lWuk15DI5HRt1ZEDkAAZEDqB9YHs2J29m7OaxjI0ey4arGxjRfATfDPqGAWsH0M6/HbM6zWJz8mY2J2/mcvFlnMzwmBDJqInvM7DJY1jtVi4WXeRC4QUuFF7gfOF5rhZfxWK34KuHIboAWmYZcCzXMXOADbkd1v0CI1MVJI/qTnTzgxxovohej0wDb1HM9/fTf2fW7lkkjE8g0jOS1l+3poV3C+RyOUlPJwEwZtMYfkn5hbFlAazzzOO8YTLvFm1C/0g8zbybsSRxiaQJAVC+q6y37+/Uu/QI6cH18uuYrCa6KcLZUSO+R5/wPhzOOozFbsFF5UKEZwRfDviSstoyFh1fxOm806jkKmL8Yig3llNSnM2G9VZ6ZsGoMfDrHVrUqdURzNiUSdcpdpQyOaiUxAZ2wG63czrvNHbsBLkG0cKnBXvSRWFiz7CenM49TWOPxhTpi5CZjPRNLMe370gOnP+FM42QQISbgxtV5irp/bb/DI/dgLavuXNZfdvO1NXBVeycKDSU15Ty8jGBvx2CrtNuuXABLx+HN4+I+QsquQqlQtx3UV5RlBvKyavOQ+D2JECdTsFL64XBYrivrev96qkk+DpBFIJb5SIFqnuhAzHZZuLyoMmtuRObuxsXfWzsCNRjVsC0kkYc8NYzOsmAS0UN7h+5s6DHAskoYvwv4ympKWH5Y8uJWhrF6uGrmdhqInHfx4lAGhl27MyOm42r2pXFpxdjtVt5vsPzvNL1FUlcuvP6ToasH1IvJ+fOstgsEvBILklmyeklHMk+gt6ix6MWNmxT4KGz0fkpeDbFGeOYEVQg2kXrzXrydfncrLrZoDnE/UopU+Kp9cTL0UsCK+cKzmGz24h3iabg8kkygxyptNfiZIYw1xAebTOCnmE9CXUPxdnBGY1CQ2J+IltTtrLt+jb0Zj0dAjswvuV4xkSPoZFrowbf+4OjH/D+0fcpfrn4Lzn+7Li+g+d3PU9pbSkLeixgbue5D+fylJqK8MQTkJhIwYwJHJ3Wh3RDXj0wcvd+DHAOaBCENPZoTJBrEEq5kgFrB7A7bTfXnrtGlFcUOrPuvp2RO5eimqJ76LbumvrUrQDnAPyd/UlITSAxL5GfR/5MfEg8XlqvB+eA1NX48XDhAiQn/68Xgf8z6lrpNTZc2cC6K+u4XnYdL60Xo1qMYlzLcXQL6fbQ+80u2ElITeDDYx9yKvcUrXxbMa/rPMa2HItSfvv34Llfn2PD1Q1kz86+53xefmY5s3bPwmK3MLL5SNaPWl/vtYIg8MHRD3jz4JsEuQRRaihl69it/+MU/f9N9V8DNMw2M+2+bkdyabI0mLpQeIGECQk80viRf/r7FegKJCrUvox95OnyUMlVdArqJNGhOgR2eGgULggCxTXFUnfizmC7Qn0hIA6OwisQ9RMdB4m3Pi0QDCFsOV7FmaxcSq1XKNduosByEjt23FWuTA0YiEutlfMllzhrvUmBSgQVvnpoWQwhMnfc3P3A25tidyV5KhPF1koqDZWUGcr+YdCglCvRKDRoVOKst6PKEUeVI04OTjgqxftKhVKiNMlujZzsgh2zXaTrHL95nGpzNU4qJ0LcRCqQwWKgwljxl2b06/angICLgwsapaaeyNfPyU/SSQgIWO1WugZ1xWAzcK7gHK4WOU4efpL7FkCvsF4U6gvJqc5Bb9ZL+o93e77LxNYTJTBwKvcUA9YOkESeAgJt/dsyr+s8RrYYKV3EbHYbT+18ipUXVvLt4G//HJ+3gcqtzuX3tN/5Le039mbspdpUjbejN7EBsSLvftI+Ko2VzEiYIQmRW/i0kGYthXPnODyhCyv6+rA/1EqBvrCe1sHHpGR0bWMeKXcjJsdMo9RCNPkiQDO5u3DAW8fCgc6cca/BIhd49bo3767KxWORBwsfWcjcznMBUT8S930cM2Nnsrj/YgAWHlnIgoMLCHYLJnu2CLB7/dSLQ9mHyDnTg6btj7HAbwxVW9axsp8f1VYxvfzqs1dp4dOCWkstTh84SU5Ezb2b09K3JWabmYRUMUVdJVdJ9Dx3o4xKzYMvjQqZgtiAWMI9w4lQ+jL2tTWEZZRxcsk8vvPIYFPyJlzNMvz0Ah/uhamjlOgUVtw17pydfpYIzwhApMtF/D2C+JB4kkuSpa6kn5Mf1aZqjFYjB544wNGsI7x34G2cBSUVSivh5aBwc+eGon4ugpMZ9B+INCKn+WC9SxdbBzZ0Zh0IsGETDEqXcSgE/jbMnZCsCjZuAvd5UK29DSTqBlUapYauwV0Jcw/DVe3K3vS9ZFVlEegcyI3yGw8PvgUIroQVO6B9oRhY16ZQpECZFGLnpy4E73ywkmvuVhQKJVGeUTTFC8/0fCLPpPPaMVj6ZGu+blqFu1cj/j5gCZ5aT+b8Pocacw17Ju2h18pe2AU7yx9bTsuvWvJ6/Ot8cOyDesdyVtwsXu36aj1HnApDBdFfRdM2oC0J4xManCwq1hez8OhCNl7dKHUaPDQevKDsypt/v4BQoyd2Yg1yIPG1DBwCRERXqC9k7u9zWXdlHT1Ce/DVwK+Yt38e+zL2EeMfQ2JuYj3TiCaeTegf2Z8ozyhqrbUiuDHpKK4p5kb5DTIqMiQalVKQobKBq11F9iIzY0fB9ub3PxRqhVrSit1NA7ubImawGHjj4Bu80uUVBkUNqve4s4MzTiqnBvfTzaqbvPjbi2y/vp0BkQNYNnAZjT3+QGRUV3Y7LFkCr78OjRrBypWi210DZbWLDnt3akLu7Ijk6/Kl87MuRPVm9U2UciVvdX+rHhjxd/b/w8lBm91GmaGMAl3BvUCk5vb97Mpsyaa5rhQyxb2uWw0sAQYlzuHNkC1aBHPmPHhf/ReVIAhcLLoopZFnV2UT6BLImBZjGNdyHB0bdXyoyVtBEDh68yiLji9i141dhLqF8nKXl5nWdhqOKkeyKrOI/Hskn/f7nBfjXrzn9cU1xfRZ1YfLxZdx17izc9xO4kPj6z3nh/M/MH3HdHydfSmrLWPDqA3/GUHQ/4b6rwEabx54k/ePvg+I4XWZlZn8OuHXf1oLq8pYxeHsw1LXIrkkGYA2fm0kZ6huod0e2A4VBIGc6hyxO3FXSnbd4EIpVxLlFXWPw1OUVxRa/yB45RV47TUALmfrmPNDCoIAdkG0lUQQyDbPpNDhEsZbOEdmv2WdKROpGsJfmBSRIxeBwC1bt7qyC/a/DEYcFA71Z+aV987Ma5QarHYru9N2YxNsxAfHEx8Sz83Km6xPXo9dsBPpEUlaRRpDooYwNnosj299nFe6vMKoFqPQKDXIZXLivo/judjnMNgMLElcgrvanbigOHY/vpslp5cw5/c52AQxU6Clb0tO5Z4ixi+GpIIk4kPiOTxFFFPOeieOv5Mo7hPZbbrJqSdPoZAr6LqiK2a7GQ+NB0arkbmd50oWvQaLgZUXV/Lq3lclfnSBvoCLMy7SwreFtF8sNguTtk5ic/JmVg5bycTWE//S/r1fWWwWTuWeYnfabnam7uRy8WUAYgNjiQ+O51TeKU7lnsJT68nEVhNJzjnHhYwTlGnFy0WwzJ3HagJpmWUg5EYxzbNqiLxFgTY7a5HHdkDZsRN06ACxsVT4uuL9qY80UH29shWL3C7TK7y3OJDzjWbV8FXUmGto/217tCotp548JfFizTYzwV8EU2GooPaNWgp0BUT8PQKL3ULlnvZM7FJATUQw05afZvIIcSBdba7m9FOnifGPYfHJxczbPw+AENcQ8vX5NPNqxrWyayJ9zFwrHse6TI0GsjUA5naey9aUrWRWZtIxsCOHpx4WqRIVFdj79UV/OYml7wxk/rwEKC5mw2uDGReaSET5bSva6e2ms+riKp5u/zQf9v6QktoSkvKTGLVpFK90eQUvrRcXCy+y5dqWhik5t8L3XA1Q+TEMHy9nW1N7PQ3KhIuweivM6g9LO4kvuxMUKmQK+kb0JcwtjOVJy1EKMlb/pqXpwMmcPLCKncG1XPGF3D/2FABEMCQIAjWWGgRBQK1U09a/LecLz9/Di1dZRXvol89p6J1ipFOBAveaW7RJZ2dMj/VnXvUWWg15iq6DnqXMrmf0ptESoO/YqCMxfjHoLXrKDeVUGCoIT8rg569LaPI8pN3H3dLb0RulXEmhvhBvRzGoK9glmOvl16WJDQGB4U2H837v9yUHNweFA1O2TWHbtW1cffZqvRl+nUnHouOLWHNpjdRddlI50TeiL291f4u2uy/As89Cixa81aaMj4KyOdN/MzFdRmKz2/j67NfMPzAfB7kDU2KmYLQZ+e3Gb1L+Sp1WTq1Q4+LgQvvA9ux+XKSfCYLApaJL7Ezdyc7UnSTmJSJDJvLDBThXeI70XtsJjO8PS5Zgm/8aM/uYONIrnCpTFYX6QnydfIkPjqd9QHs8tZ7oLSJokShht2hhd1LE6jowDYWJ3lkyZBJQcXZwxlnlTJWpiqzKLBwUDnQN7kprv9b19CwNghu1C655ZTjNfBHZoUNiJsaHH4LjA6xu/6BMVhPZVdkSADlx8wSrL6/GQ+OBQq6gtLZUeq5GqSHMPaxeN0T626MxHhqPBw50rxRfoeN3HRndYjTv9nq34e5ITf2/75w8e+m4GEja+d0QNH6N/hCU+Dn5NSjO/28oQRA4nXeadZfXsTF5I4X6QsLcwxgXLQYD1lEAH1QXCy/y8YmP2XBlAx5aD17s+CLPdXyOWbtncTjrMGkvpt23u/bJ8U94ff/r2AQbk1tP5sehPyK/I6Pl19RfGb1ptBjaaaxg1fBVTGhdY8wyAAAgAElEQVQ14Z+2D/5T678CaCTmJRL3fRwgtkmrTdXsmriL7qF/nctospo4lXtKcoY6k3cGm2Aj1C2UR8MfpXd4bx5p/Ai+TvfaOoI405FRkVEPSCSXJHOt9Jp0kdYqtTTzbiY5PNV1KCI8Iu7fCQkMhBkzRL9wYN7K65xNr8J+x1Fs0MO+7vH7fA/lyFEqlDgoHFAr1GgUGhwdHMmtzsVgNfBo+KNoVVoxFO5WMJyTygmtSotWqRV5tl5NGdhkIK/ufZUpMVOY2Hpig6ChDlColeo/ZQ1ZZ1mskCkYHDWYbde3AeKgqfDlQtZcWsOc3+ew/LHl/HD+ByI9I/l55M/S68dsGkNmZSZnpp9h6Pqh7Li+gyFRQ9g8ZjNTt09lS8oWDFYDAyMHciT7CGqlmjJDGWqFmtQXUsVOitXEgNeCOeRUgtoGRhU80/4Zjuccp8ZSQ5G+CEeVI2W1ZdixM6zpMPZm7OX8jPNsSt7El6e/pLS2lCFNh3A0+yidgzpzrewaQa5BHJh8AJlMhtFqZMymMexO2/1vmRXRmXT4f+ZPU6+mVBmryK7KrqeZcbTKGH/NgZHX5bQMbodfRjGq62nIBEE0J2jXjqrWTTnua2SlKplN5gsolSr6RvRlVItRDGk6RAz4W+SOYBcw2ox8mtuCVuUqxnbMxmAx4OvsS/qL6Ty14ynWXVnHuafP0dS7vgf+7N2z+fL0l3zW9zOulV5j67WtVBmrSNvgx5quLixolMqAG5AQaaOxW2MyqzLx0HhQaaysN8OukqmwCBZC3ULJrspmZuxM2vi1Iac6h/ePvs/rR2BRdxn2O17jpHTCaDNK+2VU81FsGL1BPH+Li6FvXwxZaXQbV8snc3cT/vNvmL5bTpfHTZQ53nIsE2zIkBHhEUGZoeyeQXhduand8HHywWq3klWZBYhhbRIdSRBTqjtXubB8nY6z/VszpOUl1Aq1aAMrWElbKsddb8fn1frp4y4OLjwa8Sg7r+/Ez8kPm2CjpKYEhSBgEmwSyAqqhnFXIN0DsvwcOO9pvufa0SusF7M7zabWXMvr+18nqyqr3uNyQYazBWqUAn3LPCiS6Tn+tYUmL4hJ208mQWKQjKRA2L5Vjfy9hfDSSwxbP4zc6lx2TdzFq3tfZeXFlciQ4aBwoOSVEjGH5c5KS4MmTVjwRldaxPRh/NW/sWOjEq1FYP5wVwzebkyIm05xbQnLzizDYrdIoEyGDLVSfd+uaJ25RJBrEJGekbir3cnX5XOj/IZ0/JRyJa39WjOj3Qz6RvbFU+6Ey8tvIPvuO3jySZKcqohz38yCkEkseHIVSflJTN0+lcvFlwlxC6G0tpRaSy1+Tn54ab3IrMyUZr+beDbh0sxL/Hj+R57b9Rw/DfuJU7mnSEhNIKc6BxcHF/pF9mNQk0EMbDIQHycfqk3VNFvajE5Bnfhoj511Rfv5ubmFVGcRtA6OGsy8rvPoHNz5L1nzgji59PHxj1lwcAHHpx1HLpNLIOROQKIz6bhedp096XsoN5QT5h5GI9dGIr3uDgBTR7utVwJMT4LP9kCZFp4dpeF8c/d7hPYuahecVQ2L8O++XwdgnB2cJfrNUzueYsX5FRyYfIBejXuhM+nETkgD+pDMysx6IMtV7VqfjnXH/TrL3w7fdUApV3L6qdMN2qXeXXXmKIX6Qgp1BbTrNZ68po1Y+cqj9wCS4prie6hbHhqPB3ZJ6ly3/urx/58um93GkewjrL+yns0pmyk3lNPMuxnjW45nXMtxRHlFPXAdmRWZfHbyM1acX4FCpmBk85GsurSKH4f+yJSYKfd9XW5VLr1X9ya1LBVvR29+m/gbsYGx0uOJeYkMXDsQq91Ktan6n8JG+E+v/3igYbAYCF0cSkltiZRQvfvx3ZKo7GHLLti5WHhRokMdyT6CwWrAS+vFI40foU94H3o37k24R3g91GyymrhRfuOeDkVqWao0G+mqdm0wg6LO4elPVePGIl/zA7HlP/rj85Tq7u0m3OlhL0MmAQK1Uo2D3AGFXIEgCFjsFkkfYLAYHhhAd2fJkEn6gGpjNc5q0aGozuGjZ1hPiZakVWqlbbj7tm4dD3qORqkh/od4zhacBSA+JJ5TOacY0WIEG0ZtQBAEZu2exbIzyxjZbCSHbx6m8KVC6XitubSGSVsncemZS3T7sRsdGnXgcNZhejXuRVp5GhkVGciQMa/rPD46/hEeGg8qjBV8O+hbprefTq25ltAvQymtKaVjHhjUcqJ7jmH91fW4qd2oMlXRN7wvm8Zs4sfzPzL799n4OvlSYRAHJHKZnKkxU3mpy0tEekZKoYpvdnuThUcXsnr4aoY3G87wDcM5evMoW8ZsYUCTAX/u/PiDEgSBQn2hpKOo01SkladJ4WDtvFsx0BhMy2wjnD1LVGY10cUCKrtIZSmK8EfRMQ6/noNQdoyD5s3v8avPrc5lS8oWNidv5tjNYyjkCtr4tSGpIAlHlaPoAHLuPHtzepKz4gu6/9SdrMosnox5khUXVvDDkB+Y2nYqNeYacqtzpWXbtW0SuITbYYhnvhHtTd9+BKkTUdetGBc9jj7hfZj560yp67Zs4DKe2/UcrX1bE+QWxK8TfqXCUEGLr1rQocqZnsfzebm7QbJdvbMTUHfeT4mZImZA5Oaw8P2TONZa6P24HX89vLcfNkfDF53BLhe7dp4aTwprCqUBbgvvFljsFopqivhu0HcU1YrW02kvpBHhGUGlsZIO33XgZtVNnJROVJgqpPd+seOLfJn4JfOPQsdccLRA38nitsmR411jp/ATiJ8q5oo8TDVyaYRrfhkpLkZe7PA8L3d5BZ/ASD7tArOPWvihLcwacEtXdEvXUP/kArUVelgbMbrYm6GXzXhfSqdWMNP8OajVyOkiD2VH9EK+98xi+uk3mB03m8WnF9OsBFKWwYmf3qPLE2+y6eomxmweg6vaFYVMwaI+iwB4OuFpuod05/DUw/Xf+5Yb3/QRSuavSCX8y3DW9v2GCYkGhl59E7tez8akxnw7OZqXrLuwYWdqm6mcyT9D24C2rBq+SjSvqClh2IZhJBUk4aHx4Km2T/HtuW/xcvQi1DWUC0UX6oFDpVyJXbDXG+gFVcEvG6BNEbw2zBlnhZZtXiVUuquJaNKJ5NJkiaIpQyamZjv5k6fL40b5DQJdAunUqBPbrm0jzCOMQl0hC3ou4EjWEXal7QKgsXtjBkcNZnDTwXQP7X7P7GtudS6v7XuNtZfXAuBiguFFHowv8efD4T7k6nK5PPPyQw16/6jydfkEfR7E90O+rxcGW1cVhgrm75/PN0nf0C6gHd8M+ob2ge0bXJcgiOF+krg+K53AuW/jeSSR9JGPcGzWcMqVlnvAzP3Ajc6s+0OrchA1fS4OLpTWlmIX7HQN7iqCkTrA0oCLmJPKSaQcmnSUG8opqS0R8z90eWRVZpFVmVUvV0mtUGOxW+gX0Y82fm3q6UNC3EIerEs5dAh69RJve/S452Gb3UZp7X2ctu4CJZXG+vTKh6Vu+Tv74+Lg8k9x3fpXlMVmYW/GXimNXGfW0da/LeNajmNs9FhC3f/4IlhnI7/0zFKqjFW4ql05Pu34A61x3zn0Du8deQ9BEJjRfgbLBi6TuhupZan0Xd2X0tpSaiw1fNn/ywYpWf9X6j8eaEz4ZQLrrqxDLpOjUWj4fdLv9cLd/qgyKjIkZ6gDmQcorS1Fq9TSLbQbfRqLOos2/m2Qy+QNOjwllySTXp4uDc59HH3qA4pbHYoA54B/3pe0WTN47DH47DOg4Y6GXAbtI1yZPcKVa6XX7llyqnOk5/o7+9PMuxnNvJrRzLsZkZ6RhLqH4qX1wmQz0eqrVqLjwthfMFgMGKyGBm8XHV9Ec5/mxAbEUmooZePVjUR5RhHmESZZot7vtX9VTF1XER4ReDt6SxqIi4UXJZHehJYTCHINQqvSYhfsLDyykEjPSHKrc1k6YCmF+kIWHl0ozSCGuYXh6+xLYp5Ijeoc1Jnj045Lftt1touTMpzZGKLn9UfeZuHR97EJNtRKNZ5aT9JfTCe9PJ1HVz9Kgb4AhUyBTCYjaXoSrf1bS9stCAIjNo7gZM5J8X1yjhPhGcHlosv/sHOFzW7jRvkNEVQUnOdCkQgq6kTtrmpX2vm2oZ8llPgiNR/W7MZSo2PP9yYxYVehID/Ui6Mu5fRPtfPBizEsVp3DrhJzEFwcXOgT3ocBkQPoH9mfYLfgBrcjX5fPlpQtvL7/dWkmMNg1mPzKHBIzelP6zqscyDzAouPiYFKr1BLmHkaBvuCeH0YXBxd0Zp0Ezt+Mf5PjucdZOu8wvoPHERGRQJWhEl+DnMl9XuKTE5+wdsRalHIlYzePBcTQyfYB7dmTvoeimiJmx83Gz9mPNZfWkFqWyqG1SvqNNKJ3ePA52bbWnYQfjGhQ8NnTrYjZeopCF3injwKDRomzxpUmnk04MvUIHb/viMFiIKU0hSkxU9h5faeY8C4IYlpuy3E8se0JaufXolaqGbZ+GPsz9ktZQHWWt25qN6x2Ky6CioiMSnqni2GAnvOQuhGzT0GvTBj6kB17rVLLmuFrGF7pz5z3uvJlJ3inxztMnPQxvwfUsnCYJyZjDRWK+jQuFxO0KIZ+6fDEBQi/dbisEeEoO3cRrTg7dmRc2iI23NhCl+AuHJ92HIvNQvRX0aiValJKUlhtGMD4jxLwfBUah7fDZDNxteQqrX1bs2/yPikRPP6HeI7nHG9QkG318+HdFqVEL1nPmwffpH9Ef5YMXMJjax8jt+A6pVX5FMoN2G/N6/wU+TLT0j/nu8Hf1RskC4LA+F/Gs+HqBqA+sJLL5LT2bc3zHZ9nSswUFHJRg1U36LTu/Z3Qma9hUav4/cOnqM7P5Pr+DXzSFQT5bYqlSq6SdF/3qzp73bpOi5+TH3KZnCpTFYt6L8LP2U+id3lqPcUJtrTdrL+6nqPZR3FQOIiWrMhIyx6Ky4rV4OjIjdRTtP66Nc91eI5P+376cCfIH1Svlb1QyVXsmbSn3j5cd2Udc36fg8Fi4P1H3ufZDs8+nIBXEGD1apEi5eQEK1ZA/z8vqhUEAYPVUB+U3EUD05v15Fbn8unJTwlwDqBPeJ/70sV0Jt0DJ+E0Sg3OKmccHURTEp1JR3FtsUTbqzHX1OvcyJDh5eiFv7M/wa7BhLmHEekZSZRXFC28xYlIxeOT4Nw5SEn5h0XgRquRIn3Drlt3gpICXcE9lE2tUvtgLYlzAL5Ovv+j1C2DxcBvab+x/sp6dqbuxGg10iW4C+OixzE6ejT+zv73fa3OpGP+/vksPbMUgGHNhjGv6zw6BXW672vSy9Pps6oPWVVZBDgHsHfSXgmgFOoLGbBmAMmlyZhtZj545ANe7/b6P/cD/4fUfzTQqHMCAXBUOrJ38t4/9EsuqSnhQOYBCVxkVmZKwvE6nUUzr2ZkVGbc06G42+Hp7g5Fc5/mkkPJv7TatBHt7ZYsAe7VaMhl4vVo8ZPNaRni0uAq9GY9qWWp9wCQO7swWqWWpt5NuVh4EX9nfz7v9znNvJsR5RXV4EyY/6f+PN/xed7s/iYAr+x5ha+TvibjxQxpoNBQCYIg5jPc0VW5G4icLzzPFye/oMxQxrBmw9AoNay+tBoAjULD1LZT6+VD6E16TuWdQm/W4+voi4vaRVp/pbHygTNdd9fdVpsuDi744kS6uRCtBQJ8wwl3DycxL5Fqc7U0KHR2cJaAlIPcgW6h3Xgm9pl6HR6dWceI9SPoGtKVvRl7UcgUHJh84B6h2R9VraWWy0WX67k+XSq6JIGnYNdg2vq24RF7KF2KHIjKqML1yg1k585BTQ3IZLw01p2d4VZS/RaKuoo2bfjwkyF8XrOfkpi1MGECSflJPL71cTIqMujTuA+VxkpO5Z3CLtiJ9ommf2R/+kf0J9o3mpLaEqkTsTttN1uvbaWNbxsuFV+6DSzv0kHUuXB5O3ozLWYaLX1bSsnMgS6BHMw6yGM/PyZ1GFYOWymmuPadgWnQAGIifkeDksBSM0LjMNKrs4jyiiKtPO0Pj3kdLamdQyidj2WzrKP4/1HNR+GucWfF+RXIZXKGNh3K9uvbCXAJwDEjl/0rxVyL4y1d0JTrmN9HRqYHTGs7lY6N4piRMIMjU46Qp8tj/C/jOTzlMKsurmLj1Y0cm3aML05+wU8XfwKglW8rrpVeY1bcLH698SsppSkPdeynnIMfd4B8wW2K1I61MGIcWG+N6+5OoZchY0DkAHal7ZIMCwQEvLRetE+r4YSfCb1SYHgyXPGDG3dkg/XJ0zDtpJFHMsW07VKtKNRObCSKts8FK6h0lDOh1QRmxc2ibUBbDBYDjh84opApKH+1HFeNK+sur2PClgn0DO3JwauxWDasw/e5Gglc+jn5IZPJyJubJwHLKmMV/p/5YxfsFMwtwNPxjtyhuDi2qdJZ82JPHFWOJJckM73ddGb/Phuj1cik1pPIK88iJ/8aXsV6TBYD5wMgw+EVGk+dC/7iAORQ1iHeP/o++zL2Sat2UDgwM3Ymi/osangQJQjw8cfY57/O+SEd+fXpnqQk/sqMH67Qewo4KB0w2s10De7KoKhB/JLyC2fzz9LIpRFjo8fSq3EvkkuSWXtpLZeKxUwUtUJNsGswKoWKlNIUwtzDsNvt3Ky+eU+H7c5SyVV4aj0Jcg3CycGJYzePEefRmtnfX2bMJRsbDi3jt4pEVl1cxYZRG+ge2l3SovyV+jbpW2b+OpP8ufn4Oftxo+wGz+56ln0Z+xjdYjSL+y8m0CXw4VZWVCTSgrdvF3OivvwSPP5aYvTD1sLDC3nr0Fv3dROrK0EQMNlMDXZOGgIzmZWZbEreRIhbCE08m9wGLSYdVaYq9Gb9A4GLVw3kfQ4L+ir5vocrzmpn3NRueDt64+vki4+jz33pYg11Yx72GNejbtWBD30DYvdb1K27z0VPredDWQF7OXr9S6lbOpOOHdd3sP7qen5P+x2bYKNnWE/GRY+7x675zur2YzfyqkVzn9TyVHqE9uC1+NfoF9HvvhPGr+x5hc9OipO/czvPlUB8tamaERtGcCjrEDbBVi8D6/9S/ccCjUpDJT6fijxmtVzNoamH7kGeNeYajt48KjlDXSy6CEBz7+Z0Ce5CmHsYWqWWzMrMhh2e6nID7uhQNPNuhqva9d/+eaXq0AHatoVvv5X+dTlbx5pD+WQU1RLu58ikXoH3BRl/VDa7jZtVNyXgcbX4KisurJAC6Ooq1C1U7ILcsQxdP5Q3ur0h2UqW1ZYR/vdwpsVM44v+X/ylj2qymnjn0Dt8fOJjOgR2YOWwlRJv3/cTX0pqS8TjNyuznksMiLMJjb9sjEquImdOjpSU3WJZC1JKU8idk4ujyhGD1cBHxz5iSaII3JRyJYIgYBNsxDWKY0SzEbx+4HVpoBofHI/ZZuZsXiIuJnBROdO2eS9yqnJIL09HZxE7HmqFGg+NBzqzjhpLzZ/+7Cq5qkEamVKuxGKzYLQa0Zv1VJmqpABDGTJ8nHwIcmlEe7MPXYvVtL5pplFqAR5X01HpxO0whQZhbtsaW/u2yGI7oOoQxw/pm5n7+1wMbxjEmceVK1n61RReGqjA9LYIsuyCnZyqHF7b/xrrr6ynqVdT4kPiuVF2g9TyVEpqSu758ZQhGge4ql15pPEjXCi8IHZ/MnNwcvLApUk0R7KPSAPdcS3HsTl5Myabibmd5hLgEkBxTTElNSVcLbnK3oy94myvTIHRJs72Zn0Bq9rAglvmcg5WQKXEKthxcnCixlwjDbSfbvc0P138CYvNwvuPvM+M9jNo+21boryimFYcxAT9TyDAvPh5yGVyPjz2IU4qJ04/dZpo32hO555m4dIxfL/0JqWO8FV7uBgIx0PErIS2jdrzTOwzfHLiEwKcA3i357uM2TwGL60X/SP7k1GZwa4bu6QE57spSK5qV+l4apQa+oX341LxJbKrsrEL9nqDTK3MgfZZZo7+CMoFYkaD060uw5lbDaaOAR0prCnkZvVNcZ0KjbTf6o7PnQMFhQ2QietyMUKfDBiYIaNLlkD087DmYiQTPbpjzspgmtshtjeDya7xrLCcwWQ3oZApUMgVaJQaqk3VdA/tzgsdXmDM5jEICCLAmbiL/Rn76bO6D2382vDbT1bO16QxepyCJl5NuFR0CTe1G5WmSuIaxbG4/2Lp2r756mZGbx5NbEAsZ54+c3vHjR5NVtYFWgzLY0jUEDYkix0Jf2d/Wvu15r1e7xH3fRxrhq/BbDMxbceTBFq05H5m56KnhXfH+rPHo5wau7hvFDLxM9RYagh3D+dm9U3e6PYG87vNrzdgqyrJYe+ro9hVkchvMU4UymqIMDtzcIWNPuNMpLvb8Xb2o21AW47dPEatpZYBkQMY1XwUtdZafkv7jX0Z+6TORQvvFizuv5ieYT0lnd4zCc+w5tIaLs28xJRtUyirLSPKK4rd6bsxWo1E+0QT1yiOZt7NsNqtokjeWEG5oZykgiRyqnLona9m77dGukyDkw3ENzmpnPDUetbrknhq7riv9cRD41H/ca0nZquZgM8D+LjPx1Sbqvnw2IcEugSybOCyP0f73LQJZs4Uc6K++QaG3ZvG/K+oFstacK30GpWvVf7TfterTdXEfhuLk4MTJ588ed9cjbuzWHRmHWW1ZWRUZJBVlUXbtQcYt+4y3d8LJ0NRTZWpqh4tSy6To5CJswl2wf5A4KKSqx4YLPmwGhcXtYuoCRP+gLp111Jlqqq3PQqZAj9nvwcCEn9nf5wdnP+hwXm5oZytKVtZf3W9FEDZL6If41qOY2jTofV0X7vTdjNg7QD2TtqLzqTjo+MfkZiXSBu/NszrOo/R0aPr2dvW1dXiq/Rd05d8XT6hbqHsn7yfCM8IzDYzU7dP5efLol50dtxsPu/3+f8psPEfBTTuHFDnmM6SYltKjfwqx6cdJy4oDovNwpn8M5Iz1Mmck2L4kdaLxu6NxUGHpYb08nSJa6uSq2ji1eSeDkWUVxRalfZ/+BM3UPHxEBEh2vv9i+tG2Q2ilkYxJ24Ob/Z4k+ul1293QMrE2zupYxqlhjZ+bSTwcbHwIr+k/ELyc8lEekb+qfc+X3Ceydsmc730On/r+Tde6fqK9OVOL08ncom4PpVcRZ/wPvw64dd7vrh14uE+jfuwa+IuDmYdpN+afgBsGbNFEln3/Kknh7MP46nxpNwoOn85yB0YEjWELde3YBdE2sTbPd5m3ZV1pJen81b3t6j5ZT3fOl/Dv1FTUkpT6BLchZmxM5mxcwYmm4mWvi3ZNHoTMxJmcDDrIFqFllHRo/iw94dStya7KpuZCTMp0BfgpnbDWe2MDBlzO88lvzqfzMpMcqtzydfnU6wvlgLnFDIFzg7OOKocCayRE5NjpdVNIy1vGmidY8GnRvxa57jC2UBxORMISYFQ/gfUbCeVEw6CDHm1HpNGiV5ulUKsTFZTgzOpXlovglyD8NJ64aBwQGfWUaAvIKsySwJonYM60y6gHTlVOexM3cmMc3LWtIGoRm04V3hOcthpqDw1nvg6+0p5NbEBsXQP7c43Sd/Qxr8Nv8w6wdIO0Oijr3jx9xcZdRU2N7ejdXBCZ9ZJ+hmA7eO2M3T9UBxVjhS9XMS8vfNYeXElq4evZty6EcgECPNtStuAtqy/uh4/Jz8uPnPxNpBNTETo04dUx1pGD7dx2R+UNrAr5DTzbkauLrfB5HqNUkOoWyhBrkHYBTsHsw4yNWYqI5uPxFXtyqOrH61HV/B18qXKWCUFfRbVFPFE6yfoEtKFtZfWcuTmEfE8sMPRFdB9mpg/0SH3Nsh4pv0z9A7vzdpLa9l2fZtk7XtnqW0ybDIBqxxUNtERqv8N+HQPZLhDn0zoM9OJtzu/zojMD3mv13s81/E5RmwYwYGM/ezO7Un37/aQ66Ph2VEakhpryNeLKexKuRJfJ1+JqlmneTo65ShfnP6CkzdPUqAvoPRj2Du4BV2/3U0j10a8uvdVPjv5GVqlFpVcRbW5WnJyig+JZ8CaAexO382SAUt4vuPzANjnzqFy8xq8nrztGLRy6ErWXF6Dh1YM5syuzObyzMsYrUZcP3IVqUWCQIWpCgSxQzM6x4XyFo3Zqczg/DMXeGXvKySkJjA2eizrr64n2iead3q8Q1pFGr9e2MixojNY5dBCE8xj7cYxKLg3rcfPYX5QCsvb/z/2zju8xvv//48zck72TmQPQshAkNjE3pTatdWmapUO7Ud1ovamdmtU7Vm1Y0YICRKyJSF7r7Pu3x+3HE6DaqufX/u9Ps/rynWSnPe517nH+zWezyfYmdqRU5aDi7kLXWt2xUxhxoXkC9x6cguZREYLjxY4WzizO3o3w+oN4/ue31dpMcory6POqjpIkFCoKqRUXYqvnS8j649kYMDAV/agl6nL8F/tT0OpGz+9dxF1aCtyDu8mLCWMAT8NYHDdwbT3bq8PTJ4PUipVvSr/96Lr8/mJLkB1m+o0cmmEg6lD1cDlN8GKQqaAnByYNAl274a+fWH1anB4eQX8TaKwohDrb6ypZVeLmMkxb2SZgiAw8OeBHH94nJvjbv7h595zCxLbpBs2hB+fCZoUlBcYktSfI6sn5SdRqi7Vj7VQWFDNvBr2pvbYGIuSxZXeTDKJjDJN2SurM78nGy+Xyl9dRfnN3wqZAq2gRa0VeaElqhKKVEUUlBeQU5ZDVkmW3lDxt61bpkamr22Y+HuVmyfFT9h7by+7ondx6dEljOXGdK/VnYH+A+lasyvGcmMarG+Avak9p4aeQhAEziWd49tL33Iy/iTe1t7MajaLEfVHVJkj6nQ6Jh+fzNoba5FIJMxtNZf/hP4HnaBj9qnZLLoiVjrGNBjD2u5r/7Vk/D+Kf02g8SIZVwGBt9pmIBgncvTBUa6kXqFMU4aR1AgzhRmlqlJ9Jr5S4em3FYpXKjz9E9GunXgj3rXrb542AvIAACAASURBVF/V/vv76bOnD2u6rmF88PgXjlFpVcTlxOG/xp/etXtjqbTUc1mez7TXtKtpwAWp/LExMSyNq7Vqvg77mvkX5uPvIEqe1q1W12DMR6c/4ttL3xLiEsLVtKuASPCdGDzRYFylGplcKmdo3aGEp4djY2xDdmk2Ia4hbHlrC4IgYPKliV5ZJrUw1UDuEsRzp0etHvx07ydCXENY3nk5YY/CuLh5HgdcC+lm3oAP+y2nuUdzAJZeXcr0k9PxsPIgtyyXbzt8y5RjU9AKWmQSGbGTY6lhW4PEvETabWuHRqdhdvPZTDs5DS9rLx7mPkQhU+izVy4WLtR3qk/9avUJMa5Bo8cSnGPSkEZEQHg4pKWJO+zgoJeTJTgYbVB9yh3EqkpyfjJJ+UmkFKSQVphGelE6T0rE0ndWaZaBmzyATAClkSmlmlI8rDwwkYvVFAEBre7ZwyKnLAeVVoUUqYGB2x+BBAlGUiNUOhUu5i4ICJSqSvXmcwqZAj97P9KK0sgqzWJQwCACHAOIzoxmZ/ROdu+BKE9jGi0W+/NJSCDaXHzgVrepTkJeAiAGUYs6LGLCsQlMbDSR/v79Cd0ayrzQeSy/ugzHlFzuO4pKPw9zH+Jq4cr4huPJLM0ktTAVz4tRfLg5joXNYVkTkAigeprYqtz/YJdgYnJiMDMyQyqRklaUhonchEnBkxhefzgBjgGAaCR3Kv4UF0deZP6F+eyMNnRYdjR1pJ9/PxzNHInPjeenez/pW+H8HPxwNHXkXPI5EMTA4JSPWIWQ6kQC+vNBhbXSmvyKfEKqNeR6RgQWKCmiAmM1tEqGtonQ4DGUyGF1UymnvHWMuC3h2w4LcZw4E+cZ8MRC/J78HPywNbHlWto1Dg08RCefThAby9UxXQkJS0BTw5sfprblC+1ZEvITkEqkyKVy/TmiQ4ex3JhyTTlSpNQokvPgOxXCoUNIevTQ7//Sq0uZdnIacqmcDT02sPjKYqIyo2jj1YbZzWfT96e+lGvKSXwvkQspF0ic9z7TD2bh/Lklwa4hXEm9wqetP+WX+F+QIOHXxF9Z120dUZlR7L67W0/ItlJa0cu3F5+2mkuN2ExObv+Mzk6/sv6olDEevVG9O5KeWcs5m3RO5Jg8uoRap0YhyOiQAF0LHOn6nx/wCmpDRtETjvUPYr/1Ew77AhJRLtrW2JY7mXd4UvwEa2Nruvh0oXut7nT26czRB0cZfmA4I+qPYGPPjfqJhyAIXE29ys7onQbeHO2rtyfySST9/fqzqtuq17q+jjw4Qo+dPaj4zgxFcSk8eAA+Psw+NZtl15Zxe/ztKgpvv8XzXJTKwCMxL5Hvb33Ptadu451rdMbEyKRKsPL85Pd59I1TsuqgGqVWwrJhtbgdWhtbE7sXBibPByxvipi87fY2hh8YzmetP+M/of/5y8sDWB2+mknHJrGn7x76+ff78ws6fx5CQ0VH8NDQ1/qIIAhklWa93FG9IMUg0eBk7vRSxaxKzt3vtYj9Vvb4Ve+97DyoRGXyzEJpgalcDIjkUtFfS0DQBymVLdaVYgC/RaVhorO5M84Wzq9s3UotTGXP3T2i0uHjm5grzHmr9ltYaAMJu63E26wptZ2tGBLqQqCnBbce32LB5QXsubsHe1N7pjaeysTgiVgbWxtsQ0R6BF1+6EJWaRa1bGvx67Bfcbdy19/XJEgYFDCIrb23vrA68n8N/5pA43VlXE2NTAl0DMTfwV9Pxq5jX+fPKTz9E9G1KyiVsH//376qLy98ySdnPyFsZJh+Ev0iqLQqlF8o2frWVobVE+VvBEEgoySDLy58werw1QytO5SMkgxismMM+C6OZo76AMTaxJp99/aRkJfAnBZz+Cz0syrZCY1Og8t3LmSVZnH8neMcij3EhpsbkEqkRI6LpI7DM0cqrU6L3QJRNWx/jHi8wseE8/O9n9lwcwMZMzNIyEug1kpDKbxK9SMQgwxbE1vyyvOY03wOZZoy1txYI7qJ1+jH4Zs7GWjXmsUfnjM4HgGrRX6Bg6kDe+7toV61ekRnRqMTdLT0aEkTtyasDF+JRqtBK2j1UpsCAm6WbmSVZLGt/Sra59lgGx0PN26IPwnipBkrK2jUCE3DIHL8vEmu6Ui8uYrUojSRG1H0TK3pSfETg2ykqZEpbpZuuFq44mjmiLXSGqVcyfLry+mebExAmQUlA/sQlR/LuaRz+Nr5UlhRSFZpVhUCq1Qi1as/yaVyQlxCqGNfBytjK26k3+BiykW+avsVLhYu5JTlcCfjDjuidqBSq+Dp5djAqQGWSkvOJZ9jSOAQcSKqLaewvFBsG8pPNghgKh9CKq2KEnUJ7gXQNRbWhbz0FK0CE7kJFZoKJBKJyFEQBJEz8ptbhEKmwEZuwdfHVBRVFPF5KBQbS2nkHkJ3315svLmRxIJEdIIOV3NX0orFoO/AgAOEpYSx/PpyBgcM5vCDw+SU5dDAuQHtvNuh0WpYfn35C9sdatrWJD43Hh1iq1SQcxAelh4ciD3AoYGHqG5TnYjHEWy7vY3TCaex0tXFQxiFOTUoJp58k5/pH9QIo+w8Eh5Hc7LkDgVSFdKnbVGhyRLevivQoEZzDluks9M0kUQbMFeIXBUTlcjvaFhswS+ripg9sx7rlFEoZUo0Og1qnRpLhSVD6g5hcOBgmro3ZdTBUWjv3Gb77eqwbx/a2rXYN70L89S/cjfrLiC2E5oameqryTVsavBtcVPe/ngHx89uoEuooQTksmvLeP/E+wQ4BnBhxAXOJZ1j/oX53HpyC397f+5m39UH5F8UNOTjJREsPfQRH0ctpZFzI2xNbckuzebW41uotCr9JKtSshbg0MBD9PAVA5yC8gIC1gRQ26oG6wtDOX52PUfNH3OmuoRyuajK9latnjQ7eY9JPzzkQgNbPHf/grOTDxOPTeT85Z2kWQhIAIVMKfLPdCp87XzpXqs7PWr1oJl7M31ia2vkVkYeHMmooFGs77EeqURKVEYUO6N3sit6F4n5iTibOzPAfwCDAwez7fY2vr/1PSPrj2TbnW2kTU977Xaf3rt7M/2TY7RIlSLp3Rt+/JFSdSl119TFxcKFcyPOvfbzUSfo2HhzI7N/nY1MImN+m/lMOzmNz9t8rm+dfR4Vmgp94JFXlkdh5iNqzl+Fz6EwYpvUZOuk5iSbqv5QFeWFVZIXBCUvrKI8RevNrbmQcoGkqUm/q0z0OohIj6DZpmaMbTCWFV1X/LWFvfOOeL+PiXljTuBanVavjvUi2d60wjRDI0Mr9yoeIpWvTuZOf3g+pdVp9R4sVQKUlxH21S9/73VakmUSmV7M4bfnkgQJpkamWCotsTK2wkRmIlZ5Cm2pUbbwqQyEDIlEQCqRsGRUHQI9xRar+Nx4Fl1exObIzRjJjBjfcDzTmk4z4CPpdDpGHhSvVZlExtftvmZW81nsjt7NO/veQSfo6Onbkz399vxpjtS/Bf+aQONlMq4SeSHdOtymnlO9N6/w9E9E796iKtCxY3/7qkYeGMmW21vImZVjSLz8DQorCrH6xopdb+9iQMAAg/fKNeXUWlGLJm5N2NNvDyCSl39LRr+YcpH0onT955QyJbXsalXhgiTkJdDvp344mTmROj2Vck059dbWI60ojdp2tbk25prBRdt7d28yijO4k3GHEnUJP/T5AW9rb5ptasbFkReJy4lj5KGR+vGVVY3n4WTmRBvvNuyP2Y9cKmdsg7G83+R93K3cGT/Jg1MWWcR9XWpw3h2IOUDv3b35sMWH3Hp8ixPxJ6ocNxO5Cf38+tHMvRkNrGpTJ7WC1WtH4Z5WzNSWxbR/qOXHn0FjakxObU+SfeyJ9jTlurOWGyZ5PCpO06tIVcJcYU41s2r6zJ+x3FifMVHpVJSqSskrzyOrNOuFnAoEcDSxx8FCNH66+fgmA/wHUMe+Dg5mDnoSooOZg749QiaVkVaYxsiDIzmVcIpJwZOY0XQGddfWZUKjCSzosMBgFZMPjGXnlQ3kmorb62jmqK86+Dv4M7L+SDr7dMbPwQ+JRMK9zHs03NBQ37pVOVGsrDyYqqB6Hsyb/DP3su4x99xcUW5VrkAniOo+L6u0yCWiipZtKeSaABLR3M3b2hsBgcD7OTS9mMzCpjribMFCI6PQ6PUloEF82BnJjMRK0GsYW0qRElAtgKKKIhLzE/Wtn7czbqMVtPoHpquFK6aaOjgXzdM/FCsNO2/JJ1DEHYIeg7XUhEuOFWQ7LGSw7AD3VWmkFKVydfRVhu0fRkxOjD6AHBI4hNsZt2l1OIpt9aFGLvjkS8nq3JLzyaKs7H9a/4diVTE7o3eSVpSGp5Un5gpzlDIlEeMiICICPv0Ujh1DCAxgylh3VuUcr7KfNW1r8s7PD5l4A+r/x5nYKQ8wVxoantZZVYf43HjqONTh2OBjOJs7M/fsXJZcXaKv8HT16coR33lIgoNJ+XUfnmF9CHAI4H72ff35LZfKCfUM5aOWH3Eo9hD7Y/ZjZ2qHq4UrhwYdQq1V03t3b36J/wVPa0/icuOQS+W0tKpL13gpbQ7dYV4TFXMuS2iaJiF57nuEWu4jpfCReG4JYFkBhU/b8UNcQhgYMJDutbpT065mlX3fErmFUQdHMTpoNLNbzGbP3T38GPUjd7PuYmNsQ1+/vgwKGEQrz1b6VqoSVQn119XHSmnFrce3WNF1RZUq7suQnJ/MsS4+DH6gxCq3BG7dgvr1OZt4lrbb2rK221rGNRr3u8uJyohi3JFxXEm9wsj6I1nQYQH2pvb0+6kf8bnx3Bx389UL+OUXGD0aCgth6VIYMeKlE+kXVVF+G4w8///XqaJUclFsjG2IyoxCIVMwtO7Qv1xFyS/Pp8G6BtiZ2hE2MuyvKS9lZ4vu5199BTNm/Pnl/EFUaCpIKUjRBx96L5Gnf1dWAUF8PntZexl4hjwfjNia2P7t8zCdoNO3X720wvLc73lleWSXZpNTlqPnNpaoSihVl6LSqvT3ikDNUmwJQcKzFkYBLRbWT/iwfzWauDXRB1kZxRksu7aMVeGr9KITs5rNMqgQhqWE0WNnD/LL8wl0DOTU0FPcy7pHtx+7Ua4pp613Ww4POvzPbNV/Q/jXBBovk3FtVMOKb4e/uuz7fwoDB0JWFpw+/bevqt3WdpxNOov2U+0rbxpZJVk4LnLkwIAD9Krdq8r7m25tYvSh0USMjaCBcwOD9+Jy4xhxYASXH11mWpNpjG04lqT8pCpckEqSfiWqW1enW61u1LavjVbQ8v4Jsao1s+lMvu3wrX7cquureO/4eyjlSrrW7MrhB4c5Pvg4g/YNYni94VxKucTl1MuAITG20tTNxcKF9KJ0FDIFHzb/kKlNphq0ex1f/h5d81bwc8dNFJpI9FKytx7f0pd17U3sqWFbg1tPxMyqXAMNs+X84P4+xpHRmERGYx2fjlSno0Iu4VY1gTWNJWyrK+CRJ7oz66TipNxKaYWpkSkKmQIJEjSChnJNOUUVReSX51cJHKQSqUFg4GDmgKOpo+HfxnY4zPoPI+3D8Anpwo7RRwCIzY6l9qraXBhx4bV8aXSCjtXhq5l1apbezT35/eQq6h5LT/yHadfmEWpRl3NFd3g4+SECAiEbQ7AxtuFx8WPKNeW4W7rT2acz1kprFl5ZiJ+DH/ey7lHdujre1t5cSLmATq1mwa8woyOGhnICGEllqAWtPpgY4D+A3Xd306F6B04nntZLClsoLDDOKyLLDOa0mMNXbb9ClRhHxGdjmG10njBPaJ9jzZSxG6nu6Eu5upwSdQnTTk4juzSbua3mEp0ZzYrrK/TnTyXn5HnytUKqQCqRGpCxDb4rpEglUjTCy2VPf4sGqqVYSEKQSJ7r6xe02BffYnrZUeq17MsK0ygWPNxKzuwcVl1fxZTjUwhxDSE2JxYHUwf2D9hPeHo4Yw6PQaPT0Ny9Of2UDQidvoJuQ6BYCRJLsf0KRFWZWc1m8Vbtt8gsyeTHqB/ZHLkZlVaFv4M/gwMHMyhgEN4xT1B9+jFdXM5y1hts5RYYm1qSViRWfSRICD/sjKa8hCb9CjA3MmdqE7EVoTIzuPL6St4/8T5O5k5UaCuwN7UnJjuG9t7t6Vi9Ix+eEV16Wxj7cnFOLNPGebHUOenZMZVIMZWbkj8nXz9hD1oXRH2n+tS2r82Hv35I15pdOZt0llJ1KRYKC/r69aVbzW60r95eLyLBiRPoBgwgRVpI18FQYCYl3exZhtS6DBppHTltnsUnrT7h8zafv/Q723xrM6MOjaKpW1N0go5raaKRWy/fXgwKGEQnn04vzXBeSrlEy80t8Xf0RxAEoiZEvfaE7tS0XrRefgidlwfGvv76ZNW7h97lp3s/cW/iPQPn8+dRoiph3vl5LL6ymFp2tVjbfa2BIe6++/t4e8/bxEyKeXEbVnExzJoFa9dC+/aibK3HC1jpbwi/raL8Nii5k3GHg7EHcbFwwc3S7U9XUWxNbLFWWnMw9iBxuXEs67IMPwe/l1ZRXguLF8OHH4otsfb/BSXL10SxqtiwGpL3jBuSmJ9owE2zUFi81MTQ28Ybc4X5K9b05iEIAo8KH3E/676+tbvytTJZJ0GCl7UXnnnrQGtVZRlqSQ6XZF3xsPLQu5HXd6qPRCKhsKKQdTfWsfjqYjKKM+hTpw+zm88m2DUYEDsxBu0dxN77e5FL5SzrtIzmHs1pu7UteeV5NHZrzKmhp/7rx+W/hX9NoPFnZFz/T2L4cLF95uLFv31Vfqv8RILZx6/urXxU8AiPpR4cf+c4nX2qap5rdBoC1wTiaeXJiSFiZl8n6Fh7Yy2zTs3CydyJLb22vHIym1+ez+VHl+n+Y3cEBDrV6ERyQTJxuXFV2nk6VO9Aa8/W1LavTX55Pu8efpfBAYPZ/NZmuvzQhVuPb9HGuw13M++SmJ9ooORRCVsTW3LLcnEyd6KXby+23t5KiGsI297aRlJ+kl5GNjnmGjcKY/DJhUhnMUvr7+CPp7UnKo2KDdfXMMa0BcHpEiTRd3m/cS597sGmQ6CRQFQ1kaR9211OlIcxD50U5OtKXzoZlUlkBkGCg2nVKoOj2bNAwsbE5tUlbkEQ1V42bmTYslDiTcq4NOoSIHpguC525cigI3Sr1e3ly/gNfon7hU4/dEIqkfJpq0/5qOVH+naR4opiglb6E1eUwjyvkXzxaAejg0YT7BrMgksLKFGVULdaXeJy43hc/PiFPbjwrBJR37wm4R88pNrMZyR3CRIkOgGJVIL2uUqGpcKSQlUhCqkCAUFfXZBrRSK0Qgc6IzkjwjU8thBN9wIzoONDWNoUtK9hA/A6qAxoTaXGlOnKDWstAigECSqpgE8ONE4F5yK45QTnvEUeRmC+MUPyXMgtySHMdwdGUscq66g07JTqwK5UDBY+v2mF1t6OOTUSCHkEPS0aMGXwMiz9gsDMjIj0CLr+2JWskiyczJ24esyVils3aDMC0qzEatOjwkeiitdTSVwfWx+61exG5ONIssuyqedUjwMxByhVl+Ln4EduWS5Pip/gVGFE7GI1SW7mfNffnaNWmeSU55CyGHbVk7G6jzs5ZTnoBB0V2goG+A9gauOpeFl74fSdSP5ML05HLpWzuONipjSegk7Q8dWFr/QVrNIvYU572NraijJ1mZ6f1867Hb8O+xWdoON04mk6bu+It7U3ifmJALiYu1CiLqGWXS2ujL5iSMYWBIQVKziydhrfdDTjmm0J2sqJqAAd42HOFRmCREKHIVrcrNx5OOXhCyeXeWV5TD85nS23tyBBglwqp7NPZwYFDKKnb0/MFGavdf7M/GUmy68tR61Tc37EeYMJ/6ugPnEMoy7dWDzIi+k7k0QeQKtWerPKENcQDgw4UCVwORx7mMnHJ5NZksmnrT5lRrMZVfavTF1GtUXVmNF0Bp+Ffma44gsXYORIePIEFi2C8ePfWDvQn8XAvQPZfXc3V0ZfMVCr/KNVlNyyXFIKUqooKj2PP6LoZWtsQ0BoP6gfhHz3T/+a7gxBEPS8nRfxQ5LykwwI3pVV4xcFIx5WHn+6IqTSqojLjeN+1n2DYCI2O1bfaqWUKfG196WOvagiWvlaKQD0Km+y7qGZ7Izayd77e8kuzaaWXS190FHHoQ7lmnK2397OwssLeZj7kLbebZnTfA7tq7dHIpFwKv4Ub+95myJVEY1cGrGxx0Z67OxBamEqgdUCOT/ifBW+x/8F/GsCDXhzMq7/aowZA7dvw/Xrf/uqqi2qBgJkzMp45bi43DhqrqjJ2eFnX2oyt/feXvr91I9zw8/hbePN6EOj+TXhV31rzetE8osuL+KDUx/QoUYHTg45CYjk8cT8RKIyophyfApZpVl6J/TnMyxWSitaerbEy9qLn+/9jLTCG9uy/vq+9mTZJgold/STwKBqQURlRjG03lC8rL04nXCasEdh+myXkdQIZ3NnLI0tcbp+jxRLKHJzwDY1l3qpahqlQ3AaBD0BMzXogPsO8EUr2B0AgU/ggT2ojKQ4mjniaP4sWLBWWrPn3h7MjcxJK0pjRP0RzGo2S3zP2PqVgYNWp0WlVaHSqqjQVjz7XfPsd4P39uyk4odtqMaPYY99BueSzzG/zXxU2qechAuf07NWT3xsfQyW96rlx+XGUVhRiLnCXG+wV+nXoBW0SHXQIF3c/8IXKz++Npy0pjyeX0qXEXJOeGn03/1vWycqHbmhqqSrc7GEx2YC4yXBKCKjWBtQjrVGzlcnNbTy7ciDzyajMDJGKVeikClQyBTM/GUm97Lu8VbttwhLCdPzEExkxpT9JkiUPKV/yAQQJOK5gET8v1SAeulw0w3aPTGlmtSSg/bZlEjFfZnnOICpge9i6VGTOEUxHXZ0IiAilTRrCbecBDrmL0Vj1hjdc+eEFAgSnjDw9BQiVSmsDpFwzwFkSCmVicfATAXtEqD+E/EcDdI64OHkS3Ytd952DSNM8oh+MTJ279Zy0R1ajRaPm1Ku5NTQU3T9oSsuFi40dWvKqYRTpBWlIZPI6FW7F41dGrMvZp+eJAwiuX2R0IHay34gOB1UrVvg2/AyiYt1DOgLe0SOPK09W9Ohegc2RW4iIS9B5I2oijEzMuPHt39k6dWlhKWEUce+DrE5sQaTl8TVSq7Vd2Bgs1T9dy6RSGjp0RJ3K3eOPzyub//oXqs7/f36c+zhMY4+PIpWpyV6YjTeNt6AeB2duX+U77aO57ziMeVP9UJM5GIft6mRKa4aU6JXgyKvkGmhKpY3ESuPoc5N2dTvB7xtvClVl3I49jA7o3dy9OFRkWNm4cKnrT+ln1+/l2r5vwpl6jIarG9AUl4SPXx76FtSfxcpKeDpSbdBsPWWJ/a2rhAWBhKJviLxPIn5UcEjpp6Yyv6Y/XT26cyqrquoblP9pYsffmA411KvcX/SfXGCXFYGH38stki1aAGbN4uKif8A2H5rK0qEf1T8l7ib11Kv0WJzC6aETOHrdl+/soryOopeLZPgwhZoMxwuVn95FeVVfJS/4ovyd0En6MgoznipYtajgkcG92cXC5cXBiHeNt64WrhSrCquUpn4rQqmrYmtQTBRaU/gaeX5SvPI10lqq7VqziSeYdfdXey7v4/CikLqVaundyP3sPJgf8x+vgn7hojHEQQ5BTGnxRzervM2Wp2W3nt6c+zhMRQyBYs7LmZtxFqiM6PxsfXhyugr/x1Ptv8i/lWBxv8ATJ4sVjNu3/7bV2X6pSme1p7cn/Rq87DozGgC1wRyedRlmro3feEYQRBotL4RBRUFZJVmYam05Pue39OxRsfX2hZBEKi+vDpJ+UkGBM7nEZURRaMNjZAgoZdvL4bWHUqPXT2oblOdwopCUREoO4bcPEvqaVcb9LULCETKJoAyCRMjE/LK8vQZ0UovCIO2JAE88yE4HQZEgW05NHwMVk/nPYn2Mu57mvHA25IDFmlEOAlY2DnTzrsdB2IOYCQzIq88TySY1n4LN0s3gwl8amEqF5IvYGdiR15ZHvWd6yOTyKpO9p+b4FdoK/6wGeGLoJQpMZYbYyQ1IrssGzsTOxzMHPSTbIVUoSdRa3QaNDoNKq2Kck25njT+IrnaSiWk0DIn2l9+wrz2clp6tuJc8jm+7/k9aYVpfHL2E04NOYW7lTsyiYwuP3bB3dKdAwMPoJApaLCuASXqEjKKMpBIJZSry9l0EDa3suCibREyiYzTw08TuiUUqGpWB4ZBh7WxNRMj5CysnY1FBZQrZXygDmbG4quYvzcTFiwQnzJlZSQ9DOfkvcPseXSCM6XRAJjoZCi0UPCUt2FVBgUmINGBfQlkVeZBnpoTWgkKPjbuRJxJKRvyz3C83SYCarXEbY0PDqYOJEwVuSq7onfx/on3KVGXYCwz5u06fXjniSNbbmxgj1cJ3rliQDG00QIuPmiFBp1IXBR0SGVS8aHobg737zN172hO598icmkF3lNBbWxEuYmcEMcgInPvkaUWW6JstArq5ympl6Ii1ryC4zUhfZF4Th9p4cAnAVk8tIe5Fj3oGfg2nW5Ow9Pai5NDTvLOvndIyE1Ah05fKfC08qSfXz+23t6KkdSI9OJ0EODr0qaMP5ROdmYyPnkwa25T8hr6sSlyEwICMokMRzNHHhc/1rvBA/jY+JBWmEaZVuRmWCutmRg8kelNp+O/2p/tazII8e/I4S+GMvLgSINKZ4BjAN1rdicuN44b6TdIfF/cxuVXlzP15FQmB0/my3ZfcjLuJFtub+FM/GnKdRUggJuRLdVdAriaepVq5tVY0WUFIY5BJDSrjf+jCi4eWM5bl9/jq7wGBJ+MYmTnCjItpNS19OGuKo0SdQleVl4kFSQxrO4wNr+1+S8Lk1xPu06TjU2QSCSkTkvF2cL59z+k04G5OT8M9GO/9AF7vy+Cw4ehe3cA+uzuw6VHl4iaEMWOOzv49OynWCotWdZ5GX39+v5udr3Sf+Dm2JsEpajE6ntSksg1JJiiqgAAIABJREFUmDpV9Mj4B6CyJbRD9Q4GjuZ/FLlluQStC8LFwoXzI87/6cn981UUy3cnYXzzDkcPf0dued7vBiwv46KYK8yr+p68rIryNyh6/VFodBoeFTx6xgvJSyQhL4HYnFgS8xL1svMvgrWxNR6WHtRxqEND54aEuIbg5+CHvan9n96XP5LULteUcyLuBLuid3Eo9hBlmjIauzZmYMBA+vn1IyY7hm8ufcOvCb/iY+vDzKYzGV5/OCfjTjJ432BK1aU0c2uGRCLh0qNLuFq4Ej4m/PWu6X8J/hdo/NswYwYcPSqqUfzNkM6TEuoVypnhZ145LiI9gkYbGokPGOegF455UvyE3rt6czXtKm292vLzgJ//UInwyqMrNNvUDFsTWzJmZrxUEm7hpYXM/nU2AgLVbapjbWzNlJApjDw4ksyZmTiYOTBzyz1uJhQhCM9uQi9SMHsezoXQKB18s8WWmnxjOLwTWqRAujlcdYMUSzjiK3pV5L+E11XJrajQVhhk1h1NHXG1dMVYbqyf0Mdkx+j5ITYmNnT16arPqitlz7LrCpnCINv+/HvP/9/gvZu3Ub4zDEX3XijWrEchV3I97Tpttrbh/IjzmBqZklqYyqCfB9HErQmuFq56FavUwlSDTLJcKsfVwhU3Szfi8+JRaVV83PJjvW+ErYktn50TPUiczJ244fklj6eOJngs7Om7h/57+7Pr7V00cWuC1zIvfavW1sitjDg4gvAx4TRyaQSA/yp/7mXfY133dQyrN4zRO/rzY/JhpALonn6dRlIjlDopxVTouTYyZOjQGVQybCVmfJFSg6nOd1DLYLSuHp/ftMLl6AWoX5+yarZc0MRz3Pwxhz1UJNg9q0Jon84T7VRytFIJ+TK1AUdELpGhEbTYGtsiIJBfnq8PvnxsfXiY+5D5bebzSatPiMqIou7auihlSsY2HMvyLssBMYBvtL4R7xR5I3vwkB3+WkzU4F4A5TbmtGrUlw3RW/goqQOH3bphTg3si5P4atpwg4dilx1dOJVwiiBdNW5I0pkf58FcnxQerJLiUzeUx73acSvYjVuqFH1LYCU5f+MBGB0Jbw2W4SC3ZGN1UTFq6lUYcQs6DZfgoDVmxAMz1tQuIsGsgiHVOhBavR2nCm5yMuEX8svzMTUypVxdTn2n+mh0GqKe3GHnQTk972pwmAW3Y9txemhTxt3+Qr/dMomMGjY1SCtMo0TzTGHG396fQKdAdkXvElt1Wn/G5sjNmE2YSmAmNB5TtWrlY+vDxy0/ZsnVJTR0bsimXpsoqijCd6UvOWU5WCmtyC3L1QegFhUwIMWC7v3mMid1Ew9zHjK96XQ+bf0p5kZmMGECwvff03+cLQer5eHv6M+iDov4KfIH9kTvJk8QJ4A+hXJ6WTbmOy4xsdFEVnZd+cYmcjN+mcHiK4uZ2Gjia0vdUr8+pQ3r4uJzkGs7zfAV7CAyEmQy0ovSqbWiFkq5kryyPCaHTGZ+m/nPeCq/A7VWjfN3zowuqsm3X10XZba3bhX9IP5B+ODUByy8vPAvSdDqBB29dvXi8qPL3Bp3Cw+rN8A3yckRSeBffAEzZ77WR57norwOSf6vcFH+riqKWqsmPi9erExk3ScmJ0bPpahMMihkCjysPHAyc8JcaS4atmrKySnNIaUwxUCe3dTItIpa1vNk9b+zNalYVcyRB0fYFb2L43HHUWvVtPZqzUD/gfjY+rAuYh177+3F0cyRaU2mMazuMN7Z/w5nk85iLDcmqFoQV9KuYGdiR8TYiDeihvZPwP8CjX8bPvoIdu6ExMS/dTWF5YVYfWvF8HrD2fLWlleOvZRyiRabW3B34l38HPyqvL87ejcTj03UG3hJkBA5PvIPZfVGHBjBttvb+KjFR3zR7ouXjtPqtIRuDSU8LZwKbQU7++ykpWdL3Ja4sbvvbvr793+pglllX7tdiRhUNEoXKxaN0sH1KVUgwwzOesKcDvDISpyQFJhA/XTQyCHb2wkTIxPRx0VdSkJeAi7mLuRX5ONo6kifOn0wMTJhfcR6FDKFnhgLEOwSzOdtPhfVhIxMxez/llA8rDwITw9nb7+9vO339msfsxcdm4ySDFKjLpE6dSSpvs48GtKD1JLHpBamkpSfVEVxC8SMUd1qdXGzdMPNwk18tXTD3codN0s3HM0ckUqkerfn580QQXyQtNrSiqS8JHTo0JSVsnp3MZOG2TG+0XgOPzhMoGMg23tvx26BHdObTueD5h/gu9KXBs4N+Ln/z4DYf2v7rS1KuZKsWWLVRHP/Lr5rA0h42oHSs1ZPDj04hFJiRIXw7Du2L4Jsc/TBQMN0CXKtwLWn5nah8bDtALgXwQVfYz7uZMRV62I0UgEpEnRPJ61mMhNKnmbUQSQ9lqpLqVetHqFeoSy+uhgXCxcyi0WCoVbQEuwazMYeG1kfsZ6V4SsB8YG+o88OBgYM5FzSOdpsbcOHLT7km7BvuDjyIs09miNERbH0865855FKlhkMT7CEoiJ2NlBQTAW+dr509ulM4MJtvNsqD8dikOsgaVoSRm6eIofh4lfMPTsXWxNb+vv150DsAWImxeCw0IHvzPow5WQenDkDGg00aQJ9+nAo2JI+FybRzrsd/ZPMGP3pfnb7wcD+z50UAthgTD9JINt0NymXaKmZB5v3Q/NHlQfHgvJa3pj0uMOYBFu0+bk8tIVkezkuvg356vtkzJ7k0GqIGjOVyLGxUcspUYBUKjfgKVkqLFHKlUwKnsSaG2vIKMnQGxlWBnBfXVQy4loFPRc34kb6Df1n23i1wdrYWi9x3dWnK3Uc6rDp1iZ9VbEyKOmg8+b9nYmE+nZi+kAb1sXtorl7c9Z0W0NgtUBxgUuWwPTpCBs30sfsCAdiD+irZB5WHgwKGMQg/4GkR5xjcPhs8qUq2ibAqYIeSMeOh06d3kh2v0JTgct3LhSpisifIwZzv4sBAyAzk1Xf9mXH+slc+R7Yvp38vt356PRHrL2xFgGBlV1XMil40h/boMhIJixpxzG7XBLt5iOdPQfk/zyPgOrLqpNckEzRh0Wvd8xegIWXFvLBrx/8Yf7aK7FkCcyeLZLA/2bTwj/DRfkjVRR9MGL87HdTI1NKVaXkV+STVZKll9qNz4vXVx+tlFb6Fqc69nX0rU/eNt6v9JsorCh8KUk9MS/RQArX2tj6pfwQT2vPP31O/Bb55fl6N/LTCaJ4T4caHQj1DCUmO4Yfo3/EWG7MhEYTcLdyZ8bJGVRoK/Cw9CClMAVzhTkRYyKoZV/rd9b0z8f/Ao1/G+bNg3XrID3998f+BVRWECqzrq/CmcQztNvWjvj34g16eLNLs0Xzort76OfXj9XdVhOXG0fT75vyQ58fGBw4+LW2pVhVjP0Ceyq0FSROTcTL2uuV4+9m3iVwTSBSiZTGbo05P+I8gWsCaenRkvU91r+Y7IWOeoVxzP95OmZpYh93vqmU60460VXbVXTXLna0wsTIFATILss2lCsVoJqZIzYmtpSqS0kpTMHF3IU6DnV4VPiIBzkPcLd012e4i1XFr7X/gN5E0NnCWe/waqYwE1+NzERpPAEDU6NSTSnFqmIKygv0D4nns1jGMiUulq64W7qLQYOFG4uuLGJk/ZGMbzQeN0s32mxtQ8fqHVnSeckrt08n6AjZEIKRzIjLoy4bZG0/Ov0RCy8vJGxkGD62Poxf0ZG95TfxtPLEztSOLj5dWB2+msxZmXTc3hFbE1vaerdl8rHJRE2Iwt/RH4Bvw75lzuk5NHcKIazJekhP5/NrC5gnnGNdan0muN3GSIA2aQpOulaI5O3n724S8e/ATJGE71+gxEotJdKyjBUnpIy6qWNCN1gb/Owjcqlc/xC0NrbG3MicnLIc1nVfR1P3pmy8uZGV11dy7V2xVzu/PJ9Gzo1Q6VREZ4rtVeMajmN1t9WUqcsIXBNIUn6SXjFsTIMxhHqF8s6+d8iYkcFbu99CkZ7Bl6m+zNQd56obBBSb8Vhawt1D7lTb9jPlQYFUX1YdmVRGRnEG23erGdgPlGqoMIKF2naM/Xgfww8M50DMAfzs/XCxdCEqI4pBAYNY0nkJ7ba1w0RuwpHBRyAvD44cgX37+PX+Ubr1U9Mjw4pdru8hbxAMPXuikoLzDMg1E4O5h7kPuZ9dtaWyjXsrmpvWJqjcmqAMKZLkJLyr7WLHfimD7uiQPv0+ypUyVIKWozVh8NOkcpsE+PYXkQ/SOR6UQcHY+DVkR9QO/bXiZe2FTCIjPi/eIEDwsvLihmIKdpNmYPwx+LkFUaGt4F72PRq7NmZak2ksvLyQiMcR+uup8rPO5s5klmQyJ8WD+ZuTCZ/Qky6u50AmZUH7BYwMGvksKXL4MEKvXlwa0JRBwSmkFqViIhfLl64Wrlx99yp2pnYArL2xlglHJ1DbphYxeQ/o/tiS9T8U4mzrAe++C6NGiRnsv4Bd0bsY9PMg+vv1Z3e/3b//gU8/hY0b0aY+ImRjCAtXx/HETsn0LlJK1aXMbzOf/TH7SSlIIWpC1OsR1NVq+OYb+PxzzrfyJLRVPJdGXaKZe7O/tG9/ByoVEutWq8vt8X+u/fhSyiVab2nNzGYz+ab9N29mwwQB/PygXr3/ihnvX8Grqii5ZbmkFqWSkp/Ck5In5JTmUFhR+Mq2XgkSLJQW2JvaGzjKv6kqiiAIZJdmv5QfkpyfbPAcr2ZW7aX8EHdL9z9l8JxZksnP935mZ/ROLqZcRClT0ta7LUZSI84mnaVCW8HggMFEPokkMiNS32ZsLDfm8qjLL+0U+bfgf4HGvw3ffAMLF4pl1r8R62+sZ9zRca+VRT/28BjdfuxG6rRUvTziodhDjD08FrVOzequqw38NXrt6sXdzLvcn3T/tS7aSnncVh6tOD/y/O+O//LCl3x27jO9Cd680HlklmRy9u4RopvtIOpyDNMKRHlInVSGVKdFgsDSO2sJ8HXUO2uflSTTdns7Lo+6jFbQEpsdy4OcB8TmxBKbE0tcTpxeitS2TEKuiYAn1uQrBQMVEgkSvG28yS3NxUhmxPy286ltV5upJ6ZSriknNicWP3s/nhQ/wdnCmZjsGMY2HEvnGp0p05Tx7aVvicmOQaVV4W3tjYulC3lleRRUFFBcUUyJusSglen59b6uU7dCpsDUyJRiVTHmCnO8rL0wMzIjOjMaK2MrWnq01Ac1zwc4lb/fenKLRZcXsbLLSlp4tNAHQjfSbvDW7rf4qt1XzGkxBwBh0SJ+2DuXMT3E/tZv2n3DnNNzOP/2EQ7e+Yl9ySep0JbTTvBie2YLSE8nOTcRv+aReOYL2JZB2CaxXa3FKPj4Asx77MugDoUcsc2iTKLFjEA8tc9M7JKlItlfrgPrClCoId0K5BrYegAG3IWRvWB7/WfHRC6R4+/oT49aPRhWbxgmchNqrKjBvNB5zGkxh4ziDLyXedOxRkfOJJ6hSFVEV5+unE8+j5O5Ezv67OBOxh3GHRnHqi6ruJ5+nd13d3NyyEnWhK9h191dyCQy7E3tySzJRD0pg/ufT+Gr9N3sDIR6MleWFjenzso91H1fQUOfVhwd/gsSiYRlV5cx89RMbo27hXX77ri/LZpg1n0itpAluJoikUj48e0f2XBzAzmlOVxJvcL1d68T7BrMwksL+c/5/5DzQQ7GcpGRfynlEh23d6S1sS8HbtZCceQ4FBYiIC7zWC8/eta/B2Cg2iRBgrOFM1klYpXJXCEGY4DezBHgP80+prd5I8qT41l4dwO7v4jlg47gng9Ha8FDO7i7Gua2gfUNIex7OOov51iIDddNclHzjCza0qMlm3tuJq1Y5PVcSL5Au0QJv24V8JkCGc7meqJ6JayUohoVEvRKczbGNqyoNpIjZ9Zy07acjrJarLSMYUT9ESxovwAHMzGz/KjgEWf2L6bf+OWc8NYx4h0zJDIZLpYuRI6L5GHuQ0K3hFLDtganhp5ix50dTDo2ifdC3mNp56UcfnCYsYfHolKVsfJJAwZtuo6krFzkR4wdC507/+kqh/sSd9IK0wgfE05Dl4avHvzDDzBkCBQU8HPqKYb/0JcSBfRVBLF00mFcLV2Jy40jcE0gExtN5LtO3716eXfvilyMyEj48EN0n3yMxyofetfu/ddN6/4GrApfxeRjk1nYYSEzm71ee9LzyCrJImhdEN423pwdfvbNuTpfvAitWomy9W3bvpll/o3Q6DQk5iW+kJCdXy5yvuRSOT62PvrKRC37WnhaiskllVb1X6mivCxgeZ6LohN0pBelv1QxK7Uw1UC23N3S3cBD5PlgxNnC+Xc7NSrdyHdF7yI8PRxTuSk17WqSXJBMYUUhDZwaEJkRqU9wySVyzgw/81oS8/9U/C/Q+LdhyRIxK1X0YtnPN4WZJ2fy3dXveDjlIT62Pq8cu//+fvrs6UP2rGzkUjnvn3yfLZFb6F6rO+u7r69CaorKiKLe2nqs7raa8Y3G/+62BK0LIvJJ5GsFPY+LHlNzRU0mBIzifupNzmWFUyao+OUXJ0KvPkEmAMbGRLXuzY76/UgwdqS6ozFDu/gQ4G3Yi5xamIr7EveXlscrb7Zfh33N5sjNWJdBzUI54dUM5XYtFBZYKi1R69RklmRWCQAUMoXeqdpCaYGdiR0xOTFYG1ujkCmqmPKZyE3wsvYS25cs3fWtTM//WBtb6wnbpepSSsuLKBkznJKrFyn9fi0lNTwoUYtmRZWmRSXqEtZHrEeChA41OlCiLuFE3AmkEim+dr6UqEsMxpaqS1/6APgt5BI5ZlIlZiiYfbqCgRHltJ9oTpSJqAwm00HtLLFF7RcfkOrgwxvGeMrsMLW0ZZnHYxIVJTRT+nCfbHY1+pY+tz/EQWLOlQ9ikUffY23JeSYdnURvr2lkxfWpSvaXTkBQ36FIAUhAoYHdP0G3hzDobTgcqKChS0N61+6Nv4M/YY/C+OneT8TlxmGltMLFwoXk/GSS3k/CwcyBUQdHsf3OdjQ6DcYyY6yMrcgoyeDdoHdZ0nmJXkntvePvsfL6SgQEtr61lWH1hgGwM2on44+Mp7y8CKlW4IPrRiwKVqOQGVEhaDh/sx7BJ6Pgm2841rMO3XZ2Z1nnZbzX+D0KygtwXezKjKYz+HjYBpTvPsZcYU6j2GLOeYNdMeSaS+hasyt5ZXmkF6djJDUidnIsEomEOxl3qLe2HqeGnqJ99fZEpEfQdltbgpyCOP7OcbFCVlEBZ85Q0bsnMrUGmQ6Uc0EtFYtDjV2CWdR5CZ12dKJEXYKTmRN2pnZklmSy8+2dqLQqtt/Zzs7onSikCr24AkDTFLi8CYLGgTrQnxbOTVh/53vqau2xKqzgok0RwlNlriap0O0BdIqDG87waQcpWSY6pIKEtxX1WOU3i5vWZcw4NInoJRW0HQZnqz8LtKVI8bX35X72fcyMzAhwDOD2k9scHnyYlMWfMXjtZbYGSRjfXcDDyoPtvbfTyrMVWSVZ7L23l53RO3l49yLhG6DCzpqoPSs5k3WN9RHriRwfSW17kYNw8/FN2m5ti52pHQl5CUxtPJUlnZboJzQ5pTlMPj6ZXdG76OPTgzUFLXDcsFOcpLu7P6tyuLm91jVViS2RWxh5cCQ1bWsSNSHq1dKgN25Q0SSYBdvH8WX8FhQyBeMulPLNTVtkCYlgJlYwFlxawIenP+Tq6Kt6LwADaLWi38Mnn4hKUlu3QrA4bsbJGeyI2kHa9LQ3NxF/QwjZEEJ4ejhp09MMXJxfBzpBR9cfuhLxOILIcZEv9Rz5Uxg6FK5ehdhYkP41oYA3iRJVCQ9yHlQJJh7kPNAH6xYKC7HVyaEOte1q61ufatjU+FPZ/xfhdbgoL2oBexNcFAuFhV7oJLs0m0eFjwwCkuefz0qZEk9rT30AYhCQ2HhjZ2JnUO2Pz41n993d7IreRVRmFCZyE+RSOUWqIr3iHoj3soMDD75QBOffgP8FGv82rFoF06aBqqr3w5tEn9192B+zH81czSul4ECcMA3eN5hDAw8x6dgk8svzWdZ5GSPqj3gp8XHIviGcSTxD3Htxr+yJvJ91H7/VflgqLcmalfXiUqlGA/fuQXg45/YuwjrqIfUypWQo1QRMBJ1chrXEhFZ3i+nZfy59+s4Fo9+/AeoEHWZfmfF1u695v8mLSeKV2H57O8P3D0Omgzmhn/BB8w+4k3GH62nXuZ1xm5jsGB4VPuJx0ePXrjKASGwOcQ3BzMiMXxJ+wdXCFQ8rD8JGhf0x5Zr334cVK+DgQb3KzIsw6egkwh6F6dsK+u7pS7GqWO9/YoDSUnTpaSy/toJpcSs4ZjIGjxw1pVmPKc57zGz3WGLMK5h3FpRaKDGCEgW0SZHimw0fDq7GPodsJFIJBRIVEsDJyJbH6lwUUgVGMiNK1aWvPF5NUuDKJqj1vox0B2NK1CUE6VZgqWtYxdk1l+vcV8zE3dKdrq5tGDJ7B0HJKoz2H+RmQxdOxJ3geNxxrqZeRSfoCHAMoFP1Tvg6+HI38y7Lry1HQMDcyBwvGy+iM6OxVFgS7BLM6aTT2BjbsLnX5iqmlZcfXabFphYoZAqiJ0Y/C9w1GnLWLGHQjdmc9RQQJOBnUZ0DNT+lz6+jQSIlvN8pjFq2BsSAZX3EesLHhBNYLZDJxyZz8M5PPJybicknYnZem5eHTQUEWFTnoYOcB7kP9NvRy7cX23tvx0JpgSAIuC525Z3AdxhRfwStt7TGx9aHU0NPYaE0VFdJr1ediIokesQKWM8Br2IjSiRqssxg6l1zBvT/guCkOZRqy/G29sZMYUZqYSonh5zkYMxBvgr7CjO5mQGhe9ZNE744WobNx3JKpYaBuVKmxNHMkbSiNLq6tKbx7stMuViBsQYueMJDW8hyMmd1nRIyzUTtYCOdGJyWfwmjesGW+qKUcCVau7fk/KOLzGk+h28ufcOydouYsjUGycaN7GhswtgO5ZTJBRRSBb1q9yKvPI+ziWcB6OYSyvdL4rEtUCG9Hk6YJoFWm1uxoMOCKlnxSoK2u6U7MZNiMFVUvbftvbeXCUcnALCm62r6lnmL7bA7d4qSsN26iVWOLl1eq8pRrinH+TtnCisK+aDZB3zd/uuXjj179wgT1vYg3l7GrBYfMCl4Ej2/rsu1RfnI580XOYCISZSQDSFoBS03xtwwnDA+fCg6el+5IoqTzJ8Pxs90qsPTwgnZGKIPYv8pKNeUY/G1BdXMqpE6vSoX7ffw1cWv+OTMJ5wYcuK11RJfC5Uk8PnzRVPD/w/IKsl6Fkw8R8hOLkjWj3E2d64iFVvHvg4uFi7/WL8PnaCjsKLwxST5N1RFsVBaYCQx0nszlWnKKKwoJKc0h4ySDIMWaXOF+Qv5IV7WXpSryzn8QJTCjs+LN2jbrcTXzXaSlx6kV8MaEupCoOc/3+Lhf4HGvw0bN4peGlrt35r5aLyhMTef3EQ9typp+rdYc2MNE49OBKCtd1s299r8uyoc8bnx1F5Vmy/bfskHzT946bhpJ6ex7OoypjWZJpbxdTp48ADCw+HGDfE1MhLKyhCkUu7a6ZCFNKZOl6EQHMxeRRz9Dr6DUqbEQmlBO+927Or7+j2wgWsCaeXRqoqqS4mqRK/AlFKYwrob6yiOuMZdJzAXjDAyMSevPM/gM7YmtjiaOfIg5wE+Nj742vuSUZzB9fTregO6SsglciyVosHcb282AL52vrT1bouvne//Y++sw6M49/b/2d24u4cIJCGQYME9QNDg7u5FihZrKcXdJRR3Ke7ukAAJkEBCEgJxIe6yu/P7Y2BDmpT2nLfnvO37631dc8Wencw8uzPz3F+5b6qaVaWqWVXsDe0rJh8bNohEY8sWmDDhq+e7+tFqfrz7I9n9g5EkJjI8YB5vc9/zKLef2Bf05ZaZSa4GVJksGpftv6ojPjBtbNhYLYcploFc1B5Fx0qtwcZG3KytxcXJs2fw7BnTrk7jxJsTzGg0g6lXS8ncguYLWOS9iNyiXKptrYarqSs/d/6Z9f7r2Rm4k/ySfKY2mErPaB2ajlvK/gtLiTeA+bfm00B+Dk3KN1MWkUKsyXhaGNdm8dqXmIXFcLGrO31PvCkzLqMgg+tR17kSeYUrkVdIzE1EXaqOUlDS36M/16KuqaJYMmQoUGCmY4b/SH+cTcr6DHzM+4iXnxcWuhZkFWWhJlXjyYjHGF67y7OVU5la9QMPK4GuVItiFCgUcqxyBJYlezDCNZSFLReqeqQK5YXU21kPQRB4Ovop0VnRtF/sTugW0PmijWphVCWWOsYSMzORkJQQ2h1sp1JT0pJp0bNaT4bWHMrh4MM8intEdlE2lrqW3B56u4zrPUB0ZjRv2nuhn5CG1MSEGU0LcG3dm/VWw+h9YSg31WNZfAtGBUK3IRo8sShGHw0MDER52i8loc11zPm2wbe0dGqJ9rhJaIeE4T5CJJL2BvYYaxnzKuVVmYyfjpoOLRxbYCbVw+HuS7zuhBNiAbvqwAcjQEKZZv2kVeBXV8L33kJpf44EjPJh6As4XVsTB8GAGwelSJNTWNRM4NWgNnSo2Yu1T9YSniYSs89meuvarKHKuDlw9So8eEB+dVdqbq+JuY4594ffLxOE2eS/iclXJtOneh/OhZ3D28mb031PV5hhSMlLYfzF8ZwKPUU/j35s7rAZU7m6SDZ27ICgIDGz8TnLYW9fbh9fYs6NOax7so4SZQkPRzwsY0L3+f/NvD6T/S/30zRRne0WI6i+aDsA+17sI3PcMCa80UX9QwyYiMoKgYmB1N9Zn0Xei5jbbK547926FWbNEq/lvXtFf4xfQRAEXDa50MKhBbu67vrqcf83ce7tOboe7co39b75l8u67n64S6v9rZjbdC4/tfrpzz2w9evFOY2LA4vy5pt/FhRKBdFZ0aVk4osMxedSR6lESmXjyribu5fxoHAzc/s/aST3NfzZWRQpUrTVxYyFRCJBrpRTUFJQ5h6pp6GHpa4lxlo1U/K8AAAgAElEQVTGFMoLicqMUhEeA6EGtRTbkCIV9/bJ32PdCPe/PNn4h2j83XDgAAwZIka+tP6HbmdfgdN6JzIKM8j8LvOr4x7EPKD7se6k5qeyucNmxtcb/4cj7RMuTuBoyFGipkRVeBMrkRdjvsIUi6Rc/IWRGL9+B8+fl5aNubio+ikELy86hc7nvfwjr8a9KhOBG3RqEKdCT1EgL8BAw4CM7zK+eow5RTkqEjH7xmyyi7Jp5dSqjLzrr0kEQGVNG7LTEsjSkaKva8zcpnOpbV0bOwM7bA1sVZmbuTfnsv7JesInhWNnYEe3o90IiA8gMTeR9e3W80voL/jH++Pr4ktibiJBSUEUyksVeD43hhtqGZJbnKsiItpq2riZfSIepiL5qPoqHtdh09GeMgOWLYPk5PKE4YvtlNZ7enbMIWUlmOfDlPZwy1lC8GXHUrLwxbZYfoufYg/ydthzHO08QCIhKDGIhrsaMqHuhIqbyAcOFJVV7txRae8/Hf2UprubIlfKUQgKzHXMeTzyMX7P/dgYsJHXE17jbOzMoruL+OHOD/Sq1ovjvY4jOXuW98O7s/fgDPaEHyM2OxZP+XpMqF8uo2Fqko5npav0nbkX68QcOg6AJ5UkVLeoTgPbBtS3rU8D2wZUt6iuKvkQBIGHMQ9pc6AN6lJ1cktKo1NaMi1Vb4yAgLaaNh1dOtKrWi86uXRCR12Hdgfb8Sr5FYFjA8kvyafBdi9qJ0uxj8lmf23w0K+MvqEFJjJd1pzKo4/tY15Zie9xC4cWPIoT5TM/q7l9lrwdXWc0mzpuYuJsT1atC0F3HrR0bMmdD3e4LB1Cj6L9zGk4gwW+q9BfJj6E5Eo5mjJNdDV0SchJEIlsUTb2BvY8G/MMC93SRU6xopi1j9ey6O4ifrotoV9APpk7NzH/9CSKGtfj0uQAlIKS2ddns/rxatw+wq7L6hxyL2FbPegVAg8cIEkP1GXq7PDdweO4x1yKuER8TjxBO6SkutnxfvV8Orp0VJWhTL0ylQ3+Gxhfdzz5Jfnsf7lf5RSvUo4RwLhQdG3XkMP9SlD0KdHp7wevLGFWH2MyijIwEGrgoBiBAVXIIZIYyW5u7XyFayo8dIAjHnDKXTSOrJ6rQ6huATOFxrgU6+OXdZMhrySMf1RM3vFD6PcawLdXvmX78+28HPcSV9NSNZgNTzYw9epUpjeaziqfVdyIukHnI53p6NKRY72OVVhCIggCR0KO8M2lb9BU08TP16+0NOL5c/Dzg8OHIT8fOnYszXJUoOT0IfMDThvECKmGTIOgsUFoq2ujFJTsCtzF7BuzkUgkrPJZxbBp+5FaWMKxY6rj6LKxIUdnPUVr8jRkq1ar9jv7+mw2+G/gdceLVJ6xBG7fFr2cli9XlVlVhPm35rPl6RaSpif92y7PfzY6H+nMhfALX5VhrwjJucnU2lGLqmZVuTH4xu9m+P8lCAJUrw6enqr343+KgpICUazhCzIRmhpKeFq46jmio65TxhX789cqJlX+Mu/X3xVfy6KUISyF6aTnp5OSl0JaQRpZRVmqcrSKUNFzTSqBupUNWTHU7b9xav82/iEafzccPy5KFGZmguEf0zf/d2C03AhDLUOip0ZX+PdCeSHzb81n7eO1OBg5kJybTP68P1av/xmJOYlU3liZaY2msdj7J3Gx+0Wm4nT6I3r45vJqK3hqO6hIBXXrgpcXGJWSk8/Rqor6KTIKMvDc5ikqMBVlscN3B5UMK6lIQ2xWLHE5pSTiS0dxEOs5a1nVUikzfe6DsNKzYt2TdVyOuMy+7vsYVGMQEyc5c0YvDh0bB3KKcrg88HK5h1p2UTYum1xoW7ktB7ofICQlhBrbauBq6oqaVE1UbNndGKWgJGBUAPqa+vg992Pqlamoy9TJLspGTaqmklb9vNiVSaToS7WRKaFAKCYfMRslEcAhR0rVZCVVUyndMmVYGFgjsbFVEYcga6gj34K/xwbqu7VifvQeDkScrPBzkJqfivMGZ0bWHqkiFLnFuXj5eaGjrsOTkU8qfmh17SpGR8+fJ78kH5MVJixvs5yN/huJyYqhtVNr7kTfURkU/tjyR+Y3ny+WM231IDQ1lA9TPvAw9iG7ryzjZn4I+hr69PPoR3ByMG/i8qml2IZMKUGQypAIChQSgdVdTak3ojckJDCot4yEoo8MHLMF/49BBMQHEJwSjFJQoqOuozJ+amDbgBOvT3Ai9ARaMi1mNpnJwVcHeZ/5XpXaVpOq0di+MYaahrzPfE9ISgiaMk0qGVYiMj2SM/3O0EVemcJ5s5nARfbUAi2pBus6bmBUnVG02FibKgHv2HdTn5JDB/hJ9oDF9xaryIu7uTsBowJUC5zPkfN5zeaRsG0lG8+VoD8X5jady9IHS1ngOYnkfVs476XHi2kRWK6xpI1TG/w6+zHx0kQuR16mkV0jgpODVcTJy9qLITWH0N+jP68/vmbCxQmEp4UzpcEU5kXaYPLNDE483ceNzd/y3FzOs1Wi2EHox1DGXRjHvZh7AFhngXOmuIj3ioeXViCXAhJwMXCik3tXOjn40LpmNyRr14qL1i+gFJSYrTQjszCTTi6duBhxEQEBG30bWju1xkrXilWPV1HHqBpx6e9JkRSo1MSQwIljYFAE7YaURgC/7NWRCAI68eO57PAKQQLWGmaM1G7MgHQb3COz6GlwhQi1LF5uUapsUXI04LWVlNf1HBntEcVqi4FMqzcFqlQBY2PWP1nPt1e/ZWbjmaxos0JVRnIh/ALdj3WnV7VeHOx+8DcXqAk5CYw5P4aLERcZWnMo69uvLw285OSIWQ4/P5F82NnByJHi9qssR+cjnYlMj+R9xnsm1JvAiNojGHdhHA9jH5Ztbh83TuwHePFC9drg5GDO9q3J7Mcy1KM+qNSwCorz+WmoI/NPp6NtaYtk925o3brC8/gSr1Ne47HNg7P9ztLFrcvvjv9PQxAE9JeJDcDZ32X/4VIfhVJBu4PtCEkJIWhs0J9vovbgATRrBjdu/KF5/RLpBenlyERYahjvM96X+jPpWpQjE+7m7tgZ2P2PTSP/wf8M2UXZxGTFlNmiMqJUTukpeSllsh2N5OfRpHzGy0xfnROz/tqqVH+tTq1/8PvQ/LRwKyqvMvRnIr8kHxcTlwr/9jT+KUPPDOVdxjtW+qykRFHC6serKxz7m/j4EetnLzgb7kXxweUoMnYiS/7UVGVlBfXqsa2DGQaFuUQc24Zny99uGi9WFDPj2gxaOrbEzsCOi+EXS7MPnwiEVCJVKUGNvTAWKFXL+Uwc2ji1UXlDfN4uRVxi0uVJPBr5qEx/SKG8kL4n+3Lt3TVO9DlBD/ceAHSt3pOtyau51WgZs4NW0nxvc073PV2mVtlA04DF3osZc2EMk+pPor5tfQbVGMTFiIukF6RzKeISp/qcot7Oeow8OZhjnosYk+pAc/P59ErcQKiQjX4xZCgzuHfeDPsPcsKNFLw1VfLWLI9wU3hrISXmUzZVkECSgZQsQy0euUGusuBTqYkCQ80cqppBVTMDqpqJzeWc3kK4iwn1PTwwyLIkp6hi4YEl95YAMK/5PNXvplyeQlx2HIFjAn87MpaTA5aWgBhZa+bQjHNvz6nUPXwq+3Drwy2MNI0oyC/gUewjknKTOPDygEpStcb2GmQXZdNcy429p6HXg2g0tfXRX65PoaSQNtrHyQ124pmTC9rFH4i1uki9Qe8gK4t3p3dz6FZXfomoQ4+G4xn56bDyivMITAwkID4A/3h/joUcY81jUXVHKpFS26o2u4J2kZCTQEvHltjq2XL53WWmN5zOrQ+3uPruKsWKYuwN7NHV0CUsNQzDAkgd0I3jhQIzO0hJ0Jfh7dCM29F3UJfIUFu1hrS4EBpo28KLp6hbW7OItnR27UyP4z3EuUwM5JtL37DNdxsAE+pNYGPARpbcX8ImTVfSdSLg02IcIKjwPcs0muIn3GP+bbGmqra1qJRzccBF9gTtYezFsSiUCmz0bXAwdMBC14JpV6cx9cpUBARcTV15PPKx2AiseQeAzPBXWNRqQkrMeRZt78/mnJt8zP9Y5q1NNIRkIykISp7biiRXvwgK1GHxrvf00X8CDRElUWuLD0dBEAhLDeN8+HnOh58nqygLAYHbH26ryMalAZeoYVmDJ3FPOBxymBdZYUhkErrY+6Ab9p4jOpF0jdIk31CGR6QY8HBQjFCRDPF6lyFIFCQ7jKW9ywU+ZH4gNDWUY3qhWPr6YF9rGKNjHtDhUAcCDq+kweA50KIFkoZeyJ9d4AeHUOrFw5RFh0A4BMC6VjpMa57PrHR3lj/QQpJ0UCQgVarg69KJoz2P0vdkX7TUtNjVZVeFizsbfRvO9z/P3hd7mXp1KjeibvBzl59pX6U96OuLmYwxY0qzHGvWiPX8HTrA2LGqLMeEuhPoeLgjY+uMZd2TdWz034iLqQt3ht6hhWOL0n/o5gb794tk/1P5raelJ8emTCTr6WY0589Cf88hSEhAe9Qoll7+yM+1QbJ2KiNb/rHFcHWL6nhaeHIk5MhfgmgEJgaSV5JHV9eu/1I/weJ7i7n94TbXB1//zzg1+/mJzfTe3hX+WSkoic2KLafuFPoxVHXtSZDgbOxMVbOq9Kjao7Qx26wqJtomf/4x/4PfhVwpJyEnoRyR+HL7UplSJpFhayD2X7qYuNDaqTWVDCupNnsDe5YeSyovyy8BZ8s/x/fjP4l/iMbfDf8FoiEIYlPTr1U1ihXFLL63mKX3l1LLqhaBYwKpblGdH+/8iKbsK+nWzEzxIfllX0VMDACtTYy5bSrhRksH2vXbIWYsbGyIz0ngxjp7dLR06dBkKB/zPpYpXYrLjiM2O5a47DiCU4JJzU8lIj2CWjtEfVKpRIqNvo1KlalXtV4ExAfwKPYRAgLfN/+e+c3n/64qhruZO0pByfuM97iZienJ/JJ8uh3txv2Y+5zpd4aOLh1V41v2mIbButU8uHuAW5Nu0edEHzoe6sjebntLfUMEgRHOPdlkuJppx0dw33QWP8Zbc7Qok6pF+vxwYARvTlqyR6+AXj3P0mjzWb59AlUBf2sz+nXR54J1DrpKNcb7Sgiy3ICjrT1tP5c0yWTQvDn5UgWRp3fxVpHC27RSad6wj2FkF4tZm6yiLF6nvCYsNYwCeYEqdTv0zFAW31uMlpoWmYWZ7Anag7u5O26mbhhrG/Mh8wNbn21lQfMFmOmYAaKm/+4Xu9ndZbdqripEbq64GPuEts5tmXNzDroaumQXZZNfko9cKSclP4WfvH9ig/8GnDY4lSkfG+Q5iKkNp+Jy6g68HIOgY0i9n+urxox49pq8J9soqtmIx1H3qJGsAwWmcP8+O8M2Y1wAnRoPLXNYuhq6NHNoRtNKTdn3ch83399EW02bAnkB3o7e3P1wV9VHc+fDHQDq29THUMuQZa2XUdmkMo9iH3Ek+AhHQ45QPRn8zsGM9gKP7UGiVCKVyNBQ06SFTWPGnxuLyz6BtGHamPYcK/avfEI923q8/eYt31z6hj0v9rD9+XYKSgpY3W41w84MIzI9El11XS7aF9DWxhJIQiaVIZVI+ZD5AQ/fGbS6dY9fZEdVRpkAOcU5bHu+DUNNQ9pWbsuRkCMk5yYzrdE0dDV0kSvlmOuYE54WTruD7ejn0Y9Rpj7UAV48OcMxq1TydMD856Nkd9XEVNuU9IJ0VQRVQ6ZBsaJY9VWQQImeFhQW0q8X5MUUMnzLFgTgzryBnG1pxXm9eKLyRD8Kn8o+7PDdwZ6gPTyKe8TQmkMJ+RjC4NODAQhOCcZcxxyloOTB8AfUt62P+xZ3uum15XS0LfjvRUDCK5N5zMqqQ2FR2SyCBBmOOo04OXACgiDwJO4JG/w3MPXKVObfms+I2iOw1bZg56n5NPD2hkuX0FNX58TlItIDP9DZeygONgeplFqCg4kTR9XCmJ3lybIgQySRP0NiYuk/MzCgZ5UqvDOry6Ebezl4O5rBPRYicXERgylfLHglEgnDaw+njXMbRp0fRYdDHRhdZzRr2q4pbc738hL7N1avFr0W/PygSxcx+zByJO1GDMdS15KDwQeRSqQYahryaMSjcn03uLmJpbdxcVCptJdudselrGu9n3n7DkP12rBkCWhrw4UL+CvOcOzxD7Sr0xs7gz+mitXPox9L7i8hrzjvj/lx/AexK0jsFRntNfoPv+ZG1A1+vPsjC1supJXTf0ByNj1drFBYtIgiZQmRqZHlyMTbtLeqGn0tNS3cTN1wN3enlWMrFZlwNXVVSVT/g/88BEGUr/8aiYjPiS/Tp2GkZaQiDc0qNStDIioZVsJa3/p3FdoGtZTyPCoLKaAUUPVoDPb+19TT/jfwD9H4u+G/QDSiM8UyGScjJ9XvgpODGXJmCCEpIXzf4nvmNJ2jWqQXKYpKb3R5eRAYWEoonj0TVUpAjM55eYmlX3XripujAzdvL2DVo1VssU+hOP40caFxXIq4hIAgytCtMC7jE6EmVcNW3xY7AzvMdczJLcqlkV0jpjearspEWOpZlrtw80vycVjvQGp+KsseLKNntZ7UsKzx1blwMRWzOpHpkbiZuZFdlI3vYV8CEwO5NOAS3k5lI1EaugZ0SDfhbNFNFvxynrOJLRldGM3AUwNJXLGA6f5SSEhAlp/PWmfwGQInfx5K70RjxnY0Yp9TFjlaCg4O8GCY1QxmSm4ws8MF6m44SrNaXdDV0OCcINDxcEeuRF7hNR/53iWOZW0+ufgWFoKPD6Sno/P4MTWqVOHXZygIAh/zP/I29W05AvIu4x0KQYFSUIrKFxI1BARGnBuhev1nd3eZRIa6VJ3LEZfRVddl7IWx9Pfoz7Baw746p+TkgJ6e6kcPCw8UgoLe1XrzPPE5gYmBAFQ1rUpISghZhVkqQ6XaVrUJSgpiQr0J4ntTdBU0NelyrKvKjM1ATQ/DO485VL0EFz0HtlsK9H+mDvfvo7Cz5eCxA/QPBs0J3codWmR6JGMvjOXW+1sM8BjAzfc3sdC14Ob7m6ro+mLvxRx/c5zozGjkgpxvr35LibIEDZkG9Yw9iE0IwzEfan2U0nSUEj11XdSVxZRQgoGmAa/inpNUmIoggdbDpSgoREO9/EJBR12H3V1309m1Mz2P92Tfq30cCj6EjoYOlwdeRvj0OTjRyBVI4tb7WxhqGpKUmwQDujJplYzuzjnIJDK01bTJL8nH97AvEWkR3B56m9rWtalsVJnFDxaz6tEqqptX50L/CzgaO/Lm4xt2Bu5kd9Bu/PK3USAFRdQ70k0lCOrQMxQWtCoiTVmEg6EDANXNq3Ou/znm3prLyocrVeehraaNRF+HjIIMRji8QL2RMQ1eZ9LKOxq7nBh8nwl0zrbCu2E/tB37Qq369HTvicUqCwacGgAClAgltHRsydVBV2li3wTrNdZce3eNt2lveZfxTnSPH1ET6tRBMmkSnpMXU2O4Pf62nuVqmit/igBKJBIa2TeikX0jYrNi2fJ0C8fvb6dHQBa7vKBv97G0UVPj3oe7bAzYyLp265jacCpLWi+h38l+HI26jkwiI7d1c+IXficuwPPy4N07iIxUbQ6RkUwON0Hv/m3YcPvTm6ujynx8udlXqcKV/pfwC/qZ6demc+3dNXZ33V12oauvLwqCjB4t3mv9/IjzW82UsEUkVxMj3Cd6HGXwuWEsuL2AzR03l/1guX0KArx9W4Zo6Gvq4zV5GUWXJ6Izc6bYS7VxI5iYsKqwCRcjLjLh4gTO9jv7h7IC/Tz6Me/WPM6Hn6efR7/fHf+fxJmwM6hJ1f6wClZiTiIDTw2kjXMb5jWb9/sv+IPIKswqJRNXDhDas5gwjR1ELZ2rKpMx1TbF3dwdL2svBtUYpCp7cjBy+Kfc6b+AEkVJhdmI6Kxo1fc5xaVZfjWpGnYGdlQyrISTsRMtHFqUzUYY2mOgafA/Pi5PB33WjXDn4J0ElerUYG8bPCr9tRvB4R+i8feDxqfynf+gvO3LZFHa1NXUFblSzupHq/n+9ve4mrriP8qfOtZ1xIGFhfDqFYXPnqCZnQ4eHhAaKqbktbURatcir3Vzkr8ZyLvKxoSZKInNiScuJ5a47MfEnY8jPjtetYgce2EsGjINbPVticsW5Qd7V+9NTcuaomfEp7ImC10L1Q33c9/C6b6nsdSz/Op56ajrsMpnFcPPDkdPQ4+BpwYSMCpA9Az4Ddjo26ClpkVE8hsyFTbM3DcQp9ho9rmMxmn7FUjYXbahOjubrh4woBfEjRuAnaDPHhtrbBs7MMMlinhHL1abjkdqa0cbGxt8w35g1uh3dP4mjPmFWeze6IybgT0/Kl4zYPwplkrG8fSAD33uTyLQvQnWGtZIJBJO9TmF22Y3EnISWP5wOU7GToypPUqUnXz2DG7dKpM1+BISiQQLXQssdC3KmQDJlXK6HOlCQk4CQ2oO4VrkNa5GXcVc25yPBWKq/rPikoZMg3m35pWpI32Z9JJ+v/QrbUb/FHErE9HMzRUXS59w/PVxpBIp+hr6NKvUjK1PtwIQlhaGVCqlvm19nic+Z16zeSy7L0p33ou+JzqGFxWxzUvgQvgFnIyciMmKYXCJO3oZT7lQBYYe+4WiNlC37TCoVInbUTeIl6czJLdymUVWiaKENY/X8OPdH7HSs+LKwCtcj7pOcl4yBpoGHOl5hCMhR6hiUoX6tvWZf3s+x3sdp3f13hTKC3kZ95zsnzez7dFxAiorkejC4eoCWuraNKzUmLo2ddGSaRL3+Cp3Ex+TaCouCEWHD4FZN2ZxKeISvar1ood7jzJlGt3duzOj8QxWPVqFXJCTX5JPal4qg2oOYnKkKT9WFon89ajrWOlZ8S79HRgZUc3QBaucMJL0FcikMrof605gYiDXB1/HydiJiRcnsvXZVmQSGbWta/Pm4xua7GlCF9cuPIh5wOuPrxEQkMgkxBoKOGWiylx81IUN0e402XEJRyNHmu9pjqmOKTKpjEn1J7Hq4SpAHG+oKfqLfH6tw4cM3jkaEjT2DjWN3ZHcvg2nTsHeQ2RuWs/BZob4NVBDriYHpUguC+QFSCVSlaxor2q9OPDqAEpBSa9qvahpVVOcrIaf1JaOHWPQ2Xv4Cx6AAiSyr0YA7Q3tWd58EUt+ekjUu+dsalBA2wu9qfm0Jok5iTS2b8zkBpMB2BW4i+tR15neaDpGmkas81/HzqCdDK81nO+afodjjRpQoyy91wO231vHxmPTmGvdm0E6DUvJyIkTEB0t3jcBiaYmYytXpm21hoyo+pbW+1sz0aoLK7yXouvsVqYZXF6rBpuHVWVBJSl6CkN2BhkxsXo0kbNHsaJecyY/3UIP9x5liYqjo/gceftWDEp8xi+/0HHcDxSoyUCuoGDyBLQ/KVAZaRmxpeMWehzvwYk3J+hTvU+5Ofw1nI2dqW9bnyMhR/5XiUZsViyJuYnUt63/hxqd5Uo5/X/pj5pUjYM9fru35rcgCALxOfEqdacvsxRJuUmqcY656lS1tsTXvWuZHorPJpH/4M+HIAhkFmaWz0Jkl36fkJNQJhthom2iIg3ejt7lshFWelZ/rkDAV+DpoP+Xb/yuCP80g//d8OyZWF4UGKiqcf4zERydw4+nH5CQpqCypS7vJDvxTzvGd/Wn84NZLzRevIKnTxGePYXgECQlJUzwlXC/sho7It15Za/BQ8tiHuilE5tfVt5SS02rTP/Dl2ZzD6IfsPrxal6Nf0Vqfire+7zxMPcgeELwbx7r29S3eGzz4Cfvn1Su078HhVKB7lJdShQlyKQyxtcZy4Yas76qxOTZMpTmUQq2XPpiR1paKinXX2+ZynzMw0ezwWIIE77Zp3rJloAtTLo8ib4efdnbdS+aapqqc/gs8zvv5jzWPllLobyQbZ22Ma7uOJJzk6njVwdnY2duDbmlyiTd+XAH733eqqbkb+V1Wb7sGRrHTkLPrxsbfg2zr8/mxJsTRE2J4u6Hu7Tc15Lwb8Kx1LMkIi2CkedGEpMVg4+zD+Fp4YSkhKhKiiRI0FLTQikoy2ShbPVtqW5enapmVXFbvpOqHQZTdeIPZBVm4bHNA0dDR1LyU1Sa44aahjgYObDEewmdj3Zmc4fNTKw/kfvR92m+tzkAMxvPxPnmcyZq3sLZrArupu5kFmWy6I6EOsfuYTILVr2xZbpHPNm5k9BbvZHBvwzi6f2jhOrMRLJUJC3+cf6MPj+aNx/fMK3RNL5r8h2L7y9m3ZN1mOuY83zMcxJyEmi4qyH7u+9no/9GpBIpT0Y+ERuGz59HmPMdoyuHsstLnIPRdUbTxrkNoamh+Mf7ExDnT+onCUknhQHV3Zqiqa5N6MdQ3qSK8roaUg0V6W5g14B+1fvR1a0rOwN3svTBUpyMnEjMTUSukCMX5HRx7cLRb+7gNVmLUETyV8uyFi+SX5A3N48VY6qhERnN/DZQw6IGb9PecnHARRJzE5l+bTr5JfksarmIh7EPeZH0An0NfV4klzYIa6lpUSQvEvsl9stI0VIwsK8owzzrPnzrD3N29WeA13AW3lmIi6kLO3x3MPzscE6+OYmBpoFKNlNfQx9LPUti06NJXSZnUTOBm73rcG/YPXTUdXgc9xi/Zzs4HnKMEkUJXT9oMuZBAUc9JRytLrDWcRzj47dzY/ANWju35vb727Ta3woJEoLHB4ukEyAlRez/OX0aXr/GIfs4VSRjKFRzoGlKMoObWeExqGOZsiVAVP8ZOVJ0zr55k47RS4lMj6RIUURMVgxmOmZMqj8JuVLOT/d+Yn6z+SzyXoREIiGnKIetT7ey+vFqMgszGVpzKHOazqGySeVy19bqR6uZeX0mi70Xl+ltorgYPnwokwkhMhJlZARbTKOY3VqJTQ7sPS+jqXplqFKFADc9xpk84oUinomuA1nsuw5DfTOG7erMneg7RGwQaNc9jygbbV7V3YVBl96gpkZwdA4HFx8jyqIKzukYw3YAACAASURBVK7WDKqjh+fyWaLCVY8evF80jZIWzcDZCdeAd2WOv+fxnjyIecCbCW8w1TH93XvJ+ifrmXV9FskzksuXcP2XsPzBcubcnMPWjlsZX2/8746fd3Meyx8u5/bQ2zR3aP6b40oUJbzLeFeOTISlhqnuYxoyDVxNXcs1ZLtFpKPTog1cvw5t/jpeI393FCuKic+O/yqR+NLXQk2qhr2BfTny8OX22Xj1H/z7+Ido/N0QHCxGyx4/Lo3e/Vm7js7h292hKJRKQAqCqNLy3d15tHx6H41iBQoJhFup8cRKToANPLOBQGtAJsXFxKWcQ/WXZMJE2+Q3U+5F8iLcNrvhZeOFUqnkzNsz7O26l6G1hlY4HqDr0a68THpJ2Ddh5WtUFQpx0VEBceiuc47rBqnoFQsk6whcOQDtPj9P1dXLEQdfkyu8LoimXqYuSwftpYpnc1Hx6yvlAz4T9JHq63N1RUKZ3//y5hcGnhpIk0pNON33NAaaBky+PJm9L/YSOTkSDZkGzhucMdMxI78kn8jJkWipafEo9hEt9rZgUv1JrG23VrW/MefHsP/lfooURcgUUF/dgWOT72Nv+HXd/a9hx7MdTLw0kcL5hbxKfoWXnxfPRj/Dy8ZLRTw+R/NvRt3E54APs5vMxqeyD29TS0ux3nx8Q0xWjCqSrSZVE/1CiguRfwoA/dol3VDDkLySPBrYNSAoKUh0u7apy4X+F5BIJKTlp2G2yozBNQZzOPgwErmC9lESDu7MwH69PbObzGbKsG28z42nxWgZfb2GcvfpCd48rU/OxdNYrbRg3vVC5i5/SI6XJ/NuzWNzwGbqWNdhZ+edqMvUGXhqIG8+vkGulBMwKoB6tvVoe6At8TnxLGi+gP6/9BcbbOPVYPZsXkU+ZNggPYL0c3EwdODywMu4m7uXTuiLFwi9e/G+KJmAhaPxtxEISAggMDGwTN+JuY45MomMpLykcnPTsUpHlrVeRvtD7aluXp3Y7Fjepr1lQgA0bT+aAek7MdU2RV2mTlJuEmf7nmXI3q483SXB9RsBCRK2dNzCsdfHuBt9l17VetHVrSt7gvZw58MdlIgRPJlEhkJQIEGCVCLF1dSVmKwYNp0qwCNRSfHjBzTd05TddRYxvMv3zBpkxaoqScgkMlWPR35JPvoa+jSya8S1qGs0smvE47jHGGoa0ku9Jj/PuMeYSY7sNP2ArrouNvo2RKRH4GzszOg6oxlWaxhWupYQGEj04W14qe2iVRREm0rByIgntbZQ2LYV+pttcDJyImJyROlcC4JYlvTtt7BmDaZzpNRwbEh0SjhR16uJ6j5eXrBokdhE/fkaXr4c5swR5cMHDeJM2Bm6H+sOiGpeGYUZ/Bz4MyXKEmpa1mRv173Usq5V5rrJK85jx/MdrHy4ktT8VAbWGMjcpnPL9Sv9dPcnvr/zPWvarmFao2m/f0HK5USE3GXYrck8zgllfFENFFmZ+JlHUytZwo5zAvUSEHuzHBwIqGVOgxr+nFcbgkcKeOofpP8rJX7PbQgeMZ1vJU0RlEqUEilSBCRKJetOzcBz/gQYMAAkEo7/2Ic+C08QfWYfDl2HqA4lMSeRalur0dWtK3u77f3dQ0/IScBurR0/d/mZEbVH/O74/wQ8t3oS8jGElBkpv5stuBxxmY6HO7K01VLmNJsDiHLnv27GDksNIzI9UiUtbqRlVKG6k6ORY8W190OHiopTERF/KSfwvzIEQSCjMOOrJU2/NsQ11Tb9Komw1LX8r2Uj/n/GP0Tj74bwcLHG9s4daNHid4f/K5i97205VQNBUJCvDCBZPhOZti4axqYY65tjrWeNvYE9jkaOnHt7jtziXM71P4epjmnF7t1/APte7GPY2WHIJDLUpGqkz04v7xquVEJaGrdenqH1wzEcNRlD30y78oQiKUlVigCID2ErK7CxYWuNIibbBaMmkWIpM6RYKvDK5xTmTh5galqGQLzPeE/tHbXJLc4ldGKoqmfj97D5hw5ME67wceZHDPXNyvztfvR9uhztolqUasg0cNnkQp/qfdjuu52VD1cy79Y8lEola9utZUrDKQBs9N/IlCtTONbrmKp0IbMwE/c1zsizMlDX0kFqJBr9HOxxUFSt+Tdw7d012h1sR9TkKBSCApdNLtweepsWDi1otKsRCkFBwKgAUvNTqbm9JtUtqnN10NUK64eL5EW8y3inIiCvYwOps+E4P7aSkKlZ+kH7tWHhZ6hL1RldZzReNl5UNauKk5ETNmttmNFoBmser8EpQ+D8Ydi8Zzzbnm0j0uwnKn+zgOVNYG/vKhjqmuAWX8T+TXHsvb6KEWdH8GGvES8v72HClUmkF6Sz2HsxE+tPZOvTrXx34zuqmFShSF5EZZPKXBl0RUWujvU6xtybc2lTaMP2Ryak3DjLgl6m7HRKRyaR4WbmRtDYoFKBAUEQDTYnTYJq1cQSmcqlUe4SRQnbnm1jypUp1LSsqSpZBDESKlfKyxk/WepakpyXzBqfNWR+CGX1m58RJFD4q7WMr4sv92LuceKiLu3alBoOWutbY6tny4vkF2UyTp/3PajGIJo7NOdRzCPW+a+jWFGMha4FZyPrU2X/BSLDH9N4V2MWNF+AxsEjnNeLJ8CkQCyx+oIYzW06F211bZY9WEbOdznMuz2P5Q+W0ycEjp0Es5mQritRvW5aw2msbLuyws9Q/5P9Ofr6KHOLG7JU4wlnjkCsqRpTfOT0i9Bi95pINK2+EK5wcxPL83R1MR7xkapmVSlWFvN8zHPxvrlggbjIa9QIFi+GjAzo1Uv8/aJFgCiJbb7KHEtdS2KnxbLiwQrm3ppLa6fWhKeFE5sdS0vHlkxtMBVfV98yi5WCkgJ2Bu5kxcMVJOUm0bd6X+Y3n6/yQhEEgbk357L84XK2dNzChHpfN9H8DLlCzrCzwzgUfAgJEqY2mMrK1stQS0wukwURIiOoV+kqFulFXDqgxM8LxnaGyye1uO25nGdO9VF+cbxSQUndStqsGFOz9ByK84msYoJUU5NqbzOQfLEY3hW4i1HnR3Ft0DV8Kvvwe/De5426VJ1rg6/9ofP8M5FdlI3RciMcjRyJmhL1m+MEQeB54nNa72uNnaEd3o7evE17S+jHUOJz4lXj7A3sy5EJdzN3sW/tj6pZZWSIQayFC2H27P/hGf7fQbGiWDTA/UqTtcpLB/Ee+bVsxGf1v3/wv49/iMbfDdHRYo3t1avQtu2fuuveK4NIzSnvBK6ukY+15x7S8tNIK0gjLT+N1PxUMgszy0QPPkNPQw8zHTNMtU0x1TEVv375/aevZjpmqu/11HVRZqRjt9OdpKJUhuk2ZU9Jx/IEIjERhbyEOmNBtwQe7gaJhWWFJUxlNnNzkWwA4WnhuG12Y2TtkewO2o2+hr7KxffLh0V4Wjit97emSF5EWkEaBfMK/jCJinlwEYebvhytOp++fcs7yYakhND+YHvUpGpcHXSVy5GXmX5tOi/HvcTZ2JkqG6ugo65DTnEOUZOj0NXQRRAEBp4ayLm353g6+qkYNQ8M5PTIxvToVoSaVI3J9ScTlhbG5YjLzGs2j4UtF/7LEZvI9EhcNrlwY/ANPC09sVxtydl+Z5Er5fQ83pObQ27i7ehN5yOd8Y/359W4V1+VflQKSm5E3WB30G5Oh55GWVJMZ5OGfNAu4mP+R35s8SOBSYFseboFDakGCkFRpuROXaquKin6ElKJlIshtaj+OIJKo3LoESbl5AkJEoUCu9nqGNm7EpkRyQrrwUwZ9TN91jYiIeol1lpmnNSLoX2V9mzrtA11qTrDzg7jRtQNpjaYSpNKTeh9ojf3ht2jaaWmtNjbgtziXCbZdEf44XsGBkvY3M6YRQ0KkKhrYKZjRl5JHoFjAkvnITcXxo+HgwdF34J16yo02Dzw8gBDzgwhb04e31z+hkPBhxjoOZCDrw6ira6NpkxTJWP5OdvwGTYY0OdxNvua6pGhyEVLTQvNEjcqKYajL3FB0EjENGIjF5xfqebrS+Iik8jEc63Wm80Bm/Gy9qK6RXVWP1pNgbyA8XXH4+Psw7xb83C5HsSwl7D2uxbcir+PUlCiJ9WmXUgBnbvPZn3mVepY1+FB7AOVO65CqUBHXYf93ffT2K4x39/5nsordjIgGFxnimaH1cyr8frjawAG1xjMtk7byi0OiuXFmKw0Qa6U09CuIamZCaRlJeEdr87BnekgkyJt0RK6d4du3cS+g7AwuHMHg0edcTZ2xlzXnOuDr4s7FASxZGX+fFGwQiqFli3FbMen63/ixYnsDNyJppom0xpOY9G9RfzQ4gcWtlyIXCnndOhp1vuv51HsI5yNnZlUfxIjao8o0/RZKC9kT9Aelj1YRlx2HL2q9WJ+8/nUsKyBIAh8e/VbNvhvYHeX3QyvPfw3rx+Ad+nvmHBpAtfeXaOtc1uS85IJTglmVuNZLGy5sFzvwZ6gPYw8N5KIvg9wTi6h/ZOJvC6IoUHhKdLVyzemVqTFH7B3CfWHz+fuxum0mFQqXy4IAq33txY9Y8aH/O5izu+5H+MvjidhWsLv9tH92Tj86jADTw9kVuNZrPBZgVwp533Ge5WqU1haqUv2Z7lRNakaLiYuoqqTaSmZcDNz+3PKaDZuhOnTRdUvy//ufPxvQRAE0grSvkoiknKTyqwnzHTMSomDQSUcjBzKEIkvezX/wV8b/xCNvxuSkkQZzHPnoHPnP3XXFWU0vuY8qVAqyCjMoPeJ3siVcmY1nqUiIipCUpBKWk4KaTnJpBWkk1acRTEVRK4VYJoPqTogl0HtRPBK18RMZoCpljGmehaYGlljambPbc0kFiQf5qHvaRrX6CSWO/0LEASBSusr0dO9J0FJQSpNcj9fP5X8YXByMD4HfDDRNuHHlj/S52QfwiaGfV22tew/oc5kTarqO3F46dsKh8RmxdL+UHuScpM43fc0o86NwsnYiSsDr7Dj+Q4mXJyATCJjcavFzG4qRr5yi3Np+HNDMavQ/hf0m7YGOzt6fWvL5Q/XKVGU8GLcC86GnWX+7fm0cGjB4Z6HsdKz+sPzU6woRnuJNjt8dzDQcyA6S3XY23Uvyx4sw8HIgauDrqqckC8OuFhG3vdLfMj8wJ6gPex9uZeYrBjczdwZ6dCdwf2WEnlgA01eTeFwj8P09+xPj2M9uPbuGroaupzrd46GuxqiJlGjpVNLXE1cCU0N5c3HNyTnJav2L0XK5otKGsTC6saw/zQk6kGmqQ41hxVgqGVIZmEm19oexKfxIHz7wy0n0Nc2ZEO37fSt3pdfQn9hzPkxaKtrs7frXto4t6HhroZoyDS4P/w+VyOv0u/n9jz52BX7/Wc556HGgh7GRAlpjPMSvV12PN/B7aG3Sxvr37wRI+QxMaIE6YABvznX65+sZ+7NueTPyye/OB+3LW7EZcfRxbULh3seRkddh/icePzj/AmID+B+zH2eJzynWFkMguhTIXx61lZkUIcgEKQ2Hq28V6ToiYIInVw6MaTmEFo5tUJHXYe84jw6He7Eveh7qEnVGOs1ljnN5iBBwqWIS5x7e46rEZcoEuRoKiSoa+niU9mHIz0Oo1mnHjg5Udc3AQdDB06FneJM3zM0tm9Mh0MdePPxDQXyAvH9kkh5dFyfdGU+HfuWUNm4Mgk5Cdgb2hOeFo5MIsPFxIUTfU7gYeFRZp4+Lxg/l2FJkBA+KZxxu7rTM1yN8bGWcPMmyD/dW3R14cUL9I7XwtbAlpqWNTne+3jZyY+JgVq1RAW//Hxo1w5++olbZjm03t+a75t/z6J7YoZjYYuF/NDyh3Lv39P4p2zw38Cx18fQVtNmRO0RTKo/qUx/RrGimP0v97P0/lLeZ76nW9VuLGi+gNpWtRl/cTx+z/041OMQ/T37l9t/kbyIVY9WseT+Eix1LdnScQudXDshV8pZ+XAlC+8sxNXUlX3d9uFl46V6XX5JPnZr7RhVZxQrfVYSmxWLxzYPGst+pjjH4Y/d4wWBYE9L1NIysIlMxlC31JMhMj0Sz22eTKg7gTXt1lT84f6EtPw0rNZYsa7dOr6p/81Xx/5ZyCvO423aWwadGkRoaihtncXSx4j0CJWEt76Gvkoi9kPGBx7EPuBgj4P0cu/1u7Ln/zYEQXQBd3cXM5z/R1AkLyqXjfiypCkmK0Z1HwAxG1EmA2Hwq2yEoX35aoZ/8LfFP0Tj74b0dLG858QJcTHzJ+Jzj4YglNVpXj/SvWIJtfx8SEzE52I/jOVqHJf0qbihOre0+UoA8swMSHOwIM3WmDQrA1LNdEgz1OC1Vg7bM64hRYq+ph4upq4q0vJrt+7PMNIy+pezJ9rq2gw/O5zAxEDO9juL5zZPbPRsiMuJI2hsENlF2bQ72I5KhpW4NugaRYoi7NfZV+g6/jX8OKs+69Se8XFRIepqFWdCMgoy6Hq0K88SnvFtw29Z+mApFwdcxMfZB/ct7siVcnKKc3g/5b0qWhqeFk5dv7q0eyfh+E1jJE/8SdRR4r5F9Pyoa1OXm0Nuci/6Hv1+EdVejvY8Wta063fgsN6BgZ4DWdJqCRqLNehTrQ+HQw4TOEaUnm24qyET6k5QOYJ/RqG8kNOhp9kVtIub72+qHLtH1B5BA9sGSIKDEWrWpNXGOqSpiaToUsQlOh/pzPxm81l8fzFupuJiW0OmQQO7BlweeBmA7MJsHDY4kFmYST2benR27UyzRftwfhWDXWoJBz2h21tY2QSWfHmqAqSuhHUN4UQ1GNHtB6ra1eZg8EFOvjlJr2q92OG7AxNtE25G3aTNgTZcHniZdjbN2TjEjeGXE4k0kdCnh5x3JuDj7MPadmsJ/RhKn5N9VLKngFjjP24cODnByZNQtepX53nBrQXsfbmXl+Ne0v+X/lx/dx0jLSMcjBx4MPxBhdFihVLBqkermHNzDt5x6jxz1iKnOAdP+XpMqF9GzlVAQToBdH61gKV1cngy8gkN7BoA4mJ0+7PtrHi4grT8NBSCgs0dNpNWkMaF8As8TXiKVCKlkV0jOlu3wHfoUtZ1NWeX3Uds9G14OOIhjr/chNGj6bqwKuEmAvnyfJ6Nfsbh4MPMvTVXXPAa2FHZuDJhH0N5tTCF481NWNtedFE30DRAJpGho65DUm4Suhq6FMuL2dJpC8NrDS+TYay1vRYvk1+iLlVHS02LtFlpbA7YzOwbs0makYRJAaK7ckiIinDozJdgJtOng5MPO4acKC2LzM2Fpk1Fj5/Hj8VSqh9+IPddKJ7TdXC0rUbL6r4svLuQSgaViP42+qvvY0JOAlufbmXH8x2k5afR2a0zUxtMpaVjS9U5lChKOBR8iCX3lxCZHomvqy/zms1j27NtHHp1iOO9j6uMP0EUexh/cTyR6ZFMbzSdBc0XlPs8BCcHM/TMUF4lv2Jes3nMaz5PlXWdfnU6e1/uJe7bOJFIv9jLlDPr8FL6IUHyh+7xyTfPYdmmKwem+zB4ddnSp5UPVzLn5hyejHwiGjt+BZ0OdyKrMIsHIx58ddy/gs8y3V+6Y3/+GpMVoxonQYK3o7eKVLibueNu7o61nqjgd/7teboc7cJqn9VMbzz9Tzu+CvHoETRpAteulVX8+gtDEARS81O/2mD9pZoWiBLov0UiKhlWwlzX/J9sxP9H+Ido/N2Qlyd6EBw69NVI6b+L4OgcDt6OIyoxD2cdBYONU/DI+lAxgcjMBKD5cHDMhP1XdX5TiUm1WVuL0cYKMOLsCPa82MOU+lPYELCBM33P0LVqV0CMCqYXpPPD7R/Y+3IvmzpsQiqRls+efPFzekF6mVKTz9BW00ZbXZv0gnSaVmpKYUkhzxKfoauui56GHpmFmTgaObKpwyacjJ0w1jLGdq0ty9ssL11Q/gG8OLOd2i/Hc73RNtq0/W1n80J5IQNPDeRM2BlcTFyQSCS8GveKk29OMuDUANSl6sxvPp/vW3wvvqC4mFODvOhZPYQ1NWcxrdsKoLR2GuBg94MMrDGQpNwkBvwygLvRd1nsLWZG/sgN3nufN1Z6VhzpeQTTlaaUKErwdfXFr7MfXn5e6Krr8njkY1XJRmBiILuDdnMo+BCZhZk0d2jOiFoj6FWtV9nF0aNH3BjcBJ8hcLbfWdo4t6H61uq4mrpytu9Z9JfrIwgCs5vMZtmDZZjrmpM8I5kSRQlVNlUhJisGaz1rerr3ZFPHTaIXy/PnbKkH7WZso0rf8UxZ0oyNJfeB0obqG/sgVx2mdoQPRqWHoy5Vp7JxZWpY1cDTwpOjIUdBoSBQeyqKBfPIzElj5ih7DhnFYqxtzL5u+/B19SUsNYx6O+vh6+rLkZ5HkBQWwpQpsHMnDBkCW7f+5uf8S0y4OIFb729RrCgmuyibY72OYa5rTuNdjWlXpR0nep+o8P0SBIHOs+0JlKUwrv18frjzA82LziOVWZQbW0QKu7Z3puN39jR1bsHOzjvxe+7HsgfLSMlNoY1zG4y1jDn+5jgCAgaaBrSv0h5fF186uHQQDRkFgSJNNfb3c2dvS0OeJzxHJpWxuNF8pvZdx5FqcgZ7Z1HTqiahqaHIlXK01LRoV7kdx3uL8sWK2BhklRxYP7sFc/UDVBFOCRLMdc0pUZSQW5yLpa4lcTlxDKoxiG2dtqnKVWKzYnFY76Dq69jWaRtdq3bFdq0tWzpuYVyEoXhPnDQJNm2Co0fRfDMA/UKBUYECy99Xhh49RJO75cvh3j1x4efxKXuiUDBhYzv2p91i5DOBjY2gj317jsde4c2EN2Ub/H8DBSUFHA4+zHr/9YSkhFDDsgZTG0ylv2d/lWCFXCnnWMgxFt9fTFhqGD7OPigEBfejRQPQejb1mHl9Jvte7qOJfRO2+24vl+H5EiWKEpbcX8KS+0vwsPBgX7d91LCsQURaBK6bXVWiGoIg0OVoF0Kic+lmuZH/x95bh1WV7u//r013S4ogjSAY2Dl2i9iJ7diOjt2jztjdXRjYWGN3gIEgKKFIC0h37b1+f6xxKwM6embO+X3O93BfF5dee9Wz9l7xvOO+7/gPpd+kxR/ZwhWl4FCyXvhTy6q+/PNSWSkNdjegRFrC09FPv9pWejj4MIPPDCZmSgzVdKt9cb2KIJVJic6MrpCQnV6QDohtgLYGtmUI2YUlhfx46Uf6u/bnSM8jFe47JjOG2jtq08yqGWf7nv0u1/B/CUOHwr17/6dI4IWlhcRlxX01kPhctEJVUbVc4GCl+6mtqapO1a9Kxlfifw+VgcZ/GV5GZXJ47gGiHD2wqW7EoJbm1LT6RsOW0lJITv6qlCuJiZCaWnY7VdWvBg/1Q6fgbl6bXV77v6rE9DUUlRahv0KfUlkp6TPT8TzmSVJuEkE/Bsk5BrFZsThudmRao2ksbbX0L/cpE2RkF2WX45akFaQRnRnNBv8NNKzaEA0lDZ6+f0pOUU6FnJOPUFNSw1rP+purJ/oKmjjM16WbTj02LfT/6lilMimTLk9i61PRQ2JTh02Mqz+OOjvqkJqfSnZRNtFTojFQ0xdfVseOMWObF2vjT3DT+ybNrZojCAJtDrXhcfxjNJU1iZgYgZ6aHlKZlIW3F7Ls3jI62XfioOfBv5SmHH5uOKEfQvEf6Y/+Cn2yC7OJnBTJ0rtL8Q315fmY5xhpGOET7MPeF3t5kfQCMy0zvN29GV57+BdJ88Lvv9PwVEeoVYvH454z9+Zc1j5aS8i4EGKzYml9sDV2+nbcHnqbqutEB+LEqYl0OtKJF0kvmNZwGo8SHmFvYM/+UHuYN48Pxpq0WmjNy7ft4dgxNpyczvTrM+S8DnsDe348EsmIQJgw2Q4fjbdoqmgiQVLGeEkiQOcI+O06OKbByG7g4w6CggKKEkV8e/nSpFoTVBVVabCnAQoSBfxH+qMV8x569xZ9CbZsgWHDvvk+aLSnEQEJAbiZuHGm7xms9awB8Av3w/OYJ/OaizKqnyOvOA+/cD+Mho6je8dMFGWQqwrDYtcTY1YfmeRTRUMiEUgVHnNh288cm96JOUUXMVAzILUglao6VfmQ/4HC0kJs9W2RCTJ01XTxH+lf4aQxyVKf6/aKPJrWl3ux92hVvRUb/TfSK1aLl+o5hFUBaz1rxnqMxdvdG7tNdixqsehTlvjCBbHdMzqaHFMDTr0+xdpHa3mZIkpYf5RFliDBRt+GmMwYLHUt8e3ti5uJGzlFORivNqawtBCXKi5kFGbwZuIbvHy9kKSmcWnpO2jVCkaPFiVD37xB+YgTKgoqLDTvz4zHinD2rKhGB9ClC0yZAs2bg7KyvJrV0aYDl6N+Z+kzXX7+PRuLWSp4uw5kTZ893/SbghgI3nx3kw3+G7gQcQEjDSN+9PiRsR5j5TweqUzKyVcnWXpvKSEpIRiqG5JZmImGsgZKCkqsbLuS4bWHf3Pm9/n753if9SY8NZyFLRYys+lMOh/pTGZhJv4jxefP+5z3uGx1oYNdhy9Ovv+MkuAXKNSqzbp+Vkz1iSoznsD3gdTbVY/FLReXlev9Ez7+dr+0/IXpTaZXuE5BSQERaRHlgomItAj5RFdTWVPuz/OxMuFk5ISdgV25a3bImSEcCj4kl0T+M4qlxTTb14zk3GQCxwT+++V3P5LAFy6EWd8mx/538bHq8zWlpo++SB9homnyVaWmKhpV/v0BWSX+n0JloPFfBHlrU6kUmcInA6p1wxypqV741wFEcrLYI/oRSkpiheGviNT6+l+dOLlvd6d5teZihvlfxNGXRxlwegC9a/TGt7cv/vH+om+B50EGuw8GYODpgdx8d5OICRFoq/59N0yXrS40rtqYXd12cTjoMIPPDkZTWZP8knxO9D6BnYGdPEBZdm8ZeSV5dHXoWi5oSctP+yIxXlkQCbi1LOqWCU4+b+X6+K+BugH7Xuxjyd0lqCqqEvdTHAEJAXQ52gVVRVWmNZrGsnvKsHgx+PhQ2q8PbQ+1JSw1TE5EfpP+BtetrsgEGaPqjGJL5y3yrdn62gAAIABJREFUsVyOvMzgM4PRVNHEt5evvIWmIiy9u5SN/hsJmxBGlVVVcK3iyqymsxhwegDTGk0jPjueM2FnkAkyujp0ZXjt4XSw61CxlONnOLdvJp6xK7ne4wzmZo64b3dnbrO5TGwwEbdtbmgoaxCdGU3mrEzq76pP6IdQPMw8ePr+KX1q9OF47+N0ONwBzYhoTi0JR3B05JrCO66un8jqSRcoatyA2nWf8Dr1NSD6dyTnJdMltJR4HXhRVZFFLRczs+lMlBSUyCrMIjI9krTr5zFYvJJ6UYWsaaHMvKYlFH6hTVtRooiAQEe7jjTP0sN5x2mcFI2pvuc0SrXqfMOVJ2aDZ1+fzepHq6mmW43X41+X60n+qP9/tOdRejj14Pc3v3Ms9Bh+4X7kl+STsEkFn0ZazPAQs7p7TNdxJLHxp9ZHmRRBUYFnCqPY+jyHKyqxHKr5Sca2SbUmdHXoSheHLjgaOrL1yVZ+uvITaTPSKry/oho58TrrLU+2zGXzk810tO+Ib6gvJdISeoYKqEtU2LA/CX11fXKKctBZriPn4ACwZIlIik9LK/M8uR9zn45HOpbRt//I11BUUORtxls2dNhAan4qi+8sRlNZk6zCLCQSCSvarMBM2wzpoIEMiNVFMSwcsrPBwQFu3kTxXhtkguwT/2rbNhg3TiR/R0WJPA0DA3K6d6Sm/TUU1NR5lx0jypvWnwp79jDt+gwO2OeRkD4M1fmLyhg9fgsi0yLZFLCJvYF7KZYW08+1H5MbTJZzKmSCjI3+G5l7cy75JfniV9VyCXObz/3uCV1RaRGL7yxmxYMV1DWri7e7NxMuT+DJqCd4mHsAcOTlEQaeHsjJ3ifpWePb/HaSeneCy5e5fHkjw5pNLLNs1vVZrHu8jqAfg3Ay+nKrYO8TvXmb/pZrg699CiY+I2RHZ0bLn6EmmiblgglnI2csdCy+OfAyWmlETnEOubNzK+RcTPl9ClufbOX+8PvUt6hfwR7+YWzaBFOnQlycqID4D6CgpIC47AqqEZ/9fa4up66k/tUgoqpO1fJS8ZWoxN9EZaDxX4QKydoyKR7vnrDi6OTPPlQQ1Sz+KoAwMvpHyreOmx3p6tCV1e1W//XKX0CdHXUITAos80LscbyH3Ccj8H0gDfc0ZHfX3YyoM+Jvjxlg0uVJnI84z8o2KxlwegC1TWvzJPEJ9gb2FEuLCfoxCF01XQBmXJvByVcnvyiR+JEY/3n1JK0gjUe3D7Mz6wY9qrVHoqlZbvlHYuLn+KgupKKgQj3zeoSlhZFXkkdpaTFzb8uwau2FYW9vDNXFqkRP357YGdhxy/sWyorKrHqwipnXRfK4/0j/Mv3TcVlx9DnZh2eJz1jdbjUT60+scDLjE+zDoDODmFR/EpufbKaFVQsexj1EUUGR/JJ8kdhdewSD3AZ9s5KMTJBR6zcrjCLiubGziB+OiATN4B+DGXJ2CDeibnCy90laH2rNpQGXeBz/WE7GbWrZlHvD74FMRu/5jmTFveGq+2pyLpzm95SHmGzcS/M2wxk2VI9D1XOwN7QnLDUMa11rkvKSKC4uxC4delp1YNFP5z5lP1+9gjlz4Nw5TjvCcm9rnhRHo66kTk2TmqgpqhGcEkxfl76EpIQQlBREbsmnCTECIPn0u5lpm+Fo6EgdszrUNK4pmnMZOZZRI0rLT6PfqX7cencLUy1Tujh0YXuX7eW+rxJpCR19OnI7+jbqyurkFufiZuJGf5d+DH+lhvGPUxGUlWg815THxOPXzw9rtZYcvp3I2/c5aEU/JkL7CI+0HgGgWwi6hhZkl+bxesLrcgIBH9XGzvU7RzfHbuXG83RgK3xTbnGgvTEpeSnY6tsypu4YqmhUQTpiGO3fQqO5JqztvImaxjVx3uos+o185AZ5eUFWlkja/hMKSgro6NOROzF3yqhrqSmq4WbiRkBiACqKKni7e9PPpR+tD7WmikYVZIKMV44bMfYcyNlZPfD87TQUFICGBsK+fSjEiGpOJ3qfoFeCruidMW6cqPwjCKLx6enTjIndik+1TB7vBEW3mjiPmgOdOoGODq/jA6mxpw7HrmjT91mRWDGZM0dM0nwHMgsz2Ru4l00Bm4jOjKZptaaMrTuWoOQg1j5ei62+Lf1d+rPm8RpyinNwNXZlVdtVtLdt/90Bh3+8P95nvYnOjEZdWR1PR0/2ee4DxCx3rxO9uBtzl9BxoRhrlm+3K4eYGErsbFjRSoUxp2PL+FEUlBTgvt0dEy0T7gy9I1c3i82K/RRMpIZxL/aePAEAojhAdb3qclWnz2Vj/251ITw1HKctTjSv1pw7w+6UW3769Wl6+vZkQ4cNcsf3fysEQfS/cnQUuVvfAJkgIyUv5atBxEdFuo8w1TIt08b05z9DdcPKakQl/uOoDDT+i/Al+VkjhWJO1E3/FEAYG4vViv8QrNdbM8ht0De1M1WEmMwYrDdYY6ljScyUGPmDMDQllJrbarKxw0aOhBwhvySfZ6Of/WMGO37hfnQ/1h0JEvrX7M/+7vsZ4TeCM2FnEAQBTydPDnsdBj5JNH6PxC1ASUYaVVYaMUWvA4tmXi6zTBAE8kryxMrInwKQXc92EZwSjL6aPtZ61gQmBYIMVCQKFEtkFR5LVVEVS11LDNQNeP3hNfkl+RhqGDKh3gSqaFaRV090VHXY8XQHuwN306tGL3Z33S0PqD7iUdwjGu9tjCKKKCsqUygtRIKEwW6DGVtvrEjs/s4X1seq1cODykSe3o33WW+uDrpKQk4Cw84Nw7eXL71q9MJqvRU9nXtSUFrAjmc7UFNSI3d2LooCMHo0w9P28rp+dR7NiSKuji3nVN+hbO/M0COv8N7dmRsf/GlUtRHnI87Lj93njRo7TxayoLUC97q6c7TBKhw3H4V9+0i3s6CHVzF31ZKx0bOhs0NnNgVsYn/3/Qw9N5R93fcxtNZQbkffps3BNkx2Hsbw7Y8JT3lN+OBOBFqrEfIhhJisGHlG+s/QUdWhul51LHQseBz/mFJZKTs672DG9RkMcR8iv3cEQeBR/COOvjyK7ytfUvJSUFVURVlRGb9+fvyQpS9yEO7/QardvZtbrWxodbAV7W3b092xO+cjznM96jolshJMciBZG3a1XId3++lE/jYdl+zf8PHyYUDN8hwvu412tLdtL6+ECYLA/dj77Hi2g5PBx5DJpDibuRGcEkzq9FQMNQxpf7g9af63ebq5mHUTPJhq9JT65vUJSAwgYkLEpza66tVFx/rVFSckBEFg7s25/Hb/N/lk9c+SvFU0qnCh/wVm35jNzeibIn/pqQY9YjXxGqZOxMRI8bo0MUE2fhyKwiIAHjXaQ8PeP4lEXD+/Ms/Hq2+u0t6nPSY5cDy7PS2ep8KzZ6CiIhJ2vbxoVroTVWV1rie1g1WrxGBm/HjRB6HK103g/gypTIpfuB/zb82XS/t2sO3Afs/9mGiZkFOUQ4PdDYhIi0AqSPEw92BB8wV0cejyXfdcQUkB827OY91jUbDh86RDSl4KLltdaG7VnJO9T37TfvPHj6Z0zy7m7RrAxsE+gFhBiUyP5NSrUyy6swgPMw+kgpTwtHD5vaCupI6jkSP2BvacCz9Hd8fuzG8+H3tD+39b9nzezXksu7eMA54HGOI+pMyyt+lvqbuzLm1s2nCi94n/zMT70SNo3LiMLH1+SX55bkR2LDGZYltTXHZcmUSUhrLGVwnWVXWqlpM5rkQl/i+gMtD4L8L3ys/+p2C62pTx9cYzv8X8f2n7aVemsfbx2gqdcr3PenMu7BxZRVncGHKDVtVb/RNDBmDdo3VMvTqVppZNuT30NooKimQWZlJzW010VHR4lfpK3vpx690tWh1s9X0St39gwEQzXqvlErgq569X/gMFJQVYb7AmszATGw0LzEJjCTJTIE9NQe6E/nlw4hvqy7HQY3R16IqRhhFRGVHciREzeVrKWhSUFlRIjAdRN95W35aqOlUx1DBEJpMRmRZJUIpoIKeioEKxrJjDPQ7T2aEzuqq63/1yLpGWUGNrDRwzFTm4PQWnKUq0tmnN0h+WUmtHLXo695Q7DY/0G8mlyEu8z30PgK6qLpnTPogka19fJq9uww3VBIJ+DGJBNy3W1S7ikq8yzkbOKF+/ieFKQ9xN3HmZ8hKZIKOqmglxs5LBzo40dwdOZ/sz6FYaJdoaHJjVkQWy62QWZdHDqYdIpN3uRl2zuvLWuBdjXpCUm0SdnXVwUTDl6rJYlHT0wNcX6pVV20nLTyM8TTQnDE4KJjA5kMi0SN7nvi9nvvcRemp6OBk6ISDwNv0tqQWpmGuZ08+1H/1r9sdC24L6Oz0wzSjhzqpUNOycYexYZJMm8vTmIQ7mP2bLEzEwkCBBXUmd/NJ82lVtSZfjgUxtnE3JIpnIScjKou1oNXKKcng88nG5sUy4NIFLkZcIGBnAoeBD7Hy+k7DUMOwM7BgsqcXYmSfZ6zubWU9/I2x8GBKJBMfNjphqmXLHRxUHxSr4HZrHML/hpBek80vLX5jVdBbK2blgYCD6igwc+NVr5ULEBXoe70mxrBgFiQJKCkoUS4vRU9Ujs0gUoGhctTEBiQFoFcqQCjKOtd5G5/tjeTTiEQ2rNoR69Sit5YZy1b1oFUGqjwWqOvrw4AHofKouZRVmUW19NbKLslneerlcRproaJHPcfo03L/PQXfw9hR4o7cA27Z9xd9+7VrRFHTyZPj5Z7HF9BsQnx3PlN+ncOr1KRpaNMRM24yLkRdFP5daQ5nUYBImmia0OdSGyLRIbPVteZ70nNqmtZnffD7dnbp/l2LPubBzeB73RFlBmdXtVjOh/gQUJAqcfHWS3id6l21v+wIyCzN5HfGA0FGeHHYupbR5E5LzkonKiJJf12pKapRIS+jr0hcPcw+5oV013Wry8Xqf9cY/3p/X41//Wyf4dhvtiMqIIn1mOnpqn9QfCksLabK3CZmFmTwf/bxcguWfgkyQkZyb/CmA2LmS2KQIYnv8QOwfrU6p+Z+4kBIkmGmbfTWQMFA3qKxGVOK/Ev+5tHcl/jYGtTTnWVQWCpSVnx38g/n/r+MqLC38lzNTUpmUvYF7UZQoMqJ2+ZaoOU3ncDDoIM5Gzv9okLH20VqmXZ2GqaYpZtpm8iqJnpqe6KdwqA11zOow9uJYGls2lmdl36S/+e5Ao7ttZ45m7SEmJhgrK7dv2kZdWZ117dcx8PRAspJjSDOWkK5cgoZEg9UPV7O50+YyrS+eTp5IJBL8wv0IGBVAjSo1mH19NisfrgQJxP4Ui4ayRjluSXhaOLuf7yYyLZL8knwyEjLILc5FwqcXWrFMzKoNOjMIEFuEDNQNKibBV0CON9Qw5FzYOd6kv+FEyQjmtDhOkVTKyjYr6XOyD8aaxmzsuFF+PGMNY97nvkdTWZNaJrV4EP+A7D7d0bl4HXx90dYPJD3wJY32NOJJvUIGJVahRXQWknHDuJ4oyu8GJQdhpmXG+9z3eBQZgGYu6OpiePYKI1VV+dXbkQUW4cgKTlFdrzoqiqoc6XmEfYH7iMmMYUbjGYy7NI4L/S8gFaT0OdEb5Zx8jq0JRql1N9i/v8KJpaGGIY01GtPYsrH8s1JZKT9f/ZkN/htoXb01bW3aEpwczNPEp0SkR5BZmMnjhLKT/sTcRPa/2M/dqFuMf6GM7810WvctpP9cZ4Z4LuTSre1cnAbJdwajq6or/12kgpRmVs1Y2mopHuYerC0YiHriEVFdqXdvGDaMiSv20P3acAISAsr0pguCgIWOBe8y32G+Vnym9KzRk62dttLSuiU8e4Yk/ySKCYmAmBU/9foUVTSqoKGswf2edXCYd5JuqYb81PAnltxdwqI7izjx6gRHDUbjAlDnrzksXRy6ED4hnEZ7GpGUl0SJtER+T+z33M/iO4t5GP8Ql2QINQElQcK5/EDMtc05FHRIDDSqVUMaFwtVYcpjUCosgrsXygQZgiDQcn9LsouymdN0zqcgA0RT1ClTxL/kZHqdPcGk+J/Yc3Epv075BRo0gJ9+En2N1q8XRQCmThXX1ylviPfxOtgSsIV5t+ahqazJ0Z5H6evSF4lEQlJuEtufbmfb021sebKFTvadmNV0FotvLyYxN5HDPQ6z98VevHy9cDV2ZX7z+fR07vlN1d3uTt3pXaM3V99eZfLvkzn9+jT7uu+jV41e9HPtx/hL42lp3RJTLVPis+PLqTu9/vBa7l8j6QjVsiA34QWD64+ihlENOYdCSUGJGltqkF2czZSGUyqcFPdz6cfBoIMEJQdRy7TWX479X8GHvA+8zXiLk5FTmSADxKRWSEoIj0Y8+ltBRl5x3ldVmuKy4sqYjGpqgZWLMdWkRXiYeeDl5FUmiLDQsfiuSnklKvHfhMpA478INa20WTfcmcO3E4lKzv8macL/BIqkRf9yyfZa1DUyizLpZN+pwgf/mbAzKEgUiM+OJ6Mg42/37gqCwNK7S1lwewGzm4qmZDue7ZC3aQC0tmnNpPqT2Pl8J3qqegw5O4Trg6+jpqRGZHrkdx+zo+d0lPfuwe/CGiaOP/DN2/Wz6syGdA0KhGKUHJzIyAgDCex4uoPpjadjpWclX1cikbCr6y6Ck4Pp6duTgJEBLGixAN9QX2KzY/n56s8c6XkEPTU9uZmYTJBxI+oG4WnhnH59mrjsOKrpVmNft30cCD7AlTdXUFJQQl9dHxUFFfZ031OhgldaQRqvPrySf55RmFHh+SgpKNFZ8RiJjnk4azvT6UgnQlNCGV5rOAeDDmKobkhGYQYrHopyvdMbT0dfQZMH8Q84H3udgWfPUtD2Bx4c2cz73PcoKyhz8BR0N3NBUnybJw0tywRDDS0a4vf6DC3vRoMMeP4cmYKEHusb4pd4EzdjNxJyEniX+Y7+rv2RyWQsvbeU/q792fp0Ky2sWtDJvhOTT47gSexj7uyXYLx4tTih/MbM4oe8D/Q92Ze7MXfZ2GEj3R274/vKl7C0MCLSIwBobtWc3jV6o6+mT0hKCM/fPyciPQLr4DjWXQxEvxDmtoJiBfATXuN3pi9VChQYFCLheZ9mRKa9IasoCycjJyLSIqhjVkfOcyp0q4FaopLY4vNHy1DnJ1lU16vOpoBNHOpxiLT8NA4EHWDns52Ep4nmkp3tO7Oz684yvfjY2ACgFpMAKhCbHcu+F/sYX288x0OP86aeregbsnYtaaOtsNG3wcfLhzEXxrB370R+VVWioJoxZad+FcNa35roKdG0OtCKh/EPxe8y/wOjzo/i7rC7vIx7imv7IcxsI3DeQWDn852Ya5tzIOgAS1otwcDKCtmVC9AIbNOh4MQxtKw+3S+CIND/ZH9eJL+gl3MvlrVe9uXBmJigMWYCgy6FsU/nJIuHrED5jN+nFionJ9DVhaVLxaBj1iyxreozeeMnCU/48eKPBL4PZKzHWJa1XlZmEmyqZcqilouY3XQ2x0KOsd5/Pb18e+FoKCY1Zlyfwf1h90nISWDJ3SX0PdkXZyNn5jabS1/Xvn8pwjC5wWROvDrBijYr2BKwBZetLgx2G4yNng0FpQU4b3FGKkjlhHxVRVUcDB1wruJM82rN5cGEg7IpKvZO7LXJIr+tldzg9CO2dNqCl68XvqG+9HXtW24cbWzaYKhuyNGXR/9tgcbp16cBGOBatjXweMhxtj7dytZOW6lj9uWAVybISMpN+qpS00dZXRCrEeba5vKgoZ55vbLSr75X0Zs2B0lc0D9GAq9EJf6bUNk6VYm/BUEQUPhFgR1ddjC67ujv3r7l/pbcibnD/WH3aVKtSZllybnJ2G+yp59rP3xe+jC5wWR+bf3r3xrr7BuzWfFgBUt/WMrc5nO5HX2bHw78QOCYwDIvvvySfOrsEF9G4Wnh/Nb6N3xe+tC8WvMySk7fivYTdJGqq3F9VfJfrwyiFHHXrjx8d5cm/fPZ2mkrPi99eBD3AFVFVQa5DWJ3t93lNpOb+dm1x7eXL3dj7tLyQEsAucxjdGY0+1/sZ9+LfZ8cu2uPQE1JjRnXZ2CiaSKaqanoUFBawMT6Ezkeepz4qfHfNPTPifGp+ansD9rPnud7mNpoKofub0EmLaWGXWPuxt7FWNMYRYkiqfmpZTKAANqFoi9lh0FgWaKOflV73ma8lfd+N67aGM99D/HMq8Yhqwx+rZuPvpo+EomElLwUeqebs9T3Aw5JJWQ0qoVPW1Mm/PI77WeaM2rIBno692TMhTEcCDpAsbQYdxN3QlJCWNZqGbNuzOLxiMe8uXuGQZEr2HJfl3GLLoo9/t+I5++f0+N4D/KL8xnkNohn759xL/YeqoqqdHHoQqOqjfj52s+f2n0+fn9xsQQsGsmF6Gv41VIjRKcQBYkCJpom5BXnkV2czdDnMP0huPzJaFlDSYP80ny62nelk30n/BP9uRF6gdi5qXD+PGzfDllZrFnhyawbs+jq0JWLkRcRBIGeNXoyus5olt5dirqyOhcGXCi7c0EgT1MF3x4OjHIMp49LH46HHufd5He03N+Sfq79+PWNFYwdS9+9HUlVKOTGkBtIZVLedG5IVuhzuk2qwvoO6+WZ/L/C7OuzWfNojfzaUJAooKOiw+2CPrj9to8uMy25pCQKNFTRqMKH/A+oKqqyJ6om3Y49R2emjEZx8GCXTH48QRD46fef2BCwAQcDB8ImhH3TWIKSgqi1oxZn+p7B08lTNCy9ckVsrzp/XiS66+iIZoC6ujB/PlnDBzDvwVK2PNmCu6k7O7rs+CaFI0EQuBtzl/X+6zkXdg6JRIK2ijbXhlyjnnk9/OP9WXJ3CRcjL2JvYM/cZnMZUHNAGXWl7KJswlLDCEsN49WHV2x7ug2ZIKOwtJBSmWhoqKSghJWuFW8z3tLHpQ+D3QbjbOSMtZ71l6sla9cinf4zHlPUubAwAgsdizKLe/mKRPPX419XKKM99sJYLr25xLvJ7/4tpm2NdjficcJj3kx8I0+qRKRFUHdnXdELqMvOryo1xWfHl3kWaalofZVgbaFt8WUncUEAd3ewt4dTp/7xc61EJf4bUBloVOJvoVhajOpS1QpJd3+FtPw0jFcbU0WjCu+nvS/3sh9zfgwnXp3gzaQ3rHm4hvX+63k76W05tZxvgUyQMfnyZDY/2VzGyfmjf8cvP/zCz41/LrNNQEIAjfc0pmHVhvgn+NO0WlNUFFW4MujKdx9/65JuTC45z4dpSejp/oVKkyCI7tJ798KlS/TL2iNXiKm/uz5v0t8AEDkxEjsDu3Kbf1RU+ch5Ge03mj0v9mCkYYSrsSu33t1CU0WTfi79GFFnRBlid2hKKPV21aOwtBABgWq61ZhUfxKL7ywme3bF7uxfQ15xHjYbbehs3xk3Ezem/v4TN0PqMrxZOqZaptwddhclBSUyCzKx3mBNVlEWK9usJCLyMT/OO4trlip6P5dSIpEhFaToq+mjoaxBQk6CaMYnCHgkwjNzEP64fDSKoVAJcn6DAEsFhnaV8d5QBe1CGam/lnJl0WCye3VFQaLAgNMDmFh/Ik5GTow+Pxo1JTU0VTRpadWC+a+q0LB0O70yzDiw8AUS429Q5/kDO57uYOLliaJaVFEuEomEdrbt6OfaD08nT3RUdeRBbsSECEy0TLgWdonzfqu4lPOcD5pgqKBFZ9cedHHoSjvbduio6nDlzRUGnhlIXk46229qkvDbbOKz49n+bDsW2hak5adRKC0sOxgBbh9UwLRQiXOdbPh5bxh155vwQiEZQ3VDZjedzRD3IfLqxcoHK1l8ZzHpM9LLVSrjbIx4bAmTuikjE2Q0sWzC6b6nPwlCNJwDlpY0G6uGdd1WHOpxSNzQxYXcRh4MbZfHqdenaG/bnq2dt2Kjb/PF7zAlLwWbDTZMajCJRlUb4XXci1JBnCBrFsFN5RG4z99CzW015ZVGaz1rNJQ1mHYikV6PMtGdLZoyBo8NxsnISTSDvD6TVQ9XoaqoSviE8DKVwb9C/V31qaJZhYsDLpZdUFwMt26JQcepUwhpaZxwgSkdJWRrKrHkhyVMbDbtLysPFSEqI4pf7/3K3sC9CAj0cOrBzCYzaVC1AU8TnjL31lyuvr2KobohbiZia2Z4WjiJOYnyfVjqWKKtos2r1Fcsa7WMJpZNeJ/znmlXp5FbkoursSsvk1/yavwrqupU/fqACguR2dniZ5TGsXmeHOt1rMzipNwknLc4092xu5x39TnuRN+h5YGWPBj+oEyL4T+BvOI8dJfroqOqw9bOW4nNiiUqI4ojL49QLC1GXVmdzMJM+foKEgUstC2+Kvn6r3DS5Hj8GBo1gt9/h/bt/6GzrEQl/rtQ2TpVib+Fj0ZKqorf3zq1/el2ZIKMCfUmlHuQv0x+ye7A3axttxYDdQOmN5nO1qdbWXp3KZs7bf6u40hlUkafH82+F/vKVV5UlVRpZtWMG+9ulAs06lvUZ26zuSy7tww7AzuCk4PRVvnX2tS6dZjM+EvnueS3hgGDV3595ZUrYedOMdBo25blmfY4bXZi/eP13Bxyk+obqiMVpHQ/1p2XY1+Wywp6OXsxo/EMZlybIcqqSj5JJb5Nf8ve7nvpXaN3WcfuPxCVEUVBaYGco5GYk4iaohq5xbll2su+FRv9N5JRkMHoOqNpe7gtY5Orsd/iAx/y07k+5Lqc6Ftze02yirLY1HETE6x6kzdyO/kZMg5uGEpp4i6kgpR17dcxqcEk/ML96HG8BwIC2sWQpgG+NjOxsqhB72uj0csqIl9VQuvhirwyhmxFGbrK6ujrVSHGIIqXVw8xnUPyMa55tEb+/2JpMQX5BdwJOsdloRQNVXUsPIewMeoohknluSefT0IKSgo4G3aW+bfm8zbjLQANTBowsOZAetXoJTpsf4ZXH14BMPrCaB7E3KdEKMUlBUboeNC191IaOLVBUUFRbv624PYCHsY9pL55fYoTg1jQCgLqjCAtP43tz7ZzovcJGlk2kqtjdXWznWxQAAAgAElEQVToSkRaBNFZ0Uz3VMQuNoffDcOYIoFmAcm8aAhpBWksv7+c46HHcaniQkPLhljpWpFfks/92PvljM7yq5pgkBSBhnI1ojKiGF9vPMCna0NDA8aOJTHvVxor/5HNzs+HsDC0pkzhZJ9RXIi4wPhL43HZ6sLCFguZ1mhahRnhlQ9WoiBRYFqjaRhqGBI5KZIGO+vzIe8DeSrQXOkw1xK8CRkXgvav2hTLiknITqBBrIxhDxTI+iMhXyorxXmLMx5mHuio6XDz3U0ANnXc9F1BBsDIOiMZe3EscVlxWOpaflqgoiJOJNu3J2rZz4w/Npjf0/zxilBg/YUSLJfMgUbnYdo06NAB1L/dOdlG34btXbbT1aEr/U/1xy/cjzNhZ9BU1kQmyOQO6+kF6dyKvoW6kjotrFuwrNUyahrXxNHIES0VLXKLc7FYa0FecZ5ccriDfQem/D6FA0EHUFVUZeDpgdz2vv31ibWaGgqLf8Fz5Eh+uXaca7VH0Na2rXyxqZYpq9uuZuT5kQyoOYB2tu3KbN7Mqhnm2uYcfXn0uwONnKKcL7YzfaxGSAWxotr/VH+0VbRRUlAirySPns49qW1a+1NLk54V5trm/1Lw983YuVPk+7Rt+5erVqIS/6+isqJRib+FD3kfMF5tzNm+Z+nu1P2btxMEAfO15qTkpvBhxgcM1A3KLGt3uB0xmTGEjAuRk+SW31/OglsLCJ8QTnX96t90nBJpCUPODsE31JcDngcY5Dao3DofM7gZMzPKEfJKpCU03NOQzMJMYjNjKRVKKZpX9P3EPUHAY7I6thoWHF/+9svrHTsG/fvD/PnwyydH6NnXZ7PBfwMREyPY6L+RtY/WIhWkdHXoysk+J8uMJ70gnYNBB5l/az65xbmYaJrQpFoTTr8+jbKCMmETwirMJEtlUly3uYoO7IaO1DOvx87nO7HUsSQuO47sWdnfZZSYWZhJ9Q3VGVhzIMl5ydyLucdvAToMd4lkf/f9eNfyRhAEam2vRXBKMDObzGS543ho04bSrAxq90ojpIoM1yquhHwIkcvMfqzYAHgHK7DxqiI6vQdR4LMfzdkC5kr6vJdliRn3BEVCLZSZ2Hy66LDt5YWQk0207y5qbquJl7MXXRy6MOzcMNxM3HiR+By9nBKSNASQgJWuFVJBSlp+mnxC9zkUJYpoqWgBkFOcI1fgsTewp6dzT2wNbOVEeT01PaIzo7kbe5dLkZfkgUbbLCO6Pkili1Ejqq/cBS4u8v3fib7DgtsLuBtzl3rm9fjlh19ob9ueRNsq1PMuxqqqC5s7bsZjl0eZFqxZ12ex9tFanIyciEyPpLC0EIciLUa+UGBQjg3FWekMm2rLrZhbqCqqljH1+ghlBWWsdK2wN7Snjlkdmlo2xXThKtSu3qTZTCOKSovImiUa51VdW5WRdUayqOUihMRENLZasFyzO5NnnwV/f2jYEJ48AQ+RO5JXnMei24tY93gdTkZO7Oiyo0zr5Puc99hstGF64+llnNGL1q5i6o0ZbK3/6fu/OOAiaflpDDwzEAS4sxdMVQ0wSkjHcKY4UV/eejmzbswiKkNsszLWNGZ75+10duj8XfdyTlEOZmvMmN54OgtbLiyzrFhazOqHq1lydwnGmsZs6bSFLvadRd+EBQsgLExcUVVVdEjv2VPu1fERucW5hKeGlyNkR6ZFytt5JEhQUVRBT02P5DyxKuVdy5vpjaaTViCaix4LOYa5tjkzm8xkZJ2RqCuLgc2ky5M4Hnqc2CmxZapVfuF+DD07lIzCDIbXGs7ubru/HmyUliK4uvJEOYVBo414OfZlmf0JgkCbQ22Iyoji5diX8nvkI6ZemYrPSx8SpibIJ/qlslLe57z/Ksn682qEokQRCx2LMkpNl99cJig5iAPdD9DdSZR6Hnxm8D/qv/TNyMoSvVbmzRN9VypRif9R/PMNkpX4n4K8ovGdZPAnCU9Iyk2imVWzMkEGwKXIS1yPus7qdqvLTAImNZiEoYYhC28v/PPuKkRRaRG9T/Tm1KtT+PbyrTDIAGhdvTX5Jfk8ji8v96msqMyhHodIyE7A1cQVgD3P93zraX6CREJ3rbpcVnxHUXH5CSsA9+6BtzcMHiy6f3+G2c1mo62qzZwbc5jVdBZaKlqoKapxMfIiXY92Jaswi2tvr9HvZD9xInRtOs2qid+trb4tx3oew9PJE6kgZcyFMVSUXzgUfIiw1DAEQeBYr2NMqC8SAPJK8gA48erEd53y6oerKSotorFlY06+OsncZnOZah9F70JbeZtdh8MdCE4JZoDrAJZXH4XQrBnZWSnUHpjDWzNValSpITezO/ryKFffXmXMhTEA2KqZs/+0DJ28UvDz49mvExEkkCDNQCbIWGY1nHu7pDQx8SAgIUAcVK1aSF4EcTjoEFJByqq2qwhJCUEQBGonCigWFjPsgyVIxGAhPjueEbVHkDUri/w5+cT9FMezUc9Y024Nrau3RlVJlayiLARBQFGiiLKCMjWq1EBAYMezHYw6PwovXy+a72+O23Y3uh3rxuqHq4lMi0RTUEZBBgo5uTzu35T1Ezz4JfUUWwK2sPj2YmrvqE3LAy1F+eJevjwe8ZgOdh2QFBVh8S6Ns6ZTeJH0gkV3FgFiG4ggCNyOvs27jHeUykp5mfJSbNPyvk3YkCdMv5qHmaUzViFx3Gx7iDY2bXA3dadgbgEvx75kf/f9/Fj3R4w1jBEQiMmK4fKbyyy7t4yORzqyJ/Mm1pmQmpdKsbSYEX4j2PF0B0WlRfIgK1NfnUJlMP/9gcg1CgwERUVwdZVfG5oqmqxqt4qno5+iqaJJ031NGX1+NBkFopDAigcrUFVULSt3/e4dqvMXscV2IjObiApRUkFKR5+OqCqpUlvfBQkwrw009kynUFmcKOuq6vIo/hFRGVHUNauLqqIqxprGePl6Yb7GnAmXJvAk4UmF98Sfoa2qTT/XfuwJ3INU9kku+k70HWptr8XC2wuZVH8Sr8a9ootDF1E0oHdveP1aNAds0QKhqIjkm+e5M6s/29sZMHlcddqvcKXamqpo/6aNxy4PBp0ZxP4X+8kszKSVdSvWtV/HjSE3SJyaSOCYQDRVNLHWs+bh8Id4OnmyJWALNhtt2BSwiXnN5/Fq/CtaVW/FlCtTsNlow9pHa8krzmOsx1hS8lLkhOmP6ObYjciJopTu3hd76ejTkZS8lC9/EUpKSJYto35IBpaBb1n1cFWZxRKJhJ1ddpKUm8SCWwsAUUr4ZfJLLkaIUr4peSm0P9SeZvuaYbXeCrWlalRbX42m+5oy4PQAlj9Yzv040S+mqWVTZjWZxRGvI9wfdp/YKbEUziskZkoM94bdw8fLh19b/0pURhRqSmoMdBtIYk4iYy6MYbDbYIbXHv6Xv+0/jsOHxZa6YcP+88euRCX+D6GyolGJv4WPbsK3vG+JEpjfiG5Hu4nGYn8QlD+iRFqC23Y3zLTMuDHkRrms2tYnW5lwaQLBY4NxNXb9827lyC/Jp8fxHtyJvsPpvqfpZN/pi+tKZVKMVxszod4EFv+wuMJ1PnpugGi+Fj4h/Lu5IsGX9+MeMIzf666jfZcpZReGh4u9vLVqif28KuWzrLue7WL0hdEEjAzg6turLLqziFJZKcoKykgkEoqlxeUcux/GPaTF/hZMqDeBmU1nYrfRjrySPE71OYWXs5d834WlhVistSC9IF1eOcgtzkX7N22mN54un0hMazSN31r/9mXy4x/42F8/pu4YzoafxVrXGpkg482rewQpjMdg+QaGnxvOvhf7aGHVgtsNtlHcqgXvZdm0GFhMj3aTqaZbjRnXZxA9OZqq66qiJFGiVCilkXkDHiX6c/uwMi3elCCr6cqeraOYdm8eOcWiV0k1nWpEx3khOe7LLz6jWe+/gbQZaUjOn4fu3XGdo8cPTQaxsOVCqq+3ZmCCIfsNYuklceGo0mvmNJ3DghYL+PXeryy5u4TaZrWZ0XgGD+Me4vvKl8ScRKz1rOnn0g8NZQ2W3VtGLdNanOpzisLSQs5HnOd8xHnuxtylVFaKo6Ej9S3qU7OKKwYv35Dhd5wTljmEmavQxqEDqcUieT4pN4n0gnQEyj+WVRRVRAlhRW0MA8Mx9GhGhrYyN6PFVqA2Nm14/eE1CTkJVNerTqvqrdgTuAdnI2dejRerJ4weLTLs8/Jg9WrOt69Ot2PdeDziMQ2qNpAf63jIcfqd6kf8T/GoKqkSkhzCw7iHFJ89xaJ1z9GcDfkV5Ba0VLQwUDMgNjuW+3tA8+fZOAUlovbkOQQHV3itSGVSdjzbwewbs1FTUmNes3lMvzaduc3mfvLmEQSxNSk8HEJDQUtLbKE71gMZYoCzIdKehVUjyfyjK+nRbgmNRgoYqRuRWpDK2Lpj2fZsmzy7HZISwsGggxwOPsz73Pc4GzkzxH0IA2sOLNsW9Sf4x/vTcE9DLg24RD2Leky/Np39L/bT2LIx2ztvp6ZJTfl5RWdGyyVi5VWKpBAySsXrVFEGdrkqOCcU45QGzoZOODXojFP3EejYOH9xDM8Sn9HqYCtqmdbi8sDL5BXnsePZDrY+2cr73Pe0s23HlAZTsDWwZcX9FRwMPoi+mj4/N/6Zi5EXkQky7g27V26/2UXZ2G60JaswC101XbZ22kpvl94VD0IQoH59YvISceyfynVv0fFd3taUGcPt6NuEpYWhqawpT1iAWI2QSCQYqhvSxqaN2Mr0GeHaUtdSbPv8Djx//5y6O+vS3rY9p/qcosHuBsgEGU9GPamwTfTfio8kcDs7kbdTiUr8D6My0KjE30JISgg1t9Xk4fCHNLJs9E3b5Jfko7dcDy0VLXHy91kwsTlgM5MuT+L5mOcVyh8WS4tx2uyEu6k7Z/qeqXD/OUU5dDnahWeJz/Dr7/dN/hu9fHvxPvc9D4Y/qHC5TJDR+kBrbsfcRlNZk2ZWzbg04NJ3kQSF0lJsZqrSUcOdrUuef1qQkiK2lqiri4ZiehULgEplUmrvqI2WihYj64zkxws/UiIrQVGiiIqiCvrq+twacgsHI4cy223y38Sk3ydxvNdxcopyGHl+JEYaRryb/E7e0jDn+hx+e/AbXRy64NfPT35eJqtN6FWjF1ufbGVKgylsfrKZBhYNONbr2FdJo1OvTGVP4B5G1RnFpoBNTKo/iTWP1nDjrC4/9JzGwiYl/HL3F5yNnHnisQtZ+7ZEqxYweaozKwYdoJ5FPd6mv8Vukx3r2q1j+vXplMpKGafdiinbg3AYmMb9W7Y0ufOWNjPNuaGeiJuxG1EZUeSW5LK45WIWjPaBFi34fYYXHX06iuT5XBWwsqLbQAU2b3nHprNz2B55hC5RSlytoQYqyniYe3BpwCUUFRQJSQlhzaM1+AT7UCIrQVtFm6HuQxngNoA6pnWYdnUam59sprN9ZxwNHbn05hJhqWGoKKrQqnorujp0pbN9Z5ELEBQEkybB3bvQowfDvBQIK0rg0YhHPEt8xsLbC7kYeRFnI2dmN51Nk2pNyCjIKC8nHBFE2tWzpLZtQkyx6BnwJTPGj7DWs8ZUyxRDiSaGl24xM1gHbXVdLuyeyeI7i6lpXJM17dfIuSd5xXkYrzZmV9ddZbLBhYFPUatTjwbzTHinI+Ph8IcEJAQwwm8EptqmSGVSknKTKJGV4HMSqmeKk+lwYwnTBxpjpWdFjSo1aGDRgJbWLbE3sJerGyXmJPLTlZ/wDfVFSUGJgFEB1DatLR74wAEYOhQuXxY5Dn8gOjOaWtvcySvIplQB2qi5cL0oFAkS7l42p1nHBECU6w1MCsTNxK3cfSuVSbkedZ2DwQc58/oMhaWFtKreCm93b3o49yjX9iMIAu7b3VFWUCY6KxqZTCYKClRxIjw1XN7yFJEWIW9J01LRwsnISTSxMxKlYp3f5WK7Yicqdx+I/iItWoiVjxs3oKQE6tcHLy/xz96+3G/6MO4h7Q61o5FlI873P4+akhrF0mJOhJ5gvf96niY+xdHQkckNJtPCugUb/TeyN3Avqkqq5BbnVqj0B3Dz3U1aH2yNu4k7QclB9KnRh99a/0ZuSW75tqaYYGLjQ4nX+STGAKCvpi8GDDqW+Cf4oyBRYHW71djo21BNtxpmWmYsvL2QLU+2kDQt6R9xtJ58eTIbAzZyvNdxLkVe4sSrEzwZ9YQaVWr87X1/Nz62C/7peq1EJf4XURloVOJv4VniMzx2efB89HNqm9X+pm22Pd3GuIvjmNl4JsvbLpd/nlGQgd0mOzwdPdnT/cvtSYeDDzP4zOByWdiP++jg04Gw1DAuD7z8zWTD7U+3M+HSBNJnpn8xkxaTGYPNRhvMtcyJz4kXicv1J1S47pcwZZoLJ5UiiFteLE528vPhhx8gNlZUKLH6Mjk18H0gi+4swi/cDwBbfVs56fhMnzPMujGLtII0eab1IwRBYNCZQZwLO4f/SH9Gnx/No/hHTKg/gY0dN/Ih7wNma8zQUNYgfmp8mfNvuLshVXWqcur1Ka4NvoamsiZ9TvahsLQQHy+fckRPEJ2P7TbaMarOKHY824G3uzcHgg4wpeEUVnpu4dSMrvTiOKZaphyvOhX3YbN4oy9wf+c8xnWYL6+WyAQZxquMySjMQEuiRkFpPuMCoH+xEw2bh/H7BX2MEjKYMNme9QMPsfbxWq68uUJWURZx3e9QtXYLOHeOtDZNMFplhI+XD15OPSjQ1eSWVy0a1fXEJm0h3u+N2VEthWq61ZAg4VSfU1x5e4WjIUcJSQlBT02P7o7dySzM5Fz4OdrZtmNu07mMvjCaiLQI1JXVyS/Jx0TThC4OXeji0IU2Nm0+TVDT08Ue/W3bwMEBNm6Etm3pdrQbmYWZGKgbcC78HA6GDixqsYg+Ln2+asT2Yc9GDuydzM6+dkRmvMFK14qYrBjUldS50P8CxlrGcr+TmddnEpMZg5m2Ga2qtyK9IJ3U189o9jCBX2+A1VQJ8drlXwEayhqUykrRUNbAw9xDDEDUDUnOiKPZ5vP4tjLhkWoKD4c/xFjLGI+dHkxvPJ3ZzWZz4MUBhp4bSqDFEmqNmk+JkgLrPE1Y7lFIVlFWGYd0CRK0VLQw1TLF3sCe6nrV2f5sO1oqWhSWFjK/+Xym2w1BxdUdOneGQ4fKjVW6fh2RS6fiNg5KFEVuSYmshPFPFdjiIcNE04TkvGSUFJR4Pvq5vOJQEbKLsjn56iQHgw5yJ+YOmsqa9KzRE293b1yNXYlIi+BG1A3WPV5HVlEW6krqcoU2EInQZYIJI2ecqzhjoW1RcVJCEOD6dbGPPyBADDZmzICMDDETfvmy6NXh6vop6HBzk/u43I6+TUefjrSu3prTfU/LW00FQeBh3EM2+G/g1OtT6KjqMKrOKLycvDgQdIDtz7ajoqjCnKZzGOsxlvzS/DIBxJGXR3id+hpjTWOScpPKDFlJQQlLHctP3IgLd6mSmM1P9TPY0GkjQ2sNLcPlepH0Ao+dHixquYh5zefJPw9NCcV1myvn+p2jm2O3L/4m3wrLtZYk5iayudNmxl0c9y8pIf5jGDFCDBjfvhXbBitRif9hVAYalfhbeBD7gKb7mhI6LvSbM0d2G+2Iyogi6eckjDU/SYZOuzKNHc92EDkxEjNtsy9uL5VJqbWjFsaaxtwYckP+eUpeCu0OtSM+O56rg69+1ZTpz4hMi8RhswPn+58Xe6u/gDo76hCYFEhHu47cir7Fs9HPvitjduvwUlq9nc/T9qeoW6879OoFV6+KWe66dcutn16QzpGXR9gTuIcXSS8w0xIDgqLSIkLGhVBrRy3S8tNoZNmII15H6Hq0K0HJQZzsfZKO9h3l+8krzqPhnoaUSEs41usY9XbVQyqT8uLHF4w5P4bHCY+50P8CnR06lzn+gFMDiMmK4WHcQ073OU0P5x6k5qcy6PQgrr69yvzm81nQYkGZifGY82M49foULsYuxGbFoqqoioayBo+G3ueNpSZ1fwRldS0mF9dm5q/3iLHSRfPqbapbf6pgxWXF4X3Wm9vRtxgQqohjkpQlP0iw0DSlWFFCclYiqasgTgdct51C4uWF2zY3wlLDMNIwIlFhOsyeDWlpoKmJ/SZ7Ott3Fk3H+oylXqkJc1yT8amnSj2bZjxMfExBSQFORk6EfghFQ1mD7o7d6e/an/Z27VFRVCEiLYLVD1ez78U+uQ+Bg6EDfV360tWhK3XN65ZV5ZJKYfdumDtX7NVetAgmTgRlZUJSQmi5vyVpBWnY6tuysMVC+tfs/0UFHEEQuBV9i53P/j/23jquqvzf/n+ew6E7RJQQKUXsQAywuztR1LG7x3YcYxxjdGwdG8VAERUTEzsREZSUEFC685z9/WPLcfhgzXjv797H77IeDx/qOe+993vvU3u9X6+11m5Ov/JGWiKnf4NhjGs0Dk2ZJs5/OeNg7ECRvIhHPz1SWtW6/OWCoYYhlyIvsafHHn5q+BNkZIhOONnZKDZuJHZEL5x2ODGk9hD6OvZVVk98Xvvw6N0jujt0V+aihKaEolJQRP5nOuekEikmWiYIgkB6QTrd7LpS96g/K87n4bVlPHnNm2CkaYQgCERlRPEm5Y3SFSs5N7mc2F4qkaIQFHh7S2kfo4LP6dU0q98DB2OHTzftfn7QsyfMnMmk1nnseLpDuX31nLroaIzGWMWJVPkrPqgdRU0nkWP9j31xAUIhKIjNjCU0OZR7cfe4GHGRV8mvlFq0UsgkMjGF3coVj/oeymrFvw4UFQTxXJYsgcBA6NgRfv1VJBiXL4OPjxi4mJkpBif26SOSDhcXLkddpeexnvRw6MGx/sfKvIcEQeDl+5dsfLAR7xBv8orzsDe2p6C4gNis2M9OxUjTCEs9S8LTwtFX12d0g9FcjLjIs8Rn9HPsx85uOzHR/puD2qNH0LQpGybUZbNDOqGTQ8u1Ki3wX8DGBxsJHB+IY6VPLWF1dtShtmltvPp5/bvr9hFxmXFYbbLCwciBuKw4htQe8tXFqv9WZGZC1ari98/ixd8eX4EK/P8cFUSjAj+E0jJ75LTIr3ril6L0ht7Z3JmHPz0s83ip3eUit0Xf3M/ZN2fpdawXV92v0t6mPe+y3tH+cHvS89PxH+H/Vf3G5yAIAtabrelbsy9/dP7ji+PmXpnL9sfb0VbTxkDDAC1VLR7+9PC7S/8lOVmYrtRnim47ViTXhi1bwNcXun8iN6WJ3fsC9+ET6oNckNPdoTtjGoyhs11nItIiqLOjDqvarsJMx4yRZ0YCcMvjFo2rNmaw92AuhF/gr55/4VHfQ7nfsNQwmuxpQgebDjSq0oiF1xcqHaXaWLfh+sjr5ea76NoiDgcdJi4rTukUVTrH1QGrWXZzGW2rt+VI3yOYapsSmRZJzW01GVhrIEeDj9LNvhvXoq/xbNwz8tOT6bWzFRnaUtomaHDsUB4ZjZww83+AROdTe8qx4GNMPDsendxiDnrlY5wHL1fPwD1uk3JMq1gpN/d9XBn380PeuROaqzQpVhTjXtedQ1vfie4+Fy4AMOz0MCLTInmfHsfWA8l0DCtBe7GUplbNuBMrCk5VJCp0d+jO4NqD6eHQAzUVNe7G3eXcG1FvEZ4WjqpUVbnSn1ucy9A6Q9naZWv5G8x790RS8eyZKPD/7TcwM+N1ymt+ufULx4OPoyJVoa11W/yG+X2RYHzI/cDBwIPsfrabiLQIMe8jQp8RDwsxvvccEI0VnP9y5sLQC3j4elDDuAb+I/xRU1Gj3s56uFm5ibqc0FOETAoRA9bWrRNXzhs1gidPmOw3mVOhp4iZEaN8Lz+If0Czvc2UbZGlPfAhh/Q45SiwpEk23gO8MdAwoOexnnSy7UTDKg3xDvEmJjOG5pbNaXL6EctPpVBtqS6x0uzPnqOeuh4mWiZoq2rz8sNLqupWRVtVm6zCLCzepjHnVjG7GsHNvxnN6ajq0DrLiOOb3xHTwIa3+zbiZtOGs6/PMtRnKHpCXerLdyBBggQVQLTfLTL7k/spx1jeajk9avTgTWpZh6c3KW+UhEdTpqkkEOn56dyMuakkHI2rNkaChJS8FCKnRf77nIX/hEIhkoqlSyEkRHSnWrFC1G4VFcHNm2Klw8cHPnygyNyMd73bccFJjZnvD1DLrC7O5s5lAulK075BfI9LJVKlg5WjiVhtCYgNQCqRMr7ReBa4LsBU25SAmABaHWjF+o7rmekyk4MvDjL90nR01HTY23Mvne3+1hLUrx/FTx5hMjqZiS1m8Fv738qcVn5xPvV21sNU25Tbo24rCfnqgNWsCljFhzkffkhHsf7eeuZenUslrUqY6Zjx4KcHaKlq/ev9/RC2bxdbJGNjRcJRgQr8H0eF61QFfgj/NEdj5e2VACxxXVLm8fn+8zHTMSvrMvMV9HDogYuFCwuvLSQ6PRq3A27kFuUSMCrgH5MMEF1S2lVvh3+0/1fH2RvbK29EzPXMefXhFYuvf/+qlUxHj275Fvh+CIDNm0Wi8ZFkvM14y/Kby6m+uTodPTsSmBTIyrYriZ8Zj88gH7o7dEcmlVHTpCYTG09kVcAqOth0wKmSEzpqOiy5sQRNmSanB51mdIPRjPIdxeqA1Uo3HQdjBw70OsCp0FOoSFSwMbAhLisOqUTKqYGfT621MbQhPiseNamaUmgN4mrzYrfFXHW/ysv3L6m/sz4BMQEsv7UcEy0TrkZdpYVlC/zC/djYcSOaqpq0PNaBFC1oEa3g1KECpB06UuXmEyXJyCjIYLhnX4acGkKnwGyCThrTbMluGk2QMD/9hPg6fcz36BulTq7+R9WvujpvM94qb5487PuLFaJun6ozzlWb8PTdY97mJSDX0UK1REC9UK4kGS2tWpI8N5l9vfYhV8j56dxPmK43pc3BNngFe+FazZXOtp0pVhQzrtE4Uuam4NnHE78wP+rsqIN/1Mf3TWKi6BrWooXY3nLvHhw4QLhqNu4+7jhtdyyAO2EAACAASURBVOJu7F12dt+JgYYBbtXcypGMUqI5yHsQFhstWHJjCS4WLtz2uE3IpBBmhuhjXMWmzHgACz0LfAb58PDdQyaen4ggCOQX56OpqsmGjhvQUtViop/4OFOmgKEhPH0K794xxXkK73Pfl3EWa1K1CYYahlyOFAMqtz3ahqWeJfJqVti+Ez8DRppGtLNph0wqo4VlCxa7LcbWyBZnc2f8hvqx3GwQSKXE5I6jeEkxH+Z8IHRyKHdG3cF3sC/7eu5jidsSBtQaQGFJIeoq6tgY2KCmooZEgCCjYob0L0syAHKLc3gsj6XeWDm1O4TT9XgPdNboMNRnKADV5KORCKUkA0CsjqhldUFXXZclN5dQf1d9BnkPYuujrbzLeodzVWdWt1vNxWEXeTv9LTkLczg35BzFimIuRV6ipVVLXk58yckBJzHTMeNpwlOiM6Jx2++G72tfiuRFn/0M/SNIpaLtbVAQwuHDpEYG87xLA3zHtGDLpV+Yy1UGtU+n2arqmK8xQeOnJGwqHWHKh/0USwSiYl9w8ckx1JHRvnp7lrdarnQsS5iVQNGSIgoWF3Bh6AUqa1cmNCWUV8mvmOkyk3GNxvHX87+w3mTN7MuzsTOyY4bLDBZeW8ib1Dd41PcgeGIwtU1r0+VIF8aeHUtW4ccQz5UrUY1P4HhaOzbc36C0bi6Fpqome3rs4W7cXXY+2al8fHDtweQV53Eu7NwPXbZDLw4Bov7v5ICT/3MkQxBg1y6RIFaQjApUAKgI7KvAD6KwRBQ7asg0vjm2RFHCyZCT6Krp0tXhkwvUzbc38Xntw5G+R5R+79+CRCJhddvVtD3UliZ7mmCgYUDAqIB/HMD1d7S3ac/+wP0k5SR90VHK3sgeAYGlrZYy9eJUBtYayPr76+ls17lcuNmX0EvFCU/9eKInD6PKuNH4vPRiX+A+rkVdUyZ2j24wGhcLly+ulC5rtYzDQYdZcWsFK9uupM/xPtyOuc216Gu0t2nPru67MNc1Z9H1RbzLesefXf5ERapCH8c+zGs+jwXXFmBnLKaKSyXSL4qJqxtWR0BAW037003F39C2eluej3/O4FODaX2gNQICLa1a8jTxKa9TXtPdoTt9a/al2uZqFCqKGBEM+89Jkfbvj8zTE1TFHpxbwX6M8B5KRlEWnjd1GDpgBTFbujL+9hLkEoH8knyMNY0pUZRQKC+kY5ic0HpWNL4dAerqZW5sXEKyRVvVj0SjICOFXM8DlFRSIBVgccNMej6C3nIHPAmjmn41uth1odexXtyNu4tCUNCoSiNmNJ1Bd4fumOmYMdB7IE8SnrC7+27GNhoLwLC6w3Cr5oaHrwdd93fgZGJLeh4PRKKhAXv2wOjRRGW+5VffURx+cZjKOpXZ0mULYxqMQVVFlYl+EzHWMlbO+0PuBw4EHmDPsz1EpEXgaOLI7x1+x72ue5lxxMWJrTUfUaoPkEgkNLdszu7uu/Hw9aBO5ToUlBSgIdPAUNOQ7V230/dEX44FH2NInSHiSvnUqfDHHziuX08Hmw5sebRFaQOtIlWhg20HLkVcYqrzVI4GH2Wp21IIvofTq2DlnIEyYY4J2QnUNKkpTu7VK1HIvGcPsmXLqKRbSdnW9XeEp4az/t56NnTcwHSX6eKD48cjeB0lJ/ARqUaavE55zeqA1dyPCmBomBp5avC+RX0UhSl8yPtAblGu8lroYItE8p+98VIK84yoYVUDPXU97sXdQ0tVC+8B3rhZu5UZKVfI2fpoK4uvL0ZLVYujfY8yuPZgJBIJtU1r079Wf97nvKfuzrq8Sn5F7+O9MdY0ZkjtIYysP5JGVRp9s8pRJC8iPiu+jEvTf+ZG5A3M+zj6HmqP72Gl0MXKsjY1qzjS0bbTx/wIS6wScrC88pCi40cwiHpHocYl1Hr0QdLHBbp1KpPVAdDFvgte/bxoe6gtjas2ZvPDzSgEhTLIc+/zvWx/sp1R9UdhrmfOyDMjuTv6Lpb6llwadok9z/Yw+8psrkRdYV/PfbRzbAcjR9LpmB9Oc6sxyW8SN0beKHMNWlm3YlzDccz3n08Phx5Y6ltiY2iDs7kzx4KPMbj24K9ery8hqzCL4A/i+3FPjz3UMKnxr/bzX4LHj0V3td9++/bYClTg/wgqiEYFfgj/JEfjVMgp8kvymdR4kvKmRCEomHV5Fs7mzv/4h6aSdiXlSvvz8c+/akn5PSh1p7oefZ2hdYZ+doy9sej+Ut2gOiPrjeR06GmaWTRj5JmRBE0MKpcJUg4PH9LprxvIpsOIqg8J3lCFjIIMWlq1ZF+vffSv1b+cy83nYKxlzFK3pcy5OodJTSbR1LwpwR+CWXRtEe2qt0MikbCs9TKq6lZlgt8EknKTONL3CBoyDVa1W8Xp0NOEpYYpw9omnJ+A90DvcscpbYdTl6l/lmgAVNEVrYidtjsRlhpGQGwADkYOZBRmMLbBWCw2WVCiKGFRnDW/+r5F0qMbHD0KKioU5Wax9M/e/F54A9c4KYeqTMHY92eWvNzB+j31MNI0om/NvlyNukpzy+Zcj75OiaIEkwyBgNomSqJxJfKK8nXRunCVkjpOXJeH4XVwJqfDzpJVSVz1b1nNDWNbXS5c9eOcLAKAmMwYVt5eSQfbDsoQt6q64mrk/bj7NNnTBIlEwi2PW8pAvFJY6ltytdJsMpe8RDf+Dp5uhtTZdgLDqjas8pvA/sD9GGsas7HTRsY1Gqck5On5YtaHoaYh16KusfvZbnxCfZBKpAxwGsD+XvtpYdmi/M2qIIgtGVZWyodKKxqln6mR9UfyKvkVs6/MRkdNB02ZSN77OPZhQK0BTLs0jfY27ak0YYLYR/7XX7BuHdOaTqOHVw8exj9Umix0tu3MmLNj2PJwCwpBwU8NfyIjIBXr5POoSlVJzktWzuHvRKOtdVtxrs+fw/jxsHGjmHQ/ffpn30PLbi7DWMuYOqZ18A7xJvF5AAmRu0lc2JSEu9NJzEkkITuBtPw0kMGhWh+rB+8fIUHyiWwhwVTbFJXCZCgwoWzRXoFMI5m3WfG8yxbdqHKLc2l1sBVVdaviauWKg7EDKhIVjgUf403qG8Y3Hs+admsw0CjvBFdZpzJzm89l0fVF3Pa4zdk3Z/F86cnWx1upaVyT/rX609yyOYXywvJuTZmxJOUklbExrqRVSSmw7lRKIkr/aFTG9Ng5pKvXwPtHMMoJFo/+ZB5hB7j1RWvlWo6fWkHgjmVMenEby5MnRavs9u1FTUfPnlBJJHqtrVvjaOKIukyduJlx7Hm2h22PtxGfFY9bNTcsdC3weulFTnEO0enRLLq2iLUd1iKRSBjXaBwdbTsyyncU7Q+3Z1LjSaxdNBedI0c4mdAFh9yDHHl5pFx20e8dfudc2DkmXZikdLcbUnsI8/3nk1GQ8dnr/C1se7wNAYHalWqLBPp/Ert3i5/NjuVNMipQgf+rqCAaFfghlNo3fk9FY82dNQBlNBiHXhziedJz7o6+W1ZI+w08TXhKR8+OWBtai04w0dfK6BH+Dcx0zHCq5MS1qGtfJBpVdauiIdMgPC2czZ03c+PtDUBM9B1/fjwn+p/44kpmWshTji5sz96xqpTIinhUGMlM13mMbjAaB2OHz27zNUx2nsyOJzuYc3UOq9uupt3hdjxKeIRfuJ9S0D620Vgq61RmkPcgOnl24sygM0RnRPM28y0gtttkFWZxKvQUATEBuFZzLXMMCz0LZFIZMqmM7MLP99iD6IgVlhpGJa1KpOSlEJYWRguLFvQ6LqbFr85qyoJ9HzU569cDEPrXbwx7sZRgw2LW5DZl1vLjHE29yYJDTUjLT2NO8zn83PJnQpJDOP36NBoyDWV71DkHeOygzVgAdXWuRl0FoIaxA5NzjnOyr5Rkz07Yp0mYnmjM8aY6xOQnEpEewe3sBHzcAUGBq5Ur81vMp231tuWqabuf7mbKhSk4mzvjPdC7fJUrMhJmzUJ69iyGrVsTeWg6a18tJuRkO6QSKUaaRqxtv5YJjSeUa+UISw0DRBvghOwEHE0cWddhHe713L9OVtPTxQyMvxGN0ta40rYygDXt1hCaEsr5sPNlCOKWLluotb0W0y5NEwW4o0eLLlheXnQdMhhbQ1v+fPQnRyyOANDRtiMCAtufbGdw7cFU0q6E4FgfVQEMZDrlKhoKQUFidqJI1KKjITOTxEY1iBzRmoQzq0h0VpCY+56E7AQleYjPilfOsd1hsSqoqgD9pjLU1OIQPogVrcyCTOV56Ek10dLUJyk3CXUVdQrkBfzW7jfmNJ+DilSFlzHZzNwXiiAIKAQJCHJUFAKbol5Se30wuVqqRKZH8jrlNbue7OL62+tcjrjM2Tdny4jSjwUf42nCU+yM7LA3ssfe2B57I3ss9S3JK87DxtAGuULO6oDVmOuZU9u0NjKpjPC0cFYGrFTupzRlvdTet7Nd5zJEwlLP8tvV3MlTYPQY2LkT1qwRLX/HjRNTp//WpjOo31LeWxhgdWk6GxymMeuDjajrGDtWHO/mBn37Iundm0lNJjHj0gw2d97Mzy1/Znaz2ZwOPc2mh5s4GnwUG0MbXCu5cjXyKr/f+52ItAjWdVyHjaEN1gbWXBtxjW2PtjHffz6XIi9xYGovXPf4MHpTL2ZfmU13h+5lyIO+hj7bu22nz/E+HH91nMG1BzPQaSCzLs/idOjpfxysl1WYpWzH3dV91z/a9r8cWVng5QU//1zhNFWBCvwNFRqNCvwQCkoKkEqkXxSzliIpO4kX719Qx7SOcrU4tyiXhdcWMtBp4Hfb0ILodNX2UFvsjex5MOYB/Rz7sfzmcmUb14+gvU17/KP9v5gSLJVIsTOyIzw1HH0NfQ70OsD9+Pv0qtkL7xBvDr44WGa8QlBwNfIqQ472peqxJsxsmYN1vVZMkjWjBIF59Sf/K5IBYoDbug7ruBJ5hUJ5IR1sOqClqsWS60vKWIj2rNGTayOuEfwhmOb7mjPg5AA0ZBpUN6hObGYsblZi28jgU4MplheXOYZMKsNKX7ypzSr6fEUDYPGNxVTWrkxyXjIqUhWkSLkbL2aSLM6ox4KND8Xec0B49Iht/axo+HYB+ToaPOhyCtcZG2lxaQAevh64VnPlzZQ3rGy7Eh01HRpVaYShhiExmTEANMrRxauRKu9lYjXteVoob1LfAHAp8jJnrQoY8b4yx0/AKOpzys2EsJy3FMoLScpJQltVGwSY/kKD26Nu082hW5mbvMKSQsadG8f48+MZ23As10deL0sycnNFNxknJ1Hsffw4ib5H2Jx3nfC0cDRkGigEBdYG1vSs0VNJMhSCAv8ofwaeHEiLfWJ+QQOzBgSMCuDVpFdMd5n+7YpYXJz4t+Wn6t1/VjRAbHs60lckC389/4vUvFRAXIXf3Hkzx4KPiTbJy5eLWpJ585AKMMV5CideiYGEIOqQrPWtSc5LZnKTyQAY1WpEripoyiW8SHrB8eDjFMuLOfvmLIO8B1GsKGbNnTWMWCrayDZ4NAZXK38GtU7m56s/c+LVCaLSo1BXUaeGcQ101HRQV1GnbuW6VNISV9uLpZCiVoJMKqNu5bp41PNgh/EIbu2H95pLyVicy7vZ7+jn2I8Cufg+eJP6hoyCDADqVNPlj9GONLY1QJ1M0iSPmKp7i9ond0PdumjfeUjdynUZ6DQQ/xH+LHZdTFZRFgUlBYypP4arw6/yW/vf6GbfTczkiLnN2rtrcfdxx2WvC+YbzbHfYk+/E/2QC3IuR17mevR15Ao5PRx6sL7jeg73OcwSN1FfU6woJjEnEQs9C9zrurO01VJGNxhNe5v2OBg7fHfLKJqaMHMmREWJrW9Hj4KtLcyeLebxfMS0ptP4rd1vzA77k98a5cOtW6J+aOdO0NAQx1tZMWHyARbelXLqjLgIpKqiyqDag7g/5r5oH27elIsRF1FVUUVLpoXvG1/s/7TH44wHYalhSCVSpjadStDEIKroVKGVrjez3PJZ89yEvOK8z+rXetfsTf9a/Zl2cRqpealU1a1KK+tWHAs+9n3X4CMEQWCM7xjyivPQUtX67hyn/zYcOQKFhSJ5r0AFKqBEhetUBX4Imx9sZuH1heQuzP3quNIwJa++XgyuI7ZILbuxjLV31/J6ymusDay/63jXoq7R81hPGldtzPkh59FV1yU0OZTaO2qzqdMmpjad+kPnc+7NOXoe6ymGuxnZfXZMn+N9yCvO4/JwUSQ789JMdjzZQWe7zlyLvkbg+EBkUhn7A/dzIPAAMZkx1MzVZEygBPcN16hcx4WEoLuY+7TksOV0ho/e9NnjfA8EQaDtoba8z3nPvp77aLZP/LH1HuBNv1r9yox9nfKaxrsbKxN6zw85T3RGNFMvTsW5qjOPEh6x2HUxv7b9tcx2HQ53IPhDMM7mzvgO9i03h9sxt2l1oBXqKuoIgkCRoogqOlVIzEmkUzhcOgKFSxehLlUlaf1yRvWCS/Ywxao/U3usYvmt5XgFe9GwSkM2ddpUrqoCMPDkQC5FXKI4N5uf76vwWwsBa1UTQpd+wGQOpH7sNpuaWxvhVTB+9hBtCNqq2qjL1NFX16d3jd788fAPVKWqWKQVE75DFZWcPJB9IskJ2Qn0O9GPZ4nP2NFtR9kVVkGAEydgzhxIToa5c3k/ZRRrA7ey48kONGQazGk2h2lNp/Hyw0tG+IwgMSeR5a2WIxfk/PXsLyLTI6lVqRYtrVqy++lu4mbGfTX4sBzOnRPbXxISoEqVMtf/zZQ3ZUhrsbwYtZVqaKtq09SiKZeGXUJVRRVBEOju1Z3nic8JmRyCQduucP8+eHkR36UlDlsdGFBrAJ3tOpOYk8gvN38huygbt2puJOUkkZiT+Nk2ukpalTDXMycwKZBBToOYdi6Z+heecuLKJrKLsknZto5ozQLeNKnO65TXZfZRVbcqzS2bU7NYH8ff91Gz/0RqzPv9kxPR7dti+8+IEbBnDwoExp0bx77n+9jbay8l8hLm+c9DJpWxvsN6RtQboawsFmWlU2+ZKaYyA25OeULhaHfiAgOIHd2Xp90asuflASLSIjDWNCa3OLecla2GTENZeSi1l5ZKpBSWFJJRmEFociihKaFltjHWNBarIB8rIPrq+oQkh3Al8gpvM99iqWeJe113RtQb8WOagsxM2LRJbE2Ty0W3ozlzwEgkrMtvLueXW7/wR6c/mOEyo+x2fn5w+jSF531RLyxBcKqFpG8/scWqXj1lVkd8VjzbH29n++PtZBZmUlm7MsWKYtLz0xlaZyiLXBfhWMkRuULOpgebWHRlPtXSFPR1GcXa8P08HvuYRlXLWncn5SThuM2RnjV6crD3QXY/3c1Ev4kkzEqgsk7l7zr1rY+2MvWi+H3fu0ZvfAZ/PsD1/xMIAjRoINpGnznzPzePClTgfyEqiEYFfghr76xl7d21pM1P++IYQRAwXGtIkbyI7AXZqEhViM+Kx2GLg7jy1v77hHN+YX70O9GPVtat8BnkU6YdZbTvaPzC/YicFvldGocvIaswC6O1Rmzruo3xjcd/dsy8q/PwDvEmanoUIFo3NtzdEDUVNRKyEihWFJNVmPVR2D2I0T5vcTl2B8n1G9Ds06pb02laWGmYcvL3t/96viAGYjXc1ZAtXbZwM+Ym58POY21gTfDE4DL5Fl4vvRh6eiiqUlUEBK65X8O1mivDfYZzJvQMAgJF8iKipkVhZfCpNWfcuXF4h3hT36x+OQtcQRBw2+/Gs6Rn5BWLwtU21m24EX2DPh+MOLUjjY1uatTOVCO/MIexPUBmYMj23n8R+P4F6+6tQ09dj9XtVuNR3+OL7XO7nuxigt8EukVIWemvoMEE0CmCyM3gvNycmNx3yrFWWRJ61B9I92YeyCQyOnh2wHewL2vvrOVe/D0kSPhdqxdz5p2B4GCxMoFYKet/sj8qEhVODzqNs7nzpwm8fCnexN28Cb16kbpyEWsTT7L10VZUVVSZ5TKLGS4z0NfQB8Qqw/mw88y4NIPojGikEin9HPsxvel0mls2xzPIkxFnRpC3MO/7V7MBtm0TV7QLCkSHIkQzhTYH25Qjx1mFWej/ps9St6WsCljFgFoDGNdoHIk5iYQkh/D73d+x1LPEMl+VhIQ3JOpJyFEt+3OgpaqlfF072XaiVqVaVNGpgvbchexqro6qQ02ujbiGwVoDFrRYQLGiWGmO8POaAPKK8ug6TNynnlQLx9g8HF2641jTlZomNdn2eJuYpzE1DDVBKqZhy+Xw5InSKICICGjaVLz5vXQJhaqMsWfHsj9wPwd7H8S9njsA73PeM/PyTCVpHVlvJHKFnNjMWB6/uMDdgjD0VLTIkueVOUcpUmyNbKlnVg8LPQtCk0O5HHmZJlWbsK/XPpwqOX1V2K0QFNj9aUdzy+bMajaL8NRwItIiCE8LF/+khiu1LAAGGgaoq6iTlp9GsaIYO0M7+tXqx4TGE757waUc0tLElsTNm0XiPGsWzJyJoKvLz/4/8/u939nZbednv9OCoh6wdGEzNue7Ue12kJizUr36p4BAFxeQSskrzmPgyYH4hfsBYltlblEu6QXpDHQayGLXxdSpXIfQ6MeMXNecp6ZyjLVNsNK34uFPD8uFUO57vo8xZ8dwadglGldtjNkGMzZ12sRk58nfPN0nCU9ovrc5dkZ2hKaEcnbwWXrU6PHvrt1/BR4/Ft+7fn7Qteu3x1egAv+HUKHRqMAPodTV5mvwj/YnszCT4XWGK39sFl5biI6aDgtdF37XcbxDvBl6aihd7btyvP/xcuLz5a2Xc+TlETY/2PxdORxfgp66Hs7mzvhH+3+RaNgZ2RGTGUORvAg1FTVep7ymrmldToScUI7pVaMXnn090Vm6Eg7ug5Mny5AMgF76zqxR3KKwIBd1jX/vIV/frD6j6o9i2c1lXBh2gdOhp3md8ppjwccYVncYAFHpUYw/P55mFs24H3+fRlUa0dGzI0f7HWV3990EvQ8iJS+FpJwk+p/sz6Oxj5T7tzG0Ia8477Or2Luf7eZO3B3l/7s7dOd82HnckrU4sSsNiasr4x7dZXyPYrycoEGShLEDVjH10jSS85KZ5TKLha4LyyQJ/x3vc97jHeLNn4/+BKDzGwWGhRJkUhXy1RSYzVEgfCQZxrlw/RDUWbUHifsYcbxnZ+qY1sFQw5B78fcAsT1k9LANMO8MBAYi1KrFzic7mXZpGs0tm3Oi/4lPq6rp6bBsmeiNb2tL9pkT/KYTyOazbZBIJMxuNptZzWYpczSScpKUzlFR6VE4VXJiXKNx+IT6cD36utK5KDU/FU2Z5j8jGSC2TllYgFSKIAhkFmbyNv0tAL6vfVEICqX+obTVbO3dtcgFOcdeHePYK7E9RVdNFyNNI6Iyoqhu7krPm2FUyRKo0m8kxe3a4OHrwe7uuwlJDuFw0GHyS/JpY92GkfVH8jrlNTdNNMlV5JGYIlYTAdbcXaOcZpG8iPqJENGzI9dHzKemSU3MNCshcXCAPD0YM4/ApECuRF5hb8+9YqL12rXw4gU8fPiJZKSni+5hJiZw6hQ5QhEjTgzmzOszjGkwhoi0CEb5jlIKrOMyxdayZ4nPeJb4DJlUhq2hLdWqWmMdHEOqagGzWs7g1Gsf4jLjmB5hzIpTaegsGgkT5yurW9ejrzP01FDaH2rPkb5HvuooJ5VIGdNgDKsCVrGt67bPBoVmFmR+Ih+pIgEJSw0jJDmEiPQI1t4VF2zUVdSpblCdJuZNqGFcA3tje6U+5EufEUCsYKxeDTNmiI5Ha9bAn38imTeP3yYvIb8knwl+E9CQaSizcEpR18aFlI4tGKWiwvWT7z9ldXh6woYNYGYGffqg1acPp/sex/lACzILM3E0ceRixEV01XS5HHGZE69O0KdmH5a4LeGe3RrW+c5jabs0kvOSWXxjMWvarSlz3FH1R3H05VHGnx9P8KRgOtp2xCvY65tEIz0/nQEnB1DfrD5R6VGoSFRob9P+q9v8t2P3brGdsVOn/9l5VKAC/wtRUdGowA9h4bWFeAV7ET09+otjWu5ryd24u0RPj8bawFoZMPalFbb/xOEXh/Hw9WCQ0yAO9j6IqspnYomBGZdmcCDwAFHTo77d6/4VLL2xlG2Pt5E8N/mzK+w3om/Q9lBbFrsuxi/cj+dJzzHTMcPW0Jb7cfcZVX8UB14cIMBwNs2m/S7+WM8qnw/y6voxagcM4UKdtXTpO+9fzxcgMTsR+y32TGg8gfT8dDxfemKhZ8GbKW8QBIGW+1vyIfcDcoWcxlUb49XPi5FnRnLi1Qm2dt1Ke5v2NNnTBBWJCukF6Rztd5QhtUUHl+PBxxl8ajA2BjZETo8ERB3Dqtur+DVAbLNSlapS06QmwR+CqZeiwr2dJWhKVHlgr8nwQaokyQqwK9bhBe8BkYht7LTxsyGPGQUZ+IT64BXsxbXoa0onocTsRKI2g589TO8uRRAUDHoJx51AkMCITGsObokT25oMDXmS8IQme5rg1c+L5TeXK3UcTpWcCJ4UDNWrU9K3N+PdstgXuI+pzlPZ0HGD+P6Sy0WXpIULoaCA/AVzWde4iPVP/0QuyJnqPJU5zedgomWizL3Y9XQXvm98kUllDHIaxLhG42hm0QyJREJybjLjz4/H57UPI+uNpJJWJY69OkbczLhy5y8IAhkFGWUE04nZH//29yFRkUlCdRMSsxPLpWnrqetRVbcqVXSqoK+uz5k3ZxjfaDytrVtzKuQUp0NPc2bwGXrU6IFCUNDuUDtiMmIIu1wD2dNnAMjDw2h9qjsJ2Qm8y3yHg4kD8VnxZBdlKxPRZQrQLYQcbVVmN5vNb3d/Y6HrQiRI2PNsD+/dg8Qb1JMnoX//TxPcvFls7YmOpvedKQR/COb1lNfIIqNR1K3DhymjiJ3xkTikRRN78E9iC94T61yD2IL3ZSoDAFV0qijbmqrpV1P+21TblJMhJ9nycAs2Rjbs7LYTj2S85AAAIABJREFUw+hEGt8ahlwKzSyasbP7Tuoa1oRffhFvzp2d4fBhsBOrQkk5SQw/PZzr0ddZ4raEpa2WlluVL8W7rHdYbbJia5etTGwy8Suf1PLIKMjgQfwDjr48ytWoqyTlJCkNGP7exlVZu3IZ4lEqTrczsitfxX33TiQee/aAoSGKn39msmUQu0MOcbTvUQbVHlRmeGm1M2RSyKfkbrkcHjwQScfp0/D2LRgakta+JWNlF6g9fBZDncew5dEWDgQeoFBeiKZMk+yibPpad+XowqeEta1HmzpPSc1PZZbLLNa0XyOSyo+ITIukzo46jG80nkZVG+Hu407MjBilLuw/IQgCfY734VbMLbwHeNP+cHuamjflwU8P/tE1/y9FVpYoxp83TwxarEAFKlAGFUSjAj+EWZdncTHiIqGTQz/7fHZhNgZrDbAxtCF8arjYanPAjYyCDJ6Pf/5NEfmuJ7uY6DeR0Q1Gs6v7ri/+0IPo6W+z2YbJTSaztsPaf31Ot97eovXB1jwd97TM6qRCUHA9+jpbHm3h7JuzqEhU6FGjB6Prj6aLfRcEQaD5vuZkF2ajm68gLT6cQGEcupt3Kvud/w5BLsd+rjrtNWqxc3XQv55vKVbeXsmKWyvwH+FP+0PtKVYUs7fnXjGj4P56pjaZyuZHmwmeGIxjJUcUgoLZl2ez6eEmFrZcSKMqjeh3sh9SiRQtVS3ez3mPlqqWkhgaaxqTMi+FgJgAxp4bS3hauFKIrK2qTWFxPnapAvd3C+igysp5TVkpu0/dynWx0rfC940vlrky3utKqWFSg5MDTir70/OK8zj35hzHXh3jQvgFiuRF1DCugaZMk7C0MPKK86ibIuPF1hK6DAOTvsPxfOlJzWQoUlchSk/O1pjaTI4yFldkgX4n+hH0PohpztOYdmkaZtpm5BTnoK+uT/ysePJ7dCYo8j6thhayq/uuTyu99++L+RJPn1I0dDDb+lrwS/geCuWFTG4ymXkt5mGqbUpSThL7n+9nz7M9RGdE41TJifGNxjO87vDySeGAQqFgx5MdzLs6DwUKdNV0meky8xOZyElUEopSN7dSGGgYiATi9TuqqBlRtdMAquhWoapuVd5lvWPWlVllbxIRNTmO2xy57XEb12qulChK6H60Ow/fPeTRT48w1zPHP8qf/if60y3fAtWIaEIrQZipCkV8ylWpa1oXdZk6zxKfcaj3IRpWbUj2orncCTrPrM6QvygfzVWa7O25l8fvHvPg3QOeV1sDXbqIbU+2toBo/hCX+JrYHm4EdazHXN37tLRsiaqKKrEh94lTL6Dobx9vLYWMaqklWNVwxrJaXZ4kPuFF0gsWui5kdIPRmOuaf9NW+9WHV4w/P567cXfFUNHiYopREDT8Lk72fzOguHdP1H8kJooLA+PHg0SidJRafms5btXcONr3KFV0q3z2WD29ehKfFc+z8c++OqdvIeh9EIdfHMbzpSdJOUlUN6iOs7kz5rrmvM99r6yKpBekK7cx0zErRz7sjeyxy1FD+7cNcOAAgpkZB7uZM7HyE44NPU2vmr2U2xeWFGK1yYpBToP4s8uf5SclCBAY+Il0hISQqwqFHdtiNOwnMtq1YG/ESbY82kJMZgyaMk1cwvK5ehjueG+kc+hCCksKqWdWj4O9D1K3cl3lrtffW8+8q/Pwd/enm1c3VrRewdwWcz97bf64/wezrszizKAzPEt8xorbK9jWZRuTnCf90DX/IezcCZMni7bT5ub/c/OoQAX+l6KCaFTghzDZbzJ34+4SOCHws8+XihF3ddvFuMZir/+AkwO4MvwKHWw7fHXfpT8qU52nsqnzpu+yv11yfQnr768nclqk0t3qn6KwpBCj341Y3mo5c1vMJSYjhgOBB9gfuF8UdpvUJCItgqVuS1nSqmzCeWhyKA13NmBgUAmnHGFAg+Hs73Pgi8eaPa8eXpJXxK8pRPoVEvU9yC/Op8bWGjQxb0I1/WpsebQFA3UDUvNTWd56OVsebaF3jd7s6blHuY0gCGy4v4G5V+cyqv4ojDWNWX9ftJ8dUnsIR/sdJTUvFZN1JqhJ1fCo78HuZ7txMXfhXfY74rLEFXndYimGuQru7YX8tq4M75TDk+Qg3Kq58SD+ATpqOqxKdGT0rWxCLx6i/4n+vMt+x6Qmk4jPiudM6BnySvIw1zVHRaJCbFYsUomUZhbNaG3dmlUBqzgb50q7gwEYz4dJNGaj7AlIwEHflrDMSO4fVsdl/K8wdy4hySE4bXdiY4eN/Hz9Z1QkKuSX5DOx8UR2PNnB6YGnCZ/uzph7+bx985BG5o0hKQnmz4dDh5DXr8fRsS7MyDlJblEuExpPYH6L+VTWqYx/lD+7n+5WVi8G1hrIQKeBWOhZKMnC38lDaUUiMSexXHq0hkwDG0MbzHXNqaJbhSo6VZQViaq6VZWPKVusqlWD4cNh1SrlPq5EXqGTZyfeTn9bJrAyMCmQBrsacGX4FTRkGoSmhPIi6QUHXxykUF6orE4ASARoHSPBUbUKNV+n4PDHIXpccMdU25T4WfFEpEVgv8Ve2Qsfum4+UXt+p/swiJkRQ7VN1fij0x+cDj1NTlEOm56b0djzGkP3dCY2K47YzFhS81PLHE8mldHIvDHVUkqwuvYEK/cpWDl3EKsSh89iOG8ZkgMHkLsPZ5TvKI68PIJnH89/lJUQkhzCxPMTuR17GzWpGpoqGqhnZFNXzYIrv8aU1V7k5IjVll27RJK0d69ScH/r7S2GnBqCXJDj2cfzs99dpUYST8Y+KSd+/jcoUZTgH+XPoReH8HntQ2FJIe1t2jOi3gj61OxDobxQ2YYVnhpORHqE8v+l7lsgCu3tNM2xD0/D7nEklYvVOGdTwsiFJ+hV+5NhxKJri9j6eCvvZr37ps6tJCSYXYs74/Y0lTqxBcqsjpI+vfCtLeOPkH3cjbuLRRZ0CYNbHR0ISwujukF14rPiWdZqGfNbzkcmlVGiKMHlLxcK5YU4GDsQnR79WbL2IP4BrvtdmeY8jQ2dNlBjSw3C0sJImp303QLy/3IIAjRsKNpN+5Y3yqhABSpQQTQq8IMY4zuGV8mvvli6NltvRnpBOjkLclAIChy3OeJYyRG/oX5f3KcgCKwKWMWSG0v4ucXPrG63+pspu6XILMjE5k8bBtYayI7uO/7VOQF0ONSB97nvMdMxwz/KH201bQY5DWJMgzG4WLhQd2dd3Kzc2NZtW9kNY2PZ/FNtZrTIZnbjaWx48icnB5ykf63+nz3O7ZPraRUyl4etj+Dc6vPZHf8ER4KOiOLuQWcYcmoI+SX5yvCw9ffXEzE1AnO98qtuR4KO4OHrQXub9uQW5ooJ2Sh4Ou4p9SvXR2OVmGGhq6bL2vZr0ZRpMursKKQKMPzY3RFwQMLdpR7MyDyBjpoOgiCQXpDODJcZLHJdhP7YKQixMdw4sJyDgQc5+vIoJUIJ6irqykBAPXU9Otl2oodDD7rYd8FEy4SjL48y7PQw8q46cz35Mb2GCIwIhP0NQCYHHS0DMgszyV0poBkUAo6OuPu4cyP6BsZaxgS9D8LRxBGJRML5Ieex+dMGqUTKgtRarPwzWLQKPXUKVqxAUFPj6pjWuBvdJK0wE/d67gx2GkxyfjKnQ05z/e11Mgoy0FXTxVjTmGJFMR9yPyjzPUphrGmsJAqlxOHv5GHOlTlkF2UTlhqGg7EDnn08qWdW7+svbkmJaE26bZu44v4RlyMu0/lIZ+6MukNmYSavU14TmhzKo4RHBL3/VCmTSqTYGtpipW/Fndg72BnZsbP7ThxNHOl6tCtrN73CTbsW0tdviO/XEctq3iLpmxmLnroetbbVol7levSs0ZOQJxcJu+XDhRrijWypHW4pTnnLsChUY9kyN6z0rKhm8KmtKSsqlHYdJvBqvgeNJ62EWrXE9qq9e8WNz5wRRcgLFiD/dQUevh54vfTiSN8j5Vp+voS84jxW3V7FunvrsDawZke3HdSpXIfZV2bjGeQJwB/15jOj92eMKC5cgDFjoKhIXK0eMAAQK6buPu5cjbzKQteFLG+9vExFtkRRQrVN1ejh0IOd3Xd+1zy/F5kFmXiHeHMo6BC3Y26jo6ZD/1r9GVF3BK2sW5VZhBEEgdT8VFETUkpESrUhyW/IKslRjq0s0cXRqiH2xg4Yaxqz9u5aFrstZkHLBd/UD4Ukh9BwV0OWWI9kUZqTWOkICBCfdHXlac8mbCoO4HjuQ5BKKJYIqKuo07tmb06GnKRhlYYc7H2QWpVqEZgUSOPdjelfqz/HXx3n9eTXZdy4UvNSabCrARZ6FtzyuEVGQQam602pblBdacrxP4InT6BJEzh/XtQSVaACFSiHCqJRgR/C8NPDicuK45bHrXLPPU14SuM9jeldszc+g3xYd3cdC64t4OXEl2VaPP4OQRBYeG0hv939jV/b/Moi10XfTTJKse7uOhZeX8jrya+xNbL9R9s+T3wuWmY+30t+ST7NLZvzU4OfGOA0oMwq339a3AKiW0vLlihyc+iwyJKw7LfUN6vP3di7BE0M+qyNaUl+Lma/6DJe05VVy8pfw38KhaCg2d5mFMuLyS7MJiI9AiNNI/KL87/p8HU18ip9T/TFzsiO+Mx4UvJTqKJThYZVGiqdZl5NeoWdkR1WayqTm5eBQiLqI076qLFnigu+H25TWbsy73Pf06tGL9Z3XI+toS0P3z1Ee+AwXhXEM6RXEVoyLYoURcpV9craldnQcQMDnAaU6eEGGHlmJJFRT7kzN5Q/XGB5awHnyo3wT38CAiABS7kOsUdMISKCqIxoHLY40Ma6Df7R/ljrW/M28y3eA7w5F3aOgy8OUr9yfXY3/oUPQ3uRaGnAO0UmwXUqc8k4jRyKxFaw/1j1B7ECYaFrgZ2RXRkS8ffqg5mO2TdbehrsaoCLuQsTm0zE3ced0ORQfm3zqzJw7rOIi6PAxoqwY9t4XdNEaav6+N1jojI+3WxpqWpR06QmBhoGYqtfly20sW6DnZGdcl7+Uf509uzMFOcpbOi4gVtvb/HH0g4MD1QQ26sVbwNvcayJJhnSQtRU1MpoBaQSKVU1TTENT+KZOfRz7Mep0FPMdJmJZ5AnHvU9WDvJB0n37vDHH+VOo5NnJ2ZufECnnMpIHB3h0SMICQFDQzGXxNUVunalxOsII8+O4njwcY72O8pAp4FfvaaluBRxiUl+k3iX/Y6FLRcyv+X8MoYV/m8u0Ptwd3JlAvNbzGN5m1/KG1qkpMCECSIBHTYMtm4FAwMUgoK1d9ay+MZiWli2wKufVxnivuT6EjY/3EzC7IQfcr/7GqLSo/AM8uTQi0NEpkdipW+Fe1133Ou6f9MqVxAEUvJSeHX3DNe2zYLsHF5X0yKqphnhimSyiz6FclroWZRpx7I3EluybI1slddr3d11zPefT8CoAFpYtRCzPM6eFUmHvz8UF5Noqsn2ZqpsblxC9kfHL2sDa0oUJSTnJvNrm1+Z1WwWS24sYf299aipqDG3+VyWtV4GiN9pPb16cj/+PoHjA7HUt+SvZ38x9txYFrRcwOp2q/9brvN3Ydw4uHhR1K9UhPRVoAKfRQXRqMAPof+J/mQXZZe94f6ILke6cCniEq8mvaKSViXsttjhXtedrV23fnZfCkHBjEsz2PJoCxs7bmRms5n/ak75xfnYbbGjjXUbPPt6fnN8en46R14eYd/zfUphd2fbzhx4cYAbI2/Q2rp1uW3+0+KWoiKx3eLZM7h3j9iq2tTZUYcudl0IiA3A0cSRK+5XPtv+5TGzOk+kSQRvyC/33L/Bvbh7ykA4HVUdcopz0JBpkDAr4bPagb/jWeIzuh7piqpUlfjseHEfajqY65rzJvUN77pdx2fXDKaYiyvlUgEWPVRjZyttsuR5FMoLqW0qZpqYapty9OVRDr04REJOAjVSJbwxFpBKpLSwbEEPhx70qNGDnMIcBnoPJL0gnUO9D5WxqRQEgaobq7LugS7DvcPZPsCaabXjMNMx4132OySCSHR6xGhwWvcnPqxcwNQLU7kYcVEplNZV00VFqkKRvEhp1fp3SARQFSQUSQUsdC1oUKUB2UXZBL0PIi0/DVtDWzzqeTCu8ThMtU3/S14jqz+sGFFvBCvbrqSwpJClN5ay7t46Wli14FDvQ+hr6CsrE69TXhOaEkpo/HOi8xIQPvJuU21TaprURFtVm4sRFznS9wgtLFtgqW+JVCLlQvgFuh3txpvJbygRSojNjCUmI0YUWmfF8iD+ARFpEcpE71JoC6pYphRjKtMn1cGCtxlv2dplK0m5SSy4tkDUghg5kK4jw+hn2NtzL2POjuFwn8OMPDOSv9w2MKrNTDG5esSIMud9J/YOrvtdueawirZDP7rDnTolVjDevRMF2ebmlFz3Z8TlCZx4dQKvfl4McBrwzWuakJ3AzMszOfHqBO2qt2N7t+1fDMMMPbGdOq8mI0gl2BrZsaPbjvLOUoIgOi9NmQJ6enDgALQTxwTEBDDk1BAK5YUc7nOYznadAXib8RabzTbs7bmXUQ1Gfcc74d9DEATuxd3j0ItDHH91nMzCTJqaN2VkvZEMqj3om4YYecV5zF7Rkv7Hg2gXLkdoUJ+TMzowKHodC1uKboB/b8fKKRIrIRIkWOpbYm9kj62hLZcjL1MkL+LckHPUNq39iWSXZnXs3AkBARTIYEcrbX5vkEuSDiCAnoYe2YXZNLNoxq4eu+h3oh/p+ekYaRoROjkUiUTC73d/Z77/fPyG+tHVXrSOdd3nyp24OwRNCKJO5Tr/bdf4q8jOFlvr5s4VnekqUIEKfBYVRKMCP4QeXj2QSqTlgtyK5EXorNbBTMeM2JmxTPKbxNGXR4mYFoGJlkm5/cgVcsafH8++5/vY0W3Hd7lRfQ2lIvIXE1589oeoVNi99/lefEJ9kAtyujt0Vwq7pRIpputMmdh4YrkAO0AZMJW/KB81qSp4eMCxY3DlCrRqBcChF4cYeWYkS1stZcWtFazvsJ7ZzWeX25fP7ln0TfyDiP63sXUqH1b3T/Es8RlN9jRBU6bJxMYTWX9/vVLc/T2rrBfCL9D3eF+lIFkqkdLHshMBIReJ3iLFcrqCNE1AAq3iVLhlKUdFooKeuh4zXWZSUFKAZ5AnsVmxSJAgIKCtqk2PGHW6q9ely9pT5W6C0vPTGeU7Ct83vsxrPo9V7VYhk8oICrlBvZNtidoEldWN2H16ETOvfrqGGiVQIBMdkHLVpShQlNlvaQ+4TCpDQ0WDoTUHoHvjLi7XwqikooM0L594TTkXf3WnjXUbzoWd4+ybs6ipqDG49mDGNRpHU/Om/7iq9i1or9ZmResVDHAaoCQT16OvK2/aBMSvZQkSqhtWx9HEkZop4HjAj5pHLlOzWiOMtYyRK+QcDjrMKN9RbO+6neyibKXVa9D7IKXFbSlUJCqY65kr25hCk0N58f4Fq9quoqNtRxK7tsIks5DDdSVsOVvMm9uncbzWh0O9D9HHsQ9Ga43Y2GkjU5ynEF9ZE/vx/4+9tw6rMvv+9+9Dp4iKgRKiiCAGtqMzduuoY3d3d8yoiN0xYo2JLTp2x9hdgAEqSIlBSUifs35/PONRBgN14vv+/Livy+vBJ/beT5699l7rtVKZ2mAWE09PZEWTFQw6MoiLxWZRvesk8PWF0pnfvTqb6hCdHM2dtqfRKVgIcudWVMISE+GHHyAqioyrl+l6ZSze973Z0WbHR90O36LWqFl5cyU/n/kZIz0jFjdcTEfXjp++ZyK49y3OLOsgyhWuwI0Xt+hSpgsLGyzMakyGhirv9x9/wPDhinSssTFRSVF029uNo0+OMr76eKbXno6+rj4NtzQkITWBy70vZ/t5+FaS05M5+OggXj5eHHtyDF0dXZqXaE63st1oXLzxR5X6ElITaLilIblv+LHLxwmTa7dwGmNIZbvv2DrotFbEQkR4+eZlFnesJzFPeBT9SGvAq1Bha2GbaQbEMY8jjqNm4HA/AqpX583endwtAItqGXLYLhUdDaCni66OLn3L92Xz9QvYqXvhYFoNK0sNe54PpH+NRsyup8jjpmSkYD7bHDMDM2LGxfzt72a2WbMGBg6EkBBFcjqHHHL4IDmGRg7fRP3N9bE0smRX212Z1i+7uozhx4czv/58GhdvTJlVZZhXb94HO9rp6nS67+vOzvs72dhiozYB17eQrk7HZYULzvmcOdDxgHb9hwK7e7v1pmuZrlkCCtt5tyM8PvyDHYa3Erf+g/1xWr5dkcjcuhU6vYuzEBFa72rN+ZDztHFuwwafDVzvcz2LL/6byGfkW1qEmblbMWrM79903olpiZRfXR5DPUMeRT2iWJ5iBEQrErez6s5iQo0JHz02OT1ZMYiuLKC4ZXFQwfNnASTrCpUi4IY19MhwZY3hPVBB3iSINQZ0dKhUqBIRiRHa4HCAwuaFaePShpYlW1Ldpjr6ZcpBgwZad5p0dbo203REQgQRCRHsfbiX009PKypLuhaExIbwRk94sQDWlYdJf5HLN0lXkaQv9PTVpeq4pRwMPMbhx4cVhazkKMwNzElIS6COfW326nXBfNI01M+fMbeqmjk1YOvdYlT1jabK2NwEvw6mdH5FarNzmc7kNsr9TffiLWnqNB5HP9bOTNx7dY+d93dioGugDQ430jPCKa8TxfIUIyg2iLsv7lLLrhbLmyxHEMV48F5L6KUjhPZuozUmwuPDUcs7hSgLQwutEZGSkcLpp6fZ0GKD4u5mYYu1uXWmuIJ0dTqNtjbC54UP1/teR7NhA8VHz+DHOWU5sC4JihenUScNUUlR3Oh7g7pedTE1MOVgx4PcK1uI+o1e0bnuSBZeWcisOrOYdGYSoarR2Mxaroz46r/r4L59Z/a130eLufuULOtJSYqf+/TpcPo0GRfO0eXJPPY83MOO1juyZLf/K7ef36b/of7cirhF/wr9mVV31mdn7d6S7Hcbl3UVcM7rRJum4xh7aiwiwvz68+np1jPz7KNGA8uWwYQJ4OCgyOBWqIBGNCy4vIBJpydRpUgVdrTewbVn12jr3ZZ7A+9RKn+pbLXl7+RF4gu2+23Hy9eLuy/uks8kH51cO9GtbDfKFyqfpWP+OuU1db3qEvY6lBsOc9iz24MJJUIJu1yVAlPmKgbgJxARpp+fztSzUxnz3Rj0VHqZDJG3RoiOBuwMrDDLXYDYwHv0SnWmyP1wLlomsNsZkgwgF2VwU69EMVl0kT/Vz5b0dqacvfI+Hn18lCbbmtDJtRNbW2/9+y9gdqlQQVGZOnDg8/vmkMP/j8kxNHL4Jn7Y8AP2ue3xauWVab3DUgfC4sNInJhIy50teRz9mPuD7mfxXU/NSKXDng4cenSI7a23f3b08kt4qw1/ptsZXr55yfo76z8Y2P2xEbHVN1cz+MhgYsbHkMswV6Zt4fHh2Cy24ZDVCJoOXqKoAE3Kmnww8k0kritdqWRdidC4UNSi5mbfm1kCLZsPtyJeN4Nzi2KzlPEl9NzfE+/73tzuf5tZF2axyWcTbV3a4v3AG3MDc8JGhmmzV7/PqaBTDDg0gLD4MCb/MJlxFYcjnitI8ZjMqjLpzKpXBjtNL8woRiKBhOqs5434omPwrrOsQoWzlTMdXTtSw7YGRnpG7/I/JD4nYt0SnhcvyPNCZkQkRBCVFKUduQdltL2gWUFyGZrzNOoJpGeQW61P7VRrti0O4dHedeSq14SmW5ty+4WiSlM4SY9nJhnsD6pKtRUHKLSwEDoqHQqYFSAhNYG41DjGWLVkzu7X6P5xltOlTOhXJ4mgvOBi5ULlUw9Zt08Yuq0r3WoMpnLhyl89QhqXEqc1JrTuTpEPCYoN0hoDeYzzUMyyGDcibtCzXE9q2tXEWN+YNHUa4fHhWgPi3qt7hMaFZr4+oqJIkh62zlW1xoSthS3P4p8x48KMLJnB3/qxa6ZoPnlOMckxVP6tMkZ6Rowr1Z8OdYYxvpEO/TrMx7nbaI7snk3TexO53OsyF0IvMO3cNGLGxeDXoio97X1wq9eFzb6bGffdOOZdnsebR+0weRSkZEv+k7ey1knpSdy0n42qYUNF3WnmTDAzA39/1Pv20il1K78//J2dbXbyk/NPH21zfGo8k89MZvmN5bjmd2V1s9VULVL1i+/Z/jHNaGl+mP0NN1KtdBPGnhzLJp9N1LCtwepmq3Gxcsl8wIMH0LWrMlszZQpMnAh6elwOu0yH3R14k/6Gtc3X0v9QfzqV7sSSRku+uE1/J74vffHy8WKr31ZeJL6glFUpupXtRufSnTPFlkQnRVNrUy2ik6I50GE/36+rweT7eZm067kyODB9uuLW9hE0oqHOpjqExIXgO8BXm1xQRHie+FyZBZk5isexT3jSujbHn54iKT1J+3zrigqLVLDRXUxuVWVUvIt30FFBxWIWzO2uxJ+0826H9wPvbCkX/mPcugUVK8LBg9Cs2X/Thhxy+B8hx9DI4Zuo/FtlyhYom0kyNSgmiGK/FqO+Q31GVRtF462N2dNuT5aOQ1J6Ej/t/ImzwWfZ024PTUv8vaodt5/fpsHmBsSlxpGhyaCGbQ16leuVJbD7YwTGBFL81+JaSc/30YgG0xnGzD6WwQiXXso0+kc6c/v999NyZ0s8ankw88JM+lXol0Wr/reFnRgQv52XA56Qr9CXBbC/5a0608YWG+lerju1NtbiYuhF2pVqx/Vn13n6+imTf5iMey137TFRSVGMOTGGTT6bqGlXk9VNVuB0/BZMngxhYWh69aSzC0TE9EL13iijINzVHUiCyo98JvnIb5ofQXiZ+DKTjCkoyfwKmhWk0KMIrK1LUqj8D1mCqK3Nrclnkg+dmFjo1o3Is0foMMaeMzrBbL1bjI7nYlC9egV6ejgtd+JR9CMAjDMgVQcG5qrDkwL6HA88TquSrdjrvxcE2scXYduyCELy6NK7UTovqjgTlxJHRGIEeY3z4lkCeOytAAAgAElEQVS4H+27zIZLl+C77/gcIkJEQsQ7Y+LPgGz/KH+eJz7X7mdnYYdjHkcKmhUkt1FuDHQNyNBkEJUcxcPIh9x5cQcdMrt6WRpZZjIgLI0stQkhO5bqyPpNrzHSqBS/9/fY57+PVjtbETk2MpNb4q/XfmXcqXEk//z52J+HkQ+puq4quipdDmwHo4Rkhk1y48KqNFQ6Ojh1iaWidUUmVJ9AudXlONX1FLkWLeeXuH3QoAEngk7Qr3w/1t5ZS8YeV1RVqijvxJ+cDDxJgy0NONpiN41ajVFmBU6dgvbtwdsbtftUOro8YK//Xna12UUr51Yfvf57Hu5h+LHhvE55jUctD4ZXHf7ZfDwfQ2JiaDKmIP6FDXkw5RXG+sb88fQPBhwewNPYp4yrPo6fv/8588BAWprS8Z41S1Ec8vKCEiWIToqm5/6eHHx0kErWlQiMDeTZqGdZA83/AzI0GZwMPImXrxf7/PdppXK7l+1Oy5ItMTUw5WXiS2purElyRrKSBC/8Kk9tF6I7dRrcvw/Nm4OHB5Qr98E6gmKDKLOyDF3KdPmw6tbDh+DqCosX49+pAaVXlGZolaH86PSjYohEP+LmpQaIJutASD5zfbzHuSEi5J6TmxR1CgkTE7IIR/xr9O+vqJM9farNJp9DDjl8mJw3JIdvIlWdmuWHdOKZiQB41Pag94He/GD3A61KZu44JKQm0Gx7M25F3OJI5yPUKVrnb2lPbHIs2/y2se7OOu68uIOlkSUZmgx+a/4bfcr3+aKyHCwdsLOw41TQqSyGhs69+xR/lcHjMoVh2YqPGhkALUq2oGe5nsy7PI/x1cfjcd6DxsUb09ixsXaf5s1G03/7dg7vX0D3AV8uyxsUG8SAQwPoVFpxkTgZeJJzIee0eSNm153NxNMTmX95PkMrDyWPcR62+m1l5PGRZGgyWNv8N3q9sEZVv6MyWtuqFRw7hk7Jkths8ud5TKx2lFFZqrFT9+KJ0UT0dPQw1jfGKa8TJfOWpHCuwpkUmfKa5EUHlaK1v3QQNP1Icq1r16BdO3jzBqvdRxjpoObMjuY4XQvkrFNBXFNjSUhI0BoZCCTrQoFE8Dbx5VVgFA6WDuz330+eVB1SdDR4bAqn/U9wqZIVr5KjMIwLoUOpDjxPfE7km0jat3WHnguUZGTvGRrp6nQCYwMzBWP7R/njH+WvVeYx0DWgsHlhrEysKJmvJC5WLqRkpBCbEkt4fDinnp7Slqeno0eRXEWwtbAlr0leAKbWmkrlwpWxtbDFJpeNdhT4fTxqe7DuzjpGHBtB4J108tRuwl/Txb0N5FaR+RlMyUjJdifX2cqZmXVmMvToUNa0Lo/XlNuEPLiC57DBDOvmyZDePRnzYDPz682noFlBjgcep2txZwqf3cfNOEU04HXKa2yNCqB68EBRbPoTEWHK2SlUKVyFhpsuwsuXipFx5gzs3Yvo6bHPZwd7dQLxbutNy5ItP9jGp7FPGXJ0CEceH6GFUwuWNV720QzS2UWVJw/L3H7G9ZU787xHMLXTamoXrY3PAB/mXJzD7Iuz2XFvByubrnw3em5goBgaTZoowe5ubrBgAXkHDGB/h/0svrqYcSfHoRY1a26uYVjVYd/Uxr8DPR09Gjsq35y4lDi8H3jj5eNFl71dMDMwo61LW+W70fUktTbV4nLYZZ4lPOOwqyE/+vjAzp1KwLObmyJFPG2aIkv8Hg6WDsyvP59BRwbxk/NPNCjWIHMjnJ2VWJcZMyjZsyfjqo9j4ZWFDKo0SCu4Mf55ADcD49C8N/ypowKHAiYA3Hlxh/i0eGrZ1/rvjIyEBNi2DUaPzjEycsghG+TMaOTwTTgtd6J5ieYsaKAkedOIBtNZplgYWjC15lQGHxnMjb43MiWwik2OpfHWxjyMesjRzkf5zubzI8mf4m1g9/o76/n94e9KBuQSzejt1puGxRpS26s2KRkp3Oh7I1tJ/96nz4E+XA2/yr1B996tjIiAqlVp1TiOpGoVOd7j9GfLiU+Np8zKMthZ2GGkZ4TPSx98B/pmCjytNtyMQnq5+X1h+Be1MV2dTo0NNYhKiuJO/zuYGZhRcU1FjPWNOdf9HOXXlCeXYS4S0hK49+oefd368jTuKScCT9C+VHuWFOhOwSnzlIza338Pc+dCtWra8tvOu0NUQnqWelOJ5IpeVrcBIz0jLAwtKGBWAHsLe5zyOVEubykq1+uBw5KN6HTrnvkAEcX/fexYxR1h506wsWHEsRFcvObNTfcIBnUw50ClXDQq3oid93diom/Cq8RXoIJGr3JxLH88ALaxEG6h5NdweA1hBYx4o0mhbIGy9K+guLNYGFmw/PpyRh0fRcSoCIKbVedhGWse/lhNa1Q8iXmilbY11jPG0sgSQz1DNKIhMS2RmOSYTG5NeYzzvJuNyGWbaWbC1sKWgmYFtbK1b5NWRo+L/qwy0FsCYwLJZ1uSuVXVyITxTKs9TdvR2vNgD2282xAzLiZTfILHOQ9W3VxFxOiIjxWbiT4H+rDnwR5ep75m4wFdTCpVo4ftbe5dLU+epy8o0ukFI6qMIDwhnFsRtzjsMBnPBe3wqpOX52nR1HeoT4GAcDbPfKhkV6+quDK99am/UnopVduOVJ6vZs2gWjU0lSpxTCeQyheCuHpxJ83cskrYpqnTWHRlER7nPMhnko9fG/+aKav1N5ORwaSu1ix2jObBiMcUzeOg3RQQFcCAwwM4G3yWTqU7sajBosyxXG/eKEn+Vq2CRo2UXCDW1lwLv0bNjTVRi5rdbXf/ve39GwmKDWKzz2a8fL0Iig3CzsKO5k7N2X1/N69TX1OtSDXOdD+j7JyRocSmTJumBMh36qQYH46O2vJEhAZbGuAf5c+9gfeyummGhkKJEvDzzyRNGI2Lpwsl85XkaOejqFQq/EISGLn+ISKgEcXIUKmUGA1XW3NGHx/NoquL2NBiAz3K9fj3LtT7/PabYkgHB4ONzX/Thhxy+B8ix9DI4ZuwX2JPlzJdmFFnBgBbfLfQdW9XxlQbw0afjTR1bMrGlhu1+0e+iaTBlgaExoVyosuJb8qg+9fAbqe8Tkpgd9muFDQrqN3vfMh5am6sya42u7Ilk/k+b+M8IkZFUMi8kDKa9ac6zrilzdgddjzbCaPOBZ+j9qbaTKk5Bc8bnlQrUo39HfZr/efneNRnetopoibEYmyW/UDkCacmsPDKQi71ukTlwpXZcW8HHfd05HyP83xv973WbWVSjUnMuqhozhc2L8xqtyk0XXESdu9WXBrmzFFGaf8yOzN+04dHGSsWs2BW1+I8jnnM1fCr+L70JSAqgNC4UF6+eUlcalyWTNgAhrqG5DbKTQHTAtibFcbp6hPKnX9MpYY9KTrTEz1DxU3F2dOZCf5WdPe8yPNAH9r+MZBLYZeoZF2JgrpVCH5aHDOKIYTwQGcNVQJ9uVkEkvUUJSpDPUO6lOlC3/J9sbWw1RoRDyIfcDH0Ij4vfTK1y0jPCF2VIoP7fgI+PZUetrltP2pI2FjYfFHOhNU3VzPoyCDSJ6dn3/B98wbMzDjwS1taG+zFNb8rm1ttxjW/K973vRV54PGxmQLYJ56ayK4HuwgcFvjZ4mOSYyi8qDC/fP8LT18/ZfOtDZy84ULXBvGU0C/EiSHXGDa/NjvlHgsbLKTbvm4EdrzGvh5V+LmhHilkULFQRbrfTGfIOj/lPTExQUSovLYypqLPH78moDI0VJKbVa+OxsiQbmOKccP3GP5L1ahWrsyUiBAUOdwBhwbgH+XPyKojmVpr6j+Sn+LNycOUPNqMCtYV2DfmZqZtIsJm382MOj4KtaiZW28ufcr3yXzvPpDkb83NNfQ/rJzPiCojmFt/7n83Cv8ZRIRLYZe0UrnxqfHoqnRRi5qTXU5Sr9h7KgxpaYpBNWOGMjvVo4fiammnZKUPjQul9MrStHZuzfoW67NWNmoUrF0LQUEciL5Mix0t2N12tzbw3y8kgS1nIwh6mYRDARO61rbG1VaZ7bNdbEtYfBhRY6O0M4P/OhUrKrK2Bw/+N/XnkMP/GpJDDt9AgfkFxOOsh/b/Lp4uojNNR0YcHSEmM00kPC5cu+1Z/DNxXu4sBeYXEL+Xfl9VX3J6smz32y71veqLyl0lZrPMpPf+3nIp9JJoNJqPHtdoSyNx+tVJ0tXpX1Tfi4QXgjuyxWeLSHq6SKNGIubmIj4+svrmatGZpiOpGanZLm/UsVFiON1Qll1dJrgjq26s0m57cGGv4I4c3D4t2+WdeHJCcEfmXpwrIiKpGanisNRBmm9rnmm/6uuqi4GHgeCOmE5CTjRzEdHVFbGxEdm4USQj46N1+AbHS90p16TO5GtS6xdlWXfKNfELif9s+zLUGXL/1X1Zf2KejGiINF5SWUp5lpJ88/KJwTR9YSqCe+Z/htMNJd/cfII70qdrblnW0lq2+m4Vr7tegjuSa2oZqfnLZan5y2Wp9cs15e+fL4nl5DLaMhyXOUrNDTXFfom9GE43zFLH+/96tDeUV6ZIqy3NZeiRoTL/0nzZeW+nXA27KhHxEaLWqLN9P7LDzPMzJe/cvF920MOHIiBy7pzcjrgtLp4uYjjdUBZeXijb/bYL7khcSlymQ0YcHSEuni7ZKn7BpQViMN1AXia+lNSMVPl+dgnJPwbZcXKJ4I6s7V9J/J3zC+6I53VPUbmrZP3tdbLO7d11dFjiIGeblBJxdtaWu99/v+COBI7sIaKnJ3L9ukiNGqKxspJ+y+qLvoe+HPA/INKqlUjJkiJq5VpHvYmS3vt7C+5I1bVV5e7zu192vb6CXT0rC+7IEd/fP7g98k2k9NzXU3BHvlv3XdZvWGSkSJs2yn3q3FmSI5+L5RxLqbOxjuh76EulNZUkKCboHz+PbyUpLUl2+O2Q6mura+/tj9t+lAP+ByQtI+29HZNEFi8WyZ9fRF9fZNAgkXDle7/u9jrlWxZwMGsFr14p39DRo0VEpPm25lJ4YWGJT/n09yT0dajgjpRcXvJvO9cv5uZN5f4eOPDftSGHHP7HyJnRyOGbsJxryaQakxhbfSyRbyLJvyA/bgXduB95n0k1Jmmzuwa/DqauV13S1Gmc7nb6o4m0PsbdF3dZd3sdW/22EpsSS3Wb6vR2653twO47z+9Qfk151v24jl5uvb6o7jIry1ChUAU2HDWA9euV0cv69TNL3H4mI+9bUjJSqLCmAoa6hpQvWJ5t97Zxp/8dnPI5IRoNTmMMqaXvyJq5Dz5b1qs3ryi7qiyu+V053uU4OiodPK97MvToUHwH+uKa35XEtESm/DGFpdeWglrDolBn+mx9SKoe6P48GYvRk8Do8378nxplzBb37ik5Fa5cgbeBwsOHk+bqzKPVs7iu8xzfF74ERAdoE8q9SU2kUAJEmMP74Qdl1EuxlEqZlGkENTFcx09vRKZqdVQ6ilSumTXF8xTHxcqFopZFsbWwZfTx0bgWcGV7vgFQq5YS8PoXv/N/gtHHR3Po8SEChgRk/6ATJ6BhQyX41N6elIwUJp2exOKri3HJ58KDqAfET4jPFOcx4NAAbkbc5Ga/m58oWMlDUWJ5CarbVNeqx0VGPKHyfEcs8hbG1aUWh/wP8GB+Er1HFSOygDl6OnrY5bajybx99GiqzFrlNsqN72ZzbMr9AFu2oBEN5VeXp2ysAZvcfRSf9vBwZNcuJkyqzBKda+xpt4dmJZrBhQvwww/I4cNssn7FmBNjUIuaOXXn0LdC3y92efwaJCiI+h7FCbG35N4vER/N7n42+CwDDg0gMDaQMdXGMLnmZEz0Tf4sRBSZ6yFDwNyc4ZMrsSP+Envb7aXL3i7EJMewvsX6Typq/b/EW4UnYz1jkjOSsTKxoqNrR7qX645bQTdlNvbNGyVz+rx5yt+DBiHjx9PsdC/uPL/DvUH3sroITpum5CN5/JinZhmUWlGKwZUGM7/B/I+2ZcnVJYw8PhKPWh5Mrjn5Hz7zjzBggDIjFxycE5+RQw7Z5J//eufwf5qUjBTtD/LPZ5RMv+YG5liZWDHmuzEAPI5+zA8bFC32Cz0vZNvIiE2OxfO6J+VXl8dttRveD7zpW74v/oP9udjrIj3dembbjcKtkBvtSrXD/aw7KRkpX3SOdYvW5bTPXmTNGqWDXF8JCnXMq/gmP4l5ku2yjPSM8Grphd8rP/Ka5MXGwobOv3cmTa2o+7QwLMtBAtCoMz5ZjkY09NjXA7VGjVdLL3RUOiSmJeJx3oPu5brjmt+Vo4+P4rrClVU3VzHHsClRywzpt+UhBxrYU3y4inFlXmbLyAAobWfO3O5OeI9zY253py8zMkBxpQHQ1VXkQQcMgF69MLh4BdcKjenl1osljZdwtMtR7g++T4NiDegTU5Rni2BeYjWqZ1iDgK4GTMUhk5EBSoC6GcW019glnwvNSjRjZNWRTKs1jVl1Z+FR24PxNcbTp3wfGhRrQE37mtx5fgfK/pnX5O7dLzunryQmJYa8xl/o9hEWpri0FVYkSY30jFjUcBGnu53mxZsXAOy8t5P3x42SM5KzyCh/iGNPjhEUG8TgSoO166ysi3Mg/HsCU18QmxKLob4xAwfaMHRPGLee38LFyoWTgSfRM30n+xyf9JqCgS+VgGFg78O9+D33YdnuJChaFAwNYfNmFvYtxRKda+xtv1cxMgBq1OBhrVLUPtWZnvt70qh4I/wH+9O/Yv9/xcgAUDk48GuRfgRrYlh49OMd2Vr2tfAZ4MOUH6aw+OpiXFe4cuzJsT8LUUGXLuDnByVK0GfyXl69ecXzmBBu979NPYd6tN7VmqFHhpKakfqvnNe3MLvubCXppggVrSvSwbUDO+/vpMKaCpReWZr5l+YToYmD8eMVI3jSJFi3DpWDA7/dcyA5PYlhRz8QDD9qFJibg4cHRS2L8ssPv7D46mLuvbqXdd8/8fJRjOD2ru3/qdP9NImJihHZu3eOkZFDDl9AjqGRw1cjIqRmvFOd2nlvJ2YGZpwPPc+surMwNTDl3qt7fL/he0wNTDnf4zz2ue0/WaZGNJwKOkWnPZ0otLAQw48Nx9bClv0d9hM2Moy59edme/bgr0yvPZ2IhAhW3fyA9OInqBemTxhxPJk8CHr21K63NrfGSM+IxzGPv6i8CtYVmPLDFBZcWcCE6hPweemD+1l3AFpU7c4LEw3XT3t9soylV5dy9MlRNrXcpMSOAIuuLCIuJY4hlYbQcU9HmmxrQok0c/x25mHspMMYt2xLhbG52Ne9Mq+NYO2dtQS/Dv6itn81iYnKsmNH2LcPtm1DPD15mRHHBb9DrN05nrELGtDi52KUHG/K7w9+p+SNp4SbwzSDKzxLVgK/W8cVxjAlCN5LUgfKjMYbVRAmeiZMrDGRqkWqkpyezP6A/Yw6Poofd/xImVVlsJhjQZ65eXBb7caV8CsERAcwy28Fe7+34rbvcSXI+x+e5I1Oiv5y//LQUMUvXD9zhuc6Reswu66SMbnvob60292O6CRFXji7qlPLbyynonVFKhfOnCehdLPebNul5ujjo3xv9z0HDIN5rafGUWNJaFwosSmxPCvyztAoEQ36KWng5oZGNEw9O5WlQSWwuH1fue/u7mxrXYJfCtxnX/t9NHFsAiiJIn/5YzJla/kTkfGakzXWsOWnLVkSaP4bOE9YwIh7psy4uYjQuNCP7meoZ8jkmpPxHehLUcuiNN7amI57OvIiUTH6sLGBkycpPWkJVZ6p+G1VX3Lfe4J3W2+WN17OmttrqL6+OoExn4+f+S8plqcYjYo3wt7SngeRDwiIDiBwWCBHOh3BNb8rk/+YjM1iGxpuaci2kEMkTRyjGBwjRmC9bAO/7ktlq99W9t7akrlgc3P4+Wdlhtjfn9HVRlM8T3EGHh74wfcvITUBn5c+WJlYffFs+N/Gjh1Kgsnevf+b+nPI4X+UHNepHL6aNHUahjMM2dhiI1amVjTd1pT8pvmxyWXD9b7XufviLg02N6BIriKc6Hoik8LSX8luYPe30vdAX/YF7CNoWNAH5USzcP48CU3rkWd0BsuaLmdgpczSrKVXluYH2x/wbOr5Re3I0GRQfX11YpNj6VS6Ex7nPDjb4yzVC1Wh0GRjehtWY7bHpQ8ee/v5baqurcrQykNZ2HAhoLhROSx1oLptdW48u4FuhprFV3PT+VAoqlatlMRozs4svrKYMSfH0LBYQ44HHqeza2e8fvq0UfOtJKUn8Xhsbx6d3EFAsVwEuNnySP2KAKKJ01cMBh0N2L8GpxQTzI0t2WX5jJgV5uhXqY7pNm9q7GzI3Zd3SU5PppvTFMLvNVSUaXR0QdSISrijO4A0vcfETojN1MHWiIYXiS8Ifh1MyOsQZRkXwv3I+1wMvYihriGp6nejy2YGZtjntsfOwk67tMv97u/8pvm/OqkfQPX11XHM45hJJOGz9OwJ/v6K69lfeCvAsPWnrQw9OhQDXQPW/7ielTcVmeQDHT+eufhJzBMcf3XU5l7JxOvXkD8/82Y0ZnzyASoXrkxQ+D1Gnktlci3B3NCclq8Lssk4AAQ6+sG234HoaHZGnGTcug4ErTFGt1Fj5MgRzpXPQ6NGUezruJ9GxRsBcPzJcQYdGUR4fDgTq41jQq/1GNX7U73pPyLB6zecfPtR3aEm3oPOfnZ/EWGL7xZGnRhFujqdOfXm0K9CP+1MzLrD0+l7YwpBy3WxHz4VJk7kdqQv7bzbEZkUydrma79YpOLf5NCjQzTf3hzPJp6MPjGaBsUasLvtbvR19Xmd8hrv+954+XpxMfQi5gbmtHFpQ/ey3fne2AnVvHm0erGUy0WE+7knYTVsIpiaKgWnpICTk5II0Nub00Gnqbe53gefRe8H3rTzbkcftz6Zcjb9q1SqBAUKKK5TOeSQQ7bJMTRy+GriU+OxmGPBjtY7WHhlITcilEzA53ucR1dHl8ZbG1MyX0mOdT6WSXbzLSkZKez338+6O+s4FXQKE30TOrh2oJdbL6oVqfZNnbmPERYXhuOvjkz6fhJTak759M7+/kpuhXLlqNE5lYLmhdjdbnemXVrtbEVSehLHuxz/4rYERAXgttqNXm698H3pS/DrYHwH+jLql4pclXAeLMzq4pWYlkj51eUxNzTncq/LWre1br93Y9u9bahFTbcXBVno9YJ85WsoftPvSdWmqdMotaIUhcwKcTnsMhrR4D/E/5tHCTWiITQulIDIhzx6co2A4FsERAfwKCWCUP032v3yJoFTtIoS6tw4mdjglN8Zp2JVKFa6JoYlS4GhIdPOTmPfoQXcWZhI/E4vBukdZ6vfVmxz2bK73W4q6dvhV6UxHi37EmdalEj8iTLcjo21DlfCr3Ck05FMOUo+1eY8c/Mw9rux9D3zmpDdawneuZqQuFCtMfLWOHmbOwMUuVtbC9vMxkhuO+3fhcwLfdLdp+TykjRxbMKihouyf4Hr1YM8eWDXriybvHy86L6vOyk/pxCTHEOvA7049uQYhc0LU6VIFfa02/PRYkcdH4WXjxfho8I/PPvRrBkS95ruoxzYdX8XhroGNHiQyjEHDTb5HdF9HU9Y4jNSdGH6HzAq3AaePsV1RSk2/xZNxVd6iEbNQ4sMqnV8w66uB2hYvCHPE54z8vhIdt7fSZ2idVjRZIUyUzl3riKZGhKidOr+CzQatrVxonPZJ5zsdIx6jg2zdVh0UjTjT41n3Z11VC1SlTXN1lC6QGkS0xIptLAQI1PK4THjsjbJX7xdQfoe7Muu+7sYVHEQCxsu/H8iud9fUWvUFFtWjFr2tejg2oEft/9Iy5It2dZ6W6ZEiYExgWz23YyXjxdPXz/FzsKOrmW60jxXJZocbE8d/1R2nbWCCRMU10ljY9i4UTGib9yAihXptKcTp4JO4T/EP1NcR9NtTTny+AjnepzjB7sf/v2LcPs2VKgA+/fDjz/++/XnkMP/Mv9NDHoO/xd4lfhKcEe2+W0TlbtK9D30pfXO1nI66LSYzjSVHzb8kEUJR0TkzvM7MvTIULGcYym4I9XXVZf1t9dLQmrCv9LukcdGivksc4l8E/nxnV68EClaVMTFRSQ2VqacmSKWcywlQ51ZnWnsibFSdEnRr27Lr9d+FdyRzXc3S67ZuaTj7o6yb8N4wR15dPtUlv177OshpjNNJSAqQEQUlalRx0eJaipiM15fTjogUqqUyMGDIh9R4dr7UFG3arKliajcVdJmV5tstzc6KVquhF2RjbfWyaRdA6T14mriOq2AGE7R0SrUGPyClBqE/NRRVyY01JMNbiq5XNtRosx1RR49UtS7PsF3676Tdd3LSIa+nthNzytG041Ez0NPIhP/vF8LFkiGvp7kGYe03dVWjCarBHfkdsRtsV9iLwMPDcz2+dTzqicttrcQ2btXUZN59izLPhqNRmKSYuR2xG3Z+3CvLL6yWEYcHSEtd7QUt1Vu2uf47T99D30ptrSY1NlUR3rt6yXTzk6TTXc3ydmnZyU4Nljyzs0rM87NyHYbRUTE0VGr0vNXNt7ZKLijVQTSaDSy8sZK0ZmmI+azzOVq2NUPHpeYmigWsy1k/MnxH69340YRkOTgJ1J1bVWxmG0huCPNOiFmM0xFx10lDsMQ8wnIKQeVaFq2kM0+m6VzK0RA1Ha28tzKWGwmGMrxJ8clQ50hy68tl1yzc4nVPCvZ7LM5s1pcTIyIiYnI1Klfdn3+ZjRXr8oPPZCS0wt+kaqciMj54PPivNxZdKfpyrgT4yQxNVH6HegnhRcWlvRLF0SKFxcxNhbx9BSNWi0rb6wUw+mGUm5VOXkU9egfOqNvY/aF2WI43VCi3kTJ3od7RXearnT9vesHFdk0Go1cCLkgffb3kVyzc2lV4HBHNg/6XlG7s7YW8fRUlKucnUXq1xcRkYj4CDGfZS4DDg7QlpeuThfjGcZiNMPoi1UD/zYGDFDa/JlvVw455JCVHEMjh6/mrdzgTzt+EtwRvWl6stAw70gAACAASURBVPbWWjGcbigNNjeQN2lvtPvGJMXI8mvLxW2Vm+COFJhfQMadGCf+kf7/ertfJb4Ss1lmMvr4hztu8uaNSOXKIgULigQHi4jSecAdufnsZqZdv0bi9n3UGrXU86onhRcWltU3VgvuyLorK8T4Z2T+7GaZ9t3qu1VwRzbd3SQiIpdDL4vrspKiMxUZWx9JsCsksmHDJ6VqRZSOQK2NtcRxmaMYTFckb++9vKfdnpKeIvdf3Ze9D/fKnLMzpOeGllJ9rpPkm2qSqUNdZCRStxsyqJWBLOlgL0cHN5Sg+ZMk4/BBpRNhZiZSooSIr6/InDkiefJ89nrEJseK7jRdueBkLMeKIV1/7yqlPEu9M4Y0GtGULCnHKueVSmsqieF0QzHzMJLOPyFy7ZoMPTJUbBbZfFLq+H0mnZokBRcUFE1QkGJoHD6creP+SnxKvPi99JODAQdl+bXlMub4GGm7q61UWlNJ8s/Pn0VSN8/cPPLDhh+k6+9dZfKZybL21lo5FXhKHkc/lpT0lMyFazQihoYiS5d+sO71t9cL7mTphJXyLCVW86xEd5quTD4zObM0qbx7dp/GPv34icXGKtKlS5fK84TnYrPIRnLNyiX5xqm051JiCJJrPBJtopIM96lSeWZRiTPVE02hgpJorCflhhnIiScn5FbELam0ppLgjvQ/2F9ikmI+XOegQSJWViLJyZ+77P8oPn2ai+4UZP4pj8/v/BdSM1JlxrkZYjjdUOyX2MuSK0veyb0mJooMHKg8bw0bijx7Jnee3xHHZY5iNstMtvtt/wfO5tt4lfhKDKYbyPxL80VEZLvfdtGZpiP9DvT75LuWlJYk2/22S+MtjbXPS88ltSXsx1qiUalE7OxEBg9WrsXp0yIisvTqUlG5q+Ra+DURefftbbSl0T9+nh8kIUGR4508+b+pP4cc/sfJMTRy+GoeRz8W3BHzWeZarXV9D31psb2FpKSniFqjlpOBJ6Xj7o5iON1QdKfpSovtLWS///4snZ5/m6l/TBXD6YYSFheWeUNGhkiLFsqo6s13RkVqRqqYzDSRORfmZNr9TNAZwZ1vMphCX4eKxWwL6byns3Tc3VFyzc4l9Ubmkxojcmn3eRL9RMxnmUvnPZ3ldfJrGby3r6imIhX7qeScLXJleGtldDCb3Hp2S3BHKqyuILgj9ovspLHnd1JsRn7RmfquE2k+EanYF+n8E+LR2FR2tHWRO8PaSeKyBUrHICIi88xJSorIkCFKx6FDB5H4P7Xxf/5ZxNb2k22KT4mXZlubielEJFUXeTRliNx9fjezHv/FiyIgtbspMzImM01E30NfnpZ3EGnRQptX5M7zO9m6Dvse7hPckdDYEBELC5GZM7N9Db+EN2lv5GHkQ9l1b5fgjrTc3lI67u4o3637TqwXWovK/d01V7mrxHqhtVRbW0067u4oE/YPlVUVkKObfpGHkQ8zGfAi73IW/HV02cXTRYYdHSYeZz1Ed5quVFhdQR5GPhQRxdgss7KMMpvzOZo2FalRQ0REbkfcFuMZxqLnriNFRiJGHgZSZCSSd6wyg3FyyXDZ6opkGBhIho5KmvTQl/3++2XE0RGiM01HSq8oLZdDL3+6voAAEZVKZN267F/gf4KICBnWXF/MpurLs/isM13Z4XH0Y6nvVV9wR3LPyS0NNzd8t/HoUZFChUQsLUV27JD4lHjpuLuj4I70O9BPktKy/z7/G3T5vYs4LHXQPmdvZ9KGHRmWLcPe76WfmM0yk1yzlFmO6qMt5fb3jiIgGkNDEQcHkfR0SVenS7lV5aT86vKSoc6Qfgf6Ce7IDr8d//Qpfpi1a5XnMSTkv6k/hxz+x8nRaMvhq3krE5uQloCeSo+Djw7S3rU9M2rPYM7FOZkCu6fXnv63B3Z/C6OqjWL59eVMPzed1c1Xv7dhlJLxdf9+xSf3Twx0DahpV5PTT08zvsZ47fr3JW6/Vg3LxsKG5U2W03VvVza02MClsEuE5EnhSXo8kWH+WFg70HFPR6xMrWhiX59S8+x4nRrH4vN6FMhdhNGDdbkyZgfoZH2dE1ITeBT9SImXiH5EwHM/Ap7f41FiCAC3nt8CgeD4EGyCQ2gZAU4aS0rkLoaTjRsFSlZE1cQFnJ0h72eUkoKDoV078PGBFSsUP+y3cTaJiYrSzAcQEXY/2M2I4yN4mfiSzs9yYaCOx7HbCEb7rMDKxIqGxf70k1+7lggrIyIrOeAfdAJdlS5DKg/B3qYM9OxJzWlTMDcw52DAQcoVLPfZa/9Wael6xA1sypX7xyRuTfRNKJmvpNanfWiVodQpWke7PTUjlbD4sEzB6m9jRC6/Okt4U1A/nQGeMwDIb5pfG6QenxoPwOFHh7XxIrkMc5GSkYKJngmTa06msWNjuvzeBbfVbsyrN48yBcrg+9KXBfUXfL7xbdsq2Z+fPcOtsBtbftpC612tCbcANGm8MgWLP8OJjl3byoJ7AGkM/VGPit0mMujwIGJTYplbby7DqwxHX1f/43UBlCgBzZrBokWK//4/EKuVLQoVYlq1ieyI8WDs7v5s7fnlmaCL5ynO8S7H2X5vO/0P9ed44HFmX5jNuOrj0G3USJHBHTgQOnTAvGNHti5fTm372gw7Noyrz66yq82ur/6u/N0MqjiILb5bOP7kOI0dG9O9XHeSM5IZeHggxvrGihTuJ+7V22z2rXa2YkbtGUQnR9Oo4FYKucDiC7rUfhBEelE79BcvZWVjTxquH0jn5acJj2pBaXHB3qjmv3i277F6NTRuDLa2/039OeTwP05OMHgOX4VfSAKexx/iG/aKRAIJ0V1Pefs86OnqcTroNCb6JrQv1Z7e5Xv/Y4Hd38qiK4sYd3IcDwc/VAyGJUtg5EilkzxwYJb9F15eyC9//ELs+HeqRhrRYDrLlNl1ZzOi6ogsx2QXEaGtd1vOBp/lt+a/0XPnNGzVPSmiUxoDi0TOJ7hTxiiZcyn+NH0EK8zaE979J6qfbM/O1jspb12egKiAPw2KAAKe3yMgKoDnadHaOgok6eD0SkOJaHCKBitTKwZWjaY8BbmkG0HtPBU40+OPjxoEn+TAAejeHSwtwds7k5EGKJKQ9+/D1auZVj+OfsyQo0M4EXiCFk4tuBlxk10ncvNdcAYZD+5RZFEROrh2YEmjJRAXh7pQQSZXS+Fqt9pce3YNXZUuQcODyKdvAcWLQ40atG2ZRsjrEK73vZ6tptsstqGTayfmHk5VkjE+evTl559NroVfo+q6qtztf5eyBctm76C9e8lo8xPPHt8iWCchU5B6SFwIvi99iUyKzHSIpZElCWkJFM9TnIbFGmKf256CZgXZ77+fHfd3kN8kP2YGZjwe9vjzeSr+VJ9iwQIYpuREmH5uOlPOTkFHAxodyJ0MQZ66ZKjV5EuGabV1ONapEteeXaN5ieb82vhX7HLbZf9C/fEH1KmjJCr8M2/Nf0JKCht/tKVn9UjOdj9LTfuv7+wGvw6m+LLiqEVN5cKVWd1stWIMi8C2bTB4MJiZwcaN+JbOTzvvdoTHh7O62Wo6l+n8N57U1yEilF9TniK5inCw4zuj620iPfea7toErZ+i696uHAw4yP1B9ylgVoATgSfY5LOJZ8e8mXxWaBgIl6s34Jda7mhUSo4cQY2eji6LezlT2u4rvk9fy507UL68IsndosW/V28OOfwfIsfQyOGL8QtJYOT6h2hEEFEhqAHhju5AStua08utF+1Ktct2Mr3/ipSMFBx/daSGbQ22q9pCmzYwZoyi1PQBfF74UG51Oc50O0PtorW1679W4vavRL6JpPTK0rjlbkVKaHdERPsjC8LTtIH0jkvDunknAvTjWXt7LRlpyaSiJl2UBH/Gah1KxKhweqlWDIpYHZxM7XC0diV3yXLKzISLizJqbGzMjPMzmHZ2GiYGJsSnxnOl9xWqFqma/Uanpyt6+PPnKz/EGzYoxsZfad8eYmLg5ElAyZ0w5+Ic5lyag7W5Nb82/hXHPI6UXF6S5JV5MOrSgyMD6tJ0W1Nu97uNWyE3WLUK9aCBVHe34QbPAJhRewYTv5+o1OHpCcOG4XVsLt0vjyViVIQ2x8inaL2rNTHJMfwh3aFXL4iPVzp8/wBHHh+h6bamhI0Mo0iuItk7aOlSRaknKemDo/urb65mwOEBhI8Mz2SEuJ9zxz63PToqHYJfB2dJVKlChVtBN6rZVMsi42tlYpV5cKBZM4iLUzJ4o3Q6m29vzoWAMOw0vTCjGGXDAun3x3pWlPVjc2UDrEyt+LXxr7Qs2fLLL5SI0sErVEgx/v5DNHt/p8bh1iSUsOPOmCeZlJa+lB77enAi8ASWRpYERAcwsupI3Gu5Y2pgqiRl7NkTTp+GoUNJ9PiFQX+MYbPvZnq79WZZ42XvMpD/R6y9vZZ+B/sRNDwoU06kWRdm8fOZn5lbby5jvxuLWtSoNeoPLqOToqm1qRbO+ZxZ9+M6NKJBIxpi71zm6MxehJTIj17GJJ4WqqzIV/+JjgoqFrNgbvd/cYZn0CDFyAgNzUnSl0MOX0mOoZHDFzN+UwA3A+PQZHpyNLjY6ePZp8LHDvt/krW319L3YF/urDegXNWWsH076Hx4hFcjGgosKEC/8v2YWXemdv23SNz+lUOPDjFpcyD5qIrwrqMnqInhOn56I1AJ2CTp4fgiA5cocIoCp3h9nPI4UrhoWXScXRRjwtlZGeXX/7irSlJ6Ek7LnchnnI+7L+9SpXAVrva5+tH9MxEeDh06wLVriizpyJEfd3Np0kTJDL13L8eeHGPIkSGExoUyvvp4Jn4/ERN9E5ZdW8aWTaO5vjIDTp+mQ8wa7kfex3eALyqViqSypTiV8oBZY6vg98oPC0MLngx78q7zlZwM9vZEtWpIAeutrG62mj7l+3z2NOZenMuMCzN43fAsuhUqwuXLmSSB/042+2ym275uJE1KylbWbkAxfg8c+OhMy6qbqxhyZAgZUzJnkzeeacy8evMYWmUoIkJkUiTBr4OZf3k++/33Y2NhQ1BsEBaGFqg1ahLTE98dq2ecSbLXLjAau3W7sd+4D7viFSlkXojbQTGM2agkq1Shi0qjRqMSfPUG07NaHabVnvZtgw1eXsos2YMHyrP8N6MRTaZOsEY0H+4gqzPw6d+Cli6+TPhuHJ3LdftkR/pTyweRD3A/587oaqMJfh3MgYADmBua086lHaXyl0KdkU4Z7/PUWHGI+IKW7Jv0E4csXnLo0SEsjS1p4dQCS2PLj9fxle366Ln/ZZmuTufVm1cY6hlipGeUaXu6Jh2NaP6We1Mt4yCGZM27lM9cH+9xbn9LHZ/lzRvF0B0+HKZP/3fqzCGH/4PkmOg5fDFBL5P+YmQA6PAq5n8v0XwP8++ZH6vLz81NObxg00eNDAAdlQ51itbh9NPTzOSdoeGYx5HdD3Z/9Lhsk55OM3UxlugYotZk7rCr0MU2uRjb9phQtIAzx3hMbNFC9Bm0QDEq7OxAV/cjBX8cE30T5tSdQ5e9XchjnIdrz65xLvjc511ETpyAzp3ByAjOnVPyjXyKxETe5DKm+6427Hm4h7pF63K40+FM/ucnAk8w4KUNmEfxuqIr+5btY0adGcrI+p07mPg+4PeeShsBljZamnmE19gYRo0i3+TJVFtWgYOPDmbL0KhcuDKJaYkE5NfFRV9fidP4hwyN6ORojPWMs29kgDKa+gn/cI1osrgmiggpGSnaelQqFflN85PbKDcXQy/Sp3wfVjRdwXa/7Qw6MohchrnY2HIjDpYOmXOIxIVw7dk1diUHE9saOKjMThjoGuCm+RUjSqNCee5ERxdQU9X0F/R1bzDt7LRPd14/09lVqdPZbGHApYF1md+92Fd1oD+1/CJKKYvZV+Yx+8qHZzy/hIVXFmr/jkmOYdWtVahQYahriF5+PZwHG7FmVwzdB60mpp4ZN+rk4WVKDOvurNPeR10dXXRVul+0NFAZfHC9DjrZLud44HF8XvowptoYjPSMtOt1VDrsC9jHqaBTdC/bnTpF63yynKXXlnIh9ALrflyHtbm1si00DN2OnVjXR80jtTJj/hYdFTgU+BdndHbuVGLL+nz+G5JDDjl8nBxDI4cvxqGACTGJmWc0/vUfgb+D6Gj0mjZnuq0V7b9/wcVXN6lhW+OTh9QrWo8BhwcQlxKHhZEFoAR8hsSFkKZOw0DX4PP1Jicro9MPHij/Hj5Ulo8fQ0YGZTst4VbRyqhU77kNIJRytME1KJHVt9Yw8PBA7vQ/D9n18/8EHUt3ZNn1ZbxKfEVMcgzDjg3jbv+7H46rUavBw0MZ4WvYEDZvhnz5Pll+ujqdmJdBHEi9wqWwfGxvvZ32pdpnKj81I5U/gv9gdUA+aNAA78f7Sdek07m04pv+2nMhSWbgW74wxnHJ2FrY0qNcj6yVDRwIc+bQPNiQaeYnSU5P/mynvoJ1BVSouBZ5BxcXl38sIByUpG55TT4TVP9XQkMVY/IjiEiWOIu3blLGepnP/feHv/Mi8QWDKw0GlHv/vd339NzfkzbebRhaeShz6s35oItO/I8NCUl7RciSaQTfPcsBPzvSdTIbtyp0MXxuSMXdnvgUNcHXwYSn1iao9PQ+2enUUelk7RAbmHGysRM//f6AYz1rkJzHVNn+hZ3r7Cz/Wv+Hlm+WL6Kb0RG+c6zL1Pozv7quFTdXMPnMZEJGhGjFMXbe38mIYyNISk9iZp2ZDKo0CN25Gpg+nbGzZjE21pmkdccYHLSMjXc30qh4IzybeCouV/8yHVw7UNKzJHa57ehSpkumbYMqDWLIkSGsvLmSeg71Phlb8p3Nd5ReWZq1t9dyousJ5Rm2BRqewmj3Qoa3mo+gRoUuOiplsrRrbet/+OzeY/VqaNRIGcTJIYccvpocQyOHL6ZLLWtuBcWhA2iE/+ZH4FtJSVFiCmJjaXPkMuVOt2Pi6Ymc73H+k4HrdR3qohENZ4PP0qKkEhzomMcRjWh4Gvs0s0JMQoJiRLw1JN4aFUFBig86KFPzLi5K5uehQ8HFhR65Hbi7J0IZ1dX+yKro2tiBN+lJuJ9zp1PpTtkPJv4MOiodFjVYRI0NNbAyscL3pS8nAk/QsPhfMiK/fAmdOsHZs4qhMXHiJ2eAAC6EXGDg4YHsjXqGQ5kK+A8+rTXQ3udS2CVMXidh/SAMRrvj5bueBsUaKDEWyckYbPdmfRVj7kT7ATC33twP+8rnygVDh9J843wm9E7hzNMzNC3R9JNtzGWYC2crZ64/u07Pf1B5CpQZjbzGX2hohIUpRt1H0IgGFZmf2beGxl8zTXve8KS2fW1K5S+lXVckVxGOdzmO53VPxp0ax4nAE2z5aQsVrSu+OzAjg1zO5Sg9bx6la/SC6GjCOthx0+EvfvQaNSX00miT7kib3b6gfgWmplC5MlSt+u5f/qxuMR+kdhTs+//YO+uwKNPv/79nhhYQRERUUDGwUVEM7MS1dXVd1+52jcXWARWLsLu7u7tbDOxWbKUE6Zn3749bShiYQXD3+/k9r+vy4vJ57nom4D73Oed97LAwsBzQdbx2fbKLceUxq5U9+hiewHh6okq+KpkapmeFnph4aiI2BmzEiOojAIjNu1tRN4w5PgZDDg/B2jtrsbTZUlTw9ASaNgU6d4ZJFVesmjULdVvWQf+DA3D17VVsbbcVZfKUycqnzBDH3I6oX7g+Fl5bmMrQkMlkmPfbPETHR6Pr7q4wVBiiXel2aY6T0ygnVrZciYbrGmLx9cUYUHmAuDFpEsoWKwYzuRdC9FvDRt8JDjYm6Fw3H8rY/6JE8Fu3gKtXgV27fs18EhL/w/zfi3WR+NcpW9AMfj1KolKRnMhtpo9KRXJids+Sv+6PwM+iVovY7xs3gH37IC9aDF71vHD+9Xkcfno43a4Olg4obFEYJ16cSLzmKMsN11dAzKL5Ik+hcWMR6mJuDlSpIqRBt24V87ZqBSxfLvIAQkKAd++A48eBuXPFaXzt2ijrZIfZPUshp+UnxOAzHO3kia/vnCtzEBQZhMl1szZm2NXeFe1Lt0e8WsT5Dz4k4voTOXMGKF9eKEcdPy4SwNMxMj5/+4xuu7uh1upaMDM0QyG93KhfrmWaRgYAHHl6BH8EmkNG4mXVkjj/+jy6lOsCAPiybglMImNxsIYNDBWGqF6gOlo4ttD8MEOHomSwHA60wL7H2kmSuuR3wdV3V8Uz3rkDxMdn3CkTBEXp6NGIjQXev083dIpI7dGIio8CgBTenFsfbuH86/MY5DIo1RhymRyDqwyGfx9/mBqYotqKaph6bCJU+/YKxbC8eZNEEoKDAXNzdHKUQQZCrhZhSHIQMhCdP5wVm7SwMPG5mTAByJkTWLlSGPc2NkCRIiL0bt484No18ZxpkTs30KWLSPSPidH+dcsOrKzQo/00VHoLDNrREyq1juFX38ltkhttSrbBMv9lKb5jFkYWWNRsES70uIDo+GhUWlYJw48MR0SF0kL9qHt3YNAgdBm1EbeaHYBCroDLMhes8F+BX51qObDyQFx6cwk3399MdU8uk2Np86XoUKYDOu7siH2PNH8HGzg0QD/nfvjn2D94HvJcXLSzQ/TAvjgRtxdNKj3FNvcKmNHV8df+fVm2TBwCNU3/kEJCQkILfnnlDgmJfxt3d1GAaceOxEtqtZo1V9Zk+cXlUxU++95AFKc7cYIb+lTjxpoWZJ06ZJ48ojgdQJVCLipht2pFjh1LrltH3rghKgFngqi4KJZeUJpOi5wYEx/DL9++0HyaOYccHJLZJ0+XFyEvaOBpQOuZ1oQS3P1gN6lSkV5epFwunvf9+3THUKlVXHxtMS2nW9JyuiWXXl8qXs8cOUg/P439yi8uz0uuBUlnZ046NYlmXmaJhekel83PUw6KxIJ2F15fyPhhhg/n0BYGzO+dT6tiYouuLaKepx6jjx0W7+f9+xnPkQnqr6nPdlvbad8hoWL50aMam/hd8qPJVJMU154GPSWU4MnnJxOv9drTiwV8C6SqIJ6CiAjGbd3M2/VKM8xQfK5j7AuQFSqQenqiSnjBgqIQ45AhvFOgHN27LeLvo0/QffVDBqzbTyoUZKdOqSvUq9Xky5fk5s3k0KFklSpiPIA0MiJdXckRI8ht28jAZIU0798Xbdas0f51yy7i4nilRmFCCS68uiDTw5x4foJQgmdfnk3zfmx8LGecn0HjKca087Xjnod7xI1kRf6i169hrz29CCXYaWcnhseEZ3o9uhKnimN+n/zsvbd3um3abGlDg8kGPPL0iMZ24THhLDy7MGutqpX4u/fQ9c2EErw7skuWrz1DIiJIc3NRZFRCQuKnkQwNif957rz8SvfVD/n7DH+6Tz7KOwXKkb6+qdqdf3Wesong3iPzyIMHSR8fsmdPslo10sIi0aCI19fj7TxgZJvmpFJJbtnCVuOLcsiuvlm+dv93/tTz1OPY42M5/PBwmnmZ8VPEpyyfJ4FRx0bRwNOAUIL2PnZU/dZEPPf48WRcOhtUkjfe3aDLMhdCCfbY3SNpnSqVGGPZsjT7fQj/QMUEMNrMhOoJE1h4dmH23NOTJPnZ/wIJcFAnKxpMNtCukjVJvn3L48X1CCXo/84/w+Y33olK6VfufDc0Nm7Ubh4dKb+4PPvt66d9hzNnxHoePNDYxPeiL029TFNcu/vxLqFEYhXu4MhgGk8x5pQzU1IPEBpKrl9Ptm5NGhuL+Zyc+LbXHzzolIOxcjDSwpTq6dPJxYvF/XPnhPGZKxdpZkbOmJE03ubN4l6vXuK9T4+oKPLSJWGEtm8vqsd//56xQAHy999Jb2+yalWybNmUVej/LY4dY88WoKVnDn7+9jlTQ6jUKhaZU4Sdd3ZOt93z4Od0W+9GKMHWm1szMCyQ/PJFvFYA+eef3Hp+KU29TOk4z5G3P9zO1Hoyg+dpT5pMNWFIVIjGNjHxMWy6oSmNpxjz9IvTGtudfnGaUIJ+l8RhRP/9/emgtKTa0IB8/TrL154uK1eKg6gXL37tvBIS/6NIhobE/zR3Xn5l/YlXWG/CFdYZf4X1xl5k/XGXeOdpMPn4Mbl7tzix79yZdHZmpKEiaaNjYkI6O4t7Xl6i7aNH/BT6jlCCa2+tTZyn1eZWbLSuUbY8w5QzUyj3kFPPU48epz2yZY4EwqLDmGdWHuaeakEowY1Vc4hT1HQIiQrhoAODKPeQs+zCsjz/6nzKBl+/itdz06Y0+6+9tZY1u4nX3H/3YkIJnnl5hiR5qn0VBhmDhuNAmVLG+5+09zTE9O1F8zEyehwbn2Hb2PhYGk425OxLs8WJvbu71vPogp2vHced0OGkdN068dql4xXzvuBNMy+zFNeuvb1GKMGb72+SJH0u+tBgsgE/RnwUDT59EoZfkyZJXoUqVciZM8kTJ8gePUg9ParzWHN796o0GQs2Wd+E718/EJ4NGxvRZ+VK8fPAgZSLWrNGbNYGDdLdOHj7lty5U7wHNWsmGT8A6ehIDh5MbthAPnv2rxken9q60WKMjL13ds/0GF5nvWg0xYjBkcHptlOr1dxydwvzeuelqZcpZ1+azfj4OPEaWFiQ+fPz9bYVLLeoHI2mGHHJ9SVaefF+lndf31HPU098Z9IhKi6KDdY2YI6pORIN37QYemgojaYY8cGnB8zvk59D9/Qnra3FYc+vpEoV0s3t184pIfE/jJSjIfE/zfrT70AiUSFLLVeAJNZPXCeK1rVqJWLPnz4FypdH8Oi/0eQvYNO+aSKZ+/p1oec/ZoyILy9eHNY5beFk45QiT6NYrmJ4EvQkW55hVI1RsDK2Akn0de6bLXMkYG5ghsnq2vgSFwoAGN7aBKpGaVdmJokNdzagxPwSWH17NbwbesO/rz9c7V1TNoz4Xp9BQ8Xxo8+Pose7PECePFjEayhsURg17Gsg5OsnlDpwFTucjRFvoEDPCj1R0lr7egoG7mPg9hTYd3lthm31FfqoivdPXgAAIABJREFUaFsxKU8jmxLCdU4Gf/0asLISCdUaSDNHI+57joaeMdRUY8G1BeibtxnyrNoK1K0rci769hVFAH18RML5+vVCsKBRI+DAAWDGDMhevETblZewrdsB3PxwE6U3uSKskK0QBqhRIympu8wPCcldugCLFwPz5wPu7kniB9qQLx/QurWozXL2rMj1uH5dxMxHRACHDon8jiJFxHO0bAlMmyaqiUdEZDx+FmA9fR6mnJZj+Z3VuPb2WqbG6Fa+G+JUcdgQsCHddjKZDO1Lt8fDgQ/RpVwXDDsyDFVWVMWNOo5AQABQsiTs2vXEjYDq6OXYEX3390XHnR3xNeZrptalLbZmtmhTsg0WXl+Ybo6IkZ4Rdv+xGxVtK6LJhibwf++fZjuv+l6wM7dD++3t8Tb8LVqU/R0YP14UAX34MLseIyW3b4u6QH36/Jr5JCT+P0AyNCT+p0mr5odarsDzohVFBd5370Ry68WLwPLlyK/0hmXrP/HP4/mIUmlOPq1fuD6OPz+e+Ac2ucRtVvPg8wN8jvwMhVwBzzOeWT5+ImFhwO+/o8eYbSijyg0Lw5z4EPUZa26vSXNN9dfWR6ddnVCrYC08HPgQw6oNS1sJKjxc/Eyj2raaahx9dhRuj9WIb9wIWx5uQ+dynSGXyXFs7lDk+UbMKxMFhUwBj7oeuj2PgwOaW1XDddVrvAt6mWFzl/wuuPLmijA0bt7UbXOsBdHx0YiMi9QtGTwwELCzS7dJWnU0ElWn3n3CozG9sX7Wc8ztvRMYPlzUPlm8WCSZnz4tJDzHjQNKlAAOHwa8vYUy2vDhgImQuf2t2G8I6B+ANuZVYfI8EAAQPnkCcPeuED1Ia419+oiq5t7ewKRJ2j/zj+jrA87OwJQpwNu3wgj6/BnYv1/M8e2bMDTq1RNJ5+XLA/36AatXiw2qOmuKyKWgaFH0qzUcTh+Bgbt7Z6pQna2ZLZo7Nk+VFK6JnEY5saDpAlzqeQlx6ji4LHfB33e9Eb53OzB3LvRWrsa88RdwxHEKDjw+AOelzmkma2clAysPxOOgxzj54mS67XIY5MD+jvtRIncJNFzXEAEfA1K1MdE3wepWq3H3010YKYxQ076mMIbt7ITB8StYtkwYr82a/Zr5JCT+P0AyNCT+p3GwMYH8B7VauQxwcLAWGxNb21TVrD3reuLjt49YeG2hxnHrO9TH2/C3eBwkqjUnl7jNasaeHIsilkXg3dAbC68vxJGnP1+BPBX+/kBFYXzp7dgF364bERoTBhlkcD/mjjhVHABRSXzsibFwWuyEwK+BOPzXYWxttxX5zfNrHjsdj8btD7dh+PYT8r78gitOVvga8xWdnTojIjYCFuu344adAvds5RhZfSTymekun9yk90zI1cCBDRlvdF3yu+BZyDN8LVlEbGQ/fNB5vvQIigwCAN09GukoTgFp1NG4fx9RG1YDAIyr14KD72pE57YA164FPn0SHoHevYXqWefOwsA4fhzw9RUGxt9/JxoYycltbIWlu+KhpwZUALzn/IEPl44Lb4YmSeghQ4RnYvJkwMtL++dOi44dhQdlzhyhRtW0qRj3+HHxLAEBovZBpUrAuXNCpalkSdG2SRPAwwM4ckS0zQIU4yZg/iVLXPtyGytvrszUGL0r9sadj3dw7Z32XpEqBargeu/rmNFgBpb5L0OpxWWwu6GdMI5NTdGo0yS8COkKS4VQD1t0bVG2qVLVtK+J0talsfC65t+VCZgbmuPQX4dgn9MeDdY1wMMvqb0U1e2qwzqHNWLVseJ3q6GheN927BDqZNlJZKSoC9SjhzBuJSQksgTJ0JD4n6ZTnXyQyZBobGhT86NorqLoWaEnpp2fpjH8oFbBWtCT6yWGTxWzKgYAeBr8NEvXf+7VOex/vB9T603FIJdBaOjQED329kBIVNZslkCKzVn16oClpTA4WrVCwyIN0bRYUxjrGyMoKgiLri/C3kd7UWpBKfhe8sX4WuMR0D8gda2NtEjHo3H02VG0eW4A6unB1/wuXO1cUTRXUWw8OAP1H8djUXkVTPVN4e7qnqnHs6roCtdIK+wL2CGKDaaDS34XAMBNm++n01kcPhUU9d3Q0MWjoYWhoaYKsniV8EqULAmULo2ovTsAAKFzZyD3SDVerfKDrHNnwMJCnPL/9Zeo33LqlNi4P3smjALjdIob7tgB2dGjkFlYILZeLfx+T40Pl4/jUs7wRA9Kmri7A0qlWJ+fn/bP/iNGRkICevVq4YVMjkIhDJ5evYR89L17wqA4elRITsvlQkLazQ3IlUs8e48ewNKlQs44g89GmpiZwXWoD7rcAkYfHongqOCM+/xA4yKNYWduh2U3lunUT1+hj5HVR+L+gPtwsnFC6y2t0fLWKLw+vAUYNw5WvotweZUCY/O0xYCDA/DH9j8QFh2m8/oyQiaTYUDlAdjzcA/efH2TYXtLY0sc63wMuU1yo/7a+ngW/CzF/cCwQHz69gm2prboururOODo1Em8X2PHZvn6U7B1q/hdJVUCl5DIWv699BAJiV9DCtWp1Q8Z8Oprhn3ehL2h0RQjTjo1SWObGitrsPXm1iSFiozRFKNE1ZSsQK1Ws9ryaqy4pGKi7GNgWCAtplvwz+1//vwE4eFkx44iyXbAAKEAlIz7n+5TrpRTppRRz0MoOLmtd+PToKe6zbN/v5jj3btUt+qurssr5fMwumZ1yj3kXHJ9CaPiojijkSnDDUDTMfjp13Tm5sE0HgdGblqXbju1Wk3L6Zb0OKUkc+YUAgBZyMnnJwkl+PjLY+07mZunVHRKQKUiL1wghw/n1OYWtP4HpKUl2a0buW8fV19dRijBoQeHMteMXIyMjSTv3SM7dBBJ2gUKkAsWkNHR2q0jKEgoTAHkqlXk6tVCgU1PwaFNFSy9oHT66l5qNTl6tOi/IPOysPzwgTQ0JKdN072vWk0+eiQS1fv3F5K9iu/iD6amZL16QpZ6716RLK8NKhXfuzrRfJycA/b3131NJCedmsQcU3Pwa3TGv5fSQq1Wc/u97bT1tmWOqTnoe9GXcZcuCKltY2P6j+3BnFPN6DDHgdffXs/UHOkRFh1GUy9TTjg5Qes+78Pfs9jcYizoV5CvQl8lXl94dSH1PPV44vkJKjwUnHxmsrixa5d4n44fz+rlJ1G1Ktm4cfaNLyHx/ymSoSEhoYGRR0bS1MtUo5ys8pSSFtMtGK8S9QLKLCzDAfsHZNn8ux7sIpTgsWfHUlzfcGcDoQQ3B2zO/OABAWSJEmKDpUENKiY+hlWXV02sX9Fxe8fMqdls3iw2CV9TbqTCY8JpNkGPsYb6PDWwKQ0nGzIkKoSLryzki5zgsgqgrbcto+O03Axr4MHnB4QS3Ne4cIYqRY3XNWbTDU3JWrWEhGgWsu3eNkIJBkUGadchNDSlWldcnNhoDRggaikAZN68nDzShXmmWpCxsYldF11bRIWHghbTLeizpLt4FplMyMcuWqS9gZFAt25iU+7kJIyckBChPgXw+c6VdFrkRH1PfXqd9Ur8PqRCrRb1MwByxQrd5k9Ojx5k/vwpnjfTRESQp0+T06eL+jcJaloAWaQI+ddf5Lx55LVrmue7eJF+VUG5UqaVlPKPvAp9RZlSxmU30pZ/1pbQqFAOOjCIMqWMFRZX4NWnZ8mBA0mA3+q40m16WRpMNuC8K/OyXJWq//7+zOudlzHxMVr3eR36moVmF2LRuUX59utbkqTbejfWX1OfJDnuxDjqe+rz1vtb4rNTpQpZuXL2KI3dvi3e82S1lSQkJLIGydCQkNBAQoG8YYeHpXn/3KtzhBK8+uYqyayVuI1TxbHk/JJssLZBqntqtZrttrZjrhm5Ev9A68Tq1UIytGxZ8uHDNJuceH6CJeaXoMJDQQNPA8o95DSZaiJOxnVl2TLxR/yHmgr7Hu1jk45iU9d8QlG239aecao4duonNntVeoLrb6/Xfb4fUKvVLDojP/s0g/CupMOEkxNoPdOa6sGDxYlwFrL42mLKPeRpF4RMi4AA8brNmkV2757kUbC3J4cNE7Us4uPpedqTeb3zpujqe9GXFQfqc2up75vmggXJJUvIGO03gokcO5a0+b6YTJ60YkVx7dMnRsdFc/Sx0ZQpZXRd4cpnwc/SHkutJvv1E0bPhg26r4Uk79wR82a2f3qo1aJ+wqZNaRcVrFGDHDmS3L6dfPMmsVvsX3+y9GAFqy+pov37m4wm65vQZZlLljzClTdXWH5xecqUMg4+OJhhB3aS+fJRbWHB1e6NCSXYZkubdOtf6ErAxwBCCW65u0Wnfs+Dn7OAbwGWnF+Sz4Kf0WCyAedcnkNSHHSUW1SO5RaVEwbMyZPZZwwMGiSMzKwwXiUkJFIgGRoSEungedqThpMN+To0ddGo2PhYmnqZcto5Ecbxz9F/WHh24SyZd/mN5YQSGkMdvnz7wrzeedlkfRPtTycjI4UmPSA2rt++pWry7us7dtzRkVCCNVbWYMDHAPpc9En0auhUAyIBPz9RGfwHBh8czDWupoy2z09MAg88PsC1t9ZySykwwBosMdcxU5u2tBh26G/mG21AdbWq6Z6I7nu0j1CCn+fPFJvh8Kyrtjz17FRazbDKuGFEhNjI1q6dtMEvXpwcM4a8fj3V+pWnlLT1tk26cOsWH9QqTQL8YG0iDL3MGBgJa7G3F5vtjh1T3mvZUqwt2Yb73KtzLDy7MHNMzcFlN5al/dlUqZI8JNu3Z25dDRuKGje/oo5GVJQwsHx9hWfIzi5lUcF27cgJE3iqmD6hBNfc0r2C+c77OwklsqzgXpwqjj4XfWgy1YT5fPJxx5XVVP8hivy9buLKghPMWHh24cRDkqyg1qparL2qts79Hn15RJtZNizoV5BQgs+Dnyfeu/n+JvU89Tj+xPdaOI0akSVLZlg8VCe+fROhkmPGZN2YEhISiUiGhoREOnyN/krrmdaJlap/5LcNvyW6+pdcX0K5h1yn8IG0iIyNZH6f/Pxj2x/ptjvw+AChBJdcX5LxoI8ekeXKCU/GypWpbsep4jj38lyaTzOn9Uxrrr65OnGTGBMfQ4c5DpR7yGk42ZDhMTpuvj09ybx5U10uPrcYP+cx5dnmTswzK48I1fIqwhgFOLQxePTpUd3mSYeE/IjrtiBPndLY7kP4B0IJHtk2PfUJ/k8y/PBwFp+nwUsSEiKK8yWvzl2ggDB2bt9Od0M96dQk5vfJT/r7i/AfgB9tTNm9BXj0wQGN/bRi2DARImVkRAYGprzXvLlY35w5KS5/jf7Knnt6Ekqw+cbm/BD+IfW48fEiX0RPj9y3T/d1HTwoXqOzZ3XvmxW8eSNO1v/5J0VRwQ5tQZvRegwd2ldUl3/+XCtjKDY+ljazbDjowKAsXear0FdsvrE5oQSbbWzGl2vmkBYWjLO14eChxanvqU+/S35ZEkq1OWAzoQQDPgbo3DfgYwANJxvSeIoxQ6NCU9zzOO1BhYeC195eE4Z2QqHIrOJ7vhGfafDCSUhI/BSSoSEhkQGzL82m3EPOh59Thxn5XvSl4WRDRsZGJm5m02qnCzPOz6Cepx6fBD3JsG2fvX2YY2qO9BO0t2wRuRiOjiLs5AcuB15mhcUVKFPK2G9fvzRzCBLyRaAEhx4aqtPz0N2dLFo0xaUXIS9YaoA4Ff6jZ04OOzyMO+7v4LBGYLQCbDK7sm5zZEBsfCxzTsvJSX/YiNPwdCjoV5Du+4aKTfDChVm2hq67urLa8mpJFxKqc7u5pa7O/eSJSEy2t89w3IWLe/FIaaOkvIJVq1hmtiP1PfV/ziN0+TIpl4t/np6p7xcrRhYuTLq6ptl9z8M9tJ5pTeuZ1tz1YFfqBrGxwrAyMCCPHNFtbSqVyDFq3Vq3ftlFbCx5/jzf2FkwxzgZ//4jZ5LXw8ZGeH+mTRNGrgYv2ehjo2kx3SJz4YnpoFarufP+Tub3yU+TqSb0PjiecQ3rkwDPNXei8Viw5aaW2ucOaSAmPoY2s2wylacWp4qjxTQLGk42pOsK1xSHGbHxsXRe4sxSC0oxKi5KeJDs7VOJV2SaatWEp0RCQiJbkAwNCYkMiI6Lpr2fPdttbZfq3u0PtwklePzZcQaGBRJKcP+j9PMA0iM4MpgW0y20/mMdHhNOhzkOdF3hmjoJNzpaxB4D4vT4h2TsoMgg9t3XlzKljBWXVOSVN1c0zqNWq1lzZU3KPeTU99TXLb67f3+yfPkUl5ZcX8JRDWWMMzak4Tjw5rubdFpYjveswU2lwRvvbmg/vpZ02N6BFacXFq/HVc0hI+23tWfNlTWFB6hPnyybv9nGZmy2ooFILq5TJ2kTX7s2OXcu+fqH8LxOnUROgCauXSObNSMBPrPWE2pKcXF89/UdZUoZ8/nky/xiY2LIMmVESImdnQi7S05kpPBmdO+eKnwqOR8jPrLFphaEEuyxuwfDosNSz/Pbb8IjcPq0bmtcskSs4amOKmjZybZtnOEKKpRy3nlwWnhrxo0j69cXxj4g3vPy5UWuyurVIk9KrebToKeEElx7a222LO1r9FcOPTSUcg85nRY58bLvcNLIiOGF8rH+QDPa+9nzUuCln5pj/InxNPUy1VlB6+zLs4QSXH5jOc28zFh3dd0UBlfAxwAaTDag+1F38XopFCIk82dJyPfJbAifhIREhkiGhoSEFqz0X0koU2+AVWoV88zKwzHHx2SJxK37UXfmmJqD78Pfa93n3KtzlCllnHE+mQzq8+dkpUritHjhwhThGyq1iqturmLumblpPs2c86/M16wUlAz/d/6JXo2eu9MOJUuTzp1FeEky2mxpQ//i5rzmbMtyi8rx8JPDrNZDnABPGFNNw0A/R4Ja1xunwiLESAPeF7xpMtWEqs6dSJcsSNB99oycOZPVhpqyaysIT0njxuTSpeTHj5r71a5N/pmGjPGVK2JzDpCOjtwyugUdvJM8H8pTSup56LHSkkqZX7OHR5L065Y0Enxv3EiSG9XXTxU+lRy1Ws0V/ito6mXKQrML8ezLH8KdoqLIBg1EHo8uoWqRkaSVFTlkiPZ9shu1mjF1atJxuAFrr6yVMiQpPl5sbJcuFcpZpUoleT0sLckmTVhPWZg1fcqIULps4trba6y4pCJlShkHru/I0KrlqVYouKx5fhpNUtD7gnemQ6kCwwKp8FBw4VXdPIEjj4ykzSwbqtQqnn15lsZTjOm23i2F4ty0c9Mo95Dz4uuLZK9eZO7cqQ5PdGbwYCkJXEIim5EMDQkJLYhTxbHE/BJ0W++W6l6H7R1YeakI9fkZidvAsEAaTTHSSY8+Afej7jSYbCCSSffsIS0sRFjL9ZTJ5Hc+3GGNlTUIJdhpZyedDBpShP/IlDIqPBT8/O2zdp1atSKbNEn8b5wqjvYTzRkvl3FgCz36XPRhteXVuLI8+MwCfP4le06ogyODqfBQcPGcLmJzd/dumu0STlffeowUJ+3xGRthqbh3T4QblS+fqFhUfLQph/u5ab+JLFyYHDUq6f+XLokwK0CEDW3YQMbHc8zxMYkiBDHxMczrnZfF5hbLVGJu4tr19cVGrmbNtHMMEuLaw8PJpk01hk8l51nwM9ZYWYMypYzuR91TyhZHRIi5zM2Fp0Zbxo0TnoJs3JjrzM2bPFpURijBjXc2pt82JESEjXl4kE2acFOVHIQSfJAbIum5Rw9hmNy5k7nPoQbiVHGcfWk2Tb1Maetty62TfqdKIefr4nnpOFDkc3z59iVTY7fe3JplFpbRyVgpPq84e+3plfj/Y8+O0XCyIVttbsXY+NjENVdZVoXF5xXntxePRT0VpTJTayQpksAtLER9FwkJiWxDqgwuIaEFenI9TK47GYefHsbZV2dT3KtfuD5uvL+B0OhQFM1VFE9DMlcdXHlaCVMDU4ysPlLnvp51PVE8VzF0XtAAMW1aAnXqiCrfzs4AgPCYcIw8OhIVllTAl8gvONnlJNa1Xoe8pnl1mservhf05fpQUYWBBwZq1ykiAjAzS/zv1bdXUfX+VyjUxL6iKjhYOODu00tofw+43dQZha2K6LQmbbE0tkQN+xrYl+szYGcHTJuWZruKthUhl8lx04ZAVBTw5EnGg5Pi9U5WnRszZwIlSgDbtgGfPyPI0hBWzjVFde6MUKuBN29EVfCLF4HGjYFq1USl8E2bgLt3gY4dAYUCaqohk8kAALse7MKHiA8omLMgjPXTqfKtCZUK6NlTVIn/8kVUDf8+dgru3gUKFxbV3tu1Ay5cAN6+TXdoB0sHnO56GtPqT4PfZT+4LHdBwMcAcTNHDuDAAfHaNWokqnVrw8CBQEyMqAb+X6F8eTSs3wdtn+hj5JHhCI8J19zWwkI878SJwMGDaH3uC6wMLLB8rBtQu7b4TPXrB5QrJ96TBg2A8eOB/fuBz58zvUQ9uR6GVh2K+wPuo0qBKmgv247mc6tClcMY95YboPTmk6i4qDwuBl7UeewBlQfg7qe7OPf6nFbtH315hMdBj9HCsUXitQYODbCj/Q4ceHwAXXZ3gUqtgp5cD2tarcHrsNcY93AhMGgQ4O2d+ddh+3YgNFSqBC4hkd3825aOhMT/FdRqNZ2XOLP6iuopTutehLwglOCuB7syLXF779M9yj3knH1pduYWFxjIm42dqD8BHO1VL/EUOqFqcH6f/DSeYsxp56b9tCqWxykPQgnKlDK++5q62ncqqlQRJ7PfmXhyIjdVMODjAiZssr4J662pxz7NwHgZ+OVx1sh7asL7gjeNphjx21wfESuvQWmm3KJyHLK+U8qCeT+iUpHnz5PDh5OFCiWFwHyvzp08WVWlVlHuIefia4u1W+i7d2I8Jyfxs3RpEcKkSp3c7X7UnUXnimT7mitrss7qOmyyvkli1XqdmDNH5D2YmYnwFE24uQnVKVKcymcQPvUjN9/fZJmFZWgw2YCzLsxKCt0LCRH1Oaytyfv3tRusSxeRHJyVkqc/y6dPfFXAjMaT9PjP0X906jrs8DDmnpk7yeMTHi7yV6ZNE0nlefIkhVwVLSpyeebPF97LTIYA7X6wmwV8C9B4ijFn/FOdsXLwaqmctB8u5/Rz03USFVCpVSw+r3iGqnkJzDw/k8ZTjPktNrXc9o77O6jwULDrrq6Ja/C96EuZUsYzt/cKD9iwtOscZYira4bCEBISEj+PZGhISOjAkadHRJXpRyklOR3mOHDggYGZlrhttbkVC80ulLkq2EeOiDCXAgXotb4f5R5ynn91nk+CntBtvRuhFKoyL0Je6D52GnyL/UarGVaEEqKKdkaULi2Kn32n2hIXhprpc2oN0Ouslyh6mA+8X7VoOoNkDY++PCKU4J7bW8WGTUOyd689vVhuUTmxgU0evqShOjf79xeF7TRs9IIjgwkluO3etowXeeaMyK8BhLLTtm1pGhgJjDwyksXmFuOt97cIJbj93nbWXV2Xf25PI78jPV68EHkSZcsKQ+NDGrK0CRQoIFSxEtAyfCo5UXFRHHFkBGVKGWuvqs2XIS/FjS9fRCK6ra1Q38qImzc155L8m/j5cUotGfU89Hj/k5ZGE8WhQ7rF7xKKCm7cKPJTXFySVMuMjUUI2j//CPndt9oX9Pwa/ZXDDg+j3EPOsjML80L53Iw0NWSHtmCT9U34KeKT1mP5XfKjnqeeVqGZNVfWZItNLTTe33BnQ6IinlqtZrwqnjVW1qDDHAeGe44XeWivXmm9NpIibBIQ3y0JCYlsRTI0JCR0QK1Ws87qOiy3qFyKU74+e/uwxPwSmZK4vfD6AqEE191ep9ti4uPJCRPECbSbG/n5M+NV8ay6vCotp1vSwNOAhWYX4t6He3UbVwvW3V6XmBieoQFjby9i6SmUrqr1kpEAG/XNwUZrG9Gprzidjdq2OcvXmRaJ8eDTpolNShqKSUuvL6XcQ864Zk3Fqef+/elW586IJ0FPCCV48vlJzY1OnRJqVAmVvAGx6c6AEUdG0HGeI3vv7c38PvkZp4pj1eVV2WN3jwz7JqJWC4nPvHmFp2fWLM1tg4PF2jYmyz9IyNnQoD6VHqdenKK9nz3NvMyS6rd8+CDkmO3sxKY6I+rWJatW1XnubCU2llGlirPIKGM2WNNAp5yF6iuqs8HaBtrPlVBU0MdHyL8mLypoZycKDfr6ijYZyMLeeHeDzkucKVPK2H9oUYYYgTudDFhqct7UifwaCIkKofEUY04+Mznddp+/fabcQ87lN5an226F/wpCCQ47PIzq7wpdJlNNOGBXb3Fg0L27VutKZMgQ0S+zhSwlJCS0RjI0JCR05FLgJUIJbrizIfHalrtbxMn826s6SdwmyMY6LXLSrebB+/dicyWXk1OnJp54H35ymPa+9oQSrLi4YprhCFmBSq2i4zxHQomMk45z5SKnTydJbr27lZ61wBBjOdtvakMowbkuYISV2S9TfhlxZATzeuelKjREyLcOH56qzZ1nl9imPRhRvLAw5DKozp0RlwMvE0rw1vtbKW+o1eSJE2StWmKOChXI3btJb2/hXdBinmGHh7HY3GIpNnZOi5w48MBA7Re4Zo2Yv3x5EY6T3gbs3DnRNnlNlkyETyUnNCqUXXZ1IZRgmy1thNDAmzekg4P492OxwB/ZuzfLCyxmCYcO8UAxaO/N+s6qm6sIJfgs+CeKyCUUFRw5UsgkG32vtaKvL7wgQ4eKsMAXL1J9zuJV8Zx7eS7NvMyYd7IFN1Y25kcLfbp1lnHKmSla/a7qtacXC/gWYJxKc0jbmltrKFPK0i7q+APzr8wnlODY42NT/P+4z0Dxe1DbULvISJEEntxTKSEhkW1IhoaERCZosakFi8wpkqiI8vnbZ0IJrrq5SieJ232P9hFK8ODjg9pPfuqUOHnOmzexynVgWCB/3/o7oQTrranHSacm6T6ujpx/dT7Rq/Hg0wPNDQ0MRAw5yZ57ejIgvz43lAFrraxFo3FgiLGMqlHu2bbOHzn94rQwIeHCAAAgAElEQVQwCt9cJcePJ01MyM+fU1TnVn+v9ByS11Jszk6f1tm4SE5CFffAsO8bZrVahFrVqCHGd3YWm+WEOYYOFapDWvD3ob9pM8uG+p76iRs2x3mOHHFkhHaL+/BBGIO1a4u17M3AA7ZokZDo/dEYyUT41I9sv7edVjOsaDPLRhjrL18K71Hx4sK41oRKJcLM2qWudfOv06wZm/cwpp1PAUbERGjVJSImgubTzBM31VlCbKwwkufNI//6SxR3TPB65M0r1OGmTxef9QixzsCwQLbZIg4EGg214jNLcEFlsPmyevwYkY40M4VnBEpw5/2dGtu03dKWVZdr74nyvuBNKMHJZyZTpVax3pp6tPe1Y1hRO7JNG+0GWbtWPLM2YXkSEhI/jaQ6JSGRCabWm4rnIc+x4uYKAEBuk9won7c8Tr44iaK5iuJJUMZKRSq1CmNOjEGdQnXgVtQt40nVasDLC6hfX6jz3LyJuJqu8L3ki5ILSuL86/PY2GYjjnc+jkm1J6FxkcboubcngiKDfvZx08TV3hUNHRoCADrv6px2o9hY8c/MDCRxy/8gyryNwxUnK5x9fRZtHgAWUYS8V+9sWaOmdVsaWWLf433AX38B8fFA1apAnjxA587Au3eQeXigwzRnjB9fTXSKikpbfUlLEt4DK6NcwNGjQI0aQMOGQjFp/37g2jWgefOkOV6/FopTWqCiCsFRwWhXuh1sTG3EcuOjYKynperUkCGAXA68eiUUkJo1S799QADg6AgYGKS83r69VupT6dG2VFsE9A+Acz5nNNvUDH3veOHbob1CuaxBA6GElRZyOfD338COHcDLl5meP1vw8cHsfXH4FP4BXue8tOqSwyAH/ir7F1bdWoV4dXzWrENfX6jQDRoErF8PPH0KfPoE7NsH9OgBfP0KTJkiFOty5gQqVECB0V7YEd0SJ6oswsOCJig9VB+hORSYOe40uo8phdMvT2ucrqJtRVQtUBULry9M8350fDQOPz2MFsVbpHk/LUZUH4HJdSdjwqkJ8LvkhxUtViA4OgQj+jkAO3eK71FGLF0qPktFi2o9r4SExE/wb1s6EhL/V+m0sxNtvW0TK9iOPDKS+XzyseWmlmy0rlGG/VffXE0owcuBlzOe7MsXUYtCJhOn8PHxPPfqHMsuLEu5h5xDDg5haFRoii5vwt7Qcrql1uovmeF58HPKlKJmwPW311M3CAoSp4c7dvD+p/vs2VyoS7nOKEEowYtFDKmuWzfb1pcmb96wo1cllh9hKkIuZDJRnG7mzBTVuYcfHs5CfgWFss20aT81pd9FX7boYiDyCAChxHXwoGYvibNz+qpPyWixUVTevvg6KWzIeqY1p56dmnHnPXvEev78U7wG9+5l3KdWLfKPND5TCeFTszOpnJYMtVrNxdcW02SqCYvMKUL/kxtFTH358iJHJC0iIoTqVxqhcP86I0dyYkM9Gnga8PGXx1p1SSiQuefhnmxeXDKSFxXs3l141b57PdS5LHm/cmFOrCtjz7b6PG8HetYGJx+fqLHg59pbazXmrB16cohQggEfA3Raolqt5pjjYwgluODqAi69vlR4b+vbiwrs6ZGQBL51q05zSkhIZB7J0JCQyCRPg55Sz1OPM8/PJJn0h7PH7h4ZStxGxUXR3s+ebbe0zXiiixdFQqeVFXnoED9FfGL33d0JJVhlWRX6v/PX2HVTwCZCCW4K0CDRmgX03tubUIIl5pVIffPlS/GH/ehR+l3y464SMp63E+FWRQd/D9vYsCF1v6zme3XuhI3+pnJyQgm+XjSdvHVLhHd9zyNJYHPAZkIJxrhWS3tjrQ1qNXngAF+XyCeetVo18vDhjMOw8uQRBf+0oKBfQRpPMU6RbGzmZUafiz7pdwwNJfPlE1W5TU1FleSMUKtFmNVkDUm+WRA+lZzHXx6z6vKqlHvIOXdZb6pz5RL5BWFhaXcYNUoYhj9bMTqrCQ1lpK01C43LwSbrm2idGO68xJnNNjbL5sVlQEJRQaWSdHNjXE4zEqAK4FtT8W9lGwd+vnIqlTBCVFwUc8/Mzb8P/Z1q2P77+7Pw7MKZqkKuVqv596G/CSW4/MZyuq13Y76puRhsBBGSqImhQ4V0spQELiHxy5BCpyQkMkmRXEXQu2JvTL8wHWHRYahpXxP6cn1ExkXiVdgrxKpiNfZdeG0h3n59i6n1pmqegAT8/IBatQA7O6j9b2Cp9Ws4znfE7oe7saTZElzseREVbCtoHKJDmQ74o/QfGHBgAN5+zXxIS3p4N/KGvlwfD4Me4uzLlMUMEREhfpqa4uTDQ2jwnDhd2gQA4P7IShQha9Mm6xdFAvfvA5MnAxUqAEWKiKJoefMCa9ei8ZFnUMgU2O9sDjg5Ad26Ab6+IkTqOy75XQAAbx1yA7du6T7//v2AiwvQtCli5Gr0G+IgQosaN04/DCsqSoS0aBE69Sz4GV6FvYK1iXVi0T5Ay9Apd3cgPBywshJhUEplxs/14QMQHAyULZv2/SwIn0pOMatiONf9HDzqeGD4+1Xo1D8PVA8fAE2bAt++pe4waBAQGQmsXJkl82cZOXPCePI0+O34hkNPD4mwPS3oXbE3Dj45iDdf32TzAtMhoajgpEnAoUPQCw6F6v49nJzYCYdK6iHYBOi68zlyV6mL+JzmIiRwwgTgwAEYhUagZ4WeWHVrFb7FJr1fJLH30V60cGyR4nOrLTKZDL6NfdHPuR967+uN34r+hm9yFYZ2zg2MGSO+fz8SFQWsXQt075467E9CQiL7+LctHQmJ/8u8+/qOxlOMOf7EeJJkrVW16LrCNV2J29CoUOaakYt99qZdw4GkOEVs3Vqcgo8YQf/XV1hlWRVCCXbf3V0nTfugyCDaetuy8brGmTo91IbpZ6cTSrCAb4GUNy5dIgFG+19jk25C679cP1BvAhhrbaXdKbq2qNUi2XXsWCGNCoiT+g4dRKhEeHiK5gmF7UiST5+KMKp585INp2bumbm5858WIrwqQotEXrVahCM5O4v5a9Ykjx9n+63tWG9NPe2e4/Fj0fdkOlK43xlxZAQNJxvSaZFT4rU4VVyiMIFGTp8Wc4waJZ7te7J+hhw5Ivo9fZr2/SwMn/qR62+vs8T8EqzZR58xJoZU16snFIR+pGNHsnBhrWSHfynx8VRXrEC3ATlZaHahxJDL9AiLDqPJVBN6ntbOu/Wrefv1LdttasMcY8ARDcEbecEnzg5UJysqGOtQkGvKgedHdSRv3CBjYxMTxU88P/FT86vUKnbd1ZUKDwUHHRhEKMHdjiC3b0/deN06KQlcQuJfQPJoSEj8BLZmthhSZQj8LvvhY8RH1C9cHwGfAgAAT4Ofptln5oWZiIqLwqQ6k9Ie1N9fJG2eOoWwHRswpH4sKq2qhm9x33Cu+zmsbLkS1jmstV5jLuNcWNlyJY48O4IlN5bo/IzaMMJ1BMwMzPDm6xvsf7Q/6cZ3j8a18Ido+DAOgebAHRtgeFBx6H8OAnr1+rmJ1Wpxgj5iBODgAFSqBCxaBFSrJpJcP38GNm0C2rUDTE1TdG1evDlOvjgpTlqLFAE6dABmzhTJ6xCnplXyV8GJnF/ElikgQPM6SGD3bvG+tWwp5jp5EjhzBqhfH0FRwbAyttLumQIDxU87u3SbRcZFYsXNFSiRuwT05HqJ16PjowEARnpGaXeMihKve40awLlzQKlSQN++2q3t7l3A2BgoXDjt+wmn39u2aTeeDjjnc4Z/H39UaNUfDdrHIOb8aUS1bCoS6pMzbBjw4gWwZ0+Wr+GnUCggmzMXc7aE4W1oIGZemJlhF3NDc3Qo3QErbq6AmupfsEjdyGeWD1s77MCWbvuxvW4euPYC1pg/h2dLS3y8fRHYuBH6zVqiakROuMzaKL4fOXPCyq01/E4aoJZ/EPD+fabnl8vkWNFiBX4v9TsWX18Ml/wu6NvWAEGeY4TIQ3KWLhVCGlISuITEL0UyNCQkfpJRrqOgJ9eD1zkvNHBogK8xX2GgMMCT4NTKU+/D38Pvsh/+rvo38pnlS3mTBBYvBqpVAy0tsGmHEiVejMCqW6swq+Es+PfxRw37Gplao1tRN/Rz7ocRR0doNIB+Bj25Hla1XAUA6LanW9KN8HAAwNEPF9H0CXCwGAAZMOlpAaByZaBcOd0ni48HTpwABgwA8ucXG+YNGwA3N+DYMeDjR2DVKqGeZKRhsw1haMSoYnDs+TFxYcwYscnfsCGxjUt+F+yQPQD19NIOn1KrhdpNhQpA69ZCrefUKeD0aaBu3cQQqaCoIO0Njdevxc8CBdJttilgE8Kiw1DKulTKsKk4Ef6lMXRKqRTP2aYNcPEiMHs2oKeXdtsfuXsXKF1aqDxpIovDp5JjrG+MOU3mYOKEY+jW3RKyU6cQ2MQVjE0WplipkvhM+Pll+fw/TY0aKN6wA0b6G2H6+el4EfIiwy69nXvjVdgrHHt27BcsMHM0Ld4U90Y8x2CXwZhWS4at+o+w4u/aOFVMH5gzB08Pb4T5GODuriXAlCl4rP8Vne/pQe/39kC+fEDBgsAff4jP4uXLqY3HdFDIFVjXeh2aOTbDrfe3EGWsj4HFn4gwqQTu3xdGdZ8+2fD0EhIS6SEZGhISP4mlsSXcXd2x+MZi5DHJA1MDU1gYWaQpcetxxgPG+sZwd3VPeSM8XEit9u+Ph/1+R4NB5uh47m/UsK+BBwMfYHi14dBX6P/UOmc1mgVbU1t02dUFKrXqp8ZKi7al2iKfWT4ERQVh/e314uJ3j8bVm/tRPAg4UAzoaFELJsdP6+bNiIkBDhwQMpw2NkKe8sAB4M8/xQbi7VvhyWjQQMh4akExq2JwtHLEvkff4+XLlBHeiOnTAZV4fVzyu+BDXAhiixdJaWio1cD27UD58kDbtiLP4cwZYWTUqZNqrqDIIFiZ6GBo2NikaySRxPxr89GseDPk0M8BuSzpV3lU/HdDQz8NQ8PfH/DxEUaVn5943gYNtFsXIAwNTfkZCbRoId6D7du1H1dHGjg0wCK/J5j7Ty3YnLmBS3WLIjjic1KD4cOB8+e1kzv91cyYgXGnVcgdr49hR4Zl2LxK/iook6cMlvkv+wWLyzw5DHJgZvO5uNHvJkwKFMa42nFYPq0dFkxrgwYODWBrXRgzeR5verVHo+ahOHZ6hTB4t28Xxum7d+JzWa0aYG4uJKeHDQO2bBHSy2nlXXxHX6GPzW03o55DPUQxFlvKANtWuwPRwruHZcsAa2ugVatf9GpISEgkIBkaEhJZwNAqQ2FpZImp56eiTqE6UFONpyEpPQePgx5juf9yjK0xFhZGFkk37t4FKldG5KG9GDevFcrl3oZXXwNx6K9D2NZuGwqYp3+yrS2mBqZY02oNrry9olXYRmbY10Fs2vsf7C8uhIeDenoocTMQ0QrghAOwLNhVbKI7dEh/sG/fxCakY0exSWjWTJyU9+0LXL8u6iX4+orTa4UiU+ttXrw5Djw5kBSWMnYs8Pix8FIAqJyvMgDgnYO1MDTUamDrVpFA3q6dMAjOnRMellq1NM6jk0cjMDDDsKmLgRdx68MtDKw8EAQhQ5JHQ2PoVFwc0LOnMKjUapHY7e2t3ZoA0efePdE/PbIxfCo5lsaWcPc6gyu+w+FyORAn6hbEkceHxM0WLUQo3X/Rq2FvjxzDR8N3VxT2PNqDQ08OpdtcJpOhd8Xe2PNoDz5GfPxFi8w8TnmdcGX0UyyoPhX7SsrhEbIL7n/lQbO8fXHnZiX0mvsC5VRzUNCwtvDatW0LzJolvkdhYcI49PERIU779onfE4UKCc9HmzYivPHs2VRiAIZ6htjZfidq2NdAzjgF+lcLwscFM4WxsWaNEHyQksAlJH45kqEhIZEF5DDIgfG1xmPt7bUoY10GIVEhePTlUYo2406OQz6zfBjoMjDp4po1gIsL9hWMRqmxOeETegjjao7D3QF3tSvipyOu9q5wr+6OSacn4dYHHZWUtKBivooom6csImIj4H3RG4iIwDdTAzR9ApwuBPxWtg1M1m4Smwdz89QDhIaKYmKtWwO5c4vN/P37wMiRwiB7+FAULXR2/qkCegk0d2yOj98+4trb7yffLi7ihH/qVICElYkVilgWwW0bCG9A2bIixCNfPmH0HDsmDJ10iI6PRmRcpG4ejQwUp+Zfm49iuYqhYZGGUFOd0qOhKXTK2xu4c0c826xZ4rRYl3j1Fy+EolNGhgaQreFTP1JzqA++LpuPtjei8LLjbxh0YCAi1TGiEOG2bUk5L/8l/vkHv4fkRb3w3BhyeAhi4tMPFepUrhMUMgXW3F7zixb4c8hlcgxoOBaP3APhYlocq0oUxJ2AmrBgZcTEGCIXXTBhfSACXoWn7GhgIELfkhcV/PgR2LtXeDPDwoSSXO3aIkyxYkVg4EBg3TrgyRMY6xlh75974VjQGfqKcuj0zgLtpl/HqMaTENCy+7/zYkhI/H+OZGhISGQRfZz7wD6nPa6/uw4VVXgd9jpR4vbq26vYfn87POt6ipPmyEigZ0+8GtoNLQdbo0X1VyhhWxZ3B9zFpDqTNCfyZgHKOkqUtC6Jzrs6Z7jByQxHOh0BIAwrRoRjt0Msar8EDhYHNlj0FJ6I5GFTnz8Dy5cDTZokVed+/x7w8ACePBGehIkTRW5AFhgXyaluVz2pSngCY8cCt28Dhw4BKhWGPcuDqruuCo+AlRVw6RJw5AhQvbpWcyRWBdclRyMdQ+N9+Htsv78dAysPhFwmFx6NH6RtgR9Cpx49Eq/niBHAxo3CyBs3Trv1JHD3rviZUegU8EvCp5KTq8dAYMUK9L0BlJy6BBUWl8cNNyfAxASYP/+XrEEnTEwgm+WNeWu/4GXIC/hc8km3eS7jXPi91O9Y7r8cTCeE6L+GrXk+7J/4CC3NZgKQQYYEz6McJLD+9LuMB8mTB2jeXBjIJ06Iw4jbt4GFC0Xo4smTQJcuQPHigLU1TFv/gYVv/kAJ+WLEGVfGF5UBrhepgmFHw1MbNhISEtmOZGhISGQRBgoDKGsrcfzFcZgbmIMgXoS8AEmMPj4apa1Lo3O5zsCjR4it5oLpz9ei5HAD3LBRYXu77Tj01yEUzZX9iiiGeoZY13odHgc9xsRTE7N8fFszW9QvVB9G8SXQUlUYqxvswoT2sxHXeAgMVq8VKkd2dmIDWLeuqG3Rt69QQ/LxERvty5dFnYdsVojRk+vht2K/pTQ06tQR8eFDhwKlSmHg3Eu4axkn7g0YIO7pQFDUd0NDG48GmWHo1DL/ZTBUGKJr+a4AkMqjkSp0Sq0GevcWYSqNGwtDw8srbY9SegQEALlyifcrI35R+FRy5N17AIsWYeAlFcYeCEeVzfVx0a00uHRpUj2X/xLt26OUYw0MfWiBKWen4HXY63Sb967YG0+Cn+DMqzO/aIFZR5QqD2SylOGNagLPP0bqPphCIUQk+vQR9VIePBC1XQ4fBgYPBtRqbH1hCDmROKdapoNhIyEhkaVIhoaERBbSqVwnlLIuBUM9QwBC4vbos6M49fIUptWfBsW27TjVujyc6j/B+LrEgKqD8WDgA7Qt1TZThasySzmbcphcdzJmXZyF86/PZ/n4M2psQXnVInyVl4TKIA+uO7jgSVBHBFx6JGKr7exE6I6hoVDaev9eKDUNHpxhfkJW07x4c9z5eAevQl8JRau1a4Wx8/QpYGWFO/uWo2FnIjafje6F+6CjRyMkRLw+Gjwacao4LL6+GJ3KdUrM8yFT5mikCp1aulTEvy9ZAowaJcLOunXT+Tlw964Im9L2c/oLw6cS6dcP8PND1yMfcOx5DXTKfwXqsFB8XDjr161BW2QyYM4cTNwZBAu1PkYcHZFu81oFa6FYrmL/+aTwtHCwMYH8h4+NXCauZwmWlsKI/l5U8HmZ6lDLs8iwkZCQ+CkkQ0NCIgtRyBWYUncKPkcKBZybH25i1PFRqGtbHZXm70SnrR1Q749oWJWsiJt9b8K7kTfMDM3+lbWOqDYC1e2qo8uuLgiPydqQgq3nv0AOeWKohFquAFVqrK/eTXg01q4VIVOHD4vT9jx5snR+XXAr6gY9uR72rx0HlCghNuGVKglvipkZijXuCIVMgXdF8mTO0NDFo5EgbavB0Nj1cBfeR7zHwMpJeT6pcjSSh069eSM8Q717C0/JjRtCQjQ9eVpNJBga2vKLw6cS+ftvYNo01F17FqcN++FIeVOEz5yMhVfm//fCjipWhHnnXph1MB7b72/H8efHNTaVyWToVbEXdtzfgeCo4F+4yJ+nU518kMmQaGzIZcLO6lw3X/odM0m2GzYSEhJaIxkaEhJZTKsSrVDRog3Kxs/G0ROVYfiqO6qd0UcJ09U44mSKVS1W4myvCyhro0WsezaikCuwptUafPr2CSOPjszSscXJYcpfL2q5As8LlgEOHhR5GBYWaXf+lcTFIeeG7aj1Vg/7rm0QIRn+/qLY25QpwNGjML51F+VsyuGOrVzEhutIUGQQ5DJ5SqUxTWRQrG/BtQWoXbB2is/OjzkaiaFTCkOgf39RPHDCBCEd2qFDhsnraRIbK/I8tMnPSOBfCJ9KZPRoYOJE2E9fiAauXVA0iDg8ezCabGiCd+H/sfCZKVPQ8b4CNePyYfChwYl5XWnR1akrVFRh3e11v3CBP0/Zgmbw61ESlYrkRG4zfVQqkhOze5ZEGfvsOWT51YaNhISEZiRDQ0Iii7n7OgIWQe7IBRco1JYwVrjgvIMXWtoPwaN/XqFbhe4pTqD/TYrkKgLfxr5Y6r8UB58czLJx0zxRVKvgkCf7ktx1IjZWaOsXLw706oXmLI5TxfURvmmNKL4HAL//DhQrBkybBpf8LjiZM1hIwn74oNNUQVFBsDSy1O49f/1aeAFsbFLduvPxDs6+OotBLoNSXNekOmW0Yw+wf7+oL7JwoVDsmTFDp7Un8uiRCCvTxaMB/DvhUwkolYC7OwzmL0SAS2MUsViOiMdD0dxnF+ae3vvr16MJGxvIJk7C/JUf8CToCeZemau5qakNWjq2xDL/Zf8970wGlC1ohhldHbHNvQJmdHXMNiMjYa5fadhISEho5r+x25GQ+B9CJBwmKazIZAooZArYmgxALuNc/+7i0qB3xd5oUrQJeu7tiS+RX7JkzMQTxe+FAeVUQwagc5t/14uD2FiRq1C8uEhAr1wZuHMHzaftRKw6LqlKOCCSTkePBnbtQqOYAthn/N3boKNXQ+difXZ2aYY2Lbi6APnM8qGlY8sU11PlaMRHwUBuAPmQoUIeuEwZUW/E3T1D2VyNJChOlS6tW79/K3wKEEfY06cjYNhkDKs/EXdylYI+rWCucsaOE7nRbu0/CI0O/fXrSovBg1HOtAgGvrGFxxmPdL0uvSv2xr3P93Dl7ZVfuMD/e/xKw0ZCQkIzkqEhIZHFPP8YCfUPh42k7D+biCiTybCixQrEqmLR/0D/LDkpLVvQDH5tbFHp+VXklsei0strmG14HWUK6ah0lFXExIiT/aJFRThR1apCRWnrVqBsWRTJVQQlc5dMqT4FAJ06AQUKoN7mK3hhAcSb5dA5T0OnYn0JhsYPhEaHYn3AevRz7peqQnxaqlPGcRTVzefNw/9r777joyzTNY7/3kkPBEKHUAIBElpABCOIKKhYgNldFT2roihFRdhVVhHL2o6KiqvAAoKKWBZdt6hnRawooCsqRcAZOoQqECC0VFJmzh8PEzIpMJlMMglc33+yvvPOO498XJ0rz30/NxMnmh6YBx8s+VjfOZ3QsqVpuq2IYJZPAVgW83sMw22zFWsOthFihbBtWzzJs5P5Zvs3wVlbceHhMHUqT/1tD9GuECZ+NbHcWwe1H0R8/XheX1X7msJF5NyjoCESYLWxEbFFTAtmD5nNv9f/m787/x6QZyavXcwL79/Hv2J+5IW/30e3kdcG5LkVkpsLs2aZgDFunOlPcDrh/fdL/Xbenmhn4eaFFJ7chQHMF8CJE6n/0Wd0zY5mX0LFG8LTcyqwo7F7d5m7Dm+teYv8wnzG9BpT6rVSczTWryUqO99MxXY64aOPzDTl6Er88+dwVKw/o7hglk8BqWk5uEqUrbndFm2j+9CxYUcuf+dyJnw+oajkLGgGDyZ2wNW8sDSc9xzvsXRH2cfY2iwbo3qO4v1173P8xPFqXqSISMUoaIgEWG1tRLyx643c1O0mxn06jj3H91T+gQsXmtOb/vUvM4yvVavKP9NXubnmt/kdOpgJ0ZdeaiaMv/eeOfWqDPYkOwezD7L81+XeL4wejdWwIc+urI+jha3iQSO7gjsaJYKGy+1i1opZDOsyjOZ1S8+w8NrRyMggZ+F/iAyLhJtvNicw9etnmsAro6InThUXzPIpyg/+HZvHsOi2Rbx85cvMXjmb3q/3ZvW+1UFZI2D+JfHyy9y2+DB9rDaM/2w8Ba6CMm+9o+cd5Bbk8ndHYH4pICJSVRQ0RAKsNjcizho8i+iwaEb+Z2TlSqjy88307N69Yfly70ngVSknB6ZPh4QE8yX7sstMwJg/3xxdexp9W/WlUVSj0uVT0dEwYQKDvz/AyvB00xidleXzknwunSooML/1LxE0vtz2JVsPby3VBO7h1aPxyCPk5ucQ1ayVmbbudJrjbCszoyUzE7Zv9z9oBLl86nTB32bZmNB3AqvuXEV4SDgpc1OY/N3kcr/gV7nOnbGN/wOz3j7IugPrmLV8Vpm3tarXisEdB9fKmRoicm5R0BCpArW1EbFBVAPe/O2bfJX6FbNXzvb/QcuWmVOODh82JygNGRK4RZYlO9uUCiUkwP33my+2GzeaeR1JST49IsQWUnpKuMc99+CKjKDt9qNmerenOdoHPjeD79tnpniX6NGYtWIWPZv3pG+rvmW+rWhH4/vvYdYscvqlEBVexxxpe8cdJuxVxvr15qe/pVMQ1PIpX4J/16Zd+Wn0T0y8aCKPLX6MS968hG2HtzcJA9gAACAASURBVFX7WgF4/HHOP16Hu44n8viSx0nLTCvztjHnj2HVvlXB3YURETkDBQ0R8XJl+yu5p/c9PPDlA2xJ3+LfQxYuNA3IX3xhBuCFhZ3xLX7JyoKXXjIBY+JEU6K1cSO89ZY5mraC7Il2nAec7Di6w/uF+vXJuWsU120AV0iIz+VTLreLI7lHfNvRKGNYX+qRVBZuXsj4lPHlTo534yY832V2jVJSyO3Ukch9B0wD/OTJPq3ztBwOswXQubP/zwhy+ZQvwT88JJzJl0/m29u/JS0rjR5zevD6qiAcI9ugATzzDM/O3kSYy2LSokll3ja442DiYuK0qyEiNZqChoiUMmXQFFrWa8lt/3ebf2Ukn35qSpWOHYNRowK/wKwsePFFaNfOHEE7dChs3gzz5pm+DD9d1eEqwmxhLNhUelej3sQ/Y7MssmMifA4aR3OP4nK7KjYVvNiOxuwVs4mNjOX33crvsXC5XfzPf7bBtm3wxhvkHDlA1K598Oc/Q/PSPR0V5nSaP9OoKP+fEezTpyqgX5t+rLlrDTcn38ydn9zJb97/DfszKzY7pdJGj6Zhx+5MXt2Qt9e+zbLdy0rdEmoL5Y7z7uBdx7tk5fleyiciUp0UNESklDrhdXjnd++w/NflvPDfCg5527kT1q2D9HTThO3HzkK5MjPN0Lm2beGRR+B3vzMBY+5cs6tRSfUi6nFp20vLLJ+ymjZl0RXtiMjIgVWrfHpeenY6gG87Grt3Q/36UM8cAZydn80bq99gVM9RRIeVf2JU/M5jXP/xFvPn0aULOWtXEhUebXpUAqEyjeDFBfn0qYqIiYjhNftrfPz7j1n+63KSZyfz0YaPqm8BISEwfTqjPthO74h2jP90vPdpaCeN6jmK4yeO86/1NT/Aici5SUFDRMrUt3VfHur3EE8ufbJideALF0JoqAkbY0ofx+qXjAx47jkTMB57DK6/HrZuhddeM7saAWRPtLNkx5Iyjw7dMfJ6LJcb95o1Zk7FGaTnnAwavu5oFCubet/5PkdzjzL2grHlv6eggD++9gt7W9SFhx+GTz8l9/BBIrv2gIiIM3+mLypztG1xQS6f8oc9yY5zrJOL21zMdf+8jjv+c0f1HSk7YAAh1w9j5vsZrN6/mtdWvVbqlnYN2jEoYZDKp0SkxlLQEJFyPTHgCbo17catH91KbkGub29auNAMd4uNheuuq9wCjh+HZ581AePJJ81vxbduhTlzID6+cs8uhz3RTr4rny+3fVnqtc49B/FFB7Dy831qCK/QjkaxoOF2u5mxfAZDEoeQ0OA0OzXTp9NhxzFeuauX6aOYMIGcJrFExftfPubl4EFISwvMjkYtKp8qrkmdJnx444fM+808Plj/Ad1nd+fbnd9Wz4e/+CIXbsxglOs8Hv3mUQ5lHyp1y5jzx7Bs9zLWHVhXPWsSEakABQ0RKVd4SDh/u/ZvbDm8hce+eezMb8jOhm++MadNDR/uf13/sWPw9NMmYPzv/8JNN5mA8corZQ60C6R2DdrRtUnXMsunesf15olLT/7F9OlnfNbhnMOAjzsau3cX9Wf8sOcH1uxfw7gLxpV//7Zt8Nhj/OfKNmxLagwzZ8K2beTEtyQqtBL9FMWtO/nlNRBBA06VT+0JwJyWamRZFnf0vIO1d6+lTf02DHhrAA9+9SAnCk5U7Qe3bQsTJ/LcX9fjdhXyyNePlLrlt51+S+Poxsz9eW7VrkVExA8KGiJyWt2aduPZy57lpR9eOvNvchcvNsPyMjL8m51x9Cg89ZT5gvXssyaspKaaL9Eljn2tSvZEO59u+bRUXXyDqAZk9EgkLyIUPvjAzAs5jfScdKLDookMjTzzhxbb0Zi5fCYdGnbgyvZXln2v2w133gnNmvHm9e2xTuSZP7e77yY33PLt83zhdJrp6JVosPfiKZ/64IPAPK+atWvQjsUjFvP8Fc8z7cdpXPD6BfyS9kvVfuhDD9GkThOe2ZHA3J/nsuLXFV4vh4eEM6LHCN755R3fdx1FRKqJgoaInNGEPhO4uM3FjPi/EWScyCj/xoULzYC7Xr2gRw/fP+DIEXjiCRMwnn8eRowwAeOvfzVlWNXMnmTnUPYhftzzY6nXUlqm4IyPMmVd77132uf4PBU8K8vsArVpw/7M/fx7/b8Zd8G4UxO/S5o3z+wcvfoq2RE2bE4n2Gzw1FPk5OcQFRagHQ2HwxxrG6jjiWtp+VRxIbYQHuz3ICvGmC/8F7x+AS9+/2KZzdoBUacOvPACd81dQ/c6CYz7dBwut8vrltHnj+ZwzuHqbVgXEfGBgoaInFGILYS3fvcWh7IP8acv/lT2TW43fPyxKZ/ytQn88GHT3N22rTmuduRIEzCmTYO4uICtv6IubHkhjaMbl1k+lRKXwuctsnBHRJgG9dM0hafnpNMwquGZP3D3bvOzdWteX/U6YSFh3H7e7WXfu3evGUo4YgRceSXujAysralmR6NxY3IKcgJXOhWoE6eKq6XlUyX1aN6DFWNWcO+F9zJp0SQGvj2w9PyVQLn5ZkIv7MushbBi7wrmrZ7n9XKnxp3o36a/msJFpMZR0BARnyQ0SGDqVVOZu3oun2z+pPQN69aZo0sjIkxPxemkp8Ojj5qA8dJLJphs3w4vvwwtWlTJ+isixBbCkI5Dyg4aLVNY1cyFdeIEbNoEH5X/W+T0HB+ngp+coZHfsgVzVs1hePJwYiNjy753/HjzZ/zyy+B249qyCVu9ejDWnE6VW5AbmNIpzwT0QAeNWl4+VVxEaARTBk1h8YjF7Dq2i+6zu/PWmrcCP+TPsmD6dPot2catkRfy0KKHivp/PMacP4bFOxaz9fDWwH62iEglKGiIiM9G9RzFkI5DGP3xaA5mHfR+8ZNPzBeiG24omgVRyqFD5hjWtm3NrsXdd8OOHfCXv0CzZlW9/AqxJ9pZf3A9qUdSva6f1/w81sWFnvyL88z07XK+WPpcOrVrF1gWH2euYm/GXsallNME/sEHJtjMnAkNG8IHH+A+dgyrV6+i8qaAlU7t3m3KwwJxtG1xZ0H5VEmXtr2UX8b+wvVdrueO/9zBdf+8rvT/Pyrrggvg9tuZMmszeQUnSh3OMKzLMGIjY3nj5zcC+7kiIpWgoCEiPrMsi7m/mUuBq4C7F97t/Zvb994zX7jHljH34eBBmDTJBIwZM2DcOBMwpkyBpk2ra/kVcmX7KwkPCS81JTwiNIL6nc4jJyoMeveG1avh88/LfEZ6TgWCRosWzFg9h0viL6F7s+6l7zlyxPy5/fa3MGwY5OTAAw/gatQQW1wrwByLG7DSKc/xvYHe0YCzpnyquHoR9Xjzt2/y4Y0f8t9d/6Xb7G5l7/xVxuTJND+Sz1PHz2fOqjle822iwqIYnjycN9e8SX7h6Q8pEBGpLgoaIlIhzes2Z87QOXy44UPedbxrLh45Yr6YNm8OffueujktDSZONAHjlVfgj380AeP556FJk2As32cxETEMaDugzPKpC1pfaHY1MjOhTx+zq1GG9GwfS6d27ya7RWOW7lxa/pG2999vTvR65RWzc/Tyy7B3L+6EdliWBUBeYR5AYEqnnE6oW7dqjhM+i8qnSrq287U4xjq4IO4C7H+3c+eCO8nMywzMw1u0gD//mfFTv6dzTALjPxvv1Rg+ptcY0rLSAh9wRET8pKAhIhU2rMswhncfzvhPx7P72G4z7dntNr0WlgX795svxu3awauvwoQJJmBMngyNGwd7+T6zJ9pZunMpx3KPeV1PaZnCD41yKFyzGh55BP77X/i29NG/FdnRWB+VSYu6Lbi207WlX1+0CN580zTMx8WZXpjJk+GPf8QVGVF0OlVOQQ5AYEqnPP0ZJ0NMQJ2F5VPFNa/bnAU3LeDVoa/ynuM9eszpwbLdywLz8PvuI6x1W2b+0IBlu5cx/5f5RS91b9adlJYpagoXkRpDQUNE/DLjmhk0tvXmtleWcsPmNkz6/TQcA683oaJdO5g7Fx54wASMZ56BRj584a5h7Il2ClwFfLHtC6/rKS1TWNMcbJu3wMCBpo+hxK5GbkEu2fnZPu1oFO7cwX/Zxd297yYspMRRsllZZmbGgAGnZpM89JA59vSxx3C73ViYMJCTfzJoBKJ0yuEIfH9GcWdh+VRxlmVxZ687WXP3GprVaUb/N/vz6NePFu06+e3kQQAD/rWC3ze8hAe/etArCI85fwyfb/2cXcd2VfLvQESk8hQ0RMQvu9NCaJP5LO7s9hyKbMDKhBQmLMrC8flPph9jxw4z1buhD8e71lDxsfEkN00uVT6V2CiRrW3qYLlcsH692dX44gtYubLonvTsdIAz72i43bh372JnPRd39rqz9OuPPQb79sHrr5vdhR9/hPnzzUDD+vVxuV1FOxqegW2VLp0qKIANG6qmP8PjLC6fKq5Dww58e8e3PD3waaYsm0KfuX1Yd2Bd5R5qt8OgQbw4dxeZeZk8ueTJopd+3+331AmvU+oIXBGRYFDQEBG/zF+yFwsLixAAXLYQ3DYb8x94DZ58Eho0CO4CA8QzJbzAVVB0zWbZiO5xAYU2C9asMSdtdehg5mqclJ5zMmicYUfDdSCN0LwCWnW7iOZ1m3u/uHw5TJ9uAluHDuBywb33mtOuRo4EwE2xHY1AlU5t2wYnTlRt0DjLy6eKC7WF8kj/R/hp9E/kFuTS67VeTPtxWqnBez6zLJg6lVbrdvM4lzJj+QwcaQ4A6obX5aZuNzFv9byqGyIoIuIjBQ0R8UtqWjauEqe6urCRmn52nXhjT7JzOOcwP+z+wet6z3Z92dw0BPfq1RASYnZxPvzQ7HDg+47GT8vMF+3LL7nD+4W8PBg1Cnr2NOVoAO++eyp8hJwMeMV2NAJWOuUwX1qrtHQKzvryqZLOb3E+q+5cxdjeY5nwxQQG/W2Q/yVOXbvCPfdw35Rv6VC/HX/47A9Fp8CNOX8Mu4/vLlXyJyJS3RQ0RMQvCc2isZXoE7ZZ5vrZJKVlCk3rNC1VPpXSMoWVTQvI+3mFuXDbbdCqlTlRC993NBZ/9w4APS4Y6v3CCy+Y8qW5cyH05AlXkyaZ3ZNLLim6ze12F506FbDSKafTHDtc1SeDnSPlU8VFhUUx9eqpLLp1EZvTN9N9dnfm/zLfvyF/Tz5JeEg4f93cnqU7l/K+830Aesf1pkezHmoKF5GgU9AQEb8MHxCHZVEUNmyWqei4dWBccBcWYDbLVuaUcE9DeIhjHRQWQni4aX5/7z3Yvp307HRslq38Cd/A9iPbObBhJQURYVjFv9SvXw9PP22CxXnnmWvPPw+HD5vZI8V47WgEqnSqKiaCl+UcKp8q6fKEy3GMdTA0cSi3fnQr//Pv/ynaBfNZw4bw9NNcOftLrms+kAe+eoCMExlYlsWY88ewYNMC9mXsq5q/ARERHyhoiIhfkuNjmDqyM73b16dxTBi929dn2qjOdGsTE+ylBZw90c7GQxvZenhr0bW4mDj2tGtEaE6u6WkAc7xvgwYwZQrpOek0iGxQFALKMnvlbDpmRmBr0/bUMbKFheZ0qYQE0wgOsH27mZ7umUlSjFePRqBKp6oraMA5Vz5VXGxkLPOvm88/hv2DRamLSJ6dzOdbyx7+WK4774SuXXn5X8c5knOEp799GoBbut9CeEg4b615K/ALFxHxkYKGiPgtOT6GF0Yk8a8He/LCiKSzMmQADGo/qMwp4ZG9LjT/Y80a8zM62vRTzJtH+sFdpy2bysnP4Y3Vb3CxFY+t+FC8V16BH34wp0xFniyBmjjRzB956KFSzwn4qVM5ObBlS9X3Z3icg+VTJd3Y9UYcYx0kN0vmmnevYdzCcWTlZfn25tBQmDaN+K9X8UjsUKb+OJWNhzYSGxnLDV1vYO7quf43nYuIVJKChojIGdQNr8tl7S4rVT7VuXN/9tS3cK3++dTFe+6ByEjSf/7vaRvB33e+z5GcIyRlR52avr1zJzz8sHlG//7m2pIl5kv488+b2RklFO/RCEjp1MaN5nSr6trROIfLp4prWa8ln9/yOTOvmcmba96k56s9+WnPT769+fLL4dpreeDFZcTXa1PUGD6652hSj6SyePviql28iEg5FDRERHxgT7Tz3a7vOJp7tOjahS0vZHUzN1krik19jo2F8eNJ37mRRqFl7/C43W5mLJ/B4I6Didx7wAQNtxvuusuUXnmOyS0shPvugz594Oaby3xWyVOnbJaNMFtYmff6xOk0P7t08f8ZFXUOl08VZ1kW41LGsfqu1cRGxtJvXj+eXPIk+YU+nOT2l78Que8g049cyKLURXy44UMubnMxnRp3UlO4iASNgoaIiA+GJg6lwFXgVUPfK64Xa5tDyFqH98333Ud6lJtG29PKfNaPe35k9f7VjO9xJ+zfD61bmyF8X3wBc+ZAvXrmxjfegLVrzXG2trL/dV28RyO3IJfI0MiiHQ6/OBwQH39qDdVB5VNekhon8f3I73nsksd45ttnuGjeRWw6tOn0b0pIgPvvZ8gLH2FvfQUTvphAdn42o3uO5qONH3Eo+1D1LF5EpBgFDRERH7Sp34YezXp4lU/Vi6hHesdWRB86CmnFQkWTJqQ3r0ej1RshI6PUs2atmEX7Bu25Mqqr2cmIiTE7FzffDEOGmJuOHoVHHzXH5qaklLuukqdOBaQRvLr6MzxiY3FcO4pJm2K5YcpqJr29CcfO0n9u55KwkDCeGPAEy0Yt4/iJ4/R8tSczl888/TG4Dz8MDRowbXEEB7IO8Nx/n+O2Hrfhdrt5Z+071bd4EZGTFDRERHxkT7Tz2ZbPvKaEh/c+GQLWrvW6Nz3aotGxfLNDUUxaZhr/XPdPxl0wDtvuk6VCb79tTp2aNu3UjU8/bRqzi00bL4tXj0Z+Tu052rYYx84MJiTezsoGiRzKyGfltmNMmLfhnA8bYI5RXn3Xakb2HMkfPvsDV797Nb8e/7Xsm2Ni4PnnSZi/kEmtb+LFZS9yNPco13a+lrk/z/VvVoeISCUoaIiI+MieZOdI7hG+3/V90bW2PS8jIxzyV60ouuZyuziSd4xGPfrCSy9Bbm7Ra6///DphIWHcft7tsOvkVOhPPzXlUZ5ZGps2wV//Co88AnGnn0tS8tSpSp04dewY7N5d7UFj/pK9uC0Ll80z7dxs9Mxfsrda11FTRYdFM3PwTD6/5XMcaQ6SZyfzD+c/yr55+HBISWHSzNW0qNuCez+/l9E9R7Ph0AaW7V5W9ntERKqIgoaIiI96x/Wmed3mfLL5k6JrKa37sLYZHPtpadG1o7lHcbldNPrN/8DBgzBvHgAFrgLmrJzDLcm30CCqgTlG1rJg8GDvZu8//clMGf/Tn864Jq85GpUtnfI0gldz6VRqWjauEr9sd7nNdTnlqg5X4Rjr4IqEK/j9B7/nlg9v4UjOEe+bbDaYPp3olWuZFjKEz7Z+RlZ+Fu1i26kpXESqnYKGiIiPypoSntwsGUecDWvtL0XXPBOeGyV0MycqTZkC+fn8Z+N/+DXjV8ZdMM7c+O9/m6Axe/apgX2ffWZ2OP7yl1NzNE6j5KlTldrRcDohJASSkvx/hh8SmkUXTZj3sFnmunhrFN2Ifwz7B/Ovnc/CzQtJnp3MotRF3jf16QO33spvn/4nV8Vfzp+++BMjeozgn+v+6XVqmohIVVPQEBGpAHuinU3pm9iSvgWA8JBwjiS1pcGuA5BtfgOfnnMyaEQ3Mg26O3fC3//OzBUz6d+mPz2a94ClS2HDBuja9dQcjfx8s4sxYABcd51P6yneo5FbmFu5Hg2nExITISLC/2f4YfiAOCyLorBhs0zuunXg6cvGzlWWZXFL91twjHWQ1DiJQX8bxH2f31c0GR6A557Dys7hr+vasOf4HjLyMsgrzOM9x3vBW7iInHMUNEREKuCKhCuICInw2tUIP/8CbC53UelR0Y5GVCPo3h3sdnKfeZKlqUvMbkZODowebSaJX3LJqYe/8gps3myawn08orbkjkalS6equT8DzIT5qSM707t9fRrHhNG7fX2mjep81k6aD5TW9Vvz1a1fMe2qacxZOYder/Vi1d5V5sWWLeGRR0ic9jfuT7qdWStmMbDtQF7/+XU1hYtItVHQEBGpgDrhdbg84XKvoNGq71UUWJC13DSJe+1oADzyCJFbtjNyRyzXdr4WnnrKNIJblplZAaaX44knYMwY6NHD5/WU7NHwu3TK7TYzNKr7aNuTkuNjeGFEEv96sCcvjEhSyPCRzbJxb597+fmun4kMjaTPG3149ttnzcloJ3t9/jx/F42jG5OZl8ma/WtYtW9VsJctIucIBQ0RkQqyJ9r5bud3RY24vdpfzMbGkP7DN4DZ0YgOiy760n/svM4sSbDx9A+RhK9xmP6LBx+ErKxTZVOPP25+Pv10hdZS8tQpv0un0tIgPT0oOxpSeV2adOHH0T8yqd8kHl/yOP3f7M/W7D3w0kvUWfAFLzUZzo+//kijqEa8vkpN4SJSPRQ0REQqaGjiUArdhUVTwjs07MD6lmFYv5hZGuk56aZs6qS3177N5P7QYst+0xzeteupHozWreGXX+C118yOhueIWx+VmqPhb+mU58QpBY1aKzwknGcue4bv7viOg1kH6TGnB6+2PoB74EBueOZDLosfiNvt5l3Hu2TmZQZ7uSJyDlDQEBGpoFb1WtGzec+i8inLsjjWqR2Nt+wFl4v07PSisimX28WsFbNoOGSYObI2NRXeeAP27TMPa93aTAXv2BHGjavwWgI2R8PhgKgoSEjw7/1SY1zU+iLW3L2G4cnDufvTsYy/Mh+2bGVGegrH846TlZ9V/hwOEZEAUtAQEfGDPdHOZ1s/I78wH4DQ83sTdaIQ99atXjsai1IXsTl9Mw80+a0pTwLTDL5rlzlK9qefYPFiePllCA+v8DoCNkfD6YQuXcyapNarG16XV+2vsuCmBXwQuoU3U8Lo8NQM7k0eQ4gVwszlM4O9RBE5ByhoiIj4wZ5k52juUb7fbRrAW/YfDMChZYs4nHO4aEdj1opZnNekO70en2P6Mbp0gcmTzQTuuDjTq3HNNWZonx9KnTrlb49GkE6ckqo1NHEojrEOlo68nKz8bAa89iV1w+uSut/FPa+v5IYpq5n09iYcOzOCvVQROQspaIiI+OH8FufTom4LFmwy5VM9ul3BnhgTNDw7GjuO7mDBpgXM2JOM9d138Prr8Oc/43DuZVJGF2644TUm9bkPx0NT/F6H1xwNf0unXC5Yt05B4yzVpE4T3hr9CZv/cAuDP99GwrEunFc4mw27CjiUkc/KbceYMG+DwoaIBJyChoiIH2yWjaGJQ4v6NJrVbcam1lGwdo3p0YhqxOwVs+l8IoZ+Mz82czMGDsRx4TVMuG0OK2MSOBTdkJUJKUz4OtvvL3leOxr+lk7t2GFOwArS0bZS9SzL4sJn36QgsQMpB28+WW5n/rlxuc3pxvOX7A3uIkXkrKOgISLiJ3uinS2Ht7Dp0CYAjnZqS+PNv5Kek05MRAxv/DyXf37TGKtuXXjxRQDmf5eG22bDZTO9EC7LVqkveV49Gv6WTunEqXNDWBjh02eSXqctFt69OC43pKZlB2lhInK2UtAQEfHT5QmXExkaWbSrEXZ+b2Iy88jOz2ZL+hYGrThM159SzcTv2FjAfJlz4T31uzJf8jw7GoWuQvJd+f6VTjmdZn1xcX6tQWqRq64igePYXIVel20WJDSLDtKiRORspaAhIuKn6LBorki4oihoNL/4atJPbij8tHERs78Kh2HD4He/K3pPQrNobN45o1Jf8jw9GrkFuQD+lU45HGY3w7LOfK/UesNv7ImFGxsuwPzzZ1lw60AFTREJLAUNEZFKsCfa+X7X9xzOOQxxl/HU9dPoW7CADjvvY3tcT5gxw+v+4QPisCyKwkZlv+R5djRyCnIA/C+dUn/GOSO5X2emFnxH7+0raBxto3f7+kwb1ZlubWKCvTQROcuEBnsBIiK12dDEodz1yV28+cNiPlvaGlfLFCII4VhsIyYO68PUE3Uo/hU+OT6GqSM7M3/JXlLTskloFs2tA+P8/pLn6dHw7GhUuHQqLw82boSxY/36fKmdkh8dywsdOwKD4OH5wV6OiJylFDRERCohLiaOXi168eXKAtxucFsnm7xtIdgs0+T9wogkr/ckx8eUuuavoh2N/JM7GhUtndqyBQoK1Ah+rqlXD557DkaNgnvugYsuCvaKROQspNIpEZFKsifaycyMweX2vl4dJ/l4ejT8Lp1yOMxPBY1zz+23Q69ecO+9ZpaKiEiAKWiIiFSSPclOhnsLluWdNKrjJB/PjobfpVNOpzltqmHDKlid1Gg2G0yfDitXwjvvBHs1InIWUtAQEamkns17kh2zALfbHbAmb195ejT8Lp1yOrWbcS7r1w9uugkeegiOHw/2akTkLKOgISJSSZZlcUWXDqTF/i+92tejcUxYtZ3kU+lTpzxH28q5a8oUyMiAyZODvRIROcuoGVxEJADsiXZeXTWUD257ic5Nelbb55aco1Gh0qmsLEhN1dG257pWrcyOxjPPwOjR0KFDsFckImcJ7WiIiATAZe0uIyo0qmh4X3Wp1KlT69ebn9rRkAcegObN4f77g70SETmLKGiIiARAVFiU15Tw6lLUo3GydKpCOxpOp2kk6dKlilYntUZUFPzlL/Dxx/Dll8FejYicJRQ0REQCxJ5oZ9nuZaRnp1fL57nd5pQrz6lTYbYwQmwhvj/A4YD27SG6ak/Gklpi2DC45BKYMAHy84O9GhE5CyhoiIgEyNDEobjcLj7d8mm1fJ4bEzQsy5w6VeFGcJ04JcVZljnudsMGmDMn2KsRkbOAgoaISIC0iGlB77je1VY+5XKbIWueU6d0tK1U2nnnwZgx8PjjcOhQsFcjIrWcgoaISADZE+18vvVz8grzqvyzPKVTFubUqQr1Z6Snw759ChpS2jPPgNsN50COhwAADqVJREFUTzwR7JWISC2noCEiEkD2RDsZeRl8u/PbKv8srx2NipZOOZ3mp462lZKaNDEhY84c08cjIuInBQ0RkQA6r/l5tKrXigWbqr58yqtHo6KlU04nhIVBx45VtDqp1caNM/9s3Huv2d0QEfGDgoaISABZlsXQjkNZsHlBUWlTVSm+o1Hh0imnEzp1MmFDpKTwcJg6FRYvhv/7v2CvRkRqKQUNEZEAsyfZ2X50O+sPrq/Szyneo5FTUMHSKYdD/RlyetdcA4MHmyF+ubnBXo2I1EIKGiIiAXZZu8uIDouu8tOnSvZo+Lyj4XabHQ31Z8iZvPwy7N5tdjdERCpIQUNEJMAiQyMZlDCoyoNG8R6N3IJc33s0fv0Vjh3TjoacWVIS/PGP8OyzsHdvsFcjIrWMgoaISBWwJ9r5YfcPHMw6WGWfUWqOhq+lU56ThBQ0xBePPWamxz/8cLBXIiK1jIKGiEgVGJI4BDfuKp0S7tWjkZ9DZIiPpVNOJ9StC/HxVbY2OYvExpodjXfegZ9+CvZqRKQWUdAQEakCzes2J6VlSpWWT3lKpzynTvm8o+F0QteuYNN/AsRHI0eaqeH33gsuV7BXIyK1hP4rIyJSReyJdr7Y9gUnCk5UyfM9pVMVnqPhdKpsSiomJASmTzc7Gu++G+zViEgtoaAhIlJF7Il2MvMyWbpzaZU831M6VaE5GoWFsH69goZU3CWXwI03wqRJkJkZ7NWISC2goCEiUkW6N+tO63qtq2xKeNGOxskeDZ9Kp7ZtMzMRdLSt+GPKFDhyBJ57LtgrEZFaQEFDRKSKWJaFPdFeZVPCi/do+Fw65XSan9rREH/Ex8ODD8JLL0FqarBXIyI1nIKGiEgVsifZ2XlsJ84DzoA/27OjAfheOuVwQOPG0LRpwNcj54gHH8TR9WImzVjODVNWM+ntTTh2ZgR7VSJSAyloiIhUoQFtB1AnrE6VnD7l2SVxuV243C7fSqc8E8EtK+DrkXOD45CLCYOfZWV0PIcy8lm57RgT5m1Q2BCRUhQ0RESqUGRoJFe2v7JKgoZnRyO/MB/A99IplU1JJcxfshe3ZeGyhQDgcoPbba6LiBSnoCEiUsXsiXZ+2vMTB7IOBPS5nh6NAlcBwJlLp3JzYcsWBQ2plNS0bFwlWo5cbnNdRKQ4BQ0RkSo2JHEIAAs3Lwzocz07GnmuPIAzl05t3GiOt1XQkEpIaBaNrUTlnc0y10VEilPQEBGpYk3rNOXCVhcGvHzK06Phc+mUTpySABg+IA7Loihs2CzT8nPrwLjgLkxEahwFDRGRamBPtPPlti/JLcgN2DNL9micsXTK6YQ2baBevYCtQc49yfExTB3Zmd7t69M4Joze7eszbVRnurWJCfbSRKSGCQ32AkREzgX2RDuPfvMoS3Ys4eoOVwfkmZ4ejXzXyR2NM5VOqRFcAiQ5PoYXRiQFexkiUsNpR0NEpBp0a9qN+PrxAZ0SXtSjUXiyR+NMpVMOh4KGiIhUGwUNEZFqUBVTwot6NFw+lE4dPw67dpkZGiIiItVAQUNEpJrYk+zsPr6bX9J+CcjzSu1onK50at0681M7GiIiUk0UNEREqsml8ZdSN7xuwE6f8vRo+FQ65XBASAh06hSQzxYRETkTBQ0RkWoSERrBVe2vCljQKH7qlIVFeEh4+Tc7ndCxI0Se4WQqERGRAFHQEBGpRvZEO8t/Xc7+zP2VfpanRyOvMI/I0Egsyyr/Zp04JSIi1UxBQ0SkGg3uOBgLKyBTwj07GicKT+hoWxERqXEUNEREqlGTOk3o27pvQMqniuZoFOaf/sSptDQ4eFBBQ0REqpWChohINbMn2vkq9atKTwn32tE4XSO402l+6mhbERGpRgoaIiLVzJ5oJzs/m2+2f1Op5xTv0Tht6ZTTCRER0L59pT5PRESkIhQ0RESqWZcmXWgX267SU8KLz9E4bemUwwFdupjjbUVERKqJgoaISDXzTAn/ZMsnlZoS7unR8Kl0SmVTIiJSzRQ0RESCwJ5kZ8/xPazZv8bvZxT1aBSc5tQpl8tMBVcjuIiIVDMFDRGRILgk/hLqRdSr1OlTJedolGnXLsjMVNAQEZFqp6AhIhIE4SHhlZ4S7tOpUw6H+amgISIi1UxBQ0QkSOyJdlbuXcnejL1+vb+oR6PgRPk7Gk4n1K8PrVr5u0wRERG/KGiIiATJ4I6DsVk2v6eEFz91qtwdDc9EcMvyd5kiIiJ+UdAQEQmSRtGNuKj1RX6XT3l6NHILcstvBnc4VDYlIiJBoaAhIhJE9kQ7i1IXkZOfU+H3Fu/RKLN0Kj8fNm5U0BARkaBQ0BARCSJ7op2cghy+3v51hd9bvEejzNKpLVtM2NAMDRERCQIFDRGRIOrUuBPtG7T3a0q4Z0ej3NIpp9P87Nq1MksUERHxi4KGiEgQVWZK+BnnaDgc0Lw5NG4ciKWKiIhUiIKGiEiQ2ZPs7M3Yy+r9qyv0vjPO0XA6VTYlIiJBo6AhIhJk/dv0p35E/QqXT3l6NIDyS6fUCC4iIkGioCEiEmRhIWFc3eHqCh9z69nRAEqXTmVlwbZtChoiIhI0ChoiIjWAPdHOqn2rKjQlvHhPR6nSqQ0bwO1W0BARkaBR0BARqQGu6XgNIVYIn2z+xOf3FN/RKFU6pROnREQkyBQ0RERqgIZRDenXpl+FyqeK92iUKp1yOiEhAerUCdQSRUREKkRBQ0SkhvBMCc/Oz/bpfq8djZKlUw6HyqZERCSoFDRERGoIe6Kd3IJcvk71bUq4V49GWaVTChoiIhJEChoiIjVEUuMkOjbs6HP5VLmnTh0+DHv3aoaGiIgElYKGiEgNYk+088nmT7xCRHm85mgUL53yNIJrR0NERIJIQUNEpAaxJ9nZl7mPn/f9fMZ7yz11yumE0FBITKyKJYqIiPhEQUNEpAbp17ofsZGxPk0JL96j4VU65XRCp04QHl4VSxQREfGJgoaISA0SFhLGNR2u8alPw7OjEWoLJdQWeuoFNYKLiEgNoKAhIlLD2BPtrN6/mj3H95z2Pk+Phld/htuto21FRKRGUNAQEalhru5wtU9Twj07Gl5lU3v3wtGjChoiIhJ0ChoiIjVMg6gG9I/vf8byKU+PRpknTuloWxERCTIFDRGRGsieaOfr1K/Jyssq956iHY2wEo3g0dHQtm0Vr1BEROT0FDRERGoge6KdE4UnWJS6qNx7yuzRcDiga1ew6V/vIiISXPovkYhIDdSxUUeSGiWdtnzKs6NRqnRKZVMiIlIDKGiIiNRQZ5oSXtSj4RnWV1gI69erEVxERGoEBQ0RkRrKnmQnLSuNlXtXlvl6qVOnUlMhJ0dBQ0REagQFDRGRGuqi1hfRILJBuVPCi3o0PDsanhOnFDRERKQGUNAQEamhQm2hDO44uNw+jVI9Gk4nNGoEzZtX1xJFRETKpaAhIlKDDU0cytq0tew6tqvUa263GwvrVOmU02l2MyyrmlcpIiJSmoKGiEgNdnWHqwm1hZY5JbzUjobDobIpERGpMRQ0RERqsNjIWPq3KXtKuFePxokTsHmzgoaIiNQYChoiIjWcPdHON9u/ITMv0+u616lTmzaZ4201Q0NERGoIBQ0RkRrOnmQnrzCPr7Z95XXd7Xbjxm1KpxwOc7Fr1yCsUEREpDQFDRGRGq5Dww50atypVPmU146G0wmtWkFsbDCWKCIiUoqChohILWBPtLNwy0KvKeFePRpOp8qmRESkRlHQEBGpBeyJdg5kHWD5r8uLruUX5gMnT53yHG0rIiJSQyhoiIjUAn1b96VhVEOvKeF5hXkA1D3hhh07FDRERKRGUdAQEakFypoS7gkaTXccNBcUNEREpAZR0BARqSXsiXYcBxzsPLoTOBU0Gm3bBzYbdO4czOWJiIh4UdAQEaklrmp/FaG20KJdDU/QqL9lF3ToAFFRwVyeiIiIFwUNEZFaon5kfS6Nv7QoaHiawWO27FTZlIiI1DgKGiIitYg90c6SHUvIOJHBicITAERvStXRtiIiUuMoaIiI1CKeKeFfbvuSAlcBTTIh9NBh7WiIiEiNExrsBYiIiO8SGiTQpUkXFmxeQH5hPt0OnHxBQUNERGoY7WiIiNQyninheQV5dDsA7ogI0wwuIiJSgyhoiIjUMvZEO4eyD5GWnWaCRqckCNUGtYiI1CwKGiIitUyfVn1oHN2YXzN+JfkAWMndg70kERGRUhQ0RERqmRBbCIM7DiYt0+xoWOrPEBGRGkh77SIitVDvBtezOud8brunPYkh9Rm+M4Pk+JhgL0tERKSI5Xa73cFehIiI+M6xM4P75m2g0FWIRQg2CywLpo7srLAhIiI1hkqnRERqmflL9oIbLEIAcLnB7T55XUREpIZQ0BARqWVS07JxldiLdrnNdRERkZpCQUNEpJZJaBaNzfK+ZrPMdRERkZpCQUNEpJYZPiAOy6IobHh6NG4dGBfchYmIiBSjZnARkVrIsTOD+Uv2kpqWTUKzaG4dGEe3NmoEFxGRmkNBQ0REREREAk6lUyIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnAKGiIiIiIiEnD/D5RVlKu5NdqHAAAAAElFTkSuQmCC", + "text/plain": [ + "Text(0.5, 0, 'Fraud over genuine ratio')" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGwCAYAAACzXI8XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de1hVdaL/8c8WBIXICypCIjhmpqKUmh7TRk2LzDxaT1fxiJeaacITRk7qNKZoijXJ0MU0uwA1lpdTWseOmeItnUrxXqN4V0rULsbNRGSv3x/93NMOIdxuWPub79fz7Odprb32d31YwyOf+a7v3tthWZYlAAAAA9WxOwAAAICnKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMbytztATXM6nTp27JhCQkLkcDjsjgMAAKrBsiwVFRUpIiJCdepUPu/ymy8yx44dU2RkpN0xAACAB/Ly8tSiRYtKn//NF5mQkBBJP12IK6+80uY0AACgOgoLCxUZGen6O16Z33yROX876corr6TIAABgmF9bFsJiXwAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYy9Yis379eg0aNEgRERFyOBxaunSp67mysjKNHz9eHTt2VHBwsCIiIjR8+HAdO3bMxsQAAMCX2FpkSkpKFBsbq9mzZ1d47vTp09q6dasmTZqkrVu36r333lNubq7+8z//04akAADAFzksy7LsDiH99O2WS5Ys0ZAhQyo9ZvPmzerWrZuOHDmili1bVmvcwsJCNWjQQAUFBXz7NQAAhqju32//Wsx0yQoKCuRwONSwYcNKjyktLVVpaalru7CwsDaiAQAAGxhTZM6cOaPx48frgQceqLKZpaamKiUlpRaToTZET/iwRsY9PHNgjYwLAKgdRrxrqaysTPfee68sy9KcOXOqPHbixIkqKChwPfLy8mopJQAAqG0+PyNzvsQcOXJEq1ev/tV1LoGBgQoMDKyldAAAwE4+XWTOl5h9+/ZpzZo1Cg0NtTsSAADwIbYWmeLiYu3fv9+1fejQIW3fvl2NGzdWeHi47r77bm3dulXLli1TeXm5jh8/Lklq3LixAgIC7IoNAAB8hK1FJicnR3379nVtJycnS5ISEhI0ZcoUffDBB5Kk6667zu11a9asUZ8+fWotJwAA8E22Fpk+ffqoqo+x8ZGPuAEAAD7KiHctAQAAXAhFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLH87Q4A2Cl6woc1NvbhmQNrbGwAwE+YkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaytcisX79egwYNUkREhBwOh5YuXer2vGVZeuqppxQeHq769eurf//+2rdvn01pAQCAr7G1yJSUlCg2NlazZ8++4PPPPvusXnjhBc2dO1eff/65goODFRcXpzNnztRyUgAA4Iv87Tz5gAEDNGDAgAs+Z1mW0tPT9de//lWDBw+WJL355psKCwvT0qVLdf/991/wdaWlpSotLXVtFxYWej84AADwCbYWmaocOnRIx48fV//+/V37GjRooO7du+vTTz+ttMikpqYqJSWltmICtS56woc1NvbhmQNrbGwAqAk+u9j3+PHjkqSwsDC3/WFhYa7nLmTixIkqKChwPfLy8mo0JwAAsI/Pzsh4KjAwUIGBgXbHAAAAtcBnZ2SaN28uSTpx4oTb/hMnTrieAwAAlzefLTKtWrVS8+bNlZ2d7dpXWFiozz//XD169LAxGQAA8BW23loqLi7W/v37XduHDh3S9u3b1bhxY7Vs2VJjx47V008/rTZt2qhVq1aaNGmSIiIiNGTIEBtTAwAAX2FrkcnJyVHfvn1d28nJyZKkhIQEZWZm6oknnlBJSYn+8Ic/6IcfflCvXr300UcfqV69enZFBgAAPsTWItOnTx9ZllXp8w6HQ1OnTtXUqVNrMRUAADCFz66RAQAA+DUUGQAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMbytzsAfjuiJ3xodwRchmrq9+7wzIE1Mi4A72JGBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMJZPF5ny8nJNmjRJrVq1Uv369dW6dWtNmzZNlmXZHQ0AAPgAf7sDVOWZZ57RnDlzlJWVpQ4dOignJ0cjR45UgwYN9Oijj9odDwAA2Myni8w///lPDR48WAMHDpQkRUdH65133tGmTZtsTgYAAHyBT99auvHGG5Wdna29e/dKknbs2KENGzZowIABlb6mtLRUhYWFbg8AAPDb5NMzMhMmTFBhYaGuvfZa+fn5qby8XNOnT1d8fHylr0lNTVVKSkotpgQuLHrCh3ZH8BlcCwA1xadnZBYtWqT58+fr7bff1tatW5WVlaXnnntOWVlZlb5m4sSJKigocD3y8vJqMTEAAKhNPj0j8+c//1kTJkzQ/fffL0nq2LGjjhw5otTUVCUkJFzwNYGBgQoMDKzNmAAAwCY+PSNz+vRp1anjHtHPz09Op9OmRAAAwJf49IzMoEGDNH36dLVs2VIdOnTQtm3blJaWplGjRtkdDQAA+ACfLjIvvviiJk2apEceeUQnT55URESE/vjHP+qpp56yOxoAAPABPl1kQkJClJ6ervT0dLujAAAAH+TTa2QAAACqQpEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGN5VGQOHjzo7RwAAAAXzaMic/XVV6tv3776xz/+oTNnzng7EwAAQLV4VGS2bt2qTp06KTk5Wc2bN9cf//hHbdq0ydvZAAAAquRRkbnuuuv0/PPP69ixY3rjjTeUn5+vXr16KSYmRmlpafrmm2+8nRMAAKCCS1rs6+/vr7vuukuLFy/WM888o/3792vcuHGKjIzU8OHDlZ+f762cAAAAFVxSkcnJydEjjzyi8PBwpaWlady4cTpw4IBWrlypY8eOafDgwd7KCQAAUIG/Jy9KS0tTRkaGcnNzdfvtt+vNN9/U7bffrjp1fupFrVq1UmZmpqKjo72ZFQAAwI1HRWbOnDkaNWqURowYofDw8Ase06xZM73++uuXFA4AAKAqHhWZffv2/eoxAQEBSkhI8GR4AACAavFojUxGRoYWL15cYf/ixYuVlZV1yaEAAACqw6Mik5qaqiZNmlTY36xZM82YMeOSQwEAAFSHR7eWjh49qlatWlXYHxUVpaNHj15yKAD2iJ7wod0RAOCieDQj06xZM+3cubPC/h07dig0NPSSQwEAAFSHR0XmgQce0KOPPqo1a9aovLxc5eXlWr16tZKSknT//fd7OyMAAMAFeXRradq0aTp8+LD69esnf/+fhnA6nRo+fDhrZAAAQK3xqMgEBARo4cKFmjZtmnbs2KH69eurY8eOioqK8nY+AACASnlUZM675pprdM0113grCwAAwEXxqMiUl5crMzNT2dnZOnnypJxOp9vzq1ev9ko4AACAqnhUZJKSkpSZmamBAwcqJiZGDofD27kAAAB+lUdFZsGCBVq0aJFuv/12b+cBAACoNo/efh0QEKCrr77a21kAAAAuikdF5vHHH9fzzz8vy7K8nQcAAKDaPLq1tGHDBq1Zs0bLly9Xhw4dVLduXbfn33vvPa+EAwAAqIpHRaZhw4a68847vZ0FAADgonhUZDIyMrydAwAA4KJ5tEZGks6dO6dVq1bplVdeUVFRkSTp2LFjKi4u9lo4AACAqng0I3PkyBHddtttOnr0qEpLS3XLLbcoJCREzzzzjEpLSzV37lxv5wQAAKjAoxmZpKQkde3aVadOnVL9+vVd+++8805lZ2d7LRwAAEBVPJqR+eSTT/TPf/5TAQEBbvujo6P19ddfeyUYAADAr/FoRsbpdKq8vLzC/q+++kohISGXHAoAAKA6PCoyt956q9LT013bDodDxcXFmjx5Ml9bAAAAao1Ht5ZmzZqluLg4tW/fXmfOnNHQoUO1b98+NWnSRO+88463MwIAAFyQR0WmRYsW2rFjhxYsWKCdO3equLhYo0ePVnx8vNviXwAAgJrkUZGRJH9/fw0bNsybWQAAAC6KR0XmzTffrPL54cOHexQGAADgYnhUZJKSkty2y8rKdPr0aQUEBCgoKIgiAwAAaoVH71o6deqU26O4uFi5ubnq1asXi30BAECt8fi7ln6pTZs2mjlzZoXZmkv19ddfa9iwYQoNDVX9+vXVsWNH5eTkePUcAADATB4v9r3gYP7+OnbsmNfGO3XqlHr27Km+fftq+fLlatq0qfbt26dGjRp57RwAAMBcHhWZDz74wG3bsizl5+frpZdeUs+ePb0STJKeeeYZRUZGKiMjw7WvVatWXhsfAACYzaMiM2TIELdth8Ohpk2b6uabb9asWbO8Ekz6qTDFxcXpnnvu0bp163TVVVfpkUce0UMPPVTpa0pLS1VaWuraLiws9FoeAADgWzwqMk6n09s5LujgwYOaM2eOkpOT9Ze//EWbN2/Wo48+qoCAACUkJFzwNampqUpJSamVfABwuYie8GGNjX145sAaGxu/fV5b7FsTnE6nOnfurBkzZuj666/XH/7wBz300EOaO3dupa+ZOHGiCgoKXI+8vLxaTAwAAGqTRzMyycnJ1T42LS3Nk1NIksLDw9W+fXu3fe3atdO7775b6WsCAwMVGBjo8TkBAIA5PCoy27Zt07Zt21RWVqa2bdtKkvbu3Ss/Pz917tzZdZzD4bikcD179lRubq7bvr179yoqKuqSxgUAAL8NHhWZQYMGKSQkRFlZWa63Qp86dUojR47UTTfdpMcff9wr4R577DHdeOONmjFjhu69915t2rRJ8+bN07x587wyPgAAMJtHa2RmzZql1NRUt89zadSokZ5++mmvvmvphhtu0JIlS/TOO+8oJiZG06ZNU3p6uuLj4712DgAAYC6PZmQKCwv1zTffVNj/zTffqKio6JJD/dwdd9yhO+64w6tjAgCA3waPZmTuvPNOjRw5Uu+9956++uorffXVV3r33Xc1evRo3XXXXd7OCAAAcEEezcjMnTtX48aN09ChQ1VWVvbTQP7+Gj16tP72t795NSAAAEBlPCoyQUFBevnll/W3v/1NBw4ckCS1bt1awcHBXg0HAABQlUv6QLz8/Hzl5+erTZs2Cg4OlmVZ3soFAADwqzwqMt9995369euna665Rrfffrvy8/MlSaNHj/baW68BAAB+jUdF5rHHHlPdunV19OhRBQUFufbfd999+uijj7wWDgAAoCoerZH5+OOPtWLFCrVo0cJtf5s2bXTkyBGvBAMAAPg1Hs3IlJSUuM3EnPf999/zPUcAAKDWeFRkbrrpJr355puubYfDIafTqWeffVZ9+/b1WjgAAICqeHRr6dlnn1W/fv2Uk5Ojs2fP6oknntCXX36p77//Xhs3bvR2RgAAgAvyaEYmJiZGe/fuVa9evTR48GCVlJTorrvu0rZt29S6dWtvZwQAALigi56RKSsr02233aa5c+fqySefrIlMAAAA1XLRMzJ169bVzp07ayILAADARfHo1tKwYcP0+uuvezsLAADARfFose+5c+f0xhtvaNWqVerSpUuF71hKS0vzSjgAAICqXFSROXjwoKKjo/XFF1+oc+fOkqS9e/e6HeNwOLyXDgAAoAoXVWTatGmj/Px8rVmzRtJPX0nwwgsvKCwsrEbCAQAAVOWi1sj88tutly9frpKSEq8GAgAAqC6PFvue98tiAwAAUJsuqsg4HI4Ka2BYEwMAAOxyUWtkLMvSiBEjXF8MeebMGT388MMV3rX03nvveS8hAABAJS6qyCQkJLhtDxs2zKthAAAALsZFFZmMjIyaygEAl43oCR/W2NiHZw6ssbEBX3RJi30BAADsRJEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMZVSRmTlzphwOh8aOHWt3FAAA4AOMKTKbN2/WK6+8ok6dOtkdBQAA+AgjikxxcbHi4+P16quvqlGjRlUeW1paqsLCQrcHAAD4bfK3O0B1JCYmauDAgerfv7+efvrpKo9NTU1VSkpKLSUD8FsVPeFDuyMAqAafn5FZsGCBtm7dqtTU1GodP3HiRBUUFLgeeXl5NZwQAADYxadnZPLy8pSUlKSVK1eqXr161XpNYGCgAgMDazgZAADwBT5dZLZs2aKTJ0+qc+fOrn3l5eVav369XnrpJZWWlsrPz8/GhAAAwE4+XWT69eunXbt2ue0bOXKkrr32Wo0fP54SAwDAZc6ni0xISIhiYmLc9gUHBys0NLTCfgAAcPnx+cW+AAAAlfHpGZkLWbt2rd0RAACAj2BGBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFj+dgdA7Yue8KHdEQCgxtXkv3WHZw6ssbFxcZiRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGIsiAwAAjOXTRSY1NVU33HCDQkJC1KxZMw0ZMkS5ubl2xwIAAD7Cp4vMunXrlJiYqM8++0wrV65UWVmZbr31VpWUlNgdDQAA+AB/uwNU5aOPPnLbzszMVLNmzbRlyxb9/ve/tykVAADwFT5dZH6poKBAktS4ceNKjyktLVVpaalru7CwsMZzAQAAexhTZJxOp8aOHauePXsqJiam0uNSU1OVkpJSK5miJ3xYK+cBgOri36XaUVPX+fDMgTUyrmRm5urw6TUyP5eYmKgvvvhCCxYsqPK4iRMnqqCgwPXIy8urpYQAAKC2GTEjM2bMGC1btkzr169XixYtqjw2MDBQgYGBtZQMAADYyaeLjGVZ+u///m8tWbJEa9euVatWreyOBAAAfIhPF5nExES9/fbbev/99xUSEqLjx49Lkho0aKD69evbnA4AANjNp9fIzJkzRwUFBerTp4/Cw8Ndj4ULF9odDQAA+ACfnpGxLMvuCAAAwIf59IwMAABAVSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGIsiAwAAjOVvdwAAwOUtesKHdkeAwZiRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxjKiyMyePVvR0dGqV6+eunfvrk2bNtkdCQAA+ACfLzILFy5UcnKyJk+erK1btyo2NlZxcXE6efKk3dEAAIDNfL7IpKWl6aGHHtLIkSPVvn17zZ07V0FBQXrjjTfsjgYAAGzmb3eAqpw9e1ZbtmzRxIkTXfvq1Kmj/v3769NPP73ga0pLS1VaWuraLigokCQVFhZ6PZ+z9LTXxwQAXL5q4m/VeTX1N6umMp8f17KsKo/z6SLz7bffqry8XGFhYW77w8LCtGfPngu+JjU1VSkpKRX2R0ZG1khGAAC8pUG63QkuXk1nLioqUoMGDSp93qeLjCcmTpyo5ORk17bT6dT333+v0NBQORyOC76msLBQkZGRysvL05VXXllbUX0S18Id18Md18Md1+PfuBbuuB7uPLkelmWpqKhIERERVR7n00WmSZMm8vPz04kTJ9z2nzhxQs2bN7/gawIDAxUYGOi2r2HDhtU635VXXskv3P/HtXDH9XDH9XDH9fg3roU7roe7i70eVc3EnOfTi30DAgLUpUsXZWdnu/Y5nU5lZ2erR48eNiYDAAC+wKdnZCQpOTlZCQkJ6tq1q7p166b09HSVlJRo5MiRdkcDAAA285syZcoUu0NUJSYmRg0bNtT06dP13HPPSZLmz5+vtm3bevU8fn5+6tOnj/z9fb7b1TiuhTuuhzuuhzuux79xLdxxPdzV1PVwWL/2viYAAAAf5dNrZAAAAKpCkQEAAMaiyAAAAGNRZAAAgLEu+yIze/ZsRUdHq169eurevbs2bdpkdyRbrF+/XoMGDVJERIQcDoeWLl1qdyRbpaam6oYbblBISIiaNWumIUOGKDc31+5YtpkzZ446derk+jCrHj16aPny5XbH8gkzZ86Uw+HQ2LFj7Y5iiylTpsjhcLg9rr32Wrtj2errr7/WsGHDFBoaqvr166tjx47KycmxO5YtoqOjK/x+OBwOJSYmeu0cl3WRWbhwoZKTkzV58mRt3bpVsbGxiouL08mTJ+2OVutKSkoUGxur2bNn2x3FJ6xbt06JiYn67LPPtHLlSpWVlenWW29VSUmJ3dFs0aJFC82cOVNbtmxRTk6Obr75Zg0ePFhffvml3dFstXnzZr3yyivq1KmT3VFs1aFDB+Xn57seGzZssDuSbU6dOqWePXuqbt26Wr58uf71r39p1qxZatSokd3RbLF582a3342VK1dKku655x7vncS6jHXr1s1KTEx0bZeXl1sRERFWamqqjansJ8lasmSJ3TF8ysmTJy1J1rp16+yO4jMaNWpkvfbaa3bHsE1RUZHVpk0ba+XKlVbv3r2tpKQkuyPZYvLkyVZsbKzdMXzG+PHjrV69etkdw2clJSVZrVu3tpxOp9fGvGxnZM6ePastW7aof//+rn116tRR//799emnn9qYDL6ooKBAktS4cWObk9ivvLxcCxYsUElJyWX9VSGJiYkaOHCg278hl6t9+/YpIiJCv/vd7xQfH6+jR4/aHck2H3zwgbp27ap77rlHzZo10/XXX69XX33V7lg+4ezZs/rHP/6hUaNGVfolzp64bIvMt99+q/LycoWFhbntDwsL0/Hjx21KBV/kdDo1duxY9ezZUzExMXbHsc2uXbt0xRVXKDAwUA8//LCWLFmi9u3b2x3LFgsWLNDWrVuVmppqdxTbde/eXZmZmfroo480Z84cHTp0SDfddJOKiorsjmaLgwcPas6cOWrTpo1WrFihP/3pT3r00UeVlZVldzTbLV26VD/88INGjBjh1XH53GTgVyQmJuqLL764rO/7S1Lbtm21fft2FRQU6H/+53+UkJCgdevWXXZlJi8vT0lJSVq5cqXq1atndxzbDRgwwPXfnTp1Uvfu3RUVFaVFixZp9OjRNiazh9PpVNeuXTVjxgxJ0vXXX68vvvhCc+fOVUJCgs3p7PX6669rwIABioiI8Oq4l+2MTJMmTeTn56cTJ0647T9x4oSaN29uUyr4mjFjxmjZsmVas2aNWrRoYXccWwUEBOjqq69Wly5dlJqaqtjYWD3//PN2x6p1W7Zs0cmTJ9W5c2f5+/vL399f69at0wsvvCB/f3+Vl5fbHdFWDRs21DXXXKP9+/fbHcUW4eHhFcp9u3btLuvbbZJ05MgRrVq1Sg8++KDXx75si0xAQIC6dOmi7Oxs1z6n06ns7OzL+r4/fmJZlsaMGaMlS5Zo9erVatWqld2RfI7T6VRpaandMWpdv379tGvXLm3fvt316Nq1q+Lj47V9+3b5+fnZHdFWxcXFOnDggMLDw+2OYouePXtW+KiGvXv3KioqyqZEviEjI0PNmjXTwIEDvT72ZX1rKTk5WQkJCeratau6deum9PR0lZSUaOTIkXZHq3XFxcVu/w/q0KFD2r59uxo3bqyWLVvamMweiYmJevvtt/X+++8rJCTEtW6qQYMGql+/vs3pat/EiRM1YMAAtWzZUkVFRXr77be1du1arVixwu5otS4kJKTCWqng4GCFhoZelmuoxo0bp0GDBikqKkrHjh3T5MmT5efnpwceeMDuaLZ47LHHdOONN2rGjBm69957tWnTJs2bN0/z5s2zO5ptnE6nMjIylJCQUDPfBO619z8Z6sUXX7RatmxpBQQEWN26dbM+++wzuyPZYs2aNZakCo+EhAS7o9niQtdCkpWRkWF3NFuMGjXKioqKsgICAqymTZta/fr1sz7++GO7Y/mMy/nt1/fdd58VHh5uBQQEWFdddZV138OHb5EAAAubSURBVH33Wfv377c7lq3+93//14qJibECAwOta6+91po3b57dkWy1YsUKS5KVm5tbI+M7LMuyvF+PAAAAat5lu0YGAACYjyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQa4TI0YMUJDhgyxO4ZxDh8+LIfDoe3bt9sd5aL06dNHY8eOtTsG4HUUGaAWjRgxQg6Ho8Ljcv2mYBNFRkYqPz/fZ79Xae3atXI4HPrhhx/c9r/33nuaNm2aTamAmnNZf2kkYIfbbrtNGRkZbvuaNm1a4bizZ88qICCgtmL5jLKyMtWtW9fuGJXy8/NT8+bNa/28l/r70LhxYy+mAXwHMzJALQsMDFTz5s3dHn5+furTp4/GjBmjsWPHqkmTJoqLi5MkpaWlqWPHjgoODlZkZKQeeeQRFRcXu8abMmWKrrvuOrdzpKenKzo62rVdXl6u5ORkNWzYUKGhoXriiSdUna9Ze/fdd9WhQwcFBgYqOjpas2bNcj33l7/8Rd27d6/wmtjYWE2dOtW1/dprr6ldu3aqV6+err32Wr388suu587fplm4cKF69+6tevXqaf78+RfMsmfPHvXq1Uv16tVT+/bttWrVKjkcDi1dutR1TF5enu699141bNhQjRs31uDBg3X48GHX8+dvpz333HMKDw9XaGioEhMTVVZW5jrml2NKUsOGDZWZmemW+fytpfMzINnZ2eratauCgoJ04403Kjc3122M999/X507d1a9evX0u9/9TikpKTp37lxll96Vdfr06YqIiFDbtm0lSW+99Za6du2qkJAQNW/eXEOHDtXJkydd2fr27StJatSokRwOh0aMGCGp4q2lU6dOafjw4WrUqJGCgoI0YMAA7du3r9I8gK+iyAA+JCsrSwEBAdq4caPmzp0rSapTp45eeOEFffnll8rKytLq1av1xBNPXNS4s2bNUmZmpt544w1t2LBB33//vZYsWVLla7Zs2aJ7771X999/v3bt2qUpU6Zo0qRJrj/o8fHx2rRpkw4cOOB6zZdffqmdO3dq6NChkqT58+frqaee0vTp07V7927NmDFDkyZNUlZWltu5JkyYoKSkJO3evdtV4H6uvLxcQ4YMUVBQkD7//HPNmzdPTz75pNsxZWVliouLU0hIiD755BNt3LhRV1xxhW677TadPXvWddyaNWt04MABrVmzRllZWcrMzHT9TJfiySef1KxZs5STkyN/f3+NGjXK9dwnn3yi4cOHKykpSf/617/0yiuvKDMzU9OnT69yzOzsbOXm5mrlypVatmyZ6+ecNm2aduzYoaVLl+rw4cOushIZGal3331XkpSbm6v8/Hw9//zzFxx7xIgRysnJ0QcffKBPP/1UlmXp9ttvdyt1gBFq5Du1AVxQQkKC5efnZwUHB7sed999t2VZltW7d2/r+uuv/9UxFi9ebIWGhrq2J0+ebMXGxrod8/e//92KiopybYeHh1vPPvusa7usrMxq0aKFNXjw4ErPM3ToUOuWW25x2/fnP//Zat++vWs7NjbWmjp1qmt74sSJVvfu3V3brVu3tt5++223MaZNm2b16NHDsizLOnTokCXJSk9Pr+pHtpYvX275+/tb+fn5rn0rV660JFlLliyxLMuy3nrrLatt27aW0+l0HVNaWmrVr1/fWrFihWVZP13/qKgo69y5c65j7rnnHuu+++5zbf98zPMaNGhgZWRkuGXetm2bZVmWtWbNGkuStWrVKtfxH374oSXJ+vHHHy3Lsqx+/fpZM2bMcBvzrbfessLDwyv9mRMSEqywsDCrtLS0ymuzefNmS5JVVFTklufUqVNux/Xu3dtKSkqyLMuy9u7da0myNm7c6Hr+22+/terXr28tWrSoyvMBvoY1MkAt69u3r+bMmePaDg4Odv13ly5dKhy/atUqpaamas+ePSosLNS5c+d05swZnT59WkFBQb96voKCAuXn57vdBvL391fXrl2rvL20e/duDR482G1fz549lZ6ervLycvn5+Sk+Pl5vvPGGJk2aJMuy9M477yg5OVmSVFJSogMHDmj06NF66KGHXGOcO3dODRo0cBu3a9euVf4Mubm5ioyMdFub0q1bN7djduzYof379yskJMRt/5kzZ9xmjTp06CA/Pz/Xdnh4uHbt2lXl+aujU6dObmNK0smTJ9WyZUvt2LFDGzdudJuBKS8v/9X/HTt27FhhXcyWLVs0ZcoU7dixQ6dOnZLT6ZQkHT16VO3bt69W1t27d8vf39/tdyI0NFRt27bV7t27q/cDAz6CIgPUsuDgYF199dWVPvdzhw8f1h133KE//elPmj59uho3bqwNGzZo9OjROnv2rIKCglSnTp0KhaS2bg888MADGj9+vLZu3aoff/xReXl5uu+++yTJtY7n1VdfrbCW5udFQqr4c3uiuLhYXbp0ueAam58vpv7lQmKHw+EqA+e3PbmePx/X4XBIkmvc4uJipaSk6K677qrwunr16lU65i+vS0lJieLi4hQXF6f58+eradOmOnr0qOLi4txunwGXE4oM4MO2bNkip9OpWbNmqU6dn5a0LVq0yO2Ypk2b6vjx47Isy/UH9OefcdKgQQOFh4fr888/1+9//3tJP82KbNmyRZ07d6703O3atdPGjRvd9m3cuFHXXHONq4i0aNFCvXv31vz58/Xjjz/qlltuUbNmzSRJYWFhioiI0MGDBxUfH39J16Ft27bKy8vTiRMnFBYWJknavHmz2zGdO3fWwoUL1axZM1155ZUen6tp06bKz893be/bt0+nT5/2eLzz2XJzcystsNW1Z88efffdd5o5c6YiIyMlSTk5OW7HnJ/BKS8vr3Scdu3a6dy5c/r888914403SpK+++475ebmVntWB/AVLPYFfNjVV1+tsrIyvfjiizp48KDeeust1yLg8/r06aNvvvlGzz77rA4cOKDZs2dr+fLlbsckJSVp5syZWrp0qfbs2aNHHnmkwueM/NLjjz+u7OxsTZs2TXv37lVWVpZeeukljRs3zu24+Ph4LViwQIsXL65QWFJSUpSamqoXXnhBe/fu1a5du5SRkaG0tLSLug633HKLWrdurYSEBO3cuVMbN27UX//6V0n/nv2Ij49XkyZNNHjwYH3yySc6dOiQ1q5dq0cffVRfffVVtc91880366WXXtK2bduUk5Ojhx9++JLfDv7UU0/pzTffVEpKir788kvt3r1bCxYscP0M1dWyZUsFBAS4fh8++OCDCp8NExUVJYfDoWXLlumbb75xe4fbeW3atNHgwYP10EMPacOGDdqxY4eGDRumq666qsLtRMDXUWQAHxYbG6u0tDQ988wziomJ0fz585Wamup2TLt27fTyyy9r9uzZio2N1aZNmyqUjccff1z/9V//pYSEBPXo0UMhISG68847qzx3586dtWjRIi1YsEAxMTF66qmnNHXqVNc7ZM67++679d133+n06dMVPin4wQcf1GuvvaaMjAx17NhRvXv3VmZmplq1anVR18HPz09Lly5VcXGxbrjhBj344IOudy2dvzUTFBSk9evXq2XLlrrrrrvUrl07jR49WmfOnLmoGZpZs2YpMjJSN910k4YOHapx48ZVay1SVeLi4rRs2TJ9/PHHuuGGG/Qf//Ef+vvf/66oqKiLGqdp06bKzMzU4sWL1b59e82cOVPPPfec2zFXXXWVUlJSNGHCBIWFhWnMmDEXHCsjI0NdunTRHXfcoR49esiyLP3f//2fT3+GD3AhDquq1X4A4KM2btyoXr16af/+/WrdurXdcQDYhCIDwAhLlizRFVdcoTZt2mj//v1KSkpSo0aNtGHDBrujAbARi30BGKGoqEjjx4/X0aNH1aRJE/Xv39/tk4YBXJ6YkQEAAMZisS8AADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYKz/B+hvR/MpNK1vAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pd.Series(d).plot.hist(bins=20) \n", + "plt.xlabel(\"Fraud over genuine ratio\")" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAMWCAYAAAB2gvApAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxU9b3/8deZJfskISRkgSyQSBIg7DsiQevS/tzbWm21WPVWba1Le3/a7Xbx1816e6W9Vdpe99ricltxqdrWBhRRCEuAAEmAkH0hhOx7MnN+fwwzZMhEUScJwffTR5tyzplzvjNM4/mc7/fz+RimaZqIiIiIiIgEkGWsByAiIiIiImcfBRoiIiIiIhJwCjRERERERCTgFGiIiIiIiEjAKdAQEREREZGAU6AhIiIiIiIBp0BDREREREQCToGGiIiIiIgEnAINEREREREJOAUaIiIiIiIScAo0REREREQk4BRoiIiIiIhIwCnQEBERERGRgFOgISIiIiIiAadAQ0REREREAk6BhoiIiIiIBJwCDRERERERCTgFGiIiIiIiEnAKNEREREREJOAUaIiIiIiISMAp0BARERERkYBToCEiIiIiIgGnQENERERERAJOgYaIiIiIiAScAg0REREREQk4BRoiIiIiIhJwCjRERERERCTgFGiIiIiIiEjAKdAQEREREZGAU6AhIiIiIiIBp0BDREREREQCToGGiIiIiIgEnAINEREREREJOAUaIiIiIiIScAo0REREREQk4BRoiIiIiIhIwCnQEBERERGRgFOgISIiIiIiAadAQ0REREREAk6BhoiIiIiIBJwCDRERERERCTjbWA9ARETkk6ywop1nNtVy5GgX0+LDuD43iZxUx1gPS0TkYzNM0zTHehAiIiKfRIUV7dzzeBGmCS4TLAYYBjx0U7aCDREZ97R0SkREZIw8s6nWG2SA+6dpureLiIx3CjRERETGyJGjXd4gw8NlureLiIx3CjRERETGyLT4MMDls81ieLaLiIxvCjRERETGyPW5SZiYeIINT47GDauTxnZgIiIBoEBDRERkjMTHdlNgvY0p8d3EOuwsTI9i7c3ZzEpRIriIjH8qbysiIjJGNpVvos3YywNrMklyaBZDRM4umtEQEREZI3lleWTFZinIEJGzkgINERGRMZJXlsf5aeeP9TBEREaEAg0REZExUN1WzaGmQ5w/VYGGiJydlKMhIiIyBjaWbQQgNy3X7/7Cinae2VTLkaNdTIsP4/rcJHULF5FxRYGGiIjIGMgrz2Nuwlwmhk0csq+wop17Hi/ydg1v6mhl55FWHropW8GGiIwbWjolIiIyykzTfN/8jGc21XqDDHD/NE33dhGR8UKBhoiIyCg70nyEytbKYfMzjhzt8gYZHi7TvV1EZLxQoCEiIjLK8srysBpWVqau9Lt/WnwYhuEbaVgM93YRkfFCgYaIiMgoyyvPY9HkRUQGR/rdf31uEqZpYuIE3EGGYcANq9VvQ0TGDwUaIiIio8iTn7E6bfWwx8xKiaDK8X0io48S67CzMD2KtTdnMytFieAiMn6o6pSIiMgoOnDsAA2dDe/bP2Nn3U5Ku//Fo2u+T27avFEcnYhI4GhGQ0REZBTlleURZA1iefLyYY/ZULyBmNAYzk05dxRHJiISWAo0RERERlFeeR7LpiwjzD58YveG4g1cNv0ybBYtPBCR8Uu/wUREREaJ0+VkU/km7ll6z7DHHDp+iP3H9vP/Vv8/QB3CRWT8UqAhIiIySnbX76alp+V98zNeKnmJEFsIF6VfpA7hIjKuaemUiJzRCivaue+pEj7/ywLue6qEwor2sR6SyEeWV5ZHmD2MxZMXD3vMSyUvcVH6RYQHhatDuIiMa5rREJEzVmFFO3c/VuS9yWpsb2VHaStrb9bTXBmf8srzWJmykiBrkN/9DZ0NbKncwmOXPwaoQ7iIjG+a0RCRM9a61yv93mSte73SZ5tmPWQ86HP2sbli8/sum3ql5BUMw+DS6ZcC7k7gFsP3GHUIF5HxQoGGiJyxDtf7f2o7eLtnDfuO0lYa2/vZUdrKPY8XKdiQM872mu109ne+b6CxoWQD56acS1x4HODuEA7qEC4i45MCDREZ17SGXcaLvLI8ooKjmJfgvwFfR18H/yz9J1dkXuHdlpPqIHXGG3TZ9qhDuIiMO8rREJEzVkZiGEXVnX63e2gNu4wXeeV55KblYrVY/e7/++G/0+vs9Qk0BlwD/K36EW5YdgP/edFtozVUEZGA0IyGiJyxbr8kxWd9uomJxYCvfTrFu01r2GU86O7v5t2qdz+wrG3OpBzSY9K92zaWbaShs4FrZ107GsMUEQkoBRoicsbKSXWw9uZsFmdEYdjaaWIr11zU5LNs5PrcJIwT69YBDMPUGnY547xb9S59zr5hA41+Zz+vHnyVK7Ou9Nm+ft96MmIyWJC4YDSGKSISUAo0RCRgRqL6U06qgwfWZHLrZxsptN3N5oZnhux/6KZsFqZH0m80Ej3hmNawyxknryyPuLA4ZsbN9Lt/c+VmmnuafQKN3oFe/lr0V66bdR2GYfh9nYjImUw5GiISECPdwfjijIsxMHjt0GuYpulz45WT6uCXa7K4+rnvcrz7OLNSLv3Y1xMJpLzyPM6fev6wAcOG4g0kRyb7JIq/fvh1WntbtWxKRMYtzWiISECMdPWn6JBoZk2aRXNPM/sa9vk9Jjctl63VW+nu7w7INUUCoa23je0124ddNmWaJhuKN3Bl1pU+gciz+55ldvxsZsTNGK2hiogElAINEQmI0aj+dN2s6wD3019/ctNy6XP2sbV6a8CuKfJxba7YjNN0DhtoFNQXUNVW5VNtqqOvg5dLXvZ+50VExiMFGiISEKNR/cmzfv25/c/53T9r0ixiQmN4q+KtgF1T5OPaWL6R5Mhk0iek+92/oXgD0SHRnJd6nnfbyyUv0z3QrWVTIjKuKdAQkYDwVH/yBBsmzoBXf8qKzWJi6EQOHDtAc3fzkP0Ww8Kq1FVsKt8UsGuKfFx5Ze+fn/FSyUtcOv1S7Fa7d9v6fetZNmUZadFpozRKEZHAU6AhIgFxsvpTFOGhTprI5/YrrAGt/mQYBpdNvwwTkzcOv+H3mFWpq9havZWegZ6AXVfkozredZzd9buHXTZ1pPkIe4/u5crMk9Wmmrqb+Pvhv2s2Q0TGPQUaIhIwnlK0G769iJaYX/Fa1SMBv4bn5mv9vvV+9+em5dLr7FWehpwR3qp4CxOT1Wmr/e5/qfglgq3BXJxxsXfbX4v+itN0cs3Ma0ZrmCIiI0KBhogEnM1i47aFt/HnfX/meNfxgJ57VdoqbBYbeWV5OF3OIftz4nOYEDJBy6fkjJBXlsc5MeeQHJXsd/+Gkg1cmH4hEUER3m3r961nddpqEiISRmuYIiIjQoGGiIyIW+bfgst08cTuJwJ63hBbCEsmL6Gzv5PttduH7LcYFlalrVJCuJwR8sryhp3NONZ5jHcq3/GpNlXXXsfGso2qNiUiZwUFGiIyIiaFT+ILM7/AI9sf8Tvz8HHcMPsGAP5y4C9+969KXcV7Ve8pT0PGVF17HUWNRcPmZ7x68FVM0+Sy6Zd5t71w4AVsFhtXZ189WsMUERkxCjREZMR8fdHXKWsp4/XDrwf0vNPDLiRnYC1bt1zAfU+VUFjR7rPfk6exrXpbQK8r8mFsLN8IuL+P/mwo2cDy5OXER8R7t63ft55LMi5hQuiE0RiiiMiIUqAhIiNm8eTFLExayMPbHw7YOQsr2vnpc43EsBibK4Ydpa3c83iRT7AxO3628jRkzOWV5TFr0iyfQMKjq7+Lf5b+09sbBqCsuYyt1Vu1bEpEzhoKNERkxBiGwR2L7uCNw29w6PihgJzzmU21mCYYWAF393HTdG/3sBgWzks9T3kaMqbyyvI4P83/sql/lP6D7oFun/yMZ/c9S5g9jMszLx+tIYqIjCgFGiIyomZFXsoC82G+/kiN32VOH9aRo124TN9tLtO9fbBVqat4r1p5GjI2yprLKGspGzY/Y0PxBmbGzeScied4tz27/1kum34Z4UHhozVMEZERpUBDREZMYUU79z1VisM5n/6+ML/LnD6safFh3u7jHhbDvX2w3LRcegZ6yK/J/8jXEvmoNpZv9FZAO9WAa4BXDr7is2zqwLED7D26V8umROSsokBDREaMZ5mT51eNv2VOH9b1uUkYBt5gw8QJmNywOsnnuNnxs4kOiWZT+aYTAU8Jn/9lQUBmVUQ+SF5ZHvMT5xMdEj1k3zuV79DU3eSzbGp94XqiQ6K5JOOS0RymiMiIUqAhIiPmdJc5fRg5qQ4euimbhelRWO0dNJFP3PQXmZXi8DnOarFyXup5bCou557Hi9hR2kpje39AZlVE3o9pmu+bn7GheAOTHZNZkLTAe/z6feu5Outqgm3BozlUEZERpUBDREaMv2VOhmEOWeb0YeWkOnhgTSYP/tsECm1380b17/wel5uaS1PtPEwTb8ATiFkVkfdTcryEuo46v/kZpmmyoXgDV2RegcVw/yt4Z91OSptLuXbWtaM9VBGREaVAQ0RGjL9lTqY5dJnTRzUvcR5B1iBae1spbSodsn9V2irCXFMDPqsi8n7yyvKwWWycm3LukH17j+6lorXCJz9jfeF6JoVPYvVU/x3ERUTGKwUaIjJiBi9zCgvpp4l89thuZ0J0W8CusShpEQAvFr84ZN+c+Dn0WCoAl892f8njIh+Fv/yfvLI8lk5Z6rd61IbiDUQFR3mTxF2mi+f2P8c1M67BZrGN9vBFREaUAg0RGVGeZU5/vW8hdZE/ocOynz/s/EPAzv/VBV8F4LFdjw3ZZ7VYSUjZD5jeWRXDMDEMAjarIp9chRXtfvN/th0+Onx+RskG/s/0/0OQNQiAzRWbqWmv4bocVZsSkbOPAg0RGRXBtmBuW3AbJia/3/l7+px9ATnvtTOvxcCg5HgJnX2dQ/Z/akYG+4PuYv40BwOWJiKi6lh7c/aQ5HGRD8tTVW1w/o/LhAndn/Obn1HeUs7u+t1DmvSlRKWwdMrS0Rq2iMioUaAhIqPmtoW3YZomRzuP8teivwbknEG2IJKjkjEx+deRfw3Zvyp1Fcdc27ni/OOkzf0T9ZE/U5AhAeGvqpppQgQZfgOHl4pfIsga5C1h2+/s54UDL3DtzGu9ieEiImcT/WYTkVEzOXIyn5vxOUJtofw2/7cBO+81M68B4NGCR4fsm5swl8jgSDaVb+Lc5HPZVbfL78yHyIc1LT4Mwzgl0sBFcFiz3zK1G0o2cMHUC4gMjgTgzSNvcrz7uJZNichZS4GGiIyqbyz+Bt0D3Wyp2sLu+t0BOeddi+8C3Ddupul74+ftp1G+iRUpK3CaTrbVbPM5Rg395KO4PjcJE/NE00h3kQETF4tnDS12cLzrOJsrNvtWm9q3npzIy/jz30P03RORs5ICDREZVcuTlzM3fi4hthAezn84IOecEjWFCHsE3QPdFDYUDtmfm5rLu1XvkhGTQXRINFsqt3j3DZfQqxs++SA5qQ5I+h32iHJiHXbSJ5sUWG/j6nkLhhz7t0N/w2W6uDzzcgC6+7v55/5DxDZ/l52lbfruichZSYGGiIyI4WYJDMPgziV30jPQwzOFz9DU3RSQ661Oc/cgeHbfs0P25abl0j3Qzc7anSydeC0b353qHde61yvV0E8+kn5nP9uOP88lK2t54d55TJ2Rhxlc7u34PdiG4g0snbKUhIgEAF479BpxvddiYNF3T0TOWgo0RCTgPmiW4NpZ1zIhZAJ9zj6eKHgiINe8Y8kdAPxx7x+H7PPkaWzYXUBv5RpcXenecRXVdKqhn3wku+t30z3QzYqUFQDkleexKm3VkH4YXf1dvHH4jSHLpiZYsvTdE5GzmgINEQk4f2U/Bz+pDbWHcuuCW7EaVh7e/jAu0/U+Zzs9F067EKthpbqtesgsidViZWXKSnbsjwYMDKzecfmjhn5yOrZUbSHYGsy8hHn0DvTyTuU7fvtnvHnkTboHurki8woKK9r55pP7qS38CsHWcAzD91h990TkbKJAQ0QCzl/Zz1Of1N6+6HYGXAOUtZTxxuE3PvY1DcMgOzYbgNcPvT5kf25aLn1dEzBNY8g+wNvQD1xq6Cen5d2qd1k0eRHBtmC2Vm+lZ6DHb/+MDcUbyIrNoq8ziXseL2L3kQ6CiWOgPwjT9E0m13dPRM4mCjREJOCmxYcNunF3O/VJbUpUCldlXUWINWTYUrcfthrUmrlrAFi3Y92QfblpubRzeEg5UosB2VPCWZgehcXegTOkWA395AOZpsmWqi2sSD6xbKosj4mhE8mJz/E5zuly8srBV7gy80rvTJ8n2DVP/Ldp6SLWYWdhepS+eyJyVlGgISIBd31uEobxwbMEdy65kx5nD28cfoPDTYd99n2UalC3LrgVgPyafJwup8++uQlzORb8LO7bO89SLRPDgK99OoUH1mRy2UV72c7tZE0J/ehvXj4RKlorqG2vPRlolOeRm5Y7pPHeu1Xv0tjVyJVZV/qd6QMLYUHBvHDvPB5Yk6kgQ0TOKgo0RCTgclIdPHRTNgvTowgO7qXZyOd718YOuYk6L/U8ZsbNxGaxsW677yzEB+V5+OMIdhAbGku/q5/ttdt99tksNuZPi8Ey5VFSk/ropQFL+GHW3pyNacJ9T5WQt3EZ5/T8gtf27g/MByFnLU+J5GXJy+js62Rr9dZhl00lRiSyaPIid4M/fCMNEydZSVGjMmYRkdGmQENERkROqoMH1mTy/P+dQ3nYD3h233NDlkEZhsFdS+6i39XPowWP0tV/MofjdPI8/Ll0+qUAfqtZ5abm8l7jen5+/Tm8Z7uMAuMbmC7TO3PS3mUQw2LW/rVHvQxkWIUV7az/RygrXa/z4AvHeXbHewy4BoYEGqZpsqFkA1dkXsH+yk7aewZwAaZ30ZQTA4ObL0gb/TchIjIKFGiIyIiKDI5kzfQfULJ3ld9lUF+a/SUigyJp623jz4V/9r7udPI8/Lln2T0A/KXoL0P25abl0tXfRXlLOVMcU2juaeYP/zriM3NiYMU0TfUyEL88S/o6WhOxumLIP9zKM687yLLfSObETJ9j9zXs40jzERbEfJZ7Hi+ipKYTg5Nf6jaK+MLFzVouJSJnLQUaIjLiLK0XAobfZVBh9jC+uuCr2Cw2frPtN5im+6DTzfM41ez42QRbgznefZzadt9gYV7iPBxBDjaVb2L1VHeDvyP1/tfNq5eB+PPMplpcLrwlksGd9ZPQfRv7Kjt8jt1QvAFHkIOSg5NPCWYNwIXF2sPNyz41eoMXERllCjREZMRVHxvwuTED32VQX1v0NQZcAxQ2FLKlyr32fWiex3Z+ckMys1IcH1iNalHSIgBeLH7RZ7vNYuPclHPZVLGJC6ZeAIAZVDtk5sTEydT4sych/MNW75LhHTnaxalxqWeW4tRZsA0lG/jMOZ+hvKHHbzA7wToDu9U+YmMVERlrCjREZMR90DKoqROmcvn0ywmyBvmUuvXkeTxxVwaFtrvZ0/LyaVWjum3hbQD8bsfvhowlNy2XLZVbWDJ5CQBlxqNDZk5MTM5fMEw3v3Hmo1TvkuG5v7P+vhuGzyxYZWslu+p2cWXWlX5fY+IkIz58RMcqIjLWFGiIyIjzLIM6WVZ26DKoO5fcSZ+zj/898L/Utdf5vD7RkcglGZfw5J4nT6sa1TUzr8HA4MCxA/Q5+3zOlZuWS2d/J809zUQGR1Lc+Xd+ekMKC9OjwNqKJfwIu6230WYUjsAnMfo+SvUuGd71uUmYnEzo9jAMiIsK8s4c3ftUMTHM59MZnz7xGpe3MZ/n/wdfu9g3p0NE5GyjQENERpxnGdTM1CB6aeA42/jW5yJ8kmDPn3q+N5n2Dzv/MOQcN865ka3VWympa/vAalR2q53kyGRcpou3y9/2OXZ+4nwigiJ4q+Itlk1ZBkCrsZcH1mSyaMU/ORzyHSKjmimoKwjU2x9TH7V6l/iXnRzKYcuDwOBgw4UBlNR0emeOjh6LZPbAb6k8aiEpro8C6200kY8jzKTZyOfcZfvISY0cs/chIjIaFGiIyKjISXXw21vmMznnKQ7Yv8ULR/7TZ7+n1K3TdPLIjkfod/b77L8s8zImhEyAoLrTqkZ13azrgKFdwr15GuWbuDj9YgDeKn8LcOd2VLZWMiNuBrvqd3lfM55zHD5q9S7xL78mnxrLXzCS1tFiyaeXBqYkdJOZ5F4GdTKos2Bg4ZlNtfx3/n/TZuzl+IRfcsmndrLP9k2+cd7lY/YeRERGiwINERlVXzznu8zo/xXFO67mrsf3+Ny03zDnBiLsETR0NgxJ5A6xhXDdrOsoHPj1aVWjumvpXQD8o/QfQ8aQm5rLO5XvsCx5mc8xC5MWAhAbGsuuul2Ypjnucxw8y9YMw30HbDE4repd4t9z+54DwAwtpz/+d7xnu4xffjmLY219Q2aOzBN5G0/sdvd0+er8r/L0nqe5JOMS4iPiR3voIiKjToGGiIyawop2Ht7Qz0SWEMwk9pZ1+9y0RwRFcMv8W7ylbk9149wbOdKdx3UXt7EwPYrQkD6ajG386IuJQ3oRJDoSSbAuZWr3T7jqF9t9ZiI8eRoDrgHsFjt7G/Yy4BogLTqNiaETcZkuGrsaqWmvGfc5Dp5la7PTQr1P39fenK3eDR/RxvKNWLBQ2FBIiDWE7NhsEh2Jw84cJcVaqWytBGBFygq21WxjzZw1YzByEZHRp0BDREaN56b95K8ey5Cb9q8v/joDrgG2VG1h79G9Pq9fmLSQGXEzeLPuMR5Yk8lTd2ey3/YtCtteHXKtwop2snr/ixgW09Jp+sxEePI0tlRuYXb8bPqcfew9uhfDMFiYtJBjXccA2FW366zIcchJdbD2ptnUTryDuIxXFGR8DIeaDpEQkUBTdxP1nfXebuDuhG9zUMK3iWFAj8P93Zw+cTp5ZXlEh0RzWeZlYzR6EZHRpUBDREbN6dy0Z8Rk8OmMT2O32HnwXy/45Ebsq+zgxjk38mLRi7T0tBAXHseF6Rfy531/5lTPbKrFMCze/h2DZyLsVjsrklewqeJknsY7le8A7jyNwqOFxIbFUlBXcFblOCydspSt1VvHehjjVkVLBT0DPSREJGC32Kltr/UGGjmpDhKnv0SXbQ+9NDAjxcbam7P5R+k/yRlYy7SWR3nznRQuT7mTEFvIGL8TEZHRoUBDREaNv5t2Eycpk4J8tt215C5CndlUFX16SG7EopjP0+/q966Vv27WdbxT+Y53eYrHkaNdmKbvxQYHNblp7jyNc1POBeDvpX8H3LMmDV0NZMdms6t+11mV47B0ylJ21u0ckmgvp+f5/c8DEGQLIi06DQODVamrAHCZLv5V/zi9k9ZxPP5b/PaW+dS21ZHS+VNiWExPbzBhA3OoLvrMuMnvERH5uBRoiMio8dy0e4INEycmJuGTfJ+yX5h+IdmWrwPGkNyI1/N7vT01AK7MupIQW4g38PD4oJmI3LRcOvo6CLYFA7C1yj2GRZPdXcVjw9wJ4Z4ch8xkK700kD7ZNe5yHDxVszZuXMY5Pb/gpd17xnpI48bgimOvvZVApDmb0qZSQmwhzE2Yy8SwiQBsr9nO0c6jVLVVcWXmlRiGwa/fKMTA8M6quX8a4ya/R0Tk41KgISKjxnPTvjA9iliHHVdICbutt/H7/d/1aay3v7KT8IHZ3hs0D8+MhKenRnFjMZHBkVw6/VLW71vvc+ypTQJNnD4zEQsSFxBuD2dH7Q6mTZhGU08TVa1VJDmSSIxIxDRNqtuqOdZ5zD3ur8xim/0KFi0sHHdBhqdqVluXQQyLeeQlp56qn4ZTK46Z3RnMc66jtzORuo4677IpgFcPvoojyEFzTzNXZF0BQEtb6LDfYRGRTwIFGiIyqnJSHTywJpMX7p3Hf944gzajkIauBv6090/AyZs7lzn015NnRsLTU+Op3U8B7uVTBfUFFDcW+1znoZuymZ/uoJcGmo18Hropyxsk2K12bz+N1WmrAdhStQVwz2o0dDUAUFDvbtwXYgshfUI6RY1FI/TJjIxTq2YZWDFNU0/VT4O/zw4M0lw30djV6BNovHLwFaZETiE+PJ4lk5ewr2Ef7eahQcnhbuM1v0dE5KNQoCEiY2bx5MXMmjQLgPvfvh+nyzmoMpUvExNOzEh4emo8vfdpnC4nnznnM0QGR7K+0HdWIyfVwa9unElByOfZa70bV3CZz/5VqavYXLmZC6ZeAMA/S/8JwMLEhRxoOIAjyOHTITw7LpsDxw4E8iMYcf4S8MGip+qnwd9nZ2Al0sjEalhZmbISgMrWSvYc3UNTdxOXZ16O1WLl55t/ToX1cZ9KVOM5v0dE5KNQoCEiY+rXl/wagPKWcl4qeWmYG2Nw0ceFK0u9MxI3zr2R2vZa3jzyJiG2EK7Kuor1+9Zj+olSPAm7v9jyC5/tnjwNR7D7nBvLNwLuGY2W3hayYrN8OoTPiJ0x7mY0hkvAnxJnG5sBjSPT4sM45aPDxMmArZrFkxd7vzdPvbeJ2c61TGt9lIHqL1NY3sbLJS/TZuylMvx7NJFPWEg/C9Ojxl1+j4jIx6FAQ0TG1Oq01UyLngbADzf9kKnxoX5vjHvtRfyl7L+82zw9NTxJ4dfNuo5DTYfYVbeLUz3wqQcAeKXkFZ/tC5MWEmYP48CxA0wMnUh5SzkdfR0nO4SfSAj3yI7LprK1kvbe8ZPfcLJqlvvPhuF+xj5jet3YDmwcWJ4VjcmJ2TTvTwuuPgeO2p9z31MlvLTtKHlbzmGCuZhgJlFRF8Tdjxdh6XN/p9MSoCzs+zz/f+fywJpMBRki8omiQENExpRhGPzqol8BsK9hH9nT63wqU4ELE5My43/YUbuD7TXbva8b3FPjgmkXEBcWNyQpHGBOwhwMDDr7O2nqbvJu9+RpvFXxFsuSl2Fisq16G7FhsaRFp2FicrjpMG29bQDMiJsB4JMLcqbz5KosSI+kzzhGTEwT5WHfpqrvnbEe2hnv3eIWd5B2Yl7D8zOUNPr6QtlR2sraVyswwadfi8s0SXXeBEBpcymfn/F5woPCx+Q9iIiMJQUaIjLqBpcMve+pErsdyvoAACAASURBVNJDzycxPBGAx4t+4K1MZQ/qos26k1rHDzjm2kFMaAzrdqzznuf62dd7e2rYLDaumXkNG3bv5t6nir3n9lRXSp+QDsDTe572Gcuq1FVsrtjMxdPcjfs8y6cWJi3kWKe7Q/ju+t0AZMVmAYy75VM5qQ4eXJNF2Dlr6Ytfx5y0aDXuOw3uXiy+24wT/4AnSdwcUlkKLESQTlpUGlVtVdw498ZRGK2IyJlHgYaIjKpTS4buKG3lnieKuWeeO1fjnap36LEV88CaTP7nG1PZbbmTOanRGBjYLDbWF66nubsZgERHok9PjeWxX2Ry+/1DmvwVVrTz78v/HYC1W9f6jCc3LZf2vnZiw2MB+Pthd+O+RUmLKG4sJsQW4k0IjwiKICUqZdwlhHusSF7Bu1XvsnjyYvJr8nGZrrEe0hnNXR3qgz4jw7u0ysPESQelJDoSmRo91dsUUkTkk0aBhoiMqlNLhnoa8R2rziEmJAaAH7/1YwBSo1O5Ovtqdh/djd1ip6GzgX5XP0/tecp7vsE9NXYXxWBgeDuCe879zKZabpl/C+CuEOR0nSw56snTqGytJMQWQmFDIU6Xk4VJC+ns7yQjJsM3ITxu/CWEeyxPXs7x7uNMcUyhtbeVksaSsR7SiDt19uzD9A+5PjfJp2qUeeKfwdz7Th7jWepXYX2MwoZCvjzny1gM/atWRD6Z9NtPREaVv6pSLhPKjnbz41x3gPG3Q3+j6Jj7Zv6epfdQ2lzK+VPPx2pYmeyYzLod67zVpQb31Cg72j1sgzSrxUpkUCQmJu9WvevdH2QNYkXyCjYWlbGIdczv/V/ueGwXYQPZAMSFxfkmhMeOvxK3HkunLMViWOjs78TAOOuXT/mdPTsxw3U6clIdHAz5Fk3k02800sa+E93s3UGFJ8G+kzIMw8RuNWjjALutt5EwsZeOvg6WxV73kQMdEZHxToGGiIwqf+VWPU3Mbl14KxH2CAB+uvmnACybsoxFSYto7W3FaTqpbq/m4PGD5JXlAfj01JgaH+q9+Tv13ABXZV8FwI82/cjnmDlRl9NdcQPWniyCmURxpYvvPF3FSuc/MWu+Qs1RG9393YB7RuNI8xF6BnoC+bGMisjgSHIm5bCrbhczJ81kW822sR7SiBpu9ux0mxUe6zxG3cB7FNrupnbiHdRFf5/d1tuJiWki1mEn3NEMmISTBqaNAZeLCLIAg2BbMCsn3cCDL7R+5EBHRGS8U6AhIqPKU27VE2yYOL1NzOxWO98+99sArN+3nsrWSgzD4J6l9/Be9XssSFwAuGcZBieFe3pqZJ5TjcVg0FIXp0+DtF98yt1Hw9MB3KO1biFgcPJXontwVjMSszuDHOfDvLKnEHDPaLhMFwePHwz0RzMqlicv593qd1kyeclZP6Mx3OzZ6TYrfKviLe//7h7oxjRN2oy93Pf5WF64dx7NvTW408Pds2im6U4UT3PdzL6GfSQPrPlYgY6IyHinQENERpWn3OrC9Cgiwlw0kc8XLmrx9hf41vJvEWINwWW6+OWWXwLwuRmfI8mRxISQCbhMF90D3bxY9CI1bTXAyZ4ab9Y9xkM3ZTMxpolejtFEPt+9NtZ77oSIBGyGjV5nL7XtJ2/2mlqD/VQOcjOwYmDw4nutgLuXBjBul0+tSF5BcWMxsybNorChkI6+jrEe0oh5v9mz9+PJ61j3vzHkDKwl0pxNfUc9jV2NBFuDWZC0gKrWKly9k4Z8bwysRBnTCbGF0NM94WMFOiIi450CDREZdTmpDh5Yk8nL315C9LS/sG7ft70VkEJsIdy55E4A/rDzDzR2NWK32rlj0R1srtxMfHg8HX0d2K12Ht31KODbUyM53skDazJ5z3YpB+zfYk/LSz7XnpswF4DfbPuNd1v6B1QXMrByrNndSTsmNIaEiARvDsl4syJlBQB2ix2X6WJH7Y4xHtHIuT7XPZPlmeGynGhc6Jnh8mdwXoerP4IYFjPPuY5IczZO08mSKUuwWWz87dDf6KR0UBI43mv1WMq5OvtqMuLDOfV7dTqBjojI2UKBhoiMGcMw+On5P6WgvoC/HPiLd/v3z/s+NsNGv6vfW472qwu+isWwMCfe3XwvOiSaP+z6A/3OfsC3p0ZGTAYLkxYSFx7Hc/uf87nm/avvB+Dxgse92zzLuQZXFxrMxEmvtdz75+zYbA40js8ZjdSoVBIjEqlsrcQR5GBb9dmbp5GT6uDfLnfPmoWHgCPERkSIlT9urB02T+LUvA73jIWVLPNbAFyddTUArxx8hYbg9adUpXJXoCoxH2HNnDVcujQMExec+D6dTqAjInI2UaAhImNqZepKLsm4hB9s+gG7y1u476kSbvr1YS4Oe45IczYPbX2I9t52JoZN5Mtzvsyeo3uwGTa6O+KZ2HwvVz2wnfueKqGxKcKnp8YXZ32Rxq5GttVso7yl3Hu9SzIuAeBY1zF6B3oB9w3pzZc6aSIfrJ0njnQ/ifbcRBY5H/YGNTPiZozbGQ3DMFiRsoL3qt9j0eRFbK05u/M0jJAKKqyP090L7T0DtHY53zcp219eh4FBqCuTSHM2F6ZfSGdfJ2+WvkmDaztHQu+jw1pALw00kU9TzM9xRDZx/tTzea9xPfvtdzJ3WhixDjsL06NYe3O2dymfiMjZToGGiIy5n6z+CbXHgvjm4yXeCj3dbVOY61yHrS+D3+/8PQB3LbmLo51HWRp7LXOd64hhMZ3dNu+N48VJt3p7anxh1hdwupzYLDae3/+891qGYZAQngDA64de927/3PyFHA75DlPn/pEC61fptO2mzziGM6SYxgk/4bi509s/Izs2m4PHD3oDj/FmRfIKttduZ1HSIrZWb/WWCj4bVbRWkG7+G3B6Sdnvt6wp3fw3smOz+VfZv+hz9eEyXXRY9xE85U+8Z7uMQtvdVPS+zQ2zb8AwDH6/8/d8OmcGD30lhxfunccDazIVZIjIJ4oCDREZcwuSFrAk9Du4TJfPzaAFC6nOm/jZ5p+x60gTT75mIZd/Qv2XMQZV+/HcOFaWZ3h7aiQ5kliVtoqY0Jghy6dunnszAD9++8febcG2YJYnL6e+s542Yy/buR37tAdpi1lLcYe7W7inQ/iMuBn0u/opbS71vv7jNIYbbcuTl9Mz0ENsWCz1HfVUtlaO9ZBGTEVLBRGcc9pJ2e68jqGBl4FBlDETwzB4peQVQm2hALT0tFDRVgFAZFAkbb1trJm7hjePvMmR5iPctvC2gL8nEZHxQoGGiJwRwsx0P5WfLESQjrM7mX9/8hA7SlthIBKL6fDbmK+iodfbU8PpcnLdrOs41nmMXXW7ONx02Hvsd8/7LgCFRwt9zpGblsu7Ve8yIWQCAFMcU6huq8ZpOkmOTPY27vNUnvIsn/q4jeFG27yEeYTaQunscy8TO5v7aVS0VhAUenxI9SmA1q6BIUFhTqqDCEeznzwdE5xh7C1v5dVDr9Lv6icyOJLo4Ghq2t3VzyaFT2Lx5MVkxWbxux2/I2dSDsumLBvR9yciciZToCEiZ4TMxEhOrdBjAMGWcOY4f4vLJ0HXGHIj6Knm4+mp8eaRN/ls9meJZi5znL/mjkdqvTeVYUFhhNhCcJpODh0/5D3HqtRVtPa2kjUxC4A+Vx9NPU3YLXbiwuPYVb+Lwop2/usvLSx3/o1n/h5MYUX7x24MN9rsVjuLJy+msKGQqdFTz+p+GhWtFaSkuf+OT60Q1e80/QaFHY5nTxx/8jtmnPjn4X+UUN9Rz4BrAAsWpk6Y6j2mrKWMNXPWUNNWw8slL3PbwtswTu0gKSLyCaJAQ0TOCNfnJmExLD4VfEzAMMOxEoyB7w3b4GDDfazJDauTvD01ntzzJLXHgpgz8DDR5iJ6e0N8bipzU3OBkx3IARZPXkyILYTJkZMB2NewD4DkqGQMDA7X9HPP40XsLG0jyIyl6XgM9zxeRElt57jrl7A8eTlbqrawdMrSszbQME2TipYKspPD+NqVVprIx3rKv/VODQpdpov8phfop2XId84Eyo92Y7fYAWjpbaG6rRqAiSETsVqsXDvrWh4reIwQWwjXz75+xN+jiMiZTIGGiJwRclIdrL05m4ioOvqMY/TT5g4lhslTNnGCpdNb7adr0n8xK8Xh01PjibwKDMMyJJfjmU21/PJCdzPAvxb91XtOT55Ge5/76fbhpsOkRKYQYY+gsauRuN7rfGYuwOIen4nfpTlxUUEB+nQCb0XyCuo76smIyWBX3S76nH1jPaSAGJwr860n92P0TiU1OhVX8BEKbXcTFTa0MaPLhIKyNj7/ywK+8dhubP0ZtFM8ZAbEYkCnUYrDlcNc129YPvAqCW3fI9F1FVN7fsK5ztf4+fMN/HHb23wx54tEBkeO1tsWETkjKdAQkTNGTqqDP9y6lF3Bn8NiuDAZbtmJC8MwKLZ/h222Kyi03c2248+zs3YncLKnRnFtC6bpew7PTENOfA4WLLT3tft0x85NzWVbzTZCrCH0u/rJjsums7+TytZKIkj3O3NxMnnYd2dJTecZm6exLNmdO2AxLPQ6e9lTv2eMR/TxnZors7usi7nOdZjdqZQ2lxIdEk1GQoTfoLDfadLY3k9RZT9znetotLwFg3pkGIb77/ZI/6vMGvhvolwLCSKOGBYz3XUf4QNzcA042FnaSlL7/Vwy+dZRfOciImcmBRoickZJciRxx6I76DAO++m6bOKin35aCQ+2EN/3JRZMcDdQsxgW1u1YB0CiI5FLMi6hg8NDbioHd2aeNmEaAH/a+yfv/ty0XFp6WsiIyQAg3B5OS0s0swYewk40pwYT7iX4BsMtxT9T8zRiQmPIjs2mtq2WIGvQWbF86tRcGdN0L7F7b28oh5sOkz4hfUhzxlOZpjsXI9a1ipLgb9FEPr00MGdqGOefe5BY1yqfimen/vS8flthxMi/YRGRM5wCDRE549x37n3U2/8McErOhhMDCzYi6eyBGHMxYce+SaQ5G5fp4pm9z9DS0wLAjXNuZE//QyfO6Nt8z9OZ+d4V9wLwyy2/9F771DyN6gYbM/t/QwyLseBZCjUoN8Q0aesewOkC8D97cqZakbyCrTVbmZ84/6xo3Oe/2Z6VmkYnpc2lZMRkkJPq4P4vTaGJfMJCB7Bbh0aIBlYiSKfeuZVC291UT/gaD30lh/canyWCjCEVz4bmD1kpqe1EROSTToGGiJxxYsNiufXci9ln/wZN5GML6qKJfPqsZQCDbvTcv8KyLF8HoNfZy1O7nwLgsszLsIZWkT3nLeZNi6CXBpqNfGbO2+xtmnbzfHc/jbKWMm/TumBbMMumLKPf5W7G19+40ucJtieYcNLLAO5lUcO1uxs8e3ImWp68nH0N+5iXMO+smNGYFh82ZAbLxMm0+DDvjAYAoeUU2u7mZzeFM29qpN/XdHCyR8ql0y+lq7+LN4+8SQf+Z9pO1do1cMYumxMRGS0KNERkxHycJnbfXPZNzJAyWmJ+RfWE2+mK+2+CifPzNNlKsDPF++eH8x/GNE1CbCFcN+s6XqxYy4Nrsmmc9E0KrffwWtU6b1BhMSxEBkdiYrKzbqf3HLlpuRTUFWA1rIS40vz09zAYoBWLxcWpsxjeIwz3fzyzJ2eiFSkrMDGJCo7iSPMRjnUeG+shfSxDl0W5MIAvnBdLTVuNdzlc0bEiDAymT5zufc3gWS8Tk2rrk96Ziquyr+JfR/5Fr7OXCuvjmINyN07+HBpsfOuJ4jO+eaOIyEhSoCEiI+LjNrGLDI7k2yu+TW17LcXHi7lg6gU0OYuGPE02DJMWVwkRdvea+EPNh9hUvgnAp6fGzfNuxsSktLmUgvoC7+uvznLneHw/7/vebblpuTT3NDPZMfnEk23f/h5gYmDH4nL4bezmpJe0xD7W3pztnT05E50Tcw6xYbF09p8djftyUh384stT3cuiQvoZCClictarhEY0YGKSHuOe0ShqLGLahGmE2kPJSXXw0E3ZdNn3gLWVJvLZbb2NXvtBTEwMDFakrOCVg69gt9hpNwrZbb3dm7vRbOQzQPuQ5VMwfJ8OEZFPCgUaIjIi/DWxc7ngP/506LRnOL6++OvEhccxJXIKeWV59Ee9DnDK02ST3si/eRO7DQwe3v4wgE9PjbuX3o0FC1bDynP7nvNe44ELHwDgrfK3vNsWT15MsDWY5KjkYZ9g24nCwO4zXndlIhd7rF9n6eIDZ3SQAWAYBsuTl7O/YT/x4fFnxfKpqOgWCm1383+/1E9x0L1kJYd6u8J7lk4dOHbA290dICmuj3zzNvqSf0Sh7W7ajEK6Bty5NedMPIcQWwivlLxCv6ufaHMOU103E0E6ncYRKixP0GEZGgB7nOnNG0VERpICDREZEf4Sc02gtXvgtGc4wuxh/Md5/0FNWw2Hmw+z7Jwkdltvp8Na4O2fcTj0Xr664mKKGou8TfxeLHqRuvY6DMPg8pQ7KdqznC/+ah9LrX8g3DWT5/Y/510+NSl8EjbDRo+zh+NdxwEIsYWwLHkZBgZtxl7Kw77jfYLtzsswMU78+jQG5WxMim0jJuN5em0HqWqtCvhnOhJWJK9gW802lkxeMu5nNABvA70JIRNo7GokNcpd2jbUFkqiIxFwz2hkx54MNDwzXKXNpUPOd3XW1eyq20V9Zz2R5mxynO4GkMFMYoK5iLnOR4iPa/QJRk91phcFEBEZKQo0RGRE+EvMHex0n/TeMv8WUqNTSXIksal8E1FRzdimPM17tsvYZ7uHqr7NTAydSLAtmMyJmYB7+dKjux6lsKKd/Px5RJsLaepwEtw7i7nOdTS3RJFfk++9xpyEOQD897b/9uaVBFX9mK7Ka4k0Z1PZ9zbVET+mOOLLuOjD769OSydJma+TkeSe5ahqGz+BRmd/J8lRyWyr3obT5f9mebyoaa8h0pzNupd7WTbwCm9vzWBveSvTJkzDYljo7Ot0dwsfHGjUFRBuD+do59Eh57si6wpePfgqFsNCqvMmP6VtDZwdmey23k6QffjP7kwuCiAiMlIUaIjIiPAk2XqCDX/JsqfzpDfIGsQPV/2Q2vZaylrKWJm6kvyafBxBJ/Mj7n/7fm6aexP1nfXeaz28/WGe3lQDDOpxcOImca7zEb73WK93+dbPLvgZAE9te8ubV9LXG4LDOZ95zt/hMHOYPnE6wdZgOij18+TaxB563N1JPCqFflf/uJnRWJC0gCBrEBbD3bywuLF4rIf0sYoIFFa0M8+5joPVJsFM4kiNlbL9F5EasgqAkuMlmJjMiJvhfc2u+l2kRad5/2y3uINFm8XGwqSFvFzyMqZpEkG632IEXZ1RdFr24wgOHXZcZ3JRABGRkaJAQ0RGhCfJdmF6FLEOO2HBQ5eWnG751+tnX09WbBYJEQm8XfE2SY4kpk+cDriXLpW1lLF0ylJae1pJjHAvjznaeZSimmY/fRUMDGw4B0LYfmL5VqLN3SXb0XmlT16J56Yy1XkTdqud9r52b87G4F4aYDJ16hEONx0mNSoVl+mivLX8o31woyzEFsKCxAXUttdiMSxjnqfxcYsIHDiYABjejvAu0/03ZWu+CHBXnALIis3yvqagroCIoJMN9vpd/USas1li+QPXPLibgeo1OMycYYJMFx0c5tLpl5KREMHQwgGQPTn8jM/XEREZCQo0RGTE5KQ6eGBNJi/cO48Hbph5IofiZFK1y3Sd1pNem8XG/bn3U99RT3VbNSuSV1BQX0CoLdQ7q/Gr937l7p1hnHzi3GmU+l2+5cmrMAct30oITyCCdL8N3yJIp7Klks7+TtqMvRTa7iBm4nF6aaDTthtX7F/pOLqE6PoHee2tBCLN2dS01XjzQM50K5JXkF+Tz6xJs8Y8T8NfEYEPk0zd2RHpd9ahr2ci4M7PSHIkERUSBUBHXwcHjx+krbfNe3ykOZu5znXYe2bQ3OEihsXMda6j0fLWkMIAJiYV1se4b8V95M534cLl3W8xwGqBr30mBRGRTyIFGiIyKnJSHfxizVS67XvB0kFwkIs+Wnnotb2n9bT6szM+y7yEecSFx/F2xdvEh8eTGevOybBgYWfdTj6b/Vmq26sJsYYAsKv3wQ88r2f51i3zb/H7xNrTvK22w32ja7PY6LTuxzL5CfaHf4ka2x8xGq+ioTGKYOIoqTaZ61xH8EAmTd1NH/ZjGhPLk5dT1VbFzLiZYz6j4a+IwIdJpu63VXLqrIKJk6QYd3BZ1Fjks2xq79G97mChpcK7zZOL4emRYmDFwCDOXOUtbdvHMVwhJRRYbyVmQjtLpyzlr2X/xV7r1wmLrCXWYWdhetQZX+JYRGQk2cZ6ACLyybEkI57bL8zkideC6O+zEsQESmtc3PloEVGhVjInR3B9bhI5qUNvzPZXdjLX9RtCWlvopJTUqYd5rXoddovdu9TlydesnOd6g16jgiLzYdqNQs7J+Rf1hy6mtbsff831PMu3vrvyu/zm7aXEOBe5m76ZwInn10eD/sSAa4DUqFRae1tp6WmhoK6A5MhkrPXXAniX6pime8Yk1XkTVW1VTAybOIKfaGAsT14OuHuX7GvYR3tvO47gsbk5nhYfRlNHq0+w8WE6rNfa/kiq8TNcptMdIBgmLtPkmpXuv4cDxw5w4bQLvcfvqtuFzbB5y9lasOAgy++sSLiZTpuxl322ezAxWZG4graqQh5Yvo5jXcd4cveTOA0nv7l5jrc5oIjIJ5lmNERkVBUdTMSCBdP7tNgCmLR2O4ddj//StqPc+WgRZbVB7rKiLKat7HqWDbzOImMdia6rmOtch6trGhbXBEL6c5jrXIfDzOHPh3/O97+QgsUwBs1W+OZX3LA6iVB7KH22gxRYb2dWajD9xnEio+vZb7+TyKhmwF0K12K4f22WNpeSOTGTcHOa35vSCNLHTUJ4fEQ8GTEZdPR1YGKyvXb7mI3l1E7dlg/RYX3ANUB571t86txSmsnHtLYSH9fGXuvXOD87nX5nP4ebDg+pOJUclez9c4Q5CzvRfhoxOk80b8TbTT2/Jp8gaxA3zLmB32z7DU7TyZVZVyrIEBE5QYGGiIwq9xKYU3/1DErcPWU9fmFFO2tfrTjlaPeNvc2Mwt47g+mue4eUHfXMKrT3tXOg4zXW3pxNt72QPppxGu300UwT+UzJfs27tCU3LZc2Yy89cQ8zdd6fqXbcz8yUcMLs7qfpzT3NuLpSyBlYy7KBV+ivvoEejg6TIFzq7ekwHixPXk7RsSIigyPZVj12eRqeIgKhkdWY1ha/y4+Gq0pV31GPy3SRkWRnr+1uMuY/x5TMfzAxpgO71c7hpsMMuAZ8mvUV1LtL23qkOm8CXD6dvt1Bh0GF9THAXQltbvxc+l39fCnnSwCs3boWE5P/OO8/RvDTEREZXxRoiMioOp3+GoPX4w+XBGwMWj/PoCDj5H73rALAr7f+mpxUB9dd1MW7tkvYbL2Qw5FfptB2N69W/ZYB1wAAv7roVwA8f+B5Lpx2IQV1BSxOWuztidHWEsNs58PEsJhgJtHekoADz02ry+dnje2pcdNLA9wJ4XuO7mFB4gK21oxtnkZOqoO4c17BlfoTHliTOSTIGK4qlSewO97tbrw4I24Gh5sPkx7j/h4UNRZ5twP0OfvY17CP5p5m7/n9l7A16KeVNqPQ+7qSphIA7l1xL48XPE5nfycrU1YyL3HeSHwkIiLjkgINERlVH9Rf49T1+KeTBOzpCD6YiZNeq3smZFf9LgrqCrhl/i1YDSsWw+JNJG/qbmJj2UYAZkyagcWw0NrbyrnJ52Ji0teZxJSOH7Js4FUy+u73mTkBCwYGXZaDmKEH6aWBLvseliwuoNXYO+4CDafpZLJjMlurt455xawB1wA2y9A0wverSlXT5u6bUtdeB8D8xPmUNpWSPsEdaBw4doCY0BjiwuIA2N+wn35Xv/d4YNiCAO24+4tYDSvnxJxDfUc9c+LduRg/3fxTAH6U+6PAfQAiImcBBRoiMqoG99eIDPM00nP6/By8Hn9afNiJNfsn+QsqTv1pYHDU/mfvMY9sf4SIoAhWpq7EZbrYW7/XOyvy3P7nvMdNjZ4KwObKzcyJupy9u5admMGIw06035mTIFcCXf1dgEHvQC+TIuJxmk7Kmss+0mc0FrLjsokOiQagobOB8pbyMR3PcIHG+1Wlqm6rJsQW4u1hsiBxAaXNpd6ciaLGIrJjszFOfKEK6gvcrx9UparC+jhw8jvm+elZNuUyXQTbggH43srv8ZcDf+Fo51Fmxs1kddrqQLx1EZGzhgINERl1nv4aL31nAWs+00UT+fTSQBP5VEV8jxnJJ9fMX5+b5E0IhsE3gK4TP93BRan1P33OY53yP9QMvOvt8vz0nqdp7Wnlu+d+F4DWvpPN/Z7f/zx9zj4AvrPiOwD8ZPNPSHbeiIk5KPfD/8yJjWjCBuYQTBzR5iJeyZvM8oE36Ku6/kN1tR5LFsPCsinLvGV8x7qfxnCBhr+ld55ZsJr2GiY7JlPWXIbFsNDR10FXf5d3RqPoWNGQRPCE8IQPHIsnRwPc5Y0PNBzAEeTgiswr+NGmHwFw/+r7vQGMiIi4KdAQkTH1lWWrWb6kiO32qygK+ncOdb/JDzf+0LvfMwOyKD2KiQ47PfY99E14lia2gbWVFmM7BdZbaQv+B60x/8V7tssotN3NxqNPkpua6y0v2+fq4+k9T/OpaZ8iMjgSA4MpkVMAaO9r580jbwJw0/ybADjSfAR6E/yu1z8Z7DhPVM1y+SSiAwQxgbCBOR+qq/VYW5G8gp21O0mfkD7m/TSGCzSuz3XPdg1uiuepSlXdVs2UyCnUtNcQbg+ntNldJSojJgOX6aK4sZgZcTO8yeSF+ZeR0vkjIs3Z3vO7k8EH5wAZ3sICdoud7NhsXLi4dcGtbKnaQvHxYqY4pnBF5hUj+nmIiIxHCjREZMw9eOGDJDgSsBgWbBYbP938UypbK737PTMgrHU8BQAAIABJREFU/3vvPP79czG8174Wy+QnqI29g0LrPbQZhQTZgqjvqPe+xmW6iAyJ9Nn20NaHALhu5nWYmOys3ektV+tZPmUYBpFBkbhMF0mxVr/r9ftp8c6cWGw9Q4KRwY3enC5Y90Yl48Hy5OW09raSFZt1xgYaOakOvn6llSbyiQzHpypVTXsNkyMn09TdRExoDIebDgMwbcI0Kloq6B7oxmHmeJPJDWc0of+fvfOOj6JO//h7ZnbTd9MTCCVAgCRAQhFQUAKWU+RUBMtZEAU9BfGsd/rzvOP0qqeeYOXwFOx3J9azYQdBpEoJEFqAQAJppOymbXZn5vfHZDe72VkIirDI9+3rZchkdnZ2J+X7mef5PB+PkQLuFRs2+oYcLODW3Oxz7ENC4s4z7mT2ktkA/GHcH1Dkjt8DAoFAIBBCQyAQnHBskTYWTlxIq9qKR/Ogo/Pz135uuu9luZcxqvsomj3N7Di0g4LMAqyyleqmaiKUCDLi2v0di3ctJjfuQobzLKM87xNXfQevrF7G/WOM9igVw/wMsGjLIlo8LQBMzp0MwD55IRDo/dDRKYn+I99aLmaz5S4iYipNxtsGUlTayHurKkxHsoYTI7uNRJEU4iLiWF++HpfH9YOOF2oMbWcIJTQA4hPqKLTcyZxbUgKmUpU5yuhu605DawNd47pSXFNMhs3ISPFOnNpYlBJgJvcfhQzgsZSGTIdPiU6hrqWOMT3HUNNcw/J9y0mMSuS6/OuO9q0RCASCUwIhNAQCQViQrpzOhNi3GOV5n3z1CfZVyjy9+umg/SRJ4h/n/4Mdh3YwImMEO2p2ePP3sCqG4PAS5ckhvW42sZ4hRJJGEiNZ+EEEjvokn0E4Xh9MnmcuQ1reYMZzqykscfLo+Y8CsLTiJYYNX4ND/g4XlTiV79igzCA6rhJFUtDRORT5BkYXv1eMmE9rmvtBielI1nAiNiKWoV2H4nA5aFVb2VC+4Xsf63BjaDvD4YSGdxxtYlSib5uu65Q6SkmNTUXVVXon9g40glcVEWuNpfyQHmQm9x+FvE9Z2JYHHygu9ysLiYuMA2D22Nk8tPQhAO478z6fOVwgEAgEgQihIRAITjjeRWmLo7uR/K2PYIg6jwcXv0hNU03Q/qN6jOKKAVewr34f5c5yRvUYhUWyUNtSi0W2+MaXZqrTO5i5FXQkHnhtO1P6/Q67nk9S7f2+XIySg5Hc/nwRs1+uIJGhNHuamZA3gPXybeyw3eBr06prqfMJig3171Fqm02ttIZWaoPO1R+zkazhxujuo9levZ1IJfIHtU8dbgxtZzic0KhprkFCIj4qPmCbS3XR6jFM/TkpOeyq2RUw2jYnJcfUTO6f+l2urmKDMjNgsMAGZQb10ib21u0lLSaN/sn9ebvobaIt0cwcMfNo3haBQCA4pRBCQyAQnHA6Lkq97SwZ7uuY+F9zk+3fzv0bNc01nJZxGpsqNxEhRwBGVcPhcgChw9eczSpff5tLtnp/23Mpvq8CFJU1ku95Bruez8r9K7FF2Oga15VoNZc8z1z6ORcy0P04dj0ft+YmKdHBJuUOVljG42RLyKqGPx2DCcOFM3ueye663eSn5/+g4L7DjaHtDIetaDTXkhCV4PPXAEFhfUO6DAkebZuaG2Qm97XDKS9gizBasBzSJgotd/oGCzilzfSM7wnAXaPu4uHlD6OjM2vELOyR9k69HoFAIDgVEUJDIBCccMwWpRIKiQxD3X0fU59ZEtRyk5WUxW0jb2Nr1VZcHhdDMob4wvZkSSYxKtE0fM17dF2DWHr7pgt1RJZkMtXpPLv2Wc7ufTZKaxZD1Hm+6kcSI30m4pSYFN/jDkY937Z4PXwrVcdgwnBhdI/RAHSJ68Kq0u8/4vZwY2g7w5EqGknRSQHbypxGWF9FQwUAiiuLbs7ZrFg2jntf2sa+ConclFzyMm1MOq+yrWJR5atYOKRCrJLV9Pl0dKqaqlAkhavzrub59c9jkS38evSvO/VaBAKB4FRFCA2BQHDCMW9n0ZGIIJI09pVHc/vzRby3qiJgn98V/A6rYowcXX9wPbHWWCQkLLKFZnczJcqCtn774MX+kWoOui4RRxYHGw5yXu/z0GvOCUgF9zcRRygRvsc1W4rYoMzEjaPtNbS/MP/z0HQ4Mzehk+/Q8aGwxMlT7zRylvoRTSVXcajW5lu4Hy3eBHja8k78x9B2hiMJjcToxIBtpY5SZEnmYMNB4vXBPP5mI0mMpLHZwrpiB1nNj5KgDwFgV9PnbRWLiyi03IlDKgSg1mXe+hZtiabJ3cRF/S/ilY2v0Kq2cm3etaTHpXfqtQgEAsGpihAaAoHghONdlMp+oXwSgVkGoDP3g5KAykZSdBK/L/g9Gys2EqFEkJOSY7RGtToNeRG5p23RXxckNvxD2MyQJXBb9gOG6ThW7xNy7Kl3hK4sybhVNw5pk995++9vvA4wFt1PflgSNoZwf/O2RU/G09ibIeo83l7/3fc6njf/JD6xEo9cEzCGtjMcyQweVNFwlNElrgtlzjL6aXei6e3eHE033vstO4xwvm9Lvw14rF3PJ88zlzM8/yPPMzcgV0NGJi7CMIHff9b9PLbiMSQkZo+d3bk3QiAQCE5hhNAQCAQnHO+iNLubkQgu+f2/HWOR3tFMPGvELPrF/owBnsew7JvNEP1J4vXBWGWrb9G/Wbm3QzuTCuh0DHJuFyMamg4JDCLPM5dnln0QYuypjoV4XPuvJVUegSIpNLmb2s42OEUcP3Gjh5khPJRP5tM1nu99zLxMGwWjdrEh6oqAMbSdwaN5UCTzbIpQrVPd7d1pdKQSq+fS8ftHQqGixti2vXo7SpsIsev5pi1xXbVJ5HnmcrrnPbo4HiAndjyFFYXUu+qZ0G8CfRL7HMU7IRAIBKcm5reLBAKB4DiTl2nDFmVBlkDTQ1UaJIormigscfLqkgPsrmgiNkqhS92DbUt4iQg1hcEMZUPrTDRlGzGWGByeTWxQZtJHv4lorTcNFFMtLyVbuxdZko2JSG2iQMODhIwMeDyRJDESKkaQ3OMbDu33poErvv0VIonXhhPfOpyNyq3USRv8ztZMLLUTTobwUD6ZOkfUDzpuemw6Da0NNLmbiLF23pNypIpGTkpOwLZSRyndbN1w7Rtn+hgdnaz0GOpa6qh31RMhR6BqKpnq9KCWOFDpr90LbRPLIkhGdpzBw188AMCfz/lzp1+HQCAQnMoIoSEQCMIGs8WuPzoqDVoFdy1w++6+Vzvd+C/pJWRAJ1OdTrH1t2i64RFwSJvYIN0OMiiSgqqrqJYyJqU+z7ay9ioEbQtO3Xe8tnRw52k42Eoc/dtKwbJfa5exTw/1BuosdwLQKG8nXhveod0qsF0rnAzhfdJjqGmo7/D+a9Tr21G1c7538nVabBoAlY2V9Ero1enHqZrqExr+wrJPegyNjlTTisbYzLGU631MDf4Shj9kY7nRCubW3ECoyWRKW/ue7PscdGKcF3N6ZgNDugzp9OsQCASCUxnROiUQCMKGUKZw46MxhrSysRLNr8XHDK93osnThKqrRCrtgWqRSiSqbrRAVWqrafBUIRPoBwn2VijU1MViZwAKkfiLjI7PCWCVrZRIC/AP8vPurbeZo8F4DaPDxBDe0bwNGjo6xdJzbK3a+r2P6y80jgZvRaNj8N/qXfVkOP7Elu/GBfhbSh2lWGRLWx6GFnAsHR2brZZBPW18s/8b3zaAFipM/Tsdr693OMDD5z58VK9DIBAITmWE0BAIBGFDsCncWKR7qPONIY0iHf0II6N0dNyWUqMhRlYCFo0u1RWw774qd5v1/PDHM2oR3vaaYP+Ff+ibVbFSK21gvV/w24i+8fTLKocOj33yg/AwhHt9Mr0zPLioJDbhILtj7qVB3vKDgvt+qNDo6B0B4/2vq7f5ksYbWxupa6mjyd1EibIASZL8/DQaOipnjzCqVl+XfN3hmcyvvdn11SMOMrbX2KN6HQKBQHAqI4SGQCAIG7yL3eFZ8aTYrPTO8LBe+SWrIy+mNO4hHFLhYbIxDLwLxLrot9DRafG04NED+/0VSWlzYUCdti3IFN7xiGA+Qcq/2kJb6JuEhN6mhPyD3353VQb1tYlBx9J0mLd4X6fenx+bvEwbc6blsco6kf4Dl7G/dTnZydmsKvv+eRrejJHvKzRCt9NJPjO9N0OjtrkWh7SJ00eu9wk8e2IFG5QZnJNrVJs2V24OOEoUaSGmg+H3fWZU06YUdEU6/DeLQCAQCPwQHg2BQBBW5GXa+Pv12b7Poz44kwUbtlPbYmQclCgLSFRHQJspu31QreQbi7tdfpiDzZ/TLa4bBxoO+KYXeTAmKOm6jtbWXlOiLCBZPR3aBuqa4ZZLsWoZAb38OmpbVoabBoopUV5Aj9yL7JZpVVuDjrGhfAOH6iJN/QO7DoaHIRwgPiqeIV2GcLDxIBIS6bHpP6iiYVWsJEcnH3Ueh1domHtHDLxm+jJHHQDVTdUANMpbKbQ8BcA9A+/h/ZWb6Z/cH7fq5mDDQWRk3/VvoJgIUk2vixsH9qhYylrW0RD7LjMLvjiq1yAQCASnOkJoCASCsOax8x/jy71fGlkVOjhajQlSmep0EuQc+qalsLF8I0kRfahyFzIyz8HybR9gwYJLc6Gj41JdRhVDktF0zbfIVFBwSJvYqMzkrIh/4WhWg3vzgZSYVOoadPBNnDLucG9WfuMLewPIjM6kobUBHR27nk+mOp04smigmK+K9gCBk5LClbGZY3ln2zvkpeeh6ipbq7ZS31JPfFT89zpeWmzaESsaHQ3fke7+WGQLU8ZlsG53vTELuMO18ZrpSx1GlaKqqYpIJZKi6iLfPs5WJ70TexNtjWZz5WbitEEB16VaXkqSdkbQ+UhIIKnEZz/N4i3/5Z/n/RNZEk0AAoFAcDSI35oCgSCsiY2I5bXJr9HkbqJVbSU+Mt7XkrRMHs/QESuYcPYevpYuYMiAQ6wutDNW/5Tc1sdwN3ajh60HEhIJDCHPM4dRnvfJ88wlkaGoba0xtdIGhg3bbFrPkJBobIpkgzKTWmk1qlzj84v4iwwAe6TdJzI6ZjN89U1/EmLNsjUgIzEyaNuJpCCzgL11e8lPz6fUUYqOzpoDa0z3LSxxct9L27nikfXc99J2U79JWmwalU2hhUZHw/fa4nr6tTxGfV2ir50uIcEZkPLunzRe5iwjMSqRRkcqgzyP01J8D4PVJ0iRh7PfsZ/clFwA3t9YGHRd+mm/ppHdpp6MRHsLb259E3uEnWlDp33ft1MgEAhOWYTQEAgEYYn/AnbRZzbuHDwHl+qi3lUfUHW455N7uGX4LfSOOpuSLReQoA9HdceSxEgGq8/ibsrApucx0P0kCfoI3wIzz/M0dj3fd6x/bXkApePIqzY0XYPIvWxS7qRnv+UADFT/GpQi7R2la57NAM2t5sePifp+o2N/LM7qeRYAcdY49tTtwR5pZ1VpsE/DTCB4Ddr+HKmi0dHwbXyU2LGrO2C00502YiU7o+6ihpW4qGRonzhf0niZo4xekePIbPwLcepQLFoSCfoIBrY+yZ6DGgNSBwCwdL0SdF0kJFSaTQIdZZobkhng/gc3DfgzEUrED3hHBQKB4NREtE4JBIITTse2mdE5CTz1UYlv8XmooR5dH0mB/Bn1bKXM8gpVmnGHPVrN5dqnv6C76yE8+I+pNYLX0lqvJsoShaQGh7L10m5kk3IHAAcaDnCmXaOyLnC8rY5Oi1zMpJxJvLNxPaXbf05S2zEiSCZJHYmDIqJIw1VRgl16zjSbAWRaWjVTL0BVfbCn40SSEpPCwNSBPl9MVmIWK8uCfRpmAkFu2+7vs0mPTWdb9baQzxcqLNDhbM8YcbqceCKLKfTcSYQcwYob2qeHlTpLSWy+HDVI3GlY6y8kN8UOQFOj3ZcI7v88UaT52vFs5GAlHtDQ1GiSGMmG7xQKhzjJy+x8srlAIBAIREVDIBCcYMzuis/9oCQgK8M7zlbSbMRrwxnQOpcuyhm+FiWpuT+qZp5/Eatnobi7m4ayJeojfFUJu55PVV3goFujnUZnK48wdfBUMtXpvse2f5SxM5BI0rBpwxiizmvLZgicjKWjYouyBG0Pp9A+fwoyC1h/cD1d47oSY41hZelK3zQtL2YCwSzt/EgVDfP8FJVEe7uYcLY6scpWJKTgsD5HGbR2MRV3cWSRm5qLrus42Gl6XRoo9rXjOdmGNxEc2q5x23QrgUAgEBwdQmgIBIITinnbDCGzMowFoESq66qgFqVgNBooplEKHomrty0mkxjJEHUeWeodvkG2/jjYQrOyjc/3fB4iRbpd4HhbcbxZGYGtODrTz+vm93mgzyDcGJs5lh01OxjWdRj1rnqqm6rZU7cnYB8zgWAmnNJi06hqqvK1lnXEm58iSW1XQDKuz5ABh3z7OFudWBUrkUokSTGBQqPUUYoSVWUy9ti4/rkpuZQ3lLNHej7ouuhtY4m9mF1jM/EkEAgEgiMjhIZAIDihhM5JCI2Rwt2XOPqGFBnGIlIiQRqIosf5thkf9SBxEEc/UxERRTpuzc2iLYuQIysPm+HhPZ63Fceb5WCYx2dyych0XOlPUCsZ2wdkWn0+g3BjTOYYwGij2nloJ0DQmNuOaeKhhFNabBqarlHTXGP6XF7Dd99u4KKS/t1hgzKDjFS3bx+ny0mUJ4dc96OkVs7xGc/dqpvyhnLkpCUm4g4abe8RHxXPmrI1OKRN7JQfaxtLbIwn3ik/FmDqD5XT4vboYRGsKBAIBCcTQmgIBIITSqi2GfBPCA9UIrIEbst+muXdJotCHR0Pxq83DUW3YycX0GlRjEWkWYuVjPWwad+7anfx85HRHRazwQpJRw9oxfnWcjGFljuplzbh0TwkJNaz1fprtigP4PK4eOg/u0JOazqRZNgy6JvUlyZ3Ey7VRQ97jyCh4RUIaan1tFLFaVl2U+HUmXTwvEwbN/4cvrVczPSfg0MqDAhZrK9LJL1uNnbtNCQ1wWc8/3r7PnR0GpUtQeIuKvNFencx/sx9tucz7Ho+/bRfY8WOhIIVO/20X9NVm8RQzwuM8XxNIsMBOej7ytHiMTW6CwQCgSA0QmgIBIITiveuuFdUGO0zOsk9v+a0LDvxMRYkCLhTrekaM3/Wj92mrTAqGSk6oHXwUkg0qYeoYbVpGxUEm8D922oUScEVsd23mDUTLF78W3H82Va9jaToJOK1wQxR57GrTDrstKYTTUHPAoqqi4iyRIUM7svLtDFtgs4Ky0XMmhhtWp1Jj0sH6HRon1s1Khn+QsNzqABo98doutFe999lRkhfTUsNjfIWCi13stp6Kfti/0CJ62vSPJdw6V+/o3DFtQxV57dVsAKnTvXX7sXOQBQikbG2PWPgn0e97fmEV0MgODnpzChuwbFHCA2BQHBC8d4VH54VT4rNyoisBH4+roy3DvyGtH4f8O79w3jixhyU2N24pWrSUx18p9yMFL2P6WecQ6EyCydFqLjQ8OCgiIo6j6n5O44snLHvmlYlzESDkyJfW02sNpBPl/cgT/sbAC3KLlPB4mBzQCuOf8jbxvKNJEUl0V2daiSZ68ZzamG6iC3ILGBL5RaGdRmGR/OwoXwDLZ6WoP2yk40JU6EmSx2pouFdAPz1VYk8z1x2HzRasfyFhtTa1dQ7ceCQcQ3qmut8I2gjlAj6JvXFUTWQg3tOp77Zg4RMRzEJ7SLUf7tksp/3+YRXQyA4+ejsKG7BsUeMtxUIBCecvExbwDhUyKaW+7n3s3vpn9yfS7Iv4Y3bx3Pac6fRGp3GZUOGM+ujWbx64TLWyCOxqH0AY4FoZwCqR0Juc2K0YxiD97qWUKvcSk91GnFkYSEeheDAPK8/A2ifbtU2IjeJRLwaQ++QFl6sPIFVtuLW3CiSEmCALqouIik6iRj95DAcF2QWoKPT1daVJXuX4NbcrD+4nlE9RgXs1zO+J1GWKLZVb+OCvhcEHccWYSNSiTQVGt4FgHcgQBIjefFDGbucjyK3v0ct8l5itPiA902WIDbOSZQzijpXHZGWSJo9zSiSQte4rkSqNwU8l5l48PfrBBOYRh6uE8IEAsHh6ewobsGxR1Q0BAJBWPLnc/7MpNxJXPPWNWwo30ByTDKPjllE6/4p7Nt0HcPUF3jynVas7j5Bk59AarMn623/V9HRqIh4zZhRFbPf559opjSk18KllAChA/gcFHUwfBtp4bERsQHH8bKjegdJ0Uk0EFwNAUiND69QuF4Jvehh74GmaxxqPkSkEmnaPqXICv2T+4esaEiSFHLEbccFgCHajPfcv6KxX3kJCJ7YlZSxge727jS7m5Hb/qS5NTexEbFteRihRET7tTG7/sb29v+H84QwgUBweLaW1XRqFLfg2COEhkAgCEtkSeblS18mOyWbS/59Ca98vZNn39VJ1E9HdcdidfeBtnaYjvgLDx0dJ0WsV2YwsEccOjo1zTUoKNj1fGLpHfR4b35GRcTrgPnIU2O6VDolygIaKCaOLDLVG7Hr+UQqRoVE1QPFRHFtMUnRSZQoC/yep53tZY1hVcqXJImCzAL21u0FIDMh0zS4DyAnJYdthwKFhn9PdGbTQ+wtD36c2dQxXZdIYiSLPrdRWOJE0zXK1ZXsjLqHGlaDUs/wrHjm3phLvbSRtNg0dHRaVSP40KW60HUdHfNxuuD14HgwvDzmYsQ7qhggOyM2bCeECQQCc8ocZVz+xuWUNK+GDr8PRIXy+CCEhkAgCEsKS5z88d+lZNbOJ6P+L7zwmXc0quT7GLrlBd8+sgRunDikQr4q+crnF4iyRrUF8Jn17Uu4qafMvQIJyXTkqY6KKh9iiDqPJEYSSZovk0Nq6WV6NgecB0iMTsQhbcJBkek+4ejT2FSxif7J/Ym2RLOqdJXpfjnJOWyv3u77vGNPtKUll9KiCUFCymzqmDcwb88BC3ctKGJNcRUA1fo6Ci130jVvIX+/PptBPW2UOcuIlA1h1+RpvzvpbHWG/P7wenQ8OA+TwRKILdoiRIZAcJKgaipPrXqK3GdyWb5vOdPP6Ykiy77fNaJCefwQQkMgEIQd/ovU2gaNaPX799DqukSaNc/XhpMakwpAo7uxLYfDvG/fyTasspXUmFRKlAWmQW+qrga1VElIpLquNj2Xele9L9U6irSg5w7HUn5BZgGqrtInoQ+1LbWU1Jdw0HkwaL+clBwONhykvqUeCG6JMkbGBgupjmF93glgYFw7XYfXvzZKId6KhXeKFRhhfR7dAxDgh6mojmozgJvjpIhmDhwxF8VLuF0XgUBgzvqD6znjhTO4ffHtXJt3Ldtu28adZ08KGDrirYiKmwc/PkJoCASCsCN4kRrayNvxc7MsjHh7CzFWo0S+pWoLfRIM83iTFJzD4X18ifICbs1NVVMVDmlTUEbDLvkxYvTgwEDvdCszWjwtPqFhViUJx1J+dnI2abFpWGQL++r3AbCqLLiqkZ1iiMHth4yqhllLlIQStGD3Th3rk6GZjgzWdNhX2RqwrWtcVwB0XafMUUazu9nvOSTSY9PRas42fT1e87edAdjJDRCQmHz/eAm36yIQCAJpaG3g7k/uZvi/huPyuFgxfQXzLppHQlQC0D50ZNG9Q30VUcGPjxAaAoEg7OhcWnigkdf4qEFbloaxzag8fFn3Wx446wHfI2tbagHYK7/Q9kj/Ubc6O+SHfSNqJSSssjUggK9EWUA/7TfIBJu3vSF/3lGrgV/TfULD8Gm0P7cUpqV8r0/jYINRxUiJTjE1hPdP7g+0j7gNFcRotmDPy7RxwwTVNONEliA9KfCbobu9OwA1zTW4VBfOVqfPCG5VrPSM70m01ptQ/h3joyEQmyjxJYVrUjO0fc90PIdwuy4CgaCd97a9x4BnBvDPtf/kb+f+jXU3rwuajic4MQihIRAIwo5Qffvt/zL+3RjzEQ3KOlxUYks4wHrlFtYrM6mX1wZMgqqTNvJ20dsM6zoMWZKpbaklz3YxPdVpuHHixkErtdSwkvXKzRyU3/U9l4bm8wB4MbwdwVUW/5C/KEuU6T5NrcYdfYe0iaKIu3xVkuzuUtiW8gt6Gj6NlJgUUmNTTSsacRFx9LD38AmN9pYo7x4aOjpXjkk2fQ5FUoJa1MCoaDhbVOx6vm9bD3sPwGibAnC4HFgVI2hPlmQSoxJpoNjvuc2RUIiljy8pXNIjAYlG9qDIYFUkcrvH8sRN4XldBIJTnf31+5n030lc+t9LyUvPY8utW7j3zHt9vw8EJx6RoyEQCMKOKeMyWLe7Hpm2MLu2hWfvdCvOJpmS5lXs0Ofxp3Nu4oEv7iPaGs0uDYb3zuPLvV+yQbo96DbKqgOr+PPZf2b9wfXY9XwSa//P56/wVj5KlAUBYXteGjwNAZ+bTaEC0GhlozILh1RItBqNXc8nU51OHFk0UEyJsoAtVVuIscbQ5G6ijg1UWlYD8NRFaxmUEZ6L2YLMAtyam+zkbCoaKlhTtgaP5gkYPwttk6fahIa3Jer5L3azZs9+uiZJfF5/PylJ7wMpQc+hyIqvRa2veic2BvhE2sFqmSH6PDYoM3FIm0iNNXw2Zc4ywDB+WyQLLlxEu3PxlF1PPOlGmndbq5RZXkZ7WGO7x0ZHJS3eyoe/Hnns3kCBQHBM8Wgenl79NL//6vfYImwsumIRl+VehnSkuwuC446oaAgEgrCjY1r4sD426pIf5gv3ZObOSOPduy6h1bKTuz+5m7+e+1eqmqpoVVtxtjp9Zm+LFHwf5U9f/4lpQ6bRSwvOxZCQfJWKjsjIpMojyPPMZZTnfRTiTP0hDezwCRWru5/pRKrl2/eTGJUIGONv7Xo+eZ65/PFllfte2h5W4229DEobREJUAjHWGEodpTS6G9lSuSVov5yUHJ9HA4zr+I8bBrLKOpGBg1fhkApDpoMrUls2ibQJVXLiP4pS16WA6+NtPyt1lCImV99eAAAgAElEQVRLMs3uZuK0gQz1vEC+Og+tMQsLNvATF6FFRnBSuLuhB1c8sj5sr4dAcCqz9sBaTn/+dO7+5G6uH3w9RbOKuHzA5UJkhClCaAgEgrDE37j3+LRBfDj9WSRJYvyr44mxxvD51M/RdI3ffvlb7h19L/WuetaXr2dcr3HIkoxH9xBtiQ44pkt1sa9+H3H0OyoTd5w+iNzWuT7RoBBtup8/WertbQLGX8wofLc5g+ToZOx6Pvnu5xiqPkcSZ+BohLXF9dy1oCjsFreKrHBWz7OobamlRW1BkRRTn0ZOSg47D+3Eo3l82yyyhS5xXWh0NwKEFBr+1ZEYvc9hr49XqJU5yugS24VYbSA5rXOwMzAg++JwYX1egqdO6bhVqHa6WbMrPK+HQHAq4nA5uOPjOzj9+dNRNZWVN63k6QlPEx8Vf6JPTXAYhNAQCAQnBd3s3fhkyiccbDjIJf+5hGFdhzHv5/NoaG1g0dZFXNTvIiyyhUVbF3HlwCsBaPY0++6Ue/l8z+ekJHhMczEaKDZ97uBkcPPsjSiMsat2PR87g0z3cTWlk9Q6gSHqPN/C2LufpoOuh1+WBhg+jS2VW7DKVrrauppPnkrOxq252VO7J2B7hi2DupY6ILTQUOT26+ShwbRi5KEBRVJ8/deljlLio+JD5qEcDmNfDWPsbvBoXeNz0LTwvB4CwamCruu8XfQ2uc/k8vz653nkvEdYe/NaRnYT7Y0nA0JoCASCk4aclBw+uuYjvjv4HVe9dRU3DruRmcNnsqduDw2tDfSw9yA+Mp7/bf8fIzJGAMHp3ACrG/8KtN/N9no0Digvmz5vKE+GP0brlCFUstTbD7uvVHuBqViB8MzSABjbayzNnmayk7OJskSFrGhA++QpL91s3ShvLCcpOomKxgrT4/sLwkjSTfeJIIVIS7sxv8xZhkW2dOr6mBFcNQlGJzyvh0BwKlBSV8LE/0zksjcu47Sup7H11q3cM/qeIH+YIHwRQkMgEJxUnN79dN684k0+3PEhMz+YydMXPs1ZPc5iSckSzux+ps+kXNNcQ0KkMT/dKgdOICnXVhHb69WAXIwNygwOSd+ZPqdZ5oU//tkboaoZXiQkdDUq5MI4HLM0AIZ2GUqsNZak6CRqmmsoqi7yVSm8ZNgyiIuICxIaGbYMyhxlpMWmHbGiYdfzUYgxrQZZiCXG0v7elDpK0XTtiNcnFME+DfNrFo7XQyD4KePRPPxjxT8Y8OwAvjv4HW9f+TbvXfUemQmZJ/rUBEeJEBoCgeCk48J+F7Jg4gKeX/88f1jyB768/ku627rz4qYXuXHojThcDkodpQzuMhgAt+YOugP2UemzDBqyipWWSyi03IlDKjR8E+oTjPK8T55nrm+kanAyuN6h3aY9eyOUodyLjorF0hpyYRyOWRpg5FOM7jGaRncjNc01AKwpWxOwjyRJAZOnvHSzdeOA88DhhUZbRSPU+6ej48ZBXEScb1uZs4wWTwv7lIWmYY1HIlRVqSPheD0Egp8qq0pXMfy54dz7+b3cNPQmts7ayqTcScLsfZIihIZAIDgpmTp4Ko+c9wh/XvZn5q+bz/oZ64mxxvD0mqeZPmQ6LtXF0pKl/KzPzwACDMpePtv9GT0iziLPM5fRnsUMVZ8jUR8RMCXKrucHJYM72IyDzW3VkMDsDaONx/wPordFK7v/PlPh0rdrRNhmaYAx5nbHoR0AxFpjQ7ZP+U+eAqOiUdVURUp0yhErGod7//bK87FH2QFobG2krqWORncjDfJmnBR979d1OO66JDNsr4dA8FOivqWe2z66jVEvjEKRFVbdtIonLnwCe6T9RJ+a4AcgmtwEAsFJy69H/5ryhnJu//h20mPTWTZtGSP+NYJ/b/435/Y+l+X7lvPlni8ZkDqArVVbkZCw6Xm+bIsWRyXxDGjLWFB8H8Hbv6+SqU5vq3gYyeBHooFiIkgOaI3S26zMtaylRHmBX/SdwSvbZ3bI2HiB/079jPS48F3UFmQW8Puvfk8Pew9kSWZlmYnQSM7h450fB2zrZu8GQGxELLtqd5ke21vRaKGCCFI7iA2dVso5IL9Dv6ixQHuGRmNrIxbZQhTpR2UGbz+y7huA25H4GIVLRpj7RQQCwbFB13Xe3Pomdyy+A2erkzkXzGHWyFnCh/ETQVxFgUBw0iJJEo+e/ygVjRVMeWcKH1/7MS9Pepkpb09hS9UWusV1o6KpgsrGSmKtsSitWQxR5/kmSEWQ2jZnyCjummUqmI289QbAmVGiLCBRHQGoAWGARtickbFR31IfIFyMYL8bmflMKf261DFlXAZ5meEnOEZ2G0mkEkmXuC6UOkpZVboKXdcDWhqyU7I51HyI6qZqUmKMYL4Mm9F6FKFEdGK8bfCCXwc8suEHSY4xksXLHIbQaPY0IyGZCrwjcTiRAZCdEWe6XSAQHBv21u1l1kez+GjnR1yacylPjn+SHvE9TvRpCY4honVKIBCc1MiSzIKJCzi719lc+p9LGZAygN+M/g3lDeXYo+3ouk5jayO9Enp1akytPzo6LQRPSTITGd7gvYHqX3BShIOiAKO5f+J4VWOV79/x+mBfsF9tgxq2WRoAUZYoTu9+Oh7NQ0VDBYeaD1FcGzgS2GzyVDebUdGQJZmqxio0XaMj3tapKNJMjeBWzRAt6bFGhaHUUQoYLXEezePnozGOfTi/hrdVrZk9bQ4b832FN0Mg+HFwq24e+eYRBjwzgE0Vm3j3F+/yzi/eESLjJ4gQGgKB4KQnQongzSvfJCclhwtfu5BbTruFC7IuYEP5Bs7seSbNnmaKqotIlHM6NabWHxu5PlO4F6+o8JrGu2qTAlLA7QzARg5blAd8RnN/yhrKfP/uqU4LED/hnKUBRp7G3rq9aG0L+o4+jb5JfZElOUBoJEQlEGWJwqN5UHWV2ubaoON6W6fMJkjpqDRKhqDxCo0yZxm2CFvb13Uc0ib2KHOhrdp05DYqncgI89RwgCirLLwZAsGPwLf7v+W0507j/i/uZ8bwGWy9dSsTcyae6NMS/EgIoSEQCH4SxEXE8eE1H2KPtHPBqxew4JIFZCVm8dnuz7gg6wJ0XadW22ayiO04Qaodb8XDfxKSXc8PEBVJjKS/dp9JCrgUcoJSSW1J+3mbZECEa5YGGD6N2pZabBE2UmJSgoRGlCWK3gm9A4SGJEl0s3XD5XEB5qF93opGxwlfRuOUjKzHYtfz6W7vDhgVDX+TqCzJJOtjjOc7gsjwpodLrd1D7psfhq1rAsHJTG1zLTM+mMGZC84k0hLJml+u4fELHscWKX7WfsoIoSEQCH4ypMam8ul1n9LkbuLi/1zMkuuXYI+w82nxpwzPGE6Z5WUImPakoqPiYDNuHMCRfRrB7VfKER/XsQJyqLa999/sDn64ZmkAjOoxCkVS6BnfkwglotOTp7rZu+FsNdrBzEL7vBUN74QvB0UBORd2BjBEnQctxhx9b1ifFwmJGK1Ppw3h3mso2qYEgkAKS5zc99J2rnhkPfe9tP0Ht3Hqus6/C/9N7jO5vF74Ok9e+CQrb1zJsK7DjtEZC8IZYQYXCAQ/KXol9GLxlMWMWTiGG967gaU3LGXE8yPYVLGJVFsqWxpup7d+ExZPd9+0J5AYqs43PZ5/4jeYVyDMFrc6Kg0U+yog7Qb0ZHCOoFo5RJ20Icg8Lkvhm6UBRuXotIzTaPG0UNNcQ2VjJc3uZqKt0b59clJyeG/7ewGP84b2weErGmCIDQ9OQIMOU8DWbUngxtGGGdzf66HqKk3ybqxass/cD3SyjSqQzJQo0TYl+FEpLHHy6pID7K5ook96TNgMgCgscXLXgiJ03ais1jTUs253PXOm536v8yuuKebWj27l0+JPuSz3Mp4Y/4RvCl04Eq7X5WRGVDQEAsFPjvz0fP531f9Yvm85D3/zMG9c/gYu1UWTu4kGeQvr5V9RmXqnzz9htDiFNoYbYsSgMynU3nasEuWFtgqI3KECItNbvwnwv4O/FRUXsgz9u8aiH1323HFlbOZYDjgO0OJpwaN5+O5gYKJ6dnI2u2t3+1qlwDCElzeUh5w85a1oeDEXdArlRlYgpY5SWjwtyH5/xqqlr/F6NICAjx0rF972LLNr3ug6+pRxgaCzeBfza4vrqXa6w2oAxKtLDvhEBnx/z1ir2spfl/2VQfMGsa16G+9f/T5vXvlm2IuMcL0uJzNCaAh+EhzrUq/g5Gdsr7G8ftnrLNq6iK/2fsWDYx+kpqWGLrYueDQPxbXFpMakAqFD4rxTjPzN3O0egsMpAc03acrOoIA77GCM043TBgRss5GLjAWPCtsPNIb1H7iCzAKqm6uRkbHK1qD2qZyUHDRdY1dNe2ZGhi3jsOng20pbAtrLWqg0NYVnpcfiVt2UN5QbQkNqf28T1bMAzXct/a+p/7+9184SVXFSta0Jfhocq8X8j8HuiibfeXk5Ws/Y8n3LGTp/KLO/ms1tI25j661buaj/Rcf4TI89rywpQ9P1sLwuJzNCaAhOesRdCEEoJudO5tkJz/LU6qeIUCKYnDOZvXV7GZg6EICa5hossqWtShEsHIwahxwwdcpbgYDgEa1AWzRfE95sBoUo07vpMpG+zzv6PjQdVA3mLd73Q17+j8aZPc5EQqJnfE+SopOCgvtCjbhtdDeSHJ1MRUOgR6OwxMk9C7cHGOzt5Aalp4PEmAFJlDeUG6OHPS2+6VcRckTItjazcbnIjaxz/xFZkpHbvhzubWuCnwbHYjH/Y6DpGi6l5HuL75rmGn75v18yZuEYbBE21t28jkfPf5TYiNgf65SPCc3uZuavnc/K3XvR9cDfFeFwXU52hNAQnPSE890hwYnnluG38ODYB/ntl79lQr8JDEgdwJaqLfRL6ockScRaYylRFgCh8xSy1DsCPndIm9DwmO4rIWEhjiHqPOx6flvblMlC1+/Xr9kCGaCotJF5H5cEbT/RJEYnkp+eT7Q1GpfHxarSVQFfT4lJISk6KUBoeEP77JF2KpsCKxren+GOBvsmSgDZz2eh8+SHJXyz0/B6uDW3z6fRNa4rLVSEaJHquE2lRivkyUl388SNAxieFU+KzcrwrHjm3pgr/BmCH5WuKXLYVdJa1Vaue+c6vnY+eNTiW9d1Xt30KjlP5/DG1jd4dsKzfDP9GwZ3GXyczv77Ud1UzR+X/pHMuZnM/HAmUTF1SFLg74oTfV1+CggzuOCkJ1zvDgnCh9ljZ1PeUM4tH9zC65Nf5+7/PUlU5RWcLvXD6d5FffTb7G9+lR76lKDHSkjE0S9oewM72tqigluujG0KWeoduHFgJSG4dUdu8jtWMRGkmh7rjRXG3f+ZF2Z+n5f+o1GQWcAbW96gzlVHnauOMkeZr/9akqSgyVPer0VbooNap8x+hiUUoumO0QrVLkB0HT5e7eqwr0Q8+djJDdiu++L4tLa92pPap47LYOrgKwD4+/XZP/DdEAg6x776fXxW+3+kMxtZMv5WnehKWkNrA5e9cRlL9i7htStfIzt2QIAh+rqzM0KK752HdjLzw5l8secLrhx4JXMvmEtXW9fj/AqOjuKaYuasnMOC9UYb7LQh07h71N00O9MNIzzhcV1+KgihITjp6ZMeQ01DfcBCRUfFGu1A13Uk6egmzgh+ekiSxNMTnqayqZJZ7zxKnvtpNDQkXSGRRBKahrMj8h5019VInfy1WKw8yVD1n+gmFQtoFyi75Dn01+7z3ZX33l1XpXpGed6ngWKq5aUkaWeEfK43VlRw1oCksJp+MjZzLE+tfsr3+aqyVUy2T/Z9npOcQ2Flu7ela5yx+LDIliChEepnGAiq9Gg6VNYY3hC35jb2kSRiGi7BzNDvYAvFypNkqtOJI4sGirn+7G7cc84V3//FCwTfgz21ezjn5XOQLBK/uyqFz9ZqnVrM/5hUNVbx89d/zrbqbXx87cec0/sc4Mji2+Vx8cg3j/CXZX+hq60rH13zERf2u/B4nPL3ZnXZah5d8ShvF71NUnQS9515H7eOuJXUWMOrRxLMmZ7baZEl6BxCaAhOeqaMy2Dd7npk2u9CaLrEh4fu5uq3BvDcxc8FBHuBGGF3KqLICq9Nfo3xj7yB1qp1aNNRSXVdRQPbsDEwqPrQwI6g4zmkTaxXZpCpTieJM0JOrDoovwNAb+0WrNjx0ISFGBS1CxYUIkglSTsDlSYUYkIe59UlB8LqzvuYTCMcLzk6mVa1lZWlK5mc2y40slOyWbR1kU/sR1ujSYpOQkcPEhren2FdVwOqDkbVaECA2JAliIipJc4dR22LkTCu6RqKp5upPyOKdBzSJgotdwLw6qRXuTb/8h/lPREIQrGrZhfnvHQOkZZIvpz6JT3ie3DewBN7Tnvr9nLBqxdQ31LP0huWMrTr0E497uuSr7nlg1vYVbOLe0bdw+yxs4mxhmd7kaZrfLjjQx779jG+Lvmavkl9eWbCM0wdPNX0nPMybWH1e/angPBoCE568jJtzJmeG9Bn/dQvB/KvK37Hx7s+Ztj8Yaw7sM63vzCPn7pEWaJIVgaZjk2NI4sS67OA1mE8qkax8oTp8bwLWAebTb0BXoFyUH6HFZbxLLWMxsFm33MaH7028Bi/5wwm3FoB02LTyEnJITE6EatiZVVZoE8jJyUHZ6uTgw0HfdsybBm4VTcOl4MWT4tvu/dnuFZajYtKaljNBmUGxcqTQHt1Q0dFksCasjRoHK6THaZTqvwzUF6b/BrX5l97bN4AgaCT7Di0g7EvjiXGGsPSG5bSI75HyH0LS5zc+s8tnP/gGs5/cA23zt/yo/xt2lSxidEvjMajefhm+jedEhmHmg4x/b3pjH1xLEnRSXx383c8fN7DYSkyWjwtPP/d8wx8diCX/OcSWtVW3rryLbbN2saM4TPC8px/qgihIfhJ4L0Lsejeofz9+mwG9bRx5cAr+e7m70iISmD0gtE8teopw7QmzOOnNH27xPqMjl50VFqVfdSxge0Rd1HDyrYF70rWK7cAUsDoVf8pVEDbgrhzAiWU8Vvy+88Mt0cPOzFc0LOAhtYG6lvqWVO2Bo/WbpAPNXmq2dMMBIf25WXa2Gr9Nd9aLvblmzikTW3XwxAgltg9zL0xlyptbUBYH8BeeQHBqe+6LwPltcmvcU3eNcf8PRAIDkdRVRFjXxxLQlQCS25Y4huKYEZhiZM7XyiiqKwRt6rjVnWKShu584VjeyPs65KvKVhYQJe4LqyYvoKspKzD7q/rOi9teImcZ3J4Z9s7zL9oPsumLSMvPe+YndOxora5lr8u+yu95vbi5vdvJjs5m+XTlvPtjd8yOXdyQDCo4PgghIbgJ01WUhbfTP+GW4ffyu2Lb2fyG5PZVd4gzOOnMFPGZSBJ+MSGsTDV2ck/ibZE06K6ArIZYvW+DFHnBYxe9U6U8uJto+ooUPzzN+x6PnmeuViIP0IGhzn1zZ5jvuD4oRRkFlDeUI6qqzR7mimsaH+9vRN6Y5WtQUKjvqUeME8HNxNZNayn0HIn31oupmfu5wzqaaPUUUqr1urbP8oShUPaxBbldp8o8VZFHFIhr09+XYgMwXFnc+Vmxr00jtSYVL66/iu6xHU57P6vLjkQ9LcJjL9Px+pG2Lvb3uX8V87ntIzTWHLDEtLj0g+7//bq7Zzz8jnc8N4NnJ91PttmbePm024O+B0ZDuyt28sdH99Bjzk9+OPSPzIxeyJFs4p496p3ObPnmSf69E5phEdD8JMn0hLJnPFzGNdrHNPem0Y/13hipSEB87J1VOx29wk8S8Hxwtum8+qSA2w7WM++5rWUSAtoUoqIaR3AYHUe3vqC1z/RcfIRqGSq0319/0CAD8CLXc8nU52OjRysxAN6mwdB9xvZejiM7Agvmm5kazx7ywlu7m6jILMAgEglErfmZlXZKl8LhlWx0jepL9ur2ydPZdgyONR8CAghNEwGN/hXSdJj09F1nTJHGZreXkFKiU6h0d1Idcs6qi3rAh5/x+l3cHXe1T/wlQoER8fG8o2c+/K59IjvwWfXfUZKTMoRH3O4m13H4kbYv9b9ixkfzuCy3Mt4ZdIrRFoiQ+7b4mnh4eUP8/TXH9CXm7ko4m90dyZSeSiG9LgffCrHjHUH1vHYt4+xaMsi4qPiueuMu7ht5G1HFFCC44cQGoJThok5E1nfZT3XvPZbtPK8tgWj5Bsx+Fb5rfRaejkPFDwQdndrBMcWf8Pfp8V1THitEE3TyFbvx39ykXdKVChPx+Gw6/kMUef5HBjGceSA43oXyqEFR/D2XQfDp/LWI74HvRN649E8OFwOVpauZMbwGb6v56TksO2QX0XD3s0nMDpb0dD8ghG9QsWlugL2tSpWBkRNwNEwwjdZqkRZgEPaxL1n3ntMXqtA0Fm+O/gdP3vlZ/RO6M2n131KUnRSpx4XEVOD7owz/Tn4IVkOuq7zl2V/4fdf/Z5ZI2bxywF/YfZre0MOQ/lqz1fM+HAG1YfiyFefQUamwQ1ri+tZt7ueOdNzT+jwFF3XWbxrMY+ueJSv9n5F74TezB0/l2lDpoV9OOCpiBAaglOKzIRMlsx4kTvemcPyjZGkWAaS3zOdaWf35O29k/jDkj+wonQFr0x6pVN3oAQnP+dnnc/Lk17m2revJYZepuF6HasPHU3GZnRM+w513PZjdqbCEX4UZBbwSfEnuFQXK0sDE8Kzk7N5ffPrvs8zbBmoukp8ZHxQOjiYVzT86W7vTpnDCOvzF2lSS2+s1beR1CYKI0gmSR3JQfuDh+2JFwiONWvK1nD+q+eTnZzN4imLSYhKOOJjdF3noaUP8UH1OwxlHjpKwO8C+QdkOaiayh2L7+CZNc/wp7P/xMSet3PXwm0+n2JNgyEefjUhk6+2VLK5tIpKdyFpGSMZ22UWO0vxSX1NN/rtj/cEPO+UyOKKJiJjatnieZKN9e8xImMEb1z+BpNyJ2GRxXI2XBFXRnDKYVWsPHv5vXw8+GOmvns1O2ojmSz9mwfHPcjoHqO55q1rGDZ/GIuuWMTp3U8/0acrOA5ck3cNlY2VvPth6IWuTuDoVa/JOBShTN/txwsUFmaCxoy+XcJrWkpBZgEvb3wZHZ3th7ZT21xLYnQiYFQ09tXvo7G1kdiIWLrZjNC+hKgE04qGfATbYGZCJmXOsoBtOjq2xksx3kFvxci4Tr31G4/BKxQIOse3+79l/GvjGZQ2iI+v/ThorLoZbtXNLR/cwsINC4m2RlOX8HeGWf9AaZUx1KBv1xhuvbDn98pycHlcXPfOdbxV9BbPXfQcvzztl9z30vagYSiSDnM/2IuOhkQcKZwBB89gq16PlUChdLz9jF6DvKYbbaS6M5pE7uPli+5hysizRE7WSYAQGoJTlgv7XciGWzZwzdvXMO6lcfxx3B/5v7P+j/W3rOfKN69kzMIx/OP8f3DbyNvEL7NTgHO73sh7bA4ZwAcyrdTiZBslygs4pELsej5Z6u3E0R+ABnZSrDyBQ9rUlvadHFJshAr5O5LY2FfdzLmzV2OLsjDt3G5MPP3E9iIXZBYEVGZWl63mgr4XAO2Tp3Yc2sHQrkN91YXYiFgqm8w9Gl5fS8cWKDA8GmsPrA2qBsXovenYZiahILlFNeNU5XhnJS0rWcaE1ycwrOswPrj6A2yRR34up8vJFYuu4LPdn2GRLZzR/Qze/sVLnaqCHAmHy8Gk/07im33f8NaVb3FpzqUA7DQZhqLjdYMpbZ9L6LpOhByF5CdKwKiuHKmN61i99/vr9/O7N79D1dMCPHKyBJu3JSGdLv4unwyIRnTBKU03eze+mPoFvxvzO37/1e8Z/9p4IpQIlt6wlFkjZnH74tu56q2rcLrCZ9KP4NjjzVaROrQsePFua6XGN3rVruczVP0ndgahEIlCJHYG+iZSlSgLAnwYR0PHlirQibAY59Do0tB0YwrV3A9KeG9VcAvS8SQrMYuucV1JiU4hUokMaJ/KTjHaK7yTp9Ji01AkhUgl0rSiYdMGHXbCV1J0EmWOMqIsUQGPa6DYNEMjMzXimL5WwcnB8c5KWrJ3CeNfG8/IbiP56JqPOiUyDjgPMGbhGJbsXYKma1w96OpOt1odiYqGCsa9OI51B9bx6XWfcmnOpei6zisbX6GkeaXJz0rwzQ0JCV0zfs68E/pkCaQjtHEdi/d+Y/lGprw9hT5P9qGqzhJ0s0bTYXtZQ6ePJzixCKEhOOWxyBYeOvshPrvuMworChn8z8EsK1nGnPFzWHTFIj7e+TEj/jWCzZWbT/SpCn4k5i3eh6pxWEkgIRFLH1+WRpZ6O3Sofng9GXnqP4jVs3CyLfQBD/M8wWJHotVjfnYLvygz3X68kCSJsb3GosgKFtnCyrJ2oZEQlUCXuC5sP2RMnlJkhS5xXZAl2dSj0dU9pYOvxRB+Xr9LtDWaUkcp8Vq+L9dksPoEjdIujD9n3vdIB2QuGBw6GE3w0+V4ZiV9vvtzJrw2gTN7nMn7V7/fKTPylsotnPH8Geys2YlLdTG7YDYvXfoSEcoPF8bFNcWcueBMyhvKWTZtGQWZBZTUlTDh9QlMfXcqvXvvRpbkgLwZDnNDJDsjNiAMd+6NuYdt43rxq32omn7U772u63xa/Cnnv3I+Q+YP4e2it1E1FZeyF9CC9q9vVsNq1LcgNEJoCARtnNvnXDbO2Eheeh4/e+VnzP5qNpfmXMram9cSoUQw8l8jeWXjKyf6NAXHmMISJ0WljZ3e33un3c6gkNUPCzb6a/dhJzeozedoOZJno77Zc9ivHw8KehZQ1VRFo7uRlaUr0fX215uTkhOYpWHvhqZrphWNaL1PyAlfXrPn/gqF7NbHfVWPBH0EPfQpGIsRyfcoCY2V2xxBz1FY4uS+l7ZzxSPrue+l7WKx8hNkd0XTcclKWrxrMRe9fhFn9z6b/139v06lTS/Zu4TRL4ymtqWWVrWVhRMX8tDZDx2T9tz1B9czesFoFOlhxigAACAASURBVFlhxY0rGJg2kKdXP83AZwdSWFHIK5NeIcpWwTr5ZposG3FRSb28lh3yIyF/y1Q5WoPCcM1ocjfx+LePs2p3CR3bGA/33rtVN69uepWh84dywasX8M3+bwBj8MOzP3+W+dddidlSVZJEyO7JgvBoCMKK491X25H0uHQ+mfIJf1v2N2Yvmc3SkqW8Pvl1Vt60kls/vJWp705l2b5lPHnhk0HtG4KTk3kf7+v0vu1jbw+fhdFxLG5njd4nKwWZBb6k7rqWOnbW7KR/suFbyU7ODminyrBlsOPQDqqaqtB0LWCUdIu8B6uaGCA2vBO+vDP/GypPJ6JD1cNsBDEoQYsbb1tHx4k7J3pcp+DY0iUJqpxqwPdEZ7wFR8MHOz7gsjcuY3zf8bxx+RuHzaTw8p/N/2HqO1OJtEQiI/PxtR9zXp/zjsn5fLnnSy79z6XkpOTw4TUfUt1UzZiFY1ixfwUzTptBbmouv/r4V3g0D3KkzHfu21AtKnlpedw26Co++GIXEWrfoGlXR3rPWjwtPLfuOf62/G9UNVZxvu2/uJxH9nU4XA7+te5fzFk5hzJnGdGWaABO63oavx79ay7qfxESEl/u+RJJkdHVwEqRLkJ2TxpERUMQNhzvvtpQyJLMAwUPsOT6JRTXFDNk/hCW7l3KwokLef7i53l548uMfmE0u2t3H9fzEvw47Cr/fn+svH+QQ1UrQo2zPZrqxg+phBxPclNzSYpKItZqLAb8hUVOSg7bD233CZFutm40tjbi0TzUtdQFHKcq4r9t75B/W4eMjWxyWh+hsMSJ1NrVpOoh0bHxTZL0oMXN8WypEZwYGlobWN7wR8C46+1F02F07g/3P4CRrj35v5O5qP9FLLpi0RFFhq7rPPLNI1z91tVYFSuJUYksn778mImMRVsWceFrFzKqxyg+mfIJ89fNZ8j8IVQ1VvHixBcprCzkjsV3EG2JpqG1gRZPC9HWaO4/637SYtN44MsHsHVbiiJJnfZjuDwunln9DFlPZnHXJ3cxvu94dvxqB3+/8nwkKbSvo8xRxn2f3Uf3x7tz7+f3UtlYiYzMxJyJrPnlGr6e9jXn9D6H59Y9x6B5gzjvlfNosexG6vDzfayFo+DHQwgNQdgQbouAMZlj2DBjAyO7jWTC6xP4v8//j6mDp7LyppU4XA6GzR/Ge9veO6pjiraNnw5HDtvruL+KkTDe+arGyVIBkSWZgl4FRFujibHGBAmNFk8L++qNylGGLYPa5logOLSv2VLEBmUmNaymlVqMFgyNCJKI9QzhjheKkPTIIAFmvLdSgECRkIIWScerpUZwYtB1nenvTWdX8+dcNS4avw4+JOCpD0t+8O/cN7e+yRWLruDSnEv5z2X/OaKvQtVUbvvoNu77/D4ilAj6J/dn5U0ryUvP+0Hn4eXZNc/yizd/weUDLufBsQ8y7qVxPLjkQX414ldMzJnITe/fxLbqbSiSQk1zDQCTcifxiwG/4JFvHmFv3V7ev/p9Ft80n7k35h7Rj9GqtjJ/7Xz6PdWP2xffzrm9z2XbrG0snLiQPol9yMu0MWd68HGIKuGGd2+g1xO9mLNyDo2tjURbovnVyF+x5849/Puyf5MYlcjdn9xN98e7M+ujWWQnZ/Pl1C+ZP+UKZLnzIkgQXojWKUHYEGoRUFzR+f75Y01KTArvX/0+j3/7OPd/cT/L9i3j35f9m7U3r2Xae9O49L+X8pvRv+Ev/8/eeQZEcXVh+Jkt9CooCigqFlBEARF7LzH23jWxtySaRI1JPluaJsYSTewFY+8lookaW1REFBVULIgoVhSkt92Z78e6C8suWBNN3OdHyu7cO3eGgTnnnvec0/QblHJlkXOZZBtvJhVKWRnkaDyLzOl5nABtJCOVS4XmdvzbaVimIb9d+Q1JkjgRf0L3ubbEbfTDaMo6lMXN1o2UHE3uxP20+7rvAWQyGSnCeSIVY6immkMxaulLpCRQYKMnRdM6FR0bSCw7GoazwocsWSxLBvQwMJLKu1iRmJb83OU6Tfw7+P7Y92y6uIkt3bdwMswSmZCj+1lL5G1cvWizufVR6+m7tS89fHoQ3DH4qU3iMnIz6L2lNzsv70QmyGhWrhkbum54pqpUT0OSJCYfmsxXR75idOBozBXm1F9Rn+ou1Zn7zlxmhc7iZvJNrJXWJGYmIiFR2bEyrSu0Jvh8MFmqLL5p+g1jao/RRWSqedgWem9y1bmsOreKr458xc3km/T06cmkRpP0fn+1aOeRJImDNw4y7sgY9sbsxVxujkpU4WbrxtjaYxnsPxhbc1v2X9/PyN0jCbkagqOlI8NrDmdEzRF4OHjo5pw90FtPVt2viesL9RYx8c9jcjRMvDEYMwIk1NzLvcD1JAfKO5Z/LeuSCTI+rfsp9cvUp+fmnvgt8mNFhxVs7b6VWSdmMWH/BELjQ1nfdX2RXYiNRWxeR5dVExq0+UB3ErMLfCM9+eerzKkQOSsfDgj4qRcbndtYhOR5oyavk0ZlG6ESNYnpkfcjycjNwEppRRn7MlgoLLj88DJuynocCa1AHdUu0ojh3I1kGpXNmyP/dRbW8DAvT0bjbOSSwrd9KhOVsptos3F4O3tT07UmPmUGG4zt29iV8JhkXfNF087oP8ffnX/3+7XfmXhgIl80+ILO3p1ZtyvilUavVp9fzYDtA+jn249l7ZchlxXejBMgIT2BtmvbcubeGSQkhvoPZf67819JB2uVqGLk7pEsObOEof5D2XNtD/Ep8UysN5GriVcZvWc0zlbOqESV7vfw/Rrvc/TmUX4M/ZH+1fszvdl0StmWeqZzrTm/hmlHpnE96TrdqnRjd+/dVC1Rtcgxmy5s4ofjPxBxLwJzucaRqVqiKuPqjqOLdxeyVFkEnwtmfth8Lj+6THWX6ixpt4Te1XpjqbQ0mLMoJ8jEm43J0TDxxtC3sSunrycj44kRLgDIuW+xAf9FYwnuGEwHrw6vbX213WsTMSyCgTsH0nFDRz4K+ogZzWcQ5B5Ej8098Fvkx7ou62harqnR8SbZxptDweiSIGh2O+0t5VR0teK+2VriLrVGeGV/ImWAQIpwHhWpKDHeMbjgTv2zqFstlG+GE1LdpTo2ShsyVZmoJTWn75ymgUcDZIKMyk6VORObyK49l5AkJeaUwAwntv8po0m5VJ3BKRfyjDdNw8PiRTpZAgIIahp5lWXljnCqFK9C5INIPgz60Ojx1Txs8ay2n4iLjnhY1sbTtDP6j/B3R3NjEmPotaUXrSu2ZmrjqQAUc8h9ZQnhKyJWMGjnIAb6DWRxu8V6BQyMcfXRVd5Z/Q63U2+jElXMaD6DcXXHvZLKUlmqLHpt6cXO6J009GjI4jOLqV+6Pv18+zE7dDYqUYVSpuRxpib/qU3FNoiSyPxT86nlVovQQaEEuQc99TxqUc36qPVMPTyVq4lX6eTViW09tuHr4lvomLScNJadWcaPJ37kVsotlDJNlL+lZ0s+rfspDco04GriVYZvnk7ERUcsxLKUsZnCl++406dWPVNj3P8ophwNE28MxrSdcwd7c2LUepqUa6KRKf0xjlx17mtbo6OlI1u7b+Wnd35iQfgC6i2vRymbUkQMi6BaCU1Z3G+PfqtLfM1PeRcrncZUi4QaKxtTnsY/TcHokvTEsa3sZsMP73kT3GsaxewzXmkyto/6e+wkXzK4aXTegjv1mpTozKdGM0a0LvPK1vgyyGVyGng0wNbMFrkgN2jcdzO2gt4910ihJL0cLJks75UUJ1/+1HNKSJiZaRz18DvhuNu5I0oidUrXMXq8KInsvvUztQMvsvkp5TpNvDr+zvy79Jx0Om3ohJOVE2s6r0Euk3Mr+Rb7kiYAz9dszhiLTy9m4M6BDAsY9kxORmh8KLWX1eZu2l0kSWJ9l/WMrzf+lRjRj7Me02p1K0KuhOBg6UDE3Qi+bPAlKlHFlMNTAEjPTSdXzMXT0ZP3a7zP7zG/E3YnjJUdVnJi0ImnOhmiJLIhagM+C3zou60vXs5enB56mq09tiJklTOaY3g39S6fH/gct1lujP19LHdS72AmN2OQ3yAuj77M9p7bSctJ49217xI4rxsxUc2xF2tiTgnU6eVZGWJG1E1TA77/KqaIhok3isLCo1u7b2V26Gwm7J/AifgTbOi6ATc7t9ewQk2Dsg+CPqBu6br02NwD/8X+LGm3hN/7/s7Uw1P54s8vOHbrGKs6rsLJykk3zljERpQEtj8YzTdHevB5g89NOzr/EIVFl8JjkpkQfJm+jV2Z1i2Ij5ZdRJQkvUjDiyAgoMQBP/Viim4LmHc8yJFjWeR5BaB9oMsLrenvoKFHQ/Zf349cpu9oeDl5cTvLGaXBpcv0InqyfHtfKcJ5UrmALVUN5GR69yPbnVMxCVxMuIinoycOFg5GdeMAR+OOcif1Dr2q9Xqp6zTxfPxd0VxJkhi4cyDXk65zcvBJHCwcSMtJo926dojmj5nWwZXdJ7NeWNf/c9jPjN4zmg9qfcDcd+Y+9e/z9ujt9NjcA7kgx0Jhwc5eO6lfpv5LXaOWg5di+XzzAYSc8VTmGiVdLuDpKue7v77DxswG0DgZlgpLulXtxqHYQ6w+v5qxtcfyRcMvsDM3HkXVIkoiWy9tZcqhKVxIuEDrCq1Z1XEVgW6BgPGoVHhMMi6VtrM5diaiJKKW1DhZOvFR0EeMCByBUqZkxdkV/HzqZ64lXiOgVABtnWdz74HcJCF+izA5Gib+FQiCwMd1PibITSNTqrGoBms7r6WFZ4vXtqYA1wDODDvD0F1D6bG5B8MDhjOr1SzquNeh77a++C/2Z1O3TdRyqwXkRWz0dcql2BrbhS8PfklUQhTL2y83qk818Woxng8kIUoC4TF5so65g6owf+9FLsanIcc6n6wp799aniV5XHO8sc7fhR9f1LHd6785TgZoHI1cURNxPH7ruO5zL2cvtklXKC7UKWBwinpSlvwRDYBY+TyqqX8GXd+MAiVsERAEWLI/BlESSchIoI57Hd2uc8G8gLtmB/Cw96COu/GIh4m/h/IuVjxKS9arAvUqkvBnHp/Jxgsb2dxtM1VLVEUtqum9pTfXk65zfNBxfEp40NC4z/lU5obOZczvY/i49sfMbDnzqU7G/LD5fLDnA8zl5pS0KcmePnuo7PxqDOfd5y/ww6YUzKmKgBxznMi5VYsNd0chl8tJy9FEA5qXa05Kdgqrzq2ibaW27G+5n4pOFYucW5IkdlzeweRDkzl//zwtPVuytP1SarvX1jvu10O3ESUJSdLcB1HSROQvXilJrjyXyk6VGVd3HH18+xCbFMvkg5MJPhdMtjqbrlW6sqrjKoLcgug4I8wkIX7LMDkaJv5V1CtTj4hhEfTd1pdWq1sxudFkvmz45VMT8/4u7MztdHkZH+39iOPxx9nYdSMRwyLotqkb9ZfXZ3ar2YwMHIkgCEYjNtU8JlOleBUGbB9Ao8RGbO+5vcikchMvT8HoEuQ5CgV32BYNC+KPqCt8u+ERWrXpszgZxpyE542IFHW8o42C4a08Cv3+dVDTtSYWcguy1FncS79HfEo87nbueDl7ESefTnGx9pN8mLxStPmlLLICat4k4Sxn5SPwUA+khLIaqlxzBPSru0mSwNV4qC7M5cbd9YxoUBcwvgOrllrTpobNU43G19049L9G30alOHlNU1r1VSXh74vZx2cHPmNi/Yl0qdIFgAn7J7D76m529dqFTwmfF5575vGZjNs3jgn1JvBds+90z0vB56KulwPHopM4e/Me93LUOCr8qFTSjJ29dlLCusQLnz8/O6J3MHlzHA4E5ss3kQFq3FUDiGSMpqxs8WrsurqLisUqsqfPHt6p8E6R80qSxO6ru5l8aDJn7p6habmmHH3/qEEEJluVza/nfyX0ujtyqZjedwJyHGXehPQOoXn55uy5tod269qx//p+XKxd+KTOJwyrOQxzuTnB54J5b8d7mGeM1KsmB6bKb/91TDkaJv51FLcuTkjvEKY0nsLUw1NpvaY1CekJr209giAwNGAoJwefJFuVTcDiAI7EHeHo+0cZXnM4o/eMpvfW3rpdJ2N0q9qNvwb+xZ3UOwQuCST8Tvg/eAVvH/nzgQrmzYDGMI26/QjpyRbsgdOaztP5Df/8ORUF0Tohz5Lj8SJ5IAIwrVfRO5WvAzO5GXXL1MVKqTEatPKpSk6VSBHO806jm1Rwk8jmAemKszx0/FpPylIwogHoyt02aHiUNPk5nYOij4CDFEiFrJmUNtMYSsbyAgDExCZFXsOb0jj0v8TZ5B1EyIdTwU0qskfDsxKbFEvPLT1p6dmSr5p8BcCS00v48cSPzG41m3crvvvCa/326LeM2zeOLxt8aeBk5H8uwq4lM+e3OE5dSyY3x4pi1KK66hfmN9n1SpwMtajmvfVT+N+aGzhI+oY5aIx8GyrQsXJHkjKTOBh3kO+bf8/5EeeLdDIkSWLvtb0ELQ2i3bp2WCutOTjgIAf6H9BzMpKzkvn+2PeUnVuWobuGkspVg989QQA/j1JcSLhA5fmV6bC+A6nZqazutJobH92gpWdLJuyfgNssNyYemEhAqQDGt/VHIZObemK8RZgiGib+lchlciY1mkTd0nXpvaU3fov82NB1A/XK1Htta/J18SV8aDijQkbRb1s//oz9k3mt51GvdD0G7xpM4JJAXYjfGP6l/Dk15BQdN3SkwYoGrOywkh4+Pf7hq3h70EaXJgRfJjzGsKzyrcxTtFo9heUdlhca1i884lC4RCp/ydrn7RIuIODtZs3Id8u8sUnMDcs05K+bf6GUKTkZf5KuVbpibWZNGfsyJBHBlz2D8JhTBzszO4Qc/ftTMKKR/x652rpylfnUYAE8KU+bP2qkMcTUnI8uDrWN5wUIyHmYpP/aK7hLnZqpMpWhLoQXifQkZyUzbt843vFpxNKudV96Dek56XTc0BFHC0fWdl6LXCbnz9g/GRkykpE1R/JBrQ9eeO5ph6cx+dBkpjaeyqRGk/S+K+i45pH3/MkE2PRXIjU9iz/zOY3dU7nVLbqtGofz4y8ohoCAzCBCKqFGMrvLjss7GOg3kG+afoOLTeFSSkmSOBB7gEkHJ3Ei/gR1S9dlRcuDXLxSkp83ZrLHRZOb5lwsjbkn5/LLqV/IyM1AJmjOHSssowYBgIh2j1qSJI7EniL25jre9a3H+q7rqexUmV/P/0rg0kCiHkTh6ejJV02+4r0a71HcWnNfqpdMNfXEeIsQJEl6/u00EybeIG6n3Kbnlp6cuHWCGc1n8HGdj197UnXw2WBGhoykrENZNnbdiFwmp+vGrsQ+jmVx28X08e1T6NjM3EyG7BrCmsg1/K/h/5jSeMpTK52YeHEKSmxkgsaov2T2EffVYZgrzOlgu4P7CQ7PNF9RvS9etC+GxsiAse3LvlHJ38Y4GHuQpqs0JZ7ruNfh+CBNrkbLX1tiY2bDxm4bMfvKDJkgQy2pyfwiEwuFBQDe872JfhRtMKed5Es75zlcv59OFg8ACTuqGO2zYW+loLKrNRGxKeSqC77eRGpVcNQ5DMZ+9oaGpAZnWyWbxvu92E35l5LfCC5ub8bl25rGltp7JQg8tUTtmL1jWHpmKdGjo3G3c3+p9UiSRO+tvdl1eRehg0PxKeHDlUdXCFoaRC23WuzuvfuF+lRIksSkg5P4+ujXfNv0WyY2mGhwTLfvI3iY+vSKh8/znETGpTJm2SWDvKVz8hG4q98zkBjp1qtpP0huyZ+Y2+ljarrWLPI8h24cYtLBSRy9eZRabrWY1ngaroo6jF0RXeDZFzmvGEWqLBK1pEaSNNXv3G3dGVdvHIHFujF39zXuPzLTbaWAiEyQMbyDwO+3F7Euah3Zqmw6enVkWMAwmpVvZnp/veWYfvom/vW42bnxZ/8/+bjOx3y671M6bejE46zHr3VNA2oMIHxIODJBRuCSQI7dPEbooFC6eHeh77a+jPhtBFmqLKNjLZWW/NrpV75t+i1fHfmK7pu6k57z+rqj/9cxVlb5p8FViPz4N3r69CRLlcWRRwtfmQzqaU5G/jnyytxm/SucDIAg9yAUgsbYO333tK4ctZezF9EPo1HIFDhYOKCWNDKM/LLHhxkPDeazk3ypoV7AnQdWmFMCO7yxxZs0otHsruZHJDlDRXhM8hMnQ8onY1MjE2R6Eo3C5FUFk87fRg15QanQpfh0xOcsURt5P5L5YfOZ1GjSSzsZALNOzGJ91HpWdFiBTwkfHmU8os3aNpSyKcWGrhte2Mn4bP9nfH30a35o8YNRJwNAkic/9ff7eZ+TBXtuGji2EgJl1R8U2rASNH9DLM1E/hq5pkgn42jcUZoGN6VJcBMycjP4rddvhA4KpVWFVqw+fBdRkvR/nki4qfqjFtWIkkiAawCbum3i9NDTZOZm0nN3bS4+OoOEmO/vmGbD4Kvtx9l3fR8T60/k5tibbO6+mRaeLUxOhgmTdMrEfwOlXMn3Lb6nfpn6DNg+AP9FmopPAa4Br21N3sW9CRscxkd7P2LwrsH8eeNPFry7gPpl6vPBng84decUm7ptopxjOYOxgiAwscFEqhSvQp+tfai/oj47e+6ktH3p13Al/32Ml1W2ZW2XtQwLGMb44GgQRSjkxQ95DsLTGvI9C/mN41vCWlrXkmgf+PMzjX3dWCmtCHQL5NSdU+Soczh//zwBrgF4OXuxMHwhuepcXG1dScpKAuBB+gNK25dm8enFPMw0dDQ81AM1EipJXyIlIiEIAqKklVGpEZBp9lh1xpsAT3Z/QaC0s4Ve5SNj8ip0R2v++bZqyAuXCuVRVLUgSZIYFTKKik4VGVN7zEuvZ//1/Xz9x2o62O1g4+7ShJ26xKnM6SRlJhE2JAwHi2eLOBZc4yd/fMLs0NnMaTWHj2p/ZPS4/4Us4+HjKs/02/s8z8m1e4b3TkDAhoo85gxmOBl1NmQC+JZxKjRyf+LWCSYdmsT+6/up7lKdHT130K5SOwRBQJIkdl3exYnrZsglxwLnlmODJ+0qt2N8vfFYKa2Yd3Ie/bb1QxQ1/WmkJC8E0TBfxMOyFts/vP7aCrOYeHMxuZom/lO0r9yeM0PPUMyyGHWX12Vh+EJepzrQUmnJ4naLWdt5LTsv76TmkprUcqvFiUEnSMxMxH+xP7su7yp0fAevDhwfdJzEzEQaLujP0EUnDZolmfh7aVS2EaUtjUsYtEhI5PKYCPmQQhvyPSsCAjkkcFhRmyOKesTKf2Z+m/kvPN/roHHZxsiQISBw8vZJQBPRyBVziX0ci4d9XrWsB+kP+O3Kb4zYPQInSyeDuYzt7ArIsaAE77fJIUkII1d4SCJh2FjKDO68xrnT6NzjErIYsywvsVuz+2zYXFM70t5K8dKJy/9WCnPC8lPUDv6ayDUcvXmUea3nYSY3e6m1xCbF8v76qdRQ/0Lq45K6JH3uDGNu4x2Udyz/3HNKksRHez9iduhsfn73Z6NOhiRJfHX4K3acSNM9R0+f99nXoBZVhX6naVgpIemeT63sUkNqpsrgXRB2O4zWa1pTd3ld7qXdY0v3LZwZdob2ldujltSsOreKMnPK0H59ex6L0UYKK4j4lSlFn2p9+Gz/Z/gt8iPkWgi13Wpjb2HP4bjDRpPCZQJUcSvGxVsZRhv6mXi7MTkaJv5zlHMsx18D/2KQ3yBG7B5B3219i6z49E/Qq1ovzgw9g42ZDbWX1iY0PpTwIeE09GhI+/Xt+Wz/Z6gKeen4uvjya+ujeKR/y5V40VQJ5zXgabSr+5MXvyABIlHycaQIkTxLQ76ikJBII0b3/2Xty772nKPnpaFHQ3LEHARB0PXT0DbRu/zwMp7FPHXHhsaH0mNzD9pXbq/ngGhJI8bAsJFQk0YMpUuoOS8fwyOXT0hwmI63m63RKmL5EfPJfbrWL6bTu+dHeBLJqOxq/dZ2DzfmhOV3oIuK9GgTwLtV6Ubz8s1fah0ZuRl03tgZN1U/ZII8n/MjQybIOX/J+bnnFCWRkbtHMi9sHovaLmJk4Ei97yPjUhkfHE2rrw+zab8dxWTVeFZz6Vm6nSdlJtE0uClJ0kWDTQnN7/8VPEpIRMhHkGMWhaW5iL2lEnsrOV7u1gBcvpOuexeMWXaJd5eNIGhpEHGP49jQdQPnhp+js3dnslRZzD4xG5eZLgzYPoD4lHjkgpw4+XKdMBPyfp6/J42n++buJGUlEegayIP0Bxy/dZyU7BQAnNzOIRNkBlWj6no7mKq1mTCKSTpl4j+JhcKCX9r8Qv0y9Rm6aygRdyPY3H0zVYpXeW1rquhUkeODjjPuj3GMChnFwRsHWdlhJUvPLGXigYmExoeyrss6StmWMhi7OzQTuWDqpvq6MOy7IQICOSSSIVylb6NSpMWYcfouWODyXMne+avJaF/8cfJluu+jRkS90mv5J6hbui4CAqIkcvTmUQBK2ZTC1syW6IfRlHPQyAXN5eb8eOJHqrtUZ23ntTRe2dhgrjj5chzVgeRVmlIjIZFqvY2IexpDWJRE6pauS78gN07HpDyRURUegdLKfY4lrOG8YhX+4kLUBQIbb3sTsZaBCkKvicgRkBCe3FMBbzcbElJyiqwWNOXQFFKyU/ix5Y8vtQZJkhiyawhXHl2hhVkNknMLfi88989IlESG7hrK8ojlLG+/nPf93tf7XpubohZFQFO2FlF46jOlmbvwZ0abWH/h9iPuZJ8hRngE8p/wUy9EehL90zgdInJBjuW96bzjLGdiu1rUKJcncZoQfBlJynONtY3zku74s6bzGnpU7YFcJicpM4mZx2cy5+QcMnI1a9KeQy2pKemURRvveK7FeHD9fhoPVVHEK1bh6SgnR1maqAdRWCutESURWwtbBvkNYmjAUDyLeRpUyurXxJVfDxrmO5neUSbA5GiY+I/Tu1pv/Ev503VjVwKXBLKo7SL6+vZ9beuxUFgw7915NCnXhIE7AmWMygAAIABJREFUBhKwOIANXTfw54A/6bm5J36L/FjfdT2NyzbWG2dMxiBKcO2+KUn8n8BYV/cWNWWMPNCPq0lXOfsX1C9Tn/7V+hMREYMZxYt0NvI6i6sBAREVEiJpXCFGPvdJZATkghxrc+t/6CpfHXbmdtQoWYOz985yM/kmjzIe4WTlRGXnykQ/jKZ1xdYA5KpzsVRasrPXTiyVlkYTRzV9NEbjrhqADZ6kEUOcfBk1SxXnjwtXqKaag+39CsjVGiOwQcAj9oXLUOKgKzxakPIuVuSoc/jxxI+09OzN/cuGDRYF3r4E8Pz8fnsR1yz+oqfbEqLvJHMr8xSTO9Wji7/x8txaIu9HMi9sHt80/ealc8rmhM5hbeRaNnTdwOlwe8KuJZE/svC8yddqUc3AnQNZfX41qzqt0nsXaI3niNgU1KKkO4/WueVJ/k/+P8MFn5nC1pNXXUoEFNgRQA38OSsfQYR8OB7qgdjihQwlcqyxkbwBgYcP4dOVV3WVvdSimnM3HyEVMN0E5JSQ+9O7WgB3Uu8w9dBUNp8Jx03Vn+psII0YbspXkCyco0nZJnxa51MeZz9mftgcTtw7QUnrkrjZuZH2IIrwu7koZZqmmAGlAhgROIJOXp0wV5jrzlcwp+12ym3O3XqAKJnrrettd9ZNaDA5Gib+83g5e3Fy8ElG7B5Bv239OBp3lLmt5+pKar4OOnt3xq+kHz239KTe8nrMaD6D00NP02drH5qtasY3Tb9hfL3xOsOrvIsViWmGvR7isyKITXI0mlBu4tViLGH8StUrLDuzjBG7R/DXzb8IlYXSuZIL96+Iul1KKNg7Q2O05JBIKpeJky/TORYF+aPfH3/rNf2dNC7bmKgHUeSKuRrteMXWmspTj6LpX70/oLkvjT0a42ylkb8UVjUoWThHkiIvoVhAwMN8MtevtaQYT/pjPJKeGHOOKHWOnEYWVdAY7NfEldXnV3M75TZONt25j8rAMZR4+xLAtaRmp7L49GKG1RrGd829qb6wOu4e7nTxN54srUWSJEbvGU2FYhUYW2fsC51ba/BfupNEXKaMEb4z6F61O+nJBwm9Zv4kvvL83cVVoooB2wewIWoDazqvoadPT71z5i9zXNA5FZBjbSZDIZeRnKnK97n+c2VsPZIkMXVzOGrJCiGf8wJqPNQDiVSMIdduD4oUTefv/HNqowK/HrpNUOAFJuyfgEvOz0+caP01qiU1XTZ0Yfvl7diIPtRQL0DTyUeOGU44qYN4v20OsZkHGbxrMHfT7uLl7IWnoycxSTE8zn5MtjobO3M7BtYYyNCAoXgX9y70fqZkp7D10lZWn1/Nn7F/4queiyOBvIwjaOK/iSlHw8RbgbWZNcEdg1ncdjHB54Kpu6wuMYkxTx/4N1LOsRxH3z/Kh0Ef8vEfHzPst2Gs77qez+p9xsQDE+mwvgNJmZrKPH0buyII6OtigWjxZ3wW+HD4xuHXdyFvOYP8B5EyMYVW5VuhElVsvP4Dt23/RxoXUZONmmzSuU4KUWTzgETCiJAP4biiNXHy5XioB1FHtYtqqjnYSb56czct1/Q1XdXL08ijEbliLjJBpusQ7uXkxaWES3x39DtAE+HLVGXqxhRWsUazE6xP0u16aHaZNWMkSXgiIxF0nxmLKpV2skAtisw4NoOOXh25/dB4kq+1hfytzM0AWHF2Bem56XwQ9AG7Lu8i6kEUXzT44qnj1kau5UjckRdOAM9fUjc1Q0YxKYgrkY05efUeow+1JVIxmmplLZ+7u3iuOpfeW3qz8cJG1nddr+dkwLNV2MpWiaRkGu+jIRMwup7YpFjq/NyLh4+tDJ5FATl2QkUcJT+Kp0xAVsDJ0CJKEHr9Bl03dSUmKeaJ82B4XFJWElujtyJJkq5SW97vgebfs3afZfqx6ThbOWNjZkP0w2jiU+IBqOFSg+COwdz75B6z35lt1MnIUeew6/Iuem7uictMFwbuGIgoiSxpt4QF/boilxnmbrytzrqJPEwN+0y8dUTcjaDbpm48zHjIig4r6OTd6XUvid+u/MaA7QOwVlqzrss6Hmc9pt+2fthb2LOp2yZqutY00kG2FL9e+Zofjv+ATJAxv/V8RgSOeN2X8lYTFh/GO2veISkrCQEBRwtHErMSjR6r7Q+hNQi0uQdn5SNIEc7To0oP1ndb/w9fwavjUcYjnH/QRCoaejTk8HuH2XxxM902dQM0ToBSrqRK8SpEDIsAoGlwUw7eOGgwl0Km0CuWYCf54q9ezLNUATKGIEiclg1l/5Cl/G+5iqwcmYHxZm+pYPvn/i80/78Ztaim4ryK1Cldh9WdVhO0NAhLpSWH3yt6MyMlO4XK8ytTv0x9NnXb9ELnnhB8mfAY/citTIBssyiOqQexrN0yBvoPfK45c9Q59Nzck9+u/MbGbhvp6NXR4JguM06TmFawAlNBtEWPDSNkNT3t9aKdalHND8d/4H8H/4d3zkyKUdtIxEwig1is0UajjT/LEmoSCeOG1f+wUlpRInkiTgSRf59YW/UuSj6eFOE89dS7UUqGSfJqWSJHZa1RypTkirlYK63pX70/wwKGUb1kdePnlyRC40NZfX41Gy5s4FHmI6qVqEZf37708umlJ48zlrvxtjrrJvIwSadMvHX4lfLj9NDTvL/jfTpv7MzHtT9mevPpKOXK17amtpXacnbYWXpv7U2jlY34uunXhA8Np+dmjbRq7jtzGRYwzEC6873H9/iV9KPftn6MDBlJxL0Ifmnzyws1rjLx8tRyr0XihEQ+/eNTZp2YRWJWImYyM3LEHINjje865skp/s1OBqDJyXCqzOVHlwm/E44oiZyM15S6/bTOpyyLWEZSVhIP0h/oxsgF4xENWzNbXd8N0Nw740j5OhYXjiiJ+JuPw7+UP2k5B1BipAeD8HbuwW2P3k7s41g2ddvEgdgDnLpzit/7/v7UcVMPTSUlO4VZLWe98LkLy0WTZVeksfwPLkeWIdIptchO5PmNXUtzgVuJyUjiOJqZj0NINiyD+yDtATezwrCmRqHJ3vmdi6fJpS48uECnDZ24mngV0JZnNnweBcCa8mgdmMLOCxLJVltIzUmlQZkGeFWUcTpcIq84gmZtSuzwUy8krfiPpCRcpRiOetcjoSZFugJA1RJVGVlzJL2q9cLGzMbo/btyNwXB/D6XxJ+JTtuLm60bg/wG0ce3D74u+pFXLcb7EZl42zFZIybeSuwt7NnSfQtzQucwfv94Qm+HsqHrhlfSvfZFKW1fmoMDDjL54GQ+P/A5h24cYkv3Lcw4NkOXA7Cw7UKDF0Ovar2o7FSZZr82Y8mZJUQ9iGJPnz3YW9i/pisxMbPlTCbUm0CDFQ24/Oiy0WMK6w9hgye2Sn1DyjCa5VqksfWm0KxcM64lXiMjN4PZJ2Yz88RMBAQqO1empE1JnaMhSZrme4U5yFZKKz1Hw1aoAJKhcfYsTgZo7rMtFfj51M+kIFEM/T4pAlDZ1abwCf7DzAqdRSOPRgS4BtAkuAkBpQJoUb5FkWOiHkQx9+Rcvm769UslgMssHiCl2hUwkCVkmIHanPCYZE5fT9YlRxdkwZ44Nh6/n/dBqoSEBQICWdkw57c4ADoEuQBwK/kWvgt8sRSbUAn/fEUa9CvBFfZMWZrJGNKyND5lbMlR5/D5gc/58YR+pa00Yow03pNQKFTkqhRPKRqh4qx8BA09POhRfBwrzq4gJCMEO7kvPurv9XI1tFHRnIQGJMn/opi6doGiExI+le+ztMmpQruJH4mOY8rae4iSqJkv3YmSTOazNp/Rt1Z9UzM+Ey+ESTpl4q3nxK0TdN/cnSxVFms6r6GlZ8vXvST+iPmDvlv7opApWNtlLXdT7zJk1xA8HDzY3G2zUf3svbR7NA1uyqWHl3C1ceXQe4eo6FTxNazeRH7WnF/D+zveJ1fU13dXU80xMHC1MomTXw7F0twSMExU1e6iFmZsvUlsiNpAzy0aPbxckNO7Wm9OxJ+gQ+UORD6I5I8YTbJ74vhEHC0dabOmDSHXQvTmsJN8qSQMR6kq/aTi1HJ8lWOQZ3kZOGq5pKLAysBQNZStqAn0dGB+vD9mqkr4qRcgFxR69/dtbNIXGh9KnWV12NFzB85WztRbXo+t3bcWKS+VJIkmwU24m3aXyBGRL9yc72DsQboEf4yv+hdAazgb/uyMSZXAiJNRCFpJ3JVHV/Bf5I88x9PAaH9yZYjkoCLDaPK1FrkMBrcV+eLPL7BOa5+vMtpyUoTzBhJJQZAQJZFcUjDD0eicmrNLKKxj8Kx6mLVRaw16QdVV7TU6XsVjZNjkk2RKCMDw1iXpUTevT4128yLmfjqWVsk8MF/PvVtVcJT0/yYVdr9NmHhWTMngJt566pSuQ8SwCAJKBfDO6neYfHAyavFpet2/l5aeLTk3/Bxezl40W9WMK4+uEDooFEmSCFwSyLrIdQZjStqUJGJYBB29OnIn7Q6+C33Zf33/a1i9ifz08e1DxhcZtK7QWu/zgg2ztDkacfJlOicDDBNVRUnTffhZGoO9bhp6NNT9dwnrEixtv5TKTpoStxUcK+i+08qnCkY0tEaataoG5pSgGLWooV6AS/FHRpqNSVyX/WxwTzUlSfOa8kmokQkysu1DyFJnkSpEUqX6X9T0tH/uJOP/GrNDZ1OhWAXaVmrLN0e/oWrxqnTw6lDkmHVR6zgcd/ilOoDHPY6j++buODulEyEfjqV54ZGE/CVTI+NSmRB8mY7fnn4mJwMgNUvF2XtnqbagGvIcT2qoFxTiSAioyEB0WVFk1EEtiny/8yLuaV9RjFp6z6md5EuKcB7z0ivxKJWDWpbIQymUCPkwUjHWmVuLpnPJ2ZwfWXxmsZ6ToZQpsZN8UWJvpNmfGgn5k+pVeQURZILAmatZuuPO3njMR8suEnYtiUepKm7dtyD75gBsJEPn3VSi1sTLYnI0TJgAnK2cCekTwrQm0/j66Ne8s+YdPe3466CUbSn29dvH5EaTmXZkGh/u/ZCdPXfS0asjvbf2ZtTuUWSrsvXGmCvM2dp9K9MaTyNLlUXLX1sy68SLa6ZNvBoUMgUhfUKIGBaBo4VmFzJFOK9J/OYSarIRUZHKJf5Xd5Le2MJ06/+Gl7+EpMu7sFBYYCY305S4fRhNJadKuuPup2uMxIKOhrE8FgE5j27VI15YRyJhyBSp1PS0x6nCJpLM9nBWPoJEwsjmAY+FUzSpF02EfChVPZQIihRyzC7wXX8PfomcAICdmR3fth3KjAGV2TTe763tBH7j8Q02X9zM2NpjOXfvHCFXQ5hYf6LR3iZaUrJT+PSPT+ni3eWFI8GZuZl03tgZS4Uld1Pv0tWvJum5yYUa99r+JvkrVCVnPvvGkIWZRODiQHLUOfmeL2MyPAlLuRUNbKfoPjGODDu8jTynAmXFgUxqOIls5WVWJTTmqKw1kYoxpAiRRjYatM6wihQucEY+lEfSGd1ZtL0tLNXe+Ki/hwLr1oyXoXwSzciP9u9F+J1wxu4dy+CVa59Ucssrtysgw9bMTlc1Snd1phK1Jl4Sk6NhwsQTZIKMLxt+yb5++zh//zw1FtbgaNzR17omuUzOpEaTOND/ANEPo6m7vC79fPuxoM0ClkYspf6K+tx4fENvjCAI/K/R/9jVcxdKuZJP/viEflv7kas2XprRxD9HjZI1SJyQyPi643WfaRp1KZBjjh1V2HusDJFxqbrvy7tYGbz8JdQ42Os7mW8aqdmptFnbBjO5GQICNx7fID0nHS9nL2Ifx1LKppTuWK1TXzAZ3HgeiwDIKC315aHsMJ1bR/NtvwocuLucbFU2abIoIhVjOGPeFU+fw+yO/4UgTxeGtzfjtPQJ5RzL88XaS1TJ/RE7yZevm32Ng4WRZPD/MNpIQLfvI5gQfJnIuFR+OvkT9ub2DKg+gG//+pbyjuXp4dOjyHmmHZ5GcnYys1q92GaGJEkM3z2cSwmX8Cnhg7nCnJikGNK4ZrBbrxvDkz4oh+4gikWXpDWcQ+Js7gxUkqaCmbHnS4uAgFptzumYFN0nhSMz8pzKKSavyrQj0zhy84jBiAz5RS6bjSWJMARFCqJFNGfkQzikqMcZxSC9pp0AuWIudpIvfoVEYDS5GKpC79qtrFMELglk7sm5mKnLGLluGRYKc8My6qYStSZeEpOjYeJfgbEX499F03JNiRgWQYViFWgS3ITvj33P605laly2MWeHn8W/lD+t17TmVvItDr93mIcZD/Ff5M/uK7sNxrStrKlkVdyqOKsjNWUqEzONl1o18c8yo8UMEsclUkEaarATWlAWVVgPlW33RxmV0L0J5Kpz6bqpK9eTrvNFgy+e7NxKhN8Jx8vZC1ES9ZoY6hyNAsmmacQUIi/R3Ixy4jDqlq7LydsnScpKQkLS9dzIVmdTr3Q9wm6HMSpwFFP3BuOnXsi9Bzaoc60pRi381AupX7zP33cj3kDyRwIepuYSHpPMmGWXWHfqBMNrDudm8k22XNzCZ/U+K7J63YUHF5gTOocvG3xJGfsyL7SWeWHzWHVuFZ/U/YQ91/bgU8KHY7eOcVvxa6Fj7K0U+JSx5fLttEJjDJAnvdKa4zJB4qawmjuybYBGliegLNSh0VKUI6Mlrzlk/vOreaS6YHCsTJBhqbBEkiQCPJ1RlVrMQVpwVPWeXuNO7crVkub5N5OZ4an+EArpt6H5PREL+Q4uifMBsDGzwdY23WjkorKrNbMHeptkhCZeKSZHw8Qbj7EX49jll/5WZ8PV1pU/B/zJp3U/ZcL+CXTc0FHXPO9leBmHqYR1CUL6hPBds++YcWwGn/7xKTt77qRemXq0XdeWLw58oddrAMC7uDfRo6PxL+VPxL0IvOZrZCsmXj+OVo6Ut677VE10NQ9bg5f/rIFevFutKr239ua7o9+9dkc4P5IkMfS3oRyMPci2Htvo45tnyJ+IP4GXsxeATneukCl0joZWHqIlT15ieH3akp7VXKoRcjXEwCguY9aQfX+Vpr46hH1/leb6VW8EZDrDUdNdWsa6I69XIvlPYyznR5QkXHJ6MbrWaGYcm4Grrauue7sxtB3AyzuW5+M6H7/QOg7fOMzHv3/MmKAxbI/ejoe9B4fjDhNQKoAHYhjpwiWDn7vWGNagyb7RW5cuDyfPyRCeGNRqScRd6oWd5KvL/VFiV8BJkHQzFy6VMhYp0a92pv0+Tr5M7xhzuTmCJFC/TH3c7NwIuRrCxYSLhZ5DQED2xEyzUHthh0+hMi+ZIFDCUeNsFPwulYvUq+jOsfePkTIxhZk93i00cqEtUfs2ywhNvFpMjoaJN57XlQyrkCmY3nw6C5ruIT66Je2nn2T44rAXdnBehcMkE2RMqD+BI+8f4WbyTRoHN2aI/xC+a/Yd049Np+WvLbmXdk9vTDHLYpwcfJL+vv1JyEig+sLq/Hbltxe6BhOvFo32Wd8wMKaJLvjy9yvnSHDHYCY3msznf37OkF1D3hhp3JRDU1h5diUrO66kabmmeNh7UNyqOAD7r+/H2coZJ0sn7qbdRSbIkJC4n6bJ0SgY0UgRznNVNhOMOBsSEpIsA4VMwe4ru5+U5NRYTo74UT5jBpkp7igkJy7E5WBLVQrKXyRJ+FfkurxKjOX8gICzwoccdQ6rz6/m07qfYq4wL3SO9VHrOXTjEPNazyvyuMK4mXyTbpu60ahsI9zt3Il6EMWtlFv09+3PydsnsTOzI1Y+X5PM/6SfidYYruftwMhFF0jOVFHw56l1GizNBLzdrREE9BxLAQEP9UAjuT8ap0UhE7CzkqOwuU4yUQbRNK3TayyCUZAULuoiFJozyanjXgcHSwf2Xd/HzeSbumML5sFo5VISEiIiCkFRZO8YuTyLKOUH/JHyESKiXjEEmQArB3chpE8IdcvUBYxvXpgiFyb+LkyOhok3nteZDBsZl8rm/cVwEANRiMWIvqXmo2UXibyR8vTBBXiVDlPd0nWJGBZBvdL16LC+AwnpCezts5eLCRfxX+TPkTh9TbBCpiC4UzBzW80lV51Lu3Xt+ObIN7qd8PzVWzp+e4aO35352yVqJsDH64GBYSAhPpMmWhAEpjSewsoOK1l1bhVt1rYhOSv5715ykSw9s5RpR6Yxvdl0elfrrVtn03JNATh15xSSJFHZWdPIz8HCAVESeZChiSoU3K21k3ypKH4KBYw77b8reMZwJ/UOZ++f1ZNjuasGPJlP67jI8lWfyuNtTHQtLOenYilbvj/2PY6WjgzxH1Lo+NTsVD7d9ymdvTvTqkKr5z5/Zm4mnTd0xkppxdx35jLp4CSUMiVtK7Vl3/V9CAik5KSQpYymWIVNBHo6YG+lwFKpkRXO3hXHpfj0QucXEMjJhYTkHIP3hrZPjfHcDAErC4kjsubsy+pFjPwnKJisLeU9o0VVohIQsKHSE3mWQC23WlgoLTgUd4hHmY/0jgN0cj9t9CK/XApAJakKbfwnAeF8QIIYTqoQSZrzj7i5ZOBkqySoQjF+GlyFah52BuNMkQsT/xQmR8PEG09hL8ZcxS3Scwp/4bwKCjoHAnJESWTcxr0Gdc2fxqt2mJysnNjRcwezW81mXtg8vjz4JTt67qCSUyWaBjc1mlvyYe0POdD/AJYKS748+CXdNnUjIjaRscsvceqapnpLcqaK5AwVp/4BidrbTEZuBlNPvk+s5We6KkmJhHFGNozixZ79mRhQYwC/9/2dsNth1F9RX2+n9J9kz9U9DP9tOCNqjmB8vfF63zUr1wzQVCm6lXILLyeNhK+EVQlESeReqiYKF58SrzfO2M6zZk9ZxRXZdLrUcWfP1T0Ga3GUeWH4etMKYvKXxH37El37NnYtUO1IUwK4Z4PiLI9YztjaY7E2sy50/LTD00jKTGKEz4znloFKksSI3SO4kHCBbT22MeXQFLLUWXg5e1GxWEXupt3F1twWJ0snLJWWfFz7Y24+zCQ5Q0V6jvqZ8iVA83c1IeeakYiEmjRiCsn9EYnNCOVx1mNAE02LyFfBTJA0TvOzIsMMP/VCign+nLx9kvRcw3dVwRK+IqJedCNHzNH9t9w8AWOyqBSiKOGUyYzmM8j4IoPTH21hzehmbDY5ECbeEEyOhok3HmPJsDJB4Fj6NLx/9mbbpW1/m0bdmHMgICc1zZrAJYFEPYh65rkKc5iKO754zw5BEBhTewzHBh4jIT2BVqtbMSpwFOPqjtPllmhfnFqalGvChZEXcLN1Y8ulLYxasw1JMlQkS/+ifg3/RiYdnMTt1NvkmF0hSjGWU2adiFSMIVk4T+eNnZ9rriblmnBi0AnSctKovbQ2Z+6eefqgV8jpO6fptqkbbSq1YV7reQYGWf5+GqHxoboSt662GiP/btpdAC4k6CfPFlZ1Kpck7sq2U9u9NiHXQvSqVQkI2NimGzUyU4giiTAcbGRvrVzEp4wNicW+xcwmDjsriUTC6NUqhV0352OhsGBU4KhCx15MuMick3MYVe17pm9IfG4Z6M+nfib4XDBL2i3hYcZDtlzagq2ZLcvaLWN26GwsFBak56STm+FGU8UWJq2+y73HOUXOaQwJCbLdARnG+tTEyZcDee8UCTUiokFORYpwHpe4MSxd2A67jMeaP4jPiNaBcM3tV+T32iib9hnWRjcAXKxd6OLdhZqlanJeNccg+ikIEr/0f5erH1xlfL3xWCgsnnl9Jkz8U5gcDRNvPMb0pD8NrsrJ0Rup5lKNzhs703ZdW64nXX/l5y7MOXCyz0UuyKm1pBarzq16prmMOUwAm++NYOXZlS+1zkC3QM4MO0MLzxZ039ydtJw0NnfbzJG4I/gv8jcwPMs5luPSqEvUL10fsl0K3Sn8t/Rr+LcRGh/K7NDZTGo4iQfpD7BSWiFJks7wPn7rOBsvbHyuOb2LexM6KBR3O3carmj4j+XhxCbF0mZtG3xK+LCuyzqDPAuASk6VsDPXyDf+jP0TL2cv0nLSKGlTEoCEjATO3z/PnTR9p9bYzrN2V9rN1g0bMxv2Xt2rk5qARiaYYrn1iQGn/Vwjq4qRz+WdhnfYNqHmW7nbGxmXypBFoVg9GkIZ+zJIJdeQ47KATn7+LAxfyOhao7G3sDc6VpIkRoeMpqxDWUhs9twy0CNxRxj7+1jGBI2hR9UedNvUDZkg449+fzB412BESSRLlYWzEIC/ehEPEl/caM4fBQOBXB6TSBhn5cNJESJ5p6oXcwZ6Ye/4QBdJ1H6npVwibF0P+36Fh1bwQFyKJBhPBIfCEsQ1Uq3Cjs8fzdA+w0qZknru9WhStgk5aaW4EtkA5a3JeKgHcsdsAdb2d3C0kRFUoRjzBleldsVSRuc3YeJNQT5lypQpr3sRJkw8DRcHc1rUcKZ7vVK0qOFMCXtzHC0d6e3TmxolaxB8Npgfjv+AJEnUdq9dZFnG56Gkozm/n32oq28iEwABTuZ+QiUXF2qUrME3R7/hdsptWpRvgVKuLHQuFwdz/Mrb8TAll+xckaqlbRnbwZ0UIZIph6dwK/kWLTyLnqMoLBQWdKvSDRdrF77961uiH0azrP0yjt48yvS/plPCugT+pfx1u83mCnPeq/Ee289cJCfbGsHIvoOEGjv7JLoGGX9Zmnh+slXZvLvmXco6lKW3T29WR67G1daV5Oxkpjebzu6rmlLFv1/7nRGBI55rl9LGzIY+vn04d/8cUw5PwdnSmVputf6uS+FRxiOarmqKQqbgQP8DhfajEASBv27+xdXEq6TlpPFh0IfMC5tH3dJ1OX33NDnqHHJUOVx5dIVcMS+pPUu4Q0mpDZocDdkTY05jOFZxL46rgxVLI5bmnQeBFuVb8OftbeQoL2FOCSwVdjwUz3BZ/hVq5XW299z+Vu78aotRPEoBBTYkp8nITKpCJ79qnLi3h+Pxx9nQdQNWSuM5KxsvbGTmiZms6byGg+EWpGcXlPFAdq5I93qGhu+t5Fs0X9Wcmq41+bXzr7SejJlnAAAgAElEQVRb144LCReY3nw6yVnJLI1Yiq2ZLZYKSypkf4cSx1dyzVpD/jFniVSMIVt4wIr2KxhWcxjtNjXk2OP5xMvW8UC2l2xBkydklQOTDsGareCQDUPbwVctfLEy64ASewQUaGV4+nlDar1zaj8TUeEu9sBRDCJLuEO2cB8BATvJl0rqiXiKo3AUgyhmK+Hr5sHt1NvEPo4lMcmO6upfsMIdBbZYC6VxlIKY2bc2H7Ypp3sPmjDxpmNyNEz8qxEEAS9nL4YGDCVbnc30Y9NZF7UOL2cvPIu9vHFszDn4rIsnrX2qsPD0Qm6l3GJ4wHCWRixlx+UdNC/fnGKWxYqcL7/D5OpoRQevDpR1KMuMYzPYemkrzco3w8nK6YXWKwgCgW6BtK3UljWRa1hyZglTG0+luFVxphyewvWk67T0bImZ3Ex3fDU3d36PeIiE+MTZ0Bhz2hfn0ewPeZh9jRaeLZ5Lo2zCOFMPTWXXlV2E9AlhWcQyIu5FUKV4FeJT4tnSfQvf/fUdEhI56hzikuPoWqXrc82vlCvpWqUrKdkpTDo0iZTsFJqXb15kh+cXIUuVxbtr3uVWyi0OvXeI0valizw+MSORPdf28DjrMd81/44fjv2Afyl/wu+GA3Ap4RIBpQK4mZKXY5It3CdJCMdaKo85JQCNIWeOMzlJ1binPkpEwkFspWpUUk+kvDgKMiqSqI6hqXd5/nz0I67OKrLT3HCXuhHo2Jvq7mVwcXj7DLRZO25w+1E2+sVbJezkpVl8dQSD/QfTybuT0bGp2am0W9+Oxi4DSItvxY2ETERJ0s0Fmk2YqqVtaVHDWW9sliqL1mtak63OZl+/ffx6/ld+CvuJILcghvtMZ9LGc5QXR2KVW4NcteyJY/nq/s5oYhvmJCi3sqPDWbYeEVi2/w5iegWyhbtkC5qKZ0jQIwp2rgfXbF/G9p7IykajeFi8PWWk/ljijhyLJ3dOUzIWIJlIouVTSRWicZLq686pdYrlmKPABktcKSm1IUkIxxwXaqgX6JwIS1yxzm7EmeRNpEu3MZObUUsxHUHlrCcdFICHKbkG99iEiTcZQXqTCrCbMPGSXEy4yMjdIzkcd5juVbszq+Us3Ozc/pZz3U29S5+tfTgcd5ih/kPZd30fCRkJrOiwgs7ez6exB4i8H0m3Td24nXqbZe2X0b1q95daX2p2KsN3D2dt5FqG+A8hyD2ID/d8SDmHcmzpvoXKzpXzzh2Xyvy9F7kQ/xgJMJObUdnVmgOPvyBBPEVqTiqdvDrxa6dfsVRavtS63mbO3jtLzcU1mdRoEpMaTcLzJ0/iHsfxbsV32XVlF9Jkifbr2rPryi6dsbK/336alW/2Quf7OexnPtz7IR0qd2B159WF7lY/L6Ik0n1Td0KuhnBwwEGC3IOeOub8/fNUX1gdgLDBYQzYPoDqJauzPmo9AApBwXtekzkZaYsNnqQRQ5x8OSnCeaqp5lCMWnpGl0yAdMU5bqr3UEkcj1Ywo3WQs+UxWOCGpNaUENb0zdAkgM8e6E01j7dLNtXx29MkZxrmgymVORyWNeP6h9cL/Vs5ft94VoYeolqupumbKGmlPwCC7r4WzHmRJIlBOwexLmodxwYeI0uVRYMVDVDKlCxvfIElvz98Yo4LevO9KAXlSNrPRFJwsHQgJVN8coa8SMQV2QxK3N/GT3ug4U2YX8+XzY0XgKBxUfI3lsybU00iYUQqxgCa6mg+6u8NOnYXXI92nKXSEsvcanrPs4Qa0ewmdpZK0tPtEFXmyDB0iJ1tlWwa7/fC98iEiX8ak6Nh4j+HJEmsiVzDJ398QkZuBtMaT+ODoA9emZwqP2pRzTdHv2Hq4anUL1MfG6UNIddCGBM0hhktZugiB89KanYqQ38byvqo9YwOHM3MljNfqE69FkmSWHF2BaNDRuNZzJNvmn7DhP0TiE+JZ2m7pfTw6aF3/J3UOzRY0YDrSdepWKwim7ptYvCuwUTej0RCIqBUADt67qC4dfEXXtPbSq46l6ClQahEFeFDw1GLamy+s6GcQzn8S/mz6eImxEki4XfCqbU0T+7kauPKlQ+uFFkJqCh+u/IbPTb3wKeEDzt77sTFxuWlr2Xs3rH8FPYTW7tvpYNXh2caI0oi1t9Yk6XOYlbLWRy9eZSkzCQOxR0CoLHLewh3hiFK0hMDT2MUp3AJO7yNlCOFHJJQopFr6RuYUgEDVn/nvaanPTMGVOZtosO3p0nOVBkY4mrS8K61gUXtFhkddzHhItUXVqe97Q4eJzoXyOeSUMpl+JWzo18TV52TERmXyupDdzgfn8DtrNP0b+xG14Ca+C3y43HW/9k777gorq+Nf2d36VVRRCyoiAUUUEGxl9h7QY2999hSNImamESNaXaNJaKxK3Zj772iCAqoFLGgICK9LOzO+8e6K8vuApbfm6g8n0+yMnPnzp3ZuzPnueec5yTyY711nDhfRfMdvSvkJQWv/lb9X8fwF1XkZsG6kcgyg5jYFuKcdEmtPmQRx0VZJ03xP8FAxW59xwEaD53u+JUvz63tMYKPd+4W4f1GUTJ4ET44CIJAf/f+3PnsDoM8BvHFkS+os7IO5x+cf+fnkkqkfNf0O44PPM695/e49uQaY7zGsOTqEpovH8KE1TdfS/7RysSKTd03saz9MlZeX0njNY25n3j/jccnCAJDaw3l6oirKEUlfXb0YVK9SXSs0pFPd3zKhIMTkCteqbo4Wjlya8wt2ji34V7CPZqsbcL81vNp59KObEU2wXHB1F9dn3vP773xmD5W/HbhN4Jig1jTZQ3GUmMuPrqIUlTSxKkJJlIVmVSICrwcvXCwUCVJWxtb8zTtKd+e+PaNz9uxSkfODjnLw6SH+Kz2IfRZ6Ftdx/yL81lweQGL2i4qNMkAVVEy7zLeABwKP0S1EtWIeBGh2W+b0QNRfFX7QvUpwRo3rZVlNYRcf+saeIJmW959H6vAQbZSrtcQlmBB94r6q3uLosj4g+OpYFsBQe6gt9CfjblMK7FenQtyNSKRzExj7KjHwTPl6bp2EunydGo71Cb5qZdBklFQITxDUMse55CKkmwUZIGQQW6DPe/51KGg07sOxXM0HHfWr3Sm71wCRliL7rkkmAsmGWohgyxpNHmlannp0cmdxJ4bH6sccxHefxQRjSJ8sLA1tWVJ+yVcHXEVs5zqjFl1jZY/nmDymuB3XhuiWYVmBI4OxNPBk+XXluNb8UuMnn5G0P30164CLggCY7zHcGHoBeLT46m1ohb77ux7q/G52btxZfgVerv1ZvT+0RhJjPij9R8sv7acJmuaaNVeMDMy42C/g3zT8BuSs5Jp9nczulXrxuf1PydVnsrzjOfUX12/UMRNXQjwdcjWh4iQZyH8cPoHvmrwFXUc6wCw584eQEUE1EQjKycLQRAYV1clMZoiT0EpKll8eTEXHl544/PXLl2bS8MvYWlsSQO/BpyMOvlG/fjf9ueLI18wteFUzRhfBx1cOgBw7ck1qpWoxsPkhxpZz4w0G/K+koQ8hOGVEar6lwzL114R/xiL9AFkSMINKCPBiQD9x/iH+HMi6gSL2i7CuZSFpkq3Gvrupbr2kCiqvxcJSqUSXnyCXClnZaeV3HjwxOD3Zqjqtt7K8JpMk5fVwzF6OSekIGShFKV6RS60TyiQZFMbc4k7oF/pLO95BRXNwFPxJ1ZUK5CYvBqjgKn9ecJZiYgSNdl4dV9174mRVCiq3l2E9xpFRKMIHzyMs6tg+exzSuCDItuSG5GpTFwdQtD9d1tF2d7CnoP9DjLnkzmE3FWtSKtfQG9SBbyOYx0CRgbQ1Kkpnbd0ZurRqWQrsgs+0AAsjC3w6+LH+m7r2Rm6k1XXV7GmyxqepD6h1opaHAo/pGkrCAJzWs7B39cfQRAYtHsQoiiyrP0ykjOTERH5ZN0n+N/2N3g+9crm62rtf2hQKBUM2zuMirYV+b7Z95rtR8KPAFC/bH2MZaoQu4zsDABG1B6hMbiqFq+KVCJlyJ4hZOZkvvE4ytuU59yQc3g5etFmQ5tCyzKrcTb6LAN2DaBPzT7M+WTOG42hecXmACRkJFDKQhXCpZb1NDFPQLeaiza0jVABAVm+BmjurfDxrQqriX63uVdJzTAUOiro9fCkylP5/PDndKnahXYu7VSF/sRXdRwM3cuI2DQ9ng8JFspKjK4zGhOZCXHZwfka8/pIiI43QpOTox0uJaj9AqI1EowL5SGRYIyn4k+sRXeipX5oFzTUJjSvziNFLaOrbw7qQ4oQShn7bH5oO4SGPreRWESQxTPixUtkycLJ6+WQCFCronVR9e4ivNcoIhpF+OChWWHL9YJQiko+27iLG09uvNNzSQQJXzf6GiczH51VLqUI956+XjXxYmbF2NV7F3+0/oN5l+bRYl0LHic/fqsx9nfvT8DIAIylxgzfN5yJ9SbiU8aH9hvbM+PEDBTKVwaAr5sv10dex9bUlnmX5rEjdAe7eu9CniPH3MicXtt78fuF3/UWTMxbVf1NyNaHgEWXF3H50WVWd16tkVVNk6dxN+EuxU2LU9qqNGYyVYJ9arZqfpSyLEXj8o0BuJ90H6kgJTwhnFlnZr3VWGxMbTjQ9wADPQYyaPcgZp6aWahil6HPQumypQv1y9XHr7PfGytY1S5dG5mgMngTM1SFJNV9ieYqFZ/cRp1hA047FCa3p+NVy1eFzdQhPh/TqnBuop+YJmJBJb3tDHl4fjr9E88znrOg7QIABLNorktH80K4gqlJlt57KYoi6UKkDokQUZAljWZWi1l02NQhlzH/9imi+sKWtEiHSIGF9tR9OCmGkiwEEZirIngyt0nmFqoK6nnPI0WG9lwydE0CAnZGlYh8Ecnkw5P59fpYxNKr6dn+LtsntWPF4M5IJRKtOksfEykuwoeLd58dW4Qi/MdgqLo38tJ4rfJinPc4fmr+k8FCVXmhTnSMjE2nUilz+jdz1FGwqe5oy7WIJK3ziih4mBnAmeg0rUrJBUEQBD6v/zn1ytSj9/be1FpRi43dN9LKuVWh+9A39lb2m6nlvI0vjnxBL9deTG8yndlnZ3Px0UU29diEvYUqWbFmqZrcG3+PpmubcjzqOBEJEezqvYshe4aQrczmq6NfEfUiioXtFmol3Ou77+r4+MLcww8BEQkRTDsxjfF1x9OwfEPN9vMPz6MUlZoaF+qE/3T5q5XlST6TOPPgDFmKLFpWbMmJ+yeYe24uvq6+eDp4vvGYjKRGrOq0ikrFKjHtxDQiX0TyV+e/DAoXPE19SruN7XC0cmRX711vJU4gk8ioWaomN57e4GjUUQQESpiVIDPNgeTHzV6uRecfCqXPqFTRiiwkZlHcFf8kLTsdJ8VQLHHGs7wDY9t8fKvBeYm+wVAlPcZs6LNQ5l2ax3dNvlMV6AMWX16MwjiCSGE6ZyY/0vu8XH5tOefTllOb5S8NcynqYok9Gtqy7OoyHiQ9QCo8JlA6hpqKeW8U/vY6EAShUBW9cxfXSxaCNIpSauhTPtOnSAWgIAMZZuQOhRJR8FxxC/dS7kxrPI3Wzq21687YqdTQcj8XcyfYF6EI7yuKPBpF+OBhqLq3kVk8UxpMwe+GH9WWVmNT8KYCV3cLGw6Utwq4iAIRkfuS1TRf25xfzv2CUsybDJg/GpZvyI1RN6hdujZtNrRh5qmZWt6HgpB37DciU3kU2p4FTXdzKOIQm4I3sbTdUoLjgqm1ohbnHpzTHFvCvASBowLxre7L/aT7dN3alT87/ElVu6oYS41ZHrCcblu7kSZP0xyj775LBChpbfxRhFQpRSXD9w3HwdJBJ9ToWOQxAFpVUpFFtUcjLfvV/etQpQOWxpYAXH9yHUdLR8yNzBm6Zyg5ypy3GpsgCHzb+Fs2dd/E1ttbabOhDS8yXui0S8lKocOmDmQrsznY76DBgnyvA3Wexv57+xERKWZWDCfFUFSvo1cTJr+Vap3rQUAqy+J09iCe5FzSGIqu3rtZNsLrozTW9BH9vDCSCnq9EuMPjsfJxomvGn4FwIW7j7l8tQaeGTuoJ9/PoPkROjlX5x6cU0kpe3hwUzqOROEagiwZuclt5KUWMaheM344/QNGEiOUL0OEVMb46yF/T5e+A/Tv1e1DlahtCPpCqkA/8ZVJlC+f+a8q00sFCWsG92d9t/X0cuul97dU08mKXwZVLQqVKsIHhSKiUYQPHnmNfomgCtd4IFnL/EvzGV57OD5lfei3sx8t17ckLD7MYF+FDQeq6WTF/KHV8XK2oYSVEVXLSnhkNZ0E8QaCIPD18a/psqULCRkJr3UtJS1KcqDfAX5s/iM/nfmJthvbEpcWV6hjDY09JrqaJjxq4uGJjPcej3MxZ5qtbcYfF/7QkC8jqRH+vfyZ02IOadlpdNnahSGeQ2jv0h5RFDkacZSma5vyNPUpoJ9sKUTVfx9DSNXKgJWcun+KVZ1W6UjTHgw/CED9cvUBNCFV6dmvPBrGUmMGegxEQCAhM4F2Lu1IkadwM/Ymv1/4/Z2MsU/NPhwbcIyg2CAa+DUg6kWUZl+2Ipte23tx7/k9DvY7WGBBvsKitXNrQOUpqWhbkaycrJdKP29TP0EBRk80hA1U5G1uy7lvPd73FZVKmeskb+eGIIjUqmitY8xuD9nO8ajjLGq3CFOZKcHRKUzf8BBb0QsjiqHIMSUpPYeruRYIHic/xnebLw3KNSA+PZ5kSRA5Dito2/I6FxUjWNz9Szpv6YxCVJCtzEZEfEkuCycJq0Zu4z5vIriGOIiitgdDEHQKjeat5q1eCIqWrjZ47twhVQqyNOPQHaMCwfQJzRrepWYFU0pYGVG3cjEWDnfFvYKuF6hIMKMIHzqKiEYRPnjkNfq9nG1YNNyVwEm7+bLBl/x57U+uP7nO9MbTuf/iPu5/uvPt8W+1jD418gsH0nde9erUilH1uDZ+Bx1cOmiSXw+HH8ZzuSdXH199reuRCBKmN5nO0QFHCYoNwnO5J2ejzxZ4XH5jdy7uzPmh5xnrNZYZp2ZQ3Kw4Y73H8uXRL+mxrQeJmYmaY75p/A0H+x1EJsj47OBnlLIoxWSfyWQpsgiLD8PnL5WEat77XqWshHtmXxIW+7TQ9/B9xYOkB0w5OoURtUfoFNtLyUoh5FkIEkFCrdKqwlvqIoi5PRqgSgoXEZEKUo5FHqNx+cYUMy3GzFMzuRN/552MtbFTYy4Ou0i2Ihuf1T5ceXwFURQZs38MxyKPsbP3TtxLub+TcwF4l/HWGGg+ZX14kvqEbFILpTSkD+o2N+S/k5GTodk+q8UsSph/vBWU+zdzRCkq9ea8iCiRCIJOyFSqPJXJhyfTuWpn2ru0B2Ddqcea2ia5obbn1518hK+/L0ZSI8Z7j+dg+EEsjC1Y03UNs8/OZlSdUYQ+CyXgSQBGgpEmR8eSym9MMtSfqm0ij9iARdIliqe8XHQR8u9XiZy7kl9y5WGEkEIoboo51MxZgLWof76rPWU5JBkYu4hUImXSJy3JiK3P0+doQkP1eSeCo1OYtDqUK+Eq7+6V8CQmrf7wvLtF+LhRRDQKQNFqw4cBfS5pC2MLZrWYxZ4ugVTOnMPxk/Uon/4D/V2mMe/iPFyXurL3zl6tfgyFYVlaqZJ4c8+XsctvM3bFbc3ceRQnY8+ne1jUdhEyiYwcZQ5xaXE09GvI0itLC5WUmxstKrYgcFQgLnYuNP+7Ob+e/zXfcCxDY7cvrjqvicyE+W3ns7v3bk5Hn2bvnb380vIXTkSdwGulF4FPAzXHta3clttjb1PSvCQrAlZw+fFlFrRZQEZ2BgkZCTTwa8Cp+6e07vvKUfXYP3QpaYTrUZwRPxjJUVEUGfXPKKxNrPmt1W86+88+OItSVOJW0k3jyVCvxKtVp9TwdPCkeonqKEQFUYlRdKrSiecZz7EysWLY3mGvHX5nCFXsqnBx2EUqF69Ms7XN6LujL6tvrMavsx8tK7V8J+dQw1RmirlM9V3bmNiQpcjCBN0CkPqqPOtroyAdJBlUUA7TGIhlrcsyvu74dzru9w2xabE623IXMBzfwUnH+J11ZpYqAbzNAs220McvDMq3KkW48eApN57cwL+nP6P2j0JA4GC/gyy5sgQjiRHTGk9j1D+jkAgSRETMla7UzFmADOsCiWReb4XeUDpRoNXDyszd5UfH050KpKbq8KcKyqEA3Jf4YUV1rHHFBHuKU1ejQJUXkpcmkyEJXBszIyZ2cGLR/uhChYYuPhCFMs9zXynCn4ce6LQtQhHeVxQRjXxQJM/54SM4OoXft6dAugsm2COmOxN5uxW+lb6kcvHKdNnShc6bO2uK5ukLwxKAnbHj6LnuKyatfjVfQh+nEfooTWvu3HqQyvh647k07BJlrcuSrcxWKWAd/Iw+O/qQkvV6c6u0VWmODzzOlIZTmHpsar7hWPrGDrA7bjwnok5o2nWp1oXAUYE4Wjky7cQ0xniNwdrEGp+/fFh9fbWGEFW2q0z4hHC8Sntx/uF5fr3wK35d/BBFkRxlDq3Xt2ZD0AatMXg6eDKzm0pNKXf8shIFUrtTr3Xt/1WsD1rPofBDrOi4Qm/C7Mmok0gFKc2cmmm2qT0a+rxoo+qojDcLIws239rMiNojyMzJ5PzD8yy7uuydjbukRUmODzxODfsabLm9hfaV29Pfvf8761+N6MRo0nLSsBbdCQ2qT/2cfXoTgg3VU8gLKeYISktsRW+Ngbiy40qMpEbvfOzvExYfug3klX1VfUoEgQuhiVrtw+LDmHdxHt80+oaKxSpqFk1SM5QGvwcBkbjsIJZ3XM68i/NIyEhgRpMZKEUl626uY27LuYzZP4aMnAyUohJzpSueij8pTl2kqEQF8vuOc88JvfNBFBEEgTtl6jJ+0J9M6uKurxSFDqSYaUhFFeVUjUyt6jyqcC5nxURq5iygfs4+auYswE6oQ1uXtizvsJwFfToik0i1nqVSCXzbqwx7AsJRKJVaoaEKJXyxJpSRKy4x48BqemzrQZl5ZbgTk4q+Ad+NSdPZVoQivK8oIhr5oEie88OHrjKLqsDT7TulCHkWwsR6EwmICcB1qStzzs6hShljPWFYbizp9hWRkRVQiAq9CZh5504dxzrcGnuLbtW6aUKptodsp/bK2gTHBr/WNcgkMuZ8Mod/+vzD+Qfnqb2iNlceX9Fppy+EbO6gCriVs6DNhjb8df0vTVsnWydODz7N5z6fM/f8XOwt7Ont1pvh+4YzdO9QjUFsbWLNpeGXGOwxmJiUGEbvH82idouwNbFFJpExYNcAZp+ZreWt6ehRk697FSPDKIgc4Tk1nEzwqH2RnwNG89t5XQ/A+4QnKU+YeGgi/d3706FKB71tjkYeRSEqNPkZkMujkZOh075vzb5IBAlp2WnceHqD1s6tkQpS3Eq68fWxr9+qcnxenL5/moCYADxKeXAg/ADjD45/68TzvPjz2p/YS1SrxmSoCD7oNzgLo0CVt66Bp/HntHNp907H/L4hW5FNfKJRvp6I3KGK6gTwcjblmNJwSq7q3kkIqAmbtoSwgIgSBV41EjGSGOEf4k+1EtWY0XQG4w6Mo26ZulQsVpF/7v2DTJBhKjPFhVF5jPpX8sSFIRwCwqtniShqQqREiRQEKe6KhQXem7xzJvfnqzZSrHGjOHUxwZ4Sgg8eimXMbbiFBiX7cvhqDpYmUsxNBEyNFZjbPCbJ7lfqb3IkNOYF+kyrbAXcfSRw9qIrx0LCiUmJMfj9KN6No7IIRfhPoIho5ANDMe33nhZ5ND4U6FdmkeBk5kODcg1YeHkhFYtVpLdbb74/9T0eyz2IU1zRCsOq6WTNAI8BOJnVM/jiAN2Xu7WJNf49/VneYTkyiQylqORB0gO8V3nzd+Dfr30tHap04MaoGzhYOtDIrxGLLy/WCcfKG0LmU7k0B/odYETtEYzYN4KvjnylUbIykhrxS6tfOND3AAFPAjgedZxvG33L1ltb8fnLh7vP7wIglUhZ03UNS9otISsni2F7hzHaazTVS1THSGLE9JPTGblvpFaxwbY1q7F9YntiS05kZ3JHxjRqz7TG05hybMp7SzZEUWTcgXEYS421Qk9yIzEzkeA4FZH0Keuj2a5OFtfn0ShpUZKOVTpiLDWmuFlxVgSsYGazmYQ8C8HKxIpR/4x67bC73FCvXHede4Vv1t+jdZmRXBt5jZUdV7L8mkpNLFX+evVfDCEjO4NV11fhbf61XoMzPxTGuyEgpbjE9a3H+b5j7529pIj39Ib3gG7tjB2hOzgWeYxFbVUJ4K+qe6v2q78fJTlYm8mwMpOQIruOwvFPhtdvxeA9gxEQ2NN7D8uuLiM4NphFbRfR2783AoIqxE8EY0V5PUa9tselIGgSuwVdD5j0DVSsDOVavCz7p/pLFBCVMGVdKBP+CuFKeCJJGQpSMnNIl4vcVS7H1CqW+mXrI0qT8q2lARKcFRNee5xFKML7iiKikQ8MxbRHpJ2n7Ya2bLu97a0q9f7X8DHmoxj6jmOyAuhevTuH+h0iPj2e9UHr6e3Wm2JmxWi5viV9d/TlScoTreNcHKx0+srbb5J4h2dpzzTbBEFglNcoAkYG4GTrRLYim2xlNoP3DGb43uE6MfsFwcnWiTNDzjDWeywTDk2g9/beJGcl53uMTCJjafulLGy7kHmX5tF9W3ctw7KdSzsCRwXiXNyZuefnMqzWMLJysvBa6aVVGXxc3XGcHnwaE5kJ009Op3rJ6rR3aY+AgF+gH502d9IaSzmbcpwZcobiZsVpurYpvtV932uysT1kO7vCdrG0/VLszO30tjkTfQalqMTOzE5TnwDQ5CwYep4MrTUUuUJOcmYyxyKPUb9sfaqWqEpJ85IciTjC3zdfn5iCdnhoUhpYK+sgfziE0IcZjKgzgv1993P6/mmarGlCTMrbe3K33NpCTnpZspLLGDQ4DUFf6IyuQaekdDFzxi6/TeuZVxv6/CwAACAASURBVGk98ypjV9z+KJ5lufHzuZ/zkWPVrp2hTgDvVKWTxgunfwFGQIKU7z+tSHypCTyxms3CLpPptq0bSlHJOO9x2JjaMOPkDEbWGcm6m+t4nvEcERElSjxKeejNbShMLk5hoU8S+U17yhvSJAIZclFrn9qLZpLcnnMPzhH8IAWpwqHAMVpTnS/rf4mxTL/rwsKkyDQrwoeDotmcD/TFtEslUj5tXJIUeQq9t/fG8Q9HPjvwGQExAW+1qvhv42PNR9H7HQtSHMqH0G9nP344/QN+nf34+ZOf2R22m4iECIZ5DuNoxFGqLqnKosuLNKElefuC3CovqqqyYcql1Pizhk6SuXspd4LHBNPbrbcmwXfNjTXU+6se957fe61rMpYas6DtAvx7+nMo/BBeK724+fRmvscIgsCEehPY++leTkSdoPGaxjxKfqTZX8a6DMcHHmd64+ksvboUR2tHmldoTq/tvZh0aBJyhRxQKRjd/ewuZazKsDF4I4+SHzHOexxKUcnJ+ydp7Kfdr4OlA6cGnaK8TXmar2tOR5eO7yXZiE+PZ9yBcfSo3gNfV1+D7U5GncRUZkrD8g21JDfNjfMnGu0qt6OEeQlERIqbFeePi38wv818guOCaeLUhMmHJ+sQ38JAX+gguUL82lRuw9khZ4lLi8PnL5/XDuvLDVEUWXb2ALUVy8l5w9CQvGRDW+ZUgUSQEPYojdDHaWQrRLIVIqGP0j4qJZ+IhAgCngSQLARxUzqWBK4g5wVKkrE2l+JdWbui9+wzs4lPj2dh21dhRypvh773mcCMnScJeBLA+m7rNWGUVsZW/ND8B6Ycm4KRxIjBnoP589qfSAUpJlITqtpV5XLMZT3kR/tTDXUolVaY1DtCYZXM9JFafSRGQEpx6lIrZzW1FCsKVYBQQMbAqt8xrq3+au0j27wbKekiFOG/gCKikQ9qOlkxvr0TVqYyJAJYmcqY0MGJb1r15fzQ84SNC2NUnVHsDN2J1yovPJZ7MP/ifK0V6/cF+vJRlKLI+lOP/92B/Y+hL29h4fDq7B2yiBMDT5CWnUbDNQ259ewWpwefppVzK1YHrsbJ1olWlVox6dAkvFd5c+nRJZ2+qpexxKG4nGwhnkThKtelI3EtZ4FHKQ+6bOnCsD3DtFb4LY0t2ey7Gb/OfhhLjRERCY0PpdaKWuwI2fHa1+br6sv1UdcxNzLHZ7V2IrchdKjSgQtDL5CQkUDdVXW5FnNNs08mkfFD8x84OuAooc9CufToEuO8x7Hs6jKarm3Kw6SHgMpTcXf8XRqXb0zAkwC23d7GD01/IEeRw92Eu9T7qx5BsUGafu3M7Tg+8DiuJV1ptaEVrSq10ks2DHnc/gueuEmHJqEQFSxpvyTfdifvnyRHmYNPGR+t7QV5NIykRgxwH4BMIkMQBbaHbMe5mDMdXDoQ9SIKY4kxnx387LXHXRi5Zg8HDy4Pv4yduR0N/RpyJOLIa58H4OKjiyieteNtXzv6k8YVlCqZTFVHC71mpFKEGRvvfRRk448Lf2j+nSTcJFg2iQuytvTvGsWeb+poFYK7E3+HPy7+wdcNv6ZisYqa4/o0LWXQHH+RZMLS9kuZf2k+4QnhpMnTNKF8626uY84nc+i/s7/KkyEqUYpK7jxXSTHnrkWRRRwJXOGhsAGQ6BBIQTQcJvUmEDUUJz1fspGvwpW+9i+lf21ENwSx8B6VDadi6FKvFJM6OmFjprIxbMxkTO7sRGfvUoW8qiIU4b8PQXyfl+HfEsHRKWw4FUNkbLpG67qmk5XW/sl+oRoDXCKonnfzh1bXapejzOFIxBHWBK5hT9geREQ6VenEEM8htHNph0wi+zcu77XQ89cbxKdk62zPEZ7TpOk5BnkOoopdlX9hZP8uFEoFf13/i+knp5ORncE3jb7B29GbL49+ya24W3St1pXIF5HcjL3JiNoj+PmTn3XCZp6nP2fioYlsDN6IscQYMyMzern1YvOtzdiZ2fF3179pWqGp1jEhz0LovLkzkS8iEQRVjPPEehP5tdWvGEuNX+saMrIzmHhoIquur2KQxyCWtl+qU0AuL56mPqXrlq4ExQaxvtt6erj20NofmxpL/139OR55nMGegzkWeYz07HQ2dt9Im8ptANULeOKhiSy+shhjqTEzmsxg7rm5KEUlUomUHb12aIq3AaTJ0+iypQsXHl5gUbO97L+SQWyCQJkSUvr71GbxgWiUSu111hY1inE65EWBv9H/Jfbd2UfnLZ1Z13UdAzwGGGz3PP05JX5T1XU4MfAEzSs21+x7kPgAp4VOTKg7gYXt9Ce0BsUG4bHcAwBbE1t6ufXiiwZfUGNZDXpU78GW21vw7+mfr0clLyb5BREYlaYVxiQRwMvZhl8GVdVqm5Kl8uIeiTjC8o7LGV57eKHPA9Dj7y94Ht7rnYXJqCGiQEEqpaxKkJyeQ7bC8CtNKvn/nRv/X1C/yyJi04hIO0+k8BfJwisyX9KsJA8/f4iJzESzTRRF2mxoQ3hCOLfH3tYonwFsu7WNuVtTsKaG1vclosDS5gnV3C8w/9J8PEt5kixP5ubom9RfXR9TmSndqnXjm+PfaI2vvE15HiTpSrZai+7UUPyKEbavNS9eN9xKTR4ipL+RzD1qKZYDEp0+1O2U5CDl3aiWGRprCSsj/KfUeifnKEIR/suQzpw5c+a/PYh/A2oSEZOQRVqWkicvsjgcGE+tStaUslU9jOftuU9MQpZmxU/toI9NyqCNp72mL4kgwcXOhV5uvRjrPRZHK0dO3j/J/EvzWRmwktjUWMpal6Wkha5W/H8FAeHJPHmRpWXECQJYWSew8/EMfr/wO0cjj6JUKqlcvLJG//9Dh0SQ4OXoxcg6I0mTp/HLhV84HX2aH5r9QGOnxvjd8CNFnkKXql3YHbabZdeWYWdmh6eDp2Y1ztzInO7Vu1OndB2ORR0jOSuZqzFXaVq+KcYyY2afnU1yVjJNKzTVkNKSFiUZXns4j5IfaepXXHl8hUPhh2hTuY1GNjU4OoV5e+6z8shDAsKTcShmopm/ahhJjehUtRPOxZz59cKvbA/ZTouKLfItZmZpbEm/mv0Iiw/j+1PfYyI1oVH5RpprsjS2pL97f4wkRiy4vADXkq6UtirNnLNzEBFpXL4xEomEdi7tqGRbiV1huzgRdYJx3uOISowiVZ7KhuANlLUuqylaZyw1ppdbLy6FP+V6gBfyTCukWJKWbsLlu0mIou7LOiouU5W0+vJvdQR1fHI2rTz/98XaEjMTab+pPY2dGjO35VydCsS5cSj8ENtub0NAYHG7xVpGX0ZOBn9c/ANPB086Vumo9/hSlqXYd3cf6dnpOFg6cDr6NFMbTUUpKlkftJ6WlVqy+sZqhnoOxdyocDVJNoctI+mZM1JBgsgroja1eyXsbbTnkYnMhN41ehObGsv3p75HrpDTvGLzfK9ZjScpT1j0z2PMKUuh9EcLgNp4U4XcSJBhQrpciVIUX84B/ef4/5wb/1/I/S5Lz1JiIpbGQezAC+EaWYKqlsbsT2bTqHwjreN2hu5k7vm5rO+2Hjd7N619/TZ+iyyjFsYUA8h1r6Gx91PmXJrCKK9R7Lu7j786/cXp+6f5++bfrO26lmF7hyGKqiKTIiLDag3jzP0zWl4Ea9EdV8VsKojDkGL6TknGq7nx6hNE7kp+IUayiywhlhfCVSzEihhTHNWsUCKiIIUQwoRp2CoqIxPsteb2m+aS6DtGIoBbOasPah4WoQiG8NESDX0kIu9LaOWRh6Rl5Q0mFoh+EcPxFzMxkZlQwbYCUsmr1UBzI3Pqla3HaK/RdK3WlWxFNuuC1vH7xd85FH4IhVKBS3GX/5yh7lDMhMOB8QigMTgkAvw+oB5z2kzBvZQ7YfFhLLy8kAWXFhAaH4q1iTUVbCsUytB432EqM6VN5TZ8WuNTAmMD+fncz6Rnp7Os/TLkCjkbgjdQxa4K1UpUY96leRyNOIqXoxcOlq8SA6uWqMrw2sN5kvqEwKeBPEx+SFJmEr6uvqy9uZZtt7fhU9YHRytVkqaR1Iiu1briUtyF/ff2kyPmEJcax+obq/Eo5UFmqkOBZDk3PBw86Fq1K9tub+O3C79R0bYiNUvVNHjNRlIjulfvDiJ8d+o77ifep71Le818FwSBJk5NaFGhBX43/IhJiaF79e4subKEi48u0rZyWyyMLfBw8KBD5Q5svrWZMw/O0KxCM0ykJsSlx7E7bDcKpYLmFVQGq0wi42aQM09eyFGH2AhI8jUe80IEsrKV9GpYunBf7ltg/IHxXH9ynYP9DuqtmZEby64uIyw+jKolqjLRZ6LWvqycLH698Cs17GvQtVpXg33Ic+Tsu7uPZ+nPMJWZIooi3zb+lpXXV+JczJnwF+HcT7pPt2rdChz7nfg7jD78KX3q1sXBtCpZ2UrcylkxtXslvVWMQUW8O7h0wNLYku9Ofced+Dt0rNKxQK/tvIvzeBzphQTdeVlY6DP0RJQISHhFXgQtI1O3j/+/ufH/hbzvMtX9EDER7YmTHMLa2JpNPTZpeULT5Gl02tyJJk5NmNlsplZ/O64HEHSjPsYU1yRXq+lbM68XzLreh5F1RnLm/hmqlajG5z6f031bdwZ7Dmbzrc0az4WIyED3gVQvUZ2jUUc1/VuL7ngq/sQUhzdO3jYYxpQrX0dBOgrSSOImYdIfeS6cUR9MlhDLU8lenij9SMlcTaJ8NY9FPx7I9pIhjSNFep/SYgcKmk+6AxANhnlJhFfvVkNkvghF+BDx0eZoFEa6Vp8ikUSA0nYSgmKD6LS5E45/ODLmnzGcjT6rU6XX08GThe0W8vjzx2zvuZ0S5iUYe2AsDn840G9nP45FHntnlX3fFvpyFdQJg6YyU3q59eJAvwM8mPSA75t+T8CTAFqtb0WFBRWYcWIG4Qnh//Yl/L+gil0V9vXZx+H+h4lPj6fV+lZIBSn7++zHSGrEoYhDtHFuQ3x6PHVW1mHyoclaeRi2prb4dfHjYL+DlLQoSVp2GhuCN9CofCNkEhk+q3348fSPWlKw/dz7ETQmiCp2VVCICoTMikxdd5eJq2+hUL5enRc3ezeujLhC12pd6buzL2P3j81XOU0iSPih+Q9s6LaBzbc202p9K+LT47XaNHZqTODoQOqVrceG4A30dO1J4NNAaq2oxYWHFwDwKuNFxIQInIs5s+/uPrIUWbSq2AoBgVlnZzFw90BNQvn9uEzyPppeb8VTgZP9//4FfizyGH/d+IvfW/9OOZuCkzdP3j+JVCLVyc8ANMXlshRZ+fahrqlhKjXFraQby66pCvbNaTGHnWE7Ges1lnU313Hw3sECx/PtiW8pY12GGW0GaEkeGyIZagiCwJcNvsS/pz977uyh5bqWOnMiN+QKOVsuRCHDssAxgeFEXK0x5FH90RmjgfmSV9b1Q4C+d5mAFEucAZjScIpOqOTss7OJS4vTSgBXQ1WVWjusSE0H9t2IpEXFFrjbuxMSH8K8NvP4+vjXyCQyvB1VuWpqNHVqytqua/nl/C9a/TsphiLoCVsqLPQTyFdzRk1eVPPtZVtRwDgH7OXueOQqwmcqdSfLwh078wVUM96Hq7gAa9GdZIK4yWiSlZcQRUXhSYYB2JhJ9b5bi1CEjwEfbY7G1L/vcC0iSesBLaIggStYVdyGb3Vfatp0Yu7WBJ34b/VDIig2iE3Bm9gUvImHyQ8pb1OePjX60LdmX9xLues9b0xKDOtvrmdN4BruPL9DeZvyDPIYxGDPwVQqpl+B4r8IURS58vgKawPXsvnWZpKykmhUvhGDPQbTy60XViYf/kM0W5HNioAVfHfyO3KUOUxrPE2z0pujzKGJUxOORx6nmFkx5reZT0/Xnlren+SsZL468hUrr6/ESGKEhZEFn1T6hN1hu6lVuhbru62nWolqmvaZOZkM3zaLh6HtyV2DIC8KE/sriiKrrq9iwsEJuNm74d/Tv8D5d/7Bebpt7Ya1iTX/9P1Ha2wASlGpqix8/BvcS7kjQUJgbCC/tvyVST6TEAQBuUJOl81dOBRxiGKmxehctTN/3/wbiSChiVMTdvXexc9bY3V+mwav4+VKo0RQ/UYFQUQpKijhsgP/Ab//z7xtqfJUav5Zk0rFKnFswLECzxOXFkep31UJnn6d/RhSa4jW/sycTMxmm9GtWjd29t6Zb1++23w5HX2aHEUOadlpzGoxiy/qf0Hdv+oiIFDcrDhh8WHcGnsLaxNrvX1cfHiRBn4NCswrKQiXHl2i8+bO2JjacKDvAVzsXHTabLm1hcVbi2nCcPKDdrhL7pCdNzdM1cj7/P5QMPXvO1wNT0TMk0uRwBXCTb8h5osYbE1tNfvuPr9LjWU1+LbxtzrejDN3HvDdhicG77VCSGbDF1XwXuVNa+fWjK4zmkZrGrG03VKmHJtCWraqonVpy9I8mPSAwNhAvFd5a/VRP2efpkijIeQNfyqorVrVL/czMXd4nYjIPcnvuCi/1LQTUbwkBy9JqyBFFBWASAhjeGakynGpmbOA4tQ1+LzNDalEt9ieoZynIhThY8FHSzT0JXoDtG0azdm49RyOOIxcIcfHrjdlFYPIySxJFQcrBjR31HlJKUUl5x+cZ1PwJraFbCMhI4Ea9jXoW6MvfWr20dLLV0MURS49usSawDVsubWFFHkKzSo0Y4jnEHpU71Fgsu5/CRnZGey5s4e1gWs5EnEEMyMzelTvwWDPwTSr0AyJ8GE7zhIyEph5aibLri6jgm0Fvm/6PRceXWDFtRVUsatCSfOSnHt4jlaVWrGk/RKdpPrjkccZsmcIMSkxKERVGNGDpAc8TnnM3E/mMr7eeM09nPr3Ha5GJOrNVwDVy9VIKlC7oo2OuIE+3Hhyg57+PYlPj2dt17X5hu0ARL2IouPmjsSkxLC953Y+qfSJTptLjy7x6fZPScpMommFpuy5s4ce1XuwuvNqbExtEEWRGSdnMPvsbIwkRgz1HMrK6yuRSWQ4F3dmcbO9zN32QksFzdC1AiisTtCgVHeNqEOZCmFMPNWVCe7zME1ub1Ds4W0w4eAEVt9YTfCY4EItEGy7vY3e23sDEDI2hOolq2vtVygVyH6S0cGlA//0/Sffvvbf3U/Hzao8jqZOTbnz/A5RE6MIiAmg0ZpG/NbqN2aemslAj4Es67BM53hRFGmytgkpWSlcH3X9rX+fkS8iab+xPfHp8ez5dA8NyzfU2t/QryHGUX9QkAM9r1Gpqr8gJ5HrmGCPBZXeYhUcvCvb6H1+v+8Ijk5h/F+3ADQGtIhIoHQ04xp1ZE7LOZq2oijSdmNb7j2/p5MADtDp18OkpOhPzBYRsTKV4O6zm3mX5hEyNoRuW7thLDWmrHVZdoXtAlRe0ODRwbjau1J9SXXCnodp+rDKhDZJC4gv7lOgklRhw5XUREOC4fA9UVSQQzIyrBEEbTICeb0kSkqaPcbXM5KyTjVJFysx1z+xwOeRRICqZSy4G5NmcHGyCEX4GPHREg3QVZ3K/RJKzkpm/939bA/dzoF7B8jMyaSWQy18XX3xdfU1qMAkV8g5EnGETcGb2HNnD+nZ6TQs15C+NfvSy62X3gTc9Ox0dobuZE3gGk5EncDK2Ipebr0Y4jmEBuUavFc5EI+SH7H+5nrW3lzL3ed3NR6bQR6DcC7u/G8P73+KkGchTD48mSMRR/ik4ieMrDOSBZcWcPHRRZqUb0JUYhSxabFMaTCFbxt/q/WST5WnMvXYVJZdXYZMIsPSyJL65epzMPwgzSs0Z02XNTjZOhlUB1PhVSKsIIhIBIH5Q1UG7YZTMdx5nAoIIEBVRwuN4Z2UmcTQvUPZGbqTz30+Z27LuZpQHn1Iykyi1/ZenIg6wbL2yxhRZ4ROmxcZLxi6dyi7w3bTwaUDZx+cxd7Cnu09t+PhoFJO2hm6k97+vckRc+hboy+77+wmR5mDrYktS1vs5+otK25EJeuoCKmNAyOZnHBhKffFrbSq1IojA17Jrk7d9yeXrnioElJF4Z2qUZ17cI7GaxqzoM0CnVwLQxjzzxi2h24nW5FNwtQEvca98INAy0otOTrgqJ4eXiFHmUPZeWUxlhpjZ2bHzdibrOi4ghF1RtB3R19ORJ3gi/pfMOXYFE4PPk0TpyZax++9s5cuW7pwqN8hjULY2yIhI4FuW7tx+dFl1nVbRy+3XgBcf3KdOivr0CznEvklgRsyKrOI47Z0mo5K0Osm5lqYSPhnutdrXdP7gutPrtN8xRCcFEOxxJlUIoiWriZDGsbjzx9riZDsDN1Jj2092PvpXjpV7aTVT7Yim5YzryDJR23JykzgqNiEL+p/QSmLUio1u46rGP7PKwWynz/5ma8bfU2GPAPzn1VhaoISBt6EucfgYUl3pvRbqXpWGXi3GZKYfZu2oqjQIhkFQSaB7j6lGNPOSctWKGljTHqmguj4VyGnuQmFOnxVn13xsaMgpc8ifJj4qIlGYZEqT+XgvYNsD93O/rv7SctOo6Z9TQ3pcC3pavC4PWF72HRrE4fDDyMIAq2dW9O3Rl+6VOuCpbFuzHLUiyiVekfgWqKToqliV4UhnkMY6DFQkyT8PkDtsVkbuJYtt7eQnJVME6cmDPYYjK+r7wcbWiWKIvvv7efzw58T8SKCkbVH4mbvxk9nfiJNnka9svU4G32WstZlWdxusaYSrxqn759m8J7BPEh6gFJU0qR8EyJeRJCclcyidosIuelDQERynpA/EVCiG1ctUq2MJXefpOnIwqoLC6oNb1EUWXR5EV8e/RJvR2+2+m7NN+8gR5nDxIMTWXZtGZ/7fM6vrX7VEkVQ34slV5bw5dEvcSnuglJUEpUYxbL2yzShQyHPQmjo15DEzESaOjXlbvxd4jPikUqk+Pf0x8mkqZbnUb1aG2P1PXHpcXxiM5unCQKphFOhYjh7hy4GYMrfYVwNTyT3Kvq7CGHIyM7Ac4UndmZ2nB1yVueaDaHakmpk5mRStURVDvc/rLeN5AcJjZ0ac3rw6QL7++rIVywPWE6qPJXmFZrzKPkRoeNCiUmJoeqSqnzm/RkXHl0gLi2Om6NvakhtjjIH9z/dcbRy5OiAo+90ESMrJ4the4exMXgjcz+Zy5SGUxi2dxjHIo/hnLDd4HGv8i+UeUJfVOE/QKFDVwzhQyYa4/aPY0XAChSidtG7vFLJafI0XJe5UtO+pl6v2abgTazcVtHgfRYEMLa8T6BkAueHnqfOyjr0cuvFxuCNpGenIyDg6eDJlRFXCI5OZrDfBiyohDQzgs+O+9H7RhCba8CUVlDB4gQy9HvtX4dkFB6iJrzydVXPejVQkY28yG+hsgi6KGy5gCJ8eCgiGq+J9Ox0DocfZkfoDvbe2UuKPIXqJarj6+pL7WLduXDTlKjYDB22/iztGf4h/mwK3sT5h+cxNzKnS9Uu9K3ZlzbObXRWkJWiklP3T7EmcA07QnaQpciijXMbhngOoXPVzlrSmP91pGensztsN2sD13Is8hjmRub4uvoy2HMwTZyafJChVXKFnCVXlvDj6R8RBIEpDabwNPUpS68upZxNOYqZFuPG0xt0rdaVhW0XUt6mvObY9Ox0ph2fxsLLC5EIEiyNLanlUItT0afoUG4cGfcHAq8e1kpRgZxkAzHwr2KQ80Kf4X3p0SV6+fciPTudDd030LZy23yvc/HlxUw6PIkOLh3Y1GOTXvIcEBNA7+29iUuLw9vRmxP3TzDUcyhL2i/BzMiMxMxEGvo1JORZCBVtK2JhZEFofCgiIkvaLaGRfX/NC10ue8Cp5BmA8HKVWztcxLHqPjb3/9mg50df/srrrLJNPTqVhZcXEjg6UCdHxRBiUmIoM68MVsZWTPaZzA/Nf9DbTvqjlLqOdbk4/GKBfd6Ou02NP2tgZ2ZHw3IN2Xt3L9t7bqeHaw9+PP0js87MYl+ffXTZ0oUJ9Sbwa6tfAfjr+l+M2DeCayOuUcexTqHG/zoQRZHvT33PT2d+YoD7ALbd3sb3Tb/nyBHdEDvNMYg8FDZQVuyTK35e9VpK5hYWOCPj7RO4Fw3/7xs0r7vim56djv1v9prcCDUEBI73DOfQ1WxNX+lW/7AqZBq3x97W612utLAS5eM3vVSt0oVEgGuS4fzeaTznH55n3919lLMqx824m4CqoOeNUTdITbLj63X3QVTlPUiUqryH7PgxnHV8/bwHNURRfCNi/IrIiggvCwPmzQPK3TYvwZFJ4OgPdV/7vEXQxpS/w7gWkayVM1+Uv/Jx4IMkGm/rnivs8Zk5mRyLPMb2kO0cC7mHc8Zvmhdl3hXj3Ih6EcWWW1vYGLyR289uY2dmR0/XnvRz70eDcg10DO+kzCS23t7KmsA1XHp0ieJmxelXsx9DPIdoahC8L3iY9JB1N9ex9uZawhPCqWBbQRNalbsybX54n9yvz9KeMePkDFZdX4VLcRcm1pvI1ttbOR19Gm9Hb6KTokmVp/Jdk++YXH+ylgTlhYcXGLRrEJGJkShFJQ3KNuBuwl3Mc6rTzGYW6alWmpW0H3ddIC7eWm8yZH7QZ3g/T3/OgF0DOBR+iGmNpzGz2cx8V+4P3DvAp9s/pVKxSuzrs0+vJyQ5K5mR+0ay9fZWmldozsVHF6lqVxX/nv642LmQo8yh746++If4Y2VsRe3StTkdrVrZ/6rBV8xtOVfzu/jx9I9sP2ajY6ioV8BbNIzCJHaMXrEHb2dbfhv8Kj/idVbZrj6+is9qH2a3mM3Xjb7O977mxqbgTfTb2U91r/oeoJ1LO73tZD/K8HTw5NrIa3r350XdVXVJzkrmQdID6pSuQ6YikyvDr5CZk0m1pdXwdPDEp4wP009O5/Lwy7iWdMVlsQtNnZqyqcemQo//TbA2UFVPAeDe+HsMm2dYlUpEJIFLREv9cFZMxBpVTYfcxqD677dB9bIWLBvlVnDDfwlvsuK7/uZ6Bu4eqLO9q9NEkiP7QzeJGwAAIABJREFUAtoiCfYuuxlSvzlZiizkCjlZOarPu8/vsvz8IWopVhggGiKR5l+RKNzE3d6dcw/PYW1sTbL8laKeidQEhaiguvx3g7/NYNkk4JXErT7VsPwIQGGSxAtDIF7Xa3LypyKi8boQRZG7z+9yIuoEJ+6f4EnwEIxE3dDxosKFHz4+OKLxtu65Nz3+q7WhBEQmayXpiiiwKRbHt70cqFumrs5qjCiKBMcF61Wu6lezn94aB6HPQlkbuJZ1Qet4mvoUj1IeDPEcQj/3fvkWYPuvQRRFLjy8wNrAtWy9vVWTDD/YYzA9XHvoXRmH99f9GhQbxKRDkzh5/yRtndvSyrkV8y7O43nGc2o51OLyo8tULVGVZR2W0axCM81xGdkZfH/qe36/8DsSQYKViRUuxV24GnOVgR4DWdh2IbamtgRHpzBpdahK/vblinBBL1FBEPF2ttW7mqQUlfxy7hemn5yuMUxz1wTJi+DYYDpt7kSWIou9n+7Fu4y3Thu10tXEQxMpZ10OuULOi8wXrOmyRlWvA/jl3C98ffxrpIKUNs5tOBB+AICerj1Z122dpv5M21lnycrS9eplEcdFWScm1pzPrZsNdEKuylXbz/q+szS/RX3qc/pW2eQKOXVW1sFYaszl4ZcLrBuRGyP2juBQ+CEepTwi/qt4ncrxahj/ZEy1EtUIGhOkd39eLLu6jAkHJyAgMKz2MFYErOD4wOO0qNgC/9v+9Nrei/199zP9xHRylDn4uvoy68ws7nx2p9Ck/k2hUCpwnOfIi4wXVCtRjdLP/kJuKLWIVwm9CjKQYf5WYVKGYCQVODJTd17+21CKSu4n3uenLY+5H2MMaL9DlKZ3SLZboCIGLwmCmiSkyFOwVNbIk5/hh5NiaIHGfm7YiB54KJYZNPwzJHe4IhmEraktyVnJ+cqyG1KVUv821bAW3fUQS4XmnLm9WwWRjlfHv1lRvfxQ5NEoPB4kPVARi5f/PU55jEwio16ZetgnfU3ii5JaNlKRR+PjwAdHNPQZDoIgUquSJX8MLng1q7CGR14YCtWQC8+4IO1IOety9KjeA19XX+qXq6/jtVArV20M3oh/iL9GuapfzX70qdGH5KTiWqv4fZqW4rH8PH6Bfuy7sw+ATlU7MdRzKG0qt3ktQ+jfhjoZfm3gWk5EncDcyJyebj0Z4jmExuUbaxG0N/1+/gsQRZHdYbv58uiXPEh6wIjaIzCWGrPs6jLsLeyxMrEiLD6M/u79+a3Vb1qG/ZXHVxiwawD3nt9DRMTb0Zuw+DBsTG1Y02UNLSu1JDg6hb9PPiQgIhnDCj+qUCq14d20fig/th9mcMzrLp9h8aHbmCgqUM3RlontahgkdLGpsXTd2pXAp4Gs77YeX1dfve2CYoPo5d+Lh0kPcbN342rMVa0k9MPhh+m8uTNypZxWlVpxNPIoEkFC3TJ1+afPP9iZ2xmU9LSyfcr+1B6IiHzjtQJFfFMiY9MpbiPH/+loXhDIvNbzmFx/MmD4d5t3lW3mqZnMPjubayOuaZLZC4La83YhMgql0WOSzXcR/LlhRSnTWaZUKlaJkHEhher/RcYLHP5wwLWkK2nyNMyNzCllWYrD/Q8jiiLN/m7Gs7Rn/N31b+qvro9UImWM1xgWtF1QqP7fBrvDdtNtaze29NjClGNTME//BIeM0QUe978wFNX4t4mGUlQSnRjN7We3uR13m5D4EG7H3SY0PpT07HSDBrrUKI1qXjswlhpjIjVRfcpMSMpMYvn5Qy89A7kkWwFzE4GMLN1ngK2lhCVjSmtCb5+lPSM4LphZW57oDWVS53/dkI4iWQgu1HXqC4sSBJFE4Ro3JJ/ptLcW3XUS2UGghuJXjNCvgKU9vnedz6GN3o1KMbqNbo7G+4b/RSRAbGosJ++f1BCLiBcRCAjUKl2LFhVa0KJiCxqVb4SViZXBRcIiRa4PHx8c0TBkOGTxDHOX+bR2bk1r59YqnX89uQGGjjc1lbN8XDmcbPU/cPKryxFi9AVlrMqQlJVEUlYSpS1La0hHo/KNdMJScitX7Q7bjVG2C7UUy5EgUUWZ5lnFj0+PZ2PQRtYEruFm7E1KW5ZmgPsAhtQaUug48v8KohOjWR+0nrWBa4l4EUGlYpUY5DGIgR4DqWBbweD3Y2clY/uU2v/CiF8fmTmZLLy0kFlnZ2EiNWGc9zguPrrI0cij1LSvycOkh4iIzG4xm9FeozXzIysnix9P/8jc83MRELA0tqS8TXmC44IZX3c8c1vOxdzInKl/3+FKeCLkWQVUko2CNIylxpQpIXLw+ZfkiArqW0zHUqyMc56Xz57LsSz4JzpXHwokgsCCodVxr6C/CnZGdgZD9w5ly60tzG4xm28afaM3rjpVnsq4A+NYd3MddcvU5fqT69QtU5dtvtsoY12GyIRIfFb78Cz9GZ6lPAmLDyNHmUM5m3IcHXCU9BR7JvuFohRFRPEVcQqUjqavV0NWBKxARGRlx5UaVawdITvw9VeRn3199tGxSsdCEdeg2CDqrKzDN42+4cfmPxbqO877UlXr/C8a7mbw5W4x24LSVqUJn1D44pe9t/fm6uOrRCVG8W2jb5lzbg4BIwOoXbo2gU8Dqb2iNgvaLmD9zfVce3KNs0PO0qh8o0L3/6Zoua4ladlpXBx2kaepT+m0uROSB19iTgUKSsZ9E7JRmGOql7Fg2ej/fehUbkIR8ixEQyzUhALAytgK15KuuJV0U33au3HgdGluR2cVehFl6tGpHDzjqMeoB2tTGcmZ2XlksJWYWD0gpcRCohOjiUmJ0RjqhkiOiEi45DceS3YU+vpfhUWpyI9aOj7C/Cuei9dJladq2pazKkdMaoxOInt+Y/r/gkwCPRp8OCTjXUQCJGYmcvr+aU041K04layya0lXDbFoWqEpxc2KGxxHUQL9x4cPjmgYMhxKlHhBWonFnLx/UpVAZ2FPq0qtaO3cmlaVWlHaqrTB40FBgnCVIOlE3Eq60cGlAx2qdKBBuQYaz4GhH/K0T0sQknKQnWE7ORV1CiVKHK0cSc9OJzEzEXsLe7pV64avqy/NKjTT8USkylMZs/Iqj2LNyL1KbchLc+PJDdYErmFj8EYSMhLwKevDEM8h9HbrjY2pfuPwvwhRFDn34BxrA9eyLWQbqfJUWlRsQenkaTyJs9QhdMmSALy8ghhRewRejl7vhSTw09SnTDs+jTWBa3At6UpP1578H3vnHR9FvX7/9+wmm15Jg5AeCEmAhNBBpAekKL1IC11BFLGXr3q9VywoKoKI9CItobck9F5TIQklvUIC6XXb/P5YMrCkiFz1cu+P83rlhW6ZmW0zn/M85zlnbexa8srz8LPzI/ZOLEFNg1g+eDmdnDtJJ+nreSUUqOJJ1CylRIijnVM7ku4m4WrlysbhG8nLdnuEIOjerJuyr8mT7cJAMKC5ZXPeClpC2GGd3K52QVB78QF4fVVSnWMW0SA3S2X76wMlCVCdSlnPpuxIX8w/Tv6DyQGT+XXIrw2aF6yPXc+cg3NwMHOgSlWFVtSyeeRm+nn2o1xZTq91vYjKi6KZRTOdNWxVIZZGlhyccBAzjT+bTuSSkFNIZtUlMuSrparrtMBprIldA8CWEVsY12Yc8ECaZSQ34tLMSwjVHvUQAhm+zc0pKFHi7mjCqdJPqJAnEjUr6rFNGOrtrCLS0bt+qRqAxZcWNDFpQvr89MfaB8ChW4cYtHkQXjZetHZoTfydeDo5d2LrqK0AzN43m60JW6moqcDW1BZPG0/OTjv72G5ZT4KkgiT8fvZj0/BNTGirm02pUFYwZtO7VKRN5M8I33uYWDwuMflp5p9bOa0lFBKZuE8skgqSpOHsWkJRSyr8Hfzxt/enuMiKTSfz9KrLwGNXfFUaFQ6LHPCt2FjvYlwtlCATzep0OnItP0FpeItKVSWFVYXSAl/XhehSr2yqkjSiDCagpWG51MOQIcNcbI2XOAsvs264Oig4dO9trpdHICKikCtQapS80+0dvun/DaIoMjZsLKGJobhbutPdpTuhSaH4KL/5t93G/ghq5yr/FyvsT6oEqFBWcCbzjEQsovOi0YpaPKw96OOhIxa93XtL66dneIb68D9HNH6vPVejruFc1jkiUyKJTI0kOi8agLaObQn2DMbX/AV+izCHR57/xSRXspRnOHDrAAdvHSS/Ih9rY2sGeA1gcIvBvNDiBfIKjBpl63cr77L3xl52Ju0kMiUSlVaFo5mjpFVvYtKEYa2GMcpvFH08+kiDwY11adwCNjGx7USCvYIl56qrGWVsOJ5NUm4RVbI0oqu/pcbwBiP9RjI1cOp/XYhehbKCHUk7WBe7jqi0e7TTLL8/sCiTqmVtg86xI20xWaVZBDgGMDNoJhPaTtBLxH1aEZUbxRvhb3A26yyDWugWjb9G/YqVsRWmhqakF6czueUnZCfprHBrv5ciWmJlr1Iii8dCYYGDmQOpRam8aLGb4kIHHv5hP6rPNhAM8FcvxlbspCc/qr34lFWrScrWd7KphUq4S6bNK2wfvR0zjX+DlbKrpfuYtmcaHZ07smvsrgZniJIKkhgTNobke8l42XqRWJDIZ70+4+PnPwZgxp4ZrI1bi6mBKc0sm5FalIqBzICtI7cy3Hc4ABHJEQzaPEhPOz6hzQR+u/obAPvH72dwy8GIosj0PdNZG7cWe1N74l+Np+CemfS7rRDzqCy3QSbI77ujiGjRMPclA8Z0eHyddkO/WStTA3Z/UH/nzfora8wV5mQvyH7s/Wi0Glx/cKWFbQtOZ57m816f88mJT7j52k28bL0oqCjAebEzhnJD9o3fR78N/fg2+FsWdF3w2Pv4o5h7YC47knaQ+WamnrlBcVUxfRfuxAL/f4toPKrJr/3vxuBmb8y619s+0f60opbMkkwS8hP0uhQPEwpzhfmD7sR9QuFn74eLpUudokdj1WV4kMHgbGfAc4HVYJxBRnEGGSW6v/TidJILk6lUVTbg3qShxiiRBPWSOpIkI7PbeNt6Y2lkiVKjJDo3mhJlCZZiW9ppfq33fRQRiZHPolSof3ZIhqxeEtLKrhWxs2PxXeZLWnEaAK6WrmSWZjLWfyxbR21FFEUm7prI5qub8bD2IPaVWFZFr+KtyLfo2mQ8hndeq3du5M+EmZEMA7kMn2Zm/1MVdlEUSS5MJjw5nF3hvohqyzqPeVQiWqOu4WLORUkKdSH7AiqtCidzJ/p69JWIxV894/UM/1v4nyMa8MfacwUVBRxJPUJkaiSRKZHkluViJ+tAG4M3UGjc8HQ04dXglrRxe/Aj1YpaonKjOHDrAAduHeBK7hUEBLo07yJ1OwIcAxqtqpfWlHLw1kF2Ju3kwM0DVKorsTOxQytqKawuxNrYmhd9XmSU7yhOnvciJrW8XlnWDaN3UWqUWBtZM77NeLrbT2DtAcM6iecdOkaxO+MHbt67KTk9hQSG1Jta/jQjvTidJSf3cjbOGLmqGVrDXJ4LrOH1ni/hbOFMREoEK6NXsu/GPhRyBaP9RzMzaCbdXbo/1V0OURTZnrCdd4+8S15ZHlMCppBTlsOh5EO0tG2J6d3XsNJ20FtQyARo6SLjnGY68Xd0i4BAq2FY3FuAnIYHpWvRkDTBWKGhWtlQFVHEw8mA68bzuJx7mRFW+7l716bBStm5rHMM2zoMCyMLDrx8oEEpX5WqShf+Fb2SNg5tuJZ/jWCvYDaN2ISdqR3LLy9n7sG5CIJAa/vWxOfHIyCweMBi5nfRkafTGafps74PalEtbXeU3yjCEnUZDiemnKCne09dMNnGfpzOOE1rh9ZcnHFRypl4Z10Sl1OKH1m4iViZGGJoIDy2tlmX4F5CfWfXhmxWm3zTBEOZIbffvt3oth/F+0feZ0XUCtQaNXM7zWVt7FpGtBrB8iHLuZJ7hY4rOyIgEDM7hjUxa1gZvZKrr179SwI0S6pLcF7szIKuC+rIzBafX0zYwZZPJIf5oy5DD0MQdO/57y0gHyYUD3cpHiUUEpl4SPZUH6FoCPV3zUVkBtVoUVEtSyeVleRrL0n3mhma4WbthpuVG80tmxORHEFmaWYdmVKthDBePocKeSLGBsbMCpqFUqskqzSL6LxoMksyAXAyc+J2xYPvWg/1aeQoeBS1rmBXDebXmafIkq+jWIiVHtuySUuyS7NRqpV0bd6VawXXKKouwsTAhJ5uPQlPCae7S3dOTz0NwNQ9U1kftx43KzdiZ8ey5NISPj3xKR2bdeRy7mVsaEeA7ENQutKYVfeTwNFawcejvf5niAVAWU0Zx9OPE54cTnhyOGnFaRjKDOkuXw1VLeGRolJ7L0tG9yvjWNoxjqYd5UzmGarUVdgY29Dbo7ckh2pl1+qpvn4+w9ON/0mi8aQQRZGEggRdtyMlkpMZJ6lWV9PUvCn9vfozwGsA/Tz74WCmf6HMK8vjUPIhDtw6wOGUw5Qpy3C2cGZQi0EMbjGYvp59G3RRAt0iKzIlkp3Xd7Ln+h5KakqwNrZGJsgorCrESd6FVjXfIwiCXsrxuOASTuVvZEfSDipVlRjKDGmlXFSnwlW78PtqckvOZ59nTcwatiVsk+RIUwOnMsJ3BKaG/75X/d8FrajldMZp1sWtIzQhlEpVJX09+xISEMJw3+GUVJewLnYdq2JWkVqUiq+dLzOCZjA5YPJT7c5Vpari23Pf8tXZrzBXmDPOfxwHkw9in/99vQs0OwtDtrzdhg/3r+DoZRMsHnJw0YcWP1dD9pUPJ6s0C6h/aFNEg4pSFFhT30W9djj0XxNd2JX+PefP9K73uAzlAt9NbUUbNwvSitIYsmUIOaU5hI0Jo59nvwZf/5arW5i1fxaWRpZUqioxV5gTOjqULs27cCbzDP039qdaXU1bh7bE5+vI1bxO8/h+wPfIZXKicqPourorKu2DbsKQFkPYf2s/AgKXZ16mfbP2lFSX0P7X9qQWpTKk5RB2j9uNTJD9TvL642ubr2aU3Zee6S+OBKCjd/1yBcdvHdFoNdx9t2Er2Ppw/e51fJf5MsBrALG3Y3m1w6t8eeZL0t9IZ8KuCeSW5gLgZOHE3nF7aftLWzysPTg6+eifvnhYcnEJb0W+Rcb8DL2AUZVGhdcSL/zV31Fd+ldo3utfhLrZG/P2MA+9xWQtoUgsSNTrUiQWJNZLKB7uUjREKERRpKSmhDvld8ivyOdOxR3ulN+R/s2vzJf+36lgCQrs625DIlNaBEFgcO9sHGwrKVOW6SRad3XHmFqUqve82sW/kyIAZzs5paa72JX+g06mJFOg1CpRyBW0b9qebi7d6Nq8K00tmjJg0wC9eYl26tVYNtBtqiGfCttfsS58vw6puWrwGkXEYG1kjYiIrYktdyruUKWqQkTE09qT0X6j+frc17Rs0pLEOYnIZXJm7ZvFyuiVNLdsTvwr8Xx55ksWnVtEO6d2xNyOQUBgpN9Ivun3DePX/Ihx8bj7x/bvfWfNjGTMGuDCix0d/63tPA0QRZG4O3GEJ4cTkRLB2cyzqLQqPG08Geg1kIHeA+nl3ov02/qyPO6fx28av0Wu+jzmCnOed3teIhYBTgH/VaqHZ3i68YxoNIJqdTVnMs9IxCPuji6YqJ1TO2movLtLdz3dtlKj5HTGaanbcfPeTRRyBb3ce+m6HS0GN1pJVGlUHE8/zs6kney6vov8inzMFeZYi4HYVI3CAm/MLcoZ3NmE6V37YqYwo0pVxYFbB9h8dTO3r03HqJ6LmLGxkh3vBklkolaOtDZ2LSfST2BpZMlY/7FMDZyKuca/jn74abaOLVeWsyNR91pOZpzEQmHBWP+xhASG0KV5F06kn2Bl9Ep2Ju1EEASGtxrOzKCZ9Pbo/dSeTLNLs/ng6Adsit9EW8e2NC//hIqSZnVIgallLpO7tWdFeH6D29KRAw0FNv9i5eiPWX55OZuubqq3GgoiaioxpG6b/eH9qo2S2DF/MO9uuEFGnmG9Omq57MGCvKS6hHE7xnE45TDLBi1jdofZDW7/1r1bjA0bS0J+As6WzmSXZvNt8LfM6zSPvPI8Oq3sRE5ZDl42XqQUpQAwuMVgto/ejqmhKQn5CXT4tQPVmmppm/08+nEk7QgyQUbCqwm0sm9FZkkmAb8EUFxdzHvd3+Orfl81UG3Wx+O6nA1bGEVJVd0h14Z845t914wqdRVF7xU1ut360HV1VwxlhpzOPM2qoaukEMVtCdvYM24PCrmCF357gbDRYVgZW9F/Y39WDFnBrPaz/vC+GoJW1OK7zJdAp0C2jdqmd9+m+E1M2jWJXS/F8OMO5Z+2T9B9Hj7OupTp5DzdsLW3kymvvuCCpVVRHZen+gjFw12KWkIhInKv8p4eaciveEAYJBJRkU9+RT41mhq94zKUGeJg5oCjuSOOZo44mDno5I0JvSm8Z6snWXyUKD0qdXSzcpOOM6Uwhd03duvty8rICnsze5ILdUYCAgIOZg680+0durl0I6hpEGXKMlZHr2Zd7Dqu37te533UyadW3H+2/rEYmqVzpyK/UcvcuR3nsuzyMgwEA6mr2KV5F2a0m8GMfTNwMHUg7Y00TBWmvHbgNZZdWUYzi2bEvRLHp8c/5ecrP+Nn58f1e9fRilrmdJjDzKCZvLj1RbSilp967+NMnILolFLEx5jzMTYUqFaJD74jzcyYM8j1v76DUVBRwOHUw0SkRBCRHMGdijuYGprSx6MPA7wGMNB7IN623oCOiKQUpXAs7Rjh166TmeaNQuNKpZCGTbMo+vp508ejDx2bdawTGvwMz/Bn4RnR+AO4XX6bwymHJZlVfkU+poam9HTrKREPXztfvYpXcmEyB27qSMeJ9BOotCp8mvgwuMVghrQcwnOuzzX4A9doNZzPPs+OxB3svL6TzJJMTA1MMTE04V7VPUwMTHihxQuM8h3F4JaDsTSyZMHaa8SmVdTJ8yjkEgkGC+jg3IG3ur7FCN8R0uB5alEq62PXsy5uHcXF1rTT/HJ/BqKuw9XTjtSiVF0gYOw6MkoyaGHbgpDAECa1nYSxgTEb4jawMnolN+7dwMvGixlBMwgJDGk0I+I/iQvZF3gj/A2uZ1cTpPkF3WJEJpGCW7JvaaF9t9FKnxYlNxRvYWKRT2ZJJp/1+oyWdi2ZtHMSJhpfPSlEoewU3tp3gcZ17yrhLvn281nWZz9fbStGI9aVtjy6IFdr1bwZ/iZLLy9lfuf5fBv8bYNDydXqat6JfIell5fibetNcmEyo/1Gs+rFVSjkCoI3BnM68zS2JraU15SjFtW0dWxLxMQIHMwcSClMoe0vbSWXH4Aerj04nXkauSAneV4y7jbuXMm9QtfVXVFr1awftp521sMfK4/kcUKm/ugApuv3rhRVF1H2QVmj260PK66sYM7BOXRq1glDuSEdmnXgx4s/0sm5E+emnUMQBIZsHqKr3s9J5LWDrxGWFEbCnASaWzb/w/urDxHJEQz8bSCnQk7Rw62HdLsoirRb0Q4ncyfCJ4bzz223OHbtj5OphiCXwftjbFAqbtVxeaqt2NcSilZ2rXC1dMXBzAFLI0u0aCmoKKjTdbhTfoeCyoI6eREmBiY0MWmClbEVFkYWmBmaYWJggqHcELkgv991FlGLaqpUVZQpyyitKdX7M9e2foTg1/8dMzVW8VmIAl97X8wV5hRXF3Mu6xxjQ8dSrirXe6y3jTcvtHiBa/nXOJd1Dq2oJXFuIkZyI1ZErWDz1c3SnERjaKodTkvte0Dt71+LiMgt47dxq/6ggXyMAhxbryKtKI3EgkSpm+hi6cIvQ35hyOYhmBqakvJ6Co7mjiyIWMD3F77HydyJ2NmxvHfkPTbEbcDLxou04jQ0oobPe31Ox2YdGRM2Bm9bb/aN30eVuoqXtr5EYaElvsofEBB0YYToaJqBDARBwLupKXNe+O8nFLVQa9VczL6ok0OlhBOVG4WISFvHthKxeLjgmV2arZdlkVWahVyQ09G5I33c+9DXsy9dm3eV5KLP8Ax/NZ4RjSeEVtRy9c5Vaaj8dMZpajQ1NLdsTrCnjnT09eyrJ9MpqynjSOoRaaA8rzwPSyNLgr2CdQPl3i/gaF5/O1cURaLzotmZtJMdSTu4ce8GRnIjzBRmFFYVYiQ3ItgrmB4Okwg/6Xb/GHVON9r7PuhlwjVJz2woM6S3R28+6P4BPd17IggCWlHLzBXnSc2Ro+dwhUh7L0u9ROWnHVpRy8n0k6yLW0dYYhhVqir6efZjauBUXvJ5iai8KFZGryQ0MRS1Vs3QlkOZGTSTYK/gv9SR50mgFbVsvrqZT8PXYlE+jCYG/lQKqVzXLKWl8Com6sBG9Os6kllhv4TUolS8bb1JKUyhq0tX5rX9jh8OxiNTNZOCvrw0r2NJ60cqmo8GZulcvu5YfYmAwPK+h/hpVxWqusX7ehfkSy8t5Y3wNxjUYhCbR2zGwqjhBcHOpJ1M2zMNI7kRFaoKnC2dCRsdRmuH1swPn8+SS0swkhthYmhCaU0pTc2bcnTyUXzsfMguzcZ/mb9eenGt9lshU5AxPwMnCyd2Je1ixPYRyAU5x6cc57PwtZTf6YyzUXvyywsxwKJeKeLvdTSuZpQxf00SGq1G7/lvDnXjxU51f+eeP3pyp+IOFR/WP4TfGIqri2n6nc42+7erv/FOt3dYdG4Rr3V8jZ8G/QTAzXs3af1zaz7t+SlzO83Fb5kf7Zu1Z++4vX+KhGrolqFklWQRMztGb3uHUw4TvCmYI5OO0NezL8BDZOPf092LaLmueIM79+cZjORGNDVvio2JjdS9rVZXU1xdzN3Ku5TUlNTZRu33x0huhIHM4AFZ0KpRapRUq6upUlc1ehzmCnMsjSzr/1PUva2sxJbLCZYUFMnRaAQqqh/OQNd9x1q5yunQPp5zWec4n32exIJE9B+lg6ulK+nz04m7E0fQiiAEQaBD0w5kl2WTW6aTzckFOYFOgTiYOXAo+VCDr0Pph3fBAAAgAElEQVRAwFHWCXvleJwUAdxWxiFvcpzYkj0NSi1rHf9WRq/U29YH3T9g0flFCAjEvxJPK/tWvHf4Pb459w0OZg7EzI5hfvh8dibtxNnCmbzyPDSihuWDlyOKInMPzmWg90C2jtrKmcwzjN8xHgczB/aM24Oqwvl/2iY1sySTiOQIIlIiOJJ6hJKaEmxNbOnv2Z+B3gMJ9gqWpIkFFQWcSD8hzVncKrwFQKBToCSF6uHWA0ujhrvUz/AMfyWeEY0/CZWqSk5nnJaIx7X8awgItG/WXiIeXV26Si4soigScztG6nZcyrlEbRBb7UB5UNOgBqU9iQWJ7Ezayc6knaTkaXDXTsccb8rEWxTJz9DSeBhGGnd8mlkyva87llZFbL22lY1xG7lWcE3PscXM0IwXfV7kox4f8dHqGkoq1XX2p6aYoG4HmNpuKoFOgX/qe/dXBAk9jLKaMsISw1gbu5bTmaexNLJknP84QgJD8Gniw+Zrm1kZvZL4O/G4WrkyLXAa09pNw8XK5T963I+iXFnO12e+5tvz32JtZE0v915kxk9EIdaVyumgS8+oDdsyNzTHQG6AidoXF+UrmGh97i/xHuRQgIiMuh22Bym8D4ZNqwyu42TuRJmyjFHWh0jOpo5hgaN9KdteH1Bne+HJ4YwJHYOHjQf7xu/D1cq1wdedVpTGuB3jiM6Nxt7MnuLqYpYPXs6UwClsiNvA1D1TEUURR3NHqct48OWD9HDrQX5FPr5LfSmsLpS2VzvfYWxgTO6CXGxMbFh0dhHvHnkXI7kRNZoaIiZGEOwVTOiVSyzdo9aTlwkI/DTT/7EWNnsu3ub7+1bDAoJkoVlfh9DnJx8ySjKo/ri6vk39Ll7e8TLRedEUVxVToa6giUkTVFoVqa+nStXOdyLf4ecrP3PjtRtE5UYxbNswfhvxGy+3efmJ9lmL1KJUvJd48+vQX5kRNEPvvuCNwdytvEvUrCg9ArLwwHEiL+jIwJO4ComIlHGNaIMZde572Pq2IQgIWBpZYmVs9VjkoKE/c4X5v1WcqCWk4v1MmNouQm1xqLVDa2m2YvPVzUSmRuo9P3RUKK5Wrry09SW94W4DmQGdnDsREhBCTlkOP136icKqQupDbUq3OS0AkCluU261jcyaUxRUFkiPCdQsR3bf8a/2XHDPZiEJZQcAsDayplSpSw5XyBWotWqOTz7O8+7P8/Gxj/ni9BfYmdpxZeYVXjv0GpEpkdia2ErH9duI37iUc4lF5xYxr9M8FgcvZvGFxXxw9AMGeg/ktxG//Vc4Cf5RVKmqOJVxioiUCMKTw0m6m4RMkNHZuTMDvQcywGsAHZp1QC6TU1JdwqmMU5LlbK0RiE8TH8lytpd7r6d6FvEZ/v/CM6LxFyGnNIfDqYeJTInkcOph7lbexVxhTm/33pLMqoVtC+nCm1+RT3hyOAduHSAiOYKSmhKczJ14wfsFhrQcQn/P/vVWfq9mlDF/tS647OEFY4rJO+SqziMTZPTx6MMov1EMazUMBzMHrt+9zparW9gQt4H0knQ90vGcOhIDLHk07E1FMVFGL1GjqSHAMYDp7abzcpuXpSyFJ8WfFST0uEguTGZD3AbWx60nsyQTnyY+hASGMLHNRHLLc1kZtZIt17ZQpa5ioPdAZgbNZHCLwXXkbX/3cT+MjOIM3j3yLtsTttNdvhrDGj8e7kDVfpZlXKNzwF1UimRWxawCanXYv1BflkGt13598xYiGpTcw9qyhhz5eq6VHZD242njiaaoA+7qN0Fa4D0I0Fs09LV6ZwGu5V9j6JahVKmq2Dt+L52cG7aPVWqUfHj0Q747/x0uli5klWYxo90Mfhr0E4n5ifRc15NyVTnOFs7klOVgIBiwccRGxrUeR3F1Ma2WtuJOxR1pez5NfLhx7wbmCnNuv3UbU0NTxoWNY3vidswMzchekC0taN7c9SNHo8FW7odzExn7773JpvFfMNRnaEOHK+G99Te4mFz4WB2R1j+35ua9myj/78lmGCJTIhmwaYDUtQkbHcbo0NGsHLqS6UG69PeS6hJaLm1Jf8/+bBqxibFhYzmaepSkuUnYmzVEWH8fb0e+zZqYNWQvyNYzlYi9HUu7Fe3YPGIz49uMl27XaDUErgjkdoExbeUfQE3z+zkmjx/WJyKSZfEBhqa5WBtbY2tii72pPQ5mDlgbW/8uQTA1NP2POOmIokhacRrns85L3Yq0PBEXTQgWQguMTIoI9L3LC2386OTcSco/KqwqxGGRg164nUKmSwkvUz6Q27Wxb8MnvT7B0cyRf536F0fTjkrPMZQZ6hklQEPnBJ2tc6z8VT1b27mtv+FMvDGmWg9q5BmkspJiIQ6ZIMPf3p+r+Vfp7tKds1lngQcZNv848Q8+O/kZtia2XJpxidn7Z3M26yymhqaUK8tRyBWEjQ6TZul+GPgDM4JmMGPvDLZc28KHz33I570/f+q6zU8KURS5ce+G5A5VazzjbOEsyaH6efbDxsSGSlUl57LOSR2LK7lX0IpaXK1c9SxnnS2d/9Mv6xmeoV48Ixp/A7SiltjbsdJQ+ZnMM6i0Ktys3CTS0dejLzYmNoBuIPxs1lmp25F0NwlDmSHPuz0vdTtaNmkJNGSVqAXTW5xShqBFi5WRFaU1pQiCQE+3nozyG8XwVsNxMnciOi+azVc3szF+IwWVBXRTh6PAps5rUFHMLatJ5Ffko5ArUGlUyGVyhrUaxtTAqQR7BdcJG3wcPGmQ0L8LrajleNpx1sWtY0fiDmo0NfT37M/UwKn08ejD7uu7+TX6V67kXqGpeVNCAkOYETQDTxvP/+hxP4zTGad5a+8STPLffKjKqOtK3JR9TYWQiptmGtaCHyYGplSqKtGixRDLeskEgIgKMKgjnSrlGjH3K8c9XHtgIBhwPOM48PBCRZ+kKOXZiBoF5aTwck9H3u83rs7+8ivyGbZ1GDG3Y9gwbAOj/Uc3+pr339zPlN1TEEWRClUFfvZ+hI0Ow9rYmk4rO5FanIqDqQP5lbrh+IV9FvL+c+9TqarEd5mv5LgF4G7lTnpJOjbGNuS9lcfI7SM5nHoYpUZnzXlq6ikMZAaIokjHlR2Jyoviu/7fcTT9KNF50STMSWgwAbcWDblY1ScpC/wlkKv5V9F8Uo8G7TFQm6lxt+IuKq2KpYOWcjj1MEkFSSTOTZS6o6ujVzNj3wzOTjuLt603fsv86O/Vny0jt/zhfV7NKGPd8UwupGZgZ63iXyP76BHtiTsncibzDMmvJ+udHzbEbWDK7inIBTm7xu5i+V4llaXN/1Bn4+9K+v53Ua2uJio3SiIV57LOSaTXp4kPXV260q15N7q6dMXP3q/BLvZ3577j7cNv17ndSG6ETJChETU85/ocwZ7BLLm4hNzy+25j5k5UqarqlY1B42F9tba2AP09+5N0N4ns0mxcrVwlm9xgz2AOpx6WCg+WCktKlaV82ONDvujzBV+e/pIPj32ItbE156edZ/q+6cTejkWGDKVWibWxNVtGbOGDYx9wLf8aW0ZuIcAxgGHbhnHz3k3WvbTud88L/w0oqS7haNpRIpIjCE8JJ7NElzPzvNvzDPQayADvAfjb+6PSqriUc0masTiffR6lRomDmYOuY3F/zsLD2uOZ5ewz/FfgGdH4D6BcWc7J9JOSzOr63evIBBkdm3Uk2CuYAV4D6OTcSaqipxWlSS5Wx9OOU6OpwdvWm8EtBpMSM47yyroXJpVwF5eAjdib6pxIjqQeQaVVYWlkSbmyHFEU6e7anVG+oxjhOwJnS2fOZJ7h69C7VJQ0raPDLZNHk2T4DlXqKhzNHClXllOhqsDYwJhqdTWOZo6EBIYwNXAqPnb1L7Trkxp9vi25fjtRg1LGDLrFUJ+h0rDqXyVVKq0pZXvCdtbFruNs1lmsja0laZVCrmBV9Cp+u/obJTUl9PPsx8ygmWw/4M29sroSM4WiijVveP9t1SWNVsOiY6HsOFuEodoVE7Nirmt/RqVRSQOT+gOnDWviRTRUyZIx1ba4/2hdp0tEQ6z8FSl1G6CFST88mEFZmRkChr9DXnTdjd7dbvDZC1Pr3F+trmbanmlsubaFf/X+Fx/2+LDRC2hWSRYv73yZc5nnsDaxRqPVsG7YOga3GMyLW14kPCUcc4W5NAg8rd00VgzR5Uy0+aWN5MwD0MyiGblluVgaWVJaU8qWkVv46NhHpBalMiVgCmtfWosgCNyrvIfrD65Uq6s5POkwI7ePZHCLwWwasanRz+ePdDQ6reykq1Z++ngJzPWh66quXMi5wECvgWSWZrJq6Cq6renGzjE7pXBDrail08pOCILAxRkX2XJ1CxN3TWTPuD286PPiY++rtqun1eq+XY929TJLMvH80ZPvgr/jjS5vSM+rVlfj9aMXdyru0NSiKdml2XTXHMRQfLzuaGOJ2U8Dskuz9boV0XnRqLQqTA1N6ezcma7Nu9LNpRtdmnf53Y5waU0p+2/uZ2XUSk5knNC7T0Dg4ISDxN6O5YOjHyAgSIRDLsh53u15LI0s2XdjnxSoZ21sTXF1sd52GsrTAVBSxDmDgVgbWxPgGCC5+pUpyzAxMCFyUiQhu0NIKUphRKsR7Ly+U3pu9UfV/HTpJ945/A5WRlacnnqakD0huq6dWomIiKuVKz8P/pnZ+2dTo65h3/h9lCnLGB06GguFBbvH7aat45MFLf6noRW1ROdFS8TifNZ5NKKGlk1aSsSip1tPjA2Mib0dK0mhTmecpkJVgbWxTh5bO2fhZ+/3jFg8w38lnhGNpwCZJZmSm9XhlMMUVRdhaWRJH48+0nxHrSVuhbKCY2nHJOJhU/h2nQE9QRCxss7npvH7JBboQpt6u/fG1cqVvPI8jqQcoVJdibmhue5fbWsCDN/EVPSimY0ZGXfUugWm+ECKVbvQFBCwMbbRXawEcDBzoKCiAFEUkcvkqLQqujTvwvR20xnjP0YaQGtIatSymRk3cirqhFdhepMz6mmotWraObWjp+MU4qO7An+tVOnWvVusj1vP+rj1ZJdm08quFSEBIYzyG8WZzDOsjF7J2ayztBeXYaEJ4mHJEmgpkV0hXj6f4b7DmdtxLj3dev4tF4fSmlIWnl7I9xe+x87EjpY1XyFWeTew+K9LNmotcGPkryBDTiejf1BVaQMIaKlBRE0Z18mQrwF4LNcc/e3rhtIH97zNl/2+rHu/KPLPU//k0xOfMrHtRFYNXaVnG/0o1Fo1nx7/lIVnFuJg5kB+RT5vd32bhX0X8tmJz1h4ZqGugi6CWlTTx70Pu8ftxtjAmKAVQVwruCZtq4lJE+5V3cPUwJSyD8rIKcuhzfI2lNSUsKj/It7upqsiRyZHMuC3ATiZO/FF7y+Yvm+63gK+PlzNKGPeKt2+amc8DGTyehfJ3dd051zWOTSfaJ7IdjmzJBPvJd6otCo+6vERX5z+ghNTTvDpiU+pUldxYfoF6bt4NvMsz619jjUvriEkMIShW4YSnRdN4tzEx9bA/15Xb0HEAtbGriXrzSwpR6hCWcHkXZOlBWmAYwDvdHuHmOh2XEkpaZCsPrr9p2X4V6VREXs7Vq9bUds187D20OtWtHVs+1hd34KKAnYl7WJN7Bou516u43xVi6/7fk2lupLPT34udRPsTe2Z2GYiKUUp7L+1X3qutbE1xgbG2BjbkHQ3SW877dSr6hhAwAMJZox8FoNa+7E1YatUfLA0siT9jXQO3TrEhF0T6OzcmcKqQm4V3sK3iS+55bn8o9c/mB8xHwuFBcemHCNkdwhZpVmUK8sREAhwDODDHh8yfe90XK1c2T9+P3tu7OHNiDfp5d6LbaO2/dvS3L8bd8rvEJkSSURKBJEpkRRUFmCuMKevR19p1sLd2p2ku0kcTT3KsfRjnEg/QXF1MaaGpvRw7UEfjz709ehLoFPg/4xU7Bn+/8YzovGUQaPV6Kog909U57PPo9aq8bTxJNgzmAHeA+jt3hsrYytEUWRPXBxLdlajFUUeZCFAYPsLjO/QDWtja/bd3MeeG3s4l3UOURTp7NwZHzsfSmtKuZR8B6/qRXrDrgDWVuUIamu8nMxw80jmSN5qDt46iFr7oIovF+RYGFlQXF2MsYEx5obm3K26K+mAjeRGjPYbzbR20zh0qilRKaV18gnc7IzJLqyuQ0B+mO5LcwcN4cnh7L2xl+vx3bHUBj2R+8+Tfg7H0o6xLm4dO5N2otQoGeA1gJDAEFrYtmD5mUPcjO8N6BaQgiAiCAILJ7lypXAHSy8v5frd6/jb+zO341wmBUxqNLTxz0JKYQrvHH6H29emNZrA/GC4W/eBlHKNNPlPFAtx2Ant8VMtqUMkaklnGUlY4vdI1+v3yUZtMvmwVsPYNmqbZIzwMLZe20rI7hA6NOvArrG7fnduIDIlkgk7JlCjqaFCVUE3l25sG7WNC9kXGBs6Fo2owcTQhCpVFT52PhydfBRHM0e6ru7K5dzL0nZq3wufJj4kzU0i5nYMnVd1Rq1Vs3fcXmkeY87+OSyPWs4o31EotUouZF8gYU5Co4OXbRe/iFDcD1eTTmRUXuTjl7owpkPnOo/rva43JzJOUPVRFcYGxo2+7voQsjuEQ8mH8LTxxFJhSUZJBgFOAYQEhDBo8yCOTzlOL/de0uNf3vEyx9KOcXPeTUqqS/D/2Z+x/mNZ+eLKhnfyEBqTha183QOX712Y12keC/suJLs0m2WXlvFL1C9SRX12+9ksH7wcQRB4JfRLkuJ76n5LDXyP/m5pYn3Ir8jnfNZ5iVRczr1MtboaI7kR7Zu1l0hFbSje4yKzJJOwhDDWxa3jav6DzqG1sTUjfUeSVZKlNwQuICCXyaXzsUKm4PuB37MjcQfH0o/pnmtkrXNqs3DmdvltwsaEMWTLkDr7biyoT0SDYJLMCdVk6TYZMuJejcPe1B6vJV4oNUpCAkNYGb0SKyMrprebzqb4TeRX6jKgwieEE7InhHuV9yiqLkImyOjt3pvhvsOZHz6fvh592TB8A+8feZ+1sWt5s8ubfNP/myeS4v7dUGlUnMs6Jw1xx9yOAXRZW7XEokvzLuSU5ehZzt6puINCrqBr867SAHcn5071nhOf4Rn+2/GMaDzlKK0p5UT6CWm+41bhLeSCnC7Nu0jzHcbqVmw5eYfk2+WYmpVSZbmfY3lrKaouwt7UnhdavMDgFoMJcgridOZp9tzYQ2RKJFXqKrrIVmKsbI3+MLGGIuEy8fI3CLIejrs4A021PZ6OJji5JHIoezknM07qObooZAoUBgrKleVYKizRiBoqVBUo5AqUGiXPaQ5iUK80QuTF7hry7tiSdqeqQavCUd/EcK+eRY1auIdfp9283fVtWjRp8We97XooqS5he8J21sau5Xz2eWyMbRjfejzd7Sdw6LKS7AIV9zSJ3DPZzojAIGa2n0kbhzYcTz/O0ktL2XNjD+YKc6YETGFOxzm0smv1lxznw5jxyzmSc4RGK8QiInKDau6Yf0NC+UHp9vpsLB88R4MWNXLqdhseJS/6CxcRhUU6kVW6OQ1fO1/CJ4bX6zZ1Pus8w7YNw1xhzv7x+/G1b9xWOa8sjwk7J3Ai/QTmCnNMDE3YPGIzzhbOdF3TleLqYknuYW9qz7Epx/Cz96PP+j6czDgpbaf2Me2c2hE9O5rdSbsZvn04hjJDomZF0caxDRqthlbLWpFcmMzPg37m4+Mf09+zP1tHbW3w+Dr82oGovChUH6vw/smbfp79WPXiqjqPG7BxAJGpkRS/VywNAD8u4u/EE/hLIEsHLaW42JqtpwpoatSO28pYfhg3lPmnhtHMohmHJjywNs0qycJnqQ/zOs3j6/5fs+LKCl458IqeDW1jeG/9DS4lF/HwuaOWDNh47eLTE5+ya8wuNl3dRGhiKCYGJrRs0pKYvBiaWjTl1rxbmBiakF2ajdsPbphrW9NGsxhD6u9UyGV/r1xKo9VIuRS1xKI2ILKZRTO6uXSTiEU7p3aNduAehSiKJN1NIjQhlE3xm0gueiDnsze1Z6z/WCYFTKJjs45Uqiqx+spKbwgcHnxfAb3wyuYWzfmwx4d8dfYr1Bo1ueW5hI0OY2fSTjZf26y3DQGBLup99Ya81qK2QNDEpAlFVUV80vMT3nvuPZ5f+zyXcy/T060nJzNOIiDwRZ8v2HtjLxdyLmBmaMbecXuZuncq5cpyyVlqrP9Y3K3c+frc18xuP5sPe3zImNAxxN6O5dehvzI5YHKDx/I0IK0oTSIWx9KOUaYsw87UjgFeAxjgNYBgr2A0oobjacc5mnaUY2nHyCjJQCbI6NCsgySF6u7aXc844Rme4X8Vz4jGfwEenk1wagJOLolEF+/kaOpRSmpKsDa2pq9HX4l4uFu7o9aquZB9QRoov5p/Fbkg5znX5xjcYjB9PPqQVZLF0lBLNKq6lXalcJdrsg9op1kOD3U7ZILA/BEmdPZ2IiwxjDWxa4jOi9Z7rrHcGK2oRalVYmtiS0l1CX6q7xodONQ2Xcms9rOY2HZivQO2DQ29F8suEyt7HQBLI0t6uPZgXqd5BHsF/yWSpRt3b7A+bj0b4jaQU5aDn70fIQEhdHftzr4b+1gbu5Y7FXfo7NyZmUEzGdt6LEVVRayIWsGvUb9SUFlAP89+zO04lyEthzxR1e5xZlVqpWoabeM5BTXkk9NkLv09+7Mudh0aUdOoZhtAiwoBWZ05Hq1QgYiKCjEXC3z1umQiIh07RJFec5IdSTuwEgPwFGfgbNQeP2fbOq8hvThdymUIHR1Kf6/+jb4nGq2GL05/wWcnPsPa2JqSmhI+7/U5czvOpduabiTdTcLM0EyaK9o/fj+BToE0W9wMpeaBy5OJgQlV6ip6uPbg1NRTku2trYktCXMScDJ3Iqc0B48fdYOYi4MX89qh19g+anuDA6t91vfhePpxKj6sYPH5xXx55kvy3tJl6Dz8WRZpk7hc/TXJ7xz5ww5Qg34bRHJhMtuHXOStdbek7I7a3+yQ3rm8dWokMbNj9OypPz/5Of869S8S5iTgZetF3w19ySjO4OqrVzFTmDW6z5i0Qt5cc+P+b1omdSO/muxB/7CWKOQK8ivy8bTx5I3Ob9DXoy/tVrRDpVWxcfhGJradCDwgYqCb/XEp/0Jy0auFb3OzvzyEraiqiAvZFyRScTHnIuXKcgxkBgQ6BUqkoptLN1wsXf7w+UUURS7nXiY0IZTN1zZLGRcATc2b8nKbl5nQZgKBToFSlseV3Cu8sv8Vom9HYym2lcI1vZ3MiVMuJr50n7SNlrYt+Tb4W10lfdMAovKidJLKPguZ32U+ZgvN6rX7/b3CQiGXsPIMo1JViVKj5MrMK0zbO43tCdvRilq0olaacfrwuQ9ZeGYhckHO3vF7mbF3BtXqaoqqdQGNczvOpaCigNDEUBb1X0TX5l0ZGToSA5kBu8buokOzDn/oPf07UKmq5ET6CWnW4ua9m8gFOd1cukkOUa5WrnqWs9fv6pLX2zi0kZyhnnd7/g8XEP4o/m7L9Wd4hsfBM6LxlKMxG1VfFxMu51yWhsovZl+Uhs1qZzt6uffCwkg3mHnw1kEO3DrA0dSjVKmrcLd2p7V6MRUlzepNEgfqDWgq5BLVDssY4z+GUX6jsDayZlvCNlbHrJbCgmphYmBCtboaKzGAAM0v9bbn1bJCapp/QnReNAYyA0b7j2ZW0Cyec31Oupg39D78MN0XtSKFxecXE5kSKbm5GMoMCXAKYErAFGYGzfxD1cbHgUar4UjqEdbFrWNX0i7UWjUDvQcyse1EBATWxa0jIjkCM4UZL7d+mZntZ9LavjU7knSyqgvZF3CxdOHVDq8yI2jGYy8s/4it7tWMMpaHZ5KUXUH9cxm6z7LWVWaYzzBu3LuBwe3ZjSw8RDRUIsOoDpGIlb+CzDgLN2s30m6L0qKoQkhBaXmI6xURzG29iOvXvVBX68KmatOH5TJZnddQWlPK2LCxHE45zNJBS3mlwyu/+/6cSD/B+LDxlNaUShbF64etZ86BOYQlhUkdNpkgo4tzFxLvJvKcy3Psv7Vf2kZtlsYL3i9wcMJBpu2ZxtrYtfg08SFmdoyuYxK/mQm7JtDStiX+Dv6czjxNwpwEHMzqErThW4ez+8Zubr91G7VWjesPriwbtIzu9hP0PkvQokXLp+Md6ePn9buvtRbH047TZ0MfQkeHcvlymzqEXERDBy8rdpQM1mUxjHxQ1a5SVdFqWSsCnQLZM24PyYXJtF3eltntZ/P9wO8b3e+e63uYvPUTJjivpqBIjou9IcYO51iR8AGFVYV0bNaRj3p8xJCWQ5DL5EzeNZkt17bQxqENV2ZdQSbI2HptK+N3jMdIboSh3JDJbSfzSuuv+P5gHNdziwlya8YrwS3+dIKhFbXcuHtDr1tRO7tgZ2on5VZ0c+lGh2YdnrjyrNaqOZ1xmm3XthGaFKqXY+Fq5cqktpMY13oc/vb+0rmutKaU9bHr+fb8t5KzU22GRd3f3Ks0d1Dz86Cfed7teQRBYEHEApZcXIIgCExoM4G1L61l8fnF9TpW1b9t/c6kwvEAwUGWvHfkPc5PP09EcgSfnPgEe1N7CioLMDEw4aPnP+LT45+iEXU5M/09+xOVF4VW1Eok4+MeH3M07Sixt2PZNGIThVWFzDkwh87NOxM2OqzBsNq/G6IoklCQIBGL2jBeVytXBnoNZKD3QDo260h8frw0ZxF3Ow4RkRa2LfSyLOo7H/xV+E9arj/DMzSGZ0TjKccfsVEtri7meNpxaRgtrTgNA5kB3Vy6ScQjqGkQSo2S4+nHOXDzAEcSk3Eq/VS6yAiICAL4BpwiLr4NBtq63YUa8rlo+BJyQTf87WHtwWi/0YzyG4W5wpwt17awOmY15aV20mKznBRMcMIE90esUx8sdhVyBX52fhRUFpBTlkMru1bMCprF5IDJNDFtUqdaU5/EqqCigB8u/MCOpKzzVNMAACAASURBVB3cKryFVtQiIOBh48Ewn2Es6LrgT3eEKq4uZtu1bayNXcvFnIvYGNvwcpuXGeg1kEs5l1gbt5bs0mwCnQKZGTSTCW0mkFyYzLLLy9hybQtaUctY/7HM7TiXTs6dGq2UPomt7tWMMpYfyiQp5wHheHTIvxZmhmYMdJ5NQfLIBvXy4n37XDttT+mzzZCvlrZTW+07nXka0C1kPLTTscQXmWhxf5t1SU+Ahxk/TtN3mFFr1SyIWMBPl35ifuf5fBv87e8OSOZX5DN512QiUiIwMTDB3sye0NGhHE87rnPnEQRpSHZIiyFS5XVN7BppGwYyA9RaNWP8x7B5xGZ6re/FmcwzDPAawMEJB5EJMkZtH8WOpB3MaDeD3Td209OtJ6GjQ+t8frVEJXleMl62Xry09SWyS7PpZ7S5XlLQxt2Yn6brW982BK2opfOqzsgFOeenn2fMoth65yYERBzsS4gofI+oN3ZINs0AoQmhjAkbI4UUfnfuO945/A5np52lq0vXBvc9cvtI0orS2DZqG0suLmFt7FqUGiWmhqY6h6KpD2RpcbfjCFyh66ScmHKCnu49qVRV4vito852+f7nsX/8fga3HExJdQk2X9uw+sXVTG1X16nsj6KspoxLOZckUnEh+wJF1UUICLRxbKPXrfCy8fq3uqHV6moOpxxmW8I29lzfQ7mqXFq4e9t6M6ntJEb7jdaTBNZ2O7499y27ru+SZi9aNWnF9XvXG0zlNrXM4eA7o6Tbfov/jYm7JmJuaE67pu04POkwCrkCs4VmjaabN9UOx0M7G0OsqP1t1s5lyQU58YZzmdSpB12ad2Fs2FhG+Y4iLCkMmSAjZnYMcw/O5UzmGV3K+v2uoImBCcU1xcgEGf/s/U/WxKyhTFnGzjE72Xx1Mz9f+ZlX2r/Cjy/8+B+fTSiqKuJI6hHCk8OJSIkgpywHYwNjern3YoDXAHq59eJe1T2Opx/nWNoxLuVcQiNqaG7ZXBre7u3e+3dDXv9sqLVqkgqSiL0dS+gRC8qKHeFvmmN8hmd4XDwjGk85Ghq4VAv38AraRi/3XvRy74W7tbve/aIoklKUIs121GpJbU1s6efZjwFeA+jv2Z/mls3ZF3eVjSdzKCgyoEibSLpsNe5OAp6V/6Kk2KHebsdVg/nIBblUwTKQGaDSqmhu2ZwxfmPoYDOSVfsN7i8gHqTICtJFrHbwXCROPodiIU5PGqCUZyJaHyG+dB8ymYxRfqOYFTRLqto9DlQaFRviN7A2Zi1ReVFUq3WJy01MmtDHow/zu8ynm0u3J/pcGkJSQZIkrcorz6O1Q2smt51MU/OmhCWFsf/mfhRyBWP8xzAzaCY+TXxYF7eOny//TFpxGh2adWBux7mM9R+LiaFJne039H2QG1bw6zw3vQXko6glaom5RdxTXyNBswQj09sUVBXUeWwn29EYF8xGEM0blLslGCyQbDPrQ0/XnsRkFD22Q5VKuMvnU43p49Gnzn3LLi3jjfA3GOg9kC0jt9QbXvkwtKKWRWcX8eHRDzFVmFKjrmHxgMW0sGnB0C1DUYkP3sMx/mPYOHwj7x5+lx8v/ijdXvv9nhE0g+8HfE/b5W1JK07jzS5vsnjAYmrUNbj/4M7titt80vMTPj/5OVtGbmFca/28kLci3mLxhcWSbGn/zf0M3TKUF40uUlpR99itzAR2v9+x0ddXi23XtjFuxzhOhpzkebfn6yWite+5TACNqMHDP4K14z57cL8o0mt9LwoqCoh7RRe+1m1NN8pqyoiZHVNvN/Be5T0cv3WklV0rEgsSaWLahFc7vEoL2xZM3j2ZUyGn6OHWQ3p88MZgjqcf5wXvF9g7fi8Ak3dOZuPVjbhauSIX5OSW5VL4XqHUPQj8JZCgpkGseWlNnf03BlEUSS1KlUjF+ezzxN+JRyvqMoVqh7W7uXSjk3MnyRnv30FJdQkHbx1ke8J2DiUfokZTI5ELXztfJgdMZpTfKLxtves8b2P8RhafX0xacRoAxgbGTGo7ibe7vc0/T/6TTVc3NShnbGJhQNi7QQDE5MXQbU03jORGumC8mZewM7VjY9xGJu9ueO6hoY7GA2ioNLzKN5N9GPjbQAa3GMzu67vRiBoOvXyIanU1w7cPRy7I+WXwL8zcPxNjuTE1mhoM5YZ81vMzFp1bRFOLpqwftp4FEQu4kH2BpYOW1hvk+XdAo9VwJfeKNGtxMeciWlGLn70fA7wG0M+jH6aGppzJOsOxtGOcyzpHjaYGO1M7Kcuij0cfvG29/zbL2UpVJfF34onJiyHmtu7v6p2r1GhqAHhOe6jewmB9mT3P8Ax/J54Rjacc9S0cBEHE3CqPbPPPib0dK/mR93LvRS+3B8Tj4ROgSqPiYs5FiXjU2ib62vlKsx093Xqi1CiJTIlkZ0wU6cmtMdHqKiG1qQoIoGq6lPMFW/SGE2XIpEWnocyQVspF9VbgyoTrqMRSqRKeJV9LmewaZlr/OvMgtdIAe9sKKlWV5JXn0bJJS2YFzWJK4BTyCoz+kB71VMYpfrzwIyfST1BYrZMwGBsY07FZR6YHTWdim4l/mp2gWqvmcMph1sWt012UtRoGtRjEiz4vkluWy7rYdaQVp+Fn78eMdjOY0GYCl3Mvs/TyUsKTw7E1sWVGuxm82vFVPRJZ/6yKSLlBNDHCPF5u8zIfPPfB7w5QqzQqfrnyC5+e+FQiYA9XPC3Ftnhr3sASf+qb8agdEH1YYlEfustXY1Dj2+hQuu4VaBCNb3JGM43Pen7GR89/VMfiNSI5gjFhY3CzcmP/y/vrHSR/FOeyzjE2dCwFlQXUaGoY13ocWq2W0MRQRETJIa2zc2ciJkbwzdlvWHhmofR8mSBDK2p5q8tbvNn1TfyW+VGqLGX10NVMC5pGUkESrZe3xtTQlP4e/TmZeVKa5ajFwtML+ejYRxybfIzeHr1Ra9V4/OiBf81yair0F48iGnxdDVg+8/eJhlKjxHeZL372fuwbr9PqPyqfqLto1FIku0zku2P1ZB2xt2MJWhHEDwN/4PXOr3Mt/xpBK4J4r/t7/LPPP6XHVaur2XJ1C/93/P+kruPbXd9mQtsJGBsY03NdT2rUNZyffl46/xxNPUq/jf2QCTIS5yTiY+dDTF4MQb8GSdbCbR3b0tS8KeETw6V9zTs4j/CUcG7N05djPooqVRVXcq/oEYv8Cl1gYyu7VhKp6ObSjVZ2rZ7IOrg+5Ffks+f6HrYlbONE+gmp6CIiEugYyKSASYzwHVFvEehSziW+v/A9O5N2SkndPk18eP+59/l/7J13WBT3+vY/2+gdlCZgoQmIImDFkqKxa6KxpdljiyWak2KSk+SYHNNN7IlGk2jUaKLG2JLYQREQEUQERAERpPe6Zd4/1h1Zdxc0yTnv+/5+3NfFFeLOzs58mZ15yn3fz6TgSRTVFvHuqXfZenkrYFxHIZEIRHZx4MMXAiipKyHiqwgtTUmA2FmxdG3Xletl1wlcG2ggJG+OljQaOlhZqrhopj2XrLIsSupLeDroaZ4PfZ7Ru7SObNN6TGNnyk4xybIxs2FJ7yWsilnFQJ+BvDngTZ7f/zxN6iZ+mvgT/b37/9ml/1PIr87nt6zfOHr9KL/f+J2y+jLsze15vPPjDO0yFC87L64WX+VE9gnO5JzRGpuY2zHIZ5CoswhuH/y3XT8toay+TC+huFRwifTSdDSCBplERlC7IMLcwwhz0/50d+vOv3cXGu12B3hYY2spb9NttOH/GtoSjf/H0ZI2IcTblvL6cs7mnuVU9ilOZZ8ySDy62gzndk4Ad0rRu8mU1Zdx/MZxkWZ1q+oWZjIz+nv1J9LpaRLiwwEdd1wbSlaRyk3Zl4T42DKsyzDaW7fncMZhjt04ZtCWN1WBa6SITLvpWMotuV19W6RMmKIGNNcQWCms6GDXgZvlN7ETQummXHtXNGk4LKw15FTk8Hns5xxIP0BORQ4CAlKJFH9nfyYGTWRxn8WtTn1+UJTVl7H7ym62Xd5G3O04nC2dmdJtCsHtgjlx8wT7r+1HIpEwvut4ZvecjaetJxsvbmRr0lYqGyoZ5T+KBZELGNJlCKm5tUavh1UvdOZc8Q98FPMR+dX5TAiawIoBK+ju1r3FYyutK+WdU++wPn49dhZ2VDZUYit0a7HCKSCgoYkKEsmRfUOVJNnk/lsTluv2B3DbbC2je7VjdexqhnYZyvdPfm+gXUktSmXUzlHUK+s5MPkAvTsY2sQaO8fpB6ZzMOOg2KX4R79/8MfNP0gsSBSTDR97H85OP8v25O28ceIN8f264PGdQe8wJmAMvb7uhQYNJ184yUCfgayOXc3SY0uJcI8gpzKHfl792Ddpnxhof33xa+b8Oodd43cxKWQSAEv3f8Gli/df71oFzMJxcp4O79XqeX154UuWHltK8txkgtvfm5Ct61zFZ1XodSN1aKKYRx+J1UsgAF48+CI/Xv2RzJcycbFy4d1T77Ly7EoSZifgZuPGhoQNbEjYQFFtEQ4WDgQ4B+glFHG34+i9Wcu3Hx80HtB2lsI2hZFalMqLES+ybsQ61Bo1/mv8uVFxg6Gdh3K15CqFNYV8PORjvcF+P6b+yKS9kyhYVqCXuN2qvKWXVCQWJKLSqLBWWNO7g/5AvL/rO6xDdkU2+9L2sTt1NxduXwDuuav18uzF1G5TearrU+KQ0eaobKhke/J2Pov9jBvlNwBtUWZS8CSW9VtGD7cepBSm8M7pd9iXtk8vgb+/6wBqZHfnsQR2sOSJ7U9w/tZ5GlWNHH32KEO6DCGjNIOBWweKujVTaP07KqBU3OS2/evIJDKyyrOQSWTseGoHU3+eigQJakGNXCJHLpPToGrAwcKBKSFT2JCwgZlhMxngPYC5h+bSrX03fp70s9H1+bvRqGok5laMSIdKLkxGgoQIjwiGdhlKULsgSutKOZ1zmpPZJymrL8NSbkmUd5Sos+jp3vM/arMrCAJ5VXliMqFLLHTaHCuFFaGuoWJCEeYeRkj7EKP218ZiheZo02204f8W2hKN/w/wINoEHcrry4nOjeZU9inOZuRiWbS02cNJg0Qi4dWJDgwN9hcDBEEQyCjNEEXledeGYq+JuK/CpcGjfS29e6Vy4uYJ/rjxB7XKWrztvRnuO5ygdkGkFKbwc9rPlDWUtZg4ZJi/ir2FPaV1pdoHlFROZNM+k4lJnGKcQUUugvVYq3oYVOG6elqzfm4wD4N6ZT2bLm7i++TvSSlMESuMbjZuDOsyjGV9lxHiGvJQ+zSF1KJUvr38Ld8nf8+dmjuEuoYyoesE1IKanVd2klGaga+TL7PCZvF08NMcv3GcdfHruFx4GT8nP+ZHzqe38yT2n6syej00qhr57vJ3/Dv639ysuMlo/9GsGLCi1YA8tSiVpceW8vuN3wnTrDWYWWLMurZ516lKkmy0u2H8OjC2L+3vjdJcvB1cuV1eQ5Msl6UjQpkSqU9vK6ot4sndT5JYkMi3475lYvDEVtddEAQ+ivmI146/hhQpZjIzvhr9FSezT7I1aauYgNib23PyhZNE50az6Ogig/2sfmI1PvY+PPnjk1jKLUmdn0onx04M3jaY0zmneTb0WbYnb9dzVTqQfoBxu8axZvgaFvZaCMCiLUkkZ9cbrEsVV/hydgBR3lEtnk9VYxVdvuzCGP8xbBm7xeg2//j2GnHXy/U+QyoBa/t8zqqmk7skV4+CVlxbjN8aP22AOGoDTeomgtcHU15fTlVjFQqZgmndpzEmYAzDdgxj94Tdems/cc9ELt25xLUF18TO4M6UnUz9eSrWCmtuLr5JO+t2fBLzCa/88QoDfQZyIe8Ck0Mm8+3lb8lYmKFnUV1QXYDHZx588NgHWMotxeQiryoPgM6OncWkom+HvnRz7fa3B4WCIHC1+Co/p/3Mj6k/cqX4ini9SpAQ5R3FlJApPNn1Sb1kqPn7427H8WXcl+xJ3SPeWzrad2R5v+U81/057MztiM6N5q0Tb4nTvy3llljKLcXOK0A7aSRuTc9gQxc9kfzy35bzeeznaAQNG0ZuYG7EXNKK03j0u0epaayhRlnT4jm23tHQJsD17VYTV74HOzM7Ij0jOZl9EqlESqRHJOfzzot0KQGBxzs9zh83/2DlIysprSvl8wuf80L3F9g4auOfmhHzoLhedl0UcZ+8eZJaZS2u1q484fsE4e7hohbmxM0TFNQUIJfK6dOhj9ix6O3Z+283DtFBrVGTUZqhl1Qk3UmitL4U0FJ6m3cperj1wN/Z/6G67M1jhU6ulpTV1nHjjlKv4NCm22jDfxtticb/YBjna2uD/QqnTxnccTCDfAYxuONgOjt2FhMPUzMrGikiVj6G4HbBjA0Yi5utGxmlGRzKPMSN8hviBPK+Xn25dUdGRsq9gXa6oPSybB6VkmQxsLOUWxLoEohl8QIUjfcPgdPvaOgEulrv919MVOEEnh9Rxwt9Bv2pFrcgCBzKOMT6hPVE50aLPvU2Zjb07dCX+RHzGRMwBqn0r7XPVRoVv2X9xtakrfyS/gsaQcMI3xH08uxFanGqKAgdEzCGWWGzsFZYs+HiBvZe1TonPdvtWRb0WkCoa6jJ/e9M2ckH0R9wreQaQzoP4c2BbzLQZ2CL5/5rxq98/IMCmRGur7H5GAJqlFQhoLwrCtfvcLTmaGNqGrEukQGB/n1SWTlilh4VsEHVwKxfZrEjZQfvDX6PNwe+2SpX+uVjL7M+fj3Ols4U1xWj1Ch5MfxFurp0ZemxpeLnK6QKfp70M0U1Rcw8ONNgP9+M+Yai2iJeO/4abjZuXFtwDblUjsdnHtQ01TDMdxjnbp0jdX4qHrYenL91nn7f9OOfg/7JO4PfAUxrbRopYuUMK6M6leZ488SbfHr+UzJfyjRZHU7JqWbRllSEZsM8ZRIZKyY788RPgXz4+Ie83Pdlvfesjl3Nst+W8dnQzziQfoCT2ScBGO47nB1P7cDR0pG3TrzFmrg1FCwrEHVEN8pv4LfGj7XD1zIvcp72XFSN+H7py+3q2/z7sX/zatSrojWwgMDSPktZG7eWySGTOZNzhuuLrlNYU6jXrYjJjUFAwFxmTqRnpF63wlhg/2dxf4AWHlxJYrk2uciuzBYpdDKJjMEdBzM5ZDJjA8aadIvTdS8+j/1cnG8hk8gYGziWZX2X0bdDXwS095q3T75NUmESoLXofrX/q4wLHEfwev2CiaetJ/nV+bzS7xU+HPIhAD+k/MAzPz+DvdCdgbbvYK72oZ2jmkMly7C1LyW1OLXVczfslph2qFN0+I7EO4lIkSKVSrUGDec/Eb/HXvZe5Fbm4iIJZ6jjh+SXaijTXGVsH1veHT79b9cz1DTVcPLmSbFrkVWehUKqoL93f/p79cdaYU1WWRYnc05yo/wGEiSEe4SLGoso76hWbZz/DBpUDVwpuqLXpUguTKZOWQdoHceadynC3MLoYNfhT61PvbKezLJMrpVc0/tJL02ne/1uo8/JNt1GG/6baEs0/gejpWDmovl4LOQWVDdWIyDQwbYDgztpNR5JiT25mqs00IXIrW8Szzxxsi9oW7sDvAcwyHsQDeoGzuae5WzuWVQaFd3tx+KlfoHGOifqJFmkqr6kQnL53j7vBpwyiUzUaEiQ0lw8nin95D53I20gG6r+Akeht9FAtYoryOVKnGRBBHo4MPOxTn+6TZxWnMan5z/lSOYR8mu0vvdyqZyQdiE8E/oM8yPn/+WhS6V1pey6sottl7eRkJ+Ai5UL47uOx97cniPXj5BSlIK3vTczw2Yy0m8khzIPseniJvKr8xngPYAFkQt4qutTKGQKg32rNWp+TvuZlWdXklyYTJR3FG8OeLPFOSOvbEsjIasK7ksoWh/Up9/h0MFOCCVE/REKHEwKwU1DQykX6Bx8km3jtuFg4XDvcwWBlWdW8vapt3mm2zNsHrPZZLX0/K3z9P+mPx8P+ZiZPWcy65dZ/JT2EzKJjFDXUF6Pep3n9z8v6lUkSPhi+Be4Wrsyae8kg/3tfXovv6T/wnfJ39HTrScXZl8g/nY8/b/pj5OlE3KpnAiPCA5OOUh6aTpd13VlYa+FrBm+BtANu6swWOMy4lj1nB8j/EeYXJH86nx8v/Rlce/F/Pvxf7e4ej8lXuTdfdF4W0aSWx/P1EHtee3xKUw/MJ3fs37nxuIbouNPTVMNmy9u5h9//EPUrSzts5S423Hartrcy/g5+9H5i84M7TKUr0Z/JX7OwsML2Z26m9wluWLy8UXsFyw5tgR3G3duLNYWIh7/7nGO3zzOiqgVfJP0DX069OFMzhlcrFxQapQipcjT1pN+Xv3IrsimsrGSlHkp/zFnIh3lRCMICMK96zhFvpByLiGXyhnSeQgTgycyJmCMSTqWIAhcuH2BdXHr2J26W+xeuNu4s6TPEmaEzdCep1rJzis7effUu9yo0J6vi5ULbw98m1k9Z2GpsGTh4YWsi18n7lvn5ORi5UL24myszaxJupNE3y19sVIFEapai1Qiu6vL0XZ/q+12oKzyM7h3GoPOiMNR0h2pYPx+ppZUIe28ktM5p5EiZW7EXLbHR4sGHgqLUrKl31DRWEG45qu7jn8yJBIBqUTyt9B1BEEguTBZTCyic6NF58PBHQfjau1KWX0Z0beiuVp8FYDgdsEiFWqQzyAcLR3/0jHcj8qGSpLuJOnpKdJK0lBpVEglUgKcAww6Fc5WxobXtnzexXXFBsnEtZJrZFdkiwUaFysXAl0CCXQOJNAlkCuXe5FbYP5QLoVtaMPfjbZE438wTFmhdvbU0CnoBKdzThOdE02dqg65RI6lwpKaphpshW6EiTMvpHq6kGAvG9JK0jiSeYSfEhOoLeqLtdBZfJA52FcwtPNQPOw9xAmqOk73kM5D6GDbgYSbJVQVRGAt6ITmcgRUd6tpEmRY3q2ugXbqsEDz5CNJpq2Yhqm/Mhq4am+6GrGKKwGeG17HtL6P/CUhX0V9BWvi1rArdRfpJekincvb3pvR/qNZ3nc5HR07/un9A6QUpojUqqLaInq49eARn0corC1kf/p+GlQNDPcdzvQe07WC7osbOZ1zGncbd+aEz2FO+Bw8bD0M9qvrVqw8u5K423FEeETw5oA3GR0w2mBNDAXF2s5CFWnYcX/X6cH0Gw+i1TAFa0s1MbIROFo4sufpPYR7hOu9vuvKLqbtn0aERwT7Ju0zqDI3qBrouakntua2nJtxDplUhiAIbEzYyOKji5FIJDhLwnnEfiU5RY1UCRnkyrZSKbnMwl4LeaLLE4zZOcaAFnZ46mH+deZfnM87z6TgSeyasIvX/niND2M+pLdnby7cvsDWsVt5ossTeHzmwTPdnmH7U9sBOHChkNW/5jRbP+3eM6QfsnbyszzV9SmT6zHn4Bx+SvuJrEVZeomXMQiCQMBaLRUrozQDJ0snfpnyC2nFaQStD+KbMd/waKdHWRu3lq8Tv6amqYb+Xv05k3tG1FrUKevovrE7bjZuvDf4PR797lHOTj8r0ruiM/J4acc+2iu608PLlWcHe+DtqsH7c2+qmqq0XP5uU9l+eTvP7X8Oa4U1XvZe4lAzAD8nP0b4jRA7Fjqb0C2JW5jz6xzKXy3/W9yhmqNeWc9vWb+x8WAT9VUdDLqpCutspo3QMMp/VIuD1ioaKtiRvIMvLnxBZlmm+H0Y5juMJX2W8HhnrRC+tqmWzYmb+SD6A1Gs7mXnxbuD3+WZ0GfEREojaLBYaSEmKqDtqNY01bDn6T1MCJpAaV0pPTf15E7tHcJZj2VTt/s61xrxt/vNNUwlG+Yyc15wjiMjvx7DjoaABEiUzaFaksLzoc+z7/Ilg9keALWSDKwFfwPK3p8NbkvrSvn9xu9icnGn5o5Y4Ors2BmlWkliQSKX7lxCQKCLYxe9WRZ/V+dLEAQKagr0aE+X7lwSk2Nzmfk9PYW7NqEIdQ19qEKUSqPiRvkNowmFbh6JVCKls2NnvYQi0CWQAJcAXKxc9PbXmsazDW34b6At0fgfjAe5yag0Ki4VXOJMzhnO5J7hTPYZKhorcBB60EmYiYWmIzVkUWt7gL6+HqKdbn1Ve5ZuvaY3bExA4JJsrvggk0vl9HTrSd8OfVELamJvx5Jxu8lom94UpcaYa06lNIFL0pcIU23GjhCDQLf5+7X/pq0UFzusYmHkQmaEzcDd1v0vra1ao2Z36m6+uvgV8fnxYkvcwcKBQT6DWNR7Uav0l5agVCs5lnWMrUlbOZh+EAGBYV2G4WXvxYW8CyTeScTdxp0ZYTOI8o7iwLUDfJ/8PY3qRp7q+hQLIhcwwHuAQddCEASO3zzOyjPaymRI+xBWDFjB00FP63GBm1NJXBxVXFOvI/HO/YGFaava+ztSDvREitlDdzQEBAI8LHltsi0T904kuTCZ1U+sZm7EXL1zi82LZeyusVgrrPl16q8EtQsSX1txfAUfn/uYSy9e0hNNg9Ztacr212lf+ZZewKSl+c2nUnKZYb7DWNp7KcN2DNNLNiRI+P2535nxywxyK3P51yP/0grwN3YnpSiFKK8okouSiZ8dT8DaAEb5jeLgVK07lLajUXnf2Wq7N9NGqA0oTTroXK4+GfIJS/sufaA1fPvk23x54Utei3qNd0+/S8krJVgprBi4bSCX71ympqkGewt75vScw8JeC/Gy92LUD6NILU7l6vyrWCosOZ19msHfDqaPZx8KawvJWpSFRCIhJaeaxVtS0dylZ+nuMYGhp1l/5VU87TwZ0mkIMXkxZJRmYCeE0kWYjaXQGbXiNkF++ezMWkXZP8qM2jlnlGYQsDaAI88cYZjvsAc635ZQ0VDBoYxD7Lu2j8OZh6lX1dNP/StmgiEFqiV6iSAIxObFsj5hPT+m/ihOl3eydGJh5EJmh88WKW2ldaWsubCGz2I/E6mYAc4BvPfIe4zvOt6Ag38o4xCjdo4CdDNoZmEt+KOQKnCwY/eXeQAAIABJREFUcMDPw4qE+g+JLt6Ovbk9A4SjVNQY2kwbFgH0qaj348jUI3yy3RG1xtR3Wtst9gn6lf0Z+03q8Ex1Ph+UrqPSqIi7HScmFvG34xEQCGkfQnC7YBRSBVnlWcTnx6PSqPCw9dCznPVx8Gn1M1qDRtCQVZZlINLWJYj25vZ6XYow9zACXQIfWCNU2VBJemm6QTJxvey6mGDamNmISUTzhMLXyfehdCQPo/FsQxv+E2hLNP6H42FvMhpBw5WiK9rEI+cMp7JPUVynnbNgpbCiXlmPrdCNUPUnyLGjeeVLKoFuHS2IiEhmd+puTmefFh+sAI4WjvQU1qKu7Yy2U/HnoJFW8Ogj57mW10BB+miaW+KC1Ggwq7Nj5e7WT3R5gkW9FzG0y9C/xdI2/nY8n53/jOM3j4vrZS4zJ8wtjGk9pjEjbIZRatODoKSuhJ0pO9l2eRuJBYm0s2rH0C5DUaqVHM06SlVjFUM6D+GZbs9QWl/KpoubyCjNoFv7biyIXMAzoc9gY2ZjsN/o3GjeP/s+R68fxd/Zn9ejXueZbs8YPU5BENh3bR8rDn2FonI4NnRBggIFdiZFpLq/x73ukqH42+B3QdBLIAQE6qXpnH5zIhKJhGW/LWNd/DqmhExh06hNemLmnIocRu0cRW5lLnue3sPQLkNJLEik19e9eGfwO7w58E2jx7lsWyqJWdXoX5PaoxJQUU06gvNBPhw9j+E7hotOabpjPvbsMZ768Slqmmr4aeJPDPQZiNfnXqg0Kpwtnenu2p3fbvzGQO+B4hC7cR9cpLLe0HJUQIO5TQ6fTB5hlGYybtc4Lhde5tqCaw8cbFwtvkrw+mA2jNzAvEPzWNp7KdG3oonPjwdgTvgcPh36qd41klGaQcj6EN4e9La4brN/mc3mS5tZ3Hsxq4etBmD5tqskZFXedw2oKb0b0EqQEOoailqjJrdISph6I1KJFEGQIJEICIIGM+9tHJu9yeixC4KA26duzO45m5WPrnyg873/njeitwXXao6y79o+Ttw8gVKjxM3ajRplDTVNNUTJv0HREHS3Zq9FS0NRtydvZ23cWtJL00XtxkDvgSzps4TRAaPFYDO3MpdPzn3CpoubUKqVCAj0dO/Je4PfY4TfCJPUxW6fjUZS/jh2BCNHew3o39MENKi5In+JQzPXsfGXJrILFC12GnVofh9sjhe6v8C8kFW8+m32XfqqcWho4oxcOx/FVJdSQyMyidlDCZBvVd7iWNYxjmUd448bf1DRUIGjhSPh7uHYm9tTWFdIQn4CDaoGnC2deaTTI2Ji4e/s/5e0H03qJq4WX9VLKC7fuSw+uzxsPQz0FPfbxxuDRtCQV5VntDtRUFMgbtfBroNBMhHoEoiHrcd/bUZHG9rwn0RbotGGFqFzpNJ1PM5nFuBZ/R6mpkYjq2TSqCwmBU/CwcKBlKIUDmYcZO/VvaQUptBLuf9PU2hAvyonQUIP+3F4aV6gutqGMnUqUsHaCL3HeCXPTgglUFiGteCHTCrDz92aecO8/zKPuKC6gNWxq/n52s9klWWJD31fJ1+e6voUS/ssxdXG9U/tO7kwmW1J29ievJ3iumJ6uPUguF0wGaUZxOfH086qHc93f54glyB+yfiFgxkHsTWzZVqPacyPnI+/s7/BPhPyE3j/7Pvsv7YfH3sfXot6jWk9phnVOzSoGvj8/OesPLMSc6U/3dTrmnWnDGGKWlVDBjKssEY7YLC5k8/9aKSIbIc5ZC/Oxkxuxu4ru5l1cBaetp7seXoP3Vy7idtWNVYxee9kfsv6jdVPrGbzpc1IJBLiZsWZTPRMaZmaHzNoyLF+g3VPvcKYXWP0Z8hIpPz89M+M3zMeiURCwuwEblXeYvSu0bhZu3Gn9g5SiZTurt1JfDERgHEfJFJZrzL4JN3UdrlUZsBpj8mNIWprFNuf3M4zoc+YPF5jCF4fjFwq52rxVVQaFY93fpwlvZfwYcyHKDVKzs04ZxDUvPLbK6xPWE/6wnQ62HVgS+IWZh2cRZR3FD889QPnbp1j414nUBvSihopQuOzkt+f+52M0gwivo4gVP0FLvQxMKdwa1fNrkVDTR77hB8nUFxXzOlpp01uo4Mx2p+AQLJsAW4uDTRpmrhRfgMnSyee7fYsM3vORNLQqcXOr657sSFhg1Z7cTdpsDWzZU7POcyNnKs3iC+1KJVVMav4IeUHQBtwDvIZxDuD32GQz6AWg8fojDxWfJ/batdQQI2XWyOjBxUxZ+8H9FCv5/6Ciy7Bb/4eY/dBT1tPjjx1lUVbrt79NNPHp6aRs3KtoYSpjoa5VTHqBrcWO+kNqgbO5pzl6PWjHM06ytXiq0glUrq174abjRs1TTXabpuyBhszGwb5DBLpUKGuoX+aAlvdWK0detesU3Gl6ApKjRIJEvyc/fS0FGHuYXrzZoyhJTG2rtNtJjPD39nfIKHwd/ZvdfhoG9rw/zvaEo02PBSMD4zT4v4HmZOFE+Ee4YzvOp5JwZMwl5uzcHMiN/JlPExHw1BsPJcqSYrBdgFOAfRymUju1eGAvttV8/fYCaF0US/CjpC720nET9J6jAfSvaNpTvbDoEndxDeJ37Dt8jYu3bkkUizaWbVjSOchLO27lAiPiIfer1Kt5Mj1I2xL2sbBjINIkDDIZxBWCivO5p6lvKGcgT4DeTLwSfIq8/g2+VtK6koY2mUoCyIXMNJvpEEnJ6UwhQ+iP2D3ld2427qzvO9y5oTPMerKUlBdwBsn3uDnS4l0VM/A3gg1qrWqakvWt/f+/9415WPvQ9aiLGRSGekl6Ty952mul11n/cj1TOsxTXyPSqNi+W/L+eLCF0iQcGHWBSI9TQ/Aa+mabn5cGhq5ZractU8u59l9z+px6OVSORtHbmTWwVnYmtmS+VImr/3xGtsubyPQOZBrpdfo5NCJG4u1fO5x/06ksu7+ROMemleAU3Kq+f7UbeJu5qKS57H+2fGEPuD1ea3kGl/EfsHmS5tRaVSEtA8htzKX0n+UIpfKRZqObrJ4c1Q2VOK/1p/HOz3OP/r/gyk/TeF29W2qGqvEbbqrv8BBiDQINsslcexZPJzOjp3psbEHV4uvMkR6kqYmQ3qUg7WEfS1MQv8i9gte/eNVKl+rNNnFEQSBxIJE3t9dQFmZs8HxVEkvckn6Eo93fpxZYbMYGzhWL5E21vn1bKdie/J21sWvI700XXTKi/CIYHHvxUwImqC3j3O3zvHB2Q84lHlI3HaU/yjeGvgWvTxbnotyb/ZJGRrBeFf2flhZqDiiikIulWOtDsZbMw1b/KgSMimRnsZPs9yADnj/vVOKlOuLrvPerjxu5stNFgy066ilTl2SzwIM3ap0k+e7dj/N/MgF9w1TdcfMukCkQ53KPkW9qp721u3xdfRFI2jIKMugrL4MC7kF/b36i4lFuHv4n+oGF9UWGQy9u152HZ2zXEj7EL0uRahrqMmg/0HF2O2s2olJRHtpJPm5XSmvssDPzYbnBnu2za5ow/9KtCUabXgomKr+6m60N2WfkivZA+jTYkCbeIQ5PokmbzYIkruvtK7RAFBSTjXp5Mi2GE0ymsNOCCVQugAbfGmUZnNF9QWVd3Uj9x6OxjsyAgI1kquER8byxoA3/ha+b3P8kfUHa+LXcCbnjOjeZaWwordnb+aEz2Fi0MSHts4tri3mh5Qf2HZ5G0l3knC1diXCI4Ki2iLi8+NxtHBkcshkPG09+SXjF+Jux+Fj78O8iHnM7DnTQECYXpLOqphVfH/5exwtHXm5z8ss6LXAqBg3IT+BJUeXkJJbbUQYqhU5m6qqmqJeiNeCoJ1EX8UVsmRfUiVJxs/Jj2sLryGVSKlT1rHw8EK2Jm1lRo8ZrBmxRhRephal0mNTD9QaNcN8h7Frwi6TYmJdFVxtSHM3OC6ATOlHvD7iEZb/vpxGdaP4upnMjGV9lvHvmH/T0b4jV+ZfIWh9ELmV2gq1mcyM+hX12lk2RjUa+lDIJFiZy+4mJNrvyYM4+AiCwO83fmd17GqOXD+Cq7UrU0KmsPrCat5/5H1WnLw3pVwQBEI3huJt782hqYcAqG2q5cLtC8TkxrA7dbeeRWonh05YyC24VXWL9wa/xzvHthGh+QqQiFotDRo6h/zG1knv8Pn5z3n5t5dxtXZlvP0hUnObDK6H3r5OLYqEL+ZfJOLrCKKnR+tNk25SN3Eq+xQHrh3gl4xfyKvKo5/6EGaCi8E+zMzq2fSSj8GUbmNrdz7vPJsubmLXlV1i98JCbsG07tOYFzlPz1JaEAQOZx7m/bPvcz7vPDKJDI2gYXLIZN4Y8AYh7Vufv6MzBng4CFRyhRSzuag0KhRSBRIkWMgtqGrSJoI6J6l7rlOG984vh33J9B7TGbryVIudZt21f0k2G7XZDaQSKeHu4SRmlxFu/g8cZV3xdbVme950lgx+klf6v0JVYxXHbxznWNYxjl4/Sk5lDmYyM/yc/DCXm5NXmUdRXRFyqZxenr1EKlRfr74PNWtDEASyK7IN9BT51VqXQBszG213ohn9KahdkJ6LmS7Ryyqsw81JIDigkGppikkxdhfHLno0p0CXQAKcA0Q3KVP6yLZBeW3434i2RKMND4WWq78CCpubJEkX3dMpSM1p1GiDMV0ioXsA2tEVhVSBQmqOhcJMa4eoKKO8rh6pWhss1JDBDdmXmFkV0KhuFB+iDwNPW08iPSJJKUrBqvilVoZTaR+ql2RzqJIk42TpxGj/0cwIm0GfDn3+VovNG2U3+DT2Uw6mH+RW1S1A67Xf1aUrk0Imsaj3ood22km6k8S2pG3sSNlBSV0JIe1CcLNxI6kwiZK6Evp06MPjnR7nRvkNfkr7CYDJIZNZ2GuhQWcluyKbj2I+YsulLVgprFjUaxGLei8ysGYUBIHdqbt589BmrGpGi4FNreQ6XsIzcDf9uL+qaop6oaJWj5t+v2NOSLsQkuclixSUrZe2suDwAnydfNk7cS/11a68tGMfNLnRxc2aY2Wv4uxUza9TfjWZOKbkVPPWjkwjdCZ93Au45jAvajhrLqyhTlUnvm4pt2Sk30j2pu1loPdAto3bhv9af1Qa7X51A9VScqpZtDmtxU+63/lHB1N893plPduTt7P6wmquFl+lh1sPlvZZKnYTe2/ujbuNOwn5CUwImiDqLNZcWMOio4uY2m2qdqBYwSXUghoHCwf6dujL5cLLKNVKKhsqubP8DhpBQ9D6IFQaFcHtgln36CG2n8onLb+C7LpYCs12kLrsMHXKOvzX+NOobmTXhF1sPHsU4facu8G49m8tQcKa2cEt6sZUGhWOHzqyYsAK5kXM43DmYQ6kH+DI9SNUNVbhY+/DaP/RdLDrwB8xPihrfHhYx6Py+nK+T/6eDfEbuFZ6TZzZE+QSxKLe2rVpXu1WaVTsvrKb98++T1pJGjKJDIlEwvQe03m1/6t0cerSwt/2Hlq/DoxDQKCaVBLlM7GQW9CgahAtcB8UA7wHcGb6Gbw/GIh3/T+RY9MKbaoJtaQKtTwPO7cEfi/4GidLJ4pfKUYqkVKvrMfqAyvGdx1PUW0R5/POo9KocLdxx8nSibL6MgpqCpAgIcw9TG+WxYPSh1QaFWnFafdcn26WUXUnEnO1DzVkUW29n0AvC72korNjZwOqVXMxdlxWEamXou4WOO51fzLMl+HlqjZIKLo4dmlVH2XK8bHNVrYN/xvRlmi04aHQWvXXzLyBpZPqqK50Zn9sFYVlEmq4TppmHVWSZBQSBUpB2xEx1vHQUa1G+48m6U4SO1J28MfNP0S3D9AGc1YKKyobKlEJLQeG96O/+hAKIxXP5hAQKCPWgMssl8rp6d6TIZ2HMMB7AH29+v5tlpu1TbWsj1/PjpQdpBanioGpp60nw32Hs6zvMgLbBT7w/prUTRzOPMy2pG0cyjyEVCKlp3tPmlRNJN5JxNbMlqe6PoWtmS0HMw6SU5lDL89eLIhcwMTgiXoVxfzqfD459wkbEzYik8qYFzGPl/u+bGAbWaes45Nzn7Dm1C94qebpUdN0f+cM6YcUSPcBxob5qe8GUMZtdJvb5vp5KIifHS8mGymFKUzYM4GqCkcCG1eLQYP0btyUb/c2ZVziwOQD9OnQx+iaPWjQ15xCMjFoIkeuH9EzPbAxsyHAKYCLdy7yYviL9PLoJQ7+s1ZYkzIvhU6OnUzSp0wNM2yO5g4++dX5rI9fz8aEjZTVlzE2cCxLei9hoM9APT3A5+c/57XjrzHSbySnc04z3Hc4MbdiyK7IFo/7ycAn6e/VnyjvKLq264pUIiU6J5oB2wYQ4RFB/GytgPxfp//F26fe5tX+r7Lq8VUIgkCPjT1ILkrmw8c/5JV+rzDyh5H8lvUb/b3782TAkyz9bSnbnjjJ1XR30guquFF7jiUjQpjR97EW1/tW5S2Gbh9KSW0JFY0VqDQqwtzCGBc4jgiPCGLzYtmWtI1bVbfoYT8Ox7LXkNztsLRk5ykIAuduneOri1+xK1XbvQDt93xyyGTmRcyjT4c+emtYp6zjm0vfsCp6FberbyOTyFDIFMwNn8vyfsvxtPNs8VyaIyWnmte/T6e2sZVWmgmoaURNFdVcF+2YW0LzDkeDNJvXnxjHhhMX0DRq3bFaut6MDdIsclhJN29bRgeM5ljWMY5kHqG0vhQzmRkd7DpQr6wXRc9dXbrqzbJ4kDkSdco6rZ6iWZcipTBF7CIG2gzDreKfd7eWGnQNHlSMHcF6rFU9DJLT8C52fPSC6XtunbKO3MpcsiuyxZ+cyhyyK7KR5byNQjA8x7ZBeW3434i2RKMNDw3T1V8NVbKLXOcrvQBSgpYCM/aRO2Q3nuJM7hmS7iRpJ+0iQ42h+w5oE48IjwjGB40nyiuK0zmn2ZlwnqqCSKyETuLsDsH8JmpBLQrvWoKxKroxmHJngXsTyqUSKT0dnsJNORWh0RVfN5u/NBxQB41Gw/70/WxM2Mi5W+eoVdYC2qnBUV5RLOi1gOG+wx/YkaSotogdyTvYmrSVlKIU2lm1w9fJl6yyLIrqighzC6O3Z2/SS9M5mX0SFysXZoXNYm7EXL0OQHFtMZ/Hfs7auLUoNUpm95zNK/1eEWcegPbaWLJFO/zM1HTh5gmcMXpHsPoDkzQOnVd/FWnYybzo3cmbZwd70M3HlurGasZ9fhB1bSeDv6+tpZRyh9XEl+1l27htTA6ZbHT/G47k8OO5wlbXtHnXS7d2zQdZOlg4YCW3Ir8mnzXD1vD68depUdaItpjHnz/O699ltkqfMgZdZXTikBpWX1jN7iu7MZebMzNsJi/1ekmvml6nrCPudhwxuTH8cfMPTmWfEl8LbhfMkM5DiPKOIq0kjXdOvcP1RdcN6EVJd5II2xSGg4UDOUtysDO3Y8zOMZzMPomVwoq0BWmcuHmCp/c8jau1K9lLsjmUcYgJeyYglUjZN2kfk/ZO4sXwF8UuyscxH/PO6Xco/UepAU1GN5TtQPoBDqQfILEgEalEilQi5dOhnzLMdxiJBYlsubSF4zeOY2Nmw+SQycwMm0kvz15cya1p0WlP173YmLCRtJI0FFIFSo2Sjg4dWRi5kGk9phkEwmX1ZayLW8fnsZ9T0VCBRCLBSmHFkt5LWNR7kckJ4aZw73vyUG+7t0b3Bf4CAtctllOjrL3v+6SdZWN8+rdIyHvgz2r+r+pmib+lTSEqjYrS+lIAfOx9eKzTYzzW+TEe6fhIq3biZfVlBnqK9NJ0cRp7ULsgPTvZbu278c+dOaTmNOm5W4EGc9tciuxXGYixXa1dsTW3FWmXxbXFVDdVm6RwOtvKeXeauV4C0fz35sUvmUSGl70XPvZael7VzQlUlLd7KOetNrThfyraEo02/CmY5qAGsun361zNVerdZAXUVEgTsO34I3079CW0fShymZy04jTO5J4hNi9Wbyrz/cPRADwV/fGr/xgJUrRWlNrZHZnST3DWDMSGLtRKsihU/ECxkKBnQ6pDaxoN7cEKyNVNOFYmkiP5hrh2yUZZLM6ScEKUa+4e872BVe4BvzAk2I8B3gPwdfL9yxaFyYXJfHb+M45eP0phrTYIVkgVhLqG8lzoc8wJn2N0BoHhaQl61KrS+lL8nPywkFuQWpSKhcKCYV2GIZPKOHb9GDXKGoZ3mIdr4xSqqq3uijo96NBexdq4tay+sJrqxmqm9Zgm0kVaE1a3lMDp0FoyqB/4aDULi0b6EHOtnLjrFZiy55RKwdl3L3tufMy7g9/lrYFvGf3b/Gt3JieulLd4jMLdHkum9GMKpPvwtvWmTl1HSV2JuI2LpQt1yjrqVfX4OfuRUZohXttrhq9hkOsLRjsopgI7kCCVaF9Xua/lbNF2Ojp0ZFGvRcwIm4G9hT13au4QkxtDdG40MbdiuHTnEiqNCntze/p69eVa8TVcrFzILMtkSZ8lvDP4HUDbUfNZ7cOUkCmsGbFG73hePvYy313+jjplHS/1eonpYdPpuq4rnwz5hJVnVzLKbxQns09yu/o2O8fvZLjvcPzX+FNaX8qCyAWcyztHTVMNiXMSxev0kW8fwcbMhoNTtHNFlGolZ3PPinqL7IpsbM1sGeE3grEBY7Ezt2PUzlFMDZnK0ayjlNWXEeUdxcywmTwd9LRRwwK9Nb3bvdh0cZM490JrsyswNnAs8yPn82inRw0oNnlVeXx2/jM2JmykUd2IIAg4WTqxvN9y5kXMa3GQX0t4EI2OMcc2Yzo27WtqaiXpWAn+RgTg8/BRz2jVeOHPQPcZt2xW4OMKp3JOETMjhn5e/YxvLwjkVeUZ6ClyK3MBrV6tu2t3kfYU0j4Ec5k518uuk5CfwMWCi6SXpFNQU2DSwVAlKeWOyyIa1Y2UN5RT01QjvuZq7Yqfsx++Tr542Xlhb25PXEIIRcUOcN96Ni+KKKQKvOy96OjQkY72HfFx0CYUHR064mPvg6edp94MjbZBeW1owz20JRpt+NMwNaPDlGC8kSLiFOOQS+Vi+9vNxo3+Xv2J9IjEwdKB8vpyYvNiOZ1zWqwQ6x6uxjn9Gu2DVQKCcO8hrBMQN8q1VbHmDkHGXKeMPsQFNRJBYMqJedw2S2Z3N7jWrHBpPCDWoDS/yjn1LAQEXK1difKOYoD3AKK8o+ju1v2BhzoZQ2ldKV9c+II9qXvIKMvQ6lqQ4OPgw7jAcSzrs4wO9h1a3U+jqpFDmYfYlrSNw5mHkUll+Dv7U1RbRFFtEV1duhJgPZTyrEl310NbBZVKJKye2VXsIGxM2Mgn5z+hpK6Eqd2mUp2+iMpa47eU1gaG6WBYfW0Nuu7J/f/Vh44OYddpL2+dfIup3aayZcwWo8LTBxHo3k8Hs5ZZY2NhIyaDAO7W7hTVFaERNOI1ZiYzQyqRkjwvmSXrKqhtMkadEZpVmzWAhCbKUSlyuKZZR6iPPYt7L8bPyY/YvFhibsUQcytGnFLc0aEjUd5R9PfqT3+v/gS3D0YqkbIxYSMLDy9kbOBYssqySJqbJH7iu6fe5cOYD8lZkiNW6FUaFZ6feTI1ZCqOlo6sPLOScQHjOHvrLNmLs/kh5Qdm/DIDgJD2ISTPTWbh4YV8lfgVDhYOzAqbxcfnPub8zPOi81dVYxXOHznz0eMf4WXvxYH0AxzKOER5Qzmetp6MDRjL2MCx2sGgynp2XtnJ14lfk1iQiI2ZDfMj5jMjbAYBLq1Xhsvqy/j+8vdsuriJtJI0zGXmNKobcbN2Y17kPGaGzTRKd0orTuOjcx/x/eXvkUqkKDVKPGw9eK3/a8zsOfOhpj0bQ2uWyjo0TwbuHxZ5P9Q0IkWOgeMWV7EhABl/Xl/WUlKi+14FdY9l+oHpNL7ZiJnMDLVGrdX8NEsqku4kiV0PZ0tnsUvR1aUrduZ2VDVWceH2BZLuJJFVnkVpXanRopOVwoquTR9jow4zON9aeRLmXjvwsffBXBlAaX536mvtMbMsQ+J0gtvKc2RXZIvibjshlDD1BhDvNxokEhg5OI/evm50dOiIu437Q89bahuU14Y2aNGWaLThb4cpIVxnTw1dQ88RdzuO83nnxSqWXCpHEATUghqpREpI+xD6efXDXtOdzCxvKqosqBEykas6YoajwecZfwhqK85XFC9RKlwEtI8RhUwhWsxqE47F2BEsvm7KXvWGZgk9C8C7Aiot4KI7dLQy5ZqkxNpCQjsnFbau8VyuPEDc7Tga1Y3YmNnQz6sfUV5RDPAZQG/P3g/UjTAGlUbF9svb2XJpCwkFCWJHyMnSiUc7PsriPouJ8o5qdT+FNYVsT97O1qStpBan4mzpjIuVC+ZF83E0Yl1qY1/Aquf9RUedemU9mxM389G5j3AsW44zvbnfvlgXLKipR4oCAQ01ZIhuUvdDR6l68InipsXTzaHjSP+Y+iMv7H+BMLcw9k/eb9Qrf/7GVNJu17byqQIa6jgr106BlyLFzcaN/Jp8cRtPW09uV98G4LX+r7EqZhWWckvCPcLpK/2a+OvGDQ50uhSNeSYZwgaKNQkM8B5ASPsQcipzOHfrHBUNFcgkMsLcw8Skor93fzxsPYzus7i2GPdP3ZneYzqbL23m5uKbIlWqtK4U79XeLO+7nHcfeReAw5mHGfnDSBLnJBLoEojfGj/yq/N5/9H3eX3A61Q1VOH0kRNqQc2xZ49ha2ZLv2+01ey3B73N+2fe582Bb4qdk4LqAt499S6bEjeJlKVu7buJyUW4ezgAZ3LOsOXSFvZe3UujupERfiPILM0k1DWUH5/+seW/iSAQcyuGry5+xY+pP6LUKJFJZCg1SoZ2Hsr8yPmM9B9pNOGPzYtlVfQqDqQfEJOSLo5deGPAGzwb+uzfZgah7WhU0No121JX4/77lKmJ3KY0P6ZndDx8p8PZVo5Ht21sTtzMtB7TuHTnEsmFySJ1ydvemzA37fRsRwtHGtQNpBenc6X4CjmVOXqWyTpIJVIs5ZbIpXKa1E1vL+/rAAAgAElEQVQolH4iLUwpv4WZ7XXMyiegXUPt3BAQqHL5mKz6EwgNPgYaMAng1fUwXb2s7nUkHHwoKbVmx+k7bUlBG9rwH0BbotGGvx0P2jYuqSsh/nY8cbfjiL0dS2xerNjFcKInIao1zara2qquNqC8F8S29FDUVbc6B53CWmHNyeyT5FTmiA9emURGsOpTHIWWNRuNFBEnGY1bLaikUHh3gHKEcjPWhBhMsobmoknw63acRwI7Y6GwIL0knehb0cTkxlDZWIlCqiDcI1zseER5R+Fk6fSQK65FdG40X1z4ghM3T1BWXwaAhdyCcPdwZobN5Lnuz7XYTdHNItiWtI0frvxAQPW3RhMppaSEGNlIBvkMYkHkAsYFjhMTuE9O7OW3M50wnNCub2N8b600XJLNBXggbvlfoXsICPi6m7F5vlaMeSHvAmN3jcVSYcmvU34luH2w3vYPyqMXELhp9Q9ym86I/+Zu464nONU5Avk6+uJo4Uh8gVZU/WbkZqLPdzPYpw5NlHNePhwXKxfRyc3O3I6+HfqKSUUvz15GJ7+bwrDtw6htqiUuP46PHv+IxX0Wi68tObqE7y5/R+7SXK32Ye9kUotTSZ6rdfkav3s8P1/7mT1P72FC0ARWHF/BB9EfIJPImN1zNtG50WSVZxHSPoSqxipszGzYMmYLhzIPcSBdm3BLkGCpsOT9R99nTMAYOjtqhzYWVBfw7eVv+ebSN2SWZdLFsQszw2byQo8X8LD14NXfX2V7ynbyluYZpbyV1Zfx3eXv2HRxE9dKrolr7mTpxKywWcwJn2PUDUoQBI5eP8qq6FWcyT0jvq9b+26sGLCCCUETHrqa3Rq0HbPsB9JImMY9y2O1oDZposBf+gz9zzL+ippySTzJMu11FNQuiEDnQFysXGhUN3Kn+g5ZFVncrrpt1BVLLpWjkCpQC2qxCATajoenrSeOlo6YN/nTdGv63aO4RwvLlH6Ci2YQtviiMctH5nQKW3vtLI6qG8+jqffQO+42nUQb2vDfR1ui0Yb/CP5M21gQBHIqc4i7HceOY+ZUlrc3qKbrz2bQJR9g6iF4vybAxcqFcPdwVBoVCfkJBNVub8U/3pDuY90IvYtD0bhuAGTaLArjD/X73+9u406fDn3o5dkLV2tXyhvKic+P52zOWbHqHdwuWKRbDfAZgLe9d4vrZgx5lXl8FvsZ+6/tFwdKSSVS/Jz8mBg0kcV9Frfo/NKoamTOV7HkFpijn9hpz6e23ZdYyCy4WnIVD1sPXgx/kTnhc3CzcWPuxiuk367lQToMOgcnW7oa5Zbrkg1dEiLFslUbTt2e76dR6RKb54fXM6OftgORU5HD6J2jyanM4ccJP/KE7xN6e9Fdx3HXK1usAJcRS7r5P1CpVWjQUqHaW7WnqK7IYPuhXYYSkxtDnbIOZ0lPQpTrTa4NaGmAHTpd5uCtNbz/6Pu82v/VvxT4bkvaxowDMxjccTACAidfOCm+lluZS5cvu/DxkI+Z1mMabp+48a9H/sUr/V+hpqkGr8+8sDazxs7cjmPPHqPLl11QC2reiHqDlWdXAtrr/9FOj3Iq+xSedp7kVuZirbBmmO8wxviP4bXjrzElZAqfPvEpSrWSzTG/89O5Cupq7aiT3sTf9xYLBow0cM36NeNXRu8cTdaiLDE5EQSB6Nxovkr8ij2pe1BqlJjJzGhQNdDfqz/zIuYxIWiCUTtSlUbFntQ9rIpeRXJRMlYKK+qUdfTx7MOKgSsY6TfyL+urTOHVb9O5cL2sVWpg64m1hia0Wo968u77Hv1dSYb2SHRFnvuLKRJA6vk1lyr3U9tUi4CgR1XVQVfk0DnqATiYO9Depj02ZjbIJdrORVlDGYU1hXozakLVqw0KQgJqlOZXybH6J4W1hXr7dSSMUNUGo+fe5vzUhjb8d9GWaLTh/0mY4jA3UU4117ChCxIUKLAz+bDWBrGpXJLPNPk5PYW12Kp7GlQBW5tEblSfIQhi0tEczZMdC5kFnnae3Km5Q62yFplERqhrKL09e+Pr5ItaUJNZlklMbgxpJVqhsJedFwN8Bohdj6B2QQai1ZZQr6zn68Sv+e7ydyQXJotBgKu1K0/4PsGyPssIdQs1eN/9nSndeqTIF6AWNPioZ2CLL5jfIUPYSCWXGR80ntqMJVTXPXhwY4pbbkzPoeVTb8SwY9IcOn0DGCY7AqXE8tRj5bw18C1kUhnVjdVM+WkKR64f4cthX7Kg1wKDPeo0G6YDPzWJsrlUSZJFyg2Ao4WjyAUHsJJbUaeqY0LXCexN20tP1RZsCW4xGBQQkALXLV/hxagnWDFwhcltHwQVDRW4fuLK2ICx/JT2E0XLi/SSzuf3Pc+p7FO8MeANFhxewK2lt/Cw9eDLC1/y8rGX+WXKL4z6YRSRHpHE5cfxYviLLIhcQPeN3REQkEvkqAQVNmY2TAmZwtiAsTzW+TEs5BYkFybTfWN3to3dRlpJGj9evIBXzfticNzSYLPy+nKcPnLi23HfMtJvJN8nf89XF78irSQNa4U1dco6rBRWvND9BeZGzKWb671OUfPCh097c+zcEth67Z9kV2ZjrbCmVlnLY50eY8WAFQzuOPg/lmDoMOGjS5S2otG4p03QGO3maQsv0mav33Nks8HvASmHrUNAoJ5spGbVKFReNFKIUqPEAlejgwClEqmeEYeNmQ2OFo5YyC1Qa9RUN1VT3lCulxhI0bqKqQV1s/O+B1POUBJ5Fa4hWzCTmonT2BtUDZRcH4O6ztfo+ffybetotKEN/020JRpt+H8SpnQePTvbMvbRUvan7Sf+/FCkageT+xAQUCmycPD9gbqmOi4XXqasoUxvG2OBq+5BV8sNMmT/NjqJ3NSDz/Ag1FQKcVxSLMEOfSvXAsV2nJ2qcbRwpKy+jIyyDEAbnPbu0Jtu7bphqbCktL6U+Px4EgsSUWlUOFk6ibMOBngPINwj/IG544IgcCTzCOvi1xF9K1rkRlsrrOnboS9zI+fyZMCT4nTy5gFaJ1dLIkOqOJx5mJupQ9GJJ3UJSKHde1RKLuNe+T52rQTP4vHc1SEY45abcqgyJua/f58SNGAiATUzb+CCahFh5stxlHbFz82GqYPc2HbtHVZfWM3CyIV8PuxzA5rZgQuFfPFrDhqTyYbATfnn5LBbHKIG95ILHZqbDgxUxSDlQcwBBFRmNwnsfpyvx3z9ANu3jCd3P0lORQ5Jd5LYOnYrL/R4QXztStEVum3ohr+TPx0dO3Ls2WOoNCr81vjRz6sfO57awaQ9k/jx6o/IJXIe7fQof9z8QwwuFVIFIe1DiJsdp7eGtU21TDswjZ/TfkYjaHC0cKS/fAu1lZ4I933PjdFbBEGgy5ddkEqk5FXlodKoMJebU6eso7trd+ZHzmdqt6kGNDJTCfM1s6UUaeIYEzCGN6LeoHeH3n95XR8UCzZfJDVHf0p6c+i6bxnSj3HRDMKeIGRoZ/bcu360P8bmzQAPpdcwtU1LxZbmsJBZoNQoUcgUKKQKappq9BIGU06C98NaYY29hT0O5g7YmdthpbBCIpGgynse6v1aLEbYmtnS3ro9rjaumN96D0FlvIO+Znab81Mb2vDfxJ+3v2lDG/6DeHawBxdvVGrrdc10Hi882oEQ765EeUfx6p104q9Xmnx8SZCgUdpxKPOQ+G8OFg50cuiEjZkN10uvU1CbjIo65NjovU9AwAwnNGY38TD3oLy+nHr1PX5xDVmY4dwy9UEQkAoC3323hUrzUN6atAGNRIJEIsMMZxyVkSSVzCNdEgtoAzQXKxccLRzJq8oj9lYsFY1azUqgSyCTgidpec+qRjLKMnj39LvUKeuwkFvQ27O3SLXq26GvyUm7EomEEf4jGOE/gv/D3nnHN1Wvf/x9sjrSTTe0BVooZe+9QUBQ1hUEFBRQZMgSFX8qF/dWEDciIIKA7D1lr7JHS1s66N50pTvJOb8/0qZNk0KL3nu917x58YIm53zPSNJ8n+/zPJ8PQFR2FJ+f/5z90fs5evcoR+8eRS7Iae3ZmkmtJzGn6xyzCd/lMGcShaog0HAP9KgKHiVdcYhGgozaXhRLPRqF3LFQW66nkFiLYxQIN4mVr6C5/jXUNDW/RgREJGQW6solJOxVAp3Kf0BfLJKLnkuxeVyJy2fZtHcIdg/mxf0vEpsby6YnNpkYMo7q5kVTb3vmrbpdS2ZDoInuJRo0KOdq/g7jym71IKPquqvfu7ogoCj3Jz4/vo7b358JrSYwYdsE2nu3Z9vVy9y+0d1Y5vh0/wAGNh7IsfhjvNn3TQC23t5KfF48y4cu59Ozn3Iw5iAAOklHfH68Uf2soVNDkguSeav/W0aRh0upl/jp6k9sDNuIplyDu707K4atYEzIGCZ/EUGhZLqyL0oQl1F1z+4V32PdjXWsvLqSu3l3DdkPQUApUzKu5ThmdZ5F14ZdLWYhJEniq4O30YtVvV2V79cONov49JkQk8zHv4tmgUmEJ3hZfB9JSOgo5JZ8IaWKKHw8EohNDaC5uLjGKAI1pZwNob8NUsWfmmPXxTOj8vefISMcQax8OQXCLWMvRamu1PgeNpY16ip6q8TVFsUdBEHAXmGPWqnGTmmHjcLGoOal11JYXkheaR5l+jKKtEUUaYtI1aQiE2R42Hvg5eCFh/tJ9EnNMZTLyhAECQEZS0b1oGtgPJ5qTxNRjdpktkMaqq1BhhUr/2asgYaVvyRtAhxZNi3kvn0eT/f3va8WvUFbPs7kMbHEH13hM+gIxJ1YSuRrUWBv8QtZiROy8qY0KJlGQLUshFYVTbZ4Ejex+31rqPVCOVGyZcx8aj5KRSvDqEJlQY8cJD0B+mnGFTmtqCWzKNOkiVglV+Fq64pe1HM28SxJBUnoJT32Sns6+XSiiUsTZDIZGYUZfH/le947/R4yQUZ77/bGUqs+/n3wcvCyeI7B7sGsfHwlAPml+Xx98Ws2hW0iLDOMxb8vZvHvi/Fz8uOx5o+xqMciAt0CicsoNvsCF5DjJDQDQCm513JPRGyUElqdgF7SoSGKWPmXgEAH/XcV9d5VGZIE+U8Wz/lBXihV41juEsnVqCryV4ZJviQJ6CWJX06k8MkzMwl0DWTclnH0/KkneyftNTGwM5Tz3H89mLxBIOyw6OPyx5CTmvnnqB491vwx7JX2eAhdKLg7kcsVgWNOYT5X4vLxbtYNOIaN3IZziedYcHAB9kp7Rm8ejUquolxfjkquQifqyCrKws3WDScbJ+Lz4/F38uef+39i/UEV6TkCeWIkJY6xzOw8k8/Pfc57A95jYpuJADR0l5OlKTULuNydlJyMP8nKqyvZensrelFv9MqQkHir71u82O3FWoUTCsoK2HBzAz9c+QH7lPfMso8Cchxp9h8JMnaFZrDvlBs1ldkqMUz0dXg3KCOpQE5Mmo724iLjc1XbWA4m6vK8JapvW5nN0KExZjJ0os6k3KmmUIOKBrjpuxBj9yp5XDcajQKIkmj8Wa1S42bnhqfaE097QwbCU+1pyEaoq/7fwL6BSYloffr+aluomj28/v1uVqxY+WNYS6es/Fcz+sOr5BfXdCivNFTTc10+EzuHTHwdfJGVNcUhu/ILu2pCq6fErMG4clVRjp3xi/RBBlimx9dTQjp2+FYcz/KXvUNxLt0uDWNjG7hdbS6kVqoJcQ8hvyyfpIIkYxkOgI3cBmdbZ2zltsZ6ZzD0crTybIWTyglNuYbI7Eju5t0FoJlbMxM/jwcZCYqiyG+3f2PllZWEpoQaZSqdbZzpzLeIxYFmhow5XCRS9QrtxRXY69rVWubg5+THnC5z8Hbw5uOzHxORHVGt4TuIQmLM6r6rY+iP6V5LkHF/r4HKbWoLhNo3VTNtYGMU9smM+HUERdoidj65kx5+PYxbDVhysdb7BobSrJcnllFUXsSk7ZMsKu1U0lt33PgeezCGd+uK6a1o2/jhjOKqM3HbROJvD8KmvJXJayUToEB+lTDFQvSi3tjTM6TpEGZ1nsWbx94kPDucdWPWMXf/XDTlGkRJxNnGmRCPENS6lmiTpxs/N4Jg8F8ZNTCdeSdGkbAgAX9nf9I0aQxd9QJuOf9X43NkKAC6Jp8JtvGUaEsQJZExIWP4R4t/MHH7RLaN38bYkLFm13Q17SrfX/6eX2/9SrG2mKauTXG4Nx8XsbPZNf4n1Ice3OtjuHoteZxTDKtDUP3gQOKPKLWVkcll1VgEBHRildABWO5Tk9Dj6JJOj64RZoGDp9rzgcaKfyZWHwsrVv4aWAMNK//V1JYid7KT88JjtmhkYVxPv86NjBtkxYxEbWECXCokYSsFAKa1xEXEoaaxxQmzA4G19mhUBjmV+9X6JV/50ZNEnEsKGHL1B5IUO9jUGuKr2YUMajyIf/b7JzG5MRyKOcTV9Ksk5SeZqLLYyG1wtHFELsjJLcmlXCxHKVPSyrMV3mpv9JKe5IJkIrMjkZDwdvA2yOlW+Hm082p3XyWjy6mXWXZhGUdij1BW5GOykikgIQgCLdud4re4Tykt8jbTr69e511dRcrZqYSebUrZn/ItF5IvGI9X2VBsfD2r7aPA2WL9ueHeixV3vL4Tq0r5XT1yQc7y6SF4u5cydvNYLqZe5Nl2z6ITdZxNOotjxluoaVLrMboGOTN2UB7LQ5fzW5jB86H6BK06nXW/oqZpvVadq0v0/hF2Re7i4w1yi+/jMjKJcnyGnJIcWrq3RCFTcH3mdXZF7WLM5jG0aNCCHx77gX4/98NJaktT6TnsxCYUEouj0gOVtinVV+xlAtg4JpKofouw2WGkFKQwcN1A9MV++Gk+oKZ8auXnLMf1U17o9ALPdXwOH0cfAJp82YTRwaNZNmwZYOj92BS2iR+u/MCl1Et4qb3wc/LjVuYtbBQ2TGn+T25f7wP8512aR39wlfwS84WRmpSTyznFsFpMQevPwyhQSegpkF0hUvUqWlFrks2A2vvUrKpOVqxYqY410LDyX01dPTugdiWrMjKJl62mifgCSpzQU0iSYhW+usm1TsIKia11AlCXVfXq2xpcyA37jLm4npQGQUT6BCLqYgmzXU282lDzbCe3463+bzG321zslHZkFGawPWI7R+KOcD39OimaFBMdehu5DfZKe0RJJL/MUGLWwK4Bga6BxibzO/fuUK4vx1HlSA+/HoY+D/8+dG3YtVYjwYzCDN49tI4rt10Qyn0oJJZE+Wrc3YoYGzKW/gH9WXFyN2lJLVFLTSkkliybjeRwDVtdC4tBSInnMh5v15ZT8ac4eveo8VgyZDhIrc28NCzd24eV87Sk5qNUx2MfsImzSWeNTsZeai/GthhLkHowe46Zu69XNuhqvVdwLnsjga6BzO82n8ltJ/PuqXf54sIXJgFTIbE40sKiCeWDznh8T29mPRpQz/1MiciKYPJXF3CQWppl80rkdzizZAIh34QQmxvLutHrmNhmIgHLAkgtTOXApANM3zOdskIfWmlXmGQvqme6qqMV7tGzz3HmdZvHgJ8HUFxeTFfhe3JzPS2+Zmo7PTtf62LWlD9lxxQisiNYM2oNP1z+gXU316Ep09DbvzdyQc7pxNO42rmysPtC5nSZg7Ot819mdftB2TAwBMs5hHJLsaDuohN1oH6fD8O2QW2O0MhTj6udK662riy7sAw7pR0/Pv4jK/fouBVfaibYYfWpsGLFSnWsgYaV/3rqOomwlP0QkLB3TiHN6X0isyONJUJQe2lADhdJkK/+wyUNlvZBAgERBDkyUY8gSTz1+yzOeN9kewjkVcz9O3p1ZOXIlXTy7WQyRlJ+EtsjtnM07ig3Mm6QVphmshJpI7fBRm5Dqa6UctEQlDRxaUIDuwaU6cuIz4tHU65BKVPS2bezsdSql38vi/XwWr2WNdfXsOb6Gq6lXTNmWdzt3ekX0I8ApwC2R20nPi/+gff0lmIBTionJrSeQKomlX3R+5CQatnnz/QIMKecXGKcp/Bsu2cZ2GQgZ5LO8N6p95jYeiKrR60mOkXL/FURFWdhOBs9Om7KZ+HokMO3j3/LiGYjTLJEzm+1sxgw1f86DKv/43t61SvYkCSJK2lX2BW5i51ROwnLDKOLbiP2NbIzEhKOjrnseXUYvVf35mzSWa7OuMq5pHO8eOBFGjk14l7xPYOpXT1W3PWUEeCl51zRO6TrQ9HqtXQu317rRNqSDGmprpTZ+2az5voaADzVngxvNpw0TRqHYw/j6+jLKz1f4flOz2OvtK/zvfl38O7maI6F5T6wbKqy5LNAuPVQGQ3Lfj71/7yobWTsfbOz8We9qMftEzcW91rM631et6jmJRfkfPmcVdXJihUrVVgDDSt/Gx6U/ZAkiVRNKjczbnIj4wano5Ioin8aMO3puC6fiUYIo4HQkZbaZchqLeN5uGDDZB9JT2DqRVauWYBOBgeawcbWsCcYilWgQMErvV/hzb5v1jqxis2JZVvENo7dPUZYZhjphenoJb3xeRu5QQGmspdArVTTyKkRckFOelG60WW8tWdrY6lVH/8++Dn7mR3r2N1jfBX6FScSThhd3u0UdoS4h2CnsEOMf83ixLKcXMLkr5qs9jdoeB21YxZ5kQtQ4mS2z78WiXzZJcqdDrDhqQ9o592OLeFbmLJzCu2927PzyZ3kl+WzInQFa6+vNfQRVCuPKnitwEz5q/0/V+AidbEYMEH9gyaFDI683fW+25Tryzl+9zi7onaxO2o3KZoUXG1deaz5Y3R1G8e2o55YapkXBGjd2Ib1ic8i2t6leYPmXEm7YuzF0JRp8HLwoknej6jwsHhs0+xGVWmahMQdm0Xkco3mZR/TgG5YaoyuLkO6/9ZtfjgcTXa+Eo0UTYJ8NaPbtietKI0jcUcIdA3ktd6vMbntZIvmfP9pvjuQwG/nMmr12oGq3oww+SvG/iQ3qSNt9F9Tm2+MuYqboeTTnoBqAe2Dywkt/a5ytlOw8/WOxp9vZdyi7fdtOf7Mcfo37m94rGKR52ZyFmllV/ll+rO0Cfh3f1atWLHyV8YaaFj5W1HfEopbCRrWHU8mOl2Dg0MhKo/T3Mrfy52cOxSUFdTamFybhnzl/6v/+yCqMh0gk/QEp0Yw9cQKYhxu8msbOBQIWgUEOAWw8R8b6eHf4/7jSRKR2ZFsu72NEwknCM8KJ7Mo00QlSSVXIUlVDr+e9p442jhSWF5IRlEGAP7O/sZSq97+vQnxCDFRiYnPjefz85+z+85uEvMTgdocfquMyQz3qCqoSxY24idVBnv/WhO1msgE0Et6wlXz+GjETKZ1mMbFlIsM2zCMMl0ZpbpS3O3dmd1lNjM7z6TT951ILUqtuq6lpr9aey3ZZ3FS/keadY+/ax5o5JXmsT96P7uidnEg+gCacg2NXRozKngUo4JH0SegDwqZgtk/hBORXGS2f9X5GF4ZDbeJkS+nQLjJgIABSEjczr5NZlEmbXTLcRe6m5RLyQQIbqjGzgYux+Yg1DCOk9BTrLjBo33T6O35FB//locomioiLxwZwLCOruyM3Ml3pw8gpjxv0hMkoueafBb+XiKv936dca3GmZVY/RWQNBrWfPIzv0hdDA/cJ8iQ0JPq+E9yuU5uaa7x82jwjZmPE60MQ1T7faKnBBlKpAqZ6Fj5lyZ9UM50RI7KuF8tZ4mlYFNtK2fvG1UZ05VXVjJ732zyX8s3a+peenwpP137ieSXkut6a6xYsfI3wRpoWLHykGQVZbH/Vjhr99li+KI29YdIFH7FR3oMJU7oKKKMLFQYyo9kqJBjyEDUd6VRkiRD0KHXEZwexdOnvuS28002toETjUGUwfR201n26LJa/TTMjiNJ3Ei/wbbIbZxKOEVEVgTZxdkmAZNCpkAvGgIAuSDHS+2FKIlkFhuCFDc7N5MG844+HY1GgkXlRXx/+Xs2XjqPQ/bL1FxhtVzuoUdCREBRr2bp+gRxD8LQxJzEgeIn6NmoJ/ll+YRnhWOrsAUJNj2xiVEtRhmOLUnI3qkKtBrZNyLplSTjz53e+gZHfec/rdQOYMVzBgftxPxEdkftZlfULk7En0An6ujk08kQXLQYRRvPNmYqY0PeuoRWX5df/4aJ/S35HN4ZPp25B+biautKflk+zwa/RcLtoWblMz2732Tr3c9xTf/UYgargaOSrRUNwzWD/8GdBY6lrWH19dVkFmXSV7kWeWkLM5Uzrc1tTr8x1SS4/Uug1ZK/6zfyP1yK77VYnlhwkHx7l/sGGXoKmTPSngldDIsEoiSSV5pHTkkO94rvca/kHhFJxRy9LJGvsbPoyF2TNrovccNgQni/IKOy/K+mJwdUvb8Ant35LLcyb3FlxhWz7WbtnUVoSihXX7ha6/lYsWLl74k10LBi5Q9yK0HDdwcSiUk39Hc0dBdo3zqZ6OKjXEq5xJ2cO8Yyour4iGNoJr5ca59HXTAEHRJyUY9MFPHPjsY36UsO+90ktBE42Trx2xO/MTRo6EONfTHlItsjtnMm8QxR96LQFTfCXz/VWN6ULF9LrnAdMDhgq1Vq8krz0Ipa7BR2dGvUzZjxqDQSrE2S2OI51GMCbhBFLUOGyuKk6WGPo1CWEaocgaZcg6PKkRWPrmBsi7E8teMp9kfvZ/nQ5cztNheAMl0Ztu/bGve9+dxN2jQ0eDUEfjwQv8IPgZoBVWUmqf5qWa5uWcTbL+Fa+jWUMiUDmgxgVPAoRgaPpJGTecN6deoeaBgm9nnCJRLVb+Hr6MvtrNsEuAQQPjuc2FQ9v5xIISIll6TSSyTIVqORhWGntKNJ8XtmPQaWGoZ1oo69d/byw5UfOBRzCCcbJ6a0m8ILnV7g9Z8KKSg2vy9lZHHirUeMwex/FElCf+E8qcvfxX3XEezKDKWJuS62/GPOcaRagqFKAYF5Y5SM7djJ4jZVhzANZO+Hk9SWDnqDP879+kEAkoRf8JMmm20rAF2q9ck0/6o5QwOH8tXwr8zGGrt5LCW6EsOnQhEAACAASURBVA48daBO52fFipW/D9ZAw4qVfwP5pfmEZYZxIeUCpxJOcSvjFkkFSbQp/wEnWv2h1XeTSbIkIUh6vlw3C3XhTTa1ho1tIMwLBgYMZPuE7TjbPpwHQ2WPiygZau8l9IDENfksoxtw9bIOAEeVI1pRS6muFLkgp713e3w1b1KY71NjhfqPZzQMTsZh6Cis1Wejtv0qj1cz6KucCDZtdZgnOnZm0ZFFJOUn8ePjPzK+1XheOfIKyy4sY06XOSwfthyFTMHFxIt0W9OtaoyKEqrAFYHoc7vQWLew2r0SEYAo2Sc0FMcZnc7reu7lQjb+7X5hdPBohgUNq9drO+mLy6Tl6qHG9dZ2bJEytBRQJMSQIFvD4edXEugaaHDtvrKSyHuRKGVKtKIWlUzFo80e5UrcPZqWfGwse6rZF5VckMyqq6tYdXUVKZoUujbsygudXuDJVk+SVJDE67+/TkxYP7NgRRAgWzrPyhe60b1R9zpf859OdDR5q75GWL0G52yNIZcpQGKPlri9+xnqHn0Zs+QshbbOZhkNqaIr45VxLjzWtvUDD7Xo0CK+uPBFnU7rfl4z1c8gVv4Zqye/wFebXSko0ZttUSlVm1WUhednnvw69lej2WJ1eq/uTaBbID+P/rlO52fFipW/D3+9olYrVv4HcbZ1ppd/L3r592JRD4NpoCiJ/OOTq+QVWvZYqOtqvsk2goAoyJk3YR4+BYWU2QUyPCOW90+vJtTzGB2uuZDoJmfN6DVMbje5Xtew/kQqkoQxQKicOM5ovJkhfZLYHbWb88nnic6JpqCsAABNuca4v17Scz39Ogm8T0vpS+PkE8RqDa2m7uDJwib8pKfrdC8EBGzxIly+Ajd93SeflRP+Smo6JAsIeJQ9yfDmwfRt3JcX9r7ApO2TOJ14mi+GfkFwg2Dm7J9DTE4Mm5/YTFf/rjzR/Am23tlqGONtAWmphFqp5rawlVx5BN3tX0ejUdPMx5FXHuuIZPM2/db2o1HhW7jRzXLJXI3HBEGiZ9MmfPqPjXW+1mJtMdtub2PVtVVocqfgRGuzu2r5XksIqLDBA5Xkhpu+G5/+voXdiSvQiTps5IYG7OAGwcTlxTG82XDOJJ7B1dmV27p5NOV5/G270tTLnqf6eZNUdoY3Nn3P3jt7sVPY8VSbp3ih8wt09OlISkEKCw4uYPX11fg5+fFi/0kcPCU3E3HIUG7gdEL5vz/QyMhA9+sG8n/6hgbhcTgKIJcg38WOgpnP0mjhWzTx9ERbpCEj0JvnfB5h+aOLa9xNQwD7xgQPhrR6sBTsjogdtQYZPuIYozS3lgLuyn7AgcD7fl4EQcdV2SxWjnuDwYGDOdLQXJFPJkBTL0N5Z6XHTXXjyupkFmXSo9H9e8OsWLHy98QaaFix8h9CJsho7u1o0XBQEESQHq7XQEBAsm1Nqq3h/xcdPLgY2B0kiVdCN9Ax8ms2np/C4lZTUDby58qMK7ir3R84blxGsdl5ihJcik/ELfAKz3d6nhWPrkAQBMr15RyKOcTeO3sJTQklNjeWwvJC9JKebC4b3dUrS7AS5D8BgtljainItEu4Gpb8LwqJpUC4iYjW2ARbt3smw1DEZL6fVHHtAA4qB9aPWU9f/77MPzif0JRQtozbwsGnD/LEb0/Qc3VP9k7cy5aJWxDerjq3Cb9OwEHlgF7SUyDcJNb2DTwbeLJ22tmK3ok2ZL+azdPbnyb1etdaS78qr1nA4Lb9zMD7l0dBlaztT1d/4tewXykoK2Bgk4H42IVQXGL63qquYFQZatXMNlUGgjGx/pTLylEr1UxuO5nnOj5HR5+OvHToJZaHLqeZWzPWjlpLt5+6kSe7wfrpt9lyewsjd64kIT+Bdl7t+Gb4N0xqMwknGydyS3JZfGQxKy6uQK1U8/mQz5nVeRY2ChuGBpmLOCw44cTpxNO80uuVB96DP0xhIezciWbN99gfP4sAOAoG+YK07q1p8OpSnB8fg7PckHUp1+SR1bwRDdOL0HXLY8HjjfnxcDJF5YYsnU6eyjtPtmdgSNMHHvpWxi0mbZ1k9riT1JaW+g+wwfDZFRBQ4kJzcTFF3EVFAyzL4kpckc3k/eEzGN9qPABP9/flSlw+MkyDuckDfAE4l3QOHwcfApwtyylnFGXg5eD1wGuxYsXK3w9r6ZQVK/9B7ie5G5tWzPK9CfUes1ZDu4omcr+MUFatno9CNDSPb2wD20Jg+sCX+WTIJ2ZNw5XU5kMiV8dxXnyeIm0Rfk5+DG82nBHNRjCo6SATyd2wjDDePfkuR+4eIbc0t07X0lN3ECUuFlf3q86hajIsoUdDBHLs6+W4XXNc0/0kWvjLWT61jYl06tW0q4zbMo57xfdYO3otLdxbMOLXEWjKNOycsJOefj1Ngo1HmjzCkbtHjD+fnnqa3v69kSSJ8KxwdkXuYlfULpSJ71q8ZjB4UejIx825nI/GP3JfxbSckhzW31zPT9d+4mbGTRo6NmRq+6lM7TCVpq5NWfxzFJdi8owhRe33Qo+lNSlJnsezo1MZ13KcUYUoLDOMAT8PILckl0ltJtGtYTfmHpiLhIRMkKGSq5jQegIzO82ka8OuCIJAibaEry5+xYdnPqRcX86iHot4uefLONncXyb17RNv82Xol2S/mv2vaQjX6eDIEbTr1sKOHSjLtOTagmspFDnaUvrs0zRY+Do0aWKyW1l+DveC/fDNKCZp1AD8dh4D4ErqFYasH4Kfkx+HJx/GU/1gI77s4my6rOxCQn4CTfRzaCRNMgtCLX029JSgwJaassEqpZYL4izm9R3FuwPfNXnufop8/db2w8Peg63jt5qdY6muFLv37fh59M9MaTflgddkxYqVvxfWQMOKlf8w9/uCr2w0j0gxlyG1xIOMuYwTcklEVjEJsS/VMP3Etyg1O9jYGvYFy7i8IJJmns3MznPh6gh0ot6s3r6Zr4qTCSfZd2cfe6P3Epcbh43chmZuzSjWFpNckGw0CKyOgICHvQdqlZoyXRnZJdkm7ub9dOdqWZWtvbSsehBSeYya96U2UzNLUsQAGRwiUrEUpUyJi60LAc4BtPNuR3uv9uy6s4ujcUd5qftLvNzzZcZvHc+llEusHrWaJ1o8gc0HNiaO4EVCLA0DInlt8ERjcBGbG4uDyoFhQcOQ8rqTndjb/HWURO4JBsfolu4tCZ8TbvLaVL6HnJyKybPbzt6krxElkZHBI5neYTpDA4eaGAjeStAwb1W4MUdS2z2ufh+rP6OUy+jQxImn+/vSJsCRmxk3GbRuEA0dGzI0cCifnf8MG7kNJboSbOW2hHiE8PuU33G1Mzih60QdP1//maUnlpJRlMGMjjNY0m8J3g7eFs+lJsfuHmPQukHcmnWL1p4P7nGoE5IEFy8irV+PduN6VPfyyLIHlR6cy+Be+2CcF76GYvwEsLU12700J5PcFo3xySohZfQgGm4/AoLAmcQzjPh1BCHuIRx46oDxHtwPrV7LkPVDCE0OxadsupnM84OynSueCzH5vRIUlMCs34cztf1UVj6+stYFBUvn4fyRM+8OeJdFPReZPZ+Un4T/cn8OPHWAYUHD6jSmFStW/j5YAw0rVv4LqJxIXo0rQFezfglDO69CLuDnISMuXYclXfxKzEqOKjIdHnlxLNn1EYHpN9kdbMh0JHRpwbWFtxEEgVsJGr7aH0dkagEqmZLmvo7MftTfGBTpRT2HYg6x7PwyziSfoVRXanZshaAgyC2IsSFjmdR2Ei3dW5pNeHJLchm2YRg30m/QtewAMuzrnZmofp31CTJqGwcgW3aUcNmb9z2mXJAT6BpIub6c+Px45nedj6u2A8cuNTP2pFRvolc7ZjEyeCSjgkcxsMlAbBQ2nIw/ybTVW/GvmFiCAJKIXBSxy/qMBO9+OBBIn6BmPN3fUNqy4KeICt8FWcX40Kt7GPP7j7rvyvngD3agK/F94P01vWeGnwQEY7A5e7SCGUeG4GbnRjuvduyK2oVW1CIgMK3DNAKcA/jk3Cdkv5KNSq5iZ+ROXj/2OpHZkTzZ6kneG/geQW5B9z2HmhSVF+HysQsrhq1gVpdZ9drXjOho2LAB3fp1KGLvkmsvI9NOJDAXRJWS8ifH4TD/ZejQodYhirNSKWgZiHd2KamjB+FbEWQciT3CqE2j6NaoG7sn7L6v5HT1gLFEHs9ZzTvkCdfpqztDfWSeBeBYNY+VC8kXGLRuEI80fYSt47fWy3PkcupluvzYhXPTzlns0biSeoXOP3bmyowrdPTpaGEEK1as/J2xBhpWrPwX8SB3c4ABSy4+3OCSBOjpfmUWE6/epG0m5NrC9hD4tVNbJJ8fEJAhSoZGZJkgMHOkjB9vv8G55HMUlheaDelq60pX3640a9CM3JJcjtw9QmZRJs42zgwNGspjzR5jWNAwPNRVRnanE07Td21f1oxaw4mTHUnINg9Y/lPMfcyPTsHlxOfFcy39GmeTzhKRFUFaYRoFZQXoRHPZXoMCkKlqEog0ayTw/YwuZmU/qZpUGn7RkKnBb+FRNoGY9CLuFp5l2I3jXGz9MnqZAIIhoyQhISmTkMob8iAJWUv0W3oImfjg1XVTTA3eBEEiV7hIpOpVSnWlBLkFMaPjDGJyY1h5ZSVbxm0hxD2E1t+15uPBH7MjcgcXki8wuOlgPhr0EZ187y/rej+6repGkFsQG8ZuqP/OmZmweTPS+l8QLl6i2FbOLXc9Phrwz4eiQH/s5r6E7JlnwMXlvkMVpSVS2Lo5XjllpI8ajPeOwyAI7Ircxfit4xnUZBDbxm/DTmlX6xhGVbcK88LKhvE7sk9oLi6uV7Ad4G7L2vltAYjIiqD3mt609GjJ4acP3/ccLLEidAWvHHmFgtcKLLqu74/ez4hfR5C8MJmGTg3rNbYVK1b+97E2g1ux8l9EmwBHlk0LqZe7eZ0RBGSigOgyjbaZC8i2g3I5PBkGd4KncVkvIVbMiSVJQCfpeWfneW4pDgMgQ4aH2oMRzUYwo9MMYw1+dURJ5ErqFfbe2cu+6H1M2TkFAYFujboxotkIhgUOY+6BuXTx7cKUdlPYd/jGH7+uP5F1v6cxtltHAlwC6Ne4Hwu6LzB5Pqsoi8c3Pk5oSihqpZoibVGFAlDN8i8ZadGZfDYxgJxeHXFt34NWXq1p5dEKP2c/APKEG6x+ZmnF9h0Z/IEbYpEhyIBKgzwRsdwLeY3xRamqgd0SkiRxJvEM+VIULnSptTzNMjV7fwTspCYMCRzC3K5z8ZR1YcPJdOIT02mrb8mmS+dZMrQZ9kp7Fh9dTCefThyZfITBTQfX45iW6ePfh9/Cf6v7DkVFsHMnbNiAdPgwIhKhjRUUNYFeKRJd0mToRj4Gcxeg7t+/VpO96hQmxVHcLgSv3HIyR1YFGRtvbWTyjsmMCRnDhrEbHuj3sf5EqolDuiEbB83FxRVZKnO/HUmSLJZAvTzG0DeSXJDM0PVD8XX0ZfeE3fUOMgDOJ5+nk08ni0EGGBSnAJPFAitWrFipxBpoWLHyX0abAMf7rlQHuNs+dBZAlMm52DiQZ0YbVnX98sE/D+54ByLKTCejAnIcCEQpKOng04FmDZrh7eCNj4MPsbmxFGmL8HHwwdvBGxdbFwRBQCbI6NKwC10aduHtAW+TpknjQMwB9kXv4+OzH7Pk+BIARgWPYk/UHvw9g8jWaB/qWv4VaErNMxaiJHIh+YKx3yLqXhQCAkVaQ19NIbHmCkCSnoZ58by0LRXF5mTSHPdwpInE0qZwvrkd2MPZxLN8evZTgtyCyC3NRdQGIFl4DZSG1Eat0qTVySnJYd2NdXx76Vuic6JxkrWlvb4z1FHdTCYYJrfVG8gl9HQI8OWbCbu4laCpKOMCsMOV7mTFdKHv3Smo7FQoZArOTz+PUq584LHqQh//Pnx+/nMS8hIIcLGsiIROB0ePwvr1SDt3IhQVER7oRGgbPW2zZfSMLafc2wPl/81GeP55VA3rviqvib9DafvWeORryRo5GM+dhiBj1dVVzNgzgyntprBq5Ko6lSrFZRSbCaxVlv6VkYGt5AtIxuBHQjKrkAxwt+XlMU1o7e9ITkkOw9YPQxAEDj51sE59IZY4l3SOcS3H1fp8ZlEmLrYufw3jRCtWrPzlsAYaVqz8j7FodBPmr4qoTRX2vsgE6NyiGR9/WNk0LqEVtRxed4drcYVUV7GplJPVSloupl7kYupFQ90+MvSYmn/ZKmzxdvA2BiKVAYiPo+H/r/d+nSV9l9BvbT+j8/TozaNpIHSiDV9VHPfhTQ1rUlufRiW1TbplgqHEJchXwdG4o+yK2sWeO3vILMrEVm5bTf1KwtXWlTJ9GWnCL7hqu0B1jxBBYmOjlRx524PTzT/E50I4E44cYsrOMKCECHc43jSbo1df4/0AkXy7WkqwJD254m2caYlMkFdkOfQIgtwoTVqZvfj+yvdsCd+CTtThJLWlnfglaim4HtkMiWIpDRWeJv0mcpmcWUMMwgHfHUisoUomAHLayv6PDyY0pO/avlxIvkCfgD51POb96e1vaJo/nXjaNNCQJLh0CTZsgE2bIDOTdD9XtnTUIi+BSZHFTIsF/YA+sHwuqpEjQVm/4Cc/Jhxtp/a4F+jIeXwwHjsOgSCw/MJyFh5ayOzOs/lq+Fd1UsQq1hajIRqJALP3noCAWqvk8Wvr2dV5EhIyBMGQzerYopBlTz1icbyRG0eSXpjOmWlnHrqkKaUghcT8RHr69ax1m8yiTLzUVmlbK1asWMYaaFix8j9GmwBHvnzOcnlVpYpVVGqRmSdGTe18AEEQUMgUZKo2ITIcuSAgSZUWd1KF/0UVBmnNqiDDQelAK89WdG/UHRu5DZnFmaRp0jiTdIb0wnSyirLMVKKUMiWNnBrR26+3YaKe/zbq/PE4EFzREAt1DTpqM76r+XzNf2tDJ0rMW3Wbu4plJLAZNzs3tHpDxqVUX4qTyomxIWNZ2m8pwe7BvHPiHZaeXMp1+SzaKhegL/UweoQEeEFYZib+t5/ns398xiOvbuJI6EZiD18jWzuEUrtAmqfHsvTX1ZSKN9nRYS2h7boaA4nKgCWRL9HKDR4kTkJzCqQ7dA3w4/X1MjQlevSChhjhWzLlu1GLrWgtew2VrtK/oT5eLQJOKldG9svlp9/voiaIfDGKT54YYizdu5Nmro4mICDT+qFW2eHj4MPOyJ1/WqDRwL4BLT1acjrhNE+3fRpiYgzBxYYNEB1NUQMndnWw5bwCRsYXMedMOZKjI/Lp02DmTOQtWjzUcfMir6Pv2pkGGj15jw2mwc5DSILA+6feY8nxJSzutZgPB31YJ2WnhLwERm8aTWKJjDZ8U/GoqdpY54RY3NO+JlJcya0lKbT+tjU9/HrwxfjtZuPpRB0Ttk7gWvo1jj9znBbuD3eNtxI0fLYvhh66PZw8708zew1tAsxLNDOKMuok1WvFipW/J9ZmcCtW/sbcT1oXDKvhs/fN5ocrP/Bx781kJ7c1bjuwk8TUQwNJK0wzGVMuyBEl0SyAAHBSOdEnoA8zO82kf5P+2MhtyCrO4mziWSZsm8Do4NG0925PWmEa6YXppBWmkaYx/C0Xy+mpO4iKupWA3E/qt8oJvHZp1weNe00+gwLhJgAuti60cm9FC48WeDt408ixEUmaJD44/QFgUNvSSTrjv5W81us1vrjwhVHS10vWlZDyLysm/3KjIpitvoSZ59bQNO46P/eZxh2fQPyyY7HT/IJH5hXWt4UIbzl6SY+POIbm4mLj1VWer9L1PPq8HkZn94chqJHIppxH6OjTkW3jt9Hq21aMaTGGrx79ih+v/shvuztiyWxQQsSl1Uf4OPhwKPYQsfNi6yyvWp2a79en+/vy9cU5XIhIYljaM8Sp3Gmcc5f2BQfYa3+UgGwtC27Y451VjNS+HcKcF2HiRFCrH/oe5Ny6iNCjJy5FevJHDMZltyHIeO3oa3xy7hPeG/Aer/d5vU7XdzL+JGN/G0uprpRibTETvdeTllxNVrri69k19WOeeWkKo1qPZuquqeyI2MHtObfxdfQ1GU+SJJ7b/Rzrbq5jz8Q9Dy03W9mYrhcNSmaVixDLpoWYBRtD1w/FUeVo0WPDihUrVqyBhhUrD8DS5MbSyt7/GpIkMe/APL6+9DWrR65maoepZtuUaEsYv3U8e+/sNXvOxcaFnn49uZJ6hYziDIvHUCvVdPbpTHZJNkXlRUS+GGmx6VSSJPJK83hzfRy3E03le2v3v5AoIQ07asq3Vqommaon1QcJiQLCuKZ47qH2r45Q8UdErEWhqorSok/peXsbj8bJGBStRwDKVXJU5Xp2N4fFw+S4Oe0zM/yTkJDQISCrZ+N3dSQiVPMI8bdn78S9qFVq3jv1Hu+cfAdfR18S8xPppzsLFsYXBJHj8h6sGLaCeQfncf2F67Tzblevo5spriEhSCLdbn3GmbaLkEsCkiBHkvTIJIkvNr5Iu5RwhCefhNmzoVu3OjV33497V88i79MX52KRguGDcN59CFEmMHf/XL69/C3Lhi4zEwiwhCRJfHvpW+YfnI+NwgaZIGPd6HVcuNiSSzH5JiG6JOnp1syNj58J5kjsEYasH8Kqx1cxveN0s3Hf+P0NPjjzAb+M+cWQ4XlILJlz1qZk1uGHDvRo1INvR3z70MezYsXK/y7/AjtVK1b+e7iVoGHxz1GM++Qai3+O4laCxuz5hasjuBybT7ZGy+XYfBaujjDb7n8NSZJYeGghX1/6mpWPrbQYZADYKe3YPWE3y4cuN9aiO9s4A5BXlsf+mP0Uagv5YOAHbPrHJh4NehRbeZXRWZG2iJOJJwnPCic+Px6Xj1zo+mNXvrzwJeGZ4RXeEIYSLlc7V2YOaY5cZvBvAEOYICCgJY8SWRRFQgRlZFIov4J9wM90ahddsW1lBqN6cPHwk04BASda4SQZJES91d4MbzacV3u+ypzOc1DJqhpjFYICV1tXlDLLPQCSQTsKoBaFqqotZern+KqXgqnPG0pVlo5xYUVfGxKcYeQdiFihx0Z0sljnL0NZryDDNCMlkSrfROsAR/ZN2odapeZI7BG23N6CVtSilCu5MfMGIQ2dLGaygn0daOHegn3R+3C2cWZH5I46nwcYPodL1kehFyXj5FdEMPjrtZplCC4r1LgEwaDOtHHK+wgpKbBuHXTv/oeDjOyLJ1D2NgQZmkcH4rzrIDpBYuquqXx3+Tt+fPzHOgUZZboynt/zPC8eeBG5IMffyZ9Lz19iTMgY4hJzzRvCBTlxGcUUlhcyY+8MBjYZyLQO08zGXRG6gg/OfMDnQz7/Q0EGGBrTa5ZW1qZkllGYYe3RsGLFSq1YMxpW/rbU5klRvTzA0sqeIED7JvZ8MfVPciP+iyFJEq8ceYXPz3/OdyO+Y2bnmXXa70ziGUZtGkV+aT4KmYLGLo2JuhdlfF4pU/JilxdZ2n8pyQXJ/Bb+GxvDNhKdE13rmHJBTnCDYJ5o+QSDmw6mS8MuRKdojRmmxp62nC9+j7ulJ7j8/GXc7d05k3iGfdH72Be9j8jsSNzoSFvVQihuxp/ZUF4pRFrsspErRV+jl/S1bqmSqxjYZCA+Dj6sub7G+HjNUqqO0tc46jvWGhBI6Dmj7IObnRvuqblEuFTt+1VoA148cI8Riw5SbOtiOrGWKhWK6n79lVkhHQXclX2P3OUyr/R8BTulHb/c+IVTiafo0agHjZwacTTuKIkLE7kZX8D//RKPUE2KVSbAl8+FEF6wnwnbJvBI00fIKMrgxkxT6WKzzGFfb9qkhXPrwAUWij3QC7JaggVDeU9N3B2VbHm1doO9+pB55jB2gx9FXSZSPHQADnsPUy6ITNo2iZ2RO/llzC9MbDPxgeOkadIYu3ksl1IvoZf0jA0Zy9pRa3EsLIeZM1ms6M3lpl1NFN4qMwllXt+x8spKwmaH0dS1qcm4m8I2MWnbJF7u+TKfPPLJH77exT9HcTEml+r31VJGQ5REbN6z+XNME61YsfI/iTWjYeVvy/oTqcYgAyp8CSTD45VYWtmTJLgQF4/v574M/Hkgs/fNZkXoCo7EHiEpP4n/ptjdLKMTX8D//f5/fH7+c7569Ks6BxlgUAC6NesWnX07oxW1RN2LoqdfTzr5GAzZtKKWZaHLcPvEjXdPvcvznZ5nWodpKGQKPn/kc0a3GI2D0sFkTL2k53b2bd459Q591/bF/n17Ru5oS4nnN0welUSWy8dcytnKtvHb8HH0QSlXMqDJAD4b8hkRcyKInRfLW8OexcZvPblCqNE12xzJ4kr8/THIytrnTeLkhHgWdV9kMWthq7BlaNOhjGkxhhHNRhgf93PyMwkyZMiY1NcbhUxu8VwkJLQUoJf0ZBVnYVesY90uGT4OPrT3as+cfVncfvkZZhz/wbB95fuw4l+7stp9NSweyyaMU4qenFMMQ+94DrlMzvyD83l+z/OcSjyFq60rDioHHFWO5JXmseTYEiIKD3BdPoscLuDqIKdrkDNfPmcwkxzXahxtPNuQXpjOzYybxOXGGY9nljmMzmXhqnBuPTmL9Qk2SIJgMciQIeFcooEaQV5t8r4PQ8bxvagHDUNdJlIypD8Oew5RImkZvWk0e+7sYdv4bXUKMkKTQ+nwQweupV9DQuKjQR+x9YktOG7ZBU2bwtatPH1za8U7UW+8DkGADi1zWBG6gvcHvm8WZByNO8qUHVOY3G4yHw3+6E+55gEdRURDzsjkPKoLRQDkleahE3XWZnArVqzUijWjYeVvy7hPrln0aNAJ91AFfUagayC5sWO4l+Nm0kArCNDQs4jGLY8ReS+SyOxI7ty7Y2zoVSvVBLsH08K9BS0atKCFewtCPEIIcgvCVmFrdrx/NbX1mFjK6IiIXJW9wNvDptapDMQS5fpyFhxcwHeXv8NOYYeN3IYXu77Injt7uJFhuootE2RMbD2R9WPXA4YV0qtpV9kTFDQyfQAAIABJREFUtYctt7cQkR3xwOM5qhwZGTySwU0H08uvF0FuQRYbcS/GZvLaz3crJuCyismcDC25lJCKEyEVq/D1W3+RkMjhArcUVfdLIVOgE3X4OviSWpiKTJBV+E+Y/rpVyBQoBSUl+hL8nf1JzE9kXtsvuBvdkQKN4b1Svf/kjuwj0mQ7kSFjn+Mshi36htNnfqXv0UnsnrCbx4MfJ+aN2YQfTOebwS9QrnJGQo9IOXJJhYDigSVElS4Zzdoc5ceIN3FQOTCx9UTWXF+Dp70nz3d6niC3ICKzIwnPCic8M5yYnBiTa1PKlMztOpdWnq1o5dGKlh4tcbRxZEfEDsb+NhalTMlHgz/ipS7z4MIFFh/M5bLkbrqSL4n422eRoLVD0jlZOFEJuahnXtZxlvsMQpQMDfSVk+Ll00P+sJFl2qFtOD/+BLZaKB3cD/t9h9FIZTy+8XEupV5i55M7eSTQXF62JmuurWHG3hnIBTn2Sns2P7GZR8TGMHMmHDtm2GjIEMjLo3mfUuztp9PMoQ9NveyZ0NeDp/b3xtHGkXPTDAFfJZdTLzPg5wH08e/Drgm7/jR/knkH5rHr+nXG+XxPQmZZrcagkdmRhHwTwumpp41Sw1asWLFSHWug8Rfk79p8/O/GYlkUEk6uGaj81hObG0talg3NSj8z8Q0A8Gy+nZZ+agJdAwlyC6KxS2OKyouIuhdFRHYEkdmGACQiO4KckhzAMKlu4tLEEIBU+xviHkID+wb/kmu8X3nY+hOpZtcvocfTPZ/f5j+cWk111lxbw6t7vsFfnIqNPgAnx2IGdoSV4a8Tmxdrsm1L95Z8PuRzhgYNNQkSMosyORRziJ1ROzkYc5BibbHJxNsSaqWaPp6Tsc37BxqNEzJBIMjbngFtndl8PprsPBUiIoXc4a78K0Sbu2jKNThKbWirXIC92BQvFztSsgzjiVJV63ht6MVMLgiPo602z2vRoAWv9X4NHwcfQlNC+fbSt6QXpZvt29azLWFZYYiSSEv3liRnKWijmA9lAcixRUCGtqJ8KbhxHicSTwDgJLVlUPY0ZO6duaeKo0C9g0vztiITZNx+/Xn0v1xk/pTvEGVCRSlWRX+KJNUebFR8HYyVn2eF5hVinA0ZF2cbZ97o8wYvdn3Rorv05suhfLwrHAcMiklaeQL5jr8SWXjQ+Fr5O/vT0r0l11IvIxYU8NYFW565Dup7BYxbsI9sB3ezccvIRGl3D1lJC0wlXyWcSwt4r00JrZ8Zye7rN3hz2wka23cjxNfV4qS4vqTu3YjrmEmo9FA+oC92+w+TKxbz6IZHiciOYP+k/fTy73XfMbR6LYsOL+Kri18hF+S09WrL9jGbaPzjFnjnHZDLoawM3n0XWrUi7tnRBM6H4c2Gs++pfQD88/g/+ejMR1x94SqtPavKNaPvRdNrdS8C3QI5OvkoatXDK2lVJ680j0ZfNGJh94W8O/Dd+257Mv4k/X/uT9SLUTRv0PxPOb4VK1b+t7AGGn8x6tI3YOXPobZ7XX0lVJIkzkan8MvxFJLv6bG1y0XpcYrk8rPE5saSXlg1cXRQORDoGkigWyBBrkEEugUS6BqIq50rmjIN0TnRxuAjMjuSu7l3jZMwd3t3kwxI5d/GLo1NVjDry/3UY+Iyii1mdFSqEhZOLKF7o+642Lo89LErXaL1kt4kSJs0TEN86Qk+PPMhYLpi76325oNBH/BU26fMnIZ1oo4LyRfYHLaZ7698j040TIJlyIzN1GCYgHfQfw/IjH0CVYGJaDwXmSDjs2eb0bGpG1lFWRyMOci+6H0cij1EXmkeATb9aCGbg1TmicLuHoX5DRCwtSCHK2FTloc861V+971JmRIQwNPek8ziTLP7Ikdu4jXibONMmb6MUl0pTlJb2uu/MwlsBQRuyGeTK1wz3qsurk9gl7XQuJ0hFyXSuv0ZUnXn2RO1hxHZX1Do2MXM0f1B2JUVsuezQcgliHWFo03Bd/RkHp/5BbibBwNVbuDVG+0N//droGJUr3KK4nYSHnaM8OzbXFJryKz2q8zPxhPP0qU46DuY9KYISLRtYsf0QU1MP6eiHkEQWD6+Ea3bNjK8qpKI+yfuzO82n6X9l9brei2RvH0tHuOnohDh+mNP89uY/yM6s4RM7Q0SZWvZ8ewyOvl2uu8Y2cXZPPHbE5xKOIWExDPtnuE718nYzZ4HkZHg4AAqFWzcCD17QuPGPNUni1/bwqXnLtG5YWduZtyk08pOvNnnTZPrStOk0Wt1L2wUNpyZeuZPXaj47NxnvP776yQsSMDH0ee+224J38L4rePJXZz7h35XWLFi5X8Xa6DxF8PSxFBCj1wdR3CbswQ4BxDgEmD819vBu07Os1Ys8yAfiQdRWF5IXG4csTmxxObGEpMTQ2xuLLE5sSTkJxhVk5QyJU1cmxgCkYosiJ+zH3JBbhwj8l4kEVkRRN2LolhrqKe3kdvQvEFzsyxIcIPgOq1g1lYehjwfJ6cSNHleNXwVRDTyq1wR5iAg0MqzFT0b9aSnX096+fci0DWwzv4Htb2Xc7hIhtMHeDl48XTbp/ng1AcUagsN6ksV98tB5cBrvV5jTtc5JhOYcn05A34eQHxePHsm7uFy6mX23dnH4djDlOpLUcqUtCj/FDe6WzTqqylz6+FWymfTmuDv7G98NKsoixUXV7A1fCt3cu4YzylEORWvkhegxhiV+Q4JibKCT4hX7sC2HOJrzP1s5baIkki5WG58bHjQcDKLM7mRfgOtqK1F3lbkHqEENIkmOSEYO7EJcmxQ4lxDF8pwbyXfVczqPIvfj3Unp1BHfagsA0vULuA9YRB9Y8pRnjhNSHbFBh06wKBBMHgw9O4NajWzvw8nIsXcqM8woIRMElm+biZtytJg2DCkYcNonf02t3Pv4GrjSm5ZbkVw+B3UyByqm/xCO39nGoSpiAnzIMupKYE+Dkx+soPZ53TkxpEUa4s5OuVova65JskbV+Ix+QUUItwY/hSvdpyHBEbXdbkgZ/n0+y/8XE+/zmO/PkZGUQaSJLGi30fM2hCF8OMqaNIEkpOhfXvYuhX8/WHxYqRPPsFpiRwbBxeyX81GJ+ro8VMPSnWlXJlxxRh455fm029tP7KLszk3/ZzJe/ePohN1BK4IpH/j/vw8+ucHbv/NxW946fBLlL5R+lC+KFasWPnfxxpo/In8GSVPtU0MBUUB97wWkZCXQH5ZvvFxlVyFn5NfVfBREYD4O/sT4ByAn7Of2cqwlX8dle+BqJRCJECr14Mgopf02NhnoXM5TELZSeJy4yjVlQKGqVUjp0bGDEhT16a42roiSiKF5YUk5CcYS7Gqm+P5OfkR4hFilgXxdvA2fulbmuyDiMLhLomytXgXLK22em6oze/ZIYM+bVWkalK5kHyBc0nnCM8KB8DD3oOefhWBh18vOvl2qrXvpLb3chmZnFc8jpudG9vGbaO9T3s+PfspX5z/wtAGK+mN2QqlTMmMjjN4udfLNHZpzMy9M1lzfQ0nnz1J90bdq8bUlXEq4RT7o/dz+fxQFKJbnV4vCYlr8hnI7ZLwd/anWFtMXG4ceklPJ59OjAweibeiO8euQEaujGLdPVR4IccOc4dyQ94kMOoFTvrcILbGKXTw7sDC7gvZEbmDfdH7jD091emh24MN5o215eSixKniiHILQVPVvdX5v0Poc6G8tu6Ohde+8lQrHqw2OaxsQk5xXMKOZ5bTxqsNheWFuH3shle+jqiQb7E/eQ6OHoW0NFAquTVsIvPaza5xH8zvchcPgcnjbNgetZNtEdtIyDA4mTsQRCExjOhmw6Q2T7H2eCIxaYU4OBbi4BVKQsERwuIukKIyfFZkgoxA10Bj70crj1a08mxFcINgVoSu4K2Tb5G3OO+hexUS132Nz9S5CIDYoztLpv/EpbuFSBYygjX9JCrZHLaZKTunIEn/z955h0dRbn/8M7Mlu9lsekggjRQSCJDQEVQQRQVBFCygKCJWxAJX1J/9Xq/XXsACXguKiChWFJBrR0GlIwFCSQIBkpBedpNsm5nfH5PdZLO7SQC93nvN93n22Tbzzsw778yc73vO9xyFCGMEn0Tewsh7F0FTE/TrBz//DDfdBAsXQlAQ7N0L2dm8OrQvL42dRaw+m0FJPdBEr+fJbbP5+bqfGRY/DACby8b45ePZeXwnG67dQN9ufU/qOANh5Z6VTP1wKjtu2sGAuAEdLv/Qdw/x5s43OTrv6G+6H13oQhf+d9BFNH4j/FYhT50plFRnq6Ooroii2iLv9+bPZQ0txdEEBLqbu3t7Qtp4RUL0IW134z8O/w26FfcYkGX/8fyCoJ7L52f1oW+SiVJLqZcHpLVHpNZW61kvyhhFeqQaihVvjsegNSDLMnX2Oo7WH2V/1X7yq/M9xnloUKhH+xGrGc6WLYPUgnBtwsO+LnmDp774gczmKtJqsIqMgsxOzWzkoEIGxA1gcPfBZEZlIiBwtP4ovxT/wqZjm2hwNqATdQzuMZjTE0/3EJC4kDggMMmpYhO7tfM84UwZURncPfJuTks4jZe3vMyr217FpDPhkB1eZCwnNoedZTt57cLXuH5Q4EJ5amrOWtoav/6Mc39CbgC9qGdo/FCGRV7Ozu3D2yQDUBBFG5Lkq1Vo3d6AUvhL0wB2X3YWr+Quod5RD6jGsttLApAekc6o5FHIyOzZOZxgV46XR0NBwkk9OkLb/O59PAIKlc3b1mv0PH76CtZ+n9AyHpu1GYoioZEV4quLKIlMQhJEJFHCyn4iE35i3Q3/RCtqPe1OfHciaw6uYcUlK5jWb5razr59sHIl95Qksjmmb4cCc0ms5kdxPKFBoZzX40aq8i9FVmSPdkQjCt73SkVR61/MnQsGA7UvPcPeYSnsKd+jCtCbRehu4q0RNCSEJlBUV8R1A6/jvLTz6BvTl15RvTwTLR3dQ4pee4b4m+5CEUAZPhzdv75iwgu/0mTznajxlzpXkiXu++Y+nvrpKURB5LSoAXy0LpS41d/DBRfAkSOQnw+LF8PMmS3HOWoUuUes3Hb1IhDwCNolxUVm9nr+edm9nvanfjiVNQfX8PXVX3eoDzkZjHhjBEatkW+v+bZTy9+8+ma2lGxh243bfvN96UIXuvC/gT890fitDNhARlWQ+Qj9BmwmLiSO7iHd1Xez+h5hiPBxN3dGN9ARbC4bR+qOeAjIkbojXoTkWP0xj1EKEGmM9CEiSWFJnu/RwdF/qFv8v0W34n8MeEMQFPokablmTCIfbahhf7GVZuuCHpFBoEBFvYOEGC0j+zfhClIJiJuM5Ffne3k1TDoTqRGppEakEmWMQqfR4ZJd1DTVcKz+GPuq9oGtZ/PscRqK/jhR8Ttw6A7yVeFXjAteicOS3KZOiEJinJ1+OZvYfnw720q2eWpdGLVGBsQNYGDcQGKCY7DLdgqrC/ml+BeO1B0BICU8hdOTTifDeC7f/9QbaJXVSpHZo7+NYHMF1U3VpEems+P4DkA1wM9IOoPTE09nV9ku1hxcQ7fgbjS5mrA4WgokDo8fzgOjHuCCXhf4DRt8+5cfWLJGR2uNRgv18+8F+Fl7od/zNdD1OqH08wm5MuoFmhz+K4vbKacm9i4+LT+bjCdeo3Z4Dq/efTZP7n2NGluN17KiIPLDzB8YmTgSQRDILbJw2+u7m/dUDSFSmmtZ6PH10njIhqLqFuZM1nHp50M8/2cEn8e4yKcoKnNhsVRitoOhcR/z173BoKJcZAEePgseGw1Ts6byziXveJEMgI/zPuaSlZcwPnUca3vMhy++UF979zJx/lc0GPxkhGqzj8GhR7n14mDOSTmHB5cfYkt+LQFrNBQXw403wtq1cPXVsGABRPr3UFU3VbO3Yi97yvewq3wXr2x9BZPO5BkvWlFLRlQGGcHnUlc4DRBQFMHnHlL00j9IuO0BZI0AQ4bgWPMZN62fz64dQ4lieOB9bUatrZapH0zly8IvAbhVM4Jnn9iBPqobXHstvPAChIfDxx+rIVNuvP02XHMNd05fyLaUoT4Ec3BaKM/O7IuiKNyy5hZe2/4an0z9hAsz/Y/XU8Evx35hxBsjPNnLOoMp70+hydXEF9O/+M33pwtd6ML/Bv7UROO3NGADhYkomjpKouZw3Hrcy1gCNezJi4A0v2sd6eQXJFFdF0RytyCuHZPEwJSIUzrW1pBkiRJLSbtekSZXk2f5YF2wJxSrrTckOSyZHuYepyRY7giBYv0FYz7RvT4jyhhFlDGKSGMkUcHq56jg5u/GKCKMET7G0++BgHqINnBQgxZzm5Cl1nmNBASVe/D8rEyye4Z5re8O73ETj9ZE5HDtYU/hOHfRvMTQRMKCwtCIGuwuO3sr9lJYq9YwCBSqY6ec/NBZ9O/Wn77d+pIakYpG0FBnr2Nf5T62lW5jf+V+FBQMWgPZsdlkRGZg0puot9dzsPogO4/vJFjKIk25gTAhkxCzlQ2WvzFn1ETmj5zPVR9fxdqDa7l5yM18U/gNBTUFZERlUFhTiF2ykxaRhqIoFNYWIiIiiqIXQU4JT+G+M+/jquyrPOFbTc4mEp9PxNkYz0VRr1FapZIbRV9Cg82BkRQv0uDWNTTGvEh6ZDp6jZ786nwOVB3AJPdloPRPBD/pbmWczUah4NOe1nSI7cKt1NhqiGvSUqtz4RIgqhESM4YwOnk0z/7yrFd7yWHJ3HvGvczImcGOQzXc8s6HBCupWCmgSPMGydJ1PtoNBQkXFhTBiU3KJ1/3Bk5dPvGh8ZRZyjDpTZ4sV2OSx/Bd0Xdcux1e/wwadRDSPFTTb4PYnJH8cO0Pvtfx4cPY1n5GeNk8FFmm/nEI6tYdxo8nd9RF3J4f59M3Xmh+vMyt+5GLJg9CGTWK8x/fgNPhW+Mi2qzjg5idMG8eBAfDP/8JF56YQT1m6RjCDeG8duFrLd6P8j3s+XU4NPXy6T9jaDFDpFc587WvyKqEuIzBFK58hclfXENRbRF/H7GMNd/Htzvxk1eRxwXLL+Bo/VG0iLy+KZar/lUKd9yhhkY98YTq0Vi2DCJa3cerqyEjA2prGXfnZ9j1vkJ7t+fkkfWP8PD3D/PGpDf8VgX/LTD1w6nsKN3Bvlv3dVr3d8aSM0iLTOuUnqMLXejCnxN/aqIRKL1pfFwTM8Y5iQ6O9rz8pXTsqK22M18NjgaOW49Tai1V3y2lnu/F5ToayoaDozsWDnBYXEK9sMvTVnRwtF9S4vaOuL+HBoWesvdBURQqGys9pONI3RH2Hm3g8KE0HI2RWIV88nnVs39aUUtCaEJAr0hSWNIp1Y8IZMCLWgti6hNUN1VT1VhFVVMVVofVbxthQWF+SUh7BOVE+7IzHg0FCVmwIiohAas/t162ms0c0y6lpzwLE+logspJSsnnjIwE+sb0JSE0ge7m7p7wEKfk5EjdES8PSGsi0ppA9jD3IKXpUbS23j4GWDWbydXORSNo0IpaHJLDE+oUExxD/9j+ZEZlEqIPweFycLzhOLvLd5NXmYesyOg1evrG9CXeHI9W1FLZVMmmY5twyk4EBPrH9mdEwgjKG8r5ZN8nTOg1gdTwVF7a8hIjEkYwPXs66/cdJr8gmSApudngXkJ0hBW7y06xtdizvxGGCP4y4i/MHjKbO7+8k6W/LmVoj6EAbCnZgkbQcEbSGZwRM52fN+UALUYjwEXnlLK95hO+yP+C8oZywoLCGB17DZZDVzSHTPmOAQk7+eLzZDSHnanZoFSC19jteQ40fOnRUoU4RV5ZJTN9N7w9MZHDc6/l4Q2PkBqeSmFtIfHmeIot6vEYtAbOTzufI3VHPJ4erajllXO+YPk6syfcyJ2N6oDhL5S4fvbsl1YCWSt6zkFObA7bS7d7VS2fuj+bJGUWh7qlEVddwNtpSxicEsXnV3yOSdbADz+0eC327wetlkk3h/J5dDVfnPYy486bjV1ycO1LWymt0vrtn9YQkOldWUBIbSU7k9Np0Gl9wsAEFIbW5fPki1fBNdfA8897G+WdxB2fPM/GX4NICR7h5aEOdA+RqWKLcgFNzZKOcH0oFmcDYYYw5o+Yz/he45Ebk3j/xwq/CSM+2/8Z0z6chtPloIfLwKrXGxiQMASefhqeegrWrVPT2N53H4itjHdZhnHjVL2LojD83oUYNd4eDffzI6Xvd8xeM5vHzn6Me8+894T7pDM4UneE1IWpLBy3kDnD5nR6vV4v9mJy78m/STXyLnShC/+b+FMTjY7Eqq0RrAsmyhjlRT5av5wN8Xz2bRwKAsoJhjz586wAzLlYg9Fc7k1MGrwJijs7kRtGrdGLgITJ2dQdH0pTQxixkTIThwczold3upm6dXqW3+/+CXDHZANa0zEfb0hRXRGlllKvWgexptiAGpHG+hg++ak+YPhaZ0ic59y57NTYajzEo6qxSiUibT+3+e5PmKsVtUQaI1tISRuC4vU9OIqqqhAefb8SpQONRohBQ11joArV3vD1fqihNDs1s72IqIiIXqsnVB9Kd3N3UiNSyY7NZmiPoR5tx8o9K7n+8+uZ0nsKEzMmUlhTyN6jjVTlX6ruX6v28413EWKuJFivzjxbHVaOW497ETmdqMMpt1w/McEx9I7urXq4mr0fh2sPs69yn8fQ7WHuQWp4KrIiU2It4XDt4eZtC5j0Jib2msj3Rd+jNCaR5XzBU1wP5Gbh9s3UC7tI0o+im2MaOleih4RYhFzPmDPrzYzvNZ5JGZMY32s8kUY19Ka9LGOyIrOtZBtrD67lm43JiLZMv2RQQaGe3ezQXk+oku0JS3N7H+qFXM+yRq2RoT2Gclr8cDLW/MIVi35kc6LItCkyteFB2CU7Q7oPYcH4Bdz95d38fOxnFBSvdnWGKl66agoA1y99F40zHisFVBre472rnsTqsPL4hsfZcGQDIXaw6vHY/m1rjrjT52plAVnUIMgSsqCQfnAOs/YdYUS+DaGxEeLjYfx49XXOOawt28iEFRMYET+ClMgUVh9YTU7DajQEdWocq5ABEUWREBARFBlF1KAoEqDwwtr7yf77fJgwoaOG/CK3yMIdb+z1kLGOasaIyAzJ38RDH8+jaGgv7puZxKrir4k3x6PX6DlUewhQ9R+Z0Zlkx2aT3S2b7Nhs+nXrx1s73uKv6/+KAJx7VM+Kz3REPvgYjBgBl18O9fXw7rtw/vktG3U44J134G9/UzUbQME1kxjU8zADpVdwF4x07/vFZ5dx+/cXcduw21gwbsHvFsJ615d38fqO1zk67+gJafbCngjjwVEPMn/k/N9lv7rQhS789+NPTTQCGbADUk3cdrGJysbKgK+qpiqv7y7Z5WN0lAe9i9Fc7k1KjNFEBXsTlpVfhbD/qOyzHwNTQ3hmZlbA/VcUBavDSqm11It8uN9LyvU4j6pu9rZGqkXIJcYUQ/eQ7j5ekbbekr+vKParPzGFlXDasL30MPcg3hyvvofGE2GIwCk7OVp31Ecf0tpL4pSdPnUDaK6HEBZmweUwER+l4Yw+kSz9puakdCud0eAoikKDsyEwKWkmLW2/1zTV+BSOC1WySVWuJ0TujSiIiGgQRBAFAbO5nqzMUg4fSqe03NQmrayf84uEhBUN3t6P1h6HE4WAQIg+hEhjpKeAWlLQmRw53IuyaoFukQpZGSU0aPaqHpGafAqqCzwz7qCm3I0OjsaoNeJSXNTaar3E623FzlHGKKwOK8G6YPrF9KOsoYzCmkJcigsRkcSwRIK0QRyuOexJ/ZotLSBC8U3zGhpeRr32F5TKiz3H4498XZx5MXeffjcjEkeccB9BO6GQzZmZdmpu9iIUrfu3vWKCGkVgyHGBAcUym7LC2Blc5/V/VnQW2aGTKD0wqbm9Zu+FIPDEjJ5M+LgfVU1V5MTm8GvZr2gEDa9Pep2ZA2ay47t3ee7F6azIFpAEdR/angt/6XNFWWJQ4WYu2DSX3dlxzLzpFcynjQKzmTpXA2sOruGDvR/w6b5P1Ta69efSrEv58dtxuGQ6CW89i4BCqKsJXZOVyLoC3kt+g0XaPky/fiHEdRCOFQDtTUhcdVYP78kSRUaQZZ5ccQt9TXYuviGEb+t/5bnzn2PO0DkIgoDFbmF3+W52le1iV9kucstz2VW2qyXrX/MhDS6G6+UBDLjlb/TbUUzInHlqdqkPP4SePdVl6+vh1VdVT01JCZjNqodDp+O6xeNYsucdbun7JD/+GkSScRh94yPp17uM6786lyl9prB8yvLfLY251WEl4bkEbhp8E0+e+2Sn17O5bBj/YWTpxUuZkTPjd9m3LnShC//9+FMTjd9CeA2qoVpvr++QjLT9z20AtBcnv1l3McG6YMxBZsIN4UQbo+lm6kYPcw8SQxNJCksizhznIS1RxihPnHUgbYNF3E5Z2OMYtAY0ogZZVnP7NzobqbPVec1SA4yUVqNXYnz2zyVUkRt8hVe63VAlmxTlesz0QhNUTmT8TlLiBA8JcZOSuJA46ux1/PXdo+QX42V0uw211kbkYc0CemjOxSD1xGiqJyujhOyeYR6vSLw53iel5e8tIpcVmVpbbWBS4vaqtPku2lPbFGVTvAxUdVZTHRsarQPJ5Rt25hQq2aqfgl2yn/JxtIWAgF6jx6w3ExsSS3pkOlkxWSSHJyMiUmurpaiuyJMl63Dt4ZbieYJIWFAYQZogbJINi93iFbbTGuGGcKKMUQTrgrE4LByrO4ZLUdsZ4VpNEL5jTk3zGoavNkJBxkEt2ynSLMEq7EZGZkTCCO4aeReTMiedkI7I/7Wj4KSW+ogX2W/9EqfiS0Sig6PpF9OPxNBEGlwNHKs7RmFtIZWNlZ5lgpwQboeyEE/DmPVmQg2hlFpK6et6zq8eo4bN7Goml+umr2NLyRYe+u4hFBQm957M5N6TGT73aRoOHWTEtS7s+NbQCHSvCW0oZ6NwIXUmyC6Dr9+GCBs0acGiB4cpiOsmwZeJdn7ePZzTSGQiNi1bAAAgAElEQVRK+mxqNKYAGadUK9ydMtlfeFW0tYIPPriJ1yclMCdmC8k1MnsXCWjPHgtXXgmTJ0NYmM96gRCIHLp1Du5JhwMHiskozOWyTW+Soa1l2BUWGsNNrLxspVfKZH/Ir8rn/LfHUlFRhF0Dwyr1VCV3Y7+jxHM/T3OFkp11FtndB9I/KJHs1VtIXbQCTUMTTJ+uFj187jlQFOTnnyOs8UFkRSZYG8yYlDGsvGwlvx7/lVFvjWJY/DDWXLnmd01R/uKmF5n3r3kcuuMQiWGJnV7vaN1RkhYksW76Os5PP7/jFf4A/DdkK+xCF/7X8acmGnDqBdtOFq2N1Kc/rPYxtkHGGZRHsfkR6u31NDgaOm1U6jV6TDoTfRuWo1V8K8aKOisRmYtocDVQZ6ujsrGS8oZyL8Lghklnoo/zaUyuAR3OqocrA8iRXqZt0a3DpnspkzZ5UpW6EWGIoF/jCjRy+7HYChIN2p2Uhz2BRtDglJ1YbBbqHC37Kwoi8eZ4kg2jMVkuRLHHAlocDu8YckGAgakmnp352+afPxE4JAc/Hyzl/R8rOFwmqSllFQWDsQGX7MJmMyAEHccR9gWuytHo7FkB+15EJNwQTqghlGBtMHqNHkEQcEpObJKNqsYqamw1PjPbvwU0ggaD1kCEIYIYU4wnk5pWo6W6sZoj9Uc4WHXQO7GANhhRFHFIDr/hakCronu+xraa5jXcbw0J9zKtvRtuApcansr8kfO5ZsA1BOuCva57rUagrNbh8UPoNTC4j5OfdqszyK3Hcr5hPsWun7y2+eiYRxkUMYX3fizneLWAoiuhVLecvda1nj7vGdaT2JBYjtUfo8RSgigp3PkTLB0AZWbQSCA1H2p7Ew/ukE6xWaDeuiI6QFY55C6Cey4ysmFiDr8U/+L1fyCPxpDCzTz2/lzWpcEHfeHbFLjGmsY55mwGmNIJd2n4xraXseGfMaM6kXT7g3wbna024I9oKAooMooo+j9XisIw+zGefGAsP9Xv4fQlaqrWJeEzufbTw7B+vVo1+8ILVdJxwQWqsLoddBhiqSgU3jqd1EUraDBoaIiNoP9llQzIOY/lU5YTHewrxm6Nrwq+4s6XJ1FotJFUB5/oZ5D5t5eguhrbZZPJK9vNrvlXsysjnF2Hf+HX4u1UaNR7XrCipV+3fmRH9CZ70UdkSzH0rxTZ9OnLXPDBRaSEp1BrqyVvTh6NzkZGLhlJvDme7675DnPQqXttA0GSJTJfymRo/FBWXLKiU+u4sbVkK0NfG8r2G7czsPvAjlf4nZFbZGHxuiMcKGlAllWHkeTnlnf5yFhmj09m8RdFfPxLmccrZ9SL9E8yd5GRLnThN8afnmj8J6CznhVJlqix1Xi8IuXWco7UH+Fo3VFKrCWUW8upbKqkpqkGi8NCcsPfCFd8Uya2JQgCAkadEZPOpL70JoJ1wRi0BnSiDsGWgnTsuuY5ytYhWN7hIznSQr/bqycPF5ZWcexLcGgPECMOJbnpQTSEBjQc3WgvBalW1KoGrzKQ1KYnm4+p/aJmOwyXERMc4ymU1y+mH1kxWaREpJAcltzhw/3fhUD6navHNxAcWuGtRbFVe333l+nMDb2oklG9Vo9G0CArMnbJjkNyYHfZPZ6F3womnYkQfQgmvQmjRg25KrOWUWtvCbnSiloURS3Y1zakrqM0r63hHuN7tH/xMcRNOhPXZDzEvl1nAQQQ7qu+pSZKcFKNgViP/qJRzGNQ90FsLtmMgEByeDIfT9rGXW/l+1y/T8xIxaXPZ+mvS/n8wOcUW4p9QquS60WKzDKPfQMf94atCf7JQKBwOZ2oY0DcAHLLc7G51MroB7acRs8tB6GggNOWn82mkk2e5dUK3K8A3tdyzwM3s+SDXKqMEN0IkgjfpwrUTRhLn+vvJavvWciKjPlxMz3kKSQ6bm/3HKiqGhn8ZOxyH9GLN2TRL0kVuMc/F49Zb8YpOzlw6wF0pWXw3nuqxmHHDtWzcemlKukYPRo0vt4p97Uiyeqdyus+mhhC4fWXkLrkE6zBWmrCghh2ZQM3TXyYB0c92K63S1EUXvjqUdYue4gv02FKcRhvzVqF+bTR8OWXcMUVEBoKH32kEqwnn1Q/R0VRdvt17LpwKLmNh9UQrJ8/ZU9QHY7mzek1eg/hvnnwzUzrN43rPrsOQRDYOGsj3Uy+hNPfMbvHnjt3XViwlswepg6N5k/3fcrk9yez6fpNnqKAncXag2uZ8O4Ejs07Rnxo/Amt+1sit8jCs6sOUVRh63jhZpiNGixN/j2togC3T0jmp321FJY1EhOqBwEq6hxdXpEudOEk0EU0/kPQnmflZGesfB5CzXHbw4Zup0Gzl1JrKeUN5VQ1VlFrr8Vqt9LoavRKIepGW/3JMe1bOPX5GLVGjDojBq2B2IoX/HonVMNK9jJsDorP0Eue30H4kHt9CatmB0eC/4pDdtDkbPLE8reGfwNN8WmrTtxKnu4ur0xKbRGkCSIqOIp4czxpEWlkxWTRP7Y/qRGp9AzvSWhQ+7UDWp+DU3Xdn4zX7eO8j7n8g8uZ2ncqC8YtoNZW22n9SXVTdUCCohN1KiFAQZIlJFnyMeZPFv6Ey63H3BHNEpKkWURy2ikRU3/jxB/UfWmVchhVa6OP3My6utsAWHnpSrZuzfarYWrQ7mSbMMevJ8l9rCatiQZnA2MLYc1yuPN8eG/4YPq6XoA2JCuQLsQNk9ZEg6uB3vV63v8oi+UzH+NHSfKQe7d+pW2/6qLXowk+RuLXW3jvQ1ibDj/20jN+r4OzDqttb0kzUHLeSJ7vFY1YdQci7SeSkPWHcTnC/HufFIU+znIW/WM8aNV2bl59M2sOrqG4vphXJr7CjYNvbFk+L08lHO++C4WF0KMHTJumhiENHOjlUcktsvD82l3sK6lhUHIPbj6vF/0STByaMYmU5WuoN2mpDIZJN5p5duaKDkN+mhyNPPfgWL4s/5kNSfCYYQJ3z/8EQaOBxx6Dhx5Sxd7XX68W4vvmG0hNhfnz1aJ8xlbZCletgosvxtkvi4Mhdn568R5uWKMep0Fr8Hh8u8uTSZdvQ4OaiCHUJBMTaqSyTsblUrC7VM1OevdgUGB/SYNfwtyZUNHRb43GJbvYOGtju/3QFrlFFp74fAuHyho5PS2NGWMS/hDjO7fIwtw38trN9BcY/uvgtIf/1BpOXejCfzK6iMZ/OAJlfHrqmjSyk0PRitp2M5GcjJHqkBxUNar6koqGCo7WH+Vw3WGK64s5bj1ORUMF1bZq6mx1NDgaaHI1ISlSQEMffImDC0tzNiXvZV1Y0WD0k2VJNbLc7fgjCIFCTlpITPsGm4CAVtR6wowkRQoYbqTX6Ik0RKopYsNT6BPTh5zYHHpF9aJneE/CDGF/WKHBVftWcekHl3Jp1qUsm7zspGqIOCSHR1fSnv7E/V9lg6o7aqvvAV/DtrXRe6JQZ+RfbZdotNVrtN1WoHESqDV/Fcar2URTzItM7z+d79ePRJDCfda0U4Ej8WHOSTmHnLgcYk2xxIXEERcSR4mlhOxXsnnzoje5dtW1aASR6tJrKFq9jVcuup1dEYnNwnOwsM8nm1V7CFWyGeRajKiomaXc47445CEKbN94lnP3oYDAzUNuZlD3QXzz3K0sXWFjVSbMndENe3U5VxYEM6ZmOO9l3UZZeA8UgQ77/4CoehYz5Xuau9BbCP7Cspvp1zsWVq6E0FDW5a9j/PLxjEsfx57yPRy87SBB2jahUooCmzfD8uXw/vtQXg6ZmaqX48orIT0dgOPW43R/tjsfXvYhl/SezKFp40j+4CvqQjTU6CTu+L8BvHzTKpLCktrtx5I9m1h7y1j+MdBKXYiGlRPfZuxpV0JNDcyYAWvWwJQpKvnZsQMGDYJ77oFLLvH1uFitkJWlCt23bIFVq3g25iDzv5yPTtCxZ84ebvj8Bg4XxZHimufpKXd/tpyvEzeOw4xarj0n3jND757wcOoPMvjVwXxw2QdcmnVpp9sL5Dn6I4zve5buZ3O+b8jv7wlRgMweJhAgv1TN+pgeF8zs8Uld5KMLXfCDLqLxH45Agu7WYRQCAhpR46l54P6sEZu/N38O9FtH6wT8v9UyAPW1EZTsn9S8l2JzXLv/GG21DoDvjLKdcvZo7m83ZWiokk2adDshZABg5SAFmoUkS7MCxvUrOL3aOlXjt6PsQqIgki0tIEweQtvMScbQYnpnbyRIE0SQNsjzbtAY1HetwfOqqDLx0y4DJZXNegFBIC0uiBG9w9h2sIlDZU1enpLVB1Yz5f0pXNz7Yt695N0TJhmn4oFRFIVGZyNVTVUs3bmUh75/iDuyn2fXjhGeNLXqmFDY0Zz5TCNoTjhMy3+17uZ98JNIoG0q4M56NAIeZ/M2FCQahYOYg0JQbPG0DhMSUOjX08D9U+Nwyk5csgun5PR8rrfVc+ZbZ3LvGffy9MancSku7h/yKj//0h9kBVnUABIyCqXmhzkjM5FvCr7hiOVIRztHf8l/6FWDdifXTxC595t7PRXKM6My2V+1n/CgcOrsdUzoNYGMjft4/JV8VmfA7KvC0TjGkCHf06EXqfW2qtnMDQcWkpQ/gH+efweNogFBgOQYI/MvTqHfgU2qQZ6cDGvW4OgRS8zTMczInsGirYtYOG4htw67NfBGXC7Ve/Duu2q1basVhg1TCcfUqcS+k8NNA2/g2hc3kLRqPTUhIhatzJLnZ/DAVa/6kpg2bRc8Mo/v1rzEbRdAmjGeNbM3kBzRE3buVMlFWZkaLnX8OIwdqxKMc84JIIwH7r4bXnwR0tPJTcjmnWkPsrHgEPXKAc4boqHYtZGP8z5mlOsHXFLniYS/iZxAcNMUNzGITP+QzVUryb89/4TuEyeSbvz3RmeLpP47IAC9401U1HeFWHWhC63RRTT+YHRk2AW6kQYbnFw+IR+X7EJS1BAW93vb31yyq/P/d2L59toQ7amYrBeidSXi0BQhyMEYpHQfo8dFPdo2Rbs6k7a1Jca8hcC4U476hmP592AEiv9va5AG2n6yNAszvT2/qTPOnZ859xfW44/4AAGyU6kErm04Wuv9FwW1fwRB8HwOVbKJd11NsJJKk3CYiqD3EAWBbo4rCJJ6IguN6OUEwG2oy4CCI/ZFtKZj6DV69Bo9QZog9Nrm99a/afQEaYNQFIWFvywkNTKVLOczHC83o3gZQjIx0bXMmWTEqDdS01TD9I+m083UjftH3U+dvY7qpmqqG6upsdVQ0VhBRUMFxZZiii3Frc6fxsfA8hcq13ZM+aZUPnm4x16Ld6DzoU5t4ZcAKRJVwmZ2a+d5EVuNoMEsa+lT6mJAicyAEoVBpWrGqCtv+5wqc+fGnRu9IntxXtp5rDm4hsO1h7muOJaXl5TxxvBsVp79avOxdd4ANjVVsPqjW+GNN1DGjKH/4v6kRKTw+RWftyy0Z48q8na5YPVqrix8mr0Ve8mJy+Grgq8ouL2gw0KpADQ2wurVKulYuxYkifNuC0ex2/jilUYqQwQcWti5YgGTxrWvLWHbNopnXMzjPY/x8jCYlnEJSy5dpu7H4sVwe/P6kgSXXaYSiMGD228zN1cN8br8cnJ/3MO8a19FRq235B47OzQ3M3fgE6zf2r7+yB+8Q1P969La/i4KUMkvXDPexV9G/OWEttdRdq9/F2RZZvRjS9HYs05obJ46lGa/UuBtdoVYdaELLegiGn8gOhNa8580e3QyCHSMt09I5oU1RT4hYU/OSCEjIcgvmXFKTp75sJp9R2X8hbNY2MMhzYskSDM9BnuluJ5oebSXAR/I89EZkhPI8O/szHlnDF93exbyCCXLrzHsz6D29tx4x+SnSXcQipppq/U+exvI/sPc2uuXjjxDJ0K2TgShSjY50kudKhjnoIaftOP87nc4gxDRn6KhohAeZsEYBHX1RiLDHAzpV0dirIxW1KITdeg0Os9nrahFp9FxzafX0DNoNFLVGGrrg9ARjohvGlNjUzl7xfvppp2FTkzDIhTgaljC1hd3EewCSRTY2v90VmZP5UhET+xaHRZjKAgnX3tFI2g4b79EX2UBW1NPCzxTj+9YFGSJnMObGVj7NMq0aZw5YTY/HtnAzFUz2XPLHrJiWtUGOn5czSyVl8cHi2/j8sIn+G7Gd4xdNpanzn3qhI3gVd8V8uZ3pdTJIpJSz3Xf/ZPzdn+K9e8P0Ovm+wNnrrJake6/j+NvvcjEKyC3u8DC8S9yy9BbEAoLVS/Grl1qKqNZs1QPRnOoVruQZTjzTDXcyuXinnEPszW8l4+Huns3K1XVJhwuX/LcHtS+VzAbtbgkhSaH3KER7IaEndsuCmLyoEH/dR6NPeV7GPzqYIJcmT4TT78nTsSD9N/0nO5CF35PdBGNPxD+btiCAH2StNx9aRRGnZFDpTL3LztyyrU+/kgE0om0/X1kn3B+yqsN6N3JLbJw55v7cEr+h6yEnZ91Z6u6CgHMcn9ypEU+BrwLC3p8ResSdvLF532Iidtwbi/k5kQIRNuZ7kCERMZ1QpWX/REfoN3Zf+j4oRmIFLT1LLQUs5vdbp+dSsHB1uic+F+tfdGWaAQ6hpOFIEv0qNpC+vHlaMQCLJEmGiJCaIwKxR4djhIWhlajwyk5sct2mpxN5B1tJKXxCVpE377nQ5AlMkv2crB7HyRRAKFlHEXaHuYTOZvcDXuYd85DyIKgVtp2hyzKMohqhWxJkdihualTHhZ3UccIQwSpFYtA41vPxI0WL0tzNW5ZAkHgzv3PM3rNx5iaXOyPgh+GRPN2eiNRp4/lk2mfeuvKGhpg+nQs//qMmP/T8Ph5T7G3Yi+r9q/i0B2HMOlNHe6zV+YhRQGhuYaHArfsfIvL1rzSkrlq+nQYNapFR/HZZ0hzZrNeX8qkaQo6czhrp69lhDUcHn5YLbynKGqV9CVLTqyg4Ouvww03qOLwZ57hskc3UeknOZKoaUSSjCc9Bt1ejQPi06TKtzTr3zoqCKper3v1d5Acq9A/tr+n8nl2bDYxJv/n3S3AlhQ1/PXf/Ux65PtHeHj9w17eZZEgj7bvVOAdeul7LwFX86+du1/8u708XejCfyK6iMYfiEAu6LaGXaiSTU95FiFKOnZNEXXBHyMYj2DQGjwZn4xao//vgX7v5HedqGtXbP5boSPvTosAMXAbEnZ+1I4CIFgXTJbzGb/1P/wJ0dX/FM8nAdHz/YD4JKXiJx2KiDsXEuWrEdES5pdQSNgR0XbSo+Hr4bCQh5EEtISdkgFTzx6v9MRHNG9i1+2nn/0VTEpvPw/jFjixoEM1FE8lrMgf/IXR+YM/j0ZrdJcnkyHf07yPJ9FPzYatIEsIKFy4cQ4u504Oh+P1amjlrDA4oZ+8AJM4DEHQeLcFIAiq0Y5CZG0e1eFZzboN93ISNcJmlr42l+cuWkhRzFDvdpAx2urQCjLmJD1D+taxveYTPtu1yzPuYiMUxg/TY9Pu54VNL1BQW+BzaO2TazexlUER0DtqqdDvo1CrjvEYTShTSsIYt6uR0TtqiGiUKQyHddnB1E0cy4hL7uDMnqPV1LKSBPPnM7F8AfWp8Syb+wO9FvXm72P+zj1n3NNu97d/b1AIM+r49GIDuSvW8U5JCIUhPUitP8ZVwcX03/cTyrffcsdELS8NdpETN4AvMh8hbsHr8NlnqgcjNBQ++QTOOqvd/fBBRYUqVp8wAb77jtxzp3Jf+jQsNtnnWlX78tTIrkocbAioBT47pdsQFGKiawlJXsmu8l3sLt/tyX4VFxKnko5u2SoJic2mT3QfgrRBPPX1St5ZX0qvkDNIjwv5TetP5RZZWPzFEfKPNwutuwcze1wSWQnBDHphMkr1OZjp3Vy4UwlI0juLluxyLckRWv/nL1y1M6L8Lo9GF7qgooto/IEI5NFIi5e4bKyFJmcTNpeNJlfze0ffO7FcoCJprdHaCG4QCjiuexcpqOB3JTaLPrOzt8jhE1JQK2zliOlh0m2PEewagBAgL7+CglXYywHjHWhFLVpRS4ZlKTo/BQud1KIlBDoV468+hHZobvIbctV6XzsbYmSjnFD6AO2HLNWTh5nefkO1vDUageOy27Z7Mv+7q5S31YMMkBYhovO7bts2bJQgovMr7j8ZCKjakxznq5jp284xtJwXg8aAU3IiIXkE+Ba7hX6u5zuVMrczUInZbg4Y7yAlOJ6e2mh6yqGk2I30rBfpWemiZ2kTEcVVXHbmI1SZfIvECbIDF7VERSl8W38/faXH/BJcp1LOFuFCBuO/inpoQzmT11/EtZPU89cZbZJG0HgquYuIhCk59JdeQlAEBEFDayLp5XlBJiHOxnlnHMPqsHp0NhWNFRy3Hud4zVESthdwwa4mJu+D2AY4GgofZ8F3gyKxDOnPkIThlG79jnfsW1iffyZvT0nj4/zPOHTHoXbTSfu7j3r1pwALr+vjPZGhSAiywt/en83VE3dxKBKuM57O4tUKuh9/gpgYqKxUBd4rVqjVvE8UM2eqZOX228l96zPmzngFSZE9kxje1/JJktw2CHQvaA+tZ90lWSK/Op/c8ly17kfz61DtIUAdH/1CJ2KovwCtK4GM7qFMH92ds/uk/iYTUu2lq22gkGCSgfbrJAVCoPtda6Lhrz0BhaAgGZtdJBC5MOgEHC61/f/WyIMudOH3QhfR+APR2UJ9vyVkRcbmsgUkJAeLnbyzTp2BVhT1UYgAQ4duxxBynIoqE0eLetHUEI7WWIkhZiMufX6HRKejquaBY/kr2Gm4jIG2D9D7MaagJWygbWiIv+xEbsOzUlxPhnyXX9Lgr/1qfqFIs6QDjUbLLP2JEwt/2ZJuBoQ24nMFC/u9tCcCOnQ+wvrOkoiWZVo/uN3/N1CIiZ5+vEKNaAnp1IPe3ZaMnSLNS9To12F1WgnSBtE3pi+RxkiijFFEGiOJDo72vMIMYYQFhREaFEpoUChnLz2bwtpCfpr1EyMSRwDtZ50J5D0x680M7j6YrJgstKKW3M0Xorg6Vxelc1B4flYmA1J8U962xnWLN1JQIvr07dC0CJZWjOKWobfw3PonGFn7JM7gYV4eDVGWqFc2szVoLqPsLyGIg7w8GgoSA4/n8rxmO9Kil2lyNfHAO4XsPNTQZszLJMQ1cf6ZxapXo6aAa3OuZcnOJdTYajBoDYyJnYmzajTUh5NevJ/8uN64dL6hh+3pboI0QZiDzDgkB402C9NqEhi7o47zfrXQvV6hNAQ+6Q0fZsEPyS1V0gGijFHkxOWQHJpMakQqvaJ6kRyeTFJYEnEhcUx95BcqXYE0BqoBmRxj4GilzXtSp1lov0ecy2ufw7U7AJMJoqLgyBF44AH461/9FgfsEN9/D2PGwMKF8Ne/cs8Nr7NZ34PWmclUD4QLAbHd+9DJkIcTQZ8EE4tu6tvuMvX2enaX7+abvQV8u6GXxwPjvsYKjHeR1kPrFXrVt1tfQvQhHW6/dQit06VQ1+Q/C92pei3U1OkGv5MjgSdr1OdFCGnterOjzToempp+wqnku9CFPwNOPMF+F34z9E828/ysPv/Wm5MoiATrggnWBYOfhC6rv9+PQMvsoIIAisyeA3FEdC/hWN4od0tITiP2+qkQ/08c+oM4JAcu2aXetAW1JoVeo0dR1Ju4Q3IELO5mpQA9UT5Gl5V8mlxNWMgnkmi/DwMZB7ma27CKexAU9X+z0h9zs3Hf0p56UJXienrJ8wlctdgbAgIhpFEv7GKnZnaArFNveJGM1oTETZBa1y3wtw0Zp6d/mjhGmjQXIy0Vd9tmtyoVP/HaHs0pg9t7ILv/k2jyiWluu3w9uzEQ62MECWg6TTJatysSRIp0J7FNUziqX8CPs98hPbITglrg0R8epbC2kKv6X8WIRDVd7rJdyzhqs2Ggvw/JctfROKp5k8x4A2ckzeNA1QG+Lvwaq8PKrvJdbDy6EafsJEdKJ5xhv5kxpwA3LVvJdRNgRs4MDFqDzzJ1tjpc4V+ilJxPy3lTQ6WuOTueo2uzSVn8HvvXOakMXcLcGcNQ2iz36kfvcNeYYLbEvspAeTGioE5YqP/DrPx10LcHGlFDiD6E4kp/KaVFisrtZMdms2jCIoa+NpSRSSN58twnue2L21i8dTHriv/J3b1dnPbRJs75NJe/X7KALanDQGx7rbaEXkUERZATl8OA2AEkhCWg0+iwOqyUWkpZtGUReX270TByCMtt9STnlXLapmIm7qznlq0KFcHwaTPp+CoVqpqq+PbQtz59KMjQrQHiDAvU8yf4M9bVc+qvarQiaDAraWx5FQYOGAc394Rly1SSIQhqzY533oHJk9Xwqc7C4YDZs2HkSDUNrs3GbnMM2L3vN+p40xDISwutUyn/jmSjnalGq8NKiaXE88rd576XaTzvoqAwPPh+tCFL+frQ1yzaughZUcPD0iLT6N+tv4d8ZMdmkxqRiiiox9x2sq09nJp+BXI180iWrutQ19V2vV7pRchVqdTVKiiK73KiAKmxwfRPNneFSXWhC37Q5dHoghcCzRDLYg2yvgSNrbcPGRD0xQhaGzjiEHUWdVbeFYreWENsYi4R4fXotWoaVIPW4Albqa+NYO+B7tTWGwjSKVTXu3lvs2EqwH1TI+mfHMqhUpn/e9u3hoAADEoL4b6pcTQ6Gz2vRats5BcLXg8GNZPTXiTRSrhPfYvAOFHx8snUaVCNQwF/MccdZbeCzmVRcgujd2vuIkd6uUOhuYQdKwcJpU+nHsydP1Y1VOGA+JSHLA3rPoyPp35MfFgLsXLPdB48bqHAupFy/Qou6n0xO/Ii0Dp7Am7SY6Ztqt+KsL9jNJezp2IPdsnuFRLUGiadiYERk9GWuGs2/DbGnHt2v1twN+aeNpfZQ2cTbgjH5rLx8uaXeWzDYzQ5m9A5ezEu8ikaG8IoatzEEfENjpUMJOjtd5FkF2uHR/JQdjXXXfYxb357hBDSaBQP8cToHM6ZNnt7i/MAACAASURBVAVbXRVJ88BgGsZViW+xt7iao7at3DtpKFfMvAHOPRcWLADUEKNN+dVe51IQFOz63WxjDs+e9ywr96xEUiQ2zNqAoii8uOp+HM88wc2b1QTFuReP4Ku+F/Otc7S7Ac9YPSA+SV3Qv9A60n0ykWmNxxjdczRnJJ3Bd4e+Y3vpdg7NPYRe00q4oiiwdSs/PjeX7v/6ifQa2BcFObMh2xrMoJGX0jthAAAV237g+A9rWZ7pINKVTZa4GFnQBM6O1Ur70vKTRE7TIZ6f2Q9xV64q2s7IgDfegG3b1HS569eDwaBmxrrySlUQHihzlRuPPUbuPz/gnbmL2H/MgssYhEXQIipa7+0HCENrCxkXp6rfaA8mo4uxZ2/2IhTul8Vh8Vp2pLQaveLrWW4dftXkbCKvMs8r9OrXsl+pbKwEVP2cm3zUH7qU8sowvwZ8Z9DZe5Eqe28EZDSoXhZ1vdYZDL3bCTNqefSqXp7EJYF0QBqxK0SqC11oD11EowteaC91YWFZo18S0jaPO7RfMA38p4ptWc9bhO2GKtq9G3csbXvC4vbSqgLtVhBv+5uaSanz4uXOVJ5u20/eQsP21muf9LRXHR1gh+YG6oVcznT90CHRcJ9Xd7+cTFx0+23DDs2NfmuXtAi9vbUhbdPxtvSfgJM6L+9SiF71urQ2lkRERvUcxbzh85AUiZe2vMS3h74lUXcmPWy3YVCSPFs4+WNrOUduLYlBY+DM5DPZVb6LpvpujAh5gCApmWO2rQzvZ+VvQcmkbH2UZGkWPZvSSdQ1sFr+B5l9Y/nq0FekhadRUFughgsZovlheRAXpG9iZKmG4YddXHiFwhXx49lo3cPg7oP5eOrHqhB50iR4+mkAfth/hAffOdbqXKo1HJ6d1YsleQ/z8paXGR4/nE3Fm3gs63aSX17O5I1VuLQiy84M5eEBtTSGB5Nhf4JwaUib9Lky1WyiSLOEgdLi5ll60eseYBV3A2r4JkB6ZDoXZV7EyMSRjEgYQXdzdwAO1x4mZUEK6/o/yZkbjvB/BxfzZrZM7mLY0gMSXMHkmhq5ZRIYHJC7qgdWVxJ3XPocitjO9aMoKELzfUpRvUK5ws387ctcbt0Mq4aFsWz2SDISB5AemU5SWBJJjTqS1m7EsOIDtVhfeLiauerKK2H0aFUs3hqFheSeO5V5V7yoVqERWvQY7qQBbfepLfkIFFL5e8A9VvMN9xIfGk8Pcw96mHvQPaS753Pr3x59r4TN+TW09gZ3RvSsKAplDWXkljVrP8pVAmI89qhffVHg/fV9TpxK3xi0Ig5J9utNMehEgrQCmfEhXHVWDwqPN7JgdZHPcvMuTGbSsFi/7Z9KAdQudOF/BV2hU13wwlVn9WBbYZ1q9rbSjVw9pgfLviuh2uorunSHALR8dv+uVjdOlmb5GMbJ0iyPweO7nmo8RsujaRAKvGZHD4hPtUk/619YHDgUSw3v8Pef2zBqTXzq2U2BZuEJiZf9b9uXgFnIw0AsVgowk4mejot1CWgIIa2Dbcf4PHwFBBxUe45D9VT09TFqfM8DWMgDIJR+HR98gLZ8j0M1FPyNDVDHh7qcptW7t2HhTTokQsy19MrYgVKqsLscbC4bZ6eczZTeU7io90UALPt1GW/ufJOL3r+IhNAEpvefToQhgo/yPuKYZgMRDGSw9h84bZH4ZpZRv6vHRoD/VK9JkeYNTz9IikSDq4F1BesIU3IYKC3GVi/SqMiYlBz2blf4cd0zDBy/GAQBi1HDPiGGnspiGiwvA3DMcgyAPmHp2HZs5spkOz+l6nj4r18y6qjIZYvG8EXTF2SXCzxx9VfqLrlcoG25xTt1B9mp+YvnekqLM/FZxR0UO/7BSxe8xGkJp3Hjp9cjyvDlmhdYtU3H8dtn0fOBZ5gdHk7thse5/9v7McopXiRD7QmRbrpscM5q7he3wFmDgEIf8VY2KTeiabXe4drDvLH9DZ79+VkAeob3ZGTiSEYmjCQzOpM3le2c//x7PFh7H0ueS+LloRKPfSugkxrJ1kF0E2RViXRvqCQvJ4jMkjz2xff179VQFOqEPUhYSAgaTFyUQJzxe1557BhphTDvIgMLBtRB0Rfqqw0ipkWQMrMPPatlkvNWknTf6yRpIkkaOZ7kKbOIHnaWKoaeM4d3Rl2PIootThT3OPG3X4LvddpCoAOnWu0I7S/vHtcKGkHDazOmMizt9k6Jua86q0ezV0wGRK/nQ3sQBIFYUyxKNwWD1kCkMZIEcwJbai04rJEdTrC4j6nt55Ppm9ZtNLmkVuu621e/25wSNqfA5vxaNufXYg5pQsDoufrdSy75uphl35f4EIm2YWHV1jq2FdZ1FfHrwp8OXR6NLvigvboXbcXrHcXVAmj1jeQMX+2pIq3X6Plh/ZnY7e3PqDuoQYcZWs3AAhwP/RuuoHxPnK/7YaMoCrIiIykSWkc6CZa/N//vnVYVBL/Zdw5rFxAljyZYScGpOUqD+XMEYxFBmiAMWoOnAnaQVn3pNXoMGvV3d6VsURCpr4tkz84zmp9bqqcCwGSuwWEPxmiqpXvSXkJCq1AU1WeSv3sUlto4OtaNyBhCjxKT/jmSrPaHrMie43ZYu2M5dFXzsoLXeorxAHL315EUCaUxGX3ZbbhTw7Y3O+gUKnFhxaAkt/tAb20gdfbBH0hA3BmvkL+2fjVOZVz6OKb0nsKEjAmEG3wF2YqisLl4M09tfIpP93+KrMikhKcw97S51DTV8PqO10msXux3+4IAYaH11NR5p+wV0GA2CgiGEjY1PEat8Ku6T81JELxC2xS9l1EnyBKhQSJ1TgVvsXCLZ2RI9yFsLd3KeWUh7A1upDRU4JOpn3Bhptp3ubu/5czl53BePrzX/2+IDzwAKSkwYwb8Xb0Ont74NHd/fTcARq2RhvsauODdC9h5fCezDaPIfO0jhh+WOPtagUPhCncMvIVnJ76gpp8Fvj/8PWOWjmGA9AJhinfooShLONmBOTiHRpuv2DbarOOBGSJv//o2b+962xNG4x4vqRGpxJpisTqs5FXk4VJUQfDo5NGcFT2Uii8/4c3QAhJr1SmNS/bA/Zt0GJqc2DXwbQqURWTz9rmvoAhimxApNaFFk7ifh6YMYkJOP/juO5g2DfR6tU7G8OFY7Bb2Ve5jb8Vefi37lR2lO9hXuY/jDcc9bRm0BkRBxOm046QlFM/gErhhv4kXPrBy/v3f4BA6FkG3h1OdrW/vGjQFiWg1Apk9TjwtrdVhJemxMzk/6ilcTdE+ukJJljhWf4z86nzyq/MpqCnw+tzobPS0lRiaSJo0DGrvVH/wq7FpOR7wn7ji34GOdG8tYVjQI/MzIiMtHN13LnU13ThR708XuvC/hi6i0YUTQlsSYrG52F/cEJBwBLqxdpSSUhQgxKDBapN8Ut62DR0K0Yd4MhO5sxSFGcLQ23thKRuGvSmSMHMTg7KqSY/XERoUSnVNKD/u0FFarZASa2TmmET6J/92mYcCkbX2lg8kivSELglqv3QUD7xqU5mXiz/Qep05l6IAmfEm8o41tHu8LaJViUDx5L5hIeq53Ku7E4PWoBaIi0ilT3Qfft7ch4hOijbdbYWElfLqjafRI7T92VWX7OLxHx/nkR8eoU90H67sdyVfH/qabw59Q4g+hEkZk8jbNZJQeZC3Md1qLG/KP86Tn2/leLXqRYpL2s2nMxcSrAtm45GNzPpsFgeqDgDuMLDFaqKCAMZUaz+J174KVWzQXECOLolfnUdIrhcpCpVZevFSZuTM8Cw3b908Fm9+Gbvi5NMVcFHyeWqoz5w58NBDAEx4dwJrD65FQCDMEMa/rvoXy9/6C6Pf2ciUfVDbLQzx//4P5dpriXu5JzaXjVHJo1g+ZTndTN0Y8MoAIowRJDRlU1Z6NeBOeSuhkRX+vvIWHphyPeiHeh2LgkRWko5FNwzx9P9XBV9x9SdXU91UjYJCt+Bu1DvqsblsJIclkxmVyZeFX3IpfXnqxX2sS5a45ULQKKCTYM9rOqyhA3hn5uMcqrCRUpbP1RuWkN8tjX+OnYNdpxr67tD/Fu8XLDRup/+Dc9SsUCtWqKls20GDo8FDQPZW7GVPxR72lO+hsLYQjQT9y+C0Mi0zcrNYPPZ2jsY0e/5OMt2rOvEhd5g6uvUa/rxrvpAZlh5xSkbuN4XfMHbZWNZcsQZBELyIRH51PodqD3lSqGsEDcnhyaRHppMekU56ZDppkWmka2JIWb0B46tvQl4euSMm8M75t7JNisSnFqvivq/wb6nn1BH8hbZ535NkJMM+6qKeJ6z0STSyr5e6q4hfF/5s6CIaXTgltGcgt5eutzPrhRg01DX6CnjDTLDw5ljCDGGY9WbPjOt/O1ob/jFhepqcTeSXVSMKGsINYfSON3d6BvJEiY57HX/pljO6m8grDkw0Wus/AtV8aL007ZCmZb8uY8anMzwaDY2gac6k1D7JaK3VMevNDIgbwMSMiVyedTnJ4ckeIyWvIo9rPr2GbaXbuPeMe3lo9EMeQfLh2sMs3bmUZ35+BtGe6uP1AoWeff/F/429gt7RataxguoCMl7KQFZkYowxpEels6l4E8lhydx35n049+fx/YZkKsOHehfca7P/Tup9UhSD/P/snXdclXX//5/Xdc5hb5ApKALiAvcot2luy8xxl1qOxNRMyxxlZTuz1Gy4V45Sc2aOzBHugYqoiAoICMiGwzycc67r98eBI+OAWt3d/b6e5+Nx5HDOta/j4fP6vMeLPDGC7LwpjI4S+byjhFYBrb1ac2HCBeNSsdmxNP6uMe93fZ8VEStIz04kebUTLmlqGD8eli8HwOtLL+4V3kNAwFpS8PNmHX1vQ4qXHe+0KyDsqz/oEGDoKjfn9zksObcER0tHNHoN/YP6szlqMxETIhiwqjv9LvtS1OUrYjNKKCCWbO1q9vwcS5xrX77r9VbZOPd+pOyW+AUz+nTi9Q6vGyORO6N38tzW55jbeS6n7p7iSPwRLEQL/Jz8yCnKJqskG5UOGpRYEWNXgq3KlsLSQnb/rMQ/rwnTRi8FBCSxzJEcjDUPkqgoq8moMgsty9TLiGOda5Qh0vNnWteWUawtZn/UdXaeUpOdLFGksAWEB9ZhVHqrShRQRkJGQk/RQ7t7P2wxtEIQ+Hr8wxUtF2uLicuJqyYkLqRcIKckx7ichcKCBs4NjGIiwCXA8NwlkHqO9VApVPevwZkzhs/ili0Gg8bBg2HiRIMRoiCY9NB42Kj5P8v91DNTgq5cSNRW72iOaJh5nDALDTN/maoDZGTIUJc+cIBbaT0HCxAgI+/+ehuOpjy2X9QxmTF0W9+NOjZ1OPLSEdxs/oRh2J/AlED54KfbNXpVlFNKNlaBC3DNnUlmlpPJLjIC4GCtRKUUTH42Ru0YxcaojQAMbDiQbh4vs+VEBgqtD6a8QgBEQabU8jpXtV8b05XgfqpSueGhQrBAFCRKJS2SRSLT+oYyvE37asf4W+xv9N7Ym0ltJrHx/AljPYOldQ6OXhc4nfkT6UXp9A7ozevtX6d3YG8m/DKB1ZdWG7fhZeHKFtULdDp4HeH3wwyd9iuZdqbvX/lAPEnYRF15RCVhIwoiafmvsH9NFC8PhqP+4GXnRf+g/qwctNK4jeE/D+dk4kluvnaTuJw4QpeGEmjpRczcNARZhgULKJw8AfvPHZCRESVokAMXDvhhP+8z5KHP88S6ThRpi7gYdhELhQXJ6mTqf12f97u+T3hCOIfiDtHCowVrn1lLyxUt2X+8Hn1+v8PzW59n7829aPQarLQwIXctUY7BlYqyK0Yhu9fvzobBG/Bx8EEv6WnyfRNC3EP4edjPJOUlsSlqExf3LOf9tXd45ynY0+h+VEKlAysJRkaChesSouq2qeKWXr2zlCkEZI58VP3ePyrlwlySyqJRtQiKWpElVNo89CLotTfI0K/G2XYBKqG6V8mfR+KbV5pW+v+Wr8mvJiTKf7+rvmtczkZlY4hGOAcQkRqBk6UTi/osItAlEB97n9onevLyYNMmWLYMoqIM6XxhYTBmDLhXn5Aw9f0zdWU0/7ZBiiiAvZUSdYkOuYa/T/8LnywzZv6NmIWGmX8tj+sX9a2sW3Rd1xVna2eOvnQUd9tHq1X4u5m1PoZzt/NqfF9Gj41DCvveGlJ98FUewcDQoMfUvSvWFhOyNITYHEOhfmO3xsTlxFUyeXQVWtNM+035lowpWraWIkpRBAFcnIqIYyVR6VdppvumwqC96qyxYfbbr/E+RrbrzJN+TxKfKrP2SALn45NQWmcxoIU/609dwF0VgruzRIK4llOZm3G2cqa1V2uS85OJzozG1dqVgtICNHoNjXKUHCh5Hocfd+CsLuVygC2Kia+ywXUMEfEFNc7Mlg/EExRrCNC/jh1BAEi6W3y8/WuinK8wtS+42brhaedJ9/rdWdJ3CQBn756lw+oOrBm0hjEtxwAwce9Elkcs5/fNKjp7tMXi+CnO+SkYOlhPopMhY7yFTQMiZtwydk2KvBdJ6xWtmddtHnO7zAVg1M5RHE84Toh7CMcTj1OiK8HNxo3iHFfGlMwloU4gssU9ThV8ROsGruy9tbfWbm/ltTj2FvaseWYNzzd5nhURK5i4dyIxU2IIsq8HH3+M/Omn7O3mzbAu97CQGhvFXtPUeBzTVrGw1RU6SI9ew3P/gst0D1nP5IEf4Wrj+sirqzVq9t/az5p9oMn3e6hC5poQkWlBGu8kbkROTESRnIJ1aibvDfiMcwEdahUuD1vHISNjYZNGSKs/SC9KJy4njtvZt0kvTDcu42jpaIxEuIvtyEppQX6+Lf4e1ozvUZ+Q+g5o9Vqc5zvzftf3eavjW7Wf2IULhujF5s2g0Ri6n02cCD17Vu/U9QBe/voKCZnVfVBqO+O/q021KcrFxMhu3g/8+/RnIstmzPxfwyw0zPyredy+qGOzY+m6riv2lvYce+kYHnam2yb+k0Ql5DN1VXQN7xrs8ea/5E/7QE8AjkbHM3PrQWylhjhaOiII1Fh4ejjuMH029jEW/wI092hObE4sxdpiQ+GtpKVvYF/mtl3F7tP5XEnKplhjEDGVPCEwjGGCvGyISSmstTd/ualfATdR4YI13mXbECosYfi9fAAxfYgN4WkbWB+5nrTCNBSCAoVWz6AYCIsQ6BknU2Rnic3YMC70b8nrd1dyKukU3T3HICRPBGpOAyklhzjL9wnWLMJYoC8b2gtfUkxELV6hvU97MosyGdJ4CPN7zUeWZbqs60JeSR6Xwi4ZZ5YlWcLtCzdcUnKYdVKgV6xM/VwY9SxsNNhQ0K1+N46+dLTSMcz5fQ4LzywkcmIkjdwacSn1Eq1WtAJg29BtBLkE0XvlBIJLF6FAREZEEAxdtT560Yf+O5vhX/RxNQ8ZARk/Lw3rM7pW2t/o0NEseHoBIUtDeM69K0sX3UK6GsVb74zikL4FrmIIsmRLedtnUTKkyEWpphCkmIRlaTOqOm1XvoeYiDLI2JQUsO3rnqzsoELzxuuE9ZmLo5VjjZ8VgNT8VPbE7GFXzC4Oxx1GK2npIh1AlB4UdZArSO3K1Jpaev0e035MRKpp0CzLiLIEsmyI6tSSmgVyWRtpQ8c5G5UNrtau1HWoS6BLICHuITR2a0w9p3oUqt2YuzGp2uB50djGlChv0G5VO06NPcUTvk9U31lBgaHmZflygw+Jr6/Bm2TcOPCuvW6qNqIS8nl91YOjGo42SrxdLB9YT/ZXqJry+bj9fTJj5s9gFhpmzPxLiM+Jp+u6rlirrDn20jGjr8C/gfsF5hXzkyGPq4T19iGsUx8ANDoN3dd3JyEvgc39TrHvbEm1HvI3s26yM3onyy4s407eHcAwEHu709vUc6rHlH1T0Mt6LBQWFOuKea/Le7zf7X2uJRay8VgKl+LVaPUVjbbuU7VR5YN4lO4+9epYMaDnTd45/A662zd586o9Q87m41EIF/wtWdJcw7am0KNJP9584k261evG3lt7efvw2ySlK2hvPQdtQQOTx6AjjyKScKBZtWJTNVe5pBwPgCiI9A/qz+4Ru9kTs4dntzzLgRcP0DuwN7IsczzxOIvCv0D+9Vf2B8H0M/AR3fnlSTc+Td1GRJkf4nONBrN9+I5Kx1GsLSZ0WShedl4ce/kYJboSXOa7YKW0ImdWDlpJS/sPluMotankwi2jJ6guOPpvZ+WpQ5X8T8rFQavQk4guGSw8vRAblQ35pfmIgoiPvQ998j34QXuBS4cCmTaiPSVZkxDLfThkuXKHLmQKVZHckL6r5tdRfr2MbbMlPQhitTqN6T3r0PPAd4hLvkGnK2Xlk1YIM2bwSq/Z2FrYGpe7kXmDXTd2sevGLs4mn0UhKOhavyvPBD+DldKKdb8KWGuaVU/fqnC8OopQYG38jJX/z3G0URLsbfvA1NKvdsVXmc03fF4V1inkWK0juSAVb22YsfV0uUAVBMFYoxIQ+zlhf+wi282GhHpOJHpak+gskGijI0FZwF1dNvqyjkmmzEbLZ/A9G+7j7SNvkzc7r7LRYmSkQVxs3AiFhdCvnyE9qm/fv1QDU/VaVEyzLSrVk5JtiHgGetowqZ+f8TpWbYbxMAzr6MH202lIUs3fHbZWCprWffROXWbMPO6YhYYZM/8CEnIT6La+G0pRybGXjuHj4PPglf5hLt/JZfLG7ah0vjT38+Dne5Po0bgBGwZvMC4zce9E1l5eyw99wln5i2CcGRUEg6lbjsvnRObtRkREKhvcuFi5cDnsMmsur2HeH/MQELBSWqEUlWx6bhMDgwfW2jygKv+t1pcyMjb35vP+ycO0j1aDkxPF/xnK9o4ufJl/gMg0Q42ItdKaYl0xIe4hTG0/lRFNR7A9ejufHNqEt/oj08emKEQh26CXqr+nR8NxZZdKr1mKhpbLLbxa8Pvo39l+fTtLwr8gZN9F5p5RUTdLyyed4b3usKD3V4QnhrP7xm6jEnslN4AVH10Gu8ptWI/GH6XHDz1YPmA5d3LvsODUAnSSjpNjT6KTdMxepTaZsqSyKGbnrDY4fO5AiP0AAoUwUrIkLItiWbBzLZImki2fj+SCPpGbWTfxd/Ln9N3TCGX3UkTAxsKOhqWf46BvhVxLm2dXeyXhQh/qWXZFn9UVK6k+BcRi53GGYU2Hce64Dk2ONT6ZsVyuE4dsOwAFdthbK3mllx+D2noYBq6H7hB7Jwv/+Cs8f3o1pxrcJiNsFBoHW/be2svNrJvYqGzoG9iXZ4KfoX/D/sRkxvDWobc4mXSS2emDOO84C1mhQEJAlvUIiDiqJDzd7biRUgBU9IARaOxjW2lQXI5O0pGQm2CyLWxGlg1e2lHYEUChEEupw37qeuiNnZwCXQIRSvwJv6zkdkoxhoJ00KnucE27mBudPsAyOQ0SEyEpyfAof56ZiV6AVHtIdIRPhv9KkVX1eiI3SxlH13nEWRZxZOwfUFQEW7caBMaZM+DlZWg8MH48+PnVeO/+KaIS8pn9QwxFpSasvKswfVC9+5+JYynEJBegk2Q0WhlBqC5kzJgx82iYhYYZM/8DKs7QebmKHMqdTanqJn+8/Ad1Her+rw/PJN+d+47X9r/G2fFn+fTEp5xKOsX1SdeNee4rI1YyYe8EVg1cxc2oTtUK+WX0WNonclmYSnqRIT+8sVtjDo8+zNT9U/k5+mcAlKKShi4N2TViF0GuhnqFWetjOH8774GRiv9mf31D5CEXdVYfw4xxUBDdgvvQ3b87HX07ciHlAv029zMu72zlTE5JDk5WTkxsPZH8O0O5lqClaiRGRiZXOEsduR06EwPscqHR2rM1V9KvYKGwoFB7Pz3EQa9i7Dkt75y1wDVPC8OHI8ycibZNK+rNsSLTUk8dmzqkFKQY13n7tJJPEoPg55+JsvWtlP5xV7GePYnfoNFrmNNpDj9d+4kQ9xAauTXiwFEPHKXKRdjlNSZ1gvaQUZhBVHoUyW8kk5qfSr/N/fC+nc6BTQL5FjKfv9OVX6UbNCqxo/PReD7qLFW6HP2K9lFkUXPdRPnsunvQXmYcmgGAZ2lzWhSPJd8uENecW3ywZw0ubkVkrvmG48UxfHf+O25l3wKgrXdbuniM5tKFdkCZCEYGWWL+pok0TL3C4ifg9JD2TOw5m94BvbFWWXMr6xZzDs9he/R2mns0Z0HXT+jVbwpRHQcyO7QzOfnWNE+OZ3JRNM1++p6BX+0kP9ezWmSgka+CPl1SqhVhJ+QloJMM6YMqUYW/s3/1trAugdR3ql85mlAD2cXZ+C7yZVbHWbzX9b2aFywqgrt3jQJkVlwdLkiuSEIF7wdJT5u4c8z/aRp6UUBhYwvFxYbOUf7+hrqLPn0Mz/38wMXlkYvi/1sO2kv3J7D9dFr1trkYIpQznvU3CwgzZv7LmIWGGTP/MFVn58vTPub+pw49mwT+j4/ONFlFWQR9E8TgRoPpHdib4T8P5+ehPzOkyRAATiedpuu6roxvNZ7v+3/P0C8umexUpSGD08oBAPT078mKgSsYvGUwUemG/HFJlhjWdBirB63GzuL+bPuzn0aQV1y91fE/jYyeFPeXSM5PrmQ+BuBt741KUJGgTuAp/6dQiSp+i/sNR7k5fvqXcZLbmiwclpG5Kkzg+buvE+Nd2dlaRqaQODSkY0cABcRi63Gaizk7QVsKMmgV0CMemuSqCBkxjWGD38ERS7C25vdv3qBX1kLj9qwUVpToS/i6xRymvr2bqFI7po9YgiwIxpx8gMuKV9GoYsicmcm6y+uYvG8yzdybERBpi9p1IbIoVjDt1FPovohS1U1jVKenf08OjT5EQWkBI3eMJPLMbg5sBOcSmP6sFVsCSpimacmlYAeOJP5hzFcJ0S/GVW5XxW/EEA2oWCszZE8bNHoNbkIbQnXfgl4ytrmVBbiqnEKWeJmnA54m2KY3Ry4KeFu2RFKlkFcgYE39KilqelzsUvn0mVeF9wAAIABJREFU+moa/HiQQoWetT2csXvzbS4Xx7Hy4kq87Lz4uMfHvBjyIoply2HKFHZv+5hnr77Dyl8VjI9UUBB5nh8Lz7J2l1etRfHWSuv7rWCrtIX1dfD9yy27Pz/xOfOOzSNxeuIjNZMw2YADmCf/jtPyd2iWAdjYGESFrS1kZBiEirbC/3Vra0N9hp+f4WfV576+lSJpNTX9MDtomzHzfwOz0DBj5h/GVH91QZBp4qdi7ghv7C3ssVHZ/CsMqsqZ/OtkNkZt5NTYU3Rf352u9buybeg2AFLyU2izog0NnBtw5KUjWCgsTJ5jxTanY1uMJaxNGP039ye7OBuFoEAn6VjQawFvPPFGtXN/9tOL5BXr+Eepkm8vI6Mll1NKQz2KgICLlQu2lrZkFWVRqC00ttW1I4AS8Q6OLsmQOahsqKwwEXGRyec6Ecqx9E1pQ6H715QbHhrqR+6nfpSvD1Cqu8rrv31D35hrrH2pOR97xpApGVJ1REQG1+3Fz+MPwo8/0qFgMWeTzwLgaevJvcJ7bHl+C8Pq92fWe/u4YFW3UoRCEGQy5TNEKaexc/hOng54mroL65JTksPqPQJtx2xko31r4+xzjvXPHEtbz40pN9gTs4eh24aik3R0rdeVD7p9QNf6XVl7aQ3Rs8fz9h8yKgnG/searQ2KsdSLLDggsaibBQnWpcw8H8r5FkuRRAFZUJTVNMiUkkur+h54+V7jndMjAWhSpwmK1AnUoQNShWsqCtDc34bgkJNsPHccMXVShQ5kEverJSpjbyOxe3Z7hHv3uDd3Gs4/bKNAJfPVkwJpY4ayZOgabC1syclOJrZbcy638+NVvyjqZ+nwLIDbvnbcEwz3wFStgyDIBPhIfPBCPbzsvP5r/7+1ei3+X/vTJ7APqwateuT1jdGFZDUNClIYtftLml0/wRF/6PDRWmyGvmBwVC9HkiA93XRqVvkjNZVKfWCdnY0CZFaTMVyw8Kl2Dx+HNuZmzDwOmIWGGTP/MDXP9t9vASoKIg6WDthb2Btdz+0ty55b3H9u8v0qr1sqLf/S8V5Ju0LL5S35oucXRKRGcDD2INcnXcfDzqNS8XfEhAg87Qydp0xFbcpN9Wb2GE6gSyCjdo5CJ+lQikrsLOz4edjP9PDvYfIYnv3sInlFDyc0TKVPVWxxC1C14LpmM8Cy98q+Jr2L16AWfyVKlc1dVTH6CplODnKoCZM/kfKuSdWPRY8gy7z4+0Re6RuFKIh46J/BXwpDhQM68tGQhS31q0VCZFlGFvRES6+idMlgTIsxBLkEseD0Aq5nXMepGHLmw/jRTuQPeJqt17fiIIfSRJyCoPWiWV03XuvTlA+3mPZIEZX5WAct4tK9S1yfdJ2xe8ayI3oHUd9Bs98uQYsWxmWXXVjGlH1TKHqnCAuFBfOOzeODPz7A18GXJHUSXT07MO+Qlm7bI9jW3h6n9Hy634EJA2FrqMgHfi/xScIGftwu0DNGS9iQUM43Hos9QQR52fNqr4Z0/smPxm6NjRGTRU8vYlLzcTz12XGUVK8psLXW06LDr5w62xipqIHJ61/1PmdzBsFnDS08WrD/9n6s0rJYeLEOg8LTyLOExV1UrO5gSRoFxvUUskCrVGhYZE3g6GkcuXuciJQIXg5+n6uRnVAICmRZ+Edbc2+O2syLO14k6tUomrk3e7SVS0th926D78WRI4Y0qDFjmOUfyyFlAhfDLv65gyothZSU6iIkMZGhwVPItK7evcvsoG3GzP8NlP/rAzBj5nGjgYcN2QVVIxrQxNuVt3v8glqjJl+Tj1qjNjwvvf9crVFzV3230jL5pflIcs1FjypRVasQKX9u6n17C3vCfg2jgXMD6jrUZcahGWwcvNHYdnfq/qlEpEYQ/nK4UWQAhNSz5+3hrszedgilri4FxJKoWMM3g2dwO/s2I7aPAAyz76EeoewYvgM/x5qLSIO9bTkfm1dpUvTBAgEw/lv5Z0Vq3oZkFAtaQU0Syzhuuwt92ZhVqYd6OaASRHKswFs59n7HIypGMCqLhHLBoyaaWOViTvYypI3ZSc1oKL1lXFeJI0ocTR+zICAgUlf5CleL3uCr01+h0Wvo7NeZr3p9xaWo34CDZJTmcv6qlo7S7yixA71h/7HJMH1NNA29bMku0FYusJf1NPN1483+39P0+6bMOTwHa6U1AnCgsZJmTZtWOpZg12D0sp64nDgauTViTqc5fBz+MRaiit11pjIv8lu6h0h0bhWIW0Yhe+zz2fkTrNkDPvkSb8trubbZiYBMPRMnerLa4wpWitmUSqWcTJdQXX8FEZHItEgsFBacG3+O5gkl0KY9vl3CSKnjXEVI6EksPseFi6toUrrR5PWv/hkA0fUIUelXuZJ2xfCiPQztmkabJ92ZGa5j3m/ZTD2u5Y6TwJlQZ959soSLi4oIzAZ2bGSPn4IPTn3KvK7z+PTEu4xsNhe3kmH/aOtTWZZZdGYRvRr0ejSRER8PK1fC6tWG6ESnToYuUkOGgJUV25cE0q9BvwdvpyYsLKB+fcOjCg3Wx5Btwpi1gYfNn9+fGTNm/jWYIxpmzPzD/N1GhLIsU6QtqiZKKgqRSq+VqmsUMwWlBbXuSxREXK1dcbB0oFRfSpI6iVCPUJq5N6sUaUnMTWT1pdXGzlIWCgsWPr2QPTF7+C3uN+P2xrYYy3f9v8NKafVQ10ySZWS5LBqAWNY736qSG/2ADtaM2/Yu3ppJlcRGjdevhhlupSjw3n88+Cl2PpujNpOnuW9aaIECf8GFeoITslZLrD4DD/En0yZyJhyjDREJHfnEAGCFOzW5n1dt8VrpPUUu9Vts5serP2KrssXL3ovrGddpUGxN7Pxipr49hyviM2VXofI2RAGCfWy5mVJ4vzuYpEdEZrFrDM2mv8w3575l6oGpeNl54ZRVSIFUQuwnBagUKuN2UvJT8Fnow67hu3imkWFfA5d1ZV9qOImLwLvHINbWSWaqewSFFhCgdOfZRm8TdxQUigBUJbEIJRvYNHM9h63v0XNDT5wtnSnRl1CsK650zJv6rKL+4nW033KCqLoqXn62MY6OSysIPD2CIPLuf+rQqaEvb6y7yrWE0kqeKlXvd8UWws5WzvRv2J+c4hyOxh+lRFfC0KZDmdp+Kh20nhQM6o39tduk28Ka9iq639bToWEPMnZuotmyEFp7tSY2OxYbCxtOjzv9wM/1382JxBN0XtuZfS/so29Q39oX1ulg715D9OK338DBAUaPNrSmrSAmU/NT8V7ozdbntzK06dC//ZgfV2NWM2YeF8xCw4yZ/wH/VqMnSZYoKC1ArVGTUZhBv839qOdYD1uVLafvnmZOpzmIgkh0ZjQ/Xv2RAOcAGrk1qiRmktXJ1QaIprBQWOBq7fpQkRZrpTV7Iq9wJ74BjkIjAj1tGd3dhzYN6mCrsq02EJ++NopLcUUP3YGq4uBTRkZpncLikT0r3ZOr6Vf5/vz3bLiyoZog83XwpZluESX5dSsPamVDRKTGfHy5zNBNEB4iQlP1PYlC5WVuy8vpYDsXTZETGbqrCC6HedLJgknv3WLqS98jC8oatyso1Uwd5MapK1acjU9Er0hiaW4qIQvfhdGj0X//Ha03dCIyLZKvz7vxettMfhzyIyOajahwCjIOnzvwbpd3mdlxJmzZQs7rYdQdl8erd+rQ+1wWLwwBJ6sOtHSaS1q2CkG2B1lCEO57bYguuwiyHU10skHQFSviuMGXqAVDhOGJRFi7G+rnwsbnAokb9xwh3i05cTOJ8MsWeErBWGriKA2OJL7kKPG58djom1RKZ4OK/isCICEhkWj7NoJ1IvG58bjbuvNiyIs83/h5IlIj+ObcN9zKvkUP++b8+m40m4NLqa90o+uFTFLtYHf/QH55qi4ROVd5yv8p9t7cy8WwizR0bWj6nv8XGbJ1CNczrnNt0jVEoYYWwUlJsGqV4ZGSAu3bG8TF8OGGQu8qbLu2jWE/DyPljZT/mrfPv/X70IwZM38ds9AwY8aMST7840M+Dv+YZf2XMe6XcawauIpxrcaZLP4Gg+Fbj/U9OJN8xjCwEwR87H2Y23kubx16C3WpGlEQsbewZ3LbybjZuBkFSm2RltySXGPrT1MICEaxYq20Rifp8M76FpVcPXe/NgQBfNwL2ZP5Op/1n8iktpNMLqeX9By9c5T1l9ez9fpWSvWliIKIndSsSo1GeT3I/X8fRG3Ri0rLIQN6bopfEiTNqFZAflNcQLB+Rln3pprEy/3ifCcrJ3JLcjn60lG61e8GmzYZPBGaNOGLN59g1s3vUH8Gz33YlFwXa86NP1fpONusaEMnm0Ys/kVr8FcICGB8k1h+bRZKHcVYXMVQkGwxWj1WjfKU/RkqF13l5yij57r0Kq9cuE7rRB3H/OFAe1c8fBtxV32XJHWSMW1QRKBRukxg614E+oQY28LKxfXYc6aQSwkpNPJ2pmeIFz+dvUJmrgqdMonnOjryVo9hKEQFl+9dZv3l9WyK2kRGUQbNPZozKnQUXvZeiLNm0/9wEsHTlYy7Zc+UgzkU1/fB73oyd+1hed86LAjKYPXzPzCq+aiHut9/J/E58QR+E8j3/b4nrE1Y5Tf1ejhwwOB78euvBkExcqRBYFSotzHF1P1T2XdrH7en3v4vHr0ZM2b+r2IWGmbMmKlGYl4ijb5txCutXmHnjZ0EuwXz28jfKNWXmiz+vpFxg45rO5JdnG0UGS08WxDWKozJ+ycbhUJH345sH7bdWONRGzpJxxcnv2DesXkEuwWzpM8S6jnVqyZE4nPiOXP3DJfvXSZRnYi39BxB0gwMQ8+Hj2hkc4aryunIyHjZeuFq61prpMXB0gGVQsXV9Kv8cecPLqRewEcaQqCxzqL2KMVfQtYTfGsBmW4DyHKu0hJXltHL+SgE20oO3lXPFyTUXMcKTwq4TYJiDUWK6/T078nnPT+neaoEgweTl53KlCE2bFiXy+qd7zE+8kPCXw6nc73Oxu0tnN2VMd+dwlmrAEkiy82G3mObYyt8hki52Cl3la/pnEykmJXdlyjltPIXQACFoKBvUF8GNRxEkGsQ1zKuMWXfFE6tU/DE9IUwdWql7UiyhOPnjnTy68SppFPIsszsTrOZ1mEaNqrqs/havZYDtw+wPnI9v9z8BfdcHTFLJJZ0UnGtdyt2qs9SqoD+wQNJunCYj09Y8PSFXBKc4PcXO9D93TUEejSu5Qb+/Uw/MJ0frvxA0vSk++eUmmqou1i50lCE3bIlTJwI//kP2D9cxKDV8laEeoSy7tl1/72DN2PGzP9ZzELDjBkz1Rjx8wiO3TnGgIYD+OnqT1yddJX6TvUJ+yWMdZHrCH85nPZ12wPwQ+QPjNk1xliPISDQO7A3TdyasPDMfQ+H6e2nM7/X/Er5/TURkxnDS7te4nzKeWY+OZN53eZV6p4VnRHNmtOHORNli76kDhrScVD6gM4JKB+PPuwA3/AVOLD7Xb689BpphWnM7jj7frSlYtSlgsDJ1+QboxblmGpr+mepNZWqrOsUyIiYuJ4mBu3l2wQoJhkrPKt0yBLQoUZNNAmKNdg5ZDItYCRt3/yKLvESWkHmqe/bk61VE+wWzM7hOyE3F159FX76CZ0ACltb/nhjCMNsfsW34AvsafqXhZaNNpsXOl1mxo2vuVd4Dw9bD9IL05GRGdZkGMsGLMPRypHmy5rjeTOVQ5Ghho5JZeglPRuubCBsbxhavZYp7abwbpd3qWNb56H2n12czcmBLeh4Mgn/aaBAYPB1GbvuvVlR+AcluhKslda0y7FhxUUfGh69wm0XCB/dlZ5z1+Dn2uAvnf/DoNaoqbuwLq+1e41Pun8Ehw8bai927wZLS4OwCAuDNm0eyUxPrVHjPN+ZFQNWMK7VuP/iGZgxY+b/KmahYcaMmUqEJ4TTdV1XZnWcxfyT8/m277dMbjeZFRErCNsbZkyhkmSJcbvHsS5yHSKiUWiMCh1FemE6B2MPIiCgElWsH7y+Ul5/RSrmZ/t7WGPtfoqlF5bRgFfwUIbSyNuJkV290FjcZGf0Tnbc2EFKhgUt9csQELk/S/6AGfNaaFzXlu/DmmL3qR3O1s4kTU964DqSLFFYWmgUIofjDvPjL8GocPhTx2CK2sSGIOmRBQFM5eLLZbUIJgaVeklN3cxrpLhXEURl4kSW9SDI3BYX4iJ1xo4APHLj8Ek7RrRff/TWwUjIKBR3kdO+IE++TJ4VpNpCiQrjLeisC0fBX2utjCxj55TCLzMGk1WUhf/X/uSX5tOjfg+O3jmKKIi427qz6blN5JTkMGTrEP5YL9LlfDqyiwsHYw8y89BMotKjaODcAIWg4OZrNx/pEI4cWUOnXuM4OaEPnm71+eHMMja0sSDZqhQw1OfcVd9FRsbb3pu5DgPpvj6cRieiueUKp8c+zdPvrMHT0eevXYtaWHR6EbN+n8Ud1Vt4r/wJ4uKgWTND9GLkSHB0/FPbPXj7IH029eHG5BsEu5k9LcyYMfPomIWGGTNmjOglPa1XtEYpKskpycHH3odjLx/j7N2zlZy/T99M5c0tv0KpJ0VCPImKteRwidfbv86+m/u4lXMLAQEfBx9+feFXQj1CTe6vascZ0CMhIyIiCmLZaxIyMpcUE1Ha3OWZ4Gcojh/LvSwLk9v8M7jZq1g1tQFO853oE9CH/SP3P9L6Z++e5Zm1U2lcuoSHETuyLN9PJvorxm2yFlBWS50qEuKwwZ+q5nTldRkOcgAqoWbH6PIIB2XteWX0IBsEjbGGQpbLlswjT7hBgmKNsXAboIvuhOloi3EfD0grK9v+ReUE1EIUzT2a071+d5ZeWIpGr6F7/e7czLrJvYJ7SLLE9A7TOXLrIA4R11j4xDxmWR3ncPxhOvt1ZkGvBVy6d4kp+6ZQ8HbBQ3eDupN7h1M9g+l7W8DxQhRik6ag03Hj5C5aHB6Gi7ULqQWpADxR9wmslFacvnsaWZaZYdWD4duiCTl3hxt1BC5OGEjv2atwtXu4SMpDIcvojh0h8PdBdI4pZsNeCxg2zCAwnnjikaIXpph7ZC4rIlaQNiPtX2UgasaMmf9/qKEthRkzZh5HVl9aTWRaJEEuQaTkp7B60GruFdxjyNYhtK/bnsV9FrPlwlnmbIjHorQplrjjJLchRPctk5rNZ+3ltdzKuQXAUw2e4srEKzWKDICNx1IqiAwARVlOv1jhNUOtxVDPpaTNSGPNM2vIyv2LM+UVKO/ZfzLxJABd63d9pPWvpV+j3+Z+BMtv87ARFQFokvjbA5erDRmZBl7WiKKxxLosKiGRqfkM78QvjMsZfhpSrdQ2OyhV3S37vabjUyDIlT1BBCqLIsNzAaXgjAsdaKlfhocmFGSDeaGAorIbdA3ncP8X+X5ReNnP6fvmM/FkFMgQmRbJ4rOL0eg19A3sy4WUC9hZ2DEgaAAyMovPLiZdk0N4fWiTOo/k/GR2j9jNHy//Qfu67Wnu0Ry9rOd6xvWHur4luhJmfN2f4RdLsXzvQ8T354FWiz7sFcZe/xxPO09KdCX0D+rPygErUYpKjt45ilJQEuIewkoiCO13h3HvhFDk484Ln+whLdCTrR8MR12c+1DHUCPZ2bBoETRuzK4pPUmwKGL6E9MNXaR++AGefPIviwwwtMvt5NfJLDLMmDHzpzELDTNmzACQU5zDO0feoW9gX7Zc28JH3T/Cz9GP57c+jyAIfPzERkZ+e5TvdpdiyFS/PwgVETkRaYlaowbg3S7vcnDkQZxNOP6WI8sy15KzKpvFlW2xOiJ5amuU4t/rMVo+0B3V3Zv9tw1RjP5B/R96/ficeJ7e+DR1Heoiah+t9efVek9RKMRVq/N4FA7mvca7/3GnXaATbvYqGtdTUM/tB7yzrrKl/k4uiRPI5gwa0lGLEVxSTCShNJzb8nLK+zqZQsZEjYeJwWb5AFRAQJBF2pQuZN/WUEKKxiLUUCdSvoci4tFxE1GvQaXV4FeURmN3FW72Klo0sOai4hUuOexi5I1Qhqct5gndL4ToFuMgh7L/9n4KSgtIykvicPxhXmv7GkpBSUpBCg5yKK1LF9O0YCMnzwRzNdHQijjEIwQBgch7kQ91bacdmMaIbTfQe3ti070X/Pgj2NuzYIgXZ5PP4mTlhJ2FHT8M/oHxrccTPiac2KmxvPnkm2QVZ5FemI67jTu/u+XR+tk0Bk2tQ4GbA8PmbSUhwI0dn46mUFOzb01UQj6z1scw9ItLzFofQ9QdNZw8CaNGgbc3zJoFLVuyaHwzuvh1odWbXxmcvP8mNDoNZ5PP0tmv84MXNmPGjJkaMKdOmTFjBjAMrFZdXIWXvRcu1i6s6Pkbs34Kp6jQCZVggSQb3LJrKnTWkM4ly6FsG7aNAQ0H1Lqvs3fP8uZvb6KOH4or7XnQnIcoQJsAR+a/ZMgTn7TsGtHJhX/qPO8jk8dVsmzWc3zSRp7favBN0L6rrdmDoAKp+al0WtsJURA5MeYEI+Yn1LAXGcO4vWpHJT0q6zR0xR5l1SXlTuJC1bVNphhJaAlXdsLb3pvLYZcrFTfnH/yFlBcH0WhK2QsCdIuHW16W6BSQptDgIITSXP9tDXUUsqHOQ6jouP3gDlqGPyd6rEuLKLGsuVZFRqbZjfm8c2AnDhpQ2dhjERQM9eqBry/4+XHcSc2AhB200i1FlAUkUWHYvgBqrhGr+LpSqpaISKBNTzzV7xuL3MvN3xaNbUxIPXuCvgmif1B/FvdZXOt5bIjcwMKlo7m0HFizBlasgDNniFw6j7YZn9DOpx2n757mj5f/oJNfp2rrS7LEicQTrL+8nm3Xt5Ffmo+HrQdZxVl0SRT5JFxJh5tFRPooSZg+ht5Tl2Cpup/OVc3EDhlBklj0w0RCLAthwgR4+WXOae/QflX7SmaJfxenk07z5JonOTf+HG192v6t2zZjxszjgzmiYcaMGa5nXOfbc9/S1rstCbkJvNNmJdNW36Ck0B0FlkiyYBwMm0JGj16VQtSkqFpFRnxOPCN+HkGH1R3IL81nWt9mKEQRsWz8KgqVH+WvCYIh6lDOq339HqYSosZ3GvvYsmR8Y1q3PUNi6XGaL21OTFYMdWzqPJTIyCnOoffG3mh0Gg6NOoRHRlFZAbbpw1DotdVeFlBQXGLBRcVEtKhrHMjLZTUqlV+TyecGYHDmbvJdE5LVyeglPbezbxOVcokUe8rqwQ3bPOYPyVYaMkUNrVKhSXIUJdKlailUMjI6ipEFjO8Jsr7s2GqflxIEwwC/RGVLbXNYggy2yq7cdIUSBVjk5UN0NBw9CuvWwaxZdB47j17pY5EFg8i4v30BR7kprXVLGX09lGejDWZ+9bIlbPL6VTDnMwzS9ZLM0v2JADT3aE5kWu0Rjai0KML2hrHugg9ycDB4ecGZM2gaBTJa3oGvoy8nk07yQbcPTIoMAFEQ6VKvC6ufWc29GffYOHgjoR6h6CQd4X4SPUbLdHsJiixFBs1YSXSAA/uXTEWrMxSYV00plBCQBYGN07+Hmzdh5kxwd2fRmUUEOAc8UNj/GY4nHsdWZUtLr5Z/+7bNmDHz+PD35iGYMWPm/ztkWWbagWl42XlxPPE487rNY+/Z4moz6TW7VusRgG9ffJZAF9MFxjnFOXx6/FOWnFuCq7UrawatYXTz0ShEBW19qrsCyzK1OgWH1LPn6/GNWbo/kVupheiqjfHLIwGVO1E1rmvLpL5+xm2t8FuBjcqGJeeWABDkEvTA61VYWkj/zf1JyU8hfEw49aNT4ZlnsBq7jRKVdbVrK+o1FIi3sa7S6lVGpki+h1q4gpXCCklv6voa3KsFRKMQKffACG50i9uJ9uSX5pNZnEndRXWNaz11G5QdDc9FQUQv65nYeiLLI5ajV8gkOMOH4SJPpqzmzZFtkAS9IXpRZhiowLJMzERjhQfFQix622soC9tjR0NEWWno+GUqNUoQkGtzQy9b5mK9QMZ+eArXTAyD54qPW7dAq0VQBZgWt4KAIAm4i2NZ/9M048tDpwaQ6VB1eYHouwU89e4ZZN6gULhJ1JmbhDT3BevK90utUTNk6xCG5nrTPCIWNm+GV14BYN7cTkTHbcLJyoke/j2Y02lOzedXARuVDS+GvsiLoS+SlJfExisbWXd5HX/436RbgEyn2/DxMT19X/+GiwtXkD3ndWLTn0WSK5+HJIjE6SxBNAjhpLwktl3bxqLei1CIf72dclVOJJ6gQ90Of3u6ohkzZh4vzKlTZsw85uy+sZtntzxLfaf6OFk5sWv4Ll5ceB2V7FrrejIyEqV4uBbw3uCOhNSrnipTqi9l6fmlfBj+IRqdhpkdZ/LmE29ia2H7t55DVEI+Sw8kcju1CBmZXOk6vr7pBFk8U6NYqcioHaPYGLURhaDgxJgTdPDtYHI5jU7DwB8HcvruaY6MPkLb8NswZgy0bcszfRaiLqn+dVpKDjZWErqSytfTEDkowFppjVZXXu9ioh0tGlq3vsipK1YotD4UEEuCYjVqIQoApaBEJ1d2ThclEGXQVRh/ps9Ix/1LdyxkEU/sSRTysC2FMddCSQj4ArW1UyVxIKOnSLxIYcYUrlfxV6xfGEp91VKDOKnBr6O2NCtZ1hPkCyvDnjC9gCRBSgqztiVyIVuBVMO2tFI67/w0EF/HugQ0bMfEOk+T6Nii+jFVqBeRkVFIEot/mEiI+g54eICnJ7KHB/vzLxGhT6J/fne2NHmOOK+GNIiLpKXVBV7030ygSyA5xTlcnngZb3vv6gf0kMiyzLnkc6yPXM/GKxvJ1+TTOxY+PQytUmHWiMVcaNDOGMmB6umDsw7NYnnEcu6+cRc7C7s/fSymkGSJOgvqMLXdVN7v9v7fum0zZsw8XpiFhhkzjzEluhKafm+Yab+Te4eTY08y/eB0tHdHYatrVW2weH9W3dDBaEy/Ul56olu17cqyzI7oHcz6fRbxufGMazmOD7p9gJf9oxXrSZyFAAAgAElEQVRMPyqyLNNnUx+upl/l2qRrOFk5PdR6bx9+m89OfAaASlRxcORBuvt3r7SMXtIzYvsIjkXH84z7EvKSdTS4fYmRdslcHB/Iql0aVGIb5EqzyxJWFiIlpTUeMdTiIC4jo+Yql5TjsVZaU6wrNr73w7M/0MO/B67Wrjy55klDkbMAIe4h1E/MZ7dFnGHBss22E305JyWxajeMuwQXnw5hStdCrpXa1VirYSHlsHlRHwYuaMnpzEuV3nOQQwnQv46D3PSRuhLJyIgCLBnfpEbhV05UQj7TVkejl6tfH1HSI2nOEW47jclnYfZZBVl2TZn60oqH6Lgk086mkPnKCEhLg3v3SLh5nsslVuxvN40YzyaGxQQBUdIjyDIfb52MU+5l6gSE4Fq/MXh6GkVKpZ/u7mDx8K2XNToNv0Tv4t4X7zF6y00kEc76h7Jg8FIkQUAW79eaLB7XmGZ+9hSUFuC7yJfxLcez4OkFD72vh+Va+jWaLW3G76N+56kGT/3t2zdjxszjg1lomDHzGPPZ8c949+i7CILArI6zyCjMYF3kOjzE9vgXf17W1vT+TDCAllwki0Q+GdKDHk0Cqm2zvND7ZNJJ+gb25YteX9DMvdk/cj4rI1YyYe8E9r2wj75BfR96vW7ruhGeEM78p+Yz8/BMFIKCncN3MjB4IGAQMK/88go7LkbQQlqGIMlIgoggS0iCTEjURMZcgjdHLUUWBNPpPlV4cHG1jISea8rXiJy+BwdLB5zmOyGV1YJUHAQmq5Npvqw5OcU5IMBTyZYc8i5GJSjx0tuQo8tHpZPJtgELLXhZOFPfN5S0LGvc896tdJ+Ne5f1BCef44DzNLKdLPF19ic6+4bx/QZZ8GwMRLQ+BAr7yuvX4kyuo4DJvf25HKs1RptGdvMmpJ59JfNG3zoqNA772Hp9Gw10r2EtGWbyBQymgqIs89WGicxvF8WWEMP27bQC/az3kV7s/ECxYalXE6JXc8vSHZ0Aal0JCtG+3NykyoHrccw9xxspG+hi1RDu3TMIlLQ0yMqqvnEXl+oCpCZRcvmywffi4kWKxo5i1ZAGfBm9imZRLtSTx5LpGIBTYRw9nrSi2VP/YeOxFK7czSBFE8FXI/rTs0lgref5Z1h+YTmT900mb3be3x59NGPGzOOFWWiYMfOYkqxOpuE3DbG3tMfF2oXJbSczZf8UPG09uVd4jyDrXtjnj8CWIAQE8okhVvE1vZs2YsPgDVgqK8+Ax+fEM+fwHLZc20KoRyhf9vqSXgG9/rHzSchNIGRpCMOaDmPVoFWPtK7nl55oJS1ZM7NYdn4Zr+57FQGBzc9tZniz4cw8NJMvT3/JMOvfSVfbVRqICpKe1vHnuCpO41RgKN0cPkSl86NEq6WoxCAn/hwyaq4h+H7PhQkXAOi9oTe/xRn8N5YPWM6E1hOMS59IPEG3dd1AknAtkEkvCxb0uCOgqONBXZUray2uUcemDhlFGQCE6BbjQrtqwsjQ+FZPFBPxyIniRh3onCRy3NcgckLvwd7N4F4IU58bTEzDWYbC8/LoTPlflWqdtu57egiIZc7uBoY96cH2M2nGIujyqFnzVmf5uN94lh7fz8Y/UrEjgAJiSWY1S/fdYtjFEt54GhY9adiOgxxKK/0K04Kh0nHIZTUpivvCqJaWvPYlmexM3oDCyhosLe8/FArQ6UCjMTyKigyPggLIzwe1GvLyICfH8JopLC2haVNo1MggQjw9SbAsYWPaIXIjTjI2QkJnFcrro5eCKCIjAhIKUTR21HpUKoq6imIPYOSOkdzMusm5V8498nbNmDFjpiLmKi8zZh5TZh+ejSAIZBRl8FH3j5i8bzIeth7cK7yHu407ccVH0CsPYauypVBbiIDA132+5rX2r1XaTm2F3v8Usiwzbs84nKyc+Orprx553YyiDNp6G1p4Tmw7ESuVFWN2j2Hi9s9Z9YslpcWD6MEQ0tVC9cGzqOBsQBDHldC0jp474nvEZMbQSvMzltTsvv1gBKwEDwLdmxpfeb3960ahcTv7dsWToFOKkq/znmCKwwmybQAZrAQlt0M8KdZrOFR0DYDMokxUoooBDQegjglFrzV9n/KJhtIomqVBgQp8ChWAxKAbsGk7JDiBrxoyhJ14pviQ6jMCZCUKSYdjYQ459tUdsI1CpFoERWbrqTTKU8kMyxpShqzU/bC3tGda92f5OtKfYgsb47kPHwg+jbuwcFM4ddUw42lQi1eIEefTUD/TuKXK0SPZ+FMob99bfk9rEBmCpKdhcSaK1Hv3BUX5o7S0+mtSDR3IakKjgYsXDY8y6gHvVFhk5oixCAhIRnEmotPLTFl1BR0GAVNADFmWW7F2SMPTzhN/J38aujbE3c4dZytnXKxdcLV2JTvHnk+2ZEGZqMsuyCMiLs8oWs7HZtBIfIehX1yqJkIqUlWsPNnIiVM3ck2KFzNmzDyemCMaZsw8hpT3yFeKSsa1HMfumN1o9VqyirNwsHCgUFuIXtajEBToZT02KhsOjz5Mh7r3i6T/qULvh2HZhWW8+uur/Dbyt0eOotzIuEHj7xsztd1Uvu77tfH1xUd3sfOIe+VBsYkZbxmZbM5w03IWbbzb0LROU5q6NyXyUmvupKhMGBI+pCcFenKF84x4uojZnWYDoJN0WH5siSRLdK3XlWO9NsGGDYaWsDExlPh50/5lLVeEDEQZJIN5N0pRiSRJSEiMCh3Fl09/ibutO7PWx3Dudp7J/ZeSg6LkBjqrADSKBG7LKwg7dYXPf4edjWH0sxDzLax8IpTwtksNOxIUhtoJoYaOVLWer+lr4mavYttMQ4vVL099yZzf5xDsFsy1DINwEhC4qBtP6Ccr2dYEXn5OoEQh4yCFUk8ai5uiOaV6HSps0KNHVOUga10Qebg6ikepKTGi05kWIDEx8NFHcP48dOli6Ghlb29asBQUGBzAs7MhL48hQa+SbVWDAWbZ57JqxEhLHvHiclLFnZUWNxXJktGTI5wjWbmBptolxjbB5S2OZdddKEtCQeOJpU0OLm73SIlvgyyXfciqUN4M2dFaQbCPnVl0mDHzmGKOaJgx85ghyRKv7X8NW5UtnnaeXEq9RL4mn0JtIdZKawq1hUYPBL2sp6FrQ46POY67rWF2/n9V6F0T8TnxzPhtBmGtw/5UqtbumN2AwRFcJ+mIzY7lWsY19p0rrT7zXsPg2dc/hosvFaBU3P9KjfI0mK4JGMaBFana5rZ85r18Rt/Q1FYmXlxFkzofG5dVikqCnYOIzo7hcuxJGOdHkquK/c83Z9/kJ/k9P5JCrcHIUKpwqDpJR4BzALE5sSwbsAwblQ0luhLcfaOQb/uaOCYJFY5g2Q5LFFjoXWktLWXUjVf5tPMV3usOsgi/BkO2+1gEWTAWwUtimfFgrc7g1bkf7aiQliZAAw8b4+8TWk/go/CP6OjbkdT8VLJLspGR6WD5AxFLP+KZKe+yf4PMkOGQbXWFKKWh9a29jT1OVk5MbPY5v4XXr72Gpsqg3co2nS9f6PbwIgNAqTQ8bMqOvaQEPvsMPv8cfHxg3z7o+3A1RHE5cbx16C1uRd0wmeYGGK9z+bUTZEM3MBVONJRmARjFhoMcihOtqm1HQIGz3A47baNKXiTlYkPIGoy+LBpVpLahSF0XkCulv1W8f+Uf+bxiPedvV46YmDFj5vHBbNhnxsxjxrrL64hIjaBQW0gTtybG5ypRhUavAUDCkPrxQrMXuDbpmlFknL17ls5rO/P8tudp6NqQyImRrBi44n8mMiRZYuyesbjZuLGg18N339FJOmIyY9gRvYPVl1YD8MbBN7D91JZG3zViyNYhFBTYPUTUQUa0usvOlxZXEhlg8PpYNLYxbQMcaxxvCwIUKy9zUfEKg3ok4++tQ0M6derkcFkxEbUQRWO3xobB7+nTEBbGkH3xAOQpdIR84InfZA2TPCPItlMwt8tcbJQ2IINzUeV91XWoi1JUkpCbwBsH38BnoQ8z/h975x0fVZ31//e9U1Nm0jtJgCSUhA5SRFBAFxQbrKILyCoqig0VFde26tofFSwIFnBVcLEiFlBQERGEKC0hgZBOCOlt0mYyM/f+/riZSSYzk4LuPs/Pnc/rBZOZ+73fW+beuedzzvmcs/tKhPDN7RSnszdcQJA7UoschOveKxbz8AyFZCBDiwrKQ5O6VNpqN3jPIKKhQHLuh1228VH5zfx9599psjRh1BlZOm4pm7I2se7Sdc7vx2K3MLnueUo/+SejKkV2vQ1xDTibLza2NVJiKuGnw1pEwYPwvdOxy8hYqcMk/kJd6JN8unxG30hGV2zfDsOHK0TjvvsgK6tXJKPR0sgD3z1A6upU0kvTuW56AmpRhSD0IgmhE/EQZBhkv4+zbV8zzvYvRtvf8BjNcaS0aQj2SELoQj46v+8Y500To2STbfjhdM/77oMPPvyh4Eud8sGH/yI0mBtIejmJenM9UxKm8EPxDwCIDp+DoBjvAgJrZ69lyThFbPy/LfT2hlfTX+X2bbfz3aLvmD5guttym2QjrzaP7KpssiqzyK5WXnNqcmizKzVnBQREQeSGMTeQFpGGXbbzj60ruKJiFScixnhMleoo8QvPX5vMuCR3PUJnrHgnh1/zG1zSqBx9EZZeqmPQq4MA+ODi/fz90x8JU6fRKJ+gSFhPueZyqj54m6/FAraO9GNrfystgtI3Y2bSTBaPXswFAy8gxC+E8sZyYl6MARkWH4L1Y5Rt6UQdFsmCKIhIskS4fzjXjryWiwddzP3f3c+JU21cEPI0zU0GilvTSdRPosnsfhwWKvlZfQnx9fDGFzArH+5YuIrMxPFKT43u0EOEQ0bmhPgs4dK5BJKETX2KFsMXnGjagVW2Igoi42PHc/v427l2y7U8Of1JGiwNPLn7SeccsYZY0ie/gzjrQmySjVkLoTguwBnlmWT7wrNuRpZAbqRGzKZMXke1JhOVoOLAkgOMjB7Z/XF5w+nTcPfd8MEHcN55sGaNIvbuAZIssSFjA/d/ez915jpWTF7BvWffS4A2QOkXsz2HoydbUaHFU8qSR3QWu4PXa7q373v63BsM/jIv3hRGTGCMr5qVDz78l8BHNHzw4b8Iy79Zzqr9qxRBaGstdtnuXOZIXfHX+PPTdT8xOma0i9A73D+cJ6Y98R8XentDXm0eI9eO5LpR17Fq1iryavMUMlGVTVZVFllVWZyoOeEkFKF+oYp+IiKN1IhU0iKVv+NXxjM0YihHbj7CobJDLHhpKp+/L/PlwBQ+O2c1oOrSJ0KmjToayaFG/wFPzl7CopGLnN5zT8gsVtKoHBWVHH0Rbp+dyN5j9WSV1nC69ThGhgLt6SqO9DVbFhn6l2gUMpkQN4ELBl7AP3b/A4DzB5zPjkU7nHqZB797kGabYlRv+8SPy+bZncfvwJwhc/jXn//Fj8U/Mv/T+fip/fjoyo+Y0G8Cy7YtY0vOFi4J3MzRIrMLeXA0aDSYDvLIF+uJq85gySWwJ2UEo21K8z6vHm1ZdmaGeeu5MTQugH8simbT0U2sP7yeI+VHnNenUWdEQKDBouhJNKIGjUpD9tJsxr45lrrWOmcUbkj4EPbobqX+3tsJMcPc+SoyBgVRa671XGVLtnNWQTqPln3MFXE/sa29ObyAwNTEqbw7510SghK8frdusNvhtdfgwQdBr4cXX4QFC3oV4dl3ah/Lvl5Gemk6V6VdxbPnP0ticKLLmPKmcgY/P5Ox0huA4JaW93vBtRO9gq7kw9Pn3c1Xyz5nOpuIiJ/Gj1C/UOKN8cRpJmOrmYqlJYToMLhsooFzBvcjRB/Spz4tPvjgw/8t+IiGDz78lyCnOofU11KRZAmjzojJYnIbkxKaQvqN6fhr/F2E3ismr+DuSXf/r3shrXYr+XX5ZFZkcs+Oe6hpqSEhKIG82jyskhWAML8w0iLTSA1XyERqRCppEWlEBkS6GSxljWXEvhjL9aOu575z7uO2xyaw6oMGHpoms3kozKidRP8BqzhZr6yXGKVlX+uDNAgZjIsZx2c5nyEj0z+4P+suXecxquKAW4WeocG88lWxk3w4TDd3o01GEODxhXGcM6gfAEkvJ1FQV4BOpeP9P7/Pim9XUFBXQH9jfwoaClDLAqdehOjlys+7WlAjCErmfZvUxowBM/i+8Hv+lPQnNszdQLh/OACpq1MZHDqIxM/KOJq0ElkQnJoLB0kQJSW96Li0lDJ9BpGtKsIsaYQHem765zgywVbNkPJyjse191RxfBeyjCgIvHTjUJcUJYvNwpcnvmTtr2vZU7LH2axQI2qQZMlJQsL8wqhprcGgNdDY1gjAxMChfLfiGEWDIhh4ooqbrw7k0zQB0TKQkfbXOmkQJERJYt6Pt3LB0cOMuFXArBWRkUkNT6XOXEdTWxOvzX6N+cPne/1unfj1V2dPDJYsUdKlQrwIuDuh1FTK/d/dz4aMDYyOHs1Ls15iSuIUj2Pb7G3ontDxzOR/UVs6mpzTzdhsMs1t9k6jOqp3/RY4yETnXjpd++r0lmQAHFLd6Oxo3xlGeQSj7Gs6CdCV8SayKFC9jJ9KT4K8GD9pAHr/eoYOOs2whEBiDDHEBMYQY4ghwj/i/4QDxAcffHCFj2j44MN/Cab9cxq7incR6hdKTat7k7H5w+bz7px3+ez4Zy5C78enPU50YPR/dF+tdmtHylN7dCK7Kpuc6hwnoQAYETWCyfGTnWQiNSLVI6HwhjW/rOGWrbew+qLVHHn1ISZk1HHvn0CU4R/9ruGm2/6JICqRCpPFxPR3pnPKdIqfFv9EcmgyebV5LPliCTuLdgIwIW4Cb1/2NkMjhnY6GCtUVUFlpdLgrf31vtoUfhWjkLuJhDjgSLN69q9K07qrP76aD7I+cC6flTyLW8bdwpUfXolFsjCoCna9A+MfjydYH4woiJyoOYHZZsZf40+ztZmZSTP5av5XTuPslOkUA/8nnjVfi1z/q8Qv/Ufw8QPvcajUQptNcjmnMnZqSSdTfSd6ScQsSoyyriJI8CJWRjE2w0/ezMM/SKyduZzc8AG0qcDQlMuzX77OsBcfgksu8byuLLO3ZC+vpL/C9vzt1JnrPI5Ti2pskpJWNjsHPlueTua9f2XkzmM8crmRJ0eZMMojSLQvJpAkDI35PLN5HSm2Mi64sJp9/SDEL4RNf97Eos8WoVFpGBY5jK/zvmb+8Pmsvmi1527z9fXw0ENKJGPECFi7FiZOdB/XBa3WVl78+UWe+ukpAjQBPDXjKa4bdV2PBnPQM0E8PPVh7jn7HudnDiKbVdJEs8Xezdq/L3qbPmWlkT3q810+c3wXwYxBROtFOyM5t+EQpsvIHFYtxSRkuIwP1AYS6R9JrDGWxKBE+gf1J9YY6yQjMYExRAdGu/UA8sEHH/598BENH3z4L8CXOV9yyaZL0Kq0bqk0AG9e/CbDo4b/xzt6OwiFg0hkVWWRVamkPHWNUDjSngw6Azd9eRNLxi7hpVkv9bAF78gsbmT5pq9oagokuqGQ5ua32J6QwezKIN669yei+3ccu9lm5qKNF3Gw7CC7rt3FSEOyC2nYf3Ifi2vXkU0VyDC3Kpw1e0OIPFmjlCdtR50etifB1lQN+YM+RSP0vs+Go8xrcX0xl226jCMVRwCc0RoH2QH4W0l/bv2omGtfmYG/1p9VM1cx6NVB2NujESmhKeTW5rL6otXcctYtANz8zpVc9ejHnFMiIM2Yhi63ELZv58o3CqnWBbntj0OvEaQL4q59sHJEIiPlNe6VutohI2PiKBFNTRikJPrTwAdBq6iWf6XhadDagZkz4Z13lK7Z3SC/Np8V367gk2OfeB8kw/zYmWy4/iv2LTyXSZv28Pw5Ku6bbkcQRSQkBAmW7YMBDbDswo70wb+O/CsPTHmAqz++mhM1J7hxzI28ffhtjDoj7815j3P7n9u+DRk2bYK77oLmZqV07W23KRWnPKBzVMs/0MT+lqcpaP2eZROW8dDUhwjSu59nTxj40kDmpc3jmfOf8bqdu9Yfw97Hdh6/Fd61HB3E1AGjPILR9rWA2C1R8RQ58TRfXxCgCSDCP8JJSOKN8S5ExPG3QeerkOWDD78VPqLhgw9/cLTZ20hYmUBFc4XbMr1Kz6fzPuWdjHf+rUJvq91Kbm2umyi7M6EI9w/v0E900lE4Kl4B2CU7U96eQlVLFUduPoK/xt/bJruFwxCzSfZ2PYTShfpC7QesmDpHIRHtRMJWUcaVgVv52lDB9u3RTMlsUDo/d4YoIoeH8cUIP24+q5wyXRtqWeB21SSuCp/G95oStrYcYW99JpIsMSJqBANa/oGpPqq9D0FnuKe9yNgZ3l9PQOIHrNq3Cp1a55L6NiVhCpcPupzl3y4H4LFdArcfC+LcR+KZkjiFtIg0bt16KwDnJp7LruJdTEmYwu6Tu3nzkjepOrCbK1e8S4hFIHjr96gefEgxnHNyWHH1KtJjh3fRa7gbeioJAuQRJMt3YiDVK9kACQGl34YsyBxQL+WZxHNY+vwPkJ2tpFTNng033QSzZnk12mVZ5uz1ZyMg4Kf244eiH5w6jc6I8ItgcPhgJn6yj2e32dg6Loi5MxtABI0NWrQgSEolrTHRY7ht/G3cuvVWUsJSePfyd3li9xN8nP0xyyct55fSX9h9cjf3Tb6Px+MWor39TvjuO7jiCli5Evr187ivABlFDdy1PgcZGVkW2qt7wb3zgrhoeKrX9Txh/JvjGRk1kjcvfdPrmMziRh7emEtDq831vPVRW9FXdNZ2KK8SMpKzipoDo21vYWTYGe+Dg+j+O6FT6YgIiCDOEEdCUAKxBtfoiOM11C/UpyPxwQcv8BENH3z4g+Ph7x/mid1PuH2eYEzg8iGXs/bA2t9N6O0gFJ1F2dlV2R4JRWcy4Uh56gnP732e+3bcx+7rdjM5YXK3YzOLTPzzhxIKylsID7ExbHAlgl8x2aePkH5wJEbOchMFB5jSGZV1J6GtEGpVE6wP5o3hbXwTaWJ9zRSuCpyAPioOIiPJ1MeyoSyQgkaBgdEBLJwWx/BEA/Xmeu7dfi//PPJPZxqPVqXlouSLuCjlIi5MuZB+xn4eBeIA8eF6iqoUPYKjo4bUbqg1i9nEB8VTVF/kcqxly8u4f8f9vJPxDv4af57dAbeUxBB6QzUDQgZwuPwwYX5hpISmsK90H3OGzGHz8c1M7z8d1bff89jeEWyYspj8/iMYGWlk4bM3MPzkYbj9djKXPsht7+d7SF3pMBz1gpZ9r7Vx08UgTTgL+8mbMchpXdKt3D3TomSnVTpGi6aJON1YUkULi95awfDSTKVpXXQ0LFoE113nsWLT5mObmfvhXN67/D2u+ewatly1hQe+f4Cc6uPYJLsLX1MJKh44ncyDb+Xw4bjRrJrxVwxSEq3kc1y7HpOopOH0M/Rj9ezV3LvjXsqbyll36TqyKrN4dNejzEubx/DQoTz+4z8YWiGx8nA0ocsfoGr0EKpbqqlqqVJem6uobm1/bf882vQAIbJralnXlLje4sKNF6JX69l81eZux3krQjBwQBkn8qPdvo+u6GtVKU/r22iihSL0RNFEPsWq9ZiEDKbafkJEc4bzuhJdtaBGJaiQBRmbZEOS/z2hnK76FAfUopoIf4WQ9Avq1xEZ6UJKIgMiUYu+9mU+/HfBRzR88OEPjLLGMuJXxrtUlwJF23DKdOqMhd6eCIWjypPDuI7wj3BGJzqLsiMCui8F6w3Hqo4x+vXRLB23lHvOvoeypjLKm8opbyrn+Ckzx3PjaGkyYtecok61h9CmawFXcWkJGyhQv+q1zKkk1FJsvIFaq8kpLO4KP7UfMZpJxDcq5M0hKpaRqQh6jBMtO5BkiXhjPAatgZyaHOyynaiAKN645A0uHXypc66uAvFrpsUyLMHADR88wa9ZRvzlgbSpTpLLWqdRb9QZef6C57nrm7ucZVuvGXENX+Z8SZ1F0S4cOjEDa1Ee4/9UjE6l45+X/5P7dtzHopGLyKnJ4eu8r5kQN4Ghm77j+qwR3L1wDZIgILR39hZkmZVhxxm+fDElDSUMW3mxU9egGIvrXLzTD09+kEeveo2nhtXx8HQ4L/KvSKeXoJKURn5KKWAvKTKyjCxIThIjIvDi9/9g1JFdSlnYvXuhrg4mTYLFi2HePDAaAThS1MDN732InzSQZiGfISmlvHjZHYx7fQz+uSfJ9pCBdW7pCFQRa5DpvG8yh7rk/M8dOpcT1Sc4WnWU1IhUtCotR8qPoLHLqCRo9WAjOzzgEf4RhPuHExEQQbif8rp393m0mt37V3TufN5bXLP5Gorri/nxuh97HOvtGkvPr+Sxj47S3Bzwu5Su9YbOBLOzvmK0fa1HPU9PInNluYyVBho57iQuniAgoFVp0av0CIJSCMFsM//biIhjm44KdF1/dwUEwvzCiDPGeY2OxBgUkqJX6/9t++iDD/9J+IiGDz78h7BlfwVvf1eKqdWGKCgexq43n1YtYLPLGPRqrpsRx2UTus9V7wlT357K7pO7XT4L8wujzlzHDaNv4LFpj3Ur9G6zt5Fbk+sSnfBEKDpXeXJEKsqr9S4GzsLzYr12BZZlmXpzvZM4dCYR5U3lnG48zd6SvbTZ29we3kHySEbZ1wCdjX4lEtDZkHEYMI5eDV3LnAqCzIBYG5eeV02LtYUPsz/ks+OfcV7ieSQGJ9JgbqDB3ICpzYSm4mZ0bWld5rdTL/xCpvqubg0ZjahhcNhg4oxxhPqFEuoXSog+xPl3qF8oW45vYd3hdc51/NR+XDvqWtJL0zlQdgA/tR/RgdEU1ivN+zpXXEoKSeIfJ5O53m87rWqZ56d8RGXJcH7KzycuTOSei8ew6PNJLNtUyNJ0mauXvkRF6FkuqVGiZGdckpFnF6fxr8x/Mf/T7isu3T/5fp5++yS5P31O6vVmbhx7Ixt/2cOo1huINA+gQptPs96IgSFu3zN4caQAACAASURBVIkg41L6VcaOSU7nsd1PM/RoBa1Lb6AteQCWL7dgOZiO2V+HZcokiiZcxucFk9rLAItOwjBy9D4a5ENsyNiALApIne4yjahhSNv/ECqPdzYjdGzTU86/WlSiWqbGasZVaYmsa+O7FBXo9dw28Q6OVhzli9wvmJo4lfWXrmdgyECvKTTd9VLpa0Tjzq/vZHv+drJvze7Tep4w6/F0LFZPVarcq6B1TYvq/JkndKevCGZsey8QV0jYsNGIhmAP63Y0dexJGN4TRET8Nf4YdAa0Ki0Wu4Wmtiaa2pr6NM+ZQi2oEdsLTVjtVrcoSbAuWCEfDgLihZQYtIbflLbVlYh29zvtgw9nAh/R8MGH/wC27K9g1ZfFfV5v3tlRLL0wseeBHvBN3jfM2jjL7XNPQm8Hoegqys6tzXUSisiASFf9RPurpwhF15QNRzfj6ZNzsenyXEiEg1R0FakHaAKICIggUjwLoe4CVNYEtKIWlahC79eslGq1+GGzg92uQ6CjelN3Dcas1HNUvI9RUudymu7pQKAYA8F+wfhr/AnQBBCgDcBf449Y/DDYjG7zhxs0fHjvKJramqhtraXOXEdtay21rbXk1+bz5sE3ya/LBxSClhKaQrO12TmuOyOnn1HpKdBmb+NEzQmnYRIujiOmbaEz2mCM/oU91RuZXB1AZlgS4yQlj1+SQUAplbtox83MTz/My/OT+Tb2JczacLftBfjZ8Ut+kc3HN3f0s+hUsalzGkxiUCJ/FtOwfLOVt0eB7O+HJEtYbBbOrwzAJJvJix7JMNsrLufcW5SjN/n3nnpiyNipF38lR3sfZqvZY4XXc9q+QC26R7OcvT4AG00UiKspZzPLD+p48nswiVYevTiQ6Q+v5/mdn9BSMYk4/ViiQiR2NjxMk+oob13yFpcNuczj/npLY1p1/dA+dx5/4scneCX9FSrucddd9RWO3ybvhMGVhHgmD+7rdheZsGNBQERA7YFIKP86RyJd+3nIXe51iXohnSOqZYASVRIFEbPN7Ga89xZqQY1BayDYL5hAbSCiINJgbqCqpcoZRewrHE1RPemIvK4jiErPGFGDjIzFZsEmu2pu/NR+SnSkG0ISHRhNmH+YW68fb9fkysVDfWTDh98NPqLhgw+/EzKLG1nz9UnyyhShcGyIDn+9itO1FhpabD2s7Q653S8/alghZlMylXUiSVH+XHNeXLcPgcziRt77oZSf8vJcjMG08DSeu+A5EoMTnUTCIcruSijSItIYHDaYASEDiDPEOUvGNpgbqDfXU2uupbq5WjGizbXUt9bTYGnAZDHR1NZEtOkBjNJYNyOwlnTy9H9Dq9KiFtVOPYgkS9glpbmc2WbGLtsxyiMYZL+fAAYCHcZGZ6Ojq3e1d+dVojD0KpaPfoVDx0KoqdcQEyZy8QQ9wxONfF/4PTd+cSM3jb2J1Ret9ugt/C3e6cPlh7nm02s4WnUUURCZP2w+5yaey1M/PeWMUJwVexbHqo5x8aCLabA0sC1vG4PCBjEzaSa1rbVUNFfwY9GP6O1DuvQfUAhTrvg84dK5HsuGCpKdkcXpNJruZOmv8MG5q/glybWzt6NC1CH1Dc7P3HsddHiTG4VM0gIuxFj1JwRNEiYhnxbDF+S3fkd/u5Gzs0wc7D8So+FudPYBqAQVds0pmtuaMDDUNbIk2Yk1H2PBlVoy7afJ+eKf/PVfx2jWCby7eBxy0kCqWqqw5t+DSg5zO78WKtmnvhRZlgkQNLRgY2DIQPLr8tFZ4YrKVZRFjEfqRovk6BvSLBQyNutphpVksHHeYEwBKk5XahktrWlvlCcCEqIg4tf/Xb4qWc0No29g5ayVBGoD3eb1lsbUV6z5ZQ23b7sd68PW30WEvPrbA3y0q81jKtO/E56JhHsksus97z6PRB37afDfTHBwPRqVhrKmMkobSwHFYA/UBCIh0dzW7GW7vYNO1BHsF0yYXxhB+iD8Nf5Y7VZOmk5Saip1Kb/dWwgIqEQVgqzsT1cy0RO0Ki16tR61oEZCwmwzY7aZXcaoBTXRBlfdSGXuJdTXhrc/aRScaZTNBx+8wUc0fPDhN6BzOtS/40bqWiGmp1SBEHk0I+yr28d3GINlxkep5zA1rTXOtB6NqFEeTqLiVZSQsEk2rHYrVsn6m/KYvWogVPWIA552iQ4EaAII0LT/3f5ZU0M4X/+Y2G7M9a4hWO8bh9n54R9ne1z+bcG3zH5/NnOHzmXj3I1eu33/Ht7p9YfWc8e2O1w8pLOTZ/PWZW8RHRjNxe9fjE2ysW3BNsa+MZb8Mjuzw17A2hpGfISGoJgDfLKn3qNXX5AVA7gzeeiMAFsTW57/E6XR/sy7ZAD6MNcyo8r5lLhtjpZbv5tNRUuF1whCLekUq9YrkRPJjiSonCS5gSwKVa/ww7EJ3J28CLvYQVLUoorbLorn5a+KkWTZ+bkgyzy+6WZGl2SyckYAz0+wEVFj4bNNkNgA18yBLUNhpP0lgmVXQb8s22mVf8VUfweL8v1ZPvV+pkd/Q2F9IZOFASx/YQ8q9QjuXbgGuZtO5p0mRBbARiMmsihWrSfRvti9uzgSowcaSB35M8u+XkasIZYNczYwod+EXl0LfcVHWR8x7+N51K2o89zXo494Nf1V3vpSIoyJLuS5t+jb/edOFlSijJ/xNPX1AajxfjzdRVO6/jYa5REMkK7HQAqivhJt+E/Uygc5Xn2cFpviDHL8/ljsFhotjc75RcRuIw/eCIqfyo+IwAgi/SOJCIjAqDMiyzLlzeXk1SqR3M6/q70lOgICalHtFJLbJTtWyT3dqjuoBBX+Gn/0aj0qUYUkSSQ3rkcru0ekz0Q35IMP3uAjGj74cIY403SovqLrQ9yTt9mB4bZVvc4/B+UBplEpoXmHV0yv1juN/kBtIEatkWB9MMH6YKeewKg3upCDrkThmQ8rOVTQdMb56Le8nsWxU2eWotATAnQiXz40zu3z9NJ0pr8znSmJU9hy9Ra0Kvf88c44E++01W7lixNfsPbXtewo2IEoiEiypHj4ZTtBuiCemv4UqZGpPPfTc3xX+B3n9T+P8iodIXV/w0EGHAaGksvunsLVreEnyxhb6zn74MWsnBFIpb2BUba3MJLmlktv1WWz165cZ97Io4VKmsgnXJjoVqpXRkbGTpi2lgZzmEsUQcaOWZPJSdU/ibBcRYDcITQXzJk8sgvu2A9FoQJvXZOGPHUq09+t5Hv9OWQmpFCuLcNIKiIiDk2OjISJYyQ0RzGospBrjBWEP3sr1z2Qxvp36pCAy6+G3JgRjJS8dzL3dC4dhqyNRrS4d/u2i3W8c+cgbJKNhZsXcuD0AR459xEemPLA715paGfhTqa/O53c23NJDk3+zfNd/fHVlFSo8Ktc5lYFzQFvn/0ecBi2niKFfYGMjEQbTeRiJBXa42+OssqHVDfTqjpGP2M/hoQNIUgfRL2lntyaXGdKo4BAmH8YOpWOFmsL9eZ65/3muE8d6EoUvFWlAqWIQ3RANHHGOCWVyS8MGZmalhoK6gvIq8mj1lzrMpcgCMiy3CtCoRbV6FQ6lzQri93S7brenAdt2iyCBnxCfFA8cYY44oxxxBkUAXucMY4wvzBnJM2n8fChJ/iIhg8+nCEuf+qgW436/xRkZA6plgC45MwHS0NQie5GUE857ypBhZ/Gj1B9KHGGOFLCUhgXO44ZA2cwOGxwn0venqnHP7O4kRe2FFJcZfY6xhP6kj41Ptmd7ByrOsaUt6cwKGwQO67Z0acKXL1BUX0Rbx18izcOvEFVSxV6tR6zzUyIPoQwvzCarE1UN1d7TZkYb9uEH/095LODt1ST7iBLdfwa8Gdaba1IstQtiXBcN91FNAJJ8ri+Y4yEzaNRb6GKU6FLnfqTrXlb0av0tNnbkJAYWgkvb4PzC2HL+efz8qQnQZaREBBlO5IgYCIbvRBNoJ8NS4vinRVQ0R4OI6k+n6VfPkubPYMr5oEowalgx/FM7GPanR0rJjQY3SIarZoM8vQP8Mm8Tzg7/mye+PEJntj9BOPjxrNhzgaSQpN6vZ2ekFGRwci1I9l3/b7fHDWRZZl+K/uxcPhCFg56yI08yzLdfma1yd1GdAN0In5aFQOj/Gk028gpbfbqgOj6u+G2r92kT/U0zls6YKJ9MUaGIAoq1KIa/8BaAqPTKW3bQ0GZnTDzVQSSRKtYSHPAF9h0eZgsJmpba53bUQtqJFlyiYI4nAid33siDQICwfpg4gxxDAwZSHxQPFEBUQiCQFVLFUX1RRTUFlBQX0CLtaN/j0roSDvtDRFxiN9DhdFEtv0FnT0RC5X4y4Nc0iFBxEodjeRwUvU2JiHDZf7OkSJB04iqLcG5BUFQKP+9VwZx3tD+Z1Q5y0dc/njwEQ0ffDhDzHgk/Xfz6PUVHaJJ5UEqoHi+BGQEWUYWvUc0/NX+tNnb+pwHrBE1+Gv8CfELIc4Qx5CwIYyLG8e0xGkkhSW5eW376vHPLG7kznXH+nxOu8/d7ljmjewU1xczef1kQvxC2HXtLkL9Qvu2AyjGWoOlgWNVxzhScYRjVcfIrc3lWNUxyprKsNgtXtfVqXQYdAbC/cKJDIiktLGUgroCDPJwEu2LiVSNw2733G/A3Zvafk3IEnhJ+5KxUyf8Qka7eBZgjG0dBreIhoxdU8hP8l+A7jQaN5Nov75bo92OBRVq6EJSbLpj7PzbNWhUyvHFr4zndONphoYPpaKpglhjLBnlGVx+HPppV5Ed76qtECU7wyLs+A37kq9/jCNYHueuM5BlBNlOgXUpxQEZJIuRlAqNaGwpyvHIqj7pHGw0o0JpFNm5z0lEyidUSwfYU7KH1y56jRvH3sjPJT+zcPNCKpsreXnWy1w76trfRVNxuvE0cS/G8eVfvmT2oNm/aa7CukIGvjyQz6/+nEsG970BnoMcSLKT2zkhCvDSDR33W28cEI7fjZzTzTS02JxXdedoSkfTw77ps+xY2K2eCni6nl0jV0WqVQyw39U+f3sqIlAT+hRZjV85SURUQJQzfa2utY6qlirnfakVtc6UVAfUotrlvSiIiIjYZbsbYVAJKkL9Quln7MfgsMEMCR9CjCEGURCpaq6ioK6AwvpCCusLKa4vdom2aETlnrLLdue+erqHAUwcw484NATRIcRXluXo7qZK+sWpm+t6zsB71/YgXRBxxjgSjAnOaEjXCElEQIQzRdUnTv9jwkc0fPDBAzobyQF6FdWmNlrbJJeys32JaJxJTfreeu9cV1LWUolCe/lcOypBxaXTT/Nq5r3k1eYRrA+m3lyPUWvk7ISz6R/Un/Kmcg6XH6a4odhlu33JAXbkEftr/AnzC1MejuGDmRg3kan9p5IQlNBtOtKKd3JIz2vo/bH2ACVppxVJXUas3xCPZKequYpz3j4Hq93KT4t/ItYQ6z6PLFNnriOvNo8j5UfIrsomvy6fU6ZTVDRX0GBuoMXa4vVcqQQVerWeVmsralHNzOSZLB61mHFx44gzxHk0PH84VsRj75e10wZVt9dP12VC+z4rb4QO608QcJSANQ7cRGRoC5uPb6bWXMtY+3oC5VR66wHu2k/DKI9gtP0Nr2TPxFGMpKJCQEJ0Go0HxSXced4c/n7e3wFYtW8Vz237kVTxTmw2LZLQxBWTjXxZ+RDNOXegFdyjJuGmSt5/60rmLfmI+kAvURXZTj3pmBrvpCxI4MPBD7Po6ONIuhEMt72Amt6VCHXXTLV7tEP2sKf1QQaFDmJY1DDez3yfO8bfwQszX6DV2sqyr5fx9uG3mTt0Lm9c/AZh/u4i9r7AYrOgf1LPO5e/w6KRi37TXO8deY9Fny2i5r6aMyLZ4EoOlItWZnBsoEfnQl8cEJ7GOqIpOaVNNLTaXS7xntCZaHiK0DngLXIlY0fwy2P8WUeJDIikts5I5vEIGhsDMHGCPN7AJGTgr/Yn1hiLQWvAJtmoaqmivKncOY9epVfSmzo5IDSiRimK0YUsyMguxKTzsnD/cBKCEkiNSGV09GjUbcmkHw2kolZE51+LKmwXp617KagroKK5e50V4HWZw0k1WnrFrciHJ3SNoKsElfNY2uxtLveRWlQTHRBNfFA8gdV3YG3qD52qivnE6f//w0c0fPChEzKLG1mz7STHSr3pA5TbRQ77lFpzHaHN1wNnFsr3tsxTzm/fYGd8cij5FS2UWg6gi9jNzpv+iSRLvJ/5Po/teoz8unyGhg+lqa2JElMJMYEx/GXYX7gi9QpUgorDFYc5VHaIX07/QmZlprP0bKA2EI2oodHS6BIRUQtqEJQwfncicocmJEATQJhfGPHGeIZGDGViv4l8um0I9c2ef476XllKifjUhDxB5t1fehxjspiY9s40ShpKWHvxWurN9WRVZpFfm09JYwkVTRXUm+u9kgiNqCFQG0ioXyjRgdGoRTWlplLy6vLwV/uzYMQCYg2xvHHgDWpaa1g2YRkPTHmgR/FuZnEjD2/M7RWJ9XpeZNmFZDQLBagx0CIUUii+CQgkyTcSQDJW1Umi1GMxtdrdpulNmVnASTSgi3dTVsrpHlTdSICczCj1vVjMYJAtLL58KAeaX+Opn54i/YZ0RseM5qO9Jazedto5j+O8L5kZzq+5rRwqaKKzEeI4vqCWevxtJiqM8UheIjmCZOH82O/5KP9ZGqRW7voZ7rhIWRZuG0GK+j4C5BRs7qehY3NeUnJsNFEWsQRZlqltreWqtKtYd2gd0wdM54MrPiDEL4RPsj9hyZdLnA0U/5T0px7Pa3cwPG3gsfMe4+5Jd/+meZZ8sYS9JXs5esvR3zTP/wYcRORQoQmrvXtTxkF468OfRKfWEVbxIhoPVcs6j/f8e60Y39XiLlKke5zefcezYdLoCoIij5FZmcmRiiMcrz7uJAqxgbFEBUY5Uycd5b0d8Ff7g4BLipRaVKMW1C56C4cw3CbZnHN7izZED9jHrDFBDA0bylMbBUweHm3hBoXk1Da5X/x2sZaDuitotjZ7TbHsDFGA0QMDWTbHwCnTKdd/jacoaSihuKGYiqYKF1IlCiITrZ+jxV2cbgyAtbfGExkQ2ec0Xh/+9+EjGj78V6G7/E9H2NbeQ7ElRy+GvepZxEhzSJGW07UefNfx4Fk46P29a959X6BRCWx/9CwAtuVu46L3L+LTeZ8yZ+gcAGySjXePvMvjux6nuKGYCwZeQFRAFN/kf0NVSxVDwoewYPgC5g+fz8CQgdgkG8erj3Oo7BCHyg9xsOwgh8oOYWozAYrIMcwvDJWoormtmcrmSucDRK/SE6gNRBAEbJINi92iNN2T3NMExtn+RQADvJKxvpSyVUShLXx8fxonG05ytPIoWZVZ5NXmUWIqcT7gvZEilaByIRGJwYkMCh1EWmQaI6NGkhiciF6t52TDSd46+BbrDq3jdONpzoo9i5vG3kREQAQP73yYjIoMrh52NU/PeJr+wf09bsvpDS5twibJNFskuvYu6BMcJMN5LuzUCelkqO6kn6EfI4Mvo6lwAdBRmUxA5Ty7DogCNKoO8gtLe9ykR+9w+6PlpO4l6qUclx4aomRHUKn4n+uSue6b6UiyxK9LfmXes0dpaLW6HLuMjCw28dw1w3jwveKO/H1PURscq3q7hmDGkRdZmfoRMRYNWcFtzlOtQiQ1Mo0JvEve6Ta39buDjMwu9UQ0ooZR0aP45fQvXJV2FdvztxPuH84Xf/mCweGDKTWVct2W69hRsINlE5bx9Iyn8dP49WlbDvRf1Z8Fwxfw5Iwnz2h9B1JXp3Ju4rmsuXjNb5rnfxNufXuAroaNAFx4XhHZTdvYWbgTY81dXiMa0HOFq460VbHLOjJFAfeTGu/P2JixjIwaiVFnpLyp3Ek+MioyqGhWeqD4qf0YGDLQ5Tf0lOkUp5s6CHegNhABgea2ZuztKU0qQYVOrVPSYCWbl2iFsj+HVDdhEjI8jhEEmaEJavzV/hwsaPSqn2kwN3D/e7nklNhdij64Pt+U3/VM9a2EhJhIDEqkf3B/52v/4P4kBifSz9gPAYHK5koXIvLdnkQa6iLB5Zx2RFXUolpJwTLE0c/Yz+O/mMAYZyqmD/834CMaPvzXwFv+54p5waj9S3nrK4nTFQG4eEy9QMbOLrVSIlXx5q4BD3mr3nJYrZiQsSKg8RCe73uaVWcM7RfAazelOd/P2jCLvNo8sm7JQqfuEOS22dt4+9DbPLH7CU43nmb+8Pmcl3geO4t28tnxzxQPVr9JLBi+gHlp81wa88myTGF9oZN0OAiI4+Fp1BpJDE4kWB+MKIg0tjVS0lBCVUuVcw5Hrq5epcdit6ArfhYBvduxn+n56PwddUbnnOgh4UMYFjmMlNAUhkUOY1jkMPoH98eg854PbJNsbMvdxusHXmdb3jYCNAEsGL6AJWOXoFVpuXfHvWzL28bk+Mm88KcXuhXrOvPbJWesjJ4IxpmcD6tQTUTqm3x61afc/+4Jt8o+jpK4AhKy0JGffUS1lHrhSI/ze/N0Glvq+FEzi3iNByNItiP55aDq9w67inYxOX4y6sLn8UwS7IjJD/I/Uz7iw93V/JJbp9CGzulO7QSr2+ihLIMgYwp5mkONnyMg8I+CRB4aWAQyaBEZG34l+sq7e52O49i/XeqzERAwyMMZpr4D2RKFWl9Nrf4jTln38MEVHzAzeSaSLPHK/ldY8e0KkkOT2Th3IyOjR/Z+Y+0Y98Y4xsaM5fVLXu/zug5Ut1QT8T8RbJizgQUjFpzxPP8X0NWJNHloMHuO1XtN0dqRdYKnP6jr1Fne030lt9+R7k4O7/ehTEBQKfboNzlYfpDK5kpA6U80NmYsY2PGMi52HAlBCVS3VLuQj+yqbGf0OM4QR//g/gTpgpCRqTfXU1Rf5IyAiIKIQWtAFERa2loY0/ax12hDbGQjhv4fkVXShKrsVsC1/Plh1c2A4PIcAwlBEFgxL4gZqcmoRbVbpUVBUO7WwXEBVDZYiAyRGJ1ai1WbR3F9MUUNRRTVF1FcX+x8NoBCkuKMcR3ko52IiOaBvLdN0T91rnJ22xw1moDT7hES0ynq64KIbJvvTOc8qXobf0OlGwHpTE7ijHG9Eqr7hOm/D3xEw4c/PLoLr3f2lvQmLKysIyMJjRw3zKempQYJySV33Yzyg6onCjVBXqrtKCkpZ9u+9lgq88yMaxlREFzElwBZlVmMXDuSZ89/luVnL3dby2wz89bBt3hq91NUNldy7ahrWT5pOYfKD7ExcyPf5H2DIAjMTJrJguELuHTwpV6rMpU1linko7yDfBTVFwFKzfrUiFQSjAkE6YMQEJzah9zaXCaYf/hNBMv1TMjYaKAsfCnxQfEMDR/KuNhxjIkew6r9q9iYuZEtV2/pk5C2pKGEdYfWse7QOk6ZTjEudhxLxizhL8P/QnNbM4/sfIS3Dr3FgOABPHv+s8wdOtdj3n/nh1dPFXvO6Nhl2WW7ogAm1QEuPa+ah899mCufO0R1o3tTMUmqo048TpA4mNCgNvY2PU61fKBX2/TkKRUFGJ3/M5qWjfw8bCUC7l5GldiAbvAqDpUdoqypjLNtX6Mh2M2gs2Nij3omUYFRXDLoEnLTF9Mbh4BnyNi1xeyWrgJgyZglNG56l3+lKJXO9HaYqL2IKP3jVJi6yaNyTicj2ls4pLsLO7JHsW1b9Cvsr/mAF/70AssmLEMQBI5WHmXBpws4Xn2cJ6c/yd2T7vbat8UTZm6YiUFr4ON5H/f9FLRjy/EtXP7B5RTfWUxCUELPK/zB0FV47gkalYBNkvtEPC1UkmP4K+Njx5MakUqgNpDmtmayq7M5UHbAST4SdeeSxI2orf2ICROYPzWa2Ig2MiszyajIcBKQRlNY+/MlGUFXjiHqF4zBtdgkG9Ut1ZyoOUFkw9+8FmQIChD46N5RaFQa5zHnlTcRHmwnJiGLQvMPHKs+RlVNAMaWOQTIA100WAICsZpJJLc+T4c4XqFgd16cwGUTons8J63WVk42nKSovp18NBS7vJ5uVCI4jmdpkDAIUV9JZL9MBsXpSAzuiIokBCWgV+vdI1mC8iWNGrOPRvEopxo7ERJzvcv+hPuHdxARg3tkpKEhhAfeLfIJ038H+IiGD39o9FQuEcBKPXvUM72KAz1FKE6Iz1Amftape/UAOntibTRRIK4mXDrXYzjbSj2F4usMku7DUeu98/K+6xFgXJKBa6fHexRW3vLVLbyf+T65t+e6RCY6o9Xaytpf1/LMnmeoa63j+tHX8+DUB9GpdHyY9SEbMzfy86mfCdAEMGfoHBYMX8D5A8/vsUdAXWsdh8sPOwnIwbKD5NTkIMkSalHNCOOlhLX8lbaWqG7TpnqP9jzmqC8pV31GSUMJDRZXkXmwPpjBYYOJD4on3tj+LyiehKAE4o3xRAVGIQoidsnOtjwlerE1dyv+Gn/mD5vPTeNuYkzMGFqsLbz484s8u+dZNKKGR859hFvOusWr6N39eux7ilRP50NGRpABQVDKTQoCvwo38NLld3PtqGu9djUfm/szl88TeFXax8fZivHaucuxTqXzWj3LUzUbURCZfvJtdsYtwi64V3YSZYlxFUd5ds21WAWZCW9NQGiYhLHxr53Oi7KTA1IOUyJ8zHcF3xHiF0Jq4ybUstE1otEHaFQCwyb+i1X7VyEjY7BrMFpkSv1tIIPODhec0pKc8BmHpZ7z+GXZjijLtMk5qFVD6CqorSOdkKTN7CrexfWjr+e12a+hVWmx2Cw89P1DPP/z80zrP413Ln+H+KD4Xh3Dgk8XUGoq5YdrfzijcwBwz/Z7+DDrQ07edfKM5/ijwNt9MS4pCMBtmaf0LMfnA2KtJKZ+x/7S/ew7tY/aVqU/xqCwQUyMm8ig8EG0miLZs394+ySiM7pQHPCAM+1qXOw4DNIwntxUg6PSltIvRiZLewfV0q8AxATGMDhgJpTe3GkvFDicace19zI4fDBpOU756gAAIABJREFUEWnKv0jlNSnUtWJgZpGJdd8XUVDRgs6vDlvwdgrM36MuX4LBPsbt2q4Xf8Ue/QYpoSmkhKYwKGwQKWHK39GB0b2usmaxWSgxlTgjIJ1JSFF9EaWNpS6prtGB0aSYn0ZlHkJvxONNbU2UmkpdoiGlja7vO0fcvTlPfML0vsNHNHz4Q6PnBlDKgsS0bTSY66nLV7ycnVOgWjmNBiNq/LFiokh8HYt4kgTbLRhJax/vnu4DYOY0OqI6GWCdc3yVkom/JW3KsZ1Rg+tZtXCm13FVzVWkvJLCguELWD17dbdzNrc182r6qzy39zma2pq4aexN/O2cvxFjiKGgroD3M99nY+ZGjlcfJzIgkqvSrmLB8AWMjxvf64dKi7WFjIoMth89wc49g9qP+vcgGQpE0caD15oZHDaYWEMsTW1N/P2Hv7Ny30quTrualLAUSkwllDSUUFGtR90wEz9pQLsXbz0tYjaBukBarC202duICohiWv9pXDbkMgaHDSbOGMe23G08tPMhKpoquG38bTw09aEeq/Z4uh77cowdpLfjf8/j7LRRg11zmrjEY2wuWsWbl7zJ4tGLyTrZzF3rj2GTFG2GKIAgS6zatIxhR38EnY7ypnLmfzKfnUU7nXN2RzRAIRtJ8hIGBkyioHkvReI6Zhue5nRNkEtJWgdUAqx6+waGPXQr3HQTmRWZjH1jLAsTX6WyZBRNZjuIrdx9cRqXnhUFwAdHP+DqT64mgXkMtLaLoIW+lzmVsdGmywZLDG2qYspYT5PlACa9cwBqBK7Ihnnl81l37lKau0RkPKbSyLLHssJWoZo9qtmMiRnD0cqjjI8bzyfzPiEyQImgfl/4PYs2L6LZ2sza2Wu5athVPR7DHdvuYGfRTjKXZvb6uLti4lsTSQpNYuPcjWc8xx8F3ZXelWU8LvvzpCg+3NOREiQAouharleWZfLr8tl3ah/7T+1nX+k+DpcfZmjb8x71EkEhVVgiX3NGPrwZvGOTjFw/WyCjIsMZ/SgsiiKs5Xo6GhXaERBISN1KYFANTW1NFNYVklWV5SQ/OpXOSUDiNGdz4NezEBDcvPiPf5DnMRKq11kYOHoTubW55NbmUlzfUbkwUBuoEJCwTiSk/X3npn+9gdVu5ZTplAv5+OnHqditgW5jz7Szudlm5nSjkqL17EY1La3uTjRf1/S+w0c0fPhDw1uaSGd0Tp/qWr6zRPU2ol8JZpuZVlsrMnIn762qR+NG+cGVsNGslND8DZEL1zk79t0csIN9Kx7p8Uf7hb0vcN+395FxcwZpkWndjgWlKtPL+1/mhZ9fwGwzc8u4W1hxzgoiAyKRZZlD5YfYkLGBTUc3UdZURnJoMguGL2DB8AWkhKX06lhWvJPDL/n1bh2lfwu69olwiLpPNpxkauJUbh57M4PDB5MSmkJROV1EpDISEodVS2lRZZMYlIhBZ6DOXEepqdTFw++Ye3jkcAaHD3aJjDhejbqOrt2ZFZncubYSyeYecfImdu/4rpVksEZyiIsto+H0FEQPehYHBKmNndopzE6ZzbHqYxTUFQCKcP+s2LMY6DedfRkB9NOPZXi/CK755GmGUQuff+6cY/b7s9mau9Xj/CKiS3OyzihcVsjRiqNcsukSpkpfI0ruqYEalcCLi4cw7MFbYMcOyM0Fg4Gndj/Fwzsf5qfrfuKyTZdR01rDMzOeobC+kBM1J8ipyeGU6RQAsbY5DOBW1CiGhiOKo/SToZtoR2c1TIeANejkUo4GZVDYJYBxeW0UH62tIav/WNZc8QgF6nCsXgpGyMgg43IvOn5fcrT3oVFpCNYH02prxaA18PlfPmdE1AgAaltrWfrVUj7M+pBrRlzDKxe+QpA+yMsxwOO7HmfNr2soW17mdUx3aG5rJvjZYF6e9TJLz+pZ8P/fgO5K73pb1td+QaBEj69+PgNTi/s16jBkZVmmtLGUm18tobnVnah7M3h/zi1j/ffFnKq2IeoqqPP7mIyGL2i2KuWmIvwjGB45nJTQFIL0iv6jtrWW49XHaT35F7eoRXdRHU8efrPNTEFdAbk1CvE4UXNCISE1uZQ2ljrHhehDnASkaySku+u+M7qLQv3WqMO/c+7/NviIhg9/aPQc0VBgoZL96stI8ptBiPkK1NY4WilHRQB+xAHQxAnyVS+TZF+GsUtzs+7gIBue67WfWQSjln3O2ua5t+eSHJrc47oWm4W019JIDk3m64Vf93qb9eZ6Vv68kpX7ViLJErePv517zr7H2QvALtnZWbSTjZkb+ST7ExrbGjkr9iwWDF/A1cOuJiowyuvcVzx3kJrG37e7ukqE569Nwd9YRU51Dh9lf8SGjA3EGGKw2W1UtlQ6x57FGgJsI+naSC4msonXl0xwIQrZVdnc+fWd7CjYQUpoCrOSZ6ERNUpkpD060rWSlVFnJFZ9NoHNl6KxxSOibSecrttzhP69kY1mCvhVPZ9ErmKwfBcWu/fSx53Hf7PgG6pbq1nw6QK+mv8VR8qPsL90P7uKdzlzlgcYE5m49yQTJvyZiVffw6joUejUOvqv6k9xQ7HLPnXXV8VB0hP8xpMWF8phywtUlUwgiGF0rSKVGhfI6ptSqco5yImLJ5GzYBYnzhnK8erjbC/YjsXWUcpTI2oYEj6EQWGDKGsq4+eSnxkZNZKCcolR9jWoJEFpUNneQ6bNXoBeTEQSBATBS0WhLjoWkKlhH38yr8c+Yzov7X/J5Vg1NnjwR1j+s3IkNy95jVMho/GkE3ERo8sysgC54rOUiZ8hIxOiD6HF2kJUYBQ1LTVsmLuBy4dc7tyvDRkbuHXrrYT6hfLenPeYkjjF4zGsTl/NXd/cheUhyxk1AdxZuJPp704nc2kmwyKH9Xl9H34bemvI/h4GryRLFNYVuug+MioyyK/LBxRx9uDwwURXvezRERJu0PDIVck9NlvsCc1tzU5NXmcCklub69StgCKc9xQJSQ5NdtEH9qYB5Jni3zn3fxt8RMOHPwQ8VYcYlhDI+h+y2fB9U/so74ZZk5BNrriq266nDsIgIyF6ELZ2h+5KJfZ1jpPCexSqlPSnuybcxYuzXuz1HJuPbWbuh3PZOn8rF6Zc2Ov1QPG4Pr/3eV7e/zKiIHLnxDu5e9LdLn0hWq2tfHniSzZmbmRr7lbssp3zB57PguELmDNkjls1p8te3EJDXXSfIzsdhVi7ev9ljuuWkRKnZUz0GLQqLS/tf4m5Q+fy/p/fRxRE6s315NbkklOTw3tb4mlrcy8v2tlbWNVcxaM/PMrrB14nPiieZ2Y8w7y0eR6NO6vdyunG05SYSvi24Fu2pFcQ1Hht+54q8RJlnyU6xMJKtnd35YxlZFo5jT+xTk98d2MdJS1Fv5PMTp7NV3lfUbeizjnmoe8eYu2Btbx60auk73qffYe+4GCiFovUhlalVUq0lv7SaT5XqASVSw38rhoNUVAOq0kqwK9LyWIZGaumgGzdLU6yI8iQaIhnUNRQIvwj2HR0EzOTZ7I1dysT4yby8w0/szV3K7Pfn820/tPYWbSTEfaXCJHOciETsmxnSGk6t367nrsXPo9VZXT/nrqU/3VALZn4XnMBO/76HXq1nnPWn+Ny7GpRzQUxU1i0t4nk3RL3z3sZu6DqWSciK+WFj6jvJAAtzbThr/GnxdpC/+D+FNUX8cS0J3hgygPOfS2qL+Kazdew5+Qe7j/nfh4971E33Y8jjazh/gYXQtxbPL7rcVbtW0X1fdV9EqH78Pugt4bsv9PgbWpr4mjlUYWAlB/h6JHxCK2D3BwhhuByLp9Wi1Eazv6jgRRXWnodvektGswNTuLhJCHthKSzkDvOEOcSCQm0p3E0J4qKOoGkqIDfdZ/OJFrlgzt8RMOH/+/hLrBV+hCUatcQ03az0/jpkO550lPImMjGyNAeDT7FKOz7g7m7spu9Wa+ZAoq1L1LVLgAM1gdz6q5TXitAeZxLlpn2zjQqmys5cvORM6o3XtlcyXN7nmP1L6vRqXQsn7ScZROXuRk7ta21fJz9MRsyNrD75G781H5cOvhSFo5YyMykmaSXpjN7/a2Mtr/OGfeM6IIJw8yE9tvHwbKD7C3ZS4mpBFC84iOiRjA6ejRjYsYwOmY0I6JG8Nj7JV69hY8tSOSlfS/x1E9PISDw0NSHuG38bd2WRZRlme8Lv+eJ3U9wsLC2vVs2uBIiCSsNyFhpIh8DQzxWHnObuw/XjyzL1Ar7yNYsJ0BKI0lewgD/iSRHB7LwvFiW//hn9Go9n//lc7jpJvjhB9qyM50Rj+352/nixBcuczrIhVEewUD5BhdNS6J9sYdCChISNkTchfE2oYaLLjjM4PDBDNJEkzz5EvSXzoU33wTguT3Pcf+39xPuH05tay1Hlx5l0rpJBGgDKG0sJdQvlKnyN9Q3uecw+QlNzNw+g58mfEG1secqco6z60cb1tJpHB4awsElB9l3ah/zPp4HKKVEJVnCX+NPq7WVy5NmM7dgFB+ZpmDSB/VINgSpgRYpG1GdRMv/Y++8w6Mo+6//mdmSTW8kIbRACgkt9CpVaQJWEBHEgogUUbAhFkBAVEBpShPBAjYUsdEEQXovSSiBBAikQHrPtpl5/9jsJstuQkD8vY/Ps+e6vNTszD33zM7M3t9yziGZy6wGlUCYPApvoihUzhMVeYW1w2fbfDUkWWLuvrlM2zWNliEteafT5+w+obEtemIapzNq291cfOEijfwb1fA8K9D3q764qd349bFfb76xC/8IarqQ/b9a8Dr/LYVs/9mcKd6MrMgICEQFRhEbEkvLkJbEhsQSGxJLmG/YbVXWbgZFUcgpy3HainUh9wLFRksiUUAgzC/MFoBEBVZUQhr6NXR5a/x/hCvQcOFfD+ftUTIqtRHJrAUHQyXn5G0Fc40qFTImqjPoqw63y8uQ0JPg+SB5hoqs9Poh6xnSbMgtj3Ui4wRtV7Zlyb1LmNBhwi3vb0VGUQbv732fFcdW4Kn15NUur/J8h+fx0jqS81LyU/gm4RvWxa8jITOBAF0AkiJRz6ceta+vvqlJ4s2gFmFwlxDG9gsD4GzWWbqu6UpUQBSzes3iXPY5jl+zeH6czjqNWTYjCiItfAbhnzMVSyAg2LKFA3umsvDUZNKL0hnXbhzTekyjlketKo+vKAqbkzYze/dsDqQeoE1oG1qYF5CS4Twoqey4XZXa2d+FgUxOq960qzQIgkUC+ax2EuO7DeTNbm9Aw4bw4IOwaJFt3w1nNzD4+8F242lEDe5SEwd1KSt7xFmwJAhSOffFPkNaKB7j2IwJFQuTRYvgpZcgLg6aNUOSJbqu6UpidiJ5+jwa+jYkozgDg2SgkV8jjo45ygeLTnG0SGdHNBdRKFAd46zqZSYUruWYto7d59U9f4qiEHJpDPtir1EnIIzdT+9myaElvLb9NQC0Ki1GycjI2JEcTT/K2eyzdPAbgmf2ywiyYjmOk2qJrTVOkREqeZSgWG62ipY0hbKQBWx44iPq+tS17X80/ShPfzuDwLw3EFFZ0hzlhzgqPsv2Z1fRvm57p+dUFcyyGf8P/Hmr21tM6TrllvZ14b8bVQU1paZSzmSdsVU/4jIt7VdWUrmPmw8tglvYBR/Ng5tX60n0d6EoCteKrzmthCTlJqE3WySr1aKaRn6NnJLS6/vUd+o27vLQuHNwBRou/Ovw86HrrNmRRpHejLtWpMwoO+VgWB2PHf/ufLGhlFdCblbRKOQ0PjSlQtmj6uDlTvhCWMc/oRpDoRAHQNcGXdn91O7bziA98/MzbEzcSNLEJPzdb55Nrw6phanM2TOHVcdX4afz4/WurzO23Vg8NB5Ot4+7Hseon0dxLMPi0dBJ+Qo3Keq2rlWHSMc+5ZT8FO5afRf+7v7sfmq3w/kZzAYSMhMsXh8ZJzhxOY+yzM62DH265ktylOM0qdWEyZ0mM6jxIEK9Q50eX1ZkNp7byOzdszlx7QSd63Xm7e5v0z+yP0PnnXQqRKCg2HFsHKVhb6/y5ewYgBN5ZQs5uW+3qwxTtaRd7ydQfv8dYcAA2zYzd81k+l/T7cb0dfOlQck7TsczUejEeFIiMtSdS9ctTvBWR3BZgOPq59g0ahl3NbjLsrHRCE2bQnQ0/P47AInZibRc3tJO6ap9nfYsvWsD69ccJFHypsDDDwXLAh5FQhBFjonPcm/zprzZdgUvfnYGBdG2+LcY9lVxbRUFFDOKKGKikIA6R/ll7BuM/W0sK4+vBMBT40mpqZR1g9fhr/NnwcEFHEy6RrQwjgApkgZZ10j2DwdRRBZERAFkxeJT7+jY7NhKWSakcNV3EhuHbaRD3Q62z17+/DTHk4u4UcYzSznA3Cej6R/Z39ltUCWOpR+j3aft2DdqH13qO5pauuBCTaAoCulF6XbKV3HX4ziXfc7WWhnuH24JPIJjaVnbEoSE+4f/4+16siKTWpjqtBKSnJeMWbZwA91UbkQERNiR0t3M0Xzxu658HJeHxt+FK9Bw4V+FG51JrT/Zjov8qhY/1WQ0ba1VMpWlaO0/VzgvziVKfgWr6pR1P0tgI1b6b4s03p0KNqyLU1EQOT3+NDG1Ym57vIyiDKKWRDGm7Rg+6ldzjkd1SMlPYfbu2aw5uYYgzyDe6PoGz7Z91qHV6K/Lf9Hzi5582PdDQjxDePnnxcQYFwJi+bWqMB5UFFi2+Qpn00ocjicKOJgTZpZk0m1NN0ySiX2j9lUZINyIc1nnmLh5ItsvbSfEM4RQ71Au51+29QaHeIZYWq7KW69iQ2I5nHaYOXvncCbrDHc3upu3ur1Fz4Y9bcHflC8SOZyUjyOPBE6onqVQqJAl9VFiiZBewAcLKdcZKfxWoKBwXnqWTuZ55Lk5BpLWisrk/fDun1D/LQ/qhVjIlpEBkWxO2kzc9Ti7fTw0HrQs+86pqaWRPJuqWuVKR5xqPJ3qdUbJvZvCInci8q4y6sBa7r5/P4OiBvHr8EptO+vXE//SbNa+tIyLJnfCQzxIMC1mU9pSAAZGDWR26Gxe2V5mYUuJKhTFwnHxVvQUeV7hlPEj8oVTnB1/lpigGLrN/Ba1sZFdlaHa62p1Fy8PSCT3Y3z67N22ewMsajlFxiI2PrqRgY0HkpCZwMKDC1kbtxZREHlEPRSvi53J1NUlXC4gMSiSAlNNhSNkTnj2w2A2sPqB1QxvMRyoWj3PQCbjH8nn8djHazS+FQsPLuT17a9T8HoBbmpHQ1EXXPg7MJgNnM0+axeAnLp2yuZT4anxpHlwc7v2qxYhLez4fv8kzLKZlPwUp5WQy/mXaWb6yOWhcQfhCjRc+FfhwTnHKSirXqXI0gYlcUGcXx4QCE4Dhxv3sfe3qNobo4RLeBLmNEt83m2KLQPro8TSXJrr4HR8u7Ae465YPcse+fvtDu/ufpd3/nqH0+NP11iOtiZIzk1m1u5ZfBX3FXW86/BmtzcZ1XoUWpWWYmMxLZe3JNQrlGHNh/HilheRFZlgsQNdvaaRV6gjVzrDZXEVbcNrMaLFCAY3GcyV6yLLtlwhKaMUgMjaHowf0MAuyCg0FNLri16kFaaxb9Q+IgIibjrXnNIcZu2exSdHPiHUK5T37nmPx1o8hiiIKIpCSkGKxWgw4wTHrx3nePpxrpVcs+0f4B5An/A+DGo8iNa1WxNdKxq1qKbUVMqob98h4/wDN1QqFM6XKxDdiM6qVWgNTavMfFc24qsOlrvfyBXVqwy9MJwj4e0d7tUC8SgnxRcYm1qb186HsOG9kSTlJpGUl8SFnAukFKQ4HTtWWoi/4rxCYuVqeBFBgK+RE4b5ZJgPolFpEBAsz4UCba/BpVoainUC8WPjiQqMQhAE4i8XMvnT07YgQhAUJEXipGochUIcO+SRbE1qz9GG7ezaoQRFon2kHxMf9qb+gvqIgsjZCWdpHNiYPjN3YjY5cpicvQsc/lauGFXCJRpEHiEu/xeS8pMAS+CZr89n84jN9GrUC7AEucuPLmfpkaVcL7nOQM/WTN6cx9bgSRyL6IBcWQGrCkK6oijs0XRBq9aiN+uZ2nUqs++ezdQvLzjxX5HIF47w9ACFFzu96PT7qgpDvh9CVmkWfz311y3t54ILfwfXi687VD/OZJ2xyYY38G3gwP2IDIi8qSnsnYTBbODR+XEUlDgujV0eGrcHV6Dhwr8CRsnIkbQjvPWpmpsRhyUMnFJNoFCIt/PFENA4VDigCuOtaqsezsnglfvu3VXulEll+CixtJaWU5Gtvz1UDoRUooqFd6CEW2YqI+aTGFrXbs3GYY4L37+LxOxEZu6eyTfx39DAtwFvd3+bPeevcvJMIL5CNHnyWVJUq2lSz52tj2+1aafn6/PZcHYD6+LXsfPSTrQqLYMaD2JEixEMiBrgNAOrN+u5d929nMg4wV9P/UXL2i2rnZvBbODjwx8ze89sJFliatepTOo0yUbEdTb+mhNr+GDfB6QUpNClXhda1W5FZmkmxzOO23wqdGodDX0bcjHvIkbZiI8SSyN5NB6KlTj9mV0lw4o2tdvglvqO02qBhAkRERTRcgcpMog3D5xB4gm3BL4wNEeFiFLJfThJ9yoTOvVm1s6Z1HcL4vOnNtpaaEySCd1sHTIW53Yrn0VWZHyVlrSUljpULk6qxtrOy9fNl36R/ZjXex791/UnMScRf50/i+5dxFMbn6LtFYlL/pDpafnpCXAPoGPdjrhnTiAvtxaK3bMo4e6eTUDKRYy6CAo8fDE5+f5reWto22UrU3dMJcgjCJ1ax95Re5n65QXSMj3snnlBkZAFCyensqJc9dfS4q2iV53DIFsSCfW865FvyGf7yO10rNfRtr3BbOCbhG9YcHABcdfjaKPph2/pdATFEkCJ5Y1UDsGGouBhKCL4Qh8+b1XhxXF/9P1MbbeCN79KsVMekhWZ46oxNK3nyZ5Re2q8GFMUhdof1mZ069G8e8+7NdrHBRf+KZgkE4k5iQ7cj/SidMDyTm0W1MwhALHKq/8TcHlo3Fm4Ag0X/mNQmXzVMFhH66Z5XNLvZFfKLvZd2UeZuYy7zFtR41vNoqDCfO9GhMoP0Vi2VAKq41ZYxrn5wsNZVveq1ww7KT6A1ubPbsl342ZzuZMvvG/iv2H4huHseGIHdze6+2+P5wy/nIzj461nKCn2R4MflaVdRUFg0aimtGjoXJ4zrTCNbxO+ZV38Ok5cO4Gfzo8hTYYwInYE3cO6IwoiZtnMkO+HsC15G9tGbqNrg65VzkVRFNafWc/r21/nSsEVxrQdw4yeM2wOzTeixFjCymMrmbd/HtdLrvNos0d5o9sbdr4D8SlFrPkzhQsZReTJZ4k3L7JxaWqC9nXacyz9GH3dfkZfEoSzViuo5Mtg+Z+b3k8KCvVqyfyaN5bHU8eQGdmJ2kEqvrz6BIVCPKEaf1atyWPWiy05nBvPq11e5Z2e75Ccl0yzpc3wUHsgKRIGyYCPmw+FhkJ83XxR9GHECONRmetWGzxpRA0N/RqSU5ZDblkuOrWOx5o/xh9/reHoSgh9GVrXacP90fdzMO0ghYkT0SpOCPeKgqjINrK1pahj/zy0jfBhXfY9XCu+Rvz4eAZ+PRCtSstLrRbz9daKli5Rlizu3bnzyQ0ahBdRiGhvfi0ViXAxlS0+L5BRqaIV5htGoaGQXU/tshnvVeyjsPPyThYcXMDuxCs0VsYQYAynydXzRJsL+D6qn+2btco1j83bwaOfvMm2KJFnBsmk+lqIrNGB0SzosYHtR5VK5NRQ7v2xKelF6fRq1IvvhnxXrWCBFRdyLtD448a3JXHtggv/V8guzSb+erxd9eN01mkbwbuOdx0H7kd0YPQdUZdyeWjcWbgCDRf+I3DiUi6vrLmArChQKfN6TjsZf/8CSk2lpBWmESI/UGWw4Cy7WhnO1H2ckzKrb5+SKEaFR/nnFSoyJ1TPOT1uZ/OvTjPVlLNLbgd3qoSrKApdVneh1FTK8THHnapv/B3c+ML+O0HTmawzrItbx9cJX3M5/zL1feozrNkwEnMT2XRhEz8P+5kBUQOq3P/A1QO8vO1lDqQeYFDjQcztPZcmQU2cbltoKGTpkaV8dOAjcstyGdlyJFO7TqVxYGOn5ycrCopScQ+e0b5IjnwMnUpHmVRW5Zys5m0tglsQmj+bwiLHNruq3MJrEriKosyfYmcKVwXh3aQVe1e+RbcvetAqpBWnrp3Ewyzw01NbOHbtONN2TqNxYGNGxo7k9R2v46P1odRciiRLhHqHkl6UTqB7IDllOTSp1YSz2WedHlOr0qIoCvP6zONS/iUu5Fxgz5U9FBmLbNss/Q1+joEdESJjO44nKiCKE8dbczldw81U4qw/WYJQoRI2epDEc7+PpbX2ZYLULQgJUPg9+2U8fbK4mqmyVTVNUjKffvUZja/FU/dlyHeHLuYtNWtvVBQ0shlPXQ5/ym/bgsk6XnWQFIk9T++psgXxfM55Fh1cxOenPkeSzIzIqEW7Mx3Z2n48RTpvNHIJ55UlGIUtrKw/nv6zvqE0L5NJvSU+awMqUYWPmw8bh22ke1h327h9vuqDSTJxOus0nhpPNjy6gTahbao9jdUnVjP6l9HkTcmrsQOzCy78J8Asm0nKTXKoflwpuAJYkhtNg5raqh7WCkh1prFVweWhcefgCjRc+P8CayvUrsu72JWyi+yk+/GV2zkEASbySVC9ZpchDpUfopH8HBp8MFOKgUw0eFeZXdWIGtSimlb676tY8N/I0VAIqL8XTVFPMvMryObWRc9V4StAoJ4yDAE1CmZShW+5qPrYYVwPtQcR+jlO5Eutx7t13OkS7qHUQ3T6rBOf3vcpo9uMviNjWlETZ3ZPdzO/TO1UYxUSRVHYf3U/a+PW8vmpz9Gb9dTzqceE9hMY3mI4DXwb2G1/Me8iU3dM5fvT39Oqdivm95nPPeH3OB07tyyXxYcWs+jQIgvPotUopnSdQkO/hk63f2lNAieBR6ULAAAgAElEQVQuFmO/OLZUtxK1r2GUjVWeR5BHEIWGQkyyCVmR6Wr+EzU190SpCQRB4phHfwra/gB9+/Lh7IG8zZ9kvZrFyLEh/NSgBFEUWXXfKtrVaccTG58g7nocsiKjETW23umYwBjO5ZwjxDOE6yXXaRXSipPXTzo/ZvmzkjAugWbBzSzXRFF4e+fbvLvnXdSCmrp5ErN2KDwxGOp71+daybVK0rkqW/Wm/CQcjiFhQBGK0XkW0L5ZAXtS9iBeG49KUKEoFfKviW6TSTPvt9t3xp/w9m54+kH4tjm0Y8tNfUzsgj1FQUAmnrFkayzvJXe1O746Xw6NPuRw/1VGblkuK4+t5OPDH5NWlEafwlpM/iWbfuYwUgd2Y0zZ92xtYOQp984sSGyE3+qv2RYOTz8AGb4CoiCyfNBy23M67IdhZJVmseaBNTz83cOczjrNykErGdlyZJVzGPXzKI5nHOfkWOffnwsu/NuQr893qH7EZ8ZTarJw+oI9gx2qH01qNalWCMElb3vn4Ao0XPg/wY2BhbUVysfNh+5h3TElv4bB4PjQW4ndVkJoTWDpi38GTyIoUpLI0n5DLieINs6t1q9AQcFNY2bigz4sPvUy2y9up5E0gfqKRdHF3tmZSn+rMNQ7r3qfQiEOHyWWSMagkxqiqPPRmBtVtG+UZ2EnDgxj0a8ptxxsqMQ7X8IdsWEEOy7u4MLEC39L97zyy7lRiDunruRgNFZXypbJ4RBi3TXM7DWT+xrfV2PJ3vf3vs/UHVMZ03YMhYZCfj73M2XmMro16MaIFiPoE96HpUeXsuTwEoI8gnj37nd5PPZxp1WbzJJMFhxYwCdHPsEsm3mu7XO80uUVOz+DyucW5KMlT59HRo7K6f1Uma9zI0RBpFlQM9w17qTkp7B95Ha6f96d2OJNVOYNVIeakJkVFDTu6WT4vU3C+AR4/XWGXppLxl2x7BnwA3LjKJ5ffC/LcjYDMLXrVKb1mEar5a1IzEm0G7tD3Q4cTjtMXe+6FBUG0lIzGbO+ls2wz9mzue7hdTbVJCus2XRBEFjwu8zU3tC+QWdKRTOJaQZaS8sRlHI52nIyttV/wnZeioReG48heBmFxkLSCtNobPjA4dkWBIV6IWV8ld3Lbg6eBkhZAC/3g/j6sXj6zkUUqq4kOW2jVBQ8DMUUassoECuugafGkx+H/ki/yH5UB5NkYv2Z9Sw4uICj6UeJMXgz6Y8iHr8WzLftdLwUcwUvUcenDSfSZ8ZXGHKuM7mvwqo2gAAT2k9gYf+FTNoyiT1X9nBq7CnKTGWM+30cX5z6ghc7vsi8PvOctpFELYmif0R/lgxYUu0cXXDh3wxZkbmYd9Gh+mHl06kEFTG1Yhy4H3W865Bwpdhp65RL3vb24Ao0XPhHUF1g0a1BN3o27ElsSCz7r+7np3M/QfooBzUbKyzeFQmcUFefbXdTuREktie87AMnZNVxALSWlpUTuZ1nz2VVPrsFyyKhkV8j6hVPQ9RHO1RaquJ1AOiFFHRKfcC+tUpwSyNQG05EiKetDBufUsSkz85Wm/GvDLUIC/6BPtErBVeI/jiayZ0mM+eeObc1hjNXWUvnuez0e7W+vJ8eaGTV2bfZdXkX7eq0Y2bPmfSP7F9twLHy2Eqe++05pveYzoyeMwAoMhTx07mf+CruK3Zc3IGCgkpQMbjJYJYOXOqUPJhWmMb8/fNZcWwFKlHFhPYTmNxpskOp3fHc7CtdN7beVcUTEgWRqIAomgU1Y1PSJnY+sZOxv4/l0jWl3EX89nk8VlQ2gDOqL+JGMB0a1ufxrsEM+rQ2j1zUMb/9W/DmmyjZ2cw6vtDmmTG02VAOph60tSJYcU/tUWSmxuInNEVUvMtrcfbPV+Vgw0vjxbj245jbZ67DXLcmbWXQN4Ook2umTU4sKfVHoRMjUClaNIo3SuVAUJFBEBGQLWR2RQIBzmhfIDiwjEv5lyg1lVbZnlhVwDfiJJR5xpLTcBmiIqBUItdXXEvrN3wzKVwJRVCIU02gSIxHUiR6h/dmdq/ZdiRx50Mo7Lu6jwUHF7Dx3Eb8zRqeO2DkwcvuvH2Xga2NJJ706MJHFyII+PQrtjeCRx+BXA+Ll07nep35Ov5rUl9KtY239MhSJm2dxF317+L7R7634x9dK75G6IehfDv4Wx5t/mi1c3PBhf9GFBmKSMhMsFU+rP9YWzsD3AOINS+Esihu9K1xkcFvD65Aw4U7gqoCi1B1Z5qonkdjrk9YkJYmjdPZlv4p+6/up8BQYNu/wrRMVeUivrJhHVhaqMLlsajxxkQhV1WfESL0wtPcyoGojfsFBva4zoZD6Yh5/ct7sgEnC0QldBVBnkHsvLyzGn5F1bASO+35FzLtI/2Y+6Sj98WULxI5klRQo8rG5PvDuL/9rfeb1gTTdk5j7r65nHv+XJWtQtWhKod2BVAJYrlDtGX55uuhJrqOp13f65+X/uTtnW+z/+p+OtfrzMxeM7mn0T0OAccPZ35g6PqhjG8/niX3LrF9rigKG89t5LXtr5Gcm0ynep0oM5Vx8vpJvLXeDG46mBEtRtCrYS+uFl7lg70fsPrkajw0HrzY8UVe6PgCAe4Bt3BuFajcelcVT0glqKjvW5/BTQbz6f4/eCBoEVezzRSYU/CmSZX3fk1hopBCTlNLiiJflVE+ZkUVDSxO0qt+u8AjGf4QEwM7dgCw/Ohyxv0+DpWgshltWVGhnGYNnGsWWDUObEzi8/aVEStOZpyk96ejaWFcjCJY5liV5KuPaOaa8Qg6VRR5wgWEgB1c1O9kePPhLBu4jPoL6xOY9xqBdMRZC5uzgA+q52xV5aVTFRRFIlc4TLr4Ono3yzXUm/X0i+jHtB7TamSKdynvEosPLeaz46vQG0sZmiATkSeysIOMl6hjZcQker39GXJ2FiMehl9iLApfZeYy9G/q7Z6TPSl7GLJ+CFqVlg1DN9icw3848wOPrH+E1MmpdtU6F1z4X4ZVytxa/di1qwuy2TGZ55K3vT24Ag0Xbgs1qViEufVg+c8KsiJTmeBdVRtUdb4TlQ3r3NXuhAuPUatsDGDfvmSmCA2OCkZGIZsEcSptpBVYlrsC9llpy+LKI+xLNqctR0BAq9LS3+N7CvKCqaoCciuo6iXlmC13hE4jMu7e+v9YkAFQbCym8ZLGdAvrxndDvrvl/asyFXPTmmnZILBGpDpFUdiWvI23d77NkfQjdA/rzqxes2wE2D+S/2Dg1wMZ0nQIax9ea+N1HEk7wsvbXmbPlT30j+zP3N5zaRHSArAQcb+O/5p18etIyk3CXe1uU1J6tcurPN/heXzcnKte3ezc7OZu85Nw5AmpRTVBHkFM6TqFaZtX01ZeUU5BEG+J3G05jmMga/VUOKV6kYFXdFyt8z7+VTiCR3is5tu34vhjQDSnXh2Jn84PP50fCZkJzNs/zxZouKncMEgGpwvyG3Fj5cC6b4+wHsSGxKISVKhEFWpRjUpQcaXgCnEn2znx5LhBLECWQH+Yk+6vcPzFM9z7/QOcyz7Hwv4LeXHLi8zvO59Xtr1CjGd/6ha949DqMO2xEL5Jep/lx5Y7zLmr8VfUomMS4VbkrivDpGSyT3MfPa+5c7yBmvq+DZAVmbPZZ+kd3ptp3afRLazbTccp0Bew+sRqFu9fwOXiq3RMA6MAJ+rAE24d+OBiJLU//Zq1LeCph0ASYcPQDTzU5CG7cVILUxn8/WBOXTvF8kHLearVU0zaMolfEn/h4osXbzoPF1z4X4VL3vbOQjVjxowZ/78n4cJ/PoySkUNph/gq7itm7Z7FhE0TWHFsBUfSjxDhH8HTrZ9mzj1zmNlzJoWGQtafWc/OwwG4KaG2hYSlZUnBTQkmS9zqcAyDcJ0CIY5Q5T6HH3YBAa3oyXX1D+glPTHGDxBws21n/beIqvw49ouwAP8i2vqMJL+YSp9Z95XQel3hmPQ6VwtTiZbfoIX6NTr4D+ecfgM6Y0us3hm369YsCtCsvjd9WjnKT4b4udE63IfsQhMGk0yQjxazJCPJCj7uasYPqM+s4Y2Jrut1y8e9FWhVWgI9ApmzZw59wvtUS2p1hmNJhWTkGW6ozMi0aeTP3CdjGHpXKH1a1SLYt2oCniAIRAZEMrrNaNrVacfWpK28t/c99l7Zi9Fs5Omfn6ZXo158O+Rb1KKalPwUJmyawAtbXsDXzZevHvqK6T2m27U+BXoEUsujFhfzLnIm6wxalRatSkuhwdLfX2Yuo55PPfzdqyYEOz+3ClTOnhuETLvPNKIGPzc/FvVfxIRNE+juvhCzwZfKyma3EmSYKUaFuvxerAjgU7TzMIvZ9FFHk6Uaghr7YE5ARIWONsW76L/vGpPb57DBcJKfz//CD2d/YO/VvXYtWNaAI0Ke4DDWjedeQAKZ4haHuaYUpJBRlEFqUSqJ2YkkZCaw/+p+DqYdJNzJuDYSeLmilILMcd0svu09m7ZNe2OSTWxJ3sKAyAGYZBM/Hj9GhOk16jOUyBBfavloQbE8a1MeDqd9RDAlxhJ+OPuDw7z9lI7olDoIlUUIFMWhglYTl3ZBUDAKiWTKv5PsbWbiAYltAXm0qduOmb1msiVpCx/s+4DdKbsJ8wurtmKoU+voXL8zz3eaSMuQlhwyXeKIkE5QMZyU0/jc7QzRj46n99YLxF7W82Mz+O70d2hEDd0adLPN38fNhydinyCtMI3pu6aTVZLFvqv7aF+3PQ/FPFTl8V1w4X8dtf3d2Hoy21aBtyYupjwcXu3vlwvO4apouOAURsnI0fSjlorF5V3su7oPtTGSCOVZ/MQYavmZeaRrIA+2asWOSztYdXwVu1N2k1WaZRvjVvumrXDmO6EgUao+RZbfB1zOv0wP8/4qMqxKOWHb0uYhCJaFw6JnmvDS6nOYJMfbXcbAXk1PfOTy9i1BsJMqTRW+IVS5Dw2+1FyOtkK69t+kwS0rMu0/bY9KUHFw9MEaK0GBMylbCZWgYtHo2z/vyu1QSblJ+On8+GXYL8SGxPLe3vdYeHAh/u7+zOo1i6dbPe1A9D6Wfox397zLT+d+ooFvA16/63Webv00alHN9ovbWRe/jp/O/kSJqYTO9TozosUIhjYbSpBn0E3O7eayyhWiBJFEh/qwI/8NGviFoc4YB8rNzdWcy9oqXPR4FZ1Kh65oEN5CFEXKBVJUn4EuBbNs5vHCRhzQPOukCiGj9rrEH9ePwHffgZcXeHigHDiAXqWQr89n5l8zWXlsJXL5MwRVtxjVRFLaihDPEEK9QsnT55FSkIKgwLCMhVwL6oBiR/RWyj1CQJAl8sWz9Ez4hI9aDIKZMykyFOH7vi/Ng5szo+MaFv1ksGsPc0bYPJx2mI6rHLkSPkosrc3LUCkCsqhCUSRsRpyC/XVXMCNg+c6qktWOU40nXziFNVZ7NB5+bCFwf4M+fPvkb/x2/jdm7p7JyWsn6R7Wnek9ptOrYa8aiR8cTjvMgr/e5/vzPyHKYFbBw1m1eLIokgfCD9LnAvwRBf0j+/PzsJ/RqrR2+688tpLnNz2PSTYxr/c8XrnrlZse0wUX/pfhkre9c3AFGi4AzgOLUlMp3lpvuod1J9b3fg4dagVUJvpaflzzBOcyia3lJfjIbR0WKIWc5oT6GbttrT/eXhovGnv2wTv71fK/W8nUlpar9nU6UNs4nLTrng7ZZctyIJ+6jXfgVzqY3AKt3Qui74wjTgMNCQP1Wy/HK+sFzqdafDwqj1lZY+pmRHCBCmnN6LqeZBUY/3Uvqd0pu+nxeQ++eugrHo99/Jb2jU8p4qNNJ0lML6BRiDtT7+/wt887JT+Fu1bfhUpUoRW1JOUloVVZTNam3DWFV+96FS+tfbXnwNUDzN4zm00XNhEZEMnUrlN5PPZxhwUYWEz5fkn8hXXx69iabKm09Y3oy4gWI3gg+gE8tRbJ2Y//+pXVf17BUwlHVuVRZi5DR4hNVrlISLDdBxZewzJAwE4QAKH8Drq52Z41myZUavNLUs0lqmEue6/sxayY8dR4UmYqQ0bGX+ePJEsMKAxhk5t7OeepYhEuKWY6djjJB1M+hi5d4PnnoWNHGDsWFi0C4MFvH+TX87/iofag2FRc6VwqczQsC3IjeRQLiVwWnRv2uavduTt0FHnprVEMIZjVqSQqyyiV41j3k8CWHndz0X9WhcoUlkBDECqqGhbyt0KGfgK6Rmb8PAI4kXGCImMR3dSfI+obc6PSVON6Aq89Ugs/nR8+bj7kleURPN+S8BAR7YIof3MsT10cxdk6EWS4X8LP3ARB5dhGZ6YUFe6279D6fZgpopDTZLt9S5GYYLtmlfIMAGhlgYb+4TQOboKX1osj6UdIzkumS70uzOg5g97hvWsUcFwtuMqSLTP5JOEzSlUKbhIY1PDdRg25KhMTBkKwdwinxsYR7GWf5Fl4cCGTt04m2DOYn4f9TKd6nW56PBdccMGFvwtXoPE/ipsFFj0b9qRnw560qt0KAYHxq45x/qqFa2HFjWRLrUqLu9qdIkMRMrJTgrfVVfuEaixFQjwKCt4abxrXasz14uukFqUS4B5AI10vlNxeuElh4HaNHq3M9A3vy7vfZVej/APP9qvF8K4RdudqzUwcu1iAJN9okqcgCgIqtRGDSUHk75RFFVSiQNtw339VYOEMQ74fwsHUgyQ+n2hbaNcEuWW5NF/anNahrfntsd9qLFVbFTJLMum6uitm2cz0HtN5b+97JOYk4q31pshYxMNNHuadnu/QPLg5iqKw6/IuZu+ZzZ+X/qRpUFPe7PYmQ5sNRS3evIIAkFWSxfoz61kbt5YDqQfw1Hhyf/T9FBuL+fX8r/QJ78PBqwcpMlkUStSiGrNststyA7SUF+PnxBcGas7FAAWDeJU6nhEUc4FDpXPIF04xu9ds3tr5luX4ghpBEDDJJmq518Ikm+hU4M1WXSo+Sixh0igC1U1pUsefdWmj2Nx7Kl26DYcffoDBg2HJEnjhBfjlF7jvPhotbMTlgsu2sc2KGajsXeOLiQLaNctlceJwGxfDGe4KGoEm43nEciEABQkUhXHn5vLoh4sgLIzxy09zJrW42vtEQcK74DBhdX4kv3EDTl47yems0zWumHppvCoCgHJYr40XEdTOTeaN31dz35A4QjwW4S+3B8Ge26IgI6C+4btTMJLPfnV/AKIDo/lm8DdsSdrCG3++Yd2EDlkaDgebiMiBHA/I1+FQGPXUeNKhbgfuj76fDnU60CSoSbWtfMWGIhZ9MpI5OT9TqgVvA7x30JumyUUMfgxKdSp2PP0Xd4XdZdtn2s5pfHLkE2ICYziacZSP7/2YZ9s+W+UxXHDBBRfuBFyBxv8IqgssuoV1o2eYJbBoHdoatagmtTCVbcnb2JK0hS1JW2he+rXTH3WjkE28bpht4XUjWptX4UNzhxYQBROKLok89x9IKPodL60XMbViyCnN4VL+JYI8ghjeYjhPtHyC1rVbIwhCFco/5RlkdzXP9KnnQJaukI+1EtKdOYHby1r+HeUfjUpg24z2t73/fwou5l2kySdNeKPrG0zvOb3G+438aSS/nf+NhHEJf1vVptBQSM/Pe3K14CqRAZEcTDvIPY3uYX7f+TQPbs5Xp75i5u6Zlla6sB4UGYs4nnGc1rVb81b3t3gw5sFbav26ERfzLrL40GKWH12OQTI4LKq1otbBkE9AQKfWVWsOWVMoKGjURrZN60qtubXI1ecCkDghkehPKgiJOpUOvaQnxDMEg2Sgcb6Kw7oc2+f1feozo+cMRv8ymtLABegmvQzZ2eDnZ6kcPPAA7N+P/tghPD6PsguYVIIKb7kFsdIntuqIgoQoiBwTxyBpkykxlTidfx/dNxiLw+zbtxSJmPoqlj3XAagZyR4swUOXcyOY+tl53N298ZrjRXPzAoeWLlGAqHowtE8x+fp82z9z9swhp8xyTSoSIOXno0ioFIXOx8axpBO0kiyStwgqBFlCEi1cGMGpIITMX+outmvmpnJjRs8ZZJdm8+GBD21bPV53AGvTNjFjJ4wrjuHLsZ350/0aF3IukFqYil7SO4zspnIjyDOIRn6NaB7cnI71OtK5bmfCA8JtgbP5Sgq6zxpa0jciBBXD0yfh9yg4XwumdHuDWX3eBeDuL+7GV+fLd0O+Y9KWSSw7uowxbcaw+N7F1RqXueCCCy78HdQszefCvw43Cyxm9JhhF1iUmcrYnbKb1/54jd/O/8aF3AtARbWgmGS0BDpmaBUVgrERVFKREhDwVloQJo3Ch6YOC3fLD7wWRR9NoP5N2gW5cyzvR+Kux3F/9P0s6r+I/pH9HcymLl4vdaLKJFSp5pRVksVbP+5HUoKpIKRbG1Ls51PVZ84glnd2/DdH6OH+4bzY8UXm7p/L6DajaxQ0bDy3kbVxa/nywS//dpChN+vpt7YfCZkJmGQTQYYgfnvsNwZEDbBlv59s9SRebl68su0V/kr5C4BeDXuxYtAKogKj/tbx41OKmPtbChev96G1phmeoQfZkbHabhtnQYa72h29WU9UqDep16pWEasJBAQkyY34zHhy9bmIgki4f7gtG2517laJKpCw/NsM+YLBtr8gCKQVpXHg6gGaBTdDt20XdO5sCTLA0rK0ejW0bMmmKVNpHrUALyJsRnwlwmkihTG2RbllXBWKIhMmjSJV9U6VgYaxzP59YdlZRXxaNonZiUTXiibcSyarULIz5LsRogC1PYysiCrk00WNeKX7VLy13qQoqwmUOiIIis0NXBDg+f6OnKAdF3ewNXkrkiLRUBplfz6CChkJfcAo3IsnkRL4Bj6lDxEqRdPyUiI+WZ/xR2drG9yNCRMJD42H7RoYJANTd0x1OIe1aZvw1nozo1cR0oGLzHgukXb9m/DXMwNwCw7FXe1OQmYCm5I2kV6UjqfGE3eNOzmlOaQWprLnyh6WHV1m+169tF7U9qpNhH8E7jov7hYjyEyO52BdmXldwMMEDfJh9r45/HX4FB3rzsOQ/DKaWioSUw0sHbiUtqFtGb9pPHGZcfw49EfqeNep8juwwlodTkwvKX8BKkTX9XK5JrvgggtVwlXR+C/BrVYsFEUhITOBrclb2ZK0hd0puy2LFic6+kHuQQSaBhCiH4v1x/ZGMmicagL55VwNa0+35UfZojRVFYlaQUJxP8/wvnqGNhtabbuAs4qGIICPTo1GLRAe4sHjPetQJ8jI/P3zWXJ4CS3136FVgqoc0xk0KstcnfE5wOLMXS9AR0q2YxaySV1Plo5tdkvH+09Fgb6AqCVR3Bt1L188+EW122aXZtNsaTM61evExkc3/q2WqbyyPDqt6sT53PP4ufnxXu/3GN1mtC2LK8kS68+s590975KQmUDPhj15rYvFO2PO3jlklmTyZMsnebvH27flB3I0OYtXP08uv8ftTems7X43wlrJKDOX8eWDX9LK70EmfXYWSampSpnjM6Kg4OeuoWvPP5myfQoeGg8GNxnMI00fYdA3g2wVFmsbWQOfBuQb8vEo0nNNa0RAwE3lhl7S0zigMT3rdGHFUz/A1Knwxht2x4rfuJsXjqhRRJXt+VaQOKkaR0tlLirZ8bk0kMllvzFkFGcA9u1IxSTjpnjhSVO7IEIUoEwbz1XPGex9ag+FT07nhdjnAJVTDw1ra+Oi0U0IeW4Qc4LO8UlUHibZUgV5ovE0/Moe5silq0SFevPqoDZOWxYnbprIquOr0Et6uki/o1Uc1d8CijLpevh+Xu5naYkzySb+2lKH7gfT6TNlO2aN47gyZvwjvuf9gWNp+2lbSk2ltuvgJ0ZjUqdyRlpik/MO9wvnYv5Fhl8LYsXnOZhEmN1Px+LYMsxCFe8bQYW31hs3tRuyImOSTRjMBoyS0eFdLZQnQERALYFOjKWVvAxBERAEFYJg+Q6shPlDqYcY/P1gJEXiw24/cupshQx1lxg/9p/LJzGtGBAwywolBslhfgIgii7XZBdccME5XBWNfylMkqkisEjZxd4re6utWEB5//np9WxN3sqmC5vIKs2y404ICEiKhJvKjVCvUIqMReSU5WAoDSVYGoMziVdLVlCivvQU3gEfMrz5cEquPMqZFFOlgKBqErWAiiB1LM+1u7kJzuM963DsYgEilkyxlTNaWGZGAXKLCzicnMc57SSKxARe6PgCZVcaEHeprMaZZVGA1o18eLxnHafeFk3qeTL+3gYoCg6O3qIA4wfcmiTsfzJ8db7M7DWTcb+PY2KHibSr067KbSdunohZNrNi0IrbDjLMsplVx1cxeetk9GY9Q5sO5dP7P7V5XJgkE1/Hf82cvXM4n3OefhH9WDZwGV0bdLWN8UybZ1hxbAXv7X2PL+O+5JnWz/Bmtzep71u/RnM4nXmaF745gJZmdhl8kGgkj+aU6gUHPgZYnp8ycxmxPvexdU9dfiw+R5nqAhpzQwQ0To5kv7ezIEMARvWpy5KzWxEFkRKjRRnrQu4FBASMkqWiYm0PU4kqZFmmSCXZxlCLapDgfO55PtTeB8XF0L+/wwyWXQsEsfiG6p6KFtKHqDSlKLKjSV8xybY5hMoP0Vh+jYp6ZSCUn4P16bdWHN4bcg/PbHuPJRM7Mv/XTMzNe6EWm1R5ZRqGaCzBw0tvsaBvX7SrhjEv9TsUFL5OmsNn90fwc+E0OoY/RPMGPZyO08i/ESbZhCiIGMTLaCT/G6qzEiblOmkNF9DFFIHklsEZ5WOGDLjIH5egTUoChyM6wg2teAIq8pKHMvnnRZwYc4K7lo2gqXGR5SrIKkSjL61ZTiFn0RFMSXYyD0Wm8A0Luf+PZTz62UE+/Pxz5l9qRdlHH5Dbtqmt3WvPlT2sjVvLmawzuKnd6FC3A8EewRQYC2zb5JXlcTn/si3gUMq/IhkwqiHaXF69KQ/2FAXMisSTq9ZjpghvYmjIZwhoWfmrCshHQCCrKJ9DSfncaFzo7D2ulI+7dle6y2PABRdccEerQ+gAACAASURBVICrovEvwc0CixsrFmCpchy4eoBtydvYnLSZE9dOABUtF5UzkGZ1KsVev3DFsNuhFaImhl3+XiIbplgWojXtu4ZbN8GpLDlnMiu2IMMKBQk//yw+fa4zQZ5BDrKkYqXfyBvbn6zZPqsM7c3k7f4X5O/MspnWK1rjp/Nj91O7nQYRVrfhrx/+msdaPHbLx1AUhS1JW3hl2yucyT4DwKL+i3ih4wsAGMwGPj/5Oe/ve5/L+Zd5IPoB3uz2ps3t2BlKjCV8cuQT5u6bS5GxiDFtxvBGtzcI9Q6tcg5rTq7h9d+W09S4wGlwYCCTw5oH7bLIalGNTq2j2FjM/Q1eoODiMMBenYnyvzg9LgpebirefyKa5IxS1uxIo6DMhIkCJt7bmPvbh+D7vq8tg39q7ClWHF3BymMrbURtP50f+fp8Iv0jSS1KxWDS2xaclXkl17OfJvj73yEjw5KCroSqFNkc1a8qCzo8R6EQX17BXFl+lpUfMAmj5hL+njrc5UZ2z8iVSyfxiG3LiUhP5vb7GrOmaj6LUchm1/Q+aEQ1cpvWRPY/z1V3E/7u/jY5bV83X4I8gjg/8bzTe3TD2Q0M/n4wAgIBQhuamRbbcU4s81UqpG7L/3ZKNZ7BJ07SXOzJb03eRRIdKy9WUYygyF8I18/mQipUJQJg/W+P0G38kTOTnx79iUF5QTBxIhw5AiNGwAcfQN2K1sO9V/Yy86+Z/HHxD5oGNeXt7m/zSNNHbFLOQ9cPJV+fz8ZhGysCkItnWP/pJA7XXo6b4NyUsPKcnAURt+oZpFEJfPh0jKuq4YILLtjBFWj8h+J2AgtFUUjOS2Zr0la2Jm9lx6UdlJpKUQtqZEVGRi5XgJGpJbSlmWkJULEocubaLQoiXeXNiJJflXO9MVioylUzuq4n59NLHNx7b9dfoqqA5kbOhrOAwJqBs7YFIEB0Hc//ymDh7+KP5D/ou7Yv3w/5nkeaPWL3WWZJJs2WNqN7WHd+eOSHW65mxF2P45Vtr/DHxT9o5NeIS/mXWNx/MRM7TqTUVMqnxz5l3v55pBelM7TZUN7o9gaxIbE1Hr/IUMTiQ4uZf2A+erOe8e3GM6XrFII9g+22Gff7OH6Niy93jnck/VZ23rZCI2rQqXUUGYuY1n0a+ivDHe776gQGrAu5SfeF8UAHi4iBoig0X9ac2JBYvhn8DduSt9FvbT9Uggp3tTv5r+fTf11/tl/cbnuWrYFGTK0YLuRcQFIk3GUVZWJFQCQgIG1ogdCqFXzh2AZXVaBRPikHXwlP7xw2lQ1EI2qIMc4jgE5Oz1FUF2GoP529o/bafzB2LNK6tZzwN/DK0Png7nx/BYUy0qHB+xx69hDbPn2dfukfADCvzzxe/eNVxrUbx5+X/iQxJ5EOdTvwQe8P6Nmwp904JzJO0GZlG9v/ByhtqCs9UdHmRTCehDtUbayqeluSOrOrROJY4/mYNI7EaSNZ7FcPooeyFaGad6X1nADcwz5n57U1bB6xmV5hPWDNGktbW2kpvP02TJoEbhXHOnD1ADN3W8z/YmrF8Fa3t2juM4g3f9hBUZEnncIb2nMlZJkX391KnMHvBhWtvy96UR0mDQrjgY4hN9/QBRdc+J+AK9D4D8GNgcW+K/soMZVUG1iApY/+z0t/2qoWKQUpAAQKbaljGmlH7AzxCCHYOAyMtVEUFRp8HNoHcjlMovY17ml0D+Pbj6dPRB+mrbvsRO3JAmfBgrMqgnUb6wL/TlQBqgpobqVC4kLNMOjrQZzOOs3ZCWfRqXWAZVH8yPpH+CvlL06PP223eL8Z0ovSmbZzGqtPrCYqMIp7Gt3DsqPLmN5jOi93fpllR5fx4YEPySnNYUTsCKZ2nUpMrZjbnn+BvoAFBxew4OACzLKZiR0m8mqXV7laeJWh64eSUZzBgz6/kHbdA0W5MWOtABInKpnSaVVadCodhcZCJneazId9P2TovJM1ruRZIQDtIyvu1yNpR+iwqgObR2ymf2R/Xtn2Cp8c+QQvjRcta7dk+xPbqb+gPqmFqQS6B5JTloOvmy8FhgKaBzUnISsBgADZjVzRUsnQiBrMshnTOwqqdV/DY/ZVp/iUIl7/KpESg1TjxadKVDgijKFIiKeT+RenClsKCv7+mWw3DKfg9YIKBbBDh6BTJ2jThs2lcQwb2pTW0krLkR2qBRYDzt3qLjwd/Q5XL0dRWuyNRrnKwtHDaPdVEBH+Eawfup6Wy1sSHRhNYk4ifSP6MufuObSt0xaw8H4C5gbYxnVXu1NmLgOwVWScBjqqAvYK/ahTCJsmHuSduQfI9e+ALDq+Ny95vEWj0tk3rf5az6tMcwqvsO84nH6Y7SO307FeR8jPhxkz4OOPITwcFi6EAQPs9j2UeohZu2ex5/xVOy6cM8PC+JQiJn92FrNsIdxbKjXiPxZkWLF4tP0cKr/zXcRxF1z434Ir0Pj/hNsNLCRZ4ljGMbYmWUjcB1MPIiOjU+kwSAbLj7vSihY3yFFCRQa1cs/tjfDxUPjp9fZ2sqA3Bg5WboSvh4roOl5Og4X/i7ai6gIaV1XizuJc9jlaLGvB7F6zmdJ1CgDfJXzHsB+HOa10VIUSYwnz989n7v65uKvdmdFzBoHugYzYMIJnWj9DPZ96LDq0iGJjMU+3epopXadYlJbuEHLLcvlw/4csPLgQSZEwy2aaBTXjh6E/8OLy65TpHQ39ZAycVE2wBRk6tQ6tSkuRoYjRbUbbeCnOAt+atJ8I6iKGDEikd3hvFh5cyM+JP3Nl0hVUoorYZbEk5iSiFtW81Okl3ur+Fu7vuqOgEOEXQXJ+so0M3iqkFSevWwQZQhRPrguWFkirwMOZT6DJ2WwIDLQd2/oMSTYPO2fCDU7+pijIgkRJyYvI7o/jI3REqPTOsGbNG0ae4IvL40iamEREQASYzdC+PWRkkKK/TptXvFArTWliWGBZnDupiCkolHARTyz3gYAAioRKVFEavIADOd+S+2ouDRc35LUurxFTK4Y3/3yTxJxEhjYbyqxes2gc2Bjf93wpM5VhUuyDQUtrqGNFRVEU8sRDpLlPJ1+fz4SggdSNGcmWnfURqGixquyMXkfdmUj9/Ju+Z8HSimeoOx2dRsfZ7LPsempXRbUuIcHib7JzJwwaBAsWQGSk3f5jVx4m8QZvI2eJlviUIsZ8+S1qY11KyHCQG7/zUFCpzOi0IsG+WlKuW35/Kr+jXcRxF1z434Er0Pg/QlWBhZfWi24NutkM8tqEtnEwF7N6WmxN3sq25G3k6/NRC2pUogqDZLDrnQ7zDSNSPwepJJwbHa7BuX+EFdVVA/5T+Qj/qfP6b8QLm1/g85Ofc2HiBRQUmi1tRu/w3nw35Lub7ivJEl+c+oK3/nyLnLIcnomZha5oABeuFXOl7DBCwA4u6XdhlIw82+ZZXu3yao0J3LeKfH0+IzeM5LcLv6ESVHioPWjo3xDSn3HIRt9oSumudkej0lBqLGVo86F8+eCXtl75GwNfK0dDLF88OxckkJHdE9kvjcYsmxERaRbcjNe7vk6zoGa0WtHKtuXvw3+noV9Dmi21qJpZKxgeGg9KTaW0C23H0YyjAITiTQZFdpn7L0+FM3JDst3RqwqOwNq/L1WdnVck2l48TL3U1Wzs4cjRUJDQeF5mu2E4PzzyA4ObDobFi+HFF9Grodu0emT7qKlXPA2VPqbaKoCz95egyNStXcbanLuZ2XMm+67uQyWq+H3475hlM1+e+pLpu6aTUZTBqNaj2H91P5klmeSU5ZT76lhQlfEfisJx9bN4emeTUZyBoMCeUXuZv/17PA6FY9BFUKhK5ojPGorF0zbOTH1NN/zKBuMrRmMkEw85Gkeyf8V91bdRX7LKskgvSmf307tpHNjYdnx+/BFefhmuXbP8+403wMsLqHnrKIDf+36MipnJoWPRaPD7xysa1XkTuarOLrjwvwVXoPEP4e8EFqWmUnan7LZxLc5mnwUsDrclphKbmoxZNqNVaelUrxOhXqFcK77GobRDtNavv2WzMFc1wIWbIac0h6glUQxpMoTM0kwOpB7g9PjT1PJwlAqtjO0Xt/PytpeJux7HsObDGBXzDh98n4+sWPwPLBU3hSYt9zC9/5PU9qr9j53D4bTDPPrDo+Tr8/ns/s+IDoym+5ru5OpzbbLMcCNvyZKt9tJ4IYoierOeeyPvZf0j6x28XuJTili6LZFTV64T6GfkvUd6V/CB0ksoKDXbyNWVn7mwEHhv73u8t/c9ogKibD42gI2LcfnFy5y8dpIHv3uQYI9gAj0COZt9Fq1Ki1Ey0qleJw6mHgSgtuBNtlCGTmUhqiPAU0pL1sw4aTffqharEgYQS8mXz/FanwF8+We+Uw6Huz6THbr7aMcWtDhK4JqFHC74PM2YtmOYGT3WkpXX63nutSZ84ZXM/mf289KK7JvyGqqCRgVHhbEE+BfyZMsn+ejgR+S8lmOryOrNepYeWcqcPXPIK8vDXWPxOZEUydZ65lTsQlGISUvgd7/RXPWDYMWDfKmUsOAoTo49ScyiKOZ+ns7DZ2HICDWbIhVUgsrmrRLiGUJWSRZBnkGoi7oSJb+KNdiwfP8WMn1BOR9uZIuRHMk4QomxhL2j9tLAt5J6XWmphSD+wQdQqxbMmwfDhjHly/M1ah3Vm/WEzO5IW3mlpSL9DwcZNYEgQPsIX4c2qviUIpZtvkLStVIAIkM9GNe/gav64YIL/2K4Ao07BJNk4ljGMZuPxd4re2scWCiKQnxmvK1qsfvyboyyEXe1O7IiY5AMqARLGV5WZOr71KdTvU6o/x975x0eRbm28d/MlvSeEFIglRYIoYZeRcqRYgMUERAFQUUQEfXYzpEDCiJVKdKbDSwUkWJBihBCCwECIQkkpIf0vmXm+2Oym7IbUI/nqOfb2+syZHZ23ndmJ7PP/T7Pc9+imst5l7mYcxGVoKKNTxsc1A4YMybiYux01zphAcVR2+RBYcsG2HA3LD+1nBcOvoCMzJdjvuSBNg80uu/l3Mu8dPglvk36ll7NevH+4PfpFtjtD+mtkWWZpaeW8vJ3L9PZrzOfPvwphZWF9NusOIprRA1h7mFk5mvreUGkqjYoykp1JHZ7Ne/F3kf3mntV6qJCX0HXdV1RCSpOTzltsc+dMnAjPhlBbnkuMU/FkF2WzcOfP8zpjNNIsoRRNqIW1QS6BJJWkkYbrzYUVxeTXppuLo3q07wPx9KOAeAjOGO001KmL8Ou2kip2kgbp2CuzLlRbz6NZTT0FFHgvoyrZQfQv6HntW3Jln1aspFS9XnOCs9aDdaV7godelUaDhp7vEpcCU27gpfTEV5u9jXrR6znyU5P0m/BFoTK1r8xAJZrgvZpbH3kbe7/7H4uTb9E2yb1vWxKqksYsm0IpzJOmbeNajWK3dd2WzqFYwRZ5l+fTqMgMI/7B+QgIyNKIIgiL/Way7NdnyV8SRCffSYxOBlGTdBwJFgpUzO5fPu7+JNdlo2zxhmqgxnls5zKcjdCfR0Z18+XV048yuHkw2YVszk95vBFwheoRTXHnjiGr3ODhuobN5SsxldfQZ8+xL+1nBeO6u9aOppWnMbwxV/hLXS36D/6JVf39yYmdT2YAAJa7eWBjp1oqunOW9szLTJ/JiVAG9mwwYa/JmxE4xfAWjNb60D730wsQPG0OJxymIPJBzmYdJCc8hzUohofoSve1WNxJowKIYUb4gYqVQn0bt6bEPcQSqpLOJZ2jJzyHNzs3Gjt3RqDZOBy7mWqjFW09m7NwKZPcDWuHyBYSLqCrZ/Bht+O1KJUQleE4uPoQ9aLWVZVpnLKcnjryFusO7eOEPcQFg5ayINtHjTv+2tKPn4P5FfkM2n3JPYl7uOlni8xf+B8Prv0GRN3T0SSJXydfOnTvA+7EnahFtUYJaO55APA3c4dCQlZlmnv256D4w/ipHWyOtYz3zzDpgubODPljEWweyfklOUQsCSAFcNW8EzXZ5BkCb/FfhRXF+Ph4EHPwJ4MCh3E8p92oy0eVk/kwaQSNyB4AD/e/BFBAjeVI76ezbiWfw2tJGCvl6ly1FL5WqXV/itJMkk9K/0YMhIgoKeI3uHB9GztxvK9NxBkkERVzR5GrtvPIdNw0kqw3kDSVQZBEBAkI5IoE9D6G3Y8Nh+A/qsnQuYzvzmgFQSZ2/Ip/tYvi8U/L2bVfauY2nmqxX4rYlbw4qEXMUhKiZO9yt5MCupKfVeJN7ml2szE42d59weBVs/KpJj6yGXFryTmqRhSClN4/JMx7P4UeqXB0Ikip5oJaEUtlUalXK25W3NuFd9Cq9KiElTETImhXZN2gKJ21ndTXy7lXjKXXS0YuICVp1fi7ejNkUlH8HTwxAKHDyv9G4mJxD/3BtsjHyKlwNDoYlFsRiwz1+T86iz37wVrUrq1r9WWkDXWKwMQHW4rtbLBhr8qbETjLmhYd618EUskaGeRI53+xcRCZ9Tx862fzVmLc1nnAEX/vdJQic6ow4OORBo+MH9ZK7ZLoG62gWO526g2VhPiHkJzt+YUVhUSn6M0p3YP7M79re9nVKtRtPJuZZ53Y5Kutn4GG34LZFlm5KcjOZF2gsKqQvY8socRrUaYX6/QV7D05FLePfEuGlHDm/3e5Jmuz6BV1W+w/m9mNI6nHefRLx6lUl/J1ge2MiRsCDO+ncHqM6sB6NWsFwAnbp3ASeNk4SEDSoDkoHaglXcrfpz4I272blbH+vrq1zzw2QOs+tsqpned/qvmueTkEl79/lWyXszC08GTuOw4c3+GiMjq4avp4f0oz6+/VEMFLCWpTf44KqOiitUjuDc/3PwBgI6V7px3KOL6jOuEe9ZvKo5PLeWNHdcprjTU214vKJSNzPr2Pb7q1I+sZlF0CPJje/oTFAsXqdBXICPXOmLTCRFto8RBxkiXMDcWT4oAYOCWgRQlPYab3K4Rd/C7o5o8sr1n4OngSdsmba062e+9tpeRn440/25y6baGB1s9yIH4L0leDle6BjF4QDrNDI7cVCnZrzbebYidGsvUvVP5PHYL3+6ADtkwYCJc8K91ZBcQCPUIJaUwBVEQCXANIG5aHO72SqlYZmkm3dZ1I7ss20w2Vg5byT+O/INwz3AOP34YFzsrz2i9HlauVBSqNBqYPx+mTAGVZRZ7X+I+/r4tGR+hxy+WXv69oIwhU8JlXImwmmWvJpeT6hGN98rwn1uEsMEGG/7zsBSMt6Eeth/JbOAOrXjd9nH9BzFPxVD4ciH7H9vP3F5ziQ6IrudpcT3/Oh+c/oCRn4zEc6EnA7YMYPmp5aQU1H65VRmq0Bl1qEU1UZoXEFHVeRgrLtxVeT3p07wPLTxbcKPoBqfST9HMtRlrh68l88VMfn7yZ+b2mmsmGQCRQS4snNiKnXM7snBiK9o1d7G6zQYbfim2xm1lX+I+No3axKDQQcw5PAedUYckS2yL20arD1rxz5/+yZROU0h6PolZ3WdZkAxQHN5N5ohQm117fID/7zZXSZZYcGwB/Tf3J8Q9hAvTLtAjsAc9NvQwk4ynOz1NTlkOJ26dwNPe04Jk+Dj64Kx1xk5tR4WhgtzyXHZe2YneaJmNSS9J58k9T3J/6/uZ1mXar5qrySxwZKuR5hXsQ8mH0IgatCotEhI9AnsozyJqzeAEVAgIBBknA5jr+gUZqiQdpzNO41FzSs09ggE4m3nWYvzIIBc0astgs34AKrJj4Bi+CZ9H3/4nWDixFTrNdbPbNkCJcJF49SwMFN8xeBVQcSWjwNyQLQgC2eI3Stj7C9a9Grqyi5IRrX0+N4pu0NmvMyfSTlh9X4hHiPnfKkGFvcaepk7W+4GSi5Kp1Aq80wf6HU2jZYHATVUp/W6AXtITnxvPu8ffZdOoTfg1CWX4OLjqDYe2Q0SOTJWxCq2oRUbmRtENWnm1QpIl0orTGPnJSPO5+7v4c2D8ARw1jubrOPPbmSy6dxEJtxMY9ekoKvWVlhPUaGD2bEhMhJEjYfp06NIFjh+32DW7LJs01SYEobYlvVaB0CQh/O+tNzZ8f/3fBZxphYEKc7lU7X6KwzxAGclW5yEjY9Ckk5CX8G/N0QYbbPhjYCMad0FKToUVtRgRqpvWIxagaPV/ePQb7lv8JX3/cZCHlu3nzf0bOJl+0hycGGQDpbpSQPmSmRA1ga/GfkXB3AK81e1oqE4ioMJY5cPZrLN0C+zGrtG7uD33NvvG7WNK5yn/0cZZG2wwIb0knZkHZjIhagKjWo9iyeAlJBUkMfvgbLqu68qEryfQPbA7Cc8msGTIEuslHzWIDHJh6eQ2dAlzw9tFQ5cwt9+1hC+nLIeh24fy+g+v82rvV/lh4g8UVxXTYmULYjNjEQWRxYMWszNhJ0mFSfg5+1FQVVDvGH7OflQbq3GzcyPAJYAfJ/5Iz2Y9mbJ3Cq0/bM2WC1swSAbiU0uZu+Uqjy9JIKxyPnM6rvzVpoXns89zKfcSk6ImmbcdSjmEh4MHgS6BuGhdiPCJIDmn3GJFWECFM2EAZmlUWQBZVBqShyaB2giHSpUm8EU/L+L7lO+pMlTVO06or6NFiWX9gQSKnMIwIpkb4DUqxZ+jYQZXCRiN1o5SA4n0qrP029yPhLwEVIIKb6lfzRrO3a9dXTUjERlBlnnGKRdQDCSTC5PJKcuxeF+wezCguLk7ahxJLUrlwTYPWh0jLieOUa1G8VFnyHKW2RwXgkpQcctDoJXkhYzM2z+9zeW8y/z85M/oHLUMHQ/pLvD9NoEW+aCTdKhRzFKTCpNo69MWAYFjaceYure2tKttk7Z89chXiDX+FhIS0/dNZ+XQlZxKP8XonaOtklsAmjZVjP5OngS1Gvr0gfHjITPTvEtOWQ4apwyWTm6Dq4PafA1NV9OUOf+tsEYyTMcXzPl5LWqcMS2eKfspGblU1QYAbos/QQPSY3Kh/6H4NSJWRaB6W0XgkkAe2fkIu67sotpQ/W/N3QYbbPjPw0Y07gJrX8CioGw3SkZi0mN4+6e36b2xN8Hv9ufzwx6UF/uhljzxJFrxs6gKQSfpUAkqegT2YME9C7g47SLpL6Tz0YiPuL/1/cjIODgVY/nQl4gI8CRnTg7bHtjGQxEP4ax1/m+dvg02IMsyU/ZOwUnrxLIhywAlyAx0DeTD2A9BhuNPHGfn6J2KV8IvwH8qu/Z9yvdErYniYs5FDj1+iHkD57H76m46rOlAfmU+LloXPhr+Ea/9+BoFlQU0d21OVllWvWMEugRSpivDy8ELQRD4bsJ39A/uz+ejPyduWhztfdszafckOi67n5kbrhCbVARGN5yNHXlrRybxqaW/as5bLmzB18mXIeFDgBrVuZtHKa0uRaPS0C2wGypRhY+HdMcVYa2oZI+kmudVmFcY9yULBJWp6BjaE4CL2RcZtG0QHgs9uHfbvSw8vpCzmWcZ1++XLVjUJRZ2ajskWcJOXd8pO1W1EZChpskZWa4XXAJM6O9PTlkOUWuiSC5MxpmwX1XCY6AMg5BP53A3ll1YxehdX2OnsiM2MxZQSuEawlnrjEpQ4aJ1wU5lR7m+nNERjfu/nM44TZUG5veBLj9dp2OBHSluMhMuqdCKWoyykYc+fwgvRy++GPMFRQ4w+HEosJf5YZtIi1ItsqAE3QbJQGJBIh2adkBAYMP5Dcw/Nt881sCQgWwctdF8nXSSjue/fZ6Phn/EoeRDPP7V4xilO5C37t0VI8T16+HQIWjZUlGpqq4mpzwHXyffO2SuVMhI/1ZWo57scCOfo4l0gKmF30gpCYCAq9yeFtIcqCOLKyNjpJJE8T2zh40kS2SUZvDZlc8YvXM09vPtcXnHhR4bejDvp3kkFyRbHdsGG2z442AjGneBtTIPGZlEeTU+7/nQfUN33jn+DsmFyQRJT9Tpr6gtbehiP5ddo3eRPzefI5OOMLfXXCJ9I8kqy2LNmTUM3T4U70Xe7M6baV7BMY2lEkVm/S3SQkbTBhv+W9h4fiMHkg6wbsQ6DJKB5/Y/R7tV7ZBlGQe1Az2b96RX815/6BwNkoE3f3yTe7fdS7sm7bgw7QIDQwby8uGXeXjnwxhkA629W7NgwAKm7J1CtbGaYPdg0kvT6x0nyC2I4upi/F38KdeX893j35lXwkHJGnw19ivOTDlDE924mhIY5TEqy4K5D+qXQmfUsSN+B+PbjzcH8MdSj6GTdFQaKskuy6Z7QHcA2rbMUtSPTG0TNUG7aUVYo1aeEXLNU/1GfjJDksFLcMLVzhWtSotGpeHC0xeYP3A+WpWWeUfn0WVdFwZ+HopgnwF3CDbD/RzRS3rzPE1lcS7a+iSxRLhI0xvPEJ18GrUul2LhElWGS0hSHgG+laS7vM6rP49jUOggnuv6HCmFKVazIHcKfF2cKjmu+htiwGbaTRuDcOIEU6rbkVGaQaBLoNXyqYLKAoyyERetC9VGZSU8tyK3XnN8XZgI6IaOcMsVNl8IRhAEFrXIZWmnVwFIzE9k1oFZDG85nKc7P02eM9wzAaoEiYObDASXa3DQOADKZ3319lW6+HUB4PUfXmfd2XXm8R6Pepx5A+aZfy/WFfPydy+zbsQ6dl7ZybR907hjS6UowpNPKuVUTz0Fr70GkZH4Hb9gVrCytnAmICM0CAV+TTnVr+3xMO2vQosrEXQwrqal8ZWa70uVeR/lm9SBFtIcXOX2jR6vTFfGqfRTvHnkTcJXhqN+W03IshAmfjWRPVf3oDPoftX8bLDBht8Xll3L/89gTVGqroxemL+KsYOL2XuqnKISe/Kla6SpNmJ/O8dcImGQlCDGrrIj1dWWpQ1OchgPRXRElmWu5F3h66tfs/vabk5nnEYlqOgb1JfFgxczstVISou9bA3bNvzhMP1dXM8u5WZFJWNbvEx8TjyPfvEoAgLvDnqX56KfY/mp5bz2w2s82/VZWnu3/kPmmlGSwbgvx3E87TjzBszjld6vUK4vnVcSoQAAIABJREFU554t93Ak9QgAYyLGEOIewoyDMxAQzGpAdY3bQj1CyS3PJcQ9hFsltzgy8Ui9vicT4lNL+fyIM3JFuEWIJcnwc3IK/Tc/TahHKGEeYcpPT+WnKUtiwv7r+8mvzGdi1ETztkPJh3Czc6PKUEVxdTE9mvUAoEx1mST7PTwWuJGzNzPIM1zCK+A8JTWiECqh/rPH/XIy3uVgdHLger7SBH4l7wpu9m7M7jGb2T1mozPqiEmP4buU7zj6vX2jpUuiAM8Ma866LQY0okJo7FRKJsPD3oOM0gzzvgNSYOsncWzu9AKLWinB6rs/wpv3CJROr8Io7WVFzAoWHF+ALMsEuwWTWrQRD2NXBMkI4p0dtQF0FU3oolrF2uMfMeW5Jwlr3ZrXYuz4oBe42LlYzWicvHVSmbfazly+eij5EC08WnCt4JrF/jIyo1qOYnfibub1hfV7r9CvkwdxTs04EBNCf/EQBdIVtp3eyODQPay+bzU/pf7EVa5yz0Q4tlHim03VDJ3iQLGrB4VVhVQaKknIT6CbfzdiMmOYum8q9mp7Ho96HIDX+rzGzaKbbDq/CQmJzLJMFp5YyJr71jB131Rc7Fx4f/D7dy7Pc3eHZcsUsvH887y64EeGdPaHnkmM7+/P2ZRiRGpNJeWaoi1rtOK3ytve7X21pVUqwIgToVb3F2p6IoOMk82mmXeDUTZys/gmNy/eZOvFrYAiutKhaQeGhg9lXLtxNHdvfpej2GCDDb8X/l+rTjVUlDI1pT57v4akiu8UT4vUo+glPe527jhpncgtz0Uv6QlyC2JY+DCGhg9lYMhAXOxcGlXTCQ2QcA/5gq+vfU1SQRJOGieGhg9lVKtR3NfyvjvWs9tgw38b1hyuAS6qn2V8dG/e7Pem2aSvylBFxIcRRPhEsG/cvv/6XPdf38+EryZgr7bnk4c+oU9QHxLzExmwZQCZpUpmYdGgRcRkxPBFwhdoRS1ejl7kluea/QsAWnq1JKMkgwifCBJuJ/Dd49/RLbCbxXiW16Z+QCUIMm4euTg0/4TkwmSSC5LJr8w3v+5q51pLPjzCOJh8kAp9BQfHH6SZWzPUoprI1ZEUVxXjrHUm4XYC+XPz8XTw5MndT3Ix9yKxU2J544c3+Nexf9HSsyWJBYmA4gux79pejDUZ0dd/gldjNIS95U5uVT7jI8ez9eLWWpfuGsiyzNo5A7ie/QDng6ORxfpeGHqKqPJeS79WwSyNWcqKYSuYET2Drh915UzWGQYGDzSrW0XkwokNcDoAho6vya7IcHQT9J2MufQM4HbFbeYfnc+yGKUcz1VuT5+CydiLYeS5eCCgthp8mhuZBTDKBnLd3ibB/WHkqVNpP1NDRlMnynRlFL9SbM4mAPz9+7+zPGY5fuoeOJaOUMq17HLoGFHIh/EvWb2/ejXrRV5FHim5iVz9AA62jeKz/qvM6+2mPoNL6hn8/OzH+Dj5ELAkgCpDFeH5cGwTZDvBiKccMXq4mbMk7nbuhHuGm53cN4/azMQOCtnUG/WM+GQEP9740WwA2Ld5Xx6KeIiZB2byj37/4K3+b1mdr+XFkpk5JZC39pbiWVQNL75I/IRZbI8p5HxaFtm6OFxohZbf9h3UGKH4tQTlrsSSQn5WD/1Nc7QGjaghxD2EPkF9GB0xmoEhA21VAzbY8B/C/+uMRkNFKUkGWTby1pcnuaZ9HV9nX5y1zuaVqOjAaOaEz2Fo+FBaebVCEATiU0v516dKBsLHVSklEAXTMSWMssznWU9jX5rDyJYjWTZkGfeE3mPV7MsGG/4MaPh3YZJaHhewnhXDOtXb115tz6J7FzF652gOJR9icNjg/8oc9UY9f//+7yw+uZj7WtzH5vs34+3ozTeJ3/Dg5w+iM+rQilp2jt7J/GPzOZ15Glc7VzSiph7JcJXb01Y1AyHHj6YOt7mS/QF7H99rlWSAtWtTGxwpCxUC8x7qT7vmtbK/xVXFpBSmkFKYYiYfKUUpfHrpU9JK0gAIXRGKWlQT4BJAanEqalFNU+em+Lv4c6v4FhpRw/WC67TwbAEoBnSiIJJSWKtgl1eeh52goUJWyoKGJ4tkdovgdvVlJFkyy9rGZMSYiUZRSS57R7Zi2k9FrB5UzYWwHkp7sNl/R2BE/1Iulbrx2eXPAHjhwAvsvLyT3AqlAdvP2Q+ApqWwfwekucGoR2pLuBDAUzF6Ji67lmh4O3qzdOhSLuVe4rsb31EiXERfOIt926HP3w+gFi2dxutec1lWpH81xcN4OzKFN319eTdOzXB3pRwuNjOWvkF9ze87cesEbZyH4ZQ3u5YoVHuRcEGFq9je7EdSFydunWDJ4CXMPjSbf/YDP/snEGQBQagtjwUjAYYJ9NjQg7hpcex5ZA+Dtw8m2UvgngkyxzYL7NpcwYgnjAR5BZFanEpRdRE3i28S6RNJfF48k3ZPotJQybQu09CoNHw++nP6bupLYn4ilYZKjqYdxdfZl/kD5/PaD6+hL/dHf7tvo5n42oslsLVFBc13vMSLxwywcCGRW7ey8L33SH++N82WDaCTYUONq/tvNUys/3fwe5MMGRkNbrjK1j+juqjrh9LQZwZqhQT0kp7EgkQSCxLZcF4pPfRy8KJj044MazGMR9o+gr/r76eCZ4MN/5/x/5poWFOUMqm46CQd9mp7Hmj9AEPDh9IvuB+OGsd6+zZc3cwv0yHLMmXCVTR4I2uz6NimgAXd1tAtQGnotMGGPzsaU1rLKbAeDDzU5iH6NO/D7IOzuTDtglUfmd8TN4tu8siuRzibdZbF9y7mhR4vICAw76d5vHnkTQCaOjdlad8vmf/ZRVSGN+iqTueWYTN50pl6JKOjcQ0YaxpiKz2JFD7AS4hodGzr16bWB8RaqaObvRsd/TrS0a++D8DyU8t56fBLnJis+JKkFKaw++puUotTMUgGMkoykJHpu2ZCTfA0lyR1Og+Xz+Fq2fcA9bIyueW5aAUVFTXzi8qQuDa1DwZDHACOWuX5dTxNkUCNOfUFjBnD2AyJrU93Z9qqE/S+VW6ldDMaeJhKfSWOCxx5LPIxSnQl/HzrZwA+u/wZTtWw72NQSzDocagyqRrXtLCc84fQKkcuZF8wlwmZUNcn4nrNwrqm6iqSo3XztgZXHlehBf+Mmc2MKS8ydOEymnSGIlctJ9JOmImGzqjI/Q602055gz46gBDpSeJUM62OkFWWhY+jDx9H5jGiNMxMMkwQUOEqtKCoqoj+m/tz6qlTzO4+myWnlnClCQwaL3Nkm8iurdUMn5BOmE8YyYXJ3K64bV5Zv1F0g+nfTKdCX8HsHrNxtXPlm3Hf0G19NwoqC6g0VLLzyk78nP14tt0ijp1qi4oiZAQKyoo5m1LM0smW7tnVhmqKqorw8m4G/5wEkyYpsrjjxhHYty8dBj2BC21ryMKvg9KsXYWIFmr6Ee9EGqy9VisSINXrE2moXCUj3bV8qqFppBYvPIxdzT4zdcczQUREFEQMsgF9RQA514ez63oYm/fvJFOzDV/vSvo278uYtmPoE9TnP/5ss8GG/0X8v20GL6wsbFTlqbmPHUkzkkickcjyYcsZ1mKYBckAy9VNWVYetEGevmycGc7JN6aw6uGX6dmsp41k2PCXwZ2U1qxBEASWDFnC5bzLrD+3/j86ty8TvqTj2o7klOdw/InjvNjzRSr1lYz4eISZZPRu1pv3+3zBmj0yDob22NEER0MULauX4CTVunVHqpXAsqF4w52auRu7NiazwV/TT7U5bjPDWw6na0BXBocNZlqXaXg6ehLoEoi92h4Bgb93+Ygu0kd40918HrevP0R2nj2SXF8pKLkwGYO+Vu6zzA5yeinkxkHtgM6gQ0DgUu4ltr4/kdB7HsavROLHLf9kwpqTCKJ4RzUwk6P2sBbD+GrsVwxrMQyAvgE9+XQXtMyHIY9BnuktEjjUqLJ+HwxRVW5cyLlgcR3qBpVpbqATIejWRvgFSkgyRlr6uSLJEvc6fYFKa8fsWDWCINTr0zifdZ4qQxWCzo+GEsGSDG5C40aR686uY2a3mcgqkQqSERuoPwmCTIl8HVc7V9JL0xm8bTBv9H3DnLk57w9Dxkl0yRH54lOJW3nJtPRqiYBAVlkWRsmIl4MXAC8eepEXd69k7parzFqTy0iXr3GTo7BXKRnwFadXkH2rHaIi7Guef2MiBLnlStbJ10lpBickBL76Cg4eJN7ohnv108o5/IZshhLQq7mgmk4Bp5Ax3pFk1P1Z9ximf9Xdp+Fx6so4N4Yg42QzyTC9p67PjDVISBhkg5mkeBKNHU3wJJq2+hWk56pZc3YNA7cORDtPi+9iX4ZtH8bKmJVWJZRtsMEGS/y/IRqSLBGbEcu8n+bRa2MvvN9rXOXp9fu7/yKZzsYyIoKu6R/WGGuDDf8ufouhXhf/LkyImsCbP75JcVXx7z6nKkMVM/bP4KHPH2JgyEDOP32eboHduFF4g8jVkXyT9A0As7rN4sUeL7Jo3xm4Q9DRxb8LcrWv1aAzJaei0Xn8XmaDcdlxXMi+wKQOk+qMLXE4+TAOGgfaeLdBQqIwsyMmXSDTeagEFa1UivP4Q63r9FogI9Z5HsX4w5CfngSUFf0Vp1fgoHagVFdKv7e3cilATcHxwwx+7I1fNGcT0TA1gzupnUCGhfuqGJoED4+Gy3VUcv1Lwa2G9xwNgpBSFReyL1hVTjIFlkYVJHtCVNpFzqumUcKlu5KNc9XvMabtGM5WpRAzrD3PnBFQV1RzPO24udn/xK0T2KvtaenvZqFuBRJNPCy9JMSar8ei6iLCPcOxU9sR46JI95rIhoCMKAi0a52NQTKgM+q4ln+NkZ+O5OD4gzhpnAA41Qzue0SiTyp8+YWalNxEWni2QEQkrSQNVztXHNQOuMrtOXOmM7FJRdwu1XPtlkSEbhkOhtbm656Zb6ThV3dj921OuRIMm1SnzBg8mO1PLQShMZLxS1s3ZcWoUTWLAk43+lnJGDBQdoeG7/o/Lb05FBnnuu93ldsTaVhGD8NeIg3LcKG1xd/zLyEo0DhJCZaexM3ODbWgRkYmtzyXA8kHeP7A8zR9vykO8x2IWhPF8/uf53ja8TtLENtgw/9T/E8TjdzyXLZf3M74L8fju9iX6PXRLD65GD9nP9YOX8ulF/ax8ql2RId7/CbjsF+78muDDX8F/FZDvQUDF1CuL6/nD/B74Hr+dXpu6MlH5z7in922EFY5nykrbvDUmp/p/sEj3Ci6gSiI7HhwB8HuwTzw+QM4ya2sBh0utKZ7YHcu5V6iTYDHr/77/b3MBrfEbcHH0Ydh4cPM2+Ky48iryCOrLAtPB09ctC7kFqosFjMkGQSdQmza+bar95qDaGeOEVVDh3Fk4hGctc54OXhh1FUTeUMJRl8ZBIMeNdDxi3txX+hOx7Udefjzh5l7eC5rz6zlcPJhUgpTzOQCaomGqXxErA5lZP4yFjZ/g5EzlnEqvL4EqW85ONUoi2a7gHQrnYLKAjp91InXf3idIzePcC6lgLKbY+hm2E2kYRmucnuueyrZkRLhIufVT5lXy+tDxs1BzUujXcjUnySlIAUPew8eCTyFU7XEk+ehuLqYq7evAgrRiA6I5okBJrUhqeYoSjP3EwMtVYgkJHNgu+rMKp7q9BQVmgSc0qfTJeU02upcysWzvDcpnJUPzMFB40CIewhqUU1sZiyTd09m76N7ERAQETkSAmMf1XBvooHP92hJyb9OsHswKkHFzaKb+Ln4ESxNrhlTNH/Wkiww0HUpekmPSlBZlQJu7L41rbqbMxp1kJJbReMFU3fPcMjIlJGoBPxGJdA3ba+/n4Qo6hDRNkpELDMYdTMctcZ+pm2WGYjuaHC3IpFc6zNzJyg+LtYUI0Mpri7GINeS7CZOTcySzlWGKi7mXGRl7Er6bOqDZp4G//f9GfHxCNaeWcvtitt3HdsGG/7X8T9VcGiQDMSkx3Ag6QDfJn3L2ayzAHTy68TUTlMZGj6U7oHd66lLNHODhRMbT5vfCQ2lAn/r6qYNNvzZYCqh+TUIcA3g5V4v86+j/+Lpzk//YvO+O+GT+E+Yum8qfs5+fPK3n1m124gslyDJkFcq0JqliHYv8u2Tq1l/bj0fnvkQAQEXrTPVuvqV5zIyGlHDqazz7H10L03VkbywMeFX//3+lmtTF3qjnh3xO3gs8rF6z6JDyYewV9tTpiujUl9Jt8BuhEmOFJZZKtmVcR2gXs24t9CFQOPjhBFKqZBMZhc7Jgf3o5VXK6TMDNIrChl6HWKaQbNpL3Gm3aPmBnXTz11XdpFWnGbu/VAJKoLcgwjzCDMHqzEZMRgrm5F9dQSCK0iiChkvOtTUw4OyQuzmGYZWTiZP3kip+iJTPO5hGd/jonVh7dm1rDy6l47G1UAwdnVq6mNCpzPpdG0D723xJzyl7uaSGrOpnfteOgQ/xaHHD9F/c3+C3YKJq4pjX0dXXjxVyqquMifSTtDGuw0n0k4wueNkIoNc0Df9ANeK+3GWw0mtPEeGZhvDIo9jv8eeKmN9x3TTWEdTj/LuPe/ywekP2Bd8kfnr5/BmuRbXmRUcyzXwfMjzLL53MZN2T8LD3oN2TdrxXcp3uNq58krvV3jn+DuIiOwJ1fHs416s3prPNo0DT47MxM/Zj+yybG4U3qAXLS0CXoD8Qkde6LKcpRdmkqbahIexK2BEQHXH+9aU0Wji1MTitVBfR26X/rbso+m6FAkXavoiVA3IgemzkgABWXJERa0R391KtRRyoTT46CnhhrjWbNoH1jIQprHFmhKuWkUwk8/MnVBFLlp86s1LRqaK3Hr76SW9uRwNFJPMJk5NFCni0kxkZLLKsth3fR/7ru9j2jfTcNI40dKrJQOCBzC23Vi6+Hdp1LvFBhv+F/GXIhrWPC88PUo4mHyQA0kHOJxyWGl8c/BicNhgnu/2PEPChlimjX8nmFY3bb4XNtigYE7POaw7t465383lizFf/ObjVOgrmPntTNafX8+4yHGsuW8N//o0E1kubqCGZWSM/xpe++Hv7E/aj1al5euxX7PiU5GGq7ICAjpJz+5HdnNv2L0Af8jf74GkA+SW55rlTE04nHLY3Bh8Lf8az3R9htGhlosZCHBDUHphTETDVW5PW8Ny5SwFFZ54sT1ZpOvNEgZ8n0LEtUImPwAuL7wMcQs5k3mGRfcusmhQB4UIpRWnWahkmRZu3jn+Dn3LfFFro5HE+upLLY2v4ESIMkm1gL1cS0Cai+6427szJGwIRyYd4dn1Z7mapgSidY9xts1MCprK9DW0qRd01y+tMZKR7UGLlS1YNGgRex/dy9AdQ/Fz9uONzlnExcLoy3Co3SEGhgwkpzyHXs0UU8lgP7hVvJJvnzjKvdvmEpvyM5Is0S2wGz+l/lTvWqhRY0BZzd5/fT8PRTzE3mt7ea1vNXs+NbDwB5F5TvOY1GESE6ImsDluMwl5CZxMP8ns7rNZFrOMpzo+RbR/NKczTwOwPjgf/8nhvLU+iSqtI3NGVuDp4ElBVQHFhkQ8sd4Ery4azKQOk9get50LTCfIOBkXwunQrCnTh7S0et9ml2Xj5eBlVbp1fH9/Tic1QjRkuVFPlbqfgb88ykwyarfLGChDxoAGd4vPzmQHWHd7vaFrCINyq6vQ4EoLaQ7lQrK5qdt6BqJGUYoSZPQ1qlMb6hEUsK5M1XipmGXzuFSnr1Mn6eqZfmpVWgKcA7BT23G7wAk//eM4G8IoS09mfdZGlpxagiiI+Lv408WvCyNbjeT+1vfj4WBdYc0GG/4X8JchGg0Vnm6XFhKTVMB51TRKhXi6BXZjVrdZDGsxjM5+nf9rzdf/7uqmDTb8L8FR48g797zD4189zk83f6JfcL9ffYwreVcYu2ssyQXJbBi5gSc6PIEgCFzPLrXaE3U+NZvj4re427uzbtBhth8soVxnqLEhq7tCaaSVvxNDwnubt/0Rf7+b4zYT5RtFh6YdzNsq9BUcSztGK69WdGjagVPpp+gR2MPqYsagLgKDdynBk6mPQOk9qS+7Kssy7y3cytbPC3ntHiXAax95D8Qt5EK2ZVO2CRqVhjDPMMI8w7iXe83bkwuSCV8ZzoHolaw7FEq+vZVSE0Jr/l0TWAoqQCbMOJPdVe8Q6BrIsbRjzDbM5nahGtBbHKPasS1XHU2hpnUIqPAQW1NpqGTGgRlENolk2ZBlPLv/WW77azgYrueln2FAl0OMaKVIDZuMD4PdgjmaehRQ/Cm+S/mOo6lHGdt2rAXRcJQjzEHp/qOpzPnbMHZd2cXeVrCnQydymk2gRWk4k1Yd5Z8P9mPNfWtov6Y9bbzbsPXiVpYMXsKsg7OY1W0WV/OvUlJdAsDbgUl4T4lixro4yjTw3igvHNWOpEtb8DR0t3rON3Iq+Xj8R2SUZHAs9RjxgqLAdK3Ai1fczgOWRCOnLKfRhbbIIBfaBDiRkFFu5QIr98udSqgEVKhxsVr2JKKliEuNkCYBjaaaSn0latwavC4DBpRPvz6JbSVMJxYlY1ZGskUGwjS2CkfKvZaRUXWEkuqCeq83pkxloNTqseypf+3qkgwBAVEQ6ym/6Yw6bhTfqBlnRb1xPI3RNX1HF8koySC9JJ2vr33N5D2TcdG60Nq7tTnr0aFpB1vWw4b/Gfxl7uSGCk/UBBGjfJaT91IeJ588yVv93yI6INqm8GSDDX8gxkWOo6t/V2Yfml3PeftukGWZzRc203VdV0W8YUoskztORhAEjqUeI63ytNUa7CLpKkHuQXw+PIZVu41k5Digwq7m9do6b1EQmX1f1O93or8B+RX57L22t54TOCilOTqjjrTiNPydlRKY7oFKwNlQCcrNvcj8PlOQY22FFwQq7IKZ/0Q47/VT1pRuV9zG3d6dwqpCssuyf9XcDZIB73LoO/1dwkozERoo9jW2Si0g4Epbdjk7cin3EgeTD+K4wJHUyhgrn2fNSvqdnK9RlJ46Bwew55E9BLkFEZ8bz9P7nuaekHswSkYW9YSO2dA1oYTvUr4jwifCbIwa4hFCRkkGOqOOB9o8AMC+xH1mFS0TGvYBuBg7sW6fil7ej+Gj6srS+1ZyLiQaO3woKPBi1oYEdOX+vNr7Va7nX0dv1BOTEcPSIUtZFrOM8e3HIyCgFpTP4vmAONZNjOS5nyqYtj+P5u7NqVJfpZQrljKsNT0YGpWGXWN20dK7JW5aNwDyq/IZvG4KL2yKZ/Si87y85RrxqYrzeU55jtX+DBOmD2uOSrSkE2N6+dIm0Bm1qOQJkCUly1Hvw5Itt9WBck9az1jk6xNRaYvMvys/jUgYkYVKq/0SakMg4R7htPNpV5OFsOwHARDR4pz/IoaqQJo4NiHaP9rsYt9Y07dp/PrzNFJFLh0NG+hjOEofw1E6GtbjKrc3j12XZKgFNSpBhavcnnbGRTXHbiij/BStvVvTr3k/Wnu1No9dpisjNjOWRT8vovNHndHO0xK0LIgxO8ew4+IOM0G1wYa/Iv4yRKMxbf/Kcje8HL3+iCnZYIMNViAKIsuGLuNc1jm2xm39Re8p05Ux8euJPLH7CR5t9yixU2KRKpszd8tV/jb/OM9tOE8eRwAlyITaJlEn35OcnXqWVYeuIclSvbrtWm1/kVnDg//wssZPLn2CjMxj7R+rt/1Q8iF8nXwpri7GKBtp7d260XIKU4Ops9aZ7Nt2RBqWocEDi/IPWcauiT1RryiNxN6O3iTmJxLlq5Ctc1nnfvG841NLWfFFMT0Ne3mz36v0fLAnMrXB2Z1KYUwoCnyaxYMXIyCw6m+r6B5ZYS7BMR3jl8isyshIsszOm//g/ZPvM7njZOb0mIOjxpEDyQewU9vxQwjsimpPc80yUs4/SnDF2+bgO8Q9BBmZtOI02vq0RRRETqafJNg9GFc7V/M41oJSWZYIF6bSVPcYsiDUKx2TZIntRzJ5pfcrhHqG0tS5KZ9c+oRQj1De6vcWq2JXMaLVCAyyAa2oGI083+I6Hz0cwqvfVTFi91U6Nu3IDdUKwFgn8JWRZCitNBCfWmr22HC2c8bD3gNXuT1Nit/kfEoZt0v1nEku5oWNCcSnlipE4w6lw6aMWddwRdwgOtyNlVPaMH1oEKuebsvhf3blh3ndaB3obPk51ChWNVQRk5Ep57rVpvXaZu42CLpmNddX2V5CAhdU0yiUL1tp/pcoI5mkwiQu5V2iqVcVsteX1C3DMsH0dx9knExuRS6nM0+jM+ro7fMYnnSxSmIwH8l0LyrPFlfa4EpbVNihwg5X2tHRuMZMNurCKBtxktrSwbgaDe5WCLcKV7kDmXlajqQd4Wr+VbQqLe2atGNo+FB6BvY0EyKjbCS9JJ2dV3Yy/qvxuL3rhtu7bvRY34PXf3idizkXkWWZ+NRSXt5yzYJg2mDDnwl/GaJhU3iywYa/Dno268nYtmN59ftXKdOV3XHfuOw4On/UmS8TvmT7A9tZP3I9yZlGZm1MIDapiMoqLR5yV0KML/DEIA8CfCuoJpcCTuMW+gkrh33AhA+PUFjgbWVV31TiIHAiocjK6P9dbInbwrDwYRbNuYeSDxHsHoy92p4bRTfoEdij0WPklecB4KfqzsVzPfEkGhHLGnxZAHs3L4LdgwHwd/EnsSCRHoE9EBB+MdEwla1evSVR4tSEc827sOJUGUmq9ynhinm/O5EEAQG9GMTA4IHIyHRo2oEVD85mxVNt6RbuiVxH4akx1CczAqHG2WTl2bHg2AIWn1wMKGVRVYYqXGnPh8NXc7NpNBrZi8qSQHPwbboeNwpvIAgCPo4+JOYnAtCneR/zeNazRCpKSh1xEy1VzUDkSkYJ9mp71ty3hmv512jv255p+6Yxs9tMno9+nr3X9tLaqzU6SYeISJWhin/1MLBmqDcLDhro9OVJuoU35bxqOqUk1Aujr2WWm88h0DWQb8Z9g0EyEM7UeoSorq9GTtmdMxpgmTF6bkGUAAAgAElEQVSzRsZvl+gtskwCQg3ZwEw25Br6KSPXqFDVJ5IgU04KCEKd6ycAEogVGLRKz0TdoB9kVKLI+4/8jeEthgOQWJDI0eJFFHgsQBAsJWUVhblw8+8uciRi1jNYqxY3XeHr4mIKOG1+tpSSAA3KL02KYMGSpTeHjFyHnFq/l0W0dDCuNhOVamM1l3Iv8W3St/ycrhhgRvlG8WCbBxkaPhRfx9rPrlxXzqmMU8w/Np+oNVF4vd2ZGesvcTqp0IJg2mDDnwl/GaLxe+nX22CDDf8dLBy0kMLKQhYeX2j1dVmWWXNmDd3Wd8NB7cC5p8+ZV/rXf3+jRpNeeUSZ/CP2nEtm++2BnFSP4J7eN3l7wDxe2pxEWbFixNaYfObd/DH+G7ice5kzmWfqeWcAZJRkcDnvMkbZSHRANJdyL92RaNyuuI0nnfAre4W6XiHWmt8TsjPouFZp+E4vTufozaO427sjI5udve+G7UcykY0SUk3NuISAUTbiLw7CQJnyLL4rSTBSJiQR4ROBWlQTl6O4lZuCXL2dtVXsuu+XLQI+ARGf6rHmhvhyfTk3i2+aA766GQdZFszBdzO3ZoiCyM2imwC09m5NQWUBsiwzpu0Y8xjWV+SNoM0m0EtlOV9ZpqxCIv5KFgNCBjAhagJpxWmU6cp46fBLLB26lAlRE7hecB1nrbO53v9W6S0+Ht2aNX0cWblfxn1/Jt0cXsWJFuZzBeUeNkqw+ts0AKKaRrFrzC7sjEEWpMd0v+eU59DUuSn/Lho166zJGLZJP4Vezq3xPZFwJQKtOcsmYkSHhI4SLmOHj9WsgoMUgo+jDzp1IikOL5uD/nxOkeLwMlXqq+x5dA9JM5LMstDxpXvJl2Otfk6lJAHgZudmlg22vE+V+8rUcJ6q2shJ9Qji1bOwx9fqfS0g4CTXKuqpBJW5HM46Oa3/XgEVkcb3aKbpY/ZGMaHaWE1cThxfJnzJ/uv7KawupLNfZx5r9xijI0bTzqdWzjrE8BzK87FWCtkgGXlux5e8/dPbJOQl1Ms22bIfNvxR+MsQjd9Lv94GG2z47yDIPYjZPWaz+ORi0orT6r1WXFXM2F1jmf7NdJ7s+CSnnjpFS6+WAMSkx3D2ZobV4CmrQMZNjmKMxwFuxU3ghU3na4LQ2nIpa/gzZD+3xG3By8GL4S2H19t+OOUwAEkFSYS6hyLJkrlx2RpSsoxEGlYiys7cqVlXxoi7a5XZPLSgqoD00nRe+f4VQFG/6repH699/xr7r+8noyTDqpleSkqemWSYIKDCU4zAmTArJa2m8WtWuWWlDOWGuAGNSkMb7zYWzeip4qb6q9g19f93lkMV8NN2pPTVUnLn5HLqyVPseHAHb/R9Ay9VhNX753RSMcPnxREtbSEuVVFc6tW8FzIypzNOc29obfN7w5V1UznNmaqFzPpbexQp1TonLwgIssTWhV/Cxx+zeNB7iIJI2yZt2XB+A9+nfM/6kesZ2WokOqPi0q4RlEDz2K3jnJ49hgWDO5AXvBp9aRAq7Kyed0JGuTlIHBw2mBBfB6skrbjCQEDpmwhVwdY/oF+B8f2tL+iZrs9B91l8vHIEGkOZRbkZgIimpvQoAjUuFgsCChFNJrU4FQ8HD9L1x/EI/ZJY7QPEq2dxo/oIIz8dSZ+Nfag0VLL/sf1ce+4aQ8KGWMmAKATOJGtbXF2Mk9wYAahVPBMRiXZ4BQe1A2AimpY3t+IfklxzXkozuMlno1ywJKeWIwqocSOk8l0cjG0AcLVzxdfJF1WDOeqMOs5mnWXHpR18evlTEgsS6erflXFhr+JKW6vlWXJlKO//+AURqyKw+5cdLVa2YOy2uczccIUzycVWsx82EmLDfxJ/GaIBvyzFa4MNNvx58GrvV3Gzc+PV7181b4vNiKXj2o4cTD7IztE7+fC+D7FX2wOw6fwm+m7ui2iXa1EqKWOkmlw6SWu5fduD/FI9suR4xxVE+HNkPw2SgW0Xt/Fou0fRqrT1XjuUfIi2Pm0pqipCLapxtXMlwiei0WPdSAmFmvIhC5iJghJsLRo7hPjp8XT260y/IEUB7NF2jyq7InM07SgLji/gvo/vI3BpIM7vONNxbUem75vOhnMbSNy8hJDrZxEbNPULgkwTT7lRMzRTgCahRydd5YJqGiViPDcLbxLVNMqc0QCIz4knQ3+CeNWzlHAFI9Ug62idcQmjbN1N2oRQX0el/MnJh26B3RgXOY63B7xNdEhzi/vHdG30Rhk7Ywsun+9NfGop97e6H4Dd13bj5+KHt6M3oBgGXlBNN6+sO7pmcFH1DLd0x8mXz6JR6yzmJosqEr2C4LHH8Bn1KB+Fz+ZU+ik6Ne3ElL1TqDJU8fFDH9OneR+0Ki16WW92D98Ut5nTg/+JJAgg3PmeXn2glri/MiIaUbAsUdIbZTyJ5uDRkH87cIwMcsFebX113yhUcsMdxo6GgCrrsrNCnYDetM0EZb4CmeIW2ni3IassCzuVHUfTjtIjsAeDQgaZ9z2RfoJeqx7jvsVf8Or6UqKMy9nxwHY0zTbUyYDEcNtjPs/0vs+cAbCWnbKESHmZC10DujK97UI8tf515ld3rpKZxNRVoVIJKm6KDcmpZQ9J3WvSy+kNov2j0Rl15JTnYMSISlDRxKmJWRSiLnRGHbGZscRf820kdwsq7OgsfcS48L8T5hFGWnEaCYkBSLJkXhSQaoR1th3JMJdGNkZCbLDh38VfimjYYIMNfy242Lkwf+B8Po7/mJO3TrL05FJ6beyFt6M3558+z8MRDwOKd8OM/TOYvGcyE9pPYNmjI+qVSipf3DIRPsoqXq2XhmDxRS4K0CbQiejwP0/281DyIbLLsi3KpiRZ4nDKYfxd/LFX25NRmkF0QPQdpS0ry92skytTIE0JLu7Z5HvMN59zsHswOqNi0z2tyzRzQ/i2B7bx+cOfM7XTVNr6tEVv1HMh+wJrzq5h9ZqnCJj6Is3TNmIU6q8YCwj0al9pVv9pCMH8n4hWbIWJFB1NO0oH3w5czLlYUxoHa8+uNRNNF9ogogbRjkT/CFQ4N1oOJ96BPJpKbc1tBQ18IZT7RuCNHddZtENNpGEZJxIzALgn5B7zfiXCRS6pX+C05n48Qr+iSFAI0tKTS2nbzM0ieBUlI2E5yZz1By5d4sFH/smW2GYYCrzxKHyRBxae4a0dqSzo9TEdmnZAI2oo15djr1LOP7dIhfwLVBOTsmrLACODXFg+OQIH13SFpNWcofJ/FSCw/UjmXY95N7QPdrWyVaaEyyDAqUColJMRpLuv6Df8XU8xt4VzZORquNduB52qdxFpWMbltHKuF1xn5bCV+Lv4m5XAyov9KSgzcjqpiGVfVjIjagG9m/cyN1PfKrnFuyfepcpQxbz+8/AOiLsrATC5iF+4WcTluN6gCzRTJBkZCQMGytBTTJDxSYuGcJMCVSlXkTBgpJpyUsyZMMvroKKoxJ7YzFgCXAKY0XUGk6Im0cppCE1L/k5Q0VoiDcvwEbvS3LU5Ac4B5vc2puhV95oGGiaQ8FwCVa9VEebU0+KZIctwIjmFmR/vxijVJyGmMkMbbPg9YCMaNthgw38UkzpMol2Tdtz38X3MPjSbGdEzOD75OKEeiudCXnke9267lzVn17Dqb6v4aMRHdAr15JlRKorFM1STS6X6Ii+PcaeqSmvFS6P2C9eUvXhmWPM/VfZzS9wW2vq0pZNfp3rbL2Rf4HbFbSr1lfQI7EFsZmyj/RkGycD8o/PJN16xvjorCMiACkccfH4mTzpjfinYPZjc8lwEBBLzE+ke0B1REEkvSWd029GsHbGWS89covK1SuKnx/NZl4V8v9OB6wH2vNzvIudV0+qtGJ8Rn2LWTw9QIlxE45jdKBkQUIEgEGxUmmePpx4nqmkUFfoKkguTKdeVs+3iNsI8wgg0TqpXdiOJqpq8jWVApRJg+VONk0ezmlJYDRmwIpcrIFBcqed2qR5PohEypxGfWsrDbR6ut5+MjJPUlqsXe9JPPkSkYRmxKXmM6u5MXdUsxalbxqOimLkTjzNgyh4Gv3SEm3ZT8S57C3djFww6R2KTi/j71pss6fsFLbxaIAoiVcYqBATKSPoFK+9YyEZHBruye/YoVKoqyyyLDLFJxeyOybnrce+E8f39UYn1+yRVooBf8xpBAAF+dlfM70xkw3pAbxngl3JVIRHSanTlIdjRBE+6E2lYhVf+m/zj2828c8873OM2v949AgIGSWLZvptcuyWB0Q1voYdZGSqpMIk3jrxBVnkWnm4VNcsSltfXpEznbd+MKOMH1JWmNTWri6jQ4IQWTzyJrtfUDbVyyK60QYUdImocCSJFtRQ9RVbP26hWyG1yYTIrY1fy5YVz+BS9hqfcDTua4EU3InTLKSp2J6NM2dfTwRNZm3XH+0SS4czNdHZf3Y1RMtLSz9UiwycIMn6egK4pDUPBP0NPmw3/O7ARDRtssOE/ilPpp8gpy6GwqpA5Pebw/pD3zeVD57LO0WVdFxJuJ/DDhB+Y3nU6giCw//p+xu3vRTLrEO1yCbDvwo/nRHTCbYsvWAFwc1D/abIXDVFYWcjXV79mUodJCA0C3kPJh3DSOHE57zKRvpHcrrhtlWicyTxD+Irw/2PvvOObqvf//zwnSdO96Z5QNoUCpUxBELhMRUT2kCHDAago6lXRiwtUBEFAEAScDBEcbBBBEMoqFAp00BZoS0v3TNrknN8fadKGpEAdP/FrXjwkeM4n53zO5+Qk7/l68crPr9SqSbcSJa1m88m61oICTYGp5yLMPYxrxdcIcw8jMS+Rtv5tDVolmSfM3q8QFbRSBTL8+XW4efoTdTydjFcKCPLRcd35DfxarqXY60OKhXgqdBUAnNW9VR21tW74CChwrm6ePZZxjDa+bXCVW/PmN5k8+l4coWX/w0nfwnojrWCZsRKA9o3c7niPjaW2+cRa7T0xluwY5wiGUpKe4T3NxhkNSBepHYLeDU9iaKNfzg+JP/DcMKdaDlgsrYOqONDyP0iiEgQBnaDg5+Z9kASFqRzK2Ji+/bdS9o3bR6CLIVKtEBRW+kKs3WeZYi5xpeCK2VY7hR1tQ/3rMKRh8Y/pf8jZqKtPcueUFXioDVTMxcI5TilnEH4jFkGvrV7bWmVSt5T2GaP9eeIhK9oThj8utKSl7iOe/u4DSkqdrZRmiYaCJtl4DsNajgpYTbfgbgb638JXKShyApQI1UxSFg4ZMpLG32pvjIFoAmqTU4iIhEtTTGPq0ujw0HfjvOIFs2fEqH5epVPiI3bg/tD7aevbtvp4AjWmmWGu//FYyLzu8+gY2JGyyjIS9MssPifm16Lnpu48QzYOwe5NO7ZmP2mg/q6mBjcSOPg4hKKU3Szu9b3Q02bD/x3YHA0bbLDhL4EkS7xz+B16rOtBU++m9G3Yl40XNlJRZTBQv4r/iq5ru9LAsQEnHz/JfaEGatGVJ1cy6KtB2OuaEaVfjrqyFQWlek4kF1JYbKhnN/7AigKIIrw5tvE9k724FRsvbEQn6RgTOcZi356UPbTzb0eBpgBnlUGrwCjUBwZ9kdm7ZtNhdQfSi9KBmt4BsC6GKCAgaCKw1zVDo9MANaVToW6hBi0NP0Pp1PHrx83frNXC0KHEC17MnbOZR9dlMPbjA2TnOrB77G62jtxK2uw0cp/PZUm/JQA0C7Lnomo2+cSiR2s9Yi0YejkS8xJZfngHbfUruXbDngqNCi864ZDzHArsLY1k2VAyV7shWxTr12+TpfwCWdCbictZazAXUJCYVYyXoxfBrsGm7Y30s24xgA0G5KE4Ff0jWxDSfC+JLo9xQfUsZzJV1e0z1cc21m/d4mAaI8b+Lv4cmngId7W7oaFYnWbqC1GqyqhSpgCS2ZoKCJS6fsPQjUMprzKPOk/sFYpCqJt97bP9GXe9btZgrU9SFETOzThnGlMixvNFwGzcKoos11gQQF9CIcdRKUrIJ5Yk8X0ipOesak8Yr9eoi5FdedbiM2LtXkoy5BWqODzpMCMDVltkQaydw5zBzRzWCQlEIpy7smnYJjoHdbbqKAsocKaR6ZktriXGKCDgSguaVn7I6bR8zmSfwVFuaGUOIjm5rmw94EFJkRfPdnqWpUOeo2HLPWhU8VRSwK3PCECu3TemNU/VHOS0Yhq58jG05FAuJiLJEpcySqnSW5ae/t09bTb834LN0bDBBhv+dGSXZtP/y/7898B/ebHbi/w84WeWDVjGjdIbvHfkPZ7f8zxjthooGw9PPEywWzCSLPH8nueZ8dMMZGS6Ob+GKChqlUoZonsVYhLNghX3bAbjVqyLW0e/iH74u/ibbS+rLOPXq7/i7eiNvdKem+U3zYT6diTtoNmyZiw5vsTimMXCOSR0dZ5TQEWUfgXHkw0RbKN2hLeTQbQv0icSgIySDI4mZtYwzrz8PdvLG/DMI+9zMktHbkkVpUX+tNZ9jL2umen4Xo5e9AwzRP4X9FnA3N4jiFfO5qziqVsit4aI9XXWgAxVUhVbjxZVH8X482M0A10wMDkZHChB0iPKMoniQjN9g/re7+5NQ4hTzKBUvoBSp612XiwhI6NQGzRK/tPoPwC4yW3qZPex04ewO2U3c7rMIa8ir/oYhp6IO0FGj6d7FWC4N0cmH0ElqiiuLEZ0uEq8cjb75F483CeTKw5z0akvoOUmapc0lkxpxjdjF5CUn8TUH6aaZWsiQ11YPLl5nfX7JZq6PzN/BEFuQWwctrH62mSqlALXHFIQpVudAj2i9gKeGc9xUOrNtPSV+Ol7WM0w1IaAAh9VJFcV5uxkNdTKllmfKp3MowvPkJpZtwNhfg7r55fRY9QOv3W7Rkwjyi+Ko5OPEhMeanWMkTChWDiHjlKopRljdFobylNuUzpnYNXzpBPehf/l419/YsL2CXybuoiQ5vuYPiyHLm1zEEQNMnqqKCZRfI8s6Ri+Tr6082tHO/92aBWXiVfOJlY1hHIpz7COsmB2HqWCf8R3qg3/LNgcDRtssOFPxYHUA0R9EkXcjTh2j93Nm73eRCkqaezVmCntpvDGoTf48NiHfPifD1k/ZD0OKgc0Og3DNw83Ca+9+8C7OEjhVvoxFPg7NGfl1Jh7NoNRG5dyL3E84ziPtXnMYt8v6b9QJVVRrC2mk9dIEs52IjDvY2avPcfQ9c8y8KuBZJRYRqBd5dZE6hZXl4zU1Rth+LP5V4MBHOoWCoCTyonk/GTslfaEuYXhKrfm1S+u1TDO2AexuO9zSHLthnuDMXRrc6haaWi81eq0uNu7A5ZMTQVCLJf107HXXjDZ305Wo7ZGQ09CEkrRkoNHYSyvbJlOlvgd8crZJn2DML87G/K18dJ9L1EsnOOk3WRCErrjVl5cp1GZL10E4KFmDwEQop9odZyR4nTJ8SX0CO1BO/92+Dn7IaPD0ui99b0GfZiL14t5fp2B3adFgxYcmngIAYFCTSFq0bC2L+1/idf6jecEM7Br9B67K0bwdfK7tPZtzaeDP+XL+C9ZFrvM7PiRoS64OSitfjZc7C0F6/4sDG85nBEtRlRfo0ySnYFEQJTMy4UKHZ05FdiSSK07M8Mv4ae9vfaE4b16cqriGR0UznXnV0yfLzePHGYPDkUhCmbEETJQWFFJbkmVRcTe8tgGli7reyrJJ5bL4gIMopI1pV8yModLX6fJsia0/6Q94eFXzOZhyDjKJoYqsK6zYdQQkZGryRVuLYkyOiUCIgq62L9NC+8WlFSWsDlhM0999z5HzngjS/YIKFAL7jSTX6Cj1wgKNAWczDrJicwT6NHTyKMR94Xch7vQzMqaC5Tpc/i+dAjL4+ey6cImcspybrt2NthwN/jrvnVssMGGfxX0kp7//fI/5h+aT8/wnnw59EszsbD47Hh2Ju9ElmX6NOrD7E6zAYMA3cCvBnIy8yRKUcmGIRsYFTmKuSmXyS8tMnM2RAGa+ltjv7k3sT5uPe727gxuOthi356UPQS7BnPpuobGFdNQIqBHIC61AhhBdx5BTwXFXDCxOzXSz8KVlkA1c5IsIwvWdSYEFFzPNUSwXdQueDl4IQoiVVIVaYVpdAjswOX8rmbraxK4u+VY1ppDjQw/Wr0WV3XNPSkWzhGvnG2ao3+ZTFCVPVlOhjKukAZ2ZN+UsBbnElAgUcVvysGMzYKeieBWqaDIribK+78D/2Nhv4UW760L7QJqGvDXRUG/MixYqIyQC+8jPr2E7qHdERBuy+5zVbGW8ynxZJZkMqfzHEZvHY298A3B8tg6Y/MKSYdOEBEECYXsysmUIs6klvDhpOZ0Cu3EFw9/wZjvxlApGRjCdJKOl/a9xKL/LOKpHU8xIGIA7/z6DiFuIUyPnk5sRizP7nmWKL8oU+khwMQHAln8Y1qtkh+DwTqpT6D1if1J+GrYVxxadIis0iyKhXOcUcwgpnQmkoOBZlYQDOVCbVhBnMMMgl1duC6l4CV7WVD6GuduzIqlK9YQfz2eVvouBDj7U1wKyfkpvH50DavHr2Lzr/lcyS6nogpKNRLCXcZRhVp/14ZCFFg8uQ2S2pUX9u7kWPIMQvQTcSECL/cqZvRpwqFrT7LvpIzqehBrrqdQqvqGVk4jUOiCaOLnxpgefuRIi1hyfAm7knZRSgp2eJkZ+bdmPc4oZhCqn4Qnnax89gTKylwptitmevvpeDl68Vtsc/RlNVkbWRaQkfDWDGfLo2Nws3fjm/PfsDN5J1cKrpBSkEKkNMRAgGBlHpklmXwfd5ZfjzVlMbGgziYsoAyVpg2lJc5E+Dkz9v4AIkPv3QCPDfcWbBkNG2yw4Q8joziDBzY8wJuH3+R/Pf/HnrF7zJyMbxO+pfOazriqXZnXYx57UvZwOus0SXlJdFjdgVOZp3BSObFv3D5GRRp0HowiYWZlEv+g2mG9pGfDuQ2MajXKRN9aG3tS9hDtH41PxSSMOQioyUYIKFHhamK4aatfaSrjMY0V6i45kdHjVV2eA4YSHWN/TGJeIu3821UrHFt7v2Xd9q3NobUzGm725g2lxjnJyOgEKLCvOV5AyEVEwXo2RkZPeXU/R5KnYVuzIvN42MrTK61eb12oTRUsiVBmp6iThQoMtJ6ualciPCPq1F9wcyuiVLyAjMynpz9lWIthBLsGo/P4nhz2Yi1CLgrQJNi1unXZaOCJSLWoREe3Hs0znZ5BRsZONBAm5Fbksu7MOl7u9jI7knfQP6I/T+54kh8u/8DCPgvpEtyFRzc/SmZJTcbpoY6+FLtuQKnUAhKVFHJf+5s82MG3XmtXX4iCyJlpZxCrTYtSxXmyHavLhQTzcqFQ/STSS65R5bYTSbDMKhipq6so5pziCYqFeFxpjSfvoSkNrmamisE173mGfv4kuRW5AFRWCVadDIUo4+agwM1BiZujkpgIN9wclVj7/KsUgql8qLVva3aN3UXi83vo0TmZM/aP8kPpw4zeOoZjx1rjom9XzRDViZCq2VwvzOdAxWQOVT1GSsUBeoT24IdRP5A/N58xPQzrf2tpYe2sh9FRl6i0usYCAtdLrrPq9CreOvwWmnIPq1mSohJHHvzmQf7zxX9IK0xjTuc5nJ9xnk3DNhEUeglrfR3egXHc5zOOCM37eBKDGh/stC3ITO1IepYd+aV6jifnM/PTC6w4tINCTaHF/GzifzbcCpujYYMNNvwh7EzaSdQnUSTlJ/HzhJ95pfsrKKoj45Is8eqBVxm2eRgDGg/g6KSj/Lf7f2nm3YzJ2yfTYXUHrhdfx8fJh98m/0aPsB6m46qcMkhzfgmt3Xk8nMV/XO3w/tT9ZJZkMqHNBIt914qucTH3Ina6JrjSgrobVI2GmQJjj8rdwGjAtGpawzIU5h5GbnkuaoXa0BDu2wYN2VYYmarVuGsz1Fhx8GpnNNzUtzgagmDShihXwXX7KlTVPk9C6U4WTWpKmXCR2salsaTIQYogSv8RGd4G6tDwm+aGfklV/Q0Xbwdv0791Cswaw83mjcCFDEO52cAmA62qgwuCxKwBjUwUs8tPLEcURGZ3mk1mSSYXla8Sp5hOuJ8SpcJg5ts75bBkSnNuFlch3xq5lyGlVrZo0X8W0SmwE5VSJc4qA4XuyayT3Ci7wchWIzmQeoDuod0ZsWUEZ26cYdOwTShEBcM2DTNppQCkyxvp1etXDvyvI43afcmC80M5nH643mtXX/g6+/L9qO8Bw/PvTIRFtsLYJA1wqWw3ue5vobdiWAsI2IkCJeJ5nJROVpmdREQa6p8jJUO8TamURI50jKqw11g4zZltL7VjwYSmNA1wsqB9FQVoG+5q8T3j4+TD0gFLKZhbwNL+S4kQphqKrkynM8zMjZa01a8k4Xo5QzcNpcF7DZi7dy4FmgLm9h7J0imtaB3mgJ1aQ5nyrEHMUoi3mHEpiVaccZmQBkr2jt3L9OjpeDt6UyInWTjDgiATHRZIwhMJPBO1hIr0UXz5Qygjl+7lrb1f0CrUhcmD9ESG2qNWa9DbXyJe+SQ/Z6/jampj09rW9Sojs2JvEp4LPGm/qj1z9szhp8SfOJ58wyb+Z4MFbI6GDTbY8LtQpa9i7t65DPhqAB0COhA3LQ4P2pqiWc9+dp5Ba5/krcNv8c4D77Bx2Eac7JxQikqGNBvClRsSoeVv0Fn3I4967ESqCDFFw4a8G8u4j3/Gxc6F754ZzNa50fd8P8atWBe3jmbezYgJjLHYt/fKXgKkoWRffviunIc7NcsaYTCKJfKJ5bzyKdTON0z7wtzDSC9Kp7FXYxLzEnHQNceF5hY+joyEX/gxOjRyv23D/e0yGrIsm/aX2UGFQsLLUDlFfE48bcLcUIZ+gk+Tb4mJcENtp8OoV2CHJ25yNA1VKzjasDXhuZYNzJU669HeutC7YY26tAIHqxkNw7XLFFZU8OA7xyhONehpGHtOdGI+BUIsuR5v0atFIx5o+AB2CjtyynPYlbyLKe2m4GjnSIhbCP/DfEMAACAASURBVCViPOrQ1ex9PYYhA06wt3IIKsdMGvo6WlW8F9Q3zLYdnnQYD3sPSqtKcVA6ICCw9sxaugV3o51/OxJyEmjRoAWPbnie+d9kEK3dSnn6SKZtfhswPJt5FXn4OfshCAKfPvgpXYO78tA3D3Ep91K91u73YGCTgUxtNxXAaoOzsUzH2G/kVjgDBK3VcXnSRfredMNeVOFChJXeAhEDZ5T1Pg+D3ofItD6NSLiZQKvlrZi7dy4l2hKTsGNtbZA7ZU3VSjVPxTxFmEOnOs4poBAUDPVdRreQbhRpi1h4dCGhi0Pp8VkP0jQH+XBiJLtf6U7sa9PY+/inTIyaiIPSwewoKYqPqM04Zny2v8+fysCvB5Jdms2uMbt4+cGOCGbK8Hr0sp516eN44tsFHDveBlHTFDU+eAud8Mh7iU2nYhm/qzuf5/bEtekypgwUOf/sTxyZdAQfVWsrGRJLMoRGzl1Z8+AaWjZoycYLGxn09SCmbtiITtLbxP9sMIPN0bDBBhvqjfTCdLqv686iY4t4r897/Dj6R27k2ptFs05fKaE8bRyf9N7Ni91eNPwYyjILjyzk48M/EaVfgYccg0Ly4HyaltlrLjJ7zUVOpBRRVAZOuii88l/mZp7T33259UaRpojvLn3HhDYTLLQzALYcqqCx9AJGoss7oa6m71thpOnMFX9B4XjdrLTB5Gh4NiYxP5EdB3IRZHMHRkZGr0pj3fjpdxQ8NGY0NDqNRUZDRkYpKg3dAdW/Mv5lhvPklhlKXNr4tuFi6S4WTGhKA08tRnYdw3UYymvWdZ9EkzzL61x+YvldrYcRtbNKd1pLJc6UlIukZiqJ0q8AIF45m6PiQGT/NZwv/olCTSGToiaZMgjLYpfhqnZlarup5JXnoZf1fHrmUzJLMnmiwxMEuQbx8oGXLQxbA6ORwM9Fr3I593LNHEQlZ6efRSEoKNeVm+7RzF0zefm+l3G0c6SqLIDw8nc5n66luFzAU+7IlQt9Wbhvo6mJ19fJUKpjp7Bj64it+Lv40//L/mSX/jHxvrvBykErCXcPt5oVkpFRuyURpV9hKtERZScMrGM1pZIA18S17PLKp31CIYKcZsUZqWmYrg1BkFApBBSiQBN/J7qH9iDhiQRe7f4qS2OX0mRZE+IKt7FoYlMLbZC7CWhYcxqNkGQoLXHm8MTDXJl5hec6P4eLnQuHrh7iwW8exOd9H1498CqZJZnEBMaw9qG1FL5YyNbhW3kg/AEEhOp+jenkc6yace0YZxTTKBbiqdRX8u3Fb4leHc3EPT3xjviWFiEq3JwEvDzzKfZeSKFwlvxMg15OjcaIgCiIDPdfyYnHT/BMp2dIK0zjse2PEbgokNm7ZuPqUm7hh1s+MxI+7nrGtxnPhoc3cHX2VZKeTiJQ3d7CSbGJ/9lgczRssMGGemHbpW1EfRJFVkkWhyceZk6XOYiCyBcHM5FlzNiKFIKS5OQQwNDYOuPHGczdN5dQ/SRERNOPkiTX/CfXej/8M6Nhmy5solJfybjW4yz2bTueRXluNHWpXhtRO5JZ+/VuEC5Nw8PBgwJNgWmbUUsj0CWQxNxEUlPzECxKWgS87SKs9pTcCoWoQCkqLZrBjZBkCWUto8OnUgVApVSJXtIT5RfFxdyLaHVaCorUVuvMkwNiONp2MR5ylNm+d4+8e+dFqAVjo7S/9DAiqjrXsnbmSJYNJTpR+hUESo8gIdG3YV9kZNbHrWdIsyG42BkM0t0pu7lefJ2ZHWei0WkIcg1ClmU+OPoBaqWa+T3ns/XiVsoUF0yid14uSipU8RC4Eg+PIqb8MMVM8TvYLZivhn5lWMtqyl9Jlhi3dRxrHlyDorCvaZ3A4KaJiHx1KIeD6QcBQxmTEe727uwcsxOtTsvgrwdTVllWrzWsLwRB4OTUk5SJF8yYyPKJJU4xHW1RY4syKAPrWBmV3ESyv8ybY4MYFNUaWYD9DaG0ZBWCfGtvgaXat4whql6p11Gll7mcWcYzay+SnKnj1R6vcumpS3QP7c74beOZvr8/w/uU1pvFzug0WkPtnqZwj3De7/s+uS/k8vUjX9POvx35Ffm8efhNgj4Mou/nfdmZtBOFoODh5g+zb/w+cp7PYWn/pfh7a80Y16yVWGl0Grakvs+KzA7sk3ri3mgr34xZwJruF/CULbMukgzJN0qJDohm3v3ziH08lhvP3eCzhz4jzD2MY+VvoZd1pjUVqpvyay5VQkbim6zHafBeA4ZvHs6aM2uwU9gRGdTAaimaTfzv3w2bo2GDDTbcFbQ6LbN2zuLhjQ9zf9j9nJl2xkxc7kp2uQUdrSTDmdRiHll4mr4LNvLNqWMA+KvbcjdfP//UaNi6s+vo07APga6WLD8rdl2r/tftnYzazeE1Ssp3djYEBFS446Htb5HRAHBVu3K1+CqhWZdMxzW9V5BpUg9WL7VCjVanxVFlaUgYxQIBPKqU2Ak1Td0p+Sm08W2DTtKRcDOBBh6WyuIyMrKoICUghtb6j3GVW5v2ZZfVLyLvZOeEuxxFE+kF4PYOXm0YDeEI6Xka6p/izI0zCAh8euZTHFQOZo3+a06vIdgtmJGtRqLVadHLej4+8TE3y24yOnI0rX1b88LeF2gV4syCCU3Z8kI7Xh8VzMHs9YxsNZJfr/5qkakZ3mq4BTVykbaIWbtmWY0eg4ib2JRndz8L1GQ0jAhxC+Gn0T+RcDOBUd+OQi9ZNrr/mfB08GT32N2mBucz6kdNBnNdVK86WUO+7xxOi0/xzKGhLOq7iHk95qEX4ZznOS7xBG7FJ9GSQ6X+JKn6hZZ9NIjUFuC7tYQnxC2EjcM2cmD8AUoqS+iwugOPf/94vehcjUrpzYPMM651lV/ZKewY2Wokp6ae4sITF5jWfhoOSgf2XtnLgK8G4P+BP/N/mU9WSRbejt48FfMUl566RMITCczpMgdPB0+LORg/x8YStNYV33DiRGsGfLSMDQes90XI6EkuPULM6hje/fVdLudextfZlwlRE9j06CbSX/yFyYN0uHnkoBfzyeUYSYqFyA6XUau1tAhVsXhSc1YOXMn9dhvIuTCFpdvKiPxwMDvy5lgqkP+DCDxs+GtgczRssMGGOyI5P5kua7uw8tRKPur3EVuHbzUJyxlRVylBlV4mv0SHVB5BG/1y3un6NVHBvnWWHdTGPzEalpSXxNFrR602gcenl1Cps05HWxvWaqKtbb8d7AtHkZURZvp/o5aGKstgpHdrXGBW2w0SoiDUyyhQK9Vo9VoEQcBOYWe2r0JXQRV6FBL4a1XolTU/N79e+5VI30gEBOJuxHFfm6pqJ8ro+NSskYFy18BSVBuSZF0ZvS5EMJXa7F53C+P4YHks8VdLaOrVlAs5FyjWFjOx7UQ0Og0yMstPLkcv6Xmu83PcLL+Jv7M/OknH4mOLUYgK3n3gXc6mFzFp5a8mRp4gu24MbzmcVadWMbntZF7c9yJphWlm51/z0BoaeTQy23Yh5wKVyqsItzieogBtgn1MiuFeDl4W19PWvy2bH93MjqQdzNo1ywoZwJ+LBxo+wLOdDI6PRq8xGczWGL1k9GjIRpU9nTYVG5EzJtJ71WQeb/c464esRyEoybGL53uPmbTXvUKqbha6yu9wTzdkTAwq2UJ1MZV1Nfba6BnekzPTzvBR/4/YcnELTZY2YcmxJVTpq7gbRIa6sHxaSz6a0pyYiLsvv2rRoAUrB63k5vM3WT14Nc28m3Gz/CbzDs4j6MMgBn41kL0pe5FkieYNmvNen/e4+fxN9o/fz/CWw03PmoyMm9zGrATNkxiC5bHVZ7JC2ysomNgrmBC3EOYfmk+zj5vRcnlLXjnwCqezTqMUlYzv2J3tzz7EoTf6sf3ZB3lpQE8cQr/mF6EvyzOiGbV1NKu+FyksaICgd8ebzrSXVtHWL4pM13nVCuSGrFT76JNUqpLMsnVgY6f6N8HmaNhggw23xcbzG2n3STuKNEUcnXSUpzs+bbXv4Nb681thFJy6mhxptVZdRkKsZ2PmvYj1Z9fjqnZlSLMhFvs+3Z9ajwKoGtSnbApqjKzyzBoWL6OWRtW2rQDoHmnOkK4CVRQjI+HqoGLmwNB6NdwbMxoADYRoInWL6az7gba6NbTVfUpn3Q+0khbjW9ma4lp+yNFrR3G2cybCM4Kz2WeJCFQSp5iB0jm12vi0dLSMLEVGbLqwqT5LgjN1K2bfCcb3+VWOYWSrkcjIfHXuKzoGdqSpV1PUCjU5ZTnsTN5JW/+29Arvhb3SHr2sZ8nxJRRqCglSdaWdfiWpmUozRp4ZLReg0WnQS3q8HL14/IfHzYx/URA5MukIaoUaI+UrwLHyt0Gocc4EQUYQYGqfRoxsORKA+YfmW72e/o37s3zgcj4+8TGLflv0u9akPni/7/u0aNACgPyKfBo4NrDo3RAEEBBxoTmexKCQPHHWt8Uj/yV6fTKJLsFd2Dt+Ly4qF5QKJcvsz9KicVdCXYLYFXqOcftno9UbaFut32cZL1dL6TClqOSpmKdIejqJka1G8szuZ4j6JIr9V/bftTEcGepyx54ma3Cyc2JKuylcfPIiJx4/wZjIMSgEBTuSdtD3i74ELQri3cPvklOWgyiI9ArvxcZhG8l7IY8NQzbQOagzIfqJVkrQrAclZGTaRh9nSFRbtgzfQu7zuWwbsY3ogGiWn1hO+1XtCV8SzjO7nuFQ+iH0kp5wj3CejHmSHWN2kPdCHj+M+oFG8uPUVhaX5GrNnKqxXJqziy2z+zN6cCou4Zv5OP4F2q9qj+/7voz+djTr4tbxc8IVGzvVvwiK119//fW/exI22GDDvYeKqgqe2vEULx14iaHNh/Lj6B8J9wivc7yvu5q2DV3JLa5CWyVRUWkt4ixQVK5jzpBws7FBPhIHy5+gS0s7Grm0Q1sl0TLYhblDG/6jmKYkWWLi9okMaTaEoc2Hmu37Je0XNhzIRUn9mtuNhqXRyKxP2Y+MgvaN3PB1NzRub9r1AS7ZBaSFuOKj6sSBY/6IGPojqvQysUlFtG3oahp/Jyw7sYxm3s3wVXTkeGwUDgSixAU1DVDjgxJn7AkAu/+QozhBrioLAL2sZ0b0DA5fPUxKQQr9Ivrx8Zm36NLCgfQbMg4EYuZsyHqKhPPkiLtMm87eOMvMjjPvap7x6SXsPFVoNdJ9tzAomzjjGRDP8YzjZJRkMD16OqWVpexP3Q8yFGoKGdN6DA0cG/DxiY9p4NiA4spinFROnIwLIbOgEmN8z9jCXF6h5JGODXn717d5rcdrrDy5kmDXYNr51wgNOts508avDV+f/xqVqEIv69EK2RQIJ+ni34+iijIKOccLD4fTvWkoB9MOkpKfwp4re4j0iTQZ+bXRPqA9lfpKXjv4Gi0btKSlT8vftS53tXaCwLjIcSw+thidrKO8qhw7dTnZ0hHUsg8K1JSKCbTwDaWwVKplLIuAjJ3cgEXnxzK1/VSmRU/jx8QfKassI6U4DZW7Fw9FDGKh2zlaVD2JrLD+fSEDuSVaQv11hDfwsNjvqHJkUJNBPNj0QX5O+5mlh34g7lRHsgoqKdNKZBVo2R2XW6/noz4IcAlgaPOhPN3xafyd/bmUd4nrxdc5kHqAD377gLgbcfg6+RLmHoZaqaaNXxsmt5vM3hNKNJW3OuaW3xUyMjpKSMjM4cffdHx65BDpZXE81KoHE9pM4NnOz9I9tDt6Sc+3l75laexSVpxcQWJeIipRRYhbCA4qB5p4NeG7XzVUVJoHP2RAWyUxvJs/Xo5exATGMCpyFHO6zKF3eG/c7d05kXmClSdXcvpcOGo5gFufhdziKvpEeWPD/y0I8l+dN7XBBhv+cbh48yIjtowgKT+Jpf2XMrntZKtZjNuh7+snrHLaqxQCe17vYLF96fGlzNw1k03DNvFoy0d/99z/Tuy/sp/en/fmyKQjdAnuAhioXucfms+8g/OI1C2uQ/HXOmo7GbW33a3TISMT5u3AulmtYf9+hq3qTVHrJpT4emCXPQNR08SsTl4UILqRGwsmNL2r+TX/uDn9I/qjujGN48n5VnoGjBPRky/EEq80iNG5ql0perGItw69xfu/vc+B8Qdot6odU9tNZfOpWNroV1RfnwJR0iMLMqeU5noDAgLSvLsrn5q7/jInUorqks+4Kxhi7xWcVPcnwDWAtMI0il4sokhTRMjiEENtOgLps9MJdA0kckUkCkHB+ZzzuKpd6S0eIK/EkqrX20XFN3Na02VtF8oqy2jv357tl7eT8GQCAS7m2bwnfnqCFSdX4KB0oEJnEF90VjlzZPIRHtv2GKVFXvT3/oDz13PRK6/jHnCa/VlriJ0SS/MGzS3OLckS474bx7cJ37Jv/D66hXT7/Qt0Fzhy9QjdPjOcQyEoEAQBnVSzJt30O1DKluVeOjGfsoCXSS1MZUWvHRyLdybuahYF0iXSxDXI6lSe7/o83+5zx12KtiA5MEKuNrebBil4ul/LOtWtZVlm/PKDXLth/4eejz8CWZY5lH6IJceX8P3l75FkA9VtsGswM2Nm8ljbx/B29Gbu+sucTCm6pT9ONv1dOwtm2GJ4rozsX3GKGYT6yjwcNpuirGgycvWE+zrQrmUhZwq+Y+ulrSTnJ+Ni58KgJoN4uNnDHDvRgrgrZWbnvNu1yS3PZcLiRMorLLNL3i4qNr/Q9o8smw33IGylUzbYYIMZ1setJ3p1NDpJR+yUWKa0m1JvJwMgwt96b0Vd25+KeYoRLUcw6ftJZlSf/ySsP7uexp6N6RzUGTDQ3PZc35N5B+cBkK5YC9SvFMqyX0Owur2u96bnaqCoCCZOJMwlmDRXiQaODdBpvKwy0txt8318egleBc8Tf3wwZ1KL63YyAAQFTjTCzc5Ag1uqLQUgyi+KQk0h+RX5ANgr7SkUzhLc/CdKuIgeLYKsw7vgIi525k3qMvJd92lcyS7/Q04GGFuLHfCo6o9KUCHJEpsvbCbQNZC+jfriaueKIBj0LkRB5LnOzxGfE4+r2pUSbQmiOqdORh6FqOCTQZ9wKfcSYe5hOKgcmP7jdIv+iWUDltHcuzkVugrUYrVOSVUZwzYNY37nzwko+R9nU8uQqpwRKppQkjqaRg69eHjjwxRriy2uSRRE1j64lk5BnXjom4f+8ueua0hXXr3vVcCQ1TKydhlRJCda7dsoki5TpCmilcsgVn4vcy6tHEHvjqccQ5R+BaK2IW8cfIN+MSoQsDiGEYbyTRWJ12VmrUkgPs1yTcCQgdGUuf+h5+OPQhAEeoT1YOuIrWQ8m8Gbvd7Ez8mPa8XXeGHfC/i978fwzcOJbHbTQgtEIQoM7+KHq4MCkJGFUsq4gjUK6VD9JNKzBQ4ebUZcapmhlCm5iNXfi4xt8gqJTyUSPyOeOV3mcDH3IsO3DGfD1QlIsv53NX17O3rTKtDLxk71L4LN0bDBBhsAKK0sZcK2CTy2/TFGtBzBicdPEOkb+buPN6NfiNUfkyf6h1gdLwgCqwevJsg1iEc2PfKX02/+2SjWFrMlYQsT2kzg/NVSZqw+yaC3jlOV8hJddLuI1C0GQE/FXTkJxuhrffszrGLWLCgqImzYFNIL0/nt+m+UCSm/+8c+Pr2EZ9ZeRKltjq7KqTpzdZt5ygaBNi8nQ7RaQiK/Ip82fm0ASClIAQzN5TIyhZpCXGiOiBK9Qk2uewsiKt4zY54C+Dn157u6/D/TgGkizcU3Zy09dEdZ910I249nMzFqIsWVxUiyxIqTK9BJOsZEjsHXyZcmXk0QBIHj5W/DbXqQovyimN1pNguPLmRej3n8kPgD35z/xuzcoiBy6LFDOCgdqJKrUFSrNCfnJ/PhjrOIgqKWcSyCDF2d55FVmsWEbRMsGnLBsObfjfgOXydfBnw1oF7MS78Hb/R8gw4BhoxmgaaAJp5NTPuMfRu1+05kZDKU67lSeIXK3PsQEE29ASAiIhKinwjAglMzaNr6IIJD8m2fGwEFkgyz153h1BUrQi1YJ7f4u4xhX2dfXr7vZa4/e52fRv9En0Z9kGSJby9+y7hd95Hh8hre3gV4OitMzegz+ofy/cvR/Dy/I7/87wECnSzFDg29TxEWiusyAnpZz+yvv2f92fUEuQbxWo/XODPtDCkzU3ipz2h0/h9XN33nINlf5r7OCbi7F93V9fweoUQb/rmwORo22GAD57LPEb0qmm8TvmXDkA2sfWgtTnZ/TCgvMtSFxZNr2FhiItxYMuX2bCwuahe2PLqF1MJUpv9kGdG9l7ElYQsanYaO3iOYtSaBi1erUOKOCnfs8MATQ/RVgcMdnQdjWZSAZXlB/SHD+vWwZAmh4W2pkqooqSwhTTRkV37Pj71RM+VWw8Vcxbi2/oeIEme8xWjT2NNZpwl0CcTLwYvEvEQAE5tO0Q3DOJPhIxpeb2WeeunAS3e1AmPv/3MMGMH0x2DQC7Izi39MRyzugru9O3YKO7LLstmVvAu1Us3TMU9zLvscaqWaq5WHua9zwm3F4V6//3V8nHzYdmkbI1qOYOaumdwsu2k2B28nb7aP3I4kS7ioDe+Vkako87LI2kgy5OQLbBiygW2XtrHg1wVWr8vDwYMdY3ZQVlnG4K8Hm1ir/goIgsCB8QdwUhq+XxLzE2nta3Agi4VzxClmkMdxFKoyohu5MaTXDQqIQyWqUFTV1PXXQCTIvj2yLGOnsGNVwss4hW7E3qHoDs6GgF5vz3OfJbI/IcVi/71oDCtEBQMaD2D32N2kzkrlxa4v4mHvwaWy3Wwu6M8PlZ3JcJlPsRBv8d3Z1N/VwnESBBkPNy0uQmOrToim3IOJ2yfi854PD33zEF/Ff0UDxwY82/lZDj/xBXvmjmDCQxmoQ77kzROPE/xhMB0/7ci7v75reqatwUgN/HuEEm3458HWDG6DDf9iyLLMqlOreGTTI/g6+7Jv3D56Nez1px3f111Nnyhvhnf1p0+UNz5ud26i9HHyIdw9nNcPvo6fsx/RAdF3fM+9gNm7Z9PQoyGxcUFUaV0s2F+M3P61t1nDrRoadyPqd9sMiQyPed6Ed97h6/iv+SX9F6a0m8LRrB28PXgyos693s33q/Zco0x7a3RcQKKSKvIpIw1ZqEAlu4FgMC7Vsjeqsk7kCyfQCtmEe4TTM7wnu1N2U6QpIik/iWiPYZRl9MNR18aK4SOiQM118WvTthslN5h3/7w7ztfXXU1sUiG5xZXcjRL7nVD7/sjInEgqpU1gBCllB5FkiQJNAWMix9CyQUsWH1tMW/+23Ci9weWi42yf+jqj7guy+jzYKeyI8IjgzcNvMqvjLPZd2cflvMsMazHMbFwjz0aUVpbyc9rPtPBugbbMn0D5UbO5UX2lrUJceKp3V/SSntd/eZ3OwZ1p5GnO4AUGQb+eYT1ZcGQBcTfieLTFo4jCXxOLtFPa0TeiL6tPrwYMuigN3RtSoClAK2STI+4ilfX0bdOAF3vOINQ9lK2XtuIld8Ie/+pnyQBRgLZhnrw6aBDfJnyLUqHk+k0lDSofqV6LagFGKz1NAgLIMj9e+IVmYRWEeYSZ9t1KbnGvkVO427vzQMMHeKbzM0T6RJJZkklaURoXbl5gzZk1fHP+GwQEmno1xV5pj5+Hmt1xuQgYco8Ghj+BD8Z1JL9QQVahltrPhoyeIuLJEXchCiKZJZl8df4rFv22iLPZZxEFkVY+regc3Jmxrccys+NMIn0iySjJYO2ZtXx47EO2JGwhqyQLD3sP/Jz9zEpwf89vgw3/TNgcDRts+JeiSFPEhO0TWHBkAVPbT2Xzo5vxc/H7u6cFQKRvJDfLbvL2r2/TP6K/RVPsvYYrBVd4bs9zaHQaHIqGosS6MXInx6Fuas7aI2qawY1bjMeuC+2fGM4NIZ0J2yaYGJ++T/yewS3uY06/B+r9Y38quZisAu0t8WKZAk5wRjWRLHE73nJ3HGR/hGpj1fhqJ/uQI+7CUeXImNZjOHfjHIeuHkKqCEHMnI49gdVOhpGLxnh4S+YpGZnX73/9ruas08scS7y70o76wHgvygqDKJVuUCwkkJyfzKS2k/Bz8SOrNIuDqQep1FdSqC0kzC3MjFHqVjT1bkp8Tjwbzm3g7Qfe5p1f3yHKL4pm3s3MxvVp2Iftl7YTfzOeGNUCBJ2nmQFuXL8XH2mIj5uaHqE9iM2M5aPjHzGi5Qjc7d0tzh3gEkCUbxRv/PIG+RX59Ivo97v6s+4GAS4B2CvtDYxdGFjunOyc0Oq1pjEH0w8S7BrMpLaTCHAJYFPSJ/jLAzHpoFdnGeYObUjn8BYMbjKY7y59R6DmaezlgFvWwwALZ0MQca5y4r3TfdBpyujeuI/pmv8JxrBCVNDSpyWT2k5iZKuRKAQFF25eIKs0ix3JO1h0bBFX8q8QFRzGoNbNrDpO/h727KnlhBh6L2QuK+ajE3NRKVSUVZWZznet+Bqfn/ucJceWcD7nPCqFimbezWjr35YRLUfwTKdn6BDQgSJtkWHc8SWsi1vH1aKrOKocCXIN+sucWBvuPdgcDRts+BfiZOZJ+nzeh3PZ5/j84c95oesLqBSqv3taZujdsDc7k3fy2ZnPGNd6nFX16b8b8eklLNqexid7ruGsa0duVSKOchgOWDdybofaZR63cxosGafukCURILsS3oobhr+LQUQu0ieSxPxEglyDeKDhA/WaJ2A1OooAFxVvoMEgCNhQegKlcKvDJZiyEpoqDc92fpbssmzWxa2jif4lHAiutW61rlM2GD5p6oWUyZlmRxzceDABrnd2RD/bn0FGvvaO48B69Pt2MNwT8JCjKXbcRpW+Che1C/eH3U8Trya8d/Q9ugR3Ibs0m7gbcTwZ8+RtDa2uwV358NiHNHBsgL+LP6tOGwT9HFQONecUBEa0HMGy2GU00Iy34twa5p+WU0FIAwf8POwZ0HgAG85uYPvl7YxvM97qM9/Eqwm+Tr68dvA13NRudA7ufNfrhbuLGAAAIABJREFUUF90C+nGwdSDpBelo5N1+Dn7UVZVhrPUiib6l2gkPcnhS9ko7IqY2mkEro4SX6b8Dwf8ELFDo7zM4vFdiQoz0NX6OvsystVIfjiqQ5TNvy/MMz21HVgZZ62Gn5d9wYHMoyxIPUF8WhSr92RwKrkYPw/1X0Jn+1fA29GbfhH9mN1pNhEeEVwtukpGSQbxOfGsOr2KQ5k/0K+tL6882IOB7QNMjtOt2ZtWwS68+Egjnu35CH7OfmSWZJJdlo1aUUNAAAYNkrTCND6L+4ylsUu5lHsJe6U9EZ4RtPRpycPNHua5zs/RPbQ7OknHloQtLI1dyspTK0nKS0IpKglxC0Ep/hklojbcq7A5GjbY8C+CLMt8dPwjRm4ZSbhH+P8XSsvfC6WopG/DviyNXUpsRiyjIkf9ZdHV3wNjQ/T1vApkSY0DAfjLA8kQN+Ihd8YYdb2T0VpT/kT1691lNIxj75wlEcguLeCSbjX7x+9nf+p+HJQOiKJIua6c4S2H1+OqDbBWVtI+KoXvry41jfGQOuIkBUAtg1pGTzHnyRZ3odFreLX7qwiCwFcnjhImT0a8pSfF3CCUULjHka01r/1OL0pnbOux3Amr9lyj3Kq2iznuqhzNCow9NaW6LIqECyTmJTKr0yy8Hb05l3OOxLxE8jX5FGgKaOrV1NSXYA2ualec7Zx56/BbLOyzkE0XNnGt+BoPNXvIbJyDyoH7Qu5j2+kEHAiyOufc4ir2VOs/hHm7c3/Y/Sw4soDUwlSGNB1i9ZmKDohGo9Mw7+A8Wvm0sqrD8WdhRCuDs6TVaynSFtG9wTh8i+fhSBBKXHAggPgUOxxcM5nY4WHs1Ro2pM4m1+47rkrb+f7K5zzR4QmT0+SiduF8upasAvNSIKFa3NAiACAI6OxlRvlXEHxawZ6WC8gsqKS8Uv7LtTP+KqgUKtr6t2Va9DQebPogOknHhZsXuFF6gx+TfuTDYx9ytfAqga6B+Lv4A9azN65qV7oEd2F69HSGtRiGk8qJ1MJUirRFOKoc0Uk6k9OhUqhIzk/m0zOfsvzEcpLzk3GycyLcPZyKEl8uJ7TEpWQ4Xb0n0jLAn/3XvmXZiWV8FPsR8dnxyMiEuIWY+rRs+L8Dm6Nhgw3/EuRX5DPq21EsOb6EWR1n8fUjX+PteG+LI7nbu9PGtw1v/PIGSlFJ99Duf/eUTHhnayKZBVpuFRdDVnJZ8SYeylCQ1NUN3WKdhqvRUbgbMbn6RtqN78qVTvPe0FH0COvBnpQ9ZJdl09izMXHZccyInlHP4xlwq2FSoEvlq/ivTPs1QiYB0kBkweBwIRv0MLIcPqJYuope1vPf+/5Ldq49Z093QkB1m6yMgCDLOIgBpOm/M9t1regar/Z49Y7ztVbuVVfdfl2qynez9p5yV5SyI1d1++kQ0IGm3k0Jdg3mg98+oFtIN26W3SQ+J54ZHWbc1nGODojmp6Sf2Je6j/92+y/zD8+nc1BnIjwjzMaFuodyqfAo2TdCbvMZqxFD83P2I9Q9lNcPGhrPOwRaatoA9ArvxeW8y7z969v0Cu9FsFvwHa/990ClUDGw8UBWnFwBgEvRRJwItniuDiSdomdrdwY1GYSD0oFdKbtwUDpQqCnk01OfMiN6BnZKg5Ea4OHAnrg8ZFnCkBnTIyHh7laGVqvGvE9HJp8zrGuxl9wuK7lZKoBgZF8CWdKTV6L7xwrJ+bv482DTB3k65mkCXQNJzk8mpyyHs9lnWXlqJd9f/h6lqKSpV9PbGvk+Tj70btibWR1n8UC4IQualJ+ERqfBxc6FiqoKynUGEgG1Uk3CzQRWnVrFhuOH+O14azILtJRrJQpLBPJzwvls5H+Z0Xk07vbuHL56mKWxS/nw2IecyDyBVqcl2DX4nsxi21B/2BwNG2z4F+DotaP03tCb5PxkNg7byMyOM1GIt9E9uIcQ4RmBJEu88csbdA3pSkOPhn/3lDh2/Rjr9mejwNlsu7FhWfLaTob8I8msJV84gb88wJSDqMtgvZ1xa4yy6yhFRFmvsiwZaNbiHK8+8DQAsRmxHM84Tr+IfmxO2MxL9730p2SKcspyWBu31vT/WiGbKUdOcjLYBy+dEz755zjkOh9vzzJyy3MBGNVqFF/sqyAjX3PnaxJEZElJuvC52Wa9rL+rPg1juZeBjUeoV+aipqzNSkS89hSrj+VKJDqhkOTkhvx4VEfOTTdkZT4abnC1+Cq55bm08W1jVUTPCFEQae/fnrcOv8V9IfchI7Pu7DqmtJ2CWmkeXe/XrBOfHTmCoHev43MEpRo9I+8zRK9b+7amoKKA+Yfm07thb6tOhCAIDG4ymP2p+/n0yD5SLrfhs303/pJyIl9nXzztPdmVsotG0pMorTxXgqxi6eXhjI4cTb+IfoiCyN4re3FUOVKoLeTL479yPSWGT/dkcC1Xw7DOfkiSQF5ZCTn6k2g8NhBXshl/eRDmDeIwvkcov+ZspDinu8UzjSBSkX6NT7ZEMqTvTJIyqli0PY1Ve679o0qr7JX2xATG8FTMUzwQ/gDlVeVcyrvEjdIbbL+8ncXHF5NRlEGwWzC+zr51HkcQBELdQxncdDDPdHqGdv7tKK8qJyk/CUmWcFO7UawtRqPTICDQSPc8drIftVXAZRmOXiqkV4tGDI/qy/To6YxvM54A5wBOZZ3i49iP+eC3D/gl/RdKtaUEugTiqnatc0423NuwORo22PB/GJIssfDIQsZ9N44WPi3YN34fMYExf/e06o3uod05lnGMZbHLGB05+m/70ZFlmWWxyxixZQSu+miLXgwZPZWqFHLEXRRqC5FkCSeHKrKlozR3vZ8KjSFiWD/jVqaKIlLEJVwXv8FPHogx7m5t/K0q4qBn4xPDTXXQiXmJbLqwiRnRM/j83OdMaTsFN3u3378o1SjSFJmi0kb0v5jNF012MTXrNL1//oK1bXJo6d2S9KJ0ANr4teFkfAMqKq3RkJo3g4uSHq1dEtflHyxGjms9Dk8Hz9vOz1juFZd+g5IKc9aou7kf2eymkjzU+GAUO7MG43ZPuQtylTsV1SU4irKOnC/dTrvghhRUFHA+5zzT2k+7rZMX4BJAQUUBi44t4tPBn7L69Gpyy3MZ2GSg+TkFgRaB3uw7m4+1zwaAtkqifaOaEqDeDXtzIPUAK0+uZHTkaBNVbm0oRSVNnfpy+lQMOUV607X8FeVEHYM6cvzacfLyvKw+V0Wc54p+C3tT9jImcgx9GvZBJ+k4kHoAXzGGCO37ZBVUmuYYm1zECw835NkHGxMUeJPV8e/h42pHnjYdd7lzrUyiREK6RDu3MRSVKkzE0jUnlwm7mcbGz77jzNc7mFPZgczCSsq1Epn5WnaezmXb8WzOXPlnOB1GR2FYi2FMj56Ol4MXl/Muk1eRR1x2HMtPLGdH0g5UChVNvJrctndPKSpp3qA5w1sO5+mYp4nwjOBm+U3SCtNQiSqc7Zzx0060So6h1Ummkj5fdzUeDh50Ce7C5LaTmdp+Ko08G5GYl8iKkyt4/7f32ZW8i7zyPHydfPFytFSPt+Heha3t3wYb/o8ipyyHAV8O4MX9L/JC1xc4OOEgIW7WxfLudShEBV8O/RJ7pT3DNw+nUl/5/30OpZWljPp2FDN3zUQv68mz3wjUqBAbX/PsN1KgKUAv63FVu/Jyh1UE6SZQVGQoA7jb0qfatLgqXGkszcFFbkwJFzEK+dVoVeitHttgMonYK+1N28Lcw6iSqkysQ7fju68Pajsr9qLhfDnO4CjaU+gg4FsCCkGBp2ONQ3D82vFqAbRb+auMys7VPRWyHkGWKdd+ZrWJ+o2Db9zVHCNDXfBxdcaQmbgz1XBtqHAjXjmbs4qnkNHfUaPB8GrIGkqyYVtz8UkcVA6UVZURlx3HzuSddzzv/J7z8bD34N0j7/L2A2+z/ORyDqUfshjXMcKPGQ8pKOaC2WejZk4G/RPT9ShUbHp0EwCPbn60zmdq+2+lKGoJAUqyISJd+1h/FraN2kaR49bq2dc8VzIy6Yo1SLJEfE48QzcNpUqqYn7P+czpPAefytHUFpy7dY6Dmw7m8MTDVOgq8BF6YvpcYbhHMgJJmRUgKzEQHNSsnQxcCmjO+aDWbIuZhCgLJsFA46iich0nUop4Zu1F4tNL/vR1+avg4+TD3G5zSZudxs4xO02ZotNZp5m4fSJ+7/sxa+csEm4m3PFY7vbuTG43mZ8n/MzV2Vd5s9ebhLiFUEoKdSm1S7LM5wczLLb7u/gzPXo6u8fuJmdODp8//DkBLgG88csbNFnWhFbLW/Haz69xJuvMP0pr6d8KW0bDBhv+D+Jg2kH6fN6HjJIMtg7fyrToaf+YUqm64KhypEtwF946/BaFmkL6RfT7/3buizcv0nN9Tw5fPQxAM69m3NBe5qZ8DDvZBzvBkQrlJQpdV5Gm/YUqqQonlRM/PnyeVd8LOBAIt4mC14VbNTg85a6o8UGspTEho+dWzY6afTIKhYYJ94eZtlXqK1lxcgUT2kzgi/gviAmMqbNOv75498i7APgqYwirfI4i3yfxVHZFLefSLS6RbT39aezZmPiceNN75vWeye4z/4+98w5o6nzb8HWSQNggoKIgQ1DBgeAetVqr1lG1zmrrRDtcVVtb29pf99A6qrV1VW2to+7dVqXuTVVU3AqIiqIie4Uk53x/hARCEkBx9svlH8LJOSfvSU7C+7zP89z3XcSCsiSZoHMObxqWBJKc5Ow0NJozzFn2FbsrnUD09SVdZSxTG5say8etPi7TGBdF3rSQQbGMgICSSqQJx8kQTpMqHMNRqo4tFbDUf2P6XoCzrTs7Uz6nQZUGZOVncT75PMPCh5WY1VAqlAS4BfD1/q+JCIsw+BkMbzDcZLW5blUfUmy2cSG2AgrsTc6lUov0bVnF8LuTrZPhM5WSm0KnGp1MjjHnmSKZOdfDQCFT0DmkBV8fG4qtVAk5Shyd7xHD/0jlZMFzS8SnxhOfGk+PkB60D2zPhoN5SFrjTIIE3EpVce5aFl4VlIT5+NO3Tl82W1SkKirHULSJXEASJLYGV0JlH0iOnWUfDUmCyJPJuDooCPZxsrjf04YgCAS5B/FavdeICIvA0daRC8kXSM1L5cStE8yOmk1kXCRKuZKaHjVLVYlytXOlpW9LRjQeQRV3O45e0FroQRO4lnqTY/c2sPWgLUt23uH4lQxyVFp+3ZnIgh3XOZuQT4fgxrzTchDjm4+nUZVGRrK5S04t4Vr6NRxtHfF29kYmyAxqgM9aedt/FWugYcXKfwitqOWrvV8xbPMwGlVtxI6BOwivEv6kh/XQ8HHxwc3Ojc/3fk7tirWpU6nOI3/OVWdW0WlFJ+5m30VC4gX/Fzh26xgaUYNKuE0177vESr9h43qGuMxo8rX52MntuDj6Ist35nIjJZfi5nOFFPOKKIHiK/BFg5CSlKeUlSMZ0OQFw+/2Cnu+O/Ad7aq3I+ZODBXsKzyUoM1WbstXe7/CRQqlTv6PuuBK7oxcrES6vBXBN/7lUHMlzkpnLt67COi8E354+TNqeMtYczoST/sqhPlVYHfOSNrV86JLg6p8E9ORO8I2Zv55h4M+YN+kJZdTLhs9t1pUl9lP4/iVDBJTcrlf4z4BOV5SZ1KFY2QIp0mSbSZBtpgq4ivIcShTEBnq58J51QrqVq5LzJ0YbmTc4Hm/5wmoEFDiccGewUQnRbP45GJ+f+V3fjjyAznqHDoEdjDZ9znf51h65BBoKlDc2K5ONWeTpuZqrtXwdPDksz2fEVghkPpe9Y0eN9dEb+lcDwNPB088nRUsvDKKG7I/iNWsZVTz1zl8/TCgy4qJiJy+c5o8TR7tA9tz5moeN4u9p1LBZyuxoLypgqOCJoFViUlQkVRMkao0BGSoFUpuK2Oxl4yV1IojSjq/llyVhsY1TL1KnnZc7Vx5IeAFxjUdR/3K9bmdfZuraVdJykpi7fm1/BT1E3ez7+Lv5l8mMZFgLy8aVnfl0PlUVBpdc74eCS2C7V2Sb9YlOV0iN18iMSWPI5fSuZmiIidfNCrV83F3IqRiCD1CdLK5rXxbodaqWXu+UDY35moGqyMrcCtVRbZKfGaVw/5LWEunrFj5j3Az8ybtlrbjy31f8lnrz4gcGPnUG909CKObjKZf3X4M2zyMC8kXHtnz5GvzGfv3WPqt60eeJg8ZMjoGdmT31d2GfV6u+TKxqbH4OPtwNe0qKq0KG5kNMSNjqOZajUtJmRaDDEEoaIw0KSsovSSn6O+WJrgSEjnEkeOw22i7s9IZD3sPrqZdpaZHzYdWOiUTZNjb2OOnjSgYm9zwvyTA9oYRONg4kJiZiKzgT0+GKgNJkmhRsyrpHjOo12QzUwbXws7pNvdy7qHK8qKeZiYN2cL4gbOoqAmlklMls89/M6NspTwD2ug+E4VlZ+Zfb9PSI90//fXp0VD2UpmhbX0Z0WgEO+N2EuIZgovShW/2f1PqcYIgMLvTbNLz0llyaglfvvAlM47MICoxyuy+U1/tVHANuntLb2w38AXz3wdvN3qbIWFDeHPrm0TfijZ6bECbqghCgVdKGc71MBjecDg9gnsYfp95ZCbjmo0DdM3/+hX1KQenMPvobAa28UYuk1FYEmXadzNzawIxCZkMfcHXZN/SkAnQrLo/1+S/IQpSKeU6ur6fVYeSmLF7/TNb2mMjt6FX7V7sGryLi6MvMqbJGFyVrqSr0pkdNZvgn4Np/VtrVp5ZiUpTsj9NPT9nvn69JnKZYLiPBEH3HunkcYUi35OCUeGfpVI9G7kN7QPbM/fluSS+m8jBiIMMCh3EpSvVECURUSr5eCuPD2ugYcXKf4DtV7YTNi+Mi8kX2TloJ5+2/vSZL5WyhCAI/NL1F3xcfOi9ujfZ+dkP/TluZNyg9W+tmR2l84XwtPekuW9zdsTuMOwzPHw4u+N3E+wZzOWUy+RqclEICqLfijZIkNo7pJkNJCTyybc9wyXZlIJm5KKTkfIrQOn/TF+STyYtL83kcX83/4ceaAA42zrjRKBJcCUg56Z7EHJBTnxqvKGZU0IyKFDVr1yfk0m68hh3e3cS7yiYujYTd5qgpBJnfBpzNHwuGWnmm76nHpxa5nEWLVWypPZl9jjkOBFotM2BamXKZoT4OFLX15nRTUajFtXUr1yfDFUGu+J3cej6oVKP93X15csXvuSnqJ9o5duKcK9wIjZFmJ3kNQ6syNiedqQKUeRzl9AAe2YOC6GurwXHekFgTuc51K5Ym56re5KSm2J4rJ6fMz9EhNAo0BVPZxsaBbqWeK6HxcreK6nipCvNUotqVp5ZSZ/afRAQ0Iga5AUStO9se4eL2dv5ISKExkFu6AII8+/Hsj03DdfTOMgNpVJFOmcBsXACXLCvUCywinjRj2sf7eOS7buohbQy9ej8tus6Nl/Z0Gd1H25l3irnK/LkqOlRk+kvTefWe7dY8soSQ5b8yI0j9F/Xn6rTqzIxciJXUq5YPEfx+6hxoBuz36iDn2Oome8L4/dPlCDudo7Fc8sEGS2qtWBqh6lUs2tscr7SjrfyaLEGGlasPMOotWo++ucjOi7vSMOqDTn59kna+Ld50sN65DjZOrGu7zqupl3lra1vPdRVw51xOwmbF0ZUYhQSEk2qNsHT0ZOjN44W9BEIfNjyQ0N/w7m758hWZyMTZBwZfsSonCvXeWvBT7rxyQSQEJF5L+Kgdhgqx72kuk+mYaALns422NsKJU5gimN5QiygIZN04TSpeakmj/u7+XM1XRdoxKfFP5Tm+piETKpnz8AWD5NxSWiplhJHvpjPvdx7Rpm2E7dOABDmFWYUaCRdrwNSYWZEksmRBDkpV3pSTzMTFykUeZEJxdIYY9lbS+hWNkvOBIHlACSLWFykUOppZtJCsw2BkuvVdecTGdlJJ8RQxbkKA+oNYF/CPvxc/cqc1QB4p+k71Peqz6i/RrGg6wKdz8X+b83u2yM8nKGdJc7IPyYqMYovVl5h4pKLFpuV7W3sWd93PZmqTF5b9xpasTBArufnzJTBtVjzQThTBtd65EEG6ErxDkYcNGS/sjMrcvdyV1qJfxOqnYmjWMeQZeq/tj+pRPP94GBc7G2wlKXQTzbr+Tnz/eBgtn3Sikn9XTljOwaN3Xmc7WW42CtwVMpwsVPg6qAwCqyclc5c+iCSG/a696u0YMOJQBzFOlyMeY5e3x+n6Rfz+WjdJj5YcoE+30eX+H48jdjb2DOo/iCODj9K9FvRDA0bir3CntS8VH448gM1Zteg3e/tWHtuLWqt2uR4c/dRkJeTIcizhEygQDSidKpXdjA53/0cb+XhYw00rFh5RrmWfo02S9ow9dBUprSbwp+v/UklR/NlJf9FaleszS9df2F5zHLmH59f7vOJksg3+76hw7IOpOSmIEoiA0MHEpsaS3xqPGpRjVyQ83Xbr5l+eDpt/dtyKukUGaoMBAT2DdlHw6oNDefTilr23v6d8IZRKJziQJ5OWHVHTsrf5vC9lShkClJyU/iuy1sMesGHii62JTpXF1cSKqn0R+fAfRag1IyGKInEpcY98OsGuiBj3KLz2Gp02Yyi3h/6kXc+u4JMlW5SVTTQOHDtAIChHjwpKwl3e3fUuR6G8gcDggDY4E4TwrRzcZLqGh66l3uvTGONu52DpbjUknpXUZJlewnTzsWdJgXN4CVjo8jnvHIs/l6F53y3+bvczLpJG/82ZKoy+evyX4aAqyQUMgXzX57PyaST7EvYx6RWk/j2wLecSjpldv8XqwyjgXYeNqraJGeqOVaKMpKfmx9/9PqDyLhIPtvzWanjedQEVAjg9x6/4yKFEqadi5QbhEysQAVJ9/47S/WQkBAR6bK8C2funCnIVpl//8xNNnvV7sWWobO5KiwmI1dNZp6GbJVIZp6GrDwNA9pUNQqsnJXOnJvwN3ft50ORz2TxxQ5JEsnjdsG90gwllbDXhHH4pBdRV9JJzlQ/k0pVesK8wpj38jySJiTxc+efqeVRC4CD1w/SZ00fvGd48/HOj4lPjS/xPMVL84RimaX7LdV7EqV+VkrGGmhYsfIMsvniZsLmhXEj4wb7hu7jg5YfmJX9/K/Tv15/RjUexdhtYzl289gDnyc1N5Vuf3Tjk92fIEoiCpmCCc0nsPLMSrLys1BpVTgoHJjy4hT+t/t/dK/VnaibUaTk6UpMtg/YTkvflkbnPH7rOKl5qfRq0JDjjKJ1m4N0fj6JdEHXxOpm58aLAS/ia9uK8YvPcz4xu8SeCwAt+UiIBZMbiVwSyeWmidStXg4UdLK8GlFjdB5/N38S0hIMJV7lLZ9atuemQcJVjz7YsFfCSfnbuOSe527OXQCjgPj4reOAbuICcCrpFB72HqgV1y2udOqDGV/tUKPt5oKq4lhe2ZRQk0EGZywEbxIZnMFTbE1RKdWS3LjlMpjY24s72n9ZfXa14bE6lerQKagTJ26doKJjRVxsXSxmJorTxLsJIxuP5JNdnzAwdCDBnsFEbI4weY9B977I7lOatn1ge75t+y3f7P+GjRc2lmlMj5LXQ1+nucOkYq+53KhfRpREbNQ1iJh7gGyV6eugx9Jks5lPM7pVmllwLgz/W3qtHG0d+ff9n7jr9hUpHEFDNghFsmGiiFwScVO5U9RzRSjyD3Tn14gS7/9+mlNX002e51nARenCiMYjOD3iNAeGHqB37d7YyGy4l3uPaYemUf3H6nRc1pGNFzaavUdNS6pcGdfVj8ZBD1aq96RK/axY5v/fzMSKlWeYfG0+47eNp/vK7jzv9zzRb0XTolqLJz2sJ8r0DtMJ8wqj9+re3Msp26p2UU7cOkH4/HC2x24HwMvRi1GNRzHt8DQAVFoVlRwq8eULX/L+P+8zoN4ADlw7YOgtWN9nPe0D25ucd0fsDlyULobSgjb+bfj7ss43wc3OjXs595jeYTrL9t6yuMJeFJ0jhgwJEb1DtT1VsKMyl2RTSOEIKu6QQhQn5W+TIRRKyBafgOu9NJB0ZWjlDTQs1T8LCNgqBDKEGJKdBNLy0rBT2OGqLPTcOHtHl3kJqBCAk60Tey7Ec/NSJwRVNV3wUkKwUbxf4ueon0sdq74Z3NwZbWQ2FHWN1qP3dYiVzzLbg1IU3b4aGgY6M3NYCO3q1KB9YHsWnlhotN97zd8j5k4ML9d4mRxNDuvOrzO8FqXxTdtvcFG6MCFyAou7LeZk0kmmHZpmsl/c7RyTrFBZ6tU/aPkBvUJ6MWjDIC4mXyzTmB4lTtQw2/ejf/8rSOHU0/yEg6Y+GvOWDYzv5lfiZDPpHibPUdJr5WDjwL/vrEHjNZ8DirZEy980fAazxKM8Hz0NybZqqf07AgJ5+QrGLjrLy4tGc/ne5RL3f1oRBIGWvi1Z2mMpN9+7yZR2U6jmonOc35ewjx6relDth2p8uvtTrqVfMzq2eElV9yaVy1Wq9yRK/axYxhpoWLHyjBCbEkvLxS35+d+fmdVxFhte3VCqG/L/B5QKJat7ryYzP5OBGwYiSpbLj4oiSRILTyyk+aLmJGYmohE1tPFrQ2v/1sw8OhO5IEctqgn2DGZ88/FMiJzA243eZlf8LpKykwBY2mMpPWr3MHv+HbE7eDHgRQ5cO4BSrqSZTzMWnFhgeO6hYUOp71Xf7GTQEvrV0eIru55ia2IU4zis6EqMYpxRkAHmAw2AhPSEh9IQbilLICGh0YKLFModR922qk5VydPkGfa5nX0b0DV0hrl258jRMNJSKqLAFQEKgjBTgzwJLVnEGpqCAeYfK72Erp6fMyHejmbGKiKITrgQUrjijISImgzOGIK3kgzIip7rfPJ5QwA5PHw4h28cNjI+axvQljCvMBLSE3CwccDZ1pnvDnxX6vhBJ0E6q+MsNl7YyM3Mm7zX/D0+3/O5SVBgrl4dRAIqm3psFEUQBH7t/iveLt70WNXDUPL2pAg0cx0SWipV0H3WfbTb93BpAAAgAElEQVSDjT4XemzkAk2CXJn9RgjdGlcu8TkepLbfwcaBY28eI7RyKBnCacNn8F/lONY1bF3m69P7eFy7WoOaP9XEZ4YPP0X9ZLbP4VnA08GTCS0mcPmdy2wfsJ2OQR2RC3KSc5L57sB3+M/0p+sfXdl6aatRL5CV/ybWQMOKlWeA1WdX02BBA1JyUzg07BDvNH2nRJOv/2/4ufmxvOdytl3ZVqYSlBx1DhGbI3hjyxuotWo0oob3mr2HSqtiw/kNCAhoJS1t/dvyap1X+WjnR0xoMYG/L/3NjcwbAMx/eT4DQgeYPX+GKoPDNw7TIbADexL20MzjVd6Yf4S6OStoIP6EnboWX7X9Cih5kl7896LmfHrMrewXp3ig4efqB2Do09D7WjwoA9pUNVm3lQokRrPzJMK1c7lYMQQADwcPkrKTDE2+Kq3KoJzkmtPT4H+gO4dusufmml0wudcHkaKhPMxWbmt4zuuZ18s03hGdfJHLitSFU2gnZlwSJZLKMaIVww3BW4J8sUm/TFF0mSdbstKrMHbROWISMulWqxueDp4sOrGocD9B4L3m77Ezfid9avdBrVWzImZFico9Relduzeda3Rm9N+jmdB8Ar6uvkRsjjCauJnWv+v6GfJdt5V6fmelMxte3cCNjBsM3TT0icq06q9DEIzLA2Xuu3ml1isWs0wuDooyr2g/aG2/g40DR4YdoUGVBoUbBXSfyfv4jhaQ404zWmsOE5i6isVb7Kn8VRM6/TKCkb8ceyabx2WCjA6BHVj/6nqujrvKpFaTqOhQEQmJ3fG76fpHV/xm+vHV3q+4mWmVn/2vYjXss2LlKaOoq2nU5VSWn/+J/+0fQ/fg7mztv5XqFao/6SE+lQS5ByFKIl/s/YKWvi0tvk5XUq7w0rKX2Bm/E1ESUcqVzOkyhwUnFpCQlkCuJhfQrUJXd6/Otwe+5Ys2X7DmzBri0nVN09PbT2d009EWx7I9djsrYlYws+NMvo1cgUfaJNKz5ChwxlbyopLYidYhPlR2U+JVQcnfJ+5SvIFV3+NQ2Fgtksl5lHhS1IhNQks6Z7gjszx57FO7D4HuhcGIUqHkp6ifCPEMwc3OjR1xO5jQYkJpL7FFKrspOXopjeTMwhXYwpIRAZBIc/DHQfECrln9yEzzQrBNI12bAEDfOn2p7FSZZbvvodEYu11LgFwmJ0oaQSVlDdQaCUfnZE5oPyRdOG2yIjqx5UQTx2xz4w2v7kJyhhqVWqRiBUjJzjcTxMmQo+SG7A/DNpVwm1ThGBWlNsiwLaFHQ1fmlpCcSvfGvtzOus3vp39nbNOxBh+IEM8QFkcvxsvJiwvJF1AqlKTlpdGtVrcSxw8FpSrVWjLt0DTytHlMbDmRL/d9iYeDB019mpq9zrrVnKkSeICZJ8fTvFpzo3vCHJ4OngR7BvP53s9xsHEw6UN6XOiv416GmqTMFJLFE1yWf8PJ9E0MbzCcC9e1yLSmnwts73AqViyTQ3Tx16pONWcm9qxepiDFRm7DoNBBRMZGkpiZCEAFsSn2+JRaOlWUwg4OOUoqUVnqgia9PnfTITdfJDElj+3Rybg5KPhxawKztiawdM9NDl9Mw7ei/VNtSOeidKGNfxvGNhtLuFc4t7NvE5caR742nz0Je5hxaAYnb5/Ezc6N6hWqWxfS/kMI0rPqJmPFyn+QmIRMxi/WlVyIkl4FR6J9q3g+bv+a9cu3FLSils4rOnPi1gmi34rGx8XH6PFNFzYxeONg8jR5qLQqvJ29mdJuCiP/GmloYAT47sXvuJFxg5///Zmp7aeyOHox55PPA/BZ689KdaEe/ddotl3Zxrq+6xj48x48aArFXJobBboyoE1Vlu25yZEryQgoTCYlEhIyQSJZOlrQ3C0Qpp1rmIzoV3aL92QUZ3Xv1fSp08doW6MFjQj3CqeNfxsGbBhA+ofpuChdSnmFLdPn+2ijQMMESUISRMO4AaLlb5MhnGZel3m81egt3loQxcXrxlkbmQA1fGD+rab4u+pkecO8wsjJz+FSimnJ19zOc3m78dtlHrf+M6cRTU3edA3gZ4lWDDM5rrlmC0pKV3nTylLY8pGuPK/OnDom78XUg1OZtGsSr9V7jbXn1qLSqIgdG4uvq2+Zxv/9we/5aOdHHHvjGIujF7P45GLOjDhj0W1clEQ6L+/M8VvHzX5GzDFp5yQmH5zM9gHbaVe9XZnG9ajQilrqzKljyMLJBBmzWm9k7T86l+qi95eEhAw5IBgyFD9EhFDP79HU7Odp8mi7pC2HbxzGRQolXLugYEwP9r1tTmpZt/ig21oUmQAzhz26a3sUXEm5wvxj81l8cjEpuSk42TqRlZ+Fn6sfbzZ8k4jwCLycvJ70MK2UE2vplBUrTxHL9tw0BBmg+6MpExRk3GpkDTLKgFwmZ3nP5dgp7Oi7pq/BH0IjapgYOZFXVr1CjjoHlVbFS4Ev8eFzHzJ442Ds5Hbcy72HgMDKniu5eO8ic/6dw9zOc1l2apkhyHi32bulBhmg689oX709e67uwYkgin/VihJcTMxi/OLz/HslDRnmV+AFBCRJIEG+mAwhhgxOc1I+ghSiLDZ+m8OixG2BlwZQ7ibUii62JTyqL4gyrxp0JPEIAG+8GEBRA0P95HDQC94A3My6iZ3cjoS0BBp7Nzb7TLOOzrqvces/c5Ymgy6E4CKFmmwvS6+GTIAsrhCxOYIQzxBaVGvBwmjjpvA3G76JncIORxtH8jR52Cps78t8cHyz8dSpWIc3t77J122/pqJDRd7Y8obFUieZIGNZz2XYKezot7ZfmfoAvnzhS9pVb0e/tf1ISEso89geBXKZnN2Dd2OnsAN0gdNnR4bQt30qqcK/qLhDBufQklNwvwkF+z16h2g7hR27Bu+ilW8rMoTTXJJNKdf5zKnQCRjbe+oRn0H36yD3IKZ2mEriu4ks7bGU0Eq6z9md7Dt8tvszfGb40GdNH/6J+6fMvXdWnj6sgYYVK08R5hqDJaur6X3h6eDJmj5rOHbzGB9EfkBSVhLtl7Zn2uFpyAQZalHNF22+INgzmDF/j8HNzo07OXdQyBTsGbSHdRfWsfTUUpa8soRfTvzCqTs6j4I3wt9gWgdTZZ/ixKfGcznlsqE/I1cWZzIhlQk6WUutSJH1SfNmfRIYJuQIFDadys03fhdHQLBs2pd2lRoeNYDyS9xaWrQ1rMqaBMoyQ2/J6aTTADQKrEiq+2Qc3W4aSVM2D6pKRVljaqm+p1H+enyyPqOqornhTA6Kwj6X+72Okprx9ZM8w+tfhNJ6NfQSxMPbBbD+/HpmHJ7BsPBhRMZGcjXtqmE/VztXhjcYzh9n/qBXSC9sZDYsOL6ApKykMo3fRm7D/Jfncykxn7cWHKVe7kruXO7Kd//8YfEYTwdPVvVexdHEo3y88+NSn0Muk7Oi5wqclc70XN2TXHVumcb2qKjiXIX1fdcDYCPYkJqXyq8XPmNkNyVn5ZNwJgQ5TiaT9MfhEG2nsCNyYCRt/NpwS7aBDM6a7bcqD5aC4os3s8t13ieFncKOAaEDODjsIKfePsWQsCHYKewQJZFtV7bRfml7avxYg+8Pfs/+i9eZuOTiM9mz8v8Va6BhxcpThNXV9OHQzKcZ0ztMZ9bRWdT+uTZRN6IQJRFbuS1b+m8hKjGK2Udn42zrzL3cezjaOBL9ZjRTj0xl08VNrOq9ijnH5nAiSWei1r9Of+Z1nVemrFJkXCRyQU5r/9ZExkYSJ+hWsPXBhv79zVaZrtCZm0DoHYbNPFBmLGU0EtIScFG6UMmxUrkDjbvpltzFNVTghpnVf5EsYgGMDAPr+DqS5j7DSJryzLUsaufPwp0mKCQP3GnCsWONqCL2oJ5mJmGqNQa3cBHRrF6/JcwrMxViqdk+Q9Bll0TMX7dIPrH2HzCyVRfeb/E+E/+ZiLezN462jvwa/avRvmObjiVDlUGgeyDpqnRkMhnTD00v8zU4iXVpoJ1P0l1nsnJkeNCUHfv82XUu1uIxLaq1YEq7KUw7PI1NFzaV+hweDh6s77uec3fPMfKvkU+0ORygU41OjGkyBrWkxkZuw/Fbxzl9+zStnb8wmwnQ42hnWZr4YaFUKNk2YBvtAtoRK59VUOKoL+cqn8qSpeBWQiI9R82x2ORynf9JE1o5lDld5nDzvZvM7TKXwAq6z96dnDtMjvyD/y27TtSV1DIZUFp5OrAGGlasPEVYXU0fDpIkka/NN6zm52hy8HP1Y/+Q/UzaNYm9V/diI7chMz8TL0cvYkbEMG77OP6J+4cNr25g1tFZHLmhK+fpVrMbS3suLbMh4o7YHTT1acrV1Ktkq7PJkZ8j0fl/2DhdNazS1zIjrwqFq+DG27SGCfkDvRZIFgMNtajmVuYtncStmX6H+8HchF1CS44ihnbygwX9JoXbBQGDqWC6Kt0wca1fuT6nkk4ZlUos23PTRNZXkqCmOFHn0C15GtzCXaRQ1p1bV+ZxF//MFaek1z9DOE0aJ0wmjxJa0jhBQv4+Nl3YxLcvfktL35YM2TSE7rW68+vJX42a2P3c/OhTpw+rzq6io/fb1FFP59D+Noz/NaZMkyidMZ+sSG+LDBD4dvPREgOC8c3G0yO4B0M2DSnVwRkgvEo4C15ewG8nf2P+8dKlhB81MzvOpF6lethpgqmn/YHoI53IzvAyq0ClJ+Fu3mOZmCoVSv58/U+aBXmZlDtmE/dAWY3CY0yDDX1J1cjf/+Td7e8aFg5iEjKfyQyAs9KZtxq9RfRb0RwedpieIT3xFSPQrbDovotFCbSixOJdV4Fn91r/61gDDStWniKsrqblJ0OVQZ81fZgQOcGgPuRs68zibot5+Y+XuZt9l1xNLiqtijoV63DszWMM2DCAo4lH+eu1v5hxaAb7r+0H4MWAF1nbdy1yWdlWQTWihp3xO+lQvQOj/hqlO4f/i1xV7WXO8EaGVXpLq/+mq7C6yYR+Qq7HRQylnmYmzTVbDCv5JWGpdAp0Ere1PGqV25jNXJAMcEO+hEaybE7KR1DTR8DT2QaN8jzVQv4iW9D5SkhIhlKhMK8wMvMzjcqLdOUuxf9c6UvOivZ9yAnUjmXGoRllHnfRz5yrfcG5igREYPr6F6WwhKqwARlkKHDCRQqlx6oeaLQaVvVeBcC5u+e4nnGdyLhIo/O81/w9klOcUF0bjJM2HFsqcjIuu0wrtubKvwTk5GS7sCJmhcXjBEFgcffFuNu702dNH4PMcEkMrD+Q0Y1H887f73D4+uFS93+UyAQZc178i3DtXCpITVBSCa2oUzkricfVy6DPoLas4c0ZxXiDz80l+WTgwUqoLguTUZNuOfsp1eT3U79T66datFswjLGLznEsNv2ZzQAIgkAzn2YseWUJgY4tzASRAkfjrtF36QeMe8av9b+KNdCwYuUpw+pq+uDE3I6h0YJG/HX5L2TIUGvVjG86nnxtPh2WdcDZ1pmkrCS0kpb21dsTOTCSbiu7ce7uOSIHRvL9we/ZeXUnAM19mrP1ta2lSqUWZe2JY1TL+px/D7UnO6EfHkJDDt04xKjGowy9EKAvhbM0ySiiMCNBJueM+jBcpFDCxLm4o5tYFV3Jt0RqrmmgUdxL49K9S+UqhzEXJGd6TiVZOo634EqGcJqX29xhzQfhVKyxhSTtUTwdPQ3HRydFA7pAA+BU0inDY5ZeL3ONsi7U4crNspdO6cc+ZXAtNn7ckB+Hh9C44BrSZMeIdXi/xD4YfQlVBueMVIJcqEuYdi7OUj2aLGyCl5MXq3qv4lTSKSo6VDRxCm9UtRENbCcgSpJRZqIsDcyWSi6dnbN5Z9s73M66bfFYNzs31vRZw5k7Z3h3+7slPo+e6S9Np4l3E3qv6V3mXpJHxZbD2cgEOUX9T0q7ix9nz5ut3JaN/TbSpWYXQ0lXhnAaNWn3pUalv7eyhDhU0g2LQYpCpuDGuzdY2mMp+XefR5REQxD6OBriHyVBXk5m73NvTxnXrtZA+x+61v8S1kDDihUr/wmWnV5G04VNuZdzj1xNLkqFkt2Dd1PRsSIqrQqtpOVK6hUkJN5s8Ca/df+N9kvbcz39OrsH7Wbygclsi9V5UdSvXJ/IgZEGZZuyEJOQyYLN4E4TsnMVuNOEuurZuEihfNr6U6N9B7SpilRgOqfH3MRBEASUGDsa+2kjTMqIBOTU1/5kMbuRnGNat+2sdMbD3sMQaGTmZxpcuh+U4kGyW4V01KIaTxwQJAymXAFuAcSnxhtJuB64dgAALycvKjlW4mTSScNjA9roSgfLugLsrR2EKD6YSk3Ra6gctJUb+QexVxg7abtIxhklHYVN/fr/9RmWmDsx/Br9K8/7Pc+U9lO4m3OXjRc2cif7jtF5nQgyWbEtSwOzpZLL/3VvgUyQMebvMSUe36BKA2Z1nMWcY3NYeWZlifuCbvK8ps8aREmk75q+T9TBOu52DpJkGnDqMSkxegI9b7ZyW9b3XW/kj5JLotkm8ZKMIEHCT4xAtNArJiGhsbnGsZvHGBA6gMo2oQ90Pz2tWLrPP+vxHNWUjf5T1/pfwhpoWLFi5ZlGpVEx8s+RDNwwEKVCSUpeCgFuAVwac4lfT/7Kx7s+NsgmAoxuNJpJz0+i9ZLWpOWlsXfIXr7d/y2bLuoaYoM9gtk7ZC+Otub7KCwxd9s1RMk4AABo4fg/3O3djfa1c0oiWv42mcI5JNRoUSGXq03WYnVSrza4SKGGyZM5F2S9xZel7IbeH6Q4euUpvcRtuZWniuHlqNPAz5CpqZwjGAUaCekJ1HSvadg3+la04ecwrzBO3T5ldK6yyjvrm+d3xO4o7/B5t7luhV9fZgYFGSWtaUbJmWCzGRYndNc4bPMw0nPTea/5e3Sp0QWtpGXGYeMSrxDvCmb7PXwrlSQdbLnk8rla1ZjdaTZrzq1hw/kNJZ7jzYZv8lq91xi+eTgXki+UuC/olJ/W9lnL4RuHeT/y/VL3f1SU3sxfqOamn6Q+iZ43G7kNa/qs4ZXgVwxBgyUsBxs6pTY7KlnMhmTkZdBl8Sja/NYGF+ec/5S4SEmlxVYhlacXa6BhxYqVZ5aEtARa/dqKRdGLsFPYkZaXRo/gHhwedpjX17/OipgV1HSvyek7pxEQCHQLZN2Fdbw4PwL31PdpnL+R8b/GsP2crj+hult1DkQcwNXO9b7GEZOQyfkb2WYmmnJElamp2/s73idDOM0JeQTXPQdxSj6agEqOBa3gukmGJOkM5GxwMQoeSvJvKO5PocdcMzhg8NIIrBCIgPDQA41qrtUAOCTaEST8wP59zzNxyUVs1TXJ1+YT5BFk2FfvVQK6jFLRjIauGbxsxmf65u0ZR8rep2GJDoEdsFPYGWWEzGeUCn8vjgwF9TQzaabZTIepqzhzLYvlPZfjZOvEzCMzyckvXHEd2MYbmSArplAmYV/pUKljtVRy+WqdV+leqzsj/xpJSm6KxeMFQWD+y/Op5lqNPmv6kKMufSW4pW9LZr40k1lHZ7H89PJS938UFF/lNpfBkMvzUHGXIG/xifa82chtWNV7Fb1q98KOymYDUxHLZX8SElnEmv0O0C1KCDgRTJh2LmevZbH29ki0khZBMPaleZbFRSzd51YhlacXa6BhxYqVZ5JtV7bRYEED4lLjUGvVqDQqpneYzncvfsdzvz7H2Ttn8XTw5FLKJRQyBfuH7mde13nkZFbCO/NLnDRhpGWL5GVWI0w7l0D7Fzk47CAeDh73PRZdHbC5VUiJwGIrarnqXP688if2CnuC3INITnUiXDuP+CQ1ICBIgCQZVvD1E1lf7VDAtPm4OObkWLNUWWb31Wc0lAol/m7+Dz3Q8HX1xUUKZVZ+exQ2TdCqHTkWm87qHRVwkUKp7FhYFla01j/MK4yE9ARDgFSS10VR9KUnCfJF7E/YX+7xC4LAc77PcTfnrmGs5jNKJYkFCIbsh726HmMXneXabRkzOsxApVXRe01vQ29MPT9npg4JIltxEoVNNo0CXakavIXF5z8jT5P3wNcwp8scctW5pfZgONk6sbbPWuJS4wxiBqUxsvFIBtUfxBtb3jDqq3lcFG/m12UwikrJSkwbHIqi+hQ2ZXbHxdW0X+lxYiO34Y9ef+DsnG02eyUr+LxbIlm216wAQWHJnu74KuqBZAinOWc7lmTpCKIsFe/KOcwY+t/s+7MKqTy9WAMNK1asPFNoRS2f7/mczss7Y6fQOXrb29hzYOgBwr3CabaoGQICaq2aW1m3cLJxImZEDPY29vRb249aspGAYOS+LiDQ2WMaXk5eDzQmXR2wucmBYLKiNu3QNBy0tamh+g6fe3Ooq/0eAVnhRFoQCmWPDGcpDB4yhNOcFHRymVpUZuq8TeVYNZLGrMma3ktDlERDQ/jDxE5di7ra75EQQNBNxvXXWTzrotKqDKvo9SvXBwobwksrj9EHGDmyCwan9Dztg03Mi/Nes/cAXbkXmM8oSWjRkFVCyUth9kOUJBbtjGdYg2FUdKjI31f+ZlF0oapVw+oedG1zl4PyLnzQx5PPOw7ldvZtE++N+6Gqc1VmvDSDJaeWsO3KthL3rVOpDvO6zOO3k78x+Z+VpcqFCoLAvC7zqOVZix6repSYNXlUFG/mr1wxAxV30CgvcMV+Au4VMljXdx32Cnu6r+xOdv6TNbZTyBRM6fuSSVCku39KztoFiG9RR/sNmZwng/M6qWgzmVRnggiqEESyeIwYxTiOK3uxNPkF+m5typKTS55oX82jwiqk8nRiDTSsWLHyzJCck0znFZ35cu+XeDh4cDPzJkEVgkgYm8CFexfosKwDwR7BJKQnkJGfQRWnKlwcc5GU3BReWPICge6B+Cgbml2RvnXvwRWXqld2MJNhkAjxdjT6YydJEgsPRhJWIMeJ1hUb3ChtciEhIcMeV0k3Ac8scAc/JR9NcTMw/Yp+ccyVTwW4BRi8NGp51HqogUZMQibLtjmbvT5RAhehBndz7qIQFIbteondWp61UMqVhj4NS14XjrZyXB0U5Nmc4qztKLRVfzRSiHoY8qsdgjqglCuJT9P5TJiuJute8zjZz1CswR/MKWPJOXb1BgICY5uORSFTMOrPUZy4dcKwz8jGI5GQmHtsLjU9avJqnVeZfHByuSaHQ8OG0r56e97c8iYZqowS9x1YfyCvB01i215f/i2DXKi9jT3r+64nXZXO6+tfN/IIedzU83Nm5ZgOVK33G6flY5HsrtJnTR9clC5s7r+Zy/cuM3jjYCOflidBmL8bPwwLxs75usFf45Ky5IyTrpTSDSWVcKE2zgQbgo2iSGjJ5AqxqbF42ntSy6MW2WpdcHUr6xZDNg2h5k81mXdsXpkkja1YKQ/WQMOKFSvPBFGJUTSY34CoxCiUCiXJOcn0qd2Hc6POMfXQVIZtHka7gHZE3YwiX5tP3Up1uTD6AheSL9BhaQfCvMKIHBiJt6fC5A9zeZsG2zYsKF8oqIWW0CKTCYzs7Gu03z9x/+Ca26tYjb+5IMNYfUZAQIGTSaO3Xlq1qBmYfkW/OJZM+6BQ4vZKypX7ctUuibnbriFJ5q9PJoBMeYf4tHg8HQolbg9d1/UiKGQK6laqa+jTKF4W0STIldlvhLD1fw3Z+FEDfIJ3oLWNQ5EfaKQGNWXnqnJfh0yQ0cq3Fbezb1OnYh2j1zyfVNRkoCETT7E1l2RTLTqF65HQkiFdZmLkRIaEDUGURLycvOi1updBhtjTwZMh9YcwO2o2eZo8Pm71MdfSr7Hs9LIHvg5BEFjQdQEpuSl8+M+Hpe7vpX4NENArHpcmFxpQIYA/ev3B9ivb+WLvFw88zoeBIAgs6raIio4VcbZ15vTt04zdNpbQyqEs67mMdefX8eXeL5/oGEEXbPw5oReBDVZxRjGeJO1RtGRbzIyZK5EqzOeZLjZISNzNvcutZCVNhfm0Erfhl/0lLlIo6bnpjPhzBNV/rM7MIzOfeJbHyn8Xa6BhxYqVpxpJkpjz7xyeW/wccpkcKdePGnmT6SjfR7Xsz+i15F2mHppKj+AebIvdhiiJtK/enuNvHmd/wn46L+/Mc77P8ffrf5OTn8OaW2+b/GEub9Pg1bw9xMhH4eyahIo7iHYXmWWmPvijnR+ZrfEvuNCCH8yvtOomFTL8tBFG05CMguyG3gzMkueDOdM+PzdjLw21qCYhLaG0yy0TV26V3Ezs6XNKJ3HrVhiMRSVGGX4O8wozaggvqSwizCsMuSoQ+zvjjdSg0mL7PhTDrvHNxgO6EiTQveYJ8sUocMYGF2ypgDtNqCm+j2i2nK0wANVPAqcenkqeJo/ONTrjZudGel46gzYOMqy0j28+nrvZd1l+ejl1K9XlleBX+O7Ad+XKFvi7+TOl3RTmHpvLnqt7Stw34Y7qvuVCOwR24Ju23/DVvq/YfHHzA4/zYeBq58qaPmuIS42juWd/Dh0Nocs3Bzl8NIQJ4bP5Yu8XrDm75omOEUAuk/Nb998YEDoAAYFY2U+AaVN70SBDj4AcOypzWTYNNRlIaFGTwXXhD/y0w2iu2UK4ZhHh2nnYqeshF3X3abh2Hto8nVBDvjafd7e/i/8sf77b/12p2S4rVu4Xa6BhxYqVp5bs/GwGbhjIqL9G4efmR0qqC2HaOXgKzchTKTkem0FGfH86er/Nhgs6+c43G7zJtgHb2HRhE6+seoVONTqxqd8mctQ5hMwJIUl7hLOKd6jhI+DiIJEm/EtAnR3lqufdEbeDIG8btuX05aRdX9q2vGpyvpsZNzl+6zgqeYJJRkUQtSjEDERZKrWq6mR1LTr/ElhapZVZzGU0nGyd8HTwfKQSt+ao5e1ILW874tPiqeVRy7D9zN0zhp/rV67P2btny1QuFO4VThX1AMC4HwKEh2LY1bFGR5RyJWfunEEhUxiUvYqrT+k0ppyNJFX1Dcn5pJpknBouaEhEWASn75zmizZfsPXSVqYcmAJATY+adMl46rMAACAASURBVKvVjemHpyNKIpNaTeJyymXWnCvf5HhE4xG08m3F8M3DS1SWelC50A+f+5AewT0YuGHgY7mXSqJBlQZMavwLYuIbeNCEnDwb/o1NJ/p4E3r6v8vgjYONZJWfFHKZnF+7/8qg+oNIkm3kNtuBogGq/n/jRQgJLXncpoY4ARvcEJBjgxu+0gBDwO1CHUBGcdntBrYTqFupLsk5ybrSTEHGp7s/xW+mH5/u/pR7OTpJ7JiEzFL7dKxYKQlroGHFipWnkovJF2m6sCkbLmygsmNlrqRcobZ8DHJBYTDo0k8mbyToJqvfvfgd87vOZ9npZfRb14/ufmMJyv2W16afpeP3qxFzfZELclYOnMwvbzVj00dNGdZFYOH5/7H67OoHGqdG1LAzbid5mjyclc7kanJp49/GZL+Pd30MQDyLkAmFTaAyUYsAxNh/woIx/rg42FhU2NfLWz6sQAMKlaequVZDKVc+tMlhkJflCend9HwCKgRwI+MG4V7hhu1xqXGGn8O8wsjX5pfJ0yG8SrhFNaizN9IfYPTGyAQZLX1bcivrFs/7PY+EZNHPpKhhn4SEKGRxVjGaQ4qOJhmndFU6my5sorJjZS7du8QnrT7hk92fsDNO504/ocUEziefZ9uVbTSq2oiOQR35Zv835eovkAkyFnZbSGJmIv/b9T+L+z2oXKggCPz2ym9UcapCj1U9yMo3r3j2uMhMaowMGRS8V5IEWhEy4/vRkJ/pu/T9J+5uDrpgY1G3RfQL/JBKtAPEIgGrxHVhGTqTT+MSKTkORcqoihpGFpZmmsuE5Oe6c/bOWbpUG0UL+UIC0xcRop6Gu9CA7w9+j99MP0asncK4Rec5VoY+HStWLGENNKxYsfJUEZOQyeA5e4n48QqOye/goK3N7ezb9K/bH29lQxOZU70i04qeK/jwuQ+Z++9cBm8cTP/Aj0iL7cuJuExSsjQ4acMJ085l9gtbaFe9neH40U1G069uP4ZtHlamSW1x/k38l3RVOjF3YmhfvT1KuZJmPs2M9lFr1aw6swp7hT2Zshh6vKjrp3DRpBN+/Tix6rf44ZVx5GdXJTouw2w2Q7+qmSzbe99jBCyqAem9NGSCjBoeNR5aoDGik6/Z7QK6VfEAtwBEScTbxdvwWHpeumESHVpZ14tS3LjPHFWcqqBWXDfTFCuRnSc91PIpV6XOY6UkPxM9AgIaSUWW4qzR9qLO4idOhNPGawjLYpYxseVE2ga0pf+6/iRmJNKyWkuaeDdh2qFpAHzS6hPO3DlT7rKkmh41+bLNl8w8OpOjN46a3ac8cqEuShfWv7qea+nXiNgUYZDvfRLE387F3FRHrZWwVdXBO/Mrei1576loipbL5PhoByEzykDo+jAcpaAiJVIiEiJacnDE30wgUZq4hK5Z3FWqT1b8a9ioahvKDX0yv0KpqYWHvQdHYhzQSlrDd25pfTpWrJjDGmhYsWLlqeFkfCrvLDxLwi1bbKWK2KvrUTt/Fl82W8KKXisINFPOIaGltrcH/ev1Z9qhaYz8ayRjm46lqmYAkoSRjK1ckHM1rrrR8YIg8EvXX/Bx8aH36t733RS5PXY7ckFO3Yp1ydPk0cynGXYKO6N9fjnxC3naPBxsHOhZuyfHUteRZ/8dGyd34IbmXTq0akZdl5cZv/g8GjOGEUXrs2uKE2mkWWHi/l0atzJvmd3u76rLaIBuAnop5eEEGvX8nBn3sp/RNgGQyXSr4gEVdHKxRVWnJCQSMxIBXY19gFuAUZ+GJQRBwK3KCXR/0oyb6CVg7t/Xyns5dK7RGaVcSVRiFC62Lma9DCxJDVd2LDRnM+csnnSxG2KuL5svbWZFzxUoFUr6ru2LRtQwofkEdl/dzYlbJ2jp25LWfq35et/X5Z68j28+noZVGhKxOcLiJLs8cqG1K9bmt+6/sebcGqYfnl6usZaHkqSRRQlkgpzs2814a+tbTzQg0mMuMNLJ1QYXlEi5ICBDQIENLib7mqPovam/XxU4UU/7IyA3KquSIaOOfAzXMq5hLwaY7dO5mPhks1RWni2sgYYVK1aeChIzEhn7x+aCSXXhHz65oCArqSmgK+cAKFo+IBfkjO1Uh8/3fM77ke8zqdUkfnjpB7Mmb5IkmG1mdbJ1Yl3fdVxNu3rfE46VZ1ailbRM6zCNfdf2mS2bmnxgMjJBxr3cewysN5D1Z9fx+t40NjV24VyrYGZ1nMWyPTcL+sGNZ0XGSjO6f45UJ1y7gHDNwjIHHLeyLAQaRb003B+ul0b3ppX5cXgITYJ0q+KNgwpXxX1dfREQuJd7DxuZjeGYooFFfa/6ZcpogM5/QkMaxV8/AYHzidnlzmrIBBktq7UkMTORV4JfMVH8yuCMWanh6/JfSUhPwMNeZwRpvrdDoAZvsfDEQio6VmR179VEJUbxQeQH9Ajpgb+bv2Gy/snzn3D81nF2xO4o1/UoZAoWd1/M5XuX+Xrf1+U6lyV61e7FxJYTmfjPRHbF73okz1EalqSR9UgSeCsbsuTUEj75a+ET70cwFxhJaFEICrNqdUX7gQr3Nw4sJLRkcKbgPj2HhIQLtZGjNJP9kCFXe/Pxcx8j2SaZzdql52qt5VNWyow10LBixcoTZ3f8bhosaIA2r5LJCppUROkmVYomWv42KUShFu4R6u/AzGHBLLn4JV/s/YJv237L122/Ri2qSRMv3JeMbe2Ktfml6y8sj1nOvGPzSh1zTEIm4xafxv32NFrIF5KbVZmU3BRDoKFvouw+OQq3lPfwt2tDYIVA0vJSydJk8/JlgVEvaVjTZw32NvYW3a8tNYULCLhQ10Ty1hKW6tD93fwLvTQ8a3Et/ZpZc78HxdKquK3cFh8XH66mXTVyYz9w7YDh57DKOuWpsgR+4V7hZHDBojTowyj3GNdsHFBYxpYlnDEofkUrhptIDV+WTaOadijNNVsIyP0KFynUYi+JUhvI7qu7uZJyhebVmjOjwwxmHp3J+vPrGd9sPKvOrOJ6+nVeDHiRpt5N+WrfV+Vega9bqS6TWk1i8sHJZcocPQhft/2atgFteXXtq1xLL39m6X4pWgJmIzcvtVzXx4NRdb/nwJE6/Bub9kT7Ecz1xsgFOSJa82p1GAcb+p4OfWChFyCIVgznsKIrGrKMApbiSGjR2iTy7YFvyXf5CwGZyWdKEKzlU1bKjjXQsGLFyhNDlEQmH5hMu6Xt8Hf1RyW/ajE4WHpqKW2WtCGVaKi6iC0fNWNmRD3mxExk+uHp/NjxRz5q9REaUcNr617jRN7Ugj+QouE8pTWz9q/Xn1GNRzFu+zj+TfzX4n4xCZmMX3yeU/E5KKmEMr8uP65X4Sk0pJlPM8Pjx2LTycgGd5pQLfMregdMYPmf39HiGnz4XB7f91lALU9dI7v5lUzTcpyi6AOO4i7b5ridddvs9uJeGgCXUy6Xer6HQUCFAOLT4vFzLSyxKp7RSM5JtpiNKUp4lXAS5IstPl6SLGtZ6VyjM7ZyW3bF7cLP1Q8REYVMYei5qKP9BoCz8kkkyBdTQ5xgKJFy0NQnXDuPPG6b7SWxwRUXKZQFxxcAxr1DLau1xFnpzKyjsxAEgU+e/4SD1w+yL2Ffua/po1YfEeIZQsSmiEfiFq2QKfij1x842DjQZ+n7TPjt3GPPGOiD3elDg5HLzDe4O2R1RYbMIDTxpPoRzPXGzBoeQmClCha/C/TbdcpmRzhnM8YQWBQXILAor01hFu6s9kdclC7kKS6ST5rJYockwYlrtyyWY1qxUhRroGHFipUnQlpeGj1W9eCjnR/ROagz0UnR2HjuRy7ITSYCatdtDNo4CAmJDtU7EPVGFM5KZ4ZsHML84/NZ1G0RY5qOQStqGbhhIBsubCBVOEm98EM0CapwX82s0ztMJ8wrjN5rehskHotTWOak+wqVJAFJkqijeAc7hR3L9txEFI37Q0BO0qV67FCdxy9DIKDPG7we+rrhnMVXMotORksONnTN8KVxN+eu2e3FvTTg8Ujcgi7IiU+LJ9gj2LCt6HOHeYUBlGm1Pcg9CK1tLNnCeaB4KYm2XIaMeuQyOS2qtSAxK5HX6r0GgIO2tknPRZh2LjXF8WZKpHQ/UWyVWN/w66eNYOaRmWhEjaF3qJpLNQZtHEREeAQLji8gPS+dLjW6UL9yfb7eX/6SJ1u5LYu7L+bU7VOGpvOHjaeDJ9NbrcP+9liOx2Y8sYxBSQ3u5nojSvMNeZTjLJ4FdFA4WGzy1m0XyZVdJkYxjrvSMd2dJ5gGFOZEDHSdRvlG8ssZqgzOJZ9DY2O6+AMiKdqzVP+xOuO3jX8qVLusPL1YAw0rVqw8dk4mnaThgobsT9hPx6CObL28lYjwCHa/9SszhxlPBDwC1/LDKV3JyvDw4fz1+l/IBBn91vZjRcwKVvRaQUR4BKIkMmzzMFadWYUkSYxpMobZPd6772ZWpULJmj5rDB4e5qREzZc5yVBqdZP2i4lZJqGBgEBCqoJm4jau1V3Am7W/NXq86CRIlGVCweShLAoyWcSWel2WjLiKeml42HtQwa7CYws0AtwCiE+Np5F3I8O2m1mFK8h+rn64Kl05lVR6n8bZa9k05Gfs0KlYFe+VKI8hY1HGNdXdiyk5OhUvcz0XAgL2kvkSKTsqozazSqwPGNWimkk7JwGFvUMJaQnEpcaRp8lj4YmFCILApFaT+CfuH4uqUfdDo6qNeL/F+3y+93PO3z1f7vOZ498zzsgEndcIPNmMgbnvhAf1DXlc3M0o2XFeQI6d6I+3k/7+l9BKWlxtXY32uy7/zWymVIacBPliE8PPC+KcYqIHuv/ffv55OjmsIepQezpNXcPba75j38VrT7zHxcrThzXQsGLFymNlcfRimi9qjqONI/5u/uyK38UvXX9h3svzUCqUhonAygmhHNQMY3X8VAC+afsNC7ouIF+bT49VPdhyaQvr+q6jX91+SJLEiK0jWHJqCYIgMCRsCDM7zkQQHsBwAvB19WV5z+Vsu7KNb/Z9Y/K4pYbNahX1Tc3mn1cCbKmAUhvKh7/HmfwhrufnzFcDAkiXzoJRU7xpw6fufLp67AT5olKvKVdjue9C76UhCIJOeeoxBRoOmtpUSv+IHTsbUU8zExcplHxtPpkq3esiCAL1vepz8nbJGQ19qZostxYKyRUJEQGZkUleZY+8hzLml2u+jK3clj+v/Elzj/640cBsQAGYWTnWki3Ekolp/1DRgPH7Q98bXoOQiiEs7LaQjRc20qBKA2YenYlaq6ZnSE+CPYP5Zr/p/fkgfNb6M/zd/Bm2eVi53MctEXc7x1CWpOdJZQzM8aC+IY+LktSzdIhItrdIzErEx9nHsDU9P90gRACQJpwkE+NgUh/0Fi/BlAtyE9EDQXmDHK6xfHcOqSkVsZU8cRMbc+F0az5dlkjUlVSr54YVI6yBhhUrVh4Luepchm0axrDNw+hQvQN3su9wJ/sO+4bsY3iD4Ub7ZudnU2N2DQ7eOAjA76/8zsetPiZbnU2XFV3YHb+brf230j24O5Ik8c7f77DgxALkgpw+tfvwS9dfkAnl+3p7KeglPm39KZ/t+YzI2Eijxwa0qWq0ykfBhH9EB13pkaUkhD7wKWk19/Tt0zhI1c1MXo0bPiUkMjnLOduxJquQ5tCIGouP6b00gMcWaMQkZLJ9nx/uNCEzR2YoOXKRQo38TMIqh5Wa0SheyiYgRxAgkwuGGvWFxxc+lHHLZXJa+LQgI90duztjkWFrso8uaLhsshIsIXFVttCMNK7usaIBY9Nfmhp+7le3H2OajOH4zePcyLjBmnNrkMvkfPzcx2y5tOWhNHLb29izuNtijtw4wuyo2eU+X3Ge9oxBeXxDHgclqWcJgsT/sXfegU2VbRv/nYzuQSeljAKlQIG2rDIF2SCyBVGWyJApgvvFV339FBUVKQiCIiCIKCAoU0CmyC4gFCiFFiijtHTvkeSc7480adMkpYUwxPPjj9Lk5Ml5ktPkuZ/7vq9LQsS56hF6BfbiRvYNPB09jWpuqfmp2CvssVPqr1UHqlrNqBlwk0JppJlDW+1mAnRjiFcu45zyHcTC6jgSUPx4wxh6uV0BBQ87YyXz6CEHGjIyMvedy+mXabesHavPrmZE6Ai2xW6jvld9Trx0gtY1WpscezPrJjXn1uRKxhVUChU7R+xkZNhIMgoy6PFDDyITItkxYgfdA7sjSRJv/PEGC44vQK1Q0zuoNz8M/AGlwnKzY2V5t+O7dA/szrANw7ieeR3QL5BX7UsARR4o8nF3VKJyuYxUfTEt6noD0MDf+Y5jW9vNPXrjaPHOdtkdbxEJLRI6NGRwUTGbGMdp5CjOmY1h+flEq47SZl4aDyDQ0C9AzEuOAnRjOHzjsPG4ML8wLqZeLNffxJqUcemF0/LTy2127tPaTCNApzeiM2uULf4Xp4zgb+UkCu3Omaj/FChjjLvEuarTxvvOKCeTJUShRr84jE6NNlE/+6LHF7Ss3hIHpQOf/vUpkiTxfMjz1KlSh48PmJbh3S3ta7VnaqupzNw9k7i0O5fjVYZHPWMA9+Ybcr8pGwgFV3cmuIazXjY6sAovPl3EsdR13M67zbiGH1I9+z1aFv1KS+lr3KRQCsVCinRF+Dn7WenTKMmomXu9tKGZ7lvCdF8Z/04t8+hmrGQeHqo7HyIjIyNz92yO2cyo30bh6ehJj8AerDqzimmtpvFFjy9QK9Umx55IOEH7Ze0p1BXiaufK/tH7aVatGcm5yfRY1YNrmdfYPWo34dXDAXh377vMOTwHe6U9T9R6grVD1pqNeS8oFUp+HPQjzb9pzrO/PMvXXbbyxvexSBJIkjMCEpn5OjR44Wv3LFHx2YQEuDKikz+RcZmmi19J0q+sirG2m3v05lFuqs7hpWuNJOklLfWLAgWCpEAQlKhxI0h8ncskk8qJCs8npygHN3s3s9tNvDS86pOan0pqXqqJ7KytsRQcGHZVj9382XhbU7+mSEicvX3WLCg1ULeqE2k5ZV5vJJTY4yaFkiWcsenCuW/9vnzODizt1YkUcVo5xZhlOiKOR1CVKn0rjvWyhDNEMgmVWoVWKsk2adArP7lJoXy9sZA/dp+gnp8LIzr5s3bwWposakLU7Sh2X9lNt7rd+M8T/2HClglEJ0cT7BN8z3P7uOvHbL64mfGbx7N71O67Lj8si2GhvGpfApeT8qhb1YmRnf0fqcX8o44hELJMA5rWPsCgFTO4dL0rXigAATudJ81YzCnlRLKEMyTmJuLmtg0pKxwo/fmiz6ipFCoCisr2HemvX4VF3w3rPEoZK5mHh5zRkJGRuS9oRS0zd8+k38/9aF29NW72buyM28kPA39g3lPzzAKCjRc20uq7VhTqCvF38ef0xNM0q9aMhOwEOq3oREJ2Avte2GcMMj7c/yGzDszCUeVIC/8W/Pbcb2aO3LbA28mbdUPWcSLhBO9v+NPEbdywg6emChnpPsaa5JAAVyLGBhPsJqLWFoKoAUEwxhnl7eYeun6INE7So8MV0jiGvX0BGrIAEUEovfuvpG7+JzQqXEgz7VLaajcb+xyskZ6fbvF2Ey8NL/1C5n5L3Frrc8khjvPJ5423NfJphFJQllseZNgtL1kTS4CACldjOZaIaOx7uFdUChV2jqkW1XtyuGhWyhZa1fQ9cVDqr1NHlSPVXKsZb3dW6TNhpXeU03J0xnr3jIwqrBu8DoDJWycDMCpsFP6u/nzy1yc2mZuLnQtL+i5h79W9LDm5xCZjGniUMwaPA2F+YfT2/rL4N4Ohn/4zo5nda8bjLubtJM7xTTIVkcaM2qnibJtW1OIqBFks3axskPGoZaxkHg5yoCEjI2NzknKS6PFDDz47+BkvNX+JyIRI0vPTOTjmICNCR5gdP+/IPAasGYAoiTTxacLpSaep41GH+Ix4Oi7vSFZhFgdePEBI1RAAPjv4Ge/tew9ntTPBPsFsHbYVFzuX+zaf1jVa82XPL0nJUFk01QODxG1JTXKIl8Cn8/vx/o8dGT/4MvPHBRN+h/rv9Px04tL1O+8t63oTpZpOWOutSGgsfvErsMNFaoQbjY0lDuUZ+N3IumHx9tJeGvU86wEQkxJTodfmbjGvOReNfQqGMi4AB5UDwT7B5TqEG3bL3RwMSfrSteMCgbpphGgjePaL0zZTwxn8hGfx/0wvCFeCzV7/c7fPmSzSCnT6xvR8bT7Xs67j4+gDQK5WXx5WVslKlEAU9ddWj3o9GBQ8iEtpl/jmxDfYq+x5s/2brI5azeX0y/c8L4BudbsxttlYXt/5urFkUOafQWKqZOGzQklRvifN/Zpjr7QH4KbmIJeF7xDVCbgQSIBuLA46vcx0gXClXEntOyEIPHI9LjIPDznQkJGRsSkHrx2k+bfNOZ98ngktJrD01FKa+jUl8qVImldrbnb8y7+/zPQdesnQ7nW7c3T8UbydvLmYepEOyzsgIXHgxQNGj4d5R+bx1q63cLVzJaBKADtG7KCKQ5X7Pq8p4VNwdc21oClfQuma5NQpY1DcTmbbf4cyrNnICu3mHk/QmwR6OHgYGzlT8lIs1lQbKL3TaFicBupesXhs6QV8aUp7aTjbOVPDrcZ979MoW3Ne1SfLqOGfUZBhonwUVjXsjg3PIQGuqFWWXNSVuNEET1pRUGBnMzWcCe17kk20yXLMmoGiVtIaM3EGDO9viE8IRWKJdKmj0hFXGpotFiXgRFwmUfHZ/DjoR+yV9rzy+yvEZ8Qzrvk4vJy8mP3X7HuaU2m+6PEFrvauTNw68Z4dyGUeHNaa7u0c0ziZeBIfJx9qudcyZs0cNCEm/i9uUii32F3h5ysbkEjoSBeO4lVvI0H+5kIJMv8+5EBDRkbGJkiSRMSRCDqt6ESdKnVoW6MtX0d+zattX2X7iO14O3mbHd/7x94sOLYAgBebvsi24dtwUjtx9vZZOi7viIudCwdePGDccV8cuZjpO6bjbu+Or7Mvu0buMhv3fiEIAh8+01l/7lYW/Yaa5PxNG/BauY65g/z574sVa0KOis/mm00a2mq30FT8iqhret+L27m3jY7XFdllFBBwIcjifdcyr1m8vbSXBhQ3hKfd/4bw0sHXKwNdjSVHEpLJuTb1a8qZpDNWm9kNWHNXB0yyA7ZQw1Er1bgqa1ZIvSdEG4Eq/j2T0jaNqO/FuJB6AQmJRj6NAMjX5VuVM9ZJMH1pNJduanjribco1BUy4OcBKAUlr7V9jeV/L7eataosVRyqsPjpxWy7tI0fo360yZgy9x9rTfcLRgxkaqup3Mi+QWpeKi3s37To/xKgG4O3+KTFsUur3pn+LK2+p0AQnZj1x4/Um1+P9efXy4Hqvxw50JCRkblnsguzGfrLUGbsmMHopqPJKsxi5+WdrBm8hs+6f4ZKYao7UaQtInRxKL/H/g7oNfyX9tM3IkYmRPLk909SzbUa+0fvx99VX+O77NQyJm2dhIeDB272buwetdukvv1B0CrQl9cGu5CpiESh1GcujEU6xV/oI5q7UDB6BH8EKRkyfxeOasc7jmvwgUhL88IeH6S8QH7dXRUPqSlJuUkoyjhJV6asobTM783sm1aPM3hpANT3fHBeGgYMGSsDpb0zwqqGkavJvWNDd9lFluG9KRsM2EoNJ8DXrsLqPXb4mOwaG9CIGrrX7U5MSgwqQYWbFIoSZ6v18GJxkDS99XQcVY6cuX2GGTtmMKnlJFzsXPj84Of3PC8DfRv0ZVjIMF7Z/gpJOUk2G1fm/lGeTO9XT33Fkr5LyNPkUZDnbrHEykPREBcCLV5/AqBWadGSSRFppHGEi4rZZHHeaAEoIOBOY5rpFpOd5cXgdYN5YvkTnLx18sG8ADKPHHKgISMjc0+cu32O8CXhbI/dzn87/Jf159eTp8njyNgjPNv4WbPjU/JSCIgI4OztswgIfNf3O/7X6X8IgsBf1/6iy4ouBHkGsWfUHnyc9bXrP575kbGbxuLl6IWd0o5do3YZy30eNH3DQnhzsDd7hM50aX+B8HqmX+hObz4D+flkL5xLwwqqAJX1gQAFkiQRKLxEYk4iAaKhZr+kRKrsrqIBCYl8bhCijaCtdjNNtF8aF7bxmfFWz6Gsl8al1Et3zCDYktK6/wCHrh0y/j/MLwyg3D4NMF9kuTmqrLav2kINZ8ZToVDKD8MQ4CTarQKsu4aXLa3adnEbdT3qEurej6a6RQh3EIQ8FpvJOysTGB40E0eVIz8eP8ikJZGEa37jzyP1+POC9fe5sszrNQ+loGTq71NtNqbM/aW8Ms1xzcdxYMwB8hRXLAbJ6eIF7B3TLWRtJfIUMZxw7MuYQTfwavQ1Uarp3FL8ipYcQCwVnOh7o550+wB7pT1HbxylxbcteOG3F0jIln01/m3IgYaMjEyFiYrP5q0VMQz57BRvrYjhy70baPVdK9RKNeObj2fWgVm0rdmW4+OPGxu3SxOTEkPtiNok5iaiVqjZMmwLY5uPBWDX5V30XNWTFv4t+GPkH3g4egCw7tw6Rv46Eh8nHyQk/hj5h9nu94Pm+ZDnmRI+hY8ixzO4W5bxC91t+zcEbj/KL1M6M6j7yxUez5LUKyhwFOuSmp+KsxUDP4NWatmgw5naRg18D0mvgV9NHFhuY29ZL418bT43s6xnQGyNIAj4OPkYfy/dk+Hr7Es1l2oVMqYrvcjS92xYDjVsoYbTtI4HOv9FpHEMDxcFLQPdqR+6h1ylXjVLvzNsYdeYliZZjXxdPm1qtEGT0rHC6j7RN3KJO9uDKoW9aKZbzI0kB4oKHXAXW/L+6ls2c2T2dvJmQe8F/HL+F9afX2+TMWUeLu1rtmfu0KeB0mVPejGGFMV+MvM1UCqLKqFDREeGyyqaV2vO2E1jcbZzZs3gNbjauVq8zkFBcrqSqa2mMqTREEC/YRQ4L5CP/vyIfE3+g5mszENHDjRkZGQqhKG8JzIuk5RsDcdi09m4x49emiI46gAAIABJREFU1ScS6BHIl0e+5L8d/8vm5zcbg4TS7Lm8hyaLmpCrycVF7cJfY/6id1BvQO+10Wd1H54MeJJtw7bhaq/fgdt4YSPPr38eX2dfCrQFbB++3WIA8zCY02MOTf2aMnz1O8xYHsXgT44T8aeapV3bMuLjLZUay1JvAYgoUBOWvwYBtcXdR0e3G1xSfIbBJs50R7FEAx+gvvgmOVnW+1lKe2k08NZL3D7I8qmo+GwCC2YZZXqvJZl+PTX1a1ppB2wfd0uu3RIBPg42U8N5uWNfolTTqd/8F2a/0IBpT/YnT6Mvy7LWxC+goplusUmwsebsGryUjSws2KwjSVBfmFo8ZknWRJIklu25eg+zMmVIoyEMaDiAKdumkJqXarNxZR4enRvV5YvRQegcLlDIbQrsoqgXdI4g8XXcCC71WSKRxXlOKydxMe8P9l7Zy7Amw/j90u9M3z6d5f2X4+aab7WEcM7hOfx1/S8iekYQ5hdGga6A9/a+R5O5fRi5cJ9x08pWgbHMo4ccaMjIyFQIQ3lPyc67AgUKbl0LZs+VPfw69Ff+r/P/mfQEGFh+ajndfuiGVtRSzaUapyaeolX1VoB+gTVo7SCerv80vw791djTsO3SNgavHYyvsy9ZhVlsHbbVTLnnYWKvsmdWux/xz/qAvy/nkponcTqgFavbzSX2lnVlKksYegsMGQr9/wUE0Ql7fFHhin6HUT+uwWDLrdpxvMSOUCrIsLQjrv9dwCPHXFrYQGkvjdpVaqNSqIhJvb8StwYMQayyoKFRAada1vsmi4+wqmF3LJ0yw0ori6Od7b76BjQcgAfN2HuoDkM+O8UPv6tp4zUUbyfv4iZ+88Zu/fuhMCmhKhKLUFvw5rgjopPFrMn5m5Y9U+4GQRD4uvfXFOoKmbFjhs3GlXm4tAz05s+Zowlqvo4j4kv8fbkIRbFHDxhKNEW8XZzJU0YDoJN0rD67mkbejajvVZ/B6wbjWzMKhWD6+WSQqga9rPb0HdPxd/Hnyx5fUtOuAzWyP+R6oj0p2RqOx2XYRAlO5tFEDjRkZGQqhLXyHpW2BsfGH2NAwwEWH/fe3vcYs2kMEhKNfRpzasIpo1fD8lPLGbZhGM81eY41g9dgr9JrvO+6vIuBPw/E18WX1PxUfnvuNzoEdLiPs7s7/jhuWBTqP0pFhRIQKq1oFBLgytwXG5KtPImdfQFuDiokROO4+i9+EQ1ZFJGOhix0Qi4ZCS0sSqFaQkDAWQq2+mVe2ktDpVAR6BH4wDIaZXtU9PMRWL6npNegqV9TbmTdqNSOenJWkdltAgKXbuXabFETc6OQUO1CHLWhpGRriIzLxPH2DLS5NcgSzqAh00pjrWCiTqUUlETmzy5e3BkWbBLWenEM6K+VssGJSIo2iqzCLJvMEaCaazXm9pzLD2d+YNulbTYbV+bhIggCKwauYE73OTjo6lG21FBASW6OB21rtDV+RggIHLl5hFO3TjGhxQTWX5nDLff/Ua+6hMoujzSOGaWqDccDbLm0hbd3vU1LhzdNAhpJEtCJIkt228YHRubRQg40ZGRkKoS18p6WdWrS0Luh2fGSJDF8/XA+/PNDALrU6cKRcUeo6lIVgIXHFjJm0xjGNx/PigErjMpU+6/up+/qvvg4+5CUk8TawWvpEdjjfk7tjpTtTdkWdR6vj6pwIPaS2SL/bhWNXKukcUKYwitDc1CrBIu71AJK1Liixg2V5E5hdi3UVLHoUG1tYWotCCrtpQHFErcPKNCwFMQKKIlLzDX+XtGG8NJYvmZBJ2KzHdRV+xJQCCWlaqKkX1jVlsbgonYhnxtW3gvJqE4F+p3idOFvqP4N2cqToMwki3NoySlTFmd4tASIvNitusluskLQK43FK5ax6Piie55faV4Ie4GegT2ZsGWCTYMYmYfPq+1exd3e3aK4hAoXouKz0Og0DGgwwHhMVlEW35z4hqeDnsbdPZ1fEifj5JxFbac2NBSmGEsDS49ZJBaRmKbCvHdKwckrSfxv3//ILcpF5vFBDjRkZGQqxIhOhuZZ0fhTqVAwpksts2O1Oi3tl7Vn9dnVAIwMGcn24duN7t2z/5rN1N+nMqPNDBY9vchYbnXo+iF6/9gbb2dvErITWDlwJf0b9r/fUyuXsr0pR2PTmL02A0VBAOFX4lCIpot8g5dGZTl+U2/W16JaC+pUdbQYPOhLqEoHIQr070fpXXAdJe+RKQKC1SDIopfGAwo0LPtf6HBwyjD+HuQZhKPKsVJ9GiUlaWURbOKlAfogSZLM5XO9lI2xU9lhqRndsPAylJYYcLd3Z1/S9zzV8Rb7hZ5kes1CJN9iRkQhSJxSTsDL7xIRYxpSaHcWQZVNy0B35o0LZnDzcOYcnmPsF7EFgiDwbd9vySjI4M0/3rTZuDKPBnYKtcWySwUqQnQLyc3yYcvFLUxqOcnoMA7wy/lfyMyoQjPdYjLTfcjOE3DWNaO5+A3uUpjZeGA5Q+eocuCTvz6hwYIG/HD6hweqeidz/5ADDRkZmQqhcLxGkvsHZClP4OKoo1U9D6M+e2myC7Opv6A+h28cBmDmEzNZMXAFaqUaSZJ4d8+7vL37bd7r+B5zesxBKF4JHr95nF6reuHp5MmNrBt82/dbhoUMe+DzLI0oinz42yG0os644y6gRJAERlwZw7j9y0CSjMGGwUvjbhSNIhMiqelWk6ouVXmmvQf6j+eSL+OSHgzzTIeGTNI4hkZIIY1jnFJOIEc4b9G1N8DXHmuYeGl41edKxhWKdOblR7amrP+FocZb57HTeIxSoSS0amilMhoGuVu10nyhbisvDWtOzLV9HUnLT8MBX4uLtyLSaRNo6gNjyBJsidlCsE8w3i7eVhvKVQolYXavMn7tR9SppmD0UyL7hR681FdFk1quvNX+LdLy01hyYsk9z7E0tdxrMbvbbL458Q17r+y16dgyD5cG1V2s6J0JKFFSSxyNVtKyKHIRvYN609insf5eQUCd+VRx5s1QDgVI8Hz1JSYqgSUGmubP5GznTPSUaNrWbMuo30bR5rs2HLp+yOw4mX8WcqAhIyNzR345/wutv2uNwuk6a6b1ZPPMtmb67ADXMq5RK6IWVzKuIKBvIJ3VdRaCICBJEq/tfI2PDnzE7G6z+aDzB8Yg4+/Ev+mxqgdVHKpwI+sGc3vOZVzzcQ9jqgDsvbyXwPmBKD9UciNFY764F5Tc8A4k6NYZmkRNounVYxRy28Qcq7JE3oqkpX9LAHy8ctGQgXm9tHljsYSObC4QpZpOrNsYzqlfJUuIIl610CS7YVi89wxXY42yXhqiJHI5/f7XTZf2v7CzLyBd0Nd4x+btNjkurGpYpZWnQgJcaVbHDUEo05AtSDbx0igbJIGEIMArTzWmnmc9NKrrFhV5sokxloOV3C4R4B7A6duneSH0BY7dPIZvzajiQjjTvg2NTkJVEEzVzPeYsv4zRoWNwtPRk4gjEQDU8ajDiNARfHboMwq1hfc8z9JMbDmRjgEdGbd5nFzm8hgxopM/CiurQgmBOk7t8HDQKwpujNmITtQxtulYREm0KnF7/mY6G57dwOxus1EK+vuzuWDxb6K6N9T1qMu6IevYP3o/OklH+2Xtee6X54jPsJ03jMyDRQ40ZGRkrKITdfxn138Ysm4Ifer34fDYw8ZG7rIcu3mM+gvqk1GQgUqhYsPQDUwKn2QcZ+KWicw9MpcFTy3gzfYlZRdnb5+l28puuNq5cj3rOh92/pDpbaY/kPmVJi4tjl5LJhL67jzeWZ6Lc/I03KRQNMU18qVRiDoCkuOoMQO6XTxDzyPTOe0w1GLwVRFESeREwgljoJGSl0I2F8wWx1DWrM9U3cUQuLlJoVTXvoCWbFDkIyhLGjSd3ZKtnkdZLw14cBK3Bv+LF/rf4IxyOllCFNcyr5kc09SvKdHJ0ZXOsozo5F+myVqHJEk28dIoHSQJqixExwtEjA0mJMCNF5u+yFVhaZlAQWesez/455N0svsBNykUNymUEG0E/qkLCNFGsOTQTvrU78OlvD84r5pGFtFI6Ir1w/TvsyiBAiV/R3uz9+pepoRPYdnfy0jLTwPgP0/8h1vZt/j+7+/veZ6lUQgKvuv7HQnZCby7912bji3z8DBcy+6O5oaRCgEaVHPj5qs3CfcPRyfpiE2P5aezP/F+x/cpUFw1Cx4EQaJIGU/4knAcVY6cm3yOZn7NiFcus/g3sfrmWN78400i45LZuq8qdTO+Y5jXbo7H3abBgga8s/sdsgtlZap/GnKgISMjY5HUvFR6r+7NZ4c+4/Pun/PTMz/hbOds8dgN5zfQdmlbCnWFOKud2ffCPqMKlVbU8sJvL/Ddqe9Y3n85U1pNMT7uQsoFuq7siqPKketZ13mr/Vu80+Gd+zansk3dRy7d4o2db+A8y5nm8weRf22U0ejOk1Y01S3CmTqmg0gSoiSxsdpS0pyg/TX4qxb4ufjd9XnFpcWRWZhJuL9evjc5N7lYGtVyLbN+oSkhOsSYqLsoBAVuYihNdYuoIrXEDg8QHZBEB+KVy8gSoriSfsXqeZT20qjmUg0XO5cH6qUB+l4MAxkFGWhFrfH3ML8wNKKG88nnKzVmSIArEWMakqM8RSG3SeMYsY6v28xLoyRIusmfmtF4VNGXQL0Q9gJpnOKcehpp6LNeWUQjIOBGI+zwgbx6NNMtpqlukcm155/9fwQ79+JW9i061n4SVxqi/8ou2xQu4KVqzNhNY3mu8XPoRB2LIxcD0MC7AUMaD+HTg5+i0WlsMlcDQV5BfNT5IyKORHD4+mGbji3z8AgJcOXD4UEoFSVZutIloY5qR46OO8qMNjPQiloKdAV88OcHNGmQBIBpr5jEvOf7MabZGKZtn8bkbZPZMHQDnz49kbOql41/E4ZNkAzhNN8e3Mnr38dyPC6DlGwNibddqJ33KRMafcyXR76k/oL6LDu1DJ1YSRlomYeGHGjIyMiY8Xfi37Rc0pITCSfYOWInr7d73bhbXpY5h+bwzLpnECURPxc/jo8/Tvta7QEo1Bby7LpnWXNuDT898xOjm442Pi42LZauK7uiVqi5mX2TKeFT+KTrJ1afp7KUDSo2Hk0ya+p+e2U8hw50I7DgYwJ1rxQ7UJQYn5U1vTMgCkXEukXRKBk8C/SBRoB7wF2fa2RCJAAt/FsA+oxGlnCG53pkYM0MQqmAbO95xiAD9IFGLXG0yTwo7ikxeDYYMhaWKO2lIQgC9b3qE5PyYLw0DAR5lQQaEpJJYBTiG4KAwOnESvppACG13agVvIvDKr3B3g3NQZucb2n6N+yPWqFmfbTeQbu6W3WeqvcUCsdrRKmmc1jVt/hKUlC6oV8o/t302hPYdULi5VYvc/lybYv+KKBfBIbW9KFQW8h7+95jVNgovjr2lbFc6p0O73A14yo/nf3J5vOd3mY64dXDGbtpLAXaApuPL/NwKJ2l83ZVm5WECoLAlz2/ZONzG43lUFsubkG0u4ZCAB2FZHGeE4qXmHloODM7zGTniJ3EpMQQtjgMJ7UTJ1/ZgEfdDca/R8PnWID4IoBRYEEs7vVwyH6amKkxdK7dmbGbxhK+JJz9V/c/+BdHptLIgYaMjIwJq6NW026pvhb3xEsn6Fq3q9VjJ2+ZzOt/vI6AQLB3MCdeOkGwTzAAeZo8BqwZwLZL2/h16K882/hZ4+OuZlyly4ouACTmJPJC0xeY/9R8mwYZpYOKyLhMIrbEoxMlk6ZuELDDA09a4UZjC43WFhZ3goCg0JsKPnENNAo4WkO/qLxbjiccp65HXTwdPQFIzkvG1c6VKh56iVNLkpM1fZRI+bUI0UYY3bQdtcE4S+a10hICrjQkRBvBnn1trTrxlvbSgGLlqbQHm9Go4lAFL0cv4++lm79d7V0J9AysdJ+GgXY125m8nycSTtz9iVqgikMVegT2YO25tcbbxjQbQ3KevlzNTQrFlcYWAgZLJotKHMTaIICL2MBC/Xtxv4YkMb5bXRY9vYh159dR36s+iTmJrI7SK76FVg2ld83JLNpUxGAbuzArFUqW9VtGbFosH+7/0CZjyjwaGLJ0695sZrUktF+DfsS+HEtdhy6E6BaiKKqFJClRYYcbjQCBP+P/JHRRKIW6Qs5OPkv/Bv0ZvXE003dM58O2KxnutZt22i2EaCNwk0Itfn6JEsQl5VHLvRarn1nNoTGHsFPa0WlFJ55Z+wxxaXFmG0uy+d+jgxxoyMjIAPoSp1d3vMrwDcMZ0ngIB8ccNHorlEWURHqt6sWiE3qd/g61OnB47GH8XfU179mF2fT+sTd/xv/J1mFb6VO/j/Gx1zOv02VFF7SilpS8FAYFD2JJ3yUWHcXvho1Hk3h1WTQ6scTFXJQMJUiWHLNLlJwsLegto2+wfuIanKwGeXbg4+xz1+ccmVDSCA760ikfZx/S89O5rfi9zLnof4YGuFIl9W3TcpusDyjktkWVIjVV8KQVosaFyLhMiz4Shvf7SoY+i1Df88FJ3Jamvld943tTWnUmKj6bOnkf8veR3ne1mGhXs53Je/rdye9sc8KleLbxsxy8fpCbWTcB6FO/Dz5OPjioHEycwEujPyfzJv8CxVUWHFuAk9rZ6rVYqIojyN+OoU2G8lyT55h1YBbd63ZnzuE5SJJEVHw2BVdfwL6oManFQbctXZgb+zbm3Y7vMvvgbE7dOmWTMWX+OdSqUotBfgtRlMrSScWBc3P7N9CIGjIKMuj7U1/e2/se3/b9lvXPrufk5VTe+zGBhNvO2OGDF61pqltEAUkWG8UTCk+w7+o+ANrWbMuhsYdYNXAVx24eo/WCoUxbes5kY0l2Gn90kAMNGRkZbufepvsP3fnq2FfM7zWf7/t/j6Pa0eKxBZoCQheFsiNuBwBDGw/lj1F/4O7gDkB6fjrdf+jOqcRT7Byx0yQjciv7Fl1XdiVPk0d6QTrd63Zn1aBVRrO+u8Wwm9Xnw0gitsSjtSC/bkmxqez9po3WEhZ6sZGQyOcWoA80/iq2EfFw9Lirc9eJOk7eOknLaiWBRkpeCt5O3qQXpONLJ0AsteMtACL7onKKf1Oa/DSco2mtNCbHiBIWfSQseWkk5iQ+cHO2IK8g4zVhyF4YslSanNqgc7+rxUTzas2NpR6gV86xNf0a9EOtUPPL+V8AsFPaMTJ0JJIkFSvzWM/alW2OVXjupUhXhEbUWHycgICkdePTvz4FYGHvhTiqHMnM9EBxazz9Pj3Kuz9eQpLu/N7fC28/8TZNfJswZtMYm/eCyDz6XE3Kx3w5qYCiqszuOtt4y9fHvyb823AaejdkYNUF+uvX6EGjQCkoUQpKi59fGvftdF7RmZG/jiQpJwmFoGB46HBipsbwpOsHSJJkurFk42tc5u6RAw0ZmX85x28ep8W3LTiffJ49o/bwcuuXrZYw3c69Te15tTmXfA6A19q8xupnVmOntDPe33lFZy6lXWLPqD3GXg3DfV1XdiWjIIPcolza1WzHuiHrjI+9W6Lis5m+NJpjsZnkFlk3eCrrrmwt6DAEG4IkYcXtDQ3p1MiE2pklgYa3o/ddnX9Magy5mlzTjEZeMj5O+oyGk1TXondGToHO4u32+PK3chLpwjGKhBTyFBeN8yqNNR+J0l4adkVBhGgjGDn3wgMtRwjyDMJF15gQbQSauDd4a0UMi36/ptfmL/7aupvFhIPKgebVmht/T8xJtPGZ68unetbrybrz64y3jWk2hkJdoUVPDAkJLTkUeqwBx0smzbEnMjbg7+JPqngaS706EhK+HiLz929iypITTPgqnk7KdTgmTceTVuTkKcjM15o90lYeIgbUSjXL+i8jKimKzw5+ZrNxZf4ZWDPczBAvsOTQTp5x3UNH7QHaafZid+tVnlw0iou3sii7BJUkgVrOIfgG/WrSKH5KOYFTGb/RJ6gP2y5to8GCBnx9/Gt0og4ntRMKjb/FcitbXuMyd48caMjI/ItZfmo5HZZ3oLprdU6+dJIOAR2sHnv+9nnqzqtLUq5eXWRuz7l80fMLY8nTzaybPPn9kyTlJrF/9H5jYzPoFay6rezG7dzbFOmKCKkawsbnNlrNmlSGRb9fM+5kWaNskAHlZziEYhHR4pWt2X2O1KB9sfLqwZr6n15OXmbHVoSyjeCgz2j4OPuQXpBOkfKaxVICVweVxdtzhctkCWeIUs7gkutoNFjPRljykTAEGlHx2SzeBJ60IiuXB1qO4KJrQohuIZ60QiV5ERmXSfTNXLP3+W4WE0/UegKVoM+WSEj3pTRsSKMhHLx+kBtZNwB9eVEr/1ZcUy4388QQEFDhhDp9MIPaVjFrjvVx9uGqYplZeZX+dx3OVa4Sol3AuWtFpGRruJWqNjaXW+Nu3evLo3m15rzR7g3+78//q7QqmMw/m7JeMnqVKoEk9lI9+0OS0uxRYIcSe1xpRCPNfBILLmIoQTWgEKCenwvrRn3OZy80INZtjPFvQZREtlzagoPKgScDnmTKtim0WdqGyIRIq6aZtr7GZe4OOdCQkfkXUqQrYvLWyYzZNIZRYaPYP3p/uc3Mf8T9Qdg3YeRqclEKStYMXmPidXEl/QodlncgtyiXP0f/SRPfJsb7Mgoy6LGqh3HRVcejDtuGb8PFzsUmc7l0q3zDMEtBhgGrZSyGbIaFjIbBAyE4K5QYL0gunoavs2+lzttAZEIkDbwa4GbvZrwtOS8Zb0d96VSq47ri5zWVjezZ3AtQmHhqAFxXLjeep73KHkexjDxvKSz5SBi8NAyZgvtZcmONC5f8TZSzrAWSd7OYaFezHVqpRDL3fvRp9GvQDzulHevPrzfeNq75ODKF01xSfIGEaHJdGlSmfjuSbVJCB/pm+Jo+Ok4pJ1DNS4tIEYKgw84piQt2M4i6IqEQygYW1suz7sW9/k683+l96lSpw5iNY2T50X8RllSqvhrXmJ5+M9CrqpVcjyV/11Lx34H+Oil7Xfaq14u4aXFMbDERKMlAJ2QnsOniJnoF9qJAW0CrJa24bf+TcQxLY8k8XORAQ0bmX8at7Ft0XtGZpaeW8m2fb/m277fYq+ytHv/dye/ouaonOlGHs9qZXaN2mShIxaTE0GF5BxSCggMvHjCRJ80qzKLXql7EpsZip7TD19mXnSN2UsWhik3mEhWfbbEfw0B5PRnWH2S9ZAoMX5Qq/gxfxIawUOPtPk531wx+POG4SdkUmDaD5yrOkeoxi3x1FN6uavLVUVxTf8X6w0kYejcMje7Zrj8AglGJqkbOexRw2+qy00LChtpVanMt8xpxSXk2ySDcDckZKqs78ve6mGhbo63J74ZeCltiVJ86X6I+NbTJUDxpTpD4OgIqiypTBXnu/K/T/8zGExHJFqL4Wz2e9p22cdi+C7NeqEa++gKuQlCpOnfLCAK4O6osSpXaEgeVA8v6L+PYzWPMPzrf5uPLPLpYUqnKyXax2lvkLFTnlHISGUIkhdzGzeM2c16sb3Jdutq7sqjPIvaP3k9Nt5rG2xUoOBSbgDpxAl2EXZyO9uaG/UKq+ebe92tcpvLIgYaMzL+IQ9cP0eLbFlzNuMr+0fsZ32J8ucfP3DWT8Zv1x/g6+3J47GE61e5kvP9M0hk6ft8Rdwd3Drx4wESlKqcoh6dXP8355PO4ObjhbKcPUu5FnaksczZaNp+Tiv+V/r1C3CHIMCAgIApKdrZZYJRlvJtmcI1Oo/csKRVoaHQaMgszjc3gBdoCtPZx2NX8gXVvNiPe6T08xCdMGnwNpV5Oed0J1S4wKlHZFzXBjeDiohvT10AQLGcnDF4a/t6Kh1aOUK+qs1lZmEKA4BrOVrX9K0p1t+pGdTSA+Mx4m5xzWZ5t9CyHrh8yZvLc7N1oZv+aZclk9BkpATVf/uxIK+Eb3KSSIDY6JZp2NdoRnRJNU7+meDh4MOfQHP6v0/+RLV2yqDJWelwJkY9GBJUrVWor2tVsx7TW03hnzzvEpsXet+eRefQp77OibWBtnmnWgtPKaRxV92dTVn8m7e5t0VC0Y0BHYqbG8Ea7NxAQcJGa0FS3CDexBTqNC25iC/wLJrI5ZTopVV9ldG9RDjIeIeRAQ0bmX4AkSSyOXEyn7zsR6BnIiZdO0KZGm3KPH7puKJ8c/AQBgSDPII6PP05I1RDjMcdvHqfT952o7lqd/aP3U821mvG+fE0+/X7qx6lbp/B20jdJ7x6122SBd69sPJpEfHL5JmFCqX93pHh7X7K0zW9xcAEU9kYH8WuJlfcAOZ98ngJtgUmgkZKXAmBsBs8tykWr01LdVV/alqfJw1Gsa5ZtEBBQ6vwN/yu+Tf9TIZiXiUnlNIMDtG6SY6Hu+sGUI4zopH+OkgW0iCDA5Kdq3VHbvyJ0qNUBD6kpIdoIWms28sqy0zbvPTGUT5XOmFhq7AdDEKhAjRuixgVnbZh+IVUq2EjISUClUPHK9lf4pOsnrDm3hjC/MFRe+4vHKClBMQRl3q5qqngkE2M/g1pV7yK7d5fM6jILPxc/xm8ejyiVk3KUeawZ0cnfbLMC9NfnqM7VWdZ/GRuf24haoUZE5HTSacIWh/FTlLm5pKPakc+6f8ax8cdopJxqUlopoEQC2ju/x/XM64QtDmPm7pnkaeRm8EcBOdCQkXnMKdAWMG7TOCZtncSEFhPYPWo3fi5+Vo/X6DS0XdqWtefXIiDQrmY7jow7Qk33ktT1gfgDdF3ZlYbeDdnzwh5jMGF4voFrBnLkxhH8Xf3J1eSya+Qu4wLWVizffbPc+ysUXJQhWdqh7wGvRMmVob5+/aHMSj9fZEIkCkFBM79mJedQbO7m4+xDWn4aWklLribXGGgUaAvQqq6Xez5lf9cHJeZz8nEzV/wyZKUkhyvlugPfT0ICXPFvsJls5UkKuU2R/TmbPrefbgChusV40gZ7fDlzpYBp30Wz8WiSTcYHcHdwp2egqfpUQ/8qFrIPet0pfRlcsQ+BpF9GBer6aX7OAAAgAElEQVSmGcvgXFJeoWu1sSTmJJJRkEG4fziv7XyNiIHTOaWcSKYiEoU6h5aB7swbF8zXExqz7s1mLBjXnGQxkqUnl9psbnfC2c6ZJX2XsO/qPr498e0De16ZR4uQAFcixgYTXMMZtVJArRQIru7MvHElf8v9GvTj+ozrBHsHk6fJQytqGbZhGC9ufJGcohyzMVv6t6S6fUuLn3MZWfoS4HHNxvHl4S9ptLARm2M23/+JypTLvYnXy8jIPHJExWezal8Cl5PyqOal4Fj+J5zO3MiKASsYFTaq3MdmFmQStjjMWE4ysOFAfnzmRxxUDsZjdsbtZMDPA2hTow2bnt9k0tRdpCtiyLoh7Lu6j3qe9UjITmDf6H008G5g83lm5Wut3nc3QYYEeCt6IKJFUcmPRgFlsZZ85YhMiKSRTyOc7ZyNtxkyGmnpbtTK/QAXAsnPuoKj1gGtqEUjaih0/x3H1KYWzkOwKONrVNEyf4AZpb00RoTq664fBiEBrmy4+hpFQhHuanea1Bprk3Gj4rM5fbYumLxO+p8RW+Kp6+dESIBtApohjYYw6rdR3Mi6QQ23GozsVJ3jsenFZVJKY2O/UqlB0pmWmQgocaMJhgDEDi8K4lvhY3eSd/a8w+/Df6fj9x2JTYtlYNNmrI+eSU5RDu903E2TWiXvWQ23Gjzf5HkijkbwcuuX79mzpqJ0rduV8c3H8+Yfb9I7qDe13Gs9kOeVebQICXDl6wmNyz3Gx9mHc5PPMWPHDOYdnYdCULD5dBQXzvyErzqMhtXcGdHJ3/h3GVjVifScTJOsrsHgMi49jsUnFvNck+dIzk2m38/96NegH/N7zbdqQCtzf5EzGjIyjxEGUzODQ+qZq3k4JL3CD70O3DHIuJp+lYCIAGOQMTV8KmuHrDUJMjZe2Ejfn/rSpU4Xtg7bahJkaHQanl//PDtidxDsHUx8ZjzbR2wntGqo2XPZAqWNP70EQUBAgRI1ULmshoSEj3vl/UAib0VabAR3k0KZsy7H2GvhLrbk0NFQDl/SGwXau9wiuLq5W7T5OZc/h+TMIou3l/bSeFgEeQVRqCtEQiKzIJMineVzrSwlalqWg1FbqmqVLZ8KCXBlbB8taRxDK6QVewRMxMklzWKmQ3+epmVwze1fJ1eTy/ro9QwLGcbM3TP5b4f/ohSU+Ln4MXnrZAq1hSYjvdb2Na5lXrsvje/l8Xn3z3Gzd2PClgkVL0mU+VciCAIRvSLYM2oPPkJLGmvmY1/UhKxcOBabYSKtXVZOl+IutKuKpShQYK+056ezP3Ey8SQzn5hJZEIkwQuD+fSvT232OSJTceRAQ0bmMWLVvgQkqUQOVEDvtHr8bPk7tEeuH6HhwoZkFurLf2Z3m838p+ajVJSkp3+K+oln1j5Dvwb92DB0g4kHhk7UMeq3UWy8sJGmfk2JSY1h67CttKreyvaTRB9Q3c91i2ERWl6wUXbhFHMzt1J1/oXaQk4nnjaTM03JS6GOOLb4PEwXmT8fuA2Aq50rk56qBcUyqZbO3YCWHKwFHNaaNR+JQMMzCDcplBBtBG20m5ixLMomfRR3Us2ypaqWpfKp4a2e4KL9W5x3GU6UajrZwlnOab8CyjqDm7+XAkrys/1pr9vK3kN1GVbvP2QVZvHdqe/4qMtHJOUkEZsWy+eHPjd5XJhfGN3qduOLQ1880AW/u4M73/T5hu2x2/nhzA8P7Hll/rl0rtOZYTWWmfRggIBOFFm6W98oXlZOt1W9Krw91IMmtVwRESnQFeBu705afhoLDmyhQeFs2uu28tNOR8LnD2bf1X0PbX7/RuRAQ0bmMeJyJSVJo+KzGbVwH69+m0L9wtl4SE1ZOWAlb7Z/08QdfOnJpQzfMJzhocP56ZmfTNy8RUlk7KaxrD27ltbVW/N34t/8OvRXOgZ0vC9zjIrP5pWl59GWs2C6K1nbMtyxiVwwPRYqtxsedTsKjagxz2jkJeNCkNn7KEkCN5L15WKu9q6EBLiSzQWzcy57khJai0JainIauw1eGg+Tolx/muoWGbM6569pbdJHUbeqU7mFdXeTmSqPZxvr1aeuZ+r7agRBoHX11qTlp+Hr5IuExNXCfYSHnzBxQ87iLGUNzfRlcGrUkjceUjhfrMthYuNPmHtkLt3rdifMLwwfJx8++vMj4tLiTB77WtvXOHHrBH/G/2nT+d2Jp+s/zfCQ4UzfPv2+OLHLPH5cTy6yIJqgIPLqDbZd2gaYy+n2ahLMvtH7WPT0IpzVzuRp8qgmDqSZ7hvEvCC0Gmc8pdZ4pP2H/t+/wshfR5KUY7ueLBnryIGGjMxjRGUcUvUL9nNcS7THHl+9epK4mKZVBpgcN//ofMZtHsfElhNZ3n+5SY23KIlM3DKRladX8kStJzh68yhrBq+hZ72e92V+V9Kv8OrPWxAlsdwg4G56NMpSViL3Ts9RWY+JyIRIVAqVWWlZcm4ykl2CxffRo4q+JMZg7meP7x3mKpLNBXp1jCe4hjOCoDfIUggSDfydrWaFDF4aD9N07Ze/0sx2NUHfR3EvmY0RnfxRlPrmK/seVzYzdSf61u+rN++LLjHv6+H/EiHaCIJzfzDKIx9MXk2m15ekuM4DwJEaSAgmLuJQct3pezwkCpOfoKpzVd7e/TYLey8kMTcRJ7UTU3+fapK96BnYkya+TZhzeI7N5lZR5vWah1qpZsq2KQ/8uWX+eVj6HpPQUaS8xtOrn2b69ulm5YEACkHBxJYTiZ4STWe/0dQX3wKTDSP9H363Kp+w7dI2GixowNfHv5bNJe8zcqAhI/MYUbZ2tTxJ0rfX7kSUJJPyHAHBZFf+kwOf8Mr2V3i97ess7L0QhVDykSFJEq/8/gpLTi6hS50uHLh2gO8HfM/A4IE2mUtUfDZvrYhhyGeneP3787zy61yCFwZTkFvFokRoeUhIVktGSpy1zX03KhuwVMZjIjIhkia+TUxK0ABS8lOw9zmIIJiW0ggCNAzSK215OOg9O3KJtRoMSUgIgkC8cikOLolM6lULw2JdlARiEnJN6p5LY/DSuJVzq8LzsTWXk/Ksvs/30kdhKLtoVc8dhWD5tbNln4a7gzu96vVi7Tm9eV9UfDZ7DgbhSSsEXRWjPPL563kMqfMG/tkf4Ekr7PBAn9FQoCFD7whuoZTq3M1UZnebzW8XfqNAW8CLTV9EI2rYHrvdpCdDEARebfMqmy9u5kKKaSbsfuPl5MWCpxawIXrDA+8TkfnnYel7TCEoiFcso6pzVRYeX0jr71oTnRxt8fE13WsSZvdqsQSG+d/MrVSR5xs/z6DgQUzZNoW2S9tyIuHEfZ7Vvxc50JCReYwoW7tqSZJUlES6r+xOepa92ULOsCsvSRLv7H6HmXtm8r8n/8dn3T8zKaWSJIk3/niDBccX0KteL3Zf2c3iPosZETrCJvMo29QeGZfJ6ZOteanRx7SqWzH1mpIAQgeSjvq3zoJkXopi+GnZRK1yJViV8ZiITIg0688AfUbD1yuPuWOCyVX9jajMQGN/noixwSgdbyAg4KR2QpIkriqXWR1fpIgn20WTJUSRVpBWvHguyRCIkt5Lw9KiWpdXkxBtBJMX3uStFTE295ioCPqgzfLrf699FIayiyou6nvOTFWEjr4jybk6lEGzI3n3x0vF/RemAX4t3Yucv1gNcx8UkVxFDBmcNGsYl9CRpoumdpXatK/ZnunbpzOryyxUChW13Gsxfcd0sgqzjMcPCxmGn4sfcw/Pten8KsLgRoONC7vUvNQH/vwy/xwsfY/NH9eI/ZNWUtWlKgpBQWJOIs2/ac6SE0ssbiJdScrHoqweEvmKKyyMXMjvl37nq6e+okBbQPiScKZum0pGQcZ9n9+/DTnQkJF5zChbu1o6yMjX5NPk6ybsurILO8c0i+U5dao6Mn37dD7+62O+6P4F73d63yzI+O+e/zLn8Bz61O/D9tjtfNnjS15q8ZLN5mC5qV2FY/bTjO5850DDECBoyEISs3DPz6ZAJRSXopR8KZWUoZTd9bJ8e3nPF1zDucI+D/mafM7ePkt49XCz+1LyUvB28iaouppIJpNV7S3c66ynSS1XUvNTUQgKHFQOiJJIlnCGLM5aUJ/SkcFJ/Lz15QUZBRnFAaTpc1laVEfFZzPv1wI8aUV2nkBkXKbVzMf9pMS0z9zR3Fbu5NYcyG3pfh4Vn822/bXwpBXpOSKZ+Vqz90FAiQuBZGY7WPQHcBWb4i40ApNSKh1KQcE15TJG/jqSiF4RRN2O4rcLv/Fxl4+5lnmN1LxU3tv7nnEse5U901pNY8XpFdzOvW2zOVYEQRBY2HshGp2G6TumP9DnlvnnYel7rKF3Q46OO8r45uNJyk2imms1XtryEs/+8izp+ekmj69b1clibxoILBwxiIENB5KYm8jLv79Mfc/6vNZsPoeONqTPx4cYuWAvUVezLD1Y5i6QAw0ZmX8JiTmJ1J5Xm+iUaEaFjeKrYQMsllklqH5g/rH5LHp6Ea+1e81snA///JCP//qY/g36s+XiFj7o9AEz2s6w6bmW19QeEuDK9D7W9dClYgM0LdmoJFeUuJHl5ME1n2Cw4JAtlAk+7nR76ecp/bNnM2+rx5bldNJpdJLOrBEc9M3gPk4+3Mi6AeiDEoNZn2En2FHtiFbUN4bHKeejL7ERi89Hh4REvHKpUTUsoyCjwv07q/YlgFSy415e5uN+EhLgSqdww+5icSmbUH4Te2UZ0cm/zPus/2lL9/Oyr6clDE3e+VIiZbM4EhIK7FBJ7sX3KSginTSOQfVv6Nm4IXHpcVxOu8zopqN5d++7DGk0hObVmuPl5MX8o/M5deuUcbwJLSegVCj5+vjXNptjRfFz8SOiVwSrzqxi68WtD/z5Zf75OKgcWNB7AeufXU96QTo+Tj5sj91O2OIwDsQfMB5ncCUvG2zM6BdAu6DqbBi6gV0jd+Hr7Msf0Zc4frw57mI4asmb60kOTFt6ji2nox7w7B5P5EBDRuYxxtDnMODTYzz1+ToKcvz4oNMHrBiwgpDabibp6eZ1XakSuIaf4j5lxYAVTGw50Wy82X/N5v197zOw4UA2xmzkjXZv8G7Hd21+3ndaFNf1cyLAW+/vUbpp27DbK6BAjRsCIBUvtgVBaTy+NJZ6NAxUpOFcKF6qHoqueMr9+M3j2CntaOLbxPRcJImUvBR8nH24lnkNgPSCdKq7FQca+alISDioHIyBRp7yPFec3sLLKx17+wLyFZfIJprGuo/Ze6gublIoWYVZxrpnw2tkrX+nsspl95Nn2lTnlPIlnNxvUiQk0zLQzebu5CbZOsNPGyrAWno9S2Mo21PjhivBSCZBo3kDuKHB/4LdG+xJXM7LrV5GrVAzedtkZnWeRaGukFkHZvF1769JyE7Az8WPiVsnGhtePR09GdtsLAuPLyRfU3mTyXtlZOhIetXrxYQtE8gsyHzgzy/zeDAoeBCnJpyinmc9CrQFKBVKnvz+Sd7f+z5aUWssvwo3SuC689X4YPqFVzWO0bVuV+Knx/Ok6wdAiampXmgB/rt+LzN3zyRP8+A/+x4n5EBDRuYxJCo+m8mLzzHtu2iOxWaQmQvuYktaiN8ysHZJ9sGQnl71aiMuOfyHTfFfsWbwGovmfhFHInh799sMbDiQ3y78xqSWk5jdbbbJQs1WlNfUHhWfzfSl0cSnFABlPC+EQgxOyvo7LZdElVbyqWyZlGUUlVOcuhVJWNUwE5lggMzCTLSiFm8nb2OgkZKXgr+rv/H/oiSaBBp2SjsyhTO0aXWO0NCzOIpBuNEIe3xJSHKmme4b0s9PZdW+BF7uHUCO8hT29gUW+3egcspl95tAj0CyhDPUbbSXQ8o+zBjkbtMgY9W+BBMZ47uRKb4Tll5PAVApDP8vWdwICGQRTfWq+RRyG0HQWWxmdaUhDYs+p612MzNXxTI2+ENS81NZeWYl73R4hwXHF+Du4M64ZuOQ8muRHz+Mvp8cNvbbTG8znbT8NFaeXmmzeVYUQRD4ps83ZBVmMXXDF0bBh4fVCyTzz6V2ldrsH72f19u+ztWMqwR6BPLRnx/R6ftOxGfEl1tGbMBB5YC9LsBiyWJVu6bMOTyHRgsbsTlm84Oa1mOHHGjIyDxmGBqpo2/mFt9iupApu4jK0+TR7+d+bI/dzm/P/cbgRoPNxlx0fBEzdsxgYMOBbIrZxMiwkSzoveC+BBlgvaldkuDdHy8hltlyNiwVRUl5xxKVXC7rezdsFmToR66M/0JkgrkjOOgbwQF8nPQZDW9Hb0RJNJZOJefp73dQOaCT9MGSndKOIl0Rdko7Ll+uA5Qu0ynepRNdiIzL5Ktt8RS4biWk1WarX7yVUS673ziqHanpVtMoZRmTGmPT8R9E9saigo4CnB3Mr1MBJQ74Uuj7Nel+b6B0umqhAVxEjbvRX0RR0ICLZzrhp2zDB/s/YEr4FGq61eTVHa/yQsP3aVA4F09akV9gZ+y3yc3yYVDwIOYcnoNYRiDhQVDLvRZvNF/IteinOB6XYRR8eBi9QDL/bNRKNZ90+4QdI3aQVZSFh6MHN26rGDh3C30+PlShANaanG5VD5GoiVE08G5Av5/70f/n/sRnxN/H2TyeyIGGjMxjhqGR2hJlF1FZhVn0WtWLg9cOsm34NnoH9TZ7zLJTy5i8bTIDGg5g66WtDGg4gKX9lppI3d4Pyu5GSRLMWBZNZr4Gy2oiAgpJuGPdixMBxUdXMriQpHLHrqj/Qk5RDtHJ0RYDjZS8FABjRsPH2QegpHTK0KOhKunRsFfaoxE1qBVqsrJcLOzMGSRt9afvUTC4XGWViiiXPUiCvIJIyU9BKSiJSbFtoGFpgQGSTbM31l7PBv4uFhc3uUIcmy5uYmr4VE4UfK4v/zMGGwb/GFNZap0k0snt/yjQFvD6ztf5oscX/B77O8t2X0WBwmK/zWttX+NS2qWHtlObnRiuLzqUTK/PB90LJPN40COwB6cnnqZplf4E5H6Mm9ic3HwVx2LTmX6HANbi5goCG5On8erOV/nm6W9YO3gtkQmRBC8M5tO/PqVIV/SAZvbPRw40ZGQeM8qrCS9dApOWn0a3ld04k3SGP0b+QZc6XcyOX3VmFeM2jaN/g/7sjNtJ1zpdWf3MahPTvgfF8r3X0IkiloMMfX9DUOJFKMczw2AAJ6CysFNsvVdD/2ALnYWlRoaKLZJO3TqFhES4v7nilCFj4ePsQ3xmPO727gBUd62OJEloc6sToo3g+9/8mbXmFm5SKHZKO7SiFrVSDXdoYBclUGlrkFFYfj9JRUoOHhRBnkHEpccR6Bloc/+HsgsMfSO9aPPsjaXX09LiBuCqYilFuiJyinLA8Sr+DTaXOIYLR3F1VFgIJpVkZrrg7+rP0lNLeTLgSTrV7kRsYg6SFfneNjXa0L5m+4di4Af/z955xzdVr3/8fU6SpjOddEBpoQXKaqFsUCoyFBBEFFzABUGGggy3P1xXvQ5woCgIKuLCLSoOBAdDAUuZZQoUOih0t+lI24zz+yNNaJqUoZ34fd/XFWjOOTmnSdPvc57n8/lY7Udrs9cWCP4Ood6h9NA+gEz1zraM2WLmjZ9cZ26A65sBS6d34f1bn2bv2b10Xd6V08WnOXDXAWb1msWjvz5K/Ip4Np/a7JD3JMb/XCMKDYHgMsP1XVorthGYrJIsBq0exMnCk/w2+Tf6t+7vtO1nBz9j8teTGd1hNL+d+o0+rfrw5c1fOukK6ovqH+Bz3t5NUsoZavvIUhQFlWJhbOJrZBoXgVR7wSAhIaOtkpCfswoFMFFa9e9LVwNbFDh6uuSC2yVlJuGh9qBTi05Oj9lGpwI9AkkrSsND44Gbyo0gzyAST2QRa36DAPpQYlBx4FQF3c3L8bHEAthfl/N1amQJ3DzynawgmzLtA9pzPP84MYExdT46VX2BodaUkk8ih93m0aW1d50+z4We27a4uaJfMnopGQmJ13e+zoweM/g+Yxmq8NVsV48mWbUARZuBK2eqskqZ//Z7D7NittrdXruEIuWoi23NtAm2Ginc1/8+tqZtJfF0Yr1fb02akhZIcPngKj9DQsX+9Bxe3v5yraOCrm4GjOk4hkOzDzE1fir3/nQvwz4YxqS4SeyasQtfrS/Xr57L3LcPOuQ9ifE/Z0ShIRBcZtS8U2qjU7gXS6Z1ws+viITVCeSW5bJ5ymbiw+KdjvH1ka+5/cvbGdl+JL+n/06noE58e+u3TinW9UXNwL4DqRXIig+uFliKohCszyQy5xDPjn4GrdtVpEsfYqTwPAWDwl7VXefuFJPIHtV0flcPJl360H5sx11qHsv52EUG8wV/yezM3El8WLzLrlBuWS5+7n6oZTVpRWnIkkxLn5ZIksSHm8/YOzJgLWwkJHwN1iR2jazB17e41k6N/c65xQvjiQeazd239oHtKTOW0dKnZZ0XGnBugXHnjdkkq+eTbdlZL89zvue2LW7uvfomVFXuaBn6DBLaJFBSWcJVkVcB1tdyR+n/qNm5qlIosXmPitjgWH48/iPuane6dcpDwWx/7a0NOQUl4GcAro+5nnYB7Rqlq9GUtECCy4faCtgWfibu23Af1625jqySrIs+nk6r47URr7F92nYqzZX0fqs3HyV/xE8Tf2JU4MsoKPYJAjH+5xpRaAgElxk175TabP2WzeyCp08OA98dSLmpnC13bKFzi85O+/9w7Adu/vxmhkUNY+fpnbTWtebHCT/io2248RlXgX3WyXSgxgJLUizk6FqSEtwZjRxMAH1orUxEg6/LLAwFBQMZRJqn4k00JZwgVbUKvWT1TPdS2nFuFt62k+JibMq5cyBJF/4lU1siOJzL0Mgty6XcVI7JYrILwdNyjC5HZjTG1oBVFNkuOg1Qqv2itV67RlNBTEsvAMpLg5At/s3m7lv7gPYA+Gh9OFlwknJTeb08zxURV9j//tvJ3+rlOS5EoGcgYzqOsb9nX9r2Ejd2upEfj/9IhM4aVJmn7EajqXDpRnUyq5wPbvgAgNu+vI2Xrr+HY+7346HLIMhHQ+9oXzp328obyQ9yIv8EKlnFgn4L+OLQF5wsONmg19rUtECCy4PaCtj/jR/MjxN+ZPeZ3cS9GcdPx3+6pOP2De/Lrhm7eGbwMyxNXEq3N7uhL/ES438XgSg0BILLEFdt4CO5Rxj47kA0soatd2ylXUA7p/02ntjIjZ/eyKA2gziYcxB/D382TNqAv4d/g57/0cxSFzqTcx5RDshWz3NbTsY5kaxs36um/sKLKLtrTwB96G5ejk6JA8CbaGfnqot011Iu8EumsLyQY/nHXArB4VwquM3atsxYZheCB/oaXXQrzChuZwDr6FSAv55j7vfTK9qXCrIJDdaT7fck8f2/w8fD1kGxfl+ay923KP8oZEm2v47H84/Xy/OE68IJ8w4D4Juj39TLc1wM8/rOA0Atq9mcupmZPWbyV95fjO88HrC+h3PN+1wKyfXKX+zI3MHQtkPZc3YPB7IPcN/gcfxYNp7HJ6t5YXIMi6+fQ7BXMHN+nIOiKEzpPgV/d39e/fPVhr7UJqUFElwenK+AHd5uOPtn7adHWA+GfzSc+366z+5odzFoVBoevvJhku9KJso/itSyP7Fl3tgQ43/OiEJDIPgXsO/sPhLeTSDAI4Atd2whwjfCaZvNpzYz5pMxXBFxBSkFKahltT05tSFJTi2mqMzk4hEFs6R3XmwripPN7vnSvx3Dz87Z/kaap6JT4pBxv6BG49yxHLnQL5ndZ3YD1Fpo5JTlOIf1VXU0usSctaZEVxuDUVBQ/H8BrKNTkiRRqjrEC5Nj2Ot+MzHtMvA3jGP3juHsOalvMkF8l4JWrSXCN8IemlXXzlPVubrt1UhI7MjYUW/PcSEGRgykta41JosJi2Jh/Yn19GrZi/3Z+9G56ZCQOCG9ZbVnls4FVdrS4B/5+RHeHfMusiQz+evJzOkzh3YB7Vjw0wIURcHLzYulI5ay/vh6vjz8JZ4aT+7qdRdv7367WWl3BILaOF8BG+Idwve3f8/L17zM0sSl9H+n/yV/prQLaMfGSRuZNKilg9ZPjP+5RhQaAsFlzp8ZfzLovUFE+EawafImQr1DnbbZlr6N69ZcR+9WvTlbcpZyUzm//OcX+930hsQaolYT69K+xHstKklGrko5VhQzSIqLO/2u079ry82whaB1Ny9Hjc9FWd/efEUIsnxpM+ZJmUl4u3kTExTj8vGc0hx7hoaH2oOzJWftYX0ar9Mc0sylZ7SOIB8NMeESe1Wz0HpbOxpW16lz1+pPd7Zs74SmojOmSi+MZufiqbncfWsf0J4MfQb+7v71qp9IiEhAQaGooqjR/PIlSTrX1ZDUvLPnHeb1ncfGlI1M7jYZBQW9tJ+Tng/TM0qHWS4Aj2PsVc3C7JZCQXkBHx/4mP/E/Yd0fTof7f+Il695mV9O/sK3R78FrNqMMTFjmLd+njU4r88cjBYjK3etbJRrFggaElmSWdB/AX/e+SdlxjJ6rOzBqj2ranUrdIUkSTwwZDxPTwzHQ5dBBdlY3I9y/zgf0ZmrgSg0BILLmM2nNjP0g6F0adGFX/7zC4GegU7b7Dy9kxEfjaBbaDeKK4rJKc3h5//8TFv/to1wxtY77M4f9xKKVMzHQ8byf1/dTef0RMxKDvlSIn/Ji2o4SCk1/jRXHaH24uHcNqoLFhkKCor6LHcNj7zkGfOkzCR6hvWsNYPENjqVWpRKK59WlFSW2DsaeWV5aL3PsmhyRz5/MJ5poyT0UjIa2VpgaGSNw7mHGSdapSW1BBg2p7tvNuepjkEd69zitjpXRlyJTokj1rSEu9/IaDTB/JTuU1BJKkyKiYLyAnzcfAj1DqXMVGZ/nU9VbCIuPom7xxew2TiZDi21lBqtrmlPbX6KxcMWo1VpWfDTAka0G8G10ddy34ZzoyKvjXgNU2k4E1//lTnLMhmiXcPKbSRaUbkAACAASURBVBtEPoDgX0N8WDy7Zuzitq63Me3badz65a3nzRhyxcCY1vz4wHj+O0VLmveT3PBNPM9ufVb8HFVDFBoCwWXK+uPrGf7RcPqF9+OniT/h6+7rtM2eM3u45sNr6BjYEYti4WThSTZO2kjHoI6NcMZWaktpjQvxwmP4dbTP3MvWVk+yVTOKZPV8zshrSVbPQaXNd+pcWJPAT6HnwHlyM8xO+zlR406XbAohObX4kmfMa0sEt2ETg7sM6zPkORSKtsA+N7XV1tZmb2u7K+dhaYurj3iNSmp24tv2gdYsjQ6BHeq1o2EuCyfevJwA+lBWrmk0wXygZyBjO421//uJTU9wd6+7WZO8hlu73Gp/vz695Wlu6nQTXX1G4Z03l/6mdcRbliJXRvFa4ms8cuUjKOWR3PTqD7hnPI1X7j08uf5dAIoK/elifBV9YQi5xUYqilsTXvw0r25qPH2KQNDQeLl58fb1b/PpuE/56fhPdH+zO3+k/XHJxxkWPYzku5KZ328+j//2OD1X9mR7+vZ6OOPmhyg0BILLkLWH13L9x9czNGoo625bh5ebl9M2B7IPMOyDYUT5R+Gp8eRA9gHWT1hPt9BujXDG57C5htjmz8GCSpK5YflsZJOZ8XcFsc/d8a7TjCuuobzCKnauOR7lRgAnVK+5zM1QsGBEzzH5RYo54lqbUaPIsB33UkXUuWW5nCw8WWuhUW4qp6SyxC4Grx7WB1WFhodzoWHraGRkq/lzZxdiDR/z0HtHMcn5uBIqxrfVNTvxbfuA9pSbygn1DuVo7tFLGnG4FD7afBapliTthmZO7zmAVRS+L2sfYzuOxayYifQ7l2x/LP8Yq7b/SovCR1HK2qElGJ2lN/HmlfzwW1vaqSYSb15OQX4gRaUKAUpftv8Zz/XPJvHYR8dAcbxWGZmvt+vr7fsrEDRVbu5yM/tm7SNcF07C6gSe2vwU+04VXVIYn6fGk+eHPk/SDGtW0hWrrmDOD3PQV+gb6CqaJqLQEAguMz7a/xHjPx/P2E5j+ermr3BXuzttcyT3CEPeH0K4Lpxgz2B2nN7ButvW0Te8byOcsSOxkT5cfcUxCpWDIJlQyzJtzh5CMitMmNOSRLdsh+2fHPQki/5YhAadSxG4Bh16ab89N6OSAqwffRYkZDToaG+5n1x5M2BxKDbsCy4n1yn5kkXUuzJ3AbULwXPLcgHsYnBbZolNo5FX5rqjoVFp0ClxvPmNQk6uP25KC5JOFKE1R1nP9DLIKWgfaLW49VR7UlRRRFbpxfvgXwrW19Tx12JjCeYTIhOI0EXYX+dF2xYxIXYCq/et5pqoa6xicCQ+3JzpkK8iVf3PW+nM2xtyq8YBz6UkAxQbLBQZTC7KahmlIoSfU35ukGsUCJoSkX6RbJqyiccSHuOV39Yy751DfyuMr3tod7ZP284r177C6r2r6fxGZ74+8nUDXEHTRBQaAsFlxFu73mLS2klM6jaJNTeusQuEq3M8/ziD3xtMkEcQUf5R/HLyF766+SsGtRnU8CdcRfUU8PFLfuSNP77El87IqDFZ4FSLjjw9bhn7VI4ak3m95/HStpdQUDCidykCN+J4N0mFVfxc03Uq1HKdY5GBggS4V5ZZRec1jtzC99IS0pMyk/Bz9yPaP9rl47ZUcJ1WR1ZpFrIkE+ARYC84cstyHToa5ipBvEbWEGmeWvVVa1Vhc5fy8M67LHIK2vq1RSWpyC/QEWtawoylp+pFPxEV4lmtk2alsQTzkiQxt+9cJCTcZDe+OPQFc/vMJUOfwbXR19q3M5e3cGEFbXNas/6t5tdrQ5ZAds/hxe0v1s1FCATNDLWs5slBTzIubBnA3w7jU8kq5vWbx6HZh4gPi2fsp2O58dMbOa0/XV+n3mQRhYZAcJmwZMcSZnw3g7t7380717+DSnYWAZ8qPMXg9wbj4+ZDt9BufHv0Wz4Z9wkj2o9ohDO2UjMFPCfPjxjLQ0jI5z7kq7IyIsx32Pcb2W4km9I2UVxpXWyelFcAzmLwk/Kb6JQ4ulfN3qvQunSd8qaD/W6w9WvWFkC5mydIMo5J4BJHT5de0kI36YxVn1HTiteGraNhNBsBHML64DyjUyoN3kQ7LTYlVBgrPC+LnAKNSkMHr2vYt7sfAfShuEyuF/2EdWxPqqbnsTRqF2hy98nIkkylpRKDyUBiZiKD2gziyyNf0j2ku1WDJJ2g5oicDalazOWFsHW8bhrgy4YTG9iftb/uLkQgaGYUFrnXSRhfhG8E3976LZ+N+4xt6dvo9EYnlu1chkVx/TN7OSIKDYGgmaMoCs9seYYFPy3goSseYumIpS5djdKL0hn83mA0soYrI67k4wMf8+6Yd7mx042NcNbncJUCjv1u7DmsxYC1GxATGEMrn1bsy9pnf/yMvJa/5BcwY83aMFLIX/LzlEopdDUvqjFC4kh11yknJNf3gC91dv98ieBgFYIDlFZanYOqh/WB4+hUcmoxH2/woL9pHVl/XUc5WS4E9Aomk7bRnJPqmjDjBODca1Qf+onYSB+WTO0EHscwyflUag82ahcoyDPI/vMpI/P8788zr+88tqVvY1qPaQCckldhqaXQsBkd2N4bNTt+kgS+HmqHjtechNG09xjKQ+9f/Gy6QHC54cqU5O92NyVJYnyX8RyefZjbut7G7B9mc+WqKzmQfaCOzrZpIwoNgaAZoygK//fL//HYb4/x9NVP89yQ51zeMT9TfIYh7w/BolgY2WEkq/auYvl1y5nUbVIjnLUjKVllLkc/nMegzJRwAn93fx664iHe2vOW0z556u/5XX0Nm9UDOKB6kFDLaOLNK9HgV+vIiG0xVsJf5wnqk6g5gqJw8Xe3zpacJUOfcV7HqdyyXNzV7mSXWjUoBYYCWnpb76RXmCooNZYS5Blk7wClndWiJZjSopb40AnA4RejBKCoG805qa6RKlrTEPqJ2EgfBvQ9QrLHrWwz30nLFsY6Pf6lMrv3bMA6inGy8CTt/NvR1q8tOzJ20MqnFXppP8mq2Wg8zjjsZyue/5IXofJKwcfD1pWzFiWyZP3/MxPbO3S8jmSUE17yNAZ9+CXPpgsElws2U5K61Lj5e/izYvQKtkzZQkF5AfEr4nn010cpN5XX0Vk3TUShIRA0UyyKhbk/zuX5P57n5Wte5tGER10WGdml2Qx5fwgGk4HxncfzeuLrvDjsRWb1mtUIZ+1MbXa2EtXdoazFQKb6fdbespY7v73T5bG0ai2AfVRKRxeHcSjH51AwU0E+iexVzeKE6rW/de4XQ1JmElC7EBysGo0gzyDS9emEeoeSWZLpYG0LEOgRaO8AKYrtmmQkJKLC3OgV7YtGZfv6Ob1GYzkn1RXJqcWYTVrnO/LUj37iyogrKaooAvhbVpd1SUJkApG+kRgt1oLngY0PcE+fe/js4Gcs6LcAgAJpLz8bx/J/t/rRp51Vk9O2pYk9qpnka35gY/ltPHunO717J1EgJeLnLdeq2bEGZjYN5y2BoLGIjfS55Jyki2Vg5ED2ztzLowMfZfG2xcQtj+O3k7/VwVk3TdSNfQICgeDSMVvMTF83ndV7V7Ni1Apm9Jzhcru8sjyGvj+UgvIC7oy/k2e2PsMTVz3BfQPua+Azrp2Jg1qyK6XI6gOl2IoMiaPyCwRZrsKbaEo4QZpqFd9OXsoNn97gclQkyi+KlMIUACLNU2stMAC71e0+1Wz0UrL96yZKUON9UcngcPF3t5IykwjyDCLCN6LWbapnaLTWtWbXmV0OYX1gzVdw1QGSUJGvt/DWXTGMX7SH3GLHu/CN5ZxUV5xLi3fuKtWHfqJ/eH8kJPzd/dmSuoXRMaPr/DkuFkmSmNh+Id/uKMOHdmT+dZyevcaiVT9OviEfHzcfSipLkCWZb1OXsnTyUsDa7Tz4tjtnS4JJ16dz34b7WHvLWtYcb0+nyAReuOljl8/n6v3V3N8/AsHfwZaTVB9o1VqeGPQEN3e5mZnfzWTw+4O5o/sdLB622GWwbnNGdDQEgmaG0WxkwlcTeH/f+7w/9n2HIqO6e9O97x5gxDuzOFtyltm9Z/PM1me4r/99PHHVE4149s7ERvrwv0kRGLWHqJRy0fllsVs1oyqIbz7b1aNJVs/n9Rsf4IF1bxBe8gT9TeuINS1Bp8QB4OfmZy8yALyJPo8eQ8FECXtVs+xFhi0NWo3XRRcZC66PvOi7W7agvtqE4HAuFTxNn0awVzAWxWLvaNiE4oEegbV2gNqGWG2M63K2uKlgTYt3/t75eqrrRT+Rka2mv+otOpd9xJ87uzTq2FByajHb/+xGAH1wowX+Sh+eXJPJzVEPsnL3Su7pfY+1bFbMrNy10u5eJkkST139FOn6dDw1nmw4sYED2Qd4atBTfHLgE3ae3uny+S7H949A0FTp1KITm6ZsYuWolXx1+Cs6vdGJNclrLqssG1FoCATNAFsBMW7RbkYs/pyNB4/x2fjPmBg30WGb6u5Nu1OK8cy+l2mdnuKJTU8wq+csFg9bfN7FbmNQXFHMvVtuYr9qPldd9TvrSsY6dBkAHh34KL8dPol79jwC6IOWYALoYx2PUuKQaqyMSjjhlAReHRUe2O6OV3ekkpDPo9Ow0inci6XTO3F975CLuj5FUS4oBIeqjkZVhoZOqwMcw/rA2tE4F2ho29Oa/TFpkPXOfn3MFjc2tS1+Y1o6B1H+U2w/R24VXVBbApDLY5jfiBoF28hSdTtmiyKRdvhawvSPojXFoJbUyJKMSTGxNHGpfd9ro6+lf3h/u1vZ/PXzmdJ9Cl1adOGBjQ+4XMxcju8fgaApI0sy03tO58icI1zd9momfDWBER+N4GTBycY+tTpBFBoCQROnegGRV2zCVNqWbuZltPcc5rCdK/cmCZkfEiuZEDuBN657o8kVGSWVJYxcM5ID2Qe4f8D9PP/7807bjO04lm4h3dh5QFcjmMyafxGrnkdBeYHDPqfV79dIAj+3oLIdo6t5ETolrtqY1bnAM5slqO275eupok87X5ZO78SymV0u6S766eLTZJVm0btV7/NuZ+9oFKXhobZmZ9g1GmV5yJKMn7uffXa4XSuFCrLxD8hjr2oWcZHWJPH6nC1uLBpy8Wv7ObL9epRQoShKo2kUXI/KSZjMEEhffv2jPTe1vQ+LYsGiWFiyYwkllSXW7ap1NXzcfNiesZ3NqZtZNGwRm1M38/2x752e73J8/wgEzYFQ71A+Hfcp625bx6GcQ3RZ1oUXt71otzJvrgiNhkDQxHFdQFi/Xn1+1LV7k0Sgqgurxtzt0vK2oUlOLebDTZmkZJUREexGkmER+wr3cU/cS3z+cxn9lG8p4QSpqlXopf3EBcexaOgiOr7RkT587TQOJaHCUhFs/ySzFQ7eRFPMEUDBly5INe6pWBPD/ehuXo6JYhdjVhIoCjpPNVOHhnN9n4vrXrjiYoTgYBWDe6g9KDeVo5JVaGQNQZ5BgLWj4e/ub38NYyN9uPWaUoa8P5on45/k+9+POhSR9Tlb3BjYFr+2905UiCeTrm5ZL4tfVz9HiiI1mkYhKsST/JIil85s1mLIjJt+OPACKkmFXBHF1OV/oFQEExXiycSr+pAQmUBKfgrFlcXMXz+fvTP3cnWbq3no54cY3m44atlxKXC5vX8EgubEqA6jGNRmEI/9+hgP/fwQa5LXsHL0SrTGGIfPwImDWhIb2fRvAIhCQyBo4lysONP1gsRCz8iWTguJxsDWmbEVTbnF5UjMZFrsSP7Y0Rr/qq6CG4H4m3tzyvMRfp/6HVGvReFl6YKEpiqt+9yC2mZ5C+dGoKRqxwEo4hA6OrkoUs5Z1loF6NUeVxSQJIrLzbz2fSptQzz/9gf6ztM7CfMOo6VP7XffLYqFPEOevZAwWUy09Glp/3deWZ696LBhMBqs1yFJaGTnBPjLjYZa/Lr6OVIwExXiW+/P7YqaZgk1kVCRkWtmaNuhJKZk0828jOxcCQkj+SVF7Eop4s6Rz/Cf9QkEuAeQnJ3Md8e+Y/GwxfR6qxer967mzh6uXdwEAkHj4O3mzSvDX+H22NuZvm46w1ZOp7t5ObJkDbK1/Wy/MrVTky82Gv8Wp0AgOC8XK86sObuvYEaWZSYPDm+gMz0/NTszoEJGxc5kf3AxEjU2ZCnDPxxOZWlLupuXo8E6OnUu+dtqeZuqegfAxQiUqupfnlBtv+pIqFDhZT8eVX+zfRPrwtrTlgh+PgoMBVgUi93CtNRY6hjWZ8hzciIxmKyFhqIoaFSXf6HRUNQc07KO0SnckhB0nr3qj+qjTFbr4poWvwq5pgMs6LfA6WfA9v49cCSYwW0H4+Vmfa8v+GkB8WHx3B57O4//9rg9JFIgEDQterfqzc7pOxnq/ywKiv33Z3OynRaFhkDQxLnY+fTYSB/mjnVHLydhURXSM1rHq01ottrlSAoSanxdjkQdOl3AtoxtLjUUCgpG9OxVzaJYsqarunaakvGibdUzuS425KpOSal0tKrYcKzq/om1p10IfqGxqapU8HJjOR5qD/LK8hw6IHmGPLug18a/raPRUNTUKHSMkNmjmkWpfKhRz+mFyTG8dEdHZFlyyJeRZIlCzy/YmLIRP7mj08+A7f371CCrViPYM5iUghQ+Tv6YZ65+hjxDHi9vf7kxLksgEFwEGpUGKkJr/dlu6ohCQyBo4lysOPN4/nFm/nItxtAVrH2oFy9NuTTRcn3j2pbVdQEgSQpnK/eiQuWygLDuY0QvJdv3LZNOOjlN2R6rWaTUPJaEhEkqpli1u06tPU8VniLfkH9R+gwAfaWeCN8ITheftjtOgVUo7qqjISFhtphxU7n9rfMTuMa2sP/8wXhen9YDyT2NLalbGvu0iI30YcnUTvj6Z1Mp5ZBPIvNu1DKxz0De2fMObYK1Lt3WWvi6cUXEFVwbfa091PKBjQ8QrgtnTu85LNq2iKySrIa+HIFAcJE0Z9tpUWgIBM2A6gufFybHOBUQaUVpDHl/CL5aXzZM3ECAR0AjnWnt1OzMVNdbVC8AZAksipl01buYqzQYzgWE9evV9Rqn5HdqOE2Z7ceujqucDAkVHpa2hIQfqFN3o4sVgttyMvLL8q2Fht6x0Mgrc93RcFe7Y7KYxOhUPaKSVVwRcQVb0hq/0ADrZ8HiyZ3YphpFqtfj/JSxkrt7302ZsYw2ba1ZMjWL6aOnS0lOLbY7UIXrwjlTcoZ39rzDwoSFqGU1T21+qjEuRyAQXATN2XZaFBoCQTOkejDf/FX7Gfn2XciSzM//+ZkQ77/vkFRf2NymPLUyRvT29O/qSEhIEuhVu9ijmkWhtA+AVNUqpwLCps2wLah8tb4USfvYq7qLQmknGrcy8klEzwGXXY6aCzFb4TJtwNA6tfZMykwiwjeCYK/g826XU5aDhMSZkjOEeodSXFnsrNGoWWiYDHhoPDBajGJ0qp5JiEjgj7Q/mozNZIfADgxuOxidVsf7+9/HV+vL+C7jWXP8WQL8DC73+XBTJn1a9WFUh1H2/IyFvy7EQ+3BwoELWbFrBUdzjzbkZQgEgoukOdtON74VjUAguCRqujflFJcTxKO8dEsA4bqmIfyuTs3zlfHCeo9DoboeQpbA4n6UJOPdDjIJvbSfg5q5RJjvwItoiixHSVOtQi8ln7OzNUXbbXHvHCUzf/1QzGqz3YmKKlcpx1wNlUMnJV31Ljd03IVKVtWZu9HOzJ0X7GaAtaMR4BFAuj6dAeEDgHNhfWaLmQJDgUvXKQ+1B5XmSjE6Vc8kRCZQaixlz5k9F8xDaShm9ZzFzV/cjITEh/s/ZF7fefR/pz8dNe5ORXz1We7/DvovPVf2JMovipTCFF5PfJ17+t7D0sSlPPLLI3x1y1eNcTkCgeACNFfbadHREAiaGa5yNVSSil93Ne551UZtOSDVuxSyBBYs7K5cjFaldTpGnrKLTnHb+F0eQbJ6PiXyQYdEb1tSeLx5OX9lVGJWrMfVS/vZq7qLfBKpIJsCKZG/5MUux6fCfFqikmuKyf8+FsXCrjO7LpgIDlaNRpBnENml2XhoHMP6CssLUVBcajQ8NB4YzUYxOlXP9GzZEw+1R5PQadgY03EMIV4htPFrw7KkZfRt1Ze+rfpSKqUAFodtq89y9wjrwQ0db6DcXA7AU1ueotJcyf8G/4+1R9byR9ofDX0pAoHgMkYUGgJBM+NiczWaCrUFCRopokhOIsBbRUiAiSLlIF3Mz9Gh4gV0Spx9SzeVG2NixvBD8iFiTUvob1pHZ+NLRJvnOtnZypKKLXsdG7V6aT/J6vlsV4/msOYBgixXVW0vOfwZzfQ6ve7j+cfRV+gvqqORU5aDj9baArdlZ9g6GnmGPACn0alyk9WhSoxO1T9uKjf6t+7fZHQaYD2nafHTyCrN4kD2AX5P+515feexu2IxsiQ5FPE1Z7n/O+i/ZBZnEhMYQ2llKS9ue5HbY28nPjSeBzY+YB+tEggEgn+KKDQEgmZGc3GfsOlIispM1PT+VzBTIh3hvbuvYs7oADLzQEdntLQggD50Ny9Hp8ThpfEiyCOIU2cV4sxvOHQvdHR1cqNSFAlPJarWczJajLW4WKlQGet27MwmBO/ZsucFt80ty8Vd5Q5Yw/r83f3tnQ2bUNypo2G0djTE6FTDkBCRwNbUrVgUy4U3biCm95yOwWgg2CuYZUnLGNd5HN66XMJi1uHuk04F2YQGlzjNcseFxDG+83iKKopQUFj8x2LyDfksHraY7Rnb+eqwGJ8SCAR1gyg0BIJmRnNwn7DpMpJOFGE0n4vYs/7Xeqe1U2APnnrPzOMfH8dVYF8by1RKjaWM6TgGS95gp+6F9ViuRd3Vkas+5rw01rCycvmUS4F4S7+6LdSSMpOI9o++KAewnLIc+9hWqbHUMUOjzHVHw2AynOtoiNGpeichMoGC8gIOZh9s7FOx08avDcPbDUer0vLloS/JM+Qxu/dsvjz1Es9Nas929Wi2GqfQpbW3075PXPUEWSVZxAbHUmGu4JktzzAkagjD2w3n4V8exmg2NsIVCQSCyw1RaAgEzYzm4D7hrMuwVkVmKtBzCAmJnDwtecVGVOhcdhi8lGimdp/Kyl0ra83SAMdE7+pJ4TYsVfPqttyJLLc19q2rczTTagFaV1xMUJ+N3LJcLIqFUO9QzpacdXKcAhcdjeoaDTE6Ve/0De+LRtY0KZ0GwKxes0jXpyNLMu/sfocZPWcA8OPxH7kq8irS9en8cvIXp/26BHfhttjbyC7NRkHhjZ1vkKHP4IWhL3Ai/wQrd61s6EsRCASXIaLQEAiaIRfK1WhsatNlmCgiROeLLMkORYirzgRuZ9lzdg9mxUyp5DpLQ89B8knEz0umUE5kr2oWeim52jNK6JQ4uplfpa/xG7qaXqHEWEqFyrHrYStaPtyUWSfXb7aY2X1m90UXGjmlOVSYKoj0jXQK68sry8PbzdtpPEq4TjUsnhpPerfq3aR0GgAj24+klU8r2vi1YcWuFfi5+zExdiJv7HyD54Y8B8CDGx90ue/jCY+TU5ZDj9AeWCwWnvjtCeJC4rg1+mHe/UHipkW7eei9o3VagAsEgn8XotAQCAR1Tm0p4BptGd5KtFMRUr3YsBYUCj06F7Dn7B4AUuV3a2RpWK1xz8rf4R7xEdcOSWKvPNehyADwUWLpbl6On9K7mjPVm7iZ257XAvSfciT3CKXG0osqNEorSzGYDJQaS12H9RnynKxtoUaOhhidahASIhLYkrqlSYml1bKa6T2mk1aURro+ne//+p65feeSWZzJqcJTdAzqyJ6zeziQdcBp35igGCbGTSRdnw4SrN63mvXJh8n66wa8zfHkF5tIOlHEglWHRbEhEAj+FqLQEAgEdc7EQTaNgeOCTF3ZBll2FZinYKKYCrLJJ5HO3bay8uBCwOrCVCwlc0x+EZCrJYortLfcz5Krvub+jfe7PI9I81QX2g4ZyUWEUF0K6m1C8B5hPc67XXJqMQ9/cIz+pnV45szBj+7Oo1MuUsGhKhlc5S5GpxqQhMgEzpac5Xj+8cY+FQfu7HEnleZK2vharW5jQ2IZ0nYIr/75Ks8NtnY1HvrlIZf7Pp7wOPmGfHq3tOaDvPyDNSjT9jNjUUBR6q7bJxAI/l2IQkMgENQ5sZE+tGrhWGZYuxaQXeRaZFpGKke8/4N3m0/ZXbgWo2JELatxU7lhwVJlS2upZkurQkbmjQ3W7kFNNLKmVm2HqxyNuhTUJ2UmERMYg06rq3Ubm2D+YGolWoLxNHXjePJgvCxdnDoaNfUZ4NjREKNTDcOA1gOQJZmtaVsb+1QcaKVrxagOozArZjac2MCxvGPM6zuPP0//SbB3MMGewfx47EfOFJ9x2jc6IJop3adwPP84MjIlJd7Nyj5bIBA0bUShIRAI6pxThadIycl1WtArii0P3PHrEhKeUhiV5kpGdxjNn6f/BKxWr+Uma7CYq6IBZE5llzscx4bRYqQEZ22HKzQqqU4F9UlnLiwEtwnmFbtWRYWiSESapzp0NHLLcmvtaNg0GmJ0qmHwdfele2j3JicIh3OicJ1Wx5tJb3Jdh+uI9o9maeJSFiYsREHhyU1Putz30YRH0Vfo6RPeh1LpBOcL/BMIBIJLQRQaAoGgTsk35DPioxG1CLgVl90EBQW9cownr3rSvhjSyBq0Ki06JY5Y0xLc8HcauQIFg3LG4TgAbrL1Dn+m+gMHbYfNmao6sgTxbXV1VmQYzUb2nt1rH0WpjdoE895EO3c0XBUawnWqUbDpNJoa10RfQxu/NrTWtebdve9Sbipnbt+5fH7wc0a2H4mH2oPV+1ZTXOGstWjj14Zp8dM4nHOYTPUHWLAgSdY3Z1O0zxYIBM0HUWgIBII6o8JUwdhPx5JamEqK9DayJNtF4eeE3M7FB0BYSD7fbQ6mZ+WXxJmX4Es3tKYYupuXE0AfJJwX09XX6XK1j7NKSyUAgYHF/KW9ehvsTQAAIABJREFUj0IpiQqyMbudgmqLKOvf63YRdSjnEOWm8gt2NFwJ5kGhVEqhhVcL+1fyymoZnTIaRDJ4I5AQmcDJwpOkF6U39qk4IEsyM3vO5Hj+cQrKC/j0wKfc0f0OvNy8WLVnFbN7z8bd1JEpy7cyftEeJzep/xv4f5QaS+nS2pt9qrsxux9psvbZAoGg+SAKDYFAUCdYFAuTv57M9vTtGEwGnh4xjVendaZ7lBdmuQCDZj+p6ldcuEdBruZLjNkjwdAeLcH4K33oXPkq0ea5NcTcziNX7oRYnx8LOiWOONMS+pvWEWtaQklhIJVuf1Ha4jVOB85mB5NIVs+hS6QbFWQTHmKo80XUzsydyJJM99Du592uZvCighkkhTLvdciS9aNZUZQLdjSEvW3DcmXElQBNTqcBcEf3OzArZjoFdWJZ0jJ8tD7cHPUgG7aGczTpZuLNK8jL8ye32OjkJtXatzUzesxgb9ZejJpjbDFOYcZNuU3SPlsgEDQfRKEhEAjqhId/fpjPDn6G2WLmnj73MLfvXLpGeJPp8wy73G6kKOAVUvmMvaq7yCeRCrIpViWxRzWdbgHXYlEsTung3nRwocs4hy0JXEZGp8TR3bwcf/rYrWzbVbyIqSyc7NJseob1xGgx0j20GwWGAsAaglfXTqVJmUl0btEZLzev825XPXhR41ZGhdtBQjp8TVBgiX2bUmMpleZKJ3tbRVEoN5VbOxpmYW/bkLTwakHnFp2b5PhUiHcIN3a6keLKYpIyk/g8KZGUA8PwNsdTbFAcinZXblKPDHyECnMFfVv1RULi/g33NykrX4FA0PwQhYZAIPjHvJH4Bou3LcZN5cbIDiN55dpXAHh5+8t8cuATBkQM4GjeUasWQ9pPsno+f6rHcEh9P+Pie5OZa3EqKOxFh+Ssy7D+12xPArdgqep+qJyKlWhlBvoKPSWVJeiUOJTTMzmd5YmWYJJPldd5RsClJILbghd9Ypaia/s5ecoup7A+cE4FN1qMWBQL+qIA/AvuZ9+O60SwWgPSVHUaALN6ziJDn0GIVwirfksDqPazdf7smJY+Lbmr110knUlCp9WxP3s/Xx/5uqFOXSAQXIaIQkMgEPwjvj36LXPXz8XbzZvOLTrz8U0fo5JV/JLyCw/+/CCjO4zm55SfAUcdRWtda8J8wujfuj955kMuk79V2ixkSao2amUBpKo/ZcwY8FE6oFPi0NHVxWiVCh8lhmj/aP5I/8Oeq2H76KvrjIAKUwX7s/bTK+ziCg0baUVpROicw/pyy3IBnEanDEYDOiWOHzdH4GGMpbLSQwSrNSAJkQkczj1Mdml2Y5+KE4PaDKJDYAdCvEMo0nu4MBw4hys3qYeueAizYqZXwDhiTUt4+RMPHnzviHhfCQSCv4UoNAQCwd8m8XQit35xKzqtDp2bjnW3rcPbzZvUwlRu+eIW+gXeStrhoQwwrWeAaT39TD8Qa1pCe49hpOpTWTJ8CfPWzyNVtQpwFIwrKDx0Qxe690y0j1oF+1kftaVhqPGmneUBOpgfcXl+CgpmxULfVn0pM5bhL3es14yA5OxkjBYjvVud33GqJmlFadZU8OLTjmF9BtcdDYPJQKR5KiCC1RqDgZEDAfg97fdGPhNnJEliZs+ZHM45TJl0gpqhmbZ/S5Li0gghxDuEyR2ewJQ+lQD6oLYEiCJWIBD8bUShIRAI/hYn8k8was0ou07ghwk/0ErXCoPRwNhPxxIg9UBzdg5+Sm/c8EeDH274E0AfWhY/yeyui3gz6U0MRgMdWrk5aDfySaRLt60MimnLa/vuJVk9H0Orx6iscHPI4bD96UWk6xC+qu5HpdnqQhUSoDg5PdV1IrhaVhMXEnfR+xiMBrJLswn2CkZfoXc9OuWio+FNNIpy/lEYQf0Qrgsnyj+qyY5PTe42GVmSUQdtQcFif89LEoCEIhdjcT9aqxGCtngEVNNzKIokiliBQPC3EIWGQCC4ZHLLchnx0QiMFiMF5QV8Nv4zuoV2Q1EUZn0/i8M5h2ll+g9QTWtRLdEbJIrO9OLH4z+i0+o4knME3E+RrJ7PdvVoMn2eZtH1s7nnx3swWqxJ4mtuWoO+3OjSeQpkFxkb1o6GxS2DX0/9CsDUwW0cnJ7qOiNg5+mdxAbH4q52v+h90vVWm1RPjbXYqdnR0MgavN28HfYxmAyUcMJJvyKC1RqOhMimq9MI9AxkfJfxnDFtZ49qFpFhRoJ8NPSO9mXp9E7Mu1XPZuNkylSHXe6fkWNy0kyJIlYgEPwdRKEhEAguCYPRwJhPxnCm5AyF5YW8PvJ1RrYfCcDria/z/r73Gd9lPBVlfrU6RkmoSMm2LlpigmJQySqKKorsj7824jXKjeW8s+cdAK5uczWdWnTCRLFTQaGgYKKklnwOC9FRJ8k35NPGtw3DYzvanZ7qMiMgObWYh947yvHdNxNWvPCSRkzSiqyCXZulbc2ORpBnEJLkWFwZjAZSVauQkOqtaBKcn45e12LKmMxNL+xukkL8WT1nkVmcSZB/CXn+i/j8wXi7Ve31MdcT7R/NS9tfcrmvq4wXBTORwdoGOHOBQHA5IQoNgUBw0ZgtZiatncSuzF2UVpayoN8C7u59NwBbUrew4KcF3NLlFj7c/yElOCeDn8NCsXKcfq36kXg6kVJjqf2RPq36cFvX25j89WR7kvhHN37E7szdHJeWAefyN2x/ZmtXI7d6i9aBbihYrJ0MyvhLXoy7TxYSErd2vRU45/RUfeH1T0hOLWbBqsMknShCtvhjKAq/pHn2tKI0JCT7eFdLn3OFQp6hlrA+kwG9tJ8FN3nUedEkuDDJqcVs2BJFAH3ILzE1SQ3DgNYD6BrcFV93X7776ztSC1Ptj6lkFff2v5cvDn3ByYKTTvvaMl7AAtic3xTUgZsb5uQFAsFlgyg0BALBRfPAxgdYe2QtANfHXM/iYYsByNBnMP7z8fQN78umU5sAqgTezuF8VtWEhRztx5wsPEmodygmi6nqMYkVo1ZwLP8YPxz/AYBxnccR5hPGxLUTKZVOUEoKVBUTJkr4S36eY+YPGdtxLBn5FVBVnMi408HyAFuOpKKgMLbT2Hr5nny4KRNFwS4yV7i0efa0ojRCvUPJLs3GV+vrkL9Ra1if0QBA1zoumgQXh+21bcpCfEmSmNVzFvuz9uOp8WTlrpUOj0/pPgV/d3+W7FjitK8t4yU+yptKKRcv30yium5k5aGFFJYXNtQlCASCywBRaAgEgovi1R2v8sqOV/Bx86FrcFc+uvEjVLKKXSl53L70ZzroV6M+O4PKkjAUFFoElLJfNRuDej+SqgwTRXi5Q6G8k72qWXQJ7kpY8ULaFr5FrGkJOiWOGT1n0D20O7d/eTsAKknF29e/TXJWMqdzNHQ3L8eLNlULPAsqPHBzLyDUO5T0U+1RFKVGjoZMaPHj9FBex90YUy/fl5Sssn/kZFWb4xRYtTC1dTQAPNQef++kBf+If/qaNxQT4yaiVWvp2qIrb+95mwpThf0xT40nd/e+m3f2vGMPsKxObKQPL9/RlZFD97DBcCuzB46i3FTOS9tcj1sJBAKBK0ShIRAIXGLTHYxftIfJyzbzxPp3CfYKRqe12th6uXmRfErP/e8eQy6PQa0EIhk6EGt+g/YewzhRcIIieT/XX53Lb9LVzByXhUf7xeyV59IlqCvG9Kn4WnrZU7zjzcuZ1OFRtpzawq4zuwCY2WsmOq2OSWsn2TMwagby+RluYlr8tKpFXs2PNAkVWnTmntz7bv3M0buaZ78UUbZDoeHjWGjklZ2/o+GhEYVGY/BPX/OGwtfdl9u63sapolOUl4Ry54rtjF+0x64pmd17NiaLiRW7VtR6jLl9rRk57+x5h3l95/HKjleaZH6IQCBomohCQyAQOFFdd5BbbCT1jBvdzcuRDW35/vbvCfMJA+DZdX9W6SgcF/8eJaOQkLiv/328vONlxnUeh06r44vDX+CudkcpuNqpaJBR8e32Uv7ztdWtSqvS8vI1L3Mk5wj7svbhTbTL9HBPpS0zes5A45F3Hk2IXG+jLbZ59r8ryk4tSrUWGnrnjoar0ank1GK+3dSC/qZ1PP3x6SalC/i38E9f84ZkVq9ZlBUHE29+k/SzWnKLjXZNSXaeJ5PiJvHan685dDuq46P14cEBD/L27re5teutqGU1z259toGvQiAQNFdEoSEQCJyoqTuwLfBHBr1EbEgsANvSt5GaXely8e+rxHNFiwnsO7sPrUrL80Oe545v7gBgeLvhSJVhTvspSBzIyCO1yCpaXThwIVq11l54lEopLtPDPb30RPhGcFJ622p06xynAdTfaIttnv3viLItioX0onQifSNr72hUG52yFYBnsrzQEszulOImJ0L+N/BPXvOGplfLXsRq5gOuNSX39r+XMyVn+PjAx7UeY06fOfi5+/F64us8MOABlictt7ulCQQCwfkQhYZAIHDC1Qy6hAp9sXU05EzxGW767CY0HrkuF/YybmjOzmbHibOsGrOKx357jMLyQnq37M33x77HpM5wKhpkCc5W7gFAp9WxMGEhJ/JPsDNzJ7Ikc0q2Wt3WTA+/ZWAQB7IPkJj/OeOHFdAypBQzVlF4zePX12jL33WyyinNocJcQSufVpwpPuNQaFSaKymuLCbIM8j+NVsBqFRliTRFEfK/hbp2L6tPdLSvNRejU4tOjOowipe2v4SiOGfRAHi5efHwlQ/z7t53Gd1hNH7ufjy1+amGOHWBQNDMEYWGQCBw4nwz6JXmSsZ9Pg5Zkvnv2KuwKBanbAsJCYsiMcD9f1gUCx8f+BiNrEElqwhwD+CoshylmiOVLIGCheOSdVZ88dDFyJLMlK+nAKCRNeil/VwzMMWeHm7Q7CfL979M7T+E9/a+R6BHIHdeMRR94BJMIcuwWnNa7MdviqMttrvCPlofzIrZYXQq35APOKaCNxcRsqBp0amVv8vC3lZ439//fg5kH2DDiQ21HmNWr1m08GrByzteZuHAhazeu5qjuUfr9bwFAkHzRxQaAoHAiYmDrAty2+JEwrqgPZpZyo2vfMeR9HK+vPlLjpVtZLdqJgpGp2NISJSXBnPX588DML7LeHZk7KCksgS9tJ9THg9TJCfh7y0TH+XNftUc9FIyIV4hTO85ndTCVH5P/x0JiQpzBQEeAXx96lV7evge6R6m9LsaBYUP9n/AhNgJlBnLWH98PSNiO7NXdTdhwSVNerQlrSgNnRLHpxu96G9axw+bQ+1jULlluQAOo1PNRYQsaFpMuToCCcmhsK9eeCdEJtAzrCcvbn+x1mN4ajz5vyv/jw/2f8DgtoNp6dOSxzc93iDnLxAImi+i0BAIBE74+hVw0ushLO5H0XmoULAuTIrKTJQUhdHNvIwzOVru/uFu9NJ+Kt0OO3U1rCgEGqbQI7QHPxz7gZjAGEqMJQBkmrZz89ASvnqoFyVBr5GH1WlqxagVSJLEtG+nAdYFDsBTg55i55mdSEiEeoeiKApT46ey4cQGskqzmNx9Mt8c+YZKcyWebp4USft45Y7YJj3asudkAfHm5aRkqtASzLEM7JqLvLI8wLGj0ZxEyIKmQ2ykD3Nv1JJPIl4eJqfCW5Ik7h9wPz+n/Mzes3trPc70ntMJ8w7j+d+f58lBT/LZwc/Yc2ZPQ12GQCBohohCQyAQOKCv0DNqzSgU91N8Pm8EHVt5W0ebqgnDJSSe+/ZPTBYT/Vr146hlORKuVNgSOroQou6LgsLRPOuoRbhPOJF+kdzb/17yyvJ4a9dbALTzb8eYjmPIKMrgl5O/ICFRaizFU+3JzsydgDX4z6JYGNdlHMFewazeu5rY4FjiQ+P59OCnXBlxJZtPbWZA6wGEeIc0xLfsb7P/SBAgoSjOmos8Q1WhUa2j0ZxEyIKmxdj4eLzbfEpl6yddFt7jOo8jwjeCl7bXnpPhrnZn4cCFrEleQ6+WvYgJjOHR3x6t71MXCATNGHVjn4BAIGh8klOL+XBTJieyysg3HyLP4s3GGZ8Q4h1CSlamS12A2hROx9CO7Di9gxeHvciJ/V4cPl3qdGwJyDgVg5e/F4XlhXioPMgozmDdbevQqrXc9NlNWKq0FO+NfQ+AWd/PQqfEEa3MwN0SSagOftn7HrHmJfjQjuKi41wX3oMCQwHfHP2GZwc/S74hn40pG3luyHM8+uujPDuk6VtwlpT41CrSbVeWh4SEv7u/w+M2EbJAcKnM6jWLyV9P5nj+cdoFtHN4TC2rWdBvAQ9sfIDnhjxHuC7c5TGm9ZjG8388z/+2/o+nr36aOz9/hukrdlBYpCUqxJOJg1oSGykKX4FAYEV0NASCfznVMzPyio1YyqLoWPEK5rLWgGtdgIKZcvkUOaU5DG83nAX9F3DXiIhankHCT47hdPFpALy0XoxoN4Lr2l/HsbxjfH/sewB6hvVkQOsBnC05y+9/ZdDdvBydpQdaginIb0G0+X4C6IMbLQigD6t/0PL65nWYLWYmxE1g7ZG1WBQLvlpfKswVjO04tr6+ZXWGUZ2GTbBuw6a5yDPk4efuh0pWud5ZILhExncej7+7v72DWJNp8dPw0njx2p+v1XoMN5UbjyU8xmcHP0Nd2Y5485scy1Ac8jmE3bJAILAhCg2B4F+O68wMyW6ZWlMXYLOVVQVuQqPS8N4N7yFLMrGRPnQK93I6voIZPccAaOXTiqLyIpYMX4IkSdz+1e327T668SMAZn8/mwjzHQ6BflSNZVUP+FMU2LjLwvB2wwn1DuXTg59yVeRV/HbqN7qFdKOtf9s6/k7VPWny6lo1F3lleQ7WtgLBP8VD48HkbpNZtXeVy4A+H60PM3vOZMWuFegr9LUeZ3K3yUT5R7FswxFkSXaZzyEQCAQgCg2B4F/PhSxTbbqAbm09MUq55JOI3Goluwq+4sOxHxLsFWzf767hEVVWteeyLgBOStY7qLlluSzot4AOgR3YmrqVpMwkAIa2HUpMUAw5pTmsPbK2lhRwx7aKRQFTeRBTuk8huzSbX0/+yk2dbuL7Y983i26GwWggrXILI65Kd6m5yDM4hvUJBHXBzF4zyS3L5avDX7l8fG7fuagqornzzW2MX7SHh9476tSh0Kg0PJ7wOKUlPnZ9kQ1htywQCKojNBoCwb+cqBBP8kuKHIqNmpapXSK8OKC+l22qn+ka3JUtWQd55MpHGBI1xOFYHcPd0Qctxk0/HLUxnApVKoctr1MsHSDaP5oyYxmPJljFo5O/ngxYC4j3x74PwPz181FQMKkzcDMFOhQbCkqNYsNChSqV0R3uZNWeVUhIBHkFoa/QM7ZT0y800vXpAPSObsGgIc6ai9yyXAfHKYGgLugY1JGrgv/DinVGvvpxj5OuIr9ARzfTMrJzFSSM5JcUsSuliFemdnLQXkyIm8Cb696FyiCq37MUdssCgaA6oqMhEPzLuRjL1MV/LGZjykZ83X0pMBTQN7wvTw560ulYi7ctZnfhV/Trc4it8ghSPZ9ALyXjpfHiRMEJFg1bhI/WhzX713Cy8CQAN3e5mTCfMPIN+Xxy4BMAjisrAMVhXAus52U7RwWFuI45aNVaPjv0GUOihvBryq9E+UcRGxxbL9+rusQW1hfh61rbIjoagvogObUY+czdYGjvUlfx4aZMpIsYh1LLasZdEYAFi8PPpbBbFggE1RGFhkDwL+dClqm/p/3OI788goREXEgcxZXFrLlpDRqVxuE4h3MO89/N/7XOeCetoF94P86WngXAz92PAa0HMCF2AhbFwj3r7wGsi5W3RlvHqu7fcD8WLIT7hFMg7aVL99+RPI9TQTb5JNKtywl6V51jmzAje1QzuWvgSM4Un2Hzqc2M7zyeb45+w9iOY5EkV1a7TYvUwlQkpFrdffLK8kRHQ1DnfLgp00H/VLOQSMkqs1tZ26htHGr+oBsoDHgeyfOYsFsWCAQuEaNTAoGgVsvUnNIcbvjkBhQURrUfxXfHvuPz8Z/Txq+Nw3Zmi5lp304j0jeSk4Un0Wl17DxtDdeL9I0ktSiVb277BkmSeOH3F8g35ANwd6+78dH6UFRexNo9e4g1L8G7oB2B0glu7jyGwQejsKgteGo82XLDafzc/QCY8NUEWllM9G7Zm9cTX0ctq2nl04qs0qxmoc8Aa0cjzCcMN5Wby8fzDKLQENQ9F9JkXcwopQ2VrGLhNRO55Ytb+GPqHwxoHV+fpy4QCJohoqMhEAhcYraYGffZOPIN+fQI68HGlI3M7DmTcZ3HOW27NHEpOzJ2MCluEuuPr6eFVwtMigkFhTxDHjN6zqBHWA/KTeU8tfkpADzUHiy+ZjEA879+hTjzGwTQBy0t8Ff68OTHZ/C2dMVN5cakuEn2IqOovIivDn/F5G6TkSSJTw9+yjXR1/Bzys+EeofSv3X/hvsm/QPS9Gm1jk1ZFAv5hnzhOiWoc1zZVVcvJC41fX5c53HE+45l4YcptYrHBQLBvxdRaAgEApc8veVptqRtwd/Dn9LKUtoHtueVa19x2i6lIIWFvy7kzvg7WZa0jAGt/7+9Ow+Pqrr/OP6+M1lISAgJS2IEgiGAkZ1f2KksiiwWxA20NYQitKKgAq5IRSvSqsiqBaUiQVTUCioiiAoBRSECApEdEsISE5ZAyL7M3N8fYaYMM4i2o5LJ5+Xj4+O9567PI87nnvM9pys7cnZgYNCyXkv8LH5M6T0FgPGrxlNcUQzApGsnEWANIL80n627wi+YztaCaZrE2EZQZivjvg73Oa/33q73KLOVcVfruziSd4QNRzYw5JohLNuzjJua34TFqBp/rB3Ou3jQyCvJw27aVaMhXnepIPFzV5/febiQ2rmPYhY10VoaIuJGQ6dExM0X6V/w9LqnMTDo2qArX2R8wbejviXIP8ilnWmajFo+inrB9bBho7CskD0n9gBQK7AWO0/sZE7/OdQNrktuUS6vbHkFqKzZeKz7YwA8lfIUNc1eHqaztRJCHD1ietAq8j/F3Qu3LaRPbB+urHUl07+ZToA1gNiIWDLOZFSZYVNQGTTaR7X3uO9k0UkADZ0Sr3MEicUpWaTnFBEbGUxir2iXIPFzVp/3VPNhObddK9iLiIKGiLjIys/itvcqh0fdfs3tvLvrXV79/au0qN/Cre2/tv6LNRlrmH7DdMavHk/vq3qzJmMNAPVr1qdRWCP+kvAXAP704Z+wn1sFe9oN07AYFgrLCpmTOoeraUQgrtNkmpiUkMP4jmOc2w7kHmDDkQ28dctbALyz8x36x/Xn8/TPCQsMo9dVvX6Rd+JtdtPOkbwjPzrjFKAeDflF/JwgcSmXqvkQkeqtaowxEJFfRYW9glveuYWzpWfpdGUnVh1Yxe3X3M7I9iPd2h49e5QJqyeQ1DqJ+Vvn0y6qHWsz1mJg0LxOc/bn7mdO/zn4Wfw4cOoAH+37CIDokGhGtB0BwLNfPku5vRyz9meYmIDrL5ZaxBMXfL3z35O3JVMrsBaDrx5MxukMUo+lMrTFUJbtWcaNzW68aGH15eZE4QlKbaUXDxpF54KGejTkMnepmg8Rqd4UNETE6YkvnmDTsU2E1winwl5BeFA4rw581W26WNM0uefjewgJCCG6VjT7c/dTUlFyLixUDv0Z2mIoPRr3ACpniXJ45fev8P3hAh5auIuUlG60qphJ/6b9Ocsul2sY5/56e10OUNkLsGjHIoa2GEqQfxDv7nyXIL8gWtZvyY6cHVVq2FRmXiYAMbVjPO5Xj4ZUFT+3eFxEqhcNnRIRAFbsW8HzXz+PgUG/uH4s+X4JX434yjnb0/neSnuLFftX8PKAlxn36TgGxA3go30fYWCQEJ3AzhM7eaFP5YxSGw5vIDUrFYBmdZoRU6MH4xbsxma3E0g9Aogg9VuoZSkG+4XrX1icQzBSDqVwOO8wvaKG82jyXjamt6V78AKWbN5IoDWQfnH9ftH3402XXKyv6BTB/sHU8Kvxa96WyM/2U2o+RKT6UtAQETLPZHLHv+8AIKltEsnbkpl63VQ6N+js1janIIf7V93P0BZDeWfnOzQIbeCsy4ioEcF32d/xVI+naBjWEIBhHwxzHrto8CIWf5F1bkGwyg5VAysmNoL8gygptXN+R+v5QzCStyfTImQAr33sh2nmYTHDqSiszYaNdno3HkFIQMgv8GZ+GYfzDlPTvybhNcI97j9VfEpT20qV4c2aDxHxLRo6JVLNldnKuPmdmymqKKJbw26s3L+S62Kv45Fuj3hsP3blWCyGhc4NOrM+cz1NIppQUF4AQIOwBjQKa8SErhMAeDvtbdJPpwPQIboDnRp08lg8amAl0BqAiR0TW+W284Zg5Jfm8+9d/6a59T5ME+fxplnZAxJe7L62x+XMMbXtxVYw16rgIiLiCxQ0RKq5h1Y/xLbsbUQERRDoF4iJyRs3v+FxPYplu5fx3q73eKbXMzy97mkGNhvIZ+mfYTEstKrfiu0525nRdwY1/GpgN+2MXTnWeeziWxYDjh4Ku8t5DcMktFY+31lHU+i3Hbv1DB3Om7///d3vU1xejFla32NIKSkM8/p7+SX92BoaACeLT6o+Q0REqjwFDZFq7P1d7zMndQ5QOZXtmow1LBq8iKiQKLe2ucW53PvJvQxoeC8frImgReGb5Oz/PbXM1pimyemS0/SL68fAZgMBePHrF51FzX2b9KVZnWYADOxcE/t5PRcmNiyGwdbS5zlr7GAzo7n75myeS2ruHOe9cNtCel/Vm6ZRoW4z3ICNuKiqM2wKfjxopGXmc3L/IOzpj2mVZRERqdIUNESqqQO5B5z1E/ck3MP8rfN5uOvD9I3r67H9+E/HYym5iuJDwyjJb4i/WZeg8la0tc3ld/UTySnIYWbfmRiGQUlFCZNTJgNgMSwsvGmh8zyv7HqcbdbRRNY7SynHiax3ltE3WdiVv5KokCjqBddjSIshzvYZpzNYl7mOpDZJbjPcmNgwDEujWYUnAAAXCElEQVSVm+EmMy/TY9BIy8xn3ILdmMVx2CtCtcqyiIhUaQoaItVQSUUJty2aQFzJVHqYq9mypS3/F34rU3pP8dh+1YFVJG9P5trQp7GbducqwAZWDAzOZifwYOcHaV63siD0odUPUVxRDMCdLe8kKrSyhySvJI8laUuoEZJNZNwK9oYmseCe7sz7/nHn/lHtR7nMtrRo+yJCAkK4Jf4W5ww3zaNrYrHYsVNBbFTAueLyqqGovIiTRSeJCXOf2nZxSmWh/PmrLJtm5XYREZGqRrNOiVQjaZn5LE7JYnNGNrVtEwE7hs1KkK0V1uNt2Xu0lFYxrovenS09y5+X/5k+sX04dcjf+SPYwcBKTTOOSdcmAbBh31G+3NiULuZyiox0xrYe6mz78GcPU2FWMLHbRCaunchDXR4ivyyfLzK+ICwwjIKyAu5JuMfZ3m7aSd6ezO3X3E7NgJrO7ft+KMRuByuBZGSXM27BbmaMiKdVzOU9pWZaZj7zPttPl4rlrPumDm1r57vcs1ZZFhERX6IeDZFqwjEs59uDZ7DbggBceibA85fzxz5/jNziXO7vdD855du5sJDbxEbj+oHUCqxFWmY+k944QrjZkUDqE2525Ik3MknLzKegrICF2xYSXiOc3JJcTNNkbKexPLPuGUxMgvyDGHz1YOe0uABfHf6KjDMZDG873LnN8dXf8cdXVfnq73j/uw+XE0h9MrKsbsOitMqyiIj4EgUNkWrC8QPdMSWsgesvWk9fztcdWsfczXOZ0msKT6U8hTViHYZhuBRyAzw6MAGAVz87gAnn9XpYnCHgiTVPUG4vZ2L3ibz87cvc3e5uQgJCeH3b6wRaA8kuyGZMxzEu10/elsxVta+ie6Puzm1V9av/he/fU0DSKssiIuJLFDREqglPP9DPd+GX86LyIkYuH0m3ht2wY2frD1v524AR7PK/n9NGKvidJZdUxt7sT6uYWgDsOHrCbWiV3YSDOYW8svkVagXWwt/qz5mSM0zoOoF/fP42cSV/p0P5B3S1/os6tHceV1hWyHu73iOpTZLLVLtV9av/TwlIjhqUhCZh1A31J+G8KX5FRESqGtVoiFQTjSODOJFf4hYEwPOX88lrJ3Mk7wjzbpzHoCWDGNNxDK9/s5ao8j8SSlPOmntpE3+SW9tX9mZ8ffhrTtt2E0FHl2tYDKjwO0ppcSmTe0xmxsYZDG78IM8tKWD3sWuIAAy7gVEazrjX9zhrLZbtWUZ+WT7D2gxzude7ekazJT0PC5U/1KvKV//YyGByC/JcwoangKRVlkVExFeoR0OkmigO/RgTE8Oo/KXr6BQIC/Zz+3KeeiyV6Run81SPp5i+cTrhNcKJr9mPkwdupbbZAT+zDqG29mTtGeisMRj2wTAyrQsA02XoDwZ8XfgMNf1rEh0azekzYZw+MIQ9xwoxzv0FYGK4DCVK3p5Mj5geXBV+lctzVNWv/hoWJSIi1Y16NESqgVUHVvFy2sM82nEuZm4v0nOKiI0MJrFXtNsP9NKKUkZ8OIJ2Ue2IqR3D42se573b3uPFpccIJNxjAfn/JWzn4OmDWC1Wrm6xjrCiW5zXKA9bxZrtm3my+5NM3zidhBqPQFHlGS7kGEp0JO8IX6R/wWuDXvP4PFXxq78jIC1OyfrR9y8iIuIrDNOsSjPQi8jPdfTsUdrOa0unBp1Yfudyl3oHTyavnczUr6ayNmktt717G90adaNdVDs++awtgdR3a1831J+19CG3OJea/jU59OAh6gTXAaDcVk7E8xFU2CtYcusSBr8zmIEB35Bf5PkeLAYkNAkjLPZ9nv3yWbInZBMaqB/iIiIiVZGGTon4sAp7BXf8+w6C/INIHpx8yZCxI2cHU7+aysTuE1m0fRHFFcVM6DKBKeunUMhBLpza1mKAEZjDqeJTADz+u8edIQNg1qZZFJQVMLbjWGZsnEHHKztydXRtDPfODKByKNFdPa9g4baF3Bp/q0KGiIhIFaagIeLD/rrmr2w8upElty6hbnDdH21bYa9gxIcjaF6nOdfGXMv8rfOZ2nsqz65/FgOD0rCVWCwWt/qLdWefxGpYqV+zPg90esB5PpvdxpT1UwiwBjAgbgDrMtfxaLdHSex5JaZpd06N6xDfoCYz746nwLKT/bn7SWqT5O3XISIiIr8i1WiI+KhP9n/CPzb8g+evf55ujbpdsv2LX7/Id9nfsW74OkZ+NJIuDboQFRLFJwc+qdw/aCyNAl1rDE7VeJc1e74F4KmeT7ms3j1v8zzySvMY02EMs1Nn06xOM25qfhPHC4+zw+8+rqv9LGZppFutwl+WL6RhrYb0uqrXL/BWRERE5NeiGg0RH3Qk7wjtXmlH5wad+ejOjy45ZGrvyb10/+cf6RryV0qKwsku28YTgzozfv0tnCo6xQ1NbuDDOz90OeZU0Skip0ViMSzEhMWw675d+Fv9AbCbduq/UJ+80jw23r2RDvM78OrAVxnZfiST107mxW9e5Oj4o9SuUdvlnMXlxVzx4hWM6TiGKb2nePeliIiIyK9KPRoiPqbcVs4d799BsH/wT6rLsJt2Rr77DC3K55B/xoppQgQdmfuRnSJrfUzrSWb1n+V23Kjlo7CZNmymjWeve9YZMgAWblvIqeJTjGg7grmb5xIZEkli60RKKkqYt2Uew9sOdwsZAB/u/ZC80jwNmxIREfEBChoiPmbSmkmkHktl/fD1LoXZF/Ny6svk/dCBuoaF//RvWjBNGw1tSQzpVUDj2o1djjmYe5AP9nxAgDWAlvVacts1tzn3mabJ3z5dRGvbTE7t7sqhom9I6pBAoF8gC7ct5HjhccZ2HOvxXpK3J9O1YVea1mn6Xz69iIiIXC4UNER8yIp9K3j+6+d5oc8LdGnY5ZLtD505xONfPE4X/+VUlLtOBWVgpZbRnIe6utdKJC5LxMSkzFbGc32ec+k1mZnyATGFU7FgIa/QpDYd+PZbK2mtzjJr0ywGNB1A87rua2Bk5Wex+uBq5t047794chEREbncKGiIVHFpmfksTslif3Y+mcWH6N/wHsZ3GX/J40zTZNTyUdQJrkPr2vXZll6I/byKLRMbTaNCCfQLdDluybffUHBoKF14gsDg00RaO7mc8+31OQQThWNSO8fCfrM/3cm27G08d/1zHu9n8Y7FBFgDGNJiyM98AyIiInI50vS2IlVYWmY+4xbsZvPBPE4X2Am1tac080/sPFx4yWMXfLeAz9M/59Xfv8rwXo0wDJxT15rYMDAYf2Nrt+vN+6iyhiOQehjFzRi3YDdpmflAZY2FX0UDZ7hwsJtwMLuI+Lrx9Int43YvpmmycNtCbr76ZsJqhP2Xb0NEREQuJwoaIlXY4pQsTBNnT4TjB/7ilKwfPS4rP4sJqycwvO1w+sb1pVVMKDNGxFOj1lFKOUGeZTOT7qzrnHLWYdqKrS7XMc3Kvx3XG/fpOAo46AwsDhYDTtm+54FOD2B4WK1vc9Zmdp/crSJwERERH6KhUyJVWHpOkctwJ6gMHek5RR7bp2Xm80bKMTYfOkpT/s6o+Juc+4qsu1hZeBv4wdTrpnLdNXEux9rsNg5mF+JPkMfrfXrgUw6dOUSfhjuxH+uC5dw+i1E5s9WpoHdJbPOZx/tK3p5MdGg018de//NfgoiIiFyW1KMhUoXFRgZ77D2IjQx2a3v+MCuzohahtvY8+eZR0jLzqbBXMHrFaGoG1KRpRFOPNR4zN87krLkfsHu83v2r7gdg3m2PMWNEPAlNwqgb6k/b2JrsqzGeP3boTrC/+32VVpTyVtpbJLZOxGqxuu0XERGRqkk9GiJV2F09o9mSnufSe2AYkNgr2q2tY5iVaVYmE9M0MIG5Kw+TW3aMGif+xlUcZFzP1gRYA1yOLako4cmUJwn2v4Z6ti5gul6vZfxxnl+5jx4xPYiNiIUIeC6pcmapl1NfJudwKvd1XOLxGT7e9zGnS05r2JSIiIiPUdAQqcIctRWLU7JIzykiNjKYxF7RbrUVcPFhVruPFWISSiBWAqnLm6ssJETn0yrmP+d47LPHKCov4rGegxjc2P16d67oCsDcG+decH47s1Nnc0v8LTQKa+TxGRZuX0jHKzsSXy/+f3wbIiIicjlR0BCp4lrFhDp7D35MbGQwuQV5bmEDzPNmibI4i7sd58wtzuXlzS9Tu0ZtHv/d4/hZ/Fyul3o0le+Pf0+nKzu5hYVVB1ax79Q+Fgxa4PGecgpyWLl/JXP6z/mpjysiIiJVhGo0RKqJu3pGu0xhW/lPE3At8riwmPzPy/9Mhb2CGTfMwM/i/m1i9CejAffeDIBZm2aREJ1A14ZdPd7Tm2lvYrVYGdpy6H/1TCIiInL5UtAQqSYcw6wcRdrtY0Mp9TuIic2l3fnF5Omn01m6eykNazUkqa17DcX27O1s/WEr7aLa0e6Kdi77dp3YxeqDqy86pa1j7YxBzQcRERThxScVERGRy4GChkg14hhm9d4j7agdu5Q9TMNqWF16Oc4vJk9cmoiJyes3ve4xLIxeUdmb8c8b/+m2b/am2USFRF10pe9t2dtIO57G8DbDvfNwIiIicllR0BCphjJOZzDlyymM7Ho9M+/+Ty9HQpMwZt4dT8tGoWw8spGvj35N26i2XBd7nds5dp/YzTdHv+GaetfQuUFnl325xbks2r6IexPudZvByiF5ezKRNSPpG9f3F3lGERER+W2pGFykmjFNk7Erx1IvuB5P9niSkIAQt2Jy0zQZ9sEwABbfvNjjee775D4A5vRzL+T+19Z/YTNt/CXhLx6PLbOV8WbamyS1SfJY9yEiIiJVn/4PL1LNfLj3Q1bsX8HSIUsJCQjx2Gbp7qXsz91P3yZ9aVG/hdv+g7kHWXtoLXERcfSO7e2yr8JewUupL/GHVn+gfs36LvvSMvNZnJLFzmO5XFE8id/V7+G9BxMREZHLioKGSDVSWFbI/SvvZ0DTAQy+erDHNja7jdErRmMxLBedlnbMyjEAzOw7023fst3LOHL2CA90esBlu2NlctMEu2klgo7MWVZGbLjrmh0iIiLiG1SjIVKN/G3d3zhRdII5/ed4LO6GyiLuE0UnSGqTRHQt9xXGD585zKcHPqVRWCMGNB3gtn/Wpln0iOlB26i2LtsdK5M71vEwsDrX7BARERHfox4NkWpi5/GdTN84nck9JhMbHuuxTXF5MZPWTiLQGsisfrM8tnnw0wcxMZnWZ5pbWNmctZkNRzawdMhSt+MutjL5+Wt2iIiIiO9Qj4ZINWCaJvd+ci+x4bE83PXhi7abuGYiReVFPNrtUUID3YczZRdk8+HeD4kKieK2a25z2z9r0ywa127MoOaD3PbFRgY7p9F1OH/NDhEREfEt6tEQqQbe2PEG6zPX81niZwT6BXpsc6roFC+lvkRYYBiTrp3kss9RxL058xgtyqeT2CbarTfjh/wfeOf7d/jH9f/AarG6nf+untFsSc/DQmVPxoVrdoiIiIhvUdAQ8XGni0/z0OqHuKPlHVwfe/1F293z8T1U2CuYdsM0/K3+zu2uRdwhRNCRT7+00q+paxH3vM3zCLAGMKLdCI/nd6xMvjgli/ScImIjg0nsFU3LRioEFxER8UWGaZrmpZuJSFU1+uPRvJn2JnvG7CE61HPvQfrpdOJmx3Fl6JUcHnfYpbfi0eS9bD6Y51JfYTEgoUmYc/2NkooSGs1oxJAWQ3hpwEu/6POIiIhI1aAeDREflnoslVe2vMLMfjMvGjIAhi0bhonJ/EHz3YZE/ZQi7iXfL+FE0Qnu73S/V+9fREREqi4Vg4v4KMd6GG2i2nBvh3sv2m7T0U1sOLKB1vVb0y+un9v+ymJtu8u284u4TdNk1qZZDGg6gGZ1mnn1GURERKTqUtAQ8VFzN8/lux++Y+6Nc/GzeO68NE2TxGWJACy6eZHHNrd0C8PEjiNsXFjEvT5zPduyt7kt0CciIiLVm4ZOifig7IJsnljzBKPaj6Jzg84Xbbd0z1L25+7n+quup01UG49t1mYv5Hv/f/OHBq/xw0m7s4jbNCvrN749VEEXy3yusF78OiIiIlL9qBhcxAf9cekfWX1wNXvH7CUiKMJjG5vdRvT0aE4WneTQA4doGNbQrU1hWSGNZzXm1vhbmff7ec7trjNRgYGJxWIwY0S8y0xUIiIiUn2pR0PEx6zJWMNbaW/x+k2vewwZjjUxdhw5TmTpRHo1y/IYMgBe3fIqp4tP81j3x1y2L07JcoYMABMD06zc7piJSkRERKo3BQ0RH1JmK+PeFffSvVF3hrUZ5rbftScikAg6cmK/lbTMfLeeiJKKEl74+gUS2yTSuHZjl30/ZSYqERERqd5UDC7iQ6Z9PY0DuQf454B/YjHc//O+sCfCwOrcfqHXtr5GTmEOE7tPdNsXGxmMxXUWXJeZqERERETUoyFSxTmGQu3LziejKJSRLafQKrKVx7Y/pSciLTOfRWuPsjE9lj4hb1NSEAV1XI+5q2c0W9LzsJw7/sKZqERERETUoyFShTmGQm0+mMeZAju17Qns/743aZn5Httfak0Mx/m2HDyLn1mHsoLGjFuw2+18rWJCmTEinoQmYdQN9SehSRgz746nZSMVgouIiEglBQ2RKszjUCjT81AogOv+z/jRNTEc5zOpHBdlmjiLvC/UKiaU55Ka894j7XguqblChoiIiLjQ0CmRKuznFmUn73uaIyE/MDhyDoePlznXxHCEBBV5i4iIiLcoaIhUYbGRweQW5LmEg4sVZW/J2sJbaW8xf+B8RrZv8T+fT0REROTHaOiUSBV2V89oDAPnDFAXK8o2TZNHPn+E+LrxDG87/H8+n4iIiMilaGVwkSrOMetUek6R21Aoh1UHVtH/zf58dMdHDGw+8H8+n4iIiMilKGiI+Dib3Ua7V9oRHhROSlIKhmFc+iARERGR/5FqNER83Bs73iDteBqbRm5SyBAREZFfjXo0RHxYcXkxzV5qRpcGXXj39nd/69sRERGRakTF4CI+bPam2WQXZDP1uqm/9a2IiIhINaOgIeKjThWd4u9f/Z3RCaOJi4j7rW9HREREqhkFDREf9eyXz2I37fz12r/+1rciIiIi1ZCChogPyjidwUupL/Fot0epV7Peb307IiIiUg1p1ikRH+JYA2Nz5jHamrPpe+Wtv/UtiYiISDWlWadEfERaZj7jFuzGboJpgoGJxWIwY0Q8rWK04J6IiIj8ujR0SsRHLE7JwjwXMgBMDEyzcruIiIjIr01BQ8RHpOcUYb+gf9JuVm4XERER+bUpaIj4iNjIYCwXLPxtMSq3i4iIiPzaFDREfMRdPaMxDJxhw2KAYUBir+jf9sZERESkWlIxuIgPccw6lZ5TRGxkMIm9omnZSIXgIiIi8utT0BAREREREa/T0CkREREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfE6BQ0REREREfG6/wdCU/K+q+Kl0gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -975,8 +1209,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "Computing transition probabilities: 100%|██████████████████████████| 1672/1672 [00:01<00:00, 1476.85it/s]\n", - "Generating walks (CPU: 1): 100%|█████████████████████████████████████████| 10/10 [00:24<00:00, 2.45s/it]\n" + "Computing transition probabilities: 100%|██████████████████████████| 1672/1672 [00:01<00:00, 1074.22it/s]\n", + "Generating walks (CPU: 1): 100%|█████████████████████████████████████████| 10/10 [00:34<00:00, 3.43s/it]\n" ] } ], @@ -998,21 +1232,21 @@ "output_type": "stream", "text": [ "\n", - "Precision: 0.761485826001955\n", - "Recall: 0.5221179624664879\n", - "F1-Score: 0.6194831013916501\n", + "Precision: 0.7599611273080661\n", + "Recall: 0.5308893414799728\n", + "F1-Score: 0.6250999200639488\n", "\n", - "Precision: 0.7349746560463433\n", - "Recall: 0.6802949061662198\n", - "F1-Score: 0.7065784893839192\n", + "Precision: 0.7164073550212164\n", + "Recall: 0.6877121520706042\n", + "F1-Score: 0.7017665396605473\n", "\n", - "Precision: 0.6103082851637764\n", - "Recall: 0.849195710455764\n", - "F1-Score: 0.7102017937219731\n", + "Precision: 0.6199316072300928\n", + "Recall: 0.8615071283095723\n", + "F1-Score: 0.7210227272727273\n", "\n", - "Precision: 0.611406476558724\n", - "Recall: 0.8478552278820375\n", - "F1-Score: 0.7104745857905083\n" + "Precision: 0.6205378973105135\n", + "Recall: 0.8615071283095723\n", + "F1-Score: 0.7214326321773735\n" ] } ], @@ -1055,8 +1289,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "Computing transition probabilities: 100%|███████████████████████████| 1672/1672 [00:01<00:00, 999.96it/s]\n", - "Generating walks (CPU: 1): 100%|█████████████████████████████████████████| 10/10 [00:31<00:00, 3.18s/it]\n" + "Computing transition probabilities: 100%|███████████████████████████| 1672/1672 [00:02<00:00, 648.89it/s]\n", + "Generating walks (CPU: 1): 100%|█████████████████████████████████████████| 10/10 [00:37<00:00, 3.73s/it]\n" ] } ], @@ -1075,25 +1309,25 @@ "output_type": "stream", "text": [ "\n", - "NMI: 0.3514455486071317\n", - "Homogeneity: 0.3395244596151279\n", - "Completeness: 0.36430541902321095\n", - "V-Measure: 0.35147868620757017\n", + "NMI: 0.35357823566898267\n", + "Homogeneity: 0.34218086499728617\n", + "Completeness: 0.3658315862407637\n", + "V-Measure: 0.3536112067077341\n", "\n", - "NMI: 0.07245485107467836\n", - "Homogeneity: 0.071565264378958\n", - "Completeness: 0.07346200214557116\n", - "V-Measure: 0.07250123002857786\n", + "NMI: 0.06722811041159231\n", + "Homogeneity: 0.06631911824164934\n", + "Completeness: 0.06825845272397836\n", + "V-Measure: 0.06727481206136121\n", "\n", - "NMI: 0.06077436627865752\n", - "Homogeneity: 0.060819295892827745\n", - "Completeness: 0.06082215188793648\n", - "V-Measure: 0.06082072385685444\n", + "NMI: 0.06433043718212811\n", + "Homogeneity: 0.06437090274809783\n", + "Completeness: 0.0643823427937208\n", + "V-Measure: 0.06437662226267107\n", "\n", - "NMI: 0.050716796308473665\n", - "Homogeneity: 0.0501841306223444\n", - "Completeness: 0.05135781753703392\n", - "V-Measure: 0.05076419096690334\n" + "NMI: 0.05071791824826933\n", + "Homogeneity: 0.05017348061331937\n", + "Completeness: 0.051371296699734594\n", + "V-Measure: 0.05076532397326684\n" ] } ], From d837f32d7ecc8c1c1e94bf2603411b6dbbdd538e Mon Sep 17 00:00:00 2001 From: deusebio Date: Sat, 5 Apr 2025 12:13:54 +0200 Subject: [PATCH 28/31] [Chapter10] Code Review (#36) --- .github/workflows/ci.yaml | 15 +- Chapter10/00_Data_Conversion.ipynb | 305 +++++++ Chapter10/01_Neo4j_bindings.ipynb | 625 +++++++++++++- Chapter10/02_JanusGraph_Gremlin.ipynb | 1081 +++++++++++++++++++++++++ Chapter10/movieCreationQuery.txt | 30 +- Chapter10/poetry.lock | 464 ++++++++++- Chapter10/pyproject.toml | 2 + Chapter10/requirements.txt | 115 +-- 8 files changed, 2555 insertions(+), 82 deletions(-) create mode 100644 Chapter10/00_Data_Conversion.ipynb create mode 100644 Chapter10/02_JanusGraph_Gremlin.ipynb diff --git a/.github/workflows/ci.yaml b/.github/workflows/ci.yaml index d59a85c..f98bb50 100644 --- a/.github/workflows/ci.yaml +++ b/.github/workflows/ci.yaml @@ -63,9 +63,14 @@ jobs: docker network create my-network - # Start Neo4j if we are testing chapter 10 + # Start Neo4j and JanusGraph if we are testing chapter 10 if [ "${{ matrix.chapter.name }}" == "chap10" ]; then + docker run --rm --detach --name janusgraph \ + --publish=8182:8182 \ + janusgraph/janusgraph:1.1.0 + docker network connect my-network janusgraph + docker run --rm --detach --name neo4j \ --publish=7474:7474 --publish=7687:7687 \ --user="$(id -u):$(id -g)" \ @@ -83,10 +88,16 @@ jobs: --env KAGGLE_USERNAME=${KAGGLE_USERNAME} \ --env KAGGLE_KEY=${KAGGLE_TOKEN} \ --env NEO4J_HOST=neo4j \ + --env JANUSGRAPH_HOST=janusgraph \ graph-machine-learning:latest docker network connect my-network graph-machine-learning-box # Run tests cd docker - ./tests.sh ${{ matrix.chapter.folder }} \ No newline at end of file + ./tests.sh ${{ matrix.chapter.folder }} + + - name: tmate session if tests fail + if: failure() && github.event_name == 'workflow_dispatch' + uses: mxschmitt/action-tmate@v3 + \ No newline at end of file diff --git a/Chapter10/00_Data_Conversion.ipynb b/Chapter10/00_Data_Conversion.ipynb new file mode 100644 index 0000000..b1db067 --- /dev/null +++ b/Chapter10/00_Data_Conversion.ipynb @@ -0,0 +1,305 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "750472d1-ddd0-4a69-914c-77ac2ee9025c", + "metadata": {}, + "source": [ + "# Data conversion" + ] + }, + { + "cell_type": "markdown", + "id": "551da007-54e2-43b4-aad4-1ee33330510e", + "metadata": {}, + "source": [ + "This script allows the data conversion of the Cypher query to import the Movie dataset into Neo4j into two dataframes (nodes, and edges) that are imported in JanusGraph." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "2afbf7aa-8903-4f0a-b622-2ed8ff947dfa", + "metadata": {}, + "outputs": [], + "source": [ + "with open(\"movieCreationQuery.txt\", \"r\") as fid:\n", + " lines = fid.readlines()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "b7e2b1d6-260b-4c51-aa50-8ce7573b7563", + "metadata": {}, + "outputs": [], + "source": [ + "import re\n", + "\n", + "is_edge_regex = re.compile(\"\\[.*\\]\")\n", + "\n", + "def is_edge(line):\n", + " if is_edge_regex.search(line):\n", + " return True\n", + " return False\n", + "\n", + "is_valid_regex = re.compile(\"\\(.*\\)\")\n", + "\n", + "def is_valid(line):\n", + " if is_valid_regex.search(line):\n", + " return True\n", + " return False " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "e2eb2bcc-ca2a-4204-95a0-55073ac6148d", + "metadata": {}, + "outputs": [], + "source": [ + "import json \n", + "\n", + "def dict_serializer(input_dict):\n", + " return {\n", + " k: json.dumps(v) if isinstance(v, dict) or isinstance(v, list) else v\n", + " for k, v in input_dict.items()\n", + " }\n", + "\n", + "single_quote_parser = lambda props: dict_serializer(json.loads(re.sub(\"(\\w+):\", r\"'\\1':\", props).replace(\"'\",\"\\\"\")))\n", + "double_quote_parser = lambda props: dict_serializer(json.loads(re.sub(\"(\\w+):\", r'\"\\1\":', props)))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "12620971-08dd-4eb2-98f9-a351e44e412d", + "metadata": {}, + "outputs": [], + "source": [ + "from dataclasses import dataclass\n", + "\n", + "@dataclass\n", + "class Node:\n", + " id: str\n", + " label: str\n", + " props: dict\n", + "\n", + "@dataclass\n", + "class Edge:\n", + " id: tuple[str, str]\n", + " label: str\n", + " props: dict\n", + "\n", + "node_regex = re.compile(r'.*\\((\\w*):(\\w*).*({.*})\\).*')\n", + "\n", + "def parse_node_line(line):\n", + "\n", + " name, label, props = node_regex.match(line).groups()\n", + "\n", + " parser = double_quote_parser if '\"' in props else single_quote_parser\n", + "\n", + " return Node(name, label, parser(props))\n", + "\n", + "edge_regex = re.compile(r'^[a-zA-Z\\s]*\\((\\w+)\\)-\\[:(\\w+) ({.*})\\]->\\((\\w+)\\).*')\n", + "edge_regex_noprop = re.compile(r'^[a-zA-Z\\s]*\\((\\w+)\\)-\\[:(\\w+)]->\\((\\w+)\\).*')\n", + "\n", + "def parse_edge_line(line):\n", + "\n", + " try:\n", + " source, rel_type, props, target = edge_regex.match(line).groups()\n", + " except:\n", + " source, rel_type, target = edge_regex_noprop.match(line).groups()\n", + " props=\"{}\"\n", + "\n", + " parser = double_quote_parser if '\"' in props else single_quote_parser\n", + "\n", + " return Edge((source, target), rel_type, parser(props))\n", + "\n", + "\n", + "def parse_line(line: str):\n", + " if not is_valid(line):\n", + " return None\n", + " \n", + " if is_edge(line):\n", + " return parse_edge_line(line)\n", + " return parse_node_line(line)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "bedf909d-1132-4be6-a4fc-ce8897e3bbae", + "metadata": {}, + "outputs": [], + "source": [ + "line=lines[18]" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "2d0b79ff-d34b-43db-9e3f-ba7dcbabd85f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Edge(id=('Emil', 'TheMatrix'), label='ACTED_IN', props={'roles': '[\"Emil\"]'})" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "parse_line(line)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f7b03500-8d09-4d41-9b3c-f07f91ce8f22", + "metadata": {}, + "outputs": [], + "source": [ + "parsed_outout = [parse_line(line) for line in lines]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "147efe7d-6044-4711-be5c-caf4c5d65bda", + "metadata": {}, + "outputs": [], + "source": [ + "nodes = [item for item in parsed_outout if isinstance(item, Node)]\n", + "edges = [item for item in parsed_outout if isinstance(item, Edge)]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "6bd3f299-569d-4661-a085-0b9a03dd9ede", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "171" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(nodes)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "e6190a56-e7f5-4682-b773-ca8fdb3fa46d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "254" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(edges)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "58b8e97a-a774-4d77-a261-aeea4a112bb8", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "368f624d-1f3a-42a8-b747-80d39ec71cae", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[Node(id='TheMatrix', label='Movie', props={'title': 'The Matrix', 'released': 1999, 'tagline': 'Welcome to the Real World'}),\n", + " Node(id='Keanu', label='Person', props={'name': 'Keanu Reeves', 'born': 1964}),\n", + " Node(id='Carrie', label='Person', props={'name': 'Carrie-Anne Moss', 'born': 1967}),\n", + " Node(id='Laurence', label='Person', props={'name': 'Laurence Fishburne', 'born': 1961}),\n", + " Node(id='Hugo', label='Person', props={'name': 'Hugo Weaving', 'born': 1960}),\n", + " Node(id='LillyW', label='Person', props={'name': 'Lilly Wachowski', 'born': 1967}),\n", + " Node(id='LanaW', label='Person', props={'name': 'Lana Wachowski', 'born': 1965}),\n", + " Node(id='JoelS', label='Person', props={'name': 'Joel Silver', 'born': 1952}),\n", + " Node(id='Emil', label='Person', props={'name': 'Emil Eifrem', 'born': 1978}),\n", + " Node(id='TheMatrixReloaded', label='Movie', props={'title': 'The Matrix Reloaded', 'released': 2003, 'tagline': 'Free your mind'})]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nodes[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "ab66884a-5174-437c-91a2-d822366ba16b", + "metadata": {}, + "outputs": [], + "source": [ + "pd.DataFrame.from_records([{\"id\": node.id, \"label\": node.label, \"props\": node.props} for node in nodes]).set_index(\"id\").to_pickle(\"nodes.pkl\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "188e259e-b56f-4c81-9a5a-a23f63ba1146", + "metadata": {}, + "outputs": [], + "source": [ + "pd.DataFrame.from_records([{\"id\": edge.id, \"label\": edge.label, \"props\": edge.props} for edge in edges]).set_index(\"id\").to_pickle(\"edges.pkl\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "chap10", + "language": "python", + "name": "chap10" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Chapter10/01_Neo4j_bindings.ipynb b/Chapter10/01_Neo4j_bindings.ipynb index 70cd536..ad3cd94 100644 --- a/Chapter10/01_Neo4j_bindings.ipynb +++ b/Chapter10/01_Neo4j_bindings.ipynb @@ -20,17 +20,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ - "with open(\"movieCreationQuery.txt\", \"rb\") as fid:\n", + "with open(\"./movieCreationQuery.txt\", \"rb\") as fid:\n", " lines = fid.readlines()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -39,7 +39,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -48,7 +48,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -61,7 +61,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -71,9 +71,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_1298248/469611421.py:2: DeprecationWarning: write_transaction has been renamed to execute_write\n", + " session.write_transaction(run_query, query)\n" + ] + } + ], "source": [ "with driver.session() as session:\n", " session.write_transaction(run_query, query)" @@ -88,7 +97,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -97,9 +106,28 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_1298248/3167206639.py:2: DeprecationWarning: read_transaction has been renamed to execute_read\n", + " result = session.read_transaction(run_query, query)\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "with driver.session() as session:\n", " result = session.read_transaction(run_query, query)\n", @@ -110,14 +138,585 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Delete" + "### Using `graphdatascience`" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/deusebio/.pyenv/versions/graph-machine-learning-310/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import graphdatascience" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "from graphdatascience import GraphDataScience\n", + "\n", + "import os\n", + "host = os.environ.get(\"NEO4J_HOST\", \"localhost\")\n", + "\n", + "uri = f\"bolt://{host}:7687\"\n", + "gds = GraphDataScience(uri, auth=(\"neo4j\", \"neo5j\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
count(*)
0171
\n", + "
" + ], + "text/plain": [ + " count(*)\n", + "0 171" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gds.run_cypher(\"MATCH (n) RETURN count(*);\") " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Using the analytics capabilities of `graphdatascience`" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], + "source": [ + "G = gds.graph.load_cora()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
degreeDistributiongraphNamedatabasedatabaseLocationmemoryUsagesizeInBytesnodeCountrelationshipCountconfigurationdensitycreationTimemodificationTimeschemaschemaWithOrientation
0{'min': 0, 'max': 166, 'p90': 5, 'p999': 74, '...coraneo4jlocal34 MiB3568507827085429{'readConcurrency': 4, 'undirectedRelationship...0.0007412025-02-23T17:46:21.127305017+00:002025-02-23T17:46:21.127305017+00:00{'graphProperties': {}, 'nodes': {'Paper': {'s...{'graphProperties': {}, 'nodes': {'Paper': {'s...
\n", + "
" + ], + "text/plain": [ + " degreeDistribution graphName database \\\n", + "0 {'min': 0, 'max': 166, 'p90': 5, 'p999': 74, '... cora neo4j \n", + "\n", + " databaseLocation memoryUsage sizeInBytes nodeCount relationshipCount \\\n", + "0 local 34 MiB 35685078 2708 5429 \n", + "\n", + " configuration density \\\n", + "0 {'readConcurrency': 4, 'undirectedRelationship... 0.000741 \n", + "\n", + " creationTime modificationTime \\\n", + "0 2025-02-23T17:46:21.127305017+00:00 2025-02-23T17:46:21.127305017+00:00 \n", + "\n", + " schema \\\n", + "0 {'graphProperties': {}, 'nodes': {'Paper': {'s... \n", + "\n", + " schemaWithOrientation \n", + "0 {'graphProperties': {}, 'nodes': {'Paper': {'s... " + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gds.graph.list()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "G=gds.graph.get(\"cora\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Paper [subject, features]\n", + "dtype: object" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "G.node_properties()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
nodeIdpropertyValuenodeLabels
0313360[]
110611271[]
211064062[]
3131952[]
4378793[]
............
270311289755[]
270411289775[]
270511289785[]
27061173286[]
2707240430[]
\n", + "

2708 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " nodeId propertyValue nodeLabels\n", + "0 31336 0 []\n", + "1 1061127 1 []\n", + "2 1106406 2 []\n", + "3 13195 2 []\n", + "4 37879 3 []\n", + "... ... ... ...\n", + "2703 1128975 5 []\n", + "2704 1128977 5 []\n", + "2705 1128978 5 []\n", + "2706 117328 6 []\n", + "2707 24043 0 []\n", + "\n", + "[2708 rows x 3 columns]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gds.graph.nodeProperty.stream(gds.graph.get(\"cora\"), node_property=\"subject\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "pr_result = gds.pageRank.mutate(G, mutateProperty=\"pagerank\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Compute millis: 23\n", + "Node properties written: 2708\n", + "Centrality distribution: {'min': 0.14999961853027344, 'max': 3.5378417968749996, 'p90': 0.4555196762084961, 'p999': 2.6002798080444336, 'p99': 1.5071401596069336, 'p50': 0.21511173248291016, 'p75': 0.3093576431274414, 'p95': 0.6003026962280273, 'mean': 0.2869838661069884}\n" + ] + } + ], + "source": [ + "print(f\"Compute millis: {pr_result['computeMillis']}\")\n", + "print(f\"Node properties written: {pr_result['nodePropertiesWritten']}\")\n", + "print(f\"Centrality distribution: {pr_result['centralityDistribution']}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Paper [pagerank, subject, features]\n", + "dtype: object" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "G.node_properties()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
nodeIdpagerank
0350.203022
1400.168341
21140.150000
31170.150000
41280.184487
.........
270311545000.161591
270411545200.168214
270511545240.307409
270611545250.248215
270711550730.601702
\n", + "

2708 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " nodeId pagerank\n", + "0 35 0.203022\n", + "1 40 0.168341\n", + "2 114 0.150000\n", + "3 117 0.150000\n", + "4 128 0.184487\n", + "... ... ...\n", + "2703 1154500 0.161591\n", + "2704 1154520 0.168214\n", + "2705 1154524 0.307409\n", + "2706 1154525 0.248215\n", + "2707 1155073 0.601702\n", + "\n", + "[2708 rows x 2 columns]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gds.graph.nodeProperties.stream(G, [\"pagerank\"], separate_property_columns=True)\n", + "# gds.graph.nodeProperties.write(G, [\"pagerank\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Delete datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "graphName cora\n", + "database neo4j\n", + "databaseLocation local\n", + "memoryUsage \n", + "sizeInBytes -1\n", + "nodeCount 2708\n", + "relationshipCount 5429\n", + "configuration {'readConcurrency': 4, 'undirectedRelationship...\n", + "density 0.000741\n", + "creationTime 2025-02-23T17:46:21.127305017+00:00\n", + "modificationTime 2025-02-23T17:46:21.352154457+00:00\n", + "schema {'graphProperties': {}, 'nodes': {'Paper': {'p...\n", + "schemaWithOrientation {'graphProperties': {}, 'nodes': {'Paper': {'p...\n", + "Name: 0, dtype: object" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gds.graph.drop(\"cora\")" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_1298248/1407641033.py:2: DeprecationWarning: write_transaction has been renamed to execute_write\n", + " result = session.write_transaction(run_query, \"MATCH (n)-[e]-() DELETE n, e\")\n" + ] + } + ], "source": [ "with driver.session() as session:\n", " result = session.write_transaction(run_query, \"MATCH (n)-[e]-() DELETE n, e\")" diff --git a/Chapter10/02_JanusGraph_Gremlin.ipynb b/Chapter10/02_JanusGraph_Gremlin.ipynb new file mode 100644 index 0000000..6b4e3bc --- /dev/null +++ b/Chapter10/02_JanusGraph_Gremlin.ipynb @@ -0,0 +1,1081 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "418dbae3-2817-4b04-b99d-50b1c67968fa", + "metadata": {}, + "source": [ + "# JanusGraph and Gremlin queries" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "4e2325c8-72ce-43f6-bcd0-e6bb681ee386", + "metadata": {}, + "outputs": [], + "source": [ + "from gremlin_python import statics\n", + "from gremlin_python.structure.graph import Graph\n", + "from gremlin_python.process.graph_traversal import __\n", + "from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection\n", + "from gremlin_python.driver.serializer import GraphSONSerializersV3d0" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "caa8be3b-c448-4918-a531-6072a23e1c14", + "metadata": {}, + "outputs": [], + "source": [ + "import nest_asyncio\n", + "nest_asyncio.apply()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "ed4de73d-e4bc-45e5-bf9a-7abfc090c7e1", + "metadata": {}, + "outputs": [], + "source": [ + "from gremlin_python.process.anonymous_traversal import traversal\n", + "\n", + "import os\n", + "host = os.environ.get(\"JANUSGRAPH_HOST\", \"localhost\")\n", + "\n", + "connection = DriverRemoteConnection(f\"ws://{host}:8182/gremlin\", \"g\", message_serializer=GraphSONSerializersV3d0())" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "1b6aeb8c-6a8e-4866-b49c-1ed6cdc373be", + "metadata": {}, + "outputs": [], + "source": [ + "graph = Graph()\n", + "g = graph.traversal().withRemote(connection)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "d1e5e05a-b09a-444e-ad7e-3de685ea10be", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "v[8272]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g.addV('student').property('name', 'Jeffery').property('GPA', 4.0).next()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "db401998-d513-4097-8c8a-2d74c4eeddc9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "v[4304]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g.addV('student').property('name', 'Robert').property('GPA', 3.0).next()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "d4e5e347-0298-46a6-9d13-971b66bd7211", + "metadata": {}, + "outputs": [], + "source": [ + "v1, v2 = g.V().to_list()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "cedea689-8e8e-424b-b935-c2422f2037e9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "v[8272]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "v1" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "e3fdf108-b8f1-48d7-84aa-4f6f333ceedf", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "v[4304]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "v2" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "345de3a5-59d2-4710-aaf7-f8923d25531c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "e[{'@type': 'janusgraph:RelationIdentifier', '@value': {'relationId': '3yi-6ds-36d-3bk'}}][8272-FRIEND_OF->4304]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g.addE(\"FRIEND_OF\").from_(v1).to(v2).property(\"since\", \"2014\").next()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "4aebd7dc-da82-42d3-ba52-877c258cfa65", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[['addV', 'student'], ['property', 'name', 'Claire'], ['property', 'GPA', 3.9], ['as', 'n1'], ['addV', 'student'], ['property', 'name', 'Lisa'], ['property', 'GPA', 3.6], ['as', 'n2'], ['addE', 'FRIEND_OF'], ['from', 'n1'], ['to', 'n2'], ['property', 'since', '2014'], ['none'], ['values', '_ipython_canary_method_should_not_exist_'], ['values', '_ipython_canary_method_should_not_exist_']]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g\\\n", + " .addV('student').property('name', 'Claire').property('GPA', 3.9).as_(\"n1\")\\\n", + " .addV('student').property('name', 'Lisa').property('GPA', 3.6).as_(\"n2\")\\\n", + " .addE(\"FRIEND_OF\").from_(\"n1\").to(\"n2\").property(\"since\", \"2014\")\\\n", + " .iterate()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "6f454c96-9775-4469-b0ea-596dde823e0c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[v[8272], v[4304], v[8400], v[8416]]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g.V().to_list()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "607a9c7c-4f9f-4921-baeb-aada093976c6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[e[{'@type': 'janusgraph:RelationIdentifier', '@value': {'relationId': '3yi-6ds-36d-3bk'}}][8272-FRIEND_OF->4304],\n", + " e[{'@type': 'janusgraph:RelationIdentifier', '@value': {'relationId': '3kq-6hc-36d-6hs'}}][8400-FRIEND_OF->8416]]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g.E().to_list()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "49fc830c-c265-4643-8ed2-6c83b4a64af9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g.V().drop().to_list()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "b0f36ccb-5c18-4045-903a-3ee0b90b5d1a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g.E().drop().to_list()" + ] + }, + { + "cell_type": "markdown", + "id": "2d054308-1549-4642-a7f5-012f19bc27f3", + "metadata": {}, + "source": [ + "### Import Karate Club Graph " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "deeb8022-6d3f-4724-8420-621282b6aa87", + "metadata": {}, + "outputs": [], + "source": [ + "import networkx" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "bad6ce27-f43d-45bf-932a-3cdf93b2bf53", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "f6388ad9-0952-444e-92f2-2ddc9560140f", + "metadata": {}, + "outputs": [], + "source": [ + "nodes = networkx.karate_club_graph().nodes\n", + "nodes = pd.DataFrame.from_records([{\"id\": node} | nodes[node] for node in nodes]).set_index(\"id\")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "61d75876-548e-4c5c-9561-ee948b620442", + "metadata": {}, + "outputs": [], + "source": [ + "edges = networkx.karate_club_graph().edges\n", + "edges = pd.DataFrame.from_records([{\"id\": edge} | edges[edge] for edge in edges]).set_index(\"id\")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "bd84322d-76d1-4fa1-845b-c04987df595e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
club
id
0Mr. Hi
1Mr. Hi
2Mr. Hi
3Mr. Hi
4Mr. Hi
\n", + "
" + ], + "text/plain": [ + " club\n", + "id \n", + "0 Mr. Hi\n", + "1 Mr. Hi\n", + "2 Mr. Hi\n", + "3 Mr. Hi\n", + "4 Mr. Hi" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nodes.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "04f5f159-3796-4e35-9960-8452fad83a2f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weight
id
(0, 1)4
(0, 2)5
(0, 3)3
(0, 4)3
(0, 5)3
\n", + "
" + ], + "text/plain": [ + " weight\n", + "id \n", + "(0, 1) 4\n", + "(0, 2) 5\n", + "(0, 3) 3\n", + "(0, 4) 3\n", + "(0, 5) 3" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "edges.head()" + ] + }, + { + "cell_type": "markdown", + "id": "64ed31a0-8938-45ab-8f53-6a37271e5788", + "metadata": {}, + "source": [ + "Graph Generation " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "478cd590-89e9-4cf3-b82d-ac4d1d743856", + "metadata": {}, + "outputs": [], + "source": [ + "from gremlin_python.process.graph_traversal import GraphTraversalSource" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "1f6351f5-91fc-40d5-bc30-177796e36a91", + "metadata": {}, + "outputs": [], + "source": [ + "from functools import reduce\n", + "\n", + "def build_node_query(agg: GraphTraversalSource, id: str, label: str, properties:dict):\n", + " id_str = str(id)\n", + " agg = agg.add_v(label).property(\"id\", id_str)\n", + " for k, v in properties.items():\n", + " agg.property(k, v)\n", + " return agg.as_(f\"n_{id_str}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "e3ebf002-2965-4049-bc22-4b326bd10b5f", + "metadata": {}, + "outputs": [], + "source": [ + "def build_edge_query(agg: GraphTraversalSource, id: tuple[str,str], label: str, properties:dict):\n", + " source_str = str(id[0])\n", + " target_str = str(id[1])\n", + " edge = agg\\\n", + " .V().has(\"id\", str(source_str)).as_(\"source\")\\\n", + " .V().has(\"id\", str(target_str)).as_(\"target\")\\\n", + " .addE(label).from_(\"source\").to(\"target\")\n", + " for k, v in properties.items():\n", + " edge.property(k, v)\n", + " return edge.as_(f\"edge_{source_str}_{target_str}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "676a24c7-139b-4622-9316-4c531cbfb73c", + "metadata": {}, + "outputs": [], + "source": [ + "_ = reduce(lambda g, node: build_node_query(g, node[0], \"Person\", node[1].to_dict()), nodes.iterrows(), g).iterate()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "9b9367df-bbab-4d44-b9d5-e504751e21bf", + "metadata": {}, + "outputs": [], + "source": [ + "_ = reduce(lambda g, edge: build_edge_query(g, edge[0], \"FRIEND_OF\", edge[1].to_dict()), edges.iterrows(), g).iterate()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "6395d565-a5df-4c77-a68b-c8c5e7b26203", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "11" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g.V().has(\"club\", \"Mr. Hi\").out(\"FRIEND_OF\").has(\"club\", 'Officer').count().next()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "21d5c7bd-dfaa-4dbf-a1b0-25b957c32f11", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['30', '30', '33', '33', '33', '31', '9', '27', '28', '32', '32']" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g.V().has(\"club\", \"Mr. Hi\").out(\"FRIEND_OF\").has(\"club\", 'Officer').values(\"id\").to_list()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "220ef136-3740-4101-b9f4-ca698343a9de", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['2', '2', '2', '2', '8', '8', '8', '0', '1', '13', '19']" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g.V().has(\"club\", \"Officer\").in_(\"FRIEND_OF\").has(\"club\", 'Mr. Hi').values(\"id\").to_list()" + ] + }, + { + "cell_type": "markdown", + "id": "cac322ee-de5f-47da-8c24-1b27c3fc89c8", + "metadata": {}, + "source": [ + "### Drop databases" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "021e1a57-abe0-4db0-a8b8-a3cfc033e448", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g.V().drop().to_list()" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "ffc6f2bf-ff3b-4bee-a2e6-65cb2df61fdb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g.E().drop().to_list()" + ] + }, + { + "cell_type": "markdown", + "id": "7b3deb6d-6893-4bd5-8be3-87d3c2e49d27", + "metadata": {}, + "source": [ + "### Import Movie Graph" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "25a310ff-10cb-4eaa-9677-4aa91f96d0c2", + "metadata": {}, + "outputs": [], + "source": [ + "nodes = pd.read_pickle(\"nodes.pkl\")" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "f3c0e8d7-d837-4e1a-8369-81aebc0924f4", + "metadata": {}, + "outputs": [], + "source": [ + "edges = pd.read_pickle(\"edges.pkl\")" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "28289b7d-b281-493b-a231-557c012edbc3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
labelprops
id
TheMatrixMovie{'title': 'The Matrix', 'released': 1999, 'tag...
KeanuPerson{'name': 'Keanu Reeves', 'born': 1964}
CarriePerson{'name': 'Carrie-Anne Moss', 'born': 1967}
LaurencePerson{'name': 'Laurence Fishburne', 'born': 1961}
HugoPerson{'name': 'Hugo Weaving', 'born': 1960}
\n", + "
" + ], + "text/plain": [ + " label props\n", + "id \n", + "TheMatrix Movie {'title': 'The Matrix', 'released': 1999, 'tag...\n", + "Keanu Person {'name': 'Keanu Reeves', 'born': 1964}\n", + "Carrie Person {'name': 'Carrie-Anne Moss', 'born': 1967}\n", + "Laurence Person {'name': 'Laurence Fishburne', 'born': 1961}\n", + "Hugo Person {'name': 'Hugo Weaving', 'born': 1960}" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nodes.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "68cf9037-8b98-4ed7-94de-bb14c8b678f0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
labelprops
id
(Keanu, TheMatrix)ACTED_IN{'roles': '[\"Neo\"]'}
(Carrie, TheMatrix)ACTED_IN{'roles': '[\"Trinity\"]'}
(Laurence, TheMatrix)ACTED_IN{'roles': '[\"Morpheus\"]'}
(Hugo, TheMatrix)ACTED_IN{'roles': '[\"Agent Smith\"]'}
(LillyW, TheMatrix)DIRECTED{}
\n", + "
" + ], + "text/plain": [ + " label props\n", + "id \n", + "(Keanu, TheMatrix) ACTED_IN {'roles': '[\"Neo\"]'}\n", + "(Carrie, TheMatrix) ACTED_IN {'roles': '[\"Trinity\"]'}\n", + "(Laurence, TheMatrix) ACTED_IN {'roles': '[\"Morpheus\"]'}\n", + "(Hugo, TheMatrix) ACTED_IN {'roles': '[\"Agent Smith\"]'}\n", + "(LillyW, TheMatrix) DIRECTED {}" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "edges.head()" + ] + }, + { + "cell_type": "markdown", + "id": "78e8d550-e049-4de6-842f-39872e4d6f98", + "metadata": {}, + "source": [ + "Creation of edges and nodes batch by batch" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "a80cc0ee-c6af-44f3-9f73-f43a8f538ffc", + "metadata": {}, + "outputs": [], + "source": [ + "from itertools import islice\n", + "\n", + "def batched(iterable, n):\n", + " \"Batch data into lists of length n. The last batch may be shorter.\"\n", + " # batched('ABCDEFG', 3) --> ABC DEF G\n", + " it = iter(iterable)\n", + " while True:\n", + " batch = list(islice(it, n))\n", + " if not batch:\n", + " return\n", + " yield batch" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "651314fa-efea-4fb7-9a7f-6487fcde6a9d", + "metadata": {}, + "outputs": [], + "source": [ + "def create_from_batch(builder, iterable, batch_size):\n", + " for batch in batched(iterable, batch_size):\n", + " _ = reduce(lambda g, item: builder(g, item[0], item[1][\"label\"], item[1][\"props\"]), batch, g).iterate()" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "c331abcb-63b2-4902-bf75-9c0845f2219b", + "metadata": {}, + "outputs": [], + "source": [ + "create_from_batch(build_node_query, nodes.iterrows(), 10)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "224412d2-c0f7-46b3-861f-6ead80084ded", + "metadata": {}, + "outputs": [], + "source": [ + "create_from_batch(build_edge_query, edges.iterrows(), 10)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "43844ee1-c300-4ed7-a0cc-5e7922db222d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "171" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g.V().count().next()" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "a9bc20b4-d8f7-414b-985d-4f85ecc16de2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "253" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g.E().count().next()" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "7675a693-2c69-4e01-91ff-6fccf3d050d7", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['Emil Eifrem',\n", + " 'Carrie-Anne Moss',\n", + " 'Laurence Fishburne',\n", + " 'Keanu Reeves',\n", + " 'Hugo Weaving',\n", + " 'Charlize Theron',\n", + " 'Al Pacino',\n", + " 'Gene Hackman',\n", + " 'Brooke Langton',\n", + " 'Orlando Jones',\n", + " 'Takeshi Kitano',\n", + " 'Dina Meyer',\n", + " 'Ice-T',\n", + " 'Jack Nicholson',\n", + " 'Diane Keaton']" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g.V().has('Person', 'name', 'Keanu Reeves').out(\"ACTED_IN\").in_(\"ACTED_IN\").values(\"name\").dedup().to_list()" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "fed4e739-f3c9-4b2b-9884-e185f8d390d2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g.V().drop().to_list()" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "77079085-b277-4bf7-9c59-fa1928caf560", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g.E().drop().to_list()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "chap10", + "language": "python", + "name": "chap10" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Chapter10/movieCreationQuery.txt b/Chapter10/movieCreationQuery.txt index 9617449..d27dd47 100644 --- a/Chapter10/movieCreationQuery.txt +++ b/Chapter10/movieCreationQuery.txt @@ -38,7 +38,7 @@ CREATE (LanaW)-[:DIRECTED]->(TheMatrixRevolutions), (JoelS)-[:PRODUCED]->(TheMatrixRevolutions) -CREATE (TheDevilsAdvocate:Movie {title:"The Devil's Advocate", released:1997, tagline:'Evil has its winning ways'}) +CREATE (TheDevilsAdvocate:Movie {title:"The Devil's Advocate", released:1997, tagline:"Evil has its winning ways"}) CREATE (Charlize:Person {name:'Charlize Theron', born:1975}) CREATE (Al:Person {name:'Al Pacino', born:1940}) CREATE (Taylor:Person {name:'Taylor Hackford', born:1944}) @@ -78,7 +78,7 @@ CREATE (RobR)-[:DIRECTED]->(AFewGoodMen), (AaronS)-[:WROTE]->(AFewGoodMen) -CREATE (TopGun:Movie {title:"Top Gun", released:1986, tagline:'I feel the need, the need for speed.'}) +CREATE (TopGun:Movie {title:"Top Gun", released:1986, tagline:"I feel the need, the need for speed."}) CREATE (KellyM:Person {name:'Kelly McGillis', born:1957}) CREATE (ValK:Person {name:'Val Kilmer', born:1959}) CREATE (AnthonyE:Person {name:'Anthony Edwards', born:1962}) @@ -172,7 +172,7 @@ CREATE (JamesC)-[:ACTED_IN {roles:['Judge Fielding']}]->(SnowFallingonCedars), (ScottH)-[:DIRECTED]->(SnowFallingonCedars) -CREATE (YouveGotMail:Movie {title:"You've Got Mail", released:1998, tagline:'At odds in life... in love on-line.'}) +CREATE (YouveGotMail:Movie {title:"You've Got Mail", released:1998, tagline:"At odds in life... in love on-line."}) CREATE (ParkerP:Person {name:'Parker Posey', born:1968}) CREATE (DaveC:Person {name:'Dave Chappelle', born:1973}) CREATE (SteveZ:Person {name:'Steve Zahn', born:1967}) @@ -244,7 +244,7 @@ CREATE (Orlando)-[:ACTED_IN {roles:['Clifford Franklin']}]->(TheReplacements), (Howard)-[:DIRECTED]->(TheReplacements) -CREATE (RescueDawn:Movie {title:'RescueDawn', released:2006, tagline:"Based on the extraordinary true story of one man's fight for freedom"}) +CREATE (RescueDawn:Movie {title:"RescueDawn", released:2006, tagline:"Based on the extraordinary true story of one man's fight for freedom"}) CREATE (ChristianB:Person {name:'Christian Bale', born:1974}) CREATE (ZachG:Person {name:'Zach Grenier', born:1954}) CREATE @@ -262,7 +262,7 @@ CREATE (Gene)-[:ACTED_IN {roles:['Sen. Kevin Keeley']}]->(TheBirdcage), (MikeN)-[:DIRECTED]->(TheBirdcage) -CREATE (Unforgiven:Movie {title:'Unforgiven', released:1992, tagline:"It's a hell of a thing, killing a man"}) +CREATE (Unforgiven:Movie {title:"Unforgiven", released:1992, tagline:"It's a hell of a thing, killing a man"}) CREATE (RichardH:Person {name:'Richard Harris', born:1930}) CREATE (ClintE:Person {name:'Clint Eastwood', born:1930}) CREATE @@ -363,7 +363,7 @@ CREATE (LanaW)-[:PRODUCED]->(NinjaAssassin), (JoelS)-[:PRODUCED]->(NinjaAssassin) -CREATE (TheGreenMile:Movie {title:'The Green Mile', released:1999, tagline:"Walk a mile you'll never forget."}) +CREATE (TheGreenMile:Movie {title:"The Green Mile", released:1999, tagline:"Walk a mile you'll never forget."}) CREATE (MichaelD:Person {name:'Michael Clarke Duncan', born:1957}) CREATE (DavidM:Person {name:'David Morse', born:1953}) CREATE (SamR:Person {name:'Sam Rockwell', born:1968}) @@ -373,10 +373,10 @@ CREATE (FrankD:Person {name:'Frank Darabont', born:1959}) CREATE (TomH)-[:ACTED_IN {roles:['Paul Edgecomb']}]->(TheGreenMile), (MichaelD)-[:ACTED_IN {roles:['John Coffey']}]->(TheGreenMile), -(DavidM)-[:ACTED_IN {roles:['Brutus "Brutal" Howell']}]->(TheGreenMile), +(DavidM)-[:ACTED_IN {roles:["Brutus 'Brutal' Howell"]}]->(TheGreenMile), (BonnieH)-[:ACTED_IN {roles:['Jan Edgecomb']}]->(TheGreenMile), (JamesC)-[:ACTED_IN {roles:['Warden Hal Moores']}]->(TheGreenMile), -(SamR)-[:ACTED_IN {roles:['"Wild Bill" Wharton']}]->(TheGreenMile), +(SamR)-[:ACTED_IN {roles:["'Wild Bill' Wharton"]}]->(TheGreenMile), (GaryS)-[:ACTED_IN {roles:['Burt Hammersmith']}]->(TheGreenMile), (PatriciaC)-[:ACTED_IN {roles:['Melinda Moores']}]->(TheGreenMile), (FrankD)-[:DIRECTED]->(TheGreenMile) @@ -393,14 +393,14 @@ CREATE (SamR)-[:ACTED_IN {roles:['James Reston, Jr.']}]->(FrostNixon), (RonH)-[:DIRECTED]->(FrostNixon) -CREATE (Hoffa:Movie {title:'Hoffa', released:1992, tagline:"He didn't want law. He wanted justice."}) +CREATE (Hoffa:Movie {title:"Hoffa", released:1992, tagline:"He didn't want law. He wanted justice."}) CREATE (DannyD:Person {name:'Danny DeVito', born:1944}) CREATE (JohnR:Person {name:'John C. Reilly', born:1965}) CREATE (JackN)-[:ACTED_IN {roles:['Hoffa']}]->(Hoffa), -(DannyD)-[:ACTED_IN {roles:['Robert "Bobby" Ciaro']}]->(Hoffa), +(DannyD)-[:ACTED_IN {roles:["Robert 'Bobby' Ciaro"]}]->(Hoffa), (JTW)-[:ACTED_IN {roles:['Frank Fitzsimmons']}]->(Hoffa), -(JohnR)-[:ACTED_IN {roles:['Peter "Pete" Connelly']}]->(Hoffa), +(JohnR)-[:ACTED_IN {roles:["Peter 'Pete' Connelly"]}]->(Hoffa), (DannyD)-[:DIRECTED]->(Hoffa) CREATE (Apollo13:Movie {title:'Apollo 13', released:1995, tagline:'Houston, we have a problem.'}) @@ -414,14 +414,14 @@ CREATE (GaryS)-[:ACTED_IN {roles:['Ken Mattingly']}]->(Apollo13), (RonH)-[:DIRECTED]->(Apollo13) -CREATE (Twister:Movie {title:'Twister', released:1996, tagline:"Don't Breathe. Don't Look Back."}) +CREATE (Twister:Movie {title:"Twister", released:1996, tagline:"Don't Breathe. Don't Look Back."}) CREATE (PhilipH:Person {name:'Philip Seymour Hoffman', born:1967}) CREATE (JanB:Person {name:'Jan de Bont', born:1943}) CREATE (BillPax)-[:ACTED_IN {roles:['Bill Harding']}]->(Twister), (HelenH)-[:ACTED_IN {roles:['Dr. Jo Harding']}]->(Twister), (ZachG)-[:ACTED_IN {roles:['Eddie']}]->(Twister), -(PhilipH)-[:ACTED_IN {roles:['Dustin "Dusty" Davis']}]->(Twister), +(PhilipH)-[:ACTED_IN {roles:["Dustin 'Dusty' Davis"]}]->(Twister), (JanB)-[:DIRECTED]->(Twister) CREATE (CastAway:Movie {title:'Cast Away', released:2000, tagline:'At the edge of the world, his journey begins.'}) @@ -449,7 +449,7 @@ CREATE (NancyM)-[:PRODUCED]->(SomethingsGottaGive), (NancyM)-[:WROTE]->(SomethingsGottaGive) -CREATE (BicentennialMan:Movie {title:'Bicentennial Man', released:1999, tagline:"One robot's 200 year journey to become an ordinary man."}) +CREATE (BicentennialMan:Movie {title:"Bicentennial Man", released:1999, tagline:"One robot's 200 year journey to become an ordinary man."}) CREATE (ChrisC:Person {name:'Chris Columbus', born:1958}) CREATE (Robin)-[:ACTED_IN {roles:['Andrew Marin']}]->(BicentennialMan), @@ -479,7 +479,7 @@ CREATE (GeenaD)-[:ACTED_IN {roles:['Dottie Hinson']}]->(ALeagueofTheirOwn), (LoriP)-[:ACTED_IN {roles:['Kit Keller']}]->(ALeagueofTheirOwn), (RosieO)-[:ACTED_IN {roles:['Doris Murphy']}]->(ALeagueofTheirOwn), -(Madonna)-[:ACTED_IN {roles:['"All the Way" Mae Mordabito']}]->(ALeagueofTheirOwn), +(Madonna)-[:ACTED_IN {roles:["'All the Way' Mae Mordabito"]}]->(ALeagueofTheirOwn), (BillPax)-[:ACTED_IN {roles:['Bob Hinson']}]->(ALeagueofTheirOwn), (PennyM)-[:DIRECTED]->(ALeagueofTheirOwn) diff --git a/Chapter10/poetry.lock b/Chapter10/poetry.lock index cb9b50b..f405153 100644 --- a/Chapter10/poetry.lock +++ b/Chapter10/poetry.lock @@ -191,6 +191,17 @@ docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphi tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] +[[package]] +name = "certifi" +version = "2025.1.31" +description = "Python package for providing Mozilla's CA Bundle." +optional = false +python-versions = ">=3.6" +files = [ + {file = "certifi-2025.1.31-py3-none-any.whl", hash = "sha256:ca78db4565a652026a4db2bcdf68f2fb589ea80d0be70e03929ed730746b84fe"}, + {file = "certifi-2025.1.31.tar.gz", hash = "sha256:3d5da6925056f6f18f119200434a4780a94263f10d1c21d032a6f6b2baa20651"}, +] + [[package]] name = "cffi" version = "1.17.1" @@ -270,6 +281,107 @@ files = [ [package.dependencies] pycparser = "*" +[[package]] +name = "charset-normalizer" +version = "3.4.1" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +optional = false +python-versions = ">=3.7" +files = [ + {file = "charset_normalizer-3.4.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:91b36a978b5ae0ee86c394f5a54d6ef44db1de0815eb43de826d41d21e4af3de"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7461baadb4dc00fd9e0acbe254e3d7d2112e7f92ced2adc96e54ef6501c5f176"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e218488cd232553829be0664c2292d3af2eeeb94b32bea483cf79ac6a694e037"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:80ed5e856eb7f30115aaf94e4a08114ccc8813e6ed1b5efa74f9f82e8509858f"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b010a7a4fd316c3c484d482922d13044979e78d1861f0e0650423144c616a46a"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4532bff1b8421fd0a320463030c7520f56a79c9024a4e88f01c537316019005a"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d973f03c0cb71c5ed99037b870f2be986c3c05e63622c017ea9816881d2dd247"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3a3bd0dcd373514dcec91c411ddb9632c0d7d92aed7093b8c3bbb6d69ca74408"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:d9c3cdf5390dcd29aa8056d13e8e99526cda0305acc038b96b30352aff5ff2bb"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:2bdfe3ac2e1bbe5b59a1a63721eb3b95fc9b6817ae4a46debbb4e11f6232428d"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:eab677309cdb30d047996b36d34caeda1dc91149e4fdca0b1a039b3f79d9a807"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-win32.whl", hash = "sha256:c0429126cf75e16c4f0ad00ee0eae4242dc652290f940152ca8c75c3a4b6ee8f"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:9f0b8b1c6d84c8034a44893aba5e767bf9c7a211e313a9605d9c617d7083829f"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8bfa33f4f2672964266e940dd22a195989ba31669bd84629f05fab3ef4e2d125"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28bf57629c75e810b6ae989f03c0828d64d6b26a5e205535585f96093e405ed1"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f08ff5e948271dc7e18a35641d2f11a4cd8dfd5634f55228b691e62b37125eb3"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:234ac59ea147c59ee4da87a0c0f098e9c8d169f4dc2a159ef720f1a61bbe27cd"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd4ec41f914fa74ad1b8304bbc634b3de73d2a0889bd32076342a573e0779e00"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eea6ee1db730b3483adf394ea72f808b6e18cf3cb6454b4d86e04fa8c4327a12"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c96836c97b1238e9c9e3fe90844c947d5afbf4f4c92762679acfe19927d81d77"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4d86f7aff21ee58f26dcf5ae81a9addbd914115cdebcbb2217e4f0ed8982e146"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:09b5e6733cbd160dcc09589227187e242a30a49ca5cefa5a7edd3f9d19ed53fd"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:5777ee0881f9499ed0f71cc82cf873d9a0ca8af166dfa0af8ec4e675b7df48e6"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:237bdbe6159cff53b4f24f397d43c6336c6b0b42affbe857970cefbb620911c8"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-win32.whl", hash = "sha256:8417cb1f36cc0bc7eaba8ccb0e04d55f0ee52df06df3ad55259b9a323555fc8b"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:d7f50a1f8c450f3925cb367d011448c39239bb3eb4117c36a6d354794de4ce76"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:73d94b58ec7fecbc7366247d3b0b10a21681004153238750bb67bd9012414545"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dad3e487649f498dd991eeb901125411559b22e8d7ab25d3aeb1af367df5efd7"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c30197aa96e8eed02200a83fba2657b4c3acd0f0aa4bdc9f6c1af8e8962e0757"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2369eea1ee4a7610a860d88f268eb39b95cb588acd7235e02fd5a5601773d4fa"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc2722592d8998c870fa4e290c2eec2c1569b87fe58618e67d38b4665dfa680d"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffc9202a29ab3920fa812879e95a9e78b2465fd10be7fcbd042899695d75e616"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:804a4d582ba6e5b747c625bf1255e6b1507465494a40a2130978bda7b932c90b"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0f55e69f030f7163dffe9fd0752b32f070566451afe180f99dbeeb81f511ad8d"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:c4c3e6da02df6fa1410a7680bd3f63d4f710232d3139089536310d027950696a"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:5df196eb874dae23dcfb968c83d4f8fdccb333330fe1fc278ac5ceeb101003a9"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e358e64305fe12299a08e08978f51fc21fac060dcfcddd95453eabe5b93ed0e1"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-win32.whl", hash = "sha256:9b23ca7ef998bc739bf6ffc077c2116917eabcc901f88da1b9856b210ef63f35"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ff8a4a60c227ad87030d76e99cd1698345d4491638dfa6673027c48b3cd395f"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:aabfa34badd18f1da5ec1bc2715cadc8dca465868a4e73a0173466b688f29dda"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22e14b5d70560b8dd51ec22863f370d1e595ac3d024cb8ad7d308b4cd95f8313"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8436c508b408b82d87dc5f62496973a1805cd46727c34440b0d29d8a2f50a6c9"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2d074908e1aecee37a7635990b2c6d504cd4766c7bc9fc86d63f9c09af3fa11b"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:955f8851919303c92343d2f66165294848d57e9bba6cf6e3625485a70a038d11"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:44ecbf16649486d4aebafeaa7ec4c9fed8b88101f4dd612dcaf65d5e815f837f"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0924e81d3d5e70f8126529951dac65c1010cdf117bb75eb02dd12339b57749dd"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:2967f74ad52c3b98de4c3b32e1a44e32975e008a9cd2a8cc8966d6a5218c5cb2"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c75cb2a3e389853835e84a2d8fb2b81a10645b503eca9bcb98df6b5a43eb8886"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:09b26ae6b1abf0d27570633b2b078a2a20419c99d66fb2823173d73f188ce601"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fa88b843d6e211393a37219e6a1c1df99d35e8fd90446f1118f4216e307e48cd"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-win32.whl", hash = "sha256:eb8178fe3dba6450a3e024e95ac49ed3400e506fd4e9e5c32d30adda88cbd407"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-win_amd64.whl", hash = "sha256:b1ac5992a838106edb89654e0aebfc24f5848ae2547d22c2c3f66454daa11971"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f30bf9fd9be89ecb2360c7d94a711f00c09b976258846efe40db3d05828e8089"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:97f68b8d6831127e4787ad15e6757232e14e12060bec17091b85eb1486b91d8d"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7974a0b5ecd505609e3b19742b60cee7aa2aa2fb3151bc917e6e2646d7667dcf"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc54db6c8593ef7d4b2a331b58653356cf04f67c960f584edb7c3d8c97e8f39e"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:311f30128d7d333eebd7896965bfcfbd0065f1716ec92bd5638d7748eb6f936a"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:7d053096f67cd1241601111b698f5cad775f97ab25d81567d3f59219b5f1adbd"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:807f52c1f798eef6cf26beb819eeb8819b1622ddfeef9d0977a8502d4db6d534"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:dccbe65bd2f7f7ec22c4ff99ed56faa1e9f785482b9bbd7c717e26fd723a1d1e"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:2fb9bd477fdea8684f78791a6de97a953c51831ee2981f8e4f583ff3b9d9687e"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:01732659ba9b5b873fc117534143e4feefecf3b2078b0a6a2e925271bb6f4cfa"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-win32.whl", hash = "sha256:7a4f97a081603d2050bfaffdefa5b02a9ec823f8348a572e39032caa8404a487"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-win_amd64.whl", hash = "sha256:7b1bef6280950ee6c177b326508f86cad7ad4dff12454483b51d8b7d673a2c5d"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ecddf25bee22fe4fe3737a399d0d177d72bc22be6913acfab364b40bce1ba83c"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c60ca7339acd497a55b0ea5d506b2a2612afb2826560416f6894e8b5770d4a9"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b7b2d86dd06bfc2ade3312a83a5c364c7ec2e3498f8734282c6c3d4b07b346b8"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dd78cfcda14a1ef52584dbb008f7ac81c1328c0f58184bf9a84c49c605002da6"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e27f48bcd0957c6d4cb9d6fa6b61d192d0b13d5ef563e5f2ae35feafc0d179c"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:01ad647cdd609225c5350561d084b42ddf732f4eeefe6e678765636791e78b9a"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:619a609aa74ae43d90ed2e89bdd784765de0a25ca761b93e196d938b8fd1dbbd"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:89149166622f4db9b4b6a449256291dc87a99ee53151c74cbd82a53c8c2f6ccd"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:7709f51f5f7c853f0fb938bcd3bc59cdfdc5203635ffd18bf354f6967ea0f824"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:345b0426edd4e18138d6528aed636de7a9ed169b4aaf9d61a8c19e39d26838ca"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:0907f11d019260cdc3f94fbdb23ff9125f6b5d1039b76003b5b0ac9d6a6c9d5b"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-win32.whl", hash = "sha256:ea0d8d539afa5eb2728aa1932a988a9a7af94f18582ffae4bc10b3fbdad0626e"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:329ce159e82018d646c7ac45b01a430369d526569ec08516081727a20e9e4af4"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b97e690a2118911e39b4042088092771b4ae3fc3aa86518f84b8cf6888dbdb41"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:78baa6d91634dfb69ec52a463534bc0df05dbd546209b79a3880a34487f4b84f"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1a2bc9f351a75ef49d664206d51f8e5ede9da246602dc2d2726837620ea034b2"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75832c08354f595c760a804588b9357d34ec00ba1c940c15e31e96d902093770"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0af291f4fe114be0280cdd29d533696a77b5b49cfde5467176ecab32353395c4"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0167ddc8ab6508fe81860a57dd472b2ef4060e8d378f0cc555707126830f2537"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2a75d49014d118e4198bcee5ee0a6f25856b29b12dbf7cd012791f8a6cc5c496"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:363e2f92b0f0174b2f8238240a1a30142e3db7b957a5dd5689b0e75fb717cc78"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ab36c8eb7e454e34e60eb55ca5d241a5d18b2c6244f6827a30e451c42410b5f7"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:4c0907b1928a36d5a998d72d64d8eaa7244989f7aaaf947500d3a800c83a3fd6"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:04432ad9479fa40ec0f387795ddad4437a2b50417c69fa275e212933519ff294"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-win32.whl", hash = "sha256:3bed14e9c89dcb10e8f3a29f9ccac4955aebe93c71ae803af79265c9ca5644c5"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:49402233c892a461407c512a19435d1ce275543138294f7ef013f0b63d5d3765"}, + {file = "charset_normalizer-3.4.1-py3-none-any.whl", hash = "sha256:d98b1668f06378c6dbefec3b92299716b931cd4e6061f3c875a71ced1780ab85"}, + {file = "charset_normalizer-3.4.1.tar.gz", hash = "sha256:44251f18cd68a75b56585dd00dae26183e102cd5e0f9f1466e6df5da2ed64ea3"}, +] + [[package]] name = "colorama" version = "0.4.6" @@ -473,6 +585,34 @@ files = [ {file = "frozenlist-1.5.0.tar.gz", hash = "sha256:81d5af29e61b9c8348e876d442253723928dce6433e0e76cd925cd83f1b4b817"}, ] +[[package]] +name = "graphdatascience" +version = "1.14" +description = "A Python client for the Neo4j Graph Data Science (GDS) library" +optional = false +python-versions = ">=3.9" +files = [ + {file = "graphdatascience-1.14-py3-none-any.whl", hash = "sha256:6fd0ab6f04354a1e9b322c18fa79925af238803406d4bb23e151e1683d1be2b8"}, + {file = "graphdatascience-1.14.tar.gz", hash = "sha256:6f83e18f2e6d32d7c92ce4a762b11736a281c9cc001b3d85d95fcf9e8344f584"}, +] + +[package.dependencies] +multimethod = ">=1.0,<3.0" +neo4j = ">=4.4.12,<6.0" +numpy = "<2.3" +pandas = ">=1.0,<3.0" +pyarrow = ">=16.0,<20.0" +requests = "*" +tenacity = ">=9.0" +textdistance = ">=4.0,<5.0" +tqdm = ">=4.0,<5.0" +typing-extensions = ">=4.0,<5.0" + +[package.extras] +networkx = ["networkx (>=2.0,<4.0)"] +ogb = ["ogb (>=1.0,<2.0)"] +rust-ext = ["neo4j-rust-ext (>=4.4.12,<6.0)"] + [[package]] name = "gremlinpython" version = "3.7.3" @@ -770,6 +910,17 @@ files = [ [package.dependencies] typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} +[[package]] +name = "multimethod" +version = "2.0" +description = "Multiple argument dispatching." +optional = false +python-versions = ">=3.9" +files = [ + {file = "multimethod-2.0-py3-none-any.whl", hash = "sha256:45aa231dc9dbb7f980c0f2ad8179e2c2b72a8cd5c7d7534337be66dde29d35be"}, + {file = "multimethod-2.0.tar.gz", hash = "sha256:c628b6d2e7d61fbe58484dd884d990901e8314faf58af062e72b65e3423cb109"}, +] + [[package]] name = "neo4j" version = "5.27.0" @@ -819,6 +970,70 @@ example = ["cairocffi (>=1.7)", "contextily (>=1.6)", "igraph (>=0.11)", "momepy extra = ["lxml (>=4.6)", "pydot (>=3.0.1)", "pygraphviz (>=1.14)", "sympy (>=1.10)"] test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"] +[[package]] +name = "numpy" +version = "2.2.3" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.10" +files = [ + {file = "numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:cbc6472e01952d3d1b2772b720428f8b90e2deea8344e854df22b0618e9cce71"}, + {file = "numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:cdfe0c22692a30cd830c0755746473ae66c4a8f2e7bd508b35fb3b6a0813d787"}, + {file = "numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:e37242f5324ffd9f7ba5acf96d774f9276aa62a966c0bad8dae692deebec7716"}, + {file = "numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:95172a21038c9b423e68be78fd0be6e1b97674cde269b76fe269a5dfa6fadf0b"}, + {file = "numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5b47c440210c5d1d67e1cf434124e0b5c395eee1f5806fdd89b553ed1acd0a3"}, + {file = "numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0391ea3622f5c51a2e29708877d56e3d276827ac5447d7f45e9bc4ade8923c52"}, + {file = "numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f6b3dfc7661f8842babd8ea07e9897fe3d9b69a1d7e5fbb743e4160f9387833b"}, + {file = "numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:1ad78ce7f18ce4e7df1b2ea4019b5817a2f6a8a16e34ff2775f646adce0a5027"}, + {file = "numpy-2.2.3-cp310-cp310-win32.whl", hash = "sha256:5ebeb7ef54a7be11044c33a17b2624abe4307a75893c001a4800857956b41094"}, + {file = "numpy-2.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:596140185c7fa113563c67c2e894eabe0daea18cf8e33851738c19f70ce86aeb"}, + {file = "numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:16372619ee728ed67a2a606a614f56d3eabc5b86f8b615c79d01957062826ca8"}, + {file = "numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5521a06a3148686d9269c53b09f7d399a5725c47bbb5b35747e1cb76326b714b"}, + {file = "numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:7c8dde0ca2f77828815fd1aedfdf52e59071a5bae30dac3b4da2a335c672149a"}, + {file = "numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:77974aba6c1bc26e3c205c2214f0d5b4305bdc719268b93e768ddb17e3fdd636"}, + {file = "numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d42f9c36d06440e34226e8bd65ff065ca0963aeecada587b937011efa02cdc9d"}, + {file = "numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2712c5179f40af9ddc8f6727f2bd910ea0eb50206daea75f58ddd9fa3f715bb"}, + {file = "numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c8b0451d2ec95010d1db8ca733afc41f659f425b7f608af569711097fd6014e2"}, + {file = "numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d9b4a8148c57ecac25a16b0e11798cbe88edf5237b0df99973687dd866f05e1b"}, + {file = "numpy-2.2.3-cp311-cp311-win32.whl", hash = "sha256:1f45315b2dc58d8a3e7754fe4e38b6fce132dab284a92851e41b2b344f6441c5"}, + {file = "numpy-2.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:9f48ba6f6c13e5e49f3d3efb1b51c8193215c42ac82610a04624906a9270be6f"}, + {file = "numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:12c045f43b1d2915eca6b880a7f4a256f59d62df4f044788c8ba67709412128d"}, + {file = "numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:87eed225fd415bbae787f93a457af7f5990b92a334e346f72070bf569b9c9c95"}, + {file = "numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:712a64103d97c404e87d4d7c47fb0c7ff9acccc625ca2002848e0d53288b90ea"}, + {file = "numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:a5ae282abe60a2db0fd407072aff4599c279bcd6e9a2475500fc35b00a57c532"}, + {file = "numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5266de33d4c3420973cf9ae3b98b54a2a6d53a559310e3236c4b2b06b9c07d4e"}, + {file = "numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b787adbf04b0db1967798dba8da1af07e387908ed1553a0d6e74c084d1ceafe"}, + {file = "numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:34c1b7e83f94f3b564b35f480f5652a47007dd91f7c839f404d03279cc8dd021"}, + {file = "numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4d8335b5f1b6e2bce120d55fb17064b0262ff29b459e8493d1785c18ae2553b8"}, + {file = "numpy-2.2.3-cp312-cp312-win32.whl", hash = "sha256:4d9828d25fb246bedd31e04c9e75714a4087211ac348cb39c8c5f99dbb6683fe"}, + {file = "numpy-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:83807d445817326b4bcdaaaf8e8e9f1753da04341eceec705c001ff342002e5d"}, + {file = "numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:7bfdb06b395385ea9b91bf55c1adf1b297c9fdb531552845ff1d3ea6e40d5aba"}, + {file = "numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:23c9f4edbf4c065fddb10a4f6e8b6a244342d95966a48820c614891e5059bb50"}, + {file = "numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:a0c03b6be48aaf92525cccf393265e02773be8fd9551a2f9adbe7db1fa2b60f1"}, + {file = "numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:2376e317111daa0a6739e50f7ee2a6353f768489102308b0d98fcf4a04f7f3b5"}, + {file = "numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8fb62fe3d206d72fe1cfe31c4a1106ad2b136fcc1606093aeab314f02930fdf2"}, + {file = "numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52659ad2534427dffcc36aac76bebdd02b67e3b7a619ac67543bc9bfe6b7cdb1"}, + {file = "numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:1b416af7d0ed3271cad0f0a0d0bee0911ed7eba23e66f8424d9f3dfcdcae1304"}, + {file = "numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:1402da8e0f435991983d0a9708b779f95a8c98c6b18a171b9f1be09005e64d9d"}, + {file = "numpy-2.2.3-cp313-cp313-win32.whl", hash = "sha256:136553f123ee2951bfcfbc264acd34a2fc2f29d7cdf610ce7daf672b6fbaa693"}, + {file = "numpy-2.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:5b732c8beef1d7bc2d9e476dbba20aaff6167bf205ad9aa8d30913859e82884b"}, + {file = "numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:435e7a933b9fda8126130b046975a968cc2d833b505475e588339e09f7672890"}, + {file = "numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:7678556eeb0152cbd1522b684dcd215250885993dd00adb93679ec3c0e6e091c"}, + {file = "numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:2e8da03bd561504d9b20e7a12340870dfc206c64ea59b4cfee9fceb95070ee94"}, + {file = "numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:c9aa4496fd0e17e3843399f533d62857cef5900facf93e735ef65aa4bbc90ef0"}, + {file = "numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4ca91d61a4bf61b0f2228f24bbfa6a9facd5f8af03759fe2a655c50ae2c6610"}, + {file = "numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:deaa09cd492e24fd9b15296844c0ad1b3c976da7907e1c1ed3a0ad21dded6f76"}, + {file = "numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:246535e2f7496b7ac85deffe932896a3577be7af8fb7eebe7146444680297e9a"}, + {file = "numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:daf43a3d1ea699402c5a850e5313680ac355b4adc9770cd5cfc2940e7861f1bf"}, + {file = "numpy-2.2.3-cp313-cp313t-win32.whl", hash = "sha256:cf802eef1f0134afb81fef94020351be4fe1d6681aadf9c5e862af6602af64ef"}, + {file = "numpy-2.2.3-cp313-cp313t-win_amd64.whl", hash = "sha256:aee2512827ceb6d7f517c8b85aa5d3923afe8fc7a57d028cffcd522f1c6fd082"}, + {file = "numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:3c2ec8a0f51d60f1e9c0c5ab116b7fc104b165ada3f6c58abf881cb2eb16044d"}, + {file = "numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl", hash = "sha256:ed2cf9ed4e8ebc3b754d398cba12f24359f018b416c380f577bbae112ca52fc9"}, + {file = "numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39261798d208c3095ae4f7bc8eaeb3481ea8c6e03dc48028057d3cbdbdb8937e"}, + {file = "numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:783145835458e60fa97afac25d511d00a1eca94d4a8f3ace9fe2043003c678e4"}, + {file = "numpy-2.2.3.tar.gz", hash = "sha256:dbdc15f0c81611925f382dfa97b3bd0bc2c1ce19d4fe50482cb0ddc12ba30020"}, +] + [[package]] name = "packaging" version = "24.2" @@ -830,6 +1045,88 @@ files = [ {file = "packaging-24.2.tar.gz", hash = "sha256:c228a6dc5e932d346bc5739379109d49e8853dd8223571c7c5b55260edc0b97f"}, ] +[[package]] +name = "pandas" +version = "2.2.3" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.9" +files = [ + {file = "pandas-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1948ddde24197a0f7add2bdc4ca83bf2b1ef84a1bc8ccffd95eda17fd836ecb5"}, + {file = "pandas-2.2.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:381175499d3802cde0eabbaf6324cce0c4f5d52ca6f8c377c29ad442f50f6348"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d9c45366def9a3dd85a6454c0e7908f2b3b8e9c138f5dc38fed7ce720d8453ed"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86976a1c5b25ae3f8ccae3a5306e443569ee3c3faf444dfd0f41cda24667ad57"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b8661b0238a69d7aafe156b7fa86c44b881387509653fdf857bebc5e4008ad42"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:37e0aced3e8f539eccf2e099f65cdb9c8aa85109b0be6e93e2baff94264bdc6f"}, + {file = "pandas-2.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:56534ce0746a58afaf7942ba4863e0ef81c9c50d3f0ae93e9497d6a41a057645"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:66108071e1b935240e74525006034333f98bcdb87ea116de573a6a0dccb6c039"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c2875855b0ff77b2a64a0365e24455d9990730d6431b9e0ee18ad8acee13dbd"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd8d0c3be0515c12fed0bdbae072551c8b54b7192c7b1fda0ba56059a0179698"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c124333816c3a9b03fbeef3a9f230ba9a737e9e5bb4060aa2107a86cc0a497fc"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:63cc132e40a2e084cf01adf0775b15ac515ba905d7dcca47e9a251819c575ef3"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:29401dbfa9ad77319367d36940cd8a0b3a11aba16063e39632d98b0e931ddf32"}, + {file = "pandas-2.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:3fc6873a41186404dad67245896a6e440baacc92f5b716ccd1bc9ed2995ab2c5"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b1d432e8d08679a40e2a6d8b2f9770a5c21793a6f9f47fdd52c5ce1948a5a8a9"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a5a1595fe639f5988ba6a8e5bc9649af3baf26df3998a0abe56c02609392e0a4"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5de54125a92bb4d1c051c0659e6fcb75256bf799a732a87184e5ea503965bce3"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fffb8ae78d8af97f849404f21411c95062db1496aeb3e56f146f0355c9989319"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfcb5ee8d4d50c06a51c2fffa6cff6272098ad6540aed1a76d15fb9318194d8"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:062309c1b9ea12a50e8ce661145c6aab431b1e99530d3cd60640e255778bd43a"}, + {file = "pandas-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:59ef3764d0fe818125a5097d2ae867ca3fa64df032331b7e0917cf5d7bf66b13"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f00d1345d84d8c86a63e476bb4955e46458b304b9575dcf71102b5c705320015"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3508d914817e153ad359d7e069d752cdd736a247c322d932eb89e6bc84217f28"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:22a9d949bfc9a502d320aa04e5d02feab689d61da4e7764b62c30b991c42c5f0"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3a255b2c19987fbbe62a9dfd6cff7ff2aa9ccab3fc75218fd4b7530f01efa24"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:800250ecdadb6d9c78eae4990da62743b857b470883fa27f652db8bdde7f6659"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6374c452ff3ec675a8f46fd9ab25c4ad0ba590b71cf0656f8b6daa5202bca3fb"}, + {file = "pandas-2.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:61c5ad4043f791b61dd4752191d9f07f0ae412515d59ba8f005832a532f8736d"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3b71f27954685ee685317063bf13c7709a7ba74fc996b84fc6821c59b0f06468"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:38cf8125c40dae9d5acc10fa66af8ea6fdf760b2714ee482ca691fc66e6fcb18"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ba96630bc17c875161df3818780af30e43be9b166ce51c9a18c1feae342906c2"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1db71525a1538b30142094edb9adc10be3f3e176748cd7acc2240c2f2e5aa3a4"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:15c0e1e02e93116177d29ff83e8b1619c93ddc9c49083f237d4312337a61165d"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ad5b65698ab28ed8d7f18790a0dc58005c7629f227be9ecc1072aa74c0c1d43a"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc6b93f9b966093cb0fd62ff1a7e4c09e6d546ad7c1de191767baffc57628f39"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5dbca4c1acd72e8eeef4753eeca07de9b1db4f398669d5994086f788a5d7cc30"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8cd6d7cc958a3910f934ea8dbdf17b2364827bb4dafc38ce6eef6bb3d65ff09c"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99df71520d25fade9db7c1076ac94eb994f4d2673ef2aa2e86ee039b6746d20c"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:31d0ced62d4ea3e231a9f228366919a5ea0b07440d9d4dac345376fd8e1477ea"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7eee9e7cea6adf3e3d24e304ac6b8300646e2a5d1cd3a3c2abed9101b0846761"}, + {file = "pandas-2.2.3-cp39-cp39-win_amd64.whl", hash = "sha256:4850ba03528b6dd51d6c5d273c46f183f39a9baf3f0143e566b89450965b105e"}, + {file = "pandas-2.2.3.tar.gz", hash = "sha256:4f18ba62b61d7e192368b84517265a99b4d7ee8912f8708660fb4a366cc82667"}, +] + +[package.dependencies] +numpy = {version = ">=1.22.4", markers = "python_version < \"3.11\""} +python-dateutil = ">=2.8.2" +pytz = ">=2020.1" +tzdata = ">=2022.7" + +[package.extras] +all = ["PyQt5 (>=5.15.9)", "SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)", "beautifulsoup4 (>=4.11.2)", "bottleneck (>=1.3.6)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=2022.12.0)", "fsspec (>=2022.11.0)", "gcsfs (>=2022.11.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.9.2)", "matplotlib (>=3.6.3)", "numba (>=0.56.4)", "numexpr (>=2.8.4)", "odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "pandas-gbq (>=0.19.0)", "psycopg2 (>=2.9.6)", "pyarrow (>=10.0.1)", "pymysql (>=1.0.2)", "pyreadstat (>=1.2.0)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "qtpy (>=2.3.0)", "s3fs (>=2022.11.0)", "scipy (>=1.10.0)", "tables (>=3.8.0)", "tabulate (>=0.9.0)", "xarray (>=2022.12.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)", "zstandard (>=0.19.0)"] +aws = ["s3fs (>=2022.11.0)"] +clipboard = ["PyQt5 (>=5.15.9)", "qtpy (>=2.3.0)"] +compression = ["zstandard (>=0.19.0)"] +computation = ["scipy (>=1.10.0)", "xarray (>=2022.12.0)"] +consortium-standard = ["dataframe-api-compat (>=0.1.7)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)"] +feather = ["pyarrow (>=10.0.1)"] +fss = ["fsspec (>=2022.11.0)"] +gcp = ["gcsfs (>=2022.11.0)", "pandas-gbq (>=0.19.0)"] +hdf5 = ["tables (>=3.8.0)"] +html = ["beautifulsoup4 (>=4.11.2)", "html5lib (>=1.1)", "lxml (>=4.9.2)"] +mysql = ["SQLAlchemy (>=2.0.0)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.9.0)"] +parquet = ["pyarrow (>=10.0.1)"] +performance = ["bottleneck (>=1.3.6)", "numba (>=0.56.4)", "numexpr (>=2.8.4)"] +plot = ["matplotlib (>=3.6.3)"] +postgresql = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "psycopg2 (>=2.9.6)"] +pyarrow = ["pyarrow (>=10.0.1)"] +spss = ["pyreadstat (>=1.2.0)"] +sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)"] +test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.9.2)"] + [[package]] name = "parso" version = "0.8.4" @@ -1035,6 +1332,60 @@ files = [ [package.extras] tests = ["pytest"] +[[package]] +name = "pyarrow" +version = "19.0.1" +description = "Python library for Apache Arrow" +optional = false +python-versions = ">=3.9" +files = [ + {file = "pyarrow-19.0.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:fc28912a2dc924dddc2087679cc8b7263accc71b9ff025a1362b004711661a69"}, + {file = "pyarrow-19.0.1-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:fca15aabbe9b8355800d923cc2e82c8ef514af321e18b437c3d782aa884eaeec"}, + {file = "pyarrow-19.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ad76aef7f5f7e4a757fddcdcf010a8290958f09e3470ea458c80d26f4316ae89"}, + {file = "pyarrow-19.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d03c9d6f2a3dffbd62671ca070f13fc527bb1867b4ec2b98c7eeed381d4f389a"}, + {file = "pyarrow-19.0.1-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:65cf9feebab489b19cdfcfe4aa82f62147218558d8d3f0fc1e9dea0ab8e7905a"}, + {file = "pyarrow-19.0.1-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:41f9706fbe505e0abc10e84bf3a906a1338905cbbcf1177b71486b03e6ea6608"}, + {file = "pyarrow-19.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:c6cb2335a411b713fdf1e82a752162f72d4a7b5dbc588e32aa18383318b05866"}, + {file = "pyarrow-19.0.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:cc55d71898ea30dc95900297d191377caba257612f384207fe9f8293b5850f90"}, + {file = "pyarrow-19.0.1-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:7a544ec12de66769612b2d6988c36adc96fb9767ecc8ee0a4d270b10b1c51e00"}, + {file = "pyarrow-19.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0148bb4fc158bfbc3d6dfe5001d93ebeed253793fff4435167f6ce1dc4bddeae"}, + {file = "pyarrow-19.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f24faab6ed18f216a37870d8c5623f9c044566d75ec586ef884e13a02a9d62c5"}, + {file = "pyarrow-19.0.1-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:4982f8e2b7afd6dae8608d70ba5bd91699077323f812a0448d8b7abdff6cb5d3"}, + {file = "pyarrow-19.0.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:49a3aecb62c1be1d822f8bf629226d4a96418228a42f5b40835c1f10d42e4db6"}, + {file = "pyarrow-19.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:008a4009efdb4ea3d2e18f05cd31f9d43c388aad29c636112c2966605ba33466"}, + {file = "pyarrow-19.0.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:80b2ad2b193e7d19e81008a96e313fbd53157945c7be9ac65f44f8937a55427b"}, + {file = "pyarrow-19.0.1-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:ee8dec072569f43835932a3b10c55973593abc00936c202707a4ad06af7cb294"}, + {file = "pyarrow-19.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d5d1ec7ec5324b98887bdc006f4d2ce534e10e60f7ad995e7875ffa0ff9cb14"}, + {file = "pyarrow-19.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3ad4c0eb4e2a9aeb990af6c09e6fa0b195c8c0e7b272ecc8d4d2b6574809d34"}, + {file = "pyarrow-19.0.1-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:d383591f3dcbe545f6cc62daaef9c7cdfe0dff0fb9e1c8121101cabe9098cfa6"}, + {file = "pyarrow-19.0.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:b4c4156a625f1e35d6c0b2132635a237708944eb41df5fbe7d50f20d20c17832"}, + {file = "pyarrow-19.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:5bd1618ae5e5476b7654c7b55a6364ae87686d4724538c24185bbb2952679960"}, + {file = "pyarrow-19.0.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:e45274b20e524ae5c39d7fc1ca2aa923aab494776d2d4b316b49ec7572ca324c"}, + {file = "pyarrow-19.0.1-cp313-cp313-macosx_12_0_x86_64.whl", hash = "sha256:d9dedeaf19097a143ed6da37f04f4051aba353c95ef507764d344229b2b740ae"}, + {file = "pyarrow-19.0.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ebfb5171bb5f4a52319344ebbbecc731af3f021e49318c74f33d520d31ae0c4"}, + {file = "pyarrow-19.0.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2a21d39fbdb948857f67eacb5bbaaf36802de044ec36fbef7a1c8f0dd3a4ab2"}, + {file = "pyarrow-19.0.1-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:99bc1bec6d234359743b01e70d4310d0ab240c3d6b0da7e2a93663b0158616f6"}, + {file = "pyarrow-19.0.1-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:1b93ef2c93e77c442c979b0d596af45e4665d8b96da598db145b0fec014b9136"}, + {file = "pyarrow-19.0.1-cp313-cp313-win_amd64.whl", hash = "sha256:d9d46e06846a41ba906ab25302cf0fd522f81aa2a85a71021826f34639ad31ef"}, + {file = "pyarrow-19.0.1-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:c0fe3dbbf054a00d1f162fda94ce236a899ca01123a798c561ba307ca38af5f0"}, + {file = "pyarrow-19.0.1-cp313-cp313t-macosx_12_0_x86_64.whl", hash = "sha256:96606c3ba57944d128e8a8399da4812f56c7f61de8c647e3470b417f795d0ef9"}, + {file = "pyarrow-19.0.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f04d49a6b64cf24719c080b3c2029a3a5b16417fd5fd7c4041f94233af732f3"}, + {file = "pyarrow-19.0.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a9137cf7e1640dce4c190551ee69d478f7121b5c6f323553b319cac936395f6"}, + {file = "pyarrow-19.0.1-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:7c1bca1897c28013db5e4c83944a2ab53231f541b9e0c3f4791206d0c0de389a"}, + {file = "pyarrow-19.0.1-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:58d9397b2e273ef76264b45531e9d552d8ec8a6688b7390b5be44c02a37aade8"}, + {file = "pyarrow-19.0.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:b9766a47a9cb56fefe95cb27f535038b5a195707a08bf61b180e642324963b46"}, + {file = "pyarrow-19.0.1-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:6c5941c1aac89a6c2f2b16cd64fe76bcdb94b2b1e99ca6459de4e6f07638d755"}, + {file = "pyarrow-19.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd44d66093a239358d07c42a91eebf5015aa54fccba959db899f932218ac9cc8"}, + {file = "pyarrow-19.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:335d170e050bcc7da867a1ed8ffb8b44c57aaa6e0843b156a501298657b1e972"}, + {file = "pyarrow-19.0.1-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:1c7556165bd38cf0cd992df2636f8bcdd2d4b26916c6b7e646101aff3c16f76f"}, + {file = "pyarrow-19.0.1-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:699799f9c80bebcf1da0983ba86d7f289c5a2a5c04b945e2f2bcf7e874a91911"}, + {file = "pyarrow-19.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:8464c9fbe6d94a7fe1599e7e8965f350fd233532868232ab2596a71586c5a429"}, + {file = "pyarrow-19.0.1.tar.gz", hash = "sha256:3bf266b485df66a400f282ac0b6d1b500b9d2ae73314a153dbe97d6d5cc8a99e"}, +] + +[package.extras] +test = ["cffi", "hypothesis", "pandas", "pytest", "pytz"] + [[package]] name = "pycparser" version = "2.22" @@ -1233,6 +1584,27 @@ files = [ [package.dependencies] cffi = {version = "*", markers = "implementation_name == \"pypy\""} +[[package]] +name = "requests" +version = "2.32.3" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.8" +files = [ + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + [[package]] name = "six" version = "1.17.0" @@ -1263,6 +1635,47 @@ pure-eval = "*" [package.extras] tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] +[[package]] +name = "tenacity" +version = "9.0.0" +description = "Retry code until it succeeds" +optional = false +python-versions = ">=3.8" +files = [ + {file = "tenacity-9.0.0-py3-none-any.whl", hash = "sha256:93de0c98785b27fcf659856aa9f54bfbd399e29969b0621bc7f762bd441b4539"}, + {file = "tenacity-9.0.0.tar.gz", hash = "sha256:807f37ca97d62aa361264d497b0e31e92b8027044942bfa756160d908320d73b"}, +] + +[package.extras] +doc = ["reno", "sphinx"] +test = ["pytest", "tornado (>=4.5)", "typeguard"] + +[[package]] +name = "textdistance" +version = "4.6.3" +description = "Compute distance between the two texts." +optional = false +python-versions = ">=3.5" +files = [ + {file = "textdistance-4.6.3-py3-none-any.whl", hash = "sha256:0cb1b2cc8e3339ddc3e0f8c870e49fb49de6ecc42a718917308b3c971f34aa56"}, + {file = "textdistance-4.6.3.tar.gz", hash = "sha256:d6dabc50b4ea832cdcf0e1e6021bd0c7fcd9ade155888d79bb6a3c31fce2dc6f"}, +] + +[package.extras] +all = ["Levenshtein", "distance", "jellyfish", "numpy", "py-stringmatching", "pylev", "pyxDamerauLevenshtein", "rapidfuzz (>=2.6.0)", "tabulate"] +benchmark = ["Levenshtein", "distance", "jellyfish", "numpy", "py-stringmatching", "pylev", "pyxDamerauLevenshtein", "rapidfuzz (>=2.6.0)", "tabulate"] +benchmarks = ["Levenshtein", "distance", "jellyfish", "numpy", "py-stringmatching", "pylev", "pyxDamerauLevenshtein", "rapidfuzz (>=2.6.0)", "tabulate"] +common = ["Levenshtein", "jellyfish", "numpy", "pyxDamerauLevenshtein", "rapidfuzz (>=2.6.0)"] +dameraulevenshtein = ["jellyfish", "pyxDamerauLevenshtein", "rapidfuzz (>=2.6.0)"] +extra = ["Levenshtein", "jellyfish", "numpy", "pyxDamerauLevenshtein", "rapidfuzz (>=2.6.0)"] +extras = ["Levenshtein", "jellyfish", "numpy", "pyxDamerauLevenshtein", "rapidfuzz (>=2.6.0)"] +hamming = ["Levenshtein", "distance", "jellyfish", "rapidfuzz (>=2.6.0)"] +jaro = ["Levenshtein", "rapidfuzz (>=2.6.0)"] +jarowinkler = ["jellyfish", "rapidfuzz (>=2.6.0)"] +levenshtein = ["Levenshtein", "rapidfuzz (>=2.6.0)"] +lint = ["flake8", "flake8-blind-except", "flake8-bugbear", "flake8-commas", "flake8-logging-format", "flake8-mutable", "flake8-pep3101", "flake8-quotes", "flake8-string-format", "flake8-tidy-imports", "isort", "mypy", "pep8-naming", "twine", "types-tabulate"] +test = ["hypothesis", "isort", "numpy", "pytest"] + [[package]] name = "tornado" version = "6.4.2" @@ -1283,6 +1696,27 @@ files = [ {file = "tornado-6.4.2.tar.gz", hash = "sha256:92bad5b4746e9879fd7bf1eb21dce4e3fc5128d71601f80005afa39237ad620b"}, ] +[[package]] +name = "tqdm" +version = "4.67.1" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tqdm-4.67.1-py3-none-any.whl", hash = "sha256:26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2"}, + {file = "tqdm-4.67.1.tar.gz", hash = "sha256:f8aef9c52c08c13a65f30ea34f4e5aac3fd1a34959879d7e59e63027286627f2"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["nbval", "pytest (>=6)", "pytest-asyncio (>=0.24)", "pytest-cov", "pytest-timeout"] +discord = ["requests"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + [[package]] name = "traitlets" version = "5.14.3" @@ -1309,6 +1743,34 @@ files = [ {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, ] +[[package]] +name = "tzdata" +version = "2025.1" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2025.1-py2.py3-none-any.whl", hash = "sha256:7e127113816800496f027041c570f50bcd464a020098a3b6b199517772303639"}, + {file = "tzdata-2025.1.tar.gz", hash = "sha256:24894909e88cdb28bd1636c6887801df64cb485bd593f2fd83ef29075a81d694"}, +] + +[[package]] +name = "urllib3" +version = "2.3.0" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=3.9" +files = [ + {file = "urllib3-2.3.0-py3-none-any.whl", hash = "sha256:1cee9ad369867bfdbbb48b7dd50374c0967a0bb7710050facf0dd6911440e3df"}, + {file = "urllib3-2.3.0.tar.gz", hash = "sha256:f8c5449b3cf0861679ce7e0503c7b44b5ec981bec0d1d3795a07f1ba96f0204d"}, +] + +[package.extras] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +h2 = ["h2 (>=4,<5)"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] + [[package]] name = "wcwidth" version = "0.2.13" @@ -1419,4 +1881,4 @@ propcache = ">=0.2.0" [metadata] lock-version = "2.0" python-versions = "~3.10" -content-hash = "480e9e936e17d5ad8ba3d0cb6daf3cd55bb9477d6813fbf138c1c9283e3cd8cd" +content-hash = "b294cb00887149f4bba19e09a290c509535ce8375c270266e7bf385e594d5594" diff --git a/Chapter10/pyproject.toml b/Chapter10/pyproject.toml index 07cd04d..cc1ce66 100644 --- a/Chapter10/pyproject.toml +++ b/Chapter10/pyproject.toml @@ -12,6 +12,8 @@ ipykernel = ">=6.0.0" networkx = ">=3.2.0" neo4j = ">=4.2.0" gremlinpython = ">=3.4.6" +graphdatascience = "^1.14" +pandas = "^2.2.3" [build-system] requires = ["poetry-core"] diff --git a/Chapter10/requirements.txt b/Chapter10/requirements.txt index 71e8f7a..3b99f44 100644 --- a/Chapter10/requirements.txt +++ b/Chapter10/requirements.txt @@ -1,51 +1,64 @@ -aenum==3.1.15 ; python_version >= "3.10" and python_version < "3.11" -aiohappyeyeballs==2.4.4 ; python_version >= "3.10" and python_version < "3.11" -aiohttp==3.11.11 ; python_version >= "3.10" and python_version < "3.11" -aiosignal==1.3.2 ; python_version >= "3.10" and python_version < "3.11" -appnope==0.1.4 ; python_version >= "3.10" and python_version < "3.11" and platform_system == "Darwin" -asttokens==3.0.0 ; python_version >= "3.10" and python_version < "3.11" -async-timeout==4.0.3 ; python_version >= "3.10" and python_version < "3.11" -attrs==24.3.0 ; python_version >= "3.10" and python_version < "3.11" -cffi==1.17.1 ; python_version >= "3.10" and python_version < "3.11" and implementation_name == "pypy" -colorama==0.4.6 ; python_version >= "3.10" and python_version < "3.11" and sys_platform == "win32" -comm==0.2.2 ; python_version >= "3.10" and python_version < "3.11" -debugpy==1.8.11 ; python_version >= "3.10" and python_version < "3.11" -decorator==5.1.1 ; python_version >= "3.10" and python_version < "3.11" -exceptiongroup==1.2.2 ; python_version >= "3.10" and python_version < "3.11" -executing==2.1.0 ; python_version >= "3.10" and python_version < "3.11" -frozenlist==1.5.0 ; python_version >= "3.10" and python_version < "3.11" -gremlinpython==3.7.3 ; python_version >= "3.10" and python_version < "3.11" -idna==3.10 ; python_version >= "3.10" and python_version < "3.11" -ipykernel==6.29.5 ; python_version >= "3.10" and python_version < "3.11" -ipython==8.31.0 ; python_version >= "3.10" and python_version < "3.11" -isodate==0.7.2 ; python_version >= "3.10" and python_version < "3.11" -jedi==0.19.2 ; python_version >= "3.10" and python_version < "3.11" -jupyter-client==8.6.3 ; python_version >= "3.10" and python_version < "3.11" -jupyter-core==5.7.2 ; python_version >= "3.10" and python_version < "3.11" -matplotlib-inline==0.1.7 ; python_version >= "3.10" and python_version < "3.11" -multidict==6.1.0 ; python_version >= "3.10" and python_version < "3.11" -neo4j==5.27.0 ; python_version >= "3.10" and python_version < "3.11" -nest-asyncio==1.6.0 ; python_version >= "3.10" and python_version < "3.11" -networkx==3.4.2 ; python_version >= "3.10" and python_version < "3.11" -packaging==24.2 ; python_version >= "3.10" and python_version < "3.11" -parso==0.8.4 ; python_version >= "3.10" and python_version < "3.11" -pexpect==4.9.0 ; python_version >= "3.10" and python_version < "3.11" and (sys_platform != "win32" and sys_platform != "emscripten") -platformdirs==4.3.6 ; python_version >= "3.10" and python_version < "3.11" -prompt-toolkit==3.0.48 ; python_version >= "3.10" and python_version < "3.11" -propcache==0.2.1 ; python_version >= "3.10" and python_version < "3.11" -psutil==6.1.1 ; python_version >= "3.10" and python_version < "3.11" -ptyprocess==0.7.0 ; python_version >= "3.10" and python_version < "3.11" and (sys_platform != "win32" and sys_platform != "emscripten") -pure-eval==0.2.3 ; python_version >= "3.10" and python_version < "3.11" -pycparser==2.22 ; python_version >= "3.10" and python_version < "3.11" and implementation_name == "pypy" -pygments==2.19.0 ; python_version >= "3.10" and python_version < "3.11" -python-dateutil==2.9.0.post0 ; python_version >= "3.10" and python_version < "3.11" -pytz==2024.2 ; python_version >= "3.10" and python_version < "3.11" -pywin32==308 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.10" and python_version < "3.11" -pyzmq==26.2.0 ; python_version >= "3.10" and python_version < "3.11" -six==1.17.0 ; python_version >= "3.10" and python_version < "3.11" -stack-data==0.6.3 ; python_version >= "3.10" and python_version < "3.11" -tornado==6.4.2 ; python_version >= "3.10" and python_version < "3.11" -traitlets==5.14.3 ; python_version >= "3.10" and python_version < "3.11" -typing-extensions==4.12.2 ; python_version >= "3.10" and python_version < "3.11" -wcwidth==0.2.13 ; python_version >= "3.10" and python_version < "3.11" -yarl==1.18.3 ; python_version >= "3.10" and python_version < "3.11" +aenum==3.1.15 ; python_version == "3.10" +aiohappyeyeballs==2.4.4 ; python_version == "3.10" +aiohttp==3.11.11 ; python_version == "3.10" +aiosignal==1.3.2 ; python_version == "3.10" +appnope==0.1.4 ; platform_system == "Darwin" and python_version == "3.10" +asttokens==3.0.0 ; python_version == "3.10" +async-timeout==4.0.3 ; python_version == "3.10" +attrs==24.3.0 ; python_version == "3.10" +certifi==2025.1.31 ; python_version == "3.10" +cffi==1.17.1 ; implementation_name == "pypy" and python_version == "3.10" +charset-normalizer==3.4.1 ; python_version == "3.10" +colorama==0.4.6 ; python_version == "3.10" and (sys_platform == "win32" or platform_system == "Windows") +comm==0.2.2 ; python_version == "3.10" +debugpy==1.8.11 ; python_version == "3.10" +decorator==5.1.1 ; python_version == "3.10" +exceptiongroup==1.2.2 ; python_version == "3.10" +executing==2.1.0 ; python_version == "3.10" +frozenlist==1.5.0 ; python_version == "3.10" +graphdatascience==1.14 ; python_version == "3.10" +gremlinpython==3.7.3 ; python_version == "3.10" +idna==3.10 ; python_version == "3.10" +ipykernel==6.29.5 ; python_version == "3.10" +ipython==8.31.0 ; python_version == "3.10" +isodate==0.7.2 ; python_version == "3.10" +jedi==0.19.2 ; python_version == "3.10" +jupyter-client==8.6.3 ; python_version == "3.10" +jupyter-core==5.7.2 ; python_version == "3.10" +matplotlib-inline==0.1.7 ; python_version == "3.10" +multidict==6.1.0 ; python_version == "3.10" +multimethod==2.0 ; python_version == "3.10" +neo4j==5.27.0 ; python_version == "3.10" +nest-asyncio==1.6.0 ; python_version == "3.10" +networkx==3.4.2 ; python_version == "3.10" +numpy==2.2.3 ; python_version == "3.10" +packaging==24.2 ; python_version == "3.10" +pandas==2.2.3 ; python_version == "3.10" +parso==0.8.4 ; python_version == "3.10" +pexpect==4.9.0 ; sys_platform != "win32" and sys_platform != "emscripten" and python_version == "3.10" +platformdirs==4.3.6 ; python_version == "3.10" +prompt-toolkit==3.0.48 ; python_version == "3.10" +propcache==0.2.1 ; python_version == "3.10" +psutil==6.1.1 ; python_version == "3.10" +ptyprocess==0.7.0 ; sys_platform != "win32" and sys_platform != "emscripten" and python_version == "3.10" +pure-eval==0.2.3 ; python_version == "3.10" +pyarrow==19.0.1 ; python_version == "3.10" +pycparser==2.22 ; implementation_name == "pypy" and python_version == "3.10" +pygments==2.19.0 ; python_version == "3.10" +python-dateutil==2.9.0.post0 ; python_version == "3.10" +pytz==2024.2 ; python_version == "3.10" +pywin32==308 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version == "3.10" +pyzmq==26.2.0 ; python_version == "3.10" +requests==2.32.3 ; python_version == "3.10" +six==1.17.0 ; python_version == "3.10" +stack-data==0.6.3 ; python_version == "3.10" +tenacity==9.0.0 ; python_version == "3.10" +textdistance==4.6.3 ; python_version == "3.10" +tornado==6.4.2 ; python_version == "3.10" +tqdm==4.67.1 ; python_version == "3.10" +traitlets==5.14.3 ; python_version == "3.10" +typing-extensions==4.12.2 ; python_version == "3.10" +tzdata==2025.1 ; python_version == "3.10" +urllib3==2.3.0 ; python_version == "3.10" +wcwidth==0.2.13 ; python_version == "3.10" +yarl==1.18.3 ; python_version == "3.10" From 3a380d13ea5df5a02b4cbaad7debcdc791117f30 Mon Sep 17 00:00:00 2001 From: deusebio Date: Mon, 16 Jun 2025 09:08:40 +0200 Subject: [PATCH 29/31] [Chapter03] Fix typo in edge splitting (#42) --- Chapter03/05_GraphAutoEncoder_StellarGraph.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Chapter03/05_GraphAutoEncoder_StellarGraph.ipynb b/Chapter03/05_GraphAutoEncoder_StellarGraph.ipynb index c93b1bf..e080818 100644 --- a/Chapter03/05_GraphAutoEncoder_StellarGraph.ipynb +++ b/Chapter03/05_GraphAutoEncoder_StellarGraph.ipynb @@ -60,7 +60,7 @@ "\n", "edge_splitter_train = EdgeSplitter(G_test)\n", "\n", - "G_train, edge_ids_train, edge_labels_train = edge_splitter_test.train_test_split(\n", + "G_train, edge_ids_train, edge_labels_train = edge_splitter_train.train_test_split(\n", " p=0.1, method=\"global\", keep_connected=True\n", ")" ] From 914c5afc2ec5a74c4c33b777595a55de5062a81f Mon Sep 17 00:00:00 2001 From: deusebio Date: Mon, 16 Jun 2025 09:10:52 +0200 Subject: [PATCH 30/31] [Chapter06] Graph Similarity with GNN (#38) --------- Co-authored-by: MARZULLO Aldo ICH --- Chapter06/03_graph_similarity.ipynb | 691 +++++++ Chapter06/poetry.lock | 2769 ++++++++++++++++++++------- Chapter06/pyproject.toml | 10 +- Chapter06/requirements.txt | 237 ++- 4 files changed, 2893 insertions(+), 814 deletions(-) create mode 100644 Chapter06/03_graph_similarity.ipynb diff --git a/Chapter06/03_graph_similarity.ipynb b/Chapter06/03_graph_similarity.ipynb new file mode 100644 index 0000000..258c74a --- /dev/null +++ b/Chapter06/03_graph_similarity.ipynb @@ -0,0 +1,691 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "9LbvNo43_S8s" + }, + "outputs": [], + "source": [ + "%%capture\n", + "# install PyTorch Geometric if running on Google Colab\n", + "import sys\n", + "if 'google.colab' in sys.modules:\n", + " !pip install node2vec\n", + " import torch\n", + "\n", + " def format_pytorch_version(version):\n", + " return version.split('+')[0]\n", + "\n", + " TORCH_version = torch.__version__\n", + " TORCH = format_pytorch_version(TORCH_version)\n", + "\n", + " def format_cuda_version(version):\n", + " return 'cu' + version.replace('.', '')\n", + "\n", + " CUDA_version = torch.version.cuda\n", + " CUDA = format_cuda_version(CUDA_version)\n", + "\n", + " !pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html\n", + " !pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html\n", + " !pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html\n", + " !pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html\n", + " !pip install torch-geometric" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BIK1pgU4_lWd" + }, + "source": [ + "## Graph embedding-based methods\n", + "\n", + "Such techniques seek to apply graph embedding techniques to obtain node-level or graph-level representations and further use the representations for similarity learning. For example, DeepWalk and Node2Vec can be used to extract meaningful embedding that can then be used to define a similarity function or to predict similarity scores. For example, in Tixier et al. (2015), node2vec was used for encoding node embeddings for representing a graph as an image. Specifically, two-dimensional (2D) histograms obtained from those node embeddings were passed to a classical 2D convolutional neural network (CNN) architecture designed for images. Such a simple yet powerful approach enabled good results to be obtained for many benchmark datasets." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 701, + "referenced_widgets": [ + "947a2ce0171c4582843c5afb590471fb", + "f43faf84d7f041b08bcbec1aeeb5297a", + "d3fda1a8024c4f308dc36d2216006a46", + "ebd67e8c91f94cda8c314ff8c387a7d4", + "4a1994565cd541389bacb618bfb889cc", + "9b6d7a51282e46409eedb05fa786e629", + "0a0a68b09ba54987b47fd441d23c8870", + "28ce9bcc08504d7eb458d15b955005a9", + "a17cd8706d5a4961858297899f996a86", + "93995324744e414b8b88453ea975245f", + "66779461ba7f42a796d5cced4dbde20d", + "fb23e41eee404e1681c922bfda1f0c68", + "1dbae508a6c44c8380c809c5acb13ddd", + "d57001a6ba65463fb4e2bd4621f34f33", + "d66f73a1b19540448d470371576bca83", + "51c89c0f6e0e47d18921a58d801b2f63", + "75d57c5cbf274d0ba193c3174436ba59", + "9b8b3255b71343c9bdc4c9bbf1fec334", + "23d54b49aeb8431f952e5a4684d306d9", + "7e69d1332106437d85b83b5eddc77ec5", + "8a02cb6a232f49179af3fa323fd7a454", + "95d14bda117042398d9af86a756a3152", + "bd63c7b0c5c040ba9541bd2fcef51758", + "bad3cb7ac7994943a3a582b42278a1f8", + "6dcc66d8f2a445c49350bf22b5ff0294", + "4041adbf739847fd8e94d4b68c82955c", + "0ec4eb7a45d045bda9ddab55c34b8a32", + "eb3f54e018714fff9354e26b74f1323f", + "e9a3b4516afb4d8a93cf2a273acf5250", + "8b7bde7d326348ada0df55190cb19f40", + "61fdf65c194e4a109b348f2b06868422", + "6e8f4eef4c1240dc988e901039379cc9", + "a3822e2c9a144b6ba3862242a7d45c11", + "e31117d627db40b1a2614fb8d93ea9ff", + "3ad70def5d9a4d4586fb2e68632c67d2", + "679e128edd4d4c649ee0e652349539eb", + "d95a076be82c4ddd9f73b003e5fb2cf3", + "ab1d862212a0499fa73bdf7dd52113ec", + "7235a60e23cb4f91aa79997515024da2", + "884e184fd62d4d2bb599c42c12071d7c", + "a4009f909cd14d45b383c54bdb0f8b1c", + "7e4d5719ff144f7bba6ee64fd2da1705", + "07d05bdabf13439e801368d8d71669f4", + "1ab67407ab29460db2847ad7f406a6ae", + "28827ff18f394b4f96afef0cb2657061", + "5ce2477ccab74444b23e667e050f80d8", + "0d7b0d9bab3841a385a985b631738310", + "1b0cc9b414ec49acaa29a350537eb501", + "11e55760c4bf4ca7bbbd6c76aed0a639", + "605dec3cb9e34c6facf1e950c7502f0a", + "246986c6101148c8ba5f5dbb5d005b27", + "a49e73b3bdc6400da3903f982bc6d04b", + "4e875ca7b1d6463a9cac747767578deb", + "21f1ed46aaa141a5bb3b18ffa2c3ec8a", + "8f85b000d9b047ccb087df6613a300aa", + "1d74ff82049e414187206135c4d343fc", + "2f1f7a3164b6495290f3713e7f16bad3", + "d00413a5520942e9b3781157c8963241", + "aee093ae1ca54185a96300136c291eca", + "088b6089e6dd4d6981e6725e995b08e6", + "a40370ec8cac44e9b504e76a0b4400ae", + "62d80c02b0cc4f7a8d9132d7009b5956", + "637687ffca774e9aa04b569cb783e868", + "df3b12fff35a47f396c20810ad255b03", + "716d1e2329654e2890512b5c3fee4b72", + "600f6222fded403d8774aafda306df9d", + "0e6effb2c0bb4b2684885a3fea92a4cf", + "8f47ee7259e347d59e014380683efe82", + "8579f1a93aae40358563cf973b94fdcb", + "5eeeb0ad6ee840f58ea2788a61b23b12", + "4914e6a968374755ae8f3f33adb0f234", + "a59961195bb54dc9aff4361c02bc8de1", + "d4d97096bd6740e29dc8eb433df5431c", + "a9c2475224694ff3bfb80fbe57a1fb28", + "4018af520be648a5a270a0d87bb16065", + "20458297119b4d80bb0d8792b4e53cb3", + "25385bed8021400f9719895ee82ab0dd", + "2b43715603bd456182172b2fbf76cdd7", + "52bb5e354ffd4c9187a6db8abb000b6a", + "c0203eaa5aa3411386ca3fcd7928cb0e", + "4b77514afd0a4c7793b2669080c4d536", + "473123bbd1ab4876b12afb4949a95502", + "5dadb931453647159eda4a23ccfb48ff", + "3dc24387c3f04141a3eabc46c05182a0", + "4752f3e2381d4cedaaaa84b5398fd8fc", + "73ea01915aed40679bc760f21050398f", + "45212dc9ec004f3386d619affb7a9fd3", + "a125c58f4ded4590abb54d38f7e43f61", + "cc1306eca0264b13a51fbe2cf7e4892e", + "f158f5017b6e4d0eb810687dd261d674", + "6b60df7692be4c3483739ffd44ea9330", + "a615098947e44dea94da81b8e6e713d2", + "406b57f23f7148f5aa613ad9bf6583e2", + "4de9ab2c41e241c7a7f6727ab4a5da82", + "ffd2871c1de341d1a06bd376cc984506", + "04e18937beda476e9fb939e3fc3e908d", + "5a00cc7519634a35911849774d063cfe", + "9d5919e531dd41b2a39fde1d852f6315", + "078cfe33751445ca9b4386f9d1c60985", + "303291d220a948e2a61bcfed9b793b41", + "5a94a608304c479a972772c72096abf0", + "22f2b4423b2748b8ba2c5dbde91edb1d", + "598ed931496c4cf4bcfcb036424aa54a", + "c3e6a0769acb4f04942dbf041f6630d6", + "978825cc0ef54d0da29e1d7984c42e1a", + "72e1f1437f984212a3a24e28efb657ef", + "90b65155158649888da232b24cb1cf2e", + "1766dd5e4f7747d2af886ea4d8bf461b", + "5c7eb0f86cde44feb6d76ab2dbff30cd", + "b2605b2db94b4b929a9f7c927fdf88f5" + ] + }, + "id": "2-3ku6QR_ZWa", + "outputId": "0d861fe0-e3f8-47e1-8a8b-cc7d1d061ff4" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "947a2ce0171c4582843c5afb590471fb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Computing transition probabilities: 0%| | 0/10 [00:00=3.8" +groups = ["main"] +files = [ + {file = "absl_py-2.2.2-py3-none-any.whl", hash = "sha256:e5797bc6abe45f64fd95dc06394ca3f2bedf3b5d895e9da691c9ee3397d70092"}, + {file = "absl_py-2.2.2.tar.gz", hash = "sha256:bf25b2c2eed013ca456918c453d687eab4e8309fba81ee2f4c1a6aa2494175eb"}, +] + +[[package]] +name = "aiohappyeyeballs" +version = "2.4.4" +description = "Happy Eyeballs for asyncio" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "aiohappyeyeballs-2.4.4-py3-none-any.whl", hash = "sha256:a980909d50efcd44795c4afeca523296716d50cd756ddca6af8c65b996e27de8"}, + {file = "aiohappyeyeballs-2.4.4.tar.gz", hash = "sha256:5fdd7d87889c63183afc18ce9271f9b0a7d32c2303e394468dd45d514a757745"}, +] + +[[package]] +name = "aiohttp" +version = "3.10.11" +description = "Async http client/server framework (asyncio)" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "aiohttp-3.10.11-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:5077b1a5f40ffa3ba1f40d537d3bec4383988ee51fbba6b74aa8fb1bc466599e"}, + {file = "aiohttp-3.10.11-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8d6a14a4d93b5b3c2891fca94fa9d41b2322a68194422bef0dd5ec1e57d7d298"}, + {file = "aiohttp-3.10.11-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ffbfde2443696345e23a3c597049b1dd43049bb65337837574205e7368472177"}, + {file = "aiohttp-3.10.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20b3d9e416774d41813bc02fdc0663379c01817b0874b932b81c7f777f67b217"}, + {file = "aiohttp-3.10.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2b943011b45ee6bf74b22245c6faab736363678e910504dd7531a58c76c9015a"}, + {file = "aiohttp-3.10.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:48bc1d924490f0d0b3658fe5c4b081a4d56ebb58af80a6729d4bd13ea569797a"}, + {file = "aiohttp-3.10.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e12eb3f4b1f72aaaf6acd27d045753b18101524f72ae071ae1c91c1cd44ef115"}, + {file = "aiohttp-3.10.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f14ebc419a568c2eff3c1ed35f634435c24ead2fe19c07426af41e7adb68713a"}, + {file = "aiohttp-3.10.11-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:72b191cdf35a518bfc7ca87d770d30941decc5aaf897ec8b484eb5cc8c7706f3"}, + {file = "aiohttp-3.10.11-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:5ab2328a61fdc86424ee540d0aeb8b73bbcad7351fb7cf7a6546fc0bcffa0038"}, + {file = "aiohttp-3.10.11-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:aa93063d4af05c49276cf14e419550a3f45258b6b9d1f16403e777f1addf4519"}, + {file = "aiohttp-3.10.11-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:30283f9d0ce420363c24c5c2421e71a738a2155f10adbb1a11a4d4d6d2715cfc"}, + {file = "aiohttp-3.10.11-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:e5358addc8044ee49143c546d2182c15b4ac3a60be01c3209374ace05af5733d"}, + {file = "aiohttp-3.10.11-cp310-cp310-win32.whl", hash = "sha256:e1ffa713d3ea7cdcd4aea9cddccab41edf6882fa9552940344c44e59652e1120"}, + {file = "aiohttp-3.10.11-cp310-cp310-win_amd64.whl", hash = "sha256:778cbd01f18ff78b5dd23c77eb82987ee4ba23408cbed233009fd570dda7e674"}, + {file = "aiohttp-3.10.11-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:80ff08556c7f59a7972b1e8919f62e9c069c33566a6d28586771711e0eea4f07"}, + {file = "aiohttp-3.10.11-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2c8f96e9ee19f04c4914e4e7a42a60861066d3e1abf05c726f38d9d0a466e695"}, + {file = "aiohttp-3.10.11-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fb8601394d537da9221947b5d6e62b064c9a43e88a1ecd7414d21a1a6fba9c24"}, + {file = "aiohttp-3.10.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ea224cf7bc2d8856d6971cea73b1d50c9c51d36971faf1abc169a0d5f85a382"}, + {file = "aiohttp-3.10.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:db9503f79e12d5d80b3efd4d01312853565c05367493379df76d2674af881caa"}, + {file = "aiohttp-3.10.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0f449a50cc33f0384f633894d8d3cd020e3ccef81879c6e6245c3c375c448625"}, + {file = "aiohttp-3.10.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:82052be3e6d9e0c123499127782a01a2b224b8af8c62ab46b3f6197035ad94e9"}, + {file = "aiohttp-3.10.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:20063c7acf1eec550c8eb098deb5ed9e1bb0521613b03bb93644b810986027ac"}, + {file = "aiohttp-3.10.11-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:489cced07a4c11488f47aab1f00d0c572506883f877af100a38f1fedaa884c3a"}, + {file = "aiohttp-3.10.11-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:ea9b3bab329aeaa603ed3bf605f1e2a6f36496ad7e0e1aa42025f368ee2dc07b"}, + {file = "aiohttp-3.10.11-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:ca117819d8ad113413016cb29774b3f6d99ad23c220069789fc050267b786c16"}, + {file = "aiohttp-3.10.11-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:2dfb612dcbe70fb7cdcf3499e8d483079b89749c857a8f6e80263b021745c730"}, + {file = "aiohttp-3.10.11-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f9b615d3da0d60e7d53c62e22b4fd1c70f4ae5993a44687b011ea3a2e49051b8"}, + {file = "aiohttp-3.10.11-cp311-cp311-win32.whl", hash = "sha256:29103f9099b6068bbdf44d6a3d090e0a0b2be6d3c9f16a070dd9d0d910ec08f9"}, + {file = "aiohttp-3.10.11-cp311-cp311-win_amd64.whl", hash = "sha256:236b28ceb79532da85d59aa9b9bf873b364e27a0acb2ceaba475dc61cffb6f3f"}, + {file = "aiohttp-3.10.11-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:7480519f70e32bfb101d71fb9a1f330fbd291655a4c1c922232a48c458c52710"}, + {file = "aiohttp-3.10.11-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f65267266c9aeb2287a6622ee2bb39490292552f9fbf851baabc04c9f84e048d"}, + {file = "aiohttp-3.10.11-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7400a93d629a0608dc1d6c55f1e3d6e07f7375745aaa8bd7f085571e4d1cee97"}, + {file = "aiohttp-3.10.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f34b97e4b11b8d4eb2c3a4f975be626cc8af99ff479da7de49ac2c6d02d35725"}, + {file = "aiohttp-3.10.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e7b825da878464a252ccff2958838f9caa82f32a8dbc334eb9b34a026e2c636"}, + {file = "aiohttp-3.10.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9f92a344c50b9667827da308473005f34767b6a2a60d9acff56ae94f895f385"}, + {file = "aiohttp-3.10.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc6f1ab987a27b83c5268a17218463c2ec08dbb754195113867a27b166cd6087"}, + {file = "aiohttp-3.10.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1dc0f4ca54842173d03322793ebcf2c8cc2d34ae91cc762478e295d8e361e03f"}, + {file = "aiohttp-3.10.11-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:7ce6a51469bfaacff146e59e7fb61c9c23006495d11cc24c514a455032bcfa03"}, + {file = "aiohttp-3.10.11-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:aad3cd91d484d065ede16f3cf15408254e2469e3f613b241a1db552c5eb7ab7d"}, + {file = "aiohttp-3.10.11-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:f4df4b8ca97f658c880fb4b90b1d1ec528315d4030af1ec763247ebfd33d8b9a"}, + {file = "aiohttp-3.10.11-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:2e4e18a0a2d03531edbc06c366954e40a3f8d2a88d2b936bbe78a0c75a3aab3e"}, + {file = "aiohttp-3.10.11-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:6ce66780fa1a20e45bc753cda2a149daa6dbf1561fc1289fa0c308391c7bc0a4"}, + {file = "aiohttp-3.10.11-cp312-cp312-win32.whl", hash = "sha256:a919c8957695ea4c0e7a3e8d16494e3477b86f33067478f43106921c2fef15bb"}, + {file = "aiohttp-3.10.11-cp312-cp312-win_amd64.whl", hash = "sha256:b5e29706e6389a2283a91611c91bf24f218962717c8f3b4e528ef529d112ee27"}, + {file = "aiohttp-3.10.11-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:703938e22434d7d14ec22f9f310559331f455018389222eed132808cd8f44127"}, + {file = "aiohttp-3.10.11-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9bc50b63648840854e00084c2b43035a62e033cb9b06d8c22b409d56eb098413"}, + {file = "aiohttp-3.10.11-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:5f0463bf8b0754bc744e1feb61590706823795041e63edf30118a6f0bf577461"}, + {file = "aiohttp-3.10.11-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6c6dec398ac5a87cb3a407b068e1106b20ef001c344e34154616183fe684288"}, + {file = "aiohttp-3.10.11-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bcaf2d79104d53d4dcf934f7ce76d3d155302d07dae24dff6c9fffd217568067"}, + {file = "aiohttp-3.10.11-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:25fd5470922091b5a9aeeb7e75be609e16b4fba81cdeaf12981393fb240dd10e"}, + {file = "aiohttp-3.10.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbde2ca67230923a42161b1f408c3992ae6e0be782dca0c44cb3206bf330dee1"}, + {file = "aiohttp-3.10.11-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:249c8ff8d26a8b41a0f12f9df804e7c685ca35a207e2410adbd3e924217b9006"}, + {file = "aiohttp-3.10.11-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:878ca6a931ee8c486a8f7b432b65431d095c522cbeb34892bee5be97b3481d0f"}, + {file = "aiohttp-3.10.11-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:8663f7777ce775f0413324be0d96d9730959b2ca73d9b7e2c2c90539139cbdd6"}, + {file = "aiohttp-3.10.11-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:6cd3f10b01f0c31481fba8d302b61603a2acb37b9d30e1d14e0f5a58b7b18a31"}, + {file = "aiohttp-3.10.11-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:4e8d8aad9402d3aa02fdc5ca2fe68bcb9fdfe1f77b40b10410a94c7f408b664d"}, + {file = "aiohttp-3.10.11-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:38e3c4f80196b4f6c3a85d134a534a56f52da9cb8d8e7af1b79a32eefee73a00"}, + {file = "aiohttp-3.10.11-cp313-cp313-win32.whl", hash = "sha256:fc31820cfc3b2863c6e95e14fcf815dc7afe52480b4dc03393c4873bb5599f71"}, + {file = "aiohttp-3.10.11-cp313-cp313-win_amd64.whl", hash = "sha256:4996ff1345704ffdd6d75fb06ed175938c133425af616142e7187f28dc75f14e"}, + {file = "aiohttp-3.10.11-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:74baf1a7d948b3d640badeac333af581a367ab916b37e44cf90a0334157cdfd2"}, + {file = "aiohttp-3.10.11-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:473aebc3b871646e1940c05268d451f2543a1d209f47035b594b9d4e91ce8339"}, + {file = "aiohttp-3.10.11-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c2f746a6968c54ab2186574e15c3f14f3e7f67aef12b761e043b33b89c5b5f95"}, + {file = "aiohttp-3.10.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d110cabad8360ffa0dec8f6ec60e43286e9d251e77db4763a87dcfe55b4adb92"}, + {file = "aiohttp-3.10.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e0099c7d5d7afff4202a0c670e5b723f7718810000b4abcbc96b064129e64bc7"}, + {file = "aiohttp-3.10.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0316e624b754dbbf8c872b62fe6dcb395ef20c70e59890dfa0de9eafccd2849d"}, + {file = "aiohttp-3.10.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a5f7ab8baf13314e6b2485965cbacb94afff1e93466ac4d06a47a81c50f9cca"}, + {file = "aiohttp-3.10.11-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c891011e76041e6508cbfc469dd1a8ea09bc24e87e4c204e05f150c4c455a5fa"}, + {file = "aiohttp-3.10.11-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:9208299251370ee815473270c52cd3f7069ee9ed348d941d574d1457d2c73e8b"}, + {file = "aiohttp-3.10.11-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:459f0f32c8356e8125f45eeff0ecf2b1cb6db1551304972702f34cd9e6c44658"}, + {file = "aiohttp-3.10.11-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:14cdc8c1810bbd4b4b9f142eeee23cda528ae4e57ea0923551a9af4820980e39"}, + {file = "aiohttp-3.10.11-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:971aa438a29701d4b34e4943e91b5e984c3ae6ccbf80dd9efaffb01bd0b243a9"}, + {file = "aiohttp-3.10.11-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:9a309c5de392dfe0f32ee57fa43ed8fc6ddf9985425e84bd51ed66bb16bce3a7"}, + {file = "aiohttp-3.10.11-cp38-cp38-win32.whl", hash = "sha256:9ec1628180241d906a0840b38f162a3215114b14541f1a8711c368a8739a9be4"}, + {file = "aiohttp-3.10.11-cp38-cp38-win_amd64.whl", hash = "sha256:9c6e0ffd52c929f985c7258f83185d17c76d4275ad22e90aa29f38e211aacbec"}, + {file = "aiohttp-3.10.11-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:cdc493a2e5d8dc79b2df5bec9558425bcd39aff59fc949810cbd0832e294b106"}, + {file = "aiohttp-3.10.11-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b3e70f24e7d0405be2348da9d5a7836936bf3a9b4fd210f8c37e8d48bc32eca6"}, + {file = "aiohttp-3.10.11-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:968b8fb2a5eee2770eda9c7b5581587ef9b96fbdf8dcabc6b446d35ccc69df01"}, + {file = "aiohttp-3.10.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:deef4362af9493d1382ef86732ee2e4cbc0d7c005947bd54ad1a9a16dd59298e"}, + {file = "aiohttp-3.10.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:686b03196976e327412a1b094f4120778c7c4b9cff9bce8d2fdfeca386b89829"}, + {file = "aiohttp-3.10.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3bf6d027d9d1d34e1c2e1645f18a6498c98d634f8e373395221121f1c258ace8"}, + {file = "aiohttp-3.10.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:099fd126bf960f96d34a760e747a629c27fb3634da5d05c7ef4d35ef4ea519fc"}, + {file = "aiohttp-3.10.11-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c73c4d3dae0b4644bc21e3de546530531d6cdc88659cdeb6579cd627d3c206aa"}, + {file = "aiohttp-3.10.11-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0c5580f3c51eea91559db3facd45d72e7ec970b04528b4709b1f9c2555bd6d0b"}, + {file = "aiohttp-3.10.11-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:fdf6429f0caabfd8a30c4e2eaecb547b3c340e4730ebfe25139779b9815ba138"}, + {file = "aiohttp-3.10.11-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:d97187de3c276263db3564bb9d9fad9e15b51ea10a371ffa5947a5ba93ad6777"}, + {file = "aiohttp-3.10.11-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:0acafb350cfb2eba70eb5d271f55e08bd4502ec35e964e18ad3e7d34d71f7261"}, + {file = "aiohttp-3.10.11-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:c13ed0c779911c7998a58e7848954bd4d63df3e3575f591e321b19a2aec8df9f"}, + {file = "aiohttp-3.10.11-cp39-cp39-win32.whl", hash = "sha256:22b7c540c55909140f63ab4f54ec2c20d2635c0289cdd8006da46f3327f971b9"}, + {file = "aiohttp-3.10.11-cp39-cp39-win_amd64.whl", hash = "sha256:7b26b1551e481012575dab8e3727b16fe7dd27eb2711d2e63ced7368756268fb"}, + {file = "aiohttp-3.10.11.tar.gz", hash = "sha256:9dc2b8f3dcab2e39e0fa309c8da50c3b55e6f34ab25f1a71d3288f24924d33a7"}, +] + +[package.dependencies] +aiohappyeyeballs = ">=2.3.0" +aiosignal = ">=1.1.2" +async-timeout = {version = ">=4.0,<6.0", markers = "python_version < \"3.11\""} +attrs = ">=17.3.0" +frozenlist = ">=1.1.1" +multidict = ">=4.5,<7.0" +yarl = ">=1.12.0,<2.0" + +[package.extras] +speedups = ["Brotli ; platform_python_implementation == \"CPython\"", "aiodns (>=3.2.0) ; sys_platform == \"linux\" or sys_platform == \"darwin\"", "brotlicffi ; platform_python_implementation != \"CPython\""] + +[[package]] +name = "aiosignal" +version = "1.3.1" +description = "aiosignal: a list of registered asynchronous callbacks" +optional = false python-versions = ">=3.7" +groups = ["main"] files = [ - {file = "absl-py-2.1.0.tar.gz", hash = "sha256:7820790efbb316739cde8b4e19357243fc3608a152024288513dd968d7d959ff"}, - {file = "absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308"}, + {file = "aiosignal-1.3.1-py3-none-any.whl", hash = "sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17"}, + {file = "aiosignal-1.3.1.tar.gz", hash = "sha256:54cd96e15e1649b75d6c87526a6ff0b6c1b0dd3459f43d9ca11d48c339b68cfc"}, ] +[package.dependencies] +frozenlist = ">=1.1.0" + [[package]] name = "appnope" version = "0.1.4" description = "Disable App Nap on macOS >= 10.9" optional = false python-versions = ">=3.6" +groups = ["main"] +markers = "platform_system == \"Darwin\" or sys_platform == \"darwin\"" files = [ {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, @@ -24,21 +167,19 @@ files = [ [[package]] name = "asttokens" -version = "2.4.1" +version = "3.0.0" description = "Annotate AST trees with source code positions" optional = false -python-versions = "*" +python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, - {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, + {file = "asttokens-3.0.0-py3-none-any.whl", hash = "sha256:e3078351a059199dd5138cb1c706e6430c05eff2ff136af5eb4790f9d28932e2"}, + {file = "asttokens-3.0.0.tar.gz", hash = "sha256:0dcd8baa8d62b0c1d118b399b2ddba3c4aff271d0d7a9e0d4c1681c79035bbc7"}, ] -[package.dependencies] -six = ">=1.12.0" - [package.extras] -astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] -test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] +astroid = ["astroid (>=2,<4)"] +test = ["astroid (>=2,<4)", "pytest", "pytest-cov", "pytest-xdist"] [[package]] name = "astunparse" @@ -46,6 +187,7 @@ version = "1.6.3" description = "An AST unparser for Python" optional = false python-versions = "*" +groups = ["main"] files = [ {file = "astunparse-1.6.3-py2.py3-none-any.whl", hash = "sha256:c2652417f2c8b5bb325c885ae329bdf3f86424075c4fd1a128674bc6fba4b8e8"}, {file = "astunparse-1.6.3.tar.gz", hash = "sha256:5ad93a8456f0d084c3456d059fd9a92cce667963232cbf763eac3bc5b7940872"}, @@ -55,12 +197,45 @@ files = [ six = ">=1.6.1,<2.0" wheel = ">=0.23.0,<1.0" +[[package]] +name = "async-timeout" +version = "5.0.1" +description = "Timeout context manager for asyncio programs" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "async_timeout-5.0.1-py3-none-any.whl", hash = "sha256:39e3809566ff85354557ec2398b55e096c8364bacac9405a7a1fa429e77fe76c"}, + {file = "async_timeout-5.0.1.tar.gz", hash = "sha256:d9321a7a3d5a6a5e187e824d2fa0793ce379a202935782d555d6e9d2735677d3"}, +] + +[[package]] +name = "attrs" +version = "25.3.0" +description = "Classes Without Boilerplate" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "attrs-25.3.0-py3-none-any.whl", hash = "sha256:427318ce031701fea540783410126f03899a97ffc6f61596ad581ac2e40e3bc3"}, + {file = "attrs-25.3.0.tar.gz", hash = "sha256:75d7cefc7fb576747b2c81b4442d4d4a1ce0900973527c011d1030fd3bf4af1b"}, +] + +[package.extras] +benchmark = ["cloudpickle ; platform_python_implementation == \"CPython\"", "hypothesis", "mypy (>=1.11.1) ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\"", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\"", "pytest-xdist[psutil]"] +cov = ["cloudpickle ; platform_python_implementation == \"CPython\"", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1) ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\"", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\"", "pytest-xdist[psutil]"] +dev = ["cloudpickle ; platform_python_implementation == \"CPython\"", "hypothesis", "mypy (>=1.11.1) ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\"", "pre-commit-uv", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\"", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier"] +tests = ["cloudpickle ; platform_python_implementation == \"CPython\"", "hypothesis", "mypy (>=1.11.1) ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\"", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\"", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1) ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\"", "pytest-mypy-plugins ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\""] + [[package]] name = "backcall" version = "0.2.0" description = "Specifications for callback functions passed in to an API" optional = false python-versions = "*" +groups = ["main"] files = [ {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, @@ -68,100 +243,104 @@ files = [ [[package]] name = "cachetools" -version = "5.4.0" +version = "5.5.2" description = "Extensible memoizing collections and decorators" optional = false python-versions = ">=3.7" +groups = ["main"] files = [ - {file = "cachetools-5.4.0-py3-none-any.whl", hash = "sha256:3ae3b49a3d5e28a77a0be2b37dbcb89005058959cb2323858c2657c4a8cab474"}, - {file = "cachetools-5.4.0.tar.gz", hash = "sha256:b8adc2e7c07f105ced7bc56dbb6dfbe7c4a00acce20e2227b3f355be89bc6827"}, + {file = "cachetools-5.5.2-py3-none-any.whl", hash = "sha256:d26a22bcc62eb95c3beabd9f1ee5e820d3d2704fe2967cbe350e20c8ffcd3f0a"}, + {file = "cachetools-5.5.2.tar.gz", hash = "sha256:1a661caa9175d26759571b2e19580f9d6393969e5dfca11fdb1f947a23e640d4"}, ] [[package]] name = "certifi" -version = "2024.7.4" +version = "2025.1.31" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" +groups = ["main"] files = [ - {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, - {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, + {file = "certifi-2025.1.31-py3-none-any.whl", hash = "sha256:ca78db4565a652026a4db2bcdf68f2fb589ea80d0be70e03929ed730746b84fe"}, + {file = "certifi-2025.1.31.tar.gz", hash = "sha256:3d5da6925056f6f18f119200434a4780a94263f10d1c21d032a6f6b2baa20651"}, ] [[package]] name = "cffi" -version = "1.17.0" +version = "1.17.1" description = "Foreign Function Interface for Python calling C code." optional = false python-versions = ">=3.8" -files = [ - {file = "cffi-1.17.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f9338cc05451f1942d0d8203ec2c346c830f8e86469903d5126c1f0a13a2bcbb"}, - {file = "cffi-1.17.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0ce71725cacc9ebf839630772b07eeec220cbb5f03be1399e0457a1464f8e1a"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c815270206f983309915a6844fe994b2fa47e5d05c4c4cef267c3b30e34dbe42"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6bdcd415ba87846fd317bee0774e412e8792832e7805938987e4ede1d13046d"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a98748ed1a1df4ee1d6f927e151ed6c1a09d5ec21684de879c7ea6aa96f58f2"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0a048d4f6630113e54bb4b77e315e1ba32a5a31512c31a273807d0027a7e69ab"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24aa705a5f5bd3a8bcfa4d123f03413de5d86e497435693b638cbffb7d5d8a1b"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:856bf0924d24e7f93b8aee12a3a1095c34085600aa805693fb7f5d1962393206"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:4304d4416ff032ed50ad6bb87416d802e67139e31c0bde4628f36a47a3164bfa"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:331ad15c39c9fe9186ceaf87203a9ecf5ae0ba2538c9e898e3a6967e8ad3db6f"}, - {file = "cffi-1.17.0-cp310-cp310-win32.whl", hash = "sha256:669b29a9eca6146465cc574659058ed949748f0809a2582d1f1a324eb91054dc"}, - {file = "cffi-1.17.0-cp310-cp310-win_amd64.whl", hash = "sha256:48b389b1fd5144603d61d752afd7167dfd205973a43151ae5045b35793232aa2"}, - {file = "cffi-1.17.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c5d97162c196ce54af6700949ddf9409e9833ef1003b4741c2b39ef46f1d9720"}, - {file = "cffi-1.17.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ba5c243f4004c750836f81606a9fcb7841f8874ad8f3bf204ff5e56332b72b9"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bb9333f58fc3a2296fb1d54576138d4cf5d496a2cc118422bd77835e6ae0b9cb"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:435a22d00ec7d7ea533db494da8581b05977f9c37338c80bc86314bec2619424"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d1df34588123fcc88c872f5acb6f74ae59e9d182a2707097f9e28275ec26a12d"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:df8bb0010fdd0a743b7542589223a2816bdde4d94bb5ad67884348fa2c1c67e8"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b5b9712783415695663bd463990e2f00c6750562e6ad1d28e072a611c5f2a6"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ffef8fd58a36fb5f1196919638f73dd3ae0db1a878982b27a9a5a176ede4ba91"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e67d26532bfd8b7f7c05d5a766d6f437b362c1bf203a3a5ce3593a645e870b8"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:45f7cd36186db767d803b1473b3c659d57a23b5fa491ad83c6d40f2af58e4dbb"}, - {file = "cffi-1.17.0-cp311-cp311-win32.whl", hash = "sha256:a9015f5b8af1bb6837a3fcb0cdf3b874fe3385ff6274e8b7925d81ccaec3c5c9"}, - {file = "cffi-1.17.0-cp311-cp311-win_amd64.whl", hash = "sha256:b50aaac7d05c2c26dfd50c3321199f019ba76bb650e346a6ef3616306eed67b0"}, - {file = "cffi-1.17.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aec510255ce690d240f7cb23d7114f6b351c733a74c279a84def763660a2c3bc"}, - {file = "cffi-1.17.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2770bb0d5e3cc0e31e7318db06efcbcdb7b31bcb1a70086d3177692a02256f59"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:db9a30ec064129d605d0f1aedc93e00894b9334ec74ba9c6bdd08147434b33eb"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a47eef975d2b8b721775a0fa286f50eab535b9d56c70a6e62842134cf7841195"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f3e0992f23bbb0be00a921eae5363329253c3b86287db27092461c887b791e5e"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6107e445faf057c118d5050560695e46d272e5301feffda3c41849641222a828"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb862356ee9391dc5a0b3cbc00f416b48c1b9a52d252d898e5b7696a5f9fe150"}, - {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:c1c13185b90bbd3f8b5963cd8ce7ad4ff441924c31e23c975cb150e27c2bf67a"}, - {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:17c6d6d3260c7f2d94f657e6872591fe8733872a86ed1345bda872cfc8c74885"}, - {file = "cffi-1.17.0-cp312-cp312-win32.whl", hash = "sha256:c3b8bd3133cd50f6b637bb4322822c94c5ce4bf0d724ed5ae70afce62187c492"}, - {file = "cffi-1.17.0-cp312-cp312-win_amd64.whl", hash = "sha256:dca802c8db0720ce1c49cce1149ff7b06e91ba15fa84b1d59144fef1a1bc7ac2"}, - {file = "cffi-1.17.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:6ce01337d23884b21c03869d2f68c5523d43174d4fc405490eb0091057943118"}, - {file = "cffi-1.17.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cab2eba3830bf4f6d91e2d6718e0e1c14a2f5ad1af68a89d24ace0c6b17cced7"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:14b9cbc8f7ac98a739558eb86fabc283d4d564dafed50216e7f7ee62d0d25377"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b00e7bcd71caa0282cbe3c90966f738e2db91e64092a877c3ff7f19a1628fdcb"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:41f4915e09218744d8bae14759f983e466ab69b178de38066f7579892ff2a555"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4760a68cab57bfaa628938e9c2971137e05ce48e762a9cb53b76c9b569f1204"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:011aff3524d578a9412c8b3cfaa50f2c0bd78e03eb7af7aa5e0df59b158efb2f"}, - {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:a003ac9edc22d99ae1286b0875c460351f4e101f8c9d9d2576e78d7e048f64e0"}, - {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ef9528915df81b8f4c7612b19b8628214c65c9b7f74db2e34a646a0a2a0da2d4"}, - {file = "cffi-1.17.0-cp313-cp313-win32.whl", hash = "sha256:70d2aa9fb00cf52034feac4b913181a6e10356019b18ef89bc7c12a283bf5f5a"}, - {file = "cffi-1.17.0-cp313-cp313-win_amd64.whl", hash = "sha256:b7b6ea9e36d32582cda3465f54c4b454f62f23cb083ebc7a94e2ca6ef011c3a7"}, - {file = "cffi-1.17.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:964823b2fc77b55355999ade496c54dde161c621cb1f6eac61dc30ed1b63cd4c"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:516a405f174fd3b88829eabfe4bb296ac602d6a0f68e0d64d5ac9456194a5b7e"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dec6b307ce928e8e112a6bb9921a1cb00a0e14979bf28b98e084a4b8a742bd9b"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4094c7b464cf0a858e75cd14b03509e84789abf7b79f8537e6a72152109c76e"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2404f3de742f47cb62d023f0ba7c5a916c9c653d5b368cc966382ae4e57da401"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3aa9d43b02a0c681f0bfbc12d476d47b2b2b6a3f9287f11ee42989a268a1833c"}, - {file = "cffi-1.17.0-cp38-cp38-win32.whl", hash = "sha256:0bb15e7acf8ab35ca8b24b90af52c8b391690ef5c4aec3d31f38f0d37d2cc499"}, - {file = "cffi-1.17.0-cp38-cp38-win_amd64.whl", hash = "sha256:93a7350f6706b31f457c1457d3a3259ff9071a66f312ae64dc024f049055f72c"}, - {file = "cffi-1.17.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1a2ddbac59dc3716bc79f27906c010406155031a1c801410f1bafff17ea304d2"}, - {file = "cffi-1.17.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6327b572f5770293fc062a7ec04160e89741e8552bf1c358d1a23eba68166759"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbc183e7bef690c9abe5ea67b7b60fdbca81aa8da43468287dae7b5c046107d4"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bdc0f1f610d067c70aa3737ed06e2726fd9d6f7bfee4a351f4c40b6831f4e82"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6d872186c1617d143969defeadac5a904e6e374183e07977eedef9c07c8953bf"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0d46ee4764b88b91f16661a8befc6bfb24806d885e27436fdc292ed7e6f6d058"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f76a90c345796c01d85e6332e81cab6d70de83b829cf1d9762d0a3da59c7932"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0e60821d312f99d3e1569202518dddf10ae547e799d75aef3bca3a2d9e8ee693"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:eb09b82377233b902d4c3fbeeb7ad731cdab579c6c6fda1f763cd779139e47c3"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:24658baf6224d8f280e827f0a50c46ad819ec8ba380a42448e24459daf809cf4"}, - {file = "cffi-1.17.0-cp39-cp39-win32.whl", hash = "sha256:0fdacad9e0d9fc23e519efd5ea24a70348305e8d7d85ecbb1a5fa66dc834e7fb"}, - {file = "cffi-1.17.0-cp39-cp39-win_amd64.whl", hash = "sha256:7cbc78dc018596315d4e7841c8c3a7ae31cc4d638c9b627f87d52e8abaaf2d29"}, - {file = "cffi-1.17.0.tar.gz", hash = "sha256:f3157624b7558b914cb039fd1af735e5e8049a87c817cc215109ad1c8779df76"}, +groups = ["main"] +markers = "implementation_name == \"pypy\"" +files = [ + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, ] [package.dependencies] @@ -173,6 +352,7 @@ version = "5.2.0" description = "Universal encoding detector for Python 3" optional = false python-versions = ">=3.7" +groups = ["main"] files = [ {file = "chardet-5.2.0-py3-none-any.whl", hash = "sha256:e1cf59446890a00105fe7b7912492ea04b6e6f06d4b742b2c788469e34c82970"}, {file = "chardet-5.2.0.tar.gz", hash = "sha256:1b3b6ff479a8c414bc3fa2c0852995695c4a026dcd6d0633b2dd092ca39c1cf7"}, @@ -180,101 +360,104 @@ files = [ [[package]] name = "charset-normalizer" -version = "3.3.2" +version = "3.4.1" description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." optional = false -python-versions = ">=3.7.0" -files = [ - {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, - {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, +python-versions = ">=3.7" +groups = ["main"] +files = [ + {file = "charset_normalizer-3.4.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:91b36a978b5ae0ee86c394f5a54d6ef44db1de0815eb43de826d41d21e4af3de"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7461baadb4dc00fd9e0acbe254e3d7d2112e7f92ced2adc96e54ef6501c5f176"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e218488cd232553829be0664c2292d3af2eeeb94b32bea483cf79ac6a694e037"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:80ed5e856eb7f30115aaf94e4a08114ccc8813e6ed1b5efa74f9f82e8509858f"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b010a7a4fd316c3c484d482922d13044979e78d1861f0e0650423144c616a46a"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4532bff1b8421fd0a320463030c7520f56a79c9024a4e88f01c537316019005a"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d973f03c0cb71c5ed99037b870f2be986c3c05e63622c017ea9816881d2dd247"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3a3bd0dcd373514dcec91c411ddb9632c0d7d92aed7093b8c3bbb6d69ca74408"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:d9c3cdf5390dcd29aa8056d13e8e99526cda0305acc038b96b30352aff5ff2bb"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:2bdfe3ac2e1bbe5b59a1a63721eb3b95fc9b6817ae4a46debbb4e11f6232428d"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:eab677309cdb30d047996b36d34caeda1dc91149e4fdca0b1a039b3f79d9a807"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-win32.whl", hash = "sha256:c0429126cf75e16c4f0ad00ee0eae4242dc652290f940152ca8c75c3a4b6ee8f"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:9f0b8b1c6d84c8034a44893aba5e767bf9c7a211e313a9605d9c617d7083829f"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8bfa33f4f2672964266e940dd22a195989ba31669bd84629f05fab3ef4e2d125"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28bf57629c75e810b6ae989f03c0828d64d6b26a5e205535585f96093e405ed1"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f08ff5e948271dc7e18a35641d2f11a4cd8dfd5634f55228b691e62b37125eb3"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:234ac59ea147c59ee4da87a0c0f098e9c8d169f4dc2a159ef720f1a61bbe27cd"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd4ec41f914fa74ad1b8304bbc634b3de73d2a0889bd32076342a573e0779e00"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eea6ee1db730b3483adf394ea72f808b6e18cf3cb6454b4d86e04fa8c4327a12"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c96836c97b1238e9c9e3fe90844c947d5afbf4f4c92762679acfe19927d81d77"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4d86f7aff21ee58f26dcf5ae81a9addbd914115cdebcbb2217e4f0ed8982e146"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:09b5e6733cbd160dcc09589227187e242a30a49ca5cefa5a7edd3f9d19ed53fd"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:5777ee0881f9499ed0f71cc82cf873d9a0ca8af166dfa0af8ec4e675b7df48e6"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:237bdbe6159cff53b4f24f397d43c6336c6b0b42affbe857970cefbb620911c8"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-win32.whl", hash = "sha256:8417cb1f36cc0bc7eaba8ccb0e04d55f0ee52df06df3ad55259b9a323555fc8b"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:d7f50a1f8c450f3925cb367d011448c39239bb3eb4117c36a6d354794de4ce76"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:73d94b58ec7fecbc7366247d3b0b10a21681004153238750bb67bd9012414545"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dad3e487649f498dd991eeb901125411559b22e8d7ab25d3aeb1af367df5efd7"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c30197aa96e8eed02200a83fba2657b4c3acd0f0aa4bdc9f6c1af8e8962e0757"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2369eea1ee4a7610a860d88f268eb39b95cb588acd7235e02fd5a5601773d4fa"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc2722592d8998c870fa4e290c2eec2c1569b87fe58618e67d38b4665dfa680d"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffc9202a29ab3920fa812879e95a9e78b2465fd10be7fcbd042899695d75e616"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:804a4d582ba6e5b747c625bf1255e6b1507465494a40a2130978bda7b932c90b"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0f55e69f030f7163dffe9fd0752b32f070566451afe180f99dbeeb81f511ad8d"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:c4c3e6da02df6fa1410a7680bd3f63d4f710232d3139089536310d027950696a"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:5df196eb874dae23dcfb968c83d4f8fdccb333330fe1fc278ac5ceeb101003a9"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e358e64305fe12299a08e08978f51fc21fac060dcfcddd95453eabe5b93ed0e1"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-win32.whl", hash = "sha256:9b23ca7ef998bc739bf6ffc077c2116917eabcc901f88da1b9856b210ef63f35"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ff8a4a60c227ad87030d76e99cd1698345d4491638dfa6673027c48b3cd395f"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:aabfa34badd18f1da5ec1bc2715cadc8dca465868a4e73a0173466b688f29dda"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22e14b5d70560b8dd51ec22863f370d1e595ac3d024cb8ad7d308b4cd95f8313"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8436c508b408b82d87dc5f62496973a1805cd46727c34440b0d29d8a2f50a6c9"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2d074908e1aecee37a7635990b2c6d504cd4766c7bc9fc86d63f9c09af3fa11b"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:955f8851919303c92343d2f66165294848d57e9bba6cf6e3625485a70a038d11"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:44ecbf16649486d4aebafeaa7ec4c9fed8b88101f4dd612dcaf65d5e815f837f"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0924e81d3d5e70f8126529951dac65c1010cdf117bb75eb02dd12339b57749dd"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:2967f74ad52c3b98de4c3b32e1a44e32975e008a9cd2a8cc8966d6a5218c5cb2"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c75cb2a3e389853835e84a2d8fb2b81a10645b503eca9bcb98df6b5a43eb8886"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:09b26ae6b1abf0d27570633b2b078a2a20419c99d66fb2823173d73f188ce601"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fa88b843d6e211393a37219e6a1c1df99d35e8fd90446f1118f4216e307e48cd"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-win32.whl", hash = "sha256:eb8178fe3dba6450a3e024e95ac49ed3400e506fd4e9e5c32d30adda88cbd407"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-win_amd64.whl", hash = "sha256:b1ac5992a838106edb89654e0aebfc24f5848ae2547d22c2c3f66454daa11971"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f30bf9fd9be89ecb2360c7d94a711f00c09b976258846efe40db3d05828e8089"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:97f68b8d6831127e4787ad15e6757232e14e12060bec17091b85eb1486b91d8d"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7974a0b5ecd505609e3b19742b60cee7aa2aa2fb3151bc917e6e2646d7667dcf"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc54db6c8593ef7d4b2a331b58653356cf04f67c960f584edb7c3d8c97e8f39e"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:311f30128d7d333eebd7896965bfcfbd0065f1716ec92bd5638d7748eb6f936a"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:7d053096f67cd1241601111b698f5cad775f97ab25d81567d3f59219b5f1adbd"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:807f52c1f798eef6cf26beb819eeb8819b1622ddfeef9d0977a8502d4db6d534"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:dccbe65bd2f7f7ec22c4ff99ed56faa1e9f785482b9bbd7c717e26fd723a1d1e"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:2fb9bd477fdea8684f78791a6de97a953c51831ee2981f8e4f583ff3b9d9687e"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:01732659ba9b5b873fc117534143e4feefecf3b2078b0a6a2e925271bb6f4cfa"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-win32.whl", hash = "sha256:7a4f97a081603d2050bfaffdefa5b02a9ec823f8348a572e39032caa8404a487"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-win_amd64.whl", hash = "sha256:7b1bef6280950ee6c177b326508f86cad7ad4dff12454483b51d8b7d673a2c5d"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ecddf25bee22fe4fe3737a399d0d177d72bc22be6913acfab364b40bce1ba83c"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c60ca7339acd497a55b0ea5d506b2a2612afb2826560416f6894e8b5770d4a9"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b7b2d86dd06bfc2ade3312a83a5c364c7ec2e3498f8734282c6c3d4b07b346b8"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dd78cfcda14a1ef52584dbb008f7ac81c1328c0f58184bf9a84c49c605002da6"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e27f48bcd0957c6d4cb9d6fa6b61d192d0b13d5ef563e5f2ae35feafc0d179c"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:01ad647cdd609225c5350561d084b42ddf732f4eeefe6e678765636791e78b9a"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:619a609aa74ae43d90ed2e89bdd784765de0a25ca761b93e196d938b8fd1dbbd"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:89149166622f4db9b4b6a449256291dc87a99ee53151c74cbd82a53c8c2f6ccd"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:7709f51f5f7c853f0fb938bcd3bc59cdfdc5203635ffd18bf354f6967ea0f824"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:345b0426edd4e18138d6528aed636de7a9ed169b4aaf9d61a8c19e39d26838ca"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:0907f11d019260cdc3f94fbdb23ff9125f6b5d1039b76003b5b0ac9d6a6c9d5b"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-win32.whl", hash = "sha256:ea0d8d539afa5eb2728aa1932a988a9a7af94f18582ffae4bc10b3fbdad0626e"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:329ce159e82018d646c7ac45b01a430369d526569ec08516081727a20e9e4af4"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b97e690a2118911e39b4042088092771b4ae3fc3aa86518f84b8cf6888dbdb41"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:78baa6d91634dfb69ec52a463534bc0df05dbd546209b79a3880a34487f4b84f"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1a2bc9f351a75ef49d664206d51f8e5ede9da246602dc2d2726837620ea034b2"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75832c08354f595c760a804588b9357d34ec00ba1c940c15e31e96d902093770"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0af291f4fe114be0280cdd29d533696a77b5b49cfde5467176ecab32353395c4"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0167ddc8ab6508fe81860a57dd472b2ef4060e8d378f0cc555707126830f2537"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2a75d49014d118e4198bcee5ee0a6f25856b29b12dbf7cd012791f8a6cc5c496"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:363e2f92b0f0174b2f8238240a1a30142e3db7b957a5dd5689b0e75fb717cc78"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ab36c8eb7e454e34e60eb55ca5d241a5d18b2c6244f6827a30e451c42410b5f7"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:4c0907b1928a36d5a998d72d64d8eaa7244989f7aaaf947500d3a800c83a3fd6"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:04432ad9479fa40ec0f387795ddad4437a2b50417c69fa275e212933519ff294"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-win32.whl", hash = "sha256:3bed14e9c89dcb10e8f3a29f9ccac4955aebe93c71ae803af79265c9ca5644c5"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:49402233c892a461407c512a19435d1ce275543138294f7ef013f0b63d5d3765"}, + {file = "charset_normalizer-3.4.1-py3-none-any.whl", hash = "sha256:d98b1668f06378c6dbefec3b92299716b931cd4e6061f3c875a71ced1780ab85"}, + {file = "charset_normalizer-3.4.1.tar.gz", hash = "sha256:44251f18cd68a75b56585dd00dae26183e102cd5e0f9f1466e6df5da2ed64ea3"}, ] [[package]] @@ -283,6 +466,8 @@ version = "0.4.6" description = "Cross-platform colored terminal text." optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +groups = ["main"] +markers = "sys_platform == \"win32\" or platform_system == \"Windows\"" files = [ {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, @@ -294,6 +479,7 @@ version = "0.2.2" description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." optional = false python-versions = ">=3.8" +groups = ["main"] files = [ {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, @@ -311,6 +497,7 @@ version = "2.2.0" description = "Library for detecting community structure in graphs" optional = false python-versions = ">=3" +groups = ["main"] files = [ {file = "communities-2.2.0.tar.gz", hash = "sha256:4e4c9dca36046c256309c2d42039afd45c52c6ddbeb9bd86ff69fa1fe3c7e2bd"}, ] @@ -325,6 +512,7 @@ version = "0.12.1" description = "Composable style cycles" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, @@ -340,6 +528,7 @@ version = "0.29.14" description = "The Cython compiler for writing C extensions for the Python language." optional = false python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" +groups = ["main"] files = [ {file = "Cython-0.29.14-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", hash = "sha256:47e5e1502d52ef03387cf9d3b3241007961a84a466e58a3b74028e1dd4957f8c"}, {file = "Cython-0.29.14-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:1dcdaa319558eb924294a554dcf6c12383ec947acc7e779e8d3622409a7f7d28"}, @@ -377,59 +566,83 @@ files = [ [[package]] name = "debugpy" -version = "1.8.5" +version = "1.8.13" description = "An implementation of the Debug Adapter Protocol for Python" optional = false python-versions = ">=3.8" -files = [ - {file = "debugpy-1.8.5-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:7e4d594367d6407a120b76bdaa03886e9eb652c05ba7f87e37418426ad2079f7"}, - {file = "debugpy-1.8.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4413b7a3ede757dc33a273a17d685ea2b0c09dbd312cc03f5534a0fd4d40750a"}, - {file = "debugpy-1.8.5-cp310-cp310-win32.whl", hash = "sha256:dd3811bd63632bb25eda6bd73bea8e0521794cda02be41fa3160eb26fc29e7ed"}, - {file = "debugpy-1.8.5-cp310-cp310-win_amd64.whl", hash = "sha256:b78c1250441ce893cb5035dd6f5fc12db968cc07f91cc06996b2087f7cefdd8e"}, - {file = "debugpy-1.8.5-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:606bccba19f7188b6ea9579c8a4f5a5364ecd0bf5a0659c8a5d0e10dcee3032a"}, - {file = "debugpy-1.8.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db9fb642938a7a609a6c865c32ecd0d795d56c1aaa7a7a5722d77855d5e77f2b"}, - {file = "debugpy-1.8.5-cp311-cp311-win32.whl", hash = "sha256:4fbb3b39ae1aa3e5ad578f37a48a7a303dad9a3d018d369bc9ec629c1cfa7408"}, - {file = "debugpy-1.8.5-cp311-cp311-win_amd64.whl", hash = "sha256:345d6a0206e81eb68b1493ce2fbffd57c3088e2ce4b46592077a943d2b968ca3"}, - {file = "debugpy-1.8.5-cp312-cp312-macosx_12_0_universal2.whl", hash = "sha256:5b5c770977c8ec6c40c60d6f58cacc7f7fe5a45960363d6974ddb9b62dbee156"}, - {file = "debugpy-1.8.5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0a65b00b7cdd2ee0c2cf4c7335fef31e15f1b7056c7fdbce9e90193e1a8c8cb"}, - {file = "debugpy-1.8.5-cp312-cp312-win32.whl", hash = "sha256:c9f7c15ea1da18d2fcc2709e9f3d6de98b69a5b0fff1807fb80bc55f906691f7"}, - {file = "debugpy-1.8.5-cp312-cp312-win_amd64.whl", hash = "sha256:28ced650c974aaf179231668a293ecd5c63c0a671ae6d56b8795ecc5d2f48d3c"}, - {file = "debugpy-1.8.5-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:3df6692351172a42af7558daa5019651f898fc67450bf091335aa8a18fbf6f3a"}, - {file = "debugpy-1.8.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cd04a73eb2769eb0bfe43f5bfde1215c5923d6924b9b90f94d15f207a402226"}, - {file = "debugpy-1.8.5-cp38-cp38-win32.whl", hash = "sha256:8f913ee8e9fcf9d38a751f56e6de12a297ae7832749d35de26d960f14280750a"}, - {file = "debugpy-1.8.5-cp38-cp38-win_amd64.whl", hash = "sha256:a697beca97dad3780b89a7fb525d5e79f33821a8bc0c06faf1f1289e549743cf"}, - {file = "debugpy-1.8.5-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:0a1029a2869d01cb777216af8c53cda0476875ef02a2b6ff8b2f2c9a4b04176c"}, - {file = "debugpy-1.8.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e84c276489e141ed0b93b0af648eef891546143d6a48f610945416453a8ad406"}, - {file = "debugpy-1.8.5-cp39-cp39-win32.whl", hash = "sha256:ad84b7cde7fd96cf6eea34ff6c4a1b7887e0fe2ea46e099e53234856f9d99a34"}, - {file = "debugpy-1.8.5-cp39-cp39-win_amd64.whl", hash = "sha256:7b0fe36ed9d26cb6836b0a51453653f8f2e347ba7348f2bbfe76bfeb670bfb1c"}, - {file = "debugpy-1.8.5-py2.py3-none-any.whl", hash = "sha256:55919dce65b471eff25901acf82d328bbd5b833526b6c1364bd5133754777a44"}, - {file = "debugpy-1.8.5.zip", hash = "sha256:b2112cfeb34b4507399d298fe7023a16656fc553ed5246536060ca7bd0e668d0"}, +groups = ["main"] +files = [ + {file = "debugpy-1.8.13-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:06859f68e817966723ffe046b896b1bd75c665996a77313370336ee9e1de3e90"}, + {file = "debugpy-1.8.13-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb56c2db69fb8df3168bc857d7b7d2494fed295dfdbde9a45f27b4b152f37520"}, + {file = "debugpy-1.8.13-cp310-cp310-win32.whl", hash = "sha256:46abe0b821cad751fc1fb9f860fb2e68d75e2c5d360986d0136cd1db8cad4428"}, + {file = "debugpy-1.8.13-cp310-cp310-win_amd64.whl", hash = "sha256:dc7b77f5d32674686a5f06955e4b18c0e41fb5a605f5b33cf225790f114cfeec"}, + {file = "debugpy-1.8.13-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:eee02b2ed52a563126c97bf04194af48f2fe1f68bb522a312b05935798e922ff"}, + {file = "debugpy-1.8.13-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4caca674206e97c85c034c1efab4483f33971d4e02e73081265ecb612af65377"}, + {file = "debugpy-1.8.13-cp311-cp311-win32.whl", hash = "sha256:7d9a05efc6973b5aaf076d779cf3a6bbb1199e059a17738a2aa9d27a53bcc888"}, + {file = "debugpy-1.8.13-cp311-cp311-win_amd64.whl", hash = "sha256:62f9b4a861c256f37e163ada8cf5a81f4c8d5148fc17ee31fb46813bd658cdcc"}, + {file = "debugpy-1.8.13-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:2b8de94c5c78aa0d0ed79023eb27c7c56a64c68217d881bee2ffbcb13951d0c1"}, + {file = "debugpy-1.8.13-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:887d54276cefbe7290a754424b077e41efa405a3e07122d8897de54709dbe522"}, + {file = "debugpy-1.8.13-cp312-cp312-win32.whl", hash = "sha256:3872ce5453b17837ef47fb9f3edc25085ff998ce63543f45ba7af41e7f7d370f"}, + {file = "debugpy-1.8.13-cp312-cp312-win_amd64.whl", hash = "sha256:63ca7670563c320503fea26ac688988d9d6b9c6a12abc8a8cf2e7dd8e5f6b6ea"}, + {file = "debugpy-1.8.13-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:31abc9618be4edad0b3e3a85277bc9ab51a2d9f708ead0d99ffb5bb750e18503"}, + {file = "debugpy-1.8.13-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0bd87557f97bced5513a74088af0b84982b6ccb2e254b9312e29e8a5c4270eb"}, + {file = "debugpy-1.8.13-cp313-cp313-win32.whl", hash = "sha256:5268ae7fdca75f526d04465931cb0bd24577477ff50e8bb03dab90983f4ebd02"}, + {file = "debugpy-1.8.13-cp313-cp313-win_amd64.whl", hash = "sha256:79ce4ed40966c4c1631d0131606b055a5a2f8e430e3f7bf8fd3744b09943e8e8"}, + {file = "debugpy-1.8.13-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:acf39a6e98630959763f9669feddee540745dfc45ad28dbc9bd1f9cd60639391"}, + {file = "debugpy-1.8.13-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:924464d87e7d905eb0d79fb70846558910e906d9ee309b60c4fe597a2e802590"}, + {file = "debugpy-1.8.13-cp38-cp38-win32.whl", hash = "sha256:3dae443739c6b604802da9f3e09b0f45ddf1cf23c99161f3a1a8039f61a8bb89"}, + {file = "debugpy-1.8.13-cp38-cp38-win_amd64.whl", hash = "sha256:ed93c3155fc1f888ab2b43626182174e457fc31b7781cd1845629303790b8ad1"}, + {file = "debugpy-1.8.13-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:6fab771639332bd8ceb769aacf454a30d14d7a964f2012bf9c4e04c60f16e85b"}, + {file = "debugpy-1.8.13-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:32b6857f8263a969ce2ca098f228e5cc0604d277447ec05911a8c46cf3e7e307"}, + {file = "debugpy-1.8.13-cp39-cp39-win32.whl", hash = "sha256:f14d2c4efa1809da125ca62df41050d9c7cd9cb9e380a2685d1e453c4d450ccb"}, + {file = "debugpy-1.8.13-cp39-cp39-win_amd64.whl", hash = "sha256:ea869fe405880327497e6945c09365922c79d2a1eed4c3ae04d77ac7ae34b2b5"}, + {file = "debugpy-1.8.13-py2.py3-none-any.whl", hash = "sha256:d4ba115cdd0e3a70942bd562adba9ec8c651fe69ddde2298a1be296fc331906f"}, + {file = "debugpy-1.8.13.tar.gz", hash = "sha256:837e7bef95bdefba426ae38b9a94821ebdc5bea55627879cd48165c90b9e50ce"}, ] [[package]] name = "decorator" -version = "5.1.1" +version = "5.2.1" description = "Decorators for Humans" optional = false -python-versions = ">=3.5" +python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, - {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, + {file = "decorator-5.2.1-py3-none-any.whl", hash = "sha256:d316bb415a2d9e2d2b3abcc4084c6502fc09240e292cd76a76afc106a1c8e04a"}, + {file = "decorator-5.2.1.tar.gz", hash = "sha256:65f266143752f734b0a7cc83c46f4618af75b8c5911b00ccb61d0ac9b6da0360"}, ] [[package]] name = "executing" -version = "2.0.1" +version = "2.2.0" description = "Get the currently executing AST node of a frame, and other information" optional = false -python-versions = ">=3.5" +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "executing-2.2.0-py2.py3-none-any.whl", hash = "sha256:11387150cad388d62750327a53d3339fad4888b39a6fe233c3afbb54ecffd3aa"}, + {file = "executing-2.2.0.tar.gz", hash = "sha256:5d108c028108fe2551d1a7b2e8b713341e2cb4fc0aa7dcf966fa4327a5226755"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich ; python_version >= \"3.11\""] + +[[package]] +name = "filelock" +version = "3.16.1" +description = "A platform independent file lock." +optional = false +python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, - {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, + {file = "filelock-3.16.1-py3-none-any.whl", hash = "sha256:2082e5703d51fbf98ea75855d9d5527e33d8ff23099bec374a134febee6946b0"}, + {file = "filelock-3.16.1.tar.gz", hash = "sha256:c249fbfcd5db47e5e2d6d62198e565475ee65e4831e2561c8e313fa7eb961435"}, ] [package.extras] -tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] +docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4.1)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.2)", "pytest (>=8.3.3)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.4)"] +typing = ["typing-extensions (>=4.12.2) ; python_version < \"3.11\""] [[package]] name = "flatbuffers" @@ -437,17 +650,161 @@ version = "2.0.7" description = "The FlatBuffers serialization format for Python" optional = false python-versions = "*" +groups = ["main"] files = [ {file = "flatbuffers-2.0.7-py2.py3-none-any.whl", hash = "sha256:71e135d533be527192819aaab757c5e3d109cb10fbb01e687f6bdb7a61ad39d1"}, {file = "flatbuffers-2.0.7.tar.gz", hash = "sha256:0ae7d69c5b82bf41962ca5fde9cc43033bc9501311d975fd5a25e8a7d29c1245"}, ] +[[package]] +name = "frozenlist" +version = "1.5.0" +description = "A list-like structure which implements collections.abc.MutableSequence" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "frozenlist-1.5.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:5b6a66c18b5b9dd261ca98dffcb826a525334b2f29e7caa54e182255c5f6a65a"}, + {file = "frozenlist-1.5.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d1b3eb7b05ea246510b43a7e53ed1653e55c2121019a97e60cad7efb881a97bb"}, + {file = "frozenlist-1.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:15538c0cbf0e4fa11d1e3a71f823524b0c46299aed6e10ebb4c2089abd8c3bec"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e79225373c317ff1e35f210dd5f1344ff31066ba8067c307ab60254cd3a78ad5"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9272fa73ca71266702c4c3e2d4a28553ea03418e591e377a03b8e3659d94fa76"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:498524025a5b8ba81695761d78c8dd7382ac0b052f34e66939c42df860b8ff17"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:92b5278ed9d50fe610185ecd23c55d8b307d75ca18e94c0e7de328089ac5dcba"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f3c8c1dacd037df16e85227bac13cca58c30da836c6f936ba1df0c05d046d8d"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f2ac49a9bedb996086057b75bf93538240538c6d9b38e57c82d51f75a73409d2"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:e66cc454f97053b79c2ab09c17fbe3c825ea6b4de20baf1be28919460dd7877f"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:5a3ba5f9a0dfed20337d3e966dc359784c9f96503674c2faf015f7fe8e96798c"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:6321899477db90bdeb9299ac3627a6a53c7399c8cd58d25da094007402b039ab"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:76e4753701248476e6286f2ef492af900ea67d9706a0155335a40ea21bf3b2f5"}, + {file = "frozenlist-1.5.0-cp310-cp310-win32.whl", hash = "sha256:977701c081c0241d0955c9586ffdd9ce44f7a7795df39b9151cd9a6fd0ce4cfb"}, + {file = "frozenlist-1.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:189f03b53e64144f90990d29a27ec4f7997d91ed3d01b51fa39d2dbe77540fd4"}, + {file = "frozenlist-1.5.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:fd74520371c3c4175142d02a976aee0b4cb4a7cc912a60586ffd8d5929979b30"}, + {file = "frozenlist-1.5.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2f3f7a0fbc219fb4455264cae4d9f01ad41ae6ee8524500f381de64ffaa077d5"}, + {file = "frozenlist-1.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f47c9c9028f55a04ac254346e92977bf0f166c483c74b4232bee19a6697e4778"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0996c66760924da6e88922756d99b47512a71cfd45215f3570bf1e0b694c206a"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a2fe128eb4edeabe11896cb6af88fca5346059f6c8d807e3b910069f39157869"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1a8ea951bbb6cacd492e3948b8da8c502a3f814f5d20935aae74b5df2b19cf3d"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:de537c11e4aa01d37db0d403b57bd6f0546e71a82347a97c6a9f0dcc532b3a45"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c2623347b933fcb9095841f1cc5d4ff0b278addd743e0e966cb3d460278840d"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:cee6798eaf8b1416ef6909b06f7dc04b60755206bddc599f52232606e18179d3"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:f5f9da7f5dbc00a604fe74aa02ae7c98bcede8a3b8b9666f9f86fc13993bc71a"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:90646abbc7a5d5c7c19461d2e3eeb76eb0b204919e6ece342feb6032c9325ae9"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:bdac3c7d9b705d253b2ce370fde941836a5f8b3c5c2b8fd70940a3ea3af7f4f2"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:03d33c2ddbc1816237a67f66336616416e2bbb6beb306e5f890f2eb22b959cdf"}, + {file = "frozenlist-1.5.0-cp311-cp311-win32.whl", hash = "sha256:237f6b23ee0f44066219dae14c70ae38a63f0440ce6750f868ee08775073f942"}, + {file = "frozenlist-1.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:0cc974cc93d32c42e7b0f6cf242a6bd941c57c61b618e78b6c0a96cb72788c1d"}, + {file = "frozenlist-1.5.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:31115ba75889723431aa9a4e77d5f398f5cf976eea3bdf61749731f62d4a4a21"}, + {file = "frozenlist-1.5.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7437601c4d89d070eac8323f121fcf25f88674627505334654fd027b091db09d"}, + {file = "frozenlist-1.5.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7948140d9f8ece1745be806f2bfdf390127cf1a763b925c4a805c603df5e697e"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:feeb64bc9bcc6b45c6311c9e9b99406660a9c05ca8a5b30d14a78555088b0b3a"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:683173d371daad49cffb8309779e886e59c2f369430ad28fe715f66d08d4ab1a"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7d57d8f702221405a9d9b40f9da8ac2e4a1a8b5285aac6100f3393675f0a85ee"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:30c72000fbcc35b129cb09956836c7d7abf78ab5416595e4857d1cae8d6251a6"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:000a77d6034fbad9b6bb880f7ec073027908f1b40254b5d6f26210d2dab1240e"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:5d7f5a50342475962eb18b740f3beecc685a15b52c91f7d975257e13e029eca9"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:87f724d055eb4785d9be84e9ebf0f24e392ddfad00b3fe036e43f489fafc9039"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:6e9080bb2fb195a046e5177f10d9d82b8a204c0736a97a153c2466127de87784"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:9b93d7aaa36c966fa42efcaf716e6b3900438632a626fb09c049f6a2f09fc631"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:52ef692a4bc60a6dd57f507429636c2af8b6046db8b31b18dac02cbc8f507f7f"}, + {file = "frozenlist-1.5.0-cp312-cp312-win32.whl", hash = "sha256:29d94c256679247b33a3dc96cce0f93cbc69c23bf75ff715919332fdbb6a32b8"}, + {file = "frozenlist-1.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:8969190d709e7c48ea386db202d708eb94bdb29207a1f269bab1196ce0dcca1f"}, + {file = "frozenlist-1.5.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:7a1a048f9215c90973402e26c01d1cff8a209e1f1b53f72b95c13db61b00f953"}, + {file = "frozenlist-1.5.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:dd47a5181ce5fcb463b5d9e17ecfdb02b678cca31280639255ce9d0e5aa67af0"}, + {file = "frozenlist-1.5.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1431d60b36d15cda188ea222033eec8e0eab488f39a272461f2e6d9e1a8e63c2"}, + {file = "frozenlist-1.5.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6482a5851f5d72767fbd0e507e80737f9c8646ae7fd303def99bfe813f76cf7f"}, + {file = "frozenlist-1.5.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:44c49271a937625619e862baacbd037a7ef86dd1ee215afc298a417ff3270608"}, + {file = "frozenlist-1.5.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:12f78f98c2f1c2429d42e6a485f433722b0061d5c0b0139efa64f396efb5886b"}, + {file = "frozenlist-1.5.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ce3aa154c452d2467487765e3adc730a8c153af77ad84096bc19ce19a2400840"}, + {file = "frozenlist-1.5.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9b7dc0c4338e6b8b091e8faf0db3168a37101943e687f373dce00959583f7439"}, + {file = "frozenlist-1.5.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:45e0896250900b5aa25180f9aec243e84e92ac84bd4a74d9ad4138ef3f5c97de"}, + {file = "frozenlist-1.5.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:561eb1c9579d495fddb6da8959fd2a1fca2c6d060d4113f5844b433fc02f2641"}, + {file = "frozenlist-1.5.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:df6e2f325bfee1f49f81aaac97d2aa757c7646534a06f8f577ce184afe2f0a9e"}, + {file = "frozenlist-1.5.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:140228863501b44b809fb39ec56b5d4071f4d0aa6d216c19cbb08b8c5a7eadb9"}, + {file = "frozenlist-1.5.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:7707a25d6a77f5d27ea7dc7d1fc608aa0a478193823f88511ef5e6b8a48f9d03"}, + {file = "frozenlist-1.5.0-cp313-cp313-win32.whl", hash = "sha256:31a9ac2b38ab9b5a8933b693db4939764ad3f299fcaa931a3e605bc3460e693c"}, + {file = "frozenlist-1.5.0-cp313-cp313-win_amd64.whl", hash = "sha256:11aabdd62b8b9c4b84081a3c246506d1cddd2dd93ff0ad53ede5defec7886b28"}, + {file = "frozenlist-1.5.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:dd94994fc91a6177bfaafd7d9fd951bc8689b0a98168aa26b5f543868548d3ca"}, + {file = "frozenlist-1.5.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2d0da8bbec082bf6bf18345b180958775363588678f64998c2b7609e34719b10"}, + {file = "frozenlist-1.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:73f2e31ea8dd7df61a359b731716018c2be196e5bb3b74ddba107f694fbd7604"}, + {file = "frozenlist-1.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:828afae9f17e6de596825cf4228ff28fbdf6065974e5ac1410cecc22f699d2b3"}, + {file = "frozenlist-1.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1577515d35ed5649d52ab4319db757bb881ce3b2b796d7283e6634d99ace307"}, + {file = "frozenlist-1.5.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2150cc6305a2c2ab33299453e2968611dacb970d2283a14955923062c8d00b10"}, + {file = "frozenlist-1.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a72b7a6e3cd2725eff67cd64c8f13335ee18fc3c7befc05aed043d24c7b9ccb9"}, + {file = "frozenlist-1.5.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c16d2fa63e0800723139137d667e1056bee1a1cf7965153d2d104b62855e9b99"}, + {file = "frozenlist-1.5.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:17dcc32fc7bda7ce5875435003220a457bcfa34ab7924a49a1c19f55b6ee185c"}, + {file = "frozenlist-1.5.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:97160e245ea33d8609cd2b8fd997c850b56db147a304a262abc2b3be021a9171"}, + {file = "frozenlist-1.5.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:f1e6540b7fa044eee0bb5111ada694cf3dc15f2b0347ca125ee9ca984d5e9e6e"}, + {file = "frozenlist-1.5.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:91d6c171862df0a6c61479d9724f22efb6109111017c87567cfeb7b5d1449fdf"}, + {file = "frozenlist-1.5.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c1fac3e2ace2eb1052e9f7c7db480818371134410e1f5c55d65e8f3ac6d1407e"}, + {file = "frozenlist-1.5.0-cp38-cp38-win32.whl", hash = "sha256:b97f7b575ab4a8af9b7bc1d2ef7f29d3afee2226bd03ca3875c16451ad5a7723"}, + {file = "frozenlist-1.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:374ca2dabdccad8e2a76d40b1d037f5bd16824933bf7bcea3e59c891fd4a0923"}, + {file = "frozenlist-1.5.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9bbcdfaf4af7ce002694a4e10a0159d5a8d20056a12b05b45cea944a4953f972"}, + {file = "frozenlist-1.5.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1893f948bf6681733aaccf36c5232c231e3b5166d607c5fa77773611df6dc336"}, + {file = "frozenlist-1.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2b5e23253bb709ef57a8e95e6ae48daa9ac5f265637529e4ce6b003a37b2621f"}, + {file = "frozenlist-1.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f253985bb515ecd89629db13cb58d702035ecd8cfbca7d7a7e29a0e6d39af5f"}, + {file = "frozenlist-1.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:04a5c6babd5e8fb7d3c871dc8b321166b80e41b637c31a995ed844a6139942b6"}, + {file = "frozenlist-1.5.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a9fe0f1c29ba24ba6ff6abf688cb0b7cf1efab6b6aa6adc55441773c252f7411"}, + {file = "frozenlist-1.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:226d72559fa19babe2ccd920273e767c96a49b9d3d38badd7c91a0fdeda8ea08"}, + {file = "frozenlist-1.5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15b731db116ab3aedec558573c1a5eec78822b32292fe4f2f0345b7f697745c2"}, + {file = "frozenlist-1.5.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:366d8f93e3edfe5a918c874702f78faac300209a4d5bf38352b2c1bdc07a766d"}, + {file = "frozenlist-1.5.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:1b96af8c582b94d381a1c1f51ffaedeb77c821c690ea5f01da3d70a487dd0a9b"}, + {file = "frozenlist-1.5.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:c03eff4a41bd4e38415cbed054bbaff4a075b093e2394b6915dca34a40d1e38b"}, + {file = "frozenlist-1.5.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:50cf5e7ee9b98f22bdecbabf3800ae78ddcc26e4a435515fc72d97903e8488e0"}, + {file = "frozenlist-1.5.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:1e76bfbc72353269c44e0bc2cfe171900fbf7f722ad74c9a7b638052afe6a00c"}, + {file = "frozenlist-1.5.0-cp39-cp39-win32.whl", hash = "sha256:666534d15ba8f0fda3f53969117383d5dc021266b3c1a42c9ec4855e4b58b9d3"}, + {file = "frozenlist-1.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:5c28f4b5dbef8a0d8aad0d4de24d1e9e981728628afaf4ea0792f5d0939372f0"}, + {file = "frozenlist-1.5.0-py3-none-any.whl", hash = "sha256:d994863bba198a4a518b467bb971c56e1db3f180a25c6cf7bb1949c267f748c3"}, + {file = "frozenlist-1.5.0.tar.gz", hash = "sha256:81d5af29e61b9c8348e876d442253723928dce6433e0e76cd925cd83f1b4b817"}, +] + +[[package]] +name = "fsspec" +version = "2025.3.0" +description = "File-system specification" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "fsspec-2025.3.0-py3-none-any.whl", hash = "sha256:efb87af3efa9103f94ca91a7f8cb7a4df91af9f74fc106c9c7ea0efd7277c1b3"}, + {file = "fsspec-2025.3.0.tar.gz", hash = "sha256:a935fd1ea872591f2b5148907d103488fc523295e6c64b835cfad8c3eca44972"}, +] + +[package.extras] +abfs = ["adlfs"] +adl = ["adlfs"] +arrow = ["pyarrow (>=1)"] +dask = ["dask", "distributed"] +dev = ["pre-commit", "ruff"] +doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] +dropbox = ["dropbox", "dropboxdrivefs", "requests"] +full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] +fuse = ["fusepy"] +gcs = ["gcsfs"] +git = ["pygit2"] +github = ["requests"] +gs = ["gcsfs"] +gui = ["panel"] +hdfs = ["pyarrow (>=1)"] +http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)"] +libarchive = ["libarchive-c"] +oci = ["ocifs"] +s3 = ["s3fs"] +sftp = ["paramiko"] +smb = ["smbprotocol"] +ssh = ["paramiko"] +test = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "numpy", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "requests"] +test-downstream = ["aiobotocore (>=2.5.4,<3.0.0)", "dask[dataframe,test]", "moto[server] (>4,<5)", "pytest-timeout", "xarray"] +test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"] +tqdm = ["tqdm"] + [[package]] name = "gast" version = "0.4.0" description = "Python AST that abstracts the underlying Python version" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +groups = ["main"] files = [ {file = "gast-0.4.0-py3-none-any.whl", hash = "sha256:b7adcdd5adbebf1adf17378da5ba3f543684dbec47b1cda1f3997e573cd542c4"}, {file = "gast-0.4.0.tar.gz", hash = "sha256:40feb7b8b8434785585ab224d1568b857edb18297e5a3047f1ba012bc83b42c1"}, @@ -459,6 +816,7 @@ version = "3.8.3" description = "Python framework for fast Vector Space Modelling" optional = false python-versions = "*" +groups = ["main"] files = [ {file = "gensim-3.8.3-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:61eed1d6b5fbe6dda0586ea447ebc2dc7890a7f70c2ed953d5abc3fe3cfb94bb"}, {file = "gensim-3.8.3-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:3af62709369331c85552fd26caa21504baa64accc426dc094172f5c688750013"}, @@ -505,13 +863,14 @@ test-win = ["Morfessor (==2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytes [[package]] name = "google-auth" -version = "2.33.0" +version = "2.38.0" description = "Google Authentication Library" optional = false python-versions = ">=3.7" +groups = ["main"] files = [ - {file = "google_auth-2.33.0-py2.py3-none-any.whl", hash = "sha256:8eff47d0d4a34ab6265c50a106a3362de6a9975bb08998700e389f857e4d39df"}, - {file = "google_auth-2.33.0.tar.gz", hash = "sha256:d6a52342160d7290e334b4d47ba390767e4438ad0d45b7630774533e82655b95"}, + {file = "google_auth-2.38.0-py2.py3-none-any.whl", hash = "sha256:e7dae6694313f434a2727bf2906f27ad259bae090d7aa896590d86feec3d9d4a"}, + {file = "google_auth-2.38.0.tar.gz", hash = "sha256:8285113607d3b80a3f1543b75962447ba8a09fe85783432a784fdeef6ac094c4"}, ] [package.dependencies] @@ -521,7 +880,8 @@ rsa = ">=3.1.4,<5" [package.extras] aiohttp = ["aiohttp (>=3.6.2,<4.0.0.dev0)", "requests (>=2.20.0,<3.0.0.dev0)"] -enterprise-cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"] +enterprise-cert = ["cryptography", "pyopenssl"] +pyjwt = ["cryptography (>=38.0.3)", "pyjwt (>=2.0)"] pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] reauth = ["pyu2f (>=0.1.5)"] requests = ["requests (>=2.20.0,<3.0.0.dev0)"] @@ -532,6 +892,7 @@ version = "1.0.0" description = "Google Authentication Library" optional = false python-versions = ">=3.6" +groups = ["main"] files = [ {file = "google-auth-oauthlib-1.0.0.tar.gz", hash = "sha256:e375064964820b47221a7e1b7ee1fd77051b6323c3f9e3e19785f78ab67ecfc5"}, {file = "google_auth_oauthlib-1.0.0-py2.py3-none-any.whl", hash = "sha256:95880ca704928c300f48194d1770cf5b1462835b6e49db61445a520f793fd5fb"}, @@ -550,6 +911,7 @@ version = "0.2.0" description = "pasta is an AST-based Python refactoring library" optional = false python-versions = "*" +groups = ["main"] files = [ {file = "google-pasta-0.2.0.tar.gz", hash = "sha256:c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e"}, {file = "google_pasta-0.2.0-py2-none-any.whl", hash = "sha256:4612951da876b1a10fe3960d7226f0c7682cf901e16ac06e473b267a5afa8954"}, @@ -561,61 +923,71 @@ six = "*" [[package]] name = "grpcio" -version = "1.65.4" +version = "1.70.0" description = "HTTP/2-based RPC framework" optional = false python-versions = ">=3.8" -files = [ - {file = "grpcio-1.65.4-cp310-cp310-linux_armv7l.whl", hash = "sha256:0e85c8766cf7f004ab01aff6a0393935a30d84388fa3c58d77849fcf27f3e98c"}, - {file = "grpcio-1.65.4-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:e4a795c02405c7dfa8affd98c14d980f4acea16ea3b539e7404c645329460e5a"}, - {file = "grpcio-1.65.4-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:d7b984a8dd975d949c2042b9b5ebcf297d6d5af57dcd47f946849ee15d3c2fb8"}, - {file = "grpcio-1.65.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:644a783ce604a7d7c91412bd51cf9418b942cf71896344b6dc8d55713c71ce82"}, - {file = "grpcio-1.65.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5764237d751d3031a36fafd57eb7d36fd2c10c658d2b4057c516ccf114849a3e"}, - {file = "grpcio-1.65.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:ee40d058cf20e1dd4cacec9c39e9bce13fedd38ce32f9ba00f639464fcb757de"}, - {file = "grpcio-1.65.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4482a44ce7cf577a1f8082e807a5b909236bce35b3e3897f839f2fbd9ae6982d"}, - {file = "grpcio-1.65.4-cp310-cp310-win32.whl", hash = "sha256:66bb051881c84aa82e4f22d8ebc9d1704b2e35d7867757f0740c6ef7b902f9b1"}, - {file = "grpcio-1.65.4-cp310-cp310-win_amd64.whl", hash = "sha256:870370524eff3144304da4d1bbe901d39bdd24f858ce849b7197e530c8c8f2ec"}, - {file = "grpcio-1.65.4-cp311-cp311-linux_armv7l.whl", hash = "sha256:85e9c69378af02e483bc626fc19a218451b24a402bdf44c7531e4c9253fb49ef"}, - {file = "grpcio-1.65.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2bd672e005afab8bf0d6aad5ad659e72a06dd713020554182a66d7c0c8f47e18"}, - {file = "grpcio-1.65.4-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:abccc5d73f5988e8f512eb29341ed9ced923b586bb72e785f265131c160231d8"}, - {file = "grpcio-1.65.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:886b45b29f3793b0c2576201947258782d7e54a218fe15d4a0468d9a6e00ce17"}, - {file = "grpcio-1.65.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be952436571dacc93ccc7796db06b7daf37b3b56bb97e3420e6503dccfe2f1b4"}, - {file = "grpcio-1.65.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:8dc9ddc4603ec43f6238a5c95400c9a901b6d079feb824e890623da7194ff11e"}, - {file = "grpcio-1.65.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:ade1256c98cba5a333ef54636095f2c09e6882c35f76acb04412f3b1aa3c29a5"}, - {file = "grpcio-1.65.4-cp311-cp311-win32.whl", hash = "sha256:280e93356fba6058cbbfc6f91a18e958062ef1bdaf5b1caf46c615ba1ae71b5b"}, - {file = "grpcio-1.65.4-cp311-cp311-win_amd64.whl", hash = "sha256:d2b819f9ee27ed4e3e737a4f3920e337e00bc53f9e254377dd26fc7027c4d558"}, - {file = "grpcio-1.65.4-cp312-cp312-linux_armv7l.whl", hash = "sha256:926a0750a5e6fb002542e80f7fa6cab8b1a2ce5513a1c24641da33e088ca4c56"}, - {file = "grpcio-1.65.4-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:2a1d4c84d9e657f72bfbab8bedf31bdfc6bfc4a1efb10b8f2d28241efabfaaf2"}, - {file = "grpcio-1.65.4-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:17de4fda50967679677712eec0a5c13e8904b76ec90ac845d83386b65da0ae1e"}, - {file = "grpcio-1.65.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3dee50c1b69754a4228e933696408ea87f7e896e8d9797a3ed2aeed8dbd04b74"}, - {file = "grpcio-1.65.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74c34fc7562bdd169b77966068434a93040bfca990e235f7a67cdf26e1bd5c63"}, - {file = "grpcio-1.65.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:24a2246e80a059b9eb981e4c2a6d8111b1b5e03a44421adbf2736cc1d4988a8a"}, - {file = "grpcio-1.65.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:18c10f0d054d2dce34dd15855fcca7cc44ec3b811139437543226776730c0f28"}, - {file = "grpcio-1.65.4-cp312-cp312-win32.whl", hash = "sha256:d72962788b6c22ddbcdb70b10c11fbb37d60ae598c51eb47ec019db66ccfdff0"}, - {file = "grpcio-1.65.4-cp312-cp312-win_amd64.whl", hash = "sha256:7656376821fed8c89e68206a522522317787a3d9ed66fb5110b1dff736a5e416"}, - {file = "grpcio-1.65.4-cp38-cp38-linux_armv7l.whl", hash = "sha256:4934077b33aa6fe0b451de8b71dabde96bf2d9b4cb2b3187be86e5adebcba021"}, - {file = "grpcio-1.65.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:0cef8c919a3359847c357cb4314e50ed1f0cca070f828ee8f878d362fd744d52"}, - {file = "grpcio-1.65.4-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:a925446e6aa12ca37114840d8550f308e29026cdc423a73da3043fd1603a6385"}, - {file = "grpcio-1.65.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cf53e6247f1e2af93657e62e240e4f12e11ee0b9cef4ddcb37eab03d501ca864"}, - {file = "grpcio-1.65.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdb34278e4ceb224c89704cd23db0d902e5e3c1c9687ec9d7c5bb4c150f86816"}, - {file = "grpcio-1.65.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:e6cbdd107e56bde55c565da5fd16f08e1b4e9b0674851d7749e7f32d8645f524"}, - {file = "grpcio-1.65.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:626319a156b1f19513156a3b0dbfe977f5f93db63ca673a0703238ebd40670d7"}, - {file = "grpcio-1.65.4-cp38-cp38-win32.whl", hash = "sha256:3d1bbf7e1dd1096378bd83c83f554d3b93819b91161deaf63e03b7022a85224a"}, - {file = "grpcio-1.65.4-cp38-cp38-win_amd64.whl", hash = "sha256:a99e6dffefd3027b438116f33ed1261c8d360f0dd4f943cb44541a2782eba72f"}, - {file = "grpcio-1.65.4-cp39-cp39-linux_armv7l.whl", hash = "sha256:874acd010e60a2ec1e30d5e505b0651ab12eb968157cd244f852b27c6dbed733"}, - {file = "grpcio-1.65.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b07f36faf01fca5427d4aa23645e2d492157d56c91fab7e06fe5697d7e171ad4"}, - {file = "grpcio-1.65.4-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:b81711bf4ec08a3710b534e8054c7dcf90f2edc22bebe11c1775a23f145595fe"}, - {file = "grpcio-1.65.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88fcabc332a4aef8bcefadc34a02e9ab9407ab975d2c7d981a8e12c1aed92aa1"}, - {file = "grpcio-1.65.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9ba3e63108a8749994f02c7c0e156afb39ba5bdf755337de8e75eb685be244b"}, - {file = "grpcio-1.65.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:8eb485801957a486bf5de15f2c792d9f9c897a86f2f18db8f3f6795a094b4bb2"}, - {file = "grpcio-1.65.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:075f3903bc1749ace93f2b0664f72964ee5f2da5c15d4b47e0ab68e4f442c257"}, - {file = "grpcio-1.65.4-cp39-cp39-win32.whl", hash = "sha256:0a0720299bdb2cc7306737295d56e41ce8827d5669d4a3cd870af832e3b17c4d"}, - {file = "grpcio-1.65.4-cp39-cp39-win_amd64.whl", hash = "sha256:a146bc40fa78769f22e1e9ff4f110ef36ad271b79707577bf2a31e3e931141b9"}, - {file = "grpcio-1.65.4.tar.gz", hash = "sha256:2a4f476209acffec056360d3e647ae0e14ae13dcf3dfb130c227ae1c594cbe39"}, +groups = ["main"] +files = [ + {file = "grpcio-1.70.0-cp310-cp310-linux_armv7l.whl", hash = "sha256:95469d1977429f45fe7df441f586521361e235982a0b39e33841549143ae2851"}, + {file = "grpcio-1.70.0-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:ed9718f17fbdb472e33b869c77a16d0b55e166b100ec57b016dc7de9c8d236bf"}, + {file = "grpcio-1.70.0-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:374d014f29f9dfdb40510b041792e0e2828a1389281eb590df066e1cc2b404e5"}, + {file = "grpcio-1.70.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2af68a6f5c8f78d56c145161544ad0febbd7479524a59c16b3e25053f39c87f"}, + {file = "grpcio-1.70.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce7df14b2dcd1102a2ec32f621cc9fab6695effef516efbc6b063ad749867295"}, + {file = "grpcio-1.70.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:c78b339869f4dbf89881e0b6fbf376313e4f845a42840a7bdf42ee6caed4b11f"}, + {file = "grpcio-1.70.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:58ad9ba575b39edef71f4798fdb5c7b6d02ad36d47949cd381d4392a5c9cbcd3"}, + {file = "grpcio-1.70.0-cp310-cp310-win32.whl", hash = "sha256:2b0d02e4b25a5c1f9b6c7745d4fa06efc9fd6a611af0fb38d3ba956786b95199"}, + {file = "grpcio-1.70.0-cp310-cp310-win_amd64.whl", hash = "sha256:0de706c0a5bb9d841e353f6343a9defc9fc35ec61d6eb6111802f3aa9fef29e1"}, + {file = "grpcio-1.70.0-cp311-cp311-linux_armv7l.whl", hash = "sha256:17325b0be0c068f35770f944124e8839ea3185d6d54862800fc28cc2ffad205a"}, + {file = "grpcio-1.70.0-cp311-cp311-macosx_10_14_universal2.whl", hash = "sha256:dbe41ad140df911e796d4463168e33ef80a24f5d21ef4d1e310553fcd2c4a386"}, + {file = "grpcio-1.70.0-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:5ea67c72101d687d44d9c56068328da39c9ccba634cabb336075fae2eab0d04b"}, + {file = "grpcio-1.70.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cb5277db254ab7586769e490b7b22f4ddab3876c490da0a1a9d7c695ccf0bf77"}, + {file = "grpcio-1.70.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7831a0fc1beeeb7759f737f5acd9fdcda520e955049512d68fda03d91186eea"}, + {file = "grpcio-1.70.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:27cc75e22c5dba1fbaf5a66c778e36ca9b8ce850bf58a9db887754593080d839"}, + {file = "grpcio-1.70.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d63764963412e22f0491d0d32833d71087288f4e24cbcddbae82476bfa1d81fd"}, + {file = "grpcio-1.70.0-cp311-cp311-win32.whl", hash = "sha256:bb491125103c800ec209d84c9b51f1c60ea456038e4734688004f377cfacc113"}, + {file = "grpcio-1.70.0-cp311-cp311-win_amd64.whl", hash = "sha256:d24035d49e026353eb042bf7b058fb831db3e06d52bee75c5f2f3ab453e71aca"}, + {file = "grpcio-1.70.0-cp312-cp312-linux_armv7l.whl", hash = "sha256:ef4c14508299b1406c32bdbb9fb7b47612ab979b04cf2b27686ea31882387cff"}, + {file = "grpcio-1.70.0-cp312-cp312-macosx_10_14_universal2.whl", hash = "sha256:aa47688a65643afd8b166928a1da6247d3f46a2784d301e48ca1cc394d2ffb40"}, + {file = "grpcio-1.70.0-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:880bfb43b1bb8905701b926274eafce5c70a105bc6b99e25f62e98ad59cb278e"}, + {file = "grpcio-1.70.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9e654c4b17d07eab259d392e12b149c3a134ec52b11ecdc6a515b39aceeec898"}, + {file = "grpcio-1.70.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2394e3381071045a706ee2eeb6e08962dd87e8999b90ac15c55f56fa5a8c9597"}, + {file = "grpcio-1.70.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:b3c76701428d2df01964bc6479422f20e62fcbc0a37d82ebd58050b86926ef8c"}, + {file = "grpcio-1.70.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ac073fe1c4cd856ebcf49e9ed6240f4f84d7a4e6ee95baa5d66ea05d3dd0df7f"}, + {file = "grpcio-1.70.0-cp312-cp312-win32.whl", hash = "sha256:cd24d2d9d380fbbee7a5ac86afe9787813f285e684b0271599f95a51bce33528"}, + {file = "grpcio-1.70.0-cp312-cp312-win_amd64.whl", hash = "sha256:0495c86a55a04a874c7627fd33e5beaee771917d92c0e6d9d797628ac40e7655"}, + {file = "grpcio-1.70.0-cp313-cp313-linux_armv7l.whl", hash = "sha256:aa573896aeb7d7ce10b1fa425ba263e8dddd83d71530d1322fd3a16f31257b4a"}, + {file = "grpcio-1.70.0-cp313-cp313-macosx_10_14_universal2.whl", hash = "sha256:d405b005018fd516c9ac529f4b4122342f60ec1cee181788249372524e6db429"}, + {file = "grpcio-1.70.0-cp313-cp313-manylinux_2_17_aarch64.whl", hash = "sha256:f32090238b720eb585248654db8e3afc87b48d26ac423c8dde8334a232ff53c9"}, + {file = "grpcio-1.70.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfa089a734f24ee5f6880c83d043e4f46bf812fcea5181dcb3a572db1e79e01c"}, + {file = "grpcio-1.70.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f19375f0300b96c0117aca118d400e76fede6db6e91f3c34b7b035822e06c35f"}, + {file = "grpcio-1.70.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:7c73c42102e4a5ec76608d9b60227d917cea46dff4d11d372f64cbeb56d259d0"}, + {file = "grpcio-1.70.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:0a5c78d5198a1f0aa60006cd6eb1c912b4a1520b6a3968e677dbcba215fabb40"}, + {file = "grpcio-1.70.0-cp313-cp313-win32.whl", hash = "sha256:fe9dbd916df3b60e865258a8c72ac98f3ac9e2a9542dcb72b7a34d236242a5ce"}, + {file = "grpcio-1.70.0-cp313-cp313-win_amd64.whl", hash = "sha256:4119fed8abb7ff6c32e3d2255301e59c316c22d31ab812b3fbcbaf3d0d87cc68"}, + {file = "grpcio-1.70.0-cp38-cp38-linux_armv7l.whl", hash = "sha256:8058667a755f97407fca257c844018b80004ae8035565ebc2812cc550110718d"}, + {file = "grpcio-1.70.0-cp38-cp38-macosx_10_14_universal2.whl", hash = "sha256:879a61bf52ff8ccacbedf534665bb5478ec8e86ad483e76fe4f729aaef867cab"}, + {file = "grpcio-1.70.0-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:0ba0a173f4feacf90ee618fbc1a27956bfd21260cd31ced9bc707ef551ff7dc7"}, + {file = "grpcio-1.70.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:558c386ecb0148f4f99b1a65160f9d4b790ed3163e8610d11db47838d452512d"}, + {file = "grpcio-1.70.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:412faabcc787bbc826f51be261ae5fa996b21263de5368a55dc2cf824dc5090e"}, + {file = "grpcio-1.70.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3b0f01f6ed9994d7a0b27eeddea43ceac1b7e6f3f9d86aeec0f0064b8cf50fdb"}, + {file = "grpcio-1.70.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:7385b1cb064734005204bc8994eed7dcb801ed6c2eda283f613ad8c6c75cf873"}, + {file = "grpcio-1.70.0-cp38-cp38-win32.whl", hash = "sha256:07269ff4940f6fb6710951116a04cd70284da86d0a4368fd5a3b552744511f5a"}, + {file = "grpcio-1.70.0-cp38-cp38-win_amd64.whl", hash = "sha256:aba19419aef9b254e15011b230a180e26e0f6864c90406fdbc255f01d83bc83c"}, + {file = "grpcio-1.70.0-cp39-cp39-linux_armv7l.whl", hash = "sha256:4f1937f47c77392ccd555728f564a49128b6a197a05a5cd527b796d36f3387d0"}, + {file = "grpcio-1.70.0-cp39-cp39-macosx_10_14_universal2.whl", hash = "sha256:0cd430b9215a15c10b0e7d78f51e8a39d6cf2ea819fd635a7214fae600b1da27"}, + {file = "grpcio-1.70.0-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:e27585831aa6b57b9250abaf147003e126cd3a6c6ca0c531a01996f31709bed1"}, + {file = "grpcio-1.70.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c1af8e15b0f0fe0eac75195992a63df17579553b0c4af9f8362cc7cc99ccddf4"}, + {file = "grpcio-1.70.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cbce24409beaee911c574a3d75d12ffb8c3e3dd1b813321b1d7a96bbcac46bf4"}, + {file = "grpcio-1.70.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:ff4a8112a79464919bb21c18e956c54add43ec9a4850e3949da54f61c241a4a6"}, + {file = "grpcio-1.70.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5413549fdf0b14046c545e19cfc4eb1e37e9e1ebba0ca390a8d4e9963cab44d2"}, + {file = "grpcio-1.70.0-cp39-cp39-win32.whl", hash = "sha256:b745d2c41b27650095e81dea7091668c040457483c9bdb5d0d9de8f8eb25e59f"}, + {file = "grpcio-1.70.0-cp39-cp39-win_amd64.whl", hash = "sha256:a31d7e3b529c94e930a117b2175b2efd179d96eb3c7a21ccb0289a8ab05b645c"}, + {file = "grpcio-1.70.0.tar.gz", hash = "sha256:8d1584a68d5922330025881e63a6c1b54cc8117291d382e4fa69339b6d914c56"}, ] [package.extras] -protobuf = ["grpcio-tools (>=1.65.4)"] +protobuf = ["grpcio-tools (>=1.70.0)"] [[package]] name = "h5py" @@ -623,6 +995,7 @@ version = "3.11.0" description = "Read and write HDF5 files from Python" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ {file = "h5py-3.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1625fd24ad6cfc9c1ccd44a66dac2396e7ee74940776792772819fc69f3a3731"}, {file = "h5py-3.11.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c072655ad1d5fe9ef462445d3e77a8166cbfa5e599045f8aa3c19b75315f10e5"}, @@ -652,33 +1025,42 @@ numpy = ">=1.17.3" [[package]] name = "idna" -version = "3.7" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.6" +groups = ["main"] files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + [[package]] name = "importlib-metadata" -version = "8.2.0" +version = "8.5.0" description = "Read metadata from Python packages" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "importlib_metadata-8.2.0-py3-none-any.whl", hash = "sha256:11901fa0c2f97919b288679932bb64febaeacf289d18ac84dd68cb2e74213369"}, - {file = "importlib_metadata-8.2.0.tar.gz", hash = "sha256:72e8d4399996132204f9a16dcc751af254a48f8d1b20b9ff0f98d4a8f901e73d"}, + {file = "importlib_metadata-8.5.0-py3-none-any.whl", hash = "sha256:45e54197d28b7a7f1559e60b95e7c567032b602131fbd588f1497f47880aa68b"}, + {file = "importlib_metadata-8.5.0.tar.gz", hash = "sha256:71522656f0abace1d072b9e5481a48f07c138e00f079c38c8f883823f9c26bd7"}, ] [package.dependencies] -zipp = ">=0.5" +zipp = ">=3.20" [package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1) ; sys_platform != \"cygwin\""] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +enabler = ["pytest-enabler (>=2.2)"] perf = ["ipython"] -test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] +test = ["flufl.flake8", "importlib-resources (>=1.3) ; python_version < \"3.9\"", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-perf (>=0.9.2)"] +type = ["pytest-mypy"] [[package]] name = "ipykernel" @@ -686,6 +1068,7 @@ version = "6.29.5" description = "IPython Kernel for Jupyter" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, @@ -719,6 +1102,7 @@ version = "8.12.3" description = "IPython: Productive Interactive Computing" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, @@ -754,22 +1138,41 @@ test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pa [[package]] name = "jedi" -version = "0.19.1" +version = "0.19.2" description = "An autocompletion tool for Python that can be used for text editors." optional = false python-versions = ">=3.6" +groups = ["main"] files = [ - {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, - {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, + {file = "jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9"}, + {file = "jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0"}, ] [package.dependencies] -parso = ">=0.8.3,<0.9.0" +parso = ">=0.8.4,<0.9.0" [package.extras] docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] -testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<9.0.0)"] + +[[package]] +name = "jinja2" +version = "3.1.6" +description = "A very fast and expressive template engine." +optional = false +python-versions = ">=3.7" +groups = ["main"] +files = [ + {file = "jinja2-3.1.6-py3-none-any.whl", hash = "sha256:85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67"}, + {file = "jinja2-3.1.6.tar.gz", hash = "sha256:0137fb05990d35f1275a587e9aee6d56da821fc83491a0fb838183be43f66d6d"}, +] + +[package.dependencies] +MarkupSafe = ">=2.0" + +[package.extras] +i18n = ["Babel (>=2.7)"] [[package]] name = "joblib" @@ -777,6 +1180,7 @@ version = "1.4.2" description = "Lightweight pipelining with Python functions" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, @@ -784,13 +1188,14 @@ files = [ [[package]] name = "jupyter-client" -version = "8.6.2" +version = "8.6.3" description = "Jupyter protocol implementation and client libraries" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"}, - {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"}, + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, ] [package.dependencies] @@ -803,7 +1208,7 @@ traitlets = ">=5.3" [package.extras] docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] -test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko ; sys_platform == \"win32\"", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] [[package]] name = "jupyter-core" @@ -811,6 +1216,7 @@ version = "5.7.2" description = "Jupyter core package. A base package on which Jupyter projects rely." optional = false python-versions = ">=3.8" +groups = ["main"] files = [ {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, @@ -831,6 +1237,7 @@ version = "1.0.19" description = "A general purpose library for community detection, network embedding, and graph mining research." optional = false python-versions = "*" +groups = ["main"] files = [ {file = "karateclub-1.0.19.tar.gz", hash = "sha256:0e43f9072f028f471f935a47746c71d24df0472eb5fafd77be9f5619a1e0f804"}, ] @@ -853,6 +1260,7 @@ version = "2.7.0" description = "Deep learning for humans." optional = false python-versions = "*" +groups = ["main"] files = [ {file = "keras-2.7.0-py2.py3-none-any.whl", hash = "sha256:0c33ae1f728064ca0d35dfba999e9c316f03623bf5688c82fb83cc74a80ea248"}, ] @@ -863,6 +1271,7 @@ version = "1.1.2" description = "Easy data preprocessing and data augmentation for deep learning models" optional = false python-versions = "*" +groups = ["main"] files = [ {file = "Keras_Preprocessing-1.1.2-py2.py3-none-any.whl", hash = "sha256:7b82029b130ff61cc99b55f3bd27427df4838576838c5b2f65940e4fcec99a7b"}, {file = "Keras_Preprocessing-1.1.2.tar.gz", hash = "sha256:add82567c50c8bc648c14195bf544a5ce7c1f76761536956c3d2978970179ef3"}, @@ -879,115 +1288,126 @@ tests = ["Pillow", "keras", "pandas", "pytest", "pytest-cov", "pytest-xdist", "t [[package]] name = "kiwisolver" -version = "1.4.5" +version = "1.4.7" description = "A fast implementation of the Cassowary constraint solver" optional = false -python-versions = ">=3.7" -files = [ - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, - {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, - {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, - {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, - {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, - {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, - {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, - {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, - {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, - {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, - {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, - {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8a9c83f75223d5e48b0bc9cb1bf2776cf01563e00ade8775ffe13b0b6e1af3a6"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:58370b1ffbd35407444d57057b57da5d6549d2d854fa30249771775c63b5fe17"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa0abdf853e09aff551db11fce173e2177d00786c688203f52c87ad7fcd91ef9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8d53103597a252fb3ab8b5845af04c7a26d5e7ea8122303dd7a021176a87e8b9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:88f17c5ffa8e9462fb79f62746428dd57b46eb931698e42e990ad63103f35e6c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88a9ca9c710d598fd75ee5de59d5bda2684d9db36a9f50b6125eaea3969c2599"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4d742cb7af1c28303a51b7a27aaee540e71bb8e24f68c736f6f2ffc82f2bf05"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28c7fea2196bf4c2f8d46a0415c77a1c480cc0724722f23d7410ffe9842c407"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e968b84db54f9d42046cf154e02911e39c0435c9801681e3fc9ce8a3c4130278"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0c18ec74c0472de033e1bebb2911c3c310eef5649133dd0bedf2a169a1b269e5"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8f0ea6da6d393d8b2e187e6a5e3fb81f5862010a40c3945e2c6d12ae45cfb2ad"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:f106407dda69ae456dd1227966bf445b157ccc80ba0dff3802bb63f30b74e895"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84ec80df401cfee1457063732d90022f93951944b5b58975d34ab56bb150dfb3"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win32.whl", hash = "sha256:71bb308552200fb2c195e35ef05de12f0c878c07fc91c270eb3d6e41698c3bcc"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_amd64.whl", hash = "sha256:44756f9fd339de0fb6ee4f8c1696cfd19b2422e0d70b4cefc1cc7f1f64045a8c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_arm64.whl", hash = "sha256:78a42513018c41c2ffd262eb676442315cbfe3c44eed82385c2ed043bc63210a"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d2b0e12a42fb4e72d509fc994713d099cbb15ebf1103545e8a45f14da2dfca54"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a8781ac3edc42ea4b90bc23e7d37b665d89423818e26eb6df90698aa2287c95"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46707a10836894b559e04b0fd143e343945c97fd170d69a2d26d640b4e297935"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef97b8df011141c9b0f6caf23b29379f87dd13183c978a30a3c546d2c47314cb"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab58c12a2cd0fc769089e6d38466c46d7f76aced0a1f54c77652446733d2d02"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:803b8e1459341c1bb56d1c5c010406d5edec8a0713a0945851290a7930679b51"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9a9e8a507420fe35992ee9ecb302dab68550dedc0da9e2880dd88071c5fb052"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18077b53dc3bb490e330669a99920c5e6a496889ae8c63b58fbc57c3d7f33a18"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6af936f79086a89b3680a280c47ea90b4df7047b5bdf3aa5c524bbedddb9e545"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3abc5b19d24af4b77d1598a585b8a719beb8569a71568b66f4ebe1fb0449460b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:933d4de052939d90afbe6e9d5273ae05fb836cc86c15b686edd4b3560cc0ee36"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:65e720d2ab2b53f1f72fb5da5fb477455905ce2c88aaa671ff0a447c2c80e8e3"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3bf1ed55088f214ba6427484c59553123fdd9b218a42bbc8c6496d6754b1e523"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win32.whl", hash = "sha256:4c00336b9dd5ad96d0a558fd18a8b6f711b7449acce4c157e7343ba92dd0cf3d"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_amd64.whl", hash = "sha256:929e294c1ac1e9f615c62a4e4313ca1823ba37326c164ec720a803287c4c499b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_arm64.whl", hash = "sha256:e33e8fbd440c917106b237ef1a2f1449dfbb9b6f6e1ce17c94cd6a1e0d438376"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:5360cc32706dab3931f738d3079652d20982511f7c0ac5711483e6eab08efff2"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:942216596dc64ddb25adb215c3c783215b23626f8d84e8eff8d6d45c3f29f75a"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:48b571ecd8bae15702e4f22d3ff6a0f13e54d3d00cd25216d5e7f658242065ee"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad42ba922c67c5f219097b28fae965e10045ddf145d2928bfac2eb2e17673640"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:612a10bdae23404a72941a0fc8fa2660c6ea1217c4ce0dbcab8a8f6543ea9e7f"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9e838bba3a3bac0fe06d849d29772eb1afb9745a59710762e4ba3f4cb8424483"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:22f499f6157236c19f4bbbd472fa55b063db77a16cd74d49afe28992dff8c258"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693902d433cf585133699972b6d7c42a8b9f8f826ebcaf0132ff55200afc599e"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4e77f2126c3e0b0d055f44513ed349038ac180371ed9b52fe96a32aa071a5107"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:657a05857bda581c3656bfc3b20e353c232e9193eb167766ad2dc58b56504948"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4bfa75a048c056a411f9705856abfc872558e33c055d80af6a380e3658766038"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:34ea1de54beef1c104422d210c47c7d2a4999bdecf42c7b5718fbe59a4cac383"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:90da3b5f694b85231cf93586dad5e90e2d71b9428f9aad96952c99055582f520"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win32.whl", hash = "sha256:18e0cca3e008e17fe9b164b55735a325140a5a35faad8de92dd80265cd5eb80b"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_amd64.whl", hash = "sha256:58cb20602b18f86f83a5c87d3ee1c766a79c0d452f8def86d925e6c60fbf7bfb"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_arm64.whl", hash = "sha256:f5a8b53bdc0b3961f8b6125e198617c40aeed638b387913bf1ce78afb1b0be2a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:2e6039dcbe79a8e0f044f1c39db1986a1b8071051efba3ee4d74f5b365f5226e"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a1ecf0ac1c518487d9d23b1cd7139a6a65bc460cd101ab01f1be82ecf09794b6"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7ab9ccab2b5bd5702ab0803676a580fffa2aa178c2badc5557a84cc943fcf750"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f816dd2277f8d63d79f9c8473a79fe54047bc0467754962840782c575522224d"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf8bcc23ceb5a1b624572a1623b9f79d2c3b337c8c455405ef231933a10da379"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dea0bf229319828467d7fca8c7c189780aa9ff679c94539eed7532ebe33ed37c"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c06a4c7cf15ec739ce0e5971b26c93638730090add60e183530d70848ebdd34"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5337ec7809bcd0f424c6b705ecf97941c46279cf5ed92311782c7c9c2026f07f"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4c26ed10c4f6fa6ddb329a5120ba3b6db349ca192ae211e882970bfc9d91420b"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c619b101e6de2222c1fcb0531e1b17bbffbe54294bfba43ea0d411d428618c27"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:073a36c8273647592ea332e816e75ef8da5c303236ec0167196793eb1e34657a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3ce6b2b0231bda412463e152fc18335ba32faf4e8c23a754ad50ffa70e4091ee"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win32.whl", hash = "sha256:f4c9aee212bc89d4e13f58be11a56cc8036cabad119259d12ace14b34476fd07"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_amd64.whl", hash = "sha256:8a3ec5aa8e38fc4c8af308917ce12c536f1c88452ce554027e55b22cbbfbff76"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_arm64.whl", hash = "sha256:76c8094ac20ec259471ac53e774623eb62e6e1f56cd8690c67ce6ce4fcb05650"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5d5abf8f8ec1f4e22882273c423e16cae834c36856cac348cfbfa68e01c40f3a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:aeb3531b196ef6f11776c21674dba836aeea9d5bd1cf630f869e3d90b16cfade"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b7d755065e4e866a8086c9bdada157133ff466476a2ad7861828e17b6026e22c"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08471d4d86cbaec61f86b217dd938a83d85e03785f51121e791a6e6689a3be95"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7bbfcb7165ce3d54a3dfbe731e470f65739c4c1f85bb1018ee912bae139e263b"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d34eb8494bea691a1a450141ebb5385e4b69d38bb8403b5146ad279f4b30fa3"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9242795d174daa40105c1d86aba618e8eab7bf96ba8c3ee614da8302a9f95503"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a0f64a48bb81af7450e641e3fe0b0394d7381e342805479178b3d335d60ca7cf"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8e045731a5416357638d1700927529e2b8ab304811671f665b225f8bf8d8f933"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4322872d5772cae7369f8351da1edf255a604ea7087fe295411397d0cfd9655e"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e1631290ee9271dffe3062d2634c3ecac02c83890ada077d225e081aca8aab89"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:edcfc407e4eb17e037bca59be0e85a2031a2ac87e4fed26d3e9df88b4165f92d"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:4d05d81ecb47d11e7f8932bd8b61b720bf0b41199358f3f5e36d38e28f0532c5"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win32.whl", hash = "sha256:b38ac83d5f04b15e515fd86f312479d950d05ce2368d5413d46c088dda7de90a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win_amd64.whl", hash = "sha256:d83db7cde68459fc803052a55ace60bea2bae361fc3b7a6d5da07e11954e4b09"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3f9362ecfca44c863569d3d3c033dbe8ba452ff8eed6f6b5806382741a1334bd"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e8df2eb9b2bac43ef8b082e06f750350fbbaf2887534a5be97f6cf07b19d9583"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f32d6edbc638cde7652bd690c3e728b25332acbadd7cad670cc4a02558d9c417"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e2e6c39bd7b9372b0be21456caab138e8e69cc0fc1190a9dfa92bd45a1e6e904"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dda56c24d869b1193fcc763f1284b9126550eaf84b88bbc7256e15028f19188a"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79849239c39b5e1fd906556c474d9b0439ea6792b637511f3fe3a41158d89ca8"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5e3bc157fed2a4c02ec468de4ecd12a6e22818d4f09cde2c31ee3226ffbefab2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3da53da805b71e41053dc670f9a820d1157aae77b6b944e08024d17bcd51ef88"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:8705f17dfeb43139a692298cb6637ee2e59c0194538153e83e9ee0c75c2eddde"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:82a5c2f4b87c26bb1a0ef3d16b5c4753434633b83d365cc0ddf2770c93829e3c"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce8be0466f4c0d585cdb6c1e2ed07232221df101a4c6f28821d2aa754ca2d9e2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:409afdfe1e2e90e6ee7fc896f3df9a7fec8e793e58bfa0d052c8a82f99c37abb"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5b9c3f4ee0b9a439d2415012bd1b1cc2df59e4d6a9939f4d669241d30b414327"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win32.whl", hash = "sha256:a79ae34384df2b615eefca647a2873842ac3b596418032bef9a7283675962644"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_amd64.whl", hash = "sha256:cf0438b42121a66a3a667de17e779330fc0f20b0d97d59d2f2121e182b0505e4"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_arm64.whl", hash = "sha256:764202cc7e70f767dab49e8df52c7455e8de0df5d858fa801a11aa0d882ccf3f"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:94252291e3fe68001b1dd747b4c0b3be12582839b95ad4d1b641924d68fd4643"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:5b7dfa3b546da08a9f622bb6becdb14b3e24aaa30adba66749d38f3cc7ea9706"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3de6481f4ed8b734da5df134cd5a6a64fe32124fe83dde1e5b5f29fe30b1e6"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a91b5f9f1205845d488c928e8570dcb62b893372f63b8b6e98b863ebd2368ff2"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40fa14dbd66b8b8f470d5fc79c089a66185619d31645f9b0773b88b19f7223c4"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:eb542fe7933aa09d8d8f9d9097ef37532a7df6497819d16efe4359890a2f417a"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bfa1acfa0c54932d5607e19a2c24646fb4c1ae2694437789129cf099789a3b00"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:eee3ea935c3d227d49b4eb85660ff631556841f6e567f0f7bda972df6c2c9935"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f3160309af4396e0ed04db259c3ccbfdc3621b5559b5453075e5de555e1f3a1b"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a17f6a29cf8935e587cc8a4dbfc8368c55edc645283db0ce9801016f83526c2d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10849fb2c1ecbfae45a693c070e0320a91b35dd4bcf58172c023b994283a124d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:ac542bf38a8a4be2dc6b15248d36315ccc65f0743f7b1a76688ffb6b5129a5c2"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8b01aac285f91ca889c800042c35ad3b239e704b150cfd3382adfc9dcc780e39"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:48be928f59a1f5c8207154f935334d374e79f2b5d212826307d072595ad76a2e"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f37cfe618a117e50d8c240555331160d73d0411422b59b5ee217843d7b693608"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:599b5c873c63a1f6ed7eead644a8a380cfbdf5db91dcb6f85707aaab213b1674"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:801fa7802e5cfabe3ab0c81a34c323a319b097dfb5004be950482d882f3d7225"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0c6c43471bc764fad4bc99c5c2d6d16a676b1abf844ca7c8702bdae92df01ee0"}, + {file = "kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60"}, ] [[package]] @@ -996,6 +1416,7 @@ version = "18.1.1" description = "Clang Python Bindings, mirrored from the official LLVM repo: https://github.com/llvm/llvm-project/tree/main/clang/bindings/python, to make the installation process easier." optional = false python-versions = "*" +groups = ["main"] files = [ {file = "libclang-18.1.1-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:6f14c3f194704e5d09769108f03185fce7acaf1d1ae4bbb2f30a72c2400cb7c5"}, {file = "libclang-18.1.1-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:83ce5045d101b669ac38e6da8e58765f12da2d3aafb3b9b98d88b286a60964d8"}, @@ -1008,15 +1429,38 @@ files = [ {file = "libclang-18.1.1.tar.gz", hash = "sha256:a1214966d08d73d971287fc3ead8dfaf82eb07fb197680d8b3859dbbbbf78250"}, ] +[[package]] +name = "lightning-utilities" +version = "0.11.9" +description = "Lightning toolbox for across the our ecosystem." +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "lightning_utilities-0.11.9-py3-none-any.whl", hash = "sha256:ac6d4e9e28faf3ff4be997876750fee10dc604753dbc429bf3848a95c5d7e0d2"}, + {file = "lightning_utilities-0.11.9.tar.gz", hash = "sha256:f5052b81344cc2684aa9afd74b7ce8819a8f49a858184ec04548a5a109dfd053"}, +] + +[package.dependencies] +packaging = ">=17.1" +setuptools = "*" +typing-extensions = "*" + +[package.extras] +cli = ["fire"] +docs = ["requests (>=2.0.0)"] +typing = ["mypy (>=1.0.0)", "types-setuptools"] + [[package]] name = "markdown" -version = "3.6" +version = "3.7" description = "Python implementation of John Gruber's Markdown." optional = false python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "Markdown-3.6-py3-none-any.whl", hash = "sha256:48f276f4d8cfb8ce6527c8f79e2ee29708508bf4d40aa410fbc3b4ee832c850f"}, - {file = "Markdown-3.6.tar.gz", hash = "sha256:ed4f41f6daecbeeb96e576ce414c41d2d876daa9a16cb35fa8ed8c2ddfad0224"}, + {file = "Markdown-3.7-py3-none-any.whl", hash = "sha256:7eb6df5690b81a1d7942992c97fad2938e956e79df20cbc6186e9c3a77b1c803"}, + {file = "markdown-3.7.tar.gz", hash = "sha256:2ae2471477cfd02dbbf038d5d9bc226d40def84b4fe2986e49b59b6b472bbed2"}, ] [package.dependencies] @@ -1032,6 +1476,7 @@ version = "2.1.5" description = "Safely add untrusted strings to HTML/XML markup." optional = false python-versions = ">=3.7" +groups = ["main"] files = [ {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, @@ -1101,6 +1546,7 @@ version = "3.2.2" description = "Python plotting package" optional = false python-versions = ">=3.6" +groups = ["main"] files = [ {file = "matplotlib-3.2.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a47abc48c7b81fe6e636dde8a58e49b13d87d140e0f448213a4879f4a3f73345"}, {file = "matplotlib-3.2.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:20bcd11efe194cd302bd0653cb025b8d16bcd80442359bfca8d49dc805f35ec8"}, @@ -1133,6 +1579,7 @@ version = "0.1.7" description = "Inline Matplotlib backend for Jupyter" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, @@ -1141,12 +1588,136 @@ files = [ [package.dependencies] traitlets = "*" +[[package]] +name = "mpmath" +version = "1.3.0" +description = "Python library for arbitrary-precision floating-point arithmetic" +optional = false +python-versions = "*" +groups = ["main"] +files = [ + {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, + {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, +] + +[package.extras] +develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"] +docs = ["sphinx"] +gmpy = ["gmpy2 (>=2.1.0a4) ; platform_python_implementation != \"PyPy\""] +tests = ["pytest (>=4.6)"] + +[[package]] +name = "multidict" +version = "6.1.0" +description = "multidict implementation" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + [[package]] name = "nest-asyncio" version = "1.6.0" description = "Patch asyncio to allow nested event loops" optional = false python-versions = ">=3.5" +groups = ["main"] files = [ {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, @@ -1158,6 +1729,7 @@ version = "2.5" description = "Python package for creating and manipulating graphs and networks" optional = false python-versions = ">=3.6" +groups = ["main"] files = [ {file = "networkx-2.5-py3-none-any.whl", hash = "sha256:8c5812e9f798d37c50570d15c4a69d5710a18d77bafc903ee9c5fba7454c616c"}, {file = "networkx-2.5.tar.gz", hash = "sha256:7978955423fbc9639c10498878be59caf99b44dc304c2286162fd24b458c1602"}, @@ -1185,6 +1757,7 @@ version = "0.3.3" description = "Implementation of the node2vec algorithm." optional = false python-versions = "*" +groups = ["main"] files = [ {file = "node2vec-0.3.3.tar.gz", hash = "sha256:a122796952137bc91df5e9a51525180d510e1f4e4208eb4a21329137c38354d8"}, ] @@ -1202,6 +1775,7 @@ version = "1.24.4" description = "Fundamental package for array computing in Python" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, @@ -1233,12 +1807,179 @@ files = [ {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, ] +[[package]] +name = "nvidia-cublas-cu12" +version = "12.1.3.1" +description = "CUBLAS native runtime libraries" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728"}, + {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-win_amd64.whl", hash = "sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906"}, +] + +[[package]] +name = "nvidia-cuda-cupti-cu12" +version = "12.1.105" +description = "CUDA profiling tools runtime libs." +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e"}, + {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4"}, +] + +[[package]] +name = "nvidia-cuda-nvrtc-cu12" +version = "12.1.105" +description = "NVRTC native runtime libraries" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2"}, + {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed"}, +] + +[[package]] +name = "nvidia-cuda-runtime-cu12" +version = "12.1.105" +description = "CUDA Runtime native Libraries" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40"}, + {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344"}, +] + +[[package]] +name = "nvidia-cudnn-cu12" +version = "8.9.2.26" +description = "cuDNN runtime libraries" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl", hash = "sha256:5ccb288774fdfb07a7e7025ffec286971c06d8d7b4fb162525334616d7629ff9"}, +] + +[package.dependencies] +nvidia-cublas-cu12 = "*" + +[[package]] +name = "nvidia-cufft-cu12" +version = "11.0.2.54" +description = "CUFFT native runtime libraries" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl", hash = "sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56"}, + {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-win_amd64.whl", hash = "sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253"}, +] + +[[package]] +name = "nvidia-curand-cu12" +version = "10.3.2.106" +description = "CURAND native runtime libraries" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0"}, + {file = "nvidia_curand_cu12-10.3.2.106-py3-none-win_amd64.whl", hash = "sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a"}, +] + +[[package]] +name = "nvidia-cusolver-cu12" +version = "11.4.5.107" +description = "CUDA solver native runtime libraries" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd"}, + {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-win_amd64.whl", hash = "sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5"}, +] + +[package.dependencies] +nvidia-cublas-cu12 = "*" +nvidia-cusparse-cu12 = "*" +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-cusparse-cu12" +version = "12.1.0.106" +description = "CUSPARSE native runtime libraries" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c"}, + {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-win_amd64.whl", hash = "sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a"}, +] + +[package.dependencies] +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-nccl-cu12" +version = "2.18.1" +description = "NVIDIA Collective Communication Library (NCCL) Runtime" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_nccl_cu12-2.18.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:1a6c4acefcbebfa6de320f412bf7866de856e786e0462326ba1bac40de0b5e71"}, +] + +[[package]] +name = "nvidia-nvjitlink-cu12" +version = "12.8.93" +description = "Nvidia JIT LTO Library" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_nvjitlink_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl", hash = "sha256:81ff63371a7ebd6e6451970684f916be2eab07321b73c9d244dc2b4da7f73b88"}, + {file = "nvidia_nvjitlink_cu12-12.8.93-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:adccd7161ace7261e01bb91e44e88da350895c270d23f744f0820c818b7229e7"}, + {file = "nvidia_nvjitlink_cu12-12.8.93-py3-none-win_amd64.whl", hash = "sha256:bd93fbeeee850917903583587f4fc3a4eafa022e34572251368238ab5e6bd67f"}, +] + +[[package]] +name = "nvidia-nvtx-cu12" +version = "12.1.105" +description = "NVIDIA Tools Extension" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5"}, + {file = "nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82"}, +] + [[package]] name = "nxt_gem" version = "2.0.1" description = "nxt_gem: A Python module for Graph Embedding Methods" optional = false python-versions = "*" +groups = ["main"] files = [] develop = false @@ -1262,6 +2003,7 @@ version = "3.2.2" description = "A generic, spec-compliant, thorough implementation of the OAuth request-signing logic" optional = false python-versions = ">=3.6" +groups = ["main"] files = [ {file = "oauthlib-3.2.2-py3-none-any.whl", hash = "sha256:8139f29aac13e25d502680e9e19963e83f16838d48a0d71c287fe40e7067fbca"}, {file = "oauthlib-3.2.2.tar.gz", hash = "sha256:9859c40929662bec5d64f34d01c99e093149682a3f38915dc0655d5a633dd918"}, @@ -1274,31 +2016,26 @@ signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] [[package]] name = "opt-einsum" -version = "3.3.0" -description = "Optimizing numpys einsum function" +version = "3.4.0" +description = "Path optimization of einsum functions." optional = false -python-versions = ">=3.5" +python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "opt_einsum-3.3.0-py3-none-any.whl", hash = "sha256:2455e59e3947d3c275477df7f5205b30635e266fe6dc300e3d9f9646bfcea147"}, - {file = "opt_einsum-3.3.0.tar.gz", hash = "sha256:59f6475f77bbc37dcf7cd748519c0ec60722e91e63ca114e68821c0c54a46549"}, + {file = "opt_einsum-3.4.0-py3-none-any.whl", hash = "sha256:69bb92469f86a1565195ece4ac0323943e83477171b91d24c35afe028a90d7cd"}, + {file = "opt_einsum-3.4.0.tar.gz", hash = "sha256:96ca72f1b886d148241348783498194c577fa30a8faac108586b14f1ba4473ac"}, ] -[package.dependencies] -numpy = ">=1.7" - -[package.extras] -docs = ["numpydoc", "sphinx (==1.2.3)", "sphinx-rtd-theme", "sphinxcontrib-napoleon"] -tests = ["pytest", "pytest-cov", "pytest-pep8"] - [[package]] name = "packaging" -version = "24.1" +version = "24.2" description = "Core utilities for Python packages" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, - {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, + {file = "packaging-24.2-py3-none-any.whl", hash = "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759"}, + {file = "packaging-24.2.tar.gz", hash = "sha256:c228a6dc5e932d346bc5739379109d49e8853dd8223571c7c5b55260edc0b97f"}, ] [[package]] @@ -1307,6 +2044,7 @@ version = "2.0.3" description = "Powerful data structures for data analysis, time series, and statistics" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ {file = "pandas-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8"}, {file = "pandas-2.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f"}, @@ -1370,6 +2108,7 @@ version = "0.8.4" description = "A Python Parser" optional = false python-versions = ">=3.6" +groups = ["main"] files = [ {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, @@ -1385,6 +2124,8 @@ version = "4.9.0" description = "Pexpect allows easy control of interactive console applications." optional = false python-versions = "*" +groups = ["main"] +markers = "sys_platform != \"win32\"" files = [ {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, @@ -1399,47 +2140,257 @@ version = "0.7.5" description = "Tiny 'shelve'-like database with concurrency support" optional = false python-versions = "*" +groups = ["main"] files = [ {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, ] +[[package]] +name = "pillow" +version = "10.4.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"}, + {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"}, + {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"}, + {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"}, + {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"}, + {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"}, + {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"}, + {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"}, + {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"}, + {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"}, + {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"}, + {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"}, + {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"}, + {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"}, + {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"}, + {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"}, + {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"}, + {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"}, + {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"}, + {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] +fpx = ["olefile"] +mic = ["olefile"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] +typing = ["typing-extensions ; python_version < \"3.10\""] +xmp = ["defusedxml"] + [[package]] name = "platformdirs" -version = "4.2.2" +version = "4.3.6" description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." optional = false python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, - {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, + {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, + {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, ] [package.extras] -docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] -type = ["mypy (>=1.8)"] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] [[package]] name = "prompt-toolkit" -version = "3.0.47" +version = "3.0.50" description = "Library for building powerful interactive command lines in Python" optional = false -python-versions = ">=3.7.0" +python-versions = ">=3.8.0" +groups = ["main"] files = [ - {file = "prompt_toolkit-3.0.47-py3-none-any.whl", hash = "sha256:0d7bfa67001d5e39d02c224b663abc33687405033a8c422d0d675a5a13361d10"}, - {file = "prompt_toolkit-3.0.47.tar.gz", hash = "sha256:1e1b29cb58080b1e69f207c893a1a7bf16d127a5c30c9d17a25a5d77792e5360"}, + {file = "prompt_toolkit-3.0.50-py3-none-any.whl", hash = "sha256:9b6427eb19e479d98acff65196a307c555eb567989e6d88ebbb1b509d9779198"}, + {file = "prompt_toolkit-3.0.50.tar.gz", hash = "sha256:544748f3860a2623ca5cd6d2795e7a14f3d0e1c3c9728359013f79877fc89bab"}, ] [package.dependencies] wcwidth = "*" +[[package]] +name = "propcache" +version = "0.2.0" +description = "Accelerated property cache" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "propcache-0.2.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:c5869b8fd70b81835a6f187c5fdbe67917a04d7e52b6e7cc4e5fe39d55c39d58"}, + {file = "propcache-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:952e0d9d07609d9c5be361f33b0d6d650cd2bae393aabb11d9b719364521984b"}, + {file = "propcache-0.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:33ac8f098df0585c0b53009f039dfd913b38c1d2edafed0cedcc0c32a05aa110"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:97e48e8875e6c13909c800fa344cd54cc4b2b0db1d5f911f840458a500fde2c2"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:388f3217649d6d59292b722d940d4d2e1e6a7003259eb835724092a1cca0203a"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f571aea50ba5623c308aa146eb650eebf7dbe0fd8c5d946e28343cb3b5aad577"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3dfafb44f7bb35c0c06eda6b2ab4bfd58f02729e7c4045e179f9a861b07c9850"}, + {file = "propcache-0.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a3ebe9a75be7ab0b7da2464a77bb27febcb4fab46a34f9288f39d74833db7f61"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d2f0d0f976985f85dfb5f3d685697ef769faa6b71993b46b295cdbbd6be8cc37"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:a3dc1a4b165283bd865e8f8cb5f0c64c05001e0718ed06250d8cac9bec115b48"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:9e0f07b42d2a50c7dd2d8675d50f7343d998c64008f1da5fef888396b7f84630"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:e63e3e1e0271f374ed489ff5ee73d4b6e7c60710e1f76af5f0e1a6117cd26394"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:56bb5c98f058a41bb58eead194b4db8c05b088c93d94d5161728515bd52b052b"}, + {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7665f04d0c7f26ff8bb534e1c65068409bf4687aa2534faf7104d7182debb336"}, + {file = "propcache-0.2.0-cp310-cp310-win32.whl", hash = "sha256:7cf18abf9764746b9c8704774d8b06714bcb0a63641518a3a89c7f85cc02c2ad"}, + {file = "propcache-0.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:cfac69017ef97db2438efb854edf24f5a29fd09a536ff3a992b75990720cdc99"}, + {file = "propcache-0.2.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:63f13bf09cc3336eb04a837490b8f332e0db41da66995c9fd1ba04552e516354"}, + {file = "propcache-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:608cce1da6f2672a56b24a015b42db4ac612ee709f3d29f27a00c943d9e851de"}, + {file = "propcache-0.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:466c219deee4536fbc83c08d09115249db301550625c7fef1c5563a584c9bc87"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc2db02409338bf36590aa985a461b2c96fce91f8e7e0f14c50c5fcc4f229016"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a6ed8db0a556343d566a5c124ee483ae113acc9a557a807d439bcecc44e7dfbb"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:91997d9cb4a325b60d4e3f20967f8eb08dfcb32b22554d5ef78e6fd1dda743a2"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c7dde9e533c0a49d802b4f3f218fa9ad0a1ce21f2c2eb80d5216565202acab4"}, + {file = "propcache-0.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffcad6c564fe6b9b8916c1aefbb37a362deebf9394bd2974e9d84232e3e08504"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:97a58a28bcf63284e8b4d7b460cbee1edaab24634e82059c7b8c09e65284f178"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:945db8ee295d3af9dbdbb698cce9bbc5c59b5c3fe328bbc4387f59a8a35f998d"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:39e104da444a34830751715f45ef9fc537475ba21b7f1f5b0f4d71a3b60d7fe2"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:c5ecca8f9bab618340c8e848d340baf68bcd8ad90a8ecd7a4524a81c1764b3db"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:c436130cc779806bdf5d5fae0d848713105472b8566b75ff70048c47d3961c5b"}, + {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:191db28dc6dcd29d1a3e063c3be0b40688ed76434622c53a284e5427565bbd9b"}, + {file = "propcache-0.2.0-cp311-cp311-win32.whl", hash = "sha256:5f2564ec89058ee7c7989a7b719115bdfe2a2fb8e7a4543b8d1c0cc4cf6478c1"}, + {file = "propcache-0.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:6e2e54267980349b723cff366d1e29b138b9a60fa376664a157a342689553f71"}, + {file = "propcache-0.2.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:2ee7606193fb267be4b2e3b32714f2d58cad27217638db98a60f9efb5efeccc2"}, + {file = "propcache-0.2.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:91ee8fc02ca52e24bcb77b234f22afc03288e1dafbb1f88fe24db308910c4ac7"}, + {file = "propcache-0.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2e900bad2a8456d00a113cad8c13343f3b1f327534e3589acc2219729237a2e8"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f52a68c21363c45297aca15561812d542f8fc683c85201df0bebe209e349f793"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e41d67757ff4fbc8ef2af99b338bfb955010444b92929e9e55a6d4dcc3c4f09"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a64e32f8bd94c105cc27f42d3b658902b5bcc947ece3c8fe7bc1b05982f60e89"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:55346705687dbd7ef0d77883ab4f6fabc48232f587925bdaf95219bae072491e"}, + {file = "propcache-0.2.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:00181262b17e517df2cd85656fcd6b4e70946fe62cd625b9d74ac9977b64d8d9"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6994984550eaf25dd7fc7bd1b700ff45c894149341725bb4edc67f0ffa94efa4"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:56295eb1e5f3aecd516d91b00cfd8bf3a13991de5a479df9e27dd569ea23959c"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:439e76255daa0f8151d3cb325f6dd4a3e93043e6403e6491813bcaaaa8733887"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:f6475a1b2ecb310c98c28d271a30df74f9dd436ee46d09236a6b750a7599ce57"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:3444cdba6628accf384e349014084b1cacd866fbb88433cd9d279d90a54e0b23"}, + {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4a9d9b4d0a9b38d1c391bb4ad24aa65f306c6f01b512e10a8a34a2dc5675d348"}, + {file = "propcache-0.2.0-cp312-cp312-win32.whl", hash = "sha256:69d3a98eebae99a420d4b28756c8ce6ea5a29291baf2dc9ff9414b42676f61d5"}, + {file = "propcache-0.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:ad9c9b99b05f163109466638bd30ada1722abb01bbb85c739c50b6dc11f92dc3"}, + {file = "propcache-0.2.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ecddc221a077a8132cf7c747d5352a15ed763b674c0448d811f408bf803d9ad7"}, + {file = "propcache-0.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0e53cb83fdd61cbd67202735e6a6687a7b491c8742dfc39c9e01e80354956763"}, + {file = "propcache-0.2.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92fe151145a990c22cbccf9ae15cae8ae9eddabfc949a219c9f667877e40853d"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6a21ef516d36909931a2967621eecb256018aeb11fc48656e3257e73e2e247a"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3f88a4095e913f98988f5b338c1d4d5d07dbb0b6bad19892fd447484e483ba6b"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a5b3bb545ead161be780ee85a2b54fdf7092815995661947812dde94a40f6fb"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67aeb72e0f482709991aa91345a831d0b707d16b0257e8ef88a2ad246a7280bf"}, + {file = "propcache-0.2.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3c997f8c44ec9b9b0bcbf2d422cc00a1d9b9c681f56efa6ca149a941e5560da2"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:2a66df3d4992bc1d725b9aa803e8c5a66c010c65c741ad901e260ece77f58d2f"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:3ebbcf2a07621f29638799828b8d8668c421bfb94c6cb04269130d8de4fb7136"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:1235c01ddaa80da8235741e80815ce381c5267f96cc49b1477fdcf8c047ef325"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:3947483a381259c06921612550867b37d22e1df6d6d7e8361264b6d037595f44"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d5bed7f9805cc29c780f3aee05de3262ee7ce1f47083cfe9f77471e9d6777e83"}, + {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e4a91d44379f45f5e540971d41e4626dacd7f01004826a18cb048e7da7e96544"}, + {file = "propcache-0.2.0-cp313-cp313-win32.whl", hash = "sha256:f902804113e032e2cdf8c71015651c97af6418363bea8d78dc0911d56c335032"}, + {file = "propcache-0.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:8f188cfcc64fb1266f4684206c9de0e80f54622c3f22a910cbd200478aeae61e"}, + {file = "propcache-0.2.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:53d1bd3f979ed529f0805dd35ddaca330f80a9a6d90bc0121d2ff398f8ed8861"}, + {file = "propcache-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:83928404adf8fb3d26793665633ea79b7361efa0287dfbd372a7e74311d51ee6"}, + {file = "propcache-0.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:77a86c261679ea5f3896ec060be9dc8e365788248cc1e049632a1be682442063"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:218db2a3c297a3768c11a34812e63b3ac1c3234c3a086def9c0fee50d35add1f"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7735e82e3498c27bcb2d17cb65d62c14f1100b71723b68362872bca7d0913d90"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:20a617c776f520c3875cf4511e0d1db847a076d720714ae35ffe0df3e440be68"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67b69535c870670c9f9b14a75d28baa32221d06f6b6fa6f77a0a13c5a7b0a5b9"}, + {file = "propcache-0.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4569158070180c3855e9c0791c56be3ceeb192defa2cdf6a3f39e54319e56b89"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:db47514ffdbd91ccdc7e6f8407aac4ee94cc871b15b577c1c324236b013ddd04"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_armv7l.whl", hash = "sha256:2a60ad3e2553a74168d275a0ef35e8c0a965448ffbc3b300ab3a5bb9956c2162"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:662dd62358bdeaca0aee5761de8727cfd6861432e3bb828dc2a693aa0471a563"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:25a1f88b471b3bc911d18b935ecb7115dff3a192b6fef46f0bfaf71ff4f12418"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:f60f0ac7005b9f5a6091009b09a419ace1610e163fa5deaba5ce3484341840e7"}, + {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:74acd6e291f885678631b7ebc85d2d4aec458dd849b8c841b57ef04047833bed"}, + {file = "propcache-0.2.0-cp38-cp38-win32.whl", hash = "sha256:d9b6ddac6408194e934002a69bcaadbc88c10b5f38fb9307779d1c629181815d"}, + {file = "propcache-0.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:676135dcf3262c9c5081cc8f19ad55c8a64e3f7282a21266d05544450bffc3a5"}, + {file = "propcache-0.2.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:25c8d773a62ce0451b020c7b29a35cfbc05de8b291163a7a0f3b7904f27253e6"}, + {file = "propcache-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:375a12d7556d462dc64d70475a9ee5982465fbb3d2b364f16b86ba9135793638"}, + {file = "propcache-0.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1ec43d76b9677637a89d6ab86e1fef70d739217fefa208c65352ecf0282be957"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f45eec587dafd4b2d41ac189c2156461ebd0c1082d2fe7013571598abb8505d1"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc092ba439d91df90aea38168e11f75c655880c12782facf5cf9c00f3d42b562"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fa1076244f54bb76e65e22cb6910365779d5c3d71d1f18b275f1dfc7b0d71b4d"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:682a7c79a2fbf40f5dbb1eb6bfe2cd865376deeac65acf9beb607505dced9e12"}, + {file = "propcache-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e40876731f99b6f3c897b66b803c9e1c07a989b366c6b5b475fafd1f7ba3fb8"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:363ea8cd3c5cb6679f1c2f5f1f9669587361c062e4899fce56758efa928728f8"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:140fbf08ab3588b3468932974a9331aff43c0ab8a2ec2c608b6d7d1756dbb6cb"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e70fac33e8b4ac63dfc4c956fd7d85a0b1139adcfc0d964ce288b7c527537fea"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:b33d7a286c0dc1a15f5fc864cc48ae92a846df287ceac2dd499926c3801054a6"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:f6d5749fdd33d90e34c2efb174c7e236829147a2713334d708746e94c4bde40d"}, + {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:22aa8f2272d81d9317ff5756bb108021a056805ce63dd3630e27d042c8092798"}, + {file = "propcache-0.2.0-cp39-cp39-win32.whl", hash = "sha256:73e4b40ea0eda421b115248d7e79b59214411109a5bc47d0d48e4c73e3b8fcf9"}, + {file = "propcache-0.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:9517d5e9e0731957468c29dbfd0f976736a0e55afaea843726e887f36fe017df"}, + {file = "propcache-0.2.0-py3-none-any.whl", hash = "sha256:2ccc28197af5313706511fab3a8b66dcd6da067a1331372c82ea1cb74285e036"}, + {file = "propcache-0.2.0.tar.gz", hash = "sha256:df81779732feb9d01e5d513fad0122efb3d53bbc75f61b2a4f29a020bc985e70"}, +] + [[package]] name = "protobuf" version = "3.20.3" description = "Protocol Buffers" optional = false python-versions = ">=3.7" +groups = ["main"] files = [ {file = "protobuf-3.20.3-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:f4bd856d702e5b0d96a00ec6b307b0f51c1982c2bf9c0052cf9019e9a544ba99"}, {file = "protobuf-3.20.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9aae4406ea63d825636cc11ffb34ad3379335803216ee3a856787bcf5ccc751e"}, @@ -1467,32 +2418,27 @@ files = [ [[package]] name = "psutil" -version = "6.0.0" -description = "Cross-platform lib for process and system monitoring in Python." -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" -files = [ - {file = "psutil-6.0.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a021da3e881cd935e64a3d0a20983bda0bb4cf80e4f74fa9bfcb1bc5785360c6"}, - {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:1287c2b95f1c0a364d23bc6f2ea2365a8d4d9b726a3be7294296ff7ba97c17f0"}, - {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:a9a3dbfb4de4f18174528d87cc352d1f788b7496991cca33c6996f40c9e3c92c"}, - {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:6ec7588fb3ddaec7344a825afe298db83fe01bfaaab39155fa84cf1c0d6b13c3"}, - {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:1e7c870afcb7d91fdea2b37c24aeb08f98b6d67257a5cb0a8bc3ac68d0f1a68c"}, - {file = "psutil-6.0.0-cp27-none-win32.whl", hash = "sha256:02b69001f44cc73c1c5279d02b30a817e339ceb258ad75997325e0e6169d8b35"}, - {file = "psutil-6.0.0-cp27-none-win_amd64.whl", hash = "sha256:21f1fb635deccd510f69f485b87433460a603919b45e2a324ad65b0cc74f8fb1"}, - {file = "psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c588a7e9b1173b6e866756dde596fd4cad94f9399daf99ad8c3258b3cb2b47a0"}, - {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ed2440ada7ef7d0d608f20ad89a04ec47d2d3ab7190896cd62ca5fc4fe08bf0"}, - {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd9a97c8e94059b0ef54a7d4baf13b405011176c3b6ff257c247cae0d560ecd"}, - {file = "psutil-6.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e8d0054fc88153ca0544f5c4d554d42e33df2e009c4ff42284ac9ebdef4132"}, - {file = "psutil-6.0.0-cp36-cp36m-win32.whl", hash = "sha256:fc8c9510cde0146432bbdb433322861ee8c3efbf8589865c8bf8d21cb30c4d14"}, - {file = "psutil-6.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:34859b8d8f423b86e4385ff3665d3f4d94be3cdf48221fbe476e883514fdb71c"}, - {file = "psutil-6.0.0-cp37-abi3-win32.whl", hash = "sha256:a495580d6bae27291324fe60cea0b5a7c23fa36a7cd35035a16d93bdcf076b9d"}, - {file = "psutil-6.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:33ea5e1c975250a720b3a6609c490db40dae5d83a4eb315170c4fe0d8b1f34b3"}, - {file = "psutil-6.0.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:ffe7fc9b6b36beadc8c322f84e1caff51e8703b88eee1da46d1e3a6ae11b4fd0"}, - {file = "psutil-6.0.0.tar.gz", hash = "sha256:8faae4f310b6d969fa26ca0545338b21f73c6b15db7c4a8d934a5482faa818f2"}, +version = "7.0.0" +description = "Cross-platform lib for process and system monitoring in Python. NOTE: the syntax of this script MUST be kept compatible with Python 2.7." +optional = false +python-versions = ">=3.6" +groups = ["main"] +files = [ + {file = "psutil-7.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:101d71dc322e3cffd7cea0650b09b3d08b8e7c4109dd6809fe452dfd00e58b25"}, + {file = "psutil-7.0.0-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:39db632f6bb862eeccf56660871433e111b6ea58f2caea825571951d4b6aa3da"}, + {file = "psutil-7.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1fcee592b4c6f146991ca55919ea3d1f8926497a713ed7faaf8225e174581e91"}, + {file = "psutil-7.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b1388a4f6875d7e2aff5c4ca1cc16c545ed41dd8bb596cefea80111db353a34"}, + {file = "psutil-7.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5f098451abc2828f7dc6b58d44b532b22f2088f4999a937557b603ce72b1993"}, + {file = "psutil-7.0.0-cp36-cp36m-win32.whl", hash = "sha256:84df4eb63e16849689f76b1ffcb36db7b8de703d1bc1fe41773db487621b6c17"}, + {file = "psutil-7.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:1e744154a6580bc968a0195fd25e80432d3afec619daf145b9e5ba16cc1d688e"}, + {file = "psutil-7.0.0-cp37-abi3-win32.whl", hash = "sha256:ba3fcef7523064a6c9da440fc4d6bd07da93ac726b5733c29027d7dc95b39d99"}, + {file = "psutil-7.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:4cf3d4eb1aa9b348dec30105c55cd9b7d4629285735a102beb4441e38db90553"}, + {file = "psutil-7.0.0.tar.gz", hash = "sha256:7be9c3eba38beccb6495ea33afd982a44074b78f28c434a1f51cc07fd315c456"}, ] [package.extras] -test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] +dev = ["abi3audit", "black (==24.10.0)", "check-manifest", "coverage", "packaging", "pylint", "pyperf", "pypinfo", "pytest", "pytest-cov", "pytest-xdist", "requests", "rstcheck", "ruff", "setuptools", "sphinx", "sphinx_rtd_theme", "toml-sort", "twine", "virtualenv", "vulture", "wheel"] +test = ["pytest", "pytest-xdist", "setuptools"] [[package]] name = "ptyprocess" @@ -1500,6 +2446,8 @@ version = "0.7.0" description = "Run a subprocess in a pseudo terminal" optional = false python-versions = "*" +groups = ["main"] +markers = "sys_platform != \"win32\"" files = [ {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, @@ -1511,6 +2459,7 @@ version = "0.2.3" description = "Safely evaluate AST nodes without side effects" optional = false python-versions = "*" +groups = ["main"] files = [ {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, @@ -1521,28 +2470,30 @@ tests = ["pytest"] [[package]] name = "pyasn1" -version = "0.6.0" +version = "0.6.1" description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "pyasn1-0.6.0-py2.py3-none-any.whl", hash = "sha256:cca4bb0f2df5504f02f6f8a775b6e416ff9b0b3b16f7ee80b5a3153d9b804473"}, - {file = "pyasn1-0.6.0.tar.gz", hash = "sha256:3a35ab2c4b5ef98e17dfdec8ab074046fbda76e281c5a706ccd82328cfc8f64c"}, + {file = "pyasn1-0.6.1-py3-none-any.whl", hash = "sha256:0d632f46f2ba09143da3a8afe9e33fb6f92fa2320ab7e886e2d0f7672af84629"}, + {file = "pyasn1-0.6.1.tar.gz", hash = "sha256:6f580d2bdd84365380830acf45550f2511469f673cb4a5ae3857a3170128b034"}, ] [[package]] name = "pyasn1-modules" -version = "0.4.0" +version = "0.4.2" description = "A collection of ASN.1-based protocols modules" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "pyasn1_modules-0.4.0-py3-none-any.whl", hash = "sha256:be04f15b66c206eed667e0bb5ab27e2b1855ea54a842e5037738099e8ca4ae0b"}, - {file = "pyasn1_modules-0.4.0.tar.gz", hash = "sha256:831dbcea1b177b28c9baddf4c6d1013c24c3accd14a1873fffaa6a2e905f17b6"}, + {file = "pyasn1_modules-0.4.2-py3-none-any.whl", hash = "sha256:29253a9207ce32b64c3ac6600edc75368f98473906e8fd1043bd6b5b1de2c14a"}, + {file = "pyasn1_modules-0.4.2.tar.gz", hash = "sha256:677091de870a80aae844b1ca6134f54652fa2c8c5a52aa396440ac3106e941e6"}, ] [package.dependencies] -pyasn1 = ">=0.4.6,<0.7.0" +pyasn1 = ">=0.6.1,<0.7.0" [[package]] name = "pycparser" @@ -1550,6 +2501,8 @@ version = "2.22" description = "C parser in Python" optional = false python-versions = ">=3.8" +groups = ["main"] +markers = "implementation_name == \"pypy\"" files = [ {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, @@ -1557,13 +2510,14 @@ files = [ [[package]] name = "pygments" -version = "2.18.0" +version = "2.19.1" description = "Pygments is a syntax highlighting package written in Python." optional = false python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, - {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, + {file = "pygments-2.19.1-py3-none-any.whl", hash = "sha256:9ea1544ad55cecf4b8242fab6dd35a93bbce657034b0611ee383099054ab6d8c"}, + {file = "pygments-2.19.1.tar.gz", hash = "sha256:61c16d2a8576dc0649d9f39e089b5f02bcd27fba10d8fb4dcc28173f7a45151f"}, ] [package.extras] @@ -1575,6 +2529,7 @@ version = "0.5.1" description = "Graph Signal Processing in Python" optional = false python-versions = "*" +groups = ["main"] files = [ {file = "PyGSP-0.5.1-py2.py3-none-any.whl", hash = "sha256:884765260256f143a92053c420797053fda0f4eba1573471526fb4e62a4c4cde"}, {file = "PyGSP-0.5.1.tar.gz", hash = "sha256:4874ad88793d622d4f578b40c6617a99b1f02bc6c6c4077f0e48cd71c7275800"}, @@ -1585,20 +2540,21 @@ numpy = "*" scipy = "*" [package.extras] -alldeps = ["PyOpenGL", "PyQt5", "PySide", "matplotlib", "pyflann", "pyflann3", "pyqtgraph", "pyunlocbox", "scikit-image"] +alldeps = ["PyOpenGL", "PyQt5 ; python_version >= \"3.5\"", "PySide ; python_version < \"3.5\"", "matplotlib", "pyflann ; python_version == \"2.*\"", "pyflann3 ; python_version == \"3.*\"", "pyqtgraph", "pyunlocbox", "scikit-image"] doc = ["numpydoc", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-bibtex"] pkg = ["twine", "wheel"] test = ["coverage", "coveralls", "flake8"] [[package]] name = "pyparsing" -version = "3.1.2" +version = "3.1.4" description = "pyparsing module - Classes and methods to define and execute parsing grammars" optional = false python-versions = ">=3.6.8" +groups = ["main"] files = [ - {file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"}, - {file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"}, + {file = "pyparsing-3.1.4-py3-none-any.whl", hash = "sha256:a6a7ee4235a3f944aa1fa2249307708f893fe5717dc603503c6c7969c070fb7c"}, + {file = "pyparsing-3.1.4.tar.gz", hash = "sha256:f86ec8d1a83f11977c9a6ea7598e8c27fc5cddfa5b07ea2241edbbde1d7bc032"}, ] [package.extras] @@ -1610,6 +2566,7 @@ version = "2.9.0.post0" description = "Extensions to the standard Python datetime module" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +groups = ["main"] files = [ {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, @@ -1624,6 +2581,7 @@ version = "0.16" description = "Louvain algorithm for community detection" optional = false python-versions = "*" +groups = ["main"] files = [ {file = "python-louvain-0.16.tar.gz", hash = "sha256:b7ba2df5002fd28d3ee789a49532baad11fe648e4f2117cf0798e7520a1da56b"}, ] @@ -1634,154 +2592,144 @@ numpy = "*" [[package]] name = "pytz" -version = "2024.1" +version = "2025.2" description = "World timezone definitions, modern and historical" optional = false python-versions = "*" +groups = ["main"] files = [ - {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, - {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, + {file = "pytz-2025.2-py2.py3-none-any.whl", hash = "sha256:5ddf76296dd8c44c26eb8f4b6f35488f3ccbf6fbbd7adee0b7262d43f0ec2f00"}, + {file = "pytz-2025.2.tar.gz", hash = "sha256:360b9e3dbb49a209c21ad61809c7fb453643e048b38924c765813546746e81c3"}, ] [[package]] name = "pywin32" -version = "306" +version = "310" description = "Python for Window Extensions" optional = false python-versions = "*" -files = [ - {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, - {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, - {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, - {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, - {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, - {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, - {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, - {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, - {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, - {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, - {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, - {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, - {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, - {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, +groups = ["main"] +markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\"" +files = [ + {file = "pywin32-310-cp310-cp310-win32.whl", hash = "sha256:6dd97011efc8bf51d6793a82292419eba2c71cf8e7250cfac03bba284454abc1"}, + {file = "pywin32-310-cp310-cp310-win_amd64.whl", hash = "sha256:c3e78706e4229b915a0821941a84e7ef420bf2b77e08c9dae3c76fd03fd2ae3d"}, + {file = "pywin32-310-cp310-cp310-win_arm64.whl", hash = "sha256:33babed0cf0c92a6f94cc6cc13546ab24ee13e3e800e61ed87609ab91e4c8213"}, + {file = "pywin32-310-cp311-cp311-win32.whl", hash = "sha256:1e765f9564e83011a63321bb9d27ec456a0ed90d3732c4b2e312b855365ed8bd"}, + {file = "pywin32-310-cp311-cp311-win_amd64.whl", hash = "sha256:126298077a9d7c95c53823934f000599f66ec9296b09167810eb24875f32689c"}, + {file = "pywin32-310-cp311-cp311-win_arm64.whl", hash = "sha256:19ec5fc9b1d51c4350be7bb00760ffce46e6c95eaf2f0b2f1150657b1a43c582"}, + {file = "pywin32-310-cp312-cp312-win32.whl", hash = "sha256:8a75a5cc3893e83a108c05d82198880704c44bbaee4d06e442e471d3c9ea4f3d"}, + {file = "pywin32-310-cp312-cp312-win_amd64.whl", hash = "sha256:bf5c397c9a9a19a6f62f3fb821fbf36cac08f03770056711f765ec1503972060"}, + {file = "pywin32-310-cp312-cp312-win_arm64.whl", hash = "sha256:2349cc906eae872d0663d4d6290d13b90621eaf78964bb1578632ff20e152966"}, + {file = "pywin32-310-cp313-cp313-win32.whl", hash = "sha256:5d241a659c496ada3253cd01cfaa779b048e90ce4b2b38cd44168ad555ce74ab"}, + {file = "pywin32-310-cp313-cp313-win_amd64.whl", hash = "sha256:667827eb3a90208ddbdcc9e860c81bde63a135710e21e4cb3348968e4bd5249e"}, + {file = "pywin32-310-cp313-cp313-win_arm64.whl", hash = "sha256:e308f831de771482b7cf692a1f308f8fca701b2d8f9dde6cc440c7da17e47b33"}, + {file = "pywin32-310-cp38-cp38-win32.whl", hash = "sha256:0867beb8addefa2e3979d4084352e4ac6e991ca45373390775f7084cc0209b9c"}, + {file = "pywin32-310-cp38-cp38-win_amd64.whl", hash = "sha256:30f0a9b3138fb5e07eb4973b7077e1883f558e40c578c6925acc7a94c34eaa36"}, + {file = "pywin32-310-cp39-cp39-win32.whl", hash = "sha256:851c8d927af0d879221e616ae1f66145253537bbdd321a77e8ef701b443a9a1a"}, + {file = "pywin32-310-cp39-cp39-win_amd64.whl", hash = "sha256:96867217335559ac619f00ad70e513c0fcf84b8a3af9fc2bba3b59b97da70475"}, ] [[package]] name = "pyzmq" -version = "26.1.0" +version = "26.4.0" description = "Python bindings for 0MQ" optional = false -python-versions = ">=3.7" -files = [ - {file = "pyzmq-26.1.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:263cf1e36862310bf5becfbc488e18d5d698941858860c5a8c079d1511b3b18e"}, - {file = "pyzmq-26.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d5c8b17f6e8f29138678834cf8518049e740385eb2dbf736e8f07fc6587ec682"}, - {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:75a95c2358fcfdef3374cb8baf57f1064d73246d55e41683aaffb6cfe6862917"}, - {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f99de52b8fbdb2a8f5301ae5fc0f9e6b3ba30d1d5fc0421956967edcc6914242"}, - {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7bcbfbab4e1895d58ab7da1b5ce9a327764f0366911ba5b95406c9104bceacb0"}, - {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:77ce6a332c7e362cb59b63f5edf730e83590d0ab4e59c2aa5bd79419a42e3449"}, - {file = "pyzmq-26.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:ba0a31d00e8616149a5ab440d058ec2da621e05d744914774c4dde6837e1f545"}, - {file = "pyzmq-26.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8b88641384e84a258b740801cd4dbc45c75f148ee674bec3149999adda4a8598"}, - {file = "pyzmq-26.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2fa76ebcebe555cce90f16246edc3ad83ab65bb7b3d4ce408cf6bc67740c4f88"}, - {file = "pyzmq-26.1.0-cp310-cp310-win32.whl", hash = "sha256:fbf558551cf415586e91160d69ca6416f3fce0b86175b64e4293644a7416b81b"}, - {file = "pyzmq-26.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:a7b8aab50e5a288c9724d260feae25eda69582be84e97c012c80e1a5e7e03fb2"}, - {file = "pyzmq-26.1.0-cp310-cp310-win_arm64.whl", hash = "sha256:08f74904cb066e1178c1ec706dfdb5c6c680cd7a8ed9efebeac923d84c1f13b1"}, - {file = "pyzmq-26.1.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:46d6800b45015f96b9d92ece229d92f2aef137d82906577d55fadeb9cf5fcb71"}, - {file = "pyzmq-26.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5bc2431167adc50ba42ea3e5e5f5cd70d93e18ab7b2f95e724dd8e1bd2c38120"}, - {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b3bb34bebaa1b78e562931a1687ff663d298013f78f972a534f36c523311a84d"}, - {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3f6329340cef1c7ba9611bd038f2d523cea79f09f9c8f6b0553caba59ec562"}, - {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:471880c4c14e5a056a96cd224f5e71211997d40b4bf5e9fdded55dafab1f98f2"}, - {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:ce6f2b66799971cbae5d6547acefa7231458289e0ad481d0be0740535da38d8b"}, - {file = "pyzmq-26.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0a1f6ea5b1d6cdbb8cfa0536f0d470f12b4b41ad83625012e575f0e3ecfe97f0"}, - {file = "pyzmq-26.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:b45e6445ac95ecb7d728604bae6538f40ccf4449b132b5428c09918523abc96d"}, - {file = "pyzmq-26.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:94c4262626424683feea0f3c34951d39d49d354722db2745c42aa6bb50ecd93b"}, - {file = "pyzmq-26.1.0-cp311-cp311-win32.whl", hash = "sha256:a0f0ab9df66eb34d58205913f4540e2ad17a175b05d81b0b7197bc57d000e829"}, - {file = "pyzmq-26.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:8efb782f5a6c450589dbab4cb0f66f3a9026286333fe8f3a084399149af52f29"}, - {file = "pyzmq-26.1.0-cp311-cp311-win_arm64.whl", hash = "sha256:f133d05aaf623519f45e16ab77526e1e70d4e1308e084c2fb4cedb1a0c764bbb"}, - {file = "pyzmq-26.1.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:3d3146b1c3dcc8a1539e7cc094700b2be1e605a76f7c8f0979b6d3bde5ad4072"}, - {file = "pyzmq-26.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d9270fbf038bf34ffca4855bcda6e082e2c7f906b9eb8d9a8ce82691166060f7"}, - {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:995301f6740a421afc863a713fe62c0aaf564708d4aa057dfdf0f0f56525294b"}, - {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e7eca8b89e56fb8c6c26dd3e09bd41b24789022acf1cf13358e96f1cafd8cae3"}, - {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d4feb2e83dfe9ace6374a847e98ee9d1246ebadcc0cb765482e272c34e5820"}, - {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:d4fafc2eb5d83f4647331267808c7e0c5722c25a729a614dc2b90479cafa78bd"}, - {file = "pyzmq-26.1.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:58c33dc0e185dd97a9ac0288b3188d1be12b756eda67490e6ed6a75cf9491d79"}, - {file = "pyzmq-26.1.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:68a0a1d83d33d8367ddddb3e6bb4afbb0f92bd1dac2c72cd5e5ddc86bdafd3eb"}, - {file = "pyzmq-26.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2ae7c57e22ad881af78075e0cea10a4c778e67234adc65c404391b417a4dda83"}, - {file = "pyzmq-26.1.0-cp312-cp312-win32.whl", hash = "sha256:347e84fc88cc4cb646597f6d3a7ea0998f887ee8dc31c08587e9c3fd7b5ccef3"}, - {file = "pyzmq-26.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:9f136a6e964830230912f75b5a116a21fe8e34128dcfd82285aa0ef07cb2c7bd"}, - {file = "pyzmq-26.1.0-cp312-cp312-win_arm64.whl", hash = "sha256:a4b7a989c8f5a72ab1b2bbfa58105578753ae77b71ba33e7383a31ff75a504c4"}, - {file = "pyzmq-26.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:d416f2088ac8f12daacffbc2e8918ef4d6be8568e9d7155c83b7cebed49d2322"}, - {file = "pyzmq-26.1.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:ecb6c88d7946166d783a635efc89f9a1ff11c33d680a20df9657b6902a1d133b"}, - {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:471312a7375571857a089342beccc1a63584315188560c7c0da7e0a23afd8a5c"}, - {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0e6cea102ffa16b737d11932c426f1dc14b5938cf7bc12e17269559c458ac334"}, - {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec7248673ffc7104b54e4957cee38b2f3075a13442348c8d651777bf41aa45ee"}, - {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:0614aed6f87d550b5cecb03d795f4ddbb1544b78d02a4bd5eecf644ec98a39f6"}, - {file = "pyzmq-26.1.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:e8746ce968be22a8a1801bf4a23e565f9687088580c3ed07af5846580dd97f76"}, - {file = "pyzmq-26.1.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:7688653574392d2eaeef75ddcd0b2de5b232d8730af29af56c5adf1df9ef8d6f"}, - {file = "pyzmq-26.1.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:8d4dac7d97f15c653a5fedcafa82626bd6cee1450ccdaf84ffed7ea14f2b07a4"}, - {file = "pyzmq-26.1.0-cp313-cp313-win32.whl", hash = "sha256:ccb42ca0a4a46232d716779421bbebbcad23c08d37c980f02cc3a6bd115ad277"}, - {file = "pyzmq-26.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e1e5d0a25aea8b691a00d6b54b28ac514c8cc0d8646d05f7ca6cb64b97358250"}, - {file = "pyzmq-26.1.0-cp313-cp313-win_arm64.whl", hash = "sha256:fc82269d24860cfa859b676d18850cbb8e312dcd7eada09e7d5b007e2f3d9eb1"}, - {file = "pyzmq-26.1.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:416ac51cabd54f587995c2b05421324700b22e98d3d0aa2cfaec985524d16f1d"}, - {file = "pyzmq-26.1.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:ff832cce719edd11266ca32bc74a626b814fff236824aa1aeaad399b69fe6eae"}, - {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:393daac1bcf81b2a23e696b7b638eedc965e9e3d2112961a072b6cd8179ad2eb"}, - {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9869fa984c8670c8ab899a719eb7b516860a29bc26300a84d24d8c1b71eae3ec"}, - {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b3b8e36fd4c32c0825b4461372949ecd1585d326802b1321f8b6dc1d7e9318c"}, - {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:3ee647d84b83509b7271457bb428cc347037f437ead4b0b6e43b5eba35fec0aa"}, - {file = "pyzmq-26.1.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:45cb1a70eb00405ce3893041099655265fabcd9c4e1e50c330026e82257892c1"}, - {file = "pyzmq-26.1.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:5cca7b4adb86d7470e0fc96037771981d740f0b4cb99776d5cb59cd0e6684a73"}, - {file = "pyzmq-26.1.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:91d1a20bdaf3b25f3173ff44e54b1cfbc05f94c9e8133314eb2962a89e05d6e3"}, - {file = "pyzmq-26.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c0665d85535192098420428c779361b8823d3d7ec4848c6af3abb93bc5c915bf"}, - {file = "pyzmq-26.1.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:96d7c1d35ee4a495df56c50c83df7af1c9688cce2e9e0edffdbf50889c167595"}, - {file = "pyzmq-26.1.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b281b5ff5fcc9dcbfe941ac5c7fcd4b6c065adad12d850f95c9d6f23c2652384"}, - {file = "pyzmq-26.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5384c527a9a004445c5074f1e20db83086c8ff1682a626676229aafd9cf9f7d1"}, - {file = "pyzmq-26.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:754c99a9840839375ee251b38ac5964c0f369306eddb56804a073b6efdc0cd88"}, - {file = "pyzmq-26.1.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:9bdfcb74b469b592972ed881bad57d22e2c0acc89f5e8c146782d0d90fb9f4bf"}, - {file = "pyzmq-26.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:bd13f0231f4788db619347b971ca5f319c5b7ebee151afc7c14632068c6261d3"}, - {file = "pyzmq-26.1.0-cp37-cp37m-win32.whl", hash = "sha256:c5668dac86a869349828db5fc928ee3f58d450dce2c85607067d581f745e4fb1"}, - {file = "pyzmq-26.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:ad875277844cfaeca7fe299ddf8c8d8bfe271c3dc1caf14d454faa5cdbf2fa7a"}, - {file = "pyzmq-26.1.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:65c6e03cc0222eaf6aad57ff4ecc0a070451e23232bb48db4322cc45602cede0"}, - {file = "pyzmq-26.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:038ae4ffb63e3991f386e7fda85a9baab7d6617fe85b74a8f9cab190d73adb2b"}, - {file = "pyzmq-26.1.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:bdeb2c61611293f64ac1073f4bf6723b67d291905308a7de9bb2ca87464e3273"}, - {file = "pyzmq-26.1.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:61dfa5ee9d7df297c859ac82b1226d8fefaf9c5113dc25c2c00ecad6feeeb04f"}, - {file = "pyzmq-26.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3292d384537b9918010769b82ab3e79fca8b23d74f56fc69a679106a3e2c2cf"}, - {file = "pyzmq-26.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f9499c70c19ff0fbe1007043acb5ad15c1dec7d8e84ab429bca8c87138e8f85c"}, - {file = "pyzmq-26.1.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d3dd5523ed258ad58fed7e364c92a9360d1af8a9371e0822bd0146bdf017ef4c"}, - {file = "pyzmq-26.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:baba2fd199b098c5544ef2536b2499d2e2155392973ad32687024bd8572a7d1c"}, - {file = "pyzmq-26.1.0-cp38-cp38-win32.whl", hash = "sha256:ddbb2b386128d8eca92bd9ca74e80f73fe263bcca7aa419f5b4cbc1661e19741"}, - {file = "pyzmq-26.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:79e45a4096ec8388cdeb04a9fa5e9371583bcb826964d55b8b66cbffe7b33c86"}, - {file = "pyzmq-26.1.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:add52c78a12196bc0fda2de087ba6c876ea677cbda2e3eba63546b26e8bf177b"}, - {file = "pyzmq-26.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:98c03bd7f3339ff47de7ea9ac94a2b34580a8d4df69b50128bb6669e1191a895"}, - {file = "pyzmq-26.1.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dcc37d9d708784726fafc9c5e1232de655a009dbf97946f117aefa38d5985a0f"}, - {file = "pyzmq-26.1.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5a6ed52f0b9bf8dcc64cc82cce0607a3dfed1dbb7e8c6f282adfccc7be9781de"}, - {file = "pyzmq-26.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:451e16ae8bea3d95649317b463c9f95cd9022641ec884e3d63fc67841ae86dfe"}, - {file = "pyzmq-26.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:906e532c814e1d579138177a00ae835cd6becbf104d45ed9093a3aaf658f6a6a"}, - {file = "pyzmq-26.1.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:05bacc4f94af468cc82808ae3293390278d5f3375bb20fef21e2034bb9a505b6"}, - {file = "pyzmq-26.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:57bb2acba798dc3740e913ffadd56b1fcef96f111e66f09e2a8db3050f1f12c8"}, - {file = "pyzmq-26.1.0-cp39-cp39-win32.whl", hash = "sha256:f774841bb0e8588505002962c02da420bcfb4c5056e87a139c6e45e745c0e2e2"}, - {file = "pyzmq-26.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:359c533bedc62c56415a1f5fcfd8279bc93453afdb0803307375ecf81c962402"}, - {file = "pyzmq-26.1.0-cp39-cp39-win_arm64.whl", hash = "sha256:7907419d150b19962138ecec81a17d4892ea440c184949dc29b358bc730caf69"}, - {file = "pyzmq-26.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:b24079a14c9596846bf7516fe75d1e2188d4a528364494859106a33d8b48be38"}, - {file = "pyzmq-26.1.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59d0acd2976e1064f1b398a00e2c3e77ed0a157529779e23087d4c2fb8aaa416"}, - {file = "pyzmq-26.1.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:911c43a4117915203c4cc8755e0f888e16c4676a82f61caee2f21b0c00e5b894"}, - {file = "pyzmq-26.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b10163e586cc609f5f85c9b233195554d77b1e9a0801388907441aaeb22841c5"}, - {file = "pyzmq-26.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:28a8b2abb76042f5fd7bd720f7fea48c0fd3e82e9de0a1bf2c0de3812ce44a42"}, - {file = "pyzmq-26.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bef24d3e4ae2c985034439f449e3f9e06bf579974ce0e53d8a507a1577d5b2ab"}, - {file = "pyzmq-26.1.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:2cd0f4d314f4a2518e8970b6f299ae18cff7c44d4a1fc06fc713f791c3a9e3ea"}, - {file = "pyzmq-26.1.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:fa25a620eed2a419acc2cf10135b995f8f0ce78ad00534d729aa761e4adcef8a"}, - {file = "pyzmq-26.1.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef3b048822dca6d231d8a8ba21069844ae38f5d83889b9b690bf17d2acc7d099"}, - {file = "pyzmq-26.1.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:9a6847c92d9851b59b9f33f968c68e9e441f9a0f8fc972c5580c5cd7cbc6ee24"}, - {file = "pyzmq-26.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c9b9305004d7e4e6a824f4f19b6d8f32b3578aad6f19fc1122aaf320cbe3dc83"}, - {file = "pyzmq-26.1.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:63c1d3a65acb2f9c92dce03c4e1758cc552f1ae5c78d79a44e3bb88d2fa71f3a"}, - {file = "pyzmq-26.1.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d36b8fffe8b248a1b961c86fbdfa0129dfce878731d169ede7fa2631447331be"}, - {file = "pyzmq-26.1.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:67976d12ebfd61a3bc7d77b71a9589b4d61d0422282596cf58c62c3866916544"}, - {file = "pyzmq-26.1.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:998444debc8816b5d8d15f966e42751032d0f4c55300c48cc337f2b3e4f17d03"}, - {file = "pyzmq-26.1.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e5c88b2f13bcf55fee78ea83567b9fe079ba1a4bef8b35c376043440040f7edb"}, - {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d906d43e1592be4b25a587b7d96527cb67277542a5611e8ea9e996182fae410"}, - {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:80b0c9942430d731c786545da6be96d824a41a51742e3e374fedd9018ea43106"}, - {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:314d11564c00b77f6224d12eb3ddebe926c301e86b648a1835c5b28176c83eab"}, - {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:093a1a3cae2496233f14b57f4b485da01b4ff764582c854c0f42c6dd2be37f3d"}, - {file = "pyzmq-26.1.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3c397b1b450f749a7e974d74c06d69bd22dd362142f370ef2bd32a684d6b480c"}, - {file = "pyzmq-26.1.0.tar.gz", hash = "sha256:6c5aeea71f018ebd3b9115c7cb13863dd850e98ca6b9258509de1246461a7e7f"}, +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "pyzmq-26.4.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:0329bdf83e170ac133f44a233fc651f6ed66ef8e66693b5af7d54f45d1ef5918"}, + {file = "pyzmq-26.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:398a825d2dea96227cf6460ce0a174cf7657d6f6827807d4d1ae9d0f9ae64315"}, + {file = "pyzmq-26.4.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6d52d62edc96787f5c1dfa6c6ccff9b581cfae5a70d94ec4c8da157656c73b5b"}, + {file = "pyzmq-26.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1410c3a3705db68d11eb2424d75894d41cff2f64d948ffe245dd97a9debfebf4"}, + {file = "pyzmq-26.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:7dacb06a9c83b007cc01e8e5277f94c95c453c5851aac5e83efe93e72226353f"}, + {file = "pyzmq-26.4.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6bab961c8c9b3a4dc94d26e9b2cdf84de9918931d01d6ff38c721a83ab3c0ef5"}, + {file = "pyzmq-26.4.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:7a5c09413b924d96af2aa8b57e76b9b0058284d60e2fc3730ce0f979031d162a"}, + {file = "pyzmq-26.4.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7d489ac234d38e57f458fdbd12a996bfe990ac028feaf6f3c1e81ff766513d3b"}, + {file = "pyzmq-26.4.0-cp310-cp310-win32.whl", hash = "sha256:dea1c8db78fb1b4b7dc9f8e213d0af3fc8ecd2c51a1d5a3ca1cde1bda034a980"}, + {file = "pyzmq-26.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:fa59e1f5a224b5e04dc6c101d7186058efa68288c2d714aa12d27603ae93318b"}, + {file = "pyzmq-26.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:a651fe2f447672f4a815e22e74630b6b1ec3a1ab670c95e5e5e28dcd4e69bbb5"}, + {file = "pyzmq-26.4.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:bfcf82644c9b45ddd7cd2a041f3ff8dce4a0904429b74d73a439e8cab1bd9e54"}, + {file = "pyzmq-26.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e9bcae3979b2654d5289d3490742378b2f3ce804b0b5fd42036074e2bf35b030"}, + {file = "pyzmq-26.4.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ccdff8ac4246b6fb60dcf3982dfaeeff5dd04f36051fe0632748fc0aa0679c01"}, + {file = "pyzmq-26.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4550af385b442dc2d55ab7717837812799d3674cb12f9a3aa897611839c18e9e"}, + {file = "pyzmq-26.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:2f9f7ffe9db1187a253fca95191854b3fda24696f086e8789d1d449308a34b88"}, + {file = "pyzmq-26.4.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:3709c9ff7ba61589b7372923fd82b99a81932b592a5c7f1a24147c91da9a68d6"}, + {file = "pyzmq-26.4.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:f8f3c30fb2d26ae5ce36b59768ba60fb72507ea9efc72f8f69fa088450cff1df"}, + {file = "pyzmq-26.4.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:382a4a48c8080e273427fc692037e3f7d2851959ffe40864f2db32646eeb3cef"}, + {file = "pyzmq-26.4.0-cp311-cp311-win32.whl", hash = "sha256:d56aad0517d4c09e3b4f15adebba8f6372c5102c27742a5bdbfc74a7dceb8fca"}, + {file = "pyzmq-26.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:963977ac8baed7058c1e126014f3fe58b3773f45c78cce7af5c26c09b6823896"}, + {file = "pyzmq-26.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0c8e8cadc81e44cc5088fcd53b9b3b4ce9344815f6c4a03aec653509296fae3"}, + {file = "pyzmq-26.4.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:5227cb8da4b6f68acfd48d20c588197fd67745c278827d5238c707daf579227b"}, + {file = "pyzmq-26.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e1c07a7fa7f7ba86554a2b1bef198c9fed570c08ee062fd2fd6a4dcacd45f905"}, + {file = "pyzmq-26.4.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae775fa83f52f52de73183f7ef5395186f7105d5ed65b1ae65ba27cb1260de2b"}, + {file = "pyzmq-26.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66c760d0226ebd52f1e6b644a9e839b5db1e107a23f2fcd46ec0569a4fdd4e63"}, + {file = "pyzmq-26.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:ef8c6ecc1d520debc147173eaa3765d53f06cd8dbe7bd377064cdbc53ab456f5"}, + {file = "pyzmq-26.4.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3150ef4084e163dec29ae667b10d96aad309b668fac6810c9e8c27cf543d6e0b"}, + {file = "pyzmq-26.4.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:4448c9e55bf8329fa1dcedd32f661bf611214fa70c8e02fee4347bc589d39a84"}, + {file = "pyzmq-26.4.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:e07dde3647afb084d985310d067a3efa6efad0621ee10826f2cb2f9a31b89d2f"}, + {file = "pyzmq-26.4.0-cp312-cp312-win32.whl", hash = "sha256:ba034a32ecf9af72adfa5ee383ad0fd4f4e38cdb62b13624278ef768fe5b5b44"}, + {file = "pyzmq-26.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:056a97aab4064f526ecb32f4343917a4022a5d9efb6b9df990ff72e1879e40be"}, + {file = "pyzmq-26.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:2f23c750e485ce1eb639dbd576d27d168595908aa2d60b149e2d9e34c9df40e0"}, + {file = "pyzmq-26.4.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:c43fac689880f5174d6fc864857d1247fe5cfa22b09ed058a344ca92bf5301e3"}, + {file = "pyzmq-26.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:902aca7eba477657c5fb81c808318460328758e8367ecdd1964b6330c73cae43"}, + {file = "pyzmq-26.4.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5e48a830bfd152fe17fbdeaf99ac5271aa4122521bf0d275b6b24e52ef35eb6"}, + {file = "pyzmq-26.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31be2b6de98c824c06f5574331f805707c667dc8f60cb18580b7de078479891e"}, + {file = "pyzmq-26.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:6332452034be001bbf3206ac59c0d2a7713de5f25bb38b06519fc6967b7cf771"}, + {file = "pyzmq-26.4.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:da8c0f5dd352136853e6a09b1b986ee5278dfddfebd30515e16eae425c872b30"}, + {file = "pyzmq-26.4.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:f4ccc1a0a2c9806dda2a2dd118a3b7b681e448f3bb354056cad44a65169f6d86"}, + {file = "pyzmq-26.4.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:1c0b5fceadbab461578daf8d1dcc918ebe7ddd2952f748cf30c7cf2de5d51101"}, + {file = "pyzmq-26.4.0-cp313-cp313-win32.whl", hash = "sha256:28e2b0ff5ba4b3dd11062d905682bad33385cfa3cc03e81abd7f0822263e6637"}, + {file = "pyzmq-26.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:23ecc9d241004c10e8b4f49d12ac064cd7000e1643343944a10df98e57bc544b"}, + {file = "pyzmq-26.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:1edb0385c7f025045d6e0f759d4d3afe43c17a3d898914ec6582e6f464203c08"}, + {file = "pyzmq-26.4.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:93a29e882b2ba1db86ba5dd5e88e18e0ac6b627026c5cfbec9983422011b82d4"}, + {file = "pyzmq-26.4.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb45684f276f57110bb89e4300c00f1233ca631f08f5f42528a5c408a79efc4a"}, + {file = "pyzmq-26.4.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f72073e75260cb301aad4258ad6150fa7f57c719b3f498cb91e31df16784d89b"}, + {file = "pyzmq-26.4.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be37e24b13026cfedd233bcbbccd8c0bcd2fdd186216094d095f60076201538d"}, + {file = "pyzmq-26.4.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:237b283044934d26f1eeff4075f751b05d2f3ed42a257fc44386d00df6a270cf"}, + {file = "pyzmq-26.4.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:b30f862f6768b17040929a68432c8a8be77780317f45a353cb17e423127d250c"}, + {file = "pyzmq-26.4.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:c80fcd3504232f13617c6ab501124d373e4895424e65de8b72042333316f64a8"}, + {file = "pyzmq-26.4.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:26a2a7451606b87f67cdeca2c2789d86f605da08b4bd616b1a9981605ca3a364"}, + {file = "pyzmq-26.4.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:831cc53bf6068d46d942af52fa8b0b9d128fb39bcf1f80d468dc9a3ae1da5bfb"}, + {file = "pyzmq-26.4.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:51d18be6193c25bd229524cfac21e39887c8d5e0217b1857998dfbef57c070a4"}, + {file = "pyzmq-26.4.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:445c97854204119ae2232503585ebb4fa7517142f71092cb129e5ee547957a1f"}, + {file = "pyzmq-26.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:807b8f4ad3e6084412c0f3df0613269f552110fa6fb91743e3e306223dbf11a6"}, + {file = "pyzmq-26.4.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c01d109dd675ac47fa15c0a79d256878d898f90bc10589f808b62d021d2e653c"}, + {file = "pyzmq-26.4.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:0a294026e28679a8dd64c922e59411cb586dad307661b4d8a5c49e7bbca37621"}, + {file = "pyzmq-26.4.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:22c8dd677274af8dfb1efd05006d6f68fb2f054b17066e308ae20cb3f61028cf"}, + {file = "pyzmq-26.4.0-cp38-cp38-win32.whl", hash = "sha256:14fc678b696bc42c14e2d7f86ac4e97889d5e6b94d366ebcb637a768d2ad01af"}, + {file = "pyzmq-26.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:d1ef0a536662bbbdc8525f7e2ef19e74123ec9c4578e0582ecd41aedc414a169"}, + {file = "pyzmq-26.4.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:a88643de8abd000ce99ca72056a1a2ae15881ee365ecb24dd1d9111e43d57842"}, + {file = "pyzmq-26.4.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:0a744ce209ecb557406fb928f3c8c55ce79b16c3eeb682da38ef5059a9af0848"}, + {file = "pyzmq-26.4.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9434540f333332224ecb02ee6278b6c6f11ea1266b48526e73c903119b2f420f"}, + {file = "pyzmq-26.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e6c6f0a23e55cd38d27d4c89add963294ea091ebcb104d7fdab0f093bc5abb1c"}, + {file = "pyzmq-26.4.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6145df55dc2309f6ef72d70576dcd5aabb0fd373311613fe85a5e547c722b780"}, + {file = "pyzmq-26.4.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:2ea81823840ef8c56e5d2f9918e4d571236294fea4d1842b302aebffb9e40997"}, + {file = "pyzmq-26.4.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:cc2abc385dc37835445abe206524fbc0c9e3fce87631dfaa90918a1ba8f425eb"}, + {file = "pyzmq-26.4.0-cp39-cp39-win32.whl", hash = "sha256:41a2508fe7bed4c76b4cf55aacfb8733926f59d440d9ae2b81ee8220633b4d12"}, + {file = "pyzmq-26.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:d4000e8255d6cbce38982e5622ebb90823f3409b7ffe8aeae4337ef7d6d2612a"}, + {file = "pyzmq-26.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:b4f6919d9c120488246bdc2a2f96662fa80d67b35bd6d66218f457e722b3ff64"}, + {file = "pyzmq-26.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:98d948288ce893a2edc5ec3c438fe8de2daa5bbbd6e2e865ec5f966e237084ba"}, + {file = "pyzmq-26.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a9f34f5c9e0203ece706a1003f1492a56c06c0632d86cb77bcfe77b56aacf27b"}, + {file = "pyzmq-26.4.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:80c9b48aef586ff8b698359ce22f9508937c799cc1d2c9c2f7c95996f2300c94"}, + {file = "pyzmq-26.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3f2a5b74009fd50b53b26f65daff23e9853e79aa86e0aa08a53a7628d92d44a"}, + {file = "pyzmq-26.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:61c5f93d7622d84cb3092d7f6398ffc77654c346545313a3737e266fc11a3beb"}, + {file = "pyzmq-26.4.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:4478b14cb54a805088299c25a79f27eaf530564a7a4f72bf432a040042b554eb"}, + {file = "pyzmq-26.4.0-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a28ac29c60e4ba84b5f58605ace8ad495414a724fe7aceb7cf06cd0598d04e1"}, + {file = "pyzmq-26.4.0-pp311-pypy311_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:43b03c1ceea27c6520124f4fb2ba9c647409b9abdf9a62388117148a90419494"}, + {file = "pyzmq-26.4.0-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7731abd23a782851426d4e37deb2057bf9410848a4459b5ede4fe89342e687a9"}, + {file = "pyzmq-26.4.0-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:a222ad02fbe80166b0526c038776e8042cd4e5f0dec1489a006a1df47e9040e0"}, + {file = "pyzmq-26.4.0-pp38-pypy38_pp73-macosx_10_15_x86_64.whl", hash = "sha256:91c3ffaea475ec8bb1a32d77ebc441dcdd13cd3c4c284a6672b92a0f5ade1917"}, + {file = "pyzmq-26.4.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d9a78a52668bf5c9e7b0da36aa5760a9fc3680144e1445d68e98df78a25082ed"}, + {file = "pyzmq-26.4.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b70cab356ff8c860118b89dc86cd910c73ce2127eb986dada4fbac399ef644cf"}, + {file = "pyzmq-26.4.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:acae207d4387780838192326b32d373bb286da0b299e733860e96f80728eb0af"}, + {file = "pyzmq-26.4.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:f928eafd15794aa4be75463d537348b35503c1e014c5b663f206504ec1a90fe4"}, + {file = "pyzmq-26.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:552b0d2e39987733e1e9e948a0ced6ff75e0ea39ab1a1db2fc36eb60fd8760db"}, + {file = "pyzmq-26.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd670a8aa843f2ee637039bbd412e0d7294a5e588e1ecc9ad98b0cdc050259a4"}, + {file = "pyzmq-26.4.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d367b7b775a0e1e54a59a2ba3ed4d5e0a31566af97cc9154e34262777dab95ed"}, + {file = "pyzmq-26.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8112af16c406e4a93df2caef49f884f4c2bb2b558b0b5577ef0b2465d15c1abc"}, + {file = "pyzmq-26.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:c76c298683f82669cab0b6da59071f55238c039738297c69f187a542c6d40099"}, + {file = "pyzmq-26.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:49b6ca2e625b46f499fb081aaf7819a177f41eeb555acb05758aa97f4f95d147"}, + {file = "pyzmq-26.4.0.tar.gz", hash = "sha256:4bd13f85f80962f91a651a7356fe0472791a5f7a92f227822b5acf44795c626d"}, ] [package.dependencies] @@ -1793,6 +2741,7 @@ version = "2.32.3" description = "Python HTTP for Humans." optional = false python-versions = ">=3.8" +groups = ["main"] files = [ {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, @@ -1814,6 +2763,7 @@ version = "2.0.0" description = "OAuthlib authentication support for Requests." optional = false python-versions = ">=3.4" +groups = ["main"] files = [ {file = "requests-oauthlib-2.0.0.tar.gz", hash = "sha256:b3dffaebd884d8cd778494369603a9e7b58d29111bf6b41bdc2dcd87203af4e9"}, {file = "requests_oauthlib-2.0.0-py2.py3-none-any.whl", hash = "sha256:7dd8a5c40426b779b0868c404bdef9768deccf22749cde15852df527e6269b36"}, @@ -1832,6 +2782,7 @@ version = "4.9" description = "Pure-Python RSA implementation" optional = false python-versions = ">=3.6,<4" +groups = ["main"] files = [ {file = "rsa-4.9-py3-none-any.whl", hash = "sha256:90260d9058e514786967344d0ef75fa8727eed8a7d2e43ce9f4bcf1b536174f7"}, {file = "rsa-4.9.tar.gz", hash = "sha256:e38464a49c6c85d7f1351b0126661487a7e0a14a50f1675ec50eb34d4f20ef21"}, @@ -1846,6 +2797,7 @@ version = "0.24.0" description = "A set of python modules for machine learning and data mining" optional = false python-versions = ">=3.6" +groups = ["main"] files = [ {file = "scikit-learn-0.24.0.tar.gz", hash = "sha256:076369634ee72b5a5941440661e2f306ff4ac30903802dc52031c7e9199ac640"}, {file = "scikit_learn-0.24.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:890d7d588f65acb0c4f6c083347c9076916bda5e6bd8400f06244b1afc1009af"}, @@ -1892,6 +2844,7 @@ version = "1.10.1" description = "Fundamental algorithms for scientific computing in Python" optional = false python-versions = "<3.12,>=3.8" +groups = ["main"] files = [ {file = "scipy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e7354fd7527a4b0377ce55f286805b34e8c54b91be865bac273f527e1b839019"}, {file = "scipy-1.10.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4b3f429188c66603a1a5c549fb414e4d3bdc2a24792e061ffbd607d3d75fd84e"}, @@ -1926,40 +2879,47 @@ test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeo [[package]] name = "setuptools" -version = "72.2.0" +version = "75.3.2" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "setuptools-72.2.0-py3-none-any.whl", hash = "sha256:f11dd94b7bae3a156a95ec151f24e4637fb4fa19c878e4d191bfb8b2d82728c4"}, - {file = "setuptools-72.2.0.tar.gz", hash = "sha256:80aacbf633704e9c8bfa1d99fa5dd4dc59573efcf9e4042c13d3bcef91ac2ef9"}, + {file = "setuptools-75.3.2-py3-none-any.whl", hash = "sha256:90ab613b6583fc02d5369cbca13ea26ea0e182d1df2d943ee9cbe81d4c61add9"}, + {file = "setuptools-75.3.2.tar.gz", hash = "sha256:3c1383e1038b68556a382c1e8ded8887cd20141b0eb5708a6c8d277de49364f5"}, ] [package.extras] -core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "ordered-set (>=3.1.1)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1) ; sys_platform != \"cygwin\"", "ruff (>=0.5.2) ; sys_platform != \"cygwin\""] +core = ["importlib-metadata (>=6) ; python_version < \"3.10\"", "importlib-resources (>=5.10.2) ; python_version < \"3.9\"", "jaraco.collections", "jaraco.functools", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24)", "platformdirs (>=4.2.2)", "tomli (>=2.0.1) ; python_version < \"3.11\"", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] -test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.11.*)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (<0.4)", "pytest-ruff (>=0.2.1)", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21) ; python_version >= \"3.9\" and sys_platform != \"cygwin\"", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test (>=5.5)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf ; sys_platform != \"cygwin\"", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "ruff (<=0.7.1)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2) ; python_version < \"3.10\"", "jaraco.develop (>=7.21) ; sys_platform != \"cygwin\"", "mypy (==1.12.*)", "pytest-mypy"] [[package]] name = "six" -version = "1.16.0" +version = "1.17.0" description = "Python 2 and 3 compatibility utilities" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +groups = ["main"] files = [ - {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, - {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, + {file = "six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274"}, + {file = "six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81"}, ] [[package]] name = "smart-open" -version = "7.0.4" +version = "7.1.0" description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)" optional = false python-versions = "<4.0,>=3.7" +groups = ["main"] files = [ - {file = "smart_open-7.0.4-py3-none-any.whl", hash = "sha256:4e98489932b3372595cddc075e6033194775165702887216b65eba760dfd8d47"}, - {file = "smart_open-7.0.4.tar.gz", hash = "sha256:62b65852bdd1d1d516839fcb1f6bc50cd0f16e05b4ec44b52f43d38bcb838524"}, + {file = "smart_open-7.1.0-py3-none-any.whl", hash = "sha256:4b8489bb6058196258bafe901730c7db0dcf4f083f316e97269c66f45502055b"}, + {file = "smart_open-7.1.0.tar.gz", hash = "sha256:a4f09f84f0f6d3637c6543aca7b5487438877a21360e7368ccf1f704789752ba"}, ] [package.dependencies] @@ -1972,7 +2932,7 @@ gcs = ["google-cloud-storage (>=2.6.0)"] http = ["requests"] s3 = ["boto3"] ssh = ["paramiko"] -test = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "paramiko", "pytest", "pytest-rerunfailures", "requests", "responses", "zstandard"] +test = ["awscli", "azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage (>=2.6.0)", "moto[server]", "numpy", "paramiko", "pyopenssl", "pytest", "pytest-benchmark", "pytest-rerunfailures", "requests", "responses", "zstandard"] webhdfs = ["requests"] zst = ["zstandard"] @@ -1982,6 +2942,7 @@ version = "0.6.3" description = "Extract data from python stack frames and tracebacks for informative displays" optional = false python-versions = "*" +groups = ["main"] files = [ {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, @@ -2001,6 +2962,7 @@ version = "1.3.0b0" description = "Python library for machine learning on graphs" optional = false python-versions = ">=3.6.0, <3.9.0" +groups = ["main"] files = [] develop = false @@ -2025,12 +2987,31 @@ url = "https://github.com/stellargraph/stellargraph.git" reference = "develop" resolved_reference = "3c2c8c18ab4c5c16660f350d8e23d7dc39e738de" +[[package]] +name = "sympy" +version = "1.13.3" +description = "Computer algebra system (CAS) in Python" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "sympy-1.13.3-py3-none-any.whl", hash = "sha256:54612cf55a62755ee71824ce692986f23c88ffa77207b30c1368eda4a7060f73"}, + {file = "sympy-1.13.3.tar.gz", hash = "sha256:b27fd2c6530e0ab39e275fc9b683895367e51d5da91baa8d3d64db2565fec4d9"}, +] + +[package.dependencies] +mpmath = ">=1.1.0,<1.4" + +[package.extras] +dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] + [[package]] name = "tensorboard" version = "2.14.0" description = "TensorBoard lets you watch Tensors Flow" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ {file = "tensorboard-2.14.0-py3-none-any.whl", hash = "sha256:3667f9745d99280836ad673022362c840f60ed8fefd5a3e30bf071f5a8fd0017"}, ] @@ -2055,6 +3036,7 @@ version = "0.7.2" description = "Fast data loading for TensorBoard" optional = false python-versions = ">=3.7" +groups = ["main"] files = [ {file = "tensorboard_data_server-0.7.2-py3-none-any.whl", hash = "sha256:7e0610d205889588983836ec05dc098e80f97b7e7bbff7e994ebb78f578d0ddb"}, {file = "tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:9fe5d24221b29625dbc7328b0436ca7fc1c23de4acf4d272f1180856e32f9f60"}, @@ -2067,6 +3049,7 @@ version = "2.7.2" description = "TensorFlow is an open source machine learning framework for everyone." optional = false python-versions = "*" +groups = ["main"] files = [ {file = "tensorflow-2.7.2-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:050c2ef8d432eb60f2cb6fc75d751fcb3008af6a86ad1147faea30cb59c275b1"}, {file = "tensorflow-2.7.2-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:3c72b8653a539789ef36f8c1ad8266b9e676dff2293f0f7a68d9b26fc77a37f3"}, @@ -2108,6 +3091,7 @@ version = "2.7.0" description = "TensorFlow Estimator." optional = false python-versions = "*" +groups = ["main"] files = [ {file = "tensorflow_estimator-2.7.0-py2.py3-none-any.whl", hash = "sha256:325b5a224864379242b7b76c6987ca544239be82579d33e68ec7c2bda57abc9d"}, ] @@ -2118,6 +3102,7 @@ version = "0.21.0" description = "TensorFlow IO" optional = false python-versions = ">=3.6, <3.10" +groups = ["main"] files = [ {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:db8659cce2b45a6689cf041c7745b60338d8158fc394627f916029980aa04e0d"}, {file = "tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d5ce0de3c91fb3a47bd91e25081bcd3b3491d515ee45e6d2c63e899ab5e7739e"}, @@ -2139,6 +3124,7 @@ version = "2.4.0" description = "ANSI color formatting for output in terminal" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ {file = "termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63"}, {file = "termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a"}, @@ -2153,6 +3139,7 @@ version = "1.0.5" description = "Optimizing compiler for evaluating mathematical expressions on CPUs and GPUs." optional = false python-versions = "*" +groups = ["main"] files = [ {file = "Theano-1.0.5.tar.gz", hash = "sha256:6e9439dd53ba995fcae27bf20626074bfc2fff446899dc5c53cb28c1f9202e89"}, ] @@ -2172,47 +3159,243 @@ version = "3.5.0" description = "threadpoolctl" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, ] +[[package]] +name = "torch" +version = "2.1.2" +description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" +optional = false +python-versions = ">=3.8.0" +groups = ["main"] +files = [ + {file = "torch-2.1.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:3a871edd6c02dae77ad810335c0833391c1a4ce49af21ea8cf0f6a5d2096eea8"}, + {file = "torch-2.1.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:bef6996c27d8f6e92ea4e13a772d89611da0e103b48790de78131e308cf73076"}, + {file = "torch-2.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:0e13034fd5fb323cbbc29e56d0637a3791e50dd589616f40c79adfa36a5a35a1"}, + {file = "torch-2.1.2-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:d9b535cad0df3d13997dbe8bd68ac33e0e3ae5377639c9881948e40794a61403"}, + {file = "torch-2.1.2-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:f9a55d55af02826ebfbadf4e9b682f0f27766bc33df8236b48d28d705587868f"}, + {file = "torch-2.1.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:a6ebbe517097ef289cc7952783588c72de071d4b15ce0f8b285093f0916b1162"}, + {file = "torch-2.1.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:8f32ce591616a30304f37a7d5ea80b69ca9e1b94bba7f308184bf616fdaea155"}, + {file = "torch-2.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:e0ee6cf90c8970e05760f898d58f9ac65821c37ffe8b04269ec787aa70962b69"}, + {file = "torch-2.1.2-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:76d37967c31c99548ad2c4d3f2cf191db48476f2e69b35a0937137116da356a1"}, + {file = "torch-2.1.2-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:e2d83f07b4aac983453ea5bf8f9aa9dacf2278a8d31247f5d9037f37befc60e4"}, + {file = "torch-2.1.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:f41fe0c7ecbf903a568c73486139a75cfab287a0f6c17ed0698fdea7a1e8641d"}, + {file = "torch-2.1.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:e3225f47d50bb66f756fe9196a768055d1c26b02154eb1f770ce47a2578d3aa7"}, + {file = "torch-2.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:33d59cd03cb60106857f6c26b36457793637512998666ee3ce17311f217afe2b"}, + {file = "torch-2.1.2-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:8e221deccd0def6c2badff6be403e0c53491805ed9915e2c029adbcdb87ab6b5"}, + {file = "torch-2.1.2-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:05b18594f60a911a0c4f023f38a8bda77131fba5fd741bda626e97dcf5a3dd0a"}, + {file = "torch-2.1.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:9ca96253b761e9aaf8e06fb30a66ee301aecbf15bb5a303097de1969077620b6"}, + {file = "torch-2.1.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:d93ba70f67b08c2ae5598ee711cbc546a1bc8102cef938904b8c85c2089a51a0"}, + {file = "torch-2.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:255b50bc0608db177e6a3cc118961d77de7e5105f07816585fa6f191f33a9ff3"}, + {file = "torch-2.1.2-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6984cd5057c0c977b3c9757254e989d3f1124f4ce9d07caa6cb637783c71d42a"}, + {file = "torch-2.1.2-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:bc195d7927feabc0eb7c110e457c955ed2ab616f3c7c28439dd4188cf589699f"}, +] + +[package.dependencies] +filelock = "*" +fsspec = "*" +jinja2 = "*" +networkx = "*" +nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cudnn-cu12 = {version = "8.9.2.26", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nccl-cu12 = {version = "2.18.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +sympy = "*" +triton = {version = "2.1.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +typing-extensions = "*" + +[package.extras] +dynamo = ["jinja2"] +opt-einsum = ["opt-einsum (>=3.3)"] + +[[package]] +name = "torch-geometric" +version = "2.6.1" +description = "Graph Neural Network Library for PyTorch" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "torch_geometric-2.6.1-py3-none-any.whl", hash = "sha256:8faeb353f9655f7dbec44c5e0b44c721773bdfb279994da96b9b8b12fd30f427"}, + {file = "torch_geometric-2.6.1.tar.gz", hash = "sha256:1f18f9d0fc4d2239d526221e4f22606a4a3895b5d965a9856d27610a3df662c6"}, +] + +[package.dependencies] +aiohttp = "*" +fsspec = "*" +jinja2 = "*" +numpy = "*" +psutil = ">=5.8.0" +pyparsing = "*" +requests = "*" +tqdm = "*" + +[package.extras] +benchmark = ["matplotlib", "networkx", "pandas", "protobuf (<4.21)", "wandb"] +dev = ["ipython", "matplotlib-inline", "pre-commit", "torch_geometric[test]"] +full = ["ase", "captum (<0.7.0)", "graphviz", "h5py", "matplotlib", "networkx", "numba (<0.60.0)", "opt_einsum", "pandas", "pgmpy", "pynndescent", "pytorch-memlab", "rdflib", "rdkit", "scikit-image", "scikit-learn", "scipy", "statsmodels", "sympy", "tabulate", "torch_geometric[graphgym,modelhub]", "torchmetrics", "trimesh"] +graphgym = ["protobuf (<4.21)", "pytorch-lightning (<2.3.0)", "yacs"] +modelhub = ["huggingface_hub"] +test = ["onnx", "onnxruntime", "pytest", "pytest-cov"] + +[[package]] +name = "torch-scatter" +version = "2.1.2+pt21cpu" +description = "PyTorch Extension Library of Optimized Scatter Operations" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "torch_scatter-2.1.2+pt21cpu-cp38-cp38-linux_x86_64.whl", hash = "sha256:2876a541e5428a21fffa8fee97dc3fa833266640e7fb1ec3aab6e8bafa0a2df8"}, +] + +[package.extras] +test = ["pytest", "pytest-cov"] + +[package.source] +type = "url" +url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_scatter-2.1.2%2Bpt21cpu-cp38-cp38-linux_x86_64.whl" + +[[package]] +name = "torch-sparse" +version = "0.6.18+pt21cpu" +description = "PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "torch_sparse-0.6.18+pt21cpu-cp38-cp38-linux_x86_64.whl", hash = "sha256:fe2ea180baa399ebb1d695cad1b36e1ffb543e04af30f7880edfa626fbf69e9e"}, +] + +[package.dependencies] +scipy = "*" + +[package.extras] +test = ["pytest", "pytest-cov"] + +[package.source] +type = "url" +url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl" + +[[package]] +name = "torchmetrics" +version = "1.5.2" +description = "PyTorch native Metrics" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "torchmetrics-1.5.2-py3-none-any.whl", hash = "sha256:22dfddc93a66c0e46b46da2f8f7c57be4ba256070ed1e627e5e8de27bbe5b376"}, + {file = "torchmetrics-1.5.2.tar.gz", hash = "sha256:2d0e4957af0ea76438d2779fe1a626d8cba6cda8607eadb54267598153e7ea63"}, +] + +[package.dependencies] +lightning-utilities = ">=0.8.0" +numpy = ">1.20.0" +packaging = ">17.1" +torch = ">=1.10.0" +typing-extensions = {version = "*", markers = "python_version < \"3.9\""} + +[package.extras] +all = ["SciencePlots (>=2.0.0)", "gammatone (>=1.0.0)", "ipadic (>=1.0.0)", "librosa (>=0.9.0)", "matplotlib (>=3.6.0)", "mecab-python3 (>=1.0.6)", "mypy (==1.13.0)", "nltk (>3.8.1)", "numpy (<2.0)", "onnxruntime (>=1.12.0)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.4.0)", "regex (>=2021.9.24)", "requests (>=2.19.0)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "torch (==2.5.1)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (<4.67.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +audio = ["gammatone (>=1.0.0)", "librosa (>=0.9.0)", "numpy (<2.0)", "onnxruntime (>=1.12.0)", "pesq (>=0.0.4)", "pystoi (>=0.4.0)", "requests (>=2.19.0)", "torchaudio (>=0.10.0)"] +detection = ["pycocotools (>2.0.0)", "torchvision (>=0.8)"] +dev = ["SciencePlots (>=2.0.0)", "bert-score (==0.3.13)", "dython (==0.7.6) ; python_version < \"3.9\"", "dython (>=0.7.8,<0.8.0) ; python_version > \"3.8\"", "fairlearn", "fast-bss-eval (>=0.1.0)", "faster-coco-eval (>=1.6.3)", "gammatone (>=1.0.0)", "huggingface-hub (<0.27)", "ipadic (>=1.0.0)", "jiwer (>=2.3.0)", "kornia (>=0.6.7)", "librosa (>=0.9.0)", "lpips (<=0.1.4)", "matplotlib (>=3.6.0)", "mecab-ko (>=1.0.0,<1.1.0) ; python_version < \"3.12\"", "mecab-ko-dic (>=1.0.0) ; python_version < \"3.12\"", "mecab-python3 (>=1.0.6)", "mir-eval (>=0.6)", "monai (==1.3.2)", "mypy (==1.13.0)", "netcal (>1.0.0)", "nltk (>3.8.1)", "numpy (<2.0)", "numpy (<2.2.0)", "onnxruntime (>=1.12.0)", "pandas (>1.4.0)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.4.0)", "pytorch-msssim (==1.0.0)", "regex (>=2021.9.24)", "requests (>=2.19.0)", "rouge-score (>0.1.0)", "sacrebleu (>=2.3.0)", "scikit-image (>=0.19.0)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "sewar (>=0.4.4)", "statsmodels (>0.13.5)", "torch (==2.5.1)", "torch-complex (<0.5.0)", "torch-fidelity (<=0.4.0)", "torchaudio (>=0.10.0)", "torchvision (>=0.8)", "tqdm (<4.67.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +image = ["scipy (>1.0.0)", "torch-fidelity (<=0.4.0)", "torchvision (>=0.8)"] +multimodal = ["piq (<=0.8.0)", "transformers (>=4.42.3)"] +text = ["ipadic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "nltk (>3.8.1)", "regex (>=2021.9.24)", "sentencepiece (>=0.2.0)", "tqdm (<4.67.0)", "transformers (>4.4.0)"] +typing = ["mypy (==1.13.0)", "torch (==2.5.1)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +visual = ["SciencePlots (>=2.0.0)", "matplotlib (>=3.6.0)"] + +[[package]] +name = "torchvision" +version = "0.16.2" +description = "image and video datasets and models for torch deep learning" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "torchvision-0.16.2-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:bc86f2800cb2c0c1a09c581409cdd6bff66e62f103dc83fc63f73346264c3756"}, + {file = "torchvision-0.16.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b024bd412df6d3a007dcebf311a894eb3c5c21e1af80d12be382bbcb097a7c3a"}, + {file = "torchvision-0.16.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:e89f10f3c8351972b6e3fda95bc3e479ea8dbfc9dfcfd2c32902dbad4ba5cfc5"}, + {file = "torchvision-0.16.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:96c7583700112a410bdc4e1e4f118c429dab49c29c9a31a2cc3579bc9b08b19d"}, + {file = "torchvision-0.16.2-cp310-cp310-win_amd64.whl", hash = "sha256:9f4032ebb3277fb07ff6a9b818d50a547fb8fcd89d958cfd9e773322454bb688"}, + {file = "torchvision-0.16.2-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:67b1aaf8b8cb02ce75dd445f291a27c8036a502f8c0aa76e28c37a0faac2e153"}, + {file = "torchvision-0.16.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bef30d03e1d1c629761f4dca51d3b7d8a0dc0acce6f4068ab2a1634e8e7b64e0"}, + {file = "torchvision-0.16.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:e59cc7b2bd1ab5c0ce4ae382e4e37be8f1c174e8b5de2f6a23c170de9ae28495"}, + {file = "torchvision-0.16.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:e130b08cc9b3cc73a6c59d6edf032394a322f9579bfd21d14bc2e1d0999aa758"}, + {file = "torchvision-0.16.2-cp311-cp311-win_amd64.whl", hash = "sha256:8692ab1e48807e9604046a6f4beeb67b523294cee1b00828654bb0df2cfce2b2"}, + {file = "torchvision-0.16.2-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:b82732dcf876a37c852772342aa6ee3480c03bb3e2a802ae109fc5f7e28d26e9"}, + {file = "torchvision-0.16.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4b065143d1a720fe8a9077fd4be35d491f98819ec80b3dbbc3ec64d0b707a906"}, + {file = "torchvision-0.16.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:bc5f274e4ecd1b86062063cdf4fd385a1d39d147a3a2685fbbde9ff08bb720b8"}, + {file = "torchvision-0.16.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:335959c43b371c0474af34c1ef2a52efdc7603c45700d29e4475eeb02984170c"}, + {file = "torchvision-0.16.2-cp38-cp38-win_amd64.whl", hash = "sha256:7fd22d86e08eba321af70cad291020c2cdeac069b00ce88b923ca52e06174769"}, + {file = "torchvision-0.16.2-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:56115268b37f0b75364e3654e47ad9abc66ac34c1f9e5e3dfa89a22d6a40017a"}, + {file = "torchvision-0.16.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:82805f8445b094f9d1e770390ee6cc86855e89955e08ce34af2e2274fc0e5c45"}, + {file = "torchvision-0.16.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:3f4bd5fcbc361476e2e78016636ac7d5509e59d9962521f06eb98e6803898182"}, + {file = "torchvision-0.16.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:8199acdf8ab066a28b84a5b6f4d97b58976d9e164b1acc3a9d14fccfaf74bb3a"}, + {file = "torchvision-0.16.2-cp39-cp39-win_amd64.whl", hash = "sha256:41dd4fa9f176d563fe9f1b9adef3b7e582cdfb60ce8c9bc51b094a025be687c9"}, +] + +[package.dependencies] +numpy = "*" +pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" +requests = "*" +torch = "2.1.2" + +[package.extras] +scipy = ["scipy"] + [[package]] name = "tornado" -version = "6.4.1" +version = "6.4.2" description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." optional = false python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8"}, - {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14"}, - {file = "tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4"}, - {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842"}, - {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3"}, - {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f"}, - {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4"}, - {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698"}, - {file = "tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d"}, - {file = "tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7"}, - {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"}, + {file = "tornado-6.4.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e828cce1123e9e44ae2a50a9de3055497ab1d0aeb440c5ac23064d9e44880da1"}, + {file = "tornado-6.4.2-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:072ce12ada169c5b00b7d92a99ba089447ccc993ea2143c9ede887e0937aa803"}, + {file = "tornado-6.4.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a017d239bd1bb0919f72af256a970624241f070496635784d9bf0db640d3fec"}, + {file = "tornado-6.4.2-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c36e62ce8f63409301537222faffcef7dfc5284f27eec227389f2ad11b09d946"}, + {file = "tornado-6.4.2-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bca9eb02196e789c9cb5c3c7c0f04fb447dc2adffd95265b2c7223a8a615ccbf"}, + {file = "tornado-6.4.2-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:304463bd0772442ff4d0f5149c6f1c2135a1fae045adf070821c6cdc76980634"}, + {file = "tornado-6.4.2-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:c82c46813ba483a385ab2a99caeaedf92585a1f90defb5693351fa7e4ea0bf73"}, + {file = "tornado-6.4.2-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:932d195ca9015956fa502c6b56af9eb06106140d844a335590c1ec7f5277d10c"}, + {file = "tornado-6.4.2-cp38-abi3-win32.whl", hash = "sha256:2876cef82e6c5978fde1e0d5b1f919d756968d5b4282418f3146b79b58556482"}, + {file = "tornado-6.4.2-cp38-abi3-win_amd64.whl", hash = "sha256:908b71bf3ff37d81073356a5fadcc660eb10c1476ee6e2725588626ce7e5ca38"}, + {file = "tornado-6.4.2.tar.gz", hash = "sha256:92bad5b4746e9879fd7bf1eb21dce4e3fc5128d71601f80005afa39237ad620b"}, ] [[package]] name = "tqdm" -version = "4.66.5" +version = "4.67.1" description = "Fast, Extensible Progress Meter" optional = false python-versions = ">=3.7" +groups = ["main"] files = [ - {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, - {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, + {file = "tqdm-4.67.1-py3-none-any.whl", hash = "sha256:26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2"}, + {file = "tqdm-4.67.1.tar.gz", hash = "sha256:f8aef9c52c08c13a65f30ea34f4e5aac3fd1a34959879d7e59e63027286627f2"}, ] [package.dependencies] colorama = {version = "*", markers = "platform_system == \"Windows\""} [package.extras] -dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] +dev = ["nbval", "pytest (>=6)", "pytest-asyncio (>=0.24)", "pytest-cov", "pytest-timeout"] +discord = ["requests"] notebook = ["ipywidgets (>=6)"] slack = ["slack-sdk"] telegram = ["requests"] @@ -2223,6 +3406,7 @@ version = "5.14.3" description = "Traitlets Python configuration system" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, @@ -2232,41 +3416,71 @@ files = [ docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] +[[package]] +name = "triton" +version = "2.1.0" +description = "A language and compiler for custom Deep Learning operations" +optional = false +python-versions = "*" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "triton-2.1.0-0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:66439923a30d5d48399b08a9eae10370f6c261a5ec864a64983bae63152d39d7"}, + {file = "triton-2.1.0-0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:919b06453f0033ea52c13eaf7833de0e57db3178d23d4e04f9fc71c4f2c32bf8"}, + {file = "triton-2.1.0-0-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ae4bb8a91de790e1866405211c4d618379781188f40d5c4c399766914e84cd94"}, + {file = "triton-2.1.0-0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:39f6fb6bdccb3e98f3152e3fbea724f1aeae7d749412bbb1fa9c441d474eba26"}, + {file = "triton-2.1.0-0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:21544e522c02005a626c8ad63d39bdff2f31d41069592919ef281e964ed26446"}, + {file = "triton-2.1.0-0-pp37-pypy37_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:143582ca31dd89cd982bd3bf53666bab1c7527d41e185f9e3d8a3051ce1b663b"}, + {file = "triton-2.1.0-0-pp38-pypy38_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:82fc5aeeedf6e36be4e4530cbdcba81a09d65c18e02f52dc298696d45721f3bd"}, + {file = "triton-2.1.0-0-pp39-pypy39_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:81a96d110a738ff63339fc892ded095b31bd0d205e3aace262af8400d40b6fa8"}, +] + +[package.dependencies] +filelock = "*" + +[package.extras] +build = ["cmake (>=3.18)", "lit"] +tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)"] +tutorials = ["matplotlib", "pandas", "tabulate"] + [[package]] name = "typing-extensions" -version = "4.12.2" +version = "4.13.1" description = "Backported and Experimental Type Hints for Python 3.8+" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, - {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, + {file = "typing_extensions-4.13.1-py3-none-any.whl", hash = "sha256:4b6cf02909eb5495cfbc3f6e8fd49217e6cc7944e145cdda8caa3734777f9e69"}, + {file = "typing_extensions-4.13.1.tar.gz", hash = "sha256:98795af00fb9640edec5b8e31fc647597b4691f099ad75f469a2616be1a76dff"}, ] [[package]] name = "tzdata" -version = "2024.1" +version = "2025.2" description = "Provider of IANA time zone data" optional = false python-versions = ">=2" +groups = ["main"] files = [ - {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, - {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, + {file = "tzdata-2025.2-py2.py3-none-any.whl", hash = "sha256:1a403fada01ff9221ca8044d701868fa132215d84beb92242d9acd2147f667a8"}, + {file = "tzdata-2025.2.tar.gz", hash = "sha256:b60a638fcc0daffadf82fe0f57e53d06bdec2f36c4df66280ae79bce6bd6f2b9"}, ] [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] -brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +brotli = ["brotli (>=1.0.9) ; platform_python_implementation == \"CPython\"", "brotlicffi (>=0.8.0) ; platform_python_implementation != \"CPython\""] h2 = ["h2 (>=4,<5)"] socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] zstd = ["zstandard (>=0.18.0)"] @@ -2277,6 +3491,7 @@ version = "0.2.13" description = "Measures the displayed width of unicode strings in a terminal" optional = false python-versions = "*" +groups = ["main"] files = [ {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, @@ -2284,13 +3499,14 @@ files = [ [[package]] name = "werkzeug" -version = "3.0.3" +version = "3.0.6" description = "The comprehensive WSGI web application library." optional = false python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "werkzeug-3.0.3-py3-none-any.whl", hash = "sha256:fc9645dc43e03e4d630d23143a04a7f947a9a3b5727cd535fdfe155a17cc48c8"}, - {file = "werkzeug-3.0.3.tar.gz", hash = "sha256:097e5bfda9f0aba8da6b8545146def481d06aa7d3266e7448e2cccf67dd8bd18"}, + {file = "werkzeug-3.0.6-py3-none-any.whl", hash = "sha256:1bc0c2310d2fbb07b1dd1105eba2f7af72f322e1e455f2f93c993bee8c8a5f17"}, + {file = "werkzeug-3.0.6.tar.gz", hash = "sha256:a8dd59d4de28ca70471a34cba79bed5f7ef2e036a76b3ab0835474246eb41f8d"}, ] [package.dependencies] @@ -2301,13 +3517,14 @@ watchdog = ["watchdog (>=2.3)"] [[package]] name = "wheel" -version = "0.44.0" +version = "0.45.1" description = "A built-package format for Python" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "wheel-0.44.0-py3-none-any.whl", hash = "sha256:2376a90c98cc337d18623527a97c31797bd02bad0033d41547043a1cbfbe448f"}, - {file = "wheel-0.44.0.tar.gz", hash = "sha256:a29c3f2817e95ab89aa4660681ad547c0e9547f20e75b0562fe7723c9a2a9d49"}, + {file = "wheel-0.45.1-py3-none-any.whl", hash = "sha256:708e7481cc80179af0e556bbf0cc00b8444c7321e2700b8d8580231d13017248"}, + {file = "wheel-0.45.1.tar.gz", hash = "sha256:661e1abd9198507b1409a20c02106d9670b2576e916d58f520316666abca6729"}, ] [package.extras] @@ -2315,99 +3532,227 @@ test = ["pytest (>=6.0.0)", "setuptools (>=65)"] [[package]] name = "wrapt" -version = "1.16.0" +version = "1.17.2" description = "Module for decorators, wrappers and monkey patching." optional = false -python-versions = ">=3.6" -files = [ - {file = "wrapt-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ffa565331890b90056c01db69c0fe634a776f8019c143a5ae265f9c6bc4bd6d4"}, - {file = "wrapt-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e4fdb9275308292e880dcbeb12546df7f3e0f96c6b41197e0cf37d2826359020"}, - {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb2dee3874a500de01c93d5c71415fcaef1d858370d405824783e7a8ef5db440"}, - {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a88e6010048489cda82b1326889ec075a8c856c2e6a256072b28eaee3ccf487"}, - {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac83a914ebaf589b69f7d0a1277602ff494e21f4c2f743313414378f8f50a4cf"}, - {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:73aa7d98215d39b8455f103de64391cb79dfcad601701a3aa0dddacf74911d72"}, - {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:807cc8543a477ab7422f1120a217054f958a66ef7314f76dd9e77d3f02cdccd0"}, - {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bf5703fdeb350e36885f2875d853ce13172ae281c56e509f4e6eca049bdfb136"}, - {file = "wrapt-1.16.0-cp310-cp310-win32.whl", hash = "sha256:f6b2d0c6703c988d334f297aa5df18c45e97b0af3679bb75059e0e0bd8b1069d"}, - {file = "wrapt-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:decbfa2f618fa8ed81c95ee18a387ff973143c656ef800c9f24fb7e9c16054e2"}, - {file = "wrapt-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1a5db485fe2de4403f13fafdc231b0dbae5eca4359232d2efc79025527375b09"}, - {file = "wrapt-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75ea7d0ee2a15733684badb16de6794894ed9c55aa5e9903260922f0482e687d"}, - {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a452f9ca3e3267cd4d0fcf2edd0d035b1934ac2bd7e0e57ac91ad6b95c0c6389"}, - {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:43aa59eadec7890d9958748db829df269f0368521ba6dc68cc172d5d03ed8060"}, - {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72554a23c78a8e7aa02abbd699d129eead8b147a23c56e08d08dfc29cfdddca1"}, - {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d2efee35b4b0a347e0d99d28e884dfd82797852d62fcd7ebdeee26f3ceb72cf3"}, - {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6dcfcffe73710be01d90cae08c3e548d90932d37b39ef83969ae135d36ef3956"}, - {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:eb6e651000a19c96f452c85132811d25e9264d836951022d6e81df2fff38337d"}, - {file = "wrapt-1.16.0-cp311-cp311-win32.whl", hash = "sha256:66027d667efe95cc4fa945af59f92c5a02c6f5bb6012bff9e60542c74c75c362"}, - {file = "wrapt-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:aefbc4cb0a54f91af643660a0a150ce2c090d3652cf4052a5397fb2de549cd89"}, - {file = "wrapt-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5eb404d89131ec9b4f748fa5cfb5346802e5ee8836f57d516576e61f304f3b7b"}, - {file = "wrapt-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9090c9e676d5236a6948330e83cb89969f433b1943a558968f659ead07cb3b36"}, - {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94265b00870aa407bd0cbcfd536f17ecde43b94fb8d228560a1e9d3041462d73"}, - {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2058f813d4f2b5e3a9eb2eb3faf8f1d99b81c3e51aeda4b168406443e8ba809"}, - {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98b5e1f498a8ca1858a1cdbffb023bfd954da4e3fa2c0cb5853d40014557248b"}, - {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:14d7dc606219cdd7405133c713f2c218d4252f2a469003f8c46bb92d5d095d81"}, - {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:49aac49dc4782cb04f58986e81ea0b4768e4ff197b57324dcbd7699c5dfb40b9"}, - {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:418abb18146475c310d7a6dc71143d6f7adec5b004ac9ce08dc7a34e2babdc5c"}, - {file = "wrapt-1.16.0-cp312-cp312-win32.whl", hash = "sha256:685f568fa5e627e93f3b52fda002c7ed2fa1800b50ce51f6ed1d572d8ab3e7fc"}, - {file = "wrapt-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:dcdba5c86e368442528f7060039eda390cc4091bfd1dca41e8046af7c910dda8"}, - {file = "wrapt-1.16.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:d462f28826f4657968ae51d2181a074dfe03c200d6131690b7d65d55b0f360f8"}, - {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a33a747400b94b6d6b8a165e4480264a64a78c8a4c734b62136062e9a248dd39"}, - {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b3646eefa23daeba62643a58aac816945cadc0afaf21800a1421eeba5f6cfb9c"}, - {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ebf019be5c09d400cf7b024aa52b1f3aeebeff51550d007e92c3c1c4afc2a40"}, - {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:0d2691979e93d06a95a26257adb7bfd0c93818e89b1406f5a28f36e0d8c1e1fc"}, - {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:1acd723ee2a8826f3d53910255643e33673e1d11db84ce5880675954183ec47e"}, - {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:bc57efac2da352a51cc4658878a68d2b1b67dbe9d33c36cb826ca449d80a8465"}, - {file = "wrapt-1.16.0-cp36-cp36m-win32.whl", hash = "sha256:da4813f751142436b075ed7aa012a8778aa43a99f7b36afe9b742d3ed8bdc95e"}, - {file = "wrapt-1.16.0-cp36-cp36m-win_amd64.whl", hash = "sha256:6f6eac2360f2d543cc875a0e5efd413b6cbd483cb3ad7ebf888884a6e0d2e966"}, - {file = "wrapt-1.16.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a0ea261ce52b5952bf669684a251a66df239ec6d441ccb59ec7afa882265d593"}, - {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bd2d7ff69a2cac767fbf7a2b206add2e9a210e57947dd7ce03e25d03d2de292"}, - {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9159485323798c8dc530a224bd3ffcf76659319ccc7bbd52e01e73bd0241a0c5"}, - {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a86373cf37cd7764f2201b76496aba58a52e76dedfaa698ef9e9688bfd9e41cf"}, - {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:73870c364c11f03ed072dda68ff7aea6d2a3a5c3fe250d917a429c7432e15228"}, - {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b935ae30c6e7400022b50f8d359c03ed233d45b725cfdd299462f41ee5ffba6f"}, - {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:db98ad84a55eb09b3c32a96c576476777e87c520a34e2519d3e59c44710c002c"}, - {file = "wrapt-1.16.0-cp37-cp37m-win32.whl", hash = "sha256:9153ed35fc5e4fa3b2fe97bddaa7cbec0ed22412b85bcdaf54aeba92ea37428c"}, - {file = "wrapt-1.16.0-cp37-cp37m-win_amd64.whl", hash = "sha256:66dfbaa7cfa3eb707bbfcd46dab2bc6207b005cbc9caa2199bcbc81d95071a00"}, - {file = "wrapt-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1dd50a2696ff89f57bd8847647a1c363b687d3d796dc30d4dd4a9d1689a706f0"}, - {file = "wrapt-1.16.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:44a2754372e32ab315734c6c73b24351d06e77ffff6ae27d2ecf14cf3d229202"}, - {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e9723528b9f787dc59168369e42ae1c3b0d3fadb2f1a71de14531d321ee05b0"}, - {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbed418ba5c3dce92619656802cc5355cb679e58d0d89b50f116e4a9d5a9603e"}, - {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:941988b89b4fd6b41c3f0bfb20e92bd23746579736b7343283297c4c8cbae68f"}, - {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6a42cd0cfa8ffc1915aef79cb4284f6383d8a3e9dcca70c445dcfdd639d51267"}, - {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1ca9b6085e4f866bd584fb135a041bfc32cab916e69f714a7d1d397f8c4891ca"}, - {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d5e49454f19ef621089e204f862388d29e6e8d8b162efce05208913dde5b9ad6"}, - {file = "wrapt-1.16.0-cp38-cp38-win32.whl", hash = "sha256:c31f72b1b6624c9d863fc095da460802f43a7c6868c5dda140f51da24fd47d7b"}, - {file = "wrapt-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:490b0ee15c1a55be9c1bd8609b8cecd60e325f0575fc98f50058eae366e01f41"}, - {file = "wrapt-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9b201ae332c3637a42f02d1045e1d0cccfdc41f1f2f801dafbaa7e9b4797bfc2"}, - {file = "wrapt-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2076fad65c6736184e77d7d4729b63a6d1ae0b70da4868adeec40989858eb3fb"}, - {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5cd603b575ebceca7da5a3a251e69561bec509e0b46e4993e1cac402b7247b8"}, - {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b47cfad9e9bbbed2339081f4e346c93ecd7ab504299403320bf85f7f85c7d46c"}, - {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8212564d49c50eb4565e502814f694e240c55551a5f1bc841d4fcaabb0a9b8a"}, - {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5f15814a33e42b04e3de432e573aa557f9f0f56458745c2074952f564c50e664"}, - {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db2e408d983b0e61e238cf579c09ef7020560441906ca990fe8412153e3b291f"}, - {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:edfad1d29c73f9b863ebe7082ae9321374ccb10879eeabc84ba3b69f2579d537"}, - {file = "wrapt-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed867c42c268f876097248e05b6117a65bcd1e63b779e916fe2e33cd6fd0d3c3"}, - {file = "wrapt-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:eb1b046be06b0fce7249f1d025cd359b4b80fc1c3e24ad9eca33e0dcdb2e4a35"}, - {file = "wrapt-1.16.0-py3-none-any.whl", hash = "sha256:6906c4100a8fcbf2fa735f6059214bb13b97f75b1a61777fcf6432121ef12ef1"}, - {file = "wrapt-1.16.0.tar.gz", hash = "sha256:5f370f952971e7d17c7d1ead40e49f32345a7f7a5373571ef44d800d06b1899d"}, +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "wrapt-1.17.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3d57c572081fed831ad2d26fd430d565b76aa277ed1d30ff4d40670b1c0dd984"}, + {file = "wrapt-1.17.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b5e251054542ae57ac7f3fba5d10bfff615b6c2fb09abeb37d2f1463f841ae22"}, + {file = "wrapt-1.17.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:80dd7db6a7cb57ffbc279c4394246414ec99537ae81ffd702443335a61dbf3a7"}, + {file = "wrapt-1.17.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a6e821770cf99cc586d33833b2ff32faebdbe886bd6322395606cf55153246c"}, + {file = "wrapt-1.17.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b60fb58b90c6d63779cb0c0c54eeb38941bae3ecf7a73c764c52c88c2dcb9d72"}, + {file = "wrapt-1.17.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b870b5df5b71d8c3359d21be8f0d6c485fa0ebdb6477dda51a1ea54a9b558061"}, + {file = "wrapt-1.17.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:4011d137b9955791f9084749cba9a367c68d50ab8d11d64c50ba1688c9b457f2"}, + {file = "wrapt-1.17.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:1473400e5b2733e58b396a04eb7f35f541e1fb976d0c0724d0223dd607e0f74c"}, + {file = "wrapt-1.17.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3cedbfa9c940fdad3e6e941db7138e26ce8aad38ab5fe9dcfadfed9db7a54e62"}, + {file = "wrapt-1.17.2-cp310-cp310-win32.whl", hash = "sha256:582530701bff1dec6779efa00c516496968edd851fba224fbd86e46cc6b73563"}, + {file = "wrapt-1.17.2-cp310-cp310-win_amd64.whl", hash = "sha256:58705da316756681ad3c9c73fd15499aa4d8c69f9fd38dc8a35e06c12468582f"}, + {file = "wrapt-1.17.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ff04ef6eec3eee8a5efef2401495967a916feaa353643defcc03fc74fe213b58"}, + {file = "wrapt-1.17.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4db983e7bca53819efdbd64590ee96c9213894272c776966ca6306b73e4affda"}, + {file = "wrapt-1.17.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9abc77a4ce4c6f2a3168ff34b1da9b0f311a8f1cfd694ec96b0603dff1c79438"}, + {file = "wrapt-1.17.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b929ac182f5ace000d459c59c2c9c33047e20e935f8e39371fa6e3b85d56f4a"}, + {file = "wrapt-1.17.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f09b286faeff3c750a879d336fb6d8713206fc97af3adc14def0cdd349df6000"}, + {file = "wrapt-1.17.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a7ed2d9d039bd41e889f6fb9364554052ca21ce823580f6a07c4ec245c1f5d6"}, + {file = "wrapt-1.17.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:129a150f5c445165ff941fc02ee27df65940fcb8a22a61828b1853c98763a64b"}, + {file = "wrapt-1.17.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:1fb5699e4464afe5c7e65fa51d4f99e0b2eadcc176e4aa33600a3df7801d6662"}, + {file = "wrapt-1.17.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:9a2bce789a5ea90e51a02dfcc39e31b7f1e662bc3317979aa7e5538e3a034f72"}, + {file = "wrapt-1.17.2-cp311-cp311-win32.whl", hash = "sha256:4afd5814270fdf6380616b321fd31435a462019d834f83c8611a0ce7484c7317"}, + {file = "wrapt-1.17.2-cp311-cp311-win_amd64.whl", hash = "sha256:acc130bc0375999da18e3d19e5a86403667ac0c4042a094fefb7eec8ebac7cf3"}, + {file = "wrapt-1.17.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:d5e2439eecc762cd85e7bd37161d4714aa03a33c5ba884e26c81559817ca0925"}, + {file = "wrapt-1.17.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:3fc7cb4c1c744f8c05cd5f9438a3caa6ab94ce8344e952d7c45a8ed59dd88392"}, + {file = "wrapt-1.17.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8fdbdb757d5390f7c675e558fd3186d590973244fab0c5fe63d373ade3e99d40"}, + {file = "wrapt-1.17.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bb1d0dbf99411f3d871deb6faa9aabb9d4e744d67dcaaa05399af89d847a91d"}, + {file = "wrapt-1.17.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d18a4865f46b8579d44e4fe1e2bcbc6472ad83d98e22a26c963d46e4c125ef0b"}, + {file = "wrapt-1.17.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc570b5f14a79734437cb7b0500376b6b791153314986074486e0b0fa8d71d98"}, + {file = "wrapt-1.17.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6d9187b01bebc3875bac9b087948a2bccefe464a7d8f627cf6e48b1bbae30f82"}, + {file = "wrapt-1.17.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:9e8659775f1adf02eb1e6f109751268e493c73716ca5761f8acb695e52a756ae"}, + {file = "wrapt-1.17.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e8b2816ebef96d83657b56306152a93909a83f23994f4b30ad4573b00bd11bb9"}, + {file = "wrapt-1.17.2-cp312-cp312-win32.whl", hash = "sha256:468090021f391fe0056ad3e807e3d9034e0fd01adcd3bdfba977b6fdf4213ea9"}, + {file = "wrapt-1.17.2-cp312-cp312-win_amd64.whl", hash = "sha256:ec89ed91f2fa8e3f52ae53cd3cf640d6feff92ba90d62236a81e4e563ac0e991"}, + {file = "wrapt-1.17.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:6ed6ffac43aecfe6d86ec5b74b06a5be33d5bb9243d055141e8cabb12aa08125"}, + {file = "wrapt-1.17.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:35621ae4c00e056adb0009f8e86e28eb4a41a4bfa8f9bfa9fca7d343fe94f998"}, + {file = "wrapt-1.17.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:a604bf7a053f8362d27eb9fefd2097f82600b856d5abe996d623babd067b1ab5"}, + {file = "wrapt-1.17.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5cbabee4f083b6b4cd282f5b817a867cf0b1028c54d445b7ec7cfe6505057cf8"}, + {file = "wrapt-1.17.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:49703ce2ddc220df165bd2962f8e03b84c89fee2d65e1c24a7defff6f988f4d6"}, + {file = "wrapt-1.17.2-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8112e52c5822fc4253f3901b676c55ddf288614dc7011634e2719718eaa187dc"}, + {file = "wrapt-1.17.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:9fee687dce376205d9a494e9c121e27183b2a3df18037f89d69bd7b35bcf59e2"}, + {file = "wrapt-1.17.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:18983c537e04d11cf027fbb60a1e8dfd5190e2b60cc27bc0808e653e7b218d1b"}, + {file = "wrapt-1.17.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:703919b1633412ab54bcf920ab388735832fdcb9f9a00ae49387f0fe67dad504"}, + {file = "wrapt-1.17.2-cp313-cp313-win32.whl", hash = "sha256:abbb9e76177c35d4e8568e58650aa6926040d6a9f6f03435b7a522bf1c487f9a"}, + {file = "wrapt-1.17.2-cp313-cp313-win_amd64.whl", hash = "sha256:69606d7bb691b50a4240ce6b22ebb319c1cfb164e5f6569835058196e0f3a845"}, + {file = "wrapt-1.17.2-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:4a721d3c943dae44f8e243b380cb645a709ba5bd35d3ad27bc2ed947e9c68192"}, + {file = "wrapt-1.17.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:766d8bbefcb9e00c3ac3b000d9acc51f1b399513f44d77dfe0eb026ad7c9a19b"}, + {file = "wrapt-1.17.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:e496a8ce2c256da1eb98bd15803a79bee00fc351f5dfb9ea82594a3f058309e0"}, + {file = "wrapt-1.17.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40d615e4fe22f4ad3528448c193b218e077656ca9ccb22ce2cb20db730f8d306"}, + {file = "wrapt-1.17.2-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a5aaeff38654462bc4b09023918b7f21790efb807f54c000a39d41d69cf552cb"}, + {file = "wrapt-1.17.2-cp313-cp313t-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a7d15bbd2bc99e92e39f49a04653062ee6085c0e18b3b7512a4f2fe91f2d681"}, + {file = "wrapt-1.17.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:e3890b508a23299083e065f435a492b5435eba6e304a7114d2f919d400888cc6"}, + {file = "wrapt-1.17.2-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:8c8b293cd65ad716d13d8dd3624e42e5a19cc2a2f1acc74b30c2c13f15cb61a6"}, + {file = "wrapt-1.17.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:4c82b8785d98cdd9fed4cac84d765d234ed3251bd6afe34cb7ac523cb93e8b4f"}, + {file = "wrapt-1.17.2-cp313-cp313t-win32.whl", hash = "sha256:13e6afb7fe71fe7485a4550a8844cc9ffbe263c0f1a1eea569bc7091d4898555"}, + {file = "wrapt-1.17.2-cp313-cp313t-win_amd64.whl", hash = "sha256:eaf675418ed6b3b31c7a989fd007fa7c3be66ce14e5c3b27336383604c9da85c"}, + {file = "wrapt-1.17.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5c803c401ea1c1c18de70a06a6f79fcc9c5acfc79133e9869e730ad7f8ad8ef9"}, + {file = "wrapt-1.17.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f917c1180fdb8623c2b75a99192f4025e412597c50b2ac870f156de8fb101119"}, + {file = "wrapt-1.17.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ecc840861360ba9d176d413a5489b9a0aff6d6303d7e733e2c4623cfa26904a6"}, + {file = "wrapt-1.17.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb87745b2e6dc56361bfde481d5a378dc314b252a98d7dd19a651a3fa58f24a9"}, + {file = "wrapt-1.17.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58455b79ec2661c3600e65c0a716955adc2410f7383755d537584b0de41b1d8a"}, + {file = "wrapt-1.17.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4e42a40a5e164cbfdb7b386c966a588b1047558a990981ace551ed7e12ca9c2"}, + {file = "wrapt-1.17.2-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:91bd7d1773e64019f9288b7a5101f3ae50d3d8e6b1de7edee9c2ccc1d32f0c0a"}, + {file = "wrapt-1.17.2-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:bb90fb8bda722a1b9d48ac1e6c38f923ea757b3baf8ebd0c82e09c5c1a0e7a04"}, + {file = "wrapt-1.17.2-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:08e7ce672e35efa54c5024936e559469436f8b8096253404faeb54d2a878416f"}, + {file = "wrapt-1.17.2-cp38-cp38-win32.whl", hash = "sha256:410a92fefd2e0e10d26210e1dfb4a876ddaf8439ef60d6434f21ef8d87efc5b7"}, + {file = "wrapt-1.17.2-cp38-cp38-win_amd64.whl", hash = "sha256:95c658736ec15602da0ed73f312d410117723914a5c91a14ee4cdd72f1d790b3"}, + {file = "wrapt-1.17.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:99039fa9e6306880572915728d7f6c24a86ec57b0a83f6b2491e1d8ab0235b9a"}, + {file = "wrapt-1.17.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2696993ee1eebd20b8e4ee4356483c4cb696066ddc24bd70bcbb80fa56ff9061"}, + {file = "wrapt-1.17.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:612dff5db80beef9e649c6d803a8d50c409082f1fedc9dbcdfde2983b2025b82"}, + {file = "wrapt-1.17.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:62c2caa1585c82b3f7a7ab56afef7b3602021d6da34fbc1cf234ff139fed3cd9"}, + {file = "wrapt-1.17.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c958bcfd59bacc2d0249dcfe575e71da54f9dcf4a8bdf89c4cb9a68a1170d73f"}, + {file = "wrapt-1.17.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc78a84e2dfbc27afe4b2bd7c80c8db9bca75cc5b85df52bfe634596a1da846b"}, + {file = "wrapt-1.17.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:ba0f0eb61ef00ea10e00eb53a9129501f52385c44853dbd6c4ad3f403603083f"}, + {file = "wrapt-1.17.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:1e1fe0e6ab7775fd842bc39e86f6dcfc4507ab0ffe206093e76d61cde37225c8"}, + {file = "wrapt-1.17.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:c86563182421896d73858e08e1db93afdd2b947a70064b813d515d66549e15f9"}, + {file = "wrapt-1.17.2-cp39-cp39-win32.whl", hash = "sha256:f393cda562f79828f38a819f4788641ac7c4085f30f1ce1a68672baa686482bb"}, + {file = "wrapt-1.17.2-cp39-cp39-win_amd64.whl", hash = "sha256:36ccae62f64235cf8ddb682073a60519426fdd4725524ae38874adf72b5f2aeb"}, + {file = "wrapt-1.17.2-py3-none-any.whl", hash = "sha256:b18f2d1533a71f069c7f82d524a52599053d4c7166e9dd374ae2136b7f40f7c8"}, + {file = "wrapt-1.17.2.tar.gz", hash = "sha256:41388e9d4d1522446fe79d3213196bd9e3b301a336965b9e27ca2788ebd122f3"}, +] + +[[package]] +name = "yarl" +version = "1.15.2" +description = "Yet another URL library" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "yarl-1.15.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e4ee8b8639070ff246ad3649294336b06db37a94bdea0d09ea491603e0be73b8"}, + {file = "yarl-1.15.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a7cf963a357c5f00cb55b1955df8bbe68d2f2f65de065160a1c26b85a1e44172"}, + {file = "yarl-1.15.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:43ebdcc120e2ca679dba01a779333a8ea76b50547b55e812b8b92818d604662c"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3433da95b51a75692dcf6cc8117a31410447c75a9a8187888f02ad45c0a86c50"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:38d0124fa992dbacd0c48b1b755d3ee0a9f924f427f95b0ef376556a24debf01"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ded1b1803151dd0f20a8945508786d57c2f97a50289b16f2629f85433e546d47"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ace4cad790f3bf872c082366c9edd7f8f8f77afe3992b134cfc810332206884f"}, + {file = "yarl-1.15.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c77494a2f2282d9bbbbcab7c227a4d1b4bb829875c96251f66fb5f3bae4fb053"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b7f227ca6db5a9fda0a2b935a2ea34a7267589ffc63c8045f0e4edb8d8dcf956"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:31561a5b4d8dbef1559b3600b045607cf804bae040f64b5f5bca77da38084a8a"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3e52474256a7db9dcf3c5f4ca0b300fdea6c21cca0148c8891d03a025649d935"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:0e1af74a9529a1137c67c887ed9cde62cff53aa4d84a3adbec329f9ec47a3936"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:15c87339490100c63472a76d87fe7097a0835c705eb5ae79fd96e343473629ed"}, + {file = "yarl-1.15.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:74abb8709ea54cc483c4fb57fb17bb66f8e0f04438cff6ded322074dbd17c7ec"}, + {file = "yarl-1.15.2-cp310-cp310-win32.whl", hash = "sha256:ffd591e22b22f9cb48e472529db6a47203c41c2c5911ff0a52e85723196c0d75"}, + {file = "yarl-1.15.2-cp310-cp310-win_amd64.whl", hash = "sha256:1695497bb2a02a6de60064c9f077a4ae9c25c73624e0d43e3aa9d16d983073c2"}, + {file = "yarl-1.15.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9fcda20b2de7042cc35cf911702fa3d8311bd40055a14446c1e62403684afdc5"}, + {file = "yarl-1.15.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0545de8c688fbbf3088f9e8b801157923be4bf8e7b03e97c2ecd4dfa39e48e0e"}, + {file = "yarl-1.15.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fbda058a9a68bec347962595f50546a8a4a34fd7b0654a7b9697917dc2bf810d"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1ac2bc069f4a458634c26b101c2341b18da85cb96afe0015990507efec2e417"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cd126498171f752dd85737ab1544329a4520c53eed3997f9b08aefbafb1cc53b"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3db817b4e95eb05c362e3b45dafe7144b18603e1211f4a5b36eb9522ecc62bcf"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:076b1ed2ac819933895b1a000904f62d615fe4533a5cf3e052ff9a1da560575c"}, + {file = "yarl-1.15.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f8cfd847e6b9ecf9f2f2531c8427035f291ec286c0a4944b0a9fce58c6446046"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:32b66be100ac5739065496c74c4b7f3015cef792c3174982809274d7e51b3e04"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:34a2d76a1984cac04ff8b1bfc939ec9dc0914821264d4a9c8fd0ed6aa8d4cfd2"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:0afad2cd484908f472c8fe2e8ef499facee54a0a6978be0e0cff67b1254fd747"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:c68e820879ff39992c7f148113b46efcd6ec765a4865581f2902b3c43a5f4bbb"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:98f68df80ec6ca3015186b2677c208c096d646ef37bbf8b49764ab4a38183931"}, + {file = "yarl-1.15.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3c56ec1eacd0a5d35b8a29f468659c47f4fe61b2cab948ca756c39b7617f0aa5"}, + {file = "yarl-1.15.2-cp311-cp311-win32.whl", hash = "sha256:eedc3f247ee7b3808ea07205f3e7d7879bc19ad3e6222195cd5fbf9988853e4d"}, + {file = "yarl-1.15.2-cp311-cp311-win_amd64.whl", hash = "sha256:0ccaa1bc98751fbfcf53dc8dfdb90d96e98838010fc254180dd6707a6e8bb179"}, + {file = "yarl-1.15.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:82d5161e8cb8f36ec778fd7ac4d740415d84030f5b9ef8fe4da54784a1f46c94"}, + {file = "yarl-1.15.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:fa2bea05ff0a8fb4d8124498e00e02398f06d23cdadd0fe027d84a3f7afde31e"}, + {file = "yarl-1.15.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:99e12d2bf587b44deb74e0d6170fec37adb489964dbca656ec41a7cd8f2ff178"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:243fbbbf003754fe41b5bdf10ce1e7f80bcc70732b5b54222c124d6b4c2ab31c"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:856b7f1a7b98a8c31823285786bd566cf06226ac4f38b3ef462f593c608a9bd6"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:553dad9af802a9ad1a6525e7528152a015b85fb8dbf764ebfc755c695f488367"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:30c3ff305f6e06650a761c4393666f77384f1cc6c5c0251965d6bfa5fbc88f7f"}, + {file = "yarl-1.15.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:353665775be69bbfc6d54c8d134bfc533e332149faeddd631b0bc79df0897f46"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f4fe99ce44128c71233d0d72152db31ca119711dfc5f2c82385ad611d8d7f897"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:9c1e3ff4b89cdd2e1a24c214f141e848b9e0451f08d7d4963cb4108d4d798f1f"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:711bdfae4e699a6d4f371137cbe9e740dc958530cb920eb6f43ff9551e17cfbc"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4388c72174868884f76affcdd3656544c426407e0043c89b684d22fb265e04a5"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:f0e1844ad47c7bd5d6fa784f1d4accc5f4168b48999303a868fe0f8597bde715"}, + {file = "yarl-1.15.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:a5cafb02cf097a82d74403f7e0b6b9df3ffbfe8edf9415ea816314711764a27b"}, + {file = "yarl-1.15.2-cp312-cp312-win32.whl", hash = "sha256:156ececdf636143f508770bf8a3a0498de64da5abd890c7dbb42ca9e3b6c05b8"}, + {file = "yarl-1.15.2-cp312-cp312-win_amd64.whl", hash = "sha256:435aca062444a7f0c884861d2e3ea79883bd1cd19d0a381928b69ae1b85bc51d"}, + {file = "yarl-1.15.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:416f2e3beaeae81e2f7a45dc711258be5bdc79c940a9a270b266c0bec038fb84"}, + {file = "yarl-1.15.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:173563f3696124372831007e3d4b9821746964a95968628f7075d9231ac6bb33"}, + {file = "yarl-1.15.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:9ce2e0f6123a60bd1a7f5ae3b2c49b240c12c132847f17aa990b841a417598a2"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eaea112aed589131f73d50d570a6864728bd7c0c66ef6c9154ed7b59f24da611"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4ca3b9f370f218cc2a0309542cab8d0acdfd66667e7c37d04d617012485f904"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23ec1d3c31882b2a8a69c801ef58ebf7bae2553211ebbddf04235be275a38548"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75119badf45f7183e10e348edff5a76a94dc19ba9287d94001ff05e81475967b"}, + {file = "yarl-1.15.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:78e6fdc976ec966b99e4daa3812fac0274cc28cd2b24b0d92462e2e5ef90d368"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:8657d3f37f781d987037f9cc20bbc8b40425fa14380c87da0cb8dfce7c92d0fb"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:93bed8a8084544c6efe8856c362af08a23e959340c87a95687fdbe9c9f280c8b"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:69d5856d526802cbda768d3e6246cd0d77450fa2a4bc2ea0ea14f0d972c2894b"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:ccad2800dfdff34392448c4bf834be124f10a5bc102f254521d931c1c53c455a"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:a880372e2e5dbb9258a4e8ff43f13888039abb9dd6d515f28611c54361bc5644"}, + {file = "yarl-1.15.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:c998d0558805860503bc3a595994895ca0f7835e00668dadc673bbf7f5fbfcbe"}, + {file = "yarl-1.15.2-cp313-cp313-win32.whl", hash = "sha256:533a28754e7f7439f217550a497bb026c54072dbe16402b183fdbca2431935a9"}, + {file = "yarl-1.15.2-cp313-cp313-win_amd64.whl", hash = "sha256:5838f2b79dc8f96fdc44077c9e4e2e33d7089b10788464609df788eb97d03aad"}, + {file = "yarl-1.15.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fbbb63bed5fcd70cd3dd23a087cd78e4675fb5a2963b8af53f945cbbca79ae16"}, + {file = "yarl-1.15.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e2e93b88ecc8f74074012e18d679fb2e9c746f2a56f79cd5e2b1afcf2a8a786b"}, + {file = "yarl-1.15.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:af8ff8d7dc07ce873f643de6dfbcd45dc3db2c87462e5c387267197f59e6d776"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:66f629632220a4e7858b58e4857927dd01a850a4cef2fb4044c8662787165cf7"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:833547179c31f9bec39b49601d282d6f0ea1633620701288934c5f66d88c3e50"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2aa738e0282be54eede1e3f36b81f1e46aee7ec7602aa563e81e0e8d7b67963f"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a13a07532e8e1c4a5a3afff0ca4553da23409fad65def1b71186fb867eeae8d"}, + {file = "yarl-1.15.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c45817e3e6972109d1a2c65091504a537e257bc3c885b4e78a95baa96df6a3f8"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:670eb11325ed3a6209339974b276811867defe52f4188fe18dc49855774fa9cf"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_armv7l.whl", hash = "sha256:d417a4f6943112fae3924bae2af7112562285848d9bcee737fc4ff7cbd450e6c"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:bc8936d06cd53fddd4892677d65e98af514c8d78c79864f418bbf78a4a2edde4"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:954dde77c404084c2544e572f342aef384240b3e434e06cecc71597e95fd1ce7"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:5bc0df728e4def5e15a754521e8882ba5a5121bd6b5a3a0ff7efda5d6558ab3d"}, + {file = "yarl-1.15.2-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:b71862a652f50babab4a43a487f157d26b464b1dedbcc0afda02fd64f3809d04"}, + {file = "yarl-1.15.2-cp38-cp38-win32.whl", hash = "sha256:63eab904f8630aed5a68f2d0aeab565dcfc595dc1bf0b91b71d9ddd43dea3aea"}, + {file = "yarl-1.15.2-cp38-cp38-win_amd64.whl", hash = "sha256:2cf441c4b6e538ba0d2591574f95d3fdd33f1efafa864faa077d9636ecc0c4e9"}, + {file = "yarl-1.15.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a32d58f4b521bb98b2c0aa9da407f8bd57ca81f34362bcb090e4a79e9924fefc"}, + {file = "yarl-1.15.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:766dcc00b943c089349d4060b935c76281f6be225e39994c2ccec3a2a36ad627"}, + {file = "yarl-1.15.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:bed1b5dbf90bad3bfc19439258c97873eab453c71d8b6869c136346acfe497e7"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed20a4bdc635f36cb19e630bfc644181dd075839b6fc84cac51c0f381ac472e2"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d538df442c0d9665664ab6dd5fccd0110fa3b364914f9c85b3ef9b7b2e157980"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c6cf1d92edf936ceedc7afa61b07e9d78a27b15244aa46bbcd534c7458ee1b"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce44217ad99ffad8027d2fde0269ae368c86db66ea0571c62a000798d69401fb"}, + {file = "yarl-1.15.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b47a6000a7e833ebfe5886b56a31cb2ff12120b1efd4578a6fcc38df16cc77bd"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:e52f77a0cd246086afde8815039f3e16f8d2be51786c0a39b57104c563c5cbb0"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:f9ca0e6ce7774dc7830dc0cc4bb6b3eec769db667f230e7c770a628c1aa5681b"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:136f9db0f53c0206db38b8cd0c985c78ded5fd596c9a86ce5c0b92afb91c3a19"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:173866d9f7409c0fb514cf6e78952e65816600cb888c68b37b41147349fe0057"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:6e840553c9c494a35e449a987ca2c4f8372668ee954a03a9a9685075228e5036"}, + {file = "yarl-1.15.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:458c0c65802d816a6b955cf3603186de79e8fdb46d4f19abaec4ef0a906f50a7"}, + {file = "yarl-1.15.2-cp39-cp39-win32.whl", hash = "sha256:5b48388ded01f6f2429a8c55012bdbd1c2a0c3735b3e73e221649e524c34a58d"}, + {file = "yarl-1.15.2-cp39-cp39-win_amd64.whl", hash = "sha256:81dadafb3aa124f86dc267a2168f71bbd2bfb163663661ab0038f6e4b8edb810"}, + {file = "yarl-1.15.2-py3-none-any.whl", hash = "sha256:0d3105efab7c5c091609abacad33afff33bdff0035bece164c98bcf5a85ef90a"}, + {file = "yarl-1.15.2.tar.gz", hash = "sha256:a39c36f4218a5bb668b4f06874d676d35a035ee668e6e7e3538835c703634b84"}, ] +[package.dependencies] +idna = ">=2.0" +multidict = ">=4.0" +propcache = ">=0.2.0" + [[package]] name = "zipp" -version = "3.20.0" +version = "3.20.2" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false python-versions = ">=3.8" +groups = ["main"] files = [ - {file = "zipp-3.20.0-py3-none-any.whl", hash = "sha256:58da6168be89f0be59beb194da1250516fdaa062ccebd30127ac65d30045e10d"}, - {file = "zipp-3.20.0.tar.gz", hash = "sha256:0145e43d89664cfe1a2e533adc75adafed82fe2da404b4bbb6b026c0157bdb31"}, + {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, + {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, ] [package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1) ; sys_platform != \"cygwin\""] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["big-O", "importlib-resources ; python_version < \"3.9\"", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-ignore-flaky"] +type = ["pytest-mypy"] [metadata] -lock-version = "2.0" +lock-version = "2.1" python-versions = "~3.8" -content-hash = "b805b28040247e202be1de83ad9f1b46bc862e2a0676c296d8d5475e9c766d9a" +content-hash = "1a65cb0ef1b94d242aca58208644913179644f66299c8c22fd00cd5f8b1ecbf3" diff --git a/Chapter06/pyproject.toml b/Chapter06/pyproject.toml index 78b9a07..b134975 100644 --- a/Chapter06/pyproject.toml +++ b/Chapter06/pyproject.toml @@ -17,11 +17,19 @@ gensim = "==3.8.3" communities = "==2.2.0" scikit-learn = "==0.24.0" chardet = "==5.2.0" +# Tensorflow tensorflow = "^2.6.0" tensorflow-io-gcs-filesystem = "==0.21.0" # This needs pinning - see https://stackoverflow.com/a/76477590 protobuf= "^3.20" +# Torch +torch = "^2.1.0" +torch_geometric = "^2.5.2" +torchvision = "^0.16.0" +torchmetrics="^1.3.0" +torch-sparse = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl"} +torch-scatter = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_scatter-2.1.2%2Bpt21cpu-cp38-cp38-linux_x86_64.whl"} +# Graph ML Libraries nxt-gem = { git="https://github.com/palash1992/GEM.git", branch="master" } -# This is what is holding us back to python 3.8 stellargraph = { git="https://github.com/stellargraph/stellargraph.git", branch="develop" } [build-system] diff --git a/Chapter06/requirements.txt b/Chapter06/requirements.txt index 797e6cf..3e1f9f7 100644 --- a/Chapter06/requirements.txt +++ b/Chapter06/requirements.txt @@ -1,101 +1,136 @@ -absl-py==2.1.0 ; python_version >= "3.8" and python_version < "3.9" -appnope==0.1.4 ; python_version >= "3.8" and python_version < "3.9" and (platform_system == "Darwin" or sys_platform == "darwin") -asttokens==2.4.1 ; python_version >= "3.8" and python_version < "3.9" -astunparse==1.6.3 ; python_version >= "3.8" and python_version < "3.9" -backcall==0.2.0 ; python_version >= "3.8" and python_version < "3.9" -cachetools==5.4.0 ; python_version >= "3.8" and python_version < "3.9" -certifi==2024.7.4 ; python_version >= "3.8" and python_version < "3.9" -cffi==1.17.0 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" -chardet==5.2.0 ; python_version >= "3.8" and python_version < "3.9" -charset-normalizer==3.3.2 ; python_version >= "3.8" and python_version < "3.9" -colorama==0.4.6 ; python_version >= "3.8" and python_version < "3.9" and (sys_platform == "win32" or platform_system == "Windows") -comm==0.2.2 ; python_version >= "3.8" and python_version < "3.9" -communities==2.2.0 ; python_version >= "3.8" and python_version < "3.9" -cycler==0.12.1 ; python_version >= "3.8" and python_version < "3.9" -cython==0.29.14 ; python_version >= "3.8" and python_version < "3.9" -debugpy==1.8.5 ; python_version >= "3.8" and python_version < "3.9" -decorator==5.1.1 ; python_version >= "3.8" and python_version < "3.9" -executing==2.0.1 ; python_version >= "3.8" and python_version < "3.9" -flatbuffers==2.0.7 ; python_version >= "3.8" and python_version < "3.9" -gast==0.4.0 ; python_version >= "3.8" and python_version < "3.9" -gensim==3.8.3 ; python_version >= "3.8" and python_version < "3.9" -google-auth-oauthlib==1.0.0 ; python_version >= "3.8" and python_version < "3.9" -google-auth==2.33.0 ; python_version >= "3.8" and python_version < "3.9" -google-pasta==0.2.0 ; python_version >= "3.8" and python_version < "3.9" -grpcio==1.65.4 ; python_version >= "3.8" and python_version < "3.9" -h5py==3.11.0 ; python_version >= "3.8" and python_version < "3.9" -idna==3.7 ; python_version >= "3.8" and python_version < "3.9" -importlib-metadata==8.2.0 ; python_version >= "3.8" and python_version < "3.9" -ipykernel==6.29.5 ; python_version >= "3.8" and python_version < "3.9" -ipython==8.12.3 ; python_version >= "3.8" and python_version < "3.9" -jedi==0.19.1 ; python_version >= "3.8" and python_version < "3.9" -joblib==1.4.2 ; python_version >= "3.8" and python_version < "3.9" -jupyter-client==8.6.2 ; python_version >= "3.8" and python_version < "3.9" -jupyter-core==5.7.2 ; python_version >= "3.8" and python_version < "3.9" -karateclub==1.0.19 ; python_version >= "3.8" and python_version < "3.9" -keras-preprocessing==1.1.2 ; python_version >= "3.8" and python_version < "3.9" -keras==2.7.0 ; python_version >= "3.8" and python_version < "3.9" -kiwisolver==1.4.5 ; python_version >= "3.8" and python_version < "3.9" -libclang==18.1.1 ; python_version >= "3.8" and python_version < "3.9" -markdown==3.6 ; python_version >= "3.8" and python_version < "3.9" -markupsafe==2.1.5 ; python_version >= "3.8" and python_version < "3.9" -matplotlib-inline==0.1.7 ; python_version >= "3.8" and python_version < "3.9" -matplotlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" -nest-asyncio==1.6.0 ; python_version >= "3.8" and python_version < "3.9" -networkx==2.5 ; python_version >= "3.8" and python_version < "3.9" -node2vec==0.3.3 ; python_version >= "3.8" and python_version < "3.9" -numpy==1.24.4 ; python_version >= "3.8" and python_version < "3.9" -nxt-gem @ git+https://github.com/palash1992/GEM.git@ae8e92d34213f5785757b4a0943bd7d8d337adb3 ; python_version >= "3.8" and python_version < "3.9" -oauthlib==3.2.2 ; python_version >= "3.8" and python_version < "3.9" -opt-einsum==3.3.0 ; python_version >= "3.8" and python_version < "3.9" -packaging==24.1 ; python_version >= "3.8" and python_version < "3.9" -pandas==2.0.3 ; python_version >= "3.8" and python_version < "3.9" -parso==0.8.4 ; python_version >= "3.8" and python_version < "3.9" -pexpect==4.9.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" -pickleshare==0.7.5 ; python_version >= "3.8" and python_version < "3.9" -platformdirs==4.2.2 ; python_version >= "3.8" and python_version < "3.9" -prompt-toolkit==3.0.47 ; python_version >= "3.8" and python_version < "3.9" -protobuf==3.20.3 ; python_version >= "3.8" and python_version < "3.9" -psutil==6.0.0 ; python_version >= "3.8" and python_version < "3.9" -ptyprocess==0.7.0 ; python_version >= "3.8" and python_version < "3.9" and sys_platform != "win32" -pure-eval==0.2.3 ; python_version >= "3.8" and python_version < "3.9" -pyasn1-modules==0.4.0 ; python_version >= "3.8" and python_version < "3.9" -pyasn1==0.6.0 ; python_version >= "3.8" and python_version < "3.9" -pycparser==2.22 ; python_version >= "3.8" and python_version < "3.9" and implementation_name == "pypy" -pygments==2.18.0 ; python_version >= "3.8" and python_version < "3.9" -pygsp==0.5.1 ; python_version >= "3.8" and python_version < "3.9" -pyparsing==3.1.2 ; python_version >= "3.8" and python_version < "3.9" -python-dateutil==2.9.0.post0 ; python_version >= "3.8" and python_version < "3.9" -python-louvain==0.16 ; python_version >= "3.8" and python_version < "3.9" -pytz==2024.1 ; python_version >= "3.8" and python_version < "3.9" -pywin32==306 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.8" and python_version < "3.9" -pyzmq==26.1.0 ; python_version >= "3.8" and python_version < "3.9" -requests-oauthlib==2.0.0 ; python_version >= "3.8" and python_version < "3.9" -requests==2.32.3 ; python_version >= "3.8" and python_version < "3.9" -rsa==4.9 ; python_version >= "3.8" and python_version < "3.9" -scikit-learn==0.24.0 ; python_version >= "3.8" and python_version < "3.9" -scipy==1.10.1 ; python_version >= "3.8" and python_version < "3.9" -setuptools==72.2.0 ; python_version >= "3.8" and python_version < "3.9" -six==1.16.0 ; python_version >= "3.8" and python_version < "3.9" -smart-open==7.0.4 ; python_version >= "3.8" and python_version < "3.9" -stack-data==0.6.3 ; python_version >= "3.8" and python_version < "3.9" -stellargraph @ git+https://github.com/stellargraph/stellargraph.git@3c2c8c18ab4c5c16660f350d8e23d7dc39e738de ; python_version >= "3.8" and python_version < "3.9" -tensorboard-data-server==0.7.2 ; python_version >= "3.8" and python_version < "3.9" -tensorboard==2.14.0 ; python_version >= "3.8" and python_version < "3.9" -tensorflow-estimator==2.7.0 ; python_version >= "3.8" and python_version < "3.9" -tensorflow-io-gcs-filesystem==0.21.0 ; python_version >= "3.8" and python_version < "3.9" -tensorflow==2.7.2 ; python_version >= "3.8" and python_version < "3.9" -termcolor==2.4.0 ; python_version >= "3.8" and python_version < "3.9" -theano==1.0.5 ; python_version >= "3.8" and python_version < "3.9" -threadpoolctl==3.5.0 ; python_version >= "3.8" and python_version < "3.9" -tornado==6.4.1 ; python_version >= "3.8" and python_version < "3.9" -tqdm==4.66.5 ; python_version >= "3.8" and python_version < "3.9" -traitlets==5.14.3 ; python_version >= "3.8" and python_version < "3.9" -typing-extensions==4.12.2 ; python_version >= "3.8" and python_version < "3.9" -tzdata==2024.1 ; python_version >= "3.8" and python_version < "3.9" -urllib3==2.2.2 ; python_version >= "3.8" and python_version < "3.9" -wcwidth==0.2.13 ; python_version >= "3.8" and python_version < "3.9" -werkzeug==3.0.3 ; python_version >= "3.8" and python_version < "3.9" -wheel==0.44.0 ; python_version >= "3.8" and python_version < "3.9" -wrapt==1.16.0 ; python_version >= "3.8" and python_version < "3.9" -zipp==3.20.0 ; python_version >= "3.8" and python_version < "3.9" +absl-py==2.2.2 ; python_version == "3.8" +aiohappyeyeballs==2.4.4 ; python_version == "3.8" +aiohttp==3.10.11 ; python_version == "3.8" +aiosignal==1.3.1 ; python_version == "3.8" +appnope==0.1.4 ; (platform_system == "Darwin" or sys_platform == "darwin") and python_version == "3.8" +asttokens==3.0.0 ; python_version == "3.8" +astunparse==1.6.3 ; python_version == "3.8" +async-timeout==5.0.1 ; python_version == "3.8" +attrs==25.3.0 ; python_version == "3.8" +backcall==0.2.0 ; python_version == "3.8" +cachetools==5.5.2 ; python_version == "3.8" +certifi==2025.1.31 ; python_version == "3.8" +cffi==1.17.1 ; implementation_name == "pypy" and python_version == "3.8" +chardet==5.2.0 ; python_version == "3.8" +charset-normalizer==3.4.1 ; python_version == "3.8" +colorama==0.4.6 ; python_version == "3.8" and (sys_platform == "win32" or platform_system == "Windows") +comm==0.2.2 ; python_version == "3.8" +communities==2.2.0 ; python_version == "3.8" +cycler==0.12.1 ; python_version == "3.8" +cython==0.29.14 ; python_version == "3.8" +debugpy==1.8.13 ; python_version == "3.8" +decorator==5.2.1 ; python_version == "3.8" +executing==2.2.0 ; python_version == "3.8" +filelock==3.16.1 ; python_version == "3.8" +flatbuffers==2.0.7 ; python_version == "3.8" +frozenlist==1.5.0 ; python_version == "3.8" +fsspec==2025.3.0 ; python_version == "3.8" +gast==0.4.0 ; python_version == "3.8" +gensim==3.8.3 ; python_version == "3.8" +google-auth-oauthlib==1.0.0 ; python_version == "3.8" +google-auth==2.38.0 ; python_version == "3.8" +google-pasta==0.2.0 ; python_version == "3.8" +grpcio==1.70.0 ; python_version == "3.8" +h5py==3.11.0 ; python_version == "3.8" +idna==3.10 ; python_version == "3.8" +importlib-metadata==8.5.0 ; python_version == "3.8" +ipykernel==6.29.5 ; python_version == "3.8" +ipython==8.12.3 ; python_version == "3.8" +jedi==0.19.2 ; python_version == "3.8" +jinja2==3.1.6 ; python_version == "3.8" +joblib==1.4.2 ; python_version == "3.8" +jupyter-client==8.6.3 ; python_version == "3.8" +jupyter-core==5.7.2 ; python_version == "3.8" +karateclub==1.0.19 ; python_version == "3.8" +keras-preprocessing==1.1.2 ; python_version == "3.8" +keras==2.7.0 ; python_version == "3.8" +kiwisolver==1.4.7 ; python_version == "3.8" +libclang==18.1.1 ; python_version == "3.8" +lightning-utilities==0.11.9 ; python_version == "3.8" +markdown==3.7 ; python_version == "3.8" +markupsafe==2.1.5 ; python_version == "3.8" +matplotlib-inline==0.1.7 ; python_version == "3.8" +matplotlib==3.2.2 ; python_version == "3.8" +mpmath==1.3.0 ; python_version == "3.8" +multidict==6.1.0 ; python_version == "3.8" +nest-asyncio==1.6.0 ; python_version == "3.8" +networkx==2.5 ; python_version == "3.8" +node2vec==0.3.3 ; python_version == "3.8" +numpy==1.24.4 ; python_version == "3.8" +nvidia-cublas-cu12==12.1.3.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8" +nvidia-cuda-cupti-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8" +nvidia-cuda-nvrtc-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8" +nvidia-cuda-runtime-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8" +nvidia-cudnn-cu12==8.9.2.26 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8" +nvidia-cufft-cu12==11.0.2.54 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8" +nvidia-curand-cu12==10.3.2.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8" +nvidia-cusolver-cu12==11.4.5.107 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8" +nvidia-cusparse-cu12==12.1.0.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8" +nvidia-nccl-cu12==2.18.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8" +nvidia-nvjitlink-cu12==12.8.93 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8" +nvidia-nvtx-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8" +nxt-gem @ git+https://github.com/palash1992/GEM.git@ae8e92d34213f5785757b4a0943bd7d8d337adb3 ; python_version == "3.8" +oauthlib==3.2.2 ; python_version == "3.8" +opt-einsum==3.4.0 ; python_version == "3.8" +packaging==24.2 ; python_version == "3.8" +pandas==2.0.3 ; python_version == "3.8" +parso==0.8.4 ; python_version == "3.8" +pexpect==4.9.0 ; sys_platform != "win32" and python_version == "3.8" +pickleshare==0.7.5 ; python_version == "3.8" +pillow==10.4.0 ; python_version == "3.8" +platformdirs==4.3.6 ; python_version == "3.8" +prompt-toolkit==3.0.50 ; python_version == "3.8" +propcache==0.2.0 ; python_version == "3.8" +protobuf==3.20.3 ; python_version == "3.8" +psutil==7.0.0 ; python_version == "3.8" +ptyprocess==0.7.0 ; sys_platform != "win32" and python_version == "3.8" +pure-eval==0.2.3 ; python_version == "3.8" +pyasn1-modules==0.4.2 ; python_version == "3.8" +pyasn1==0.6.1 ; python_version == "3.8" +pycparser==2.22 ; implementation_name == "pypy" and python_version == "3.8" +pygments==2.19.1 ; python_version == "3.8" +pygsp==0.5.1 ; python_version == "3.8" +pyparsing==3.1.4 ; python_version == "3.8" +python-dateutil==2.9.0.post0 ; python_version == "3.8" +python-louvain==0.16 ; python_version == "3.8" +pytz==2025.2 ; python_version == "3.8" +pywin32==310 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version == "3.8" +pyzmq==26.4.0 ; python_version == "3.8" +requests-oauthlib==2.0.0 ; python_version == "3.8" +requests==2.32.3 ; python_version == "3.8" +rsa==4.9 ; python_version == "3.8" +scikit-learn==0.24.0 ; python_version == "3.8" +scipy==1.10.1 ; python_version == "3.8" +setuptools==75.3.2 ; python_version == "3.8" +six==1.17.0 ; python_version == "3.8" +smart-open==7.1.0 ; python_version == "3.8" +stack-data==0.6.3 ; python_version == "3.8" +stellargraph @ git+https://github.com/stellargraph/stellargraph.git@3c2c8c18ab4c5c16660f350d8e23d7dc39e738de ; python_version == "3.8" +sympy==1.13.3 ; python_version == "3.8" +tensorboard-data-server==0.7.2 ; python_version == "3.8" +tensorboard==2.14.0 ; python_version == "3.8" +tensorflow-estimator==2.7.0 ; python_version == "3.8" +tensorflow-io-gcs-filesystem==0.21.0 ; python_version == "3.8" +tensorflow==2.7.2 ; python_version == "3.8" +termcolor==2.4.0 ; python_version == "3.8" +theano==1.0.5 ; python_version == "3.8" +threadpoolctl==3.5.0 ; python_version == "3.8" +torch-geometric==2.6.1 ; python_version == "3.8" +torch-scatter @ https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_scatter-2.1.2%2Bpt21cpu-cp38-cp38-linux_x86_64.whl ; python_version == "3.8" +torch-sparse @ https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp38-cp38-linux_x86_64.whl ; python_version == "3.8" +torch==2.1.2 ; python_version == "3.8" +torchmetrics==1.5.2 ; python_version == "3.8" +torchvision==0.16.2 ; python_version == "3.8" +tornado==6.4.2 ; python_version == "3.8" +tqdm==4.67.1 ; python_version == "3.8" +traitlets==5.14.3 ; python_version == "3.8" +triton==2.1.0 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8" +typing-extensions==4.13.1 ; python_version == "3.8" +tzdata==2025.2 ; python_version == "3.8" +urllib3==2.2.3 ; python_version == "3.8" +wcwidth==0.2.13 ; python_version == "3.8" +werkzeug==3.0.6 ; python_version == "3.8" +wheel==0.45.1 ; python_version == "3.8" +wrapt==1.17.2 ; python_version == "3.8" +yarl==1.15.2 ; python_version == "3.8" +zipp==3.20.2 ; python_version == "3.8" From 4dd88844e2f3f17deeefe21293aa1f27a8ebec50 Mon Sep 17 00:00:00 2001 From: deusebio Date: Thu, 10 Jul 2025 18:54:00 +0200 Subject: [PATCH 31/31] [Chapter12] LLM and Graphs (#39) --------- Co-authored-by: MARZULLO Aldo ICH --- .github/workflows/ci.yaml | 78 +- Chapter12/LLM_and_Graphs.ipynb | 622 +++++ Chapter12/poetry.lock | 4277 ++++++++++++++++++++++++++++++++ Chapter12/pyproject.toml | 35 + Chapter12/requirements.txt | 137 + Chapter12/setup_ollama.sh | 9 + docker/Dockerfile | 7 + 7 files changed, 5144 insertions(+), 21 deletions(-) create mode 100644 Chapter12/LLM_and_Graphs.ipynb create mode 100644 Chapter12/poetry.lock create mode 100644 Chapter12/pyproject.toml create mode 100644 Chapter12/requirements.txt create mode 100755 Chapter12/setup_ollama.sh diff --git a/.github/workflows/ci.yaml b/.github/workflows/ci.yaml index f98bb50..4c087f4 100644 --- a/.github/workflows/ci.yaml +++ b/.github/workflows/ci.yaml @@ -15,27 +15,29 @@ jobs: max-parallel: 5 matrix: chapter: - - name: chap1 - folder: Chapter01 - - name: chap2 - folder: Chapter02 - - name: chap3 - folder: Chapter03 - - name: chap4 - folder: Chapter04 - - name: chap5 - folder: Chapter05 - - name: chap6 - folder: Chapter06 - - name: chap7 - folder: Chapter07 - - name: chap8 - folder: Chapter08 - - name: chap9 - folder: Chapter09 - - name: chap10 - folder: Chapter10 - runs-on: ubuntu-latest + - name: chap1 + folder: Chapter01 + - name: chap2 + folder: Chapter02 + - name: chap3 + folder: Chapter03 + - name: chap4 + folder: Chapter04 + - name: chap5 + folder: Chapter05 + - name: chap6 + folder: Chapter06 + - name: chap7 + folder: Chapter07 + - name: chap8 + folder: Chapter08 + - name: chap9 + folder: Chapter09 + - name: chap10 + folder: Chapter10 + - name: chap12 + folder: Chapter12 + runs-on: ubuntu-22.04 name: Image ${{ matrix.chapter.name }} steps: - name: Checkout repository @@ -46,6 +48,17 @@ jobs: run: echo "branch=${GITHUB_HEAD_REF:-${GITHUB_REF#refs/heads/}}" >> $GITHUB_OUTPUT id: extract_branch + - name: (GitHub hosted) Free up disk space + shell: bash + run: | + printf '\nDisk usage before cleanup\n' + df --human-readable + # Based on https://github.com/actions/runner-images/issues/2840#issuecomment-790492173 + rm -r /usr/share/dotnet + rm -r /opt/hostedtoolcache/ + printf '\nDisk usage after cleanup\n' + df --human-readable + - name: Build Image id: build run: | @@ -80,6 +93,28 @@ jobs: docker network connect my-network neo4j fi + # Start Neo4j if we are testing chapter 13 + if [ "${{ matrix.chapter.name }}" == "chap12" ]; + then + docker run --rm --detach --name neo4j \ + --publish=7474:7474 --publish=7687:7687 \ + --user="$(id -u):$(id -g)" \ + --env NEO4J_AUTH=none \ + --env NEO4J_PLUGINS='["apoc","apoc-extended"]' \ + --env NEO4J_apoc_export_file_enabled=true \ + --env NEO4J_apoc_import_file_enabled=true \ + --env NEO4J_apoc_import_file_use__neo4j_config=true \ + neo4j:5.26.0 + docker network connect my-network neo4j + + docker run --rm --detach --name ollama \ + --publish=11434:11434 \ + --volume olama:/root/.ollama \ + ollama/ollama:0.6.4 + docker network connect my-network ollama + fi + + mkdir -p data chmod -R 777 data docker run \ @@ -89,6 +124,7 @@ jobs: --env KAGGLE_KEY=${KAGGLE_TOKEN} \ --env NEO4J_HOST=neo4j \ --env JANUSGRAPH_HOST=janusgraph \ + --env OLLAMA_HOST=ollama \ graph-machine-learning:latest docker network connect my-network graph-machine-learning-box diff --git a/Chapter12/LLM_and_Graphs.ipynb b/Chapter12/LLM_and_Graphs.ipynb new file mode 100644 index 0000000..90dac8f --- /dev/null +++ b/Chapter12/LLM_and_Graphs.ipynb @@ -0,0 +1,622 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# LMM and Graphs" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aH3Q56MGDARI" + }, + "source": [ + "Let's create a toy dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "lDLHAhIlDEvm" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/euler/.conda/envs/chap12/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import sys\n", + "import torch\n", + "\n", + "from torch_geometric.data import Data\n", + "\n", + "# Assume a toy dataset with 3 papers (nodes), edges, and labels\n", + "data = Data(\n", + " x=torch.rand(3, 10), # Random node features\n", + " edge_index=torch.tensor([[0, 1], [1, 2]], dtype=torch.long).t().contiguous(), # Edges (transposed for PyG)\n", + " y=torch.tensor([0, 1, 2], dtype=torch.long), # True labels (3 classes)\n", + " text=[\"Paper A abstract about machine learning\", \n", + " \"Paper B abstract about deep learning\", \n", + " \"Paper C abstract about neural networks\"], # Text data\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dataset info:\n", + " Number of nodes: 3\n", + " Node feature dimension: 10\n", + " Number of edges: 2\n", + " Number of classes: 3\n", + " True labels: [0, 1, 2]\n" + ] + } + ], + "source": [ + "num_classes = len(torch.unique(data.y)) # Number of unique classes\n", + "\n", + "print(f\"Dataset info:\")\n", + "print(f\" Number of nodes: {data.x.size(0)}\")\n", + "print(f\" Node feature dimension: {data.x.size(1)}\")\n", + "print(f\" Number of edges: {data.edge_index.size(1)}\")\n", + "print(f\" Number of classes: {num_classes}\")\n", + "print(f\" True labels: {data.y.tolist()}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 388, + "referenced_widgets": [ + "a0f9087c1517444d9d02d3ee239871c0", + "49409686002944ba913043f9e566dec6", + "9ca2c22d54a14543a0ccb418f84dfc7a", + "6ef1fa9fc050493a88aa2ba634c36cb4", + "95dde357b3704448bfdb0b3a8818413e", + "918e3e0abaaa43119b27a725d9996622", + "c45bf94c8ae1497bb5093dd459e35868", + "78a75c6a1b0444baa32a8dc0444c6e42", + "efae36a6383c472c8d8fe7f39223a13f", + "722fd967e7a640468b2c1c828c6ad983", + "9b6d7d228f25418aaf2489fedc465492", + "0b92a27e384b4ccfa1717e2898c44499", + "694e7d436acc4f5288c6dddcb1e8eb43", + "f8dd5aa75d5342b9be4b9ef0914b3330", + "577d03563d0e429da232b47df6dc2cfb", + "da4c66ea361b4ea4be05010c02866f51", + "f500df21edf1499c83e6d0036e5b771c", + "26329100e08f452bba6a2cb0199c84b7", + "bcbc986b382a4ba49bfc4d5fd428488c", + "bced6297dc0b46ea826ee40344c21b13", + "04e572cf4bfe4c4b91b08f47cdb88c77", + "1c795237b0964f4182a2f2948b747f94", + "63bc10c1908945928df1d9b492912a04", + "a87bb9d072ee43a08a97c9effb82db9c", + "000c7c5876a04721ac8ccc89d9e6163e", + "ccbc8df9abab48948c5317bcc31612e1", + "87df42e6746e4847864eda694620750f", + "a88f61637e6541f589187d5d9abcb503", + "bb0d43a5c4f34b1d9a39230b9c129fd5", + "5bf85ad0b72a4e68914487ffabef5ea6", + "f8d2202f01874c30a3ae563e6fdd6428", + "853f6e10e86f4d8aba5822790d43a34e", + "581e482879434621bb48245bc886baa2", + "b369bdad965b4b3794af271f5416d42a", + "07c929ea8b0e4f6a85bfa54b60beec27", + "e2e8b3e0ceb7405fa6c0940730f60804", + "0c381c9ceeb04677903611735c1b7fcf", + "90fc7f82fa7c4fe79386e766fe687370", + "02035c4cf9f142c6a7167d4d81befce0", + "0ef9969aa23348e39e56981b0ce9ba35", + "ba9d04c9c86e45f9a80f3a61ee220c5e", + "317a758830264800bbd6f17ee10d5e22", + "a54841dde9cd42db85b326faaf4ab0b5", + "72c8076ed09748e1a37b21f25d12dafe", + "b78234a537214afebcfdee5f32d4d9a0", + "4090d3b6cdbf45e9b54f65e55a994713", + "41bb03671ae14450aaeb13b9ee9a9ffa", + "0825bfd7305b497abaac3d5edbcfb72d", + "03c8fbe4a1ab403dae44d77ff0240d9a", + "204a396320264c7fa63b2e539f1b25d1", + "6a2f31e069e54cfb96dfbb5b80e5d15b", + "45dc666b5ac94bbf9164058d0c7cd3e2", + "07718c8acd3049c4a38778e6f8d4eca3", + "e053ba80dc79470d8b1d1c9dc67db792", + "bab624c7fda8476d974253c9fba8a827" + ] + }, + "id": "YxK0emCj_0ad", + "outputId": "f823051a-2dab-49df-b472-5373cde384a1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Starting training...\n", + "Iteration 1: GNN Loss = 1.1190, LLM Loss = 0.9824\n", + " GNN predictions: [1, 1, 1]\n", + " LLM predictions: [1, 1, 1]\n", + "Iteration 2: GNN Loss = 0.8503, LLM Loss = 1.0020\n", + " GNN predictions: [1, 1, 1]\n", + " LLM predictions: [2, 2, 1]\n", + "Iteration 3: GNN Loss = 0.9946, LLM Loss = 0.9380\n", + " GNN predictions: [1, 1, 1]\n", + " LLM predictions: [1, 2, 1]\n", + "Iteration 4: GNN Loss = 0.8984, LLM Loss = 0.9884\n", + " GNN predictions: [1, 1, 1]\n", + " LLM predictions: [0, 1, 1]\n", + "Iteration 5: GNN Loss = 0.9916, LLM Loss = 0.7875\n", + " GNN predictions: [1, 1, 1]\n", + " LLM predictions: [1, 1, 1]\n" + ] + } + ], + "source": [ + "from transformers import AutoTokenizer, AutoModel\n", + "from torch_geometric.nn import GCNConv\n", + "import torch.nn.functional as F\n", + "\n", + "# 1. Define the Graph Neural Network (GNN)\n", + "class GNN(torch.nn.Module):\n", + " def __init__(self, input_dim, hidden_dim, num_classes):\n", + " super(GNN, self).__init__()\n", + " self.conv1 = GCNConv(input_dim, hidden_dim)\n", + " self.conv2 = GCNConv(hidden_dim, num_classes) # Output num_classes\n", + " self.dropout = torch.nn.Dropout(0.2)\n", + " \n", + " def forward(self, x, edge_index):\n", + " x = self.conv1(x, edge_index)\n", + " x = F.relu(x)\n", + " x = self.dropout(x)\n", + " x = self.conv2(x, edge_index)\n", + " return x # Return logits (not softmax)\n", + "\n", + "# 2. Define the Text Encoder (BERT-based)\n", + "class TextEncoder(torch.nn.Module):\n", + " def __init__(self, model_name=\"bert-base-uncased\", num_classes=3):\n", + " super(TextEncoder, self).__init__()\n", + " self.tokenizer = AutoTokenizer.from_pretrained(model_name)\n", + " self.model = AutoModel.from_pretrained(model_name)\n", + " # Project from BERT's hidden size to number of classes\n", + " self.classifier = torch.nn.Linear(self.model.config.hidden_size, num_classes)\n", + " self.dropout = torch.nn.Dropout(0.1)\n", + " \n", + " def forward(self, texts):\n", + " # Tokenize and encode text data\n", + " inputs = self.tokenizer(texts, return_tensors=\"pt\", padding=True, truncation=True, max_length=512)\n", + " \n", + " with torch.no_grad(): # Freeze BERT parameters during training\n", + " outputs = self.model(**inputs)\n", + " \n", + " # Use [CLS] token embedding\n", + " cls_embedding = outputs.last_hidden_state[:, 0, :]\n", + " cls_embedding = self.dropout(cls_embedding)\n", + " logits = self.classifier(cls_embedding)\n", + " return logits # Return logits (not softmax)\n", + "\n", + "\n", + "# 4. Training Loop with Bidirectional Pseudo-label Exchange\n", + "def train_prediction_alignment(data, gnn, text_encoder, num_iterations=5):\n", + " optimizer_gnn = torch.optim.Adam(gnn.parameters(), lr=0.01)\n", + " optimizer_text = torch.optim.Adam(text_encoder.parameters(), lr=0.0001)\n", + " \n", + " # Initialize with true labels for first iteration\n", + " gnn_pseudo_labels = data.y.clone()\n", + " llm_pseudo_labels = data.y.clone()\n", + " \n", + " for iteration in range(num_iterations):\n", + " # 4.1 Train GNN using LLM pseudo-labels from previous iteration\n", + " gnn.train()\n", + " optimizer_gnn.zero_grad()\n", + " gnn_logits = gnn(data.x, data.edge_index)\n", + " gnn_loss = torch.nn.CrossEntropyLoss()(gnn_logits, llm_pseudo_labels)\n", + " gnn_loss.backward()\n", + " optimizer_gnn.step()\n", + " \n", + " # Generate new GNN pseudo-labels\n", + " with torch.no_grad():\n", + " gnn_pseudo_labels = torch.argmax(gnn_logits, dim=1)\n", + " \n", + " # 4.2 Train Text Encoder using GNN pseudo-labels\n", + " text_encoder.train()\n", + " optimizer_text.zero_grad()\n", + " text_logits = text_encoder(data.text)\n", + " llm_loss = torch.nn.CrossEntropyLoss()(text_logits, gnn_pseudo_labels)\n", + " llm_loss.backward()\n", + " optimizer_text.step()\n", + " \n", + " # Generate new LLM pseudo-labels for next iteration\n", + " with torch.no_grad():\n", + " llm_pseudo_labels = torch.argmax(text_logits, dim=1)\n", + " \n", + " print(f\"Iteration {iteration+1}: GNN Loss = {gnn_loss.item():.4f}, LLM Loss = {llm_loss.item():.4f}\")\n", + " print(f\" GNN predictions: {gnn_pseudo_labels.tolist()}\")\n", + " print(f\" LLM predictions: {llm_pseudo_labels.tolist()}\")\n", + "\n", + "# Initialize models and train\n", + "input_dim = data.x.size(1) # Node feature dimension\n", + "hidden_dim = 64\n", + "\n", + "gnn = GNN(input_dim=input_dim, hidden_dim=hidden_dim, num_classes=num_classes)\n", + "text_encoder = TextEncoder(num_classes=num_classes)\n", + "\n", + "print(\"Starting training...\")\n", + "train_prediction_alignment(data, gnn, text_encoder, num_iterations=5)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AwmGzCmH_669", + "outputId": "2577a628-8f1c-4efb-c732-1dfbbade06bf" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1: Loss = 1.1974958181381226\n", + "Epoch 2: Loss = 0.9338013529777527\n", + "Epoch 3: Loss = 1.0983785390853882\n", + "Epoch 4: Loss = 1.0986661911010742\n", + "Epoch 5: Loss = 1.0841368436813354\n", + "Epoch 6: Loss = 1.0974050760269165\n", + "Epoch 7: Loss = 0.621391773223877\n", + "Epoch 8: Loss = 0.5264388918876648\n", + "Epoch 9: Loss = 1.1055184602737427\n", + "Epoch 10: Loss = 1.0985291004180908\n" + ] + } + ], + "source": [ + "# Import libraries\n", + "import torch\n", + "import torch.nn.functional as F\n", + "from transformers import AutoTokenizer, AutoModel\n", + "from torch_geometric.nn import GraphConv\n", + "from torch_geometric.data import Data\n", + "\n", + "# 1. Define the GNN\n", + "class GNN(torch.nn.Module):\n", + " def __init__(self, input_dim, hidden_dim):\n", + " super(GNN, self).__init__()\n", + " self.conv = GraphConv(input_dim, hidden_dim)\n", + "\n", + " def forward(self, x, edge_index):\n", + " return self.conv(x, edge_index)\n", + "\n", + "# 2. Define the Text Encoder (LLM)\n", + "class TextEncoder(torch.nn.Module):\n", + " def __init__(self, model_name=\"bert-base-uncased\", output_dim=128):\n", + " super(TextEncoder, self).__init__()\n", + " self.tokenizer = AutoTokenizer.from_pretrained(model_name)\n", + " self.model = AutoModel.from_pretrained(model_name)\n", + " self.fc = torch.nn.Linear(self.model.config.hidden_size, output_dim)\n", + "\n", + " def forward(self, texts):\n", + " inputs = self.tokenizer(texts, return_tensors=\"pt\", padding=True, truncation=True)\n", + " outputs = self.model(**inputs)\n", + " cls_embedding = outputs.last_hidden_state[:, 0, :] # [CLS] token embedding\n", + " return self.fc(cls_embedding)\n", + "\n", + "# 3. Contrastive Learning Objective\n", + "def contrastive_loss(graph_emb, text_emb, tau=0.1):\n", + " sim = F.cosine_similarity(graph_emb.unsqueeze(1), text_emb.unsqueeze(0), dim=2)\n", + " labels = torch.arange(sim.size(0)).to(sim.device)\n", + " loss = F.cross_entropy(sim / tau, labels)\n", + " return loss\n", + "\n", + "# 4. Training Loop for Latent Space Alignment\n", + "def train_latent_alignment(data, gnn, text_encoder, epochs=10):\n", + " optimizer = torch.optim.Adam(list(gnn.parameters()) + list(text_encoder.parameters()), lr=0.001)\n", + " for epoch in range(epochs):\n", + " optimizer.zero_grad()\n", + "\n", + " # Encode graph and text\n", + " graph_emb = gnn(data.x, data.edge_index) # Graph embeddings\n", + " text_emb = text_encoder(data.text) # Text embeddings\n", + "\n", + " # Compute contrastive loss\n", + " loss = contrastive_loss(graph_emb, text_emb)\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " print(f\"Epoch {epoch+1}: Loss = {loss.item()}\")\n", + "\n", + "# 5. Example Data\n", + "# Toy data with 3 products and their relationships\n", + "data = Data(\n", + " x=torch.rand(3, 10), # Node features\n", + " edge_index=torch.tensor([[0, 1], [1, 2]], dtype=torch.long), # Edges\n", + " text=[\"Product A description\", \"Product B description\", \"Product C description\"], # Text data\n", + ")\n", + "\n", + "# Initialize models and train\n", + "gnn = GNN(input_dim=10, hidden_dim=128)\n", + "text_encoder = TextEncoder()\n", + "train_latent_alignment(data, gnn, text_encoder)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mqcZZn6qCCmj" + }, + "source": [ + "# GraphRAG" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xM73g-bDiPPG" + }, + "source": [ + "If using Colab you can simply run the following cells.\n", + "\n", + "Otherwise, if you want to use the local backend, please:\n", + "- download neo4j desktop on [docker](https://neo4j.com/docs/graph-data-science/current/installation/installation-docker/)*\n", + "- download [lm-studio](https://lmstudio.ai/) and download the minicpm-llama3-v-2_5 and nomic-embed-text model\n", + "\n", + "*run docker as:\n", + "\n", + "\n", + "```\n", + "docker run --rm --env NEO4J_AUTH=neo4j/defaultpass -p 7474:7474 -p 7687:7687 -v $PWD/data:/data -v $PWD/plugins:/plugins --name neo4j-apoc -e NEO4J_apoc_export_file_enabled=true -e NEO4J_apoc_import_file_enabled=true -e NEO4J_apoc_import_file_use__neo4j__config=true -e NEO4J_PLUGINS=\\[\\\"apoc-extended\\\"\\] neo4j\n", + "```\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "JKEORJfWwI7w" + }, + "outputs": [], + "source": [ + "import os\n", + "import sys\n", + "\n", + "LLM_BACKEND = \"ollama\" # choose [\"ollama\" | \"lm-studio\"]\n", + "# LLM_BACKEND = \"lm-studio\"\n", + "\n", + "assert LLM_BACKEND in [\"ollama\", \"lm-studio\"]\n", + "\n", + "if LLM_BACKEND == \"ollama\":\n", + " base_url = f\"http://{os.environ.get('OLLAMA_HOST', 'localhost')}:11434/v1\"\n", + " api_key = \"ollama\"\n", + " # llm_model = \"minicpm-v\"\n", + " llm_model = \"phi4\"\n", + "else:\n", + " base_url = \"http://localhost:1234/v1\"\n", + " api_key = \"lm-studio\"\n", + " llm_model = \"minicpm-llama3-v-2_5\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FIEW2lBMqp2V" + }, + "source": [ + "If Colab you need to download ollama and start the server" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "ProgressResponse(status='success', completed=None, total=None, digest=None)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import ollama\n", + "\n", + "# ollama.pull(llm_model)\n", + "# ollama.pull(\"nomic-embed-text\")\n", + "ollama.pull(\"phi4\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "ListResponse(models=[Model(model='phi4:latest', modified_at=datetime.datetime(2025, 6, 21, 20, 30, 17, 738327, tzinfo=TzInfo(UTC)), digest='ac896e5b8b34a1f4efa7b14d7520725140d5512484457fab45d2a4ea14c69dba', size=9053116391, details=ModelDetails(parent_model='', format='gguf', family='phi3', families=['phi3'], parameter_size='14.7B', quantization_level='Q4_K_M'))])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ollama.list()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bK17PDF7KxCv" + }, + "source": [ + "# Neo4j" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OUWxS0p0-d-e", + "outputId": "527d26fc-0dfc-479b-f1c8-330ec8b7d52b" + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "from neo4j import GraphDatabase\n", + "from langchain_neo4j import Neo4jGraph\n", + "\n", + "host = os.environ.get(\"NEO4J_HOST\", \"localhost\")\n", + "\n", + "# ---- Step 1: Setup Neo4j Connection ----\n", + "NEO4J_URI = f\"bolt://{host}:7687\"\n", + "NEO4J_USER = \"neo4j\"\n", + "NEO4J_PASSWORD = \"neo5j\"\n", + "\n", + "driver = GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_USER, NEO4J_PASSWORD))\n", + "graph = Neo4jGraph(url=NEO4J_URI, username=NEO4J_USER, password=NEO4J_PASSWORD)\n", + "\n", + "# ---- Step 2: Create knowledge graph from text ----\n", + "import os\n", + "from langchain_experimental.graph_transformers.llm import LLMGraphTransformer\n", + "from langchain_openai import ChatOpenAI\n", + "\n", + "llm = ChatOpenAI(temperature=0,\n", + " model_name=llm_model,\n", + " base_url=base_url,\n", + " api_key=api_key)\n", + "\n", + "llm_transformer = LLMGraphTransformer(llm=llm)\n", + "\n", + "from langchain_core.documents import Document\n", + "\n", + "text = \"\"\"\n", + "Marie Curie, born in 1867, was a Polish and naturalised-French physicist and chemist who conducted pioneering research on radioactivity.\n", + "She was the first woman to win a Nobel Prize, the first person to win a Nobel Prize twice, and the only person to win a Nobel Prize in two scientific fields.\n", + "Her husband, Pierre Curie, was a co-winner of her first Nobel Prize, making them the first-ever married couple to win the Nobel Prize and launching the Curie family legacy of five Nobel Prizes.\n", + "She was, in 1906, the first woman to become a professor at the University of Paris.\n", + "\"\"\"\n", + "documents = [Document(page_content=text)]\n", + "graph_documents = llm_transformer.convert_to_graph_documents(documents)\n", + "print(f\"Nodes:{graph_documents[0].nodes}\")\n", + "print(f\"Relationships:{graph_documents[0].relationships}\")\n", + "\n", + "# Add graph to neo4j\n", + "graph.add_graph_documents(graph_documents)\n", + "\n", + "# ---- Step 3: Perform GraphRAG ----\n", + "\n", + "def escape(s):\n", + " return s.replace(\"{\",\"\").replace(\"}\",\"\")\n", + "\n", + "CYPHER_GENERATION_TEMPLATE = f\"\"\"You are a Neo4j expert. Generate a Cypher query to answer the given question.\n", + "\n", + "Database Schema: {escape(graph.schema)}\n", + "\n", + "Rules:\n", + "1. Always use explicit `MATCH` for relationships.\n", + "2. Never use `WHERE` for relationship matching.\n", + "3. Use `RETURN DISTINCT` when appropriate.\n", + "\n", + "Example Queries:\n", + "1. Question: \"Who won the Nobel Prize?\"\n", + " Cypher: MATCH (p:Person)-[:WON_NOBEL_PRIZE]->(:Awarded) RETURN p.id AS winner\n", + "\n", + "Question: {{query}}\n", + "Return only the Cypher query without any explanation or additional text.\n", + "Cypher:\"\"\"\n", + "\n", + "from langchain_neo4j import GraphCypherQAChain\n", + "from langchain_core.prompts import PromptTemplate\n", + "\n", + "chain = GraphCypherQAChain.from_llm(\n", + " llm=llm,\n", + " graph=graph,\n", + " verbose=True,\n", + " cypher_prompt=PromptTemplate(\n", + " input_variables=[\"query\"],\n", + " template=CYPHER_GENERATION_TEMPLATE\n", + " ),\n", + " allow_dangerous_requests=True\n", + ")\n", + "\n", + "# ---- Step 5: Test Queries ----\n", + "print(\"\\nTesting queries...\")\n", + "\n", + "question = \"Who married a Nobel Prize?\"\n", + "\n", + "print(f\"\\nQuestion: {question}\")\n", + "response = chain.invoke(question)\n", + "print(\"Response:\", response['result'])\n", + "\n", + "# Close the driver\n", + "driver.close()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "A4gzGQzeeqFC" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "chap12", + "language": "python", + "name": "chap12" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.18" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Chapter12/poetry.lock b/Chapter12/poetry.lock new file mode 100644 index 0000000..2485f78 --- /dev/null +++ b/Chapter12/poetry.lock @@ -0,0 +1,4277 @@ +# This file is automatically @generated by Poetry 2.1.1 and should not be changed by hand. + +[[package]] +name = "accelerate" +version = "1.8.1" +description = "Accelerate" +optional = false +python-versions = ">=3.9.0" +groups = ["main"] +files = [ + {file = "accelerate-1.8.1-py3-none-any.whl", hash = "sha256:c47b8994498875a2b1286e945bd4d20e476956056c7941d512334f4eb44ff991"}, + {file = "accelerate-1.8.1.tar.gz", hash = "sha256:f60df931671bc4e75077b852990469d4991ce8bd3a58e72375c3c95132034db9"}, +] + +[package.dependencies] +huggingface_hub = ">=0.21.0" +numpy = ">=1.17,<3.0.0" +packaging = ">=20.0" +psutil = "*" +pyyaml = "*" +safetensors = ">=0.4.3" +torch = ">=2.0.0" + +[package.extras] +deepspeed = ["deepspeed"] +dev = ["bitsandbytes", "black (>=23.1,<24.0)", "datasets", "diffusers", "evaluate", "hf-doc-builder (>=0.3.0)", "parameterized", "pytest (>=7.2.0,<=8.0.0)", "pytest-order", "pytest-subtests", "pytest-xdist", "rich", "ruff (>=0.11.2,<0.12.0)", "scikit-learn", "scipy", "timm", "torchdata (>=0.8.0)", "torchpippy (>=0.2.0)", "tqdm", "transformers"] +quality = ["black (>=23.1,<24.0)", "hf-doc-builder (>=0.3.0)", "ruff (>=0.11.2,<0.12.0)"] +rich = ["rich"] +sagemaker = ["sagemaker"] +test-dev = ["bitsandbytes", "datasets", "diffusers", "evaluate", "scikit-learn", "scipy", "timm", "torchdata (>=0.8.0)", "torchpippy (>=0.2.0)", "tqdm", "transformers"] +test-fp8 = ["torchao"] +test-prod = ["parameterized", "pytest (>=7.2.0,<=8.0.0)", "pytest-order", "pytest-subtests", "pytest-xdist"] +test-trackers = ["comet-ml", "dvclive", "matplotlib", "mlflow", "swanlab", "tensorboard", "wandb"] +testing = ["bitsandbytes", "datasets", "diffusers", "evaluate", "parameterized", "pytest (>=7.2.0,<=8.0.0)", "pytest-order", "pytest-subtests", "pytest-xdist", "scikit-learn", "scipy", "timm", "torchdata (>=0.8.0)", "torchpippy (>=0.2.0)", "tqdm", "transformers"] + +[[package]] +name = "aiohappyeyeballs" +version = "2.6.1" +description = "Happy Eyeballs for asyncio" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "aiohappyeyeballs-2.6.1-py3-none-any.whl", hash = "sha256:f349ba8f4b75cb25c99c5c2d84e997e485204d2902a9597802b0371f09331fb8"}, + {file = "aiohappyeyeballs-2.6.1.tar.gz", hash = "sha256:c3f9d0113123803ccadfdf3f0faa505bc78e6a72d1cc4806cbd719826e943558"}, +] + +[[package]] +name = "aiohttp" +version = "3.12.13" +description = "Async http client/server framework (asyncio)" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "aiohttp-3.12.13-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:5421af8f22a98f640261ee48aae3a37f0c41371e99412d55eaf2f8a46d5dad29"}, + {file = "aiohttp-3.12.13-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0fcda86f6cb318ba36ed8f1396a6a4a3fd8f856f84d426584392083d10da4de0"}, + {file = "aiohttp-3.12.13-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4cd71c9fb92aceb5a23c4c39d8ecc80389c178eba9feab77f19274843eb9412d"}, + {file = "aiohttp-3.12.13-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:34ebf1aca12845066c963016655dac897651e1544f22a34c9b461ac3b4b1d3aa"}, + {file = "aiohttp-3.12.13-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:893a4639694c5b7edd4bdd8141be296042b6806e27cc1d794e585c43010cc294"}, + {file = "aiohttp-3.12.13-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:663d8ee3ffb3494502ebcccb49078faddbb84c1d870f9c1dd5a29e85d1f747ce"}, + {file = "aiohttp-3.12.13-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0f8f6a85a0006ae2709aa4ce05749ba2cdcb4b43d6c21a16c8517c16593aabe"}, + {file = "aiohttp-3.12.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1582745eb63df267c92d8b61ca655a0ce62105ef62542c00a74590f306be8cb5"}, + {file = "aiohttp-3.12.13-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d59227776ee2aa64226f7e086638baa645f4b044f2947dbf85c76ab11dcba073"}, + {file = "aiohttp-3.12.13-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:06b07c418bde1c8e737d8fa67741072bd3f5b0fb66cf8c0655172188c17e5fa6"}, + {file = "aiohttp-3.12.13-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:9445c1842680efac0f81d272fd8db7163acfcc2b1436e3f420f4c9a9c5a50795"}, + {file = "aiohttp-3.12.13-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:09c4767af0b0b98c724f5d47f2bf33395c8986995b0a9dab0575ca81a554a8c0"}, + {file = "aiohttp-3.12.13-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f3854fbde7a465318ad8d3fc5bef8f059e6d0a87e71a0d3360bb56c0bf87b18a"}, + {file = "aiohttp-3.12.13-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:2332b4c361c05ecd381edb99e2a33733f3db906739a83a483974b3df70a51b40"}, + {file = "aiohttp-3.12.13-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:1561db63fa1b658cd94325d303933553ea7d89ae09ff21cc3bcd41b8521fbbb6"}, + {file = "aiohttp-3.12.13-cp310-cp310-win32.whl", hash = "sha256:a0be857f0b35177ba09d7c472825d1b711d11c6d0e8a2052804e3b93166de1ad"}, + {file = "aiohttp-3.12.13-cp310-cp310-win_amd64.whl", hash = "sha256:fcc30ad4fb5cb41a33953292d45f54ef4066746d625992aeac33b8c681173178"}, + {file = "aiohttp-3.12.13-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7c229b1437aa2576b99384e4be668af1db84b31a45305d02f61f5497cfa6f60c"}, + {file = "aiohttp-3.12.13-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:04076d8c63471e51e3689c93940775dc3d12d855c0c80d18ac5a1c68f0904358"}, + {file = "aiohttp-3.12.13-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:55683615813ce3601640cfaa1041174dc956d28ba0511c8cbd75273eb0587014"}, + {file = "aiohttp-3.12.13-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:921bc91e602d7506d37643e77819cb0b840d4ebb5f8d6408423af3d3bf79a7b7"}, + {file = "aiohttp-3.12.13-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:e72d17fe0974ddeae8ed86db297e23dba39c7ac36d84acdbb53df2e18505a013"}, + {file = "aiohttp-3.12.13-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0653d15587909a52e024a261943cf1c5bdc69acb71f411b0dd5966d065a51a47"}, + {file = "aiohttp-3.12.13-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a77b48997c66722c65e157c06c74332cdf9c7ad00494b85ec43f324e5c5a9b9a"}, + {file = "aiohttp-3.12.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d6946bae55fd36cfb8e4092c921075cde029c71c7cb571d72f1079d1e4e013bc"}, + {file = "aiohttp-3.12.13-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f95db8c8b219bcf294a53742c7bda49b80ceb9d577c8e7aa075612b7f39ffb7"}, + {file = "aiohttp-3.12.13-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:03d5eb3cfb4949ab4c74822fb3326cd9655c2b9fe22e4257e2100d44215b2e2b"}, + {file = "aiohttp-3.12.13-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:6383dd0ffa15515283c26cbf41ac8e6705aab54b4cbb77bdb8935a713a89bee9"}, + {file = "aiohttp-3.12.13-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:6548a411bc8219b45ba2577716493aa63b12803d1e5dc70508c539d0db8dbf5a"}, + {file = "aiohttp-3.12.13-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:81b0fcbfe59a4ca41dc8f635c2a4a71e63f75168cc91026c61be665945739e2d"}, + {file = "aiohttp-3.12.13-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:6a83797a0174e7995e5edce9dcecc517c642eb43bc3cba296d4512edf346eee2"}, + {file = "aiohttp-3.12.13-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:a5734d8469a5633a4e9ffdf9983ff7cdb512524645c7a3d4bc8a3de45b935ac3"}, + {file = "aiohttp-3.12.13-cp311-cp311-win32.whl", hash = "sha256:fef8d50dfa482925bb6b4c208b40d8e9fa54cecba923dc65b825a72eed9a5dbd"}, + {file = "aiohttp-3.12.13-cp311-cp311-win_amd64.whl", hash = "sha256:9a27da9c3b5ed9d04c36ad2df65b38a96a37e9cfba6f1381b842d05d98e6afe9"}, + {file = "aiohttp-3.12.13-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0aa580cf80558557285b49452151b9c69f2fa3ad94c5c9e76e684719a8791b73"}, + {file = "aiohttp-3.12.13-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:b103a7e414b57e6939cc4dece8e282cfb22043efd0c7298044f6594cf83ab347"}, + {file = "aiohttp-3.12.13-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:78f64e748e9e741d2eccff9597d09fb3cd962210e5b5716047cbb646dc8fe06f"}, + {file = "aiohttp-3.12.13-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29c955989bf4c696d2ededc6b0ccb85a73623ae6e112439398935362bacfaaf6"}, + {file = "aiohttp-3.12.13-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:d640191016763fab76072c87d8854a19e8e65d7a6fcfcbf017926bdbbb30a7e5"}, + {file = "aiohttp-3.12.13-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4dc507481266b410dede95dd9f26c8d6f5a14315372cc48a6e43eac652237d9b"}, + {file = "aiohttp-3.12.13-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8a94daa873465d518db073bd95d75f14302e0208a08e8c942b2f3f1c07288a75"}, + {file = "aiohttp-3.12.13-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f52420cde4ce0bb9425a375d95577fe082cb5721ecb61da3049b55189e4e6"}, + {file = "aiohttp-3.12.13-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0f7df1f620ec40f1a7fbcb99ea17d7326ea6996715e78f71a1c9a021e31b96b8"}, + {file = "aiohttp-3.12.13-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:3062d4ad53b36e17796dce1c0d6da0ad27a015c321e663657ba1cc7659cfc710"}, + {file = "aiohttp-3.12.13-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:8605e22d2a86b8e51ffb5253d9045ea73683d92d47c0b1438e11a359bdb94462"}, + {file = "aiohttp-3.12.13-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:54fbbe6beafc2820de71ece2198458a711e224e116efefa01b7969f3e2b3ddae"}, + {file = "aiohttp-3.12.13-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:050bd277dfc3768b606fd4eae79dd58ceda67d8b0b3c565656a89ae34525d15e"}, + {file = "aiohttp-3.12.13-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:2637a60910b58f50f22379b6797466c3aa6ae28a6ab6404e09175ce4955b4e6a"}, + {file = "aiohttp-3.12.13-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e986067357550d1aaa21cfe9897fa19e680110551518a5a7cf44e6c5638cb8b5"}, + {file = "aiohttp-3.12.13-cp312-cp312-win32.whl", hash = "sha256:ac941a80aeea2aaae2875c9500861a3ba356f9ff17b9cb2dbfb5cbf91baaf5bf"}, + {file = "aiohttp-3.12.13-cp312-cp312-win_amd64.whl", hash = "sha256:671f41e6146a749b6c81cb7fd07f5a8356d46febdaaaf07b0e774ff04830461e"}, + {file = "aiohttp-3.12.13-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d4a18e61f271127465bdb0e8ff36e8f02ac4a32a80d8927aa52371e93cd87938"}, + {file = "aiohttp-3.12.13-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:532542cb48691179455fab429cdb0d558b5e5290b033b87478f2aa6af5d20ace"}, + {file = "aiohttp-3.12.13-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d7eea18b52f23c050ae9db5d01f3d264ab08f09e7356d6f68e3f3ac2de9dfabb"}, + {file = "aiohttp-3.12.13-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ad7c8e5c25f2a26842a7c239de3f7b6bfb92304593ef997c04ac49fb703ff4d7"}, + {file = "aiohttp-3.12.13-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:6af355b483e3fe9d7336d84539fef460120c2f6e50e06c658fe2907c69262d6b"}, + {file = "aiohttp-3.12.13-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a95cf9f097498f35c88e3609f55bb47b28a5ef67f6888f4390b3d73e2bac6177"}, + {file = "aiohttp-3.12.13-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b8ed8c38a1c584fe99a475a8f60eefc0b682ea413a84c6ce769bb19a7ff1c5ef"}, + {file = "aiohttp-3.12.13-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a0b9170d5d800126b5bc89d3053a2363406d6e327afb6afaeda2d19ee8bb103"}, + {file = "aiohttp-3.12.13-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:372feeace612ef8eb41f05ae014a92121a512bd5067db8f25101dd88a8db11da"}, + {file = "aiohttp-3.12.13-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a946d3702f7965d81f7af7ea8fb03bb33fe53d311df48a46eeca17e9e0beed2d"}, + {file = "aiohttp-3.12.13-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:a0c4725fae86555bbb1d4082129e21de7264f4ab14baf735278c974785cd2041"}, + {file = "aiohttp-3.12.13-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:9b28ea2f708234f0a5c44eb6c7d9eb63a148ce3252ba0140d050b091b6e842d1"}, + {file = "aiohttp-3.12.13-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:d4f5becd2a5791829f79608c6f3dc745388162376f310eb9c142c985f9441cc1"}, + {file = "aiohttp-3.12.13-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:60f2ce6b944e97649051d5f5cc0f439360690b73909230e107fd45a359d3e911"}, + {file = "aiohttp-3.12.13-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:69fc1909857401b67bf599c793f2183fbc4804717388b0b888f27f9929aa41f3"}, + {file = "aiohttp-3.12.13-cp313-cp313-win32.whl", hash = "sha256:7d7e68787a2046b0e44ba5587aa723ce05d711e3a3665b6b7545328ac8e3c0dd"}, + {file = "aiohttp-3.12.13-cp313-cp313-win_amd64.whl", hash = "sha256:5a178390ca90419bfd41419a809688c368e63c86bd725e1186dd97f6b89c2706"}, + {file = "aiohttp-3.12.13-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:36f6c973e003dc9b0bb4e8492a643641ea8ef0e97ff7aaa5c0f53d68839357b4"}, + {file = "aiohttp-3.12.13-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6cbfc73179bd67c229eb171e2e3745d2afd5c711ccd1e40a68b90427f282eab1"}, + {file = "aiohttp-3.12.13-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1e8b27b2d414f7e3205aa23bb4a692e935ef877e3a71f40d1884f6e04fd7fa74"}, + {file = "aiohttp-3.12.13-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eabded0c2b2ef56243289112c48556c395d70150ce4220d9008e6b4b3dd15690"}, + {file = "aiohttp-3.12.13-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:003038e83f1a3ff97409999995ec02fe3008a1d675478949643281141f54751d"}, + {file = "aiohttp-3.12.13-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1b6f46613031dbc92bdcaad9c4c22c7209236ec501f9c0c5f5f0b6a689bf50f3"}, + {file = "aiohttp-3.12.13-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c332c6bb04650d59fb94ed96491f43812549a3ba6e7a16a218e612f99f04145e"}, + {file = "aiohttp-3.12.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3fea41a2c931fb582cb15dc86a3037329e7b941df52b487a9f8b5aa960153cbd"}, + {file = "aiohttp-3.12.13-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:846104f45d18fb390efd9b422b27d8f3cf8853f1218c537f36e71a385758c896"}, + {file = "aiohttp-3.12.13-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5d6c85ac7dd350f8da2520bac8205ce99df4435b399fa7f4dc4a70407073e390"}, + {file = "aiohttp-3.12.13-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:5a1ecce0ed281bec7da8550da052a6b89552db14d0a0a45554156f085a912f48"}, + {file = "aiohttp-3.12.13-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:5304d74867028cca8f64f1cc1215eb365388033c5a691ea7aa6b0dc47412f495"}, + {file = "aiohttp-3.12.13-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:64d1f24ee95a2d1e094a4cd7a9b7d34d08db1bbcb8aa9fb717046b0a884ac294"}, + {file = "aiohttp-3.12.13-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:119c79922a7001ca6a9e253228eb39b793ea994fd2eccb79481c64b5f9d2a055"}, + {file = "aiohttp-3.12.13-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:bb18f00396d22e2f10cd8825d671d9f9a3ba968d708a559c02a627536b36d91c"}, + {file = "aiohttp-3.12.13-cp39-cp39-win32.whl", hash = "sha256:0022de47ef63fd06b065d430ac79c6b0bd24cdae7feaf0e8c6bac23b805a23a8"}, + {file = "aiohttp-3.12.13-cp39-cp39-win_amd64.whl", hash = "sha256:29e08111ccf81b2734ae03f1ad1cb03b9615e7d8f616764f22f71209c094f122"}, + {file = "aiohttp-3.12.13.tar.gz", hash = "sha256:47e2da578528264a12e4e3dd8dd72a7289e5f812758fe086473fab037a10fcce"}, +] + +[package.dependencies] +aiohappyeyeballs = ">=2.5.0" +aiosignal = ">=1.1.2" +async-timeout = {version = ">=4.0,<6.0", markers = "python_version < \"3.11\""} +attrs = ">=17.3.0" +frozenlist = ">=1.1.1" +multidict = ">=4.5,<7.0" +propcache = ">=0.2.0" +yarl = ">=1.17.0,<2.0" + +[package.extras] +speedups = ["Brotli ; platform_python_implementation == \"CPython\"", "aiodns (>=3.3.0)", "brotlicffi ; platform_python_implementation != \"CPython\""] + +[[package]] +name = "aiosignal" +version = "1.3.2" +description = "aiosignal: a list of registered asynchronous callbacks" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "aiosignal-1.3.2-py2.py3-none-any.whl", hash = "sha256:45cde58e409a301715980c2b01d0c28bdde3770d8290b5eb2173759d9acb31a5"}, + {file = "aiosignal-1.3.2.tar.gz", hash = "sha256:a8c255c66fafb1e499c9351d0bf32ff2d8a0321595ebac3b93713656d2436f54"}, +] + +[package.dependencies] +frozenlist = ">=1.1.0" + +[[package]] +name = "annotated-types" +version = "0.7.0" +description = "Reusable constraint types to use with typing.Annotated" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, + {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, +] + +[[package]] +name = "anyio" +version = "4.9.0" +description = "High level compatibility layer for multiple asynchronous event loop implementations" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "anyio-4.9.0-py3-none-any.whl", hash = "sha256:9f76d541cad6e36af7beb62e978876f3b41e3e04f2c1fbf0884604c0a9c4d93c"}, + {file = "anyio-4.9.0.tar.gz", hash = "sha256:673c0c244e15788651a4ff38710fea9675823028a6f08a5eda409e0c9840a028"}, +] + +[package.dependencies] +exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} +idna = ">=2.8" +sniffio = ">=1.1" +typing_extensions = {version = ">=4.5", markers = "python_version < \"3.13\""} + +[package.extras] +doc = ["Sphinx (>=8.2,<9.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx_rtd_theme"] +test = ["anyio[trio]", "blockbuster (>=1.5.23)", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "trustme", "truststore (>=0.9.1) ; python_version >= \"3.10\"", "uvloop (>=0.21) ; platform_python_implementation == \"CPython\" and platform_system != \"Windows\" and python_version < \"3.14\""] +trio = ["trio (>=0.26.1)"] + +[[package]] +name = "appnope" +version = "0.1.4" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = ">=3.6" +groups = ["main"] +markers = "platform_system == \"Darwin\"" +files = [ + {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, + {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, +] + +[[package]] +name = "asttokens" +version = "3.0.0" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "asttokens-3.0.0-py3-none-any.whl", hash = "sha256:e3078351a059199dd5138cb1c706e6430c05eff2ff136af5eb4790f9d28932e2"}, + {file = "asttokens-3.0.0.tar.gz", hash = "sha256:0dcd8baa8d62b0c1d118b399b2ddba3c4aff271d0d7a9e0d4c1681c79035bbc7"}, +] + +[package.extras] +astroid = ["astroid (>=2,<4)"] +test = ["astroid (>=2,<4)", "pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "async-timeout" +version = "4.0.3" +description = "Timeout context manager for asyncio programs" +optional = false +python-versions = ">=3.7" +groups = ["main"] +files = [ + {file = "async-timeout-4.0.3.tar.gz", hash = "sha256:4640d96be84d82d02ed59ea2b7105a0f7b33abe8703703cd0ab0bf87c427522f"}, + {file = "async_timeout-4.0.3-py3-none-any.whl", hash = "sha256:7405140ff1230c310e51dc27b3145b9092d659ce68ff733fb0cefe3ee42be028"}, +] + +[[package]] +name = "attrs" +version = "25.3.0" +description = "Classes Without Boilerplate" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "attrs-25.3.0-py3-none-any.whl", hash = "sha256:427318ce031701fea540783410126f03899a97ffc6f61596ad581ac2e40e3bc3"}, + {file = "attrs-25.3.0.tar.gz", hash = "sha256:75d7cefc7fb576747b2c81b4442d4d4a1ce0900973527c011d1030fd3bf4af1b"}, +] + +[package.extras] +benchmark = ["cloudpickle ; platform_python_implementation == \"CPython\"", "hypothesis", "mypy (>=1.11.1) ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\"", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\"", "pytest-xdist[psutil]"] +cov = ["cloudpickle ; platform_python_implementation == \"CPython\"", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1) ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\"", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\"", "pytest-xdist[psutil]"] +dev = ["cloudpickle ; platform_python_implementation == \"CPython\"", "hypothesis", "mypy (>=1.11.1) ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\"", "pre-commit-uv", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\"", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier"] +tests = ["cloudpickle ; platform_python_implementation == \"CPython\"", "hypothesis", "mypy (>=1.11.1) ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\"", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\"", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1) ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\"", "pytest-mypy-plugins ; platform_python_implementation == \"CPython\" and python_version >= \"3.10\""] + +[[package]] +name = "certifi" +version = "2025.6.15" +description = "Python package for providing Mozilla's CA Bundle." +optional = false +python-versions = ">=3.7" +groups = ["main"] +files = [ + {file = "certifi-2025.6.15-py3-none-any.whl", hash = "sha256:2e0c7ce7cb5d8f8634ca55d2ba7e6ec2689a2fd6537d8dec1296a477a4910057"}, + {file = "certifi-2025.6.15.tar.gz", hash = "sha256:d747aa5a8b9bbbb1bb8c22bb13e22bd1f18e9796defa16bab421f7f7a317323b"}, +] + +[[package]] +name = "cffi" +version = "1.17.1" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "implementation_name == \"pypy\" or platform_python_implementation == \"PyPy\"" +files = [ + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, +] + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "charset-normalizer" +version = "3.4.2" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +optional = false +python-versions = ">=3.7" +groups = ["main"] +files = [ + {file = "charset_normalizer-3.4.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7c48ed483eb946e6c04ccbe02c6b4d1d48e51944b6db70f697e089c193404941"}, + {file = "charset_normalizer-3.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b2d318c11350e10662026ad0eb71bb51c7812fc8590825304ae0bdd4ac283acd"}, + {file = "charset_normalizer-3.4.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9cbfacf36cb0ec2897ce0ebc5d08ca44213af24265bd56eca54bee7923c48fd6"}, + {file = "charset_normalizer-3.4.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18dd2e350387c87dabe711b86f83c9c78af772c748904d372ade190b5c7c9d4d"}, + {file = "charset_normalizer-3.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8075c35cd58273fee266c58c0c9b670947c19df5fb98e7b66710e04ad4e9ff86"}, + {file = "charset_normalizer-3.4.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5bf4545e3b962767e5c06fe1738f951f77d27967cb2caa64c28be7c4563e162c"}, + {file = "charset_normalizer-3.4.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:7a6ab32f7210554a96cd9e33abe3ddd86732beeafc7a28e9955cdf22ffadbab0"}, + {file = "charset_normalizer-3.4.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:b33de11b92e9f75a2b545d6e9b6f37e398d86c3e9e9653c4864eb7e89c5773ef"}, + {file = "charset_normalizer-3.4.2-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8755483f3c00d6c9a77f490c17e6ab0c8729e39e6390328e42521ef175380ae6"}, + {file = "charset_normalizer-3.4.2-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:68a328e5f55ec37c57f19ebb1fdc56a248db2e3e9ad769919a58672958e8f366"}, + {file = "charset_normalizer-3.4.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:21b2899062867b0e1fde9b724f8aecb1af14f2778d69aacd1a5a1853a597a5db"}, + {file = "charset_normalizer-3.4.2-cp310-cp310-win32.whl", hash = "sha256:e8082b26888e2f8b36a042a58307d5b917ef2b1cacab921ad3323ef91901c71a"}, + {file = "charset_normalizer-3.4.2-cp310-cp310-win_amd64.whl", hash = "sha256:f69a27e45c43520f5487f27627059b64aaf160415589230992cec34c5e18a509"}, + {file = "charset_normalizer-3.4.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:be1e352acbe3c78727a16a455126d9ff83ea2dfdcbc83148d2982305a04714c2"}, + {file = "charset_normalizer-3.4.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aa88ca0b1932e93f2d961bf3addbb2db902198dca337d88c89e1559e066e7645"}, + {file = "charset_normalizer-3.4.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d524ba3f1581b35c03cb42beebab4a13e6cdad7b36246bd22541fa585a56cccd"}, + {file = "charset_normalizer-3.4.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28a1005facc94196e1fb3e82a3d442a9d9110b8434fc1ded7a24a2983c9888d8"}, + {file = "charset_normalizer-3.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fdb20a30fe1175ecabed17cbf7812f7b804b8a315a25f24678bcdf120a90077f"}, + {file = "charset_normalizer-3.4.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0f5d9ed7f254402c9e7d35d2f5972c9bbea9040e99cd2861bd77dc68263277c7"}, + {file = "charset_normalizer-3.4.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:efd387a49825780ff861998cd959767800d54f8308936b21025326de4b5a42b9"}, + {file = "charset_normalizer-3.4.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:f0aa37f3c979cf2546b73e8222bbfa3dc07a641585340179d768068e3455e544"}, + {file = "charset_normalizer-3.4.2-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:e70e990b2137b29dc5564715de1e12701815dacc1d056308e2b17e9095372a82"}, + {file = "charset_normalizer-3.4.2-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:0c8c57f84ccfc871a48a47321cfa49ae1df56cd1d965a09abe84066f6853b9c0"}, + {file = "charset_normalizer-3.4.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:6b66f92b17849b85cad91259efc341dce9c1af48e2173bf38a85c6329f1033e5"}, + {file = "charset_normalizer-3.4.2-cp311-cp311-win32.whl", hash = "sha256:daac4765328a919a805fa5e2720f3e94767abd632ae410a9062dff5412bae65a"}, + {file = "charset_normalizer-3.4.2-cp311-cp311-win_amd64.whl", hash = "sha256:e53efc7c7cee4c1e70661e2e112ca46a575f90ed9ae3fef200f2a25e954f4b28"}, + {file = "charset_normalizer-3.4.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0c29de6a1a95f24b9a1aa7aefd27d2487263f00dfd55a77719b530788f75cff7"}, + {file = "charset_normalizer-3.4.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cddf7bd982eaa998934a91f69d182aec997c6c468898efe6679af88283b498d3"}, + {file = "charset_normalizer-3.4.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcbe676a55d7445b22c10967bceaaf0ee69407fbe0ece4d032b6eb8d4565982a"}, + {file = "charset_normalizer-3.4.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d41c4d287cfc69060fa91cae9683eacffad989f1a10811995fa309df656ec214"}, + {file = "charset_normalizer-3.4.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4e594135de17ab3866138f496755f302b72157d115086d100c3f19370839dd3a"}, + {file = "charset_normalizer-3.4.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cf713fe9a71ef6fd5adf7a79670135081cd4431c2943864757f0fa3a65b1fafd"}, + {file = "charset_normalizer-3.4.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a370b3e078e418187da8c3674eddb9d983ec09445c99a3a263c2011993522981"}, + {file = "charset_normalizer-3.4.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:a955b438e62efdf7e0b7b52a64dc5c3396e2634baa62471768a64bc2adb73d5c"}, + {file = "charset_normalizer-3.4.2-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:7222ffd5e4de8e57e03ce2cef95a4c43c98fcb72ad86909abdfc2c17d227fc1b"}, + {file = "charset_normalizer-3.4.2-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:bee093bf902e1d8fc0ac143c88902c3dfc8941f7ea1d6a8dd2bcb786d33db03d"}, + {file = "charset_normalizer-3.4.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:dedb8adb91d11846ee08bec4c8236c8549ac721c245678282dcb06b221aab59f"}, + {file = "charset_normalizer-3.4.2-cp312-cp312-win32.whl", hash = "sha256:db4c7bf0e07fc3b7d89ac2a5880a6a8062056801b83ff56d8464b70f65482b6c"}, + {file = "charset_normalizer-3.4.2-cp312-cp312-win_amd64.whl", hash = "sha256:5a9979887252a82fefd3d3ed2a8e3b937a7a809f65dcb1e068b090e165bbe99e"}, + {file = "charset_normalizer-3.4.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:926ca93accd5d36ccdabd803392ddc3e03e6d4cd1cf17deff3b989ab8e9dbcf0"}, + {file = "charset_normalizer-3.4.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eba9904b0f38a143592d9fc0e19e2df0fa2e41c3c3745554761c5f6447eedabf"}, + {file = "charset_normalizer-3.4.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3fddb7e2c84ac87ac3a947cb4e66d143ca5863ef48e4a5ecb83bd48619e4634e"}, + {file = "charset_normalizer-3.4.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98f862da73774290f251b9df8d11161b6cf25b599a66baf087c1ffe340e9bfd1"}, + {file = "charset_normalizer-3.4.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c9379d65defcab82d07b2a9dfbfc2e95bc8fe0ebb1b176a3190230a3ef0e07c"}, + {file = "charset_normalizer-3.4.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e635b87f01ebc977342e2697d05b56632f5f879a4f15955dfe8cef2448b51691"}, + {file = "charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:1c95a1e2902a8b722868587c0e1184ad5c55631de5afc0eb96bc4b0d738092c0"}, + {file = "charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ef8de666d6179b009dce7bcb2ad4c4a779f113f12caf8dc77f0162c29d20490b"}, + {file = "charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:32fc0341d72e0f73f80acb0a2c94216bd704f4f0bce10aedea38f30502b271ff"}, + {file = "charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:289200a18fa698949d2b39c671c2cc7a24d44096784e76614899a7ccf2574b7b"}, + {file = "charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4a476b06fbcf359ad25d34a057b7219281286ae2477cc5ff5e3f70a246971148"}, + {file = "charset_normalizer-3.4.2-cp313-cp313-win32.whl", hash = "sha256:aaeeb6a479c7667fbe1099af9617c83aaca22182d6cf8c53966491a0f1b7ffb7"}, + {file = "charset_normalizer-3.4.2-cp313-cp313-win_amd64.whl", hash = "sha256:aa6af9e7d59f9c12b33ae4e9450619cf2488e2bbe9b44030905877f0b2324980"}, + {file = "charset_normalizer-3.4.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1cad5f45b3146325bb38d6855642f6fd609c3f7cad4dbaf75549bf3b904d3184"}, + {file = "charset_normalizer-3.4.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b2680962a4848b3c4f155dc2ee64505a9c57186d0d56b43123b17ca3de18f0fa"}, + {file = "charset_normalizer-3.4.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:36b31da18b8890a76ec181c3cf44326bf2c48e36d393ca1b72b3f484113ea344"}, + {file = "charset_normalizer-3.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f4074c5a429281bf056ddd4c5d3b740ebca4d43ffffe2ef4bf4d2d05114299da"}, + {file = "charset_normalizer-3.4.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c9e36a97bee9b86ef9a1cf7bb96747eb7a15c2f22bdb5b516434b00f2a599f02"}, + {file = "charset_normalizer-3.4.2-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:1b1bde144d98e446b056ef98e59c256e9294f6b74d7af6846bf5ffdafd687a7d"}, + {file = "charset_normalizer-3.4.2-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:915f3849a011c1f593ab99092f3cecfcb4d65d8feb4a64cf1bf2d22074dc0ec4"}, + {file = "charset_normalizer-3.4.2-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:fb707f3e15060adf5b7ada797624a6c6e0138e2a26baa089df64c68ee98e040f"}, + {file = "charset_normalizer-3.4.2-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:25a23ea5c7edc53e0f29bae2c44fcb5a1aa10591aae107f2a2b2583a9c5cbc64"}, + {file = "charset_normalizer-3.4.2-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:770cab594ecf99ae64c236bc9ee3439c3f46be49796e265ce0cc8bc17b10294f"}, + {file = "charset_normalizer-3.4.2-cp37-cp37m-win32.whl", hash = "sha256:6a0289e4589e8bdfef02a80478f1dfcb14f0ab696b5a00e1f4b8a14a307a3c58"}, + {file = "charset_normalizer-3.4.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6fc1f5b51fa4cecaa18f2bd7a003f3dd039dd615cd69a2afd6d3b19aed6775f2"}, + {file = "charset_normalizer-3.4.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:76af085e67e56c8816c3ccf256ebd136def2ed9654525348cfa744b6802b69eb"}, + {file = "charset_normalizer-3.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e45ba65510e2647721e35323d6ef54c7974959f6081b58d4ef5d87c60c84919a"}, + {file = "charset_normalizer-3.4.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:046595208aae0120559a67693ecc65dd75d46f7bf687f159127046628178dc45"}, + {file = "charset_normalizer-3.4.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75d10d37a47afee94919c4fab4c22b9bc2a8bf7d4f46f87363bcf0573f3ff4f5"}, + {file = "charset_normalizer-3.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6333b3aa5a12c26b2a4d4e7335a28f1475e0e5e17d69d55141ee3cab736f66d1"}, + {file = "charset_normalizer-3.4.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e8323a9b031aa0393768b87f04b4164a40037fb2a3c11ac06a03ffecd3618027"}, + {file = "charset_normalizer-3.4.2-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:24498ba8ed6c2e0b56d4acbf83f2d989720a93b41d712ebd4f4979660db4417b"}, + {file = "charset_normalizer-3.4.2-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:844da2b5728b5ce0e32d863af26f32b5ce61bc4273a9c720a9f3aa9df73b1455"}, + {file = "charset_normalizer-3.4.2-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:65c981bdbd3f57670af8b59777cbfae75364b483fa8a9f420f08094531d54a01"}, + {file = "charset_normalizer-3.4.2-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:3c21d4fca343c805a52c0c78edc01e3477f6dd1ad7c47653241cf2a206d4fc58"}, + {file = "charset_normalizer-3.4.2-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:dc7039885fa1baf9be153a0626e337aa7ec8bf96b0128605fb0d77788ddc1681"}, + {file = "charset_normalizer-3.4.2-cp38-cp38-win32.whl", hash = "sha256:8272b73e1c5603666618805fe821edba66892e2870058c94c53147602eab29c7"}, + {file = "charset_normalizer-3.4.2-cp38-cp38-win_amd64.whl", hash = "sha256:70f7172939fdf8790425ba31915bfbe8335030f05b9913d7ae00a87d4395620a"}, + {file = "charset_normalizer-3.4.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:005fa3432484527f9732ebd315da8da8001593e2cf46a3d817669f062c3d9ed4"}, + {file = "charset_normalizer-3.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e92fca20c46e9f5e1bb485887d074918b13543b1c2a1185e69bb8d17ab6236a7"}, + {file = "charset_normalizer-3.4.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:50bf98d5e563b83cc29471fa114366e6806bc06bc7a25fd59641e41445327836"}, + {file = "charset_normalizer-3.4.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:721c76e84fe669be19c5791da68232ca2e05ba5185575086e384352e2c309597"}, + {file = "charset_normalizer-3.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:82d8fd25b7f4675d0c47cf95b594d4e7b158aca33b76aa63d07186e13c0e0ab7"}, + {file = "charset_normalizer-3.4.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b3daeac64d5b371dea99714f08ffc2c208522ec6b06fbc7866a450dd446f5c0f"}, + {file = "charset_normalizer-3.4.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dccab8d5fa1ef9bfba0590ecf4d46df048d18ffe3eec01eeb73a42e0d9e7a8ba"}, + {file = "charset_normalizer-3.4.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:aaf27faa992bfee0264dc1f03f4c75e9fcdda66a519db6b957a3f826e285cf12"}, + {file = "charset_normalizer-3.4.2-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:eb30abc20df9ab0814b5a2524f23d75dcf83cde762c161917a2b4b7b55b1e518"}, + {file = "charset_normalizer-3.4.2-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:c72fbbe68c6f32f251bdc08b8611c7b3060612236e960ef848e0a517ddbe76c5"}, + {file = "charset_normalizer-3.4.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:982bb1e8b4ffda883b3d0a521e23abcd6fd17418f6d2c4118d257a10199c0ce3"}, + {file = "charset_normalizer-3.4.2-cp39-cp39-win32.whl", hash = "sha256:43e0933a0eff183ee85833f341ec567c0980dae57c464d8a508e1b2ceb336471"}, + {file = "charset_normalizer-3.4.2-cp39-cp39-win_amd64.whl", hash = "sha256:d11b54acf878eef558599658b0ffca78138c8c3655cf4f3a4a673c437e67732e"}, + {file = "charset_normalizer-3.4.2-py3-none-any.whl", hash = "sha256:7f56930ab0abd1c45cd15be65cc741c28b1c9a34876ce8c17a2fa107810c0af0"}, + {file = "charset_normalizer-3.4.2.tar.gz", hash = "sha256:5baececa9ecba31eff645232d59845c07aa030f0c81ee70184a90d35099a0e63"}, +] + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +groups = ["main"] +markers = "sys_platform == \"win32\" or platform_system == \"Windows\"" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "comm" +version = "0.2.2" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, + {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "cycler" +version = "0.12.1" +description = "Composable style cycles" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, +] + +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "dataclasses-json" +version = "0.6.7" +description = "Easily serialize dataclasses to and from JSON." +optional = false +python-versions = "<4.0,>=3.7" +groups = ["main"] +files = [ + {file = "dataclasses_json-0.6.7-py3-none-any.whl", hash = "sha256:0dbf33f26c8d5305befd61b39d2b3414e8a407bedc2834dea9b8d642666fb40a"}, + {file = "dataclasses_json-0.6.7.tar.gz", hash = "sha256:b6b3e528266ea45b9535223bc53ca645f5208833c29229e847b3f26a1cc55fc0"}, +] + +[package.dependencies] +marshmallow = ">=3.18.0,<4.0.0" +typing-inspect = ">=0.4.0,<1" + +[[package]] +name = "debugpy" +version = "1.8.14" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "debugpy-1.8.14-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:93fee753097e85623cab1c0e6a68c76308cd9f13ffdf44127e6fab4fbf024339"}, + {file = "debugpy-1.8.14-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d937d93ae4fa51cdc94d3e865f535f185d5f9748efb41d0d49e33bf3365bd79"}, + {file = "debugpy-1.8.14-cp310-cp310-win32.whl", hash = "sha256:c442f20577b38cc7a9aafecffe1094f78f07fb8423c3dddb384e6b8f49fd2987"}, + {file = "debugpy-1.8.14-cp310-cp310-win_amd64.whl", hash = "sha256:f117dedda6d969c5c9483e23f573b38f4e39412845c7bc487b6f2648df30fe84"}, + {file = "debugpy-1.8.14-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:1b2ac8c13b2645e0b1eaf30e816404990fbdb168e193322be8f545e8c01644a9"}, + {file = "debugpy-1.8.14-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cf431c343a99384ac7eab2f763980724834f933a271e90496944195318c619e2"}, + {file = "debugpy-1.8.14-cp311-cp311-win32.whl", hash = "sha256:c99295c76161ad8d507b413cd33422d7c542889fbb73035889420ac1fad354f2"}, + {file = "debugpy-1.8.14-cp311-cp311-win_amd64.whl", hash = "sha256:7816acea4a46d7e4e50ad8d09d963a680ecc814ae31cdef3622eb05ccacf7b01"}, + {file = "debugpy-1.8.14-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:8899c17920d089cfa23e6005ad9f22582fd86f144b23acb9feeda59e84405b84"}, + {file = "debugpy-1.8.14-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6bb5c0dcf80ad5dbc7b7d6eac484e2af34bdacdf81df09b6a3e62792b722826"}, + {file = "debugpy-1.8.14-cp312-cp312-win32.whl", hash = "sha256:281d44d248a0e1791ad0eafdbbd2912ff0de9eec48022a5bfbc332957487ed3f"}, + {file = "debugpy-1.8.14-cp312-cp312-win_amd64.whl", hash = "sha256:5aa56ef8538893e4502a7d79047fe39b1dae08d9ae257074c6464a7b290b806f"}, + {file = "debugpy-1.8.14-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:329a15d0660ee09fec6786acdb6e0443d595f64f5d096fc3e3ccf09a4259033f"}, + {file = "debugpy-1.8.14-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0f920c7f9af409d90f5fd26e313e119d908b0dd2952c2393cd3247a462331f15"}, + {file = "debugpy-1.8.14-cp313-cp313-win32.whl", hash = "sha256:3784ec6e8600c66cbdd4ca2726c72d8ca781e94bce2f396cc606d458146f8f4e"}, + {file = "debugpy-1.8.14-cp313-cp313-win_amd64.whl", hash = "sha256:684eaf43c95a3ec39a96f1f5195a7ff3d4144e4a18d69bb66beeb1a6de605d6e"}, + {file = "debugpy-1.8.14-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:d5582bcbe42917bc6bbe5c12db1bffdf21f6bfc28d4554b738bf08d50dc0c8c3"}, + {file = "debugpy-1.8.14-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5349b7c3735b766a281873fbe32ca9cca343d4cc11ba4a743f84cb854339ff35"}, + {file = "debugpy-1.8.14-cp38-cp38-win32.whl", hash = "sha256:7118d462fe9724c887d355eef395fae68bc764fd862cdca94e70dcb9ade8a23d"}, + {file = "debugpy-1.8.14-cp38-cp38-win_amd64.whl", hash = "sha256:d235e4fa78af2de4e5609073972700523e372cf5601742449970110d565ca28c"}, + {file = "debugpy-1.8.14-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:413512d35ff52c2fb0fd2d65e69f373ffd24f0ecb1fac514c04a668599c5ce7f"}, + {file = "debugpy-1.8.14-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c9156f7524a0d70b7a7e22b2e311d8ba76a15496fb00730e46dcdeedb9e1eea"}, + {file = "debugpy-1.8.14-cp39-cp39-win32.whl", hash = "sha256:b44985f97cc3dd9d52c42eb59ee9d7ee0c4e7ecd62bca704891f997de4cef23d"}, + {file = "debugpy-1.8.14-cp39-cp39-win_amd64.whl", hash = "sha256:b1528cfee6c1b1c698eb10b6b096c598738a8238822d218173d21c3086de8123"}, + {file = "debugpy-1.8.14-py2.py3-none-any.whl", hash = "sha256:5cd9a579d553b6cb9759a7908a41988ee6280b961f24f63336835d9418216a20"}, + {file = "debugpy-1.8.14.tar.gz", hash = "sha256:7cd287184318416850aa8b60ac90105837bb1e59531898c07569d197d2ed5322"}, +] + +[[package]] +name = "decorator" +version = "5.2.1" +description = "Decorators for Humans" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "decorator-5.2.1-py3-none-any.whl", hash = "sha256:d316bb415a2d9e2d2b3abcc4084c6502fc09240e292cd76a76afc106a1c8e04a"}, + {file = "decorator-5.2.1.tar.gz", hash = "sha256:65f266143752f734b0a7cc83c46f4618af75b8c5911b00ccb61d0ac9b6da0360"}, +] + +[[package]] +name = "distro" +version = "1.9.0" +description = "Distro - an OS platform information API" +optional = false +python-versions = ">=3.6" +groups = ["main"] +files = [ + {file = "distro-1.9.0-py3-none-any.whl", hash = "sha256:7bffd925d65168f85027d8da9af6bddab658135b840670a223589bc0c8ef02b2"}, + {file = "distro-1.9.0.tar.gz", hash = "sha256:2fa77c6fd8940f116ee1d6b94a2f90b13b5ea8d019b98bc8bafdcabcdd9bdbed"}, +] + +[[package]] +name = "exceptiongroup" +version = "1.3.0" +description = "Backport of PEP 654 (exception groups)" +optional = false +python-versions = ">=3.7" +groups = ["main"] +files = [ + {file = "exceptiongroup-1.3.0-py3-none-any.whl", hash = "sha256:4d111e6e0c13d0644cad6ddaa7ed0261a0b36971f6d23e7ec9b4b9097da78a10"}, + {file = "exceptiongroup-1.3.0.tar.gz", hash = "sha256:b241f5885f560bc56a59ee63ca4c6a8bfa46ae4ad651af316d4e81817bb9fd88"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.6.0", markers = "python_version < \"3.13\""} + +[package.extras] +test = ["pytest (>=6)"] + +[[package]] +name = "executing" +version = "2.2.0" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "executing-2.2.0-py2.py3-none-any.whl", hash = "sha256:11387150cad388d62750327a53d3339fad4888b39a6fe233c3afbb54ecffd3aa"}, + {file = "executing-2.2.0.tar.gz", hash = "sha256:5d108c028108fe2551d1a7b2e8b713341e2cb4fc0aa7dcf966fa4327a5226755"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich ; python_version >= \"3.11\""] + +[[package]] +name = "filelock" +version = "3.18.0" +description = "A platform independent file lock." +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "filelock-3.18.0-py3-none-any.whl", hash = "sha256:c401f4f8377c4464e6db25fff06205fd89bdd83b65eb0488ed1b160f780e21de"}, + {file = "filelock-3.18.0.tar.gz", hash = "sha256:adbc88eabb99d2fec8c9c1b229b171f18afa655400173ddc653d5d01501fb9f2"}, +] + +[package.extras] +docs = ["furo (>=2024.8.6)", "sphinx (>=8.1.3)", "sphinx-autodoc-typehints (>=3)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.6.10)", "diff-cover (>=9.2.1)", "pytest (>=8.3.4)", "pytest-asyncio (>=0.25.2)", "pytest-cov (>=6)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.28.1)"] +typing = ["typing-extensions (>=4.12.2) ; python_version < \"3.11\""] + +[[package]] +name = "frozenlist" +version = "1.7.0" +description = "A list-like structure which implements collections.abc.MutableSequence" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "frozenlist-1.7.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:cc4df77d638aa2ed703b878dd093725b72a824c3c546c076e8fdf276f78ee84a"}, + {file = "frozenlist-1.7.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:716a9973a2cc963160394f701964fe25012600f3d311f60c790400b00e568b61"}, + {file = "frozenlist-1.7.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0fd1bad056a3600047fb9462cff4c5322cebc59ebf5d0a3725e0ee78955001d"}, + {file = "frozenlist-1.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3789ebc19cb811163e70fe2bd354cea097254ce6e707ae42e56f45e31e96cb8e"}, + {file = "frozenlist-1.7.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:af369aa35ee34f132fcfad5be45fbfcde0e3a5f6a1ec0712857f286b7d20cca9"}, + {file = "frozenlist-1.7.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac64b6478722eeb7a3313d494f8342ef3478dff539d17002f849101b212ef97c"}, + {file = "frozenlist-1.7.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f89f65d85774f1797239693cef07ad4c97fdd0639544bad9ac4b869782eb1981"}, + {file = "frozenlist-1.7.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1073557c941395fdfcfac13eb2456cb8aad89f9de27bae29fabca8e563b12615"}, + {file = "frozenlist-1.7.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ed8d2fa095aae4bdc7fdd80351009a48d286635edffee66bf865e37a9125c50"}, + {file = "frozenlist-1.7.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:24c34bea555fe42d9f928ba0a740c553088500377448febecaa82cc3e88aa1fa"}, + {file = "frozenlist-1.7.0-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:69cac419ac6a6baad202c85aaf467b65ac860ac2e7f2ac1686dc40dbb52f6577"}, + {file = "frozenlist-1.7.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:960d67d0611f4c87da7e2ae2eacf7ea81a5be967861e0c63cf205215afbfac59"}, + {file = "frozenlist-1.7.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:41be2964bd4b15bf575e5daee5a5ce7ed3115320fb3c2b71fca05582ffa4dc9e"}, + {file = "frozenlist-1.7.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:46d84d49e00c9429238a7ce02dc0be8f6d7cd0cd405abd1bebdc991bf27c15bd"}, + {file = "frozenlist-1.7.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:15900082e886edb37480335d9d518cec978afc69ccbc30bd18610b7c1b22a718"}, + {file = "frozenlist-1.7.0-cp310-cp310-win32.whl", hash = "sha256:400ddd24ab4e55014bba442d917203c73b2846391dd42ca5e38ff52bb18c3c5e"}, + {file = "frozenlist-1.7.0-cp310-cp310-win_amd64.whl", hash = "sha256:6eb93efb8101ef39d32d50bce242c84bcbddb4f7e9febfa7b524532a239b4464"}, + {file = "frozenlist-1.7.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:aa51e147a66b2d74de1e6e2cf5921890de6b0f4820b257465101d7f37b49fb5a"}, + {file = "frozenlist-1.7.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9b35db7ce1cd71d36ba24f80f0c9e7cff73a28d7a74e91fe83e23d27c7828750"}, + {file = "frozenlist-1.7.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:34a69a85e34ff37791e94542065c8416c1afbf820b68f720452f636d5fb990cd"}, + {file = "frozenlist-1.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a646531fa8d82c87fe4bb2e596f23173caec9185bfbca5d583b4ccfb95183e2"}, + {file = "frozenlist-1.7.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:79b2ffbba483f4ed36a0f236ccb85fbb16e670c9238313709638167670ba235f"}, + {file = "frozenlist-1.7.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a26f205c9ca5829cbf82bb2a84b5c36f7184c4316617d7ef1b271a56720d6b30"}, + {file = "frozenlist-1.7.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bcacfad3185a623fa11ea0e0634aac7b691aa925d50a440f39b458e41c561d98"}, + {file = "frozenlist-1.7.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:72c1b0fe8fe451b34f12dce46445ddf14bd2a5bcad7e324987194dc8e3a74c86"}, + {file = "frozenlist-1.7.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:61d1a5baeaac6c0798ff6edfaeaa00e0e412d49946c53fae8d4b8e8b3566c4ae"}, + {file = "frozenlist-1.7.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:7edf5c043c062462f09b6820de9854bf28cc6cc5b6714b383149745e287181a8"}, + {file = "frozenlist-1.7.0-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:d50ac7627b3a1bd2dcef6f9da89a772694ec04d9a61b66cf87f7d9446b4a0c31"}, + {file = "frozenlist-1.7.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:ce48b2fece5aeb45265bb7a58259f45027db0abff478e3077e12b05b17fb9da7"}, + {file = "frozenlist-1.7.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:fe2365ae915a1fafd982c146754e1de6ab3478def8a59c86e1f7242d794f97d5"}, + {file = "frozenlist-1.7.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:45a6f2fdbd10e074e8814eb98b05292f27bad7d1883afbe009d96abdcf3bc898"}, + {file = "frozenlist-1.7.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:21884e23cffabb157a9dd7e353779077bf5b8f9a58e9b262c6caad2ef5f80a56"}, + {file = "frozenlist-1.7.0-cp311-cp311-win32.whl", hash = "sha256:284d233a8953d7b24f9159b8a3496fc1ddc00f4db99c324bd5fb5f22d8698ea7"}, + {file = "frozenlist-1.7.0-cp311-cp311-win_amd64.whl", hash = "sha256:387cbfdcde2f2353f19c2f66bbb52406d06ed77519ac7ee21be0232147c2592d"}, + {file = "frozenlist-1.7.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:3dbf9952c4bb0e90e98aec1bd992b3318685005702656bc6f67c1a32b76787f2"}, + {file = "frozenlist-1.7.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:1f5906d3359300b8a9bb194239491122e6cf1444c2efb88865426f170c262cdb"}, + {file = "frozenlist-1.7.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3dabd5a8f84573c8d10d8859a50ea2dec01eea372031929871368c09fa103478"}, + {file = "frozenlist-1.7.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aa57daa5917f1738064f302bf2626281a1cb01920c32f711fbc7bc36111058a8"}, + {file = "frozenlist-1.7.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:c193dda2b6d49f4c4398962810fa7d7c78f032bf45572b3e04dd5249dff27e08"}, + {file = "frozenlist-1.7.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bfe2b675cf0aaa6d61bf8fbffd3c274b3c9b7b1623beb3809df8a81399a4a9c4"}, + {file = "frozenlist-1.7.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8fc5d5cda37f62b262405cf9652cf0856839c4be8ee41be0afe8858f17f4c94b"}, + {file = "frozenlist-1.7.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b0d5ce521d1dd7d620198829b87ea002956e4319002ef0bc8d3e6d045cb4646e"}, + {file = "frozenlist-1.7.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:488d0a7d6a0008ca0db273c542098a0fa9e7dfaa7e57f70acef43f32b3f69dca"}, + {file = "frozenlist-1.7.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:15a7eaba63983d22c54d255b854e8108e7e5f3e89f647fc854bd77a237e767df"}, + {file = "frozenlist-1.7.0-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:1eaa7e9c6d15df825bf255649e05bd8a74b04a4d2baa1ae46d9c2d00b2ca2cb5"}, + {file = "frozenlist-1.7.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:e4389e06714cfa9d47ab87f784a7c5be91d3934cd6e9a7b85beef808297cc025"}, + {file = "frozenlist-1.7.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:73bd45e1488c40b63fe5a7df892baf9e2a4d4bb6409a2b3b78ac1c6236178e01"}, + {file = "frozenlist-1.7.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:99886d98e1643269760e5fe0df31e5ae7050788dd288947f7f007209b8c33f08"}, + {file = "frozenlist-1.7.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:290a172aae5a4c278c6da8a96222e6337744cd9c77313efe33d5670b9f65fc43"}, + {file = "frozenlist-1.7.0-cp312-cp312-win32.whl", hash = "sha256:426c7bc70e07cfebc178bc4c2bf2d861d720c4fff172181eeb4a4c41d4ca2ad3"}, + {file = "frozenlist-1.7.0-cp312-cp312-win_amd64.whl", hash = "sha256:563b72efe5da92e02eb68c59cb37205457c977aa7a449ed1b37e6939e5c47c6a"}, + {file = "frozenlist-1.7.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ee80eeda5e2a4e660651370ebffd1286542b67e268aa1ac8d6dbe973120ef7ee"}, + {file = "frozenlist-1.7.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:d1a81c85417b914139e3a9b995d4a1c84559afc839a93cf2cb7f15e6e5f6ed2d"}, + {file = "frozenlist-1.7.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cbb65198a9132ebc334f237d7b0df163e4de83fb4f2bdfe46c1e654bdb0c5d43"}, + {file = "frozenlist-1.7.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dab46c723eeb2c255a64f9dc05b8dd601fde66d6b19cdb82b2e09cc6ff8d8b5d"}, + {file = "frozenlist-1.7.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:6aeac207a759d0dedd2e40745575ae32ab30926ff4fa49b1635def65806fddee"}, + {file = "frozenlist-1.7.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bd8c4e58ad14b4fa7802b8be49d47993182fdd4023393899632c88fd8cd994eb"}, + {file = "frozenlist-1.7.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:04fb24d104f425da3540ed83cbfc31388a586a7696142004c577fa61c6298c3f"}, + {file = "frozenlist-1.7.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6a5c505156368e4ea6b53b5ac23c92d7edc864537ff911d2fb24c140bb175e60"}, + {file = "frozenlist-1.7.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8bd7eb96a675f18aa5c553eb7ddc24a43c8c18f22e1f9925528128c052cdbe00"}, + {file = "frozenlist-1.7.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:05579bf020096fe05a764f1f84cd104a12f78eaab68842d036772dc6d4870b4b"}, + {file = "frozenlist-1.7.0-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:376b6222d114e97eeec13d46c486facd41d4f43bab626b7c3f6a8b4e81a5192c"}, + {file = "frozenlist-1.7.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:0aa7e176ebe115379b5b1c95b4096fb1c17cce0847402e227e712c27bdb5a949"}, + {file = "frozenlist-1.7.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:3fbba20e662b9c2130dc771e332a99eff5da078b2b2648153a40669a6d0e36ca"}, + {file = "frozenlist-1.7.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:f3f4410a0a601d349dd406b5713fec59b4cee7e71678d5b17edda7f4655a940b"}, + {file = "frozenlist-1.7.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e2cdfaaec6a2f9327bf43c933c0319a7c429058e8537c508964a133dffee412e"}, + {file = "frozenlist-1.7.0-cp313-cp313-win32.whl", hash = "sha256:5fc4df05a6591c7768459caba1b342d9ec23fa16195e744939ba5914596ae3e1"}, + {file = "frozenlist-1.7.0-cp313-cp313-win_amd64.whl", hash = "sha256:52109052b9791a3e6b5d1b65f4b909703984b770694d3eb64fad124c835d7cba"}, + {file = "frozenlist-1.7.0-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:a6f86e4193bb0e235ef6ce3dde5cbabed887e0b11f516ce8a0f4d3b33078ec2d"}, + {file = "frozenlist-1.7.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:82d664628865abeb32d90ae497fb93df398a69bb3434463d172b80fc25b0dd7d"}, + {file = "frozenlist-1.7.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:912a7e8375a1c9a68325a902f3953191b7b292aa3c3fb0d71a216221deca460b"}, + {file = "frozenlist-1.7.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9537c2777167488d539bc5de2ad262efc44388230e5118868e172dd4a552b146"}, + {file = "frozenlist-1.7.0-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:f34560fb1b4c3e30ba35fa9a13894ba39e5acfc5f60f57d8accde65f46cc5e74"}, + {file = "frozenlist-1.7.0-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:acd03d224b0175f5a850edc104ac19040d35419eddad04e7cf2d5986d98427f1"}, + {file = "frozenlist-1.7.0-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2038310bc582f3d6a09b3816ab01737d60bf7b1ec70f5356b09e84fb7408ab1"}, + {file = "frozenlist-1.7.0-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b8c05e4c8e5f36e5e088caa1bf78a687528f83c043706640a92cb76cd6999384"}, + {file = "frozenlist-1.7.0-cp313-cp313t-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:765bb588c86e47d0b68f23c1bee323d4b703218037765dcf3f25c838c6fecceb"}, + {file = "frozenlist-1.7.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:32dc2e08c67d86d0969714dd484fd60ff08ff81d1a1e40a77dd34a387e6ebc0c"}, + {file = "frozenlist-1.7.0-cp313-cp313t-musllinux_1_2_armv7l.whl", hash = "sha256:c0303e597eb5a5321b4de9c68e9845ac8f290d2ab3f3e2c864437d3c5a30cd65"}, + {file = "frozenlist-1.7.0-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:a47f2abb4e29b3a8d0b530f7c3598badc6b134562b1a5caee867f7c62fee51e3"}, + {file = "frozenlist-1.7.0-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:3d688126c242a6fabbd92e02633414d40f50bb6002fa4cf995a1d18051525657"}, + {file = "frozenlist-1.7.0-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:4e7e9652b3d367c7bd449a727dc79d5043f48b88d0cbfd4f9f1060cf2b414104"}, + {file = "frozenlist-1.7.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:1a85e345b4c43db8b842cab1feb41be5cc0b10a1830e6295b69d7310f99becaf"}, + {file = "frozenlist-1.7.0-cp313-cp313t-win32.whl", hash = "sha256:3a14027124ddb70dfcee5148979998066897e79f89f64b13328595c4bdf77c81"}, + {file = "frozenlist-1.7.0-cp313-cp313t-win_amd64.whl", hash = "sha256:3bf8010d71d4507775f658e9823210b7427be36625b387221642725b515dcf3e"}, + {file = "frozenlist-1.7.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:cea3dbd15aea1341ea2de490574a4a37ca080b2ae24e4b4f4b51b9057b4c3630"}, + {file = "frozenlist-1.7.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7d536ee086b23fecc36c2073c371572374ff50ef4db515e4e503925361c24f71"}, + {file = "frozenlist-1.7.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dfcebf56f703cb2e346315431699f00db126d158455e513bd14089d992101e44"}, + {file = "frozenlist-1.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:974c5336e61d6e7eb1ea5b929cb645e882aadab0095c5a6974a111e6479f8878"}, + {file = "frozenlist-1.7.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:c70db4a0ab5ab20878432c40563573229a7ed9241506181bba12f6b7d0dc41cb"}, + {file = "frozenlist-1.7.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1137b78384eebaf70560a36b7b229f752fb64d463d38d1304939984d5cb887b6"}, + {file = "frozenlist-1.7.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e793a9f01b3e8b5c0bc646fb59140ce0efcc580d22a3468d70766091beb81b35"}, + {file = "frozenlist-1.7.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:74739ba8e4e38221d2c5c03d90a7e542cb8ad681915f4ca8f68d04f810ee0a87"}, + {file = "frozenlist-1.7.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1e63344c4e929b1a01e29bc184bbb5fd82954869033765bfe8d65d09e336a677"}, + {file = "frozenlist-1.7.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2ea2a7369eb76de2217a842f22087913cdf75f63cf1307b9024ab82dfb525938"}, + {file = "frozenlist-1.7.0-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:836b42f472a0e006e02499cef9352ce8097f33df43baaba3e0a28a964c26c7d2"}, + {file = "frozenlist-1.7.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e22b9a99741294b2571667c07d9f8cceec07cb92aae5ccda39ea1b6052ed4319"}, + {file = "frozenlist-1.7.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:9a19e85cc503d958abe5218953df722748d87172f71b73cf3c9257a91b999890"}, + {file = "frozenlist-1.7.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:f22dac33bb3ee8fe3e013aa7b91dc12f60d61d05b7fe32191ffa84c3aafe77bd"}, + {file = "frozenlist-1.7.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:9ccec739a99e4ccf664ea0775149f2749b8a6418eb5b8384b4dc0a7d15d304cb"}, + {file = "frozenlist-1.7.0-cp39-cp39-win32.whl", hash = "sha256:b3950f11058310008a87757f3eee16a8e1ca97979833239439586857bc25482e"}, + {file = "frozenlist-1.7.0-cp39-cp39-win_amd64.whl", hash = "sha256:43a82fce6769c70f2f5a06248b614a7d268080a9d20f7457ef10ecee5af82b63"}, + {file = "frozenlist-1.7.0-py3-none-any.whl", hash = "sha256:9a5af342e34f7e97caf8c995864c7a396418ae2859cc6fdf1b1073020d516a7e"}, + {file = "frozenlist-1.7.0.tar.gz", hash = "sha256:2e310d81923c2437ea8670467121cc3e9b0f76d3043cc1d2331d56c7fb7a3a8f"}, +] + +[[package]] +name = "fsspec" +version = "2024.12.0" +description = "File-system specification" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "fsspec-2024.12.0-py3-none-any.whl", hash = "sha256:b520aed47ad9804237ff878b504267a3b0b441e97508bd6d2d8774e3db85cee2"}, + {file = "fsspec-2024.12.0.tar.gz", hash = "sha256:670700c977ed2fb51e0d9f9253177ed20cbde4a3e5c0283cc5385b5870c8533f"}, +] + +[package.extras] +abfs = ["adlfs"] +adl = ["adlfs"] +arrow = ["pyarrow (>=1)"] +dask = ["dask", "distributed"] +dev = ["pre-commit", "ruff"] +doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] +dropbox = ["dropbox", "dropboxdrivefs", "requests"] +full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] +fuse = ["fusepy"] +gcs = ["gcsfs"] +git = ["pygit2"] +github = ["requests"] +gs = ["gcsfs"] +gui = ["panel"] +hdfs = ["pyarrow (>=1)"] +http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)"] +libarchive = ["libarchive-c"] +oci = ["ocifs"] +s3 = ["s3fs"] +sftp = ["paramiko"] +smb = ["smbprotocol"] +ssh = ["paramiko"] +test = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "numpy", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "requests"] +test-downstream = ["aiobotocore (>=2.5.4,<3.0.0)", "dask-expr", "dask[dataframe,test]", "moto[server] (>4,<5)", "pytest-timeout", "xarray"] +test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"] +tqdm = ["tqdm"] + +[[package]] +name = "greenlet" +version = "3.2.3" +description = "Lightweight in-process concurrent programming" +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "platform_machine == \"aarch64\" or platform_machine == \"ppc64le\" or platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"AMD64\" or platform_machine == \"win32\" or platform_machine == \"WIN32\"" +files = [ + {file = "greenlet-3.2.3-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:1afd685acd5597349ee6d7a88a8bec83ce13c106ac78c196ee9dde7c04fe87be"}, + {file = "greenlet-3.2.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:761917cac215c61e9dc7324b2606107b3b292a8349bdebb31503ab4de3f559ac"}, + {file = "greenlet-3.2.3-cp310-cp310-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:a433dbc54e4a37e4fff90ef34f25a8c00aed99b06856f0119dcf09fbafa16392"}, + {file = "greenlet-3.2.3-cp310-cp310-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:72e77ed69312bab0434d7292316d5afd6896192ac4327d44f3d613ecb85b037c"}, + {file = "greenlet-3.2.3-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:68671180e3849b963649254a882cd544a3c75bfcd2c527346ad8bb53494444db"}, + {file = "greenlet-3.2.3-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:49c8cfb18fb419b3d08e011228ef8a25882397f3a859b9fe1436946140b6756b"}, + {file = "greenlet-3.2.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:efc6dc8a792243c31f2f5674b670b3a95d46fa1c6a912b8e310d6f542e7b0712"}, + {file = "greenlet-3.2.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:731e154aba8e757aedd0781d4b240f1225b075b4409f1bb83b05ff410582cf00"}, + {file = "greenlet-3.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:96c20252c2f792defe9a115d3287e14811036d51e78b3aaddbee23b69b216302"}, + {file = "greenlet-3.2.3-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:784ae58bba89fa1fa5733d170d42486580cab9decda3484779f4759345b29822"}, + {file = "greenlet-3.2.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:0921ac4ea42a5315d3446120ad48f90c3a6b9bb93dd9b3cf4e4d84a66e42de83"}, + {file = "greenlet-3.2.3-cp311-cp311-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:d2971d93bb99e05f8c2c0c2f4aa9484a18d98c4c3bd3c62b65b7e6ae33dfcfaf"}, + {file = "greenlet-3.2.3-cp311-cp311-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:c667c0bf9d406b77a15c924ef3285e1e05250948001220368e039b6aa5b5034b"}, + {file = "greenlet-3.2.3-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:592c12fb1165be74592f5de0d70f82bc5ba552ac44800d632214b76089945147"}, + {file = "greenlet-3.2.3-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:29e184536ba333003540790ba29829ac14bb645514fbd7e32af331e8202a62a5"}, + {file = "greenlet-3.2.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:93c0bb79844a367782ec4f429d07589417052e621aa39a5ac1fb99c5aa308edc"}, + {file = "greenlet-3.2.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:751261fc5ad7b6705f5f76726567375bb2104a059454e0226e1eef6c756748ba"}, + {file = "greenlet-3.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:83a8761c75312361aa2b5b903b79da97f13f556164a7dd2d5448655425bd4c34"}, + {file = "greenlet-3.2.3-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:25ad29caed5783d4bd7a85c9251c651696164622494c00802a139c00d639242d"}, + {file = "greenlet-3.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:88cd97bf37fe24a6710ec6a3a7799f3f81d9cd33317dcf565ff9950c83f55e0b"}, + {file = "greenlet-3.2.3-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:baeedccca94880d2f5666b4fa16fc20ef50ba1ee353ee2d7092b383a243b0b0d"}, + {file = "greenlet-3.2.3-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:be52af4b6292baecfa0f397f3edb3c6092ce071b499dd6fe292c9ac9f2c8f264"}, + {file = "greenlet-3.2.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:0cc73378150b8b78b0c9fe2ce56e166695e67478550769536a6742dca3651688"}, + {file = "greenlet-3.2.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:706d016a03e78df129f68c4c9b4c4f963f7d73534e48a24f5f5a7101ed13dbbb"}, + {file = "greenlet-3.2.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:419e60f80709510c343c57b4bb5a339d8767bf9aef9b8ce43f4f143240f88b7c"}, + {file = "greenlet-3.2.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:93d48533fade144203816783373f27a97e4193177ebaaf0fc396db19e5d61163"}, + {file = "greenlet-3.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:7454d37c740bb27bdeddfc3f358f26956a07d5220818ceb467a483197d84f849"}, + {file = "greenlet-3.2.3-cp313-cp313-macosx_11_0_universal2.whl", hash = "sha256:500b8689aa9dd1ab26872a34084503aeddefcb438e2e7317b89b11eaea1901ad"}, + {file = "greenlet-3.2.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:a07d3472c2a93117af3b0136f246b2833fdc0b542d4a9799ae5f41c28323faef"}, + {file = "greenlet-3.2.3-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:8704b3768d2f51150626962f4b9a9e4a17d2e37c8a8d9867bbd9fa4eb938d3b3"}, + {file = "greenlet-3.2.3-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:5035d77a27b7c62db6cf41cf786cfe2242644a7a337a0e155c80960598baab95"}, + {file = "greenlet-3.2.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:2d8aa5423cd4a396792f6d4580f88bdc6efcb9205891c9d40d20f6e670992efb"}, + {file = "greenlet-3.2.3-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2c724620a101f8170065d7dded3f962a2aea7a7dae133a009cada42847e04a7b"}, + {file = "greenlet-3.2.3-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:873abe55f134c48e1f2a6f53f7d1419192a3d1a4e873bace00499a4e45ea6af0"}, + {file = "greenlet-3.2.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:024571bbce5f2c1cfff08bf3fbaa43bbc7444f580ae13b0099e95d0e6e67ed36"}, + {file = "greenlet-3.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:5195fb1e75e592dd04ce79881c8a22becdfa3e6f500e7feb059b1e6fdd54d3e3"}, + {file = "greenlet-3.2.3-cp314-cp314-macosx_11_0_universal2.whl", hash = "sha256:3d04332dddb10b4a211b68111dabaee2e1a073663d117dc10247b5b1642bac86"}, + {file = "greenlet-3.2.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8186162dffde068a465deab08fc72c767196895c39db26ab1c17c0b77a6d8b97"}, + {file = "greenlet-3.2.3-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:f4bfbaa6096b1b7a200024784217defedf46a07c2eee1a498e94a1b5f8ec5728"}, + {file = "greenlet-3.2.3-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:ed6cfa9200484d234d8394c70f5492f144b20d4533f69262d530a1a082f6ee9a"}, + {file = "greenlet-3.2.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:02b0df6f63cd15012bed5401b47829cfd2e97052dc89da3cfaf2c779124eb892"}, + {file = "greenlet-3.2.3-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:86c2d68e87107c1792e2e8d5399acec2487a4e993ab76c792408e59394d52141"}, + {file = "greenlet-3.2.3-cp314-cp314-win_amd64.whl", hash = "sha256:8c47aae8fbbfcf82cc13327ae802ba13c9c36753b67e760023fd116bc124a62a"}, + {file = "greenlet-3.2.3-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:42efc522c0bd75ffa11a71e09cd8a399d83fafe36db250a87cf1dacfaa15dc64"}, + {file = "greenlet-3.2.3-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d760f9bdfe79bff803bad32b4d8ffb2c1d2ce906313fc10a83976ffb73d64ca7"}, + {file = "greenlet-3.2.3-cp39-cp39-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:8324319cbd7b35b97990090808fdc99c27fe5338f87db50514959f8059999805"}, + {file = "greenlet-3.2.3-cp39-cp39-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:8c37ef5b3787567d322331d5250e44e42b58c8c713859b8a04c6065f27efbf72"}, + {file = "greenlet-3.2.3-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ce539fb52fb774d0802175d37fcff5c723e2c7d249c65916257f0a940cee8904"}, + {file = "greenlet-3.2.3-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:003c930e0e074db83559edc8705f3a2d066d4aa8c2f198aff1e454946efd0f26"}, + {file = "greenlet-3.2.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7e70ea4384b81ef9e84192e8a77fb87573138aa5d4feee541d8014e452b434da"}, + {file = "greenlet-3.2.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:22eb5ba839c4b2156f18f76768233fe44b23a31decd9cc0d4cc8141c211fd1b4"}, + {file = "greenlet-3.2.3-cp39-cp39-win32.whl", hash = "sha256:4532f0d25df67f896d137431b13f4cdce89f7e3d4a96387a41290910df4d3a57"}, + {file = "greenlet-3.2.3-cp39-cp39-win_amd64.whl", hash = "sha256:aaa7aae1e7f75eaa3ae400ad98f8644bb81e1dc6ba47ce8a93d3f17274e08322"}, + {file = "greenlet-3.2.3.tar.gz", hash = "sha256:8b0dd8ae4c0d6f5e54ee55ba935eeb3d735a9b58a8a1e5b5cbab64e01a39f365"}, +] + +[package.extras] +docs = ["Sphinx", "furo"] +test = ["objgraph", "psutil"] + +[[package]] +name = "h11" +version = "0.16.0" +description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "h11-0.16.0-py3-none-any.whl", hash = "sha256:63cf8bbe7522de3bf65932fda1d9c2772064ffb3dae62d55932da54b31cb6c86"}, + {file = "h11-0.16.0.tar.gz", hash = "sha256:4e35b956cf45792e4caa5885e69fba00bdbc6ffafbfa020300e549b208ee5ff1"}, +] + +[[package]] +name = "hf-xet" +version = "1.1.5" +description = "Fast transfer of large files with the Hugging Face Hub." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"arm64\" or platform_machine == \"aarch64\"" +files = [ + {file = "hf_xet-1.1.5-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:f52c2fa3635b8c37c7764d8796dfa72706cc4eded19d638331161e82b0792e23"}, + {file = "hf_xet-1.1.5-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:9fa6e3ee5d61912c4a113e0708eaaef987047616465ac7aa30f7121a48fc1af8"}, + {file = "hf_xet-1.1.5-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc874b5c843e642f45fd85cda1ce599e123308ad2901ead23d3510a47ff506d1"}, + {file = "hf_xet-1.1.5-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:dbba1660e5d810bd0ea77c511a99e9242d920790d0e63c0e4673ed36c4022d18"}, + {file = "hf_xet-1.1.5-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:ab34c4c3104133c495785d5d8bba3b1efc99de52c02e759cf711a91fd39d3a14"}, + {file = "hf_xet-1.1.5-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:83088ecea236d5113de478acb2339f92c95b4fb0462acaa30621fac02f5a534a"}, + {file = "hf_xet-1.1.5-cp37-abi3-win_amd64.whl", hash = "sha256:73e167d9807d166596b4b2f0b585c6d5bd84a26dea32843665a8b58f6edba245"}, + {file = "hf_xet-1.1.5.tar.gz", hash = "sha256:69ebbcfd9ec44fdc2af73441619eeb06b94ee34511bbcf57cd423820090f5694"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "httpcore" +version = "1.0.9" +description = "A minimal low-level HTTP client." +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "httpcore-1.0.9-py3-none-any.whl", hash = "sha256:2d400746a40668fc9dec9810239072b40b4484b640a8c38fd654a024c7a1bf55"}, + {file = "httpcore-1.0.9.tar.gz", hash = "sha256:6e34463af53fd2ab5d807f399a9b45ea31c3dfa2276f15a2c3f00afff6e176e8"}, +] + +[package.dependencies] +certifi = "*" +h11 = ">=0.16" + +[package.extras] +asyncio = ["anyio (>=4.0,<5.0)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +trio = ["trio (>=0.22.0,<1.0)"] + +[[package]] +name = "httpx" +version = "0.28.1" +description = "The next generation HTTP client." +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "httpx-0.28.1-py3-none-any.whl", hash = "sha256:d909fcccc110f8c7faf814ca82a9a4d816bc5a6dbfea25d6591d6985b8ba59ad"}, + {file = "httpx-0.28.1.tar.gz", hash = "sha256:75e98c5f16b0f35b567856f597f06ff2270a374470a5c2392242528e3e3e42fc"}, +] + +[package.dependencies] +anyio = "*" +certifi = "*" +httpcore = "==1.*" +idna = "*" + +[package.extras] +brotli = ["brotli ; platform_python_implementation == \"CPython\"", "brotlicffi ; platform_python_implementation != \"CPython\""] +cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "httpx-sse" +version = "0.4.0" +description = "Consume Server-Sent Event (SSE) messages with HTTPX." +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "httpx-sse-0.4.0.tar.gz", hash = "sha256:1e81a3a3070ce322add1d3529ed42eb5f70817f45ed6ec915ab753f961139721"}, + {file = "httpx_sse-0.4.0-py3-none-any.whl", hash = "sha256:f329af6eae57eaa2bdfd962b42524764af68075ea87370a2de920af5341e318f"}, +] + +[[package]] +name = "huggingface-hub" +version = "0.33.0" +description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub" +optional = false +python-versions = ">=3.8.0" +groups = ["main"] +files = [ + {file = "huggingface_hub-0.33.0-py3-none-any.whl", hash = "sha256:e8668875b40c68f9929150d99727d39e5ebb8a05a98e4191b908dc7ded9074b3"}, + {file = "huggingface_hub-0.33.0.tar.gz", hash = "sha256:aa31f70d29439d00ff7a33837c03f1f9dd83971ce4e29ad664d63ffb17d3bb97"}, +] + +[package.dependencies] +filelock = "*" +fsspec = ">=2023.5.0" +hf-xet = {version = ">=1.1.2,<2.0.0", markers = "platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"arm64\" or platform_machine == \"aarch64\""} +packaging = ">=20.9" +pyyaml = ">=5.1" +requests = "*" +tqdm = ">=4.42.1" +typing-extensions = ">=3.7.4.3" + +[package.extras] +all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "authlib (>=1.3.2)", "fastapi", "gradio (>=4.0.0)", "httpx", "itsdangerous", "jedi", "libcst (==1.4.0)", "mypy (==1.15.0) ; python_version >= \"3.9\"", "mypy (>=1.14.1,<1.15.0) ; python_version == \"3.8\"", "numpy", "pytest (>=8.1.1,<8.2.2)", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-mock", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.9.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] +cli = ["InquirerPy (==0.3.4)"] +dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "authlib (>=1.3.2)", "fastapi", "gradio (>=4.0.0)", "httpx", "itsdangerous", "jedi", "libcst (==1.4.0)", "mypy (==1.15.0) ; python_version >= \"3.9\"", "mypy (>=1.14.1,<1.15.0) ; python_version == \"3.8\"", "numpy", "pytest (>=8.1.1,<8.2.2)", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-mock", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.9.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] +fastai = ["fastai (>=2.4)", "fastcore (>=1.3.27)", "toml"] +hf-transfer = ["hf-transfer (>=0.1.4)"] +hf-xet = ["hf-xet (>=1.1.2,<2.0.0)"] +inference = ["aiohttp"] +mcp = ["aiohttp", "mcp (>=1.8.0)", "typer"] +oauth = ["authlib (>=1.3.2)", "fastapi", "httpx", "itsdangerous"] +quality = ["libcst (==1.4.0)", "mypy (==1.15.0) ; python_version >= \"3.9\"", "mypy (>=1.14.1,<1.15.0) ; python_version == \"3.8\"", "ruff (>=0.9.0)"] +tensorflow = ["graphviz", "pydot", "tensorflow"] +tensorflow-testing = ["keras (<3.0)", "tensorflow"] +testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "authlib (>=1.3.2)", "fastapi", "gradio (>=4.0.0)", "httpx", "itsdangerous", "jedi", "numpy", "pytest (>=8.1.1,<8.2.2)", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-mock", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "soundfile", "urllib3 (<2.0)"] +torch = ["safetensors[torch]", "torch"] +typing = ["types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)"] + +[[package]] +name = "idna" +version = "3.10" +description = "Internationalized Domain Names in Applications (IDNA)" +optional = false +python-versions = ">=3.6" +groups = ["main"] +files = [ + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, +] + +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + +[[package]] +name = "ipykernel" +version = "6.29.5" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, + {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=24" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.37.0" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.10" +groups = ["main"] +files = [ + {file = "ipython-8.37.0-py3-none-any.whl", hash = "sha256:ed87326596b878932dbcb171e3e698845434d8c61b8d8cd474bf663041a9dcf2"}, + {file = "ipython-8.37.0.tar.gz", hash = "sha256:ca815841e1a41a1e6b73a0b08f3038af9b2252564d01fc405356d34033012216"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\" and sys_platform != \"emscripten\""} +prompt_toolkit = ">=3.0.41,<3.1.0" +pygments = ">=2.4.0" +stack_data = "*" +traitlets = ">=5.13.0" +typing_extensions = {version = ">=4.6", markers = "python_version < \"3.12\""} + +[package.extras] +all = ["ipython[black,doc,kernel,matplotlib,nbconvert,nbformat,notebook,parallel,qtconsole]", "ipython[test,test-extra]"] +black = ["black"] +doc = ["docrepr", "exceptiongroup", "intersphinx_registry", "ipykernel", "ipython[test]", "matplotlib", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "sphinxcontrib-jquery", "tomli ; python_version < \"3.11\"", "typing_extensions"] +kernel = ["ipykernel"] +matplotlib = ["matplotlib"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["packaging", "pickleshare", "pytest", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "ipython[test]", "jupyter_ai", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.23)", "pandas", "trio"] + +[[package]] +name = "jedi" +version = "0.19.2" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +groups = ["main"] +files = [ + {file = "jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9"}, + {file = "jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0"}, +] + +[package.dependencies] +parso = ">=0.8.4,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<9.0.0)"] + +[[package]] +name = "jinja2" +version = "3.1.6" +description = "A very fast and expressive template engine." +optional = false +python-versions = ">=3.7" +groups = ["main"] +files = [ + {file = "jinja2-3.1.6-py3-none-any.whl", hash = "sha256:85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67"}, + {file = "jinja2-3.1.6.tar.gz", hash = "sha256:0137fb05990d35f1275a587e9aee6d56da821fc83491a0fb838183be43f66d6d"}, +] + +[package.dependencies] +MarkupSafe = ">=2.0" + +[package.extras] +i18n = ["Babel (>=2.7)"] + +[[package]] +name = "jiter" +version = "0.10.0" +description = "Fast iterable JSON parser." +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "jiter-0.10.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:cd2fb72b02478f06a900a5782de2ef47e0396b3e1f7d5aba30daeb1fce66f303"}, + {file = "jiter-0.10.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:32bb468e3af278f095d3fa5b90314728a6916d89ba3d0ffb726dd9bf7367285e"}, + {file = "jiter-0.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aa8b3e0068c26ddedc7abc6fac37da2d0af16b921e288a5a613f4b86f050354f"}, + {file = "jiter-0.10.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:286299b74cc49e25cd42eea19b72aa82c515d2f2ee12d11392c56d8701f52224"}, + {file = "jiter-0.10.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6ed5649ceeaeffc28d87fb012d25a4cd356dcd53eff5acff1f0466b831dda2a7"}, + {file = "jiter-0.10.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2ab0051160cb758a70716448908ef14ad476c3774bd03ddce075f3c1f90a3d6"}, + {file = "jiter-0.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03997d2f37f6b67d2f5c475da4412be584e1cec273c1cfc03d642c46db43f8cf"}, + {file = "jiter-0.10.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c404a99352d839fed80d6afd6c1d66071f3bacaaa5c4268983fc10f769112e90"}, + {file = "jiter-0.10.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:66e989410b6666d3ddb27a74c7e50d0829704ede652fd4c858e91f8d64b403d0"}, + {file = "jiter-0.10.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b532d3af9ef4f6374609a3bcb5e05a1951d3bf6190dc6b176fdb277c9bbf15ee"}, + {file = "jiter-0.10.0-cp310-cp310-win32.whl", hash = "sha256:da9be20b333970e28b72edc4dff63d4fec3398e05770fb3205f7fb460eb48dd4"}, + {file = "jiter-0.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:f59e533afed0c5b0ac3eba20d2548c4a550336d8282ee69eb07b37ea526ee4e5"}, + {file = "jiter-0.10.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:3bebe0c558e19902c96e99217e0b8e8b17d570906e72ed8a87170bc290b1e978"}, + {file = "jiter-0.10.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:558cc7e44fd8e507a236bee6a02fa17199ba752874400a0ca6cd6e2196cdb7dc"}, + {file = "jiter-0.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d613e4b379a07d7c8453c5712ce7014e86c6ac93d990a0b8e7377e18505e98d"}, + {file = "jiter-0.10.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f62cf8ba0618eda841b9bf61797f21c5ebd15a7a1e19daab76e4e4b498d515b2"}, + {file = "jiter-0.10.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:919d139cdfa8ae8945112398511cb7fca58a77382617d279556b344867a37e61"}, + {file = "jiter-0.10.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:13ddbc6ae311175a3b03bd8994881bc4635c923754932918e18da841632349db"}, + {file = "jiter-0.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c440ea003ad10927a30521a9062ce10b5479592e8a70da27f21eeb457b4a9c5"}, + {file = "jiter-0.10.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dc347c87944983481e138dea467c0551080c86b9d21de6ea9306efb12ca8f606"}, + {file = "jiter-0.10.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:13252b58c1f4d8c5b63ab103c03d909e8e1e7842d302473f482915d95fefd605"}, + {file = "jiter-0.10.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:7d1bbf3c465de4a24ab12fb7766a0003f6f9bce48b8b6a886158c4d569452dc5"}, + {file = "jiter-0.10.0-cp311-cp311-win32.whl", hash = "sha256:db16e4848b7e826edca4ccdd5b145939758dadf0dc06e7007ad0e9cfb5928ae7"}, + {file = "jiter-0.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:9c9c1d5f10e18909e993f9641f12fe1c77b3e9b533ee94ffa970acc14ded3812"}, + {file = "jiter-0.10.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:1e274728e4a5345a6dde2d343c8da018b9d4bd4350f5a472fa91f66fda44911b"}, + {file = "jiter-0.10.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7202ae396446c988cb2a5feb33a543ab2165b786ac97f53b59aafb803fef0744"}, + {file = "jiter-0.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23ba7722d6748b6920ed02a8f1726fb4b33e0fd2f3f621816a8b486c66410ab2"}, + {file = "jiter-0.10.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:371eab43c0a288537d30e1f0b193bc4eca90439fc08a022dd83e5e07500ed026"}, + {file = "jiter-0.10.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6c675736059020365cebc845a820214765162728b51ab1e03a1b7b3abb70f74c"}, + {file = "jiter-0.10.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0c5867d40ab716e4684858e4887489685968a47e3ba222e44cde6e4a2154f959"}, + {file = "jiter-0.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:395bb9a26111b60141757d874d27fdea01b17e8fac958b91c20128ba8f4acc8a"}, + {file = "jiter-0.10.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6842184aed5cdb07e0c7e20e5bdcfafe33515ee1741a6835353bb45fe5d1bd95"}, + {file = "jiter-0.10.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:62755d1bcea9876770d4df713d82606c8c1a3dca88ff39046b85a048566d56ea"}, + {file = "jiter-0.10.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:533efbce2cacec78d5ba73a41756beff8431dfa1694b6346ce7af3a12c42202b"}, + {file = "jiter-0.10.0-cp312-cp312-win32.whl", hash = "sha256:8be921f0cadd245e981b964dfbcd6fd4bc4e254cdc069490416dd7a2632ecc01"}, + {file = "jiter-0.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:a7c7d785ae9dda68c2678532a5a1581347e9c15362ae9f6e68f3fdbfb64f2e49"}, + {file = "jiter-0.10.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:e0588107ec8e11b6f5ef0e0d656fb2803ac6cf94a96b2b9fc675c0e3ab5e8644"}, + {file = "jiter-0.10.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cafc4628b616dc32530c20ee53d71589816cf385dd9449633e910d596b1f5c8a"}, + {file = "jiter-0.10.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:520ef6d981172693786a49ff5b09eda72a42e539f14788124a07530f785c3ad6"}, + {file = "jiter-0.10.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:554dedfd05937f8fc45d17ebdf298fe7e0c77458232bcb73d9fbbf4c6455f5b3"}, + {file = "jiter-0.10.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5bc299da7789deacf95f64052d97f75c16d4fc8c4c214a22bf8d859a4288a1c2"}, + {file = "jiter-0.10.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5161e201172de298a8a1baad95eb85db4fb90e902353b1f6a41d64ea64644e25"}, + {file = "jiter-0.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e2227db6ba93cb3e2bf67c87e594adde0609f146344e8207e8730364db27041"}, + {file = "jiter-0.10.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:15acb267ea5e2c64515574b06a8bf393fbfee6a50eb1673614aa45f4613c0cca"}, + {file = "jiter-0.10.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:901b92f2e2947dc6dfcb52fd624453862e16665ea909a08398dde19c0731b7f4"}, + {file = "jiter-0.10.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:d0cb9a125d5a3ec971a094a845eadde2db0de85b33c9f13eb94a0c63d463879e"}, + {file = "jiter-0.10.0-cp313-cp313-win32.whl", hash = "sha256:48a403277ad1ee208fb930bdf91745e4d2d6e47253eedc96e2559d1e6527006d"}, + {file = "jiter-0.10.0-cp313-cp313-win_amd64.whl", hash = "sha256:75f9eb72ecb640619c29bf714e78c9c46c9c4eaafd644bf78577ede459f330d4"}, + {file = "jiter-0.10.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:28ed2a4c05a1f32ef0e1d24c2611330219fed727dae01789f4a335617634b1ca"}, + {file = "jiter-0.10.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:14a4c418b1ec86a195f1ca69da8b23e8926c752b685af665ce30777233dfe070"}, + {file = "jiter-0.10.0-cp313-cp313t-win_amd64.whl", hash = "sha256:d7bfed2fe1fe0e4dda6ef682cee888ba444b21e7a6553e03252e4feb6cf0adca"}, + {file = "jiter-0.10.0-cp314-cp314-macosx_10_12_x86_64.whl", hash = "sha256:5e9251a5e83fab8d87799d3e1a46cb4b7f2919b895c6f4483629ed2446f66522"}, + {file = "jiter-0.10.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:023aa0204126fe5b87ccbcd75c8a0d0261b9abdbbf46d55e7ae9f8e22424eeb8"}, + {file = "jiter-0.10.0-cp314-cp314-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c189c4f1779c05f75fc17c0c1267594ed918996a231593a21a5ca5438445216"}, + {file = "jiter-0.10.0-cp314-cp314-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:15720084d90d1098ca0229352607cd68256c76991f6b374af96f36920eae13c4"}, + {file = "jiter-0.10.0-cp314-cp314-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4f2fb68e5f1cfee30e2b2a09549a00683e0fde4c6a2ab88c94072fc33cb7426"}, + {file = "jiter-0.10.0-cp314-cp314-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ce541693355fc6da424c08b7edf39a2895f58d6ea17d92cc2b168d20907dee12"}, + {file = "jiter-0.10.0-cp314-cp314-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31c50c40272e189d50006ad5c73883caabb73d4e9748a688b216e85a9a9ca3b9"}, + {file = "jiter-0.10.0-cp314-cp314-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:fa3402a2ff9815960e0372a47b75c76979d74402448509ccd49a275fa983ef8a"}, + {file = "jiter-0.10.0-cp314-cp314-musllinux_1_1_aarch64.whl", hash = "sha256:1956f934dca32d7bb647ea21d06d93ca40868b505c228556d3373cbd255ce853"}, + {file = "jiter-0.10.0-cp314-cp314-musllinux_1_1_x86_64.whl", hash = "sha256:fcedb049bdfc555e261d6f65a6abe1d5ad68825b7202ccb9692636c70fcced86"}, + {file = "jiter-0.10.0-cp314-cp314-win32.whl", hash = "sha256:ac509f7eccca54b2a29daeb516fb95b6f0bd0d0d8084efaf8ed5dfc7b9f0b357"}, + {file = "jiter-0.10.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:5ed975b83a2b8639356151cef5c0d597c68376fc4922b45d0eb384ac058cfa00"}, + {file = "jiter-0.10.0-cp314-cp314t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3aa96f2abba33dc77f79b4cf791840230375f9534e5fac927ccceb58c5e604a5"}, + {file = "jiter-0.10.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:bd6292a43c0fc09ce7c154ec0fa646a536b877d1e8f2f96c19707f65355b5a4d"}, + {file = "jiter-0.10.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:39de429dcaeb6808d75ffe9effefe96a4903c6a4b376b2f6d08d77c1aaee2f18"}, + {file = "jiter-0.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:52ce124f13a7a616fad3bb723f2bfb537d78239d1f7f219566dc52b6f2a9e48d"}, + {file = "jiter-0.10.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:166f3606f11920f9a1746b2eea84fa2c0a5d50fd313c38bdea4edc072000b0af"}, + {file = "jiter-0.10.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:28dcecbb4ba402916034fc14eba7709f250c4d24b0c43fc94d187ee0580af181"}, + {file = "jiter-0.10.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:86c5aa6910f9bebcc7bc4f8bc461aff68504388b43bfe5e5c0bd21efa33b52f4"}, + {file = "jiter-0.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ceeb52d242b315d7f1f74b441b6a167f78cea801ad7c11c36da77ff2d42e8a28"}, + {file = "jiter-0.10.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ff76d8887c8c8ee1e772274fcf8cc1071c2c58590d13e33bd12d02dc9a560397"}, + {file = "jiter-0.10.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a9be4d0fa2b79f7222a88aa488bd89e2ae0a0a5b189462a12def6ece2faa45f1"}, + {file = "jiter-0.10.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9ab7fd8738094139b6c1ab1822d6f2000ebe41515c537235fd45dabe13ec9324"}, + {file = "jiter-0.10.0-cp39-cp39-win32.whl", hash = "sha256:5f51e048540dd27f204ff4a87f5d79294ea0aa3aa552aca34934588cf27023cf"}, + {file = "jiter-0.10.0-cp39-cp39-win_amd64.whl", hash = "sha256:1b28302349dc65703a9e4ead16f163b1c339efffbe1049c30a44b001a2a4fff9"}, + {file = "jiter-0.10.0.tar.gz", hash = "sha256:07a7142c38aacc85194391108dc91b5b57093c978a9932bd86a36862759d9500"}, +] + +[[package]] +name = "json-repair" +version = "0.39.1" +description = "A package to repair broken json strings" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "json_repair-0.39.1-py3-none-any.whl", hash = "sha256:3001409a2f319249f13e13d6c622117a5b70ea7e0c6f43864a0233cdffc3a599"}, + {file = "json_repair-0.39.1.tar.gz", hash = "sha256:e90a489f247e1a8fc86612a5c719872a3dbf9cbaffd6d55f238ec571a77740fa"}, +] + +[[package]] +name = "jsonpatch" +version = "1.33" +description = "Apply JSON-Patches (RFC 6902)" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*" +groups = ["main"] +files = [ + {file = "jsonpatch-1.33-py2.py3-none-any.whl", hash = "sha256:0ae28c0cd062bbd8b8ecc26d7d164fbbea9652a1a3693f3b956c1eae5145dade"}, + {file = "jsonpatch-1.33.tar.gz", hash = "sha256:9fcd4009c41e6d12348b4a0ff2563ba56a2923a7dfee731d004e212e1ee5030c"}, +] + +[package.dependencies] +jsonpointer = ">=1.9" + +[[package]] +name = "jsonpointer" +version = "3.0.0" +description = "Identify specific nodes in a JSON document (RFC 6901)" +optional = false +python-versions = ">=3.7" +groups = ["main"] +files = [ + {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"}, + {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"}, +] + +[[package]] +name = "jupyter-client" +version = "8.6.3" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, +] + +[package.dependencies] +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko ; sys_platform == \"win32\"", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-core" +version = "5.8.1" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "jupyter_core-5.8.1-py3-none-any.whl", hash = "sha256:c28d268fc90fb53f1338ded2eb410704c5449a358406e8a948b75706e24863d0"}, + {file = "jupyter_core-5.8.1.tar.gz", hash = "sha256:0a5f9706f70e64786b75acba995988915ebd4601c8a52e534a40b51c95f59941"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["intersphinx-registry", "myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest (<9)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "kiwisolver" +version = "1.4.8" +description = "A fast implementation of the Cassowary constraint solver" +optional = false +python-versions = ">=3.10" +groups = ["main"] +files = [ + {file = "kiwisolver-1.4.8-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:88c6f252f6816a73b1f8c904f7bbe02fd67c09a69f7cb8a0eecdbf5ce78e63db"}, + {file = "kiwisolver-1.4.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c72941acb7b67138f35b879bbe85be0f6c6a70cab78fe3ef6db9c024d9223e5b"}, + {file = "kiwisolver-1.4.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ce2cf1e5688edcb727fdf7cd1bbd0b6416758996826a8be1d958f91880d0809d"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:c8bf637892dc6e6aad2bc6d4d69d08764166e5e3f69d469e55427b6ac001b19d"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:034d2c891f76bd3edbdb3ea11140d8510dca675443da7304205a2eaa45d8334c"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d47b28d1dfe0793d5e96bce90835e17edf9a499b53969b03c6c47ea5985844c3"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb158fe28ca0c29f2260cca8c43005329ad58452c36f0edf298204de32a9a3ed"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5536185fce131780ebd809f8e623bf4030ce1b161353166c49a3c74c287897f"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:369b75d40abedc1da2c1f4de13f3482cb99e3237b38726710f4a793432b1c5ff"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:641f2ddf9358c80faa22e22eb4c9f54bd3f0e442e038728f500e3b978d00aa7d"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:d561d2d8883e0819445cfe58d7ddd673e4015c3c57261d7bdcd3710d0d14005c"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:1732e065704b47c9afca7ffa272f845300a4eb959276bf6970dc07265e73b605"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:bcb1ebc3547619c3b58a39e2448af089ea2ef44b37988caf432447374941574e"}, + {file = "kiwisolver-1.4.8-cp310-cp310-win_amd64.whl", hash = "sha256:89c107041f7b27844179ea9c85d6da275aa55ecf28413e87624d033cf1f6b751"}, + {file = "kiwisolver-1.4.8-cp310-cp310-win_arm64.whl", hash = "sha256:b5773efa2be9eb9fcf5415ea3ab70fc785d598729fd6057bea38d539ead28271"}, + {file = "kiwisolver-1.4.8-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a4d3601908c560bdf880f07d94f31d734afd1bb71e96585cace0e38ef44c6d84"}, + {file = "kiwisolver-1.4.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:856b269c4d28a5c0d5e6c1955ec36ebfd1651ac00e1ce0afa3e28da95293b561"}, + {file = "kiwisolver-1.4.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c2b9a96e0f326205af81a15718a9073328df1173a2619a68553decb7097fd5d7"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c5020c83e8553f770cb3b5fc13faac40f17e0b205bd237aebd21d53d733adb03"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dace81d28c787956bfbfbbfd72fdcef014f37d9b48830829e488fdb32b49d954"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11e1022b524bd48ae56c9b4f9296bce77e15a2e42a502cceba602f804b32bb79"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3b9b4d2892fefc886f30301cdd80debd8bb01ecdf165a449eb6e78f79f0fabd6"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a96c0e790ee875d65e340ab383700e2b4891677b7fcd30a699146f9384a2bb0"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:23454ff084b07ac54ca8be535f4174170c1094a4cff78fbae4f73a4bcc0d4dab"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:87b287251ad6488e95b4f0b4a79a6d04d3ea35fde6340eb38fbd1ca9cd35bbbc"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:b21dbe165081142b1232a240fc6383fd32cdd877ca6cc89eab93e5f5883e1c25"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:768cade2c2df13db52475bd28d3a3fac8c9eff04b0e9e2fda0f3760f20b3f7fc"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d47cfb2650f0e103d4bf68b0b5804c68da97272c84bb12850d877a95c056bd67"}, + {file = "kiwisolver-1.4.8-cp311-cp311-win_amd64.whl", hash = "sha256:ed33ca2002a779a2e20eeb06aea7721b6e47f2d4b8a8ece979d8ba9e2a167e34"}, + {file = "kiwisolver-1.4.8-cp311-cp311-win_arm64.whl", hash = "sha256:16523b40aab60426ffdebe33ac374457cf62863e330a90a0383639ce14bf44b2"}, + {file = "kiwisolver-1.4.8-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:d6af5e8815fd02997cb6ad9bbed0ee1e60014438ee1a5c2444c96f87b8843502"}, + {file = "kiwisolver-1.4.8-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:bade438f86e21d91e0cf5dd7c0ed00cda0f77c8c1616bd83f9fc157fa6760d31"}, + {file = "kiwisolver-1.4.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b83dc6769ddbc57613280118fb4ce3cd08899cc3369f7d0e0fab518a7cf37fdb"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:111793b232842991be367ed828076b03d96202c19221b5ebab421ce8bcad016f"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:257af1622860e51b1a9d0ce387bf5c2c4f36a90594cb9514f55b074bcc787cfc"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:69b5637c3f316cab1ec1c9a12b8c5f4750a4c4b71af9157645bf32830e39c03a"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:782bb86f245ec18009890e7cb8d13a5ef54dcf2ebe18ed65f795e635a96a1c6a"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc978a80a0db3a66d25767b03688f1147a69e6237175c0f4ffffaaedf744055a"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:36dbbfd34838500a31f52c9786990d00150860e46cd5041386f217101350f0d3"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:eaa973f1e05131de5ff3569bbba7f5fd07ea0595d3870ed4a526d486fe57fa1b"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:a66f60f8d0c87ab7f59b6fb80e642ebb29fec354a4dfad687ca4092ae69d04f4"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:858416b7fb777a53f0c59ca08190ce24e9abbd3cffa18886a5781b8e3e26f65d"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:085940635c62697391baafaaeabdf3dd7a6c3643577dde337f4d66eba021b2b8"}, + {file = "kiwisolver-1.4.8-cp312-cp312-win_amd64.whl", hash = "sha256:01c3d31902c7db5fb6182832713d3b4122ad9317c2c5877d0539227d96bb2e50"}, + {file = "kiwisolver-1.4.8-cp312-cp312-win_arm64.whl", hash = "sha256:a3c44cb68861de93f0c4a8175fbaa691f0aa22550c331fefef02b618a9dcb476"}, + {file = "kiwisolver-1.4.8-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1c8ceb754339793c24aee1c9fb2485b5b1f5bb1c2c214ff13368431e51fc9a09"}, + {file = "kiwisolver-1.4.8-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:54a62808ac74b5e55a04a408cda6156f986cefbcf0ada13572696b507cc92fa1"}, + {file = "kiwisolver-1.4.8-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:68269e60ee4929893aad82666821aaacbd455284124817af45c11e50a4b42e3c"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:34d142fba9c464bc3bbfeff15c96eab0e7310343d6aefb62a79d51421fcc5f1b"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ddc373e0eef45b59197de815b1b28ef89ae3955e7722cc9710fb91cd77b7f47"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:77e6f57a20b9bd4e1e2cedda4d0b986ebd0216236f0106e55c28aea3d3d69b16"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08e77738ed7538f036cd1170cbed942ef749137b1311fa2bbe2a7fda2f6bf3cc"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a5ce1e481a74b44dd5e92ff03ea0cb371ae7a0268318e202be06c8f04f4f1246"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:fc2ace710ba7c1dfd1a3b42530b62b9ceed115f19a1656adefce7b1782a37794"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:3452046c37c7692bd52b0e752b87954ef86ee2224e624ef7ce6cb21e8c41cc1b"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:7e9a60b50fe8b2ec6f448fe8d81b07e40141bfced7f896309df271a0b92f80f3"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:918139571133f366e8362fa4a297aeba86c7816b7ecf0bc79168080e2bd79957"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e063ef9f89885a1d68dd8b2e18f5ead48653176d10a0e324e3b0030e3a69adeb"}, + {file = "kiwisolver-1.4.8-cp313-cp313-win_amd64.whl", hash = "sha256:a17b7c4f5b2c51bb68ed379defd608a03954a1845dfed7cc0117f1cc8a9b7fd2"}, + {file = "kiwisolver-1.4.8-cp313-cp313-win_arm64.whl", hash = "sha256:3cd3bc628b25f74aedc6d374d5babf0166a92ff1317f46267f12d2ed54bc1d30"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:370fd2df41660ed4e26b8c9d6bbcad668fbe2560462cba151a721d49e5b6628c"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:84a2f830d42707de1d191b9490ac186bf7997a9495d4e9072210a1296345f7dc"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:7a3ad337add5148cf51ce0b55642dc551c0b9d6248458a757f98796ca7348712"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7506488470f41169b86d8c9aeff587293f530a23a23a49d6bc64dab66bedc71e"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2f0121b07b356a22fb0414cec4666bbe36fd6d0d759db3d37228f496ed67c880"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d6d6bd87df62c27d4185de7c511c6248040afae67028a8a22012b010bc7ad062"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:291331973c64bb9cce50bbe871fb2e675c4331dab4f31abe89f175ad7679a4d7"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:893f5525bb92d3d735878ec00f781b2de998333659507d29ea4466208df37bed"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:b47a465040146981dc9db8647981b8cb96366fbc8d452b031e4f8fdffec3f26d"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:99cea8b9dd34ff80c521aef46a1dddb0dcc0283cf18bde6d756f1e6f31772165"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:151dffc4865e5fe6dafce5480fab84f950d14566c480c08a53c663a0020504b6"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:577facaa411c10421314598b50413aa1ebcf5126f704f1e5d72d7e4e9f020d90"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:be4816dc51c8a471749d664161b434912eee82f2ea66bd7628bd14583a833e85"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e7a019419b7b510f0f7c9dceff8c5eae2392037eae483a7f9162625233802b0a"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:286b18e86682fd2217a48fc6be6b0f20c1d0ed10958d8dc53453ad58d7be0bf8"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4191ee8dfd0be1c3666ccbac178c5a05d5f8d689bbe3fc92f3c4abec817f8fe0"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7cd2785b9391f2873ad46088ed7599a6a71e762e1ea33e87514b1a441ed1da1c"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c07b29089b7ba090b6f1a669f1411f27221c3662b3a1b7010e67b59bb5a6f10b"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:65ea09a5a3faadd59c2ce96dc7bf0f364986a315949dc6374f04396b0d60e09b"}, + {file = "kiwisolver-1.4.8.tar.gz", hash = "sha256:23d5f023bdc8c7e54eb65f03ca5d5bb25b601eac4d7f1a042888a1f45237987e"}, +] + +[[package]] +name = "langchain" +version = "0.3.26" +description = "Building applications with LLMs through composability" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "langchain-0.3.26-py3-none-any.whl", hash = "sha256:361bb2e61371024a8c473da9f9c55f4ee50f269c5ab43afdb2b1309cb7ac36cf"}, + {file = "langchain-0.3.26.tar.gz", hash = "sha256:8ff034ee0556d3e45eff1f1e96d0d745ced57858414dba7171c8ebdbeb5580c9"}, +] + +[package.dependencies] +async-timeout = {version = ">=4.0.0,<5.0.0", markers = "python_version < \"3.11\""} +langchain-core = ">=0.3.66,<1.0.0" +langchain-text-splitters = ">=0.3.8,<1.0.0" +langsmith = ">=0.1.17" +pydantic = ">=2.7.4,<3.0.0" +PyYAML = ">=5.3" +requests = ">=2,<3" +SQLAlchemy = ">=1.4,<3" + +[package.extras] +anthropic = ["langchain-anthropic"] +aws = ["langchain-aws"] +azure-ai = ["langchain-azure-ai"] +cohere = ["langchain-cohere"] +community = ["langchain-community"] +deepseek = ["langchain-deepseek"] +fireworks = ["langchain-fireworks"] +google-genai = ["langchain-google-genai"] +google-vertexai = ["langchain-google-vertexai"] +groq = ["langchain-groq"] +huggingface = ["langchain-huggingface"] +mistralai = ["langchain-mistralai"] +ollama = ["langchain-ollama"] +openai = ["langchain-openai"] +perplexity = ["langchain-perplexity"] +together = ["langchain-together"] +xai = ["langchain-xai"] + +[[package]] +name = "langchain-community" +version = "0.3.26" +description = "Community contributed LangChain integrations." +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "langchain_community-0.3.26-py3-none-any.whl", hash = "sha256:b25a553ee9d44a6c02092a440da6c561a9312c7013ffc25365ac3f8694edb53a"}, + {file = "langchain_community-0.3.26.tar.gz", hash = "sha256:49f9d71dc20bc42ccecd6875d02fafef1be0e211a0b22cecbd678f5fd3719487"}, +] + +[package.dependencies] +aiohttp = ">=3.8.3,<4.0.0" +dataclasses-json = ">=0.5.7,<0.7" +httpx-sse = ">=0.4.0,<1.0.0" +langchain = ">=0.3.26,<1.0.0" +langchain-core = ">=0.3.66,<1.0.0" +langsmith = ">=0.1.125" +numpy = {version = ">=1.26.2", markers = "python_version < \"3.13\""} +pydantic-settings = ">=2.4.0,<3.0.0" +PyYAML = ">=5.3" +requests = ">=2,<3" +SQLAlchemy = ">=1.4,<3" +tenacity = ">=8.1.0,<8.4.0 || >8.4.0,<10" + +[[package]] +name = "langchain-core" +version = "0.3.66" +description = "Building applications with LLMs through composability" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "langchain_core-0.3.66-py3-none-any.whl", hash = "sha256:65cd6c3659afa4f91de7aa681397a0c53ff9282425c281e53646dd7faf16099e"}, + {file = "langchain_core-0.3.66.tar.gz", hash = "sha256:350c92e792ec1401f4b740d759b95f297710a50de29e1be9fbfff8676ef62117"}, +] + +[package.dependencies] +jsonpatch = ">=1.33,<2.0" +langsmith = ">=0.3.45" +packaging = ">=23.2,<25" +pydantic = ">=2.7.4" +PyYAML = ">=5.3" +tenacity = ">=8.1.0,<8.4.0 || >8.4.0,<10.0.0" +typing-extensions = ">=4.7" + +[[package]] +name = "langchain-experimental" +version = "0.3.4" +description = "Building applications with LLMs through composability" +optional = false +python-versions = "<4.0,>=3.9" +groups = ["main"] +files = [ + {file = "langchain_experimental-0.3.4-py3-none-any.whl", hash = "sha256:2e587306aea36b60fa5e5fc05dc7281bee9f60a806f0bf9d30916e0ee096af80"}, + {file = "langchain_experimental-0.3.4.tar.gz", hash = "sha256:937c4259ee4a639c618d19acf0e2c5c2898ef127050346edc5655259aa281a21"}, +] + +[package.dependencies] +langchain-community = ">=0.3.0,<0.4.0" +langchain-core = ">=0.3.28,<0.4.0" + +[[package]] +name = "langchain-neo4j" +version = "0.4.0" +description = "An integration package connecting Neo4j and LangChain" +optional = false +python-versions = "<4.0,>=3.9" +groups = ["main"] +files = [ + {file = "langchain_neo4j-0.4.0-py3-none-any.whl", hash = "sha256:2760b5757e7a402884cf3419830217651df97fe4f44b3fec6c96b14b6d7fd18e"}, + {file = "langchain_neo4j-0.4.0.tar.gz", hash = "sha256:3f059a66411cec1062a2b8c44953a70d0fff9e123e9fb1d6b3f17a0bef6d6114"}, +] + +[package.dependencies] +langchain = ">=0.3.7,<0.4.0" +langchain-core = ">=0.3.8,<0.4.0" +neo4j = ">=5.25.0,<6.0.0" +neo4j-graphrag = ">=1.5.0,<2.0.0" + +[[package]] +name = "langchain-openai" +version = "0.3.24" +description = "An integration package connecting OpenAI and LangChain" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "langchain_openai-0.3.24-py3-none-any.whl", hash = "sha256:3db7bb2964f86636276a8f4bbed4514daf13865b80896e547ff7ea13ce98e593"}, + {file = "langchain_openai-0.3.24.tar.gz", hash = "sha256:cec1ab4ce7a8680af1eb11427b4384d2ceb46e9b20ff3f7beb0b0d83cab61a97"}, +] + +[package.dependencies] +langchain-core = ">=0.3.65,<1.0.0" +openai = ">=1.86.0,<2.0.0" +tiktoken = ">=0.7,<1" + +[[package]] +name = "langchain-text-splitters" +version = "0.3.8" +description = "LangChain text splitting utilities" +optional = false +python-versions = "<4.0,>=3.9" +groups = ["main"] +files = [ + {file = "langchain_text_splitters-0.3.8-py3-none-any.whl", hash = "sha256:e75cc0f4ae58dcf07d9f18776400cf8ade27fadd4ff6d264df6278bb302f6f02"}, + {file = "langchain_text_splitters-0.3.8.tar.gz", hash = "sha256:116d4b9f2a22dda357d0b79e30acf005c5518177971c66a9f1ab0edfdb0f912e"}, +] + +[package.dependencies] +langchain-core = ">=0.3.51,<1.0.0" + +[[package]] +name = "langsmith" +version = "0.4.1" +description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "langsmith-0.4.1-py3-none-any.whl", hash = "sha256:19c4c40bbb6735cb1136c453b2edcde265ca5ba1b108b7e0e3583ec4bda28625"}, + {file = "langsmith-0.4.1.tar.gz", hash = "sha256:ae8ec403fb2b9cabcfc3b0c54556d65555598c85879dac83b009576927f7eb1d"}, +] + +[package.dependencies] +httpx = ">=0.23.0,<1" +orjson = {version = ">=3.9.14,<4.0.0", markers = "platform_python_implementation != \"PyPy\""} +packaging = ">=23.2" +pydantic = {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""} +requests = ">=2,<3" +requests-toolbelt = ">=1.0.0,<2.0.0" +zstandard = ">=0.23.0,<0.24.0" + +[package.extras] +langsmith-pyo3 = ["langsmith-pyo3 (>=0.1.0rc2,<0.2.0)"] +openai-agents = ["openai-agents (>=0.0.3,<0.1)"] +otel = ["opentelemetry-api (>=1.30.0,<2.0.0)", "opentelemetry-exporter-otlp-proto-http (>=1.30.0,<2.0.0)", "opentelemetry-sdk (>=1.30.0,<2.0.0)"] +pytest = ["pytest (>=7.0.0)", "rich (>=13.9.4,<14.0.0)"] + +[[package]] +name = "lightning-utilities" +version = "0.14.3" +description = "Lightning toolbox for across the our ecosystem." +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "lightning_utilities-0.14.3-py3-none-any.whl", hash = "sha256:4ab9066aa36cd7b93a05713808901909e96cc3f187ea6fd3052b2fd91313b468"}, + {file = "lightning_utilities-0.14.3.tar.gz", hash = "sha256:37e2f83f273890052955a44054382c211a303012ee577619efbaa5df9e65e9f5"}, +] + +[package.dependencies] +packaging = ">=17.1" +setuptools = "*" +typing_extensions = "*" + +[package.extras] +cli = ["fire"] +docs = ["requests (>=2.0.0)"] +typing = ["fire", "mypy (>=1.0.0)", "types-setuptools"] + +[[package]] +name = "markupsafe" +version = "3.0.2" +description = "Safely add untrusted strings to HTML/XML markup." +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "MarkupSafe-3.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7e94c425039cde14257288fd61dcfb01963e658efbc0ff54f5306b06054700f8"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9e2d922824181480953426608b81967de705c3cef4d1af983af849d7bd619158"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:38a9ef736c01fccdd6600705b09dc574584b89bea478200c5fbf112a6b0d5579"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbcb445fa71794da8f178f0f6d66789a28d7319071af7a496d4d507ed566270d"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57cb5a3cf367aeb1d316576250f65edec5bb3be939e9247ae594b4bcbc317dfb"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:3809ede931876f5b2ec92eef964286840ed3540dadf803dd570c3b7e13141a3b"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:e07c3764494e3776c602c1e78e298937c3315ccc9043ead7e685b7f2b8d47b3c"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b424c77b206d63d500bcb69fa55ed8d0e6a3774056bdc4839fc9298a7edca171"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-win32.whl", hash = "sha256:fcabf5ff6eea076f859677f5f0b6b5c1a51e70a376b0579e0eadef8db48c6b50"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:6af100e168aa82a50e186c82875a5893c5597a0c1ccdb0d8b40240b1f28b969a"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9025b4018f3a1314059769c7bf15441064b2207cb3f065e6ea1e7359cb46db9d"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:93335ca3812df2f366e80509ae119189886b0f3c2b81325d39efdb84a1e2ae93"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2cb8438c3cbb25e220c2ab33bb226559e7afb3baec11c4f218ffa7308603c832"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a123e330ef0853c6e822384873bef7507557d8e4a082961e1defa947aa59ba84"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e084f686b92e5b83186b07e8a17fc09e38fff551f3602b249881fec658d3eca"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d8213e09c917a951de9d09ecee036d5c7d36cb6cb7dbaece4c71a60d79fb9798"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:5b02fb34468b6aaa40dfc198d813a641e3a63b98c2b05a16b9f80b7ec314185e"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0bff5e0ae4ef2e1ae4fdf2dfd5b76c75e5c2fa4132d05fc1b0dabcd20c7e28c4"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-win32.whl", hash = "sha256:6c89876f41da747c8d3677a2b540fb32ef5715f97b66eeb0c6b66f5e3ef6f59d"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:70a87b411535ccad5ef2f1df5136506a10775d267e197e4cf531ced10537bd6b"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:9778bd8ab0a994ebf6f84c2b949e65736d5575320a17ae8984a77fab08db94cf"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:846ade7b71e3536c4e56b386c2a47adf5741d2d8b94ec9dc3e92e5e1ee1e2225"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c99d261bd2d5f6b59325c92c73df481e05e57f19837bdca8413b9eac4bd8028"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e17c96c14e19278594aa4841ec148115f9c7615a47382ecb6b82bd8fea3ab0c8"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88416bd1e65dcea10bc7569faacb2c20ce071dd1f87539ca2ab364bf6231393c"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2181e67807fc2fa785d0592dc2d6206c019b9502410671cc905d132a92866557"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:52305740fe773d09cffb16f8ed0427942901f00adedac82ec8b67752f58a1b22"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ad10d3ded218f1039f11a75f8091880239651b52e9bb592ca27de44eed242a48"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-win32.whl", hash = "sha256:0f4ca02bea9a23221c0182836703cbf8930c5e9454bacce27e767509fa286a30"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:8e06879fc22a25ca47312fbe7c8264eb0b662f6db27cb2d3bbbc74b1df4b9b87"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba9527cdd4c926ed0760bc301f6728ef34d841f405abf9d4f959c478421e4efd"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f8b3d067f2e40fe93e1ccdd6b2e1d16c43140e76f02fb1319a05cf2b79d99430"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:569511d3b58c8791ab4c2e1285575265991e6d8f8700c7be0e88f86cb0672094"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3818cb119498c0678015754eba762e0d61e5b52d34c8b13d770f0719f7b1d79"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:cdb82a876c47801bb54a690c5ae105a46b392ac6099881cdfb9f6e95e4014c6a"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:cabc348d87e913db6ab4aa100f01b08f481097838bdddf7c7a84b7575b7309ca"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:444dcda765c8a838eaae23112db52f1efaf750daddb2d9ca300bcae1039adc5c"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-win32.whl", hash = "sha256:bcf3e58998965654fdaff38e58584d8937aa3096ab5354d493c77d1fdd66d7a1"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:e6a2a455bd412959b57a172ce6328d2dd1f01cb2135efda2e4576e8a23fa3b0f"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:b5a6b3ada725cea8a5e634536b1b01c30bcdcd7f9c6fff4151548d5bf6b3a36c"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:a904af0a6162c73e3edcb969eeeb53a63ceeb5d8cf642fade7d39e7963a22ddb"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa4e5faecf353ed117801a068ebab7b7e09ffb6e1d5e412dc852e0da018126c"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0ef13eaeee5b615fb07c9a7dadb38eac06a0608b41570d8ade51c56539e509d"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d16a81a06776313e817c951135cf7340a3e91e8c1ff2fac444cfd75fffa04afe"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:6381026f158fdb7c72a168278597a5e3a5222e83ea18f543112b2662a9b699c5"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:3d79d162e7be8f996986c064d1c7c817f6df3a77fe3d6859f6f9e7be4b8c213a"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:131a3c7689c85f5ad20f9f6fb1b866f402c445b220c19fe4308c0b147ccd2ad9"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-win32.whl", hash = "sha256:ba8062ed2cf21c07a9e295d5b8a2a5ce678b913b45fdf68c32d95d6c1291e0b6"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-win_amd64.whl", hash = "sha256:e444a31f8db13eb18ada366ab3cf45fd4b31e4db1236a4448f68778c1d1a5a2f"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:eaa0a10b7f72326f1372a713e73c3f739b524b3af41feb43e4921cb529f5929a"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:48032821bbdf20f5799ff537c7ac3d1fba0ba032cfc06194faffa8cda8b560ff"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a9d3f5f0901fdec14d8d2f66ef7d035f2157240a433441719ac9a3fba440b13"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88b49a3b9ff31e19998750c38e030fc7bb937398b1f78cfa599aaef92d693144"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cfad01eed2c2e0c01fd0ecd2ef42c492f7f93902e39a42fc9ee1692961443a29"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:1225beacc926f536dc82e45f8a4d68502949dc67eea90eab715dea3a21c1b5f0"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:3169b1eefae027567d1ce6ee7cae382c57fe26e82775f460f0b2778beaad66c0"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:eb7972a85c54febfb25b5c4b4f3af4dcc731994c7da0d8a0b4a6eb0640e1d178"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-win32.whl", hash = "sha256:8c4e8c3ce11e1f92f6536ff07154f9d49677ebaaafc32db9db4620bc11ed480f"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:6e296a513ca3d94054c2c881cc913116e90fd030ad1c656b3869762b754f5f8a"}, + {file = "markupsafe-3.0.2.tar.gz", hash = "sha256:ee55d3edf80167e48ea11a923c7386f4669df67d7994554387f84e7d8b0a2bf0"}, +] + +[[package]] +name = "marshmallow" +version = "3.26.1" +description = "A lightweight library for converting complex datatypes to and from native Python datatypes." +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "marshmallow-3.26.1-py3-none-any.whl", hash = "sha256:3350409f20a70a7e4e11a27661187b77cdcaeb20abca41c1454fe33636bea09c"}, + {file = "marshmallow-3.26.1.tar.gz", hash = "sha256:e6d8affb6cb61d39d26402096dc0aee12d5a26d490a121f118d2e81dc0719dc6"}, +] + +[package.dependencies] +packaging = ">=17.0" + +[package.extras] +dev = ["marshmallow[tests]", "pre-commit (>=3.5,<5.0)", "tox"] +docs = ["autodocsumm (==0.2.14)", "furo (==2024.8.6)", "sphinx (==8.1.3)", "sphinx-copybutton (==0.5.2)", "sphinx-issues (==5.0.0)", "sphinxext-opengraph (==0.9.1)"] +tests = ["pytest", "simplejson"] + +[[package]] +name = "matplotlib" +version = "3.2.2" +description = "Python plotting package" +optional = false +python-versions = ">=3.6" +groups = ["main"] +files = [ + {file = "matplotlib-3.2.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a47abc48c7b81fe6e636dde8a58e49b13d87d140e0f448213a4879f4a3f73345"}, + {file = "matplotlib-3.2.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:20bcd11efe194cd302bd0653cb025b8d16bcd80442359bfca8d49dc805f35ec8"}, + {file = "matplotlib-3.2.2-cp36-cp36m-win32.whl", hash = "sha256:2a6d64336b547e25730b6221e7aadfb01a391a065d43b5f51f0b9d7f673d2dd2"}, + {file = "matplotlib-3.2.2-cp36-cp36m-win_amd64.whl", hash = "sha256:4416825ebc9c1f135027a30e8d8aea0edcf45078ce767c7f7386737413cfb98f"}, + {file = "matplotlib-3.2.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:465c752278d27895e23f1379d6fcfa3a2990643b803c25e3bc16a10641d2346a"}, + {file = "matplotlib-3.2.2-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:81de040403a33bf3c68e9d4a40e26c8d24da00f7e3fadd845003b7e106785da7"}, + {file = "matplotlib-3.2.2-cp37-cp37m-win32.whl", hash = "sha256:006413f08ba5db1f5b1e0d6fbdc2ac9058b062ccf552f57182563a78579c34b4"}, + {file = "matplotlib-3.2.2-cp37-cp37m-win_amd64.whl", hash = "sha256:da06fa530591a141ffbe1712bbeec784734c3436b40c942d21652f305199b5d9"}, + {file = "matplotlib-3.2.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:894dd47c0a6ce38dc19bc87d1f7e2b0608310b2a18d1572291157450b05ce874"}, + {file = "matplotlib-3.2.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:1ab264770e7cf2cf4feb99f22c737066aef21ddf1ec402dc255450ac15eacb7b"}, + {file = "matplotlib-3.2.2-cp38-cp38-win32.whl", hash = "sha256:91c153f4318e3c67c035fd1185f5ea2613f15008b73b66985033033f6fe54bbd"}, + {file = "matplotlib-3.2.2-cp38-cp38-win_amd64.whl", hash = "sha256:a68e42e22f7fd190a532e4215e142276970c2d54040a0c46842fcb3db8b6ec5b"}, + {file = "matplotlib-3.2.2-cp39-cp39-win32.whl", hash = "sha256:647cf232ccf6265d2ba1ac4103e8c8b6ac7b03a40da3421234ffb03dda217f59"}, + {file = "matplotlib-3.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:31d32c83bb2b617377c6156f75e88b9ec2ded289e47ad4ff0f263dc1019d88b1"}, + {file = "matplotlib-3.2.2-pp36-pypy36_pp73-win32.whl", hash = "sha256:67065d938df34478451af62fbd0670d2b51c4d859fb66673064eb5de8660dd7c"}, + {file = "matplotlib-3.2.2.tar.gz", hash = "sha256:3d77a6630d093d74cbbfebaa0571d00790966be1ed204e4a8239f5cbd6835c5d"}, +] + +[package.dependencies] +cycler = ">=0.10" +kiwisolver = ">=1.0.1" +numpy = ">=1.11" +pyparsing = ">=2.0.1,<2.0.4 || >2.0.4,<2.1.2 || >2.1.2,<2.1.6 || >2.1.6" +python-dateutil = ">=2.1" + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "mpmath" +version = "1.3.0" +description = "Python library for arbitrary-precision floating-point arithmetic" +optional = false +python-versions = "*" +groups = ["main"] +files = [ + {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, + {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, +] + +[package.extras] +develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"] +docs = ["sphinx"] +gmpy = ["gmpy2 (>=2.1.0a4) ; platform_python_implementation != \"PyPy\""] +tests = ["pytest (>=4.6)"] + +[[package]] +name = "multidict" +version = "6.5.0" +description = "multidict implementation" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "multidict-6.5.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2e118a202904623b1d2606d1c8614e14c9444b59d64454b0c355044058066469"}, + {file = "multidict-6.5.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a42995bdcaff4e22cb1280ae7752c3ed3fbb398090c6991a2797a4a0e5ed16a9"}, + {file = "multidict-6.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2261b538145723ca776e55208640fffd7ee78184d223f37c2b40b9edfe0e818a"}, + {file = "multidict-6.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e5b19f8cd67235fab3e195ca389490415d9fef5a315b1fa6f332925dc924262"}, + {file = "multidict-6.5.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:177b081e4dec67c3320b16b3aa0babc178bbf758553085669382c7ec711e1ec8"}, + {file = "multidict-6.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4d30a2cc106a7d116b52ee046207614db42380b62e6b1dd2a50eba47c5ca5eb1"}, + {file = "multidict-6.5.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a72933bc308d7a64de37f0d51795dbeaceebdfb75454f89035cdfc6a74cfd129"}, + {file = "multidict-6.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96d109e663d032280ef8ef62b50924b2e887d5ddf19e301844a6cb7e91a172a6"}, + {file = "multidict-6.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b555329c9894332401f03b9a87016f0b707b6fccd4706793ec43b4a639e75869"}, + {file = "multidict-6.5.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:6994bad9d471ef2156f2b6850b51e20ee409c6b9deebc0e57be096be9faffdce"}, + {file = "multidict-6.5.0-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:b15f817276c96cde9060569023808eec966bd8da56a97e6aa8116f34ddab6534"}, + {file = "multidict-6.5.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:b4bf507c991db535a935b2127cf057a58dbc688c9f309c72080795c63e796f58"}, + {file = "multidict-6.5.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:60c3f8f13d443426c55f88cf3172547bbc600a86d57fd565458b9259239a6737"}, + {file = "multidict-6.5.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:a10227168a24420c158747fc201d4279aa9af1671f287371597e2b4f2ff21879"}, + {file = "multidict-6.5.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:e3b1425fe54ccfde66b8cfb25d02be34d5dfd2261a71561ffd887ef4088b4b69"}, + {file = "multidict-6.5.0-cp310-cp310-win32.whl", hash = "sha256:b4e47ef51237841d1087e1e1548071a6ef22e27ed0400c272174fa585277c4b4"}, + {file = "multidict-6.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:63b3b24fadc7067282c88fae5b2f366d5b3a7c15c021c2838de8c65a50eeefb4"}, + {file = "multidict-6.5.0-cp310-cp310-win_arm64.whl", hash = "sha256:8b2d61afbafc679b7eaf08e9de4fa5d38bd5dc7a9c0a577c9f9588fb49f02dbb"}, + {file = "multidict-6.5.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8b4bf6bb15a05796a07a248084e3e46e032860c899c7a9b981030e61368dba95"}, + {file = "multidict-6.5.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:46bb05d50219655c42a4b8fcda9c7ee658a09adbb719c48e65a20284e36328ea"}, + {file = "multidict-6.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:54f524d73f4d54e87e03c98f6af601af4777e4668a52b1bd2ae0a4d6fc7b392b"}, + {file = "multidict-6.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:529b03600466480ecc502000d62e54f185a884ed4570dee90d9a273ee80e37b5"}, + {file = "multidict-6.5.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:69ad681ad7c93a41ee7005cc83a144b5b34a3838bcf7261e2b5356057b0f78de"}, + {file = "multidict-6.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3fe9fada8bc0839466b09fa3f6894f003137942984843ec0c3848846329a36ae"}, + {file = "multidict-6.5.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f94c6ea6405fcf81baef1e459b209a78cda5442e61b5b7a57ede39d99b5204a0"}, + {file = "multidict-6.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84ca75ad8a39ed75f079a8931435a5b51ee4c45d9b32e1740f99969a5d1cc2ee"}, + {file = "multidict-6.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:be4c08f3a2a6cc42b414496017928d95898964fed84b1b2dace0c9ee763061f9"}, + {file = "multidict-6.5.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:046a7540cfbb4d5dc846a1fd9843f3ba980c6523f2e0c5b8622b4a5c94138ae6"}, + {file = "multidict-6.5.0-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:64306121171d988af77d74be0d8c73ee1a69cf6f96aea7fa6030c88f32a152dd"}, + {file = "multidict-6.5.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:b4ac1dd5eb0ecf6f7351d5a9137f30a83f7182209c5d37f61614dfdce5714853"}, + {file = "multidict-6.5.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:bab4a8337235365f4111a7011a1f028826ca683834ebd12de4b85e2844359c36"}, + {file = "multidict-6.5.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:a05b5604c5a75df14a63eeeca598d11b2c3745b9008539b70826ea044063a572"}, + {file = "multidict-6.5.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:67c4a640952371c9ca65b6a710598be246ef3be5ca83ed38c16a7660d3980877"}, + {file = "multidict-6.5.0-cp311-cp311-win32.whl", hash = "sha256:fdeae096ca36c12d8aca2640b8407a9d94e961372c68435bef14e31cce726138"}, + {file = "multidict-6.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:e2977ef8b7ce27723ee8c610d1bd1765da4f3fbe5a64f9bf1fd3b4770e31fbc0"}, + {file = "multidict-6.5.0-cp311-cp311-win_arm64.whl", hash = "sha256:82d0cf0ea49bae43d9e8c3851e21954eff716259ff42da401b668744d1760bcb"}, + {file = "multidict-6.5.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:1bb986c8ea9d49947bc325c51eced1ada6d8d9b4c5b15fd3fcdc3c93edef5a74"}, + {file = "multidict-6.5.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:03c0923da300120830fc467e23805d63bbb4e98b94032bd863bc7797ea5fa653"}, + {file = "multidict-6.5.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4c78d5ec00fdd35c91680ab5cf58368faad4bd1a8721f87127326270248de9bc"}, + {file = "multidict-6.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aadc3cb78be90a887f8f6b73945b840da44b4a483d1c9750459ae69687940c97"}, + {file = "multidict-6.5.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:5b02e1ca495d71e07e652e4cef91adae3bf7ae4493507a263f56e617de65dafc"}, + {file = "multidict-6.5.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7fe92a62326eef351668eec4e2dfc494927764a0840a1895cff16707fceffcd3"}, + {file = "multidict-6.5.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7673ee4f63879ecd526488deb1989041abcb101b2d30a9165e1e90c489f3f7fb"}, + {file = "multidict-6.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa097ae2a29f573de7e2d86620cbdda5676d27772d4ed2669cfa9961a0d73955"}, + {file = "multidict-6.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:300da0fa4f8457d9c4bd579695496116563409e676ac79b5e4dca18e49d1c308"}, + {file = "multidict-6.5.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:9a19bd108c35877b57393243d392d024cfbfdefe759fd137abb98f6fc910b64c"}, + {file = "multidict-6.5.0-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:0f32a1777465a35c35ddbbd7fc1293077938a69402fcc59e40b2846d04a120dd"}, + {file = "multidict-6.5.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:9cc1e10c14ce8112d1e6d8971fe3cdbe13e314f68bea0e727429249d4a6ce164"}, + {file = "multidict-6.5.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:e95c5e07a06594bdc288117ca90e89156aee8cb2d7c330b920d9c3dd19c05414"}, + {file = "multidict-6.5.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:40ff26f58323795f5cd2855e2718a1720a1123fb90df4553426f0efd76135462"}, + {file = "multidict-6.5.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:76803a29fd71869a8b59c2118c9dcfb3b8f9c8723e2cce6baeb20705459505cf"}, + {file = "multidict-6.5.0-cp312-cp312-win32.whl", hash = "sha256:df7ecbc65a53a2ce1b3a0c82e6ad1a43dcfe7c6137733f9176a92516b9f5b851"}, + {file = "multidict-6.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:0ec1c3fbbb0b655a6540bce408f48b9a7474fd94ed657dcd2e890671fefa7743"}, + {file = "multidict-6.5.0-cp312-cp312-win_arm64.whl", hash = "sha256:2d24a00d34808b22c1f15902899b9d82d0faeca9f56281641c791d8605eacd35"}, + {file = "multidict-6.5.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:53d92df1752df67a928fa7f884aa51edae6f1cf00eeb38cbcf318cf841c17456"}, + {file = "multidict-6.5.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:680210de2c38eef17ce46b8df8bf2c1ece489261a14a6e43c997d49843a27c99"}, + {file = "multidict-6.5.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:e279259bcb936732bfa1a8eec82b5d2352b3df69d2fa90d25808cfc403cee90a"}, + {file = "multidict-6.5.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1c185fc1069781e3fc8b622c4331fb3b433979850392daa5efbb97f7f9959bb"}, + {file = "multidict-6.5.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:6bb5f65ff91daf19ce97f48f63585e51595539a8a523258b34f7cef2ec7e0617"}, + {file = "multidict-6.5.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d8646b4259450c59b9286db280dd57745897897284f6308edbdf437166d93855"}, + {file = "multidict-6.5.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d245973d4ecc04eea0a8e5ebec7882cf515480036e1b48e65dffcfbdf86d00be"}, + {file = "multidict-6.5.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a133e7ddc9bc7fb053733d0ff697ce78c7bf39b5aec4ac12857b6116324c8d75"}, + {file = "multidict-6.5.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:80d696fa38d738fcebfd53eec4d2e3aeb86a67679fd5e53c325756682f152826"}, + {file = "multidict-6.5.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:20d30c9410ac3908abbaa52ee5967a754c62142043cf2ba091e39681bd51d21a"}, + {file = "multidict-6.5.0-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:6c65068cc026f217e815fa519d8e959a7188e94ec163ffa029c94ca3ef9d4a73"}, + {file = "multidict-6.5.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:e355ac668a8c3e49c2ca8daa4c92f0ad5b705d26da3d5af6f7d971e46c096da7"}, + {file = "multidict-6.5.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:08db204213d0375a91a381cae0677ab95dd8c67a465eb370549daf6dbbf8ba10"}, + {file = "multidict-6.5.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:ffa58e3e215af8f6536dc837a990e456129857bb6fd546b3991be470abd9597a"}, + {file = "multidict-6.5.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3e86eb90015c6f21658dbd257bb8e6aa18bdb365b92dd1fba27ec04e58cdc31b"}, + {file = "multidict-6.5.0-cp313-cp313-win32.whl", hash = "sha256:f34a90fbd9959d0f857323bd3c52b3e6011ed48f78d7d7b9e04980b8a41da3af"}, + {file = "multidict-6.5.0-cp313-cp313-win_amd64.whl", hash = "sha256:fcb2aa79ac6aef8d5b709bbfc2fdb1d75210ba43038d70fbb595b35af470ce06"}, + {file = "multidict-6.5.0-cp313-cp313-win_arm64.whl", hash = "sha256:6dcee5e7e92060b4bb9bb6f01efcbb78c13d0e17d9bc6eec71660dd71dc7b0c2"}, + {file = "multidict-6.5.0-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:cbbc88abea2388fde41dd574159dec2cda005cb61aa84950828610cb5010f21a"}, + {file = "multidict-6.5.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:70b599f70ae6536e5976364d3c3cf36f40334708bd6cebdd1e2438395d5e7676"}, + {file = "multidict-6.5.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:828bab777aa8d29d59700018178061854e3a47727e0611cb9bec579d3882de3b"}, + {file = "multidict-6.5.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a9695fc1462f17b131c111cf0856a22ff154b0480f86f539d24b2778571ff94d"}, + {file = "multidict-6.5.0-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:0b5ac6ebaf5d9814b15f399337ebc6d3a7f4ce9331edd404e76c49a01620b68d"}, + {file = "multidict-6.5.0-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:84a51e3baa77ded07be4766a9e41d977987b97e49884d4c94f6d30ab6acaee14"}, + {file = "multidict-6.5.0-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8de67f79314d24179e9b1869ed15e88d6ba5452a73fc9891ac142e0ee018b5d6"}, + {file = "multidict-6.5.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17f78a52c214481d30550ec18208e287dfc4736f0c0148208334b105fd9e0887"}, + {file = "multidict-6.5.0-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2966d0099cb2e2039f9b0e73e7fd5eb9c85805681aa2a7f867f9d95b35356921"}, + {file = "multidict-6.5.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:86fb42ed5ed1971c642cc52acc82491af97567534a8e381a8d50c02169c4e684"}, + {file = "multidict-6.5.0-cp313-cp313t-musllinux_1_2_armv7l.whl", hash = "sha256:4e990cbcb6382f9eae4ec720bcac6a1351509e6fc4a5bb70e4984b27973934e6"}, + {file = "multidict-6.5.0-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:d99a59d64bb1f7f2117bec837d9e534c5aeb5dcedf4c2b16b9753ed28fdc20a3"}, + {file = "multidict-6.5.0-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:e8ef15cc97c9890212e1caf90f0d63f6560e1e101cf83aeaf63a57556689fb34"}, + {file = "multidict-6.5.0-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:b8a09aec921b34bd8b9f842f0bcfd76c6a8c033dc5773511e15f2d517e7e1068"}, + {file = "multidict-6.5.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ff07b504c23b67f2044533244c230808a1258b3493aaf3ea2a0785f70b7be461"}, + {file = "multidict-6.5.0-cp313-cp313t-win32.whl", hash = "sha256:9232a117341e7e979d210e41c04e18f1dc3a1d251268df6c818f5334301274e1"}, + {file = "multidict-6.5.0-cp313-cp313t-win_amd64.whl", hash = "sha256:44cb5c53fb2d4cbcee70a768d796052b75d89b827643788a75ea68189f0980a1"}, + {file = "multidict-6.5.0-cp313-cp313t-win_arm64.whl", hash = "sha256:51d33fafa82640c0217391d4ce895d32b7e84a832b8aee0dcc1b04d8981ec7f4"}, + {file = "multidict-6.5.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c0078358470da8dc90c37456f4a9cde9f86200949a048d53682b9cd21e5bbf2b"}, + {file = "multidict-6.5.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5cc7968b7d1bf8b973c307d38aa3a2f2c783f149bcac855944804252f1df5105"}, + {file = "multidict-6.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0ad73a60e11aa92f1f2c9330efdeaac4531b719fc568eb8d312fd4112f34cc18"}, + {file = "multidict-6.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3233f21abdcd180b2624eb6988a1e1287210e99bca986d8320afca5005d85844"}, + {file = "multidict-6.5.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:bee5c0b79fca78fd2ab644ca4dc831ecf793eb6830b9f542ee5ed2c91bc35a0e"}, + {file = "multidict-6.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e053a4d690f4352ce46583080fefade9a903ce0fa9d820db1be80bdb9304fa2f"}, + {file = "multidict-6.5.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:42bdee30424c1f4dcda96e07ac60e2a4ede8a89f8ae2f48b5e4ccc060f294c52"}, + {file = "multidict-6.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58b2ded1a7982cf7b8322b0645713a0086b2b3cf5bb9f7c01edfc1a9f98d20dc"}, + {file = "multidict-6.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3f805b8b951d1fadc5bc18c3c93e509608ac5a883045ee33bc22e28806847c20"}, + {file = "multidict-6.5.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2540395b63723da748f850568357a39cd8d8d4403ca9439f9fcdad6dd423c780"}, + {file = "multidict-6.5.0-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:c96aedff25f4e47b6697ba048b2c278f7caa6df82c7c3f02e077bcc8d47b4b76"}, + {file = "multidict-6.5.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e80de5ad995de210fd02a65c2350649b8321d09bd2e44717eaefb0f5814503e8"}, + {file = "multidict-6.5.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:6cb9bcedd9391b313e5ec2fb3aa07c03e050550e7b9e4646c076d5c24ba01532"}, + {file = "multidict-6.5.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:a7d130ed7a112e25ab47309962ecafae07d073316f9d158bc7b3936b52b80121"}, + {file = "multidict-6.5.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:95750a9a9741cd1855d1b6cb4c6031ae01c01ad38d280217b64bfae986d39d56"}, + {file = "multidict-6.5.0-cp39-cp39-win32.whl", hash = "sha256:7f78caf409914f108f4212b53a9033abfdc2cbab0647e9ac3a25bb0f21ab43d2"}, + {file = "multidict-6.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:220c74009507e847a3a6fc5375875f2a2e05bd9ce28cf607be0e8c94600f4472"}, + {file = "multidict-6.5.0-cp39-cp39-win_arm64.whl", hash = "sha256:d98f4ac9c1ede7e9d04076e2e6d967e15df0079a6381b297270f6bcab661195e"}, + {file = "multidict-6.5.0-py3-none-any.whl", hash = "sha256:5634b35f225977605385f56153bd95a7133faffc0ffe12ad26e10517537e8dfc"}, + {file = "multidict-6.5.0.tar.gz", hash = "sha256:942bd8002492ba819426a8d7aefde3189c1b87099cdf18aaaefefcf7f3f7b6d2"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + +[[package]] +name = "mypy-extensions" +version = "1.1.0" +description = "Type system extensions for programs checked with the mypy type checker." +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "mypy_extensions-1.1.0-py3-none-any.whl", hash = "sha256:1be4cccdb0f2482337c4743e60421de3a356cd97508abadd57d47403e94f5505"}, + {file = "mypy_extensions-1.1.0.tar.gz", hash = "sha256:52e68efc3284861e772bbcd66823fde5ae21fd2fdb51c62a211403730b916558"}, +] + +[[package]] +name = "neo4j" +version = "5.28.1" +description = "Neo4j Bolt driver for Python" +optional = false +python-versions = ">=3.7" +groups = ["main"] +files = [ + {file = "neo4j-5.28.1-py3-none-any.whl", hash = "sha256:6755ef9e5f4e14b403aef1138fb6315b120631a0075c138b5ddb2a06b87b09fd"}, + {file = "neo4j-5.28.1.tar.gz", hash = "sha256:ae8e37a1d895099062c75bc359b2cce62099baac7be768d0eba7180c1298e214"}, +] + +[package.dependencies] +pytz = "*" + +[package.extras] +numpy = ["numpy (>=1.7.0,<3.0.0)"] +pandas = ["numpy (>=1.7.0,<3.0.0)", "pandas (>=1.1.0,<3.0.0)"] +pyarrow = ["pyarrow (>=1.0.0)"] + +[[package]] +name = "neo4j-graphrag" +version = "1.7.0" +description = "Python package to allow easy integration to Neo4j's GraphRAG features" +optional = false +python-versions = "<3.13,>=3.9.0" +groups = ["main"] +files = [ + {file = "neo4j_graphrag-1.7.0-py3-none-any.whl", hash = "sha256:29a854f2f1e268f043446cdd387c72ee954b87726329ef6479c59ed7b9cf0751"}, + {file = "neo4j_graphrag-1.7.0.tar.gz", hash = "sha256:c6c1f730e680d8af3ff3e1ee6086c465c15dd3245157e6c40606ac3ddae7d4f0"}, +] + +[package.dependencies] +fsspec = ">=2024.9.0,<2025.0.0" +json-repair = ">=0.39.1,<0.40.0" +neo4j = ">=5.17.0,<6.0.0" +ollama = {version = ">=0.4.4,<0.5.0", optional = true, markers = "extra == \"ollama\""} +pydantic = ">=2.6.3,<3.0.0" +pypdf = ">=5.1.0,<6.0.0" +pyyaml = ">=6.0.2,<7.0.0" +types-pyyaml = ">=6.0.12.20240917,<7.0.0.0" + +[package.extras] +anthropic = ["anthropic (>=0.49.0,<0.50.0)"] +cohere = ["cohere (>=5.9.0,<6.0.0)"] +experimental = ["langchain-text-splitters (>=0.3.0,<0.4.0)", "llama-index (>=0.12.0,<0.13.0)", "neo4j-viz (>=0.2.2,<0.3.0)"] +fuzzy-matching = ["rapidfuzz (>=3.12.2,<4.0.0)"] +google = ["google-cloud-aiplatform (>=1.66.0,<2.0.0)"] +kg-creation-tools = ["neo4j-viz (>=0.2.2,<0.3.0)"] +mistralai = ["mistralai (>=1.0.3,<2.0.0)"] +nlp = ["spacy (==3.8.3)"] +ollama = ["ollama (>=0.4.4,<0.5.0)"] +openai = ["openai (>=1.51.1,<2.0.0)"] +pinecone = ["pinecone-client (>=4.1.0,<5.0.0)"] +qdrant = ["qdrant-client (>=1.11.3,<2.0.0)"] +sentence-transformers = ["sentence-transformers (>=3.0.0,<4.0.0)"] +weaviate = ["weaviate-client (>=4.6.1,<5.0.0)"] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +groups = ["main"] +files = [ + {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, + {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, +] + +[[package]] +name = "networkx" +version = "3.4.2" +description = "Python package for creating and manipulating graphs and networks" +optional = false +python-versions = ">=3.10" +groups = ["main"] +files = [ + {file = "networkx-3.4.2-py3-none-any.whl", hash = "sha256:df5d4365b724cf81b8c6a7312509d0c22386097011ad1abe274afd5e9d3bbc5f"}, + {file = "networkx-3.4.2.tar.gz", hash = "sha256:307c3669428c5362aab27c8a1260aa8f47c4e91d3891f48be0141738d8d053e1"}, +] + +[package.extras] +default = ["matplotlib (>=3.7)", "numpy (>=1.24)", "pandas (>=2.0)", "scipy (>=1.10,!=1.11.0,!=1.11.1)"] +developer = ["changelist (==0.5)", "mypy (>=1.1)", "pre-commit (>=3.2)", "rtoml"] +doc = ["intersphinx-registry", "myst-nb (>=1.1)", "numpydoc (>=1.8.0)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.15)", "sphinx (>=7.3)", "sphinx-gallery (>=0.16)", "texext (>=0.6.7)"] +example = ["cairocffi (>=1.7)", "contextily (>=1.6)", "igraph (>=0.11)", "momepy (>=0.7.2)", "osmnx (>=1.9)", "scikit-learn (>=1.5)", "seaborn (>=0.13)"] +extra = ["lxml (>=4.6)", "pydot (>=3.0.1)", "pygraphviz (>=1.14)", "sympy (>=1.10)"] +test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"] + +[[package]] +name = "numpy" +version = "1.26.4" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0"}, + {file = "numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a"}, + {file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4"}, + {file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f"}, + {file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a"}, + {file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2"}, + {file = "numpy-1.26.4-cp310-cp310-win32.whl", hash = "sha256:bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07"}, + {file = "numpy-1.26.4-cp310-cp310-win_amd64.whl", hash = "sha256:b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5"}, + {file = "numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71"}, + {file = "numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef"}, + {file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e"}, + {file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5"}, + {file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a"}, + {file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a"}, + {file = "numpy-1.26.4-cp311-cp311-win32.whl", hash = "sha256:1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20"}, + {file = "numpy-1.26.4-cp311-cp311-win_amd64.whl", hash = "sha256:cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2"}, + {file = "numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218"}, + {file = "numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b"}, + {file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b"}, + {file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed"}, + {file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a"}, + {file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0"}, + {file = "numpy-1.26.4-cp312-cp312-win32.whl", hash = "sha256:50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110"}, + {file = "numpy-1.26.4-cp312-cp312-win_amd64.whl", hash = "sha256:08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818"}, + {file = "numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c"}, + {file = "numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be"}, + {file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764"}, + {file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3"}, + {file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd"}, + {file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c"}, + {file = "numpy-1.26.4-cp39-cp39-win32.whl", hash = "sha256:a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6"}, + {file = "numpy-1.26.4-cp39-cp39-win_amd64.whl", hash = "sha256:3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea"}, + {file = "numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30"}, + {file = "numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c"}, + {file = "numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0"}, + {file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"}, +] + +[[package]] +name = "nvidia-cublas-cu12" +version = "12.1.3.1" +description = "CUBLAS native runtime libraries" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728"}, + {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-win_amd64.whl", hash = "sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906"}, +] + +[[package]] +name = "nvidia-cuda-cupti-cu12" +version = "12.1.105" +description = "CUDA profiling tools runtime libs." +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e"}, + {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4"}, +] + +[[package]] +name = "nvidia-cuda-nvrtc-cu12" +version = "12.1.105" +description = "NVRTC native runtime libraries" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2"}, + {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed"}, +] + +[[package]] +name = "nvidia-cuda-runtime-cu12" +version = "12.1.105" +description = "CUDA Runtime native Libraries" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40"}, + {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344"}, +] + +[[package]] +name = "nvidia-cudnn-cu12" +version = "8.9.2.26" +description = "cuDNN runtime libraries" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl", hash = "sha256:5ccb288774fdfb07a7e7025ffec286971c06d8d7b4fb162525334616d7629ff9"}, +] + +[package.dependencies] +nvidia-cublas-cu12 = "*" + +[[package]] +name = "nvidia-cufft-cu12" +version = "11.0.2.54" +description = "CUFFT native runtime libraries" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl", hash = "sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56"}, + {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-win_amd64.whl", hash = "sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253"}, +] + +[[package]] +name = "nvidia-curand-cu12" +version = "10.3.2.106" +description = "CURAND native runtime libraries" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0"}, + {file = "nvidia_curand_cu12-10.3.2.106-py3-none-win_amd64.whl", hash = "sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a"}, +] + +[[package]] +name = "nvidia-cusolver-cu12" +version = "11.4.5.107" +description = "CUDA solver native runtime libraries" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd"}, + {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-win_amd64.whl", hash = "sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5"}, +] + +[package.dependencies] +nvidia-cublas-cu12 = "*" +nvidia-cusparse-cu12 = "*" +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-cusparse-cu12" +version = "12.1.0.106" +description = "CUSPARSE native runtime libraries" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c"}, + {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-win_amd64.whl", hash = "sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a"}, +] + +[package.dependencies] +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-nccl-cu12" +version = "2.18.1" +description = "NVIDIA Collective Communication Library (NCCL) Runtime" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_nccl_cu12-2.18.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:1a6c4acefcbebfa6de320f412bf7866de856e786e0462326ba1bac40de0b5e71"}, +] + +[[package]] +name = "nvidia-nvjitlink-cu12" +version = "12.9.86" +description = "Nvidia JIT LTO Library" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_nvjitlink_cu12-12.9.86-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl", hash = "sha256:e3f1171dbdc83c5932a45f0f4c99180a70de9bd2718c1ab77d14104f6d7147f9"}, + {file = "nvidia_nvjitlink_cu12-12.9.86-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:994a05ef08ef4b0b299829cde613a424382aff7efb08a7172c1fa616cc3af2ca"}, + {file = "nvidia_nvjitlink_cu12-12.9.86-py3-none-win_amd64.whl", hash = "sha256:cc6fcec260ca843c10e34c936921a1c426b351753587fdd638e8cff7b16bb9db"}, +] + +[[package]] +name = "nvidia-nvtx-cu12" +version = "12.1.105" +description = "NVIDIA Tools Extension" +optional = false +python-versions = ">=3" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5"}, + {file = "nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82"}, +] + +[[package]] +name = "ollama" +version = "0.4.9" +description = "The official Python client for Ollama." +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "ollama-0.4.9-py3-none-any.whl", hash = "sha256:18c8c85358c54d7f73d6a66cda495b0e3ba99fdb88f824ae470d740fbb211a50"}, + {file = "ollama-0.4.9.tar.gz", hash = "sha256:5266d4d29b5089a01489872b8e8f980f018bccbdd1082b3903448af1d5615ce7"}, +] + +[package.dependencies] +httpx = ">=0.27" +pydantic = ">=2.9" + +[[package]] +name = "openai" +version = "1.90.0" +description = "The official Python library for the openai API" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "openai-1.90.0-py3-none-any.whl", hash = "sha256:e5dcb5498ea6b42fec47546d10f1bcc05fb854219a7d953a5ba766718b212a02"}, + {file = "openai-1.90.0.tar.gz", hash = "sha256:9771982cdd5b6631af68c6a603da72ed44cd2caf73b49f717a72b71374bc565b"}, +] + +[package.dependencies] +anyio = ">=3.5.0,<5" +distro = ">=1.7.0,<2" +httpx = ">=0.23.0,<1" +jiter = ">=0.4.0,<1" +pydantic = ">=1.9.0,<3" +sniffio = "*" +tqdm = ">4" +typing-extensions = ">=4.11,<5" + +[package.extras] +aiohttp = ["aiohttp", "httpx-aiohttp (>=0.1.6)"] +datalib = ["numpy (>=1)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)"] +realtime = ["websockets (>=13,<16)"] +voice-helpers = ["numpy (>=2.0.2)", "sounddevice (>=0.5.1)"] + +[[package]] +name = "orjson" +version = "3.10.18" +description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy" +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "platform_python_implementation != \"PyPy\"" +files = [ + {file = "orjson-3.10.18-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:a45e5d68066b408e4bc383b6e4ef05e717c65219a9e1390abc6155a520cac402"}, + {file = "orjson-3.10.18-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:be3b9b143e8b9db05368b13b04c84d37544ec85bb97237b3a923f076265ec89c"}, + {file = "orjson-3.10.18-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9b0aa09745e2c9b3bf779b096fa71d1cc2d801a604ef6dd79c8b1bfef52b2f92"}, + {file = "orjson-3.10.18-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:53a245c104d2792e65c8d225158f2b8262749ffe64bc7755b00024757d957a13"}, + {file = "orjson-3.10.18-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f9495ab2611b7f8a0a8a505bcb0f0cbdb5469caafe17b0e404c3c746f9900469"}, + {file = "orjson-3.10.18-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:73be1cbcebadeabdbc468f82b087df435843c809cd079a565fb16f0f3b23238f"}, + {file = "orjson-3.10.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe8936ee2679e38903df158037a2f1c108129dee218975122e37847fb1d4ac68"}, + {file = "orjson-3.10.18-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:7115fcbc8525c74e4c2b608129bef740198e9a120ae46184dac7683191042056"}, + {file = "orjson-3.10.18-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:771474ad34c66bc4d1c01f645f150048030694ea5b2709b87d3bda273ffe505d"}, + {file = "orjson-3.10.18-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:7c14047dbbea52886dd87169f21939af5d55143dad22d10db6a7514f058156a8"}, + {file = "orjson-3.10.18-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:641481b73baec8db14fdf58f8967e52dc8bda1f2aba3aa5f5c1b07ed6df50b7f"}, + {file = "orjson-3.10.18-cp310-cp310-win32.whl", hash = "sha256:607eb3ae0909d47280c1fc657c4284c34b785bae371d007595633f4b1a2bbe06"}, + {file = "orjson-3.10.18-cp310-cp310-win_amd64.whl", hash = "sha256:8770432524ce0eca50b7efc2a9a5f486ee0113a5fbb4231526d414e6254eba92"}, + {file = "orjson-3.10.18-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:e0a183ac3b8e40471e8d843105da6fbe7c070faab023be3b08188ee3f85719b8"}, + {file = "orjson-3.10.18-cp311-cp311-macosx_15_0_arm64.whl", hash = "sha256:5ef7c164d9174362f85238d0cd4afdeeb89d9e523e4651add6a5d458d6f7d42d"}, + {file = "orjson-3.10.18-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:afd14c5d99cdc7bf93f22b12ec3b294931518aa019e2a147e8aa2f31fd3240f7"}, + {file = "orjson-3.10.18-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7b672502323b6cd133c4af6b79e3bea36bad2d16bca6c1f645903fce83909a7a"}, + {file = "orjson-3.10.18-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:51f8c63be6e070ec894c629186b1c0fe798662b8687f3d9fdfa5e401c6bd7679"}, + {file = "orjson-3.10.18-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3f9478ade5313d724e0495d167083c6f3be0dd2f1c9c8a38db9a9e912cdaf947"}, + {file = "orjson-3.10.18-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:187aefa562300a9d382b4b4eb9694806e5848b0cedf52037bb5c228c61bb66d4"}, + {file = "orjson-3.10.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9da552683bc9da222379c7a01779bddd0ad39dd699dd6300abaf43eadee38334"}, + {file = "orjson-3.10.18-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e450885f7b47a0231979d9c49b567ed1c4e9f69240804621be87c40bc9d3cf17"}, + {file = "orjson-3.10.18-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:5e3c9cc2ba324187cd06287ca24f65528f16dfc80add48dc99fa6c836bb3137e"}, + {file = "orjson-3.10.18-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:50ce016233ac4bfd843ac5471e232b865271d7d9d44cf9d33773bcd883ce442b"}, + {file = "orjson-3.10.18-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b3ceff74a8f7ffde0b2785ca749fc4e80e4315c0fd887561144059fb1c138aa7"}, + {file = "orjson-3.10.18-cp311-cp311-win32.whl", hash = "sha256:fdba703c722bd868c04702cac4cb8c6b8ff137af2623bc0ddb3b3e6a2c8996c1"}, + {file = "orjson-3.10.18-cp311-cp311-win_amd64.whl", hash = "sha256:c28082933c71ff4bc6ccc82a454a2bffcef6e1d7379756ca567c772e4fb3278a"}, + {file = "orjson-3.10.18-cp311-cp311-win_arm64.whl", hash = "sha256:a6c7c391beaedd3fa63206e5c2b7b554196f14debf1ec9deb54b5d279b1b46f5"}, + {file = "orjson-3.10.18-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:50c15557afb7f6d63bc6d6348e0337a880a04eaa9cd7c9d569bcb4e760a24753"}, + {file = "orjson-3.10.18-cp312-cp312-macosx_15_0_arm64.whl", hash = "sha256:356b076f1662c9813d5fa56db7d63ccceef4c271b1fb3dd522aca291375fcf17"}, + {file = "orjson-3.10.18-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:559eb40a70a7494cd5beab2d73657262a74a2c59aff2068fdba8f0424ec5b39d"}, + {file = "orjson-3.10.18-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f3c29eb9a81e2fbc6fd7ddcfba3e101ba92eaff455b8d602bf7511088bbc0eae"}, + {file = "orjson-3.10.18-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6612787e5b0756a171c7d81ba245ef63a3533a637c335aa7fcb8e665f4a0966f"}, + {file = "orjson-3.10.18-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ac6bd7be0dcab5b702c9d43d25e70eb456dfd2e119d512447468f6405b4a69c"}, + {file = "orjson-3.10.18-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9f72f100cee8dde70100406d5c1abba515a7df926d4ed81e20a9730c062fe9ad"}, + {file = "orjson-3.10.18-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9dca85398d6d093dd41dc0983cbf54ab8e6afd1c547b6b8a311643917fbf4e0c"}, + {file = "orjson-3.10.18-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:22748de2a07fcc8781a70edb887abf801bb6142e6236123ff93d12d92db3d406"}, + {file = "orjson-3.10.18-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:3a83c9954a4107b9acd10291b7f12a6b29e35e8d43a414799906ea10e75438e6"}, + {file = "orjson-3.10.18-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:303565c67a6c7b1f194c94632a4a39918e067bd6176a48bec697393865ce4f06"}, + {file = "orjson-3.10.18-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:86314fdb5053a2f5a5d881f03fca0219bfdf832912aa88d18676a5175c6916b5"}, + {file = "orjson-3.10.18-cp312-cp312-win32.whl", hash = "sha256:187ec33bbec58c76dbd4066340067d9ece6e10067bb0cc074a21ae3300caa84e"}, + {file = "orjson-3.10.18-cp312-cp312-win_amd64.whl", hash = "sha256:f9f94cf6d3f9cd720d641f8399e390e7411487e493962213390d1ae45c7814fc"}, + {file = "orjson-3.10.18-cp312-cp312-win_arm64.whl", hash = "sha256:3d600be83fe4514944500fa8c2a0a77099025ec6482e8087d7659e891f23058a"}, + {file = "orjson-3.10.18-cp313-cp313-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:69c34b9441b863175cc6a01f2935de994025e773f814412030f269da4f7be147"}, + {file = "orjson-3.10.18-cp313-cp313-macosx_15_0_arm64.whl", hash = "sha256:1ebeda919725f9dbdb269f59bc94f861afbe2a27dce5608cdba2d92772364d1c"}, + {file = "orjson-3.10.18-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5adf5f4eed520a4959d29ea80192fa626ab9a20b2ea13f8f6dc58644f6927103"}, + {file = "orjson-3.10.18-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7592bb48a214e18cd670974f289520f12b7aed1fa0b2e2616b8ed9e069e08595"}, + {file = "orjson-3.10.18-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f872bef9f042734110642b7a11937440797ace8c87527de25e0c53558b579ccc"}, + {file = "orjson-3.10.18-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0315317601149c244cb3ecef246ef5861a64824ccbcb8018d32c66a60a84ffbc"}, + {file = "orjson-3.10.18-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e0da26957e77e9e55a6c2ce2e7182a36a6f6b180ab7189315cb0995ec362e049"}, + {file = "orjson-3.10.18-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bb70d489bc79b7519e5803e2cc4c72343c9dc1154258adf2f8925d0b60da7c58"}, + {file = "orjson-3.10.18-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:e9e86a6af31b92299b00736c89caf63816f70a4001e750bda179e15564d7a034"}, + {file = "orjson-3.10.18-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:c382a5c0b5931a5fc5405053d36c1ce3fd561694738626c77ae0b1dfc0242ca1"}, + {file = "orjson-3.10.18-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:8e4b2ae732431127171b875cb2668f883e1234711d3c147ffd69fe5be51a8012"}, + {file = "orjson-3.10.18-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:2d808e34ddb24fc29a4d4041dcfafbae13e129c93509b847b14432717d94b44f"}, + {file = "orjson-3.10.18-cp313-cp313-win32.whl", hash = "sha256:ad8eacbb5d904d5591f27dee4031e2c1db43d559edb8f91778efd642d70e6bea"}, + {file = "orjson-3.10.18-cp313-cp313-win_amd64.whl", hash = "sha256:aed411bcb68bf62e85588f2a7e03a6082cc42e5a2796e06e72a962d7c6310b52"}, + {file = "orjson-3.10.18-cp313-cp313-win_arm64.whl", hash = "sha256:f54c1385a0e6aba2f15a40d703b858bedad36ded0491e55d35d905b2c34a4cc3"}, + {file = "orjson-3.10.18-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:c95fae14225edfd699454e84f61c3dd938df6629a00c6ce15e704f57b58433bb"}, + {file = "orjson-3.10.18-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5232d85f177f98e0cefabb48b5e7f60cff6f3f0365f9c60631fecd73849b2a82"}, + {file = "orjson-3.10.18-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2783e121cafedf0d85c148c248a20470018b4ffd34494a68e125e7d5857655d1"}, + {file = "orjson-3.10.18-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e54ee3722caf3db09c91f442441e78f916046aa58d16b93af8a91500b7bbf273"}, + {file = "orjson-3.10.18-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2daf7e5379b61380808c24f6fc182b7719301739e4271c3ec88f2984a2d61f89"}, + {file = "orjson-3.10.18-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7f39b371af3add20b25338f4b29a8d6e79a8c7ed0e9dd49e008228a065d07781"}, + {file = "orjson-3.10.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2b819ed34c01d88c6bec290e6842966f8e9ff84b7694632e88341363440d4cc0"}, + {file = "orjson-3.10.18-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2f6c57debaef0b1aa13092822cbd3698a1fb0209a9ea013a969f4efa36bdea57"}, + {file = "orjson-3.10.18-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:755b6d61ffdb1ffa1e768330190132e21343757c9aa2308c67257cc81a1a6f5a"}, + {file = "orjson-3.10.18-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ce8d0a875a85b4c8579eab5ac535fb4b2a50937267482be402627ca7e7570ee3"}, + {file = "orjson-3.10.18-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:57b5d0673cbd26781bebc2bf86f99dd19bd5a9cb55f71cc4f66419f6b50f3d77"}, + {file = "orjson-3.10.18-cp39-cp39-win32.whl", hash = "sha256:951775d8b49d1d16ca8818b1f20c4965cae9157e7b562a2ae34d3967b8f21c8e"}, + {file = "orjson-3.10.18-cp39-cp39-win_amd64.whl", hash = "sha256:fdd9d68f83f0bc4406610b1ac68bdcded8c5ee58605cc69e643a06f4d075f429"}, + {file = "orjson-3.10.18.tar.gz", hash = "sha256:e8da3947d92123eda795b68228cafe2724815621fe35e8e320a9e9593a4bcd53"}, +] + +[[package]] +name = "packaging" +version = "24.2" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "packaging-24.2-py3-none-any.whl", hash = "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759"}, + {file = "packaging-24.2.tar.gz", hash = "sha256:c228a6dc5e932d346bc5739379109d49e8853dd8223571c7c5b55260edc0b97f"}, +] + +[[package]] +name = "parso" +version = "0.8.4" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +groups = ["main"] +files = [ + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, +] + +[package.extras] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["docopt", "pytest"] + +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +groups = ["main"] +markers = "sys_platform != \"win32\" and sys_platform != \"emscripten\"" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pillow" +version = "11.2.1" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "pillow-11.2.1-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:d57a75d53922fc20c165016a20d9c44f73305e67c351bbc60d1adaf662e74047"}, + {file = "pillow-11.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:127bf6ac4a5b58b3d32fc8289656f77f80567d65660bc46f72c0d77e6600cc95"}, + {file = "pillow-11.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b4ba4be812c7a40280629e55ae0b14a0aafa150dd6451297562e1764808bbe61"}, + {file = "pillow-11.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c8bd62331e5032bc396a93609982a9ab6b411c05078a52f5fe3cc59234a3abd1"}, + {file = "pillow-11.2.1-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:562d11134c97a62fe3af29581f083033179f7ff435f78392565a1ad2d1c2c45c"}, + {file = "pillow-11.2.1-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:c97209e85b5be259994eb5b69ff50c5d20cca0f458ef9abd835e262d9d88b39d"}, + {file = "pillow-11.2.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:0c3e6d0f59171dfa2e25d7116217543310908dfa2770aa64b8f87605f8cacc97"}, + {file = "pillow-11.2.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:cc1c3bc53befb6096b84165956e886b1729634a799e9d6329a0c512ab651e579"}, + {file = "pillow-11.2.1-cp310-cp310-win32.whl", hash = "sha256:312c77b7f07ab2139924d2639860e084ec2a13e72af54d4f08ac843a5fc9c79d"}, + {file = "pillow-11.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:9bc7ae48b8057a611e5fe9f853baa88093b9a76303937449397899385da06fad"}, + {file = "pillow-11.2.1-cp310-cp310-win_arm64.whl", hash = "sha256:2728567e249cdd939f6cc3d1f049595c66e4187f3c34078cbc0a7d21c47482d2"}, + {file = "pillow-11.2.1-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:35ca289f712ccfc699508c4658a1d14652e8033e9b69839edf83cbdd0ba39e70"}, + {file = "pillow-11.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e0409af9f829f87a2dfb7e259f78f317a5351f2045158be321fd135973fff7bf"}, + {file = "pillow-11.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4e5c5edee874dce4f653dbe59db7c73a600119fbea8d31f53423586ee2aafd7"}, + {file = "pillow-11.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b93a07e76d13bff9444f1a029e0af2964e654bfc2e2c2d46bfd080df5ad5f3d8"}, + {file = "pillow-11.2.1-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:e6def7eed9e7fa90fde255afaf08060dc4b343bbe524a8f69bdd2a2f0018f600"}, + {file = "pillow-11.2.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:8f4f3724c068be008c08257207210c138d5f3731af6c155a81c2b09a9eb3a788"}, + {file = "pillow-11.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:a0a6709b47019dff32e678bc12c63008311b82b9327613f534e496dacaefb71e"}, + {file = "pillow-11.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f6b0c664ccb879109ee3ca702a9272d877f4fcd21e5eb63c26422fd6e415365e"}, + {file = "pillow-11.2.1-cp311-cp311-win32.whl", hash = "sha256:cc5d875d56e49f112b6def6813c4e3d3036d269c008bf8aef72cd08d20ca6df6"}, + {file = "pillow-11.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:0f5c7eda47bf8e3c8a283762cab94e496ba977a420868cb819159980b6709193"}, + {file = "pillow-11.2.1-cp311-cp311-win_arm64.whl", hash = "sha256:4d375eb838755f2528ac8cbc926c3e31cc49ca4ad0cf79cff48b20e30634a4a7"}, + {file = "pillow-11.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:78afba22027b4accef10dbd5eed84425930ba41b3ea0a86fa8d20baaf19d807f"}, + {file = "pillow-11.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:78092232a4ab376a35d68c4e6d5e00dfd73454bd12b230420025fbe178ee3b0b"}, + {file = "pillow-11.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25a5f306095c6780c52e6bbb6109624b95c5b18e40aab1c3041da3e9e0cd3e2d"}, + {file = "pillow-11.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0c7b29dbd4281923a2bfe562acb734cee96bbb129e96e6972d315ed9f232bef4"}, + {file = "pillow-11.2.1-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:3e645b020f3209a0181a418bffe7b4a93171eef6c4ef6cc20980b30bebf17b7d"}, + {file = "pillow-11.2.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:b2dbea1012ccb784a65349f57bbc93730b96e85b42e9bf7b01ef40443db720b4"}, + {file = "pillow-11.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:da3104c57bbd72948d75f6a9389e6727d2ab6333c3617f0a89d72d4940aa0443"}, + {file = "pillow-11.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:598174aef4589af795f66f9caab87ba4ff860ce08cd5bb447c6fc553ffee603c"}, + {file = "pillow-11.2.1-cp312-cp312-win32.whl", hash = "sha256:1d535df14716e7f8776b9e7fee118576d65572b4aad3ed639be9e4fa88a1cad3"}, + {file = "pillow-11.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:14e33b28bf17c7a38eede290f77db7c664e4eb01f7869e37fa98a5aa95978941"}, + {file = "pillow-11.2.1-cp312-cp312-win_arm64.whl", hash = "sha256:21e1470ac9e5739ff880c211fc3af01e3ae505859392bf65458c224d0bf283eb"}, + {file = "pillow-11.2.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:fdec757fea0b793056419bca3e9932eb2b0ceec90ef4813ea4c1e072c389eb28"}, + {file = "pillow-11.2.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:b0e130705d568e2f43a17bcbe74d90958e8a16263868a12c3e0d9c8162690830"}, + {file = "pillow-11.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bdb5e09068332578214cadd9c05e3d64d99e0e87591be22a324bdbc18925be0"}, + {file = "pillow-11.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d189ba1bebfbc0c0e529159631ec72bb9e9bc041f01ec6d3233d6d82eb823bc1"}, + {file = "pillow-11.2.1-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:191955c55d8a712fab8934a42bfefbf99dd0b5875078240943f913bb66d46d9f"}, + {file = "pillow-11.2.1-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:ad275964d52e2243430472fc5d2c2334b4fc3ff9c16cb0a19254e25efa03a155"}, + {file = "pillow-11.2.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:750f96efe0597382660d8b53e90dd1dd44568a8edb51cb7f9d5d918b80d4de14"}, + {file = "pillow-11.2.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fe15238d3798788d00716637b3d4e7bb6bde18b26e5d08335a96e88564a36b6b"}, + {file = "pillow-11.2.1-cp313-cp313-win32.whl", hash = "sha256:3fe735ced9a607fee4f481423a9c36701a39719252a9bb251679635f99d0f7d2"}, + {file = "pillow-11.2.1-cp313-cp313-win_amd64.whl", hash = "sha256:74ee3d7ecb3f3c05459ba95eed5efa28d6092d751ce9bf20e3e253a4e497e691"}, + {file = "pillow-11.2.1-cp313-cp313-win_arm64.whl", hash = "sha256:5119225c622403afb4b44bad4c1ca6c1f98eed79db8d3bc6e4e160fc6339d66c"}, + {file = "pillow-11.2.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:8ce2e8411c7aaef53e6bb29fe98f28cd4fbd9a1d9be2eeea434331aac0536b22"}, + {file = "pillow-11.2.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:9ee66787e095127116d91dea2143db65c7bb1e232f617aa5957c0d9d2a3f23a7"}, + {file = "pillow-11.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9622e3b6c1d8b551b6e6f21873bdcc55762b4b2126633014cea1803368a9aa16"}, + {file = "pillow-11.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:63b5dff3a68f371ea06025a1a6966c9a1e1ee452fc8020c2cd0ea41b83e9037b"}, + {file = "pillow-11.2.1-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:31df6e2d3d8fc99f993fd253e97fae451a8db2e7207acf97859732273e108406"}, + {file = "pillow-11.2.1-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:062b7a42d672c45a70fa1f8b43d1d38ff76b63421cbbe7f88146b39e8a558d91"}, + {file = "pillow-11.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:4eb92eca2711ef8be42fd3f67533765d9fd043b8c80db204f16c8ea62ee1a751"}, + {file = "pillow-11.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:f91ebf30830a48c825590aede79376cb40f110b387c17ee9bd59932c961044f9"}, + {file = "pillow-11.2.1-cp313-cp313t-win32.whl", hash = "sha256:e0b55f27f584ed623221cfe995c912c61606be8513bfa0e07d2c674b4516d9dd"}, + {file = "pillow-11.2.1-cp313-cp313t-win_amd64.whl", hash = "sha256:36d6b82164c39ce5482f649b437382c0fb2395eabc1e2b1702a6deb8ad647d6e"}, + {file = "pillow-11.2.1-cp313-cp313t-win_arm64.whl", hash = "sha256:225c832a13326e34f212d2072982bb1adb210e0cc0b153e688743018c94a2681"}, + {file = "pillow-11.2.1-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:7491cf8a79b8eb867d419648fff2f83cb0b3891c8b36da92cc7f1931d46108c8"}, + {file = "pillow-11.2.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8b02d8f9cb83c52578a0b4beadba92e37d83a4ef11570a8688bbf43f4ca50909"}, + {file = "pillow-11.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:014ca0050c85003620526b0ac1ac53f56fc93af128f7546623cc8e31875ab928"}, + {file = "pillow-11.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3692b68c87096ac6308296d96354eddd25f98740c9d2ab54e1549d6c8aea9d79"}, + {file = "pillow-11.2.1-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:f781dcb0bc9929adc77bad571b8621ecb1e4cdef86e940fe2e5b5ee24fd33b35"}, + {file = "pillow-11.2.1-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:2b490402c96f907a166615e9a5afacf2519e28295f157ec3a2bb9bd57de638cb"}, + {file = "pillow-11.2.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dd6b20b93b3ccc9c1b597999209e4bc5cf2853f9ee66e3fc9a400a78733ffc9a"}, + {file = "pillow-11.2.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:4b835d89c08a6c2ee7781b8dd0a30209a8012b5f09c0a665b65b0eb3560b6f36"}, + {file = "pillow-11.2.1-cp39-cp39-win32.whl", hash = "sha256:b10428b3416d4f9c61f94b494681280be7686bda15898a3a9e08eb66a6d92d67"}, + {file = "pillow-11.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:6ebce70c3f486acf7591a3d73431fa504a4e18a9b97ff27f5f47b7368e4b9dd1"}, + {file = "pillow-11.2.1-cp39-cp39-win_arm64.whl", hash = "sha256:c27476257b2fdcd7872d54cfd119b3a9ce4610fb85c8e32b70b42e3680a29a1e"}, + {file = "pillow-11.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:9b7b0d4fd2635f54ad82785d56bc0d94f147096493a79985d0ab57aedd563156"}, + {file = "pillow-11.2.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:aa442755e31c64037aa7c1cb186e0b369f8416c567381852c63444dd666fb772"}, + {file = "pillow-11.2.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f0d3348c95b766f54b76116d53d4cb171b52992a1027e7ca50c81b43b9d9e363"}, + {file = "pillow-11.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85d27ea4c889342f7e35f6d56e7e1cb345632ad592e8c51b693d7b7556043ce0"}, + {file = "pillow-11.2.1-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:bf2c33d6791c598142f00c9c4c7d47f6476731c31081331664eb26d6ab583e01"}, + {file = "pillow-11.2.1-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e616e7154c37669fc1dfc14584f11e284e05d1c650e1c0f972f281c4ccc53193"}, + {file = "pillow-11.2.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:39ad2e0f424394e3aebc40168845fee52df1394a4673a6ee512d840d14ab3013"}, + {file = "pillow-11.2.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:80f1df8dbe9572b4b7abdfa17eb5d78dd620b1d55d9e25f834efdbee872d3aed"}, + {file = "pillow-11.2.1-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:ea926cfbc3957090becbcbbb65ad177161a2ff2ad578b5a6ec9bb1e1cd78753c"}, + {file = "pillow-11.2.1-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:738db0e0941ca0376804d4de6a782c005245264edaa253ffce24e5a15cbdc7bd"}, + {file = "pillow-11.2.1-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9db98ab6565c69082ec9b0d4e40dd9f6181dab0dd236d26f7a50b8b9bfbd5076"}, + {file = "pillow-11.2.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:036e53f4170e270ddb8797d4c590e6dd14d28e15c7da375c18978045f7e6c37b"}, + {file = "pillow-11.2.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:14f73f7c291279bd65fda51ee87affd7c1e097709f7fdd0188957a16c264601f"}, + {file = "pillow-11.2.1-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:208653868d5c9ecc2b327f9b9ef34e0e42a4cdd172c2988fd81d62d2bc9bc044"}, + {file = "pillow-11.2.1.tar.gz", hash = "sha256:a64dd61998416367b7ef979b73d3a85853ba9bec4c2925f74e588879a58716b6"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=8.2)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] +fpx = ["olefile"] +mic = ["olefile"] +test-arrow = ["pyarrow"] +tests = ["check-manifest", "coverage (>=7.4.2)", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout", "trove-classifiers (>=2024.10.12)"] +typing = ["typing-extensions ; python_version < \"3.10\""] +xmp = ["defusedxml"] + +[[package]] +name = "platformdirs" +version = "4.3.8" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "platformdirs-4.3.8-py3-none-any.whl", hash = "sha256:ff7059bb7eb1179e2685604f4aaf157cfd9535242bd23742eadc3c13542139b4"}, + {file = "platformdirs-4.3.8.tar.gz", hash = "sha256:3d512d96e16bcb959a814c9f348431070822a6496326a4be0911c40b5a74c2bc"}, +] + +[package.extras] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.1.3)", "sphinx-autodoc-typehints (>=3)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.4)", "pytest-cov (>=6)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.14.1)"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.51" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "prompt_toolkit-3.0.51-py3-none-any.whl", hash = "sha256:52742911fde84e2d423e2f9a4cf1de7d7ac4e51958f648d9540e0fb8db077b07"}, + {file = "prompt_toolkit-3.0.51.tar.gz", hash = "sha256:931a162e3b27fc90c86f1b48bb1fb2c528c2761475e57c9c06de13311c7b54ed"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "propcache" +version = "0.3.2" +description = "Accelerated property cache" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "propcache-0.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:22d9962a358aedbb7a2e36187ff273adeaab9743373a272976d2e348d08c7770"}, + {file = "propcache-0.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0d0fda578d1dc3f77b6b5a5dce3b9ad69a8250a891760a548df850a5e8da87f3"}, + {file = "propcache-0.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3def3da3ac3ce41562d85db655d18ebac740cb3fa4367f11a52b3da9d03a5cc3"}, + {file = "propcache-0.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9bec58347a5a6cebf239daba9bda37dffec5b8d2ce004d9fe4edef3d2815137e"}, + {file = "propcache-0.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:55ffda449a507e9fbd4aca1a7d9aa6753b07d6166140e5a18d2ac9bc49eac220"}, + {file = "propcache-0.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:64a67fb39229a8a8491dd42f864e5e263155e729c2e7ff723d6e25f596b1e8cb"}, + {file = "propcache-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9da1cf97b92b51253d5b68cf5a2b9e0dafca095e36b7f2da335e27dc6172a614"}, + {file = "propcache-0.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5f559e127134b07425134b4065be45b166183fdcb433cb6c24c8e4149056ad50"}, + {file = "propcache-0.3.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:aff2e4e06435d61f11a428360a932138d0ec288b0a31dd9bd78d200bd4a2b339"}, + {file = "propcache-0.3.2-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:4927842833830942a5d0a56e6f4839bc484785b8e1ce8d287359794818633ba0"}, + {file = "propcache-0.3.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:6107ddd08b02654a30fb8ad7a132021759d750a82578b94cd55ee2772b6ebea2"}, + {file = "propcache-0.3.2-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:70bd8b9cd6b519e12859c99f3fc9a93f375ebd22a50296c3a295028bea73b9e7"}, + {file = "propcache-0.3.2-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:2183111651d710d3097338dd1893fcf09c9f54e27ff1a8795495a16a469cc90b"}, + {file = "propcache-0.3.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:fb075ad271405dcad8e2a7ffc9a750a3bf70e533bd86e89f0603e607b93aa64c"}, + {file = "propcache-0.3.2-cp310-cp310-win32.whl", hash = "sha256:404d70768080d3d3bdb41d0771037da19d8340d50b08e104ca0e7f9ce55fce70"}, + {file = "propcache-0.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:7435d766f978b4ede777002e6b3b6641dd229cd1da8d3d3106a45770365f9ad9"}, + {file = "propcache-0.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0b8d2f607bd8f80ddc04088bc2a037fdd17884a6fcadc47a96e334d72f3717be"}, + {file = "propcache-0.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:06766d8f34733416e2e34f46fea488ad5d60726bb9481d3cddf89a6fa2d9603f"}, + {file = "propcache-0.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a2dc1f4a1df4fecf4e6f68013575ff4af84ef6f478fe5344317a65d38a8e6dc9"}, + {file = "propcache-0.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:be29c4f4810c5789cf10ddf6af80b041c724e629fa51e308a7a0fb19ed1ef7bf"}, + {file = "propcache-0.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59d61f6970ecbd8ff2e9360304d5c8876a6abd4530cb752c06586849ac8a9dc9"}, + {file = "propcache-0.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:62180e0b8dbb6b004baec00a7983e4cc52f5ada9cd11f48c3528d8cfa7b96a66"}, + {file = "propcache-0.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c144ca294a204c470f18cf4c9d78887810d04a3e2fbb30eea903575a779159df"}, + {file = "propcache-0.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c5c2a784234c28854878d68978265617aa6dc0780e53d44b4d67f3651a17a9a2"}, + {file = "propcache-0.3.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5745bc7acdafa978ca1642891b82c19238eadc78ba2aaa293c6863b304e552d7"}, + {file = "propcache-0.3.2-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:c0075bf773d66fa8c9d41f66cc132ecc75e5bb9dd7cce3cfd14adc5ca184cb95"}, + {file = "propcache-0.3.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:5f57aa0847730daceff0497f417c9de353c575d8da3579162cc74ac294c5369e"}, + {file = "propcache-0.3.2-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:eef914c014bf72d18efb55619447e0aecd5fb7c2e3fa7441e2e5d6099bddff7e"}, + {file = "propcache-0.3.2-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:2a4092e8549031e82facf3decdbc0883755d5bbcc62d3aea9d9e185549936dcf"}, + {file = "propcache-0.3.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:85871b050f174bc0bfb437efbdb68aaf860611953ed12418e4361bc9c392749e"}, + {file = "propcache-0.3.2-cp311-cp311-win32.whl", hash = "sha256:36c8d9b673ec57900c3554264e630d45980fd302458e4ac801802a7fd2ef7897"}, + {file = "propcache-0.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:e53af8cb6a781b02d2ea079b5b853ba9430fcbe18a8e3ce647d5982a3ff69f39"}, + {file = "propcache-0.3.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:8de106b6c84506b31c27168582cd3cb3000a6412c16df14a8628e5871ff83c10"}, + {file = "propcache-0.3.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:28710b0d3975117239c76600ea351934ac7b5ff56e60953474342608dbbb6154"}, + {file = "propcache-0.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce26862344bdf836650ed2487c3d724b00fbfec4233a1013f597b78c1cb73615"}, + {file = "propcache-0.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bca54bd347a253af2cf4544bbec232ab982f4868de0dd684246b67a51bc6b1db"}, + {file = "propcache-0.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:55780d5e9a2ddc59711d727226bb1ba83a22dd32f64ee15594b9392b1f544eb1"}, + {file = "propcache-0.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:035e631be25d6975ed87ab23153db6a73426a48db688070d925aa27e996fe93c"}, + {file = "propcache-0.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ee6f22b6eaa39297c751d0e80c0d3a454f112f5c6481214fcf4c092074cecd67"}, + {file = "propcache-0.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7ca3aee1aa955438c4dba34fc20a9f390e4c79967257d830f137bd5a8a32ed3b"}, + {file = "propcache-0.3.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:7a4f30862869fa2b68380d677cc1c5fcf1e0f2b9ea0cf665812895c75d0ca3b8"}, + {file = "propcache-0.3.2-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:b77ec3c257d7816d9f3700013639db7491a434644c906a2578a11daf13176251"}, + {file = "propcache-0.3.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:cab90ac9d3f14b2d5050928483d3d3b8fb6b4018893fc75710e6aa361ecb2474"}, + {file = "propcache-0.3.2-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:0b504d29f3c47cf6b9e936c1852246c83d450e8e063d50562115a6be6d3a2535"}, + {file = "propcache-0.3.2-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:ce2ac2675a6aa41ddb2a0c9cbff53780a617ac3d43e620f8fd77ba1c84dcfc06"}, + {file = "propcache-0.3.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:62b4239611205294cc433845b914131b2a1f03500ff3c1ed093ed216b82621e1"}, + {file = "propcache-0.3.2-cp312-cp312-win32.whl", hash = "sha256:df4a81b9b53449ebc90cc4deefb052c1dd934ba85012aa912c7ea7b7e38b60c1"}, + {file = "propcache-0.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:7046e79b989d7fe457bb755844019e10f693752d169076138abf17f31380800c"}, + {file = "propcache-0.3.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ca592ed634a73ca002967458187109265e980422116c0a107cf93d81f95af945"}, + {file = "propcache-0.3.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9ecb0aad4020e275652ba3975740f241bd12a61f1a784df044cf7477a02bc252"}, + {file = "propcache-0.3.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7f08f1cc28bd2eade7a8a3d2954ccc673bb02062e3e7da09bc75d843386b342f"}, + {file = "propcache-0.3.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1a342c834734edb4be5ecb1e9fb48cb64b1e2320fccbd8c54bf8da8f2a84c33"}, + {file = "propcache-0.3.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a544caaae1ac73f1fecfae70ded3e93728831affebd017d53449e3ac052ac1e"}, + {file = "propcache-0.3.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:310d11aa44635298397db47a3ebce7db99a4cc4b9bbdfcf6c98a60c8d5261cf1"}, + {file = "propcache-0.3.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c1396592321ac83157ac03a2023aa6cc4a3cc3cfdecb71090054c09e5a7cce3"}, + {file = "propcache-0.3.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8cabf5b5902272565e78197edb682017d21cf3b550ba0460ee473753f28d23c1"}, + {file = "propcache-0.3.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0a2f2235ac46a7aa25bdeb03a9e7060f6ecbd213b1f9101c43b3090ffb971ef6"}, + {file = "propcache-0.3.2-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:92b69e12e34869a6970fd2f3da91669899994b47c98f5d430b781c26f1d9f387"}, + {file = "propcache-0.3.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:54e02207c79968ebbdffc169591009f4474dde3b4679e16634d34c9363ff56b4"}, + {file = "propcache-0.3.2-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:4adfb44cb588001f68c5466579d3f1157ca07f7504fc91ec87862e2b8e556b88"}, + {file = "propcache-0.3.2-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:fd3e6019dc1261cd0291ee8919dd91fbab7b169bb76aeef6c716833a3f65d206"}, + {file = "propcache-0.3.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4c181cad81158d71c41a2bce88edce078458e2dd5ffee7eddd6b05da85079f43"}, + {file = "propcache-0.3.2-cp313-cp313-win32.whl", hash = "sha256:8a08154613f2249519e549de2330cf8e2071c2887309a7b07fb56098f5170a02"}, + {file = "propcache-0.3.2-cp313-cp313-win_amd64.whl", hash = "sha256:e41671f1594fc4ab0a6dec1351864713cb3a279910ae8b58f884a88a0a632c05"}, + {file = "propcache-0.3.2-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:9a3cf035bbaf035f109987d9d55dc90e4b0e36e04bbbb95af3055ef17194057b"}, + {file = "propcache-0.3.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:156c03d07dc1323d8dacaa221fbe028c5c70d16709cdd63502778e6c3ccca1b0"}, + {file = "propcache-0.3.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:74413c0ba02ba86f55cf60d18daab219f7e531620c15f1e23d95563f505efe7e"}, + {file = "propcache-0.3.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f066b437bb3fa39c58ff97ab2ca351db465157d68ed0440abecb21715eb24b28"}, + {file = "propcache-0.3.2-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1304b085c83067914721e7e9d9917d41ad87696bf70f0bc7dee450e9c71ad0a"}, + {file = "propcache-0.3.2-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ab50cef01b372763a13333b4e54021bdcb291fc9a8e2ccb9c2df98be51bcde6c"}, + {file = "propcache-0.3.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fad3b2a085ec259ad2c2842666b2a0a49dea8463579c606426128925af1ed725"}, + {file = "propcache-0.3.2-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:261fa020c1c14deafd54c76b014956e2f86991af198c51139faf41c4d5e83892"}, + {file = "propcache-0.3.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:46d7f8aa79c927e5f987ee3a80205c987717d3659f035c85cf0c3680526bdb44"}, + {file = "propcache-0.3.2-cp313-cp313t-musllinux_1_2_armv7l.whl", hash = "sha256:6d8f3f0eebf73e3c0ff0e7853f68be638b4043c65a70517bb575eff54edd8dbe"}, + {file = "propcache-0.3.2-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:03c89c1b14a5452cf15403e291c0ccd7751d5b9736ecb2c5bab977ad6c5bcd81"}, + {file = "propcache-0.3.2-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:0cc17efde71e12bbaad086d679ce575268d70bc123a5a71ea7ad76f70ba30bba"}, + {file = "propcache-0.3.2-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:acdf05d00696bc0447e278bb53cb04ca72354e562cf88ea6f9107df8e7fd9770"}, + {file = "propcache-0.3.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:4445542398bd0b5d32df908031cb1b30d43ac848e20470a878b770ec2dcc6330"}, + {file = "propcache-0.3.2-cp313-cp313t-win32.whl", hash = "sha256:f86e5d7cd03afb3a1db8e9f9f6eff15794e79e791350ac48a8c924e6f439f394"}, + {file = "propcache-0.3.2-cp313-cp313t-win_amd64.whl", hash = "sha256:9704bedf6e7cbe3c65eca4379a9b53ee6a83749f047808cbb5044d40d7d72198"}, + {file = "propcache-0.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a7fad897f14d92086d6b03fdd2eb844777b0c4d7ec5e3bac0fbae2ab0602bbe5"}, + {file = "propcache-0.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1f43837d4ca000243fd7fd6301947d7cb93360d03cd08369969450cc6b2ce3b4"}, + {file = "propcache-0.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:261df2e9474a5949c46e962065d88eb9b96ce0f2bd30e9d3136bcde84befd8f2"}, + {file = "propcache-0.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e514326b79e51f0a177daab1052bc164d9d9e54133797a3a58d24c9c87a3fe6d"}, + {file = "propcache-0.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d4a996adb6904f85894570301939afeee65f072b4fd265ed7e569e8d9058e4ec"}, + {file = "propcache-0.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:76cace5d6b2a54e55b137669b30f31aa15977eeed390c7cbfb1dafa8dfe9a701"}, + {file = "propcache-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31248e44b81d59d6addbb182c4720f90b44e1efdc19f58112a3c3a1615fb47ef"}, + {file = "propcache-0.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abb7fa19dbf88d3857363e0493b999b8011eea856b846305d8c0512dfdf8fbb1"}, + {file = "propcache-0.3.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:d81ac3ae39d38588ad0549e321e6f773a4e7cc68e7751524a22885d5bbadf886"}, + {file = "propcache-0.3.2-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:cc2782eb0f7a16462285b6f8394bbbd0e1ee5f928034e941ffc444012224171b"}, + {file = "propcache-0.3.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:db429c19a6c7e8a1c320e6a13c99799450f411b02251fb1b75e6217cf4a14fcb"}, + {file = "propcache-0.3.2-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:21d8759141a9e00a681d35a1f160892a36fb6caa715ba0b832f7747da48fb6ea"}, + {file = "propcache-0.3.2-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:2ca6d378f09adb13837614ad2754fa8afaee330254f404299611bce41a8438cb"}, + {file = "propcache-0.3.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:34a624af06c048946709f4278b4176470073deda88d91342665d95f7c6270fbe"}, + {file = "propcache-0.3.2-cp39-cp39-win32.whl", hash = "sha256:4ba3fef1c30f306b1c274ce0b8baaa2c3cdd91f645c48f06394068f37d3837a1"}, + {file = "propcache-0.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:7a2368eed65fc69a7a7a40b27f22e85e7627b74216f0846b04ba5c116e191ec9"}, + {file = "propcache-0.3.2-py3-none-any.whl", hash = "sha256:98f1ec44fb675f5052cccc8e609c46ed23a35a1cfd18545ad4e29002d858a43f"}, + {file = "propcache-0.3.2.tar.gz", hash = "sha256:20d7d62e4e7ef05f221e0db2856b979540686342e7dd9973b815599c7057e168"}, +] + +[[package]] +name = "psutil" +version = "7.0.0" +description = "Cross-platform lib for process and system monitoring in Python. NOTE: the syntax of this script MUST be kept compatible with Python 2.7." +optional = false +python-versions = ">=3.6" +groups = ["main"] +files = [ + {file = "psutil-7.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:101d71dc322e3cffd7cea0650b09b3d08b8e7c4109dd6809fe452dfd00e58b25"}, + {file = "psutil-7.0.0-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:39db632f6bb862eeccf56660871433e111b6ea58f2caea825571951d4b6aa3da"}, + {file = "psutil-7.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1fcee592b4c6f146991ca55919ea3d1f8926497a713ed7faaf8225e174581e91"}, + {file = "psutil-7.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b1388a4f6875d7e2aff5c4ca1cc16c545ed41dd8bb596cefea80111db353a34"}, + {file = "psutil-7.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5f098451abc2828f7dc6b58d44b532b22f2088f4999a937557b603ce72b1993"}, + {file = "psutil-7.0.0-cp36-cp36m-win32.whl", hash = "sha256:84df4eb63e16849689f76b1ffcb36db7b8de703d1bc1fe41773db487621b6c17"}, + {file = "psutil-7.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:1e744154a6580bc968a0195fd25e80432d3afec619daf145b9e5ba16cc1d688e"}, + {file = "psutil-7.0.0-cp37-abi3-win32.whl", hash = "sha256:ba3fcef7523064a6c9da440fc4d6bd07da93ac726b5733c29027d7dc95b39d99"}, + {file = "psutil-7.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:4cf3d4eb1aa9b348dec30105c55cd9b7d4629285735a102beb4441e38db90553"}, + {file = "psutil-7.0.0.tar.gz", hash = "sha256:7be9c3eba38beccb6495ea33afd982a44074b78f28c434a1f51cc07fd315c456"}, +] + +[package.extras] +dev = ["abi3audit", "black (==24.10.0)", "check-manifest", "coverage", "packaging", "pylint", "pyperf", "pypinfo", "pytest", "pytest-cov", "pytest-xdist", "requests", "rstcheck", "ruff", "setuptools", "sphinx", "sphinx_rtd_theme", "toml-sort", "twine", "virtualenv", "vulture", "wheel"] +test = ["pytest", "pytest-xdist", "setuptools"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +groups = ["main"] +markers = "sys_platform != \"win32\" and sys_platform != \"emscripten\"" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +groups = ["main"] +files = [ + {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, + {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "pycparser" +version = "2.22" +description = "C parser in Python" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "implementation_name == \"pypy\" or platform_python_implementation == \"PyPy\"" +files = [ + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, +] + +[[package]] +name = "pydantic" +version = "2.11.7" +description = "Data validation using Python type hints" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "pydantic-2.11.7-py3-none-any.whl", hash = "sha256:dde5df002701f6de26248661f6835bbe296a47bf73990135c7d07ce741b9623b"}, + {file = "pydantic-2.11.7.tar.gz", hash = "sha256:d989c3c6cb79469287b1569f7447a17848c998458d49ebe294e975b9baf0f0db"}, +] + +[package.dependencies] +annotated-types = ">=0.6.0" +pydantic-core = "2.33.2" +typing-extensions = ">=4.12.2" +typing-inspection = ">=0.4.0" + +[package.extras] +email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata ; python_version >= \"3.9\" and platform_system == \"Windows\""] + +[[package]] +name = "pydantic-core" +version = "2.33.2" +description = "Core functionality for Pydantic validation and serialization" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "pydantic_core-2.33.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:2b3d326aaef0c0399d9afffeb6367d5e26ddc24d351dbc9c636840ac355dc5d8"}, + {file = "pydantic_core-2.33.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0e5b2671f05ba48b94cb90ce55d8bdcaaedb8ba00cc5359f6810fc918713983d"}, + {file = "pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0069c9acc3f3981b9ff4cdfaf088e98d83440a4c7ea1bc07460af3d4dc22e72d"}, + {file = "pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d53b22f2032c42eaaf025f7c40c2e3b94568ae077a606f006d206a463bc69572"}, + {file = "pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0405262705a123b7ce9f0b92f123334d67b70fd1f20a9372b907ce1080c7ba02"}, + {file = "pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4b25d91e288e2c4e0662b8038a28c6a07eaac3e196cfc4ff69de4ea3db992a1b"}, + {file = "pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6bdfe4b3789761f3bcb4b1ddf33355a71079858958e3a552f16d5af19768fef2"}, + {file = "pydantic_core-2.33.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:efec8db3266b76ef9607c2c4c419bdb06bf335ae433b80816089ea7585816f6a"}, + {file = "pydantic_core-2.33.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:031c57d67ca86902726e0fae2214ce6770bbe2f710dc33063187a68744a5ecac"}, + {file = "pydantic_core-2.33.2-cp310-cp310-musllinux_1_1_armv7l.whl", hash = "sha256:f8de619080e944347f5f20de29a975c2d815d9ddd8be9b9b7268e2e3ef68605a"}, + {file = "pydantic_core-2.33.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:73662edf539e72a9440129f231ed3757faab89630d291b784ca99237fb94db2b"}, + {file = "pydantic_core-2.33.2-cp310-cp310-win32.whl", hash = "sha256:0a39979dcbb70998b0e505fb1556a1d550a0781463ce84ebf915ba293ccb7e22"}, + {file = "pydantic_core-2.33.2-cp310-cp310-win_amd64.whl", hash = "sha256:b0379a2b24882fef529ec3b4987cb5d003b9cda32256024e6fe1586ac45fc640"}, + {file = "pydantic_core-2.33.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:4c5b0a576fb381edd6d27f0a85915c6daf2f8138dc5c267a57c08a62900758c7"}, + {file = "pydantic_core-2.33.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e799c050df38a639db758c617ec771fd8fb7a5f8eaaa4b27b101f266b216a246"}, + {file = "pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dc46a01bf8d62f227d5ecee74178ffc448ff4e5197c756331f71efcc66dc980f"}, + {file = "pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a144d4f717285c6d9234a66778059f33a89096dfb9b39117663fd8413d582dcc"}, + {file = "pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:73cf6373c21bc80b2e0dc88444f41ae60b2f070ed02095754eb5a01df12256de"}, + {file = "pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3dc625f4aa79713512d1976fe9f0bc99f706a9dee21dfd1810b4bbbf228d0e8a"}, + {file = "pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:881b21b5549499972441da4758d662aeea93f1923f953e9cbaff14b8b9565aef"}, + {file = "pydantic_core-2.33.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:bdc25f3681f7b78572699569514036afe3c243bc3059d3942624e936ec93450e"}, + {file = "pydantic_core-2.33.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:fe5b32187cbc0c862ee201ad66c30cf218e5ed468ec8dc1cf49dec66e160cc4d"}, + {file = "pydantic_core-2.33.2-cp311-cp311-musllinux_1_1_armv7l.whl", hash = "sha256:bc7aee6f634a6f4a95676fcb5d6559a2c2a390330098dba5e5a5f28a2e4ada30"}, + {file = "pydantic_core-2.33.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:235f45e5dbcccf6bd99f9f472858849f73d11120d76ea8707115415f8e5ebebf"}, + {file = "pydantic_core-2.33.2-cp311-cp311-win32.whl", hash = "sha256:6368900c2d3ef09b69cb0b913f9f8263b03786e5b2a387706c5afb66800efd51"}, + {file = "pydantic_core-2.33.2-cp311-cp311-win_amd64.whl", hash = "sha256:1e063337ef9e9820c77acc768546325ebe04ee38b08703244c1309cccc4f1bab"}, + {file = "pydantic_core-2.33.2-cp311-cp311-win_arm64.whl", hash = "sha256:6b99022f1d19bc32a4c2a0d544fc9a76e3be90f0b3f4af413f87d38749300e65"}, + {file = "pydantic_core-2.33.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:a7ec89dc587667f22b6a0b6579c249fca9026ce7c333fc142ba42411fa243cdc"}, + {file = "pydantic_core-2.33.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3c6db6e52c6d70aa0d00d45cdb9b40f0433b96380071ea80b09277dba021ddf7"}, + {file = "pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e61206137cbc65e6d5256e1166f88331d3b6238e082d9f74613b9b765fb9025"}, + {file = "pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eb8c529b2819c37140eb51b914153063d27ed88e3bdc31b71198a198e921e011"}, + {file = "pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c52b02ad8b4e2cf14ca7b3d918f3eb0ee91e63b3167c32591e57c4317e134f8f"}, + {file = "pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:96081f1605125ba0855dfda83f6f3df5ec90c61195421ba72223de35ccfb2f88"}, + {file = "pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f57a69461af2a5fa6e6bbd7a5f60d3b7e6cebb687f55106933188e79ad155c1"}, + {file = "pydantic_core-2.33.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:572c7e6c8bb4774d2ac88929e3d1f12bc45714ae5ee6d9a788a9fb35e60bb04b"}, + {file = "pydantic_core-2.33.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:db4b41f9bd95fbe5acd76d89920336ba96f03e149097365afe1cb092fceb89a1"}, + {file = "pydantic_core-2.33.2-cp312-cp312-musllinux_1_1_armv7l.whl", hash = "sha256:fa854f5cf7e33842a892e5c73f45327760bc7bc516339fda888c75ae60edaeb6"}, + {file = "pydantic_core-2.33.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5f483cfb75ff703095c59e365360cb73e00185e01aaea067cd19acffd2ab20ea"}, + {file = "pydantic_core-2.33.2-cp312-cp312-win32.whl", hash = "sha256:9cb1da0f5a471435a7bc7e439b8a728e8b61e59784b2af70d7c169f8dd8ae290"}, + {file = "pydantic_core-2.33.2-cp312-cp312-win_amd64.whl", hash = "sha256:f941635f2a3d96b2973e867144fde513665c87f13fe0e193c158ac51bfaaa7b2"}, + {file = "pydantic_core-2.33.2-cp312-cp312-win_arm64.whl", hash = "sha256:cca3868ddfaccfbc4bfb1d608e2ccaaebe0ae628e1416aeb9c4d88c001bb45ab"}, + {file = "pydantic_core-2.33.2-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:1082dd3e2d7109ad8b7da48e1d4710c8d06c253cbc4a27c1cff4fbcaa97a9e3f"}, + {file = "pydantic_core-2.33.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f517ca031dfc037a9c07e748cefd8d96235088b83b4f4ba8939105d20fa1dcd6"}, + {file = "pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a9f2c9dd19656823cb8250b0724ee9c60a82f3cdf68a080979d13092a3b0fef"}, + {file = "pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b0a451c263b01acebe51895bfb0e1cc842a5c666efe06cdf13846c7418caa9a"}, + {file = "pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ea40a64d23faa25e62a70ad163571c0b342b8bf66d5fa612ac0dec4f069d916"}, + {file = "pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0fb2d542b4d66f9470e8065c5469ec676978d625a8b7a363f07d9a501a9cb36a"}, + {file = "pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fdac5d6ffa1b5a83bca06ffe7583f5576555e6c8b3a91fbd25ea7780f825f7d"}, + {file = "pydantic_core-2.33.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:04a1a413977ab517154eebb2d326da71638271477d6ad87a769102f7c2488c56"}, + {file = "pydantic_core-2.33.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:c8e7af2f4e0194c22b5b37205bfb293d166a7344a5b0d0eaccebc376546d77d5"}, + {file = "pydantic_core-2.33.2-cp313-cp313-musllinux_1_1_armv7l.whl", hash = "sha256:5c92edd15cd58b3c2d34873597a1e20f13094f59cf88068adb18947df5455b4e"}, + {file = "pydantic_core-2.33.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:65132b7b4a1c0beded5e057324b7e16e10910c106d43675d9bd87d4f38dde162"}, + {file = "pydantic_core-2.33.2-cp313-cp313-win32.whl", hash = "sha256:52fb90784e0a242bb96ec53f42196a17278855b0f31ac7c3cc6f5c1ec4811849"}, + {file = "pydantic_core-2.33.2-cp313-cp313-win_amd64.whl", hash = "sha256:c083a3bdd5a93dfe480f1125926afcdbf2917ae714bdb80b36d34318b2bec5d9"}, + {file = "pydantic_core-2.33.2-cp313-cp313-win_arm64.whl", hash = "sha256:e80b087132752f6b3d714f041ccf74403799d3b23a72722ea2e6ba2e892555b9"}, + {file = "pydantic_core-2.33.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:61c18fba8e5e9db3ab908620af374db0ac1baa69f0f32df4f61ae23f15e586ac"}, + {file = "pydantic_core-2.33.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95237e53bb015f67b63c91af7518a62a8660376a6a0db19b89acc77a4d6199f5"}, + {file = "pydantic_core-2.33.2-cp313-cp313t-win_amd64.whl", hash = "sha256:c2fc0a768ef76c15ab9238afa6da7f69895bb5d1ee83aeea2e3509af4472d0b9"}, + {file = "pydantic_core-2.33.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a2b911a5b90e0374d03813674bf0a5fbbb7741570dcd4b4e85a2e48d17def29d"}, + {file = "pydantic_core-2.33.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6fa6dfc3e4d1f734a34710f391ae822e0a8eb8559a85c6979e14e65ee6ba2954"}, + {file = "pydantic_core-2.33.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c54c939ee22dc8e2d545da79fc5381f1c020d6d3141d3bd747eab59164dc89fb"}, + {file = "pydantic_core-2.33.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53a57d2ed685940a504248187d5685e49eb5eef0f696853647bf37c418c538f7"}, + {file = "pydantic_core-2.33.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09fb9dd6571aacd023fe6aaca316bd01cf60ab27240d7eb39ebd66a3a15293b4"}, + {file = "pydantic_core-2.33.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0e6116757f7959a712db11f3e9c0a99ade00a5bbedae83cb801985aa154f071b"}, + {file = "pydantic_core-2.33.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d55ab81c57b8ff8548c3e4947f119551253f4e3787a7bbc0b6b3ca47498a9d3"}, + {file = "pydantic_core-2.33.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c20c462aa4434b33a2661701b861604913f912254e441ab8d78d30485736115a"}, + {file = "pydantic_core-2.33.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:44857c3227d3fb5e753d5fe4a3420d6376fa594b07b621e220cd93703fe21782"}, + {file = "pydantic_core-2.33.2-cp39-cp39-musllinux_1_1_armv7l.whl", hash = "sha256:eb9b459ca4df0e5c87deb59d37377461a538852765293f9e6ee834f0435a93b9"}, + {file = "pydantic_core-2.33.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9fcd347d2cc5c23b06de6d3b7b8275be558a0c90549495c699e379a80bf8379e"}, + {file = "pydantic_core-2.33.2-cp39-cp39-win32.whl", hash = "sha256:83aa99b1285bc8f038941ddf598501a86f1536789740991d7d8756e34f1e74d9"}, + {file = "pydantic_core-2.33.2-cp39-cp39-win_amd64.whl", hash = "sha256:f481959862f57f29601ccced557cc2e817bce7533ab8e01a797a48b49c9692b3"}, + {file = "pydantic_core-2.33.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5c4aa4e82353f65e548c476b37e64189783aa5384903bfea4f41580f255fddfa"}, + {file = "pydantic_core-2.33.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d946c8bf0d5c24bf4fe333af284c59a19358aa3ec18cb3dc4370080da1e8ad29"}, + {file = "pydantic_core-2.33.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:87b31b6846e361ef83fedb187bb5b4372d0da3f7e28d85415efa92d6125d6e6d"}, + {file = "pydantic_core-2.33.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa9d91b338f2df0508606f7009fde642391425189bba6d8c653afd80fd6bb64e"}, + {file = "pydantic_core-2.33.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2058a32994f1fde4ca0480ab9d1e75a0e8c87c22b53a3ae66554f9af78f2fe8c"}, + {file = "pydantic_core-2.33.2-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:0e03262ab796d986f978f79c943fc5f620381be7287148b8010b4097f79a39ec"}, + {file = "pydantic_core-2.33.2-pp310-pypy310_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:1a8695a8d00c73e50bff9dfda4d540b7dee29ff9b8053e38380426a85ef10052"}, + {file = "pydantic_core-2.33.2-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:fa754d1850735a0b0e03bcffd9d4b4343eb417e47196e4485d9cca326073a42c"}, + {file = "pydantic_core-2.33.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:a11c8d26a50bfab49002947d3d237abe4d9e4b5bdc8846a63537b6488e197808"}, + {file = "pydantic_core-2.33.2-pp311-pypy311_pp73-macosx_10_12_x86_64.whl", hash = "sha256:dd14041875d09cc0f9308e37a6f8b65f5585cf2598a53aa0123df8b129d481f8"}, + {file = "pydantic_core-2.33.2-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:d87c561733f66531dced0da6e864f44ebf89a8fba55f31407b00c2f7f9449593"}, + {file = "pydantic_core-2.33.2-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2f82865531efd18d6e07a04a17331af02cb7a651583c418df8266f17a63c6612"}, + {file = "pydantic_core-2.33.2-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bfb5112df54209d820d7bf9317c7a6c9025ea52e49f46b6a2060104bba37de7"}, + {file = "pydantic_core-2.33.2-pp311-pypy311_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:64632ff9d614e5eecfb495796ad51b0ed98c453e447a76bcbeeb69615079fc7e"}, + {file = "pydantic_core-2.33.2-pp311-pypy311_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:f889f7a40498cc077332c7ab6b4608d296d852182211787d4f3ee377aaae66e8"}, + {file = "pydantic_core-2.33.2-pp311-pypy311_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:de4b83bb311557e439b9e186f733f6c645b9417c84e2eb8203f3f820a4b988bf"}, + {file = "pydantic_core-2.33.2-pp311-pypy311_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:82f68293f055f51b51ea42fafc74b6aad03e70e191799430b90c13d643059ebb"}, + {file = "pydantic_core-2.33.2-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:329467cecfb529c925cf2bbd4d60d2c509bc2fb52a20c1045bf09bb70971a9c1"}, + {file = "pydantic_core-2.33.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:87acbfcf8e90ca885206e98359d7dca4bcbb35abdc0ff66672a293e1d7a19101"}, + {file = "pydantic_core-2.33.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:7f92c15cd1e97d4b12acd1cc9004fa092578acfa57b67ad5e43a197175d01a64"}, + {file = "pydantic_core-2.33.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d3f26877a748dc4251cfcfda9dfb5f13fcb034f5308388066bcfe9031b63ae7d"}, + {file = "pydantic_core-2.33.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dac89aea9af8cd672fa7b510e7b8c33b0bba9a43186680550ccf23020f32d535"}, + {file = "pydantic_core-2.33.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:970919794d126ba8645f3837ab6046fb4e72bbc057b3709144066204c19a455d"}, + {file = "pydantic_core-2.33.2-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:3eb3fe62804e8f859c49ed20a8451342de53ed764150cb14ca71357c765dc2a6"}, + {file = "pydantic_core-2.33.2-pp39-pypy39_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:3abcd9392a36025e3bd55f9bd38d908bd17962cc49bc6da8e7e96285336e2bca"}, + {file = "pydantic_core-2.33.2-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:3a1c81334778f9e3af2f8aeb7a960736e5cab1dfebfb26aabca09afd2906c039"}, + {file = "pydantic_core-2.33.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:2807668ba86cb38c6817ad9bc66215ab8584d1d304030ce4f0887336f28a5e27"}, + {file = "pydantic_core-2.33.2.tar.gz", hash = "sha256:7cb8bc3605c29176e1b105350d2e6474142d7c1bd1d9327c4a9bdb46bf827acc"}, +] + +[package.dependencies] +typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" + +[[package]] +name = "pydantic-settings" +version = "2.9.1" +description = "Settings management using Pydantic" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "pydantic_settings-2.9.1-py3-none-any.whl", hash = "sha256:59b4f431b1defb26fe620c71a7d3968a710d719f5f4cdbbdb7926edeb770f6ef"}, + {file = "pydantic_settings-2.9.1.tar.gz", hash = "sha256:c509bf79d27563add44e8446233359004ed85066cd096d8b510f715e6ef5d268"}, +] + +[package.dependencies] +pydantic = ">=2.7.0" +python-dotenv = ">=0.21.0" +typing-inspection = ">=0.4.0" + +[package.extras] +aws-secrets-manager = ["boto3 (>=1.35.0)", "boto3-stubs[secretsmanager]"] +azure-key-vault = ["azure-identity (>=1.16.0)", "azure-keyvault-secrets (>=4.8.0)"] +gcp-secret-manager = ["google-cloud-secret-manager (>=2.23.1)"] +toml = ["tomli (>=2.0.1)"] +yaml = ["pyyaml (>=6.0.1)"] + +[[package]] +name = "pygments" +version = "2.19.1" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "pygments-2.19.1-py3-none-any.whl", hash = "sha256:9ea1544ad55cecf4b8242fab6dd35a93bbce657034b0611ee383099054ab6d8c"}, + {file = "pygments-2.19.1.tar.gz", hash = "sha256:61c16d2a8576dc0649d9f39e089b5f02bcd27fba10d8fb4dcc28173f7a45151f"}, +] + +[package.extras] +windows-terminal = ["colorama (>=0.4.6)"] + +[[package]] +name = "pyparsing" +version = "3.2.3" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "pyparsing-3.2.3-py3-none-any.whl", hash = "sha256:a749938e02d6fd0b59b356ca504a24982314bb090c383e3cf201c95ef7e2bfcf"}, + {file = "pyparsing-3.2.3.tar.gz", hash = "sha256:b9c13f1ab8b3b542f72e28f634bad4de758ab3ce4546e4301970ad6fa77c38be"}, +] + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + +[[package]] +name = "pypdf" +version = "5.6.0" +description = "A pure-python PDF library capable of splitting, merging, cropping, and transforming PDF files" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "pypdf-5.6.0-py3-none-any.whl", hash = "sha256:ca6bf446bfb0a2d8d71d6d6bb860798d864c36a29b3d9ae8d7fc7958c59f88e7"}, + {file = "pypdf-5.6.0.tar.gz", hash = "sha256:a4b6538b77fc796622000db7127e4e58039ec5e6afd292f8e9bf42e2e985a749"}, +] + +[package.dependencies] +typing_extensions = {version = ">=4.0", markers = "python_version < \"3.11\""} + +[package.extras] +crypto = ["cryptography"] +cryptodome = ["PyCryptodome"] +dev = ["black", "flit", "pip-tools", "pre-commit", "pytest-cov", "pytest-socket", "pytest-timeout", "pytest-xdist", "wheel"] +docs = ["myst_parser", "sphinx", "sphinx_rtd_theme"] +full = ["Pillow (>=8.0.0)", "cryptography"] +image = ["Pillow (>=8.0.0)"] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +groups = ["main"] +files = [ + {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, + {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "python-dotenv" +version = "1.1.0" +description = "Read key-value pairs from a .env file and set them as environment variables" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "python_dotenv-1.1.0-py3-none-any.whl", hash = "sha256:d7c01d9e2293916c18baf562d95698754b0dbbb5e74d457c45d4f6561fb9d55d"}, + {file = "python_dotenv-1.1.0.tar.gz", hash = "sha256:41f90bc6f5f177fb41f53e87666db362025010eb28f60a01c9143bfa33a2b2d5"}, +] + +[package.extras] +cli = ["click (>=5.0)"] + +[[package]] +name = "pytz" +version = "2025.2" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +groups = ["main"] +files = [ + {file = "pytz-2025.2-py2.py3-none-any.whl", hash = "sha256:5ddf76296dd8c44c26eb8f4b6f35488f3ccbf6fbbd7adee0b7262d43f0ec2f00"}, + {file = "pytz-2025.2.tar.gz", hash = "sha256:360b9e3dbb49a209c21ad61809c7fb453643e048b38924c765813546746e81c3"}, +] + +[[package]] +name = "pywin32" +version = "310" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +groups = ["main"] +markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\"" +files = [ + {file = "pywin32-310-cp310-cp310-win32.whl", hash = "sha256:6dd97011efc8bf51d6793a82292419eba2c71cf8e7250cfac03bba284454abc1"}, + {file = "pywin32-310-cp310-cp310-win_amd64.whl", hash = "sha256:c3e78706e4229b915a0821941a84e7ef420bf2b77e08c9dae3c76fd03fd2ae3d"}, + {file = "pywin32-310-cp310-cp310-win_arm64.whl", hash = "sha256:33babed0cf0c92a6f94cc6cc13546ab24ee13e3e800e61ed87609ab91e4c8213"}, + {file = "pywin32-310-cp311-cp311-win32.whl", hash = "sha256:1e765f9564e83011a63321bb9d27ec456a0ed90d3732c4b2e312b855365ed8bd"}, + {file = "pywin32-310-cp311-cp311-win_amd64.whl", hash = "sha256:126298077a9d7c95c53823934f000599f66ec9296b09167810eb24875f32689c"}, + {file = "pywin32-310-cp311-cp311-win_arm64.whl", hash = "sha256:19ec5fc9b1d51c4350be7bb00760ffce46e6c95eaf2f0b2f1150657b1a43c582"}, + {file = "pywin32-310-cp312-cp312-win32.whl", hash = "sha256:8a75a5cc3893e83a108c05d82198880704c44bbaee4d06e442e471d3c9ea4f3d"}, + {file = "pywin32-310-cp312-cp312-win_amd64.whl", hash = "sha256:bf5c397c9a9a19a6f62f3fb821fbf36cac08f03770056711f765ec1503972060"}, + {file = "pywin32-310-cp312-cp312-win_arm64.whl", hash = "sha256:2349cc906eae872d0663d4d6290d13b90621eaf78964bb1578632ff20e152966"}, + {file = "pywin32-310-cp313-cp313-win32.whl", hash = "sha256:5d241a659c496ada3253cd01cfaa779b048e90ce4b2b38cd44168ad555ce74ab"}, + {file = "pywin32-310-cp313-cp313-win_amd64.whl", hash = "sha256:667827eb3a90208ddbdcc9e860c81bde63a135710e21e4cb3348968e4bd5249e"}, + {file = "pywin32-310-cp313-cp313-win_arm64.whl", hash = "sha256:e308f831de771482b7cf692a1f308f8fca701b2d8f9dde6cc440c7da17e47b33"}, + {file = "pywin32-310-cp38-cp38-win32.whl", hash = "sha256:0867beb8addefa2e3979d4084352e4ac6e991ca45373390775f7084cc0209b9c"}, + {file = "pywin32-310-cp38-cp38-win_amd64.whl", hash = "sha256:30f0a9b3138fb5e07eb4973b7077e1883f558e40c578c6925acc7a94c34eaa36"}, + {file = "pywin32-310-cp39-cp39-win32.whl", hash = "sha256:851c8d927af0d879221e616ae1f66145253537bbdd321a77e8ef701b443a9a1a"}, + {file = "pywin32-310-cp39-cp39-win_amd64.whl", hash = "sha256:96867217335559ac619f00ad70e513c0fcf84b8a3af9fc2bba3b59b97da70475"}, +] + +[[package]] +name = "pyyaml" +version = "6.0.2" +description = "YAML parser and emitter for Python" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, + {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, + {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, + {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, + {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, + {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, + {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, + {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, + {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, +] + +[[package]] +name = "pyzmq" +version = "27.0.0" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "pyzmq-27.0.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:b973ee650e8f442ce482c1d99ca7ab537c69098d53a3d046676a484fd710c87a"}, + {file = "pyzmq-27.0.0-cp310-cp310-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:661942bc7cd0223d569d808f2e5696d9cc120acc73bf3e88a1f1be7ab648a7e4"}, + {file = "pyzmq-27.0.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:50360fb2a056ffd16e5f4177eee67f1dd1017332ea53fb095fe7b5bf29c70246"}, + {file = "pyzmq-27.0.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:cf209a6dc4b420ed32a7093642843cbf8703ed0a7d86c16c0b98af46762ebefb"}, + {file = "pyzmq-27.0.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c2dace4a7041cca2fba5357a2d7c97c5effdf52f63a1ef252cfa496875a3762d"}, + {file = "pyzmq-27.0.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:63af72b2955fc77caf0a77444baa2431fcabb4370219da38e1a9f8d12aaebe28"}, + {file = "pyzmq-27.0.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:e8c4adce8e37e75c4215297d7745551b8dcfa5f728f23ce09bf4e678a9399413"}, + {file = "pyzmq-27.0.0-cp310-cp310-win32.whl", hash = "sha256:5d5ef4718ecab24f785794e0e7536436698b459bfbc19a1650ef55280119d93b"}, + {file = "pyzmq-27.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:e40609380480b3d12c30f841323f42451c755b8fece84235236f5fe5ffca8c1c"}, + {file = "pyzmq-27.0.0-cp310-cp310-win_arm64.whl", hash = "sha256:6b0397b0be277b46762956f576e04dc06ced265759e8c2ff41a0ee1aa0064198"}, + {file = "pyzmq-27.0.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:21457825249b2a53834fa969c69713f8b5a79583689387a5e7aed880963ac564"}, + {file = "pyzmq-27.0.0-cp311-cp311-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:1958947983fef513e6e98eff9cb487b60bf14f588dc0e6bf35fa13751d2c8251"}, + {file = "pyzmq-27.0.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c0dc628b5493f9a8cd9844b8bee9732ef587ab00002157c9329e4fc0ef4d3afa"}, + {file = "pyzmq-27.0.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f7bbe9e1ed2c8d3da736a15694d87c12493e54cc9dc9790796f0321794bbc91f"}, + {file = "pyzmq-27.0.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:dc1091f59143b471d19eb64f54bae4f54bcf2a466ffb66fe45d94d8d734eb495"}, + {file = "pyzmq-27.0.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:7011ade88c8e535cf140f8d1a59428676fbbce7c6e54fefce58bf117aefb6667"}, + {file = "pyzmq-27.0.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:2c386339d7e3f064213aede5d03d054b237937fbca6dd2197ac8cf3b25a6b14e"}, + {file = "pyzmq-27.0.0-cp311-cp311-win32.whl", hash = "sha256:0546a720c1f407b2172cb04b6b094a78773491497e3644863cf5c96c42df8cff"}, + {file = "pyzmq-27.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:15f39d50bd6c9091c67315ceb878a4f531957b121d2a05ebd077eb35ddc5efed"}, + {file = "pyzmq-27.0.0-cp311-cp311-win_arm64.whl", hash = "sha256:c5817641eebb391a2268c27fecd4162448e03538387093cdbd8bf3510c316b38"}, + {file = "pyzmq-27.0.0-cp312-abi3-macosx_10_15_universal2.whl", hash = "sha256:cbabc59dcfaac66655c040dfcb8118f133fb5dde185e5fc152628354c1598e52"}, + {file = "pyzmq-27.0.0-cp312-abi3-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:cb0ac5179cba4b2f94f1aa208fbb77b62c4c9bf24dd446278b8b602cf85fcda3"}, + {file = "pyzmq-27.0.0-cp312-abi3-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:53a48f0228eab6cbf69fde3aa3c03cbe04e50e623ef92ae395fce47ef8a76152"}, + {file = "pyzmq-27.0.0-cp312-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:111db5f395e09f7e775f759d598f43cb815fc58e0147623c4816486e1a39dc22"}, + {file = "pyzmq-27.0.0-cp312-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:c8878011653dcdc27cc2c57e04ff96f0471e797f5c19ac3d7813a245bcb24371"}, + {file = "pyzmq-27.0.0-cp312-abi3-musllinux_1_2_i686.whl", hash = "sha256:c0ed2c1f335ba55b5fdc964622254917d6b782311c50e138863eda409fbb3b6d"}, + {file = "pyzmq-27.0.0-cp312-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:e918d70862d4cfd4b1c187310015646a14e1f5917922ab45b29f28f345eeb6be"}, + {file = "pyzmq-27.0.0-cp312-abi3-win32.whl", hash = "sha256:88b4e43cab04c3c0f0d55df3b1eef62df2b629a1a369b5289a58f6fa8b07c4f4"}, + {file = "pyzmq-27.0.0-cp312-abi3-win_amd64.whl", hash = "sha256:dce4199bf5f648a902ce37e7b3afa286f305cd2ef7a8b6ec907470ccb6c8b371"}, + {file = "pyzmq-27.0.0-cp312-abi3-win_arm64.whl", hash = "sha256:56e46bbb85d52c1072b3f809cc1ce77251d560bc036d3a312b96db1afe76db2e"}, + {file = "pyzmq-27.0.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c36ad534c0c29b4afa088dc53543c525b23c0797e01b69fef59b1a9c0e38b688"}, + {file = "pyzmq-27.0.0-cp313-cp313t-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:67855c14173aec36395d7777aaba3cc527b393821f30143fd20b98e1ff31fd38"}, + {file = "pyzmq-27.0.0-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8617c7d43cd8ccdb62aebe984bfed77ca8f036e6c3e46dd3dddda64b10f0ab7a"}, + {file = "pyzmq-27.0.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:67bfbcbd0a04c575e8103a6061d03e393d9f80ffdb9beb3189261e9e9bc5d5e9"}, + {file = "pyzmq-27.0.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:5cd11d46d7b7e5958121b3eaf4cd8638eff3a720ec527692132f05a57f14341d"}, + {file = "pyzmq-27.0.0-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:b801c2e40c5aa6072c2f4876de8dccd100af6d9918d4d0d7aa54a1d982fd4f44"}, + {file = "pyzmq-27.0.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:20d5cb29e8c5f76a127c75b6e7a77e846bc4b655c373baa098c26a61b7ecd0ef"}, + {file = "pyzmq-27.0.0-cp313-cp313t-win32.whl", hash = "sha256:a20528da85c7ac7a19b7384e8c3f8fa707841fd85afc4ed56eda59d93e3d98ad"}, + {file = "pyzmq-27.0.0-cp313-cp313t-win_amd64.whl", hash = "sha256:d8229f2efece6a660ee211d74d91dbc2a76b95544d46c74c615e491900dc107f"}, + {file = "pyzmq-27.0.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:f4162dbbd9c5c84fb930a36f290b08c93e35fce020d768a16fc8891a2f72bab8"}, + {file = "pyzmq-27.0.0-cp38-cp38-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:4e7d0a8d460fba526cc047333bdcbf172a159b8bd6be8c3eb63a416ff9ba1477"}, + {file = "pyzmq-27.0.0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:29f44e3c26b9783816ba9ce274110435d8f5b19bbd82f7a6c7612bb1452a3597"}, + {file = "pyzmq-27.0.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6e435540fa1da54667f0026cf1e8407fe6d8a11f1010b7f06b0b17214ebfcf5e"}, + {file = "pyzmq-27.0.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:51f5726de3532b8222e569990c8aa34664faa97038304644679a51d906e60c6e"}, + {file = "pyzmq-27.0.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:42c7555123679637c99205b1aa9e8f7d90fe29d4c243c719e347d4852545216c"}, + {file = "pyzmq-27.0.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:a979b7cf9e33d86c4949df527a3018767e5f53bc3b02adf14d4d8db1db63ccc0"}, + {file = "pyzmq-27.0.0-cp38-cp38-win32.whl", hash = "sha256:26b72c5ae20bf59061c3570db835edb81d1e0706ff141747055591c4b41193f8"}, + {file = "pyzmq-27.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:55a0155b148fe0428285a30922f7213539aa84329a5ad828bca4bbbc665c70a4"}, + {file = "pyzmq-27.0.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:100f6e5052ba42b2533011d34a018a5ace34f8cac67cb03cfa37c8bdae0ca617"}, + {file = "pyzmq-27.0.0-cp39-cp39-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:bf6c6b061efd00404b9750e2cfbd9507492c8d4b3721ded76cb03786131be2ed"}, + {file = "pyzmq-27.0.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ee05728c0b0b2484a9fc20466fa776fffb65d95f7317a3419985b8c908563861"}, + {file = "pyzmq-27.0.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:7cdf07fe0a557b131366f80727ec8ccc4b70d89f1e3f920d94a594d598d754f0"}, + {file = "pyzmq-27.0.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:90252fa2ff3a104219db1f5ced7032a7b5fc82d7c8d2fec2b9a3e6fd4e25576b"}, + {file = "pyzmq-27.0.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ea6d441c513bf18c578c73c323acf7b4184507fc244762193aa3a871333c9045"}, + {file = "pyzmq-27.0.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:ae2b34bcfaae20c064948a4113bf8709eee89fd08317eb293ae4ebd69b4d9740"}, + {file = "pyzmq-27.0.0-cp39-cp39-win32.whl", hash = "sha256:5b10bd6f008937705cf6e7bf8b6ece5ca055991e3eb130bca8023e20b86aa9a3"}, + {file = "pyzmq-27.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:00387d12a8af4b24883895f7e6b9495dc20a66027b696536edac35cb988c38f3"}, + {file = "pyzmq-27.0.0-cp39-cp39-win_arm64.whl", hash = "sha256:4c19d39c04c29a6619adfeb19e3735c421b3bfee082f320662f52e59c47202ba"}, + {file = "pyzmq-27.0.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:656c1866505a5735d0660b7da6d7147174bbf59d4975fc2b7f09f43c9bc25745"}, + {file = "pyzmq-27.0.0-pp310-pypy310_pp73-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:74175b9e12779382432dd1d1f5960ebe7465d36649b98a06c6b26be24d173fab"}, + {file = "pyzmq-27.0.0-pp310-pypy310_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d8c6de908465697a8708e4d6843a1e884f567962fc61eb1706856545141d0cbb"}, + {file = "pyzmq-27.0.0-pp310-pypy310_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c644aaacc01d0df5c7072826df45e67301f191c55f68d7b2916d83a9ddc1b551"}, + {file = "pyzmq-27.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:10f70c1d9a446a85013a36871a296007f6fe4232b530aa254baf9da3f8328bc0"}, + {file = "pyzmq-27.0.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cd1dc59763effd1576f8368047c9c31468fce0af89d76b5067641137506792ae"}, + {file = "pyzmq-27.0.0-pp311-pypy311_pp73-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:60e8cc82d968174650c1860d7b716366caab9973787a1c060cf8043130f7d0f7"}, + {file = "pyzmq-27.0.0-pp311-pypy311_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:14fe7aaac86e4e93ea779a821967360c781d7ac5115b3f1a171ced77065a0174"}, + {file = "pyzmq-27.0.0-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6ad0562d4e6abb785be3e4dd68599c41be821b521da38c402bc9ab2a8e7ebc7e"}, + {file = "pyzmq-27.0.0-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:9df43a2459cd3a3563404c1456b2c4c69564daa7dbaf15724c09821a3329ce46"}, + {file = "pyzmq-27.0.0-pp38-pypy38_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8c86ea8fe85e2eb0ffa00b53192c401477d5252f6dd1db2e2ed21c1c30d17e5e"}, + {file = "pyzmq-27.0.0-pp38-pypy38_pp73-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:c45fee3968834cd291a13da5fac128b696c9592a9493a0f7ce0b47fa03cc574d"}, + {file = "pyzmq-27.0.0-pp38-pypy38_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:cae73bb6898c4e045fbed5024cb587e4110fddb66f6163bcab5f81f9d4b9c496"}, + {file = "pyzmq-27.0.0-pp38-pypy38_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:26d542258c7a1f35a9cff3d887687d3235006134b0ac1c62a6fe1ad3ac10440e"}, + {file = "pyzmq-27.0.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:04cd50ef3b28e35ced65740fb9956a5b3f77a6ff32fcd887e3210433f437dd0f"}, + {file = "pyzmq-27.0.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:39ddd3ba0a641f01d8f13a3cfd4c4924eb58e660d8afe87e9061d6e8ca6f7ac3"}, + {file = "pyzmq-27.0.0-pp39-pypy39_pp73-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:8ca7e6a0388dd9e1180b14728051068f4efe83e0d2de058b5ff92c63f399a73f"}, + {file = "pyzmq-27.0.0-pp39-pypy39_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:2524c40891be6a3106885a3935d58452dd83eb7a5742a33cc780a1ad4c49dec0"}, + {file = "pyzmq-27.0.0-pp39-pypy39_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6a56e3e5bd2d62a01744fd2f1ce21d760c7c65f030e9522738d75932a14ab62a"}, + {file = "pyzmq-27.0.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:096af9e133fec3a72108ddefba1e42985cb3639e9de52cfd336b6fc23aa083e9"}, + {file = "pyzmq-27.0.0.tar.gz", hash = "sha256:b1f08eeb9ce1510e6939b6e5dcd46a17765e2333daae78ecf4606808442e52cf"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "regex" +version = "2024.11.6" +description = "Alternative regular expression module, to replace re." +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "regex-2024.11.6-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ff590880083d60acc0433f9c3f713c51f7ac6ebb9adf889c79a261ecf541aa91"}, + {file = "regex-2024.11.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:658f90550f38270639e83ce492f27d2c8d2cd63805c65a13a14d36ca126753f0"}, + {file = "regex-2024.11.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:164d8b7b3b4bcb2068b97428060b2a53be050085ef94eca7f240e7947f1b080e"}, + {file = "regex-2024.11.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d3660c82f209655a06b587d55e723f0b813d3a7db2e32e5e7dc64ac2a9e86fde"}, + {file = "regex-2024.11.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d22326fcdef5e08c154280b71163ced384b428343ae16a5ab2b3354aed12436e"}, + {file = "regex-2024.11.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f1ac758ef6aebfc8943560194e9fd0fa18bcb34d89fd8bd2af18183afd8da3a2"}, + {file = "regex-2024.11.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:997d6a487ff00807ba810e0f8332c18b4eb8d29463cfb7c820dc4b6e7562d0cf"}, + {file = "regex-2024.11.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:02a02d2bb04fec86ad61f3ea7f49c015a0681bf76abb9857f945d26159d2968c"}, + {file = "regex-2024.11.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f02f93b92358ee3f78660e43b4b0091229260c5d5c408d17d60bf26b6c900e86"}, + {file = "regex-2024.11.6-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:06eb1be98df10e81ebaded73fcd51989dcf534e3c753466e4b60c4697a003b67"}, + {file = "regex-2024.11.6-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:040df6fe1a5504eb0f04f048e6d09cd7c7110fef851d7c567a6b6e09942feb7d"}, + {file = "regex-2024.11.6-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:fdabbfc59f2c6edba2a6622c647b716e34e8e3867e0ab975412c5c2f79b82da2"}, + {file = "regex-2024.11.6-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:8447d2d39b5abe381419319f942de20b7ecd60ce86f16a23b0698f22e1b70008"}, + {file = "regex-2024.11.6-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:da8f5fc57d1933de22a9e23eec290a0d8a5927a5370d24bda9a6abe50683fe62"}, + {file = "regex-2024.11.6-cp310-cp310-win32.whl", hash = "sha256:b489578720afb782f6ccf2840920f3a32e31ba28a4b162e13900c3e6bd3f930e"}, + {file = "regex-2024.11.6-cp310-cp310-win_amd64.whl", hash = "sha256:5071b2093e793357c9d8b2929dfc13ac5f0a6c650559503bb81189d0a3814519"}, + {file = "regex-2024.11.6-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:5478c6962ad548b54a591778e93cd7c456a7a29f8eca9c49e4f9a806dcc5d638"}, + {file = "regex-2024.11.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2c89a8cc122b25ce6945f0423dc1352cb9593c68abd19223eebbd4e56612c5b7"}, + {file = "regex-2024.11.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:94d87b689cdd831934fa3ce16cc15cd65748e6d689f5d2b8f4f4df2065c9fa20"}, + {file = "regex-2024.11.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1062b39a0a2b75a9c694f7a08e7183a80c63c0d62b301418ffd9c35f55aaa114"}, + {file = "regex-2024.11.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:167ed4852351d8a750da48712c3930b031f6efdaa0f22fa1933716bfcd6bf4a3"}, + {file = "regex-2024.11.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2d548dafee61f06ebdb584080621f3e0c23fff312f0de1afc776e2a2ba99a74f"}, + {file = "regex-2024.11.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2a19f302cd1ce5dd01a9099aaa19cae6173306d1302a43b627f62e21cf18ac0"}, + {file = "regex-2024.11.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bec9931dfb61ddd8ef2ebc05646293812cb6b16b60cf7c9511a832b6f1854b55"}, + {file = "regex-2024.11.6-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:9714398225f299aa85267fd222f7142fcb5c769e73d7733344efc46f2ef5cf89"}, + {file = "regex-2024.11.6-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:202eb32e89f60fc147a41e55cb086db2a3f8cb82f9a9a88440dcfc5d37faae8d"}, + {file = "regex-2024.11.6-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:4181b814e56078e9b00427ca358ec44333765f5ca1b45597ec7446d3a1ef6e34"}, + {file = "regex-2024.11.6-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:068376da5a7e4da51968ce4c122a7cd31afaaec4fccc7856c92f63876e57b51d"}, + {file = "regex-2024.11.6-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f2c4184420d881a3475fb2c6f4d95d53a8d50209a2500723d831036f7c45"}, + {file = "regex-2024.11.6-cp311-cp311-win32.whl", hash = "sha256:c36f9b6f5f8649bb251a5f3f66564438977b7ef8386a52460ae77e6070d309d9"}, + {file = "regex-2024.11.6-cp311-cp311-win_amd64.whl", hash = "sha256:02e28184be537f0e75c1f9b2f8847dc51e08e6e171c6bde130b2687e0c33cf60"}, + {file = "regex-2024.11.6-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:52fb28f528778f184f870b7cf8f225f5eef0a8f6e3778529bdd40c7b3920796a"}, + {file = "regex-2024.11.6-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:fdd6028445d2460f33136c55eeb1f601ab06d74cb3347132e1c24250187500d9"}, + {file = "regex-2024.11.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:805e6b60c54bf766b251e94526ebad60b7de0c70f70a4e6210ee2891acb70bf2"}, + {file = "regex-2024.11.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b85c2530be953a890eaffde05485238f07029600e8f098cdf1848d414a8b45e4"}, + {file = "regex-2024.11.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb26437975da7dc36b7efad18aa9dd4ea569d2357ae6b783bf1118dabd9ea577"}, + {file = "regex-2024.11.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:abfa5080c374a76a251ba60683242bc17eeb2c9818d0d30117b4486be10c59d3"}, + {file = "regex-2024.11.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b7fa6606c2881c1db9479b0eaa11ed5dfa11c8d60a474ff0e095099f39d98e"}, + {file = "regex-2024.11.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0c32f75920cf99fe6b6c539c399a4a128452eaf1af27f39bce8909c9a3fd8cbe"}, + {file = "regex-2024.11.6-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:982e6d21414e78e1f51cf595d7f321dcd14de1f2881c5dc6a6e23bbbbd68435e"}, + {file = "regex-2024.11.6-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:a7c2155f790e2fb448faed6dd241386719802296ec588a8b9051c1f5c481bc29"}, + {file = "regex-2024.11.6-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:149f5008d286636e48cd0b1dd65018548944e495b0265b45e1bffecce1ef7f39"}, + {file = "regex-2024.11.6-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:e5364a4502efca094731680e80009632ad6624084aff9a23ce8c8c6820de3e51"}, + {file = "regex-2024.11.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0a86e7eeca091c09e021db8eb72d54751e527fa47b8d5787caf96d9831bd02ad"}, + {file = "regex-2024.11.6-cp312-cp312-win32.whl", hash = "sha256:32f9a4c643baad4efa81d549c2aadefaeba12249b2adc5af541759237eee1c54"}, + {file = "regex-2024.11.6-cp312-cp312-win_amd64.whl", hash = "sha256:a93c194e2df18f7d264092dc8539b8ffb86b45b899ab976aa15d48214138e81b"}, + {file = "regex-2024.11.6-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a6ba92c0bcdf96cbf43a12c717eae4bc98325ca3730f6b130ffa2e3c3c723d84"}, + {file = "regex-2024.11.6-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:525eab0b789891ac3be914d36893bdf972d483fe66551f79d3e27146191a37d4"}, + {file = "regex-2024.11.6-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:086a27a0b4ca227941700e0b31425e7a28ef1ae8e5e05a33826e17e47fbfdba0"}, + {file = "regex-2024.11.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bde01f35767c4a7899b7eb6e823b125a64de314a8ee9791367c9a34d56af18d0"}, + {file = "regex-2024.11.6-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b583904576650166b3d920d2bcce13971f6f9e9a396c673187f49811b2769dc7"}, + {file = "regex-2024.11.6-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c4de13f06a0d54fa0d5ab1b7138bfa0d883220965a29616e3ea61b35d5f5fc7"}, + {file = "regex-2024.11.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3cde6e9f2580eb1665965ce9bf17ff4952f34f5b126beb509fee8f4e994f143c"}, + {file = "regex-2024.11.6-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0d7f453dca13f40a02b79636a339c5b62b670141e63efd511d3f8f73fba162b3"}, + {file = "regex-2024.11.6-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:59dfe1ed21aea057a65c6b586afd2a945de04fc7db3de0a6e3ed5397ad491b07"}, + {file = "regex-2024.11.6-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:b97c1e0bd37c5cd7902e65f410779d39eeda155800b65fc4d04cc432efa9bc6e"}, + {file = "regex-2024.11.6-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:f9d1e379028e0fc2ae3654bac3cbbef81bf3fd571272a42d56c24007979bafb6"}, + {file = "regex-2024.11.6-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:13291b39131e2d002a7940fb176e120bec5145f3aeb7621be6534e46251912c4"}, + {file = "regex-2024.11.6-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4f51f88c126370dcec4908576c5a627220da6c09d0bff31cfa89f2523843316d"}, + {file = "regex-2024.11.6-cp313-cp313-win32.whl", hash = "sha256:63b13cfd72e9601125027202cad74995ab26921d8cd935c25f09c630436348ff"}, + {file = "regex-2024.11.6-cp313-cp313-win_amd64.whl", hash = "sha256:2b3361af3198667e99927da8b84c1b010752fa4b1115ee30beaa332cabc3ef1a"}, + {file = "regex-2024.11.6-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:3a51ccc315653ba012774efca4f23d1d2a8a8f278a6072e29c7147eee7da446b"}, + {file = "regex-2024.11.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ad182d02e40de7459b73155deb8996bbd8e96852267879396fb274e8700190e3"}, + {file = "regex-2024.11.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ba9b72e5643641b7d41fa1f6d5abda2c9a263ae835b917348fc3c928182ad467"}, + {file = "regex-2024.11.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40291b1b89ca6ad8d3f2b82782cc33807f1406cf68c8d440861da6304d8ffbbd"}, + {file = "regex-2024.11.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cdf58d0e516ee426a48f7b2c03a332a4114420716d55769ff7108c37a09951bf"}, + {file = "regex-2024.11.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a36fdf2af13c2b14738f6e973aba563623cb77d753bbbd8d414d18bfaa3105dd"}, + {file = "regex-2024.11.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1cee317bfc014c2419a76bcc87f071405e3966da434e03e13beb45f8aced1a6"}, + {file = "regex-2024.11.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:50153825ee016b91549962f970d6a4442fa106832e14c918acd1c8e479916c4f"}, + {file = "regex-2024.11.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ea1bfda2f7162605f6e8178223576856b3d791109f15ea99a9f95c16a7636fb5"}, + {file = "regex-2024.11.6-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:df951c5f4a1b1910f1a99ff42c473ff60f8225baa1cdd3539fe2819d9543e9df"}, + {file = "regex-2024.11.6-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:072623554418a9911446278f16ecb398fb3b540147a7828c06e2011fa531e773"}, + {file = "regex-2024.11.6-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:f654882311409afb1d780b940234208a252322c24a93b442ca714d119e68086c"}, + {file = "regex-2024.11.6-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:89d75e7293d2b3e674db7d4d9b1bee7f8f3d1609428e293771d1a962617150cc"}, + {file = "regex-2024.11.6-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:f65557897fc977a44ab205ea871b690adaef6b9da6afda4790a2484b04293a5f"}, + {file = "regex-2024.11.6-cp38-cp38-win32.whl", hash = "sha256:6f44ec28b1f858c98d3036ad5d7d0bfc568bdd7a74f9c24e25f41ef1ebfd81a4"}, + {file = "regex-2024.11.6-cp38-cp38-win_amd64.whl", hash = "sha256:bb8f74f2f10dbf13a0be8de623ba4f9491faf58c24064f32b65679b021ed0001"}, + {file = "regex-2024.11.6-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5704e174f8ccab2026bd2f1ab6c510345ae8eac818b613d7d73e785f1310f839"}, + {file = "regex-2024.11.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:220902c3c5cc6af55d4fe19ead504de80eb91f786dc102fbd74894b1551f095e"}, + {file = "regex-2024.11.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5e7e351589da0850c125f1600a4c4ba3c722efefe16b297de54300f08d734fbf"}, + {file = "regex-2024.11.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5056b185ca113c88e18223183aa1a50e66507769c9640a6ff75859619d73957b"}, + {file = "regex-2024.11.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2e34b51b650b23ed3354b5a07aab37034d9f923db2a40519139af34f485f77d0"}, + {file = "regex-2024.11.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5670bce7b200273eee1840ef307bfa07cda90b38ae56e9a6ebcc9f50da9c469b"}, + {file = "regex-2024.11.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:08986dce1339bc932923e7d1232ce9881499a0e02925f7402fb7c982515419ef"}, + {file = "regex-2024.11.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:93c0b12d3d3bc25af4ebbf38f9ee780a487e8bf6954c115b9f015822d3bb8e48"}, + {file = "regex-2024.11.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:764e71f22ab3b305e7f4c21f1a97e1526a25ebdd22513e251cf376760213da13"}, + {file = "regex-2024.11.6-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:f056bf21105c2515c32372bbc057f43eb02aae2fda61052e2f7622c801f0b4e2"}, + {file = "regex-2024.11.6-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:69ab78f848845569401469da20df3e081e6b5a11cb086de3eed1d48f5ed57c95"}, + {file = "regex-2024.11.6-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:86fddba590aad9208e2fa8b43b4c098bb0ec74f15718bb6a704e3c63e2cef3e9"}, + {file = "regex-2024.11.6-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:684d7a212682996d21ca12ef3c17353c021fe9de6049e19ac8481ec35574a70f"}, + {file = "regex-2024.11.6-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:a03e02f48cd1abbd9f3b7e3586d97c8f7a9721c436f51a5245b3b9483044480b"}, + {file = "regex-2024.11.6-cp39-cp39-win32.whl", hash = "sha256:41758407fc32d5c3c5de163888068cfee69cb4c2be844e7ac517a52770f9af57"}, + {file = "regex-2024.11.6-cp39-cp39-win_amd64.whl", hash = "sha256:b2837718570f95dd41675328e111345f9b7095d821bac435aac173ac80b19983"}, + {file = "regex-2024.11.6.tar.gz", hash = "sha256:7ab159b063c52a0333c884e4679f8d7a85112ee3078fe3d9004b2dd875585519"}, +] + +[[package]] +name = "requests" +version = "2.32.4" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "requests-2.32.4-py3-none-any.whl", hash = "sha256:27babd3cda2a6d50b30443204ee89830707d396671944c998b5975b031ac2b2c"}, + {file = "requests-2.32.4.tar.gz", hash = "sha256:27d0316682c8a29834d3264820024b62a36942083d52caf2f14c0591336d3422"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset_normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + +[[package]] +name = "requests-toolbelt" +version = "1.0.0" +description = "A utility belt for advanced users of python-requests" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +groups = ["main"] +files = [ + {file = "requests-toolbelt-1.0.0.tar.gz", hash = "sha256:7681a0a3d047012b5bdc0ee37d7f8f07ebe76ab08caeccfc3921ce23c88d5bc6"}, + {file = "requests_toolbelt-1.0.0-py2.py3-none-any.whl", hash = "sha256:cccfdd665f0a24fcf4726e690f65639d272bb0637b9b92dfd91a5568ccf6bd06"}, +] + +[package.dependencies] +requests = ">=2.0.1,<3.0.0" + +[[package]] +name = "safetensors" +version = "0.5.3" +description = "" +optional = false +python-versions = ">=3.7" +groups = ["main"] +files = [ + {file = "safetensors-0.5.3-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:bd20eb133db8ed15b40110b7c00c6df51655a2998132193de2f75f72d99c7073"}, + {file = "safetensors-0.5.3-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:21d01c14ff6c415c485616b8b0bf961c46b3b343ca59110d38d744e577f9cce7"}, + {file = "safetensors-0.5.3-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:11bce6164887cd491ca75c2326a113ba934be596e22b28b1742ce27b1d076467"}, + {file = "safetensors-0.5.3-cp38-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4a243be3590bc3301c821da7a18d87224ef35cbd3e5f5727e4e0728b8172411e"}, + {file = "safetensors-0.5.3-cp38-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8bd84b12b1670a6f8e50f01e28156422a2bc07fb16fc4e98bded13039d688a0d"}, + {file = "safetensors-0.5.3-cp38-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:391ac8cab7c829452175f871fcaf414aa1e292b5448bd02620f675a7f3e7abb9"}, + {file = "safetensors-0.5.3-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cead1fa41fc54b1e61089fa57452e8834f798cb1dc7a09ba3524f1eb08e0317a"}, + {file = "safetensors-0.5.3-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1077f3e94182d72618357b04b5ced540ceb71c8a813d3319f1aba448e68a770d"}, + {file = "safetensors-0.5.3-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:799021e78287bac619c7b3f3606730a22da4cda27759ddf55d37c8db7511c74b"}, + {file = "safetensors-0.5.3-cp38-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:df26da01aaac504334644e1b7642fa000bfec820e7cef83aeac4e355e03195ff"}, + {file = "safetensors-0.5.3-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:32c3ef2d7af8b9f52ff685ed0bc43913cdcde135089ae322ee576de93eae5135"}, + {file = "safetensors-0.5.3-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:37f1521be045e56fc2b54c606d4455573e717b2d887c579ee1dbba5f868ece04"}, + {file = "safetensors-0.5.3-cp38-abi3-win32.whl", hash = "sha256:cfc0ec0846dcf6763b0ed3d1846ff36008c6e7290683b61616c4b040f6a54ace"}, + {file = "safetensors-0.5.3-cp38-abi3-win_amd64.whl", hash = "sha256:836cbbc320b47e80acd40e44c8682db0e8ad7123209f69b093def21ec7cafd11"}, + {file = "safetensors-0.5.3.tar.gz", hash = "sha256:b6b0d6ecacec39a4fdd99cc19f4576f5219ce858e6fd8dbe7609df0b8dc56965"}, +] + +[package.extras] +all = ["safetensors[jax]", "safetensors[numpy]", "safetensors[paddlepaddle]", "safetensors[pinned-tf]", "safetensors[quality]", "safetensors[testing]", "safetensors[torch]"] +dev = ["safetensors[all]"] +jax = ["flax (>=0.6.3)", "jax (>=0.3.25)", "jaxlib (>=0.3.25)", "safetensors[numpy]"] +mlx = ["mlx (>=0.0.9)"] +numpy = ["numpy (>=1.21.6)"] +paddlepaddle = ["paddlepaddle (>=2.4.1)", "safetensors[numpy]"] +pinned-tf = ["safetensors[numpy]", "tensorflow (==2.18.0)"] +quality = ["black (==22.3)", "click (==8.0.4)", "flake8 (>=3.8.3)", "isort (>=5.5.4)"] +tensorflow = ["safetensors[numpy]", "tensorflow (>=2.11.0)"] +testing = ["h5py (>=3.7.0)", "huggingface-hub (>=0.12.1)", "hypothesis (>=6.70.2)", "pytest (>=7.2.0)", "pytest-benchmark (>=4.0.0)", "safetensors[numpy]", "setuptools-rust (>=1.5.2)"] +torch = ["safetensors[numpy]", "torch (>=1.10)"] + +[[package]] +name = "scipy" +version = "1.15.3" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = ">=3.10" +groups = ["main"] +files = [ + {file = "scipy-1.15.3-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:a345928c86d535060c9c2b25e71e87c39ab2f22fc96e9636bd74d1dbf9de448c"}, + {file = "scipy-1.15.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:ad3432cb0f9ed87477a8d97f03b763fd1d57709f1bbde3c9369b1dff5503b253"}, + {file = "scipy-1.15.3-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:aef683a9ae6eb00728a542b796f52a5477b78252edede72b8327a886ab63293f"}, + {file = "scipy-1.15.3-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:1c832e1bd78dea67d5c16f786681b28dd695a8cb1fb90af2e27580d3d0967e92"}, + {file = "scipy-1.15.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:263961f658ce2165bbd7b99fa5135195c3a12d9bef045345016b8b50c315cb82"}, + {file = "scipy-1.15.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e2abc762b0811e09a0d3258abee2d98e0c703eee49464ce0069590846f31d40"}, + {file = "scipy-1.15.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ed7284b21a7a0c8f1b6e5977ac05396c0d008b89e05498c8b7e8f4a1423bba0e"}, + {file = "scipy-1.15.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:5380741e53df2c566f4d234b100a484b420af85deb39ea35a1cc1be84ff53a5c"}, + {file = "scipy-1.15.3-cp310-cp310-win_amd64.whl", hash = "sha256:9d61e97b186a57350f6d6fd72640f9e99d5a4a2b8fbf4b9ee9a841eab327dc13"}, + {file = "scipy-1.15.3-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:993439ce220d25e3696d1b23b233dd010169b62f6456488567e830654ee37a6b"}, + {file = "scipy-1.15.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:34716e281f181a02341ddeaad584205bd2fd3c242063bd3423d61ac259ca7eba"}, + {file = "scipy-1.15.3-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:3b0334816afb8b91dab859281b1b9786934392aa3d527cd847e41bb6f45bee65"}, + {file = "scipy-1.15.3-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:6db907c7368e3092e24919b5e31c76998b0ce1684d51a90943cb0ed1b4ffd6c1"}, + {file = "scipy-1.15.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:721d6b4ef5dc82ca8968c25b111e307083d7ca9091bc38163fb89243e85e3889"}, + {file = "scipy-1.15.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39cb9c62e471b1bb3750066ecc3a3f3052b37751c7c3dfd0fd7e48900ed52982"}, + {file = "scipy-1.15.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:795c46999bae845966368a3c013e0e00947932d68e235702b5c3f6ea799aa8c9"}, + {file = "scipy-1.15.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:18aaacb735ab38b38db42cb01f6b92a2d0d4b6aabefeb07f02849e47f8fb3594"}, + {file = "scipy-1.15.3-cp311-cp311-win_amd64.whl", hash = "sha256:ae48a786a28412d744c62fd7816a4118ef97e5be0bee968ce8f0a2fba7acf3bb"}, + {file = "scipy-1.15.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:6ac6310fdbfb7aa6612408bd2f07295bcbd3fda00d2d702178434751fe48e019"}, + {file = "scipy-1.15.3-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:185cd3d6d05ca4b44a8f1595af87f9c372bb6acf9c808e99aa3e9aa03bd98cf6"}, + {file = "scipy-1.15.3-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:05dc6abcd105e1a29f95eada46d4a3f251743cfd7d3ae8ddb4088047f24ea477"}, + {file = "scipy-1.15.3-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:06efcba926324df1696931a57a176c80848ccd67ce6ad020c810736bfd58eb1c"}, + {file = "scipy-1.15.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c05045d8b9bfd807ee1b9f38761993297b10b245f012b11b13b91ba8945f7e45"}, + {file = "scipy-1.15.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:271e3713e645149ea5ea3e97b57fdab61ce61333f97cfae392c28ba786f9bb49"}, + {file = "scipy-1.15.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6cfd56fc1a8e53f6e89ba3a7a7251f7396412d655bca2aa5611c8ec9a6784a1e"}, + {file = "scipy-1.15.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0ff17c0bb1cb32952c09217d8d1eed9b53d1463e5f1dd6052c7857f83127d539"}, + {file = "scipy-1.15.3-cp312-cp312-win_amd64.whl", hash = "sha256:52092bc0472cfd17df49ff17e70624345efece4e1a12b23783a1ac59a1b728ed"}, + {file = "scipy-1.15.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:2c620736bcc334782e24d173c0fdbb7590a0a436d2fdf39310a8902505008759"}, + {file = "scipy-1.15.3-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:7e11270a000969409d37ed399585ee530b9ef6aa99d50c019de4cb01e8e54e62"}, + {file = "scipy-1.15.3-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:8c9ed3ba2c8a2ce098163a9bdb26f891746d02136995df25227a20e71c396ebb"}, + {file = "scipy-1.15.3-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:0bdd905264c0c9cfa74a4772cdb2070171790381a5c4d312c973382fc6eaf730"}, + {file = "scipy-1.15.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79167bba085c31f38603e11a267d862957cbb3ce018d8b38f79ac043bc92d825"}, + {file = "scipy-1.15.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9deabd6d547aee2c9a81dee6cc96c6d7e9a9b1953f74850c179f91fdc729cb7"}, + {file = "scipy-1.15.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:dde4fc32993071ac0c7dd2d82569e544f0bdaff66269cb475e0f369adad13f11"}, + {file = "scipy-1.15.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f77f853d584e72e874d87357ad70f44b437331507d1c311457bed8ed2b956126"}, + {file = "scipy-1.15.3-cp313-cp313-win_amd64.whl", hash = "sha256:b90ab29d0c37ec9bf55424c064312930ca5f4bde15ee8619ee44e69319aab163"}, + {file = "scipy-1.15.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3ac07623267feb3ae308487c260ac684b32ea35fd81e12845039952f558047b8"}, + {file = "scipy-1.15.3-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:6487aa99c2a3d509a5227d9a5e889ff05830a06b2ce08ec30df6d79db5fcd5c5"}, + {file = "scipy-1.15.3-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:50f9e62461c95d933d5c5ef4a1f2ebf9a2b4e83b0db374cb3f1de104d935922e"}, + {file = "scipy-1.15.3-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:14ed70039d182f411ffc74789a16df3835e05dc469b898233a245cdfd7f162cb"}, + {file = "scipy-1.15.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a769105537aa07a69468a0eefcd121be52006db61cdd8cac8a0e68980bbb723"}, + {file = "scipy-1.15.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9db984639887e3dffb3928d118145ffe40eff2fa40cb241a306ec57c219ebbbb"}, + {file = "scipy-1.15.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:40e54d5c7e7ebf1aa596c374c49fa3135f04648a0caabcb66c52884b943f02b4"}, + {file = "scipy-1.15.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:5e721fed53187e71d0ccf382b6bf977644c533e506c4d33c3fb24de89f5c3ed5"}, + {file = "scipy-1.15.3-cp313-cp313t-win_amd64.whl", hash = "sha256:76ad1fb5f8752eabf0fa02e4cc0336b4e8f021e2d5f061ed37d6d264db35e3ca"}, + {file = "scipy-1.15.3.tar.gz", hash = "sha256:eae3cf522bc7df64b42cad3925c876e1b0b6c35c1337c93e12c0f366f55b0eaf"}, +] + +[package.dependencies] +numpy = ">=1.23.5,<2.5" + +[package.extras] +dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy (==1.10.0)", "pycodestyle", "pydevtool", "rich-click", "ruff (>=0.0.292)", "types-psutil", "typing_extensions"] +doc = ["intersphinx_registry", "jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.19.1)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0,<8.0.0)", "sphinx-copybutton", "sphinx-design (>=0.4.0)"] +test = ["Cython", "array-api-strict (>=2.0,<2.1.1)", "asv", "gmpy2", "hypothesis (>=6.30)", "meson", "mpmath", "ninja ; sys_platform != \"emscripten\"", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "setuptools" +version = "80.9.0" +description = "Easily download, build, install, upgrade, and uninstall Python packages" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "setuptools-80.9.0-py3-none-any.whl", hash = "sha256:062d34222ad13e0cc312a4c02d73f059e86a4acbfbdea8f8f76b28c99f306922"}, + {file = "setuptools-80.9.0.tar.gz", hash = "sha256:f36b47402ecde768dbfafc46e8e4207b4360c654f1f3bb84475f0a28628fb19c"}, +] + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1) ; sys_platform != \"cygwin\"", "ruff (>=0.8.0) ; sys_platform != \"cygwin\""] +core = ["importlib_metadata (>=6) ; python_version < \"3.10\"", "jaraco.functools (>=4)", "jaraco.text (>=3.7)", "more_itertools", "more_itertools (>=8.8)", "packaging (>=24.2)", "platformdirs (>=4.2.2)", "tomli (>=2.0.1) ; python_version < \"3.11\"", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21) ; python_version >= \"3.9\" and sys_platform != \"cygwin\"", "jaraco.envs (>=2.2)", "jaraco.path (>=3.7.2)", "jaraco.test (>=5.5)", "packaging (>=24.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf ; sys_platform != \"cygwin\"", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib_metadata (>=7.0.2) ; python_version < \"3.10\"", "jaraco.develop (>=7.21) ; sys_platform != \"cygwin\"", "mypy (==1.14.*)", "pytest-mypy"] + +[[package]] +name = "six" +version = "1.17.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +groups = ["main"] +files = [ + {file = "six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274"}, + {file = "six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81"}, +] + +[[package]] +name = "sniffio" +version = "1.3.1" +description = "Sniff out which async library your code is running under" +optional = false +python-versions = ">=3.7" +groups = ["main"] +files = [ + {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"}, + {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"}, +] + +[[package]] +name = "sqlalchemy" +version = "2.0.41" +description = "Database Abstraction Library" +optional = false +python-versions = ">=3.7" +groups = ["main"] +files = [ + {file = "SQLAlchemy-2.0.41-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6854175807af57bdb6425e47adbce7d20a4d79bbfd6f6d6519cd10bb7109a7f8"}, + {file = "SQLAlchemy-2.0.41-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:05132c906066142103b83d9c250b60508af556982a385d96c4eaa9fb9720ac2b"}, + {file = "SQLAlchemy-2.0.41-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b4af17bda11e907c51d10686eda89049f9ce5669b08fbe71a29747f1e876036"}, + {file = "SQLAlchemy-2.0.41-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:c0b0e5e1b5d9f3586601048dd68f392dc0cc99a59bb5faf18aab057ce00d00b2"}, + {file = "SQLAlchemy-2.0.41-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:0b3dbf1e7e9bc95f4bac5e2fb6d3fb2f083254c3fdd20a1789af965caf2d2348"}, + {file = "SQLAlchemy-2.0.41-cp37-cp37m-win32.whl", hash = "sha256:1e3f196a0c59b0cae9a0cd332eb1a4bda4696e863f4f1cf84ab0347992c548c2"}, + {file = "SQLAlchemy-2.0.41-cp37-cp37m-win_amd64.whl", hash = "sha256:6ab60a5089a8f02009f127806f777fca82581c49e127f08413a66056bd9166dd"}, + {file = "sqlalchemy-2.0.41-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b1f09b6821406ea1f94053f346f28f8215e293344209129a9c0fcc3578598d7b"}, + {file = "sqlalchemy-2.0.41-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1936af879e3db023601196a1684d28e12f19ccf93af01bf3280a3262c4b6b4e5"}, + {file = "sqlalchemy-2.0.41-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b2ac41acfc8d965fb0c464eb8f44995770239668956dc4cdf502d1b1ffe0d747"}, + {file = "sqlalchemy-2.0.41-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:81c24e0c0fde47a9723c81d5806569cddef103aebbf79dbc9fcbb617153dea30"}, + {file = "sqlalchemy-2.0.41-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:23a8825495d8b195c4aa9ff1c430c28f2c821e8c5e2d98089228af887e5d7e29"}, + {file = "sqlalchemy-2.0.41-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:60c578c45c949f909a4026b7807044e7e564adf793537fc762b2489d522f3d11"}, + {file = "sqlalchemy-2.0.41-cp310-cp310-win32.whl", hash = "sha256:118c16cd3f1b00c76d69343e38602006c9cfb9998fa4f798606d28d63f23beda"}, + {file = "sqlalchemy-2.0.41-cp310-cp310-win_amd64.whl", hash = "sha256:7492967c3386df69f80cf67efd665c0f667cee67032090fe01d7d74b0e19bb08"}, + {file = "sqlalchemy-2.0.41-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6375cd674fe82d7aa9816d1cb96ec592bac1726c11e0cafbf40eeee9a4516b5f"}, + {file = "sqlalchemy-2.0.41-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9f8c9fdd15a55d9465e590a402f42082705d66b05afc3ffd2d2eb3c6ba919560"}, + {file = "sqlalchemy-2.0.41-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32f9dc8c44acdee06c8fc6440db9eae8b4af8b01e4b1aee7bdd7241c22edff4f"}, + {file = "sqlalchemy-2.0.41-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90c11ceb9a1f482c752a71f203a81858625d8df5746d787a4786bca4ffdf71c6"}, + {file = "sqlalchemy-2.0.41-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:911cc493ebd60de5f285bcae0491a60b4f2a9f0f5c270edd1c4dbaef7a38fc04"}, + {file = "sqlalchemy-2.0.41-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:03968a349db483936c249f4d9cd14ff2c296adfa1290b660ba6516f973139582"}, + {file = "sqlalchemy-2.0.41-cp311-cp311-win32.whl", hash = "sha256:293cd444d82b18da48c9f71cd7005844dbbd06ca19be1ccf6779154439eec0b8"}, + {file = "sqlalchemy-2.0.41-cp311-cp311-win_amd64.whl", hash = "sha256:3d3549fc3e40667ec7199033a4e40a2f669898a00a7b18a931d3efb4c7900504"}, + {file = "sqlalchemy-2.0.41-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:81f413674d85cfd0dfcd6512e10e0f33c19c21860342a4890c3a2b59479929f9"}, + {file = "sqlalchemy-2.0.41-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:598d9ebc1e796431bbd068e41e4de4dc34312b7aa3292571bb3674a0cb415dd1"}, + {file = "sqlalchemy-2.0.41-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a104c5694dfd2d864a6f91b0956eb5d5883234119cb40010115fd45a16da5e70"}, + {file = "sqlalchemy-2.0.41-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6145afea51ff0af7f2564a05fa95eb46f542919e6523729663a5d285ecb3cf5e"}, + {file = "sqlalchemy-2.0.41-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:b46fa6eae1cd1c20e6e6f44e19984d438b6b2d8616d21d783d150df714f44078"}, + {file = "sqlalchemy-2.0.41-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:41836fe661cc98abfae476e14ba1906220f92c4e528771a8a3ae6a151242d2ae"}, + {file = "sqlalchemy-2.0.41-cp312-cp312-win32.whl", hash = "sha256:a8808d5cf866c781150d36a3c8eb3adccfa41a8105d031bf27e92c251e3969d6"}, + {file = "sqlalchemy-2.0.41-cp312-cp312-win_amd64.whl", hash = "sha256:5b14e97886199c1f52c14629c11d90c11fbb09e9334fa7bb5f6d068d9ced0ce0"}, + {file = "sqlalchemy-2.0.41-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:4eeb195cdedaf17aab6b247894ff2734dcead6c08f748e617bfe05bd5a218443"}, + {file = "sqlalchemy-2.0.41-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d4ae769b9c1c7757e4ccce94b0641bc203bbdf43ba7a2413ab2523d8d047d8dc"}, + {file = "sqlalchemy-2.0.41-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a62448526dd9ed3e3beedc93df9bb6b55a436ed1474db31a2af13b313a70a7e1"}, + {file = "sqlalchemy-2.0.41-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dc56c9788617b8964ad02e8fcfeed4001c1f8ba91a9e1f31483c0dffb207002a"}, + {file = "sqlalchemy-2.0.41-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c153265408d18de4cc5ded1941dcd8315894572cddd3c58df5d5b5705b3fa28d"}, + {file = "sqlalchemy-2.0.41-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4f67766965996e63bb46cfbf2ce5355fc32d9dd3b8ad7e536a920ff9ee422e23"}, + {file = "sqlalchemy-2.0.41-cp313-cp313-win32.whl", hash = "sha256:bfc9064f6658a3d1cadeaa0ba07570b83ce6801a1314985bf98ec9b95d74e15f"}, + {file = "sqlalchemy-2.0.41-cp313-cp313-win_amd64.whl", hash = "sha256:82ca366a844eb551daff9d2e6e7a9e5e76d2612c8564f58db6c19a726869c1df"}, + {file = "sqlalchemy-2.0.41-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:90144d3b0c8b139408da50196c5cad2a6909b51b23df1f0538411cd23ffa45d3"}, + {file = "sqlalchemy-2.0.41-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:023b3ee6169969beea3bb72312e44d8b7c27c75b347942d943cf49397b7edeb5"}, + {file = "sqlalchemy-2.0.41-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:725875a63abf7c399d4548e686debb65cdc2549e1825437096a0af1f7e374814"}, + {file = "sqlalchemy-2.0.41-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:81965cc20848ab06583506ef54e37cf15c83c7e619df2ad16807c03100745dea"}, + {file = "sqlalchemy-2.0.41-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:dd5ec3aa6ae6e4d5b5de9357d2133c07be1aff6405b136dad753a16afb6717dd"}, + {file = "sqlalchemy-2.0.41-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ff8e80c4c4932c10493ff97028decfdb622de69cae87e0f127a7ebe32b4069c6"}, + {file = "sqlalchemy-2.0.41-cp38-cp38-win32.whl", hash = "sha256:4d44522480e0bf34c3d63167b8cfa7289c1c54264c2950cc5fc26e7850967e45"}, + {file = "sqlalchemy-2.0.41-cp38-cp38-win_amd64.whl", hash = "sha256:81eedafa609917040d39aa9332e25881a8e7a0862495fcdf2023a9667209deda"}, + {file = "sqlalchemy-2.0.41-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9a420a91913092d1e20c86a2f5f1fc85c1a8924dbcaf5e0586df8aceb09c9cc2"}, + {file = "sqlalchemy-2.0.41-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:906e6b0d7d452e9a98e5ab8507c0da791856b2380fdee61b765632bb8698026f"}, + {file = "sqlalchemy-2.0.41-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a373a400f3e9bac95ba2a06372c4fd1412a7cee53c37fc6c05f829bf672b8769"}, + {file = "sqlalchemy-2.0.41-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:087b6b52de812741c27231b5a3586384d60c353fbd0e2f81405a814b5591dc8b"}, + {file = "sqlalchemy-2.0.41-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:34ea30ab3ec98355235972dadc497bb659cc75f8292b760394824fab9cf39826"}, + {file = "sqlalchemy-2.0.41-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:8280856dd7c6a68ab3a164b4a4b1c51f7691f6d04af4d4ca23d6ecf2261b7923"}, + {file = "sqlalchemy-2.0.41-cp39-cp39-win32.whl", hash = "sha256:b50eab9994d64f4a823ff99a0ed28a6903224ddbe7fef56a6dd865eec9243440"}, + {file = "sqlalchemy-2.0.41-cp39-cp39-win_amd64.whl", hash = "sha256:5e22575d169529ac3e0a120cf050ec9daa94b6a9597993d1702884f6954a7d71"}, + {file = "sqlalchemy-2.0.41-py3-none-any.whl", hash = "sha256:57df5dc6fdb5ed1a88a1ed2195fd31927e705cad62dedd86b46972752a80f576"}, + {file = "sqlalchemy-2.0.41.tar.gz", hash = "sha256:edba70118c4be3c2b1f90754d308d0b79c6fe2c0fdc52d8ddf603916f83f4db9"}, +] + +[package.dependencies] +greenlet = {version = ">=1", markers = "python_version < \"3.14\" and (platform_machine == \"aarch64\" or platform_machine == \"ppc64le\" or platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"AMD64\" or platform_machine == \"win32\" or platform_machine == \"WIN32\")"} +typing-extensions = ">=4.6.0" + +[package.extras] +aiomysql = ["aiomysql (>=0.2.0)", "greenlet (>=1)"] +aioodbc = ["aioodbc", "greenlet (>=1)"] +aiosqlite = ["aiosqlite", "greenlet (>=1)", "typing_extensions (!=3.10.0.1)"] +asyncio = ["greenlet (>=1)"] +asyncmy = ["asyncmy (>=0.2.3,!=0.2.4,!=0.2.6)", "greenlet (>=1)"] +mariadb-connector = ["mariadb (>=1.0.1,!=1.1.2,!=1.1.5,!=1.1.10)"] +mssql = ["pyodbc"] +mssql-pymssql = ["pymssql"] +mssql-pyodbc = ["pyodbc"] +mypy = ["mypy (>=0.910)"] +mysql = ["mysqlclient (>=1.4.0)"] +mysql-connector = ["mysql-connector-python"] +oracle = ["cx_oracle (>=8)"] +oracle-oracledb = ["oracledb (>=1.0.1)"] +postgresql = ["psycopg2 (>=2.7)"] +postgresql-asyncpg = ["asyncpg", "greenlet (>=1)"] +postgresql-pg8000 = ["pg8000 (>=1.29.1)"] +postgresql-psycopg = ["psycopg (>=3.0.7)"] +postgresql-psycopg2binary = ["psycopg2-binary"] +postgresql-psycopg2cffi = ["psycopg2cffi"] +postgresql-psycopgbinary = ["psycopg[binary] (>=3.0.7)"] +pymysql = ["pymysql"] +sqlcipher = ["sqlcipher3_binary"] + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +groups = ["main"] +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "sympy" +version = "1.14.0" +description = "Computer algebra system (CAS) in Python" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "sympy-1.14.0-py3-none-any.whl", hash = "sha256:e091cc3e99d2141a0ba2847328f5479b05d94a6635cb96148ccb3f34671bd8f5"}, + {file = "sympy-1.14.0.tar.gz", hash = "sha256:d3d3fe8df1e5a0b42f0e7bdf50541697dbe7d23746e894990c030e2b05e72517"}, +] + +[package.dependencies] +mpmath = ">=1.1.0,<1.4" + +[package.extras] +dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] + +[[package]] +name = "tenacity" +version = "9.1.2" +description = "Retry code until it succeeds" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "tenacity-9.1.2-py3-none-any.whl", hash = "sha256:f77bf36710d8b73a50b2dd155c97b870017ad21afe6ab300326b0371b3b05138"}, + {file = "tenacity-9.1.2.tar.gz", hash = "sha256:1169d376c297e7de388d18b4481760d478b0e99a777cad3a9c86e556f4b697cb"}, +] + +[package.extras] +doc = ["reno", "sphinx"] +test = ["pytest", "tornado (>=4.5)", "typeguard"] + +[[package]] +name = "tiktoken" +version = "0.9.0" +description = "tiktoken is a fast BPE tokeniser for use with OpenAI's models" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "tiktoken-0.9.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:586c16358138b96ea804c034b8acf3f5d3f0258bd2bc3b0227af4af5d622e382"}, + {file = "tiktoken-0.9.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d9c59ccc528c6c5dd51820b3474402f69d9a9e1d656226848ad68a8d5b2e5108"}, + {file = "tiktoken-0.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f0968d5beeafbca2a72c595e8385a1a1f8af58feaebb02b227229b69ca5357fd"}, + {file = "tiktoken-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a5fb085a6a3b7350b8fc838baf493317ca0e17bd95e8642f95fc69ecfed1de"}, + {file = "tiktoken-0.9.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:15a2752dea63d93b0332fb0ddb05dd909371ededa145fe6a3242f46724fa7990"}, + {file = "tiktoken-0.9.0-cp310-cp310-win_amd64.whl", hash = "sha256:26113fec3bd7a352e4b33dbaf1bd8948de2507e30bd95a44e2b1156647bc01b4"}, + {file = "tiktoken-0.9.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:f32cc56168eac4851109e9b5d327637f15fd662aa30dd79f964b7c39fbadd26e"}, + {file = "tiktoken-0.9.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:45556bc41241e5294063508caf901bf92ba52d8ef9222023f83d2483a3055348"}, + {file = "tiktoken-0.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03935988a91d6d3216e2ec7c645afbb3d870b37bcb67ada1943ec48678e7ee33"}, + {file = "tiktoken-0.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b3d80aad8d2c6b9238fc1a5524542087c52b860b10cbf952429ffb714bc1136"}, + {file = "tiktoken-0.9.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b2a21133be05dc116b1d0372af051cd2c6aa1d2188250c9b553f9fa49301b336"}, + {file = "tiktoken-0.9.0-cp311-cp311-win_amd64.whl", hash = "sha256:11a20e67fdf58b0e2dea7b8654a288e481bb4fc0289d3ad21291f8d0849915fb"}, + {file = "tiktoken-0.9.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:e88f121c1c22b726649ce67c089b90ddda8b9662545a8aeb03cfef15967ddd03"}, + {file = "tiktoken-0.9.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a6600660f2f72369acb13a57fb3e212434ed38b045fd8cc6cdd74947b4b5d210"}, + {file = "tiktoken-0.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:95e811743b5dfa74f4b227927ed86cbc57cad4df859cb3b643be797914e41794"}, + {file = "tiktoken-0.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99376e1370d59bcf6935c933cb9ba64adc29033b7e73f5f7569f3aad86552b22"}, + {file = "tiktoken-0.9.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:badb947c32739fb6ddde173e14885fb3de4d32ab9d8c591cbd013c22b4c31dd2"}, + {file = "tiktoken-0.9.0-cp312-cp312-win_amd64.whl", hash = "sha256:5a62d7a25225bafed786a524c1b9f0910a1128f4232615bf3f8257a73aaa3b16"}, + {file = "tiktoken-0.9.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:2b0e8e05a26eda1249e824156d537015480af7ae222ccb798e5234ae0285dbdb"}, + {file = "tiktoken-0.9.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:27d457f096f87685195eea0165a1807fae87b97b2161fe8c9b1df5bd74ca6f63"}, + {file = "tiktoken-0.9.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2cf8ded49cddf825390e36dd1ad35cd49589e8161fdcb52aa25f0583e90a3e01"}, + {file = "tiktoken-0.9.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc156cb314119a8bb9748257a2eaebd5cc0753b6cb491d26694ed42fc7cb3139"}, + {file = "tiktoken-0.9.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:cd69372e8c9dd761f0ab873112aba55a0e3e506332dd9f7522ca466e817b1b7a"}, + {file = "tiktoken-0.9.0-cp313-cp313-win_amd64.whl", hash = "sha256:5ea0edb6f83dc56d794723286215918c1cde03712cbbafa0348b33448faf5b95"}, + {file = "tiktoken-0.9.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:c6386ca815e7d96ef5b4ac61e0048cd32ca5a92d5781255e13b31381d28667dc"}, + {file = "tiktoken-0.9.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:75f6d5db5bc2c6274b674ceab1615c1778e6416b14705827d19b40e6355f03e0"}, + {file = "tiktoken-0.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e15b16f61e6f4625a57a36496d28dd182a8a60ec20a534c5343ba3cafa156ac7"}, + {file = "tiktoken-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ebcec91babf21297022882344c3f7d9eed855931466c3311b1ad6b64befb3df"}, + {file = "tiktoken-0.9.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e5fd49e7799579240f03913447c0cdfa1129625ebd5ac440787afc4345990427"}, + {file = "tiktoken-0.9.0-cp39-cp39-win_amd64.whl", hash = "sha256:26242ca9dc8b58e875ff4ca078b9a94d2f0813e6a535dcd2205df5d49d927cc7"}, + {file = "tiktoken-0.9.0.tar.gz", hash = "sha256:d02a5ca6a938e0490e1ff957bc48c8b078c88cb83977be1625b1fd8aac792c5d"}, +] + +[package.dependencies] +regex = ">=2022.1.18" +requests = ">=2.26.0" + +[package.extras] +blobfile = ["blobfile (>=2)"] + +[[package]] +name = "tokenizers" +version = "0.21.1" +description = "" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "tokenizers-0.21.1-cp39-abi3-macosx_10_12_x86_64.whl", hash = "sha256:e78e413e9e668ad790a29456e677d9d3aa50a9ad311a40905d6861ba7692cf41"}, + {file = "tokenizers-0.21.1-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:cd51cd0a91ecc801633829fcd1fda9cf8682ed3477c6243b9a095539de4aecf3"}, + {file = "tokenizers-0.21.1-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28da6b72d4fb14ee200a1bd386ff74ade8992d7f725f2bde2c495a9a98cf4d9f"}, + {file = "tokenizers-0.21.1-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:34d8cfde551c9916cb92014e040806122295a6800914bab5865deb85623931cf"}, + {file = "tokenizers-0.21.1-cp39-abi3-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aaa852d23e125b73d283c98f007e06d4595732104b65402f46e8ef24b588d9f8"}, + {file = "tokenizers-0.21.1-cp39-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a21a15d5c8e603331b8a59548bbe113564136dc0f5ad8306dd5033459a226da0"}, + {file = "tokenizers-0.21.1-cp39-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2fdbd4c067c60a0ac7eca14b6bd18a5bebace54eb757c706b47ea93204f7a37c"}, + {file = "tokenizers-0.21.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2dd9a0061e403546f7377df940e866c3e678d7d4e9643d0461ea442b4f89e61a"}, + {file = "tokenizers-0.21.1-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:db9484aeb2e200c43b915a1a0150ea885e35f357a5a8fabf7373af333dcc8dbf"}, + {file = "tokenizers-0.21.1-cp39-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:ed248ab5279e601a30a4d67bdb897ecbe955a50f1e7bb62bd99f07dd11c2f5b6"}, + {file = "tokenizers-0.21.1-cp39-abi3-musllinux_1_2_i686.whl", hash = "sha256:9ac78b12e541d4ce67b4dfd970e44c060a2147b9b2a21f509566d556a509c67d"}, + {file = "tokenizers-0.21.1-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:e5a69c1a4496b81a5ee5d2c1f3f7fbdf95e90a0196101b0ee89ed9956b8a168f"}, + {file = "tokenizers-0.21.1-cp39-abi3-win32.whl", hash = "sha256:1039a3a5734944e09de1d48761ade94e00d0fa760c0e0551151d4dd851ba63e3"}, + {file = "tokenizers-0.21.1-cp39-abi3-win_amd64.whl", hash = "sha256:0f0dcbcc9f6e13e675a66d7a5f2f225a736745ce484c1a4e07476a89ccdad382"}, + {file = "tokenizers-0.21.1.tar.gz", hash = "sha256:a1bb04dc5b448985f86ecd4b05407f5a8d97cb2c0532199b2a302a604a0165ab"}, +] + +[package.dependencies] +huggingface-hub = ">=0.16.4,<1.0" + +[package.extras] +dev = ["tokenizers[testing]"] +docs = ["setuptools-rust", "sphinx", "sphinx-rtd-theme"] +testing = ["black (==22.3)", "datasets", "numpy", "pytest", "requests", "ruff"] + +[[package]] +name = "torch" +version = "2.1.2" +description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" +optional = false +python-versions = ">=3.8.0" +groups = ["main"] +files = [ + {file = "torch-2.1.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:3a871edd6c02dae77ad810335c0833391c1a4ce49af21ea8cf0f6a5d2096eea8"}, + {file = "torch-2.1.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:bef6996c27d8f6e92ea4e13a772d89611da0e103b48790de78131e308cf73076"}, + {file = "torch-2.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:0e13034fd5fb323cbbc29e56d0637a3791e50dd589616f40c79adfa36a5a35a1"}, + {file = "torch-2.1.2-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:d9b535cad0df3d13997dbe8bd68ac33e0e3ae5377639c9881948e40794a61403"}, + {file = "torch-2.1.2-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:f9a55d55af02826ebfbadf4e9b682f0f27766bc33df8236b48d28d705587868f"}, + {file = "torch-2.1.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:a6ebbe517097ef289cc7952783588c72de071d4b15ce0f8b285093f0916b1162"}, + {file = "torch-2.1.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:8f32ce591616a30304f37a7d5ea80b69ca9e1b94bba7f308184bf616fdaea155"}, + {file = "torch-2.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:e0ee6cf90c8970e05760f898d58f9ac65821c37ffe8b04269ec787aa70962b69"}, + {file = "torch-2.1.2-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:76d37967c31c99548ad2c4d3f2cf191db48476f2e69b35a0937137116da356a1"}, + {file = "torch-2.1.2-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:e2d83f07b4aac983453ea5bf8f9aa9dacf2278a8d31247f5d9037f37befc60e4"}, + {file = "torch-2.1.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:f41fe0c7ecbf903a568c73486139a75cfab287a0f6c17ed0698fdea7a1e8641d"}, + {file = "torch-2.1.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:e3225f47d50bb66f756fe9196a768055d1c26b02154eb1f770ce47a2578d3aa7"}, + {file = "torch-2.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:33d59cd03cb60106857f6c26b36457793637512998666ee3ce17311f217afe2b"}, + {file = "torch-2.1.2-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:8e221deccd0def6c2badff6be403e0c53491805ed9915e2c029adbcdb87ab6b5"}, + {file = "torch-2.1.2-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:05b18594f60a911a0c4f023f38a8bda77131fba5fd741bda626e97dcf5a3dd0a"}, + {file = "torch-2.1.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:9ca96253b761e9aaf8e06fb30a66ee301aecbf15bb5a303097de1969077620b6"}, + {file = "torch-2.1.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:d93ba70f67b08c2ae5598ee711cbc546a1bc8102cef938904b8c85c2089a51a0"}, + {file = "torch-2.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:255b50bc0608db177e6a3cc118961d77de7e5105f07816585fa6f191f33a9ff3"}, + {file = "torch-2.1.2-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6984cd5057c0c977b3c9757254e989d3f1124f4ce9d07caa6cb637783c71d42a"}, + {file = "torch-2.1.2-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:bc195d7927feabc0eb7c110e457c955ed2ab616f3c7c28439dd4188cf589699f"}, +] + +[package.dependencies] +filelock = "*" +fsspec = "*" +jinja2 = "*" +networkx = "*" +nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cudnn-cu12 = {version = "8.9.2.26", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nccl-cu12 = {version = "2.18.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +sympy = "*" +triton = {version = "2.1.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +typing-extensions = "*" + +[package.extras] +dynamo = ["jinja2"] +opt-einsum = ["opt-einsum (>=3.3)"] + +[[package]] +name = "torch-geometric" +version = "2.6.1" +description = "Graph Neural Network Library for PyTorch" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "torch_geometric-2.6.1-py3-none-any.whl", hash = "sha256:8faeb353f9655f7dbec44c5e0b44c721773bdfb279994da96b9b8b12fd30f427"}, + {file = "torch_geometric-2.6.1.tar.gz", hash = "sha256:1f18f9d0fc4d2239d526221e4f22606a4a3895b5d965a9856d27610a3df662c6"}, +] + +[package.dependencies] +aiohttp = "*" +fsspec = "*" +jinja2 = "*" +numpy = "*" +psutil = ">=5.8.0" +pyparsing = "*" +requests = "*" +tqdm = "*" + +[package.extras] +benchmark = ["matplotlib", "networkx", "pandas", "protobuf (<4.21)", "wandb"] +dev = ["ipython", "matplotlib-inline", "pre-commit", "torch_geometric[test]"] +full = ["ase", "captum (<0.7.0)", "graphviz", "h5py", "matplotlib", "networkx", "numba (<0.60.0)", "opt_einsum", "pandas", "pgmpy", "pynndescent", "pytorch-memlab", "rdflib", "rdkit", "scikit-image", "scikit-learn", "scipy", "statsmodels", "sympy", "tabulate", "torch_geometric[graphgym,modelhub]", "torchmetrics", "trimesh"] +graphgym = ["protobuf (<4.21)", "pytorch-lightning (<2.3.0)", "yacs"] +modelhub = ["huggingface_hub"] +test = ["onnx", "onnxruntime", "pytest", "pytest-cov"] + +[[package]] +name = "torch-scatter" +version = "2.1.2+pt21cpu" +description = "PyTorch Extension Library of Optimized Scatter Operations" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "torch_scatter-2.1.2+pt21cpu-cp310-cp310-linux_x86_64.whl", hash = "sha256:1b528302bbe07e8208f2500b95b7f16e1818951d7e208d272c10d9b938447e13"}, +] + +[package.extras] +test = ["pytest", "pytest-cov"] + +[package.source] +type = "url" +url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_scatter-2.1.2%2Bpt21cpu-cp310-cp310-linux_x86_64.whl" + +[[package]] +name = "torch-sparse" +version = "0.6.18+pt21cpu" +description = "PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "torch_sparse-0.6.18+pt21cpu-cp310-cp310-linux_x86_64.whl", hash = "sha256:0d3df435176b528bddad94c7e1a9913a7c952136317578d08535dad4b40c3b08"}, +] + +[package.dependencies] +scipy = "*" + +[package.extras] +test = ["pytest", "pytest-cov"] + +[package.source] +type = "url" +url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp310-cp310-linux_x86_64.whl" + +[[package]] +name = "torchmetrics" +version = "1.7.3" +description = "PyTorch native Metrics" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "torchmetrics-1.7.3-py3-none-any.whl", hash = "sha256:7b6fd43e92f0a1071c8bcb029637f252b0630699140a93ed8817ce7afe9db34e"}, + {file = "torchmetrics-1.7.3.tar.gz", hash = "sha256:08450a19cdb67ba1608aac0b213e5dc73033e11b60ad4719696ebcede591621e"}, +] + +[package.dependencies] +lightning-utilities = ">=0.8.0" +numpy = ">1.20.0" +packaging = ">17.1" +torch = ">=2.0.0" + +[package.extras] +all = ["SciencePlots (>=2.0.0)", "einops (>=0.7.0)", "gammatone (>=1.0.0)", "ipadic (>=1.0.0)", "librosa (>=0.10.0)", "matplotlib (>=3.6.0)", "mecab-python3 (>=1.0.6)", "mypy (==1.16.0)", "nltk (>3.8.1)", "onnxruntime (>=1.12.0)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.4.0)", "regex (>=2021.9.24)", "requests (>=2.19.0)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "timm (>=0.9.0)", "torch (==2.7.1)", "torch-fidelity (<=0.4.0)", "torch_linear_assignment (>=0.0.2)", "torchaudio (>=2.0.1)", "torchvision (>=0.15.1)", "torchvision (>=0.15.1)", "tqdm (<4.68.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +audio = ["gammatone (>=1.0.0)", "librosa (>=0.10.0)", "onnxruntime (>=1.12.0)", "pesq (>=0.0.4)", "pystoi (>=0.4.0)", "requests (>=2.19.0)", "torchaudio (>=2.0.1)"] +clustering = ["torch_linear_assignment (>=0.0.2)"] +detection = ["pycocotools (>2.0.0)", "torchvision (>=0.15.1)"] +dev = ["PyTDC (==0.4.1) ; python_version < \"3.12\"", "SciencePlots (>=2.0.0)", "aeon (>=1.0.0) ; python_version > \"3.10\"", "bert_score (==0.3.13)", "dists-pytorch (==0.1)", "dython (==0.7.9)", "einops (>=0.7.0)", "fairlearn", "fast-bss-eval (>=0.1.0)", "faster-coco-eval (>=1.6.3)", "gammatone (>=1.0.0)", "huggingface-hub (<0.33)", "ipadic (>=1.0.0)", "jiwer (>=2.3.0)", "kornia (>=0.6.7)", "librosa (>=0.10.0)", "lpips (<=0.1.4)", "matplotlib (>=3.6.0)", "mecab-ko (>=1.0.0,<1.1.0) ; python_version < \"3.12\"", "mecab-ko-dic (>=1.0.0) ; python_version < \"3.12\"", "mecab-python3 (>=1.0.6)", "mir-eval (>=0.6)", "monai (==1.4.0)", "mypy (==1.16.0)", "netcal (>1.0.0)", "nltk (>3.8.1)", "numpy (<2.3.0)", "onnxruntime (>=1.12.0)", "pandas (>1.4.0)", "permetrics (==2.0.0)", "pesq (>=0.0.4)", "piq (<=0.8.0)", "pycocotools (>2.0.0)", "pystoi (>=0.4.0)", "pytorch-msssim (==1.0.0)", "regex (>=2021.9.24)", "requests (>=2.19.0)", "rouge-score (>0.1.0)", "sacrebleu (>=2.3.0)", "scikit-image (>=0.19.0)", "scipy (>1.0.0)", "scipy (>1.0.0)", "sentencepiece (>=0.2.0)", "sewar (>=0.4.4)", "statsmodels (>0.13.5)", "timm (>=0.9.0)", "torch (==2.7.1)", "torch-fidelity (<=0.4.0)", "torch_complex (<0.5.0)", "torch_linear_assignment (>=0.0.2)", "torchaudio (>=2.0.1)", "torchvision (>=0.15.1)", "torchvision (>=0.15.1)", "tqdm (<4.68.0)", "transformers (>4.4.0)", "transformers (>=4.42.3)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +image = ["scipy (>1.0.0)", "torch-fidelity (<=0.4.0)", "torchvision (>=0.15.1)"] +multimodal = ["einops (>=0.7.0)", "piq (<=0.8.0)", "timm (>=0.9.0)", "transformers (>=4.42.3)"] +text = ["ipadic (>=1.0.0)", "mecab-python3 (>=1.0.6)", "nltk (>3.8.1)", "regex (>=2021.9.24)", "sentencepiece (>=0.2.0)", "tqdm (<4.68.0)", "transformers (>4.4.0)"] +typing = ["mypy (==1.16.0)", "torch (==2.7.1)", "types-PyYAML", "types-emoji", "types-protobuf", "types-requests", "types-setuptools", "types-six", "types-tabulate"] +visual = ["SciencePlots (>=2.0.0)", "matplotlib (>=3.6.0)"] + +[[package]] +name = "torchvision" +version = "0.16.2" +description = "image and video datasets and models for torch deep learning" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "torchvision-0.16.2-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:bc86f2800cb2c0c1a09c581409cdd6bff66e62f103dc83fc63f73346264c3756"}, + {file = "torchvision-0.16.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b024bd412df6d3a007dcebf311a894eb3c5c21e1af80d12be382bbcb097a7c3a"}, + {file = "torchvision-0.16.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:e89f10f3c8351972b6e3fda95bc3e479ea8dbfc9dfcfd2c32902dbad4ba5cfc5"}, + {file = "torchvision-0.16.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:96c7583700112a410bdc4e1e4f118c429dab49c29c9a31a2cc3579bc9b08b19d"}, + {file = "torchvision-0.16.2-cp310-cp310-win_amd64.whl", hash = "sha256:9f4032ebb3277fb07ff6a9b818d50a547fb8fcd89d958cfd9e773322454bb688"}, + {file = "torchvision-0.16.2-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:67b1aaf8b8cb02ce75dd445f291a27c8036a502f8c0aa76e28c37a0faac2e153"}, + {file = "torchvision-0.16.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bef30d03e1d1c629761f4dca51d3b7d8a0dc0acce6f4068ab2a1634e8e7b64e0"}, + {file = "torchvision-0.16.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:e59cc7b2bd1ab5c0ce4ae382e4e37be8f1c174e8b5de2f6a23c170de9ae28495"}, + {file = "torchvision-0.16.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:e130b08cc9b3cc73a6c59d6edf032394a322f9579bfd21d14bc2e1d0999aa758"}, + {file = "torchvision-0.16.2-cp311-cp311-win_amd64.whl", hash = "sha256:8692ab1e48807e9604046a6f4beeb67b523294cee1b00828654bb0df2cfce2b2"}, + {file = "torchvision-0.16.2-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:b82732dcf876a37c852772342aa6ee3480c03bb3e2a802ae109fc5f7e28d26e9"}, + {file = "torchvision-0.16.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4b065143d1a720fe8a9077fd4be35d491f98819ec80b3dbbc3ec64d0b707a906"}, + {file = "torchvision-0.16.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:bc5f274e4ecd1b86062063cdf4fd385a1d39d147a3a2685fbbde9ff08bb720b8"}, + {file = "torchvision-0.16.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:335959c43b371c0474af34c1ef2a52efdc7603c45700d29e4475eeb02984170c"}, + {file = "torchvision-0.16.2-cp38-cp38-win_amd64.whl", hash = "sha256:7fd22d86e08eba321af70cad291020c2cdeac069b00ce88b923ca52e06174769"}, + {file = "torchvision-0.16.2-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:56115268b37f0b75364e3654e47ad9abc66ac34c1f9e5e3dfa89a22d6a40017a"}, + {file = "torchvision-0.16.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:82805f8445b094f9d1e770390ee6cc86855e89955e08ce34af2e2274fc0e5c45"}, + {file = "torchvision-0.16.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:3f4bd5fcbc361476e2e78016636ac7d5509e59d9962521f06eb98e6803898182"}, + {file = "torchvision-0.16.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:8199acdf8ab066a28b84a5b6f4d97b58976d9e164b1acc3a9d14fccfaf74bb3a"}, + {file = "torchvision-0.16.2-cp39-cp39-win_amd64.whl", hash = "sha256:41dd4fa9f176d563fe9f1b9adef3b7e582cdfb60ce8c9bc51b094a025be687c9"}, +] + +[package.dependencies] +numpy = "*" +pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" +requests = "*" +torch = "2.1.2" + +[package.extras] +scipy = ["scipy"] + +[[package]] +name = "tornado" +version = "6.5.1" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "tornado-6.5.1-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:d50065ba7fd11d3bd41bcad0825227cc9a95154bad83239357094c36708001f7"}, + {file = "tornado-6.5.1-cp39-abi3-macosx_10_9_x86_64.whl", hash = "sha256:9e9ca370f717997cb85606d074b0e5b247282cf5e2e1611568b8821afe0342d6"}, + {file = "tornado-6.5.1-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b77e9dfa7ed69754a54c89d82ef746398be82f749df69c4d3abe75c4d1ff4888"}, + {file = "tornado-6.5.1-cp39-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:253b76040ee3bab8bcf7ba9feb136436a3787208717a1fb9f2c16b744fba7331"}, + {file = "tornado-6.5.1-cp39-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:308473f4cc5a76227157cdf904de33ac268af770b2c5f05ca6c1161d82fdd95e"}, + {file = "tornado-6.5.1-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:caec6314ce8a81cf69bd89909f4b633b9f523834dc1a352021775d45e51d9401"}, + {file = "tornado-6.5.1-cp39-abi3-musllinux_1_2_i686.whl", hash = "sha256:13ce6e3396c24e2808774741331638ee6c2f50b114b97a55c5b442df65fd9692"}, + {file = "tornado-6.5.1-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:5cae6145f4cdf5ab24744526cc0f55a17d76f02c98f4cff9daa08ae9a217448a"}, + {file = "tornado-6.5.1-cp39-abi3-win32.whl", hash = "sha256:e0a36e1bc684dca10b1aa75a31df8bdfed656831489bc1e6a6ebed05dc1ec365"}, + {file = "tornado-6.5.1-cp39-abi3-win_amd64.whl", hash = "sha256:908e7d64567cecd4c2b458075589a775063453aeb1d2a1853eedb806922f568b"}, + {file = "tornado-6.5.1-cp39-abi3-win_arm64.whl", hash = "sha256:02420a0eb7bf617257b9935e2b754d1b63897525d8a289c9d65690d580b4dcf7"}, + {file = "tornado-6.5.1.tar.gz", hash = "sha256:84ceece391e8eb9b2b95578db65e920d2a61070260594819589609ba9bc6308c"}, +] + +[[package]] +name = "tqdm" +version = "4.67.1" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = ">=3.7" +groups = ["main"] +files = [ + {file = "tqdm-4.67.1-py3-none-any.whl", hash = "sha256:26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2"}, + {file = "tqdm-4.67.1.tar.gz", hash = "sha256:f8aef9c52c08c13a65f30ea34f4e5aac3fd1a34959879d7e59e63027286627f2"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["nbval", "pytest (>=6)", "pytest-asyncio (>=0.24)", "pytest-cov", "pytest-timeout"] +discord = ["requests"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + +[[package]] +name = "traitlets" +version = "5.14.3" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "transformers" +version = "4.52.4" +description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow" +optional = false +python-versions = ">=3.9.0" +groups = ["main"] +files = [ + {file = "transformers-4.52.4-py3-none-any.whl", hash = "sha256:203f5c19416d5877e36e88633943761719538a25d9775977a24fe77a1e5adfc7"}, + {file = "transformers-4.52.4.tar.gz", hash = "sha256:aff3764441c1adc192a08dba49740d3cbbcb72d850586075aed6bd89b98203e6"}, +] + +[package.dependencies] +accelerate = {version = ">=0.26.0", optional = true, markers = "extra == \"torch\""} +filelock = "*" +huggingface-hub = ">=0.30.0,<1.0" +numpy = ">=1.17" +packaging = ">=20.0" +pyyaml = ">=5.1" +regex = "!=2019.12.17" +requests = "*" +safetensors = ">=0.4.3" +tokenizers = ">=0.21,<0.22" +torch = {version = ">=2.1,<2.7", optional = true, markers = "extra == \"torch\""} +tqdm = ">=4.27" + +[package.extras] +accelerate = ["accelerate (>=0.26.0)"] +all = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.26.0)", "av", "codecarbon (>=2.8.1)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "kernels (>=0.4.4,<0.5)", "librosa", "num2words", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm (<=1.0.11)", "tokenizers (>=0.21,<0.22)", "torch (>=2.1,<2.7)", "torchaudio", "torchvision"] +audio = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] +benchmark = ["optimum-benchmark (>=0.3.0)"] +codecarbon = ["codecarbon (>=2.8.1)"] +deepspeed = ["accelerate (>=0.26.0)", "deepspeed (>=0.9.3)"] +deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.26.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk (<=3.8.1)", "optuna", "parameterized", "protobuf", "psutil", "pydantic", "pytest (>=7.2.0)", "pytest-asyncio", "pytest-order", "pytest-rerunfailures", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.11.2)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] +dev = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.26.0)", "av", "beautifulsoup4", "codecarbon (>=2.8.1)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "kernels (>=0.4.4,<0.5)", "libcst", "librosa", "nltk (<=3.8.1)", "num2words", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0)", "pytest-asyncio", "pytest-order", "pytest-rerunfailures", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rich", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.11.2)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "timm (<=1.0.11)", "tokenizers (>=0.21,<0.22)", "torch (>=2.1,<2.7)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] +dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "libcst", "librosa", "nltk (<=3.8.1)", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0)", "pytest-asyncio", "pytest-order", "pytest-rerunfailures", "pytest-rich", "pytest-timeout", "pytest-xdist", "rich", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.11.2)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.21,<0.22)", "urllib3 (<2.0.0)"] +dev-torch = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.26.0)", "beautifulsoup4", "codecarbon (>=2.8.1)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "kernels (>=0.4.4,<0.5)", "libcst", "librosa", "nltk (<=3.8.1)", "num2words", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0)", "pytest-asyncio", "pytest-order", "pytest-rerunfailures", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rich", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.11.2)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm (<=1.0.11)", "tokenizers (>=0.21,<0.22)", "torch (>=2.1,<2.7)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] +flax = ["flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "optax (>=0.0.8,<=0.1.4)", "scipy (<1.13.0)"] +flax-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] +ftfy = ["ftfy"] +hf-xet = ["hf-xet"] +hub-kernels = ["kernels (>=0.4.4,<0.5)"] +integrations = ["kernels (>=0.4.4,<0.5)", "optuna", "ray[tune] (>=2.7.0)", "sigopt"] +ja = ["fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "rhoknp (>=1.1.0,<1.3.1)", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)"] +modelcreation = ["cookiecutter (==1.7.3)"] +natten = ["natten (>=0.14.6,<0.15.0)"] +num2words = ["num2words"] +onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"] +onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"] +optuna = ["optuna"] +quality = ["GitPython (<3.1.19)", "datasets (!=2.5.0)", "isort (>=5.5.4)", "libcst", "rich", "ruff (==0.11.2)", "urllib3 (<2.0.0)"] +ray = ["ray[tune] (>=2.7.0)"] +retrieval = ["datasets (!=2.5.0)", "faiss-cpu"] +ruff = ["ruff (==0.11.2)"] +sagemaker = ["sagemaker (>=2.31.0)"] +sentencepiece = ["protobuf", "sentencepiece (>=0.1.91,!=0.1.92)"] +serving = ["fastapi", "pydantic", "starlette", "uvicorn"] +sigopt = ["sigopt"] +sklearn = ["scikit-learn"] +speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] +testing = ["GitPython (<3.1.19)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk (<=3.8.1)", "parameterized", "psutil", "pydantic", "pytest (>=7.2.0)", "pytest-asyncio", "pytest-order", "pytest-rerunfailures", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.11.2)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] +tf = ["keras-nlp (>=0.3.1,<0.14.0)", "onnxconverter-common", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx"] +tf-cpu = ["keras (>2.9,<2.16)", "keras-nlp (>=0.3.1,<0.14.0)", "onnxconverter-common", "tensorflow-cpu (>2.9,<2.16)", "tensorflow-probability (<0.24)", "tensorflow-text (<2.16)", "tf2onnx"] +tf-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] +tiktoken = ["blobfile", "tiktoken"] +timm = ["timm (<=1.0.11)"] +tokenizers = ["tokenizers (>=0.21,<0.22)"] +torch = ["accelerate (>=0.26.0)", "torch (>=2.1,<2.7)"] +torch-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] +torch-vision = ["Pillow (>=10.0.1,<=15.0)", "torchvision"] +torchhub = ["filelock", "huggingface-hub (>=0.30.0,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.21,<0.22)", "torch (>=2.1,<2.7)", "tqdm (>=4.27)"] +video = ["av"] +vision = ["Pillow (>=10.0.1,<=15.0)"] + +[[package]] +name = "triton" +version = "2.1.0" +description = "A language and compiler for custom Deep Learning operations" +optional = false +python-versions = "*" +groups = ["main"] +markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "triton-2.1.0-0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:66439923a30d5d48399b08a9eae10370f6c261a5ec864a64983bae63152d39d7"}, + {file = "triton-2.1.0-0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:919b06453f0033ea52c13eaf7833de0e57db3178d23d4e04f9fc71c4f2c32bf8"}, + {file = "triton-2.1.0-0-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ae4bb8a91de790e1866405211c4d618379781188f40d5c4c399766914e84cd94"}, + {file = "triton-2.1.0-0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:39f6fb6bdccb3e98f3152e3fbea724f1aeae7d749412bbb1fa9c441d474eba26"}, + {file = "triton-2.1.0-0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:21544e522c02005a626c8ad63d39bdff2f31d41069592919ef281e964ed26446"}, + {file = "triton-2.1.0-0-pp37-pypy37_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:143582ca31dd89cd982bd3bf53666bab1c7527d41e185f9e3d8a3051ce1b663b"}, + {file = "triton-2.1.0-0-pp38-pypy38_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:82fc5aeeedf6e36be4e4530cbdcba81a09d65c18e02f52dc298696d45721f3bd"}, + {file = "triton-2.1.0-0-pp39-pypy39_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:81a96d110a738ff63339fc892ded095b31bd0d205e3aace262af8400d40b6fa8"}, +] + +[package.dependencies] +filelock = "*" + +[package.extras] +build = ["cmake (>=3.18)", "lit"] +tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)"] +tutorials = ["matplotlib", "pandas", "tabulate"] + +[[package]] +name = "types-pyyaml" +version = "6.0.12.20250516" +description = "Typing stubs for PyYAML" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "types_pyyaml-6.0.12.20250516-py3-none-any.whl", hash = "sha256:8478208feaeb53a34cb5d970c56a7cd76b72659442e733e268a94dc72b2d0530"}, + {file = "types_pyyaml-6.0.12.20250516.tar.gz", hash = "sha256:9f21a70216fc0fa1b216a8176db5f9e0af6eb35d2f2932acb87689d03a5bf6ba"}, +] + +[[package]] +name = "typing-extensions" +version = "4.14.0" +description = "Backported and Experimental Type Hints for Python 3.9+" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "typing_extensions-4.14.0-py3-none-any.whl", hash = "sha256:a1514509136dd0b477638fc68d6a91497af5076466ad0fa6c338e44e359944af"}, + {file = "typing_extensions-4.14.0.tar.gz", hash = "sha256:8676b788e32f02ab42d9e7c61324048ae4c6d844a399eebace3d4979d75ceef4"}, +] + +[[package]] +name = "typing-inspect" +version = "0.9.0" +description = "Runtime inspection utilities for typing module." +optional = false +python-versions = "*" +groups = ["main"] +files = [ + {file = "typing_inspect-0.9.0-py3-none-any.whl", hash = "sha256:9ee6fc59062311ef8547596ab6b955e1b8aa46242d854bfc78f4f6b0eff35f9f"}, + {file = "typing_inspect-0.9.0.tar.gz", hash = "sha256:b23fc42ff6f6ef6954e4852c1fb512cdd18dbea03134f91f856a95ccc9461f78"}, +] + +[package.dependencies] +mypy-extensions = ">=0.3.0" +typing-extensions = ">=3.7.4" + +[[package]] +name = "typing-inspection" +version = "0.4.1" +description = "Runtime typing introspection tools" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "typing_inspection-0.4.1-py3-none-any.whl", hash = "sha256:389055682238f53b04f7badcb49b989835495a96700ced5dab2d8feae4b26f51"}, + {file = "typing_inspection-0.4.1.tar.gz", hash = "sha256:6ae134cc0203c33377d43188d4064e9b357dba58cff3185f22924610e70a9d28"}, +] + +[package.dependencies] +typing-extensions = ">=4.12.0" + +[[package]] +name = "urllib3" +version = "2.5.0" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "urllib3-2.5.0-py3-none-any.whl", hash = "sha256:e6b01673c0fa6a13e374b50871808eb3bf7046c4b125b216f6bf1cc604cff0dc"}, + {file = "urllib3-2.5.0.tar.gz", hash = "sha256:3fc47733c7e419d4bc3f6b3dc2b4f890bb743906a30d56ba4a5bfa4bbff92760"}, +] + +[package.extras] +brotli = ["brotli (>=1.0.9) ; platform_python_implementation == \"CPython\"", "brotlicffi (>=0.8.0) ; platform_python_implementation != \"CPython\""] +h2 = ["h2 (>=4,<5)"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "wcwidth" +version = "0.2.13" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +groups = ["main"] +files = [ + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, +] + +[[package]] +name = "yarl" +version = "1.20.1" +description = "Yet another URL library" +optional = false +python-versions = ">=3.9" +groups = ["main"] +files = [ + {file = "yarl-1.20.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:6032e6da6abd41e4acda34d75a816012717000fa6839f37124a47fcefc49bec4"}, + {file = "yarl-1.20.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:2c7b34d804b8cf9b214f05015c4fee2ebe7ed05cf581e7192c06555c71f4446a"}, + {file = "yarl-1.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0c869f2651cc77465f6cd01d938d91a11d9ea5d798738c1dc077f3de0b5e5fed"}, + {file = "yarl-1.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:62915e6688eb4d180d93840cda4110995ad50c459bf931b8b3775b37c264af1e"}, + {file = "yarl-1.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:41ebd28167bc6af8abb97fec1a399f412eec5fd61a3ccbe2305a18b84fb4ca73"}, + {file = "yarl-1.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:21242b4288a6d56f04ea193adde174b7e347ac46ce6bc84989ff7c1b1ecea84e"}, + {file = "yarl-1.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bea21cdae6c7eb02ba02a475f37463abfe0a01f5d7200121b03e605d6a0439f8"}, + {file = "yarl-1.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f8a891e4a22a89f5dde7862994485e19db246b70bb288d3ce73a34422e55b23"}, + {file = "yarl-1.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dd803820d44c8853a109a34e3660e5a61beae12970da479cf44aa2954019bf70"}, + {file = "yarl-1.20.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b982fa7f74c80d5c0c7b5b38f908971e513380a10fecea528091405f519b9ebb"}, + {file = "yarl-1.20.1-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:33f29ecfe0330c570d997bcf1afd304377f2e48f61447f37e846a6058a4d33b2"}, + {file = "yarl-1.20.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:835ab2cfc74d5eb4a6a528c57f05688099da41cf4957cf08cad38647e4a83b30"}, + {file = "yarl-1.20.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:46b5e0ccf1943a9a6e766b2c2b8c732c55b34e28be57d8daa2b3c1d1d4009309"}, + {file = "yarl-1.20.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:df47c55f7d74127d1b11251fe6397d84afdde0d53b90bedb46a23c0e534f9d24"}, + {file = "yarl-1.20.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:76d12524d05841276b0e22573f28d5fbcb67589836772ae9244d90dd7d66aa13"}, + {file = "yarl-1.20.1-cp310-cp310-win32.whl", hash = "sha256:6c4fbf6b02d70e512d7ade4b1f998f237137f1417ab07ec06358ea04f69134f8"}, + {file = "yarl-1.20.1-cp310-cp310-win_amd64.whl", hash = "sha256:aef6c4d69554d44b7f9d923245f8ad9a707d971e6209d51279196d8e8fe1ae16"}, + {file = "yarl-1.20.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:47ee6188fea634bdfaeb2cc420f5b3b17332e6225ce88149a17c413c77ff269e"}, + {file = "yarl-1.20.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d0f6500f69e8402d513e5eedb77a4e1818691e8f45e6b687147963514d84b44b"}, + {file = "yarl-1.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7a8900a42fcdaad568de58887c7b2f602962356908eedb7628eaf6021a6e435b"}, + {file = "yarl-1.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bad6d131fda8ef508b36be3ece16d0902e80b88ea7200f030a0f6c11d9e508d4"}, + {file = "yarl-1.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:df018d92fe22aaebb679a7f89fe0c0f368ec497e3dda6cb81a567610f04501f1"}, + {file = "yarl-1.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8f969afbb0a9b63c18d0feecf0db09d164b7a44a053e78a7d05f5df163e43833"}, + {file = "yarl-1.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:812303eb4aa98e302886ccda58d6b099e3576b1b9276161469c25803a8db277d"}, + {file = "yarl-1.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98c4a7d166635147924aa0bf9bfe8d8abad6fffa6102de9c99ea04a1376f91e8"}, + {file = "yarl-1.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:12e768f966538e81e6e7550f9086a6236b16e26cd964cf4df35349970f3551cf"}, + {file = "yarl-1.20.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:fe41919b9d899661c5c28a8b4b0acf704510b88f27f0934ac7a7bebdd8938d5e"}, + {file = "yarl-1.20.1-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:8601bc010d1d7780592f3fc1bdc6c72e2b6466ea34569778422943e1a1f3c389"}, + {file = "yarl-1.20.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:daadbdc1f2a9033a2399c42646fbd46da7992e868a5fe9513860122d7fe7a73f"}, + {file = "yarl-1.20.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:03aa1e041727cb438ca762628109ef1333498b122e4c76dd858d186a37cec845"}, + {file = "yarl-1.20.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:642980ef5e0fa1de5fa96d905c7e00cb2c47cb468bfcac5a18c58e27dbf8d8d1"}, + {file = "yarl-1.20.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:86971e2795584fe8c002356d3b97ef6c61862720eeff03db2a7c86b678d85b3e"}, + {file = "yarl-1.20.1-cp311-cp311-win32.whl", hash = "sha256:597f40615b8d25812f14562699e287f0dcc035d25eb74da72cae043bb884d773"}, + {file = "yarl-1.20.1-cp311-cp311-win_amd64.whl", hash = "sha256:26ef53a9e726e61e9cd1cda6b478f17e350fb5800b4bd1cd9fe81c4d91cfeb2e"}, + {file = "yarl-1.20.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:bdcc4cd244e58593a4379fe60fdee5ac0331f8eb70320a24d591a3be197b94a9"}, + {file = "yarl-1.20.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:b29a2c385a5f5b9c7d9347e5812b6f7ab267193c62d282a540b4fc528c8a9d2a"}, + {file = "yarl-1.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1112ae8154186dfe2de4732197f59c05a83dc814849a5ced892b708033f40dc2"}, + {file = "yarl-1.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:90bbd29c4fe234233f7fa2b9b121fb63c321830e5d05b45153a2ca68f7d310ee"}, + {file = "yarl-1.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:680e19c7ce3710ac4cd964e90dad99bf9b5029372ba0c7cbfcd55e54d90ea819"}, + {file = "yarl-1.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4a979218c1fdb4246a05efc2cc23859d47c89af463a90b99b7c56094daf25a16"}, + {file = "yarl-1.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255b468adf57b4a7b65d8aad5b5138dce6a0752c139965711bdcb81bc370e1b6"}, + {file = "yarl-1.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a97d67108e79cfe22e2b430d80d7571ae57d19f17cda8bb967057ca8a7bf5bfd"}, + {file = "yarl-1.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8570d998db4ddbfb9a590b185a0a33dbf8aafb831d07a5257b4ec9948df9cb0a"}, + {file = "yarl-1.20.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:97c75596019baae7c71ccf1d8cc4738bc08134060d0adfcbe5642f778d1dca38"}, + {file = "yarl-1.20.1-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:1c48912653e63aef91ff988c5432832692ac5a1d8f0fb8a33091520b5bbe19ef"}, + {file = "yarl-1.20.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:4c3ae28f3ae1563c50f3d37f064ddb1511ecc1d5584e88c6b7c63cf7702a6d5f"}, + {file = "yarl-1.20.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:c5e9642f27036283550f5f57dc6156c51084b458570b9d0d96100c8bebb186a8"}, + {file = "yarl-1.20.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:2c26b0c49220d5799f7b22c6838409ee9bc58ee5c95361a4d7831f03cc225b5a"}, + {file = "yarl-1.20.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:564ab3d517e3d01c408c67f2e5247aad4019dcf1969982aba3974b4093279004"}, + {file = "yarl-1.20.1-cp312-cp312-win32.whl", hash = "sha256:daea0d313868da1cf2fac6b2d3a25c6e3a9e879483244be38c8e6a41f1d876a5"}, + {file = "yarl-1.20.1-cp312-cp312-win_amd64.whl", hash = "sha256:48ea7d7f9be0487339828a4de0360d7ce0efc06524a48e1810f945c45b813698"}, + {file = "yarl-1.20.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:0b5ff0fbb7c9f1b1b5ab53330acbfc5247893069e7716840c8e7d5bb7355038a"}, + {file = "yarl-1.20.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:14f326acd845c2b2e2eb38fb1346c94f7f3b01a4f5c788f8144f9b630bfff9a3"}, + {file = "yarl-1.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f60e4ad5db23f0b96e49c018596707c3ae89f5d0bd97f0ad3684bcbad899f1e7"}, + {file = "yarl-1.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:49bdd1b8e00ce57e68ba51916e4bb04461746e794e7c4d4bbc42ba2f18297691"}, + {file = "yarl-1.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:66252d780b45189975abfed839616e8fd2dbacbdc262105ad7742c6ae58f3e31"}, + {file = "yarl-1.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59174e7332f5d153d8f7452a102b103e2e74035ad085f404df2e40e663a22b28"}, + {file = "yarl-1.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e3968ec7d92a0c0f9ac34d5ecfd03869ec0cab0697c91a45db3fbbd95fe1b653"}, + {file = "yarl-1.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1a4fbb50e14396ba3d375f68bfe02215d8e7bc3ec49da8341fe3157f59d2ff5"}, + {file = "yarl-1.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:11a62c839c3a8eac2410e951301309426f368388ff2f33799052787035793b02"}, + {file = "yarl-1.20.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:041eaa14f73ff5a8986b4388ac6bb43a77f2ea09bf1913df7a35d4646db69e53"}, + {file = "yarl-1.20.1-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:377fae2fef158e8fd9d60b4c8751387b8d1fb121d3d0b8e9b0be07d1b41e83dc"}, + {file = "yarl-1.20.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:1c92f4390e407513f619d49319023664643d3339bd5e5a56a3bebe01bc67ec04"}, + {file = "yarl-1.20.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:d25ddcf954df1754ab0f86bb696af765c5bfaba39b74095f27eececa049ef9a4"}, + {file = "yarl-1.20.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:909313577e9619dcff8c31a0ea2aa0a2a828341d92673015456b3ae492e7317b"}, + {file = "yarl-1.20.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:793fd0580cb9664548c6b83c63b43c477212c0260891ddf86809e1c06c8b08f1"}, + {file = "yarl-1.20.1-cp313-cp313-win32.whl", hash = "sha256:468f6e40285de5a5b3c44981ca3a319a4b208ccc07d526b20b12aeedcfa654b7"}, + {file = "yarl-1.20.1-cp313-cp313-win_amd64.whl", hash = "sha256:495b4ef2fea40596bfc0affe3837411d6aa3371abcf31aac0ccc4bdd64d4ef5c"}, + {file = "yarl-1.20.1-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:f60233b98423aab21d249a30eb27c389c14929f47be8430efa7dbd91493a729d"}, + {file = "yarl-1.20.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:6f3eff4cc3f03d650d8755c6eefc844edde99d641d0dcf4da3ab27141a5f8ddf"}, + {file = "yarl-1.20.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:69ff8439d8ba832d6bed88af2c2b3445977eba9a4588b787b32945871c2444e3"}, + {file = "yarl-1.20.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cf34efa60eb81dd2645a2e13e00bb98b76c35ab5061a3989c7a70f78c85006d"}, + {file = "yarl-1.20.1-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:8e0fe9364ad0fddab2688ce72cb7a8e61ea42eff3c7caeeb83874a5d479c896c"}, + {file = "yarl-1.20.1-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8f64fbf81878ba914562c672024089e3401974a39767747691c65080a67b18c1"}, + {file = "yarl-1.20.1-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f6342d643bf9a1de97e512e45e4b9560a043347e779a173250824f8b254bd5ce"}, + {file = "yarl-1.20.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56dac5f452ed25eef0f6e3c6a066c6ab68971d96a9fb441791cad0efba6140d3"}, + {file = "yarl-1.20.1-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7d7f497126d65e2cad8dc5f97d34c27b19199b6414a40cb36b52f41b79014be"}, + {file = "yarl-1.20.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:67e708dfb8e78d8a19169818eeb5c7a80717562de9051bf2413aca8e3696bf16"}, + {file = "yarl-1.20.1-cp313-cp313t-musllinux_1_2_armv7l.whl", hash = "sha256:595c07bc79af2494365cc96ddeb772f76272364ef7c80fb892ef9d0649586513"}, + {file = "yarl-1.20.1-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:7bdd2f80f4a7df852ab9ab49484a4dee8030023aa536df41f2d922fd57bf023f"}, + {file = "yarl-1.20.1-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:c03bfebc4ae8d862f853a9757199677ab74ec25424d0ebd68a0027e9c639a390"}, + {file = "yarl-1.20.1-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:344d1103e9c1523f32a5ed704d576172d2cabed3122ea90b1d4e11fe17c66458"}, + {file = "yarl-1.20.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:88cab98aa4e13e1ade8c141daeedd300a4603b7132819c484841bb7af3edce9e"}, + {file = "yarl-1.20.1-cp313-cp313t-win32.whl", hash = "sha256:b121ff6a7cbd4abc28985b6028235491941b9fe8fe226e6fdc539c977ea1739d"}, + {file = "yarl-1.20.1-cp313-cp313t-win_amd64.whl", hash = "sha256:541d050a355bbbc27e55d906bc91cb6fe42f96c01413dd0f4ed5a5240513874f"}, + {file = "yarl-1.20.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e42ba79e2efb6845ebab49c7bf20306c4edf74a0b20fc6b2ccdd1a219d12fad3"}, + {file = "yarl-1.20.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:41493b9b7c312ac448b7f0a42a089dffe1d6e6e981a2d76205801a023ed26a2b"}, + {file = "yarl-1.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f5a5928ff5eb13408c62a968ac90d43f8322fd56d87008b8f9dabf3c0f6ee983"}, + {file = "yarl-1.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30c41ad5d717b3961b2dd785593b67d386b73feca30522048d37298fee981805"}, + {file = "yarl-1.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:59febc3969b0781682b469d4aca1a5cab7505a4f7b85acf6db01fa500fa3f6ba"}, + {file = "yarl-1.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d2b6fb3622b7e5bf7a6e5b679a69326b4279e805ed1699d749739a61d242449e"}, + {file = "yarl-1.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:749d73611db8d26a6281086f859ea7ec08f9c4c56cec864e52028c8b328db723"}, + {file = "yarl-1.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9427925776096e664c39e131447aa20ec738bdd77c049c48ea5200db2237e000"}, + {file = "yarl-1.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ff70f32aa316393eaf8222d518ce9118148eddb8a53073c2403863b41033eed5"}, + {file = "yarl-1.20.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:c7ddf7a09f38667aea38801da8b8d6bfe81df767d9dfc8c88eb45827b195cd1c"}, + {file = "yarl-1.20.1-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:57edc88517d7fc62b174fcfb2e939fbc486a68315d648d7e74d07fac42cec240"}, + {file = "yarl-1.20.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:dab096ce479d5894d62c26ff4f699ec9072269d514b4edd630a393223f45a0ee"}, + {file = "yarl-1.20.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:14a85f3bd2d7bb255be7183e5d7d6e70add151a98edf56a770d6140f5d5f4010"}, + {file = "yarl-1.20.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:2c89b5c792685dd9cd3fa9761c1b9f46fc240c2a3265483acc1565769996a3f8"}, + {file = "yarl-1.20.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:69e9b141de5511021942a6866990aea6d111c9042235de90e08f94cf972ca03d"}, + {file = "yarl-1.20.1-cp39-cp39-win32.whl", hash = "sha256:b5f307337819cdfdbb40193cad84978a029f847b0a357fbe49f712063cfc4f06"}, + {file = "yarl-1.20.1-cp39-cp39-win_amd64.whl", hash = "sha256:eae7bfe2069f9c1c5b05fc7fe5d612e5bbc089a39309904ee8b829e322dcad00"}, + {file = "yarl-1.20.1-py3-none-any.whl", hash = "sha256:83b8eb083fe4683c6115795d9fc1cfaf2cbbefb19b3a1cb68f6527460f483a77"}, + {file = "yarl-1.20.1.tar.gz", hash = "sha256:d017a4997ee50c91fd5466cef416231bb82177b93b029906cefc542ce14c35ac"}, +] + +[package.dependencies] +idna = ">=2.0" +multidict = ">=4.0" +propcache = ">=0.2.1" + +[[package]] +name = "zstandard" +version = "0.23.0" +description = "Zstandard bindings for Python" +optional = false +python-versions = ">=3.8" +groups = ["main"] +files = [ + {file = "zstandard-0.23.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bf0a05b6059c0528477fba9054d09179beb63744355cab9f38059548fedd46a9"}, + {file = "zstandard-0.23.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fc9ca1c9718cb3b06634c7c8dec57d24e9438b2aa9a0f02b8bb36bf478538880"}, + {file = "zstandard-0.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77da4c6bfa20dd5ea25cbf12c76f181a8e8cd7ea231c673828d0386b1740b8dc"}, + {file = "zstandard-0.23.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b2170c7e0367dde86a2647ed5b6f57394ea7f53545746104c6b09fc1f4223573"}, + {file = "zstandard-0.23.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c16842b846a8d2a145223f520b7e18b57c8f476924bda92aeee3a88d11cfc391"}, + {file = "zstandard-0.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:157e89ceb4054029a289fb504c98c6a9fe8010f1680de0201b3eb5dc20aa6d9e"}, + {file = "zstandard-0.23.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:203d236f4c94cd8379d1ea61db2fce20730b4c38d7f1c34506a31b34edc87bdd"}, + {file = "zstandard-0.23.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:dc5d1a49d3f8262be192589a4b72f0d03b72dcf46c51ad5852a4fdc67be7b9e4"}, + {file = "zstandard-0.23.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:752bf8a74412b9892f4e5b58f2f890a039f57037f52c89a740757ebd807f33ea"}, + {file = "zstandard-0.23.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:80080816b4f52a9d886e67f1f96912891074903238fe54f2de8b786f86baded2"}, + {file = "zstandard-0.23.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:84433dddea68571a6d6bd4fbf8ff398236031149116a7fff6f777ff95cad3df9"}, + {file = "zstandard-0.23.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:ab19a2d91963ed9e42b4e8d77cd847ae8381576585bad79dbd0a8837a9f6620a"}, + {file = "zstandard-0.23.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:59556bf80a7094d0cfb9f5e50bb2db27fefb75d5138bb16fb052b61b0e0eeeb0"}, + {file = "zstandard-0.23.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:27d3ef2252d2e62476389ca8f9b0cf2bbafb082a3b6bfe9d90cbcbb5529ecf7c"}, + {file = "zstandard-0.23.0-cp310-cp310-win32.whl", hash = "sha256:5d41d5e025f1e0bccae4928981e71b2334c60f580bdc8345f824e7c0a4c2a813"}, + {file = "zstandard-0.23.0-cp310-cp310-win_amd64.whl", hash = "sha256:519fbf169dfac1222a76ba8861ef4ac7f0530c35dd79ba5727014613f91613d4"}, + {file = "zstandard-0.23.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:34895a41273ad33347b2fc70e1bff4240556de3c46c6ea430a7ed91f9042aa4e"}, + {file = "zstandard-0.23.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:77ea385f7dd5b5676d7fd943292ffa18fbf5c72ba98f7d09fc1fb9e819b34c23"}, + {file = "zstandard-0.23.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:983b6efd649723474f29ed42e1467f90a35a74793437d0bc64a5bf482bedfa0a"}, + {file = "zstandard-0.23.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80a539906390591dd39ebb8d773771dc4db82ace6372c4d41e2d293f8e32b8db"}, + {file = "zstandard-0.23.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:445e4cb5048b04e90ce96a79b4b63140e3f4ab5f662321975679b5f6360b90e2"}, + {file = "zstandard-0.23.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd30d9c67d13d891f2360b2a120186729c111238ac63b43dbd37a5a40670b8ca"}, + {file = "zstandard-0.23.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d20fd853fbb5807c8e84c136c278827b6167ded66c72ec6f9a14b863d809211c"}, + {file = "zstandard-0.23.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ed1708dbf4d2e3a1c5c69110ba2b4eb6678262028afd6c6fbcc5a8dac9cda68e"}, + {file = "zstandard-0.23.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:be9b5b8659dff1f913039c2feee1aca499cfbc19e98fa12bc85e037c17ec6ca5"}, + {file = "zstandard-0.23.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:65308f4b4890aa12d9b6ad9f2844b7ee42c7f7a4fd3390425b242ffc57498f48"}, + {file = "zstandard-0.23.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:98da17ce9cbf3bfe4617e836d561e433f871129e3a7ac16d6ef4c680f13a839c"}, + {file = "zstandard-0.23.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:8ed7d27cb56b3e058d3cf684d7200703bcae623e1dcc06ed1e18ecda39fee003"}, + {file = "zstandard-0.23.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:b69bb4f51daf461b15e7b3db033160937d3ff88303a7bc808c67bbc1eaf98c78"}, + {file = "zstandard-0.23.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:034b88913ecc1b097f528e42b539453fa82c3557e414b3de9d5632c80439a473"}, + {file = "zstandard-0.23.0-cp311-cp311-win32.whl", hash = "sha256:f2d4380bf5f62daabd7b751ea2339c1a21d1c9463f1feb7fc2bdcea2c29c3160"}, + {file = "zstandard-0.23.0-cp311-cp311-win_amd64.whl", hash = "sha256:62136da96a973bd2557f06ddd4e8e807f9e13cbb0bfb9cc06cfe6d98ea90dfe0"}, + {file = "zstandard-0.23.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b4567955a6bc1b20e9c31612e615af6b53733491aeaa19a6b3b37f3b65477094"}, + {file = "zstandard-0.23.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1e172f57cd78c20f13a3415cc8dfe24bf388614324d25539146594c16d78fcc8"}, + {file = "zstandard-0.23.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b0e166f698c5a3e914947388c162be2583e0c638a4703fc6a543e23a88dea3c1"}, + {file = "zstandard-0.23.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:12a289832e520c6bd4dcaad68e944b86da3bad0d339ef7989fb7e88f92e96072"}, + {file = "zstandard-0.23.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d50d31bfedd53a928fed6707b15a8dbeef011bb6366297cc435accc888b27c20"}, + {file = "zstandard-0.23.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72c68dda124a1a138340fb62fa21b9bf4848437d9ca60bd35db36f2d3345f373"}, + {file = "zstandard-0.23.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:53dd9d5e3d29f95acd5de6802e909ada8d8d8cfa37a3ac64836f3bc4bc5512db"}, + {file = "zstandard-0.23.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:6a41c120c3dbc0d81a8e8adc73312d668cd34acd7725f036992b1b72d22c1772"}, + {file = "zstandard-0.23.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:40b33d93c6eddf02d2c19f5773196068d875c41ca25730e8288e9b672897c105"}, + {file = "zstandard-0.23.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:9206649ec587e6b02bd124fb7799b86cddec350f6f6c14bc82a2b70183e708ba"}, + {file = "zstandard-0.23.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76e79bc28a65f467e0409098fa2c4376931fd3207fbeb6b956c7c476d53746dd"}, + {file = "zstandard-0.23.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:66b689c107857eceabf2cf3d3fc699c3c0fe8ccd18df2219d978c0283e4c508a"}, + {file = "zstandard-0.23.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:9c236e635582742fee16603042553d276cca506e824fa2e6489db04039521e90"}, + {file = "zstandard-0.23.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:a8fffdbd9d1408006baaf02f1068d7dd1f016c6bcb7538682622c556e7b68e35"}, + {file = "zstandard-0.23.0-cp312-cp312-win32.whl", hash = "sha256:dc1d33abb8a0d754ea4763bad944fd965d3d95b5baef6b121c0c9013eaf1907d"}, + {file = "zstandard-0.23.0-cp312-cp312-win_amd64.whl", hash = "sha256:64585e1dba664dc67c7cdabd56c1e5685233fbb1fc1966cfba2a340ec0dfff7b"}, + {file = "zstandard-0.23.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:576856e8594e6649aee06ddbfc738fec6a834f7c85bf7cadd1c53d4a58186ef9"}, + {file = "zstandard-0.23.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:38302b78a850ff82656beaddeb0bb989a0322a8bbb1bf1ab10c17506681d772a"}, + {file = "zstandard-0.23.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2240ddc86b74966c34554c49d00eaafa8200a18d3a5b6ffbf7da63b11d74ee2"}, + {file = "zstandard-0.23.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2ef230a8fd217a2015bc91b74f6b3b7d6522ba48be29ad4ea0ca3a3775bf7dd5"}, + {file = "zstandard-0.23.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:774d45b1fac1461f48698a9d4b5fa19a69d47ece02fa469825b442263f04021f"}, + {file = "zstandard-0.23.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f77fa49079891a4aab203d0b1744acc85577ed16d767b52fc089d83faf8d8ed"}, + {file = "zstandard-0.23.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ac184f87ff521f4840e6ea0b10c0ec90c6b1dcd0bad2f1e4a9a1b4fa177982ea"}, + {file = "zstandard-0.23.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:c363b53e257246a954ebc7c488304b5592b9c53fbe74d03bc1c64dda153fb847"}, + {file = "zstandard-0.23.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:e7792606d606c8df5277c32ccb58f29b9b8603bf83b48639b7aedf6df4fe8171"}, + {file = "zstandard-0.23.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a0817825b900fcd43ac5d05b8b3079937073d2b1ff9cf89427590718b70dd840"}, + {file = "zstandard-0.23.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:9da6bc32faac9a293ddfdcb9108d4b20416219461e4ec64dfea8383cac186690"}, + {file = "zstandard-0.23.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:fd7699e8fd9969f455ef2926221e0233f81a2542921471382e77a9e2f2b57f4b"}, + {file = "zstandard-0.23.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d477ed829077cd945b01fc3115edd132c47e6540ddcd96ca169facff28173057"}, + {file = "zstandard-0.23.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fa6ce8b52c5987b3e34d5674b0ab529a4602b632ebab0a93b07bfb4dfc8f8a33"}, + {file = "zstandard-0.23.0-cp313-cp313-win32.whl", hash = "sha256:a9b07268d0c3ca5c170a385a0ab9fb7fdd9f5fd866be004c4ea39e44edce47dd"}, + {file = "zstandard-0.23.0-cp313-cp313-win_amd64.whl", hash = "sha256:f3513916e8c645d0610815c257cbfd3242adfd5c4cfa78be514e5a3ebb42a41b"}, + {file = "zstandard-0.23.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2ef3775758346d9ac6214123887d25c7061c92afe1f2b354f9388e9e4d48acfc"}, + {file = "zstandard-0.23.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4051e406288b8cdbb993798b9a45c59a4896b6ecee2f875424ec10276a895740"}, + {file = "zstandard-0.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2d1a054f8f0a191004675755448d12be47fa9bebbcffa3cdf01db19f2d30a54"}, + {file = "zstandard-0.23.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f83fa6cae3fff8e98691248c9320356971b59678a17f20656a9e59cd32cee6d8"}, + {file = "zstandard-0.23.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:32ba3b5ccde2d581b1e6aa952c836a6291e8435d788f656fe5976445865ae045"}, + {file = "zstandard-0.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2f146f50723defec2975fb7e388ae3a024eb7151542d1599527ec2aa9cacb152"}, + {file = "zstandard-0.23.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1bfe8de1da6d104f15a60d4a8a768288f66aa953bbe00d027398b93fb9680b26"}, + {file = "zstandard-0.23.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:29a2bc7c1b09b0af938b7a8343174b987ae021705acabcbae560166567f5a8db"}, + {file = "zstandard-0.23.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:61f89436cbfede4bc4e91b4397eaa3e2108ebe96d05e93d6ccc95ab5714be512"}, + {file = "zstandard-0.23.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:53ea7cdc96c6eb56e76bb06894bcfb5dfa93b7adcf59d61c6b92674e24e2dd5e"}, + {file = "zstandard-0.23.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:a4ae99c57668ca1e78597d8b06d5af837f377f340f4cce993b551b2d7731778d"}, + {file = "zstandard-0.23.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:379b378ae694ba78cef921581ebd420c938936a153ded602c4fea612b7eaa90d"}, + {file = "zstandard-0.23.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:50a80baba0285386f97ea36239855f6020ce452456605f262b2d33ac35c7770b"}, + {file = "zstandard-0.23.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:61062387ad820c654b6a6b5f0b94484fa19515e0c5116faf29f41a6bc91ded6e"}, + {file = "zstandard-0.23.0-cp38-cp38-win32.whl", hash = "sha256:b8c0bd73aeac689beacd4e7667d48c299f61b959475cdbb91e7d3d88d27c56b9"}, + {file = "zstandard-0.23.0-cp38-cp38-win_amd64.whl", hash = "sha256:a05e6d6218461eb1b4771d973728f0133b2a4613a6779995df557f70794fd60f"}, + {file = "zstandard-0.23.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3aa014d55c3af933c1315eb4bb06dd0459661cc0b15cd61077afa6489bec63bb"}, + {file = "zstandard-0.23.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7f0804bb3799414af278e9ad51be25edf67f78f916e08afdb983e74161b916"}, + {file = "zstandard-0.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb2b1ecfef1e67897d336de3a0e3f52478182d6a47eda86cbd42504c5cbd009a"}, + {file = "zstandard-0.23.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:837bb6764be6919963ef41235fd56a6486b132ea64afe5fafb4cb279ac44f259"}, + {file = "zstandard-0.23.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1516c8c37d3a053b01c1c15b182f3b5f5eef19ced9b930b684a73bad121addf4"}, + {file = "zstandard-0.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:48ef6a43b1846f6025dde6ed9fee0c24e1149c1c25f7fb0a0585572b2f3adc58"}, + {file = "zstandard-0.23.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:11e3bf3c924853a2d5835b24f03eeba7fc9b07d8ca499e247e06ff5676461a15"}, + {file = "zstandard-0.23.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:2fb4535137de7e244c230e24f9d1ec194f61721c86ebea04e1581d9d06ea1269"}, + {file = "zstandard-0.23.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8c24f21fa2af4bb9f2c492a86fe0c34e6d2c63812a839590edaf177b7398f700"}, + {file = "zstandard-0.23.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:a8c86881813a78a6f4508ef9daf9d4995b8ac2d147dcb1a450448941398091c9"}, + {file = "zstandard-0.23.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:fe3b385d996ee0822fd46528d9f0443b880d4d05528fd26a9119a54ec3f91c69"}, + {file = "zstandard-0.23.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:82d17e94d735c99621bf8ebf9995f870a6b3e6d14543b99e201ae046dfe7de70"}, + {file = "zstandard-0.23.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:c7c517d74bea1a6afd39aa612fa025e6b8011982a0897768a2f7c8ab4ebb78a2"}, + {file = "zstandard-0.23.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:1fd7e0f1cfb70eb2f95a19b472ee7ad6d9a0a992ec0ae53286870c104ca939e5"}, + {file = "zstandard-0.23.0-cp39-cp39-win32.whl", hash = "sha256:43da0f0092281bf501f9c5f6f3b4c975a8a0ea82de49ba3f7100e64d422a1274"}, + {file = "zstandard-0.23.0-cp39-cp39-win_amd64.whl", hash = "sha256:f8346bfa098532bc1fb6c7ef06783e969d87a99dd1d2a5a18a892c1d7a643c58"}, + {file = "zstandard-0.23.0.tar.gz", hash = "sha256:b2d8c62d08e7255f68f7a740bae85b3c9b8e5466baa9cbf7f57f1cde0ac6bc09"}, +] + +[package.dependencies] +cffi = {version = ">=1.11", markers = "platform_python_implementation == \"PyPy\""} + +[package.extras] +cffi = ["cffi (>=1.11)"] + +[metadata] +lock-version = "2.1" +python-versions = "~3.10" +content-hash = "04a1e405076c739a06f42905818b2b4ddfb84ea4c125b4fc1367ce4f2a7e8962" diff --git a/Chapter12/pyproject.toml b/Chapter12/pyproject.toml new file mode 100644 index 0000000..dc5bcc3 --- /dev/null +++ b/Chapter12/pyproject.toml @@ -0,0 +1,35 @@ +[tool.poetry] +name = "Graph Machine Learning (2nd Edition) - Chapter 13" +version = "1.0.0" +description = "" +authors = ["Enrico Deusebio "] +packages = [] +package-mode = false + +[tool.setuptools] +py-modules = [] + +[tool.poetry.dependencies] +python = "~3.10" +ipykernel = ">=6.0.0" +matplotlib = "==3.2.2" +numpy = ">=1.26,<2.0" +# networkx = "==2.5" +torch = "^2.1.0" +torch_geometric = "^2.5.2" +torchvision = "^0.16.0" +torchmetrics="^1.3.0" +torch-sparse = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp310-cp310-linux_x86_64.whl"} +torch-scatter = {url = "https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_scatter-2.1.2%2Bpt21cpu-cp310-cp310-linux_x86_64.whl"} +neo4j-graphrag = {extras = ["ollama"], version="^1.6.1"} +langchain-community = "^0.3.21" +langchain-experimental = "^0.3.4" +langchain-neo4j = "^0.4.0" +langchain-openai = "^0.3.12" +transformers = {extras = ["torch"], version = "^4.50.3"} + + +[build-system] +requires = ["poetry-core"] +build-backend = "poetry.core.masonry.api" + diff --git a/Chapter12/requirements.txt b/Chapter12/requirements.txt new file mode 100644 index 0000000..5db35d6 --- /dev/null +++ b/Chapter12/requirements.txt @@ -0,0 +1,137 @@ +accelerate==1.8.1 ; python_version == "3.10" +aiohappyeyeballs==2.6.1 ; python_version == "3.10" +aiohttp==3.12.13 ; python_version == "3.10" +aiosignal==1.3.2 ; python_version == "3.10" +annotated-types==0.7.0 ; python_version == "3.10" +anyio==4.9.0 ; python_version == "3.10" +appnope==0.1.4 ; platform_system == "Darwin" and python_version == "3.10" +asttokens==3.0.0 ; python_version == "3.10" +async-timeout==4.0.3 ; python_version == "3.10" +attrs==25.3.0 ; python_version == "3.10" +certifi==2025.6.15 ; python_version == "3.10" +cffi==1.17.1 ; (implementation_name == "pypy" or platform_python_implementation == "PyPy") and python_version == "3.10" +charset-normalizer==3.4.2 ; python_version == "3.10" +colorama==0.4.6 ; python_version == "3.10" and (sys_platform == "win32" or platform_system == "Windows") +comm==0.2.2 ; python_version == "3.10" +cycler==0.12.1 ; python_version == "3.10" +dataclasses-json==0.6.7 ; python_version == "3.10" +debugpy==1.8.14 ; python_version == "3.10" +decorator==5.2.1 ; python_version == "3.10" +distro==1.9.0 ; python_version == "3.10" +exceptiongroup==1.3.0 ; python_version == "3.10" +executing==2.2.0 ; python_version == "3.10" +filelock==3.18.0 ; python_version == "3.10" +frozenlist==1.7.0 ; python_version == "3.10" +fsspec==2024.12.0 ; python_version == "3.10" +greenlet==3.2.3 ; python_version == "3.10" and (platform_machine == "aarch64" or platform_machine == "ppc64le" or platform_machine == "x86_64" or platform_machine == "amd64" or platform_machine == "AMD64" or platform_machine == "win32" or platform_machine == "WIN32") +h11==0.16.0 ; python_version == "3.10" +hf-xet==1.1.5 ; (platform_machine == "x86_64" or platform_machine == "amd64" or platform_machine == "arm64" or platform_machine == "aarch64") and python_version == "3.10" +httpcore==1.0.9 ; python_version == "3.10" +httpx-sse==0.4.0 ; python_version == "3.10" +httpx==0.28.1 ; python_version == "3.10" +huggingface-hub==0.33.0 ; python_version == "3.10" +idna==3.10 ; python_version == "3.10" +ipykernel==6.29.5 ; python_version == "3.10" +ipython==8.37.0 ; python_version == "3.10" +jedi==0.19.2 ; python_version == "3.10" +jinja2==3.1.6 ; python_version == "3.10" +jiter==0.10.0 ; python_version == "3.10" +json-repair==0.39.1 ; python_version == "3.10" +jsonpatch==1.33 ; python_version == "3.10" +jsonpointer==3.0.0 ; python_version == "3.10" +jupyter-client==8.6.3 ; python_version == "3.10" +jupyter-core==5.8.1 ; python_version == "3.10" +kiwisolver==1.4.8 ; python_version == "3.10" +langchain-community==0.3.26 ; python_version == "3.10" +langchain-core==0.3.66 ; python_version == "3.10" +langchain-experimental==0.3.4 ; python_version == "3.10" +langchain-neo4j==0.4.0 ; python_version == "3.10" +langchain-openai==0.3.24 ; python_version == "3.10" +langchain-text-splitters==0.3.8 ; python_version == "3.10" +langchain==0.3.26 ; python_version == "3.10" +langsmith==0.4.1 ; python_version == "3.10" +lightning-utilities==0.14.3 ; python_version == "3.10" +markupsafe==3.0.2 ; python_version == "3.10" +marshmallow==3.26.1 ; python_version == "3.10" +matplotlib-inline==0.1.7 ; python_version == "3.10" +matplotlib==3.2.2 ; python_version == "3.10" +mpmath==1.3.0 ; python_version == "3.10" +multidict==6.5.0 ; python_version == "3.10" +mypy-extensions==1.1.0 ; python_version == "3.10" +neo4j-graphrag==1.7.0 ; python_version == "3.10" +neo4j-graphrag[ollama]==1.7.0 ; python_version == "3.10" +neo4j==5.28.1 ; python_version == "3.10" +nest-asyncio==1.6.0 ; python_version == "3.10" +networkx==3.4.2 ; python_version == "3.10" +numpy==1.26.4 ; python_version == "3.10" +nvidia-cublas-cu12==12.1.3.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +nvidia-cuda-cupti-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +nvidia-cuda-nvrtc-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +nvidia-cuda-runtime-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +nvidia-cudnn-cu12==8.9.2.26 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +nvidia-cufft-cu12==11.0.2.54 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +nvidia-curand-cu12==10.3.2.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +nvidia-cusolver-cu12==11.4.5.107 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +nvidia-cusparse-cu12==12.1.0.106 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +nvidia-nccl-cu12==2.18.1 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +nvidia-nvjitlink-cu12==12.9.86 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +nvidia-nvtx-cu12==12.1.105 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +ollama==0.4.9 ; python_version == "3.10" +openai==1.90.0 ; python_version == "3.10" +orjson==3.10.18 ; platform_python_implementation != "PyPy" and python_version == "3.10" +packaging==24.2 ; python_version == "3.10" +parso==0.8.4 ; python_version == "3.10" +pexpect==4.9.0 ; sys_platform != "win32" and sys_platform != "emscripten" and python_version == "3.10" +pillow==11.2.1 ; python_version == "3.10" +platformdirs==4.3.8 ; python_version == "3.10" +prompt-toolkit==3.0.51 ; python_version == "3.10" +propcache==0.3.2 ; python_version == "3.10" +psutil==7.0.0 ; python_version == "3.10" +ptyprocess==0.7.0 ; sys_platform != "win32" and sys_platform != "emscripten" and python_version == "3.10" +pure-eval==0.2.3 ; python_version == "3.10" +pycparser==2.22 ; (implementation_name == "pypy" or platform_python_implementation == "PyPy") and python_version == "3.10" +pydantic-core==2.33.2 ; python_version == "3.10" +pydantic-settings==2.9.1 ; python_version == "3.10" +pydantic==2.11.7 ; python_version == "3.10" +pygments==2.19.1 ; python_version == "3.10" +pyparsing==3.2.3 ; python_version == "3.10" +pypdf==5.6.0 ; python_version == "3.10" +python-dateutil==2.9.0.post0 ; python_version == "3.10" +python-dotenv==1.1.0 ; python_version == "3.10" +pytz==2025.2 ; python_version == "3.10" +pywin32==310 ; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version == "3.10" +pyyaml==6.0.2 ; python_version == "3.10" +pyzmq==27.0.0 ; python_version == "3.10" +regex==2024.11.6 ; python_version == "3.10" +requests-toolbelt==1.0.0 ; python_version == "3.10" +requests==2.32.4 ; python_version == "3.10" +safetensors==0.5.3 ; python_version == "3.10" +scipy==1.15.3 ; python_version == "3.10" +setuptools==80.9.0 ; python_version == "3.10" +six==1.17.0 ; python_version == "3.10" +sniffio==1.3.1 ; python_version == "3.10" +sqlalchemy==2.0.41 ; python_version == "3.10" +stack-data==0.6.3 ; python_version == "3.10" +sympy==1.14.0 ; python_version == "3.10" +tenacity==9.1.2 ; python_version == "3.10" +tiktoken==0.9.0 ; python_version == "3.10" +tokenizers==0.21.1 ; python_version == "3.10" +torch-geometric==2.6.1 ; python_version == "3.10" +torch-scatter @ https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_scatter-2.1.2%2Bpt21cpu-cp310-cp310-linux_x86_64.whl ; python_version == "3.10" +torch-sparse @ https://data.pyg.org/whl/torch-2.1.0%2Bcpu/torch_sparse-0.6.18%2Bpt21cpu-cp310-cp310-linux_x86_64.whl ; python_version == "3.10" +torch==2.1.2 ; python_version == "3.10" +torchmetrics==1.7.3 ; python_version == "3.10" +torchvision==0.16.2 ; python_version == "3.10" +tornado==6.5.1 ; python_version == "3.10" +tqdm==4.67.1 ; python_version == "3.10" +traitlets==5.14.3 ; python_version == "3.10" +transformers[torch]==4.52.4 ; python_version == "3.10" +triton==2.1.0 ; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +types-pyyaml==6.0.12.20250516 ; python_version == "3.10" +typing-extensions==4.14.0 ; python_version == "3.10" +typing-inspect==0.9.0 ; python_version == "3.10" +typing-inspection==0.4.1 ; python_version == "3.10" +urllib3==2.5.0 ; python_version == "3.10" +wcwidth==0.2.13 ; python_version == "3.10" +yarl==1.20.1 ; python_version == "3.10" +zstandard==0.23.0 ; python_version == "3.10" diff --git a/Chapter12/setup_ollama.sh b/Chapter12/setup_ollama.sh new file mode 100755 index 0000000..1571c39 --- /dev/null +++ b/Chapter12/setup_ollama.sh @@ -0,0 +1,9 @@ +#!/bin/bash + +curl -fsSL https://ollama.com/install.sh | sudo sh + +ollama -v + +ollama pull minicpm-v +ollama pull nomic-embed-text + diff --git a/docker/Dockerfile b/docker/Dockerfile index 3530d5e..14655ee 100644 --- a/docker/Dockerfile +++ b/docker/Dockerfile @@ -85,3 +85,10 @@ RUN ls -d -1 */ | grep -v -e Chapter10 | xargs rm -rf RUN conda create -n chap10 python=3.10 RUN conda run -n chap10 pip install -r Chapter10/requirements.txt RUN conda run -n chap10 python -m ipykernel install --name chap10 --user + +FROM base as chap12 +RUN ls -d -1 */ | grep -v -e Chapter12 | xargs rm -rf +RUN conda create -n chap12 python=3.10 +RUN conda run -n chap12 pip install -r Chapter12/requirements.txt +RUN conda run -n chap12 python -m ipykernel install --name chap12 --user +# RUN /bin/bash ./Chapter12/setup_ollama.sh